1 SQL

Abbildung I Angabe ERD Tennisclub	1
Abbildung 2 Problem -> ERD	2
Abbildung 3 Überleitung in das relationale Modell	2
Abbildung 4 Erzeugen neuer Tabellen	2
Abbildung 5 Datentypen	3
Abbildung 6 Erzeugen der Tabellen PLAYERS, TEAMS, PENALTIES und MATCHES_	 3
Abbildung 7 Copying Tables	3
Abbildung 8 Dropping Tables	4
Abbildung 9 Altering Tables	4
Abbildung 10 Add Column	4
Abbildung 11 Synonyms	4
Abbildung 12 Literals	4
Abbildung 13 Skalarfunktionen	·
Abbildung 14 Datumsfunktionen	5
Abbildung 15 Klauseln eines SELECT Statements	 5
Abbildung 16 statistische Funktionen	 5
Abbildung 17 BETWEEN Operator	 5
Abbildung 18 IN Operator	 5
Abbildung 19 LIKE Operator	 5
Abbildung 20 NULL Operator	 5
Abbildung 21 Beispiele NULL Operator	5 5
Abbildung 22 Lösung	s
Abbildung 23 Lösung	6
Abbildung 24 Lösung	6
Abbildung 25 Lösung	6
Abbildung 26 Lösung	6
Abbildung 27 Lösung	₇
Abbildung 28 Lösung	₇
Abbildung 29 Connect by	₇
Abbildung 30 Tabelle PARTS	₇
Abbildung 31 INSERT	8
Abbildung 32 INSERT-Hinweis	8
Abbildung 33 Masseninsert_	8
Abbildung 34 Beispiel - update	
Abbildung 35 DELETE	
Abbildung 36 Hinweis - Transaktionen	
Abbildung 37 Variante 1 – max	9
Abbildung 38 Variante 2 – eigene Nummerntabelle	
Abbildung 39 Variante 2a - eigene Nummerntabelle für sämtliche Tabellen mit Surrogaten	
Abbildung 40 Variante 3 - eigene Sequence	
Abbildung 41 Variante 3 - eigene Sequence (Beispiel)	
Abbildung 42 Sequence (Beispiel)	9
Abbildung 43 Bearbeiten einer Sequenz	
Abbildung 44 Löschen einer Sequenz	
Abbildung 45 Integritätsbedingungen	
Abbildung 46 Entity Integrity	
Abbildung 47 Referential Integrity	_10
0	

Abbildung 48 DML Operationen	11
Abbildung 49 Check Integrity	11
Abbildung 50 Löschen von Integritätsbedingungen	11
Abbildung 51 Indexes	11
Abbildung 52 Indexes	11
Abbildung 53 Faustregeln für Indexerstellung	12
Abbildung 54 Warum werden Views verwendet	12
Abbildung 55 Syntax einer View	12
Abbildung 56 Beispiele einer View	13
Abbildung 57 Zwei Kategorien von Datenbanksicherheit	13
Abbildung 58 Arten von Datenbanksicherheit	13
Abbildung 59 Zugriffsbestimmungen	13
Abbildung 60 User SYS und SYSTEM	13
Abbildung 61 Anlegen von Usern und Vergabe von Rechten	14
Abbildung 62 Beispiele für typische Systemprivilegien des DBA	14
Abbildung 63 Beispiele für typische Systemprivilegien von Benutzern	14
Abbildung 64 User Rechte zurücknehmen	14
Abbildung 65 User entfernen	14
Abbildung 66 Was ist eine Rolle	14
Abbildung 67 eine Rolle anlegen	15
Abbildung 68 OPS\$user	15
Abbildung 69 Objektprivilegien	15
Abbildung 70 Objektrechte vergeben	15
Abbildung 71 Objektrechte zurücknehmen	15
Abbildung 72 Zugriffskontrolle mit Views	16
Abbildung 73 Data-Dictionary-Tabelle	16

• Der Tennisclub hat sowohl Hobbyspieler als auch Meisterschaftsspieler als Mitglieder.

- Meisterschaftsspieler spielen in Mannschaften gegen andere Clubs.
- Jeder Meisterschaftsspieler hat eine eindeutige Verbandsnummer.
- Der Club hat einige Mannschaften, die an der Meisterschaft teilnehmen.
- Jede Mannschaft hat einen Mannschaftsführer.
- Eine Mannschaft besteht nicht immer aus denselben Spielern. Für jedes Spiel muß daher festgehalten werden, welcher Spieler für welches Team antritt und welches Ergebnis er dabei erreicht hat.
- Ein Spieler kann vom Verband für unfaires Verhalten Strafen bekommen.

