(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-10282

(43)公開日 平成9年(1997)1月14日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
A61J	1/05			A 6 1 J	1/00	3514	A
	1/10				3/00	3 1 2	
	3/00	3 1 2		A61L	2/08		
	1/20			A61J	1/00	3 3 0 A	A
A61L	2/08				3/00	3142	Z
				審查請求	未請求	請求項の数6	FD (全 10 頁)
(21)出願番号 特願平7-188224		(71) 出願人	3900032	263			
, , , , , , , , , , , , , , , , , , , ,					株式会社	业新素材総合研 究	訮
(22)出願日		平成7年(1995)6		東京都	世田谷区大原27	目21番13号	
				(72)発明者	破野 耳	啓之介	
					埼玉県)	川口市大字安行繭	6八46番地112
				(72)発明者	本林	表	
					新宿区	矢来町52番地	
							•
,					•		
			•				

(54) 【発明の名称】 易滅菌用接続部付医療用容器

(57)【要約】

【目的】 容器と容器との接続部の滅菌を容易にすることができ、また製造時に接続される薬剤容器毎の製造管理ができ、多大な重複設備を必要としない易滅菌用接続部付医療容器を提案。

【構成】 プラスチック容器本体に投与物が充填してあり、また他の薬剤容器が接続又は連通され、使用に際して上記投与物に該他の薬剤が混合される医療用容器において、上記容器本体の少なくとも一部に、剥離可能で外側からの開封が可能なシール部を有し、該剥離可能なシール部から更に延在した樹脂端部を易滅菌用接続部とし、上記易滅菌用接続部は、上記他の薬剤容器内と液密に連通しうるように接続されて電子線により照射滅菌がなされていることを特徴とする

【特許請求の範囲】

【請求項1】 プラスチック容器本体に投与物が充填し てあり、また他の薬剤容器が接続又は連通され、使用に 際して上記投与物に該他の薬剤が混合される医療用容器 において、

上記容器本体の少なくとも一部に、剥離可能で外側から の開封が可能なシール部を有し、該剥離可能なシール部 から更に延在した樹脂端部を易滅菌用接続部とし、

上記易滅菌用接続部は、上記他の薬剤容器内と液密に連 通しうるように接続されて電子線により照射滅菌がなさ れていることを特徴とする易滅菌用接続部付医療用容

【請求項2】 上記樹脂端部における該樹脂の比重が 0. 98g/cm³以下で、厚みが1600μm~30 μmであることを特徴とする請求項1記載の易滅菌用接 続部付医療用容器。

上記易滅菌用接続部の樹脂端部中に、上 【請求項3】 記連通接続の際に熱溶着しない樹脂部材或いは樹脂層が 設けられていることを特徴とする請求項1又は2記載の 易滅菌用接続部付医療用容器。

【請求項4】 上記剥離可能なシール部は、上記容器本 体内に連通して設けられる筒状又はチューブ状の薄肉樹 脂部材に形成され、該薄肉樹脂部材が上記他の薬剤容内 と被密に連通しうるように接続されたものであることを 特徴とする請求項1~3の何れかの記載の易滅菌用接続 部付医療用容器。

【請求項5】 プラスチック容器本体に投与物が充填し てあり、また他の薬剤容器が接続又は連通され、使用に 際して上記投与物に該他の薬剤が混合される医療用容器 の滅菌方法において、

上記容器本体の少なくとも一部に、剥離可能な外側から の開封が可能なシール部を設けると共に、該剝離可能な シール部から更に延在した位置に樹脂端部を存在させ、 該樹脂端部を上記他の薬剤容器内と液密に連通しうるよ うに接続し、剥離可能なシール部から延在した上記樹脂 端部を電子線照射滅菌することを特徴とする易滅菌用接 続部付医療用容器の滅菌方法。

【請求項6】 上記電子線照射滅菌の加速電圧を500 k V以下、50K V以上の低エネルギー型の電子線によ り照射滅菌することを特徴とする請求項5記載の滅菌方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、易滅菌用連通路付医療 用容器及びその滅菌方法に関するものであり、より詳細 には直前に2以上の薬剤を無菌的に調整して使用する場 合における連通部或いは接続部を備えた接続部付医療用 容器に関するものである。

[0002]

