End Semester Examination (Discrete Mathematics (MA221))

*Required

Instructions:

Responses are limited to only one

- (i) Attempt all questions
- (ii) Total marks 20
- (iii) There will be no negative marking
- (iv) Follow usual notations

What is simple graph? Explain why no simple graph can have degree sequence (6, 4, 3, 3, 2, 2). *

2 points

A GRAPH IS SIMPLE IF IT HAS NO PARALLEL E

* 1 point

Let,P(x) denote the statement "x = x + 7". What is the truth value of the quantification $\ni xP(x)$, where the domain consists of all real numbers?

True

False

It can be true

None

In a capacited flow network if f(e) and c(e) are flow along edge e and 1 point capacity of edge respectively then *
$c(e) \ge f(e)$
f(e)≥c(e)
√ f(e), c(e)≥0
0≥f(e), c(e)
Define abelian group. Why every subgroup of an abelian group is normal. * 2 points An abelian group is a group in which the law of
Suppose repetitions are not permitted. (1)How many three-digit numbers 2 points can be formed from the six-digits 2,3,5,6,7 and 9? (2) How many of these numbers are less than 400? *
(1) 6*5*4 = 120 Numbers (2) 2*5*4 = 40 Numb
Which of the following does not hold for operations on sets? * 1 point
✓ X-Y=Y-X
$(X \cup Y) \cap X = Y$

 $p \leftrightarrow q$ is logically equivalent to

$$(p \rightarrow q) \rightarrow (q \rightarrow p)$$

 $(p \rightarrow q) \lor (q \rightarrow p)$

Option 1

Option 2

$$(p \rightarrow q) \land (q \rightarrow p)$$

 $(p \land q) \to (q \land p)$

Option 3

Option 4

Define cnf and dnf of statement variables. *

2 points

A COMPOUND PROPOSITION (OR FORMULA) \

A K3,3 graph is graph. *	1 point
v non-planar	
planar	
regular	
complete	
✓ bipertite	
A self-complemented distributive lattice is called *	1 point
Complete lattice	
Self dual lattice	
Modular lattice	
Boolean algebra	
Let A , B be non empty sets $f:A\to B$ be a permutation. Then *	1 point
f is bijective and A = B	
f is onto and A ≠ B	
f is bijective and A ≠ B	
Define equivalence relations and Poset. *	2 points
A RELATION R ON SET A IS SAID TO BE EQUIV.	

What is order of a group? State Lagrange's theorem for finite groups. * 2 points

THE ORDER OF GROUP IS NUMBER OF ELEME

The chromatic number of a complete graph having n vertices is * 1 point

n/2

n n

n-1

2n

Back

Submit

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms