

Dans cette présentation...

I. Présentation des outils

IV. Modèles

II. Notre dataset

V. Imbalanced Learning

III. Pré-traitement des données

VI. Conclusion

I. Présentation des outils

Environnement de développement

Google Colab (GPU offert)

VS Code (notebooks)

Librairies utilisées

Pandas (Dataframes)

Partage des codes

Dépôt github

yannasyr/TPE2023-FraudDetection: Telecom Physique Strasbourg | 2A ISSD | TPE with Z.Inas on Credit Card Fraud Detection (github.com)

II. Notre dataset : point de départ

Challenge data (ens.fr)

x train

variables explicatives pour l'entraînement

<u>y_train</u>

variable(s) cible(s) pour l'entraînement

x_test

variables explicatives pour le test

91471 / 1319

22836 / 362

Métrique imposée : average_precision_score

- Benchmark 1 : $PR-AUC_1=0,017$ Le premier benchmark est naïf et considère un modèle qui prédit aléatoirement une probabilité entre 0 et 1.
- Benchmark 2 : $PR-AUC_2=0,14$ Le second benchmark intègre plusieurs étapes de pré-processing et utilise un modèle de Machine Learning optimisé pour prédire le risque de fraude.

II. Notre dataset :

II. Notre dataset :

II. Notre dataset :

ID	item1	cash_price1	make1	model1	goods_code1	Nbr_of_prod_purchas1
0 85517	COMPUTERS	889.0	APPLE	2020 APPLE MACBOOK AIR 13 3 RETINA DISPLAY M1	239246776	1.0

ID	item1	cash_price1	make1	model1	goods_code1	Nbr_of_prod_purchas1
0 85517	COMPUTERS	889.0	APPLE	2020 Apple Macbook air 13 3 retina display M1	239246776	1.0

ID	item1 cash_price1	make1	mode	1 goods code1	Nbr_of_prod_purchas1
0 85517	COMPUTERS 889.0	APPLE	2020 APPLE MACBOOK AIR 13 3 RETINA DISPLAY M1	239246776	5 1.0

674 marques dans le dataset

Seuillage: + de 20achats, +0,1% fraudes

26 marques intéressantes

161 catégories dans le dataset

Seuillage: + de 10achats, +1% fraudes

20 catégories intéressantes

IV. Modèles : Logistic Regression

The Logistic Function

$$y = \frac{1}{1 + e^{-f(x_1, x_2, \dots, x_n)}} \in (0, 1)$$

where

$$f(x_1, x_2, \dots, x_n) = a_0 + a_1 x_1 + \dots + a_n x_n \in (-\infty, +\infty)$$

- · Output Y
- Input X = { x1, x2, ..., xn}
- Poids/Paramètre : a0, a1, ..., an

IV. Modèles : RandomForestClassifier

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	id	x_0	x_1	x_2	x_3	x_4	y	id	$\lceil id \rceil$	id	$\lceil id \rceil$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	4.3	4.9	4.1	4.7	5.5	0	2	2	4	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	3.9	6.1	5.9	5.5	5.9	0	0	1	1	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2.7	4.8	4.1	5.0	5.6	0	2	3	3	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	6.6	4.4	4.5	3.9	5.9	1	4	1	0	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	6.5	2.9	4.7	4.6	6.1	1	5	4	0	1
2.8 6.2 4.3 5.3 5.5 $x_1 \le 4.9$ $x_3 \le 4.6$ $x_2 \le 4.1$ $x_1 \le 4.4$ Bootstrap + Aggregating	5	2.7	6.7	4.2	5.3	4.8	1	5	4	2	2
Bootstrap + Aggregating $ x_1 \le 4.9 $ $ x_3 \le 4.6 $ $ x_2 \le 4.1 $ $ x_1 \le 4.4 $								x_0, x_1	x_2, x_3	x_2, x_4	x_1, x_3
(Bagging) $x_0 \le 4.3$ 1 1 0 0 $x_2 \le 4.7$ 1 $x_1 \le 6.1$					2000			$x_1 \leq 4.9$	$x_3 \leq 4.6$	$x_2 \leq 4.1$	$x_1 \leq 4.4$
$\binom{0}{1}$ $\binom{1}{1}$ $\binom{0}{0}$ $\binom{0}{0}$ $\binom{1}{1}$			(В	aggin	ıg)				1 0		

IV. Modèles : XGBoost


```
Boosted Ensemble =
First Tree + n * Second Tree
Loss(Boosted Ensemble) < Loss(First Tree)
```

IV. Modèles : cross-validation

StratifiedKFold(n_splits=5, shuffle=True)

