

PHOTOGRAPH THIS SHEET						
N. Company of the Com	LEVEL	INVENTORY				
	DTIC ACCESSION NUMBER	E-TR-33-CV DOCUMENT IDENTIFICATION				
	l los br	ble rates a real rate its ution in remedied.				
ACCESSION FOR		DISTRIBUTION STATEMENT				
NTIS GRAD DTIC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODIST AV		DATE ACCESSIONED				
	8 2	224				
DATE RECEIVED IN DTIC						
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2						

DTIC FORM 70A

DOCUMENT PROCESSING SHEET

Ertec

The Earth Technology Corporation

MX SITING INVESTIGATION GRAVITY SURVEY - CAVE VALLEY NEVADA

Prepared for:

U. S. Department of the Air Force Ballistic Missile Office (BMO) Norton Air Force Base, California 92409

Prepared by:

Ertec Western, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

14 September 1981

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

27.227.00

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER E-TR-33-CV	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
E-TR-33-CV		
4. TITLE (and Subtitle)	1 5 . 31	5. TYPE OF REPORT & PERIOD COVERED
My Siting Tricest. Sich	17-cg 2010.	Lincol
Cove Volley No		6. PERFORMING ORG. REPORT NUMBER
		E-TR-33-CV 8. CONTRACT OR GRANT NUMBER(s)
7. AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(S)
		FC4704-80-C-CCC6
Ertec		F-C-47-04 - 80-6-6660
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
Ertec Western Inc. Garmerly PC: Box 7765	Fusiro National)	AREA & WORK UNIT NUMBERS
		64312 F
Long Brook Ca 90507		
1. CONTROLLING OFFICE NAME AND ADDRESS U.S. Department of the Air Space and Missile System	-60:00	12. REPORT DATE
Space and Missile System	ったいのつっこうこと	14 SCO SI
1'C (+CO) AFIS (O GOLOG 14. MONITORING AGENCY NAME & ADDRESS(II dillecent	(รลักรอิ	£40
14. MONITORING AGENCY NAME & ADDRESS(II dillerent	from Controlling Office)	15. SECURITY CLASS. (of this report)
j		
1		15a. DECLASSIFICATION DOWNGRADING
1		15a, DECLASSIFICATION, DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Distribution Ur	Minited	ì
<u> </u>		
17. DISTRIBUTION STATEMENT (of the abstract entered in	n Block 20, if different fro	m Report)
a street in	٠, ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	
pistribution 0	Datirrila	
18. SUPPLEMENTARY NOTES		
1		
	·	
19. KEY WORDS (Continue on reverse side if necessary and		
Depth to Rock, Valley Fill, Fo	= Condition	souquer teromacy,
Depth to Rock, Valley Fill, Fo	wlls, Gravity	profile, Graben
	,	
20. ABSTRACT (Continue on reverse side il necessary and	14-44 b. black makes	
Gravity measurements were made in		r the purpose of estimating
the overall shape of the structural		
the location of concealed faults.	The estimates w	ill be useful in modeling the
dynamic response of ground motion i	in the basin and	in evaluating groundwater
resources.		

FOREWORD

Methodology and Characterization studies during Fiscal Years 1977 and 1978 (FY 77 and 78) included gravity surveys in 10 valleys, five in Arizona, two in Nevada, two in New Mexico, and one in California. The gravity data were obtained for the purpose of estimating the gross structure and shape of the basins and the thickness of the valley fill. There was also the possibility of detecting shallow rock in areas between boring locations. Generalized interpretations from these surveys were included in Ertec Western's (formerly Fugro National, Inc.) Characterization reports (FN-TR-26a through e).

During the FY 77 surveys, measurements were made to form an approximate 1-mile grid over the study areas, and contour maps showing interpreted depth to bedrock were made. In FY 79, the decision was made to concentrate on verifying and refining suitable area boundaries. This decision resulted in a reduction in the gravity program. Instead of obtaining gravity data on a grid, the reduced program consisted of obtaining gravity measurements along profiles across the valleys where Verification studies were also performed.

The Defense Mapping Agency (DMA). St. Louis, was requested to provide gravity data from their library to supplement the gravity profiles. For Big Smoky, Hot Creek, and Big Sand Springs valleys, a sufficient density of library data was available to permit construction of interpreted contour maps instead of just two-dimensional cross sections.

In late summer of FY 79, supplementary funds became available to begin data reduction. At that time, inner zone terrain corrections were begun on the library data and the profiles from Big Smoky Valley, Nevada, and Butler and La Posa valleys, Arizona. The profile data from Whirlwind, Hamlin, Snake East, White River, Garden, and Coal valleys, Nevada, became available from the field in early October 1979.

A continuation of gravity interpretations was incorporated into the FY 80 and 81 programs, and the results are being summarized in a series of valley reports. Reports covering Nevada-Utah gravity studies are being numbered "E-TR-33-" followed by the abbreviation for the subject valley. In addition, more detailed reports of the results of FY 77 surveys in Dry Lake and Ralston valleys, Nevada, were prepared. Verification studies were continued in FY 80, and gravity studies were included in the program. DMA continued to obtain the field measurements, and there was a return to the grid pattern. The interpretation of the grid data allows the production of contour maps which are valuable in the deep basin structural analysis needed for computer modeling in the water resources program. The gravity

interpretations will also be useful in Nuclear Hardness and Survivability (NH&S) evaluations.

The basic decisions governing the gravity program are made by BMO following consultation with TRW, Inc., Ertec Western, and the DMA. Conduct of the gravity studies is a joint effort between DMA and Ertec Western. The field work, including planning, logistics, surveying, and meter operation is done by the Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC), headquartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer anomaly (see Section Al.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri, calculates outer zone terrain corrections.

Ertec Western provides DMA with schedules showing the valleys with the highest priorities. Ertec Western also recommended locations for the profiles in the FY 79 studies with the provision that they should follow existing roads or trails. Any required inner zone terrain corrections are calculated by Ertec Western prior to making geologic interpretations.

TABLE OF CONTENTS

		Page
FOREW	ORD	i
1.0	INTRODUCTION	1
	1.1 Objective	1 1 1
2.0	GRAVITY DATA REDUCTION	5
3.0	GEOLOGIC SUMMARY	6
4.0	INTERPRETATION	9
	4.1 Regional-Residual Separation 4.2 Density Selection	9 10 11 12
5.0	CONCLUSIONS	18
REFER	ENCES	19
	APPENDIX	
APPEN	DIX	
A1. A2. A3.	0 Methods of Interpretation	A1-1 A2-1 A3-1
	LIST OF FIGURES	
Figur Numbe		
1 2	Location Map, Cave Valley, Nevada	2 3
3	Gravity Profile and Interpretation Across Northern Cave Valley	16
4	Schematic Geological Cross-Section, Cave Valley, Nevada	17

TABLE OF CONTENTS (cont.)

LIST OF DRAWINGS

Page

Drawing Number

- Complete Bouguer Anomaly Contours, Cave Valley, Nevada
- Depth to Rock Interpreted from Gravity Data

Drawings in Pocket at End of Report

1.0 INTRODUCTION

1.1 OBJECTIVE

Gravity measurements were made in Cave Valley for the purpose of estimating the overall shape of the structural basin, the thickness of alluvial fill, and the location of concealed faults. The estimates will be useful in modeling the dynamic response of ground motion in the basin and in evaluating groundwater resources.

1.2 LOCATION

Cave Valley is located in east-central Nevada (Figure 1). It is approximately half way between Caliente and Ely, Ely being about 55 miles (88 km) north of Cave Valley. It is bounded on the east by the Schell Creek Range, on the west by the Egan Range, and opens to the south into White River Valley (Figure 2). Cave Valley is separated from Steptoe Valley to the north by convergence of the Egan and Schell Creek ranges.

