TRABAJO DE FUNDAMENTOS DE MODELIZACIÓN

SIMULACIÓN HIDROLÓGICA MEDIANTE SIMPA

MÁSTER DE ENERGÍAS RENOVABLES DISTRIBUIDAS

Profesora: Pilar Martínez

Alumno: Carlos Castillo Rodríguez

1. Introducción

¿EN QUÉ CONSISTE LA SIMULACIÓN?

"La práctica de generar modelos para representar un sistema del mundo real o hipotéticos mundos futuros, experimentando con él para explicar el comportamiento del sistema, mejorar su funcionamiento o diseñar nuevos sistemas con características deseables"

1. Introducción

¿QUÉ ES EL MODELO SIMPA?

El modelo SIMPA es un modelo de SIMULACIÓN PRECIPITACIÓN-APORTACIÓN (Estrela et al., 1.999)

- Origen: Libro Blanco del Agua MMA, 1998 (recopilación de datos y metodologías propias).
- Escalas de trabajo: Mensual y "celdas" de 1 km²
- Bases teóricas: Ecuación de continuidad (balance hídrico), almacenamiento y modelo de Témez (SCS).

-Entradas/ Salidas:

Entradas: Precipitación, Evapotranspiración Potencial y parámetros.

Salidas: Aportaciones (Escorrentía y flujo subsuperficial).

Por lo tanto se trata de un modelo simple, dinámico, determinista y discreto para estimar la escorrentía y flujo subsuperficial en una cuenca en escala temporal diaria (mensual o anual) conocidos la precipitación, la evapotranspiración y otros parámetro hidrológicos.

REPRESENTACIÓN CONCEPTUAL DEL MODELO

EP: evapotranspiración

P: precipitación

Hmax = humedad máxima en el suelo

Hi = humedad en el suelo en momento i

T: Excedente de agua

E: escorrentía superficial

R: Incorporación al acuífero

V: Volumen del acuífero

ECUACIONES MATEMÁTICAS DEL MODELO

$$\begin{split} P_i \leq P_o \Rightarrow T_i &= 0 \\ P_i > P_o \Rightarrow T_i &= \frac{(P_i - P_o)^2}{P_i + \delta - 2 \cdot P_o} \\ \delta &= H_{\text{máx}} - H_{i-1} + EP_i \\ P_o &= C \cdot (H_{\text{máx}} - H_{i-1}) \end{split}$$

Po = umbral de precipitación para formación de escorrentía

Sólo llueve por encima de un umbral de precipitación.

La escorrentía es proporcional a la lluvia como el almacenamiento (sigma) lo es a la capacidad potencial del suelo (Hmax)

ECUACIONES MATEMÁTICAS DEL MODELO

 P_i precipitación en el mes i (mm)

excedente de agua en el mes i (mm) T_i

capacidad máxima de almacenamiento de agua en el suelo $H_{m\dot{\alpha}x}$

(mm)

 H_{i-1} almacenamiento de agua en el suelo en el mes i-1 (mm)

> EP_i evapotranspiración potencial en el mes i (mm)

Cparámetro de excedente, que toma valores del orden de 0.3

Infiltración

$$I_{i} = I_{max} \cdot \frac{T_{i}}{T_{i} + I_{max}}$$

 $H_i = m \acute{a} x (0, H_{i-1} + P_i - T_i - EP_i)$

$$E_i = min(H_{i-1} + P_i - T_i, EP_i)$$

Ec. Recarga de acuíferos

Límites de la humedad del suelo v la evapotranspiración potencial

$$V_{i} = V_{i-1} - V_{i-1} \cdot e^{-\alpha \cdot \Delta t} R_{i} \left(\frac{1 - e^{-\alpha \cdot \Delta t}}{\alpha} \right)$$

$$Ec. \ Recarga \ de \ acuíferos$$

$$R \downarrow R = I$$

$$-1 - V_{i-1} \cdot e^{-\alpha \cdot \Delta t} R_i \left(\frac{1 - e^{-\alpha \cdot \Delta t}}{\alpha} \right)$$

$$A_{sub_i} = V_{i-1} - V_i + R_i$$

EP

ECUACIONES MATEMÁTICAS DEL MODELO

$$\begin{split} V_{i} &= V_{i-1} - V_{i-1} \cdot e^{-\alpha \cdot \Delta t} R_{i} \bigg(\frac{1 - e^{-\alpha \cdot \Delta t}}{\alpha} \bigg) \\ A_{sub_{i}} &= V_{i-1} - V_{i} + R_{i} \end{split}$$

