群論 (第8回)の解答

問題 8-1 の解答

行列
$$g = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in G$$
 と $h = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \in N$ に対して、
$$ghg^{-1} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{b}{ac} & \frac{1}{c} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{cx}{a} & 1 \end{pmatrix} \in N.$$

従って $N \subseteq G$ である.

問題 8-2 の解答

- (1) $1_G \in H$ かつ $1_G \in N$. よって $1_G = 1_G \cdot 1_G \in HN$.
- (2) $z_1, z_2 \in HN$ とし, $z_1 = h_1x_1, z_2 = h_2x_2$ $(h_1, h_2 \in H, x_1, x_2 \in N)$ と表す.

$$z_1 z_2^{-1} = h_1 x_1 x_2^{-1} h_2^{-1} = (h_1 h_2^{-1})(h_2 x_1 x_2^{-1} h_2^{-1}).$$

H と N は G の部分群より $h_1h_2^{-1}\in H$ かつ $x_1x_2^{-1}\in N$. さらに N は正規部分群より $h_2x_1x_2^{-1}h_2^{-1}\in N$. よって $z_1z_2^{-1}\in HN$.

以上より HN は G の部分群である.

問題 8-3 の解答

(1) $x \in G, y \in N$ とする. $\det y = 1$ より,

$$\det(xyx^{-1}) = \det x \cdot \det y \cdot (\det x)^{-1} = \det x \cdot (\det x)^{-1} = 1.$$

従って $xyx^{-1} \in N$. よって N は G の正規部分群である.

(2) det $g^n = (\det g)^n \ (n \in \mathbb{N})$ に注意すれば、

$$\det g = i$$
, $\det g^2 = -1$, $\det g^3 = -i$, $\det g^4 = 1$.

よって $g^k \notin N(k=1,2,3), g^4 \in N$. 従って

$$qN \neq N$$
, $(qN)^2 = q^2N \neq N$, $(qN)^3 = q^3N \neq N$, $(qN)^4 = q^4N = N$.

従って |gN|=4.

(3) $xN, yN \in G/N$ とする.

$$\det((xy)^{-1}(yx)) = \det(y^{-1}x^{-1}yx) = (\det y)^{-1} \cdot (\det x)^{-1} \cdot \det y \cdot \det x = 1.$$

copyright ⓒ 大学数学の授業ノート

$$(xy)^{-1}(yx) \in N$$
 より $(xy)N = (yx)N$. 従って

$$(xN) * (yN) = (xy)N = (yx)N = (yN) * (xN).$$

よってG/Nはアーベル群である.