Les Services Réseaux

Université Assane Seck UFR Sciences et technologie Département Informatique Les Services Réseaux

1 Système d'attribution d'adresses DHCP

Introduction

- Le DHCP (Dynamic Host Configuration Protocol) est un système d'attribution automatique d'adresse
- Il permet à un ordinateur qui se connecte sur un réseau local d'obtenir et de configurer dynamiquement et automatiquement :
 - Son adresse IP
 - masque de son sous-réseau
 - passerelle par défaut
 - adresse IP du serveur DNS
 - nom de son domaine

Avantages du DHCP

DHCP offre les avantages suivants.

- Configuration d'adresse IP fiable
 - DHCP minimise les erreurs de configuration provoquées par la configuration manuelle des adresses IP
 - DHCP minimise les conflits d'adresses causés par l'attribution d'une adresse IP à plusieurs ordinateurs en même temps
- Administration réseau réduite
 - Configuration TCP/IP centralisée et automatisée
 - La possibilité d'attribuer une plage complète de valeurs de configuration TCP/IP supplémentaires à l'aide des options DHCP
 - Transfert des messages DHCP initiaux à l'aide d'un agent de relais DHCP, qui élimine la nécessité d'un serveur DHCP sur chaque sous-réseau

- Le poste client vient de se connecter, il n'a pas d'adresse IP
- En DHCP une adresse IP n'est fournit que pour un temps donné : Le bail. C'est pourquoi on parle de demande de bail plutôt que d'adresse IP
- Un bail a une durée : lease-time
- La configuration du bail dépend de l'administrateur

- DHCPDISCOVER :Permet de trouver un serveur DHCP. La trame est une trame de « broadcast », elle est envoyée à l'adresse 255.255.255.255. Le client n'ayant pas d'adresse prend l'adresse 0.0.0.0
- DHCPOFFER: contient une proposition de bail, l'adresse IP du serveur et l'adresse Mac du client.
- DHCPREQUEST: indique à tous les serveurs quel bail il a accepté et/ou demande de renouvellement de bail
- DHCPACK : le serveur confirme le bail.

Demande de renouvellement

- A la moitié du bail, le client demande le renouvellement (prolongation de son bail), il n'y aura alors que les trames DHCPREQUEST et DHCPACK qui seront échangées.
- Si au bout des 7/8 du bail pas de réponse du serveur (ie pas de DHCPACK) alors le client essayera de joindre un serveur DHCP quelconque sur le réseau.
- Lors du renouvellement, le client utilise l'adresse IP donnée précédemment par le serveur
- Un renouvellement est donc beaucoup plus simple

Les messages DHCP

Envoyé par le client

- DHCPDISCOVER demande de localisation des serveurs DHCP
- **DHCPREQUEST** demande de bail
- **DHCPDECLINE** refus d'adresse IP, elle est déjà utilisée
- **DHCPRELEASE** libération son bail

Les messages DHCP

Envoyé par le serveur

- DHCPOFFER réponse à un DHCPDISCOVER
- DHCPACK contient des paramètres et l'adresse IP du client
- **DHCPNAK** refus de bail

Ethernet

Adresse physique de l'émetteur Adresse physique du destinataire de la trame

IΡ

Adresse IP source

Adresse IP destinataire du paquet IP

UDP

Port source

Port destination du datagramme

Message DHCP

Au niveau physique, au moment de la demande de bail,

- Est-ce que le client connaît son adresse physique ?
- Est-ce que le client connaît l'adresse physique du serveur DHCP ?

Au niveau réseau, au moment de la demande de bail,

- Est-ce que le client connaît l'adresse IP du serveur DHCP?
- Est-ce que le client connaît son adresse IP ?
- Est-ce que le serveur DHCP connaît l'adresse IP du client?

Niveau physique

■ Diffusion (broadcast) distribution de la requête DHCP à tous les postes connectés

Niveau réseau

 Diffusion (broadcast) distribution de la requête DHCP à tous les postes connectés

Niveau transport

- Requête
 - Le client DHCP envoie la requête sur le port 67. Le serveur DHCP écoute sur le port 67.
- Réponse
 - Le serveur DHCP envoie la requête sur le port 68. Le client DHCP écoute sur le port 68.

Trame contenant DHCPDISCOVER

Trame contenant DHCPOFFER

Trame contenant DHCPREQUEST

Demande de baux des serveurs

Notion d'étendue

- Une étendue est une plage d'adresses IP (Pool IP) que le serveur DHCP attribue aux ordinateurs clients
- En règle générale, une étendue s'appuie sur les adresses d'un sous-réseau particulier
- L'étendue DHCP doit être configurée pour déterminer le pool d'adresses IP que le serveur DHCP peut louer ou renouveler

Notion d'étendue

Réservation d'adresses

 On parle de réservation d'adresses DHCP lorsqu'une adresse IP, au sein d'une étendue est écartée afin d'être utilisée par un client DHCP spécifique

Notion d'étendue

Exemple d'étendue

Étendue du sous réseau N°∴ 192.168.3.0/24		Réservations	
		Adresse Mac	Adresse IP
Adresse début	192.168.3.100	00:0C:29:EF:00:B1	192.168.3.150
Adresse fin	192.168.3.200		
Masque	255.255.255.0		
Durée du bail	3600 secondes		
Options DHCP d'étendue			
Nom	Valeur		
Routeur	192.168.3.1		
Options DHCP de serveur			
Nom	Valeur		
Serveur DNS	8.8.8.8		

