Linear Algebra - Cheat Sheet (HS22)

Mattia Taiana

26. December 2022

1 Complex Numbers

General

$$\begin{split} z &= \underbrace{x}_{\text{Re}} + i \underbrace{y}_{\text{Im}} = \underbrace{r \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) = r \cdot e^{i\varphi}}_{\text{Polarform}} \\ \overline{z} &= x - i y = r \cdot e^{i(2\pi - \varphi)} \\ |z| &= r = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}} \\ \varphi &= \begin{cases} arctan(\frac{y}{x}), & \text{I } Q. \\ arctan(\frac{y}{x}) + \pi, & \text{II/III } Q. \\ arctan(\frac{y}{x}) + 2\pi, & \text{IV } Q. \end{cases} \end{split}$$

Operations

$$+/-: (x_{1} + x_{2}) + (y_{1} + y_{2})i$$

$$z_{1} \cdot z_{2} : (x_{1} + y_{1}i)(x_{2} + y_{2}i) = r_{1} \cdot r_{2} \cdot e^{i(\varphi_{1} + \varphi_{2})}$$

$$\frac{z_{1}}{z_{2}} : \frac{z_{1} \cdot \overline{z}_{2}}{|z_{2}|^{2}} = \frac{r_{1}}{r_{2}} \cdot e^{i(\varphi_{1} - \varphi_{2})}$$

$$z^{n} : r^{n} \cdot e^{i\varphi n}$$

$$\sqrt{a} : a = z^{n} \Leftrightarrow |a| \cdot e^{i\alpha} = r^{n} \cdot e^{i\varphi n} \begin{cases} r = \sqrt[n]{|a|} \\ \varphi = \frac{\alpha + 2k\pi}{n} \\ k = 0, \dots, n - 1 \end{cases}$$

Polynomials

degree 2:
$$z = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$

special case: $az^n + c = 0 \Leftrightarrow z = \sqrt[n]{-\frac{c}{a}}$

With polynomials with complex roots, the roots occur as a complex-conjugate pair.

Polynomials over $\mathbb C$ with an odd degree have at least one root in $\mathbb R$.

2 LSE

Gauss-Algorithm

runtime: $O(n^3)$

elementary row operations:

switch, multiply and add/subtract rows

goal: row echelon form

if RHS always 0: homogeneous LSE consistency conditions (VB): $b_{r+1} = ... = b_m = 0$

Number of solutions

- T 1.1 Ax = b min. 1 solution \Leftrightarrow (r = m) or (r < m + VB) if this is the case:
 - r = n: only 1 solution
 - r < n: ∞ many solutions
 - $\Rightarrow r = m$:
 - r = n = m: only 1 solution, non-singular LSE
 - r < n: ∞ many solutions, (n r) free parameters
 - r = n: only 1 solution
 - r < n: ∞ many solutions, (n r) free parameters
- K 1.5 In a homogeneous LSE non-trivial solutions exist only if r < n.
- T 2.5 Ax = b has a solution \Leftrightarrow b is a linear combination of columnyectors of A

3 Matrices & Vectors

General

 $m \times n$ Matrices have m rows and n columns. The element (i, j) can be denoted as $a_{i,j}$ or $(A)_{i,j}$

T 2.1
$$(\alpha\beta)A = \alpha(\beta A)$$

 $(\alpha A)B = \alpha(AB)$
 $(\alpha + \beta) \cdot A = \alpha A + \beta A$
 $\alpha(A+B) = \alpha A + \alpha B$
 $A+B=B+A$
 $(A+B)+C=A+(B+C)$
 $(AB)\cdot C=A\cdot (BC)$
 $(A+B)\cdot C=AC+BC$
 $(A+B)\cdot C=AC+BC$

 $\underline{\wedge}$ in general $AB \neq BA$ If AB = BA we say «A and B commute»

- Def. If AB = O, we call A and B divisors of zero.
- Def. A linear combination of vectors $a_1...a_n$ is an expression of the following type: $\alpha_n \cdot a_n + ... + \alpha_1 \cdot a_1$
- Def. A matrix is symmetric when $A^T = A$ and Hermitian when $A^H = A$ (real diagonal).
- Def. A matrix is skew-symmetric when $A^T = -A$. (zeros on diagonal)
- T 2.6 $(A^T)^T = A$ $(\alpha A)^T = \alpha (A^T)$ $(AB)^T = B^T A^T$ $(A+B)^T = A^T + B^T$
- T 2.7 If A, B symmetric: $AB = BA \Leftrightarrow AB$ symmetric For any A: $A^T A = AA^T$ (symmetric)

Scalar Product and Norm

Def. Eucl. scalar product (SP): $\langle x, y \rangle :\equiv x^H y$ (inner product)

