Frühjahr 24 Themennummer 1 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Zeigen Sie, dass jede stetige Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$\lim_{\|(x,y)\|_2 \to \infty} f(x,y) = \infty$$

ein globales Minimum besitzt. Hierbei bezeichnet $\|(x,y)\|_2 := \sqrt{x^2 + y^2}$ für $(x,y) \in \mathbb{R}^2$ die euklidische Norm auf \mathbb{R}^2 .

b) Begründen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \frac{1}{4}(x^2 + y^2 - 2)^2 - \frac{1}{3}y^3$$

ein globales Minimum besitzt und bestimmen Sie dieses sowie alle globalen Minimalstellen von f.

Lösungsvorschlag:

- a) Per Definitionem uneigentlicher Limiten, gibt es ein R > 0 mit $\|(x,y)\|_2 \ge R \implies f(x,y) > f(0,0)$. Die Menge $B_R(0) = \{(x,y) \in \mathbb{R}^2 : \|(x,y)\|_2 \le R\}$ ist kompakt (abgeschlossene, beschränkte Teilmenge des \mathbb{R}^2) und nicht leer $((0,0) \in B_R(0))$. Weil f stetig auf \mathbb{R}^2 also auch auf $B_R(0)$ ist, besitzt f ein globales Minimum auf $B_R(0)$, d. h. es gibt ein $x_0 \in B_R(0)$ mit $f(x_0) \le f(x)$ für alle $x \in B_R(0)$, insbesondere also $f(x_0) \le f(0,0)$. Damit gilt dann aber für alle $x \in \mathbb{R}^2 \setminus B_R(0)$ ebenfalls $f(x_0) \le f(0,0) \le f(x)$ und es folgt $f(x_0) \le f(x)$ für alle $x \in \mathbb{R}^2$. Damit ist x_0 globales Minimum von f.
- b) Wir verwenden das Kriterium aus a). Offensichtlich ist f als Polynom glatt, also auch stetig. Wegen $|y| = \sqrt{y^2} \le \sqrt{x^2 + y^2} = ||(x, y)||_2$ folgt

$$f(x,y) \geq \frac{1}{4}(\|(x,y)\|_2^2 - 2)^2 - \frac{1}{3}|y|^3 \geq \frac{1}{4}\left\|(x,y)\right\|_2^4 - \left\|(x,y)\right\|_2^2 + 1 - \frac{1}{3}\left\|(x,y)\right\|_2^3 = g(\|(x,y)\|_2)$$

mit $g: \mathbb{R} \to \mathbb{R}$, $g(t) = \frac{1}{4}t^4 - \frac{1}{3}t^3 - t^2 + 1$. Weil g ein Polynom vierten Grades mit positivem Leitkoeffizient ist, folgt $\lim_{t \to \infty} g(t) = \infty$, also auch $\lim_{\|(x,y)\|_2 \to \infty} f(x,y) \ge 1$

 $\lim_{\|(x,y)\|_2\to\infty}g(\|(x,y)\|_2)=\infty.$ Nach a) besitzt fein globales Minimum. Wir berechnen den Gradienten.

Es ist $\nabla f(x,y) = (x(x^2+y^2-2),y(x^2+y^2-2)-y^2)^{\mathrm{T}}$. Wir bestimmen die Nullstellen. Damit die erste Komponente verschwindet, muss x=0 oder $\|(x,y)\|_2^2=2$ gelten. Ist x=0 so wird die zweite Komponente genau dann 0, wenn $y(y^2-y-2)=0$ gilt, also wenn eine der Gleichungen y=0,y=-1,y=2 gilt. Ist dagegen $\|(x,y)\|_2^2=2$, so wird die zweite Komponente genau für y=0 verschwinden. Aus $\|(x,y)\|_2^2=2$ und y=0 folgt $x=\pm\sqrt{2}$. Wir erhalten also fünf stationäre Punkte:

$$(0,0), (0,-1), (0,2), (\sqrt{2},0), (-\sqrt{2},0)$$

mit Funktionswerten

$$1, \quad \frac{7}{12}, \quad -\frac{5}{3}, \quad 0, \quad 0.$$

Das globale Minimum muss ein stationärer Punkt sein, weil \mathbb{R}^2 offen und f differenzierbar ist. Daher ist der stationäre Punkt mit dem kleinsten Funktionswert eine globale Minimalstelle. Der minimale Funktionswert ist $-\frac{5}{3}$ und die einzige globale Minimalstelle ist (0,2).

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$