

8 BIT PISO SHIFT REGISTER

- HIGH SPEED t_{PD} = 15 ns (TYP.) AT V_{CC} = 5 V
- LOW POWER DISSIPATION
 I_{CC} = 4 μA (MAX.) AT T_A = 25 °C
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- BALANCED PROPAGATION DELAYS

 tpi H = tpHi
- SYMMETRICAL OUTPUT IMPEDANCE IOL = IOH = 4 mA (MIN.)
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS165

B1R F1R (Ceramic Package) M1R C1R (Micro Package) (Chip Carrier) ORDER CODES: M54HC165F1R M74HC165M1R M74HC165B1R M74HC165C1R

DESCRIPTION

The M54/74HC165 is a high speed CMOS 8 BIT PISO SHIFT REGISTER fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

It achives the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

This device contains eight clocked master slave RS flip-flops connected as a shift register, with auxiliary gating to provide over-riding asynchronous parallel entry. Parallel data entres when the shift/load input is low. The parallel data can change while shift/load is low, provided that the recommended set-up and hold times are observed. For clocked operation, shift/load must be high. The two clock input perform identically; one can be used as a clock inhibit by applying a high signal; to permit this operation clocking is accomplished through a 2 input nor gate.

To avoid double clocking, however, the inhibit signal should only go high while the clock is high. Otherwise the rising inhibit signal will cause the same response as rising clock edge.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

September 1993

INPUT AND OUTPUT EQUIVALENT CIRCUIT

TRUTH TABLE

		INPUTS	INTERNAL	OUTPUS			
SHIFT/ CLEAR	CLOCK INHIBIT	CLOCK	SERIAL IN	АН	QA	QB	QH
L	X	Х	Х	ah	а	b	h
Н	L		Н	Х	Н	QAn	QGn
Н	L		L	Х	L	QAn	QGn
Н		L	Н	Х	Н	QAn	QGn
Н		L	L	X	L	QAn	QGn
Н	Х	Н	Х	Х		NO CHANGE	
Н	Н	Х	Х	Х		NO CHANGE	

a.....h: The level of steady input voltage at inputs a through respectively

QAn - QGn : The level of QA -QG, respectively. before the most-recent transition of the clock.

LOGIC DIAGRAM

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	S/L	Asynchronous Parallel Load Input
2	QH	Complementary Output
7	QH	Serial Output
9	CLOCK	Clock Input (LOW to HIGH edge triggered)
10	SI	Serial Data Input
11, 12, 13, 14, 3, 4, 5, 6	A to H	Parallel Data Inputs
15	CLOCK INH	CLock Inhibit
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

IEC LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
V_{I}	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Test Conditions			Value							
Symbol	Parameter	Vcc				$T_A = 25$ °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
Vон	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5		V _{IH} I _O =-20 μA	4.4	4.5		4.4		4.4		V
		6.0	or		5.9	6.0		5.9		5.9		
		4.5	V_{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	Vcc or GND			±0.1		±1		±1	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Tes	st Conditions				Value				
Symbol	Parameter	V _{CC}			A = 25 C C and 7			85 °C HC	1	125 °C HC	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} Output Transition	2.0			30	75		95		110		
t _{THL}	·	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH}	Propagation	2.0			55	150		190		225	
t _{PHL}	Delay Time	4.5			18	30		38		45	ns
	(CK - QH, QH)	6.0			15	26		33		38	
t _{PLH}	Propagation	2.0			65	165		205		250	
t_{PHL}	Delay Time_	4.5			21	33		41		50	ns
	(S/L - QH, QH)	6.0			18	28		35		43	
t _{PLH}	Propagation	2.0			52	135		170		205	
t _{PHL}	Delay Time	4.5			17	27		34		41	ns
	(H - QH, QH)	6.0			14	23		29		35	
f _{MAX}	Maximum Clock	2.0		7.4	15		6.0		4.8		
	Frequency	4.5		37	60		30		24		MHz
		6.0		44	71		35		28		
t _{W(H)}	Minimum Pulse	2.0			24	75		95		110	
t _{W(L)}	Width	4.5			6	15		19		22	ns
	(CK)	6.0			5	13		16		19	
t _{W(L)}	Minimum Pulse	2.0			32	75		95		110	
(=)	Wi <u>d</u> th	4.5			8	15		19		22	ns
	(S/L)	6.0			7	13		16		19	
t _s	Minimum Set-up	2.0			24	75		95		110	
	Time _	4.5			6	15		19		22	
	(PI - S/L) (SI CK) (S/L -CK)	6.0			5	13		16		19	ns
t _h	Minimum Hold	2.0				0		0		0	
	Tim <u>e</u>	4.5				0		0		0	
	(S/L - PI) (CK - SI <u>)</u> (CK - S/L)	6.0				0		0		0	ns
t _{REM}	t _{REM} Minimum	2.0			20	75		95		110	
	Removal Time	4.5			5	15		19		22	ns
	(CK - CKINH)	6.0			4	13		16		19	
C _{IN}	Input Capacitance				5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance				55						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

TIMING CHART

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT Icc (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm				
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45° ((typ.)				
D	9.8		10	0.385		0.393		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (r	nax.)				

PLCC20 MECHANICAL DATA

DIM.		mm			inch			
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

