การสร้างชุดฝึกสำหรับการเรียนการสอนวิชา IoT พื้นฐาน

คุณลักษณะสำคัญของชุดฝึกที่สร้าง

ชุดฝึกที่สร้างขึ้นเป็นแผงวงจร (PCB) ขนาด กว้าง x ยาว = 140 x 210 มิลลิเมตร ประกอบด้วยระบบย่อย ดังต่อไปนี้

- 1. วงจร analog input รับแรงดันได้สูงสุด 35 โวลต์
- 2. วงจร volume control (10kOhm) จ่ายแรงดัน 0 \sim 3.3 โวลต์
- 3. วงจร Opto-Isolator Digital Input รับแรงดันในย่าน 5 ~24 โวลต์
- 4. วงจร PIR Sensor ตรวจจับการเคลื่อนไหว
- 5. วงจร LDR วัดความเข้มแสง
- 6. วงจร IR Receiver รับสัญญาณจากรีโมตคอนโทรลไร้สายแบบแสงอินฟราเรด
- 7. วงจรวัดอุณหภูมิและความชื้น
- 8. วงจรวัดระยะทางด้วย ultrasonic distance sensor
- 9. วงจร Push Button Input จำนวน 2 ช่อง
- 10. วงจร Rotary Switch Input
- 11. วงจรลำโพง Buzzer ความถี่เดียว
- 12. วงจรลำโพง Buzzer ชนิดหลายความถึ่
- 13. วงจร LED จำนวน 8 ดวง
- 14. วงจร LED 7 segment จำนวน 2 หลัก
- 15. วงจร Relay output จำนวน 2 ช่อง
- 16. วงจร Servo motor จำนวน 2 ช่อง
- 17. ช่องเชื่อมต่อ Extension ที่สามารถการเชื่อมต่อแบบ I2C, SPI, CAN BUSม , UART และ RS485
- 18. แผงทดลอง Protoboard ขนาด
- 19. แหล่งจ่ายไฟ auxiliary แบบ switch mode พิกัดแรงดัน 3.3 โวลต์ กระแส 1.5 แอมป์ ที่รับกำลัง จากพอร์ต USB

ฟังก์ชันการใช้งานขาต่าง ๆ ของโมดูล ESP32 รุ่น 38 ขา

ตารางที่ 1 ฟังก์ชันการใช้งานขาต่าง ๆ ของโมดูล ESP32 รุ่น 38 ขา

ขาที่	Function ที่สกรีน	Alt Function 1	Alt Function 2	Alt Function 3	Alt Function 4	
	บนบอร์ด					
1	3V3	-	-	-	-	
2	EN	-	-	-	-	
3	VP	GPIO36	ADC1_0			
4	VN	GPIO39	ADC1_3			
5	34	GPIO34	ADC1_6	RTC_GPIO4		
6	35	GPIO35	ADC1_7			
7	32	GPIO32	ADC1_4	Touch9		
8	33	GPIO33	ADC1_5	Touch8		
9	25	GPIO25	ADC2_8	DAC1		
10	26	GPIO26	ADC2_9	DAC2		
11	27	GPIO27	ADC2_7	Touch7		
12	14	GPIO14	ADC2_6	Touch6		
13	12	GPIO12	ADC2_5	Touch5		
14	GND	-	-	-	-	
15	13	GPIO13	ADC2_4	Touch4		
16	D2	GPIO9	เชื่อมต่อกับหน่วยความจำแฟลชภายในโมดูล			
17	D3	GPIO10	เชื่อมต่อกับหน่วยความจำแฟลชภายในโมดูล			
18	CMD	GPIO11	เชื่อมต่อกับหน่วยความจำแฟลชภายในโมดูล			
19	5V	-	-	-	-	
20	CLK	GPIO6	เชื่อมต่อกับหน่วยความจำแฟลชภายในโมดูล			
21	D0	GPIO7	เชื่อมต่อกับหน่วยความจำแฟลชภายในโมดูล			
22	D1	GPIO8	เชื่อมต่อกับหน่วยความจำแฟลชภายในโมดูล			
23	15	GPIO15	ADC2_3	Touch3		
24	2	GPIO2	ADC2_2	Touch2		
25	0	GPIO0				
26	4	GPIO4	ADC2_0	Touch0		
27	16	GPIO16	U2_RXD			

28	17	GPIO17	U2_TXD		
29	5	GPIO5	VSPI_CS		
30	18	GPIO18	SCK		
31	19	GPIO19	MISO		
32	GND	-	-	-	-
33	21	GPIO21	SDA		
34	RX	GPIO3	U0_TXD		
35	TX	GPIO1	U0_RXD		
36	22	GPIO22	SCL		
37	23	GPIO23	MOSI		
38	GND	-	-	-	-

