## P1: Test a Perceptual Phenomenon

1. What is our independent variable? What is our dependent variable?

Independent variable: type of tasks (a congruent and an incongruent tasks)

Dependent variable: a time for the performance of the two tasks

2. What is an appropriate set of hypotheses for this task? What kind of statistical test do you expect to perform? Justify your choices.

Null hypothesis H0 The difference between the congruent task and incongruent task population means is zero. (u2 - u1 = u0 = 0)

Alternative hypothesis H1: The difference between the congruent task and incongruent task population means are different. ( $u^2 - u^1 = u^0 = 0$ )

A z-test and a t-test are both used in hypothesis testing. But, in this case, a t-test is used. First, we cannot use a z-test because we don't know the population mean and the population standard deviation. Second, a t-test is used if we have a small sample size (less than 30). For this reason, I decided to used a t-test.

I use two-tailed test because we want to ensure that two means in hypothesis are the same or different.

I choose a dependent sample test. Since the congruent task and incongruent task is jointly performed in a trial, two tasks are dependent.

Time to Complete Word Set 1: 17.226

| 106788           |       |        |
|------------------|-------|--------|
| 5-10 sec         | 20932 | 19.60% |
| 10-15 sec        | 42617 | 39.91% |
| 15-20 sec        | 25709 | 24.07% |
| 20-25 sec        | 9757  | 9.14%  |
| 25-30 sec        | 3516  | 3.29%  |
| 30-35 sec        | 1482  | 1.39%  |
| 35-40 sec        | 862   | 0.81%  |
| More than 40 sec | 1913  | 1.79%  |

Time to Complete Word Set 2: 33.794

| 107304           |       |        |
|------------------|-------|--------|
| 5-10 sec         | 7508  | 7.00%  |
| 10-15 sec        | 8569  | 7.99%  |
| 15-20 sec        | 16717 | 15.58% |
| 20-25 sec        | 27555 | 25.68% |
| 25-30 sec        | 20088 | 18.72% |
| 30-35 sec        | 12428 | 11.58% |
| 35-40 sec        | 6422  | 5.98%  |
| More than 40 sec | 8017  | 7.47%  |

What is the difference between your Word Set 2 time and Word Set 1 time? (To calculate the difference: Word 2 time - Word 1 time = Difference Time) 16.5

| 183531                                       |       |        |
|----------------------------------------------|-------|--------|
| Word set 2 time is LESS than word set 1 time | 12713 | 6.93%  |
| 0-5 sec                                      | 35941 | 19.58% |
| 5-10 sec                                     | 46893 | 25.55% |
| 10-15 sec                                    | 44024 | 23.99% |
| 15-20 sec                                    | 20828 | 11.35% |
| 20-25 sec                                    | 10751 | 5.86%  |
| 25-30 sec                                    | 4376  | 2.38%  |
| 30-35 sec                                    | 2705  | 1.47%  |
| 35-40 sec                                    | 1720  | 0.94%  |
| More than 40 sec                             | 3580  | 1.95%  |

3. Report some descriptive statistics regarding this dataset. Include at least one measure of central tendency and at least one measure of variability.

Dataset

| Congruent | Incongruent | diff  |
|-----------|-------------|-------|
| 12.079    | 19.278      | 7.199 |

| 16.791 |        |        |
|--------|--------|--------|
|        | 18.741 | 1.95   |
| 9.564  | 21.214 | 11.65  |
| 8.63   | 15.687 | 7.057  |
| 14.669 | 22.803 | 8.134  |
| 12.238 | 20.878 | 8.64   |
| 14.692 | 24.572 | 9.88   |
| 8.987  | 17.394 | 8.407  |
| 9.401  | 20.762 | 11.361 |
| 14.48  | 26.282 | 11.802 |
| 22.328 | 24.524 | 2.196  |
| 15.298 | 18.644 | 3.346  |
| 15.073 | 17.51  | 2.437  |
| 16.929 | 20.33  | 3.401  |
| 18.2   | 35.255 | 17.055 |
| 12.13  | 22.158 | 10.028 |
| 18.495 | 25.139 | 6.644  |
| 10.639 | 20.429 | 9.79   |
| 11.344 | 17.425 | 6.081  |
| 12.369 | 34.288 | 21.919 |
| 12.944 | 23.894 | 10.95  |
| 14.233 | 17.96  | 3.727  |
| 19.71  | 22.058 | 2.348  |
| 16.004 | 21.157 | 5.153  |

The sample averages of a congruent task and an incongruent task, X1 and X2, equal 14.05 sec and 22.02 sec, respectively. the sample standard deviations of the congruent task and the incongruent task, s1 and s2, equal 3.56 sec and 4.80 sec, respectively. What interests me is the average and the standard deviation of the difference, which equal 7.96(Xd=X2-X1) and 4.86 (sd=s2-s1), respectively.

4. Provide one or two visualizations that show the distribution of the sample data. Write one or two sentences noting what you observe about the plot or plots.





The figure shows distributions of times received on congruent tasks and incongruent tasks. The bars in blue are for a congruent task, while, the bars in red are for an incongruent task. As can be seen, the congruent task takes less time than the incongruent task.

5. Now, perform the statistical test and report your results. What is your confidence level and your critical statistic value? Do you reject the null hypothesis or fail to reject it? Come to a conclusion in terms of the experiment task. Did the results match up with your expectations?

My confidence level is 95%. Since we want to know that the two population means are the same or not, two-tailed test is followed. The t-score is calculated as follows:  $t = \frac{(Xd - u0)}{\frac{Sd}{2n}}, \text{ where n is difference sample size. So, t-score is approximately 8.021.}$ 

The degree of freedom (df) is 23 (=48/2-1). From the t-table, the critical statistic value is approximately 2.069.

Since we have a two-tailed test, the p-value is the probability that a t-score having 40 degrees of freedom is extremely less than -8.021 or greater than 8.021. The p-value is close to 0.

Since t-score (8.021) is much greater than t-critical value (2.069), we declare statistical significance and reject the null hypothesis. In other words, the the congruent task population mean is different from the incongruent task population mean; the incongruent task takes more time than the congruent task.