Complete Graphs and Their Properties

Pushpendra Kumar Pateriya
School of Computing & Information Technology
Lovely Faculty of Technology & Sciences
Lovely Professional University
E-mail: pushpendra.14623@lpu.co.in

Outline I

- 1 Complete Graphs
 - Number of edges in K_N
- 2 Handshaking Theorem
 - In undirected graphs
 - In directed graphs
- 3 Hamiltonian Circuits in K_N
- 4 Eulerian Circuits in K_N

Complete Graphs

Let N be a positive integer.

Definition: A *complete graph* is a graph with N vertices and an edge between every two vertices.

- There are no loops.
- Every two vertices share exactly one edge.

We use the symbol K_N for a complete graph with N vertices.

Complete Graphs II

$[\mathsf{How} \,\, \mathsf{many} \,\, \mathsf{edges} \,\, \mathsf{does} \,\, \mathcal{K}_{\mathcal{N}} \,\, \mathsf{have?}]$

lacksquare K_N has N vertices.

- \blacksquare K_N has N vertices.
- Each vertex has degree N-1.

- K_N has N vertices.
- Each vertex has degree N-1.
- The sum of all degrees is N(N-1).

- $lue{K}_N$ has N vertices.
- Each vertex has degree N-1.
- The sum of all degrees is N(N-1).
- Now, the Handshaking Theorem tells us that. . .

- $lue{K}_N$ has N vertices.
- Each vertex has degree N-1.
- The sum of all degrees is N(N-1).
- Now, the Handshaking Theorem tells us that. . .
- The number of edges in K_N is $\frac{N(N-1)}{2}$.

- \blacksquare K_N has N vertices.
- Each vertex has degree N-1.
- The sum of all degrees is N(N-1).
- Now, the Handshaking Theorem tells us that. . .
- The number of edges in K_N is $\frac{N(N-1)}{2}$.
- This formula also counts the number of pairwise comparisons between N candidates.

- K_N has N vertices.
- Each vertex has degree N-1.
- The sum of all degrees is N(N-1).
- Now, the Handshaking Theorem tells us that. . .
- The number of edges in K_N is $\frac{N(N-1)}{2}$.
- This formula also counts the number of pairwise comparisons between N candidates.
- The Method of Pairwise Comparisons can be modeled by a complete graph.
 - Vertices represent candidates
 - Edges represent pairwise comparisons.
 - Each candidate is compared to each other candidate.
 - No candidate is compared to him/herself.

Handshaking Theorem

Theorem

Let G = (V, E) be an undirected graph. Then $2|E| = \sum_{v \in E} deg(v)$

Proof.

Each edge contributes twice to the sum of the degrees of all vertices.

Questions:

- Suppose a graph has 5 vertices. Can each vertex have degree 3? degree 4?
- 2 Is it possible to have a graph S with 5 vertices, each with degree 4, and 8 edges?
- 3 A graph with 21 edges has 7 vertices of degree 1, three of degree 2, seven of degree 3, and the rest of degree 4. How

Handshaking theorem for directed graphs

The **in-degree** of a vertex v, denoted $deg^{-}(v)$ is the number of edges which terminate at v.

Similarly, the **out-degree** of v, denoted $deg^+(v)$, is the number of edges which initiate at v.

Theorem

For any directed graph
$$G = (V, E)$$
, $|E| = \sum_{v \in V} deg^{-}(v) = \sum_{v \in V} deg^{+}(v)$.

Proof.

Notice that each edge contributes one to the in-degree of some vertex and one to the out-degree of some vertex. This is essentially the proof of the Theorem.

Hamiltonian Circuits in K_N

- A Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once.
- A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that is a cycle.
- The first/last vertex is called the "reference vertex".
- Changing the reference vertex does not change the Hamiltonian circuit

For making a Hamiltonian circuit:

N choices for the reference vertex.

- N choices for the reference vertex.
- N-1 choices for the next vertex.

- N choices for the reference vertex.
- N-1 choices for the next vertex.
- N-2 possibilities for the vertex after that.

- N choices for the reference vertex.
- N-1 choices for the next vertex.
- N-2 possibilities for the vertex after that.
- ...

- N choices for the reference vertex.
- N-1 choices for the next vertex.
- N-2 possibilities for the vertex after that.
- **.**..
- 2 possibilities for the $(N-1)^{th}$ vertex.

- N choices for the reference vertex.
- N-1 choices for the next vertex.
- N-2 possibilities for the vertex after that.
- **.**..
- 2 possibilities for the $(N-1)^{th}$ vertex.
- 1 possibility for the *N*th vertex.

- N choices for the reference vertex.
- N-1 choices for the next vertex.
- N-2 possibilities for the vertex after that.
- ..
- 2 possibilities for the $(N-1)^{th}$ vertex.
- 1 possibility for the Nth vertex.
- and then the reference vertex again.

For making a Hamiltonian circuit:

- N choices for the reference vertex.
- N-1 choices for the next vertex.
- N-2 possibilities for the vertex after that.
- **.**..
- 2 possibilities for the $(N-1)^{th}$ vertex.
- 1 possibility for the Nth vertex.
- and then the reference vertex again.

Note

If we are counting Hamiltonian circuits, then we don't care about the reference vertex.

Conclusion: The number of Hamiltonian circuits in K_N is

$$(N-1)\times(N-2)\times...\times3\times2\times1=(N-1)!$$

Vertices(N)	Edges $\left(\frac{N(N-1)}{2}\right)$	Hamiltonian Circuits $((N-1)!)$
1	0	
2	1	
3	3	2
4	6	6
5	10	24
6	15	120
16	120	1307674368000

Eulerian Circuits in K_N

An **Eulerian trail (or Eulerian path)** is a trail in a graph which visits every edge exactly once. Similarly, an **Eulerian circuit** or Eulerian cycle is an Eulerian trail which starts and ends on the same vertex.

Query

For which values of N does the complete graph K_N have an Euler circuit?

Eulerian Circuits in K_N

An **Eulerian trail (or Eulerian path)** is a trail in a graph which visits every edge exactly once. Similarly, an **Eulerian circuit** or Eulerian cycle is an Eulerian trail which starts and ends on the same vertex.

Query

For which values of N does the complete graph K_N have an Euler circuit?

Answer

When N is odd. (Every vertex in K_N has degree N-1, so we need N-1 to be even.)

Complete Graphs Handshaking Theorem Hamiltonian Circuits in *K_N* Eulerian Circuits in *K_N*

[Learn with devotion...]