DEFENSA ROBOTICA MANIPULADORA

Autores: Lozano Romero, Daniel

Mérida Floriano, Javier

Montes Grova, Marco Antonio

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

MODELADO CINEMÁTICO ROBOT

Parámetros

Denavit-Hartemberg

Art.	θ_i	d_i	a_i	α_i
1	θ_1	L0+L1	0	$\frac{\pi}{2}$
2	θ_2	0	L2	0
3	θ_3	L3	L2	0

MODELADO CINEMÁTICO ROBOT

Cinemática Directa

$$^{1}A_{0}^{2}A_{1}^{3}A_{2} = ^{3}T_{0}$$

$${}^{3}T_{0} = \begin{pmatrix} \cos(\theta_{2} + \theta_{3})\cos(\theta_{1}) & -\sin(\theta_{2} + \theta_{3})\cos(\theta_{1}) & -\sin(\theta_{1}) & \cos(\theta_{1})[L3\cos(\theta_{2} + \theta_{3}) + L2\cos(\theta_{2})] \\ \cos(\theta_{2} + \theta_{3})\sin(\theta_{1}) & -\sin(\theta_{2} + \theta_{3})\sin(\theta_{1}) & \cos(\theta_{1}) & \sin(\theta_{1})[L3\cos(\theta_{2} + \theta_{3}) + L2\cos(\theta_{2})] \\ \sin(\theta_{2} + \theta_{3}) & \cos(\theta_{2} + \theta_{3}) & 0 & L0 + L1 + L3\sin(\theta_{2} + \theta_{3}) + L2\sin(\theta_{2}) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Cinemática Inversa

$$\theta_1 = atan2(sin(\theta_1), cos(\theta_1)) = atan2(\frac{py}{A}, \frac{px}{A})$$
$$\theta_2 = atan2(\pm\sqrt{1 - (\frac{A}{\rho})^2}, \frac{A}{\rho}) - \alpha$$

$$\theta_3 = \beta - atan2(sin(\theta_3), cos(\theta_3)) = \beta - atan2(\pm \sqrt{1 - (\frac{C - L2^2 - L3^2}{2L2L3})^2}, \frac{C - L2^2 - L3^2}{2L2L3})$$

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

CONTROL CINEMÁTICO ROBOT

• Trayectoria pedida con GDT mediante splines

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

• Combinación linealmente independiente de parámetros dinámicos a estimar

$$\theta = \begin{pmatrix} m_1 s_{11z}^2 + m_2 s_{22x}^2 + m_3 s_{33x}^2 + I_{11yy} + I_{22yy} + I_{33yy} + R_1^2 J m_1 - m_2 - 1.64 m_3 \\ B m_1 \\ -m_2 s_{22x}^2 + I_{22xx} - I_{22yy} + m_2 + m_3 \\ m_2 s_{22x}^2 + I_{22zz} + R_2^2 J m_2 - m_2 - m_3 \\ B m_2 \\ -m_3 s_{33x}^2 + I_{33xx} - I_{33yy} + 0.64 m_3 \\ m_3 s_{33x}^2 + I_{33zz} - 0.64 m_3 \\ J m_3 \\ B m_3 \\ -m_2 - m_3 + m_2 s_{22x} \\ m_3 s_{33x} - 0.8 m_3 \end{pmatrix}$$

- Tipos de experimentos implementados para estimar los terminos gravitatorios
 - \rightarrow Velocidades bajas y constantes

- Tipos de experimentos implementados para estimar los terminos viscosos
 - → Valores de velocidades elevados. Acceleraciones constantes

- Tipos de experimentos implementados para estimar los terminos inerciales
 - → Aceleraciones elevadas. Movimientos cortos y rápidos

• Robot Ideal con reductoras

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	15.6322	0.0338
$\theta(2)$	0.0012	0.0218
$\theta(3)$	7.389	0.0481
$\theta(4)$	55.1139	0.00081
$\theta(5)$	0.00085	0.02744
$\theta(6)$	2.0841	0.047868
$\theta(7)$	-2.0414	0.00623
$\theta(8)$	0.051	0.00113
$\theta(9)$	0.0015	0.033
$\theta(10)$	-6.665	0.00054
$\theta(11)$	-2.222	0.00113

• Comparativa sistema y modelo ideal con reductoras ante entrada unitaria de intensidad

• Error en la trayectoria del modelo ideal con reductoras

• Robot Ideal de accionamiento directo

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	-9.31476	0.00364
$\theta(2)$	0.001193	2.868
$\theta(3)$	7.3803	0.00036
$\theta(4)$	-7.2341	0.00369
$\theta(5)$	0.00121	5.890
$\theta(6)$	2.078	0.00358
$\theta(7)$	-2.0335	0.00359
$\theta(8)$	0.051	0.0148
$\theta(9)$	0.00146	2.19
$\theta(10)$	-6.6585	0.003621
$\theta(11)$	-2.222	0.00356

