Notes are open-source and licensed under the GNU GPL-3.0. Suggest any corrections or changes on GitHub.

Fourier transform identities and properties

Time domain $\boldsymbol{x}(t)$	Frequency domain $\boldsymbol{X}(f)$		
$\operatorname{rect}\left(rac{t}{T} ight) \Pi\left(rac{t}{T} ight)$	$T\mathrm{sinc}(fT)$		
$\mathrm{sinc}(2Wt)$	$\frac{1}{2W}\mathrm{rect}\left(rac{f}{2W} ight) - rac{1}{2W}\Pi\left(rac{f}{2W} ight)$		
$\exp(-at)u(t), a>$	$0 \qquad \frac{1}{a+j2\pi f}$		
$\exp(-a t), a>0$	$\frac{2a}{a^2+(2\pi f)^2}$		
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$		
$1-rac{ t }{T}, t < T$	$T\mathrm{sinc}^2(fT)$		
$\delta(t)$	1		
1	$\delta(f)$		
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$		
$\exp(j2\pi f_c t)$	$\delta(f-f_c)$		
$\cos(2\pi f_c t)$	$rac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$		
$\cos(2\pi f_c t + heta)$	$rac{1}{2}[\delta(f-f_c)\exp(j heta)+\delta(f-f_c)]$	$+ f_c) \exp(-j heta)]$ Use for coherent	nt recv.
$\sin(2\pi f_c t)$	$rac{1}{2j}[\delta(f-f_c)-\delta(f+f_c)]$		
$\sin(2\pi f_c t + \theta)$	$rac{1}{2j}[\delta(f-f_c)\exp(j heta)-\delta(f$	$+ \ f_c) \exp(-j heta)]$	
$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$		
$\frac{1}{\pi t}$	$-j\mathrm{sgn}(f)$		
u(t)	$rac{1}{2}\delta(f)+rac{1}{j2\pi f}$		
$\sum_{n=-\infty}^{\infty} \delta(t-nT_0)$	$rac{1}{T_0}\sum_{n=-\infty}^\infty \delta\left(f-rac{n}{T_0} ight)=f_0$	$\sum_{n=-\infty}^{\infty}\delta\left(f-nf_{0} ight)$	
Time domain $\boldsymbol{x}(t)$	Frequency domain $\boldsymbol{X}(f)$	Property	
g(t-a)	$\exp(-j2\pi fa)G(f)$	Time shifting	
$\exp(-j2\pi f_c t)g(t)$	$G(f-f_c)$	Frequency shifting	
(-)			
g(bt)	$rac{G(f/b)}{ b }$	Time scaling	
$\frac{g(bt)}{g(bt-a)}$	$rac{G(f/b)}{ b } \ rac{1}{ b } \exp(-j2\pi a(f/b)) \cdot G(f/b)$	Time scaling Time scaling and shifting	
	b		
g(bt-a)	$rac{1}{ b } \exp(-j2\pi a(f/b)) \cdot G(f/b)$	Time scaling and shifting	
$g(bt-a) = rac{d}{dt}g(t)$	$egin{array}{c} b \ rac{1}{ b } \exp(-j2\pi a(f/b)) \cdot G(f/b) \ j2\pi f G(f) \end{array}$	Time scaling and shifting Differentiation wrt time	
$egin{aligned} g(bt-a) \ & rac{d}{dt}g(t) \ & tg(t) \end{aligned}$	$egin{aligned} b & & & & & & & & & & & & & & & & & &$	Time scaling and shifting Differentiation wrt time Differentiation wrt frequency	
$g(bt-a)$ $rac{d}{dt}g(t)$ $tg(t)$ $g^*(t)$	$egin{aligned} b \ rac{1}{ b } \exp(-j2\pi a(f/b))\cdot G(f/b) \ \ j2\pi fG(f) \ rac{1}{2\pi}rac{d}{df}G(f) \ G^*(-f) \end{aligned}$	Time scaling and shifting Differentiation wrt time Differentiation wrt frequency Conjugate functions	
$egin{aligned} g(bt-a) \ & rac{d}{dt}g(t) \ & tg(t) \ & g^*(t) \ & G(t) \end{aligned}$	$egin{aligned} b \ rac{1}{ b } \exp(-j2\pi a(f/b))\cdot G(f/b) \ \ j2\pi f G(f) \ rac{1}{2\pi}rac{d}{df}G(f) \ G^*(-f) \ g(-f) \end{aligned}$	Time scaling and shifting Differentiation wrt time Differentiation wrt frequency Conjugate functions Duality	
$g(bt-a)$ $rac{d}{dt}g(t)$ $tg(t)$ $g^*(t)$ $G(t)$ $\int_{-\infty}^t g(au)d au$	$egin{aligned} &rac{1}{ b } \exp(-j2\pi a(f/b))\cdot G(f/b) \ &j2\pi fG(f) \ &rac{1}{2\pi}rac{d}{df}G(f) \ &G^*(-f) \ &g(-f) \ &rac{1}{j2\pi f}G(f)+rac{G(0)}{2}\delta(f) \end{aligned}$	Time scaling and shifting Differentiation wrt time Differentiation wrt frequency Conjugate functions Duality Integration wrt time	
$g(bt-a)$ $rac{d}{dt}g(t)$ $tg(t)$ $g^*(t)$ $G(t)$ $\int_{-\infty}^t g(au)d au$ $g(t)h(t)$	$ b $ $\frac{1}{ b } \exp(-j2\pi a(f/b)) \cdot G(f/b)$ $j2\pi fG(f)$ $\frac{1}{2\pi} \frac{d}{df} G(f)$ $G^*(-f)$ $g(-f)$ $\frac{1}{j2\pi f} G(f) + \frac{G(0)}{2} \delta(f)$ $G(f) * H(f)$	Time scaling and shifting Differentiation wrt time Differentiation wrt frequency Conjugate functions Duality Integration wrt time Time multiplication	
$g(bt-a)$ $rac{d}{dt}g(t)$ $tg(t)$ $g^*(t)$ $G(t)$ $\int_{-\infty}^t g(au)d au$ $g(t)h(t)$ $g(t)*h(t)$	$egin{aligned} &rac{1}{ b } \exp(-j2\pi a(f/b))\cdot G(f/b) \ &j2\pi fG(f) \ &rac{1}{2\pi}rac{d}{df}G(f) \ &G^*(-f) \ &g(-f) \ &rac{1}{j2\pi f}G(f)+rac{G(0)}{2}\delta(f) \ &G(f)*H(f) \ &aG(f)+bH(f) \end{aligned}$	Time scaling and shifting Differentiation wrt time Differentiation wrt frequency Conjugate functions Duality Integration wrt time Time multiplication Time convolution	
$g(bt-a)$ $rac{d}{dt}g(t)$ $tg(t)$ $g^*(t)$ $G(t)$ $\int_{-\infty}^t g(au)d au$ $g(t)h(t)$ $g(t)*h(t)$ $ag(t)+bh(t)$ $\int_{-\infty}^\infty x(t)y^*(t)dt$	$egin{aligned} &rac{1}{ b } \exp(-j2\pi a(f/b))\cdot G(f/b) \ &j2\pi fG(f) \ &rac{1}{2\pi}rac{d}{df}G(f) \ &G^*(-f) \ &g(-f) \ &rac{1}{j2\pi f}G(f)+rac{G(0)}{2}\delta(f) \ &G(f)*H(f) \ &aG(f)+bH(f) \end{aligned}$	Time scaling and shifting Differentiation wrt time Differentiation wrt frequency Conjugate functions Duality Integration wrt time Time multiplication Time convolution Linearity a, b constants	
$g(bt-a)$ $rac{d}{dt}g(t)$ $tg(t)$ $g^*(t)$ $G(t)$ $\int_{-\infty}^t g(au)d au$ $g(t)h(t)$ $g(t)*h(t)$ $ag(t)+bh(t)$ $\int_{-\infty}^\infty x(t)y^*(t)dt$	$egin{array}{c} b \ rac{1}{ b } \exp(-j2\pi a(f/b)) \cdot G(f/b) \ j2\pi f G(f) \ rac{1}{2\pi} rac{d}{df} G(f) \ G^*(-f) \ g(-f) \ rac{1}{j2\pi f} G(f) + rac{G(0)}{2} \delta(f) \ G(f) * H(f) \ G(f) H(f) \ aG(f) + bH(f) \ \int_{-\infty}^{\infty} X(f) Y^*(f) df \ \end{array}$	Time scaling and shifting Differentiation wrt time Differentiation wrt frequency Conjugate functions Duality Integration wrt time Time multiplication Time convolution Linearity a, b constants Parseval's theorem	
$g(bt-a)$ $rac{d}{dt}g(t)$ $tg(t)$ $g^*(t)$ $G(t)$ $\int_{-\infty}^t g(au)d au$ $g(t)h(t)$ $g(t)*h(t)$ $ag(t)+bh(t)$ $\int_{-\infty}^{\infty} x(t)y^*(t)dt$ $E_x=\int_{-\infty}^{\infty} x(t) ^2dt$	$ b $ $\frac{1}{ b } \exp(-j2\pi a(f/b)) \cdot G(f/b)$ $j2\pi fG(f)$ $\frac{1}{2\pi} \frac{d}{df}G(f)$ $G^*(-f)$ $g(-f)$ $\frac{1}{j2\pi f}G(f) + \frac{G(0)}{2}\delta(f)$ $G(f)*H(f)$ $aG(f)+bH(f)$ $f_{-\infty}^{\infty}X(f)Y^*(f)df$ $f_{-\infty}^{\infty}X(f) X(f) ^2df$	Time scaling and shifting Differentiation wrt time Differentiation wrt frequency Conjugate functions Duality Integration wrt time Time multiplication Time convolution Linearity a, b constants Parseval's theorem	

