

Moving to a Data Warehouse

THE HIGHWAY SAFETY RESEARCH GROUP

What is the Highway Safety Research Group (HSRG)?

 A division of the Information Systems and Decision Sciences Department (ISDS) within the E. J. Ourso College of Business at Louisiana State University

Website:

http://hsrg.lsu.edu

What is the Highway Safety Research Group (HSRG)?

Grant funded by the LA DOTD

 Responsible for collecting, maintaining, storing, and reporting crash data captured from law enforcement agencies throughout the state of Louisiana

Analyzing crash data for LA since 1994

Collecting Data

 Have 180+ law enforcement agencies using our LACRASH software

- Collect electronic crash reports from 3rd party vendors using xml and ftp processes
- Receive paper crash reports and manually enter data

Maintaining Data

- Create yearly crash databases
- Offer back-up services
- Provide real-time fail over services

- Manually review reports for data quality
 - completeness and accuracy

Storing Data

- Data stored in SQL databases
 - Normalized
 - Organize fields and tables to minimize redundancy and dependency
 - Divide large tables into less redundant tables and define relationships between them

Reporting Data

Crashes

- Aggressive driving
- Alcohol
- CMV
- Fatal
- Occupant protection
- Young drivers

Reporting Data

Crashes

- Driver characteristics
- Roadway characteristics
- Vehicle types
- Weather conditions
- When
- Where

ON-LINE TRANSACTIONAL PROCESSING (OLTP) SYSTEM

OLTP System at HSRG

- Capture and store data based on transactions of business process
 - Transaction = crash

LA averages about 150,000 crashes a year

OLTP System at HSRG

- Normalized data
- Stored in yearly databases

Data at HSRG

- Tables in yearly database
 - Crash
 - (Crash_Num)
 - Vehicle
 - (Crash_Num, Veh_Num)
 - Occupant
 - (Crash_Num, Veh_Num, Occ_Num)
 - Pedestrian
 - (Crash_Num, Ped_Num)

Crash Example

- Crash occurs involving two cars:
 - Car 1
 - Driver
 - Occupant
 - Car 2
 - Driver
 - Occupant
 - Occupant
- How do we determine if the crash was a fatal crash?

How do we determine is the crash was a fatal crash?

- Join vehicle and occupant table
 - Evaluate injury for each person in 1st vehicle
 - Driver and occupant
 - Evaluate injury for each person in 2nd vehicle
 - Driver and 2 occupants
 - If any person was killed, the crash was a fatal crash

How is this calculation performed?

- Ad-hoc
 - When needed

- Stored Procedure
 - Scheduled process on new records

Ad-hoc

Write SQL Statement

 Do all employees know correct SQL statement?

- Processing time
 - Joining tables
 - Same SQL statements executed multiple times to receive same data

Ad-hoc

Write SQL Statement

```
select VEHIC_TB.CRASH_NUM
From VEHIC_TB, OCCUP_TB
Where VEHIC_TB.CRASH_NUM =
OCCUP_TB.CRASH_NUM
and VEHIC_TB.VEH_NUM = OCCUP_TB.VEH_NUM
and (VEHIC_TB.DR_INJ_CD = 'A'
or OCCUP_TB.OCC_INJ_CD = 'A')
```


Ad-hoc

 Do all employees know correct SQL statement?

- Processing time
 - Joining tables
 - Same SQL statements executed multiple times to receive same data

- Create computed field
 - Fatal_Crash within Crash Table
- Create stored procedure to evaluate crash and update new field (Y/N)

- Efficient?
 - Injury code changes
 - People can pass away days after crash

Ad-hoc and Stored Procedures

- Multiple processes
 - Crash severity
 - # people killed, # people injured
 - Aggressive driving crash
 - Alcohol crash
 - CMV crash
 - Young driver crash
 - Etc…

Roadway Departure Definition

Prior_Movement_Cd IN ('E', 'G')

OR F_Harm_Ev_Cd In ('a','j','k','I''s','x','z','aa','bb','cc','dd','ee','ff','gg', 'hh','ii','jj','kk','II','mm','nn','oo','pp','qq')

OR S_Harm_Ev_Cd In ('a','j','k','I"s','x','z','aa','bb','cc','dd','ee','ff','gg', 'hh','ii','jj','kk','II','mm','nn','oo','pp','qq')

OR T_Harm_Ev_Cd In ('a','j','k','l''s','x','z','aa','bb','cc','dd','ee','ff','gg', 'hh','ii','jj','kk','ll','mm','nn','oo','pp','qq')

