Probabilistic analysis of satisfiability

Next:

- ► What is quantitative relationship between satisfiable and unsatisfiable problems? In other words if we pick a set of clauses at random with what probability it will be satisfiable?
- ► How can we randomly generate hard problems?
- Randomized algorithms for showing satisfiability.

SAT is the problem of satisfiability checking for sets of clauses.

SAT is the problem of satisfiability checking for sets of clauses.

- ► SAT is NP-complete;
- 3-SAT is NP-complete
- 2-SAT is decidable in linear time;

SAT is the problem of satisfiability checking for sets of clauses.

- SAT is NP-complete;
- ► 3-SAT is NP-complete.
- 2-SAT is decidable in linear time;

SAT is the problem of satisfiability checking for sets of clauses.

- SAT is NP-complete;
- ► 3-SAT is NP-complete.
- 2-SAT is decidable in linear time;

SAT is the problem of satisfiability checking for sets of clauses.

A *k*-clause is a cluase with *k* literals. *k*-SAT is the problem of satisfiability checking for sets of *k*-clauses.

- SAT is NP-complete;
- ▶ 3-SAT is NP-complete.
- 2-SAT is decidable in linear time;

There is a simple reduction of SAT to 3-SAT based on the same ideas as used for generating short clausal forms (naming). Take a clause having more than 3 literals:

$$L_1 \vee L_2 \vee L_3 \vee L_4 \dots$$

And replace it by two clauses:

$$L_1 \lor L_2 \lor n$$

 $\neg n \lor L_3 \lor L_4 \dots$

where n is a new variable.

SAT is the problem of satisfiability checking for sets of clauses.

A *k*-clause is a cluase with *k* literals. *k*-SAT is the problem of satisfiability checking for sets of *k*-clauses.

- SAT is NP-complete;
- ▶ 3-SAT is NP-complete.
- 2-SAT is decidable in linear time;

There is a simple reduction of SAT to 3-SAT based on the same ideas as used for generating short clausal forms (naming). Take a clause having more than 3 literals:

$$L_1 \vee L_2 \vee L_3 \vee L_4 \dots$$

And replace it by two clauses:

$$L_1 \vee L_2 \vee n$$

 $\neg n \vee L_3 \vee L_4 \dots$

where n is a new variable.

We will consider k-SAT for a fixed k.

How can one generate a random *k*-clause?

How can one generate a random k-clause?

A random clause is a collection of random literals.

How can one generate a random k-clause?

A random clause is a collection of random literals.

Let's first generate a random literal.

How can one generate a random k-clause?

A random clause is a collection of random literals.

Let's first generate a random literal.

Fix a number *n* of boolean variables;

How can one generate a random k-clause?

A random clause is a collection of random literals.

Let's first generate a random literal.

- Fix a number n of boolean variables;
- ▶ Select a literal among $p_1, ..., p_n, \neg p_1, ..., \neg p_n$ with an equal probability.

How can one generate a random k-clause?

A random clause is a collection of random literals.

Let's first generate a random literal.

- Fix a number n of boolean variables;
- ▶ Select a literal among $p_1, ..., p_n, \neg p_1, ..., \neg p_n$ with an equal probability.
- ▶ random k-clause: generate k random literals

How can one generate a random k-clause?

A random clause is a collection of random literals.

Let's first generate a random literal.

- Fix a number *n* of boolean variables;
- ▶ Select a literal among $p_1, ..., p_n, \neg p_1, ..., \neg p_n$ with an equal probability.
- ▶ random k-clause: generate k random literals

Suppose we generate random clauses one after one. How does the set of models of this set change?

Example (obtained by a program) for n = 5 and k = 2

p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p_5
0	0	0	0	0	1	0	0	0	0
0	0	0	0	1	1	0	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	0	0	1	0	1	0	0
0	0	1	0	1	1	0	1	0	1
0	0	1	1	0	1	0	1	1	0
0	0	1	1	1	1	0	1	1	1
0	1	0	0	0	1	1	0	0	0
0	1	0	0	1	1	1	0	0	1
0	1	0	1	0	1	1	0	1	0
0	1	0	1	1	1	1	0	1	1
0	1	1	0	0	1	1	1	0	0
0	1	1	0	1	1	1	1	0	1
0	1	1	1	0	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1

	p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p_5	
$-n_0 \vee -n_0$	0	0	0	0	0	1	0	0	0	0	
$\neg p_2 \lor \neg p_3$	0	0	0	0	1	1	0	0	0	1	
	0	0	0	1	0	1	0	0	1	0	
	0	0	0	1	1	1	0	0	1	1	
	0	0	1	0	0	1	0	1	0	0	
	0	0	1	0	1	1	0	1	0	1	
	0	0	1	1	0	1	0	1	1	0	
	0	0	1	1	1	1	0	1	1	1	
	0	1	0	0	0	1	1	0	0	0	
	0	1	0	0	1	1	1	0	0	1	
	0	1	0	1	0	1	1	0	1	0	
	0	1	0	1	1	1	1	0	1	1	
	0	1	1	0	0	1	1	1	0	0	
	0	1	1	0	1	1	1	1	0	1	
	0	1	1	1	0	1	1	1	1	0	
	0	1	1	1	1	1	1	1	1	1	

	p_1	p_2	p_3	p_4	p_5		p_1	p_2	p_3	p_4	p_5
$\neg p_2 \lor \neg p_3$	0	0	0	0	0		1	0	0	0	0
1 <i>P</i> 2	0	0	0	0	1		1	0	0	0	1
	0	0	0	1	0		1	0	0	1	0
	0	0	0	1	1		1	0	0	1	1
	0	0	1	0	0		1	0	1	0	0
	0	0	1	0	1		1	0	1	0	1
	0	0	1	1	0		1	0	1	1	0
	0	0	1	1	1		1	0	1	1	1
	0	1	0	0	0		1	1	0	0	0
	0	1	0	0	1		1	1	0	0	1
	0	1	0	1	0		1	1	0	1	0
	0	1	0	1	1		1	1	0	1	1

	ρ_1	ρ_2	ρ_3	ρ_4	ρ_5
$\neg n_0 \setminus \neg n_0$	0	0	0	0	0
$\neg p_2 \lor \neg p_3$	0	0	0	0	1
$\neg p_2 \lor p_1$	0	0	0	1	0
	0	0	0	1	1
	0	0	1	0	0
	0	0	1	0	1
	0	0	1	1	0
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	0	1
	0	1	0	1	0
	0	1	0	1	1

p_1	p_2	p_3	p_4	p 5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
4	4	Λ	4	4

	p_1	p_2	p_3	p_4	p_5	
$n_0 \setminus -n_0$	0	0	0	0	0	
$p_2 \vee \neg p_3$	0	0	0	0	1	
$p_2 \vee p_1$	0	0	0	1	0	
	0	0	0	1	1	
	0	0	1	0	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	0	1	1	1	

p_1	p_2	<i>p</i> ₃	p_4	p 5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

	P^1	ρ_2	ρ_3	Ρ4	ρ_5	
$-n_0 \setminus -n_0$	0	0	0	0	0	
$\neg p_2 \lor \neg p_3$	0	0	0	0	1	
$\neg p_2 \lor p_1$	0	0	0	1	0	
$\neg p_2 \lor p_2$	0	0	0	1	1	
	0	0	1	0	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	0	1	1	1	

p_1	p_2	p_3	p_4	p 5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

	P_1	P^2	ρ_3	Ρ4	ρ_5
$-n_0 \setminus / -n_0$	0	0	0	0	0
$\neg p_2 \lor \neg p_3$	0	0	0	0	1
$\neg p_2 \lor p_1$	0	0	0	1	0
$\neg p_2 \lor p_2$	0	0	0	1	1
$p_1 \vee p_1$	0	0	1	0	0
	0	0	1	0	1
	0	0	1	1	0
	0	0	1	1	1

p_1	p ₂	<i>p</i> ₃	<i>p</i> ₄	p 5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

Example	(obtained	d by	a pro	gram) for	n = 5	and	k = 2

	p_1	p_2	p_3	p_4	p_5		p_1	p_2	p_3	p_4	p_5
-n-\/-n-						-	1	0	0	0	0
$\neg p_2 \lor \neg p_3$							1	0	0	0	1
$\neg p_2 \lor p_1$							1	0	0	1	0
$\neg p_2 \lor p_2$							1	0	0	1	1
$p_1 \vee p_1$							1	0	1	0	0
							1	0	1	0	1
							1	0	1	1	0
							1	0	1	1	1
							1	1	0	0	0
							1	1	0	0	1
							1	1	0	1	0
							1	1	0	1	1

Example	(obtaine	ed by	a	program)	for	n =	5 a	ınd	<i>k</i> =	2
	-	-			-					

	p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p_5	
-n-\/-n-						1	0	0	0	0	
$\neg p_2 \lor \neg p_3$						1	0	0	0	1	
$\neg p_2 \lor p_1$						1	0	0	1	0	
$\neg p_2 \lor p_2$						1	0	0	1	1	
$p_1 \vee p_1$						1	0	1	0	0	
$\neg p_5 \lor p_5$						1	0	1	0	1	
						1	0	1	1	0	
						1	0	1	1	1	
						1	1	0	0	0	
						1	1	0	0	1	
						1	1	0	1	0	
						1	1	0	1	1	

