Assignment-4

- 1. Draw the logic circuit represented by each of the following expressions:
 - (a) X = [AB(C'+D)]'
 - (b) X = (A+B+C'DE')'+ B'CD'
- 2. Draw a logic circuit for the case where the output, ENABLE, is HIGH only if the inputs, ASSERT and READY, are both LOW.
- 3. Draw a logic circuit for the case where the output, HOLD, is HIGH only if the input, LOAD, is LOW and the input, READY, is HIGH.
- 4. Develop the truth table for each of the circuits in Figure.

5. Determine which of the logic circuits in Figure are equivalent

- 6. Define the domain of each SOP expression in above Problem convert the expression to standard SOP form.
 - (a) BC' + DE(B'C + DE))E']
- (b) B'C(C D + C)
- (c) B + C[BD + (C' + D
- 7. Develop a truth table for each of the following standard SOP expressions:
 - (a) $ABC + \overline{A}\overline{B}C + AB\overline{C}$
 - (b) $A\overline{B}C\overline{D} + AB\overline{C}\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}\overline{C}\overline{D}$
 - (c) $WXYZ + \overline{W}X\overline{Y}Z + W\overline{X}Y\overline{Z} + \overline{W}\overline{X}YZ + WX\overline{Y}\overline{Z}$
 - (d) $\overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}Z + \overline{X}YZ + XY\overline{Z}$

8. Develop a truth table for each of the standard POS expressions:

(a)
$$(A + B + C)(\overline{A} + \overline{B} + \overline{C})(A + \overline{B} + C)$$

(b)
$$(X + \overline{Y})(\overline{X} + Z)(X + \overline{Y} + \overline{Z})(\overline{X} + \overline{Y} + Z)$$

(c)
$$A(B + \overline{C})(\overline{A} + C)(A + \overline{B} + C)(\overline{A} + B + \overline{C})$$

9. For each truth table in Table, derive a standard SOP and a standard POS expression.

ABCD	X	ABCD	X
0000	1	0000	0
0001	1	0001	0
0010	0	0010	1
0011	1	0011	0
0100	0	0100	1
0101	1	0101	1
0110	1	0110	0
0111	0	0 1 1 1	1
1000	0	1000	0
1001	1	1001	0
1010	0	1010	0
1011	0	1011	1
1100	1	1100	1
1101	0	1101	0
1110	0	1110	0
1111	0	1111	1

10. Use a Karnaugh map to find the minimum SOP form for each expression:

(a)
$$\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}C$$

(b)
$$AC(\overline{B} + C)$$

(c)
$$\overline{A}(BC + B\overline{C}) + A(BC + B\overline{C})$$

(a)
$$\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}C$$
 (b) $AC(\overline{B} + C)$ (c) $\overline{A}(BC + B\overline{C}) + A(BC + B\overline{C})$ (d) $\overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C}$

11. Use a Karnaugh map to simplify each expression to a minimum SOP form:

(a)
$$\overline{A}\overline{B}\overline{C} + A\overline{B}C + \overline{A}BC + AB\overline{C}$$
 (b) $AC[\overline{B} + B(B + \overline{C})]$

(b)
$$AC[\overline{B} + B(B + \overline{C})]$$

(c)
$$DE\overline{F} + \overline{D}E\overline{F} + \overline{D}\overline{E}F$$

12. Use a Karnaugh map to simplify each expression to a minimum SOP form:

(a)
$$A + B\overline{C} + CD$$

(b)
$$\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + ABCD + ABC\overline{D}$$

(c)
$$\overline{AB}(\overline{CD} + \overline{CD}) + AB(\overline{CD} + \overline{CD}) + A\overline{B}\overline{CD}$$

(d)
$$(\overline{AB} + A\overline{B})(CD + C\overline{D})$$

(e)
$$\overline{A}\overline{B} + A\overline{B} + \overline{C}\overline{D} + C\overline{D}$$

13. Use a Karnaugh map to simplify each Boolean functions.

(a)
$$F(x, y, z) = \Sigma(0, 1, 5, 7)$$

(b)
$$F(x, y, z) = \Sigma(1, 2, 3, 6, 7)$$

(c)
$$F(x, y, z) = \Sigma(3, 5, 6, 7)$$

(d)
$$F(A, B, C) = \Sigma(0, 2, 3, 4, 6)$$

14. Use a Karnaugh map to simplify each Boolean functions.

(a)
$$F(w, x, y, z) = \Sigma(1, 4, 5, 6, 12, 14, 15)$$

(b)
$$F(A, B, C, D) = \Sigma(0, 1, 2, 4, 5, 7, 11, 15)$$

(c)
$$F(w, x, y, z) = \Sigma(2, 3, 10, 11, 12, 13, 14, 15)$$

(d)
$$F(A, B, C, D) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$$