Architecture des processeurs RISC-V (RV32I)

Architecture multicycle, Pipeline

Michel Agoyan (michel.agoyan@thalesgroup.com), Clément Fanjas (clement.fanjas@cea.fr), Théophile Gousselot (theophile.gousselot@emse.fr), Marc Lacruche (marc.lacruche@st.com), Louis Noyez (louis.noyez@emse.fr), Simon Pontié (simon.pontier@cea.fr), Olivier Potin (olivier.potin@emse.fr), Jean-Baptiste Rigaud (rigaud@emse.fr).

3 janvier 2023

Notes

Outline

- Micro-architecture bicycle
 - Chemin de donnéesContrôle de données

 - Performances
- 2 Micro-architecture multi-cycle
 - Architecture mono-cycle vs règles d'optimisation
 - Architecture multi-cycle vs règles d'optimisation
 - Le chemin de données

- Le chemin de contrôle
- Micro-architecture pipeline

 Le pipeline idéal

 - Pipeline à 5 étages
 Le Pipeline réel

 - Les dépendances ("Hazard")
 - Les dépendances de données
 - Résolution des dépendances de données Interlocks
 - Bypass
- 5 Pipeline : Conclusion

Notes

Micro-architecture bicycle

Plan

- Micro-architecture bicycle
 - Chemin de donnéesContrôle de données
- 2 Micro-architecture multi-cycle
 - Architecture mono-cycle vs règles
 - Architecture multi-cycle vs règles
 - d'optimisation

 Le chemin de données
- Le chemin de contrôle
- Micro-architecture pipeline
 Le pipeline idéal
 Pipeline à 5 étages
- 4 Le Pipeline réel
 - Les dépendances ("Hazard")
 - Les dépendances de donnéesRésolution des dépendances de données
 - Interlocks Bypass
- 5 Pipeline : Conclusion

Notes			

• Le chemin critique vaut : t_{ifetch}

Pour l'état Execute

Pour l'état Fetch

ullet Le chemin critique vaut : $t_{opfetch} + t_{ALU} + t_{MEM}$

Donc:

 \bullet $T_{bicycle} < T_{monocycle}$

ullet si $t_{ifetch} = T_{MEM} >> t_{opfetch} + t_{ALU}$ alors $T_{monocycle} = 2T_{bicycle}$

• Pas de différence de performance

14.11	
Le chemin de contrôle Micro-architecture bicycle Micro-architecture pipeline	
Chemin de données Contrôle de données Performances Performances Performances	
Micro-architecture multi-cycle Architecture mono-cycle vs règles Le Pipeline réel Les dépendances ("Hazard") Les dépendances de données	
d'optimisation	
d'optimisation Bypass Le chemin de données Pipeline : Conclusion	
Multicycle 3 janvier 2023 7 / 30	
Micro-architecture multi-cycle	Notes
Architecture mono-cycle vs règles d'optimisation	Notes
Réduction des chemins critiques	
Les chemins se superposent!Optimiser les opérations les plus fréquentes	
• Le traitement le plus long impose le temps de cycle!	
 Équilibrer l'utilisation du matériel Si une ressource doit être utilisée plusieurs fois elle doit être dupliquée! 	
Idée	
Plusieurs cycles/Instruction = micro-architecture multi-cycle	
⇒ Découpler le temps de cycle du temps de traitement de l'instruction	
Multicycle 3 janvier 2023 8 / 30	
Micro-architecture multi-cycle	Notes
Architecture multi-cycle vs règles d'optimisation	Notes
Réduction des chemins critiques Le chamin pritique pout être entimisé pour chaque instruction	
 Le chemin critique peut être optimisé pour chaque instruction Optimiser les opérations les plus fréquentes 	
 Les instructions deviennent indépendantes, d'un point de vue temporel et on peut donc optimiser les opérations les plus fréquentes 	
 Équilibrer l'utilisation du matériel On peut mieux factoriser le matériel entre les instructions ou pour une 	
 On peut mieux factoriser le materiel entre les instructions ou pour une instruction 	

Micro-architecture multi-cycle Le chemin de contrôle

Le control-path

On distingue 5 opérations élémentaires :

- IF : récupération de l'instruction (fetch) et décodage d'instruction (decode)
- ID : récupération des opérandes (fetch operands)
- EX : exécution
- MEM : accès mémoire
- WB : l'écriture du résultat dans un registre (write back)

3 janvier 2023 11 / 30

Notes

Notes

Micro-architecture multi-cycle Le chemin de contrôle

Le control-path micro-programmé

Les instructions sont des micro-séquences :

 $\bullet \ \mathsf{F0} : \mathsf{Op1} = \mathsf{PC} \, ; \, \mathsf{Op2} = \mathsf{4}$

 $\bullet \ \mathsf{F1} : \mathsf{PC} = \mathsf{Op1} + \mathsf{Op2}$

• F2 : MAR = PC

• F3 : IR = MEM[MAR]

Pour chaque micro-état on définit :

- les 18 signaux de contrôle
- le micro-état suivant

Taille de la ROM :

2(siezeof(opcode|func)+2+sizeof(state)) x(18 + sizeof(state))!

