

Variational Autoencoders for Recommendation

Dawen Liang Netflix Research

Rahul Krishnan

Matt Hoffman

Tony Jebara

Background

- Implicit feedback data (No more rating predictions with RMSE please:)
 - In the form of user-item interaction matrix
 - Both the observed and missing entries are taken into account for modeling
 - Top-N recommender systems

Background

- Implicit feedback data (No more rating predictions with RMSE please:)
 - In the form of user-item interaction matrix
 - Both the observed and missing entries are taken into account for modeling
 - Top-N recommender systems

Model: multinomial non-linear factor analysis

For each user u

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},\$$

 $\mathbf{x}_u \sim \mathrm{Mult}(N_u, \pi(\mathbf{z}_u)).$

Model: multinomial non-linear factor analysis

For each user u

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$
 $\mathbf{x}_u \sim \mathrm{Mult}(N_u, \pi(\mathbf{z}_u)). \quad \text{Non-linear}$ function

Model: multinomial non-linear factor analysis

For each user u

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$
 $\mathbf{x}_u \sim \operatorname{Mult}(N_u, \pi(\mathbf{z}_u)). \quad \text{Non-linear}$ function

$$p(\mathbf{z}_u \mid \mathbf{x}_u) \approx q(\mathbf{z}_u) = \mathcal{N}(\boldsymbol{\mu}_u, \boldsymbol{\sigma}_u^2)$$

Model: multinomial non-linear factor analysis

For each user u

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$
 $\mathbf{x}_u \sim \mathrm{Mult}(N_u, \pi(\mathbf{z}_u)). \quad \text{Non-linear}$ function

Inference: reason about the (intractable) posterior

$$p(\mathbf{z}_u \mid \mathbf{x}_u) \approx q(\mathbf{z}_u) = \mathcal{N}(\boldsymbol{\mu}_u, \boldsymbol{\sigma}_u^2)$$
Free parameters

Model: multinomial non-linear factor analysis

For each user u

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$
 $\mathbf{x}_u \sim \mathrm{Mult}(N_u, \pi(\mathbf{z}_u)). \quad \text{Non-linear}$ function

Model: multinomial non-linear factor analysis

For each user u

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$
 $\mathbf{x}_u \sim \mathrm{Mult}(N_u, \pi(\mathbf{z}_u)). \quad \text{Non-linear}$ function

$$p(\mathbf{z}_u \mid \mathbf{x}_u) \approx q_{\phi}(\mathbf{z}_u \mid \mathbf{x}_u) = \mathcal{N}(\mu_{\phi}(\mathbf{x}_u), \sigma_{\phi}^2(\mathbf{x}_u))$$

Model: multinomial non-linear factor analysis

For each user u

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$
 $\mathbf{x}_u \sim \operatorname{Mult}(N_u, \pi(\mathbf{z}_u)). \quad \text{Non-linear}$ function

$$p(\mathbf{z}_u \mid \mathbf{x}_u) \approx q_{\phi}(\mathbf{z}_u \mid \mathbf{x}_u) = \mathcal{N}(\mu_{\phi}(\mathbf{x}_u), \sigma_{\phi}^2(\mathbf{x}_u))$$
Non-linear function

Model: multinomial non-linear factor analysis

For each user u

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$
 $\mathbf{x}_u \sim \mathrm{Mult}(N_u, \pi(\mathbf{z}_u)). \quad \text{Non-linear}$
function

$$p(\mathbf{z}_u \mid \mathbf{x}_u) \approx q_{\phi}(\mathbf{z}_u \mid \mathbf{x}_u) = \mathcal{N}(\mu_{\phi}(\mathbf{x}_u), \sigma_{\phi}^2(\mathbf{x}_u))$$
Non-linear function

- Generalize linear latent factor models
 - Recover Gaussian matrix factorization as a special linear case

- Generalize linear latent factor models
 - Recover Gaussian matrix factorization as a special linear case
- No iterative procedure required to rank all the items given a user's watch history
 - Only need to evaluate inference and generative functions

- Generalize linear latent factor models
 - Recover Gaussian matrix factorization as a special linear case
- No iterative procedure required to rank all the items given a user's watch history
 - Only need to evaluate inference and generative functions
- RecSys is more of a "small data" than a "big data" problem

$$\mathbb{E}_{q(\mathbf{z}\mid\mathbf{x})}\left[\log p(\mathbf{x}\mid\mathbf{z})\right] - \beta \cdot \mathrm{KL}(q(\mathbf{z}\mid\mathbf{x})||p(\mathbf{z}))$$

$$\mathbb{E}_{q(\mathbf{z}\mid\mathbf{x})}\left[\log p(\mathbf{x}\mid\mathbf{z})\right] - \beta \cdot \mathrm{KL}(q(\mathbf{z}\mid\mathbf{x})||p(\mathbf{z}))$$

$$\mathbb{E}_{q(\mathbf{z} \mid \mathbf{x})} \left[\log p(\mathbf{x} \mid \mathbf{z}) \right] - \beta \cdot \text{KL}(q(\mathbf{z} \mid \mathbf{x}) || p(\mathbf{z}))$$

(Negative) reconstruction error

"Regularization"

$$\mathbb{E}_{q(\mathbf{z} \mid \mathbf{x})} \left[\log p(\mathbf{x} \mid \mathbf{z}) \right] - \beta \cdot \mathrm{KL}(q(\mathbf{z} \mid \mathbf{x}) || p(\mathbf{z}))$$
(Negative) reconstruction error "Regularization"

$$\mathbb{E}_{q(\mathbf{z} \mid \mathbf{x})} \left[\log p(\mathbf{x} \mid \mathbf{z}) \right] - \beta \cdot \mathrm{KL}(q(\mathbf{z} \mid \mathbf{x}) || p(\mathbf{z}))$$
(Negative) reconstruction error "Regularization"

- Setting β < 1 relaxes the prior constraint
 - For RecSys, we don't necessarily need all the statistical property of a generative model
 - Trading off the ability of performing ancestral sampling for better fitting the data

Selecting \(\beta \)

$$\mathbb{E}_{q(\mathbf{z}\mid\mathbf{x})}\left[\log p(\mathbf{x}\mid\mathbf{z})\right] - \beta \cdot \mathrm{KL}(q(\mathbf{z}\mid\mathbf{x})||p(\mathbf{z}))$$

- Information-theoretic connections
 - Maximum entropy discrimination & Information bottleneck principle
- Recent work on understanding the trade-offs in learning latent variable models with VAEs
 - Variational lossy autoencoders, β -VAE, deep variational information bottleneck (hopefully many to come in ICLR)

Held-out user:
Not used in the training

Held-out user:
Not used in the training

Held-out user:
Not used in the training

"Fold-in" set:

- Learn necessary user-level representation
- Obtain predicted ranking

"Target" set: Report ranking metrics (Recall@K, NDCG@K) on

Empirical studies

	ML-20M	Netflix	MSD
# of users	136,677	463,435	571,355
# of items	20,108	17,769	41,140
# of interactions	10.0M	56.9M	33.6M
% of interactions	0.36%	0.69%	0.14%
# of held-out users	10,000	40,000	50,000

Quantitative results

- Multi-VAEPR: Partially Regularized VAE with multinomial likelihood
- Multi-DAE: Denoising autoencoder with multinomial likelihood
- Baselines:
 - WMF & SLIM: linear collaborative filtering methods
 - CDAE: Non-linear neural network based method

	Recall@20	Recall@50	NDCG@100
Mult-VAE ^{PR}	0.395	0.537	0.426
Mult-DAE	0.387	0.524	0.419
WMF	0.360	0.498	0.386
Slim	0.370	0.495	0.401
CDAE	0.391	0.523	0.418

ML20M (s.e. ~0.002)

	Recall@20	Recall@50	NDCG@100
Mult-VAE ^{PR}	0.351	0.444	0.386
Mult-DAE	0.344	0.438	0.380
WMF	0.316	0.404	0.351
Slim	0.347	0.428	0.379
CDAE	0.343	0.428	0.376

Netflix Prize (s.e. ~0.001)

Why Bayesian? (cont.)

ML20M: each user has watched at least 5 movies

MSD: each user has listened to at least 20 songs

User activity: Low High

Conclusion

- We extend VAEs to collaborative filtering for implicit feedback
- We introduce a regularization parameter for the learning objective to trade-off the generative power for better predictive recommendation performance
- Besides competitive empirical performance, we also identify when and why a principled Bayesian approach performs better

Thanks!

- We extend VAEs to collaborative filtering for implicit feedback
- We introduce a regularization parameter for the learning objective to trade-off the generative power for better predictive recommendation performance
- Besides competitive empirical performance, we also identify when and why a principled Bayesian approach performs better