Reducción de dimensionalidad con PCA

Como vimos en la clase pasada el **Análisis de Componentes Principales (PCA en Inglés)** nos permite por medio de los vectores y valores propios de la matriz de covarianza identificar esas direcciones especiales a lo largo de las cuales capturamos la mayor cantidad de varianza de los datos, esto puede implicar que lo que son un conjunto de datos de 10, 20 o 30 variables por decir un ejemplo; podemos reducirlo a una menor cantidad de variables, capturando una cantidad suficiente de varianza, quiere decir que estoy dispuesto a sacrificar cierto porcentaje de varianza, pero ahí estoy logrando reducir un numero de variables y eso me facilita darle al modelo de Machine Learning una cantidad de datos menor para que la procese.

Ahora procederemos a realizarlo en Python, para saber como implementar la reducción de variables.

```
In []: #Importando Librerías
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler

#Creando un dataset
iris=sns.load_dataset('iris')
iris.head(3)
```

```
Out[]:
             sepal_length sepal_width petal_length petal_width species
          0
                       5.1
                                    3.5
                                                   1.4
                                                                0.2
                                                                      setosa
          1
                       4.9
                                    3.0
                                                   1.4
                                                                0.2
                                                                      setosa
          2
                       4.7
                                    3.2
                                                   1.3
                                                                0.2
                                                                      setosa
```

Ahora procederemos a Normalizar los datos con una función de Scikit Learn. Para ello necesitamos saber que columnas tiene el dataset:

Ahora obtengamos la covarianza del set de datos: scaled, pero antes de ello vayamos a la documentación de Numpy para Covarianza.

numpy.cov

In []: iris.columns

```
numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None, *, dtype=None) [source] Estimate a covariance matrix, given data and weights. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, X = [x_1, x_2, \dots x_N]^T, then the covariance matrix element C_{ij} is the covariance of x_i and x_j. The element C_{ii} is the variance of x_i.
```

[-1.38535265, 0.32841405, -1.39706395, -1.3154443], [-1.50652052, 0.09821729, -1.2833891, -1.3154443], [-1.02184904, 1.24920112, -1.34022653, -1.3154443]])

El texto anterior nos dice que si queremos calcular la varianza en ciertas variables de nuestro data set X, tenemos que realizarle una $Transposici\'onala matriz. X=x_1,x_2,x_3,\ldots,x_n^T As\'ila covarianza de le lemento C_{ij}estar\'ia da da por la covarianza de x_iyx_j . Por \'ultimo la varianza de X_{ii}es la varianza de x_i$$

Para nuestro caso X = scaled y nuestro arreglo quedaría como: $\{'sepal_length', 'sepal_width', 'petal_length', 'petal_width'\}$

```
In [ ]: # Calculando Matriz de Covarianza
cov_mat=np.cov(scaled.T)
cov_mat
```

Listo ya tenemos el calculo de la matriz, la matriz resultante es una matriz 4x4, porque calcula la relación de todas variables

```
In [ ]: sns.heatmap(cov_mat,annot=True,fmt='.2f')
```

Out[]: <Axes: >


```
{'sepal_length', 'sepal_width', 'petal_length', 'petal_width'}
```

Recordemos que van en ese orden.

También observemos las correlaciones que hay en el dataset por medio de un diagrama similar

```
In [ ]: sns.pairplot(iris)
```

Out[]: <seaborn.axisgrid.PairGrid at 0x7f69d897a8a0>

Este diagrama es el mismo diagrama que graficamos en heatmap, bueno no es el mismo pero representan conceptos similares. Como se puede observar a simple vista, las gráficas de

- petal_length vs petal width
- petal width vs petal_length Son los mismos y a simple vista tienen un comportamiento interesante en la correlación. Hagamos un gráfico de comparación

Graficando

Yo quiero ver el diagrama de dispersion con las variables en crudo y estandarizadas.

¿Cómo queda el mismo diagrama de dispersion con las variables estandarizadas?¿Por que es importante esto?¿Por qué estamos estandarizando el data set antes de aplicarle el **PCA**?

