ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Дифракция света на периодических структурах (саморепродукция).

Работу выполнил: Шурыгин Антон Алексеевич, группа Б01-909

Долгопрудный, 2021

Содержание

1	Вве	дение и краткая теория	3
2	Cxe	ема установки	4
3	Ход	ц работы	5
	3.1	Измерение периода решеток по их пространственному спектру	5
	3.2	Измерение периода решеток по изображению, увеличенного с помощью линзы	5
	3.3	Исследование саморепродукции с помощью сеток	7
	3.4	Исследование миры	7

Цель работы: Изучение явления саморепродукции и применение его к измерению параметров периодических структур.

Оборудование: лазер, кассета с сетками, мира, короткофокусная линза с микрометрическим винтом, экран, линейка.

1 Введение и краткая теория

При дифракции на предмете с периодической структурой наблюдается явление саморепродукции: на некотором расстоянии от предмета вдоль направления распространения волны появляется изображение, которое потом периодически повторяется.

Представим волну за периодическим объектом в виде суммы плоских волн разных направлений. Отдельные слагаемые плоские волны называют пространственными гармониками. Вдоль пути распространения волнового фронта на некотором расстоянии z_0 от предмета существует плоскость, где разность фазовых набегов любых пространственных гармоник (плоских волн идущих под углом θ т к оси распространения), входящих в состав суперпозиции, кратна 2Т В этой плоскости фазовые соотношения между всеми плоскими волнами, входящими в состав суперпозиции, такие же, что и в предметной плоскости. Поэтому в результате интерференции этих волн возникает изображение, тождественное исходному периодическому объекту. Все сказанное справедливо для любого расстояния z_n , кратного z_0 . Для решетки с периодом d.

$$z_{n} = \frac{2d^{2}}{\lambda}n\tag{1}$$

Суть эксперимента по саморепродукции состоит в том, что дифрагированная на периодическом транспаранте (решетка, сетка) плоская монохроматическая волна лазера (лазерный пучок) воспроизводит изображение транспаранта без каких-либо оптических элементов.

Рис. 1 Дифракция лучей на сетке и возникновение саморепродуцированного изображения

2 Схема установки

Рис. 2 Схема лабораторной установки

3 Ход работы

3.1 Измерение периода решеток по их пространственному спектру

Расстояние от кассеты до экрана $L = 124 \, \text{cm}, \, \lambda = 560 \, \text{nm}.$

$$dsin(\theta_x) = m_x \lambda, \quad dsin(\theta_y) = m_y \lambda$$
 (2)

псетки	X _m , MM	m	х, мм	d, мм	σ_d , mm
1	201	6	33.50	0.020	< 0.001
2	223	9	24.77	0.027	< 0.001
3	177	16	11.1	0.061	0.001
4	235	24	9.79	0.069	0.001
5	63	16	3.93	0.174	0.007

Таблица 1 Измерение расстояние между соседними дифр. макс. на экране

Полагая $\sin(\theta) \simeq \theta \simeq \frac{x}{L},$ найдем с помощью формул (1) период каждой решетки.

$$d = \frac{\lambda L}{x}$$

Измерения и результаты вычисления периоды дифракционной решетки занесены в таблицу 1.

3.2 Измерение периода решеток по изображению, увеличенного с помощью линзы

Найдем период решетки другим способом.

Измеренные расстояния: между сеткой и экраном - $a'=131~cm \to м$ ежду линзой и сеткой - a=a'-b=6~cm , между линзой и экраном - b=125~cm.

псетки	x _m , mm	m	D, мм	d, мм	σ _d , мм
1	-	-	-	-	-
2	3.5	6	0.58	0.027	0.005
3	9.0	6	1.5	0.069	0.013
4	12.0	4	3.0	0.137	0.025
5	16.0	4	4.0	0.183	0.033

Таблица 2 Определение размера клеток D

$$d = \frac{a}{b} \cdot D$$

Таким образом по формуле выше находим период решетки и записываем результат в таблицу 2.

