ELECTROMAGNETISMO II - 2021 (Marzo)

PROBLEMA 1: Determine el campo magnético \overrightarrow{B} debido a una densidad de corriente: $\overrightarrow{J}=J_o~(r/4a)\cdot \stackrel{\wedge}{e_z}$ que fluye a través de un conductor cilíndrico de radio "a". Suponga que la permeabilidad en el espacio exterior es μ_2 , mientras que en el interior del conductor es μ_1 . Resuelva el problema utilizando:

- a) La forma integral de la Ley de Ampere.
- b) La forma diferencial de la Ley de Ampere.
- c) Calcule el potencial vectorial magnético \vec{A} en todo el espacio, imponiendo la condición: $\lim_{r\to 0} \vec{A} = 0$.

PROBLEMA 2: Considere un circuito C_1 conectado a una fuente de corriente que mantiene el valor de I_1 constante y en puntos cercanos se ubica un circuito C_2 por donde inicialmente circula una corriente I_2 .

- a) Calcule el trabajo mecánico necesario para desplazar el circuito C₂ hasta puntos muy alejados de la configuración (considere en el infinito), dejando que la corriente I₂ varíe libremente durante el proceso.
- b) Resuelva el problema para el caso en que la corriente inicial en C2 es nula.

PROBLEMA 3: Una onda electromagnética polarizada se propaga en un medio no conductor caracterizado por $\varepsilon = 4\varepsilon_0$ y $\mu = \mu_1$. Su campo magnético puede escribirse:

$$\overrightarrow{\pmb{B}} = \left(-\frac{1}{2} \stackrel{\wedge}{j} + \frac{\sqrt{3}}{2} \stackrel{\wedge}{k}\right) \cdot B_0 \cdot \cos\left(\overrightarrow{k} \cdot \overrightarrow{r} - \omega \cdot t + 30^\circ\right) \text{ y el campo eléctrico sólo tiene componente en la dirección } x \text{ positiva.}$$

Determine la expresión vectorial del vector de Poynting de la onda y del vector \overrightarrow{K} asociado en función de los datos del problema.

PROBLEMA 4: En la región cilíndrica de radio R, entre polos de un electroimán, existe un campo magnético $\stackrel{\rightarrow}{B} = -\big(B_0 - at\big) \hat{k}$. La sección normal al eje se representa en la figura, siendo $\mathbf{B_0}$ y **a** constantes, calcular:

- 1. La intensidad del campo eléctrico inducido en un punto r < R.
- 2. La fuerza que actúa sobre un electrón en el instante t=0, en los siguientes casos: a) Si está colocado en reposo en el punto P₁, b) Si está colocado en reposo en el origen, c) Si pasa por el punto P₂ con velocidad **v**= v.**i**.