α coeficiente de agotamiento del acuífero (meses-¹)

 Δt intervalo temporal (mes)

Pi recarga al acuífero en el mes i (mm/mes)

Vi volumen almacenado en el acuífero en el mes i

(mm)

Atotal = E + Q

PARÁMETROS DEL MODELO

Uso del suelo	Capacidad máxima de humedad del suelo (mm)
Superficies artificiales	40
Espacios con poca vegetación	100
Tierras de labor en secano	155
Tierras de labor en regadio	215
Praderas y pastizales naturales	150
Sistemas agrícolas heterogéneos	195
Cultivos permanentes	210
Vegetación arbustiva	135
Bosque mixto	220
Bosques de frondosas y coníferas	230
Zonas húmedas, superficies de agua y artificiales	300

Tabla 2 Regionalización de la capacidad máxima de humedad del suelo a partir de los usos del suelo

Litología	Infiltración máxima (mm)
Mat.aluvial de origen indiferenciado	400
Calizas y dolomías	1000
Margas	85
Margas yesíferas	75
Yesos	64
Materiales arenosos	450
Materiales gravo-arenosos	500
Calcarenitas (Macigno)	250
Arcosas	150
Rañas	95
Granitos	65
Rocas metamórficas	20
Gneiss	55
Pizarras	40
Rocas volcánicas	275

Tabla 3. Regionalización de la capacidad máxima de infiltración a partir de la litología

3. CALIBRACIÓN DEL MODELO

¿EN QUÉ CONSISTE LA CALIBRACIÓN DE UN MODELO?

"La calibración de un modelo consiste en la determinación de los parámetros del mismo que mejor ajustan los resultados del proceso que se quiere simular para un período seleccionado"

3. CALIBRACIÓN DEL MODELO

Valores predichos y medios en el proceso de calibración

Se han obtenido unos valores elevados en los estadísticos:

-Coeficiente de eficiencia de Nash de 0,8

- Coeficiente de correlación de 0,87

Table 5. Statistics of the **MONTHLY** flow adjusting with SIMPA model in Anzur river cachtment.

Statistics	Е	r	RMSE (mm)
Calibration n = 57	0.80	0.87	4.20

3. CALIBRACIÓN DEL MODELO

Se ha procedido a la calibración del modelo mediante una serie de 57 meses para obtener los parámetros del modelo que mejor ajustan al sistema. Éstos son los valores obtenidos:

Table 4. Calibrated parameters and selected values from the environmental analysis.

Parameterisation		Values		
	С		0.2	
Calibrated	SWmax (mm)		370	
	Rmax (mm)		1000	
	alfa (1/month)		0.54	
Selected Vo (mm)			0	
	acuifer area (ratio)		0.25	
	recharge ratio		1	

4. LA VALIDACIÓN DEL MODELO

¿EN QUÉ CONSISTE LA VALIDACIÓN DE UN MODELO?

"La validación de un modelo consiste en la comparación de los resultados proporcionados por el modelo calibrado con los datos del sistema real"

4. LA VALIDACIÓN DEL MODELO

Se ha procedido a la validación del modelo mediante una serie de 41 meses (datos no incluidos en la calibración) para conocer la capacidad predictiva del modelo.

Se han obtenido unos valores elevados en los estadísticos:

- -Coeficiente de eficiencia de Nash de 0,66
- Coeficiente de correlación de 0,71

Se observa la existencia de datos atípicos cuya aparición se debe estudiar

Statistics	Е	r	RMSE (mm)
Calibration n = 57	0.80	0.87	4.20
Validation n = 41	0.66	0.71	22.71

5. CONCLUSIONES DEL TRABAJO

- -Se observa una relación lineal entre escorrentía y lluvia para escalas de tiempo superiores a un mes
- -El modelo SIMPA es un modelo simple pero con una alta capacidad predictiva del comportamiento hidrológico general de la cuenca para escalas de tiempo largas (superiores al mes).
- -El modelo es muy sensible a la elección de los parámetros relacionados con el comportamiento subsuperficial.