${\bf Vorlesung smitschrift}$

REDUZIERTE BASIS METHODEN

UNIVERSITÄT STUTTGART, SS15 Prof. Dr. Bernard Haasdonk

AUTOREN: STAND: Stefan Simeonov 17. Juli 2015 Frank Schneider

Inhaltsverzeichnis

1	Einleitung	2
	1.1 Modellreduktion	3
2	Grundlagen	8
3	RB-Methoden für lineare koerzive Probleme	16
	3.1 Primales RB-Problem	16
	3.2 Fehleranalyse	19
	3.3 Offline/Online-Zerlegung	
	3.4 Basisgenerierung	
	3.5 Primal-Duale RB-Verfahren	
	3.6 Geometrieparametrisierung	73
4	Allgemeinere Lineare Probleme	79
	4.1 Allgemeine Parameterabhängigkeit	79
	4.2 Inf-sup stabile Probleme	
5	Nichtlineare Probleme	95
6	Zeitabhängige Probleme	99

1 Einleitung

Parameterabhängige Probleme

Beispiel 1.1 (Parameterabhängige PDE)

Sie $\Omega \subseteq \mathbb{R}^d$ polygonales Gebiet. Zu Parametervektor $\mu \in \mathcal{P} \subset \mathbb{R}^p$ aus einer Menge \mathcal{P} von "erlaubten" Parametern ist eine Funktion (z. B. "Temperatur") $u(\mu) : \Omega \to \mathbb{R}$, s. d.:

$$\nabla \cdot (\kappa(\mu)\nabla u) = q(\mu) \qquad \text{in } \Omega$$
$$u(\mu) = 0 \qquad \text{auf } \delta\Omega$$

mit $\kappa(\mu): \Omega \to \mathbb{R}$ (z. B. "Wärmeleitungskoeffizient") und $q(\mu): \Omega \to \mathbb{R}$ (z. B. "Wärmequelle/-senke")

z. B.
$$q(x; \mu) := \begin{cases} 1 & \text{für } x \in \Omega_q \\ 0 & \text{sonst} \end{cases}$$

Weiter kann Ausgabe erwünscht, z.B. mittlere Temperatur

$$s(\mu) = \frac{1}{|\Omega_s|} \int u(x; \mu) \, dx$$

Abbildung 1: Beispiel Wärmeleitung mit Quelle Ω_q und Messbereich Ω_s (aus B. Haasdonk, Reduzierte-Basis-Methoden, Skript zur Vorlesung SS 2011, Universität Stuttgart, IANS-Report 4/11, 2011.)

Beispiel 1.2 (Parametrisches stationäres System)

Zu Parameter $\mu \in \mathcal{P} \subseteq \mathbb{R}^p$ ist Zustandsvektor $u(\mu) \in \mathbb{R}^n$ und Ausgabe $s(\mu) \in \mathbb{R}^k$ gesucht, s. d.:

$$0 = A(\mu) \cdot u(\mu) + B(\mu)w(\mu)$$
$$s(\mu) = l(\mu) \cdot u(\mu)$$

mit parameterabhängigen Matrizen $A(\mu) \in \mathbb{R}^{n \times n}, B(\mu) \in \mathbb{R}^{n \times m}, C(\mu) \in \mathbb{R}^{k \times n}$ mit Eingabevektor $w \in \mathbb{R}^m$.

Schwache Formulierung in Hilberträumen

Sie X reeller Hilbertraum (reel, seperabel). Zu $\mu \in \mathcal{P}$ ist gesucht ein $u(\mu) \in X$ und $s(\mu) \in \mathbb{R}$

$$a(u(\mu), v; \mu) = f(v; \mu)$$

$$s(\mu) = l(u(\mu); \mu) \qquad \forall v \in X$$

Mit Bilinearform $a(\cdot,\cdot;\mu)$ und Linearform $f(\cdot;\mu)$, $l(\cdot;\mu)$. Beide Beispiele lassen sich so formulieren.

z.B. 1.1:

$$X = H_0^1(\Omega) := \{ f \in L^2(\Omega) | \frac{\partial}{\partial x_i} f \in L^2(\Omega), f_{|\delta\Omega} = 0 \}$$

$$\underbrace{\int_{\Omega} \kappa(x; \mu) \nabla u(x; \mu) \cdot \nabla v(x) dx}_{a(u(\mu), v; \mu)} = \underbrace{\int_{\Omega} q(x; \mu) \cdot v(x) dx}_{f(v; \mu)} \qquad \forall v \in X$$

$$s(\mu) = \frac{1}{|\Omega_s|} \int_{\Omega_s} u(x; \mu) =: l(u(\mu); \mu)$$

Zu Bsp. 1.2 (k = 1, "single output") $X = \mathbb{R}^n$

$$\underbrace{v^T A(\mu) u(\mu)}_{a(u(\mu), v; \mu)} = \underbrace{-v^T B w}_{f(v; \mu)}$$
$$s(\mu) := \underbrace{C(\mu) u(\mu)}_{l(u(\mu); \mu)}$$

In der Vorlesung werden weitere Verallgemeinerungen zu $a: X_1 \times X_2 \to \mathbb{R}$ mit $X_1 \neq X_2$, nichtlinear und instationäre Probleme behandelt.

1.1 Modellreduktion

Grundidee/Motivation

- $\mathcal{M} := \{u(\mu) | \mu \in \mathcal{P}\} \subset X$ für $\mathcal{P} \subseteq \mathbb{R}^p$ ist die durch μ parametrisierte Lösungsmannigfaltigkeit.
- X ist im allgemeinen ∞-dimensional Sobolev-Raum) oder endlich- aber sehr hochdimensional (FEM, FV, FD-Raum). M ist aber höchstens p-dimensional.
 ⇒ Motivation für Suche nach einem niedrigdimensionalen Teilraum X_n ⊆ X zur Approximation von M und einer Approximation u_N(μ) ≈ u(μ), u_N(μ) ∈ X_N

• Insbesondere bei Reduzierten-Basis-Methoden (RB-Methoden): X_N durch Beispiellösungen erzeugt, sog. "Snapshots" $X_N \subseteq \operatorname{span}\{u(\mu_1),...,u(\mu_n)\}$ für geeignete Parameterwerte $\mu_i \in \mathcal{P}$. Ziel ist außerdem Fehlerkontrolle durch Schranken $\Delta_N(\mu)$:

$$||u(\mu) - u_N(\mu)|| \le \Delta_N(\mu)$$

Abbildung 2: Parametrisierte niedrigdimensionale Lösungsmenge (aus dem Online-Skript von Prof. Dr. Haasdonk zu Reduzierte Basen 2015)

Illustration

Beispiel 1.3

Gesucht ist $u(\mu) \in C^2([0,1])$ mit

$$(1 + \mu)u'' = 1$$
 auf(0,1)
 $u(0) = u(1) = 1$

Für $\mu \in [0,1] =: \mathcal{P} \subseteq \mathbb{R}$. Spezielle Lösungen ("Snapshots")

$$\mu = 0 \Rightarrow u_0(x) = u(x; \mu = 0) = \frac{1}{2}x - \frac{1}{2}x + 1$$
$$\mu = 1 \Rightarrow u_1(x) = u(x; \mu = 1) = \frac{1}{4}x - \frac{1}{4}x + 1$$

RB-Raum: $X_N := \operatorname{span}(u_0, u_1)$ Reduzierte Lösung gegeben durch

$$u_N(\mu) := \alpha_0(\mu)u_0 + \alpha_1(\mu)u_1$$

 $\alpha_0(\mu) = \frac{2}{\mu+1} - 1; \qquad \alpha_1(\mu) = 2 - \frac{2}{\mu+1}$

Diese erfüllt

$$||u_N(\mu) - u(\mu)||_{\infty} = \sup_{\mu} ||u(\mu) - u_N(\mu)|| = 0$$

ist somit exakt. \mathcal{M} ist enthalten in 2-dimensionalem Unterraum X_N : Genauer $\alpha_0 + \alpha_1 = 1, 0 \leq \alpha_0, \alpha_1 \leq 1$, also ist \mathcal{M} Menge der Konvexkombinationen von u_0, u_1 .

Begriffe

- Eine PDE ist ein *analytisches* Modell, welches die *exakte Lösung* $u(\mu) \in X$ in einem typischerweise ∞ -dimensionalen Funktionenraum X charakterisiert.
- Ein detailliertes Modell (auch hochdimensionales Modell) ist ein Berechnungsverfahren oder charakterisiert eine Approximation $u(\mu) \in X$ in hochdimensionalen Raum mit sehr allgemeinen Approximationseigenschaften. (z. B. FEM/FV/FD, dim $X = 10^3 10^8$). In dieser Vorlesung kann $u(\mu)$ sowohl eine analytische als auch eine detaillierte Lösung darstellen.
- Ein *reduziertes* Modell ist ein Berechnungsverfahren bzw. eine Charakterisierung einer reduzierten Lösung $u_N(u)$ in einem sehr problemangepassten Raum X_N (dim $X_N = 1 10^3$).
- *Modellreduktion* beschäftigt sich mit Methoden der Erzeugung reduzierter Modelle und Untersuchung ihrer Eigenschaften
- Modellreduktion ist ein modernes Gebiet der angewandten Mathematik und Ingenieurwissenschaften (Schwerpunkt in SimTech PN3, MOR-Seminar)

Anwendungen für parametrische reduzierte Modelle

"Kleinere" Modelle stellen geringere Anforderungen an Rechenzeit und Speicher, daher Einsatz in:

- "multi-query"-Kontext, d. h. Vielfachanfragen unter Parametervariation: Parameterstudien, Design, Parameteridentifikation, Inverse Probleme, Optimierung, statistische Analyse
- Multi-skalen-Modelle (reduzierte Mikrolöser)
- "real-time"-Kontext, d. h. Anwendungen mit schneller Simulationsantwort: Interaktive Benutzeroberfläche, Web-Formulare, Echtzeitsteuerung von Prozessen
- "cool-computing"-Kontext, d. h. Simulation auf "einfacher" Hardware: elektronische Regler, Smartphones, Ubiquitious Computing

Demonstration

demo_thermalblock.m aus RBmatlab, Smartphone App JaRMoS

Abbildung 3: Beispiel des Thermischen Blocks aus demo_thermalblock.m (aus B. Haasdonk, Reduzierte-Basis-Methoden, Skript zur Vorlesung SS 2011, Universität Stuttgart, IANS-Report 4/11, 2011.)

Offline/Online Zerlegung

Typischerweise wird eine Verechnungsintensive Generierung des reduzierten Modells akzeptiert, sog. *Offline-Phase*. Dies ermöglicht schnelle Anwendbarkeit des reduzierten Modells in der *Online-Phase*. Offline-Kosten werden gerechtfertigt durch Amortisierung im multi-query-Kontext, d. h. Laufzeitgewinn bei genügend großer Anzahl an Online-Simulationen

multi-query mit detaillievem Modell:

multi-query mit reduziakem Modell:

online Arese

Abbildung 4: Laufzeitvergleich eines detaillierten mit einem reduzierten Modell (aus dem Online-Skript von Prof. Dr. Haasdonk zu Reduzierte Basen 2015)

Zentrale Fragen

- Reduzierte Basis: Wie kann ein möglichst kompakter Teilraum konstruiert werden? Können solche Verfahren *beweisbar* gut sein?
- Reduziertes Modell: Wie kann eine Lösung $u_N(\mu) \in X_N$ bestimmt werden
- Berechnungs-Effizienz: Wie kann $u_N(\mu)$ schnell berechnet wreden?
- Stabilität: Wie kann Stabilität des reduzierten Modells garantiert werden bei wachsendem $N := \dim X_N$?
- Fehlerschätzer: Kann der Fehler des reduzierten zum detaillierten oder analytischen modells beschränkt werden? Sind die Fehlerschätzer schnell berechenbar?
- Effektivität der Fehlerschätzer: Kann garantiert werden, dass der Schätzer den Fehler nicht zu pessimistisch überschätzt?
- Für welche Problemklassen kann ein RB-Ansatz funktionieren, für welche nicht?

Vorläufige Gliederung

- 1 Einleitung
- 2 Grundlagen
- 3 RB Verfahren für lineare koerzive Probleme
- 4 Allgemeinere lineare Probleme
- 5 Nichtlineare Probleme
- 6 Instationäre Probleme
- 7 Weiterführende Aspekte

2 Grundlagen

Im Folgenden sei X (oder X_1, X_2) stets reeller Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle_X$, Norm $\| \cdot \|_X$ und Dualraum X'. Subskript wird weggelassen falls keine Verwechslungsgefahr besteht.

Definition 2.1 (Parametrische Formen)

Sei $\mathcal{P} \subset \mathbb{R}^p$ beschränkte Parametermenge. Dann nennen wir

i) $l: X \times \mathcal{P} \to \mathbb{R}$ parametrische stetige Linearform falls $\forall \mu \in \mathcal{P}$:

$$l(\cdot;\mu) \in X'$$

ii) $a: X_1 \times X_2 \times \mathcal{P} \to \mathbb{R}$ eine **parametrische stetige** (symmetrische) **Bilinearform**, falls für alle $\mu \in \mathcal{P}$

$$a(\,\cdot\,,\cdot\,;\mu):X_1\times X_2\to\mathbb{R}$$
 ist bilinear und stetig (symmetrisch)

Wir bezeichnen die Stetigkeitskonstante mit

$$\gamma(\mu) := \sup_{u \in X_1} \sup_{v \in X_2} \frac{a(u, v; \mu)}{\|u\|_{X_1} \|v\|_{X_2}}$$

Falls $X_1 = X_2 =: X$ und $a(\cdot, \cdot; \mu)$ ist koerziv für alle $\mu \in \mathcal{P}$, so ist $a(\cdot, \cdot; \cdot)$ parametrisch koerziv und wir bezeichnen die Koerzivitätskonstante mit

$$\alpha(\mu) := \inf_{u \in X} \frac{a(u, u; \mu)}{\|u\|^2}$$

Bemerkung. Eine parametrische stetige Bi-/Linearform ist nicht unbedingt stetig bzgl. μ . Beispiel: $X = \mathbb{R}, \mathcal{P} = [0,1], l: X \times \mathcal{P} \to \mathbb{R}$ definiert durch

$$l(x; \mu) := \begin{cases} x & \text{falls } \mu < \frac{1}{2} \\ \frac{1}{2}x & \text{sonst} \end{cases}$$

Definition 2.2 (Parametrische Beschränktheit / Lipschitz-Stetigkeit / Koerzivität) Wir nennen

i) eine parametrische stetige Linearform l bzw. Bilinearform a gleichmäßig beschränkt bzgl. μ falls ex. $\bar{\gamma}_l, \bar{\gamma} < \infty$ mit

$$\sup_{\mu \in \mathcal{P}} \|l(\,\cdot\,;\mu)\|_{X'} \leq \bar{\gamma}_l \quad \text{bzw.} \quad \sup_{\mu \in \mathcal{P}} \gamma(\mu) \leq \bar{\gamma}$$

ii) a gleichmäßig koerziv bzgl. μ falls ex. $\bar{\alpha} > 0$ mit

$$\inf_{\mu \in \mathcal{P}} \alpha(\mu) \ge \bar{\alpha}$$

iii) l bzw. a **Lipschitz-stetig bzgl.** μ falls ex. L_l bzw. $L_a \in \mathbb{R}^+$, sodass $\forall \mu_1, \mu_2 \in \mathcal{P}$ gilt

$$|l(u; \mu_1) - l(u; \mu_2)| \le L_l ||u|| ||\mu_1 - \mu_2|| \quad \forall u \in X$$

bzw.

$$|a(u,v;\mu_1) - a(u,v;\mu_2)| \le L_a ||u|| ||v|| ||\mu_1 - \mu_2|| \quad \forall u \in X_1, v \in X_2$$

Definition 2.3 (Sensitivitätsableitung)

Sei $\mu_0 \in \mathcal{U} \subset \mathcal{P}$ in Umgebung \mathcal{U} von μ_0 . Wir nennen $f : \mathcal{U} \to X$ (Frechet)-differenzierbar in μ_0 , falls ex. ein $\mathrm{D}f(\mu_0) \in L(\mathbb{R}^p, X)$ mit

$$\lim_{h \to 0} \frac{\|f(\mu_0 + h) - f(\mu_0) - Df(\mu_0)h\|}{\|h\|} = 0$$

Falls f in jedem $\mu \in \mathcal{U}$ diffbar, dann existieren insbesondere partielle Ableitungen

$$\frac{\partial}{\partial \mu_i} f(\,\cdot\,) := \mathrm{D} f(\,\cdot\,) e_i : \mathcal{U} \to X$$

für $e_i \in \mathbb{R}^p$ Einheitsvektor $i = 1, \dots, p$. Falls diese wiederrum diffbar in \mathcal{U} bezeichnet allgemein

$$\partial_{\sigma} f(\,\cdot\,) := \frac{\partial^{|\sigma|}}{\partial_{\mu_1}^{\sigma_1} \cdots \partial_{\mu_p}^{\sigma_p}} f(\,\cdot\,) : \mathcal{U} \to X$$

die Sensitivitätsableitung der Ordnung $|\sigma| := \sum_{i=1}^p \sigma_i$ für Multiindex $\sigma = (\sigma_i)_{i=1}^p \in \mathbb{N}_0^p$.

Bemerkung. Diese Ableitungen werden später insbesondere bei parameterabhängigen Lösungen $u(x; \mu)$ verwendet:

 $u: \Omega \times \mathcal{P} \to \mathbb{R}$ mit $u(\cdot; \mu) \in X$ kann auch als

 $u: \mathcal{P} \to X$ aufgefasst werden mit Sensitivitätsableitungen

 $\partial_{\sigma}u: \mathcal{P} \to X$, d.h. $\partial_{\sigma}u(\,\cdot\,;\mu) \in X \ \forall \mu \in \mathcal{P}$ und insbesondere

 $\partial_{\sigma}u:\Omega\times\mathcal{P}\to\mathbb{R}$, d.h. ∂_{σ} sind wieder Funktionen auf Ω

Definition 2.4 (Separierbare Parameterabhängigkeit)

i) Eine Funktion $v: \mathcal{P} \to X$ nennen wir **separierbar parametrisch**, falls existieren **Komponenten** $v^q \in X$ und **Koeffizientenfunktionen** $\Theta_v^q: \mathcal{P} \to \mathbb{R}$ für $q = 1, \ldots, Q_v$ mit

$$v(\mu) = \sum_{q=1}^{Q_v} \Theta_v^q(\mu) \, v^q$$

ii) Eine parametrische stetige Linearform $l: X \times \mathcal{P} \to \mathbb{R}$ bzw. Bilinearform $a: X_1 \times X_2 \times \mathcal{P} \to \mathbb{R}$ ist separierbar parametrisch, falls existieren $l^q \in X'$ und $\Theta_l^q: \mathcal{P} \to \mathbb{R}$

für $q=1,\ldots,Q_l$ bzw. $a^q:X_1\times X_2\to\mathbb{R}$ stetig, bilinear und $\Theta^q_a:\mathcal{P}\to\mathbb{R}$ für $q=1,\ldots,Q_a$ mit

$$l(v; \mu) = \sum_{q=1}^{Q_l} \Theta_l^q(\mu) l^q(v) \qquad \forall v \in X, \mu \in \mathcal{P}$$
$$a(u, v; \mu) = \sum_{q=1}^{Q_a} \Theta_a^q(\mu) a^q(u, v) \qquad \forall u \in X_1, v \in X_2, \mu \in \mathcal{P}$$

Bemerkung.

- i) In Literatur auch "affine Annahme" oder "affin parametrisch" verwendet. Wir verwenden jedoch "separierbar", da Θ^q_l auch nichtlinear sein können.
- ii) Q_a, Q_l sollten möglichst klein sein, weil diese in die Online-Komplexität eingehen, siehe $Abschnitt\ 3.$

Satz 2.5 (Energienorm)

Sei $a: X \times X \times \mathcal{P} \to \mathbb{R}$ parametrische stetige, koerzive Bilinearform, und $a_s(u,v;\mu) = \frac{1}{2}(a(u,v;\mu) + a(v,u;\mu))$ der symmetrische Anteil. Dann ist für $\mu \in \mathcal{P}$

$$\langle u, v \rangle_{\mu} := a_s(u, v; \mu)$$
 bzw. $||u||_{\mu} := \sqrt{\langle u, u \rangle_{\mu}}$

das Energie-Skalarprodukt bzw. die Energienorm bzgl. μ . Diese ist äquivalent zu $\|\cdot\|_X$:

 $\sqrt{\alpha(\mu)}\|u\| \le \|u\|_{\mu} \le \sqrt{\gamma(\mu)}\|u\|$

Beweis. Skalarprodukt: klar wegen Bilinearität, Stetigkeit und Koerzivität. Normäquivalenz folgt aus Stetigkeit und Koerzivität von a_s .

$$\alpha(\mu) \|u\|^2 \le \underbrace{a(u,u;\mu)}_{\le \|u\|^2 \gamma(\mu)} = a_s(u,u;\mu) = \|u\|_{\mu}^2$$

Satz 2.6 (Übertragung von Koeffizienten-Eigenschaften)

Seien f bzw. a separierbar parametrische stetige Linear- bzw. Bilinearform.

- i) Falls $\Theta_f^q(\mu)$ bzw. $\Theta_a^q(\mu)$ beschränkt sind, dann sind f bzw. a gleichmäßig beschränkt bzgl. μ .
- ii) Falls $\Theta_a^q(\mu)$ strikt positiv, d.h. ex. $\bar{\Theta}$ mit $\Theta_a^q(\mu) \geq \bar{\Theta} > 0 \ \forall \mu \in \mathcal{P}$ alle Komponenten positiv semidefinit, d.h. $a^q(v,v) \geq 0 \ \forall v,q \ \text{und} \ a(\cdot,\cdot;\bar{\mu})$ ist koerziv für mindestens ein $\bar{\mu} \in \mathcal{P}$, dann ist a gleichmäßig koerziv bzgl. μ .
- iii) Falls Θ_f^q , Θ_a^q Lipschitz-stetig, so ist f, a Lipschitz-stetig bzgl. μ .

Beweis.

i) Sei $\bar{\Theta}_f^q \in \mathbb{R}^+$ mit $|\Theta_f^q(\mu)| \leq \bar{\Theta}_f^q \ \forall \mu$. Dann gilt

$$\|f(\,\cdot\,;\mu)\| = \|\sum_q \Theta_f^q(\mu)\,f^q\| \leq \sum_q |\Theta_f^q(\mu)| \|f^q\| \leq \sum_q \bar{\Theta}_f^q\,\|f^q\| =: \bar{\gamma}_f < \infty$$

analog für $a(\cdot,\cdot;\mu)$.

ii) Für $u \in X$, $\mu \in \mathcal{P}$ gilt

$$a(u,u;\mu) = \sum_{q} \Theta_a^q(\mu) \, a^q(u,u) = \sum_{q} \underbrace{\frac{\Theta_a^q(\mu)}{\Theta_a^q(\bar{\mu})}}_{>0} \underbrace{\frac{\Theta_a^q(\bar{\mu}) \, a^q(u,u)}{\sum(\cdot) = a(u,u;\bar{\mu})}}_{\geq 0} \ge \underbrace{\sum_{q} \frac{\bar{\Theta}}{\max_{q'} \Theta_a^{q'}(\bar{\mu})} \alpha(\bar{\mu})}_{=:\bar{\alpha}>0} \|u\|^2$$

iii) Sei $|\Theta_f^q(\mu_1) - \Theta_f^q(\mu_2)| \le L_f^q |\mu_1 - \mu_2| \ \forall \mu_1, \mu_2 \in \mathcal{P}$ mit geeignetem $L_f^q \in \mathbb{R}$. Dann gilt

$$|f(v; \mu_1) - f(v; \mu_2)| = |\sum_{q} \Theta_f^q(\mu_1) f^q(v) - \sum_{q} \Theta_f^q(\mu_2) f^q(v)|$$

$$\leq \sum_{q} |\Theta_f^q(\mu_1) - \Theta_f^q(\mu_2)| ||f^q|| ||v||$$

$$\leq \sum_{q} L_f^q ||f^q|| ||\mu_1 - \mu_2|| ||v||$$

$$= L_f$$

analog für $a(\cdot,\cdot;\mu)$.

