Теория меры. Интеграл Лебега

Определение

Совокупность множеств \mathcal{R} называется кольцом, если она удовлетворяет условию

$$A, B \in \mathcal{R} \to A \cup B, A \setminus B \in \mathcal{R}$$

Замечание $A \setminus A = \emptyset \in \mathcal{R}$, $A \cap B = A \setminus (A \setminus B) \in \mathcal{R}$

Определение

Кольцо называется σ -кольцом, если оно удовлетворяет условию

$$A_n \in \mathcal{R}, n = 1, 2, \dots \to \bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$$

Замечание

Поскольку $\bigcap_{n=1}^{\infty}A_n=A_1\setminus\bigcup_{n=1}^{\infty}(A_1\setminus A_n)$ то для σ -кольца справедливо $\bigcap_{n=1}^{\infty}A_n\in\mathcal{R}$

Конструкция меры на прямой

Промежутком < a, b > будем называть любое из множеств

Мерой промежутка $I = \langle a, b \rangle$ назовем m(I) = b - a

Заметим, что для $I = (a, a) \ m(I) = 0$, поэтому положим $m(\emptyset) = 0$

Продолжение меры из условия аддитивности

Если $A = \bigcup_{n=1}^{\infty} \langle a_n, b_n \rangle$ и $\langle a_n, b_n \rangle \cap \langle a_k, b_k \rangle = \emptyset$, $n \neq k$, то положим

$$m(A) = \sum_{n=1}^{\infty} (b_n - a_n)$$

Объединение конечного числа промежутков назовем элементарным множеством. Совокупность всех элементарных множеств обозначим через ${\cal E}$

Утверждение

Пусть $A \in \mathcal{E}$, тогда существуют не пресекающиеся отрезки $(a_k, b_k), k = 1, 2, \dots, n$ такие, что

$$A = \bigcup_{k=1}^{n} (a_k, b_k)$$

положим

$$m(A) = \sum_{k=1}^{n} (b_k - a_k)$$

можно проверить, что m(A) не зависит от выбора промежутков (a_k, b_k)

Определение

Возьмем произвольное множество $E\subset R$ и рассмотрим систему множеств $A_n=\bigcup_{k=1}^{m_n}(a_k^{(n)},\ b_k^{(n)})$ таких, что

$$E \subset \bigcup_{n=1}^{\infty} A_n$$

Тогда внешней мерой множества E назовем

$$m^*(E) = \inf\{\sum_{n=1}^{\infty} m(A_n) : A_n = \bigcup_{k=1}^{m_n} (a_k^{(n)}, b_k^{(n)}), E \subset \bigcup_{n=1}^{\infty} A_n\}$$

Свойства внешней меры

1)
$$m^*(E) \ge 0$$

$$(2)E_1 \subset E_2 \to m^*(E_1) \leqslant m^*(E_2)$$

3)
$$E = \bigcup_{n=1}^{\infty} E_n \rightarrow m^*(E) \leqslant$$

4)
$$E \in \mathcal{E} \rightarrow m^*(E) = m(E)$$

Доказательство

Первые два утверждения легко выводятся из определения. Докажем (3). Если $\sum_{n=1}^{\infty} m^*(E_n) = \infty$, то утверждение выполнено. Если эта сумма конечна, то из определения внешней меры следует, что для любого $\varepsilon > 0$ найдутся элементарные множества $A_{n,k}$ такие, что

$$E_n \subset \bigcup_{k=1}^{\infty} A_{n,k}, \quad \sum_{k=1}^{\infty} m(A_{n,k}) \leqslant m^*(E_n) + \frac{\varepsilon}{2^n}$$

Поскольку $E\subset \bigcup_{n=1}^{\infty}\bigcup_{k=1}^{\infty}A_{n,k},$ то вновь используя определение внешней меры, получим

$$m^*(E) \leqslant \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} m(A_{n,k}) \leqslant \sum_{n=1}^{\infty} \left(m^*(E_n) + \frac{\varepsilon}{2^n} \right)$$

$$\sum_{n=1}^{\infty} m^*(E_n) + \varepsilon$$

Поскольку число ε любое, то Утверждение (4) прием без доказательства.

Пример

Множество рациональных чисел имеет вешнюю меру ноль. Доказательство основано на том, что множество рациональных чисел счетно (то есть существует взаимно однозначное отображение множества натуральных чисел на множество рациональных чисел) $Q = \{r_n\}_{n=1}^{\infty}$

Фиксируем $\varepsilon>0$ и поместим каждое рациональное число r_n в открытый отрезок $A_n=(r_n-\frac{\varepsilon}{2^n},\ r_n+\frac{\varepsilon}{2^n})$ тогда

$$Q \subset \bigcup_{n=1}^{\infty} A_n, \quad m^*(Q) \leqslant \sum_{n=1}^{\infty} m(A_n) \leqslant \sum_{n=1}^{\infty} \frac{2\varepsilon}{2^n} = 2\varepsilon$$

Поскольку, число ε любое, то $m^*(E) = 0$.

Замечание

Фактически доказано, что любое счетное множество имеет внешнюю меру равную нулю.

Определение

Пусть E, F произвольные множества на прямой. Положим

$$d(E,F)=m^*(E\Delta F)$$
 здесь $(E\Delta F=E\smallsetminus F)\cap (F\smallsetminus E)$

Будем говорить, что множество A конечно m-измеримо, если существуют элементарные множества A_n такие, что

$$\lim_{n \to \infty} d(A, A_n) = 0$$

Множество E будем называть измеримым по Лебегу, если существуют конечно m-измеримые множества E_n такие, что $E = \bigcup_{n=1}^{\infty} E_n$.

Множество всех измеримых по Лебегу множеств обозначим через ${\mathcal M}$

Сформулируем без доказательства

Теорема

Совокупность \mathcal{M} является σ -кольцом.

Для положим

Теорема

Мера m на множестве \mathcal{M} обладает следующими свойствами:

1)
$$m^*(E) = 0 \rightarrow E \in \mathcal{M}$$

2)
$$E = \bigcup_{n=1}^{\infty} E_n$$
, $E_n \in \mathcal{M}$, $E_n \cup E_k = \emptyset$, $n \neq k \rightarrow m(E) = \sum_{n=1}^{\infty} m(E_n)$

Сформулированное в пункте (2) свойство называют счетной аддитивностью меры Лебега.

Примеры множеств измеримых по Лебегу

1) все открытые множества на прямой (т.е. вмете с точкой множество содержит некоторую окрестность точки)

2) все замкнутые множества на прямой (дополнения открытых)