Homework 5

Sean Eva

March 2021

1. It is trivial to see that there are two eigenvalues for the matrix A, 3 and 2. In order for this matrix to be diagonalizable, the geometric multiplicity of $\lambda = 2$ would need to be 1 and the geometric multiplicity of $\lambda = 3$ would need to be 2. That means that the eigenspace of $\lambda = 2$ would be of dimension 1 and the eigenspace of $\lambda = 3$ would be of dimension 2. In order to solve for the eigenvectors for each eigenvalue, we need to solve

 $\lambda = 2: \quad (A - 2I) = \begin{bmatrix} 1 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{bmatrix}. \text{ When solving for } (A - 2I) = 0 \text{ we}$ $\text{have, } \begin{bmatrix} 1 & a & b & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{ So for eigenvector } v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}, \text{ the equation gives that}$ $v_3 = 0, v_1 = -a * v_2 - b * v_3 = -av_2 \text{ and } v_2 \text{ as a free variable. So the}$ $\text{eigenspace would be } v_2 \begin{bmatrix} -a \\ 1 \\ 0 \end{bmatrix}$

 $\lambda = 3: \ (A - 3I) = \begin{bmatrix} 0 & a & b \\ 0 & -1 & c \\ 0 & 0 & 0 \end{bmatrix}.$ Therefore, when solving (A - 3I) = 0 we have, $\begin{bmatrix} 0 & a & b & 0 \\ 0 & -1 & c & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$ for eigenvector $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix},$ we get $av_2 + bv_3 = 0$.

 $0, v_2 = cv_3$, and v_1 can be a free variable. Since this eigenspace must have dimension 2 we will require that c = 0 which allows $v_2 = 0$ and v_3 becomes

a free variable. Then the eigenspace will become $v_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + v_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Therefore, c = 0 and a, b can be any arbitrary real number

2. Let A be an $n \times n$ matrix where it has $\lambda_1, \lambda_2, ..., \lambda_n$ distinct eigenvalues where $v_1, v_2, ..., v_n$ are the corresponding eigenvectors. Since there are n distinct eigenvalues, and n corresponding eigenvectors, the geometric multiplicity of each of the n eigenvalues is 1. Since each eigenvalue has geometric multiplicity of 1, then the eigenspace of each of the eigenvalues

1

is of dimension 1. Therefore, if any vector space generated by one non-zero vector $v_1(1 \le i \le n)$, all vectors of w_i are scalar multiple of v_i . This means that $w_i = \{u_i : u = kv_i\}k \in \text{field}$. Then any eigenvector v of A will be an element of any 1-dim eigenspace w_i generated by v_i corresponding to eigenvalue λ_i . Then $v = k * v_i$ for some $v_i \in \{v_1, v_2, ..., v_n\}$ and $k \in \text{Field}$.

3. So given that these vectors would be existing in \mathbb{R}^n , since the set of vectors $\{e_1, e_2, ..., e_n\}$ are the standard basis for \mathbb{R}^n , the Gram-Schmidt process would first convert the first vectors $\{u_1, u_2, ..., u_k\}$ to an orthonormal collection of vectors, then once it reaches the set $\{e_1, e_2, ..., e_n\}$ it would simplify some of those vectors to become orthonormal, but since there are, in total, more than n vectors (k+n>n) for nonzero, positive k, some of the vectors would have to result as 0 which would be skipped. Therefore, the Gram-Schmidt process would result in a set of n orthonormal vectors which would also be a basis for \mathbb{R}^n .

4.		-4	-8	-14	-16
	GS	$1*10^{-7}*0.3815$	0.5760	0.5000	1.0000
	GS twice	$1*10^{-11}*0.1140$		$1*10^{-15}*0.2220$	1.0000
	QR	$1*10^{-15}*0.6661$	$1*10^{-15}*0.2282$	$1*10^{-15}*0.2220$	$1*10^{-15}*0.2220$