Esercizi TDI - Foglio 2

Davide Peccioli

24 aprile 2025

1 Esercizio 1

Prove that for every topological space X and every $A \subseteq X$, the following are equivalent:

- a. The set A is nowhere dense, i.e. there is no open set $U \subseteq X$ such that $A \cap U$ is dense in U.
- b. The closure of A has empty interior.
- c. There is an open dense set $V \subseteq X$ such that $A \cap V = \emptyset$.

Conclude that $B \subseteq X$ is comeager if and only if it contains a countable intersection of dense open sets.

1.1 Soluzione

1.1.1 a implica b

Sia $B := \operatorname{Cl}_X(A)$, e sia per assurdo $b \in \mathring{B}$. Allora esiste $U \subseteq B$ aperto di X tale che $b \in U$.

Claim: $A \cap U$ è denso in U, ovvero $U \subseteq \operatorname{Cl}_X(A \cap U)$.

Sia $x \in U$ e sia V un intorno aperto di x in X. Si vuole dimostrare che $V \cap (A \cap U) \neq \emptyset$.

- L'insieme $W \coloneqq U \cap V$ è un intorno aperto di x.
- Siccome $x \in U \subseteq \operatorname{Cl}_X(A)$, allora $A \cap W \neq \emptyset$.
- Allora

$$\emptyset \neq W \cap A = (V \cap U) \cap A = V \cap (A \cap U)$$

Per l'arbitrarietà di V, si è dimostrato che $x \in \operatorname{Cl}_X(A \cap U)$, ovvero che $A \cap U$ è denso in U. Questo contraddice l'ipotesi.

1.1.2 b implica c

Sia $V := X \setminus \operatorname{Cl}_X(A)$. Allora V è <u>denso</u>, in quanto il suo complementare $\operatorname{Cl}_X(A)$ ha parte interna vuota (per ipotesi).

L'insieme V è aperto poiché complementare di un chiuso, e inoltre $A \cap V = \emptyset$.

1.1.3 c implica a

Sia per assurdo $U \subseteq X$ un aperto non vuoto tale che $Cl_U(A \cap U) = U$.

Poiché V è denso in $X, U \cap V \neq \emptyset$ aperto di X e quindi aperto di U. Ma

$$(U \cap V) \cap (A \cap U) = U \cap (V \cap A) = \emptyset$$

poiché $V \cap A = \emptyset$.

Assurdo, poiché se $A \cap U$ è denso in U, allora $A \cap U$ incontra ogni aperto di U.

1.1.4 Caratterizzazione degli insiemi comagri

ullet Se B è comagro, allora si può scrivere:

$$B \coloneqq X \setminus \left(\bigcup_{n \in \omega} A_n\right)$$

dove A_n è un insieme mai denso:

$$B = \bigcap_{n \in \omega} (X \setminus A_n).$$

Per ogni $n \in \omega$ esiste V_n aperto denso di X tale che $A_n \cap V_n = \emptyset$, ovvero $V_n \subseteq X \setminus A_n$:

$$B = \bigcap_{n \in \omega} (X \setminus A_n) \supseteq \bigcap_{n \in \omega} V_n$$

• Viceversa, siano $V_n \subseteq X$ insiemi aperti e densi tali che

$$B \supseteq \bigcap_{n \in \omega} V_n$$

Si ha quindi $X \setminus B \subseteq X \setminus \left(\bigcap_{n \in \omega} V_n \right) = \bigcup_{n \in \omega} (X \setminus V_n).$

Allora $A_n \coloneqq X \setminus V_n$ è mai denso per la caratterizzazione di cui sopra, e pertanto

$$C \coloneqq \bigcup_{n \in \omega} A_n$$

è un insieme magro. Pertanto $X \setminus B \subseteq C$ è un insieme magro, e quindi B è un insieme comagro. \blacksquare

2 Esercizio 2

Prove that for every topological space X, the following are equivalent:

- a. Every nonempty open subset of X is non-meager.
- b. Every comeager set in X is dense.
- c. The intersection of countably many dense open subsets of X is dense.

2.1 Soluzione

2.1.1 a. implica b.

Sia $A \subseteq X$ un insieme comagro: pertanto $X \setminus A$ è magro. Se per assurdo A non è denso, allora esiste $U \subseteq X$ aperto tale che $A \cap U = \emptyset$, ovvero $U \subseteq X \setminus A$.

Dunque U è sottoinsieme di un magro, e pertanto è magro. Assurdo.

2.1.2 b. implica c.

Sia $\{U_n \mid n \in \omega\}$ una collezione di aperti densi di X, e sia, per ogni $n \in \omega$, $F_n := X \setminus U_n$.

Per la caratterizzazione di cui sopra, gli F_n sono mai densi, e pertanto $\bigcup_{n\in\omega}F_n$ è magro per definizione

Siccome

$$X \setminus \bigcap_{n \in \omega} U_n = \bigcup_{n \in \omega} F_n$$

allora $\bigcap_{n \in \omega} U_n$ è comagro, e quindi è denso.

2.1.3 c. implica a.

Sia $U\subseteq X$ aperto, magro. Per definizione, allora, esistono, per ogni $n\in\omega,\,A_n\subseteq X$ mai densi tali che

$$U = \bigcup_{n \in \omega} A_n.$$

Sia quindi $B_n := X \setminus \operatorname{Cl}_X(A_n)$: questo è aperto poiché complementare di un chiuso, ed è denso, in quanto il suo complementare ha interno vuoto (per la caratterizzazione dell'esercizio precedente).

Pertanto $\bigcap_{n \in \omega} B_n$ è denso. Inoltre

$$\bigcap_{n \in \omega} B_n = X \setminus \bigcup_{n \in \omega} \operatorname{Cl}_X(A_n) \subseteq X \setminus A_n = X \setminus U$$

Pertanto $U \cap \left(\bigcap_{n \in \omega} B_n\right) = \emptyset$. Siccome $\bigcap_{n \in \omega} B_n$ è denso, allora $U = \emptyset$.

Segue che ogni aperto non vuoto di X è non magro.

3 Esercizio 3

Let X be a metrizable topological space. Prove by induction on $1 \le \alpha < \omega_1$ that:

- a. $\Sigma_{\alpha}^{0}(X)$ is closed under countable unions and finite intersections;
- b. $\Pi^0_{\alpha}(X)$ is closed under countable intersections and finite unions;
- c. $\Delta_{\alpha}^{0}(X)$ is a Boolean algebra, i.e., it is closed under complements, finite unions, and finite intersections.

3.1 Soluzione

3.1.1 Caso base: $\alpha = 1$

- a. Unione di aperti è aperta e intersezione finita di aperti è aperta.
- b. Intersezione di chiusi è chiusa e unione finita di chiusi è chiusa.
- c. Il complementare di un clopen è ancora un clopen, così come unioni e intersezioni finite.

3.1.2 Passo induttivo

Sia l'enunciato vero per ogni $\beta < \alpha$.

- a. Classi additive
 - Siano, per ogni $n \in \omega$, $A_n \in \Sigma^0_{\alpha}(X)$. Per definizione, per ogni $n \in \omega$, esistono degli $A_n^m \in \Pi^0_{\beta_n^m}(X)$, con $\beta_n^m < \alpha$, tali che

$$A_n = \bigcup_{m \in \omega} A_n^m$$

Allora si ha che

$$\bigcup_{n\in\omega} A_n = \bigcup_{n,m\in\omega} A_n^m$$

che è ancora una unione numerabile, ed è quindi un elemento di $\Sigma^0_{\alpha}(X)$.

