${ m CB}\ { m N}^{\circ}{ m 2}$ - Séries $\overline{{ m NUM\'e}ri{ m Ques}}$ - Intégrales généralisées - Sujet 1

EXERCICE 1

Convergence et calcul des intégrales suivantes :

1.
$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 3x + 2}$$

 $f:x\mapsto \frac{1}{x^2+3x+2}$ est continue sur $[0,+\infty[$ donc localement intégrable.

 $f(x) \sim \frac{1}{x^2}$, donc par comparaison à une intégrale de Riemann positive convergente, f est intégrable sur $[1, +\infty[$. Par suite, f est intégrable sur $[0, +\infty[$.

intégrable sur
$$[1, +\infty[$$
. Par suite, f est intégrable sur $[0, +\infty[$.
$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 3x + 2} = \int_0^{+\infty} \frac{1}{x + 1} - \frac{1}{x + 2} \mathrm{d}x = \left[\ln \left(\frac{x + 1}{x + 2} \right) \right]_0^{+\infty} = \ln(2).$$

$$2. \int_0^{+\infty} \frac{\mathrm{d}x}{2\mathrm{e}^x + 3}$$

 $f: x \mapsto \frac{1}{2e^x + 3}$ est continue sur $[0, +\infty[$ donc localement intégrable.

 $f(x) \sim \frac{e^{-x}}{2}$, donc par comparaison à une intégrale de référence positive convergente, f est intégrable sur $[0, +\infty[$.

$$\int_0^{+\infty} \frac{\mathrm{d}x}{2\mathrm{e}^x + 3} = \int_0^{+\infty} \frac{\mathrm{e}^{-x}}{2 + 3\mathrm{e}^{-x}} \mathrm{d}x = \left[-\frac{1}{3} \ln(2 + 3\mathrm{e}^{-x}) \right]_0^{+\infty} = \frac{1}{3} \ln\left(\frac{5}{2}\right).$$

Remarque:

On peut également calculer cette intégrale en effectuant le changement de variable $t = e^x$:

$$\int_0^{+\infty} \frac{\mathrm{d}x}{2\mathrm{e}^x + 3} = \int_1^{+\infty} \frac{\mathrm{d}t}{t(2t+3)} = \frac{1}{3} \int_1^{+\infty} \left(\frac{1}{t} - \frac{2}{2t+3}\right) \mathrm{d}t = \frac{1}{3} \left[\ln\left(\frac{t}{2t+3}\right)\right]_1^{+\infty} = \frac{1}{3} \ln\left(\frac{5}{2}\right).$$

EXERCICE 2

Convergence et somme des séries suivantes :

1.
$$\sum_{n>2} \ln \left(1 - \frac{1}{n^2}\right)$$

Pour tout $p \in \mathbb{N}, p \geq 2$, on a, par télescopage :

$$\sum_{n=2}^{p} \ln\left(1 - \frac{1}{n^2}\right) = \sum_{n=2}^{p} \left(\left(\ln(n+1) - \ln(n)\right) - \left(\left(\ln(n) - \ln(n-1)\right)\right) = \ln(p+1) - \ln(p) - \ln(2).$$

 $\lim_{p\to +\infty} (\ln(p+1) - \ln(p)) = \lim_{p\to +\infty} \ln\left(\frac{p+1}{p}\right) = 0, \text{ donc par passage à la limite, on obtient la possible production of the prod$

convergence de la série, et $\sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right) = -\ln(2)$.

2.
$$\sum_{n\geq 0} \frac{-n+2}{n!}$$
, sachant que $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$.

Pour tout $p \in \mathbb{N}$, on a:

$$\sum_{n=0}^{p} \frac{-n+2}{n!} = \sum_{n=0}^{p} \frac{-n}{n!} + \sum_{n=0}^{p} \frac{2}{n!} = \sum_{n=1}^{p} \frac{-1}{(n-1)!} + \sum_{n=0}^{p} \frac{2}{n!} = \sum_{k=0}^{p-1} \frac{-1}{k!} + \sum_{n=0}^{p} \frac{2}{n!}$$

Par passage à la limite, on obtient la convergence de la série et $\sum_{n=0}^{+\infty} \frac{-n+2}{n!} = -e + 2e = e$.

