## Data-driven Intelligent Systems

# Lecture 8 Decision Trees and Classification



http://www.informatik.uni-hamburg.de/WTM/

## Overview

- Advanced decision trees
  - Continuous attributes
  - Gain ratio
  - Missing values
  - Pruning
  - Rule extraction
- Limitations of decision trees

### **Advanced Decision Trees**

- C4.5 improvements from ID3
  - Handling both continuous and discrete attributes
  - Handling training data with missing attribute values
  - Handling attributes with differing costs
  - Pruning trees after creation
- C5 Quinlan made further improvements (boosting)
  - Many commercial data mining packages use the C5 algorithm
- CART (Classification And Regression Trees, Breiman et al. 1984)
  - Similar to C4.5, boosting & bagging the data
  - Multivariate: tests linear combinations of variables

## Decision Tree Algorithms – C4.5

- Recursive building tree phase:
  - 1. Initialize root node of tree.
  - 2. while a node N that can be split:
  - 3. for each attribute A, evaluate splits on A,
  - 4. use best split to split N.
- Use entropy (information gain) to find best split
- Separate attribute lists maintained in each node of tree

## Overview

- Advanced decision trees
  - Continuous attributes
    - Gain ratio
    - Missing values
    - Pruning
    - Rule extraction
- Limitations of decision trees

### C4.5 – Possible Mechanisms for Tests



a. "standard" test on a *discrete attribute*: one branch for each possible value of that attribute



b. If attribute Y has continuous numeric
 values, binary test with outcomes Y≤Z and
 Y>Z could be defined



possible values are allocated to various numbers of *groups* with one outcome/branch for each group

## Continuous-valued Attributes – No Problem!

- Must determine the best split point for a continuous attribute
- Define *binary test* with outcomes  $X \le Z$  and X > Z, based on comparing the value of attribute against a *threshold value* Z
- Sort the training samples w.r.t. the values of the chosen attribute X
  - Number of these values is finite
  - Notation for sorted order: {v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>m</sub>}
- Examine all m-1 possible splits on X
  - Any threshold value between  $v_i$  and  $v_{i+1}$  has the same effect of dividing the cases into D1=  $\{v_1, v_2, ..., v_i\}$  and D2= $\{v_{i+1}, v_{i+2}, ..., v_m\}$ .
  - Representative threshold: *midpoint* of each interval:  $(v_i + v_{i+1})/2$
  - C4.5 chooses, instead, the *smaller* value  $v_i$  of an interval  $\{v_i, v_{i+1}\}$ 
    - ensures that threshold values exist in the data
- Select optimal split, i.e. with largest gain ratio

## Example (1) Threshold Finding with Gain

#### Sometimes we have to find the threshold and the attribute

## Database D

| Attribute 1 | Attribute 2 | Attribute 3 | Class  |
|-------------|-------------|-------------|--------|
| Α           | 70          | True        | Class1 |
| А           | 90          | True        | Class2 |
| Α           | 85          | False       | Class2 |
| А           | 95          | False       | Class2 |
| Α           | 70          | False       | Class1 |
| В           | 90          | True        | Class1 |
| В           | 78          | False       | Class1 |
| В           | 65          | True        | Class1 |
| В           | 75          | False       | Class1 |
| С           | 80          | True        | Class2 |
| С           | 70          | True        | Class2 |
| С           | 80          | False       | Class1 |
| С           | 80          | False       | Class1 |
| С           | 96          | False       | Class1 |

#### Attribute 2:

- After a sorting process, the set of values is: {65, 70, 75, 78, 80, 85, 90, 95, 96},
- ... the set of potential threshold values *Z* is: {65, 70, 75, 78, 80, 85, 90, 95}.
- The optimal Z value is Z=80 (highest Inf. Gain)

- Info<sub>Z=80</sub>(D)  $\stackrel{>}{=}$  9/14·(-7/9·log<sub>2</sub>(7/9) 2/9·log<sub>2</sub>(2/9)) + 5/14·(-2/5·log<sub>2</sub>(2/5) - 3/5·log<sub>2</sub>(3/5)) = 0.837 bits
- Gain(Z=80) = 0.940 0.837 = 0.103 bits

However, Attribute 1 gives the highest gain of 0.246 bits → this will be selected for first split

(are attributes with many values favored?)

