Diagramas de Decisão Binária (BDDs)

Aula 1

Luiz Carlos Vieira

2 de outubro de 2015

MAC0239 - Introdução à Lógica e Verificação de Programas

Conteúdo da aula

- Representação de Funções Booleanas
- Representação com fórmulas proposicionais e tabelas-verdade
- Diagramas de Decisão Binária (BDDs)
- Operações sobre BDDs

Funções booleanas

- Parte fundamental do formalismo descritivo de sistemas de hardware e software
- Que precisa ser computacionalmente representado de forma eficiente

Definição: variáveis booleanas

Definição 6.1(a)

Uma variável booleana x é uma variável que só pode assumir os valores 0 e 1. Denotamos variáveis booleanas por $x_1, x_2, ...,$ e x, y e z,

Definição: funções booleanas

Definição 6.1(b)

As seguintes funções são definidas no conjunto $\{0,1\}$:

- $\overline{0}\stackrel{\text{\tiny def}}{=} 1$ e $\overline{1}\stackrel{\text{\tiny def}}{=} 0$;
- $x \cdot y \stackrel{\scriptscriptstyle \mathsf{def}}{=} 1$ se x e y têm valor 1; caso contrário, $x \cdot y \stackrel{\scriptscriptstyle \mathsf{def}}{=} 0$;
- $x+y\stackrel{\scriptscriptstyle{\mathsf{def}}}{=} 0$ se x e y têm valor 0; caso contrário, $x+y\stackrel{\scriptscriptstyle{\mathsf{def}}}{=} 1$;
- $x \oplus y \stackrel{\scriptscriptstyle ext{def}}{=} 1$ se exatamente um entre x e y é igual a 1; caso contrário, $x \oplus y \stackrel{\scriptscriptstyle ext{def}}{=} 0$.

Funções e variáveis booleanas

- Uma função booleana f com n variáveis é uma função de $\{0,1\}^n$ para $\{0,1\}$.
- Escreve-se $f(x_1, x_2, \ldots, x_n)$ ou $f(\mathcal{V})$ para indicar que uma representação sintática de f só depende das variáveis booleanas em \mathcal{V} .

Alguns exemplos de funções booleanas

1.
$$f(x,y) \stackrel{\text{\tiny def}}{=} x \cdot (y + \overline{x})$$

2.
$$g(x,y) \stackrel{\text{\tiny def}}{=} x \cdot y + (1 \oplus \overline{x})$$

3.
$$h(x,y,z)\stackrel{\scriptscriptstyle{\mathsf{def}}}{=} x + y \cdot (x \oplus \overline{y})$$

4.
$$k() \stackrel{\text{\tiny def}}{=} 1 \oplus (0 \cdot \overline{1})$$

wffs e tabelas-verdade

As fórmulas proposicionais bem-formadas (wffs) e as tabelas-verdade são duas representações de funções booleanas

- fórmulas proposicionais:
 - $p \wedge q$ denota $p \cdot q$
 - $p \lor q$ denota p+q
 - $\neg p$ denota \overline{p}
 - e \top e \bot denotam, respectivamente, 1 e 0
- tabelas-verdade: representam funções booleanas de maneira óbvia

Tabelas-verdade de funções booleanas

Tabela-verdade da função booleana $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$

6	\boldsymbol{r}	\boldsymbol{y}	f(x,y)
(0	0	1
(0	1	0
	1	0	0
	1	1	0

Tabela-verdade da fórmula proposicional $\phi \equiv \neg (p \lor q)$

$oldsymbol{p}$	\boldsymbol{q}	ϕ
\boldsymbol{F}	\boldsymbol{F}	$oldsymbol{V}$
$oldsymbol{F}$	V	$oldsymbol{F}$
V	$oldsymbol{F}$	$oldsymbol{F}$
$oldsymbol{V}$	$oldsymbol{V}$	$oldsymbol{F}$

Sobre o sistema utilizado...

 No contexto desta aula, tabelas-verdade, fórmulas proposicionais e BDDs (em estudo) são diferentes formas de representação computacional de funções booleanas

- Uma vez que tais representações são facilmente traduzíveis entre si, os símbolos da lógica proposicional serão utilizados com o objetivo de facilitar o entendimento
 - a única distinção será a utilização de ${\bf 0}$ e ${\bf 1}$ no lugar de ${m F}$ e ${m V}$ nas representações de tabelas-verdade e diagramas

Vantagens e desvantagens

Há vantagens e desvantagens no uso de tabelas-verdade e fórmulas proposicionais para representar funções booleanas

	Tabelas-Verdade	Fórmulas Proposicionais	
Vantagens	verificações ¹ simples	representação compacta	
Desvantagens	ineficientes em espaço	verificações¹ não tão simples	

Ambas são computacionalmente caras para muitas variáveis

11/56

¹satisfação, validade e equivalência

Também nas operações booleanas

As operações booleanas (\land , \lor e \neg) entre duas funções ϕ e ψ também são simples:

- Com tabelas-verdade
 - operação diretamente aplicada a cada linha
 - acrescentando variáveis inexistentes, se necessário
 - mas computacionamente caro (2^n linhas)
- Com fórmulas proposicionais
 - manipulação sintática da Lógica Proposicional
 - de realização imediata

$$\phi \equiv \neg p \wedge q$$

$$egin{array}{c|c|c|c} p & q & \phi \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array}$$

$$\psi \equiv r$$

$$egin{array}{c|c} r & \psi \ \hline 0 & 0 \ 1 & 1 \ \end{array}$$

$$\phi \equiv \neg p \wedge q$$

\boldsymbol{p}	$oldsymbol{q}$	$\boldsymbol{\varphi}$
0	0	0
0	1	1
1	0	0
1	1	0

$$\psi \equiv r$$

$$egin{array}{c|c} r & \psi \ \hline 0 & 0 \ 1 & 1 \ \hline \end{array}$$

$$\omega \equiv \phi \lor \psi$$

$$\phi \equiv \neg p \wedge q$$

$$egin{array}{c|c} r & \phi \\ \hline 0 & 0 \\ \hline \end{array}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$$

0

$$0 \ 1 \ 0 \ 1$$

$$1 \ 0 \ 0 \ 0$$

$$1 \quad 0 \quad 1 \quad 0$$

$$\psi \equiv r$$

$$egin{array}{c|cccc} p & q & r & \psi \\ \hline 0 & 0 & 0 & 0 \\ \hline \end{array}$$

$$0 \ 0 \ 1 \ | \ 1$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$$

$$egin{array}{c|cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{array}$$

$$\omega \equiv \phi \lor \psi$$

$$\phi \equiv \neg p \wedge q$$

$oldsymbol{q}$	\boldsymbol{r}	$\boldsymbol{\phi}$
0	0	0
0	1	0
1	0	1
1	1	1
0	0	0
0	1	0
1	0	0
1	1	0
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

$$\psi \equiv r$$

$oldsymbol{p}$	$oldsymbol{q}$	r	$ \psi $
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$\omega \equiv \phi \lor \psi$$

$oldsymbol{p}$	$oldsymbol{q}$	r	ω
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Utilizando formas normais

- A representação de fórmulas proposicionais em formas normais é facilitada em alguns aspectos
 - mas é dificultada em outros
- De forma geral, elas podem ser muito longas no pior caso

Forma Normal Conjuntiva (CNF)

- Facilità o teste de validade
 - cláusula disjuntiva sem preposições complementares
 - teste de satisfação não é igualmente fácil
- Facilita a operação de conjunção (∧)
 - se ϕ e ψ são CNFs, o resultado de $\phi \wedge \psi$ é CNF
- Dificulta as demais operações (∨ e ¬)
 - aplicação de distributividade para manter CNF

A forma normal disjuntiva (DNF) – disjunção de conjunções – é dual com a CNF em relação a essas propriedades

Resumo da eficiência das representações

5 . ~ . 6 ~	teste de			operações booleanas		
Representação de funções booleanas	compacta?	satisfação	validade	•	+	-
fórmulas proposicionais	muitas vezes	difícil	difícil	fácil	fácil	fácil
fórmulas CNF	algumas vezes	difícil	fácil	fácil	difícil	difícil
fórmulas NDF	algumas vezes	fácil	difícil	difícil	fácil	difícil
tabelas-verdade ordenadas	nunca	difícil	difícil	difícil	difícil	difícil