T 2.9 linearity in second factor: $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$

 $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$

symmetric / hermitian: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ positive definite: $\langle x, x \rangle \ge 0$: if $' = ' \Rightarrow x = 0$

C 2.10 bilinearity in \mathbb{R}^n : $\langle w + x, y \rangle = \langle w, y \rangle + \langle x, y \rangle$

 $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$

sesquilinearity in \mathbb{C}^n : $\langle w + x, y \rangle = \langle w, y \rangle + \langle x, y \rangle$

 $\langle \alpha x, y \rangle = \overline{\alpha} \langle x, y \rangle$

Def. Eucl. norm / 2-norm: $||x|| := \sqrt{\langle x, x \rangle}$

Cauchy-Schwarz inequality (CBS inequality)

 $|\langle x, y \rangle| \le ||x|| \cdot ||y||$

The equality holds iff y is a multiple of x or vice versa

T 2.12 The following holds for the 2-norm:

(N1) positive definite: $||x|| \ge 0$, if $' = ' \Rightarrow x = 0$

(N2) $||\alpha x|| = |\alpha| ||x||$

(N3) triangle inequality: $||x \pm y|| \le ||x|| + ||y||$

Def. angle φ between x and y: $\varphi = arc cos \left(\frac{\langle x, y \rangle}{||x|| \cdot ||y||} \right)$

Def. x and y are orthogonal, if $\langle x, y \rangle = 0$; $x \perp y$

T 2.13 Pythagoras: $||x \pm y||^2 = ||x||^2 + ||y||^2$, if $x \perp y$

Def. p-Norm: $||x||_p := (|x_1|^p + ... + |x_n|^p)^{\frac{1}{p}}$

Outer Product and Projection

Def. The outer product is the matrix that is returned, when multiplying the vectors x and y: $x \cdot y^H$ (rank = 1)

T 2.15 The orthogonal projection $P_y x$ of x on y is given by: $P_y x := \frac{1}{\|y\|^2} y y^H x$

Def. The projection matrix $P_y = \frac{1}{||y||^2} \cdot yy^H$ $P_y^H = P_y$ (Hermitian), $P_y^2 = P_y$ (Idempotent)

Linear Transformations

For all $x, \tilde{x} \in \mathbb{E}^n$ and $\gamma \in \mathbb{E}$: $A(\gamma x + \tilde{x}) = \gamma(Ax) + (A\tilde{x})$

Def. image of A: $imA := \{Ax \in \mathbb{E}^m; x \in \mathbb{E}^n\}$

Inverse

Def. A nxn matrix A is invertible, if there exists a matrix A^{-1} , such that $A \cdot A^{-1} = I_n = A^{-1}A$.

T 2.17 4 equivalent statements:

i) A is invertible

ii) $\exists X$ such that $AX = I_n$

iii) X is definitive

iv) A is non-singular, i.e. $\operatorname{rank} A = n$

T 2.18 With two non-singular nxn matrices *A* and *B*:

i) A^{-1} is non-singular and $(A^{-1})^{-1} = A$

ii) AB is non-singular and $(AB)^{-1} = B^{-1}A^{-1}$

iii) A^H is non-singular and $(A^H)^{-1} = (A^{-1})^H$

T 2.19 If *A* is non-singular, Ax = b has exactly one solution for every b: $x = A^{-1}b$

Find inverse $O(n^3)$: $[A | I] \longrightarrow [I | A^{-1}]$

-> using elementary row operations

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $det A \neq 0 \Leftrightarrow A^{-1} = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Orthogonal and Unitary Matrices

Def. We call a matrix unitary or orthogonal, if $A^H A = I_n$, $A^T A = I_n$ respectively.

T 2.20 Let A and B be unitary:

i) A is non-singular and $A^{-1} = A^H$

ii) $AA^H = I_n$

iii) A^{-1} is unitary (/orthogonal)

iv) AB is unitary (/orthogonal)

T 2.21 A linear transformation defined by an orthogonal or unitary nxn matrix A is length preserving (/isometric) and angle preserving: $||Ax|| = ||x||, \langle Ax, Ay \rangle = \langle x, y \rangle$

Examples of Important Matrices

Rotationmatrices (orthogonal)

$$\begin{bmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{bmatrix} \text{ or } \begin{bmatrix} \cos(\varphi) & 0 & \sin(\varphi) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Permutationmatrices (orthogonal)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Blockmatrice

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \text{ if invertible } A^{-1} = \begin{pmatrix} a_{11}^{-1} & a_{12}^{-1} \\ a_{21}^{-1} & a_{22}^{-1} \end{pmatrix}$$

4 LU-Decomposition

LU-Decomposition

The LU-Decomposition is a tool to solve SLE. It does this by factorizing a matrix, making it easy to solve the same matrix vor different RHS.

