

Sylvain Julmy

February 1, 2018

Chapter 1

Combinatorics

We are counting elements of set:

$$A \cap B \neq \emptyset \to |A \cup B| = |A| + |B| \tag{1.1}$$

$$|A \times B| = |A| * |B| \tag{1.2}$$

Making two choices independently out of m and n possibilities leads to m*n different possibilities. For example, throwing a dice twice leads to 6*6=36 possibilities consecutevely or not.

$$\underbrace{|A_1 \times \dots \times A_n|}_{|\{(a_1, \dots, a_n), a_i \in A_i\}|} = |A_1| * \dots * |A_n|$$
(1.3)

Example: Throwing n coins leads to 2^n possibilities. Choosing 2 out of n people is n(n-1).

$$B \subset A \to |A \setminus B| = |A| - |B| \tag{1.4}$$

Example: Getting at least one 6 from two dice : $\frac{6*2-1}{6*6}\frac{11}{36}$

1.1 Quotient rate

The number of sheep in a herd is equals to the number of legs divided by 4. Given a set A with equivalence relation \sim such that every equivalence class contains n element, we have

$$\left|\frac{A}{\sim}\right| = \frac{|A|}{\sim} \tag{1.5}$$

Have a map $f: x \mapsto y$ such that for every elements of y there are n corresponding elements of x, then

$$|y| = \frac{|x|}{\sim} \tag{1.6}$$

1.2 Permutation

A permutation of a set A is a bijective map $f: A \mapsto A$, where usually $A = \{1, 2, \dots, n\}$. There are three ways to represent a permutation:

1. Using a graph-like draw

2.

$$\begin{pmatrix} 1 & 2 & 3 \\ f(1) & f(2) & f(3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

3.

$$\begin{pmatrix} f(1) & f(2) & f(3) \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1 \end{pmatrix}$$

There are n! different permutation of the set $\{1, 2, \ldots, n\}$.

1.3 Ordered choice

Take k out of n element and remember the order, there are

$$n * (n-1) * \dots * (n-k+1) = \frac{n!}{(n-k)!}$$
 (1.7)

number of k-permutation in a set of n elements.

Unordered choice 1.4

The number of ways to pick k out of n elements without order is

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

Theorem 1.

$$\binom{n}{k} = \binom{n}{n-k}$$

Proof.

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$
$$\binom{n}{n-k} = \frac{n!}{(n-(n-k))! \cdot (n-k)!}$$
$$= \frac{n!}{k! \cdot (n-k)!}$$

Number of subset of a set of n element is 2^n . Either we pick an element or not, so its a sequence of 1 and 0 where 1 means that we pick the element and 0 not. Example with n = 5: 10010.

1.5 Unordered choices of subsets

 $\binom{n}{k}$ is the number of *k*-elements subsets of $\{1, 2, \dots, n\}$.

Theorem 2. $\binom{n}{k}$ is the number of binary words of length n with k digits "1".

Proof. Encode a subset $A \subset \{1, 2, ..., n\}$ by a binary word : *i*th digit is "1" if $i \in A$ and "0" if $i \notin A$. So binary words with A-digit "1" \leftrightarrow k-elements subsets.

Theorem 3. For every positive integer n we have

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n-1} + \binom{n}{n}$$

Proof. Both sides of the equation counter the number of binary words of length n. On the LHS, the words are split into groups with the same number of "1".

1.6 Monotone path

We encode a monotone path in the plane with "0" and "1", "0" indicates that we go vertically and "1" horizontally. So we would have a sequence (0, 1, 1, 1, 0, 0, ...).

Theorem 4. The number of monotone paths from (0,0) to (k,l) is

$$\binom{k+l}{k}$$

Proof. Encode a monotone path into a binary word like before, then path from (0,0) to (k,l) of k "1" and l "0" have a length of k+l with k digit "1". Therefore, the number of monotone paths is

 $\binom{k+l}{k}$

1.7 Pascal's Triangle

Theorem 5. The k-th number in the n-th row of the Pascal's triangle is $\binom{n}{k}$.

Lemma 1. For any 0 < k < n we have

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

due to the Pascal's triangle.

Proof. $\binom{n}{k}$ is the number of binary words of length n with k digits "1". There are 2 kinds of words :

- Start with "0": $\binom{n-1}{k-1}$
- Start with "1" : $\binom{n-1}{k}$

Therefore

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

1.8 Binomial theorem

Recall:

$$(a+b)^{2} = a^{2} + b^{2} + 2ab$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^{k} + \dots + \binom{n}{n}b^{n} \quad \text{for } n \ge 0 \text{ and } n \in \mathbb{N}$$

Thus one take the nth row of the Pascal's triangle :

$$(a+b)^5 = \underbrace{a^5}_{1} + \underbrace{5a^4b}_{5} + \underbrace{10a^3b^2}_{10} + \underbrace{10a^2b^3}_{10} + \underbrace{5ab^4}_{5} + \underbrace{b^5}_{1}$$

Proof.

$$(a+b)^2 = (a+b)(a+b) = aa + ab + ab + bb = a^2 + 2ab + b^2$$

 $(a+b)^n = \prod_{i=1}^n (a+b) \to \text{ sum of all binary words } (a,b) \text{ of length } n, \text{ the order doesn't matter.}$

Every word with n-k letters "a" and k letter "b" gives the term $a^{n-k}b^k$. The coefficient at $a^{n-k}b^k$ is the number of words with n-k "a" and k "b". There are $\binom{n}{k}$, so

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

1.9 Multinomial Coefficient

Theorem 6. Let n balls of r differents colors be given, with k_i balls of colors i. These balls can be arranged in a row in

$$\binom{n}{k_1, k_2, \dots, k_n} = \frac{n!}{\prod_{i=1}^n (k_i)!}$$

Proof. Use the quotient rule and make the balls of the same color distinguishable. There are n! ways of putting these balls in a row.

 $X = \{\text{all arrangements with distinguishable balls}\}\$

 $Y = \{\text{all arrangements with undistinguishable ballsdistinguishable}\}$

Balls of color i can be distinguished in $k_i!$ ways

 \Rightarrow

The map has multiplicity $(k_1!, \ldots, k_2!)$

 $|Y| = \frac{|X|}{k_i! \cdot \dots \cdot k_i!} = \frac{n!}{\prod_{i=1}^n (k_i)!}$

Example: The number of words of length n = k + l + m with k "a", l "b" and m "c" is

$$\frac{n!}{k! \cdot l! \cdot m!} = \binom{n}{k, l, m}$$

Theorem 7 (Mutltinomial Theorem).

$$(a_1 + \dots + a_r)^n = \sum_{k_1, k_2, \dots, k_r = n} \binom{n}{k_1, \dots, k_n} a_1^{k_1} \cdot \dots \cdot a_r^{k_r}$$

$$for \ k_1 + \dots + k_r = n \ and \ n \ge 0$$

Proof. The sum of all words of length n with letters a_1, \ldots, a_v get the term $a_1^{k_1}, \ldots, a_r^{k_r}$ with coefficient equal to the number of words containing k_i letters a_i with $i = 1, \ldots, n$.

Chapter 2

Graph Theory

Chapter 3

Logic