UnB – Instituto de Física						
Matrícula:		Nome completo (legível):				
Disciplina:	Prova:	Assinatura:	Data:			
Física 1	1 Modelo A		09/04/2016			

Aparelhos celulares: Celulares devem estar desligados e no guardados no chão sob a cadeira, será sumariamente reprovado o aluno que for flagrado em desacordo com essas regras.

Pontuação das questões: Tipo A, 0,25 ponto; Tipo B, 1,0 ponto (a: 0,3; b: 0,3; c: 0,4); Tipo C, 0,75 ponto.

Questões tipo A: Cada item errado das questões V/F cancelará um item certo.

Questões tipo B: Faça todos os cálculos com, pelo menos, 5 algarismos significativos. Caso o número a ser marcado na folha de respostas não seja inteiro, ARREDONDE para o inteiro mais próximo. O arredondamento deve ser a última operação a ser feita, imediatamente antes de marcar a folha de respostas. Se um item depende da resposta de um item anterior, utilize a resposta com todas as casas decimais, não a resposta arredondada.

Questões tipo A

Com relação as unidades e grandezas física, julgue os itens abaixo atribuindo (V) para os verdadeiros e (F) para os falsos.

- 1. lacktriangle \odot O número π é adimensional, visto que ele pode ser calculado como a razão entre dois comprimentos.
- 2. ① Um balde contém 15,4 litros de tinta. Se forem retirados 10,400 litros, o volume de tinta restante no balde terá apenas 1 algarismo significativo.
- 4. lacktriangle © O vetor $\hat{A} = \frac{\vec{A}}{A}$ é um exemplo de um vetor unitário que aponta no sentido do vetor \vec{A} .
- 5. ⑤ Se os vetores não nulos \vec{A} e \vec{B} são paralelos ou antiparalelos, $\vec{A} \times \vec{B} = \vec{0}$. O módulo de $\vec{A} \times \vec{B}$, que pode ser escrito como $|\vec{A} \times \vec{B}|$, é máximo quando \vec{A} e \vec{B} são mutuamente perpendiculares.
- 6. **(**♥ Se dois vetores forem não nulos e coplanares, ou seja, contidos no mesmo plano, então o produto escalar desses vetores será nulo
- 7. ① Há um vídeo, onde um praticante de *bungee jump* com elevada massa corporal está sobre uma ponte e abandona um relógio raríssimo. Após alguns segundos, ele se atira da mesma posição de onde caiu o relógio e consegue agarrá-lo no ar, antes da corda sofrer qualquer alteração no seu comprimento. Considerando que ambos partem do repouso, e desprezando-se a resistência do ar, podemos afirmar que esse vídeo é verdadeiro porque o corpo com maior massa cai com maior velocidade.
- 8. ⑤ O gráfico da posição versus tempo de um veículo em um engarrafamento pode ser esboçado pela seguinte figura.

- 9.

 Após o lançamento de uma bola para cima com certa inclinação em relação a direção vertical, a direção da velocidade da bola nunca será ortogonal à direção da sua aceleração.
- 10. lacktriangle No instante em que um foguete atinge o ponto mais alto da trajetória ele explode lançando verticalmente, em sentidos opostos, duas partículas com velocidades iniciais iguais e opostas, de módulo v_0 . Sendo g o módulo da aceleração da gravidade e desprezando o atrito com o ar, o intervalo de tempo decorrido entre os instantes em que as duas partículas chegam ao solo, é dado por $\frac{2v_0}{g}$.
- 11. © Desprezando-se o atrito, tanto no movimento circular uniforme quanto no movimento de um projétil, o módulo da aceleração é constante em qualquer instante.
- 12. © O referencial a partir do qual observamos um objeto em deslocamento, influencia no modo como descrevemos o seu movimento, produzindo um efeito conhecido como velocidade relativa.

- 13. Se \mathbf{A} e \mathbf{B} são vetores e \mathbf{B} = - \mathbf{A} , qual das afirmativas abaixo é verdadeira
 - a O módulo de **B** é igual ao negativo do módulo de **A**.
 - **b** A e B são perpendiculares.
 - © O produto vetorial entre os vetores está contido no mesmo plano
 - O produto escalar entre **A** e **B** resulta em um número negativo.

 - ① Módulo de **A** somado ao módulo de **B** é igual a zero.
 - O produto escalar entre A e B resulta em um número positivo.

- 14. Considere o gráfico da aceleração na Figura abaixo. Considerando $x=v_x=0$ em t=0, o item que melhor representa a expressão algébrica correta para x(t), é dado por:
 - a $x(t) = (50m/s)t + (10m/s^2)t^2$.
 - $x(t) = (25m/s^2)t^2 (\frac{5}{3}m/s^3)t^3$.
 - © $x(t) = (50m/s^2)t^2 + (\frac{5}{3}m/s^3)t^3$.
 - x(t) = (10m) (5m/s)t.
 - (a) $x(t) = (50m/s)t + (5m/s^2)t^2$.
 - ① $x(t) = (10m/s)t + (5m/s^2)t^2$.

