PSIL Q7

Problem Set I

(X6.

T: $\mathbb{R}^3 \to \mathbb{R}^2$ (I) basis for \mathbb{R}^3 [T] $\mathbb{A} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \end{pmatrix}$ [T(x,y,z)] $\mathbb{B} = [T]_{\mathbb{R}}^{\mathbb{R}} [(x,y,z)]_{\mathbb{R}}$

V, W vector space over f. $d = \{V_1, \dots, V_n\}$ basis for V $\beta = \{w_1, \dots, w_m\}$ basis for W $T: V \to W$ lin. trans.

(a). Prove that T is swjective $c \to f$ the column of $[T]_{\mathcal{K}}^{\mathcal{K}}$ span $[T]_{\mathcal{K}}^{\mathcal{K}}$. Assume that T is swj.

Sps that $g \in F^{\mathcal{M}}$. We want to write X as a linear combination of the columns on $[T]_{\mathcal{K}}^{\mathcal{K}}$ $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$ Consider $w \in W$ defined by $W = x_1 w_1 + \dots + x_n w_n$ (Note: $[W]_{\mathcal{K}} = X$)

Since T is surj. there exists $v \in V$ s.t. T(v) = w $x = [w]_{\beta} = [T]_{\alpha}^{\beta} [v]_{\alpha}$

$$[V]_{\alpha} = [c_1, \dots, c_n] \xrightarrow{\text{columns}} columns$$

$$[V]_{\alpha} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \qquad b_1, \dots, b_n \in F$$

$$X = [T]_{\alpha}^{\beta}[v]_{\alpha} = [c_1, \cdots, c_n] \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = b_1 c_1 + \cdots + b_n c_n$$

Change of basis

[T] R'=[] B [T] R [T] X T:V->W linear trans.

d, X' bases of V

B, B' bases of W.