الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطق للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2010

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة : 04 ساعات ونصف

اعتبار في مادة: الوياضيات

على المترشح أن بغنار أحد الموضوعين التاليين المو<u>ضيسوع الأبل</u>

التمرين الأول: (94 نقاط)

- ر نعتبر المعافلة: (1) 2009 = 7x + 65y ميث: x و y عندان صحيحان. (1)
- أ) بين أنه إذا كانت الثنافية (x,y) حلا للمعاملة (1) فإن الإ مضاعف الحدد 7.
 - (1) at fact (1).
 - درس حسب كيم قعد قطبيعي ٢٠ بوظي القسمة الإقليدية للحد 2º على 9.
 - $^{\circ}$ 3. عين فيم فحد الطبيعي $^{\circ}$ بحرث يقبل فعد $^{\circ}$ $^{\circ}$ $^{\circ}$ القسمة على $^{\circ}$
 - $M_n = 2^{6n} 1$ ، n منتمع من أجل كل عدد طبيعي 4
 - أُ) تَحْقُقُ أَنْ عِندَ بِعَيْلِ الصَّمَةُ عَلَى 9 ـ
- ب) حل المعلالة: (x,y) = 126567 + (x,y) ذلت المجهول (x,y) حيث: $x \in \mathcal{Y}$ عندان مستوحان.
 - ، $y_{m s} \geqslant 25 m g$ ج) عين الثنائية $(x_{m s},y_{m s})$ حيث $x_{m s}$ حيث $(x_{m s},y_{m s})$ عين الثنائية $(x_{m s},y_{m s})$

التعرين الثاني: (04,5 نقطة)

 $A\left(2,0,0
ight)$. نعتم النقط المتعلم المتعلم والمنجلس $B\left(0,1,0
ight)$. نعتم النقط $A\left(2,0,0
ight)$ و $B\left(0,1,0
ight)$ و $B\left(0,1,0
ight)$

- ا) بين أن النقط A و B و C أيست في استقامية.
 - (ABC) جد معادلة للمستوي (ABC).
 - (BC) جد نعثیلا وسیطوا للمستقیم (BC).
- -2x + 2y + z 2 = 0 (4) المستوي قذي معادلته:
 - أ) بنز أن: (p) و (ABC) متقاطعان.
 - T بين أن: (a) بشمل B و C ماذا تستنج
- $\|\overline{MA} + \overline{MB} + \overline{MC}\|^2 \|2\overline{MA} \overline{MB} \overline{MC}\|$ عَنِينَ (جَ) مجموعة النشط M من الفضاء للتي تحقق: (5)

التمرين الثالث: (04,5 نقطة)

 $Z^3 - 3Z^2 + 3Z - 9 = 0 \dots (E)$ نعتبر في مجموعة الأعداد المركبة \odot المعائلة: (Ξ

- Z عدد مركب B و B و B بحيث، من أجل كل عدد مركب B و B و B بحيث، من أجل كل عدد مركب B فإن: $(Z^2+bZ+c)=(Z-3)(aZ^2+bZ+c)$
 - \cdot (E) هن في \mathcal{C} المعادلة (E).
 - \cdot $(O:ec{u},ec{x})$ الممينوي منصوب إلى المعلم المنعامد المنجانس $(O:ec{u},ec{x})$

 $Z_{c}=-i\sqrt{3}$ و $Z_{g}=i\sqrt{3}$ و $Z_{g}=i\sqrt{3}$ و $Z_{g}=-i\sqrt{3}$ و $Z_{g}=-i\sqrt{3}$ و $Z_{g}=-i\sqrt{3}$ و رئين أن المكتب $Z_{g}=-i\sqrt{3}$ مثين أن المكتب $Z_{g}=-i\sqrt{3}$ مثين أن المكتب $Z_{g}=-i\sqrt{3}$ و الأنسلام.