Abbildung 1 Angabe ERD Tennisclub

	Schritt	В	eispiel	
1		Spieler		
	mengen bestimmen	Mannschaft Strafe		
2	Beziehungen ermitteln	 1 Spieler spielt für 0n Mannschaften; 1 Mannschaft besteht aus 1n Spielern 1 Spieler führt 01 Mannschaften; 1 Mannschaft wird von 1 Spieler geführt. 1 Spieler wird verurteilt zu 0n Strafen; 1 Strafe wird über 1 Spieler verhängt. 		
3	ERD erstellen	::Spieler 1* spielt für * ::Mannschaft		
	or ottomorr	1 1	0.1 1*	
		rerurteilt zu 🔻 🔻 fül	nrt an 🔭 * nimmt teil 🛔	
		::Strafe	::Meisterschaft	

Abbildung 2 Problem -> ERD

	Schritt	Beispiel
a	Jede Entitätsmenge wird	Spieler(<u>SpielerId</u> ,)
	Relation mit einem	• Mannschaft(<u>TeamId</u> ,)
	Primärschlüssel	• Strafe(<u>Strafld</u> ,)
		 Meisterschaft(<u>Meisterld</u>,)
b	1:n - Beziehungen werden	• Strafe(, SpielerId,)
	Fremdschlüssel	
С	m:n - Beziehungen werden	• Spiel(<u>SpielId</u> , <i>TeamId</i> , <i>SpielerId</i> ,)
	assoziative Tabellen	• Teilnahme (<u>Teilnahmeld</u> , <i>Teamld, Meisterld,</i>)
d	Eigenschaften werden Spalten	 Spieler(, Name, VerbandsNr, Geburtdatum,)
		Mannschaft(, Name,)
		• Strafe(, Datum, Betrag, Grund,)
		Spiel(, SätzeGewonnen, SätzeVerloren,)
е	Jede Beziehung wird zu einem	• Mannschaft (, <i>KapitänId</i> ,)
	Fremdschlüssel	
f	Normalisierung	-
g	Aggregation	-

Abbildung 3 Überleitung in das relationale Modell

numerische Datentypen		
NUMBER (P, S)	P Gesamtanzahl	
	S Anzahl der Nachkommastellen	
	z.B. NUMBER(6,2) \rightarrow 0000,00	
DECIMAL(P,S)	entspricht NUMBER(P,S)	
INT	Ganzzahl; entspricht NUMBER(38,0)	
alphanumerische Datentypen		
CHAR(n)	Zeichenfolge mit max. Länge n	
VARCHAR2(L)	wie CHAR, jedoch var. Speicherung	
LONG	speichert Daten vom Typ VARCHAR; <= 2GB (Variable lang)	
Datum		
DATE	es wird Datum und Zeit gespeichert	
für Binärdaten, die nicht interpretiert werden		
RAW	uninterpretiert (Sound, Grafik,)	
LONG RAW	uninterpretiert (Sound, Grafik,) <=2GB	
Große Objekte		
BLOB	Große Binärdaten vom Typ RAW <= 4GB	
CLOB	Große Zeichendaten <=4GB	
identifiziert eindeutig eine Zeile in einer Tabelle		
ROWID	Pseudospalte, "Datensatznummer" jeder Zeile; in allen Tabellen	
	enthalten	

Abbildung 5 Datentypen

	Datentyp	Attribut	Nullability	Defaulting
Players	Number (4)	PlayerNo	Not NULL	
	Varchar2 (15)	Name		
	Number (4)	Year_of_Birth		
	Varchar2 (4)	LeagueNo		
Teams	Number (2)	TeamNo	Not NULL	
	Number (4)	PlayerNo		
	Varchar2 (6)	Division		
Penalties	Number (4)	PaymentNo	Not NULL	
	Number (4)	PlayerNo		
	Date	Pen_Date		aktuelles Dat.
	Number(7,2)	Amount		2000,00
Matches	Number (5)	MatchNo	Not NULL	
	Number (2)	TeamNo		
	Number (4)	PlayerNo		
	Number (1)	Won		
	Number (1)	Lost		

