Date: 5th April, 2024

## **Observation**

Program Title: 1. Write a python program to import and export data using Pandas library functions

| Tunetions  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 05/04/24   | Bafna Gold—Date: Page:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Set 15133  | LAC on Charles (1+8A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 150-31 may | a contract to the contract to  |
|            | Importing up Exporting data using pandal library functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | The same of the sa |
| 30.45      | import pandar as pd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 794,30     | By to be predicted by the tree of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (D)        | dt = pd. sead. (SV ( austin Housing Data. *SV")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3974       | df = pd. sead. (SV ("austin Housing Data. isv")  df. head ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | The state of the s |

Program Title:1. Write a python program to import and export data using Pandas library Functions

```
# Read data from URL
iris_data = pd.read_csv(url, names=col_names)
iris_data.head()
# Export the file to the current working directory
iris_data.to_csv("cleaned_iris_data.csv")
```

## Program Title: 2. Demonstrate various data pre-processing techniques for a given dataset

#### Code

```
# import the pandas library
import pandas as pd
# Read the CSV file
airbnb data = pd.read csv("/content/sample data/mnist test.csv")
# View the first 5 rows
airbnb data.head()
# Webpage URL
"https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
# Define the column names
col names = ["sepal length in cm",
            "sepal width in cm",
            "petal length in cm",
            "petal_width_in_cm",
            "class"]
# Read data from URL
iris data = pd.read_csv(url, names=col_names)
iris data.head()
# Export the file to the current working directory
iris data.to csv("cleaned iris data.csv")
```

Program Title: 2. Demonstrate various data pre-processing techniques for a given dataset

|         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                  |
|---------|-------------------------------------------------------------------------------------------------------------------------|
|         | * Reading data from URL                                                                                                 |
|         | 1 + I all examples are positive return to                                                                               |
| te ure  | Uniz whttps: 11 ouch . uv. ics. vci . edu/me/                                                                           |
| ON      | machine learning databases livis livis data".                                                                           |
|         | LANGING SECTION AND AND AND AND AND AND AND AND AND AN                                                                  |
|         | Col.names = [ "sepal - length in - cm" "sepal - width - in cm "petal - length in - cm" "petal width - in cm , "class".] |
|         | width - in _ cm "petal - length in _ cm" "petal                                                                         |
|         | width in cm, "class".                                                                                                   |
| Culcury |                                                                                                                         |
| 1       | inis -data = pd. read - csv (Url. names = Col names) iris - data head ()                                                |
| .0      | iais data head ()                                                                                                       |
|         |                                                                                                                         |
| *       | Exporting to another CSV file                                                                                           |
| 0       | Exporting to another (SV file inis-dota, to _ CSV ("Cleaned-iris-                                                       |
|         | data esv")                                                                                                              |
|         | 1. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                |
|         |                                                                                                                         |
|         |                                                                                                                         |

