

SEQUENCE LISTING

<110> PTC Therapeutics, Inc.
Mehta, Anuradha
Trotta, Christopher Robert

<120> Methods and Agents for Screening for Compounds Capable of Modulating Her2 Expression

<130> 19025.024

<140> To be assigned
<141> 2004-11-17

<150> US 60/520,384
<151> 2003-11-17

<160> 30

<170> PatentIn version 3.2

<210> 1
<211> 73
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 1
cttttctgtt tagttttac ttttttgtt ttgtttttt aaagacgaaa taaagaccca 60
ggggagaatg ggt 73

<210> 2
<211> 3768
<212> DNA
<213> Homo sapiens

<400> 2
atggagctgg cggccttgc cgcgtgggg ctcctcctcg ccctcttgcc ccccggagcc 60
gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcccc 120
acccacactgg acatgctccg ccacactctac caggcgtgcc aggtggtgca gggaaacctg 180
gaactcacct acctgcccac caatgccagc ctgtccttcc tgcaggatat ccaggaggtg 240
caggcgtacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300
attgtgcgag gcacccagct cttttagggac aactatgccc tggccgtgct agacaatgga 360
gaccgcgtga acaataccac ccctgtcaca ggggcctccc caggaggct gcgggagctg 420
cagcttcgaa gcctcacaga gatcttgaaa ggaggggtct tgcgtccacg gaacccccc 480

ctctgctacc aggacacgat tttgtggaag gacatcttcc acaagaacaa ccagctggct 540
ctcacactga tagacaccaa ccgctctcg gcctgccacc cctgttctcc gatgtgtaag 600
ggctcccgct gctggggaga gagttctgag gattgtcaga gcctgacgctg cactgtctgt 660
gccggtggt gtgcccgtg caaggggcca ctgcccactg actgctgcca tgagcagtgt 720
gctgccggct gcacgggccc caagcactct gactgcctgg cctgcctcca cttcaaccac 780
agtggcatct gtgagactgca ctgcccagcc ctggtcacct acaacacaga cacgttttag 840
tccatgcccataccatcccgaggccggtataca ttccggcgcca gctgtgtgac tgcctgtccc 900
tacaactacc tttctacgga cgtgggatcc tgcaccctcg tctgccccct gcacaaccaa 960
gaggtgacag cagaggatgg aacacagcgg tgtgagaagt gcagcaagcc ctgtgcccga 1020
gtgtgctatgtctggcat ggagcacttg cgagaggtga gggcagttac cagtgc当地 1080
atccaggagt ttgctggctg caagaagatc tttgggagcc tggcatttct gccggagago 1140
tttggatgggg acccagcctc caacactgcc ccgctccagc cagagcagct ccaagtgttt 1200
gagactctgg aagagatcac agttaccta tacatctcag catggccgga cagcctgc当地 1260
gacctcagcg tcttccagaa cctgcaagta atccggggac gaattctgca caatggcgcc 1320
tactcgctga ccctgcaagg gctgggcatc agctggctgg ggctgc当地 1380
ctggcagtg gactggccct catccaccat aacacccacc tctgcttcgt gcacacggcg 1440
ccctgggacc agctcttcg gaacccgcac caagctctgc tccacactgc caaccggcca 1500
gaggacgagt gtgtggcga gggcctggcc tgccaccagc tgtgc当地 1560
tggggtccag ggcccaccca gtgtgtcaac tgccaggat tccttcgggg ccaggagtgc 1620
gtggaggaat gccgagactact gcaggggctc cccagggagt atgtaatgc caggcactgt 1680
ttgccgtgcc accctgagtg tcagccccag aatggctcag tgacctgttt tggaccggag 1740
gctgaccagt gtgtggcctg tgccactat aaggaccctc ccttctgc当地 1800
cccagcggcg tgaaacactga ccttcctac atgcccactt ggaagttcc agatgaggag 1860
ggcgcatgcc agccttgccc catcaactgc acccactcct gtgtggaccc gatgacaag 1920
ggctgccccg ccgagcagag agccagccct ctgacgtcca tcgtctctgc ggtgggtggc 1980
attctgctgg tcgtggctt ggggtggc tttgggatcc tcatcaagcg acggcagcag 2040
aagatccgga agtacacgat gcggagactg ctgcaggaaa cggagctggg ggagccgctg 2100
acacccatcg gagcgatgcc caaccaggcg cagatgcggga tcctgaaaga gacggagctg 2160
aggaaggtga aggtgcttgg atctggcgct tttggcacag tctacaaggcatctggatc 2220

