

$+3 \text{ V}/+5 \text{ V}/\pm5 \text{ V CMOS } 4- \text{ and } 8-\text{Channel}$ **Analog Multiplexers**

Data Sheet

ADG658/ADG659

FEATURES

±2 V to ±6 V dual supply 2 V to 12 V single supply Automotive temperature range -40°C to +125°C <0.1 nA leakage currents 45 Ω on resistance over full signal range Rail-to-rail switching operation Single 8-to-1 multiplexer ADG658 Differential 4-to-1 multiplexer ADG659 16-lead LFCSP/TSSOP/QSOP packages Typical power consumption <0.1 μW **TTL/CMOS** compatible inputs Package upgrades to 74HC4051/74HC4052 and MAX4051/MAX4052/MAX4581/MAX4582

APPLICATIONS

Automotive applications Automatic test equipment Data acquisition systems Battery-powered systems Communication systems Audio and video signal routing **Relay replacement** Sample-and-hold systems **Industrial control systems**

GENERAL DESCRIPTION

The ADG658 and ADG659 are low voltage, CMOS analog multiplexers comprised of eight single channels and four differential channels, respectively. The ADG658 switches one of eight inputs (S1-S8) to a common output, D, as determined by the 3-bit binary address lines A0, A1, and A2. The ADG659 switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices enables or disables the device. When disabled, all channels are switched off.

These devices are designed on an enhanced process that provides lower power dissipation vet gives high switching speeds. These devices can operate equally well as either multiplexers or demultiplexers and have an input range that extends to the supplies. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS logic compatibility when using single +5 V or dual ±5 V supplies.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADG658 and ADG659 are available in 16-lead TSSOP/ QSOP packages and 16-lead 4 mm \times 4 mm LFCSP packages.

PRODUCT HIGHLIGHTS

- Single- and dual-supply operation. The ADG658 and ADG659 offer high performance and are fully specified and guaranteed with ± 5 V, +5 V, and +3 V supply rails.
- Automotive temperature range -40° C to $+125^{\circ}$ C.
- Low power consumption, typically $< 0.1 \mu W$.
- 16-lead 4 mm × 4 mm LFCSP packages, 16-lead TSSOP package and 16-lead QSOP package.

TABL	E.	OF.	CO	NT	EN	TS

Features1
Applications1
Functional Block Diagram
General Description
Product Highlights
Revision History
Specifications
Dual Supply3
5 V Single Supply5
2.7 V to 3.6 V Single Supply
REVISION HISTORY
11/2016—Rev. C to Rev. D
Changes to Figure 3 and Table 711
Updated Outline Dimensions
Changes to Ordering Guide
9/2014—Rev. B to Rev. C
Moved Terminology Section
Updated Outline Dimensions

Absolute Maximulii Katings	
ESD Caution	9
Pin Configurations and Function Descriptions	11
Typical Performance Characteristics	12
Terminology	15
Test Circuits	16
Outline Dimensions	19
Ordering Guide	20
Automotive Products	20
2/2009—Rev. A to Rev. B	
Changes to Ordering Guide	20
7/2004—Rev. 0 to Rev. A	
Updated Format	Universal
Added QSOP Package Outline	
Changes to Ordering Guide	
3/03—Rev. 0: Initial Version	

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

		B Version -40°C	Y Version -40°C		
Parameter	+25°C	to +85°C	to+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$V_{\text{SS}}toV_{\text{DD}}$	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance (Ron)	45			Ωtyp	$V_S = \pm 4.5 \text{ V}, I_S = 1 \text{ mA}; \text{ see Figure 21}$
	75	90	100	Ω max	
On Resistance Match between	1.3			Ωtyp	
Channels (ΔR _{ON})	3	3.2	3.5	Ω max	$V_S = 3.5 \text{ V, } I_S = 1 \text{ mA}$
On Resistance Flatness (R _{FLAT(ON)})	10			Ωtyp	$V_{DD} = +5 \text{ V}, V_{SS} = -5 \text{ V};$
	16	17	18	Ωmax	$V_S = \pm 3 \text{ V, } I_S = 1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source OFF Leakage Is (OFF)	±0.005			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}; \text{ see Figure 22}$
	±0.2		±5	nA max	
Drain OFF Leakage I _D (OFF)	±0.005			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}; \text{ see Figure 23}$
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
Channel ON Leakage ID, Is (ON)	±0.005			nA typ	$V_D = V_S = \pm 4.5 \text{ V}$; see Figure 24
ADG658	±0.2		±5	nA max	_
ADG659	±0.1		±2.5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
link or linh	0.005			μA typ	V _{IN} = V _{INL} or V _{INH}
			±1	μA max	
C _{IN} , Digital Input Capacitance	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t transition	80			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	115	140	165	ns max	$V_s = 3 \text{ V}$; see Figure 25
t _{on} (EN)	80			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	115	140	165	ns max	$V_S = 3 V$; see Figure 27
t _{OFF} (EN)	30			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	45	50	55	ns max	$V_s = 3 \text{ V}$; see Figure 27
Break-Before-Make Time Delay, tbbm	50			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
,,,			10	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; see Figure 26
Charge Injection	2			pC typ	$V_S = 0 V$, $R_S = 0 \Omega$,
, , , , , , , , , , , , , , , , , , ,	4			pC max	$C_L = 1 \text{ nF}$; see Figure 28
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Total Harmonic Distortion, THD + N	0.025			% typ	$R_L = 600 \Omega$, 2 V p-p, f = 20 Hz to 20 kHz
Channel-to-Channel Crosstalk (ADG659)	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
–3 dB Bandwidth				71	, , , , , , , , , , , , , , , , , , , ,
ADG658	210			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
ADG659	400			MHz typ	, , , , , , ,

