

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ **ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ**КАФЕДРА **КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)**НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 **ПРОГРАММНАЯ ИНЖЕНЕРИЯ**

ОТЧЕТ

Название: Синхронные одноступенчатые триггеры со статическим и
динамическим управлением записью
Дисциплина: Архитектура ЭВМ

Студент	ИУ7-45Б	03.03.2022	С. К. Романов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			
		(Подпись, дата)	(И.О. Фамилия)

Цель работы:

Изучить схемы асинхронного RS - триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS - и D - триггеров со статическим управлением записью и DV - триггера с динамическим управлением записью.

1. Асинхронный RS-триггер:

Схема, построенная в Multisim

Puc.1-1

Puc.1-2

Таблица истинности для RS-триггера

Таблица 1

~S	~ <i>R</i>	Qn	Q_{n+1}	Пояснение
0	0	0	-	Запрещенная
0	0	1	-	операция
0	1	0	1	Установка 1
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	0	Хранение
1	1	1	1	

2.Синхронный триггер

Установка построенная в Multisim

Начальное положение

Puc.2-1

При изменении входных сигналов положение изменяется

Puc.2-2

Puc.2-3

Рис.2-4
При отключении С-перехода триггер сохраняет свое значение
Таблица истинности для синхронного RS-триггера

Таблица 2

C	~S	~ <i>R</i>	Qn	Qn+1	Пояснение
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	1	1	Хранение
0	1	0	0	0	Аранение
0	1	0	1	1	
0	1	1	0	0	
0	1	1	1	1	
1	0	0	0	X	Запрещенная
1	0	0	1	X	операция

1	0	1	0	1	Установка 0
1	0	1	1	1	J Clanobka o
1	1	0	0	0	Установка 1
1	1	0	1	0	J Clanobka 1
1	1	1	0	0	Хранение
1	1	1	1	1	Tipunomio

Для синхронного RS триггера таблица переходов аналогична таблице переходов асинхронного при сигнале синхронизации C = 1 (при 0 он сохраняет предыдущее состояние)

3.Синхронный D-триггер (статическое управление)

Установка построенная в Multisim

Puc.3-1

Puc. 3-2

Таблица истинности синхронного **D**-триггера со статическим управлением

Таблица 3

Пояснение	Qt+1	Qt	D	C
Хранение	0	0	0	0
-	1	1	0	0
	0	0	1	0
	1	1	1	0
Установка 0	0	0	0	1
-	0	1	0	1
Установка 1	1	0	1	1
	1	1	1	1

4.Синхронный D-триггер (с динамическим управлением)

Установка построенная в Multisim

Puc.4-1

Puc.4-2

Puc.4-3

Рис.4-4 **Таблица истинности для синхронного D-триггера**

Таблица 4

Пояснение	Qt+1	Qt	D	C
Хранение	0	0	0	0
_	1	1	0	0
_	0	0	1	0
_	1	1	1	0
Установка 0	0	0	0	0->1
_	0	1	0	0->1
Установка 1	1	0	1	0->1
	1	1	1	0->1

5. Синхронный DV триггер (с динамическим управлением записью)

Схема, составленная в Multisim

Puc.5-1

Временные диаграммы DV-триггера

Рис.5-2

После проведения анализа, видно, что на самом деле при C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qt=Qt-1. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

6.Синхронный DV триггер, включенный по схеме TV триггера

Схема, построенная в Multisim

Puc.6-1

Временные диаграммы

Рис.6-2

Контрольные вопросы:

Что называется триггером?

Триггер – запоминающее устройство с двумя устойчивыми состояниями, которые кодируются двоичными цифрами 0 и 1

Какова структурная схема триггера?

Структурную схему триггера состоит из запоминающей ячейки (3Я) и схемы управления (СУ).

По каким основным признакам классифицируют триггеры?

- 1. По способу организации логических связей (по виду логического уравнения, характеризующего состояние входов и выходов триггера в момент времени tn до его срабатывания и в момент tn+1 после его срабатывания)
 - а) с раздельной установкой состояний "0" и "1" (RS-триггеры);
 - b) со счетным входом (Т-триггеры);
 - с) универсальные с раздельной установкой состояний "0" и "1" (JK- триггеры);
 - d) с приемом информации по одному входу (D триггеры);
 - е) универсальные с управляемым приемом информации по одному входу (DV триггеры);
 - f) комбинированные (например, RST-, JKRS, DRS триггеры)

2. По способу записи информации

- а) асинхронные (не синхронизируемые);
- b) синхронные (синхронизируемые), или тактируемые.

