Recuperação de Informação

Edleno Silva de Moura

Modelagem em RI

Modelos em Recuperação de Informação

- Núcleo de qualquer sistema de recuperação de informação.
- Utilizados para representar características semânticas dos elementos envolvidos nos sistemas.
- Modelos clássicos: booleano, vetorial e probabilístico
- Modelos bastante utilizados: vetorial, language models (que são probabilísticos) e BM25 (que é probabilístico)

- Proposto em 1968 e continua sendo muito empregado hoje em dia.
- Proposto originalmente para resolver problemas de busca.
- Sucesso reside na eficiência e nos bons resultados obtidos.
- Todos os componentes do sistema são vistos como conjuntos de palavras.

Elementos a serem modelados são representados como vetores dentro de um espaço vetorial.

 Dimensão do espaço é dada pelo número de palavras distintas.

Componentes do sistema são vistos como vetores cujas coordenadas são determinadas pelas palavras que os descrevem.

$$\vec{d}_{j} = (2,2)$$

$$\vec{q} = (2,1)$$

•Número de palavras distintas da coleção determina dimensão do espaço onde os documentos e consultas serão representados

Como determinar as coordenadas dos elementos?

Medidas de Tf e Idf

Idf tenta expressar a importância de uma palavra dentro de uma coleção.

N: número total de documentos de uma coleção n_t : número de doumentos onde a palavra t

ocorreu
$$Idf(t) = \log\left(\frac{N}{n_t}\right)$$

Quanto mais rara a palavra, maior seu idf!

Determinação das Coordenadas

Coordenada do doc d no eixo t

$$Idf(t) = \log\left(\frac{N}{n_t}\right)$$

$$w(d,t) = tf(d,t) \times idf(t)$$

Frequência da palavra t no documento d

Importância de t na coleção

Exemplo

D1	AAAB
D2	AAC
D3	AA
D4	BB

$$idf(A) = \log\left(\frac{4}{3}\right) = 0.28$$

$$idf(B) = \log\left(\frac{4}{2}\right) = 0.69$$

Exemplo

D1	AAAB
D2	AAC
D3	AA
D4	BB

$$w(D1,A) = idf(A) \times tf(D1,A) = 0.28 \times 3 = 0.84$$

 $w(D1,B) = idf(B) \times tf(D1,B) = 0.69 \times 1 = 0.69$
 $w(D1,C) = idf(C) \times tf(D1,C) = 1.38 \times 0 = 0$
 $\vec{D}1 = (0.84;0.69;0)$

Exemplo

Para uma consulta Q composta por A e B:

$$w(Q,A) = idf(A) \times tf(Q,A) = 0.28 \times 1 = 0.28$$

$$w(Q,B) = idf(B) \times tf(Q,B) = 0.69 \times 1 = 0.69$$

$$w(Q,C) = idf(C) \times tf(Q,C) = 1,38 \times 0 = 0$$

$$\vec{Q}1 = (0.28, 0.69, 0)$$

Similaridade

Correlação entre dois vetores é utilizada para medir a proximidade entre os elementos reais modelados.

$$\vec{d}_{j} = (2,2)$$

$$\vec{q} = (2,1)$$

$$\sum_{i=1}^{t} w(i,d) \times w(i,q)$$

$$sim(d,q) = \cos \theta = \frac{\sum_{i=1}^{t} w(i,d) \times w(i,q)}{\sum_{i=1}^{t} w(i,d)^{2} \times \sqrt{\sum_{i=1}^{t} (w(i,q))^{2}}}$$

Norma de d

Norma de q

Implementação do Modelo Vetorial

Estrutura de Dados: Arquivo Invertido

- Composto de:
 - Vocabulário contém cada termo (t) distinto da coleção;
 - Listas Invertidas Para cada termo da coleção há uma lista invertida que indica a freqüência com que o termo ocorre em cada documento da coleção;

Estruturas de Dados: Arquivo Invertido

D1	AAAB
D2	AAC
D3	AA
D4	BB

Arquivos Invertidos

- Construção:
 - Fácil de construir quando há memória RAM suficiente;
 - Algoritmos mais sofisticados são necessários quando a base de dados é muito grande;

Construção de arquivos invertidos

Índice **Parcial** Índice **Parcial** Memória Arquivo Índice **RAM** Invertido **Texto** Merge **Parcial** Em Em Disco Disco Índice **Parcial** Índice **Parcial**

Construção de arquivos

Texto Em Disco Memória RAM

Índice Parcial

Índice Parcial

Índice Parcial

Índice Parcial

Índice Parcial

Merge

Arquivo Invertido Em Disco

A – (10,1) (20,3) B-(12,1) (15,1) Construção de arquivos

Merge

- Merge utiliza memória como buffer para acelerar o processo de indexação
- Compressão de dados pode ser usada para reduzir o tamanho dos índices e assim aumentar a velocidade de indexação

Processamento de Consultas

- Vocabulário e listas invertidas em disco;
- Idf dos termos e normas dos documentos são pré-computados;
- Palavras e listas freqüentes podem ter dados guardados em um cache

Processamento de Consultas

- Vocabulário fica em memória principal e listas invertidas em disco;
- Idf dos termos e normas dos documentos são pré-computadas e ficam em memória principal;
- Vocabulário pode ser guardado em um cache

Processamento de Consultas

- Simplificações que aceleram o processamento:
 - Documentos que não possuem os termos das consultas têm similaridade igual a zero;
 - O cosseno é calculado de maneira que se possa ler as listas invertidas següencialmente durante o cálculo;

Estruturas de Dados: Arquivo Invertido

D1	AAAB
D2	AAC
D3	AA
D4	ВВ

$$sim_{parc}(q,d,t)=w(d,t)\times w(q,t)$$

Acumuladores:

$$sim_{parc}(Q,D1,A)=w(D1,A)\times w(Q,A)=0.84\times 0.28=0.24$$

Acumuladores:

D 1	D2	D3	D4
0,71	0,16	0,16	0,95

Norma do documento

Norma da consulta

$$norma(d1) = \sqrt{\sum (w(i,d1))^2} = \sqrt{(0,84)^2 + (0,69)^2} = 1,08$$

$$norma(d2) = 1,49$$

$$norma(d3) = 0.56$$

$$norma(d4) = 1,38$$

Acumuladores:

D 1	$\mathbf{D2}$	D3	D4
0,71	0,16	0,16	0,95

$$norma(d1) = 1,08$$

$$norma(d2) = 1,49$$

$$norma(d3) = 0.56$$

$$norma(d4) = 1,38$$

$$sim (d1,q) = \frac{Acum(d1)}{\|\vec{d}1\| \times \|\vec{q}\|} = \frac{0.71}{1.08 \times \|\vec{q}\|} = \frac{0.66}{\|\vec{q}\|}$$

$$sim (d2,q) = \frac{0.16}{1.49 \times ||\vec{q}||} = \frac{0.17}{||\vec{q}||}$$

$$sim (d3,q) = \frac{0.16}{0.56 \times ||\vec{q}||} = \frac{0.28}{||\vec{q}||}$$

$$sim (d4,q) = \frac{0.95}{1.38 \times ||\vec{q}||} = \frac{0.69}{||\vec{q}||}$$

Algoritmo

- 1. Para cada documento d na coleção, criar $A\{d\}=0$.
- 2. Para cada termo t na consulta,
 - (a) Recuperar a lista invertida para o termo t do disco.
 - (b) Para cada entrada $\langle d, f(d,t) \rangle$ na lista invertida, $A\{d\} = A\{d\} + sim(q,d,t) \, \$ \, .$
- 3. Dividir cada acumulador A(d)
 eq 0 pela norma do documento $\left| ec{d}
 ight|$.
- 4. Identificar os k valores mais altos de acumuladores, onde k é o número de documentos retornados para o usuário.