$$u(t) = \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}$$
 Unit Step Function
$$\operatorname{sgn}(t) = \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$$
 Signum Function
$$\operatorname{sinc}(2Wt) = \frac{\sin(2\pi Wt)}{2\pi Wt} \qquad \text{sinc Function}$$

$$\operatorname{rect}(t) = \Pi(t) = \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & |t| > 0.5 \end{cases}$$
 Rectangular/Gate Function
$$g(t) * h(t) = (g * h)(t) = \int_{\infty}^{\infty} g(\tau)h(t - \tau)d\tau$$
 Convolution

Fourier transform of continuous time periodic signal

Required for some questions on sampling:

Transform a continuous time-periodic signal $x_p(t) = \sum_{n=-\infty}^\infty x(t-nT_s)$ with period T_s :

$$X_p(f) = \sum_{n=-\infty}^{\infty} C_n \delta(f-nf_s) \quad f_s = rac{1}{T_s}$$

Calculate C_n coefficient as follows from $x_p(t)$:

$$egin{aligned} C_n &= rac{1}{T_s} \int_{T_s} x_p(t) \exp(-j2\pi f_s t) dt \ &= rac{1}{T_s} X(nf_s) \quad ext{(TODO: Check)} \quad x(t-nT_s) ext{ is contained in the interval } T_s \end{aligned}$$

rect function

Bessel function

$$\sum_{n\in\mathbb{Z}}{J_n}^2(eta)=1 \ J_n(eta)=(-1)^nJ_{-n}(eta)$$

White noise

$$egin{aligned} R_W(au) &= rac{N_0}{2} \delta(au) = rac{kT}{2} \delta(au) = \sigma^2 \delta(au) \ G_w(f) &= rac{N_0}{2} \ N_0 &= kT \ G_y(f) &= |H(f)|^2 G_w(f) \ G_y(f) &= G(f) G_w(f) \end{aligned}$$

WSS

$$\mu_X(t) = \mu_X ext{ Constant} \ R_{XX}(t_1,t_2) = R_X(t_1-t_2) = R_X(au) \ E[X(t_1)X(t_2)] = E[X(t)X(t+ au)]$$

Ergodicity

$$egin{aligned} \left\langle X(t)
ight
angle_T &= rac{1}{2T} \int_{-T}^T x(t) dt \ \left\langle X(t+ au) X(t)
ight
angle_T &= rac{1}{2T} \int_{-T}^T x(t+ au) x(t) dt \ E[\left\langle X(t)
ight
angle_T] &= rac{1}{2T} \int_{-T}^T x(t) dt = rac{1}{2T} \int_{-T}^T m_X dt = m_X \end{aligned}$$

Туре	Normal	Mean square sense
ergodic in mean	$\lim_{T o\infty} \left\langle X(t) ight angle_T = m_X(t) = m_X$	$\lim_{T o\infty} \mathrm{VAR}[\langle X(t) angle_T] = 0$
ergodic in autocorrelation function	$\lim_{T o\infty}\left\langle X(t+ au)X(t) ight angle _{T}=R_{X}(au)$	$\lim_{T o\infty} \mathrm{VAR}[\left\langle X(t+ au)X(t) ight angle_T] = 0$

Note: A WSS random process needs to be both ergodic in mean and autocorrelation to be considered an ergodic process

Other identities

$$f*(g*h)=(f*g)*h\quad \text{Convolution associative}$$

$$a(f*g)=(af)*g\quad \text{Convolution associative}$$

$$\sum_{x=-\infty}^{\infty}(f(xa)\delta(\omega-xb))=f\left(\frac{\omega a}{b}\right)$$

Other trig

$$\cos 2\theta = 2\cos^2\theta - 1 \Leftrightarrow \frac{\cos 2\theta + 1}{2} = \cos^2\theta$$

$$e^{-j\alpha} - e^{j\alpha} = -2j\sin(\alpha)$$

$$e^{-j\alpha} + e^{j\alpha} = 2\cos(\alpha)$$

$$\cos(-A) = \cos(A)$$

$$\sin(-A) = -\sin(A)$$

$$\sin(A + \pi/2) = \cos(A)$$

$$\sin(A - \pi/2) = -\cos(A)$$

$$\cos(A - \pi/2) = \sin(A)$$

$$\cos(A + \pi/2) = -\sin(A)$$

$$\cos(A + \pi/2) = \sin(A)$$

$$\cos(A + \pi/2) = \sin(A)$$

$$\cos(A) + \cos(A) = \frac{1}{|A|}$$

$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

$$\cos(A)\cos(B) = \frac{1}{2}(\cos(A - B) + \cos(A + B))$$

$$\cos(A)\sin(B) = \frac{1}{2}(\sin(A + B) - \sin(A - B))$$

$$\sin(A)\sin(B) = \frac{1}{2}(\cos(A - B) - \cos(A + B))$$

$$\cos(A) + \cos(B) = 2\cos\left(\frac{A}{2} - \frac{B}{2}\right)\cos\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) - \cos(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\cos\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\sin(A) - \sin(B) = 2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\cos\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) + \sin(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\cos\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) - \sin(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\sin\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) - \sin(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\sin\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) - \sin(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\sin\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) - \sin(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\sin\left(\frac{A}{2} - \frac{B}{2}\right)$$

Def. $ilde{g}(t)=g_I(t)+jg_Q(t)$ as the complex envelope. Best to convert to $e^{j heta}$ form.

