자전거 후방 감지 및 방향 지시 모듈

201334017 양승철 201534007 김영조 201634006 김다현 201634035 진상윤 201634045 임동혁

목차

- 01 개발 배경 및 목표
- 02 팀원 역할
- 03 개발 환경
- 04 구성요소
- 05 하드웨어
- 06 소프트웨어
- 07 시연 영상
- 08 기대효과
- **09** Q&A

01 개발 배경 및 목표

매년 증가하는 자전거 이용자

증가하는 자전거 이용자에 비해 턱없이 부족한 자전거 시설

01 개발 배경 및 목표

자전거 교통사고 증가 추세

구 분		발생건수(건)		사망자수(명)			부상자수(명)	
			구성비 (%)		구성비 (%)	치사율 (%)		구성비 (%)
차대 차	소계	12,773	90.8	224	84.5	1.8	13,095	90.7
	정면충돌	1,285	9.1	13	4.9	1.0	1,363	9.4
	측면충돌	6,947	49.4	123	46.4	1.8	7,078	49.0
	추돌	628	4.5	38	14.3	6.1	630	4.4
	후진중충돌	71	0.5	1	0.4	1.4	71	0.5
	기타	3,842	27.3	49	18.5	1.3	3,953	27.4

자전거 교통사고 중 가장 많은 비율을 차지하는 사고 **'측면충돌'**

02 팀원 역할

자격	이름	역할			
팀장	김다현	전체적인 프로젝트 진행			
팀원	김영조	애플리케이션 구현			
팀원	양승철	거리 감지 센서 연동			
팀원	임동혁	자료 조사 및 디자인			
팀원	진상윤	LED 매트릭스 연동			

03 개발환경

개발환경	OS	사용 언어		
노트북	Window 10			
아두이노	Arduino IDE	C, C++		
스마트폰	Android	Java, Kawa, Scheme		

04 구성요소

설계 제한요소						
성능	규격/ 표준	경제 성	미학	신뢰 성	안전 성/ 내구 성	환경
~		*		~	~	

설계 구성요소						
목표 설정	합성	분석	구현/ 제작	시험/ 평가	결과 도출	
~	~	~	•	~	~	

HC-06 블루투스 모듈

8x32 도트 매트릭스 LED 모듈

TF Mini Lidar 거리 측정 센서

앞면 뒷면

윗면 개봉

06 소프트웨어

초기 화면

메인 화면

블루투스 선택 화면

06 소프트웨어

블루투스 통신 실패

10미터 내

7미터 내

3미터 내

06 소프트웨어

Millis 함수

```
unsigned long previousMillis = 0; // 시간 체크 용도의 변수
const long matrixRuntime = 300; // +매트릭스의 동작 시간
const long delayTime = 300; // +매트릭스 동작 후 대기시간=
//-----
```

```
void A()
 unsigned long currentMillis = millis(); //현재 시간값 가져옴
 C();
 delay(matrixRuntime); // LED 동작 시간
 if (currentMillis - previousMillis >= delayTime) {
   previousMillis = currentMillis;
   for (int i = 0; i < 8; i++)
     lc1.setRow(0, i, b[0][i]);
     lc1.setRow(1, i, b[1][i]);
     lc2.setRow(0, i, a[0][i]);
     lc2.setRow(1, i, a[1][i]);
```

07 시연 영상

영상은 별도의 링크를 걸어두었습니다

08 기대 효과

- 1. 자전거 이용자들의 안전한 레저 활동
- 2. 자전거 교통사고 방지
- 3. 자전거 장비의 인식 변화
- 4. 부족한 점 개선 시, 상용화 가능
- 5. 애플리케이션 및 모듈의 확장성 용이