ESSAYS ON CONSUMPTION

by

Edmund Crawley

A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

May, 2018

© Edmund Crawley 2018

All rights reserved

Abstract

Abstract goes here.

Primary Reader: Some Person

Secondary Reader: Someone Else

Acknowledgments

Thanks!

Dedication

This thesis is dedicated to ...

Contents

Abstract	ii
Acknowledgments	iii
List of Tables	vi
List of Figures	vii
1 This is Chapter 1	1

List of Tables

1	1	Minimum-l	Distance	Partial 1	Insurance and	l Variance	Estimates	4
1.			LASTAILE	1 01 1101	HISTILATIVE ATIC	ı vallalıce	Dauthauca .	 - 4

List of Figures

1.1 Time Aggregation Induces Serial Correlation

Chapter 1

This is Chapter 1

The first two columns of table ?? show that the degree of persistence in the original BPP model makes a big difference to the estimate of ϕ , while all of the time aggregation models show similar estimates for ψ . This suggests the difference we see in the estimates of ϕ between BPP original model and the time aggregated model may be driven, at least in part, by misspecification in the model of transitive income shocks. It is reassuring that, in contrast to the BPP model, the values of both ϕ and ψ are relatively robust to the exact specification of transitive persistence in the time aggregated model. The first two columns of table ?? show that the degree of persistence in the original BPP model makes a big difference to the estimate of ϕ , while all of the time aggregation models show similar estimates for ψ . This suggests the difference we see in the estimates of ϕ between BPP original model and the time aggregated model may be driven, at least in part, by misspecification in the model

Figure 1.1: Time Aggregation Induces Serial Correlation

of transitive income shocks. It is reassuring that, in contrast to the BPP model, the values of both ϕ and ψ are relatively robust to the exact specification of transitive persistence in the time aggregated model. The first two columns of table ?? show that the degree of persistence in the original BPP model makes a big difference to the estimate of ϕ , while all of the time aggregation models show similar estimates for ψ . This suggests the difference we see in the estimates of ϕ between BPP original model and the time aggregated model may be driven, at least in part, by misspecification in the model of transitive income shocks. It is reassuring that, in contrast to the BPP model, the values of both ϕ and ψ are relatively robust to the exact specification of transitive persistence in the time aggregated model.

The first two columns of table ?? show that the degree of persistence in the original BPP model makes a big difference to the estimate of ϕ , while all of the time aggregation models show similar estimates for ψ . This suggests the difference we see in the estimates of ϕ between BPP original model and the time aggregated model may be driven, at least in part, by misspecification in the model of transitive income shocks. It is reassuring that, in contrast to the BPP model, the values of both ϕ and ψ are relatively robust to the exact specification of transitive persistence in the time aggregated model.

The first two columns of table ?? show that the degree of persistence in the original BPP model makes a big difference to the estimate of ϕ , while all of the time aggregation models show similar estimates for ψ . This suggests the difference we see

