See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/7419055

A Propeller-like Uranyl Metallomesogen

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · JANUARY 2006

Impact Factor: 12.11 · DOI: 10.1021/ja056664w · Source: PubMed

CITATIONS	READS
42	22

5 AUTHORS, INCLUDING:

Thomas Cardinaels

Belgian Nuclear Research Centre

32 PUBLICATIONS 747 CITATIONS

SEE PROFILE

Daniel Guillon

Institut de Physique et Chimie des Matériaux ...

393 PUBLICATIONS 9,210 CITATIONS

SEE PROFILE

Bertrand Donnio

Institut de Physique et Chimie des Matériaux ...

268 PUBLICATIONS 5,822 CITATIONS

SEE PROFILE

Supporting information for

A propeller-like uranyl metallomesogen

Thomas Cardinaels, † Jan Ramaekers, † Daniel Guillon, † Bertrand Donnio** † and Koen Binnemans** †

Katholieke Universiteit Leuven, Department of Chemistry, Celestijnenlaan 200F, 3001 Leuven, Belgium; Institut de Physique et Chimie des Matériaux de Strasbourg – Groupe des Matériaux Organiques, UMR 7504 CNRS-Université Louis Pasteur, BP43, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France.

Experimental Techniques:

The nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 300 spectrometer (operating at 300 MHz) or a Bruker AMX-400 (operating at 400 MHz). FTIR spectra were recorded on a Bruker IFS-66 spectrometer, using the KBr pellet method. Elemental analyses were obtained on a CE-Instrument EA-1110 elemental analyzer. Optical textures of the mesophases were observed with an Olympus BX60 polarizing microscope equipped with a LINKAM THMS600 hot stage and a LINKAM TMS93 programmable temperature-controller. DSC traces were recorded with a Mettler-Toledo DSC821e module.

The XRD patterns were obtained with two different experimental set-ups, and in all cases, the powdered sample was filled in Lindemann capillaries of 1 mm diameter. A linear monochromatic CuK α_1 beam ($\lambda=1.5405$ Å) obtained with a sealed-tube generator (900 W) and a bent quartz monochromator were used (both generator and monochromator were manufactured by Inel). One set of diffraction patterns was registered with a curved counter Inel CPS 120, for which the sample temperature is controlled within ± 0.05 °C; periodicities up to 60 Å can be measured. The other set of diffraction patterns was registered on Image Plate. Periodicities up to 90 Å can be measured, and the sample temperature is controlled within ± 0.3 °C.

Synthesis

Scheme 1

(a) 1,10-phenanthroline-5,6-dione (1)

1,10-Phenanthroline monohydrate (0.0504 mol, 10.00 g) was added in small portions under stirring to 60 mL of concentrated sulfuric acid in a round-bottom flask (500 mL) equipped with a reflux condenser. After the solid compound was dissolved, sodium bromide (0.0504 mol, 5.19 g) was added, followed by 30 mL of 70% nitric acid. The mixture was heated to 105 °C for 6 hours. The temperature was then lowered to 95 °C and the reflux condenser was removed to allow the bromine vapors to escape for a period of 16 hours. After being cooled, the mixture was poured onto 800 g of ice and was carefully neutralized to pH 7 with about 300 mL of a 10 M solution of sodium hydroxide. The turbid solution was filtered and the solid residue was extracted with 5 × 200 mL of boiling water. The insoluble material was removed from the cooled extraction liquid by filtration and the combined aqueous solutions were extracted with dichloromethane, dried over anhydrous MgSO₄, and the solvent was removed under reduced pressure. The crude product was recrystallized from toluene to obtain orange crystals. Yield: 30% (3.18 g). ¹H NMR (300 MHz, CDCl₃, δ ppm): 7.58–7.62 (dd, 2H, H-aryl, $J_o = 8.1$ Hz, $J_o = 4.8$ Hz), 8.53 (dd, 2H, H-aryl, $J_o = 8.1$ Hz, $J_m = 1.8$ Hz), 9.12 (dd, 2H, H-aryl, $J_o = 4.8$ Hz, $J_m = 1.8$ Hz). Calcd. for $C_{12}H_6N_2O_2 \cdot 0.25H_2O$: C 67.13, H 3.05, N 13.05. Found: C 67.25, H 2.77, N 12.99. M.p.: 257 °C.

