CSCI 377 Class Notes

Computer Algorithms

Recurrence of Dividing Functions

Review of Decreasing Function Recurrence

- Three methods to solve:
 - Recursion Trees
 - Break down function until you reach base case outlined in function definition
 - Substitution Method
 - lacksquare Substitute in values into original T(n) expression
 - Master Theorem
 - For the General Form

$$T(n) = a * T(n-b) + f(n)$$

- where,
 - lacksquare a>0, b>0, and $f(n)= heta(n^d)$
- \blacksquare Case 1: a < 1
 - $lacksquare T(n) = O(n^d)$
- Case 2: a > 1

$$T(n) = O(n^k * a^{n/b})$$

- Case 3: a = 1
 - $\quad \blacksquare \ T(n) = O(n * f(n))$

Dividing Functions

- ullet Must always have your answer, T(n) as a function of n
 - $\circ~$ For example, if $rac{n}{2^k}=1$, and T(n)=k
 - \circ We know, $n=2^k$, so k=log(n)
 - \circ Finally, T(n) = log(n)

Example

•
$$T(n) = 1$$
 if $n = 1$

•
$$T(n) = T(\frac{n}{2}) + n$$
 if $n > 1$

- $\circ \;\;$ Goes from T(n) to $T(\frac{n}{2^k})$
 - Result is:

$$T(n) = n + rac{n}{2} + rac{n}{2^2} + rac{n}{2^3} + ... + rac{n}{2^{k-1}} + rac{n}{2^k} \ T(n) = n(1 + (rac{1}{2} + rac{1}{2^2} + ... + rac{1}{2^k})) \ T(n) = n(1 + \sum_{i=0}^k rac{1}{2^i}) \ T(n) = n(1+1) = 2n = O(n)$$

Master Theorem for Dividing Functions

• For the General Form

$$\circ \ T(n) = a*T(rac{n}{b}) + heta(n^d)$$

where

•
$$a > 0, b > 1, d > 0$$
 (all constant)

• Case 1: $d < \log_b(a)$

$$\circ \ T(n) = heta(n^{log_b(a)})$$

• Case 2: $d > \log_b(a)$

$$\circ \ T(n) = \theta(n^d)$$

• Case 3: $d = \log_b(a)$

$$\circ \ T(n) = \theta(n^{log_b(a)}log(n)) = \theta(n^dlog(n))$$

Example 1

$$T(n) = 4T(rac{n}{2}) + heta(n^1) \ a = 4, b = 2, d = 1 \ d < \log_b(a) \ T(n) = heta(n^{log_2(4)}) = heta(n^2)$$

Example 2

$$T(n) = 2T(rac{n}{2}) + heta(n^1) \ a = 2, b = 2, d = 1 \ \log_b(a) = \log_2(2) = 1 \ d = \log_b(a)$$

$$T(n) = \theta(n\log(n))$$

Example 3

$$T(n) = 2T(rac{n}{2}) + heta(n^2) \ a = 2, b = 2, d = 2 \ \log_b(a) = \log_2(2) = 1 \ d > \log_b(a) \ T(n) = heta(n^2)$$