

Encuesta Académica: ¿Cómo Reducir el Impacto Ambiental de los Sistemas Recomendadores?

Gabriel Catalán (gicatalan@uc.cl) e llan San Martín (ilansanmartink@uc.cl)

IlC3633 - Sistemas Recomendadores Escuela de Ingeniería, Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile

Motivación

- Entrenamiento de modelos complejos tienen un alto costo computacional. Esto deriva a emisiones de carbono por el uso de energía.
- ► Green RecSys: Priorizar la eficiencia energética y sustentabilidad en modelos de aprendizaje de sistemas recomendadores.

Objetivo del estudio

Estudiar el estado del arte de diversas metodologías para el ahorro energético en sistemas recomendadores.

GreenRec

- ▶ GreenRec: Benchmark para evaluar sistemas de recomendación de noticias según rendimiento y sustentabilidad.
- ► OLEO (only encode once): Codificación de las noticias UNA sola vez, y reutilizar vectores durante el entrenamiento.
- ► ApC (AUC per Carbon): Precisión lograda por cada gramo de CO₂.

Dataset	MIND-small					MIND-large							
		NewsRec			CTR		NewsRec			CTR			
Method		NAML	LSTUR	NRMS	BST	DCN	DIN	NAML	LSTUR	NRMS	BST	DCN	DIN
	AUC	50.13	51.04	54.84	50.09	53.92	55.95	52.98	54.98	57.59	52.10	57.41	57.36
	MRR	23.01	22.90	26.53	22.13	25.18	25.88	24.52	25.99	27.41	24.81	26.76	26.70
ID-based	N@5	22.35	22.31	26.34	21.59	24.43	25.95	24.12	25.64	27.05	24.63	26.90	26.84
	$CO_2E\downarrow$	19	20	28	38	60	84	294	353	471	555	926	1294
	ApC	0.68	5.20	17.29	0.24	6.53	7.08	1.01	1.41	1.61	0.38	0.80	0.57
	AUC	60.14	61.27	62.21	60.51	62.63	62.90	63.03	63.89	64.12	63.28	63.88	64.02
	MRR	28.93	29.64	30.19	28.59	29.73	30.06	30.40	31.24	31.77	30.73	31.65	31.98
Text-based (End-to-end)	N@5	29.33	30.28	31.10	29.09	30.52	30.65	31.82	32.15	32.64	31.95	32.40	33.00
	$CO_2E\downarrow$	42	58	62	53	63	90	648	892	1010	1212	972	1386
	ApC	24.14	19.43	19.69	19.83	20.05	14.33	2.01	1.56	1.40	1.09	1.43	1.01
	AUC	62.06	63.64	62.53	64.40	63.32	63.26	65.19	65.73	65.57	66.03	65.42	65.31
	MRR	31.66	31.74	30.74	32.21	32.00	31.83	32.74	33.18	32.94	33.40	32.85	32.68
PLM-NR (End-to-end)	N@5	32.25	32.72	31.31	33.34	32.58	32.40	33.77	34.26	34.13	34.70	33.99	33.70
	$CO_2E\downarrow$	178	202	252	505	1,752	1,839	2,527	3,032	4,043	8,086	27,036	28,329
	ApC	6.78	6.75	4.97	2.85	0.76	0.72	0.60	0.52	0.39	0.20	0.06	0.05
	AUC	60.62	61.09	60.94	60.81	62.65	62.40	63.02	63.62	63.40	62.94	64.29	63.75
	MRR	29.31	29.26	29.31	29.04	30.92	30.75	31.23	31.59	31.38	30.56	32.60	31.58
BERT (OLEO)	N@5	29.71	29.60	29.65	29.38	31.37	32.44	31.79	32.30	32.16	31.83	33.63	32.43
	$CO_2E\downarrow$	22	23	33	38	62	86	353	404	505	640	956	956
	ApC	48.27	48.22	33.15	28.45	20.40	14.41	3.69	3.37	2.65	2.02	1.49	1.44
	AUC	62.95	62.16	62.95	62.43	64.57	63.12	64.78	64.88	64.34	65.33	65.44	64.53
	MRR	31.26	31.00	31.18	30.42	32.60	31.28	32.64	32.94	32.93	33.29	33.04	32.72
PREC (OLEO)	N@5	32.01	31.79	32.10	30.94	33.48	32.01	33.66	34.00	33.95	34.35	34.03	33.58
	$CO_2E\downarrow$	22	23	33	38	62	86	353	404	505	640	956	956
	ApC	58.86	52.87	39.24	32.71	23.50	15.25	4.19	3.68	2.84	2.40	1.61	1.52
ApC	Imp. (%)	768%	683%	690%	1048%	2992%	2018%	598%	608%	628%	1100%	2583%	2940%

OLEO presenta considerablemente un MENOR consumo energético.

Optimizing Dataset Size

- ➤ Objetivo: Medir calidad de sistemas recomendadores al disminuir el tamaño de los datasets de entrenamiento.
- ► 4 datasets: MovieLens 100K, 1M, 10M, Amazon Toys & Games (dataset más denso y complejo).

Grupo	Pérdida nDCG@10 MovieLens ↓50%	Pérdida nDCG@10 Amazon ↓50%				
Grupo 1	↓ 50%	no reportado				
Grupo 2	↓ 23%	↓ 13%				

- ▶ Reducción general del tiempo de ejecución (72%). Ahorro estimado de CO₂: 27.4kg.
- Grupo 1 (UserKNN, ItemKNN, SVD, NMF): Reducción del dataset tiene un fuerte impacto en la precisión.
- Grupo 2 (Bias, Popularity, FunkSVD, BiasedMF, Popular): Leve impacto en la precisión. Más relevantes desde el punto de vista energético.

