Lecture 3: Recursive Functions Models of Computation

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

July 9, 2025

course primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro	classic models		additional models	
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	$\begin{array}{ll} \lambda\text{-terms, }\beta\text{-reduction,}\\ \lambda\text{-definable functions,}\\ \text{partial recursive}\\ =\lambda\text{-definable}\\ =\text{Turing computable} \end{array}$	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran comparing computational power

course primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Overview

ourse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Today

Recursive functions

- primitive recursive functions
- Gödel–Herbrand(–Kleene) general recursive functions
- partial recursive functions
 - defined with μ -recursion (unbounded minimisation)
- Partial recursive functions = Turing computable functions

Timeline: From logic to computability

1900	Hilbert's 23 Problems in mathematics
1910/12/13	Russell/Whitehead: Principia Mathematica
1928	Hilbert/Ackermann: formulate completeness/decision problems
	for the predicate calculus (the latter called 'Entscheidungsproblem')
1929	Presburger: completeness/decidability of theory of addition on $\ensuremath{\mathbb{Z}}$
1930	Gödel: completeness theorem of predicate calculus
1931	Gödel: incompleteness theorems for first-order arithmetic
1932	Church: λ -calculus
1933/34	Herbrand/Gödel: general recursive functions
1936	Church/Kleene: λ -definable \sim general recursive
	Church Thesis: 'effectively calculable' be defined as either
	Church shows: the 'Entscheidungsproblem' is unsolvable
	Post: machine model; Church's thesis as 'working hypothesis'
1937	Turing: convincing analysis of a 'human computer'
	leading to the 'Turing machine'

Turing-computable (total) functions

Definition

A total function $f:\mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \not b, F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:

• for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

$$q_0\langle n_1\rangle$$
 b($n_2\rangle$ b...b($n_k\rangle$ $\vdash_M^* q\langle f(n_1,\ldots,n_k)\rangle$

Recursive Functions

Primitive recursive functions defined by recursive equations:

like e.g. functions $+,\cdot,(\cdot)^{\cdot}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $(\cdot)!: \mathbb{N} \to \mathbb{N}$:

$$n + 0 = n$$
 $n \cdot 0 = 0$
 $n + (m+1) = (n+m) + 1$ $n \cdot (m+1) = n \cdot m + n$
 $n^0 = 1$ $0! = 1$
 $n^{m+1} = n^m \cdot n$ $(n+1)! = (n+1) \cdot n!$

primitive recursive functions: defined by such equations (termination of the evaluation process guaranteed)

general recursive functions: defined by more general systems of equations

 μ -recursive (partial recursive) functions: extend the primitive recursive functions by a μ -operator that allows to construct partial functions

course primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Rósza Péter

Rósza Péter (1905-1977)

Primitive recursive functions ($\mathbb{N}^k \to \mathbb{N}$)

Base functions:

- ▶ $\mathcal{O}: \mathbb{N}^0 = \{\emptyset\} \to \mathbb{N}, \emptyset \mapsto 0$ (0-ary constant-0 function)
- ▶ succ : $\mathbb{N} \to \mathbb{N}$, $x \mapsto x + 1$ (successor function)
- \bullet $\pi_i^n: \mathbb{N}^n \to \mathbb{N}$, $\vec{x} = \langle x_1, \dots, x_n \rangle \mapsto x_i$ (projection function)

Closed under operations:

▶ composition: if $f: \mathbb{N}^k \to \mathbb{N}$, and $g_i: \mathbb{N}^n \to \mathbb{N}$ are prim. rec., then so is $h = f \circ (g_1 \times \ldots \times g_k) : \mathbb{N}^n \to \mathbb{N}$:

$$\mathbf{h}(\vec{x}) = f(g_1(\vec{x}), \dots, g_k(\vec{x}))$$

▶ primitive recursion: if $f: \mathbb{N}^n \to \mathbb{N}$, $g: \mathbb{N}^{n+2} \to \mathbb{N}$ are prim. rec., then so is $h = \operatorname{pr}(f; g): \mathbb{N}^{n+1} \to \mathbb{N}$:

$$h(\vec{x},0) = f(\vec{x})$$
$$h(\vec{x},y+1) = g(\vec{x},h(\vec{x},y),y)$$

Primitive recursive functions ($\mathbb{N}^n \to \mathbb{N}^l$)

Base functions:

- $\mathcal{O}: \mathbb{N}^0 = \{\emptyset\} \to \mathbb{N}, \emptyset \mapsto 0 \text{ (0-ary constant-0 function)}$
- ▶ succ : $\mathbb{N} \to \mathbb{N}$, $x \mapsto x + 1$ (successor function)
- \bullet $\pi_i^n: \mathbb{N}^n \to \mathbb{N}$, $\vec{x} = \langle x_1, \dots, x_n \rangle \mapsto x_i$ (projection function)
- for n > 1: $id^n : \mathbb{N}^n \to \mathbb{N}^n$, $\vec{x} = \langle x_1, \dots, x_n \rangle \mapsto \vec{x}$ (*n*-ary identity f.)

