Universidad de la República Facultad de Ingeniería - IMERL

Geometría y Álgebra Lineal 2 Segundo semestre 2022

PRÁCTICO 3: TEOREMA DE GERSCHGORIN.

EJERCICIO 1. Sea A una matriz <u>real</u> $n \times n$ tal que $C_i \cap C_j = \emptyset$ $(i \neq j)$, donde C_i son los círculos de Gerschgorin de A (i = 1, 2, ..., n).

Probar que todas las raíces del polinomio característico de A son reales y distintas.

EJERCICIO 2. Sea la matriz
$$A = \begin{pmatrix} 6 & 1 & 1 & -2 \\ 1 & 14 & 1 & 1 \\ 2 & 2 & -9 & -1 \\ 1 & -1 & 1 & -20 \end{pmatrix}$$
.

- 1. Probar que A es diagonalizable
- 2. Determinar el signo de los valores propios de A y deducir que es invertible.

EJERCICIO 3. 1. Investigar si la matriz
$$A = \begin{pmatrix} \frac{11}{2} & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & -7 \end{pmatrix}$$
 es diagonalizable

ERCICIO 3. 1. Investigar si la matriz $A = \begin{pmatrix} \frac{11}{2} & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & -7 \end{pmatrix}$ es diagonalizable. 2. Probar, usando el teorema de Gerschgorin, que la matriz $B = \begin{pmatrix} \frac{11}{2} & 3 & 0 \\ 1 & 0 & 4 \\ 0 & 1 & -7 \end{pmatrix}$ es diagonalizable.

Ejercicio 4. 1. Utilice el Teorema de Gerschgorin para acotar los valores propios de

$$A = \begin{pmatrix} 1 & -10^{-5} & 2 \times 10^{-5} \\ 4 \times 10^{-5} & 0, 5 & -3 \times 10^{-5} \\ -10^{-5} & 3 \times 10^{-5} & 0, 1 \end{pmatrix}.$$

2. Sea
$$S = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 con $\alpha \in \mathbb{R}$

Hallar los círculos de Gerschgorin de la matriz $S^{-1}AS$

- 3. Hallar α de modo que el radio r_1 del círculo con centro en $(S^{-1}AS)_{1,1}$ sea tan pequeño como sea posible sin que este círculo se interseque con los otros dos círculos.
- 4. Localice el valor propio λ_1 de la matriz A en un círculo tan pequeño como sea posible. (Observar que los valores propios de $A y S^{-1}AS$ son los mismos).
- 5. Utilice matrices análogas a S para obtener mejores aproximaciones de λ_2 y λ_3

EJERCICIO 5. Sea
$$A = \begin{pmatrix} 15+3i & 1 & 1 \\ 2 & 7-4i & 1 \\ 1 & 2 & -5-5i \end{pmatrix}$$
.

Justificar si las siguientes afirmaciones son verdaderas o falsas:

- 1. A es diagonalizable.
- 2. A es invertible.
- 3. A tiene al menos un valor propio real.