

MATRIZ

Uma matriz corresponde a uma coleção de dados <u>indexada</u>, <u>bidimensional</u>, <u>homogênea</u>, e de <u>tamanho fixo</u>.

Indexada: os elementos são acessados por meio de índices

Bidimensional: duas dimensões

(linhas e colunas)

Homogênea: todos dados são do

mesmo tipo

Tamanho fixo: deve ser alocado previamente, antes de ser utilizado. Uma vez alocado, sua quantidade de elementos é fixa.

	0		5
0	JOSÉ	TEO	THAIS
١	MARIA	JOSE	PAULO
2	MARCOS	YAGO	GUTO
3	MARTA	YARA	RAMON

ARMAZENAR E VER OS ELEMENTOS

MATRIZ

escreva (poltrona[1][2])
para (x=0; x<5; x++){
para (y=0;y<3;y++){
escreva(nota[x][y])}}</pre>

	0	1	2	3	4	
0	0	1	1	0	1	
ı	1	0	1	0	1	
2	0	0	0	1	1	
3	0	0	0	1	1	

POLTRONA	

0		2
9.5	6.5	8.0
6.7	7.8	10
5.5	9.0	8.5
10	10	5.5
6.5	5.5	6.0

NOTA

MATRIZ

EXEMPLO

↓ Fazer um programa para ler dois números inteiros positivos (máximo = 5) para saber quantos valores de linhas e colunas ler, depois ler uma matriz de X linhas e Y colunas contendo números inteiros. Em seguida, mostrar na tela a matriz lida conforme exemplo a seguir.

Quantas linhas vai ter a matriz? (máximo 5): 2 Quantas colunas vai ter a matriz? (máximo 5): 3 Elemento [0,0]: 6 Elemento [0,1]: 3 Elemento [0,2]: 10 Elemento [1,0]: 8 Elemento [1,1]: 12 Elemento [1,2]: 5 MATRIZ DIGITADA: 6 3 10 8 12 5

```
programa
2 \sim 4
       funcao inicio()
         inteiro limite_linha, limite_coluna, x, y, mat [5][5]
          escreva ("Quantas linhas vai ter a matriz? (máximo 5): ")
          leia (limite linha)
          escreva ("Quantas colunas vai ter a matriz? (máximo 5): ")
          leia (limite_coluna)
          para (x=0;x<limite_linha;x++)
12 V
           para (y=0;y<limite_coluna;y++)
13
14 \sim
             escreva ("Elemento [",x,",",y,"]: ")
             leia (mat[x][y])
16
          para (x=0;x<limite_linha;x++)
20 ~
           para (y=0;y<limite_coluna;y++)
22 ~
             escreva (mat[x][y], " ")
           escreva ("\n")
```


TESTE DE MESA

MANUAL

```
inteiro m, n, i, j, x, y
inteiro mat[6][6], v[6]
m = 2
n = 2
para (i=0;i<m;i++)
 para (j=0;j<n;j++)</pre>
 x = i + j
 y = i - j
 mat[i][j] = x
 v[j] = y
```


Faça um programa que leia um número inteiro positivo (máximo 10) e uma matriz quadrada com a ordem desse número inserido contendo números inteiros. Em seguida, mostrar a diagonal principal e a quantidade de valores impares da matriz.

Fazer um programa para ler dois números inteiros X e Y (máximo 10). Em seguida, ler uma matriz de X linhas e Y colunas contendo números inteiros. Gerar um vetor de modo que cada elemento do vetor seja a soma dos elementos da linha correspondente da matriz. Mostrar o vetor gerado.

ATIVIDA DE PRÁTICA

Fazer um programa para ler dois números inteiros X e Y (máximo 10). Depois ler uma matriz de X linhas e Y colunas contendo números inteiros. Em seguida, mostrar na tela somente os números pares da matriz.

03 E 04

PRÁTICA

Fazer um programa para ler duas matrizes de números inteiros matA e matB, contendo de X linhas e Y colunas cada (X e Y máximo 10). Depois, gerar uma terceira matriz matC onde cada elemento desta é a soma dos elementos correspondentes das matrizes originais. Imprimir na tela a matriz gerada.

Faça um programa que leia um número inteiro positivo (máximo 10) e uma matriz quadrada com a ordem desse número inserido, contendo números inteiros. Depois fazer a leitura do índice de uma linha da matriz e imprimir todos os elementos desta linha.

05 E 06

ATIVIDADE PRÁTICA

Faça um programa que leia um número inteiro positivo (máximo 10) e uma matriz quadrada com a ordem desse número inserido, contendo números inteiros. Depois mostrar a soma de todos os elementos pares da matriz.

07 E 08

ATIVIDA DE PRÁTICA

Faça um programa que leia um número inteiro positivo (máximo 10) e uma matriz quadrada com a ordem desse número inserido, contendo números inteiros. Depois fazer a leitura do índice de uma coluna da matriz e mostrar a soma de todos os elementos desta coluna.

Faça um programa que leia um número inteiro positivo (máximo 10) e uma matriz quadrada com a ordem desse número inserido, contendo números inteiros. Depois alterar a matriz multiplicando todos os pares por 2 e os impares somando 1 e imprimir essa nova matriz.

