

AIA计划:让AI帮人做算法?!

卜东波

前瞻研究实验室

2019年2月28日

算法课上的容易事和难事

• 容易回答的问题:

Q: 你设计的这个算法是怎样工作的?

• 难回答,甚至无法回答的问题:

Q: 你是怎样想出来这个算法的?

A: 聪明?顿悟?灵感?

理解算法易,理解设计过程难!

Human algorithmist如何设计算法?

・观察少数简单例子,寻找灵感!

为证明一个问题是否是NP完全的,我们首先观察这个问题的简单实例,直到我们找到一些实例,能够展现出有趣的行为(问题结构)

----- C. Papadimitriou

----- S. C. Li

- R. Karp随身带一个小本子,碰到问题,手工<mark>画几个最简单的例子</mark>,观察规律,寻找灵感。。。
- 李明,姜涛,张凯宗,刘晓文,王鲁生,.....

以排课问题为例

- · 有5门课申请使用报告厅,已知上下课时间
- 问:最多能安排几门课?

经典的贪心算法: 选最早下课的!

GreedyIntervalScheduling(CourseSet)

- 1: while $CourseSet \neq \emptyset$ do
- 2: Select the course C with earliest finishing time;
- 3: Remove C and related courses from CourseSet;
- 4: end while

规则简单,想出来不容易!

规则1:优先安排最早上课的;规则2:优先安排时长最短的;规则3:优先安排冲突最少的;

・ 规则3:优先安排冲突最少的;◆ 规则4:优先安排最早下课的;

• 规则5:优先安排最晚上课的;

能否用AI学出算法设计背后的"灵感"?

Human Algorithmist = AI Algorithmist?

AlphaGO的启示

・ 关键技术:

- 蒙特卡洛树搜索;
- 采用深度学习技术学习已有的棋谱;
- 采用<mark>增强学习</mark>技术,将学习目标从"预测"变 成"对局"

AlphaGo纠正我的观念

- Dirty的事情让dirty tool干!
- · 说不清楚的事情就是dirty:
 - 视觉机理

- 下棋

- 蛋白质折叠

- 灵感

AIA计划:让NN学"灵感"!

- 实验设计:
 - 随机产生10万个5门课的例子,
 - 先用笨拙的动态规划算法跑出标准答案
 - 然后用NN来学

・ 正确率:98%!

AIA计划:以小NN指导解大例子

- 如何解10门课的例子?
- · Bagging! 随机选5门课,跑小NN,投票!

・ 正确率:95%!

NN学出了规则4和规则5!

NN怎么工作的?打开网络!解释网络!

NN怎样同时掌握贪心规则4和规则5? 选最早下课的和最晚上课的

隐层结点2,3,4管规则4

一个只会贪心规则4的网络 选最早下课的

隐层结点1,3,4管规则5

再深入解释: "最早下课"咋实现?

NN:中间层每个结点都"强调"一门课, 把上课时间的差异逐层放大!

Human设计的算法 vs AI设计的算法

Human algorithmist:

GreedyIntervalScheduling(CourseSet)

- 1: while $CourseSet \neq \emptyset$ do
- 2: Select the course C with earliest finishing time;
- 3: Remove C and related courses from CourseSet;
- 4: end while

AI algorithmist:

NNIntervalScheduling(CourseSet)

- 1: while $CourseSet \neq \emptyset$ do
- 2: Select the course C with **highest score by** NN(CourseSet);
- 3: Remove C and related courses from CourseSet;
- 4: end while

Human Algorithmist = AI Algorithmist?

我的回答:Yes!

AIA计划:让AI帮忙设计算法

- ・优势:
 - 构造训练集无需人工标注,只要机器算;
 - 使用曙光机的强大传统算力

- 下一步计划:
 - NP-完全问题: AIA-SAT, AIA-TSP
 - 整数线性规划求解器:AIA-ILP

- SIGMA(Special Interest Group on Mathematics and Algorithms)讨论班(孙晓明、张家琳)
- 清华翟辉报告:

Thanks!

AlphaGo中的蒙特卡洛树搜索

Algorithm 8 蒙特卡洛树搜索算法

- 1: while 当前局面无法区分胜负 do
- 2: **for** i = 0 到 N **do**
- 3: **for** j = 0 到 L **do**
- 4: 按一定规则选择一个走子策略
- 5: **end for**
- 6: 模拟快速走子直到可以分出胜负
- 7: 将胜负信息反向传播到经过路径的所有节点
- 8: 更新每个节点的权重
- 9: end for
- 10: 以一定规则选择当前局面的子节点为该步走子策略
- 11: 更新当前局面
- 12: end while

采用蒙特卡洛树搜索的拼接

· 基本思想:将一定长度的一个或几个位点的联配作为路径搜索的一步,然后使用蒙特卡洛树搜索

求解

- 关键点:
 - 1.评价值 :模拟完成后返回什么值?
 - 2.选择规则:每次选哪个点尝试?
 - 3. "走子": 选哪个节点作为该步搜索结果?

我们的解决方案

解决方法:

- 评价值 :Sleaf即:完整路径和部分路径打分加权和
- 选择规则:选Exploitation+Exploration最大节点
- "走子":n(选中次数)最大的子节点

$$S_{\text{leaf}} = (1 - \lambda)S_{\text{global}} + \lambda S_{\text{local}}$$
 9

 $Exploitetion = Exploitation + \frac{S_{\text{leaf}} - Exploitation}{n}$ 6

 $Exploration = \frac{\eta S_{\text{init}} \sqrt{n_p}}{1 + n}$ 4

- 核心思想:
 - 平衡对已有搜索结果的利用和对未知领域的探索