5 – Memoria secondaria ottimizzazione delle prestazioni nei dischi

Sommario

Introduzione

Evoluzione dei dispositivi di memoria secondaria

Caratteristiche dei dischi a testina mobile

Arrays Ridondanti di dischi Indipendenti (RAID)

Strategie di scheduling del disco

First-Come-First-Served (FCFS)

Shortest-Seek-Time-First (SSTF)

SCAN e varianti: C-SCAN, FSCAN e N-Step SCAN

LOOK e C-LOOK

Ottimizzazione rotazionale

Scheduling SLTF

Scheduling SPTF e SATF

Considerazioni sul sistema

Cache e Buffering del disco

Gestione degli errori

Software per I/O

Altre tecniche di miglioramento delle prestazioni

S. Balsamo – Università Ca' Foscari Venezia – SO.5.0

Introduzione

- · La memoria secondaria è spesso uno collo di bottiglia
 - Dispositivi di memoria permanente, economico, riscrivibile, di lunga durata
 - Nastri inadequati se è richiesto un accesso rapido alle locazioni
 - · Dischi ad accesso 'casuale' (diretto)
 - · Evoluzione di costo/prestazioni
 - Vincoli meccanici
 - Altri dispositivi I/O: tastiera, mouse, monitor
 - I miglioramenti delle prestazioni di memoria secondaria aumentano in modo significativo le prestazioni dell'intero sistema
 - Soluzioni possono essere basate sia su software e sia su hardware

S. Balsamo – Università Ca' Foscari Venezia – SO 5.2

Obbiettivi

- Realizzazione delle operazioni di input/output su disco
- Come si completa input/output
- Importanza dell'ottimizzazione delle prestazioni
- Ottimizzare la ricerca (seek) e la rotazione
- Strategie di scheduling del disco
- caching e buffering
- Altre tecniche per migliorar le prestazioni del disco
- Principali schemi per realizzare Array Ridondanti di Dischi Indipendenti (RAID)

S. Balsamo – Università Ca' Foscari Venezia – SO.5.1

Introduzione

- Dispositivi di I/O
 - a blocchi di dimensione fissa
 - es. dischi, penne USB
 - · a caratteri
 - es. stampanti, interfacce di rete, mouse
 - Alcune altre categorie
 - · es. clock, touch screen
 - Diverse velocità dei dispositivi
 - Controllore del dispositivo o adattatore (componente elettronica)
 - Dispositivo (componente meccanica)

Dispositivo	Velocità di trasferimento dei dati
Tastiera	10 byte/s
Mouse	00 byte/s
Modem a 56 K	7 KB/s
Scanner a 300 dpi	1 MB/s
Videocamera digitale	3,5 MB/s
Disco Blu-ray 4x	18 MB/s
802.11n Wireless	37,5 MB/s
USB 2.0	60 MB/s
FireWire 800	100 MB/s
Gigabit Ethernet	125 MB/s
Disco fisso SATA 3	600 MB/s
USB 3.0	625 MB/s
Bus SCSI Ultra 5	640 MB/s
Bus PCIe 3.0 single lane	985 MB/s
Bus Thunderbolt 2	2,5 GB/s
Rete SONET OC-768	5 GB/s

- · Comunicazione fra CPU e dispositivi di I/O
 - registri di controllo ai quali è assegnata una porta di I/O (8 o 16 bit)
 - spazio delle porte: insieme delle porte
 - Protezione
 - · I/O mappato in memoria
 - ad ogni registro è assegnato uno unico indirizzo di memoria, al quale non è assegnata memoria
 - ibrido
 - Due spazi separati, un buffer dai dati dei dispositivi IO mappati in memoria e porte IO separate per i registri di controllo

I/O mappato in memoria

Vantaggi

- Il driver può essere scritto in linguaggio ad alto livello (es. C) e non in assembly – i registri sono solo variabili in memoria facilmente modificabili
- Protezione semplice controllo degli indirizzi
- Le istruzioni possono riferirsi ai registri di controllo direttamente e semplificare la progettazione

Svantaggi

- Uso della cache non è possibile, va disabilitata selettivamente, azione potenzialmente complessa
- Con bus separati i dispositivi di I/O potrebbero non poter vedere indirizzi di memoria spediti sul bus della memoria – alcune soluzioni

S. Balsamo – Università Ca' Foscari Venezia – SO.5.8

DMA

DMA - Direct Memory Access

Controllore DMA, accesso diretto alla memoria Accede al bus indipendentemente dalla CPU Ha molti registri

inclusi registri di memoria,

di conteggio di byte

di controllo

i registri di controllo contengono indicazioni delle porte I/O

direzione di trasferimento

dimensione dell'unità di trasferimento

numero di byte da trasferire alla volta

Possibili trasferimenti multipli, con più registri di controllo, uno per canale e ogni trasferimento regolato da un controller di dispositivo