• Siano $U, V \in \Sigma_{\alpha}^{0}(X)$. Per definizione esistono degli $U_{n} \in \Pi_{\beta_{m}^{U}}^{0}(X)$ e degli $V_{m} \in \Pi_{\beta_{m}^{V}}^{0}(X)$, con $\beta_{n}^{U}, \beta_{m}^{V} < \alpha$ tali che

$$U = \bigcup_{n \in \omega} U_n, \quad V = \bigcup_{m \in \omega} V_m$$

Detto $\beta_{n,m} := \max \left\{ \beta_n^V, \beta_m^U \right\} < \alpha$, si ha che

$$U \cap V = \left(\bigcup_{n \in \omega} U_n\right) \cap \left(\bigcup_{m \in \omega} V_m\right) = \bigcup_{n, m \in \omega} (U_n \cap V_m)$$

Per ipotesi induttiva, per ogni n,m si ha $U_n\cap V_m\in \Pi^0_{\beta_{n,m}}(X)$ e pertanto $U\cap V\in \Sigma^0_\alpha(X)$

- b. Classi moltiplicative
 - Siano, per ogni $n \in \omega$, $A_n \in \mathbf{\Pi}^0_{\alpha}(X)$. Per definizione, per ogni $n \in \omega$, esistono degli $A_n^m \in \mathbf{\Sigma}^0_{\beta_n^m}(X)$, con $\beta_n^m < \alpha$, tali che

$$A_n = \bigcap_{m \in \omega} A_n^m$$

Allora si ha che

$$\bigcap_{n \in \omega} A_n = \bigcap_{n, m \in \omega} A_n^m$$

che è ancora una intersezione numerabile, ed è quindi un elemento di $\Pi^0_{\alpha}(X)$.

• Siano $U, V \in \Pi^0_{\alpha}(X)$. Allora $(X \setminus U), (X \setminus V) \in \Sigma^0_{\alpha}(X)$

$$X \setminus (U \cup V) = (X \setminus U) \cap (X \setminus V)$$

e siccome $\Sigma^0_{\alpha}(X)$ è chiuso per intersezioni finite, allora $X \setminus (U \cup V)$ è un elemento di $\Sigma^0_{\alpha}(X)$, ovvero

$$U \cup V \in \mathbf{\Pi}^0_{\alpha}(X)$$
.

- c. Classi ambigue
 - Sia $U \in \Delta^0_{\alpha}(X)$. Allora $U \in \Sigma^0_{\alpha}(X) \cap \Pi^0_{\alpha}(X)$, ovvero esistono

$$A_n \in \mathbf{\Pi}^0_{\beta_n}(X), \qquad B_m \in \mathbf{\Sigma}^0_{\beta^m}(X)$$

con $\beta_n, \beta^m < \alpha$ tali che

$$U = \bigcup_{n \in \omega} A_n, \qquad U = \bigcap_{m \in \omega} B_m.$$

Pertanto si ha che

$$X \setminus U = X \setminus \left(\bigcup_{n \in \omega} A_n\right) = \bigcap_{n \in \omega} (X \setminus A_n)$$
$$X \setminus U = X \setminus \left(\bigcap_{m \in \omega} B_m\right) = \bigcup_{m \in \omega} (X \setminus B_m)$$

Se $A_n \in \mathbf{\Pi}^0_{\beta_n}(X)$ allora $X \setminus A_n \in \mathbf{\Sigma}^0_{\beta_n}(X)$, e pertanto $X \setminus U \in \mathbf{\Pi}^0_{\alpha}(X)$. Se $B_m \in \mathbf{\Sigma}^0_{\beta^m}(X)$ allora $X \setminus B_m \in \mathbf{\Pi}^0_{\beta^m}(X)$, e pertanto $X \setminus U \in \mathbf{\Sigma}^0_{\alpha}(X)$.

Dunque $X \setminus U \in \Sigma^0_{\alpha}(X) \cap \Pi^0_{\alpha}(X) = \Delta^0_{\alpha}(X)$.

- Siccome sia $\Pi^0_{\alpha}(X)$ che $\Sigma^0_{\alpha}(X)$ sono chiusi per unioni e intersezioni finite, allora

$$\Pi^0_{\alpha}(X) \cap \Sigma^0_{\alpha}(X) = \Delta^0_{\alpha}(X)$$

è chiuso per unioni e intersezioni finite.

