航空公司客户价值分析

郭锦红

目录

→,	目的	与要求	1
	1.1.	目的:	1
	1.2.	要求:	1
_,	数据	说明	1
	2.1.	数据量	1
	2.2.	示例数据	1
三、	从数	据源中读取数据	2
	3.1.	启动 spark	2
	3.2.	读取数据	2
四、	数据	探索与预处理	3
	4.1.	数据探索性分析	3
	4.2.	数据预处理	5
	4.3.	属性规约	5
五、	LRF	MC 模型	6
	5.1.	LRFMC 模型指标含义	6
	5.2.	变换为 LRFMC 数据	7
	5	.2.1. 数据的再次读取	7
	5	.2.2. 计算 LRFMC 数据	8
	5.3.	数据探索性分析及数据标准化	8
	5.4.	K-Means 算法	9
	5	.4.1. 尝试分 4 簇	9
	5	.4.2. 数据可视化	. 10
	5	.4.3. 客户价值分析	. 10

一、目的与要求

1.1. 目的:

- 1、借助航空公司客户数据,对客户进行分类。
- 2、对不同的客户类别进行特征分析, 比较不同类客户的价值。
- 3、对不同价值的客户类别提供个性化服务,制定相应的营销策略。

1.2. 要求:

- 1、从航空公司的数据源中进行数据抽取。
- 2、进行数据探索分析和预处理,包括数据缺失值与异常值的探索分析,数据的属性规约、清洗和变换。
- 3、使用预处理之后的建模数据,基于旅客价值 LRFMC 模型进行客户分群,对各个客户群进行特征分析,识别出有价值的客户。
 - 4、针对模型结果得到不同价值的客户,采用不同的营销手段,提供定制化的服务。

二、数据说明

2.1. 数据量

62988 条数据, 44 列属性

2.2. 示例数据

	Α		В		С	D		E	F		G		Н	1	J			K
1	MEMBER_N	O FFP_	DATE	FIRST_	FLIGHT_DATE	GENDE	R FFP_	TIER WO	RK_CITY	WORK_	PROVINCE	WOR	K_COUNTRY	AGE	LOAD_T	ME	FLIGHT	_COUNT
2	549	993 20	006/11/2	2	2008/12/24	4 男		6.		北京		CN		31	2014/	3/31		210
3	280	065 20	007/2/19		2007/8/3	3 男		6		北京		CN		42	2014/	3/31		140
4	551	106 2	2007/2/1		2007/8/30	9 男		6.		北京		CN		40	2014/	3/31		135
5	211	189 20	008/8/22		2008/8/23	3 男		5 Los	Angele	CA		US		64	2014/	3/31		23
اد					0				_				_					
	L	M	N		0	Р	Q		R		S		I		U			V
	-	P_SUM_YR_						SUM WEI		_			AVG_FLIGHT_0					_TO_FIRST
2	505308		-	4460		234188		0717	5584		2014/			26.25		3163.5		2
3	362480		_	1288		167434		3678		777.2	2014/			17.5		45310		2
4	351159			39711		164982		3712		966.5	2014/		1	16.875		94.875		10
5	337314		0 3	34890	116350	125500	28	1336	3069	88.00	2013/1	2/26		2.875	42	164.25		21
	W	X		Υ	Z			AA	Д	ιB	AC		AD		AE	AF		AG
1	.AST_TO_END	AVG_INTER\	/AL MAX_I	NTERVAL	ADD_POINTS_SI	JM_YR_1	ADD_POIN	NTS_SUM_YR_	2 EXCHANG	E_COUNT	avg_discount	P1	Y_Flight_Count	L1Y_Flig	ht_Count	P1Y_BP_	SUM L1	Y_BP_SUM
2	1	3.48325	3589	18		3352		3664	10	34	0.961639	043	10	3	107	24	6197	259111
3	7	5.19424		17		0		1200		29	2.20202		6		72		7358	185122
4	11	5.29850		18		3491		1200		20			6		70		9072	182087
5	97	27.8636	3636	73		0			0	11	1.090869	565	1	3	10	18	6104	151210
	AH	Al	AJ		AK	A	AL .	AM		AN		AO		AP		AO		AR
1	EP_SUM ADD	_Point_SUM	Eli_Add_Poir	nt_Sum l	.1Y_ELi_Add_Poi	nts Point	Sum L1	Y_Points_Sun	n Ration_L1	Y_Flight_C	ount Ration_	P1Y_Flig	ht_Count Rat	ion_P1Y_E	BPS Ration	_L1Y_BP	S Point	NotFlight
2	74460	39992	. 1	14452	111	100 61	9760	37021	1	0.5095	2381	0.4	9047619 0	487220	691 0.5	127773	33	50
3	41288	12000)	53288	53	288 41	.5768	23841	0	0.51428	5714	0.48	5714286 0	.489289	094 0.51	07081	47	33
4	39711	15491		55202	51	711 40	6361	23379	8	0.51851	3519	0.48	1481481 0	.481467	137 0.51	85300	15	26
5	34890	C)	34890	34	890 37	2204	18610	0	0.43478	2609	0.56	5217391 0	551721	684 0.44	82753	51	12

