Evaluate Sin³x cos³x dx.

(e) Does the improper integral $\int_{-\infty}^{\infty} \frac{dx}{e^{x^2} + 1}$ exist?

(d) Integrate $\int \frac{dx}{e^x + 1}$

(b) Evaluate $\int_0^1 (x+x^2)^{\frac{1}{2}} dx$.

Page 3 of 15

Page 2 of 15

Calculate
$$\lim_{x\to 1} \left\{ \frac{1}{1} - \frac{x}{x} \right\}$$

Calculate
$$\lim_{x \to 1} \left\{ \frac{1}{\ln x} - \frac{x}{x - 1} \right\}$$

Page 4 of 15

Use Taylor series expansions to calculate $\lim_{x \to 0} \frac{\sin(x^2) - x^2}{(\sin x - x)^2}$

(b) Calculate $\lim_{n\to\infty} \left\{ n^2 \ln(1+\frac{1}{n}) - n \right\}$

可能感情的 医氯甲酸医氯苯

is the series $\sum_{k=1}^{\infty} \frac{(k!)^2}{(2k)!}$ convergent ?

convergent? (b) For what values of x is the series $\sum_{k=1}^{\infty} \frac{x^k}{1 + \frac{1}{2} + \cdots + \frac{1}{k}}$

Find the Taylor series for $x^{-\frac{1}{2}}$ about x = 1. (p)

(c) Sum the series $\sum_{k=1}^{\infty} \frac{x^k}{k(k+2)}$ within its domain of convergence.

Page 6 of 15

Given a function f(x) which satisfies f'(x) = f(x) + x, f(0) = 3, obtain a representation for f(x) as the series $f(x) = \sum_{k=0}^{\infty} a_k x^k$. Hence show that $f(x) = 4e^x - x - 1$.

Given the sequence of functions $f_n(x) = nxe^{-nx^2}$ for $n = 1, 2, 3, \dots$ is it true that $\lim_{n \to \infty} \left\{ \int_0^1 f_n(x) dx \right\} = \int_0^1 \left\{ \lim_{n \to \infty} f_n(x) \right\} dx?$

A thin string is wrapped around the circle $x^2+y^2=a^2$; one end is initiall n A(a,0), and then gradually unwound—always under tension.

 $x = a(\cos\theta + \theta\sin\theta), \ y = a(\sin\theta - \theta\cos\theta).$

Show that the length of the arc AP is $\frac{1}{2}a\theta^2$. (<u>a</u>)

(6. (a) If f(x,y) = xF(x+y) + yG(x+y) for given functions F and G, show that $f_{xx} - 2f_{xy} + f_{yy} = 0$.

If f(x,y) satisfies $ff_{xy}=f_xf_y$, show that f(x,y) must be given by f(x,y)=F(x)G(y) for arbitrary F and G. (P)

$$K = \frac{|2f'^2 - ff'' + f^2|}{(f'^2 + f^2)^{\frac{1}{3}}}.$$

Page 12 of 15

Three resistors which have resistances r_1 , r_2 , r_3 are connected in parallel so that the resistance of the circuit R is given by $R^{-1} = r_1^{-1} + r_2^{-1} + r_3^{-1}$. If the individual resistances are each subject to a small percentage error ϵ , find the corresponding percentage error in R. Find the dimensions of the open box (i.e. no lid) with given surface area $\,S\,$ that contains the largest volume.