CMSC 726 Lecture 21:Learning Graphical Models

Lise Getoor November 16, 2010

ACKNOWLEDGEMENTS: The material in this course is a synthesis of materials from many sources, including: Hal Daume III, Mark Drezde, Carlos Guestrin, Andrew Ng, Ben Taskar, Eric Xing, and others. I am very grateful for their generous sharing of insights and materials.

Learning Bayesian networks

Known Structure -- Complete Data

- Network structure is specified
 - Inducer needs to estimate parameters
- Data does not contain missing values

Unknown Structure -- Complete Data

- Network structure is not specified
 - Inducer needs to select arcs & estimate parameters
- Data does not contain missing values

Known Structure -- Incomplete Data

- Network structure is specified
- Data contains missing values
 - We consider assignments to missing values

Known Structure / Complete Data

- Given a network structure G
 - And choice of parametric family for $P(X_i/Pa_i)$
- Learn parameters for network

Goal

Construct a network that is "closest" to probability that generated the data

Learning Parameters for a Bayesian Network

Training data has the form:

$$D = \begin{bmatrix} E[1] & B[1] & A[1] & C[1] \\ \vdots & \vdots & \vdots & \vdots \\ E[M] & B[M] & A[M] & C[M] \end{bmatrix}$$

Learning Parameters for a Bayesian Network

Since we assume i.i.d. samples, likelihood function is

$$L(\Theta:D)=\prod_{m}P(E[m],B[m],A[m],C[m]:\Theta)$$

Learning Parameters for a Bayesian Network

By definition of network, we get

$$L(\Theta : D) = \prod_{m} P(E[m], B[m], A[m], C[m] : \Theta)$$

$$P(E[m] : \Theta)$$

$$= \prod_{m} P(B[m] : \Theta)$$

$$= \prod_{m} P(A[m] \mid B[m], E[m] : \Theta)$$

$$P(C[m] \mid A[m] : \Theta)$$

$$E[1]$$

Learning Parameters for a Bayesian Network

Rewriting terms, we get

$$L(\Theta : D) = \prod_{m} P(E[m], B[m], A[m], C[m] : \Theta)$$

$$= \prod_{m} P(E[m] : \Theta)$$

$$\prod_{m} P(B[m] : \Theta)$$

$$\prod_{m} P(A[m] \mid B[m], E[m] : \Theta)$$

$$\prod_{m} P(C[m] \mid A[m] : \Theta)$$

$$E[M]$$

$$E[M]$$

General Bayesian Networks

Generalizing for any Bayesian network:

$$L(\Theta : D) = \prod_{m} P(x_1[m], ..., x_n[m] : \Theta)$$

$$= \prod_{m} \prod_{i} P(x_i[m] | Pa_i[m] : \Theta_i)$$

$$= \prod_{i} \prod_{m} P(x_i[m] | Pa_i[m] : \Theta_i)$$

$$= \prod_{i} L_i(\Theta_i : D)$$
i.i.d. samples

Network factorization

The likelihood **decomposes** according to the structure of the network.

General Bayesian Networks (Cont.)

Decomposition

⇒ Independent Estimation Problems

If the parameters for each family are not related, then they can be estimated independently of each other.

MLE for Multinomials

- For example, suppose X can have the values 1,2,...,K
- We want to learn the parameters θ_{1} , θ_{2} ..., θ_{K}

Sufficient statistics:

N₁, N₂, ..., N_K – the number of times each outcome is observed

Likelihood function: $L(\theta : D) = \prod_{k=1}^{K} \theta_k^{N_k}$

$$\mathbf{MLE:} \quad \hat{\boldsymbol{\theta}}_{k} = \frac{N_{k}}{\sum_{\ell} N_{\ell}}$$

