

Lesson 5: Rules for Derivatives

Introduction

METIS

Lecture Overview:

Goals of the lecture:

1. Understand some of the rules for derivatives

Rules for Derivatives

METIS

Rules for Derivatives

Definition:

Addition:
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

Multiplication:
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Composition:
$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

Example for Addition-Subtraction

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

$$\frac{d}{dx}h(x) = \frac{d}{dx}(\sin(x) + x^2)$$

Example for Addition-Subtraction

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

$$\frac{d}{dx}h(x) = \frac{d}{dx}(\sin(x) + x^2)$$

$$= \frac{d}{dx}(\sin(x)) + \frac{d}{dx}(x^2)$$

Example for Addition-Subtraction

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

$$\frac{d}{dx}h(x) = \frac{d}{dx}(\sin(x) + x^2)$$

$$= \frac{d}{dx}(\sin(x)) + \frac{d}{dx}(x^2) = \cos(x) + 2x$$

Example for Products

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\frac{d}{dx}h(x) = \frac{d}{dx}(x \cdot cos(x))$$

Example for Products

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\frac{d}{dx}h(x) = \frac{d}{dx}(x \cdot \cos(x)) = \frac{d}{dx}(x) \cdot \cos(x) + x \cdot \frac{d}{dx}(\cos(x))$$

Example for Products

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\frac{d}{dx}h(x) = \frac{d}{dx}(x \cdot \cos(x)) = \frac{d}{dx}(x) \cdot \cos(x) + x \cdot \frac{d}{dx}(\cos(x))$$

$$= 1 \cdot \cos(x) - x \cdot \sin(x)$$

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

$$\frac{d}{dx}f(g(x)) = \frac{d}{dx}(\sin(x^3 - x^2))$$

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

$$\frac{d}{dx}f(g(x)) = \frac{d}{dx}(\sin(x^3 - x^2)) = \frac{d}{ds}(\sin(g(x)))\frac{d}{dx}(x^3 - x^2)$$

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

$$\frac{d}{dx}f(g(x)) = \frac{d}{dx}(\sin(x^3 - x^2)) = \frac{d}{ds}(\sin(g(x)))\frac{d}{dx}(x^3 - x^2)$$

$$= \cos(x^3 - x^2)(3x^2 - 2x)$$

Problem 1:

Problem 1: Calculate h '(x)

Problem 1:

Problem 1: Calculate h '(x)

f(x): X
$$g(x): \frac{1}{x^{2}-2} (x^{2}-2)^{2}$$

$$f'(x): 1$$

$$g(x): -(x^{2}-2)^{2} 2x : -2x(x^{2}-2)^{2}$$

$$f'(x): f'(x) \cdot g(x) + f(x) \cdot g'(x) : \frac{1}{(x^{2}-2)^{2}} (x^{2}-2)^{2} (x^{2}-2)^{2}$$

$$\frac{1}{x^{2}-2} + x \cdot (-2x(x^{2}-2)^{2}) : \frac{1}{(x^{2}-2)^{2}} (x^{2}-2)^{2} (x^{2}-2)^{2}$$

Problem 2:

Problem 2: Calculate m '(x)

Problem 2:

Problem 2: Calculate m '(x)

$$f(x) = X \cdot \ln(\cos X)$$

$$f(x) = X$$

$$f(x) = X$$

$$f'(x) = 1$$

$$g(h(x)) = \ln(\cos X)$$

$$h'(x) = -\sin X$$

$$g(h(x)) \cdot g'(h(x)) h'(x) = 1$$

$$\frac{1}{\cos X} \cdot (-\sin X) = -\tan X$$

$$\cos X$$

$$m'(x) \cdot f'(x) g(h(x)) + f(x) \cdot g(h(x))' = 1 \cdot \ln(\cos X) + x \cdot (-\tan X)$$

$$\ln(\cos X) - x \cdot \tan X = 1$$

Problem 3:

Problem 3: Calculate m '(x)

$$m(x)$$
: $ln(e^{x}-x)$

Problem 3:

Problem 3: Calculate m '(x)

$$m(x): ln(e^{x}-x)$$

$$f(g(x)) g(x): e^{x}-x$$

$$f(g(x)): f'(g(x)) g'(x): l (e^{x}-1): e^{x}-1$$

$$f(g(x)): f'(g(x)) g'(x): l (e^{x}-1): e^{x}-1$$

$$e^{x}-x$$

QUESTIONS?