Definition 2.7 (Volles Problem $(P(\mu))$)

Seien a bzw. f, l parametrische Bilinearform bzw. Linearform und gleichmäßig stetig bzgl. μ , sei a gleichmäßig koerziv bzgl. μ . Dann ist für $\mu \in \mathcal{P}$ gesucht $u(\mu) \in X$ und $s(\mu) \in \mathbb{R}$ als Lösung von

$$a(u(\mu), v; \mu) = f(v; \mu) \qquad \forall v \in X$$

$$s(\mu) := l(u(\mu); \mu)$$

Bemerkung.

- Das volle Problem kann also ein analytisches Modell (PDE) oder ein detailliertes Modell (PDE-Diskretisierung) darstellen.
- Symmetrie von a wird nicht vorausgesetzt.
- In Abschnitt 4, Abschnitt 5 werden Verallgemeinerungen von $(P(\mu))$ betrachtet.

Satz 2.8 (Wohlgestelltheit und Stabilität)

Das Problem $(P(\mu))$ besitzt eine eindeutige Lösung mit

$$||u(\mu)|| \le \frac{||f(\mu)||_{X'}}{\alpha(\mu)} \le \frac{\bar{\gamma}_f}{\bar{\alpha}}, \quad |s(\mu)| \le ||l(\mu)||_{X'} ||u(\mu)|| \le \frac{\bar{\gamma}_l \bar{\gamma}_f}{\bar{\alpha}}$$

Beweis. Existenz, Eindeutigkeit und Schranke für $u(\mu)$ folgen mit Lax-Milgram (siehe z.B. Satz 2.5 in Braess'03). Gleichmäßige Stetigkeit und Koerzivität ergeben μ -unabhängige Schranke für $u(\mu)$. Definition von $s(\mu)$ ergibt Eindeutigkeit und entsprechende Schranken.

Definition 2.9 (Lösungsmannigfaltigkeit)

Wir definieren

$$\mathcal{M} := \{ u(\mu) \in X : \mu \in \mathcal{P} \text{ und } u(\mu) \text{ löst } (P(\mu)) \}$$

Bemerkung. Wir verwenden den Begriff "Mannigfaltigkeit" nicht im strengen differentialgeometrischen Sinn, weil keine Stetigkeit / Diffbarkeit von \mathcal{M} gefordert wird.

Beispiel 2.10 (Thermischer Block) TODO

Beispiel 2.11 (Matrixgleichung)

• Zu $\mu \in \mathcal{P}$ suche $u(\mu) \in \mathbb{R}^H$ als Lösung von

$$A(\mu)u(\mu) = b(\mu)$$

für $A(\mu) \in \mathbb{R}^{H \times H}$ und $b(\mu) \in \mathbb{R}^H$.

• Dies ist Beispiel für $(P(\mu))$ via

$$X := \mathbb{R}^H, \quad a(u, v; \mu) := v^{\top} A(\mu) u, \quad f(v; \mu) := v^{\top} b(\mu)$$

und beliebiger linearer Ausgabe $l(v; \mu) := \underline{l}^{\top} v$ für $\underline{l} \in \mathbb{R}^H$.

Beispiel 2.12 $(Q_a = 1)$

Falls $a(\cdot,\cdot;\mu)$, $f(\cdot;\mu)$ separierbar parametrisch mit $Q_a=1$ und Q_f beliebig, so ist \mathcal{M} enthalten in einem Q_f -dimensionalen linearen Teilraum von X:

$$(P(\mu)) \quad \Rightarrow \quad \Theta_a^1(\mu)a^1(u,v) = \sum_q \Theta_f^q(\mu)f^q(v) \quad \forall v \in X$$

 $\Theta_a^1(\mu) \neq 0$ wegen a gleichmäßig koerziv

$$a^{1}(u,v) = \sum_{q} \frac{\Theta_{f}^{q}(\mu)}{\Theta_{a}^{1}(\mu)} f^{q}(v) \quad \forall v \in X$$
 (*)

 $a^{1}(\cdot,\cdot)$ ist koerziv, f^{q} linear und stetig

Lax-Milgram ex.
$$u^q, q = 1, \dots, Q_f$$
 mit $a^1(u^q, v) = f^q(v), \quad v \in X$
$$\Rightarrow u := \sum_q \frac{\Theta_f^q(\mu)}{\Theta_a^1(\mu)} u^q \text{ löst } (*) \text{ wegen Linearität}$$

$$\Rightarrow u \in \text{span}\{u^q\}_{q=1}^{Q_f}$$

Beispiel 2.13 ($(P(\mu))$ mit vorgegebener Lösung)

Sei $u: \mathcal{P} \to X$ beliebig komplizierte Abbildung. Dann existiert ein $(P(\mu))$ mit $u(\mu)$ als Lösung via Skalarprodukten:

$$a(v,w;\mu) := \langle w,v \rangle_X, \quad f(v;\mu) := \langle u(\mu),v \rangle_X$$

d.h. Klasse der Probleme $(P(\mu))$ können beliebig komplizierte, nichtglatte oder sogar unstetige Lösungsmannigfaltigkeit \mathcal{M} besitzen.

Bemerkung (Parameter-Anzahl und Lösungskomplexität). Es gibt (sogar in der Literatur) ein Missverständnis zwischen Parameteranzahl $p \in \mathbb{N}$ und Komplexität der Lösungsmannigfaltigkeit \mathcal{M} , denn es kann Redundanz in Parametern vorliegen (siehe Thermischer Block). Extremfall: $p \in \mathbb{N}$ beliebig, für geeignetes $a(\cdot,\cdot;\mu)$, $f(\mu)$ hat $(P(\mu))$ ein \mathcal{M} , welches in einem 1D-Raum enthalten ist. (Übung) Beispiel 2.13 zeigt andererseits einen anderen Extremfall: Sogar für p = 1 kann bei geeignetem $(P(\mu))$ das \mathcal{M} beliebig kompliziert sein (z.B. "Raumfüllende Kurve"). Unter geeigneter Annahmen an $a(\cdot,\cdot;\mu)$ und $f(\cdot;\mu)$ können einfache Regularitätseigenschaften von $u(\mu)$ bzw. \mathcal{M} geschlossen werden.

Korollar 2.14 (Beschränktheit von \mathcal{M})

Weil $a(\cdot,\cdot;\mu)$ gleichmäßig koerziv und $f(\cdot;\mu)$ gleichmäßig beschränkt, so ist \mathcal{M} beschränkt

$$\mathcal{M} \subseteq B_{\frac{\bar{\gamma}_f}{\bar{\alpha}}}(0)$$

Beweis. Klar weil $\|u(\mu)\| \leq \frac{\bar{\gamma}_f}{\bar{\alpha}}$ nach Satz 2.8.

Satz 2.15 (Lipschitz-Stetigkeit)

Falls $a(\cdot,\cdot;\mu)$, $f(\cdot;\mu)$, $l(\cdot;\mu)$ Lipschitz-stetig bzgl. μ , so sind $u(\mu)$ und $s(\mu)$ Lipschitz-stetig bzgl. μ mit Lipschitz-Konstanten

$$L_u = \frac{L_f}{\bar{\alpha}} + \bar{\gamma}_f \frac{L_a}{\bar{\alpha}^2}$$
 und $L_s = L_l \frac{\bar{\gamma}_f}{\bar{\alpha}} + \bar{\gamma}_l L_u$

Beweis. Übung.

Satz 2.16 (Diffbarkeit)

Sei $a(u,\cdot;\mu) \in X'$ Frechet-diffbar in Umgebung von $(u_0,\mu_0) \subset X \times \mathcal{P}$ und $f(\cdot;\mu) \in X'$ Frechet-diffbar in Umgebung von $\mu_0 \in \mathcal{P}$. Dann ist Lösung $u(\mu)$ von $(P(\mu))$ Frechet-diffbar in Umgebung von $\mu_0 \in \mathcal{P}$ mit

$$D_{\mu}u(\mu) := -\left(\frac{\partial}{\partial u}F(u,\mu)\right)^{-1}\frac{\partial}{\partial \mu}F(u,\mu)$$

wobei $F(u,\mu) := a(u,\cdot;\mu) - f(\cdot;\mu) \in X'$.

Beweis. Aus Frechet-Diffbarkeit von $a(\cdot,\cdot;\cdot)$ und $f(\cdot;\cdot)$ folgt Frechet-Diffbarkeit von $F: X \times \mathcal{P} \to X'$ in Umgebung von (u_0,μ_0) mit partiellen Ableitungen

$$\frac{\partial}{\partial \mu} F(u_0, \mu_0) := \frac{\partial}{\partial \mu} a(u_0, \cdot; \mu_0) - \frac{\partial}{\partial \mu} f(\cdot; \mu_0) \in L(\mathbb{R}^p, X')$$

und $\frac{\partial}{\partial u}F(u_0,\mu_0) \in L(X,X')$ durch

$$\frac{\partial}{\partial u}F(u_0,\mu_0)h_u := a(h_u,\cdot;\mu_0) \in X' \quad \forall h_u \in X$$

Dann erfüllt $u(\mu)$ als Lösung von $(P(\mu))$ gerade

$$F(u(\mu),\mu) = 0$$

in Umgebung von μ_0 . Dann ist (z.B. mit Folgerung 2.15 in Ruzicka: Nichtlineare Funktionalanalysis, Springer 2004) auch $u(\mu)$ Frechet-diffbar in Umgebung von μ_0 mit Ableitung

$$D_{\mu}u(\mu) := -\left(\frac{\partial}{\partial u}F(u,\mu)\right)^{-1}\frac{\partial}{\partial \mu}F(u,\mu)$$

Bemerkung.

• Plausibilität der Ableitungsformel folgt aus formellem Ableiten:

$$\begin{split} \mathrm{D}_{\mu}\left(F(u(\mu),\mu)\right) &= 0\\ \Rightarrow \quad \frac{\partial}{\partial u}F(u(\mu),\mu)\mathrm{D}_{\mu}u(\mu) + \frac{\partial}{\partial \mu}F(u,\mu) &= 0\\ \Rightarrow \qquad \frac{\partial}{\partial u}F(u(\mu),\mu)\mathrm{D}_{\mu}u(\mu) &= -\frac{\partial}{\partial \mu}F(u,\mu)\\ \Rightarrow \qquad \mathrm{D}_{\mu}u(\mu) &= -\left(\frac{\partial}{\partial u}F(u(\mu),\mu)\right)^{-1}\frac{\partial}{\partial \mu}F(u,\mu) \end{split}$$

• Man kann zeigen, dass die Sensitivitäts-Ableitungen $\partial_{\mu_i} u(\mu) \in X$ für $i = 1, \dots, p$ erfüllen das sogenannte **Sensitivitätsproblem**

$$a(\partial_{\mu_i} u(\mu), v; \mu) = \tilde{f}_i(v; u(\mu), \mu)$$

mit rechter Seite $\tilde{f}_i(\cdot; u(\mu), \mu) \in X'$ gegeben durch

$$\tilde{f}_i(\cdot; w, \mu) := \partial_{\mu_i} f(\cdot; \mu) - \partial_{\mu_i} a(w, \cdot; \mu)$$

d.h. das Problem $(P(\mu))$ mit modifizierter rechter Seite, in welcher insbesondere $u(\mu)$ eingeht. (Übung)

- Hinreichend für die Diffbarkeit von a, f in Satz 2.16 sind z.B. im Fall von separierbarer Parameterabhängigkeit die Diffbarkeit der Koeffizienten $\Theta^q_a(\mu), \ \Theta^q_f(\mu), \ q=1,\dots$ (Übung)
- Ähnliche Aussagen / Sensitivitätsprobleme gelten für Ableitungen höherer Ordnung. Also überträgt sich Glattheit der Koeffizientenfunktionen auf Glattheit der Lösung / Mannigfaltigkeit.

3 RB-Methoden für lineare koerzive Probleme

3.1 Primales RB-Problem

Definition 3.1 (Reduzierte Basis, RB-Räume)

Sei $S_N = \{\mu_1, \dots, \mu_N\} \subset \mathcal{P}$ Menge von Parametern mit (o.B.d.A.) linear unabhängigen Lösungen $\{u(\mu_i)\}_{i=1}^N$ von $(P(\mu_i))$. Dann ist $X_N := \operatorname{span} \{u(\mu_i)\}_{i=1}^N$ ein sog. **Lagrange-RB-Raum**.

Sei $\mu^0 \in \mathcal{P}$ und $u(\mu)$ Lösung von $(P(\mu^0))$ k-mal diffbar in Umgebung von μ^0 . Dann ist

$$X_{k,\mu^0} := \operatorname{span} \left\{ \partial_{\sigma} u(\mu^0) : \sigma \in \mathbb{N}_0^p, |\sigma| \le k \right\}$$

ein *Taylor-RB-Raum*. Eine Basis $\Phi_N = \{\varphi_1, \dots, \varphi_N\} \subseteq X$ eines RB-Raums ist eine *reduzierte Basis*.

Bemerkung.

- Φ_N kann direkt aus Snapshots $u(\mu^i)$ oder, für numerische Stabilität (siehe ??), auch orthonormiert sein.
- Wahl der Parameter $\{\mu^i\}$ ist entscheidend für Güte des RB-Modells: Hier: zufällige oder äquidistante Menge ausreichend Später: intelligente Wahl durch a-priori Analysis oder Greedy-Verfahren
- Es ex. auch andere Arten von RB-Räumen (Hermite, POD). Gemeinsam ist diesen die Konstruktion aus Snapshots von u bzw. $\partial_{\sigma}u$.
- Andere MOR-Techniken: Φ_N kann auch komplett unabhängig von Snapshots auf andere Weise konstruiert werden: Balanced Truncation, Krylov-Räume, etc. (siehe z.B. Antoulas: Approximation of large scale dynamical systems, SIAM 2004)

Definition 3.2 (Reduziertes Problem $(P_N(\mu))$)

Sei eine Instanz von $(P(\mu))$ gegeben und $X_N \subseteq X$ ein RB-Raum. Zu $\mu \in \mathcal{P}$ ist die RB-Lösung $u_N(\mu) \in X_N$ und Ausgabe $s_N(\mu) \in \mathbb{R}$ gesucht mit

$$a(u_N(\mu), v; \mu) = f(v; \mu) \qquad \forall v \in X_N$$

$$s_N(\mu) = l(u_N; \mu)$$

Bemerkung.

- Wir nennen obiges "primal" weil im Fall $f \neq l$ oder a asymmetrisch, kann mit Hilfe eines geeigneten dualen Problems bessere Schätzung für s erreicht werden.
- Obiges ist "Ritz-Galerkin"-Projektion im Gegensatz zu "Petrov-Galerkin"-Projektion, welches für nicht-koerzive Probleme notwendig ist. \rightsquigarrow 4

Satz 3.3 (Galerkin-Projektion, Galerkin-Orthogonalität)

Sei $P_{\mu}: X \to X_N$ die orthogonale Projektion bzgl. Energieskalarprodukt $\langle \cdot, \cdot \rangle_{\mu}$, **sei** a **symmetrisch** und $u(\mu)$, $u_N(\mu)$ Lösung von $(P(\mu))$ bzw. $(P_N(\mu))$. Dann:

- i) $u_N(\mu) = P_{\mu}u(\mu)$ "Galerkin-Projektion"
- ii) $\langle e(\mu), v \rangle_{\mu} = 0 \ \forall v \in X_N$, wobei $e(\mu) := u(\mu) u_N(\mu)$

Beweis. Nach Aufgabe 1/Blatt 1 ist P_{μ} wohldefiniert, denn $(X, \langle \cdot, \cdot \rangle_{\mu})$ ist Hilbertraum und $X_N \subseteq X$ abgeschlossen weil endlichdimensional. Orthogonale Projektion des Fehlers ergibt

$$\langle P_{\mu}u(\mu) - u(\mu), \varphi_{i} \rangle_{\mu} = 0 \qquad \forall i = 1, \dots, N$$

$$\Leftrightarrow \qquad a(P_{\mu}u(\mu) - u(\mu), \varphi_{i}; \mu) = 0 \qquad \forall i = 1, \dots, N$$

$$\Leftrightarrow \qquad a(P_{\mu}u(\mu), \varphi_{i}; \mu) = a(u(\mu), \varphi_{i}; \mu) = f(\varphi_{i}; \mu) \qquad \forall i = 1, \dots, N$$

- i) also ist $P_{\mu}u(\mu)$ Lösung von $(P_N(\mu))$
- ii) $e(\mu)$ ist also Projektions-Fehler, orthogonal nach Aufgabe 1/Blatt 1

Bemerkung. Für a nichtsymmetrisch gilt immer noch folgende "Galerkin-Orthogonalität"

$$a(u - u_N, v; \mu) = 0 \quad \forall v \in X_N$$

(auch wenn a kein Skalarprodukt)

Satz 3.4 (Existenz und Eideutigkeit für $(P_N(\mu))$)

Zu $\mu \in \mathcal{P}$ ex. eindeutige Lösung $u_N(\mu) \in X_N$ und RB-Ausgabe $s_n(\mu) \in \mathbb{R}$ von $(P_N(\mu))$. Diese sind beschränkt

$$||u_N(\mu)|| \le \frac{||f(\cdot;\mu)||_{X'}}{\alpha(\mu)} \le \frac{\bar{\gamma}_f}{\bar{\alpha}}$$
$$||s_N(\mu)|| \le ||l(\cdot;\mu)|| ||u_N(\mu)|| \le \frac{\bar{\gamma}_l \bar{\gamma}_f}{\bar{\alpha}}$$

Beweis. Weil $X_N \subset X$ ist $a(\cdot,\cdot;\mu)$ stetig und koerziv auf X_N .

$$\alpha_N(\mu) := \inf_{v \in X_N} \frac{a(v, v; \mu)}{\|v\|^2} \ge \inf_{v \in X} \frac{a(v, v; \mu)}{\|v\|^2} = \alpha(\mu) > 0$$

$$\gamma_N(\mu) := \sup_{u, v \in X_N} \frac{a(u, v; \mu)}{\|u\| \|v\|} \le \sup_{u, v \in X} \frac{a(u, v; \mu)}{\|u\| \|v\|} = \gamma(\mu) < \infty$$

analog f, l stetig auf X_N . Existenz, Eindeutigkeit und Schranken folgen also mit Lax-Milgram analog zu 2.8.

Korollar 3.5 (Lipschitz-Stetigkeit)

Seien f, l gleichmäßig beschränkt und a, f, l Lipschitz-stetig bzgl. μ , dann sind auch $u_N(\mu)$, $s_N(\mu)$ Lipschitz-stetig bzgl. μ mit L_u , L_s wie in 2.15.

Beweis. Analog zu 2.15 / Übung. □

Satz 3.6 (Diskrete RB-Probleme)

Sei $\Phi_N = \{\varphi_1, \dots, \varphi_N\}$ eine reduzierte Basis für X_N . Für $\mu \in \mathcal{P}$,

$$A_{N}(\mu) := (a(\varphi_{j}, \varphi_{i}; \mu))_{i,j=1}^{N} \qquad \in \mathbb{R}^{N \times N}$$

$$\underline{l}_{N}(\mu) := (l(\varphi_{i}; \mu))_{i=1}^{N} \qquad \in \mathbb{R}^{N}$$

$$f_{N}(\mu) := (f(\varphi_{i}; \mu))_{i=1}^{N} \qquad \in \mathbb{R}^{N}$$

und $\underline{u}_N = (u_{N,i})_{i=1}^N \in \mathbb{R}^N$ als Lösung von

$$A_N(\mu)\underline{u}_N = f_N(\mu) \tag{3.1}$$

Dann ist $u_N(\mu) := \sum_{i=1}^N u_{N,i} \varphi_i$ und $s_N(\mu) := \underline{l}_N^{\top}(\mu)\underline{u}_N$.

Beweis. Einsetzen und Linearität zeigt, dass

$$a\left(\sum u_{N,j}\,\varphi_j,\varphi_i;\mu\right)=\left(A_N(\mu)\underline{u}_N\right)_i=\left(\underline{f}_N\right)_i=f(\varphi_i;\mu)$$

Satz 3.7 (Kondition bei ONB und Symmetrie)

Falls $a(\cdot,\cdot;\mu)$ symmetrisch und Φ_N ist ONB, so ist Kondition von (3.1) unabhängig von N beschränkt

$$\operatorname{cond}_2(A_N) := \|A_N\|_2 \|A_N^{-1}\|_2 \le \frac{\gamma(\mu)}{\alpha(\mu)}$$

Beweis. Wegen Symmetrie gilt

$$\operatorname{cond}_{2}(A_{N}) = \frac{|\lambda_{\max}|}{|\lambda_{\min}|} \tag{3.2}$$

mit betragsmäßig größtem/kleinstem Eigenwert $\lambda_{\max}/\lambda_{\min}$ von $A_N(\mu)$. Sei $\underline{u}_{\max} = (u_i)_{i=1}^N \in \mathbb{R}^N$ Eigenvektor zu λ_{\max} und

$$u_{\max} := \sum_{i=1}^{N} u_i \, \varphi_i \quad \in X_N$$

Dann gilt

$$\begin{split} \lambda_{\max} \|\underline{u}_{\max}\|^2 &= \lambda_{\max} \underline{u}_{\max}^\top \underline{u}_{\max} = \underline{u}_{\max}^\top A_N \underline{u}_{\max} \\ &= \sum_{i,j=1}^N u_i u_j \, a(\varphi_j, \varphi_i; \mu) = a \left(\sum_j u_j \varphi_j, \sum_i u_i \varphi_i; \mu \right) \\ &= a(u_{\max}, u_{\max}; \mu) \leq \gamma(\mu) \|u_{\max}\|^2 \end{split}$$

Wegen

$$||u_{\max}||^2 = \langle \sum u_i \varphi_i, \sum u_j \varphi_j \rangle = \sum u_i u_j \langle \varphi_i, \varphi_j \rangle = \sum u_i^2 = ||u_{\max}||^2$$

folgt $|\lambda_{\max}| \leq \gamma(\mu)$. Analog zeigt man $|\lambda_{\min}| \geq \alpha(\mu)$ also folgt mit (3.2) die Behauptung.

Bemerkung (Unterschied FEM zu RB). Es bezeichne $A_h(\mu) \in \mathbb{R}^{H \times H}$ die FEM Matrix (oder FV/FD).

