Relations utilisées dans MotorComputations

Yasmine Salmouni

April 16, 2025

Introduction

Ce document décrit les équations physiques utilisées dans la classe C++ MotorComputations, qui fournit des fonctions de conversion et de calculs liés au moteur : couple, courant, vitesse angulaire et puissance.

1. Constante de couple K_t

La constante de couple K_t exprime le rapport entre le couple τ délivré par le moteur et le courant I consommé :

Fonction : computeTorqueFromCurrent(float current)

Inverse : computeCurrentFromTorque(float torque)

$$K_t = \frac{\tau}{I} \iff \tau = K_t \cdot I \iff I = \frac{\tau}{K_t}$$

Où:

• K_t : constante de couple $[\operatorname{N} \operatorname{m} \operatorname{A}^{-1}]$

• τ : couple moteur [N m]

• I: courant moteur [A]

2. Conversion cadence \rightarrow vitesse angulaire

Fonction : computeOmega(float cadence_rpm)

$$\omega = \frac{2\pi \cdot C}{60}$$

Où:

• ω : vitesse angulaire $[rad s^{-1}]$

• C: cadence $[\min^{-1}]$

Cette conversion est utilisée dans tous les modes impliquant un calcul de puissance ou de couple à partir d'une vitesse de rotation.

3. Puissance mécanique

Fonction : computePower(float torque, float cadence_rpm)

$$P = \tau \cdot \omega = \tau \cdot \left(\frac{2\pi C}{60}\right)$$

Où:

 \bullet P: puissance mécanique [W]

• τ : couple moteur [N m]

• ω : vitesse angulaire $[rad s^{-1}]$

• C: cadence moteur $[\min^{-1}]$

4. Récapitulatif des fonctions et équations

Nom de la fonction	Équation utilisée	Unité résultat
<pre>computeTorqueFromCurrent(I)</pre>	$\tau = K_t \cdot I$	[Nm]
computeCurrentFromTorque(tau)	$I = \frac{\tau}{K_t}$	[A]
computeOmega(C)	$\omega = \frac{2\pi C}{60}$	[rad/s]
computePower(tau, C)	$P = \tau \cdot \omega$	[W]

Conclusion

Ces relations permettent une séparation claire entre :

- la physique du moteur (MotorComputations)
- et la logique de commande (MotorController)