8주차(2/3)

역전파 2

파이썬으로배우는기계학습

한동대학교 김영섭교수

역전파 2

- 학습 목표
 - 역전파 과정에서 오차함수의 미분을 학습한다.
 - 오차 역전파로 각 층의 가중치를 조정한다.
- 학습 내용
 - 은닉층과 출력층 사이 △W^[2] 계산
 - W^[2]의 오차함수 미분
 - W^[1]의 오차함수 미분
 - 역전파의 가중치 조정

역전파 2: $W^{[2]}$ 의 오차함수 미분

- 출력층의 오차 *E*^[2]
 - 레이블과 예측값의 차이
 - 은닉층의 오차 E^[1] 계산
- 가중치 조정 가능

역전파 2: W^[2]의 오차함수 미분

- 출력층의 오차 *E*^[2]
 - 레이블과 예측값의 차이
 - 은닉층의 오차 E^[1] 계산
- 가중치 조정 가능
 - 아달라인
 - W^[1],W^[2] 조정

$$W^{[2]} \coloneqq W^{[2]} - \alpha \Delta W^{[2]}$$

$$= W^{[2]} - \alpha \frac{\partial E}{\partial W^{[2]}} \qquad \longleftarrow 1$$
단계

- 경사하강법 오차함수와 같은 형식
 - 가중치 W 조정 → 오차 E 최소화

$$W^{[2]} := W^{[2]} - \alpha \Delta W^{[2]}$$
$$= W^{[2]} - \alpha \frac{\partial E}{\partial W^{[2]}}$$

- 경사하강법 오차함수와 같은 형식
 - 가중치 W 조정 → 오차 E 최소화
- 문제는?
 - 행렬 미분의 어려움
 - 해결책: $w_{jk}^{[2]}$

$$W^{[2]} := W^{[2]} - \alpha \Delta W^{[2]}$$
$$= W^{[2]} - \alpha \frac{\partial E}{\partial W^{[2]}}$$

w_{jk}:
 은닉층 노드 j 와
 출력층 노드 k 사이 가중치
 (층번호 생략하기도 함)

역전파 2: W^[2]의 오차함수 미분 – 2단계

$$W^{[2]} := W^{[2]} - \alpha \Delta W^{[2]}$$
$$= W^{[2]} - \alpha \frac{\partial E}{\partial W^{[2]}}$$

$$w_{jk}^{[2]} \coloneqq w_{jk}^{[2]} - \alpha \Delta w_{jk}^{[2]}$$

$$= w_{jk}^{[2]} - \alpha \frac{\partial E}{\partial w_{jk}^{[2]}}$$
2 단계

$$\frac{\partial E}{\partial w_{jk}^{[2]}} =$$

역전파 2: W^[2]의 오차함수 미분 – 2단계

$$\frac{\partial E}{\partial w_{jk}^{[2]}} = \left(\frac{\partial}{\partial w_{jk}} \frac{1}{2} \sum_{m=1}^{n} (y_m - \hat{y}_m)^2\right)$$

$$\frac{\partial E}{\partial w_{jk}^{[2]}} = \frac{\partial}{\partial w_{jk}} \frac{1}{2} \sum_{m=1}^{n} (y_m - \hat{y}_m)^2$$
$$= \frac{\partial}{\partial w_{jk}} \frac{1}{2} (y_k - \hat{y}_k)^2$$

$$\frac{\partial E}{\partial w_{jk}^{[2]}} = \frac{\partial}{\partial w_{jk}} \frac{1}{2} \sum_{m=1}^{n} (y_m - \hat{y}_m)^2$$

$$= \frac{\partial}{\partial w_{jk}} \frac{1}{2} (y_k - \hat{y}_k)^2$$

$$= \frac{1}{2} \cdot 2(y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (y_k - \hat{y}_k)$$

