Vorlesung Produktion

Sommersemester 2011

Teil 6: Produktionsplanungs- und Steuerungssysteme (PPS)

niko.paech@uni-oldenburg.de

http://www.uni-oldenburg.de/produktion

Tel. 0441/798-4264

A5 - 2 - 262

Sprechstunde: Montag, 13.30 – 15.00 Uhr

Anmeldung per E-mail

Inhaltsübersicht und Lernziele

- Inhalt
 - Grundaufbau von hierarchischen PPS-Systemen
 - Produktionsprogrammplanung
 - Mengenplanung
 - > Termin- und Kapazitätsplanung
 - Auftrags- und Fertigungssteuerung
- Lernziele: Entwicklung von Kenntnissen über
 - > Aufbau eines PPS-Systems und die dafür benötigten Grunddaten
 - > Zielkonflikte im Rahmen eines PPS-Systems
 - Elemente der Durchlaufzeit und die optimale Losgröße
 - Maßnahmen des Kapazitätsmanagements und Prioritätsregeln der Fertigungssteuerung

Literatur zur Vorlesung

- Zäpfel, G. (2001): Grundzüge des Produktions- und Logistikmanagement, 2. Auflage, München/Wien.
- Heizer, J. /Render, B. (2004): Operations Management, 7. Auflage,
 New York, (Kapitel 14).
- Chase, R. B./Jacobs, F. R. /Aquilano, N. J. (2004): Operations
 Management for Competitive Advantage, 10. Auflage, New York.
- Wöhe, G. (1996): Einführung in die Allgemeine Betriebswirtschaftslehre, München.

Hierarchische Produktionsplanung auf mehreren Aggregationsebenen

Klassische sukzessive PPS-Systeme: Grundaufbau und Fragestellungen

Hauptproduktions-Wie viele Endprodukte müssen ausgehend vom Absatzplan produziert werden? programmplanung Welche Mengen und Zeiten für die Mengenplanung Vorprodukte ergeben sich daraus? Wann erfolgt welche Produktion auf Terminplanung/ welchen Stationen? (in Abhängigkeit Kapazitätsplanung von Losgrößen und Kapazitäten) Welche Aufträge werden an der ein-**Produktions** zelnen Arbeitsstation freigegeben? steuerung (Kurzfristplanung)

Klassische sukzessive PPS-Systeme: Grobstruktur

Hauptfunktionen Teilgebiet Daten Stammdaten Produktionsprogrammplanung Stücklisten Produktions-Arbeitspläne Mengenplanung planung Betriebsmitteldaten Termin- und Kapazitätsplanung (Kapazitäten) Bewegungsdaten Auftragsfreigabe und -veranlassung – Kunden-Produktionsaufträge steuerung Lagerbestände Auftragsüberwachung

Zielsystem und Zielkonflikte

Quelle: Steven/Meyer (1998), S. 21

Produktionsprogrammplanung (1)

Teilgebiet

Hauptfunktionen

Daten

Produktionsplanung Produktionsprogrammplanung

Mengenplanung

Termin- und Kapazitätsplanung

Produktionssteuerung Auftragsfreigabe und -veranlassung

Auftragsüberwachung

Stammdaten

- Stücklisten
- Arbeitspläne
- Betriebsmitteldaten (Kapazitäten)

Bewegungsdaten

- Kundenaufträge
- Lagerbestände

Produktionsprogrammplanung (2)

Zentrale Schritte und Aufgaben

- Produktionsprogrammplanung beruht auf zwei zentralen Schritten
 - Bestimmung des Absatzplans (aufgrund bestehender Bestellungen oder durch Absatzprognose)
 - Übersetzung des Absatzplans in einen Produktionsplan (unter Berücksichtigung vorhandener Lagerbestände bzw. Kapazitätsengpässe)
- Typen der Programmbildung
 - Orientierung an Kundenauftrag
 - Orientierung an Prognose ("kundenanonyme" Produktion)
 - Mischformen
- Abweichung zwischen Absatz und Produktionsprogramm
 - Synchronisation
 - Emanzipation
 - Mischformen

Mengenplanung (1)

