

3

Trykk p vs temp. T for wlike gasser med law tetthet:

Dus: Lineare p(T) som ekstrapolert til p=0 alla gir T=-273.15°C

Absolutt temperatur og kelvinskala:

$$T = 0 K (kelvin)$$
 tilsvarer - 273.15 °C
 $\Delta T = 1 K$ $-11 - \Delta T = 1 °C$

Dermed: Ved p= 1 atm fryser vann ved 273.15 K

og koker ved 373.15 K

Referanse (definisjon) 1954 - 2019:

1 K = $\frac{1}{273.16}$ aw temp. til vannets <u>trippelpunkt</u>, der is, vann og vanndamp er i termisk likevekt med hverandre. Dvs $T_t = \frac{def}{273.16} K = 0.01 ^{\circ}C$, og $P_t = 611.657 Pa$.

Fra 20.05. 2019: 1 K defineres med utgangspunkt i eksakt tallverdi for Boltzmanns konstant, $k_B = 1.380649 \cdot 10^{-23}$ F/K

1.3 Tilst	tandsvariable og -ligninger [LHL 13.3; YF 18.1] (
ρ	Et makroskopisk system (N >> 1) i termisk likevekt er å en
T	tilstand som kan beskrives
	ved hjelp av et <u>lite</u> antall tilstandsvariable:
M	P, T, V, 9 = N/V 030
Mengae pro	oporsjonale variable kalles ekstensive:
	V + V = 2V
Mengdeud	euhengige variable kalles <u>intensive</u> :
	[P,T] + $[P,T]$ = $[P,T]$
Ti(stand	Isligninger angir sammenheng mellom
tilstands som regel	
tilstands som regel nok for	dsligninger angir sammenheng mellom svaniable. For gitt stoffmengde (N) er 2 av de 3 variable p, V og T
som regel nok for V=V(p	dsligninger angir sammenheng mellom svariable. For gitt stoffmengde (N) er l 2 av de 3 variable p, V og T r å spesifisere systemets tilstand. Dvs
tilstands som regel nok for V=V(p Generelt Systemet	dsligninger angir sammenheng mellom suariable. For gitt stoffmengde (N) er 2 au de 3 variable p , V og T r à spesifisere systemets tilstand. Dus r r r r r r r r r r

Eksperimenter med gasser med law telthet oppfyller

pV = nRT Tilst.lign. for ideell gass

n = antall mol (stoffmengden); 1 mol = 6.02.10 molekyler

R = 8.314 3/mol·K = (den molare; evt. den universelle) gasskonstanten

n mol = N = n·Na molekyler

Na = 6.022 14076 mol = Avogadros konstant

 $\Rightarrow PV = \frac{N}{N_A}RT = Nk_BT$

 $k_{\rm B} = R/N_{\rm A} \approx 1.38 \cdot 10^{-23} \, {\rm J/K}$

(se s. 3)

Eut: $p = \frac{N}{V} k_B T = g k_B T$; $g = \frac{N}{V} = partikkeltetthet (m⁻³)$

Eut: Q = p/kBT = B.p ; B = 1/kBT

Kurver med en variabel holdt konstant:

Isotermer,

T = Konst.

Isobarer, p = konst.

V = konst.

6

Eksempler, fluider i tyngde feltet: (delvis kjent fra TFY 4163)

Eles 1: Trykkøkning i vann

Newtons 1.lov \Rightarrow F(0) + Mg = F(z) $P_0A + \mu Azg = P(z)A$ $\Rightarrow P(z) = P_0 + \mu gz$

 $\mu = 1000 \text{ kg/m}^3$, $g \approx 10 \text{ m/s}^2$, $P_0 = 10^5 \text{ Pa}$

=> p øker med 1 atm for hver 10. meders dybde

Kvikksølvbarometer:

Po = MHg - g.h

μ_{Hg} = 13.6 g/cm³

=> h (1atm) = 760 mm

dus: 1 mm Hg = 1/760 atm

Med vann: h (1 alm) = 10 m

(= max høydeforskjell for pumping av vann med sugepumpe)

Eks 2: Oppblåst ballong

Typisk er h ~ 25 cm

h \Rightarrow p-p_o ~ 10.10.0.25 Pa = 2500 Pa

= 0.025 atm

Spm: Huordan kan ballongen være i likevekt med større trykke inni enn utenfor?

Els 3: Trykkvaniasjon oppover i atmosfæren

Ser på tynt (infinitesimalt) volumelement:

P+dp g·dM A P ZtdZ 1-

N1 => (p+dp)A + g + Adz = p.A

⇒ &p = - µg dz

Antar ideell gass, pV = nRT, slik at

 $\mu = \frac{n \cdot m}{\sqrt{RT}} = \frac{p \cdot m}{RT}$; m = midlere molare masse

Dermed:

 $\frac{dp}{p} = -\frac{mq}{RT} dz$

Integrasjon fra bakkenivå Z=0, med p(0)=p= 1 atm (her på jorda) til høyde z gir

 $p(z) = p_0 \exp \left\{-\int^z \frac{mq}{RT} dz\right\}$

Oving 1

Med konst. T = 260 K og m = 29 g/mol (luft): $p(z) = p_0 \exp(-z/H)$; $H = RT/mg \approx 7.6 \text{ km}$