2018 Term Test Answer

MATB61 Linear Programming and Optimization

1. A supermarket requires different numbers of employees on different days of the week. Union rules state each employee must work 5 consecutive days and then receive two days off. Find the minimum number of employees needed.

Let $x_i = no$. of employees starting at day i LP problem:

Minimize
$$z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

Subject to

$$x_{1} + x_{4} + x_{5} + x_{6} + x_{7} \ge 16$$

$$x_{1} + x_{2} + x_{5} + x_{6} + x_{7} \ge 20$$

$$x_{1} + x_{2} + x_{3} + x_{6} + x_{7} \ge 17$$

$$x_{1} + x_{2} + x_{3} + x_{4} + x_{7} \ge 21$$

$$x_{1} + x_{2} + x_{3} + x_{4} + x_{5} \ge 23$$

$$x_{2} + x_{3} + x_{4} + x_{5} + x_{6} \ge 25$$

$$x_{3} + x_{4} + x_{5} + x_{6} + x_{7} \ge 18$$

$$x_{i} \ge 0, \quad i = 1, 2, 3, 4, 5, 6, 7.$$

2. Suppose that we apply the Simplex method to a given LP problem and obtain the following tableau:

	X ₁	X2	Х3	X4	X5	X6	
X5	0	а	0	1	1	0	e
\mathbf{x}_1	1	f	0	2	0	-4	5
X 3	0	-3	1	-4	0	1	1
	0	c -1	0	5	0	b	12

Specify the ranges of values for the parameters $a, b, c, d, e, f(\ge, >, \le, <, =)$ that make each of the following statements true. Assume that the original problem was a maximization problem.

a) The tableau describes an infeasible basic solution.

e < 0

b) The tableau describes an optimal basic feasible solution.

$$c - 1 \ge 0, b \ge 0, e \ge 0$$

c) The tableau describes a basic feasible solution, but it is not the optimal solution.

$$c - 1 < 0$$
 or $b < 0$, $e \ge 0$

d) The tableau describes a basic feasible solution, but the problem is unbounded and the simplex algorithm cannot proceed any further.

$$c-1 < 0, b \ge 0, e \ge 0, a \le 0, f \le 0$$

e) The tableau describes an optimal basic feasible solution which is not unique.

$$c-1 \ge 0$$
, $b \ge 0$, $e \ge 0$, $c-1 = 0$ or $b = 0$

f) The current basic solution is feasible. At the next iteration, x_2 is the only candidate for entering the basis.

$$b \ge 0, e \ge 0, c - 1 < 0$$

g) The current basic solution is feasible. At the next iteration, a degenerate BFS will occur in the next tableau.

$$a \ge 0$$
, $e \ge 0$, $b \ge 0$, $f \ge 0$, $c - 1 < 0$, $c - 1 < b$, $e/a = 5/f$

- 3. [22 points]
 - 1) [10 points] Convert the following LP problem into standard form:

Minimize
$$2x_1 - x_2 + x_3$$

Subject to $|x_1 - 2x_2| \le 2$
 $3x_1 - 5x_2 - x_3 = -1$
 $x_1 \ge 0, 2 \le x_2 \le x_3.$

Set
$$x_2 = x_2' + 2$$
 and $x_3 = x_3' + 2$.
Maximize $-2x_1 + x_2' - x_3'$
Subject to $x_1 - 2x_2' \le 6$
 $-x_1 + 2x_2' \le -2$
 $3x_1 - 5x_2' - x_3' \le 11$
 $-3x_1 + 5x_2' + x_3' \le -11$
 $x_2' - x_3' \le 0$
 $x_1 \ge 0, x_2' \ge 0, x_3' \ge 0$.

- 2) [8 points] Assume a LP problem: Max $z = c^T x$, subject to $Ax \le b$, $x \ge 0$ has an unique optimal solution. Prove that the optimal solution may not be reached at x_0 if x_0 is not an extreme point of the feasible region.
- **Proof:** Assume that the unique optimal solution was $z_0 = c^T x_0$.

Since x_0 is not an extreme point of the feasible region, x_0 must be an interior point of some two distinct points x_1 and x_2 in the feasible region. Then we have

$$x_0 = rx_1 + (1 - r)x_2$$
 for $0 < r < 1$.

Multiply c^T to both sides to obtain

$$z_0 = c^T x_0 = r c^T x_1 + (1 - r) c^T x_2.$$

Let
$$z_1 = c^T x_1$$
 and $z_2 = c^T x_2$. We have $z_0 = r z_1 + (1 - r) z_2$.

If
$$z_1 = z_2$$
, then $z_0 = rz_1 + (1 - r)z_1 = z_1 = z_2$.

It contradicts that the LP problem has unique solution.

If
$$z_1 \le z_2$$
, $z_0 = rz_1 + (1-r)z_2 \le rz_2 + (1-r)z_2 = z_2$.

Then $z_0 = c^T x_0$ can't be the optimal solution.

Similarly for $z_1 \ge z_2$.

Therefore, the optimal solution may not be reached at x_0 if x_0 is not an extreme point of the feasible region.

- 3) [4 points] Multiple choices:
- a) Given an LP problem

Maximize
$$p = 4x + 2y + 7z$$

subject to $2x - y + 4z \le 18$
 $4x + 2y + 5z \le 10$
 $x \ge 0, y \ge 0, z \ge 0$

Which of the following is(are) basic feasible solution(s) of the LP problem?