Resumo da eficiência das representações

	teste de			operações booleanas		
Representação de funções booleanas	compacta?	satisfação	validade	•	+	_
fórmulas proposicionais	muitas vezes	difícil	difícil	fácil	fácil	fácil
fórmulas CNF	algumas vezes	difícil	fácil	fácil	difícil	difícil
fórmulas NDF	algumas vezes	fácil	difícil	difícil	fácil	difícil
tabelas-verdade ordenadas	nunca	difícil	difícil	difícil	difícil	difícil
OBDDs ² reduzidos	muitas vezes	fácil	fácil	mais ou menos	mais ou menos	fácil

 $^{^2}$ Diagramas de Decisão Binária Ordenados – que serão explorados a seguir

Definição: Árvore de Decisão Binária

Definição 6.3

Seja T uma árvore binária cujos nós não-terminais (nós de teste) contêm variáveis booleanas e cujos nós terminais contêm os valores 0 ou 1. Então T é uma árvore de decisão binária finita e determina uma unica função booleana u0 de seguinte forma:

Dada uma atribuição de 0's e 1's às variáveis booleanas que ocorrem em f, começamos pela raiz de T e pegamos a linha tracejada sempre que o valor da variável no nó atual é 0; caso contrário, percorremos a linha sólida. O valor da função é o valor do nó terminal atingido.

• Árvore da função: $\phi \equiv \neg (p \lor q)$

- Árvore da função: $\phi \equiv \neg (p \lor q)$
- ullet Para encontrar $[\![\phi]\!]_{v_{(0,1)}}$:

- ullet Árvore da função: $\phi \equiv \neg (p \lor q)$
- ullet Para encontrar $[\![\phi]\!]_{v_{(0,1)}}$:
 - 1. inicia-se pela raiz

- Árvore da função: $\phi \equiv \neg (p \lor q)$
- ullet Para encontrar $[\![\phi]\!]_{v_{(0,1)}}$:
 - 1. inicia-se pela raiz
 - 2. como p é 0, segue-se pela linha pontilhada

- Árvore da função: $\phi \equiv \neg (p \lor q)$
- ullet Para encontrar $[\![\phi]\!]_{v_{(0,1)}}$:
 - 1. inicia-se pela raiz
 - 2. como p é 0, segue-se pela linha pontilhada
 - 3. como q é 1, segue-se pela linha sólida

- Árvore da função: $\phi \equiv \neg (p \lor q)$
- Para encontrar $\llbracket \phi
 rbracket_{v_{(0,1)}}$:
 - 1. inicia-se pela raiz
 - 2. como p é 0, segue-se pela linha pontilhada
 - 3. como q é 1, segue-se pela linha sólida
 - 4. chega-se à folha 0; logo $\llbracket \phi
 rbracket_{v_{(0,1)}} = 0$

Comparando com a tabela-verdade

Função booleana: $\phi \equiv \neg (p \lor q)$:

$oldsymbol{p}$	$oldsymbol{q}$	ϕ
0	0	1
0	1	0
1	0	0
1	1	0

Outro exemplo comparativo

Função booleana: $\psi \equiv p \rightarrow (q \land r)$:

p	$oldsymbol{q}$	r	$ \psi $
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Semelhanças com tabelas-verdade

- Árvores de Decisão Binárias são semelhantes às tabelas-verdade em relação ao tamanho
 - se f depender de n variáveis booleanas, a árvore correspondente terá pelo menos $2^{n+1}-1$ nós (contra as 2^n linhas da tabela verdade)
- Mas muitas vezes elas contêm redundâncias que podem ser exploradas

Primeira simplificação

C1. Remoção de terminais duplicados

Se há mais de um nó terminal $\mathbf{0}$, todas as arestas que apontam para tais nós são redirecionadas para apenas um deles. O processo é então repetido para os nós terminais $\mathbf{1}$

22/56

Primeira simplificação

C1. Remoção de terminais duplicados

Se há mais de um nó terminal $\mathbf{0}$, todas as arestas que apontam para tais nós são redirecionadas para apenas um deles. O processo é então repetido para os nós terminais $\mathbf{1}$

22/56

Primeira simplificação

C1. Remoção de terminais duplicados

Se há mais de um nó terminal $\mathbf{0}$, todas as arestas que apontam para tais nós são redirecionadas para apenas um deles. O processo é então repetido para os nós terminais $\mathbf{1}$

Segunda simplificação

C2. Remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, o nó n é eliminado e todas as arestas que nele chegavam são redirecionadas diretamente para o nó m.

