Trabajo práctico N°3 Sistemas controlados por computadora

Saez, Lautaro Andres

Ejercicio 1

Se tiene la siguiente transferencia

$$G(z) = \frac{4}{(z - 1/2)(z - 9/10)} \tag{1}$$

Podemos obtener la ecuación en diferencias de forma sencilla haciendo

$$\mathcal{Z}^{-1}\{D(z)Y(z)\} = \mathcal{Z}^{-1}\{N(z)U(z)\}$$
(2)

Donde D(z) es el denominador de G(z) y N(z) es el numerador de G(z). En este caso se obtiene

$$y[k+2] = \frac{2}{5}y[k+1] + \frac{9}{20}y[k] + 4u[k]$$
(3)

a)

Realizando el siguiente cambio de variables

$$\begin{cases} x_1 = y[k] \\ x_2 = y[k+1] \\ u = u[k] \end{cases} \Leftrightarrow \begin{cases} qx_1 = x_2 \\ qx_2 = \frac{2}{5}x_2 + \frac{9}{20}x_1 + 4u \end{cases}$$
 (4)

El sistema en variables de estado queda determinado por

$$\begin{cases} qX = \begin{bmatrix} 0 & 1\\ 9/20 & 2/5 \end{bmatrix} X + \begin{pmatrix} 0\\ 4 \end{pmatrix} u \\ Y = \begin{pmatrix} 1 & 0 \end{pmatrix} X \end{cases}$$
(5)

b)

La ecuación de diferencias esta dada por

$$y[k+2] = \frac{2}{5}y[k+1] + \frac{9}{20}y[k] + 4u[k]$$
(6)

Aunque falta adicionar como como actuan las condiciones iniciales del sistema, la cuales quedan dadas por

$$y[k] = C\Phi^k X[0] \tag{7}$$

Figura 1: y[k] para los estados inciales X_0 .

Figura 2:

Por lo tanto como el sistema es lineal

$$y[k] = \frac{2}{5}y[k-1] + \frac{9}{20}y[k-2] + 4u[k-2] + C\Phi^k X[0]$$
(8)

c)

Para el estado inicial

$$X_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{9}$$

Y una entrada nula se obtiene el grafico de la Figura 1.

d)

En la Figura 2 se observa la evolución de los estados.

Ejercicio 2

Para este ejercicio se trabajara con

Figura 3: $y[k] \text{ con } X(0) = \vec{0} \text{ y } u[k] = 5\delta[k-2].$

$$H(z) = \frac{1}{z(z - 4/5)} \tag{10}$$

a)

Realizando el mismo procedimiento del ejercicio anterior obtenemos que

$$\begin{cases} qX = \begin{bmatrix} 0 & 1\\ 0 & 4/5 \end{bmatrix} X + \begin{pmatrix} 0\\ 1 \end{pmatrix} u \\ Y = \begin{pmatrix} 1 & 0 \end{pmatrix} X \end{cases}$$
(11)

b)

Partiendo de que

$$X(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{12}$$

Es posible obtener que

$$X(4) = \Phi^{3} \Gamma u[0] + \Phi^{2} \Gamma u[1] + \Phi \Gamma u[2] + \Gamma u[3]$$
(13)

Por lo que la salida en Y[4] esta determinada por

$$Y(4) = x_1[4] = u[2] + \frac{8}{10}u[1] + \frac{16}{25}u[0]$$
(14)

Por lo que una posible secuencia para obtener Y(4) = 5 es

$$u[k] = 5\delta[k-2] \vee u[k] = \frac{125}{16}\delta[k]$$
 (15)

En la Figura 3 puede observarse la salida del sistema partiendo de los estados iniciales nulos.

c)

En la Figura 4 se puede observar la evolución de los estados en el plano $(x_1; x_2)$.

