STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

CHEM 5 AQUEOUS SOLUTIONS, SOLVENTS/SOLUTES

(%w/v, %w/w, molarity, dilution, ppm, ppb, molality, p-notation)

[w = weight m = mass, but in Chemistry we use: % w/v = % m/v, and % w/w = % m/m]

<u>Preparation of a solution</u> – a <u>known mass (m gram) of the solute</u> (eg $5.85 \text{ g NaC}\ell$, $M_r = 58.5 \text{ g/mol}$) is dissolved in a solvent such as water to give <u>a known volume</u> (V mL or Litre) of the solution (eg 250 mL aqueous solution).

Concentration = c = mass (gram) / volume (mL or Litre) = 5.85 g / 250 mL = 0.0234 g/mL = <math>5.85 g / 0.25 L = 23.4 g/L = 23.4 g/1000 mLThen, %w/v = gram solute in 100 mL of solution = $2.34 \text{ g} / 100 \text{ mL} = 2.34 \text{ %w/v NaC}\ell$, = $2.34 \text{ %m/v NaC}\ell$.

(This concentration is Temperature Dependent because liquids expand when heated)

Or, we can prepare a solution by dissolving <u>a known mass of the solute</u> in a solvent to give <u>a known mass of solution</u>;

Then, % w/w = gram solute in 100 g solution

So, if 2.34 g of NaCℓ is dissolved in 97.66 g of water to give 100 g of solution

Then % w/w = 2.34 g / 100 g solution= $2.34 \% \text{ w/w NaC}\ell$

(This concentration is Independent of Temperature because mass does not change with temperature)

(= 2.34 g in about 98 mL = 2.39 g / 100 mL)

Molarity = \underline{M} = amount (mole) / solution volume (Litre) \underline{M} = n / V

So if $5.85~g~NaC\ell$, ($M_r = 58.5~g/mol$) is dissolved in 250 mL water the Molarity would be given by :

 $n = C \times V$

 $= \{mass (gram)/molar mass (M_r) gram/mol \}/volume(L)$

 $= (5.85 \text{ g} / 58.5 \text{ g mol}^{-1}) / 0.25 \text{ L} = 0.1 \text{ mol} / 0.25 \text{ L} = 0.4 \text{ mol/L}$

To calculate the <u>number of mol of material in a given volume of a solution</u> having a <u>known concentration</u>:

Number of mol = n = concentration (mol L-1) x volume (L)

ie, $n = C \times V$ or $M(\text{mol } L^{\text{-}1}) \times V(L)$

or $n = M(\text{mol } L^{-1}) \times V(\text{mL})/1000$

TASK: To prepare 500 mL of an approximately 0.05 M Na₂CO₃ solution with an exactly known concentration, from a solid sample of pure Na₂CO₃ (M_r = 106.0 g/mol).

A. Calculate approximate mass of solid Na₂CO₃ required:

$$n = C \times V$$
 $n = 0.05 \times 500/1000 = 0.025 \text{ mol}$
 $n = m/M_r m = n \times M_r = 0.025 \times 106.0 = 2.65 \text{ g}$

B. Weigh out approximate mass of Na₂CO₃:

Add solid Na₂CO₃ until ≈2.7 g has been added to weighing bottle (approximate mass)

Using "weighing by difference" transfer solid Na2CO3 sample to standard (volumetric) flask

C. Dissolve exact mass in water to give an exact volume (500.0 mL) of solution:

D. Calculate exact concentration of Na₂CO₃solution :

 $C_{Na2CO3} = n/V = (m/M_r)/V = (2.5232/106.0)/0.500 = 0.04761 mol/L$

DILUTION –adding further pure solvent to a solution

Original solution $vol = V_o$, $conc = C_o$

Final solution $vol = V_f$, $conc = C_f$

$$n_0 = C_0 x V_0 \qquad \qquad n_f = C_f x V_f$$

Only pure solvent is added, so no extra moles of solute are added, so $n_f = n_o$

thus,
$$C_f x V_f = C_o x V_o$$

eg, if $10\,\text{mL}$ of a $0.4\,\text{mol/L}$ solution is diluted to $50\,\text{mL}$, the final concentration can be calculated thus :

$$50 \text{ mL } x \text{ C}_f = 10 \text{ mL } x 0.4 \text{ mol/L} \text{ so, } \text{ C}_f = \frac{10 \text{ mL } x 0.4 \text{ mol/L}}{50 \text{ mL}} = 0.08 \text{ mol/L}$$

Parts per million

ppm = g solute in 1 million g solution

- = g solute in 10^6 g solution ie., g per tonne (1 000 kg) [used in mining industry]
- = milligram in 10^3 g solution [The prefix "milli" means one-thousandth of = $1/1000 = 10^{-3}$]
- = mg per Litre $(1 \text{ mg} = 0.001 \text{ g} = 10^{-3} \text{ g} ; \text{ so } 1 \text{ gram} = 1000 \text{ mg})$

Parts per Billion

ppb = g solute in 1 billion g solution

- = g solute in 10^9 g solution = milligram in 10^6 g solution = mg in 10^3 Litre
- = microgram in one Litre [The prefix "micro" means one-millionth of = $1/1\ 000\ 000 = 10^{-6}$]
- = $\mu g \text{ per Litre}$ (1 $\mu g = 0.000 \ 001 \ g = 10^{-6} \ g$; so 1 gram = 1 000 000 μg)

Molality

 $m = mol \ solute \ per \ \underline{kilogram \ of \ solvent}$ (a temperature independent concentration) eg, if a solution contains 4.38 g of KC ℓ solute ($M_r = 74.6 \ g \ mol^{-1}$) in 100 g of solvent water.

Molality =
$$\frac{4.38 \text{ g}}{74.6 \text{ g mol}^{-1}}$$
 = $\frac{0.0587 \text{ mol}}{0.0587 \text{ mol}}$ = 0.587 molal (**m**)
 $\frac{100 \text{ g}}{1000 \text{ g kg}^{-1}}$ = 0.1 kg