## Example (2) Initial Decision Tree



Initial decision tree and subset cases for a database **D** 

## Example (3) Final Decision Tree



## Final Decision Tree as Pseudo Code

Decision Tree – Pseudo-code Example:

```
If
     Attribute1 = A
      Then
               If
                        Attribute2 <= 70
                         Then
                                  Classification = CLASS1;
                        Else
                                  Classification = CLASS2;
               Attribute1 = B
Elseif
      Then
                                  Classification = CLASS1;
Elseif
               Attribute1 = C
      Then
               If
                        Attribute3 = True
                         Then
                                  Classification = CLASS2;
     Else
                                  Classification = CLASS1.
```

## Overview

- Advanced decision trees
  - Continuous attributes
  - Gain ratio
    - Missing values
    - Pruning
    - Rule extraction
- Limitations of decision trees

## C4.5 Algorithm: Gain Ratio

- Revision: Measures we defined so far:
  - Entropy to classify a tuple in D:
  - Information needed (after using A to split D into k partitions) to classify D:
  - Information gained for attribute A:

- $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$   $Info_A(D) = \sum_{j=1}^{k} \frac{|D_j|}{|D|} \cdot Info(D_j)$ 
  - $Gain(A) = Info(D) Info_A(D)$
- Information gain (also: Gini impurity) is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to normalize the information gain

$$SplitInfo = -\sum_{j=1}^{k} \left( \frac{\left| D_{j} \right|}{\left| D \right|} \cdot \log_{2} \left( \frac{\left| D_{j} \right|}{\left| D \right|} \right) \right)$$

GainRatio(A) = Gain(A) / SplitInfo(A)

(equally sized partitions)

Log<sub>1</sub> Log<sub>2</sub> Ln x

Log<sub>0.5</sub> x

Log<sub>0.5</sub> x

15

## Information Gain $\rightarrow$ Gain Ratio (prev. Example)

Class "buys\_computer =yes"  $Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14})$  (9x) = 0.94

Class "buys\_computer =no" (5x)

| $Info_{age}(D) = \underbrace{\frac{5}{14}I(2,3)}_{0.604} + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2)$ |
|-----------------------------------------------------------------------------------------------------|
| / = 0.694                                                                                           |

| age  | yes <sub>i</sub> | no <sub>i</sub> | I(yes <sub>i</sub> , no <sub>i</sub> ) |
|------|------------------|-----------------|----------------------------------------|
| <=30 | 2                | 3               | 0,971                                  |
| 3140 | 4                | 0               | 0                                      |
| >40  | 3                | 2               | 0,971                                  |

"age <=30" has 5 out of 14 samples, with 2 "yes" and 3 "no"

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

$$SplitInfo(age) = -\sum_{j=1}^{3} \left( \frac{|D_j|}{|D|} \cdot \log_2 \left( \frac{|D_j|}{|D|} \right) \right)$$

$$= -\frac{5}{14} \log_2 \left( \frac{5}{14} \right) - \frac{4}{14} \log_2 \left( \frac{4}{14} \right) - \frac{5}{14} \log_2 \left( \frac{5}{14} \right)$$

$$= 1.577$$

$$GainRatio(age) = 0.246 / 1.557 = 0.156$$

## Overview

- Advanced decision trees
  - Continuous attributes
  - Gain ratio
  - Missing values
    - Pruning
    - Rule extraction
- Limitations of decision trees

