LD M-5

LAISVŲJŲ SVYRAVIMŲ TYRIMAS

DARBO TIKSLAS

- 1. Ištirti spyruoklės laisvųjų svyravimų periodo priklausomybę nuo pakabinto kūnelio masės $T_0 = f(m)$.
- 2. Apskaičiuoti spyruoklės standumo koeficientą k ir vielos medžiagos šlyties modulį G.

PRIEMONĖS

Kūnų rinkinys, stovas su spyruokle ir milimetrine liniuote, sekundometras.

TEORIJA

1. Spyruoklinės svyruoklės laisvieji (harmoniniai) svyravimai. Laisvieji svyravimai – tai svyravimai, kuriuos sukelia tamprumo jėgos, atsirandančios išvedus svyruoklę iš pusiausvyros padėties.

Jei svyravimai vyksta ore, tai pasipriešinimo jėga $F_p << F_t$ ir galima laikyti, jog spyruoklę veikia tik tamprumo F_t jėga. Jėga F_t yra proporcinga judančio kūno poslinkiui x ir visada nukreipta į pusiausvyros padėtį (1 pav.):

$$\vec{F}_t = -k \cdot \vec{\mathbf{x}} \,, \tag{1}$$

čia k – spyruoklės standumo koeficientas. Vertikalius spyruoklės svyravimus palaiko spyruoklės skerspjūvio sluoksniuose atsirandanti šlyties tamprumo jėga. Įrodoma, kad

$$k = \frac{G \cdot d^4}{8 \cdot N \cdot D^3},\tag{2}$$

čia G – šlyties modulis, d – vielos diametras, D – spyruoklės diametras, N – vielos vijų skaičius. II Niutono dėsnį \vec{F} =m· \vec{a} galima užrašyti taip:

$$m\frac{d^2\vec{x}}{dt^2} = \vec{F},$$
 (3)

1 pav.

nes pagreitis $a = \frac{d^2x}{dt^2}$. Įstatę į (3) tamprumo jėgos išraišką (1), turime: $m \cdot \frac{d^2x}{dt^2} = -k \cdot x$. Sutvarkę šią išraišką gauname **svyruoklės judėjimo lygtį**:

$$\frac{d^2x}{dt^2} + \frac{k}{m} \cdot x = 0. \tag{4}$$

Tai - diferencialinė lygtis, aprašanti laisvuosius (harmoningus) svyravimus.

2. Judėjimo lygties (4) sprendinys. Harmoniniai svyravimai. Lygties (4) sprendinys:

$$x = x_m \cdot \cos(\omega_0 \cdot t + \alpha), \tag{5}$$

čia $\,x_m\,$ - poslinkio amplitudė, $\,\alpha$ - pradinė fazė.

Laisvųjų svyravimų ciklinis (kampinis) dažnis

$$\omega_0 = \sqrt{\frac{k}{m}} , \qquad (6)$$

$$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}} . \qquad (6a)$$

periodas

Priklausomybė x = f(t) (5) parodyta 2 pav. Svyravimai, vykstantys pagal sin (ar cos) dėsnį vadinami **harmoniniais.**

2 pav.

3. Greitis $\mathbf{v} = \mathbf{v}$ (t), pagreitis $\mathbf{a} = \mathbf{a}$ (t). Žinant priklausomybę $\mathbf{x} = \mathbf{f}(\mathbf{t})$ (5) nesunku surasti greitį $\mathbf{v} = \mathbf{v}$ (t) ir pagreitį $\mathbf{a} = \mathbf{a}$ (t). Pagal apibrėžimą

$$v = \frac{dx}{dt} = -x_{m} \omega_{0} \sin(\omega_{0}t + \alpha), \tag{7}$$

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -x_m \omega_0^2 \cos(\omega_0 t + \alpha)$$
 (8)

Pasinaudodami trigonometrinių funkcijų sąvybėmis (7), (8) galime perrašyti taip:

$$v = v_{\mathbf{m}} \cos(\omega_0 t + \alpha + \pi/2), \tag{7a}$$

$$a = a_{\mathbf{m}} \cos(\omega_0 t + \alpha + \pi). \tag{8a}$$

Čia pažymėta $v_m = x_m \, \omega_0$ ir $a_m = x_m \, \omega_0^2$ – greičio ir pagreičio amplitudės. Matome, jog greitis ir pagreitis kinta pagal tą patį dėsnį, kaip ir poslinkis x = f(t) (5). Svyravimai v = v (t) (7a) ir a = a (t) (8a) skiriasi nuo x = f(t) (5) faze $\pi/2$ ir π , atitinkamai.

EKSPERIMENTAS

Darbo eiga

1. Tiriame svyruoklės periodo T_0 priklausomybė nuo pakabintos masės m. Tuo tikslu keičiame prikabinamus prie spyruoklės kūnelius (**9 kūnelių rinkinį nurodo dėstytojas**). Svyruoklės masės m_S įtaka periodui įvertiname imdami masę m lygią kūnelio masės m_K ir spyruoklės masės m_S trečdalio sumai: $m = m_K + m_S/3$. Spyruoklės masė užrašyta ant prietaiso stovo, ant kūnelių užrašytos jų masių skaitmeninės vertės. Svyruoklės periodo matavimą pradedame nuo

didžiausios masės kūnelio. Pakabinę jį ant spyruoklės, patempiame žemyn ($x_m = 1$ cm) ir paleidžiame svyruoti. Išmatuojame laiką t, per kurį įvyksta n = 20 svyravimų. Bandymus kartojame **su kitais devyniais (mažėjančios masės) kūneliais**.

