

FIG. 4

FIG. 1

FIG. 2

FIG. 3

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9A

FIG. 9B

FIG. 9C

BORDER
CONTINUITY
404

FIG. 10

FIG. 11

FIG. 12

FIG. 13

↓
ENCRYPTION/SCAMBLING
ROUTINE #28, 702

PSEUDO-RANDOM MASTER SNOWY IMAGE
(SCALED DOWN AND ADDED TO FRAME 12183)

FIG. 14

FIG. 15

The diagram illustrates a data stream structure. On the right, the text "DATA STREAM" is written vertically above the word "HEADER". To the left of "HEADER", there is a rectangular box divided into two horizontal sections by a line. The top section contains the binary sequence "00110101110100101010". An arrow labeled "802" points from the top of this sequence to the line separating the two sections. The bottom section of the box contains the text "...JOE'S IMAGE...". An arrow labeled "800" points from the top of this text towards the left edge of the box.

FIG. 17

FIG. 18

FIG. 19

RECORDED & INDEXED - 6/20/2002 5:00 P.M.

QUEST FOR MOSAICED KNOT PATTERNS WHICH "COVER" AND
ARE COEXTENSIVE WITH ORIGINAL IMAGE;
ALL ELEMENTAL KNOT PATTERNS CAN CONVEY THE SAME
INFORMATION, SUCH AS A SIGNATURE, OR EACH CAN CONVEY A
NEW MESSAGE IN A STEGANOGRAPHIC SENSE

FIG. 20

FIG. 21A

900 →

C	2C	C
2C	4C	2C
C	2C	C

WHERE C = 1/16

ELEMENTARY BUMP
(DEFINED GROUPING OF PIXELS WITH
WEIGHT VALUES)

FIG. 21B

EXAMPLE OF HOW MANY ELEMENTARY BUMPS, 900, WOULD BE ASSIGNED LOCATIONS IN AN IMAGE, AND THOSE LOCATIONS WOULD BE ASSOCIATED WITH A CORRESPONDING BIT PLANE IN THE N-BIT WORD, HERE TAKEN AS N=8 WITH INDEXES OF 0-7. ONE LOCATION, ASSOCIATED WITH BIT PLANE "5", HAS THE OVERLAY OF THE BUMP PROFILE DEPICTED.

FIG. 23

CONTAINS RUDIMENTARY OPTICAL SCANNER,
MEMORY BUFFERS, COMMUNICATIONS DEVICES,
AND MICROPROCESSOR

CONSUMER MERELY PLACES CARD INTO WINDOW
AND CAN, AT THEIR PREARRANGED OPTION, EITHER
TYPE IN A PERSONAL IDENTIFICATION NUMBER
(PIN, FOR ADDED SECURITY) OR NOT. THE TRANSACTION
IS APPROVED OR DISAPPROVED WITHIN SECONDS.

FIG. 24

FIG. 25 TYPICAL TRANSACTION STEPS

1. READER SCANS IMAGE ON CARD, STORES IN MEMORY, EXTRACTS PERSON'S ID
2. OPTIONAL: USER KEYS IN PIN NUMBER
3. READER CALLS CENTRAL ACCOUNT DATA NETWORK, HANDSHAKES
4. READER SENDS ID, (PIN), MERCHANT INFORMATION, AND REQUESTED TRANSACTION AMOUNT TO CENTRAL NETWORK
5. CENTRAL NETWORK VERIFIES ID, PIN, MERCHANT INFO, AND ACCOUNT BALANCE
6. IF OK, CENTRAL NETWORK GENERATES TWENTY-FOUR SETS OF SIXTEEN DISTINCT RANDOM NUMBERS, WHERE THE RANDOM NUMBERS ARE INDEXES TO A SET OF 64K ORTHOGONAL SPATIAL PATTERNS
7. CENTRAL NETWORK TRANSMITS FIRST OK, AND THE SETS OF RANDOM NUMBERS
8. READER STEPS THROUGH THE TWENTY-FOUR SETS
 - 8A. READER ADDS TOGETHER SET OF ORTHOGONAL PATTERNS
 - 8B. READER PERFORMS DOT PRODUCT OF RESULTANT PATTERN AND CARD SCAN, STORES RESULT
9. READER TRANSMITS THE TWENTY-FOUR DOT PRODUCT RESULTS TO CENTRAL NETWORK
10. CENTRAL NETWORK CHECKS RESULTS AGAINST MASTER
11. CENTRAL NETWORK SENDS FINAL APPROVAL OR DENIAL
12. CENTRAL NETWORK DEBITS MERCHANT ACCOUNT, CREDITS CARD ACCOUNT