cctgatgggg agaatgtcaa aattccagtgc cccatcaaagg tggtagggaa aaacacatcc 2280
cccaaagcca acaaagaaat cttagacgaa gcatacgtga tggctggtgt gggctcccc 2340
tatgtctccc gccttctggg catctgcctg acatccacgg tgcaagctggt gacacagctt 2400
atgccctatg gctgcctctt agaccatgtc cggaaaacc gcggacgcct gggctcccag 2460
gacctgctga actggtgtat gcagattgcc aagggatga gctacctgga ggtatgtgcgg 2520
ctcgtaaaaa gggacttggc cgctcggAAC gtgctggtca agagtcccaa ccatgtcaaa 2580
attacagact tcgggctggc tcggctgctg gacattgacg agacagagta ccatgcagat 2640
ggggcaagg tgcccatcaa gtggatggcg ctggagtcca ttctccgccc gcggttcacc 2700
caccagagt atgtgtggag ttatggtgtg actgtgtggg agctgatgac ttttggggcc 2760
aaacacctacg atggatccc agcccgaggatccctgacc tgctggaaaa gggggagcgg 2820
ctgccccagc ccccatctg caccattgat gtctacatga tcatggtcaa atgttggatg 2880
attgactctg aatgtcggcc aagattccgg gagttgggtgt ctgaattctc ccgcattggcc 2940
agggaccccc agcgctttgt ggtcatccag aatgaggact tggggccagc cagtccttg 3000
gacagcacct tctaccgctc actgctggag gacgatgaca tgggggacct ggtggatgct 3060
gaggagtatc tggtaaaaaa gcagggcttc ttctgtccag accctgcccc gggcgctggg 3120
ggcatggtcc accacaggca ccgcagctca tctaccagga gtggcggtgg ggacctgaca 3180
ctaggctgg agccctctga agaggaggcc cccaggtctc cactggcacc ctccgaagg 3240
gctggctccg atgtatTTGA tggtgacctg ggaatggggg cagccaagg gctgcaaagc 3300
ctccccacac atgacccccag ccctctacag cgg tacatgt aggacccccac agtacccctg 3360
ccctctgaga ctgatggcta cggtggccccc ctgacactgca gccccagcc tgaatatgtg 3420
aaccagccag atgttcggcc ccagccccct tcgccccgag agggccctct gcctgctgcc 3480
cgacctgctg gtgccactct ggaaaggGCC aagactctct ccccaaggaa gaatggggtc 3540
gtcaaagacg ttttgcctt tgggggtgcc gtggagaacc ccgagttactt gacacccag 3600
ggaggagctg cccctcagcc ccaccctctt cctgccttca gcccagcctt cgacaacctc 3660
tattactggg accaggaccc accagagcgg gggctccac ccagcacctt caaaggaca 3720
cctacggcag agaaccaga gtacctgggt ctggacgtgc cagtgtga 3768

<210> 3
<211> 531
<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 3

accagaaggc caagtccgca gaagccctga tgtgtcctca gggagcaggg aaggcctgac 60
ttctgctggc atcaagaggt gggagggccc tccgaccact tccagggaa cctgccatgc 120
caggaacctg tcctaaggaa ctttccttcc tgcttgagtt cccagatggc tggaagggt 180
ccagcctcggt tggaagagga acagcactgg ggagtcttg tggattctga ggccctgccc 240
aatgagactc tagggtccag tggatgccac agcccagctt ggccctttcc ttccagatcc 300
tgggtactga aagccttagg gaagctggcc tgagagggaa agcggcccta agggagtgtc 360
taagaacaaa agcgaccat tcagagactg tccctgaaac ctgtactgc cccccatgag 420
gaaggaacag caatggtgtc agtatccagg ctttgacag agtgctttc tgtttagtt 480
ttacttttt tgttttgtt ttttaagat gaaataaaga cccaggggaa g 531

<210> 4

<211> 615

<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 4

tgaaccagaa ggccaagtcc gcagaagccc tcatgtgtcc tcagggagca ggaaaggcct 60
gacttctgct ggcataaga ggtgggaggg ccctccgacc acttccaggg gaacctgcca 120
tgccaggaac ctgtcctaag gaaccttcct tcctgcttga gttcccagat ggctggaagg 180
ggtccagcct cgttggaaga ggaacagcac tggggagtct ttgtggattc tgaggccctg 240
cccaatgaga ctctagggtc cagtgatgc cacagcccag cttggccctt tccttccaga 300
tcctgggtac taaaaggcctt aggaaagctg gcctgagagg ggaagcggcc ctaagggagt 360
gtctaagaac aaaagcgacc cattcagaga ctgtccctga aacctagtagc tgccccccat 420
gaggaaggaa cagcaatggc gtcagttatcc aggcttgta cagagtgc ttctgttttag 480
tttttacttt ttttgggtt gttttttaaa gacgaaataa agaccagg gagaatgggt 540
gttgtatggg gaggcaagtg tgggggtcc ttctccacac ccactttgtc catttgcaaa 600
tatattttgg aaaac 615

