Segmentation de clients pour le site d'e-commerce Olist

Open Classrooms parcours Data Science - projet 5

Camille Besançon

Données d'origine

- Olist : Site d'e-commerce Brésilien
- Informations de commandes de clients
 - Répertorient les identifiants de commandes, clients uniques, montants de commande, modes de paiement, nombre d'objets, catégories, satisfaction du client, ...
 - Données depuis Sept. 2016 jusqu'à Sept. 2018
- Objectif: Fournir aux équipes d'Olist une segmentation des clients du site grâce à leurs données. Décrire les "profils types" associés à ces groupes pour permettre aux équipes marketing de définir les prochaines actions à réaliser.

Organisation des données

- Etat des commandes :
 - Presque 98% des commandes ont le statut "delivered".
- On pourra travailler sur ces commandes uniquement :
 - On ne supprimera que peu de données
 - Les commandes annulées ou encore en cours n'auront pas les informations de satisfaction des clients

- Etat des commandes :
 - Presque 98% des commandes ont le statut "delivered".
- On pourra travailler sur ces commandes uniquement :
 - On ne supprimera que peu de données
 - Les commandes annulées ou encore en cours n'auront pas les informations de satisfaction des clients

 Montant total d'achat par mois en hausse sur la période

- Quelques valeurs "extrêmes" sont présentes
 - Clients "importants" avec gros volumes de commandes, commandes très fréquentes
 - Données sont supprimées de l'analyse : Risque de biais + clients déjà fidélisés

- Quelques valeurs "extrêmes" sont présentes
 - Clients "importants" avec gros volumes de commandes, commandes très fréquentes
 - O Données sont supprimées de l'analyse : Risque de biais + clients déjà fidélisés

Satisfaction des clients

- Semble corrélée au délai de livraison
- Bonne satisfaction générale des clients

Méthode d'analyse

- Analyse RFM (Récence, Fréquence, Montant)
 - Type de segmentation de clients plutôt courant, permet de visualiser les comportements des clients (sont-ils plutôt des utilisateurs ponctuels ? Gros acheteurs ? ...)
 - Identification des profils de clients en fonction de ces 3 critères + leur satisfaction (évaluée à partir de la notation moyenne laissée sur le site)
 - Un client avec un haut score de récence et de fréquence sera un client déjà bien fidélisé
 - A l'inverse, un client peu investi, avec un score de fréquence et/ou de récence faible devra être ciblé par les offres définies par le marketing
 - La proportion de ces clients est également une information importante : Si la grande majorité des clients sont déjà fidélisés, il faudra se concentrer sur la recherche de nouveaux clients
- Définition des périodes :
 - Données réparties sur 2 ans : Intervalles de 4 mois

	N (période la + récente)	N-1	N-2	N-3		Récence	Fréquence
ID unique client					ID unique client		
1	0	0	1	1	1	3	2
2	1	1	1	1	2	5	4
3	1	0	0	0	3	5	1

Score de récence et fréquences

- Beaucoup de clients arrivés récemment, mais peu de commandes fréquences
 - O Données de départ : 3% des clients ont fait plusieurs commandes. Arrivée récente de clients ?

Segmentation: Quel algorithme?

- Test de 3 algorithmes différents
 - DBScan
 - Kmeans
 - Agglomerative clustering
- Evaluation des algorithmes sur leurs performances : Kmeans est le plus efficace

k-means	2.22s
DBscan (knn)	2.50s
DBscan (manuel)	12.69s
Agg. clustering	16.24

De plus : DBScan est difficile à paramétrer (pas de choix du nombre de clusters; le paramétrage avec la méthode Knn donne plusieurs dizaines de clusters et le paramétrage 'manuel' est trop long

K-means - étude sur toutes les données

- Choix du nombre de clusters : "Elbow method"
 - Compromis entre le coût de calcul / la minimisation de la variance dans les clusters

K-means - étude sur toutes les données

- 4 clusters
 - Cluster 0 : Clients plutôt satisfaits mais commandes anciennes
 - Cluster 1 et 2 : Bon clients (récence et fréquence), satisfaits. Clients du cluster 2 n'ont pas commandé depuis quelques temps
 - Cluster 3 : Clients les moins satisfaits
- Le montant dépensé n'est pas le facteur discriminant!