Figura 4: Evolución de los estados de H(z).

d)

Para obtener el siguiente vector de estados

$$X[3] = \begin{bmatrix} 3\\10 \end{bmatrix} \tag{16}$$

Partiendo del reposo se obtiene el siguiente sistema

$$X[3] = \Phi^2 \Gamma u[0] + \Phi \Gamma u[1] + \Gamma u[2] \tag{17}$$

Por lo cual podemos obtener el siguiente sistema de ecuaciones

$$\begin{cases} x_1[3] = 0.8u_0 + u_1 \\ x_2[3] = 0.64u_0 + 0.8u_1 + u_2 \end{cases} \Leftrightarrow \begin{cases} u_1 = -\frac{4}{5}u_0 + 3 \\ u_2 = -\frac{16}{25}u_0 + \frac{16}{25}u_0 - \frac{12}{5} + 10 \end{cases}$$
 (18)

Por lo tanto una posible solución es

$$u[k] = 3\delta[k-1] + \frac{38}{5}\delta[k-2]$$
 (19)

e)

La matriz de controlabilidad W_c esta descripta por

$$W_c = \begin{bmatrix} 0 & 1\\ 1 & 4/5 \end{bmatrix} \tag{20}$$

En este caso se observa a simple vista que los vectores columna no son colineales.

Como los vectores no son colineales entonces en rango de W_c es 2, por lo tanto el sistema H(z) es controlable.

f)

Ejercicio 3

Para este ejercicio se tiene el siguiente sistema

Figura 5: Representación de $(x_1; x_2)$.

$$\begin{cases}
qX = \begin{bmatrix} 1/2 & 0 \\ 1 & 0 \end{bmatrix} X + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \\
Y = \begin{pmatrix} 0 & 1 \end{pmatrix} X
\end{cases} (21)$$

a)

Antes de realizar el analisis de los vectores de W_c analizaremos el caso de $\Phi\Gamma$.

$$\Phi\Gamma = \begin{bmatrix} 1/2 & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Leftrightarrow \Phi\Gamma = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
(22)

Luego como el producto $\Phi^m\Gamma$ puede ser expresado como $\Phi^{m-1}\Phi\Gamma$ entonces

$$\Phi^m \Gamma = \Phi^{m-1} \underbrace{\Phi \Gamma}_{\vec{0}} = \vec{0} \tag{23}$$

Por lo tanto todos los vectores columnas de W_c son nulos salvo el primero, por lo tanto son colineares y el rango de W_c es 1 sin importar el valor de n que se tome.

Para n=2 tenemos que

$$W_c = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \tag{24}$$

b)

Sabemos que los estados finales quedan determinados por

$$X(2) - \Phi^2 X(0) = W_c U \Leftrightarrow X(2) = \begin{pmatrix} x_1[0]/4 \\ u[0] + x_2[0]/2 \end{pmatrix}$$
 (25)

En la Figura 5 se observa los posible estados finales del sistema.

c)

No es posible ya que por las ecuciones presentadas en el inciso anterior podemos concluir que el sistema no es controlable al origen debido a que el estado x_1 tiene siempre el mismo valor, el cual es definido por el estado inicial del sistema.

d)

No, como existe una variación de signo en x_1 y por lo explicado en el inciso anterior no es posible llegar de un estado X(0) a un X(M) si existe una variación del estado x_1 .

Ejercicio 4

Para este ejercicio se cuenta con

$$qX = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} X + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} u \tag{26}$$

a)

Como primer paso calcularemos Φ^n entonces

$$\Phi^2 = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \tag{27}$$

$$\Phi^n = 0_{3x3}, n \ge 3 \tag{28}$$

Por lo tanto

$$W_c = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$
 (29)

Luego podemos calculal el valor de la secuencia U que consigue los estados finales a partir de un estado inicial dado como

$$X(n) - \underbrace{\Phi^n}_{0_{3x3}} X(0) = W_c U \tag{30}$$

Con lo que obtenemos

$$X(n) = \begin{pmatrix} u_1 \\ u_0 \\ 0 \end{pmatrix} \tag{31}$$

De la ecuación anterior podemos observar que el sisitema es controlable al origen. Pero no es controlable de forma completa ya que un estado es siempre nulo.

b)

El n minimo con el que logramos llevar al origen al es 2 ya que un estado es siempre nulo.

c)

