

#### Topic Modeling in NLP - Topic modeling - 3

One should look for what is and not what he thinks should be. (Albert Einstein)

# Module completion checklist

| Objective                                                     | Complete |
|---------------------------------------------------------------|----------|
| Perform latent dirichlet allocation (LDA) on frequency counts |          |
| Evaluate results and choose optimal number of topics          |          |

#### Create a dictionary of counts

• Let's create the dictionary using gensim.corpora.Dictionary and look at our output using a small loop

```
# Set the seed.
np.random.seed(1)
dictionary = gensim.corpora.Dictionary(df_clean)

# The loop below iterates through the first 10 items of the dictionary and prints out the key and value.
count = 0
for k, v in dictionary.iteritems():
    print(k, v)
    count += 1
    if count > 10:
        break
```

```
0 american
1 battl
2 brisban
3 defens
4 harrison
5 kyrgio
6 nick
7 open
8 round
9 ryan
10 start
```

### Create a dictionary of counts

- We can filter out words by their frequency in the dictionary
- filter\_extremes() will remove all values in the dictionary that are:
  - less frequent than no\_below documents
  - more than no\_above documents (fraction of total corpus size, not absolute number)
  - keep only first keep\_n most frequent tokens

```
dictionary.filter_extremes(no_below = 4, no_above = 0.5, keep_n = 200)
# How many words are left in the dictionary?
len(dictionary)
```

200

#### Document to bag-of-words

- Now we will use gensim library doc2bow to transform each document to a dictionary
- Each document will become a dictionary that has the number of words and has the number of times each of those words appear
- This is the object we will use to build our TF-IDF matrix

```
# We use a list comprehension to transform each doc within our df_clean object.
bow_corpus = [dictionary.doc2bow(doc) for doc in df_clean]

# Let's look at the first document.
print(bow_corpus[0])
```

```
[(0, 1), (1, 1), (2, 2), (3, 1), (4, 1), (5, 1), (6, 1)]
```

### Document to bag-of-words (cont'd)

Let's preview bag-of-words for the first document

```
Word 0 ("american") appears 1 time.
Word 1 ("defens") appears 1 time.
Word 2 ("open") appears 2 time.
Word 3 ("round") appears 1 time.
Word 4 ("start") appears 1 time.
Word 5 ("tuesday") appears 1 time.
Word 6 ("victori") appears 1 time.
```

#### Transform counts with TfidfModel

 To transform a Document-Term Matrix, which is a "bag-of-words" representation bow\_corpus that we created above, into TF-IDF, we will use TfidfModel from gensim library's model module for working with text

#### models.tfidfmodel – TF-IDF model

This module implements functionality related to the *Term Frequency - Inverse Document Frequency - https://en.wikipedia.org/wiki/Tf%E2%80%93idf>* vector space bag-of-words models.

For a more in-depth exposition of TF-IDF and its various SMART variants (normalization, weighting schemes), see the blog post at <a href="https://rare-technologies.com/pivoted-document-length-normalisation/">https://rare-technologies.com/pivoted-document-length-normalisation/</a>

class gensim.models.tfidfmodel.TfidfModel(corpus=None, id2word=None, dictionary=None, wlocal=<function identity>, wglobal=<function df2idf>, normalize=True, smartirs=None, pivot=None, slope=0.65)

### Transform counts with TfidfModel (cont'd)

- We will now activate the TfidfModel function and transform our bow\_corpus
- Our output will be the TF-IDF transformation applied to each document:

$$TF \times IDF = \frac{F_{wd}}{N_d} \times log \frac{M}{M_w}$$

```
# This is the transformation.
tfidf = models.TfidfModel(bow_corpus)

# Apply the transformation to the entire corpus.
corpus_tfidf = tfidf[bow_corpus]

# Preview TF-IDF scores for the first document.
for doc in corpus_tfidf:
    pprint(doc)
    break
```

```
[(0, 0.31942373876087665),
(1, 0.3549009519669791),
(2, 0.6118718565633235),
(3, 0.3549009519669791),
(4, 0.3059359282816618),
(5, 0.22829905152454918),
(6, 0.3549009519669791)]
```

### LDA on snippet

We need the following data objects for topic modeling:

- df\_clean: the corpus, where:
  - each 'document' is one entry in snippet
  - each document is cleaned, and punctuation, numbers, special characters and stop words removed
- dictionary: a dictionary containing the number of times a given word appears within the entire corpus
- corpus\_tfidf: a Document-Term Matrix (DTM) transformed to be a weighted term frequency - inverse document frequency matrix

Let's apply the idea of LDA to our corpus of snippet

## LDA with the gensim package

We will continue using gensim and now introduce models.LdaMulticore

#### models.ldamulticore - parallelized Latent Dirichlet Allocation

Online Latent Dirichlet Allocation (LDA) in Python, using all CPU cores to parallelize and speed up model training.

