Question 1: What is the difference between descriptive statistics and inferential statistics? Explain with examples.

Ans- **Descriptive statistics** and **inferential statistics** are two fundamental branches of statistics, each serving a different purpose in analyzing data. Here's a breakdown of the differences along with examples:

Descriptive Statistics

Definition:

Descriptive statistics involve methods for organizing, summarizing, and presenting data in a meaningful way. It does **not** make predictions or generalizations beyond the data at hand.

Purpose:

To describe the **main features** of a data set.

Tools used:

- Measures of central tendency (mean, median, mode)
- Measures of dispersion (range, variance, standard deviation)
- Charts and graphs (bar charts, histograms, pie charts)

Example:

Suppose a teacher records the exam scores of 30 students in a class.

- Mean score = 72%
- Median score = 75%
- Standard deviation = 10%
- Histogram showing the distribution of scores

These statistics **describe** the performance of that particular group of 30 students.

Inferential Statistics

Definition:

Inferential statistics involve methods that use data from a **sample** to make **predictions or generalizations** about a larger **population**.

Purpose:

To draw **conclusions** and make **inferences** about a population based on sample data.

Tools used:

- Hypothesis testing
- Confidence intervals
- Regression analysis
- ANOVA (Analysis of Variance)

Example:

Suppose a researcher takes a random sample of 200 voters from a city to estimate the proportion of people who support a new policy.

- From the sample, 60% support the policy.
- The researcher uses inferential statistics to estimate that **between 56% and 64%** of **all voters** in the city support the policy (with 95% confidence).

Here, conclusions are made about the entire population based on the sample.

Feature	Descriptive Statistics	Inferential Statistics
Purpose	Describe data	Make predictions or generalizations
Based on	Entire population or sample	Sample only
Type of analysis	Summary and visualization	Probability-based conclusions
Examples	Mean, median, graphs	Hypothesis tests, confidence intervals

Question 2: What is sampling in statistics? Explain the differences between random and stratified sampling.

Ans- **Sampling** in statistics is the process of selecting a **subset of individuals or observations** from a larger **population** to estimate characteristics of the whole population.

Since it is often impractical or too expensive to study an entire population, **sampling** allows researchers to draw conclusions using data from just a portion of that population.

Random Sampling (Simple Random Sampling)

Definition:

Every individual or item in the population has an **equal chance** of being selected.

How it works:

- Assign a number to every member of the population.
- Use a random method (like a lottery or computer generator) to select the sample.

Example:

If you have a population of 1000 students, you randomly pick 100 students using a random number generator, giving each student an equal chance of being chosen.

Advantages:

- Minimizes bias
- Easy to understand and implement (for small populations)

Disadvantages:

• May not represent subgroups well, especially in diverse populations

Stratified Sampling

Definition:

The population is divided into **strata** (subgroups) based on shared characteristics (e.g., age, gender, income), and **samples are randomly selected from each stratum**.

How it works:

- 1. Divide the population into strata (e.g., males and females).
- 2. Randomly sample a proportionate number from each stratum.

Example:

In a school with 60% girls and 40% boys, to get a sample of 100 students:

- Divide the population into two strata: boys and girls.
- Randomly select 60 girls and 40 boys to maintain proportionality.

Advantages:

- Ensures representation of all subgroups
- More accurate and reliable if subgroups differ significantly

Disadvantages:

- More complex to design
- Requires knowledge of population structure

Question 3: Define mean, median, and mode. Explain why these measures of central tendency are important.

Ans- **Mean, median, and mode** are three key measures of **central tendency** in statistics. They help summarize and describe the center point of a dataset.

1. Mean (Average)

Definition:

The mean is the **sum of all values** in a dataset divided by the **number of values**.

Formula:

Mean= sum of all values/ no of values

Example:

Scores: 70, 75, 80

mean= 70+75+80/3 = 225/3=75

Use:

Best used when data is **symmetrical** and has **no extreme outliers**.

2. Median

Definition:

The median is the middle value in an ordered dataset.

If the number of observations is even, the median is the average of the two middle numbers.

Example:

Scores: 60, 70, 75, 80, 90 → Median = **75**

Scores: 60, 70, 75, 80 \rightarrow Median =70+75/2=72.5

Use:

Useful when data is **skewed** or contains **outliers** (e.g., income, housing prices).

3. Mode

Definition:

The mode is the value that occurs most frequently in a dataset.

