Combo 6 de definiciones y convenciones notacionales

Emanuel Nicolás Herrador - November 2024

1 Notación declaratoria para fórmulas

Explique la notación declaratoria para fórmulas con sus 3 convenciones notacionales (convenciones 3, 4, 6 de la guía 11). Puede asumir la notación declaratoria para términos.

Si φ es una fórmula de tipo τ , entonces escribiremos $\varphi =_d \varphi(v_1, \ldots, v_n)$ para declarar que v_1, \ldots, v_n son variables distintas (con $n \ge 1$) y tales que $Li(\varphi) \subseteq \{v_1, \ldots, v_n\}$.

El uso de declaraciones de la forma $\varphi =_d \varphi(v_1, \dots, v_n)$ será muy útil cuando se combina con ciertas convenciones notacionales que describiremos a continuación:

- Convención 3: Cuando hayamos hecho la declaración $\varphi =_d \varphi(v_1, \ldots, v_n)$, si P_1, \ldots, P_n son palabras cualesquiera, entonces $\varphi(P_1, \ldots, P_n)$ denotará la palabra que resulta de reemplazar (simultáneamente) cada ocurrencia libre de v_1 en φ por P_1 , cada ocurrencia libre v_2 en φ por P_2 , etc.

 Notar que cuando las palabras P_i son términos, entonces $\varphi(P_1, \ldots, P_n)$ es una fórmula.
- Convención 4: Cuando hayamos declarado $\varphi =_d \varphi(v_1, \ldots, v_n)$, si \mathbf{A} es un modelo de tipo τ y $a_1, \ldots, a_n \in A$, entonces $\mathbf{A} \vDash \varphi[a_1, \ldots, a_n]$ significará que $\mathbf{A} \vDash \varphi[\vec{b}]$, donde \vec{b} es una asignación tal que a cada v_i le asigna el valor a_i . En general, $\mathbf{A} \nvDash \varphi[a_1, \ldots, a_n]$ significará que no sucede $\mathbf{A} \vDash \varphi[a_1, \ldots, a_n]$
- Convención 6: Cuando hayamos declarado $\varphi =_d \varphi(v_1, \dots, v_n)$, entonces:
 - Si $\varphi=(t\equiv s)$, con $t,s\in T^{\tau}$ únicos, supondremos tácitamente que también hemos hecho las declaraciones $t=_d t(v_1,\ldots,v_n)$ y $s=_d s(v_1,\ldots,v_n)$
 - Si $\varphi = r(t_1, \dots, t_m)$, con $r \in \mathcal{R}_m$ y $t_1, \dots, t_m \in T^\tau$ únicos, supondremos tácitamente que también hemos hecho las declaraciones $t_1 =_d t_1(v_1, \dots, v_n), \dots, t_m =_d t_m(v_1, \dots, v_n)$
 - Si $\varphi = (\varphi_1 \eta \varphi_2)$, con $\eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ y $\varphi_1, \varphi_2 \in F^{\tau}$ únicas, supondremos tácitamente que también hemos hecho las declaraciones $\varphi_1 =_d \varphi_1(v_1, \ldots, v_n)$ y $\varphi_2 =_d \varphi_2(v_1, \ldots, v_n)$
 - Si $\varphi = \neg \varphi_1$, con $\varphi_1 \in F^{\tau}$ única, supondremos tácitamente que también hemos hecho la declaración $\varphi_1 =_d \varphi_1(v_1, \dots, v_n)$
 - Si $\varphi = Qv_j\varphi_1$, con $Q \in \{\forall, \exists\}$, $v_j \in \{v_1, \dots, v_n\}$ y $\varphi_1 \in F^{\tau}$ únicas, supondremos tácitamente que también hemos hecho la declaración $\varphi_1 =_d \varphi_1(v_1, \dots, v_n)$
 - Si $\varphi = Qv\varphi_1$, con $Q \in \{\forall, \exists\}, v \in Var \{v_1, \dots, v_n\}$ y $\varphi_1 \in F^{\tau}$ únicas, supondremos tácitamente que también hemos hecho la declaración $\varphi_1 =_d \varphi_1(v_1, \dots, v_n, v)$