Inteligência Artificial

Aspectos Filosóficos

Prof. Paulo Martins Engel

Prof. Paulo Martins Engel

3

Motivação

- Fronteiras entre o natural e o artificial
- O que seria inteligência? Mente? Livre arbítrio?
- Uma máquina de fato inteligente pode não ser humana?
- Pode não ter processos mentais conscientes? E inconscientes?
- O que distingue a ciência da computação convencional da IA?
- É possível simular processos mentais com algoritmos?
- A mente de um cérebro é apenas um programa?
- Quais são os modelos básicos do comportamento e como construir máquinas para simulá-los?
- Até que ponto a inteligência pode ser descrita recorrendo à avaliação de regras, inferências, à dedução e à computação de padrões?
- Qual é o desempenho das máquinas que simulam tais comportamentos através destes métodos?

Fronteiras da IA

- As discussões filosóficas pretendem investigar as fronteiras entre o natural e o artificial.
- Discutem aspectos mais especulativos.
 - Quais os limites da IA?
 - O que um computador não poderá fazer?
 - Por quê?
- Essas discussões são úteis para guiar novos projetos de investigação.
- Entretanto, as posições filosóficas muitas vezes são antagônicas.
- Dependem da própria experiência e posicionamento individual dos filósofos.

Prof. Paulo Martins Engel

1

Habilidade essenciais do comportamento inteligente

- Responder a situações de modo flexível
- Tirar proveito de circunstâncias fortuitas
- Perceber o sentido de mensagens contraditórias ou ambíguas
- Reconhecer a importância relativa de elementos diferentes de uma dada situação
- Encontrar similaridades entre situações apesar de diferenças que existam entre elas
- Encontrar diferenças entre situações apesar das similaridades existentes
- Sintetizar novos conceitos a partir de conceitos já conhecidos relacionando estes de outras formas
- · Imaginar novas idéias

IA forte e IA fraca

- Tese da IA fraca:
 - As máquinas podem simular um comportamento inteligente, agir como se fossem inteligentes
- Tese da IA forte:
 - As máquinas podem *realmente* pensar e não apenas simular o pensamento

IA forte e IA fraca

- Tese da IA forte:
 - A inteligência humana pode ser replicada
 - As explicações das funções cognitivas são apoiadas por processos computacionais
- · Tese da IA fraca:
 - A inteligência humana pode, no melhor dos casos, apenas ser simulada
 - A meta para se atingir a inteligência artificial consiste em projetar máquinas que sejam capazes de exibir um comportamento inteligente
- As questões fundamentais podem ser resumidas na seguinte forma (Hofstadter, 1979): um sistema cognitivo (sistema lógico formal, teoria matemática, cérebro como "base" da mente) pode ocupar-se de si mesmo?
- Esta pergunta remonta aos problemas propostos por Hilbert (1900), Russel e Whitehead (*Principia Mathematica* tenta derivar toda matemática a partir da lógica) e outras questões relativas a provas matemáticas.

Prof. Paulo Martins Engel

Inform

Prof. Paulo Martins Engel

8

As máquinas podem pensar?

- Os filósofos estão interessados em comparar as duas arquiteturas a humana e a da máquina.
- Máquinas podem pensar?
- Máquinas podem voar?
- Máquinas podem nadar?

• Em vez de perguntar se máquinas podem pensar, Turing sugeriu um teste comportamental de inteligência (teste de Turing).

A objeção da inaptidão

- Uma máquina nunca poderá:
 - ser amável, bonita, amigável, ter iniciativa, ter senso de humor, cometer enganos, apaixonar-se, gostar de morangos com creme, aprender a partir da experiência, usar palavras corretamente, ser o sujeito de seu próprio pensamento, fazer algo realmente novo, fazer alguém se apaixonar por ela, ...

A objeção da inaptidão

- Entretanto, os computadores hoje em dia fazem muita coisa:
 - jogam xadrez, damas, ...
 - inspecionam peças em linhas de montagem
 - verificam a grafia de documentos
 - pilotam aviões e helicópteros
 - fazem diagnóstico de doenças

Prof. Paulo Martins Engel

11

Prof. Paulo Martins Engel

• Certas sentenças matemáticas são em princípio insolúveis para sistemas formais específicos.

A objeção matemática

- Exemplo: teorema da incompletude de Gödel.
- Filósofos como J. R. Lucas (1961) afirmaram que esse teorema mostra que as máquinas são mentalmente inferiores aos seres humanos.
- Roger Penrose também escreveu dois livros com argumentos nessa linha:
 - The emperor's new mind (1989)
 - Shadows of the mind (1994)

IA forte e IA fraça

- Existe um método (definitivo), ou seja um processo mecânico, que possa ser aplicado a uma declaração matemática, o qual possa dizer se esta pode ser provada?
- Não: Hardy (1928): afirma mas não prova formalmente
- Turing (1936)
 - superioridade da mente frente a dispositivos mecânicos
 - determinismo: modelagem de problemas complexos a partir de elementos (máquina de estados, autômatos, etc.)