15. Os gráficos da aceleração versus tempo para cinco objetos são mostrados abaixo. Todos os eixos têm a mesma escala, e o valor máximo da aceleração é o mesmo em todos os gráficos. Qual objeto sofre maior variação na sua velocidade durante o intervalo de 0 a t?:

16. Um projétil é disparado do alto de um barranco que está a uma altura H acima do nível de um vale, com velocidade inicial de módulo v_0 inclinada de um ângulo θ acima da horizontal. Desprezando a resistência do ar e considerando a aceleração da gravidade local igual a g, o vetor velocidade com que a o projétil atinge o solo será:

$$(a) v = \sqrt{v_0^2 \operatorname{sen}^2 \theta \hat{j} - 2gH \hat{i}}$$

$$b v = v_0 \sin \theta \hat{i} + \sqrt{v_0^2 \cos \theta - 2gH} \hat{j}$$

©
$$v = \sqrt{v_o^2 \operatorname{sen}^2 \theta + 2gH}\hat{j}$$

$$v = v_0 \cos \theta \hat{i} - \sqrt{v_0^2 \sin^2 \theta + 2gH} \hat{j}$$

$$(v = v_o \cos \theta \hat{i} - (v_o \sin \theta + 2gH)\hat{j}$$

- 17. De uma cidade A parte, para outra cidade B, um trem com velocidade constante v_A (= 36 km/h). Ao mesmo tempo, de B, partem, simultaneamente, para A, outro trem, com velocidade v_B (= 44km/h), e uma super-mosca, com velocidade v (= 100 km/h). A mosca, encontrando o trem que partiu de A volta imediatamente para B, mas, encontrando o trem que partiu de B, volta imediatamente para A e assim sucessivamente. A distância entre as duas cidades é D (= 80km).
 - a. 60 DETERMINE em minutos, o instante em que os trens se cruzam .
 - b. 44 No instante em que os trens se encontram, DETER-MINE em **quilômetros**, a distância percorrida pelo trem B.
 - c. 10 No instante em que os trens se encontram, DETERMINE em **quilômetros**, a distância percorrida pela mosca. Divida o resultado por 10

- 18. A posição de uma partícula que se desloca ao longo do eixo x varia com o tempo de acordo com a equação $x = ct^2 bt^3$, onde x está em metros e t em segundos. Suponha que os valores numéricos de c e b são 3,0 m/s 2 e 2,0 m/s 3 , respectivamente.
 - a. 10 DETERMINE em segundos, o instante em que a partícula passa pelo maior valor positivo de *x*, anulando sua velocidade. Multiplique o resultado por 10.
 - b. 18 DETERMINE em m/s², o módulo da aceleração da partícula no instante t=2 s.
 - c. 82 De t = 0.0 s a t = 4.0 s, DETERMINE em metros, a distância percorrida pela partícula.

- 19. A água de um rio se escoa com velocidade de 2,0 m/s do norte para o sul. Um homem dirige um barco com motor ao longo do rio, com velocidade igual a 4,0 m/s em relação à água, de oeste para leste. A largura do rio é igual a 800 m.
 - a. 45 DETERMINE em m/s, o módulo da velocidade do barco em relação à Terra. Multiplique o resultado por 10.
 - b. 63 DETERMINE em graus, a direção do movimento do barco em relação à direção paralela à margem do rio.
 - d0 DETERMINE em metros, a que distância ao sul do ponto inicial o barco atingirá a margem oposta. Divida o resultado por 10
- 20. Uma partícula descreve um movimento circular em um sistema de coordenadas xy horizontal, com velocidade escalar constante. No instante $t_1=4,0$ s, a partícula se encontra no ponto A (5,0 m; 6,0 m) com velocidade (3,0 m/s) \hat{j} e aceleração no sentido positivo de x. No instante $t_2=12,0$ s, a partícula encontra-se no ponto B, com velocidade (-3,0 m/s) \hat{i} e uma aceleração no sentido positivo de y.
 - a. $\boxed{60}$ DETERMINE em metros, a coordenada y do centro da trajetória circular se a diferença t_2 t_1 é menor que um período de rotação. Multiplique o resultado por 10
 - b. 20 DETERMINE em metros, a coordenada x do centro da trajetória circular se a diferença t_2 t_1 é menor que um período de rotação.
 - c. 72 DETERMINE em metros, a distância entre os pontos A e B. Multiplique o resultado por 10.

UnB – Instituto de Física						
Matrícula:		Nome completo (legível):				
Disciplina:	Prova:	Assinatura:	Data:			
Física 1	2 Modelo A		14/05/2016			

Aparelhos celulares: Celulares devem estar desligados e no guardados no chão sob a cadeira, será sumariamente reprovado o aluno que for flagrado em desacordo com essas regras.

