Week4 practical

Univariate and Bivariate Notes

Define Univariate

Univariate data refers to a dataset where each observation is associated

with only one variable.

This means it focuses on measuring or observing a single characteristic

or attribute for each individual in the dataset.

Example:

```
In [8]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.read_csv('C:/Users/user/Downloads/kaggle/auto-mpg.csv')
df
```

Out[8]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model year
	0	18.0	8	307.0	130	3504	12.0	70
	1	15.0	8	350.0	165	3693	11.5	70
	2	18.0	8	318.0	150	3436	11.0	70
	3	16.0	8	304.0	150	3433	12.0	70
	4	17.0	8	302.0	140	3449	10.5	70
	393	27.0	4	140.0	86	2790	15.6	82
	394	44.0	4	97.0	52	2130	24.6	82
	395	32.0	4	135.0	84	2295	11.6	82
	396	28.0	4	120.0	79	2625	18.6	82
	397	31.0	4	119.0	82	2720	19.4	82

398 rows × 9 columns

Using univariate ploting Histogram

```
In [9]: plt.hist(df['cylinders'])
    plt.title('counting cylinders')
    plt.xlabel('cylinders')
    plt.ylabel('cylinders counts')
Out[9]: Text(0, 0.5, 'cylinders counts')
```


Using univariate ploting line graph

4

3

```
In [10]: df['model year'].value_counts().sort_index().plot(kind='line')
    plt.xlabel('Model Year')
    plt.ylabel('Number of Cars')
    plt.title('Number of Cars by Model Year')
    plt.show()
```

5

cylinders

7

6

Using univariate ploting boxplot

```
In [11]: plt.boxplot(df['weight'])
    plt.title('MPG Distribution by weight')
    plt.ylabel('weight')
    plt.show()
```


Using univariate ploting bar graph

```
In [12]: df['cylinders'].value_counts().plot(kind='bar')
Out[12]: <Axes: xlabel='cylinders'>
```


Using univariate ploting pie chart

```
In [13]: df['origin'].value_counts().plot(kind='pie',autopct='%1.2f%%')
   plt.title('count origins')
Out[13]: Text(0.5, 1.0, 'count origins')
```

count origins

define Bivariate

Bivariate means the analysis of two variables.

Using bivariate analysis we can find how well the variables are correlated.

Bivariate analysis is of 3 types

- 1. Numerical variables
- 2. Categorical variables
- 3. Numerical & Categorical variable

Example:

Using titanic dataset

In [14]: import pandas as pd
import numpy as np

df=pd.read_csv('C:/Users/user/Downloads/kaggle/titanic (1).csv')
df

$\overline{}$			r	-	4	-	
-1	111	Τ.		- 1	/Ι		
J	u	ч.		_	\neg		

:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class
	0	0	3	male	22.0	1	0	7.2500	S	Third
	1	1	1	female	38.0	1	0	71.2833	С	First
	2	1	3	female	26.0	0	0	7.9250	S	Third
	3	1	1	female	35.0	1	0	53.1000	S	First
	4	0	3	male	35.0	0	0	8.0500	S	Third
8	886	0	2	male	27.0	0	0	13.0000	S	Second
	887	1	1	female	19.0	0	0	30.0000	S	First
	888	0	3	female	NaN	1	2	23.4500	S	Third
8	889	1	1	male	26.0	0	0	30.0000	С	First
	890	0	3	male	32.0	0	0	7.7500	Q	Third

891 rows \times 15 columns

Using bivariate ploting line graph

```
In [15]: a=df.groupby(['survived','sex']).size().unstack()
    a.plot(kind='line',marker='*')
```

Out[15]: <Axes: xlabel='survived'>

Using bivariate ploting bar plot

```
In [17]: a=df.groupby(['sex','survived']).size().unstack()
    a.plot(kind='bar')
```

Out[17]: <Axes: xlabel='sex'>

Using bivariate ploting scatter plot

```
In [7]: plt.scatter(df['age'], df['fare'])
  plt.xlabel('Age')
  plt.ylabel('fare')
  plt.title('fare vs Age')
  plt.show()
```


In []: