Алгоритмы и модели вычислений. Домашнее задание № 7

 ${\it 3adaчa}$ 1. 1. Докажите, что $NC^d \subseteq AC^d \subseteq NC^{d+1}$.

2. Докажите, что
$$\bigcup_{d=1}^{\infty} AC^d = NC$$
.

Решение. 1. Вложение $NC^d \subseteq AC^d$ очевидно: если некоторый язык распознаётся схемами с двумя входными литералами с глубиной $O(\log^d n)$, то он распознаётся схемами с про-извольным количеством входных литералов с глубиной $O(\log^d n)$ (можно просто взять ту же последовательность схем)

Докажем теперь вложение $AC^d \subseteq NC^{d+1}$: для этого сначала покажем, как мы будем разворачивать вершины \vee и \wedge произвольных схем из AC^d :

Изначально имеем следующую схему:

Разворачиваем её следующим образом:

Докажем, что если мы в произвольной схеме глубины $O(\log^d n)$ развернём все вершины \vee и \wedge входящей степени > 2, то мы получим схему глубиной $O(\log^{d+1} n)$. Пусть некоторая вершина исходной схемы имеет входную степень k. Тогда заметим, что так как в нашей развёртке количество входов с каждым уравнем сокращается вдвое, то эта вершина преобразуется в дерево глубины $\log_2 k$. Таким образом глубина исходной схемы $O(\log^d n)$, а глубина каждого из её уровней после преобразования есть $O(\log n)$, то есть итоговая глубина преобразованной схемы будет $O(\log^d n) \cdot O(\log n) = O(\log^{d+1} n)$, таким образом $AC^d \subseteq NC^{d+1}$, что и требовалось.

2. По доказанному в прошлом пункте $NC^d\subseteq AC^d\subseteq NC^{d+1}$, тогда $NC=\bigcup_{d=1}^\infty NC^d\subseteq\bigcup_{d=1}^\infty AC^d\subseteq\bigcup_{d=1}^\infty NC^{d+1}\subseteq\bigcup_{d=1}^\infty NC^d=NC$

To есть
$$NC\subseteq\bigcup_{d=1}^\infty AC^d\subseteq NC$$
, то есть $\bigcup_{d=1}^\infty AC^d=NC$, что и требовалось.

 ${\it 3adava}\,\,2$. Докажите, что язык ${\it PAL}=\{a\mid a=a^R\},$ где a^R- слово a, записанное в обратном порядке, лежит в ${\it AC}^0$

Решение. AC^0 — язык слов, распознаваемых схемами типа AC и имеющих при этом константную глубину. Зафиксируем базис \neg, \lor, \land . Так как $a \oplus b = (a \land \neg b) \lor (\neg a \land b)$, то добавление в базис символа \oplus увеличивает размер схемы в константу раз (будем использовать \oplus , так как предикат « a_i совпадает с a_i » можно записать в виде $\neg(a_i \oplus a_i)$)

Таким образом $a = a_1 a_2 \dots a_n \in PAL \Leftrightarrow \neg (a_1 \oplus a_n) \wedge \neg (a_2 \oplus a_{n-1}) \wedge \dots = 1$, и, собственно, мы можем вычислить эту функцию на схеме типа AC константной глубины:

Мы получили схему константной длины, которая вычисляет язык $PAL \Rightarrow PAL \in AC^0$, что и требовалось.