三、从数据源中读取数据

3.1. 启动 spark

start-dfs.sh
start-yarn.sh

```
# start-spark.sh
# spark-shell
3.2. 读取数据
    代码:
import org.apache.spark.sql.SparkSession
val spark=SparkSession.builder().getOrCreate()
import spark.implicits.
// 事先要把 csv 专成 csv 的 utf8 形式
val df=spark.read.format("csv").option("header","true").load("file:///simple/air data base2.csv")
df.show()
    运行结果如下图:
scala> import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.SparkSession
scala> val spark=SparkSession.builder().getOrCreate()
spark: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@4
afe8464
scala> import spark.implicits._
import spark.implicits.
scala> val df=spark.read.format("csv").option("header","true").load("file:///s
imple/air_data_base2.csv")
```


四、数据探索与预处理

4.1. 数据探索性分析

运行代码以及结果如下:

scala> val df_desc = df.describe("MEMBER_NO", "FFP_DATE", "FIRST_FLIGHT_DATE", "F
FP_TIER", "AGE", "LOAD_TIME", "FLIGHT_COUNT", "BP_SUM", "EP_SUM_YR_1", "EP_SUM_YR_2"
, "SUM_YR_1", "SUM_YR_2", "SEG_KM_SUM", "WEIGHTED_SEG_KM", "LAST_FLIGHT_DATE", "AVG_
FLIGHT_COUNT", "AVG_BP_SUM", "BEGIN_TO_FIRST", "LAST_TO_END", "AVG_INTERVAL", "MAX_
INTERVAL", "ADD_POINTS_SUM_YR_1", "ADD_POINTS_SUM_YR_2", "EXCHANGE_COUNT", "avg_di
scount", "P1Y_Flight_Count", "L1Y_Flight_Count", "P1Y_BP_SUM", "L1Y_BP_SUM", "EP_SU
M", "ADD_Point_SUM", "Eli_Add_Point_Sum", "L1Y_ELi_Add_Points", "Points_Sum", "L1Y_
Points_Sum", "Ration_L1Y_Flight_Count", "Ration_P1Y_Flight_Count", "Ration_P1Y_BP
S", "Ration_L1Y_BPS", "Point_NotFlight")

df_desc: org.apache.spark.sql.DataFrame = [summary: string, MEMBER_NO: string
... 39 more fields]

scala> df_desc.write.format("csv").option("header","true").save("file:///simpl
e/air data desc.csv")

结果展示如下:

summary	Null	mean	stddev	min	max
MEMBER_NO	0	31494.5	18183.21	1	9999
FFP_DATE	0			38292	41342
FIRST_FLIGHT_DATE	0			2192	42154
FFP_TIER	0	4.102162	0.373856	4	6
WORK_CITY	2268				
WORK_PROVINCE	3244				
WORK_COUNTRY	25				
AGE	420	42.47635	9.885915	110	92
LOAD_TIME	0			41729	41729
FLIGHT_COUNT	0	11.83941	14.04947	10	99
BP_SUM	0	10925.08	16339.49	0	9999
EP_SUM_YR_1	0	0	0	0	0
EP_SUM_YR_2	0	265.6896	1645.703	0	998
SUM_YR_1	591	6040.723	9315.788	0	9998
SUM_YR_2	138	5604.026	8703.364	0	9999
SEG_KM_SUM	0	17123.88	20960.84	1000	9999
WEIGHTED_SEG_KM	0	12777.15	17578.59	0	9999.98
LAST_FLIGHT_DATE	0			41183	41707
AVG_FLIGHT_COUNT	0	1.542154	1.786996	0.25	9.875
AVG_BP_SUM	0	1421.44	2083.121	0	999.875
BEGIN_TO_FIRST	0	120.1455	159.5729	0	99
LAST_TO_END	0	176.1201	183.8222	1	99
AVG_INTERVAL	0	67.74979	77.51787	0	99.85714
MAX_INTERVAL	0	166.0339	123.3972	0	99
ADD_POINTS_SUM_YR_1	0	540.317	3956.083	0	9990
ADD_POINTS_SUM_YR_2	0	814.6893	5121.797	0	9991
EXCHANGE_COUNT	0	0.319775	1.136004	0	9
avg_discount	0	0.721558	0.185427	0	1.5
P1Y_Flight_Count	0	5.766257	7.210922	0	90
L1Y_Flight_Count	0	6.073157	8.175127	0	99
P1Y_BP_SUM	0	5366.721	8537.773	0	9998
L1Y_BP_SUM	0	5558.361	9351.957	0	9998
EP_SUM	0	265.6896	1645.703	0	998
ADD_Point_SUM	0	1355.006	7868.477	0	999
Eli_Add_Point_Sum	0	1620.696	8294.399	0	9995
L1Y_ELi_Add_Points	0	1080.379	5639.857	0	999
Points_Sum	0	12545.78	20507.82	0	9999
L1Y_Points_Sum	0	6638.74	12601.82	0	9998
Ration_L1Y_Flight_Count	0	0.486419	0.319105	0	1
Ration_P1Y_Flight_Count	0	0.513581	0.319105	0	1
Ration_P1Y_BPS	0	0.522293	0.339632	0	0.999989
Ration_L1Y_BPS	0	0.468422	0.338956	0	0.999993
Point_NotFlight	0	2.728155	7.364164	0	96

4.2. 数据预处理

根据上面的数据统计, 丢弃所有不符合的数据:

- 1、票价为空的
- 2、票价为 0. 但是折扣不是 0. 而且飞行里程大于 0.

这样的数据是错误数据,可能是客户不存在乘机记录造成,直接删除。

代码如下:

val df2 = spark.sql("SELECT * FROM air WHERE sum_yr_1 is NOT NULL AND sum_yr_2 is NOT NULL AND sum_yr_1 != 0 AND sum_yr_2 != 0 AND avg_discount != 0 AND seg_km_sum > 0")
// 将处理后的数据保存起来

df2.write.format("csv").option("header","true").save("file:///simple/air_data_handle.csv") 运行结果如下:

scala> val df2 = spark.sql("SELECT * FROM air WHERE sum_yr_1 is NOT NULL AND sum_y
r_2 is NOT NULL AND sum_yr_1 != 0 AND avg_discount != 0 AND seg_km_sum > 0")
df2: org.apache.spark.sql.DataFrame = [MEMBER_NO: string, FFP_DATE: string ... 42
more fields]

处理后的数据有 61480 条. 占原数据的 97.60%. 因此不会对分析结果产生较大的影响

4.3. 属性规约

传统的识别客户价值应用最广泛的模型主要通过3个指标(最近消费时间间隔(Recency)、消费频率(Frequency)和消费金额(Monetary))来进行客户细分,识别出价值高的客户,简称RFC模型。