วงจรส่วนต่าง ๆ

1. วงจร analog input รับแรงดันได้สูงสุด 35 โวลต์

วงจร analog input ใช้เพื่อศึกษาการเชื่อมต่อสัญญาณจากโลกภายนอกที่เป็นแอนะลอกมายัง ESP32 เพื่อส่ง ต่อไปยังอินเทอร์เน็ต วงจรในส่วนนี้ถูกออกแบบให้สามารถรับแรงดันได้สูงสุด 35 โวลต์ จึงสามารถนำไปวัด แรงดันในรถยนต์ รถบรรทุกและระบบพลังงานหมุนเวียนที่ใช้ solar cell ได้

รูปที่ 1วงจรวัดสัญญาณ analog input

การออกแบบวงจรวัดสัญญาณ analog input มีข้อกำหนดที่สำคัญคือ

- 1. แรงดันขาออกต้องไม่เกิน 3.3 โวลต์ เนื่องจาก ESP32 รับได้ไม่เกิน 3.3 โวลต์
- 2. กำลังของตัวต้านทานที่ใช้ในวงจรต้องเหมาะสมกับแรงดันสูงสุดที่ป้อนเข้ามา

ขั้นตอนการออกแบบ

1. กำหนดแรงดันอินพุต V_{in} สูงสุด 35 โวลต์ แรงดันเอาต์พุต V_{out} จากการแบ่งแรงดัน 3.3 โวลต์ คำนวณหาค่า R ที่เหมะสม

จากวงจรในรูปที่ 1 และสมการแบ่งแรงดัน

$$v_{out} = V_{in} \frac{R_{44}}{R_{43} + R_{44}} \tag{1}$$

จาก (1) จัดรูปสมการใหม่ได้เป็น

$$\begin{split} \frac{V_{out}}{V_{in}} &= \frac{R_{44}}{R_{43} + R_{44}} \\ (R_{43} + R_{44}) \left(\frac{V_{out}}{V_{in}} \right) &= R_{44} \\ R_{43} \left(\frac{V_{out}}{V_{in}} \right) &= R_{44} - R_{44} \left(\frac{V_{out}}{V_{in}} \right) \\ R_{43} &= R_{44} \left(\frac{V_{in}}{V_{out}} \right) + R_{44} \\ R_{43} &= R_{44} \left(\frac{V_{in}}{V_{out}} - 1 \right) \end{split}$$

กำหนดให้ $R_{44}\,=\,10k\Omega$ จะได้

$$R_{43} = 10k\Omega \left(\frac{35V}{3.3V} - 1\right)$$
$$= 10k\Omega(9.607)$$
$$= 96.07k\Omega$$

ในวงจรนี้เลือกใช้ $R_{43} = 100 k\Omega$

2. คำนวณกำลังสูญเสีย เพื่อกำหนดขนาดของ $R_{43}\,$ และ $R_{44}\,$

ที่แรงดันอินพุตสูงสุด (35 โวลต์) สามารถหาค่าแรงดันตกคร่อม R_{43} ได้เป็น

$$V_{R43} = \frac{100k\Omega}{10k\Omega + 100k\Omega} \times 35V$$
$$V_{R43} = 31.818 V$$

กำลังสูญเสียที่ R_{43} คือ

$$\begin{split} P_{T_{R44}} &= \frac{E^2}{R} \\ P_{T_{R43}} &= \frac{31.818^2 V}{100 \times 10^3 \Omega} \ watt \\ P_{T_{R43}} &= 10.123 \times 10^{-3} \ watt \\ P_{T_{R43}} &= 10.123 \ mW \end{split}$$

แรงดันตกคร่อม R₄₄ ได้เป็น

$$V_{R44} = \frac{10k\Omega}{10k\Omega + 100k\Omega} \times 35V$$

 $V_{R44} = 3.182 V$

กำลังสูญเสียที่ R_{44} คือ

$$\begin{split} P_{T_{R44}} &= \frac{E^2}{R} \\ P_{T_{R44}} &= \frac{3.182^2 V}{10 \times 10^3 \Omega} \ watt \\ P_{T_{R44}} &= 1.012 \times 10^{-3} \ watt \\ P_{T_{R44}} &= 1.012 \ mW \end{split}$$

สรุป ค่า R_{43} ที่ใช้ในวงจรคือ $100k\Omega$ และค่า R_{44} ที่ใช้ในวงจรคือ $10k\Omega$ เป็นค่าที่เหมาะสมและหาได้ใน ท้องตลาดโดยทั่วไป

