Mid-sem Answer key

0000000000000

Active high chip select ((s)

12 bits address

=> For Otarting address, III-IS remains O.

=> Four Possible Combinations

	I4	I3	III IO	In decima
Xo	0	0	00000	0
XI	0	1	01000	8
×2	1	0	10000	16
X3	,		11000	24
1 2				

$$\Rightarrow (x0, x1, x2, x3) \rightarrow (0,8,16,24)$$

- 2. (9). 1. URAMS generally have low Catenues than DRAMS,.
 - 2. DRAMs have lower cost/bit than SRAMs.
 - 3. JRAMs are better than DRAMS
 since DRAMs have to have
 their contents refreshed in order
 to store for long period of time.
 - (b) Cycle time = 64 nsec

 Refresh rate = 100 times / msec

 Time of one refresh = 100 nsec

No. of refreshes
$$(10^{-3}sec) = 100$$

No. of refreshes $1 sec = \frac{100}{10^{-3}}$
No. of refreshes $64 \text{ nsec} = \frac{100}{10^{-3}} \times 64 \times 10^{-9}$

Total time spent in refresh =
$$100 \text{ nsc} \times 100 \times 64 \times 10^{-9}$$

 10^{-3}
= $.64 \text{ nsec}$

3. a) Given sequence af memory block
references 053970 (655

$$Mus \rightarrow 0\%4 \rightarrow 0$$

$$Mus \rightarrow 5\%4 \rightarrow 1$$

$$Mus \rightarrow 3\%4 \rightarrow 3$$

$$Mus \rightarrow 9\%4 \rightarrow 1$$

$$Mus \rightarrow 7\%4 \rightarrow 3$$

$$\mut \rightarrow 0 \rightarrow LRU$$

$$Mus \rightarrow 16\%4 \rightarrow 0$$

Miss -> 550/04 -> 3 (Replacing 3 as LRU
Miss -> 550/04 -> 3 (Replacing 3 as LRU replacement policy is used)
The final sequence is
The final sequence is 0,16,5,9,55,7
(c) Lecture - 14
Cina 32-bit virtual address. 20-bit ohmical
Given, 32-bit virtuel address, 20-bit physical address, and 4kB pages.
(a) Page table entry size?
Page rôze = 4kB
=) 12 bits are required for offset.
Virtual Address Physical Address
12-bits offset 86th 12 bits offset
20 bits 86°ts
Physical Page Number
Page Number
86°ts = 1 byte
Or there are 2 extra bits also needed in general,
to to be a 2 but

= 16yte/26yte

60th answers are correct.

Introduction Page 3

- (b) Number of page table entries's

 Virtual address space = 2^{32} Page rize = $4kb = 2^{12}$ \Rightarrow No of page table entries = $\frac{2^{32}}{2^{12}} = 2^{20}$
- (c) Storage required for the page table?

 Each page table entry requires 1/2 bytes.

 =) Total storage required = 1/16 ytes × 2²⁰

 =2²⁰/2²¹ bytes.
- 5.- Lecture -6
 6. Lecture -5