REKURENCJE LINIOWE I INNE

1. Rozwiazać równania rekurencyjne

(i)
$$x(n) = x(n-1) + 9x(n-2) - 9x(n-3),$$

 $x(0) = 0, x(1) = 1 \text{ i } x(2) = 2;$
(ii) $x(n) = 3x(n-2) - 2x(n-3),$
 $x(0) = 1, x(1) = 0 \text{ i } x(2) = 0;$
(iii) $x(n) = 5x(n-1) - 6x(n-2) - 4x(n-3) + 8x(n-4),$
 $x(0) = 0, x(1) = 1, x(2) = 1 \text{ i } x(3) = 2;$
(iv) $x(n) = 4x(n-2),$
 $x(0) = 0 \text{ i } x(1) = 1;$
(v) $x(n) = 8x(n-1) - 16x(n-2),$
 $x(0) = -1 \text{ i } x(1) = 0.$

- **2.** Rozważmy szachownicę $1 \times n$. Każde pole szachownicy jest pomalowane na czerwono lub niebiesko tak, że nie ma dwu sąsiednich czerwonych kwadratów. Niech g(n) oznacza liczbę takich pokolorowań. Znaleźć wzór rekurencyjny i jawny na g(n).
- **3.** Dla $n = 1, 2, 3, \ldots$ niech h(n) oznacza ilość różnych sposobów pokolorowania pól szachownicy $1 \times n$ barwami białą, niebieską i czerwoną tak, że nie ma dwu sąsiednich czerwonych kwadratów. Znaleźć wzór na h(n).
- 4. Znaleźć wzór rekurencyjny na liczbę ciągów o sumie n, takich że
 - (a) wyrazami ciągu są 1 i 2;
 - (b) wyrazami ciągu są 1,2,5.
- 5. Znaleźć wzór rekurencyjny na liczbę sposobów rozdzielenia n obiektów pomiędzy 4 różne osoby.
- **6.** Znaleźć wzór rekurencyjny na ilość ciągów długości *n* złożonych z 0,1 i 2 takich, że bezpośrednio na lewo od 2 nie może znajdować się 1.
- 7. Niech $f(0)=1,\,f(1)=1,\,f(2)=2,\ldots$ będą liczbami Fibonacci'ego. Znaleźć (zwarte) wzory na poniższe sumy:
 - (i) $f(1) + f(3) + \ldots + f(2n-1)$;
 - (ii) $f(0) + f(2) + \ldots + f(2n)$;
 - (iii) $f(0) f(1) + f(2) \ldots + (-1)^n f(n);$
 - (iv) $f(0)^2 + f(1)^2 + \ldots + f(n)^2$;
 - (v) $f(n)f(n+2) + (-1)^n$.
- 8. Rozwiązać podane równania rekurencyjne przez znalezienie kilku pierwszych wyrazów, odgadnięcie wzoru i udowodnienie go przez indukcję.

(i)
$$H(n) = H(n-1) - n + 3$$
 dla $n = 1, 2, 3, ...; H(0) = 2$.

- (ii) H(n) = -H(n-1) + 1 dla n = 1, 2, 3, ...; H(0) = 0.
- (iii) $H(n) = -H(n-1) + 2 \text{ dla } n = 1, 2, 3, \dots; H(0) = 1.$
- (iv) H(n) = 2H(n-1) + 1 dla n = 1, 2, 3, ...; H(0) = 1.
- **9.** Udowodnić, że ciąg $\sqrt{6}$, $\sqrt{6+\sqrt{6}}$, $\sqrt{6+\sqrt{6}+\sqrt{6}}$, ... jest zbieżny do liczby 3. Skąd to zadanie się tu wzięło?
- 10. Żaba siedzi na wierzchołku ośmiokąta foremnego i zamierza dostać się na przeciwległy wierzchołek w n skokach, za każdym razem skacząc na jeden z sąsiednich wierzchołków. Na ile sposobów może to zrobić?

Zadania uzupełniające

- 11. Zadania Gal patrz Rozdział 4 (liczby Fibonacciego) oraz 5.57, 5.58.
- **12.** Niech x_n , gdzie $n \ge 1$, będzie liczbą ciągów długości n o wyrazach ze zbioru $\{a, b, c\}$, w których a nie stoi nigdy obok b (tzn. nie ma "zbitek" ab i ba). Ustalić wzór na x_n .
- 13. Kolorujemy n punktów leżących na jednej prostej na biało lub jednym z kolorów czerwony, zielony, niebieski, żółty. Powiedzmy, że kolorowanie jest dopuszczalne jeżeli każde dwa sąsiednie punkty są tego samego koloru lub jeden z nich jest biały. Ile jest dopuszczalnych kolorowań?