Livelli di software di I/O Software per l'I/O a livello utente Software del sistema operativo indipendente dai dispositivi (device independent) Driver dei dispositivi Gestori degli interrupt Hardware Gerarchia e livelli - I gestori di interrupt di regola non sono visibili all'utente - Driver del dispositivo: codice di controllo – solitamente nel nucleo dispositivi a blocchi / a caratteri - Software indipendente dai dispositivi fornisce l'interfaccia al - Software di livello utente A. Tanenbaum – Modern Operating Systems

Software indipendente dai dispositivi di I/O Interfacciamento uniforme dei driver dei dispositivi Buffering Segnalazione degli errori Allocazione e rilascio dei dispositivi dedicati Dimensione dei blocchi indipendente dai dispositivi Alcune funzioni Interfaccia uniforme a livello utente A Tanenbaum – Modern Operating Systems S. Balsamo – Università Ca' Foscari Venezia – 80.5.15

S. Balsamo – Università Ca' Foscari Venezia – SO 5 18

A. Tanenbaum - Modern Operating Systems

Obbiettivi del software di I/O

- Progettazione del software indipendente dal dispositivo definizione uniforme dei nomi (di file, di dispositivi,...)
- Affidabilità, correzione degli errori gestiti preferibilmente hardware
- Tipi di trasferimento comunicazione dati CPU-I/O con operazioni sincrone (bloccanti) o asincrone (con interrupt)
- Gestione dei buffer nel trasferimento dei dati prestazioni, (es. operazioni real-time)
- Condivisione

dispositivi condivisi da più utenti/processi dispositivi dedicati

A. Tanenbaum - Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO.5.20

Tipi di software per I/O Esempio di I/O programmato Stringa Spazio da stampare utente Pagina stampata Pagina stampata ABCD EFGH AB Successivo Successivo ABCD EFGH ABCD Spazio (a) Buffer nello spazio utente - chiamata di sistema e copia nello spazio kernel (b) Controllo della stampa un carattere per volta - uso del registro dati della stampante (c) Avanzamento dopo il controllo che la stampante sia disponibile S. Balsamo – Università Ca' Foscari Venezia – SO 5 22 A. Tanenbaum - Modern Operating Systems

Tipi di software per I/O

Metodi di gestione software dell'I/O

I/O programmato

delega alla CPU il controllo dell'operazione busy waiting della CPU semplice, ma potenzialmente inefficiente

• I/O quidato dal'interrput

la CPU può eseguire altri processi mentre un processo è bloccato uso di interrupt maggior utilizzazione della CPU, ma molti interrupt

• I/O su DMA

il controllore DMA, indipendente dalla CPU, interagisce con il dispositivo uso di hadware speciale, ma maggior concorrenza e utilizzo CPU riduce il numero di interrupt, ma può essere più lento

A. Tanenbaum - Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO.5.21

Tipi di software per I/O

Esempio di I/O programmato

Stampa di una stringa p buffer nel nucleo un carattere per volta tramite il buffer CPU controlla

A. Tanenbaum - Modern Operating Systems

Tipi di software per I/O

Esempio di I/O guidato dal'interrput

Stampa di una stringa p buffer nel nucleo

un carattere per volta via via che arrivano

gestione dell'interrupt

copy_from_user(buffer, p, count);
enable interrupts();
while ("printer_status_reg != READY);
*printer_data_register = p[0];
scheduler();

Codice eseguito al tempo di chiamata di sistema per la stampa

```
If count == 0) {
   unblock_user();
} else {
   *printer_data_register = p[0];
   count = count - 1;
   i = i + 1;
}
acknowledge-interrupt();
return_from_interrupt();
```

Procedura di gestione dell'interrupt per la stampa

A. Tanenbaum - Modern Operating Systems

S. Balsamo - Università Ca' Foscari Venezia - SO.5.24

Elaborazione di un interrupt per I/O

Alcuni passi del S.O. per trattare un interrupt I/O

- Salvataggio dei registri non ancora salvati dall'hardware (es PSW)
- Caricamento contesto per la procedura di gestione dell'interrupt
- Impostazione stack
- Avviso al controllore degli interrupt (o riabilitazione interrupt)
- Copia dei registri salvati nella tabella dei processi
- Esecuzione della procedura di gestione dell'interrupt, che recupera le informazioni dai registri del controllore del dispositivo
- Scelta del prossimo processo da eseguire
- Impostazione del contesto della MMU per il prossimo processo, eventualmente anche della TLB
- Caricamento dei nuovi registri del processo, compreso PSW
- Avvio dell'esecuzione del nuovo processo