Example	(obtained	by	a prog	ram) for	n=5	and	k = 2
		-					

	p_1	p_2	p_3	p_4	p 5	_	p_1	p_2	p_3	p_4	p ₅
-n-\/-n-							1	0	0	0	0
$\neg p_2 \lor \neg p_3$							1	0	0	0	1
$\neg p_2 \lor p_1$							1	0	0	1	0
$\neg p_2 \lor p_2$							1	0	0	1	1
$p_1 \vee p_1$							1	0	1	0	0
$\neg p_5 \lor p_5$							1	0	1	0	1
$p_4 \vee p_5$							1	0	1	1	0
							1	0	1	1	1
							1	1	0	0	0
							1	1	0	0	1
							1	1	0	1	0
							1	1	0	1	1

Example (obtained by a program) for n = 5 and k = 2 $\frac{p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5}{p_2 \lor p_1} \qquad \frac{p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5}{p_2 \lor p_1}$

$ eg p_2 \lor \neg p_3 \neg p_2 \lor p_1 \neg p_2 \lor p_2 p_1 \lor p_1 $	1	0	0	0	1
	1	0	0	1	0
	1	0	0	1	1
$ eg p_5 \lor p_5 $ $ eg_4 \lor p_5 $	1	0	1	0	1
	1	0	1	1	0
	1	0	1	1	1
	1	1	0	0	1
	1	1	0	1	0
	1	1	0	1	1

> 1 0 0 1 1 0 1 0 1 0 1 1

Example	(ob	tair	ned	by	a p	orogi	am)	for	n =	5	and	k =	=
•	•	<i>p</i> ₁	p_2	<i>p</i> ₃	p ₄	p ₅	•	_ <i>p</i> ₁	p_2	p ₃	<i>p</i> ₄	<i>p</i> ₅	
$\neg p_2 \lor \neg p_3$								4	0	٥	0	1	
$\neg p_2 \lor p_1$								'	U	U	U	'	
$\neg p_2 \lor p_2$													
$p_1 \vee p_1$													
$\neg p_5 \lor p_5$													
$p_4 \vee p_5$													
$\neg p_5 \lor \neg p_3$													
$p_2 \vee \neg p_4$													
								- 1	1	0	0	1	

Example	(ob	tair	ned	by	a p	rogi	ram)	for	n =	5 a	and	k =	= 2
•	`	p_1	p_2		<i>p</i> ₄	_	,	<i>p</i> ₁	p_2	p ₃	<i>p</i> ₄	p ₅	
$\neg p_2 \vee \neg p_3$								4	0	0	0	4	
$\neg p_2 \lor p_1$									U	U	U		
$\neg p_2 \lor p_2$													
$p_1 \vee p_1$													
$\neg p_5 \lor p_5$													
$p_4 \vee p_5$													
$\neg p_5 \vee \neg p_3$													
$p_2 \vee \neg p_4$													
$p_5 \vee \neg p_2$								1	1	0	0	1	

Example	(ob	tair	ned	by	a p	orogi	am)	for	n =	5	and	k =	= 2
•	•	p_1	p_2		<i>p</i> ₄		,	<i>p</i> ₁	p_2	p ₃	<i>p</i> ₄	p ₅	
$\neg p_2 \lor \neg p_3$								4	0	٥	0	4	
$\neg p_2 \lor p_1$									U	U	U		
$\neg p_2 \lor p_2$													
$p_1 \vee p_1$													
$\neg p_5 \lor p_5$													
$p_4 \vee p_5$													
$\neg p_5 \lor \neg p_3$													
$p_2 \vee \neg p_4$													
$p_5 \vee \neg p_2$								1	1	0	0	1	

Example	(ob	tair	ned	by	a p	rogi	am)	for	n =	5	and	k =	= 2
•	•	p_1	p_2	<i>p</i> ₃	p ₄	<i>p</i> ₅	,	<i>p</i> ₁	p_2	p ₃	<i>p</i> ₄	p ₅	
$\neg p_2 \lor \neg p_3$								4	0	٥	0	1	
$\neg p_2 \lor p_1$									U	U	U		
$\neg p_2 \lor p_2$													
$p_1 \vee p_1$													
$\neg p_5 \lor p_5$													
$p_4 \vee p_5$													
$\neg p_5 \vee \neg p_3$													
$p_2 \vee \neg p_4$													
$p_{\rm E} \vee \neg p_{\rm O}$								- 1	1	0	0	1	

 $p_5 \vee p_2$

Example (ol	otair				_	am)	for	<i>n</i> =	5 a	and	k =	=
	p_1	p_2	p ₃	<i>p</i> ₄	p ₅		<i>p</i> ₁	p_2	p ₃	p_4	p ₅	
$\neg p_2 \lor \neg p_3$							1	0	0	0	1	
$\neg p_2 \lor p_1 \\ \neg p_2 \lor p_2$												
$p_1 \lor p_2$												
$\neg p_5 \lor p_5$												
$p_4 \vee p_5$												
$\neg p_5 \lor \neg p_3$												
$p_2 \vee \neg p_4$												

 $p_5 \vee \neg p_2 \\ p_5 \vee p_2$

Example (obtair	ned	by p ₃		rogr	am)	for	$n = p_2$	5 a	and	k = p ₅	=
- 1/ -		1-2	1-0	194	1-0			P2	10	10-4	100	-
$\neg p_2 \lor \neg p_3$							1	0	0	0	1	
$\neg p_2 \lor p_1$								•	0	0		
$\neg p_2 \lor p_2$												
$p_1 \vee p_1$												
$\neg p_5 \lor p_5$												
$p_4 \vee p_5$												
$\neg p_5 \lor \neg p_3$												
$p_2 \vee \neg p_4$												
$p_5 \vee \neg p_2$												

 $\begin{array}{l} p_5 \lor p_2 \\ \neg p_1 \lor \neg p_4 \end{array}$

Example (ol	otair	ed p ₂	-	 rogra	m) ⁻	for	$n = p_2$	5 a	and	k = p ₅	=
$\neg p_2 \lor \neg p_3$						1	0	0	0	1	
$\neg p_2 \lor p_1$											
$\neg p_2 \lor p_2$											
$p_1 \vee p_1$											
$\neg p_5 \lor p_5$											
$p_4 \vee p_5$											
$\neg p_5 \lor \neg p_3$											
$p_2 \vee \neg p_4$											
$p_5 \vee \neg p_2$											

 $\begin{array}{l} p_5 \lor p_2 \\ \neg p_1 \lor \neg p_4 \\ p_5 \lor p_2 \end{array}$

Example ((obtair	ned	by	ар	rogram) for	n =	5 a	and	k =	= 2
•	<i>p</i> ₁	p_2	p ₃	<i>p</i> ₄	p ₅	<i>p</i> ₁	p_2	p ₃	<i>p</i> ₄	p ₅	
$\neg p_2 \lor \neg p_3$						1	0	0	0	1	

```
\neg p_2 \lor p_1
\neg p_2 \lor p_2
p_1 \vee p_1
\neg p_5 \lor p_5
p_4 \vee p_5
\neg p_5 \lor \neg p_3
p_2 \vee \neg p_4
p_5 \vee \neg p_2
p_5 \vee p_2
\neg p_1 \lor \neg p_4
p_5 \vee p_2
\neg p_1 \lor \neg p_5
```

Example (obtained by a program) for n = 5 and k = 2

 $\neg p_2 \lor \neg p_3$ $\neg p_2 \lor p_1$ $\neg p_2 \lor p_2$ $p_1 \vee p_1$ $\neg p_5 \lor p_5$ $p_4 \vee p_5$ $\neg p_5 \lor \neg p_3$ $p_2 \vee \neg p_4$ $p_5 \vee \neg p_2$ $p_5 \vee p_2$ $\neg p_1 \lor \neg p_4$ $p_5 \vee p_2$ $\neg p_1 \lor \neg p_5$

Number of models: 0

This set of 13 clauses is unsatisfiable.

Example (obtained by a program) for n = 5 and k = 2

Number of models: 0

This set of 13 clauses is unsatisfiable.

Increasing number of generated cluases we can observe transition from satisfiable to unsatisfiable.

We are interested in the probability π that a set of 3-clauses is unsatisfiable.

We are interested in the probability π that a set of 3-clauses is unsatisfiable.

- Number n of boolean variables;
- Number m of the clauses.
- Randomly generate m clauses with an equal probability

We are interested in the probability π that a set of 3-clauses is unsatisfiable.

- Number n of boolean variables;
- Number m of the clauses.
- Randomly generate m clauses with an equal probability

We are interested in the probability π that a set of 3-clauses is unsatisfiable.

- Number n of boolean variables;
- ▶ Number *m* of the clauses.
- Randomly generate m clauses with an equal probability

We are interested in the probability π that a set of 3-clauses is unsatisfiable.

- Number n of boolean variables;
- ▶ Number *m* of the clauses.
- ► Randomly generate *m* clauses with an equal probability.

We are interested in the probability π that a set of 3-clauses is unsatisfiable.

Fix:

- ▶ Number *n* of boolean variables;
- Number m of the clauses.
- Randomly generate m clauses with an equal probability.

Important parameter: ratio of clauses per variable r = m/n.

We will investigate dependence of π with respect to the ratio r and the number of varibales n.

We are interested in the probability π that a set of 3-clauses is unsatisfiable.

Fix:

- Number n of boolean variables;
- Number m of the clauses.
- Randomly generate m clauses with an equal probability.

