Topological Gravity as the Early Phase of our Universe

Georges Obied Harvard University

> String Pheno Seminar Feb 23rd, 2021

Based on arXiv: 2009.10077 [hep-th] with Agrawal, Gukov and Vafa

Outline

- Motivation
 - Dualities
 - Observations
 - String Gas Cosmology
- Topological Scenario
- Phenomenology: comparison with inflation
- An Analogy with particle physics

Motivation: Dualities

- Ubiquitous in string theory
- Essential when parameters are taken to extreme limits
- No effective theory is valid in all of parameter space
- New light modes appear in extreme limits (e.g. distance conjecture)

Early Universe is an extreme limit

$$T \to \infty$$
, $a \to 0$

Therefore, it is natural to expect that there is a dual description for the early universe.

Observations: Cosmological puzzles

- Can be rephrased as certain vanishing statements:
 - Horizon problem (homogeneity): $\partial_i \rho(x) = 0$
 - Flatness: $[D_i, D_j] = 0$
 - Nearly scale invariant fluctuations:

$$\langle \delta(x)\delta(y)\rangle \sim 10^{-10} |x-y|^{0.03}$$

Hint at an early universe that is independent of position

Motivation: String gas cosmology

[Brandenberger, Vafa '89] [Tseytlin, Vafa '92] ...

Motivated by T-duality:

$$p = n/L, w = mL$$

 $L \leftrightarrow 1/L, n \leftrightarrow m$

$$|\tilde{x}\rangle = \sum_{w} e^{iw\tilde{x}} |w\rangle, \qquad |x\rangle = \sum_{p} e^{ipx} |p\rangle$$

Motivation: String gas cosmology

$$|\tilde{x}\rangle = \sum_{w} e^{iw\tilde{x}} |w\rangle, \qquad |x\rangle = \sum_{p} e^{ipx} |p\rangle$$

The early universe is x-independent (i.e. topological) from the point of view of the operators relevant today.

Duality in the Early Universe

- Proposal: this holds more generally than T-duality/SGC
- Suppose we have two phases/frames (call them I & II)
- We do not know the nature of phase I but we know it is topological from our perspective

Topological Theory

- Even gravity is topological since the graviton of phase I is different from the graviton of phase II
- Horizon problem (homogeneity) is automatically solved because the topological theory is not sensitive to positions
- For other aspects we need to know more about the topological phase
- Consider Witten's 4d topological gravity as one realization

Witten's 4d topological gravity

Gravity action contains a scale-invariant term:

$$S \supset \int \frac{1}{g^2} W^2$$

Backgrounds that preserve topological invariance have:

$$W = 0$$

• Additional sector that contains a BRST-invariant massless field Φ

Phenomenology

	Inflation	Topological Scenario
Homogeneity/Isotropy/ Flatness	dS bkg	Topological phase
(Near) Scale-inv.	(quasi-)dS bkg	(Weakly-broken) Topological phase
Red Tilt	Decreasing Hubble parameter	Positivity of conformal anomaly coefficient c (due to unitarity)
Non-Gauss.	$O(\epsilon)$ in simple models*	O(1) for four- and higher-point functions*
Tensor modes	Present due to massless graviton	Absent since graviton is not dynamical in topological phase

Analogy with QCD: Particle Physics

Low energy spectrum contains pions No spin-1 gauge bosons Low energy spectrum contains pions 2 spin-1 gauge bosons

Analogy with QCD: Cosmology

Additional sector gives a scalar mode No graviton (no tensor modes) Inflaton gives scalar mode Graviton present (tensor modes)

Symmetry breaking pattern dictates behavior of the scalar mode.

(cf. EFT of inflation) [Cheung et al. '08]

Conclusions

- String theory dualities lead us to believe that the early universe is described by a dual theory
- Early universe looks topological from our perspective; in particular it is not sensitive to our position variable
- Study cosmology in Witten's 4d topological gravity as an example
- Future directions:
 - Other realizations of topological gravity in 4d
 - Deeper understanding of the breaking of topological invariance
 - Develop tools to systematically compute observables such as non-Gaussianities

Thank you!

Analogy: Scalar gravity

- Consider a spontaneously broken CFT ($\langle \phi \rangle = M$)
- Goldstone boson: the dilaton
- We can define a `metric' $g_{\mu\nu} \equiv \phi^2 \eta_{\mu\nu}$ and write the dilaton action in generally covariant form:

$$S \sim \int d^4x \sqrt{-g} \left(M^2 R + \mathcal{L}_m + \dots \right)$$