Centro de Pesquisas do Instituto Mauá de Tecnologia Divisão de Eletrônica e Telecomunicações

IMT – ACESSO AO NETWORK SERVER

São Caetano do Sul

2018

RESUMO

O *Network Server* é um servidor voltado para Internet das coisas (*IoT – Internet of Things*) e caracteriza-se por gerenciar os dados enviados por um *node* (dispositivo embarcado com transmissor de rádio frequência referente ao protocolo *LoRaWAN*) disponibilizando-os ao usuário final de uma aplicação que se ultiliza deste servidor. Este serviço encontra-se em uma plataforma de nuvem hospedada em um *datacenter* localizado no Instituto Mauá de Tecnologia (IMT), *campus* São Caetano do Sul. A esta documentação propõe-se permitir que o usuário realize o acesso ao servidor para cadastrar e ativar os *nodes* referentes à respectiva aplicação. De maneira objetiva sugerir métodos para que os dados armazenados no banco de dados possam ser recuperados e até mesmo transmitidos à aplicação no momento imediato do envio de um pacote de informação pelo *node* da aplicação através desse servidor.

Palavras chave: servidor, IoT, LoRaWAN, node, acesso, envio, pacote.

SUMÁRIO

1	INTRODUÇÃO	5
2	ACESSO AO NETWORK SERVER	6
2.1	SIGN IN	6
2.2	CONFIGURAÇÃO DA APLICAÇÃO	8
2.2.1	DETALHES DA APLICAÇÃO	9
2.2.2	Configurações de rede	10
2.3	USUÁRIOS DA APLICAÇÃO	11
2.4	CADASTRO DE NODES	11
2.4.1	Criação de nodes	11
2.4.2	ATIVAÇÃO DE NODES	14
2.4.3	REGISTRO DE ATIVIDADES DO NODE	16
3	RECUPERAÇÃO DE DADOS DO NODE PARA APLICAÇÃO	17

1 INTRODUÇÃO

Com o intuito de habilitar uma conexão segura ao servidor e receber o dado referente a cada sensor na aplicação em campo, o Centro de Pesquisas do Instituto Mauá de Tecnologia disponibilizou um acesso ao *Network Server*. O *Network Server* trata-se de um servidor para *Internet* das Coisas (*IoT – Internet of Things*), com o propósito de habilitar o usuário final a receber o dado enviado pelo *node* assim que este é enviado ao servidor. Bem como permitir a recuperação de dados de histórico de cada *node* dentro de um determinado período de tempo.

O servidor, ao receber os dados duplamente criptografados, armazena os valores em um banco de dados também de maneira criptografada com uma chave da aplicação denominada appSKey (application Session key). A outra chave de criptografia se dá pela chave do servidor, denominada nwkSkey (network Session key). Enquanto a primeira é utilizada pela aplicação para decriptografar os dados do banco de dados no momento da recuperação destes, a segunda chave também funciona como uma segurança da integridade do pacote de dados enviado (MIC - Message Integrity Code). A estes recursos de decriptografia não serão abordados no escopo deste documento. Para saber mais consulte documentação disponível em LoRa Alliance.

2 ACESSO AO NETWORK SERVER

2.1 SIGN IN

O cadastro de usuários e aplicações não é realizada através do usuário final da aplicação. É necessário que um e-mail seja enviado para <u>fernando.martins@maua.br</u>, identificando o motivo da aplicação. A partir daí, será efetuado, pelo Centro de Pesquisas, o cadastro do usuário e a criação da aplicação, delegando-se a cada usuário o acesso à aplicação correspondente.

Após obtida a resposta por email, o usuário poderá administrar a própria aplicação. Para isso, deve-se acessar o *website* que hospeda a interface referente ao *Network Server* (https://networkserver.maua.br). Acessando-o de qualquer dispositivo com conexão à Internet, uma interface gráfica deve ser mostrada conforme a Figura 1 abaixo:

Figura 1 - Interface gráfica Network Server . Página de login para usuários já cadastrados.

Pede-se que sejam insiridos as variáveis referentes ao nome de usuário (*Username*) e senha (*Password*). Após preenchidas estas informações, ao ser prssionado a tecla *ENTER* ou clicando-se sobre o botão *LOGIN*, será permitido ao usuário acessar as informações referentes somente à respectiva aplicação ou aplicações delegadas.

No exemplo a seguir, Figura 2, foram inseridos *Username/Password* como *smartcampusmaua/smartcampusmaua*.

Figura 2 - Dados referentes ao login inseridos nos campos determinados.

Após ter sido realizado o *LOGIN*, será mostrado o ambiente da aplicação referente ao usuário conforme a Figura 3 a seguir:

Figura 3 - Interface de ambiente de uma aplicação. Neste caso, a aplicação denominada Hidrometros.

Nota-se que ao entrar na Área de Acesso ao Usuário, há um campo referente ao *ID* da aplicação, *Name* (Nome), e *Description* (Descrição). No exemplo deste tutorial será abordado uma Aplicação denominada Hidrometros, referente ao ID igual a 3 que caracteriza-se por monitorar a vazão de água no *Smart Campus*. Essas configurações serão criadas pelo Centro de Pesquisas, conforme a dolicitação e descrição da aplicação enviada anteriormente pelo usuário através do e-*mail*.

2.2 CONFIGURAÇÃO DA APLICAÇÃO

Clicando-se em Hidrometros, é possível, segundo as abas superiores *Application Configuration* e *Application Users*, configurar os parâmetros, e.g., mostrados a seguir conforme a Figura 4:

Figura 4 - Guia para a criação de nodes dentro da aplicação Hidrometros.

2.2.1 DETALHES DA APLICAÇÃO

Para configurar os parâmetros relativos ao protocolo *LoRaWAN*, deve-se clicar na guia *Application Configuration*. É imprescindível que se configure estes parâmetros antes de se adicionar qualquer *node*, pois estas configurações serão utilizadas por todos eles. A partir deste momento será aberta a seguinte tela conforme mostrada na Figura 5, a seguir:

Figura 5 - Configuração de nome e descrição de aplicação na guia Application Details.

Em *Application Details* é possível editar o nome da aplicação e também a descrição da aplicação. As configurações do protocol *LoRaWAN* estão na aba Network Settings, conforme a Figura 6 a seguir:

2.2.2 CONFIGURAÇÕES DE REDE

Figura 6 - Configurações de rede referentes ao protocolo LoRaWAN entre node e Network Server.

À princípio, as configurações a serem setadas devem ser apenas checar o tipo de ativação por ativação por pesonalização ABP (Activation By Personalizadtion) e a janela de recepção (Receive Window) como RX1. Após estas configurações, deve-se clicar em SUBMIT para salvar as alterações realizadas.

2.3 USUÁRIOS DA APLICAÇÃO

Na aba *Application Users* é possível criar outros usuários para a mesma aplicação, porém isto não será abordado visto que os usuários devem ser **criados apenas pelo Centro de Pesquisas**. Essa guia delega o direito do usuário *smartcampusmaua* na aplicação Hidrometros, por exemplo, conforme a Figura 7 a seguir:

Figura 7 - Guia application users que delega permissões do usuário em uma aplicação.

2.4 CADASTRO DE NODES

2.4.1 CRIAÇÃO DE NODES

Após configurados os parâmetros referentes ao protocolo *LoRaWAN* através das guias anteriores, deve-se voltar à guia *Nodes* para o cadastro de cada *node* da aplicação correspondente bem como a ativação referente a cada cadastro efetuado.

A Figura 4 mostra a guia *Nodes*. Ao observá-la, nota-se um ícone *create node* ao lado direito da lista a ser cadastrada. Ao ser clicado, deve-se registrar nos campos determinados os dados relativos a cada um. A Figura 8 mostra exatamente os campos a serem preenchidos.

Figura 8 - Campos a serem preenchidos para o cadastro de cada node.

Como *node-name*, podem ser utilizados somente os caractereres de letras, números e símbolos. Não serão aceitos caracteres como "espaço". Sugere-se que haja uma padronização do tipo {Nome-da-aplicação}-{número-do-node}. Por exemplo para aplicação hidrômetro, o primeiro *node* cadastrado devera ser "Hidrometro-01".

O campo *Description* deverá conter informações relevantes e sucintas sobre o dispositivo bem como interessante descrever onde esatará localizado. O node denominado Hidrometro-01 está localizado no Bloco U, portanto, uma sugestão para a descrição é "Monitoramento de vazão da caixa d'água do Bloco U". Abordando-se o propósito e a localização de maneira simples e objetiva.

O campo Device-EUI (EUI – End Device Unique Identifier) refere-se ao único identificador de 16 bytes de cada node (o node também é denominado de end-device). Este deve ser recuperado através de um comando serial junto ao circuito integrado RN2903 de rádio frequência LoRa. Cada dispositivo possui um dev-EUI diferente proveniente da fábrica. É possível ainda alterá-lo para o valor desejado, porém é fortemente não recomendado. Para informações sobre como obter o dev-EUI de um dispositivo, por favor, deve-se consultar a documentação de RECUPERAÇÃO DO PARÂMETRO DEV_EUI. Para este exemplo foi recuperado do node um dev-EUI igual a "0004a30b001a5ea2" (uma string hexadecimal contendo 16 bytes)

O campo *application-EUI* refere-se também a um único identificador da aplicação. Por padrão, deve-se manter a *string hexadecimal* "111111111111", contendo 16 bytes.