1. Find PA = LR

2. Solve Lc = Pb (forward subst.)

3. Solve Rx = c (backward subst.)

If rows are swapped P gets permutated.

 $\begin{bmatrix} 1 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 2 & 2 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{3}{2} & 2 & \frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{3}{2} & 2 & \frac{1}{2} & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{3}{2} & 2 & \frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -\frac{4}{3} & \frac{1}{2} & \frac{3}{3} & 1 \end{bmatrix}$

partial pivoting as a pivot strategy to minimize rounding errors

5 Vector Spaces

General

- Def. A vector space V over E is a non-empty set, on which addition and scalar multiplication are defined.
- Axioms (V1) x + y = y + x $(\forall x, y \in V)$
 - $(V2) (x+y) + z = x + (y+z) (\forall x, y, z \in V)$
 - (*V*3) $\exists o \in V : x + o = x$ $(\forall x \in V)$ zero vector
 - $(V4) \qquad \forall x \,\exists (-x) : x + (-x) = o \ (\forall x \in V)$
 - (V5) $\alpha(x + y) = \alpha x + \alpha y$ $(\forall \alpha \in \mathbb{E}, \forall x, y \in V)$
 - $(V6) \qquad (\alpha + \beta)x = \alpha x + \beta x$
 - $(\forall \alpha, \beta \in \mathbb{E}, \ \forall x \in V)$ $(V7) \qquad (\alpha\beta)x = \alpha(\beta x)$
 - $(\forall \alpha, \beta \in \mathbb{E}, \ \forall x \in V)$ $(V8) \qquad 1x = x \qquad (\forall x \in V)$
 - T 4.1 $\forall \alpha \in \mathbb{E}, \forall x, y \in V$
 - i) $0 \cdot x = 0$

ii) $\alpha o = o$

 $(\forall \alpha, \beta \in \mathbb{K})$

- iii) $\alpha \cdot x = 0 \Rightarrow x = 0 \text{ or } \alpha = 0$
- iv) $(-\alpha) \cdot x = \alpha \cdot (-x) = -(\alpha x)$
- T 4.2 $\forall x, y \in V$, $\exists z \in V$ x + z = y, where z is definite and z = y + (-x)

Fields

- Def. A Field is a non-empty set \mathbb{K} , on which addition and multiplication are defined.
- Axioms (*K*1) $\alpha + \beta = \beta + \alpha$ $(\forall \alpha, \beta \in \mathbb{K})$
 - (*K*2) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \ (\forall \alpha, \beta, \gamma \in \mathbb{K})$
 - (*K*3) $\exists o \in V : \alpha + o = \alpha$ ($\forall \alpha \in \mathbb{K}$) zero element
 - $(K4) \quad \forall \alpha \ \exists (-\alpha) : \alpha + (-\alpha) = o \ (\forall \alpha \in \mathbb{K})$
 - $(K5) \quad \alpha \cdot \beta = \beta \cdot \alpha$
 - (*K*6) $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$ $(\forall \alpha, \beta, \gamma \in \mathbb{K})$
 - (*K*7) $\exists 1 \in \mathbb{K} : \alpha \cdot 1 = \alpha$ ($\forall \alpha \in \mathbb{K}$) identity element
 - (K8) $\forall \alpha \in \mathbb{K}, \ \alpha \neq 0, \ \exists \alpha^{-1} \in \mathbb{K} :$ $\alpha \cdot (\alpha^{-1}) = 1$ inverse
 - (*K*9) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$ $(\forall \alpha, \beta, \gamma \in \mathbb{K})$
 - (K10) $(\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$ $(\forall \alpha, \beta, \gamma \in \mathbb{K})$

Subspaces

- Def. A subspace U is a non-empty subset of a vector space V, which is closed under sums and scalar multiples.
- T 4.3 A subspace is a vector space itself.
- T 4.4 With $A \in \mathbb{R}^{mxn}$ and L_0 containing solutions of Ax = o, L_0 is a subspace of \mathbb{R}^n .
- Def. The set of all linear combinations of $v_1, ..., v_n$ is a subspace spanned by these vectors. $span\{v_1, ..., v_n\}$ / linear hull of $v_1, ..., v_n$
- Def. The vectors $v_1, ..., v_n$ are a spanning set of V, if $\forall w \in V \Rightarrow w \in span\{v_1, ..., v_n\}$.

