Introducing Microbiome Bioinformatics

Part 5.

Recap: Aims

- Microbiome analysis
 - with particular regard to sequence informatics concepts
- "Top down" putting analysis tools and resources in context
- No highly detailed technicalities (yet)
 - No instructions on how to run particular programs
- Why you are using the bioinformatics approaches you use; pros, cons; alternatives

Topics, top-down

Series of talks

- 4 so far
- Open ended... as long there is demand
- Expected to be every 2 weeks, but all dates will be confirmed in advance
 - Bite-size bioinformatics mailing list
- The next few will cover:

(not necessarily in this order...)

- 16S analysis for community profiling
- Classification issues (taxonomies etc)
- Analysing richness and diversity of those communities
- Dealing with sequencing and other errors
- Informal and flexible
 - Please interrupt and ask questions
 - Suggestions for topics for further focus

Series of talks

- Part 1: 27/1/2017
 - "Biological and Experimental Stuff that a microbiome bioinformatician needs to know"
 - Overview of marker gene sequencing for community analysis
- Part 2: 10/2/2017
 - Overview of whole-metagenome sequencing
- Part 3: 24/2/2017
 - Focus on metatranscriptomics
- Part 4: 10/3/2017
 - Different bioinformatics approaches to processing 16S read data
- Slideshows
 - http://ghfs1.ifr.ac.uk/ghfs/

To be confirmed...

7th April Barton

21st April Rollesby

5th May Barton

• 19th May Rollesby cancelled

Who is in there?

— In what amounts?

24/03/2017

Amplification of a segment of the gene which codes for a variable region of the 16S rRNA molecule
→Primers

The variable region is chosen to distinguish between taxa

Community analysis by marker-gene sequencing

Recap- some considerations

(not mutually exclusive)

Clustering: comparing reads with each other ("self-referential")

Using a reference database

OTUs by de novo clustering (not the only way)

Sequence Identity

16S rRNA gene: V4-V5 region

Escherichia coli K-12 MC1400 Enterobacter cloacae

(same Family)

94.5% sequence identity in **V4-V5** region

Ecoli_K-12	1	TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCA	50
Enterobacter	1	TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCA	50
Ecoli_K-12	51	GGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTG	100
Enterobacter	51	GGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTG	100
Ecoli_K-12	101	CATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGG	150
Enterobacter	101	CATTCGAAACTGGCAGGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGG	150
Ecoli_K-12	151	TGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCG	200
Enterobacter	151	TGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCG	200
Ecoli_K-12	201	GCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAAC	250
Enterobacter	201	GCCCCTTGGACAAAGACTGACCTTCAGGTGCCAAAGCGTGGGGAGCAAAC	250
Ecoli_K-12	251	AGG 253	
Enterobacter	251	AGG 253	

(same Phylum, different Classes)

Escherichia coli K-12 MC1400 Campylobacter jejuni SSI 5384-98

75.1% sequence identity in V4-V5 region *

Ecoli_K-12	1 TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCA
Campylobacter	1 TACGGAGGGTGCAAGCGTTACTCGGAATCACTGGGCGTAAAGGGCGCGTA 50
Ecoli_K-12	51 GGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTG 100
Campylobacter	51 GGCGGATTATCAAGTCTCTTGTGAAATCTAATGGCTTAACCATTAAACTG 100
Ecoli_K-12	101 CATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGG 150
Campylobacter	101 CTTGAGAAACTGATAGTCTAGAGTGAGGGAGGGGAGGGCAGATGGAATTGGTGG 150
Ecoli_K-12	151 TGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCG 200
Campylobacter	151 TGTAGGGGTAAAATCCGTAGATATCACCAAGAATACCCATTGCGAAGGCG 200
Ecoli_K-12	201 GCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAAC 250
Campylobacter	201 ATTTGCTGGAACTCAACTGACGCTAAGGCGCGAAAGCGTGGGGAGCAAAC 250
Ecoli_K-12	* With this particular scoring scheme * SEQUENCE IDENTITY IS NOT AN IMMUTABLE
Campylobacter	251 AGG 253 PROPERTY OF A PAIR OF SEQUENCES

(different Phyla)

