

EL TEOREMA FUNDAMENTAL DE CURVAS PLANAS

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 07) 30.ENERO.2025

Teorema (Teorema Fundamental de la teoría local de curvas planas)

Sea $\kappa_0:I\subseteq\mathbb{R}\to\mathbb{R}$ una función diferenciable, definida en un intervalo abierto I de \mathbb{R} . Entonces, existe una curva plana $\alpha:I\to\mathbb{R}^2$, parametrizada por longitud de arco, tal que $\kappa_{\alpha}(s)=\kappa_0(s), \, \forall s\in I$, donde κ_{α} es la curvatura de α .

Más aún, si $\beta:I\to\mathbb{R}^2$ es otra curva plana, parametrizada por longitud de arco, con $\kappa_\beta(s)=\kappa_0(s)$, $\forall s$, entonces existe un movimiento rígido $M:\mathbb{R}^2\to\mathbb{R}^2$ tal que $\beta=M\circ\alpha$. (Esto es, la curva es única a menos de transformaciones rígidas.)

<u>Prueba</u>:

Definimos una función $\theta: I \to \mathbb{R}$ por $\int_{s_0}^{s} \kappa_o(u) du$, con $s_0 \in I$.

Entonces, θ es diferenciable, y corresponde (a menos de una constante) al ángulo que forma el tangente $\mathbf{t}(s)$ con el eje Ox.

Si definimos

$$\alpha(s) = \Big(\int_{s_0}^s \cos \theta(u) \, du, \int_{s_0}^s \sin \theta(u) \, du\Big), \quad s_0 \in I.$$

Luego $\mathbf{t}(\mathbf{s}) = \alpha'(\mathbf{s}) = (\cos \theta(\mathbf{s}), \sin \theta(\mathbf{s}))$, tenemos que $|\alpha'(\mathbf{s})| = 1$, $\forall \mathbf{s}$. Luego, α es una curva parametrizada por longitud de arco.

Su referencial de Frenet es

$$\mathbf{t}(\mathbf{s}) = (\cos \theta(\mathbf{s}), \sin \theta(\mathbf{s})), \quad \mathbf{n}(\mathbf{s}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{t} = (-\sin \theta(\mathbf{s}), \cos \theta(\mathbf{s})).$$

Por otro lado, $\mathbf{t}'(s) = (-\theta'(s)\sin\theta(s), \theta'(s)\cos\theta(s))$, y por definición de curvatura, tenemos

$$\kappa_{\alpha}(\mathsf{s}) = \langle \mathsf{t}'(\mathsf{s}), \mathsf{n}(\mathsf{s}) \rangle = \theta'(\mathsf{s}) = \kappa_{\mathsf{o}}(\mathsf{s}),$$

como queríamos.

Ahora suponga que $\beta: I \to \mathbb{R}^2$ es otra curvar regular plana, parametrizada por longitud de arco con $\kappa_{\beta}(s) = \kappa_{o}(s)$, $\forall s$.

Fijamos $s_o \in I$. Como los referenciales de Frenet de α y β en s_o , $\{\mathbf{t}_{\alpha}(s_o), \mathbf{n}_{\alpha}(s_o)\}$ y $\{\mathbf{t}_{\beta}(s_o), \mathbf{n}_{\beta}(s_o)\}$, forman bases ortonormales de \mathbb{R}^2 , existe una única matriz ortogonal $A \in O(2)$ tal que

$$A\mathbf{t}_{\alpha}(s_{o}) = \mathbf{t}_{\beta}(s_{o}), \ A\mathbf{n}_{\alpha}(s_{o}) = \mathbf{n}_{\beta}(s_{o}).$$

Sea $\mathbf{v} = \beta(s_0) - A\alpha(s_0) \in \mathbb{R}^2$ y considere $M : \mathbb{R}^2 \to \mathbb{R}^2$ el movimiento rígido $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$.

Mostramos que la curva $\gamma = M \circ \alpha$ coincide con β :

$$\begin{array}{rcl} \gamma(s_{\mathrm{o}}) & = & A\alpha(s_{\mathrm{o}}) + \mathbf{v} = \beta(s_{\mathrm{o}}), \\ \mathbf{t}_{\gamma}(s_{\mathrm{o}}) & = & A\mathbf{t}_{\alpha}(s_{\mathrm{o}}) = \mathbf{t}_{\beta}(s_{\mathrm{o}}), \\ \mathbf{n}_{\gamma}(s_{\mathrm{o}}) & = & \begin{pmatrix} \mathrm{O} & -1 \\ 1 & \mathrm{O} \end{pmatrix} \mathbf{t}_{\gamma}(s_{\mathrm{o}}) = \begin{pmatrix} \mathrm{O} & -1 \\ 1 & \mathrm{O} \end{pmatrix} \mathbf{t}_{\beta}(s_{\mathrm{o}}) = \mathbf{n}_{\beta}(s_{\mathrm{o}}). \end{array}$$

Pero, de lo visto anteriormente,

$$\kappa_{\gamma}(s) = \kappa_{\alpha}(s) = \kappa_{o}(s), \quad \forall s \in I.$$

Si definimos $f: I \to \mathbb{R}$ por

$$f(s) = \frac{1}{2}[|\mathbf{t}_{\beta}(s) - \mathbf{t}_{\gamma}(s)|^2 + |\mathbf{n}_{\beta}(s) - \mathbf{n}_{\gamma}(s)|^2],$$

entonces $f(s_0) = 0$ con

$$f'(s) = \langle \boldsymbol{t}_{\beta}'(s) - \boldsymbol{t}_{\gamma}'(s), \boldsymbol{t}_{\beta}(s) - \boldsymbol{t}_{\gamma}(s) \rangle + \langle \boldsymbol{n}_{\beta}'(s) - \boldsymbol{n}_{\gamma}'(s), \boldsymbol{n}_{\beta}(s) - \boldsymbol{n}_{\gamma}(s) \rangle.$$

De las ecuaciones de Frenet, y el hecho que $\kappa_{\beta}=\kappa_{\gamma}=\kappa_{o}$, tenemos que f'(s)=o, $\forall s\in I$. Luego $f\equiv o$ se anula en todo punto y entonces

$$\mathbf{t}_{\beta}(\mathbf{s}) - \mathbf{t}_{\gamma}(\mathbf{s}) = \mathbf{0}, \ \forall \mathbf{s} \in I,$$

$$\Rightarrow \beta(s) - \gamma(s) = constante$$
. Pero, $\beta(s_o) = \gamma(s_o) \Rightarrow \beta(s) = \gamma(s)$, $\forall s$. Esto muestra que $\beta = \gamma = M \circ \alpha$. \square