Due: Friday, January 31, 10:00am on Canvas.

Instructions: Submit your work as a single PDF. You may choose to either hand-write your work and submit a PDF scan, or type your work using LaTeX and submit the resulting PDF. See the course website for a homework template file and instructions on getting started with LaTeX and Overleaf.

Maximum likelihood estimation

- 1. Let $Y_1,...,Y_n \stackrel{iid}{\sim} Poisson(\lambda)$, and let $\mathbf{Y} = (Y_1,...,Y_n)$ denote the combined sample.
 - (a) Write down the likelihood $L(\lambda|\mathbf{Y})$.
 - (b) Find the maximum likelihood estimator $\hat{\lambda}$ of λ .
- 2. Let $Y_1, ..., Y_n \stackrel{iid}{\sim} Exponential(\theta)$, so $f(y|\theta) = \theta e^{-\theta y}$.
 - (a) Write down the likelihood $L(\theta|\mathbf{Y})$.
 - (b) Find the maximum likelihood estimator $\widehat{\theta}$ of θ .
 - (c) Show that $Y_{(1)} \sim Exponential(n\theta)$.
- 3. Let $Y_1, ..., Y_n$ be iid from a distribution with pdf

$$f(y|\theta) = \theta y^{-2} \mathbb{1}\{y \ge \theta\},\$$

where $\theta > 0$. Find the maximum likelihood estimator of θ .

4. Let $Y_1, ..., Y_n$ be iid with one of two pdfs. If $\theta = 0$, then

$$f(y|\theta) = \begin{cases} 1 & 0 < y < 1 \\ 0 & \text{else.} \end{cases}$$

If $\theta = 1$, then

$$f(y|\theta) = \begin{cases} \frac{1}{2\sqrt{y}} & 0 < y < 1\\ 0 & \text{else.} \end{cases}$$

Find the maximum likelihood estimator of θ .

- 5. Let Y be a single observation from a normal distribution with mean θ and variance θ^2 , where $\theta > 0$. Find the maximum likelihood estimator of θ^2 .
- 6. Let $Y_1, ..., Y_n$ be a random sample from a distribution with pdf

$$f(y|\mu,\sigma) = \frac{1}{\sigma} \exp\left\{-\left(\frac{y-\mu}{\sigma}\right)\right\} \mathbbm{1}\{y \geq \mu\},$$

where $-\infty < \mu < \infty$, and $\sigma > 0$.

- (a) Find the maximum likelihood estimators of μ and σ . (Hint: find $\hat{\mu}$ first)
- (b) Let $\tau(\mu, \sigma) = \mathbb{P}_{\mu, \sigma}(Y_1 \ge t)$, where $t > \mu$, and $\mathbb{P}_{\mu, \sigma}$ denotes probability when μ, σ are the true parameters. Find the maximum likelihood estimator of $\tau(\mu, \sigma)$.

1