Escherichia coli K-12 MC1400 Lactobacillus salivarius JCM 1231

79.1% sequence identity in V4-V5 region

Ecoli_K-12	1	TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCA	5(
Lactobacillus	1	TACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGGGAACGCA	5(
Ecoli_K-12	51	GGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTG	100
Lactobacillus	51	GGCGGTCTTTTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGTAGTG	100
Ecoli_K-12	101	CATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGGTAGAATTCCAGG	150
Lactobacillus	101	CATTGGAAACTGGGAGACTTGAGTGCAGAAGAGAGAGAGTGGAACTCCATG	150
Ecoli_K-12	151	TGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCG	200
Lactobacillus	151	TGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAAGCG	200
Ecoli_K-12	201	GCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAAC	250
Lactobacillus	201	GCTCTCTGGTCTGTAACTGACGCTGAGGTTCGAAAGCGTGGGTAGCAAAC	250
Ecoli_K-12	251	AGG 253	
Lactobacillus	251	AGG 253	

(different Domains/Kingdoms)

Escherichia coli K-12 MC1400 Methanobrevibacter acididurans ATM

64.3% sequence identity in V4-V5 region

Ecoli_K-12	1	-TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGC	4 9
Methanobrevib	1	ACCCGGCAGCT-CTAGTGGTAGCTGTTTTTTTTTGGGCCTAAAGCGTTCGT	49
Ecoli_K-12	50	AGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAAC-CTGGGAAC	98
Methanobrevib	50	AGCCGGTTTAATAAGTCTTTGGTGAAATCCTGTTTTTTAACTATGGGAAT	99
Ecoli_K-12	99	TGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCA	148
Methanobrevib	100	TGCTGAGGATACTGTTAGGCTTGAGGTCGGGAGAGGTTAGCGGTACTCCC	149
Ecoli_K-12	149	GGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGG	198
Methanobrevib	150	AGGGTAGGGGTGAAATCCTGTAATCCTGGGAGGACCACCTGTGGCGAAGG	199
Ecoli_K-12	199	CGGCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAA	248
Methanobrevib	200	CGGCTAACTGGAACGAACCTGACGGTGAGGGACGAAAGCTAGGGGCGCGA	249
Ecoli_K-12	249	ACAGG 253	
Methanobrevib	250	ACCGG 254	

Clustering algorithms

- A complex topic more on this later on
- For now, just be aware that sequence-clustering algorithms for OTU-assignment usually use a similarity threshold
 - Expressed as a percentage sequence identity usually 97%
- For any given threshold, the results depend on which clustering algorithm is used
- % identity thresholds are also highly relevant in other sequence-comparison contexts (besides clustering) for dealing with OTUs

97why?

- "Almost all published papers use 97% clustering, so this will be easier to explain to your PI and to referees."
 - Robert Edgar, UPARSE/UNOISE FAQ, drive5.com
- That's good for consistency
- Although the algorithm-dependent results for any x%, is not
- but where did 97% come from?

Guidelines

- Using 97% is fine
- Don't expect your OTUs to equate to "species"
 - Or any other predefined taxonomic level
- Using 97% gives perhaps the best chance of comparability with other published studies
- in any case But: (ir)reproducibility of results is very depend on other things— such as:
 - Which clustering/assignment algorithm is used
 - How amplification/sequencing errors are handled

So, what are OTUs?

What do they represent?

How do they relate to taxa?

...and what's so special about the number 97?

A very brief summary of taxonomy

More details of prokaryote taxonomy

– and why it's sometimes quite

annoying - in a future session

Strictly, "Systematics"

- The discipline of taxonomic classification

Taxonomies

Some oft-used taxonomic levels

- Kingdom (Domain)
- Phylum
- Class
- Order
- Family
- Genus
- Species
- strain

(Numerous intermediate levels are also used – not shown)

Example taxa

- Bacteria
- Firmicutes
- Bacilli
- Lactobacillales
- Streptococcaceae
- Streptococcus
- Streptococcus pneumoniae
- S. pneumoniae ATCC 700669

- Organisms classified in the same taxa share:
 - Characteristics (observable)
 - Common descent (inferred)
- Organisms in the lowest groups share the most characteristics
 - And are the most recently diverged
 - Species represent isolated reproductive groups
- That's the idea anyway...
- But taxonomy is difficult.... and messy

"there are as many ideas on species as there are biologists"

- Cowan (1968) A dictionary of microbial taxonomic usage, pub. Oliver and Boyd
- 'Mayden (1997) categorized the 25 concepts developed until 1996 and arranged them in a hierarchical order'
 - Hohenegger (2012) Transferability of genomes to the next generation: the fundamental criterion of the biological species, Zootaxa 3572 11-17
 - (Ref: Mayden, R.L.: A Hierarchy of species concepts: the denouement in the saga of the species problem, In: Species: The Units of Biodiversity, Claridge, Dawah, Wilson (Eds.) Chapman and Hall, 1997)

How did we get here?

