Задание 1

Прежде чем приступить к изучению свойств эмиттерного повторителя, измерьте внутреннее сопротивление $R_{\mathcal{V}}$ цифрового вольтметра постоянного напряжения $AL\Pi$ 1:1 на Вашем рабочем месте согласно тому, как это сказано на с. 9 этого пособия.

1. Задайтесь значением $R_{\rm H1}$ сопротивления нагрузки $R_{\rm H}$ из интервала 100...200 Ом, и начните собирать схему эмиттерного повторителя (рис. 1.19a), взяв сопротивление $R_{\rm 3}$ примерно равным $10 \cdot R_{\rm H1}$. Сопротивление $R_{\rm 5}$ подберите таким, чтобы измеряемое вольтметром постоянное напряжение $U_{\rm 3}$ оказалось в пределах 2...4 В при $U_{\rm 1}=10$ В.

Подключение вольтметра к эмиттеру при измерении $U_{\mathfrak{I}}$ не приводит к изменению режима транзистора по постоянному току, так как $R_{\mathcal{V}}$ на 3...3.5 порядка больше $R_{\mathfrak{I}}$, а непосредственно измерить напряжение на базе $U_{\mathfrak{I}}$ и базовый ток $I_{\mathfrak{I}}$ в схеме на рис. 1.19a не представляется возможным, если сопротивление резистора $R_{\mathfrak{I}}$ сравнимо с сопротивлением вольтметра $R_{\mathcal{V}}$.

Пусть $U_{\mathsf{D}}^{(\mathcal{V})}$ — напряжение между базой и землей при наличии вольтметра в цепи базы (рис. 1.196), а $I_{\mathsf{D}}^{(\mathcal{V})}$ — базовый ток транзистора при этом:

$$I_{\mathsf{B}}^{(\mathcal{V})} = \frac{U_{\mathsf{\Pi}} - U_{\mathsf{B}}^{(\mathcal{V})}}{R_{\mathsf{B}}} - \frac{U_{\mathsf{B}}^{(\mathcal{V})}}{R_{\mathcal{V}}}.$$

Значения всех постоянных токов и напряжений в схеме на рис. 1.19a можно найти приближенно, предположив, что изменения напряжения база—эмиттер U_{59} и коэффициента h_{219} при переключении вольтметра с базы на эмиттер

пренебрежимо малы, и решая относительно этих величин систему из двух уравнений:

$$\begin{split} U_{\rm B}^{(\mathcal{V})} &= U_{\rm B\Im} + \left(h_{\rm 21\Im} + 1\right) \cdot I_{\rm B}^{(\mathcal{V})} \cdot R_{\Im} \;, \\ U_{\rm \Pi} &= \left[\left(U_{\Im}/R_{\Im}\right) \middle/ \left(h_{\rm 21\Im} + 1\right) \right] \cdot R_{\rm B} + U_{\rm B\Im} + U_{\Im} \;. \end{split}$$

В дальнейшем сохраняйте неизменным режим транзистора по постоянному току (исходное состояние): только при выполнении этого условия имеет смысл сравнивать между собой результаты различных измерений и наблюдений.

2. В этом упражнении предстоит экспериментально определить $\kappa o \ni \phi \phi u$ -*циент передачи* и *входное сопротивление* эмиттерного повторителя, дополнив предыдущую схему конденсаторами и резисторами и подключив к входу
схемы лабораторный генератор гармонических колебаний \mathcal{E}_{N} (рис. 1.20).

Эксперименты с этой схемой предстоит выполнить при двух значениях $R_{\rm H}$: при $R_{\rm H}=R_{\rm H1}$ и при $R_{\rm H}=R_{\rm H2}$ с $R_{\rm H2}\approx 2\cdot R_{\rm H1}$.

Сопротивление резистора $R_{\rm M}$ пусть будет порядка $100 \cdot R_{\rm H1}$.

