Day 11: Review

Dain Kim

January 12th

Gaussian Random Variables

Gaussian variable $X \sim N(\mu, \sigma)$ has density

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2}\right).$$

For $X \sim N(0,1)$, we have

$$\mathbf{E}[X^{2n}] = \frac{(2n)!}{2^n n!}, \quad \mathbf{E}[X^{2n+1}] = 0.$$

In particular,

$$\mathbf{E}[X] = 0$$
, $\mathbf{E}[X^2] = 1$, $\mathbf{E}[X^3] = 0$, $\mathbf{E}[X^4] = 3$.

Dain Kim Day 11 : Review 1 January 12th 2 / 18

Gaussian Processes and Gaussian Spaces

A *(centered) Gaussian space* $L^2(\Omega, \mathcal{F}, \mathbf{P})$ is a closed linear subspace consisting of centered Gaussian variables.

A real-valued stochastic process (X_t) , $t \in \Sigma$, is a *Gaussian process* if any finite linear combination of X_t is a centered Gaussian.

Dain Kim Day 11 : Review 1 January 12th 3 / 18

Gaussian White Noise

Let (E, \mathcal{E}) be a measurable space and μ a σ -finite measure on (E, \mathcal{E}) . A Gaussian white noise with intensity μ is an isometry

$$L^2(E,\mathcal{E},\mu) \to a$$
 centered Gaussian space.

That is, for $f \in L^2(E, \mathcal{E}, \mu)$,

$$\mathbf{E}[G(f)^{2}] = ||G(f)||_{L^{2}(\Omega, \mathcal{F}, \mathbf{P})}^{2} = ||f||_{L^{2}(E, \mathcal{E}, \mu)}^{2} = \int f^{2} d\mu,$$

and for $f,g\in L^2(E,\mathcal{E},\mu)$,

$$\mathbf{E}[G(f)G(g)] = \langle f,g \rangle_{L^2(E,\mathcal{E},\mu)} = \int fg d\mu.$$

Dain Kim Day 11 : Review 1 January 12th 4/18

Pre-Brownian Motion

Let G be a Gaussian White Noise on \mathbb{R}^+ whose intensity is Lebesgue measure. The stochastic process (B_t) , $t \in \mathbb{R}^+$ defined as

$$B_t = G(\mathbb{1}_{[0,t]})$$

is pre-Brownian motion.

Its covariance is

$$\mathbf{E}[B_sB_t]=\min(s,t)=s\wedge t.$$

 Dain Kim
 Day 11 : Review 1
 January 12th
 5 / 18

Characterizations of pre-Brownian motions

Proposition

Let X(t), $t \ge 0$, be a real-valued stochastic process. The followings are equivalent:

- 1) X(t), $t \ge 0$, is a pre-Brownian motion
- 2) X(t), $t \ge 0$, is a centered Gaussian process with covariance $K(s,t) = \min(s,t)$
- 3) X(0) = 0 a.s., and for every $0 \le s < t$, the random variable X(t) X(s) is independent of $\sigma(X(r), r \le s)$ and distributed according to N(0, t s).
- 4) X(0) = 0 a.s., and for every $0 = t_0 < t_1 < ... < t_p$, the variables $X_{t_i} X_{t_{i-1}}$, $1 \le i \le p$, are independent, and are distributed according to $N(0, t_i t_{i-1})$.

Dain Kim Day 11 : Review 1 January 12th 6/18

Pre-Brownian Motion

- 1) $-B_t$ is also a Brownian motion
- 2) For every $\lambda > 0$, $B_t^{\lambda} = \frac{1}{\lambda} B_{\lambda^2 t}$ is a Brownian motion
- 3) For every $s \ge 0$, $B_t^{(s)} = B_{s+t} B_s$ is a Brownian motion and is independent of $\sigma(B_r, r \le s)$.

Let X_t , $t \in \Sigma$, be a stochastic process with values in E. The *sample paths* are the mappings $\Sigma \ni t \mapsto X_t(\omega)$ obtained when $\omega \in \Omega$ is fixed.

The sample paths of pre-Brownian Motions are not necessarily continuous.

Dain Kim Day 11 : Review 1 January 12th 7/18

Kolmogorov Continuity Criterion

Theorem (Kolmogorov Continuity Criterion)

For a process X(t), $t \in [a, b]$, assume that there exist positive constants q, ϵ , and C such that

$$|\mathbf{E}|X(t)-X(s)|^q \leq C|t-s|^{1+\epsilon}$$
 for all $s,t\in[a,b]$.