Abbildung 6 Erzeugen der Tabellen PLAYERS, TEAMS, PENALTIES und MATCHES

Abbildung 11 Synonyms

Abblidding 11 S	<i>y</i> 11011 <i>y</i> 1110
Numerische Literale: • Integer	SELECT *
integer	FROM matches WHERE won = 3
Decimal	SELECT *
	FROM penalties WHERE amount > 99.9
Floating Point	SELECT * FROM penalties
	WHERE amount > 0.999E2
Alphanumerische Literale:	CELECT *
Begrenzt durch Hochkommas	SELECT * FROM players
	WHERE name = 'Baker'
Darstellung eine Hochkommas in einer	z.B. 'Müller''s Büro'
Zeichenkette	
Datumsliterale:	SELECT *
	FROM penalties
	WHERE pen_date > '01-Apr-1982'

Abbildung 12 Literals

LENGTH	Länge einer Zeichenkette		
	SELECT name, LENGTH(name), FROM players;		
	Ergebnis: BAKER 5		
DECODE	ermöglicht die Vertextung bzw. Umsetzung eines Feldes:		
	$decode(\langle cn \rangle, \langle strfrom_1 \rangle, \langle strto_1 \rangle, \langle strfrom_2 \rangle, \langle strto_2 \rangle,, \langle strto_n \rangle, \langle str_{else} \rangle)$		
	ersetzt in Spalte <cn> die Werte <strfrom<sub>i> durch die Werte <strto<sub>i>; wenn keiner</strto<sub></strfrom<sub></cn>		
	davon zutrifft und <str<sub>else> angegeben ist, dann dadurch.</str<sub>		
SUBSTR	herausschneiden einer beliebigen Zeichenfolge aus einer anderen Zeichenfolge:		
	SUBST(<cn>, <numbbeginpos>, <numblength>)</numblength></numbbeginpos></cn>		
INSTR	zum Finden eines Zeichens oder einer Zeichenkette in einer anderen Zeichenkette:		
	SUBSTR(<cn>, <strsearch>, <numbbeginsearch>)</numbbeginsearch></strsearch></cn>		
UPPER	wandelt übergebene Zeichenfolge in Großbuchstaben um		
LOWER	wandelt übergebene Zeichenfolge in Kleinbuchstaben um		

FormatString	Bemerkung	
DD, Dy, Day	Tage	
MM, Mon, Month	Monat:	
	Mon (3-stellige Kodierung, zB JAN, FEB)	
	Month (in englisch geschriebene Monatsnamen)	
YY, YYYY	Jahr (2 oder 4-stellig)	
HH, HH12, HH24	Stunden (12 oder 24 Stunden)	
MI	Minute	
SS	Sekunden	

Abbildung 14 Datumsfunktionen

```
SELECT ....
FROM ....
[WHERE ....]
[CONNECT BY ....]
[GROUP BY ....
[HAVING ....]]
[ORDER BY ....]
```

Abbildung 15 Klauseln eines SELECT Statements

COUNT	Anzahl von Zeilen bzw. Anzahl von Werten (ungleich NULL)
MIN	Minimum
MAX	Maximum
SUM	Summe
AVG	Durchschnitt
STDDEV	Standardabweichung
VARIANCE	Varianz

Abbildung 16 statistische Funktionen

If a is:	Condition	Evaluates to:
10	a IS NULL	FALSE
10	a IS NOT NULL	TRUE
NULL	a IS NULL	TRUE
NULL	a IS NOT NULL	FALSE
10	a = NULL	UNKNOWN
10	a != NULL	UNKNOWN
NULL	a = NULL	UNKNOWN
NULL	a != NULL	UNKNOWN
NULL	a = 10	UNKNOWN
NULL	a != 10	UNKNOWN

Abbildung 21 Beispiele NULL Operator

Ausgabe von Spielernummer und -name derjenigen Spieler, die mindestens eine Strafe erhalten haben:

```
SELECT * FROM players
WHERE EXISTS (SELECT * FROM penalties WHERE
playerno=players.playerno);
Abbildung 22 Lösung
```

Ausgabe der Spieler mit den 4 höchsten Strafen:

Ausgabe der Spieler, die mindestens eine Strafe über 50,00 erhalten haben:

• Ausgabe der Spieler, für die jede Strafe über 50,00 war (keine Strafe unter 50,00):

Allerdings werden dabei auch die Spieler ausgegeben, die überhaupt keine Strafe erhalten haben.

