Designing heuristic functions

Heuristics for the 8-puzzle

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance (number of squares from desired location of each tile)

• Are h_1 and h_2 admissible?

Heuristics from relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Dominance

- If h_1 and h_2 are both admissible heuristics and $h_2(n) \ge h_1(n)$ for all n, (both admissible) then h_2 dominates h_1
- Which one is better for search?
 - A* search expands every node with $f(n) < C^*$ or $h(n) < C^* g(n)$
 - Therefore, A* search with h_1 will expand more nodes

Dominance

 Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths):

•
$$d$$
=12 IDS = 3,644,035 nodes
 $A^*(h_1)$ = 227 nodes
 $A^*(h_2)$ = 73 nodes

•
$$d=24$$
 IDS $\approx 54,000,000,000$ nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Combining heuristics

- Suppose we have a collection of admissible heuristics $h_1(n)$, $h_2(n)$, ..., $h_m(n)$, but none of them dominates the others
- How can we combine them?

$$h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}$$

Weighted A* search

- Idea: speed up search at the expense of optimality
- Take an admissible heuristic, "inflate" it by a multiple α > 1, and then perform A* search as usual
- Fewer nodes tend to get expanded, but the resulting solution may be suboptimal (its cost will be at most α times the cost of the optimal solution)

Example of weighted A* search

Heuristic: 5 * Euclidean distance from goal

Source: Wikipedia

Example of weighted A* search

Compare: Exact A*

Heuristic: 5 * Euclidean distance from goal

Source: Wikipedia

All search strategies

Algorithm	Complete?	Optimal?	Time complexity	Space complexity
BFS	Yes	If all step costs are equal	O(b ^d)	O(b ^d)
DFS	No	No	O(b ^m)	O(bm)
IDS	Yes	If all step costs are equal	O(b ^d)	O(bd)
UCS	Yes	Yes	Number of node	s with g(n) ≤ C*
Greedy	No	No	Worst case: O(b ^m) Best case: O(bd)	
A *	Yes	Yes (if heuristic is admissible)	Number of nodes	with $g(n)+h(n) \le C*$

A note on the complexity of search

- We said that the worst-case complexity of search is exponential in the length of the solution path
 - But the length of the solution path can be exponential in the number of "objects" in the problem!
- Example: towers of Hanoi

