PUENTE H CON TBJ

En la Figura se muestra un puente H con TBJ. Los transistores TIP102 y TIP107 son transistores en conexión Darlington que tienen construido internamente un diodo de colector a emisor, por lo que los diodos 1N4936 son opcionales. Sin embargo, se recomienda utilizarlos para una mejor protección de los transistores. Se recomienda utilizar los transistores TIP142 y TIP147 ya que pueden soportar corriente de colector más alta.

Las líneas marcadas como "FWD", "REV" y "ENA", son las líneas donde se aplican las señales de control. En la tabla 1 se indican sus posibles combinaciones y los resultados de las mismas.

Tabla 1

FWD	REV	ENA*	Description
1	0	0	Se activan S1 y S4. Giro FWD.
1	0	1	Se desactiva S4. En caso de aplicar una señal PWM, en el Puente se modula el giro FWD del motor.
1	1	0	Se activan S3 y S4. Se frena el giro del motor.
1	1	1	Se desactivan S3 y S4. Si se aplica una señal PWM, se modula el freno del giro del motor.
0	1	0	Se activan S2 y S3. Giro REV.
0	1	1	Se desactiva S3. Cuando se aplica una señal PWM, en el puente se modula el giro REV del motor.
0	0	0	S1, S2, S3 y S4 permanecen inactivos.
0	0	1	S1, S2, S3 y S4 permanecen inactivos.

I. Procedimiento de Prueba.

- 1. Revise que el circuito esté bien armado.
- 2. Ajustes principales del osciloscopio.
 - a. Ajuste V/DIV de cada canal de acuerdo con las amplitudes esperadas de las diferentes señales del circuito.
 - b. Ajuste SEC/DIV de acuerdo con la frecuencia de las señales del circuito.
 - c. Seleccione el Canal 1 como la fuente de disparo.
- 3. Conecte un motor de CD de baja potencia, a su circuito.
- 4. En la terminal de giro FWD aplique una señal de pulso cuadrado del generador de funciones de tal forma que pueda variar el ancho del pulso.
- 5. Varíe el ancho del pulso de la señal aplicada.
- 6. Observe la forma de onda en las terminales del motor.
- 7. En la terminal de giro REV aplique una señal de pulso cuadrado del generador de funciones de tal forma que pueda variar el ancho del pulso.
- 8. Varíe el ancho del pulso de la señal aplicada.
- 9. Observe la forma de onda en las terminales del motor.