합성함수 미분법
$$f(g(x))' = f'(g(x))g'(x)$$

$$\frac{\partial E}{\partial w_{jk}^{[2]}} = \frac{\partial}{\partial w_{jk}} \frac{1}{2} \sum_{m=1}^{n} (y_m - \hat{y}_m)^2$$

$$= \frac{\partial}{\partial w_{jk}} \frac{1}{2} (y_k - \hat{y}_k)^2$$

$$= \frac{1}{2} \sqrt{2} (y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (y_k - \hat{y}_k)$$

$$= (y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (-\hat{y}_k)$$

합성함수 미분법
$$f(g(x))' = f'(g(x))g'(x)$$

$$\frac{\partial E}{\partial w_{jk}^{[2]}} = \frac{\partial}{\partial w_{jk}} \frac{1}{2} \sum_{m=1}^{n} (y_m - \hat{y}_m)^2$$

$$= \frac{\partial}{\partial w_{jk}} \frac{1}{2} (y_k - \hat{y}_k)^2$$

$$= \frac{1}{2} \cdot 2(y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (y_k - \hat{y}_k)$$

$$= (y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (-\hat{y}_k)$$

$$= -(y_k - \hat{y}_k) \frac{\partial \hat{y}_k}{\partial w_{ik}}$$

$$\frac{\partial E}{\partial w_{jk}^{[2]}} = \frac{\partial}{\partial w_{jk}} \frac{1}{2} \sum_{m=1}^{n} (y_m - \hat{y}_m)^2$$

$$= \frac{\partial}{\partial w_{jk}} \frac{1}{2} (y_k - \hat{y}_k)^2$$

$$= \frac{1}{2} \cdot 2(y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (y_k - \hat{y}_k)$$

$$= (y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (-\hat{y}_k)$$

 $= -(y_k - \hat{y}_k) \frac{\partial \hat{y}_k}{\partial w_{ik}}$

• 출력층 노드 \mathbf{k} 의 출력 \hat{y}_k 의 미분

$$\frac{\partial \hat{y}_k}{\partial w_{jk}} = \boxed{}$$

$$\frac{\partial E}{\partial w_{jk}^{[2]}} = \frac{\partial}{\partial w_{jk}} \frac{1}{2} \sum_{m=1}^{n} (y_m - \hat{y}_m)^2$$

$$= \frac{\partial}{\partial w_{jk}} \frac{1}{2} (y_k - \hat{y}_k)^2$$

$$= \frac{1}{2} \cdot 2(y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (y_k - \hat{y}_k)$$

$$= (y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (-\hat{y}_k)$$

$$= -(y_k - \hat{y}_k) \frac{\partial \hat{y}_k}{\partial w_{jk}}$$

• 출력층 노드 \mathbf{k} 의 출력 \hat{y}_k 의 미분

$$\frac{\partial \hat{y}_k}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} a_k^{[2]}$$

$$= \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

$$\frac{\partial E}{\partial w_{jk}^{[2]}} = \frac{\partial}{\partial w_{jk}} \frac{1}{2} \sum_{m=1}^{n} (y_m - \hat{y}_m)^2$$

$$= \frac{\partial}{\partial w_{jk}} \frac{1}{2} (y_k - \hat{y}_k)^2$$

$$= \frac{1}{2} \cdot 2(y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (y_k - \hat{y}_k)$$

$$= (y_k - \hat{y}_k) \frac{\partial}{\partial w_{jk}} (-\hat{y}_k)$$

$$= -(y_k - \hat{y}_k) \frac{\partial \hat{y}_k}{\partial w_{jk}}$$

• 출력층 노드 \mathbf{k} 의 출력 \hat{y}_k 의 미분

$$\frac{\partial \hat{y}_k}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} a_k^{[2]}$$

$$= \frac{\partial}{\partial w_{jk}} g(z_k^{[2]})$$

$$\vdots$$

$$z_k^{[1]} a_i^{[1]}$$

$$\vdots$$

$$e_k = y_k - \hat{y}_k$$

3단계

$$\frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot \frac{\partial}{\partial w_{jk}} g(z_k)$$