Convert complex envelope representation to time-domain representation of signal

$$egin{aligned} g(t) &= g_I(t) \cos(2\pi f_c t) - g_Q(t) \sin(2\pi f_c t) \ &= \mathrm{Re}[ilde{g}(t) \exp{(j2\pi f_c t)}] \ &= A(t) \cos(2\pi f_c t + \phi(t)) \ A(t) &= |g(t)| = \sqrt{g_I^2(t) + g_Q^2(t)} \quad \mathrm{Amplitude} \ \phi(t) \quad \mathrm{Phase} \ g_I(t) &= A(t) \cos(\phi(t)) \quad \mathrm{In-phase\ component} \ g_Q(t) &= A(t) \sin(\phi(t)) \quad \mathrm{Quadrature-phase\ component} \end{aligned}$$

For transfer function

$$egin{aligned} h(t) &= h_I(t) \cos(2\pi f_c t) - h_Q(t) \sin(2\pi f_c t) \ &= 2 \mathrm{Re}[ilde{h}(t) \exp\left(j2\pi f_c t
ight)] \ \Rightarrow ilde{h}(t) &= h_I(t)/2 + j h_Q(t)/2 = A(t)/2 \exp\left(j\phi(t)
ight) \end{aligned}$$

AM

CAM

$$m_a = rac{\min_t |k_a m(t)|}{A_c}$$
 k_a is the amplitude sensitivity (volt⁻¹), m_a is the modulation index. $m_a = rac{A_{\max} - A_{\min}}{A_{\max} + A_{\min}}$ (Symmetrical $m(t)$) $m_a = k_a A_m$ (Symmetrical $m(t)$) $x(t) = A_c \cos(2\pi f_c t) \left[1 + k_a m(t)\right] = A_c \cos(2\pi f_c t) \left[1 + m_a m(t)/A_c\right],$ where $m(t) = A_m \hat{m}(t)$ and $\hat{m}(t)$ is the normalized modulating signal $P_c = rac{A_c^2}{2}$ Carrier power $P_x = rac{1}{4} m_a^2 A_c^2$ $\eta = rac{\mathrm{Signal\ Power}}{\mathrm{Total\ Power}} = rac{P_x}{P_x + P_c}$

 B_T : Signal bandwidth B: Bandwidth of modulating wave

Overmodulation (resulting in phase reversals at crossing points): $m_a>1$

DSB-SC

$$x_{ ext{DSB}}(t) = A_c \cos{(2\pi f_c t)} m(t)
onumber \ B_T = 2f_m = 2B$$

FM/PM

$$s(t) = A_c \cos\left[2\pi f_c t + k_p m(t)\right] \quad \text{Phase modulated (PM)}$$

$$s(t) = A_c \cos\left(\theta_i(t)\right) = A_c \cos\left[2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau\right] \quad \text{Frequency modulated (FM)}$$

$$s(t) = A_c \cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right] \quad \text{FM single tone}$$

$$f_i(t) = \frac{1}{2\pi} \frac{d}{dt} \theta_i(t) \quad \text{Instantaneous frequency from instantaneous phase}$$

$$\Delta f = \beta f_m = k_f A_m f_m = \max_t (k_f m(t)) - \min_t (k_f m(t)) \quad \text{Maximum frequency deviation}$$

$$\Delta f = \max_t (f_i(t)) - \min_t (f_i(t)) \quad \text{Maximum frequency deviation}$$

$$\beta = \frac{\Delta f}{f_m} = k_f A_m \quad \text{Modulation index}$$

$$D = \frac{\Delta f}{W_m} \quad \text{Deviation ratio, where } W_m \text{ is bandwidth of } m(t) \text{ (Use FT)}$$

Bessel form and magnitude spectrum (single tone)

$$s(t) = A_c \cos \left[2\pi f_c t + eta \sin(2\pi f_m t)
ight] \Leftrightarrow s(t) = A_c \sum_{n=-\infty}^{\infty} J_n(eta) \cos[2\pi (f_c + n f_m) t]$$

FM signal power

$$egin{aligned} P_{ ext{av}} &= rac{{A_c}^2}{2} \ P_{ ext{band_index}} &= rac{{A_c}^2 J_{ ext{band_index}}^2(eta)}{2} \ ext{band_index} &= 0 \implies f_c + 0 f_m \ ext{band_index} &= 1 \implies f_c + 1 f_m, \ldots \end{aligned}$$

Carson's rule to find B (98% power bandwidth rule)

$$egin{aligned} B &= 2Mf_m = 2(eta+1)f_m \ &= 2(\Delta f + f_m) \ &= 2(k_f A_m + f_m) \ &= 2(D+1)W_m \ B &= egin{cases} 2(\Delta f + f_m) & ext{FM, sinusoidal message} \ 2(\Delta \phi + 1)f_m & ext{PM, sinusoidal message} \end{cases} \end{aligned}$$

Complex envelope

$$egin{aligned} s(t) &= A_c \cos(2\pi f_c t + eta \sin(2\pi f_m t)) \Leftrightarrow ilde{s}(t) &= A_c \exp(jeta \sin(2\pi f_m t)) \ s(t) &= \mathrm{Re}[ilde{s}(t) \exp(j2\pi f_c t)] \ & ilde{s}(t) &= A_c \sum_{n=-\infty}^{\infty} J_n(eta) \exp(j2\pi f_m t) \end{aligned}$$

Band

Narrowband	Wideband
$D < 1, \beta < 1$	$D>1, \beta>1$

Power, energy and autocorrelation

$$G_{ ext{WGN}}(f) = rac{N_0}{2}$$
 $G_x(f) = |H(f)|^2 G_w(f) ext{ (PSD)}$
 $G_x(f) = G(f) G_w(f) ext{ (PSD)}$
 $G_x(f) = \lim_{T o \infty} rac{|X_T(f)|^2}{T} ext{ (PSD)}$
 $G_x(f) = \mathfrak{F}[R_x(au)] ext{ (WSS)}$
 $P_x = \sigma_x^2 = \int_{\mathbb{R}} G_x(f) df ext{ For zero mean}$
 $P_x = \sigma_x^2 = \lim_{t o \infty} rac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt ext{ For zero mean}$
 $P[A\cos(2\pi f t + \phi)] = rac{A^2}{2} ext{ Power of sinusoid}$
 $E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df ext{ Parseval's theorem}$
 $R_x(au) = \mathfrak{F}(G_x(f)) ext{ PSD to Autocorrelation}$

Noise performance

Coherent detection system.

