Note: in the below, we adopt the notation $\phi_a:D_1(0)\to D_1(0)$ to be given by $\phi_a(z)=\frac{z-a}{1-\overline{a}z}$. This is the same as the f_a given in class, but that notation lends itself to issues in this homework.

I should've said this in the other homework as well, but I use $\overline{\mathbb{C}}$ to denote the Riemann Sphere because I can't figure out how to get \mathbb{C} with a hat over it.

Problem 1:

The map described in class is $f \circ g \circ h$, where $f(z) = \frac{z-1}{z+1}$, $g(z) = \sqrt{z}$, and $h(z) = \frac{z-1}{z+1}$.

Its inverse is thus $h^{-1} \circ g^{-1} \circ f^{-1}$, which is $F: D_1(0) \to \overline{\mathbb{C}} \setminus [-1, 1]$ where $F(z) = \frac{\left(\frac{z+1}{1-z}\right)^2 + 1}{1 - \left(\frac{z+1}{1-z}\right)^2} = \frac{-z^2 - 1}{2z}$.

Consider the set $\partial D_r(0)$ where r < 1. We see that $F(\partial D_r(0)) = \{\frac{-z^2-1}{2z} : |z| = r\}...$

I have recognized that this is horribly broken (1/2 maps to 3/4, which is on the line segment we excluded), and I have no earthly clue how to fix this.

Problem 2:

Consider $\phi_{f(0)}(f(z))$. Taking a derivative, we get:

$$(\phi_{f(0)}(f(z)))' = \phi'_{f(0)}(f(z))f'(z)$$

$$f'(z) = \frac{(\phi_{f(0)}(f(z)))'}{\phi'_{f(0)}(f(z))}$$

$$|f'(z)| = \left| \frac{(\phi_{f(0)}(f(z)))'}{\phi'_{f(0)}(f(z))} \right|$$

$$|f'(0)| = \left| \frac{(\phi_{f(0)}(f(0)))'}{\phi'_{f(0)}(f(0))} \right|$$

$$|f'(0)| = (1 - |f(0)|^2) \left| (\phi_{f(0)}(f(0)))' \right|$$

with the last line being because $|\phi_a'(a)| = \frac{1}{1-|a|^2}$, which was discussed in class.

Moreover, $|(\phi_{f(0)}(f(0)))'| \leq 1$, by Schwarz's lemma. (Note that $\phi_{f(0)}(f(z))$ is a holomorphic map fixing the origin, so its derivative at the origin is at most 1.)

Thus, we have $|f'(z)| \le (1 - |f(0)|^2)$.

Problem 3:

Fix $z \in D_1(0)$. Consider $f(\phi_{-z}(w))$ as a function of w. Taking a derivative, we get:

$$(f(\phi_{-z}(w)))' = f'(\phi_{-z}(w))\phi'_{-z}(w)$$

$$(f(\phi_{-z}(0)))' = f'(\phi_{-z}(0))\phi'_{-z}(0)$$

$$\frac{(f(\phi_{-z}(0)))'}{\phi'_{-z}(0)} = f'(\phi_{-z}(0))$$

$$\frac{(f(\phi_{-z}(0)))'}{\phi'_{-z}(0)} = f'(z)$$

$$\left|\frac{(f(\phi_{-z}(0)))'}{\phi'_{-z}(0)}\right| = |f'(z)|$$

$$|f'(z)| = |f(\phi_{-z}(0)))'| \frac{1}{1 - |-z|^2}$$

$$|f'(z)| \le \frac{1}{1 - |z|^2}$$

With the last line being by Schwarz's lemma, as above.

Problem 4:

Consider $\{z \in \mathbb{C} : A|z|^2 + 2\text{Re}(Bz^2) + 2\text{Re}(Cz) + D = 0\}$, with $A, D \in \mathbb{R}$, $B, C \in \mathbb{C}$ (A, B, C, D fixed).