(b) Aldehyde 2

Aldehyde **2** was prepared by adding tetradecylbromide (0.0180 mol, 4.99 g) to a solution of 3,4,5-trihydroxybenzaldehyde monohydrate (0.0058 mol, 1.00 g) and potassium carbonate (0.0180 mol, 2.49 g) in DMF (50 mL). A catalytic amount of potassium iodide was added and the mixture was refluxed for 3 hours under nitrogen atmosphere. After the reaction mixture was cooled to room temperature, it was poured into 150 mL of a H₂O/HCl (100:50) solution. The solution was extracted with dichloromethane and the combined organic layers were washed with brine, dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified on a silica column with hexane/ethyl acetate (95:5) as the eluent. The product was recrystallized from ethanol. Yield: 41% (1.72 g). ¹H NMR (300 MHz, CDCl₃, δ ppm): 0.89 (t, 9H, CH₃), 1.27–1.49 (m, 66H, CH₂), 1.72–1.88 (m, 6H, –CH₂–CH₂–O–), 4.02–4.17 (m, 6H, –CH₂–O–), 7.09 (s, 2H, H-aryl), 9.84 (s, 1H, CH=O). Calcd for C₄₉H₉₀O₄·0.5(CH₃CH₂OH): C 78.37, H 12.23. Found: C 78.52, H 12.22. M.p.: 58 °C.

(c) Ligand 3

Ligand 3 was prepared by adding aldehyde 2 (0.0020 mol, 1.50 g) to a warm solution of 1,10phenanthroline-5,6-dione (0.0020 mol, 0.42 g) and ammonium acetate (0.0170 mol, 1.32 g) in 20 mL of glacial acetic acid. The mixture was heated to 85 °C for 5 hours. After the reaction mixture was cooled to room temperature, it was poured into 100 mL of water and neutralized to pH 7 with an aqueous ammonia solution. The precipitate was filtered, washed with distilled water and dried. The crude product was purified on a silica column with CHCl₃/hexane/MeOH (50:50:10) as the eluent. Since the compound holds solvents firmly, it was dried in a vacuum oven at 50 °C. Yield: 55% (1.03 g). ¹H NMR (300 MHz, THF-d8, δ ppm): 0.87 (t, 9H, CH₃), 1.25–1.67 (m, 72H, CH₂), 3.60 (m, 4H, -CH₂-O-), 3.88 (t, 2H, -CH₂-O-), 7.30 (m, 1H, H-aryl), 7.68 (s, 2H, H-aryl), 7.74 (m, 1H, H-aryl), 8.66 (d, 1H, Haryl), 8.80 (d, 1H, H-aryl), 8.97 (d, 1H, H-aryl), 9.19 (d, 1H, H-aryl), 14.82 (s, 1H, N-H). 13C NMR (75 MHz, THF-d₈, δ ppm): 14.36, 23.46, 26.91, 27.03, 30.23, 30.59, 31.26, 32.79, 69.25, 73.51, 105.86, 121.15, 123.68, 124.17, 125.88, 126.39, 127.92, 131.02, 131.42, 137.57, 140.35, 144.67, 144.94, 147.75, 148.24, 152.80, 154.24. Calcd for $C_{61}H_{96}N_4O_3$: C 78.49, H 10.37, N 6.00. Found: C 78.77, H 10.63, N 5.50. ESI-MS (Methanol, m/z): 933.9, [M + H]⁺. M.p.: 83 °C.

(d) Uranyl triflate

Triflic acid (0.0663 mol, 11 mL) was added into a 100 mL round-bottomed flask containing UO₃ (0.0024 mol, 0.7 g) and the mixture was refluxed for 24 hours under a nitrogen atmosphere. The excess of triflic acid was removed under vacuum into a trap connected between the flask and the vacuum line and cooled in liquid nitrogen. The compound was dried under vacuum at 80 °C. Yield: 73% (1.00 g). Calcd for $C_2F_6O_8S_2U\cdot 3H_2O$: C 3.86, H 0.97. Found: C 3.81, H 1.17.

S4

(e) Uranyl complex 4

The uranyl complex **4** was prepared by slowly adding a solution of $UO_2(CF_3SO_3)_2$ (0.036 mmol, 0.020 g) in ethanol to a warm solution of the ligand **3** (0.107 mmol, 0.100 g) in ethanol. The mixture was stirred for 30 minutes at 65 °C. The orange precipitate was filtered off, washed with ethanol and dried in a vacuum oven at 50 °C. Yield: 83% (0.100 g). 1H NMR (400 MHz, THF-d₈, δ ppm): 0.88 (m, 27H, CH₃), 1.30–1.83 (m, 216H, CH₂), 3.99–4.07 (m, 18H, $-CH_2-O-$), 7.49 (s, 6H, H-aryl), 7.88 (m, 6H, H-aryl), 8.92 (m, 6H, H-aryl), 9.20 (m, 6H, H-aryl). IR (KBr-pellet, cm⁻¹): 3530 (m, v(N-H)), 2920, 2850 (s, C-H and C-F stretch), 1242, 1028 (s, S-O stretch), 918 (s, v(U=O)), 636, 517 (s, v(S-O)). Calcd for $C_{185}H_{288}F_6N_{12}O_{17}S_2U$: C 65.96, H 8.62, N 4.99. Found: C 65.59, H 8.87, N 4.74. The compound is a liquid crystal: $Cr \cdot 95 \cdot Col_h \cdot 181 \cdot I$.