5

15

30

40

1. A human EPO receptor agonist polypeptide, comprising a modified EPO amino acid sequence of the Formula:

AlaProProArgLeuIleCysAspSerArgValLeuGluArgTyrLeuLeuGluAlaLys
10 20

10 GluAladluAsnIleThrThrGlyCysAlaGluHisCysSerLeuAsnGluAsnIleThr 30 40

ValProAsp ThrLysValAsnPheTyrAlaTrpLysArgMetGluValGlyGlnGlnAla 50 60

ValGluValTrpGlnGlyLeuAlaLeuLeuSerGluAlaValLeuArgGlyGlnAlaLeu
70 80

LeuValAsnSerSerGlnProTrpGluProLeuGlnLeuHisValAspLysAlaValSer
90 100

GlyLeuArgSerLeuThrThrLeuLeuArgAlaLeuGlyAlaGlnLysGluAlaIleSer

110 120

ProProAspAlaAlaSerAlaAlaProLeuArgThrIleThrAlaAspThrPheArgLys
130 140

LeuPheArgValTyrSerAsnPheLeuArgGlyLysLeuLysLeuTyrThrGlyGluAla
150 160

CysArgThrGlyAspArg SEQ ID NO:121

wherein optionally 1-6 amino acids from the N
terminus and 1-5 from the C-terminus can be deleted
from said EPO receptor agonist polypeptide;

wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;

		\
23-24	48-49	111-112
24-25	50-51	112-113
25-26	51-52	\ 113-114
26-27	52-53	\ 114-115
27-28	53-54	\ 115-116
28-29	54-55°	\116-117
29-30	55-56	¥17-118
30-31	56-57	1\18-119

	31-32	57-58	119-120
	32-33	77-78	120-121
	33-34	78-79	121-122
	34-35	79-80	122-123
\	35-36	80-81	123-124
\	36-37	81-82	124-125
\	37-38	82-83	125-126
-\	38-39	84-85	126-127
\	40-41	85-86	127-128
,	11-42	86-87	128-129
	\43-44	87-88	129-130
	44-45	88-89	130-131
	4 5−46	108-109	131-132
	46-47	109-110	respectively; and
	47 \ −48	110-111	-

receptor agonist polypeptide may optionally be immediately preceded by (methionine⁻¹), (alanine⁻¹) or (methionine⁻², alanine⁻¹).

5

2. The EPO receptor agonist polypeptide, as recited in claim 1, wherein said linker is selected from the group consisting of;

10

GlyGlyGlySex SEQ ID NO:123; GlyGlyGlySer GlyGlyGlySer SEQ ID NO:124; GlyGlyGlySerGlyGlySerGlyGlySer SEQ ID

NO:125:

SerGlyGlySerGlyGlySer SEQ ID NO:126; GluPheGlyAsnMet SEQ ID NO:127; GluPheGlyGlyAsnMet \SEQ ID NO:128; GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:129; and GlyGlySerAspMetAlaGly SEQ ID NO:130.

20 3. The EPO receptor aganist polypeptide of claim 1 selected from the group\consisting of; SEQ ID NO:1; SEQ ID NO:2;\SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6; SEQ ID NO:7; SEQ ID NO:8; SEQ ID NO:9; SEQ ID NO:10; SEQ ID NO:11; SEQ ID NO:12; SEQ ID NO:13; SEQ ID NO:14; SEQ ID NO:15; SEQ ID NO:16; SEQ ID NO:17; SEQ ID NO:18; SEQ ID NO:19; SEQ ID NO:20; SEQ ID NO:21; SEQ ID NO:22 $\frac{1}{3}$ SEQ ID

NO:23; SEQ ID NO:24; SEQ ID NO:25;

SEQ ID

5

10

20

25

NO:26; SEQ ID NO:27; SEQ ID NO:28; SEQ ID NO:29; SEQ ID NO:30; SEQ ID NO:31; SEQ ID NO:32; SEQ ID NO:33; SEQ ID NO:34; SEQ ID NO:35; SEQ ID NO:36; SEQ ID NO:37; SEQ ID NO:38; SEQ ID NO:39; SEQ ID NO:40; SEQ ID NO:41; SEQ ID NO:42; SEQ ID NO:43; SEQ ID NO:44; SEQ ID NO:45; SEQ ID NO:46; SEQ ID NO:47; SEQ ID NO:48; SEQ ID NO:49; SEQ ID NO:50; SEQ ID NO:51; SEQ ID NO:52; SEQ ID NO:56; SEQ ID NO:57; SEQ ID NO:58; SEQ ID NO:59 and SEQ ID NO:122.

4. The EPO receptor agonist polypeptide of claim 3 wherein the linker sequence (GlyGlyGlyGlySer SEQ ID NO 123) is replaced by a linker sequence selected from the group consisting of;

GlyGlyGlySerGlyGlySer SEQ ID NO:124; GlyGlyGlySerGlyGlySerGlyGlySer SEQ ID

NO:125;

SerGlyGlySerGlyGlySer SEQ ID NO:126; GluPheGlyAsnMet SEQ ID NO:127; GluPheGlyGlyAsnMet SEQ ID NO:128; GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:129; and GlyGlySerAspMetAlaGly SEQ ID NO:130.

5. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist 30 polypeptide of claim 1.

6. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 2.

A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 3.

8. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 3 selected from the group consisting of;

```
SEQ ID NO:60; SEQ ID NO:61; SEQ ID NO:62; SEQ ID NO:63; SEQ ID NO:64; SEQ ID NO:65; SEQ ID NO:66; SEQ ID NO:66; SEQ ID NO:66; SEQ ID NO:70; SEQ ID NO:71; SEQ ID NO:72; SEQ ID NO:73; SEQ ID NO:74; SEQ ID NO:75; SEQ ID NO:76; SEQ ID NO:77; SEQ ID NO:78; SEQ ID NO:79; SEQ ID NO:80; SEQ ID NO:81; SEQ ID NO:82; SEQ ID NO:83; SEQ ID NO:84; SEQ ID NO:85; SEQ ID NO:86; SEQ ID
```

NO:87; SEQ ID NO:88; SEQ ID NO:89; SEQ ID NO:90; SEQ ID NO:91; SEQ ID NO:92; SEQ ID

NO:93; SEQ ID NO:94; SEQ ID NO:95; SEQ ID NO:96; SEQ ID NO:97; SEQ ID NO:98; SEQ ID

NO:99; SEQ ID\NO:100; SEQ ID NO:101; SEQ ID

NO:102; SEQ ID \setminus NO:103; SEQ ID NO:104; SEQ ID

NO:105; SEQ ID NO:106; SEQ ID NO:107; SEQ ID

NO:108; SEQ ID NO:109; SEQ ID NO:110; SEQ ID

NO:111; SEQ ID NO:112; SEQ ID NO:113; SEQ ID

NO:114; SEQ ID NO: 15; SEQ ID NO:116; SEQ ID

NO:117; SEQ ID NO:1 $\frac{1}{4}$ 8 and SEQ ID NO:119.

9. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 4.

10. A method of producing a EPO receptor agonist polypeptide comprising: growing under suitable nutrient conditions, a host cell transformed or transfected with a replicable vector comprising said nucleic acid molecule of claim 5, 6, 7, 8 or 9

15

10

20

25

30

Ain a manner allowing expression of said EPO receptor agonist polypeptide and recovering said EPO receptor agonist polypeptide.

- 11. A composition comprising; a EPO receptor agonist polypeptide according to claim 1, 2, 3 or 4; and a pharmaceutically acceptable carrier.
- 12. A composition comprising; a EPO receptor 10 agonist polypeptide according to claim 1, 2, 3 or 4; a factor; and a pharmaceutically acceptable carrier.
 - 13. The composition of claim 12 wherein said factor is selected from the group consisting of: GM-CSF, G-CSF, c-mpl ligand, M-CSF, IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, flt3/flk2 ligand, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor, IL-3 variants, fusion proteins, G-CSF receptor agonists c-mpl receptor agonists, IL-3 receptor agonists, multi-functional receptor agonists.
- 14. A method of stimulating the production of hematopoietic cells in a patient comprising the step of; administering a EPO receptor agonist polypeptide of claim 1, 2, 3 or 4, to said patent.
- 30 15. A method for selective ex vivo expansion of erythroid progenitors, comprising the steps of;
 - (a) culturing erythroid progenitor cells in a culture medium, comprising; a polypeptide of claim 1,2, 3 or 4; and
 - (b) harvesting said cultured cells.

Syl 20

15

- 16. A method for selective ex vivo expansion of erythroid progenitors, comprising the steps of;
- (a) separating erythroid progenitor cells from other cells;
- 5 (b) culturing said separated erythroid progenitor cells with a selected culture medium comprising a polypeptide of claim 1, 2, 3 or 4; and
 - (c) harvesting said cultured cells.
- 10 17. A method for treatment of a patient having a hematopoietic disorder, comprising the steps of;
 - (a) removing erythroid progenitor cells;
 - (b) culturing said erythroid progenitor cells in a culture medium, comprising; a polypeptide of claim 1, 2, 3 or 4;
 - (c) harvesting said cultured cells; and
 - (d) transplanting said cultured cells into said patient.
- 20 18. A method for treatment of a patient having a hematopoietic disorder, comprising the steps of;
 - (a) removing erythroid progenitor cells;
 - (b) separating erythroid progenitor cells from other cells;
- 25 (c) culturing said separated erythroid progenitor cells with a selected culture medium comprising a polypeptide of claim 1, 2, 3 or 4;
 - (d) harvesting said cultured cells; and
- (e) transplanting said cultured cells into said 30 patient.
 - 19. A method of claim 15 wherein said erythroid progenitor cells are isolated from peripheral blood.
- 20. A method of claim 16 wherein said erythroid progenitor cells are isolated from peripheral blood.

- 21. A method of claim 17 wherein said erythroid progenitor cells are isolated from peripheral blood.
- 22. A method of claim 18 wherein said erythroid progenitor cells are isolated from peripheral blood.