3.3 Исследование саморепродукции с помощью сеток

Исследуем саморепродукцию. Находим координаты z_n плоскостей саморепродукции, строим график. По коэффициенту наклона прямой графика определим период решетки по формуле:

$$d_{i} = \sqrt{\frac{k_{i}\lambda}{2}} \tag{3}$$

	z_3 , mm $ z_4$, mm $ z_5$, mm				
	23, 111111	24, 111111	- /		
1	-	4	8,1	6,4	21,5
2	-	8,55	15,1	22,1	43,5
3	-	12,2	22	33,2	65,5
4	-	17,55	28,5	49,2	-
5	-	20,55	35,2	59,7	-
6	-	23,6	42	-	-
7	-	28,8	49	-	-
8	-	-	55,5	-	-

Таблица 3 Измерение номера дифракционной картины от координаты линзы

псетки	1	2	3	4	5
d, mm	-	0,034	0,043	0,061	0,077

Таблица 4 Резульаты вычисления периода дифракционных решеток

Измерения и полученные значения сводим в таблицу 3. Затем строим графики $z=\mathsf{f}(\mathsf{n}).$

3.4 Исследование миры

Измеряем расстояние между экраном и линзой - L_3 , экраном и мирой - L_4 . Получаем, что $L_3=126 {\rm cm},\ L_4=132 {\rm cm}.$

Ширина штриха миры равна 1mm.

Рис. 4 График $z_2 = f(n)$

Исследование миры с номером 25

Построим график координат плоскостей саморепродукции. Наклон графика $\frac{\mathrm{d}z_\mathrm{n}}{\mathrm{d}\mathrm{n}}=2.97$ мм - расстояние между соседними плоскостями саморепродукции.

Тогда период решетки миры по формуле $d=\sqrt{\frac{dz_n}{dn}\frac{\lambda}{2}}=0.028$ мм Измеряем расстояние между экраном и линзой - $L_3=126$ см, экра-

Рис. 6 График $z_4=\mathsf{f}(\mathsf{n})$

10

ном и мирой - $L_4=132$ см. Вернув изображение, соотв. геом. оптике, измерим ширину увеличенного изображения штриха $D=\frac{17_{\rm MM}}{17}=1$ мм, откуда $d=D\cdot\frac{L_3-L_4}{L_3}=0.048$ мм.

Убрав линзу, пронаблюдаем интерференцию на мире, и получим расстояние между дифр. максимумами $\chi=\frac{250 \text{мм}}{14}=17.85$ мм, откуда получим $d=\frac{\lambda L}{\chi}=0.040$ мм

Исследование миры с номером 20

Построим график координат плоскостей саморепродукции. Наклон графика $\frac{\mathrm{d}z_\mathrm{n}}{\mathrm{d}\mathrm{n}}=5.20$ мм - расстояние между соседними плоскостями саморепродукции. Тогда период решетки миры по формуле $\mathrm{d}=\sqrt{\frac{\mathrm{d}z_\mathrm{n}}{\mathrm{d}\mathrm{n}}\frac{\lambda}{2}}=0.037$ мм

Вернув изображение, соотв. геом. оптике, измерим ширину увеличенного изображения штриха $D=\frac{17_{\rm MM}}{13}=1.31$ мм, откуда $d=D\cdot\frac{L_3-L_4}{L_3}=0.059$ мм.

Убрав линзу, пронаблюдаем интерференцию на мире, и получим расстояние между дифр. максимумами $\chi=\frac{243_{\rm MM}}{17}=14.29$ мм, откуда получим $d=\frac{\lambda L}{\chi}=0.050$ мм

n	$z_{\rm n}(25)$, mm	$z_n(20)$, mm
-3	17	12,2
-2	20	17,2
-1	23	22,5
0	26,1	28
1	28,3	33
2	31,9	38
3	34,5	43,5
4	37,5	48,5
5	41,1	-

Таблица 5 Исследование решеток миры

Рис. 8 График для миры $z_2=\mathsf{f}(\mathfrak{n})$