Modelos Selecionados

```
constants = yaml.load_file("constants.yaml")
categorical_columns = constants$categorical_columns
daily_columns = constants$daily_columns
numerical_columns = constants$numerical_columns
solutos_columns = constants$solutos_columns
all_columns = c(numerical_columns, categorical_columns)
original_columns = constants$original_columns
derived_columns = setdiff(daily_columns, original_columns)
df = readRDS('./data/processed_data_mean_v2.rds') %>%
    mutate_at(categorical_columns, list(~factor(.)))
df_names = readxl::read_excel('./data/Nomes das variaveis.xlsx') %%
 mutate(variavel = tolower(variavel),
         nome = coalesce(nome, variavel)) %>%
 select(nome, variavel)
selected_columns_yaml = yaml.load_file("selected_columns.yaml")
selected_numerical_columns = selected_columns_yaml$selected_numerical_columns
selected_categorical_columns = selected_columns_yaml$selected_categorical_columns
drop_scr = TRUE
target = "ira"
to_camila = FALSE
if (drop_scr){
  selected_numerical_columns = setdiff(selected_numerical_columns, 'scr')
}
gilberto_diagnostics = function(fit.model){
 X <- model.matrix(fit.model)</pre>
 n \leftarrow nrow(X)
 p \leftarrow ncol(X)
 w <- fit.model$weights</pre>
 W <- diag(w)
 H \leftarrow solve(t(X)%*%W%*%X)
```

```
H <- sqrt(W)%*%X%*%H%*%t(X)%*%sqrt(W)</pre>
h \leftarrow diag(H)
ts <- resid(fit.model,type="pearson")/sqrt(1-h)</pre>
td <- resid(fit.model,type="deviance")/sqrt(1-h)</pre>
di <- (h/(1-h))*(ts^2)
a \leftarrow max(td)
b <- min(td)
df1 = data.frame(fitted = fitted(fit.model), h = h, indice = df$numero)
p1 = ggplot(df1) +
  geom_point(aes(x = fitted, y = h)) +
  geom_text(data = df1 %>% top_n(h, n = 3),
            aes(x = fitted, y = h, label = indice),
            hjust = -0.1, vjust = 0) +
  labs(x = "Valor Ajustado", y = "Medida h") +
  theme_bw()
df2 = data.frame(di = di, index = seq(1, length(di)), indice = df$numero)
p2 = ggplot(df2) +
  geom_point(aes(x = index, y = di)) +
  geom_text(data = df2 %>% top_n(di, n = 3),
            aes(x = index, y = di, label = indice),
            hjust = -0.1, vjust = 0) +
  labs(x = "Índice", y = "Distância de Cook") +
  theme bw()
df3 = data.frame(td = td, index = seq(1, length(td)), indice = df$numero)
p3 = ggplot(df3) +
  geom_point(aes(x = index, y = td)) +
  geom_text(data = df3 %>% filter(td < -2 | td > 2),
            aes(x = index, y = td, label = indice),
            hjust = -0.1, vjust = 0) +
  labs(x = "Índice", y = "Resíduo Componente do Desvio") +
  geom_hline(yintercept = 2, linetype = 'dotted') +
  geom_hline(yintercept = -2, linetype = 'dotted') +
  theme_bw()
df4 = data.frame(fitted = fitted(fit.model), td = td)
p4 = ggplot(df4) +
  geom_point(aes(x = fitted, y = td)) +
  labs(x = "Valor Ajustado", y = "Resíduo Componente do Desvio") +
  theme_bw()
print(p1)
print(p2)
print(p3)
print(p4)
```

```
envelope_simulado = function(model, tol = 1e-22){
  X <- model.matrix(model)</pre>
  n \leftarrow nrow(X)
  p \leftarrow ncol(X)
  w <- model weights
  W <- diag(w)
  H \leftarrow solve(t(X)%*%W%*%X, tol = tol)
  H <- sqrt(W)%*%X%*%H%*%t(X)%*%sqrt(W)</pre>
  h \leftarrow diag(H)
  td <- resid(model,type="deviance") / sqrt(1 - h)
  e <- matrix(0, n, 100)</pre>
  for(i in 1:100){
    dif <- runif(n) - fitted(model)</pre>
    dif[dif >= 0] <- 0
    dif[dif < 0] <- 1
    nresp <- dif</pre>
    fit <- glm(nresp ~ X, family = binomial)</pre>