Snapshot of the output





Date: 12<sup>th</sup> April, 2024

**Title:** Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.

# Algorithm

| 2 /04/24 | LAB-2 LAB-2                                                                             |
|----------|-----------------------------------------------------------------------------------------|
|          | Use an appropriate data set for building the decision tree (103) a apply this knowledge |
| habaa    | Examples are the training examples.                                                     |
|          | is to be predicted by the troe Atlair                                                   |
|          | be tested by the leasned decision trees                                                 |
|          | Returns a decision thee that connectly classifies the given examples.                   |
| +        | Create a 200t node for the tree                                                         |
| *        | If all examples are positive setuen the                                                 |
| 1 300    | common value of Target - attribute in                                                   |
| otah.    | (ommon Value of Target - attribute in                                                   |

```
# import the pandas lib
import pandas as pd
# Read the CSV file
airbnb_data = pd.read_csv("/content/sample_data/mnist_test.csv")
    # View the first 5 rows
airbnb_data.head()
    7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ... 0.658 0.659 0.660 0.661 0.662 0.663 0.664 0.665 0.666 0.667
     020000000000000000000000000000
     2 0 0 0 0 0 0 0 0 0 ...
     [ ] # Webpage URL
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
    # Read data from URL
iris_data = pd.read_csv(url, names=col_names)
    iris_data.head()
      sepal_length_in_cm sepal_width_in_cm petal_length_in_cm petal_width_in_cm class
           5.1 3.5 1.4 0.2 Iris-setosa
                       49
                                         3.0
                                                             1.4
                                                                               0.2 Iris-setosa
                                                                       0.2 Iris-setosa
                4.7
                             3.2
                                                1.3
                      4.6
                                         3.1
                                                             1.5
                                                                               0.2 Iris-setosa
                                                1.4
     4 5.0 3.6
                                                                       0.2 Iris-setosa
[ ] iris data.info()
<<li><class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
# Column Non-Null Count Dtype
    0 sepal_length_in_cm 150 non-null
1 sepal_width_in_cm 150 non-null
2 petal_length_in_cm 150 non-null
3 petal_width_in_cm 150 non-null
4 class
dtypes: float64(4), object(1)
memory_usage: 6.0+ k8
                                            float64
float64
float64
float64
object
 iris_data.describe()
 \Xi
             sepal_length_in_cm sepal_width_in_cm petal_length_in_cm petal_width_in_cm
               150,000000 150,000000 150,000000 150,000000
      count
                        5.843333
                                             3.054000
                                                                 3.758667
       std
                      0.828066
                                          0.433594
                                                               1.764420
                                                                                     0.763161
       25%
                    5.100000
                                          2.800000
                                                               1.600000
                                                                                     0.300000
       50%
                         5.800000
                                             3.000000
                                                                  4.350000
                                                                                      1.300000
      75%
                       6.400000
                                           3 300000
                                                                 5 100000
                                                                                      1.800000
       max 7.900000
                                    4.400000
                                                        6.900000
                                                                                     2.500000
[ ] iris_data.isnull().sum()

    sepal_length_in_cm

     sepal width in cm
petal length in cm
petal width in cm
class
dtype; int64
[] data=iris_data.to_numpy()
dataset=data[:,:-1]
df = pd.DataFrame(dataset, index=dataset[:,0])
df.kurt(axis=1)
5.1 -2.368842
4.9 -1.091924
4.7 -2.276657
4.6 -1.57517
5.0 -2.787004
     6.7 -2.983606
6.3 -3.790103
     6.5 -3.127297
6.2 -3.387994
5.9 -3.345923
Length: 150, dtype: object
[ ] # Export the file to the current working directory
   iris_data.to_csv("cleaned_iris_data.csv")
```

Date: 3<sup>rd</sup> May, 2024

Title: Implement Linear Regression algorithm using appropriate dataset

Algorithm

| Algorithm   |                                                                  |
|-------------|------------------------------------------------------------------|
| 03/05/24    | Bafina Gold<br>LAB -3                                            |
|             | Une was realisted to self-colerasors                             |
|             | Implement Linear regression algorithm using                      |
|             | Implement Linear regression algorithm using appropriate dataset. |
|             | Enterpy co-935                                                   |
| 1           | Import necessary libraries                                       |
| Įì,         | Import dataset                                                   |
| ēii',       | Visualization of dataset using different plots                   |
|             | like heatmop distribution plot etc                               |
| 160010      | Preprocess the data convert on encode                            |
| 888 0 : pqs | categorical daya                                                 |
|             | Split the dataset into training and testing                      |
|             | Set! from Skleaen.                                               |
|             | Build model                                                      |
| vii,        | tit dataset model by thain it Linney-fix (x.                     |
| P           | thain 4-thain).                                                  |
| Viii,       | Calculate the accusage using mean square                         |
|             | enge la language subor (seein) ander                             |



```
# Regressor model
regressor = LinearRegression()
regressor.fit(X_train, y_train)

    LinearRegression 0 0

LinearRegression()
      y_pred_test = regressor.predict(X_test)  # predicted value of y_test
y_pred_train = regressor.predict(X_train)  # predicted value of y_train
      # Prediction on training set
plt.scatter(X_train, y_train, color = 'lightcoral')
plt.plot(X_train, y_pred_train, color = 'firebrick')
plt.title('Salary vs Experience (Training Set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.legend(['X_train/Pred(y_test)', 'X_train/y_train'], title = 'Sal/Exp', loc='best', facecc
plt.box(False)
                                                    Salary vs Experience (Training Set)
                                              Sal/Exp
            120000 -

    X_train/Pred(y_test)
    X_train/y_train

            100000 -
             80000
              60000
              40000 -
                                                                                                               8
                                                                       6
Years of Experience
                                                                                                                                      10
         # Prediction on test set
plt.scatter(X test, y_test, color = 'lightcoral')
plt.plot(X train, y_pred_train, color = 'firebrick')
plt.title('Salary vs Experience (Test Set)')
plt.xlabel('Years of Experience')
plt.ylabel('Years of Experience')
plt.ylabel('Salary')
plt.tepend(['X_train/Pred(y_test)', 'X_train/y_train'], title = 'Sal/Exp', loc='best', facecolor='white')
plt.box(False)
plt.show()
om
                                                       Salary vs Experience (Test Set)
                                             Sal/Exp
            100000 -
            80000 -
              60000
              40000
                                          2
                                                                       6
Years of Experience
                                                                                                                                      10
         # Regressor coefficients and intercept
print(f'Coefficient: {regressor.coef_}')
print(f'Intercept: {regressor.intercept_}')
```