The parallelization uses multiprocessing; in case this doesn't work for you for some reason, try the <a href="mailto:gensim.models.ldamodel.LdaModel">gensim.models.ldamodel.LdaModel</a> class which is an equivalent, but more straightforward and single-core implementation.

The training algorithm:

- · is streamed: training documents may come in sequentially, no random access required,
- runs in constant memory w.r.t. the number of documents: size of the training corpus does not affect memory footprint, can process corpora larger than RAM
- We are going to take our corpus\_tfidf object we created and run LDA on it
- gensim.models.LdaMulticore is a powerful package that allows our machine to run on multiple cores (if they exist)
- We will use two for now, as most machines will have two cores
- The algorithm we just walked through with the two documents will now be applied to all the documents

#### LdaMulticore

We run the LdaMulticore model using:

- Before running the model, let's make sure we understand the main parameters of the model:
  - corpus: stream of document vectors or sparse matrix of shape
  - num\_topics: default is 100, make sure to change according to number of topics you decide on
  - id2word: mapping from word IDs to words
  - workers: number of cores being used, if None then all available cores will be used
  - passes: number of passes through the corpus during training, e.g., how many times
    to classify each word to each topic

### Running LdaMulticore

 Let's run the model on our transformed matrix corpus\_tfidf using dictionary as the id2word object

We have our LdaMulticore object now

```
print(lda_model_tfidf)
```

```
LdaMulticore<num_terms=200, num_topics=5, decay=0.5, chunksize=2000>
```

#### LDA output

 We chose 5 topics, we are now going to print out each topic and the top words within the topics

```
for idx, topic in lda_model_tfidf.print_topics(-1):
    print('Topic: {} Word: {}'.format(idx, topic))
Topic: 0 Word: 0.020*"offici" + 0.020*"like" + 0.017*"say" + 0.017*"week" + 0.017*"warn" +
0.015*"show" + 0.015*"state" + 0.014*"thursday" + 0.014*"help" + 0.014*"new"
Topic: 1 Word: 0.023*"time" + 0.023*"latest" + 0.022*"world" + 0.021*"local" + 0.020*"new" +
0.016*"year" + 0.015*"meet" + 0.013*"yyork" + 0.013*"tenni" + 0.013*"leader"
Topic: 2 Word: 0.021*"said" + 0.020*"friday" + 0.018*"billion" + 0.018*"know" + 0.015*"set"
+ 0.015*"say" + 0.013*"accus" + 0.012*"want" + 0.012*"govern" + 0.012*"court"
Topic: 3 Word: 0.020*"investig" + 0.020*"saturday" + 0.019*"presid" + 0.017*"polic" +
0.014*"said" + 0.014*"expect" + 0.013*"citi" + 0.013*"suspect" + 0.013*"year" +
0.013*"first"
Topic: 4 Word: 0.022*"young" + 0.020*"tuesday" + 0.018*"look" + 0.018*"said" + 0.016*"talk"
+ 0.016*"close" + 0.015*"move" + 0.015*"new" + 0.015*"south" + 0.014*"year"
```

- We can interpret this by looking at the top words by topic
  - These are the words that contribute most to each topic
- This is a very raw version of the output, we are going to learn more about how to clean this up and interpret it later!

## Classify our documents within topics

 Let's see how we would classify our df\_clean as one of the five topics

```
# Let's look at our first document as
an example:
print(df_clean[0])
```

```
['nick', 'kyrgio', 'start',
'brisban', 'open', 'titl', 'defens',
'battl', 'victori', 'american',
'ryan', 'harrison', 'open', 'round',
'tuesday']
```

```
for index, score in
sorted(lda_model_tfidf[corpus_tfidf[0]], key=lambda tup:
    -1*tup[1]):
    print("\nScore: {}\t \nTopic: {}".format(score,
lda_model_tfidf.print_topic(index, 10)))
```

```
Score: 0.7646151185035706
Topic: 0.020*"investig" + 0.020*"saturday" + 0.019*"presid" + 0.017*"polic" + 0.014*"said" + 0.014*"expect" + 0.013*"citi" + 0.013*"suspect" + 0.013*"year" + 0.013*"first"

Score: 0.060962967574596405
Topic: 0.020*"offici" + 0.020*"like" + 0.017*"say" + 0.017*"week" + 0.017*"warn" + 0.015*"show" + 0.015*"state" + 0.014*"thursday" + 0.014*"help" + 0.014*"new"

Score: 0.058861665427684784
Topic: 0.022*"young" + 0.020*"tuesday" + 0.018*"look" + 0.018*"said" + 0.016*"talk" + 0.016*"close" + 0.015*"move" + 0.015*"new" + 0.015*"south" + 0.014*"year"
```