【従来の技術】点滴注射に用いられる輸液等のバック、

コンテナ等の医療用容器は、一般に樹脂容器である。ま た医療用容器には、抗生物質等の高圧蒸気滅菌ができな い薬剤のバイアル等を接続するものや使用直前まで薬液 を分けて保存し、使用時に容器内同士が接続又は連通す るものがある。更に、前者では予め医療用容器と薬剤バ イアルを接続させたものがあり、その薬剤容器と医療用 容器本体との連通部が滅菌処理してある薬剤キット等の・ 提案がある。また、後者では薬液を分けて保存するもの に、いわゆる剥離可能なシール部によって医療用容器を 二室以上に分けたものなどの提案がある。

【0003】また、二室を一室にする上述の剥離可能な シール部 (ピールシール部) 以外に、外側から連通可能 な連通手段も多々提案されている。例えば、閉塞型樹脂 筒材から形成され、容器内で折り取ることにより筒材内 を連通可能にする機構を備えたクリックチップと称され るもの(特公昭63-20550号公報)、連通路内に 設けられ、薬剤バイアルなどのゴム栓に刺針する連通針 に閉止機構を設け、連通針を刺針する際に閉止機構が開 放されるもの(実公平3-73307号公報)、容器本 体内に連通針が保持され、容器外からの操作により、薬 剤パイアルのゴム栓等を刺針して容器同士を連通させる もの (特開平6-254136号公報) 等の種々のもの が提案されている。

【0004】またピールシール部で二室を一室にする医 療用容器では、連通路内を滅菌するということはあり得 ないが、従来から市販されている薬剤バイアルを接続す るキット型の医療用容器では連通路内を滅菌或いは無菌 処理する必要がある。このような連通路の滅菌処理等に は、エチレンオキサイドのガス滅菌、過酸化水素により 化学剤滅菌、紫外線やガンマー線滅菌、加熱滅菌等があ る。また最近の技術として、注射器の表面を滅菌するた めに電子線を用いた殺菌方法が提案されている(特開平 7-16286号公報)。これは、電子線によるオゾン を発生させて殺菌効果を高めたものである。

【0005】また、薬剤キット関係において、二室を無 菌的に一室にする連通路の無い1パック型の医療用容器 が提案されている(第9回医薬品包装シンポジウム:講 演要旨集)。これは、バックの中間をピールシール部で 2室に分け、先ず、1室に溶解液を充填し高圧蒸気滅菌 を施し、次に、他の上部室に抗生物質等の薬剤を凍結乾 燥により無菌充填するものである。このような医療用容 器では連通路がないため連通路の滅菌等の心配はない。

【発明が解決しようとする課題】しかしながら、従来の 医療用容器には以下の問題点がある。連通路をエチレン オキサイドのガス滅菌、過酸化水素等で処理したもの は、連通路内に処理剤が残り、これを除去する等の問題 が生じる。連通路は従来、厚みのある樹脂連通路となっ ているため、かかる連通路を紫外線で滅菌処理しても、 その滅菌保証が十分に得られない場合がある。連通路を ガンマー線滅菌処理する場合には、その設備が大がかりとなり、また連通路等の局部的な処理も困難を伴ない、更にバッチ式になるため、生産ラインでフローさせることができない。連通路を加熱滅菌処理するものは、その処理時の操作が煩雑であり、設備上の品質管理が大変である。また、最近の電子線照射滅菌では、単純にその滅菌処理を用いたとしても、連通部に連通針等を使用しているため、従来の注射器のような表面のみの滅菌では不十分となる。また、従来の連通路は、樹脂成形物であり、その肉厚は3mm程度であるため、電子線を連通路内に浸透させることはできない。

【0007】また二室を一室にして連通路を不要とする 薬剤キットでは、設備が重複し、薬剤容器の充填管理が 製造上、難しいという問題がある。例えば、ペニシリン 系の抗生物質とセファロスポリン系の抗生物質とは、同 じ場所で薬剤容器に充填密封することはできない。この ような異なる薬剤を同じ棟などで充填すれば、コンタミ ネーションなどを起こすおそれがあり、病院内で使用す る際に、耐性菌の管理ができなくなるからである。従っ て、二室を一室にする薬剤キットでは、異なる抗生物質 を別棟で製造しなければならず、薬剤の種類に応じて完 全な充填製造設備を個別に設けなければならない不具合 がある。

【0008】従って、本発明の目的は、容器と容器との接続部の滅菌を容易にすることができ、また製造時に接続される薬剤容器毎の製造管理ができ、多大な重複設備を必要としない易滅菌用接続部付医療容器を提案することにある。

[0009]

