

Counterfactuals, potential outcomes and estimation

Causality
Christina Heinze-Deml
Spring 2019

Announcements

- Series 4 will be uploaded later today
- Next week:
 - Normal lecture from 10-11
 - In-class exercise from 11-12
 - Jupyter notebook and R
 - Can also ask questions about the course material and the series

Semester feedback

Last week

- Instrumental variables
- Transportability
- Course outline
 - Background and framework
 - Using the known causal graph structure to identify and estimate causal effects
 - Causal structure learning

Today

- Counterfactuals
- Potential outcomes
- Estimation
- Course outline
 - Background and framework
 - Using the known causal graph structure to identify and estimate causal effects
 - Causal structure learning

Counterfactuals

- Not all causal questions can be expressed with p(y|do(x))
 - E.g., what fraction of the healthy untreated population would have gotten the disease had they been treated?
 - Retrospective thinking
- Consider SEM

$$Z \leftarrow f_Z(N_Z)$$

$$X \leftarrow f_X(Z, N_X)$$

$$Y \leftarrow f_Y(X, N_Y)$$

• Unit-level counterfactual reasoning analyzes relations such as "Y would be y had X been x in situation N = n"

Examples

Counterfactuals

- Noise as "unobserved uncertainty-producing variables" or "background variables"
- Unit-level counterfactuals may earn predictive value
 - When noise remains constant; or
 - When noise can be observed sometime in the future
 - See eye-doctor example
- Often this is not the case and many unit-level counterfactual statements cannot be falsified
 - Cannot observe Y|do(X=1) and Y|do(X=0) for the same individual at the same time

Potential outcomes

- Also known as "Rubin causal model"
- Often used in applied data analysis
 - Biostatistics
 - Econometrics
- Often used without graphs
- Frameworks can be combined with so-called Single-World Intervention Graphs (SWIGs) (Richardson and Robins (2013))
- Now: look at basic notation and concepts

Potential outcomes with binary treatment

- For binary treatment X and response Y, two potential outcome variables:
 - $Y_i(x = 0)$ (shorthand: $Y_i(x_0)$): value of Y that would be observed for a given unit i if assigned X = 0
 - $Y_i(x = 1)$ (shorthand: $Y_i(x_1)$): value of Y that would be observed for a given unit i if assigned X = 1
 - Unit-level reasoning

Example:

- X: flu vaccine
- Y_i: time until individual gets the flu
- $Y_i(x=0)$: time until individual would get the flu if they did not receive the flu vaccine
- $Y_i(x=1)$: time until individual would get the flu if they received the flu vaccine

Potential outcomes with binary treatment

- For binary treatment *X* and response *Y*, two potential outcome variables:
 - $Y_i(x = 0)$ (shorthand: $Y_i(x_0)$): value of Y that would be observed for a given unit i if assigned X = 0
 - $Y_i(x = 1)$ (shorthand: $Y_i(x_1)$): value of Y that would be observed for a given unit i if assigned X = 1
- $P(Y(x) = y) \neq P(y \mid x)$ in general causation is not association
- Counterfactual outcomes are the ones that would have been observed, had the treatment been different
 - If my treatment was x = 1, my counterfactual outcome is $Y_i(x = 0)$

Example

- X: flu vaccine
- Y_i : time until individual gets the flu
- I got the vaccine and did not get sick.
 - My actual treatment was x = 1.
 - My observed outcome was $Y_i = Y_i(x = 1)$.
- Had I not gotten the vaccine, would I have gotten sick?
 - My counterfactual treatment is x = 0.
 - My counterfactual outcome is $Y_i(x = 0)$.