- i) Die RB-Matrix $A_N(\mu) \in \mathbb{R}^{H \times H}$ ist klein aber typischerweise vollbesetzt im Gegensatz zur großen aber dünnbesetzten Matrix A_h .
- ii) Die Kondition von A_N verschlechtert sich nicht mit wachsendem N (falls eine ONB verwendet wird), während die Konditionszahl von A_h typischerweise polynomiell in H wächst, also schlechter wird.

Satz 3.8 (Reproduktion von Lösungen)

Seien $u(\mu)$, $u_N(\mu)$ Lösungen von $(P(\mu))$ bzw. $(P_N(\mu))$, $\underline{e}_i \in \mathbb{R}^n$ i-ter Einheitsvektor

- i) Falls $u(\mu) \in X_N \implies u_N(\mu) = u(\mu)$
- ii) Falls $u(\mu) = \varphi_i \in \Phi_N \quad \Rightarrow \quad \underline{u}_N(\mu) = \underline{e}_i \in \mathbb{R}^N$

Beweis.

i) Mit $u(\mu), u_N(\mu) \in X_N \Rightarrow e := u(\mu) - u_N(\mu) \in X_N$. Wegen Galerkin-Orthogonalität $(a(e, v; \mu) = 0 \ \forall v \in X_N)$ und Koerzivität folgt:

$$0 = a(e,e;\mu) \ge \underbrace{\alpha(\mu)}_{>0} \underbrace{\|e\|^2}_{\geq 0} \quad \Rightarrow \quad \|e\| = 0 \Rightarrow e = 0 \Rightarrow u = u_N$$

ii) $u_N(\mu) = \varphi_i$, nach i). Mit Eindeutigkeit der Basisexpansion folgt die Behauptung.

Bemerkung.

- Reproduktion von Lösungen ist grundlegende Konsistenzeigenschaft. Es gilt trivialerweise falls/sobald Fehlerschranken vorliegen, aber für komplexe RB-Probleme ohne Fehlerschranken ist obiges ein guter Test.
- Validierung für Programmcode: Wähle Basis aus Snapshots $\varphi_i = u(\mu^i), i = 1, \dots, N$, ohne Orthonormierung, dann muss $\underline{u}_N(\mu^i) = \underline{e}_i \in \mathbb{R}^N$ ein Einheitsvektor sein.

3.2 Fehleranalyse

Satz 3.9 (Céa, Beziehung zur Bestapproximation)

Für alle $\mu \in \mathcal{P}$ gilt

$$||u(\mu) - u_N(\mu)|| \le \frac{\gamma(\mu)}{\alpha(\mu)} \inf_{v \in X} ||u - v||$$

Beweis. $\forall v \in X_N$ mit Stetigkeit und Koerzivität

$$\alpha \|u - u_N\|^2 \le a(u - u_N, u - u_N) = a(u - u_N, u - v) + \underbrace{a(u - u_N, v - u_N)}_{=0 \text{ (Galerkin-Orth.)}}$$

$$\leq \gamma(\mu) \|u - u_N\| \|u - v\|$$

Division durch α , $||u - u_N||$ liefert

$$||u - u_N|| \le \frac{\gamma}{\alpha} ||u - v||$$

also Behauptung durch Infimum-Bildung.

Bemerkung.

- i) Ähnliche Bestapproximationsaussagen gelten auch für andere Interpolationstechniken, aber die zugehörige Lebesgue-Konstante divergiert meist mit wachsender Dimension N. Obiges ist konzeptioneller Vorteil von Galerkin-Projektion über anderen Interpolationstechniken, da $\frac{\gamma}{\alpha}$ unabhängig von N beschränkt bleibt. "Quasi-Optimalität" der Galerkin-Projektion/des RB-Ansatzes.
- ii) Falls $a(\cdot,\cdot;\mu)$ zusätzlich symmetrisch ist, kann um eine "Wurzel" verbessert werden mittels Normäquivalenz 2.5 und Bestapproximation der orthogonalen Projektion (Aufg. 1/Blatt 1)

$$\sqrt{\alpha} \|u - u_N\| \stackrel{2.5}{\leq} \|u - u_N\|_{\mu} = \|u - P_{\mu}u\|_{\mu} = \inf_{v \in X_N} \|u - v\|_{\mu} \stackrel{2.5}{\leq} \sqrt{\gamma} \inf_{v \in X_N} \|u - v\|
\Rightarrow \|u - u_N\| \leq \sqrt{\frac{\gamma}{\alpha}} \inf_{v \in X_N} \|u - v\|$$

iii) Implikation von 3.9: Wähle guten Approximationsraum X_N , so wird Galerkin-Projektion/RB-Approximation auch garantiert gut sein.

Satz 3.10 (Ausgabe und Bestapproximation)

i) Für alle $\mu \in \mathcal{P}$ gilt

$$|s(\mu) - s_N(\mu)| \le ||l(\cdot; \mu)||_{X'} \frac{\gamma(\mu)}{\alpha(\mu)} \inf_{v \in X_N} ||u - v||$$

ii) Für den sog. "compliant" Fall (d.h. $a(\cdot,\cdot;\mu)$ symmetrisch und l=f) gilt sogar

$$0 \le s(\mu) - s_N(\mu) = \|u - u_N\|_{\mu}^2$$

$$= \inf_{v \in X_N} \|u - v\|_{\mu}^2$$

$$\le \gamma(\mu) \inf_{v \in X_N} \|u - v\|^2$$

Beweis.

i) Klar mit Céa, Bestapproximation und Linearität

$$|s(\mu) - s_N(\mu)| = |l(u) - l(u_N)| = |l(u - u_N)| \le ||l|||u - u_N|| \le ||l|| \frac{\gamma}{\alpha} \inf_{v \in X_N} ||u - v||$$

ii) Wegen $a(\cdot,\cdot;\mu)$ symmetrisch gilt wie in voriger Bemerkung

$$||u - u_N||_{\mu} = ||u - P_{\mu}u||_{\mu} = \inf_{v \in X_N} ||u - v||$$
(3.3)

Damit

$$s(\mu) - s_N(\mu) = l(u) - l(u_N) \stackrel{f=l}{=} f(u) - f(u_N) = f(u - u_N)$$

$$= a(u, u - u_N) - \underbrace{a(u_N, u - u_N)}_{=0 \text{ (Gal.-Orth./Symm.)}} = \|u - u_N\|_{\mu}^{2}$$

$$\stackrel{3.3}{=} \inf_{v \in X_N} \|u - v\|_{\mu}^{2}$$

$$\stackrel{2.5}{\leq} \gamma \inf_{v \in X_N} \|u - v\|^{2}$$

Also insbesondere $s - s_N = ||u - u_N||_{\mu}^2 \ge 0$.

Bemerkung.

- Im "compliant" Fall ist der Ausgabefehler i.A. sehr klein, da das Quadrat des RB-Fehlers eingeht.
- Im "nicht-compliant" Fall geht der RB-Fehler nur linear in die Schranke ein, das wird später durch primal-duale Technik verbessert.
- Aus ii) folgt nicht nur Fehlerschranke, sondern sogar Vorzeichen-Information, $s_N(\mu)$ ist untere Schranke für s.

Korollar 3.11 (Monotoner Fehlerabfall in Energienorm)

Falls $a(\cdot,\cdot;\mu)$ symmetrisch, $(X_N)_{N=1}^{N_{\max}}$ Folge von RB-Räumen, mit $X_N\subseteq X_{N'}, \forall N\leq N'$ ("hierarchische Räume") und für $\mu\in\mathcal{P}$ setze $e_{u,N}:=u(\mu)-u_N(\mu), e_{s,N}:=s(\mu)-s_N(\mu).$

- i) Dann ist $(\|e_{u,N}\|_{\mu})_{N=1}^{N_{\max}}$ monoton fallend.
- ii) Falls l = f (also "compliant" Fall) ist $e_{s,N}$ monoton fallend.

Beweis.

i) Mit (3.3) gilt für $N \leq N'$

$$||e_{u,N}||_{\mu} = ||u - u_N||_{\mu} \stackrel{(3.3)}{=} \inf_{v \in X_N} ||u - v||_{\mu} \ge \inf_{v \in X_{N'}} ||u - v||_{\mu} \stackrel{(3.3)}{=} ||e_{u,N'}||_{\mu}$$

ii) Mit Satz 3.10 ii) gilt

$$e_{s,N} = ||e_{u,N}||_{\mu}^2$$
, also Behauptung folgt mit i)

Bemerkung.

- "Worst-case" ist Stagnation des Fehlers (unrealistisch, jeder neue Basisvektor müsste orthogonal zum Fehler $e_N(\mu)$ sein). In Praxis ist bei geschickter Basiswahl und "glatten" Problemen exponentielle Konvergenz zu erwarten, siehe Basisgenerierung, §3.4.
- Monotonie gilt nicht notwendigerweise bezüglich anderen Normen trotz Normäquivalenz

$$c\|e_{u,N}\|_{\mu} \leq \|e_{u,N}\| \leq C\|e_{u,N}\|_{\mu}$$
, mit c, C unabhängig von N

Fehlernorm $||e_{u,N}||$ kann gelegentlich anwachsen, bleibt aber in einem "Korridor", welcher monoton fällt.

Abbildung 5: Fehlerabfall mit wachsender reduzierter Dimension. (aus B. Haasdonk, Reduzierte-Basis-Methoden, Skript zur Vorlesung SS 2011, Universität Stuttgart, IANS-Report 4/11, 2011.)

Bemerkung (Gleichmäßige Konvergenz von Lagrange RB-Ansatz).

• Sei \mathcal{P} kompakt und $S_N := \{\mu^1, \dots, \mu^N\} \subset \mathcal{P}, N \in \mathbb{N}$, sodass die sog. Füll-Distanz (fill-distance) h_N gegen 0 geht:

$$h_N := \sup_{\mu \in \mathcal{P}} \operatorname{dist}(\mu, S_N), \quad \operatorname{dist}(\mu, S_N) := \min_{\mu' \in S_N} \|\mu - \mu'\|$$

$$\lim_{N \to \infty} h_N = 0$$

• Falls $u(\mu)$, $u_N(\mu)$ Lipschitz-stetig mit Lipschitz-Konstante L_u unabhängig von N, so folgt für alle N, μ und "nächstes" $\mu^* := \arg\min_{\mu' \in S_N} \|\mu - \mu'\|$:

$$||u(\mu) - u_N(\mu)|| \le ||u(\mu) - u(\mu^*)|| + ||u(\mu^*) - u_N(\mu^*)|| + ||u_N(\mu^*) - u_N(\mu)||$$

$$\le L_u \underbrace{||\mu - \mu^*||}_{\le h_N} + 0 + L_u \underbrace{||\mu - \mu^*||}_{\le h_N} \le 2L_u h_N$$

• Also folgt uniforme Konvergenz

$$\lim_{N \to \infty} \sup_{\mu \in \mathcal{P}} \|u(\mu) - u_N(\mu)\| = 0$$

- Jedoch Konvergenzrate linear in h_N ist nicht praktisch bedeutsam, weil h_N sehr langsam mit N abfällt, also muss N sehr groß sein, um kleinen Fehler zu garantieren.
- Wir werden sehen, dass bei gleichmäßig koerziven Problemen und geschickter Wahl der μ^i sogar exponentielle Konvergenz erreicht wird.

Lemma 3.12 (Fehler-Residuums-Beziehung)

Für $\mu \in \mathcal{P}$ definieren wir mittels der RB-Lösung u_N das Residuum $r(\cdot; \mu) \in X'$ bzw. seinen Riesz-Repräsentanten $v_r(\mu) \in X$

$$\langle v_r(\mu), v \rangle_X := r(v; \mu) := f(v; \mu) - a(u_N(\mu), v; \mu) \quad \forall v \in X$$

Dann erfüllt der Fehler $e(\mu) := u(\mu) - u_N(\mu)$

$$a(e(\mu), v; \mu) = r(v; \mu) \quad \forall v \in X$$

Beweis.
$$a(e(\mu), v; \mu) = \underbrace{a(u, v)}_{f(v)} - a(u_N, v) = r(v)$$

Bemerkung.

- Fehler erfüllt " $(P(\mu))$ mit Residuum als rechte Seite"
- Insbesondere ist $r(v; \mu) = 0 \ \forall v \in X_N$ (wegen Galerkin-Orthogonalität)
- $r(\cdot;\mu) = 0 \Rightarrow e = 0$

Satz 3.13 (A-posteriori Fehlerschätzer, absoluter Fehler)

Sei $\mu \in \mathcal{P}$, $u(\mu)$ bzw. $u_N(\mu)$ Lösung von $(P(\mu))$, $(P_N(\mu))$ und $e = u - u_N$. Sei $\alpha_{LB}(\mu)$ eine untere Schranke für $\alpha(\mu)$ und $v_r \in X$ Riesz-Repräsentant von $r(\cdot; \mu)$ aus Lemma 3.12. Dann gelten folgende Schranken

i) Fehler in Energienorm

$$||e(\mu)||_{\mu} \le \Delta_N^{en}(\mu) := \frac{||v_r||}{\sqrt{\alpha_{LB}(\mu)}}$$

ii) Fehler in X-Norm $\|\cdot\|$

$$||e(\mu)|| \le \Delta_N(\mu) := \frac{||v_r||}{\alpha_{LB}(\mu)}$$

iii) Ausgabefehler

$$|s(\mu) - s_N(\mu)| \le \Delta_{N,s}(\mu) := ||l(\cdot; \mu)||\Delta_N(\mu)$$

Beweis.

i) Normäquivalenz 2.5 impliziert

$$||e|| \le \frac{||e||_{\mu}}{\sqrt{\alpha_{LB}(\mu)}}$$

Damit folgt

$$||e||_{\mu}^{2} = a_{s}(e,e) = a(e,e) = r(e) = \langle v_{r}, e \rangle \leq ||v_{r}|| ||e|| \leq \frac{||v_{r}||}{\sqrt{\alpha_{LB}(\mu)}} ||e||_{\mu}$$

Division durch $||e||_{\mu}$ liefert Behauptung i).

ii) Koerzivität liefert

$$\alpha_{LB}(\mu) \|e\|^2 \le a(e,e) = r(e) = \langle v_r, e \rangle \le \|v_r\| \|e\|$$

Division durch α_{LB} und ||e|| liefert ii).

iii) Stetigkeit von l liefert

$$|s(\mu) - s_N(\mu)| = |l(u - u_N; \mu)| \le ||l|| ||u - u_N|| \stackrel{ii)}{\le} ||l| |\Delta_N|$$

Bemerkung.

- $\alpha_{LB}(\mu)$ soll eine **schnell berechenbare** untere Schranke an $\alpha(\mu)$ sein, z.B. $\alpha_{LB}(\mu) := \bar{\alpha}$ falls $\bar{\alpha}$ bekannt, andere Möglichkeiten folgen später ("min Θ ", "SCM").
- Δ_N ist also immer um Faktor $\sqrt{\alpha_{LB}(\mu)}$ schlechter.
- Beschränkung des Fehlers durch Residuums-Norm ist bekannte Technik aus FEM, um FEM-Lösung u_h gegen Sobolev-Raum Lösung u abzuschätzen. In diesem Fall ist X ∞-dimensional und Residuums-Norm algorithmisch nicht berechenbar. In RB-Methoden wird ||v_r|| eine berechenbare Größe sobald X endlich-dimensional, z.B. FEM-Raum, ist. Für Residuum ist u_N(μ) erforderlich, daher sind Schranken "a posteriori".
- Allgemeines Vorgehen (und alternative Begründung für ii)) zur Herleitung von Fehlerschranken: Zeige, dass Fehler e erfüllt $(P(\mu))$ mit rechter Seite, genannt r (Residuum), wende a-priori Stabilitätsaussage an:

$$||e|| \le \frac{||r||}{\alpha(\mu)}$$
 z.B. Lax-Milgram

und erhalte berechenbare Größe durch Wahl $X=X_{FEM}$ und untere Schranke $\alpha_{LB}(\mu) \leq \alpha(\mu)$.

- Weil die Schranken beweisbare obere Schranken an Fehler darstellen, nennt man sie "rigorose" Fehlerschranken (vgl. "zuverlässige" Schätzer in FEM, bei denen jedoch die Konstante unbekannt ist).
- Fehlerschranken liefern eine Absicherung für RB-Methoden, "certified" RB-Methode, im Gegensatz zu vielen anderen Reduktionsmethoden (z.B. Krylov-Raum-Methoden).
- Ausgabefehler ist grob, indem Δ_N nur linear eingeht. Verbesserungen können für den "compliant" Fall oder mit primal-dual Techniken erreicht werden. (\rightsquigarrow §3.5)

Korollar 3.14 (Verschwindende Fehlerschranke)

Falls
$$u(\mu) = u_N(\mu)$$
 dann ist $\Delta_N(\mu) = \Delta_N^{en}(\mu) = \Delta_{N,s}(\mu) = 0$

Beweis.

$$0 = a(0,v;\mu) = a(e,v;\mu) = r(v;\mu)$$

$$\Rightarrow r \equiv 0 \Rightarrow ||v_r|| = 0 \Rightarrow \Delta_N = \Delta_N^{en} = \Delta_{N,s} = 0$$

Bemerkung.

- Dies ist initialer Wunsch an eine Fehlerschranke: diese soll verschwinden falls exakte Approximation vorliegt. Dies ist Grundlage dafür, dass der Faktor der Überschätzung endlich ist.
- Aussage ist trivial für *effektive* Fehlerschätzer (sehen wir bald), aber in komplexen Problemen kann 3.14 schon das maximal erreichbare sein.
- 3.14 ist wieder sinnvoll um Programmcode zu validieren.

Satz 3.15 (A-posteriori Fehlerschranken, relative Fehler)

Mit Bezeichnungen/Voraussetzungen aus 3.13 und unter Annahme, dass alle Brüche im Folgenden wohldefiniert sind, gilt:

i) Für den relativen Fehler gilt in Energienorm:

$$\frac{\|e(\mu)\|_{\mu}}{\|u(\mu)\|_{\mu}} \le \Delta_{N}^{en,rel}(\mu) := 2 \frac{\|v_{r}\|}{\sqrt{\alpha_{LB}(\mu)}} \cdot \frac{1}{\|u_{N}(\mu)\|_{\mu}} \quad \text{falls} \quad \Delta_{N}^{en,rel} \le 1$$

ii) Für den relativen Fehler gilt in X-Norm:

$$\frac{\|e(\mu)\|}{\|u(\mu)\|} \leq \Delta_N^{rel}(\mu) := 2\frac{\|v_r\|}{\alpha_{LB}(\mu)} \cdot \frac{1}{\|u_N(\mu)\|} \quad \text{falls} \quad \Delta_N^{rel} \leq 1$$

Beweis.

i) Falls $\Delta_N^{en,rel}(\mu) \leq 1$, so ist

$$\left| \frac{\|u\|_{\mu} - \|u_{N}\|_{\mu}}{\|u_{N}\|_{\mu}} \right| \stackrel{\Delta\text{-Ungl.}}{\leq} \frac{\|u - u_{N}\|_{\mu}}{\|u_{N}\|_{\mu}} = \frac{\|e\|_{\mu}}{\|u_{N}\|_{\mu}} \stackrel{3.13 \text{ i})}{\leq} \frac{\|v_{r}\|}{\sqrt{\alpha_{LB}(\mu)} \|u_{N}\|_{\mu}}$$

$$= \frac{1}{2} \Delta_{N}^{en,rel}(\mu) \leq \frac{1}{2}$$

Falls $||u_N||_{\mu} > ||u||_{\mu}$ gilt $||u_N||_{\mu} - ||u||_{\mu} \le \frac{1}{2} ||u_N||_{\mu}$ also

$$\frac{1}{2}||u_N||_{\mu} \le ||u||_{\mu} \tag{*}$$

Falls $||u||_{\mu} \ge ||u_N||_{\mu}$, so ist (*) klar. Damit folgt

$$\frac{\|e\|_{\mu}}{\|u\|_{\mu}} \overset{3.13 \text{ i})}{\leq} \frac{\|v_r\|}{\sqrt{\alpha_{LB}}} \cdot \frac{1}{\|u\|_{\mu}} \overset{(*)}{\leq} \frac{\|v_r\|}{\sqrt{\alpha_{LB}}} \cdot \frac{1}{\|u_N\|_{\mu}} \cdot 2 = \Delta_N^{en,rel}(\mu)$$

ii) analog zu i).

Bemerkung.

• Analog folgt auch relativer Ausgabefehlerschätzer

$$\frac{|s(\mu) - s_N(\mu)|}{|s(\mu)|} \le \Delta_{N,s}^{rel}(\mu) := \frac{\|l(\cdot; \mu)\| \cdot \Delta_N}{|s_N(\mu)|} \cdot 2 \quad \text{falls} \quad \Delta_{N,s}^{rel}(\mu) \le 1$$

• Relative Fehlerschranken sind nur mit Zusatzbedingung ($\Delta^{rel}_* \leq 1$) gültig. Diese Bedingung ist jedoch konkret überprüfbar. Falls $\Delta^{rel}_N(\mu) > 1$, sollte der RB-Raum verbessert werden.

Satz 3.16 (Effektivität der Fehlerschranken)

Mit Bezeichnungen aus 3.13 sei $u(\mu) \neq u_N(\mu)$ und $\gamma_{UB}(\mu) < \infty$ eine obere Schranke an $\gamma(\mu)$. Dann sind die **Effektivitäten** $\eta_N^{en}(\mu)$ und $\eta_N(\mu)$ definiert und beschränkt durch

i)

$$\eta_N^{en}(\mu) := \frac{\Delta_N^{en}(\mu)}{\|e\|_{\mu}} \le \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}$$

Falls $a(\,\cdot\,,\cdot\,;\mu)$ symmetrisch, gilt sogar $\eta_N^{en}(\mu) \leq \sqrt{\frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}}$

ii)

$$\eta_N(\mu) := \frac{\Delta_N(\mu)}{\|e\|_{\mu}} \le \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}$$

Beweis.

ii)
$$||v_r||^2 = \langle v_r, v_r \rangle = r(v_r) = a(e, v_r) \le \gamma_{UB}(\mu) ||e|| ||v_r||$$

 $||v_r|| \le \gamma_{UB}(\mu) ||e||$ (3.4)

Damit

$$\frac{\Delta_N(\mu)}{\|e\|} = \frac{\|v_r\|}{\alpha_{LB}} \cdot \frac{1}{\|e\|} \stackrel{(3.4)}{\leq} \frac{\gamma_{UB}}{\alpha_{LB}} \cdot \frac{\|e\|}{\|e\|}$$

i)
$$\frac{\Delta_N^{en}(\mu)}{\|e\|_{\mu}} = \frac{\|v_r\|}{\sqrt{\alpha_{LB}}} \cdot \underbrace{\frac{1}{\|e\|_{\mu}}}_{\geq \sqrt{\alpha_{LB}} \cdot \|e\|} \leq \frac{\|v_r\|}{\alpha_{LB}} \cdot \frac{1}{\|e\|} \stackrel{\text{ii}}{\leq} \frac{\gamma_{UB}}{\alpha_{LB}}$$

Falls $a(\cdot,\cdot)$ symmetrisch, gilt wegen Normäquivalenz

$$||v_r||_{\mu} \le \sqrt{\gamma_{UB}} ||v_r||$$

und

$$||v_r||^2 = a(e, v_r) \stackrel{\text{CS}}{\leq} ||e||_{\mu} ||v_r||_{\mu} \quad \Rightarrow \quad ||v_r|| \leq ||e||_{\mu} \cdot \sqrt{\gamma_{UB}}$$

Damit

$$\frac{\Delta_N^{en}(\mu)}{\|e\|_{\mu}} = \frac{\|v_r\|}{\sqrt{\alpha_{LB}}} \cdot \frac{1}{\|e\|_{\mu}} \le \frac{\|e\|_{\mu} \cdot \sqrt{\gamma_{UB}}}{\sqrt{\alpha_{LB}} \cdot \|e\|_{\mu}}$$

Bemerkung.