Coefficient: [[9312.57512673]] Intercept: [26780.09915063] Title: Implement Multi-Linear Regression algorithm using appropriate dataset

# Algorithm

| A.A. | Bafna Gold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6)   | Implement Multivelinear Regression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 1 12 12 12 16 17 16 17 16 17 16 17 16 17 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | Agosithm: Estation out organization (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | The state of the s |
| 1)   | Import the required python Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2)   | Load the datast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4)   | Split the dataset line 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Split the dataset into dependent independent variables.  One = slot - encoins of cortegorical data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5)   | One = slot = en la la catego a la catego a la la catego a la categ |
|      | One slot encoling of contegorical data.  It is a method to represent a categorical variable in a mumerical way variable  Split dates identified to represent a categorical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | variable in a tournesical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ()   | Colit dates identify the colin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4    | Split dates intotrainfest sets  Train the regression model  Predict the results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9)   | Predict H. model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8)   | The results,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

```
O #Importing the libraries
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sas
     # import warmings
     warnings.filterwarnings("ignore")
     # We will use some methods from the sklearn module
     from sklears import linear_model
     from sklearn.linear_model import LinearRegression
     from sklearn import metrics
     from sklearn.metrics import mean_squared_error, mean_absolute_error
     from sklearm.model_selection import train_test_split, cross_val_score
[ ] # Reading the Dataset
     df = pd.read_csv("data.csv")
O df.head()
                       Model Volume Weight CO2
              Car
           Toyoty
                        Aygo
                                 1000
                                          790
      1 Mitsubishi
                                         1100
            Skoda
                                1000
                                          929
                                                95
                         500
                                 900
                                          865
             Mini
                      Cooper
                                1500
                                         1140 105
[ ] df.shape
                                                                                            2250
F (36, 5)
                                                                                          1750
[ ] df.corr(numeric_anly=True)
               Volume Weight
      Volume 1.000000 0.753537 0.592082
                                                                                            0.07
      Weight 0.753537 1.000000 0.552150
                                                                                            0.06
      CO2 0.592082 0.552150 1.000000
                                                                                            0.05
                                                                                           € 0.04
[ ] print(df.describe())
                                                                                            0.03
              Volume
36.000000
                             Weight
36.000000
                                          C02
36.000080
                                                                                            0.02
     count
            1611.111111 1292.277778
                                          102.027778
              388.975047
980.000000
                           242.123889
796.008600
                                          7,454571
99,866888
     std
     25%
             1475 888698
                           1117.258888
                                           97.750000
                           1329.008868
     75%
             2000.000000
                           1418.258888 185.88888
             2580.088008
                          1746-008800
[ ] #Setting the value for X and Y
    X = df[['Meight', 'Volume']]
    y = df['CO2']
                                                                                            110
                                                                                          8 105
[ ] fig, axs = plt.subplots(2, figsize = (5,5))
     plt1 = sns.boxplot(df['Weight'], ax = axs[0])
plt2 = sns.boxplot(df['Volume'], ax = axs[1])
     plt.tight_layout()
```







 # Create the correlation matrix and represent it as a heatmap. sns.heatmap(df.corr(numeric\_only=True), annot = True, cmap = 'coolwarm') plt.show()



- [ ] X\_train,X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size = 0.3, random\_state = 186)
- | | y\_train.shape
- ⊕ (25,)
- [ ] y\_test.shape
- **亚 (11,)**
- o reg\_model = linear\_model.LinearRegression()
- [ ] #Fitting the Multiple Linear Regression model reg model = LinearRegression().fit(X train, y train)
- [ ) #Printing the model coefficients print('Intercept' ',reg\_model.intercept\_) # pair the feature names with the coefficients list(zip(X, reg\_model.coef\_))
- intercept: 74.33892836589245 [('Weight', 6.8171880645996374), ('Volume', 8.8825846399866482976)]
- #Predicting the Test and Train set result y\_pred= reg\_model.predict(X\_test) x\_pred= reg\_model.predict(X\_train)
- [ ] print("Prediction for test set: ()".format(y\_pred))
- → Prediction for test set: [ 98.41571939 102.16323413 99.56363213 184.56661845 101.54657652 95.94770019 108.64011848 102.22654214 92.80374837 97.27327129 97.37974463]
- #Actual value and the predicted value reg\_model\_diff = pd.DataFrame(('Actual value': y\_test, 'Predicted value': y\_pred)) reg\_model\_diff

