Lógica y Computabilidad

2do cuatrimestre 2020 - A DISTANCIA

Departamento de Computación - FCEyN - UBA

Lógica de Primer Orden - clase 5 - Opcional

Teorema de incompletitud de Gödel

Artimética de Peano

Lenguaje $\mathcal{L} = \{0, S, +, \cdot\}$ con igualdad.

- ▶ axiomas (para $x, y \in VAR, \varphi \in FORM(\mathcal{L})$ con variable libre x)
- S1. $0 \neq S(x)$
- S2. $S(x) = S(y) \rightarrow x = y$ S3. x + 0 = x
- S4. x + S(y) = S(x + y)
- S5. $x \cdot 0 = 0$
- S6. $x \cdot S(y) = (x \cdot y) + x$
- S7. $(\varphi[x/0] \land (\forall x)(\varphi \to \varphi[x/S(x)])) \to (\forall x)\varphi$
- definimos la teoría S:

 $S = ig\{ \psi : \psi ext{ es instanciación de alguno de estos 7 esquemas} ig\}$

- Sea $\mathcal{N}=\langle \mathbb{N}; 0, \mathcal{S}, +, \cdot
 angle$ el modelo estándar de los naturales.
 - querríamos capturar todas las verdades de \mathcal{N} con los teoremas de S (en el sistema $SQ^{=}$)
 - ▶ querríamos $\mathcal{N} \models \varphi$ sii $S \vdash \varphi$ ▶ se puede ver que $\mathcal{N} \models \varphi \iff S \vdash \varphi$

Notación (solo para esta clase)

- ▶ notamos $\varphi(x_1,...,x_n)$ a una fórmula que tiene variables libres $x_1,...,x_n$
- sea $\varphi(x_1,\ldots,x_n)$ y sean t_1,\ldots,t_n términos

$$\varphi(t_1,\ldots,t_n)$$
 representa $\varphi[x_1,\ldots,x_n/t_1,\ldots,t_n]$

notación para los numerales:

$$\overline{1} = S(0)$$

$$\overline{2} = S(S(0))$$

$$\vdots$$

$$\overline{n} = \underbrace{S(\ldots S(0)\ldots)}_{\text{n veces}}$$

Por ejemplo,

$$\varphi(x) = (\exists y)y + \overline{2} = x$$

$$\varphi(\overline{3}) = (\exists y)y + \overline{2} = \overline{3}$$

Aritmetización de fórmulas

Por ejemplo,

- ▶ toda fórmula de L se representa con un número natural (se llama número de Gödel de la fórmula)
- ▶ de la misma manera, toda demostración en S se representa con un número natural (se llama número de Gödel de la demostración)

Resultados previos

Teorema

Los siguientes predicados son primitivos recursivos

- var(x): x es el número de Gödel de una expresión que consiste de una variable
- term(x): x es el número de Gödel de una expresión que consiste de un término
- form(x): x es el número de Gödel de una fórmula de $FORM(\mathcal{L})$
- ▶ axSQ_i(x): x es el número de Gödel de una instanciación del i-ésimo axioma de SQ⁼
- ► axS_i(x): x es el número de Gödel de una instanciación del i-ésimo axioma de S
- ► MP(x, y, z): z es el número de Gödel de una expresión que resulta de MP de las expresiones con número de Gödel x e y
- ightharpoonup dem(x) = x es el número de Gödel de una demostración de S

Funciones expresables en S

Una relación $R \subseteq \mathbb{N}^n$ es expresable en S si existe una fórmula φ con (únicas) variables libres x_1, \ldots, x_n tal que para todo $k_1, \ldots, k_n \in \mathbb{N}$:

▶ si $R(k_1,...,k_n)$ es verdadero en $\mathcal N$ entonces

$$S \vdash \varphi(\overline{k_1}, \ldots, \overline{k_n})$$

▶ si $R(k_1,...,k_n)$ es falso en $\mathcal N$ entonces

$$S \vdash \neg \varphi(\overline{k_1}, \ldots, \overline{k_n})$$

Teorema

Toda relación computable es expresable en S.

