Health Insurance Premium Cost Prediction

Yash Gupta

2022-11-05

What is this project all about?

This is a data analysis project for predicting yearly health insurance premium charge based on given features. the features are given below-

- Numeric predictors
- age: age of beneficiary
- bmi: bmi of beneficiary
- children: no of children covered under health insurance
- Categorical predictors
- sex: sex of beneficiary (male or female)
- smoker: yes or no
- region: beneficiary's residential area in USA: northeast, southeast, southwest, northwest.
- Response variable

Data

```
bmi children smoker
##
    age
                                         region
                                                  charges
           sex
## 1 19 female 27.900
                                  ves southwest 16884.924
## 2
     18
          male 33.770
                                   no southeast 1725.552
## 3
     28
          male 33.000
                                   no southeast 4449.462
## 4
     33
          male 22.705
                             0
                                  no northwest 21984.471
## 5
          male 28.880
                             0
                                   no northwest 3866.855
## 6
     31 female 25.740
                                   no southeast 3756.622
```

Summary of Data

```
##
         age
                         sex
                                              hmi
                                                            children
           :18.00
                    Length: 1338
                                                :15.96
                                                                :0.000
    Min.
                                        Min.
                                                         Min.
    1st Qu.:27.00
                    Class : character
                                        1st Qu.:26.30
                                                         1st Qu.:0.000
   Median :39.00
                    Mode :character
                                        Median :30.40
                                                         Median :1.000
          :39.21
                                                                :1.095
   Mean
                                        Mean
                                                :30.66
                                                         Mean
    3rd Qu.:51.00
                                        3rd Qu.:34.69
                                                         3rd Qu.:2.000
   Max
           :64.00
                                        Max.
                                               :53.13
                                                         Max.
                                                                :5.000
##
       smoker
                           region
                                               charges
    Length: 1338
                       Length: 1338
                                           Min. : 1122
##
   Class : character
                       Class : character
                                           1st Qu.: 4740
   Mode :character
                       Mode :character
                                           Median: 9382
                                                   :13270
##
                                           Mean
                                           3rd Qu.:16640
##
##
                                           Max.
                                                   :63770
```

Exploratory Data Analysis

Correlation

```
insurance.age insurance.bmi insurance.children
##
## insurance.age
                         1.0000000
                                       0.1092719
                                                         0.04246900
## insurance.bmi
                         0.1092719
                                       1.0000000
                                                         0.01275890
## insurance.children
                         0.0424690
                                       0.0127589
                                                         1.00000000
## insurance.charges
                         0.2990082
                                       0.1983410
                                                         0.06799823
##
                     insurance.charges
## insurance.age
                            0.29900819
## insurance.bmi
                            0.19834097
## insurance.children
                            0.06799823
## insurance.charges
                           1.00000000
```

Plot betweeen numeric variables and response(charges)

Corrplot

Explanation

- ▶ There is no strong collinearity between covariates.
- There is some correlation between charges and age.
- Also there is correlation between charges and bmi.

Bar plots of sex, smoker, region, no of children

⁻ Smokers are less in numbers than non-smokers - Most of the population seems to have either no or 1-2 children

Histogram of age and bmi

Warning: package 'gridExtra' was built under R version 4

Boxplots of age, bmi and no of children

▶ 50% of the population seems to have obesity problem.

Box whisker plots of charges vs bmi

insurance charge vs bmi for smoker and non-smoker

- ▶ It seems only smoker's have to bear more insurance cost due to increment in bmi.
- ► There is a sudden change in charges as bmi category changes to above 30. _ We shall add a dummy variable for different category of BMI and check further the change in the charge is

significant or not.

Box whisker plots of charges vs bmi

bwplot of insurance charge vs bmi for male and female

Plots are more or less same for male and female.

Box whisker plots of charges vs bmi

bwplot of insurance charge vs bmi for different region

Box whisker plots of charges vs age across smoker category

charge vs age for smoker and non-smoker

 Non-smoker category has a good number of outliers.
 Smoker category has very less outliers but more variability (inter-quantile range)

Box whisker plots of charges vs age across sex

- Both have outliers - But variability in charges for male seems higher than female

Box whisker plots of charges vs age across region

- Nothing new. All region have same pattern

Box whisker plots of charges vs children across smoking

charge vs children over smoker

- charges seems to have correlation for smokers. i.e. there is a interaction between smoker and children