    w <- fit$weights
    W <- diag(w)
    H \leftarrow solve(t(X))*%W*%X, tol = tol)
    H <- sqrt(W)%*%X%*%H%*%t(X)%*%sqrt(W)</pre>
    h <- diag(H)
    e[,i] <- sort(resid(fit, type = "deviance") / sqrt(1 - h))</pre>
  e1 <- numeric(n)
  e2 <- numeric(n)
  for(i in 1:n){
    eo <- sort(e[i,])</pre>
    e1[i] \leftarrow (eo[2] + eo[3]) / 2
    e2[i] \leftarrow (eo[97] + eo[98]) / 2
  }
  med <- apply(e, 1, mean)</pre>
  p = ggplot(data.frame(td = td,
                      e1 = e1,
                      e2 = e2
                      med = med)) +
    stat_qq(aes(sample = td)) +
    stat_qq(aes(sample = e1),
             geom = 'line') +
    stat_qq(aes(sample = e2),
             geom = 'line') +
    stat_qq(aes(sample = med),
             geom = 'line',
             linetype = 'dotted') +
    labs(x = "Percentil da N(0,1)", y = "Componente do Desvio") +
    theme_bw()
  print(p)
```

```
fit model = function(df,
                     numerical_features,
                     categorical_features,
                     target,
                     include_interaction = FALSE){
  factor_formula = paste(sprintf("factor(%s)",
                                 categorical_features),
                         collapse = " + ")
  numerical_formula = paste(numerical_features, collapse = " + ")
  interaction_formula = ""
  if('causa_ira' %in% c(categorical_features,
                        numerical_features) & include_interaction){
    solutos_features = intersect(numerical_features, solutos_columns)
   if(length(solutos_features > 0)){
      interaction formula = paste(paste0("factor(causa ira) : ",
                                         solutos_features),
                                  collapse = " + ")
   }
  }
  formulas_vetor = c(factor_formula, numerical_formula, interaction_formula)
  formula_string = sprintf("%s ~ %s", target,
                           paste(formulas_vetor[formulas_vetor!=""], collapse = " + "))
  formula = formula_string %>% as.formula
 model <- glm(formula, data = df, family = "binomial")</pre>
 return(list(model = model, formula = formula))
fit_multiple_models = function(df, numerical_features, categorical_features,
                               target, include interaction=FALSE, trace=0){
  full_model <- fit_model(df, numerical_features, categorical_features,</pre>
                          target, include interaction=include interaction)
  null_model = glm(ira ~ 1, data = df,
                   family = "binomial")
  backwards = step(full_model, trace = trace)
  forwards = step(null_model,
                  scope = list(lower = formula(null_model),
                               upper = formula(full_model)),
                  direction = "forward", trace = trace)
  stepwise = step(null_model,
                  list(lower = formula(null_model),
                       upper = formula(full_model)),
                  direction = "both", trace = trace)
  features_union = c(all.vars(backwards$formula[-2]),
```

```
all.vars(forwards$formula[-2]),
                     all.vars(stepwise$formula[-2])) %>%
   unique
  features_intersection = intersect(intersect(all.vars(backwards$formula[-2]),
                                              all.vars(forwards$formula[-2])),
                                    all.vars(stepwise$formula[-2]))
  union_model = fit_model(df, features_union, c(),
