# Welcome

Introductions
What Is This Course About?

### Who Am I?

#### **Paulo Dichone**

Software, Cloud, AI Engineer and Instructor



### What Is This Course About?

- MCP Model Context Protocol
  - o What is it?
  - o How it works?
  - Hands-on Build MCP servers
  - Test MCP Servers locally
  - Deploy and test MCP servers remotely

# **Course Prerequisites**

- 1. Know Python (basics at least); will not teach how to to code
- Fundamentals of LLMs and AI
- 3. Be willing to learn new skills

What You'll build...

Demo...

# **Course Structure**



# **MCP - Model Context Protocol**



# **Motivation**



... is a **standardized** set of rules that allows Al models to access and utilize external information and tools; expanding training.

### The Digital Dialogue: How Computers Communicate



# **Servers and Clients**



### **Servers**



### **Servers & Clients**



### **Client-Server Communication**



Listens for incoming request(s)

### **Client-Server Communication Protocol**



Listens for incoming request(s)

#### Protocols:

- HTTP Hypertext Transfer Protocol (transfer text, images, audio and other multimedia
- FTP File Transfer Protocol
- ...

# Client-Server Communication Protocol - Internet



# **MCP: The Universal Adapter for Al**



# **MCP: The Universal Adapter for Al**





# Without MCP: Fragmented AI Development



# With MCP: Standardized AI Development



### With MCP: MCP servers are reusable...



### The Problems MCP Solves for LLMs

- Knowledge cutoffs: LLMs only know what they know
- Hallucinations: MCP enables LLMs to access more "context" from other sources.
- Isolated Intelligence: LLMs can't natively interact with external systems, perform actions or access private user data.
- Complex and Brittle Integrations: Before MCP, developers would need to build custom, fragile integrations for each service.

# Advantages of MCP for LLMs and AI Agents

- **Enabling Al Agents:** MCP provides a standardized way for these agents to discover and utilize information and perform actions beyond what they can do.
- Personalization: securely access user-specific (with appropriate permissions)
- **Specialized Knowledge:** LLMs can tap into domain-specific knowledge bases and tools which provides them with expert-level responses.
- Enhanced Security: robust security controls.

# With MCP: Standardized AI Development

- For Al application developers
  - Can connect AI apps to any MCP server with minimal (or zero) additional work.
- For tool or API Developers
  - Build once, and it can be adopted everywhere
- For AI applications users
  - Al applications have extensive capabilities
- For enterprises
  - Clear separation of concerns between AI products teams

# **Common Questions**

| Who authors the MCP Server?                                                      | Anyone! Often the service provider itself will make their own MCP implementation. You can make a MCP server to wrap up access to some service. |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| How is using an MCP Server different from just calling a service's API directly? | MCP Servers provide tool schemas + functions.  If you want to directly call an API directly, you'll be authoring those on your own.            |
| Sounds like MCP Servers and tool use are the same thing.                         | MCP Servers provide tool schemas + functions already defined for you.                                                                          |

### **MCP Architecture**



# **MCP - MCP Client Component**



# MCP - MCP Server Deep Dive



#### **MCP Server Core Architecture**



#### **Protocol Handler**

Manages JSON-RPC 2.0 communication, message routing, and capability negotiation



#### **Transport Layer**

Handles different communication methods: STDIO, HTTP+SSE, or custom transports



#### **Capability Engine**

Implements Resources, Tools, and Prompts based on server's declared capabilities



#### **Security Layer**

Authentication, authorization, request validation, and data protection

### **Client-Server Architecture**

#### Host

are LLM applications that want to access data through MCP (ex: Claude Desktop, IDEs, AI agents).

#### **MCP Servers**

are lightweight programs that each expose specific capabilities through MCP.

#### **MCP Clients**

maintain 1:1 connections with servers, inside the host application.