$$egin{aligned} y(t) &= m(t)\cos(2\pi f_c t + heta) = m(t)\cos^2(2\pi f_c t + heta) ext{ After IF mixing.} \ &= m(t)rac{1}{2}(1+\cos(4f_c t + 2 heta)) \ &= rac{1}{2}m(t) + rac{1}{2}\cos(4f_c t + 2 heta) \ \implies S_u(f) &= \left(rac{1}{2}
ight)^2 S_u(f) ext{ After LPF.} \end{aligned}$$

Use formulaas from previous section, Power, energy and autocorrelation. Use these formulas in particular:

$$G_{ ext{WGN}}(f) = rac{N_0}{2}$$
 $G_x(f) = |H(f)|^2 G_w(f)$ Note the square in $|H(f)|^2$ $P_x = {\sigma_x}^2 = \int_{\mathbb{R}} G_x(f) df$ Often perform graphical integration
$$\begin{aligned} ext{CNR}_{ ext{in}} &= rac{P_{ ext{in}}}{P_{ ext{noise}}} \\ ext{CNR}_{ ext{in,FM}} &= rac{A^2}{2WN_0} \\ ext{SNR}_{ ext{FM}} &= rac{3A^2k_f^2P}{2N_0W^3} \\ ext{SNR}(ext{dB}) &= 10\log_{10}(ext{SNR}) \end{aligned}$$
 Decibels from ratio

Sampling

$$egin{aligned} t &= nT_s \ T_s &= rac{1}{f_s} \ x_s(t) &= x(t)\delta_s(t) = x(t)\sum_{n \in \mathbb{Z}} \delta(t-nT_s) = \sum_{n \in \mathbb{Z}} x(nT_s)\delta(t-nT_s) \ X_s(f) &= X(f) * \sum_{n \in \mathbb{Z}} \delta\left(f - rac{n}{T_s}
ight) = X(f) * \sum_{n \in \mathbb{Z}} \delta\left(f - nf_s
ight) \ B &> rac{1}{2}f_s, 2B > f_s o ext{Aliasing} \end{aligned}$$

Procedure to reconstruct sampled signal

Analog signal x'(t) which can be reconstructed from a sampled signal $x_s(t)$: Put $x_s(t)$ through LPF with maximum frequency of $f_s/2$ and minimum frequency of $-f_s/2$. Anything outside of the BPF will be attenuated, therefore n which results in frequencies outside the BPF will evaluate to 0 and can be ignored.

Example: $f_s = 5000 \implies \mathrm{LPF} \in [-2500, 2500]$

Then iterate for $n=0,1,-1,2,-2,\ldots$ until the first iteration where the result is 0 since all terms are eliminated by the LPF.

TODO: Add example

Then add all terms and transform $ar{X}_s(f)$ back to time domain to get $x_s(t)$

Fourier transform of continuous time periodic signal (1)

Required for some questions on sampling:

Transform a continuous time-periodic signal $x_p(t) = \sum_{n=-\infty}^{\infty} x(t-nT_s)$ with period T_s :

$$X_p(f) = \sum_{n=-\infty}^{\infty} C_n \delta(f-nf_s) \quad f_s = rac{1}{T_s}$$

Calculate C_n coefficient as follows from $x_p(t)$:

$$egin{aligned} C_n &= rac{1}{T_s} \int_{T_s} x_p(t) \exp(-j2\pi f_s t) dt \ &= rac{1}{T_s} X(nf_s) \quad ext{(TODO: Check)} \quad x(t-nT_s) ext{ is contained in the interval } T_s \end{aligned}$$

Nyquist criterion for zero-ISI

Do not transmit more than 2B samples per second over a channel of B bandwidth.

Relationship of Nyquist frequency & rate (example)

Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to images/sampling.png)

Cannot add directly due to copyright!

sampling

Quantizer

$$\Delta = rac{x_{
m Max} - x_{
m Min}}{2^k} ~~{
m for}~k ext{-bit quantizer}~{
m (V/lsb)}$$

Quantization noise

$$e:=y-x$$
 Quantization error $\mu_E=E[E]=0$ Zero mean
$$\sigma_E{}^2=E[E^2]-0^2=\int_{-\Delta/2}^{\Delta/2}e^2 imes\left(rac{1}{\Delta}
ight)de \quad ext{Where } E\sim 1/\Delta ext{ uniform over } (-\Delta/2,\Delta/2)$$
 $ext{SQNR}=rac{ ext{Signal power}}{ ext{Quantization noise}}$ $ext{SQNR}(ext{dB})=10\log_{10}(ext{SQNR})$

Insert here figure 8.17 from M F Mesiya - Contemporary Communication Systems (Add image to images/quantizer.png)

Cannot add directly due to copyright!

quantizer

Line codes

 $G_{ ext{unipolarRZ}}(f) = rac{A^2}{16} \left(\sum_{l=-\infty}^{\infty} \delta \left(f - rac{l}{T_b}
ight) \left| ext{sinc}(ext{duty} imes l)
ight|^2 + T_b \left| ext{sinc}\left(ext{duty} imes fT_b
ight)
ight|^2
ight), ext{NB}_0 = 2R_b$

Modulation and basis functions

 $G_{
m polarNRZ}(f) = rac{A^2}{R_b} {
m sinc}^2 \left(rac{f}{R_b}
ight)$

 $G_{
m unipolarNRZ}(f) = rac{A^2}{4R_b} \left({
m sinc}^2 \left(rac{f}{R_b}
ight) + R_b \delta(f)
ight)$

BASK constellation $s_2(t)[0]$ **BPSK** constellation

QPSK constellation $s_3(t)[01]$

BASK

Basis functions

$$arphi_1(t) = \sqrt{rac{2}{T_b}}\cos(2\pi f_c t) \quad 0 \leq t \leq T_b$$

Symbol mapping

$$b_n:\{1,0\} o a_n:\{1,0\}$$

2 possible waveforms

$$egin{aligned} s_1(t) &= A_c \sqrt{rac{T_b}{2}} arphi_1(t) = \sqrt{2E_b} arphi_1(t) \ s_1(t) &= 0 \ & ext{Since } E_b = E_{ ext{average}} = rac{1}{2} (rac{A_c^2}{2} imes T_b + 0) = rac{A_c^2}{4} T_b \end{aligned}$$

Distance is $d=\sqrt{2E_b}$

BPSK

Basis functions

$$arphi_1(t) = \sqrt{rac{2}{T_b}}\cos(2\pi f_c t) \quad 0 \leq t \leq T_b$$

Symbol mapping

$$b_n:\{1,0\}\to a_n:\{1,-1\}$$

2 possible waveforms

$$egin{aligned} s_1(t) &= A_c \sqrt{rac{T_b}{2}} arphi_1(t) = \sqrt{E_b} arphi_1(t) \ s_1(t) &= -A_c \sqrt{rac{T_b}{2}} arphi_1(t) = -\sqrt{E_b} arphi_2(t) \ & ext{Since } E_b = E_{ ext{average}} = rac{1}{2} (rac{A_c^2}{2} imes T_b + rac{A_c^2}{2} imes T_b) = rac{A_c^2}{2} T_b \end{aligned}$$

Distance is $d=2\sqrt{E_b}$

QPSK (
$$M=4$$
 PSK)