The area covered by this report lies between 38°15' and 38°4°' North latitudes and 114°40' and 115°00' West longitudes.

1.3 SCOPE OF WORK

Five primary work elements were completed during this study. They are:

- 1. Computation and merging of terrain corrections;
- 2. Synthesis of regional and valley-specific geologic data;
- 3. Evaluation of the regional field and residual separation;
- 4. Inverse modeling to estimate depth to bedrock; and
- 5. Interpretation of structural relationships.

≡ Ertec

The gravitational field within Cave Valley was defined by measurements from 374 stations. The principle facts for these stations are listed in Appendix A2.0, and their distribution is shown in Drawing 1.0. The Defense Mapping Agency Aerospace Center (DMAAC) supplied 143 gravity stations from its library, and 231 new gravity measurements were made by the Defense Mapping Agency Hydrographic Topographic Center/Geodetic Survey Squadron (DMAHTC/GSS).

Cave Valley and Muleshoe Valley were studied together, with the results presented in separate reports. The rectangular region containing both valleys is the area between North latitudes 38°05' and 38°45' and West longitudes 114°35' and 115°00'. There are 522 gravity stations in the region. All were used to establish a common regional gravity trend for the two valleys.

Following residual separation, the geologic modeling of the two valleys was done independently.

2.0 GRAVITY DATA REDUCTION

DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer Anomalies (SBA) as described in Appendix A1.0. Up to three levels of terrain corrections were applied to the new stations to convert the SBA to the Complete Bouguer Anomaly (CBA). Only the first two levels of terrain corrections described below were applied to the library stations.

First, the DMAAC, St. Louis, Missouri, used its library of digitized terrain data and a computer program to calculate corrections out to 104 miles (167 km) from each station. When the program could not calculate the terrain effects near a station, Ertec Western used a ring template to estimate the effect of terrain within approximately 3000 feet (914 m) of the station. The third level of terrain corrections was applied to those stations where 10 feet (3 m) or more of relief was observed within 130 feet (40 m). In these cases, the elevation differences were measured in the field at a distance of 130 feet (40 m) along six directions from the stations. These data were used by Ertec Western to calculate the effect of the very near relief.

3.0 GEOLOGIC SUMMARY

Cave Valley is a north-northeasterly trending valley in the eastern portion of the Great Basin section of the Basin and Range physiographic province (Fenneman, 1931). It is bounded on the east by the Schell Creek Range and on the west by the Egan Range. On its southern boundary, Cave Valley is separated from White River Valley by rounded hills having low relief. On its northern boundary, it is separated from Steptoe Valley by a narrow gap between the Schell Creek and Egan ranges.

The Schell Creek Range is composed of faulted and deformed rocks which are uplifted relative to the surrounding area. In the southern part of the range surface exposures are Paleozoic in age. These rocks include as much as 15,000 feet (4572 m) of shale, sandstone, limestone, and dolomite that range in age from Upper Cambrian to Permian. Based on stratigraphic relationships in the northern part of the range, as much as 6000 feet (1829 m) of Lower Cambrian sediments and an unknown thickness of Precambrian sediments underlie the upper Paleozoic section. These older units are composed primarily of shale, sandstone, and quartzite. In the extreme southern part of the range, early Tertiary plutonic rocks have intruded the Paleozoic rocks.

In the central part of the Schell Creek Range, an unknown thickness of middle Tertiary volcanic rocks, andesite, and welded tuff covers most of the Paleozoic section except on the western flank of the range (Ekren and others, 1977; and Tschanz and

Pampeyan, 1970). Further north, the individual blocks making up the range have been uplifted to expose lower Cambrian rocks.

Like the Schell Creek Range, the Egan Range is composed of faulted and deformed blocks of rock. The surface rocks are generally Paleozoic carbonate, shale, and sandstone with the oldest rocks exposed anywhere in the range being upper Cambrian in age. There are about 26,000 feet (7925 m) of Paleozoic rock younger than lower Cambrian in the mountain range. About 80 percent of this is carbonate with the remaining being shale and sandstone (Kellogg, 1964). Volcanic rocks, mainly tuff, and sediments of middle Tertiary age cover the Paleozoic units in only a few areas (Kellogg, 1964).

The series of low hills that separate Cave Valley from White River Valley are composed largely of early to middle Tertiary volcanic rocks, but there are occasional outcrops of Paleozoic rock. Within Cave Valley itself, the surface is principally Quaternary age sediments although several blocks of Cambrian age rocks are exposed in the northern part of the valley. The sediments are principally nonindurated to partially indurated gravel, sand, silt, and conglomerate (Synder, 1964; and Mifflin and Wheat, 1979).

The present topographic relief of Cave Valley and the surrounding area is largely the result of late Cenozoic block faulting (Stewart, 1980). However, the effect of earlier tectonics, principally the Mesozoic overthrusting and early Cenozoic Laramide orogeny, is manifest in the absence of Mesozoic age

sediments and in the deformation of the Paleozoic and older sedimentary rocks.

4.0 INTERPRETATION

The basis of interpretation in this report is the Complete Bouguer Anomaly (CBA). Complete Bouguer anomaly contours and the gravity station locations are shown in Drawing 1.

The interpretation of irregularly spaced data is both difficult and inefficient. In order to simplify the interpretation, the CBA data were reduced to a set of values on the nodes of a regularly spaced grid. The value at each node was computed using a minimum curvature gridding program (Briggs, 1974; and Swain, 1976). Minimum curvature gridding is an iterative process, the purpose of which is to find the smoothest surface that fits the irregularly spaced data. This smooth surface is then used to interpolate between the existing data points. A 0.62-mile (1-km) grid spacing, which is slightly more dense than the average data spacing, was used throughout this analysis.

4.1 REGIONAL RESIDUAL SEPARATION

A fundamental difficulty in gravity interpretation is that the gravity expression of short wavelength, shallow, structural features of interest is overlapped and obscured by long wavelength features occurring at all depths. The purpose of a regional-residual separation is to remove the effect of the longer wavelength structures so that the features of interest may be correctly interpreted.

In order to estimate the form and magnitude of the long wavelength contribution (regional), the CBA was continued upward using a Fast Fourier Transform (FFT) and a frequency domain filter (Gunn, 1975). The data were continued upward to a height at which there could be seen no correlation between the upward continued CBA and the surface structure. This was at an altitude of 60,000 feet (18,288 m). The regional was then subtracted from the CBA and the resulting residual anomaly was further adjusted by a constant -8.0 mgal to make the zero residual contour approximately fit outcrops of Paleozoic carbonate rocks.

4.2 DENSITY SELECTION

The correct interpretation of the residual anomaly requires that one select density values that are truly representative of the subsurface rock. In this analysis, unfortunately, only very generalized density information was available. Three borings were drilled approximately 100 feet (30 m) into the alluvium of Muleshoe Valley during Verification studies (Ertec, 1981b). The average density measured at the bottom of these borings was slightly less than 2.0 g/cm 3 . To account for compaction with depth (Woollard, 1962), a density of 2.3 g/cm 3 was assigned to the alluvium.

Basement rocks underlying the alluvium are assumed to be similar to rocks outcropping in the nearby mountains. These consist of Tertiary volcanic and plutonic rocks and Paleozoic carbonate and siliceous sedimentary rocks. Published values for the density

of the Paleozoic rocks typically range from 2.6 to 2.9 g/cm³. Carbonate rocks in the Paleozoic section are the most dense with some in Nevada and Utah having values near 2.8 g/cm³. The siliceous clastic sediments generally have densities in the range 2.6 to 2.7 g/cm³. Densities representative of the Tertiary volcanic rocks range from 2.0 to 2.5 g/cm³ for tuffaceous material, depending on the degree of welding, compaction, and alteration; 2.3 to 2.6 g/cm³ for the andesite and rhyolite flows; and 2.6 to 2.7 g/cm³ for the plutonic rocks.