Pontuação das questões: Tipo A, 0,25 ponto; Tipo B, 1,0 ponto (a: 0,3; b: 0,3; c: 0,4); Tipo C, 0,75 ponto.

Questões tipo A: Cada item errado das questões V/F cancelará um item certo.

Questões tipo B: Faça todos os cálculos com, pelo menos, 5 algarismos significativos. Caso o número a ser marcado na folha de respostas não seja inteiro, ARREDONDE para o inteiro mais próximo. O arredondamento deve ser a última operação a ser feita, imediatamente antes de marcar a folha de respostas. Se um item depende da resposta de um item anterior, utilize a resposta com todas as casas decimais, não a resposta arredondada.

Questões tipo A

Com relação as unidades e grandezas física, julgue os itens abaixo atribuindo (V) para os verdadeiros e (F) para os falsos.

- 1. ⑤ O efeito sobre o movimento de um objeto produzido por um número qualquer de forças é o mesmo efeito poduzido por uma força única, igual á soma vetorial de todas as forças. Esse resultado importante denomina-se princípio da superposição das forças.
- 2. © Se apenas uma força não-nula atua sobre um objeto, o objeto estará acelerado em relação a todos os referenciais inerciais.
- 3. (F) Um objeto está sob a ação de uma única força conhecida. Apenas com esta informação, é impossível dizer qual a orientação do movimento do objeto em relação a algum referencial inercial.
- 4. \bigcirc Um bloco de massa m repousa sobre um plano iclinado de um ângulo θ com a horizontal. Dessa forma, o coeficiente de atrito estático entre o bloco e o plano é, necessariamente, $\mu_e = \tan \theta$.
- 5. © Em muitos casos, verifica-se, experimentalmente, que o módulo da força de atrito cinético f_c é proporcional ao módulo n da força normal. Em tais casos, podemos representar a relação pela equação não vetorial dada por $f_c = \mu_c n$, onde μ_c é o coeficiente de atrito cinético.
- 6. © Em um dia gelado de inverno, o coeficiente de atrito entre os pneus de um carro e a estrada é reduzido a um quarto de seu valor em um dia seco. Como resultado, a velocidade máxima $V_{m\acute{a}x-seco}$ na qual o carro pode percorrer em segurança uma curva de raio R é reduzida. O novo valor dessa velocidade é $0.50V_{m\acute{a}x-seco}$.
- 7. © Quando uma partícula sofre um deslocamento, ela aumenta sua velocidade se $W_{tot} > 0$, diminui sua velocidade quando $W_{tot} < 0$ e a velocidade permanece constante se $W_{tot} = 0$. Onde W_{tot} é o trabalho total.

- 9. © Enquanto um objeto é empurrado rampa acima, o sinal do produto escalar da força da gravidade sobre ele pelo seu deslocamento é negativo.
- 10. igoplus igoplus O sentido de uma força sobre um corpo $n\~ao$ é determinado pelo sinal da energia potencial. Em vez disso, o sinal de $F_x = -dU/dx$ é que é relevante. Isso significa que você pode sempre adicionar uma constante ao valor da energia potencial sem alterar a física da situação envolvida.
- 11. **②●** O trabalho realizado por forças de atrito sempre provoca uma diminuição na energia total do sistema.
- 12. \bigcirc A figura abaixo mostra o gráfico de uma função energia potenial U versus x. A força associada ao ponto B tem maior magnitude que a força nos outros pontos (A,C,D,E e F).

- 13. Um garçom empurra uma garrafa de pimenta de massa igual a *m* ao longo de um balcão liso e horizontal. Quando a garrafa deixa sua mão, ela possui velicidade de v, que depois diminui, por causa do atrito horizontal constante exercido pela superfície superior do balcão. A garrafa percorre uma distância de *d* até parar. Determine o módulo da força de atrito que atua sobre a garrafa.
 - $(a) F_{at} = \frac{2mv^2}{d}$
 - ⓑ $F_{\rm at} = \frac{2mv^3}{d^2}$
 - \odot $F_{\text{at}} = \frac{mv^2}{d}$
 - $\bullet \quad F_{\rm at} = \frac{mv^2}{2d}$
 - $F_{at} = \frac{mv^2}{4d}$
- 14. Um bloco A, de massa M_A , está disposto sobre um segundo bloco B, de massa M_B . O bloco A é empurrado por uma força de módulo F e o coeficiente de atrito estático entre os blocos vale μ . Admita que os blocos possam ser tratados como partículas em que módulo da aceleração gravitacional local vale g. Considere desprezível o atrito nos eixos das rodas do bloco B, bem como o atrito de rolamento entre as rodas e a pista. Determine, em função dos dados (μ , g, M_A e M_B) que se fizerem necessários, o valor máximo do módulo da força F_{max} , para o qual o bloco A não desliza sobre o bloco B.
 - $(a) \quad F_{m\acute{a}x} = (\frac{M_B}{M_A} 1)$
 - $\bullet \quad F_{m\acute{a}x} = \mu M_A g(\frac{M_A + M_B}{M_B})$
 - $\odot \ F_{m\acute{a}x} = \mu M_B g(\frac{M_A M_B}{M_A})$
 - (d) $F_{m\acute{a}x} = \mu M_A g$
 - $(a) F_{m\acute{a}x} = \mu M_B g(\frac{M_A M_B}{M_B})$
 - $for F_{m\acute{a}x} = \mu M_B g$