Segunda simplificação

C2. Remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, o nó n é eliminado e todas as arestas que nele chegavam são redirecionadas diretamente para o nó m.

Segunda simplificação

C2. Remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, o nó n é eliminado e todas as arestas que nele chegavam são redirecionadas diretamente para o nó m.

Terceira simplificação

C3. Remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raízes de subárvores idênticas, um dos nós é eliminado e todas as arestas que nele chegavam são redirecionadas para o outro

Terceira simplificação

C3. Remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raízes de subárvores idênticas, um dos nós é eliminado e todas as arestas que nele chegavam são redirecionadas para o outro

Terceira simplificação

C3. Remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raízes de subárvores idênticas, um dos nós é eliminado e todas as arestas que nele chegavam são redirecionadas para o outro

Exercício 1

Reduza a árvore de decisão binária da função $\psi \equiv p o (q \wedge r)$ apresentada anteriormente:

Resumo das simplificações:

- C1. Remoção de nós terminais duplicados
- C2. Remoção de testes redundantes
- C3. Remoção de nós não-terminais duplicados

Solução – 1º passo

Solução – 2º passo

Solução – 3º passo

Comparando com a tabela-verdade

Função booleana: $\psi \equiv p \rightarrow (q \land r)$:

$oldsymbol{p}$	q	r	$ \psi$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Comparando com a tabela-verdade

Função booleana: $\psi \equiv p \rightarrow (q \land r)$:

$oldsymbol{p}$	$oldsymbol{q}$	r	$\mid \psi \mid$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Comparando com a tabela-verdade

Função booleana: $\psi \equiv p \rightarrow (q \land r)$:

$oldsymbol{p}$	q	r	$ \psi$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

BDDs

A redução faz com que as árvores se tornem grafos. Por isso, passam a ser chamados de **Diagramas de Decisão Binária** (BDDs).

Definição: DAG

Definição 6.4

Um grafo direcionado é um conjunto G e uma relação binária \rightarrow em $G: \to \subset G \times G$. Um ciclo em um grafo direcionado é um caminho finito no grafo que começa e termina no mesmo nó, isto é, um caminho da forma $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n \rightarrow v_1$. Um grafo direcionado acíclico (DAG) é um grafo direcionado que não contém nenhum ciclo. Um nó em um DAG é dito inicial se não há arestas apontando para ele. Um nó é dito terminal se não há arestas saindo dele

Definição: BDDs

Definição 6.5

Um diagrama de decisão binário (BDD) é um DAG finito com um único nó inicial, onde todos os nós terminais são marcados com $\mathbf{0}$ ou $\mathbf{1}$ e todos os nós não-terminais são marcados com uma variável booleana. Cada nó não-terminal tem exatamente duas arestas saindo dele, uma marcada com $\mathbf{0}$ e outra com $\mathbf{1}$ (representadas como uma linha pontilhada e uma linha sólida, respectivamente).

BDD como DAG

- Por convenção, as linhas sólidas ou pontilhadas de um BDD são sempre consideradas como indo para baixo
 - por isso eles são grafos direcionados
- Os BDDs são acíclicos (DAG) e têm um único nó inicial
- As simplificações C1–C3 preservam essas propriedades
 - BDDs totalmente reduzidos têm 1 ou 2 nós terminais

BDDs elementares

- ullet O BDD B_0 representa a função booleana constante 0
- ullet O BDD B_1 representa a função booleana constante 1
- ullet O BDD B_p representa a variável booleana p

Verificações sobre BDDs

- Satisfação. Um BDD representa uma função que pode ser satisfeita se um nó terminal 1 pode ser acessado da raiz por meio de um caminho consistente
- Validade. Um BDD representa uma função válida se nenhum ponto terminal 0 é acessível por um caminho consistente

Um caminho consistente é aquele que, iniciado no nó raiz, segue apenas por uma valoração possível para cada variável booleana e atinge um único nó-terminal com valor ${\bf 0}$ ou ${\bf 1}$

Exemplos óbvios

Comparação das representações

Considere a função de paridade par $f_{par}(p_1, p_2, ..., p_n)$ que é definida como 1 se existe um número par de variáveis p_i com valor 1, e como 0 caso contrário.