|    | Actual | value | Predicted | value  |
|----|--------|-------|-----------|--------|
| 0  |        | 99    | 90.       | 415719 |
| 19 |        | 105   | 102       | 163234 |
| 32 |        | 104   | 99.       | 563632 |
| 35 |        | 120   | 104       | 566618 |
| 7  |        | 92    | 101       | 546577 |
| 12 |        | 99    | 95        | 947700 |
| 29 |        | 114   | 108       | 640118 |
| 33 |        | 108   | 102       | 226542 |
| 5  |        | 105   | 92.       | 803748 |
| 1  |        | 95    | 97.       | 273271 |
| 18 |        | 104   | 97        | 570745 |

mae = metrics.mean\_absolute\_error(y\_test, y\_pred)
mse = metrics.mean\_squared\_error(y\_test, y\_pred)
r2 = np.sqrt(metrics.mean\_squared\_error(y\_test, y\_pred))
print('Mean Absolute Error:', mse)
print('Mean Square Error:', mse)
print('Root Mean Square Error:', r2)

Mean Absolute Error: 6.901980901636316 Mean Square Error: 63.39765310998794 Root Mean Square Error: 7.96226432053018 Title: Build KNN Classification model for a given dataset

Algorithm

| Algorithm  |                                           |
|------------|-------------------------------------------|
| /          | Pefna Gold                                |
| 4          | 10209 cota 0/1                            |
| c)         | Implement ation of KNN - Algorithm.       |
|            |                                           |
| 1)         | Import  Import  Topporting the modules    |
| 2)         | Calating Dataset                          |
| 3)         | Visualize the Dataset                     |
| 4)         | Splitting data into training au testing   |
|            | datasets de la sono etab est 1            |
| + 5        | KNN classify implementation               |
| 6          | Paediction fue KNN Classifiers            |
| 7)         | Product Accuracy for both 12 values       |
| policepatr | s a topsessor of bullion in the AT+ 1     |
| alla man   | OUTPUT! JAN LASICAL WAY HOPEN             |
|            | Accuracy with 1 = 5 => 93.600001          |
|            | Accuracy with K=1 -) 90.4                 |
|            | their ections all turbers to              |
|            | Calculate the central man man laws        |
| اسما عمار  | of with a company predicted value with as |
|            | MAN (CC 1039152, 108242-38)               |
|            |                                           |

```
| from sklearn.model_selection import train_test_split
| from sklearn.model_bors import kelighborsClassifier
| from sklearn.metrics import (kleighborsClassifier)
| from sklearn.metrics import classification_report, confusion_matrix
| from sklearn.metrics import classification_report (confusion_matrix)
| from sklearn.metrics import classification_report_confusion_matrix
| from sklearn.metrics import classification_report_confusion_matrix
| from sklearn.metrics import classification_report_dolors.metrics|
| from sklearn.metrics import classification_report_dolors.metrics|
| from sklearn.metrics import_dolors.metrics|
| from sklearn.metrics.metrics|
| from sklearn.metrics|
| from sklearn.metrics|
| from sklearn.metrics|
| from s
```

