

Data Science Project

Project: Healthcare - Persistency of a Drug

Week 9 Deliverables

Team Name: Team Healthy Bones

Member: Jeeyeon Shon

E-mail: shon.jeeyeon@gmail.com

College/Company: Data Glacier

Batch Code: LISUM 10

Country: United States of America

Specialization: Data Science

Submission Date: August 2, 2022

Submitted to: Data Glacier

Github Link: https://github.com/shonjeeyeon/DG Week 9

Table of Contents

Problem Description	1
Data Understanding	1
Data Intake Report	2
Summary of Columns and Data Types	1
Problems and Suggested Actions	5
Link to the Repository	8

Problem Description

A model will be established and deployed to automate identifying persistency of a certain pharmaceutical product.

Data of patients who take the medication will be used for analysis, and correlation between medication persistency and other factors such as patient demographics, provider attributes, clinical factors, and disease/treatment factors will be investigated. Finally, an optimal model to predict persistency based on above features will be selected and developed.

Data Understanding

The dataset includes 3,424 records of patients on a certain medication. 69 features pertaining the demographics of the patient, attributes of the prescriber, and clinical/disease/treatment factors of the disease progression are present.

The client requested to build a model to predict a patient's drug persistency, so the column 'Persistent' will be the target variable. The prediction will use a classification process since the values of the target column are binary ('Persistent' vs. 'Non-Persistent')

Data Intake Report

Name: Healthcare – Persistency of a Drug

Report date: July 25, 2022 Internship Batch: LISUM 10

Version:<1.0>

Data intake by: Jeeyeon Shon

Data intake reviewer: Data storage location:

https://github.com/shonjeeyeon/DG_Week_8/blob/main/Healthcare_dataset.csv

(Original xslx file:

https://drive.google.com/file/d/1P_oMc6gOBlhw6dY5PxaqxV2swdHMUooK/vie

w)

Tabular data details:

Healthcare_dataset.csv

Total number of observations	3,424
Total number of files	1
Total number of features	69
Base format of the file	.csv
Size of the data	892 KB

Proposed Approach:

- Ptid can be used to identify and remove duplicate observations
- The dataset has been deidentified already
- No missing values, however there are practical missing values such as 'unknown'. These values should be imputed appropriately
- Most of the features are categorical; will need encoding to enable ML

Summary of Columns and Data Types

Bucket	Variable	index #	Dtype	Notes
Target	Persistency	1	Object	Non-Persistent: 62.35% Persistent: 37.65%
Unique Row ID	Patient ID	0		(→ Imbalanced data)
Demographics	Gender	2		
	Race	3		NaN='Other/Unknown' (2.85%) Mode='Caucasian' (91.94%)
	Ethnicity	4		NaN='Unknown' (2.66%) Mode='Non-Hispanic' (94.48%)
	Region	5		NaN='Other/Unknown' (1.75%) Mode='Midwest' (40.39%)
	Age_Bucket	6		
Prescriber Attributes	Ntm_Speciality	7		NaN='Unknown' (9.05%) Mode='General Practitioner' (44.83%)
	Ntm_Specialist_Flag	8		

	Ntm Speciality Bucket	9			
Clinical	Gluco Record Prior Ntm	10			
Factors	Gluco_Record_During_Rx	11			
	Dexa_Freq_During_Rx	12	int64	• Outlier if • The data (6.81)	ssues a is skewed
				Count	3,424
				Mean	3.02
				Std	8.14
				Min	0.00
				25%	0.00
				50%	0.00
				75%	3.00
				Max	146.00
	Dexa_During_Rx	13	Object		
	Frag_Frac_Prior_Ntm	14			
	Frag_Frac_During_Rx	15			
	Risk_Segment_Prior_Ntm	16			
	Tscore_Bucket_Prior_Ntm	17		NaN='Unknov	wn' (43.72%)
				The other tw	o categories
				have very fev	v differences
				in percentages	
				HR_VHR	28.18%