วงจร volume control (10kOhm) จ่ายแรงดัน 0 ~ 3.3 โวลต์

วงจร volume control เป็นวงจรสร้างแรงดันที่เปลี่ยนค่าได้อย่างง่าย เพื่อป้อนให้กับ ESP32 ซึ่งสามารถใช้ เรียนรู้เรื่องการแปลง analog to digital ได้โดยไม่ต้องหาแหล่งจ่ายจากภายนอก โดยแรงดันที่วงจร volume control สามารถจ่ายออกมาได้อยู่ในย่าน $0\sim 3.3$ โวลต์ ซึ่งในวงจรนี้ได้ใส่ตัวเก็บประจุ C_8 ค่า 1nF เพื่อทำ หน้าที่ filter สัญญาณรบกวนที่อาจจะเกิดจากการหมุน volume ไว้ด้วย ดังวงจรในรูปที่ 2

รูปที่ 2 วงจร volume control

จากวงจรในรูปที่ 2 แรงดันที่ขั้ว Poten_voltage จะมีการเปลี่ยนแปลงได้ในช่วง 0 \sim 3.3 โวลต์ อย่างไรก็ตาม วงจรนี้มีประเด็นพิจารณาอยู่ประการหนึ่งคือกำลังสูญเสียใน volume control ซึ่งหาได้จาก $P=\frac{E^2}{R}$ เมื่อ P คือกำลังสูญเสีย E คือแรงดันตกคร่อม (จากรูปมีค่าเป็น 3.3 โวลต์) และ R คือความต้านทานของ volume control ซึ่งมีค่าเป็น $50k\Omega$

$$P = \frac{(3.3V)^2}{50k\Omega} Watt$$

 $P = 0.218 \, mWatt$

3. วงจร Opto-Isolator Digital Input รับแรงดันในย่าน 5 ~24 โวลต์

รูปที่ 3 วงจร Opto-Isolator Digital Input

วงจร Opto-Isolator Digital Input ถูกออกแบบให้สามารถรองรับแรงดันได้ในย่าน 5 ~24 โวลต์ เพื่อรองรับ แรงดันส่วนใหญ่ในงาน digital, รถยนต์ และในงานอุตสาหกรรม การออกแบบวงจรนี้จะแบ่งเป็น 2 ส่วนคือ ภาคอินพุตและเอาต์พุต

4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25℃

Parameter		Symbol	Min.	Тур.	Max.	Unit	Test Condition
	Forward Voltage	V _F	-	1.2	1.4	v	I _F =20mA
Input	Reverse Current	I _R	-	_	10	μА	V _R =4V
	Terminal Capacitance	Ct	_	30	250	pF	V=0, f=1KHz
	Collector Dark Current	I _{CEO}	_	_	100	nΑ	V _{CE} =20V, I _F =0
Output	Collector-Emitter Breakdown Voltage	BV _{CEO}	35	_	-	٧	I _C =0.1mA, I _F =0
	Emitter-Collector Breakdown Voltage	BV _{ECO}	6	_	_	v	I _E =10μΑ, I _F =0
	Collector Current	lc	2.5	_	30	mA	1.5.4.7.57
	Current Transfer Ratio	CTR	50	_	600	%	I _F =5mA, V _{CE} =5V
	Collector-Emitter Saturation Voltage	V _{CE(set)}	_	0.1	0.2	v	I _F =20mA, I _C =1mA
TRANSFER	Isolation Resistance	Riso	5×10 ¹⁰	1×10 ¹¹	_	Ω	DC500V, 40 ~ 60% R.H.
CHARACTERISTICS	Floating Capacitance	Cf	_	0.6	1	pF	V=0, f=1MHz
	Cut-off Frequency	fe	_	80	_	kHz	VCE=5V, IC=2mA RL=100Ω,-3dB
	Response Time (Rise)	tr	_	4	18	μѕ	V _{CE} =2V, I _C =2mA
	Response Time (Fall)	tf	_	3	18	μѕ	R_L =100 Ω ,

รูปที่ 4 ตารางคุณสมบัติทางไฟฟ้าของ LTV-827

1. การออกแบบภาคอินพุต

จาก datasheet ของตัว Opto-Isolator ที่ใช้ในวงจรคือ LTV-827 ได้ระบุแรงดันและกระแสไว้ดังรูปที่ 3 ซึ่ง จะพบว่า แรงดันตกคร่อม LED ที่ฝั่ง Input ในขณะ forward bias สูงสุดคือ 1.4 โวลต์ และทรานซิสเตอร์ที่ ภาคเอาต์พุตจะเริ่มนำกระแสเมื่อจ่ายกระแสอินพุตที่ 5 มิลลิแอมป์ และอิ่มตัว เมื่อจ่ายกระแสอินพุตเป็น 20 มิลลิแอมป์ โดย LED ที่ฝั่ง Input ทนกระแสได้สูงสุด 50 มิลลิแอมป์ โดยมีแรงดันตกคร่อมไม่เกิน 0.2 โวลต์ สามารถนำมาเป็นเงื่อนไขในการออกแบบวงจรที่สามารถรับแรงดันอินพุตในย่านกว้างตั้งแต่ 5 ถึง 24 โวลต์ได้ จากกฎของ KVL และกฎของโอห์ม สามารถนำวงจรในรูปที่.3 มาพิจารณารวมกับค่าจากตารางในรูปที่ 4 ได้ว่า กระแสที่ไหลในภาคอินพุต

$$I_{in} = \frac{V_{in} - V_F}{R_{33}}$$

เนื่องจากวงจรนี้ต้องรองรับแรงดันอินพุตเป็นย่านกว้าง เบื้องต้นจึงกำหนดให้ $R_33=1k\Omega$ แล้วพิจารณา กระแสที่ไหลผ่านวงจร