Likelihood for Multinomial Networks

When we assume that $P(X_i / Pa_i)$ is multinomial, we get decomposition:

$$\mathcal{L}_{i}(\Theta_{i}:\mathcal{D}) = \prod_{pa_{i}} \prod_{x_{i}} \theta_{x_{i}|pa_{i}}^{N(x_{i},pa_{i})}$$

For each value pa_i of the parents of X_i we get an independent multinomial problem

The MLE is
$$\hat{\theta}_{x_i|pa_i} = \frac{N(x_i, pa_i)}{N(pa_i)}$$

Reminder: Bayesian Inference

Frequentist Approach:

- Assumes there is an unknown but fixed parameter θ
- \bullet Estimates θ with some confidence
- Prediction by using the estimated parameter value

Bayesian Approach:

- Represents uncertainty about the unknown parameter
- Uses probability to quantify this uncertainty:
 - Unknown parameters as random variables
- Prediction follows from the rules of probability:
 - Expectation over the unknown parameters

Bayesian Inference (cont.)

We can represent our uncertainty about the sampling process using a Bayesian network

- The values of X are independent given θ
- The conditional probabilities, $P(x[m] \mid \theta)$, are the parameters in the model
- Prediction is now inference in this network

Bayesian Inference (cont.)

Prediction as inference in this network

where

Likelihood

Prior

$$P(\theta \mid x[1], \dots x[M]) = \frac{P(x[1], \dots x[M] \mid \theta) P(\theta)}{P(x[1], \dots x[M])}$$

Posterior

Probability of data

Dirichlet Priors

Recall that the likelihood function for a multinomial is

$$L(\Theta : D) = \prod_{k=1}^{K} \theta_k^{N_k}$$

A Dirichlet prior with hyperparameters $\alpha_1,...,\alpha_K$ is defined as $P(\Theta) \propto \prod_{k=1}^{\infty} \theta_k^{\alpha_k-1}$ for legal $\theta_1,...,\theta_K$

Then the posterior has the same form, with hyperparameters

$$\mathcal{P}(\Theta \mid D) \propto \mathcal{P}(\Theta) \mathcal{P}(D \mid \Theta) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k - 1} \prod_{k=1}^{K} \theta_k^{N_k} = \prod_{k=1}^{K} \theta_k^{\alpha_k + N_k - 1}$$

Dirichlet Priors (cont.)

- We can compute the prediction on a new event in closed form:
- If $P(\Theta)$ is Dirichlet with hyperparameters $\alpha_1,...,\alpha_K$ then

$$P(X[1] = k) = \int \theta_k P(\Theta) d\Theta = \frac{\alpha_k}{\sum_{\ell} \alpha_{\ell}}$$

Since the posterior is also Dirichlet, we get

$$P(X[M+1] = k \mid D) = \int \theta_k P(\Theta \mid D) d\Theta = \frac{\alpha_k + N_k}{\sum_{\ell} (\alpha_{\ell} + N_{\ell})}$$

Bayesian Networks and Bayesian Prediction

- Priors for each parameter group are independent
- Data instances are independent given the unknown parameters

Bayesian Prediction(cont.)

- Given these observations, we can compute the posterior for each multinomial θ_{X_i/pa_i} independently
 - The posterior is Dirichlet with parameters
 α(X_i=1/pa_i)+N (X_i=1/pa_i),..., α(X_i=k/pa_i)+N (X_i=k/pa_i)
- The predictive distribution is then represented by the parameters

$$\widetilde{\theta}_{x_i|pa_i} = \frac{\alpha(x_i, pa_i) + N(x_i, pa_i)}{\alpha(pa_i) + N(pa_i)}$$

Learning Parameters: Summary

- Estimation relies on sufficient statistics
 - For multinomial these are of the form $N(x_i,pa_i)$
 - Parameter estimation

$$\hat{\theta}_{x_i|pa_i} = \frac{N(x_i, pa_i)}{N(pa_i)} \qquad \hat{\theta}_{x_i|pa_i} = \frac{\alpha(x_i, pa_i) + N(x_i, pa_i)}{\alpha(pa_i) + N(pa_i)}$$
MLE