De la ecuación 31 se puede observar que un estado final siempre debe ser nulo. Por lo tanto si partimos de cualquier estado no es posible llegar a

$$X(M) = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{32}$$

Ejercicio 5

El sistema esta descripto por

$$\begin{cases} qX = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 5/4 \end{bmatrix} X + \begin{pmatrix} 6 \\ 4 \end{pmatrix} u \\ Y = \begin{pmatrix} 2 & -4 \end{pmatrix} X \end{cases}$$
(33)

a)

Como el sistema es de orden 2 entonces

$$W_c = \begin{bmatrix} \Gamma & \Phi \Gamma \end{bmatrix} \tag{34}$$

Entonces

$$\Phi\Gamma = \begin{pmatrix} 1\\5 \end{pmatrix} \tag{35}$$

Por lo tanto

$$W_c = \begin{bmatrix} 6 & 1 \\ 4 & 5 \end{bmatrix} \tag{36}$$

Como $|W_c| = 26 \neq 0$ entonces existe W_c^{-1} , por lo tanto el sistema es controlable.

b)

La matriz de observabilidad esta determinada por

$$W_o = \begin{bmatrix} C \\ C\Phi \end{bmatrix} \tag{37}$$

En este caso

$$C\Phi = \begin{pmatrix} 1 & -6 \end{pmatrix} \tag{38}$$

Finalmente se tiene que

$$W_o = \begin{bmatrix} 2 & -4 \\ 1 & -6 \end{bmatrix} \tag{39}$$

Cuyo determinante es $|W_o| = -8$ por lo tanto el sistema es observable.

c)

Para determinar los polos del sistema primero calcularemos el polinomio caracteristo de Φ

$$P(\lambda) = |\lambda I - \Phi| = \begin{vmatrix} \lambda - 1/2 & 1/2 \\ 0 & \lambda - 5/2 \end{vmatrix} = (\lambda - 1/2)(\lambda - 5/2) \tag{40}$$

Podemos observar que sus polos se encuentras en $\{1/2; 5/2\}$ como 1 de ellos se encuentra fuera del circulo unitario entonces el sistema es inestable.

Ejercicio 6

En este ejercicio se tiene el siguiente sistema

$$\begin{cases} qX = \begin{bmatrix} 1 & 0 \\ 0 & 1/2 \end{bmatrix} X + \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} u \\ Y = \begin{pmatrix} 1 & 0 \end{pmatrix} X \end{cases}$$

$$(41)$$

Para saber si el sistema es controlable debemos analizar el rango de W_o . Luego como primer paso calcularemos W_o

$$W_o = \begin{bmatrix} \Gamma & \Phi \Gamma \end{bmatrix} \tag{42}$$

Entonces

$$\Phi\Gamma = \begin{bmatrix} 1 & 1\\ 1/2 & 0 \end{bmatrix} \tag{43}$$

Por lo tanto

$$W_o = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1/2 & 0 \end{bmatrix} \tag{44}$$

Como las filas de W_o no son colineales entonces el rango de W_o es 2 entonces el sistema es controlable.

Al realizar el cambio de variable $u = \begin{pmatrix} 1 & 1 \end{pmatrix}^T u_1$ entonces se obtiene el sistema

$$\begin{cases}
qX = \begin{bmatrix} 1 & 0 \\ 0 & 1/2 \end{bmatrix} X + \begin{pmatrix} 2 \\ 1 \end{pmatrix} u_1 \\
Y = \begin{pmatrix} 1 & 0 \end{pmatrix} X
\end{cases} (45)$$

PREGUNTAR!!!