Linear Dependencies, Bases, Dimensions

Def. Vectors $v_1,...,v_n$ are linearly independent, if no vector is a linear combination of the others.

$$\sum_{k=0}^{n} \alpha_k v_k = 0, \text{ only if } \alpha_1 = \dots = \alpha_k = 0$$

- Def. A $span\{v_1,...,v_n\} = V$ is a basis of V, if $v_1,...,v_n$ are linearly independent. \Rightarrow standard basis consists of unit vectors
- Def. The dimension of V is denoted as, dimV = |spanV|. $dim\{0\} = 0$
- L 4.8 Any set $\{v_1, ..., v_m\} \subset V$ with $|B_V| < m$ is linearly dependent.
- T 4.9 Any set of linearly independent vectors of V can be extended to a basis of V.

 (as long as V has a finite spanning set)
- C 4.10 The set of n linearly independent vectors is a basis of V in any finite vector space, if dimV = n.
- Def. The coefficients ξ_k are coordinates of x in basis B. $\xi = (\xi_1...\xi_n)^T$ is the coordinate vector and $x = \sum_{i=1}^n \xi_i b_i$ is the representation of x in coordinates of B.
- Def. Two subspaces U, $U' \subset V$ are complementary, if every $v \in V$ has a specific representation v = u + u', with $u \in U$, $u' \in U'$. In that case V is the direct sum of U and U': $V = U \oplus U'$.

Change Of Basis, Coordinate Transformation

Def. To change from an old basis B to a new basis B' one can get the new basis vectors b'_{k} as follows:

$$b_k' = \sum_{i=1}^n \tau_{ik} b_i$$

 $T = (\tau_{ik})$ is called transformation matrix.

- T 4.13 $\xi = T\xi'$ and $\xi' = T^{-1}\xi$. T is invertible (non-singular)
- Def. $B' = B \cdot T$ to get the new basis.

6 Linear Maps

General

Def. A transformation $F: X \to Y$, $x \mapsto F(x)$ is linear, if the following holds:

$$F(x+\tilde{x})=F(x)+F(\tilde{x})$$

$$F(\gamma x) = \gamma F(x)$$

Functions

- Def. Injective: $\forall x, x' \in X : F(x) = F(x') \Rightarrow x = x'$
 - Surjective: F(X) = Y
 - Bijective: injective and surjective $\Rightarrow f^{-1}$ existiert

Transformation matrix

Let *F* be a linear transformation $X \to Y$. $F(b_l) \in Y$ can be written using a linear combination of the basis of Y:

$$F(b_l) = \sum_{k=1}^{m} a_{kl} c_k$$

Def. The mxn matrix $A = (a_{kl})$ is the matrix for F relative to the given bases in X and Y.

$$x \in X \xrightarrow{F} y \in Y$$

$$F(x) = y \Leftrightarrow A\xi = \eta \quad k_x^{-1} \downarrow k_x \qquad k_y^{-1} \downarrow k_y$$

$$\xi \in \mathbb{E}^n \xrightarrow{A} \eta \in \mathbb{E}^m$$

- Def. If F is bijective, we call it an isomorphism, if X = Y, we call it an automorphism.
- L 5.1 If F is an isomorphism, there exists F^{-1} and F^{-1} is also an isomorphism.

Kernel, Image and Rank

- Def. The kernel of F $ker F := \{x \in X | F(x) = o\}$ is a subspace of X. F injective $\Leftrightarrow ker F = \{o\}$ (T 5.6)
- Def. The image of F $im F := \{F(x) | x \in X\}$ is a subspace of Y. F surjective $\Leftrightarrow im F = Y$
- T 5.7 Rank-nullity theorem: dim X - dim(ker F) = dim(im F) = rankF
- Def. The rank F is defined as: rankF = dim(im F).
- $K5.8 \bullet F: X \rightarrow Y$ injective $\Leftrightarrow rankF = dim X$
 - $F: X \to Y$ surjective $\Leftrightarrow rankF = dim Y$
 - $F: X \to Y$ bijective $\Leftrightarrow rankF = dim X = dim Y$ Isomorphism
 - $F: X \to X$ bijective $\Leftrightarrow rankF = dim X$ Automorphism $\Leftrightarrow ker F = o$
- Def. Two vector spaces X, Y are isomorphic, if there exists an isomorphism $F: X \rightarrow Y$.
- T 5.9 Two finite vector spaces X, Y are isomorphic $\Leftrightarrow dim X = dim Y$
- C 5.10 i) $rank(G \circ F) \leq min\{rankF, rankG\}$
 - ii) G injective $\Rightarrow rank(G \circ F) = rankF$
 - iii) G surjective $\Rightarrow rank(G \circ F) = rankG$