【課題を解決するための手段】本発明は、プラスチック容器本体に投与物が充填してあり、また他の薬剤容器が接続又は連通され、使用に際して上記投与物に該他の薬剤が混合される医療用容器において、上記容器本体の少なくとも一部に、剥離可能で外側からの開封が可能なシール部を有し、該剥離可能なシール部から更に延在した樹脂端部を易滅菌用接続部とし、上記易滅菌用接続部は、上記他の薬剤容器内と液密に連通しうるように接続されて電子線により照射滅菌がなされていることを特徴とする易滅菌用接続部付医療用容器を提供することにより、上記目的を達成したものである。

【0010】本発明の易滅菌用接続部付医療用容器において、上記樹脂端部における該樹脂の比重が0.98g/cm³以下で、厚みが1600μm~30μmであることを特徴とする。本発明の易滅菌用接続部付医療用容器において、上記易滅菌用接続部の樹脂端部中に、上記連通接続の際に熱溶着しない樹脂部材或いは樹脂層が設けられていることを特徴とするものである。本発明の易滅菌接続部付医療用容器において、上記剥離可能なシール部は、上記容器本体内に連通して設けられる筒状又はチューブ状の薄肉樹脂部材に形成され、該薄肉樹脂部材

が上記他の薬剤容内と液密に連通しうるように接続され たものであることを特徴とする。

【0011】本発明はまた、プラスチック容器本体に投与物が充填してあり、また他の薬剤容器が接続又は連通され、使用に際して上記投与物に該他の薬剤が混合される医療用容器の滅菌方法において、上記容器本体の少なくとも一部に、剥離可能な外側からの開封が可能なシール部を形成すると共に、該剥離可能なシール部から更に延在した位置に樹脂端部を存在させ、該樹脂端部を上記他の薬剤容器内と液密に連通しうるように接続し、剥離可能なシール部から延在した上記樹脂端部を電子線照射滅菌することを特徴とする易滅菌用接続部付医療用容器の滅菌方法を提供することにより、上記目的を達成したものである。また、上記電子線照射滅菌の加速電圧を500kV以下、50KV以上の低エネルギー型の電子線により照射滅菌することを特徴とする。

[0012]

【作用】上記医療用容器にあっては、図1に示す如く易滅菌用接続部の樹脂シート間に他の薬剤容器の口部のシート等が挿入されることとなる。そして、易滅菌用接続部である樹脂端部(2枚の樹脂シート)と薬剤容器の口部(薄肉樹脂端部)とは熱溶着され、容器と容器とが連通した状態となっている。かかる接続状態で図4に示す如く、易滅菌用接続部は照射滅菌されたものである。照射滅菌は、電子線照射である。易滅菌用接続部は、薄いシートなどからなる連通路として構成されているため、電子線滅菌でその内部の滅菌が確実に易滅菌できる。電子線滅菌は、低中エネルギー型ではその設備が大がかりでなく、また1000~100g/m²の電子浸透性が得られるため、樹脂シート内に1.6Mrad以上の照射ができることにより滅菌が確実となる。

【0013】また、易滅菌用接続部は、剥離可能なシー ル部の存在により、容器本体からの充填液が浸透してお らず、充填された投与液は照射線による影響を受けな い。そして、上述のように易滅菌用接続部が肉薄の樹脂 シート等で形成されるため、上記浸透性があれば十分に 内部の滅菌も確実となる。照射線で滅菌できることは、 従来のガス滅菌、過酸化水素滅菌、及び熱滅菌等と相違 して、設備的に簡便であり、また低エネルギー型の電子 線照射装置であれば生産ライン上でフローさせることが できる。しかも、接続する両方の容器内の投与物には全 く影響を与えることはない。更に、容器本体の投与物の 充填棟と他の薬剤容器への投与物の充填を別棟でするこ とができるため、品種毎の薬剤容器を別棟で製造保管 し、製造時に容器本体と薬剤容器とをドッキングライン に乗せることができるので、重複した容器本体の充填設 備などを必要しない。また、種々の薬剤管理も容易であ る。

[0014]

【実施例】以下、本発明に係る易滅菌用接続部付医療用

容器の好ましい実施例を添付図面を参照しながら詳述する。図1は本発明に係る易滅菌用接続部付医療用容器の第一実施例の断面図、図2は図1の1-1線に沿った断面図、図3は第一実施例の易滅菌用接続部付医療用容器の接続部を滅菌する電子線装置の概略図、図4は第一実施例の照射部を示す平面図、図5は第一実施例の使用時の状態を示す断面図である。