This describes a line when A=B=0; If A or B is nonzero, then something. However, if A=B=0, then the set becomes $\{z\in\mathbb{C}: 2\mathrm{Re}(Cz)=D\}$, which is rather clearly a line.

This describes a circle when

Problem 5:

(Note: I had read this in Complex Made Simple before this was assigned.) Let $\phi \in \operatorname{Aut}(\overline{\mathbb{C}})$. Say \mathcal{C} is the set of all circles and lines in the complex plane.

Note that $\operatorname{Aut}(\overline{\mathbb{C}})$ is the set of linear-fractional transformations. Further note that the set of linear-fractional transformations is generated, as a group, by the maps of the form $z \mapsto az + b$ (with $a, b \in \mathbb{C}$) and the map $z \mapsto 1/z$.

It suffices to show our result for the generating set.

The result is clear for linear maps (note that they're a dilation followed by a translation followed by a rotation.)

For the map f(z) = 1/z, let ℓ be a line through the origin: that is, $\ell = \{z \in \mathbb{C} : \exists r \in \overline{\mathbb{R}} : z = \epsilon r\}$ for some fixed $\epsilon \in \mathbb{C}$ with $|\epsilon| = 1$. Then $f(\ell)$ is another line: $f(\ell) = \{z \in \mathbb{C} : \exists r \in \overline{\mathbb{R}} : z = 1/(\epsilon r)\}$; note that $|1/\epsilon| = 1$ and 1/r is an automorphism of $\overline{\mathbb{R}}$.

If ℓ is a line that misses the origin: that is, $\ell = \{z \in \mathbb{C} : \exists r \in \overline{\mathbb{R}} : z = \epsilon r + c\}$ for some fixed $\epsilon \in \mathbb{C}$ and $c \in \mathbb{C}$ with $|\epsilon| = 1$. Then $f(\ell)$ is a circle: $f(\ell) = \{z \in \mathbb{C} : \exists r \in \overline{\mathbb{R}} : z = 1/(\epsilon r + c)\}$, which is a circle. (I am somewhat certain we discussed this in class.)

Let Γ be a circle centered at the origin. Then

Let Γ be a circle not centered at the origin. Then

So in all cases, f(z) = 1/z maps C to itself.

So we have the desired result.

Problem 6:

Let $\Omega \subset \mathbb{C}$ be open, $f_n \in \mathcal{O}(\Omega)$, $\sup(|f_n(z)|) = L < \infty$, $\xi_j \in \Omega$, (with each ξ_j distinct), $\xi_j \to \xi \in \Omega$, and $f_n(\xi_j) \to \Xi_j$ for some Ξ_j .

By Vitali-Montel, there's a subsequence of f_n , call it f_{n_k} , that converges locally uniformly to some holomorphic function, f.

Consider \mathcal{F} , the set of functions f such that f_{n_k} converges to f for some subsequence f_{n_k} .

So f_n converges to f, and f_n has a subsequence that converges locally uniformly to f.

Problem 7:

Consider $Aut(\mathbb{C} \setminus \{0\})$.

Let $\phi \in \operatorname{Aut}(\mathbb{C} \setminus \{0\})$. Then ϕ is an injective holomorphism with singularities at 0 and ∞ . By the exam problem, ϕ has removable singularities or (first order) poles at 0 and ∞ .

If ϕ has a removable singularity at 0, then ϕ is extended naturally to an automorphism of \mathbb{C} . Thus, ϕ is given by $z \mapsto az + b$ for some $a, b \in \mathbb{C}$. Note that b = 0 in this case, otherwise $\phi(-b/a) = 0$, so that ϕ is no longer well defined. Moreover, $a \neq 0$, else ϕ isn't injective.

So if ϕ has a removable singularity at 0, then ϕ is given by $z \mapsto az$ for some $a \in \mathbb{C}$, $a \neq 0$.

Next, let ϕ have a pole at 0. Then

Problem 8: