Introduction to Distributed Computing with Spark

Gina Cody School of Engineering and Computer Science

Department of Computer Science and Software Engineering

Scope

Most active open-source project in Big Data Analytics

- Used in thousands organizations from diverse sectors:
 - Technology, banking, retail, biotech, astronomy
- Deployments with up to 8,000 nodes have been announced

Introduction

- We need cluster computing to analyse Big Data
- There has been an explosion of specialized computing models
 - MapReduce
 - Google's Dremel (SQL) and Pregel (graphs)
 - Hadoop's Storm, Impala, etc
- Big Data applications need to combine many types of processing
 - To handle data variety
 - Users need to stitch systems together

Introduction (2)

- The profusion of systems is detrimental to
 - Usability
 - Performance
- Spark provides a uniform framework for Big Data Analytics

Figure 1. Apache Spark software stack, with specialized processing libraries implemented over the core engine.

Highlights

- Spark concepts
 - Built around a data structure: Resilient Distributed Datasets (RDDs)
 - Programming model is MapReduce + extensions
- Added value compared to MapReduce
 - Easier to program because API is unified
 - Interactive explorations of Big Data are possible (pyspark)
 - More efficient to combine multiple tasks (workflows) due to lazy evaluation.

In-memory processing

- Spark keeps data in memory
 - Reduces disk I/O
 - Spills to disk if not enough space

- MapReduce lacks abstraction to leverage distributed memory
 - Inefficient for applications that reuse intermediate results
 - For instance iterative algorithms: kmeans, PageRank

Programming model: RDDs

RDDs are fault-tolerant <u>collections</u> of objects partitioned across a cluster that can be manipulated in parallel.

RDD abstraction

- An RDD is a read-only, partitioned collection of records.
 - RDD is fault-tolerant, hence it is read-only.
- Can be created through operations on:
 - Data in stable storage (e.g., sc.textFile)
 - Other RDDs: <u>transformations</u>
 - Existing collections (sc.parallelize)

Functional programming API

- <u>Transformations:</u>
 - Return RDDs
 - Are parametrized by user-provided functions