Basis functions

$$T=2T_b$$
 Time per symbol for two bits T_b $arphi_1(t)=\sqrt{rac{2}{T}}\cos(2\pi f_c t) \quad 0\leq t\leq T$ $arphi_2(t)=\sqrt{rac{2}{T}}\sin(2\pi f_c t) \quad 0\leq t\leq T$

4 possible waveforms

$$egin{aligned} s_1(t) &= \sqrt{E_s/2} \left[arphi_1(t) + arphi_2(t)
ight] \ s_2(t) &= \sqrt{E_s/2} \left[arphi_1(t) - arphi_2(t)
ight] \ s_3(t) &= \sqrt{E_s/2} \left[-arphi_1(t) + arphi_2(t)
ight] \ s_4(t) &= \sqrt{E_s/2} \left[-arphi_1(t) - arphi_2(t)
ight] \end{aligned}$$

Note on energy per symbol: Since $|s_i(t)|=A_{c \cdot}$ have to normalize distance as follows:

$$egin{aligned} s_i(t) &= A_c \sqrt{T/2}/\sqrt{2} imes \left[lpha_{1i} arphi_1(t) + lpha_{2i} arphi_2(t)
ight] \ &= \sqrt{T A_c^{\ 2}/4} \left[lpha_{1i} arphi_1(t) + lpha_{2i} arphi_2(t)
ight] \ &= \sqrt{E_s/2} \left[lpha_{1i} arphi_1(t) + lpha_{2i} arphi_2(t)
ight] \end{aligned}$$

Signal

Symbol mapping:
$$\{1,0\} \to \{1,-1\}$$

$$I(t) = b_{2n}\varphi_1(t) \quad \text{Even bits}$$

$$Q(t) = b_{2n+1}\varphi_2(t) \quad \text{Odd bits}$$

$$x(t) = A_c[I(t)\cos(2\pi f_c t) - Q(t)\sin(2\pi f_c t)]$$

Example of waveform

ullet Code Remember that $T=2T_b$

b_n	QPSK bits
I(t) (Odd, 1st bits)	QPSK bits
Q(t) (Even, 2nd bits)	QPSK bits

1. Filter function

Find transfer function h(t) of matched filter and apply to an input:

Note that x(T-t) is equivalent to horizontally flipping x(t) around x=T/2.

$$\begin{split} h(t) &= s_1(T-t) - s_2(T-t) \\ h(t) &= s^*(T-t) \qquad ((.)^* \text{ is the conjugate}) \\ s_{on}(t) &= h(t) * s_n(t) = \int_{-\infty}^{\infty} h(\tau) s_n(t-\tau) d\tau \quad \text{Filter output} \\ n_o(t) &= h(t) * n(t) \quad \text{Noise at filter output} \end{split}$$

2. Bit error rate of matched filter

Bit error rate (BER) from matched filter outputs and filter output noise

$$\begin{split} Q(x) &= \frac{1}{2} - \frac{1}{2} \mathrm{erf} \left(\frac{x}{\sqrt{2}} \right) \Leftrightarrow \mathrm{erf} \left(\frac{x}{\sqrt{2}} \right) = 1 - 2Q(x) \\ E_b &= d^2 = \int_{-\infty}^{\infty} |s_1(t) - s_2(t)|^2 dt \quad \mathrm{Energy \, per \, bit/Distance} \\ T &= 1/R_b \quad R_b \colon \mathrm{Bitrate} \\ E_b &= P_{\mathrm{av}} T = P_{\mathrm{av}} / R_b \quad \mathrm{Energy \, per \, bit} \\ P_{\mathrm{av}} &= E_b / T = E_b R_b \quad \mathrm{Average \, power} \\ P(\mathrm{W}) &= 10^{\frac{P_{\mathrm{(dB)}}}{10}} \\ P_{\mathrm{RX}}(W) &= P_{\mathrm{TX}}(W) \cdot 10^{\frac{P_{\mathrm{loss}}(\mathrm{dB})}{10}} \quad P_{\mathrm{loss} \, \mathrm{is \, expressed \, with \, negative \, sign \, e.g. \, "-130 \, \mathrm{dB}"} \\ \mathrm{BER}_{\mathrm{MatchedFilter}} &= Q\left(\sqrt{\frac{d^2}{2N_0}}\right) = Q\left(\sqrt{\frac{E_b}{2N_0}}\right) \\ \mathrm{BER}_{\mathrm{unipolarNRZ|BASK}} &= Q\left(\sqrt{\frac{d^2}{N_0}}\right) = Q\left(\sqrt{\frac{E_b}{N_0}}\right) \\ \mathrm{BER}_{\mathrm{polarNRZ|BPSK}} &= Q\left(\sqrt{\frac{2d^2}{N_0}}\right) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \end{split}$$