Date: 17th May, 2024

Title: Build Logistic Regression Model for a given dataset

| Algorith     | m                                                                 |
|--------------|-------------------------------------------------------------------|
|              | Bafna Gold — Date: Page:                                          |
| 03/05/24     | LAB-4 Date: Page:                                                 |
| 621          | Despertished the Mackethel                                        |
| 7            | Build Logistic Regession Model                                    |
|              | the same the withhis with a same Claffe, and                      |
| i)           | typort required libraries                                         |
| 2)           | toport sequised libraries loads visualize and explose the dataset |
| 3)           | Clean the dataset show all                                        |
| 4)           | Deal with the outliers of 199                                     |
| 5)           | Define dependent en independent variables                         |
|              | and then split the data into a training set and testing set.      |
|              | set and testing set.                                              |
| <del>}</del> | - A standardine (supports westowns)                               |
|              | OUTPUT                                                            |
|              | Regression coefficients obtained arelo-68.83                      |
| -            | 5,:0.192671                                                       |
|              | TUTTUO                                                            |
|              |                                                                   |

```
import cumpy as no import as plt from plotly offline import download plotly; init_notebook mode, plot, iplot import plotly as py
                           import plotly.graph_objs as go import time
                           init notebook mode(connected-True)
                                                                                                                                                                                                                                                            In [ ] | df = data.copy()
'x':df.lec[(df]'Churn']==churn), 'MonthlyCharges'],
'y':df.lec[(df]'Churn']==churn), 'tenure'],
'name':churn, 'sode:' 'warkers',
} for churn in churns
| land | 
def gradient_descent(X, h, y):
    return np.dot(X.T, (h - y)) / y.shape[6]
def update_weight_loss(weight_learning_rate_gradient):
    return weight - learning_rate * gradient
                                                                                                                                                                                                                                                                                py.offline.iplot(fig)
                                                                                                                                                                                                                                                         In []:

figs = []
for churm in churms:
figs.append(
go.Box(
y - df.toc[(df['Churm']--churm), 'tenure'],
name - churm
ll = np.sum(y*z - np.log(l + np.exp(z)))
return ll
def gradient_ascent(X, h, y):
    return np.dot(X.T, y - h)
def update_weight_sle(weight, learning_rate, gradient):
    return weight + learning_rate * gradient
                                                                                                                                                                                                                                                                                 layout = go.Layout(
title = "Tenure",
xaxis = {"title" : "Churn?"},
yaxis = {"title" : "Tenure"},
In [ ] | data = pd.read_csv(*/content/WA_Fn-UseC_-Telco-Customer-Churn.csv*)
print(*Dataset_size*)
                                                                                                                                                                                                                                                                                 fig = go.Figure(data=figs, layout=layout)
py.offline.iplot(fig)
                           print("Rows [] Columns []".format(data.shape[0], data.shape[1]))
print("Columns and data types")
pd.DataFrame(data.dtypes).rename(columns = {0:'dtype'})
                                                                                                                                                                                                                                                            In [ ] | figs - []
                    Dataset size
Rows 7043 Columns 21
                                                                                                                                                                                                                                                                                 Columns and data types
                                                                    dtype
                                     customerID object
                                                                                                                                                                                                                                                                                 gender object
                                SeniorCitizen int64
                         Partner object
                                   Dependents object
                                                                                                                                                                                                                                                                                 fig = go.Figure(data=figs, layout=layout)
py.offline.iplot(fig)
                                PhoneService object
                           MultipleLines object
                                                                                                                                                                                                                                                           In | | | = df.groupby('Churn').size().reset_index() # .sort_values(by='temure', ascending=True)
                             InternetService object
                        OnlineSecurity object
                                                                                                                                                                                                                                                                                data = [go.Bar[
    x = _['Churn'].tolist(),
    y = [0].tolist(),
    aarker-dict(
    tolor='|rgba(255,198,134,1)', 'rgba(142,186,217,1)'])
                               OnlineBackup object
                         DeviceProtection object
                                                                                                                                                                                                                                                                               )]
layout = go.Layout(
stile = "Churn distribution",
xaxis = ("litle": "Churn?"),
width=680,
height=580
                                 TechSupport object
                              StreemingTV object
                         StreamingMovies object
                                      Contract object
                                                                                                                                                                                                                                                                                 fig = go.Figure(data=data, layout=layout)
py.offline.iplot(fig)
                           PaperlessBilling object
                           PaymentMethod object
                                                                                                                                                                                                                                                           In E 1: df['class'] = df['Onurn'].apply(lambda x : 1 if x == "Yes' else 0)
    # features will be tayed as X and our target will be saved as y
    X = df[['tenure', 'Monthly(harges']].copy()
    X2 = df[['tenure', 'Monthly(harges']].copy()
    y = df['class'].copy()
                           MonthlyCharges floet 64
                        TotalCharges object
                                                 Churn object
```

```
In [ ] start_time = time.time()
                            num_iter = 188886
                            intercept = op.ones((X.shape[8], 1))
X = op.concatenate((intercept, X), axis=1)
theta = op.zeros(X.shape[1])
                           for 1 in range(num iter):

h = signoid(X, theta)

gradient = gradient descent(K, h, y)

theta = update weight loss(theta, 8.1, gradient)
                           print("Training time (Log Reg using Gradient descent):" * str(time.time() - start_time) * " seconds")
print("Learning rate: {}\nIteration: {}".format(8.1, num_iter))
                      Training time (Log Reg using Gradient descent):78.8485119342804 seconds Learning rate: 0.1
Iteration: 188806
 \begin{array}{lll} f = pd.DataFrame(np.around(rosult, decimals=5)), join(y)\\ fl'pred'] = f[0], apply(lambda x : 0 if x < 0.5 else 1)\\ print["Accuracy {Loss minimization):"} & .los[fl'pred'] = f['class']]. shape[0] / f.shape[0] * 100 f[ class'] & .los[fl'pred'] = f['class']]. shape[0] / f.shape[0] * f[ class'] & .los[fl'pred'] & .los[fl'
                        Accuracy (Loss minimization):
But1 1: 53.301150078091716
In | | | | start_time = time.time() num_iter = 188889
                            intercept2 = np.ones((X2.shape[6], 1))
X2 = np.coccatenate((intercept2, X2), axis=1)
theta2 = np.zeros(X2.shape[1])
                            for i in range(num iter):
h2 = sigmoid(X2, theta2)
                                        gradient2 = gradient ascent(X2, h2, y) #op.dof(X.7, (h - y)) / y.size
theta2 = update_weight_mle(theta2, 8.1, gradient2)
                           print("Training time (Log Reg wsing MLE):" = str(time.time() - start_time) + "seconds")
print("Learning rate: {}\nIteration: {}".format(0.1, num iter))
                     <ipython-input-2-2eeea9337b29>:3: HuntineWarning:
                      overflow encountered in exp
                     Training time (Log Reg using MLE):81.35162234386335seconds
Learning rate: 0.1
Iteration: 188898
10 | 1: result2 = sigmoid(X2, theta2)
                    <ipython-input-2-2eeea9337b29>:3: RuntimeWarning:
                      overflow encountered in exp
In [ ]: from sklearn.linear_model import LogisticRegression
                          clf = LogisticRegression(fit intercept=True, max iter=100000)
clf.fit(eff['tenura', 'MonthlyDharges']], y)
print("Training time (sklearn's LogisticRegression module):" + str(time.time() - start_time) + " seconds")
print("Learning rate: [)\nliteration: ()'.format(6.1, num iter))
                      Training time (kklearn's LogisticRegression module):83.02515387535095 seconds 
Learning rate: 0.1
Terration: 100000
In [ ]: result3 = clf.predict(df[['tenure','MonthlyCharges']])
                           print("Accuracy (sklearm's Logistic Regression):")
f3 = pd.DataFrame(result3).join(y)
f3.loc[f3[8]==f3['class']].shape[8] / f3.shape[8] * 100
Accuracy (sklearn's Logistic Regression):
```

