Project: Pima Indians Diabetes Medical Records - Using Data Analysis and Visual Tools to Predict Diabetes

BIOF 309

Anuj Kashyap

What is our project question?

Are we able to determine which factors affect diabetes in Pima Indians population?

Context

Where did the data come from? National Institute of Diabetes and Digestive and Kidney Diseases.

Diabetes information:

What is diabetes?: If body does not produce or properly use insulin, it is released out through urination. This is called diabetes.

How many Americans have diabetes?

20.8 million children and adults (7% of population) (American Diabetes Association, 2007)

Pima Indian Diabetes (PID) dataset contains what?

768 records describing female patients of Pima Indian heritage which are 21 years old living in Phoenix, Arizona, USA (UCI-Machine-Learning Repository, 2007)

What do we want to do with this dataset?

To diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements

What are some contraints with working with this dataset?

Several constraints were placed on the selection of these instances from a larger database. All patients here are females at least 21 years old of Pima Indian heritage.

What medical predictors are included in this dataset?

Several medical predictor variables such as the number of pregnancies the patient has had, their BMI, insulin level, age, etc.

Is there a target variable?

Yes, one target variable, Outcome.

Reference:

kaggle datasets download -d uciml/pima-indians-diabetes-database https://www.kaggle.com/uciml/pima-indians-diabetes-database/downloads/pima-indians-diabetes-database.zip/1)
indians-diabetes-database/downloads/pima-indians-diabetes-database.zip/1)

Acknowledgements Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S. (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care (pp. 261--265). IEEE Computer Society Press.

Inspiration:

Can you build a machine learning model to accurately predict whether or not the patients in the dataset have

```
In [1]: import pandas as pd
```

Read input data

Read the input CSV file as a pandas dataframe

```
In [9]: filename = "Desktop\diabetes.csv"
         df = pd.read csv(filename, sep=',', encoding='utf-8', header=0)
In [72]: # Assigning column names and mapping the meta information for each attribute
         cols = df.columns = ['n pregnant', 'glu conc', 'bp', 'tst', 'insulin', 'bmi',
         'dpf', 'age', 'diabetes?']
         metainfo = {'n_pregnant': 'Number of times pregnant',
                               'glu conc': 'Plasma glucose concentration a 2 hours in an
         oral glucose tolerance test',
                               'bp': 'Diastolic blood pressure (mm Hg)',
                               'tst': 'Triceps skin fold thickness (mm)'.
                               'insulin': '2-Hour serum insulin (mu U/ml)',
                               'bmi': 'Body mass index (weight in kg/(height in m)^2)',
                               'dpf': 'Diabetes pedigree function',
                               'age': 'Age (years)',
                               'diabetes?': 'Class variable (0 or 1)'}
         df.head()
```

Out[72]:

	n_pregnant	glu_conc	bp	tst	insulin	bmi	dpf	age	diabetes?
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

```
In [71]: # Describe the dataset
df_temp = df.drop(labels = 'diabetes?', axis=1)
df_temp.describe()
```

Out[71]:

	n_pregnant	glu_conc	bp	tst	insulin	bmi	dpf	
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81

In [62]: import numpy as np import matplotlib.pyplot as plt def bar plot(df): plt.rcParams['figure.figsize'] = 12, 6 df_0 = df[df['diabetes?'] == 0] df_1 = df[df['diabetes?'] == 1] mean 0 = df 0.mean() $mean_1 = df_1.mean()$ list 0 = [] list 1 = [] for col in df.columns: list 0.append(mean 0[col]) list 1.append(mean 1[col]) index = np.arange(len(df.columns)) bar width = 0.35opacity = 0.8plt.bar(index, list 0, bar width, alpha=opacity, color='b', label='Diabetes (-ve)') plt.bar(index + bar_width, list_1, bar_width, alpha=opacity, color='g', label='Diabebtes (+ve)') plt.title('Pima Indians Diabetes Dataset') plt.xticks(index + bar_width, tuple(df.columns)) plt.legend() plt.tight_layout() plt.show()

In [63]: bar_plot(df)


```
In [64]: def box_plot(df, cols):
    plt.rcParams['figure.figsize'] = 12, 6
    data = np.array(df.values.tolist())
    plt.boxplot(data, labels=cols, showmeans=True)
    plt.show()
```

In [65]: box_plot(df, df.columns)

Normalize our data using pandas in a very simple and intuitive way i.e. (x-mean)/(max-min)

```
In [83]: def normalize(df):
    df_norm = (df - df.mean()) / (df.max() - df.min())
    return df_norm
    from pandas.plotting import scatter_matrix as pplotsm
    def scatter_matrix(df):
        plt.rcParams["figure.figsize"] = (14, 14)
        colors = list('r' if i >= 0.5 else 'b' for i in df['diabetes?'])
        pplotsm(df, color=colors)
        plt.show()
```

In [84]: normalized_df.head()

Out[84]:

	n_pregnant	glu_conc	bp	tst	insulin	bmi	dpf	age	diabe
0	0.126762	0.136208	0.023726	0.146096	-0.094326	0.023956	0.066236	0.279319	0.65
1	-0.167356	-0.180375	-0.025455	0.085490	-0.094326	-0.080366	-0.051612	-0.037348	-0.348
2	0.244409	0.312088	-0.041848	-0.207439	-0.094326	-0.129547	0.085450	-0.020681	0.65
3	-0.167356	-0.160274	-0.025455	0.024884	0.016785	-0.058012	-0.130178	-0.204015	-0.348
4	-0.226180	0.080932	-0.238569	0.146096	0.104256	0.165535	0.775458	-0.004015	0.65

In [85]: normalized_df = normalize(df)
 scatter_matrix(normalized_df)

In []: #visualize the bivariate relationship between each variable using a scatter pl
 ot.
 #normalized data for plotting the scattered matrix was used
 #Both are overlapping with each other

In [66]: box_plot(normalized_df, df.columns)


```
In [67]: def stacked_histogram(df, cols):
    fig, axes = plt.subplots(3, 3, sharey=True) # Because I have 9 variables i
    n the dataset
    plt.rcParams['figure.figsize'] = 14, 14
    df_1 = df[df['diabetes?'] == 1]
    df_2 = df[df['diabetes?'] == 0]
    col_index = 0
    for row in axes:
        for col in row:
            col.hist([df_2[cols[col_index]], df_1[cols[col_index]]], bins=10,
    stacked=True, color=['b', 'g'])
            col.set_ylabel(cols[col_index])
            col_index += 1
            plt.show()
```

In [68]: stacked_histogram(df, df.columns)

In []: #Green bars shows the women with positive diabetes test and blue bars shows th e women with negative diabetes test.

#In glu_conc we see that diabetes are diagnosed to those women having high glu cose concentration levels.

#Similarly, bp (blood pressure diastolic) histogram shows that positive diabet es was found in women with high bp.

#Although there were samples where high bp women had a negative test but posit ive diabetes was found only with high bp.

#Insulin histogram shows that women with lower insulin levels have a positive diabetes test.

In []: | ###Future Directions

#Try other data analysis and visual tools to look at data in a different way