${\cal Q}(x)$ function

x	Q(x)	x	Q(x)	x	Q(x)	x	Q(x)
0.00	0.5	2.30	0.010724	4.55	$2.6823 imes 10^{-6}$	6.80	$5.231 imes 10^{-12}$
0.05	0.48006	2.35	0.0093867	4.60	$2.1125 imes10^{-6}$	6.85	$3.6925 imes 10^{-12}$
0.10	0.46017	2.40	0.0081975	4.65	$1.6597 imes 10^{-6}$	6.90	$2.6001 imes 10^{-12}$
0.15	0.44038	2.45	0.0071428	4.70	$1.3008 imes 10^{-6}$	6.95	$1.8264 imes 10^{-12}$
0.20	0.42074	2.50	0.0062097	4.75	$1.0171 imes 10^{-6}$	7.00	$1.2798 imes 10^{-12}$
0.25	0.40129	2.55	0.0053861	4.80	$7.9333 imes 10^{-7}$	7.05	8.9459×10^{-13}
0.30	0.38209	2.60	0.0046612	4.85	$6.1731 imes 10^{-7}$	7.10	$6.2378 imes 10^{-13}$
0.35	0.36317	2.65	0.0040246	4.90	$4.7918 imes 10^{-7}$	7.15	$4.3389 imes 10^{-13}$
0.40	0.34458	2.70	0.003467	4.95	$3.7107 imes 10^{-7}$	7.20	$3.0106 imes 10^{-13}$
0.45	0.32636	2.75	0.0029798	5.00	$2.8665 imes 10^{-7}$	7.25	$2.0839 imes 10^{-13}$
0.50	0.30854	2.80	0.0025551	5.05	$2.2091 imes 10^{-7}$	7.30	$1.4388 imes 10^{-13}$
0.55	0.29116	2.85	0.002186	5.10	$1.6983 imes 10^{-7}$	7.35	$9.9103 imes 10^{-14}$
0.60	0.27425	2.90	0.0018658	5.15	$1.3024 imes 10^{-7}$	7.40	$6.8092 imes 10^{-14}$
0.65	0.25785	2.95	0.0015889	5.20	$9.9644 imes 10^{-8}$	7.45	$4.667 imes 10^{-14}$
0.70	0.24196	3.00	0.0013499	5.25	$7.605 imes10^{-8}$	7.50	$3.1909 imes 10^{-14}$
0.75	0.22663	3.05	0.0011442	5.30	5.7901×10^{-8}	7.55	$2.1763 imes 10^{-14}$
0.80	0.21186	3.10	0.0009676	5.35	$4.3977 imes 10^{-8}$	7.60	$1.4807 imes 10^{-14}$
0.85	0.19766	3.15	0.00081635	5.40	3.332×10^{-8}	7.65	1.0049×10^{-14}
0.90	0.18406	3.20	0.00068714	5.45	$2.5185 imes 10^{-8}$	7.70	$6.8033 imes 10^{-15}$
0.95	0.17106	3.25	0.00057703	5.50	1.899×10^{-8}	7.75	4.5946×10^{-15}
1.00	0.15866	3.30	0.00048342	5.55	$1.4283 imes 10^{-8}$	7.80	$3.0954 imes 10^{-15}$
1.05	0.14686	3.35	0.00040406	5.60	1.0718×10^{-8}	7.85	$2.0802 imes 10^{-15}$
1.10	0.13567	3.40	0.00033693	5.65	8.0224×10^{-9}	7.90	$1.3945 imes 10^{-15}$
1.15	0.12507	3.45	0.00028029	5.70	5.9904×10^{-3}	7.95	$9.3256 imes 10^{-16}$
1.20	0.11507	3.50	0.00023263	5.75	4.4622×10^{-9}	8.00	6.221×10^{-16}
1.25	0.10565	3.55	0.00019262	5.80	$3.3157 imes 10^{-9}$	8.05	$4.1397 imes 10^{-16}$
1.30	0.0968	3.60	0.00015911	5.85	$2.4579 imes 10^{-9}$	8.10	2.748×10^{-16}
1.35	0.088508	3.65	0.00013112	5.90	$1.8175 imes 10^{-9}$	8.15	$1.8196 imes 10^{-16}$
1.40	0.080757	3.70	0.0001078	5.95	$1.3407 imes 10^{-9}$	8.20	$1.2019 imes 10^{-16}$
1.45	0.073529	3.75	$8.8417 imes 10^{-5}$	6.00	$9.8659 imes 10^{-10}$	8.25	$7.9197 imes 10^{-17}$
1.50	0.066807	3.80	$7.2348 imes 10^{-5}$	6.05	$7.2423 imes 10^{-10}$	8.30	$5.2056 imes 10^{-17}$
1.55	0.060571	3.85	$5.9059 imes 10^{-5}$	6.10	$5.3034 imes 10^{-10}$	8.35	3.4131×10^{-17}
1.60	0.054799	3.90	$4.8096 imes 10^{-5}$	6.15	$3.8741 imes 10^{-10}$	8.40	$2.2324 imes 10^{-17}$
1.65	0.049471	3.95	$3.9076 imes 10^{-5}$	6.20	$2.8232 imes 10^{-10}$	8.45	$1.4565 imes 10^{-17}$
1.70	0.044565	4.00	$3.1671 imes 10^{-5}$	6.25	$2.0523 imes 10^{-10}$	8.50	$9.4795 imes 10^{-18}$
1.75	0.040059	4.05	$2.5609 imes 10^{-5}$	6.30	$1.4882 imes 10^{-10}$	8.55	$6.1544 imes 10^{-18}$
1.80	0.03593	4.10	$2.0658 imes 10^{-5}$	6.35	$1.0766 imes 10^{-10}$	8.60	$3.9858 imes 10^{-18}$
1.85	0.032157	4.15	$1.6624 imes 10^{-5}$	6.40	$7.7688 imes 10^{-11}$	8.65	$2.575 imes10^{-18}$
1.90	0.028717	4.20	1.3346×10^{-5}	6.45	$5.5925 imes 10^{-11}$	8.70	$1.6594 imes 10^{-18}$
1.95	0.025588	4.25	1.0689×10^{-5}	6.50	4.016×10^{-11}	8.75	1.0668×10^{-18}

\boldsymbol{x}	Q(x)	\boldsymbol{x}	Q(x)	\boldsymbol{x}	Q(x)	\boldsymbol{x}	Q(x)
2.00	0.02275	4.30	$8.5399 imes 10^{-6}$	6.55	2.8769×10^{-11}	8.80	6.8408×10^{-19}
2.05	0.020182	4.35	$6.8069 imes 10^{-6}$	6.60	2.0558×10^{-11}	8.85	$4.376 imes 10^{-19}$
2.10	0.017864	4.40	$5.4125 imes 10^{-6}$	6.65	$1.4655 imes 10^{-11}$	8.90	$2.7923 imes 10^{-19}$
2.15	0.015778	4.45	4.2935×10^{-6}	6.70	1.0421×10^{-11}	8.95	$1.7774 imes 10^{-19}$
2.20	0.013903	4.50	$3.3977 imes 10^{-6}$	6.75	$7.3923 imes 10^{-12}$	9.00	$1.1286 imes 10^{-19}$
2.25	0.012224						

Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems

$\operatorname{erf}(x)$ function

\boldsymbol{x}	$\operatorname{erf}(x)$	\boldsymbol{x}	$\operatorname{erf}(x)$	x	$\operatorname{erf}(x)$
0.00	0.00000	0.75	0.71116	1.50	0.96611
0.05	0.05637	0.80	0.74210	1.55	0.97162
0.10	0.11246	0.85	0.77067	1.60	0.97635
0.15	0.16800	0.90	0.79691	1.65	0.98038
0.20	0.22270	0.95	0.82089	1.70	0.98379
0.25	0.27633	1.00	0.84270	1.75	0.98667
0.30	0.32863	1.05	0.86244	1.80	0.98909
0.35	0.37938	1.10	0.88021	1.85	0.99111
0.40	0.42839	1.15	0.89612	1.90	0.99279
0.45	0.47548	1.20	0.91031	1.95	0.99418
0.50	0.52050	1.25	0.92290	2.00	0.99532
0.55	0.56332	1.30	0.93401	2.50	0.99959
0.60	0.60386	1.35	0.94376	3.00	0.99998
0.65	0.64203	1.40	0.95229	3.30	0.999998**
0.70	0.67780	1.45	0.95970		

^{**}The value of ${
m erf}(3.30)$ should be pprox 0.999997 instead, but this value is quoted in the formula table.

$$r_o(t) = egin{cases} s_{o1}(t) + n_o(t) & ext{code 1} \ s_{o2}(t) + n_o(t) & ext{code 0} \ n: ext{AWGN with } \sigma_o^2 \end{cases}$$

ISI, channel model

Raised cosine (RC) pulse

Linear modulation RC pulse

NRZ unipolar RC pulse

 \triangle NOTE might not be safe to assume T'=T, if you can solve the question without T then use that method.

Nyquist criterion for zero ISI

D>2W Use W from table below depending on modulation scheme.

$$B_{ ext{Nyquist}} = rac{W}{1+lpha} \ lpha = rac{ ext{Excess BW}}{B_{ ext{Nyquist}}} = rac{B_{ ext{abs}} - B_{ ext{Nyquist}}}{B_{ ext{Nyquist}}}$$

Nomenclature

 $D \to \operatorname{Symbol}$ Rate, Max. Signalling Rate

 $T \to \operatorname{Symbol} \operatorname{Duration}$

 $M \to \operatorname{Symbol}$ set size

 $W \to {\rm Bandwidth}$

Bandwidth \boldsymbol{W} and bit error rate of modulation schemes

To solve this type of question:

- 1. Use the formula for ${\cal D}$ below
- 2. Consult the BER table below to get the BER which relates the noise of the channel N_0 to E_b and to R_b .

