- 1. Berechnen Sie unter Annahme von 32-Bit Adressen die folgenden Werte für einen 2-fach assoziativen 32KB großen Cache mit 32 Bytes cache lines:
 - Anzahl der Bits für den Offset
 - o 5Bits
 - Anzahl der Sets im Cache
 - o 512
 - Anzahl der lines im Cache
 - o 1024
 - Anzahl der index bits
 - o 7Bits
 - Anzahl der tag bits
 - o 20Bits (32Bit-5BitOffset-7BitIndex)
- 2. Gegeben sei ein 128 Bytes grosser 2-fach assoziativer Cache mit cache lines von 16 Bytes; der Addressraum der CPU umfasst 2^16 =65536 Bytes. Als Ersetzungs-Strategie wird LRU verwendet.

Auf folgende Adressen wird zugegriffen (binär) (hier gleich die Hits und Misses mit drin:

Adresse	Hit/Miss	Eintrag in Set/Cacheline
00001000000	Miss	Set1/Cacheline1
00000010100	Miss	Set2/Cacheline3
00000000000	Miss	Set1/Cacheline2
00001000100	Hit	Set1/Cacheline1
00011000001	Miss	Set1/Cacheline2
00001001000	Hit	Set1/Cacheline1
00011001001	Hit	Set1/Cacheline2
TAG,INDEX,OFFSET		

a) wie ist der Cache organisiert (Skizze)? Wie viele Bits werden für tag, index, offset verwendet?

Tag = 10Bit Offset = 4Bit Index = 2Bit

Aufteilungsreihenfolge: Tag/Index/Offset

Set1(00)	Cacheline1
	Cacheline2
Set2(01)	Cacheline3
	Cacheline4
Set3(10)	Cacheline5
	Cacheline6
Set4(11)	Cacheline7
	Cacheline8

b) wie viele hits und misses treten auf?

Siehe Tabelle (4 Misses, 3 Hits) c) Welche tags stehen am Ende im Cache? Tag 2, 6, 7

- 3. Stellen Sie den Cache-Simulator fertig (Methode process(tag,index,write)); siehe die Kommentare was zu tun ist. Implementieren Sie die Ersetzungsstrategien random. LRU, FIFI und vergleichen Sie die Hits/Miss rate. Erfinden Sie eine (sinnvolle) Ersetzungsstrategie, die zwischen Lese- und Schreiboperationen unterschieden und erklären Sie Ihre Überlegungen.
- 4. Implementieren Sie zwei Programme, die Daten über ein Mittel der Interprozesskommunikation austauschen (wählen sie: Shared Memory oder Pipes oder Unix domain Sockets). Entweder unter MacOS, Linux ider Windows. Die zwei Programme sollen eine einfache Aufgabe kooperativ lösen; blödes Beispiel: ein Prozess wählt eine Zufallszahl, der zweite berechnet die Wurzel und gibt das Ergebnis zurück.
- 5. Wo wird Interprozesskommunikation praktisch eingesetzt? Und Warum? Was sind die Vorteile? AM besten Sie beschreiben eine Architektur eines Open-Source Projekt, das Interprozesskommunikation verwendet...