Maximum-likelihood estimation

A general method for estimating parameters in a model

The method of least-squares

Model for the expectation (fixed part of the model):

$$E[Y_i] = \beta_0 + \beta_1 x_i$$

Residuals: $r_i = y_i - E[Y_i]$

The method of least-squares:

Find the values for the parameters (β_0 and β_1) that makes the sum of the squared residuals (Σr_j^2) as small as possible.

Can only be used when the error term is normal (residuals are assumed to be drawn from a normal distribution)

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, where $\varepsilon_i \sim N(0, \sigma)$

Model for the expectation (fixed part of the model):

$$E[Y_i] = \beta_0 + \beta_1 x_i$$

Residuals: $r_i = y_i - E[Y_i]$

The maximum likelihood method is more general!

- Can be applied to models with any probability distribution

4 5

The maximum likelihood

Example:

We want to estimate the probability, p, that individuals are infected with a certain kind of parasite.

intected with a certain kind of parasite.						
	Ind.:	Infected:	Probability observation		The maximum I	
	1	1	p		(discrete distrib	
	2	0	1-p		1. Write down t	
	3	1	p		each observa	
	4	1	p		model param	
	5	0	<i>1-p</i>		2. Write down t	
	6	1	p		the data	
	7	1	p	Pr(Dat	$a \mid p) = p^6 (1 - p)$	
	8	0	1-p			
	9	0	1-p		3. Find the valu	
	10	1	p		maximize thi	

The maximum likelihood method (discrete distribution):

- Write down the probability of each observation by using the model parameters
- Write down the probability of all the data

3. Find the value parameter(s) that maximize this probability

The maximum likelihood

Example:

We want to estimate the probability, p, that individuals are infected with a certain kind of parasite.

Ind.:	Infected:	<u>Probability of observation:</u>
<u> 111U</u>	mecteu.	Observation.
1	1	p
2	0	1-p
3	1	p
4	1	p
5	0	1-p
6	1	p
7	1	p
8	0	1-p
9	0	1-p
10	1	p

Likelihood function:

$$L(p) = \Pr(\text{Data} \mid p) = p^6 (1 - p)^4$$

 Find the value parameter(s) that maximize this probability

Exercises!

