Algorithmique Avancée

Auditoire:

1ère Année en Master Professionnel en Informatique et Réseaux ISET de Sfax

Algorithmique Avancée

- Introduction, Complexité des algorithmes
- 2 Algorithmes de Tri
- Le concept « Diviser pour régner »
- 4 Structures Arborescentes de Recherche
- 1 Les graphes

Introduction: Définitions

- Un Algorithme =
 - une suite ordonnée d'opérations ou d'instruction écrites pour la résolution d'un problème donné.

- Algorithme =
 - une suite d'actions que devra effectuer un automate pour arriver à partir d'un état initial, en un temps fini, à un résultat

Introduction: Qualités d'un bon algorithme

Correct

- Il se termine
- Le résultat qu'il donne est « correct »

Complet

 considère tous les cas possibles et donne un résultat dans chaque cas.

Efficace

- rapide (en termes de temps d'exécution);
- peu gourmand en ressources (espace de stockage, mémoire utilisée)

Complexité Algorithmique : Motivation

- Besoin d'outils qui permettent
 - d'évaluer la qualité théorique des algorithmes proposés
 - De comparer différentes solutions algorithmiques pour un même problème

- But du chapitre : examiner l'efficacité d'un algorithme en termes de :
 - Temps d'exécution : Complexité temporelle
 - Espace mémoire : Complexité spatiale

Complexité Temporelle ?

Unités de mesure :

On ne mesure pas la durée en minutes, secondes, ... :

Pourquoi?

- cela impliquerait d'implémenter les algorithmes qu'on veut comparer;
- ces mesures ne seraient pas pertinentes car le même algorithme sera plus rapide sur une machine plus puissante;

Solution

- utiliser des unités de temps abstraites proportionnelles au nombre d'opérations effectuées;
- Au besoin, adapter ces quantités en fonction de la machine sur laquelle l'algorithme s'exécute

Calcul de la Complexité Temporelle : Principe

- Chaque instruction basique consomme une unité de temps :
 - affectation d'une variable, comparaison, +, -,* , =, ...
- Chaque itération d'une boucle rajoute le nombre d'unités de temps consommées dans le corps de cette boucle;
- Chaque appel de fonction rajoute le nombre d'unités de temps consommées dans cette fonction;
- → Pour avoir le nombre d'opérations effectuées par l'algorithme on additionne le tout

Calcul de la Complexité Temporelle : Exemple1

```
Exemple: calcul la factorielle d'un nombre N >= 0
 - N! = N * (N-1)*(N-2)* ... * 2 * 1 (avec 0!=1)
  Fonction Factorielle ( N : entier ) : entier
  Var
  i, fact: entier
  Début
       fact ← 1
                                                                     Initialisation: 1
       i ← 2
                                                                     initialisation: 1
       tantque (i<=N) faire
                                                    itérations : au plus N-1
                 fact ← fact * i
                                                      multiplication + affectation : 2
                 i ← i+1
                                                            addition + affectation : 2
       finfaire
  Factorielle ← fact
                                                             Dernier test +1
  Fin factorielle
```

Renvoi d'une valeur : 1

- Pour chaque itération, il y a un test
- Nombre total d'opérations est :
 - 1+1+(N-1)*5+1+1=5N-1

Calcul de la Complexité Temporelle : Exemple2

Exemple : calcul du pgcd de deux entiers a et b

```
Fonction PGCD (a,b : entier) : entier

Var

d : entier

Début

d← min(a,b)

tant que (reste(a,d)<>0 ou reste (b,d) <> 0 faire

5+5+3

d← d-1

fin faire

PGCD ←d 1

Fin PGCD
```

Calculer le nombre d'opérations de PGCD

```
Fonction MIN(a,b : entier ) : entier

Var

M:entier

Debut

M← a

Si b< a alors

M←b

Fin Si

Min ←M

Fin MIN
```

```
Fonction Reste(i,j : entier) : entier

Var

d : entier

Début

5

d← i/j

Reste ←i − d * j

Fin Reste
```

Calcul de la Complexité Temporelle : Remarques

- Le calcul n'est pas toujours exact !!!
 - Le nombre d'itération peut ne pas être connu d'avance

```
Lire(x)
i ←1
S ←0
Tant que (i<=X )faire
s ←s+ 1
Fin faire
```

