Redes Neurais & Deep Learning

Entendendo da teoria à prática!

Agenda

Redes Neurais & Deep Learning

- Conceitos de Redes Neurais
- Perceptron
- Multilayer Perceptron
- Deep Learning
 - o O que é?
 - Tipos de Rede e Nós
- Discussão

Paradigma - Conexionista

Conexionista

- Baseado na metáfora biológica com as conexões neurais do sistema nervoso.
 - Diretamente ligado às Redes Neurais.
- Envolve unidades altamente interconectadas.
- São exemplo,
 - Perceptron,
 - Multilayer Perceptron, e
 - Deep Learning.

Assessment Of Artificial Neural Network For Bathymetry
Estimation Using High Resolution Satellite Imagery In Shallow
Lakes: Case Study El Burullus Lake.

Neurônio Natural

Neurônio simplificado

- Neurônio
- Dendritos
- Axônios
- Sinapse

Fonte: André Ponce de Leon F de Carvalho

Neurônio Artificial

Neurônio artificial

- Neurônio f(x)
- Dendritos Entradas
- Axônios Saída
- Sinapse Sinal

Fonte: André Ponce de Leon F de Carvalho

Perceptron – Introdução

Perceptron

- Implementado Rosemblat (1958);
- Proposto McCulloch-Pitts (1943).

Tarefas

Classificação; Regressão.

Funcionamento

- Valores, pesos, e saída;
- Correção de erro.

Perceptron Model (Minsky-Papert in 1969)

What is a perceptron?

Perceptron – Aprendizado

Correção de Erro

Inicializa os pesos aleatoriamente;

Para cada época;

- Se eu acertei a predição, ok;
- Se não, altera os pesos.
 - \circ wi = wi + Δ wi
 - $\Delta wi = \eta(t o)xi$

Resumidamente

- "Se faltou, ele sobe o valor"; e
- "Se sobrou, ele desce o valor".

Perceptron Model (Minsky-Papert in 1969)

What is a perceptron?

Perceptron - Teoria

Treinamento Supervisionado

- Aprende uma função linear.
- Teorema de convergência
 - Se os dados forem linearmente separáveis, então o algoritmo do perceptron irá corrigir para um conjunto consistente de pesos.

Notas

- Não aprende funções complexas.
- Minksy e Papert (1969) escreveram um livro analisando o perceptron e descrevendo funções que ele não podia aprender.

Multilayer Perceptron – Introdução

Multilayer Perceptron

- Popularizou em 1980s;
- Aplicações Speech Recognition; Image Recognition; e Machine Translation.

Tarefas

• Supervisionado; e Não supervisionado.

Arquitetura

- Camada de entrada; escondida; e saída;
- Totalmente conectada;
- Função de <u>ativação</u>: relu, sigmoid, log...

How to Train a Multilayer Perceptron Neural Network

Multilayer Perceptron - Exemplo

Fonte: André Ponce de Leon F de Carvalho

Multilayer Perceptron - Funcionamento

Multilayer Perceptron - Teoria

Treinamento Supervisionado

Forward (sinal); e backward (erro).

Teoria

- Representa funções não lineares.
- Duas camadas escondida: Representa qualquer função
 - Lippmann (1987) "<u>An introduction</u> to computing with neural nets".
- Uma camada escondida
 - Allan Pinkus (1999)
 "Approximation theory of the MLP model in neural networks"

How to Train a Multilayer Perceptron Neural Network

Multilayer Perceptron – Notas

Notas

- Usualmente, possuem 1 ou 2 camadas escondidas.
- Quantas camadas escondidas ou nós por camada?
 - "Use systematic experimentation to discover what works best for your specific dataset."
 - Deep Learning (2016)
 - Muitas teorias, mas nenhuma tem certeza.
- Treinamento lento, relação ao número de nós.
- Não é interpretável não dá para entender a caixa preta.
- É "semi" incremental aprende com novos exemplos.
 - "Online learning"

fonte desconhecida

Multilayer Perceptron - Complemento

StatQuest - Neural Networks: Inside the Black Box [pt.1, pt.2, pt.3, pt.4]

Redes Neurais - Classificação

https://www.kaggle.com/leomauro/redes-neurais-classifica-o-de-cogumelos

Aprendizado Profundo (Deep Learning) (~2010)

"Empirically, greater depth does seem to result in better generalization for a wide variety of tasks. [...] This suggests that using deep architectures does indeed express a useful prior over the space of functions the model learns."

Deep Learning (2016)

Resumidamente

- Redes Profundas são muitas camadas escondidas.
- Testar diferentes arquiteturas para diferentes tarefas.
- Boom nêuronios com funcionalidades específicas

Giphy - Blow Your Mind

Multilayer Perceptron - Redes Rasas

- Características extraídas manualmente (por especialistas) ou por técnicas de extração de dados.
- Poucas camadas que tornam difícil extrair função que represente os dados.

Deep Learning - Redes Profundas

- Características extraídas hierarquicamente por algoritmos de aprendizado automáticamente.
 - "ele descobre sozinho".
- Características não interpretáveis.

News Feature: What are the limits of deep learning?

Visualizing and Understanding Convolutional Networks (2014)

Visualizing and Understanding Convolutional Networks (2014)

O que vocês acham que é a imagem ao lado?

- Acertou quem disse um som.
- Som ao longo do tempo.

Interessante é que...

- Aprende imagens
- Aprende sons, infravermelho
- Aprende textos

Qualquer coisa que você transformar num vetor.