Емкости $C_{\rm NB}$ и $C_{\rm 3H}$ нужно выбрать достаточно большими, чтобы на частоте $f\approx 10$ к Γ ц переменные напряжения слева и справа от этих конденсаторов были практически равны: $U_{\rm BX}\approx U_{\rm 6}$, $U_{\rm 3}\approx U_{\rm BMX}$.

Другими словами, должны выполняться неравенства:

$$(2\pi f C_{\sf NB})^{-1} << R_{\sf N} + \hat{R}_{\sf BX} \text{ is } (2\pi f C_{\sf 3H})^{-1} << \hat{R}_{\sf BbIX} + R_{\sf H1}$$
 ,

где $\hat{R}_{\rm BX}$ и $\hat{R}_{\rm BbIX}$ – оценки для значений входного и выходного сопротивлений данного эмиттерного повторителя согласно (1.2) и (1.3) в предположении, что у используемого транзистора $h_{213}\sim 100$, а $h_{113}\approx h_{213}\cdot r_3$ с $r_3=U_T/I_3$ при $I_3=U_3/R_3$. Вероятнее всего в качестве

 $C_{\rm 3H}$ потребуется использовать электролитический конденсатор, и в этом случае необходимо соблюсти указанную полярность его включения.

Амплитуду сигнала $\mathcal{E}_{\text{и}}$, подаваемого от источника, необходимо установить возможно большей, но такой, чтобы при $R_{\text{H}}=R_{\text{H}1}$ сигнал на выходе повторителя, наблюдаемый с помощью осциллографа, оставался неискаженной на вид синусоидой.

Знания \mathcal{E}_{N} , U_{BX} и $U_{\text{BыX}}$, в принципе, достаточно, чтобы найти κ оэффициент передачи K и входное сопротивление R_{BX} эмиттерного повторителя: $K = U_{\text{BыX}}/U_{\text{б}}$, а R_{BX} находится из соотношения $R_{\text{Б}} || R_{\text{BX}} = U_{\text{BX}}/I_{\text{BX}}$, где $I_{\text{BX}} = (\mathcal{E}_{\text{N}} - U_{\text{BX}})/R_{\text{N}}$. Определенные таким образом из наблюдений значения K и R_{BX} позволяют определить фактические значения h_{213} и h_{113} данного транзистора:

$$h_{213} = (K \cdot R_{BX}) / (R_{3} || R_{H}) - 1,$$

 $h_{113} = R_{BX} - (h_{213} + 1) \cdot (R_{3} || R_{H}).$

Приступая к измерениям, необходимо убедиться в том, что чувствительность в обоих каналах двухлучевого осциллографа одинакова. Для этого можно, например, подать на оба входа осциллографа один и тот же сигнал напрямую с выхода компьютерного генератора и сравнить между собой полный размах колебаний в первом и втором каналах осциллографа, попытавшись совместить изображения.

При заметном различии изображений нужно принять отсчёты в одном из каналов за собственно результаты измерения, тогда как результаты, относящиеся к другому каналу, учитывать с соответствующим поправочным коэффициентом.

Измерьте напряжение \mathcal{E}_{N} слева от резистора R_{N} и примите к сведению, что его величина может отличаться от «Амплитуды», указанной в меню компьютерного генератора сигналов. Напряжение \mathcal{E}_{N} необходимо поддерживать одним и тем же при измерениях с $R_{\mathsf{H}}=R_{\mathsf{H}1}$ и с $R_{\mathsf{H}}=R_{\mathsf{H}2}$.

Подключите один из входов осциллографа ко входу эмиттерного повторителя, а другой из входов осциллографа – к его выходу.

Обозначим наблюдаемое при $R_{\rm H}=R_{\rm H1}$ входное напряжение $U_{\rm BX1}$, а выходное напряжение — $U_{\rm BbIX1}$; коэффициент передачи при этом пусть равен $K_{\rm 1}$, а входное сопротивление — $R_{\rm BX1}$. Аналогично положим, что при $R_{\rm H}=R_{\rm H2}$ входное и выходное напряжения равны $U_{\rm BX2}$ и $U_{\rm BbIX2}$, а коэффициент передачи и входное сопротивление — $K_{\rm 2}$ и $R_{\rm BX2}$ соответственно.