Important parameter: ratio of clauses per variable r = m/n. We will investigate dependence of π with respect to the ratio r and the number of varibales n.

Note that the robability $\pi(r, n)$ is a monotone function: the more clauses we generate, the higher chance we have that the set is unsatisfiable.

Roulette

We will generate random instances of 3-SAT with 10-variables.

5 clauses?30 clauses?60 clauses?

100 clauses?
 1000 clauses?

Roulette

We will generate random instances of 3-SAT with 10-variables.

You will bet on whether the resuting set of clauses is satisfiable or not.

- 5 clauses?
- 30 clauses'
- 60 clauses?
- ▶ 100 clauses?
- ▶ 1000 clauses?

We will generate random instances of 3-SAT with 10-variables.

- ▶ 5 clauses?
- ► 30 clauses
- 60 clauses?
- ▶ 100 clauses?
- ▶ 1000 clauses?

We will generate random instances of 3-SAT with 10-variables.

- 5 clauses?
- ▶ 30 clauses?
- 60 clauses?
- ▶ 100 clauses?
- ▶ 1000 clauses?

We will generate random instances of 3-SAT with 10-variables.

- 5 clauses?
- ▶ 30 clauses?
- ► 60 clauses?
- ▶ 100 clauses?
- ▶ 1000 clauses?

We will generate random instances of 3-SAT with 10-variables.

- 5 clauses?
- ► 30 clauses?
- ► 60 clauses?
- ▶ 100 clauses?
- ▶ 1000 clauses?

We will generate random instances of 3-SAT with 10-variables.

- 5 clauses?
- ▶ 30 clauses?
- ► 60 clauses?
- ► 100 clauses?
- ▶ 1000 clauses?

We will generate random instances of 3-SAT with 10-variables.

You will bet on whether the resuting set of clauses is satisfiable or not.
What will you bet on if we generate

- ▶ 5 clauses?
- ▶ 30 clauses?
- ▶ 60 clauses?
- ► 100 clauses?
- ► 1000 clauses?

What would be your betting ratio?

Probability of obtaining an unsatisfiable set

Probability of obtaining an unsatisfiable set

Crossover point: the value of *r* at which the probability crosses 0.5.

Probability of obtaining an unsatisfiable set

Crossover point: the value of *r* at which the probability crosses 0.5.

Experimentally: for large *n* crossover point is close to 4.25.

ϵ-window

Take a (small) number $\epsilon > 0$. ϵ -window is the interval of values of r where the probability is between ϵ and $1 - \epsilon$.

For example, take $\epsilon = 0.1$.

ϵ-window

Take a (small) number $\epsilon > 0$. ϵ -window is the interval of values of r where the probability is between ϵ and $1 - \epsilon$.

For example, take $\epsilon = 0.1$.

ϵ-window

Take a (small) number $\epsilon > 0$. ϵ -window is the interval of values of r where the probability is between ϵ and $1 - \epsilon$.

For example, take $\epsilon = 0.1$.

Conjecture: for $n \to \infty$ every ϵ -window "degenerates into a point".

Sharp Phase Transition

Easy-Hard-Easy Pattern

Next

Next: Randomized satisfiability algorithms.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance *I*: any data *D* such that, given *D*, one can check in polynomial time (in *D*) that *I* has a yes-answer.

Satisfiability has short witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance *I*: any data *D* such that, given *D*, one can check in polynomial time (in *D*) that *I* has a yes-answer.

Satisfiability has short witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance *I*: any data *D* such that, given *D*, one can check in polynomial time (in *D*) that *I* has a yes-answer.

Satisfiability has short witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance in a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for a instance I: any data D such that, given D, one can check in polynomial time (in D) that I has a yes-answer.

Satisfiability has short witnesses: interpretations.

procedure CHAOS(S)
input: set of clauses S

output: interpretation / such that $I \models S$ or don't know

procedure CHAOS(S)
input: set of clauses S

output: interpretation I such that $I \models S$ or *don't know*

parameters: positive integer MAX-TRIES

begin

repeat MAX-TRIES times

end

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that I |= S or don't know
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times
/ := random interpretation
if I |= S then return /
return don't know
end
```

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that I ⊨ S or don't know
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times
/ := random interpretation
if I ⊨ S then return /
return don't know
end
```

Randomized satisfiability algorithms:

- random search for a satisfying assignment;
- cannot establish unsatisfiability;
- may return "don't know"

- Choose a random interpretation.
- ▶ If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \left\{ egin{array}{ll} I(q), & ext{if } p
eq q; \ 1, & ext{if } p = q ext{ and } I(p) = 0 \ 0, & ext{if } p = q ext{ and } I(p) = 1 \end{array}
ight.$$

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \begin{cases} I(q), & \text{if } p \neq q; \\ 1, & \text{if } p = q \text{ and } I(p) = 0 \\ 0, & \text{if } p = q \text{ and } I(p) = 1 \end{cases}$$

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \left\{ egin{array}{ll} I(q), & ext{if } p
eq q; \ 1, & ext{if } p = q ext{ and } I(p) = 0 \ 0, & ext{if } p = q ext{ and } I(p) = 1 \end{array}
ight.$$

- Choose a random interpretation.
- ▶ If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \begin{cases} I(q), & \text{if } p \neq q; \\ 1, & \text{if } p = q \text{ and } I(p) = 0; \\ 0, & \text{if } p = q \text{ and } I(p) = 1. \end{cases}$$

- Choose a random interpretation.
- ▶ If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \begin{cases} I(q), & \text{if } p \neq q; \\ 1, & \text{if } p = q \text{ and } I(p) = 0; \\ 0, & \text{if } p = q \text{ and } I(p) = 1. \end{cases}$$

procedure GSAT(S)

input: set of clauses S

 $\overline{\text{output}}$: interpretation / such that $I \models S$ or don't know

 $\underline{\mathsf{procedure}}\ \underline{\mathsf{GSAT}(S)}$

input: set of clauses S

 $\overline{\text{output}}$: interpretation / such that $I \models S$ or don't know

parameters: integers MAX-TRIES, MAX-FLIPS

```
procedure GSAT(S)
input: set of clauses S
output: interpretation / such that I ⊨ S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
repeat MAX-TRIES times
/ := random interpretation
if I ⊨ S then return /
```

end

```
procedure GSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
  repeat MAX-FLIPS times
   p := a variable such that flip(I, p) satisfies
           the maximal number of clauses in S
   I = flip(I, p)
   if l \models S then return l
 return don't know
end
```

```
procedure GSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
  repeat MAX-FLIPS times
   p := a variable such that flip(I, p) satisfies
           the maximal number of clauses in S
   I = flip(I, p)
   if l \models S then return l
 return don't know
end
```

GSAT is a local search algorithm, it tries to maximise the number of satisfied clauses by local changes.

flip	interpretation			sa	tisfie	d clau	ises	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4					

flip	interpretation			sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4		

flip	interpretation			sa	tisfie	d clau	ıses	candidates	flipped	
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		$p_1 p_2 p_3$		<i>p</i> ₃	for flipping	variable	
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂	
2	0	1	1							

flip	interpretation			sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		$p_1 p_2 p_3$		for flipping	variable	
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4					

flip	interpretation			sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3	4	4		

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	p_1	p_2	p_3		p_1	p_2	p_3	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0						

flip	inte	interpretation			tisfie	d clau	ıses	candidates	flipped
no.	p_1	p_2	p_3		p_1	p_2	p_3	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4					

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	p_1	p_2	p_3		p_1	p_2	p_3	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4		

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4	<i>p</i> ₁	p_1
	1	1	0						

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4	<i>p</i> ₁	p_1
	1	1	0	5					

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	p_1	p_2	p_3		p_1	p_2	p_3	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4	<i>p</i> ₁	p_1
	1	1	0	5					

Advantages: Can quickly find a satisfying assignment in large problems.

Issues: during the inner loop GSAT can get stuck in a "plateau" optimum point, where further flips do not change the number of satisfied clauses.

procedure GSATwithWalks(S)

input: set of clauses S

output: interpretation / such that $I \models S$ or don't know

procedure GSATwithWalks(S)

input: set of clauses S

output: interpretation I such that $I \models S$ or *don't know*

parameters: integers MAX-TRIES, MAX-FLIPS

real number $0 \le \pi \le 1$ (probability of a sideways move),

```
procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
             real number 0 < \pi < 1 (probability of a sideways move),
begin
 repeat MAX-TRIES times
  / := random interpretation;
  if l \models S then return l
  repeat MAX-FLIPS times
   with probability \pi
     p := a variable such that flip(I, p) satisfies
            the maximal number of clauses in S
   with probability 1-\pi
     randomly select p among all variables occurring in clauses false in I
    I = flip(I, p);
   if l \models S then return l
 return don't know
end
```

Walk SAT (WSAT)

procedure WSAT(S)
input: set of clauses S

output: interpretation I such that $I \models S$ or don't know

parameters: integers MAX-TRIES, MAX-FLIPS

Walk SAT (WSAT)

```
procedure WSAT(S)
input: set of clauses S
output: interpretation / such that I ⊨ S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
repeat MAX-TRIES times
/ := random interpretation
if I ⊨ S then return /
```

end

Walk SAT (WSAT)

```
procedure WSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
  repeat MAX-FLIPS times
   randomly select a clause C \in S such that I \not\models C
   randomly select a variable p in C
    I = flip(I, p)
   if l \models S then return l
 return don't know
end
```

