有限元方法上机作业

段俊明*

2017年12月20日

1 问题重述

先简单介绍三维的弹性力学方程组,设边界 $\partial\Omega$ 是 Lipschitz 连续的,位移为 $u=(u_1,u_2,u_3)^{\mathrm{T}}$,应变与位移的关系

$$\boldsymbol{\varepsilon}(\boldsymbol{u}) = \frac{1}{2} (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathrm{T}}), \tag{1}$$

应力与应变的关系

$$\sigma(\mathbf{u}) = \lambda tr(\varepsilon)I + 2\mu\varepsilon,\tag{2}$$

应变和应力可表示成对称的三阶矩阵, 其中 λ , μ 是拉梅常数, $\lambda = 3.65e4$, $\lambda + 2\mu = 6.70e4$. 考虑平衡方程,

$$-\sum_{j=1}^{3} \partial_j \sigma_{ij}(\boldsymbol{u}) = f_i, \quad i = 1, 2, 3,$$
(3)

其中 $\mathbf{f} = (f_1, f_2, f_3)^{\mathrm{T}}$ 是体积力, 将应力带入平衡方程,

$$-\mu\Delta \boldsymbol{u} - (\lambda + \mu)\nabla(\nabla \cdot \boldsymbol{u}) = \boldsymbol{f}, \quad in \ \Omega, \tag{4}$$

$$\sum_{j=1}^{3} \sigma_{ij}(\boldsymbol{u}) \boldsymbol{n}_{j} = g_{i}, \quad on \ \Gamma_{1}, \tag{5}$$

$$\mathbf{u} = 0, \quad on \ \Gamma_0,$$
 (6)

其中 Γ_0 是固定边界, Γ_1 是自由边界.

考虑二维平面应变问题, 即假设 z 方向应变为 0, 有 $u_3=0$, $\varepsilon_{31}=\varepsilon_{32}=\varepsilon_{33}=0$, 且 $\sigma_{31}=\sigma_{32}=0$, 由 $\sigma_{33}=\lambda(\varepsilon_{11}+\varepsilon_{22})+2\mu\varepsilon_{33}$ 得到 $\sigma_{33}=\lambda(\varepsilon_{11}+\varepsilon_{22})$.

求解正方形区域 $\Omega = [0,10] \times [0,10]$ 上的平面弹性力学方程组混合边值问题. 其中, Γ_0 是正方形的底边, 使用固定边界条件, Γ_1 是正方形的另外三条边, 使用自由边界条件.

 $^{^*}$ 北京大学数学科学学院,科学与工程计算系,邮箱:duanjm@pku.edu.cn

2 数值方法

2

2 数值方法

取试探函数空间 $\mathbf{u} \in \mathbb{V}(0;\Omega) = \{\mathbf{u} \in \mathbb{H}^1(\Omega) : \mathbf{u}|_{\Gamma_0} = 0\}$, 及检验函数空间 $\mathbf{v} \in \mathbb{V}(0;\Omega)$, 将二维的平衡方程乘以 $\mathbf{v} \in \mathbb{R}^2$, 使用 Green 公式

$$\int_{\Omega} u \partial_i v d\boldsymbol{x} = -\int_{\Omega} \partial_i u v d\boldsymbol{x} + \int_{\Gamma} u v \boldsymbol{n}_i ds, \tag{7}$$

以及边界条件,得到变分形式

$$a(\boldsymbol{u}, \boldsymbol{v}) = f(\boldsymbol{v}), \quad \forall \boldsymbol{v} \in \mathbb{V}(0; \Omega)$$
 (8)

$$a(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega} \sum_{i,j} \boldsymbol{\sigma}_{ij}(\boldsymbol{u}) \boldsymbol{\varepsilon}_{ij}(\boldsymbol{v}) d\boldsymbol{x}, \tag{9}$$

$$f(\boldsymbol{v}) = \int_{\Omega} \boldsymbol{f} \boldsymbol{v} d\boldsymbol{x} + \int_{\Gamma_1} \boldsymbol{g} \boldsymbol{v} ds.$$
 (10)

取有限维子空间 $\mathbb{V}_h(0;\Omega)$ 逼近原空间, 上述变分形式变为

$$a(\boldsymbol{u}_h, \boldsymbol{v}_h) = f(\boldsymbol{v}_h), \quad \forall \boldsymbol{v}_h \in \mathbb{V}_h(0; \Omega)$$
 (11)

$$a(\boldsymbol{u}_h, \boldsymbol{v}_h) = \int_{\Omega} \sum_{i,j} \boldsymbol{\sigma}_{ij}(\boldsymbol{u}_h) \boldsymbol{\varepsilon}_{ij}(\boldsymbol{v}_h) d\boldsymbol{x}, \qquad (12)$$

$$f(\mathbf{v}_h) = \int_{\Omega} \mathbf{f} \mathbf{v}_h d\mathbf{x} + \int_{\Gamma_h} \mathbf{g} \mathbf{v}_h ds.$$
 (13)

取 $V_h(0;\Omega)$ 上的一组基函数 ϕ_i , $i=0,\ldots,N_h-1$, 令

$$u_h = \sum_{j=0}^{N_h - 1} u_j \phi_j, \ v_h = \sum_{j=0}^{N_h - 1} v_j \phi_j,$$
 (14)

则可以将离散问题(13)等价于, 求 $\boldsymbol{u}_h = (u_0, \dots u_{N_h-1})^{\mathrm{T}} \in \mathbb{R}^{N_h}$, 使得

$$\sum_{i,j=0}^{N_h-1} a(\phi_j, \phi_i) u_j v_i = \sum_{i=0}^{N_h-1} (f, \phi_i) v_i, \quad \forall \mathbf{v}_h = (v_0, \dots, v_{N_h-1})^{\mathrm{T}} \in \mathbb{R}^{N_h},$$
 (15)

由 v_h 的任意性, 等价于求解线性方程组

$$\sum_{j=0}^{N_h-1} a(\phi_j, \phi_i) u_j = (f, \phi_i), \quad i = 0, \dots, N_h - 1,$$
(16)

记为 $Ku_h = f$, $K = (k_{ij})$.

对区域 Ω 做三角形剖分, 记空间网格尺寸为 h, 记单元为 T_i , $i=0,\ldots,M-1$, 节点为 A_i , $i=0,\ldots,N-1$, 取分片线性基函数, 即 ϕ_{2i} , $\phi_{2i+1} \in \mathbb{V}_h(0;\Omega)$, 满足

$$\phi_{2i}(A_j) = (\delta_{ij}, 0)^{\mathrm{T}}, \quad \phi_{2i+1}(A_j) = (0, \delta_{ij})^{\mathrm{T}}, \quad i = 0, \dots, N-1, A_i \notin \Gamma_0,$$
 (17)

这里 $N_h = 2N$.

2 数值方法 3

引入数组 $en(\alpha, e)$, 其中 e 为单元序数, α 为单元的局部基函数序数, 即第 e 个单元的第 α 个基函数对应于第 $en(\alpha, e)$ 个整体节点; 取值为空间坐标的 cd(i, nd), 其中 nd 为整体节点序数, cd(i, nd) 为第 nd 个整体节点的空间坐标的第 i 个分量. 记 $a^e(\boldsymbol{u}, \boldsymbol{v}) = \int_{T^e} \sum_{i,j} \boldsymbol{\sigma}_{ij}(\boldsymbol{u}) \boldsymbol{\varepsilon}_{ij}(\boldsymbol{v}) \mathrm{d}\boldsymbol{x}$, 由刚度矩阵的定义,

$$k_{ij} = a(\phi_j, \phi_i) = \sum_{e=0}^{M-1} a^e(\phi_j, \phi_i) = \sum_{e=0}^{M-1} k_{ij}^e.$$
 (18)

设 $\alpha, \beta = 0, \dots, 5$ 为 T^e 的 6 个基函数的局部序数, 即 T^e 上 6 个基函数分别为 ϕ_0^e, \dots, A_5^e , 定义单元刚度矩阵 $K^e = (k_{\alpha\beta}^e)$,

$$k_{\alpha,\beta}^e = a^e(\phi_{\alpha}^e, \phi_{\beta}^e), \tag{19}$$

则可以合成为刚度矩阵 K,

$$k_{ij} = \sum_{\substack{en(\alpha, e) = i \in T^e \\ en(\beta, e) = j \in T^e}} k_{\alpha, \beta}^e.$$

$$(20)$$

同样计算单元载荷向量 $\mathbf{f}^e = (f_\alpha^e)$,

$$f_{\alpha}^{e} = \int_{T_{e}} \boldsymbol{f} \boldsymbol{\phi}_{\alpha}^{e} \mathrm{d}\boldsymbol{x}, \tag{21}$$

则总载荷向量 $\mathbf{f} = (f_i)$ 满足

$$f_i = \sum_{en(\alpha,e)=i\in T^e} f_\alpha^e. \tag{22}$$

生成了刚度矩阵和载荷向量后, 我们即可求解线性方程组得到数值解.