4.3 MODELING AND SOURCES OF ERROR

Modeling was accomplished using three computer programs. Two of these programs compute the gravitational effect of two-and three-dimensional bodies (Talwani and others, 1959; and Plouff, 1975). The third program calculates an inverse three-dimensional solution (Cordell, 1970). The two forward modeling programs were used to augment the inverse modeling program because the inverse program is capable of handling only a single density contrast; whereas, there are several density contrasts that contribute to the form of the residual anomaly.

A contour map showing the thickness of alluvial fill, based on the results of the inversion program, is shown in Drawing 2. The density contrast between alluvium and bedrock used in this analysis was $0.5~\rm g/cm^3$. There is very little independent information with which to compare this interpretation. One well, 7N-63E-14ab, was drilled into limestone at a depth of 370 feet (113 m) (Ertec, 1981c). Its location is noted in Drawing 2.

There are three principal sources of error in this analysis. First, because there is no detailed study of the actual densities of rocks in the area, we have had to rely on estimates. Second, the inverse modeling program, upon which most of the thickness of alluvium interpretation is based, is capable of handling only a single density contrast; whereas, there are probably several density contrasts which contribute to the residual anomaly. Third, the distribution of gravity data is not uniform, leaving large areas in which all of the interpretation is based on interpreted or extrapolated trends of the data.

4.4 DISCUSSION OF RESULTS

For purposes of discussion, Cave Valley is divided into a southern part and a northern part. The division between these two areas is a line between Shingle Pass in the Egan Range and Patterson Pass in the Schell Creek Range (Figure 2). The reason for the division was two-fold. First, the gravity data in the southern area are relatively uniformly distributed, while the northern area has several large gaps in the data. Second, both the CBA (Drawing 1) and the residual anomaly contours in the southern area tend to follow the shape of the mountain ranges and valley, while this simple pattern disappears completely in the northern area.

The interpreted structure of the southern part of Cave Valley is shown in the thickness of alluvium contour map (Drawing 2). This interpretation is based on geological information from published reports, analysis of aerial photographs (Ertec, 1981a),

E Ertec

and geological field reconnaissance as well as gravity data. For example, wherever sufficient gravity data existed, the placement of faults could be guided by the maximum horizontal gravity gradients (zero second vertical derivative). However, in areas lacking detailed gravity data, faults were based entirely on geologic data. Major faults shown in Drawing 2 may actually be systems of smaller faults. This is particularly true near the ends of major faults which typically dissipate through systems of smaller faults into a nearly continuous deformation.

Drawing 2 shows that the southern part of Cave Valley has a relatively simple structure. It is basically an alluvial-filled graben that retains a nearly constant width from north to south. It is slightly deeper in the extreme southern part where as much as 7000 feet (2134 m) of alluvium may overly the bedrock. The gravity data and geology both indicate that the graben is tilted down slightly to the east. The depth contours in Drawing 2 rise much more slowly on the west side of the valley than they do on the east side of the valley.

The interpretation of the Bouguer anomaly in northern Cave Valley is somewhat complicated. The fact that the gravity contours no longer follow the mountain ranges is a reflection of structure in the basement rocks and also of very shallow alluvium through most of this part of the valley. Outcrops of Cambrian age basement through the alluvium in places further substantiates that the alluvium is thin. Furthermore, the appearance of lower Cambrian sedimentary rocks at the surface in the Schell

EErtec

Creek Range shows that the block making up the mountain range, and perhaps part of the block beneath the alluvium as well, does not contain the younger Paleozoic carbonate rocks found elsewhere in the region (Shilling and Garside, 1968). The loss of this high-density section of rocks causes the east-west trend of the gravity contours in northern Cave Valley.

Drawing 2 shows three inferred faults in northern Cave Valley. The inferred fault on the west side of the valley was placed on the basis of the juxtaposition of Cambrian and Permian sediments. The inferred fault on the east side of the valley was placed on the basis of aerial photos and field mapping (Howard, 1978). The only indication of either of these faults on the gravity contour map is the small gravity low enclosed by the -215 mgal contour on the east side of the valley (Drawing 1). The bend of the CBA contours in the central part of the valley correlate well with Kellogg's (1964) placement of the Shingle Pass fault.

On the west side of the valley, the absence of any expression of faulting in the gravity data is probably caused by a lack of data. The lack of clear expression of faulting on the east side of the valley is caused more than anything else by a lack of density contrast across the fault which is another indication that Paleozoic carbonates are absent beneath much of the alluvium.

The small gravity low on the east side of northern Cave Valley was integrated to estimate the mass deficiency that causes it

(Grant and West, 1965). The integration resulted in a mass deficiency of 2.27 x 10^9 tons (2.5 x 10^{12} kg). If one assumes that this deficiency is caused by alluvium having a density contrast of 0.4 g/cm³ with the Cambrian bedrock, one may conclude that the average depth of alluvium on the east side of the valley near the mountain front is about 1017 feet (310 m).

Figure 3 shows a gravity profile and interpreted cross section that crosses the northern part of the valley along section A-A' (Drawing 1). The calculations were made from a three-dimensional model of the subsurface. Figure 4 shows a more schematic cross-section across southern Cave Valley (profile B-B' in Drawing 1).

Because most of the gravity data in northern Cave Valley lie in its southern part, we have not attempted any interpretations of the extreme northern part of the valley. However, the gravity data that are available near the boundary between Cave Valley and Steptoe Valley indicate that there is probably more alluvial fill in the extreme northern part of Cave Valley than in the southern part of northern Cave Valley.

GENERALIZED GEOLOGIC CROSS-SECTION B-B' SOUTHERN CAVE VALLEY, NEVADA

FIGURE 4

14 SEPT 81

5.0 CONCLUSIONS

Gravity data indicate that Cave Valley may be divided into two structurally distinct regions. That part of Cave Valley lying south of a line connecting Shingle Pass in the Egan Range with Patterson Pass in the Schell Creek Range displays a structure that is common among Basin and Range province valleys. This southern part of Cave Valley is an elongated north to north-northeast trending graben that is filled with approximately 7000 feet (2134 m) of alluvium. There is some indication in both the gravity and geology that the block constituting the graben is tilted slightly to the east.

In contrast, the northern part of Cave Valley is a rather complex structure of faulted blocks of bedrock that are relatively shallow. There is an average of 1000 feet (310 m) of alluvium on the eastern side of northern Cave Valley and about 650 feet (200 m) of alluvium on the western side of northern Cave Valley. Bouguer anomaly values in extreme northern Cave Valley indicate that the alluvium may be somewhat thicker in this area. However, the Bouguer anomaly in this area could also reflect Paleozoic carbonate rocks in the nearby mountains. The section of Paleozoic carbonate rocks is missing in the Schell Creek Range on the east side of northern Cave Valley. The carbonates probably are missing also beneath the alluvium throughout parts of northern Cave Valley.

