

Verbindungen zur Modulation des Glykolyse-Enzym- und/oder Transaminase-Komplexes.

5 Gebiet der Erfindung.

Die Erfindung betrifft Verbindungen zur Modulation des Glykolyse-Enzym- und/oder Transaminase-Komplexes und folglich insbesondere Wachstumshemmung von Zellen und/oder 10 Bakterien, pharmazeutische Zusammensetzungen enthaltend solche Verbindungen sowie Verwendungen von solchen Verbindungen zur Herstellung von pharmazeutischen Zusammensetzungen zur Behandlung verschiedener Krankheiten.

15.

Hintergrund der Erfindung.

Krebs ist heutzutage eine der häufigsten Todesursachen und 20 die Zahl der Krebsfälle in den industrialisierten Ländern nimmt ständig zu. Das beruht vor allem darauf, daß maligne Tumoren eine Erkrankung des höheren Lebensalters sind und dank der erfolgreichen Bekämpfung von Infektionskrankheiten jetzt mehr Menschen dieses Alter erreichen. Trotz 25 aller Fortschritte auf diagnostischem und therapeutischem Gebiet liegen die Heilungsaussichten für die am häufigsten auftretenden inneren Krebsformen selten über 20%. Eine Krebsgeschwulst kann derzeit vernichtet oder in ihrem Wachstum gehemmt werden. Eine Rückbildung einer Tumorzelle 30 in eine normale Zelle lässt sich noch nicht erreichen. Die wichtigsten therapeutischen Maßnahmen, die Operation und die Bestrahlung, entfernen Krebszellen aus dem Organismus. Auch die derzeit gebräuchlichen Chemotherapeutika des

Krebses, die Zytostatika, führen nur zu einer Zerstörung oder Schädigung von Tumorzellen. Die Wirkung ist in den meisten Fällen so wenig spezifisch, daß gleichzeitig schwere Schäden an gesunden Zellen auftreten.

5

Im allgemeinen weisen Tumorzellen einen von gesunden Zellen abweichenden Metabolismus, insbesondere Glykolyse, auf. So ist eine Änderung des in die Glykolyse involvierten Isoenzym Systems und eine Änderung in dem 10 Transport von NADH für Tumorzellen typisch. U.a. ist die Aktivität der Enzyme der Glykolyse erhöht. Dies erlaubt auch hohe Umsätze unter den bei Tumorzellen typischen aeroben Bedingungen. Im Detail wird hierzu auf E. Eigenbrodt et al., Biochemical and Molecular Aspects of 15 Selected Cancers, Vol. 2, S. 311 ff., 1994, verwiesen.

Auch verschiedene andere, folgend genannte Krankheiten gehen entweder mit einer (übermäßigen) Verstoffwechselung über den Glykolyse-Enzymkomplex einher und lassen sich 20 durch dessen Reduktion bzw. Hemmung behandeln.

Stand der Technik.

25 Aus der Literaturstelle E. Eigenbrodt et al., Biochemical and Molecular Aspects of Selected Cancers, Vol. 2, S. 311 ff., 1994, ist es bekannt, zur Hemmung der Glykolyse Glucoseanaloge einzusetzen. Andere hieraus bekannte Ansätze sind der Einsatz von Inhibitoren glycolytischer 30 Isoenzyme, beispielsweise durch geeignete Komplexbildung oder Inhibierung von Komplexbildungen. Im Ergebnis werden Tumorzellen gleichsam ausgehungert. Problematisch bei den vorstehenden Verbindungen ist, daß viele davon

geneotoxisch sind und/oder nicht hinreichend spezifisch für Tumorzellen.

5 Technisches Problem der Erfindung.

Der vorliegenden Erfindung liegt das technische Problem zu Grunde, Wirkstoffe anzugeben, welche in der Lage sind, den Glykolyse-Enzym- und Transaminase-Komplex zu modulieren 10 bzw. zu hemmen, insbesondere die Proliferation von Krebszellen und somit das Wachstum neoplastischer Tumore zu hemmen sowie überschießende Abwehrreaktionen des Körpers, wie z.B. septischer Schock, Autoimmunerkrankungen, Transplantatabstoßungen sowie akute und chronische 15 Entzündungsreaktionen zu inhibieren, und zwar bei gleichzeitig lediglich geringfügiger bis keiner Zytotoxizität gegenüber Zellen mit intaktem Glykolyse-Enzym-Komplex oder anderen Komplex-Strukturen. Zusätzlich soll das Wachstum von unizellulären Organismen 20 gehemmt werden.

Grundzüge der Erfindung.

25 Zur Lösung dieses technischen Problems lehrt die Erfindung Verbindungen gemäß Anspruch 1 sowie Verwendungen dieser Verbindungen.

Für AS in Frage kommen insbesondere Reste der proteino- 30 genen Aminosäuren, und/oder der essentiellen Aminosäuren. Soweit eine erfindungsgemäße Verbindung optische Aktivität aufweist, sind die verschiedenen Varianten, wie L- und

D-Form mit umfasst. Entsprechendes gilt im Fall (mehrerer) chiraler Zentren.

Besonders geeignet sind erfindungsgemäße Verbindungen der 5 Figuren. Erfindungsgemäße Substanzen können, pH-abhängig, in Lösung ionisiert vorliegen (z.B. als $-COO^-$ im Basischen oder als $-NH_3^+$ im Sauren). Es können auch Salze, wie Hydrochloride usw. gebildet sein.

