

Adapters for Enhanced Modeling of Multilingual Knowledge and Text

Yifan Hou, Wenxiang Jiao, Meizhen Liu, Carl Allen, Zhaopeng Tu, Mrinmaya Sachan

(MLKG) (MLLM)

MLKGs have rich knowledge

Yifan Hou | 2022/12/8

(MLKG) (MLLM)

- MLKGs have rich knowledge
- But they are highly **incomplete**:
 - Missing triples / entities / alignments

Yifan Hou

(MLKG)

- MLKGs have rich knowledge
- But they are highly incomplete:
 - Missing triples / entities / alignments

(MLLM)

- MLLMs have strong transferability
 - Transferring knowledge across 100+ languages
 - Devlin et al., 2019, Conneau et al., 2020
- But they lack factual/multilingual knowledge
 - Pretraining cannot capture much/many:
 - Sparse factual knowledge
 - Features of low resource languages

(MLKG)

(MLLM)

- MLKGs have rich knowledge
- But they are highly incomplete:
 - Missing triples / entities / alignments

Zurich **English** was born in is located in Status Anxiety write Alain de Botton lives in Switzerland Żurigo (Italian è nato in si trova a Alain de Botton Svizzera

- MLLMs have strong transferability
 - Transferring knowledge across 100+ languages
 - Devlin et al., 2019, Conneau et al., 2020
 - But they lack factual/multilingual knowledge
 - Pretraining cannot capture much/many:
 - Sparse factual knowledge
 - Features of low resource languages
- Combining MLKG and MLLM?
 - MLLM makes MLKG more complete
 - MLKG makes MLLM more "knowledgeable"

Multilingual knowledge graph (MLKG)

Yifan Hou | 2022/12/8

- Multilingual knowledge graph (MLKG)
 - Factual knowledge triples
 - Cross-lingual entity alignments

Yifan Hou | 2022/12/8

- Multilingual knowledge graph (MLKG)
 - Factual knowledge triples
 - Cross-lingual entity alignments

- Embedding objective:
 - h = head entity
 - r = relation
 - t = tail entity
- ||h + r t||
 - TransE (Bordes et al., 2013)

- Multilingual knowledge graph (MLKG)
 - Factual knowledge triples

Cross-lingual entity alignments

Embedding objective:

- h = head entity
- r = relation
- t = tail entity

$$||h + r - t||$$

TransE (Bordes et al., 2013)

- Multilingual knowledge graph (MLKG)
 - Factual knowledge triples

Embedding objective:

- h = head entity
- r = relation
- t = tail entity

$$||h + r - t||$$

TransE (Bordes et al., 2013)

||h - h'||

||h+r-t|| + ||h-h'|| + ||t-t'||

MTransE (Chen et al., 2017)

Knowledge-Aware Multilingual Language Model (MLLM)

- Knowledge in token representations
 - Contextualized representation $t_{Switzerland}$ should contain:

 $[t_{\text{Zurich}}, t_{\text{is}}, t_{\text{the}}, t_{\text{largest}}, t_{\text{city}}, t_{\text{in}}, t_{\text{Switzerland}}]$

Knowledge-Aware Multilingual Language Model (MLLM)

- Knowledge in token representations
 - Contextualized representation $t_{\text{Switzerland}}$ should contain:
 - 1. Factual knowledge: (Zurich, is located in, Switzerland)
 - Average(t_{Zurich} , t_{is} , t_{located} , t_{in}) $\cong t_{\text{Switzerland}}$
 - KnowBERT (Peters et al., 2019), ERNIE (Zhang et al., 2019)

 $[t_{\text{Zurich}}, t_{\text{is}}, t_{\text{the}}, t_{\text{largest}}, t_{\text{city}}, t_{\text{in}}, t_{\text{Switzerland}}]$ $[t_{\text{Zurich}}, t_{\text{is}}, t_{\text{located}}, t_{\text{in}}]$

Zurich is the largest city in **Switzerland**

Zurich is located in

Knowledge-Aware Multilingual Language Model (MLLM)

- Knowledge in token representations
 - Contextualized representation $t_{\text{Switzerland}}$ should contain:
 - 1. Factual knowledge: (Zurich, is located in, **Switzerland**)
 - Average($t_{\text{Zurich}}, t_{\text{is}}, t_{\text{located}}, t_{\text{in}}$) $\cong t_{\text{Switzerland}}$
 - KnowBERT (Peters et al., 2019), ERNIE (Zhang et al., 2019)
 - 2. Multilingual knowledge: (Switzerland, Svizzera)
 - $t_{\text{Switzerland}} \cong t_{\text{Svizzera}}$
 - Universal semantic space

- Knowledgeable adapter set:
 - E/T => entity alignment / knowledge triple
 - P/S => phrase-level / sentence-level