Potential outcomes vs counterfactual outcomes

- Before the treatment decision is made, any outcome is a potential outcome
- After the study, there is an observed outcome and a counterfactual outcome
- Sometimes the terms potential outcome and counterfactual outcome are used interchangeably

Potential outcomes with binary treatment

- Unit-level causal effect: $Y_i(x_1) Y_i(x_0)$
- Average of unit-level causal effects:

$$\frac{1}{n}\sum_{i}Y_{i}(x_{1})-Y_{i}(x_{0})$$

- Cannot be computed directly
- Fundamental problem of causal inference:
 Can only observe one potential outcome for each unit.
- With certain assumptions, can estimate population level causal effects

- Binary treatment X and binary response Y, Y = 1 indicates recovery
- Have four response "types":

$Y_i(x_0)$	$Y_i(x_1)$	Name
0	0	Never recover
0	1	Helped
1	0	Hurt
1	1	Always recover

- Consider 5 units (individuals)
- Assignment to treatments

Unit	Potential outcomes		Obse	erved
	$Y_i(x_0)$	$Y_i(x_1)$	X	Y_i
1	0	1	1	
2	0	1	0	
3	0	0	1	
4	1	1	1	
5	1	0	0	

Observed outcomes

Unit	Potential outcomes		Obse	erved
	$Y_i(x_0)$	$Y_i(x_1)$	X	Y_i
1	0	1	1	1
2	0	1	0	0
3	0	0	1	0
4	1	1	1	1
5	1	0	0	1

- Can only observe one potential outcome for each unit
- Causal inference as missing data problem

Unit	Potential outcomes		nit Potential outcomes Observed		erved
	$Y_i(x_0)$	$Y_i(x_1)$	X	Y_i	
1	?	1	1	1	
2	0	?	0	0	
3	?	0	1	0	
4	?	1	1	1	
5	1	?	0	1	

Average causal effect

$$ACE = E(Y(x_1) - Y(x_0)) = p(Helped) - p(Hurt)$$

- Difference in % recovery if everyone treated (X = 1) vs. if no one treated (X = 0)
- If treatment X assigned randomly, then $X \perp\!\!\!\perp Y(x_0)$ and $X \perp\!\!\!\perp Y(x_1)$. Hence

$$E(Y(x_1) - Y(x_0)) = E(Y(x_1)|X = 1) - E(Y(x_0)|X = 0)$$

= $E(Y|X = 1) - E(Y|X = 0)$

Assumptions

- SUTVA: Stable Unit Treatment Value Assumption
- Consistency
- Ignorability: "no unmeasured confounders"
- Positivity

Assumptions

- SUTVA: Stable Unit Treatment Value Assumption
 - No interference between units, no contagion
 - Allows to write potential outcome for the i-th person in terms of only that person's treatment
- Consistency
 - Y = Y(x) if $X = x \ \forall x$
- Ignorability: "no unmeasured confounders"
 - Given covariates Z, treatment assignment is independent from the potential outcomes
 - $X \perp \!\!\!\perp Y(x_0) \mid Z$ and $X \perp \!\!\!\perp Y(x_1) \mid Z$
- Positivity
 - For every z, treatment assignment is not deterministic
 - $P(X = x | Z = z) > 0 \ \forall x, z$

Observed data and potential outcomes

- E(Y(x)|Z=z)=E(Y(x)|X=x, Z=z) by ignorability
- E(Y(x)|X=x, Z=z)=E(Y|X=x, Z=z) by consistency
- So E(Y(x)|Z=z) = E(Y|X=x, Z=z)
 - E(Y|X=x, Z=z) involves only observed data

Estimation methods – Setting

- X is binary: treatment vs control
- Interested in average causal effect
 - In *do*-notation:

$$ACE = E(Y|do(X=1)) - E(Y|do(X=0))$$

In potential outcomes notation:

$$ACE = E(Y(x_1) - Y(x_0))$$

- Assume observed control variables Z form a valid adjustment set
 - The following methods do not address the question of identification
 - They are about estimation provided that observed covariates Z form a valid adjustment set

Idea:

- Match individuals in the treatment group (X = 1) to individuals in the control group (X = 0) on the covariates Z
- Create a dataset with these matched pairs and perform outcome analysis

Example:

- Say older people are more likely to receive the treatment X = 1
 - At younger ages, there are more people with X=0
 - At older ages, there are more people with X = 1
- In a randomized trial, for any age, there should be about the same number of treated and untreated people
- By matching treated people to control people of the same age, there will be about the same number of treated and controls at any age

* Suppose 25	= hyperteusion
* Suppose 2. Chigh block	1 pressure)

* Suppose hypertensive people more likely to be treated than people wo hypertension

After matching: P(x=1) redu = 0.5 P(x=1) blue; = 0.5

Pre-matching

Treated	Control
X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X

Post-matching

Treated	Control	
X	×	
×	X	
~	×	
×	×	
×	×	
×	×	
$\frac{2}{8}$ red	$\frac{3}{2}$ red	
=> belonce 2		

- If exact matching not possible, need metric of closeness to find matches
 - E.g., use Mahalanobis distance

$$D(Z_i, Z_j) = \sqrt{(Z_i - Z_j)^T S^{-1} (Z_i - Z_j)}$$

where S is the sample covariance matrix of Z and Z_i are the covariates for subject i

Accounts for different scales of the covariates

- Greedy matching
 - 1. Randomly order list of treated subjects and control subjects
 - 2. Start with the first treated subject and find the control subject with the smallest distance
 - 3. Remove the matched pair from the lists of available subjects
 - 4. Move to the next treated subject and find the control subject with the smallest distance
 - 5. Repeat steps 3 + 4 until all treated subjects are matched
- Optimal matching
 - Greedy matching does not lead to the smallest total distance
 - Optimal matching computationally demanding
 - Still feasible for ~1 millon treatment-control pairings (e.g., 1000 treated subjects, 1000 controls)

- After matching, need to assess "covariate balance"
 - "Table 1" with mean and standard deviations and standardized mean differences
 - Standardized mean difference

$$smd = \frac{\bar{Z}_{treatment} - \bar{Z}_{control}}{\sqrt{\frac{s_{treatment}^2 + s_{control}^2}{2}}}$$

- Rules of thumb:
 - Values < 0.1 indicate "adequate balance"</p>
 - Values 0.1 0.2 are "not too alarming"
 - Values > 0.2 indicate "serious imbalance"

- Advantages:
 - Matching will reveal lack of overlap in covariate distribution (violations of positivity)
 - Positivity requires $P(X = x | Z = z) > 0 \ \forall x, z$
 - Once matched, can be treated as if from a randomized trial
- Disadvantages:
 - Won't be able to match exactly on the full set of covariates, especially when these are highdimensional
 - Discards data
- Many extensions exist

Propensity scores

- Assume
 - Z is a valid adjustment set
 - Treatment X is binary
- Probability of receiving treatment given Z: $\pi = P(X = 1|Z = z)$
 - π is called the propensity score
- Can show:
 - $X \perp \!\!\!\perp Z \mid \pi$
 - If Z satisfies the adjustment criterion, then π also satisfies the adjustment criterion

Propensity scores

- Reduces an arbitrarily large set of control variables Z to a single number
- If π has much lower dimension than Z, might be better to use
- $\pi = P(X = 1 | Z = z)$ needs to be modeled and estimated
 - Most commonly: logistic regression
 - Modelling P(X = 1 | Z = z) can be a high-dimensional regression problem itself if Z is high-dimensional

Propensity score matching

- Disadvantage of matching on Z
 - If Z is large, many values of Z will have few or no individuals at all \rightarrow no exact matches
- Match on propensity scores π
 - Compares each treated individual with one who was just as likely to have received the treatment but did not
 - On average, the differences between such matched individuals must be due to the treatment
- Typically easier to find matches on π than on Z
 - Could have same value of π but different values of Z

Clicker question – Propensity scores

- Positivity: For every z, treatment assignment is not deterministic
 - $P(X = x | Z = z) > 0 \ \forall x, z$

- Example
 - Single binary confounder Z
 - Suppose propensity score P(X = 1|Z = 1) = 0.1
 - Among people with Z = 1, only 10% receive the treatment
 - Suppose propensity score P(X = 1|Z = 0) = 0.8
 - Among people with Z = 0, 80% receive the treatment