Bayesian (Dirichlet)

- Bayesian methods also require choice of priors
- Both MLE and Bayesian are asymptotically equivalent and consistent
- Both can be implemented in an on-line manner by accumulating sufficient statistics

Learning Structure from Complete Data

Benefits of Learning Structure

- Efficient learning -- more accurate models with less data
 - Compare: P(A) and P(B) vs. joint P(A,B)
- Discover structural properties of the domain
 - Ordering of events
 - Relevance
- ▶ Identifying independencies \Rightarrow faster inference
- Predict effect of actions
 - Involves learning causal relationship among variables

Why Struggle for Accurate Structure?

Adding an arc

- Increases the number of parameters to be fitted
- Wrong assumptions about causality and domain structure

Missing an arc

- Cannot be compensated by accurate fitting of parameters
- Also misses causality and domain structure

Approaches to Learning Structure

Constraint based

- Perform tests of conditional independence
- Search for a network that is consistent with the observed dependencies and independencies

Pros & Cons

- + Intuitive, follows closely the construction of BNs
- + Separates structure learning from the form of the independence tests
- Sensitive to errors in individual tests
- Computationally hard

Approaches to Learning Structure

Score based

- Define a score that evaluates how well the (in)dependencies in a structure match the observations
- Search for a structure that maximizes the score

Pros & Cons

- + Statistically motivated
- + Can make compromises
- + Takes the structure of conditional probabilities into account
- Computationally hard

Likelihood Score for Structures

First cut approach:

- Use likelihood function
- The likelihood score for a network structure and parameters is

$$L(G, \Theta_G : D) = \prod_{m} P(x_1[m], ..., x_n[m] : G, \Theta_G)$$
$$= \prod_{m} \prod_{i} P(x_i[m] | Pa_i^G[m] : G, \Theta_{G,i})$$

Since we know how to maximize parameters from now on we assume

$$L(G:D) = \max_{\Theta_{G}} L(G,\Theta_{G}:D)$$

Likelihood Score for Structure (cont.)

Bad news:

- Adding arcs always helps
 - Maximal score attained by fully connected networks
 - Such networks can overfit the data --parameters capture the noise in the data

Avoiding Overfitting

"Classic" issue in learning.

Approaches:

- Restricting the hypotheses space
 - Limits the overfitting capability of the learner
 - Example: restrict # of parents or # of parameters
- Minimum description length
 - Description length measures complexity
 - Prefer models that compactly describes the training data
- Bayesian methods
 - Average over all possible parameter values
 - Use prior knowledge

Posterior Score

P(D) is the same for all structures GCan be ignored when comparing structures

Optimization Problem

Input:

- Training data
- Scoring function (including priors, if needed)
- Set of possible structures
 - Including prior knowledge about structure

Output:

A network (or networks) that maximize the score

Key Property:

 Decomposability: the score of a network is a sum of terms.

Difficulty

Theorem: Finding maximal scoring network structure with at most k parents for each variables is NP-hard for k > 1

Heuristic Search

We address the problem by using heuristic search

- Define a search space:
 - nodes are possible structures
 - edges denote adjacency of structures
- Traverse this space looking for high-scoring structures

Search techniques:

- Greedy hill-climbing
- Best first search
- Simulated Annealing
- 0

Heuristic Search (cont.)