- 15. Uma partícula α , de massa m, está inicialmente posicionada no eixo x positivo, em $x = x_0$, sujeita a uma força repulsiva F_x , exercida pela partícula β . A posição da partícula β está fixa na origem. A força F_x é inversamente proporcional ao quadrado da distância x entre as partículas. Isto é, $F_x = \frac{A}{r^2}$, onde A é uma constante positiva. A partícula α é largada do repouso e fica livre para se mover sob a influência exclusiva da força repulsiva. Encontre a expressão para velocidade de α no limite em que x tende ao infi-
 - (a) $v = \frac{\sqrt{A}}{mx_0}$

 - © $v = \sqrt{\frac{2A}{mx_0} + \frac{A}{mx_0^2}}$

 - (e) $v = \sqrt{\frac{2A}{mx_0} \frac{A}{mx_0^2}}$
- 16. Um bloco de massa *m*, partindo do repouso, desliza, sem atrito, até atingir a base de uma rampa, como ilustrado na figura abaixo. A partir de então, desliza numa superfície horizontal, onde o coeficiente de atrito cinético é μ_c , percorrendo uma distância d até atingir uma mola, comprimindoa de x (deformação máxima). A aceleração da gravidade é g. Determine a constante elástica da mola em termos de m g, μ_c e x, sabendo que H = 10x e d = 4x.
 - (a) $k = \frac{5mg}{x} \mu_c$
 - $b k = \frac{10mg 20\mu_c mg}{x}$ $k = \frac{mg}{2x}(\mu_c 2)$

 - $b k = \frac{10mg}{x} (2 \mu_c)$
 - $e k = \frac{2mg}{x}(\mu_c 2)$

- 17. Um pequeno objeto de massa m=1.0kg, abandonado do repouso no ponto P, desliza ao longo de um "loop" sem atrito, de raio R, conforme figura abaixo. No mais alto do "loop" (ponto A) a velocidade do objeto é $v=\sqrt{2Rg}$. No ponto C a velocidade do objeto é $\sqrt{2}v$ e no ponto mais baixo (ponto B) a velocidade vale $\sqrt{3}v$. Adote g=9.8 m/s^2 e determine a força em unidades do S.I
 - a. 10 Determine o módulo da força exercida sobre o objeto pela parede do "loop" no ponto A .
 - b. 39 Determine o módulo da força exercida sobre o objeto pela parede do "loop" no ponto C.
 - c. 69 Determine o módulo força exercida sobre o objeto pela parede do "loop" no ponto B, pertencente ao "loop".

- 18. Uma curva de 150 m de raio é inclinada de um ângulo $\theta = 10^{\circ}$, como mostrado na figura abaixo. Um carro de 800 kg percorre a curva a 85 km/h sem derrapar. Despreze os efeitos de arraste do ar e o atrito de rolamento. Adote $g = 9.8 m/s^2$.
 - a. 82 Determine em Newtons, a força normal exercida pelo pavimento sobre os pneus. Divide sua resposta por 100.
 - b. 16 Deternine em Newtons, a força de atrito exercida pelo pavimento sobre os pneus. Divide sua resposta por 100.
 - c. 19 Determine o coeficiente de atrito estático mínimo entre o pavimento e os pneus. Multiplique sua resposta por 100.