Daher:

Ausgabe sämtlicher Spieler mit ihren Strafen.

```
SELECT name, initials, amount FROM players pl, penalties pe
WHERE pl.playerno = pe.playerno
UNION
SELECT name, initials, 0 FROM players pl
WHERE NOT EXISTS
(SELECT * FROM penalties pe WHERE pe.playerno=pl.playerno)
Abbildung 27 Lösung
```

Ausgabe sämtlicher Spieler mit ihren Strafensummen

```
SELECT name, initials, SUM(amount) FROM players pl, penalties pe WHERE pl.playerno = pe.playerno GROUP BY name, initials
UNION
SELECT name, initials, 0 FROM players pl
WHERE NOT EXISTS
(SELECT * FROM penalties pe WHERE pe.playerno=pl.playerno)
Abbildung 28 Lösung
```

Syntax:

CONNECT BY [PRIOR] condition [START WITH condition]

Abbildung 29 Connect by

Folgende Tabelle PARTS:

SUB	SUP	PRICE
P1		130
P2	P1	15
Р3	P1	65
P4	P1	20
Р9	P1	45
P5	P2	10
P6	P3	10
P7	P3	20
P8	P3	25
P12	P7	10
P10	P9	12
P11	P9	21

Abbildung 30 Tabelle PARTS

Hinweise

- Angabe der Spaltennamen: Spalten nicht notwendig; wenn sie weggelassen werden, müssen allerdings die Werte für alle Spalten in der richtigen Reihenfolge angegeben werden
- NULL Werte: können eingefügt werden, indem
 - a) die Spalte nicht belegt wird (unter Angabe des Spaltennamens)

```
INSERT INTO dept (deptno, dname)
VALUES (60, 'MIS');

oder

b) das Schlüsselwort NULL verwendet wird (in beiden Fällen)

INSERT INTO dept
VALUES (60, 'MIS', NULL);
Abbildung 32 INSERT-Hinweis
```

INSERT INTO table_name [(col_name1,col_name2,....)]

Abbildung 33 Masseninsert

Beispiele:	
Preis von P05 auf ATS 100,- setzen.	
Preis von P05 um 10% erhöhen.	
Alle Preise über ATS 60,- um 10%	
herabsetzen.	
Alle Preise unter dem Durchschnitt um	
20% erhöhen.	

Abbildung 34 Beispiel - update

DELETE FROM table_name [WHERE condition]

Abbildung 35 DELETE

- Beginn einer Transaktion:
 - 1. mit der ersten ausführbaren DML-Anweisung
 - 2. mit SAVEPOINT savepoint updtsal;

update emp

SELECT

set sal=sal*1.1;

rollback to updtsal;

- Ende einer Transaktion:
- 1.COMMIT oder ROLLBACK
- 2.DDL oder DCL-Anweisung wird ausgeführt (implizites bzw. automatisches COMMIT)
- 3.Bestimmte Fehler, Exit oder Systemabsturz

