# LINEAR ALGEBRA, NUMERICAL AND COMPLEX ANALYSIS

#### **MA11004**

### **SECTIONS 1 and 2**

Dr. Jitendra Kumar

Professor
Department of Mathematics
Indian Institute of Technology Kharagpur
West Bengal 721302, India



Webpage: <a href="http://www.facweb.iitkgp.ac.in/~jkumar/">http://www.facweb.iitkgp.ac.in/~jkumar/</a>

## **Determination of Roots of Algebraic and Transcendental Equations**

- Bisection Method
- > Fixed Point Iteration Method
- ☐ Newton-Raphson Method
- ☐ Secant Method

### **Bisection Method**

It is based on the following theorem for zeroes of continuous functions:

**Theorem:** Given a continuous function  $f:[a,b] \to \mathbb{R}$  such that f(a)f(b) < 0, then  $\exists \alpha \in (a,b)$  such that  $f(\alpha) = 0$ .

## **Outline of the Algorithm**

Choosing  $I_0 = [a, b]$ , so that f(a)f(b) < 0.

The bisection method generates a sequence of subinterval  $I_k = \left[a^{(k)}, b^{(k)}\right], k \geq 0$ 

such that  $I_k \subset I_{k-1}$ ,  $k \ge 1$  and the property  $f(a^{(k)})f(b^{(k)}) < 0$ .

### **Pseudocode**

Set 
$$a^{(0)} = a$$
,  $b^{(0)} = b$  and  $x^{(0)} = \frac{a+b}{2}$   
For  $k \ge 0$   
if  $f(a^{(k)}) f(x^{(k)}) < 0$   
set  $a^{(k+1)} = a^{(k)}$   $b^{(k+1)} = x^{(k)}$   
if  $f(x^{(k)}) f(b^{(k)}) < 0$   
set  $a^{(k+1)} = x^{(k)}$   $b^{(k+1)} = b^{(k)}$   
Set  $x^{(k+1)} = \frac{a^{(k+1)} + b^{(k+1)}}{2}$ 



## **Convergence of Bisection Method**

Let 
$$|I_k| = |b^{(k)} - a^{(k)}|$$
  $f(\alpha) = 0$ 

Note that 
$$|I_k| = \frac{|I_{k-1}|}{2}$$

$$\Rightarrow |I_k| = \frac{|I_0|}{2^k}; \ k \ge 0 \ \Rightarrow |I_k| = \frac{b-a}{2^k}; \ k \ge 0$$

Denoting error  $e^{(k)} = x^{(k)} - \alpha$ 



$$\Rightarrow |e^{(k)}| < \frac{|I_k|}{2} = \frac{(b-a)}{2^{(k+1)}}; \ k \ge 0 \Rightarrow \lim_{k \to \infty} |e^{(k)}| = 0$$

The bisection method is globally convergent!

**Example:** Perform five iterations of the bisection method to obtain he smallest positive root of the equation

$$f(x) := x^3 - 5x + 1 = 0$$

**Actual Roots:** 

2.12841, -2.33005,0.20163

**Solution:** 
$$f(0) = 1 \& f(1) = -3 \implies f(0)f(1) < 0$$

Initialization 
$$a^{(0)} = 0$$

$$b^{(0)} = 1$$

Initialization 
$$a^{(0)} = 0$$
  $b^{(0)} = 1$   $x^{(0)} = \frac{1+0}{2} = 0.5$ 

Observe 
$$f(a^{(0)}) f(x^{(0)}) < 0$$

$$a^{(0)} = 0$$
  $b^{(0)} = 1$   $x^{(0)} = \frac{1+0}{2} = 0.5$   $f(a^{(0)}) f(x^{(0)}) < 0$ 

| Iteration | $a^{(k)}$ | $\chi^{(k)}$ | $b^{(k)}$ | Observation                                      |
|-----------|-----------|--------------|-----------|--------------------------------------------------|
| 1         | 0         | 0.25         | 0.5       | $f(a^{(k)})f(x^{(k)}) < 0$                       |
|           | (f > 0)   | (f < 0)      | (f < 0)   |                                                  |
| 2         | 0         | 0.125        | 0.25      | $C(\cdot, (k)) C(1(k)) = 0$                      |
|           | (f > 0)   | (f > 0)      | (f < 0)   | $f(x^{(k)}) f(b^{(k)}) < 0$                      |
| 3         | 0.125     | 0.1875       | 0.25      | $f(x^{(k)})f(b^{(k)}) < 0$                       |
|           | (f > 0)   | (f > 0)      | (f < 0)   |                                                  |
| 4         | 0.1875    | 0.21875      | 0.25      | C(-(k)) $C(-(k))$                                |
|           | (f > 0)   | (f < 0)      | (f < 0)   | $f\left(a^{(k)}\right)f\left(x^{(k)}\right) < 0$ |

$$f(x) = x^3 - 5x + 1$$

Root lies in (0.1875,0.21875)

Approximate root after

5 iterations:

$$x^{(5)} = 0.203125$$

#### **Fixed Point Iteration Method:**

Idea of general iteration method:

Rewrite f(x) = 0 to the form x = g(x) and set up the iterations

$$x^{(k+1)} = g(x^{(k)}), \qquad k = 0, 1, 2, ...$$

Convergence of the method will depend on the function g(x).