【0015】図1乃至図5に示す如く、本実施例の易滅 菌用接続部付医療用容器1は、プラスチック容器本体2 に投与物である薬剤の溶解液3が充填してあり、また他 の薬剤容器21が接続又は連通され、使用に際して溶解 液3に他の薬剤22が混合される。医療用容器1は、容 器本体2の外側からの開封可能で剥離可能なシール部1 1が容器本体2に形成され、剥離可能なシールの形成部 11から更に容器本体2の樹脂端部12、13を延在さ せて、その延在樹脂端部12、13を延在さ せて、その延在樹脂端部5は、他の薬剤容器20内と液密 に連通しうるように熱溶着シールされ、且つ電子線照射 滅菌がなされているものである。

【0016】本実施例を更に説明すると、本実施例に係 る易無菌用接続部付医療用容器1を更に詳しく説明する と、医療用容器1の容器本体2は、非定型性の柔軟な樹 脂容器からなる。本実施例において具体的には、容器本 体2は、低密度ポリエチレン及びポリプロピレンの混合 組成物を押し出し成形により作製した2枚のシートから 形成される。即ち、かかるシートが所定の長さに裁断さ れ、その側端、下端が熱溶着により完全密着シールがさ れる。周端シール部2Aには、樹脂成形物からなる排出 口4が熱溶着と共に取り付けられて製造される。尚、本 実施例では、低密度ポリエチレン等を樹脂容器に用いた が、可撓性の熱シール可能な樹脂容器であれば、かかる 樹脂に限ることはなく、例えば、直鎖状低密度ポリエチ レン樹脂、高密度ポリエチレン樹脂、ポリプロピレン樹 脂、軟質ポリエステル樹脂、塩素化ポリエチレン樹脂、 塩化ビニル樹脂、エチレン一酢酸ビニル共重合体等の可 撓性に富んだ材料を用いることができる。但し容器本体 2内には、薬剤の溶解液、混合薬液、輸液等の薬液3が 収容されるため、なかでも、低密度ポリエチレン樹脂、 直鎖状低密度ポリエチレン樹脂、ポリプロピレン樹脂等 のポリオレフィン系樹脂は、耐薬品性に優れ、溶解液中 への溶出物も少なく、廉価であり経済性に優れているの で好ましい。尚、樹脂シートは多層フィルムであっても 良く、特に、ポリエチレン系樹脂層を多層にし、内層が その外側の層より薄くして強度を弱めて、剥離可能なシ ール部のできやすいラミネートシートとしても良い。

【0017】また、容器本体2の樹脂シートは、その厚みが1600 μ m以下、特に好ましくは800 μ m以下 30 μ m以上である。電子線照射滅菌する場合、物質の透過性に限度があるため、樹脂シートは薄いことが望ましい。電子線の透過性は、主に加速電圧により決定さ

れ、高エネルギー型では最高13000g/m2であ り、これは、水 (比重1g/m²) の厚みで13000 μmである。しかし、加速電圧装置が大型化するとX線 の遮蔽設備が大がかりになり樹脂シートである延在樹脂 端部12、13を変質させるおそれがある。このため、 中低エネルギー型の1Me V以下、特に低エネルギー型 の500KV以下の加速電圧装置が望ましく、かかる装 置では約1500g/m²が限界であるため、上記範囲 の厚みを上回ると、樹脂端部12、13内の滅菌が十分 にできないおそれがある。一方、上記範囲を下回ると連 通路としての強度が問題となる。本実施例では樹脂シー トの厚みが200µmである。樹脂シートの素材の比重 は、小さければそれだけ電子線等の透過が増加するため 好ましいが、上述ように医療用容器の材料で、剥離可能 なシール部が形成されることから、その樹脂素材の比重 は、0.98g/cm³以下、更には0.95~0.8 8g/cm³の範囲のものが望ましい。かかる範囲にあ る樹脂組成物は、汎用なポリオレフィン系の樹脂であ り、また電子線の透過性にも発熱等があまり生じず、照 射による変質なども見られないからである。

【0018】容器本体2は、側端、下端部に完全な密封シール部である端部シール部2Aが存在し、上方の中間部に剥離可能なシール部11が存在する。剥離可能なシール部11と端部シール部2Aとは共に熱接着により形成される。外側から開封可能で剥離可能なシール部11については、それ自体公知の種々の方法が採用できる。例えば、一例としては特願昭63年143、399号に記載されるように、完全密封シール部と剥離可能なシール部を有する医療用容器の製造方法などを参照して作製することができる。