- Idea: rather than match, use all data but downweigh/upweigh observations
 - Weighting by the inverse of the probability of treatment received
 - For treated: weigh by the inverse of the propensity score $\pi = P(X = 1|Z)$
 - For control: weigh by the inverse of $1 \pi = P(X = 0|Z)$
- Known as inverse probability of treatment weighting (IPTW)

Example

Estimator

$$\widehat{E}(Y|do(X=1)) = \frac{1}{n} \sum_{i} Y_i \, 1\{X_i = 1\} w_i$$

where
$$w_i = \frac{1}{\widehat{\pi}_i} = \frac{1}{\widehat{P}(X=1|Z_i)}$$

- Equivalently for $\hat{E}(Y|do(X=0))$
- If propensity score $\pi_i = P(X = 1 | Z_i)$ is very small, weight will be very large
- Small estimation errors in $\hat{\pi}_i$ can lead to large estimation errors in $\hat{E}(Y|do(X=x))$

- More generally, consider
 - Observational distribution $p(x_V)$
 - Interventional distribution $p(x_V|do(X_k \leftarrow \widetilde{N}_k))$ with imperfect intervention
 - Shorthand: $p(x_V | do(X_k \leftarrow \widetilde{N}_k)) = \widetilde{p}(x_V)$
- Factorizations agree except for the term of the intervened variable
 - Assume strictly positive densities

- Observational distribution $p(x_V)$
- Interventional distribution $p(x_V | do(X_k \leftarrow \widetilde{N}_k)) = \widetilde{p}(x_V)$
- Interested in certain aspect $l(x_V)$, then:

$$E\left(l(x_{V})|do(X_{k} \leftarrow \widetilde{N}_{k})\right)$$

$$= \int l(x_{V})\widetilde{p}(x_{V})dx_{V}$$

$$= \int l(x_{V})\frac{\widetilde{p}(x_{V})}{p(x_{V})}p(x_{V})dx_{V}$$

$$= \int l(x_{V})\frac{\widetilde{p}(x_{k}|x_{\operatorname{pa}(k)})}{p(x_{k}|x_{\operatorname{pa}(k)})}p(x_{V})dx_{V}$$

• Given observations $x_V^1, ..., x_V^n$ drawn from observational distribution $p(x_V)$, can construct estimator for expectation under interventional distribution:

$$\widehat{E}\left(l(x_{V})|do(X_{k}\leftarrow\widetilde{N}_{k})\right) = \frac{1}{n}\sum_{i}l(x_{V}^{i})w_{i}$$

where
$$w_i = \frac{\tilde{p}(x_k^i | x_{\text{pa}(k)}^i)}{p(x_k^i | x_{\text{pa}(k)}^i)}$$

- [See Series 4.]
- Related to survey sampling, importance sampling, reinforcement learning
 - See Elements of Causal Inference, Chapter 8.2.

Recap

- Concepts to know:
 - Counterfactuals
 - Potential outcomes
 - Matching
 - Propensity score matching
 - Inverse probability weighting

References and acknowledgments

- Counterfactuals
 - Peters, Janzing and Schölkopf (2017). Elements of Causal Inference. Chapters 3.3., 6.4
- Potential outcomes
 - Peters, Janzing and Schölkopf (2017). Elements of Causal Inference. Chapter 6.9
- Estimation
 - Shalizi (2019). Advanced Data Analysis from an Elementary Point of View. Chapter 23.1.3-23.1.5
 - Peters, Janzing and Schölkopf (2017). Elements of Causal Inference. Chapter 8.2.1
- Optional reading:
 - Richardson and Robins (2013). Single World Intervention Graphs (SWIGs): A Unification of the Counterfactual and Graphical Approaches to Causality.
 - Rosenbaum and Rubin (1983). The Central Role of the Propensity Score in Observational Studies for Causal Effects.