Kmeans - Qualité des clusters

 Score de silhouette : Peu de points mal classifiés.

 Le cluster 0 est le plus important.
 Travail à faire pour ramener ces clients vers le site ?

Cluster 3, clients peu satisfaits : Assez important également.

Kmeans - Qualité des clusters

- Méthode de représentation des données : t-SNE
 - Méthode de réduction de dimension
 - Favorise la topologie locale : les points proches / éloignés le resteront dans l'espace en 2 dimensions
- Scores de récence / fréquences : valeurs entières, d'où l'aspect 'linéraire'
- Les clusters sont bien séparés

Proposition d'un contrat de maintenance

- Utilisation de l'Adjusted Rand Index (ARI)
 - Métrique qui permet d'évaluer la similarité entre deux expériences de clustering. 1 signifie que les résultats sont identiques.

- Méthodologie :
 - Définition d'une période de référence : 1 an (Sept. 2016 à Sept. 2017)
 - Clustering sur cette période de référence
 - Clustering sur [période de ref. + période supplémentaire]
 - La période ajoutée aux données est incrémentée pour mesurer la variation de l'ARI au cours du temps
 - Calcul de l'ARI entre les deux résultats
 - Détermination de la fréquence de maintenance

Clusters sur la période de référence

- Clusters similaires :
 - Cluster 3, clients satisfaits mais commandes anciennes
 - Cluster 0, clients peu satisfaits
- Peu d'influence du montant dépensé

K-means - Distribution des valeurs, par cluster

Clusters sur la période de référence

- Clusters similaires :
 - Cluster 3, clients satisfaits mais commandes anciennes
 - Cluster 0, clients peu satisfaits
- Peu d'influence du montant dépensé
- t-SNE : Clusters bien définis

Clusters sur la période de référence

- Clusters similaires :
 - Cluster 3, clients satisfaits mais commandes anciennes
 - Cluster 0, clients peu satisfaits
- Peu d'influence du montant dépensé
- t-SNE : Clusters bien définis
- Score de silhouette :
 Proportions différentes : les clients au faible taux de satisfaction sont les plus nombreux

Evolution de l'ARI

- Diminution très rapide du score
- En appliquant une limite à 0.6, il faudrait une période de maintenance aux alentours de 2 mois

Evolution de l'ARI

- Diminution très rapide du score
- En appliquant une limite à 0.6, il faudrait une période de maintenance aux alentours de 2 mois

 En recalculant le score sur des périodes de 15 jours : Possibilité de préciser un peu plus la période de maintenance proposée.

Période de maintenance : 45 jours

- Pourrait être réduite à 15 ou 30 jours; mais coût trop important ?
- Cette durée sera amenée à varier : Les efforts des équipes marketing devraient modifier les comportements des clients et en amener de nouveaux

Conclusions

- Problématique : Segmentation de clients pour le site d'e-commerce Olist et proposition d'une période de maintenance
- Algorithme choisi : kmeans. Efficace, coup de calcul modéré.
- Période de maintenance proposée : 45 jours dans un premier temps
- 4 types de clients ont été définis :
 - Clients peu satisfaits
 - Bons clients, satisfaits, mais scores de récence / fréquence parfois plus faibles.
 - Clients satisfaits qui n'ont pas commandé depuis longtemps.
- Pistes possibles pour les équipes marketing :
 - Fidéliser les clients avec les scores intermédiaires de récence / fréquence
 - Ramener les clients qui n'ont pas commandé depuis longtemps

Segmentation de clients pour le site d'e-commerce Olist

Merci pour votre attention

Open Classrooms parcours Data Science - projet 4
Camille Besançon