## **AMSTELHAEGE**

#### team \$HabboHotel

Maarten Hogeweij & Julia Jansen & Maarten Brijker 10437673 10208194 10440682



## introductie

- probleem
- doel
- theorie
- aanpak
- toestandsruimte
- heuristieken
- random sampling
- hill climber
- simulated annealing
- conclusie/discussie



## probleem

- fictieve woonwijk
- huizen en water
- verschillende typen huizen
- plattegronden voor 20, 40 en 60 huizen
- waardebereking:
  - totale vrije ruimte huizen
  - totale financiële waarde (!focus!)

| types           | hoeveelheden | eigenwaarde | afmetingen (m) | vrij ruimte (m) | waardevermeerdering |
|-----------------|--------------|-------------|----------------|-----------------|---------------------|
| maison          | 15%          | €610,000    | 11 x 10.5      | 6               | 6%                  |
| bungalow        | 25%          | €399,000    | 10 x 7.5       | 3               | 4%                  |
| eensgezinwoning | 60%          | €285,000    | 8 x 8          | 2               | 3%                  |
| water           | 20%          |             |                |                 |                     |

## doel

- 2 plattegronden voor 20, 40 en 60 huizen
  - optimale vrij ruimte huizen
  - optimale financiële waarde

## theorie

- constraint optimization problem
- sub-problem: closest pair of points
  - -> nearest neighbour search
  - -> linear search (gebruiken wij)

## aanpak

- complexiteit —> toestandsruimte
- geldige mappen genereren
  - random
  - scenario's hardcoded
- heuristieken/algoritmes op startmappen loslaten

## toestandsruimte

- complexiteit van het probleem
- verzameling mogelijke plattegronden
- benadering ondergrens:
  - beschikbare opp. excl. water
  - maison's > bungalows > eengezinswoningen
  - $\Box$  -> 2.44\*10<sup>31</sup>

## heuristieken

- sneller naar een goede oplossing door vuistregels
- water:
  - linker onderhoek
  - niet dichtbij de randen
  - huizen profiteren van deze vrije ruimte
- a huizen:
  - volgorde
  - verbetert run time

## random sampling

## algoritme

- stukken water: 1, 2, 3, 4
- ratio water: random
- positie huis: random
- ¬> restricted random sampling
- runs: 100.000
- bewaar de beste en slechtste map



## random sampling

- 100.000 runs
- sterke plattegronden
- normale verdeling
- maar niet symmetrisch



## random sampling

- toename freespace < toename financieel</li>
- verdeling free space belangrijk
- meer huizen = meer waarde





## algoritme

- input: startmap
- itereert over huizen hierin
- mutatie:
  - random geldige positie
  - random verschuiving
- doorvoeren wanneer waarde vermeerdert
- lokaal vs globaal optimum



- a 100.000 runs
- startmap: random & scenario's
- random sampling:
  - effect en spreiding groter bij slechte startmappen
  - verbetering en spreiding nemen af bij meer huizen

| Hill Climber                                | fina            | ncial*     |  |  |
|---------------------------------------------|-----------------|------------|--|--|
| huizen                                      | slechtste       | beste      |  |  |
| 20                                          | 10.46 - 20.49 % | 0 - 1.65 % |  |  |
| 40                                          | 0.35 - 1.99 %   | 0 - 4.02 % |  |  |
| 60                                          | 0.10 - 0.71 %   | 0 - 0,16 % |  |  |
| * spreiding verbetering tov Random Sampling |                 |            |  |  |

- □ 100.000 runs
- random map
- a 40 huizen

#### €15081450





#### data/resultaten

#### €15688200



- a 100.000 runs
- startmap: random & scenario's

 scenario's verbeteren niet significant meer dan random mappen





## simulated annealing

## algoritme

- input: startmap
- algoritme hetzelfde als Hill Climber
- echter, neemt ook soms verslechteringen aan:
- accept = e(valuenew valueold) / temperature]
  - kleiner bij grotere verslechteringen
  - kleiner bij latere iteraties
- lokaal vs globaal optimum



## simulated annealing

- a 100.000 runs
- startmap: random & scenario's
- random sampling:
  - goed op slechte kaart
  - presteert niet beter dan hill climber
  - consistenter dan hill climber



# simulated annealing

#### data/resultaten



#### after



#### conclusie/discussie

- vervolg onderzoek gefocust op plaatsing water
- algoritmes bereiken lokaal optimum
  - —> water staat vast vanaf het begin
- run time verbeteren
- simulated annealing cooling scheme moet beter
- sociale waarde meenemen

# (voorlopige) uitkomst

20 huizen, 2 water, €11803410



40 huizen, 2 water, € 19457820



60 huizen, 3 water, €27378440



