Université de Picardie Jules Verne

UFR Sciences Année 2023-2024.

L2: Analyse Numérique

Examen seconde session 27 Juin 2024

Durée 2 heures

Exercice 1

A. (Interpolation de Lagrange).

- 0. Soient $(x_i)_{0 \le i \le n}$ n+1 points distincts de [a,b] (a < b). Rappeler la définition de l_i $(i \in \{0,...,n\})$, le ième polynôme élémentaire de Lagrange, puis montrer que le système de vecteurs $\{l_0, \dots, l_n\}$ constitue une base de $\mathbb{R}_n[X]$.
- 1. Soit la fonction f définie par $f(x) = \ln(x+1)$.

Déterminer le polynôme de Lagrange P interpolant la fonction f aux points $x_0 = 0$ et $x_1 = 1$.

On donne $\ln 2 = 0.6931$.

- 2. Calculer P(0.56). Majorer |f(0.56) P(0.56)| en vous appuyant sur un théorème du cours que l'on énoncera précisément.
- B. On considère 4 points $x_0 < \cdots < x_3$ appartenant à [-1,6] et f une fonction définie sur [-1,6] à valeurs réelles.

On donne $x_0 = 0$, $x_1 = 1$, $x_2 = 3$, $x_3 = 4$ et $f(x_0) = -5$, $f(x_1) = 17$, $f(x_2) = 115$ et $f(x_3) = 143$.

- 1. Donner la valeur en x = 2 du polynôme de Newton P_3 qui interpole f en x_0, x_1, x_2 et x_3 .
- 2. Donner l'expression de l'erreur $|f(x) P_3(x)|$ pour $x \in \mathbb{R}$.

Exercice 2

Soit $f \in C^2([-1,1])$. On approach $\int_{-1}^1 f(t)dt$ par f(-1) + f(1).

- 1. Donner l'ordre de cette méthode de calcul approchée d'une intégrale.
- 2. Déterminer le noyau de Péano de cette méthode.

3. Montrer que l'erreur $E(f) := \int_{-1}^{1} f(t)dt - (f(-1) + f(1))$ est donnée par

$$-\frac{2}{3}f^{(2)}(\zeta), \ \zeta \in [-1, 1].$$

Soient $a, b \in \mathbb{R}$, a < b et $f \in C^2([a, b])$. On considère la fonction ϕ définie sur [-1, 1] par

$$\phi(x) = \frac{b-a}{2}x + \frac{b+a}{2}.$$

On pose $g = f o \phi$.

4. Justifier que g est bien définie, de classe C^2 puis démontrer que

$$\int_{a}^{b} f(t)dt - \frac{b-a}{2}(f(a) + f(b)) = -f^{(2)}(\eta)\frac{(b-a)^{3}}{12}, \quad \eta \in [a, b].$$

Quelle méthode vient-on d'étudier ?

Exercice 3

On considère la fonction f définie sur $I\!\!R$ par

$$f(x) = e^{-x} - \sin x.$$

1. Montrer que la fonction f admet une unique racine dans l'intervalle I := [0, 1].

Afin de déterminer une valeur approchée de cette racine qu'on notera α , on introduit la suite (u_n) définie par $u_{n+1}=g(u_n),\ u_0\in[0.5,0.7]$ où g est définie par $g(x)=x+e^{-x}-\sin x$.

- 2. Énoncer le théorème du point fixe.
- 3. Démontrer que la suite (u_n) converge vers α .
- 4. Déterminer n_0 tel que pour tout $n \geq n_0$, on a

$$|u_n - \alpha| \le 10^{-3}.$$

- 5. Décrire la méthode de Newton appliquée à l'équation f(x) = 0. Donner des valeurs de x_0 permettant d'assurer la convergence de la méthode.
- 6. Déterminer α à 10^{-2} près (utiliser la méthode de votre choix).
- 7. Des deux méthodes proposées ici, laquelle est la plus satisfaisante ? (justifier soigneusement votre réponse).