## C4.5 Algorithm: Unknown Values

 New information gain criterion for split in attribute X:

$$Gain(X) = \mathbf{F} \cdot (Info(D) - Info_X(D))$$

- Factor F = number of samples in database with known value for a given attribute X / total number of samples in a data set
- *Factor F* here 13/14

| Attribute 1 | Attribute 2 | Attribute 3 | Class  |
|-------------|-------------|-------------|--------|
| Α           | 70          | True        | Class1 |
| А           | 90          | True        | Class2 |
| Α           | 85          | False       | Class2 |
| А           | 95          | False       | Class2 |
| Α           | 70          | False       | Class1 |
| ?           | 90          | True        | Class1 |
| В           | 78          | False       | Class1 |
| В           | 65          | True        | Class1 |
| В           | 75          | False       | Class1 |
| С           | 80          | True        | Class2 |
| С           | 70          | True        | Class2 |
| С           | 80          | False       | Class1 |
| С           | 80          | False       | Class1 |
| С           | 96          | False       | Class1 |

## C4.5 Algorithm: Unknown Values – Example (1)

13 remaining cases with values for Attribute1

Info(D) = 
$$-8/13 \log_2 (8/13) - 5/13 \log_2 (5/13) = 0.961 bits

8 belong to CLASS1 5 belong to CLASS2$$

Test X₁ for the three values A, B, or C:

Info<sub>X1</sub>(D) = 
$$5/13 (-2/5 \log_2 (2/5) - 3/5 \log_2 (3/5))$$
  
+  $3/13 (-3/3 \log_2 (3/3) - 0/3 \log_2 (0/3))$   
+  $5/13 (-3/5 \log_2 (3/5) - 2/5 \log_2 (2/5))$   
= **0.747 bits**

Gain 
$$(X_1) = 13/14 \cdot (0.961 - 0.747) = 0.199$$
 bits

Factor F

| Attribute 1 | Attribute 2 | Attribute 3 | Class   |
|-------------|-------------|-------------|---------|
| А           | 70          | True        | Class1  |
| А           | 90          | True        | Class2  |
| А           | 85          | False       | Class2  |
| А           | 95          | False       | Class2  |
| А           | 70          | False       | Class1  |
|             | 90          | True        | -Class1 |
| В           | 78          | False       | Class1  |
| В           | 65          | True        | Class1  |
| В           | 75          | False       | Class1  |
| С           | 80          | True        | Class2  |
| С           | 70          | True        | Class2  |
| С           | 80          | False       | Class1  |
| С           | 80          | False       | Class1  |
| С           | 96          | False       | Class1  |
| -           |             |             |         |

# C4.5 Algorithm: Unknown Values – Example (2)

Distribution of samples into subsets with corresponding weight factors *w* 

| Attribute 1 | Attribute 2 | Attribute 3 | Class  |
|-------------|-------------|-------------|--------|
| Α           | 70          | True        | Class1 |
| Α           | 90          | True        | Class2 |
| Α           | 85          | False       | Class2 |
| Α           | 95          | False       | Class2 |
| Α           | 70          | False       | Class1 |
| ?           | 90          | True        | Class1 |
| В           | 78          | False       | Class1 |
| В           | 65          | True        | Class1 |
| В           | 75          | False       | Class1 |
| С           | 80          | True        | Class2 |
| С           | 70          | True        | Class2 |
| С           | 80          | False       | Class1 |
| С           | 80          | False       | Class1 |
| С           | 96          | False       | Class1 |

 C4.5 assumes that samples with unknown values are distributed proportionally according to the relative frequency of known values

| $D_1$            | • | Α                     | ttr | ihı | ute1 | = | Δ                          |
|------------------|---|-----------------------|-----|-----|------|---|----------------------------|
| $\boldsymbol{L}$ |   | $\boldsymbol{\Gamma}$ | uu  | IV  | นเธา | _ | $\boldsymbol{\mathcal{T}}$ |

| Att.2 | Att.3 | Class  | W    |
|-------|-------|--------|------|
| 70    | True  | Class1 | 1    |
| 90    | True  | Class2 | 1    |
| 85    | False | Class2 | 1    |
| 95    | False | Class2 | 1    |
| 70    | False | Class1 | 1    |
| 90    | True  | Class1 | 5/13 |