Then the process X has a continuous modification \widetilde{X} . Moreover, there is a modification whose sample paths are α -Hőlder continuous for $\alpha \in (0, \epsilon/q)$, that is, for each sample path ω , there exists a constant $C_{\alpha}(\omega)$ such that

$$|\tilde{X}_t(\omega), \tilde{X}_s(\omega)| \leq C_{\alpha}(\omega)|t-s|^{\alpha}.$$

Dain Kim Day 11 : Review 1 January 12th 8 / 18

Modifications of pre-Brownian Motions

If (B_t) , $t \ge 0$, is a pre-Brownian motion, then (B_t) satisfies the Kolmogorov Continuity Criterion for q > 2 and $\epsilon = \frac{q}{2} - 1$.

Let $X \sim N(0,1)$, then $B_t - B_s = \sqrt{t-s}X$ for any s < t. Therefore,

$$\mathbf{E}[|B_t - B_s|^q] = (t - s)^{q/2} \mathbf{E}[|X|^q] < C_q (t - s)^{q/2}.$$

Hence, each pre-Brownian motion has a modification whose sample paths are continuous.

A stochastic process (B_t) , $t \ge 0$, is a *Brownian motion* if

- 1) (B_t) , $t \ge 0$, is a pre-Brownian motion.
- 2) All sample paths of B are continuous.

Dain Kim Day 11 : Review 1 January 12th 9 / 18

The Wiener measure

Let $C(\mathbb{R}^+,\mathbb{R})$ be the space of all continuous functions $f:\mathbb{R}^+\to\mathbb{R}$. For a given Brownian motion (B_t) , $t\geq 0$, we may consider the following map:

$$\Omega \to C(\mathbb{R}^+, \mathbb{R})$$
 $\omega \mapsto (t \mapsto B_t(\omega)).$

Let $\mathcal C$ be the smallest σ -field on $C(\mathbb R^+,\mathbb R)$ for which the coordinate mappings $w\mapsto w(t)$ are measurable for every $t\geq 0$. The Wiener measure $W(d\omega)$ is defined as the image of the probability measure $\mathbf P(d\omega)$.

Now we make a special choice

$$\Omega = \mathcal{C}(\mathbb{R}^+, \mathbb{R}), \quad \mathcal{F} = \mathcal{C}, \quad \mathbf{P}(dw) = W(dw),$$

then the *canonical process* $X_t(\omega) = \omega(t)$ is a Brownian motion. This is a *canonical construction* of Brownian motion.

 Dain Kim
 Day 11 : Review 1
 January 12th
 10 / 18

Strong Markov Property of Brownian Motion and Reflection Property

Theorem (Strong Markov Property)

Let T be a stopping time such that $\mathbf{P}(T < \infty) > 0$. Set, for $t \ge 0$,

$$B_t^{(T)} = \mathbb{1}_{\{T < \infty\}} (B_{T+t} - B_T).$$

Then under the probability measure $\mathbf{P}(\cdot|T<\infty)$, the process $(B_t^{(T)})$, $t\geq 0$, is a Brownian motion independent of \mathcal{F}_T .

Theorem

For every t > 0, let $S_t = \sup_{s \le t} B_s$. Then if $a \ge 0$ and $b \in (-\infty, a]$, we have

$$\mathbf{P}(S_t \geq a, B_t \leq b) = \mathbf{P}(B_t \geq 2a - b).$$

In particular, S_t has the same distribution as $|B_t|$.

Dain Kim Day 11 : Review 1 January 12th 11 / 18

The Wiener Integral

Note that pre-Brownian motion is defined as $B_t = G(\mathbbm{1}_{[0,t]})$. Conversely, for any given pre-Brownian motion (B_t) , the associated Gaussian white noise is determined fully: for any step function $f = \sum_{i=1}^n \lambda_i \mathbbm{1}_{(t_{i-1},t_i]}$, where $0 = t_0 < t_1 < \dots < t_n$,

$$G(f) = \sum_{i=1}^{n} \lambda_i (B_{t_i} - B_{t_{i-1}}).$$

We write for $f \in L^2(\mathbb{R}^+, \mathcal{B}(\mathbb{R}^+), dt)$,

$$G(f) = \int_0^\infty f(s)dB_s.$$

Similarly,

$$G(f\mathbb{1}_{[0,t]})=\int_0^t f(s)dB_s, \quad G(f\mathbb{1}_{(s,t]})=\int_s^t f(r)dB_r.$$

This integration is called the Wiener integral.