A. Tanenbaum - Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO.5.26

Tipi di software per I/O

Esempio di I/O su DMA

Stampa di una stringa tramite DMA gestione tramite accesso diretto alla stampante

copy_from_user(buffer, p, count); setup_DMA_controller();

unblock_user();

acknowledge-interrupt();

return_from_interrupt();

scheduler();

Codice eseguito al tempo di chiamata di sistema per la stampa

Procedura di gestione dell'interrupt per la stampa

A. Tanenbaum - Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO.5.25

Evoluzione dei sistemi di memoria secondaria

- La maggior parte dei dispositivi di memorizzazione secondaria si basano su supporti magnetici
 - Accesso ai dati con una testina di lettura-scrittura
 - I primi tecnologie utilizzavano memoria sequenziale
 - · Informazioni accessibili in modo ordinato uno per volta
 - · Inefficiente per applicazioni ad accesso diretto
 - Memorizzazione ad accesso casuale
 - · Anche detto memoria ad accesso diretto
 - · Accesso ai record in qualsiasi ordine

Caratteristiche dei dischi a tesina mobile

- Struttura fisica di unità disco
 - Insieme di dischi (piatti) magnetici
 - Che ruotano su un perno (rotore)
 - Alta velocità
 - Composto da tracce, che a loro volta contengono settori
 - · Cilindri: formati da gruppi verticali di tracce
 - Testina di lettura-scrittura molto vicina (micron)
 - Braccio mobile collegato ad un attuatore (boom)
 - · Movimento della testina fra i cilindri
 - Ricerca del cilindro (seek)

S. Balsamo – Università Ca' Foscari Venezia – SO.5.28

Caratteristiche dei dischi a tesina mobile				
Parametro		Floppy disk IBM 36	0 KB Disco fisso WD 3000 HLFS	
Numero dei cilindri		40	36.481	
Tracce per cilindro		2	255	
Settori per traccia		9	63 (media)	
Settori per disco		720	586.072.368	
Byte per settore		512	512	
Capacità del disco		360 KB	300 GB	
Tempo di ricerca (cilindri adiacenti)		6 ms	0,7 ms	
Tempo di ricerca (situazione media)		77 ms	4,3 ms	
Tempo di rotazione		200 ms	6 ms	
Tempo di stop/avvio del motore		250 ms	1 ms	
Tempo per trasferire 1 settore		22 ms	1 μs	
A. Tanenbaum – Modern Operating	g Systems		S. Balsamo – Università Ca' Foscari Venezia – SO.5.30	

Caratteristiche dei dischi a tesina mobile

- · Indici di prestazione
 - 1. Tempo di ricerca (seek)
 - Tempo per la testina di lettura-scrittura per spostarsi nuovo cilindro
 - 2. Latenza rotazionale
 - Tempo di ritardo dovuto alla rotazione, perché i dati ruotino dalla posizione attuale alla testina di lettura-scrittura
 - 3. Tempo di **trasmissione**
 - Tempo di trasferimento perché tutti i dati cercati ruotino sotto la testina di lettura-scrittura

RAID - Redundant array of inexpensive disks Uso di meccanismi di ridondanza per aumentare l'affidabilità parallelismo per migliorare le prestazioni dei dischi RAID è visto dal sistema come una sola grande unità disco La progettazione include la gestione di un insieme di dischi a cui si accede in parallelo la gestione di molte copie di parti di dati la distribuzione delle parti dei dati su più dischi Distribuzione Partizione Insiemi (pila) di dischi SCSI o SATA Compatibilità dei driver Diversi schemi di organizzazione dei RAID, detti livelli A. Tanenbaum - Modern Operating Systems S. Balsamo – Università Ca' Foscari Venezia – SO 5 34

Formattazione dei dischi Formattazione a basso livello dei piatti del disco, via sw Tracce concentriche con i settori Dati ECC Preambolo Settore di un disco ECC informazioni ridondanti per recupero di errori, es. 16 byte Lo spazio nel disco formattato si riduce es. circa del 20% Cylinder Skew per ogni traccia il settore 0 è spostato rispetto alla traccia precedente per migliorare le prestazioni Partizionamento del disco: tabella delle partizioni e dimensione di ogni partizione Formattazione ad alto livello di ogni partizione Definisce: il blocco di avvio, gestione dello spazio libero, directory principale (root) e il file system (vuoto) A. Tanenbaum - Modern Operating Systems S. Balsamo – Università Ca' Foscari Venezia – SO.5.37