Agent de relais DHCP

- Les appareils peuvent envoyer des messages de diffusion uniquement au sein du réseau dont ils font partie
- Ils ne peuvent pas diffuser de messages sur les réseaux ou sous-réseaux
- Lorsqu'il n'y a pas de serveur DHCP dans le réseau
 - un périphérique de ce réseau ne peut pas acquérir une adresse IP
 - il ne peut pas diffuser de messages DHCPDISCOVER aux serveurs en dehors de son réseau
- Les deux façons de résoudre ce problème sont les suivantes:
 - Utilisez un serveur DHCP distinct dans chaque réseau (Solution onéreuse)
 - Utilisez un relais DHCP

Agent de relais DHCP

- L'agent relais DHCP fonctionne comme l'interface entre les clients DHCP et le serveur
- L'agent de relais DHCP transmet des messages DHCP entre les clients DHCP et les serveurs DHCP sur différents réseaux IP

- Pré-requis
 - Disposer des droits d'administration sur le serveur.
 - Disposer d'un réseau local.
 - Connaître les bases de TCP/IP (adressage, sous-réseaux, etc.
- Installation
 - isc-dhcp-server remplace dhcp3-server
 - sudo apt-get install isc-dhcp-server
- Editer le fichier /etc/dhcp/dhcpd.conf pour la faire correspondre à vos besoins et configurations particulières
- On peut également éditer le fichier /etc/default/isc-dhcp-server pour spécifier les interfaces que dhcpd (le démon de isc-dhcp-server) devra écouter

- Attention!!! Les interfaces réseaux de votre serveur doivent être configurées obligatoirement en adresses IP statiques
- La configuration la plus fréquente est d'assigner aléatoirement une adresse IP. Ceci peut être fait en suivant ces instructions

```
# Sample /etc/dhcpd.conf
# (add your comments here)
default-lease-time 600;
max-lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.254;
option domain-name-servers 192.168.1.1, 192.168.1.2;
option domain-name "ubuntu-fr.lan";
option ntp-servers 192.168.1.254;
subnet 192.168.1.0 netmask 255.255.255.0 {
  range 192.168.1.10 192.168.1.100;
  range 192.168.1.150 192.168.1.200;
```

- Le serveur DHCP assignera au client une adresse IP comprise entre 192.168.1.10 et 192.168.1.100 ou entre 192.168.1.150 et 192.168.1.200 pour une durée de 600 secondes
- Le serveur va également informer le client qu'il doit utiliser :
 - un masque de sous réseau à 255.255.255.0
 - une adresse de multi-diffusion à 192.168.1.255
 - une adresse de routeur/passerelle à 192.168.1.254
 - serveurs DNS à 192.168.1.1 et 192.168.1.2
 - un suffixe DNS ubuntu-fr.lan
 - un serveur de temps

- Adresses IP fixes uniquement
- Il suffit d'ajouter une directive host dans la définition du subnet
- Pour chaque client, il faut donner son adresse fixe en fonction de son adresse MAC

```
deny unknown-clients;
subnet 192.168.1.0 netmask 255.255.255.0 {
    host client1 {
        hardware ethernet DD:GH:DF:E5:F7:D7;
        fixed-address 192.168.1.20;
    host client2 {
        hardware ethernet 00:JJ:YU:38:AC:45;
        fixed-address 192.168.1.21;
```

- L'option deny unknown-clients interdit l'attribution d'une adresse IP à une station dont l'adresse MAC est inconnue du serveur.
- Pour trouver l'adresse MAC d'une interface réseau, il faut taper la commande :
 - ifconfig | grep HWaddr
- ou pour les version récentes qui n'incluent pas le paquet net-tools par défaut :
 - ip a
- Pour que le serveur écoute sur certaines interfaces, il faut les spécifier dans /etc/default/isc-dhcp-server :
 - INTERFACES="eth0 eth1"
- sudo service isc-dhcp-server restart pour rédemarrer le service

- DDNS est un service qui permet d'automatiser les mises à jour des enregistrements DNS pour les clients qui obtiennent leur adresse via un server DHCP
- Ces mises à jour sont fournies par le serveur DHCP
- DDNS est recommandé si le réseau local doit résoudre les noms des ordinateurs du réseau local.
- Cette information ne doit pas être transmis à l'extérieur de votre réseau, sauf si vous utilisez des adresses IP publiques

 Configuration des zones DNS à mettre à jour dans /etc/bind/named.conf.local

```
zone "l2i.sn" {
  type master;
file "/etc/bind/db.labut.th";
  allow-update { 192.168.1.1; }; // adresse du serveur DNS
zone "1.168.192.in-addr.arpa" {
  type master;
file "/etc/bind/db.192.168.1.rev ";
allow-update { 192.168.1.1; }; // adresse du serveur DNS
```

■ Configuration du fichier /etc/dhcp/dhcpd.conf du serveur DHCP

```
option domain-name "l2i.sn";
ddns-updates on;
ddns-update-style interim;
ignore client-updates;
update-static-leases on;
```

- ddns-updates on : permet d'activer le Dynamic DNS
- ddns-update-style interim : permet de définir le mode de mise à jour DNS. Ce paramètre est toujours interim. Un paramètre adhoc existe, mais est vieux et n'est plus utilisé.
- deny duplicates: interdit l'attribution d'adresses IP multiples à un même hôte (fonctionne par adresse MAC).
- ignore declines: indique au serveur DHCP d'ignorer les messages DHCPDECLINE.
- ignore client-updates: ignore les requêtes des clients au serveur DHCP, lui demandant de mettre à jour leurs correspondances nom=IP (A) dans le DNS.

■ Configuration du fichier /etc/dhcp/dhcpd.conf du serveur DHCP

```
zone l2i.sn. {
    primary 192.168.1.1;
}
zone 1.168.192.in-addr.arpa. {
    primary 192.168.1.1;
}
```