Ejercicio 7

Del sistema generico de orden 2

$$\begin{cases}
qX = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} X + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} u \\
Y = \begin{pmatrix} c_1 & c_2 \end{pmatrix} X
\end{cases} \tag{46}$$

a)

Si utilizamos un controlador del tipo u = -LX entonces

$$\begin{cases} qX = \begin{bmatrix} a_{11} - b_1l_1 & a_{12} - b_1l_2 \\ a_{21} - b_2l_1 & a_{22} - b_2l_2 \end{bmatrix} X \\ Y = \begin{bmatrix} c_1 & c_2 \end{bmatrix} X \end{cases}$$
(47)

Sabemos que los polos del sistema estas definidos por los autovalores de la matriz $\Phi.$ entonces plantearemos dicho polinomio

$$P(\lambda) = |\lambda I - \Phi_{LC}| = \lambda^2 + [b_1 l_1 - (a_{11} + a_{22})]\lambda + (b_2 l_2 - a_{22})(b_1 l_1 - a_{11}) - (b_2 l_1 - a_{21})(b_1 l_2 - a_{12})$$
(48)

Como el polinomio que queremos es

$$P(\lambda) = \lambda^2 \tag{49}$$

Entonces es posible obtener el siguiente sistemas de ecuaciones

$$\begin{cases}
b_1 l_1 + b_2 l_2 = a_{11} + a_{22} \\
(b_2 a_{12} - a_{22} b_1) l_1 + (b_1 a_{21} - a_{11} b_2) l_2 = -|\Phi|
\end{cases}$$
(50)

b)

Sabemos que el sistema del ejercicio 1 esta descripto por la ecuación 4. Remplazando en el la ecuación 50 los valores de a_{ij} y b_i obtenemos que

$$\begin{cases}
4l_2 = \frac{2}{5} \\
4l_1 = \frac{9}{20}
\end{cases} \Leftrightarrow \begin{cases}
l_1 = \frac{9}{80} \\
l_2 = \frac{1}{10}
\end{cases}$$
(51)

c)

En la Figura 6 puede observarse la evolución de y[k] para una entrada escalon unitario. Donde se observa que se alcanza el estado estacionario en 2 pasos.

Ejercicio 8

Para este ejercicio se tiene el sistema

$$\begin{cases} qX = \frac{1}{10} \begin{bmatrix} 5 & 6 \\ 3 & 10 \end{bmatrix} X + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u \\ Y = \begin{pmatrix} 1 & 0 \end{pmatrix} X \end{cases}$$
(52)

a)

El polinomio caracteristico a lazo cerrado deseado es

$$P_{LC}(\lambda) = \lambda^2 - \frac{7}{20}\lambda + \frac{1}{40} \tag{53}$$

Sabemos que para una retroalimentación de estados de la forma u = -LX obtenemos que

Figura 6: Salida del sistema del ejercicio 1 con estados iniciales $X(0) = [1/22]^T$ con una entrada escalon unitario.

$$\Phi_{LC} = \frac{1}{10}\Phi - BL \Leftrightarrow \Phi_{LC} = \begin{bmatrix} 1/2 - l_1 & 3/5 - l_2 \\ 0.3 & 1 \end{bmatrix}$$
 (54)

El polinomio caracterisco esta dado por

$$P(\lambda) = \lambda^2 + \left(l_1 - \frac{3}{2}\right) \lambda \left(\frac{8}{25} - l_1 + \frac{3}{10}l_2\right)$$
 (55)

Por lo tanto obtenemos el siguiente sistema de ecuaciones

$$\begin{cases}
l_1 - \frac{3}{2} = -\frac{7}{20} \\
\frac{3}{10}l_2 - l_1 + \frac{8}{25} = \frac{1}{40}
\end{cases} \Leftrightarrow \begin{cases}
l_1 = \frac{23}{20} \\
l_2 = \frac{57}{20}
\end{cases}$$
(56)

b)

Para ubicar ambos polos en el origen, es posible utilizar la ecuación 50. Para este caso particular obtenemos

$$\begin{cases} l_1 = \frac{3}{5} \\ -\frac{1}{10}l_1 + \frac{3}{10}l_2 = \frac{13}{100} \end{cases} \Leftrightarrow \begin{cases} l_1 = \frac{3}{5} \\ l_2 = \frac{19}{30} \end{cases}$$
 (57)

 $\mathbf{c})$

En la Figura 7 se observan los graficos para los 2 controladores. En la salida del controlador de a) se observa una oscilación debida al valor de los polos. Por otro lado el estado transitorio es mucho mas largo en el caso del controlador a esto se debe a que los polos del b estan en 0 lo que produce la mayor velocidad posible. En ambas señales se observa que los valores para k=0 y k=1 son los mismos y varían segun los estados iniciales del sistema.

