02 - Review of Basic Matrix Results

Junvie Pailden

SIUE, F2017, Stat 589

August 29, 2017

Review of Basic Matrix Results

Given matrices A and B of appropriate dimensions

- 1. Transposition: $(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}' \quad (\mathbf{A}\mathbf{B})' = (\mathbf{B}'\mathbf{A}')$
- 2. Trace: Given a square matrix A

•
$$tr(\mathbf{A}) = \sum diag(\mathbf{A})$$

- $tr(k\mathbf{A}) = k \cdot tr(\mathbf{A})$, $tr(\mathbf{A}') = tr(\mathbf{A})$
- $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B}), tr(\mathbf{AB}) = tr(\mathbf{BA})$
- Determinant

•
$$|\mathbf{A}'| = |\mathbf{A}|, |k\mathbf{A}| = k^n |\mathbf{A}|, |A^{-1}| = 1/|\mathbf{A}|$$

$$\begin{vmatrix} \mathbf{A}'| = |\mathbf{A}|, & |k\mathbf{A}| = k^n |\mathbf{A}|, & |A^{-1}| = 1/|\mathbf{A}| \end{vmatrix}$$

$$\begin{vmatrix} \mathbf{T} & \mathbf{U} \\ \mathbf{V} & \mathbf{W} \end{vmatrix} = |\mathbf{T}| \cdot |\mathbf{W} - \mathbf{V}\mathbf{T}^{-1}\mathbf{U}|$$

$$\begin{vmatrix} \mathbf{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{W} \end{vmatrix} = |\mathbf{T}| \cdot |\mathbf{W}|$$

$$ullet \left| egin{array}{cc} \mathbf{T} & \mathbf{0} \ \mathbf{0} & \mathbf{W} \end{array}
ight| = |\mathbf{T}| \cdot |\mathbf{W}|$$

Inverse Matrices

1. Inverse of a sum of Matrices:

$$(\mathbf{R} + \mathbf{S}\mathbf{T}\mathbf{U})^{-1} = \mathbf{R}^{-1} - \mathbf{R}^{-1}\mathbf{S}(\mathbf{T}^{-1} + \mathbf{U}\mathbf{R}^{-1}\mathbf{S})^{-1}\mathbf{U}\mathbf{R}^{-1}$$

2. Inverse of a partitioned matrix:

$$\begin{pmatrix} \mathbf{T} & \mathbf{U} \\ \mathbf{V} & \mathbf{W} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{T}^{-1} + \mathbf{T}^{-1}\mathbf{U}\mathbf{Q}^{-1}\mathbf{V}\mathbf{T}^{-1} & -\mathbf{T}^{-1}\mathbf{U}\mathbf{Q}^{-1} \\ -\mathbf{Q}^{-1}\mathbf{V}\mathbf{T}^{-1} & \mathbf{Q}^{-1} \end{pmatrix}$$

where $\mathbf{Q} = \mathbf{W} - \mathbf{V}\mathbf{T}^{-1}\mathbf{U}$.

Linear Independence

1. A list of v_1, \ldots, v_m vectors in \mathbb{R}^p is called **linearly** independent if the only choice of scalars $c_1, \ldots, c_m \in \mathbb{R}$ that makes $c_1v_1 + \cdots + c_kv_k$ equal 0 vector is $c_1 = \cdots = c_m = 0$.

2. The (subset) columns v_1, \ldots, v_j of matrix \mathbf{A} is **linearly** independent if the only choice of scalars $c_1, \ldots, c_j \in \mathbb{R}$ that makes $c_1v_1 + \cdots + c_jv_j$ equal 0 vector is $c_1 = \cdots = c_j = 0$.

3. The rank of matrix **A** is the maximum number of linearly independent columns of **A**.

Eigenvalues and Eigenvectors

1. A scalar λ is said to be an **eigenvalue** of $p \times p$ matrix $\bf A$ if there exists an $p \times 1$ vector x such that

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

then x is an **eigenvector** of A. By Cramer's Rule, the eigenvalues λ of A satisfies the characteristic equation

$$|\mathbf{A} - \lambda I| = 0$$
 (Why?)

- There is a correspondence between square matrices \mathbf{A} and linear transformations T defined by $T(x) = \mathbf{A}x$.
- Geometrically an eigenvector of A points in a direction that is stretched by the linear transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.

