03 - Contextual Text Analysis

ผศ. ดร. ชนันท์กรณ์ จันแดง

สำนักวิชาสารสนเทศศาสตร์ มหาวิทยาลัยวลัยลักษณ์

1

🕲 บทน้า: การวิเคราะห์ข้อความเชิงบริบท

แนวคิดหลัก:

เข้าใจ "ความหมายของข้อความ" โดยคำนึงถึงบริบท (Context)

คำว่า "bank" อาจหมายถึง "ธนาคาร" หรือ "ริมฝั่งน้ำ" บริบทจึงมีความสำคัญต่อการตีความ

Text Embedding คืออะไร

Text Embedding: การแปลงข้อความให้อยู่ในรูปเวกเตอร์มิติสูง ข้อความที่มีความหมายคล้ายกัน → เวกเตอร์อยู่ใกล้กัน

- Cosine Similarity → วัดมุมระหว่างเวกเตอร์
- Euclidean Distance → วัดระยะทางระหว่างเวกเตอร์

"ครู" ใกล้กับ "อาจารย์" และ "ผู้สอน"

* ทฤษฎีพื้นฐานทางวิชาการ

Distributional Semantics Theory

"You shall know a word by the company it keeps." (Firth, 1957)

- คำที่อยู่ในบริบทเดียวกันมักมีความหมายคล้ายกัน
- เป็นรากฐานของแนวคิดการเรียนรู้เชิงการกระจาย

Vector Space Model (VSM)

- การแทนข้อความในรูปเวกเตอร์
- วัดความคล้ายคลึงด้วย cosine / distance
- เป็นจุดเริ่มต้นของแนวคิด Embedding

Word Embedding Models

โมเดล	แนวคิด	จุดเด่น
Word2Vec	เรียนรู้คำจากบริบท	เข้าใจความสัมพันธ์เชิงความหมาย
GloVe	ใช้ Co-occurrence Statistics	เน้น global context
FastText	ใช้ subword	รองรับคำใหม่ (OOV words)

Contextual Embeddings

- ใช้ Deep Neural Networks (LSTM / Transformer)
- คำเดียวกันมีเวกเตอร์ต่างกันในบริบทต่างกัน

โมเดล	ลักษณะ	จุดเด่น
ELMo	Bi-LSTM	บริบทสองทิศทาง
BERT	Transformer สองทิศทาง	เข้าใจจากซ้าย-ขวา
GPT	Transformer เดียว	สร้างข้อความต่อเนื่อง
SBERT	ปรับ BERT เพื่อเปรียบเทียบประโยค	ใช้ใน Semantic Search

🚅 แนวคิดทฤษฎีขั้นสูง

Manifold Hypothesis

- ข้อความมีโครงสร้างซับซ้อนในมิติสูง
- Embedding คือการเรียนรู้โครงสร้างภายใน (semantic manifold)

Transfer Learning

- ใช้ embedding ที่ฝึกมาก่อน เช่น BERT, GloVe
- นำไปใช้ fine-tuning ในงานใหม่ (เช่น Sentiment Analysis)

Explainability

• พยายามตีความแกนของเวกเตอร์ เช่น เพศ, อารมณ์

อาการประยุกต์ใช้ Text Embedding

การประยุกต์	คำอธิบาย	
Semantic Search	ค้นหาตามความหมายแทนการค้นหาคำตรงตัว	
Clustering	จัดกลุ่มข้อความใกล้เคียง	
Recommendation	แนะนำเนื้อหาคล้ายกัน	
Similarity Measurement	ตรวจจับการลอกงาน / ความเหมือนของประโยค	
LLM Understanding	ใช้ใน GPT, BERT, Claude ฯลฯ	

🥮 สรุปเชิงทฤษฎี

- 1. Embedding = สะพานระหว่างภาษาและคณิตศาสตร์
- 2. Contextual Embedding = วิวัฒนาการขั้นสูงของ NLP
- 3. เป็นรากฐานของระบบ Search, Chatbot, และ LLMs

Workshop: Text Embedding

วัตถุประสงค์

- เข้าใจการแปลงข้อความเป็นเวกเตอร์
- วัดความคล้ายคลึงเชิงความหมาย
- เปรียบเทียบ Keyword vs Contextual Approach

🔭 เครื่องมือและข้อมูล

- Python / Google Colab
- Libraries: sentence-transformers, numpy, sklearn

```
texts = [
"รถยนต์ไฟฟ้า เป็นมิตรต่อสิ่งแวดล้อม",
"ยานยนต์พลังงานสะอาดกำลังได้รับความนิยม",
"ธนาคารให้บริการสิน เชื่อบ้าน",
"แม่น้ำมีน้ำมากในฤดูฝน"
]
```

สร้าง Sentence Embeddings

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
embeddings = model.encode(texts)

- ข้อความ → เวกเตอร์มิติ 384
- ความหมายใกล้กัน → เวกเตอร์อยู่ใกล้กัน

Semantic Similarity

from sentence_transformers import util
similarity = util.cos_sim(embeddings, embeddings)

ค่า	การตีความ
0.8-1.0	คล้ายกันมาก
0.5-0.8	ค่อนข้างคล้าย
<0.2	ต่างกันมาก

Visualization

from sklearn.manifold import TSNE
plt.scatter(...)

- จุดใกล้กัน → ข้อความคล้ายกัน
- แสดง semantic clusters

Showcase: Spam Detection

แนวคิด:

```
แยกข้อความเป็น 2 กลุ่ม — Spam vs Ham
ใช้ Contextual Embedding + KNN Classifier
```

```
data = {...}
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = model.encode(data['text'])
```

🔍 ตัวอย่างผลลัพธ์

ข้อความ	ผลลัพธ์
"Get rich quick!"	spam
"Review project report."	ham

Embedding เข้าใจเจตนา (intent) แม้ไม่มี keyword "spam"

Wey Insights

- Context สำคัญกว่าคำเดี่ยว
- Embedding ช่วยให้คอมพิวเตอร์เข้าใจ "ความหมาย"
- ใช้ได้ทั้งในงาน Search, Chatbot, และ Al Model
- เป็นรากฐานของ LLM ทุกชนิด

Assist. Prof. Dr. Chanankorn Jandaeng

Walailak University

Contextual Text Analysis & Embedding Workshop