GreenFlow

- ► Objetivo: Reducir el consumo energético durante la inferencia en sistemas recomendadores industriales en cascada.
- GreenFlow: Framework con asignación dinámica y personalizada de computación para cada usuario.
- ► Mecanismo clave: Para cada petición el sistema elige una cadena de acción que maximiza el ingreso esperado sin exceder un presupuesto computacional global.
- Resultado en producción: Despliegue en una aplicación industrial real logró reducir el consumo en 5.000 kWh diarios y las emisiones en tres toneladas de CO₂ al día, disminuyendo en un 41% la computación necesaria manteniendo los ingresos.

Eco-Aware GNNs

- ▶ Objetivo: Medir emisiones de CO₂ de los sistemas recomendadores basados en Redes Neuronales de Grafos (GNNs).
- ► Metodología: Utilizando CodeCarbon miden el consumo energético al entrenar cuatro modelos de GNNs populares en tres conjuntos de datos, variando el tamaño de los embeddings.
- Datasets: Amazon Beauty, MovieLens 1M y DianPing.

Dataset name	Users	Items	Interactions	Density	Sparsity
Amazon Beauty MovieLens 1M DianPing	1,210,271	249,274	2,023,070	0.001	99.999
MovieLens 1M	6,040	3,952	$999,\!611$	4.189	95.810
DianPing	542,706	243,247	4,422,473	0.003	99.997

Dataset	\mathbf{Model}	P@10	R@10	NDCG@10	HIT@10	P@100	R@100	NDCG@100	HIT@100	Emissions
	LightGCL	.0019	.0185	.0107	.0187	.0005	.0517	.0190	.0591	12.5521
Beauty	${\bf LightGCN}$.0022	.0212	$\boldsymbol{.0121}$.0217	.0006	.0583	.0195	.0594	4.1341
Deauty	\mathbf{NGCF}	.0017	.0160	.0087	.0164	.0005	.0508	.0156	.0519	1.1147
	$\mathbf{Sim}\mathbf{GCL}$.0004	.0039	.0019	.0039	.0002	.0227	.0054	.0230	12.9475
	$\mathbf{LightGCL}$.0044	.0239	.0221	.0499	.0018	.1673	.0393	.1734	<u>15.011</u> 1
DianPing	${\bf LightGCN}$.0053	.0417	.0223	.0518	.0023	.1680	.0482	.2031	13.4835
Dianring	\mathbf{NGCF}	.0032	.0235	.0123	.0313	.0017	.1205	.0320	.1523	27.3234
	$\mathbf{Sim}\mathbf{GCL}$.0040	.0238	.0101	.0474	.0016	.1435	.0347	.1600	21.2422
	$\mathbf{LightGCL}$.1986	.1591	.2546	.7341	.0761	.5231	.3366	.9538	0.1185
ML-1M	$\mathbf{LightGCN}$.2094	.1731	.2681	.7626	.0808	.5692	.3619	.9664	0.2146
10117-1101	\mathbf{NGCF}	.2001	.1623	.2549	.7373	<u>.0786</u>	.5492	.3470	<u>.9621</u>	0.1057
	$\mathbf{Sim}\mathbf{GCL}$.1073	.1188	.1490	.6210	.0438	.4037	.2333	.9386	0.1281
		-						-	-	

► Hallazgos claves: Existe un trade-off entre los modelos y aumentar el tamaño de los embeddings tiene una correlación directa con el aumento de las emisiones de carbono.

Contribución principal: provee datos empíricos que visibilizan el costo ambiental de arquitecturas ampliamente usadas.

Conclusiones

- Existen diversas metodologías para reducir el impacto ambiental en sistemas recomendadores: Uso de modelos simples, reducción del tamaño del dataset, codificación eficiente, asignación dinámica de recursos, entre otros.
- Los patrones arquitectónicos son la estrategia más efectiva. Las mayores ganancias en sostenibilidad provienen de cambios fundamentales en la arquitectura.
- Trade-off entre precisión y sustentabilidad.
- No hay un consenso de cómo medir las emisiones de carbono (CO₂) en sistemas recomendadores. Cada estudio presenta sus propias estimaciones, supuestos y herramientas.
- No existe una solución ideal, sino que depende de los objetivos y contexto de cada persona. Siempre priorizando reducir el impacto ambiental lo máximo posible.
- ► Recomendación a futuro: Avanzar hacia métricas comunes que integren precisión y sustentabilidad en sistemas recomendadores, fomentando prácticas responsables y sustentables.

Referencias

- [1] Ardalan Arabzadeh and Tobias Vente and Joeran Beel. *Green Recommender Systems: Optimizing Dataset Size for Energy-Efficient Algorithm Performance*, 2024.
- [2] Qijiong Liu, Lu Fan, and Xiao-Ming Wu. Legommenders: A Comprehensive Content-Based Recommendation Library with LLM Support, May 2025.
- [3] Qijiong Liu, Jieming Zhu, Quanyu Dai, and Xiao-Ming Wu. *Benchmarking News Recommendation in the Era of Green AI*, 2024.
- [4] Antonio Purificato and Fabrizio Silvestri. Eco-Aware Graph Neural Networks for Sustainable Recommendations, 2024.
- [5] Fangzhao Wu, Ying Qiao, Ming Zhou, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing Xie, and Jianfeng Gao. MIND: A Large-scale Dataset for News Recommendation, 2020.
- [6] Lu, Xingyu and Liu, Zhining and Guan, Yanchu and Zhang, Hongxuan and Zhuang, Chenyi and Ma, Wenqi and Tan, Yize and Gu, Jinjie and Zhang, Guannan. *Green-Flow: A Computation Allocation Framework for Building Environmentally Sound Recommendation System*, 2023.