 Lors du branchement conditionnel, le nombre de comparaisons à effectuer n'est pas toujours le même

if
$$(i \le N \&\& T[i] > T[i-1])$$

Calcul de la Complexité Temporelle : Définitions (1)

• Qu'en est il pour la recherche séquentielle dans un tableau ?

```
Fonction recherche ( T : Tab, N : entier , X : entier) : logique
  Var
            i: entier
            trouve : logique
  Début
                                                      Le nombre d'itérations dépend de
Jant que (i<= N et T[i] <> X) faire
                                                                - X
            i ← i +1
                                                                - T (en termes de valeurs)
  Fin faire
  Si i> N alors
        trouve ← faux
       sinon trouve ← vrai
  Fin si
  Recherche ← trouve
  Fin Recherche
```

Calcul de la Complexité Temporelle : Définitions (2)

- On définit 3 types de complexité :
 - Complexité au meilleur des cas : C'est le plus petit nombre d'opérations qu'aura à exécuter l'algorithme sur un jeu de données de taille fixée
 - Complexité au pire des cas : C'est le plus grand nombre d'opérations qu'aura à exécuter l'algorithme sur un jeu de données de taille fixée
 - Complexité en moyenne : C'est la moyenne des complexités de l'algorithme sur des jeux de données

Comportement Asymptotique (1)

- Soit
 - Un problème à résoudre de taille N, et
 - Deux algorithmes A1 et A2 résolvant ce problème ayant comme nombre d'opérations respectivement $f_1(N)$ et $f_2(N)$

- Que choisir?
 - A2 semble correspondre à l'algorithme le plus efficace
 - Mais seulement pour de très petites valeurs

Comportement Asymptotique (2)

- La complexité d'un algorithme est une mesure de sa performance asymptotique dans le pire cas
- Que signifie asymptotique ?
 - on s'intéresse à des données très grandes ;
 - pourquoi ?
 - les petites valeurs ne sont pas assez informatives ;
- Que signifie dans le pire cas" ?
 - on s'intéresse à la performance de l'algorithme dans les situations où le problème prend le plus de temps à résoudre;
 - pourquoi ?
 - on veut être sûr que l'algorithme ne prendra jamais plus de temps que ce qu'on a estimé ;

La notation O(.)

- Les calculs effectués
 - Peuvent être longs et pénibles
 - Leurs valeurs précises peuvent être inutiles
- On va faire recours à une approximation de ce calcul représentée par O(.)
- si:

$$\exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}, \forall n \geq n_0 : |f(n)| \leq c|g(n)|$$

Autrement dit : f(n) est en O(g(n)) s'il existe un seuil à partir duquel la croissance de la fonction f(.) est toujours dominée par la fonction g(.), à une constante multiplicative fixée près

La notation O(.): Exemples

Quelques cas où f (n) est O(g(n))

La notation O(.): Exemples d'utilisation

- Prouvons que la fonction $f_1(n) = 5n + 37$ est en O(n):
 - but : trouver une constante $c \in R$ et un seuil $n_0 \in N$ à partir duquel $|f_1(n)| \le c|n|$
 - on en déduit donc que c = 6 fonctionne à partir du seuil n0 = 37

$$|5*37+37| \le 6*|37|$$
;
 $|5*38+37| \le 6*|38|$;
 \vdots

– on remarque que $|5n + 37| \le |6n| \sin \ge 37$

Remarque

- l'optimisation n'est pas demandée (le plus petit c où n_0 qui fonctionne). Il faut juste fournir des valeurs qui fonctionnent (c=10 et n_0 = 8 est aussi acceptable)

La notation O(.): Exemples d'utilisation

- Prouvons que la fonction $f_2(n) = 6n^2 + 2n 8$ est en $O(n^2)$
 - cherchons d'abord la constante c ;
 - c = 6 ne peut pas marcher,
 - essayons donc c = 7;
 - on doit alors trouver un seuil n₀ ∈ N à partir duquel
 $|f_2(n)| \le 7 |n^2|$
 - un simple calcul nous donne $n_1 = -(4/3)$ et $n_2 = 1$ comme racines de l'équation $6n^2 + 2n 8 = 0$;

 en conclusion, c = 7 et n0 = 1 nous donnent le résultat voulu

La notation O(.): Règles de calcul

- Les processeurs actuels effectuent plusieurs millions d'opérations à la seconde;
 - qu'une affectation requière 2 ou 4 unités de temps ne change donc pas grand-chose;
 - un nombre constant d'instructions est donc aussi négligeable par rapport à la croissance de la taille des données;
 - pour de grandes valeurs de n, le terme de plus haut degré l'emportera ;
- → On préfère donc avoir une idée du temps d'exécution de l'algorithme plutôt qu'une expression plus précise mais inutilement compliquée