• Wir nennen Δ_N , Δ_N^{en} daher "effektive" Fehlerschranken weil Faktor der Überschätzung höchstens $\frac{\gamma_{UB}}{\alpha_{LB}}$ beträgt.

• "Rigorosität" also äquivalent mit $\eta_N(\mu) \geq 1$.

• Für den Ausgabefehler $\Delta_{N,s}(\mu)$ ohne weitere Annahmen keine Effektivität beweisbar. Tatsächlich kann $\frac{\Delta_{N,s}}{|s-s_N|}$ beliebig groß oder nicht definiert sein, falls $\Delta_{N,s} \neq 0$, aber $s(\mu) = s_N(\mu)$:

Wähle X_N und μ so dass $u(\mu) \neq u_N(\mu)$, wird erreicht durch $u(\mu) \notin X_N$

$$\Rightarrow e(\mu) \neq 0 \Rightarrow \Delta_N \neq 0, \Delta_{N,s} \neq 0$$
 falls $l \neq 0$

Wähle $l(\cdot; \mu) \neq 0$, so dass $l(u - u_N; \mu) = 0$

$$\Rightarrow s(\mu) - s_N(\mu) = l(u - u_N; \mu) = 0$$

• Wir nennen die Fehlerschranken auch *Fehlerschätzer* weil sie äquivalent zum Fehler sind.

$$||e|| \le \Delta_N \le \eta_N ||e||$$

Satz 3.17 (Effektivität, relative Fehlerschätzer)

Für $\Delta_N^{rel}(\mu)$ aus 3.15 ist Effektivität definiert und beschränkt durch

$$\eta_N^{rel}(\mu) := \frac{\Delta_N^{rel}(\mu)}{\frac{\|e\|}{\|u\|}} \le 3 \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)} \quad \text{falls} \quad \Delta_N^{rel}(\mu) \le 1$$

Beweis. Wie in Beweis zu 3.15 impliziert $\Delta_N^{rel} \leq 1$:

$$\left| \frac{\|u\| - \|u_N\|}{\|u\|} \right| \le \frac{1}{2}$$

Falls $||u_N|| \le ||u||$ so gilt $||u|| - ||u_N|| \le \frac{1}{2} ||u_N||$ also

$$||u|| \le \frac{3}{2}||u_N||$$

Falls $||u_N|| > ||u||$, so ist (*) klar. Dann gilt

$$\eta_N^{rel}(\mu) = \underbrace{\frac{2\|v_r\|}{\alpha_{LB}(\mu)\|u_N\|}}_{\Delta_N^{rel}} \cdot \frac{1}{\frac{\|e\|}{\|u\|}} \stackrel{(3.4)}{\leq} 2\frac{\gamma_{UB}\|e\|}{\alpha_{LB}\|e\|} \cdot \frac{\|u\|}{\|u_N\|} \stackrel{(*)}{\leq} 3\frac{\gamma_{UB}}{\alpha_{LB}}$$

Bemerkung.

• Ähnlich für $\Delta_N^{en,rel}$

• Verbesserung von Schranken und Effektivität durch Normwechsel.

Wähle $\bar{\mu} \in \mathcal{P}$ und $||u|| := ||u||_{\bar{\mu}}$ als neue Norm auf X. Dann gilt für symmetrisches $a: \alpha(\bar{\mu}) = 1 = \gamma(\bar{\mu})$ also Effektivitäten $\eta_N, \eta_N^{en} = 1$, Schätzer sind genau der echte Fehler. Dies lässt u_N unberührt, liefert aber bessere Fehlerschätzung. Im Fall von Stetigkeit bzgl. μ kann auch in Umgebung von $\bar{\mu}$ gute Effektivität erwartet werden.

Satz 3.18 (Ausgabefehlerschranke und Effektivität, compliant Fall) Sei $a(\cdot,\cdot;\mu)$ symmetrisch, l=f. Dann erhalte verbesserte Ausgabeschranke

$$0 \le s(\mu) - s_N(\mu) \le \bar{\Delta}_{N,s}(\mu) := \frac{\|v_r\|^2}{\alpha_{LB}}$$

und Effektivität

$$\bar{\eta}_{N,s}(\mu) := \frac{\bar{\Delta}_{N,s}(\mu)}{s(\mu) - s_N(\mu)} \le \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}$$

Beweis. Nach Satz 3.10 ii) und 3.13 gilt

$$0 \stackrel{3.10}{\leq} s(\mu) - s_N(\mu) = \|u - u_N\|_{\mu}^2 = \|e\|_{\mu}^2 \stackrel{3.13}{\leq} \Delta_N^{en}(\mu)^2 = \bar{\Delta}_{N,s}(\mu)$$

Für Effektivität gilt entsprechend mit 3.16 i)

$$\bar{\eta}_{N,s}(\mu) = \frac{\bar{\Delta}_{N,s}}{s(\mu) - s_N(\mu)} \stackrel{\text{3.10}}{=} \frac{\Delta_N^{en}(\mu)^2}{\|u - u_N\|_{\mu}^2} = \eta_N^{en}(\mu)^2 \stackrel{\text{3.16}}{=} \sqrt{\frac{\gamma_{UB}}{\alpha_{LB}}}^2 = \frac{\gamma_{UB}}{\alpha_{LB}}$$

Bemerkung. Analog kann man im compliant Fall eine relative Ausgabefehlerschranke und Effektivität beweisen.

$$\frac{s(\mu) - s_N(\mu)}{s(\mu)} \leq \bar{\Delta}_{N,s}^{rel}(\mu) := \frac{\|v_r\|^2}{\alpha_{LB} s_N(\mu)}$$

und

$$\bar{\eta}_{N,s}^{rel}(\mu) := \frac{\bar{\Delta}_{N,s}^{rel}}{\frac{\underline{s(\mu)} - \underline{s_N(\mu)}}{\underline{s(\mu)}}} \le 2 \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}$$

falls $\bar{\Delta}_{N,s}^{rel}(\mu) \leq 1$.

Bemerkung (Zusammenfassende Relevanz der Fehlerschätzer).

- Rigorose obere Schranke für tatsächlichen Fehler nicht nur "Indikatoren" wie bei FEM.
- Effektivität Faktor der Überschätzung des Fehlers ist klein und bleibt beschränkt. Insbesondere:

$$e(\mu) = 0 \Rightarrow \Delta_N(\mu) = 0$$

also "a-posteriori" exakte Approximation verifizierbar.

- Theoretische Untermauerung der i.A. empirischen Basiswahl.
- Unabhängig von Basiswahl sind Fehlerschätzer anwendbar, auch für nicht-Snapshot-Basen (z.B. Krylov-Unterräume, etc.).
- Effiziente Berechnung: Durch Offline-Online-Zerlegung (→ §3.3) ist neben reduzierter Simulation auch Fehlerschranken & Effektivitätsschranken schnell berechenbar.
- Weitere Einsatzmöglichkeiten: Offline zur Basisgenerierung (\leadsto §3.4) und Online zur adaptiven Dimensionswahl.

Numerische Beispiele

demos_chapter3(1) Thermischer Block aus Beispiel 2.10, $B_1 = B_2 = 2$; N = 5, $\langle \cdot, \cdot \rangle_X := \langle \cdot, \cdot \rangle_{H_0^1}$,

$$S_N = \{0.1, 0.5, 0.9, 1.4, 1.7\} \times \{0.1\}^3 \subseteq \mathbb{R}^4$$

Erkenntnisse:

- Fehlerschätzer kann günstig für sehr feines Parametergitter berechnet werden, Fehler ist teuer zu berechnen, daher nur in wenigen Punkten.
- Fehler und Schätzer sind 0 für Basisparameter (bestätigt 3.8, 3.14).
- Fehlerschätzer ist obere Schranke für Fehler gemäß 3.13.
- Für kleine Werte von μ_1 größere Fehler \Rightarrow gute Wahl von S_N wird vermutlich (und später bewiesen) hier mehr Samples benötigen.

demos_chapter3(2) Effektivitäten $\eta_N(\mu)$ und obere Schranke $\frac{\gamma}{\alpha} \leq \frac{\mu_{max}}{\mu_{min}}$. Erkenntnisse:

- Effektivitäten sind gut, nur etwa Faktor 10 über Fehler.
- Obere Schranke für Effektivität gemäß 3.16.
- Effektivitäten sind undefiniert für Parametersamples $\mu \in S_N$ (Division durch Null).

 $demos_chapter3(3)$ Fehlerkonvergenz bezüglich N.

$$B_1 = B_2 = 3, \quad \mu_1 \in [0.5, 2], \quad \mu = (\mu_1, 1, \dots, 1) \in \mathbb{R}^9$$

Lagrange-Basis mit Gram-Schmidt-Orthonormierung, $\{\mu_i\}_{i=1}^N$ äquidistant. Erkenntnisse für Testfehler: (Maximierung über 100 zufällige Parameter)

$$S_{test} \subset \mathcal{P}, \quad |S_{test}| = 100$$

- Exponentielle Konvergenz für Fehler und Schätzer.
- Obere Schranke sehr gut.
- Numerische Ungenauigkeiten für Schätzer.

3.3 Offline/Online-Zerlegung

Bisher:

- $(P_N(\mu))$ niedrigdimensional, aber noch keine schnelle Berechnungsvorschrift.
- Um "berechenbares" Verfahren zu erhalten: Forderung dim $X < \infty$ in diesem Kapitel.
- Für effiziente Berechnung ist separierbare Parameterabhängigkeit von $(P(\mu))$ essenziell.

Offline-Phase:

- Typischerweise berechnungsintensiv, Komplexität polynomiell in $H := \dim X$
- Einmal durchgeführt.
- Berechnung *hochdimensionaler* Daten: Snapshots, reduzierte Basis, Riesz-Repräsentanten. ("detailed_data" in RBmatlab)
- Projektion der hochdimensionalen Daten in *parameterunabhängigen niedrig-dimensionalen* Daten. ("reduced_data")

Online-Phase:

- Schnelle Berechnung, Komplexität polynomiell in N, Q_a , Q_f , Q_l , unabhängig $von\ H$.
- Typischerweise häufig ausgeführt für variierendes μ .

- Assemblierung des reduzierten parametrischen Systems für $(P_N(\mu))$.
- Lösen von $(P_N(\mu))$.
- Berechnung von Fehlerschranken und Effektivität.

Komplexitätsbetrachtung der bisherigen Formulierung

- Mit dim X = H und dünnbesetzter Matrix für $(P(\mu))$ ist Lösung z.B. in $\mathcal{O}(H^2)$ erreichbar (z.B. H Schritte eines iterativen Lösers mit $\mathcal{O}(H)$ Komplexität für Matrix-Vektor-Multiplikation dank Dünnbesetztheit).
- $N \times N$ System für $(P_N(\mu))$ ist vollbesetzt, also in $\mathcal{O}(N^3)$ lösbar, also $N \ll H$ erforderlich, um Gewinn zu bewirken.
- Genaue Betrachtung der Berechnung von $u_N(\mu)$:
 - 1. N Snapshots berechnen mittels $(P(\mu))$: $\mathcal{O}(N \cdot H^2)$
 - 2. N^2 Auswertungen von $a(\varphi_i, \varphi_j; \mu) : \mathcal{O}(N^2 \cdot H)$
 - 3. N Auswertungen von $f(\varphi_i; \mu)$: $\mathcal{O}(N \cdot H)$
 - 4. Lösen des $N \times N$ Systems für $(P_N(\mu))$: $\mathcal{O}(N^3)$
- Wir haben noch keine Offline/Online-Zerlegung: 1. gehört zur Offline-Phase, 4. gehört zur Online-Phase, aber 2. und 3. können nicht in Offline-Phase berechnet werden (wegen Parameterabhängigkeit) und nicht in Online-Phase (wegen *H*-Abhängigkeit).
 - \rightarrow Zerlegung von 2. und 3. mittels separierbarer Parameterabhängigkeit

Definition 3.19 (Notation für Zerlegung von $(P(\mu))$)

Unter Annahme $H = \dim X < \infty, X = \operatorname{span} \{\psi_i\}_{i=1}^H$, definiere Matrix

$$K := (\langle \psi_i, \psi_j \rangle)_{i,j=1}^H \in \mathbb{R}^{H \times H}$$
 "Gram'sche Matrix" / "Skalarprodukt-Matrix"

Mit separierbare Parameterabhängigkeit definiere Matrizen und Vektoren

$$A^{q} := (a^{q}(\psi_{j}, \psi_{i}))_{i,j=1}^{H} \in \mathbb{R}^{H \times H}, \qquad q = 1, \dots, Q_{a}$$

$$\underline{f}^{q} := (f^{q}(\psi_{i}))_{i=1}^{H} \in \mathbb{R}^{H}, \qquad q = 1, \dots, Q_{f}$$

$$\underline{l}^{q} := (l^{q}(\psi_{i}))_{i=1}^{H} \in \mathbb{R}^{H}, \qquad q = 1, \dots, Q_{l}$$

Korollar 3.20 (Lösung von $(P(\mu))$)

Lösung von $(P(\mu))$ wird erhalten durch Assemblieren des vollen Systems

$$A(\mu) = \sum_{q=1}^{Q_a} \Theta_a^q(\mu) \cdot A^q, \quad \underline{f}(\mu) = \sum_{q=1}^{Q_f} \Theta_f^q(\mu) \underline{f}^q, \quad \underline{l}(\mu) = \sum_{q=1}^{Q_l} \Theta_l^q(\mu) \underline{l}^q$$

und Lösen von $A(\mu)\underline{u}(\mu) = \underline{f}(\mu)$ nach $\underline{u}(\mu) = (u_i)_{i=1}^H \in \mathbb{R}^H$ und

$$u(\mu) = \sum_{i=1}^{H} u_i \varphi_i \in X, \quad s(\mu) = \underline{l}^T(\mu) \cdot \underline{u}(\mu)$$

Beweis. Klar mit Definitionen.

Bemerkung.

• Das Vorliegen der A^q , \underline{f}^q , \underline{l}^q ist nicht trivial im Fall von "fremden" Diskretisierungspaketen und stellt wesentliche Schwierigkeit in breiter praktischer Anwendung dar. Motivation für Eigenentwicklung von Diskretisierungscode.

 $\bullet\,$ Sinn von Matrix K ist Berechnung von Skalarprodukten und Normen, z.B. für

$$u = \sum u_i \psi_i, \quad v = \sum v_i \psi_i \in X \quad \text{für} \quad \underline{u} = (u_i), \underline{v} = (v_i)_{i=1}^H \in \mathbb{R}^H$$
$$\Rightarrow \langle u, v \rangle_X = \sum_{i,j} u_i v_j \langle \psi_i, \psi_j \rangle = \underline{u}^T K \underline{v}$$

Korollar 3.21 (Offline-/Online- Zerlegung für $(P_N(\mu))$)

(Offline:) Nach Konstruktion einer Basis $\Phi_N = \{\varphi_1,...,\varphi_N\}$ berechne parameter-unabhängige Komponenten-Matrizen & Vektoren

$$A_N^q := (a^q(\varphi_j, \varphi_i))_{i,j=1}^N \in \mathbb{R}^{N \times N}, \qquad q = 1, ..., Q_n$$
$$\underline{\mathbf{f}}_N^q := (f^q(\varphi_i))_{i=1}^N, \qquad \underline{\mathbf{l}}_N^q := (l^q(\varphi_i))_{i=1}^N \in \mathbb{R}^N, \qquad q = 1, ..., Q_f/Q_l$$

(Online:) Zu $\mu \in \mathcal{P}$ berechne Koeffizienten $\Theta^q_a(\mu), \Theta^q_f(\mu), \Theta^q_l(\mu)$ und

$$A_N(\mu) := \sum_q \Theta^q_a(\mu) A^q_N$$

$$\underline{\mathbf{f}}_N(\mu) := \sum_q \Theta_f^q(\mu) \underline{\mathbf{f}}_N^q \,, \qquad \underline{\mathbf{l}}_N(\mu) := \sum_q \Theta_l^q(\mu) \underline{\mathbf{l}}_N^q$$

Dies liefert genau das diskrete System $A_N(\mu)\underline{\mathbf{u}}_N = f_N(\mu)$ aus 3.6 welches nach $\underline{\mathbf{u}}_N$ gelöst wird und $u_N(\mu), s_N(\mu)$ ergibt

Beweis. klar wg. Separierbarkeit

Bemerkung (Einfache Berechnung von $A_N^q, \underline{\mathfrak{l}}_N^q, \underline{\mathfrak{l}}_N^q$). Die reduzierten Komponenten benötigen keinerlei Integration über Ω oder Gitterdurchlauf, falls hochdim. A^q vorliegen. Sei Basis Φ_N gegeben durch Koeffizientenmatrix

$$\Phi_N := (\varphi_{ji})_{i=1, j=1}^H, \sum_{j=1}^N \in \mathbb{R}^{N \times N} \quad \text{mit } \varphi_j = \sum_{i=1}^H \varphi_{ji} \psi_i$$

Dann erhalte reduzierten Komponenten durch Matrix-Multi

$$A_N^q := \underline{\Phi}_N^T A^q ; \underline{\mathbf{f}}_N^q := \underline{\Phi}_N^T \underline{\mathbf{f}}^q ; \underline{\mathbf{l}}_N^q := \underline{\Phi}_N^T l^q$$

Bemerkung.

- Offline-Phase benötigt $\mathcal{O}(NH^2 + NH(Q_f + Q_l) + N^2HQ_a)$ für die Berechnung von $\Phi_N, f_N^q, l_N^q, A_N^q$ dominiert von der Basisgenerierung.
- Online-Phase skaliert mit $\mathcal{O}(N^2Qa + N(Q_f + Q_l) + N^3)$ für Berechnung von $A_N(\mu), f_N(\mu), l_N(\mu)$ und $\underline{\mathbf{u}}_N(\mu)$ dominiert durch LGS lösen falls Q_a, Q_f, Q_l klein sind. Insbesondere komplett unabhängig von H, wie gewünscht.
- Laufzeitdiagramm Seien $t_{detail}, t_{offline}, t_{online}$, die Laufzeiten für einzelne Lösungen von $(P(\mu))$, Offline-Phase bzw. Online-Phase von $(P_N(\mu))$. Unter Annahme, dass diese konstant unter Parametervariation, erhalte affin-lineare Beziehung der Gesamtlaufzeit für k parameterische Lösungen

$$t(k) := k \cdot t_{detail}, \qquad t_N(k) = t_{offline} + k \cdot t_{online}$$

Das reduzierte Modell zahlt sich aus, sobald mehr als $k* := \frac{t_{offline}}{t_{detail} - t_{online}}$ Lösungen berechnet werden sollen.

Abbildung 6: Laufzeiten mit wachsender Anzahl an Simulationen. (aus B. Haasdonk, Reduzierte-Basis-Methoden, Skript zur Vorlesung SS 2011, Universität Stuttgart, IANS-Report 4/11, 2011.)

Bemerkung (Keine Unterscheidung zwischen u und u_h). Erinnerung: Wir unterscheiden (meistens) nicht in Notation zwischen u_h (FEM-Lösung) und u (Sobolev-Raum Lösung). Dies kann nun begründet werden:

- i) Die Online-Phase ist unabhängig von $H = \dim(X)$, daher kann H beliebig groß und damit u_h beliebig präzise gemacht werden durch geeignete Diskretisierung mit genügend feinem Gitter, so dass u und u_h praktisch ununterscheidbar sind $(||u u_h||$ beliebig klein aber $(P_N(\mu))$ schnell lösbar).
- ii) In der Praxis wird Reduktionsfehler den Gesamtfehler dominieren, der (FEM-)Diskretisierungsfehler spielt untergeordnete Rolle.

$$\epsilon := ||u - u_h|| \ll ||u_h - u_N||$$

$$\Rightarrow ||u_h - u_N|| - \epsilon \leq \underbrace{||u - u_N||}_{\text{theoretisch das Ideal}} \leq \underbrace{||u_h - u_N||}_{\text{theoretisch das Ideal}} + \epsilon$$

also kontrollieren wir durch Fehlerschranken für $||u_h - u_N||$ bis auf ϵ auch den eigentlich interessanten Fehler $||u - u_N||$.

Offline-/Online- Zerlegung für Fehlerschranken/Effektivitätsschranken

Für schnelle Berechnung der Fehlerschranken & Effektivitätsschranken benötigen wir Zerlegung für

- Duale Norm des Residuums $||r(\cdot;\mu)||_{X'} = ||v_r||$ für alle Fehlerschranken
- Duale Norm des Ausgabefunktionals $||l(\cdot;\mu)||_{X'}$ für $\Delta_{N,s}(\mu)$
- Norm $||u_N(\mu)||_X$ der RB-Lösung für relativen Energienormfehlerschätzer $\Delta_N^{en,rel}$.
- Untere/obere Schranke $\alpha_{LB}(\mu)$ bzw. $\gamma_{UB}(\mu)$ für Koerzivitäts- bzw. Stetigkeitskonstante für Fehlerschätzer bzw. Effektivitätsschranken.

Separierbarkeit von $(P(\mu))$ überträgt sich auf Residuum

Satz 3.22 (Separierbare Parameter-Abhängigkeit für $r(\cdot; \mu)$)

Seien a,f sep. parametrisch. Nach Riesz existieren $v_f^q \in X$ mit $\langle v_f^q,v \rangle = f^q(v) \ \forall v \in X,\ q=1,...,Q_f$ und $v_a^{q,n} \in X$ mit $\langle v_a^{q,n},v \rangle = a^q(\varphi_n,v),\ v \in X,\ q=1,...,Q_a,\ n=1,...,N$ Setze $Q_r:=NQ_a+Q_f$ und Aufzählung von $\{v_a^{q,n},v_f\}$ durch

$$(v_r^1,...,v_r^{Q_r}):=(v_f^1,...,v_f^{Q_f},v_a^{1,1},...,v_a^{Q_a,1},v_a^{1,2},...,v_a^{Q_a,2},...,v_a^{Q_a,N})$$

Für $\mu \in \mathcal{P}$ sei $u_N = \sum_{n=1}^N u_{Nn} \varphi_n$ Lösung von $(P_N(\mu))$ und hiermit definiere

$$(\Theta_r^1(\mu), \dots, \Theta_r^{Q_r}(\mu)) := (\Theta_f^1(\mu), \dots, \Theta_f^{Q_f}(\mu), -\Theta_a^1(\mu), \dots, -\Theta_a^{Q_a}(\mu)u_{N1}, -\Theta_a^1(\mu)u_{N2}, \dots \\ \dots, -\Theta_a^{Q_a}(\mu)u_{N2}, \dots, -\Theta_a^{Q_a}(\mu)u_{NN})$$

Mit $r^q(\cdot) := \langle v_r^q, \cdot \rangle \in X'$, $q = 1,...,Q_r$ sind $r(\cdot; \mu)$ und $v_r(\mu)$ separierbar parametrisch via

$$r(\,\cdot\,;\mu) = \sum_{q=1}^{Q_r} \Theta_r^q(\mu) \cdot r^q(\,\cdot\,), \qquad v_r(\mu) = \sum_{q=1}^{Q_r} \Theta_r^q(\mu) \cdot v_r^q \qquad \forall \mu \in \mathcal{P}$$

Beweis. Definition und Linearität ergibt:

$$\begin{split} \langle v_r(\mu), v \rangle &= r(v; \mu) = f(v; \mu) - a(u_N(\mu), v; \mu) \\ &= \sum_q \Theta_f^q(\mu) f^q(v) - \sum_q \sum_n \Theta_a^q(\mu) u_{Nn} a^q(\varphi_n, v) \\ &= \langle \sum_q \Theta_f^q(\mu) v_f^q - \sum_q \sum_n \Theta_a^q(\mu) u_{Nn} v_a^q, v \rangle \\ &\underbrace{\sum_q \Theta_r^q(\mu) v_r^q} \\ &= \sum_{q=1}^{Q_r} \Theta_r^q(\mu) r^q(v) \qquad \forall v \in X \end{split}$$

Offensichtlich Berechnung von Riesz-Repräsentant notwendig, dies geschieht durch Ausnutzen der Endlichdim. von $X = \text{span}\{\psi_i\}_{i=1}$ und $K := (\langle \psi_i, \psi_j \rangle)_{i,j=1}^H$

Satz 3.23 (Berechnung von Riesz-Repr.)