Figura 3: Algoritmo para o cálculo da similaridade no modelo vetorial.

Dúvidas?

Busca com Modelo Vetorial

Aplicação direta do modelo.

Filtragem com Modelo Vetorial

- Bases de dados contêm perfis no lugar de documentos.
- Perfis são conjuntos de termos que descrevem os interesses dos usuários.
- Documentos que chegam para o sistema são tratado como consultas.

Filtragem com Modelo Vetorial

Perfil

- Perfil pode ser um conjunto de palavras
- Exemplo:
 - Senado federal: senado, senador, votação, lei, nomes de senadores em geral e etc...
- Note que o perfil pode ser visto como um conjunto de palavras

Filtragem

- Guarda-se estatísticas sobre todas as palavras encontradas nos perfis e nos documentos processados pelo sistema para que se tenha o idf dessas palavras
- Similaridade entre perfil e documento é computada da mesma forma que similaridade com consulta é computada no modelo vetorial
- Idf = log ((qt perfil + qt docs)/(qt palavra perfil + docs))

Atualização Automática de Perfil

- Os perfis de um sistema de filtragem podem ser aperfeiçoados automaticamente com o tempo
- Para isso é necessário que os usuários realimentem o sistema com informação sobre os documentos recebidos
- Ex.: Quais documentos são relevantes ou quais não são relevantes
- Esta informação pode ser usada para melhorar automaticamente o perfil do usuário

Atualização Automática de Perfil

- Rocchio: novo perfil é calculado em função do perfil anterior e de informações dadas pelos usuários.
- Usuário indica se um documento recebido é relevante ou não.
- Palavras dos perfis podem ter pesos positivos ou negativos com o passar do tempo.
- Objetivo é fazer com que o perfil melhore com o tempo.

Fórmula de Rocchio

$$\vec{P}' = \alpha \times \vec{P} + \frac{\beta}{m_r} \sum_{i=1}^{m_r} \vec{D}_i^r - \frac{\gamma}{m_n} \sum_{i=1}^{m_n} \vec{D}_j^n$$

- α, β e γ são constantes definidas em experimentos que determinam a importância de cada termo da equação.
- M, é o número de docs relevantes.
- M_n é o número de docs não relevantes.
- P é o perfil anterior, D^r são os vetores dos docs relevantes encontrados e Dⁿ dos não relevantes encontrados.

Classificação de Documentos

Classificação com Modelo Vetorial

- Pequena coleção de documentos previamente classificada para treinar o programa (informação sobre categorias).
- As palavras muito frequentes em uma categoria e menos frequentes na coleção são selecionadas como descritores da categoria.
- Descritor é um conjunto de palavras que descreve uma categoria.

Classificação com Modelo Vetorial

- Calcula-se a similaridade entre cada documento da coleção completa e cada descritor.
- Se a similaridade de um documento ultrapassar um determinado limiar, então o documento é classificado como pertencente a categoria.

Exemplo

- Classificação da base de dados do sistema TodoBR (10 milhões de páginas).
- Categorias relacionadas à Educação:
 - Biologia;
 - Física;
 - Geografia;
 - História e outras.

Base de Dados para Treinamento

Categoria	N# de documentos (*)			
Biologia	104			
Física	121			
Geografia	130			
História	112			

Resultados

Categoria	N# Docs. Classif.	% estimado de Acertos		
Biologia	1477	97% (+/- 3.7%)		
Física	1487	99% (+/- 2.5%)		
Geografia	14667	95% (+/- 4.2%)		
História	3295	93% (+/- 4.6%)		

Exemplo de descritor:

Biologia:

Mitocôndria, Fagocitose, DNA, Genética...

Language models

Statistical Language Models

- Language models: Mecanismos probabilísticos para modelar fontes textuais
- Aplicação inicial em compressão de dados
- Muito aplicado em reconhecimento de voz (desde a década de 70)
- Aplicado em tradutores na década de 80
- Aplicado em RI a partir da década de 90

Statistical Language Models

- São modelos probabilísticos
- Ao invés de calcular a probabilidade de um documento ser relevante dada uma consulta
- Calcula-se a probabilidade de uma consulta ser gerada por um modelo extraído a partir de um documento.

Exemplo

- Espera-se que:
 - P("departamento de ciência da computação"|HOME DO DCC)>
 - P("departamento de ciência da computação" | HOME DA UFAM)
- A fonte de informação HOME DO DCC tem mais chance de gerar a seqüência do que a fonte de informação HOME DA UFAM
- Desafio é aprender o modelo que representa cada documento D para calcular P(Q|D).

Idéia similar à compressão de dados

 A idéia foi inspirada em um modelo proposto em 48 para compressão de textos

Modelo Mais simples

- Considerar cada palavra como sendo independente das demais
- $p(w_1 w_2 ... w_n) = p(w_1)p(w_2)...p(w_n)$
- Probabilidade de uma dada consulta ser gerada por um documento:

$$P(Q=[k_1,\ldots,k_m]|D)=P(K_1|D)\times\ldots\times P(K_m|D)$$

Onde K_i é um termo de Q e m é o número de termos

Como estimar P(K|D)?

- Pode-se contar número de ocorrências de K em D e dividir pelo total de palavras em D:
- Ex: K aparece 10 vezes de um total de 100 palavras em D: P(K|D)=0,1
- Problemas com essa abordagem ???

Suavização (smoothing)

- Se uma palavra não aparece no documento, sua probabilidade não pode ser 0!
- Se uma palavra da consulta não aparece em D então P(Q|D) = 0 ?
- Solução é fazer uma suavização no modelo

Additive smoothing [Relatório Tecnico: Chen & Goodman 98]:

Adicionar uma constante à contagem de cada palavra:

$$P(K|D) = \frac{f(K,D) + C}{|\sum f(k_i,D) + C \times V|}$$

- Todas as palavras desconhecidas têm a mesma probabilidade
- Resolve o problema da multiplicação, mas continua sendo ruim!

Exercício

 Calcule o ranking para a coleção de exemplo com a consulta K1,K3 utilizando o modelo proposto. Considere C= 1;

	d1	d2	d3	d4	d5	d6
K1	1	0	1	0	1	0
K2	0	1	1	1	1	1
K3	0	0	0	1	0	0

Exercício

P(K1,d1) = (1+1)/1+3=0,5

$$P(K|D) = \frac{f(K,D) + C}{|\sum f(k_i,D) + C \times V|}$$

Outras alternativas

- Há muitas alternativas de suavização
- Resultados acabam incluindo conceitos similares aos de tf e idf.
- Melhor resultado para busca obtido pelo método conhecido como Dirichlet (Zhai and J. Lafferty, SIGIR 2001 e SIGIR 2002)
- Testes com várias coleções(incluindo web trec 8), consultas curtas e longas

Dirichlet Prior/Bayesian

$$P(k|D) = \frac{f(k,D) + \mu P(k|REF)}{|D| + \mu} = \frac{|D|}{|D| + \mu} \frac{f(k,D)}{|D|} + \frac{\mu}{|D| + \mu} P(k,REF)$$

- P(w|REF) é uma probabilidade do termo na colecao
- Problema de Dirichlet: vem da física e da matemática e consiste em encontrar uma função contínua que está encerrada dentro de determinados limites.