IA forte e IA fraça

- A matemática é completa *e* consistente?
- Não (Gödel, 1931) e o Teorema da Incompletude: se S for consistente (não contém um teorema que seja a negação de um outro), então existem sentenças verdadeiras que são teoremas em S e que não podem ser demonstradas:
- É possível escrever declarações/sentenças matemáticas que se referem a elas mesmas (do tipo "Eu estou mentindo", "Esta sentença é falsa" ou "Esta declaração não pode ser provada") tais declarações não podem ser demonstradas ou seja provadas como sendo verdadeiras (levariam à uma contradição) ou como sendo falsas (idem)

IA forte e IA fraça

- O que isto tem a ver com a IA e a questão da mente?
- Um sistema formal S é um aparato simbólico (regras bem determinadas) o que implica em combinações simbólicas (teoremas de S) advindas das regras de S a máquina de Turing é um sistema formal (Teorema de Gödel se aplica)
- Se o cérebro funcionar como uma máquina de Turing, permanecer consistente implica em uma limitação (por exemplo, não conseguirá demonstrar todas as sentenças verdadeiras da aritmética elementar) mas, como o cérebro/mente (sistema S) consegue demonstrar (fora de S) que uma sentença (não demostrável no sentido de Gödel) é de fato verdadeira, então o cérebro/mente não é uma máquina de Turing, e um corolário seria: cérebro/mente não "pensa" algoritmicamente (Lucas, 1961; Penrose, 1989)

Prof. Paulo Martins Engel

15

Prof. Paulo Martins Engel

O argumento da informalidade do comportamento

- O comportamento humano é complexo demais para ser capturado por qualquer conjunto simples de regras, e como os computadores não podem fazer nada mais além de seguir um conjunto de regras, eles não podem gerar um comportamento tão inteligente quanto o dos seres humanos.
- O principal defensor desta visão foi o filósofo Hubert Dreyfus: What computers can't do (1972). What computers still can't do (1992).
- Mas as críticas se referem a sistemas programados logicamente a partir de fatos e regras que descrevem o domínio.

IA Forte: as máquinas podem realmente pensar?

- Somente quando uma máquina conseguir escrever um soneto ou compor um concerto em consequência de ter pensado e ter sentido emoções, e não pela disposição aleatória de símbolos, poderemos concordar que a máquina irá se equiparar ao cérebro – isto é, se ela não apenas escrever, mas souber o que escreveu (Geoffrey Jefferson, 1949)
- Argumento da consciência e da intencionalidade.

19

• Definições de consciência:

coisas externas

existe ou acontece

Cérebro, Mente e Consciência

- Ter um sentimento ou conhecimento do que uma coisa é ou de que uma coisa

Percepção de si como um ser pensante; saber o que se está fazendo e porquê

- O conhecimento do que acontece ao redor de uma pessoa; totalidade dos

• Visões de alguns pesquisadores sobre o tema mente e consciência (2001):

• Minsky: consciência não existe (em entrevista à ZDNET)

feitos apenas em relação a sensores e próteses artificiais

- Ter um sentimento ou conhecimento das sensações ou sentidos de si mesmo ou de

pensamentos de uma pessoa; sentimentos e impressões; mente; lembrança do que

se fez recentemente (logo, a discussão sobre consciência em máquina é inútil)

• Dennett: máquina (robô) consciente é possível; dificuldade é apenas financeira

• Davis: dificuldade é reproduzir o funcionamento do cérebro; progressos foram

• Kurzweil: máquinas serão conscientes ainda na primeira metade do sec. XXI

Cérebro, Mente e Consciência

- Definição de mente:
 - Intelecto, pensamento, entendimento; alma, espírito (parte distinta do corpo)
 - Capacidade mental ou psíquica; capacidade cognitiva e intelectual (em contraposição às emoções e intenções)
 - Memória, recordações
 - Concepção, imaginação
 - Local do sujeito da consciência; sistema relacionado aos fenômenos cognitivos e emocionais, experiências conscientes de um indivíduo
 - Intenção, intuito, desígnio, disposição, desejo
- Minsky, Pinker: mente como sistema (conjunto) de órgãos
- Máquinas podem possuir uma mente? Animais? Há correntes que afirmam que apenas seres humanos possuem mente (mas: mesmo sem ter um definição do que é pensar, se pensa)