10 Die Erfindung beruht auf der Erkenntnis, daß neben den klassischen Stoffwechselkrankungen, wie Diabetes mellitus, Adipositas auch andere Erkrankungen, wie Krebs, Autoimmunerkrankungen und Rheuma durch Stoffwechselentgleisungen verursacht werden. Dies erklärt den starken
15 Einfluss der Ernährung auf diese Erkrankungen. Ein direkter messbarer biochemischer Parameter für diese Stoffwechselentgleisungen ist der Anstieg der Pyruvatkinase Typ M2 (M2-PK), die im Blut von Patienten aller vorstehend und folgend genannter Erkrankungen ansteigt. In Abhängigkeit
20 von der jeweiligen Erkrankung kommt die im Blut der Patienten nachweisbare M2-PK aus unterschiedlichen Zellen: bei Krebs aus Tumorzellen, bei Sepsis aus Immunzellen, bei Rheuma aus Immun- und/oder Sinovialzellen. In gesunden Zellen findet sich die tetramere Form der M2-PK in einem
25 hoch geordneten cytosolischen Komplex, dem Glykolyse-Enzym-Komplex. Durch die Überaktivierung von Oncoproteinen kommt es zur Auswanderung der M2-PK aus dem Komplex und zu den typischen Veränderungen im Tumor-Stoffwechsel.
Gleichzeitig verlässt die Phosphoglyceromutase (PGM) den
30 Komplex und wandert in einen anderen Enzym-Komplex, in dem cytosolische Transaminasen assoziiert sind (siehe Beispiel 2). Dieser Komplex wird daher als Transaminase-Komplex bezeichnet. Das Substrat der PGM, Glycerat-3-P, ist die

Vorstufe für die Synthese der Aminosäuren Serin und Glycin. Beide Aminosäuren sind essentiell für die DNA- und Phospholipid-Synthese. Durch das Einwandern der PGM in den Transaminase-Komplex wird die Synthese von Serin aus Glutamat und damit die Glutaminolyse aktiviert. Die gleichen Veränderungen finden in Immunzellen statt, wenn das Immunsystem entgleist, wie beispielsweise bei Rheuma, Sepsis oder Polytrauma. Die Integration des Stoffwechsels von verschiedenen Zellen in multizellulären Organismen erfolgt durch Organ-spezifische Assoziation der Enzyme im Cytosol: im Muskel z.B. durch Assoziation mit Kontraktionsproteinen. Aus diesem Grund sind die verschiedenen Organe mit jeweils spezifischen Isoenzymen ausgestattet. Die Auflösung dieser Ordnung führt zwangsläufig zu Erkrankungen.

Unizelluläre Organismen, wie Bakterien oder Hefen, die auf ausreichendes Nahrungsangebot mit ungezügelter Proliferation reagieren, besitzen keine komplexe Organisation des Cytosols. Folglich hemmen Substanzen, die den entgleisten Stoffwechsel von multizellulären Organismen hemmen, auch die Proliferation von solchen unizellulären Organismen.

Die Erfindung lehrt weiterhin die Verwendung einer erfundungsgemäßen Verbindung zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung einer oder mehrerer Erkrankungen aus der Gruppe bestehend aus "Krebs, chronische Entzündungen, Asthma, Arthritis, Osteoarthritis, chronische Polyarthritiden, rheumatische Arthritis, Inflammatory bowel disease, degenerative Gelenkerkrankungen, Erkrankungen des rheumatischen Formenkreises mit Knorpelabbau, Sepsis, Autoimmunerkrankungen, Typ I Diabetes, Hashimoto-Thyreoiditis, Autoimmunthrombozytopenie, Multiple Sklerose, Myasthenia gravis, chronisch entzündliche Darmerkrankungen, Morbus Crohn, Uveitis, Psoriasis,

Kollagenosen, Goodpasture-Syndrom, Erkrankungen mit gestörter Leukozyten-Adhäsion, Cachexie, Erkrankungen durch erhöhte TNFalpha Konzentration, Diabetes, Adipositas, bakterielle Infektionen, insbesondere mit resistenten 5 Bakterien". Der Begriff der Behandlung umfaßt auch die Prophylaxe.

Die Erfindung lehrt des weiteren eine pharmazeutische Zusammensetzung, wobei eine erfindungsgemäße Verbindung 10 mit einem oder mehreren physiologisch verträglichen Hilfstoffen und/oder Trägerstoffen gemischt und galenisch zur lokalen oder systemischen Gabe, insbesondere oral, parenteral, zur Infusion bzw. Infundierung in ein Zielorgan, zur Injektion (z.B. i.v., i.m., intrakapsulär oder 15 intralumbal), zur Applikation in Zahntaschen (Raum zwischen Zahnwurzel und Zahnfleisch) hergerichtet ist.

Die Erfindung lehrt schließlich die Verwendung einer erfindungsgemäßen Verbindung zur in vitro Hemmung des 20 Glykolyse-Enzymkomplexes, insbesondere von Pyruvatkinase, Asparaginase, Serindehydratasen, Transaminasen, Desaminasen, und/oder Glutaminasen. Blockiert werden insbesondere die Transaminierung, die oxidative Desaminierung, die hydrolytische Desaminierung, die eliminierende De- 25 saminierung und die reduktive Desaminierung.

Es versteht sich, daß ggf. für erfindungsgemäße Verbindungen verschiedenen Stereoisomere existieren können, welche alle Gegenstand der Erfindung sind. Der 30 Begriff Alkyl umfaßt lineare und verzweigte Alkygruppen sowie Cycloalkyl, ggf. auch Cycloalkylgruppen mit linearen oder verzweigten Alkysubstituenten. Der

Begriff Aryl umfaßt auch Aralkylgruppen, wobei Alkylsubstituenten Alkyl oder Cycloalkyl sein können.