下面计算单元刚度矩阵,设三角形三个顶点坐标为 $(x_1,y_1),(x_2,y_2),(x_3,y_3)$,设点 (x,y) 的重心坐标为 $\lambda_1,\lambda_2,\lambda_3$,满足

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \frac{1}{D} \begin{bmatrix} a_1 & b_1 & -c_1 \\ a_2 & b_2 & -c_2 \\ a_3 & b_3 & -c_3 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \end{bmatrix}, \tag{23}$$

其中

$$a_1 = x_2 y_3 - x_3 y_2, \ b_1 = y_2 - y_3, \ c_1 = x_2 - x_3,$$
 (24)

$$a_2 = x_3 y_1 - x_1 y_3, \ b_2 = y_3 - y_1, \ c_2 = x_3 - x_1,$$
 (25)

$$a_3 = x_1 y_2 - x_2 y_1, \ b_3 = y_1 - y_2, \ c_3 = x_1 - x_2.$$
 (26)

D 为三角形面积的 2 倍. 设位移为 $u=u_1\lambda_1+u_2\lambda_2+u_3\lambda_3, v=v_1\lambda_1+v_2\lambda_2+v_3\lambda_3$,则应

3 数值实验 4

变满足

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{xy} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial \lambda_{1}}{\partial x} & 0 & \frac{\partial \lambda_{2}}{\partial x} & 0 & \frac{\partial \lambda_{3}}{\partial x} & 0 \\ 0 & \frac{\partial \lambda_{1}}{\partial y} & 0 & \frac{\partial \lambda_{2}}{\partial y} & 0 & \frac{\partial \lambda_{3}}{\partial y} \\ \frac{\partial \lambda_{1}}{\partial y} & \frac{\partial \lambda_{1}}{\partial x} & \frac{\partial \lambda_{2}}{\partial y} & \frac{\partial \lambda_{2}}{\partial x} & \frac{\partial \lambda_{3}}{\partial y} & \frac{\partial \lambda_{3}}{\partial x} \end{bmatrix} \begin{bmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ u_{3} \\ v_{3} \end{bmatrix} \triangleq B\tilde{\boldsymbol{u}}, \quad (27)$$

计算得

$$B = \frac{1}{D} \begin{bmatrix} b_1 & 0 & b_2 & 0 & b_3 & 0 \\ 0 & -c_1 & 0 & -c_2 & 0 & -c_3 \\ -c_1 & b_1 & -c_2 & b_2 & -c_3 & b_3 \end{bmatrix},$$
(28)

注意这里 $\varepsilon_{xy}=2\varepsilon_{12}$, 但最后推导出的单元刚度矩阵相同. 应力满足

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} \lambda + 2\mu & \lambda & 0 \\ \lambda & \lambda + 2\mu & 0 \\ 0 & 0 & \mu \end{bmatrix} \boldsymbol{\varepsilon} \triangleq L\boldsymbol{\varepsilon}, \tag{29}$$

则

$$K^{e} = \int_{T^{e}} \boldsymbol{\sigma}^{\mathrm{T}} \boldsymbol{\varepsilon} d\boldsymbol{x} = \frac{D}{2} B^{\mathrm{T}} L B.$$
 (30)

单元载荷向量我们通过数值积分来计算, 这里单元上的数值积分使用 2 阶代数精度的 三角形上的 Gauss 积分点, 边界上的线积分使用 3 阶代数精度的一维的 Gauss 积分点.

3 数值实验

令体积力 $f_1=f_2=0$, 沿法向受力为 0, 即 $g_1=g_2=0$, 除了左上角的第一个网格, 它的受力为 $\sigma_x=1,\sigma_y=-1,\sigma_{xy}=0$, 则它的两条边的边界条件为

$$g_{l1} = -1,$$

 $g_{l2} = 0,$
 $g_{u1} = 0,$
 $g_{u2} = -1,$

下标 l, r, u 分别表示左、右、上边界, 下标 1, 2 分别表示第一、二个分量.