Even just with prokaryotes, it's complicated enough

DNA-Hybridisation, sequence identity and taxonomy

Brought to you by the numbers 70, 5 and 97

Backward compatibility

- DNA-DNA hybridisation was found to be <u>consistent</u> with results using established taxonomic criteria
- Providing greater resolution
- Enabled (for closely-related organisms) a measurement of the amount of DNA which hybridises (relative to self-hybridisation)

DNA-DNA hybridisation: units

- For any pair of organisms, the hybridisation is expressed as a single number:
- Basically, a proportion (expressed as a percentage) of the amount of DNA which binds
 - <u>relative to self-hybridisation</u> under the same conditions.
- Let's refer to this as "% relative binding"
 - (known by many other names, confusingly)

TABLE 2

BINDING OF E. coli B PULSE-LABELED RNA AND DNA FRAGMENTS TO VARIOUS DNA-AGAR

Source of DNA	% labeled RNA bound	% RNA bound relative to E. coli DNA	% labeled DNA bound	% DNA bound relative to E. coli DNA
E. coli B	27.0	100	39.8	100
E. coli ML 30	28.6	106		
E. coli K 12 (λ)	26.4	98	40.3	101
Aerobacter aerogenes 211	13.1	48	20.4	51
Aerobacter aerogenes 13048	14.3	53	17.9	45
Klebsiella pneumoniae	5.7	21	10.2	25
Proteus vulgaris	3.0	11	5.5	14
Salmonella typhimurium	23.5	87	27.9	71
Serratia marcescens 4180	2.1	8	2.8	7
Serratia marcescens S.M. 11	1.6	6		
Shigella dysenteriae	23.8	88	f 27.7	71
Aeromonas hydrophila	1.2	4		
Bacillus subtilis	0.4	1		
Pseudomonas aeruginosa	0.5	2	0.4	1
T2 bacteriophage	0.3	1	0.4	1
Calf thymus	0.4	1	0.5	1
Mouse liver	0.4	1	• • •	· · · · ·

In the left-hand columns are given the results of experiments in which 50 μ g of E. coli pulse-labeled RNA was incubated with 0.5 gm of the various DNA-agar preparations. Where E. coli sheared, denatured DNA was used (right-hand columns), 15 μ g was incubated with a quantity of agar containing 150 μ g of trapped DNA (about 0.5 gm).

McCarthy, B.J. and Bolton, E.T. (1963) An approach to the measurement of genetic relatedness among organisms., *Proc. Natl. Acad. Sci. U.S.A.* **50** (1) 156-164

Another hybridisation metric: ΔT_m

- Self versus self DNA reassociates to form duplexes
- DNA from two different organisms associates (hybridises) to form hybrid duplexes
- How stable are these?
 - At what temperature has 50% of Self duplex dissociated?
 - At what temperature has 50% of Hybrid duplex dissociated?
 - The difference between these is ΔT_m (or $T_m(e)$)

INTRA-SPECIES: Almost all of the data points for **two strains classified as the same species** are in the blue box

INTER-SPECIES: NONE of the inter-species strain associations are in the box

What the Ad Hoc Committee said...

- "At present, the species is the only taxonomic unit that can be defined in phylogenetic terms.
- The phylogenetic definition of a species generally would include strains with approximately 70% or greater [relative DNA-binding*] and with 5°C or less ΔT_m. Both values must be considered.
- Phenotypic characteristics should agree with this definition and would be allowed to override the phylo-genetic concept of species only in a few exceptional cases."
- Wayne et al. (1987) Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics, , Int. J. Syst. Bacteriol., 27 (1) 44-57

^{*} The literal term used was "DNA-DNA relatedness" – it's a terminology matter; DO NOT CONFUSE THIS WITH % DNA SEQUENCE SIMILARITY! Which is why it's been replaced with "% relative DNA-binding" here

So how does **DNA sequence identity** correlate with this?