Performances :

- CPI différent pour chaque instruction
- Temps de cycle optimal

Plan		Notes
FIdII		
1 Micro-architecture bicycle	Le chemin de contrôle Micro-architecture pipeline	
Chemin de donnéesContrôle de données	Le pipeline idéalPipeline à 5 étages	-
Performances Micro-architecture multi-cycle	4 Le Pipeline réel Les dépendances ("Hazard")	<u> </u>
 Architecture mono-cycle vs règles d'optimisation 	 Les dépendances de données Résolution des dépendances de données 	
Architecture multi-cycle vs règles d'optimisation	InterlocksBypassPipeline : Conclusion	
 Le chemin de données 	Pipeline : Conclusion	
	Multicycle 3 janvier 2023 13 / 30	
Micro-architecture pipe	line	Notes
Micro-architecture pipeline		
La miavaavahitaatuva multi avala m	overst une bonne festeviestien des	
La microarchitecture multi cycle p ressources matérielles mais ne perr	net pas le parallélisme des traitements.	
•	ion des ressources matérielles et la	
duplication avec parallélisme Est-ce que l'architecture mémoire	Harvard est une si mauvaise idée?	
·	à la fois à l'instruction et à la donnée	
dans l'architecture monocycle	(afin de résoudre la dépendance	
structurelle) • Compromis entre une architec	eture Von Neumann et Harvard	
Hiérarchie mémoire (prochain		
Comment paralléliser des traitement		
• "le travail à la chaîne!" \Rightarrow le	pipeline	
	Multicycle 3 janvier 2023 14 / 30	
	Mutetycle 3 Janvier 2023 17/30	
Micro-architecture pipe	line Le pipeline idéal	Notes
Pipeline idéal		
Nous reprenons nos 5 traitements nous plaçons sur une chaîne de tra	de base de l'architecture multi-cycle que	
Les hypothèses d'une chaîne de tra	aitement pour garantir un usage optimal	
des ressources de traitement sontToutes les instructions passen		
 Pas de ressources partagées e 		
 Les délais de traitement de ch 		
	ns le pipeline est cadencée par la durée	
de traitement		

Micro-architecture pipelii

Pineline à 5 étages

Pipeline 5 étages : data path

Multicycle 3 janvier 2023 16 / 30

Micro-architecture pipeline

Pipeline à 5 étages

Pipeline 5 étages : illustration

IF ID	EX	MEM	WB
-------	----	-----	----

	c1	c2	c3	c4	c5	c6	c7	c8
I1	IF1	ID1	EX1	MEM1	WB1			
I2		IF2	ID2	EX2	MEM2	WB2		
I3			IF3	ID3	EX3	MEM3	WB3	
I4				IF4	ID4	EX4	MEM4	WB4
I5					IF5	ID5	EX5	MEM5
	c1	c2	c3	c4	c5	c6	c7	c8
IF	I1	I2	I3	I4	I5	I6	I7	I8
ID		I1	I2	I3	I4	I5	I6	I7
EX			I1	I2	I3	I4	I5	I6
MEM				I1	I2	I3	I4	I5
WB	_				I1	I2	I3	I4
					_	4	/	

latence = 5 cycles 1 instruction / cycle

ticycle 3 janvier 2023 17 / 30

Notes

Notes

Micro-architecture pipeline Pipeline à 5 étages
Pipeline 5 étages (contrôle du data path)

Plan

- Micro-architecture bicycle
- Chemin de données
 Contrôle de données
 Performances
- 2 Micro-architecture multi-cycle
 - Architecture mono-cycle vs règles
 - d'optimisation

 Architecture multi-cycle vs règles d'optimisation

 Le chemin de données

- Micro-architecture pipeline

 Le pipeline idéal
- 4 Le Pipeline réel

 - Les dépendances ("Hazard")