Abbildung 36 Hinweis - Transaktionen

```
SELECT MAX(teamno)+1 FROM teams;
INSERT INTO team VALUES (...);
                              Abbildung 37 Variante 1 – max
SELECT MAX(teamno)+1 FROM team;
INSERT INTO team VALUES (...);
INSERT INTO teamNo VALUES (...);
                       Abbildung 38 Variante 2 – eigene Nummerntabelle
Anlegen einer Tabelle: seq(Tablename, NextFreeID)
SELECT NextFreeID FROM Seq WHERE tablename = 'TEAMS';
UPDATE seq SET NextFreeID+1 WHERE tablename = 'TEAMS';
INSERT INTO teams VALUES (...);
        Abbildung 39 Variante 2a - eigene Nummerntabelle für sämtliche Tabellen mit Surrogaten
 CREATE SEQUENCE seq_name
 [START WITH integer]
 [INCREMENT BY integer]
 [{MAXVALUE integer | NOMAXVALUE}}]
 [{MINVALUE integer | NOMINVALUE}}]
 [{CYCLE | NOCYCLE}]
 [{ORDER] | NOORDER}]
 [{CACHE integer | NOCACHE}]
                          Abbildung 40 Variante 3 - eigene Sequence
 Beispiel:
 create sequence seq_teamno start with 3;
 INSERT INTO teams(teamno, playerno, division)
 VALUES (seq_teamno.NEXTVAL, 104, 'first');
                      Abbildung 41 Variante 3 - eigene Sequence (Beispiel)
 - Erstellen einer Nummernfolge:
CREATE SEQUENCE dept_deptno
   INCREMENT BY 1
   START WITH 91
   MAXVALUE 100
   NOCACHE
   NOCYCLE;
 - Sequenz verwenden:
INSERT INTO dept(deptno, dname, loc)
VALUES (dept_deptno.NEXTVAL, 'MARKETING', 'SAN DIEGO');
 - Aktuellen Wert anzeigen:
SELECT dept_deptno.CURRVAL
FROM dual;
                             Abbildung 42 Sequence (Beispiel)
 ALTER SEQUENCE seq_name
 [INCREMENT BY integer]
 [{MAXVALUE integer | NOMAXVALUE}}]
 [{MINVALUE integer | <u>NOMINVALUE</u>}]
 [{CYCLE | NOCYCLE}]
 [{ORDER | NOORDER}]
 [{CACHE integer | NOCACHE}]
                           Abbildung 43 Bearbeiten einer Sequenz
```

```
DROP SEQUENCE seq_name
                        Abbildung 44 Löschen einer Sequenz
CREATE TABLE table_name (
                                                           expression]
     column_name
                         data_type
                                           [DEFAULT
[column_constraint]
      [, column_name ...]
      [, table_constraint, ....]
bei nachträglichen Erstellen eines Constraint
     ALTER TABLE table_name
     ADD (table constraint)
wobei table constraint:
      [CONSTRAINT constraint name]
     constraint_type (column_name1 [,column_name2, ....]))
                        Abbildung 45 Integritätsbedingungen
• column integrity
 column_name .... [CONSTRAINT constraint_name] PRIMARY KEY
• table integrity
 . . . .
 column_name ....,
 [CONSTRAINT constraint_name]
 PRIMARY KEY(column_name1 [,column_name2,....]),
                          Abbildung 46 Entity Integrity

    column integrity

 column name .... [CONSTRAINT constraint name]
      REFERENCES table_name[(column_name1[,column_name2,...])]
      [ON DELETE CASCADE]
• table integrity
 . . . .
 column_name ....,
 [CONSTRAINT constraint_name]
 FOREIGN KEY (column_name1[,column_name2,...])
 REFERENCES table_name [(column_name1[,column_name2,....])]
 [ON DELETE CASCADE],
                         Abbildung 47 Referential Integrity
```

Folgende Tabelle zeigt die DML Operationen, die auf dem Primärschlüssel der PARENT Table (z.B. PLAYERS) und auf dem Fremdschlüssel der CHILD Table (z.B. TEAMS) erlaubt sind. Angenommen wird, dass für den Fremdschlüssel NOT NULL gilt:

DML Statement	Gegen die PARENT Table	Gegen die CHILD Table	
INSERT	Immer OK, falls PK-Wert	Nur OK, falls der FK-Wert im	
	eindeutig	PK existiert	
UPDATE (Restrict)	OK, falls keine Zeilen der CHILD	Nur OK, falls der neue FK-	
	Table auf den PK-Wert verweisen	Wert im PK existiert	
DELETE (Restrict)	OK, falls keine Zeilen der	Immer OK	
	CHILD Table auf den PK-Wert		

	verweisen	
DELETE (Cascade)	Immer OK	Immer OK

Abbildung 48 DML Operationen

column integrity

column_name [CONSTRAINT constraint_name] CHECK condition

• table integrity

. . . .

column_name,

[CONSTRAINT constraint_name] CHECK condition,

. . . .

Abbildung 49 Check Integrity

ALTER TABLE table_name DROP CONSTRAINT constraint_name

Abbildung 50 Löschen von Integritätsbedingungen

Abbildung 51 Indexes

CREATE [UNIQUE] INDEX index_name
ON table_name (column_name1[,column_name2,...])
DROP INDEX index_name

Abbildung 52 Indexes

Es ist sinnvoll	Es ist nicht sinnvoll
aus Integritätsgründen einen unique index	über ein Attribut einen Index zu
zu erstellen.	definieren, das nur wenige
	unterschiedliche Werte enthält.
auf Fremdschlüssel einen Index zu	eine Abfrage auf <> durch einen Index
definieren, da die meisten Joins über die	zu unterstützen.
Beziehung Primärschlüssel <> Fremdschlüssel	
laufen.	
über Attribute einen Index zu definieren,	über ein Attribut einen Index zu
wenn nach diesen oft abgefragt wird.	definieren, das sehr oft Null enthält.
über Attribute einen Index zu definieren,	
wenn nach diesen oft sortiert wird.	

