AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

(Currently Amended) A tire comprising: 78.

a carcass structure of a substantially toroidal shape, having opposite lateral edges associated with respective right-hand and left-hand bead structures, said bead structures comprising at least one bead core and at least one bead filler;

a belt structure applied in a radially external position with respect to said carcass structure:

a tread band radially superimposed on said belt structure;

a pair of sidewalls applied laterally on opposite sides with respect to said carcass structure: and

at least one structural element selected from a tread underlayer and a tread base.

wherein said at least one structural element is obtained by crosslinking a crosslinkable elastomeric composition comprising:

- (a) 100 phr of at least one diene elastomeric polymer;
- (b) 1 phr to 50 phr of at least one layered material having an individual layer thickness of 0.01 nm to 30 nm;
 - (c) 0.1 phr to 15 phr of at least one methylene donor compound; and
 - (d) 0.4 phr to 20 phr of at least one methylene acceptor compound;

wherein said at least one layered material comprises at least one interlayer surface, wherein at least one exchangeable cation selected from Na⁺, Ca²⁺, K⁺, and Mo²⁺ is present at said at least one interlayer surface; and

wherein said at least one structural element has a dynamic elastic modulus not lower than 19 MPa when measured at 70°C.

- 79. (Previously Presented) The tire according to claim 78, wherein said crosslinkable elastomeric composition comprises 2 phr to 40 phr of said at least one layered material.
- 80. (Previously Presented) The tire according to claim 78, wherein said crosslinkable elastomeric composition comprises 5 phr to 30 phr of said at least one layered material.
- (Previously Presented) The tire according to claim 78, wherein said at least one layered material has an individual layer thickness of 0.05 nm to 15 nm.
- 82. (Previously Presented) The tire according to claim 78, wherein said crosslinkable elastomeric composition comprises 0.3 phr to 10 phr of said at least one methylene donor compound.
- 83. (Previously Presented) The tire according to claim 78, wherein said crosslinkable elastomeric composition comprises 0.8 phr to 15 phr of said at least one methylene acceptor compound.

84. (Cancelled)

Application No.: 10/576,797 Attorney Docket No. 07040.0258-00

85. (Previously Presented) The tire according to claim 78, wherein said at least one structural element includes a tread underlayer and a tread band, wherein said tread underlayer is a layer of crosslinked elastomeric composition applied in a radially internal position with respect to said tread band.

86. (Previously Presented) The tire according to claim 78, wherein said at least one structural element includes a tread band, wherein said tread band is of cap and base construction and comprises a radially inner layer or tread base and a radially outer layer or tread cap.

87-88. (Cancelled)

- 89. (Previously Presented) The tire according to claim 78, wherein said structural element has a tensile modulus at 100% elongation (100% Modulus) not lower than 3 MPa
- 90. (Previously Presented) The tire according to claim 89, wherein said structural element has a tensile modulus at 100% elongation (100% Modulus) of 4 MPa to 20 MPa.
- (Previously Presented) The tire according to claim 78, wherein said structural element has an IRHD hardness, measured at 23°C, not lower than 65.
- (Previously Presented) The tire according to claim 91, wherein said structural element has an IRHD hardness, measured at 23°C, of 70 to 95.

93-100. (Cancelled)

Application No.: 10/576,797 Attorney Docket No. 07040.0258-00

- 101. (Currently Amended) The tire according to claim 78, wherein said layered material is selected from: phyllosilicates, smectites, montmorillonite, bentonite, nontronite, beidellite, volkonskoite, laponite, hectorite, saponite, sauconite, magadite magadite, kenyasite kenyaite, stevensite, vermiculite, halloisite, sericite, aluminate-oxides, hydrotalcite, or mixtures thereof.
- 102. (Previously Presented) The tire according to claim 101, wherein said layered material is montmorillonite.
 - 103-104. (Cancelled)
- 105. (Previously Presented) The tire according to claim 78, wherein the methylene donor compound is selected from: hexamethylenetetramine (HMT), hexamethoxymethylmelamine (HMMM), formaldehyde, paraformaldehyde, trioxane, 2-methyl-2-nitro-1-propanal, substituted melamine resins, N-substituted oxymethylmelamine resins, glycoluril compounds, tetramethoxymethyl glycoluril, ureaformaldehyde resins, butylated urea-formaldehyde resins, or mixtures thereof.
- 106. (Previously Presented) The tire according to claim 105, wherein the methylene donor compound is hexamethylenetetramine (HMT) or hexamethoxymethylmelamine (HMMM).
- 107. (Previously Presented) The tire according to claim 78, wherein the methylene acceptor compound is selected from: resorcinol, catechol, hydroquinone, pyrogallol, phloroglucinol, 1-naphthol, 2-naphthol, phenolic resins obtained from the

Application No.: 10/576,797 Attorney Docket No. 07040.0258-00

condensation of an optionally substituted phenol with an aldehyde, formaldehyde, acetaldehyde, or furfural, or mixtures thereof.

- 108. (Previously Presented) The tire according to claim 107, wherein the methylene acceptor compound is resorcinol.
- 109. (Previously Presented) The tire according to claim 78, wherein said methylene donor compound and said methylene acceptor compound are added to the crosslinkable elastomeric composition in a precondensed form.

110-146. (Cancelled)