Parameter	+25°C	B Version -40°C to +85°C	Y Version -40°C to+125°C	Unit	Test Conditions/Comments
C _s (OFF)	4			pF typ	f = 1 MHz
C _D (OFF)					
ADG658	23			pF typ	f = 1 MHz
ADG659	12			pF typ	f = 1 MHz
C_D , C_S (ON)					
ADG658	28			pF typ	f = 1 MHz
ADG659	16			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I_{DD}	0.01			μA typ	Digital Inputs = 0 V or 5.5 V
			1	μA max	
I _{SS}	0.01			μA typ	Digital Inputs = 0 V or 5.5 V
			1	μA max	

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

5 V SINGLE SUPPLY

 $V_{\rm DD}$ = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

		B Version -40°C	Y Version -40°C		
Parameter	+25°C	to +85°C	to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V_{DD}	V	$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance (R _{ON})	85			Ω typ	$V_S = 0 \text{ V to } 4.5 \text{ V}, I_S = 1 \text{ mA}; \text{ see Figure } 21$
	150	160	200	Ω max	
On Resistance Match between	4.5			Ω typ	$V_S = 3.5 \text{ V}, I_S = 1 \text{ mA}$
Channels (ΔR _{ON})	8	9	10	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	13	14	16	Ω typ	$V_{DD} = 5 \text{ V}, V_{SS} = 0 \text{ V}, V_S = 1.5 \text{ V to } 4 \text{ V}, I_S = 1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 5.5 \text{ V}$
Source OFF Leakage Is (OFF)	±0.005			nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 22}$
	±0.2		±5	nA max	
Drain OFF Leakage I _D (OFF)	±0.005			nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 23}$
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
Channel ON Leakage ID, Is (ON)	±0.005			nA typ	$V_S = V_D = 1 \text{ V or } 4.5 \text{ V, see Figure } 24$
ADG658	±0.2		±5	nA max	_
ADG659	±0.1		±2.5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
link or linh	0.005			μA typ	V _{IN} = V _{INL} or V _{INH}
1112 O. 11111	0.000		±1	μA max	
C _{IN} , Digital Input Capacitance	2			pF typ	
DYNAMIC CHARACTERISTICS ¹	_			p. 1) p	
transition	120			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
CHARSHON	200	270	300	ns max	$V_s = 3 \text{ V}$; see Figure 25
t _{on} (EN)	120	_, ,		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
con (E. V)	190	245	280	ns max	$V_s = 3 V$; see Figure 27
t_{OFF} (\overline{EN})	35	243	200	ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$
COFF (LIV)		60	70	, ,	•
Dural Dafaus Males Times Dalace A	50	60	70	ns max	$V_S = 3 \text{ V}$; see Figure 27
Break-Before-Make Time Delay, t _{BBM}	100		10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	0.5		10	ns min	$V_{51} = V_{52} = 3 \text{ V}$; see Figure 26
Charge Injection	0.5			pC typ	$V_S = 2.5 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 28
0((1.1.)	1			pC max	B 500 C 5 5 C 4444 5: 00
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk (ADG659)	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; $f = 1 MHz$; see Figure 31
–3 dB Bandwidth					
ADG658	180			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
ADG659	330			MHz typ	_
C _s (OFF)	5			pF typ	f = 1 MHz
C _D (OFF)				' ''	
ADG658	29			pF typ	f = 1 MHz
ADG659	15			pF typ	f = 1 MHz

Parameter	+25°C	B Version -40°C to +85°C	Y Version -40°C to +125°C	Unit	Test Conditions/Comments
C _D , C _S (ON)					
ADG658	30			pF typ	f = 1 MHz
ADG659	16			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = 5.5 \text{ V}$
I _{DD}	0.01			μA typ	Digital Inputs = 0 V or 5.5 V
			1	μA max	

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design; not subject to production test.