 Les dépendances de données

 Résolution des dépendances de données
 - Interlocks
- Bypass Pipeline : Conclusion

Les dépendances ("Hazard")

- Nous avons vu précédemment qu'une concurrence sur une même ressource matérielle peut entraîner une dépendance structurelle («structural hazard») entre deux traitements
 - Dans le pipeline deux instructions peuvent interagir l'une sur l'autre à cause d'une dépendance structurelle (accès mémoire)
- Une instruction peut aussi dépendre de ce qu'a produit l'instruction précédente
 - Dépendance de données («data hazard»)
 - Dépendance de contrôle («control hazard») : calcul du PC

Multicycle

3 janvier 2023

Le Pipeline réel Les dépendances de données Les dépendances de données

Notes

Notes

Résolution des dépendances de données

- \bullet Réordonner les instructions pour supprimer les dépendances et le cas échéant insérer des « NOP » (no operation)
 - Stratégie du MIPS I (Microprocessor without Interlocked Pipeline Stage)
- Attendre le résultat en arrêtant les étages qui précèdent :
- « Interlocks »
- Trouver des raccourcis pour mettre les données à jour le plus tôt possible : « Bypass »

Multicycle 3 janvier 2023 22 / 30

Interlocks Stall condition Nop Re-MEM Re-MEM Re-MEM Re-WB R

Notes			

Notes	

Génération du signal de contrôle stall

 $\bullet \ \textit{stall} = (\textit{Rs1}_\textit{add} == \textit{Rd}_\textit{add}) || (\textit{Rs2}_\textit{add} == \textit{Rd}_\textit{add})$

• Affiner les conditions de manière à ne figer le pipeline que si nécessaire

Format Inst		Sources	Destin	nation
ALU R	Rd = Rs1 func Rs2	Rs1,Rs2	Rd	R0
ALU I	Rd = Rs1 func Imm	Rs1	Rd	R0
S	MEM[Rs1+Imm]=Rs2	Rs1,Rs2		
J	PC=Pc+Imm		Rd	R0

Le Pipeline réel Interlocks

Interlock: illustration

IF	ID	EX	MEM	WB
----	----	----	-----	----

		c1	c2	c3	c4	C9	сb	C7	c8
I1	ADD R2, R3	IF1	ID1	EX1	MEM1	WB1			
I2	OR R4, R2		IF2	ID2	ID2	ID2	ID2	EX2	MEM2
I3				IF3	IF3	IF3	IF3	ID3	EX3
I4								IF4	ID4
I5									

Le Pipeline réel Bypass

Bypass: principe

IF	ID	EX	MEM	WB
----	----	----	-----	----

		c1	c2	сЗ	c4	c5	с6	с7	c8
I1	ADD R2, R3	IF1	ID1	EXI	MEM1	WB1			
I2	OR R4,R2		IF2	ID2	EX2	MEM2	WB2		
I3				IF3	ID3	EX3	MEM3	WB3	
I4					IF4	ID4	EX4	MEM4	WB4
I5						IF5	ID5	EX5	MEM5

- \bullet En fait le résultat de l'exécution de l1 est disponible à l'étage EX et peut être fourni à temps pour l'exécution de $\dot{\rm I2}$
- Il faut pour cela créer un bypass entre la sortie de l'ALU et son entrée

Notes

Notes

Pipeline : Conclusion Plan

- Micro-architecture bicycle
 Chemin de données
 Contrôle de données
 Performances
- 2 Micro-architecture multi-cycle
 - Architecture mono-cycle vs règles
 - d'optimisation
 Architecture multi-cycle vs règles
 - d'optimisation

 Le chemin de données
- Micro-architecture pipeline

 Le pipeline idéal

 - Pipeline à 5 étages
- Le Pipeline réel
 Les dépendances ("Hazard")

 - Les dépendances de donnéesRésolution des dépendances de données
 - Interlocks

5 Pipeline : Conclusion

Notes	

Multicycle 3 janvier 2023 29 / 30

Pipeline : Conclusion

Conclusion

- CPI >1
- Bypass complet augmente la complexité et a un impact sur le chemin critique et le temps de cycle.
- Dépendance de donnée entre un LW et l'instruction suivante ne peut pas être résolu par bypass
- Dépendances de contrôle dues aux branchements conditionnels non résolues par bypass (cf. séance 4)
- Hypothèse forte :
 - ullet Structure mémoire Harvard avec un temps d'accès =1 cycle
 - Séance 5 : hiérarchie mémoire

Notes			

3 janvier 2023