Categorification of cyclotomic rings

ROBERT LAUGWITZ (University of Nottingham) joint work with YOU QI (University of Virginia)

AIM: p-DG Theory

Online talk — August 10, 2021

SUMMARY

Summary:

- ► Hopfological algebra is a generalization of *homological algebra* using *p*-complexes, *p* a prime.
- ightharpoonup p = 2 recovers classical homological algebra
- ▶ an approach to categorification of *small* quantum groups

Joint work with You Qi: ArXiv: Math.QA/1804.01478 We construct a triangulated tensor category

which categorifies the *cyclotomic integers* $\mathbb{O}_n = \mathbb{Z}[q]/\Phi_n(q)$.

The Construction of \mathcal{O}_n

CONTENTS

BACKGROUND

HOPFOLOGICAL ALGEBRA

THE CONSTRUCTION OF \mathcal{O}_n

BACKGROUND

BACKGROUND

•000

Quantum groups:

- ► $U_q(\mathfrak{g})$, *q*-deformation of $U(\mathfrak{g})$ (Drinfeld, Jimbo)
- ► small quantum group: $u_q(\mathfrak{g})$ finite-dimensional quotient, for q root of unity
- ► Categories $\dot{\mathbf{U}}_q(\mathfrak{g})$, $\dot{\mathbf{u}}_q(\mathfrak{g})$, objects are idempotents to ensure lattice grading (Lusztig)

~1990: Reshetikhin-Turaev Invariants and 3D TQFT

- use representation theory of small quantum groups $u_q(\mathfrak{g})$
- ▶ $q^n = 1$ root of unity $\longleftrightarrow n$ is the level in Chern–Simons theory

BACKGROUND

~1994: Categorification vision of Crane–Frenkel

- ► replace u_q(𝑔) by a *category* & study categorical representations
- ▶ the original algebra can be recovered via K_0 the *Grothendieck ring*
- ► the *Categorification Program*

► *ultimate goal*: algebraic construction of invariants of 4D manifolds & 4D TQFT

CATEGORIFICATION

Progress: for *q* generic

- ▶ $\mathbb{Z}[q, q^{-1}]$ -algebras, categorified using (graded) complexes $q \longleftrightarrow$ grading shift
- ► *Khovanov Homology* categorifies the *Jones Polynomial* [Khovanov ~2000]
- ► categorification of $\dot{\mathbf{U}}_q(\mathfrak{g})$ [Khovanov–Lauda, Chuang–Rouquier 2005–2010]
- ▶ vast literature...

CATEGORIFICATION

Progress: for $q^n = 1$, a root of unity

- $u_q(\mathfrak{g})$ is an \mathbb{O}_n -algebra \mathbb{O}_n cyclotomic integers
- ► Khovanov 2005: to categorify $\Phi_p(q) = 1 + q + ... + q^{p-1} = 0$ use the **stable category** of *H*-modules
- ▶ H a finite-dimensional Hopf algebra \Rightarrow Hopfological Algebra
- ▶ categorifications of $\dot{\mathbf{u}}_q(\mathfrak{sl}_2^+)$ [Khovanov–Qi], $\dot{\mathbf{u}}_q(\mathfrak{sl}_2)$, $\dot{\mathbf{U}}_q(\mathfrak{sl}_2)$ [Elias–Qi] ~2014–2016
- categorifications of Burau representation, tensor products of fundamental and Weyl representation [Qi–Sussan, Khovanov–Qi–Sussan]

HOPFOLOGICAL ALGEBRA

H — finite-dimensional Hopf algebra over k

- ► The regular *H* module has a 1-dimensional submodule \iff an integral element $\Lambda \in H$ [Larson–Sweedler, 1960s]
- ► H is a *Frobenius algebra* (self-dual as an algebra)
- ► {f.d. injective modules} = {f.d. projective modules}

HOPFOLOGICAL ALGEBRA

A generalization of homological algebra:

- ► Happel defined a triangulated category: the *stable category H-mod*
- ► *H*-mod and *H*-mod have the same objects
- ▶ In H-mod, projective modules P are annihilated (idP = 0)
- ► Short exact sequence:

$$0 \longrightarrow \mathbb{k} \xrightarrow{\Lambda} H \longrightarrow H/\Lambda H \longrightarrow 0$$

Tensoring with $H/\Lambda H \longleftrightarrow Hopfological$ shift

EXAMPLES

BACKGROUND

Example

 $H = \mathbb{k}[\mathrm{d}]/(\mathrm{d}^2)$ is a Hopf algebra in super-vector spaces. H-gmod gives (graded) chain complexes of \mathbb{k} -modules H-gmod is the *derived category* of chain complexes

Example

Let char $\mathbb{k} = p$. Then $H = \mathbb{k}[d]/(d^p)$ is a Hopf algebra over \mathbb{k}

$$\Delta(\mathbf{d}^n) = \sum_{k=0}^n \binom{n}{k} \mathbf{d}^k \otimes \mathbf{d}^{n-k}, \qquad \Lambda = \mathbf{d}^{p-1}$$

- ► *H*-mod gives *p*-complexes
- ► Go back to Meyer's (1940s)

CATEGORIFIED CYCLOTOMIC INTEGERS

Challenge: Find $V \in H$ -gmod with

$$0 = [V] = 1 + q + \ldots + q^{p-1} = \Phi_p(q) \in K_0(H\text{-}\mathbf{gmod}).$$

$$\boxed{1 \leftrightarrow \text{trivial module}} \qquad \boxed{q \leftrightarrow \text{grading shift}}$$

Solution [Khovanov]: Use $H = \mathbb{k}[d]/(d^p)$ as a Hopf algebra if char $\mathbb{k} = p$.

The regular module is projective:

$$0 = [H] = 1 + q + \ldots + q^{p-1} = \Phi_p(q) \in K_0(H$$
-gmod).

$$\Longrightarrow K_0(H$$
-**gmod** $) \cong \mathbb{O}_p$ — for a prime p .

p-DG ALGEBRAS

Hopfological algebra:

- ▶ study *H*-module algebras *A* with a *p*-differential $d: A \to A$, satisfying $d^p = 0$, and d(ab) = d(a)b + ad(b)
- ▶ triangulated category A-gmod $_H$ quotient of A-mod
- ► $K_0(A$ -**gmod** $_H)$ categorifies \mathbb{O}_p -modules (or \mathbb{O}_p -algebras)

Theorem (Elias–Qi, 2013)

The diagrammatic category $U = \bigoplus_{\lambda,\mu \in \mathbb{Z}} U^{\lambda}$ (Lauda) equipped with a p-differential categorifies the idempotent version of the small quantum group $\dot{\mathbf{u}}_q(\mathfrak{sl}_2)$, i.e.

$$igoplus_{\lambda \in \mathbb{Z}} K_0(\mathrm{D}_H(U^\lambda) ext{-mod}) \cong \dot{\mathfrak{u}}_{\mathbf{q}}(\mathfrak{sl}_{\mathbf{2}})$$

► Elias–Qi (2015) also categorified $\dot{\mathbf{U}}_q(\mathfrak{sl}_2)$

A BRAIDED HOPF ALGEBRA

Question: What if $n \neq p$?

Consider polynomial ring k[d], $\Delta(d) = d \otimes 1 + 1 \otimes d$

$$\Delta(\mathbf{d}^n) = \sum_{i} \binom{n}{i} \mathbf{d}^{n-i} \otimes \mathbf{d}^i$$

 (d^n) is *no* Hopf ideal.

