Dans le plan complexe on donne : M le point image de $z = \sqrt{2(1+1)} \cdot P$ point image de $z_1 = 1/z$; P' le point symétrique de P par rapport à Oy. Soit

z2 le nombre complexe dont le point image est P' et soit Q le point image de $z^3 = 4/3(z_1 + z_2)$. Les questions 119 à 121 se rapportent à cet énoncé.

119. Le module et l'argument de z sont
$$(r, \theta)$$
 et valent respectivement :

1. $\left(\frac{1}{2}; \frac{7\pi}{4}\right)$ 2. $\left(2; \frac{\pi}{4}\right)$ 3. $\left(\frac{1}{2}; \frac{5\pi}{4}\right)$ 4. $\left(\frac{2\sqrt{2}}{3}; \frac{3\pi}{2}\right)$ 5. $\left(3\sqrt{2}; \frac{\pi}{2}\right)$

120. Le rapport $\frac{3\overline{MQ}}{2\overline{QP}}$ vaut : www.ecoles-rdc.net

1/4

www.ecoles-rdc.net

5. 2/3

21. L'équation de la droite passant par P et M est :
1.
$$3y - 5x - 2\sqrt{2} = 0$$
 2. $y - x = 0$
3. $3y + 5x + 2\sqrt{2} = 0$ 4. $-3y + 5x - 2\sqrt{2} = 0$
5. $3y - 5x + 2\sqrt{2} = 0$

122. La somme des racines de l'équation complexe
$$(-3 + i)x^2 + (8 - 10i)x + 7 - 8i = 0$$
 vaut : 1. 3-3i 2. 1/2 + 32i 3. -8 + 2i 4.5 - 7/5 i 5. 7/5 i (M. 2001)

23. Soit $f: \mathbb{C} \longrightarrow \mathbb{C}: \mathbb{Z} \longmapsto i\mathbb{Z}$. La nature de cette transformation sous forme complexe est:

I. 1/10

- 1. une symétrie centrale de centre 0 2. une translation
- 3. une rotation de centre 0, d'angle $\pi/2$ 4. une homothétie 5. une rotation de centre 0 ; d'angle $\pi/4$

(B.-2002)124. Dans C on donne les nombres complexes $z_1 = 2 \cdot e^{i^{\frac{2}{3}}}$; $z_2 = e^{i^{\frac{2}{3}}}$ et $z_3 = e^{i\pi} \cdot \frac{z_1^2 \cdot z_3^3}{-5} =$

1. 4
$$e^{i^{\frac{\pi}{6}}}$$
 2. 4 $e^{i^{\frac{\pi}{6}}}$ 3. 4 $e^{i^{\frac{2\pi}{6}}}$ 4. 4 $e^{i^{\frac{\pi}{6}}}$ 5. 4 $e^{i^{\frac{11}{6}}}$ (M.-2002)