Consistencia y ω -consistencia

Sea
$$\Gamma \subseteq \mathsf{FORM}(\mathcal{L})$$

 Γ es consistente si no existe $\varphi \in \mathsf{FORM}(\mathcal{L})$ tal que

$$\Gamma \vdash \varphi$$
 y $\Gamma \vdash \neg \varphi$

 Γ es ω -consistente cuando

si
$$\Gamma \vdash \varphi(\overline{n})$$
 para todo n , entonces $\Gamma \not\vdash (\exists x) \neg \varphi(x)$

Proposición

Si Γ es ω -consistente entonces Γ es consistente.

Una teoría es Γ completa si para toda sentencia φ , $\Gamma \vdash \varphi$ o $\Gamma \vdash \neg \varphi$

La fórmula de Gödel

W(e,y) : e es el número de Gödel de una fórmula ψ con una única variable libre x_1 y además y es el número de Gödel de una demostración en S de $\psi(\overline{e})$

El predicado $W: \mathbb{N}^2 \to \{0,1\}$ es primitivo recursivo, luego es expresable en S por una fórmula $\mathcal{W}(x_1,x_2)$. Consideremos

$$\varphi(x_1) = (\forall x_2) \neg \mathcal{W}(x_1, x_2)$$

$$= \text{"la fórmula con número de Gödel } x_1 \text{ instanciada en } \overline{x_1}$$
no es demostrable en S "

Sea m el número de Gödel de $\varphi(x_1)$. Consideremos

$$\varphi(\overline{m}) = (\forall x_2) \neg \mathcal{W}(\overline{m}, x_2)$$
= "la fórmula con número de Gödel m instanciada en \overline{m} no es demostrable en S "
= " $\varphi(\overline{m})$ no es demostrable en S "
= "yo no soy demostrable en S "

Teorema de incompletitud de Gödel (1931)

Recordemos que m es el número de Gödel de

$$\varphi(x_1) = (\forall x_2) \neg \mathcal{W}(x_1, x_2)$$

Teorema

- 1. si S es consistente, $S \not\vdash \varphi(\overline{m})$ 2. si S es ω -consistente, $S \not\vdash \neg \varphi(\overline{m})$ si S es ω -consistente, es incompleto

Demostración.

- 1. Sup. $S \vdash (\forall x_2) \neg \mathcal{W}(\overline{m}, x_2)$
 - ▶ sea k el número de Gödel de alguna demostración en S
 - ▶ W(m, k) es verdadero
 - \triangleright $S \vdash \mathcal{W}(\overline{m}, \overline{k})$
 - \triangleright como $S \vdash (\forall x_2) \neg \mathcal{W}(\overline{m}, x_2)$ por SQ4, $S \vdash \neg \mathcal{W}(\overline{m}, \overline{k})$
 - S es inconsistente

2. Sup. $S \vdash \neg(\forall x_2) \neg \mathcal{W}(\overline{m}, x_2)$

- como S es consistente. $S \not\vdash (\forall x_2) \neg \mathcal{W}(\overline{m}, x_2)$
- ▶ W(m, k) es falso para todo k
- ▶ $S \vdash \neg \mathcal{W}(\overline{m}, \overline{k})$ para todo k
- \triangleright como S es ω -consistente. $S \not\vdash (\exists x_2) \neg \neg \mathcal{W}(\overline{m}, x_2)$
- \triangleright $S \not\vdash \neg(\forall x_2)\neg \mathcal{W}(\overline{m}, x_2)$
- \triangleright $S \not\vdash \neg \varphi(\overline{m})$

Decimos que $\varphi(\overline{m})$ es independiente

Fórmulas verdaderas en ${\mathcal N}$ pero no demostrables en S

Recordemos que m es el número de Gödel de

$$\varphi(x_1) = (\forall x_2) \neg \mathcal{W}(x_1, x_2)$$

de modo que

$$\varphi(\overline{m}) = (\forall x_2) \neg \mathcal{W}(\overline{m}, x_2)$$

= " $\varphi(\overline{m})$ no es demostrable en S"

- ▶ si $\varphi(\overline{m})$ fuese falsa en \mathcal{N} (i.e. $\mathcal{N} \not\models \varphi(\overline{m})$), $\varphi(\overline{m})$ sería demostrable en S, pero acabamos de ver que esto no es así
- entonces $\varphi(\overline{m})$ es verdadera en \mathcal{N} , pero no demostrable en S:

$$\mathcal{N} \models \varphi(\overline{m})$$
 y $S \not\vdash \varphi(\overline{m})$

esto no contradice el teorema de completitud:

en donde $\varphi(\overline{m})$ es falsa

$$\underbrace{S \not\models \varphi(\overline{m})}_{\text{hay un modelo de }S} \qquad \qquad \text{sii} \qquad S \not\vdash \varphi(\overline{m})$$

Teorema de Gödel-Rosser (1936)

Teorema

Si S es consistente, es incompleta.