Abbildung 53 Faustregeln für Indexerstellung

- 0 Um den Datenbankzugriff einzuschränken.
- 0 Um komplexe Abfragen einfacher zu machen (Verknüpfung mehrerer Tabellen)
- 0 Um Datenunabhängigkeit zu ermöglichen (z.B. für ad-hoc-Benutzer)
- 0 Um verschiedene Sichten derselben Daten darzustellen.

Abbildung 54 Warum werden Views verwendet

Abbildung 55 Syntax einer View

- Erstellen Sie eine View V_PLAYERS mit PLAYERNO, NAME und die Gesamtsumme der Strafen der einzelnen Spieler (Spalte AMOUNT_TOTAL). Die Spielerdaten sollen auch über die View gesehen werden können, wenn ein Spieler noch keine Strafen erhalten hat.

```
CREATE VIEW v_players AS
SELECT p.playerno,name,sum(amount) AS amount_total
  FROM players p, penalties pe
WHERE p.playerno = pe.playerno(+)
GROUP BY p.playerno,name;
```

Geben Sie sämtliche Spalten der View v_p aus.

```
Select * From v_players;
```

- Geben Sie die Gesamtsumme der Strafen aus.

Select Sum(amount_total) From v_players;

- Welche Views haben Sie bereits angelegt ?

SELECT view_name From user_views;

Abbildung 56 Beispiele einer View

Die **Datenbanksicherheit** kann in zwei Kategorien klassifiziert werden:

- 1. Systemsicherheit
- 2. Datensicherheit

Systemsicherheit deckt den Zugriff auf und die *Nutzung der Datenbank auf Systemebene* ab (z.B. Benutzername und Passwort) und weist den Benutzern Speicherplatz und Systemoperationen zu (die der Benutzer durchführen darf).

Datensicherheit deckt den Zugriff auf und die *Nutzung der Datenobjekte* ab, sowie die Aktionen, welche der Benutzer mit diesen Objekten durchführen darf.

Abbildung 57 Zwei Kategorien von Datenbanksicherheit

Aus dem Begriff der Datenbanksicherheit leiten sich zwei Arten von Privilegien ab: **Systemprivilegien** (system privileges): Zugriff auf die Datenbank erhalten **Objektprivilegien** (schema object privileges): Den Inhalt der Datenbankobjekte manipulieren.

Abbildung 58 Arten von Datenbanksicherheit

Ein identifizierter Benutzer hat also nur auf bestimmte Daten Zugriff:

- Daten von Tabellen und Views, die er selbst erstellt hat
- Daten von Tabellen und Views, für die er Zugriffsrechte (z.B. SELECT, UPDATE,) erhalten hat

Abbildung 59 Zugriffsbestimmungen

GRANT CONNECT
TO system
IDENTIFIED BY neupwd
oder
ALTER USER system
IDENTIFIED BY neupwd (DBA Rechte erforderlich)
Abbildung 60 User SYS und SYSTEM

IDENTIFIED BY password

GRANT system_privilege [, system_privilege...]
TO user [, user...]
[WITH ADMIN OPTION]

Abbildung 61 Anlegen von Usern und Vergabe von Rechten

Systemprivileg	Operationen. für die die Berechtigung gilt
CREATE USER	Es dürfen andere Benutzer angelegt werden
DROP USER	Ein anderer Benutzer darf gelöscht werden
DROP ANY TABLE	Eine Tabelle darf in beliebigen Schema gelöscht werden
BACKUP ANY TABLE	Eine beliebige Tabelle in einem beliebigen Schema darf mit der
	Export Utility gesichert werden.