Box whisker plots of charges vs children across sex

charge vs children over sex

Box whisker plots of charges vs children across region

charge vs children over region

no of children

Creating dummy variable for BMI_Category

- ► BMI <=25 : Normal
- ▶ BMI > 25 but <= 30 : Overweight
- ► BMI > 30 : Obese

```
##
                   bmi children smoker
            sex
                                          region
                                                    charges
     age
      19
         female 27.900
                              0
                                   yes southwest 16884.924
##
##
  2
     18
           male 33.770
                                    no southeast 1725.552
                              3
## 3
    28 male 33.000
                                    no southeast 4449.462
## 4
     33 male 22.705
                              0
                                    no northwest 21984.471
      32
                                                   3866.855
## 5
           male 28.880
                                    no northwest
      31 female 25.740
                              0
                                    no southeast 3756.622
##
  6
```

Plot of charge vs age

First step to build prelimnary model

- ➤ Since there is linear relationship with some factors. For now we can assume model be like
- ▶ $lm(charges \sim 1 + age + some factors)$

Plot of charge vs BMI across smoking

Explanation

- For non-smoker charges are not increasing due to BMI
- ▶ If a person is smoker then there is some fixed penalty and..
- ▶ if that person has obesity then the penalty is even more.
- So, charge is independent of BMI for non-smokers but not for smokers.
- ➤ So, we must include the interaction term for BMI_category and smoker in the model.

Plot of charge vs age across smoking

Plot of charge vs age across BMI_Category

Updated Model

- ► There is strong linear relationship between age and charges for all categories (BMI and smoking category)
- Now, we are sure smoking and BMI category are responsible factors for high charges.
- ▶ Our updated model is... $Im(charges \sim 1 + age + BMI_Categorysmoker)$ where $BMI_Categorysmoker$ means $BMI_Category + smoker + BMI_Category:smoker$

Plot of charge vs children across smoking

Plot of charge vs children across smoking

Updated model

- There is a very slight increment in charge as no of children for non-smoker.
- Assuming the increment is linear wrt no of children, our updated model is... $Im(charges \sim 1 + age + BMI_Category*smoker + children)$
- Later we will see whether adding children covariate is significant or not..

Plot of charge vs BMI across regions

- More or less same pattern for all regions _ So, we won't include region factor in our model

Plot of charge vs BMI across BMI_Category

- If a smoker has obesity then he has to pay approx. twice penalty that of a normal smoker should pay. - Obesity factor is already included in our model

Plot of charge vs age across smoking

- Sex hasn't any effect on the charge, So better to not include it in the model

Preliminary Model

- After all exploratory data analysis we come to the our preliminary model
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

Dividing the data into training and testing data

```
set.seed(seed = 1001)
n_train <- round(0.8 * nrow(insurance.df))
train_indices <- sample(1:nrow(insurance.df), n_train)
df_train <- insurance.df[train_indices, ]
df_test <- insurance.df[-train_indices, ]</pre>
```

▶ Divided the data in 80-20% for training and testing.

Preliminary Model

```
##
## Call:
## lm(formula = charges ~ age + BMI_Category * smoker + children,
      data = df train)
##
## Residuals:
   Min
           1Q Median
                        30
                               Max
## -4501 -1929 -1354 -622 24361
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             -2427 58
                                          529.74 -4.583 5.14e-06 ***
                                264.26 10.01 26.390 < 2e-16 ***
## age
                              -40.64 436.53 -0.093 0.9259
## BMI CategorvObese
## BMI CategorvOverweight
                              -126.52 475.32 -0.266 0.7902
## smoker
                              11862.95 780.51 15.199 < 2e-16 ***
## children
                               546.52 115.45 4.734 2.50e-06 ***
## BMI CategoryObese:smoker
                              21384.37 919.34 23.261 < 2e-16 ***
## BMI CategoryOverweight:smoker 2491.82 1013.19 2.459 0.0141 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4582 on 1062 degrees of freedom
## Multiple R-squared: 0.8546, Adjusted R-squared: 0.8537
## F-statistic: 892 on 7 and 1062 DF. p-value: < 2.2e-16
```

Full Model

```
##
## Call:
## lm(formula = charges ~ age + sex + bmi + children + smoker +
      region, data = df train)
##
##
## Residuals:
##
     Min
             10 Median
                          30
                               Max
## -11012 -2827 -1042 1322 30137
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                            1116.69 -10.433 < 2e-16 ***
## (Intercept)
                 -11650.05
## age
                    257.84 13.45 19.177 < 2e-16 ***
## sexmale
                    10.06 377.93 0.027 0.978775
                    332.39 32.42 10.252 < 2e-16 ***
## bmi
## children
                    534.95 155.06 3.450 0.000583 ***
## smoker
                  23469.91 468.82 50.061 < 2e-16 ***
## regionnorthwest -755.53 534.09 -1.415 0.157475
## regionsoutheast -1068.53 545.00 -1.961 0.050188 .
## regionsouthwest -1273.40
                               544.62 -2.338 0.019564 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6144 on 1061 degrees of freedom
## Multiple R-squared: 0.7388, Adjusted R-squared: 0.7369
## F-statistic: 375.2 on 8 and 1061 DF, p-value: < 2.2e-16
```