REFERENCES

- Briggs, I. C., 1974, Machine contouring using minimum curvature, Geophysics, v. 39, no. 1, p. 39-48.
- Cordell, Lindreth, 1970, Iterative solution of three-dimensional gravity anomaly data, Geological Survey Computer Control No. 10.
- Eakin, T. E., 1963, Ground-water appraisal of Pahranagat and Pahroc Valleys, U.S. Geological Survey, Ground Water Resources-Reconnaissance Series, Report 21, p. 35.
- Ekren, E. B., Orkild, P. P., Sargent, K. A., and Dixon, C. L., 1977, Geologic map of Tertiary rocks, Lincoln County, Nevada, U.S. Geological Survey Map I-1041.
- Ertec Western, Inc., 1981a, MX siting investigation, geotechnical evaluation, fault study summary of Cave Valley, Nevada, unpublished.
- , 1981b, Verification study Muleshoe Valley, Nevada v. II, geotechnical data.
- , 1981c, Cave Valley water resources study report, unpublished.
- Fenneman, W. W., 1931, Physiography of the Western United States, New York: Mc Graw-Hill, Inc., p. 534.
- Goguel, Jean, 1954, A universal table for the prediction of the lunar-solar correction in gravimetry (tidal gravity corrections); Geophysical Prospecting, v. II, Supplement, March.
- Grant, F. S., and West, G. F., 1965, Interpretation theory in applied geophysics, New York: McGraw-Hill Book Co.
- Gunn, P. J., 1975, Linear transformations of gravity and magnetic fields, Geophysical Prospecting v. 23, p. 300-312.
- Howard, E. L., 1978, Geologic map of the eastern Great Basin, Nevada and Utah, Denver, Colorado, Terra Scan Group Ltd., scale 1:250,000.
- Kellogg, H. E., 1964, Cenozoic stratigraphy, structure, Egan Range, Nevada, Geological Society of American Bulletin, v. 75, 19, p. 949-968.
- Mifflin, M. D., and Wheat, M. M., 1979, Pluvial lakes and estimated Pluvial climates of Nevada, Nevada Bureau of Mines and Geological Bulletin, 94, p. 57.

- Plouff, D., 1975, Derivation of formulas and Fortran programs to compute gravity anomalies of prisms, U. S. Geological Report No. USGS-GD-75-015.
- Schilling, J. H., and Garside, L. J., 1968, Oil and gas developments in Nevada 1953-1967, Nevada Bureau of Mines and Geology, Report 18.
- Stewart, J. H., 1980, Geology of Nevada, Nevada Bureau of Mines and Geology Special Publication 4, p. 136.
- Swain, C. J., 1976, A FORTRAN IV program for interpolating irregularly spaced data using the difference equations for minimum curvature, Computers and Geoscience, v. 1, p. 231-240.
- Synder, C. T., 1964, Pleistocene lakes in the Great Basin: U. S. Geological Survey Inventory Map I-416.
- Talwani, J., Worzel, J. L., and Landisman, M., 1959, Rapid computations for two-dimension bodies with application to the Mendocino Submarine Fracture Zone, J. Geophysical research, v. 64, p 49-59.
- Tschanz, C. M., and Pampeyan, E. H., 1970, Geology and mineral deposits of Lincoln County, Nevada, Nevada Bureau of Mines Bulletin 73, p. 188.
- Woollard, G. P., 1962, The relation of gravity anomalies to surface elevation, crustal structure, and geology, University of Wisconsin, Department of Geology, Geophysical and Polar Research Center, Madison, Wisconsin, Report 62-9.

APPENDIX A1.0

GENERAL PRINCIPLES OF GRAVITY REDUCTION

A1.0 GENERAL PRINCIPLES OF GRAVITY REDUCTION

A1.1 GENERAL

A gravity survey involves measurement of differences in the gravitational field between various points on the earth's surface. The gravitational field values being measured are the same as those influencing all objects on the surface of the earth. They are generally associated with the force which causes a 1 gm mass to be accelerated at 980 cm/sec². This force is normally referred to as a 1-g force.

Even though in many applications the gravitational field at the earth's surface is assumed to be constant, small but distinguishable differences in gravity occur from point to point. In a gravity survey, the variations are measured in terms of milligals. A milligal is equal to 0.001 cm/sec² or 0.00000102 g. The differences in gravity are caused by geometrical effects, such as differences in elevation and latitude, and by lateral variations in density within the earth. The lateral density variations are a result of changes in geologic conditions. For measurements at the surface of the earth, the largest factor influencing the pull of gravity is the density of all materials between the center of the earth and the point of measurement.

To detect changes produced by differing geological conditions, it is necessary to detect differences in the gravitational field as small as a few milligals. To recognize changes due to

≡ Ertec

geological conditions, the measurements are "corrected" to account for changes due to differences in elevation and latitude.

Given this background, the basic concept of the gravitational exploration method, the anomaly, can be introduced. If, instead of being an oblate spheroid characterized by complex density variations, the earth were made up of concentric, homogeneous shells, the gravitational field would be the same at all points on the surface of the earth. The complexities in the earth's shape and material distribution are the reason that the pull of gravity is not the same from place to place. A difference in gravity between two points which is not caused by the effects of known geometrical differences, such as in elevation, latitude, and surrounding terrain, is referred to as an "anomaly."

An anomaly reflects lateral differences in material densities. The gravitational attraction is smaller at a place underlain by relatively low density material than it is at a place underlain by a relatively high density material. The term "negative gravity anomaly" describes a situation in which the pull of gravity within a prescribed area is small compared to the area surrounding it. Low-density alluvial deposits in basins such as those in the Nevada-Utah region produce negative gravity anomalies in relation to the gravity values in the surrounding mountains which are formed by more dense rocks.

The objective of gravity exploration is to deduce the variations in geologic conditions that produce the gravity anomalies identified during a gravity survey.

≡ Ertec

A1.2 INSTRUMENTS

The sensing element of a LaCoste and Romberg gravimeter is a mass suspended by a zero-length spring. Deflections of the mass from a null position are proportional to changes in gravitational attraction. These instruments are sealed and compensated for atmospheric pressure changes. They are maintained at a constant temperature by an internal heater element and thermostat. The absolute value of gravity is not measured directly by a gravimeter. It measures relative values of gravity between one point and another. Gravitational differences as small as 0.01 milligal can be measured.

A1.3 FIELD PROCEDURES

The gravimeter readings were calibrated in terms of absolute gravity by taking readings twice daily at nearby USGS gravity base stations. Gravimeter readings fluctuate because of small time-related deviations due to the effect of earth tides and instrument drift. Field readings were corrected to account for these deviations. The magnitude of the tidal correction was calculated using an equation suggested by Goguel (1954):

 $C = P + N\cos \phi (\cos \phi + \sin \phi) + S\cos \phi (\cos \phi - \sin \phi)$ where C is the tidal correction factor, P, N, and S are time-related variables, and ϕ is the latitude of the observation point. Tables giving the values of P, N, and S are published annually by the European Association of Exploration Geophysicists.

The meter drift correction was based on readings taken at a designated base station at the start and end of each day. Any difference between these two readings after they were corrected for tidal effects was considered to have been the result of instrumental drift. It was assumed that this drift occurred at a uniform rate between the two readings. Corrections for drift were typically only a few hundredths of a milligal. Readings corrected for tidal effects and instrumental drift represented the observed gravity at each station.

A1.4 DATA REDUCTION

Several corrections or reductions are made to the observed gravity to isolate the portion of the gravitational pull which is due to the crustal and near-surface materials. The gravity remaining after these reductions is called the "Bouguer Anomaly." Bouguer Anomaly values are the basis for geologic interpretation. To obtain the Bouguer Anomaly, the observed gravity is adjusted to the value it would have had if it had been measured at the geoid, a theoretically defined surface which approximates the surface of mean sea level. The difference between the "adjusted" observed gravity and the gravity at the geoid calculated for a theoretically homogeneous earth is the Bouguer Anomaly.

Four separate reductions, to account for four geometrical effects, are made to the observed gravity at each station to arrive at its Bouguer Anomaly value.