ก) ที่แรงดันอินพุต 5 โวลต์

$$I_{in} = \frac{5V - 1.4V}{1 \times 10^3}$$
$$I_{in} = 3.6 \, mA$$

ข) ที่แรงดันอินพุต 24 โวลต์

$$I_{in} = \frac{24V - 1.4V}{1 \times 10^3}$$
$$I_{in} = 22.6 \, mA$$

จากการคำนวณพบว่า ที่ย่านแรงดันอินพุต 5 ถึง 24 โวลต์ มีกระแสไหลผ่าน LED ภายในคือ 3.6 ถึง 22.6 มิลลิแอมป์ ซึ่งเป็นย่านที่ opto-isolator สามารถทำงานได้

2. การออกแบบภาคเอาต์พุตของ opto-isolator

จากตารางคุณสมบัติทางไฟฟ้าของ LTV-827 .ในรูปที่ 4 พบว่า แรงดัน $V_{CE(sat)}$ มีค่าเป็น 0.2 โวลต์ เมื่อ เลือกใช้ R_{pullup} ค่า $4.7k\Omega$ จะได้กระแส I_C เป็น

$$I_C = \frac{3.3V - 0.2V}{47k\Omega}$$
$$I_C = 6.59mA$$

4. วงจร PIR Sensor ตรวจจับการเคลื่อนไหว

PIR sensor ย่อมาจาก Passive Infrared Sensor เป็นเซนเซอร์ที่ทำงานโดยหลักการวัดความร้อนด้วยรังสี อินฟราเรดที่ไม่ต้องมีแหล่งกำเนิดอินฟราเรดในตัว แต่จะอาศัยคลื่นความร้อนจากร่างกายของสิ่งมีชีวิต เมื่อ สิ่งมีชีวิตเคลื่อนไหวผ่านพื้นที่ตรวจจับ (Detecting Area) PIR จะสร้างสัญญาณไฟฟ้าที่สอดคล้องกับการ เคลื่อนไหวออกมาทางเอาต์พุต ทำให้สามารถตรวจจับการเคลื่อนไหวได้ พิจารณารูปที่ 5

รูปที่ 5 หลักการตรวจจับการเคลื่อนไหวโดย PIR Sensor

อย่างไรก็ตาม การตรวจจับสัญญาณแอนะลอกด้วยไมโครคอนโทรลเลอร์จะมีข้อจำกัด ทั้งทางด้านความไวใน การตรวจจับและความซับซ้อนในการเขียนโปรแกรม จึงมีผู้ผลิตโมดูลสำเร็จรูปสำหรับการตรวจจับการ เคลื่อนไหว ซึ่งให้ output ออกมาเป็นสัญญาณดิจิทัลและมีการเชื่อมต่อที่ไม่ซับซ้อนดังรูปที่ 6

ร**ูปที่ 6** วงจร PIR Sensor ตรวจจับการเคลื่อนไหว

คุณสมบัติของโมดูล PIR Sensor ที่ใช้ในชุดทดลองนี้มีดังต่อไปนี้

แรงดัน Input voltage	DC 4.5-20V		
กระแสใช้งานปกติ	< 50uA		
แรงดัน output	High 3.3 V / Low 0V		
Delay time	5-200s		
Block time	2.5s		
ขนาดบอร์ด	32mm x 24mm		
มุมการตรวจจับ	< 100 cone angles		
อุณหภูมิใช้งาน	-15-+70 degrees		
ขนาดของเลนส์	เส้นผ่านศูนย์กลาง 23mm		

5. วงจร LDR วัดความเข้มแสง

รูปที่ 7 วงจร LDR วัดความเข้มแสง

LDR ย่อมาจาก Light-Dependent Resistor เป็นตัวต้านทานที่ไวต่อการเปลี่ยนแปลงความเข้มแสง โดยเมื่อมี ความเข้มแสงมากขึ้นค่าความต้านทานของ LDR จะลดลง LDR (R_{37}) ที่เลือกใช้ในวงจรมีการเปลี่ยนค่าความ ต้านทานอยู่ในย่าน $100\Omega \sim 50k\Omega$ จากวงจรพบว่า แรงดัน LDR_OUTPUT จะมีค่าอยู่ระหว่าง $0.55 \sim 3.26$ โวลต์ ดังตัวอย่างการคำนวณต่อไปนี้