Closed under operations:

- ▶ composition: if $f: \mathbb{N}^{km} \to \mathbb{N}^l$, and $g_i: \mathbb{N}^n \to \mathbb{N}^m$ are prim. rec., then so is $h = f \circ (g_1 \times \ldots \times g_k) : \mathbb{N}^n \to \mathbb{N}^l$: $h(\vec{x}) = f(g_1(\vec{x}), \ldots, g_k(\vec{x}))$
- ▶ primitive recursion: if $f: \mathbb{N}^n \to \mathbb{N}^l$, $g: \mathbb{N}^{n+l+1} \to \mathbb{N}^l$ are prim. rec., then so is $h = \operatorname{pr}(f; q): \mathbb{N}^{n+1} \to \mathbb{N}^l$:

$$h(\vec{x}, 0) = f(\vec{x})$$

$$h(\vec{x}, y + 1) = g(\vec{x}, h(\vec{x}, y), y)$$

urse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg r

Primitive recursive functions (exercises)

Exercise

Show that the following functions are primitive recursive:

- addition
- constant functions
- multiplication
- (positive) sign-function
- the representing functions $\chi_{=}$ and $\chi_{<}$ for the predicates = and <.

Try-yourself-Examples

Show that the following functions are primitive recursive:

- exponentiation
- factorial

se primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg re

Admissible operations for primitive recursive functions

Proposition

1 definition by case distinction:

$$f(\vec{x}) := \begin{cases} f_1(\vec{x}) & \dots P_1(\vec{x}) \\ f_2(\vec{x}) & \dots \wedge P_2(\vec{x}) \neg P_1(\vec{x}) \\ \dots \\ f_k(\vec{x}) & \dots \wedge P_k(\vec{x}) \wedge \neg P_{k-1}(\vec{x}) \wedge \dots \neg P_1(\vec{x}) \\ f_{k+1}(\vec{x}) & \dots \wedge \neg P_k(\vec{x}) \wedge \dots \neg P_1(\vec{x}) \end{cases}$$

2 definition by bounded recursion:

$$\mu \mathbf{z}_{\leq y}. \ [P(x_1, \dots, x_n, \mathbf{z})] \coloneqq \\ \begin{cases} \mathbf{z} & \dots \neg P(x_1, \dots, x_n, i) \ \textit{for} \ 0 \leq i < \mathbf{z} \leq y, \\ & \quad \textit{and} \ P(x_1, \dots, x_n, \mathbf{z}) \\ y + 1 & \dots \neg \exists z. \ \land \ 0 \leq z \leq y P(x_1, \dots, x_n, z) \end{cases}$$

ourse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg re

Properties of primitive recursive functions

Proposition

- Every primitive recursive function is total.
- ② Every primitive recursive function is Turing-computable.

Proof.

For (2):

- the base functions are Turing-computable
- ▶ the Turing-computible functions are closed under the schemes composition and primitive recursion

Turing-computable (total) functions

Definition

A total function $f:\mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \not b, F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:

• for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

$$q_0\langle n_1\rangle$$
 b $\langle n_2\rangle$ b...b $\langle n_k\rangle \vdash_M^* q\langle f(n_1,\ldots,n_k)\rangle$

Features of computationally complete MoC's present?

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- loop (unbounded)
- stopping condition

Features of computationally complete MoC's present?

- ▶ storage (unbounded) √
- ▶ control (finite, given) √
- ▶ modification √
 - of (immediately accessible) stored data
 - of control state
- ▶ conditionals √
- ▶ loop √ (unbounded)
- ▶ stopping condition √

Features of computationally complete MoC's present?

- ▶ storage (unbounded) √
- ▶ control (finite, given) √
- ▶ modification √
 - of (immediately accessible) stored data
 - of control state
- ▶ conditionals √
- ▶ loop √ (unbounded) ×
- ▶ stopping condition √

e primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Not primitive recursive (I)

Proposition

There exist calculable/Turing-computable functions that are not primitive recursive.

Proof.