Exploiting Decomposability in

Caching: To update the score of after a local change, we only need to re-score the families that were changed in the last move

Greedy Hill-Climbing

- Simplest heuristic local search
 - Start with a given network
 - empty network
 - best tree
 - a random network
 - At each iteration
 - Evaluate all possible changes
 - Apply change that leads to best improvement in score
 - Reiterate
 - Stop when no modification improves score
- Each step requires evaluating approximately n new changes

Greedy Hill-Climbing: Possible Pitfalls

- Greedy Hill-Climbing can get struck in:
 - Local Maxima:
 - All one-edge changes reduce the score
 - Plateaus:
 - Some one-edge changes leave the score unchanged
 - Happens because equivalent networks received the same score and are neighbors in the search space
- Both occur during structure search
- Standard heuristics can escape both
 - Random restarts
 - TABU search

Search: Summary

- Discrete optimization problem
- In general, NP-Hard
 - Need to resort to heuristic search
 - In practice, search is relatively fast (~100 vars in ~10 min):
 - Decomposability
 - Sufficient statistics
- Other techniques, model averaging, etc.
- In some cases, we can reduce the search problem to an easy optimization problem
 - Example: learning trees

Incomplete Data

Incomplete Data

Data is often incomplete

Some variables of interest are not assigned value

This phenomena happens when we have

- Missing values
- Hidden variables

Missing Values

Example:

Medical records - not all patients undergo all possible tests

Complicating issue:

- The fact that a value is missing might be indicative of its value
 - The patient did not undergo X-Ray since she complained about fever and not about broken bones....

To learn from incomplete data we need the following assumption:

Missing at Random (MAR):

 The probability that the value of Xi is missing is independent of its actual value given other observed values

Hidden (Latent) Variables

- Attempt to learn a model with variables we never observe
 - In this case, MAR always holds

Why should we care about unobserved

variables?

17 parameters

59 parameters

Approach: Expectation Maximization (EM, our old friend)

Recall: general purpose method for learning from incomplete data

Intuition:

- If we had access to counts, then we can estimate parameters
- However, missing values do not allow us to perform counts
- "Complete" counts using current parameter assignment

Expectation Maximization (EM)

EM (cont.)

Reiterate

Expected Counts

 $N(X_1)$ $N(X_2)$ $N(X_3)$ N(H,)

 $N(H, X_1, X_1, X_3)$ $N(Y_1, H)$

 $N(Y_2, H)$

 $N(Y_3, H)$

Updated network (G,Θ_1)

Training Data

EM (cont.)

Formal Guarantees:

- $L(\Theta_1:D) \geq L(\Theta_0:D)$
 - Each iteration improves the likelihood
- If $\Theta_{1} = \Theta_{0}$, then Θ_{0} is a **stationary point** of $L(\Theta:D)$
 - Usually, this means a local maximum

Main cost:

- Computations of expected counts in E-Step
- Requires a computation pass for each instance in training set

Example: EM in clustering

Consider clustering example

E-Step:

- Compute $P(C[m]|X_1[m],...,X_n[m],\Theta)$
- This corresponds to "soft" assignment to clusters
- Compute expected statistics:

M-Step

• Re-estimate $P(X_i/C)$, P(C)

$$E[N(x_i,c)] = \sum_{m,X_i[m]=x_i} P(c \mid x_1[m],...,x_n[m],\Theta)$$

EM in Practice

Initial parameters:

- Random parameters setting
- "Best" guess from other source

Stopping criteria:

- Small change in likelihood of data
- Small change in parameter values

Avoiding bad local maxima:

- Multiple restarts
- Early "pruning" of unpromising ones

Parameter Learning from Incomplete Data: Summary

- Non-linear optimization problem
- Methods for learning: EM and others
 - Exploit inference for learning

Difficulties:

- Exploration of a complex likelihood/posterior
 - More missing data ⇒ many more local maxima
 - Cannot represent posterior

 must resort to approximations

Inference

- Main computational bottleneck for learning
- Learning large networks
 ⇒ exact inference is infeasible
 ⇒ resort to approximate inference

Summary

- BN Learning
 - Parameter estimation
 - Structure learning
 - Learning with missing values
- Uses all the tools we've seen so far in class!

Next Time....

- Guest Lecture: Hal Daume III
- Structured Prediction
- Reading: handout from Predicting Structured Data book