- i) [5/2, 0, 1], ii) [9, 0, 0], iii) [0, 0, 9/2], iv) [0, 5, 0]
- b) Which of the following statements is true?

- i) The set of solutions to an inequality is a hyperplane.
- ii) An extreme point is a basic feasible solution.
- iii) [1, 0] is a convex combination of [-1, 0], [0, 5] and [4, 1]. iv) any point in S is an interior point of any two distinct points in S.

4. [18 points] Solve the following LP problems graphically.

a) Maximize
$$z = -x + y$$

Subject to $x - 3y \le 4$
 $x + 2y \ge 4$
 $x, y \ge 0$.

Set
$$y = x + P$$
.

$$P = 0, y = x$$

$$P = 4$$
, $y = x + 4$

There is no optimal solution.

The objective function is unbounded,

b) Minimize
$$z = 4x + 2y$$

Subject to $2x - 3y \le 12$
 $4x - y \ge 1$
 $2x + y \ge 8$
 $x, y \ge 0$.

Set
$$y = -2x + P/2$$

$$P = 0$$
, $y = -2x$.

$$P = 10, y = -2x + 5,$$

The optimal solution is

Z = 16 at the line segment 2x + y = 8 between (3/2, 5) and (4, 0).

5. [15 points] Solve the following LP Problem by the Big M method:

Maximize
$$z = 4x_1 + 5x_2 - 3x_3$$

Subject to $x_1 + 2x_2 + x_3 = 10$
 $x_1 - x_2 \ge 6$
 $x_1 + 3x_2 + x_3 \le 14$
 $x_1, x_2, x_3 \ge 0$.

T1	X1	X2	X 3	S ₁	S2	y 1	y 2	
y 1	1	2	1	0	0	1	0	10
y ₂	1	-1	0	-1	0	0	1	6
S ₂	1	3	1	0	1	0	0	4
	-(2M+4)	-(M+5)	-(M-3)	M	0	0	0	-16M

T_3	X ₁	X2	Х3	S ₁	S ₂	y 1	y ₂	
X 2	0	1	1/3	1/3	0	1/3	-1/3	4/3
\mathbf{x}_1	1	0	1/3	-2/3	0	1/3	2/3	22/3
S ₂	0	0	-1/3	-1/3	1	-4/3	1/3	8/3
	0	0	0	-1	0	M+3	M+1	36

$T_{\rm f}$	X 1	X2	X 3	s_1	S ₂	
S 1	0	3	1	1	0	4
\mathbf{x}_1	1	2	1	0	0	10
S ₂	0	1	0	0	1	4
	0	3	1	0	0	40

6. [15 points] Use the two phase method to solve the following LP problem.

Maximize
$$z = 5x_1 + 3x_2 + x_3$$

Subject to:
 $2x_1 + x_2 + x_3 \le 4$
 $x_1 + 2x_2 - x_3 \ge 3$
 $x_2 + 2x_3 \le 2$
 $x_i \ge 0$, $i = 1, 2, 3$

Auxiliary LP

Maximize
$$z' - x_1 - 2x_2 + x_3 + s_2 = -3$$

Subject to:
$$2x_1 + x_2 + x_3 + s_1 = 4$$
$$x_1 + 2x_2 - x_3 - s_2 + y_1 = 3$$
$$x_2 + 2x_3 + s_3 = 2$$
$$x_i \ge 0 , i = 1, 2, 3$$

Phase I:

T1	\mathbf{x}_1	\mathbf{x}_2	X 3	s_1	s_2	S3	y	
s_1	2	1	1	1	0	0	0	4
y	1	2	-1	0	-1	0	1	3
S 3	0	1	2	0	0	1	0	2
	-1	-2	1	0	1	0	0	-3

Tf					S ₂			
s_1	3/2	0	3/2	1	1/2	0	-1/2 1/2	5/2
X2	1/2	1	-1/2	0	-1/2	0	1/2	3/2
	-1/2						1/2	1/2
	0	0	0	0	0	0	1	0

Phase II:

Objective row:
$$z - 5x_1 - 3x_2 - x_3 = 0$$

 $-5 \quad -3 \quad -1 \quad 0 \quad 0 \quad 0 \quad 0$
 $+ 3(\frac{1}{2} \quad 1 \quad -\frac{1}{2} \quad 0 \quad -\frac{1}{2} \quad 0 \quad \frac{|3/2|}{2})$
 $-\frac{7}{2} \quad 0 \quad -\frac{5}{2} \quad 0 \quad -\frac{3}{2} \quad 0 \quad \frac{|9/2|}{2}$

T1	X1	X2	X 3	S ₁	S ₂	S 3	
S ₁	3/2	0	3/2	1	1/2	0	5/2
X 2	1/2	1	-1/2	0	-1/2	0	3/2
S 3	-1/2	0	5/2	0	1/2	1	1/2
	-7/2	0	-5/2	0	-3/2	0	9/2

Tf	X 1	X2	X3 S1	S ₂	S3	
\mathbf{x}_1	1	0	-1/2 1/2	0	1/2	1
X2	0	1	2 0	0	1	2
S ₂	0	0	9/2 1/2	1	3/2	2
	0	0	5/2 5/2	2 0	1/2	11