【0019】即ち、本実施例では、直鎖状低密度ポリエ チレン (商品名:モアテック、出光石油化学株式会社 製、密度: 0. 916 g/cm³、MI: 2) とポリプ ロピレン (商品名:チッソポリプロ、チッソ株式会社 製、密度: 0. 90g/cm3、MI: 0. 7)を6: 4の割合で2本ロール (ロール温度は175℃) により 混練りし、これを熱プレスにより肉厚200μm、長さ 200mm、幅100mmのシートを作製する。次に樹 脂シート12、13を重ねてその周端部2Aを密封シー ルして容器の形態とするためインパルスシーラー(富士 インパルス株式会社製オートシーラFA-300-5 W) でシールする。シール条件はシール時間 1.5秒 間、冷却時間5秒間である。一方、剥離可能なシール部 11は、上下から加熱金型で10mm幅、長さ100m mの区間を押さえシールする。かかるシール条件は、1 30℃~150℃の間で、12秒間プレス状態に置い た。尚、プレスによりシール面が完全に潰れないように ストッパーを設け過大なプレス圧が及ばないように調整 する。実施例におしては押出成形したシートから容器本 体2を形成したが本発明ではこれに限ることはない。例

えば、インフレーション成形、ブロー成形、真空成形に よるチューブやバックや、また非定型性の容器に限ら ず、ある程度の定型を保つが、壁部が可撓なため窪んだ りする非定型性可能なボトル等であって、薄肉の樹脂端 部を有したものでもよい。剥離可能なシール部11の幅 Aは、2mm~30mm、特に3mm~20mmであ る。幅Aがかかる範囲を下回れば、液密で十分なシール ができず、しかも、後述の遮蔽カバー27の設置が厳密 に成りすぎて製造上支障をきたすおそれがある。また上 記範囲を上回れば、剥離操作が煩雑となる。尚、剥離可 能なシール部11は本実施例では容器本体2の横断部分 の全域に形成したが、一部形成して、後述の薬剤容器2 1の口部23の大きさに応じた剥離可能なシール部とし ても良い。更に、剥離可能なシール部の領域を小さくし て、後述の口部23内に挿入された接続形態であっても よい。

【0020】容器本体2には、排出口4から溶解液3が充填され、ゴム栓で排出口4を封止した後、高圧蒸気滅菌される。尚、安全性が保証されれば、無菌充填でも良い。溶解液3は輸液用の基本投与物であり、後述する薬剤容器21内の薬剤22を溶解、希釈或は混合等するものである。具体的には、アミノ酸液、グルコースが主体の高カロリー輸液の基本液、生理食塩水、5%ブドウ糖液、注射用蒸留水のほか、各種電解質を含む溶液等が用いられる。高圧蒸気滅菌処理は、局方の高圧蒸気滅菌方法に基づいて行われ、且つ剥離可能なシール部11が処理中に剥離或いは完全接着しない程度にクリップで把持しながら滅菌される。

【0021】図1に示す如く容器本体2の剥離可能なシ ール部11から樹脂シートが約30mm程度延在されて おり、かかる樹脂端部12、13間に薬剤容器21の口 部23のシート部が挿入されている。薬剤容器21は、 その素材が低密度ポリエチレン、高密度ポリエチレン、 及びポリプロピレンを同様の割合で混合した組成物から なり、ブロー成形して一定の保型を有した可撓性のある ボトルで、口部の薄肉部23で裁断したものであり、口 部23の樹脂肉厚が200µmとなっている。また、薬 剤22を無菌充填した状態で、口部23の近傍に上述と 同様な剥離可能なシール部24が形成される。従って、 シール部24から薬剤容器21の本体部分が滅菌状態と なっており、接続される薬剤容器21も剥離可能なシー ル部24から延在する口部23のチューブシート部が易 滅菌用接続部となる。尚、薬剤容器21は本実施例にお いてボトル形態としたが、容器本体2と同様なバック形 態のものを用いても良い。本実施例では第二成分の薬剤 22は粉末の抗性物質である。しかし、本実施例にあっ ては、薬剤22を粉末に限る必要はなく液剤であっても 良い。また具体的な液剤としては、アミノ酸の一種であ るグルタミン酸がある。特に、グルタミン酸水溶液を1 00℃に加熱すると一部ヒロリドン化し変質してしまう

