CSE 321 Introduction to Algorithm Design *Tuba TOPRAK- 161044116 Hw2*

1. Solve the following recurrence relations and provide a Θ bound for each of them. You must use backward substitution, forward substitution or the Master's Theorem at least once to solve the following relations.

a)
$$T(n) = 3 * T(n-1) - 2 * T(n-2)$$

b)
$$T(n) = T(n/2) + 1$$

c)
$$T(n) = 4T(n-1) - 4T(n-2) + 3n$$

d)
$$T(n) = 4T(n/2) + n^2$$

e)
$$T(n) = 2T(n/2) + O(n)$$

f)
$$T(n) = T(n/2) + T(n/4) + n$$

g)
$$T(n) = T(n/2) + n$$

h)
$$T(n) = 2T(\sqrt{n}) + 1$$

h)
$$T(n) = 2T(\sqrt{n}) + 1$$

The set $n = 2^k$ then, $T(2^k) = 2.T(2^{k/2}) + 1$

Thus, let $T(2^k) = S(k)$, then $T(2^{k/2}) = S(k/2)$

The set $T(2^k) = S(k)$, then $T(2^{k/2}) = S(k/2)$

The set $T(2^k) = S(k)$, then $T(2^{k/2}) = S(k/2)$

The set $T(2^k) = S(k/2$

```
a) 76) = 3 T(n-1) - 2 T(n-2)
                                                                                                                                                               TU) = 1 = 21-1
          · Using Forward Subsitition -
                                                                                                                                                               TL2) = 2 = 20-1
                T(3) = 3.T(2) - 2.T(1) = 3.2 - 2.1 + 4 -> T(3) = 4 = 23-1
                    T(u) = 3, T(3) - 2T(2) = 12 - 4 = 8 -> T(4) = 8 = 24 - 15 = 16 -> T(5) = 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 - 16 = 25 -
                                                                                                                                                               T(n) = 2n-1
                                                                                                                                                                      0(2n-1)=0(2n
           r2-3r+2=0 3 r1=2, r2=1
              T(n) = c1. 27 +c2.1
              TU) -> 1 = 2c1+c2/-
              \tau(2) \rightarrow 2 = 4c1 + c2 \tau(n) = \frac{1}{2} \cdot 2^n \Rightarrow \Theta(2^n)
                                       201=1 01=1 ,02=0
   b) TLn) = T(1/2) +1
            T(n) = a. T(\frac{n}{b}) + fn T(1) = c where a > 1, b>2

19 f(n) e \theta(nd) where a > 0
                                                                                                        cosel - O(nd), if acbd
                                                                                          Th)= cose2 > O(ndlogn) if a=bd
        a =L
                                         1=20
        6 = 2
                                                                                                  cox3 → O(10969) if 0>60
        d=0
       So the result is Olnd logn) = Ollagn)
c) T(n) = 47(n-1) - 47(n-2) +3n
           using characteristic equation method.
       2-4+4=0 1=12=2
    T(n) = (A+ Bn) . 27
     Particular Solution: P(n) = Cn+D
   cn+0=4[c(n-1)+0]-4[c(n-2)+0]+3n
      c= 1 ,0=0 Particular Sol: 1 n
      T(n) = (ATBn) . 2" + In = 9(2")
```

```
d) TLn) = 4TL 1/2) + n2
  0=4
b=2 => nlog b = n2; f(n)=n2
  fln) = 0 (n21gon), that is , 6=0
  T(n)=0 (n2 18 n)
 c) T(n) = 2T(1/2) +0(n)
     = 2(27 (7/4) + 1/2) + 1 = 47(7/4) + 21
     = 4(27(1/8)+7u)+2n = 87(7/8)+3n
                              = n* T(1) +1002(n) * n
                               = 0(n* log2(n)
                             = O (nlogn)
f) T(n) = T(n/2) + T(n/4) + n
n/4 n/2 ---> \frac{3}{4} \cdot n
n/16 n/8 n/4 ---> \frac{9}{16} n
Total: n (1+3+3+10+1)
  9=(0)
9) T(n) = T(n/2) + n T(1) -1 T()=3
7(8) = T(4) +8 T(8) = 15 > 2n-1
  7(u) = 7(2) + 4 7(u) = 7 \rightarrow 2n - 1 7(2) = 7(1) + 2 7(2) = 3 \rightarrow 2n - 1
LTLU = 1
                                  e ala)
```

- 2. Provide pseudo code for the following operations on a given binary search tree (BST) with n nodes. Derive a recurrence relation for each of your algorithms. Calculate the average-case Θ () complexity of the derived recurrence relations.
 - a) is_balanced(BST): This function checks whether the given binary search tree is balanced or not.
 - b) height_of_tree(BST): This function returns the height of the given binary search tree.