Suavização & TF-IDF

[Zhai & Lafferty 01a]

Fórmula final proposta:

TF weighting $\log p(q \mid d) = \underbrace{\frac{p_{DML}(w \mid d)}{\alpha_d p(w \mid REF)}}_{c(w,q)>0} + |q| \log \alpha_d + \underbrace{\frac{p_{DML}(w \mid d)}{\alpha_d p(w \mid REF)}}_{c(w,q)>0} + |q| \log \alpha_d + \underbrace{\frac{p_{DML}(w \mid d)}{\alpha_d p(w \mid REF)}}_{c(w,q)>0} + |q| \log \alpha_d + \underbrace{\frac{p_{DML}(w \mid d)}{\alpha_d p(w \mid REF)}}_{c(w,q)>0} + |q| \log \alpha_d + \underbrace{\frac{p_{DML}(w \mid d)}{\alpha_d p(w \mid REF)}}_{c(w,q)>0} + |q| \log \alpha_d + \underbrace{\frac{p_{DML}(w \mid d)}{\alpha_d p(w \mid REF)}}_{c(w,q)>0} + \underbrace{\frac{p_{DML}(w \mid REF)}_{c(w,q)>0}}_{c(w,q)>0} + \underbrace{\frac{p_{DML}(w \mid REF)}_{c(w,q)>0}}_{c(w,q)>$

Words in both query and doc IDF-like weighting

$$P_{DML}(w|d) = \frac{f(w,d) + \mu P(w|REF)}{d + \mu}$$

Doc length normalization

(long doc is expected to have a smaller α_d)

Ignore for ranking

$$P(w,REF) = \frac{f(w,Col)}{\sum f(w_i,Col)}$$

$$\alpha_{d} = \frac{1 - \sum_{w \text{ is seen}} p_{DML}(w|d)}{\sum_{w \text{ is unseen}} p(w|REF)}$$

Melhor valor de u

- O valor de u varia de coleção para coleção, mas nos experimentos ficou próximo a 2000.
- Método é bom para consultas curtas.
 Para consultas longas devem ser usadas outras formas de suavização

Modelos mais sofisticados

- Quando modelamos ocorrência de palavras como independentes estamos simplificando o modelo da linguagem
- A probabilidade de uma dada palavra ocorrer depende bastante das palavras que ocorreram anteriormente (dependência entre palavras)

O que fazer para melhorar?

- Modelos utilizando N-gramas (n-gram models):
 - Bigramas e trigramas tem sido estudados
 - Melhorias insignificantes (podemos mudar?)
- Parsimonius LM:
 - Equivalente à remoção de stopwords.

O que fazer para melhorar

Como modelar relacionamentos entre palavras ???

Modelo Baseado em Conjuntos SET-BASED MODEL

Modelo Baseado em Conjuntos (Set Based Model)

 Modela correlações entre termos das consultas utilizando teorias de conjuntos e técnicas de mineração de dados

Conceitos Básicos

- Termset
- Termset frequente
- Termset proximais
- Regras de associação entre termsets
- Fechamento

Termsets

- Um n-termset é um conjunto de n termos
- Vocabulário de conjuntos com 2^t elementos, onde t é o número de termos:
- $-V = \{S_1, S_2, ..., S_2^t\}$
- Cada termset S_i tem uma lista invertida IS_i (computada dinamicamente)

Termset Frequente

- Um termset é frequente se sua lista invertida é maior do que um determinado limiar (conhecido como suporte em mineração de dados e como frequência mínima em RI)
- Um n-termset é frequente sse todos os seus subconjuntos também são frequentes.

Exemplo

Coleção

A C

A C

Ε

C D

E D

F

A C

A C

A C

DE

ABC

D C D

E

ВС

D F

- Vocabulário: {a,b,c,d,e,f}
- Q={a,b,c,d,f}
- 32 possíveis termsets
- 23 ocorrem na coleção
- Quantos com frequência mínima 2 ?

Resposta

- 5 de 1 termo A,B,C,D,E
- 7 de 2 termos
- 3 de 3 termos
- 15 no total

Termsets proximais

- Termsets proximais são compostos por termos que ocorrem a uma distância máxima dentro do texto
- Considerar relações apenas entre termos que ocorrem dentro de um mesmo contexto
- Serve também para reduzir o número de termsets

Regras de associação

- Cada termset carrega informação sobre a associação entre termos
- Contudo, utilizar todas as associações pode não ser uma boa idéia (por exemplo, sobreposição)
- Para selecionar boas associações podemos utilizar regras de associação

Exemplo

- Na coleção de exemplo, os conjuntos
 S_{ac}(3 vezes) S_{abc} são freqüentes
- Devemos utilizar os dois ?

Regras de associação

- Uma regra é uma implicação X → Y, onde X e Y são termsets.
- Regras são caracterizadas pelo grau de confiança, que indica a probabilidade de Y aparecer em um documento, dado que apareceu X

Exemplos

A C	C D	A C
A C	E D	A C
E	E	A C
DE	АВС	ВС
	D C D	DF
	E	

REGRA	CONFIANÇ A
$S_a \rightarrow S_{ab}$	33
$S_{ab} \rightarrow S_{abc}$	100
$S_{ac} \rightarrow S_{ab}$	33
$S_{abcd} \rightarrow S_{bcdf}$	0

 Associações com 100% de confiança implicam no descarte do conjunto menor

Fechamento

- O fechamento de um termset S é o conjunto de todos os termsets que co-ocorrem nos mesmos documentos de S
- Um termset é fechado se ele é o "maior" dentre os termsets de um fechamento
- Termsets fechados aparecem como conseqüências dentro das regras de associação com 100% de confiança.

Set-Based Vector Model

- Documentos e consultas são representados em um espaço determinado por todos os conjuntos possíveis
- Pesos são determinados por tf e idf:
 - Tf = número de vezes que conjunto ocorreu no documento
 - Idf = calculado em função do tamanho da lista invertida do conjunto
 - Utiliza apenas termsets fechados no

Resultados

- Ganhos de 10.66% sobre o vetorial na WBR99 (com proximidade)
- Ganho de 2.79% sem proximidade
- Ganhos de 30% na TREC8
- Tempo de execução próximo ao do vetorial

Dúvidas

- Qual seria o ganho quando combinado a outras evidências ?
- Qual seria a perda de eficiência em um sistema real ?
- Como selecionar os parâmetros para cada coleção (frequência de corte e distância)?
- Uso de passagens melhoraria os resultados?

Exercício

Execute a consulta da nossa coleção de exemplo para o set-based model. Considere que não há cortes nos conjuntos nesse exemplo.

Avaliação de Sistemas de RI

Avaliação de Sistemas de Busca

- N conjunto de documentos relevantes identificados pelos especialistas
- R conjunto de documentos respondidos pelo sistema que foram examinados.

Precisão e Revocação

Precisão =
$$\frac{|N \cap R|}{|R|}$$

Revocação
$$\frac{|N \cap R|}{|N|}$$

Curva de Precisão e Revocação

- Para facilitar a avaliação dos resultados é traçado um gráfico que mostra a evolução da precisão em função da revocação.
- Gráfico é conhecido como curva de precisão e revocação.

