IOT BASED NOISE POLLUTION MONITORING SYSTEM

Sound level meters are commonly utilized in sound pollution studies for the quantification of various sorts of noise, especially for industrial, environmental, mining, and aircraft noise. The reading from a sound level meter doesn't correlate well to human-perceived loudness, which is best measured by a loudness meter. Specific loudness may be a compressive nonlinearity and varies at certain levels and certain frequencies. These metrics also can be calculated in several other ways. Here we are going to make an **IoT based decibel meter** that will **measure the sound in decibels(dB)** using a sound sensor and display it to the LCD display along with that, it will also be pushing the readings to the **Blynk IoT platform** making it accessible from across the world.

CODE:

```
#define BLYNK PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
#include <LiquidCrystal_I2C.h>
#define SENSOR_PIN A0
LiquidCrystal_I2C lcd(0x3F, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
const int sampleWindow = 50;
unsigned int sample;
int db;
char auth[] = "IEu1xT825VDt6hNfrcFgdJ6InJ1QUfsA";
char ssid[] = "realme 6";
char pass[] = "evil@zeb";
BLYNK_READ(V0)
 Blynk.virtualWrite(V0, db);
}
void setup() {
 pinMode (SENSOR_PIN, INPUT);
 lcd.begin(16, 2);
 lcd.backlight();
 lcd.clear();
 Blynk.begin(auth, ssid, pass);
}
```

```
void loop() {
 Blynk.run();
 unsigned long startMillis = millis(); // Start of sample window
float peakToPeak = 0; // peak-to-peak level
 unsigned int signalMax = 0; //minimum value
 unsigned int signalMin = 1024; //maximum value
// collect data for 50 mS
while (millis() - startMillis < sampleWindow)
  sample = analogRead(SENSOR_PIN); //get reading from microphone
  if (sample < 1024) // toss out spurious readings
   if (sample > signalMax)
    signalMax = sample; // save just the max levels
   }
   else if (sample < signalMin)
    signalMin = sample; // save just the min levels
  }
 }
 peakToPeak = signalMax - signalMin; // max - min = peak-peak amplitude
Serial.println(peakToPeak);
db = map(peakToPeak, 20, 900, 49.5, 90); //calibrate for deciBels
lcd.setCursor(0, 0);
lcd.print("Loudness: ");
lcd.print(db);
lcd.print("dB");
if (db <= 50)
  lcd.setCursor(0, 1);
  lcd.print("Level: Quite");
 else if (db > 50 && db < 75)
  lcd.setCursor(0, 1);
  lcd.print("Level: Moderate");
 else if (db >= 75)
  lcd.setCursor(0, 1);
  lcd.print("Level: High");
delay(600);
lcd.clear();
```