ก) ที่ความต้านทาน 100Ω

$$V_{LDR_Output} = \frac{10k\Omega}{100\Omega + 10k\Omega} \times 3.3V$$
$$V_{LDR_Output} = 3.26V$$

ข) ที่ความต้านทาน $50k\Omega$

$$V_{LDR_Output} = \frac{10k\Omega}{50k\Omega + 10k\Omega} \times 3.3V$$

$$V_{LDR\ Output} = 0.55V$$

6. วงจร IR Receiver รับสัญญาณจากรีโมตคอนโทรลไร้สายแบบแสงอินฟราเรด

รูปที่ 8 วงจร IR Receiver

รูปที่ 9 บล็อกไดอะแกรมของ Remote Control ภายใน ESP32

ESP32 มีโมดูลหนึ่งที่ชื่อว่า RMT (รีโมทคอนโทรล) ถูกการออกแบบมาเพื่อส่งและรับสัญญาณรีโมตคอนโทรล อินฟราเรดแบบ on-off keying ของความถี่พาหะ แต่ด้วยการออกแบบมาให้ใช้งานกับสัญญาณประเภทต่าง ๆ ได้อย่างหลากหลายจึงสามารถใช้กับรีโมตคอนโทรลได้ทุกชนิด โมดูล RMT สามารถรับหรือส่งสัญญาณรีโมตคอนโทรลได้ แต่ในชุดทดลองนี้ได้ติดตั้งเฉพาะภาครับของรีโมต คอนโทรล ที่มีความถี่พาหะ 38kHz ถ้าต้องการใช้งานตัวส่งสัญญาณ ผู้ใช้จะต้องติดตตั้ง LED ชนิด infrared ด้วยตนเอง โดยโมดูล RMT มีทั้งสิ้นแปดช่อง (CH0 – CH7) รายละเอียดแสดงไว้ในบล็อกไดอะแกรมในรูปที่ 9

7. วงจรวัดอุณหภูมิและความชื้น

รูปที่ 10 วงจรวัดอุณหภูมิและความชื้น

ชุดทดลองนี้ได้ติดตั้งโมดูล DHT11 เพื่อวัดอุณหภูมิและความชื้นสัมพัทธ์ ซึ่งมีคุณสมบัติเบื้องต้นดังตารางที่ 1 ตาราง 1 รายการคุณลักษณะของตัววัดความชื้นและอุณหภูมิ

รายการคุณลักษณะ	ตัววัดความชื้น	ตัววัดอุณหภูมิ		
Accuracy	+-2 %RH (Max +-5 %RH)	+-0.2 degree Celsius		
Resolution	0.1 %RH	0.1 degree Celsius		
Repeatability	+-1 %RH	+-0.2 degree Celsius		
Humidity hysteresis	+-0.3 %RH			
Long-term Stability	+-0. 5 %RH/year			
Sensing period	2s	2s		

โมดูล DHT11 ทำงานที่แรงดัน 3V ถึง 5.5V โดยตัวเซนเซอร์จะถูกติดตั้งภายในตัวถังพลาสติกสีฟ้า เพื่อป้องกัน ผลกระทบโดยตรงจากสภาพแวดล้อม โมดูลนี้มีขาต่อ 4 ขาที่ใช้งานจริง 3 ขา ดังรายละเอียดในรูปที่ 10

8. วงจรวัดระยะห่างด้วย ultrasonic distance sensor

รูปที่ 11 วงจรวัดระยะห่างด้วย ultrasonic distance sensor

การวัดระยะห่างด้วย ultrasonic distance sensor ใช้หลักการส่งคลื่นเสียง ultra sonic ออกไปยังวัตถุเป็น ช่วงสั้น ๆ จากนั้นจะรอให้คลื่นสะท้อนกลับมาจากวัตถุ แล้วคำนวณระยะเวลาออกมาเป็นระยะห่าง เนื่องจาก เราทราบความเร็วในการเดินทางของเสียงในอากาศแล้วนั่นเอง การเดินทางของคลื่นเสียง ultra sonic ใน อากาศจะมีลักษณะเป็นรูปกรวย (cone) ทำให้สามารถตรวจจับวัตถุหรือสิ่งกีดขวางได้ในมุมที่กว้างมากกว่า การตรวจจับด้วยการใช้ลำแสง วงจรและการเชื่อมต่อของวัดระยะห่างด้วย ultrasonic distance sensor แสดงในรูปที่ 11

