CIS 511: Spring 2015 Problem Set 4: Due March 25, 2015

- 1. Problem 5.13.
- 2. Problem 5.20.
- 3. Recall in a previous homework that we showed that the class of context-free languages is not closed under intersection.

Let $L = \{\langle M, w \rangle \mid M \text{ has an accepting computational path on input } w\}$. Note that $L = A_{TM}$, and A_{TM} is undecidable.

Let $S = S_{M,w}$ be the set of accepting computational paths for M on input w. Then S is non-empty only if M accepts w. Carefully construct a format for computational paths, so that S can be written as $S = L_1 \cap L_2$, where both L_1 and L_2 are context-free. Conclude that determining whether the intersection of two context-free languages is empty, is undecidable. [**Hint.** Recall the proof of the undecidability of ALL_{CFG} . There we were interested in invalid computational paths, but that proof should give a hint about what to do with L.]

- 4. Suppose that M is a DFA over the alphabet $\{0,1\}$, and let n be a natural number. We will count the number of strings of length n which are accepted by M.
 - (a) Let $M = (Q, \Sigma, \delta, q_0, F)$. Take $q \in Q$, and let T[q, i] denote the number of strings s of length i for which M ends in state q after reading s. Give an algorithm for computing T[q, i] for $q \in Q$ and $0 \le i \le n$.
 - (b) Using T[q, i] computed in the previous part, answer the original question: how many strings are there of length n which are accepted by M?
 - (c) This algorithm does not, in general, run in polynomial time. Explain why.
- 5. Exercise 7.12.
- 6. Problem 7.13.
- 7. Problem 7.18.