CATEGORICAL Q-DEFORMED RATIONAL

NUMBERS & COMPACTIFICATIONS OF

STABILITY SPACE

Asilata Bapat (ANU)

Louis Becker Anand Deopurkar Anthony Licata

The big picture

Brov Categorify
Brove

The big picture Br CV categorify
Br CE

The big picture Brov categorify Brove

Stable compactify Stable

Or

Br

The big picture

Brov Categorify
Brove

- Q: What is the topology of Stab 6?
- Q: What can we read off about Br, from its action on Stab & ?

Plan

1) Greneralitles on E, Stab, and the Br-action

2) The family of compachifications

3) The three strand braid group

Categorical Braction

6 = 2-CY category of connected graph [[categorifies Burau rep of B+]

Categorical Braction

6 = 2-CY category of connected graph [[categorifies Burau rep of B+]

Important features:

- Lots of sphenical objects

⇒ lots of auto-equivalences.

Categorical Braction

In particular, each Pi is spherical.

- · Opi & lis an autoequivalence;
- · OPi satisfy the braid relations. (of T)

Brothendieck group)

Bridgeland stability conditions of Br-action

A stability condition T is data on E that yields a family of metrics on E: each arrow in 6 has a (z,q)-length.

Bridgeland stability conditions & Br-action

A stability condition T is data on E that yields a family of metrics on E: each arrow in E has a (T,q)-length.

The size of X E ob & is measured by "pulling tight to a geodesic" 0 - X.

Bridgeland stability conditions & Br-action

The size of X & ob & is measured by "pulling tight to a geodesic" o - X.

This is called the "q-mass" of X wrt T.

Bridgeland stability conditions & Br-action

The size of X & ob & is measured by "pulling tight to a geodesic" 0 -> X.

This is called the "g-mass" of X wrt T.

$$X = A_3$$

$$A_4$$

$$A_1$$

$$A_4$$

$$A_1$$

$$M_{q,7}(X) =$$

$$\sum_{q} \phi(Ai) \cdot |Ai|$$

segments + semistables

Bridgeland stability conditions of Br-action

[Bridgeland] Stab 6 is a complex manifold.

Since Br Co C, we also have

Brc Stalo le

1) Fix BEBrand ZEStab6.

Consider lim \$7.

1) Fix BEBrand ZEStab6.

Consider lin BT.

[BDL, BBL] Taking $\beta = \delta_X$ for X spherical:

lim $m_{p^{n}Z,q_{b}}(Y) = q$ -dim Hom(X,Y)upro simultaneous scalar

Shrink all but one of the simple semistables to zero

Shrink all but one of the simple semistables to zero

In the limit, the q-mass counts the "q-occurrences" of the remaining semistable in any given object.

Moral: Limits may not make sense as stability conditions, but their q-masses make sense.

Moral: Limits may not make sense as stability conditions, but their q-masses make sense.

Mass map

Mass map & compactification

· [BDL, BBL] The mass map is injective, and Stable is compact.

Mass map 4 compactification

- · [BDL, BBL] The mass map is injective, and Stable is compact.
- · In the boundary, we see:

how: = line Mprz, q for p = spherical twist

occ := q-occurrences of a fixed semistable

General conjectures & questions

9: Stab⁸6 ~ closed ball?

9: how & occ [+ linear combinations] recover a dense subset of the boundary sphere?

General conjectures & questions

9: Stab⁸6 ~ closed ball?

9: how & occ [+ linear combinations] recover a dense subset of the boundary sphere?

Q: What does this tell us about B_{Γ} ?
What are the other points on the boundary?

$$B_3 = \langle \sigma_1, \sigma_2 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$$

$$6, \mapsto \begin{bmatrix} 1 - 1 \\ 0 & 1 \end{bmatrix}, \quad 6_2 \mapsto \begin{bmatrix} 1 & 0 \\ 1 & 4 \end{bmatrix}$$

$$B_3 = \langle \sigma_1, \sigma_2 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$$

$$B_{3} = \langle \sigma_{1}, \sigma_{2} \mid \sigma_{1}\sigma_{2}\sigma_{1} = \sigma_{2}\sigma_{1}\sigma_{2} \rangle$$

$$B_{3} \longrightarrow PSL_{2}(\mathbb{Z})$$

$$G_{1} \mapsto \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \sigma_{2} \mapsto \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

- . PSL2(Z), and hence B3, acts on CU Ex3 by fractional linear transformations
- · Action preserves It and IRU Zoog

For the remainder of the talk, take $6 = 6(--) = \langle P_1, P_2 \rangle \otimes B_3$

Fact:

- 1) hour and occ coincide.
- 2) homx to ± hom (X,P2) is a hom (X,P1)

B3-equivariant bijection from the spherical objects of 6 to QUENZ

The how functionals as rationals

Pictorially, at q=1:

The g-deformed story for B3

Thm [BBL] For an indeterminate q:

(1) homx to ± q" homq(X,P2) and homq(X,Pi)

 $occ_X \mapsto \pm q'$ $occ_{P_1,X}$ are B_3 -equivariant.

The g-deformed story for B3

Thm [BBL] For an indeterminate q:

1) home to ± q' home (X,P2) and home (X,P1)

occ_X + ± q') occ (P₂,X) are B₃-equivariant.

The B₃-action on the right is by fractional linear transformations via Burau matrices.

The g-deformed story for B3

Pictorially, at 9+1:

The q-deformed story for B3

Thm [cont'd]

 $2 \pm 9^{(1)} \frac{\text{occ}(P_{2},X)}{\text{occ}(P_{1},X)}$ are exactly the q-deformed rationals of Moriev-Grenoud – Ovsnenko.

(3) ± 9(1) hom (X,P2) give a new q-deformation hom (X,P2) of QUZX3.

The q-deformed story for B3

For $\frac{x}{s} \in Q \cup \{x\}$ corresponding to the spherical object X, set:

(1)
$$\left[\frac{x}{s}\right]_{g}^{\#} := \pm q^{(1)} \frac{\operatorname{occ}(P_{2},X)}{\operatorname{occ}(P_{1},X)}$$
 right q-deformed rational

Now fix 0 < 9 < 1.

Consider the ideal triangle with vertices 0, 1, so [corresponds to a piece of stability space]

The PSL2 (Z) - orbit:

[9=1]

Now fix 0 < 9 < 1.

Consider the ideal triangle with vertices 0, 1, so

The PSL_{2,9}(Z) - orbit:

At q=1, left & right limits of Favery triangles agree

At 9#1, the left & right whik of Farey triangles do not agree - we get [5] & f [7] #!

At 9#1, the left & night himits of Favey triangles do not agree - we get [5] & [7]* !

Moreover, the entire semicircle connecting them lies in the limit.

Stab 6 at a fixed positive q

Thm [B-Becker-Licata]

- 1) The union of the closed semicircles [[s], [s]] is dense in the boundary of Stab &
- 2) The remaining points of the boundary are exactly the "q-irrationals".
- 3 The boundary is homeomorphic to S'.

Thank you!