IV. Modèles : trouver les hyperparamètres

```
from sklearn.model selection import RandomizedSearchCV, StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
# Voici la grille de paramètres
param grid = {
    'max depth': [3, 4, 5, 6, 7, 8, 9, 10, None],
    'n estimators': range(100, 1000, 50),
    'min samples split': range(2, 11, 1),
    'min samples leaf': range(1, 11, 1),
    'max features': ['sqrt', 'log2', None],
    'bootstrap': [True, False]
# On choisit un modèle sans préciser ses hyperparamètres
rfc = RandomForestClassifier(random state=12)
# Partie cross-validation
cv = StratifiedKFold(n splits=5, shuffle=True, random state=12)
# Va créer aléatoirement n iter combinaisons de param grid
random search = RandomizedSearchCV(estimator=rfc, param distributions=param grid, n iter=100,
                                   cv=cv, verbose=2, random state=12, n jobs=-1)
# Va tester ces hyperparamètres sur X train et Y train pour nous sortir la meilleure config
random_search.fit(X_train, Y_train)
```


Métriques d'évaluation :

Métriques d'évaluation :

Métriques d'évaluation :

Résultats :

Sans undersampling

```
# accuracy on test data
Y_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(Y_test_prediction, Y_test)

print('Accuracy score on Test Data : ', test_data_accuracy)

Accuracy score on Test Data : 0.9860437547149478

from sklearn.metrics import average_precision_score
average_precision = average_precision_score(Y_test,Y_test_prediction)
print(average_precision)

0.013956245285052269
```

Résultats :

Undersampling, ratio = 1

```
[29] # accuracy on test data
    Y_test_prediction = model.predict(X_test)
    test_data_accuracy = accuracy_score(Y_test_prediction, Y_test)

[30] print('Accuracy score on Test Data : ', test_data_accuracy)
    Accuracy score on Test Data : 0.6231060606060606

from sklearn.metrics import average_precision_score
    average_precision = average_precision_score(Y_test,Y_test_prediction)
    print(average_precision)

0.6153496157821416
```

Résultats :

Undersampling, ratio = 10

```
[39] # accuracy on test data
    Y_test_prediction = model.predict(X_test)
    test_data_accuracy = accuracy_score(Y_test_prediction, Y_test)

[40] print('Accuracy score on Test Data : ', test_data_accuracy)
    Accuracy score on Test Data : 0.8993797381116472

from sklearn.metrics import average_precision_score
    average_precision = average_precision_score(Y_test,Y_test_prediction)
    print(average_precision)
```

0.10062026188835287

Résultats :

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	0.0907
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-0.166
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	0.2076
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	-0.054
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	0.7530

	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
1412	-0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	0.244964	0
39083	-0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	-0.342475	0
4980	0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	1.160686	0
)8038	-0.108300	0.005274	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	0.140534	0
3542	-0.009431	0.798278	-0.137458	0.141267	-0.206010	0.502292	0.219422	0.215153	-0.073403	0

Résultats :

Undersampling, ratio = 1

```
[26] # accuracy on test data
    Y_test_prediction = model.predict(X_test)
    test_data_accuracy = accuracy_score(Y_test_prediction, Y_test)
```

- print('Accuracy score on Test Data : ', test_data_accuracy)
- Accuracy score on Test Data : 0.9990519995786665

Métrique d'évaluation de BNP

0.49451688374192126

```
from sklearn.metrics import average_precision_score
average_precision = average_precision_score(Y_test,Y_test_prediction)
print(average_precision)
```

Résultats :

Undersampling, ratio = 10

```
[50] # accuracy on test data
    Y_test_prediction = model.predict(X_test)
    test_data_accuracy = accuracy_score(Y_test_prediction, Y_test)
```

- print('Accuracy score on Test Data : ', test_data_accuracy)
- Accuracy score on Test Data : 0.9787626962142197

Métrique d'évaluation de BNP

```
from sklearn.metrics import average_precision_score
average_precision = average_precision_score(Y_test,Y_test_prediction)
print(average_precision)
```

0.7849278215441301

Résultats :

```
Undersampling, ratio = 100
[63] # accuracy on test data
    Y_test_prediction = model.predict(X_test)
    test_data_accuracy = accuracy_score(Y_test_prediction, Y_test)
    print('Accuracy score on Test Data : ', test_data_accuracy)
    Accuracy score on Test Data: 0.9957742227588289
Métrique d'évaluation de BNP
    from sklearn.metrics import average_precision_score
    average_precision = average_precision_score(Y_test,Y_test_prediction)
    print(average precision)
    0.6161590805957154
```

VI. Conclusion et ouverture

Imbalanced learning

Cost-sensitive techniques

- Benchmark 1 : $PR-AUC_1=0,017$ Le premier benchmark est naïf et considère un modèle qui prédit aléatoirement une probabilité entre 0 et 1.
- Benchmark 2 : $PR-AUC_2=0,14$ Le second benchmark intègre plusieurs étapes de pré-processing et utilise un modèle de Machine Learning optimisé pour prédire le risque de fraude.

```
print(average_precision_score(Y_test, y_pred2))
0.15726139817331086
```

Bibliographie

- Logistic Regression Detailed Overview | by Saishruthi Swaminathan | Towards Data Science
- https://scikit-learn.org/
- La star des algorithmes de ML : XGBoost datacorner par Benoit Cayla
- https://fraud-detection-handbook.github.io/fraud-detection-handbook/
- (2) Random Forest Algorithm Clearly Explained! YouTube
- Credit Card Fraud Detection | Kaggle
- Challenge data (ens.fr)