TRSET

Nhận xét 1: $\lfloor \frac{N}{1} \rfloor \ge \lfloor \frac{N}{2} \rfloor \ge \ldots \ge \lfloor \frac{N}{N} \rfloor$.

Nhận xét 2: Dãy $\lfloor \frac{N}{1} \rfloor$, $\lfloor \frac{N}{2} \rfloor$, ..., $\lfloor \frac{N}{N} \rfloor$ có không quá $2\sqrt{N}$ số phân biệt. Phần chứng minh nhường lại cho bạn đọc.

Nhận xét 3: Với một số nguyên dương $1 \le L \le N$ bất kì, đặt $d = \lfloor \frac{N}{L} \rfloor$ và đặt $R = \lfloor \frac{N}{d} \rfloor$ thì $\lfloor \frac{N}{L} \rfloor = \lfloor \frac{N}{L+1} \rfloor = \ldots = \lfloor \frac{N}{R} \rfloor$ và R - L + 1 đạt giá trị lớn nhất (tương ứng với số nguyên L).

Tách dãy $\lfloor \frac{N}{1} \rfloor, \lfloor \frac{N}{2} \rfloor, \dots, \lfloor \frac{N}{N} \rfloor$ thành các đoạn con liên tiếp giống nhau. Giả sử đoạn thứ i là

$$\lfloor \frac{N}{L_i} \rfloor, \lfloor \frac{N}{L_i + 1} \rfloor, \dots, \lfloor \frac{N}{R_i} \rfloor$$

Lúc này với một đoạn $[L_i, R_i]$ bất kì, đoạn thoả mãn dài nhất rơi vào 4 trường hợp sau:

- $U \leq L_i \leq R_i \leq V$: kết quả là đoạn $[L_i, R_i]$.
- $U \leq L_i \leq V \leq R_i$: kết quả là đoạn $[L_i, V]$.
- $L_i \leq U \leq R_i \leq V$: kết quả là đoạn $[U, R_i]$.
- $max(L_i, U) < min(R_i, V)$: kết quả là 0.