

PROG C9001: Programming for Data Analytics

Module Details				
Module Code:	PROG C9001			
Full Title:	Programming for Data Analytics APPROVED			
Valid From::	Semester 2 - 2023/24 (January 2024)			
Language of Instruction: English				
Duration:	1 Semester			
Credits::	10			
Module Owner::	John Loane Jack McDonnell			
Departments:	Computing Science & Mathematics			
Module Description:	This module will teach students about data structures and programming techniques which will allow them to gather, manipulate, store and graph data sets.			

Module Learning Outcome			
On successful completion of this module the learner will be able to:			
#	Module Learning Outcome Description		
MLO1	Evaluate and compare the effectiveness of programming technologies for data analysis.		
MLO2	Assess the most appropriate data structures for storing and analysing data sets.		
MLO3	Review and select libraries for the processing of datasets.		
MLO4	Create and develop programs to scrape data from the web.		
MLO5	Design and prepare datasets for consumption over computer networks.		
MLO6	Design and develop RESTful APIs.		

Pre-requisite learning

Module Recommendations

This is prior learning (or a practical skill) that is strongly recommended before enrolment in this module. You may enrol in this module if you have not acquired the recommended learning but you will have considerable difficulty in passing (i.e. achieving the learning outcomes of) the module. While the prior learning is expressed as named DkIT module(s) it also allows for learning (in another module or modules) which is equivalent to the learning specified in the named module(s).

No recommendations listed

Module Indicative Content

Learning Python

Installing, Whitespace, Basic constructs, Functions, Modules, Packages, Third-party libraries

Working with in-memory data

Ordered/unordered data, lists, tuples, dictionaries, sets

Working with persistent data TXT, CSV, Pickles, Binaries, JSON, XLSX, Local Databases

Manipulating data

Curation, Sorting, Searching, Transforming, Mapping, Filtering, Comprehensions

Working with web data Scraping, HTML, XML, NLTK

Working with large numerical datasets

Numpy and Scipy.

Working with data frames, time series, financial and economic data

Producing graphs and plots from your data

Working in the cloud

Accessing datasets via a REST based API and publishing data programmatically on the web

Other programming technologies

Module Assessment				
Assessment Breakdown	%			
Course Work	100.00%			
Module Special Regulation				

Assessments

Full-time

Course Work				
Assessment Type	Continuous Assessment	% of Total Mark	10	
Marks Out Of	100	Pass Mark	40	
Timing	S1 Week 3	Learning Outcome	1,2	
Duration in minutes	0			
Assessment Description Given "dirty" data devise a series	of automated cleansing operations and then save	the data for later processing.		
Assessment Type	Continuous Assessment	% of Total Mark	30	
Marks Out Of	100	Pass Mark	40	
Timing	S1 Week 6	Learning Outcome	2,3,4	
Duration in minutes	0			

Assessment Description

Devise an automated scraping strategy for web-based data, provide code that scraps, cleans, curates and stores the "clean" web-scraped data in a database

Assessment Type Continuous Assessment % of Total Mark 30 Marks Out Of 100 Pass Mark 40 Timina S1 Week 9 Learning Outcome 1.2.3.4

Duration in minutes

Assessment Description
Redo all of the work for Assessments 1 and 2 to take advantage of existing software libraries for data manipulation and analysis. Compare this approach with the previous manual approach.

30 Assessment Type Continuous Assessment % of Total Mark Marks Out Of 40 Pass Mark Timing End-of-Semester **Learning Outcome** 3,5,6

Duration in minutes

Assessment Description

Integrate classroom-developed visualisations into a webapp and deploy to the cloud. Make sure that if backend data changes, so too do the visualizations. Provide API access to the data. This assessment will be linked with Data Project 1 which is a joint project with Statistics.

No Project

No Practical

No Final Examination

Part-time

Course work			
Assessment Type	Continuous Assessment	% of Total Mark	10
Marks Out Of	100	Pass Mark	40
Timing	S1 Week 6	Learning Outcome	1,2
Duration in minutes	0		

Assessment Description
CA1 (Semester 1) - Given "dirty" data devise a series of automated cleansing operations and then save the data for later processing.

