Estructuras de datos: Grafos

Algoritmos

Dep. de Computación - Fac. de Informática Universidad de A Coruña

Santiago Jorge sjorge@udc.es

Referencias bibliográficas

- R. Peña Marí. Implementación de estructuras de datos. En Diseño de Programas. Formalismo y abstracción, capítulo 7, páginas 257–290. Prentice Hall, segunda edición, 1998.
- A. V. Aho, J. E. Hopcroft y J. D. Ullman. Grafos dirigidos. En Estructuras de datos y algoritmos, capítulo 6, páginas 200–229. Addison-Wesley Iberoamericana, 1988.
- A. V. Aho, J. E. Hopcroft y J. D. Ullman. Grafos no dirigidos. En Estructuras de datos y algoritmos, capítulo 7, páginas 230–251. Addison-Wesley Iberoamericana, 1988.

Grafos

- Un grafo es un par G = (V, A).
 - V es el conjunto de vértices o nodos.
 - A es el conjunto de aristas.
 - Cada arista es un par $(v, w) \in V$.
 - Si el par está ordenado, entonces el grafo es dirigido.
- Principales representaciones de grafos dirigidos:
 - Matriz de adyacencia.
 - Listas de adyacencia.

Grafos dirigidos y no dirigidos

Ejemplo de un grafo dirigido con cinco nodos

Matriz de adyacencia

- Es una matriz bidimensional.
- Para cada arista (u, v), se pone a[u, v] = 1; en caso contrario, el contenido es 0.
- Si la arista tiene un peso asociado,
 - se pone en a[u, v] el peso, y
 - se usa un peso muy grando o muy pequeño como centinela indicando la inexsistencia de aristas.
- Requerimiento de espacio: $\Theta(|V|^2)$.
 - Resulta adecuado para grafos densos,
 - pero prohibitivo si el grafo es disperso.

Ejemplo de un grafo dirigido con cinco nodos

-	1	2	3	4	5
1		4	7		1
z			5	-	
3		. 1 .		6	8
4	3				
5	2			3	

Matriz de adyaconcia

Listas de adyacencia

- Para cada vértice mantenemos una lista de todos sus vértices adyacentes.
 - La representación conisistirá en un vector de listas de adyacencia.
- Requerimiento de espacio: $\Theta(|A| + |V|)$.
 - Buena solución para grafos dispersos.
- Si el grafo no fuese dirigido,
 - Cada arista (u, v) aparecería en dos listas, duplicándose el espacio en uso.

Ejemplo de un grafo dirigido con cinco nodos

Listas de adyacencia

Consideraciones

- Problema común en los algoritmos de grafos: encontrar los nodos adyacentes a un nodo dado.
 - Ambas representaciones consiguen buenos resultados,
 - recorriendo una fila o columna de la matriz de adyacencia, o
 - recorriendo la lista de adyacencia apropiada.
- En la mayoría de aplicaciones, los vértices tienen nombres, desconocidos en tiempo de compilación, en vez de números.
 - La forma más sencilla de dar una correspondencia entre nombres y números es usar una tabla de dispersión.