• **1**단계

$$w_{jk}^{[2]} \coloneqq w_{jk}^{[2]} - \alpha \Delta w_{jk}^{[2]}$$
$$= w_{jk}^{[2]} - \alpha \frac{\partial E}{\partial w_{jk}^{[2]}}$$

$$\frac{\partial E}{\partial w_{jk}^{[2]}} = \frac{\partial}{\partial w_{jk}} \frac{1}{2} \sum_{m=1}^{n} (y_m - \hat{y}_m)^2$$

$$\frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot \frac{\partial}{\partial w_{jk}} g(z_k)$$
$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial z_k}{\partial w_{jk}}$$

합성함수 미분법
$$u(v(x))' = u'(v(x))v'(x)$$

$$\frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot \frac{\partial}{\partial w_{jk}} g(z_k)$$
$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial z_k}{\partial w_{jk}}$$

합성함수 미분법
$$u(v(x))' = u'(v(x))v'(x)$$

$$\frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot \frac{\partial}{\partial w_{jk}} g(z_k)$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial z_k}{\partial w_{jk}}$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial}{\partial w_{jk}} \left(\sum_j w_{jk} \cdot a_j \right) \qquad \because z_k = \sum_j w_{jk}^{[2]} a_j^{[1]}$$

$$\frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot \frac{\partial}{\partial w_{jk}} g(z_k)$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial z_k}{\partial w_{jk}}$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial}{\partial w_{jk}} (\sum_j w_{jk} \cdot a_j)$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

■ 3단계 – 편미분 보충 설명

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial}{\partial w_{jk}} (\sum_j w_{jk} \cdot a_j)$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

편미분 결과로, 어떻게 a_i 가 나올 수 있죠?

편미분을 해야 하는 항을 풀어서 표기하면 다음과 같습니다.

$$\frac{\partial}{\partial w_{jk}} \sum_{j=1}^{n} w_{jk} \cdot a_{j} = \frac{\partial}{\partial w_{jk}} (w_{1k} a_{1} + w_{2k} a_{2} + \dots + w_{jk} a_{j} + \dots + w_{nk} a_{n})$$

예를 들어, 특정한 j=2가 정해졌다고 가정하고, w_{2k} 에 대해 편미분을 해봅시다. 그러면, $w_{2k}a_2$ 을 제외한 모든 항들은 상수이므로 $\mathbf{0}$ 가 되고, $w_{2k}a_2$ 항은 a_2 가 됩니다. 그러므로, 이것을 일반화 하여, w_{jk} 에 대해 편미분하면, 결국 j 번째 항 a_j 만 남습니다. 신기하고 재미있죠?

역전파 2: W^[2]의 오차함수 미분

$$\frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot \frac{\partial}{\partial w_{jk}} g(z_k)$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial z_k}{\partial w_{jk}}$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial}{\partial w_{jk}} (\sum_j w_{jk} \cdot a_j)$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

$$\frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot \frac{\partial}{\partial w_{jk}} g(z_k)$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial z_k}{\partial w_{jk}}$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \frac{\partial}{\partial w_{jk}} (\sum_j w_{jk} \cdot a_j)$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

$$= -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j \qquad if g(x) = \sigma(x)$$

$$\Delta w_{jk}^{[2]} = \frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

■ 오차: 출력층 k 노드에서 레이블과 예측값의 차이

$$\Delta w_{jk}^{[2]} = \frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

- 오차: 출력층 k 노드에서 레이블과 예측값의 차이
- 활성화 함수 미분에 z_k 를 적용한 값
 - \mathbf{Z}_k : 출력층 노드 \mathbf{k} 의 순입력

$$\Delta w_{jk}^{[2]} = \frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

- 오차: 출력층 k 노드에서 레이블과 예측값의 차이
- 활성화 함수 미분에 Z_k 를 적용한 값
 - ullet Z_k : 출력층 노드 \mathbf{k} 의 순입력
- a_j : 은닉층 노드 j의 출력