# Module completion checklist

| Objective                                                     | Complete |
|---------------------------------------------------------------|----------|
| Perform latent dirichlet allocation (LDA) on frequency counts |          |
| Evaluate results and choose optimal number of topics          |          |

#### LDA: evaluate results

- How do we evaluate our LDA model?
- The measure we will focus on in this module is topic coherence
- With topic coherence, we will be able to evaluate our results as well as build a plot that will help us choose the optimal number of topics for our LDA model
- The function we will use is from the gensim package, CoherenceModel
- You can read the paper "Exploring the space of topic coherence measures" for an in-depth understanding of topic coherence

#### models.coherencemodel – Topic coherence pipeline

Calculate topic coherence for topic models. This is the implementation of the four stage topic coherence pipeline from the paper <u>Michael Roeder Andreas Both and Alexander Hinneburg: "Exploring the space of topic coherence measures"</u>. Typically, <u>CoherenceModel</u> used for evaluation of topic models

The four stage pipeline is basically:

- Segmentation
- Probability Estimation
- · Confirmation Measure
- Aggregation

Implementation of this pipeline allows for the user to in essence "make" a coherence measure of his/her choice by choosing a method in each of the pipelines.

#### See also

gensim.topic coherence

Internal functions for pipelines.

#### Topic coherence: quick overview

- Topic coherence is based on four main concepts
  - Segmentation: dividing the topics into smaller subsets
  - Probability estimation: quantitative measure of the subtopic quality
  - Confirmation measure: determine quality based on some predefined measure
  - Aggregation: combine all quality numbers and derive one number for overall quality
- There are two measures in topic coherence
  - Intrinsic: compares a word only to the preceding and succeeding words respectively, so you need the ordered word set for this. It uses a pairwise score function which is the empirical conditional log-probability with smoothing count
  - Extrinsic: every single word is paired with every other single word
- Both intrinsic and extrinsic measures compute the coherence score c

#### Calculate topic coherence

- We will now calculate topic coherence on our lda\_model\_tfidf
- The parameters we need are:
  - original doc, df\_clean
  - dictionary built of the corpora, dictionary
  - Ida model, lda\_model\_tfidf
  - coherence metric, c\_v (based on the paper referenced above)

```
# Compute Coherence Score using c_v.
coherence_model_lda = CoherenceModel(model = lda_model_tfidf, texts = df_clean, dictionary =
dictionary, coherence = 'c_v')
coherence_lda = coherence_model_lda.get_coherence()
```

```
print('Coherence Score: ', coherence_lda)
```

Coherence Score: 0.5082391247655911

#### Find optimal topic number

- We see we have a pretty low coherence score
- We can look at the coherence score for a range of topic numbers and choose the optimal topic number
- We now build a function that will allow us compute c\_v coherence for various number of topics
- The parameters are:
  - dictionary: Gensim dictionary
  - corpus : Gensim corpus
  - texts: list of input texts
  - limit: max num of topics

18

#### Convenience function

Here's a convenience function to run LDA and compute coherence values:

- The output of the function is:
  - model\_list: list of LDA topic models
  - coherence\_values: coherence values corresponding to the LDA model with respective number of topics

#### Run compute\_coherence\_values function

```
np.random.seed(1)
model_list, coherence_values =
compute_coherence_values(dictionary = dictionary,

corpus = corpus_tfidf,

texts = df_clean,

start = 2,

limit = 40,

step = 6)
```

```
# Plot graph of topic list.
# Show graph.

limit = 40; start = 2; step = 6;
x = range(start, limit, step)
plt.plot(x, coherence_values)
plt.xlabel("Num Topics")
plt.ylabel("Coherence score")
plt.legend(("coherence_values"), loc = 'best')
plt.show()
```



## Final thoughts

- What do you think the optimal number of topics looks like?
- A couple takeaways about LDA:
  - LDA does better with more text, larger pieces of text / documents
  - Sentiment analysis would do well on a smaller amount of data like what we have here

# Knowledge check



# Module completion checklist

| Objective                                                     | Complete |
|---------------------------------------------------------------|----------|
| Perform latent dirichlet allocation (LDA) on frequency counts |          |
| Evaluate results and choose optimal number of topics          |          |

# Congratulations on completing this module!

You are now ready to try Tasks 6-9 in the Exercise for this topic