La razón es sencilla, si nos dimos cuenta en la clase anterior el **PCA** lo que hace es calcular la sombra de los vectores pero considerando que los datos estaban centrados. Y esto es más evidente si nosotros tenemos un conjunto de datos que tiene un promedio 0 y que tiene un desviación estándar de 1, es decir datos estandarizados.

```
In []: #comparemos Las variables
sns.jointplot(x=iris['petal_length'],y=iris['petal_width'])

#Comparemos Las variables pero con la data estandarizada
sns.jointplot(x=scaled[:,2],y=scaled[:,3])

#Recordemos que Las categoría 'petal_length' esta en la columna 3
# y 'petal_width' esta en la columna 4
```


Veamos los diagramas de dispersion:

- 1. Es el diagrama con los datos originales
- 2. Es el diagrama con los datos estandarizados, pareciera que no se ve distinto, pero miremos las escalas; como se puede observar ya tenemos un valor 0 y los datos tienen una dispersión que esta asociada a una varianza unitaria.

Luego de esto viene la parte de calcular los valores y vectores propios, usaremos la siguiente función numpy.linalg.eig()

• https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html Que lo que hace es calcular los vectores y valores de una matriz de forma inmediata.

```
In [ ]: #Obteniendo los vectores y valores propios
        #de la matriz de covarianza
        eigen_values,eigen_vectors =np.linalg.eig(cov_mat)
```

Ya ha calculado los valores y vectores propios de la matriz, recordemos que $\lambda=\,{
m valores}$ propios y $v=\,{
m vectores}$ propios

Pongamos en claro la tarea de estos parámetros; su tarea es capturar la mayor cantidad de varianza de los datos y que cada una de estas direcciones es lo que llamamos una dirección principal.

IMPORTANTE

Ya que los hemos calculado.

Recuerda cada uno de los vectores propios es una de las direcciones principales a lo largo de la cual capturamos varianza de los datos originales.

¿Cómo podemos ver esto claramente?

Creamos una lista de explicación de varianza.

Vamos a crear una lista vacía para añadir la varianza que los vectores propios explican. De acuerdo a las matemáticas para calcular la varianza que los vectores nos explican se puede calcular proporcional a la relación entre el **valor propio particular** y la **suma de todos los valores propios que están en la matriz**. Pongamoslo en código

$$Varianza_{ ext{ eigen value}} = rac{ ext{eigen value}_i}{\sum_{i=1}^{N}(ext{eigen value}_i)} 100\%$$

```
In [ ]: variance_explained=[]

for index,eigen_value in enumerate(eigen_values):
    variance_explained.append((eigen_value/sum(eigen_values))*100)
    print(f'Varianza de eigen value[{index+1}] = { variance_explained[index]} %')

Varianza de eigen value[1] = 72.9624454132999 %
    Varianza de eigen value[2] = 22.850761786701725 %
    Varianza de eigen value[3] = 3.6689218892828683 %
```

Esto nos dice que una 4^{ta} componente la podemos quitar y tal vez una 3^{ra} componente si estamos dispuestos a sacrificar el $\approx 5\%$ total de la varianza.

Ahora ¿Cómo podemos tomar esa transformación y reducir los datos a n dimensiones con base en esto?

Pasamos de usar Numpy a usar Scikit Learn

De la parte de decomposition de **Scikit** usamos PCA

Varianza de eigen value[4] = 0.5178709107155036 %

 $\bullet \quad https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html$

```
In [ ]: #Importando La funcion PCA
from sklearn.decomposition import PCA
```

La idea con esta función es poder crear una instancia **PCA**, le tenemos que pasar un argumento y decirle **Yo quiero reducirnos a** n_components ; es decir quiero reducir a cierto numero de componentes. En nuestro caso vamos a crearlo para que nos reduzca a 2 componentes.

Después cuando este listo, le dire que haga el **ajuste (fit)** sobre los datos, **PERO: NO SON LOS DATOS ORIGINALES, SINO LOS DATOS ESTANDARIZADOS (ESCALADOS)**.

Veamos los resultados

PCA(n_components=2)

```
In []: #Creando una instancia y estableciendo la reducción # a 2 componentes pca=PCA(n_components=2) #Aplicando la instancia a los datos escalados pca.fit(scaled)

Out[]: PCA PCA
```

Ya me ha generado la reducción de componentes.