Teilgebiet

Hauptfunktionen

Daten

Produktionsplanung Produktionsprogrammplanung

Mengenplanung

Termin- und Kapazitätsplanung

Produktionssteuerung Auftragsfreigabe und -veranlassung

Auftragsüberwachung

Stammdaten

- -Stücklisten
- Arbeitspläne
- Betriebsmitteldaten (Kapazitäten)

Bewegungsdaten

- Kundenaufträge
- Lagerbestände

Mengenplanung (2)

Übersicht

- Mengenplanung "übersetzt" das Produktionsprogramm in Mengen und Zeiten
- Bestimmung des Bedarfs an Zwischenprodukten und Werkstoffen anhand programm- und/oder verbrauchsgebundener Verfahren
- Brutto-/Nettobedarfsermittlung
- Ermittlung der optimalen Bestellmenge und Losgröße
 (Los = Auftrag, der als geschlossener Posten alle Fertigungsstufen durchläuft, ohne dass die Anlagen umgerüstet werden müssen)
- Größe der Lose bestimmt die Bearbeitungsdauer der einzelnen Fertigungsgänge
- Zwei Konzepte der Mengenplanung
 - Programmgebundene Bedarfsermittlung
 - > Verbrauchsgebundene Bedarfsermittlung

Mengenplanung (3)

Rückrechnung von Produktionsanfangszeiten: Beispiel

Rückrechnung (Rückwärtsterminierung) der Anfangszeitpunkte für die Herstellung von Komponenten am Beispiel der Produktion von 100 Fahrrädern mit Auslieferungszeitpunkt 31.07.

("Dauer" = durchschnittliche Durchlaufzeit)

Spätester	Spätester	Spätester	Auslieferungs-
Fertigungstermin:	Fertigungstermin:	Fertigungstermin:	termin:
21.07.	23.07.	28.07.	31.07.
Herstellung von 6000	Herstellung von	Herstellung von	Montage von 100
Speichen (30 pro	200 Felgen:	200 Rädern:	Fahrrädern:
Felge): 3 Tage	2 Tage	5 Tage	3 Tage
Spätester Start: 18.07.	Spätester Start: 21.07.	Spätester Start: 23.07.	Spätester Start: 28.07.

Mengenplanung (3a)

Rückrechnung von Produktionsanfangszeiten: Beispiel

Rückrechnung (Rückwärtsterminierung) der Anfangszeitpunkte für die Herstellung von Komponenten am Beispiel der Produktion von 100 Fahrrädern mit Auslieferungszeitpunkt 31.07.

("Dauer" = durchschnittliche Durchlaufzeit)

Spätester	Spätester	Spätester	Auslieferungs-
Fertigungstermin:	Fertigungstermin:	Fertigungstermin:	termin:
21.07.	23.07.	28.07.	31.07.
Herstellung von 6000	Herstellung von	Herstellung von	Montage von 100
Speichen (30 pro	200 Felgen:	200 Rädem:	Fahrrädern:
Felge): 3 Tage	2 Tage	5 Tage	3 Tage
Spatester Start: 18.07.	Spatester Start: 21.07.	Soltester Start: 23.07.	Satester Start: 28.07.

Mengenplanung (4)

Komponenten der Durchlaufzeit

Vgl. Wöhe (1996), S. 562)

Mengenplanung (5)

Erläuterung der Bestandteile der Durchlaufzeit

- Die Durchlaufzeit eines Erzeugnisses bezeichnet die Zeitspanne, die zwischen dem Beginn des ersten Arbeitsvorgangs und dem Abschluss des letzten Arbeitsvorgangs verstreicht.
- Bestimmung der Plan-Durchlaufzeiten

Bearbeitungszeit	Zeit, in der ein Teil konkret bearbeitet wird, z.B. für das Bohren von Befestigungslöchern an einem Metallteil
Transportzeit	Z. B. für den Transport einer lackierten Karosserie per Fließband zur Automobilendmontage
Rüstzeit	Zeit der Umstellung einer Kunststoffverarbeitungs- maschine von einem Granulattyp auf einen anderen
Kontrollzeit	Funktionstest eines montierten Elektrogerätes
Lagerungszeit	Zeit für die Zwischenlagerung von Vorprodukten, z. B. weil die aktuelle Bearbeitungsstation belegt ist

Mengenplanung (6)