A dataset can have:

- No mode (if all values occur equally)
- One mode (unimodal)
- More than one mode (bimodal or multimodal)

Example:

Scores: 70, 75, 75, 80 \rightarrow Mode = **75**

Use:

Best for **categorical data** or understanding the most **common** value.

Mean Gives an overall average. Useful for further calculations like variance and standard deviation.

Median Gives the midpoint. It's **not affected by outliers**, so it gives a better "typical" value in skewed data.

Mode Identifies the most frequent value. Useful for **qualitative data** or finding common trends.

Question 4: Explain skewness and kurtosis. What does a positive skew imply about the data?

Ans- **Definition**:

Skewness measures the **asymmetry** of a data distribution.

- If data is **symmetrical**, skewness = 0 (normal distribution).
- If data is **skewed**, it means one tail is longer or fatter than the other.

Types of Skewness:

Туре	Description	Tail Direction	Mean vs Median
Positive Skew (Right-skewed)	Tail is stretched to the right (higher values)	Right	Mean > Median
Negative Skew (Left-skewed)	Tail is stretched to the left (lower values)	Left	Mean < Median

What does a positive skew imply?

- Most values are concentrated on the lower end, but a few high outliers pull the mean to the right.
- The mean is greater than the median.

Example: Income data — most people earn average salaries, but a few very high earners increase the mean.

2. Kurtosis

> Definition:

Kurtosis measures the **"tailedness"** or **peakedness** of a data distribution — how heavily the tails differ from the normal distribution.

Types of Kurtosis:

Type	Description	Tail Behavior	Peak Shape
Mesokurtic	Normal kurtosis (≈ 3)	Normal tails	Normal peak
Leptokurtic	High kurtosis (> 3)	Heavy/fat tails	Sharp peak
Platykurtic	Low kurtosis (< 3)	Light/thin tails	Flat/broad peak

Why is kurtosis important?

- **High kurtosis** indicates more **outliers** than normal (risky or volatile data).
- Low kurtosis means fewer extreme values (more consistent data).

Question 5: Implement a Python program to compute the mean, median, and mode of a given list of numbers. numbers = [12, 15, 12, 18, 19, 12, 20, 22, 19, 19, 24, 24, 24, 26, 28]

Untitled0.ipynb

Question 6: Compute the covariance and correlation coefficient between the following two datasets provided as lists in Python: $list_x = [10, 20, 30, 40, 50]$ $list_y = [15, 25, 35, 45, 60]$

co statistics basics.ipynb

Question 7: Write a Python script to draw a boxplot for the following numeric list and identify its outliers. Explain the result: data = [12, 14, 14, 15, 18, 19, 19, 21, 22, 22, 23, 23, 24, 26, 29, 35]

statistics basics.ipynb

Question 8: You are working as a data analyst in an e-commerce company. The marketing team wants to know if there is a relationship between advertising spend and daily sales. ● Explain how you would use covariance and correlation to explore this relationship. ● Write Python code to compute the correlation between the two lists: advertising_spend = [200, 250, 300, 400, 500] daily sales = [2200, 2450, 2750, 3200, 4000]

Ans- Covariance:

- **Tells the direction** of the relationship between two variables.
- **Positive covariance**: As advertising spend increases, daily sales tend to increase.
- **Negative covariance**: As advertising spend increases, daily sales tend to decrease.
- Limitation: Covariance doesn't show the strength or scale of the relationship.

Correlation Coefficient (Pearson r):

- Measures both direction and strength of the linear relationship.
- Ranges from -1 to +1:
 - +1: Perfect positive correlation
 - o **0**: No linear correlation
 - **-1**: Perfect negative correlation
- Better for interpretation than covariance because it's scale-independent.

statistics basics.ipynb

Question 9: Your team has collected customer satisfaction survey data on a scale of 1-10 and wants to understand its distribution before launching a new product. ● Explain which summary statistics and visualizations (e.g. mean, standard deviation, histogram) you'd use. ● Write Python code to create a histogram using Matplotlib for the survey data:

Ans- Summary Statistics to Use:

Statistic	Purpose
Mean	Shows the average satisfaction score

Median Reveals the middle score (less affected by

outliers)

Mode Indicates the most frequent score

Standard Deviation Measures how spread out the scores are

Minimum & Maximum Show the range of responses

Skewness & Kurtosis

(optional)

Help understand **shape** of the distribution

Visualizations to Use:

Chart Type Purpose

Histogram Shows the frequency distribution (are scores clustered or

spread?)

Boxplot Visualizes median, quartiles, and outliers

Bar Chart Useful if survey responses are discrete categories (e.g. Likert

scale)

statistics basics.ipynb