- 3) D المنقطة الذي لاحقتها $rac{2\pi}{2} \cdot 2\pi 2\pi$ و π صبورتها بالدوران الذي مركزه π وزاويته $rac{\pi}{2}$. يحزن π لاحقة النقطة π .
 - \cdot Z_{ν} انتقطة التي لاحقتها $\sqrt{3}$ انتقطة التي الحقتها F
 - ر متعامدان، $rac{Z_{p}}{Z_{p}}$ واستنتج آن المستنبعين OE) و OF متعامدان،
 - ب) عين Z_O لاحقة النقطة G بحيث يكون OEGF مربعا.

التمرين الرابع: (07 نفاط)

- $g\left(x\right)$ = $\left(3-x\right)e^{x}-3$ الدالة العدنية المعرفة على $\mathbb R$ كما بلي: $g\left(-1\right)$
 - ادرس تغیرات الدالة ع.
- 2.82 < lpha < 2.83 : يَوْنَ أَنَ الْمُعْمَلَةُ lpha = 0 تَقْبَلُ فِي $rac{1}{2}$ حَبَيْنَ أَحَدُهُمَا مُعْدُومِ وَالْآخَرِ lpha = 0 حَبِثُ وَيَعْبُلُ فِي إِلَا حَبَيْنَ أَحَدُهُمَا مُعْدُومِ وَالْآخَرِ lpha = 0
 - $x \in \mathcal{F}(x)$ استنتج إشارة g(x) حسب قبر x

$$\begin{cases} f(x) = \frac{x^3}{e^x - 1} ; x \neq 0 \\ f(0) = 0 \end{cases} ; x \neq 0$$

$$\begin{cases} f(x) = \frac{x^3}{e^x - 1} ; x \neq 0 \\ f(0) = 0 \end{cases}$$

- $\cdot ig(O_j(i^*,j^*)$ بَمَثِيلَهَا النِيانِي في المستوي المنسوب إلى المعلم المتعامد المتجانب (C_j) .
- C_f عند المبدأ C_f
 - $\lim_{x\to -x} f(x)$ ایش آن $e^{-r} = 0$ شمید شمید السب $\lim_{x\to -x} f(x)$ السب آن (1 (2

$$+f'(x) - \frac{x^2}{(e^x - 1)^7}g(x)$$
 بين أنه من أجل $x \neq 0$ فإن: $(x) = \frac{x^2}{(e^x - 1)^7}g(x)$

- ج) نحتق أن $f(\alpha) = \alpha^2(3-\alpha)$ ثم عين حصرا ثه.
 - د) لنشئ جدول تغير آت الدالة f .
- $x\mapsto -x^3$ احسب (C) و استنج الوضعية النسبية للم (C) و (C) منحتي الدالة $f(x)+x^3$ و (E) احسب ($f(x)+x^3$ واستنج النسبية النسبيا.
 - $\cdot(C_{T})$ و (C) و انشيخ في نفس المعلم المعلم (T) والمتحتيين (C) و (C_{T})

الموضم ع الثاني

التمرين الأول: (44) نقاط)

-1 برهن أنه من أجل كل عدد طبيعي n ، قعدد -1 ** 5 يقبل القسمة على -1

-2 استنتج أنه من أجل كل عند طبيعي n، يقبل كل من العددين 3^{n-1-n} و -2^{n-2} القسمة على -3

3– عين، حسب قوم جر، بالتي القسمة الإقليدية للحد 3° على 13، واستنتج بالتي قسمة 2005 على 13.

 $A_{p}\simeq 3^{p}+3^{2p}+3^{3p}: p$ نځينې من أجل كل عدد طبيعي وp=4

أ- من أجل p=3n عين باقي القسمة الإكليدية للعدد p=3n عنى 13،

ب – برهن أنه إذا كان 1+3n+3 فإن $_{c}$ أن يقبل القسمة على 13،

p=3n+2 عين باقي القيمة الإقابيدة للعدد A_{-} على 13 من أجل p=3n+2

5- يكتب العددان الطبيعيان a و b في نظام العد ذي الأمطى 3 كما يلي:

 $b = \overline{1000100010000}$, $a = \overline{1001001000}$

أ- يُحقق أن العددين به و في يكتبان على الشكل م الد في النظام العشري.

aب استنتج بلقي القسمة الإنمليدية لكل من العديون a و b على a

التمرين الثاني: (05 نقط)