Beispiel für Durchlaufzeiten

- Konfektionsunternehmen: 1000 Anzüge, 4 Fertigungsstufen
- H = Bearbeitungszeit der Hosen
- J = Bearbeitungszeit der Jacken
- (1) und (4) gemeinsame Bearbeitungszeit
- (2) und (3) getrennte Arbeitsplätze

Fertigungsstufe	Durchlaufzeit		
(1) Zuschneiden	H+J:	2 Tage	
(2) Zusammenstecken	H:	2 Tage	
	J:	3 Tage	
(3) Nähen	H:	4 Tage	
	J:	6 Tage	
(4) Bügeln	H+J:	2 Tage	

Quelle:

Wöhe (1996, S. 563)

Mengenplanung (7)

Durchlaufzeit: Darstellung mittels Balkendiagramm

Mengenplanung (8)

Losgrößenbestimmung: Grundmodell

- Los = Auftrag, der als geschlossener Posten alle Fertigungsstufen durchläuft
- Losgrößenplanung: Ziel ist die Minimierung der Gesamtkosten
- Vorgehensweise:
 - Es werden zwei Kostenarten berücksichtigt: <u>Lagerkosten</u> (für die Zwischenlagerung von Teilen, die aufgrund großer Losgröße nicht direkt weiterverarbeitet werden können) und <u>Rüstkosten</u>, d. h. unabhängig von der Produktionsmenge anfallende Umstellungskosten für die Maschine (Werkzeugwechsel, erhöhter Ausschuss bei Produktionsanlauf, Reinigungskosten, ...)
 - Ermittlung der optimalen Losgröße erfolgt durch die Minimierung der Gesamtkostenfunktion in Bezug auf die Losgröße (erste Ableitung nach Losgröße mit Null gleichsetzen und auflösen…)

Quelle: Wöhe (1996, S. 560)

Mengenplanung (9)

Wirkung alternativer Losgrößenentscheidungen

Mengenplanung (10)

Ermittlung der optimalen Losgröße

$$K = K_f \frac{B}{m} + \frac{m}{2} \underbrace{\frac{p(i+l)}{100}}_{Z} \rightarrow \min!$$

K = Gesamtkosten

B = Jahresbedarf

 $K_f =$ fixe Kosten pro Auflage

m = Losgröße

i = Zinssatz (in %)

l = Lagerhaltungskostensatz (in %)

z = absolute Kosten der Lagerung pro Stück

Mengenplanung (11)

Ermittlung der optimalen Losgröße

$$\frac{\partial K}{\partial m} = -K_f \frac{B}{m^2} + \frac{p(i+l)}{200} = 0 \qquad \Rightarrow m^{opt} = \sqrt{\frac{200 \cdot K_f \cdot B}{p(i+l)}}$$

K = Gesamtkosten

B = Jahresbedarf

 K_f = fixe Kosten pro Auflage

m = Losgröße

i = Zinssatz (in %)

l =Lagerhaltungskostensatz (in %)

Mengenplanung (12)

Steigt oder fällt m^{opt} mit zunehmendem Jahresbedarf?

$$\frac{\partial m^{opt}}{\partial B} = \frac{1}{2} \sqrt{\frac{200 \cdot K_f}{B \cdot p(i+l)}} > 0$$

K = Gesamtkosten

B = Jahrebedarf

p = Preis

 K_f = fixe Kosten pro Auflage

m = Losgröße

i = Zinssatz (in %)

l =Lagerhaltungskostensatz (in %)

Termin- und Kapazitätsplanung (1)

Teilgebiet

Hauptfunktionen

Daten

Produktionsplanung Produktionsprogrammplanung

Mengenplanung

Termin- und Kapazitätsplanung

Produktionssteuerung Auftragsfreigabe und -veranlassung

Auftragsüberwachung

Stammdaten

- -Stücklisten
- Arbeitspläne
- Betriebsmitteldaten (Kapazitäten)

Bewegungsdaten

- Kundenaufträge
- Lagerbestände

Termin- und Kapazitätsplanung (2)