Deep Learning - Aplicações

- Natural Language Processing (NLP) Answering questions; speech recognition; summarizing documents; classifying documents; finding names, dates, etc; intents and entities.
- Computer Vision Satellite and drone image interpretation; face recognition; image captioning.
- Medicine Finding anomalies in radiology images, including CT, MRI, and X-ray images.
- Image Generation Colorizing images; increasing image resolution; removing noise from images; converting images to art in the style of famous artists
- Recommendation Systems, Web search product recommendations; home page layout
- Playing games Chess, Go, most Atari video games, and many real-time strategy games
- Other applications Tabular data, forecasting, text to speech, and much more...

See more in https://course.fast.ai/

Deep Learning - Como?

Como foi possível?

- Alto poder computacional.
- Computação em Nuvem (cloud).
- Cálculos paralelizados.

O que foi possível?

Processamento Paralelo Utilizando GPU

- Aumentar a arquitetura várias camadas escondidas.
- Testar muitas arquiteturas diferentes não precisa ser totalmente conectada, pode ter loops...
- Testar exaustivamente técnicas de busca, Grid Search, Random Search.

Deep Learning - Nomenclatura

Deep Learning for Coders with Fastai and Pytorch: Al Applications Without a PhD (2020)

Os tipos de redes neurais - IA Expert Academy

Deep Learning - Deep Feed Forward (DFF)

Perceptron (P)

Deep Feed Forward (DFF)

Feed Forward (FF)

Os tipos de redes neurais – IA Expert Academy

- O tipo mais básico, no qual a informação de entrada flui em sequência linear até os neurônios de saída.
- Cada neurônio é uma operação linear do tipo Wx + b, onde W e b são os parâmetros peso e bias do neurônio.
- Capazes de modelar vários problemas onde os dados de entrada têm um impacto atemporal nos dados de saída.

Deep Learning - Recurrent Neural Net. (RNN)

Recurrent Neural Network (RNN)

Long / Short Term Memory (LSTM)

Os tipos de redes neurais – IA Expert Academy

- Recebem o resultado da operação matemática que eles mesmos realizaram no período temporal anterior.
- Modelam problemas com características temporais, por exemplo a previsão do tempo dado o histórico climático.
- LSTM estende a memória da RNN; são capazes de compor textos com coerência semântica e gramatical.

Extra - <u>Understanding LSTM Networks</u>

Deep Learning – AutoEncoder (AE)

Os tipos de redes neurais - IA Expert Academy

- Os auto encoders são projetados para representar a informação de entrada em um espaço dimensional intrínseco.
- A camada de saída é uma cópia da informação de entrada, de forma que, durante o treinamento, os autoencoders (camadas escondidas) aprendem a representar a informação original em menos espaço, mas com informação suficiente para reconstruir os dados originais.

Deep Learning - Convolutional Net. (DCN)

Deep Convolutional Network (DCN)

Os tipos de redes neurais - IA Expert Academy

- Nas camadas de convolução, a informação passa por vários filtros com a função de acentuar padrões regulares locais.
- Então, passam por uma estrutura de DFF clássica para a tarefa de classificação.
- Utilizada na classificação de imagens; os filtros acentuam atributos dos objetos necessários à sua correta classificação.
- "Se inverter, você produz uma imagem."

Deep Learning - Crie sua Própria

Input Cell

Output Cell

Backfed Input Cell

Match Input Output Cell

Noisy Input Cell

Recurrent Cell

Hidden Cell

- Memory Cell
- Probablistic Hidden Cell
- A Gated Memory Cell

- A Spiking Hidden Cell
- Kernel

Capsule Cell

Convolution or Pool

Os tipos de redes neurais - IA Expert Academy

- Basicamente, pesquisadores estudam / desenvolvem novos tipos de neurônios.
 - Cada qual com sua característica própria / função única.
- Cria conexões entre eles, i.e., camadas.
- Realiza uma busca extensiva sobre diversas arquiteturas até atingir o seu objetivo.
- Ou, utilizam redes prontas.

Deep Learning - Tecnologias

PyTorch - Learning with Examples

TensorFlow - Basic image classification

Keras - Basic image classification

Deep Learning - Experimento

Deep Learning - Fast AI (pt-br)

Python notebook using data from bosh-chewie - 22 views - 5d ago - \$\sqrt{}\$ gpu, deep learning, classification, +1 more \$\tilde{e}\$ Edit tags

Deep Learning - Fast Al

Este notebook apresenta um conjunto de demonstrações de Deep Learning utilizando o pacote fastai,

https://www.kaggle.com/leomauro/deep-learning-fast-ai-pt-br

Redes Neurais - Notas

Machine Learning clássica

- Interpretabilidade é fundamental;
- Quantidades menores de dados relativamente simples;
- Feature engineer simples;
- Treinamento em CPUs;
- Necessidade de prototipagem e operacionalização mais rápidas;
- A precisão dos resultados do conjunto de dados de teste é aceitável.

Deep Learning

- Interpretabilidade inviável;
- Grandes quantidades de dados rotulados com precisão (alta qualidade);
- Feature engineer complexa;
 - Transformações do conjunto de dados inicial serão necessários.
- Recursos de computação poderosos disponíveis (aceleração de GPU);
- Uma precisão muito alta é uma prioridade.

Dúvidas???

fonte desconhecida

Muito obrigado pela **sua** participação!!