EXERCICE 3

On considère la fonction

$$f: t \mapsto \frac{\ln t}{(1+t)^2}$$

1. Justifier que f est intégrable sur $[1, +\infty[$. f est continue sur $[1, +\infty[$, donc localement intégrable.

Par croissances comparées $\lim_{t \to 0} \frac{t^2}{2t} f(t) = 0$ donc f(t) = 0.

Par croissances comparées, $\lim_{t\to+\infty}t^{\frac{3}{2}}f(t)=0$ donc $f(t)=o_{+\infty}\left(\frac{1}{t^{\frac{3}{2}}}\right)$. Par comparaison à une intégrale de Riemann convergente, f est intégrable sur $[1,+\infty[$.

2. Calculer

$$\int_{1}^{+\infty} f(t) dt$$

On pose $u(t) = \ln(t)$ et $v(t) = \frac{-1}{1+t}$; u et v sont de classe C^1 sur $[1, +\infty[$ et $\lim_{t\to +\infty} u(t)v(t) = 0$ (par croissances comparées).

Sachant que $\int_1^{+\infty} f(t)dt$ converge, le théorème d'intégration par parties donne :

$$\int_{1}^{+\infty} f(t) dt = \left[-\frac{\ln(t)}{1+t} \right]_{1}^{+\infty} + \int_{1}^{+\infty} \frac{dt}{t(1+t)} = \int_{1}^{+\infty} \left(\frac{1}{t} - \frac{1}{1+t} \right) dt = \left[\ln\left(\frac{t}{1+t}\right) \right]_{1}^{+\infty} = \ln(2).$$

Spé PT B Page 2 sur 4

${\rm CB}\ { m N}^{\circ}{ m 2}$ - Séries numériques - Intégrales généralisées - Sujet ${ m 2}$

EXERCICE 1

Convergence et calcul des intégrales suivantes :

1.
$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 10}$$

 $f: x \mapsto \frac{1}{x^2 + 2x + 10}$ est continue sur $[0, +\infty[$ donc localement intégrable.

 $f(x) \sim \frac{1}{x^2}$, donc par comparaison à une intégrale de Riemann positive convergente, f est intégrable sur $[1, +\infty[$. Par suite, f est intégrable sur $[0, +\infty[$.

$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 10} = \int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)^2 + 9} = \left[\frac{1}{3} \operatorname{Arctan}\left(\frac{x+1}{3}\right)\right]_0^{+\infty} = \frac{\pi}{6} - \frac{1}{3} \operatorname{Arctan}\left(\frac{1}{3}\right).$$

2.
$$\int_0^{+\infty} \frac{dx}{3e^x + 2}$$

 $f: x \mapsto \frac{1}{3e^x + 2}$ est continue sur $[0, +\infty[$ donc localement intégrable.

 $f(x) \sim \frac{e^{-x}}{3}$, donc par comparaison à une intégrale de référence positive convergente, f est

intégrable sur
$$[0, +\infty[$$
.

$$\int_0^{+\infty} \frac{\mathrm{d}x}{3\mathrm{e}^x + 2} = \int_0^{+\infty} \frac{\mathrm{e}^{-x}}{3 + 2\mathrm{e}^{-x}} = \left[-\frac{1}{2} \ln(3 + 2\mathrm{e}^{-x}) \right]_0^{+\infty} = \frac{1}{2} \ln\left(\frac{5}{3}\right).$$