รูปที่ 12 ตัวอย่างการใช้คลื่น ultrasonic โดยค้างคาวเพื่อช่วยในการหาอาหารในที่มืด

การใช้งาน ultrasonic distance sensor จะใช้หลักการคล้ายกับการหาอาหารหรือตรวจจับสิ่งกีดขวาง ในขณะบินในอากาศของค้างคาว (รูปที่ 12) ซึ่งในการเขียนโปรแกรมควบคุม ผู้ใช้ต้องสามารถเขียนโปรแกรม เพื่อวัดระยะห่างของเวลาที่ส่งเสียงและรับเสียงในหน่วยที่เล็กมาก ๆ ได้ (เช่นระดับมิลลิวินาที) แล้วมาคำนวณ เทียบกับความเร็วในการเดินทางของเสียงในอากาศซึ่งเป็นค่าคงที่

9. วงจร Push Button Input จำนวน 2 ช่อง

รูปที่ 13 Push Button Input จำนวน 2 ช่อง

วงจร push button ทำหน้าที่เป็นอินพุตแบบดิจิทัลให้กับ ESP32 โดยการเชื่อมต่อจะมีลักษณะการต่อลง กราวด์ เมื่อมีการกดจะให้ลอจิก 0 และเมื่อไม่มีการกด อินพุตจะถูก pull up ขึ้นไปยังแรงดัน +3.3 โวลต์ ทำ ให้ได้ลอจิก 1 ที่ขาดิจิทัลอินพุตของ ESP32 สามารถใช้งานได้ทั้งในรูปแบบการตรวจสอบระดับและการทำงาน แบบอินเทอร์รัปต์

10. วงจร Rotary Switch Input

รูปที่ 14 วงจร Rotary Switch Input

Rotary Switch เป็นสวิตช์ที่มีลักษณะเหมือน volume control แต่จะมีโครงสร้างและการทำงานที่แตกต่าง กัน นั้นคือภายใน Rotary Switch จะมีสวิตช์จำนวน 3 ตัว เพื่อตรวจจับการหมุนซ้าย หมุนขวาและกดปุ่ม เนื่องจากภายใน Rotary Switch มีสวิตช์เพียงอย่างเดียว ในการใช้งานจึงต้องมีตัวต้านทานภายนอกทำหน้าที่ pull up ให้แก่อินพุตของ ESP32 โดยบนบอร์ดได้ติดตั้งตัวต้านทาน pullup ค่า $10k\Omega$ ให้กับสวิตช์ภายใน ทั้ง 3 ตัว

11. วงจร Buzzer ความถี่เดียว (internal drive)

รูปที่ 15 วงจรขับ Buzzer แบบ internal drive

เอาต์พุตของระบบอิเล็กทรอนิกส์นั้นสามารถแสดงได้ทั้งในรูปแบบของสัญญาณไฟฟ้า แสงสว่างหรือเสียง เพื่อ เอื้ออำนวยให้ผู้ใช้สามารถรับรู้ได้ทางประสาทสัมผัสได้หลายช่องทาง เช่น ทางตา ทางหู หรืออื่น ๆ ระบบที่ สามารถส่งเสียงเตือนจะช่วยให้ผู้ใช้ไม่จำเป็นต้องจ้องมองที่วงจรตลอดเวลา สามารถละสายตาไปทำงานอื่นๆ ไปพร้อมๆ กัน ทำให้มีความคล่องตัวในการทำงานกับระบบ เช่นการส่งเสียงเตือนเมื่อมีสิ่งกีดขวางในขณะที่ขับ รถถอยหลัง เป็นต้น

Buzzer ที่ใช้จะทำงานโดยปรากฏการณ์ Piezo ที่มีการแปลงพลังงานไฟฟ้าเป็นการสั่นสะเทือน (พลังงานกล) ออกมาในรูปแบบสัญญาณเสียงที่มีความถี่จำเพาะ ซึ่ง Buzzer ในลักษณะจะมีวงจรกำเนิดความถี่และวงจรขับ กำลังอยู่ภายใน (เรียกว่า Buzzer ชนิดมีวงจรขับภายในหรือ internal drive buzzer) มีข้อดีตรงที่สามารถใช้ งานง่าย เพียงแค่จ่ายไฟเข้าไปยัง Buzzer ก็มีเสียงออกมาตามต้องการ ในวงจรนี้ใช้ทรานซิสเตอร์ทำหน้าที่ สวิตช์ในการเปิด/ปิดเสียงจาก Buzzer ดังรูปที่ 15

12. วงจร Buzzer ชนิดหลายความถี่ (External drive)

