MIN I MAX (HOWERSARZ)

_ > NOTATKA

PRZEWA DECYZYJNE FLEMENT UNIQUENESS

3 Liniowe drzewa decyzyjne

Rozważmy następujący problem:

Problem: (Różność elementów)

Dane: Ciąg $x_1, x_2, ..., x_n$ liczb rzeczywistych.

Wynik: TAK, jeśli $\forall_{1 \leq i \neq j \leq n} x_i \neq x_j$,

NIE, w przeciwnym przypadku.

KONWENCJA: każdy ciąg danych x_1, \ldots, x_n utożsamiamy z punktem \bar{x} przestrzeni R^n , którego współrzędnymi są x_1, \ldots, x_n . Problem polega na sprawdzeniu, czy wszystkie współrzędne \bar{x} -a mają różne wartości.

Oczywistą górną granicą (w modelu, w którym dane biorą udział jedynie w porównaniach) dla tego problemu jest $O(n \log n)$. Wystarczy bowiem posortować ciąg wejściowy a następnie wykonać n-1 porównań elementów sąsiadujących z sobą.

Ponieważ zbiór odpowiedzi jest dwuelementowy, metody z poprzedniego rozdziału nie dadzą w tym przypadku sensownego ograniczenia na dolną granicę. Metoda, którą tu przedstawimy jest rozwinięciem poprzedniej. Pokażemy, że całą przestrzeń danych można rozbić na wiele rozłącznych podzbiorów i że liści w drzewie decyzyjnym musi być co najmniej tyle, ile jest tych rozłącznych podzbiorów.

Nasza argumentacja będzie prawdziwa także dla nieco szerszej klasy algorytmów, w których można porównywać wartości kombinacji liniowych elementów ciągu wejściowego (albo równoważnie, wartości tych kombinacji można przyrównywać do zera). Takim algorytmom odpowiadają liniowe drzewa decyzyjne. Sa to drzewa trynarne. W jego wierzchołkach wewnętrznych znajdują się kombinacje liniowe elementów ciągu wejściowego, a trzy krawędzie prowadzące do synów odpowiadają relacjom "<0", "=0", ">0".

Definicja 1 Niech $T_n = (V, E)$ będzie liniowym drzewem decyzyjnym dla problemu Różność elementów ograniczonego do danych z R^n . Dla każdego wierzchołka $v \in V$ przez S(v) oznaczmy zbiór tych punktów z R^n , które osiągają v.

Oczywiście dla korzenia r drzewa T_n , zbiór S(r) zawiera wszystkie punkty z R^n . Kombinacja liniowa $L_v(\bar{x})$ etykietująca v rozbija S(v) na trzy rozłączne podzbiory: tych punktów z S(v), dla których wartość L_v jest odpowiednio mniejsza od zera, równa zero i większa od zera.

Fakt 2 Dla każdego $v \in V$ zbiór S(v) jest wielościanem wypukłym.

Pomijamy (nietrudny) dowód tego faktu. Intuicje co do jego prawdziwości można sobie wyrobić analizując przypadek n=2 (wówczas kombinacje liniowe określają proste na płaszczyźnie) lub n=3 (wówczas kombinacje liniowe określają płaszczyzny).

Niech $P_1, \ldots, P_{n!}$ będą różnymi punktami z R^n otrzymanymi przez wszystkie permutacje współrzędnych punktu $(1, 2, \ldots,)$. Dla każdego z tych punktów poprawny algorytm dla problemu Różność Elementów odpowie TAK. Pokażemy jednak, że w odpowiadającym temu algorytmowi liniowym drzewie decyzyjnym z każdym z tych punktów musimy "dojechać" do innego liścia.

Fakt 3 Niech v_i będzie liściem drzewa T_n takim, że $P_i \in S(v_i)$ d la $i=1,\ldots,n$. Wówczas $\forall_{i\neq j}v_i\neq v_j$.

Dowód. Załóżmy nie wprost, że istnieją różne punkty P_i oraz P_j należące do S(v) dla pewnego liścia v.

Niech k będzie najmniejszą liczbą, która występuje na innej pozycji we współrzędnych punktu P_i oraz punktu P_j . Niech to będą odpowiednio pozycje k_i oraz k_j . Bez zmniejszenia ogólności załóżmy, że $k_i < k_j$. Jeśli przez $f(\bar{x})$ oznaczymy różnicę wartości współrzędnych $x_{k_i} - x_{k_j}$ punktu \bar{x} , to widzimy, że $f(P_i) < 0$ a $f(P_j) > 0$. Ponieważ f jest funkcją ciągłą, więc na odcinku łączącym P_i i P_j istnieje punkt Y, w którym funkcja f przyjmuje wartość f0, a więc taki punkt, który ma tę samą wartość różnych współrzędnych.

Ze względu na wypukłość zbioru S(v) punkt Y należy do tego zbioru. Stąd otrzymujemy sprzeczność, ponieważ algorytm udziela takiej samej odpowiedzi dla wszystkich punktów z S(v). Tak więc albo dla Y albo dla P_i udzieli fałszywej odpowiedzi.

Wniosek 2 Każdy algorytm, rozwiązujący problem Różność elementów za pomocą porównań elementów danych, wykonuje co najmniej cn log n porównań.