MA101 Mathematics I

Department of Mathematics Indian Institute of Technology Guwahati

Jul - Nov 2013

Slides originally created by: Dr. Bikash Bhattacharjya

Instructors:

Rafikul Alam, Bhaba K. Sarma, Sriparna Bandyopadhyay, Kalpesh Kapoor

ver. 21 Sept 2013, 10:18 (bks)

1/20

Slides 4

PLAN

- Vector Space and Subspaces
- Linear Independence, Basis and Dimension

Fields

A field \mathbb{F} is a set from which we choose our coefficients and scalars. Expected properties are:

- **1** a+b and $a \cdot b$ should be defined in it. i.e., a+b and $a \cdot b$ must be inside the field.
- 2 Both operations must be commutative: a + b = b + a; $a \cdot b = b \cdot a$.
- 3 Both operations must be associative: $(a+b)+c=a+(b+c); (a\cdot b)\cdot c=a\cdot (b\cdot c).$
- There should be identity elements for both operations.
 Identity element for + is called 0 and that for ⋅ is called 1.
- **1** Inverse for a w.r.t. '+': $\forall a \in \mathbb{F}$, $\exists b \in \mathbb{F}$ s.t. a + b = 0.
- **1** Inverse for $a \neq 0$ w.r.t. '·': $\forall a \in \mathbb{F} \setminus \{0\}$, $\exists b \in \mathbb{F}$ s.t. $a \cdot b = 1$.
- '·' distributes itself over '+': $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$.

3 / 20

Example

 \mathbb{R} , \mathbb{C} , \mathbb{Q} , with usual addition and multiplication as + and '·'

What about \mathbb{Z} ? No, since 2 does not have inverse w.r.t. '.'.

Take $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, and define $a + b := (a + b) \mod 5$ and $a \cdot b := (ab) \mod 5$. \mathbb{Z}_5 is a field. Here 3 + 4 = 2, $4 \cdot 2 = 3$, etc.

Remark

Many concepts and results we have discussed (e.g., theory of linear systems, matrices), hold if \mathbb{R} is replaced by any field \mathbb{F} .

Example

Consider $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ over \mathbb{Z}_5 . A is invertible, and $A^{-1} = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$.

(Computed using $A^{-1} = (ad - bc)^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.) The system

 $Ax = [3 \ 4]^T$ has unique solution, $x = A^{-1}[3 \ 4]^T = [0 \ 4]^T$.

Remark

For any field, usually one writes ab instead of $a \cdot b$.

Vector Spaces

A set $\mathbb{V} \neq \emptyset$ is a vector space (VS) over a field \mathbb{F} , if $\mathbf{u} + \mathbf{v}$ is defined in \mathbb{V} for all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$, and $\alpha \cdot \mathbf{u}$ is defined in \mathbb{V} for all $\mathbf{u} \in \mathbb{V}, \alpha \in \mathbb{F}$ such that

- + is commutative & associative.
- Identity element 0 exists in \mathbb{V} for +.
- Each $\mathbf{u} \in \mathbb{V}$ has an inverse w.r.t +.
- $1 \cdot \mathbf{u} = \mathbf{u}$ holds $\forall \mathbf{u} \in \mathbb{V}$ (1 is the multiplicative identity of \mathbb{F})
- $(\alpha\beta) \cdot \mathbf{u} = \alpha \cdot (\beta \cdot \mathbf{u}), (\alpha + \beta) \cdot \mathbf{u} = \alpha \cdot \mathbf{u} + \beta \cdot \mathbf{u}$ hold $\forall \alpha, \beta \in \mathbb{F}, \mathbf{u} \in \mathbb{V}.$
- $\alpha \cdot (\mathbf{u} + \mathbf{v}) = \alpha \cdot \mathbf{u} + \alpha \cdot \mathbf{v}$ holds $\forall \alpha \in \mathbb{F}, \forall \mathbf{u}, \mathbf{v} \in \mathbb{V}$.

The elements of $\mathbb V$ are called vectors and the elements of $\mathbb F$ scalars. We will mostly consider $\mathbb F$ as $\mathbb R$ and $\mathbb C$.

If there is no chance of any confusion, one writes $\alpha \mathbf{u}$ instead of $\alpha \cdot \mathbf{u}$.

5 / 20

Example

- \mathbb{F}^n over \mathbb{F} , for $n \geq 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .
- \mathbb{C}^n over \mathbb{R} , for $n \geq 1$, is a VS w.r.t. usual addition and scalar multiplication.
- \mathbb{R}^n over \mathbb{Q} , for $n \geq 1$, is a VS w.r.t. usual operations of addition and scalar multiplication.
- $\mathcal{M}_{m,n}(\mathbb{F}) := \{A_{m \times n} : a_{ij} \in \mathbb{F}\}$ is a VS over \mathbb{F} , under matrix addition and scalar-matrix multiplication.