Buzzer อีกรูปแบบหนึ่งคือ Buzzer ที่ไม่มีวงจรกำเนิดความถี่และวงจรขับอยู่ในตัว เรียกว่า Buzzer ชนิด external drive การใช้งาน Buzzer ชนิดนี้ เราสามารถใช้วงจรเดียวกับชนิด internal drive ได้ แต่ต้องสร้าง สัญญาณพัลส์เพื่อขับ piezo ให้แปลงพลังงานไฟฟ้าเป็นพลังงานกลในความถี่เสียงออกมา ข้อดีของ Buzzer ชนิด external drive คือเราสามารถสร้างความถี่เสียงได้หลากหลาย เช่นเสียงเรียกเข้าแบบ polyphonic ของ โทรศัพท์เคลื่อนที่ เสียงเพลงแบบกล่องดนตรี เป็นต้น วงจรขับมีลักษณะดังรูปที่ 16

รูปที่ 16 วงจรขับ Buzzer ชนิด External driver

13. วงจร LED จำนวน 8 ดวง

รูปที่ 17 วงจรขับ LEDs ด้วยทรานซิสเตอร์จำนวน 8 ดวง

ปัญหาสำคัญอย่างหนึ่งในการทดลองระบบไมโครคอนโทรลเลอร์คือ การสิ้นเปลืองอุปกรณ์ โดยเฉพาะ LED ทั้งนี้เนื่องจากผู้ใช้ยังขาดความรู้ความเข้าใจเกี่ยวกับพิกัดกระแสขณะใช้งานของ LED เป็นผลให้เกิดการเสียหาย ของวัสดุอุปกรณ์เป็นจำนวนมาก ในชุดทดลองนี้จึงได้เพิ่มวงจรทรานซิสเตอร์ชนิด common emitter เพื่อ ควบคุมกระแสที่จ่ายให้ LED โดยผู้ใช้สามารถป้อนแรงดันได้ในย่านกว้างโดยไม่ส่งผลกระทบต่อความปลอดภัย ของ LEDs

14. วงจร LED 7 segment จำนวน 2 หลัก

รูปที่ 18 วงจร LED 7 segment จำนวน 2 หลัก

วงจร LED 7 segment บนชุดทดลองนี้ได้ติดตั้งโมดูล LED 7 segment แบบ common cathode จำนวน 2 หลัก โดยจะสามารถใช้งานได้ครั้งละหลัก จึงต้องเขียนโปรแกรมสลับการทำงานของแต่ละหลักด้วยความเร็วสูง (multiplexing) ทำได้โดยการควบคุมด้วยทรานซิสเตอร์ Q13 และ Q14

15. วงจร Relay output จำนวน 2 ช่อง

รูปที่ 19 วงจร Relay output จำนวน 2 ช่อง

วงจร relay output จำนวนสองช่อง สามารถใช้ควบคุมอุปกรณ์ที่ต้องการกระแสสูง หรือต้องการแยกทาง ไฟฟ้า (isolation) ของอุปกรณ์ภายนอกที่นำมาต่อ เช่น การเปิดปิดหลอดไฟบ้าน หรือ solar cell ในงาน smart home หรือการควบคุมมอเตอร์ปั๊มน้ำในงาน smart farm เป็นต้น โดยปกติ ไมโครคอนโทรลเลอร์จะ ไม่สามารถสั่งงานให้ relay ทำงานได้โดยตรง จึงต้องมีการต่อทรานซิสเตอร์เพื่อเพิ่มความสามารถในการขับ กระแสไว้บนบอร์ดด้วย

16. วงจร Servo motor จำนวน 2 ช่อง

รูปที่ 20 คอนเนคเตอร์สำหรับเชื่อมต่อ servo motor จำนวน 2 ช่อง

ในงานบางอย่าง อาจจะต้องมีการควบคุมทางกล เช่นการเปิดปิดท่อลมให้มีปริมาณลมไหลมากน้อยตาม ต้องการ ซึ่งต้องมีการควบคุมลิ้นปิดเปิดตามองศาที่เหมาะสม ในการควบคุมลักษณะนั้นต้องใช้อุปกรณ์ที่ เรียกว่าเซอร์โวมอเตอร์ ซึ่งบนบอร์ดนี้ได้เตรียมจุดเชื่อมต่อสำหรับเซอร์โวมอเตอร์ โดยมีทั้งไฟเลี้ยง กราวด์และ สัญญาณไว้เป็นจำนวน 2 ตัว สามารถเสียบสายเชื่อมต่อเซอร์โวมอเตอร์ที่นิยมใช้ได้โดยตรง

17. ช่องเชื่อมต่อ Extension ที่สามารถการเชื่อมต่อแบบ I2C, SPI, CAN BUSม , UART และ RS485

รูปที่ 21 ช่องเชื่อมต่อ Extension

ESP32 มีความสามารถในการเชื่อมต่ออุปกรณ์ภายนอกได้หลากหลาย รวมทั้งรองรับโพรโทคอลที่หลากหลาย ในชุดทดลองนี้ ได้เตรียมเนื้อที่บางส่วนบนบอร์ดไว้สำหรับการเชื่อมต่อบอร์ดขยาย ซึ่งสามารถสร้างขึ้นมา เพิ่มเติมได้ในอนาคต ได้แก่บอร์ดขยาย CAN BUS จำนวน 1 ช่อง, SPI จำนวน 2 ช่อง, I2C จำนวน 1 ช่อง, และ UART จำนวน 2 ช่อง เพื่อให้ผู้เรียนรู้ได้พัฒนาความรู้ความสามารถเพิ่มขึ้นตามความสนใจ

