# 10.2 Machines

#### Machine: a tool used to make work easier.

 Machines make work easier to do by providing some trade-off between the force applied and the distance over which the force is applied.

 They change the size or the direction of the applied force.

• EX: Bottle opener

## **Terms and Equations**

- Effort Force (F<sub>E</sub>) the force applied to a machine
- Effort Distance (D<sub>E</sub>) the distance through which the machine moves
- Work Input  $(W_I)$  work done on a machine  $W_I = F_E \times D_E$
- Resistance Force (F<sub>R</sub>) the force applied by the machine
- Resistance Distance  $(D_R)$  the distance through which the object moves
- Work Output  $(W_O)$  work done by a machine  $W_O = F_R \times D_R$

#### Machines

- Machines can multiply force.
- Machines do not multiply work.
- Work output cannot be greater than work input.
- Ideal Work:  $W_I = W_O$
- Mechanical Advantage (M.A.) the number of times a machine multiplies the effort force.

$$M.A. = F_R / F_E$$

# Mechanical Advantage = $F_R/F_E$

- M.A. equal to 1:
  - machine does not multiply the effort force, it just changes the direction of the effort force.
  - EX: Simple pulley
- M.A. is less than one:
  - machine increases the distance an object is moved.
  - EX: Hockey stick
- M.A. greater than one:
  - machine increases the force applied by the person.
  - EX: Car jack

# Mechanical Advantage:

$$M.A. = F_r / F_E$$
  
Ideal  $M.A. = d_E / d_r$ 

# Efficiency of a machine:

- The comparison of work output to work input
- Expressed as a percent
- Can never be greater than 100%
- Friction reduces the efficiency of a machine.
  Anything that reduces friction such as keeping a machine well lubricated increases efficiency.

# Efficiency of a machine

% Efficiency =  $W_O / W_I \times 100 = MA/IMA \times 100$ 

- Example: What is the efficiency of a machine where work input is 200 J, and work output is 100 J?
- % Efficiency =  $100 \text{ J} / 200 \text{ J} \times 100 = 50\%$

# Compound Machine

- A machine consisting of two or more simple machines linked in such a way that the Fr of one machine becomes the effort force of the second.
  - EX: Bike p.270
- MA/IMA of a compound machine is the product of the MAs/IMAs of the simple machines.

#### Lever

- A lever is a stiff rod that rotates around a pivot point.
  - Depending on where the pivot point is located, a lever can either change the force applied or the distance over which the force is applied.

# 1st Class lever









### 2<sup>nd</sup> Class lever











### 3<sup>rd</sup> Class Lever











#### **Inclined Plane**





 An inclined plane is a ramp used to gradually move an object up/down.





- An inclined plane wrapped to form a spiral
- It reduces effort force by increasing effort distance.

# Wedge

A wedge converts
 motion in one direction
 into a splitting motion
 that acts at right angles
 to the blade.



# **Pulley System**

- A single pulley simply reverses the direction of a force.
- When two or more pulleys are connected together, they permit a heavy load to be lifted with less force by increasing the distance.
- The M.A. of a pulley system is approximately equal to the amount of supporting ropes or strands.



















#### Wheel and axle

- A wheel and axle is a lever that rotates in a circle around a center point or fulcrum. The larger wheel rotates around the smaller wheel (axle).
  - EX: Bicycle wheels.





- EX: The rear wheel on your bike has a radius of 35.6 cm and has a gear with a radius of 4 cm. When the chain is pulled with a force of 155 N, the wheel rim moves 14 cm. The efficiency of this part of the bike is 95%.
- a) What is the IMA of the wheel and gear?
- b) What is the MA of the wheel and gear?
- c) What is the resistance force?
- d) How far was the chain pulled to move the rim 14 cm?