<210> 5
<211> 310
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 5
tgaaccagaa ggccaagtcc gcagaagccc tcatgtgtcc tcagggagca gggaggcct 60
gacttctgct ggcataaga ggtgggaggg ccctccgacc acttccaggg gaacctgcca 120
tgccaggaac ctgtcctaag gaaccttcct tcctgcttga gttcccagat ggctggaagg 180
ggtccagcct cgttggaaaga ggaacagcac tggggagtct ttgtggattc tgaggccctg 240
cccaatgaga ctcttagggtc cagtggatgc cacagccccag cttggccctt tccttccaga 300
tcctgggtac 310

<210> 6
<211> 219
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 6
ggctgcttga ggaagtataa gaatgaagtt gtgaagctga gattcccctc cattgggacc 60
ggagaaacca ggggagcccc ccgggcagcc gcgcgcctt tcccacgggg cccttactg 120
cgccgcgcgc ccggccccc cccctcgccag caccggcgc cccgcgcctt cccagccggg 180
tccagccgga gccatggggc cgagccgca gtgagcacc 219

<210> 7
<211> 104
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 7
ccttccttcc tgcttgagtt cccagatggc tggaagggtt ccagccttgt tggaagagga 60
acagcactgg ggagtcttg tggattctga ggccctgccc aatg 104

<210> 8
<211> 73
<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 8

c t t t c t g t t a g t t t t a c t t t t t g t t t t g t t t t t a a a g a t g a a a a t a a a g a c c c a 60

g g g g g a g a a t g g g t

73

<210> 9

<211> 73

<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 9

c t t t c t g t t a g t t t t a c t t t t t g t t t t t a a a g a t g a a a a t a a a g a c c c a 60

g g g g g a g a t g g g t

73

<210> 10

<211> 73

<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 10

c t t t c t g t t a g t t t t a c t t t t t g t t t t t a a a g a c g a a a a t a a a g a c c c a 60

g g g g g a g a t g g g t

73

<210> 11

<211> 73

<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 11

c t t t c t g t t a g t t t t a c t t t t t g t t t t t a a a g a c g a a a a t a a a g a c c c a 60

g g g g g g a g a t g g g t

73

<210> 12

<211> 73

<212> DNA

<213> Artificial

<220>
<223> Synthetic construct

<400> 12
cttttctgtt tagttttac ttttttgtt ttgtttttt aaagacgaaa taaagaccca 60
73
ggggaaaaatg ggt

<210> 13
<211> 73
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 13
cttttctgtt tagttttac ttttttgtt ttgtttttt aaagacgaaa taaagaccca 60
73
ggggaaagatg ggt

<210> 14
<211> 73
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 14
cttttctgtt tagttttac ttttttgtt ttgtttttt aaagacgaaa taaagaccca 60
73
gggggaaaatg ggt

<210> 15
<211> 73
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 15
cttttctgtt tagttttac ttttttgtt ttgtttttt aaagacgaaa taaagaccca 60
73
ggggaggatg ggt

<210> 16
<211> 73
<212> DNA
<213> Artificial

WO 2005/049868

<220>

<223> Synthetic construct

<400> 16

cttttctgtt tagttttac ttttttgg ttgtttttt aaagacgaaa taaagaccca 60
73

ggggggaaatg ggt

<210> 17

<211> 73

<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 17

cttttctgtt tagttttac ttttttgg ttgtttttt aaagatgaaa taaagaccca 60
73

ggggggggatg ggt

<210> 18

<211> 73

<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 18

cttttctgtt tagttttac ttttttgg ttgtttttt aaagatgaaa taaagaccca 60
73

ggggaaaaatg ggt

<210> 19

<211> 73

<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 19

cttttctgtt tagttttac ttttttgg ttgtttttt aaagatgaaa taaagaccca 60
73

ggggaagatg ggt

<210> 20

<211> 73

<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 20
cttttctgtt tagttttac ttttttggtt ttgtttttt aaagatgaaa taaagaccca 60
gggggaaatg ggt 73

<210> 21
<211> 73
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 21
cttttctgtt tagttttac ttttttggtt ttgtttttt aaagatgaaa taaagaccca 60
ggggaggatg ggt 73

<210> 22
<211> 73
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 22
cttttctgtt tagttttac ttttttggtt ttgtttttt aaagatgaaa taaagaccca 60
ggggggaaatg ggt 73