D2: Attribute1 = B

| Att.2 | Att.3 | Class  | W    |
|-------|-------|--------|------|
| 90    | True  | Class1 | 3/13 |
| 78    | False | Class1 | 1    |
| 65    | True  | Class1 | 1    |
| 75    | False | Class1 | 1    |

D3: Attribute1 = C

|       | DOI7 (((i)DOICO) |        |      |  |  |  |
|-------|------------------|--------|------|--|--|--|
| Att.2 | Att.3            | Class  | W    |  |  |  |
| 80    | True             | Class2 | 1    |  |  |  |
| 70    | True             | Class2 | 1    |  |  |  |
| 80    | False            | Class1 | 1    |  |  |  |
| 80    | False            | Class1 | 1    |  |  |  |
| 96    | False            | Class1 | 1    |  |  |  |
| 90    | True             | Class1 | 5/13 |  |  |  |

## C4.5 Algorithm: Generalizing Partitioning

- When a sample from D with known value is assigned to subset D<sub>i</sub>, its probability belonging to D<sub>i</sub> is 1, and in all other subsets is 0
- C4.5 associates with each sample (having missing value) a weight w representing the probability that it belongs to each subset D<sub>i</sub>:

$$W_{\text{new}} = W_{\text{old}} \cdot P(D_i)$$

Splitting set D using test  $X_1$  on Attribute1: New weights  $w_i$  will be probabilities, here: 5/13, 3/13, and 5/13, since initial  $w_{old}$  is 1

$$|D_1| = 5+5/13$$
,  $|D_2| = 3+3/13$ , and  $|D_3| = 5+5/13$ 

- The decision tree **leaves** are defined with two new parameters:  $(|D_i|/E)$
- | D<sub>i</sub> | is the sum of the *fractional samples* that reach the leaf, and
   E is the *number of samples* belonging to classes other than nominated class
- (3.4 / 0.4) means:
  - 3.4 (or 3 + 5/13) fractional training samples reached leaf,
  - 0.4 (or 5/13) of which did not belong to the class of the leaf

## Partitioning – Example

Decision tree for the database D with missing values:

```
Attribute1 == A
If
      Then
               If
                         Attribute2 <= 70
                         Then
                                   Classification = CLASS1
                                                                (2.0 / 0);
               Else
                                   Classification = CLASS2
                                                                (3.4 / 0.4);
Elseif Attribute1 == B
      Then
                                   Classification = CLASS1
                                                                (3.2 / 0);
Elseif Attribute1 == C
      Then
               If
                         Attribute3 = True
                         Then
                                   Classification = CLASS2
                                                                (2.4 / 0.4);
               Else
                                   Classification = CLASS1
                                                                (3.0 / 0).
```

(|Di|/E):

<sup>|</sup>Di| = sum of the fractional samples that reach the leaf,

E = number of samples that belong to classes other than the nominated class.

## Overview

- Advanced decision trees
  - Continuous attributes
  - Gain ratio
  - Missing values
  - Pruning
    - Rule extraction
- Limitations of decision trees

## Decision Tree Algorithms – Building and Pruning

#### Building phase

Recursively split nodes using best splitting attribute for node.

#### Pruning phase

- Smaller imperfect decision tree generally achieves better accuracy on test data.
- Prune leaf nodes recursively to prevent over-fitting.

## Avoid Overfitting in Classification

- The generated tree may overfit the training data:
  - Too many branches, some may reflect anomalies due to noise or outliers
  - Result: poor accuracy for unseen samples
- Two approaches to avoid overfitting:
  - Prepruning: Halt tree construction early—do not split a node if the goodness measure would then fall below a threshold
    - Difficult to choose an appropriate threshold
  - Postpruning: Remove branches from a "fully grown" tree get a sequence of progressively pruned trees
    - Use a set of data different from the training data to decide which is the "best pruned tree"

## Pruning a Decision Tree

- Pruning: Discarding one or more subtrees and replacing them with leaves
  - C4.5 follows a postpruning approach (pessimistic pruning)



Shall we replace this subtree with a single leaf node?