Überraschenderweise wurde gefunden, daß erfindungs-
5 gemäße Verbindungen in der Lage sind, die vorstehend
genannten Mitglieder der Glykolyse-Enzymkomplexes kom-
petitiv zu hemmen. So kann die Proliferation von
Krebszellen in therapeutisch relevanten
Konzentrationen gehemmt werden. Dabei ist in dem in
10 Frage kommenden Dosisbereich keine zytotoxische
Wirkung zu erwarten. Aufgrund ihrer pharmakologischen
Eigenschaften eignen sich die erfindungsgemäßen Ver-
bindungen auch hervorragend zur Behandlung und Prophy-
laxe der weiteren, vorstehend aufgezählten
15 Erkrankungen. Im Zusammenhang mit den Indikationen zur
Entzündungshemmung bzw. antirheumatische Wirkung ist
von besonderer Relevanz, daß es sich bei den er-
findungsgemäßen Substanzen um nicht-steroidale Sub-
stanzen handelt.

20

Die Hemmung des Glykolyse-Enzym- und des Transaminase-
Komplexes umfaßt insbesondere die Hemmung der
Verstoffwechselung und des Energiegewinns aus Serin,
Glutamin, Glutamat, Ornithin, Prolin, Alanin und Ar-
25 ginin oder aus anderen Aminosäuren dieser oder anderer
Familien, aber auch die Synthese solcher zur Ener-
gieerzeugung genutzten Aminosäuren; wichtigen Energie-
quellen beispielsweise in Tumorzellen, aber auch in
Bakterien und Hefen. Die Zellen bzw. Bakterien oder
30 Hefen werden gleichsam ausgehungert. Im Einzelnen
blockieren erfindungsgemäße Substanzen beispielsweise
die folgenden Reaktionen: i) Threonin zu Glycin, ii)
Threonin zu α -Amino- β -ketobutyrat, iii) α -Amino- β -

ketobutyrat zu Glycin, iv) Serin-Pyridoxalphosphat (PLP) Schiff'sche Base zu Aminoacrylat, insbesondere die Folsäure-abhängige Serinhydroxymethyltransferase, v) Aminoacrylat zu Pyruvat (durch Verschiebung des Gleichgewichts der natürlichen Hydrolyse der PLP Schiff'schen Base hin zur Schiff'schen Base), vi) Transaminierung mittels PLP zur Synthese einer Aminosäure aus einer Oxosäure, insbesondere der verzweigtkettigen Transaminase, die α -Ketoglutarat, 10 Oxalacetat, 3-Hydroxypyruvat und Glyoxalat Transaminase, die Glutamat Dehydrogenase. Insbesondere wird mit erfindungsgemäßen Substanzen die Bildung von Pyruvat aus Aminosäuren gehemmt. Wichtig ist die Freisetzung von NH₂-OH oder CH₃-OH (-H an C oder N ggf. 15 ersetzt durch andere Reste, beispielsweise Alkyl) durch Glutaminase, Arginase, Asparaginase oder Serinhydroxymethyltransferase. Dies führt zu einer erhöhten Spezifität, da ein Charakteristikum von Tumorzellen eine hohe Glutaminase und Serinhydroxymethyltrans- 20 ferase Aktivität ist. NH₂-OH (Hydroxylamin, HA) beispielsweise kann von den hohen Pyruvatkinase Aktivitäten anstelle des -OH des Phosphates (z.B. des ADP) phosphoryliert werden. Dies führt zur Entkoppelung der Pyruvatkinase-Reaktion in Tumorzellen. Daher umfasst 25 die Erfindung in aller Allgemeinheit auch alle natürlichen Metaboliten der erfindungsgemäßen Substanzen, insbesondere des Aminooxyacetat, i.e. Bruchstücke dieser Substanzen.

30 Im Transaminase-Komplex sind neben der PGM und NDPK die cytosolischen Isoformen der Glutamat Oxalacetat Transaminase (GOT), Glutamat Pyruvat Transaminase (GPT), Glutamat Dehydrogenase (GIDH) und Malat

Dehydrogenase (MDH) assoziiert. Die GOT und MDH sind Bestandteile des Malat-Aspartat-Shuttle, über den der im Cytosol produzierte Wasserstoff in die Mitochondrien transportiert wird. Dabei wird NAD⁺ für die cytosolische Glycerinaldehyd 3-Phosphat Dehydrogenase Reaktion recycled. Der Malat-Aspartat-Shuttle ist Bestandteil der Glutaminolyse. Für einen aktiven Malat-Aspartat-Shuttle ist neben der GOT das Vorhandensein der p36 gebundenen Form der MDH wichtig, 10 wie in Beispiel 3 dargestellt.

Im Rahmen der Erfindung sind diverse weitere Ausführungsformen möglich. So kann eine erfindungsgemäße pharmazeutische Zusammensetzung mehrere verschiedene, 15 unter die vorstehenden Definitionen fallende Verbindungen enthalten. Weiterhin kann eine erfindungsgemäße pharmazeutische Zusammensetzung zusätzlich einen von der Verbindung der Formel I verschiedenen Wirkstoff enthalten. Dann handelt es sich um ein Kom- 20 binationspräparat. Dabei können die verschiedenen eingesetzten Wirkstoffe in einer einzigen Darreichungsform präpariert sein, i.e. die Wirkstoffe sind in der Darreichungsform gemischt. Es ist aber auch möglich, die verschiedenen Wirkstoffe in räumlich- 25 getrennten Darreichungsformen gleicher oder verschiedener Art herzurichten.