OR FO_Harm_Ev_Cd In ('a','j','k','I"s','x','z','aa','bb','cc','dd','ee','ff','gg', 'hh','ii','jj','kk','II','mm','nn','oo','pp','qq')

OR M_Harm_Ev_Cd In ('a','j','k','I''s','x','z','aa','bb','cc','dd','ee','ff','gg', 'hh','ii','jj','kk','II','mm','nn','oo','pp','qq'))

Ad-hoc and Stored Procedures

- Dynamic
 - Definition changes
 - Where is definition used
 - Have to know all reports to change
- Flexible
 - Add new process
 - Need age range 16 20, instead of 16-24 $_{\rm H}$ (RG

OLTP System at HSRG

 Works great for collecting, storing, and maintaining data

 However, it is not as efficient for reporting and analyzing data

Ad-hoc and Stored Procedures

- Basically, we are trying to pre-calculate aggregate values for reporting purposes.
 - Number of fatal crashes
 - Number of injury crashes
 - Number of fatalities
 - Number of injuries

Pre BI Database Overview

Challenges

- Shift focus from data delivery to data analytics
- Provide information to decision makers in a timely manner
- Separate transactional and reporting operations
- Provide single version of the "truth"
- Leverage new technology and provide platform standardization in-line with our current competencies

How to move forward?

 In 2010, we began looking into Business Intelligence

BUSINESS INTELLIGENCE DEFINED

Business

- Encompasses all of the traditional functional activities in business:
 - Examples: marketing, manufacturing, accounting, finance, distribution, and support operations

 Provided by transactional processing systems and other basic technology

Intelligence

- Includes all mathematical and statistical tools developed to solve business "problems"
 - Examples: applied mathematics, statistical quality control, and operations research
- While <u>business</u> flow concentrates on efficiency, <u>intelligence</u> focuses on effectiveness

What is Business Intelligence (BI)?

- Broad category of applications and technologies for gathering, storing, analyzing, and providing access to data to help enterprise users make better business decisions
- Process of transforming data into information and making it available to users in a timely manner to make effective decisions

ON-LINE ANALYTIC PROCESSING (OLAP) SYSTEM

Data Warehouse

Relational database used for reporting and analysis

Stored in star or snowflake schema

 Contains cleaned and transformed data made available for use by managers and other business professionals

Pre BI Database Overview

Post BI Database Overview

Data Warehouse

- Build with decision in mind
 - Automate repeated decision
 - Crashes
 - Severity
 - Type
 - When
 - Where
 - Driver
 - Age
 - Race
 - Sex

Star Schema

Star Schema

- Fact
 - What do we want to measure
 - Driver
- Dimension
 - How to we want to 'slice and dice' the measure
 - Age
 - Race
 - Sex

BI Using Microsoft SQL 2008R2

Extract, Transform, Load (ETL)

- Extract data from OLTP system
 - Normalized
- Transform the data
 - Data quality
 - Calculations (severity, cmv, alcohol)
- Load the data into data warehouse
 - Star or snowflake schema

Extract, Transform, Load (ETL)

- Now, there is ONE place that contains all the definitions
 - Standardized
 - Easy to maintain
 - Flexible
 - Dynamic
 - Efficient
 - Can drop and reload DW from 2005 present in less than 20 minutes (over 10 million records)
 - Perform on weekly basis

ETL and DW

 Most time is spent designing the DW, writing the ETL, and then cleaning & validating the process

 Once the DW is created, loaded, and validated, cubes can be built

What is a cube?

 A multidimensional dataset that can have an arbitrary number of dimensions

 Each cell of the cube holds a number that represents some *measure* of the business process

Cube Example

- Fact
 - Number of crashes

- Dimensions
 - Where (Parish)
 - Severity (Fatal, Injury, PDO)
 - When (Year)

Cube Structure

Cubes

- OLAP databases are called 'Cubes'
- The Multi-Dimensional Expression (MDX) language accesses cube data

Browsing a Cube

• BIDS

- Web
 - http://datareportsdev.lsu.edu/

Analysis Services Database

Reporting from a Cube

- Web
 - http://datareports.lsu.edu/

– http://lashspdata.lsu.edu/#/Home

Next Steps

Data Mining

Forecasting

Fraud Detection

Contact Information

- Cory Hutchinson
 - Associate Director
 - cory@lsu.edu
 - -(225)578-1433