 $A(O; \overset{ au}{u}, \overset{ au}{v})$ المعلم المثمامد والمتجانس الي المعلم المثمامد والمتجانس

 $Z_{I}=1-2i$ و I النقط الذي لاحظائها على الثريب: I=1-4i ، I=1-2i و I=1-2i و I=1-2i النقط I=1-2i و I=1-2i و I=1-2i و I=1-2i

، $Z=rac{Z_{1}-Z_{2}}{Z_{1}-Z_{2}}$ ب- اكتب على الشكل الجيري العدد المركب بالمكل المباري

ج-ما هو توع العالث *IAB* ؟

. C مسور I بالتحلكي ثاذي مركزه I ونسبته C . احسب ثلاحقة I للنقطة C

، المرجع الجملة Z_D المرجع الجملة $\{(A;1),(B;-1),(C;1)\}$ المحملة المرجع الجملة D

و∼بين أن *ABCD* مربع.

 $MA - \overline{MB} + \overline{MC} = \frac{1}{2} \|\overline{MA} + \overline{MC}\|_2^2$ عين وأنشئ $M = \frac{1}{2} \|\overline{MA} + \overline{MC}\|_2^2$ مجموعة فلقط M من المستوي حرث:

M3. عين وأنشئ M3) مجموعة النقط M من المستري حيث: $M = \| \overline{M} - \overline{M} \| + \| \overline{M} \|$

التمرين الثاليث: (04) نقاط)

 $B\left(2;1;3
ight)$ ، $A\left(-1;2;1
ight)$ ، نعتير النقط A(-1;2;1) ، نعتير النقط A(-1;2;1) ، رئتكن A(-1;2;1) ، مجموعة النقط A من الفضاء بحيث : AM = BM

3x - y + 2z - 4 = 0 بين أن (P) هو المستوي الذي معادلته:

(P) عَيْنَ معادلة للمستوي (Q) الذي يشمل A وبوازي (P).

C ويعامد C ويعامد C اكتب نعشيلا وسيطيا للمستقيم C الذي يشمل C

 $\cdot(D)$ و (Q) ب \sim عين إحداثيات E نقطة نقاطع

A ج – نحسب المسافة بين النقطة A والعسنكيم D.

4- عين تمثيلا وسبطيا للمستوي (Π) الذي يحوي المستقيم (AC) ويعلمد المستوي (P)، لم استنج معاملة له.

التمرين الرابع: (07 نقاط)

g الدلاة المعرفة على المجال $[0;+\infty]$ كما يلي: $z=x-1-2\ln x$ و (C_g) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والممتجانس $(O;\vec{i}\,,\vec{j}\,)$ وحدة الطول هي 4cm .

المحب $\lim_{x\to 0} g(x)$ ثم فسر النثيجة هندسيا. -1

 $\lim_{x \to +\infty} g(x) = +\infty \quad \text{if } \quad \text{if } \quad -2$

ب- انرس تغيرات الدالة g .

ج^ے احسب (1) ج

 $3.5 \le lpha \le 3.6$ عيث lpha = 0 عين مختلفين أحدهما lpha = 0 عيث a = 0

 $oldsymbol{g} = oldsymbol{g} \left(rac{1}{x}
ight)$ م استنج اشارهٔ $oldsymbol{g}(x)$ م

$$f(x) = -x^2 + x + x^2 \ln x \; ; \; x > 0$$
 . $f(0) = 0$ كما يثي: $f(0) = 0$

المسب $\lim_{x \to \infty} \frac{f(x)}{x}$ وفسر النتيجة هندسها.

ب- لحسب نهاية الدالة ﴿ عَنْدُ ١٠٠٠ .

xج بئین آنه من أجل كل x من $]0;+\infty[$ فإن: $x \in \mathcal{F}(x)=x$ و ، واستنتج انجاه تغیر الداله f(x)

 $f\left(rac{1}{lpha}
ight)$ عندر لن الدالة f ، بين أن: $f\left(rac{1}{lpha}
ight)=rac{lpha-1}{2lpha^2}$ و استنتج حصورا للعدد

-4 المعثل للدقة f على المجال $\left(C_{f}
ight)$ المعثل للدقة f على المجال -4