## Pruning Decision Tree: Predicted Error

$$PE = \sum_{i=1}^{nodes} n_i \cdot U_{25\%}$$

# of samples in the node

upper limit on error rate (for the node): from statistical tables for binomial distributions

 Using default confidence of 25%, upper limits on the error rates for all nodes are collected from statistical tables for binomial distributions:

Tree: 
$$U_{25\%}(6,0) = 0.206$$
,  $U_{25\%}(9,0) = 0.143$ ,  $U_{25\%}(1,0) = 0.750$ 

Node: 
$$U_{25\%}$$
 (16,1) = 0.157

Predicted errors for the subtree and the replaced node are:

• 
$$PE_{tree} = 6 \cdot 0.206 + 9 \cdot 0.143 + 1 \cdot 0.750 = 3.257$$

• 
$$PE_{node} = 16 \cdot 0.157 = 2.512$$

 Since PE<sub>tree</sub> > PE<sub>node</sub>, replace the subtree with the new leaf node.

# $U_{CF}(|D_i|,E)$

- Consider classifying E examples incorrectly out of  $|D_i|$  samples (like observing E events in  $|D_i|$  trials in the binomial distribution)
- For a given confidence level CF, the upper limit on the error rate over the whole population is  $U_{CF}(|D_i|,E)$  with CF% confidence.

Possibility(%)

- Example:
  - *U*<sub>25%</sub> (100,*6*)
  - 100 examples in a leaf
  - 6 examples misclassifie
  - How large is the true errassuming a pessimistic estimate with a confidence of 25%?



## Overview

- Advanced decision trees
  - Continuous attributes
  - Gain ratio
  - Missing values
  - Pruning
  - Rule extraction
- Limitations of decision trees

## Extracting Decision Rules from Trees

- Rules are easier for humans to understand
- Represent the knowledge in the form of *IF-THEN* rules
  - One rule is created for each path from the root to a leaf.
  - Each attribute-value pair along a path forms a conjunction.
  - The leaf node holds the class prediction.

### **Examples**:

```
IF age = "<=30" AND student = "no"
   THEN buys_computer = "no"
IF age = "<=30" AND student = "yes"
   THEN buys_computer = "yes"
IF age = "31...40"
   THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "excellent"
   THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "fair"
   THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "fair"
THEN buys computer = "no"
```

## Rule Ordering (I/II)

More than one rule may by triggered:

- Order of presentation to expert to be determined
- Different decision trees may be considered
- Missing attributes allow different paths from the root node to a leaf node

## Rule Ordering (II/II)

Considering more than one rule, we need conflict resolution

- Size ordering
  - assign the highest priority to the triggering rule that has the "toughest" requirement (i.e., with the most attribute tests)
- Class-based ordering
  - Rules for the most frequent class come first, or
  - Sort based on misclassification cost per class
- Rule-based ordering (decision list)
  - rules are organized into one long priority list, according to some measure of rule quality (e.g. accuracy, # attribute tests) or by experts

