

Topic 11. Design of Sequential Circuit

Prepared by Nabila Husna Shabrina

Contact: nabila.husna@umn.ac.id

Subtopic

11. 1AsynchronousUp/DownCounter

11.2
Synchronous
Up/Down
Counter

11.3 Basic Register

- Counter is a digital device used to count number of pulses
- Counter is a sequential circuit for counting purpose
- Counter can count in 2 ways
 - Up count (0,1,2,...,n)
 - Down count (N, N-1,, 1,0)

- Present count of the counter represent state of the counter
- Counter contains set of flip flops, A n-bit counter require N flip flops and 2^n states
- Counter classification (according to clock cycle)
 - Asynchronous counter
 - Synchronous counter

Asynchronous Counter

- Asynchronous refers to states that does not have a fixed time relationship with each other
- In asynchronous counter flip flops does not have a common clock pulse, so their state doesn't change exactly at same time
- First flip flop is driven by main clock and the clock input
- The rest flip flop is driven by output of previous flip flops

Example of asynchronous counters

3-bit asynchronous up counter

3-bit asynchronous up counter

Maximum count = $2^n - 1$, n = number of ff

4-bit asynchronous up counter

4-bit asynchronous up counter

clk	I Qo	Qc	QB	QA	decimal
Initial	0	0	0	0	0
1st falling edge	0	0	0	1	1
2 nd falling edge	0	0	1	0	2
9th falling edge	1	0	0	1	9
14 th falling edge	1	1	1	0	14
15 th falling edge	1	1	1	1	15

State diagram 2-bit and 3-bit up counter

3-bit Asynchronous down Counter

3-bit Asynchronous down Counter

3-bit Asynchronous down Counter

Clock	Qc	QB	QA	Q'C	Q, B	Q'A
Initially	0	0	o	1	1	1
1st	0	0	1	1	1	0
2nd	0	1	0	1	0	1
3rd	0	1	1	1	0	0
4th	1	o	0	O.	1	1
5th	1	Ó	1	Ů	1	0
6th	1	1	0	0	0	1
7th	1	1	1	O	0	0

Asynchronous Up/Down Counter

- In practice, both up and down counters are combined
- A mode control input is used to select either up or down mode
- A combinational circuit is required between each pair of flip flops

When M = 0, then Y= Q, therefore it will perform Up counting

When M = 1, then Y= Q' therefore it will perform Down counting

М	Q	Q'	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Implementation of asynchronous up/down counter

Timing diagram of asynchronous up/down counter

Synchronous counter

- There is no connection between output of first flip flops and clock of next flip flops
- Flip flops are clocked simultaneously

Example of 4-bit synchronous up counter

Example of 4-bit synchronous up counter

How to design synchronous counters

- 1. Decide the number of flip flops
- 2. Make excitation table of FF
- 3. Make state diagram and circuit excitation table
- 4. Obtain simplifies equations using K-map
- 5. Draw the logic diagram

Example.

Design 2-bit synchronous up counter using JK flip flop

Step 1. Decide the number of flip flops

2-bit \rightarrow 2 flip flops

Step 2. Make excitation table of FF

Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Step 3. Make state diagram and circuit excitation table

P	S	NS					
Q1	Q2	Q1*	Q2*	J1	K1	J2	K2
0	0	0	0	0	X	1	X
0	1	0	1	1	X	X	1
1	0	1	0	X	0	1	X
1	1	1	1	X	1	X	1

Qn	Qn+1	J	K
0	0	0	Х
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

Step 4. Obtain simplifies equations using K-map

$$K2=1$$

Step 5. Draw the logic diagram

Example.

Design 3-bit synchronous up counter using T flip flop

Step 1. Decide the number of flip flops

3-bit \rightarrow 3 flip flops

Step 2. Make excitation table of FF

Qn	Qn+1	T
0	0	0
0	1	1
1	0	1
1	1	0

Step 3. Make state diagram and circuit excitation table

Qn	Qn+1	T
0	0	0
0	1	1
1	0	1
1	1	0

	PS			NS				
Qc	Qb	Qc	Qc*	Qb*	Qa*	Тс	Tb	Та
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Step 4. Obtain simplifies equations using K-map

Qa Oc	Qb	01	11	10_
0			1	
1			1	

Qa Oc	Qb 00	01	11	10
0		1	1	
1		1	1	

$$Ta = 1$$

Step 5. Draw the logic diagram

3-bit synchronous up/down counter

- When M=0 ,then the counter will perform up counting
- When M=1 ,then the counter will perform down counting