Comaparing both above models on test data using MSE and MAD

```
sqrt_MSE_fm0 = sqrt(mean((df_test$charges- predict(fm0, df_test)) ^ 2))
sqrt_MSE_fm1 = sqrt(mean((df_test$charges- predict(fm1, df_test))) ^ 2))
MAD_fm0 = median(abs(df_test$charges- predict(fm0, df_test)))
MAD_fm1 = median(abs(df_test$charges- predict(fm1, df_test)))
sqrt_MSE_fm0

## [1] 4035.09
sqrt_MSE_fm1

## [1] 5750.597
MAD_fm0

## [1] 1664.799
MAD_fm1
```

- ## [1] 2606.482
 - sqrt_MSE_fm0 = 4035.1 < 5750.6 = sqrt_MSE_fm1</p>
 - ► MAD_fm0 =1664.8 < 2606.48 = MAD_fm1
 - ► Hence, our preliminary model is better so far.

Comparison with model without children covariate

```
fm2 <- lm(charges ~ age + BMI_Category * smoker, data = df_train)</pre>
sqrt_MSE_fm2 = sqrt(mean((df_test$charges- predict(fm2, df_test)) ^ 2))
MAD_fm2= median(abs(df_test$charges- predict(fm2, df_test)))
sqrt_MSE_fm0
## [1] 4035.09
sqrt_MSE_fm2
## [1] 4050.444
MAD_fmO
## [1] 1664.799
MAD fm2
## [1] 1677.507
```

Best multiple linear model based on observation

- ► There is very less difference in sqrt(MSE) or MAD between both models.
- ▶ So, it's better to drop one one covariate.
- ▶ It also shows that no of children has almost no linear impact on the insurance.
- Our model is get reduced to fm2.
 No further reduction of linear model fm2 is possible as if we drop age also then..
- fm3 <- lm(charges ~ BMI_Category * smoker, data = df_train)
 sqrt_MSE fm3= sqrt(mean((df_test\$charges- predict(fm3, df)</pre>
- sqrt_MSE_fm3= sqrt(mean((df_test\$charges- predict(fm3, df_ MAD_fm3= median(abs(df_test\$charges- predict(fm3, df_test))
- MAD_fm3= median(abs(df_test\$charges- predict(fm3, df_test
 sqrt_MSE_fm3
 - ## [1] 5493.814 MAD_fm3
 - ## [1] 3618.586
 - much higher MSE and MAD than fm2

Using AIC to find the best model

- ▶ We will try to improve our model by adding more interaction terms if possible.
- ▶ We will include all interaction terms of 2nd order and find best model using AIC Model selection

```
Fitfirst=lm(charges~1,data=df train)
Fitall=lm(charges~.^2, data=df train) #2nd order interaction
AIC Model = lm(formula = charges ~ smoker + age + BMI_Cate
```

region + bmi + smoker:BMI_Category + smoker:bmi + age:1 data = df_train)

BEST MODEL LISING AIC

summary(AIC_Model)

```
##
## Call:
## lm(formula = charges ~ smoker + age + BMI_Category + children +
##
      region + bmi + smoker: BMI Category + smoker: bmi + age: BMI Category.
##
      data = df train)
##
## Residuals:
##
      Min
               10 Median
                              30
                                     Max
## -2879.7 -1822.9 -1297.5 -627.7 24466.1
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                -1471.15
                                          1444.01 -1.019 0.308535
## smoker
                                1576.18
                                           2476.21 0.637 0.524570
                                242.71
                                             24.42 9.941 < 2e-16 ***
## age
                                -950.93 1280.43 -0.743 0.457847
## BMI_CategoryObese
## BMI CategorvOverweight
                               -1141.68 1276.12 -0.895 0.371181
## children
                                570.32 114.15 4.996 6.84e-07 ***
                                -534.54 394.95 -1.353 0.176201
## regionnorthwest
                                -777.49 403.28 -1.928 0.054136 .
## regionsoutheast
                               -1375.24 402.83 -3.414 0.000665 ***
## regionsouthwest
                                  16.08
                                             49.51 0.325 0.745371
## bmi
                               15417.96
                                                    9.229 < 2e-16 ***
## smoker:BMI_CategoryObese
                                        1670.59
## smoker:BMI CategorvOverweight
                                 174.93
                                         1155.02
                                                    0.151 0.879647
## smoker:bmi
                                 457.98
                                        105.98
                                                    4.321 1.70e-05 ***
## age:BMI_CategoryObese
                                 23.27
                                             27.75
                                                    0.838 0.401976
## age:BMI CategorvOverweight
                                  28.00
                                             30.90
                                                    0.906 0.365207
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4519 on 1055 degrees of freedom
## Multiple R-squared: 0.8595, Adjusted R-squared: 0.8577
## F-statistic: 461.1 on 14 and 1055 DF, p-value: < 2.2e-16
```