Abbildung 62 Beispiele für typische Systemprivilegien des DBA

Systemprivileg	Operationen. für die die Berechtigung gilt
CREATE SESSION	Verbindung zur Datenbank herstellen
CREATE TABLE	Tabellen im Schema des Benutzers erstellen
CREATE SEQUENCE	Eine Sequenz im Schema des Benutzers erstellen
CREATE VIEW	Eine View im Schema des Benutzers erstellen
CREATE	Eine Stored Procedure, Funktion oder Package im Schema des
PROCEDURE	Benutzers erstellen.

Abbildung 63 Beispiele für typische Systemprivilegien von Benutzern

REVOKE {system_privilege [,system_privilege]|ALL}
FROM user [, user,]

Abbildung 64 User Rechte zurücknehmen

DROP USER user [CASCADE]

Abbildung 65 User entfernen

Abbildung 66 Was ist eine Rolle

```
CREATE ROLE role

GRANT role [, role]

TO user [,user, ....]

[IDENTIFIED BY password [, password, ....]]

Abbildung 67 eine Rolle anlegen
```

Es gibt in ORACLE zwei Arten von User-Accounts

- 1. User-Accounts, die an das Betriebssystem gebunden sind. z.Bsp.: Windows-Login: D3BH08 ergibt einen ORACLE account OPS\$D3BH08
- 2. Gewöhnliche Accounts wie SCOTT/TIGER

Abbildung 68 OPS\$user

Objektprivileg	Tabelle	View	Sequenz	Prozedur
ALTER	✓		√	
DELETE	✓	√		,
EXECUTE				✓
INDEX	✓	_		
INSERT	✓	✓		
REFERENCES	√	_		
SELECT	√	√	√	
UPDATE	✓	√		

Abbildung 69 Objektprivilegien

```
objekt_priv [(column1 [, column2])]
GRANT
   ON
       objekt
        {user|role|PUBLIC} [, user, ....]
   T0
[WITH GRANT OPTION]
- wobei objekt_priv folgende Werte annehmen kann:
ALTER
DELETE
 INDEX
 INSERT
REFERENCES
SELECT
UPDATE [(column_name1 [,column_name2,....])]
ALL
                      Abbildung 70 Objektrechte vergeben
REVOKE {privilege [, privilege...] | ALL}
ON
       object
        {user [, user, ....]|role|PUBLIC}
FROM
[CASCADE CONSTRAINTS]
                    Abbildung 71 Objektrechte zurücknehmen
```

Beispiel:

- Tabelle ANGESTELLTER (AngNr, AngName, AngJob, AngGehalt)
- Tabelle wurde vom DB-Administrator (User DBMAN) erstellt.
- Alle Angestellten dürfen lesend auf AngNr, AngName und AngJob zugreifen
- Nur der Präsident mit dem Benutzernamen KING darf alle Operationen auf den Daten durchführen.

Folgende Schritte sind durchzuführen:

- 1. GRANT ALL ON ANGESTELLTER TO KING
- 2. CREATE VIEW ANG AS SELECT ANGNR, ANGNAME, ANGJOB FROM ANGESTELLTER
- 3. GRANT SELECT ON ANG TO PUBLIC
- KING muss beim Zugriff DBMAN.ANGESTELLTER angeben, alle anderen Benutzer DBMAN.ANG.
- Wird zusätzlich ein Synonym mit

CREATE PUBLIC SYNONYM ANGESTELLTER FOR DBMAN.ANG

erzeugt, dann kann jeder mit dem Namen ANGESTELLTER zugreifen.

- Will jedoch KING auf ANGGEHALT zugreifen, so muss er DBMAN.ANGESTELLTER angegeben.

Abbildung 72 Zugriffskontrolle mit Views

Data-Dictionary-Tabelle	Beschreibung		
ROLE_SYS_PRIVS	an Rollen vergebene Systemprivilegien		
ROLE_TAB_PRIVS	an Rollen vergebene Tabellenprivilegien		
USER_ROLE_PRIVS	Rollen, die für Benutzer zugänglich sind		
USER_TAB_PRIVS_MADE	an Benutzerobjekte vergebene Objektprivilegien		
USER_TAB_PRIVS_RECD	erhaltene Objektprivilegien		
USER_COL_PRIVS_MADE	an Spalten von Benutzerobjekten vergebene		
	Objektprivilegien		
USER_COL_PRIVS_RECD	Objektprivilegien, die der Benutzer für bestimmte Spalten		
	erhalten hat.		

Abbildung 73 Data-Dictionary-Tabelle