Exercise

Are these vector spaces (under the usual operations)?
 All n × n (a) symmetric matrices? (b) skew symmetric matrices? (c) upper-triangular matrices? (d) matrices with a₁₁ = 0? (e) matrices A such that A² = A?

Example

- $\mathbb{R}[x] := \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ is a VS over \mathbb{R} .
- $\mathbb{R}_m[x] := \{ p(x) \in \mathbb{R}[x] \mid p(x) = 0 \text{ or } \deg(p(x)) \le m \}$ is a VS over \mathbb{R} .
- $\mathbb{R}^S := \{ \text{ functions from } S \text{ to } \mathbb{R} \} \text{ is a VS over } \mathbb{R}, \text{ where}$ $(f+g)(s) := f(s) + g(s), \ (\alpha f)(s) = \alpha(f(s)).$
- $\mathcal{C}((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f \text{is continuous}\}\ \text{is a VS over}\ \mathbb{R}.$
- $\{f:(a,b)\to\mathbb{R}\mid f''-3f'+7f=0\}$ is a VS over \mathbb{R} .

A real vector space: a VS \mathbb{V} over \mathbb{R} ;

A complex vector space: a VS \mathbb{V} over \mathbb{C} .

7 / 20

Result

In any vector space \mathbb{V} over \mathbb{F} , the following holds:

- **1** $0u = 0, u \in V$;
- $\mathbf{0}$ $\alpha \mathbf{0} = \mathbf{0}, \ \alpha \in \mathbb{F};$
- **3** $(-1)u = -u, u \in V;$
- **4** If $\alpha \mathbf{u} = \mathbf{0}$ then either $\alpha = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$.

Exercise

• Define addition and scalar mult. on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ as follows: For $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \ \alpha \in \mathbb{R}$

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad \alpha.(x, y) = (\alpha x, 0).$$

Is \mathbb{R}^2 a VS over \mathbb{R} w.r.t. respect these operations?

Is
$$1 \cdot (x, y) = (x, y)$$
?

Is $(-1) \cdot (2,3)$ the additive inverse of (2,3)?

Subspace

Let \mathbb{V} be a VS over \mathbb{F} and $(\emptyset \neq) \mathbb{W} \subseteq \mathbb{V}$. Then \mathbb{W} is a subspace of V (write $\mathbb{W} \leq V$), if

 $\mathbf{u} + \mathbf{v} \in \mathbb{W}, \ \alpha \mathbf{u} \in \mathbb{W} \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F}.$

- $\mathbb{W} \preceq \mathbb{V}$
 - iff $\alpha \mathbf{u} + \beta \mathbf{v} \in \mathbb{W}$, for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha, \beta \in \mathbb{F}$
 - iff $\alpha \mathbf{u} + \mathbf{v} \in \mathbb{W}$, for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}$, $\alpha \in \mathbb{F}$
 - iff \mathbb{W} is a VS over same \mathbb{F} and under same operations.
- If $W \preceq \mathbb{V}$, then $\mathbf{0} \in W$.
- $\{0\} \leq \mathbb{V}$ and $\mathbb{V} \leq \mathbb{V}$, called the trivial subspaces.

Exercise

• Identify some subspaces of $\mathcal{M}_{m\times n}(\mathbb{R})$, $\mathcal{M}_n(\mathbb{C})$ and $\mathbb{R}^{[a,b]}$.

9 / 20

Linear Span

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Clearly,

$$\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k):=\left\{\sum_{i=1}^k\alpha_i\mathbf{v}_i\mid\alpha_i\in\mathbb{F}\right\}\ \preccurlyeq\ \mathbb{V}.$$

• Let $S \subseteq \mathbb{V}$ (may be infinite!) The span of S is defined by

$$\mathsf{span}(S) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

- S is a spanning set for $\mathbb V$ if $\mathrm{span}(S)=\mathbb V.$
- Convention: $span(\emptyset) = \{\mathbf{0}\}$

Example

- $\mathbb{R}_2[x] = \text{span}(1, x, x^2) = \text{span}(1 + x, 1 x, 1 + x + x^2)$.
- $\mathbb{R}[x] = \text{span}(\{1, x, x^2, \ldots\}).$

Linear Dependence

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S, i.e., if

$$lpha_1\mathbf{v}_1+lpha_2\mathbf{v}_2+\ldots+lpha_k\mathbf{v}_k=\mathbf{0}$$
 for some $\mathbf{0}
eq [lpha_1,lpha_2,\ldots,lpha_k]^T \in \mathbb{F}^k$.