Date: 24th May,2024

Title: Build Support vector machine model for a given dataset

Algorithm (Handwritten)

| Aigorium   | (Handwritten)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24/5/24    | Sloster Fee CARS 8ALL Section Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0          | Support Vector Machine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Support Vector Machine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (1         | Define Kernel Junction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Eg 6 K(x1, x2) = x1, x2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| to         | atablish isologis and exploses the identa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6          | Solve the quadratic programming problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | (RP) to find the x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (सहीत्)    | (RP) to find the x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 901010 23) | Compute the bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | The Ut a country of the South Service of the South |
| 4)         | Identify the support vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | CUTPUT CUTPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5)         | Make prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| G. 1926-El | sittermony with the state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | OUTPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Model: SVM()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Model git (x train Y-train)  prediction prodel predict (x-test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | prediction rodel predict (x-test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | accusacy = (ytext, prediction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | D C122 DD 9//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 0.98230088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | Madel malin (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | -) Model predict (C-0.47096, - 0.1604 584, -0.4481-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | -0.244 122, -0.19956318, 0.1832044<br>-0.1969 5794])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | -0.1969 5741)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 1 2820 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | assay (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

```
Import pandas as pd
import matplotlib.pyplot as plt
from sklearn.adtasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
 # Load the Iris dataset
iris = load_iris()
  # Convert the dataset into a pandas DataFrame
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['target'] = iris.target
 # Display the first few rows of the DataFrane print(iris_df.head())

    sepal length (cm)
    sepal width (cm)
    petal length (cm)
    petal width (cm)
    \ 0.2

    4.9
    3.0
    1.4
    0.2

    4.7
    3.2
    1.3
    0.2

    4.6
    3.1
    1.5
    0.2

    5.0
    3.6
    1.4
    0.2

  target
0
0
 Iris Dataset - Sepal Length vs Sepal Width
     4.5
                                                                                                                                                                      1.75
    4.0
                                                                                                                                                                     1.50
Sepal Width (cm)
                                                                                                                                                                      1.25
                                                                                                                                                                     - 1.00 Species
                                                                                                                                                                      0.75
                                                                                                                                                                      0.50
     2.5
                                                                                                                                                                      0.25
     2.0
                                                                                                                                                                      0.00
                       4.5
                                        5.0
                                                                                                                                                 8.0
                                                         5.5
                                                                           6.0
                                                                                                              7.0
                                                                                                                                7.5
                                                                   Sepal Length (cm)
```