                          target, include_interaction = include_interaction)
  intersection_model = fit_model(df, features_intersection, c(),
                                 target, include_interaction = include_interaction)
  return(list("Full model" = full_model,
              "Backwards" = backwards,
              "Forwards" = forwards,
              "Stepwise" = stepwise,
              "Union model" = union_model,
              "Intersection model" = intersection_model))
}
model summary = function(df, model){
  columns = all.vars(model$formula[-2])
  options(xtable.comment = FALSE)
  model %>%
   tidy() %>%
   rename(Termo = term,
           Estimativa = estimate,
           'Erro padrão' = std.error,
           Estatística = statistic,
           'p-valor' = p.value) %>%
   niceFormatting(caption = "Resumo do modelo") %>%
   print
  model %>%
    glance() %>%
    select(AIC, deviance, df.residual, nobs) %>%
   rename('Graus de liberdade do resíduo' = df.residual,
           'Número de observações' = nobs) %>%
   niceFormatting(caption = "Detalhes do modelo") %>%
   print
  confint(model) %>%
    exp %>%
   as_tibble(rownames = 'Variável') %>%
   mutate(Estimativa = exp(model$coefficients)) %>%
   select(Variável, Estimativa, everything()) %>%
   niceFormatting(caption = "Intervalo de confiança para a razão de chances") %>%
   print
```

```
if (length(coef(model)) - 1 > 1){
   car::vif(model) %>%
      as_tibble(rownames = 'Variável') %>%
      rename(Valor = value) %>%
     niceFormatting(caption = "VIF") %>%
     print
  }
  df$prob = predict(model, type = "response")
  g = roc(ira ~ prob, data = df, auc=TRUE)
  confusion = coords(g, x = "best", best.method="youden",
                     ret = c("threshold",
                             "sensitivity", "specificity",
                             "tp", "tn", "fn", "fp"))
 p = ggroc(g, legacy.axes = TRUE)+
   geom_point(aes(x = 1 - confusion$specificity, y=confusion$sensitivity),
               colour="blue", size=5) +
   geom_abline(slope = 1, intercept=0, linetype="longdash") +
   labs(subtitle = paste("AUC:", round(g$auc, 3)),
         x = '1 - Especificidade', y = 'Sensibilidade')
 return(g)
}
model_diagnostics = function(df, model, run_envelope = FALSE){
 gilberto_diagnostics(model)
  if (run_envelope) envelope_simulado(model)
  probabilities <- predict(model, type = "response")</pre>
  columns = intersect(all.vars(model$formula[-2]), numerical_columns)
  df_2 = df \%
   dplyr::select(all_of(columns)) %>%
   mutate(logit = log(probabilities/(1-probabilities))) %>%
   gather(key = "predictors", value = "predictor.value", -logit)
  p1 = ggplot(df_2, aes(logit, predictor.value))+
   geom_point(size = 0.5, alpha = 0.5) +
   geom_smooth(method = "loess") +
   theme bw() +
   facet_wrap(~ predictors, scales = "free_y", ncol = 2) +
   labs(y = 'Valor do preditor', x = 'Logaritmo da razão de chances')
  model.data <- augment(model) %>%
   mutate(index = 1:n())
  p2 = ggplot(model.data, aes(index, .std.resid)) +
    geom_point(aes(color = ira), alpha = .5) +
   theme_bw()
```

```
print(p1)
niceFormatting = function(df, caption=""){
    kbl(booktabs = T, longtable = T, caption = caption, digits = 3) %>%
    kable_styling(latex_options = c("striped", "HOLD_position", "repeat_header"))
}
model_selection = function(df, numerical_columns, categorical_columns,
                            target, trace = 0, include_interaction = FALSE){
  fitted_models = fit_multiple_models(df,
                                       numerical_columns,
                                       categorical_columns,
                                       target,
                                       include_interaction = include_interaction,
                                       trace = trace)
  for (model in names(fitted_models)){
    cat("### ", model, "\n")
    model_summary(df, fitted_models[[model]])
    if (!model %in% c('Full model', 'Union model')) {
      model_diagnostics(df, fitted_models[[model]], run_envelope = TRUE)
    } else {
    model_diagnostics(df, fitted_models[[model]])
    }
    cat("\n")
    cat("\n")
    cat("\\newpage")
  }
  return(fitted_models)
transpose_df <- function(df) {</pre>
  t_df <- data.table::transpose(df)</pre>
  colnames(t_df) <- rownames(df)</pre>
 rownames(t_df) <- colnames(df)</pre>
  t_df <- t_df %>%
    tibble::rownames_to_column(.data = .) %>%
    tibble::as_tibble(.)
 return(t_df)
}
loocv = function(df, formula){
  train.control <- trainControl(method = "LOOCV",
                                 summaryFunction = twoClassSummary,
                                 classProbs=T,
                                 savePredictions = T)
```

```
df_cv = df \%
   mutate(ira = if_else(ira == 0, "no", "yes"))
  model <- train(formula,</pre>
                 data = df cv,
                 method = "glm",
                 family = "binomial",
                 trControl = train.control,
                 metric = "Sens",
                 maximize = TRUE)
  g = roc(obs ~ yes, data = model$pred, auc=TRUE)
  youden = coords(g, x = 'best', best.method="youden",
                  ret = c("threshold", "specificity", "sensitivity"))
  confusion = coords(g,
                     ret = c("threshold",
                             "sensitivity", "specificity",
                             "tp", "tn", "fn", "fp"))
  youden_index = confusion %>%
   mutate(index = row number()) %>%
   filter(threshold == youden$threshold) %>%
    .$index
  confusion %>%
    rename('Ponto de corte' = threshold,
           Especificidade = specificity,
           Sensibilidade = sensitivity,
           'Verdadeiro positivo' = tp,
           'Verdadeiro negativo' = tn,
           'Falso positivo' = fp,
           'Falso negativo' = fn) %>%
   niceFormatting(caption = sprintf("Youden LOOCV threshold = %.3f", youden$threshold)) %>%
   row_spec(youden_index, bold = T, color = "#D7261E") %>%
   kable_styling(font_size = 7) %>%
   column spec(1:7, width = "2cm") %>%
   print
  p = ggroc(g, legacy.axes = TRUE)+
    geom_point(aes(x = 1 - youden$specificity,
                   y = youden$sensitivity),
               colour="blue",
               alpha = 0.1,
               size=3) +
    geom_abline(slope = 1, intercept=0, linetype="longdash") +
   labs(subtitle = paste("AUC:", round(g$auc, 3)),
         x = '1 - Especificidade', y = 'Sensibilidade')
  print(p)
  return(g)
}
```

```
get_name = function(column) df_names %>% filter(variavel == column) %>% .$nome

df = df %>%
    mutate(row_number = row_number()) %>%
    filter(row_number != 35)

df_summary = tibble()

variaveis = c('sofa', 'una', 'scr_basal')

cat(paste("# IRA ~ ", paste(lapply(variaveis, get_name), collapse = " + "), "\n \n"))
```