Example

- Any finite set containing **0** is linearly dependent.
- In $\mathbb{R}_2[x]$, is $\{x^2, 1-x^2, 1+x^2\}$ linearly dependent? $ax^2 + b(1-x^2) + c(1+x^2) = 0$ $\Rightarrow (b+c) + (a-b+c)x^2 = 0$ $\Rightarrow b+c = 0, a-b+c = 0.$

because, a polynomial is zero iff all of its coefficients are zero.

The last system has nontrivial solutions. Thus, the set is LD.

Linear Independence

We say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \in \mathbb{V}$ to be linearly independent (LI) if it is not linearly dependent, that is, if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \ldots = \alpha_k = \mathbf{0}.$$

An infinite set $S \subseteq \mathbb{V}$ is linearly independent (LI) if every finite subset of S is linearly independent.

Example

- The set $\{1, 1+x, 1+x+x^2\} \subseteq \mathbb{R}_3[x]$ is linearly independent. Use GJE.
- The set $\{1, x, x^2, \ldots\} \subseteq \mathbb{R}[x]$ is linearly independent.
- $\bullet \ \, \mathsf{The set} \,\, S = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \, \left[\begin{array}{cc} 0 & -1 \\ 0 & 0 \end{array} \right], \, \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] \right\}$

is linearly independent in $\mathcal{M}_2(\mathbb{R})$.

Basis

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

Example

- $\mathbb{V} = \mathbb{F}^n$ over \mathbb{F} : the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- $\mathbb{V} = \mathbb{R}_n[x]$ over \mathbb{R} : $\{1, x, x^2, \dots, x^n\}$, called the standard basis.
- $\{1+x, x+x^2, 1+x^2\}$ is a basis of $\mathbb{R}_2[x]$ over \mathbb{R} . (Check)
- $\mathbb{V} = \mathbb{R}[x]$ over \mathbb{R} : $\{1, x, x^2, \ldots\}$.
- $\mathbb{V} = \mathbb{C}$ over \mathbb{R} : $\{1, i\}$.
- $\mathbb{V} = \mathcal{M}_2(\mathbb{F})$ over \mathbb{F} : $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.
- $\mathbb{V} = \mathcal{M}_n(\mathbb{F})$ over \mathbb{F} : $\{E_{ij} : 1 \leq i, j \leq n\}$, where $E_{ij} = [a_{kl}]$, given by $a_{kl} = 1$ if k = i, l = j and 0, otherwise.

13 / 20

Result

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_\}$ be LI in $\mathbb V$ and $\mathbf{v} \notin span(S)$. Then $S \cup \{\mathbf{v}\}$ is LI.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \operatorname{span}(S)$, not true. Thus, $\alpha = 0$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = 0$.

Result

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq \mathbb{V}$ and $\mathbb{U} = span(S)$. Then S contains a basis of \mathbb{U} .

Proof. If $\mathbf{v}_1 = \mathbf{0}$, replace S by $S \setminus \{\mathbf{v}_1\}$. Otherwise, for $1 \le k \le m$, check if $\mathbf{v}_k \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$. Whenever your answer is yes, replace S by $S \setminus \{\mathbf{v}_k\}$ and repeat the process. The process must end in at most m steps.

The set $B \subseteq S$ thus obtained spans \mathbb{U} and is linearly independent.

Result

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq span(S)$ be such that m = |T| > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \cdots + a_{ir}\mathbf{v}_{r}, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
. So $u_i = \mathbf{a}_i^T \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Since m > r, the rows of A are linearly dependent. Suppose $\alpha_1 \mathbf{a}_1^T + \cdots + \alpha_m \mathbf{a}_m^T = \mathbf{0}^T$. Then

$$\sum_{i=1}^{m} \alpha_i \mathbf{u}_i = \sum_{i=1}^{m} \alpha_i \mathbf{a}_i^T \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} = \mathbf{0}^T \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} = \mathbf{0}^T.$$

15 / 20

Result (The Basis Theorem)

Let $\mathbb V$ be a VS having a finite spanning set. Then $\mathbb V$ has a finite basis and any two bases of $\mathbb V$ has same number of elements.

Proof. Follows from the previous two results.

Dimension: If a VS \mathbb{V} over \mathbb{F} has a finite basis with $n \geq 0$ elements, then \mathbb{V} is said to be finite dimensional and of dimension n. We then write $\dim(\mathbb{V}) = n$.