ので、高圧蒸気滅菌ができない。このように水溶液の状態で滅菌できない薬剤も対象となる。

【0022】図2に示す如く、薬剤容器の口部23内に シール防止用の耐熱性のポリプロピレン樹脂板25が挿 入され、結局、樹脂板25は口部23を介して樹脂端部 12、13間に配される。かかる樹脂板25が配された 状態で、容器本体2の上部の完全な密封シール部2Bが 形成される。密封シール部2Bは、周端部のシール部2 Aと同様な条件で熱シールされる。しかし、熱シールに より樹脂板25は熱溶融せず、口部23の内面や樹脂端 部12、13の内面と熱溶着しないようになっている。 従って、口部23と樹脂端部12、13で形成されるチ ャンバ部分とが連通可能状態となっている。樹脂板25 は、上部の密封シール部を形成する際に熱溶着しない樹 脂であれば特に限定されないが、医療用容器内の投与剤 との接触があることからポリオレフィン系樹脂が好まし い。また、樹脂板25は板状に限ることはなく、密封シ ール部2Bの熱シール時の温度に対して耐熱性がある限 り薄いシート、フィルムなどであっても良い。

【0023】尚、図4において本実施例で易滅菌用接続部5は、樹脂シート、及び柔軟性の薄肉口部から形成されるため平坦となっている。易滅菌用接続部5は、平坦であることが望ましく、電子線照射方向からの厚みが20mm以下、好ましくは10mm以下である。易滅菌用接続部5の厚みが薄ければ、電子線照射にできる限り接近させた状態で滅菌処理ができるため、その滅菌が確実なものとなる。本実施例では5mm以下で、後述の電子線照射装置50の窓枠53をかかる距離まで近づけることが可能である。

【0024】図3及び図4に示す如く、容器本体2の上端シール部2Bと剥離可能なシール部11とが照射滅菌される。電子線滅菌はその加速電圧が1MeV未満、特に低エネルギー型の500KV~50KVのものであれば、電子線の所定の浸透性が得られる一方、X線等の放出がほとんどないため、その遮蔽設備を必要とせず、生産ラインにコンパクトに配することができる。即ち、加速電圧500KVによる電子線の浸透性は約1000g/m²以下で、樹脂肉薄部での浸透性が十分に得られる。

【0025】図3に示す如く、電子線照射装置50は、ベルトコンベア51の上方に設けられ、機枠52と、機枠52に形成される窓枠53、窓枠53に取り付けられた窓箔54、窓枠53の上方を覆っている加速管54、及び加速管55内の真空チャンバ内に設けられた電子線発生部56はグリッド57、ガンフレーム58、及びフィラメント59とからなる。フィラメント59は通電され、加熱させられて熱電子を発生する。熱電子は所定の電圧が印加されたフィラメント59とグリッド57との間で加速され、窓箔54からコンベア51上に照射される。尚、機枠52は電

子線照射により二次的に発生するX線等の外部漏出を防止するため鉛遮蔽がされている。従って、コンベア51の速度とフィラメント59の通電量により、照射電子線量が調整され、加速電圧により、電子線の浸透性を調整することができる。図4に示す如く、容器本体2の剥離可能なシール部11と薬剤容器21の剥離可能なシール部との間が易滅菌用接着部5となり、かかる部分が電子線照射され、その他の部分は上述の遮蔽カバー27により遮蔽されている。また、電子線照射が容器1の両面からなされるように、電子線照射装置50は、図示しないが後段に更に1台設けられ、容器1はコンベア51上で180度反転されるようになっている。

【0026】微生物の殺菌においては、特開平7-16286号公報にも記載されるように、放射線菌で指標となるB. pumilus (spores) E-601で約0.2 M rad (2k Gy) のD値を有する。 1 cm^2 当たり、通常 10^0 オーダーの菌が付着しているが、安全性を十分考慮すれば、 10^2 オーダーまでの付着があるとの仮定も成り立つ。また滅菌保証レベル (SAL) は生存率 10^{-6} %である。従って、本実施例での電子線照射装置50は樹脂シート12、13内が 6×0 .2 M rad以上、好ましく8×0.2 M rad以上で滅菌されるように通電量とコンベア速度が調整される。また、樹脂シート12、13及び口部23のシート厚が200 μ m であることから、加速電圧は200 K V 以上のものが使用される。

