STATS331

Credit: www.afewpanels.com

Introduction to Bayesian Statistics Semester 2, 2016

Today

- Review!
- What I expect you to know

History

 1600s-1800s: Probability was developed and applied, including the "Bayesian" approach

1900-1990: Frequentists questioned, developed alternatives

1990-forever: The Bayesian Revival

Key Players

Bayes

Laplace

Jeffreys

History will not be in the exam!

You could always look it up if you felt like it...

:-)

Probability and Uncertainty

 In Bayesian Statistics, a probability is a measure of how confident you are that a hypothesis is true

These probabilities change over time as you get more information.

Probability can describe either...

95% of the time

Probability Rules!

We looked at (and used) the sum rule

$$P(A \vee B) = P(A) + P(B) - P(A, B)$$

and the product rule

$$P(A, B) = P(A)P(B|A)$$

Bayes' Rule

- How exactly do the probabilities get updated?
- Bayes' Rule (comes from the product rule):

Updated probability "posterior"

Prob. that we would have got this data whether *H* were true or not

Interpretation of Bayes' Rule

- The posterior probability depends on:
- The prior probability. If the hypothesis was plausible before the data, then that helps it to be plausible after the data!
- The likelihood. If the hypothesis assigned a high probability to the data (i.e. it predicted the data) then it is rewarded!
- The P(D) in the denominator (marginal likelihood). If the data would have happened anyway even if H were false, then a high likelihood doesn't mean much!

Checklist

 Know Bayes' Rule and the sum rule from memory! They will not be given in the exam

 Know how to use them (or a Bayes' Box, which accomplishes the same thing).

- Sequential use: "today's posterior is tomorrow's prior"
- Sum rule to calculate prior/posterior probabilities of "or" statements

Parameter Estimation

 Bayes' rule can be applied to a set of hypotheses about the value of an unknown parameter

" $\theta = 1$ "

• Another might be "
$$\theta = 2$$
"

• Suppose we observed
$$x = 3$$

Bayes' Rule Lots of Times

$$P(\theta = 1|x = 3) =$$

$$P(\theta = 2|x = 3) =$$

$$P(\theta = 10|x = 3) =$$

$$P(\theta = 1)P(x = 3|\theta = 1)$$

$$P(x = 3)$$

$$P(\theta = 2)P(x = 3|\theta = 2)$$

$$P(x = 3)$$

$$\frac{P(\theta = 10)P(x = 3|\theta = 10)}{P(x = 3)}$$

Posterior Distribution

Prior Distribution

Bayes' Rule Lots of Times

$$P(\theta = 1|x = 3) = \frac{P(\theta = 1)P(x = 3|\theta = 1)}{P(x = 3)}$$
 $P(\theta = 2|x = 3) = \frac{P(\theta = 2)P(x = 3|\theta = 2)}{P(x = 3)}$

$$P(\theta = 10|x = 3) = \frac{P(\theta = 10)P(x = 3|\theta = 10)}{P(x = 3)}$$

Green are likelihoods. Orange is a common normalisation constant, the marginal likelihood

$$p(\theta|x) \propto p(\theta)p(x|\theta)$$
 posterior \propto prior \times likelihood

This works for discrete and continuous distributions

Canonical Example: A Proportion

 Remember when I moved to Auckland I took the correct bus 2 times out of 5

 Wanted to estimate θ, the true proportion of correct buses

Likelihood

We usually get our likelihood by having a model for the probability distribution for the data (sometimes called the sampling distribution).

It always depends on the unknown parameter(s)

$$x|\theta \sim \text{Binomial}(N,\theta)$$

$$p(x|\theta) = {\binom{N}{x}} \theta^x (1-\theta)^{N-x}$$

The Bayes' Box

 The Bayes' Box is a way of showing discrete parameter estimation in a table

 In the proportion example, θ is continuous and between 0 and 1, but can make a discrete approximation

A Bayes' Box

Possible Answers	Prior	Likelihood	Prior x Likelihood	Posterior
for θ	p(0)	$p(x \theta)$	h	p(θ x)
0	0.0909	0	0	0
0.1	0.0909	0.0729	0.0066	0.0437
0.2	0.0909	0.2048	0.0186	0.1229
0.3	0.0909	0.3087	0.0281	0.1852
0.4	0.0909	0.3456	0.0314	0.2074
0.5	0.0909	0.3125	0.0284	0.1875
0.6	0.0909	0.2304	0.0209	0.1383
0.7	0.0909	0.1323	0.0120	0.0794
0.8	0.0909	0.0512	0.0047	0.0307
0.9	0.0909	0.0081	0.0007	0.0049
1	0.0909	0	0	0
Totals	1		0.1515	1

Probabilities

Possible Answers		Prior	Likelihood	Prior x Likelihood	Posterior
for θ		p(θ)	$p(x \theta)$	h	p (θ x)
0		0.0909	0	0	0
0.1		0.0909	0.0729	0.0066	0.0437
0.2		0.0909	0.2048	0.0186	0.1229
0.3		0.0909	0.3087	0.0281	0.1852
0.4		0.0909	0.3456	0.0314	0.2074
0.5		0.0909	0.3125	0.0284	0.1875
0.6	[0.0909	0.2304	0.0209	0.1383
0.7		0.0909	0.1323	0.0120	0.0794
0.8	0.3636	0.0909	0.0512	0.0047 0	.1150 0.0307
0.9		0.0909	0.0081	0.0007	0.0049
1		0.0909	0	0	0
Totals		1		0.1515	1

Posterior Mode. cf "Maximum Likelihood"

Possible Answers	Prior	Likelihood	Prior x Likelihood	Posterior
for θ	p(θ)	$p(x \theta)$	h	p(θ x)
0	0.0909	0	0	0
0.1	0.0909	0.0729	0.0066	0.0437
0.2	0.0909	0.2048	0.0186	0.1229
0.3	0.0909	0.3087	0.0281	0.1852
0.4	0.0909	0.3456	0.0314	0.2074
0.5	0.0909	0.3125	0.0284	0.1875
0.6	0.0909	0.2304	0.0209	0.1383
0.7	0.0909	0.1323	0.0120	0.0794
0.8	0.0909	0.0512	0.0047	0.0307
0.9	0.0909	0.0081	0.0007	0.0049
1	0.0909	0	0	0
Totals	1		0.1515	1

Posterior Mean

Possible Answers for θ	Prior	Likelihood $p(x \theta)$	Prior x Likelihood h	Posterior
	p(0)			p(θ x)
0	0.0909	0	0	0
0.1	0.0909	0.0729	0.0066	0.0437
0.2	0.0909	0.2048	0.0186	0.1229
0.3	0.0909	0.3087	0.0281	0.1852
0.4	0.0909	0.3456	0.0314	0.2074
0.5	0.0909	0.3125	0.0284	0.1875
0.6	0.0909	0.2304	0.0209	0.1383
0.7	0.0909	0.1323	0.0120	0.0794
0.8	0.0909	0.0512	0.0047	0.0307
0.9	0.0909	0.0081	0.0007	0.0049
1	0.0909	0	0	0
Totals	1		0.1515	1

Need to Know

Know what all parts of a Bayes' Box mean

 How to calculate some numbers from other numbers (e.g. summaries)

PREDICTION!

Hypothesis Testing

 In classical statistics, parameter estimation and hypothesis testing are considered different topics

Not for us!

e.g. " θ =0.5" is just a hypothesis.

And we have tested it.

Testing Prior

Possible Answers	Prior	Likelihood	Prior x Likelihood	Posterior
for θ	p(θ)	$p(x \theta)$	h	p(θ x)
0	0.05	0	0	0
0.1	0.05	0.0729	0.0036	0.0162
0.2	0.05	0.2048	0.0102	0.0457
0.3	0.05	0.3087	0.0154	0.0689
0.4	0.05	0.3456	0.0172	0.0772
0.5	0.5	0.3125	0.1562	0.6977
0.6	0.05	0.2304	0.0115	0.0514
0.7	0.05	0.1323	0.0066	0.0295
0.8	0.05	0.0512	0.0026	0.0114
0.9	0.05	0.0081	0.0004	0.0018
1	0.05	0	0	0
Totals	1		0.2240	1

Analytical Methods

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

A 1990 YETHER TRAKE!

Distributed for Color-Depressions Ltd.

Analytical Methods

Solve parameter estimation problems

Write down the equation for the prior distribution

 Write down the equation for the likelihood (this depends on the data and the parameter(s))

Bus Problem

Uniform Prior

$$p(\theta) = \begin{cases} 1, & 0 \le \theta \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Bus Problem

Binomial

$$p(x|\theta) = \binom{N}{x} \theta^x (1-\theta)^{N-x}$$
$$= \binom{5}{2} \theta^2 (1-\theta)^3$$

Bayes' Rule

$$p(heta|x) \propto p(heta)p(x| heta)$$
 posterior \propto prior $imes$ likelihood

$$p(\theta|x) \propto \theta^2 (1-\theta)^3$$

Recognise the Posterior

$$X \sim \text{Beta}(\alpha, \beta)$$

$$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

$$p(\theta|x) \propto \theta^2 (1-\theta)^3$$

Need to Know

 Know how to identify the posterior as being from a particular family (e.g. beta, gamma)

 You will not need to memorise the equation for a beta or a gamma or any other distribution but you need to know how to use them!

 The exam sheet about probability distributions will be the same as in the midterm test.

Point and Interval Estimation

These are useful as summaries of the posterior distribution

 Point estimate = "make a single guess for the value of the parameter(s)"

"Best" Estimate

Best estimate is the true value → we wish!

 Depends on loss/utility function (how bad is it to be wrong in certain ways?)

- Quadratic loss → posterior mean
- Linear (really absolute value) loss → posterior median
- All-or-nothing loss → posterior mode

Interval Estimation

We have seen a lot of credible intervals

 Interval that contains a specified amount of probability (e.g. 95%).

Question

What's the difference between a Bayesian credible interval and a frequentist confidence interval?

Bayesian: the probability the parameter is within the interval, given the data, is (for example) 95%

Frequentist: for 95% of possible data sets, the interval will contain the parameter

Remember this?

Credible Intervals

 Credible intervals are constructed from QUANTILES of the posterior distribution

Need to Know

Which point estimate corresponds to which kind of loss function

What credible intervals are and how they are calculated

(e.g. see 2013 exam: some R output was given, and students had to know which part was calculating the credible interval)

On Wednesday

 Will quickly run through what we covered in the second half of the course, and comment on the exam