- Unsurprisingly, the amount of DNA-reassociation depends on the number of cognate base pairs versus base mispairs
- Studies (1970s onwards) examined mispairs in oligonucleotides → measurable sequence identity
 - indicated that thermal stabilities decrease by ~ 1 to 2% for each percent of the genomic DNA which mispairs
 - (see Stackebrandt & Goebel, 1994)
 - no measurable reassociation unless pairing is ≥ 85%
 - ≥ 70% relative DNA association \rightarrow 96% sequence identity
 - That's whole-genome DNA

- ≥ **70%** relative DNA association
 - → 97% sequence identity of 16S rRNA gene
 - (remember that's the whole gene)
- But the converse does not hold
- There are plenty of known cases of pairs of bacteria with:
 ≥ 97% 16S rRNA identity but < 70% relative DNA binding (some <<<< 70%)
- What this basically means is:
 - if a pair of prokaryotes have < 97% 16S rRNA sequence identity
 - then they are <u>not</u> members of the same species*
 - if they have ≥ 97% 16S rRNA sequence identity
 - then they might be; but they might not be
 - (and remember to check T_m(e) as well)
- * ...or < 98.7% identity, depending on whom you agree with

That's dealing with full-length 16S rRNA genes

Maybe the situation is better with the regions we amplify?

(No, it's worse)

Various degrees of [sequence identity] in stretches of 200 nucleotides along the primary structure of pairs of 16S rRNAs from organisms with different degrees of relatedness (after Stackebrandt & Goebel, 1994)

	Position	16S rRNA sequence identity (%) between:			
		Streptomyces ambofaciens and Streptomyces violaceoruber	Mycobacterium phlei and Mycobacterium tuberculosis	Aeromicrobium erythreum and Rhodococcus fascians	
	Overall	98.8	96.4	90.9	
	0-200	96.3	94.1	80.7	
	201-400	98.4	97.8	94.6	
-	401-600	100.0	93.1	94.6	
	601-800	99.0	97.9	85.7	
•	801-1000	100.0	100.0	94.0	
	1001-1200	98.9	92.8	90.0	
	1201-1400	99.5	100.0	94.0	

Approx. position of V4-V5 amplicons

- "evidence is strong that sequence analyses of 16S rRNA is not the appropriate method to replace DNA reassociation for the delineation of species and measurement of intraspecies relationships"
 - Stackebrandt & Goebel (1994)
- This is all another way of saying...
 - If you are sequencing 16S rRNA gene amplicons (even if they were full-length), don't expect to resolve a microbiome to finer than genus level
 - Never mind the differences between strains

So what's happened in the last 20+ years?

Learning to love backward compatability •••

Recent years

- E.g. 2010:
- "Given the considerable promise whole-genome sequencing offers for phylogeny and classification, it is surprising that microbial systematics and genomics have not yet been reconciled."
 - Klenk & Göker (2010) En route to a genome-based classification of Archaea and Bacteria?, Syst. Appl. Microbiol. 33 (4) 175-182
- E.g. 2013: (Meier-Kolthoff, Auch, Klenk & Göker, Genome sequence-based species delimitation with confidence intervals and improved distance functions, BMC Bioinformatics 14:60):
 - In essence, about computational methods for predicting DNA-DNA Hybridisation (DDH) from genome sequences

Backward-compatability

- Meier-Kolthoff et al. (2013):
 - "If the genomic DNA of two respective organisms reveals a DDH [DNA-DNA-Hybridisation] similarity of below 70% this is the main argument to regard them as distinct species..."
 - "The increasing availability of genome sequences thus triggered the development of computational techniques to replace wet-lab DDH....
 - "unless high correlations with wet-lab DDH, and precise models for estimating DDH or at least DDH-analogous species boundaries from genome-to-genome comparisons, were available, the newly calculated values were not comparable to the previous ones and could yield largely deviating species-boundary estimates and, thus, an inconsistent microbial taxonomic classification.
 - Hence, for obvious reasons the literature on in-silico replacements for DDH considered correspondence with wet-lab DDH values as optimality criterion. As a consequence, regression and/or correlation analyses with wet-lab DDH values were used throughout for the calibration and optimization of the in-silico replacement methods"

Polyphasic taxonomy (still) rules OK!