Ampliación de interpolación con Splines

Miguel Anguita Ruiz Pablo Baeyens Fernández Pablo David Medina Sánchez Ruben Morales Pérez Francisco Javier Morales Piqueras

Splines cuadráticos

Descripción del espacio de splines cuadráticos

Ejemplos

Splines cúbicos

Construcción a partir de los valores de s''(x) en los nodos $\{x_i\}$

Propiedades de minimización

Ejemplos

Implementación en ordenador: Octave

Splines cúbicos

Splines cuadráticos

Mediante sistema de ecuaciones

Utilizando el sistema que vimos anteriormente, podemos definir fácilmente una función que calcule los coeficientes de un spline cuadrático de clase 1:

```
function s = coefsSpline(x, y, d_k, k)
  # Número de intervalos
  n = length(x) - 1;

# 1, x, x²
  A(:,1) = [ones(n+1,1); 0];
  A(:,2) = [x' ; 1];
  A(:,3) = [x'.^2 ; 2.*x(k+1)];

# Potencias truncadas
```

```
for j = 4 : n + 2

pot = @(t) (t > x(j-2)) .* (t - x(j-2));

A(:,j) = [pot(x').^2; 2.*pot(x(k+1))];

end

# Resolución del sistema

s = A \ [y'; d_k];
```

end

Definimos la matriz columna a columna: las **3 primeras columnas** corresponden a los valores de x en $1, x, x^2$, así como los valores de la derivada:

```
A(:,1) = [ones(n+1,1); 0];

A(:,2) = [x' ; 1];

A(:,3) = [x'.^2 ; 2.*x(k+1)];
```

Una vez hecho esto pasamos a las **potencias truncadas**. Para ello, en cada columna:

- Definimos una función pot correspondiente a la potencia truncada en el valor correspondiente: pot = Q(t) (t > x(j-2)) .* (t x(j-2)). Como *Octave* tiene tipos dinámicos convertirá (t > x(j-2)) a 1 o 0. De esta forma, $pot(x) = (x x_{j-1})_+$.
- Aplicamos pot a x en cada columna, añadiendo el valor de la derivada.

Definida la matriz del sistema podemos calcular finalmente la solución empleando la división izquierda.