Logica en de Linguistic Turn 2013

Tautologies, logische equivalenties en geldigheid

Maria Aloni
ILLC-University of Amsterdam
M.D.Aloni@uva.nl

October 1, 2013

Plan voor vandaag

- 1. Propositielogica: tautologies, contradicties, logische equivalenties en geldigheid
- 2. Zaaltentamen 1

Huiswerk:

- ► Gamut, 2.5, 4.2.1 (t/m p. 118) + opgaven 2.6, 2.8-2.10, 4.1(a)-(i)
- Extra opgaven PL Deel 1 (opgave over prins en tijger)
- Participatieopdracht: bedenk zelf een paradox (deadline woensdag 12uur)

Valuatie

Een valuatie V voor taal L van PL is een functie met als domein de formules van L en als bereik de waarheidswaarden, i.e.

(1) V: formules van L \rightarrow {0,1}

die de volgende condities vervult (voor alle formules ϕ en ψ):

- (i) $V(\neg \phi) = 1$ desda $V(\phi) = 0$;
- (ii) $V(\phi \wedge \psi) = 1$ desda $V(\phi) = V(\psi) = 1$;
- (iii) $V(\phi \lor \psi) = 0$ desda $V(\phi) = V(\psi) = 0$;
- (iv) $V(\phi \rightarrow \psi) = 0$ desda $V(\phi) = 1$ en $V(\psi) = 0$;
- (v) $V(\phi \leftrightarrow \psi) = 1 \text{ desda } V(\phi) = V(\psi).$

De valuatie moet in overstemming zijn met de interpretatie van de connectieven, die in de waarheidstafels is vastgelegd.

Tautologie, en contradictie

- ▶ Formule ϕ is een **tautologie**, $\models \phi$, desda voor ieder valuatie V: $V(\phi) = 1$;
- Formule ϕ is een **contradictie** desda voor ieder valuatie V: $V(\phi) = 0$;
- Formules die noch tautologien zijn noch contradicties worden contingenties genoemd.

Opgave: Ga van de volgende formules na of het tautologieen, contradicties of contingenties zijn.

$$(2) \qquad (p \to \neg p)$$

$$(3) \qquad (p \to (p \lor q))$$

$$(4) \qquad (p \wedge (\neg \neg p \rightarrow \neg p))$$

(Hint: gebruik samengestelde waarheidstafels)

Samengestelde waarheidstafel voor ϕ

- ▶ Kolommen: subformules van ϕ (= ieder formule die voorkomt in de construtieboom van ϕ)
- ▶ Rijen: relevante waarderingen voor ϕ (afhankelijk van aantal propositieletters in ϕ)

Logische equivalentie

- Formules ϕ en ψ zijn logisch equivalent, $\phi \equiv \psi$ (of $\phi \Leftrightarrow \psi$) desda voor ieder valuatie $V: V(\phi) = V(\psi)$.
- Voorbeelden
 - (5) $p \lor q \equiv \neg(\neg p \land \neg q)$ \mapsto formules $p \lor q$ en $\neg(\neg p \land \neg q)$ zijn logisch equivalent
 - (6) $\phi \lor \psi \equiv \neg(\neg \phi \land \neg \psi)$ \mapsto alle formules met vorm $\phi \lor \psi$ en $\neg(\neg \phi \land \neg \psi)$ zijn logisch equivalent
- Anderen voorbeelden
 - (7) a. $\phi \equiv \neg \neg \phi$ (wet van dubbel negatie) b. $(\phi \lor \psi) \lor \chi \equiv \phi \lor (\psi \lor \chi)$ (associativiteit van \lor) c. $(\phi \land \psi) \land \chi \equiv \phi \land (\psi \land \chi)$ (associativiteit van \land)

- ▶ Over verschil ϕ vs p?
 - ullet ϕ (metataal) kan complex of atomair zijn
 - p (objecttaal) is atomair
- ► Probeer om te bepalen of de volgende een tautologie, een contradictie of een contingentie is:
 - (8) $\phi \rightarrow \neg \phi$
- ▶ Antwoord: (8) kan een tautologie of een contradictie of een contingentie zijn afhankelijk van ϕ . E.g.
 - 1. $\phi = (p \vee \neg p) \Rightarrow \phi \rightarrow \neg \phi$ is contradictie
 - 2. $\phi = (p \land \neg p) \Rightarrow \phi \rightarrow \neg \phi$ is tautologie
 - 3. $\phi = p \Rightarrow \phi \rightarrow \neg \phi$ is contingentie

Stellingen

Stelling 1

 $\phi \equiv \psi$ desda $\phi \leftrightarrow \psi$ is een tautologie.

Stelling 2

Als ϕ een tautologie is, dan is $\neg \phi$ een contradictie.

Stelling 3

Als ϕ een contradictie is, dan is $\neg \phi$ een tautologie.

Stelling 4

 ϕ is contingent desda $\neg \phi$ is contingent.

Bewijs van stelling 1 [op boord]

Semantische geldigheid (def. 3 p. 117)

- ▶ **Definitie** Voor formules $\phi_1, ...\phi_n, \psi$ van PL, een redenering $\phi_1, ...\phi_n/\psi$ is geldig, $\phi_1, ...\phi_n \models \psi$ als, voor alle valuaties V, waarvoor $V(\phi_1) = ...V(\phi_n) = 1$, ook $V(\psi) = 1$.
- Opgave Beredeneer aan de hand van een waarheidstafel of de volgende redeneerschema's geldig zijn. Specificeer in geval van ongeldigheid een tegenvoorbeeld.

$$(9) \qquad p \to q, \ \neg q \ / \ \neg p$$

$$(10) \qquad p \to q, \ \neg p \ / \ \neg q$$