TRUSTWORTHY AI: ADVERSARIAL ATTACK ON OBJECT DETECTION MODEL

SUBVERTING PERIMETER SURVEILLANCE DEMO

SECURING THE AI ATTACK SURFACE

TRANSLATING EVASION ATTACKS TO THE REAL WORLD

ADVERSARIAL PATCH ATTACKS

Computer Vision Adversarial Attack Modifying digital examples is easy

• Can we generate adversarial noise that translates when reproduced physically?

Minor modifications to adversarial evasion constraints can produce real world examples

- Emphasize printability and object rotation/augmentation
- Transfer Attacks often effective

Change a Stop sign to a Speed Limit Sign!

"Robust Physical-World Attacks on Deep Learning Visual Classification", Eykholt et. al https://arxiv.org/pdf/1707.08945.pdf

ADVERSARIAL PATCH THREAT

POTENTIAL THREAT OUTCOMES

Untargeted attacks

- Evade Perimeter Surveillance cameras
- Evade Crowd Surveillance firearm detection
- Evade X-ray scanning
- Disrupt Maintenance Sensor Monitors

Targeted Attacks

- Disrupt Targeting Systems
- Cause Self Driving Car Misfunctions
- Deceive Facial Recognition Algorithms

"Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition", Sharif et. al

https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf

SURVEILLANCE ADVERSARIAL PATCHES – REAL SCENARIO

CAN YOU MAKE A PERSON INVISIBLE TO CAMERAS WITH AN ADVERSARIAL PATCHES?

Researchers from Belgium attacked the popular yolo2 algorithm for object detection

- First detects where there are objects, draws boxes around them
- Secondarily classifies objects into categories like person, dog, bike
- Objective is to defeat the first detection method, and fool the model into not registering any detections

Show how to develop defenses to make model more robust

Adversarial Training

"Fooling automated surveillance cameras: adversarial patches to attack person detection", Thys et. al https://arxiv.org/pdf/1904.08653.pdf

DEFENDING AGAINST ADVERSARIAL PATCHES

RELATIVELY NEW FIELD, NOT A TON OF RESEARCH YET...

Input Transformation

Local Gradient Smoothing

Adversarial Training

Generalized robustness

Feature Explanability

Sentinet

Image Partitioning/Voting

Ally Patches

Model Re-Architecture

Interval Bound Propogation

Other untested Adversarial Evasion techniques

"Sentinet: Detecting physical attacks against Deep Learning Systems", Chou et. al https://arxiv.org/pdf/1812.00292.pdf

"Ally patches for spoliation of adversarial patches", Abdel-Hakim et. al https://journalofbigdata.springeropen.com/articles/ 10.1186/s40537-019-0213-4

- Prepare your Al attack surface
- Know your models
- Know you threat outcomes
- Know the attacks you are vulnerable to
- Know the defenses for those attacks

QUESTIONS/ COMMENTS

PLEASE CONTACT FOR MORE INFORMATION:

Iman Zabett – Data Scientist

Louis DiValentin – Data Scientist Manager