Für $g \in X'$ erhält man Koeffizientenvektor $\underline{\mathbf{v}} = (v_i)_{i=1}^H \in \mathbb{R}^H$ seines Riesz-Repräsentanten $v_g = \sum_{i=1}^H v_i \, \psi_i \in X$ durch lösen von

$$K\underline{\mathbf{v}} = g \tag{3.5}$$

mit Vektor $\underline{g} := (g(\psi_i))_{i=1}^H \in \mathbb{R}^H$

Beweis. Für jedes $u = \sum_{i=1}^H u_i \, \psi_i \in X$ mit Koeffizientenvektor $\underline{\mathbf{u}} = (u_i)_{i=1}^H$ erhalten wir

$$g(u) = g(\sum u_i \psi_i) = \sum u_i g(\psi_i) = \underline{\mathbf{u}}^T \underline{g} \stackrel{3.5}{=} \underline{\mathbf{u}}^T K \underline{\mathbf{v}} = \langle u, v_g \rangle$$

Bemerkung. 3.5 ist typischerweise dünn besetzt, also mit iterativen LGS-Lösern berechenbar.

Korollar 3.24 (Offline-/Online- für Residuen-Norm)

(Offline:) Nach Offline von $(P_N(\mu))$ gemäß 3.21 def. $G_r := (r^q(v_r^{q'}))_{q,q'=1}^{Q_r} \in \mathbb{R}^{Q_r \times Q_r}$ mittels Residuen-Komponenten r^q und Riesz-Repr. v_r^q aus 3.22 (Online:) Für $\mu \in \mathcal{P}$ und RB-Lösung $\underline{\mathbf{u}}_N \in \mathbb{R}^N$ berechne Residuen-Koeff-Vektor $\underline{\Theta}_r(\mu) = (\Theta_r^1(\mu), ..., \Theta_r^{Q_r}(\mu))^T \in \mathbb{R}^{Q_r}$. Dann gilt:

$$||v_r(\mu)||_X = ||r(\cdot;\mu)||_X = \sqrt{\underline{\Theta}_r(\mu)^T \cdot G_r \underline{\Theta}_r(\mu)}$$
(3.6)

Beweis. Zunächst sehen wir $G_r=(\langle v_r^q,v_r^{q'}\rangle)_{q,q'=1}^{Q_r}$. Isometrie der Riesz-Abbildung & Separierbarkeit ergeben

$$||r(\mu)||_{X}^{2} = ||v_{r}(\mu)||_{X}^{2} = \langle \sum_{q=1}^{Q_{r}} \Theta_{r}^{q}(\mu) \, v_{r}^{q}, \sum_{q'=1}^{Q_{r}} \Theta_{r}^{q'}(\mu) \, v_{r}^{q'} \rangle = \underline{\Theta}_{r}^{T} \cdot G_{r} \cdot \underline{\Theta}_{r}(\mu)$$

Bemerkung (Stabilisierung durch Orthonormierung von $\{v_r^q\}$). Wie in demos_chapter3(3) gesehen, existiert eine Genauigkeitsgrenze für Fehlerschätzer, diese liegt in numerischen Auslöschungseffekten in 3.6 begründet, denn G_r ist potentiell schlecht konditioniert. Gemäß einer Idee von Behr & Rave 2014 lässt sich die Genauigkeit steigern, indem die $\{v_r^q\}$ orthonormiert werden und 3.6 mit entsprechender Transformationsmatrix modifiziert werden.

Korollar 3.25 (Offline-/Online- Zerlegung für $||l(\cdot;\mu)||_{X'}$) (Offline:) Berechne Riesz-Repr. $v_l^q \in X$ der Ausgabekommponenten, d. h.

$$\langle v_l^q, v \rangle = l^q(v) \qquad \forall v \in X, q = 1, ..., Q_l$$

und def. $G_l := (l^q(v_l^{q'})_{q,q'=1}^{Q_l} \text{ (Online:) Zu } \mu \in \mathcal{P} \text{ berechne } \underline{\Theta}_l(\mu) := (\Theta_l^1(\mu),...,\Theta_l^{Q_l}(\mu))$ und $||l(\cdot;\mu)||_{X'} = \sqrt{\underline{\Theta}_l^T G_l \underline{\Theta}_l}$

Beweis. analog zu
$$3.24$$

Korollar 3.26 (Offline-/Online für $||u_N(\mu)||_X$, $||u_N(\mu)||_{\mu}$) (Offline:) Nach der Offline-Phase von $(P_N(\mu))$ def.

$$K_N := (\langle \varphi_i, \varphi_j \rangle)_{i,j=1}^N \in \mathbb{R}^{N \times N}$$

(Online:) Zu $\mu \in \mathcal{P}$ berechne $A_N(\mu)$ und $\underline{\mathbf{u}}_N(\mu)$ durch Online-Phase von $(P_N(\mu))$

$$||u_N(\mu)||_X = \sqrt{\underline{\mathbf{u}}_N^T K_N \underline{\mathbf{u}}_N}$$

$$||u_N(\mu)||_{\mu} = \sqrt{\underline{\mathbf{u}}_N^T \left(\frac{1}{2} (A_N(\mu) + A_N(\mu)^T)\right) \underline{\mathbf{u}}_N}$$

Beweis.

$$||u_N||^2 = \langle \sum_n u_{Nn} \varphi_n , \sum u_{Nn'} \varphi_{n'} \rangle = \sum_{n,n'} u_{Nn} u_{Nn'} \langle \varphi_n, \varphi_{n'} \rangle = \underline{\mathbf{u}}_N^T \cdot K_N \cdot \underline{\mathbf{u}}_N$$

analog für Energienorm mit $A_{N,s} := \frac{1}{2}(A_N(\mu) + A_N(\mu)^T)$

Bemerkung. K_N wieder einfach aus K berechenbar (Übung).

Für Fehlerschranken fehlen noch untere Schranke $\alpha_{LB}(\mu) \leq \alpha(\mu)$, welche schnell berechenbar sein sollen. Falls $a(\cdot,\cdot;\mu)$ glm. koerziv bzgl. μ und $\bar{\alpha} < 0$ bekannt, so ist $\alpha_{LB}(\mu) := \bar{\alpha}$ gültige Wahlmöglichkeit. In gewissen Fällen kann eine größere und damit bessere Schranke angegeben werden.

Satz 3.27 ("Min- Θ -Verfahren" zur Berechnung von $\alpha_{LB}(\mu)$)

Seien $a^q(u,u) \ge 0 \ \forall q,u \text{ und } \Theta^q_a(\mu) > 0 \ \forall \mu$

(Offline:) Sei $\alpha(\bar{\mu})$ für ein $\bar{\mu} \in \mathcal{P}$ verfügbar

(Online:) Setze für $\mu \in \mathcal{P}$

$$\alpha_{LB}(\mu) := \alpha(\bar{\mu}) \cdot \min_{q} \frac{\Theta_a^q(\mu)}{\Theta_a^q(\bar{\mu})}$$

Dann gilt $0 < \alpha_{LB}(\mu) \le \alpha(\mu)$

Beweis. Wegen $0 < \alpha(\bar{\mu})$ und $0 < c(\mu) := \min_{q} \frac{\Theta_a^q(\mu)}{\Theta_a^q(\bar{\mu})}$ gilt $0 < \alpha(\bar{\mu}) \cdot c(\mu) := \alpha_{LB}(\mu)$ Folgende Argumentation ähnlich zu 2.6 ii) Für alle $u \in X$ gilt

$$a(u,u;\mu) = \sum_{q} \Theta_{a}^{q}(\mu) a^{q}(u,u) = \sum_{q} \frac{\Theta_{a}^{q}(\mu)}{\Theta_{a}^{q}(\bar{\mu})} \cdot \Theta_{a}^{q}(\bar{\mu}) a^{q}(u,u)$$

$$\geq \sum_{q} \underbrace{\left(\min_{q'} \frac{\Theta_{a}^{q'}(\mu)}{\Theta_{a}^{q'}(\bar{\mu})}\right)}_{c(\mu)} \cdot \Theta_{a}^{q}(\bar{\mu}) a^{q}(u,u)$$

$$= c(\mu) \cdot \sum_{q} \Theta_{a}^{q}(\bar{\mu}) a^{q}(u,u) = c(\mu) a(u,u;\bar{\mu})$$

$$\stackrel{\text{glm. koerziv bzgl}\mu}{\geq} c(\mu) \cdot \alpha(\bar{\mu}) \cdot ||u||^{2}$$

$$= \alpha_{LB}(\mu) \cdot ||u||^{2}$$

Also insbesondere

$$\alpha(\mu) = \inf_{u} \frac{a(u, u; \mu)}{||u||^2} \ge \alpha_{LB}(\mu)$$

Bemerkung.

• "Min- Θ " kann für Thermischen Block angewandt werden

- obiges gilt auch für nichtsymm. $a(\cdot, \cdot)$
- $\alpha(\bar{\mu})$ kann mittels eines hochdimensionalen Eigenwertproblems bestimmt werden:

Satz 3.28 (Berechnung von $\alpha(\mu)$ für $(P(\mu))$)

Seien $A(\mu)$, $K \in \mathbb{R}^{H \times H}$ wie in 3.19/3.20.

Setze $A_s(\mu) := \frac{1}{2}(A(\mu) + A(\mu)^T)$. Dann gilt

$$\alpha(\mu) = \lambda_{\min}(K^{-1}A_s(\mu))$$

wobei λ_{\min} den kleinsten Eigenwert bezeichnet.

Beweis. Sie $K = LL^T$ (z. B. Cholesky oder Matrix-Wurzel) und verwende $\underline{\mathbf{v}} = L^T\underline{\mathbf{u}}$:

$$\alpha(\mu) = \inf_{u \in X} \frac{a(u, u; \mu)}{||u||^2} = \inf_{\underline{u} \in \mathbb{R}^H} \frac{\underline{u}^T A(\mu) \underline{u}}{\underline{u}^T K \underline{u}}$$

$$= \inf_{\underline{u} \in \mathbb{R}^H} \frac{\underline{u}^T A_s(\mu) \underline{u}}{\underline{u}^T K \underline{u}}$$

$$= \inf_{\mathbf{v} \in \mathbb{R}^H} \frac{\underline{v}^T L^{-1} A_s}{\underline{v}^T L^{-1} L L^T L^{-T} \mathbf{v}} = \inf_{\mathbf{v} \in \mathbb{R}^H} \frac{\underline{v}^T L^{-1} A_s L^{-T} \underline{v}}{\underline{v}^T \mathbf{v}}$$

Also ist $\alpha(\mu)$ Minimum eines Rayleigh-Quotionenten, also kleinster Eigenwert der symmetrischen & positiv definiten Matrix $\bar{A}_s := L^{-1}A_sL^{-T}$ Die Matrizen \bar{A}_s und $K^{-1}A_s$ sind ähnlich, da

$$L^{T}(K^{-1}A_{s})L^{-T} = L^{T}L^{-T}L^{-1}A_{s}L^{-T} = L^{-1}A_{s}L^{-T} = \bar{A}_{s}$$

Also haben sie identische Eigenwerte.

Bemerkung.

• Inversion von K muss verhindert werden. Daher verwende EW-Löser, welcher nur Matrix-Vektor-Multiplikation verwendet. Sobald ein Produkt $y = K^{-1}A_sx$ erforderlich ist, löst man das System $Ky = A_sx$. Alternativ kann auch kleinster EW eines verallgemeinerten EWP $A_s\underline{\mathbf{u}} = \lambda K\underline{\mathbf{u}}$ berechnet werden.

- Für variationelle Form des verallg. EWP für ∞ -dim $(P(\mu))$ siehe Patera & Rozza
- Für Probleme, bei denen die Voraussetzungen von Min- Θ nicht erfüllt sind, kann "Successive Constraint Method" (SCM) eine Alternative darstellen. \rightsquigarrow §4

Satz 3.29 ("Max- Θ "-Verfahren für $\gamma_{UB}(\mu)$, symmetrisches $a(\cdot,\cdot)$)

Sei a symmetrisch, koerziv, separierbar parametrisch mit a^q positiv semidefinit und $\Theta_a^q > 0 \ \forall q, u$

(Offline:) Sei $\bar{\mu} \in \mathcal{P}$ und $\gamma(\bar{\mu})$ berechnet

(Online:) Setze für $\mu \in \mathcal{P} : \gamma_{UB}(\mu) := \gamma(\bar{\mu}) \max_{q} \frac{\Theta_q^q(\mu)}{\Theta_q^q(\bar{\mu})}$. Dann gilt

$$\gamma(\mu) \le \gamma_{UB}(\mu) < \infty$$

Beweis. Übung. \Box

Bemerkung (Komplexitäten). Durch die angegebenen Berechnungsverfahren ist vollständige Offline-/Online-Zerlegung der RB-Lösung, Fehlerschranken und Effektivitätsschranken erreicht (Offline unabh. von μ , Online unabh. von H). Komplexitäten für $\Delta_N(\mu), \Delta_{N,s}(\mu)$:

• Offline: $\mathcal{O}(H^3 + H^2(Q_f + Q_l + NQ_a) + HQ_l^2 + H(Q_f + NQ_a)^2)$ für EWP für $\alpha(\bar{\mu})$, Riesz-Repräsentanten für f^q , l^q , $a^q(\varphi_n, \cdot)$ und Matrix G_l und G_r

• Online: $\mathcal{O}((Q_f + NQ_a)^2 + Q_l^2 + Q_a)$ für Berechnung von $||v_r(\cdot; \mu)||$, $||l(\cdot; \mu)||_{X'}$ und $\alpha_{LB}(\mu)$ durch Min- Θ . Problematisch ist quadratische Abhängigkeit von Q_f , Q_l , NQ_a , welches diese Größen in der Praxis stark einschränkt.

demos_chapter3(4) Beispiel-Lauf von Reduktionsschritten in RBmatlab.

- Vorteilhafte Eigenschaften einer Basis Φ_N : orthogonal für numerische Stabilität, Hierarchie, so dass Basisvektoren nach Relevanz geordnet sind, d.h. $(X_{N'})_{N'=1}^N$, $X_{N'} = \operatorname{span}\{\varphi_1, \ldots, \varphi_{N'}\}$ soll Sequenz von "optimalen" Räumen sein, damit durch Variation von N' eine Fehlerkontrolle erlaubt.
- Probleme (3.7), (3.8) stellen schwierige nichtlineare Optimierungsprobleme dar. Um zu praktischer Basisgenerierung zu kommen, werden verschiedene Vereinfachungen gemacht:
 - "Snapshotbasierte" Räume: Statt $Y \subset X$ beliebig, wird $Y = \text{span}\{u(\mu^i)\}_{i=1}^N$ mit unbekanntem $\{\mu^i\}_{i=1}^N$ gesucht.
 - "Diskretisierung des Parameterraumes". Statt $\mu \in \mathcal{P}$ wird Maximum bzw. Mittelung nur über $\mu \in \mathcal{S}_{train}$ durchgeführt, wobei $\mathcal{S}_{train} = \{\mu^i\}_{i=1}^n \subset \mathcal{P}$ endliche Menge von Trainingsparametern μ (z. B. Punkte eines äquidistanten Gitters oder zufällig gewählte Parameter oder mittels adaptiven Verfahren gewählt.
 - Statt eines Fehlermaßes, welches echte Lösung $u(\mu)$ erfordert, wird häufig ein Fehlerschätzer gewählt, welcher sehr viel schneller auswertbar ist.
 - Das resultierende vereinfachte Optimierungsproblem kann approximativ minimiert werden, indem statt simultan über $\{\mu^i\}_{i=1}^N$ zu optimieren, einzelne Basisvektoren der Reihe nach durch Optimierung bestimmt werden ("Greedy-Verfahren")

Definition 3.30 (Kolmogorov *n*-Weite)

Sei $\mathcal{M} \subseteq X$ kompakte Teilmenge. Zu einem abgeschlossenen Unterraum $Y \subseteq X$ nennen wir

$$d(Y,\mathcal{M}) := \sup_{v \in \mathcal{M}} \inf_{w \in Y} ||v - w|| = \sup_{v \in \mathcal{M}} ||v - P_Y v||$$

den **Abstand** von Y zu \mathcal{M} . Für $n \in N$ nennen wir

$$d_n(\mathcal{M}) := \inf_{Y \subset X, \dim(Y) = n} d(Y, \mathcal{M})$$

die **Kolmogorov** n-**Weite** der Menge \mathcal{M} . Als Abschwächung definieren wir

$$\bar{d}_n(\mathcal{M}) := \inf_{Y \subset \operatorname{span}(\mathcal{M}), \dim(Y) = n} d(Y, \mathcal{M}).$$

Bemerkung.

• d_n , \bar{d}_n fallen monoton.

- d_n , \bar{d}_n sind rein approximationstheoretische Maße, deren Abfall die Approximierbarkeit von \mathcal{M} mit linearen Unterräumen charakterisiert, unabhängig von der RB-Approximation
- Wenn wir für ein $(\mathcal{P}(\mu))$ Konvergenz oder sogar Konvergenzrate von $d_n(\mathcal{M})$ zeigen können, so erhalten wir ebenso Konvergenz mit mind derselben Rate via Céa 3.9 für die RB-Approximation

$$||u(\mu) - u_N(\mu)|| \le \frac{\gamma(\mu)}{\alpha(\mu)} \underbrace{\inf_{v \in X_N} ||u(\mu) - v||}_{d(X_N, \mathcal{M})} \le \frac{\bar{\gamma}}{\bar{\alpha}} d_n(\mathcal{M})$$

• Beziehung d_n zu \bar{d}_n . Es gilt trivialerweise

$$d_0(\mathcal{M}) = \bar{d}_0(\mathcal{M}) = d(0,\mathcal{M}) = \sup_{v \in \mathcal{M}} ||v||,$$

$$d_n(\mathcal{M}) \le \bar{d}_n(\mathcal{M}) \qquad \forall n \in \mathbb{N},$$

falls $n_0 := \dim(\operatorname{span}(\mathcal{M})) < \infty, \ d_n(\mathcal{M}) = \bar{d}_n(\mathcal{M}) = 0 \ \forall n \ge n_0$

- Präzise Werte für d_n sind selten bekannt. Für endliche Menge oder Einheitskugeln können aber exakte Werte der Schranken für d_n angegeben werden.
- Beispiel: $\mathcal{M} := \{v \in X | ||v|| \le 1\}$ erfüllt $d_n(\mathcal{M}) = \bar{d}_n(\mathcal{M}) = 1$ für alle $n < \dim(X)$ und $d_n(\mathcal{M}) = \bar{d}_n(\mathcal{M}) = 0$ für $n \ge \dim(X)$.
- Beispiel: $\mathcal{M} := [1,1]^m \subset X := R^m$ erfüllt $d_n(\mathcal{M}) = \bar{d}_n(\mathcal{M}) = \sqrt{mn}$ für alle $n \leq m$ und $d_n(\mathcal{M}) = \bar{d}_n(\mathcal{M}) = 0$ für $n \geq m$.
- Beispiel: "Müsli-Schachtel": $\mathcal{M}:=\prod_{i\in\mathbb{N}}[-2^i,2^i]\subseteq l_2\Rightarrow d_n(\mathcal{M})\leq C\cdot 2^{-n},$ exponentielle Konvergenz

Definition 3.31 (Gram-Matrix)

Zu $\{u_i\}_{i=1}^n \subset X$ definieren wir die **Gram-Matrix** als $K := (\langle u_i, u_j \rangle_X)_{i,j=1}^n \in \mathbb{R}^{n \times n}$

Lemma 3.32 (Eigenschaften von K)

Für K Gram-Matrix von $\{u_i\}_{i=1}^n$ gilt

- i) K ist symmetrisch und positiv semidefinit.
- ii) Rang(K) = dim $(\text{span}\{u_i\}_{i=1}^n)$
- iii) $\{u_i\}_{i=1}^n$ linear unabhängig $\Leftrightarrow K$ positiv definit

Beweis. Übung

Bemerkung (Geometrische Information in K). K enthält sehr viel Information der $\{u_i\}_{i=1}^n$, insbesondere kann man mittels K eine isometrische Einbettung in \mathbb{R}^n erzeugt werden, d. h. es existiert $\{x_i\}_{i=1}^n \in \mathbb{R}^n$ mit

$$\langle x_i, x_i \rangle_{\mathbb{R}^n} = \langle u_i, u_i \rangle_X$$

und

$$||x_i - x_i||_{\mathbb{R}^n} = ||u_i - u_i||_X$$

Sie $K = UDU^T$ Eigenwertzerlegung mit $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Setze $(x_1, \dots, x_n) := D^{\frac{1}{2}}U^T$. Dann:

$$\begin{aligned} \langle x_i, x_j \rangle_{\mathbb{R}^n} &= [(D^{\frac{1}{2}}U^T)_{i,j}]^T [(D^{\frac{1}{2}}U^T)_{i,j}] \\ &= (UD^{\frac{1}{2}})_{i,j} (D^{\frac{1}{2}}U^T)_{i,j} \\ &= (U)_{i,j} D^{\frac{1}{2}}D^{\frac{1}{2}}(U^T)_{i,j} = (UDU^T)_{ij} = (K)_{ij} = \langle u_i, u_j \rangle_X \end{aligned}$$

und

$$||x_i - x_j||_{\mathbb{R}^n}^2 = \langle x_i, x_i \rangle_{\mathbb{R}^n} - 2\langle x_i, x_j \rangle_{\mathbb{R}^n} + \langle x_j, x_j \rangle_{\mathbb{R}^n}$$
$$= \langle u_i, u_i \rangle_X - 2\langle u_i, u_i \rangle_X + \langle u_i, u_j \rangle_X = ||u_i - u_j||_X$$

Damit können viele lineare Operationen auf $\{u_i\}_{i=1}^n$ durch geeignete Operation mit K ausgedrückt werden. Z. B. Normberechnung in $\text{span}\{u_i\}_{i=1}^n$: (siehe auch Offline/Online für Normen)

$$v = \sum_{i=1}^{n} v_i u_i$$
, $\underline{\mathbf{v}} = (v_i)_{i=1}^n \in \mathbb{R}^n$ \Rightarrow $||v||_X^2 = \underline{\mathbf{v}}^T K \cdot \underline{\mathbf{v}}$

3.4 Basisgenerierung

Approximation durch lineare Unterräume

Motivation für Snapshot-basierte Verfahren:

- Bestimmung eines möglichst guten X_N , welches \mathcal{M} global approximiert.
- Formulierung durch Optimierungsproblem, z.B. minimiere maximalen Fehler in Energienorm

$$\min_{\substack{Y \subset X \\ \dim Y = N}} \max_{\mu \in \mathcal{P}} \|u(\mu) - u_N(\mu)\|_{\mu}$$
(3.7)

oder Minimum des mittleren quadratischen Projektionsfehlers

$$\min_{\substack{Y \subset X \\ \operatorname{dim} Y = N}} \int_{\mathcal{P}} \|u(\mu) - P_Y u(\mu)\|^2 \, \mathrm{d}\mu \tag{3.8}$$

oder beliebiges anderes Distanzmaß.