Figura 7: y[k] para los distintos controladores.

Ejercicio 9

Para este ejercicio se trabajara con

$$\begin{cases} qX = \begin{bmatrix} e^{-h} & 0\\ 1 - e^{-h} & 1 \end{bmatrix} X + \begin{pmatrix} 1 - e^{-h}\\ h - 1 + e^{-h} \end{pmatrix} u \\ Y = \begin{pmatrix} 0 & 1 \end{pmatrix} X \end{cases}$$
 (58)

Con estado inicial

$$X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \tag{59}$$

Cuyo polinomio caracteristico es

$$P(\lambda) = (\lambda - e^{-h})(\lambda - 1) \tag{60}$$

a)

Del polinomio caracteristico podemos observar que para cualqueir valor de h el sistema tiene un polo en 1, lo que conlleva a que el sistema sea inestable.

b)

Sabiendo que la señal de control es u[k] = -Lx[k] y sabiendo que el maximo se da en k = 0, entonces

$$|u[0]| \le 1 \Leftrightarrow |-Lx[0]| \le 1 \Leftrightarrow |l_1 + l_2| \le 1 \tag{61}$$

Si suponemos que $l_i \geq 0, i \in \{1, 2\}$, entonces la condicion a cumplir es

$$l_1 + l_2 \le 1 \tag{62}$$

c)

Ejercicio 10

Para este ejercicio se trabajara con h=0.25 por lo que obtenemos

$$\begin{cases} qX = \begin{bmatrix} e^{-1/4} & 0 \\ a & 1 \end{bmatrix} X + \begin{pmatrix} a \\ h - a \end{pmatrix} u , a = 1 - e^{-1/4} \\ Y = \begin{pmatrix} 0 & 1 \end{pmatrix} X \end{cases}$$
, (63)

a)

En este caso debemos calcular el estimador de la forma

$$\hat{x}[k] = \Phi^{n-1} W_o^{-1} \begin{bmatrix} y[k-n+1] \\ y[k-n+2] \\ \vdots \\ y[k] \end{bmatrix} + \Psi \begin{bmatrix} u[k-n+1] \\ u[k-n+2] \\ \vdots \\ u[k-1] \end{bmatrix}$$
(64)

Donde Ψ se obtiene como

$$\Psi = \left[\Phi^{n-2}\Gamma\Phi^{n-3}\Gamma\cdots\Gamma\right] - \Phi^{n-1}W_o^{-1}\Omega \tag{65}$$

Finalmente llamaremos W_o a la matriz de observabilidad y Ω esta definida por

$$\Omega = \begin{bmatrix}
0 & 0 & \cdots & 0 \\
C\Gamma & 0 & \cdots & 0 \\
\vdots & 0 & \cdots & 0 \\
C\Phi^{n-2}\Gamma & C\Phi^{n-3}\Gamma & \cdots & C\Gamma
\end{bmatrix}$$
(66)

Donde n es el orden del sistema, en este caso n=2, por lo tanto obtenemos

$$W_o = \begin{bmatrix} 0 & 1 \\ a & 1 \end{bmatrix} \Leftrightarrow W_o^{-1} = \begin{bmatrix} 0 & a^{-1} \\ 1 & -a^{-1} \end{bmatrix}$$
 (67)

El calculo de Ω en este caso es sumamente sencillo ya que n=2, por lo tanto

$$\Omega = \begin{pmatrix} 0 \\ C\Gamma \end{pmatrix} = \begin{pmatrix} 0 \\ h - a \end{pmatrix} \tag{68}$$

Por otro lado el calculo de Ψ

$$\Psi = \begin{pmatrix} a \\ h - a \end{pmatrix} - \begin{bmatrix} e^{-1/4} & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 0 & a^{-1} \\ 1 & -a^{-1} \end{bmatrix} \begin{pmatrix} 0 \\ h - a \end{pmatrix} \Leftrightarrow \Psi = \begin{pmatrix} a \\ a^{-1}h - 1 \end{pmatrix}$$
 (69)