- 19. Um elevador de massa m = 500 kg está descendo com velocidade $V_i = 4.0$ m/s quando o cabo de sustentação começa a deslizar, permitindo que o elevador caia com aceleração constante $\vec{a} = \vec{g}/5$. Forneça suas respostas usando o sistema internacional de unidades (S.I.), considere g = 9.8 m/s².
 - a. $\boxed{59}$ Se o elevador cai de uma altura de d=12 m, calcule o trabalho realizado sobre o elevador pela força gravitacional. Divida sua resposta por 1000.
 - b. 47 Determine o módulo do trabalho realizado sobre o elevador pela força de tensão exercida pelo cabo durante a queda. Divida sua resposta por 1000.
 - c. 12 Determine o trabalho total realizado sobre o elevador durante a queda. Divida sua resposta por 1000.
- 20. A figura abaixo mostra um gráfico da energia potencial U em função da posição, x, para uma partícula de 0,200 kg, que pode se deslocar apenas ao longo de um eixo x sob a influência de uma força conservativa. Três dos valores mostrados no gráfico são U_A =9,00 J, U_C = 20,0 J e U_D = 24,00 J. A partícula é liberada no ponto B, o mais próximo ao ponto x = 0, onde U_B = 12,00 J, com uma energia cinética de 4,00 J. O valor máximo da U(x) no intervalo 4 < x < 6 é menor que 16 J, e U(x) = 0 para 6 < x < 7. Forneça suas respostas usando o sistema internacional de unidades (S.I.)
 - a. 84 Determine a velocidade da partícula em x = 3.5 m. Multiplique sua resposta por 10.
 - b. 13 Encontre a velocidade máxima da partícula.
 - c. 77 Determine em metros, a posição da partícula no ponto de retorno do lado direito. Multiplique sua resposta por 10.

UnB – Instituto de Física						
Matrícula:		Nome completo (legível):				
Disciplina:	Prova:	Assinatura:	Data:			
Física 1	3 Modelo A		18/06/2016			

Aparelhos celulares: Celulares devem estar desligados e guardados no chão sob a cadeira, será sumariamente reprovado o aluno que for flagrado em desacordo com essas regras.

Pontuação das questões: Tipo A, 0,25 ponto; Tipo B, 1,0 ponto (a: 0,3; b: 0,3; c: 0,4); Tipo C, 0,75 ponto.

Questões tipo A: Cada item errado das questões V/F cancelará um item certo.

Questões tipo B: Faça todos os cálculos com, pelo menos, 5 algarismos significativos. Caso o número a ser marcado na folha de respostas não seja inteiro, ARREDONDE para o inteiro mais próximo. O arredondamento deve ser a última operação a ser feita, imediatamente antes de marcar a folha de respostas. Se um item depende da resposta de um item anterior, utilize a resposta com todas as casas decimais, não a resposta arredondada.

Questões tipo A

Julgue os itens abaixo atribuindo (V) para os verdadeiros e (F) para os falsos.

- 1. ⑤ A taxa de variação com o tempo do momento linear de uma partícula é igual à força resultante que atua sobre a partícula e tem a mesma orientação que a força resultante.
- 2. \bigcirc A figura mostra o módulo p do momento linear em função do tempo t para uma partícula que se move ao longo de um eixo. Uma força dirigida ao longo do eixo age sobre a partícula. Dentre as regiões, 1, 2, 3 e 4, a região 2 é a região onde o módulo da força é maior.

- 3. ⑤ Se duas partículas têm a mesma energia cinética, as magnitudes de suas quantidades de movimento são iguais apenas se elas têm a mesma massa.
- 4. ⑤ A lei de conservação do momento linear é uma consequência direta da terceira lei de Newton. Além disso, vale ressaltar que a aplicação desse princípio de conservação não depende da natureza detalhada das forças internas entre as partículas constituintes do sistema.
- 5. © Para uma colisão elástica frontal, o módulo da velocidade relativa de separação (após a colisão) é igual ao módulo da velocidade relativa de aproximação (antes da colisão).
- 6. ⑤ A velocidade do centro de massa de um sistema varia apenas quando existe uma força externa resultante não nula sobre o sistema.
- 7. ⑤ Em um corpo rígido, todos os pontos giram de um mesmo ângulo em um mesmo intervalo de tempo. Portanto, em um dado instante, todos os pontos de um corpo rígido giram com a mesma velocidade angular.

- 9. lacktriangle Partindo do repouso e girando com aceleração angular constante, um disco perfaz 10 revoluções até atingir a velocidade angular ω . São necessárias 30 revoluções a mais, com a mesma aceleração angular, para ele atingir uma velocidade angular de 2ω .
- 10. **②●** Um disco B era idêntico ao disco A, até que um furo foi feito no centro do disco B. Para essa situação, o disco B tem maior momento de inércia em relação ao eixo central de simetria.
- 11. ⑤ Um cilindro e uma esfera, maciços e homogêneos, têm a mesma massa e raio. Os dois rolam sobre uma superfície horizontal, sem deslizar. Se suas energias cinéticas totais são iguais, então a velocidade translacional do cilindro é menor que a velocidade translacional da esfera.
- 12. ⑤ Se o momento angular de um sistema em relação a um ponto fixo P é constante, então um torque externo resultante nulo em relação a P atua sobre o sistema.