18. แหล่งจ่ายไฟ auxiliary แบบ switch mode

รูปที่ 22 วงจรแปลงแรงดัน DC-DC Converter 3.3 Volts, 1.5 Amps

เพื่อให้บอร์ดทดลอง สามารถใช้งานได้ครอบคลุมอุปกรณ์หลาย ๆ อย่างได้พร้อมกัน ซึ่งจะต้องมีการดึงกระแส จากแหล่งจ่ายเป็นจำนวนมากกว่าที่พอร์ต USB ของ ESP32 จะสามารถจ่ายได้โดยลำพัง ในชุดฝึกนี้จึงได้ เตรียมช่องเสียบสำหรับรับกระแสไฟฟ้าจากพอร์ต USB มีความสามารถในการจ่ายแรงดัน 5 โวลต์ กระแส 2.1 แอมป์ และมีวงจรแปลงแรงดันแบบ DC-DC Converter ที่แรงดัน 3.3 โวลต์ จ่ายกระแสได้ 1.5 แอมป์ ซึ่ง เพียงพอต่อการทดลองของอุปกรณ์ที่อยู่บนบอร์ด

19. ลักษณะการจัดวางอุปกรณ์บนชุดทดลอง

รูปที่ 23 การจัดวางอุปกรณ์บนชุดทดลอง

20. ลายทองแดงด้านบนของชุดทดลอง

รูปที่ 24 ลายทองแดงด้านบนของชุดทดลอง

21. ลายทองแดงด้านล่างของชุดทดลอง

รูปที่ 25 ลายทองแดงด้านล่างของชุดทดลอง

22. รายการอุปกรณ์

หมายเลข	จำนวน	ค่า
BZ1,	1	Buzzer (IN)
BZ2,	1	Buzzer (EX)
C1,	1	22uF/6.3V
C2, C6, C8,	3	1nF
C3,	1	100uF
C4,	1	100nF
C5,	1	100uF/35V
C7,	1	0.1uF
D1, D2,	2	M7
D3,	1	BZX84C3V3LT1G
F1,	1	3.00A
J1,	1	ESP32_LEFT_A
J2,	1	ESP32_LEFT_B
J3,	1	ESP32_RIGHT_A
J4,	1	ESP32_RIGHT_B
J5,	1	LED x8
J6,	1	TEMP-HUMID
J7,	1	Ultrasonic
J8,	1	Buzzer
J9,	1	RELAY
J10,	1	7 Segment Digit
J11,	1	7 Segment Common
J12,	1	SERVO MOTOR
J13,	1	SERVO 1
J14,	1	SERVO 2
J15,	1	OPTO ISOLATOR
J16,	1	OPTO
J17,	1	SWITCH
J18,	1	Analog Input
J19,	1	USB_B_Mini
J20,	1	+5V
J21,	1	+3.3V
J22,	1	GND
J23, J24,	2	Conn_01x08
K1, K2,	2	FINDER-36.11
L1,	1	2.2uH/1.5A
LED1, LED2, LED3, LED4, LED5, LED6, LED7, LED8, LED9, LED10, LED11,		
LED12,	12	RED 1206
LED13,	1	RED

หมายเลข	จำนวน	ค่า
P1,	1	K1
P2,	1	K2
P3,	1	OPTO INPUT 1
P4,	1	OPTO INPUT 2
P5,	1	Voltage Input
PIR1,	1	PIR_Motion_Sensor
Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14,	14	BC817
R1, R4, R6, R8, R10, R12, R14, R16, R23, R24, R25, R26, R27, R28, R29, R30,		
R31, R32, R39, R42, R45,	21	470
R2, R3, R5, R7, R9, R11, R13, R15, R17, R18, R38, R40, R41, R48, R49, R50,	16	10k
R19, R20, R21, R22,	4	4.7k
R33, R34,	2	1k
R35, R36,	2	47k
R37,	1	LDR07
R43,	1	100k
R44,	1	10k
R46,	1	220k
R47,	1	49.9k
RV1,	1	50kB
SW1,	1	RotaryEncoder_Switch
SW2, SW3,	2	SW_Push
TH2,	1	DHT22_Temperature_Humidity
U1,	1	HC-SR04
U2,	1	Protoboard
U3,	1	esp32_38_pins-custom_library
U4,	1	DC56-11SURKWA
U5,	1	LTV-827
U6,	1	TSOP382xx
U7,	1	SY8089AAAC