Решения на задачите по геометрия

Този материал е изготвен със съдействието на школа Sicademy

G1. Даден е успоредник ABCD. Права ℓ през C пресича правите AD и AB съответно в точки P и Q (D е между A и P, B е между A и Q). Да се докаже, че съществува фиксирана точка M, такава, че когато ℓ се мени, MC е ъглополовяща на $\angle PMQ$.

Peшение. Нека M е симетричната точка на C относно BD. Тогава DBMA е равнобедрен трапец и $\angle ADM = \angle ABM$. От друга страна,

$$\frac{MB}{BQ} = \frac{BC}{BQ} = \frac{DP}{DC} = \frac{DP}{DM},$$

т.е. $\triangle MBQ \sim \triangle MDP$. Следователно

$$\frac{MP}{MQ} = \frac{DP}{BM} = \frac{DP}{BC} = \frac{PC}{QC},$$

т.е. MC е ъглополовяща на $\angle PMQ$ и твърдението е доказано.

G2. Даден е $\triangle ABC$, вписан в окръжност k с център O. Нека P е произволна точка във вътрешността на $\triangle ABC$, различна от O. Правите AP, BP и CP пресичат k за втори път в точките A_1 , B_1 и C_1 съответно. Нека A_2 , B_2 и C_2 са съответно симетричните точки на A_1 , B_1 и C_1 относно правата OP. Да означим с ℓ_a правата през средата на BC, успоредна на AA_2 . По аналогичен начин се дефинират правите ℓ_b и ℓ_c . Да се докаже, че ℓ_a , ℓ_b и ℓ_c се пресичат в една точка.

Peшение. Достатъчно е да докажем, че AA_2 , BB_2 и CC_2 минават през една точка, тогава ℓ_a, ℓ_b и ℓ_c ще минават през образа на тази точка при хомотетия с център медицентъра на $\triangle ABC$ и коефициент -1/2. Да забележим, че $\angle AOA_2 = \angle APA_2$ и следователно описаната около $\triangle OAA_2$ окръжност минава през P. Ако разгледаме инверсия относно k, то образът на описаната около $\triangle OAA_2$ окръжност е правата AA_2 и следователно AA_2 минава през образа P' на P при тази инверсия. Аналогично BB_2 и CC_2 ще минават през P', с което доказателството е завършено.

G3. Даден е $\triangle ABC$, вписан в окръжност k и нека X е произволна точка от страната AB. Разглеждаме окръжностите ω_1 и ω_2 с центрове U_1 и U_2 , които се допират до страната AB, до отсечката CX и вътрешно до окръжността k. Да се определи геометричното място от точки, което описва средата S на отсечката U_1U_2 .

Решение. Нека O е центърът на описаната окръжност k за $\triangle ABC$, I е центърът на вписаната окръжност, а ℓ е права успоредна на AB на разстояние равно на радиуса на k и разположена от страната на върха C както е изобразено на чертежа. Забелязваме, че U_1 и U_2 се намират на едно и също разстояние както от O, така и от правата ℓ , т.е. при движението на X по AB описват парабола с фокус O и директриса ℓ . От друга страна, от теоремата на Виктор Тебо следва, че U_1U_2 минава през центъра I на вписаната в $\triangle ABC$ окръжност, независимо от избора на точката X.

Остава да съобразим, че при това положение средата S на U_1U_2 също описва парабола (в случая на окръжност този факт е очевиден, но се оказва валиден и в общия случай на коника). Тази парабола е отново с директриса, успоредна на AB (нейната ос на симетрия минава през средата на OI и е перпендикулярна на AB), минава през I, а краищата S_1 и S_2 се явяват средите на отсечките, свързващи върховете A и B с центровете на съответните полувписани окръжности за $\triangle ABC$. Това са граничните случаи, когато $X \equiv A$ и $X \equiv B$ съответно.