Wir haben bereits gesehen, dass in bestimmten Fällen fehlerfreie Approximation durch geeignete RB-Räume möglich ist

Satz 3.33 (Optimales X_N für Thermischer Block, $B_1 = 1$) Sie $p \in \mathbb{N}$, $B_1 = 1$, $B_2 = p$, $\mu^i := (\mu_{min}, \dots, \mu_{min})^T + e_i \cdot (\mu_{max} - \mu_{min})$, $i = 1, \dots, p$. Dann ist $X_N := \operatorname{span}(u(\mu^i))_{i=1}^p$ optimal in dem Sinne, dass

$$\inf_{v \in X_N} ||u(\mu) - v|| = \inf_{v \in X_N} ||u(\mu) - v||_{\mu} = 0 \qquad \forall \mu \in \mathcal{P}$$

Beweis. Übung.

Satz 3.34 (Optimales X_N für $Q_a = 1$)

Sei $Q_a=1$ und o.B.d.A. $a(u,v;\mu)=\Theta_a^1(\mu)a^1(u,v)$ und $\Theta_a^1(\mu)>0$. Seien $\{\mu^i\}_{i=1}^{Q_f}$ derart, dass $\{f(\cdot;\mu^i)\}_{i=1}^{Q_f}$ linear unabhängig. Dann erfüllt der Lagrange RB-Raum $X_N=$ span $(u(\mu^i))_{i=1}^{Q_f}$, dim $X_N=Q_f$ und

$$\inf_{v \in X_N} \|u(\mu) - v\| = \inf_{v \in X_N} \|u(\mu) - v\|_{\mu} = 0 \quad \forall \mu \in \mathcal{P}$$

Beweis.

- i) ✓
- ii) $\begin{aligned} & \operatorname{span} \left\{ f^q \right\}_{q=1}^{Q_f} = \operatorname{span} \left\{ f(\,\cdot\,; \mu^i) \right\}_{i=1}^q \\ & \text{``\supseteq''} \ \text{ist klar weil} \ f(\,\cdot\,; \mu^i) = \sum_{q=1}^{Q_f} \Theta_f^q f^q(\,\cdot\,) \\ & \text{``=''} \ \text{aus Dimensionsbetrachtung} \end{aligned}$

$$\dim \left(\operatorname{span}\left\{f(\cdot; \mu^{i})\right\}_{i=1}^{Q_{f}}\right) = Q_{f}$$
$$\dim \left(\operatorname{span}\left\{f^{q}\right\}_{q=1}^{Q_{f}}\right) \leq Q_{f}$$

 \Rightarrow folgt dim (span $\{f^q\}_{q=1}^{Q_f}) = Q_f$ Gleichheit beider Räume

iii) Zeige nun exakte Approximation in X_N . Zu $\mu \in \mathcal{P}$ existiert wegen ii) $c(\mu) = (c_i(\mu))_{i=1}^{Q_f}$ mit

$$f(\cdot;\mu) = \sum_{i=1}^{Q_f} c_i(\mu) f(\cdot;\mu^i)$$
 (*)

Damit ist dann $u(\mu) := \sum c_i(\mu) \frac{\Theta_a^q(\mu^i)}{\Theta_a^q(\mu)} u(\mu^i)$ Lösung von $(P(\mu))$:

$$a(u(\mu), v; \mu) = \Theta_a^1(\mu) a^1(\sum_{i} c_i(\mu) \frac{\Theta_a^1(\mu^i)}{\Theta_a^1(\mu)} u(\mu^i), v)$$

$$= \sum_{i} c_i(\mu) \underbrace{\Theta_a^1(\mu^i) a^1(u(\mu^i), v)}_{=a(u(\mu^i), v; \mu^i)}$$

$$= \sum_{i} c_i(\mu) f(v; \mu^i) \stackrel{(*)}{=} f(v; \mu)$$

Für die folgende Aussage referenzieren wir Fink & Rheinboldt: On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations, ZAMM, 63:21-28, 1983.

Satz 3.35 (Lokale exponentielle Konvergenz)

Sei $\mu^0 \in U \subset \mathcal{P} \subset \mathbb{R}$ und $u(\mu)$ analytisch in Umgebung U. Sei X_{k,μ^0} der Taylor-RB-Raum für $k \in \mathbb{N}$. Dann existiert ein $B_{\delta}(\mu^0) \subset U$ und C > 0, so dass

$$\inf_{v \in X_{k,\mu^0}} ||u(\mu) - v|| \le C|\mu - \mu^0|^{k+1} \quad \forall \mu \in B_{\delta}(\mu^0)$$

Beweis. Taylor-Entwicklung

$$\begin{split} u(\mu) &= \sum_{i=0}^{\infty} \frac{\partial^{i}}{\partial \mu^{i}} u(\mu^{0}) \frac{1}{i!} (\mu - \mu^{0})^{i} \\ &= \underbrace{\sum_{i=0}^{k} \frac{\partial^{i}}{\partial \mu^{i}} u(\mu^{0}) \frac{1}{i!} (\mu - \mu^{0})^{i}}_{v_{k}(\mu)} + \underbrace{\sum_{i=k+1}^{\infty} \frac{\partial^{i}}{\partial \mu^{i}} u(\mu^{0}) \frac{1}{i!} (\mu - \mu^{0})^{i-(k+1)} (\mu - \mu^{0})^{k+1}}_{w_{k}(\mu)} \end{split}$$

Sei $\delta < 1$ so dass $B_{\delta}(\mu^0) \subset U$ und $C' := \sup_i \|\frac{\partial^i}{\partial \mu^i} u(\mu^0) \frac{1}{i!} \| < \infty$. Dann gilt für $\mu \in B_{\delta}(\mu)$

$$\begin{split} \|w_k(\mu)\| & \leq \sum_{i=k+1}^{\infty} \|\frac{\partial^i}{\partial \mu^i} u(\mu^0) \frac{1}{i!} \|\cdot |\mu - \mu^0|^{i-k+1} \leq C' \sum_{i=k+1}^{\infty} |\mu - \mu^0|^{i-(k+1)} \\ & \leq C' \frac{1}{1 - |\mu - \mu^0|} \leq C' \frac{1}{1 - \delta} =: C \\ & \inf_{v \in X_{k,\mu^0}} \|u(\mu) - v\| \leq \|u(\mu) - v_k(\mu)\| = \|w_k(\mu) \cdot (\mu - \mu^0)^{k+1}\| \leq C |\mu - \mu^0|^{k+1} \end{split}$$

Die folgende Aussage basiert auf Maday & Patera & Turinici: Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations. C.R. Acad. Sci., Paris, Ser. 1, 335, 289-294, 2002.

Satz 3.36 (Globale exponentielle Konvergenz, p = 1)

Sei $\mathcal{P} = [\mu_{min}, \mu_{max}] \subset \mathbb{R}^+$ mit $\mu_{max} > 1$ genügend groß und $\mu_{min} = \frac{1}{\mu_{max}}$

$$a(u,v;\mu) = \mu a^{1}(u,v) + a^{2}(u,v)$$

mit a^1 , a^2 symmetrisch positiv semidefinit und $f \in X'$ sei nicht parametrisch. Zu $N \in \mathbb{N}$, $N \geq 2$ seien

$$\mu_{min} = \mu^1 < \dots < \mu^N = \mu_{max}$$

logarithmisch äquidistant, d.h.

$$\ln(\mu^{i+1}) - \ln(\mu^{i}) = \frac{\ln(\mu_{max}) - \ln(\mu_{min})}{N - 1} = \delta_{N}$$

und $X_N = \text{span}\left\{u(\mu^i)\right\}_{i=1}^N$ zugehöriger Lagrange RB-Raum. Dann existiert N_0 so dass für alle $N \geq N_0$ gilt

$$\frac{\|u(\mu) - u_N(\mu)\|_{\mu}}{\|u(\mu)\|_{\mu}} \le \mu_{max}^2 e^{\frac{-N-1}{N_0 - 1}} \quad \forall \mu \in \mathcal{P}$$
(3.9)

Bemerkung.

- Voraussetzungen sind z.B. für einen thermischen Block mit $B_1 = 2$, $B_2 = 1$ erfüllt, wenn $\mu_2 = 1$ konstant gehalten wird und nur $\mu_1 = \mu$ variiert.
- Verallgemeinerung für p > 1 existiert.
- Satz 3.36 liefert sogar die exponentielle Konvergenz des Approximationsfehlers und damit der Weiten d_N , \bar{d}_N .

Korollar 3.37 (Exponentielle Konvergenz von d_N , \bar{d}_N)

Unter den Voraussetzungen von 3.36 gilt insbesondere mit C > 0 unabhängig von N

$$\inf_{v \in X_N} \|u(\mu) - v\| \le C \cdot e^{\frac{-N-1}{N_0 - 1}} \quad \forall \mu \in \mathcal{P}, N \ge N_0$$

also für Kulmogorov N-Weite

$$d_N(\mathcal{M}) \le C \cdot e^{\frac{-N-1}{N_0-1}} \quad \forall N \ge N_0$$

und wegen $X_N \subset \operatorname{span}(\mathcal{M})$

$$\bar{d}_N(\mathcal{M}) \le C \cdot e^{\frac{-N-1}{N_0-1}}$$

Beweis. Wegen Normäquivalenz und Beschränktheit von u gilt

$$\|u(\mu)\|_{\mu} \leq \sqrt{\gamma(\mu)} \|u(\mu)\| \leq \frac{\gamma(\mu)}{\alpha(\mu)} \|f(\mu)\| \leq C', \quad \text{mit} \quad C' := \sup_{\mu \in \mathcal{P}} \frac{\sqrt{\gamma(\mu)}}{\alpha(\mu)} \|f(\mu)\|$$

Also folgt

$$\inf_{v \in X_N} \|u(\mu) - v\| \le \|u(\mu) - u_N(\mu)\| \le \frac{1}{\sqrt{\alpha(\mu)}} \|u(\mu) - u_N(\mu)\|_{\mu} \cdot \frac{\|u(\mu)\|_{\mu}}{\|u(\mu)\|_{\mu}}$$

$$\stackrel{3.36}{\le} \frac{\|u(\mu)\|_{\mu}}{\sqrt{\alpha(\mu)}} \cdot e^{\frac{-N-1}{N_0-1}} \le \underbrace{\frac{C'}{\bar{\alpha}}}_{=:C} \cdot e^{\frac{-N-1}{N_0-1}}$$

Ziel ist Beweis von 3.36, hierzu benötigen wir jedoch einige Notationen und Hilfsaussagen.

- Es sei dim X=H endlich aber beliebig groß. Man kann zeigen, dass die Konstante N_0 und Forderung an μ_{max} unabhängig von H ist.
- Logarithmische Abbildung des Parametergebiets. Es sei

$$\tau(z) = \ln(z)$$

und damit $\hat{\mu} := \tau(\mu)$, $\hat{\mu}_{min} = \tau(\mu_{min})$, $\hat{\mu}_{max} = \tau(\mu_{max}) = -\hat{\mu}_{min}$, $\hat{\mathcal{P}} := \tau(\mathcal{P})$, $\hat{u}(\hat{\mu}) := u(\tau^{-1}(\hat{\mu}))$, also $\hat{u}(\hat{\mu})$ Lösung von

$$e^{\hat{\mu}}a^{1}(\hat{u}(\hat{\mu}), v) + a^{2}(\hat{u}(\hat{\mu}), v) = f(v) \quad \forall v \in X$$
 (3.10)

und dann $u(\mu) = \hat{u}(\tau(\mu))$.

• Es sei $\langle u,v\rangle_X:=a(u,v;\mu=1)=a^1(u,v)+a^2(u,v),$ dann ist (3.10) äquivalent zu

$$\langle \hat{u}(\hat{\mu}), v \rangle_X + (e^{\hat{\mu}} - 1)a^1(\hat{u}(\hat{\mu}), v) = f(v) \quad \forall v \in X$$
(3.11)

• Seien $(\Upsilon_i, \lambda_i)_{i=1}^H \in (X, \mathbb{R}^+)$ Eigenfunktionen/-werte von verallgemeinertem EWP

$$a^{1}(\Upsilon_{i}, v) = \lambda_{i} \langle \Upsilon_{i}, v \rangle_{X} \quad \forall v \in X$$
(3.12)

mit $0 \le \lambda_1 \le \cdots \le \lambda_H$, $\|\Upsilon_i\| = 1$ ist dann $\{\Upsilon_i\}_{i=1}^H$ ONB von X. Aus (3.12) mit $v = \Upsilon_i$ und positiver Semidefinitheit von a^2 folgt

$$1 = \langle \Upsilon_i, \Upsilon_i \rangle_X = a^1(\Upsilon_i, \Upsilon_i) + a^2(\Upsilon_i, \Upsilon_i) = \lambda_i + a^2(\Upsilon_i, \Upsilon_i)$$

$$\Rightarrow \lambda_i \in [0, 1] =: \Lambda \text{ weil } \lambda_i = 1 - a^2(\Upsilon_i, \Upsilon_i) \le 1$$

• Aus Orthogonalität und (3.12) folgt

$$a(\Upsilon_j, \Upsilon_i; \mu) = \underbrace{\langle \Upsilon_j, \Upsilon_i \rangle}_{\delta_{ij}} + (e^{\hat{\mu}} - 1) \underbrace{a^1(\Upsilon_j, \Upsilon_i)}_{\lambda_i \delta_{ij}} = (1 - \lambda_j + \lambda_j e^{\hat{\mu}}) \delta_{ij}$$
(3.13)

Lemma 3.38 (Lösungsdarstellung)

Die Lösung von (3.10), (3.11) ist explizit gegeben durch

$$\hat{u}(\hat{\mu}) = \sum_{j=1}^{H} f_j \Upsilon_j g(\hat{\mu}, \lambda_j)$$
(3.14)

mit $f_j = f(\Upsilon_j)$ und $g: \hat{\mathcal{P}} \times \Lambda \to \mathbb{R}^+$ definiert durch

$$g(z,\sigma) = \frac{1}{1 - \sigma + \sigma e^z} \tag{3.15}$$

Beweis. Einsetzen von (3.14) in (3.11) liefert für Testfunktionen $v := \Upsilon_i$

$$\begin{split} &\langle \sum_{j} f_{j} \Upsilon_{j} g(\hat{\mu}, \lambda_{j}), \Upsilon_{i} \rangle_{X} + (e^{\hat{\mu}} - 1) a^{1} \left(\sum_{j} f_{j} \Upsilon_{j} g(\hat{\mu}, \lambda_{j}), \Upsilon_{i} \right) \\ &= \sum_{j} f_{j} g(\hat{\mu}, \lambda_{j}) \left(\langle \Upsilon_{j}, \Upsilon_{i} \rangle_{X} + (e^{\hat{\mu}} - 1) a^{1} (\Upsilon_{j}, \Upsilon_{i}) \right) \\ &\stackrel{(3.13)}{=} \sum_{j} f_{j} g(\hat{\mu}, \lambda_{j}) (1 - \lambda_{j} + \lambda_{j} e^{\hat{\mu}}) \delta_{ij} \\ &= f_{i} g(\hat{\mu}, \lambda_{i}) \underbrace{(1 - \lambda_{i} + \lambda_{i} e^{\hat{\mu}})}_{=\frac{1}{g(\hat{\mu}, \lambda_{i})}} = f_{i} = f(\Upsilon_{i}) \end{split}$$

also ist $\hat{u}(\hat{\mu})$ Lösung von (3.10) / (3.11).

Bemerkung. Im obigen Beweis wird also ausgenutzt, dass die Systemmatrix bezüglich $\{\Upsilon_i\}_{i=1}^H$ diagonal ist.

Lemma 3.39 (Energienorm-Darstellung in ONB) Mit $\mu = \tau^{-1}(\hat{\mu})$ gilt für eine Funktion $w = \sum_{i=1}^{H} w_i \Upsilon_i$

$$||w||_{\mu}^{2} = \sum_{i=1}^{H} \frac{w_{i}^{2}}{g(\hat{\mu}, \lambda_{i})}$$

Beweis.

$$||w||_{\mu} = a(w, w; \mu) = \sum_{i,j} w_i w_j \underbrace{a(\Upsilon_i, \Upsilon_j; \mu)}_{\stackrel{(3.13)}{=} (1 - \lambda_j + \lambda_j e^{\hat{\mu}}) \delta_{ij}} = \sum \frac{w_i^2}{g(\hat{\mu}, \lambda_i)}$$

Wir benötigen (grobe) Schranken für g und seinen Ableitungen bezüglich z.

Lemma 3.40 (Schranken für g, $\frac{\partial^i}{\partial z^i}g$) Für alle $z\in\hat{\mathcal{P}},\ \sigma\in\Lambda=[0,1]$ gilt

i)
$$g(z,\sigma) \in \left[\frac{1}{\mu_{max}}, \mu_{max}\right]$$

ii)
$$\frac{1}{g(z,\sigma)} \in \left[\frac{1}{\mu_{max}}, \mu_{max}\right]$$

iii)
$$\left|\frac{\partial^i}{\partial z^i}g(z,\sigma)\right| \leq \bar{C} \cdot C \cdot j! \quad \text{mit} \quad \bar{C} = \mu_{max}, C = 2\mu_{max}^2$$

Beweis. i) & ii)

$$\frac{1}{g(z,\sigma)} = 1 + \sigma(e^z - 1) \stackrel{j=1}{\leq} e^{\hat{\mu}_{max}} = \mu_{max} \quad \Rightarrow \quad g(z,\sigma) \geq \frac{1}{\mu_{max}}$$

Für festes zminimiere $\frac{1}{g(z,\sigma)=1+\sigma(e^z-1)}$ bezüglich σ

$$\min_{\sigma \in [0,1]} \frac{1}{g(z,\sigma)} = \begin{cases} 1 & z = 0 & (\sigma \text{ beliebig}) \\ 1 & z > 0 & (\sigma = 0) \\ e^z & z < 0 & (\sigma = 1) \end{cases}$$

$$\frac{1}{g(z,\sigma)} \ge \min_{\sigma,z} \frac{1}{g(z,\sigma)} = e^{\hat{\mu}_{min}} = \mu_{min} = \frac{1}{\mu_{max}} \quad \Rightarrow \quad g(z,\sigma) \le \mu_{max}$$

iii) Wir zeigen per Induktion, dass $\frac{\partial^i}{\partial z^i}g(z,\!\sigma)$ sich darstellen lässt als

$$\frac{\partial^i}{\partial z^i}g(z,\sigma) = \sum_{k=2}^{j+1} \beta_k^j \sigma^{(k-1)} e^{(k-1)z} g^k(z,\sigma), \quad j \ge 1$$
(3.16)

mit

$$\beta_{2}^{1} := -1
\beta_{2}^{j+1} = \beta_{2}^{j} = -1
\beta_{k}^{j+1} = \beta_{k}^{j}(k-1) - \beta_{k-1}^{j}(k-1), \quad k = 3, \dots, j+1
\beta_{j+2}^{j+1} := -(j+1)\beta_{j+1}^{j}$$
(3.17)

Denn für j = 1 erhält man

$$\frac{\partial}{\partial z}g(z,\sigma) = \frac{-\sigma e^z}{(1-\sigma-\sigma e^z)^2} = -e^z\sigma g^2(z,\sigma)$$

also mit (3.16) $\beta_2^1 = -1$.

Induktionsschritt

$$\begin{split} \frac{\partial^{i}}{\partial z^{i}}g(z,\sigma) &= \frac{\partial}{\partial z} \left(\sum_{k=2}^{j+1} \beta_{k}^{j} \sigma^{(k-1)} e^{(k-1)z} g^{k}(z,\sigma) \right) \\ &= \sum_{k=2}^{j+1} \beta_{k}^{j} \sigma^{(k-1)} \left(e^{(k-1)z} \frac{\partial}{\partial z} \underbrace{g^{k}(z,\sigma)}_{=-\sigma e^{z}g^{2}(z,\sigma)} + (k-1)e^{(k-1)z} g^{k}(z,\sigma) \right) \\ &= kg^{k-1}(z,\sigma) \cdot \underbrace{\frac{\partial}{\partial z} g(z,\sigma)}_{=-\sigma e^{z}g^{2}(z,\sigma)} \\ &= \sum_{k=2}^{j+1} \beta_{k}^{j} \sigma^{(k-1)} \left[-\sigma e^{kz} k \cdot g^{k+1}(z,\sigma) + (k-1)e^{(k-1)z} g^{k}(z,\sigma) \right] \\ &= \sum_{k=2}^{j+1} \beta_{k}^{j} (k-1) \sigma^{(k-1)} e^{(k-1)z} g^{k}(z,\sigma) + \sum_{k=3}^{j+2} \beta_{k-1}^{j} \sigma^{(k-1)} \cdot \left(-\sigma e^{(k-1)z} (k-1) g^{k}(z,\sigma) \right) \\ &= \underbrace{\beta_{j}^{j} \sigma e^{z} g^{2}(z,\sigma)}_{k=2} + \sum_{k=3}^{j+1} \left(\beta_{k}^{j} (k-1) - \beta_{k-1}^{j} (k-1) \right) \sigma^{(k-1)} e^{(k-1)z} g^{k}(z,\sigma) \\ &= \underbrace{\beta_{j+1}^{j} (j+1) \sigma^{j+1} e^{(j+1)z} g^{j+2}(z,\sigma)}_{(k-j)+2} \end{aligned}$$

Für $j \ge 1$ setze $S_j := \sum_{k=2}^{j+1} |\beta_k^j|$ und zeige per Induktion, dass

$$S_j \le 2^j \cdot j! \qquad j \ge 1$$

Für j = 1 ist $S_j = 1 \le 2^1 \cdot 1! = 2$ also Induktionsanfang. Gelte Behauptung für $j \ge 1$. Dann gilt:

$$|\beta_2^{j+1}| = 1$$

$$|\beta_k^{j+1}| < (j+1)(|\beta_k^j| + |\beta_{k-1}^j|) \qquad k = 3, \dots, j+1$$

$$|\beta_{j+2}^{j+1}| = (j+1)|\beta_{j+1}^j|$$

$$\Rightarrow S_{j+1} = \sum_{k=2}^{j+2} |\beta_k^{j+1}| \le 2(j+1)S_j \stackrel{i.A.}{\le} 2(j+1)2^j \cdot j! = 2^{j+1}(j+1)!$$

Damit folgt (iii):

$$\begin{split} |\frac{\partial^{i}}{\partial z^{i}}g(z,\!\sigma)| &= |\sum_{k=2}^{j+1}\beta_{k}^{j}\sigma^{(k-1)}e^{(k-1)z}g^{k}(z,\!\sigma)| \\ &\leq (\sum_{k=2}^{j+1}|\beta_{k}^{j}|)\sup_{k}|\sigma^{(k-1)}e^{(k-1)z}g^{k}(z,\!\sigma)| \\ &\underbrace{\leq (\sum_{k=2}^{j+1}|\beta_{k}^{j}|)\sup_{k}|\sigma^{(k-1)}e^{(k-1)z}g^{k}(z,\!\sigma)|}_{\leq 1\cdot e^{j\frac{1}{\mu_{max}}\cdot\mu_{max}^{j+1}=\mu_{max}(\mu_{max}^{2})^{j}}} \\ &\leq (2\mu_{max}^{2})^{j}\cdot j!\cdot\mu_{max} \end{split}$$

Bemerkung. $g(\hat{\mu}, \lambda_i)$ sind gemäß 3.38 Koeffizienten für $\hat{u}(\hat{\mu})$ in ONB Entwicklung. Entsprechend sind $\frac{\partial^j}{\partial z^j}g(z,\sigma)$ für $z=\hat{\mu}, \, \sigma=\lambda_i$ die Koeffizienten der Sensitivitätsableitung $\frac{\partial^j}{\partial \hat{\mu}^j}\hat{u}(\hat{\mu})$ in der ONB Entwicklung, also impliziert Lemma 3.40 eine Beschränktheit der Sensitivitätsableitungen.