Atliekant eksperimentą, kad išvengti šoninių ir kt. svyravimų amplitude x_m reikia imti mažą! Matavimų duomenis m, t, n įrašome į **1 lentelę**.

2. Išmatuojame spyruoklės vijos diametrą D (slankmačiu) ir vielos diametrą d (mikrometru), vijų skaičių N. Diametrus D ir d matuojame įvairiuose spyruoklės vietose 9 kartus ir surandame aritmetinius vidurkius \overline{D} ir \overline{d} . Duomenis įrašome į 1 lentelę.

Skaičiavimai

- 1. Lentelės 1 eilutėje vnt., ten kur nėra, įrašome matuojamų dydžių vienetus (SI). Pagal 1 lentelės duomenis apskaičiuojame svyruoklės periodo T_0 vertes. Pagal (6a) apskaičiuojame spyruoklės standumo koeficientą k ir surandame jo vidutinę vertę \overline{k} . Panaudodami surastąjį \overline{k} brėžiame grafiką $T_0 = f(m)$, pagal formulę $T_0 = 2\pi\sqrt{m/\overline{k}}$ (6a). Tuo tikslu pagal (6a) 9 masės vertėms apskaičiuojame T_0 (gautus rezultatus surašome į 2 lentelę) ir per šiuos taškus (m, T_0) (juos pažymime skrituliukais) brėžiame grafiką. Eksperimentinius taškus iš 1 lentelės šiame grafike pavaizduojame kryželiais.
- 2. Apskaičiuojame vielos medžiagos šlyties modulį G pagal (2).
- 3. Išvedame šlyties modulio G paklaidos formulę ir apskaičiuojame maksimalią paklaidą ΔG . Paklaidos ΔG skaičiavimuose **imamos vidutinės aritmetinės paklaidos** $\Delta \overline{D}$, $\Delta \overline{d}$, $\Delta \overline{k}$. Jos randamos taip:

$$\Delta \bar{k} = (|k_1 - \bar{k}| + |k_2 - \bar{k}| + ... + |k_n - \bar{k}|) / n.$$
(9)

Analogiškai $\Delta \overline{D}$, $\Delta \overline{d}$.

Išvadose

- 1. Aptariame svyruoklės laisvųjų svyravimo periodo T₀ priklausomybę nuo masės m.
- 2. Pateikiame išmatuotų dydžių vidutines vertes $\overline{k}, \overline{D}, \overline{d}$ su paklaidomis.
- 3. Pateikiame G vertę su paklaida, palyginame ją su žinyno duomenimis.

KONTROLINIAI KLAUSIMAI

- 1. Parašykite svyruoklės harmoninių svyravimų poslinkio x = x(t), greičio v = v(t), pagreičio a = a(t) lygtis. Paaiškinkite jas ir nubrėžkite grafikus.
- 2. Sudarykite laisvųjų svyravimų diferencialinę lygtį. Nuo ko priklauso laisvųjų svyravimų dažnis ? Kaip priklauso periodas nuo svyruoklės masės ?
- 3. Paaiškinkite eksperimentą. Kaip buvo nustatytas svyruoklės standumo koeficientas, jos medžiagos šlyties modulis, apskaičiuotos paklaidos ?

1 lentelė

Eil Nr.	$m=m_k+m_s/3$	n	t	$T_0 = \frac{t}{n}$	$k = \frac{4\pi^2 m}{T_0^2}$	k	$\Delta \overline{k}$	d	\bar{d}	$\Delta \overline{\mathrm{d}}$	D	D	$\Delta \overline{\mathrm{D}}$	N	$G = \frac{8N \cdot \overline{D}^3 \cdot \overline{k}}{\overline{d}^4}$	ΔG
vnt	g	-	S	S	kg	r/s^2			mm			mm				
1.	50,0 +15,0															
2.	45,0 +15,0															
3.	40,0 +15,0															
4.	35,0 + 15,0	20														
5.	30,0 + 15,0															
6.	25,0 + 15,0															
7.	20,0 +15,0															
8.	15,0 + 15,0															
9.	10,0 +15,0															

Spyruoklės masė $m_s\!\!=45,\!0$ g, o $m_s/3\!\!=\!\!15,\!0$ g.

2 lentelė

Eil. nr.	$m=m_k+\frac{m_s}{3}$	\overline{k}	$T_0 = \frac{t}{n}$ Ekspermentiniai rezultatai	$T_0=2\pi\sqrt{rac{m}{ar{k}}}$ Apskaičiuoti taškai
vnt.	g	kg/s ²	S	S
1.				
2.				
3.				
4.				
5.				

6.		
7.		
8.		
9.		