Circuit excitation table for 3-bit synchronous up/down counter

M	Q ₃	Q ₂	Q ₁	Q*3	Q ₂ *	Q ₁ *	Т3	Т2	т ₁
0	0	0	0	0	0	1	0	0	1
0	0	0	1	0	1	0	0	1	1
0	0	1	0	0	1	1	0	0	1
0	0	1	1	1	0	0	1	1	1
0	1	0	0	1	0	1	0	0	1
0	1	0	1	1	1	0	0	1	1
0	1	1	0	1	1	1	0	0	1
0	1	1	1	0	0	0	1	1	1

M	Q ₃	Q ₂	Q ₁	Q*3	Q ₂ *	Q ₁ *	Т3	T 2	Т1
1	0	0	0	1	1	1	1	1	1
1	0	0	1	0	0	0	0	0	1
1	0	1	0	0	0	1	0	1	1
1	0	1	1	0	1	0	0	0	1
1	1	0	0	0	1	1	1	1	1
1	1	0	1	1	0	0	0	0	1
1	1	1	0	1	0	1	0	1	1
1	1	1	1	0	1	0	0	0	1

Simplified equation

Circuit diagram for 3-bit synchronous up/down counter

Timing diagram for 3-bit synchronous up/down counter

Modulus of counter

- 2-bit ripple counter is called as MOD-4 or modulus 4 counter
- 3-bit ripple counter is called as MOD-8 counter
- Modulus → represent the number of state
- MOD also can be used to counting to particular values

Example.

Design MOD-5 counter using JK Flip flops

Number of States: 5

maximum count : 5 - 1 = 4 (0-4)

Step 1. Decide the number of flip flops

5 state \rightarrow 3-bit \rightarrow 3 flip flops

Step 2. Make excitation table of FF

Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Step 3. Make state diagram and circuit excitation table

)

	PS			NS							
Qc	Qb	Qa	Qc*	Qb*	Qa*	Jc	Kc	Jb	Kb	Ja	Ka
0	0	0	0	0	1	0	Χ	0	X	1	Χ
0	0	1	0	1	0	0	X	1	Χ	Χ	1
0	1	0	0	1	1	0	X	Χ	0	1	Χ
0	1	1	1	0	0	1	X	X	1	Χ	1
1	0	0	0	0	0	X	1	0	X	0	Χ
1	0	1	X	X	X	X	X	X	X	Χ	Χ
1	1	0	X	X	X	X	X	X	X	Χ	Χ
1	1	1	X	X	X	X	X	X	X	X	Χ

Step 4. Obtain simplifies equations using K-map

Qa	Qb 00	01	11	10
0			1	
1	X	X	X	Х

Qa Qc	Qb 00	01	11	10
0	Х	Х	Х	Х
1	X	Х	Х	Х

$$Kc = 1$$

Step 4. Obtain simplifies equations using K-map

Qa Oc	Qb 00	01	11	10
0		X	1	0
1		X	X	

Qa Oc	Qb 00	01	11	10
0	1	Х	Х	1
1	0	Х	Х	Х

$$Ka = 1$$

Step 5. Draw the logic diagram

- A Register is a collection of flip flops.
- A flip flop is used to store single bit digital data
- For storing a large number of bits, the storage capacity is increased by grouping more than one flip flops.
- If we want to store an n-bit word, we have to use an n-bit register containing n number of flip flops.

DATA FORMAT

• Data in register can be entered in serial (one bit at a time) or in parallel form (all bits at a time)

 Data can also be extracted in serial (temporal code) or in parallel (special code) form

CLASSIFICATION

- Depending on Application the classification are
 - Shift Register
 - Storage Register
- Depending on Input and Output, the classification are
 - Serial In Serial Out Register (SISO)
 - Serial In Parallel Out Register (SIPO)
 - Parallel In Serial Out Register (PISO)
 - Parallel In parallel Out Register (PIPO)

SHIFT REGISTER

 A sequential circuit which used to data storage, data transfer and certain of arithmetic and logic operation

SISO

SISO OPERATION

SISO Truth table and waveform

ACTION OF THE PERSON	CLK	D., = Q3	$Q_2 = D_2$	$Q_2 = D_1$	Q1 = D0	Q.
Initially			0_	0_	0_	0
(i)	1	1	- 1_	0_	0_	0
(ii)	1	1	1_	1	0_	0
(iii)		1	- 1	1_	1_	0
(iv)	1	1	→ 1	1	1	1
	*		Direc	tion of da	to trough	

SIPO

PISO

PIPO

References

M. Morris Mano, Digital Design, 5th ed, Prentice Hall, 2012, **Chapter 5**

Next Topic: Implementation of Combinational Circuit