Als Gegenionen für ionische Verbindungen nach Formel I kommen Na⁺, K⁺, Li⁺, Cyclohexylammonium, oder basische 30 Aminosäuren (z.B Lysin, Argini, Ornithin, Glutamin) in Frage.

Die mit erfindungsgemäßen Verbindungen hergestellten Arzneimittel können oral, intramuskulär, periartikulär, intraartikulär, intravenös, intraperitoneal, subkutan oder rektal verabreicht werden.

5

Die Erfindung betrifft auch Verfahren zur Herstellung von Arzneimitteln, die dadurch gekennzeichnet sind, dass man mindestens eine erfindungsgemäße Verbindung mit einem pharmazeutisch geeigneten und physiologisch verträglichen 10 Träger und gegebenenfalls weiteren geeigneten Wirk-, Zusatz- oder Hilfsstoffen in eine geeignete Darreichungsform bringt.

Geeignete feste oder flüssige galenische
15 Zubereitungsformen sind beispielsweise Granulate, Pulver, Dragees, Tabletten, (Mikro) Kapseln, Suppositorien, Sirupe, Säfte, Suspensionen, Emulsionen, Tropfen oder injizierbare Lösungen sowie Präparate mit protrahierter Wirkstoff-Freigabe, bei deren Herstellung übliche
20 Hilfsmittel wie Trägerstoffe, Spreng-, Binde-, Überzugs-, Quellungs-, Gleit- oder Schmiermittel, Geschmacksstoffe, Süßungsmittel und Lösungsvermittler, Verwendung finden.

Als Hilfsstoffe seien Magnesiumcarbonat, Titandioxid,
25 Laktose, Mannit und andere Zucker, Talkum, Milcheiweiß, Gelatine, Stärke, Cellulose und ihre Derivate, tierische und pflanzliche Öle wie Lebertran, Sonnenblumen-, Erdnuß- oder Sesamöl, Polyethylenglykole und Lösungsmittel, wie etwa steriles Wasser und ein- oder mehrwertige Alkohole,
30 z.B. Glycerin, genannt.

Vorzugsweise werden die Arzneimittel in Dosierungseinheiten hergestellt und verabreicht, wobei jede Einheit

als aktiven Bestandteil eine definierte Dosis der erfundungsgemäßen Verbindung gemäß Formel I enthält. Bei festen Dosierungseinheiten wie Tabletten, Kapseln, Dragees oder Suppositorien kann diese Dosis 1 bis 1000 mg, 5 bevorzugt 50 bis 300 mg, und bei Injektionslösungen in Ampullenform 0,3 bis 300 mg, vorzugsweise 10 bis 100 mg, betragen.

Für die Behandlung eines Erwachsenen, 50 bis 100 kg schweren, beispielsweise 70 kg schweren, Patienten sind beispielsweise Tagesdosen von 20 bis 1000 mg Wirkstoff, vorzugsweise 100 bis 500 mg, indiziert. Unter Umständen können jedoch auch höhere oder niedrigere Tagesdosen angebracht sein. Die Verabreichung der Tagesdosis kann 15 sowohl durch Einmalgabe in Form einer einzelnen Dosierungseinheit oder aber mehrerer kleinerer Dosierungseinheiten als auch durch Mehrfachgabe unterteilter Dosen in bestimmten Intervallen erfolgen.

20 Erfundungsgemäße Verbindungen sind aufgrund der einfachen chemischen Struktur von Durchschnittsschemikern unschwer synthetisierbar.

Eine erfundungsgemäße pharmazeutische Zusammensetzung ist 25 beispielsweise zur oralen Gabe hergerichtet, beispielsweise mit folgenden Hilfs- und Trägerstoffen: kolloidales SiO₂, Crospovidon, Hydroxypropylmethylcellulose, Laktosemonohydrat, Magnesiumstearat, Polyethylenglykol, Povidon, Stärke, Talkum, TiO₂, und/oder gelbes Eisenoxid. 30 Die Dosierung beträgt täglich 1 bis 50 mg, vorzugsweise 10 bis 30 mg. Es kann sich empfehlen, anfangs einer Therapie eine Startdosis von 20 bis 500 mg, insbesondere 50 bis 150

mg, für die ersten 1 bis 10 Tage, insbesondere ersten 1 bis 3 Tage, zu verabreichen.

In einer weiteren Ausführungsform der Erfindung wird die 5 eingangs genannte Substanz mit einem oder mehreren Zuckerphosphaten, beispielsweise Fructose-1,6-bisphosphat, Glycerat-2,3-bisphosphat, Glycerat-3-Phosphat, Ribose-1,5-bisphosphat, Ribulose-1,5-bisphosphat, kombiniert, wobei die Stoffkombination in einer Darreichungsform, beispielsweise Tablette, gemischt sein kann. Es ist aber auch möglich, die Komponenten separat in gleichen oder verschiedenen Darreichungsformen zur Verfügung zu stellen. Das Zuckerphosphat kann in einer Dosierung von 20 bis 5000 mg pro Tag, beispielsweise 100 10 bis 500 mg, verabreicht werden.