2.7 V TO 3.6 V SINGLE SUPPLY

 V_{DD} = 2.7 to 3.6 V, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

		B Version	Y Version		
Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH	T25 C	10 +03 C	10+125 C	Oiiit	rest conditions/comments
Analog Signal Range			0 to V _{DD}	V	$V_{DD} = 2.7 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance (R _{ON})	185		0 10 100	V Ω typ	$V_S = 0 \text{ V to } 2.7 \text{ V}, V_{SS} = 0 \text{ V}$
Off Resistance (Non)	300	350	400	Ω max	V ₅ = 0 V to 2.7 V, I ₅ = 0.1 IIIA, see Figure 21
On Resistance Match between	2	330	400	Ωtyp	$V_S = 1.5 \text{ V}, I_S = 0.1 \text{ mA}$
Channels (ΔR_{ON})	4.5	6	7	Ω max	VS = 1.5 V, IS = 0.1 IIIA
LEAKAGE CURRENTS	4.3	0	7	Marian	V 22V
	. 0 005				$V_{DD} = 3.3 \text{ V}$
Source OFF Leakage I _s (OFF)	±0.005		. =	nA typ	$V_S = 1 \text{ V/3 V, } V_D = 3 \text{ V/1 V; see Figure 22}$
- · · · · · · · · · · · · · · · · · · ·	±0.2		±5	nA max	
Drain OFF Leakage I _D (OFF)	±0.005			nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}; \text{ see Figure 23}$
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
Channel ON Leakage I _D , I _S (ON)	±0.005			nA typ	$V_S = V_D = 1 \text{ V or } 3 \text{ V, see Figure } 24$
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.5	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±1	μA max	
C _{IN} , Digital Input Capacitance	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t transition	200			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	370	440	490	ns max	$V_S = 1.5 \text{ V}$; see Figure 25
t _{on} (EN)	230			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	370	440	490	ns max	$V_S = 1.5 \text{ V}$; see Figure 27
t_{OFF} (\overline{EN})	50	440	490	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
COFF (LIV)	80	00	110	, ,	_
Dural Dafana Mala Tina Dalan A		90	110	ns max	$V_5 = 1.5 \text{ V}$; see Figure 27
Break-Before-Make Time Delay, t _{BBM}	200		10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			10	ns min	$V_{51} = V_{52} = 1.5 \text{ V}$; see Figure 26
Charge Injection	1			pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 28}$
	2			pC max	
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk (ADG659)	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; $f = 1 MHz$; see Figure 31
–3 dB Bandwidth					
ADG658	160			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
ADG659	300			MHz typ	
C _s (OFF)	5			pF typ	f = 1 MHz
C _D (OFF)				1 75	
ADG658	29			pF typ	f = 1 MHz
ADG659	15			pF typ	f = 1 MHz

Parameter	+25°C	B Version -40°C to +85°C	Y Version -40°C to +125°C	Unit	Test Conditions/Comments
C _D , C _S (ON)					
ADG658	30			pF typ	f = 1 MHz
ADG659	16			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = 3.6 \text{ V}$
I _{DD}	0.01			μA typ	Digital Inputs = 0 V or 3.6 V
			1	μA max	

¹ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

rable 4.	
Parameter	Rating
V _{DD} to V _{SS}	13 V
V_{DD} to GND	-0.3 V to +13 V
V _{ss} to GND	+0.3 V to -6.5 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Digital Inputs ¹	$GND - 0.3 V \text{ to } V_{DD} + 0.3 V$
	or 10 mA, whichever
	occurs first
Peak Current, S or D	40 mA
(Pulsed at 1 ms, 10% duty cycle max)	
Continuous Current, S or D	20 mA
Operating Temperature Range	
Automotive (Y Version)	-40°C to +125°C
Industrial (B Version)	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
θ_{JA} Thermal Impedance	
16-Lead QSOP	104°C/W
16-Lead TSSOP	150.4°C/W
16-Lead LFCSP (4-Layer Board)	70°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C
ESD	5.5 kV
	·

 $^{^{1}}$ Over voltages at A_X, $\overline{\text{EN}}$, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 5. ADG658 Truth Table

A2	A1	A0	EN	Switch Condition	
X1	X ¹	X ¹	1	None	
0	0	0	0	1	
0	0	1	0	2	
0	1	0	0	3	
0	1	1	0	4	
1	0	0	0	5	
1	0	1	0	6	
1	1	0	0	7	
1	1	1	0	8	

¹ X = Don't Care

Table 6. ADG659 Truth Table

A1	A0	EN	On Switch Pair
X ¹	X ¹	1	None
0	0	0	1
0	1	0	2
1	0	0	3
1	1	0	4

¹ X = Don't Care

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 16-Lead TSSOP/QSOP Pin Configuration

