§ 5-6 阻抗与导纳

图中, No为正弦稳态电路中的无源二端网络

$$\frac{Z(j\omega)}{\hat{I}} = \frac{\dot{U}}{\dot{I}} \quad (\Omega)$$
输入阻抗
$$(等效阻抗)$$

$$\frac{Y(j\omega)}{\hat{I}} = \frac{\dot{I}}{Z} = \frac{\dot{I}}{\dot{U}} \quad (S)$$
输入导纳
$$(等效导纳)$$

$$\left. \begin{array}{c} \cdot \\ U = ZI \\ \cdot \\ I = YU \end{array} \right\}$$
 — 欧姆定律的相量形式

$$Z_{R} = R , Y_{R} = G$$

$$Z_{C} = \frac{1}{j\omega C} = -j \underbrace{X_{C}}_{\text{多执}} (\Omega) Y_{C} = j\omega C = j \underbrace{B_{C}}_{\text{S.M}} (S)$$

$$Z_{L} = j\omega L = j \underbrace{X_{L}}_{\text{S.M}} (\Omega) Y_{L} = \frac{1}{j\omega L} = -j \underbrace{B_{L}}_{\text{S.M}} (S)$$

$$Z(j\omega)=R+jX=\left|Z\right|\angle\varphi$$
 — Ψ_u — Ψ_i (阻抗角) 实部 虚部 (电阻分量) (电抗分量) T (阻抗的模) $\left|Z\right|$ — $\left|Z\right|$ — $\left|Z\right|=\sqrt{R^2+X^2}$ $\varphi=arctg\frac{X}{R}$ — $R=\left|Z\right|\cos\varphi$ — $X=\left|Z\right|\sin\varphi$ — 阻抗三角形

$$Z(j\omega) = R + jX = |Z| \angle \varphi \tag{1}$$

当X>0时, $\varphi>0$ U 超前于 I N_0 呈感性(电抗等效为电感元件) 当X<0时, $\varphi<0$ U 滞后于 I N_0 呈容性(电抗等效为电容元件) 当X=0时, $\varphi=0$ U 与 I 同相 N_0 呈阻性(电抗等效为电阻元件)

$$Y(j\omega) = G + jB = |Y| \angle \varphi'$$

实部 虚部 $\frac{I}{U}$ (导纳的模)
(电导分量) (电纳分量)

$$\psi_i - \psi_u$$
(导纳角)

$$|Y| = \sqrt{G^2 + B^2}$$
 $\varphi' = arctg \frac{B}{G}$
 $G = |Y| \cos \varphi'$ $B = |Y| \sin \varphi'$

导纳三角形

$$Y(j\omega) = G + jB = |Y| \angle \varphi$$
 (2)

当B>0时,ho'>0 I超前于 U N_0 呈容性(电纳等效为电容元件) 当B<0时,ho'<0 I滞后于U N_0 呈感性(电纳等效为电感元件) 当B=0时,ho'=0 I与U同相 N_0 呈阻性(电纳等效为电阻元件)

§ 5-7 阻抗的串联与并联

1. 阻抗串联的电路

$$\dot{U}=\dot{U_1}+\dot{U_2}$$

$$\dot{U_1}=Z_1\dot{I} \qquad \dot{U_2}=Z_2\dot{I}$$
 于是有 $(Z_1+Z_2)\dot{I}=\dot{U}$
$$\dot{I}=\frac{\dot{U}}{Z_1+Z_2}$$
 由此可得 $Z=Z_1+Z_2$

两个阻抗串联肘的分压公式为

$$\dot{U}_1 = \frac{Z_1}{Z_1 + Z_2} \dot{U}$$

$$\dot{U}_2 = \frac{Z_2}{Z_1 + Z_2} \dot{U}$$

例:

(a) R,L,C 串联电路

(b) 相量模型

图(a)表示一个R,L,C 串联电路,其相量模型如图(b)所示,

设电源电压为 $U=U\angle\psi_u$, 电流相量为 $I=I\angle\psi_i$,

电阻、电感、电流的电压相量为: U_{R} 、 U_{L} 、 U_{C}

由KVL和各元件方程,有
$$U=U_R+U_L+U_C$$
 $=RI+j\omega LI+\frac{1}{j\omega C}I$ $=(R+j\omega L+\frac{1}{j\omega C})I$ $=(R+j\omega L+\frac{1}{j\omega C})I$ 将上式右端中 I 前的条数记为 $Z=|Z|\angle\varphi$,即 $Z=\frac{U}{I}=R+j\omega L+\frac{1}{j\omega C}=R+j(\omega L-\frac{1}{\omega C})=R+j(X_L-X_C)$ 令 $X=X_L-X_C$ 则有 $Z=\frac{U}{I}=R+jX$ $Z=\sqrt{R^2+X^2}\angle arctg\frac{X}{R}=|Z|e^{j\varphi}=|Z|\angle\varphi$ 其中 $|Z|=\sqrt{R^2+X^2}$ $\varphi=arctg\frac{X}{R}$