Para se utilizar das configurações de rede inseridas anteriormente em *Application Settings*, deve-se checar o item *User application Settins*. Isso siginfica que todos os *nodes* desta aplicação utilizarão o métodos abordado em *Network Setting*.

Clicando-se em *SUBMIT*, após as configurações realizadas será mostrada a guia referente a todos os nodes cadastrados de uma aplicação. A figura 9, a seguir, demonstra apenas a listagem de cadastro de um único *node*. Conforme aumentando-se o número de *nodes*, estes estarão em ordem alfabética de acordo com o campo *Device-name* (referente ao campo anterior *Node-name*).

Figura 9 - Listagem de nodes cadastrados em uma aplicação.

2.4.2 ATIVAÇÃO DE NODES

Após o cadastro de *nodes*, detalhado acima, ainda é necessário ativá-los. De acordo com o tipo de ativação selecionada, o *Network Server* começará a receber e a gerenciar os dados dos *nodes* conectados a ele. O modelo de ativação escolhido foi o modelo *ABP*. Este modelo consite em ao ser recebida a informação de um node, o *Network Server* compara com os dados imputados na guia *Node Activation*. Caso correspondam os dados relativos a *devAdd, nwkSkey* e *appSkey*, então uma conexão será estabelecida entre *node-server-node*. Para gerar os parâmetros necessários, é preciso ir até a aba mencionada *Node-Activation*, clicando-se no *node* em que se deseja ativar. A Figura 10, a seguir, demontra um exemplo de como registrar estes parâmetros na guia *Node-Activation*.

Figura 10 - Inserção de parâmetros para a ativação de *node* através de ativação do tipo ABP (Activation by Personalization).

Percebe-se que é possível gerar um número randômico através do *link generate* para cada campo. Entretanto, é preciso seguir alguns procedimentos segundo o protocolo *LoRaWAN*. O campo *device Address* deve conter 8 *bytes* em formato *hexadecimal*. Entretanto, o campo *Network session key* bem como o campo *application session key* devem possuir uma *string* em *hexadecimal* de 32 *bytes* cada uma. Estes campos, além de servir para a ativação, são as chaves de dupla criptografia necessária para decriptografar e decodificar os dados armazenados no banco de dados, referente ao payload enviado pelo node e como parâmetro de checagem de integridade da mensagem. Para saber mais sobre este processo, deve-se consultar a documentação disponível em *LoRa Alliance*.

2.4.3 REGISTRO DE ATIVIDADES DO NODE

Finalizado este procedimento, e inseridos estes valores de ativação corretamente no código fonte do *node* correspondente, é possível, a partir de agora, receber os dados a serem transmitidos. Para uma rápida visualização, há uma guia denominada *frame Logs*. Nesta guia é possível visualizar os dados de *uplink* e *downlink* da comunicação entre *node-server-node*. Os dados estão por sua vez ainda criptografados no campo *frmPayLoad*. A Figura 11 abaixo mostra os dados deste *node* que estão chegando *(uplink)* ao servidor. Neste caso, somente há *uplinks*, visto que os dados estão sendo transmitidos sem o caráter de confirmação pelo servidor *(unconfirmed)*.

Na figura a seguir também observa-se uma valor descrito como *bytes*: "JF0MA3x4Kw==". Este valor, embora não se assemelhe com o dado enviado pelo *node* ao servidor, é o dado criptografado e codificado em *base64* armazenado no banco de dados. Somente com os valores de ativação de cada *node* será possível recuperá-lo de maneira decriptografada e decodificada.

Figura 11 - Guia Frame logs para visualização de dados de *uplink* e *downlink*.

3 RECUPERAÇÃO DE DADOS DO NODE PARA APLICAÇÃO

Em relação à Figura 11 acima, a guia demonstrada serve apenas como um *debug* para que se saiba se o dado esta chegando ao servidor bem como mostrar outras informaçõs referentes ao envio. A recuperação das informações estão descritas nos documentos IMT – ACESSO AO MQTT BROKER NETWORKSERVER, para a recuperação destes dados exatamente no momento em que são enviados; no documento IMT – Acesso ao Banco de dados API REST, para recuperação de dados de histórico. Esses dois métodos estão em acordo com a mais recente tendência de retorno de informações no formato *JSON* (*JavaScript Object Notation*). Bem como ainda em EXEMPLO DE APLICAÇÃO MQTT (NODE-RED) e EXEMPLO DE APLICAÇÃO REST API (NODE-RED), são demonstradas aplicações em *Node-RED*, utilizando-se ambos os métodos.