【0027】このように構成された易無菌用接続部付医 療用容器1を使用する際には、先ず、容器本体2の剥離 可能なシール部11及び薬剤容器21の剥離可能なシー ル部24を外側から開封する。これにより、図5に示す 如く、薬剤容器21と容器本体2は連通し、溶解液3が ポンピング等により一部薬剤容器21側に流入され薬剤 22と混合する。完全に混合後、容器本体2に戻し、排 出口4に連通針等を刺針して患者に混合薬剤8を投与す る。従って、容器本体2と薬剤容器21との間には、滅 菌時のガスや過酸化水素水等が残留しないため、安全に 薬液を流通させることができる。また、電子線照射は設 備を極めてコンパクト化することができるため、生産ラ インでの設置が簡単かつ経済的にできる。また、連通路 の十分な滅菌性も確保できる。 更に、薬剤容器 21 と容 器本体2とは、別室で充填密封が可能であるため、多種 類の薬剤を容器本体2に接続して提供する場合でも、重 複した設備を設ける必要もない。

【0028】・性能評価

上記実施例において、容器本体2に溶解液の代わりに、以下の2種類の培地A、Bを充填して、かかる容器本体2を高圧蒸気滅菌すると共に、薬剤容器21を空にして内部を滅菌した後、容器本体2と薬剤容器21とを熱シールにより接続し、かかる易滅菌用接続部を上述の方法に従って滅菌した。そしてかかる医療用容器1を100個製造し、医療用容器1の各剥離可能なシール部11、

24を開放して一旦、薬剤容器21側に入れて、これを 戻した後、1週間所定の条件で培養した。100個の全 てに、菌は繁殖しなかった。また、比較例として、上記 と同様な容器を製造した。但し、易無菌用接続部を実施 例のように照射滅菌しなかった。これを実施例と同様に 各剥離可能なシール部11、24を開放して、実施例と 同様に培養した。その結果、100個中32個のものに 菌が繁殖を起こした。

A培地:チオグリコール酸培地 I I (32℃、7日間培養)

B培地: ブドウ糖・ペプトン培地 (24℃、7日間培養)

【0029】図6は実施例1に使用される薬剤容器21 の変形例である。薬剤容器32は硬質のプラスチックバ イアルからなり、硬質のパイアル32の口部のフランジ 面には、チューブシート28が取り付けられる。チュー ブシート28は、内層29がポリプロピレン樹脂層で耐 熱性を有し、外層30がポリエチレン樹脂層である。内 層29が存在しない外層30部分ではバイアル32の口 部の一部で剥離可能なシール部26が形成されている。 バイアル32に使用されるプラスチック材としては、例 えば、低密度或は高密度ポリエチレン、ポリプロピレ ン、ポリブタジエン-1等のポリオレフィン類、ポリ塩 化ビニル、ポリ塩化ビニリデン、塩化ビニリデン共重合 体、ポリメタクリル酸メチル、ポリビニルアルコール、 エチレンービニルアルコール共重合体、アクリロニトリ ル共重合体、ポリエチレンテレフタレート等を挙げるこ とができる。特に、ポリオレフィン類は汎用性及び薬剤 に影響を与えない点で好ましく、更には非晶質の環状の オレフィンコポリマー等の高いガラス転移温度が120 ℃以上を有し比重が1.00~1.10のものが望まし い。特に、熱変形温度(ASTMD648 18kg/ c m²) が115℃以上のポリオレフィンであることが 望ましい。このような樹脂として具体的には、光デイス ク基板、光学レンズなどの材料として最近用いられてい る商標名ゼオネックス(日本ゼオン株式会社)、商標名 アペル (三井石油化学工業株式会社) 等のポリオレフィ ン系樹脂である。このような構成においても、上述の樹 脂部材25の代わりに内層29のポリプロピレン層が完 全密着シール部2Bの形成時に連通路を確保し、また容 器本体2との接続後の易滅菌用接続部5に電子線照射滅 菌を容易に施すことができる。

【0030】図7は、第二実施例を示したものである。本実施例の易滅菌用接続部付医療用容器31は、図1の実施例とほぼ同様であるが、以下の点が相違する。即ち、薬剤容器32には硬質のプラスチックバイアルであり、バイアル32には、凍結乾燥品である抗生物質33が無菌充填され、キャップ34で完全に充填口が密封される。キャップ34の基端部はフランジになっており、かかるフランジはバイアル32の充填口のフランジに熱

接合されている。キャップ34は筒状で一端が閉塞した 樹脂成形物であり、クリックチップ機構35を上端に有 しており、図8に示すように容器本体2外から折り曲げ て開封できるようになっている。このような構成にあっ ては、先ず、バイアル32内に抗生物質33を無菌充填 し凍結乾燥した後、無菌的にキャップ34でバイアル3 2の口部を密封する。一方、容器本体には、既に剥離可 能なシール部11が形成され、溶解液3が滅菌充填され ている。そして、かかる容器本体2の延在樹脂端部1 2、13にキャップ34のクリックチップ部35を挿入 し、容器本体2の端部2Bを完全に密封シールすると共 に、キャップ34を容器本体2に取り付ける。そして、 剥離可能なシール部11から端部2Bまで、図1の実施 例と同様に電子線照射による滅菌処理する。従って、こ のような第二実施例の医療用容器31においても、接続 部となる部分が滅菌が極めて容易にできることとなる。

