训练数据与测试数据

数据分为两种,一种是随机生成数据,另一种是真实地图数据。

数据中的变量表

变量	变量含义
$\mathcal{V} = \{v_0, v_1, \dots, v_N\}$	结点集合
v_0	仓库结点
$v_i, i eq 0$	客户结点
N	客户数量
(x_i,y_i)	结点 v_i 的坐标
q_i	结点 v_i 的需求
$\mathcal{E} = \{e_{ij} v_i, v_j \in \mathcal{V}\}$	边集
d_{ij}	边 e_{ij} 的旅行距离
\mathcal{Q}_{0}	车辆初始容量

随机生成数据

随机生成数据包含两个子集,分别对应N=20和N=50,并分别记为R-20与R-50。每个子集又分为训练部分和测试部分。总结如下:

数据集	问题规模	数据集大小
R-20-training	20	50000
R-20-testing	20	10000
R-50-training	50	50000
R-50-testing	50	10000

每个子集的VRP算例变量服从同一分布,只是在问题规模或数据集大小上有所区别。

变量服从的分布:

结点 v_i 的坐标 (x_i,y_i) 服从实数集合[0,1]上的均匀分布:

 $x_i \sim U(0,1), \quad y_i \sim U(0,1),$ 其中U是均匀分布.

客户结点 $v_i(i\neq 0)$ 的需求 q_i 服从整数集合 $\{1,2,3,4,5,6,7,8,9\}$ 上的均匀分布,注意仓库结点的需求 v_0 设置为0 :

$$q_i(i \neq 0) \sim U\{1, 2, 3, 4, 5, 6, 7, 8, 9\}, \quad q_0 = 0.$$

注意在输入神经网络时,结点需求要进行归一化操作,即 $q_i'=q_i/\mathcal{Q}_0$.

边 e_{ij} 的旅行距离 d_{ij} 计算公式如下:

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} + \delta \mid \epsilon \mid , \quad \epsilon \sim \mathcal{N}(0, 1).$$

其中 δ 是超参数,用于控制算例的非对称程度,这次作业中取值 $\delta=0.1$,感兴趣的同学还可以尝试不同的 δ 值, ϵ 服 从均值为0,方差为1的正态分布。

车辆初始容量 Q_0

对于N=20的算例, $Q_0=30$ 。对于N=50的算例, $Q_0=40$ 。

数据格式

随机生成数据四个numpy文件(R-xx)对应前面表格中总结的四个数据集。

文件中字段定义如下:

graph: 结点坐标。 shape:[问题数量 ,结点数量 , 2] (注意结点数量为N客户加上1个仓库,所以为N+1)

demand: 结点需求,已经归一化。shape: [问题数量 x 结点数量]

dis: 结点间旅行距离矩阵。 shape: [问题数量 x 结点数量 x 结点数量]

真实地图数据

真实地图数据同样分为数据规模为N=20和N=50两个子集,分别记为G-20,G-50。同样每个子集包含训练部分和测试部分,总结如下:

数据集	问题规模	数据集大小
G-20-training	20	50000
G-20-testing	20	10000
G-50-training	50	50000
G-50-testing	50	10000

原始数据

原始地图数据获取方法是在广州市海珠区选择150个社区作为潜在客户结点,将中山大学南校区作为仓库结点, 再使用百度地图API获取各个结点的坐标和真实交通距离。

经纬度坐标.xlsx: 仓库和150个潜在客户结点的经纬度坐标

旅行距离.xlsx: 各个结点之间的交通距离

实验数据的结点坐标和旅行距离生成方法:

在生成实验使用的训练和测试算例时,随机从150个潜在客户结点中选取20(50)个结点构成问题规模为20(50)的算例。

结点需求 q_i 的生成方法与随机生成数据相同

初始车辆容量Q0与随机生成数据相同

数据格式

真是地图数据四个numpy文件(G-xx)对应前面表格中总结的四个数据集。

graph: 结点坐标。 已经归一化。 shape: [问题数量 x 结点数量 x 2] (注意结点数量为N客户加上一个仓库,所以为N+1)

demand: 结点需求,已经归一化。shape: [问题数量 x 结点数量]

dis: 结点间旅行距离矩阵。已经归一化。 shape: [问题数量 x 结点数量 x 结点数量]

真实地图数据在输入神经网络时都进行归一化操作. 即 $(x_i',y_i')=(x_i/100,y_i/100),\quad d_{ij}'=d_{ij}/{
m MAX}_{d_{ij}\in\mathcal{E}}.$

数据链接

链接: https://pan.baidu.com/s/1hoQrsfAKbX9MBc4a5ruokg

提取码: r47g