Walk SAT example

Walk SAT example

0		0		1
p_1	V	$\neg p_2$	V	<i>p</i> ₃
		$\neg p_2$	\vee	$\neg p_3$
$\neg p_1$			\vee	$\neg p_3$
$\neg p_1$	\vee	p_2		
p_1	\vee	p_2		

flip	inte	rpret	ation	unsatisfied	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1			

Walk SAT example

0		0		1
p_1	V	$\neg p_2$	V	<i>p</i> ₃
		$\neg p_2$	\vee	$\neg p_3$
$\neg p_1$			\vee	$\neg p_3$
$\neg p_1$	\vee	p_2		
p_1	\vee	p_2		

flip	inte	rpreta	ation	unsatisfied	candidates	flipped
no.	p_1	p_2	p_3	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	
-						

1		0		1
<i>p</i> ₁	V	$\neg p_2$	V	<i>p</i> ₃
		$\neg p_2$	\vee	$\neg p_3$
$\neg p_1$			\vee	$\neg p_3$
$\neg p_1$	\vee	p_2		
p_1	\vee	p_2		

flip	interpretation		unsatisfied	candidates	flipped	
no.	<i>p</i> ₁	p_2	p ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1	0	1			

1		0		1
p_1	V	$\neg p_2$	V	<i>p</i> ₃
		$\neg p_2$	\vee	$\neg p_3$
$\neg p_1$			\vee	$\neg p_3$
$\neg p_1$	\vee	p_2		
p_1	\vee	p_2		

flip	interpretation		unsatisfied	candidates	flipped	
no.	p_1	p_2	p ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1 0 1		1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	
				$\neg p_1 \lor p_2$		

1		1		1
<i>p</i> ₁	V	$\neg p_2$	V	p_3
		$\neg p_2$	\vee	$\neg p_3$
$\neg p_1$			\vee	$\neg p_3$
$\neg p_1$	\vee	p_2		
p_1	\vee	p_2		

flip	interpretation		unsatisfied	candidates	flipped	
no.	<i>p</i> ₁	p_2	p ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
3	1	1	1			

1		1		1
p_1	V	$\neg p_2$	V	<i>p</i> ₃
		$\neg p_2$	\vee	$\neg p_3$
$\neg p_1$			\vee	$\neg p_3$
$\neg p_1$	\vee	p_2		
p_1	\vee	p_2		

flip	interpretation		unsatisfied	candidates	flipped	
no.	<i>p</i> ₁	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	
				$\neg p_1 \lor \neg p_3$		

1		1		0
<i>p</i> ₁	V	$\neg p_2$	V	<i>p</i> ₃
		$\neg p_2$	\vee	$\neg p_3$
$\neg p_1$			\vee	$\neg p_3$
$\neg p_1$	\vee	p_2		
p_1	\vee	p_2		

flip	interpretation		unsatisfied	candidates	flipped	
no.	<i>p</i> ₁	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	1 0 0 1		$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁	
2	2 1 0 1		$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2	
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	<i>p</i> ₃
				$\neg p_1 \lor \neg p_3$		
	1	1	0			
	1	1	0	$\neg p_1 \lor \neg p_3$		

1		1		0
<i>p</i> ₁	V	$\neg p_2$	V	<i>p</i> ₃
		$\neg p_2$	\vee	$\neg p_3$
$\neg p_1$			\vee	$\neg p_3$
$\neg p_1$	\vee	p_2		
p_1	\vee	p_2		

flip	interpretation		unsatisfied	candidates	flipped	
no.	<i>p</i> ₁	p_2	p ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1 0 1		$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2	
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	<i>p</i> ₃
				$\neg p_1 \lor \neg p_3$		
	1	1	0			

Satisfiability of formulas: Semantic Tableaux

Next: Satisfiability of general (signed) formulas.

Algorithm: Semantic tableaux

- Signed formula: an expression A = b, where A is a formula and b a boolean value.
- A signed formula A = b is true in an interpretation I, denoted by $I \models A = b$, if I(A) = b.
- If A = b is true in I, we also say that I is a model of A = b, or that I satisfies A = b.
- A signed formula is satisfiable if it has a model.

Note:

- 1. For every formula A and interpretation I exactly one of the signed formulas A = 1 and A = 0 is true in I.
- A formula A is satisfiable if and only if so is the signed formula
 A = 1.

- Signed formula: an expression A = b, where A is a formula and b a boolean value.
- A signed formula A = b is true in an interpretation I, denoted by $I \models A = b$, if I(A) = b.
- If A = b is true in I, we also say that I is a model of A = b, or that I satisfies A = b.
- A signed formula is satisfiable if it has a model.

Note

- 1. For every formula A and interpretation I exactly one of the signed formulas A = 1 and A = 0 is true in I.
- A formula A is satisfiable if and only if so is the signed formula
 A = 1.

- Signed formula: an expression A = b, where A is a formula and b a boolean value.
- A signed formula A = b is true in an interpretation I, denoted by $I \models A = b$, if I(A) = b.
- If A = b is true in I, we also say that I is a model of A = b, or that I satisfies A = b.
- A signed formula is satisfiable if it has a model.

Note

- 1. For every formula A and interpretation I exactly one of the signed formulas A = 1 and A = 0 is true in I.
- A formula A is satisfiable if and only if so is the signed formula
 A = 1.

- Signed formula: an expression A = b, where A is a formula and b a boolean value.
- A signed formula A = b is true in an interpretation I, denoted by $I \models A = b$, if I(A) = b.
- ▶ If A = b is true in I, we also say that I is a model of A = b, or that I satisfies A = b.
- A signed formula is satisfiable if it has a model.

Note:

- 1. For every formula A and interpretation I exactly one of the signed formulas A = 1 and A = 0 is true in I.
- A formula A is satisfiable if and only if so is the signed formula
 A = 1.

- Signed formula: an expression A = b, where A is a formula and b a boolean value.
- A signed formula A = b is true in an interpretation I, denoted by $I \models A = b$, if I(A) = b.
- If A = b is true in I, we also say that I is a model of A = b, or that I satisfies A = b.
- A signed formula is satisfiable if it has a model.

Note:

- 1. For every formula A and interpretation I exactly one of the signed formulas A = 1 and A = 0 is true in I.
- 2. A formula *A* is satisfiable if and only if so is the signed formula A = 1.

Example: $(A \rightarrow B) = 1$.

So $(A \rightarrow B) = 1$ if and only if A = 0 OR B = 1.

Likewise, $(A \rightarrow B) = 0$ if and only if A = 1 AND B = 0.

So we can use AND-OR trees to carry out case analysis.

Operation table for \rightarrow :

$$\begin{array}{c|ccccc} \to & B = 1 & B = 0 \\ \hline A = 1 & 1 & 0 \\ A = 0 & 1 & 1 \end{array}$$

Operation table for \rightarrow :

$$\begin{array}{c|ccccc} \to & B = 1 & B = 0 \\ \hline A = 1 & 1 & 0 \\ A = 0 & 1 & 1 \end{array}$$

Example:
$$(A \rightarrow B) = 1$$
.

So
$$(A \rightarrow B) = 1$$
 if and only if $A = 0$ OR $B = 1$.

Likewise,
$$(A \rightarrow B) = 0$$
 if and only if $A = 1$ AND $B = 0$.

Operation table for \rightarrow :

$$\begin{array}{c|ccccc} \to & B = 1 & B = 0 \\ \hline A = 1 & 1 & 0 \\ A = 0 & 1 & 1 \end{array}$$

Example:
$$(A \rightarrow B) = 1$$
.

So
$$(A \rightarrow B) = 1$$
 if and only if $A = 0$ OR $B = 1$.

Likewise,
$$(A \rightarrow B) = 0$$
 if and only if $A = 1$ AND $B = 0$.

Operation table for \rightarrow :

$$\begin{array}{c|ccccc} \to & B = 1 & B = 0 \\ \hline A = 1 & 1 & 0 \\ A = 0 & 1 & 1 \end{array}$$

Example:
$$(A \rightarrow B) = 1$$
.

So
$$(A \rightarrow B) = 1$$
 if and only if $A = 0$ OR $B = 1$.

Likewise,
$$(A \rightarrow B) = 0$$
 if and only if $A = 1$ AND $B = 0$.

Operation table for \rightarrow :

Example:
$$(A \rightarrow B) = 1$$
.

So
$$(A \rightarrow B) = 1$$
 if and only if $A = 0$ OR $B = 1$.

Likewise,
$$(A \rightarrow B) = 0$$
 if and only if $A = 1$ AND $B = 0$.

Tableau: a tree having signed formulas at nodes.

Tableau for a signed formula A = b has A = b as a root.

Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas.

Notation for branches: $A_1 = b_1 \mid \ldots \mid A_n = b_n$.

Tableau: a tree having signed formulas at nodes.

Tableau for a signed formula A = b has A = b as a root.

Alternatively, we can regard a tableau as a collection of branches each branch is a set of signed formulas.

Notation for branches: $A_1 = b_1 \mid \ldots \mid A_n = b_n$.

Tableau: a tree having signed formulas at nodes.

Tableau for a signed formula A = b has A = b as a root.

Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas.

Notation for branches: $A_1 = b_1 \mid \dots \mid A_n = b_n$.

Tableau: a tree having signed formulas at nodes.

Tableau for a signed formula A = b has A = b as a root.

Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas.

Notation for branches: $A_1 = b_1 \mid \ldots \mid A_n = b_n$.