Grundprinzip und Aufgaben

- Die Aufgabe der Termin- und Kapazitätsplanung besteht darin, die auszuführenden Fertigungsaufträge bzw. Arbeitsvorgänge zeitlich einzuplanen und eine gemäß der vorhandenen Kapazitäten durchführbare Belegung herbeizuführen.
- Ergebnis der Terminplanung ist eine Übersicht, welche die Startund Endtermine der Arbeitsvorgänge erhält.
 - ➤ In der Terminplanung werden die benötigten Vorproduktmengen zu Losen zusammengefasst und konkreten Produktionsterminen zugeordnet.
 - > Orientierung an der optimalen Losgröße
 - Kapazitätsrestriktionen müssen berücksichtigt werden und bei Kapazitätsüber- oder -unterschreitungen sind geeignete Maßnahmen zur Kapazitätsangleichung zu ergreifen.

Termin- und Kapazitätsplanung (3)

Ist- und Sollkapazität

Termin- und Kapazitätsplanung (4)

Maßnahmen zum Kapazitätsabgleich

Termin- und Kapazitätsplanung (5)

Auftragsfolgediagramm

Quelle: Wöhe (2005, S. 418)

Termin- und Kapazitätsplanung (6)

Maschinenbelegungsdiagramm

Quelle: Wöhe (2005, S. 419)

Produktionssteuerung (1)

Teilgebiet

Hauptfunktionen

Daten

Produktionsplanung Produktionsprogrammplanung

Mengenplanung

Termin- und Kapazitätsplanung

Produktionssteuerung Auftragsfreigabe und -veranlassung

Auftragsüberwachung

Stammdaten

- Stücklisten
- Arbeitspläne
- Betriebsmitteldaten (Kapazitäten)

Bewegungsdaten

- -Kundenaufträge
- Lagerbestände

Produktionssteuerung (2)

Aufgaben

- Trotz vorgelagerter Planungsprozesse gelingt fast nie, eine überschneidungsfreie ex-ante Zuordnung von Produktionsaufträgen auf einzelne Arbeitstationen. Gründe: Immanente Planungsfehler der Sukzessivplanung, Störungen, Maschinenausfälle etc.
- Geregelt wird daher die unmittelbare Auftragsfreigabe an den einzelnen Aggregaten, insbesondere wenn mehrere Aufträge gleichzeitig zur Bearbeitung anliegen. Die dabei angewandten Prioritätsregeln haben heuristischen Charakter.
- Zielgrößen der Produktionssteuerung
 - 1. Einhaltung von Lieferterminen
 - 2. Reduzierung von Durchlaufzeiten
 - 3. Minimierung von Rüstzeiten/-Kosten
 - 4. Minimierung der Lagerbestände in der Produktion
 - 5. Maximierung der Kapazitätsauslastung

Produktionssteuerung (3)

Prioritätsregeln

- KOZ-Regel (Kürzeste Operationsregel)
 - > Bevorzugung der Aufträge mit der kürzesten Bearbeitungszeit
 - Vorteile: gute Durchlaufzeiten, hohe Kapazitätsauslastung
 - Nachteile: Liefertermine sind nicht leicht einzuhalten
- SZ-Regel (Schlupfzeit-Regel)
 - ➤ Bevorzugung der Aufträge mit den geringsten Pufferzeiten bis zur endgültigen Fertigstellung
 - Vorteil: gute Termineinhaltung
 - ➤ Nachteil: schlechte Kapazitätsnutzung, höhere Bestände

Produktionssteuerung (4)

Prioritätsregeln

- KRB-Regel (Kürzeste Restbearbeitungszeitregel)
 - Bevorzugung der Aufträge mit der kürzesten Restbearbeitungszeit an allen noch ausstehenden Bearbeitungsstationen
 - Vorteile: Aufträge, die unmittelbar fertig gestellt werden können, lassen schnell realisieren und erhöhen die Umsatzerlöse
 - ➤ Nachteile: Andere wichtige Zielgrößen bleiben unberücksichtigt (Kapitalbindung, Einhaltung von Lieferterminen, ...)

Kritik an der Push-Orientierung des Sukzessivplanungskonzeptes

- Produktionsauftragsgrößen sind isoliert für jedes End-/Vorprodukt notwendig
- Materialbedarfs- und Terminplanung greifen auf Plandurchlaufzeiten zurück
- Allgemein bleibt die begrenzte Ressourcenverfügbarkeit unberücksichtigt