**Remark:** The point  $x^*$  is called a fixed point of the function g is  $x^* = g(x^*)$ .

$$f(x) = 0 \Leftrightarrow x = g(x)$$

Note that the choice of g is not unique. For instance, we me take:

$$g(x) = x - f(x)$$

$$g(x) = x + 2f(x)$$

$$g(x) = x - \frac{f(x)}{f'(x)}$$
 assuming  $f'(x) \neq 0$ 

## **Sufficient condition for convergence**

If g(x) is continuous in some interval [a,b] that contains the root and  $|g'(x)| \le \rho < 1$  in this interval, then for any choice of  $x^{(0)}$  from [a,b] the sequence  $x^{(k)}$  will converge to the root of the equation f(x) = 0.

**Proof:** Consider 
$$|x^{(k+1)} - x^*| = |g(x^{(k)}) - g(x^*)| = |g'(\xi)(x^{(k)} - x^*)|$$
,  $\xi \in (x^{(k)}, x^*)$  using MVT

Since  $|g'(x)| \le \rho$ , we get

$$\left| x^{(k+1)} - x^* \right| \le \rho \left| x^{(k)} - x^* \right| \le \rho^2 \left| x^{(k-1)} - x^* \right| \le \dots \le \rho^{k+1} \left| x^{(0)} - x^* \right|$$

Since  $\rho < 1$ , we have  $\rho^k \to 0$  as  $k \to \infty$ .

# Geometrical Interpretation $x^{(k+1)} = g(x^{(k)})$



**Example :** Consider  $x^3 - 5x + 1 = 0$ 

**Case 1:** Rewrite the equation 
$$x = g(x) = \frac{(1+x^3)}{5}$$

Iteration method becomes:

$$x^{(k+1)} = \frac{\left(1 + \left(x^{(k)}\right)^3\right)}{5} \qquad g'(x) = \frac{3x^2}{5}$$

Root lies in the interval (0, 1) so we can choose  $x^{(0)} = 0.5$  as initial guess

$$x^{(0)} = 0.5$$
  $x^{(1)} = 0.2250$   $x^{(2)} = 0.2023$ 

$$x^{(3)} = 0.2017$$
  $x^{(4)} = 0.2016$   $x^{(5)} = 0.2016$ 

Case 2: Now take initial guess  $x^{(0)} = 2.5$  in the above example.

$$x^{(k+1)} = \frac{\left(1 + \left(x^{(k)}\right)^3\right)}{5}$$

$$x^{(1)} = 3.325$$

$$x^{(2)} = 7.552$$

$$x^{(3)} = 86.3419$$

$$x^{(4)} = 1.2873 \times 10^5$$

$$x^{(5)} = 4.2669 \times 10^{14}$$

The iterations are diverging toward plus infinity.

**Remark :** Note that  $g'(x) = \frac{3x^2}{5}$  in above both the cases.

- ightharpoonup In case 1, in the interval containing the root and initial guess, |g'|<1 and hence convergence is guaranteed.
- $\succ$  In case 2, in the interval containing the root and initial guess, |g'| > 1 and hence convergence is NOT guaranteed.

Case 3: Rewrite the equation as 
$$x = g(x) = \frac{-1}{x^2 - 5}$$

Now taking the initial guess  $x^{(0)} = 2.5$ , we get

$$x^{(0)} = 2.5$$

$$x^{(0)} = 2.5$$
  $x^{(1)} = -0.80$ 

$$x^{(2)} = 0.2294$$

$$x^{(3)} = 0.2021$$
  $x^{(4)} = 0.2016$ 

$$x^{(4)} = 0.2016$$

$$x^{(5)} = 0.2016$$

### **Remark:**

Note that, 
$$|g'| = \frac{2|x|}{(x^2 - 5)^2}$$

In the interval containing the root and initial guess |g'| > 1 but the sequence converges as this is the sufficient condition for convergence not necessary.

### **CONCLUSIONS**

### Bisection Method

The Bisection Method is an iterative approach that narrows down an interval that contains a root of the function f(x). Convergence is always guaranteed.

Fixed Point Iteration Method  $f(x) = 0 \Leftrightarrow x = g(x)$ 

$$x^{(k+1)} = g(x^{(k)}), \qquad k = 0, 1, 2, ...$$

Convergence is guaranteed if  $|g'(x)| \le \rho < 1$