Branch Expansion Rules

$$\begin{aligned}
 & (A_{1} \wedge \ldots \wedge A_{n}) = 0 & \longrightarrow & A_{1} = 0 \mid \ldots \mid A_{n} = 0 \\
 & (A_{1} \wedge \ldots \wedge A_{n}) = 1 & \longrightarrow & A_{1} = 1, \ldots, A_{n} = 1 \\
 & (A_{1} \vee \ldots \vee A_{n}) = 0 & \longrightarrow & A_{1} = 0, \ldots, A_{n} = 0 \\
 & (A_{1} \vee \ldots \vee A_{n}) = 1 & \longrightarrow & A_{1} = 1 \mid \ldots \mid A_{n} = 1 \\
 & (A_{1} \to A_{2}) = 0 & \longrightarrow & A_{1} = 1, A_{2} = 0 \\
 & (A_{1} \to A_{2}) = 1 & \longrightarrow & A_{1} = 0 \mid A_{2} = 1 \\
 & (\neg A_{1}) = 0 & \longrightarrow & A_{1} = 1 \\
 & (\neg A_{1}) = 1 & \longrightarrow & A_{1} = 0 \\
 & (A_{1} \leftrightarrow A_{2}) = 0 & \longrightarrow & A_{1} = 0, A_{2} = 1 \mid A_{1} = 1, A_{2} = 0 \\
 & (A_{1} \leftrightarrow A_{2}) = 1 & \longrightarrow & A_{1} = 0, A_{2} = 0 \mid A_{1} = 1, A_{2} = 1 \end{aligned}$$

Branch Closure Rules

These rules are introduced to mark when the set of signed formulas on a branch is unsatisfiable.

A branch is marked closed in any of the following cases:

- ▶ it contains both p = 0 and p = 1 for some atom p
- ▶ it contains T = 0;
- it contains ⊥ = 1.

Branch Closure Rules

These rules are introduced to mark when the set of signed formulas on a branch is unsatisfiable.

A branch is marked closed in any of the following cases:

- ▶ it contains both p = 0 and p = 1 for some atom p
- it contains ⊤ = 0;
- it contains ⊥ = 1.

Branch Closure Rules

These rules are introduced to mark when the set of signed formulas on a branch is unsatisfiable.

A branch is marked closed in any of the following cases:

- ▶ it contains both p = 0 and p = 1 for some atom p
- ▶ it contains T = 0;
- ▶ it contains $\bot = 1$.

(a)
$$\left(\neg(q\lor p\to p\lor q)\right)=1$$

(b) $\left(q\lor p\to p\lor q\right)=0$

(c) $\left(q\lor p\right)=1$

(d) $\left(p\lor q\right)=0$

(d) $\left|\begin{array}{c}p=0\\q=0\end{array}\right|$
 $\left(\begin{array}{c}q=1\\p=1\\closed\end{array}\right)$

(c) $\left(\begin{array}{c}q\downarrow p\\q=1\\closed\end{array}\right)$

$$(A_1 \lor A_2) = 0 \quad \Rightarrow \quad A_1 = 0, A_2 = 0$$
 $(A_1 \lor A_2) = 1 \quad \Rightarrow \quad A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0 \quad \Rightarrow \quad A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1 \quad \Rightarrow \quad A_1 = 0$

(a)
$$\left(\neg (q \lor p \to p \lor q)\right) = 1$$

(b) $\left(q \lor p \to p \lor q\right) = 0$

(c) $\left(q \lor p\right) = 1$

(d) $\left(p \lor q\right) = 0$

(d) $\left|\begin{array}{c} p = 0 \\ q = 0 \end{array}\right|$

(c) $\left(q \lor p\right) = 1$

(d) $\left(p \lor q\right) = 0$

(d) $\left(p \lor q\right) = 0$

(e) $\left(p \lor q\right) = 0$

(f) $\left(p \lor q\right) = 0$

(g) $\left(p \lor q\right) = 0$

$$(A_1 \lor A_2) = 0$$
 \longrightarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \longrightarrow $A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

(a)
$$\left(\neg(q\lor p\to p\lor q)\right)=1$$

(b) $\left(q\lor p\to p\lor q\right)=0$

(c) $\left(q\lor p\right)=1$

(d) $\left(p\lor q\right)=0$

(d) $\left|\begin{array}{c}p=0\\q=0\end{array}\right|$
 $\left(\begin{array}{c}q=1\\p=1\\closed\end{array}\right)$

(c) $\left(q\lor p\right)=1$

(d) $\left(\begin{array}{c}p=0\\q=0\end{array}\right)$

$$(A_1 \lor A_2) = 0$$
 \longrightarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \longrightarrow $A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

(a)
$$\left(\neg(q\lor p\to p\lor q)\right)=1$$

(b) $\left(q\lor p\to p\lor q\right)=0$

(c) $\left(q\lor p\right)=1$

(d) $\left(p\lor q\right)=0$

(d) $\left|p=0\right|$
 $q=0$

(c) $\left(q\lor p\right)=1$

(d) $\left|p=0\right|$
 $q=0$

(c) $\left(q\lor p\right)=1$

(d) $\left|p=0\right|$
 $q=0$

(d) $\left|p=0\right|$
 $q=0$

(e) $\left(q\lor p\right)=1$

(f) $\left(q\lor q\right)=1$

(g) $\left(q\lor q\right)=1$

$$(A_1 \lor A_2) = 0 \longrightarrow A_1 = 0, A_2 = 0$$

 $(A_1 \lor A_2) = 1 \longrightarrow A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0 \longrightarrow A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1 \longrightarrow A_1 = 0$

(a)
$$\left(\neg(q\lor p\to p\lor q)\right)=1$$

(b) $\left(q\lor p\to p\lor q\right)=0$

(c) $\left(q\lor p\right)=1$

(d) $\left(p\lor q\right)=0$

(e) $\left(q\lor p\right)=0$

(f) $\left(q\lor p\right)=0$

(g) $\left(q\lor p\right)=0$
 $\left(q\lor p\right)=0$

$$(A_1 \lor A_2) = 0$$
 \longrightarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \longrightarrow $A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

(a)
$$(\neg(q \lor p \to p \lor q)) = 1$$

(a) $|$
(b) $(q \lor p \to p \lor q) = 0$
(b) $|$
(c) $(q \lor p) = 1$
(d) $(p \lor q) = 0$
(d) $|$
 $p = 0$
 $q = 0$
(c) $|$
 $q = 1$
closed closed

$$(A_1 \lor A_2) = 0$$
 \longrightarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \longrightarrow $A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

(a)
$$(\neg(q \lor p \to p \lor q)) = 1$$

(a) $|$
(b) $(q \lor p \to p \lor q) = 0$
(b) $|$
(c) $(q \lor p) = 1$
(d) $(p \lor q) = 0$
(d) $|$
 $p = 0$
 $q = 0$
(c) $|$
 $q = 1$
closed closed

$$(A_1 \lor A_2) = 0$$
 \leadsto $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \leadsto $A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0$ \leadsto $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \leadsto $A_1 = 0$

(a)
$$(\neg(q \lor p \to p \lor q)) = 1$$

(a) $|$
(b) $(q \lor p \to p \lor q) = 0$
(b) $|$
(c) $(q \lor p) = 1$
(d) $(p \lor q) = 0$
(d) $|$
 $p = 0$
 $q = 0$
(c) $|$
 $q = 1$
closed closed

$$(A_1 \lor A_2) = 0$$
 \longrightarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \longrightarrow $A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

(a)
$$\left(\neg(q\lor p\to p\lor q)\right)=1$$

(b) $\left(q\lor p\to p\lor q\right)=0$

(c) $\left(q\lor p\right)=1$

(d) $\left(p\lor q\right)=0$

(d) $\left|\begin{array}{c}p=0\\q=0\end{array}\right|$
 $\left(\begin{array}{c}q=1\\p=1\\q\end{array}\right)$

$$(A_1 \lor A_2) = 0$$
 \longrightarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \longrightarrow $A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

(a)
$$(\neg(q \lor p \to p \lor q)) = 1$$

(a) $|$
(b) $(q \lor p \to p \lor q) = 0$
(c) $(q \lor p) = 1$
(d) $(p \lor q) = 0$
(d) $|$
 $p = 0$
 $q = 1$
(c) $q = 1$
(d) $p = 1$
(d) $p = 1$
(e) $p = 1$
(f) $p = 1$

$$(A_1 \lor A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0, A_2 = 0$$
 $(A_1 \lor A_2) = 1 \quad \rightsquigarrow \quad A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0$

(a)
$$\left(\neg(q\lor p\to p\lor q)\right)=1$$

(b) $\left(q\lor p\to p\lor q\right)=0$

(c) $\left(q\lor p\right)=1$

(d) $\left(p\lor q\right)=0$

(d) $\left|\begin{array}{c}p=0\\q=0\end{array}\right|$
 $\left(\begin{array}{c}q=1\\p=1\\closed\end{array}\right)$

(c) $\left(\begin{array}{c}q\lor p\right)=1\\closed\end{array}\right)$

$$(A_1 \lor A_2) = 0$$
 \rightsquigarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \rightsquigarrow $A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0$ \rightsquigarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \rightsquigarrow $A_1 = 0$