La notation O(.): Règles de calcul & Hiérarchie

Conséquences

- On calcule le temps d'exécution comme avant, mais on effectue les simplifications suivantes :
 - on oublie les constantes multiplicatives (elles valent 1);
 - on annule les constantes additives ;
 - on ne retient que les termes dominants ;
- Exemple (simplifications)
 - Soit un algorithme effectuant $g(n) = 6n^2 + 2n 8$ operations;
 - on remplace les constantes multiplicatives par 1 : 1n² + 1n 8
 - on annule les constantes additives : 1n² + 1n + 0
 - on garde le terme de plus haut degré : n² + 0
- et on a donc $g(n) = O(n^2)$.

Classes de complexité

Hiérarchie

- Pour faire un choix entre plusieurs algorithmes, il faut être capable de situer leurs complexités
- On fait une première distinction entre les deux classes suivantes :
 - les algorithmes dits polynomiaux, dont la complexité est en O(n^k) pour un certain k;
 - les algorithmes dits exponentiels, dont la complexité est en O(aⁿ) pour une certaine valeur de a

Calcul de la complexité

Cas d'un traitement Conditionnel

```
Si (condition) Alors
| Traitement1
Sinon
| Traitement2
Fin Si
```

O(condition) + max(O(traitement 1),O(traitement2)

Exemple

```
Si (A>10) Alors

x← b*2 – 1

sinon

x← (b+2) – A * 5

A←A*2

Fin Si
```

```
Si (A>10 et b<A+b) Alors

x← b*2 – 1

sinon

x←A*2

Fin Si
```

Calcul de la complexité (suite)

• Cas d'un traitement itératif : Boucle TantQue

```
Tant que (condition) faire
| Traitement
Fin faire
```

Nombre Répétition * (O(Condition) + (O(Traitement)) + O(Condition)

Exemple

```
i←1
Tantque(i<10) Faire
lire(A)
S←S+A
i← i+1
Fin faire
```

Calcul de la complexité (suite)

Cas d'un traitement itératif : Boucle Pour

```
Pour i de indDeb à indFin faire
Traitement
Fin faire
```

```
\sum_{IndDeb}^{IndFin} O(Traitement)
```

Exemple

```
Pour i de 1 à 10 faire
Faire
lire(A)
S←S+A
Fin faire
```

Exemples de Calcul de complexité

Tri à Bulles

```
Procédure TriBulles (Entrée N : entier, E/S tab : TabEntier)
var
     i, k :entier ;
     tmp: entier;
Début
    Pour i de N à 2 faire
                                                                                  \rightarrow O(n<sup>2</sup>)
         Pour k de 1 à i-1 faire
                  Si (tab[k] > tab[k+1]) alors
                          tmp \leftarrow tab[k];
                          tab[k] \leftarrow tab[k+1];
                          tab[k+1] \leftarrow tmp;
                  Fin si
         Fin faire
    Fin faire
Fin TriBulles
```

Exemples de Calcul de complexité

Tri par insertion

```
Procédure TriInsertion (Entrée N : entier, E/S tab : TabEntier)
var
      i, k :entier ;
      tmp: entier;
Début
     Pour i de 2 à N faire
        tmp \leftarrow tab[i];
        k \leftarrow i;
        Tant que k > 1 ET tab[k - 1] > tmp faire
               tab[k] \leftarrow tab[k - 1];
               k \leftarrow k - 1:
        Fin Tant que
        tab[k] \leftarrow tmp;
     Fin faire
```

Fin TriInsertion

- Tri par insertion : calcul de la complexité
 - La taille du tableau à trier est N
 - On a deux boucles imbriquées :
 - La première indique l'élément suivant à insérer dans la partie triée du tableau
 - Elle se répète n-1 fois puisque le premier élément n'est pas traité
 - Pour chaque élément de la première boucle, on fait un parcours dans la partie triée pour déterminer son emplacement (nombre de parcours dépend de la valeur courante de tmp)