≡ Ertec

a. Free-Air Effect: Gravitational attraction varies inversely as the square of the distance from the center of the earth. Thus, corrections must be applied for elevation. Observed gravity levels are corrected for elevation using the normal vertical gradient of:

FA = -0.09406 mg/ft (-0.3086 milligals/meter) where FA is the free-air effect (the rate of change of gravity with distance from the center of the earth). The free-air correction is positive in sign since the correction is opposite the effect.

b. Bouquer Effect: Like the free-air effect, the Bouquer effect is a function of the elevation of the station, but it considers the influence of a slab of earth materials between the observation point on the surface of the earth and the corresponding point on the geoid (sea level). Normal practice, which is to assume that the density of the slab is 2.67 grams per cubic centimeter, was followed in these studies. The Bouquer correction (B_c), which is opposite in sign to the free-air correction, was defined according to the following formula.

 $B_c = 0.01276 (2.67) h_f (milligals per foot)$

 $B_c = 0.04185$ (2.67) h_m (milligals per meter)

where $h_{\mbox{\it f}}$ is the height above sea level in feet and $h_{\mbox{\it m}}$ is the height in meters.

c. <u>Latitude Effect</u>: Points at different latitudes will have different values of gravity for two reasons. The earth (and the geoid) is spheroidal, or flattened at the poles. Since

points at higher latitudes are closer to the center of the earth than points near the equator, gravity at the higher latitudes is larger. As the earth spins, the centrifugal acceleration causes a slight decrease in the measured value of gravity. At the higher latitudes where the earth's circles of latitude are smaller, the centrifugal acceleration diminishes. The gravity formula for the Geodetic Reference System, 1967, gives the theoretical value of gravity at the geoid as a function of latitude. It is:

g = 978.0381 (1 + 0.0053204 $\sin^2 \phi$ - 0.0000058 $\sin^2 2\phi$) gals where g is the theoretical acceleration of gravity and ϕ is the latitude in degrees. The positive term accounts for the spheroidal shape of the earth. The negative term adjusts for the centrifugal acceleration.

The previous two corrections (free air and Bouguer) adjust the observed gravity to the value it would have at the geoid (sea level). The theoretical value at the geoid for the latitude of the station is subtracted from the adjusted observed gravity and the remainder is called the Simple Bouguer Anomaly (SBA). Most of this represents the effect of material beneath the station, but part of it may be due to irregularities in terrain (upper part of the Bouguer slab) around the station.

d. <u>Terrain Effect</u>: Topographic relief around the station has a negative effect on the gravitational force at the station. A nearby hill has upward gravitational pull and a nearby valley contributes less downward attraction than a nearby material

≡ Ertec

would have. Therefore, the corrections are always positive. Corrections are made to the SBA when the terrain effects are 0.1 milligal or larger. Terrain corrected Bouguer values are called the Complete Bouguer Anomaly (CBA). When the CBA is obtained, the reduction of gravity at individual measurement points (stations) is complete.

APPENDIX A2.0
METHODS OF INTERPRETATION

A2.0 METHODS OF INTERPRETATION

A2.1 REGIONAL - RESIDUAL SEPARATION

To interpret the gravity data, the portion of the CBA that might be caused by the light-weight, basin-fill material must be separated from that caused by the heavier bedrock material which forms the surrounding mountains and presumably the basin floor. The first step is to estimate a regional field. This is an estimation of the values the CBA would have if the light-weight sediments (the anomaly) were not there. Since the valley-fill sediments are absent at the stations read in the mountains, one approach is to use the CBA values at bedrock stations as the basis for constructing a second order polynomial surface to represent a regional field over the valley.

Where there are insufficient bedrock stations to define a satisfactory regional trend, another approach is to estimate the regional by the process of upward continuation of the CBA field. A principal result of potential field theory is that a field quantity satisfying Laplace's equation in a three-dimensional volume of space is specified completely by the value it has on the surface bounding that volume (Grant and West, 1965). Since the gravitational field satisfies Laplace's equation, its value anywhere above the surface of the earth can be found using only the value of gravity on the surface of the earth, regardless of the mass distribution that produces the value of gravity in the first place. On this basis, the Bouguer anomaly is readily continued to level surfaces above the ground.

≡ Ertec

An important property of upward continuation is that the resultant field (which can be represented by a contour map), changes more with respect to shallow sources than it does with respect to deeper sources. The anomalous parts of the field ascribed to shallow density distribution tend to vanish as the continuation is carried upward; whereas the field produced by deeper sources changes only slightly, so that upward continuation produces regional-type fields.

The difference between the CBA and the regional field is called the residual field or residual anomaly. The residual field is the interpreter's estimation of the gravitational effect of the geologic anomaly.

A2.2 INTERPRETATION OF THE RESIDUAL ANOMALY

If the regional is well chosen, the magnitude of the residual anomaly is a function of the thickness of the anomalous (fill) material and the density contrast. The density contrast is the difference in density between the alluvial and bedrock material. If this contrast were known exactly, an accurate calculation of the thickness could be made. Generally, the densities are not well known and vary within the study area. Therefore, it is necessary to use densities typical of materials similar to those in the study area.

If the selected average density contrast is smaller than the actual density contrast, the computed depth to bedrock will be greater than the actual depth and vice-versa. The computed depth is inversely proportional to the density contrast. A ten

≡ Ertec

percent error in density contrast produces a ten percent error in computed depth.

Once the density contrast between the alluvium and bedrock is established, there are several methods available for determining the form of the alluvium-bedrock interface. One way is to use an iterative computer program which will yield some simple model of the interface approximately explaining the residual gravity anomaly (Cordell, 1970). An alternative approach is to assume the form of the interface a priori and, calculate what effect this would have on the residual gravity anomaly. By continually adjusting the model, one may obtain a reasonable estimate of the interface. There are computer programs that will calculate the gravitational effect of two-dimensional (Talwani et al, 1959) and three-dimensional (Plouff, 1975) bodies.

APPENDIX A3.0

CAVE VALLEY, UTAH

GRAVITY DATA

STATION					ELEV +CDDE		-COR. N/OUT			EAST UTM	OBSV GRAV		FAA	CBA +1000
									٠ _					
0132	38 50	34 1	11451	125	1240T	٥	1334	21711	4	.883 9 1	50565	199947	-1180	81483
					5889T	_						199970		80388
					4629T	ō						199986		80512
0130	38 53	37 1	11-51	685	1739T	0						199995		
1046	38 54	53 1	1453	355	3369T							200033		81216
1047	38 54	53 1	1454	375	4659T	9	934	21809	6	8361	148252	200033	-360	81092
0282	38 56	54 1	1442	745	2881T	0	1364	21851	. 7	0061	149557	200035	-730	81366
0275	38 59	73 1	1440	255	6280T	O	1454	21914	7	04241	146313	200077	-820	80125
0129	38 60	01 1	1451	515	1699T	O	1024	21889	6	8778	150053	200089	-1400	81072
0278	38 60)2 1	1441	755	4062T	٥	1284	21925	7	02041	147913	200090	-1320	80368
					2431T	J	1244	21890	6	8646	150008	200092	-760	81484
					0869T	0	1064	21926	6	8948	150239	200115	-2020	80736
					1401T	0	964	21926	0	8884	149884	200117	-1880	80484
					4511T)	1374	21963	3 7	0266	147426	200120	-1410	80137
					2500T	0	1214	21952	2 6	9741	149611	200121	-1120	81091
					5600T	0	1354	21975	7	0368:	146706	200127	-1120	80055
					0951T	0	924	21970	6	9155	149925	200146	-2290	80422
					1161T	0	964	22007	6	93131	149692	200172	-2350	80296
					1801T	0	1014	22042	2 6	94701	149198	200197	-2270	80161
0127	38 67	76 1	1451	345	1601T	0	1064	55058	6	8799	149767	200199	-1890	80616
					1129T	0						200212		
					5000T	J	1224	52080	7	01101	L47246	200215	-1230	80132
					4301T	0						200221		80840
					2530T	0						E00555	-1500	80687
					2999T	0						200234		81055
					3930T	0						200241	_	80803
					5230T	0						200248		80469
					3930T	0						200248		80837
					3770T	0						200248		
					6220T	0						200250		30151
					5620T	J						200256		80960
					1401T	0						200257		
	38 73				1709T	0						200265		
	38 74				5659T	0						200297		81160
	38 75				5479T	٥						500308		80593
0781					7749T	0						200323		81086
					6181T	0						200325		80467
					3770T	õ						.500335		
					6270T	<u> </u>	_					200338		79884
					2251T							200338		
1006	38 77	6 1	11457	485	5371T	O	1014	22193	s á	7898	146936	200345	-1320	79901

