Mérték, integrál, ...

6. Előadás

1. Kiterjesztési tételek.

Legyen valamilyen X halmaz esetén adott a $\mathcal{G} \subset \mathcal{P}(X)$ gyűrűn egy

$$\widetilde{\mu}: \mathcal{G} \to [0, +\infty]$$

kvázimérték. Ha van olyan $\Omega \subset \mathcal{P}(X)$ szigma-algebra és olyan

$$\mu:\Omega\to[0,+\infty]$$

mérték, hogy

$$\mathcal{G} \subset \Omega$$
 és $\widetilde{\mu}(A) = \mu(A)$ $(A \in \mathcal{G})$

teljesül, akkor azt mondjuk, hogy a $\widetilde{\mu}$ kvázimérték kiterjeszthető mértékké, és a μ mérték a $\widetilde{\mu}$ egy kiterjesztése.¹

Megjegyezzük, hogy a \mathcal{G} -t lefedő bármilyen $\Omega \subset \mathcal{P}(X)$ szigma-algebra és az azon értelmezett

$$\mu:\Omega\to[0,+\infty]$$

mérték esetén a μ leszűkítése a \mathcal{G} -re nyilván kvázimérték. A továbbiakban éppen azt a kérdést vizsgáljuk, hogy ez mennyiben megfordítható.

1. **Tétel**. Minden kvázimérték kiterjeszthető mértékké.

Bizonyítás. Megmutatjuk, hogy van olyan $\Omega \subset \mathcal{P}(X)$ szigma-algebra és olyan

$$\mu:\Omega\to[0,+\infty]$$

mérték, amelyik kiterjesztése a $\widetilde{\mu}$ -nak: $\mathcal{G} \subset \Omega$ és $\widetilde{\mu} = \mu_{|_{\mathcal{G}}}$.

Legyen tetszőleges $A \in \mathcal{P}(X)$ esetén

$$\sum_{A} := \left\{ (A_n, n \in \mathbf{N}) : A_n \in \mathcal{G} \ (n \in \mathbf{N}), \ A \subset \bigcup_{n=0}^{\infty} A_n \right\},\,$$

és

$$\mu^*(A) := \begin{cases} +\infty & (\Sigma_A = \emptyset) \\ \inf\{\sum_{n=0}^{\infty} \widetilde{\mu}(A_n) : (A_n, n \in \mathbf{N}) \in \Sigma_A\} & (\Sigma_A \neq \emptyset). \end{cases}$$

¹Ekkor $\mathcal{G} \subset \Omega(\mathcal{G}) \subset \Omega$ miatt a $\widetilde{\mu}$ kvázimértéket "legalább" az $\Omega(\mathcal{G})$ (a \mathcal{G} -t lefedő) legszűkebb szigma-algebrára ki kell tudni terjeszteni.

Az így definiált

$$\mu^*: \mathcal{P}(X) \to \overline{\mathbf{R}}$$

halmazfüggvényre a következők teljesülnek:

- a) $\mu^*(\emptyset) = 0;$
- b) $\mu^* \ge 0$;
- c) tetszőleges $A, B \in \mathcal{P}(X), A \subset B$ esetén $\mu^*(A) \leq \mu^*(B)$;
- d) bármilyen $A_n \in \mathcal{P}(X) \ (n \in \mathbf{N})$ halmazsorozatra

$$\mu^* \Big(\bigcup_{n=0}^{\infty} A_n \Big) \le \sum_{n=0}^{\infty} \mu^* (A_n).$$

Itt $(\emptyset, n \in \mathbb{N}) \in \Sigma_{\emptyset}$, ezért az a) állítás $\widetilde{\mu}(\emptyset) = 0$ miatt triviális. A b) nyilvánvaló, a c) állítás pedig az infimum értelmezéséből $\Sigma_B \subset \Sigma_A$ miatt rögtön következik.

A d)-beli egyenlőtlenséghez feltehető, hogy $\mu^*(A_n) < +\infty$ $(n \in \mathbf{N})$. Ekkor minden $\varepsilon > 0$ szám és $n \in \mathbf{N}$ index mellett megadható olyan $(A_{nm}, m \in \mathbf{N}) \in \Sigma_{A_n}$ sorozat, amellyel

$$\sum_{m=0}^{\infty} \widetilde{\mu}(A_{nm}) < \mu^*(A_n) + 2^{-n-1} \cdot \varepsilon.$$

Ugyanakkor

$$\bigcup_{n=0}^{\infty} A_n \subset \bigcup_{n=0}^{\infty} \bigcup_{m=0}^{\infty} A_{nm}$$

miatt

$$(A_{nm}, n, m \in \mathbf{N}) \in \sum_{\bigcup_{n=0}^{\infty} A_n},$$

valamint

$$\mu^* \Big(\bigcup_{n=0}^\infty A_n\Big) \leq \sum_{m,n=0}^\infty \widetilde{\mu}(A_{nm}) < \sum_{n=0}^\infty \mu^*(A_n) + \sum_{n=0}^\infty \varepsilon \cdot 2^{-n-1} =$$

$$\sum_{n=0}^{\infty} \mu^*(A_n) + \varepsilon.$$

Mivel itt az $\varepsilon > 0$ tetszőleges volt, ezért innen a d) kijelentés már nyilván adódik.

Most megmutatjuk, hogy minden $G \in \mathcal{G}$ halmazra

(*)
$$\mu^*(A) \ge \mu^*(A \cap G) + \mu^*(A \setminus G) \qquad (A \in \mathcal{P}(X))$$

és

$$\mu^*(G) = \widetilde{\mu}(G).$$

Ehhez nyilván feltehető, hogy $\mu^*(A) < +\infty$, ezért $\Sigma_A \neq \emptyset$, amikor is minden $(A_n, n \in \mathbf{N}) \in \Sigma_A$ esetén a $\tilde{\mu}$ additivitása alapján

$$\sum_{n=0}^{\infty} \widetilde{\mu}(A_n) = \sum_{n=0}^{\infty} (\widetilde{\mu}(A_n \cap G) + \widetilde{\mu}(A_n \setminus G)).$$

Világos, hogy

$$(A_n \cap G, n \in \mathbf{N}) \in \Sigma_{A \cap G}$$
 és $(A_n \setminus G, n \in \mathbf{N}) \in \Sigma_{A \setminus G}$

amiből a μ^* értelmezésére tekintettel

$$\sum_{n=0}^{\infty} \widetilde{\mu}(A_n \cap G) \ge \mu^*(A \cap G) \text{ és } \sum_{n=0}^{\infty} \widetilde{\mu}(A_n \setminus G) \ge \mu^*(A \setminus G)$$

következik. Azt kaptuk, hogy

$$\sum_{n=0}^{\infty} \widetilde{\mu}(A_n) \ge \mu^*(A \cap G) + \mu^*(A \setminus G).$$

Ezzel (a $\mu^*(A)$ definícióját figyelembe véve) a (*)-ot beláttuk.

A $\mu^*(G) = \widetilde{\mu}(G)$ egyenlőséghez a "majdnem konstans" $(G, \emptyset, \emptyset, \ldots)$ halmazsorozat nyilván eleme a Σ_G -nek, ezért $(\widetilde{\mu}(\emptyset) = 0 \text{ miatt})$

$$\mu^*(G) \leq \widetilde{\mu}(G),$$

ill. minden $(A_n, n \in \mathbf{N}) \in \Sigma_G$ halmazsorozat esetén

$$\widetilde{\mu}(G) \le \sum_{n=0}^{\infty} \widetilde{\mu}(A_n).$$

Tehát $\widetilde{\mu}(G) \leq \mu^*(G)$, azaz $\widetilde{\mu}(G) = \mu^*(G)$.

Legyen ezek után

$$\Omega := \{ Y \in \mathcal{P}(X) : \mu^*(A) \ge \mu^*(A \cap Y) + \mu^*(A \setminus Y) \qquad (A \in \mathcal{P}(X)) \}.$$

Bizonyítsuk be, hogy az Ω szigma-algebra. Ennek érdekében először is azt jegyezzük meg, hogy a tetszőleges $A, Y \in \mathcal{P}(X)$ mellett fennálló

$$A = (A \cap Y) \cup (A \setminus Y)$$

egyenlőség és a már bebizonyított fenti a) – d) becslések miatt

$$\mu^*(A) \le \mu^*(A \cap Y) + \mu^*(A \setminus Y),$$

ezért

$$\Omega = \{ Y \in \mathcal{P}(X) : \mu^*(A) = \mu^*(A \cap Y) + \mu^*(A \setminus Y) \qquad (A \in \mathcal{P}(X)) \}.$$

Így akármilyen $B \subset X$ halmazra a

egyenlőtlenség akkor és csak akkor áll fenn, ha

$$(***) \qquad \mu^*(A) = \mu^*(A \cap B) + \mu^*(A \setminus B) \qquad (A \in \mathcal{P}(X)).$$

Az $X \in \Omega$ tartalmazás tehát igaz. Hasonlóan: az Ω zárt a komplementerképzésre. Azt kell már csak megmutatni, hogy legfeljebb megszámlálható sok Ω -beli halmaz egyesítése is az Ω -ban van.

Mutassuk meg ezt először két Ω -beli halmazra, legyenek ezek mondjuk $B_0, B_1 \in \Omega$. Ekkor minden $A \subset X$ esetén $B_0 \in \Omega$ miatt

$$\mu^*(A) \ge \mu^*(A \cap B_0) + \mu^*(A \setminus B_0),$$

amiből $B_1 \in \Omega$ alapján (az utóbbit most az $A \cap B_0$, $A \setminus B_0$ halmazokra alkalmazva)

$$\mu^*(A) \geq$$

 $\mu^*(A \cap B_0 \cap B_1) + \mu^*((A \cap B_0) \setminus B_1) + \mu^*((A \setminus B_0) \cap B_1) + \mu^*((A \setminus B_0) \setminus B_1) = \mu^*(A \cap B_0 \cap B_1) + \mu^*((A \cap B_0) \setminus B_1) + \mu^*((A \cap B_1) \setminus B_0) + \mu^*(A \setminus (B_0 \cup B_1))$ következik. Vegyük észre, hogy

$$(A \cap B_0 \cap B_1) \cup ((A \cap B_1) \setminus B_0) \cup ((A \cap B_0) \setminus B_1) = A \cap (B_0 \cup B_1),$$

ezért a μ^* fenti d) tulajdonsága alapján

$$\mu^*(A \cap B_0 \cap B_1) + \mu^*((A \cap B_0) \setminus B_1) + \mu^*((A \cap B_1) \setminus B_0) \ge \mu^*(A \cap (B_0 \cup B_1)).$$

Mindezeket egybevetve:

$$\mu^*(A) \ge \mu^*(A \cap (B_0 \cup B_1)) + \mu^*(A \setminus (B_0 \cup B_1)),$$

azaz $B_0 \cup B_1 \in \Omega$ valóban igaz.² Ez egyúttal azt jelenti, hogy

$$\mu^*(A) = \mu^*(A \cap (B_0 \cup B_1)) + \mu^*(A \setminus (B_0 \cup B_1)) \qquad (A \in \mathcal{P}(X)).$$

Ebből az egyenlőségből az is következik, hogy az ide vezető fenti becsléseinkben "végig" egyenlőség van. Speciálisan tetszőleges $A \in \mathcal{P}(X)$) halmazra

$$\mu^*(A) =$$

 $\mu^*(A \cap B_0 \cap B_1) + \mu^*((A \cap B_0) \setminus B_1) + \mu^*((A \cap B_1) \setminus B_0) + \mu^*(A \setminus (B_0 \cup B_1)).$ Ha itt $B_0 \cap B_1 = \emptyset$, akkor $(A \text{ helyett } A \cap (B_0 \cup B_1)\text{-et frva})$

$$\mu^*(A \cap (B_0 \cup B_1)) = \mu^*(A \cap B_0) + \mu^*(A \cap B_1) \qquad (A \in \mathcal{P}(X)).$$

Legyen most $A_n \in \Omega$ $(n \in \mathbb{N})$ páronként diszjunkt halmazokból álló sorozat. Ekkor az előzőek szerint minden $A \in \mathcal{P}(X)$ esetén

$$\mu^*(A \cap (A_0 \cup A_1)) = \mu^*(A \cap A_0) + \mu^*(A \cap A_1),$$

amiből teljes indukcióval adódik az előbbiA-raés minden $\mathbf{N}\ni n\text{-re}$ az, hogy

$$\mu^* \Big(A \cap \Big(\bigcup_{i=0}^n A_i \Big) \Big) = \sum_{i=0}^n \mu^* (A \cap A_i).$$

Α

$$C_n := \bigcup_{i=0}^n A_i \qquad (n \in \mathbf{N})$$

halmazok a fentiek alapján (ld. teljes indukció) egyrészt valamennyien az Ω -ban vannak, másrészt

$$A \setminus \left(\bigcup_{i=0}^{\infty} A_i\right) \subset A \setminus C_n \qquad (A \in \mathcal{P}(X), n \in \mathbf{N})$$

miatt (ld. c) tulajdonság)

$$\mu^* \left(A \setminus \left(\bigcup_{i=0}^{\infty} A_i \right) \right) \le \mu^* (A \setminus C_n) \qquad (n \in \mathbf{N}).$$

²Lássuk be, hogy a $B_0 \cap B_1$, $B_0 \setminus B_1 \in \Omega$ tartalmazások is fennállnak.

Következésképpen tetszőleges $A \in \mathcal{P}(X)$ halmazra azt kapjuk, hogy

$$\mu^*(A) = \mu^*(A \cap C_n) + \mu^*(A \setminus C_n) \ge \mu^*(A \cap C_n) + \mu^*(A \setminus \left(\bigcup_{i=0}^{\infty} A_i\right)) = \sum_{i=0}^{n} \mu^*(A \cap A_i) + \mu^*(A \setminus \left(\bigcup_{i=0}^{\infty} A_i\right)) \qquad (n \in \mathbf{N}).$$

Mivel ez a becslés minden $n \in \mathbb{N}$ természetes számra igaz, ezért bármilyen $A \in \mathcal{P}(X)$ esetén az

$$A \cap \left(\bigcup_{i=0}^{\infty} A_i\right) = \bigcup_{i=0}^{\infty} (A \cap A_i)$$

egyenlőség és a μ^* d) tulajdonsága szerint

$$\mu^*(A) \ge \sum_{i=0}^{\infty} \mu^*(A \cap A_i) + \mu^*(A \setminus (\bigcup_{i=0}^{\infty} A_i)) \ge$$

$$\mu^* \left(A \cap \left(\bigcup_{i=0}^{\infty} A_i \right) \right) + \mu^* \left(A \setminus \left(\bigcup_{i=0}^{\infty} A_i \right) \right).$$

Más szóval $\bigcup_{i=0}^{\infty} A_i \in \Omega$, és így minden $A \in \mathcal{P}(X)$ halmazra az előbbi egyenlőtlenségekben mindenütt egyenlőség van:

$$\mu^*(A) = \sum_{i=0}^{\infty} \mu^*(A \cap A_i) + \mu^* \left(A \setminus \left(\bigcup_{i=0}^{\infty} A_i \right) \right) =$$

$$(****) \qquad \mu^* \Big(A \cap \Big(\bigcup_{i=0}^{\infty} A_i \Big) \Big) + \mu^* \Big(A \setminus \Big(\bigcup_{i=0}^{\infty} A_i \Big) \Big).$$

Innen már egyszerűen kapjuk azt, hogy az Ω egy X-beli σ -algebra.³ Ha a (****)-ban $A := \bigcup_{i=0}^{\infty} A_i$, akkor

$$\mu^* \Big(\bigcup_{i=0}^{\infty} A_i \Big) = \sum_{i=0}^{\infty} \mu^* (A_i),$$

azaz a μ^* -nak az Ω -ra való leszűkítése σ -additív, így mérték, amire a fenti (*) és a

$$\mu^*(G) = \widetilde{\mu}(G) \qquad (G \in \mathcal{G})$$

egyenlőség szerint $\mathcal{G}\subset\Omega,$ valamint $\mu_{|_{\mathcal{G}}}^*=\widetilde{\mu}$ teljesül. \blacksquare

³Ehhez azt kell már csak meggondolni, hogy $A_n \in \Omega$ $(n \in \mathbb{N})$ esetén $\bigcup_{n=0}^{\infty} A_n \in \Omega$ akkor is igaz, ha az A_n -ek nem páronként diszjunktak (házi feladat).

Egy

$$\mu^*: \mathcal{P}(X) \to \overline{\mathbf{R}}$$

leképezést külső mértéknek nevezünk, ha a fenti tétel bizonyításában szereplő a) – d) tulajdonságokkal rendelkezik. Azt mondjuk, hogy az $A \in \mathcal{P}(X)$ halmaz μ^* -mérhető, ha minden $Z \in \mathcal{P}(X)$ halmazra

$$\mu^*(Z) = \mu^*(Z \cap A) + \mu^*(Z \setminus A)$$

teljesül.4

Az 1. Tétel bizonyítása során a \mathcal{G} gyűrűn értelmezett $\widetilde{\mu}$ kvázimérték segítségével egy külső mértéket definiáltunk, és egyúttal a következő tételt is bebizonyítottuk:

2. Tétel (Caratheodory⁵). Legyen az X tetszőleges halmaz, a

$$\mu^*: \mathcal{P}(X) \to [0, +\infty]$$

halmazfüggvény pedig külső mérték. Ekkor a μ^* -mérhető $\mathcal{P}(X)$ -beli halmazok Ω halmazrendszere σ -algebra, a μ^* -nak az Ω -ra való leszű-kítése pedig mérték.

2. Egyértelműség.

Minden, a $\mathcal G$ gyűrűt lefedő $\Omega\subset\mathcal P(X)$ szigma-algebrára $\Omega(\mathcal G)\subset\Omega$. Így a $\widetilde\mu$ kvázimérték bármilyen

$$\mu:\Omega\to[0,+\infty]$$

(mérték) kiterjesztését illetően a μ "legalább" az $\Omega(\mathcal{G})$ generált σ -algebrán értelmezve van. Ezért csak a szóban forgó gyűrű által generált σ -algebrára való kiterjesztés egyértelműségéről lehet legfeljebb szó.

A következő példa azt mutatja, hogy minden további nélkül nem egyértelmű a kiterjesztés. Legyen ui. $X \neq \emptyset$, $\mathcal{G} := \{\emptyset\}$, és

$$\mu_1(\emptyset) := \mu_2(\emptyset) := 0, \ \mu_1(X) := 1, \mu_2(X) := 0.$$

Ekkor $\Omega(\mathcal{G}) = \{\emptyset, X\}$ és a μ_1, μ_2 két olyan különböző mérték az $\Omega(\mathcal{G})$ -n, amelyeknek a \mathcal{G} -re vonatkozó leszűkítései megegyeznek.

Az alábbi definícióban egy elégséges feltételt fogalmazunk meg az említett kiterjesztés egyértelműségére vonatkozóan.

⁴Ami tehát ekvivalens azzal, hogy $\mu^*(Z) \geq \mu^*(Z \cap A) + \mu^*(Z \setminus A)$. Egy frappáns megfogalmazás szerint "a mérhető halmaz olyan éles kés, amely minden halmazt morzsa nélkül vág szét".

⁵Constantin Caratheodory (1873 – 1950).

1. Definíció. Tekintsük az X halmazt. Ekkor a

$$\varphi \in \mathcal{P}(X) \to [0, +\infty]$$

halmazfüggvény szigma-véges, ha megadható olyan $A_n \in \mathcal{D}_{\varphi}$ $(n \in \mathbf{N})$ páronként diszjunkt halmazokból álló sorozat, hogy

$$X = \bigcup_{n=0}^{\infty} A_n$$
 és $\varphi(A_n) < +\infty$ $(n \in \mathbf{N}).$

3. Tétel. Legyen valamilyen X halmaz esetén adott a $\mathcal{G} \subset \mathcal{P}(X)$ gyűrű, a

$$\widetilde{\mu}: \mathcal{G} \to [0, +\infty]$$

kvázimérték pedig legyen σ-véges. Ekkor egyértelműen létezik olyan

$$\mu: \Omega(\mathcal{G}) \to [0, +\infty]$$

mérték, amelyik kiterjesztése a $\tilde{\mu}$ -nak.

Bizonyítás (vázlat). Már csak az egyértelműséget kell bebizonyítani. Legyen ehhez az $A_n \in \mathcal{G}$ $(n \in \mathbf{N})$ olyan, páronként diszjunkt halmazokból álló sorozat, hogy

$$X = \bigcup_{n=0}^{\infty} A_n$$
 és $\widetilde{\mu}(A_n) < +\infty$ $(n \in \mathbf{N}).$

Tegyük fel továbbá, hogy a

$$\mu_1, \, \mu_2: \Omega(\mathcal{G}) \to [0, +\infty]$$

mértékekre

$$\mu_1(A) = \mu_2(A) = \widetilde{\mu}(A) \qquad (A \in \mathcal{G})$$

teljesül. Ekkor bármilyen $A \in \Omega(\mathcal{G})$ mellett az $A = \bigcup_{n=0}^{\infty} (A \cap A_n)$ egy diszjunkt felbontása az A-nak, így

$$\mu_i(A) = \sum_{n=0}^{\infty} \mu_i(A \cap A_n)$$
 $(i = 1, 2).$

Elég tehát azt belátni, hogy tetszőleges $A \in \Omega(\mathcal{G})$ mellett

$$\mu_1(A \cap A_n) = \mu_2(A \cap A_n) \qquad (n \in \mathbf{N}).$$

Ez nyilván következni fog abból az állításból, hogy minden

$$G \in \mathcal{G}, \ \widetilde{\mu}(G) < +\infty$$

halmazzal

$$\mu_1(A \cap G) = \mu_2(A \cap G) \qquad (A \in \Omega(\mathcal{G})).$$

Tekintsük ennek az érdekében a következő halmazrendszert:

$$\Omega := \{ A \in \Omega(\mathcal{G}) : \mu_1(A \cap G) = \mu_2(A \cap G) \}.$$

Erről a rendszerről megmutatható, hogy

- i) $X \in \Omega$;
- ii) minden $A, B \in \Omega, A \subset B$ esetén $B \setminus A \in \Omega$;
- iii) megszámlálható sok, páronként diszjunkt Ω -beli halmaz egyesítése is az Ω -ban van;
- iv) $\mathcal{G} \subset \Omega$.

Könnyű meggondolni, hogy ha valamilyen $\widetilde{\Omega}\subset \mathcal{P}(X)$ halmazrendszer is rendelkezik az előbbi i) – iv) tulajdonságokkal, akkor ugyanez igaz az $\Omega\cap\widetilde{\Omega}$ metszethalmaz-rendszerre is (és kettő helyett akárhány ilyen halmazrendszer metszetére is). Ezt figyelembe véve jelöljük Ω^* -gal az i) – iv) tulajdonságoknak eleget tevő $\Omega\subset \mathcal{P}(X)$ halmazrendszerek metszetét. Ekkor egyrészt az Ω^* is rendelkezik az i) – iv) tulajdonságokkal, másrészt az Ω^* "metszetstabil", azaz

$$A \cap B \in \Omega^*$$
 $(A, B \in \Omega^*).$

Innen azt kapjuk, hogy az Ω^* egy, a \mathcal{G} -t lefedő σ -algebra. Ezért

$$\Omega(\mathcal{G}) \subset \Omega^* \subset \Omega$$
,

tehát az Ω definíciójából nyilvánvaló $\Omega \subset \Omega(\mathcal{G})$ reláció miatt

$$\Omega^* = \Omega = \Omega(\mathcal{G}).$$

Ez éppen az, amit be kellett bizonyítani.

3. Megjegyzések.

i) Azokat az $\Omega \subset \mathcal{P}(X)$ halmazrendszereket, amelyek eleget tesznek a fenti bizonyításban szereplő i) – iii) tulajdonságoknak, $Dynkin^6$ -rendszereknek nevezzük. Ekkor:

⁶Jevgenyij Boriszovics Dynkin (1924 – 2014).

- egy Dynkin-rendszer akkor és csak akkor σ -algebra, ha metszetstabil;
- bármely metszet-stabil $\mathcal{T} \subset \mathcal{P}(X)$ rendszert lefedő legszűkebb Dynkin-rendszer megegyezik $\Omega(\mathcal{T})$ -vel.
- ii) A Caratheodory-tételben kapott $\mu:=\mu_{|_{\Omega}}^*$ mérték teljes.⁷ Ui. legyen $A\in\Omega,\,\mu(A)=0$ és $B\subset A.$ Ekkor (a μ^* monoton!)

$$0 \le \mu^*(B) \le \mu^*(A) = \mu(A) = 0,$$

ezért $\mu^*(B) = 0$. Viszont minden $D \subset X$ halmazra

$$0 \le \mu^*(B \cap D) \le \mu^*(B) = 0,$$

így $\mu^*(B \cap D) = 0$. Innen rögtön adódik az, hogy az előbbi D-re

$$\mu^*(D \cap B) + \mu^*(D \setminus B) \le \mu^*(D).$$

Ez azt jelenti, hogy a B halmaz μ^* -mérhető, azaz $B \in \Omega$.

4. Lebesgue-mérték.

Alkalmazzuk a Caratheodory-tételt a $\widetilde{\mu}_p$ $(1 \leq p \in \mathbb{N})$ (nyilván szigmavéges) Lebesgue-féle kvázimérték által indukált külső mértékre. Ekkor az

$$(\mathbf{R}^p,\widehat{\Omega}_p,\widehat{\mu}_p)$$

mértékteret kapjuk, amikor is

$$\Omega_p := \Omega(\mathbf{I}^p) = \Omega(\mathcal{I}^p) \subset \widehat{\Omega}_p,$$

és a

$$\mu_p := \widehat{\mu}_{p_{|\Omega_n}}$$

jelöléssel

$$\widetilde{\mu}_p = \mu_{p_{\mid \mathcal{T}^p}}.$$

Megmutatható, hogy itt tényleges bővítés történt, nevezetesen: az Ω_p halmazrendszer kontinuum számosságú, míg az $\widehat{\Omega}_p$ számossága ennél nagyobb.

⁷Emlékeztetünk a mérték teljességének a fogalmára. Nevezetesen, a μ mérték teljes, ha bármilyen $A \in \Omega$, $\mu(A) = 0$ halmaz akármilyen $B \subset A$ részhalmazára a B is mérhető, azaz $B \in \Omega$. Ekkor (a μ monotonitása miatt) $0 \le \mu(B) \le \mu(A)$, így egyúttal $\mu(B) = 0$.

2. **Definíció.** Az Ω_p elemei az \mathbf{R}^p -beli Borel-mérhető halmazok, μ_p a Borel-Lebesgue-mérték. Az $\widehat{\Omega}_p$ halmazrendszer elemeit \mathbf{R}^p -beli Lebesgue-mérhető halmazoknak, a $\widehat{\mu}_p$ teljes mértéket Lebesgue-mértéknek nevezzük. Egy $A \in \widehat{\Omega}_p$ halmaz esetén $\widehat{\mu}_p(A)$ az A ún. Lebesgue-mértéke.

Tehát

$$\mu_p(U) = \widehat{\mu}_p(U), \ \widetilde{\mu}_p(V) = \mu_p(V) \qquad (U \in \Omega_p, \ V \in \mathcal{I}^p),$$

és a μ_p az egyetlen olyan mérték az Ω_p -n, amelyre az utóbbi (második) egyenlőség teljesül.

Vezessük be az alábbi jelöléseket:

$$\mathcal{T}_p := \{ A \in \mathcal{P}(\mathbf{R}^p) : A \text{ nyı́lt} \}, \ \mathcal{C}_p := \{ B \in \mathcal{P}(\mathbf{R}^p) : B \text{ zárt} \},$$
$$\mathcal{K}_p := \{ C \in \mathcal{P}(\mathbf{R}^p) : C \text{ kompakt} \}.$$

(Az itt szereplő topológiai fogalmakat az \mathbf{R}^p téren bevezetett $\|.\|$ euklideszi norma értelmében alkalmazzuk.)

4. Tétel. Tetszőleges $1 \leq p \in \mathbb{N}$ esetén a p-dimenziós Borelhalmazok Ω_p rendszerére az alábbi egyenlőségek állnak fenn:

$$\Omega_p = \Omega(\mathcal{T}_p) = \Omega(\mathcal{C}_p) = \Omega(\mathcal{K}_p).$$

Bizonyítás. Mivel

$$\mathcal{K}_p \subset \mathcal{C}_p \subset \Omega(\mathcal{C}_p),$$

ezért $\Omega(\mathcal{K}_p) \subset \Omega(\mathcal{C}_p)$, ill. minden $A \in \mathcal{C}_p$ halmazhoz van olyan $A_n \in \mathcal{K}_p$ $(n \in \mathbf{N})$ halmazsorozat, hogy $A = \bigcup_{n=0}^{\infty} A_n$. (Ilyen pl. az

$$A_n := \{ x \in A : ||x|| \le n \} \qquad (n \in \mathbf{N})$$

sorozat). Innen rögtön adódik az $A \in \Omega(\mathcal{K}_p)$, azaz a $\mathcal{C}_p \subset \Omega(\mathcal{K}_p)$, és ezért az $\Omega(\mathcal{C}_p) \subset \Omega(\mathcal{K}_p)$ tartalmazás. Ezzel beláttuk, hogy $\Omega(\mathcal{C}_p) = \Omega(\mathcal{K}_p)$.

A nyílt és a zárt halmazok jól ismert kapcsolata miatt tetszőleges $A \in \mathcal{T}_p$ halmaz esetén $\mathbf{R}^p \setminus A \in \mathcal{C}_p$, tehát $A \in \Omega(\mathcal{C}_p)$, más szóval $\mathcal{T}_p \subset \Omega(\mathcal{C}_p)$. Ezért $\Omega(\mathcal{T}_p) \subset \Omega(\mathcal{C}_p)$, továbbá hasonlóan: $\Omega(\mathcal{C}_p) \subset \Omega(\mathcal{T}_p)$, így $\Omega(\mathcal{T}_p) = \Omega(\mathcal{C}_p)$.

Azt kell már csupán belátnunk, hogy

$$\Omega(\mathcal{T}_p) = \Omega_p.$$

Legyen ehhez

$$[a,b) \in \mathbf{I}^p \ (a,b \in \mathbf{R}^p, \ a < b), \ a_n := a - \frac{1}{n+1} \ (n \in \mathbf{N})^8,$$

⁸Az $a_n \in \mathbf{R}^p$ vektor minden koordinátájában elvégezve a kivonást.

ekkor

$$[a,b) = \bigcap_{n=0}^{\infty} (a_n,b) = \bigcap_{n=0}^{\infty} \{x \in \mathbf{R}^p : a_n < x < b\}$$

és $(a_n, b) \in \mathcal{T}_p$ $(n \in \mathbb{N})$ miatt $[a, b) \in \Omega(\mathcal{T}_p)$, így $\mathbf{I}^p \subset \Omega(\mathcal{T}_p)$. Innen máris következik az, hogy $\Omega_p \subset \Omega(\mathcal{T}_p)$.

A "fordított" irányú tartalmazáshoz tekintsünk egy

$$(a, b) \ (a, b \in \mathbf{R}^p, \ a < b)$$

nyílt intervallumot, és legyen (a fentiekhez hasonlóan)

$$a_n := a + \frac{1}{n+1} \qquad (n \in \mathbf{N}).$$

Mivel a < b, ezért egy alkalmas $N \in \mathbf{N}$ indexszel $a_n < b \ (N \le n \in \mathbf{N})$ és

$$(a,b) = \bigcup_{n=N}^{\infty} [a_n, b),$$

amiből $(a,b)\in\Omega_p$ következik. Ismert továbbá, hogy minden $A\in\mathcal{T}_p$ halmaz előállítható

$$A = \bigcup_{n=0}^{\infty} I_n$$

alakban alkalmas $I_n \subset \mathbf{R}^p \ (n \in \mathbf{N})$ nyílt intervallumokkal, ezért az előbbieket is figyelembe véve $A \in \Omega_p$ adódik, tehát $\mathcal{T}_p \subset \Omega_p$. Ez viszont azt is jelenti egyúttal, hogy $\Omega(\mathcal{T}_p) \subset \Omega_p$.