Task\Knowledge	Multilingual	Factual
MLKG	Adapter-EP	Adapter-TP
MLLM	Adapter-ES	Adapter-TS

- Knowledgeable adapter set:
 - E/T => entity alignment / knowledge triple
 - P/S => phrase-level / sentence-level

Task\Knowledge	Multilingual	Factual
MLKG	Adapter-EP	Adapter-TP
MLLM	Adapter-ES	Adapter-TS

- Adapter-EP: MLKG entity alignment
 - Wikidata

Adapter Functions

ETH Zurich

- Knowledgeable adapter set:
 - E/T => entity alignment / knowledge triple
 - P/S => phrase-level / sentence-level

Task\Knowledge	Multilingual	Factual
MLKG	Adapter-EP	Adapter-TP
MLLM	Adapter-ES	Adapter-TS

- Adapter-EP: MLKG entity alignment
 - Wikidata
- Adapter-TP: MLKG knowledge triples
 - Wikidata

Adapter Functions

- Knowledgeable adapter set:
 - E/T => entity alignment / knowledge triple
 - P/S => phrase-level / sentence-level

Task\Knowledge	Multilingual	Factual
MLKG	Adapter-EP	Adapter-TP
MLLM	Adapter-ES	Adapter-TS

- Adapter-EP: MLKG entity alignment
 - Wikidata
- Adapter-TP: MLKG knowledge triples
 - Wikidata
- Adapter-ES: Knowledge enhancement corpus
 - Wikipedia entity description

Phrase-Level (MLKG)

Sentence-Level (MLLM)

Adapter Functions

- Knowledgeable adapter set:
 - E/T => entity alignment / knowledge triple
 - P/S => phrase-level / sentence-level

Task\Knowledge	Multilingual	Factual
MLKG	Adapter-EP	Adapter-TP
MLLM	Adapter-ES	Adapter-TS

- Adapter-EP: MLKG entity alignment
 - Wikidata
- Adapter-TP: MLKG knowledge triples
 - Wikidata
- Adapter-ES: Knowledge enhancement corpus
 - Wikipedia entity description
- Adapter-TS: Knowledge enhancement corpus:
 - T-REx

Phrase-Level (MLKG)

Adapter Functions

Pipeline

- Adapter training (knowledge enhancement)
 - Training objectives: contrastive learning
 - InfoNCE loss (cosine) on MLLM output representations

Pipeline

- Adapter training (knowledge enhancement)
 - Training objectives
 - InfoNCE loss (cosine) on MLLM output representations
- Finetuning whole enhanced MLLM on downstream tasks
 - MLLM, adapters, fusion module
 - Fusion Mechanism: attention aggregation
 - AdapterFusion (Pfeiffer et al., 2021)
- Inference

ETH Zurich

- Knowledge triple completion
 - Given head entity label and relation in one language, find the tail entity
 - E.g., Italian (Zurigo, si trova in, Svizzera)
 - (Zurich, is located in, Switzerland)

- **Knowledge triple completion**
 - 1. Enhanced MLLMs always outperform base MLLMs

ETH Zurich

Knowledge triple completion

- 1. Enhanced MLLMs always outperform base MLLMs
- 2. Comparable to existing baselines
 - Especially for zero-shot languages
 - Existing baselines cannot support

- Cross-lingual entity alignment
 - Given entity label in English, find aligned one in other language
 - E.g., Italian (Zurich, Zurigo)

- Cross-lingual entity alignment
 - 1. Enhanced MLLMs always outperform base MLLMs
 - Especially for zero-shot languages

Cross-lingual entity alignment

- 1. Enhanced MLLMs always outperform base MLLMs
 - Especially for zero-shot languages
- 2. Much better than previous baselines
 - E.g., JEANS

Results: MLLM Tasks

- Knowledge enhancement
 - Knowledge-intensive task
 - Relation classification (Köksal and Özgür, 2020)

Relation classification (F1 score)

Results: MLLM Tasks

Knowledge enhancement

- Knowledge-intensive task
 - Relation classification (Köksal and Özgür, 2020)
- General language modelling tasks
 - Question Answering (SQuAD & XQuAD)

Results: MLLM Tasks

Knowledge enhancement

- Knowledge-intensive task
 - Relation classification (Köksal and Özgür, 2020)
- General language modelling tasks
 - Question Answering (SQuAD & XQuAD)
 - Name Entity Recognition (WikiAnn)

Takeaways

- 1. Combining MLKG and MLLM benefit modeling of both multilingual knowledge and text
 - MLKGs become more complete
 - MLLMs become more knowledgeable
- 2. Enhancement with adapters and contrastive learning works good

All trained adapters are now available on AdapterHub

Code, datasets, and extended benchmarks

Thanks!

