each R_1 is independently selected from the group consisting of H; halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR₄ where R_4 is H, C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; oxo; or $-(CH_2)_n$ -X- $-(CH_2)_m$ - $-(R_5)_o$ where X is O, S or N, n is 0-3, o is 0-1, and R_5 is methyl or H_{1-2} ;

each R_2 and each R_3 are independently selected from the group consisting of H; halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR₄ where R_4 is H; C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; oxo; or $-(CH_2)_n$ -X- $-(CH_2)_m$ - $-(R_5)_0$ where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R_5 is methyl or H_{1-2} ; or an R_2 and an R_3 together comprise a saturated, partly saturated, or unsaturated ring structure having the formula $-(C(R_6)_p)_q$ -X₅- $-(C(R_6)_p)_r$ -X₁- $-(C(R_6)_p)_u$ where each R_6 is independently selected from the group consisting of H; halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR₄ where R_4 is H, C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl and oxo where each p is independently 1 or 2, q is 0-5, r is 0-5, u is 0-5; each X is independently O, S, or N and s is 0 or 1; provided that q + r + u + s + t is less than 6;

Y is selected from the group consisting of O; S; N; --($C(R_7)_z)_s$ —where each R_7 is independently as previously defined for R1, each z is independently 1-2, and s is 1-3; -- CH=; --CH=CH--; or Y_1CH_2 —where Y_1 is O, N, or S; and the dotted lines are optional double bonds, with the proviso that if the ring including Y is a cyclohexane ring or a heterocyclic 5 member ring said ring is not fully unsaturated, and that if Y is O, N or S, the ring including Y contains at least one said double bond, said compound further having selective agonist activity at the α 2B or α 2B/ α 2C adrenergic receptor subtype(s) over the α 2A adrenergic receptor subtype, and all pharmacologically acceptable salts, esters, stereoisomers and racemic mixtures thereof.

2. (Amended) The compound of claim 1 in which the ring including Y has either a single double bond or no double bond, except that when an R₂ and an R₃ together comprise a saturated, unsaturated or partly saturated ring structure said Y-including ring optionally shares an additional double bond with said condensed ring, provided Y is not S, O, or N.

Add

B

9. (Amended) The compound of claim 2, in which each R₂ and each R₃ are independently selected from the group consisting of: H; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; halide; trihalomethyl; cycloalkyl; (CH₂)_n-X-(CH₂)_m-(R₅)_o, where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; or an R₂ and an R₃ together comprise a saturated, partly saturated, or unsaturated ring structure having the formula –(C(R₆)_p)_q-X₅-(C(R₆)_p)_r –X_r—(C(R₆)_p)_u where each R₆ is independently selected from the group consisting of H; halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H, C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; and oxo where each p is independently 1 or 2, q is 0-4, r is 0-4, u is 0-4; each X is independently O, S, or N, s is 0 or 1, and q + s+ r + t + u = 3 or 4.

10. (Amended) The dompound of claim 3, in which each R_2 and each R_3 are independently selected from the group consisting of: H; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; halide; trihalomethyl; cycloalkyl; $(CH_2)_n$ -X- $(CH_2)_m$ - $(R_5)_o$, where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R_5 is methyl or H_{1-2} ; or an R_2 and an R_3 together comprise a saturated, partly saturated, or unsaturated ring structure having the formula $-(C(R_6)_p)_q$ -X₅- $(C(R_6)_p)_r$ -X_t— $(C(R_6)_p)_u$ where each R_6 is independently selected from the group consisting of H; halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR₄ where R_4 is H, C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; and oxo where each p is independently 1 or 2, q is 0-4, r is 0-4, u is 0-4; each X is independently O, S, or N, s is 0 or 1, and q + s + r + t + u = 3 or 4.

71. (Amended) The compound of claim 53 in which an R_2 and an R_3 together comprise a saturated, partly saturated, or unsaturated ring structure having the formula – $(C(R_6)_p)_q$ - X_s - $(C(R_6)_p)_r$ - X_t — $(C(R_6)_p)_u$ where each R_6 is independently selected from the group consisting of H; halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR₄ where R_4 is H, C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; and oxo where each p is independently 1 or 2, q is 0-4, r is 0-4, u is 0-4; each X is independently O, S, or N, s is 0 or 1, and q + s + r + t + u = 3 or 4.