Figure 3. 16-Lead, 4 mm × 4 mm LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Parameter	Description		
V _{DD}	Most Positive Power Supply Potential.		
V_{SS}	Most Negative Power Supply Potential.		
I_{DD}	Positive Supply Current.		
I _{SS}	Negative Supply Current.		
GND	Ground (0 V) Reference.		
S	Source Terminal. Can be an input or output.		
D	Drain Terminal. Can be an input or output.		
A_X	Logic Control Input.		
EN	Active Low Digital Input. When high, device is disabled and all switches are OFF. When low, Ax logic inputs determine ON switch.		
EPAD (LFCSP Only)	Exposed Pad. The exposed pad must be left floating.		

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance vs. V_D (V_S) for Dual Supply

Figure 5. On Resistance vs. V_D (V_S) for Single Supply

Figure 6. On Resistance vs. V_D (V_S) for Different Temperatures (Dual Supply)

Figure 7. On Resistance vs. V_D (V_S) for Different Temperatures (Single Supply)

Figure 8. On Resistance vs. V_D (V_S) for Different Temperatures (Single Supply)

Figure 9. Leakage Current vs. Temperature (Dual Supply)

Figure 10. Leakage Current vs. Temperature (Single Supply)

Figure 11. Charge Injection vs. Source Voltage

Figure 12. ton/toff Times vs. Temperature (Dual Supply)

Figure 13. ton/toff Times vs. Temperature (Single Supply)

Figure 14. ON Response vs. Frequency (ADG658)

Figure 15. ON Response vs. Frequency (ADG659)

Figure 16. OFF Isolation vs. Frequency

Figure 17. Crosstalk vs. Frequency

Figure 18. THD + Noise

Figure 19. V_{DD} Current vs. Logic Level

Figure 20. Logic Threshold Voltage vs. Supply Voltage

TERMINOLOGY

 $V_D(V_S)$

Analog Voltage on Terminals D, S.

Ron

Ohmic Resistance between D and S.

 ΔR_{ON}

On Resistance Match between Any Two Channels, i.e., R_{ON} max – R_{ON} min.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of ON Resistance as measured over the specified analog signal range.

Is (OFF)

Source Leakage Current with the Switch OFF.

I_D (OFF)

Drain Leakage Current with the Switch OFF.

 $I_D, I_S(ON)$

Channel Leakage Current with the Switch ON.

 V_{INL}

Maximum Input Voltage for Logic 0.

 V_{INH}

Minimum Input Voltage for Logic 1.

IINL (IINH)

Input Current of the Digital Input.

Cs (OFF)

OFF Switch Source Capacitance. Measured with reference to ground.

C_D (OFF)

OFF Switch Drain Capacitance. Measured with reference to ground.

 C_D , C_S (ON)

ON Switch Capacitance. Measured with reference to ground.

 C_{IN}

Digital Input Capacitance.

ton

Delay between Applying the Digital Control Input and the Output Switching ON. See Figure 27.

toff

Delay between Applying the Digital Control Input and the Output Switching OFF.

 t_{BBM}

ON Time. Measured between 80% points of both switches when switching from one address state to another.

Charge Injection

Measure of the Glitch Impulse Transferred from the Digital Input to the Analog Output during Switching.

Off Isolation

Measure of Unwanted Signal Coupling through an OFF Switch.

Crosstalk

Measure of Unwanted Signal Coupled through from One Channel to Another as a Result of Parasitic Capacitance.

Bandwidth

The Frequency at which the Output is Attenuated by 3 dB.

On Response

The Frequency Response of the ON Switch.

Insertion Loss

The Loss Due to the ON Resistance of the Switch.

TEST CIRCUITS

Figure 21. ON Resistance

Figure 22. Is (OFF)

 $\textit{Figure 25. Switching Time of Multiplexer, } t_{\textit{TRANSITION}}$

Figure 26. Break-Before-Make Delay, tbbm

Figure 27. Enable Delay, t_{ON} (\overline{EN}), t_{OFF} (\overline{EN})

Figure 28. Charge Injection

Figure 29. Off Isolation

Figure 30. Bandwidth

Figure 31. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 32. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

Figure 33. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-137-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 34. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option
ADG658YRU	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YRU-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YCPZ	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG658YCPZ-REEL7	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG658YRQ	-40°C to +125°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG658YRQZ	-40°C to +125°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG658YRQZ-REEL7	-40°C to +125°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADW54003-0	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADW54003-0RL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YRU	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659WYRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YCPZ	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG659YCPZ-REEL7	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG659YRQZ	-40°C to +125°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16

 $^{^{1}}$ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADW54003 models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

² W = Qualified for Automotive Applications.