STATION IDENT. D		LONG. DEG MIN	ELEV. 1 +CODE		-COR. 1/DUT		EAST UTM	OBSV GRAV	THEO GRAV	FAA	CBA +1000
3000 0	n 700	11350155	: 1 EO 1 T	0	1004	2240	/ 00/ 01	407000	00070	- 2050	00440
		11450155 11455205					689681 682301				81015
		11452895					685671				80691
		11444215					698351				80337
		11448525					692061				80597
		11442745					700501		-		80216
		11444915					697331			_	80432
0004 3	8 833	11449975	1509T				689931			-2090	80459
0015 3	848	11451995	3852T				686971				80989
1011 3	B 953	11456935	57881T	٥	11442	22337	679751	462423	00458	220	80604
0009 3	B 851	11445505	6650T	0	11542	22391	696451	468982	00469	-280	80515
		11453105		0	16342	22370	685341	476162	200474	-550	80643
1007 3	B 254	11457495	56781T	O	1134	22356	678931	455762	200474	-480	80263
		11451185		0	11042	22386	688141	487632	00481	-1820	80200
		11443525		0			699331				80442
		11455745	·	0			681481				90848
		11446725	· • -	0			694651				80512
		11442766		0			700431				80519
		11447735		0			693171				80431
		11448985		0			691351				
		11453625					684571	_			80736
		11449995		Ō			689861				
		11444455					697951				80355
		11456555					680281				80778
		11451955		0			686991			_	
		11449345 11455206					690801 682241				80322
		11446695		0			694671				80842 80391
		11445585		_			696291				80355
		11457495					678891				80576
		11451165					688141				
		11443236					699711				80923
		11448375		ō			692211				80574
0022 3		11445725		0			696071				80419
0803 3	B 997	11444006	0732T	_			698571				80680
1024 3	8 998	11454086	0390T	O			683851				90444
1015 3	81001	11455786	51440T	O	1734	22615	681371	446673	00674	1780	81003
		11449925	52251T	-3	12842	22638	590071	497402	00677	-1750	90518
0805 3	81005	11442636	6581T	0	38648	22667	700571	411112	00680	3050	80736
0027 3		11451285		O	12342	22648	587941	493652	100689	-1300	80323
0028 3	81012	11452235	55801T	٥	1364	22647	o665 5 1	478012	100691	-400	80706

STATION	LAT.	LONG.	ELEV.	TER-	-COR.	NORTH	EAST	OBSV	THEO	FAA	CBA
IDENT.	DEG MIN	DEG MI	N +CODE	I١	TUQ\1	UTM	UTM	GRAV	GRAV		+1000
0024	381013	1144752	54491T	٥	1284	22665	69343	148398	200692		
	381023			0					200707		80844
	381024			0					200708	-750	80147
		1144876		Q					200723		80021
		1144368		0					200754		81110
0819	381048	1144425	59531T	0					200773		80775
		1144762		0					200781		79944
	381079			0					200789		80763
		1144672		0		22799			200796		80340
	381070			0					200805	-2210	
		1145069		0					200825	-1080	
	381149			0			69794				80041
	381220			0					200995		80076
	381410								201274		
	381490			0			681111				80748
7441	381515	1144220	60843T	0	1214	23612	70097	144428	201427		79611
	381775			0		24067			201808		80921
	381825			0					201882		79255
	382020			0					202168	-1730	
	382100			0					202285		80846
	382105			0	1984	24674	688751	146990	202292		80828
	382305			0	2014	25029	682231	147365	202586	1000	80831
	382535								202923		79289
	382545			0					202938	1120	80705
		1144865	60285T	0	1344	25503			202945		80684
	382691	1145890		0		25730			203152		81227
7282	382835	1145260	6010 5 T	0	2204	26017	68523	147369	203363	530	80270
7285	383050	1144080	62087T	0	1624	26456	70229:	145480	203679	170	79192
7420	383050	1144772	60840T	0	1524	26431	69224	146340	203679	-110	79292
	383032			0					203726		80165
7269		1145973	55551T	0	2234	26473	67476	149877	203744	-1610	
H231	383111	1145858	57710T	0	3914	26508	67643	149200	203769		80441
5027	383207	1144765	61152T	0	1694	26722	69227	146145	203910	-230	79079
785	383344	1145485	6777 9 T	0	3014	26951	68175	142323	204111	1960	79161
H148	383428	1145920	60157T	0	2414	27092	67540	147768	204234		79861
7421	383515	1144765	62251T	0	1964	27292	69213	145917	204362		79086
		1145462		0					204389		78909
7219	383570	1144350	74003T	0	5434	27408	69813	138963	204443		79443
	383590			0					204458		79262
	383405			0					204490		79376
7270	383675	1145185	66119T	0	1474	27573	68596	144109	204597	1690	79307

STATION	N LAT.	LONG.	ELEV.	TER-	COR.	NORTH	EAST	OBSV	THEO	FAA	CBA
IDENT.	DEG MIN	DEG MI	N +CQDE	IN	/OUT	UTM	UTM	GRAV	GRAV		+1000
7291	383805	1144300	89934T	01	44542	27845	698751	1283182	04788	8110	78905
N761	383838	1144893	64137T	0	21242	27977	690111	1453302	04910	750	79102
	383908			0	19542	27999	683671	1416162	04940		78235
7274	382962	1144839	65869T	0	25342	28116	690861	1443602	05019	1290	79093
5025	384159	1144887	69482T	0	23742	8479	690083	422052	05309	2250	78807
N760	384236	1145046	66457T	0	20842	28708	687721	1438022	05496	820	78378
7272	384330	1145455	727 49T	0	26542	28776	68177	1411462	05 560	4010	79485
7208	384400	1145057	67310T	0	21442	23919	68751	1433692	05663	1010	78284
LV0162	382636	1144012	88607	463	63542	25785	70345	1272012	031 45	7461	80923
CAV021	383599	1144473	8426C	592	30742	27457	69633:	1312412	04486	6072	79699
	383492				51342			1252132			79376
CAV022	383558			0	58542	27384	69732	1398872	04425	3551	79463
CAV051	382756	1145674	8152C	242	17342	25857	67925	1336992	03247	7188	81560
	382694		_			25748		1465932		-	80759
	382451	1145375		0	12342	25359	68371	1466282	02844		79781
	382274			322	23642	24993	69128	1373442	02540	4514	81522
	38237 9					25224		1471252			80901
	382576			38	95142	25747	69549	1376672	03130	4030	79838
	382030							1318912			81724
	381806					_		1347502			81457
	384006							1233342	-		78709
	383142				70642			1325362			80069
	383404							1423372			80306
	383629							1398222			79811
	383532							1436422			79445
	383238							1444332			79806
	383902				_	27983	_	1391112			78785
	383849				12742			1317652			79296
	383212							1324813			79786
	383426							1401612			79176
		1144769				25342		1375562			79708
		1145245						1447972		2891	
	381590			-6				1431252			81217
	382233					24891		1394292			81126
	382029					24511		1378592			81030
	382511			11		25406		1411572			90921
	384186					28519		1423972			78304
	383644							1405472			78829
	381796	1145701			22042			1425242			80394
	384139					28443		1402542		3271	78889
CAV047	383235	1145194	83 65 C	61	31342	6825	68600	1329792	04024	7697	80485

			HEAST OBSV		FAA	CBA
IDENT. DEG MIN DEG	MIN +CODE	N/OUT UTM	UTM GRAV	GRAV		+1000
					-	
LV0035 384254 1144	276 7695C 4	649428676	69889137093	205449	4076	78483
LV0059 383377 1144	300 7319C 14	403427053	69895139199	204159	3930	79384
LV0156 382676 1144		591426160	69797137075	203453	4914	79688
LV0165 382428 1144	070 7048C 6	347425306	70273141407	202766	4979	81293
LV0170 382090 1144	031 8613C 12	2214424682	70345128958	202270	_	80615
LV0293 383714 1144	147 6897C 17	483427682	70101141784	204655	2046	79022
CAV002 384004 1145		209428176	68346141603		1815	78364
	379 7008C C	200427848	68308141336	204821	2477	78775
	202 67 03 0 0			204768		79132
	206 67775				1721	78772
CAV006 384057 1145			68489141397			78287
	026 65875		68809143859			78349
· · · · - · - · - · - · - · - · - ·	054 6624C C		68774143809		1140	78701
CAV010 383824 1145			68780144389		1136	78973
	974 64415		68899145264			79357
	878 6384S C		69035145478		740	79170
	838 65875		69087144332		1311	79098
	899 6788C 0		68995143347		2101	79168
	726 7129C (69246140687			78712
CAV017 383870 1144			69254143393	_		79166
	612 6816C C		69423141887		1281	78456
CAV019 383950 1144			69411138129			78703
CAV025 383099 1144 CAV027 383418 1144	_	· - - -	69535143299			80203
	576 6499B 0		69492144061 69538141022		1010	79148 78065
CAV027 383646 1144 CAV030 383654 1144						78893
CAV030 383537 1144			69259145853			79109
CAV032 383342 1144			69280145984			79080
CAV033 383175 1144			69330146012		_	79214
CAV034 383013 1144			69324146299			79386
CAV035 383110 1144			69129146323			79179
CAV036 383226 1144			69174146311		-27	79266
	799 6207B		69168146308		492	79500
CAV038 383651 1144						79490
CAV040 383538 1144		- :	69029145953	- -	861	79544
CAV041 383357 1144			69059146667			79862
CAV042 383226 1144						79838
	995 6071B					80176
JAV045 383550 1145	· · · - · · · - · · · · · · · · · · · ·		68760145550			79971
CAU046 383631 1145	179 6559B		68607144451			79431
CAV054 382377 1145			68116146123	202721		80907

STATION	LAT.	LONG.	ELEV.	TER-	-COR.	NORTH	EAST	OBSV	THEO	FAA	CBA
IDENT.	DEG MIN	DEG MIN	4 +CODE	11	TUDN	UTM	UTM	GRAV	GRAV		+1000
	382307	1145372		_			683831				79666
CAV056		1145442		0			682771				80484
CAV058		1145384					683541				80146
							684251				80341
	382547	1145261				25521					79297
CAV061		1145262		_					202716		
CAV062		1145151		ō			687051			-1349	
		1145154				25368		_	202845		
CAV064		1145173		0			686581				78811
CAV065		1145127		0			687201				79025
							685561				80288
							686801				80117
CAV068		1145055		0			488151				79740
	382859	1145030				26069					78610
CAV070		1144992		0			689161			-1381	
CAV071		1145045		0			688481			-1749	
CAV072	382375	1145041		0		25211			202718		
	382317	11449176		0		25071			505903		80632
CAV076	382432	1144933		0			690141		_		79145
CAV077		1144950		0		25541			202977	-1053	
CAV078				ō		-	689861			-1205	
CAV679		1144886		0			690691			-1205	
CAV080	382875	1144903					690401			-1426	
CAV081									203581		
	382835	11447626		0			692451				79059
CAV083		1144803		0			691951				80195
	382547						691411				80729
				0			694251		_		80663
				0			694531				80532
CAV091		11448506		0			691481				81117
	382164			0			689901				81148
	382105	11450285		0			688931				80847
CAV095		1145042		0			688671			_	79435
		1145152				24726					79478
	382053	11451225		0			687571				80366
CAV098		1145152		0			687181				80892
		1145243		0		24207					80708
	382047	1145262		0			685541				79885
	385550	1145261	5970S	0			685481			_	78997
		1145371					683921				79856
CAVIO4	381950	1145372	597 5 S	0	11042	24395	683981	46140	202080	295	80056

STATION LAT.	LONG. ELEV.		H EAST OBSV THEO	FAA CBA
IDENT. DEG MIN	N DEG MIN +COI	E IN/OUT UTM	UTM GRAV GRAV	+1000
CAV105 381839	1145381 59909	0 115424171	68390145759201902	233 79918
CAV106 381731	1145306 62060	0 161423974	68503145035201744	1701 80695
CAV107 381638	1145407 62191	0 129423798	68360145320201608	2245 81163
CAV109 381755	1145490 61700	0 114424012	68234144999201779	1289 80359
CAV110 381836	114553760331	0 118424197	68161146384201927	1237 80778
CAV111 381961	1145482 60100	0 121424393	68237146502202081	986 80608
CAV112 382046	1145482 60810			1262 80652
CAV113 382220			68228146736202461	1517 80940
CAV115 381961	1145592 61580		68077146094202081	1971 81110
CAV117 381871	114574463389	· · · · · · · · · · · · · · · · · · ·		2113 80667
LV0036 384216				1253 78320
LV0042 383968				1967 78724
LV0050 383614	1144082 64140		·	550 78951
	114427369649			2584 79367
			70177144640204331	-114 78540
LV0053 383456	1144010 61210			-971 78336
LV0058 383352	1144041 61850		70271144907204137	
LV0060 383238			70223145365203955	196 79068
LV0065 383043 LV0154 382927			· · - · · · · - · · · · · · · ·	184 79180
LV0154 382727	1144004 60970 1144103 62200		70346146165203499	50 79408
			70202145257203503	296 79245
LV0157 382744 LV0158 382846	1144171 63160 1144046 62461		· · · · · · · · · · · · · · · ·	919 79589 977 79883
LV0156 382646 LV0167 382326	1144027 6445		·	
WRV242 381039	1145689 64309			2997 81221 2642 81110
MSV076 381303	1144439 5847			-618 79577
MSV075 381149	1144439 61689			966 80289
MSV055 381554	1145212 6900	· · · · · · · · · · · · · · · · · · ·		4278 81857
CAV086 382676	1144560 73830			4040 79730
CAV090 382946	1144466 82699			6539 80244
CAV093 382030	1144947 81140	·		6084 81592
MSV013 382314	1144120 66529	· · · · · · · · · · · · · · · · · · ·		3751 81271
MSV014 382161	1144047 83969		· · - · · · · ·	7146 81124
MSV021 381935	1144165 73969		70157136904202043	4477 80734
MSV052 381949	1144961 71900			4088 80379
MSV057 381275	1145215 64899		68655142631201105	2621 80828
MSV080 381213	1144109 72399		70272136195200985	3337 79367
WRV239 381131	1145804 61479			2077 81417
WRV235 381350	1145702 6445	112 234423256	67942142936201186	2411 80775
WRV087 382029	1145739 74180		67860137856202181	5498 81183
WRV090 381578	1145891 63180		67657144591201520	2536 81281