Diese Varianten der Erfindung führt überraschenderweise zur Hemmung des Wachstums von Tumorzellen und Tumorgewebe, weil diese Substanzen bzw. der Metabolit an die Pyruvat-20 kinase binden und den für Tumorzellen entgleisten Energiestoffwechsel hemmen oder rückgängig machen können. Aus diesen Zusammenhängen ergibt sich als besonderer Vorteil, daß diese Substanzen spezifisch in den Stoffwechsel von Tumorzellen und nicht oder weniger in jenen von Normalzellen 25 eingreifen und somit allenfalls geringe Nebenwirkungen auftreten.

Die Wirksamkeit dieser Substanzen ist deshalb überraschend, weil die bekannte Wirkung als Pyrimidinsynthese-30 hemmer einen völlig anderen Wirkmechanismus betrifft und die phänomenologische Beobachtung einer antiproliferativen Wirkung im Wesentlichen auf Immunzellen und Zellen, die im

Zusammenhang mit inflammatorischen Erkrankungen stehen, gerichtet ist.

Von besonderer Bedeutung ist auch eine Kombination eines
5 oder mehrerer der auf der vorangehenden Seite genannten Wirkstoffe mit einem oder mehreren der weiter vorangehenden Wirkstoffe oder Aminooxyacetat (AOA,
NH₂-O-CH₂-COOH, Salze oder Ester, beispielsweise C₁ -C₁₀ Alkyl- oder Hydroxyalkylester, hiervon). Z.B. AOA ist ins-
10 besondere auf kleine Tumore (< 0,1 bis 1 cm³) wirksam bzw. verhindert deren Bildung, insbesondere die Metastasenbildung, während Verbindungen der Formeln 10 oder 11, ggf. in Kombination mit Zuckerphosphat gegen die großen Tumore wirksam ist. Grund hierfür sind die unterschiedlichen
15 Stoffwechsel in kleinen bzw. großen Tumoren. Die vorstehenden Ausführungen zu Kombinationen gelten analog.

Erfindungsgemäße Substanzen sind des weiteren verwendbar zur Herstellung einer pharmazeutischen Zusammensetzung zur
20 Behandlung der Herzinsuffizienz bzw. der Chronic Cardiac Failure (CCF). Hierunter fallen die im Rahmen der New York Heart Association (NYHA) Classification definierten Varianten bzw. Grade von NYHA I bis NYHA IV. Bei allen diesen Erkrankungen handelt es sich um ein akutes und/oder chronisches Unvermögen des Herzmuskels, bei Belastung oder schon in Ruhe den für den Stoffwechsel des Organismus erforderlichen Blatauswurf bzw. die erforderliche Förderleistung aufzubringen. Ursachen hierfür liegen in der unzureichenden Glykolyse durch Glucosemangel im Herzmuskel
25 und/oder dessen unzureichende Sauerstoffversorgung sowie in komplexen koronaren Entzündungsprozessen (Aktivierung von Zellen des Immunsystems sowie Komplement). Dieser Aspekt der Erfahrung beruht dabei auf der Erkenntnis, daß

mit den erfindungsgemäßen Substanzen alternative ener-
gieerzeugende biochemische Prozesse moduliert werden und
somit es auch möglich ist, gleichsam Ersatzpfade für die
vorstehend genannten mangelhaft funktionierenden Prozesse
5 zu schaffen, beispielsweise durch Aktivierung der Seri-
nolyse oder Glutaminolyse oder mit erfindungsgemäßen Sub-
stanzen das existierende dynamische Gleichgewicht zwischen
Glykolyse auf der einen Seite und der Glutaminolyse auf
der anderen Seite zu Gunsten der Glykolyse zu verschieben
10 unter gleichzeitiger Gabe von Sauerstoff (Erhöhung des
Sauerstoff-Partialdruckes im Blut, beispielsweise durch
Beatmung). In diesem Zusammenhang kann die Gabe von er-
findungsgemäße entzündungshemmenden Substanzen die dro-
hende lebensgefährliche Acidose (durch Lactatbildung)
15 vermieden werden. Gegenüber den bekannten Maßnahmen, wie
Gabe von ACE-Hemmern, Diuretika, Digitalis, positiv ino-
tropen Substanzen, oder Isosorbiddinitrat, wird mit er-
findungsgemäßen Substanzen direkt in den
Energiestoffwechsel eingegriffen und dieser verbessert.
20 Nebenwirkungen sind folglich vergleichsweise gering.

In diesem Zusammenhang wurde im Rahmen der Erfindung auch
gefunden, daß zumindest in den Fällen der NYHA Grade II
bis IV die Konzentration von Tumor M2-PK (= M2-PK dimer in
25 Gegensatz zu Normal-M2-PK, welche tetramer vorliegt) in
Zellen und/oder dem Blut zunimmt, welche routinemäßig
leicht, im Gegensatz zu bisher gängigen Methoden, bestimmt
werden kann. Daher lehrt die Erfindung weiterhin die Ver-
wendung eines Tumor M2-PK detektierenden Testsystems zur
30 Herstellung eines Diagnostikums zur in vitro Diagnose
einer Herzinsuffizienz, insbesondere auch des Grades bzw.
der damit verbundenen Entzündungsprozesse. Werden bei
einem Patienten im Blutplasma gegenüber Standardwerten

(definierte maximale Grenzwerte; Normalkollektiv) erhöhte Tumor M2-PK Werte (Kollektiv der Erkrankten) gefunden, so ist dies indikativ für das Vorliegen einer Herzinsuffizienz und/oder für damit korrelierte Entzündungsprozesse, zumindest aber für das Risiko, an Herzinsuffizienz zu erkranken. Eine solche Blutplasmaanalyse ist einfach und kurzfristig durchführbar. Demgegenüber sind bisherige Standardmethoden Goldstandard, Blutgasanalyse) routineuntauglich und teuer. Es können im Rahmen dieses Aspektes der Erfindung beliebige bekannte Testsysteme eingesetzt werden, welche Tumor M2-PK detektieren, z.B. immunologische Testsysteme mit Antikörpern. Insbesondere sind auch per se bekannte Testsysteme einsetzbar, welche Tumor M2-PK als Tumorstoffwechselmarker detektieren, beispielsweise hierfür spezifische monoklonale Antikörper.