Table 1.1: Minimum-Distance Partial Insurance and Variance Estimates

		Whole Sample		No College		College	
		BPP	Time Agg.	BPP	Time Agg.	BPP	Time Agg.
σ_{PT}^2	1979-1981	0.0103	0.0247	0.0068	0.0234	0.0101	0.0189
(Variance perm. shock)		(0.0034)	(0.0043)	(0.0037)	(0.0063)	(0.0053)	(0.0050)
,	1982	0.0208	0.0358	0.0156	0.0290	0.0253	$0.0455^{'}$
		(0.0041)	(0.0071)	(0.0052)	(0.0099)	(0.0060)	(0.0099)
	1983	0.0301	0.0333	0.0318	0.0553	0.0234	0.0086
		(0.0057)	(0.0100)	(0.0074)	(0.0128)	(0.0090)	(0.0148)
	1984	0.0274	0.0292	0.0334	0.0232	0.0177	0.0361
		(0.0049)	(0.0114)	(0.0073)	(0.0131)	(0.0060)	(0.0161)
	1985	0.0295	0.0363	0.0287	0.0504	0.0208	0.0025
		(0.0096)	(0.0124)	(0.0073)	(0.0145)	(0.0152)	(0.0205)
	1986	0.0221	0.0327	0.0173	0.0247	0.0311	0.0597
		(0.0060)	(0.0136)	(0.0067)	(0.0172)	(0.0101)	(0.0202)
	1987	0.0289	0.0420	0.0202	0.0478	0.0354	0.0229
		(0.0063)	(0.0143)	(0.0073)	(0.0182)	(0.0098)	(0.0211)
	1988	0.0158	0.0082	0.0117	-0.0069	0.0183	0.0302
		(0.0069)	(0.0137)	(0.0079)	(0.0209)	(0.0110)	(0.0149)
	1989	0.0185	0.0531	0.0107	0.0639	0.0274	0.0414
		(0.0059)	(0.0129)	(0.0101)	(0.0214)	(0.0061)	(0.0149)
	1990-92	0.0135	0.0291	0.0093	0.0265	0.0217	0.0291
		(0.0042)	(0.0042)	(0.0045)	(0.0063)	(0.0065)	(0.0057)
$\sigma_{Q,T}^2$	1979	0.0379	0.0310	0.0465	0.0364	0.0301	0.0261
(Variance trans. shock)		(0.0059)	(0.0049)	(0.0096)	(0.0080)	(0.0056)	(0.0043)
	1980	0.0298	0.0240	0.0330	0.0247	0.0283	0.0238
		(0.0039)	(0.0033)	(0.0053)	(0.0046)	(0.0059)	(0.0047)
	1981	0.0300	0.0265	0.0363	0.0305	0.0253	0.0222
		(0.0035)	(0.0032)	(0.0053)	(0.0048)	(0.0046)	(0.0040)
	1982	0.0287	0.0280	0.0375	0.0332	0.0213	0.0237
		(0.0039)	(0.0034)	(0.0063)	(0.0057)	(0.0042)	(0.0036)
	1983	0.0262	0.0276	0.0371	0.0378	0.0185	0.0169
		(0.0037)	(0.0034)	(0.0063)	(0.0056)	(0.0037)	(0.0040)
	1984	0.0346	0.0350	0.0404	0.0388	0.0304	0.0315
		(0.0039)	(0.0038)	(0.0059)	(0.0058)	(0.0051)	(0.0046)
	1985	0.0450	0.0427	0.0355	0.0338	0.0496	0.0465
		(0.0075)	(0.0071)	(0.0056)	(0.0053)	(0.0130)	(0.0122)
	1986	0.0458	0.0404	0.0474	0.0373	0.0452	0.0464
		(0.0058)	(0.0055)	(0.0076)	(0.0068)	(0.0085)	(0.0084)
	1987	0.0461	0.0445	0.0520	0.0486	0.0421	0.0385
	1000	(0.0054)	(0.0053)	(0.0082)	(0.0078)	(0.0071)	(0.0069)
	1988	0.0399	0.0327	0.0471	0.0360	0.0343	0.0313
	1000	(0.0047)	(0.0044)	(0.0074)	(0.0072)	(0.0060)	(0.0055)
	1989	0.0378	0.0343	0.0539	0.0475	0.0219	0.0215
	1000.00	(0.0067)	(0.0061)	(0.0126)	(0.0117)	(0.0051)	(0.0044)
	1990-92	0.0441	0.0359	0.0535	0.0408	0.0345	0.0322
		(0.0040)	(0.0027)	(0.0062)	(0.0047)	(0.0049)	(0.0032)
θ		0.1126	N/A	0.1260	N/A	0.1082	N/A
(Serial correl. trans. shock)		(0.0248)	0.0100	(0.0319)	0.0114	(0.0342)	0.01.46
σ_{ξ}^2		0.0097	0.0122	0.0065	0.0114	0.0132	0.0146
(Variance unobs. slope heterog.)		(0.0041)	(0.0039)	(0.0079)	(0.0070)	(0.0040)	(0.0039)
φ		0.6456	0.3384	0.9484	0.4365	0.4180	0.2729
(Partial insurance perm. shock)		(0.0941)	(0.0471)	(0.1773)	(0.0738)	(0.0913)	(0.0603)
ψ		0.0501	0.2421	0.0724	0.2870	0.0260	0.1590
(Partial insurance trans. shock)		(0.0430)	(0.0431)	(0.0593)	(0.0616)	(0.0546)	(0.0504)

in the estimates of ϕ between BPP original model and the time aggregated model may be driven, at least in part, by misspecification in the model of transitive income shocks. It is reassuring that, in contrast to the BPP model, the values of both ϕ and ψ are relatively robust to the exact specification of transitive persistence in the time aggregated model. The first two columns of table ?? show that the degree of persistence in the original BPP model makes a big difference to the estimate of ϕ , while all of the time aggregation models show similar estimates for ψ . This suggests the difference we see in the estimates of ϕ between BPP original model and the time aggregated model may be driven, at least in part, by misspecification in the model of transitive income shocks. It is reassuring that, in contrast to the BPP model, the values of both ϕ and ψ are relatively robust to the exact specification of transitive persistence in the time aggregated model. The first two columns of table ?? show that the degree of persistence in the original BPP model makes a big difference to the estimate of ϕ , while all of the time aggregation models show similar estimates for ψ . This suggests the difference we see in the estimates of ϕ between BPP original model and the time aggregated model may be driven, at least in part, by misspecification in the model of transitive income shocks. It is reassuring that, in contrast to the BPP model, the values of both ϕ and ψ are relatively robust to the exact specification of transitive persistence in the time aggregated model. The first two columns of table ?? show that the degree of persistence in the original BPP model makes a big difference to the estimate of ϕ , while all of the time aggregation models show similar

estimates for ψ . This suggests the difference we see in the estimates of ϕ between BPP original model and the time aggregated model may be driven, at least in part, by misspecification in the model of transitive income shocks. It is reassuring that, in contrast to the BPP model, the values of both ϕ and ψ are relatively robust to the exact specification of transitive persistence in the time aggregated model. The first two columns of table ?? show that the degree of persistence in the original BPP model makes a big difference to the estimate of ϕ , while all of the time aggregation models show similar estimates for ψ . This suggests the difference we see in the estimates of ϕ between BPP original model and the time aggregated model may be driven, at least in part, by misspecification in the model of transitive income shocks. It is reassuring that, in contrast to the BPP model, the values of both ϕ and ψ are relatively robust to the exact specification of transitive persistence in the time aggregated model.