### **How Does it All Work?**

#### **MCP Client**

Invokes Tools

Queries for Resources

**Interpolates Prompts** 

#### **MCP Server**

**Exposes Tools** 

**Exposes Resources** 

**Exposes Prompt Templates** 

#### **Tools**

Functions and tools that can be invoked by the client

Retrieve / search

Send a message

**Update DB records** 

#### Resources

Read-only data or content exposed by the server

Files

**Database Records** 

**API Responses** 

#### **Prompt Templates**

Pre-defined templates for AI interactions

**Document Q&A** 

**Transcript Summary** 

**Output as JSON** 

### The MCP Stack

#### **Application Layer**

(Your AI application (Claude Desktop, Cursor, etc.) Examples: Claude Desktop, VS Code with MCP, Custom AI agents)

#### **Protocol Layer**

(MCP Protocol - defines message format, handshakes, tools, resources)

#### **Transport Layer**

(HOW messages are delivered between client and server)

#### **Network Layer**

(Physical network infrastructure (if remote))

# **MCP Transports**

An MCP Transport is the **communication** mechanism that carries MCP protocol messages between a client and server.

The delivery system for MCP Messages

### The MCP Stack



#### **Traditional Mail System**

**Message:** The letter content (MCP Protocol)

**Envelope:** Address format (JSON-RPC)

**Delivery Method:** Postal service, email, courier

(Transport)

**Infrastructure:** Roads, internet cables (Network)



#### **MCP Transport**

Message: MCP protocol data

Format: JSON-RPC structure

**Delivery Method:** Stdio, SSE, HTTP (Transport)

**Infrastructure:** Process pipes, network connections

# **MCP Transports**

#### **MCP Transports**

A transport handles the underlying mechanics of how messages are sent and received between the client and server.

- For servers running locally: stdio (standard input output)
- 2. For remote servers:
  - a. HTTP+SSE (Server Sent Events) (from protocol version 2024-11-05)
  - b. **Streamable HTTP** (as of protocol version 2025-03-26)

# **Key Transport Concepts**

- Independent of MCP protocol content
- Same MCP server can use different transports
- Transport choice affects performance and capabilities
- Transport determines local vs remote server support
- Transport handles connection reliability and streaming
- Transport provides security and authentication layers

# Why Does Transport Matter?

#### Same protocol, Different Delivery:

 Messages can be delivered through different transport mechanisms (just like sending a message via email, text, or postal mail)

#### Types of Transport:

- Local
- Remote

#### Transport trade Offs:

- Local vs remote
- Speed
- Real-time, complexity, compatibility

**STDIO** 

Direct process-to-process communication (*local*)

SSE (Server-Sent Events)

Enables real-time streaming from server to client (like news feed)

Streamable HTTP

Enables streaming responses while maintaining HTTP's universal compatibility.

**STDIO** 



## STDIO

## **©** Perfect Use Cases



#### **Desktop Applications**

Claude Desktop connecting to local file servers, database tools, or system utilities. Maximum speed for local workflows.



#### **Development Tools**

IDEs connecting to language servers, linters, or build tools. Fast feedback loops for coding assistance.



#### **Local Automation**

Scripts and automation tools that need to process local files, run system commands, or access local databases.



### **Prototyping**

Quick prototypes and experiments where you want minimal setup complexity and maximum performance.

STDIO

## **Stdio Pros & Cons**





SSE (Server-Sent Events)



# SSE (Server-Sent Events)





## **Web Applications**

Browser-based AI interfaces that need real-time updates. Perfect for chat applications and live dashboards.



## **Live Monitoring**

Real-time system monitoring, log streaming, or live data visualization where immediate updates are crucial.



### **Chat & Collaboration**

Multi-user environments where servers need to push notifications, messages, or state changes to clients.



## **Interactive Applications**

Applications requiring server-initiated updates, like live tutorials, interactive demos, or gaming scenarios.

SSE (Server-Sent Events)







Streamable HTTP





- Streaming responses for large data/real-time output
- Request-response pattern with streaming capability
- Works with load balancers and CDNs
- Integrates with existing web infrastructure

**Built-in SSL/TLS security** 

இ Works with load balancers and CDNs

Integrates with existing web infrastructure

Streamable HTTP





### **Enterprise Systems**

Large-scale deployments requiring load balancing, monitoring, and integration with existing enterprise infrastructure.