Diverse erfindungsgemäß einsetzbare Substanzen sind in den weiteren Figuren dargestellt. Dabei sind insbesondere die wesentlichen Variationsmöglichkeiten beispielhaft dargestellt, wobei die ohne weiteres daraus ersichtlichen Permutationen der Einfachheit halber nicht dargestellt sind. Die Erfindung umfasst schließlich auch alle natürlichen Metaboliten der beschriebenen Substanzen. Schließlich gehören zu den erfindungsgemäß einsetzbaren Substanzen auch Glycerat-2,3-biphosphat und Fructose-1,6-bisphosphat.

Im Folgenden wird die Erfindung anhand von lediglich Ausführungsformen darstellenden Beispielen näher erläutert.

Beispiel 1: Quantifizierung der Wirksamkeit einer erfindungsgemäßen Verbindung

Einsetzbare Novikoff-Hepatom-Zellen sind von der Tumorbank 5 des Deutschen Krebsforschungszentrums, Heidelberg, (Cancer Research 1951 , 17, 1010) erhältlich. Es werden je 100.000 Zellen pro 25cm²-Kultivierungsflasche ausgesät. Eine erfindungsgemäße Substanz wird, gelöst in einem für den Einsatz in Zellkulturen geeigneten Lösungsmittel wie z.B. 10 Wasser, verd. Ethanol, Dimethylsulfoxid o.ä., in steigender Konzentration dem Kulturmedium zugesetzt, z.B. im Konzentrationsbereich von 80µM - 5000µM oder von 100µM - 300 µM). Nach vier Kultivierungstagen wird die Zellzahl pro Flasche ausgezählt. Im Vergleich zu der Kontrollprobe 15 (ohne Zugabe einer erfindungsgemäßen Verbindung oder mit ersatzweiser Zugabe einer Referenzverbindung) erkennt man das Maß und die Dosisabhängigkeit einer Proliferationshemmung der eingesetzten Verbindung.

20 Beispiel 2: Auswanderung der PGM

In der Figur 1a ist eine isoelektrische Fokussierung eines Tumorzellextraktes (MCF-7 Zellen) gezeigt. Man erkennt, daß PGM den Glykolyse-Enzym-Komplex verläßt und in einen 25 mit den cytosolischen Transaminasen assoziierten Komplex, dem Transaminase-Komplex, wandert. Der Transaminase-Komplex ist wie folgt zusammengesetzt: cytosolische Glutamat-Oxalacetat-Transaminase (GOT), c-Malat-Dehydrogenase (MDH), Phosphoglyceromutase (PGM). Nicht gezeigt 30 sind: c-Glutamat-Pyruvat-Transaminase (GPT), c-Glutamat-Hydroxypyruvat-Transaminase, c-Alanin-Hydroxypyruvat-Transaminase, c-Serin-Hydroxymethyl-Transferase und c-Glutamat-Dehydrogenase (GIDH). Die PGM und die

Nukleotid-Diphosphatkinase (NDPK) können sowohl im Transaminase- als auch im Glycolyse-Enzym-Komplex assoziiert sein.

5 Beispiel 3:

In den Figuren 2 ff. sind lediglich beispielhaft eine Reihe von Variationsmöglichkeiten erfindungsgemäßer Strukturen angegeben. Man erkennt hieraus auch diverse 10 Permutationsmöglichkeiten. Die jeweiligen Variationsmöglichkeiten können auch bei den anderen Variantionsmöglichkeiten eingerichtet sein. Grundsätzlich können die Reste des Anspruchs 1 beliebig und unabhängig voneinander, wie dort angegeben, variiert werden. Einfache 15 Varianten, wie C1-Alkyl, C2-Alkyl, C3-Alkyl, etc. sind nicht dargestellt und insofern wird ergänzend auf die Patentansprüche verwiesen. Schließlich gehören zu erfindungsgemäß verwendbaren Substanzen Glycerat-2,3-bisphosphat und Fructose-1,6-bisphosphat. 20 Erfindungsgemäße Substanzen sind des weiteren CH₃-(CO)-NH_{Hal}-CH₂-CH₂-S-C_x-Alkyl (x=1,2,3,4,5), wobei S durch NH ersetzt sein kann.

Beispiel 4: Synthesewege zur Substitution der Hydroxy- 25 gruppe einer Hydroxyaminosäure durch die Oxyaminogruppe.

5-Hydroxy-2-Aminopentansäure wird zunächst mit t-Butyloxycarbonylazid (t-butyl)-O-(CO)-N₃) umgesetzt, welches 30 eine Schutzgruppe für die Aminogruppe bildet. Das Produkt wird dann mit Benzylbromid umgesetzt, welches eine Schutzgruppe für die Carboxylgruppe bildet. Das so erhaltene Produkt wird dann mit Benzohydroxamsäure (Benz-(CO)-

NH-OH) umgesetzt, wobei unter Wasserabspaltung die gewünschte C-O-N Struktur gebildet wird. Im Sauren wird dieses Zwischenprodukt zu 5-Oxyamino-2-Aminopentansäure zersetzt, wobei auch die Schutzgruppen entfernt werden.