Assessment Type Continuous Assessment % of Total Mark 30 40 Marks Out Of 100 Pass Mark Timina End-of-Semester **Learning Outcome** 2.3.4

Duration in minutes Assessment Description

CA2 (Semester 1) - Devise an automated scraping strategy for web-based data, provide code that scraps, cleans, curates and stores the "clean" web-scraped data in a database

Assessment Type Continuous Assessment % of Total Mark 30 Marks Out Of 100 Pass Mark 40 Timing S1 Week 6 **Learning Outcome** 1,2,3,4 **Duration in minutes**

Assessment Description
CA3 (Semester 2) - Redo all of the work for Assessments 1 and 2 to take advantage of existing software libraries for data manipulation and analysis. Compare this approach with the previous manual approach.

Assessment Type Continuous Assessment % of Total Mark 30 Marks Out Of 100 Pass Mark 40 End-of-Semester 3,5,6 Timing Learning Outcome

Duration in minutes 0

Assessment Description
CA 4 (Semester 2) - Integrate classroom-developed visualisations into a webapp and deploy to the cloud. Make sure that if backend data changes, so too do the visualisations. Provide API access to the data. This assessment will be linked with Data Project 1 which is a joint project with Statistics.

No Practical

No Final Examination

Reassessment Requirement

No repeat examination
Reassessment of this module will be offered solely on the basis of coursework and a repeat examination will not be offered.

DKIT reserves the right to alter the nature and timings of assessment

Module Workload

Workload: Full-time					
Workload Type	Contact Type	Workload Description	Frequency	Average Weekly Learner Workload	Hours
Practical	Contact	Practical lab session using an appropriate mix of synchronous and asynchronous delivery	Every Week	5.00	5
Directed Reading	Non Contact	Reading lecturer recommended texts	Every Week	3.00	3
Independent Study	Non Contact	Trying practical tasks	Every Week	8.00	8
	Total Weekly Learner Workload				16.00
Total Weekly Contact Hours				5.00	

Workload: Part-time					
Workload Type	Contact Type	Workload Description	Frequency	Average Weekly Learner Workload	Hours
Practical	Contact	2.5 hours of Practical lab session per week (when delivered over 2 semesters) using an appropriate mix of synchronous and asynchronous delivery.	Every Week	2.50	2.5
Directed Reading	Non Contact	Reading lecturer recommended texts	Every Week	1.50	1.5
Independent Study	Non Contact	Trying practical tasks	Every Week	4.00	4
	Total Weekly Learner Workload				
Total Weekly Contact Hours					2.50

Module Resources

Recommended Book Resources

Wes McKinney. (2017), Python for Data Analysis, O'Reilly Media, p.550, [ISBN: 1491957662].

Jake VanderPlas. (2023), Python Data Science Handbook, O'Reilly Media, [ISBN: 1098121228].

Joel Grus. (2019), Data Science from Scratch, O'Reilly Media, p.500, [ISBN: 1492041130].

Dorian Pyle. (1999), Data Preparation for Data Mining, Morgan Kaufmann, p.566, [ISBN: 1558605290].

Ryan Mitchell. (2018), Web Scraping with Python, [ISBN: 1491985577].

Recommended Article/Paper Resources

CODATA Data Science Journal. CODATA Data Science Journal,

http://datascience.codata.org

JDS Journal of Data Science. JDS Journal of Data Science,

http://www.jds-online.com

Other Resources

Website, Data Camp, http://datacamp.com

Website:, Matplotlib Visualization,

http://matplotlib.org/

Website:, PyData, http://pydata.org/

Website:, The R Project for Statistical Computing,

https://www.r-project.org/

Website:, Data Show Podcast,

https://www.oreilly.com/topics/oreilly-d ata-show-podcast

Website:, Python Data Analysis Library, http://pandas.pydata.org/

Website:, Data Carpentry, https://datacarpentry.org/