Pressure checks

JMO Massey † , F Cabrera-Booman, T Jaroslawski, JC Klewicki, BJ McKeon

Center for Turbulence Research Stanford University

October 3, 2025

Thanks to DARPA for funding this work.

0/15

Top left: white noise, **top right:** only facility noise, **bottom:** white noise + facility noise

The PH doesn't suppress anything below $f=500[{
m Hz}]$ ($T^+pprox40)$

Pipe. 10-3 **masseyj@stanford.edu 2/15

White noise is needed to highlight required TF

TF reconstructed spectra

There seems to be some low-end oddities in application of the TF. This could be due to the low-frequency resolution, try a HP&LP filter.

Pipe. 10-3 [†]masseyj@stanford.edu 6/15

Do the TFs look reasonably similar after filtering?

TF reconstructed spectra with HP & LP filter

There's no benefit of filtering the signals before calculating the TF

Pipe. 10-3 [†]masseyj@stanford.edu 9/15

Left: facility noise (no flow), right: flow on measurements.

Turning the flow on seems to add a bunch of low-frequency noise.

Pipe. 10-3 [†]masseyj@stanford.edu 15/15