Questões tipo C

13. Um projétil de massa m atinge e se engasta num bloco de madeira de massa M que está em repouso numa superfície horizontal, preso a uma mola ideal (com massa desprezível), cuja constante elástica é k. O impacto produz uma compressão máxima na mola igual a x. O coeficiente de atrito cinético entre o bloco e a superfície é μ_c . Determine a velocidade inicial do projétil.

$$v_i = \sqrt{2\mu_c g x + \frac{M+m}{k} x}$$

- 14. Um bloco sobre um piso horizontal sem atrito pode estar inicialmente em repouso ou em movimento, com velocidade no sentido positivo ou negativo do eixo x. O bloco explode em dois pedaços que se movem ao longo do eixo x. A figura abaixo mostra seis possibilidade para o gráfico do momento linear do bloco e dos pedaços (linhas pontilhadas) em função do tempo. A linha horizontal mais grossa é o eixo do tempo t, antes e depois da colisão, e corresponde a p=0, conforme indicado nos gráficos. Desprezando as forças externas, marque a alternativa que indique somente situações impossíveis.
 - a I, II e III.
 - ⓑ II, IV e V.
 - © I, IV e V.
 - I, III e V.
 - ⊚ I, IV e VI.
 - f II,III e VI.

- 15. Um cilindro de massa M e raio R possui uma densidade que cresce linearmente a partir do seu eixo, $\rho = \alpha r$, onde α é uma constante positiva. Calcule o momento de inércia do cilindro em relação a um eixo longitudinal que passa através do seu centro.
- 16. Dois discos de mesma massa e raios diferentes (r e 2r) giram em torno de um eixo sem atrito, com mesma velocidade angular inicial de módulo ω_0 mas em sentidos opostos, como mostra a figura abaixo. Os dois discos são lentamente aproximados. A força de atrito resultante entre as superfícies, eventualmente, leva-os a uma velocidade angular final de mesmo módulo ω_f e mesmo sentido. Calcule a magnitude da velocidade angular final, em termos de ω_0 .

- 17. Quando o cabo de sustentação arrebenta e o sistema de segurança falha, um elevador cai em queda livre de uma altura de 36 m. Durante a colisão no fundo do poço do elevador, a velocidade de um passageiro de 90 kg se anula em 5,0 ms. Nesse caso, considerando $g=9.8 \text{ m/s}^2$ e que não há ricochete nem do passageiro nem do elevador, faça o que se pede nos itens abaixo.
 - a. 24 Determine, em N s, o módulo do impulso médio experimentado pelo passageiro durante a colisão. Divida o valor encontrado por 100.
 - b. 48 Determine em kN, o módulo da força média experimentada pelo passageiro durante a colisão. Divida o valor encontrado por 10.
 - c. 35 Suponha que o passageiro pula verticalmente para cima com velocidade de 7,0 m/s em relação ao piso do elevador quando o elevador está prestes a se chocar com o fundo do poço, nessa situação, determine em kN a força média experimentada pelo passageiro. Para isso, considere que o tempo que o passageiro leva para parar completamente permanece o mesmo. Divida o valor encontrado por 10.

- 18. Um bloco de massa m_1 = 2,0 kg desliza sobre uma mesa sem atrito com uma velocidade de 10 m/s. Diretamente à frente dele e se deslocando no mesmo sentido com uma velocidade de 3,0 m/s, está um bloco de massa m_2 = 5,0 kg. Uma mola ideal de massa desprezível e constante elástica k = 1120 N/m, está presa ao segundo bloco, como ilustrado na figura abaixo
 - a. 50 Determine, em m/s, o módulo da velocidade do centro de massa do sistema. Multiplique o valor encontrado por 10.
 - b. 25 Durante a colisão a mola sofre uma compressão máxima Δx . Determine, em centímetros, o valor de Δx .
 - c. $\boxed{70}$ Os dois blocos acabarão por se separar novamente. Determine, em m/s, a velocidade do bloco de massa m_2 , imediatamente após a separação, medida no referencial da mesa. Multiplique o valor encontrado por 10.

- 19. O rolo de uma impressora gira conforme a seguinte expressão angular $\theta(t) = \gamma t^2 \beta t^3$, onde $\gamma = 3,20 \text{ rad/s}^2 \text{ e}$ $\beta = 0,500 \text{ rad/s}^3$.
 - a. 40 Determine em rad/s², a aceleração angular para t = 2s. Multiplique a resposta por 100.
 - b. 21 Determine em segundos, o tempo para o qual a velocidade angular positiva seja máxima. Multiplique sua resposta por 10.
 - c. 68 Determine em rad/s, a velocidade angular positiva máxima. Multiplique sua resposta por 10.