IRA ~ Índice SOFA + Sódio urinário + Creatinina sérica basal

```
model_fit = fit_model(df, variaveis, categorical_features = c(), target = target)
g = model_summary(df, model_fit$model)
```

Table 1: Resumo do modelo

Termo	Estimativa	Erro padrão	Estatística	p-valor
(Intercept)	-3.638	1.510	-2.409	0.016
sofa	0.778	0.252	3.090	0.002
una	-0.009	0.006	-1.486	0.137
scr_basal	3.508	1.714	2.047	0.041

Table 2: Detalhes do modelo

AIC	deviance	Graus de liberdade do resíduo	Número de observações
55.499	47.499	47	51

Table 3: Intervalo de confiança para a razão de chances

Variável	Estimativa	2.5~%	97.5 %
(Intercept)	0.026	0.001	0.373
sofa	2.177	1.407	3.856
una	0.991	0.979	1.002
scr_basal	33.397	1.663	1567.448

Table 4: VIF

Variável	Valor
sofa	1.069
una	1.024
scr_basal	1.091

cat("\\newpage")

g_cv = loocv(df, model_fit\$formula)

Table 5: Youden LOOCV threshold = 0.377

Falso positivo	Falso negativo	Verdadeiro negativo	Verdadeiro positivo	Especificidade	Sensibilidade	Ponto de corte
28	0	0	23	0.000	1.000	-Inf
27	0	1	23	0.036	1.000	0.043
26	0	2	23	0.071	1.000	0.052
25	0	3	23	0.107	1.000	0.056
24	0	4	23	0.143	1.000	0.064
24	1	4	22	0.143	0.957	0.071
23	1	5	22	0.179	0.957	0.078
22	1	6	22	0.214	0.957	0.092
21	1	7	22	0.250	0.957	0.103
20	1	8	22	0.286	0.957	0.104
19	1	9	22	0.321	0.957	0.107
18	1	10	22	0.357	0.957	0.114
17	1	11	22	0.393	0.957	0.114
16	1	12	22		0.957	
16	2	12	21	0.429 0.429	0.913	0.139 0.158
15	2	13	21	0.464	0.913	0.169
14	2	14	21	0.500	0.913	0.201
14	3	14	20	0.500	0.870	0.225
13	3	15	20	0.536	0.870	0.229
12	3	16	20	0.571	0.870	0.232
11	3	17	20	0.607	0.870	0.232
10	3	18	20	0.643	0.870	0.249
10	4	18	19	0.643	0.826	0.279
9	4	19	19	0.679	0.826	0.325
8	4	20	19	0.714	0.826	0.377
8	5	20	18	0.714	0.783	0.401
8	6	20	17	0.714	0.739	0.434
8	7	20	16	0.714	0.696	0.498
7	7	21	16	0.750	0.696	0.565
7	8	21	15	0.750	0.652	0.596
7	9	21	14	0.750	0.609	0.604
6	9	22	14	0.786	0.609	0.615
6	10	22	13	0.786	0.565	0.623
5	10	23	13	0.821	0.565	0.640
4	10	24	13	0.857	0.565	0.666
4	11	24	12	0.857	0.522	0.694
4	12	24	11	0.857	0.478	0.710
3	12	25	11	0.893	0.478	0.714
3	13	25	10	0.893	0.435	0.725
3	14	25	9	0.893	0.391	0.739
9	15	0.5	0			
3 2	15 15	25 26	8	0.893 0.929	0.348 0.348	0.748
2		26	7	0.929	0.304	0.757 0.766
2	16	26		0.929	0.261	0.795
1	17 17	27	6 6	0.964	0.261	0.793
1	18	27	5	0.964	0.217	0.867
1	19	27	4	0.964	0.174	0.916
1	20	27	3	0.964	0.130	0.953
1	21	27	2	0.964	0.087	0.956
0	21	28	2	1.000	0.087	0.961
0	22	28	1	1.000	0.043	0.973
0	23	28	0	1.000	0.000	Inf


```
variaveis = c('sofa', 'su', 'scr_basal')
cat(paste("# IRA ~ ", paste(lapply(variaveis, get_name), collapse = " + "), "\n \n"))
```

${\rm IRA}\sim {\rm \acute{I}ndice~SOFA}$ + Uréia sérica + Creatinina sérica basal

```
model_fit = fit_model(df, variaveis, categorical_features = c(), target = target)
g = model_summary(df, model_fit$model)
```

Table 6: Resumo do modelo

Termo	Estimativa	Erro padrão	Estatística	p-valor
(Intercept)	-5.313	1.691	-3.141	0.002
sofa	0.788	0.259	3.046	0.002
su	0.031	0.019	1.604	0.109
scr_basal	3.280	1.748	1.877	0.061