Alternative: View $\Bbbk[\mathbf{d}]$ as a braided Hopf algebra in \mathbf{gVec}_q : \mathbb{Z} -graded vector spaces, braiding $\Psi(v\otimes w)=q^{|v||w|}w\otimes v$ — for fixed $q^n=1$ primitive

$$\Delta(\mathbf{d}^n) = \sum_{i} \binom{n}{i}_q \mathbf{d}^{n-i} \otimes \mathbf{d}^i = \mathbf{d}^n \otimes 1 + 1 \otimes \mathbf{d}^n$$

 $\Longrightarrow \Bbbk[\mathrm{d}]/(\mathrm{d}^n)$ is a Hopf algebra in \mathbf{gVec}_q

MULTIPLE *p*-DIFFERENTIALS

For general *n*, Grothendieck ring is too large:

$$K_0(\mathbb{k}[d]/(d^n)$$
-**gmod**) $\cong \mathbb{Z}[q,q^{-1}]/(1+q+\ldots+q^{n-1}) \ncong \mathbb{O}_n$.

Modules are *n*-complexes of [Meyer 1940s], [Kapranov ∼1996]

Mirmohades 2015: Categorification of \mathbb{O}_{pq} ($p \neq q$ odd primes) using quotient by an ideal in stable category of tensor product of two *Taft algebras* ($\mathbb{k}[d]/(d^p) \rtimes \mathbb{k}C_p$) $\otimes (\mathbb{k}[d]/(d^q) \rtimes \mathbb{k}C_q$).

More general example: $n = 2^2 \cdot 3$, need modules V_1 , V_2 with

$$[V_1] = 1 + q^6, \qquad [V_2] = 1 + q^4 + q^8$$

$$\mathbb{k} \xrightarrow{d_1} \mathbb{k} \{-6\} \qquad \mathbb{k} \xrightarrow{d_2} \mathbb{k} \{-4\} \xrightarrow{d_2} \mathbb{k} \{-8\}$$

$$gcd(1+q^6,1+q^4+q^8) = \Phi_6(q^2) = \Phi_{12}(q) = 1-q^2+q^4$$

The Braided Hopf Algebra H_n

Idea: Use *multiple differentials* of different degrees and order, which commute.

Definition (L.–Qi)

Decompose $n = p_1^{a_1} \dots p_t^{a_t}$, for p_k pairwise distinct primes

$$H_n := \mathbb{k}[\mathbf{d}_1, \dots, \mathbf{d}_t]/(\mathbf{d}_1^{p_1}, \dots \mathbf{d}_t^{p_t}), \qquad \deg(\mathbf{d}_k) = n_k = n/p_k$$

 \Longrightarrow H_n is a Hopf algebra in \mathbf{gVec}_q with $\Delta(\mathrm{d}_k)=\mathrm{d}_k\otimes 1+1\otimes \mathrm{d}_k$

HOPF SUBALGEBRAS \widehat{H}_n^k

Definition

Hopf subalgebras \widehat{H}_n^k : Consider the subalgebra generated by all differentials besides d_k :

$$\widehat{H}_n^k := \frac{\mathbb{k}[\mathbf{d}_1, \dots, \widehat{\mathbf{d}_k}, \dots \mathbf{d}_t]}{(\mathbf{d}_1^{p_1}, \dots, \widehat{\mathbf{d}_k^{p_k}}, \dots \mathbf{d}_t^{p_t})}$$

 $\implies \widehat{H}_n^k$ is Hopf subalgebra and quotient algebra of H_n . **Modules** W_k : W_k is the free \widehat{H}_n^k -module regarded as an H_n -module, where d_k acts by zero, d_l act freely for $l \neq k$.

THE IDEAL I

Definition (The ideal I)

Define I_k as the full subcategory on objects $V \in H_n$ -**gmod** which are images of H_n -modules with a filtration by objects $W_k\{b\}$. Let I be the full subcategory of H_n -**gmod** which consists of objects $U = \bigoplus_{k=1}^t U_k$, where U_k is an object in I_k .

Notes:

- ► There are no extensions between objects of I_k and I_l for $k \neq l$ (besides free modules, which are zero in H_n -gmod).
- ▶ In fact, all morphisms from objects in I_k to objects in I_l are null-homotopic.
- ▶ If $n = p^a$ then **I** is the zero ideal in H_n -gmod.

