	Actions en général	Conjugaison = automorphismes intérieurs	Translations à gauche
Expression	$G \times E \to E$ $(g, x) \mapsto g. x$	$G \times G \to G$ $(g,x) \mapsto gxg^{-1}$ ET f_g est un automorphisme	$G \times G \to G$ $(g,x) \mapsto gx$ ET f_g est une bijection (mais pas un morphisme)
Orbite d'un élément	Les $O_{\mathcal{X}} = \Omega_{\mathcal{X}}$ = $\{y \in E, \exists g \in G \ y = g.x\}$ partitionnent E (ne sont pas des sous- groupes sauf cas trivial)	Classe de conjugaison $C_x = \text{ensemble des}$ $\mathbf{conjugu\acute{e}s} \ \text{de } x$ $(\text{les } gxg^{-1} \ \text{pour } g$ $\text{parcourant } G)$	Il n'existe qu'une seule orbite : on dit que l'action est transitive
Stabilisateur/Sous- groupe d'isotropie d'un élément	$G_x = St_x$ $= \{g \in G, g. x = x\}$ (sous-groupe)	Centralisateur de x noté $Z_x = C(x) = C_G(x)$: ensemble des éléments qui commutent avec x	Tous triviaux par régularité (« l'action agit sans point fixe ») : on dit qu'elle est libre
			Libre et transitive = simplement transitive
			L'intersection de tous les stabilisateurs est réduite au neutre : on dit que l'action est fidèle. On en déduit le théorème de Cayley.
Stabilisateur d'une partie	$Stab(A)$ = $\{g \in G, gA = A\}$ (a priori pas un sous-groupe)	Centralisateur d'une partie : définition alternative comme l'ensemble des éléments qui commutent avec tous les éléments de x (sous-groupe)	Rien de spécial
		C(G) = Z(G) le centre de G (donc sg. distingué)	
Équation aux classes	Soit T famille de représentants pour la partition par les orbites. $card(E) = \sum_{x \in T} \frac{card(G)}{card(G_x)}$	$card(G)$ $= card(Z(G))$ $+ \sum_{x \in T, x \notin Z(G)} \frac{card(G)}{card(Z_x)}$	Aucun intérêt, il n'y a qu'une orbite
		Normalisateur d'une partie $X:N_G(X)=\{g\in G,gXg^{-1}=X\}$ • Sous groupe • Si X sous-groupe, plus grand sous-groupe dans lequel X est normal • $C(X)$ normal dans $N(X)$	