Lemma 3.41 (Darstellung von Fkt. aus X_N) Für Koeffizientenfunktionen $\tilde{C}_n : \hat{\mathcal{P}} \to \mathbb{R}, n = 1, \dots, N$

$$\hat{w}_N(\hat{\mu}) := \sum_{n=1}^N \tilde{C}_n(\hat{\mu}) \hat{u}(\hat{\mu}^n)$$

mit $\hat{\mu}^n := \ln \mu^n$ ist also $\hat{w}_N(\hat{\mu}) \in X_N$. Dann lässt sich \hat{w}_N darstellen als

$$\hat{w}_N(\hat{\mu}) = \sum_{i=1}^H f_i \Upsilon_i \tilde{g}_N(\hat{\mu}, \lambda_i)$$

wobei
$$\tilde{g}_N(\hat{\mu}, \sigma) := \sum_{n=1}^N \tilde{C}_n(\hat{\mu}) g(\hat{\mu}^n, \sigma)$$

Beweis. Aus Lösungsdarstellung 3.38 folgt

$$u(\mu^n) = \hat{u}(\hat{\mu}^n) = \sum_{i=1}^H f_i \Upsilon_i g(\hat{\mu}^n, \lambda_i) \qquad , n = 1, \dots, N$$

Also ist

$$\hat{w}_N(\hat{\mu}) = \sum_n \tilde{C}_n(\hat{\mu}) \sum_{i=1}^H f_i \Upsilon_i g(\hat{\mu}^n, \lambda_i) = \sum_{i=1}^H f_i \Upsilon_i \underbrace{\sum_{n=1}^N \tilde{C}_n(\hat{\mu}) g(\hat{\mu}^n, \sigma)}_{=\tilde{g}_N(\hat{\mu}, \sigma)}$$

Wir benötigen noch Lagrange-Interpolation in Maufeinanderfolgenden Punkten $\{\hat{\mu}^i,\dots,\hat{\mu}^{i+M-1}\}$: Sie $h\in C^M(\hat{\mathcal{P}})$ zu interpolation Es bezeichne $I_M^i:C^0(\hat{\mathcal{P}})\to P_{M-1}(\hat{\mathcal{P}})$ Polynominterpolation zu $\{\mu^{i+\hat{m}-1}_{m=1}^M\}$ für $M\geq 2$ und $i\in\{1,\dots,N\}$ s. d. $i+M\leq N+1$.

Sei $L_M^{i;m} \in P_{M-1}(\hat{\mathcal{P}})$ Lagrange-Polynom zu den Stützstellen, d. h.

$$L_M^{i;m}(\hat{\mu}^{i+m'-1}) = \delta_{mm'} \quad \text{für } 1 \le m, m' \le M$$

Dann ist der Interpolant darstellbar als

$$(I_M^i h)(\hat{\mu}) = \sum_{m=1}^M L_M^{i;m}(\hat{\mu}) h(\hat{\mu}^{i+m-1})$$

Für den Interpolationsfehler gilt in $\hat{\mu} \in [\hat{\mu}^i, \mu^{i+M-1}]$

$$|h(\hat{\mu} - (I_{M}^{i}h)(\hat{\mu})| \leq \underbrace{\underbrace{\prod_{m=1}^{M} |\hat{\mu} - \hat{\mu}^{i+m-1}|}_{M!}}_{\leq \frac{(\hat{\mu}^{i+M-1} - \hat{\mu}^{i})^{M}}{M!} = \frac{[(M-1)\delta_{N}]^{M}}{M!}}_{\leq \frac{(M-1)\delta_{N}]^{M}}{M!}} \sup_{\hat{\mu}'} |h^{(M)}(\hat{\mu}')| \leq \frac{[(M-1)\delta_{N}]^{M}}{M!} \sup_{\hat{\mu}'} |h^{(M)}(\hat{\mu}')|$$

$$(3.18)$$

(endlich:)

Beweis. Satz 3.36

Idee: zeige Existenz eines $\hat{w}_N(\hat{\mu}) \in X_N$ s. d. (mit $\mu := \tau^{-1}(\hat{\mu})$)

$$\frac{||\hat{u}(\hat{\mu}) - \hat{w}_N(\hat{\mu})||_{\mu}}{||\hat{u}(\hat{\mu})||_{\mu}} \le \mu_{max}^2 \cdot e^{\frac{-(N-1)}{N_0 - 1}} \qquad \forall N \ge N_0$$
(3.19)

Denn dann folgt Behauptung via $||\hat{u}(\hat{\mu})||_{\mu} = ||u(\mu)||_{\mu}$ und

$$||u(\mu) - u_N(\mu)||_{\mu} = \inf_{v \in X_N} ||u(\mu) - v||_{\mu} \le ||u(\mu) - \hat{w}_N(\hat{\mu})||_{\mu} = ||\hat{u}(\hat{\mu}) - \hat{w}_N(\hat{\mu})||_{\mu}$$

Für Konstruktion eines $\hat{w}_N(\hat{\mu})$ reicht es, die Koeffizienten $\tilde{C}_n(\hat{\mu})$ zu definieren (siehe 3.41): Sei $\hat{\mu} \in \mathcal{P}$ gegeben und $M \in \{2, \dots, N\}$ wähle i s. d. $\hat{\mu} \in [\hat{\mu}^2, \hat{\mu}^{i+M-1}] =: J_M^i$, also $|J_M^i| = (M-1)d_N$

Definiere nun \tilde{C}_n durch Lagrange-Polynome zu $\{\hat{\mu}^{i+m-1}\}_{m=1}^M$:

$$\tilde{C}_n(\hat{\mu}) = \begin{cases} 0 & \text{falls } n < i \text{ oder } n \ge i + M \\ L_M^{i;n-i+1}(\hat{\mu}) & \text{falls } i \le n \le i + M - 1 \end{cases}$$

Dann ist zugehöriges $\tilde{g}_N(\hat{\mu}, \sigma)$ aus 3.41 Interpolierende im Sinne von

$$\tilde{g}_N(\hat{\mu}, \sigma) = (I_M^i g(\cdot, \sigma))(\hat{\mu})$$

denn

$$\tilde{g}_{N}(\hat{\mu}, \sigma) \stackrel{3.41}{=} \sum_{n=1}^{N} \tilde{C}_{n}(\hat{\mu}) g(\hat{\mu}^{n}, \sigma) = \sum_{n=i}^{i+n-1} L_{M}^{i;n-i+1}(\hat{\mu}) g(\hat{\mu}^{n}, \sigma) = (I_{M}^{i} g(\cdot, \sigma))(\hat{\mu})$$

also insbesondere $\tilde{g}_N(\hat{\mu}^n, \sigma) = g(\hat{\mu}^n, \sigma)$.

Betrachtet man die linke Seite von (3.19) für $\hat{w}_N(\hat{\mu})$: Mit 3.41 & 3.38 & 3.39 folgt

$$\frac{||\hat{u}(\hat{\mu}) - \hat{w}_{N}(\hat{\mu})||_{\mu}^{2}}{||\hat{u}(\hat{\mu})||_{\mu}^{2}} \stackrel{3.39}{=} \frac{\sum_{i=1}^{H} \frac{f_{i}^{2}(g(\hat{\mu},\lambda_{i}) - \tilde{g}_{N}(\hat{\mu},\lambda_{i}))^{2}}{g(\hat{\mu},\lambda_{i})}}{\sum_{i=1}^{H} \frac{f_{i}^{2}g(\hat{\mu},\lambda_{i})^{2}}{g(\hat{\mu},\lambda_{i})}} = \frac{\sum_{i=1}^{H} f_{i}^{2}g(\hat{\mu},\lambda_{i})^{2} \frac{f_{i}^{2}g(\hat{\mu},\lambda_{i})^{2}}{g(\hat{\mu},\lambda_{i})^{2}}}{\sum_{i=1}^{H} \frac{f_{i}^{2}g(\hat{\mu},\lambda_{i})^{2}}{g(\hat{\mu},\lambda_{i})^{2}}} = \frac{\sum_{i=1}^{H} f_{i}^{2}\frac{g(\hat{\mu},\lambda_{i})^{2}}{g(\hat{\mu},\lambda_{i})^{2}}}{\sum_{i=1}^{H} f_{i}^{2}\frac{g(\hat{\mu},\lambda_{i})^{2}}{g(\hat{\mu},\lambda_{i})}}$$

$$\leq \sup_{z,\sigma} \frac{(g(z,\sigma - \tilde{g}_{N}(z,\sigma))^{2}}{g(z,\sigma)^{2}} \cdot \frac{\sum_{i=1}^{H} f_{i}^{2}\frac{g(\hat{\mu},\lambda_{i})^{2}}{g(\hat{\mu},\lambda_{i})}}{\sum_{i=1}^{H} f_{i}^{2}\frac{g(\hat{\mu},\lambda_{i})^{2}}{g(\hat{\mu},\lambda_{i})}}$$

$$\leq \left(\sup_{z,\sigma} \frac{1}{g(z,\sigma)^{2}}\right) \left(\sup_{z,\sigma} (g(z,\sigma - \tilde{g}_{N}(z,\sigma))^{2}\right)$$

$$\leq \mu_{max}^{2} \left(\sup_{z,\sigma} |g(z,\sigma - \tilde{g}_{N}(z,\sigma)|\right)^{2}$$

$$\leq \mu_{max}^{2} \left(\sup_{z,\sigma} |g(z,\sigma - \tilde{g}_{N}(z,\sigma)|\right)^{2}$$

$$\leq (3.20)$$

Für Fehler rechts erhalte mittels Interpolationsfehlerabschätzung:

$$|g(z,\sigma - \tilde{g}_{N}(z,\sigma))| = |g(z,\sigma) - (I_{M}^{i}g(\cdot,\sigma))(z)|$$

$$\stackrel{(3.18)}{\leq} \frac{((M-1)\delta_{N})^{M}}{M!} \sup_{\hat{\mu}'} \underbrace{\frac{\partial^{M}}{\partial \hat{\mu}^{M}}g(\hat{\mu}',\sigma)|}_{\leq \bar{C}C^{M}M! \text{ wegen 3.40 ii)}}$$

$$= \frac{((M-1)\delta_{N})^{M}}{M!} \cdot \bar{C}C^{M}M!$$

$$= (C(M-1)\delta_{N})^{M} \cdot \bar{C}$$

$$(3.21)$$

Bisher: M beliebig. Finde nun $M_{opt} \in \{2, \dots, N\}$, welches den Fehler "klein" macht. Suche zunächst ein reelles $\bar{M}_{opt} \in [2, N] \subset \mathbb{R}$. Hierzu setze

$$\bar{M}_{opt} := 1 + \frac{1}{Ce\delta_N}$$

Wir sehen mit Abbkürzung $\lambda := \ln \mu_{max} - \ln \mu_{min} = 2 \ln \mu_{max}$

$$\frac{1}{Ce\delta_N} \ge 1 \iff 1 \ge Ce \frac{\ln \mu_{max} - \ln \mu_{min}}{N-1} \iff N-1 \ge C \cdot e \cdot \lambda$$
$$\iff N > Ce\lambda + 1$$

Also ist mit Forderung $N_0 \geq C \cdot e \cdot \lambda + 1$ ist $\bar{M}_{opt} \geq 2$. Weiter:

$$1 + \frac{1}{Ce\delta_N} \iff \frac{1}{Ce\delta_N} \iff 1 \le (N-1)(Ce\delta_N)$$

$$\iff 1 \le (N-1)C \cdot e\frac{\lambda}{N-1} \iff 1 \le Ce\lambda$$

$$\stackrel{3.40}{\iff} 1 \le 2\mu_{max}^2 \cdot e \cdot 2 \ln \mu_{max}$$

Also ist für μ_{max} genügend groß $\bar{M}_{opt} \leq N$.

Insgesamt nun also $\bar{M}_{opt} \in [2,N]$.

Wegen $C(\bar{M}_{opt} - 1)\delta_N = C\frac{1}{Ce\delta_N} \cdot \delta_N = \frac{1}{e}$ folgt

$$\left(C(\bar{M}_{opt} - 1)\delta_{N}\right)^{\bar{M}_{opt} - 1} = \left(\frac{1}{e}\right)^{\frac{1}{Ce\delta_{N}}} = e^{-\frac{1}{Ce\delta_{N}}} = e^{-\frac{N-1}{Ce\lambda}} \le e^{-\frac{N-1}{N_{0} - 1}}$$

falls $Ce\lambda \leq N_0 - 1$, d. h. $N_0 \geq Ce\lambda + 1$ (identische Forderung an N_0 wie zuvor). Setze nun $M_{opt} := \lfloor \bar{M}_{opt} \rfloor$ größte ganze Zahl kleiner/gleich \bar{M}_{opt}

$$\Rightarrow M_{opt} \in \{2, \dots, N\}$$

$$\text{wg.} M_{opt} \leq \bar{M}_{opt} \Rightarrow C(M_{opt} - 1)\delta_N \leq C(\bar{M}_{opt} - 1)\delta_N \left(= \frac{1}{e} < 1 \right)$$

$$\text{und} M_{opt} > \bar{M}_{opt} - 1$$

folgt

$$(C(M_{opt} - 1)\delta_N)^{M_{opt}} \le (C(\bar{M}_{opt} - 1)\delta_N)^{\bar{M}_{opt}} \le e^{-\frac{N-1}{N_0 - 1}}$$
 (3.22)

Damit insgesamt

$$\frac{||\hat{u}(\hat{\mu}) - \hat{w}_{N}(\hat{\mu})||_{\mu}}{||\hat{u}(\hat{\mu})||_{\mu}} \stackrel{(3.20)}{\leq} \mu_{max} \sup_{z,\sigma} |g(z,\sigma - \tilde{g}_{N}(z,\sigma))|$$

$$\stackrel{(3.21)}{\leq} \mu_{max} \underbrace{\bar{C}}_{=\mu_{max}} \cdot \left(C(M_{opt} - 1)\delta_{N}\right)^{M_{opt}} \stackrel{(3.22)}{\leq} \mu_{max}^{2} e^{-\frac{N-1}{N_{0}-1}}$$

also (3.19) und damit Satz 3.36 gezeigt.

Definition 3.42 (Gram-Schmidt)

Seien $\{u_i\}_{i=1}^n \in X$ lin. unabh. Dann ist **Gram-Schmidt Basis** $\Phi_{GR} := \{\varphi_1, \dots, \varphi_n\}$ definiert durch

$$\bar{\varphi}_m := u_m - \sum_{i=1}^{m-1} \langle u_n, \varphi_i \rangle \varphi_i \quad , \quad \varphi_m := \frac{\bar{\varphi}_m}{||\bar{\varphi}_m||} \quad , \quad m = 1, \dots, n$$

und X_{GR} der zugehörige Gram-Schmidt RB-Raum

Lemma 3.43 (Eigenschaften von Φ_{GR})

- i) Φ_{GR} ist ONB
- ii) span $\{u_i\}_{i=1}^n = X_{GR}$

Beweis. i) Normiertheit klar nach Definition

Orthogonalität per Induktion:

Sei $\langle \varphi_i, \varphi_j \rangle = 0 \ \forall \ j < i$

Dann gilt für j < i + 1:

$$\begin{split} \langle \bar{\varphi}_{i+1}, \varphi_j \rangle &= \langle u_{i+1}, \varphi_j \rangle - \sum_{k=1}^{(i+1)-1} \langle u_{i+1}, \varphi_k \rangle \underbrace{\langle \varphi_k, \varphi_j \rangle}_{\delta_{kj} \text{ sowohl f\"{u}r} j < i \text{ als auch} j = i} \\ &= \langle u_{i+1}, \varphi_j \rangle - \langle u_{i+1}, \varphi_j \rangle = 0 \end{split}$$

also auch
$$\langle \varphi_{i+1}, \varphi_j \rangle = \langle \frac{\bar{\varphi}_{i+1}}{||\varphi_{i+1}||}, \varphi_j \rangle = 0$$

ii) "⊇" klar nach Konstruktion

"=" folgt durch Dimensionsbetrachtung:

$$\dim \operatorname{span}\{\varphi_i\}_{i=1}^n = n = \dim \operatorname{span}\{u_i\}_{i=1}^n$$

Bemerkung.

- Algorithmus liefert also ONB, garantiert Stabilität des RB-Verfahren für symmetrisches $a(\cdot,\cdot)$ gemäß 3.7
- Es existiert nur triviale Approximationsaussage, z. B. wegen ii):

$$\max_{j=1,...,m} \inf_{v \in X_{GR}} ||u_j - v|| = 0$$

Für Teilbasis $\Phi_{GR,m} := \{\varphi_1, \dots, \varphi_m\}$, m < n werden $\{u_i\}_{i=1}^m$ exakt approximiert über $\{u_i\}_{i=m+1}^n$ weiß man nichts.

• Basis hängt von Reihenfolge der $\{u_i\}_{i=1}^n$ ab, macht also nur Sinn, wenn diese eine natürliche Reihenfolge haben.

• Gram Schmidt Orthonormierung folgt häufig als "Postprocessing" für anderweitig erzeugte Basis, z. B. Lagrange-, Greedy-Basis, etc.

Satz 3.44 (Berechnung von Φ_{GR} über Gram-Matrix)

Seien $\{u_i\}_{i=1}^m \subset X$ lin. unabh., $K = (\langle u_i, u_j \rangle)_{i,j=1}^n$ mit Cholesky-Zerlegung $K = LL^T$, d. h. L untere Δ -Matrix mit positiver Diagonalen. Definiere $A = (a_{ij})_{i,j=1}^n := (L^T)^{-1}$. Dann ist die Gram-Schmidt ONB Φ_{GR} äquivalent berechenbar durch

$$\varphi_j = \sum_{i=1}^j a_{ij} u_i$$
 für $1 \le j \le n$

Beweis. Übung.

Proper Orthogonal Decomposition (POD)

Definition 3.45 (Korrelationsoperator)

Sei $\{u_i\}_{i=1}^n \subset X$. Dann definieren wir den *empirischen Korrelationsoperator* $R \in L(X,X)$ durch

$$Ru := \frac{1}{n} \sum_{i=1}^{n} \langle u_i, u \rangle u_i \quad \forall u \in X$$

Bemerkung.

 \bullet Linearität von R ist klar, Beschränktheit folgt wegen

$$||Ru|| \le \frac{1}{n} \sum ||u_i||^2 ||u|| \Rightarrow ||R|| = \sup_{u \ne 0} \frac{||Ru||}{||u||} \le \frac{1}{n} \sum ||u_i||^2 < \infty$$

also $R \in L(X,X)$

- Wir nennen ein $\underline{A} \in L(X,X)$ kompakt falls abgeschlossenes Bild der offenen Einheitskugel, d. h. $\overline{A(B_1(0))}$, kompakt ist
- Wir nennen $A \in L(X,X)$ selbstadjungiert (genauer Hilbertraum-selbstadjungiert), falls $\langle Au, v \rangle = \langle u, Av \rangle \ \forall \ u,v \in X$

Satz 3.46 (Spektralsatz)

Sie $A \in L(X,X)$ kompakt & selbstadjungiert, dann existiert endliche oder abzählbar unendliche orthonormmiertes System von Eigenvektoren $\{\varphi_i\}_{i\in I}$, $I\subseteq\mathbb{N}$ zu Eigenwerten $\{\lambda_i\}_{i\in I}\subset\mathbb{R}\setminus\{0\}$ mit

$$Au = \sum_{i \in I} \lambda_i \langle u, \varphi_i \rangle \varphi_i \qquad \forall \ u \in X$$

Falls I unendlich, so $\lim_{i\to\infty} \lambda_i = 0$.

Beweis. z.B. Alt: "lineare Funktionalanalysis" Satz 12.12

Satz 3.47 (POD-Basis)

Zu $\{u_i\}_{i=1}^n$ mit R aus 3.45 existiert orthonormierte Menge $\{\varphi_i\}_{i=1}^{n'}$ von $n' \leq n$ Eigenvektoren zu reellen Eigenwerten $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{n'} > 0$ mit

$$Ru = \sum_{i=1}^{n'} \lambda_i \langle \varphi_i, u \rangle \varphi_i$$
 (3.23)

Für m = 1, ..., n' definieren $\Phi_{POD} := \Phi_{POD,m} := \{\varphi_i\}_{i=1}^m$ als **POD-Basis** und $X_{POD} := X_{POD,m} := \operatorname{span} \Phi_{POD,m}$ als POD-Raum.

Beweis. R hat endlich dimensionales Bild, also $R(B_1(0))$ abgeschlossen, beschränkt im endlich dimensionalen Raum, also kompakt. R ist selbstadjungiert, denn $\langle Ru, v \rangle = \frac{1}{n} \sum_{i=1}^{n} \langle u_u, u \rangle \langle u, v \rangle = \langle u, Rv \rangle$. Also existiert nach Spektralsatz 3.46 entsprechend endliches ONS, das (3.23) erfüllt. Dies kann insbesondere nicht unendlich sein, wegen endlichem Bild.

Bemerkung.

- Die Projektion $X \to X_{POD}$ wird in der statistischen Datenanalyse auch Hotelling-Transformation, Principal Component Analysis (PCA) oder Karhunen-Loève-Transformation genannt.
- Bezeichnung POD, als "proper", ist Anlehnung an das französische "valeur propre" für Eigenwert.
- Wir nennen Basisvektoren von Φ_{POD} auch POD-Moden.

