Assignment 2

SIL8123: Artificial Intelligence for Cybersecurity Semester I, 2025-2026

Author: Naman Garg, 2025CSY7544

Q. Using an appropriate metric (e.g., LPIPS score in adversarial attack) for each type of attack, describe the methodology to analyze the trade-off between the attack success rate and the selected metric, and discuss the results in the report.

1. Adversarial attack — LPIPS vs Attack Success Rate

Metric: LPIPS (primary perceptual distance) — also report L∞ and L2.

Sweep: eps_values = [0, 1/255, 2/255, 4/255, 8/255, 16/255] for L∞ attacks (FGSM/PGD). For iterative attacks also sweep the number of iterations if desired.

Procedure (exact):

- 1. Select N_eval = 1000 test samples that the model classifies correctly (only evaluate on originally-correct).
- 2. For each eps:
 - Generate adversarial examples x_adv with your chosen attack (FGSM, PGD).
 - Compute success = mean(model(x_adv).argmax != y) over originally-correct set.
 - Compute lpips_vals = lpips_batch(x_clean, x_adv) and record mean_lpips, std_lpips.

```
    Also compute mean_linf = np.max(abs(x_adv-x),
axis=(1,2,3)).mean() and L2 mean.
```

3. Plot:

- plot1: eps (x) vs attack success (y)
- plot2: eps (x) vs mean LPIPS (y)
- trade-off plot: mean LPIPS (x) vs attack success (y) annotate points with eps.

Interpretation: identify eps where LPIPS crosses a perceptual threshold (e.g., where images start to look different to human raters) and report success there.

2. Training-set poisoning — LPIPS (detectability) vs Attack Success Rate (ASR)

Metric: For poisoning there are two relevant metrics:

- Perceptual detectability: LPIPS between original training images and their poisoned versions (mean across poisoned subset). Lower LPIPS ⇒ stealthier poison.
- Attack success: For backdoor poisoning: ASR = fraction of triggered test images
 classified as the attacker-chosen target. For indiscriminate label flipping: effect
 measured as drop in clean test accuracy.

Sweep: poison_frac = [0.0, 0.005, 0.01, 0.02, 0.05, 0.1] and, if using a backdoor, trigger_strength (e.g., patch color intensity).

Procedure (exact):

- For each poison_frac:
 - Create poisoned training set by selecting n_poison = int(poison_frac * len(train)) images and applying the poison scheme (label flip OR add trigger + change label to target).
 - Compute mean LPIPS between original images and poisoned images for those n_poison indices.
 - Retrain or fine-tune the model on the poisoned set (same training recipe).
 - Evaluate:
 - For backdoor: create triggered test set by applying trigger to test images (or subset) and compute ASR = mean(pred == target_label) on triggered test set.
 - For indiscriminate poisoning: measure clean test accuracy drop Δacc = acc_clean_before - acc_clean_after.

2. Plot:

• LPIPS (x) vs ASR (y) for backdoor; or LPIPS vs Δacc for indiscriminate.

Interpretation: locate minimal poison_frac such that ASR ≥ desired threshold while keeping LPIPS low.

3. Membership Inference — Utility metric (model test accuracy) vs Attack Success (AUC)

Metric: Model **utility** (clean test accuracy) is the defender's metric/cost. For MI the "perceptual" metric doesn't apply; instead we study the privacy-utility trade-off: how attack success (AUC or attack accuracy) varies with model utility.

Sweep: vary a model hyperparameter that directly affects utility/overfitting: e.g., weight_decay / L2 reg or dropout_rate, or number of training epochs. Example grid: reg = [0, 1e-5, 1e-4, 1e-3, 1e-2].

Procedure (exact):

- 1. For each reg value:
 - Train model with that regularization (keeping data/train seed constant).
 - Measure model test accuracy acc_test.
 - Build a MI attack (feature-based logistic regression or ART MI) on the model:
 - Use N_member and N_nonmember training points, compute features (max-softmax, entropy, true-class loss).
 - Train MI attack model (e.g., logistic regression) using a split of these features.
 - Evaluate attack by AUC on held-out attack data (or attack accuracy).
- 2. Plot acc_test (x) vs MI_auc (y) this is the privacy-utility curve.

Interpretation: you expect that higher test accuracy (less regularization, more overfitting) increases MI success. Identify defender operating point balancing acceptable accuracy and acceptable privacy risk.

4. Model Inversion — LPIPS (fidelity) vs Inversion Success (retrieval or confidence)

Metric: LPIPS (fidelity to true image) and optionally SSIM. Success can be:

- whether model assigns target label to reconstructed image (model confidence),
- retrieval rank if you compare a reconstructed image against a gallery of candidates.

Sweep: vary the **regularization weight** λ in inversion optimization (controls realism vs fidelity) and/or number of optimization steps. Example lam_values = [0, 1e-4, 1e-3, 1e-2, 1e-1].

Procedure (exact):

- 1. For a set of target images x_true (N_targets):
 - For each lam:
 - Run inversion optimizer to produce x_rec that maximizes log p(y_target | x) - λ * prior(x) (prior e.g., TV or L2 to mean).
 - Compute lpips = lpips_batch(x_rec, x_true) and ssim etc.
 - Evaluate model_confidence = model.predict(x_rec)[target_label].
 - Optionally compute retrieval: compute LPIPS between x_rec and all images in a gallery; check true image rank.
- 2. For each lam compute the mean LPIPS and success rate (e.g., fraction of reconstructions with LPIPS < threshold OR fraction where model predicts the target label with conf > τ).
- 3. Plot LPIPS (x) vs inversion success (y), and optionally show example reconstructed images.

Interpretation: smaller $\lambda \to \text{optimizer}$ focuses on maximizing target prob (may produce unnatural but high-confidence reconstructions) — may yield lower LPIPS but lower realism depending on prior. Show representative reconstructions for a few λ values.

Thank You