Bit de paridade (par ou ímpar) é uma das formas mais simples de detecção de erros na comunicação de dados

- Ela tem representação exponencial em outros sistemas (wffs ou tabelas-verdade, por exemplo)
- ullet Enquanto que um BDD precisa de apenas 2n+1 nós para representá-la

llustração: tabela-verdade para n=4

p_1	p_{2}	p_3	p_{4}	ϕ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

ullet Total de linhas: $2^n=2^4=16$

llustração: wff para n=4

$$\phi \equiv \neg(((p_1 \oplus p_2) \oplus p_3) \oplus p_4)$$

- Lembrando do ou-exclusivo:
 - $(p \oplus q) \equiv ((p \lor q) \land \neg (p \land q))$
- Número de símbolos: 14(n-1)+1=43

llustração: $\mathsf{BD}\overline{\mathsf{D}}$ para n=4

• Total de nós: 2n+1=9

Operações sobre BDDs

- Operação de negação (\neg). Obtem-se um BDD que representa $\neg \phi$ substituindo todos os terminais 0 em B_{ϕ} por terminais 1 e vice-versa
- Operação de conjunção (\land). Obtem-se um BDD que representa $\phi \land \psi$ substituindo todos os nós terminais 1 em B_{ϕ} diretamente por B_{ψ}
- Operação de disjunção (\vee). Obtem-se um BDD que representa $\phi \vee \psi$ substituindo todos os nós terminais 0 em B_{ϕ} diretamente por B_{ψ}

Exemplo da negação

Exemplo da conjunção

Exemplo da disjunção

Forma "inocente" de construir BDDs

- 1. Para cada variável booleana em uma função, um BDD de variável (B_{p_i}) é criado
- 2. Tais BDDs são então unidos conforme as operações booleanas na função
- Por fim, o BDD resultante é reduzido com as simplificações C1-C3

Exemplo: $(p \wedge \neg q) \vee (\neg p \wedge q)$

Passo 1: criação de $oldsymbol{B}_{p_i}$

Exemplo: $(p \wedge \neg q) \vee (\overline{\neg p \wedge q})$

Passo 2a: união dos BDDs conforme as operações

Exemplo: $(p \land \neg q) \lor (\neg p \land q)$

Passo 2b: união dos BDDs conforme as operações

Exemplo: $(p \land \neg q) \lor (\neg p \land q)$

Passo 3a: redução do BDD gerado

Exemplo: $(p \land \neg q) \lor (\neg p \land \overline{q})$

Passo 3b: redução do BDD gerado

Exemplo: $(p \land \neg q) \lor (\neg p \land \overline{q})$

Passo 3c: redução do BDD gerado

Comparação com a tabela-verdade

$$\phi \equiv (p \land \neg q) \lor (\neg p \land q)$$

$oldsymbol{p}$	\boldsymbol{q}	ϕ
0	0	0
0	1	1
1	0	1
1	1	0

Múltiplas ocorrências de mesma variável

 A definição não impede uma variável de ocorrer mais de uma vez em um caminho

- Mas tal representação pode incorrer em desperdícios
 - linha sólida do p à esquerda (colorida) jamais será percorrida

Esse é um resultado comum após as operações discutidas anteriormente — algoritmos melhores serão apresentados posteriormente

Comparação de BDDs

Além de tornar um BDD menos eficiente, ocorrências múltiplas de uma variável também dificultam a comparação de BDDs

Exercício: Os BDDs abaixo são equivalentes?

Na próxima aula...

- BDDs ordenados
- Algoritmos para BDDs ordenados