#### **Cloud Services**

Cloud-hosted MCP servers that need to serve multiple clients, handle variable loads, and integrate with cloud infrastructure.



### **API Integration**

When you need maximum compatibility with existing API infrastructure, monitoring tools, and security policies.



### **Mobile Applications**

Mobile apps that need reliable, firewall-friendly communication with MCP servers across varying network conditions.

Streamable HTTP







# **Communication Lifecycle**

## **Communication Lifecycle**





Response



3. Termination

MCP Client

MCP Server

## **MCP Transports**

Message

## Standard IO (stdio) Transport

When running servers locally, stdio is most commonly used



# **MCP Transports**

## **Transports for Remote Servers**



**Stateful Connection** 

### Streamable HTTP

(as of protocol version 2025-03-05)



Allow for Stateless or Stateful Connection

# **MCP - MCP Client Component**







## The Secure Conversation: HTTPS and JSON-RPC

Communication

Security

HTTP (basic protocol)

**HTTPS** (Hypertext Protocol Secure)

Transport Layer Security (TLS)



Credit Card: 4532-1234-5678-9012 Password: mySecret123

HTTP Delivery *Insecure* 

Destination



aH4xK9mP2qR7wE5tY8uI3oP6sA1dF4gH nM9xC2vB5qW8eR1tY4uI7oP3sD6fG2hJ

HTTPS Delivery **Secure** 



Gambled and protected

Destination

# Why HTTPS Matters for MCP



## HTTPS ensures:

- All communication between MCP clients and servers is protected

## **Encryption**

- Data is scrambled

## **Authentication**

Verifies you're connecting to the legitimate server...

## Integrity

- Ensures data hasn't been tampered with during transit

## **Protection**

Shields
sensitive MCP
ops from
malicious
actors

# Why MCP - What is it?

#### **REST APIS**

(standardized how web applications interact with the backend)

#### LSP

(standardized how IDEs interact with language-specific tools)

#### **MCP**

(standardized how AI applications interact with external systems)

- MCP is an open protocol that standardizes how LLM applications connect to and work with external tools and data sources.

# The Architecture: A Collaborative Ecosystem



# **Conclusion/Summary**







# **Conclusion/Summary**



## Standardized

One universal protocol for all Al-tosystem connections



### Secure

Built-in security measures protect sensitive data and operations



### Flexible

Adaptable bridge between LLMs and any external system

# **MCP Server Development!**

Hands-on

## **Dev Tools You'll need**

## 1. VS Code

- a. Free and the best IDE (also serves as MCP Client for testing...)
- b. Install Python
- c. Claude Desktop (an easy MCP Host with MCP Client to use)
- d. Install UV for python dependency management
- e. Install npm as well
- f. OpenAl API key optional in our case

# **Hands-on - Building MCP Servers**

# **Using Prebuilt MCP Servers**

Hands on: Using prebuilt MCP servers

## **Hands-on - Build Your First MCP Server**

# Hands-on - Build Your First MCP Client

# Hands-on - Build Your First MCP Client

# MCP Core Concepts (Continued)

- Have a portfolio
- At least 2 big, fairly complex projects
- Have a Github account with a few projects

# **Build a Chatbot that Uses Tools**

# MCP Server - Deep Dive

# MCP Resources and Prompts - Deep Dive

These are the other two main MCP Primitives:

- Prompts
- Resources

\*The main focus is generally the primitive Tools because it's the most Used and useful!

## **MCP Primitives**







# **Deploying and Publishing MCP Servers**

## **STDIO vs Streamable HTTP**

## Congratulations!!!!!!!!

# Wrap up - Next Steps

MCP Server Masterclass

- Practice by building MCP servers.
  - Keep learning about MCP servers
  - MCP updates/news
  - https://github.com/modelcontextprot ocol
  - https://modelcontextprotocol.io/docs/ getting-started/intro
- This is the beginning of your MCP server journey. Keep going!

# **Build a full-fledged MCP Server**

READ thisL:

https://support.anthropic.com/en/articles/10949351-getting-started-with-local-mcp-servers-on-claude-desktop

For difference between remote mcp and local mcps... and integrations!