【0031】図9(A)~(C)は本発明に係る易滅菌 用接続部付医療用容器の第一及び第二実施例で使用され る容器本体2の変形例の要部断面図である。先ず、図

(A) に示す如く、容器本体41には筒状シート42が 熱溶着シールされる。筒状シート42は容器本体41の シートの材質や厚みに拘わらず、電子線の透過量を考慮 して適宜な厚さに変更できる利点があり、ここでは10 0μmとなっている。容器本体41に熱溶着シール際 に、筒状シート42内には耐熱性樹脂板25が挿入され、筒状シート42は容器本体41内と連通した状態で シールされる。

【0032】図9(B)に示す如く、耐熱性樹脂板25が途中まで筒状シート42から引き出され、一部に剥離可能なシール43が実施例と同様に形成され、シール43の形成後、容器本体41内に薬液などが充填され滅菌される。次に図9(C)に示す如く、筒状シート42の先端が薬剤容器21の口部23に挿入され、筒状シート21と口部23の重複部分44が完全な密封シールがなされ、また樹脂板25の介在により、筒状シート21内と口部23が連通される。そして、剥離可能なシール部43と口部23の剥離可能なシール部24との間が第一実施例に示すように電子線照射する。このような構成においても、実施例1と同様に易滅菌用接続部が容易に減菌され、また筒状シート42は容器の材質に限らないため、薄肉で電子線を透過し易い、強度の優れた樹脂とすることができる。

【0033】図10は、医療用容器61は本実施例の変形例を示す図であり、医療用容器61は、上述の容器本体2と、容器本体2に同様な形状を有し、接続する部分の径のみがことなる薬剤容器として容器本体2'を接続したものである。このような構成であれば、異なる薬液を別々の場所で無菌充填した後、生産ラインで組み合わせ、その後、易減菌用接続部5を簡単に電子線減菌することができる。

[0034]

【発明の効果】以上説明したように本発明の易滅菌用接続部付医療用容器は、上記容器本体外側からの剥離が可能なシール部を上記容器本体の少なくとも一部に有し、該剥離可能なシールの薄肉樹脂形成部から更に樹脂端部を延在させて該延在樹脂端部を易滅菌用接続部とし、上記易滅菌用接続部は、上記樹脂端部が上記他の薬剤容器内と液密に連通しうるように熱溶着シールされ、且つ電子線による照射滅菌がされているものであるので、容器と容器との接続部の滅菌を容易にすることができ、また製造時に接続される薬剤容器毎の製造管理ができ、多大な重複設備を必要としない。

【図面の簡単な説明】

【図1】本発明に係る易滅菌用接続部付医療用容器の第 一実施例の断面図である。

【図2】図1の1-1線に沿った断面図である。

【図3】第一実施例の易滅菌用接続部付医療用容器の接続部を滅菌する電子線装置の概略図である。

【図4】第一実施例の照射部を示す平面図である。

【図5】第一実施例の使用時の状態を示す断面図である。

【図6】(A)及び(B)は、第一実施例の薬剤容器の変形例を示す側断面図、及び上面図である。

【図7】本発明に係る易滅菌用接続部付医療用容器の第二実施例の断面図である。

【図8】第二実施例の容器本体と薬剤容器とを連通させた状態を示す断面図である。

【図9】(A)~(C)は本発明に係る易滅菌用接続部付医療用容器の第一及び第二実施例で使用される容器本体2の変形例の要部断面図である。

【図10】本発明に係る易滅菌用接続部付医療用容器の 第一実施例の変形例を示す図である。

【符号の説明】

1	易滅菌用接続部付医療用
容器	
2	容器本体
2 A	側端及び下端シール部
2 B	上端シール部
3	溶解液 (投与剤)
4	排出口
5	易無菌用接続部
8	混合薬剤(投与剤)
1 1	剥離可能なシール部
12, 13	樹脂シート
2 1	薬剤容器
2 2	薬剤 (投与剤)
2 3	口部
2 4	剥離可能なシール部
5 0	電子線照射装置
5.1	ベルトコンベア

【図1】

【図2】

【図4】

【図3】