Matrices as Linear Mappings

- Def. The column space / range of A is the subspace $R(A) = span\{a_1,...,a_n\} = im A$
- Def. The null space of A is the subspace $N(A) = L_0(Ax = o) = ker A$ #free_parameters = dim(N(A))
- T 5.12 With rankA = r and solution set L_0 of Ax = o: $dim L_0 \equiv dim N(A) \equiv dim(ker A) = n - r$
- T 5.13 for A^{mxn} : rankA = ...
 - i) #pivotelements in reduced form of A
 - ii) dim(im A)
 - iii) dim(column space)
 - iv) dim(row space)
- $C 5.14 \ rankA^T = rankA^H = rankA$
- T 5.16 With $A \in \mathbb{E}^{mxn}$, $B \in \mathbb{E}^{pxm}$:
 - i) $rank(BA) \le min\{rankB, rankA\}$
 - ii) $rankB = m(\le p) \Rightarrow rank(BA) = rankA$
 - iii) $rankA = m(\leq n) \Rightarrow rank(BA) = rankB$

- T 5.18 For square matrices the following statements are equivalent:
 - i) A is invertible
 - iii) rankA = n
 - v) rows are linearly independent
 - independent vii) $ker A \equiv N(A) = \{o\}$
 - ix) A is the transformation matrix for a coordinate transformation
- ii) A is non-singular
- iv) columns are lin. independent
- vi) $im A \equiv R(A) = \mathbb{E}^n$
- viii) $A: \mathbb{E}^n \to \mathbb{E}^n$ is an
 - automorphism

Affine Spaces and solutions to inhomogeneous LSE

- Def. Let *U* be a subspace of *V* and $u_0 \in V$: $u_0 + U := \{u_0 + u | u \in U\}$ is an affine (sub)space.
- Def. Let $F: X \to Y$ be a linear mapping and $y_0 \in Y$: $H: X \to y_0 + Y$, $x \mapsto y_0 + F(x)$ is an affine mapping.
- T 5.19 Let x_0 be any solution of Ax = b and let L_0 be the solution set for Ax = o:

 The solution set L_b to Ax = b is an affine subspace: $L_b = x_0 + L_0$

The Transformation matrix for coord, transformation

Let X, Y be vector spaces with dim X = n, dim Y = m: F: $X \rightarrow Y$, $x \mapsto y$ a linear map,

A: $\mathbb{E}^n \to \mathbb{E}^m$, $\xi \mapsto \eta$ a (mapping) matrix,

B: $\mathbb{E}^n \to \mathbb{E}^m$, $\xi' \mapsto \eta'$ a (mapping) matrix,

T: $\mathbb{E}^n \to \mathbb{E}^n$, $\xi' \mapsto \xi$ a transformation matrix in \mathbb{E}^n , S: $\mathbb{E}^m \to \mathbb{E}^m$, $\eta' \mapsto \eta$ a transformation matrix in \mathbb{E}^m ,

Def. Two nxn matrices A and B are similar, if there exists a non-singular matrix T, such that either $B = T^{-1} \cdot A \cdot T$ or $A = T \cdot B \cdot T^{-1}$. We call $A \mapsto B = T^{-1} \cdot A \cdot T$ a similarity transformation.

7 Vector Spaces with Scalar Product

General

Def. A norm in a vector space is a function

 $||\cdot||:V\to\mathbb{R},\,x\mapsto||x||$, which is:

(N1) positive definite: $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$

(N2) homogeneous: $||\alpha x|| = |\alpha| ||x||$

(N3) triangle inequality: $||x+y|| \le ||x|| + ||y||$ A vector space with norm is a normed vector space.

Def. A inner product in a vector space is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{E}, x, y \mapsto \langle x, y \rangle$, which is:

(S1) linearity (2nd factor): $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$

 $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$

(S2) hermitian (sym. in \mathbb{R}): $\langle x, y \rangle = \overline{\langle y, x \rangle}$

(S3) positive definite: $\langle x, x \rangle \ge 0$ $\langle x, x \rangle = 0 \Rightarrow x = 0$

Def. The induced norm / length of a vector is defined as: $||\cdot||: V \to \mathbb{R}, ||x|| \mapsto \sqrt{\langle x, x \rangle}$

T 6.1 Cauchy-Schwarz inequality: $|\langle x, y \rangle| \le ||x|| ||y||$

Def. The angle $\varphi = \angle(x, y)$, $0 \le \varphi \le \pi$, is defined as: $\varphi :\equiv arc \cos\left(\frac{\langle x, y \rangle}{||x|| ||y||}\right)$ or $\varphi :\equiv arc \cos\left(\frac{\operatorname{Re}\langle x, y \rangle}{||x|| ||y||}\right)$

