Given a row wise and column wise sorted matrix, find out whether element ${\bf k}$ is present or not.

		0	1	, 2	3
A :	0	-5	-2 4		13
		- 4	0	3	M
	2	-3	2	6	19
	•				

0(1)

$$K = 13$$
 Tone
 $K = 2$ Type
 $K = 15$ False

Route Force

Sterate	Over	unt.re	matrix	and	scarch	fo ₁	K
ፐ ‹ ር :	0(N·M)						
S. C.:	٥٢١)						

else

70 W++

6 (12) (2-8) 2-3	V = 16	5	ID		(20)
	Kal	G	(12)	(2-8)	23
		7		21	30
35 49	0	(1),	(26)	33	48


```
Search for target in Sorted Matrix
```

```
bool searchInMatrix(int arr[n][m], int target){
   row = 0, col = m-1;

   while(row < n && col >= 0){
       if(a[row][col] == target)
            return true;
       else if(a[row][col] < T){
            row++;
       }
       else
            col--;
   }

// If element is not found, return false
   return false;
}</pre>
```

T-C: 0 (N+M)
S-C: 0(1)

for (1=0 -) N-1] {

for (J.O -) M-1) {

: ton nt = (i+1) (N-i) (j+1) (M-j

ans += 10 wort x A (i)(i))

y

seturn ans;

T-C'- O(N·M)

₹:2 4 °

```
Pustan: hiven an unsuited array of
   positive intraers, find the first missing
      natural numbers
A = \begin{bmatrix} 3 & 7 & 2 & 1 & 2 & 6 \end{bmatrix} = 3 & 4
  A: [9264813] => 5
      A: [345837847]=1
  M = 2 4 2 1 3 ) => 5
→ A: [125643] → 7
                Ary: [1, N7]
=) A = [2 1000, 4000]
Brute Force
    for ( i=1; i < N+1; i+) {
      - 11 chak it i crists
                            -> O(N)
    T.C: O(N)
     S.C: OCI)
```

Approache:	Soft	He	array		
		find.	he ist	missing	n ataral
nambe &					
	c: oLNI				
<u>چ</u>	C: 0(1)			
Approahs:					
Ans '.	[] N+1	J			
-) It any fren			nrmbi		· · · · · · · · · · · · · · · · · · ·
7) It all			in [1,N]		present
1,2,3		N, N+)		
A :	-8 -1	-4 - 2 3	2 6 -3 n·	: r	
	rr	P	Î		1's m/8117
N=6 AN: E1,	7]				

```
0: Mark the
                              prensu
                                           3)
 A:
                                      uis missing
   N=
         [1,8]
      Inder D:
for(i \rightarrow 0 to N - 1) {
    ele = absolute(A[i]);
   if(ele >= 1 and ele <= N) {
       int idx = ele - 1;
       A[idx] = -1 * absolute(A[i]);
 for(i \rightarrow 0 to N - 1) {
     if(A[i] > 0) return i + 1;
 return N + 1;
```



```
for(i -> 0 to N - 1) {
    if(A[i] <= 0) {
        A[i] = N + 2;
    }
}

for(i -> 0 to N - 1) {
    ele = abs(A[i]);

    if(ele >= 1 && ele <= N) {
        idx = ele - 1;
        A[idx] = -1 * abs(A[i]);
    }
}

for(i -> 0 to N - 1) {
    if(A[i] > 0) return i + 1;
}
return N + 1;
```

$$A = \begin{bmatrix} -1 & 1 & -1 & -2 & -3 & 5 \\ 0 & 1 & 2 & 3 & 5 \end{bmatrix}$$