**Title:** Build K-Means algorithm to cluster a set of data stored in a .CSV file

Algorithm

| 15 000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2)         | K means clustering Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | atthing make need early                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Select number to K decide the no. of elemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | et alculation de convinience matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2          | Select Random & points of centroids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3          | Hosian each Boint To The heaveil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PACONS!    | which and folm the Partitioned cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4          | caralle ond place and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 993        | Centroid of each cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5          | Repeat step 3, reassign the centroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6          | If any learlangement occurs hellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Step 4 else finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>事</b> ) | The model is ready                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Pea explained victimental parati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | OUTPUT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | TOPROCEED OF SEPRESS OF THE PARTY OF THE PAR |
|            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | b' X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | ADDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100        | 4.5 5 55 6 6.5 7 7.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

```
# import some data to play with
iris = datasets.load_iris()
X = pd.DataFrame(iris.data)
X.columns = ['Sapal_Loapth, 'Sepal_Width', 'Peral_Langth', 'Petal_Width']
y = pd.DataFrame(iris.target)
y.columns = ['Targets']
     # Build the K Means Model
model = KMeans(n_clusters=3)
model.fit(X) # model.labels
/usr/local/lib/python3.18/dist-packages/skloarm/cluster/ knoons_py:878: FutureMarni warnings.warn(

    KMeans
    KMeans(n_clusters=3)

    # # Visualise the clustering results
plt.figure(figsize=(14,14))
colormap = np.array(['red', 'lime', 'black'])
<Figure size 1400x1400 with 0 Axes>
    # Plot the Original Classifications using Petal features
plt.subplot(2, 2, 1)
plt.scatter(X.Petal Length, X.Petal_Width, c=colormap(y.Targets), s=48)
plt.title('Real Clusters')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
                               Real Clusters
   2.0 -
40 1.5 -
   E 1.0
        0.5
       0.0
                                4
Petal Length
    # Plot the Models Classifications
plt.subplot(2, 2, 2)
plt.scatter(K.Petal Length, K.Petal Width, c-colormap[model.labels_], s=40)
plt.stile("Means Clustering")
plt.xlabel("Petal Length")
plt.ylabel("Petal Width")
                        K-Means Clustering
        2.5
   2.0 -
420M
   E 1.0
       0.5
                                 Petal Length
```

**Title:** Implement Dimensionality reduction using Principle Component Analysis (PCA) Method

Algorithm (Handwritten)

| Algorithm (Handwritten) |                                           |  |
|-------------------------|-------------------------------------------|--|
| 213884                  | Bafna Gold                                |  |
| 3)                      | PCA Parinciple Component Analysis         |  |
| e (i elemen             | Calculate the mean                        |  |
| 2                       | Calculation of convinience matrix         |  |
|                         | Eigen value of the convinience materix.   |  |
|                         | Computation of the eigen vector - unit    |  |
| 121-61                  | 58 banifileriq ant mos her dans eigenvect |  |
| 5)                      | Calculation of first principle component  |  |
| 6)                      | Geometrical measuring of first principle  |  |
| - Apip 9                | Component.                                |  |
| not l                   | and it and the propagation of the first   |  |
|                         | OUTPUT: NEIGH 3819 H 9313                 |  |
|                         | The model in seady withinks in shell      |  |
|                         | Pca explained variance ratio.             |  |
|                         | COTTON : TUSTUO                           |  |
|                         | array ([0.98377428, 0.01620498])          |  |
|                         | Model & Alarty                            |  |
|                         | Aladel Add A.K. Alaba Halland             |  |
|                         | production and the second of the second   |  |

```
import matplottib poplet as pit
from sithern decomposition import StandardScaler
import pands as pi
float the firs delasted
| float the first target, columns=['Sepal_Month', 'Sepal_Midth', 'Petal_Length', '
```

Date: 31st May,2024

Title: Build Artificial Neural Network model with back propagation on a given dataset.

Refer: https://docs.google.com/presentation/d/11UE61G27eOAynhc8ctHAqoEaeYLrVhoT/edit?usp=sharing&ouid=117926028109390959744&rtpof=true&sd=true

Algorithm (Handwritten)

