DoSA-3D User Manual

Voice Coil Motor Example

(Speaker, Auto-Focus, Linear Vibrator)

2022-03-19

GiTae Kweon (zgitae@gmail.com)

DoSA Structure

PC Requirement

> CPU: 4 Core and above

> RAM: 16GB and above

Program Structure

Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Shape: Check the 3D Shape

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Virtual Test

✓ Force : Magnetic force estimation

Analysis Model

Analysis Model

1. Shape Model

2. Product Specifications

A. Coil

• Coil Turns: 126 turns

• Coil Resistance: 15.75 Ohm

B. Magnet

• Material : NdFeB 40

• Magnetization Direction: 90 (UP)

C. Power

• Voltage: 2.5V

(Example Files: DoSA-3D Install Directory > Samples > VCM)

New design

1. Toolbar > Click New button

2. Design Name: "VCM"

3. Shape File (STEP): Select VCM.step (provided with this tutorial document)

[Precautions for the Shape Model]

DoSA-3D still has the following functional limitations.

- 가. Limitation of Coil Shape
 - Coil center axis should be Y axis direction.
 - The current is applied like a cylindrical coil.
 (Square coils can cause some differences)
- 나. Moving Part
 - The moving part still supports only one component.

New design

- 4. Check the solenoid shape in Gmsh.
- 5. Exit the Gmsh.
- 6. Check the part names.
- 7. Click the OK button if there are no problem with the shape and part names.

New design

8. Check the design creation.

Parts Design

Add a coil

- 1. Toolbar > Click Coil button
- 2. Select "Coil" in the list box.
- 3. Click the OK button.

Coil design

1. Input the coil instrumental specifications

✓ Moving Parts: MOVING

✓ Coil Wire Grade : Bonded_IEC_Grade_1B

✓ Inner Diameter: 3

✓ Outer Diameter: 3.73

✓ Coil Height: 1.18

✓ Copper Diameter: 0.045

✓ Horizontal Coefficient: 0.95 (Bonded Type)

✓ Vertical Coefficient : 1.13 (Bonded Type)

✓ Resistance Coefficient : 1.1 (Bonded Type)

2. Calculate the coil specification

✓ Click the "Coil Design" button

3. Check the coil specification

Node Name Coil Specification Fields Part Material Copper Curent Direction IN Moving Parts MOVING Calculated Fields Coil Turns 126	
Part Material Copper Curent Direction IN Moving Parts MOVING Calculated Fields	
Curent Direction IN Moving Parts MOVING Calculated Fields	
Moving Parts MOVING Calculated Fields	
▲ Calculated Fields	
Coil Turne 126	
Con runs 120	
Coil Resistance [Ω] 15.74769	
Coil Layers 6	
Turns of One Layer 21	
4 Design Fields (ontional)	
Coil Wire Grade Bonded_IEC_Grade_1B	
Inner Diameter [mm] 3	
Outer Diameter [mm] 3,73	
Coil Height [mm] 1,18	
Copper Diameter [mm] 0,045	
Wire Diameter [mm] 0,04953	
Coil Temperature [°C] 20	
Horizontal Coefficient 0,95	
Vertical Coefficient 1.13	
Resistance Coefficient 1.1	

■ Common Fields

Add a magnet

- 1. Toolbar > Click Magnet button
- 2. Select "Magnet" in the list box.
- 3. Click the OK button.

Magnet setting

- 1. Magnet Settings
 - ✓ Use default values

1

Δ	Common Fields		
	Node Name	Magnet	
Δ	Specification Fields		
	Part Material	NdFeB_40	
	Hc	969969	
	Br	1,26497	
	Moving Parts	FIXED	
Δ	Magnetization Fields		
	Magnet Plane	XY_Plane_Z	
	Magnet Angle	90	
_			

[Ref.] Magnetization Setting of Magnet

✓ Magnet Plane : XY_Plane_Z

✓ Magnet Angle: 90

✓ Magnet Plane : ZX_Plane_Y

✓ Magnet Angle : 45° (135°, -45°, -135°)

Add a plate

- 1. Toolbar > Click Steel button
- 2. Select "Plate" in the list box.
- 3. Click the OK button.

Plate setting

1. Plate settings

✓ Part Material : SUS_430

[BH Curve]

1

Add a case

- 1. Toolbar > Click Steel button
- 2. Select "Case" in the list box.
- 3. Click the OK button.

Case setting

1. Case Setting

✓ Part Material : SUS_430

[BH Curve]

1

Virtual Test

Test of the magnetic force

1. Toolbar > Click Force Button

2. Force Test Name: "Force"

3. Click OK button

4. Setting of magnetic force test

✓ Voltage : 2.5

5. Setting of analysis condition

✓ Mesh Size Percent : 5

✓ Actuator Type : VCM

6. Click "Force Test" Button

Run the virtual Test

- 7. Click the Run button after checking the shape.
- 8. If you want to see the analysis progress, click the status bar of the Gmsh.

Run the virtual Test

- 9. Check the analysis results after solving. (The solving time is depend on you system specification)
- 10. Quit the Gmsh. (When finished, Gmsh is automatically restarted)
- 11. Click the run button again. (VCM type actuators require twice analysis for accuracy)

Results of the virtual Test

- 12. Quit the Gmsh after checking the analysis results.
- 13. Check the magnetic force of the VCM.

Tips

Open Design

- 1. Toolbar > Click Open Button
- 2. Double click the design directory.
- 3. Double click the design file.

Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org