$$|Z| = \frac{U}{I}$$
 $\varphi = \psi_u - \psi_i$ 复阻抗 电压有效值与 复阻抗 Z的辐射 Z的模 电流有效值之比 (电路的阻抗角)

由此可见,复阻抗Z决定了电压、电流有效值的 大小和相位间的关系

若给定图中电源电压[[]和各元件参数,可以求出

$$\dot{I} = \frac{U}{Z} = \frac{U}{|Z|} \angle \psi_u - \varphi$$

$$I = \frac{U}{|Z|} = \frac{U}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$\psi_i = \psi_u - \varphi = \psi_u - arctg \frac{X}{R}$$

$$eta \omega L > rac{1}{\omega C}$$
 则电抗 X 为正值 , $arphi > 0$,电流滞后于电压 $eta \omega L < rac{1}{\omega C}$ 则电抗 X 为负值 , $arphi < 0$,电流超前于电压 $eta \omega L = rac{1}{\omega C}$ 则电抗 $X = 0$, $arphi = 0$,电流和电压同相

RLC串联电路中电压、电流相量图

2. 导纳并联的电路

$$I_1 + I_2 = I$$
 $I_1 = Y_1 U$ $I_2 = Y_2 U$
于是有 $(Y_1 + Y_2)U = I$

 $Y_1 + Y_2$

由此可见
$$Y=Y_1+Y_2$$

等效阻抗:
$$Z = \frac{1}{Y} = \frac{1}{Y_1 + Y_2} = \frac{Z_1 Z_2}{Z_1 + Z_2}$$

两个导纳并联的分流公式为 $I_1=Y_1U=\frac{Y_1}{U}=\frac{Z_2}{U}I$

$$\dot{I}$$
 \dot{I}_1
 \dot{I}_2
 \dot{U}
 \dot{I}_1
 \dot{I}_2
 \dot{I}_2
 \dot{I}_1
 \dot{I}_2

例: 设电路中电阻、电容、电感的电流分别为 I_R , I_C , I_L 它们并联接至电流源 $I_S=I_S\angle \psi$ 它们两端有同一电压 $U=U\angle \psi_u$

根据KCL

$$\begin{split} \dot{I}_S &= \dot{I}_R + \dot{I}_C + \dot{I}_L \\ &= \frac{\dot{U}}{R} + j\omega C\dot{U} + \frac{\dot{U}}{j\omega L} \\ &= (\frac{1}{R} + j\omega C + \frac{1}{j\omega L})\dot{U} \\ &\stackrel{Y}{=} (\mathbf{\hat{Q}}\mathbf{\hat{P}}\mathbf{\hat{M}}) \end{split}$$

RLC并联电路相量模型

即
$$Y = \frac{I_S}{\cdot} = \frac{1}{R} + j(\omega C - \frac{1}{\omega L})$$

$$U = G + j(B_C - B_L) = G + jB$$
电导 容纳 感纳

$$Y=\sqrt{G^2+B^2}$$
 $\angle arctg \frac{B}{G} = |Y|e^{j\varphi'}=|Y|\angle \varphi'$ 其中 $|Y|=\sqrt{G^2+B^2}=\sqrt{G^2+(B_C-B_L)^2}$ 复导纳的辐角 $\varphi'=arctg \frac{B}{G}=\psi_i-\psi_u$ 复导纳的模 $|Y|=\frac{I}{IJ}$

由此可见,复导纳Y决定了电流、电压有效值的大 小和相位间的关系 若给定图中的 I_s 和各元件的参数值,可以得出

$$\dot{U} = \frac{I_S}{Y} = \frac{I_S}{|Y|} \angle \psi_i - \varphi'$$

$$U = \frac{I_S}{\sqrt{G^2 + (B_C - B_L)^2}}$$

$$\psi_u = \psi_i - arctg \frac{B}{G}$$

$$eta \omega C > 1/\omega L$$
,则电纳B为正值 $\varphi'>0$, I_S 超前于 U $eta \omega C < 1/\omega L$,则电纳B为负值 $\varphi'<0$, I_S 滞后于 U $eta \omega C = 1/\omega L$,则电纳B=0 $\varphi'=0$, I_S 与 U 同相

