Cisco Lab

DHCP (Dynamic Host Configuration Protocol)

Le DHCP est un protocole réseau qui permet d'attribuer automatiquement des adresses IP, ainsi que d'autres paramètres de configuration réseau (masque de sous-réseau, passerelle par défaut, serveurs DNS, etc.) aux périphériques connectés à un réseau.

Fonctionnement

- 1. Un client (ordinateur, smartphone, etc.) se connecte au réseau.
- 2. Le client envoie une requête **DHCP Discover** pour obtenir une adresse IP.
- 3. Un serveur DHCP reçoit la requête et répond avec une **DHCP Offer** (adresse IP, durée de bail, etc.).
- 4. Le client accepte l'offre en envoyant une requête **DHCP Request**.
- 5. Le serveur DHCP confirme l'attribution de l'adresse IP avec un message **DHCP Ackowledge**.

Le **DHCP** évite ainsi d'avoir à configurer manuellement chaque périphérique et gère les conflits d'adresses IP.

NAT Statique (Static Network Address Translation)

Le NAT statique est une technique qui consiste à faire correspondre de manière statique une adresse IP privée à une adresse IP publique. C'est utile pour rendre accessible un service spécifique (serveur web, mail, etc.) depuis Internet.

Fonctionnement

- 1. Un routeur dispose d'une adresse IP publique et de plusieurs adresses IP privées.
- 2. Une règle NAT statique est configurée pour faire correspondre une adresse IP privée spécifique à une adresse IP publique.
- 3. Lorsqu'un paquet est reçu sur l'adresse IP publique, le routeur le transmet à l'adresse IP privée correspondante.

Le **NAT statique** permet ainsi d'exposer des services internes spécifiques sur Internet sans exposer tout le réseau privé.

EtherChannel

L'EtherChannel (ou port-channel) est une technique de regroupement logique de plusieurs liens physiques Ethernet entre deux commutateurs ou routeurs. Cela permet d'augmenter la bande passante disponible et d'apporter de la redondance.

Fonctionnement

- 1. Plusieurs ports Ethernet sont regroupés pour former un seul canal logique.
- 2. Un algorithme de distribution de charge répartit le trafic sur les différents liens physiques du canal.
- 3. Si l'un des liens tombe en panne, le trafic est automatiquement redirigé sur les liens restants.

L'EtherChannel apparaît comme une seule liaison logique très haut débit et tolérante aux pannes.

HSRP (Hot Standby Router Protocol)

HSRP est un protocole de redondance de passerelle par défaut qui permet de configurer un routeur de secours pour prendre automatiquement le relais en cas de défaillance du routeur principal.

Fonctionnement

- 1. Deux (ou plus) routeurs sur un même sous-réseau sont configurés en tant que routeurs HSRP : un routeur actif et un (ou plusieurs) routeur(s) de secours.
- 2. Les routeurs partagent une adresse IP virtuelle qui sera utilisée comme passerelle par défaut par les autres périphériques du sous-réseau.
- 3. En cas de défaillance du routeur actif, le routeur de secours détecte la panne et prend le relais en utilisant l'adresse IP virtuelle.

HSRP permet ainsi d'assurer une redondance transparente de la passerelle par défaut sans nécessiter de reconfiguration des autres périphériques du réseau.

SSH (Secure Shell)

SSH est un protocole réseau qui permet d'établir une connexion sécurisée et chiffrée entre deux systèmes à travers un réseau non sécurisé comme Internet. Il est généralement utilisé pour accéder à distance à un shell ou pour transférer des fichiers de manière sécurisée.

Fonctionnement

- Sécurité : SSH chiffre tout le trafic, empêchant ainsi les écoutes clandestines et le vol de données sensibles.
- Authentification forte : SSH utilise des clés cryptographiques pour l'authentification, plus sûres que les mots de passe.
- Intégrité des données : SSH détecte toute altération des données pendant le transfert.
- Tunneling : SSH peut être utilisé pour sécuriser d'autres protocoles en les encapsulant dans le tunnel SSH.

SSH est donc un outil essentiel pour une gestion sécurisée des serveurs et des équipements réseau.

Relais DHCP

Un **relais DHCP** est un agent logiciel installé sur un routeur ou un commutateur qui achemine les requêtes **DHCP** des clients vers un serveur **DHCP** centralisé. Son rôle est de permettre aux clients **DHCP** de pouvoir obtenir une configuration IP même s'ils ne sont pas sur le même sous-réseau que le serveur **DHCP**.

Fonctionnement

- 1. Un client émet une requête DHCP sur son sous-réseau local.
- 2. Le relais DHCP reçoit la requête et l'encapsule dans un paquet relayé à destination du serveur DHCP central.
- 3. Le serveur DHCP traite la requête et répond avec une offre DHCP.
- 4. Le relais DHCP transmet la réponse du serveur DHCP au client sur son sous-réseau local.

Le relais DHCP permet ainsi une gestion centralisée des serveurs DHCP tout en permettant aux clients de différents sous-réseaux d'obtenir une configuration IP.