Def. Two vectors are orthogonal, if $\langle x, y \rangle = 0$, $x \perp y$. Two subsets are orthogonal, if: $\forall x \in M, \ \forall y \in N \quad \langle x, y \rangle = 0, \ M \perp N$

T 6.2 Pythagoras: $x \perp y \Rightarrow ||x \pm y||^2 = ||x||^2 + ||y||^2$

Orthonormal Bases

- Def. A basis is orthogonal, if the basis vectors are pairwise orthogonal: $\langle b_k, b_l \rangle = 0$, for $k \neq l$. We call the basis orthonormal, if all basis vectors are of length 1: $\langle b_k, b_k \rangle = 1$.
- T 6.4 With an orthonormal basis $\{b_1, ..., b_n\}$ and $x \in V$:

$$x = \sum_{k=1}^{n} \langle b_k, x \rangle b_k \quad \Rightarrow \quad \xi_k = \langle b_k, x \rangle$$

T 6.5 Parseval's Identity: with $\xi_k := \langle b_k, x \rangle_V$, $\eta_k := \langle b_k, y \rangle_V$

$$\langle x, y \rangle_V = \sum_{k=1}^n \overline{\xi_k} \eta_k = \xi^H \eta = \langle \xi, \eta \rangle_{\mathbb{E}^n}$$

Therefore, the inner product of two vectors in V is equal to the scalar product of the respective coordinate vectors in \mathbb{E}^n :

$$||x||_V = ||\xi||_{\mathbb{E}^n} \quad \angle(x, y)_V = \angle(\xi, \eta)_{\mathbb{E}^n} \quad x \perp y \Leftrightarrow \xi \perp \eta$$

Gram-Schmidt Process

$$\begin{aligned} b_1 &\coloneqq \frac{a_1}{||a_1||_V} \\ \tilde{b_k} &\coloneqq a_k - \sum_{j=1}^{k-1} \langle b_j, a_k \rangle_V b_j \\ b_k &\coloneqq \frac{\tilde{b_k}}{||\tilde{b_k}||_V} \end{aligned}$$

T 6.6 After k steps $\{b_1,...,b_k\}$ are pairwise orthonormal. If $\{a_1, ..., a_n\}$ is a basis of V, so is $\{b_1, ..., b_k\}$.

Orthogonal Complements

- Def. U^{\perp} is the orthogonal complement of the subspace U: $U^{\perp} \bigoplus U = V$
- T 6.9 For a complex mxn matrix with rank r:
 - $\bullet N(A) = (R(A^H))^{\perp} \subset \mathbb{E}^n \bullet N(A^H) = (R(A))^{\perp}) \subset \mathbb{E}^n$
 - $N(A) \bigoplus R(A^{H}) = \mathbb{E}^{n}$ $N(A^{H}) \bigoplus R(A) = \mathbb{E}^{m}$
 - dim R(A) = r
- dim N(A) = n r
- $dim R(A^{H}) = r$
- $dim N(A^{H}) = m r$
- We call these subspaces fundamental subspaces of A.

Orthogonal and Unitary Change Of Basis

To get from B to B', where both are orthonormal bases, we can write $b'_k = \sum_{i=1}^n \tau_{ik} b_i$ and get the transformation matrix T, with $T^{-1} = T^{H}$.

- **T** 6.11 Therefore: $\xi = T\xi'$, $\xi' = T^H\xi$ Additionally, B = B'T and $B' = BT^H$, where all matrices are unitary/orthogonal.
- T 6.10 The transformation matrix for a change of basis between orthonormal bases is unitary/orthogonal.
- C 6.12 $\langle x, z \rangle_V = \xi^H \eta = (\xi')^H \eta' = \langle \xi', \eta' \rangle$ ⇒ T is length and angle preserving

$$x \in X \xrightarrow{F} z \in Y \qquad A = S \cdot B \cdot T^{H}$$

$$k_{x}^{-1} \downarrow k_{x} \qquad k_{y}^{-1} \downarrow k_{y} \qquad \text{If } Y = X, k_{y} = k_{x}$$

$$\xi \in \mathbb{E}^{n} \xrightarrow{A} \eta \in \mathbb{E}^{m} \qquad \text{and } S = T:$$

$$T \downarrow T^{-1} = T^{H} \qquad S \downarrow S^{-1} = S^{H} \qquad B = T^{H} \cdot A \cdot T$$

$$\Rightarrow A, B \text{ are}$$

$$\xi' \in \mathbb{E}^{n} \xrightarrow{B} \eta' \in \mathbb{E}^{m} \qquad \text{Hermitian}$$