<210> 23
<211> 540
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 23
tgaaccagaa ggccaagtcc gcagaagccc tgatgtgtcc tcagggagca ggaaaggcct 60
gacttctgct ggcataaga ggtgggaggg ccctccgacc acttccaggg gaacctgcct 120
tgccaggaac ctgtcctaag gaaccttcct tcctgcttga gttcccagat ggctggaagg 180
ggtccagcct cgttggaaaga ggaacacgcac tggggagtct ttgtggattc tgaggccctg 240
cccaatgaga ctctagggtc cagtggatgc cacagcccag cttggccctt tccttccaga 300
tcctgggtac tgaaagcctt aggaaagctg gcctgagagg ggaagcggcc ctaagggagt 360

gtcttaagaac aaaagcgacc cattcagaga ctgtccctga aacctagtac tgcccccat 420
gaggaaggaa cagcaatggt gtcagtatcc aggcttgta cagagtgtt 480
ttttacttt ttttgggg tttttttaaa gacgaaataa agaccagg 540
gagaatgggt

<210> 24
<211> 468
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 24
tgaaccagaa ggccaagtcc gcagaagccc tgcgtgtcc tcagggagca ggaaaggcct 60
gacttctgct ggcataaga ggtgggagg ccctccgacc acttccaggg gaacctgcca 120
tgccaggaac ctgtcctaag gaaccttcct tcctgcttga gttcccagat ggctggaagg 180
ggtccagcct cggttggaaa ggaacagcac tggggagtct ttgtggattc tgaggccctg 240
cccaatgaga ctcttagggtc cagtgatgc cacagcccag cttggccctt tccttccaga 300
tcctgggtac tgaaagcctt agggaaagctg gcctgagagg ggaagcggcc ctaagggagt 360
gtcttaagaac aaaagcgacc cattcagaga ctgtccctga aacctagtac tgcccccat 420
gaggaaggaa cagcaatggt gtcagtatcc aggcttgta cagagtgc 468

<210> 25
<211> 410
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 25
tgaaccagaa ggccaagtcc gcagaagccc tgcgtgtcc tcagggagca ggaaaggcct 60
gacttctgct ggcataaga ggtgggagg ccctccgacc acttccaggg gaacctgcca 120
tgccaggaac ctgtcctaag gaaccttcct tcctgcttga gttcccagat ggctggaagg 180
ggtccagcct cggttggaaa ggaacagcac tggggagtct ttgtggattc tgaggccctg 240
cccaatgaga ctcttagggtc cagtgatgc cacagcccag cttggccctt tccttccaga 300
tcctgggtac tgaaagcctt agggaaagctg gcctgagagg ggaagcggcc ctaagggagt 360
gtcttaagaac aaaagcgacc cattcagaga ctgtccctga aacctagtac 410

<210> 26
<211> 310
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 26
tgaaccagaa ggccaagtcc gcagaagccc tcatgtgtcc tcagggagca ggaaaggcct 60
gacttctgct ggcataaga ggtggggaggg ccctccgacc acttccaggg gaacctgcca 120
tgccaggaac ctgtcctaag gaaccttcct tcctgcttga gttcccagat ggctggaagg 180
ggtccagcct cgttggaaga ggaacagcac tggggagtct ttgtggattc tgaggccctg 240
cccaatgaga ctcttagggtc cagtgatgc cacagcccag cttggccctt tccttccaga 300
tcctgggtac 310

<210> 27
<211> 210
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 27
tgaaccagaa ggccaagtcc gcagaagccc tcatgtgtcc tcagggagca ggaaaggcct 60
gacttctgct ggcataaga ggtggggaggg ccctccgacc acttccaggg gaacctgcca 120
tgccaggaac ctgtcctaag gaaccttcct tcctgcttga gttcccagat ggctggaagg 180
ggtccagcct cgttggaaga ggaacagcac 210

<210> 28
<211> 110
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 28
tgaaccagaa ggccaagtcc gcagaagccc tcatgtgtcc tcagggagca ggaaaggcct 60
gacttctgct ggcataaga ggtggggaggg ccctccgacc acttccaggg 110

<210> 29
<211> 502
<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 29
cctgccatgc caggaacctg tcctaaggaa ctttccttcc tgcttgagtt cccagatggc 60
tggaaagggtt ccagcctcggt tggaagagga acagcactgg ggagtctttg tggattctga 120
ggccctgccc aatgagactc tagggtccag tggatgccac agcccagctt ggccctttcc 180
ttccagatcc tgggtactga aagccttagg gaagctggcc tgagagggga agcggcccta 240
agggagtgtc taagaacaaa agcgaccat tcagagactg tccctgaaac ctgtactgc 300
cccccatgag gaaggaacag caatgggtgc agtatacagg ctttgtacag agtgcctttc 360
tgtttagttt ttactttttt tgttttgttt ttttaaagac gaaataaaga cccaggggag 420
aatgggtgtt gtatggggag gcaagtgtgg ggggtccttc tccacaccca ctttgtccat 480
ttgcaaatat attttggaaa ac 502

<210> 30

<211> 11

<212> DNA

<213> Artificial

<220>

<223> Synthetic construct

<400> 30
gttttttaa a 11