THE IDEAL I

Example

For $n = 2^a \cdot 3^b \cdot 5^c$, there exist various non-split extensions in I_1 , e.g.:

MAIN RESULT

Theorem (L.–Qi)

- ▶ I is a thick (or saturated) tensor ideal in H_n -gmod
- ► There is an isomorphism of algebras

ELEMENTS OF THE PROOF

Decompose $n = p_1^{a_1} \dots p_t^{a_t}$, pairwise distinct primes p_1, \dots, p_t . Denote $m = p_1 \dots p_t$, the **radical** of n.

Lemma

The Grothendieck group of H_n **-gmod** *is isomorphic, as a* $\mathbb{Z}[q, q^{-1}]$ *-algebra, to the quotient ring*

$$K_0(H_n$$
-**gmod**) $\cong \frac{\mathbb{Z}[q,q^{-1}]}{\langle \prod_{k=1}^t \frac{[m]_{\nu}}{[m/p_t]_{\nu}} \rangle}, \quad where \ \nu = q^{n/m}.$

The tensor product on H_n -**gmod** descends to the multiplication on the Grothendieck group level, while the grading shift functor $\{1\}$ descends to multiplication by q.

Note:

$$\frac{[m]_{\nu}}{[m/p_k]_{\nu}} = 1 + q^{n_k} + \ldots + q^{(p_k-1)n_k}$$

ELEMENTS OF THE PROOF

Again, for $n = p_1^{a_1} \dots p_t^{a_t}$ and $m = p_1 \dots p_t$, observe that

$$\Phi_n(q) = \Phi_m(q^{n/m}) = \gcd\left(\frac{[m]_{\nu}}{[m/p_1]_{\nu}}, \dots, \frac{[m]_{\nu}}{[m/p_t]_{\nu}}\right), \quad \text{for } \nu = q^{n/m}$$

And for the modules W_k generating **I**:

$$[W_k] = \prod_{l \neq k} \frac{[m]_{\nu}}{[m/p_k]_{\nu}} = \prod_{l \neq k} (1 + q^{n_k} + \dots + q^{(p_k - 1)n_k})$$

$$\implies \Phi_n(q) = \gcd([W_1], \dots, [W_t])$$

$$\Longrightarrow K_0(\mathbf{I}) = \langle \Phi_n(q) \rangle.$$

CONCLUDING REMARKS

- ▶ as an algebra, H_n is independent of q, but the coproduct depends on q
- ▶ natural isomorphisms $V \otimes_q W \xrightarrow{\sim} W \otimes_{q^{-1}} V$ no braiding
- ▶ Galois action $q \mapsto q^a$, there are Hopf algebra isomorphisms of bosonizations $H_n \rtimes_q \Bbbk C_n \cong H_n \rtimes_{q^a} \Bbbk C_n$, for $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$
- \blacktriangleright H_n -gmod is a spherical category

BACKGROUND

Thank you for your attention!

SOME REFERENCES

- [EQ16a] B. Elias and Y. Qi, An approach to categorification of some small quantum groups II, Adv. Math. 288 (2016), 81–151.
- [EQ16b] _____, A categorification of quantum $\mathfrak{sl}(2)$ at prime roots of unity, Adv. Math. **299** (2016), 863–930.
- [Kho16] M. Khovanov, Hopfological algebra and categorification at a root of unity: the first steps, J. Knot Theory Ramifications 25 (2016), no. 3, 1640006, 26.
- [KQ15] M. Khovanov and Y. Qi, An approach to categorification of some small quantum groups, Quantum Topol. 6 (2015), no. 2, 185–311.
- [LQ18] R. Laugwitz and Y. Qi, *A Categorification of Cyclotomic Rings*, ArXiv e-prints (April 2018), available at 1804.01478.
- [Mir15] D. Mirmohades, Categorification of the ring of cyclotomic integers for products of two primes, ArXiv e-prints (June 2015), available at 1506.08755.
 - [Qi14] Y. Qi, Hopfological algebra, Compos. Math. 150 (2014), no. 1, 1–45.