BEST SELECTED MODEL USING AIC

[1] 1677.507

Deleting statistically insignificant covariates from the AIC Model

```
Final_Model = lm(formula = charges ~ smoker + age + child:
    region + smoker: BMI Category + smoker: bmi,
    data = df train)
sqrt_MSE_FM= sqrt(mean((df_test$charges- predict(Final_Mod
MAD FM= median(abs(df test$charges- predict(Final Model, d:
sqrt MSE FM
## [1] 3974.228
MAD_FM
## [1] 1447.452
```

Comparision between the AIC model and Final Model Using F-test

```
## Analysis of Variance Table
##
## Model 1: charges ~ smoker + age + children + region + smoker:BMI_Category +
## smoker:bmi
## Model 2: charges ~ smoker + age + BMI_Category + children + region + bmi +
## smoker:BMI_Category + smoker:bmi + age:BMI_Category
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1060 2.1568e+10
## 2 1055 2.1545e+10 5 23193637 0.2271 0.9508
```

- ► The P-value of the F test is 0.64»0.05.
- i.e. we failed to reject the null hypothesis.
- So, both models are statistically equivalent but the Final Model has lesser no covariates
- ► Also LSE_FM < LSE_AIC.

Checking required assumption for multiple linear regression

- Checking for Outliers
- ► Normality of error (residuals)
- Non-constant variance of error (residuals)
- Possible remedies

Checking for Outliers Plot of leverage vs response variable

abs(studententized residual) v/s response variable plot

```
COok's Dictance Dict

dfb <- dfbetas(Final_Model); cooksd <- cooks.distance(Final_Model)

id <- cooksd > 0.018

xyplot(cooksd - seq_along(cooksd), grid = TRUE) +

layer(panel.text(x[id], y[id], labels = rownames(df_train)[id], pos = 4, col = "grey50"))
```


No of outliers (on the basis of Cook distance cutoff)

```
outliers=names(which(cooksd > 4/(nrow(df_train)-length(Final_Model$coefficients))))
length(outliers)
```

[1] 67

- Obviously we can not exclude all the outliers
- The outliers are nothing but the insurance charges which could not be explined by any of the given covariates in the data.

Laverage vs Std. Residual Plot

```
xyplot(hatvalues(Final_Model) ~ rstandard(Final_Model), gr:
layer(panel.text(x[id], y[id], labels = rownames(df_train)
```


Checking for normality or residuals

qqplot for studentized residuals over t distribution (df=n-p-1)

▶ There are 99 such observations whose ti > 0.3

Density plot studentized residual plot(density(ti, bw = 0.1))

density.default(x = ti, bw = 0.1)

One sided heavy tailed

**Shaipro-Wilk and KS Test for Non-Normality

```
e.FM<- rstudent(Final_Model)
shapiro.test(e.FM) #failed
##
   Shapiro-Wilk normality test
##
## data: e FM
## W = 0.47298, p-value < 2.2e-16
ks.test(e.FM, pnorm) #failed
##
   Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: e.FM
## D = 0.3756, p-value < 2.2e-16
## alternative hypothesis: two-sided
   Both test suggest that There is no normality in the density plot of residuals
n <- with(Final_Model, rank + df.residual)
names.id = as.numeric(names(which(ti > 0.3)))
length(names.id)
## [1] 99
insurance new = insurance.df[-names.id.]
fm_new <- lm(formula = charges ~ age + children + smoker:BMI_Category +</pre>
    smoker:bmi, data = insurance new)
```

Checking for non-constant variance

```
library(car)

## Loading required package: carData
ncvTest(Final_Model)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 9.868574, Df = 1, p = 0.0016813
```