			VLR LR 28.10%
	Risk Segment During Rx	18	NaN='Unknown' (43.72%)
			The other two categories
			have very few differences
			in percentages
			<=-2.5 29.70%
			>-2.5 26.56%
	Tscore_Bucket_During_Rx	19	NaN='Unknown' (43.72%)
			Mode='No Change'
			(48.48%)
	Change_T_Score	20	NaN='Unknown' (65.01%)
			Mode='No Change'
			(30.72%)
	Change_Risk_Segment	21	
Disease/	Adherent_Flag	22	
Treatment	Idn_Indicator	23	
Factors	Injectable Experience During Rx	24	
	Comorbidities columns	25-38	
	(Column names start with		
	'Comorb_')		
	Concomitant drugs use columns	39-48	
	(Column names start with		
	'Concom_')		
	Risk factors columns	49-67	

Count_of_Risks	68	Dtype: int64	 Outlier issues The data is skewed (0.88) 	
			Count	3,424
			Mean	1.24
			Std	1.09
			Min	0.00
			25%	0.00
			50%	1.00
			75%	2.00
			Max	7.00

Problems and Suggested Actions

Problem	Column	Details	Actions Taken	Rationale
Missing	Race	NaN='Other/Unkno	Impute mode	The Modes are high in
Data		wn' (2.85%)		proportion while the
		Mode='Caucasian'		NaNs are relatively
		(91.94%)		small in proportion.
	Ethnicity	NaN='Unknown'		
		(2.66%)		
		Mode='Non-		
		Hispanic' (94.48%)		
	Region	NaN='Other/Unkno		
		wn' (1.75%)		
		Mode='Midwest'		
		(40.39%)		
	Ntm_Speciality	NaN='Unknown'	Keep	The value 'Unknown'
		(9.05%)	'Unknown' as	is relatively high in
		Mode='General	a separate	proportion (9.05%),
		Practitioner'	value	while the category has
		(44.83%)		many values with
				smaller proportions (as
				small as <1%).
				Therefore, it will be

				prudent to leave the unknown as it is.
>40% Missing Data	Tscore_Bucket_Prior_ Ntm Risk_Segment_Durin g_Rx Tscore_Bucket_Durin g_Rx Change_T_Score	NaN='Unknown' (43.72%) NaN='Unknown' (43.72%) NaN='Unknown' (43.72%) Mode='No Change' (48.48%) NaN='Unknown' (65.01%) Mode='No	Delete columns	The columns have very high proportion of 'Unknown'. Imputation may cause serious distortion of the data.
		Change' (30.72%)		
Outliers/ Skews	Dexa_Freq_During_R x Count_of_Risks	 Outlier issues The data is skewed (6.81) Outlier issues The data is skewed (0.88) 	Remove outliers, and try skewness reduction strategies as needed	Outliers were removed using quantiles and it reduced the skewness. Then, square root was used to additionally reduce skew.
		SHE ((0.00)		Skews after above steps are:

				1.28 for Dexa_Freq_During_R x, and 0.38 for Count of Risks
Basic Cleaning	All columns	Will need to remove upper cases, special characters, or spaces	Use df.replace() to clean the column names	df.replace() used to remove upper cases, special characters, and spaces
Typo in Value	Ntm_Speciality	'OBSTETRICS & OBSTETRICS & GYNECOLOGY & OBSTETRICS & GYNECOLOGY'	Use df.replace() to correct the value	Replaced with 'OBSTETRICS AND GYNECOLOGY'
Imbalance d Target Data	Persistency	Non-Persistent: 62.35% Persistent: 37.65%	Use SMOTE	SMOTE will be implemented during the process of model development
Encoding	Applies to every categorical column	Categorical values are written in alphabet, which ML cannot process	Label or one hot encoding	Categorical values will be encoded after EDA

Link to the Repository

https://github.com/shonjeeyeon/DG_Week_9