4 Esercizio 4

Let $Y \subseteq X$ be Polish spaces. Show that for every $\alpha \geq 3$,

$${\bf \Delta}_{\alpha}^0(Y)={\bf \Delta}_{\alpha}^0(X)\restriction Y,$$

where as usual $\Delta_{\alpha}^{0}(X) \upharpoonright Y = \{A \cap Y \mid A \in \Delta_{\alpha}^{0}(X)\}.$

4.1 Soluzione

Si richiama il Lemma 2.1.5(vi):

$$\Sigma^{0}_{\alpha}(Y) = \Sigma^{0}_{\alpha}(X) \upharpoonright Y;$$
$$\Pi^{0}_{\alpha}(Y) = \Pi^{0}_{\alpha}(X) \upharpoonright Y.$$

4.1.1 Inclusione "⊆"

Sia $A \in \Delta^0_{\alpha}(Y) = \Sigma^0_{\alpha}(Y) \cap \Pi^0_{\alpha}(Y)$. Allora esistono $B \in \Sigma^0_{\alpha}(X)$ e $C \in \Pi^0_{\alpha}(X)$ tali che

$$A = B \cap Y$$
, $A = C \cap Y$

Siccome $Y \subseteq X$ è polacco, allora Y è un sottoinsieme G_{δ} di X, ovvero $Y \in \Pi_2^0(X)$. Poiché $\alpha \geq 3$, $\Pi_2^0(X) \subseteq \Pi_{\alpha}^0(X)$, $\Sigma_{\alpha}^0(X)$: $Y \in \Sigma_{\alpha}^0(X)$ e $Y \in \Pi_{\alpha}^0(X)$, e quindi, poiché entrambe le classi $\Sigma_{\alpha}^0(X)$, $\Pi_{\alpha}^0(X)$ sono chiuse per intersezioni finite:

$$A = B \cap Y \in \Sigma^0_{\alpha}(X), \qquad A = C \cap Y \in \Pi^0_{\alpha}(X)$$

ovvero $A \in \Delta^0_{\alpha}(X)$. Inoltre $A \subseteq Y$, e pertanto

$$A = A \cap Y \in \boldsymbol{\Delta}_{\alpha}^{0}(X) \upharpoonright Y = \left\{ V \cap Y \mid V \in \boldsymbol{\Delta}_{\alpha}^{0}(X) \right\}.$$

4.1.2 Inclusione " \supseteq "

Sia $A \in \Delta^0_{\alpha}(X)$, ovvero $A \cap Y \in \Delta^0_{\alpha}(X) \upharpoonright Y$.

Allora

- $A \in \Sigma_{\alpha}^{0}(X)$, e quindi $A \cap Y \in \Sigma_{\alpha}^{0}(Y)$;
- $A \in \mathbf{\Pi}_{\alpha}^{0}(X)$, e quindi $A \cap Y \in \mathbf{\Pi}_{\alpha}^{0}(Y)$.

Pertanto

$$(A \cap Y) \in \Sigma^0_{\alpha}(Y) \cap \Pi^0_{\alpha}(Y) = \Delta^0_{\alpha}(Y).$$

5 Esercizio 5

Given a continuous function $f:[0,1]\to\mathbb{R}$, let

$$D_f = \left\{ x \in [0, 1] \mid f' \text{ exists} \right\}.$$

(At endpoints we take one-sided derivatives.) Prove that $D_f \in \Pi_3^0([0,1])$.

5.1 Dimostrazione

Si osserva che $x \in D_f$ se e solo se $x \in [0,1]$ e per ogni $\varepsilon \in \mathbb{R}^+$ esiste $\delta \in \mathbb{R}^+$ tale che per ogni $p,q \in [0,1]$:

$$0 < |p - x|, |q - x| < \delta \implies \left| \frac{f(p) - f(x)}{p - x} - \frac{f(q) - f(x)}{q - x} \right| \le \varepsilon$$

se e solo se $x \in [0,1]$ e per ogni $\varepsilon \in \mathbb{Q}^+$ esiste $\delta \in \mathbb{Q}^+$ tale che per ogni $p,q \in [0,1] \cap \mathbb{Q}$:

$$0 < |p-x|, |q-x| < \delta \implies \left| \frac{f(p) - f(x)}{p-x} - \frac{f(q) - f(x)}{q-x} \right| \le \varepsilon$$