By diagonalisation.

rse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Not primitive recursive (II): Ackermann function

Wilhelm Ackermann (1896-1962)

Not primitive recursive (II): Ackermann function

Ackermann function $A : \mathbb{N}^2 \to \mathbb{N}$ (simplified version by Rósza Péter):

$$A(0,x) = Succ(x)$$
 $A(x+1,0) = A(x,Succ(0))$
 $A(x+1,y+1) = A(x,A(x+1,y))$

A is not primitive recursive, it grows too fast:

$$A(0,n) = n + 1$$

$$A(1,n) = n + 2$$

$$A(2,n) = 2n + 3$$

$$A(3,n) = 2^{n+3} - 2$$

$$A(4,n) = \underbrace{2^{2}}_{n} - 3$$

Not primitive recursive (II): Ackermann function

Ackermann function $A : \mathbb{N}^2 \to \mathbb{N}$ (simplified version by Rósza Péter):

$$A(0,x) = Succ(x)$$
 $A(x+1,0) = A(x,Succ(0))$
 $A(x+1,y+1) = A(x,A(x+1,y))$

A grows faster than every primitive recursive function:

Theorem

For every primitive recursive $f : \mathbb{N} \to \mathbb{N}$ there exists some $i \in \mathbb{N}$ such that f(i) < A(i, i).

se primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refe

Jacques Herbrand

Jacques Herbrand (1908-1931)

urse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refe

Kurt Gödel

Kurt Gödel (1906-1978)

Gödel-Herbrand general recursive function

Defined by systems of recursion equations like that for the Ackermann function:

$$A(0,x) = \mathsf{Succ}(x)$$

$$A(\mathsf{Succ}(x),0) = A(x,\mathsf{Succ}(0))$$

$$A(\mathsf{Succ}(x),\mathsf{Succ}(y)) = A(x,A(\mathsf{Succ}(x),y))$$

Gödel-Herbrand general recursive function

Defined by systems of recursion equations like that for the Ackermann function:

$$A(0,x) = Succ(x)$$

$$A(Succ(x),0) = A(x,Succ(0))$$

$$A(Succ(x),Succ(y)) = A(x,A(Succ(x),y))$$

Numerals:
$$\langle 0 \rangle \coloneqq 0$$
, and $\langle n \rangle \coloneqq \underbrace{\mathsf{Succ}(\dots \mathsf{Succ}(0))}_n$ for $n > 1$.

Definition

A function $f: \mathbb{N}^k \to \mathbb{N}$ is called general recursive if it can be defined by (such a) system S of recursion equations via a function symbol F if for all $n_1, \ldots, n_k \in \mathbb{N}$, the expression $F(\langle n_1 \rangle, \ldots, \langle n_k \rangle)$ evaluates according to S to a unique numeral $\langle n \rangle$, and such that furthermore: $n = f(n_1, \ldots, n_k)$.

se primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg ref

Stephen Cole Kleene

Stephen Cole Kleene (1906–1994)

Unbounded minimisation (μ-recursion)

Let $f: \mathbb{N}^{k+1} \to \mathbb{N}$ total. Then the partial function defined by:

$$\mu(f): \mathbb{N}^k \to \mathbb{N}$$

$$\vec{x} \mapsto \begin{cases} \min\{y \mid f(\vec{x}, y) = 0\} & \dots \exists y (f(\vec{x}, y) = 0) \\ \uparrow & \dots \text{ else} \end{cases}$$

is called the unbounded minimisation of f.

Unbounded minimisation (μ -recursion)

Let $f: \mathbb{N}^{k+1} \to \mathbb{N}$ total. Then the partial function defined by:

$$\mu(f): \mathbb{N}^k \to \mathbb{N}$$

$$\vec{x} \mapsto \begin{cases} \min\{y \mid f(\vec{x}, y) = 0\} & \dots \exists y (f(\vec{x}, y) = 0) \\ & \dots \text{ else} \end{cases}$$

is called the unbounded minimisation of f.

Let $f: \mathbb{N}^{k+1} \to \mathbb{N}$ partial. Then the partial function $\mu(f)$:

$$\mu(f): \mathbb{N}^k \to \mathbb{N}$$

$$\vec{x} \mapsto \begin{cases} z & \dots f(\vec{x}, z) = 0 \land \forall y \left(0 \le y < z \to (f(\vec{x}, y) \downarrow \neq 0)\right) \\ \uparrow & \dots \neg \exists y \left(f(\vec{x}, y) = 0 \land \forall z \left(0 \le z < y \to (f(\vec{x}, z) \downarrow\right)\right) \end{cases}$$

is called the unbounded minimisation of f.

nurse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg re

Partial, and total, recursive functions

Definition

A partial function $f: \mathbb{N}^n \to \mathbb{N}^l$ is called partial recursive if it can be specified from base functions $(\mathcal{O}, \mathsf{succ}, \pi_i^n, \mathsf{and} \; \mathrm{id}^n)$ by successive applications of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

ourse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg n

Partial, and total, recursive functions

Definition

A partial function $f: \mathbb{N}^n \to \mathbb{N}^l$ is called partial recursive if it can be specified from base functions (\mathcal{O} , succ, π_i^n , and id^n) by successive applications of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Proposition

Every partial recursive function is Turing-computable.