Importante:

PCA tiene diferentes métodos, entre ellos explained_variance_ratio_ que me dice como es la varianza con respecto a las componentes. Es decir algo similar a lo que hicimos anteriormente.

```
In [ ]: pca.explained_variance_ratio_
```

Out[]: array([0.72962445, 0.22850762])

Fijémonos que las 2 primeras direcciones capturan la misma varianza que nos entregó el método de PCA.

Entonces el método comienza con las direcciones o variables que mas varianza capturan y va descartando las subsecuentes.

También ahora podemos aplicar la reducción de los datos a nuestro dataset. O lo que debemos entregar a nuestro modelo de Machine Learning.

```
In [ ]: # Obteniendo las variables reducidas en
# un nuevo conjunto
reduced_scaled=pca.transform(scaled)
```

Ahora mediante la linea de código anterior le estamos diciendo que obtengamos las variables que fueron **escaladas y después reducidas con PCA**, lo que hago es simplemente llamo al método pca.transform() y le digo que le aplique la reducción a mis set de datos scaled. Entonces reduced_scaled me va a entregar la transformación resultante de la descomposición de valores y vectores propios.

Entonces si yo coloco el set original escalado era la misma longitud de datos pero, pero cada **datapoint** tenia los 4 componentes de los atributos de la flor ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] y ahora solo nos entrega 2 componentes con la misma longitud del dataset.

Aquí tenemos claro que el **PCA** esta reduciendo los datos que en total esta capturando la suma de 0.7296% + 0.2285% de la varianza, debido a la suma de la varianza de sus componentes, lo cual es bastante decente y es $\approx 95\%$ de la varianza total.

Y lo implemento en el dataset

[-2.38984217, 0.64683538]])

```
In []: # Implementando en el data frame
iris['pca_1'] = reduced_scaled[:, 0]
iris['pca_2'] = reduced_scaled[:, 1]
iris
```

Out[]:		sepal_length	sepal_width	petal_length	petal_width	species	pca_1	pca_2
	0	5.1	3.5	1.4	0.2	setosa	-2.264703	0.480027
	1	4.9	3.0	1.4	0.2	setosa	-2.080961	-0.674134
	2	4.7	3.2	1.3	0.2	setosa	-2.364229	-0.341908
	3	4.6	3.1	1.5	0.2	setosa	-2.299384	-0.597395
	4	5.0	3.6	1.4	0.2	setosa	-2.389842	0.646835
	•••							
	145	6.7	3.0	5.2	2.3	virginica	1.870503	0.386966
	146	6.3	2.5	5.0	1.9	virginica	1.564580	-0.896687
	147	6.5	3.0	5.2	2.0	virginica	1.521170	0.269069
	148	6.2	3.4	5.4	2.3	virginica	1.372788	1.011254
	149	5.9	3.0	5.1	1.8	virginica	0.960656	-0.024332

150 rows \times 7 columns

Ahora lo que tengo son mis 2 variables listas para implementarlas en un algoritmo, vemos como en el data frame añadí 2 entradas que las contienen.

Ahora el siguiente paso es ver como se despliega de manera gráfica este conjunto de datos:

Escalado y reducido a 2 componentes principales

```
In [ ]: #Graficando Las variables
sns.jointplot(x = iris['pca_1'], y= iris['pca_2'], hue=iris['species'])
```

Out[]: <seaborn.axisgrid.JointGrid at 0x7f6a1c27f0b0>

Este nuevo gráfica de dispersion no es de los datos originales sino de las dimensiones reducidas y se supone que esta nueva distribución de datos, ya esta contemplando por lo menos el 95% de la varianza total de los datos. ¿Hay perdida de información? Si, per es minima; un 5%.

Estamos viendo que en este nuevo espacio reducido, los datos tienen cierta capacidad de evidenciar patrones de correlación y puedo también ver cierta separación entre las categorías. En este punto es cuando tomo los datos y empiezo a trabajar sobre si quiero hacer predicciones, clasificación, etc.

Y esta es la forma final como Seaborn nos puede mostrar los resultados de las componentes reducidas.