ovvero

$$\begin{pmatrix} 0 < |p-x| \land |p-x| < \delta \\ \land \\ 0 < |q-x| \land |q-x| < \delta \end{pmatrix} \implies \left| \frac{f(p) - f(x)}{p-x} - \frac{f(q) - f(x)}{q-x} \right| \le \varepsilon$$

ovvero

$$\neg \begin{pmatrix} 0 < |p-x| \land |p-x| < \delta \\ \land \\ 0 < |q-x| \land |q-x| < \delta \end{pmatrix} \lor \left| \frac{f(p) - f(x)}{p-x} - \frac{f(q) - f(x)}{q-x} \right| \le \varepsilon$$

ovvero

$$0 \geq |p-x| \, \vee \, |p-x| \geq \delta \, \vee \, 0 \geq |q-x| \, \vee \, |q-x| \geq \delta \, \vee \, \left| \frac{f(p)-f(x)}{p-x} - \frac{f(q)-f(x)}{q-x} \right| \leq \varepsilon.$$

Siano quindi

$$\begin{split} A_p &\coloneqq \left\{ x \in [0,1] \text{ t. c. } |p-x| = 0 \right\} = \left\{ p \right\} \\ B_{p,\delta} &\coloneqq \left\{ x \in [0,1] \text{ t. c. } |p-x| \ge \delta \right\} \\ C_q &\coloneqq \left\{ x \in [0,1] \text{ t. c. } |q-x| = 0 \right\} = \left\{ q \right\} \\ D_{q,\delta} &\coloneqq \left\{ x \in [0,1] \text{ t. c. } |q-x| \ge \delta \right\} \\ E_{p,q}^{\varepsilon} &\coloneqq \left\{ x \in [0,1] \text{ t. c. } \left| \frac{f(p) - f(x)}{p - x} - \frac{f(q) - f(x)}{q - x} \right| \le \varepsilon \right\} \end{split}$$

Vale dunque l'uguaglianza

$$D_f = \bigcap_{\varepsilon \in \mathbb{Q}^+} \bigcup_{\delta \in \mathbb{Q}^+} \bigcap_{p,q \in [0,1] \cap \mathbb{Q}} A_p \cup B_{p,\delta} \cup C_q \cup D_{q,\delta} \cup E_{p,q}^{\varepsilon},$$

e pertanto:

- l'insieme $V_{p,q}^{\varepsilon,\delta}\coloneqq A_p\cup B_{p,\delta}\cup C_q\cup D_{q,\delta}\cup E_{p,q}^\varepsilon$ è chiuso, in quanto unione di tre chiusi:
 - $-B_{p,\delta}$ e $D_{q,\delta}$ sono chiusi;
 - si consideri ora la funzione continua:

$$F: [0,1] \setminus \{p,q\} \longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{f(p) - f(x)}{p - x} - \frac{f(q) - f(x)}{q - x}$$

pertanto $E_{p,q}^{\varepsilon}=F^{-1}\left([-\varepsilon,\varepsilon]\right)$ è un chiuso di $[0,1]\setminus\{p,q\}$; esiste quindi un **chiuso** W di [0,1] tale che

$$E_{p,q}^{\varepsilon} = ([0,1] \setminus \{p,q\}) \cap W = W \setminus \{p,q\}$$

per cui vale questa uguaglianza

$$W = E_{p,q}^{\varepsilon} \cup \{p,q\} = E_{p,q}^{\varepsilon} \cup A_p \cup C_q;$$

- l'insieme $\bigcap_{p,q\in[0,1]\cap\mathbb{Q}}V_{p,q}^{\varepsilon,\delta}$ è chiuso, poiché intersezione di chiusi;
- l'insieme $\bigcup_{\delta\in\mathbb{Q}^+}\bigcap_{p,q\in[0,1]\cap\mathbb{Q}}V_{p,q}^{\varepsilon,\delta}$ è un $\Sigma_2^0(X)$, poiché unione numerabile di chiusi;
- \bullet l'insieme D_f è un $\Pi^0_3(X)$ poiché è intersezione numerabile di ${\bf \Sigma}^0_2(X).$