Tri par insertion : calcul de la complexité

- Au meilleur des cas:
 - Le cas le plus favorable pour cet algorithme est quand le tableau est déjà trié
 → O(n)
- Au pire des cas :
 - Le cas le plus défavorable est quand le tableau est inversement trié :
 - $I = 2 \rightarrow 1$ itération
 - $I = 3 \rightarrow 2$ itérations

•

- $I = N \rightarrow N-1$ itérations
- Soit 1 + 2+3+ ...+(n-1) = (n(n+1)/2) n = n(n-1)/2 Somme des éléments d'une suite arithmétique : (premier terme + dernier terme)*nombre de termes /2
- → sa complexité est de O(n²)
- En moyenne des cas:
 - La moitié des éléments sont triés, et sur l'autre moitié ils sont inversement triés
 - \rightarrow O(n²)

Exemples de Calcul de complexité

Recherche dichotomique

```
Fonction RechDicho(Tab: Tableau, borneinf: entier, bornesup: entier,
elemcherche :entier) : entier
      Trouve = false;
      Tant que ((non trouve) ET (borneinf<=bornesup)) faire
        mil = (borneinf+bornesup) DIV 2
        Si (Tab[mil]=elemcherche) Alors
                 trouve=true
        Sinon
                 Si (elemcherche < Tab[mil]) Alors bornesup = mil-1
                 Sinon borneinf = mil+1:
                 Fin Si
        Fin Si
       Fin faire
       Si (trouve) Alors Retourner (mil)
      Sinon Retourner (-1)
      Fin Si
Fin RechDicho
```

Exemples de Calcul de complexité

(suite)

- Recherche dichotomique : calcul de la complexité
 - Supposons que le tableau à trier est de taille n (une puissance de 2 (n = 2 q)
 - Le pire des cas pour la recherche d'un élément est de continuer les divisions jusqu'à obtenir un tableau de taille 1
 - Q est les nombre d'itérations nécessaires pour arriver à un tableau de taille 1
 - Itération 1 : n/2 = n/2¹
 - Itération 2 : n/4 = n/2²
 - Itération 3 : $n/8 = n/2^3$
 - •
 - •
 - Itération q : n/2^q
 - Dernière itération → taille du tableau = 1
 - $n/2^q = 1$
 - 2^q =n
 - $q = log_2(n) \rightarrow O(log_2(n))$

Tour de Hanoi

Principe

- On dispose d'une plaquette de bois où sont plantées 3 tiges numérotées 1,2 et 3
- Sur ces tiges sont empilées des disques de diamètres différents
- Règles de jeu :
 - On ne peut déplacer qu'un disque à la fois
 - Il est interdit de poser un disque sur un disque plus petit
 - A u début les disques sont sur la tige 1 (celle de gauche)
 - A la fin, les disques doivent être sur la tige 3 (celle de droite)

Tour de Hanoi : Démarche

- On suppose que l'on sait résoudre le problème pour (n-1) disques,.
- Pour déplacer n disques de la tige 1 vers la tige 3 :
 - on peut déplacer les (n-1) disques les plus petits (ceux d'en haut) vers la tige
 2
 - On déplace le plus grand disque de la tige 1 vers tige 3
 - On déplace les (n-1) plus petits disques de la tige 2 vers la tige 3

Tour de Hanoi : Algorithme

```
Procédure Hanoi (n, départ, intermédiaire, destination)
Si n > 0 Alors
Hanoi (n-1, départ, destination, intermédiaire)
déplacer un disque de départ vers destination
Hanoi (n-1, intermédiaire, départ, destination)
Fin Si
Fin
```

Exemples de Calcul de complexité

(suite)

- Tour de Hanoi : Calcul de la complexité
 - On compte le nombre H(n) de déplacements pour passer n disques d'une tige de départ vers une tige destination
 - H(n) = H(n-1) + 1 + H(n-1) = 2 H(n-1) + 1
 - De même : H(n-1) = 2 H(n-2) +1

 $\rightarrow O(2^n)$

```
H(n) = 2.H(n-1) + 1

2.H(n-1) = 2^2.H(n-2) + 2

2^2.H(n-2) = 2^3.H(n-3) + 2^2

...
2^{n-2}.H(2) = 2^{n-1}.H(1) + 2^{n-2}

H(n) = 2^{n-1}.H(1) + 1 + 2 + ... + 2^{n-2} = 2^{n-1}+2^{n-1}-1 = 2^n-1
```