2)
a) is -balanced (BST):
in is is empty
1. Define the boxe condition: if 13st is empty return true because an empty tree is balanced.
TETULO TIME SECONSE OIL COLO
2. Chet the heigh of the left subtree (L)
and right subtree (2)
3.15 the obsolute difference between the heights
of u and R is less then or equal to 1, and both
Land R are balanced return True.
4.18 18st foils ony of the conditions in steps 2-3,
return Folse.
Recurrence Relation:
Tin)=2+(1/2)+0(1) (n is number of nodes).
we can use moster teorem for average-case:
0-0 1-00 1
$a = 2$ here, $\log_{2} a = \log_{2} 2 = 1$ b = 2 $f(n) = p(1)$
f(n) = O(1) f(n) = O(n) where c (logga , then
T(n) = 0 (n/09 69)
0,100,9,1
$T(n) = \Theta(n^{\log 6}) = \Theta(n)$
b) heigh-of-tree ():
1. Define the base condition : if the BST is empty
return 0 because an empty tree has a heigh
OF D.
2. Resursively calculate the heigh of the left subtree (L)
and the right oubtree (2)
3 Between the Moximum heigh
3. Return the Maximum heigh of L and R plus 1.
Recurrence Relation!
T(n) = 2T(n/2) + O(1)
Average cose: Tin) = O(10969) = O(n)

- 3. Suppose you are choosing between the following three algorithms:
 - a) Algorithm A divides a problem with size *n* into five sub problems that are one-half the size, solves each one recursively, and then combines the results in cubic time.
 - b) Algorithm B solves a problem with size *n* by resolving two sub problems of size *n*-2 recursively and then integrating the solutions in linear time.
 - c) Algorithm C addresses issues of size n by dividing them into three subproblems, each half the size, solving each subproblem recursively, and then combining the solutions in $O(n^2)$ time.

What is the running time of each algorithm (in terms of big -Oh notation), and which one would you choose? Provide a detailed explanation for your choice.

3-)	
	Algorithm A:
	·Divides the problem into 5 subproblems of holf the size.
	Solves each subproblem recursively
	· Combines the results in cubic time.
	Recurrence Relation: T(n) = 5 T(n) + O(n3)
	moster teorem:
	0=5 17 a(b) > O(nd)
	5/2
	d=3 so running time: O(nd) > O(n3)
-	
100	Algorithm 3:
	Super - applican or size of the proposition to the
	· Solves a problem of size in by recursively solving two
111	subproblems of size n+2
THE	·Integrates the solution in linear time.
1	Recurrence Adotion: TIN = 27 ln-21 + Oln)
	the recursive tree would have a depth of approximately
1 1	n/2 levels because the problem size decreases by 2
	with each recursive call At each level, there is a
1	linear cost of O(n).
1-6	The total time complexity is then the product of the
	cost per level and the number of levels.
1	7(2) 2(24) 2(22) 2(22)
	$7(n) = O(n) \times \frac{n}{2} = O(\frac{n^2}{2}) = O(n^2)$
10	
	Algorithm C:
lad s	ragonorm C.
	· Divides the problem into 3 subproblems of half size.
	· Solves each subproblem recursively.
107	· Combines the solutions in Oln21 time.
	Recurrence Relation: T(n): 3T(n) + O(n2)
	医建筑的 网络西奥科尔巴罗尼姆斯 2/2 新国罗里斯岛亚自由全岛 西
	moster teorem:
	a-3 fln)=-1-(n'09 a+e)
	$h = 2$ f(n) = $0(n^2)$ here $\log_2 9 = \log_2 3$ and $f(n) = 0(n^2) = 0 (n^{\log_2 3} + 6)$
	e is a constant.
7	$f(n) = \Theta(f(n)) = \Theta(n^{109}2^3)$
FT	consider the worst-cose time complexity alone, Algorithm C
1	he lowest asymptotic growth rate o(n's) Therefore, if
0100	sing the running time is primary concern, Algorithm a
21.11	be the preferred choice.
DI LO	DE TIME PICTURE

4. The maximum cardinality matching problem in bipartite graphs involves finding the largest possible set of pairwise non-adjacent edges in a given bipartite graph. A bipartite graph is a graph in which the set of vertices can be divided into two disjoint sets, A and B, such that all edges connect a vertex from set A to a vertex in set B (and vice versa).

Provide a polynomial-time algorithm to compute a maximum cardinality matching in bipartite graphs and analyze the worst-case, best-case and average-case time complexity of the algorithm.

5. Write a recurrence relation to calculate the number of characters printed when the following function is called with input *n*.

```
foo(n):
    if n <= 1:
        return 1
else:
        for i in range(n):
            print("a")
return foo (n / 2) + foo(n/2)</pre>
```


Notes:

- Your answer must be handwritten and submitted via the Course MS Teams page.
- Pseudocodes should be submitted as actual Python code and submitted as separate files together with your handwritten solutions.
- If you have any questions, you can send an email to b.koca@gtu.edu.tr
- Please complete your homework individually; group studies will be regarded as cheating.