

2014—2015 学年第一学期 《高等数学 (2-1)》第二阶段考试卷

(工科类)

参考答案及评分标准

专业班级	
姓 名_	
学 号_	
开课系室_	基础数学系
考试日期	2014年12月20日

题 号	1	1 1	111	四	五.	六	七	总分
本题满分	15	14	21	14	14	8	14	
本题得分	8	10	21	14	9	8	14	
阅卷人							,	

注意事项:

- 1. 请在试卷正面答题, 反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面清洁;
- 3. 本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共7页。

一. (共 3 小题,每小题 5 分,共计 15 分)判断下列命题是否正确 ? 在

本题满分 15 分 本 题 得 分

题后的括号内打"√"或"×",如果正确,请给出证明,如果不正确请举一个反例进行说明 .

1. 若 f(x) 在 x_0 点有极值 $f(x_0)$,则必有 $f'(x_0) = 0$.

2. 若 f(x) 二阶可导且 $f''(x_0) = 0$,则(x_0 , $f(x_0)$) 必是曲线 y = f(x)的拐点.

()

- 3. 设函数 f(x) 在[a,b]上连续,在(a,b)内可导,且 $\forall x \in (a,b)$ 有 f'(x) > 0,则 f(x) 在[a,b]单调递增.
- 二. (共2小题,每小题7分,共计14分)

				1
	b. I	1.	$\left(\frac{\sin x}{x}\right)^{-1}$	$\overline{x^2}$
1.	求极限	lım	l —— I	
		$x \rightarrow 0$	(x)	

本题满分 14 分			
本			
题			
得			
分			

2. 求函数 $f(x) = x^2 \ln(1+x)$ 的 n (n > 3) 阶麦克劳林公式 .

- 三. (共3小题,每小题7分,共计21分)
 - 1. 求不定积分 $\int \sin^6 x \cos^3 x \, dx$.

本是	逐满分 21 分
本	
题	
得	
分	

2. 求不定积分 $\int \frac{x^2 dx}{\sqrt{1-x^2}}$.

3. 求不定积分 $\int x^3 \ln x \, dx$.

四. (共2小题,每小题7分,共计14分)

1. 已知曲线 y = y(x) 上每一点的横坐标 x 处的二阶导数 y'' = 6x,

且曲线在点(0,-2)处的切线为2x-3y-6=0,试求这个曲线的方程.

本是	逐满分 14 分
本	
题	
得	
分	

2. 设 $\sin x$ 是函数 f(x) 的一个原函数, 求 $\int x f'(x) dx$.

五. (天 2 小趣,每小题 7 分,共计 14 分)
1. 求函数 $f(x) = (x-1) \cdot \sqrt[3]{x^2}$ 的凸性区间及曲线 y = f(x)的拐点.

本题满分14分			
本			
题			
得			
分			

2. 求曲线 $f(x) = \frac{1}{x} + \ln(1 + e^x)$ 的渐近线.

六.(本题 8 分) 设有一长为 8 cm、宽为 5 cm 的矩形铁皮,在每个角上剪去同样大小的正方形,问剪去正方形的边长为多少时,才能使剩下的铁皮折起来做成开口盒子的容积最大?最大的容积是多少?

本题满分8分		
本		
题		
得		
分		

七. (共2小题,每小题7分,共计14分)

1. 证明: $\forall x > 0$, 有 $x - \frac{x^2}{2} < \ln(1+x)$.

本题满分14分			
本			
题			
得			
分			

2. 设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(1)=0,证明:存在 $\xi \in (0,1)$,使得 $f(\xi)+\xi f'(\xi)=0$.