Dain Kim Day 11 : Review 1

Martingales

An adapted real-valued process (X_t) , $t \ge 0$, such that $X_t \in L^1$ for every t > 0 is called

- a martingale if $\mathbf{E}[X_t | \mathcal{F}_s] = X_s$ for every $0 \le s < t$.
- a supermartingale if $\mathbf{E}[X_t | \mathcal{F}_s] \leq X_s$ for every $0 \leq s < t$.
- a submartingale if $\mathbf{E}[X_t | \mathcal{F}_s] \ge X_s$ for every $0 \le s < t$.

Dain Kim Day 11: Review 1 January 12th 13 / 18

Continuous Local Martingales

An adapted process $M=(M_t)$, $t\geq 0$, with continuous sample paths and M(0)=0 a.s. is called a *continuous local martingale* if there exists a nondecreasing sequence $(T_n)_{n\geq 0}$ of stopping times such that

- 1) $T_n \nearrow \infty$, i.e., $T_n(\omega) \nearrow \infty$ for every $\omega \in \Omega$
- 2) for every n, the stopped process M^{T_n} is a uniformly integrable martingale.

We call T_n reduces M if $T_n \nearrow \infty$ and M^{T_n} is a uniformly integrable martingale for every n.

Dain Kim Day 11 : Review 1 January 12th 14/18

Properties of Continuous Local Martingales

Proposition

- 1) If M is a nonnegative continuous local martingale such that $M_0 \in L^1$, then M is a supermartingale.
- 2) If M is a continuous local martingale and there exists a random variable $Z \in L^1$ such that $|M_t| \leq Z$ for every $t \geq 0$, then M is a uniformly integrable martingale.
- 3) If M is a continuous local martingale and $M_0 \in L^1$, the sequence of stopping times

$$T_n = \inf\{t \ge 0 : |M_t| \ge n\}$$

reduces M.

 Dain Kim
 Day 11 : Review 1
 January 12th
 15 / 18

The Quadratic Variation of Continuous Local Martingales

We assume that (\mathcal{F}_t) is a complete filtration. That is, for every $A \subset \Omega$ such that there exists $A \subset B \subset \Omega$ with $\mathbf{P}(B) = 0$, $A \in \mathcal{F}_t$ for all t.

Theorem

Let $M=(M_t)$, $t\geq 0$, be a continuous local martingale. There exists an increasing process $(\langle M,M\rangle_t,\ t\geq 0$, which is unique up to indistinguishability, such that $M_t^2-\langle M,M\rangle_t$ is a continuous local martingale. Moreover,

$$\langle M, M \rangle_t = \lim_{\sup_i |t_{i+1} - t_i| \to 0} \sum_{i=1}^{n-1} (M_{t_i^n} - M_{t_{i-1}^n})^2$$

in probability. The process $\langle M, M \rangle$ is called the *quadratic variation* of M.

Examples. $\langle B, B \rangle_t = t$.

 Dain Kim
 Day 11 : Review 1
 January 12th
 16 / 18

The Bracket of Two Continuous Local Martingales

Let M and N be two continuous local martingales. The *bracket* $\langle M, N \rangle$ is the finite variation process defined by

$$\langle M, N \rangle_t = \frac{1}{2} \left(\langle M + N, M + N \rangle_t - \langle M, M \rangle_t - \langle N, N \rangle_t \right)$$

for every $t \ge 0$.

The bracket $\langle M,N\rangle$ is the unique finite variation process up to indistinguishability such that $M_tN_t-\langle M,N\rangle_t$ is a continuous local martingale.

Examples. $\langle B, B' \rangle_t = 0$.

 Dain Kim
 Day 11 : Review 1
 January 12th
 17 / 18

Exercises

Problem 1. [Exercise 2.25]

- 1. Show that the process (W_t) , $t \ge 0$, defined by $W_0 = 0$ and $W_t = tB_{1/t}$ for t > 0 is (indistinguishable of) a real Brownian motion started from 0.
- 2. Infer that $\lim_{t\to\infty}\frac{B_t}{t}=0$.

Problem 2. [Exercise 2.29]

Show that

$$\limsup_{t \searrow 0} \frac{B_t}{\sqrt{t}} = +\infty, \quad \limsup_{t \searrow 0} \frac{B_t}{\sqrt{t}} = -\infty.$$

Deduce that, for every $s \ge 0$, the function $t \mapsto B_t$ has a.s. no right derivative at s.

 Dain Kim
 Day 11 : Review 1
 January 12th
 18 / 18