5

In entsprechender Weise können verschiedene Derivate mit unterschiedlich langen Alkylketten hergestellt werden. Einsatz von beispielsweise 3-Hydroxy-2-Aminopropansäure ergibt als Produkt die Verbindung der Formel XVI in Figur 10 3, 3-Oxyamino-2-Aminopropansäure, welches das Oxyamin Derivat des Serin ist. 3-Oxyamino-2-Aminopropansäure lässt sich alternativ durch saure Aufspaltung (2HCl) von Cycloserin herstellen.

15 4-Oxyamino-2-Aminobutansäure ist durch saure Aufspaltung (HCl) von Cyclohomoserin herstellbar.

Beispiel 5: Syntheseweg zur Herstellung von Aminosäurederivaten, bei welchen die Aminogruppe durch
20 die Oxyaminogruppe substituiert ist.

Als Edukte kommen beliebige alpha-Hydroxycarbonsäuren in Frage. An dem alpha C-Atom können beliebige Reste, ggf. mit Schutzgruppen, eingerichtet sein. Als Reste kommen 25 beispielsweise insbesondere alle Reste von Aminosäuren in Frage.

Das Edukt wird zunächst mit Benzylbromid umgesetzt, welches eine Schutzgruppe für die Carboxylgruppe bildet.

30 Das so erhaltene Produkt wird dann mit Benzohydroxamsäure (Benz-(CO)-NH-OH) umgesetzt, wobei unter Wasserabspaltung die gewünschte C-O-N Struktur gebildet wird. Im Sauren

wird dieses Zwischenprodukt zur alpha-Oxyaminocarbonsäure zersetzt, wobei auch die Schutzgruppen entfernt werden.

Alternativ kann wie folgt vorgegangen werden. Das Edukt 5 wird zunächst mit Benzylbromid umgesetzt, welches eine Schutzgruppe für die Carboxylgruppe bildet. Das so erhaltene Produkt wird dann mit 3,3'-di-t-butyloxaziridin umgesetzt, wobei die gewünschte C-O-N Struktur unmittelbar gebildet wird. Im Sauren wird dieses Zwischenprodukt zur 10 alpha-Oxyaminocarbonsäure zersetzt, wobei die Schutzgruppen entfernt werden.

Beispiel 6: Synthese von Oxyaminocarbonsäuren.

15 Als Edukt wird eine beliebige Hydroxycarbonsäure, beispielsweise mit 2 bis 7 C-Atomen, zunächst mit Benzylbromid umgesetzt, welches eine Schutzgruppe für die Carboxylgruppe bildet. Das so erhaltene Produkt wird dann mit Benzohydroxamsäure (Benz-(CO)-NH-OH) umgesetzt, wobei unter 20 Wasserabspaltung die gewünschte C-O-N Struktur gebildet wird. Im Sauren wird dieses Zwischenprodukt zur alpha-Oxyaminocarbonsäure zersetzt, wobei auch die Schutzgruppen entfernt werden.

25 Beispiel 7: Synthese eines Oxyaminobenzyllderivates.

Eine para Flourbenzylverbindung wird mit einer Hydroxyaminoverbindung umgesetzt. Das Produkt hieraus wird mit N₂H₄ zum gewünschten Oxyaminobenzyllderivat (bzw. O-30 Phenylhydroxylaminderivat) umgesetzt. Der para Substituent des Edukts bleibt erhalten. Ggf. sind für diesen Substituenten zuvor Schutzgruppen einzurichten.

Beispiel 8: bevorzugte Varianten der Erfindung

5

Unter die Formel des Anspruches 1 fallen insbesondere Derivate von natürlichen Aminosäuren, wobei die alpha Aminogruppe durch eine Oxyaminogruppe (-O-NH₂) ersetzt ist (X=Y=H; r=1; R₁=-(CR₂₀R₂₀)_{n1}-(CO)_{r1}-(CR₂₀R₂₀)_{n2}-(O)_{r2}-R₂₀ mit 10 n₁=1, r₁=n₂=r₂=0; ein R₂₀=-Am und das andere R₂₀=-COOH, wobei Am der Rest einer Aminosäure, welcher am alpha-C einer Aminosäure gebunden ist). Es handelt sich um alpha-Oxyaminocarbonsäuren. Als zu Grunde liegende Aminosäuren kommen insbesondere Alanin, Serin, Cystein, Glutaminsäure 15 und Asparaginsäure in Frage. Weist eine solche Substanz in Am eine -OH, -NH₂, -SH, oder -COOH Funktionalität auf, so können diese zusätzlich jeweils unabhängig voneinander durch -ONH₂, oder -CN Funktionalität ersetzt sein. Bevorzugt ist für die Tumorbehandlung ein Kombinationspräparat 20 aus den vorstehenden Oxyaminoderivaten der Aminosäuren Alanin, Serin und/oder Glutaminsäure, wobei in beliebiger Kombination 2 dieser Derivate oder auch alle 3 vorgesehen sein können.

25 Unabhängig hiervon können erfindungsgemäße Substanzen neben den in Anspruch 2 genannten Indikationen auch für die Behandlung von Tuberkulose sowie der Schlafkrankheit eingesetzt werden.