Orthogonal and Unitary Transformations

Def. A linear transformation $F: X \to Y$ is unitary/ symmetric, if: $\langle F(x), F(y) \rangle_Y = \langle x, y \rangle_X$

- T 6.13 i) F is length preserving: $||F(x)||_Y = ||x||_X$
 - ii) F is angle preserving: $x \perp y \Leftrightarrow F(x) \perp F(y)$
 - iii) ker F = o, F is injective

If additionally $dim X = dim Y < \infty$:

- iv) F is an isomorphism
- v) $\{b_1, ..., b_n\}$ is an orthonormal basis for X $\Leftrightarrow \{F(b_1),...,F(b_n)\}\$ is an orthonormal basis for Y
- vi) F⁻¹ is unitary/orthogonal
- vii) The transformation matrix A is unitary/orthogonal.

8 Least Squares Method

General

Let Ax = y be an overdetermined linear system (more equations than unknowns). As an exact solution is not guaranteed we try to minimize the length of the residual vector (orthogonal to R(A)): r := y - Ax

Therefore, to find the least squares solution we solve: $x^* = \arg\min_{x \in \mathbb{F}^n} ||Ax - b||_2^2$

Def. The normal equations, $A^{H}Ax = A^{H}v$ can be used to solve the given LSE.

Lemma: $A^H A$ non-singular $\Leftrightarrow rank A = n$

Def. Moore-Penrose Pseudo-Inverse: $A^+ := (A^H A)^{-1} A^H$ (for when rankA = n)

9 QR Factorization & Decomposition

General

A = QR Q: orthogonal matrix; R: upper triangular matrix This decomposition is definite, if $m \ge n$ and rankA = n.

Calculate QR Factorization

- I: Gram-Schmidt process with columns of $A \Rightarrow O$
- II: Solve $R = Q^{T}A$

Alternatively:

• $r_{11} :\equiv ||\tilde{a}_1||$ • $r_{ik} :\equiv \langle q_i, a_k \rangle$ • $r_{kk} :\equiv ||\tilde{q}_k||$

Least-Squares with OR Factorization

Normal equations: $A^{T}Ax = A^{T}b$ $(OR)^{T}(OR)x = (OR)^{T}b$ $R^{T}O^{T}ORx = R^{T}O^{T}b$ $R^{T}Rx = R^{T}O^{T}b$ $\mathbf{R}\mathbf{x} = \mathbf{O}^{\mathrm{T}}\mathbf{b}$ T can be replaced with H

10 Determinant

General

- T 8.1 There are n! permutations in S_n .
- Def. The sign of a permutation is defined as follows:

sign
$$p = \begin{cases} +1, & \text{if } \# \text{permutations even} \\ -1, & \text{if } \# \text{permutations odd} \end{cases}$$

Def. The determinant of an nxn matrix A is:

$$det(A) = \sum_{p \in S_n} sign \ p \cdot a_{1,p(1)} a_{2,p(2)} \dots a_{n,p(n)}$$

- T 8.3 Properties of det: $\mathbb{E}^{n \times n} \to \mathbb{E}$, $A \mapsto \det(A)$:
 - i) det(+) is linear in every row
 - ii) when swapping two rows, det(A) switches sign
 - iii) det(I) = 1
- T 8.4 iv) if A has a row of zeros, det(A) = 0
 - v) $det(\gamma A) = \gamma^n det(A)$
 - vi) if A has two identical rows, det(A) = 0
 - vii) if we add multiples of two rows to each other, det(A) doesn't change
 - viii) if A is triangular or diagonal, $det(A) = \prod a_{ii}$

 $det(A) \Leftrightarrow A \text{ is singular}$ $det(A) \Leftrightarrow A \text{ is non-singular}$

T 8.5 After applying the gauss algorithm to A:

$$\det(\mathbf{A}) = (-1)^{\nu} \prod_{k=1}^{n} r_{kk}$$

- T 8.7 Multiplicativity: $det(AB) = det(A) \cdot det(B)$
- $C 8.8 \text{ A non-singular} \Rightarrow \det(A^{-1}) = (\det(A))^{-1}$
- T 8.9 $\det(A)^T = \det(A)$ and $\det(A^H) = \overline{\det(A)}$

Determinant for block matrices

 $\begin{bmatrix} C & 8.14 & A & B \\ O & D \end{bmatrix} = \det(A) \cdot \det(D)$