FIG. 26
THE NEGLIGIBLE-FRAUD CASH CARD SYSTEM

A BASIC FOUNDATION OF THE CASH CARD SYSTEM IS A 24-HOUR INFORMATION NETWORK, WHERE BOTH THE STATIONS WHICH CREATE THE PHYSICAL CASH CARDS, 950, AND THE POINT-OF-SALES, 984, ARE ALL HOOKED UP TO THE SAME NETWORK CONTINUOUSLY

FIG. 28

FIG. 27A

FIG. 27B

FIG. 29

FIG. 30

FIG. 29A

FIG. 31A

FIG. 31B

FIG. 32A

FIG. 32B

FIG. 32C

FIG. 33A

FIG. 33B

FIG. 33C

POWER PROFILE ALONG ANGLE A, AS NORMALIZED BY ITS OWN MOVING AVERAGE; ONLY A MINIMAL AMOUNT EXCEEDS THRESHOLD, GIVING A SMALL INTEGRATED VALUE

FIG. 33D

POWER PROFILE ALONG ANGLE B, AS NORMALIZED BY ITS OWN MOVING AVERAGE; THIS FINDS STRONG ENERGY ABOVE THE THRESHOLD

FIG. 33E

FIG. 34A

FIG. 34B

FIG. 34C

POWER PROFILE ALONG CIRCLE AT RADIUS A

FIG. 34D

POWER PROFILE ALONG CIRCLE AT RADIUS B

FIG. 34E

TOTAL INTEGRATED POWER
ABOVE THRESHOLD AS
FUNCTION OF RADIUS

FIG. 35A

SCALE = A; ADD ALL POWER VALUES AT THE
"KNOWN" FREQUENCIES", 1042

FIG. 35B

SCALE = B; ADD ALL POWER VALUES AT THE
"KNOWN" FREQUENCIES", 1044

FIG. 35C

"SCALED-KERNEL" BASED MATCHED FILTER; PEAK IS
WHERE THE SCALE OF THE SUBLIMINAL GRID WAS
FOUND, 1046

FIG. 36A

ARBITRARY ORIGINAL IMAGE
IN WHICH SUBLIMINAL
GRATICULES MAY HAVE BEEN PLACED

FIG. 36B

"COLUMN SCAN"
IS APPLIED ALONG A
GIVEN ANGLE THROUGH
THE CENTER OF THE
IMAGE

COLUMN-
INTEGRATED
GREY
VALUES,
1054

FIG. 36C

1058

END OF
SCAN

1060

FIG. 36D

MAGNITUDE OF FOURIER TRANSFORM OF SCAN DATA

FIG. 37

PROCESS STEPS

1. SCAN IN PHOTOGRAPH
2. 2D FFT
3. GENERATE 2D POWER SPECTRUM, FILTER WITH E.G.
3X3 BLURRING KERNEL
4. STEP ANGLES FROM 0 DEGREES THROUGH 90 (1/2 DEG)
5. GENERATE NORMALIZED VECTOR, WITH POWER VALUE
AS NUMERATOR, AND MOVING AVERAGED POWER
VALUE AS DENOMINATOR
6. INTEGRATE VALUES AS SOME THRESHOLD, GIVING
A SINGLE INTEGRATED VALUE FOR THIS ANGLE
7. END STEP ON ANGLES
8. FIND TOP ONE OR TWO OR THREE "PEAKS" FROM THE
ANGLES IN LOOP 4, THEN FOR EACH PEAK...
9. STEP SCALE FROM 25% TO 400%, STEP ~1.01
10. ADD THE NORMALIZED POWER VALUES CORRESPONDING
TO THE 'N' SCALED FREQUENCIES OF STANDARD
11. KEEP TRACK OF HIGHEST VALUE IN LOOP
12. END LOOP 9 AND 8, DETERMINE HIGHEST VALUE
13. ROTATION AND SCALE NOW FOUND
14. PERFORM TRADITIONAL MATCHED FILTER TO
FIND EXACT SPATIAL OFFSET
15. PERFORM ANY "FINE TUNING" TO PRECISELY
DETERMINE ROTATION, SCALE, OFFSET

FIG. 38

12

FIG. 40

FIG. 41A

+	-
-	+
+	-

FIG. 41B

FIG. 42