

Understanding Coking in Propane Conversion

Daniel K. Anoruo¹, Ravion Hyatt², Yu-Hsiang Cheng³, Durvesh Parab³, and Jeffrey P. Greeley³ ¹Department of Computer And Information Sciences, Towson University

²Florida Agricultural and Mechanical University-Florida State University College of Engineering

³Charles D. Davidson School of Chemical Engineering, Purdue Engineering

BACKGROUND

- In hydrocarbon conversion reactions such as cracking or reforming, there is often carbon residue left on the surface of a catalyst. This process is known as coking.
- · The problem with coking is that these carbon deposits can lower the activity of the catalyst by blocking active sites.
- · The catalysts utilized in our calculations is pure platinum as it strong in breaking hydrocarbon bonds.
- · Our project is centered around DFT which is a theory centered around molecular interactions.
- · Through software tools utilizing the principles of DFT, these molecular interactions can be studied.

GOAL

Understanding how coke forms and grows to design better catalysts that last longer and work better in the near future.

OBJECTIVE

- · Computational Framework Setup: Utilize Linux to conduct the appropriate DFT calculations.
- Validation and Optimization: Validate computational results against experimental data and optimize simulation parameters for improved accuracy.

METHODS

Utilizing Computer Simulations we will study the formation of carbon on the surface of a catalyst through the usage of

Bulk Calculations:

Calculates the energy produced by an element in its standard form, or as a whole not divided into sections.

Surface Slab Calculations:

Using an accurate lattice constant provided by the bulk calculation, the binding energy can be calculated by splitting the element into sections

Coking On A Molecular Level

[1] Figure 1. Carbon Atoms Blocking The Active Site on the Catalyst.

PROJECT RESULTS

Figure 5. 3 Carbon Atoms Test

According to the surface slab calculations, the most optimal site would be the hollow since it provided the lowest binding energy

Conclusion

- · The presence of the hollows on the catalyst lowered the binding energy.
- · The dimer would be the least favorable choice since it had the highest binding
- · The 2 isolated carbon further apart from each other would be the most favorable choice for binding energy.

Key Terms:

Lattice Constant - A parameter used in DFT calculations which defines the (size of the) crystal structure of a simple cubic metal.

Binding Energy - The amount of energy needed to break particle(s) apart.

ENERGY FOR OUR GROWING WORLD

Most Common Approaches Explained

Dimer - Two Carbon Atoms Bonded On The Surface Of A Catalyst

IMPACTS & FUTURE

Impacts:

- Increased productivity for catalysts
- · Less strain on nuclear reactors
- · Less energy consumption

Future:

- Adopt sustainable practices to reduce environmental impact
- Shift toward cleaner propane conversion
- · Potentially using platinum alloys

PERSONAL PROGRAM EXPERIENCE

- · Gained insight on graduate school
- Developed relationships among peers and mentors
- · Met with speakers in both industry and graduate school to gain a general idea on what to pursue post undergrad
- · Networked with likeminded individuals
- · Given a true perspective on the routine of a graduate student
- Participated in seminars that helped prepare me for the future

ACKNOWLEDGEMENTS

- · I would like to thank God for leading me to where I am now.
- · Yu-Hsiang Cheng and Ravion Hyatt for helping out during the labs, and being a pillar of support throughout the project.
- Jeff Greeley for assigning our team a project within the realms of our field.
- · Maeves Drummond for giving me this wonderful opportunity
- · Our sponsors for providing us the necessary funds we needed to conduct
- · The rest of CISTAR and SURF for providing great connections throughout the program

References

• [1] Cheng, Y.-H., & Greeley, P. J. (2023). PhD Qualifying Examination-Report First Principles Analysis of Coke Formation on Pt-based Catalysts for Propane Dehydrogenation.