Turing-computable functions

Definition

- **1** A total function $f: \mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \not b, F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:
 - for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

```
q_0\langle n_1\rangle b(n_2)b...b\langle n_k\rangle \vdash_M^* q\langle f(n_1,...,n_k)\rangle
```

Turing-computable functions

Definition

- ② A partial function $f: \mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \not t , F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:
 - for all $n_1, \ldots, n_k \in \mathbb{N}$:

$$M$$
 accepts $\langle n_1 \rangle \not b \langle n_2 \rangle \not b \dots \not b \langle n_k \rangle \iff f(n_1, \dots, n_k) \downarrow$

• for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

$$f(n_1,\ldots,n_k)\downarrow \implies q_0\langle n_1\rangle \mathcal{B}(n_2)\mathcal{B}\ldots\mathcal{B}(n_k)\vdash_M^* q\langle f(n_1,\ldots,n_k)\rangle$$

Turing-computable functions

Definition

- **1** A total function $f: \mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \not b, F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:
 - for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that: $q_0\langle n_1 \rangle \not b \langle n_2 \rangle \not b \ldots \not b \langle n_k \rangle \vdash_M^* q \langle f(n_1, \ldots, n_k) \rangle$
- ② A partial function $f: \mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \not b, F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:
 - for all $n_1, \ldots, n_k \in \mathbb{N}$:

$$M$$
 accepts $\langle n_1 \rangle \not b \langle n_2 \rangle \not b \dots \not b \langle n_k \rangle \iff f(n_1, \dots, n_k) \downarrow$

• for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

$$f(n_1,\ldots,n_k)\downarrow \implies q_0\langle n_1\rangle \mathcal{B}(n_2)\mathcal{B}\ldots\mathcal{B}(n_k)\vdash_M^* q\langle f(n_1,\ldots,n_k)\rangle$$

ourse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg re

Partial recursive vs. Turing-computable functions

Lemma

Every Turing-computable function is partial recursive.

Partial recursive vs. Turing-computable functions

Lemma

Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene's normal form theorem)

For every Turing-computable, partial function (and hence for every partial recursive function) $h: \mathbb{N}^k \to \mathbb{N}$ there exist primitive recursive functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N}^{k+1} \to \mathbb{N}$ such that:

$$h(x_1,\ldots,x_n)=(f\circ\mu(g))(x_1,\ldots,x_n)$$

ourse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg n

Partial recursive vs. Turing-computable functions

Lemma

Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene's normal form theorem)

For every Turing-computable, partial function (and hence for every partial recursive function) $h: \mathbb{N}^k \to \mathbb{N}$ there exist primitive recursive functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N}^{k+1} \to \mathbb{N}$ such that:

$$h(x_1,\ldots,x_n) = (f \circ \mu(g))(x_1,\ldots,x_n)$$

Theorem

The Turing-computable (partial) functions coincide with the partial recursive functions. se primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg ref

Church's Thesis

Alonzo Church (1903 - 1995)

Thesis (Church, 1936)

Every effectively calculable function is general recursive.

se primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

λ -calculus

Alonzo Church (1903 - 1992)

Theorem (Kleene/Church, 1935)

Every λ -definable function is general recursive, and vice versa.

urse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg

Typical features of 'computationally complete' MoC's

storage (unbounded)

- storage (unbounded)
- control (finite, given)

- storage (unbounded)
- control (finite, given)
- modification

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- qool <

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- loop
- stopping condition

purse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Summary

- \blacktriangleright

- ► A-hierarchy

ourse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg ref

Recommended reading

Recursive and primitive-recursive functions:

Chapter 3, The Lambda Calculus of the book:

 Maribel Fernández [1]: Models of Computation (An Introduction to Computability Theory), Springer-Verlag London, 2009. course primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro	classic models			additional models
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	$\begin{array}{ll} \lambda\text{-terms, }\beta\text{-reduction,}\\ \lambda\text{-definable functions,}\\ \text{partial recursive}\\ = \lambda\text{-definable}\\ = \text{Turing computable} \end{array}$	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran
				comparing computational power

course primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Example suggestions

Examples

- 1.
- 2.
- 3.

ourse primitive recursive feature lacking Gödel-Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

References

Maribel Fernández.

Models of Computation (An Introduction to Computability Theory).

Springer, Dordrecht Heidelberg London New York, 2009.