Una teoría Γ es recursivamente axiomatizable si existe una teoría Γ' tal que " $\xi x \in \Gamma'$?" es computable y $\Gamma \vdash \varphi$ sii $\Gamma' \vdash \varphi$

Corolario

Cualquier teoría recursivamente axiomatizable que extiende a S es incompleta.

Teorías completas para ${\mathcal N}$

Sin embargo, es posible dar teorías completas que capturen todas las verdades de ${\mathcal N}$

Para $\mathcal{L}=\{0,\mathcal{S},+,\cdot\}$ con igualdad, existe $\Gamma\subseteq\mathsf{FORM}(\mathcal{L})$ tal que $\Gamma\vdash\varphi$ sii $\mathcal{N}\models\varphi$:

$$\Gamma = \{ \psi : \mathcal{N} \models \psi \}$$

 Γ es completa, pero no es decidible.

Aritmética de Robinson (1950)

Lenguaje
$$\mathcal{L} = \{0, S, +, \cdot\}.$$

▶ axiomas (para $x, y \in VAR$)

R1.
$$S(x) = S(y) \rightarrow x = y$$

R2. $0 \neq S(x)$
R3. $x \neq 0 \rightarrow (\exists y)x = S(y)$
R4. $x + 0 = x$
R5. $x + S(y) = S(x + y)$
R6. $x \cdot 0 = 0$
R7. $x \cdot S(y) = (x \cdot y) + x$

definimos la teoría R:

$$R = \left\{ \psi : \psi \text{ es instanciación de alguno de estos 7 esquemas} \right\}$$

- ► R es una sub-teoría de S
- R no tiene axioma de inducción
- R es incompleta

Aritmética de Presburger (1929)

Lenguaje $\mathcal{L} = \{0, S, +\}$ con igualdad. Sin \cdot

axiomas (como S pero sin S5 ni S6):

S1.
$$0 \neq S(x)$$

S2. $S(x) = S(y) \rightarrow x = y$
S3. $x + 0 = x$
S4. $x + S(y) = S(x + y)$
S7. $(\varphi[x/0] \land (\forall x)(\varphi \rightarrow \varphi[x/S(x)])) \rightarrow (\forall x)\varphi$

definimos la teoría P:

$$P = \left\{ \psi : \psi \text{ es instanciación de alguno de estos 5 esquemas} \right\}$$

- ▶ P es completa
- P es decidible

Cuerpos real cerrados - el sistema RCF

Lenguaje $\mathcal{L} = \{0, +, -, *\}$ con igualdad

$$(\forall x, y, z) (x+y) + z = x + (y+z)$$

$$(\forall x) \ x + 0 = x$$

$$(\forall x) \ x - x = 0$$

$$(\forall x, y) \ x + y = y + x$$

$$(\forall x, y, z) (xy)z = x(yz)$$

$$\blacktriangleright$$
 ($\forall x$) $x1 = x$

$$(\forall x) \ 1x = x$$

$$(\forall x, y, z) \ x(y+z) = xy + xz$$

$$(\forall x, y, z) (x + y)z = xz + yz$$

$$(\forall x, y) \ xy = yx$$

$$(\forall x)(x \neq 0 \rightarrow (\exists y) \ xy = 1)$$

$$(\forall x_1 \dots x_n) \ x_1^2 + \dots + x_n^2 \neq -1 \text{ para todo } n > 0$$

$$(\forall x)(\exists y) (x = y^2 \lor -x = y^2)$$

$$(\forall x_1 \dots x_n)(\exists y) \ y^n + x_1 y^{n-1} + \dots + x_{n-1} y + x_n = 0 \text{ para todo } n \text{ impar}$$

- RCF es una teoría completa.
- ▶ Si \mathcal{R} son los reales estándar, entonces $\mathcal{R} \models \varphi$ sii RCF $\vdash \varphi$ para toda sentencia φ
- ▶ RCF es decidible (decidir si RCF $\vdash \varphi$ o RCF $\not\vdash \varphi$) pero con complejidad muy alta: peor que cualquier torre $2^{2^{i}}$, donde n es la longitud de la formula φ