Finalmente el observador posee la forma de

$$\hat{x}[k] = \begin{bmatrix} 0 & a^{-1}e^{-1/4} \\ 1 & 1 - a^{-1} \end{bmatrix} \begin{pmatrix} y[k-1] \\ y[k] \end{pmatrix} + \begin{pmatrix} a \\ a^{-1}h - 1 \end{pmatrix} u[k-1]$$
 (70)

b)

Para el observador dinamico se tiene que

$$\Phi_o = \Phi - KC = \begin{bmatrix} e^{-1/4} & -K_1 \\ a & 1 - K_2 \end{bmatrix}$$
 (71)

En este caso se nos pide que el observador tenga los polos en 0, por lo tanto los autovalores de Φ_o deben ser nulos, entonces

$$P(\lambda) = \begin{vmatrix} \lambda - e^{-1/4} & -K_1 \\ a & \lambda - 1 + K_2 \end{vmatrix} = \lambda^2 + (K_2 - 1 - e^{-1/4})\lambda + e^{-1/4} - e^{-1/4}K_2 + K_1a$$
 (72)

Por lo tanto

$$\begin{cases}
K_2 - 1 - e^{-1/4} = 0 \\
e^{-1/4} - e^{-1/4} K_2 + K_1 a = 0
\end{cases}
\Leftrightarrow
\begin{cases}
K_1 = -\frac{e^{-1/2}}{1 - e^{-1/4}} \\
K_2 = 1 + e^{-1/4}
\end{cases}$$
(73)

c)

En este caso la estimación puede obtenerse como

$$\hat{x}[k|k] = [I - KC][\Phi \hat{x}[k-1|k-1] + \Gamma u[k-1]] + Ky[k]$$
(74)

Entonces

$$I - KC = \begin{bmatrix} 1 - K_1 & 0 \\ -K_2 & 1 \end{bmatrix} \tag{75}$$

Ejercicio 11

El sistema del ejercicio 1 es

$$\begin{cases} qX = \begin{bmatrix} 0 & 1\\ 9/20 & 2/5 \end{bmatrix} X + \begin{pmatrix} 0\\ 4 \end{pmatrix} u \\ Y = \begin{pmatrix} 1 & 0 \end{pmatrix} X \end{cases}$$
(76)

a)

La matriz Φ_{LC} esta descripto por

$$\Phi_{LC} = \Phi - \Gamma L = \begin{bmatrix} 0 & 1\\ \frac{9}{20} - 4l_1 & \frac{2}{5} - 4l_2 \end{bmatrix}$$
 (77)

Cuyo polinomio caracteristo es

$$P(\lambda) = \lambda^2 + \left(4l_2 - \frac{2}{5}\right)\lambda + 4l_2 - \frac{9}{20}$$
 (78)

Como los polos deben estar en 0,5 entonces se obtiene el siguiente sistema de ecuaciones

$$\begin{cases}
4l_2 - \frac{2}{5} = 1 \\
4l_1 - \frac{9}{20} = \frac{1}{4}
\end{cases} \Leftrightarrow \begin{cases}
l_1 = \frac{l_2}{2} \\
l_2 = \frac{7}{20}
\end{cases}$$
(79)

b)

En este caso Φ_o esta definida

$$\Phi_o = \begin{bmatrix} 0 & 1 \\ \frac{9}{20} & \frac{2}{5} \end{bmatrix} - \begin{pmatrix} K_1 \\ K_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} = \begin{bmatrix} -K_1 & -1 \\ \frac{9}{20} - K_2 & \frac{2}{5} \end{bmatrix}$$
(80)

Cuyo polinomio caracteristico esta dado por

$$P(\lambda) = \lambda^2 + \left(K_1 - \frac{2}{5}\right)\lambda - \frac{2}{5}K_1 + K_2 - \frac{9}{20}$$
(81)

Si los polos del observador deben estar en el origen entonces

$$\begin{cases}
K_1 = \frac{2}{5} \\
K_2 = 0.61
\end{cases}$$
(82)