# DAC

(chapter 13)

MBSD, 6<sup>th</sup> Semester

DCSE, UET Peshawar

**Bilal Habib** 

Some photos taken from Khulna University

### DAC: Digital to Analog Convertor

#### What is a DAC?

A digital-to-analog converter (DAC) takes a digital code as its input and produces an analog voltage or current as its output. This analog output is proportional to the digital input.



### Terminology

- ➤ Analog: continuously valued signal, such as temperature or speed, with infinite possible values in between.
- Digital: discretely valued signal, such as integers, encoded in binary.

digital-to-analog converter: DAC, D/A, D2A



#### DAC

#### □ General Concept:

➤ Digital to Analog conversion involves transforming the computer's binary output in 0's and 1's (1's typically = 5.0 volts) into an analog representation of the binary data



analog output a

## Block Diagram



#### DAC Resolution

Resolution is the amount of variance in output voltage for every change of the LSB in the digital input.

- ➤ Just as with ADCs, there are several common ways of specifying a DAC's resolution:
- Number of bits, n
- Number of output codes =  $2^n$ , or number of steps in the output =  $2^n 1$

## R/2R 4-bit DAC Architecture (1/2)

- Uses a repeating cascaded structure of resistor values R and 2R to create a binary weighted DAC.
- The R/2R ladder divides down a positive reference voltage by switching individual resistors between a positive reference voltage, V<sub>REF</sub>, and the analogue ground, generating a current.
- The equivalent resistance between  $V_{RFF}$  and ground is R.
- An operational amplifier converts this current to Voltage  $(V_{out})$



Data bit "Low" -> Switch current to ground

Data bit "high" -> Switch current to negative input of OpAmp

## R/2R 4-bit DAC Architecture (2/2)

- Vout =  $\frac{V_{ref}}{2^4}$  \* Value
- Example:
  - if Value = 15 &  $V_{ref}$  = 2.5 Volts.
  - Vout = ?
- Step size = ?



Data bit "Low" -> Switch current to ground

Data bit "high" -> Switch current to negative input of OpAmp

## Typical Application (DAC0808)





$$I_{OUT} = Iref (D_7/2 + D_6/4 + D_5/8 + D_4/16 + D_3/32 + D_2/64 + D_1/128 + D_0/256)$$
 
$$V_{OUT} = I_{OUT} (5K \ Ohms)$$