- 20. Uma barra delgada e uniforme de 3,80 kg e 80,0 cm de comprimento possui uma bola muito pequena de 2,50 kg em cada extremidade, como mostrado na figura abaixo. Ela é sustentada horizontalmente por um eixo fino, horizontal e com atrito desprezível, que passa pelo seu centro e é perpendicular à barra. Subitamente, a bola do lado direito se desloca e cai, mas a outra permanece grudada à barra. Considerando $g = 9,8 \text{ m/s}^2$, faça o que se pede nos itens abaixo.
 - a. 60 Determine em kg m², o momento de inércia do sistema, com respeito ao eixo indicado, imediatamente após a bola cair. Multiplique sua resposta por 100.
 - b. 16 Determine em rad/s² a aceleração angular da barra imediatamente após a bola cair.
 - c. 57 Determine em rad/s, a velocidade angular da barra no instante em que ela assumir a posição vertical. Multiplique sua resposta por 10.

UnB – Instituto de Física						
Matrícula:		Nome completo (legível):				
Disciplina:	Prova:	Assinatura:	Data:			
Física 1	4 Modelo A		25/06/2016			

Aparelhos celulares: Celulares devem estar desligados e guardados no chão sob a cadeira, será sumariamente reprovado o aluno que for flagrado em desacordo com essas regras.

Pontuação das questões: Tipo A, 0,25 ponto; Tipo B, 1,0 ponto (a: 0,3; b: 0,3; c: 0,4); Tipo C, 0,75 ponto.

Questões tipo A: Cada item errado das questões V/F cancelará um item certo.

Questões tipo B: Faça todos os cálculos com, pelo menos, 5 algarismos significativos. Caso o número a ser marcado na folha de respostas não seja inteiro, ARREDONDE para o inteiro mais próximo. O arredondamento deve ser a última operação a ser feita, imediatamente antes de marcar a folha de respostas. Se um item depende da resposta de um item anterior, utilize a resposta com todas as casas decimais, não a resposta arredondada.

Questões tipo A

Julgue os itens abaixo atribuindo (V) para os verdadeiros e (F) para os falsos.

- 1. lackloss É possível que três vetores de mesma magnitude quando somados tenha resultado nulo.
- 3. ⑤ Se uma partícula se move em um espaço tridimensional com velocidade de módulo constante, ela pode estar acelerada.
- 4. $\bigcirc \bullet$ Na figura abaixo, o módulo da força normal $\vec{F_N}$ é maior que o módulo da força gravitacional, $\vec{F_g}$, se o bloco e a mesa estão em um elevador que se move para cima com velocidade constante.

- 6. \bigcirc Considere um objeto que está se movendo ao longo do eixo x. A energia cinética aumenta se a velocidade do objeto varia de -4 m/s para -2 m/s.
- 7. $\textcircled{\bullet}$
 Considere uma partícula que pode se mover somente ao longo do eixo x e está submetida a uma única força, onde U(x) é a função energia potencial associada a esta força. A partícula irá acelerar no sentido x se estiver em um local onde dU/dx > 0.
- 8. lacktriangle Quando a soma vetorial das forças externas que atuam sobre um sistema é igual a zero, o momento linear total do sistema permanece constante.

- 9. **●** Um objeto inicialmente em repouso sobre uma superfície sem atrito explode em dois pedaços, que deslizam pela superfície após a explosão. Um dos pedaços desliza no sentido positivo de um eixo *x*. Nessa situação, o segundo pedaço poderá se mover em uma direção *y*, perpendicular a *x*.
- 10. ⑤ Um corpo rígido gira com respeito a um eixo fixo. Dobrando-se a velocidade angular, a energia cinética quadruplica.
- 11. ⑤ Quando o torque externo resultante que atua sobre um sistema é igual a zero, o momento angular do sistema permanece constante, isto é, se conserva.
- 12. ⑤ O momento de inércia de uma bola homogênea com respeito ao eixo que passa pelo seu centro é menor que o momento de inércia de um cilindro homogêneo de mesma massa e raio, com respeito ao seu eixo de simetria.

- 13. Encontre o vetor \vec{D} , perpendicular $\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k}$, onde \hat{i} , \hat{j} , \hat{k} , são os vetores unitários básicos no sistema cartesiano tridimensional.
 - (a) $\vec{D} = \hat{i} + \hat{i} + \hat{k}$

 - © $\vec{D} = 3\hat{i} + 2\hat{j} + \hat{k}$
 - $\vec{O} \quad \vec{D} = -\hat{i} + \hat{j} \hat{k}$
 - (e) $\vec{D} = \hat{i} \hat{j} + \hat{k}$
 - $\vec{D} = -\hat{i} 2\hat{j} 3\hat{k}$

14. Para escapar de inimigos, James Bond pula do telhado plano de um prédio para o telhado plano de outro prédio, que está a uma altura H abaixo e do outro lado de uma rua de largura L. Considerando g a aceleração da gravidade local, e que no momento do pulo a velocidade de Bond era perfeitamente horizontal e de módulo v_0 , determine a distância x, onde Bond deverá aterrisar, medida a partir da borda do telhado mais baixo. Desconsidere as dimensões de Bond e resistência do ar.

$$(a) x = v_0 - L\sqrt{\frac{2H}{g}}.$$

ⓑ
$$x = v_0 - L\sqrt{2gH}$$
.

$$f) \quad x = v_0 \sqrt{\frac{2H}{g}}.$$

15. Um bloco de massa *m* está sendo levantado verticalmente por uma corda uniforme de massa M e comprimento L, ver figura abaixo. A corda está sendo puxada para cima por uma força aplicada em sua extremidade superior, e a corda e o bloco estão sendo acelerados para cima com uma aceleração de magnitude a_y . Encontre a tensão na corda a uma distância acima do bloco x, onde x < L.

$$a T = m(a_y - g)$$

tima distancia acima do bloco
$$x$$
, onde $x < L$.