Linear modulation	Half
BPSK, QPSK, M -PSK, M -QAM, ASK, FSK	M-PAM, PAM
RZ unipolar, Manchester	NRZ Unipolar, NRZ Polar, Bipolar RZ
$W=B_{ m abs-abs}$	$W=B_{ m abs}$
$W=B_{ ext{abs-abs}}=rac{1+lpha}{T}=(1+lpha)D$	$W=B_{ m abs}=rac{1+lpha}{2T}=(1+lpha)D/2$
$D = rac{W ext{ symbol/s}}{1+lpha}$	$D=rac{2W ext{ symbol/s}}{1+lpha}$

$$R_b ext{ bit/s} = (D ext{ symbol/s}) imes (k ext{ bit/symbol})$$
 $M ext{ symbol/set} = 2^k$ $T ext{ s/symbol} = 1/(D ext{ symbol/s})$ $E_b = PT = P_{ ext{av}}/R_b ext{ Energy per bit}$

Table of bandpass signalling and BER

Binary Bandpass Signaling	$B_{ m null-null}$ (Hz)	$B_{ m abs-abs} = \ 2 B_{ m abs}$ (Hz)	BER with Coherent Detection	BER with Noncoherent Detection
ASK, unipolar NRZ	$2R_b$	$R_b(1+lpha)$	$Q\left(\sqrt{E_b/N_0} ight)$	$0.5\exp(-E_b/(2N_0))$
BPSK	$2R_b$	$R_b(1+lpha)$	$Q\left(\sqrt{2E_b/N_0} ight)$	Requires coherent detection
Sunde's FSK	$3R_b$		$Q\left(\sqrt{E_b/N_0} ight)$	$0.5\exp(-E_b/(2N_0))$
DBPSK, M - ary Bandpass Signaling	$2R_b$	$R_b(1+lpha)$		$0.5\exp(-E_b/N_0)$
QPSK/ $QPSK$ ($M=4$, $QPSK$)	R_b	$rac{R_b(1+lpha)}{2}$	$Q\left(\sqrt{2E_b/N_0} ight)$	Requires coherent detection
MSK	$1.5R_b$	$rac{3R_b(1+lpha)}{4}$	$Q\left(\sqrt{2E_b/N_0} ight)$	Requires coherent detection
M-PSK ($M>4$)	$2R_b/\log_2 M$	$rac{R_b(1+lpha)}{\log_2 M}$	$rac{2}{\log_2 M}Q\left(\sqrt{2\log_2 M\sin^2\left(\pi/M ight)E_b/N_0} ight)$	Requires coherent detection
M-DPSK ($M>4$)	$2R_b/\log_2 M$	$rac{R_b(1+lpha)}{2\log_2 M}$		$rac{2}{\log_2 M}Q\left(\sqrt{4\log_2 M\sin^2\left(\pi/(2M) ight)E_b/N_0} ight)$
M-QAM (Square constellation)	$2R_b/\log_2 M$	$\frac{R_b(1{+}\alpha)}{\log_2 M}$	$rac{4}{\log_2 M} \left(1 - rac{1}{\sqrt{M}} ight) Q\left(\sqrt{rac{3\log_2 M}{M-1}} E_b/N_0 ight)$	Requires coherent detection
M-FSK Coherent	$\frac{(M+3)R_b}{2\log_2 M}$		$rac{M-1}{\log_2 M}Q\left(\sqrt{(\log_2 M)E_b/N_0} ight)$	
Noncoherent	$2MR_b/\log_2 M$			$rac{M-1}{2\log_2 M} 0.5 \exp(-(\log_2 M) E_b/2N_0)$

Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems

PSD of modulated signals

Modulation	$G_x(f)$
Quadrature	$rac{A_c^2}{4}[G_I(f-f_c) + G_I(f+f_c) + G_Q(f-f_c) + G_Q(f+f_c)]$
Linear	$rac{ V(f) ^2}{2} \sum_{l=-\infty}^{\infty} R(l) \exp(-j2\pi l f T)$ What??

Symbol error probability

- Minimum distance between any two point
- Different from bit error since a symbol can contain multiple bits

Entropy for discrete random variables

$$\begin{split} H(x) &\geq 0 \\ H(x) &= -\sum_{x_i \in A_x} p_X(x_i) \log_2(p_X(x_i)) \\ H(x,y) &= -\sum_{x_i \in A_x} \sum_{y_i \in A_y} p_{XY}(x_i,y_i) \log_2(p_{XY}(x_i,y_i)) \quad \text{Joint entropy} \\ H(x,y) &= H(x) + H(y) \quad \text{Joint entropy if x and y independent} \\ H(x|y &= y_j) &= -\sum_{x_i \in A_x} p_X(x_i|y = y_j) \log_2(p_X(x_i|y = y_j)) \quad \text{Conditional entropy} \\ H(x|y) &= -\sum_{y_j \in A_y} p_Y(y_j) H(x|y = y_j) \quad \text{Average conditional entropy, equivocation} \\ H(x|y) &= -\sum_{x_i \in A_x} \sum_{y_i \in A_y} p_X(x_i,y_j) \log_2(p_X(x_i|y = y_j)) \\ H(x|y) &= H(x,y) - H(y) \\ H(x,y) &= H(x) + H(y|x) = H(y) + H(x|y) \end{split}$$

Entropy is maximized when all have an equal probability.

Differential entropy for continuous random variables

TODO: Cut out if not required

$$h(x) = -\int_{\mathbb{R}} f_X(x) \log_2(f_X(x)) dx$$

Mutual information

Amount of entropy decrease of x after observation by y.

$$I(x; y) = H(x) - H(x|y) = H(y) - H(y|x)$$

Channel model

Vertical, x: input Horizontal, y: output

$$\mathbf{P} = egin{bmatrix} p_{11} & p_{12} & \dots & p_{1N} \ p_{21} & p_{22} & \dots & p_{2N} \ dots & dots & \ddots & dots \ p_{M1} & p_{M2} & \dots & p_{MN} \ \end{pmatrix}$$

$$egin{array}{c|ccccc} P(y_j|x_i) & y_1 & y_2 & \dots & y_N \ \hline x_1 & p_{11} & p_{12} & \dots & p_{1N} \ x_2 & p_{21} & p_{22} & \dots & p_{2N} \ dots & dots & dots & dots & dots \ x_M & p_{M1} & p_{M2} & \dots & p_{MN} \ \hline \end{array}$$

Input has probability distribution $p_X(a_i) = P(X=a_i)$

Channel maps alphabet ' $\{a_1,\ldots,a_M\} o \{b_1,\ldots,b_N\}$ '

Output has probability distribution $p_Y(b_j) = P(y = b_j)$

$$egin{aligned} p_Y(b_j) &= \sum_{i=1}^M P[x=a_i,y=b_j] \quad 1 \leq j \leq N \ &= \sum_{i=1}^M P[X=a_i] P[Y=b_j|X=a_i] \ [p_Y(b_0) \quad p_Y(b_1) \quad \dots \quad p_Y(b_j)] &= [p_X(a_0) \quad p_X(a_1) \quad \dots \quad p_X(a_i)] imes \mathbf{P} \end{aligned}$$

