

1 WHAT IS CLAIMED IS:

2

3 1. A crude oil desulfurization process comprising the following steps:

4 (a) hydrodesulfurizing a crude oil feed in a crude desulfurization unit to
5 obtain a desulfurized crude oil;

6 (b) separating the desulfurized crude oil of step (a) into a light gas oil
7 fraction, a vacuum gas oil fraction and a residual fraction;

8 (c) hydrocracking the vacuum gas oil fraction of step (b) into at least
9 one fuel product having a low sulfur content; and

10 (d) hydrotreating the light gas oil fraction of step (b).

11

12 2. The process according to Claim 1 wherein the step (c) of hydrocracking
13 the vacuum gas oil fraction further comprises:

14 (a) passing the vacuum gas oil in combination with hydrogen to a first
15 hydrocracking reaction zone to create an effluent comprising at
16 least one fuel product having a low sulfur content;

17 (b) passing at least a portion of the effluent of step (a) to a second
18 hydrocracking reaction zone; and

19 (c) recycling at least a portion of the second hydrocracking reaction
20 zone effluent to the second hydrocracking reaction zone.

21

22 3. The process according to Claim 2 wherein the second hydrocracking
23 reaction zone comprises a multiplicity of layered catalyst beds, including
24 at least one hydrotreating catalyst layer which is maintained at reaction
25 conditions preselected for high hydrotreating activity.

26

27 4. The process according to Claim 3 wherein the second hydrocracking
28 reaction zone further comprises at least one hydrocracking catalyst layer
29 which is maintained at hydrocracking reaction conditions, such that the
30 entire effluent from the catalyst layer maintained at hydrocracking
31 reaction conditions passes to the catalyst layer maintained at
32 hydrotreating reaction conditions.

1 5. The process according to Claim 4, which further comprises fractionating
2 at least a portion of the effluent from the second hydrocracking reaction
3 zone and isolating at least one fuel product and a recycle stream which
4 is recycled to the second hydrocracking reaction zone.

5
6 6. The process according to Claim 3 wherein the step (1) (d) of
7 hydrotreating the light gas oil fraction further comprises passing the light
8 gas oil fraction to the hydrotreating catalyst layer.

9
10 7. The process according to Claim 1, wherein step (1) (c) further comprises
11 isolating at least a diesel having a low sulfur content, a kerosene having
12 a low sulfur content, and a naphtha having a low sulfur content.

13
14 8. The process according to Claim 2 further comprising:
15 (a) hydrocracking the vacuum gas oil to form a first hydrocracking
16 zone effluent;
17 (b) passing the first hydrocracking zone effluent to a hot hydrogen
18 stripper and isolating a hydrogen-rich gaseous stream and an
19 effluent having a low sulfur content; and
20 (c) passing the hydrogen-rich gaseous stream of step (b) to the crude
21 desulfurization unit for hydrodesulfurizing the crude oil feed.

22
23 9. The process according to Claim 3 further comprising:
24 (a) hydrocracking the vacuum gas oil to form a hydrocracking zone
25 effluent;
26 (b) passing the hydrocracking zone effluent of step (a) to a hot
27 hydrogen stripper and isolating a hydrogen-rich gaseous stream
28 and an effluent having a low sulfur content; and
29 (c) passing the hydrogen-rich gaseous stream of step (b) to the crude
30 desulfurization unit for hydrodesulfurizing the crude oil feed.

31
32 10. The process according to Claim 9, which further comprises:

1 (a) passing the low sulfur effluent of step 9(b) in combination with
2 hydrogen to a second hydrocracking zone to produce a
3 hydrocracked liquid product; and
4 (b) fractionating the hydrocracked liquid product of step (a) to form at
5 least one fuel product having a low sulfur content.

6

7 11. The process according to Claim 10, further comprising passing the low
8 sulfur effluent of step 9 (b) to the hydrotreating catalyst layer of Claim 6.

9

10 12. The process according to Claim 1 wherein step (1) (b) of separating the
11 desulfurized crude oil further comprises:
12 (a) separating the desulfurized crude oil in an atmospheric distillation
13 column and isolating at least a light gas oil and an atmospheric
14 residuum therefrom;
15 (b) separating the atmospheric residuum of step (a) in a vacuum
16 distillation column and isolating at least a vacuum residuum stream
17 and a vacuum gas oil stream.

18

19 13. The process according to Claim 8 wherein the first hydrocracking zone
20 effluent of step (8) (a) is passed to a second hydrocracking reaction
21 zone without substantially cooling the first hydrocracking zone effluent.

22

23 14. A crude oil desulfurization process comprising:
24 (a) hydrodesulfurizing a crude oil feed in a crude desulfurization unit to
25 obtain a desulfurized crude oil;
26 (b) separating the desulfurized crude oil of step (a) and isolating a light
27 gas oil fraction, a vacuum gas oil fraction and a residual fraction;
28 (c) passing the vacuum gas oil fraction of step (b) in combination with
29 hydrogen to a first hydrocracking reaction zone, where it is
30 hydrocracked to produce a first hydrocracking zone effluent;
31 (d) passing at least a portion of the first hydrocracking zone effluent of
32 step (c) to a second hydrocracking reaction zone comprising a
33 multiplicity of catalyst beds, including at least one hydrotreating

1 catalyst layer which contains catalyst preselected for high
2 hydrotreating activity;

3 (e) passing the light gas oil fraction of step (b) to the hydrotreating
4 catalyst layer of step (d) for hydrotreating the light gas oil fraction;
5 and

6 (f) recycling at least a portion of the combined effluent of steps (d) and
7 (e) to the second hydrocracking reaction zone.