(a) $T = m(a_y - g)$ (b) $T = (a_y - g)(m + \frac{M}{L}x)$
(c) $T = M(a_y - g)$ (d) $T = a_y(m + \frac{M}{L}x)$
(e) $T = m(a_y + g)$

$$f) T = m(a_y + g)$$

16. Um bloco desliza ao longo de um piso sem atrito em direção a um segundo bloco que está inicialmente em repouso e tem a mesma massa. A figura abaixo mostra cinco possibilidades para um gráfico das energias cinéticas K em função do tempo dos blocos antes e depois da colisão. A linha horizontal mais grossa demarcada é o eixo t, que corresponde a K = 0. Indique a alternativa que contenha apenas o(s) gráfico(s) que representa(m) uma colisão elástica.

a I, II e V

- © II, III e V
- e V

Ι

- 17. Um pedaço de concreto poroso de 2 kg é lançado verticalmente para cima, com uma velocidade inicial de 40 m/s. Ele sobe uma altura de 50 m até começar a cair de volta à terra. Usando $g=9.8 \text{ m/s}^2$, faça o que se pede nos itens abaixo.
 - a. 16 Determine em Joules, a energia cinética inicial do pedaço de concreto . Divida o valor encontrado por 100.
 - b. 62 Determine em Joules, o aumento da energia térmica provocado pela resistência do ar , na subida. Divida o valor encontrado por 10.
 - c. 23 Considere que o aumento de energia térmica provocado pela resistência do ar, na descida, é de 70 por cento do que ocorreu na subida, qual é a velocidade do concreto quando ele retorna à sua posição inicial.
- 18. José e Maria estão em pé sobre um engradado em repouso sobre a superfície horizontal sem atrito de um lago congelado. A massa de José é igual a 75,0 kg, Maria possui massa de 45,0 kg e o engradado possui massa de 15,0 kg. Em dado instante, eles pulam horizontalmente para fora do engradado. Em cada pulo, cada pessoa se afasta do engradado com velocidade de 4,0 m/s em relação ao engradado. Para responder as questões, utilize um referencial inercial fixo no solo.
 - a. 36 Determine, em m/s, o módulo da velocidade final do engradado, se José e Maria pulam simultaneamente na mesma direção e no mesmo sentido. Multiplique o valor encontrado por 10.
 - b. 52 Determine, em m/s, o módulo velocidade final do engradado, se José pula primeiro e, alguns segundos depois, Maria pula na mesma direção e no mesmo sentido. Multiplique o valor encontrado por 10.
 - c. 47 Determine, em m/s, o módulo velocidade final do engradado, se Maria pula primeiro e, alguns segundos depois, José pula na mesma direção e no mesmo sentido. Multiplique o valor encontrado por 10.

- 19. O sistema da figura abaixo é largado do repouso quando o bloco de 30 kg está a uma altura H=2.0 m acima da prateleira. A polia é um disco uniforme de 5,0 kg com um raio de 10 cm. Suponha que o fio não deslize na polia e despreze o atrito. Imediatamente antes de o bloco de 30 kg atingir a prateleira, usando g=9.8 m/s², faça o que se pede nos itens abaixo.
 - a. 27 Determine em m/s, a velocidade do bloco de 30 kg. Multiplique a resposta por 10.
 - b. 23 Determine em Newtons, a tensão no fio preso ao bloco de 20 kg. Divida sua resposta por 10.
 - c. 15 Determine em segundos, o tempo de queda do bloco de 30 kg. Multiplique sua resposta por 10.

- 20. No eixo de um motor elétrico encontra-se afixada uma pedra de amolar, com formato de um disco sólido e com momento de inércia, em relação ao seu eixo principal, de 2,0 kg m². Partindo do repouso, o motor exerce um torque constante de 10 N m sobre a pedra de amolar. Faça o que se pede nos itens abaixo.
 - a. 50 Determine em rad/s², a aceleração angular da pedra. Multiplique o resultado por 10.
 - b. 40 Determine em rad/s, a velocidade angular da pedra no instante 8,0 s.
 - c. 16 Determine em J, a energia cinética do disco no instante 8,0 s. Divida o resultado por 10010.