(a)
$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

$$(A_1 \wedge A_2) = 0$$
 \longrightarrow $A_1 = 0 \mid A_2 = 0$
 $(A_1 \wedge A_2) = 1$ \longrightarrow $A_1 = 1, A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(A_1 \to A_2) = 1$ \longrightarrow $A_1 = 0 \mid A_2 = 1$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

(a)
$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

$$(A_1 \land A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0$$
 $(A_1 \land A_2) = 1 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 1$
 $(A_1 \rightarrow A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0$
 $(A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1$
 $(\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0$

$$\begin{array}{ll} \text{(a)} & \left(\neg ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) \right) = 1 \\ & \text{(b)} & \left((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r) \right) = 0 \end{array}$$

$$(A_1 \land A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0$$
 $(A_1 \land A_2) = 1 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 1$
 $(A_1 \rightarrow A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0$
 $(A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1$
 $(\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0$

$$\begin{array}{ll} \text{(a)} & \left(\neg ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) \right) = 1 \\ & \text{(b)} & \left((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r) \right) = 0 \end{array}$$

$$(A_1 \land A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0$$
 $(A_1 \land A_2) = 1 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 1$
 $(A_1 \rightarrow A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0$
 $(A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1$
 $(\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0$

$$\begin{array}{ll} \text{(a)} & \left(\neg ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) \right) = 1 \\ & \text{(b)} & \left((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r) \right) = 0 \\ & \text{(b)} & | \\ & \text{(c)} & \left((p \rightarrow q) \land (p \land q \rightarrow r) \right) = 1 \\ & \text{(d)} & (\neg p \rightarrow r) = 0 \end{array}$$

$$(A_1 \land A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0$$
 $(A_1 \land A_2) = 1 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 1$
 $(A_1 \rightarrow A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0$
 $(A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1$
 $(\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0$

(a)
$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

(b) $((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0$
(c) $((p \rightarrow q) \land (p \land q \rightarrow r)) = 1$
(d) $(\neg p \rightarrow r) = 0$

$$(A_1 \land A_2) = 0$$
 \longrightarrow $A_1 = 0 \mid A_2 = 0$
 $(A_1 \land A_2) = 1$ \longrightarrow $A_1 = 1, A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(A_1 \to A_2) = 1$ \longrightarrow $A_1 = 0 \mid A_2 = 1$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

(a)
$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

(b) $((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0$
(c) $((p \rightarrow q) \land (p \land q \rightarrow r)) = 1$
(d) $(\neg p \rightarrow r) = 0$
(e) $(p \rightarrow q) = 1$
(f) $(p \land q \rightarrow r) = 1$

$$(A_1 \land A_2) = 0$$
 \longrightarrow $A_1 = 0 \mid A_2 = 0$
 $(A_1 \land A_2) = 1$ \longrightarrow $A_1 = 1, A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(A_1 \to A_2) = 1$ \longrightarrow $A_1 = 0 \mid A_2 = 1$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

(a)
$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

(b) $((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0$
(c) $((p \rightarrow q) \land (p \land q \rightarrow r)) = 1$
(d) $(\neg p \rightarrow r) = 0$
(e) $(p \rightarrow q) = 1$
(f) $(p \land q \rightarrow r) = 1$

$$(A_1 \land A_2) = 0$$
 \Rightarrow $A_1 = 0 \mid A_2 = 0$
 $(A_1 \land A_2) = 1$ \Rightarrow $A_1 = 1, A_2 = 1$
 $(A_1 \rightarrow A_2) = 0$ \Rightarrow $A_1 = 1, A_2 = 0$
 $(A_1 \rightarrow A_2) = 1$ \Rightarrow $A_1 = 0 \mid A_2 = 1$
 $(\neg A_1) = 1$ \Rightarrow $A_1 = 0$

(a)
$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

(a) $|$
(b) $((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0$
(b) $|$
(c) $((p \rightarrow q) \land (p \land q \rightarrow r)) = 1$
(c) $|$
(e) $(p \rightarrow q) = 1$
(f) $(p \land q \rightarrow r) = 1$
(d) $|$
(g) $(\neg p) = 1$
 $r = 0$

$$(A_1 \land A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0$$

 $(A_1 \land A_2) = 1 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 1$

$$(A_1 \rightarrow A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 1$$

$$(A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1$$

$$(A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1$$

(a)
$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

(a) $|$
(b) $((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0$
(b) $|$
(c) $((p \rightarrow q) \land (p \land q \rightarrow r)) = 1$
(d) $(\neg p \rightarrow r) = 0$
(e) $(p \rightarrow q) = 1$
(f) $(p \land q \rightarrow r) = 1$
(g) $(\neg p) = 1$
 $r = 0$
(A₁ \land A₂) = 0 \rightsquigarrow A₁ = 0 | A₂ = 0
(A₁ \land A₂) = 1 \rightsquigarrow A₁ = 1, A₂ = 1
(A₁ \rightarrow A₂) = 1 \rightsquigarrow A₁ = 0 | A₂ = 1
(A₁ \rightarrow A₂) = 1 \rightsquigarrow A₁ = 0 | A₂ = 1
(\neg A₁) = 1 \rightsquigarrow A₁ = 0

```
(a) (\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1
                                        (a)
  (b) ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0
                                        (b)
             (c) ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1

(d) (\neg p \rightarrow r) = 0
                                        (c)
                        (e) (p \rightarrow q) = 1
(f) (p \land q \rightarrow r) = 1
                                        (d)
                              (g) (\neg p) = 1
                                  (e) (A_1 \wedge A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0
                            p = 0 q = 1 (A_1 \land A_2) = 1 \Rightarrow A_1 = 1, A_2 = 1
                                                               (A_1 \to A_2) = 0 \quad \leadsto \quad A_1 = 1, A_2 = 0
                                                               (A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1
                                                                        (\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0
```

(a)
$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r))) = 1$$

(b) $((p \to q) \land (p \land q \to r) \to (\neg p \to r)) = 0$
(c) $((p \to q) \land (p \land q \to r)) = 1$
(d) $((p \to q) \land (p \land q \to r)) = 1$
(e) $(p \to q) = 1$
(f) $(p \land q \to r) = 1$
(g) $(\neg p) = 1$
 $r = 0$
(e) $(p \to q) = 1$
 $r = 0$
(f) $(p \land q \to r) = 1$
 $(a) \mid (a) \mid$

```
(a) (\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1
                                       (a)
  (b) ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0
                                        (b)
             (c) ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1

(d) (\neg p \rightarrow r) = 0
                                        (c)
                        (e) (p \rightarrow q) = 1
(f) (p \land q \rightarrow r) = 1
                                       (d)
                              (g) (\neg p) = 1
                                  (e) (A_1 \wedge A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0
                            p = 0 q = 1 (A_1 \land A_2) = 1 \Rightarrow A_1 = 1, A_2 = 1
                            (g)
                                                              (A_1 \to A_2) = 0 \quad \leadsto \quad A_1 = 1, A_2 = 0
                            p = 0
                                                               (A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1
                                                                       (\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0
```

```
(a) (\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1
                                       (a)
  (b) ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0
                                       (b)
             (c) ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1

(d) (\neg p \rightarrow r) = 0
                                       (c)
                        (e) (p \rightarrow q) = 1

(f) (p \land q \rightarrow r) = 1
                                       (d)
                             (g) (\neg p) = 1
                                 (e) (A_1 \wedge A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0
                            p = 0 q = 1 (A_1 \land A_2) = 1 \Rightarrow A_1 = 1, A_2 = 1
                            (g)
                                                             (A_1 \to A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0
                            p = 0
                                                              (A_1 \to A_2) = 1 \longrightarrow A_1 = 0 \mid A_2 = 1
                                                                      (\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0
```

```
(a) (\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1
                                      (a)
  (b) ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0
                                      (b)
             (c) ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1

(d) (\neg p \rightarrow r) = 0
                                       (c)
                        (e) (p \rightarrow q) = 1
(f) (p \land q \rightarrow r) = 1
                                      (d)
                             (g) (\neg p) = 1
                                 (e) (A_1 \wedge A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0
                           p = 0 q = 1 (A_1 \land A_2) = 1 \Rightarrow A_1 = 1, A_2 = 1
                           (g)
                                                             (A_1 \to A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0
                            p=0
                                                             (A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1
                                                                    (\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0
     (h) (p \land q) = 0  r = 1
```

```
(a) (\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1
                                      (a)
  (b) ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0
                                      (b)
             (c) ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1

(d) (\neg p \rightarrow r) = 0
                                       (c)
                        (e) (p \rightarrow q) = 1
(f) (p \land q \rightarrow r) = 1
                                      (d)
                             (g) (\neg p) = 1
                                 (e) (A_1 \wedge A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0
                           p = 0 q = 1 (A_1 \land A_2) = 1 \Rightarrow A_1 = 1, A_2 = 1
                           (g)
                                                             (A_1 \to A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0
                            p=0
                                                             (A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1
                                                                    (\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0
     (h) (p \land q) = 0  r = 1
```

```
(a) (\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1
                                     (a)
  (b) ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0
                                     (b)
            (c) ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1

(d) (\neg p \rightarrow r) = 0
                                     (c)
                       (e) (p \rightarrow q) = 1
(f) (p \land q \rightarrow r) = 1
                                     (d)
                            (g) (\neg p) = 1
                               (e) (A_1 \wedge A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 0
                          p = 0 q = 1 (A_1 \land A_2) = 1 \Rightarrow A_1 = 1, A_2 = 1
                          (g)
                                                          (A_1 \to A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0
                           p=0
                                                           (A_1 \rightarrow A_2) = 1 \quad \rightsquigarrow \quad A_1 = 0 \mid A_2 = 1
                                                                  (\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0
     (h) (p \land q) = 0  r = 1
          (h) \ (h)
     p = 0
                q = 0
```