• Comparativa sistema y modelo ideal de accionamiento directo ante entrada unitaria de intensidad

• Error en la trayectoria del modelo ideal de accionamiento directo

• Robot Real con reductoras

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	16.995	4.0573
$\theta(2)$	0.00122	0.2538
$\theta(3)$	12.393	1.291
$\theta(4)$	38.28	1.9472
$\theta(5)$	0.00129	0.941
$\theta(6)$	1.434	0.917
$\theta(7)$	4.0372	4.545
$\theta(8)$	0.0491	1.234
$\theta(9)$	0.00151	1.468
$\theta(10)$	-6.6722	0.003858
$\theta(11)$	-2.199	0.008916

• Comparativa sistema y modelo real con reductoras ante entrada unitaria de intensidad

• Error en la trayectoria del modelo real con reductoras

• Robot Real de accionamiento directo

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	-1.107265	2.715
$\theta(2)$	0.018174	0.54845
$\theta(3)$	7.753	0.32937
$\theta(4)$	-7.3756	1.1879
$\theta(5)$	0.060807	3.259
$\theta(6)$	-2.19164	1.3296
$\theta(7)$	-1.0052	2.889
$\theta(8)$	0.10404	4.1499
$\theta(9)$	0.006486	4.0307
$\theta(10)$	-6.7508	1.2175
$\theta(11)$	0.00374	4.972

• Comparativa sistema y modelo real de accionamiento directo ante entrada unitaria de intensidad

• Error en la trayectoria del modelo real de accionamiento directo

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

• Implementación del PID

Controlador PID

• Se implementa un controlador PID en forma absoluta discreto diseñado, por el lugar de las raices sin cancelación de dinámica, empleando el error en posicion

$$I_m = K_P(e(t) + \frac{1}{T_I} \int_0^t e(\tau) d\tau + T_D \frac{d(e)t}{dt})$$

• Controladores que cumplan un tiempo de subida de 0.05s obtenidos para los modelos linealizados resultantes de la implementación del algoritmo de N-E

$$G(s) = \frac{q(s)}{I_m(s)} = \frac{K}{s(\tau s + 1)}$$
 $C(s) = K_P \frac{T_D T_I s^2 + T_I s + 1}{T_I s}$

• Resultados controlador PID empleando el modelo ideal de accionamiento directo

• Resultados controlador PID empleando el modelo ideal de

accionamiento directo

• Resultados controlador PID empleando el modelo real de accionamiento directo

• Resultados controlador PID empleando el modelo real de

accionamiento directo

Controlador Par Calculado

• Se busca desacoplar totalmente las interacciones del robot consigo mismo, por ello se busca la siguiente ley de control, resultando en un doble integrador

$$Im = M_A(q)\ddot{q} + C_A(q, \dot{q})\dot{q} + G_A(q) - Im = M_A(q)(\ddot{q}_{ref} + u) + C_A(q, \dot{q})\dot{q} + G_A(q) \ddot{\ddot{q}} = u$$

• Se diseñará un controlador PID para la dinámica del error resultante

$$\tilde{\ddot{q}}(t) = u(t) \rightarrow \tilde{q}(s)s^2 = u(s) \rightarrow \frac{\tilde{q}(s)}{u(s)} = \frac{1}{s^2} \left[\frac{ud.error}{ud.sc}\right]$$

$$C(s) = K_p \frac{T_I T_D s^2 + T_I s + 1}{T_I s} \to 403.9 \frac{0.38 * 0.095 s^2 + 0.38 s + 1}{0.38 s}$$

• Implementación del Par Calculado

Se empleará el modelo obtenido a partir del algoritmo de N-E con los parámetros del robot real/ideal de accionamiento directo

• Resultados controlador Par Calculado empleando el modelo ideal de accionamiento directo

• Resultados controlador Par Calculado empleando el modelo ideal de accionamiento directo

• Resultados controlador Par Calculado empleando el modelo real de accionamiento directo

• Resultados controlador Par Calculado empleando el modelo

real de accionamiento directo

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

CONCLUSIONES GENERALES

- Es posible llegar a obtener buenos modelos dinamicos de los robots, empleando las tecnicas que se han tratado, que permiten implementar tecnicas de control avanzadas basadas en modelo.
- En cuanto al control, aunque los errores en posicion sean similares, la implementacion del par calculado frente al PID mejorara el error en velocidad. Ademas, bajara un orden de magnitud las intensidades con las que hay que excitar los motores.