$$\Delta w_{jk}^{[2]} = \frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

$$\Delta w_{jk}^{[2]} = \frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

$$\Delta w_{jk}^{[2]} = \frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

$$\Delta W^{[2]} = \frac{\partial E}{\partial W^{[2]}} = -E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$

$$\Delta W^{[2]} = \frac{\partial E}{\partial W^{[2]}} = -E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$

$$\Delta w_{jk}^{[2]} = \frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

$$\Delta W^{[2]} = \frac{\partial E}{\partial W^{[2]}} = -E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$

$$\Delta w_{jk}^{[2]} = \frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

$$\Delta W^{[2]} = \frac{\partial E}{\partial W^{[2]}} = -E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$

$$\Delta w_{jk}^{[2]} = \frac{\partial E}{\partial w_{jk}} = -(y_k - \hat{y}_k) \cdot g'(z_k) \cdot a_j$$

$$\Delta W^{[2]} = \frac{\partial E}{\partial W^{[2]}} = -E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$

역전파 2: $W^{[1]}$ 의 오차함수 미분

역전파 2: $W^{[1]}$ 의 오차함수 미분

$$\Delta W^{[2]} = \frac{\partial E}{\partial W^{[2]}} = -E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$

$$\Delta W^{[1]} = \frac{\partial E}{\partial W^{[1]}} = -E^{[1]} \cdot g'(Z^{[1]}) \cdot A^{[0]T}$$

$$W^{[2]} := W^{[2]} - \alpha \Delta W^{[2]}$$
$$= W^{[2]} - \alpha \frac{\partial E}{\partial W^{[2]}}$$

$$W^{[2]} := W^{[2]} - \alpha \Delta W^{[2]}$$

$$= W^{[2]} - \alpha \frac{\partial E}{\partial W^{[2]}}$$

$$= W^{[2]} + E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$

$$W^{[2]} := W^{[2]} - \alpha \Delta W^{[2]}$$

$$= W^{[2]} - \alpha \frac{\partial E}{\partial W^{[2]}}$$

$$= W^{[2]} + \alpha E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$
학습률(α)을 추가함(수정)
$$W^{[1]} := W^{[1]} - \alpha \Delta W^{[1]}$$

$$= W^{[1]} - \alpha \frac{\partial E}{\partial W^{[1]}}$$

$$= W^{[1]} + \alpha E^{[1]} \cdot g'(Z^{[1]}) \cdot A^{[0]T}$$
하습률(α)을 추가하(스전)

$$W^{[2]} := W^{[2]} - \alpha \Delta W^{[2]}$$

$$= W^{[2]} - \alpha \frac{\partial E}{\partial W^{[2]}}$$

$$= W^{[2]} + \alpha E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$

$$W^{[1]} := W^{[1]} - \alpha \Delta W^{[1]}$$

$$= W^{[1]} - \alpha \frac{\partial E}{\partial W^{[1]}}$$

$$= W^{[1]} + \alpha E^{[1]} \cdot g'(Z^{[1]}) \cdot A^{[0]T}$$

$$W^{[2]} := W^{[2]} - \alpha \Delta W^{[2]}$$

$$= W^{[2]} - \alpha \frac{\partial E}{\partial W^{[2]}}$$

$$= W^{[2]} + E^{[2]} \cdot g'(Z^{[2]}) \cdot A^{[1]T}$$

$$W^{[1]} := W^{[1]} - \alpha \Delta W^{[1]}$$

$$= W^{[1]} - \alpha \frac{\partial E}{\partial W^{[1]}}$$

$$= W^{[1]} + E^{[1]} \cdot g'(Z^{[1]}) \cdot A^{[0]T}$$

역전파 2

- 학습 정리
 - 역전파 과정에서 오차함수 미분하기
 - 미분한 오차함수를 기반으로 신경망의 가중치 조정하기

■ 9-2 XOR 신경망 모델링

9주차(1/3)

역전파 2

파이썬으로배우는기계학습

한동대학교 김영섭교수