(a)
$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

(b) $((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0$
(c) $((p \rightarrow q) \land (p \land q \rightarrow r)) = 1$
(d) $(p \rightarrow q) = 1$
(e) $(p \rightarrow q) = 1$
(f) $(p \land q \rightarrow r) = 1$
(g) $(\neg p) = 1$
 $(p \rightarrow q) = 1$
(e) $(p \rightarrow q) = 1$
(f) $(p \land q \rightarrow r) = 1$
(g) $(p \rightarrow q) = 1$
 $(p \rightarrow q) = 1$
(h) $(p \land q) = 0$
 $(p \rightarrow q) = 0$
 $(p \rightarrow q) = 0$
(h) $(p \land q) = 0$
 $(p \rightarrow q) = 0$
(h) $(p \land q) = 0$
 $(p \rightarrow q) = 0$
(h) $(p \land q) = 0$
 $(p \rightarrow q) = 0$
(h) $(p \land q) = 0$
 $(p \rightarrow q) = 0$
(h) $(p \land q) = 0$
 $(p \rightarrow q) = 0$
(h) $(p \land q) = 0$
(h)

All rules on this branch have been applied, so the formula is satisfiable.

(a)
$$(\neg((p\rightarrow q)\land(p\land q\rightarrow r)\rightarrow(\neg p\rightarrow r)))=1$$
(b) $((p\rightarrow q)\land(p\land q\rightarrow r)\rightarrow(\neg p\rightarrow r))=0$
(c) $((p\rightarrow q)\land(p\land q\rightarrow r)\rightarrow(\neg p\rightarrow r))=1$
(d) $(\neg p\rightarrow r)=0$
(e) $(p\rightarrow q)=1$
(f) $(p\land q\rightarrow r)=1$
(g) $(\neg p)=1$
 $r=0$
(e) (e)
(f) $(p\land q)=0$
 $r=1$
(h) $(p\land q)=0$
 $r=1$

Build an open branch on which all rules have been applied: a complete open branch

Select signed atoms on this branch

$$\{r\mapsto 0, p\mapsto 0, q\mapsto \cdots\}$$

(a)
$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

(b) $((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0$

(c) $((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 1$

(d) $(p \rightarrow q) = 1$

(e) $(p \rightarrow q) = 1$

(f) $(p \land q \rightarrow r) = 1$

(g) $(p \rightarrow q) = 1$
 $(p \rightarrow$

Build an open branch on which all rules have been applied: a complete open branch

Select signed atoms on this branch

$$\{r\mapsto 0, p\mapsto 0, q\mapsto \cdots\}$$

(a)
$$(\neg((p\rightarrow q)\land(p\land q\rightarrow r)\rightarrow(\neg p\rightarrow r)))=1$$
(b) $((p\rightarrow q)\land(p\land q\rightarrow r)\rightarrow(\neg p\rightarrow r))=0$
(c) $((p\rightarrow q)\land(p\land q\rightarrow r)\rightarrow(\neg p\rightarrow r))=1$
(d) $(\neg p\rightarrow r)=0$
(e) $(p\rightarrow q)=1$
(f) $(p\land q\rightarrow r)=1$
(g) $(\neg p)=1$
 $r=0$
(e) (e)
(f) $(p\land q)=0$
 $r=1$
(h) $(p\land q)=0$
 $r=1$

Build an open branch on which all rules have been applied: a complete open branch

Select signed atoms on this branch

$$\{r\mapsto 0, p\mapsto 0, q\mapsto \cdots\}$$

(a)
$$(\neg((p\rightarrow q)\land(p\land q\rightarrow r)\rightarrow(\neg p\rightarrow r)))=1$$
(b) $((p\rightarrow q)\land(p\land q\rightarrow r)\rightarrow(\neg p\rightarrow r))=0$
(c) $((p\rightarrow q)\land(p\land q\rightarrow r)\rightarrow(\neg p\rightarrow r))=1$
(d) $(\neg p\rightarrow r)=0$
(e) $(p\rightarrow q)=1$
(f) $(p\land q\rightarrow r)=1$
(g) $(\neg p)=1$
 $r=0$
(e) (e)
(f) $(p\land q)=0$
 $r=1$
(h) $(p\land q)=0$
 $r=1$

Build an open branch on which all rules have been applied: a complete open branch

Select signed atoms on this branch

$$\{r\mapsto 0, p\mapsto 0, q\mapsto \cdots\}$$

A formula A is satisfiable iff a tableau for A=1 contains a complete open branch (and iff every tableau for A=1 contains a complete open branch).

A formula A is valid iff there is a closed a tableau for A = 0 (and iff every tableau for A = 0 is closed).

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B) = 0$ (and iff every tableau for $(A \leftrightarrow B) = 0$ is closed).

A formula A is satisfiable iff a tableau for A=1 contains a complete open branch (and iff every tableau for A=1 contains a complete open branch).

A formula A is valid iff there is a closed a tableau for A=0 (and iff every tableau for A=0 is closed).

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B) = 0$ (and iff every tableau for $(A \leftrightarrow B) = 0$ is closed).

A formula A is satisfiable iff a tableau for A=1 contains a complete open branch (and iff every tableau for A=1 contains a complete open branch).

A formula A is valid iff there is a closed a tableau for A = 0 (and iff every tableau for A = 0 is closed).

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B) = 0$ (and iff every tableau for $(A \leftrightarrow B) = 0$ is closed).

A formula A is satisfiable iff a tableau for A=1 contains a complete open branch (and iff every tableau for A=1 contains a complete open branch).

A formula A is valid iff there is a closed a tableau for A = 0 (and iff every tableau for A = 0 is closed).

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B) = 0$ (and iff every tableau for $(A \leftrightarrow B) = 0$ is closed).

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(A_1 \lor A_2) = 0 \quad \Rightarrow \quad A_1 = 0, A_2 = 0$$
 $(A_1 \lor A_2) = 1 \quad \Rightarrow \quad A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0 \quad \Rightarrow \quad A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1 \quad \Rightarrow \quad A_1 = 0$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- 3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(\neg(q \lor p \to p \lor q)) = 1$$

$$(A_1 \lor A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0, A_2 = 0$$

$$(A_1 \lor A_2) = 1 \quad \rightsquigarrow \quad A_1 = 1 \mid A_2 = 1$$

$$(A_1 \to A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0$$

$$(\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0$$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- 3. if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(\neg (q \lor p \to p \lor q)) = 1$$

$$(A_1 \lor A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0, A_2 = 0$$

$$(A_1 \lor A_2) = 1 \quad \rightsquigarrow \quad A_1 = 1 \mid A_2 = 1$$

$$(A_1 \to A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0$$

$$(\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0$$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(A_{1} \lor A_{2}) = 0 \quad \rightsquigarrow \quad A_{1} = 0, A_{2} = 0 (A_{1} \lor A_{2}) = 1 \quad \rightsquigarrow \quad A_{1} = 1 \mid A_{2} = 1 (A_{1} \lor A_{2}) = 0 \quad \rightsquigarrow \quad A_{1} = 1 \mid A_{2} = 1 (A_{1} \to A_{2}) = 0 \quad \rightsquigarrow \quad A_{1} = 1, A_{2} = 0 (\neg A_{1}) = 1 \quad \rightsquigarrow \quad A_{1} = 0$$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(\neg(q \lor p \to p \lor q)) = 1 \leadsto (q \lor p \to p \lor q) = 0$$

$$(A_1 \lor A_2) = 0 \longrightarrow A_1 = 0, A_2 = 0$$

 $(A_1 \lor A_2) = 1 \longrightarrow A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0 \longrightarrow A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1 \longrightarrow A_1 = 0$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(\neg(q \lor p \to p \lor q)) = 1 \leadsto (q \lor p \to p \lor q) = 0 \leadsto (q \lor p) = 1, (p \lor q) = 0$$

$$(A_1 \lor A_2) = 0 \quad \rightsquigarrow \quad A_1 = 0, A_2 = 0$$

$$(A_1 \lor A_2) = 1 \quad \rightsquigarrow \quad A_1 = 1 \mid A_2 = 1$$

$$(A_1 \to A_2) = 0 \quad \rightsquigarrow \quad A_1 = 1, A_2 = 0$$

$$(\neg A_1) = 1 \quad \rightsquigarrow \quad A_1 = 0$$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(\neg(q \lor p \to p \lor q)) = 1 \leadsto (q \lor p \to p \lor q) = 0 \leadsto (q \lor p) = 1, (p \lor q) = 0$$

$$(A_1 \lor A_2) = 0$$
 \longrightarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \longrightarrow $A_1 = 1 | A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(\neg(q \lor p \to p \lor q)) = 1 \leadsto (q \lor p \to p \lor q) = 0 \leadsto (q \lor p) = 1, (p \lor q) = 0 \leadsto (q \lor p) = 1, p = 0, q = 0$$

$$(A_1 \lor A_2) = 0$$
 \longrightarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \longrightarrow $A_1 = 1 \mid A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(\neg(q \lor p \to p \lor q)) = 1 \leadsto (q \lor p \to p \lor q) = 0 \leadsto (q \lor p) = 1, (p \lor q) = 0 \leadsto (q \lor p) = 1, p = 0, q = 0$$

$$(A_1 \lor A_2) = 0$$
 \longrightarrow $A_1 = 0, A_2 = 0$
 $(A_1 \lor A_2) = 1$ \longrightarrow $A_1 = 1 | A_2 = 1$
 $(A_1 \to A_2) = 0$ \longrightarrow $A_1 = 1, A_2 = 0$
 $(\neg A_1) = 1$ \longrightarrow $A_1 = 0$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

$$(A_1 \lor A_2) = 0 \quad \Rightarrow \quad A_1 = 0, A_2 = 0$$

$$(A_1 \lor A_2) = 1 \quad \Rightarrow \quad A_1 = 1 \mid A_2 = 1$$

$$(q \lor p \to p \lor q) = 0 \Rightarrow \quad (A_1 \to A_2) = 0 \quad \Rightarrow \quad A_1 = 1, A_2 = 0$$

$$(q \lor p) = 1, (p \lor q) = 0 \Rightarrow \quad (q \lor p) = 1, p = 0, q = 0 \Rightarrow \quad (\neg A_1) = 1 \quad \Rightarrow \quad A_1 = 0$$

$$(q \lor p) = 1, p = 0, q = 0 \Rightarrow \quad (\neg A_1) = 1 \quad \Rightarrow \quad A_1 = 0$$