在 RFC 模型中,消费金额表示在一段时间内,客户购买产品的总金额。但是不适用于航空公司的数据处理。因此我们用客户在一段时间内的累计飞行里程 M 和客户在一定时间内乘坐舱位的折扣系数 C 代表消费金额。再在模型中增加客户关系长度 L,所以我们用 LRFMC 模型。

去掉不相管的属性,只留下与 LRFMC 模型相关的属性。

- MEMBER NO 会员卡号
- FFP_DATE 入会时间
- LOAD_TIME 观测窗口结束时间
- FLIGHT_COUNT 飞行频率
- avg discount 平均折扣
- SEG_KM_SUM 总飞行千米数
- LAST_TO_END 最后一次乘机时间至观察窗口末端时长

代码如下:

// 属性规约,选取所需字段

val df3 =

df2.select("MEMBER_NO","FFP_DATE","LOAD_TIME","FLIGHT_COUNT","avg_discount","SEG_K

```
M SUM","LAST TO END")
// 查看规约后的数据
df3.show()
// 保存规约后的数据
df3.write.format("csv").option("header", "true").save("file:///simple/air data guiyue.csv")
   运行结果如下:
|scala> val df3 = df2.select("MEMBER NO", "FFP DATE", "LOAD TIME", "FLIGHT COUNT",
"avg discount", "SEG KM SUM", "LAST TO END")
df3: org.apache.spark.sql.DataFrame = [MEMBER NO: string, FFP DATE: string ...
 5 more fields]
scala> df3.show()
20/01/02 09:30:02 WARN util.Utils: Truncated the string representation of a pl
an since it was too large. This behavior can be adjusted by setting 'spark.deb
ug.maxToStringFields' in SparkEnv.conf.
|MEMBER NO| FFP DATE|LOAD TIME|FLIGHT COUNT|avg discount|SEG KM SUM|LAST TO E
54993 | 2006/11/2 | 2014/3/31 | 210 | 0.961639043 |
                                                      580717|
 1|
    28065 | 2007/2/19 | 2014/3/31 | 140 | 1.25231444 | 293678 |
|
71
only showing top 20 rows
scala> df3.write.format("csv").option("header","true").save("file:///simple/ai
r data quiyue.csv")
ccalas ■
```

五、LRFMC 模型

这里选择用 python 对已处理的数据进行建模

5.1. LRFMC 模型指标含义

- (1) L: Long, 会员入会时间距观测窗口结束的时间(月份), 入会时间。
- (2) R: Recency 客户最近一次乘坐公司飞机距离观测窗口结束的时间(月份)。
- (3) F: Frequency 客户在观测窗口内乘坐公司飞机的次数。
- (4) M: Milepost,客户在观测窗口内累计的飞行里程碑。
- (5) C: Count,客户在观测窗口内乘坐仓位所对应的折扣系数的平均值。

5.2. 变换为 LRFMC 数据

5.2.1.数据的再次读取

	MEMBER_NO	FFP_DATE	LOAD_TIME	FLIGHT_COUNT	avg_discount	SEG_KM_SUM	LAST_TO_END
61475	11163	2005/5/8	2014/3/31	2	0.710	368	89
61476	30765	2008/11/16	2014/3/31	2	0.670	368	121
61477	10380	2010/7/8	2014/3/31	2	0.225	1062	39
61478	16372	2012/12/20	2014/3/31	2	0.250	904	464
61479	22761	2011/4/14	2014/3/31	2	0.280	760	282