Fast procedure to calculate I(y;x)

- 1. Find H(x)
- 2. Find $[p_Y(b_0) \ p_Y(b_1) \ \dots \ p_Y(b_j)] = [p_X(a_0) \ p_X(a_1) \ \dots \ p_X(a_i)] \times \mathbf{P}$
- 3. Multiply each row in **P** by $p_X(a_i)$ since $p_{XY}(x_i,y_i) = P(y_i|x_i)P(x_i)$
- 4. Find H(x, y) using each element from (3.)
- 5. Find H(x|y) = H(x, y) H(y)
- 6. Find I(y; x) = H(x) H(x|y)

Channel types

Туре	Definition
Symmetric channel	Every row is a permutation of every other row, Every column is a permutation of every other column. Symmetric \Longrightarrow Weakly symmetric
Weakly symmetric	Every row is a permutation of every other row, Every column has the same sum

Channel capacity of weakly symmetric channel

 $C \rightarrow \text{Channel capacity (bits/channels used)}$

 $N \to \text{Output alphabet size}$

 $\mathbf{p} \to \text{Probability vector},$ any row of the transition matrix

 $C = \log_2(N) - H(\mathbf{p})$ Capacity for weakly symmetric and symmetric channels

 $R_b < C$ for error-free transmission

Channel capacity of an AWGN channel

$$y_i = x_i + n_i \quad n_i \sim N(0, N_0/2)$$
 $C = rac{1}{2} \log_2 \left(1 + rac{P_{
m av}}{N_0/2}
ight)$

Channel capacity of a bandwidth limited AWGN channel

$$egin{aligned} P_s &
ightarrow ext{Bandwidth limited average power} \ y_i &= ext{bandpass}_W(x_i) + n_i \quad n_i \sim N(0,N_0/2) \ C &= W \log_2 \left(1 + rac{P_s}{N_0 W}
ight) \ C &= W \log_2 (1 + ext{SNR}) \ ext{SNR} &= P_s/(N_0 W) \end{aligned}$$

Shannon limit

$$egin{aligned} R_b < C \ \implies R_b < W \log_2 \left(1 + rac{P_s}{N_0 W}
ight) & ext{For bandwidth limited AWGN channel} \ rac{E_b}{N_0} > rac{2^{\eta} - 1}{\eta} & ext{SNR per bit required for error-free transmission} \ \eta = rac{R_b}{W} & ext{Spectral efficiency (bit/(s-Hz))} \ \eta \gg 1 & ext{Bandwidth limited} \ \eta \ll 1 & ext{Power limited} \end{aligned}$$

Channel code

Note: Define XOR (\oplus) as exclusive OR, or modulo-2 addition.

Hamming weight	$w_H(x)$	Number of '1' in codeword $oldsymbol{x}$
Hamming distance	$d_H(x_1,x_2)=w_H(x_1\oplus x_2)$	Number of different bits between codewords x_1 and x_2 which is the hamming weight of the XOR of the two codes.
Minimum distance	$d_{ m min}$	IMPORTANT : $x eq 0$, excludes weight of all-zero codeword. For a linear block code, $d_{\min} = w_{\min}$

Linear block code

Code is (n, k)

n is the width of a codeword

 2^k codewords

A linear block code must be a subspace and satisfy both:

- 1. Zero vector must be present at least once
- 2. The XOR of any codeword pair in the code must result in a codeword that is already present in the code table.
- 3. $d_{
 m min}=w_{
 m min}$ (Implied by (1) and (2).)

Code generation

Each generator vector is a binary string of size n. There are k generator vectors in ${f G}$.

A message block ${f m}$ is coded as ${f x}$ using the generation codewords in ${f G}$:

$$\mathbf{m} = [m_0 \quad \dots \quad m_{n-2} \quad m_{k-1}]$$
 $\mathbf{m} = [101001] \quad \text{Example for } k = 6$
 $\mathbf{x} = \mathbf{mG} = m_0 \mathbf{g}_0 + m_1 \mathbf{g}_1 + \dots + m_{k-1} \mathbf{g}_{k-1}$

Systemic linear block code

Contains k message bits (Copy ${f m}$ as-is) and (n-k) parity bits after the message bits.

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & | & \mathbf{P} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 & p_{0,0} & \dots & p_{0,n-2} & p_{0,n-1} \\ 0 & 1 & \dots & 0 & p_{1,0} & \dots & p_{1,n-2} & p_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & p_{k-1,0} & \dots & p_{k-1,n-2} & p_{k-1,n-1} \end{bmatrix}$$

$$\mathbf{m} = \begin{bmatrix} m_0 & \dots & m_{n-2} & m_{k-1} \end{bmatrix}$$

$$\mathbf{x} = \mathbf{m}\mathbf{G} = \mathbf{m} \begin{bmatrix} \mathbf{I}_k & | & \mathbf{P} \end{bmatrix} = \begin{bmatrix} \mathbf{m}\mathbf{I}_k & | & \mathbf{m}\mathbf{P} \end{bmatrix} = \begin{bmatrix} \mathbf{m} & | & \mathbf{b} \end{bmatrix}$$

$$\mathbf{b} = \mathbf{m}\mathbf{P} \quad \text{Parity bits of } \mathbf{x}$$

Parity check matrix ${f H}$

Transpose ${f P}$ for the parity check matrix

$$egin{aligned} \mathbf{H} &=& [\mathbf{P}^{\mathrm{T}} \mid \mathbf{I}_{n-k}] \ &=& [\ \mathbf{p}_0^{\mathrm{T}} \ \mathbf{p}_1^{\mathrm{T}} \ \dots \ \mathbf{p}_{k-1}^{\mathrm{T}} \mid \mathbf{I}_{n-k} \] \ &=& \begin{bmatrix} p_{0,0} & \dots & p_{0,k-2} & p_{0,k-1} & 1 & 0 & \dots & 0 \ p_{1,0} & \dots & p_{1,k-2} & p_{1,k-1} & 0 & 1 & \dots & 0 \ dots & \ddots & dots & dots & dots & dots & \ddots & dots \ p_{n-1,0} & \dots & p_{n-1,k-2} & p_{n-1,k-1} & 0 & 0 & \dots & 1 \ \end{bmatrix}$$

 $\mathbf{x}\mathbf{H}^{\mathrm{T}} = \mathbf{0} \implies \text{Codeword is valid}$

Procedure to find parity check matrix from list of codewords

- 1. From the number of codewords, find $k = \log_2(N)$
- 2. Partition codewords into k information bits and remaining bits into n-k parity bits. The information bits should be a simple counter (?).
- 3. Express parity bits as a linear combination of information bits
- 4. Put coefficients into ${f P}$ matrix and find ${f H}$

Example:

Set x_1, x_2 as information bits. Express x_3, x_4, x_5 in terms of x_1, x_2 .

Error detection and correction

Detection of s errors: $d_{\min} \geq s+1$

Correction of u errors: $d_{\min} \geq 2u+1$

CHECKLIST

- ullet Transfer function in complex envelope form $ilde{h}(t)$ should be divided by two.
- Convolutions: do not forget width when using graphical method
- todo: add more items to check