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(
   s => s.startsWith("ERROR"))
println("Total errors: "+errors.count())
```

Actions return results to application or storage system

RDD transformations and actions

	$map(f: T \Rightarrow U)$:	$RDD[T] \Rightarrow RDD[U]$	
	$filter(f: T \Rightarrow Bool)$:	$RDD[T] \Rightarrow RDD[T]$	
	$flatMap(f: T \Rightarrow Seq[U])$:	$RDD[T] \Rightarrow RDD[U]$	
	sample(fraction: Float)	:	$RDD[T] \Rightarrow RDD[T]$ (Deterministic sampling)	
	groupByKey()	:	$RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]$	
	$reduceByKey(f:(V,V) \Rightarrow V)$:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$	
Transformations	union()	:	$(RDD[T], RDD[T]) \Rightarrow RDD[T]$	
Return an	join()	:	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$	
RDD	cogroup()	:	$\big(RDD[(K,V)],RDD[(K,W)]\big) \Rightarrow RDD[(K,(Seq[V],Seq[W]))]$	
	crossProduct()	:	$(RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]$	
	$mapValues(f : V \Rightarrow W)$:	$RDD[(K, V)] \Rightarrow RDD[(K, W)]$ (Preserves partitioning)	
	<pre>sort(c : Comparator[K])</pre>	:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$	
	<pre>partitionBy(p:Partitioner[K])</pre>	:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$	
5	count() :]	$RDD[T] \Rightarrow Long$	
	collect() :]	$RDD[T] \Rightarrow Seq[T]$	
Actions	$reduce(f:(T,T)\Rightarrow T)$:]	$RDD[T] \Rightarrow T$	
Return	lookup(k:K):	1	$RDD[(K, V)] \Rightarrow Seq[V]$ (On hash/range partitioned RDDs)	
something else	save(path : String) :	(Outputs RDD to a storage system, e.g., HDFS	

(K, V) is a key-value pair MapReduce = flatMap + reduceByKey

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Lazy evaluation

- Transformations do not compute RDDs immediately
 - The returned RDD object is a representation of the result
- Actions trigger computations
- This allows optimization in the execution plan
 - Multiple map operations are fused in one pass
 - While preserving modularity

Lazy evaluation (2)

Computations are costly and memory is limited \rightarrow Compute only what is necessary

 $\textit{PIPELINE: Read file} \rightarrow \textit{Filter lines containing 'SUCCESS'} \rightarrow \textit{Return first line containing 'SUCCESS'}$

Note:

With eager evaluation, the entire file must be read and filtered.

Lazy evaluation limits the amount of data that needs to be processed

Step 1: Read file up until first Soccurrence of 'SUCCESS'

Step 2: Filter and return

Persistence (or caching)

- By default RDDs are ephemeral
- They might be evicted from memory
- Users can persist RDDs in memory or on disk, by calling .persist()
- persist() accepts priorities for spilling to disk

Example: Log Mining

Lines is never stored in memory!

Reads from HDFS Nothing has executed so far (lazy)	<pre>lines = spark.textFile("hdfs://") errors = lines.filter(startsWith("ERROR")) errors.persist()</pre>
Triggers execution	errors.count()
Other uses of errors won't reload data from the text file.	<pre>// Count errors mentioning MySQL: errors.filter(contains("MySQL")).count() // Return the time fields of errors mentioning // HDFS as an array (assuming time is field // number 3 in a tab-separated format): errors.filter(contains("HDFS"))</pre>

14

 $.map(_.split('\t')(3))$

.collect()

Lineage graph

An RDD maintains information on how it was derived from other datasets.

From the lineage, the RDD can be completely (re-)computed.

This is used for fault-tolerance.

Figure 1: Lineage graph for the third query in our example. Boxes represent RDDs and arrows represent transformations.

Spark programming interface

Driver

- Runs user program
- Defines RDDs and invokes actions
- Tracks the lineage

Workers

- Long-lived processes
- Store RDD partitions in RAM across operations

Figure 2: Spark runtime. The user's driver program launches multiple workers, which read data blocks from a distributed file system and can persist computed RDD partitions in memory.

Fault tolerance

- When a task fail
 - If parent partitions are available: re-submit to another node
 - Otherwise: resubmit tasks to recompute missing partitions
- Checkpointing
 - Lineage-based recovery of RDDs may be time-consuming
 - RDDs can be checkpointed to stable storage, through a flag to .persist()

Spark DataFrames

- A DataFrame is a set of records with a known schema
- A DataFrame is an RDD
- DataFrame operations map to the SQL engine

```
>>> df.printSchema()
root
|-- Nom_arrond: string (nullable = true)
|-- Invent: string (nullable = true)
|-- no_civiq: string (nullable = true)
|-- Rue: string (nullable = true)
|-- Rue_De: string (nullable = true)
|-- Rue_A: string (nullable = true)
|-- Nom_parc: string (nullable = true)
|-- Sigle: string (nullable = true)
|-- Injections: string (nullable = true)
|-- x: string (nullable = true)
|-- y: string (nullable = true)
|-- longitude: string (nullable = true)
|-- latitude: string (nullable = true)
```

Recap

General framework (increases usability and performance)

Rich programming model (transformations, actions, libraries)

Data locality (as in MapReduce)

RDDs remain in-memory (reduces disk I/O)

Lazy RDD evaluations (allow for merging transformations)

Fault-tolerance through lineage (better than data replication)

Installing PySpark

- Make sure Java (JDK) is installed.
- Install PySpark:

```
pip install pyspark
```

• For Windows, make sure environment variables are set correctly and winutils.exe is installed. For a step-by-step guide, see here.

PySpark Hello World

```
import pyspark
sc = pyspark.SparkContext('local[*]')

txt = sc.textFile('sample.log')

error_lines = txt.filter(lambda line: 'error' in line)

print(error_lines.count())
```