Plot of absolute studentized residual vs fitted value

-lt can be seen the cause of non-constant variance is big no of outliers

Plot of residuals for different covariates

- residual plot is more or less constant if we ignore the outliers

- ▶ If we consider model very first model fm0 then we can get rid of the non constant variance
- ## Non-constant Variance Score Test
- ## Variance formula: ~ fitted.values
 ## Chisquare = 1.466175, Df = 1, p = 0.22595
- ► But problem of non-normality of residuals still exist.
 - But problem of non-normality of residuals still exist.Now we'll look for possible remedies

BOX-COX transformation

boxCox(Final_Model)

Im(bc(charges, 0.4) ~ age + children + smoker:BMI_Category + smoker:bmi)

- No improvement at all. - Now we'll go for Robust Regression

Robust Regression

LAD REGRESSION

```
library(quantreg)
## Loading required package: SparseM
##
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
##
       backsolve
##
fm.lad<- rq(charges~ age+children+BMI_Category:smoker+smoke
lad.yhat <- predict(fm.lad,df_test)</pre>
MAD_lad= median(abs(df_test$charges- lad.yhat))
MAD lad
```

[1] 556.333

Huber Loss Function

```
fm.huber<- rlm(charges- age+children+BMI_Category:smoker+smoker:bmi, data=df_train, psi=psi.huber)
huber.yhat <- predict(fm.huber,df_test)

MAD_huber= median(abs(df_test$charges- predict(fm.huber, df_test)))
MAD_huber</pre>
```

```
## [1] 562.4914
MAD_FM
```

```
## [1] 1447.452
```

MAD for Huber loss functio is very less as comparison to Least Square loss function

Bisquare Loss Function

```
fm.bsq<- rlm(charges- age+children+BMI_Category:smoker+smoker:bmi, data=df_train, psi=psi.bisquare)
bsq.yhat <- predict(fm.bsq,df_test)

MAD_bsq= median(abs(df_test$charges- bsq.yhat))
MAD_bsq</pre>
```

```
## [1] 516.7187
MAD_huber
```

```
## [1] 562.4914
MAD_FM
```

```
## [1] 1447.452
```

- ► MAD(bsg) < MAD(huber) < MAD(Least Square)
- Applying Robust regression is a good idea for this type of data where the data has many outliers

Resistant Regression

[1] 508.0683

Least Trimmed Square(LTS)

```
set.seed(seed = 1001)
fm.lts= ltsreg(charges~ age+children+BMI_Category:smoker+sn
lts.yhat <- predict(fm.lts,df_test)
MAD_lts= median(abs(df_test$charges- lts.yhat))
MAD_lts</pre>
```

Least Median of Squares (LMS)

[1] 505.4326

```
set.seed(seed = 1001)
fm.lms= lmsreg(charges~ age+children+BMI_Category:smoker+sn
lms.yhat <- predict(fm.lms,df_test)
MAD_lms= median(abs(df_test$charges- lms.yhat))
MAD_lms</pre>
```

Comparison between Least Squares, LAD, Huber Loss, BSq Loss, LTS and LMS

```
MAD_FM
## [1] 1447.452
MAD lad
## [1] 556.333
MAD_huber
## [1] 562.4914
MAD bsa
## [1] 516.7187
MAD 1ts
## [1] 508.0683
MAD_lms
```

- ▶ Performance of Robust Regressoin is better than Least square regression when no of outliers in the data is high
- _ Among performed Robust Regressions Bisquare and Resistant regressions are good options.

[1] 505.4326

Accuracy of the different models

- ➤ Say a prediction is good if difference between predicted charge and actual response is less than 1000 dollor
- Define accuracy as proportion of good prediction on test data.

```
test_size = nrow(df_test)
Accuracy = function (fm){
difference =abs(predict(fm,df_test)-df_test$charges)
total = sum(ifelse(difference <= 1000,1,0))
return(total/test_size)
}</pre>
```

Accuracy of the different models

```
Accuracy(Final_Model)
## [1] 0.2761194
Accuracy(fm.lad)
## [1] 0.7985075
Accuracy(fm.huber)
## [1] 0.7985075
Accuracy(fm.bsq)
## [1] 0.8097015
Accuracy(fm.lms)
## [1] 0.7276119
Accuracy(fm.lts)
## [1] 0.7276119
```

Result and conclusion

- There are many influential observation. This may be because of the fact that some information about the beneficiary is not given in data.
- Due to high no of influential observation LSE regression is not a good regression for prediction of insurance charges.
- Robust regression is very good option for prediction as it reduces the effect of outliers very much.
- Bisquare loss function and resistant regression are best options for robust regression under Robust regression if there are too many outliers.
- ► Health insurance charge is dependet upon age, smoking category, BMI_Category and no of children.