По приведенным выше формулам найдем значения h-параметров, характеризующих свойства транзистора и его режим по постоянному току, обозначив результаты вычислений как h'_{219} и h'_{119} при $R_{\rm H} = R_{\rm H1}$ и h''_{219} и h''_{119} при $R_{\rm H} = R_{\rm H2}$. В принципе, значения коэффициентов, помеченных одним и двумя штрихами, должны быть одинаковы. По их фактическому различию можно судить о величине погрешностей, допущенных при измерениях.

Сравните полученные здесь значения h_{213}' и h_{213}'' с найденным ранее коэффициентом h_{213} , а величины h_{113}' и h_{113}'' — с ожидаемым значением этого параметра, вычисленным по формуле $(h_{213}+1)r_3$ [или $(h_{213}+1)r_3$], где $r_3=U_T/I_3$, $U_T=25\,$ мВ, а I_3 — постоянная составляющая тока эмиттера в данном случае.

3. Знание $U_{\text{BЫX}1}$ и $U_{\text{BЫX}2}$ при одном и том же значении \mathcal{E}_{N} позволяет найти выходное сопротивление $R_{\text{BЫX}}$ эмиттерного повторителя по *правилу* двух нагрузок.

Правило двух нагрузок

Источник постоянного или переменного напряжения по теореме об эквивалентном генераторе представляется в виде источника ЭДС $U_{\mathrm{BЫX,XX}}$ и выходного сопротивления $R_{\mathrm{BЫX}}$.

Экспериментальное определение $R_{
m BbIX}$ заключается в измерении выходного напряжения $U_{
m BbIX}$ при двух различных нагрузках и вычислении $R_{
m BbIX}$ по результатам этих измерений; одновременно можно найти $U_{
m BbIX}$ хх , когда это необходимо.

В данном случае $R_1 = R_{H1}$, $U_1 = U_{Bых1}$, $R_2 = R_{H2}$ и $U_2 = U_{Bых2}$.

Сравните найденное таким путем выходное сопротивление Вашего эмиттерного повторителя $R_{\text{вых}}$ с его ожидаемым значением

$$(R_{\rm M})|R_{\rm B}+h_{119})/(h_{219}+1)$$
,

где в качестве h -параметров можно воспользоваться значениями h'_{113} , h'_{213} и/или h''_{13} , h''_{213} , найденными в предыдущем пункте задания.

4. В схеме, приведенной на рис. 1.20, подайте синусоидальный сигнал от лабораторного генератора непосредственно на левую обкладку конденсатора $C_{\mathsf{NБ}}$, минуя R_{N} .

Изменяя амплитуду сигнала, действующего на входе эмиттерного повторителя, определите максимальную амплитуду неискаженного сигнала на выходе при $R_{\rm H}=R_{\rm H1}$ и при $R_{\rm H}=R_{\rm H2}$ и сравните полученные значения с результатами теоретического анализа (см. 1.4).

5.~(Факультативно.) Исследуйте прохождение прямоугольных колебаний через эмиттерный повторитель с емкостной нагрузкой $C_{\rm H}$ (см. 1.6, рис. 1.15a). Для этого видоизмените схему, приведенную на рис. 1.20, оставив в ней только прежние $C_{\rm NE}$, $R_{\rm E}$, транзистор и $R_{\rm H}$ и включив параллельно с $R_{\rm H}$ конденсатор $C_{\rm H}$. Выберите подходящую емкость этого конденсатора, а также амплитуду и период колебаний на входе. Осуществите наблюдение искажений в сигнале $u_{\rm H}(t)$ при прохождении положительных и отрицательных скачков сигнала, действующего на входе.