Table 7: Detalhes do modelo

AIC	deviance	Graus de liberdade do resíduo	Número de observações
54.837	46.837	47	51

Table 8: Intervalo de confiança para a razão de chances

Variável	Estimativa	2.5~%	97.5~%
(Intercept)	0.005	0.000	0.087
sofa	2.199	1.406	3.961
su	1.031	0.997	1.077
scr_basal	26.585	1.215	1314.570

Table 9: VIF

Variável	Valor
sofa	1.101
su	1.007
scr_basal	1.107

```
if(!to_camila) model_diagnostics(df, model_fit$model, run_envelope = TRUE)
```


g_cv = loocv(df, model_fit\$formula)

Table 10: Youden LOOCV threshold = 0.312

Falso positivo	Falso negativo	Verdadeiro negativo	Verdadeiro positivo	Especificidade	Sensibilidade	Ponto de corte
28	0	0	23	0.000	1.000	-Inf
27	0	1	23	0.036	1.000	0.043
26	0	2	23	0.071	1.000	0.044
25	0	3	23	0.107	1.000	0.050
24	0	4	23	0.143	1.000	0.058
23	0	5	23	0.179	1.000	0.061
23	1	5	22	0.179	0.957	0.063
22	1	6	22	0.214	0.957	0.067
21	1	7	22	0.250	0.957	0.081
20	1	8	22	0.286	0.957	0.094
19	1	9	22	0.321	0.957	0.097
18	1	10	22	0.357	0.957	0.102
17	1	11	22	0.393	0.957	0.107
16	1	12	22	0.429	0.957	0.129
16	2	12	21	0.429	0.913	0.151
15	9	12	21	0.464		
15	2	13		0.464	0.913	0.171
14	2	14	21	0.500	0.913	0.192
13	2	15	21	0.536	0.913	0.195
12 11	2 2	16 17	21 21	0.571 0.607	0.913 0.913	0.208 0.250
11	3	17	20	0.607	0.870	0.284
10	3	18	20	0.643	0.870	0.297
9	3	19	20	0.679	0.870	0.312
9	4	19	19	0.679	0.826	0.371
9	5	19	18	0.679	0.783	0.442
9	6	19	17	0.679	0.739	0.467
8	6	20	17	0.714	0.739	0.481
8	7	20	16	0.714	0.696	0.500
7	7	21	16	0.750	0.696	0.538
7	8	21	15	0.750	0.652	0.583
6	8	22	15	0.786	0.652	0.606
6	9	22	14	0.786	0.609	0.612
6	10	22	13	0.786	0.565	0.631
6	11	22	12	0.786	0.522	0.655
5	11	23	12	0.821	0.522	0.675
4	11	24	12	0.857	0.522	0.689
4	12	24	11	0.857	0.478	0.690
4	13	24	10	0.857	0.435	0.699
4	14	24	9	0.857	0.391	0.721
4	15	24	8	0.857	0.348	0.740
4	16	24	7	0.857	0.304	0.749
4		24	6			0.748
4	17			0.857 0.893	0.261 0.261	0.763
3 2	17 17	25 26	6	0.893	0.261	0.781 0.850
$\frac{2}{2}$	18	26	5	0.929	0.217	0.921
2	19	26	4	0.929	0.174	0.935
1	19	27	4	0.964	0.174	0.946
0	19	28	4	1.000	0.174	0.957
0	20	28	3	1.000	0.130	0.966
0	21	28	2	1.000	0.087	0.970
0	22	28	1	1.000	0.043	0.977
0	23	28	0	1.000	0.000	$_{ m Inf}$

Resumo

Table 11: Comparação de modelos

Variáveis	AIC	BIC	deviance	AUC	CV AUC
Índice SOFA, Uréia sérica, Creatinina sérica basal	54.837	62.564	46.837	0.865	0.786
Índice SOFA, Sódio urinário, Creatinina sérica basal	55.499	63.227	47.499	0.857	0.793