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

Consider Example 1 again.

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

Consider Example 1 again.

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- 2. remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

Consider Example 1 again.

We will make the following changes:

- 1. show a tableau using the $B_1 \mid \cdots \mid B_n$ notation;
- remove closed branches;
- if we apply a table expansion rule to a signed formula on a branch, we will remove the formula from the branch.

Consider Example 1 again.

$$(A_{1} \lor A_{2}) = 0 \quad \rightsquigarrow \quad A_{1} = 0, A_{2} = 0$$

$$(A_{1} \lor A_{2}) = 1 \quad \rightsquigarrow \quad A_{1} = 1 \mid A_{2} = 1$$

$$(q \lor p \to p \lor q) = 0 \rightsquigarrow \quad (A_{1} \to A_{2}) = 0 \quad \rightsquigarrow \quad A_{1} = 1, A_{2} = 1$$

$$(q \lor p \to p \lor q) = 0 \rightsquigarrow \quad (A_{1} \to A_{2}) = 0 \quad \rightsquigarrow \quad A_{1} = 1, A_{2} = 0$$

$$(q \lor p) = 1, (p \lor q) = 0 \rightsquigarrow \quad (\neg A_{1}) = 1 \quad \rightsquigarrow \quad A_{1} = 0$$

$$q = 1, p = 0, q = 0 \mid p = 1, p = 0, q = 0 \rightsquigarrow$$

$$p = 1, p = 0, q = 0$$

All branches are closed, so the signed formula $(\neg(q \lor p \to p \lor q)) = 1$ is unsatisfiable.

$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r))) = 1 \leadsto ((p \to q) \land (p \land q \to r) \to (\neg p \to r)) = 0$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r))) = 1 \leadsto ((p \to q) \land (p \land q \to r) \to (\neg p \to r)) = 0$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r))) = 1 \rightsquigarrow ((p \to q) \land (p \land q \to r) \to (\neg p \to r)) = 0 \rightsquigarrow ((p \to q) \land (p \land q \to r)) = 1, (\neg p \to r) = 0$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r))) = 1 \rightsquigarrow ((p \to q) \land (p \land q \to r) \to (\neg p \to r)) = 0 \rightsquigarrow ((p \to q) \land (p \land q \to r)) = 1, (\neg p \to r) = 0$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r))) = 1 \rightsquigarrow ((p \to q) \land (p \land q \to r) \to (\neg p \to r)) = 0 \rightsquigarrow ((p \to q) \land (p \land q \to r)) = 1, (\neg p \to r) = 0 \rightsquigarrow ((p \to q) \land (p \land q \to r)) = 1, (\neg p) = 1, r = 0$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r))) = 1 \rightsquigarrow ((p \to q) \land (p \land q \to r) \to (\neg p \to r)) = 0 \rightsquigarrow ((p \to q) \land (p \land q \to r)) = 1, (\neg p \to r) = 0 \rightsquigarrow ((p \to q) \land (p \land q \to r)) = 1, (\neg p) = 1, r = 0$$

$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p \rightarrow r) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p) = 1, r = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, p = 0, r = 0$$

$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p \rightarrow r) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p) = 1, r = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, p = 0, r = 0$$

$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p \rightarrow r) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p) = 1, r = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, p = 0, r = 0 \rightsquigarrow (p \rightarrow q) = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0$$

$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p \rightarrow r) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p) = 1, r = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, p = 0, r = 0 \rightsquigarrow (p \rightarrow q) = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0$$

$$(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p \rightarrow r) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p) = 1, r = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, p = 0, r = 0 \rightsquigarrow (p \rightarrow q) = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0 \rightsquigarrow p = 0, (p \land q \rightarrow r) = 1, r = 0 \mid q = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0$$

```
(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p \rightarrow r) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p) = 1, r = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, p = 0, r = 0 \rightsquigarrow (p \rightarrow q) = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0 \rightsquigarrow p = 0, (p \land q \rightarrow r) = 1, r = 0 \mid q = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0
```

```
 (\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p \rightarrow r) = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p) = 1, r = 0 \rightsquigarrow ((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, p = 0, r = 0 \rightsquigarrow (p \rightarrow q) \land (p \land q \rightarrow r)) = 1, p = 0, r = 0 \rightsquigarrow (p \rightarrow q) = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0 \rightsquigarrow p = 0, (p \land q \rightarrow r) = 1, p = 0, r = 0 \rightsquigarrow p = 0, (p \land q) = 0, r = 0 \mid p = 0, r = 1, r = 0 \mid q = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0
```

```
 (\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r))) = 1 \leadsto ((p \to q) \land (p \land q \to r) \to (\neg p \to r)) = 0 \leadsto ((p \to q) \land (p \land q \to r)) = 1, (\neg p \to r)) = 0 \leadsto ((p \to q) \land (p \land q \to r)) = 1, (\neg p \to r) = 0 \leadsto ((p \to q) \land (p \land q \to r)) = 1, p = 0, r = 0 \leadsto ((p \to q) \land (p \land q \to r)) = 1, p = 0, r = 0 \leadsto (p \to q) = 1, (p \land q \to r) = 1, p = 0, r = 0 \leadsto p = 0, (p \land q \to r) = 1, p = 0, r = 0 \leadsto p = 0, (p \land q \to r) = 1, p = 0, r = 0 \leadsto p = 0, (p \land q) = 0, r = 0 \bowtie p = 0, r = 1, r = 0 \bowtie q = 1, (p \land q \to r) = 1, p = 0, r = 0
```

```
(\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r))) = 1 \rightsquigarrow
((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (\neg p \rightarrow r)) = 0 \rightsquigarrow
((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p \rightarrow r) = 0 \rightsquigarrow
((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, (\neg p) = 1, r = 0 \rightsquigarrow
((p \rightarrow q) \land (p \land q \rightarrow r)) = 1, p = 0, r = 0 \rightsquigarrow
(p \rightarrow q) = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0 \rightsquigarrow
p = 0, (p \land q \to r) = 1, r = 0
a = 1, (p \land a \rightarrow r) = 1, p = 0, r = 0 \rightsquigarrow
q = 1, (p \land q \rightarrow r) = 1, p = 0, r = 0 \rightsquigarrow
p = 0, r = 0
p = 0, q = 0, r = 0
p = 0, r = 1, r = 0
q = 1, (p \land q \to r) = 1, p = 0, r = 0
```

$$\begin{array}{l} (\neg((p\to q) \land (p \land q \to r) \to (\neg p \to r))) = 1 \rightsquigarrow \\ ((p\to q) \land (p \land q \to r) \to (\neg p \to r)) = 0 \rightsquigarrow \\ ((p\to q) \land (p \land q \to r)) = 1, (\neg p \to r) = 0 \rightsquigarrow \\ ((p\to q) \land (p \land q \to r)) = 1, (\neg p) = 1, r = 0 \rightsquigarrow \\ ((p\to q) \land (p \land q \to r)) = 1, p = 0, r = 0 \rightsquigarrow \\ ((p\to q) \land (p \land q \to r)) = 1, p = 0, r = 0 \rightsquigarrow \\ (p\to q) = 1, (p \land q \to r) = 1, p = 0, r = 0 \rightsquigarrow \\ p = 0, (p \land q \to r) = 1, r = 0 \mid \\ q = 1, (p \land q \to r) = 1, p = 0, r = 0 \rightsquigarrow \\ p = 0, r = 1, r = 0 \mid \\ q = 1, (p \land q \to r) = 1, p = 0, r = 0 \rightsquigarrow \\ p = 0, r = 0 \mid \\ p = 0, r = 0 \mid \\ p = 0, r = 1, r = 0 \mid \\ q = 1, (p \land q \to r) = 1, p = 0, r = 0 \end{array}$$

The branch containing p = 0, r = 0 can no more be expanded or closed so it gives us a model (in fact, two models)

Summary

We were studying various algorithms for satisfiability:

- for general formulas:
 - Splitting algorithm
 - Semantic Tableaux algorithm
- for sets of clauses:
 - ► DPLL
 - Randomized algorithms