If $\mathbb V$ does not have a finite spanning set, then $\mathbb V$ is said to be infinite dimensional.

Dimension

Example

Finite dimensional:

- The zero space $\{0\}$ has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;
- \mathbb{C} over \mathbb{R} , dimension: 2;
- $\mathcal{M}_n(\mathbb{F})$ over \mathbb{F} , dimension: n^2 .

Infinite dimensional:

- $\mathbb{R}[x]$ over \mathbb{R} ;
- ullet R over \mathbb{Q} ;
- $\mathcal{C}((0,1),\mathbb{R})$ over \mathbb{R} .

17 / 20

Exercise

Prove the following statements:

- $\mathcal{C}^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f'' \text{is continuous}\}$ is a subspace of the VS $\mathcal{C}((a,b),\mathbb{R})$ over \mathbb{R} .
- ullet The VS ${\mathbb R}$ over ${\mathbb R}$ has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \preccurlyeq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \preccurlyeq \mathbb{V}$.
- $\bullet \ \, \mathsf{Let} \,\, \mathbb{U}, \mathbb{W} \preccurlyeq \mathbb{V}. \,\, \mathsf{Then} \,\, \mathbb{U} \cup \mathbb{W} \preccurlyeq \mathbb{V} \,\, \mathsf{iff} \,\, \mathbb{U} \subseteq \mathbb{W} \,\, \mathsf{or} \,\, \mathbb{W} \subseteq \mathbb{U}.$
- Suppose $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Let $\mathbb{U} + \mathbb{W} := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}\}$. Then $\mathbb{U} + \mathbb{W} \preceq \mathbb{V}$. $[\mathbb{U} + \mathbb{W} \text{ is called an internal direct sum if } \mathbb{U} \cap \mathbb{W} = \{\mathbf{0}\}$, and then one writes $\mathbb{U} \oplus \mathbb{W}$.
- Let \mathbb{U} , \mathbb{W} be VS's over \mathbb{F} . Then $\mathbb{U} \times \mathbb{W}$ is a VS over \mathbb{F} : $(u_1, w_1) + (u_2, w_2) := (u_1 + u_2, w_1 + w_2), \alpha(u, w) := (\alpha u, \alpha w).$ [$\mathbb{U} \times \mathbb{V}$ is called the external direct sum of \mathbb{U} and \mathbb{W} , Notation: $\mathbb{U} \oplus \mathbb{W}$.]

Exercise

Prove the following statements:

- Let $\mathbb{V} = \mathcal{M}_2(\mathbb{R}), \ \mathbb{U} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & 0 \end{bmatrix} : x_i \in \mathbb{R} \right\}, \ \mathbb{W} = \left\{ \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} : x_i \in \mathbb{R} \right\}.$ Then $\mathbb{U}, \mathbb{W} \preccurlyeq \mathbb{V}, \ \mathbb{V} = \mathbb{U} + \mathbb{W}, \ \text{but } \mathbb{V} \neq \mathbb{U} \oplus \mathbb{W}.$ [Note: $\mathbb{U} \cap \mathbb{W} = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}.$]
- Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$ and $\mathbb{V}' = \mathbb{U}_1 + \mathbb{U}_2$. Then $\mathbb{V}' = \mathbb{U}_1 \oplus \mathbb{U}_2$ iff every $\mathbf{v} \in \mathbb{V}'$ can be written in unique way as $\mathbf{v} = \mathbf{u} + \mathbf{w}, \ \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}$.
- For a VS \mathbb{V} and $S \subseteq \mathbb{V}$, $\operatorname{span}(S) = \bigcap \{ \mathbb{U} \mid \mathbb{U} \preceq \mathbb{V}, S \subseteq \mathbb{U} \} =$ the smallest subspace of \mathbb{V} containing S.

19 / 20

Exercise

Prove the following statement:

Let \mathbb{V} be a VS and B a basis for \mathbb{V} . Then every nonzero vector \mathbf{v} in \mathbb{V} can be expressed uniquely as a linear combination of (finitely many) vectors in B with nonzero coefficients.

Exercise

Let \mathbb{V} be a vector space with $\dim \mathbb{V} = n$. Prove that

- Any linearly independent set in $\mathbb V$ contains at most n vectors.
- Any spanning set for \mathbb{V} contains at least n vectors.
- Any linearly independent set of exactly n vectors in \mathbb{V} is a basis for \mathbb{V} .
- Any spanning set for \mathbb{V} of exactly n vectors is a basis for \mathbb{V} .
- Any linearly independent set in V can be extended to a basis for V.
- Any spanning set for \mathbb{V} can be reduced to a basis for \mathbb{V} .