On peut également calculer cette intégrale en effectuant le changement de variable
$$t = e^x$$
:
$$\int_0^{+\infty} \frac{\mathrm{d}x}{3\mathrm{e}^x + 2} = \int_1^{+\infty} \frac{\mathrm{d}t}{t(3t+2)} = \frac{1}{2} \int_1^{+\infty} \left(\frac{1}{t} - \frac{3}{3t+2}\right) \mathrm{d}t = \frac{1}{2} \left[\ln\left(\frac{t}{3t+2}\right)\right]_1^{+\infty} = \frac{1}{2} \ln\left(\frac{5}{3}\right).$$

EXERCICE 2

Convergence et somme des séries suivantes :

1.
$$\sum_{n\geq 2} \ln\left(1 + \frac{1}{n^2 - 1}\right)$$

tout $p \in \mathbb{N}, p > 2$, on a, par télescopage :

$$\sum_{n=2}^{p} \ln\left(1 + \frac{1}{n^2 - 1}\right) = \sum_{n=2}^{p} \left((\ln(n) - \ln(n+1)) - \left((\ln(n-1) - \ln(n)) \right) = \ln(p) - \ln(p+1) + \ln(2) \right).$$

 $\lim_{p\to+\infty} (\ln(p) - \ln(p+1)) = \lim_{p\to+\infty} \ln\left(\frac{p}{p+1}\right) = 0$, donc par passage à la limite, on obtient la

convergence de la série, et $\sum_{n=0}^{+\infty} \ln\left(1 + \frac{1}{n^2 - 1}\right) = \ln(2)$.

2.
$$\sum_{n\geq 0} \frac{2n-1}{n!}$$
, sachant que
$$\sum_{n=0}^{+\infty} \frac{1}{n!} = e.$$

Pour tout $p \in \mathbb{N}$, on a :

$$\sum_{n=0}^{p} \frac{2n-1}{n!} = \sum_{n=0}^{p} \frac{2n}{n!} - \sum_{n=0}^{p} \frac{1}{n!} = \sum_{n=1}^{p} \frac{2}{(n-1)!} - \sum_{n=0}^{p} \frac{1}{n!} = \sum_{k=0}^{p-1} \frac{2}{k!} - \sum_{n=0}^{p} \frac{1}{n!}$$

Par passage à la limite, on obtient la convergence de la série et $\sum_{n=0}^{+\infty} \frac{2n-1}{n!} = 2e - e = e$.

EXERCICE 3

On considère la fonction

$$f: t \mapsto \frac{\ln t}{(1+t)^2}$$

- 1. Justifier que f est intégrable sur [0,1]. f est continue sur]0,1], donc localement intégrable. f est de plus de signe constant sur]0,1]. $f(t) \sim \ln(t)$; par comparaison à une intégrale de référence convergente, f est intégrable sur]0,1].
- 2. Calculer

$$\int_0^1 f(t) \mathrm{d}t$$

Soit $\varepsilon \in]0,1[$.

On pose $u(t) = \ln(t)$ et $v(t) = \frac{-1}{1+t}$; u et v sont de classe C^1 sur $[\varepsilon, 1]$. Le théorème d'intégration

par parties donne:
$$\int_{\varepsilon}^{1} f(t) \mathrm{d}t = \left[-\frac{\ln(t)}{1+t} \right]_{\varepsilon}^{1} + \int_{\varepsilon}^{1} \frac{\mathrm{d}t}{t(1+t)} = \frac{\ln(\varepsilon)}{1+\varepsilon} + \int_{\varepsilon}^{1} \left(\frac{1}{t} - \frac{1}{1+t} \right) \mathrm{d}t = \frac{\ln(\varepsilon)}{1+\varepsilon} + \left[\ln\left(\frac{t}{1+t}\right) \right]_{\varepsilon}^{1} = \frac{-\varepsilon \ln(\varepsilon)}{1+\varepsilon} + \ln(1+\varepsilon) - \ln(2).$$

Par passage à la limite $(\varepsilon \to 0)$, on obtient $: \int_0^1 f(t) dt = -\ln(2)$. **Remarque :** $\lim_0 uv = +\infty$; on ne pouvait donc pas appliquer le théorème d'intégration par parties pour les intégrales généralisées.

Spé PT B Page 4 sur 4