Exemplo

- Documentos relevantes: {1, 4, 8, 44, 72}.
- Um sistema recupera o vetor resultado: <8, 22, 72, 3, 1, 2, 24, 6, 33, 45, 4, 48, 55, 32, 11, 44>.
- O nível de revocação 20% é atingido quando encontramos o primeiro documento relevante (8), a precisão é de 1/1 = 100%.
- Para revocação de 40% a precisão é

Curva de Precisão e Revocação

Precisão média

- Normalmente é interessante que se faça a avaliação do sistema utilizando-se uma média das precisões obtidas em várias consultas
- Pontos de precisão conhecidos são diferentes para cada consulta
 - Solução é criar uma forma de se ter valores conhecidos nos mesmos pontos em todas as consultas.

Precisão nos 11 pontos

- Utiliza-se um método de interpolação para se obter a precisão em 11 pontos de revocação (0%, 10%, 20%, ...,100%)
- Interpolação é feita tomando-se a precisão máxima conhecida entre o ponto atual e o próximo. Se não houver resultado, busca-se os próximos pontos até que se tenha uma definição

Se não recupera todos os relevantes precisão cai a zero

Precisão também pode ser computada em função do número de documentos vistos

Neste caso também utiliza-se interpolação

Exercício

- Documentos relevantes: {1, 4, 8, 25,44,53, 72}.
- Um sistema recupera o vetor resultado: <8, 22, 72, 1, 3, 2, 25, 6, 33, 45, 4, 48, 55, 32, 11, 44>.
- Mostre a curva de precisão e revocação utililizando os 11 pontos padronizados
- Mostre a curva de precisão nos 10 primeiros elementos da resposta

Calculando valores únicos

- Em alguns casos é interessante que se tenha um único valor de precisão para cada consulta
- Com este valor é possível comparar diretamente dois sistemas e determinar qual o melhor

Medidas de precisão escalares

- Precisão média nos relevantes encontrados
 - Tira-se a média das precisões nos pontos de revocação onde apareceram documentos relevantes (MAP não interpolado)
 - Há também o MAP Interpolado (média nos 11 pontos)
 - Note que sistemas que não encontraram todos os relevantes podem ser beneficiados pelo MAP não interpolado

Exercício

 Calcule o MAP para o exercício anterior

Medidas de precisão escalares

- Precisão-R
 - Calcula-se a precisão na R-ésima posição do ranking
 - Muito utilizada quando assume-se que usuário está interessado nos R primeiros.
 - Por exemplo, nas máquinas costumase assumir que usuário está interessado em respostas apenas entre os 10 primeiros itens

Medidas Escalares (Vorhees, SIGIR, 2004)

bpref
$$10 = \frac{1}{R} \sum_{r=1}^{R} 1 - \frac{Irrelevant_{R}(r)}{R+10}$$

- R é o número de relevantes
- Irrelevant_R(r) é o número de documentos irelevantes acima de r, entre os R+10 documentos do topo (valor maximo é R+10.
- Falha quando número de relevantes é pequeno
- Ex: 1/7x ((1-0/17)+(1-1/17)(1-1/17)+(1-3/17)+(1-6/17)+

$$(1-10/17)+0)=0.67$$

Exercício

Cacule o Bpref-10 para o exercício anteriorl

Histograma de precisão

Pode-se montar um histograma com as diferenças entre dois sistemas em vários pontos de precisão-R

Resumos comparativos

- Pode-se ainda montar resumos comparativos sobre os sistemas que estão sendo experimentados
 - Exemplo: número de consultas usadas no experimento, número médio de docs recuperados por consulta, número médio de relevantes por consulta, precisão-10 de cada sistema e assim por diante.

Medidas alternativas

Medida F1(Média Harmônica)

$$F1(j) = \frac{2}{\frac{1}{R(j)} + \frac{1}{P(j)}}$$

Onde R(j) é a revocação em um dado ponto j e P(j) é a precisão neste ponto

A medida F é útil para combinar a precisão e a revocação em um único número

Medidas Alternativas

Medida F

$$F(j) = \frac{1+b^2}{\frac{b^2}{R(j)} + \frac{1}{P(j)}}$$

- Valores de b maiores que 1 indicam que o usuário está mais interessado na precisão
- Valores menores que 1 indicam que usuário está mais interessado na revocação

Exercício

Calcule a medida F para o exercício anterior

MRR(Mean Reciprocal Ranking)

$$MRR(S,Q) = \frac{\sum_{\forall q \in Q} \frac{1}{Pos \operatorname{Re} l(S(q))}}{Q}$$

- Onde Q é um conjunto de consultas
- S é um sistema de ranking
- PosRel(R(q)) é a posição da primeira resposta relevante no ranking do sistema S para a consulta q
- #Q é o número de consultas avaliadas

Exercício

Calcule o MRR para o exercício anterior

Métricas baseadas em Ganho Cumulativo (CG)

- Quando examinamos uma resposta de um sistema, fica claro que:
 - Alguns documentos relevantes atendem melhor às necessidades dos usuários que outros
 - Quanto mais longe do topo um documento relevante está, menor a sua utilidade na resposta
- Métricas baseadas em ganho cumulativo tentam incorporar estes dois fatos na avaliação

Ganho Cumulativo (CG)

 Documentos da resposta são substituídos pelos seus graus de relevância:

 Ganho cumulativo (CG) é igual a soma dos valores de ganho obtidos até cada posição:

 CG leva em consideração a relevância, mas não a posição

Calcule do CG para o exemplo abaixo ate o 60 documento

- Documentos relevantes: {1(3), 4(1), 8(2), 25(1),44(3),53(3), 72(2)}.
- Um sistema recupera o vetor resultado: <8, 22, 72, 1, 3, 2, 25, 6, 33, 45, 4, 48, 55, 32, 11, 44>.
- Um sistema recupera o vetor resultado: <25, 22, 4, 3, 72, 2, 8, 6, 33, 45, 4, 48, 55, 32, 11, 44>.

Ganho Cumulativo Descontado (DCG)

- Inclui a noção de que documentos relevantes têm a utilidade reduzida na medida em que são apresentados mais longe do topo da resposta
- A proposta é incluir um fator de desconto no ganho de acordo com a posição na qual os documentos são apresentados
- Uma proposta é dividir pelo log da posição no ranking
- A base do logaritmo ajusta o fator de desconto e o log não é aplicado para a primeira posição do ranking

DCG

Usando log na base 2:

```
<3;3;2,51;3....>
```

Valores médios de DCG podem ser computados para avaliar o desempenho de um sistema e gráficos de DCG podem ser criados para facilitar a visualização dos resultados da avaliação

Calcule do DCG para o exemplo abaixo ate o 60 documento

- Documentos relevantes: {1(3), 4(1), 8(2), 25(1),44(3),53(3), 72(2)}.
- Um sistema recupera o vetor resultado: <8, 22, 72, 1, 3, 2, 25, 6, 33, 45, 4, 48, 55, 32, 11, 44>.
- Um sistema recupera o vetor resultado: <25, 22, 4, 3, 72, 2, 8, 6, 33, 45, 4, 48, 55, 32, 11, 44>.

NDCG (Jarvelin et al, TOIS, 2002)

- Normalized Cumulative Discount Gain
- Ganho Cumulativo Descontado Normalizado
- Valor ótimo de DCG poderia ser obtido com sistema que coloca os documentos ordenados de forma decrescente por valor de relevância:
- <3,3,3,3,2,2,2,2,1,1,1,0,0,0,0,0>
- NDCG divide o DCG de cada sistema pelo DCG de um sistema ideal, obtendo valores entre 0 e 1 para cada posição do ranking.
- NDCG@K: NDCG obitdo na k-ésima posição do ranking.

Calcule do NDCG para o exemplo abaixo ate o 60 documento

- Documentos relevantes: {1(3), 4(1), 8(2), 25(1),44(3),53(3), 72(2)}.
- Um sistema recupera o vetor resultado: <8, 22, 72, 1, 3, 2, 25, 6, 33, 45, 4, 48, 55, 32, 11, 44>.
- Um sistema recupera o vetor resultado: <25, 22, 4, 3, 72, 2, 8, 6, 33, 45, 4, 48, 55, 32, 11, 44>.

Para discutir...

- Como comparar Google x Altavista ??
- Problemas com métricas de avaliação
 - Subjetividade e contexto
 - Uso de logs x uso de consultas especificas
 - Níveis de relevância

Testes estatísticos

- Hipótese nula: Hipótese de que dois resultados comparados são iguais
- Hipótese alternativa: Há diferenças entre os dois resultados
- Testes estatísticos servem para dizer se a hipótese nula está descartada com um certo grau de certeza (pvalue), normalmente entre 95% e 99%

Testes estatísticos

- Se o teste de significância falha, isso não quer dizer que os dois sistemas produzem resultados iguais. Isso quer dizer que seu experimento não foi conclusivo!
- Pode-se ampliar número de amostras para tornar experimento mais conclusivo
- Diferença ser considerada estatisticamente significante não significa que diferença é necessariamente grande!!!!!

Testes estatísticos

- Tentam estimar se os resultados de comparação entre dois sistemas foi obtido ao acaso (por sorte) ou se há uma diferença consistente
- Podem ser aplicados sobre as diversas métricas, tais como MAP, bpref, NDCG@K...

Há críticas sobre estes testes...

 Alguns autores da área de estatística criticam o uso deste tipo de testes e sugerem o uso de intervalos de confiança ao invés de testes estatísticos

T-test

- Proposto em 1908
- Autor (William S. Gosset) usou um codinome (student) porque não podia ser identificado. Por isso, o teste é conhecido como "t-student test"
- Uso em RI:
- Utilizado para verificar se a hipótese "a média de valores de duas populações é igual" é válida ou não.

T-test

 Média das diferenças sobre desvio padrão multiplicado pela raiz do número de amostras

- Funcionamento de Máquinas de Busca
 - Evidências utilizadas no processamento de consultas
 - Coletores para a Web
 - Indexação e remoção de ruído dos índices

Tipos de consultas

- Informacionais
- Navegacionais
- Transacionais
- Outros tipos....

Exemplos de fontes de informação para a Web

- Reputação de páginas
- Concatenação de âncoras
- Texto
- Nível das Urls
- Texto das Urls
- Click nas respostas
- Outras possibilidades...

Reputação das páginas

- Links podem ser considerados como indicadores de qualidade para uma página
- Reputação da página na Web pode ser estimada através da estrutura de links

Alguns exemplos de métodos

- Indegree (96)
- Pagerank (97)
- HITS (98)
- Diversas variações....
- Modelo de Hipergrafos (HiperPagerank, HiperIndegree)

Indegree

- Conta o número de apontadores para uma dada página
- Possíveis variações incluem número de domínios, hosts e etc...

Pagerank

 Tenta estimar a probabilidade de um usuário chegar em uma página durante um caminhamento aleatório

Pagerank

A importância de uma página P é dada pela seguinte equação:

•
$$PR(p) = (1-d) + d (PR(t_1)/c_1 + ... + PR(t_n)/c_n)$$

d - dump factor (geralmente entre 0.1 e 0.9)

T_i- página que aponta para P

c,- quantidade de links em T,

 Pagerank procura expressar a probabilidade de uma página P ser acessada.

Pagerank

- Menos suscetível a ataques do que Indegree
- Dá mais importância a apontadores oriundos de páginas com boa reputação
- Evita que páginas com muitos apontadores tenham influencia muito alta nos resultados

HITS

- Utiliza valores de hub e autoridade para definir a reputação de uma página P.
 - hub de uma página "P"- é dado em função dos valores de autoridade das páginas para onde ela aponta.
 - **autoridade** de uma página "P"- é dada em função dos valores de hub das páginas que apontam para P.
- Um bom hub é uma página que aponta para boas autoridades e uma boa autoridade é uma página apontada por bons hubs.

Autoridade de **P**= soma dos valores de hub das que apontam para **P**

Hub de **P** = soma dos valores de autoridade das páginas que apontam para **P**

HITS

- Utilizado em conjunto com a informação textual
- Monta-se um grafo de vizinhança envolvendo os K documentos do topo do ranking e:
 - Seus pais, filhos, demais pais dos seus filhos e filhos dos seus pais
- Valores de HUB e autoridade são calculados sobre este grafo

HITS

- Grafo de contexto ajuda a encontrar autoridades relacionadas ao assunto da página
- Custo computacional para calcular grafo durante o processamento da consulta é alto, o que dificulta a implementação do método

Modelo de Hipergrafos

- Trabalho de mestrado da UFAM
- Modifica forma de modelar a Web
- Permite a redefinição de métodos de análise de links para este novo modelo

Modelo de hipergrafos

- Um hipergrafo é representado por um conjuto de vértices e um conjunto de hiperarestas
- Cada hiperaresta conecta um subconjunto dos vértices do grafo a um outro subconjunto
- O hipergrafo pode ser dirigido

Modelo de Hipergrafos

- Web é particionada visando agrupar páginas com alto grau de relacionamento
- Arestas entre páginas da representação tradicional da Web são substituídas por hiperarestas que conectam partições a páginas
- Uma partição aponta para uma página P sse contiver pelo menos um elemento com link para P.

Modelo de Hipergrafos

- Particionamento visa encontrar um bom balanceamento entre número de hiperarestas e qualidade de cada hiperarestas
- Consideramos uma hiperaresta boa se a mesma conecta conjuntos de páginas "independentes"
- Estimamos a dependência através do grau de relacionamento entre as páginas na estrutura da Web.

Particionamento

- Inicialmente utilizamos heurística simples: host e domínio
- Estamos estudando heurísticas baseadas em métricas de conectividade

Modelo de Hipergrafo

Page-based partitioning

Host-based partitioning

Domain-based partitioning

Experimentos

- Criamos uma versão de Pagerank e de Indegree para hipergrafos
- Realizamos experimentos na Base WBR03 com consultas informacionais e navegacionais.
- Cada tipo de consulta foi dividido em popular e selecionadas aleatoriamente
- Resultados indicam ganhos para consultas navegacionais, sem perdas em informacionais

Concatenação de âncoras

- Representa cada página P com a concatenação de todos os textos utilizados em apontadores para P na Web
- Fonte de evidência textual que pode ser usada com modelos de RI similares aos de texto

Questões importantes

- Apontadores internos devem ser levados em consideração ?
- Pode ser facilmente burlado?
- Como tornar esta fonte de evidência segura ?

Propriedades interessantes

- Captura as diversas formas de descrever o conteúdo de uma página
- Serve para diminuir Gap entre vocabulário de quem formula a consulta e de quem escreve o texto
- Permite a descrição de conteúdos em páginas que não possuem texto

Nível da URL

- Atribui a cada página um nível de acordo com sua profundidade na estrutura de diretórios de um site
- Tem boa correlação com métodos para estimar reputação de páginas
- Serve como fonte de informação para distinguir páginas que não possuem reputação

Questões importantes

- O que fazer com sites que não utilizam estrutura de diretórios ?
- Agrupa páginas em poucas categorias
- Poderíamos utilizar um nível virtual em função do número de apontadores seguidos a partir da homepage do site?