Patentansprüche:

1) Verbindung gemäß der Formel I oder physiologisch verträgliches Salz hiervon

5

wobei X und Y gleich oder verschieden und -Hal, -H,
 10 -O-R₁₀, -NH₂, -(CR₂₀R₂₀)_n-O-NH₂, C_n-Alkyl (gesättigt, einfach oder mehrfach ungesättigt), C_n-Aryl, -NO₂ sein können,

wobei R₁₀ -H, C_n-Alkyl (gesättigt, einfach oder mehrfach ungesättigt), C_n-Aryl sein kann,

15 wobei R₁ -H, C_n-Alkyl (gesättigt, einfach oder mehrfach ungesättigt), C_n-Aryl, -CH(ONXY)₂, -C(ONXY)₃, -(CR₂₀R₂₀)_n-(CO)_r-(CR₂₀R₂₀)_n-(O)_r-R₂₀, -(CR₂₀R₂₀)_n-CR₁₁₀R₁₁₁, -(CR₂₀R₂₀)_n-NXY, -SO₂-R₂₀, -O-R₂₀, -(CR₂₀R₂₀)_n-(O)_r-(CO)_r-R₁₁₀ sein kann,

20 wobei R₁₁₀ =O, -Hal, -COOH, -CN, -SCN, -CNS, -CNO, -N=N-H, -O-CN, -(CO)-CN, -N=N sein kann,

wobei R₁₁₁ gleich R₁₀, -O-R₁₀ sein kann,

wobei R₂₀ jeweils unabhängig -H, -OH, -Hal, C_n-Alkyl (gesättigt, einfach oder mehrfach ungesättigt),

25 C_n-Aryl, -AS, -NXY, -Z, -C(NH₂)-COOH, -(CO)-CN, -COOH, R₁₁₀, Benzyl (unsubstituiert oder -Hal und/oder -OH und/oder -ONXY und/oder C_n-Alkoxy substituiert), -PO₃²⁻, -P₂O₅³⁻ sein kann,

wobei -O- jeweils unabhängig ersetzt sein kann durch -S- oder -Se-,

wobei n jeweils unabhängig jede ganze Zahl von 0 bis 18 sein kann,

wobei r jeweils unabhängig 0 oder 1 ist,

wobei AS jeweils unabhängig einen Aminosäurerest darstellt, welcher durch Entfernung der Aminogruppe einer Aminosäure erhalten ist, oder den Rest einer Aminosäure, welcher am α -C einer Aminosäure gebunden ist,
 5 oder COOH-CH-NH₂,
 wobei -Hal -F, -Cl, -Br, oder -J ist,
 wobei -Z ein Rest gemäß einer der folgenden Formeln II bis V ist,
 10 wobei -COOH jeweils unabhängig ersetzt sein kann durch -COOR₁₀, -CHO, -CN, -(CO)-NXY, -C(NXY)₂, -CH-O-NXY,
 -C(OH)-O-NXY, -(CO)-O-NXY, -(CO)-CN,
 wobei freie Valenzen durch -H abgebunden sind,
 15 wobei XYN- oder XYN-O- in Formel I ersetzt sein kann durch NC-, NCS-, NCO-, SNC-, ONC-, HN=N-,
 N=N-.

Formel II

20

Formel III

(m = 1, 2)

(XYN- = -OH oder -H)

25

Formel IV

(m = 1, 2)

(XYN- = -OH oder -H)

30

Formel V

(S⁺ = N)

2) Verwendung einer Verbindung nach Anspruch 1 zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung einer oder mehrerer Erkrankungen aus der Gruppe bestehend aus "Krebs, Rheuma, (chronische) Entzündungen, Asthma, Arthritis, Osteoarthritis, chronische Polyarthritid, rheumatische Arthritis, Inflammatory bowel disease, degenerative Gelenkerkrankungen, Erkrankungen des rheumatischen Formenkreises mit Knorpelabbau, Sepsis, Autoimmunerkrankungen, Typ I Diabetes, Hashimoto-Thyreoiditis, Autoimmunthrombozytopenie, Multiple Sklerose, Myasthenia gravis, chronisch entzündliche Darmerkrankungen, Morbus Crohn, Uveitis, Psoriasis, Kollagenosen, Goodpasture-Syndrom, Erkrankungen mit gestörter Leukozyten-Adhäsion, Cachexie, Erkrankungen durch erhöhte TNFalpha Konzentration, Diabetes, Adipositas, bakterielle Infektionen, insbesondere mit resistenten Bakterien (antibiotisch), Herzinsuffizienz, Chronic Cardiac Failure (CCF), Acidose".

3) Pharmazeutische Zusammensetzung, wobei eine Verbindung nach Anspruch 1 mit einem oder mehreren physiologisch verträglichen Hilfsstoffen und/oder Trägerstoffen gemischt und galenisch zur lokalen, insbesondere oralen, oder systemischen, insbesondere i.v., Gabe hergerichtet ist.

30

4) Verwendung einer Verbindung nach Anspruch 1 zur in vitro und/oder in vivo Hemmung der Glykolyse und/oder der

Glutaminolyse, insbesondere von Pyruvatkinase, Aspar-
aginase, Serindhydratasen, Transaminasen, Glutamat Ox-
alacetat Transaminase, Glutamat Pyruvat Transaminase,
Glutamat Dehydrogenase, Malat Dehydrogenase, De-
5 saminasen, und/oder Glutaminasen, insbesondere in Pro-
und/oder Eukaryonten.

10

15

20

25

30

FIGUR 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5