5.2.2.计算 LRFMC 数据

```
# 转化为时间格式
data['FFP_DATE'] = pd. to_datetime(data['FFP_DATE'])
data['LOAD_TIME'] = pd. to_datetime(data['LOAD_TIME'])
print(data.dtypes)
data.head()
```

```
# 创建一个新的数据框
data_LRFMC = pd. DataFrame()
# data_LRFMC['MEMBER_NO'] = data['MEMBER_NO']
data_LRFMC['L'] = [x. days for x in (data['LOAD_TIME']-data['FFP_DATE'])/30]
data_LRFMC['R'] = data['LAST_TO_END']
data_LRFMC['F'] = data['FLIGHT_COUNT']
data_LRFMC['M'] = data['SEG_KM_SUM']
data_LRFMC['C'] = data['avg_discount']
data_LRFMC.head()
# data_LRFMC.shape
```

	L	R	F	М	С
0	90	1	210	580717	0.961639
1	86	7	140	293678	1.252314
2	87	11	135	283712	1.254676
3	68	97	23	281336	1.090870
4	60	5	152	309928	0.970658

5.3. 数据探索性分析及数据标准化

最大值和最小值间隔较大,需要对数据进行标准化。

data_LRFMC.describe().T

	count	mean	std	min	25%	50%	75%	max
L	61480.0	49.129652	28.260054	12.000000	24.000000	42.000000	72.000000	114.0
R	61480.0	173.230368	182.051208	1.000000	29.000000	105.000000	262.000000	731.0
F	61480.0	12.041851	14.076794	2.000000	3.000000	7.000000	15.000000	213.0
М	61480.0	17428.848650	20988.237322	368.000000	5023.000000	10309.000000	21649.250000	580717.0
С	61480.0	0.723944	0.183587	0.112043	0.615228	0.713096	0.809702	1.5

```
# 最大最小标准化数据
from sklearn.preprocessing import MinMaxScaler
min_max_scaler = MinMaxScaler() # 实例化一个最小最大化方法
data_mms = min_max_scaler.fit_transform(data_LRFMC) # 对数据进行标准化
data_mms
```

```
array([[7.64705882e-01, 0.00000000e+00, 9.85781991e-01, 1.00000000e+00, 6.12119775e-01], [7.25490196e-01, 8.21917808e-03, 6.54028436e-01, 5.05402783e-01, 8.21546623e-01], [7.3529418e-01, 1.36986301e-02, 6.30331754e-01, 4.88230358e-01,
```

5.4. K-Means 算法

5.4.1.尝试分4簇

```
    L
    R
    F
    M
    C

    客户群1
    0.16
    0.63
    0.01
    0.01
    0.43

    客户群2
    0.18
    0.12
    0.05
    0.03
    0.43

    客户群3
    0.64
    0.59
    0.01
    0.01
    0.04

    客户群4
    0.69
    0.10
    0.07
    0.04
    0.46
```

```
data_LRFMC['MEMBER_NO'] = data['MEMBER_NO']
data_LRFMC['labels'] = cluster.labels_
data_LRFMC[['MEMBER_NO','L','R','F','M','C','labels']].tail()
```

	MEMBER_NO	L	R	F	M	С	labels
61475	11163	108	89	2	368	0.710	3
61476	30765	65	121	2	368	0.670	3
61477	10380	45	39	2	1062	0.225	1
61478	16372	15	464	2	904	0.250	0
61479	22761	36	282	2	760	0.280	0

5.4.2.数据可视化

```
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei'
clf.plot.bar(figsize=(10,6))
plt.xticks(rotation=0)|
```

(array([0, 1, 2, 3]), <a list of 4 Text xticklabel objects>)

5.4.3.客户价值分析

- **客户群 1: 一般客户**。原因: L偏低,但 R偏高,入会时间短。
- **客户群 2: 重要挽留客户**。原因: L 虽低,但 FM 不低,入会时间长,乘坐飞机次数却不少。
- **客户群 3: 低价值客户**。原因: L 高但 F、M 低,入会时间长,却很少乘坐飞机,总飞机里程数也少。
- **客户群 4: 重要保持客户**。原因: L、F、M 高,入会时间长,乘坐飞机次数多,总飞机里程数 也多。