Texto das URLs

- Texto das URLs pode ser usado como fonte de informação
- Casamento com a consulta deve permitir aproximações ?
- Como utilizar esta fonte ?

Click nas páginas

- Páginas mais seguidas em respostas podem ter seu ranking melhorado
- Não há modelo padrão para o uso dessa informação
- Pode ser usado para pequenas modificações no ranking
- Deve ser usado com cuidado

Como combinar fontes?

- Costumava-se normalizar resultados e assumir independência entre fontes
- Exemplos: Combinações lineares ou tratamento probabilístico
- Fala-se em percentual de impacto para cada fonte (não há artigos descrevendo idéia)
- Problema é mais complicado...

Problemas com combinação

- Fontes nem sempre são independentes
- Diferenças entre pesos pode não ser linear
- Combinação pode mudar de acordo com tipo de consulta
- Afeta métodos de poda
- Como utilizar evidências independentes de consulta (Pagerank, Nivel de URLs e etc...)?

Alternativa de solução

- Utilzar algum método de combinação adhoc
- Utilização de métodos de aprendizagem automática
- Exemplos: GP, SVM, Técnicas de mineração de regras de associação

Métodos Adhoc

Combinação linear dos graus de relevância dos documentos a uma consulta

$$SU(q,d) = P1*A(q,d) + P2*B(q,d) + P3*C(q,d)$$

 Modelar cada fonte de evidência como uma probabilidade independente de relevância dos documentos

$$SU(q,d) = 1 - ((1 - A(q,d)) * (1 - B(q,d)))$$

Métodos Adhoc

Vantagem

Não precisam de treino

Desvantagem

- Não utilizam propriedades das fontes de evidências para descobrir a melhor maneira de combinar
 - Dependências entre diferentes fontes de evidência
 - Variações na distribuição dos escores de cada evidência

Métodos de Aprendizagem de máquina

- Utilizam uma base de treino para "aprender" a melhor forma de combinar evidências
- Necessidade de treino é principal desvantagem
- Exemplo: GP

Combinação Utilizando GP

- Programação Genética pode ser usada para descobrir funções de combinação que:
 - aumentem a qualidade das respostas das máquinas de busca
 - utilizem as propriedades contidas nas evidências para gerar boas funções
 - generalizar a tarefa de combinação para um número qualquer de evidências de relevância
 - especificar a combinação de evidências
 nara diferentes tipos de consultas existentes

Programação Genética (PG)

- Baseado no conceito de *Seleção*Natural
- Técnica de aprendizagem automática (machine learning)
- Evolução de indivíduos (soluções para determinado problema)

Programação Genética

- Por que usar PG?
 - Tem sido usada com sucesso em várias aplicações, inclusive na derivação de funções de ranking.

Programação Genética

Arvore
$$(a,b,c)=(lg(a-b))*(4+c)$$

- Terminais: a,b,c e 4
- Funções: multiplicação, subtração, adição e logarítmo

PG para Combinação de Evidências

- **E**ntrada
 - Consultas pré-avaliadas
 - Processa consulta
 - Avalia as 50 primeiras respostas do topo de cada um dos ranks gerados por cada evidência
- Fases da combinação
 - Treinamento
 - Validação

- Evidências Utilizadas
 - Texto presente nas páginas
 - Cosseno vetorial aplicado sobre os textos
 - Textos de âncora dos documentos
 - Cosseno vetorial aplicado sobre os textos de âncora
 - Estruturas de ligação entre as páginas da Web
 - Pagerank

- Classes de consultas
 - As consultas foram divididas segundo tipo de informação procurada e popularidade dos documentos
 - Consultas por tópico de informação (informacionais)
 - Populares e não-populares
 - Consultas por sites específicos (navegacionais)
 - Populares e não-populares
- Classificadas manualmente

- Função de Fitness
 - Consultas informacionais: BPref
 - Consultas Navegacionais MRR

- Coleção
 - Base de dados do TodoBr
 - Mais de 12 milhões de páginas
- Fases dos experimentos
 - Treinamento
 - Validação
 - Teste

- Informacionais
 - 62 consultas extraídas do log do TodoBr composto por mais de 11 milhoes de consultas
 - 70% utilizadas para o treinamento
 - 30% utilizadas para validação
 - Executamos 20 evoluções e escolhemos a que obteve melhor resultado na validação
 - 30 consultas para fase de teste em que foram avaliadas os 10 documentos do topo de cada evidência, inclusive as funções de combinação estudadas
 - Os resultados apresentados se referem ao conjunto de teste

- Navegacionais
 - 90 consultas extraídas do log
 - 50% para treino
 - 20% para validação
 - 30% para teste
- Executamos 20 evoluções e escolhemos a função que obteve melhor resultado quando aplicado a função de fitness para passar a fase de testes

- Comparação de desempenho
 - Modelo de combinação de evidências por redes Bayesianas proposto por Silva
 - Modelo proposto por Craswell (baseado em treino)
 - Melhor combinação Linear (combinação linear utilizando treino)

Experimentos(1)

Consultas Informacionais

Query Type	Method	RankEff	Bpref-10	MAP
Informational	GP	0.744	0.562	0.485
Popular	BN	0.406	0.393	0.361
	BLC	0.731	0.563	0.312
	SIGM	0.704	0.520	0.462
Informational	GP	0.724	0.538	0.401
Non-Popular	BN	0.476	0.245	0.237
	BLC	0.648	0.365	0.312
	SIGM	0.632	0.336	0.300

Query Type	Evidence	RankEff	Bpref-10	MAP
Informational	Text	0.715	0.414	0.336
Popular	Anchor	0.632	0.348	0.259
	Pagerank	0.320	0.117	0.097
Informational	Text	0.726	0.549	0.444
Non-popular	Anchor	0.511	0.203	0.159
	Pagerank	0.317	0.190	0.134

Experimentos(2)

Consultas Informacionais

Query Type	Method	RankEff	Bpref-10	MAP
Informational	GP	0.744	0.562	0.485
Popular	BN	0.406	0.393	0.361
	BLC	0.731	0.563	0.312
	SIGM	0.704	0.520	0.462
Informational	GP	0.724	0.538	0.401
Non-Popular	BN	0.476	0.245	0.237
	BLC	0.648	0.365	0.312
	SIGM	0.632	0.336	0.300

Query Type	Evidence	RankEff	Bpref-10	MAP	
Informational	Text	0.715	0.414	0.336	
Popular	Anchor	0.632	0.348	0.259	
	Pagerank	0.320	0.117	0.097	
Informational	Text	0.726	0.549	0.444	∢.
Non-popular	Anchor	0.511	0.203	0.159	
	Pagerank	0.317	0.190	0.134	

Experimentos(3)

Consultas Navegacionais

Query Type	Method	MRR
Navigational	GP	0.920
Popular	BN	0.405
	BLC	0.581
	SIGM	0.479
Navigational	GP	0.803
Non-Popular	BN	0.408
	BLC	0.367
	SIGM	0.325

Query Type	Evidence	MRR
Navigational	Text	0.153
Popular	Anchor	0.178
	Pagerank	0.266
Navigational	Text	0.209
Non-popular	Anchor	0.364
	Pagerank	0.178

Experimentos(4)

Consultas navegacionais

Query Type	Method	MRR
Navigational	GP	0.920
Popular	$_{ m BN}$	0.405
	BLC	0.581
	SIGM	0.479
Navigational	GP	0.803
Non-Popular	BN	0.408
	BLC	0.367
	SIGM	0.325

