

Point

The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes. These are often numbered from 1^{st} to 4^{th} : where the signs of the (x;y) coordinates are I (+;+), II (-;+), III (-;-), and IV (+;-).

Given N points. Check that there is a point after removal of which the remaining points are located at most on one side of quadrant.

Format Input

The input begins with an integer T indicating the number of test cases. In each test case, the first line contains a single positive integer N, the number of points. The following N lines contain coordinates of the points. The i-th of these lines contains two single integers x_i and y_i . No two points coincide.

Format Output

For each test case, output YES if there is such a point. Otherwise, output NO.

Constraints

1 <= T <= 100 1 <= N <= 1000 1 <= |x_i|, |y_i| <= 1 000 000

Sample Input (standart input)	Sample Output (standard output)
2	Case #1: NO
4	Case #2: YES
1 1	
2 2	
-1 -1	
-2 -2	
3	
-1 1	
-2 2	
-3 3	