

Programación en R para Ciencia de Datos Miguel Jorquera

DBDC-202010 Educación Profesional Escuela de Ingeniería

El uso de apuntes de clases estará reservado para finalidades académicas. La reproducción total o parcial de los mismos por cualquier medio, así como su difusión y distribución a terceras personas no está permitida, salvo con autorización del autor.

Objetivo

- Generar "reglas" que asocien productos.
- Estas reglas deben ser:
 - Frecuentes
 - Razonables.

Definiciones

{Zapatos, cartera} → {Traje de Baño}

Conceptos claves:

- Item
- Itemset
- Antecedente
- Consecuente
- Regla de asociación

Métricas claves:

- Support
- Confidence
- Lift

Definiciones

Reglas basadas en probabilidades.

•
$$Supp(\{a,b\}) = \frac{\# Transacciones \ que \ contienen \ a \ y \ b}{\# Transacciones}$$

•
$$Conf(\{a,b\} \to \{c\}) = \frac{Supp(\{a,b,c\})}{Supp(\{a,b\})} = \hat{P}(\{c\} \mid \{a,b\})$$

Definiciones

¿Qué hace "buena" a una regla? Debe ser común:

$$Supp(\{a,b\}) \ge \theta$$

¿Cómo generar las reglas?

Debe ser razonable:

$$Conf(\{a,b\} \rightarrow \{c\}) \ge minconf$$

Algoritmo apriori

Algoritmo:

- Se buscan los itemset de un item y se filtran aquellos con soporte mayor o igual que θ
- Repetir hasta que no se puedan formar nuevos Itemsets:
 - Crea itemsets candidatos: Para cada par de itemsets ya listados con k elementos, combinarlos si comparten k-1 elementos.
 - Poda: Retener candidato si tiene un soporte de al menos θ para definir la lista con itemset con k+1 elementos.
 - Fin: si la lista de itemsets con k+1 elementos es vacía.

Algoritmo apriori

T ID	Items
1	1,3,4
2	2,3,5
3	1,2,3,
4	2,5

{2,3,5}

ItemSet	Supp				ItemS
{1}	2			_	{1}
{2}	3				{2}
{3}	3			,	{3}
{4}	1				{5}
{5}	3	Ite	emSet	Supp	

ItemSet	Supp	{1,2}	1		{1,2}	
{1,3}	2	{1,3}	2		{1,3}	
{2,3}	2	 {1,5}	1		{1,5}	
{2,5}	3	{2,3}	2		{2,3}	
{3,5}	2	{2,5}	3		{2,5}	
		{3,5}	2		{3,5}	
ItemSet				ItemSet	guZ	

2

Supp

ItemSet

{2,3,5}

Algoritmo apriori

Itemsets

Itemset	Supp		
{1}	2		
{2}	3		
{3}	3		
{5}	3		
{1,3}	2		
{2,3}	3		
{2,5}	3		
{3,5}	2		
{2,3,5}	2		

¿Qué reglas escogemos?

Reglas de asociación

Regla	Confidence	Regla	Confidence
$1 \rightarrow 3$	2/2 = 1	5 → 3	2/3 = 0.66
$2 \rightarrow 3$	3/3 = 1	$\{2,3\} \rightarrow 5$	2/3 = 0.66
$2 \rightarrow 5$	3/3 = 1	$\{3,5\} \rightarrow 2$	2/2 = 1
$3 \rightarrow 5$	2/3 = 0.66	$\{2,5\} \rightarrow 3$	2/3 = 0.66
3 → 1	2/3 = 0.66	$5 \rightarrow \{2,3\}$	2/3 = 0.66
$3 \rightarrow 2$	3/3 = 1	$2 \rightarrow \{3,5\}$	2/3 = 0.66
5 → 2	3/3 = 1	$3 \rightarrow \{2,5\}$	2/3 = 0.66

Algoritmo apriori

¿Qué reglas son preferibles?

• Ordenar por confidence:

$$Conf(a \to b) = \hat{P}(b|a) = \frac{Supp(a \cup b)}{Supp(a)}$$

Ordenar por lift:

$$Lift(a \to b) = \frac{Conf(a \to b)}{Supp(b)} = \frac{\widehat{P}(a \cup b)}{\widehat{P}(a)\widehat{P}(b)}$$

Algoritmo apriori

¿Qué reglas son preferibles?

• Ordenar por confidence:

$$Conf(a \to b) = \hat{P}(b|a) = \frac{Supp(a \cup b)}{Supp(a)}$$

Ordenar por lift:

$$Lift(a \to b) = \frac{Conf(a \to b)}{Supp(b)} = \frac{\widehat{P}(a \cup b)}{\widehat{P}(a)\widehat{P}(b)}$$

Algoritmo apriori

Wikipedia:

"Lift is a measure of the performance of a targeting <u>model</u> (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model. A targeting model is doing a good job if the response within the target is much better than the average for the population as a whole. Lift is simply the ratio of these values:"

$$Lift = \frac{target\ response}{average\ response}$$

Algoritmo apriori

Wikipedia:

Por ejemplo,

En una población la tasa de respuesta es de un 5%, pero cierto modelo (o regla) logra identificar un segment con una tasa de resúesta de un 20%. Entonces dicho segment tiene un lift de 4.0 (20%/5%).

Vamos!