- 2. Given **A** with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, with multiplicities t_1, t_2, \dots, t_k .
- Rank(A) equals the number of nonzero eigenvalues
- $tr(A) = \sum_{i=1}^{k} t_i \lambda_i$
- $|A| = \prod_{i=1}^{k} \lambda_i^{t_i}$

```
# [1,] 13 -4 2
# [2,] -4 11 -2
# [3,] 2 -2 8
```

[,1] [,2] [,3]

```
# Use `eigen()` to get the eigenvalues/eigenvectors
# pairs. Returns a named list.
ev <- eigen(A)</pre>
```

```
(values <- ev$values) # extract eigenvalues
```

```
# [1] 17 8 7
```

(vectors <- ev\$vectors) # extract eigenvectors</pre>

```
# [,1] [,2] [,3]
# [1,] 0.7453560 0.6666667 0.0000000
# [2,] -0.5962848 0.6666667 0.4472136
# [3,] 0.2981424 -0.3333333 0.8944272
```

The eigenvalues are always returned in decreasing order, and each column of vectors corresponds to the elements in values.

Visualizing Eigenvectors and Eigenvalues¹

¹http://setosa.io/ev/eigenvectors-and-eigenvalues/

Special Matrices

 ${\bf A}$ is a real symmetric matrix if ${\bf A}^T={\bf A}$ and all entries in ${\bf A}$ are real numbers.

Properties of a a real symmetric matrix ${\bf A}$

- * all eigenvalues are real
- * eigenvectors corresponding to a distinct eigenvalues are orthogonal, $x_i^Tx_j=0$ if $\lambda_i\neq\lambda_j$

positive definite
$$\iff \mathbf{x}'\mathbf{A}\mathbf{x} > 0$$
 for all vector \mathbf{x} \iff all eigenvalues of \mathbf{A} are > 0 \iff is non-singular

positive semi-definite
$$\iff \mathbf{x}'\mathbf{A}\mathbf{x} \geq 0$$
 for all vector \mathbf{x} \iff all eigenvalues of \mathbf{A} are ≥ 0

Verify properties of eigenvalues/eigenvectors.

Eigenvectors are orthogonal, V'V = I

```
# [,1] [,2] [,3]
# [1,] 1.000000e+00 3.053113e-16 5.551115e-17
# [2,] 3.053113e-16 1.000000e+00 0.000000e+00
# [3,] 5.551115e-17 0.000000e+00 1.000000e+00
```

```
zapsmall(crossprod(vectors)) # rounding small #'s
```

```
# [,1] [,2] [,3]
# [1,] 1 0 0
# [2,] 0 1 0
# [3,] 0 0 1
```

Trace and Determinant of a Matrix in R

```
library(matrixcalc) # load `matrixcalc` package
matrix.trace(A) # trace
# [1] 32
sum(values) # verify with sum of eigenvalues
# [1] 32
det(A) # determinant of a matrix
# [1] 952
prod(values) # verify with product of eigenvalues
```

[1] 952

Rank and Inverse of a Matrix

```
matrix.rank(A) # rank of a matrix, need `matlib`
# [1] 3
sum(values != 0) # number of non-zero eigenvalues
```

```
(A.inv <- matrix.inverse(A)) # inverse
```

[1] 3

```
# [,1] [,2] [,3]
# [1,] 0.08823529 0.02941176 -0.01470588
# [2,] 0.02941176 0.10504202 0.01890756
# [3,] -0.01470588 0.01890756 0.13340336
```

Inverse of A: $A^{-1}A = I$

zapsmall(A.inv %*% A) # check

```
# [,1] [,2] [,3]
# [1,] 1 0 0
# [2,] 0 1 0
# [3,] 0 0 1
```

Check whether A Positive Definite and Positive Semi-Definite

```
c(is.positive.definite(A), is.positive.semi.definite(A))
```

```
# [1] TRUE TRUE
```

Singular, Idempotent, Orthogonal Matrix

Singular Matrix: $\mathbf{A} \ k \times k$ matrix is singular if $Rank(\mathbf{A}) < k$

Idempotent matrix: Let ${\bf A}$ be a $k \times k$ matrix, ${\bf A}$ is idempotent if

$$\mathbf{A} \cdot \mathbf{A} = \mathbf{A}$$

Orthogonal matrix: A square matrix A is orthogonal if

$$\mathbf{A}'\mathbf{A} = \mathbf{A}\mathbf{A}' = \mathbf{I_k}$$

if **A** is non-singular $\mathbf{A}' = \mathbf{A}^{-1}$

New Matrix Verification

```
B \leftarrow matrix(c(2, -1, 2, -1, 2, -1, 2, -1, 2),
             nrow=3, byrow=TRUE )
c(is.positive.definite(B), is.positive.semi.definite(B))
# [1] FALSE TRUE
eigen(B)$values # one eigenvalue is zero
# [1] 4.732051e+00 1.267949e+00 8.881784e-16
c(is.singular.matrix(B), is.idempotent.matrix(B))
```

TRUE FALSE

Review other matrix results.

- Our Textbook
- 2. The Matrix Cookbook by Petersen and Pedersen (2012)²
- 3. Linear Algebra Abridged by Sheldon Axler (2016)³

²http:

^{//}www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274

http://linear.axler.net/LinearAbridged.pdf