Query Type	Evidence	MRR
Navigational	Text	0.153
Popular	Anchor	0.178
	Pagerank	0.266
Navigational	Text	0.209
Non-popular	Anchor	0.364
	Pagerank	0.178

Análise das Fórmulas

t-texto; a-âncora; p-pagerank

Informacionais Populares

$$Comb(a, p, t) = \begin{cases} t(3t + 2tp^2 + 2ap^2 + 6a + 4p) + 8ap + \\ p\ln(p)(6t^2p^2 + 2tap^2 + 9t + 3ta + 12tp + 4ap) \end{cases}$$

Informacionais não-populares

$$Comb(a, p, t) = t^{5}(2p + 6t^{2}p + 4tp + 3tp + 2p^{2} + 6t^{3} + 6t^{5} + 4t^{4} + 3t^{4}p + 2t^{3}p)$$

Análise das Fórmulas

Navegacionais populares

$$Comb(a, p, t) = \begin{cases} ap^2(8 + 7p - p^2 - a - a - ap \ln(a)(8p - p^2 - \ln(p - 8 \ln(p - 8) + a \ln(p - 8)) - ap + 6)) \\ +ap(6 - \ln(p - 8 \ln(p - 8) + a \ln(p - 8)))) \end{cases}$$

Navegacionais não-populares

$$Comb(a, p, t) = a^3p(2t + p)$$

Recuperação de Informação Coletores para Máquinas de Busca

Roteiro

- Coletores
- Métricas de Importância
- Desafios de Projeto

Coletores

- Processo de se navegar entre páginas www usando estrutura de hyperlinks.
- A estrutura de hyperlinks da web pode ser modelada como um grafo.

Coletores

- Navegadores automáticos entre páginas web que visam armazenar uma cópia local das páginas encontradas
- Devem obedecer algumas restrições ao visitar sites.
- O Protocolo de Exclusão de Robôs (Robot Exclusion Protocol) especifica algumas regras de acesso.
 - Principal regra é não deixar um intervalo de tempo entre acessos a cada servidor.

Coletores

- O Protocolo de Exclusão de Robôs:
 - Padrão definido em 30 de junho de 1994.
 - Define as permissões do coletor em um determinado site.
 - As diretrizes são descritas em um arquivo chamado "robots.txt", localizado no servidor web coletado.

Exemplo de robots.txt

Coletor

Esquema gráfico do funcionamento de um coletor.

Arquitetura da MB

Escalonamento

- Páginas devem ser coletadas seguindo métricas de importância
- Métricas devem definir prioridade de coleta e refrescamento de página
- Objetivo final deve ser maximizar a qualidade das respostas providas pela máquina de busca

Métricas de Importância

- Similaridade
- Backlink Count
- Page Rank
- HITS
- Foward Link Count

Similaridade

- Consultas são utilizadas para determinar importância das páginas.
- Algum modelo de RI é utilizado para computar a similaridade entre uma dada consulta Q e um determinado documento P (página web).

Backlink Count

 A importância de uma página "P" é definida pela quantidade de links que apontam para a mesma.

PageRank

A importância de uma página P é dada pela seguinte equação:

•
$$IR(P) = (1-d) + d (IR(T1)/c1 + ... + IR(Tn)/cn)$$

d - dump factor (geralmente entre 0.1 e 0.9)

T_i- página que aponta para P

c_i- quantidade de links em T_i

 Page Rank procura expressar a probabilidade de uma página P ser acessada.

HITS

- Utiliza valores de hub e autoridade para definir a importância de uma página P.
 - hub de uma página "P"- é dado em função dos valores de autoridade das páginas para onde ela aponta.
 - autoridade de uma página "P"- é dada em função dos valores de hub das páginas que apontam para P.
- Um bom hub é uma página que aponta para boas autoridades e uma boa autoridade é uma página apontada por bons hubs.

Forward Link Count

- A importância de uma página P é determinada pela quantidade de links existentes na mesma.
- Todos os links possuem peso 1, mas poderiam ser considerados pesos diferentes, de acordo com a importância do link.

Tipos de escalonamento

- Offline: Fila de prioridades para coleta é ordenada periodicamente fora do sistema de coleta
- Online: Fila de prioridades é reordenada continuamente

Desafios de Projeto

- Desafios ao se projetar um coletor:
 - Definir a periodicidade de atualização das páginas (Freshness) X Encontrar novas url's.
 - Usar o máximo de largura de banda sem sobrecarregar os sites visitados.
 - Identificar páginas redundantes (Mirror).
 - Coletar boas páginas.

Problemas práticos

- Sobrecarga do DNS
- Erros de acesso repetido a servidores
- Extração de links pode gerar URLs falsas ou links infinitos
- Coleta de páginas dinâmicas
- Normalização de URLs
- Diferença de velocidade entre servidores pode afetar velocidade
- ... (há muitos outros problemas)

Sobrecarga de DNS

- Coletores geram número muito alto de requisições de DNS
- Normalmente os servidores de DNS viram gargalos para o coletor
- Solução é manter um cache com DNSs previamente resolvidos

Erros de acesso repetido (falsos ataques)

- O coletor pode criar um falso ataque a um servidor Web por problemas como:
 - Uso de diferentes nomes para um servidor
 - Vários servidores em um mesmo local

Links infinitos

- Problemas na extração de links podem gerar erros que levam a links infinitos que são validados pelo servidor Web
- www.aa.bb.com/musica
- www.aa.bb.com/musica/musica

Páginas dinâmicas

- Alguns sites podem gerar número infinitos de páginas válidas
- Exemplo, um site que fornece um HTML com o dia da semana de qualquer data, onde a data entra na URL

Normalização de URLs

- URLs devem ser normalizadas para evitar repetições:
- http://www.dcc.ufam.edu.br/~edleno
- http:// www.dcc.ufam.edu.br/~edleno/index.htm
- http://www.dcc.ufam.edu.br/~edleno/

Diferenças de velocidade

Servidores mais lentos podem prejudicar processo de coleta por travar robôs

INDEXAÇÃO O que fazer além das listas invertidas ?

Alguns índices utilizados...

- Arquivo invertido de textos
- Arquivo invertido de concatenação de âncora
- Índice de inlinks/outlinks
- Pagerank (ou hiperpagerank ☺)
- Índice das URLs

Como gerar índice de links?

- Extrair links de cada página coletada para obter links de saída
- Inverter índice para computar links de entrada
- Fazer o mesmo com os textos de âncora
- Processo muito caro e de difícil paralelização

Ruído em máquinas de Busca

Ruído

- Informação que atrapalha o funcionamento de Máquinas de busca
- Pode ser tanto intencional quanto involuntário.

Alguns Tipos de Ruído

- Páginas duplicadas
- Sites duplicados
- Links Tendenciosos (ou nepotísticos)
- SPAM

Efeitos prejudiciais

- Causam desperdício: aumento no custo de processamento, armazenamento e coleta de informação
- Degradam qualidade das respostas

Replicação de Sites

Paper Aceito no DKE
Paper publicado no SBBD 06

Alunos: André e Klessius

Professores: Altigran e Edleno

Um exemplo prático

Web

Dica: Ganhe tempo teclando Enter ao invés de clicar em "pesquisa"

[bb.com.br]

.. Promoção Prêmios Mil. O Banco do Brasil tem motivos a mais para você investir em

Poupança. Veja os números sorteados. Oferta Pública de Ações Grendene. ...

www.bb.com.br/ - 45k - Em cache - Páginas Semelhantes

[bb.com.br]

... Promoção Prêmios Mil. O Banco do Brasil tem motivos a mais para vooê investir em Poupança. Veja os números sorteados. + notícias. ...

www.bb.com.br/appbb/portal/index.jsp - 45k - 4 nov. 2004 - Em cache - Páginas Semelhantes

[Mais resultados de www.bb.com.br]

Banco Central do Brasil

... Saiba como proceder para trocá-la pela de borda dourada. Ajuda | Política de privacidade.