STATION			ELEV.				I EAST	OBSV	THEO	FAA	CBA
IDENT.	DEG HIN	DEG MIN		. 11	1/0UT 	UTM	UTM_	GRAV	GRAV		+1000
			_	-				-		•	
WRV248	38 627	1145745	5893C	166	31342	21917	679081	444642	200127	-200	80180
CAV 026	383288	1144565	6445B	0	32842	26879	695141	446842	204029	1316	79662
CAV085	382451	1144769	7048C	0	57642	25342	692541	.395532	202814	3077	79614
		11448506		0			691481				81107
MSV001		1144651		0			694341	-			79614
		1144664		0			694101			_	79867
		1144540		0			695891				79460
MSV004		1144515		0		_	696311				78831
MSV005		1144390		0			698131				79104
MSV006		1144379		0			698231	-			79149
		1144346		0			598661				79319
MSV008		1144272		Q			699681				79670
		1144209	_	0			700571				79732
_		1144273		0			699781			1281	79835
		1144276		0			699801				80260
		114409B 1144139		٥		23676 2400 <i>9</i>	702731	438582			79510
		11441246		o			702031		_		80144. 80418
		11440466	-	0			703341			_	90425
		1144269		ŏ			699951				80524
		1144268	-	ŏ			700011	· · · - ·			80652
MSV024		1144233		Ö		-	700571				80318
		11442286	* *	Ö			700701				79959
		1144218		ō			700941				79911
		1144318		ō			699521				79001
		1144382		ō			698561	·		= :	78624
MSV029		1144323		ō			699361	_		-909	78864
MSV030	381874	11443126	0289T	0			699451			-248	79343
MSV031		11443875	9550T	0			698341				79024
MSV032	392069	1144398	6013S	0	14042	24630	698121	454393	202239	-207	79424
MSV033	382211	1144437	59 9 75	0	13142	24891	697491	451323	202448	-873	78804
MSV034	381917	1144465	5842V	0	1124	24162	697261	452922	201870	-1595	78591
MSV035	381690	1144483	5798S	0	1044	23908	697061	451842	201669	-1917	78412
MSV036	381592	1144556	5722V	0	10342	23742	696031	455242	201540	-2163	78424
MSV037	381557	11447525	5121T	0	1174	23671	693191	470182	2C 489	-2595	78722
MSV038	381535	11446985	5571T	0	11242	23817	693941	467562	201603	-2547	78611
		11446575		0	1124	23957	694501	465173	201713		78526
MSV040		1144607		0			695201			-2243	78611
		1144556	5722C	0			695881		-		78620
MSV042		1144579	5805C	0			695501				78869
M5V043	382139	1144530	5905C	٥	11642	24755	696161	453862	202342	-1360	78595

STATION	-	LONG.	ELEV.				H EAST	OBSV	THEO	FAA	CBA
IDENT.	DEG WIN	DEG MIN	A +CODE	TL	VOUT	UTM	UTM	GRAV	GRAV		+1000
MSV044	382143	11446745	59130T	o	13142	24757	494061	462822	02348	-415	79548
	-	11447516						461842			80331
MSV046	381951	1144691	5982C	0	14342	24402	693901	454192	202066	-347	
MSV047	381825	1144775	5915C	0	14342	24166	692731	453472	201882	-865	79104
MSV048	381757	1144836	5892C	0	13942	24038	691871	454132	201782	-916	79127
MSV049	381650	1144876	5782C	0	12542	23838	691341	459832	201625	-1224	79180
MSV050	381514	1144919	5595C	Q	11942	23585	690771	469952	201426	-1774	79262
MSV051	381765	1144951	6110C	Q	17442	24049	690191	454402	201794	1152	80487
		1145033		0	17942	23842	689051	1453042	201633	1178	80517
		1145093		0		-		1460252		621	80477
MSV056		1145156		0				1462502		461	80556
MSV058		1145069		0				1485502		-1029	
MSV059		1145037		0		53036		1478552			
MSV060		1145003	5509Y	0				474532			79531
		1144956		0				471592			79321
		1144818		0		23443		474322			79052
		11448745		O				479312			79276
		11447045		0				484952			79734
-		11449305		0		-	-	486503			79816
		1144957: 1144762		0				1490162			79965
		1144760		0				l 464672 l 483442		-697 -1204	79985 80199
		1144723		0				1472413			
MSV070		1144622	5649V	ŏ				1461123			78734
		1144559		Ö				1460312			79058
		1144589		ŏ				465962			79466
		1144654		ŏ				477583			80172
		1144570	5711Y	ō		-		472182		177	90803
		1144467	5806Y	ō		= "		451843			78736
		1144347	6005Y	0				437952		-911	78723
MSV079	381450	1144208	61075	0	13142	23511	701171	442402	201347	372	79674
MSV081	382521	1144111	7834C	01	12042	25477	702091	358873	202903	6725	81126
WRVOBB	381834	11459196	50400T	0	13042	24144	676061	461823	201895	1134	
WRV089	381658	1145884	5948C	0	10242	53850	675641	1464752	201637	819	80634
WRV234	381409	1145929	5749V	0	10242	23358	675081	474392	201272	274	80767
WRV236	381315	1145870	58947	0	11342	23186	676981	464812	201134		80829
		1145740	6057B	0	15142	23057	678911	1455772	201029	1 55 5	81048
		1145895	57617	0	11942	22969	676661	471542	E00963		80881
WRV240	381079	1145974	5543V	0	10642	22746	675561	1482092	200789		80788
WRV241		1145814		0				1465102			80903
wRV243	38 952	1145749	58155	O	12742	22518	678891	1462042	500903	330	80953

STATION LAT.	LONG. ELEV.	TER-COR. NORTH	EAST OBSV THE	D FAA CBA
IDENT. DEG MIN	DEG MIN +CODE	MTU TUO\NI	UTM GRAV GRA	V +1000
WRV244 38 952	1145070 54500	0 101422511	6 75 6414795620060	9 -1970 B0919
WRV245 38 852			6776914703520045	· · · · · · · · · · · · · · · · · · ·
WRV246 38 730			6778914703320043 6758914794220027	
WRV247 38 704			6783114777920024	
WRV249 38 591	114586452549T	0 98421829	6773614830520006	0 -2298 79877

EXPLANATION

FAULTS SHOWN ON GEOLOGIC BASE MAP INFERRED FAULTS SHOWN ON GEOLOGIC BASE MAP ALLUVIAL MATERIAL **ROCK (ALL PATTERNS) GRAVITY STATIONS** LOCATION OF PROFILE CONTOUR INTERVAL = 5 MILLIGALS GEOLOGIC BASE MAP: E.L. Howard (1978)

14 SEPT 81

ANOMALY CONTOURS CAVE VALLEY, NEVADA

14 SEPT 81

DRAWING 1

EXPLANATION

FAULTS INFERRED FROM GRAVITY DATA

FAULTS SHOWN ON GEOLOGIC BASE MAP

_____ ALLUVIAL MATERIAL

ROCK (ALL PATTERNS)

CONTOUR IN TERVAL = 1000 FT.

DEPTH CALCULATIONS BASED ON DENSITY CONTRAST OF -0.5g/cm³

WELL

GEOLOGIC BASE MAP: E. L. Howard (1978)

TERTEC
The Earth Technology Corpora

INTERPRET
CAVE

14 SEPT 81

NORTH

SCALE 1: 125,000

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

DEPTH TO ROCK
INTERPRETED FROM GRAVITY DATA
CAVE VALLEY, NEVADA

14 SEPT 81

DRAWING 2