RLC并联电路电压、电流相量图

§ 5-8 阻抗导纳的等效变换

已知阻抗Z=R+jX. 可以表示为电阻R和电抗X的串联

$$\therefore X = \omega L - \frac{1}{\omega C}$$

$$\therefore$$
 若 $X>0$ 看作电感 若 $X<0$ 看作电容

令导纳
$$Y = \frac{1}{Z} = \frac{1}{R + jX}$$

$$Y = \frac{(R - jX)}{(R + jX)(R - jX)}$$

$$= \frac{R}{R^2 + X^2} - j\frac{X}{R^2 + X^2}$$

$$= G + jB$$

$$\therefore$$
 $B = \omega C - \frac{1}{\omega L}$
 \therefore 若 $B < 0$ 看作电感

B

若给定导纳 Y = G + iB

(b) 并联等效电路

列
$$Z = \frac{1}{Y} = \frac{1}{G + jB} = \frac{G - jB}{(G + jB)(G - jB)}$$

$$= \frac{G}{G^2 + B^2} - j\frac{B}{G^2 + B^2}$$

$$= R + jX$$

例: 图中,已知 $I=\sqrt{3}A$, $I_1=I_2=1A$, $R_1=10\Omega$ 。求电 感线图的电阻 R_2 和感抗 X_2 。 j

解:由已知可得出I₁和I₂两个电流 相量间夹角为60°

可得
$$U_R = U \cos 60^\circ = 0.5U$$

$$U_X = U \sin 60^\circ = 0.866U$$

$$J_0 U = R_1 I_1 = 10V$$

则
$$R_2 = \frac{U_R}{I_2} = \frac{0.5U}{1} = 5\Omega$$

$$X_2 = \frac{U_X}{I_2} = \frac{0.866U}{1} = 8.66\Omega$$

例:下图是某电感线圈在不同频率下的电感值测量结果,试分析电感值随频率变化的原因?

直流电阻5Ω

例:下图是某电感线圈在不同频率下的测量结果,试 分析电感值随频率变化的原因?

$$Y = G + \frac{1}{j\omega L + \frac{1}{j\omega C}}$$

$$=G+j\omega\frac{C}{1-\omega^2LC}$$

$$L_{req} = L \frac{b(\omega^2 - a)}{(\omega^2 - a)^2 + b\omega^2} \qquad L_{req} = \frac{L}{1 - \omega^2 LC}$$

💢 ω为某值时电流l=0

$$Z = R + \frac{1}{j\omega C + \frac{1}{j\omega L}}$$

$$= R + j\omega \frac{L}{1 - \omega^2 LC}$$

$$L_{req} = \frac{L}{1 - \omega^2 LC}$$

$$\Phi$$
: $a = \frac{1}{LC}, b = \frac{1}{G^2L^2} = \frac{R^2}{L^2}$

$$Y = j\omega C + \frac{1}{R + j\omega L}$$

$$= j\omega C + \frac{R - j\omega L}{R^2 + \omega^2 L^2}$$

$$= \frac{R}{R^2 + \omega^2 L^2} + j\omega \left(C - \frac{L}{R^2 + \omega^2 L^2}\right)$$

$$L_{req} = L \frac{a(a-b-\omega^2)}{(\omega^2-a)^2+b\omega^2}$$

⋉ ω趋近无穷射L>0

$$Z = j\omega L + \frac{1}{G + j\omega C}$$

$$= j\omega L + \frac{G - j\omega C}{G^2 + \omega^2 C^2}$$

$$= \frac{G}{G^2 + \omega^2 C^2} + j\omega \left(L - \frac{C}{G^2 + \omega^2 C^2}\right)$$

$$L_{req} = L - \frac{C}{G^2 + \omega^2 C^2}$$

$$L_{req} = L \frac{a(a-b-\omega^2)}{(\omega^2-a)^2+b\omega^2}$$
 # $a = \frac{1}{LC}, b = \frac{R^2}{L^2}$

Matlab参数拟合: $L=11.06H, R=135.44k\Omega, C=95.18pF$

作业:

5-15(b)

5-16

5-17

5-19

5-21