DREAMER v2 (Statically Scheduled Logic Emulation)

Albert Magyar, Richard Lin, Jonathan Bachrach

January 6, 2014

Why design a new reconfigurable logic platform?

- Efficient support for word-width operations, debug visibility
- Enjoy FPGA build times?
- ► Enjoy recompiling to change wire visibility with ChipScope?

High-level motivation

- We want to build a network of small, parallel processors
- Also supporting tools!

- Occupy a new point in the space between programmability and efficiency
- Explore applications in varied domains
 - Fast logic emulation
 - Providing a new programmable logic target
 - ► Low-level, low-overhead parallel programming

Emulation and prototyping

- Close designer productivity loop for hardware creation
 - Provide emulation faster than software simulation
 - Provide better dynamic wire visibility than FPGAs
- Fast compile time is a big win here
 - Chisel designs map to the Chiselator in seconds
 - Overall iteration speed much faster
- Match FPGA in cost
 - Implement array on FPGA for FPGA overlay?

Real implementation target

- FPGA alternative
 - Again, beating FPGA tools in compile time is key
 - Hope to beat FPGAs in energy-delay product
 - Multiplex expensive, word-width ALUs in time
- Direct programming
 - Highly-parallel execution in dataflow order
 - Is this better than SIMD? For what applications?
- lacktriangle Maybe an FPGA is the best way to realize this grid o overlay

Array architecture

- Massively parallel machine (in theory)
- 4-nearest neighbor connected network
- Static scheduling of operations and data movement
- ▶ Ready/valid interface on ports → supplants noop storage
- ▶ 2-element buffers → deadlock less common

Tile architecture

- Extremely reduced ISA meant for emulation
- ▶ Operations for logical, arithmetic, and mux nodes
- ▶ No branching simple emulation loop

Initial VLSI results

Per-tile Per-tile area area

Per-tile

area

2x2 "accelerator" array

Per-tile

area