# C4.5 Algorithm: Generating Decision Rules may not really simplify



# Decision rules for database **D**:

| Λ44π:lb., 44a, 4 | Attribute 2 | A 44 miles 14 a 2 | Class  |
|------------------|-------------|-------------------|--------|
| Allinbule i      | Allribute 2 | Allribule 3       | Class  |
| Α                | 70          | True              | Class1 |
| Α                | 90          | True              | Class2 |
| Α                | 85          | False             | Class2 |
| Α                | 95          | False             | Class2 |
| Α                | 70          | False             | Class1 |
| ?                | 90          | True              | Class1 |
| В                | 78          | False             | Class1 |
| В                | 65          | True              | Class1 |
| В                | 75          | False             | Class1 |
| С                | 80          | True              | Class2 |
| С                | 70          | True              | Class2 |
| С                | 80          | False             | Class1 |
| С                | 80          | False             | Class1 |
| С                | 96          | False             | Class1 |

```
If Attribute1 = A and Attribute2 <= 70
Then Classification = CLASS1 (2.0 / 0);

If Attribute1 = A and Attribute2 > 70
Then Classification = CLASS2 (3.4 / 0.4);

If Attribute1 = B
Then Classification = CLASS1 (3.2 / 0);

If Attribute1 = C and Attribute3 = True
Then Classification = CLASS2 (2.4 / 0.4);

If Attribute1 = C and Attribute3 = False
Then Classification = CLASS1 (3.0 / 0).
```

### Overview

- Advanced decision trees
  - Continuous attributes
  - Gain ratio
  - Missing values
  - Pruning
  - Rule extraction
  - Limitations of decision trees

# Limitations of Decision Trees and Decision Rules (1)



#### **Example:**

- 2D samples are classified using a third dimension for classes
- Problematic: classification function is much more complex with related attributes



# Limitations of Decision Trees and Decision Rules (2)



Class 2

# Limitations of Decision Trees and Decision Rules (3)



# Limitations of Decision Trees and Decision Rules (3)

Greedy: current best split does not consider future splits



- Class 1
- Class 2 "better" first split (global view)not found by information gain

# Limitations of Decision Trees and Decision Rules (4)

- Let a given class be supported, if any k out of n conditions are met.
- To represent this classifier with rules, it would be necessary to define  $\binom{n}{k}$  regions only for one class  $\binom{n}{k} = \frac{n!}{k! (n-k)!}$

Example: Medical diagnostic:

- If 4 out of 11 symptoms support diagnosis of a given disease, then the corresponding classifier will generate 330 regions in 11-dimensional space for positive diagnosis only.
- ⇒ corresponds to 330 decision rules.

# Limitations of Decision Trees and Decision Rules: Further Ideas

• Introducing new attributes, rather than removing old ones, can avoid sometimes-intensive fragmentation of the n-dimensional space:

Model: 
$$(A1 \lor A2 \lor A3) \land (A4 \lor A5 \lor A6) \land (A7 \lor A8 \lor A9) \rightarrow$$
 C1

Solution 1:  $A1 \land A4 \land A7 \rightarrow$  C1
 $A1 \land A5 \land A7 \rightarrow$  C1
 $A1 \land A6 \land A7 \rightarrow$  C1
... 27 combinations

Solution 2: Introduce new derived attributes:

$$B1 = A1 \lor A2 \lor A3$$
  
 $B2 = A4 \lor A5 \lor A6$   
 $B3 = A7 \lor A8 \lor A9$ 

$$\rightarrow$$
 B1  $\wedge$  B2  $\wedge$  B3  $\rightarrow$  C1

# Enhancements to Basic Decision Tree Induction (Summary I/II)

- Allow for continuous-valued attributes
  - Partition a continuous attribute into a discrete set of intervals
- Handle missing attribute values
  - Assign probability to each of the possible values
- Pruning
  - Avoid overfitting using separate pruning data set
- Challenges:
  - Attribute construction of new attributes based on existing ones that are sparsely represented
    - Reduces fragmentation, repetition, replication
  - Incremental learning of decision trees

## Decision Trees (Summary II/II)

- Advantages
  - Automatically create tree representations from data
  - Trees can be converted to rules, can discover "new" rules
  - Identify most discriminating attribute first
    - Using Information Gain (Ratio) or Gini Impurity
  - Tree can handle discrete, continuous, mixed, and missing attributes
- Disadvantages
  - Trees can become large and difficult to understand
  - Can produce counter-intuitive rules
  - Examines attributes individually, but not inter-attribute relationships
  - Future splits not known when splitting
    - → not globally optimal tree
  - Tree induction rules not directly related to training objective, i.e. minimizing classification error