4. パターンを識別しよう

4.1 NN 法の定式化と問題設定 4.1.1 「もっとも近い」の定義

- 識別対象のクラス: ω_1,\ldots,ω_c
- プロトタイプ
 - 各クラスの代表となる点

$$\mathbf{p}_i = (p_{i1}, \dots, p_{id})^T \quad (i = 1, \dots, c)$$

・識別したい入力データ

$$\boldsymbol{x} = (x_1, \dots, x_d)^T$$

4.1.1 「もっとも近い」の定義

入力ベクトルとプロトタイプとの距離

$$D(\mathbf{x}, \mathbf{p}_i) = \sqrt{(x_1 - p_{i1})^2 + \dots + (x_d - p_{id})^2}$$

• NN法の判定式

$$\underset{i=1,...,c}{\operatorname{arg min}} D(\boldsymbol{x}, \boldsymbol{p}_i) = k \quad \Rightarrow \quad \boldsymbol{x} \in \omega_k$$

4.1.2 プロトタイプと識別面の関係

- 特徴空間の分割
 - 2次元特徴の2クラス問題(d=2, c=2)を考える
 - クラスを分離する境界
 - …プロトタイプから等距離にある領域
 - 2次元のNN法では垂直2等分線
 - 多次元では超平面
 - 決定境界あるいは識別面と呼ぶ

4.1.2 プロトタイプと識別面の関係

- 線形分離可能性
 - 直線(超平面)で2つのクラスが誤りなく分割できる場合を線形分離可能と呼ぶ

線形分離可能なデータ

線形分離不可能なデータ

4.1.3 プロトタイプの位置の決め方

- クラスを代表するプロトタイプの設定法
 - 例) クラスの分布の重心

重心ではうまくゆかないことがある

4.2 パーセプトロンの学習規則

- 識別面の学習
 - 線形分離可能なデータに対して、識別誤りが生じない位置にプロトタイプを設定する

4.2.1 識別関数の設定

- 学習とは
 - プロトタイプの正しい位置を自動的に求めること
- 学習パターン
 - 識別部設計(特徴空間の分割)用に収集されたパターン
- 一般的な学習の定義
 - 学習パターンを用いて、学習パターンをすべて正しく識別できるような識別面を見いだすこと

4.2.1 識別関数の設定

- 1クラス1プロトタイプのNN法の定式化
 - クラス: ω_1,\ldots,ω_c
 - プロトタイプ: $\boldsymbol{p}_1,\ldots,\boldsymbol{p}_c$
 - 入力パターン: x (特徴ベクトル)
 - NN法: $D(\boldsymbol{x},\boldsymbol{p}_i) = \|\boldsymbol{x} \boldsymbol{p}_i\|$ を最小にするi = kを探す

$$\rightarrow \|\boldsymbol{x} - \boldsymbol{p}_i\|^2 = \|\boldsymbol{x}\|^2 - 2\boldsymbol{p}_i^T\boldsymbol{x} + \|\boldsymbol{p}_i\|^2$$

$$\rightarrow g_i(\boldsymbol{x}) = \boldsymbol{p}_i^T \boldsymbol{x} - \frac{1}{2} \|\boldsymbol{p}_i\|^2$$
 を最大にする $i = k$ を探す

4.2.1 識別関数の設定

• NN法による識別部の実現

4.2.2 識別関数とパーセプトロン

- 線形識別関数
 - 識別関数の係数を

$$p_{ij} = w_{ij} \quad (j = 1, \dots, d), \quad -\frac{1}{2} || \mathbf{p}_i ||^2 = w_{i0}$$

と置き換える

$$g_i(oldsymbol{x}) = w_{i0} + \sum_{j=1}^d w_{ij} x_j$$
 $= \sum_{j=0}^d w_{ij} x_j \quad (x_0 \equiv 1)$ 重みベクトル $= oldsymbol{w}_i^T oldsymbol{x}$ は $d+1$ 次元

4.2.2 識別関数とパーセプトロン

• 線形識別関数の計算法

- 線形識別関数の学習
 - 学習パターン全体: X
 - クラス ω_i に属する学習パターンの集合 χ_i の全ての要素 x に対して

$$g_i(x) > g_j(x) \quad (j = 1, ..., c, j \neq i)$$

が成り立つように重み $oldsymbol{w}_i$ を決定する

- 2クラスの場合
 - 1つの識別関数

$$g(\boldsymbol{x}) = g_1(\boldsymbol{x}) - g_2(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x}$$

の正負を調べ、

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} \left\{ \begin{array}{ll} > 0 & (\boldsymbol{x} \in \chi_1) \\ < 0 & (\boldsymbol{x} \in \chi_2) \end{array} \right.$$

となる w を求める

• 重み空間での重みの修正

• 別の学習データに対する重みの修正

• 解領域への重みの修正プロセス

4.2.4 パーセプトロンの学習アルゴリズム

- パーセプトロンの学習規則
 - 1. w の初期値を適当に決める
 - 2. 学習パターンからひとつ x を選び、g(x) を計算
 - 3. 誤識別が起きたときのみ、w を修正する

$$oldsymbol{w}' = oldsymbol{w} +
ho oldsymbol{x}$$
 (クラス1のパターンをクラス2と誤ったとき) $oldsymbol{w}' = oldsymbol{w} -
ho oldsymbol{x}$ (クラス2のパターンをクラス1と誤ったとき)

学習係数

- 4. 2,3を全ての学習パターンについて繰り返す
- 5. すべて識別できたら終了。そうでなければ2へ

4.2.4 パーセプトロンの学習アルゴリズム

- パーセプトロンの収束定理
 - データが線形分離可能であれば、パーセプトロンの学習規則は有限回の繰り返しで終了する
- 学習係数 p の設定
 - 大きすぎると重みの値が振動する
 - 小さすぎると収束に時間がかかる

一般には小さい値が無難