Todos os direitos reservados ao Banco Central do Brasil ©.

www.bcb.gov.br/ - 61k - 4 nov. 2004 - Em cache - Páginas Semelhantes

[bb.com.br]

www.bancodobrasil.com.br/ - 46k - Em cache - Páginas Semelhantes

|| Banco do Nordeste || - O Nosso Negócio é o Desenvolvimento

... Biblioteca Virtual Visite nosso acervo de publicações. [Saiba Mais]. Banco do Nordeste

do Brasil SA - Cliente Consulta - 0800.783030 - Fale Conosco.

www.bnb.gov.br/ - 77k - 4 nov. 2004 - Em cache - Páginas Semelhantes

Mantenha sua senha em sigilo

https://www2.bancobrasil.com.br/aapf/aai/login.pbk - 32k - 4 nov. 2004 - Em cache - Páginas Semelhantes

Verifique um pequeno cadeado fechado na parte inferior do ...

https://www2.bancobrasil.com.br/pbank/index1.asp - 33k - 4 nov. 2004 - Em cache - Páginas Semelhant [Mais resultados de https://www2.bancobrasil.com.br]

Welcome to Banco do Brasil - JAPAN

... Banco do Brasil, você, sua empresa. Acesse sua conta. ... Localize. Plantões semanais.

Confira aqui os plantões do Banco do Brasil. Balcões do Banco do Brasil.

Método NormPaths

- Utilizamos a estrutura de diretórios dos sítios e o conteúdo das páginas para detectar replicação
- Consideramos que sítios que contém páginas de conteúdo textual e caminhos idênticos são candidatos a réplicas.

Método NormPaths (2)

- Como comparar o conteúdo textual é custoso, utilizamos a norma dos documentos.
- Na falta da norma, qualquer outra forma de assinatura poderia ser utilizada.

Experimentos

Para os experimentos, foi utilizada uma base de dados do TodoBR (10.077.722 páginas da Web Brasileira).

Resultados

Method	# replicas	Precision(%)	Recall(%)	F(%)
NormPaths	10868	54.34	71.67	61.81
Paths	7381	36.90	48.68	41.98
IPs	1753	9.17	12.09	10.43

Trabalhos Futuros

- Encontrar réplicas parciais de sites
- Criar clusters de réplicas

Ruído em Links

Paper WWW 06

Alunos: André e Paul

Professores: Edleno, Pavel e

Wolfgang

Ruidos em Links

- A intuição por trás da análise de links é que os links entre as páginas representam uma espécie de voto de confiança.
- Links ruidosos não têm este propósito
- Vários fatores acabam favorecendo o aparecimento de vários Links ruidosos.
- Spam, Troca de Links, Links Nepotisticos

Nossa abordagem

- Propusemos várias técnicas de detecção de links ruidosos.
- Estudamos o impacto da remoção dos mesmos no PageRank.
- Principal diferencial foi a análise de links entre sites ao invés de páginas

Nossos Métodos

- Mutual Site Reinforcement trocas de links entre pares de sites
- Site Level Abnormal Support -Excesso de links de um site a outro
- Site Level Link Alliances dependência entre os sites que apontam para um outro site indica ruído

Experimentos

- Posição Média e MRR dos relevantes em consultas navegacionais
- Precisão e Revocação nas consultas informacionais

Resultados

- Ganhos de 26% de MRR em consultas navegacionais populares
- Ganhos de 20% de MRR em consultas navegacionais selecionadas aleatoriamente
- Ganhos marginais em consultas informacionais

Futuro

- Pesos ao invés de corte
- Experimentos em outras bases de dados.
- Uso de métodos para melhorar detecção de réplicas

Métodos de Poda

Paper WWW 05/TOIS 2008

Alunos: Bruno e Célia

Professores: Edleno, Pavel, Altigran e Mário

Poda baseada em localidade

- Uso de localidade de ocorrência de termos em documentos como heurística para guiar poda
- Métodos simples que permitem a geração direta do índice com poda
 - Ex: Tomar apenas as primeiras sentenças do texto

Resultados

- Redução no tempo de indexação e ganhos na qualidade da poda quando comparados a métodos de poda estática previamente propostos
- Redução em até 50% do índice sem perda na qualidade das respostas

Pesquisas para melhorar a eficiência

- Compressão de Dados:
 - Compressão de textos;
 - Compressão de índices;
 - Busca em textos comprimidos;
- Novos Modelos e Algoritmos:
 - Formas eficientes para calcular a similaridade entre elementos no modelo vetorial;
 - Novos modelos para melhorar qualidade sem aumentar significativamente os

Pesquisas para melhorar a eficiência

- Processamento paralelo e distribuído:
 - Construção de índices e processamento de consultas utilizando ambientes distribuídos;
- Cache no processamento de consultas.

Avaliação em sistemas de Filtragem

- Utiliza medidas de precisão e revocação
- O conjunto de relevantes é determinado pelos docs que deveriam ser enviados a cada usuário
- Respostas dão lugar aos documentos que efetivamente são mostrados

Exemplo: Compare A e B

- De 10 documentos recebidos pelo sistema, os documentos {1,2,3,8,10} deveriam ter sido enviados a um usuário.
 - O sistema de filtragem A enviou apenas {1,2}
 - O sistema B enviou {1,2,6,8,10}
 - Calcule a precisão, revocação e a medida F para este exemplo.

Avaliação em classificação

 Realizada de forma similar a da filtragem

Coleções de Referência

- As principais coleções de referência existentes na literatura são:
- TREC, CACM, ISI, CFC (Cystic Fibrosis Collection), MED e NLM
- Porém há muitas outras disponíveis

TREC

Pesquisas para melhorar a eficácia

- Extrair dados da estrutura das páginas:
 - Metatags, fontes, títulos, figuras e etc...
- Extrair dados da estrutura de apontadores (links):
 - Catálogos e Autoridades;
 - Textos contidos nos apontadores;

Pesquisas para melhorar a eficácia

- Extrair informação da coletividade:
 - Filtragem cooperativa;
 - Uso dos registros de acesso para alterar ordenação de respostas em sistemas de busca;

Avaliação de Sistemas de Filtragem de Informação

Avaliação de Sistemas de Filtragem

- Quase igual a avaliação realizada em sistema de busca.
- Somente alguns documentos são inseridos nas respostas e não há ordenação das respostas.

Avaliação de Sistemas de Filtragem

- Especialistas recebem documentos a serem filtrados.
- Conjunto de documentos filtrados pelo sistema (R) é comparado com o conjunto de documentos filtrados pelos especialistas (N).
- Obtém-se então um valor de precisão e revocação.
- Há outras formas de avaliação.

Avaliação de Sistemas de Classificação de Informação

Avaliação de Sistemas de Classificação

- Coleção de referência é classificada.
- Depois calcula-se o percentual dos documentos classificados corretamente e erroneamente.

GVSM(Exemplo de coleção)

	d1	d2	d3	d4	d5	d6
K1	1	0	1	0	1	0
K2	0	1	1	1	1	1
K3	0	0	0	1	0	0