| Miguit   | mm (manuwitten)                                                                                                      |
|----------|----------------------------------------------------------------------------------------------------------------------|
| 31/05/24 | LAB-6 Bafna Gold—Date: Page:                                                                                         |
| 1500     |                                                                                                                      |
|          | Build an artificial neutra neural network                                                                            |
|          | Build an artificial menta neural network model with back propagation                                                 |
|          | Algorithm: powerful promoted tragget (                                                                               |
|          |                                                                                                                      |
| 7        | TC Paramollin                                                                                                        |
| .,>      | Normalize input peatures.  Normalize the output  Set hyper parameters, no al souls                                   |
| *        | Set I an advantage of the output                                                                                     |
| *        | Set hyper parameters: no. of epochs no. of neword Define arctivation functions Training the Instruction              |
| reinst   | has retrieved from making auto to a                                                                                  |
| -)       | Training the thetwork  Forward propagation  * Compute input to boilder layer  * Add bjgs  * apply extration worthing |
|          | torward propagation was the                                                                                          |
|          | + Compute input to baidden layer                                                                                     |
|          | Add bigg labora say sharper de                                                                                       |
|          | * apply actuation function                                                                                           |
| -)       | Rackpropagation                                                                                                      |
|          | * Compute exol                                                                                                       |
|          | + compute gadiant                                                                                                    |
|          | er Compute de lta                                                                                                    |
|          |                                                                                                                      |
| -)       | Update weights and biases                                                                                            |
|          |                                                                                                                      |

```
import numpy as np
x = np.airay(([2,9],[1,5],[3,6]),dtype = float)
y = np.airay(([2,9],[86],[89]),dtype = float)
x = x/np.amax(x,axis=0)
y = y/100

#Variable Initialization
epoch = 5000
tr = 0.1
inputlayer_neurons = 2
hiddenlayer_neurons = 3
output_neurons = 1

# weight and bias Initialization
wh = np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh = np.random.uniform(size=(l,hiddenlayer_neurons,output_neurons))
bout = np.random.uniform(size=(l,hiddenlayer_neurons,output_neurons))
bout = np.random.uniform(size=(l,nutput_neurons))

# how n
def sigmoid function
def sigmoid function
def sigmoid(x):
return 1/(1+np.exp(-x))
# Derivative of Sigmoid
def der_sigmoid(x):
return x*(1-x)

# Draws a random range of numbers uniformly of dim x*y

for i in range(epoch):

# forward propagation
hinp1 = np.dot(x,wh)
hinp = hinp1 + bh
hlayer_act = sigmoid(hinp)
outinp1 = np.dot(hlayer_act,wout)
outpt = sigmoid(outinp)

# Backpropagation
E0 = y - output
outprad = der_sigmoid(output)
outgrad = der_sigmoid(output)
outprad = der_sigmoid(outp
```

Title: Implement Random forest ensemble method on a given dataset.

Ref- https://towards datascience.com/random-forest-in-python-24d0893d51c0

Algorithm (Handwritten)

|         | (Handwritten)                                                                                     |
|---------|---------------------------------------------------------------------------------------------------|
|         | as windly 7-847                                                                                   |
|         | Implement Random Forest Ensemble Method                                                           |
| 1701    | is lower string mound no                                                                          |
|         | Algorithm: the page and the beare                                                                 |
|         |                                                                                                   |
| (1      | Import necessary libraries                                                                        |
| 2)      | Load & insert data                                                                                |
| 3       | Pre process the data as in separating                                                             |
|         | Reatures and strengths                                                                            |
| 4)      | Pre process the data as in separating features and strengths  Split the data to training and test |
| 007738N | Samples Use 0.4 to allocate 40-1 of data                                                          |
|         | to testing and use sest for training:                                                             |
| 5)      | Initialize sandom forest dossifier and Asain  it using fit method.                                |
|         | it using fit method.                                                                              |
| 6)      | Make predictions on test sample                                                                   |
|         | Using method predict.                                                                             |
| 7       | Evaluate the model                                                                                |
|         | northway northwaters plages a                                                                     |
|         | OUTPUT'                                                                                           |
|         | avitage of deal                                                                                   |
|         | Accuracy: 0.98                                                                                    |
|         | the compate excluent                                                                              |
|         | Confusion Matrix:                                                                                 |
|         | [[23 0 0]                                                                                         |
|         | COO 19 Of old for depart stages                                                                   |
|         | [0   17]                                                                                          |
|         | [ Fall o) 7 gl : sustal                                                                           |

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.meshelbe_import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn import datasets

# Load the data
iris_data = datasets.load_iris()

X = pd.DataFrame(iris_data.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])

# Check the info of the modified data
# print(iris_data.info())

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)

# Initialize the RandomForestClassifier
f_classifier = RandomForestClassifier (m_estimators=100, random_state=42)

# Fit the classifier to the training data
ff_classifier.fit(X_train, y_train)

# Predict on the test data
y_pred = rf_classifier
accuracy = accuracy_score(y_test, y_pred)
print(f^Accuracy: {accuracy_core(y_test, y_pred))

# Print classification report
print(*Confusion Matrix:)
print(confusion matrix(y_test, y_pred))

# Accuracy: 0.98
Classification Report::
print(*Confusion Matrix:)
print(confusion matrix(y_test, y_pred))

# Accuracy: 0.98
Classification Report:
print(*Confusion Matrix:)
print(confusion Matrix:)
print(confusion Matrix:)
print(confusion Matrix:)
print(confusion Matrix:)
[22 0 6]
[0 19 0]
[0 10 17]]
```

Title: Implement Boosting ensemble method on a given dataset

Algorithm (Handwritten) Dajna Gold -Algorithm: Import Libraries Data ple processing involves separation of features and dataset

Split the dataset to train and test Initialize the adaboost classifier with Specified no. of estimates and base estimators Train the model using the training data. Make predictions for test sample using trained model. Evaluate the model OUTPUT: Metrics. accuracy score: 0.983333333333