Prof. Paulo Martins Engel

20

D 11 16 G

Prof. Paulo Martins Engel

O Problema Mente-Corpo

- Teorias
 - Mente é tudo (visão mentalista)
 - Mente nada mais é que um processo físico (visão materialista)
 - O mental e o material coexistem (visão dualista)
- Histórico
- Descartes (sec. XVII)
 - paralelo entre autômatos e corpo humano: estímulo externo ativa receptores do sistema nervoso → cérebro → nervos atuadores (ex.: joelho)
- Kant (sec. XVIII)
 - fundamentos metodológicos da ciência cognitiva (estrutura lógica do método de inferência de processos mentais)
 - Pré Kant: visão empirista do modelo da mente (Hume por exemplo mostrava que o unicórnio não existe mostrando que as duas impressões que podem ser adquiridas por um dos nossos sentidos no caso a visão ou seja a do cavalo e a do chifre, não ocorrem juntas

O Problema Mente-Corpo

- Mente e cérebro
- Senso estrito:
 - Mente é diferente do cérebro; a mente é o subconjunto das ações do cérebro que estão relacionadas com processamento de informações (em última análise, computação); a mente é o conjunto de processos que levam o cérebro de um estado a outro (Minsky)
- Teoria computacional da mente:
 - A informação permanece a mesma independente do meio que a transmite;
 - Desejos e crenças (conceitos tipicamente associados com a mente) são informações representadas por símbolos
 - Símbolos são armazenados em neurônios que são disparados por sensações
 - Novas crenças e desejos são formados
 - Um dado comportamento ocorre
- Debate atual:
 - A teoria computacional da mente resolve o problema mente-corpo?
 - Críticos: Searle (1980) e Penrose (1994)

Cérebro e Mente

- "A mente de um cérebro é como um programa de computador?
- Não. Um programa simplesmente manipula símbolos, enquanto que um cérebro atribui significado a eles". (Searle)

O experimento do quarto chinês

- Searle descreve um sistema hipotético que passa no teste de Turing mas que (segundo Searle) o programa não entende nada de suas entradas e saídas.
- O sistema: um ser humano, que compreende apenas o português, equipado com um livro de regras escrito em português e diversas pilhas de papel, sendo algumas em branco e outras com inscrições indecifráveis (o ser humano é a CPU, o livro de regras o programa e o papel o dispositivo de armazenamento).
- O sistema está num quarto com uma pequena abertura para o exterior.
- Por essa abertura passam papéis com símbolos indecifráveis.
- O ser humano encontra símbolos correspondentes no livro de regras e segue as instruções que podem incluir escrever símbolos em novas folhas de papel, encontrar símbolos nas pilhas, reorganizar as pilhas, etc.
- Eventualmente, as instruções farão com que um ou mais símbolos sejam transcritos em uma folha de papel que será repassada ao exterior do quarto.

Prof. Paulo Martins Engel

23

Prof. Paulo Martins Engel

O experimento do quarto chinês

- Do exterior percebemos um sistema que está recebendo a entrada na forma de instruções em chinês e está gerando respostas em chinês, que são sem dúvida "inteligentes".
- Searle argumenta que a pessoa no quarto não entende o chinês (dado inicial).
- O livro de regras e o papel não entendem chinês.
- Então, não está acontecendo nenhuma compreensão do chinês.
- Por conseguinte, de acordo com Searle, a execução do programa correto não gera necessariamente compreensão.

25

O experimento da prótese cerebral (Glymour 1970, Searle 1980, Moravec 1988)

- Suponha que a neurofisiologia tenha se desenvolvido a ponto de que o comportamento de entrada/saída e a conectividade de todos os neurônios do cérebro humano estejam perfeitamente compreendidos.
- Suponha que possamos construir dispositivos que imitem este comportamento e possam ter uma interface uniforme com o tecido neural.
- Suponha que uma técnica cirúrgica especial possa substituir gradualmente os neurônios da cabeça de alguém pelos dispositivos artificiais sem interromper o funcionamento do cérebro.

O experimento da prótese cerebral

- O que aconteceria com o comportamento externo da pessoa?
- E como ficaria a sua consciência?

Prof. Paulo Martins Engel

Prof. Paulo Martins Engel

IA: Discursos e Conceitos

IA: Discursos e Conceitos

- Propósito: Estudar a mente x Fazer programas?
- Observação: Comportamento x Estrutura?
- Natureza: Simular a Inteligência x Construir?
- Referência: Inteligência Humana x Geral?
- Modelo: Simbólico x Conexionista?

- Corporificação?
- Racionalidade?
- Intencionalidade?
- Consciência?
- Representação?
- Emoções?