11 Eigenvalues and Eigenvectors

General

- Def. We call the number $\lambda \in \mathbb{E}$ eigenvalue (EVal) of the linear transformation $F: V \to V$, if there exists an eigenvector (EVec) $v \in V$, $v \neq o$, such that: $F(v) = \lambda v$
- Def. We denote the eigenspace E_{λ} , containing all eigenvectors for λ : $E_{\lambda} := \{v \in V | F(v) = \lambda v\}$ (the eigenspace is a subspace of V)
- Def. The set of all eigenvalues of F is called spectrum, denoted $\sigma(F)$.
- Def. $\xi \in \mathbb{E}^n$ is an eigenvalue of of $\lambda \Leftrightarrow A\xi = \xi\lambda$
- L 9.1 A linear transformation F and it's matrix representation have the same eigenvalues and the eigenvalues are related respecting the coordinate transformation.
- L 9.2 λ is an eigenvalue, iff ker (A λI) doesn't contain just the zero vector (singular). $E_{\lambda} = ker$ (A λI)
- Def. The geometric multiplicity of λ is $dim E_{\lambda}$.
- Def. The characteristic polynomial of $A \in \mathbb{E}^{n \times n}$ is defined as $x_A(\lambda) :\equiv \det(A \lambda I)$. We call $x_A(\lambda) = 0$ the characteristic equation.
- L 9.4 $x_A(\lambda) = (-\lambda)^n + Tr(A)(-\lambda)^{n-1} + \dots + \det(A)$
- L 9.5 $\lambda \in \mathbb{E}$ is an eigenvalue of $A \in \mathbb{E}^{n \times n}$ $\Leftrightarrow \lambda$ is a root of x_A
 - $\Leftrightarrow \lambda$ is a solution to the characteristic equation
- Def. The algebraic multiplicity of an eigenvalue λ is the multiplicity of λ as a root for the characteristic equation.
- L 9.6 A singular \Leftrightarrow 0 ∈ σ (A)
- T 9.7 Similar matrices have the same characteristic equation, determinant, trace and the same eigenvalues.
- Def. A basis made of eigenvectors is a eigen basis of F:

$$x = \sum_{k=1}^{n} \xi_k \nu_k \quad \mapsto \quad F(x) = \sum_{k=1}^{n} \lambda_k \xi_k \nu_k$$

T 9.9 There is a similar diagonal matrix Λ to $\Lambda \in \mathbb{E}^{nxn}$ $\Leftrightarrow \Lambda$ has an eigen basis $\Lambda = \Lambda$

Spectral/Eigenvalue Decomposition

Def. We call a matrix A to which a spectral decomposition $A = V\Lambda V^{-1}$ exists diagonalizable.

- T 9.13 geom. mult. \leq alg. mult.
- T 9.14 A matrix is diagonalizable, if for every eigenvalue holds: geom. mult. = alg. mult.
- T 9.15 Spectral Theorem: Let $A \in \mathbb{C}^{nxn}$ be hermitian:
 - i) all eigenvalues are real
 - ii) the eigenvectors are pairwise orthogonal
 - iii) there is an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A
 - iv) for this unitary matrix U holds: $U^{H}AU = \Lambda :\equiv \operatorname{diag}(\lambda_{1},...,\lambda_{n})$ (also holds for real-symmetric $A \in \mathbb{R}^{n\times n}$)

12 Singular Value Decomposition

General

- exists for every Matrix
- A^HA is always hermitian and positive semi-definite
- T 11.1 For a complex matrix A^{mxn} of rank r, there exist unitary matrices U and V, and a mxn matrix Σ:

$$\Sigma = \begin{pmatrix} \Sigma_r & O \\ O & O \end{pmatrix}$$
, with $\Sigma_r := \text{diag} \{\sigma_1, \dots, \sigma_r\}$

where the singular values σ_i are positive and

ordered, such that
$$A = U\Sigma V^H = \sum_{k=1}^{r} u_k \sigma_k v_k^H$$

$$AA^{H} = U\Sigma_{m}^{2}U^{H}, \qquad A^{H}A = V\Sigma_{n}^{2}V^{H}$$

 $\{u_1, ..., u_r\}$ is a basis of im A = R(A) $\{u_{r+1}, ..., u_m\}$ is a basis of ker $A^H = N(A^H)$ $\Rightarrow \{u_1, ..., u_m\}$ are the left singular vectors

 $\{v_1, ..., v_r\}$ is a basis of $im A^H \equiv R(A^H)$ $\{v_{r+1}, ..., v_n\}$ is a basis of $ker A \equiv N(A)$ $\Rightarrow \{v_1, ..., v_n\}$ are the right singular vectors

Least Squares using SVD

$$||Ax - b||_2^2 = ||\sum_{v} \underbrace{V^H_{x}}_{v} - \underbrace{U^H_{c}b}_{c}||_2^2 = ||\sum_{v} y - c||_2^2$$

 $x^* = V\Sigma^+ U^H b \implies \infty$ solutions, here smallest 2-norm