3. По способу синхронизации

- а) синхронные со статическим управлением записью
- b) синхронные с динамическим управлением записью

4. По способу передачи информации с входов на выходы

- а) С одноступенчатым запоминанием информации
- b) C двухступенчатым запоминанием информации

Каково функциональное назначение входов триггеров?

S-exod — вход для раздельной установки триггера в состояние "1".

R-exod — вход для раздельной установки триггера в состояние "0".

J-eхоd — вход для установки состояния "1"в универсальном ЈК-триггере.

K- $exo\partial$ — вход для установки состояния "0" в универсальном ЈК-триггере.

D-exod — информационный вход для установки триггера в состояния "1"или "0".

V-exod — подготовительный управляющий вход для разрешения приема информации.

C- $exo\partial$ — исполнительный управляющий вход для осуществления приема информации, вход синхронизации

Что такое асинхронный и синхронный триггеры?

Асинхронный RS -триггер - это простейший триггер, который используется как запоминающая ячейка. Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C.

Что такое таблица переходов?

Таблица переходов — отображает зависимость выходного сигнала триггера в момент времени tn+1от входных сигналов и от состояния триггера в предыдущий момент времени tn.

Как работает асинхронный RS-триггер?

При S = 0 и R = Iтриггер устанавливается в состояние 0, а при S = 1 и R = 0 - в состояние 1. Если S = 0 и R = 0, то в триггере сохраняется предыдущее внутреннее состояние. При S = R = 1 состояние триггера является неопределенным.

Такая комбинация входных сигналов S = R = 1 является недопустимой (запрещенной). Для нормальной работы триггера необходимо выполнение запрещающего условия SR = 0.

Как работает синхронный RS -триггер? Какова его таблица переходов?

Синхронный RS-триггер при C = 0 сохраняет предыдущее внутреннее состояние, т.е. Qn+1 = Qn. Сигналы по входам S и R переключают синхронный R-триггер только с поступлением импульса на вход синхронизации. При C = 1 синхронный триггер

переключается как асинхронный. Одновременная подача сигналов S = R = 1 запрещена.

При S = R = 0 триггер не изменяет своего состояния.

Таблица переходов (нажать и перейти) - <u>Синхронный RS триггер</u>

Что такое D-триггер?

Синхронный D-триггер — имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы. Поэтому -триггер — элемент задержки входных сигналов на один такт.

Объясните работу синхронного D-триггера.

Схему синхронного D-триггера можно получить из схемы синхронного R-триггера, подавая сигнал D на вход S, а сигнал \sim D, т.е. с выхода инвертора сигнала D, на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR = 01 при D = 0 или SR = 10 при D = 1, что соответствует записи в триггер логического 0 или 1. Путем логических преобразований инвертор можно исключить и получить схему синхронного D-триггера. Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.

Что такое DV -триггер?

Синхронный DV-триггер – имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

Объясните работу DV-триггера.

При C = 0, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn.

При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер.

При C = 1 и V = 0 DV-триггер сохраняет предыдущее внутреннее состояние, т.е. Qn+1 = Qn.

Что такое Т-триггер? Какова его таблица переходов?

Т-триггер имеет один информационный вход Т, называемый счетным входом.

Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала. Таким образом Т-триггер реализует счет по модулю 2: $Qt = Tt-1 \oplus Qt-1$.

Синхронный Т-триггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1.

Объясните работу схемы синхронного RS-триггера со статическим управлением. При С = 0 триггеры переходят в режим хранения, запоминая последнее состояние.

Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что приём информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на входе из 0 в 1 или из 1 в 0, т.е. перепадом синхросигнала.

Как работает схема синхронного D -триггера с динамическим управлением записью на основе трех RS -триггеров?

Триггер имеет асинхронные входы Sa и Ra начальной установки в состояния 1 и 0. Если схему D-триггера дополнить входом V, то получим структуру DV-триггера. Временные диаграммы DV-триггера соответствуют временным диаграммам DV-триггера при V=1.

Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью.

Установка построенная в Multisim

puc.7-1

Временная характеристика D-триггера

puc.7-2

Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

При C = 0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние.

При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D.

При C = 1 и V = 0 DV-триггер сохраняет предыдущее внутреннее состояние.

Составьте временные диаграммы синхронного DV-триггера.

[Смотри рис 5-2.]

Объясните режимы работы D-триггера.

Синхронный D-триггер — имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.

Вывод:

В ходе работы были изучены схемы асинхронного RS - триггера, синхронных RS - и D - триггеров со статическим управлением записью и DV - триггера с динамическим управлением записью. Также в ходе работы были составлены таблицы истинности для RS и D триггеров и составлены временные характеристики для D и DV триггеров. Был проведен анализ того, как ведут себя те или иные триггеры при различных входных сигналах