Illustration

- $\{\varphi_i\}_{i=1}^{n'}$ ist ONB für span $\{u_i\}_{i=1}^n$ aber nicht eindeutig (VZ oder vertauschen bei mehrfachen Eigenwerten)
- φ_1 ist Richtung höchster Varianz von $\{u_i\}_{i=1}^n$ φ_2 ist Richtung höchster Varianz von $\{P_{x_{POD,1}}^{\perp}u_i\}_{i=1}^n$
- Koordinaten der Daten in der POD-Basis sind unkorreliert \rightarrow Übung.
- $\{\varphi_i\}$, $\{\sqrt{\lambda_i}\}$ sind die Hauptachsen bzw. Achsenabschnitte des Ellipsoids $\{\langle u, R^{-1}u\rangle = 1\}$
- Falls $X = \mathbb{R}^H$ und $\{u_i\}_{i=1}^n$ Realisierungen von n unabhängigen, identisch normalverteilten Zufallsvariablen mit Verteilung $\mathcal{N}(\mu, \Sigma) := C \cdot \exp\left(-(x-\mu)^T \Sigma (x-\mu)\right)$ mit Mittelwert $\mu = 0$, so ist $R \in \mathbb{R}^{H \times H}$ guter Schätzer für Σ , insbesondere $R \to \Sigma$ konvergiert für $n \to \infty$ in geeignetem Sinne.

Abbildung 7: Ellipsoide aus Kovarianzoperator (aus B. Haasdonk, Reduzierte-Basis-Methoden, Skript zur Vorlesung SS 2011, Universität Stuttgart, IANS-Report 4/11, 2011.)

Satz 3.48 (Berechnung von Φ_{POD} über Gram-Matrix) Sei $\{u_i\}_{i=1}^n \subset X$ und $K = \left(\langle u_i, u_j \rangle\right)_{i,j=1}^n$. Dann sind äquivalent:

i) $\varphi \in X$ ist Eigenvektor von R zu Eigenwert $\lambda > 0$ mit Norm 1 und einer Darstellung

$$\varphi = \sum a_i u_i$$
 mit o. B. d. A. $a \in \ker(K)^{\perp}$

ii)
$$a=(a_i)_{i=1}^n\in\mathbb{R}^n$$
ist Eigenvektor von $\frac{1}{n}K$ zu $\lambda>0$ mit Norm $\frac{1}{\sqrt{n\lambda}}$

 $Beweis. ii) \Rightarrow i)$

Sei a Eigenvektor von $\frac{1}{n}K$ zu Eigenwert λ mit $||a|| = \frac{1}{\sqrt{n\lambda}}$ also

$$\lambda a = \frac{1}{n} K a$$

Multiplikation der i-ten Kompoenten mit u_i und Summieren ergibt

$$\sum_{i=1}^{n} u_i \lambda a_i = \sum_{i=1}^{n} u_i \frac{1}{n} \underbrace{\left(\sum_{j=1}^{n} \langle u_i, u_j \rangle a_j\right)}_{(Ka)_i}$$

Mit $\varphi := \sum u_i a_i$ gilt also

$$\lambda \varphi = \frac{1}{n} \sum_{i=1}^{n} u_i \langle u_i, \varphi \rangle = R\varphi$$

Also φ Eigenvektor von R zu Eigenwert λ . Für Norm folgt

$$||\varphi||^2 = \langle \sum a_i u_i, \sum a_j u_j \rangle = a^T \underbrace{Ka}_{n\lambda a} = n\lambda \cdot ||a||^2 = 1$$

K ist symmetrisch, also existiert vollständiges ONS von Eigenvektoren. $\ker(K)$ wird aufgespannt von EV zu EW 0, also $a \perp \ker(K)$, a EV zu $\lambda > 0$.

 $i) \Rightarrow ii)$:

Sie φ EV von R zu EW $\lambda > 0$ und $||\varphi|| = 1$. Sei $\bar{a} \in \mathbb{R}^n$ mit $\varphi = \sum \bar{a}_i u_i$ (existiert weil $\varphi \in \text{Bild}(R) = \text{span}\{u_i\}_{i=1}^n$). Verschiebungen von \bar{a} um $a^0 \in \text{ker}(K)$ erhalten φ :

$$\varphi' := \sum (\bar{a}_i + a_i^0) u_i \Rightarrow \langle \varphi', u_k \rangle = \langle \sum_{i=1}^n \bar{a}_i u_i, u_k \rangle + \langle \sum_i a_i 0 u_i, u_k \rangle$$
$$= \langle \varphi, u_k \rangle + \underbrace{\sum_{i=1}^n a_i^0 \langle u_i, u_k \rangle}_{Ka^0 = 0} , k = 1, \dots, n$$

Also $\varphi' = \varphi$.

Wähle speziell $a := \bar{a} - P\bar{a}$, P orthogonale Projektion auf $\ker(K)$.

$$\Rightarrow a \in \ker(K)^{\perp}$$
, $P\bar{a} \in \ker(K) \Rightarrow \varphi = \sum \bar{a}_i u_i = \sum a_i u_i$

i) \Rightarrow ii) o.B.d.A. $a \in \ker(K^{\perp}$

Da $\varphi \in V$ zu $\lambda > 0$ gilt:

$$\underbrace{\frac{1}{n} \sum_{i=1}^{n} \langle u_i, \sum_{j=1}^{n} a_i u_j \rangle}_{R\varphi} u_i = \lambda \varphi = \lambda \sum_{j=1}^{n} a_j u_j$$

Testen mit u_k liefert

$$\frac{1}{n} \underbrace{\sum_{j} \langle u_i, u_j \rangle \langle u_i, u_k \rangle a_j}_{(K^2 a)_k} = \lambda \underbrace{\sum_{j} a_j \langle u_j, u_k \rangle}_{(K a)_k}$$

Also $\frac{1}{n}K^2a=\lambda Ka$ also Ka EV von $\frac{1}{n}K$ zu EW λ . Dann ist schon a EV, denn $a\in \ker(K)^{\perp}$:

$$(*) Ka(\frac{1}{n}K - \lambda)a = 0$$

 $a \in \ker(K^\perp), \, Ka \in \ker(K^\perp) \text{ we$ $gen Symmetrie } \langle Ka,v \rangle = \langle a,Kv \rangle = 0 \ \ \, \forall v \in \ker(K)$

$$\Rightarrow (\frac{1}{n}K - \lambda)a \in \ker(K)^{\perp}$$

aber auch wg. (*) $(\frac{1}{n}K - \lambda)a \in \ker(K)$

$$\Rightarrow (\frac{1}{n}K - \lambda)a = 0$$
 also $a \text{ EV von } \frac{1}{n}K$ zu λ .

Wie im ersten Teil gilt

$$1 = ||\varphi||^2 = \sum a_i a_j \langle u_i, u_j \rangle = a^T K a = a^T \cdot n \lambda a = n \lambda a ||a||^2$$

$$\Rightarrow ||a|| = \frac{1}{\sqrt{n \cdot \lambda}}$$

Bemerkung. Falls X endlichdimensional $\dim(X) = H$, kann daher POD entweder als teures EWP f ür R in X (Komplexität $\mathcal{O}(H^3)$) oder, meist günstiger, als EWP für K (Komplexität $\mathcal{O}(n^3)$) ermittelt werden.

Bezeichnung für letzteres ist auch "method of snapshots" (Sirovich, 1987) oder Kernel-PCA (Schollkopf & Smola, 2002). POD kann auch über Singulärwertzerlegung der Koeffizientenmatrix berechnet werden:

 $\textbf{Satz} \ \textbf{3.49} \ (\text{Berechnung für} \ X = \mathbb{R}^H \ \text{via SVD})$

Sei $X = \mathbb{R}^H$ mit $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{\mathbb{R}^H}$. $U = [u_1, \dots, u_n] \in \mathbb{R}^{H \times n}$ Snapshot-Matrix mit Rang U = n' und

$$U = \Phi S V^T$$

eine verkürzte SVD, d.h. $\Phi \in \mathbb{R}^{H \times n'}$, $V \in \mathbb{R}^{n \times n'}$ orthonormale Spalten und $S = \operatorname{diag}(\sigma_1, \dots, \sigma_{n'}) \in \mathbb{R}^{n' \times n'}$ (σ_i : Singulärwerte) mit $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_{n'} \geq 0$.

Dann ist $\Phi_{POD,n'} = \Phi$.

Beweis. Sei $\Phi = (\bar{\varphi}_1, \dots, \bar{\varphi}_n)$. Nach Definition gilt $Ru = \frac{1}{n}UU^TU \ \forall u \in \mathbb{R}^H$. Damit ist $\bar{\varphi}_i$ EV von R zu i-ten Eigenwert $\frac{1}{n}\sigma_i^2$:

$$R\bar{\varphi}_i = \frac{1}{n}UU^T\bar{\varphi}_i = \frac{1}{n}\Phi S \underbrace{V^TV}_I S \underbrace{\Phi^T\bar{\varphi}_i}_{e_i \in \mathbb{R}^{n'}}$$
$$= \frac{1}{n}\Phi \underbrace{S^2e_i}_{\sigma_i^2e_i} = \frac{1}{n}\sigma_i^2\bar{\varphi}_i$$

Die EW $\frac{1}{n}\sigma_i^2$ sind monoton fallend, also identisch sortiert wie EW von R, das heißt $\lambda_i = \frac{1}{n}\sigma_i^2$ und $\varphi_i = \bar{\varphi}_i$.

Bemerkung.

- obiges ist sehr eingänglich ("1-Zeilenbeweis"), aber algorithmisch nicht unbedingt besser, weil SVD auch durch EWP definiert (Numerik I)
- Verallgemeinerung für allg. HR $X \to \text{Übung (Blatt 5)}$

Satz 3.50 (Approximationsfehler für $X_{POD,m}$)

Sei $\{u_i\}_{i=1}^n \subset X$ und für $Y \subset X$ Unterraum ist mittlerer quadratischer Fehler $J(Y) := \frac{1}{n} \sum_{i=1}^n ||u_i - P_y u_i||^2$. Dann gilt für den POD-Raum

$$J(X_{POD,m}) = \sum_{i=m+1}^{n'} \lambda_i \quad \text{für } m = 1, \dots, n'$$

mit λ_i EW von R.

Beweis. Sei $\Psi = \{\Psi_1, \dots, \Psi_m\}$ ONB für Y. Dann folgt

$$\begin{split} J(Y) &= \frac{1}{n} \sum_{i=1}^{n} ||u_i - P_y u_i||^2 = \frac{1}{n} \sum_{i=1}^{n} ||u_i - \sum_{j=1}^{m} \langle \Psi_j, u_i \rangle \Psi_j||^2 \\ &= \frac{1}{n} \sum_{i=1}^{n} ||u_i||^2 - \frac{2}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \langle u_i, \Psi_j \rangle^2 + \frac{1}{n} \sum_{i=1}^{n} \sum_{j,k} \langle \Psi_j, u_i \rangle \langle u_i, \Psi_k \rangle \underbrace{\langle \Psi_j, \Psi_k \rangle}_{=\sigma_j k} \\ &= \frac{1}{n} \sum_{i=1}^{n} ||u_i||^2 - \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \langle u_i, \Psi_j \rangle^2 \end{split}$$

Wegen $u_i \in Bild(R) = X_{POD,n'}$ ist $u_i = \sum_{j=1}^{n'} \langle \varphi_j, u_i \rangle \varphi_j$

$$||u_i||^2 = \sum_{j,k=1}^{n'} \langle \varphi_j, u_i \rangle \langle \varphi_k, u_i \rangle \underbrace{\langle \varphi_j, \varphi_k \rangle}_{=\sigma_{jk}} = \sum_{j=1}^{n'} \langle \varphi_j, u_i \rangle^2$$

also mittlerer quadratischer Projektionsfehler:

$$J(X_{POD,m}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n'} \langle \varphi_j, u_i \rangle^2 - \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \langle u_i, \varphi_j \rangle^2$$

$$= \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=m+1}^{n'} \langle \varphi_j, u_i \rangle^2\right) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=m+1}^{n'} \langle \varphi_j, u_i \rangle \langle \varphi_j, u_i \rangle$$

$$= \sum_{j=m+1}^{n'} \langle \varphi_j, \underbrace{R}_{i=1} \varphi_j \rangle = \sum_{j=m+1}^{n'} \lambda_j$$

$$= \sum_{j=m+1}^{n'} \langle \varphi_j, \underbrace{R}_{i=1} \varphi_j \rangle = \sum_{j=m+1}^{n'} \lambda_j$$

Satz 3.51 (Bestapproximation durch $X_{POD,m}$)

Unter allen Räumen der Dimension m ist $X_{POD,m}$ bzgl. J optimal

$$j(X_{POD,m}) = \inf_{\substack{Y \subset X \\ \dim Y = m}} J(Y)$$

Beweis. Übung. \Box

Bemerkung (Zusammenfassung).

- POD liefert also orthonormale Basis, garantiert Stabilität des RB-Verfahrens (bei symmetrischem $a(\cdot,\cdot)$
- Es existieren Approximationsaussagen bzgl. des mittleren quadratischen Projektionsfehlers, sogar Optimalität nachweisbar. Die POD Teilbasen ermöglichen Approximation aller Snapshots mit Fehlerkontrolle der abgeschnittenen Eigenwerte.
- Die POD-Basis hängt nicht von Reihenfolge der Snapshots ab.
- Die POD-Basen sind hierarchisch:

$$\Phi_{POD,m} \subseteq \Phi_{POD,m'}$$
 für $m \le m'$

- Die POD kann auch zur Erweiterung einer bestehenden ONB Φ verwendet werden, indem $\{\tilde{u}_i\}_{i=1}^n$, $\tilde{u}_i = u_i P_{\text{span}(\Phi)}u_i$ und eine POD Basis $\tilde{\Phi}_{POD}$ hierfür berechnet wird. Dann ist $\Phi \cup \tilde{\Phi}_{POD}$ eine erweiterte/neue ONB.
- Man kann POD auch als inkrementelles Verfahren mit 1D-Minimierung von J(Y) verstehen.

Sei $\{u_i\}_{i=1}^n \subset X$. Dann definiere

$$\bar{\varphi}_1 := POD_1(\{u_i\}_{i=1}^n) := \operatorname{arginf}_{\substack{\varphi \in X \\ ||\varphi||=1}} \frac{1}{n} \sum_{i=1}^n ||u_i - \langle u_i, \varphi_i \rangle \varphi_i||^2$$

$$\bar{X}_1 := \operatorname{span}(\bar{\varphi}_1)$$
und für $i = 2, \dots, n'$

$$\bar{\varphi}_i := POD_1(\{u_i - P_{\bar{X}_{i-1}} u_i\}),$$

$$\bar{X}_i := \operatorname{span}(\bar{\varphi}_1, \dots, \bar{\varphi}_i)$$

Dann ist $(\bar{\varphi}_1, \dots, \bar{\varphi}_m)$ POD-Basis (aus m Moden/Basisvektoren) (bis auf Rotation, Vorzeichen).

Greedy-Verfahren

Definition 3.52 (Greedy-Verfahren)

Sei $S_{train} \subset \mathcal{P}$ "Trainingsmenge" von Parametern, $\Delta(Y,\mu) \in \mathbb{R}^+$ für Teilräume $Y \subset X$ und Parameter $\mu \in \mathcal{P}$ ein "Fehlerindikator" und $\epsilon_{tol} > 0$ eine Fehlertoleranz. Die Greedy-Basen $\Phi_{GRE,m}$, Greedy-Raum $X_{GRE,m}$ und Sample-Menge S_m für $m=0,\ldots,N$ sind iterativ definiert durch

$$S_0 = \emptyset$$
, $X_{GRE,0} = \{0\}$, $\Phi_{GRE,0} = \emptyset$, $m := 0$

Solange
$$\epsilon_m := \max_{\mu \in S_{train}} \Delta(X_{GRE,m}, \mu) > \epsilon_{tol}$$

$$\mu^{(m+1)} := \max_{\mu \in S_{train}} \Delta(X_{GRE,m}, \mu)$$

$$S_{m+1} := S_m \cup \{\mu^{(m+1)}\}$$

$$\varphi_{m+1} := u(\mu^{(m+1)} \text{ L\"osung von } (P(\mu^{(m+1)}))$$

$$\Phi_{GRE,m+1} := \Phi_{GRE,m} \cup \{\varphi_{m+1}\}$$

$$X_{GRE,m+1} := X_{GRE,m} + \operatorname{span}(\varphi_{m+1})$$

$$m \leftarrow m+1$$

setze schließlich N := m

Bemerkung.

- Erste Verwendung von Greedy-Verfahren für RB: Veroy, Prud'homme, Rovas, Patera 2003, seitdem "Standard"
- $\Phi_{GRE,m}$ ist Lagrange-RB zur Sample-Menge S_m , i. a. nicht orthonormal. Kann für numerische Stabilität mit Gram-Schmidt orthonormalisiert werden.
- Basen sind hierarchisch: $\Phi_{GRE,m} \subset \Phi_{GRE,m'}, m \leq m'$
- In Literatur wird Suche nach $\mu^{(1)}$ häufig umgangen, indem dieses beliebig aus S_{train} gewählt wird.
- S_{train} wird häufig als strukturierte oder zufällige Menge aus \mathcal{P} mit **endlich** vielen Samples gewählt.
- Falls S_{train} zu klein, kann das RB-Modell overfitting aufweisen, d. h.

$$\sup_{\mu \in \mathcal{P}} ||u(\mu) - u_N(\mu)|| >> \sup_{\mu \in S_{train}} ||u(\mu) - u_N(\mu)||$$

• Greedy-Verfahren ist also akkummulatives Verfahren, welches iterativ den "schlechtest"- aufgelösten Parameter $\mu^{(m+1)}$ wählt, $u(\mu^{(m+1)})$ berechnet, und als neuen Basisvektor hinzufügt. Insofern kann dies als approximative Lösung des Optimierungsproblems

$$\min_{\substack{Y \subset X \\ \dim Y = N}} \max_{\mu \in \mathcal{P}} \Delta(Y, \mu)$$

interpretiert werden: Statt maximieren über $\mathcal{P} \leadsto$ maximieren über S_{train} , statt minimieren über $X \subset X \leadsto$ iterative Sequenz von Räumen $Y = X_{GRE,m}$.

Lemma 3.53 (Fehlerindikatoren, Terminieren des Verfahrens)

i) Falls $|S_{train}| = n < \infty$ und für alle $\mu \in \mathcal{P}$ und $Y \subset X$ gilt

$$u(\mu) \in Y \implies \Delta(Y,\mu) = 0$$

so terminiert das Greedy-Verfahren mit $N \leq n$ und

$$\max_{\mu \in S_{train}} \Delta(X_{GRE,n}, \mu) \le \epsilon_{tol}$$

ii) Dies erfüllen z.B.

$$\Delta(Y,\mu) := ||u(\mu) - u_N(\mu)||$$

$$\Delta(Y,\mu) := ||u(\mu) - P_y u(\mu)||$$

$$\Delta(Y,\mu) := \Delta_N^{en}(\mu)$$

oder andere Fehlerschätzer, wobei $X_N = Y$ gesetzt wird.

Beweis. Übung.

Korollar 3.54 (Fehleraussage)

Für $\Delta(Y,\mu) := ||u(\mu) - u_N(\mu)||$ oder $\Delta(Y,\mu) := \Delta_{N'}$ gilt für $N' = 1, \dots, N$

$$\max_{\mu \in S_{train}} ||u(\mu) - u_{N'}(\mu)|| \le \epsilon_{N'}$$

Beweis. Klar nach Konstruktion.

Bemerkung (Wahl der Fehlerindikatoren).

• Greedy-Verfahren hervorragendes Einsatzfeld für Fehlerschätzer, denn $\Delta_N(\mu)$ kann sehr schnell für alle $\mu \in S_{train}$ ausgerechnet werden, ohne dass alle $u(\mu)$, $\mu \in S_{train}$ berechnet werden müssen (im Gegensatz zu POD). Dadurch können sehr große Mengen S_{train} behandelt werden. Dies erhöht die Erwartung, dass $\Phi_{GRE,N}$ auch für neue Parameter $\mu \in \mathcal{P} \setminus S_{train}$ eine gute Approximation liefert.

• Wahl: $\Delta(Y,\mu) := ||u(\mu) - P_y u(\mu)||$, orthogonaler Projektionsfehler

Motivation: Falls dies klein, so ist mit Céa auch RB-Fehler klein

Nachteile: Teuer auszuwerten, hochdimensionale Operation erfordert alle Snapshots $u(\mu)$, $\mu \in S_{train}$ müssen vorliegen, Größe von S_{train} hiermit eingeschränkt.

Vorteil: Terminieren ist garantiert. Approximationsraum ist entkoppelt von RB-Approximation, d. h. Verfahren kann angewandt werden ohne Vorliegen des RB-Verfahren und ohne Fehlerschätzer.

• Wahl: $\Delta(Y,\mu) := ||u(\mu) - u_N(\mu)||$, RB-Fehler

Motivation: Dies ist die ultimative Größe, welche kontrolliert werden muss, z. B. (3.7).

Nachteile: Wie bei Projektionsfehler: teuer, alle Snapshots $\mu \in S_{train}$ vorberechnen, S_{train} Größe eingeschränkt.

Vorteile: Terminieren ist garantiert, Verfahren kann mit RB-Verfahren angewandtwerden, für welche keine FS vorliegen.

• Wahl: $\Delta(Y,\mu) = \Delta_N(\mu)$ [oder Energie-/rel. Fehlerschätzer]

Nachteil: Falls Fehlerschätzer den Fehler stark überschätzt, kann der RB-Raum evtl. größer als nötig sein.

Vorteile: schnell auswertbar, unabhängig von H denn Offline-Online. Es müssen nur N Snapshots berechnet werden, $|S_{train}|$ kann sehr groß gewählt werden, Terminieren kann garantiert werden.

- Ziel-orientierte Indikatoren: Falls $\Delta(Y,\mu)$ als Ausgabefehler $|s(\mu) s_N(\mu)|$ oder Schranke Δ_N , s gewählt wird, nennt man das Verfahren "goal-oriented". Die Basis wird potentiell sehr klein und kann Ausgabe gut approximieren. Die Feldvariable u wird jedoch nicht notwendigerweise gut approximiert.
- Falls $\Delta(Y,\mu)$ als Feldvariablen-Fehler $||u(\mu) u_N(\mu)||$, PRojektionsfehler oder schätzer gewählt wird, ist Verfahren nicht goal-oriented, die Basis wird größer sein, aber sowohl u als auch v, als auch beliebig andere Funktionale \tilde{s} gut approximiert.

Bemerkung (Reihenfolge).

• Greedy-Basis hängt meistens nicht von Reihenfolge der Parameter S_{train} ab. Nur falls zufällig das Maximum von $\Delta(Y,\mu)$ mehrdeutig ist \leadsto Praktische Lösung: Wähle ersten Parameter, der maximales $\Delta(Y,\mu)$ erzeugt.

Bemerkung (Bestimmung der Approximationsgüte/Overfitting). In Terminologie der Statistik/Maschinellen Lernens ist S_{train} eine **Trainingsmenge** und ϵ_N aus Greedy-Verfahren der sogenannten **Trainingsfehler**. S_{train} muss \mathcal{P} gut repräsentieren, sollte möglichst groß gewählt werden. Falls S_{train} zu klein, oder unrepräsentativ für \mathcal{P} kann Overfitting auftreten.

Somit ist kleiner Trainingsfehler nicht hinreichend für gutes Modell. Modelle sollen daher nicht alleine anhand von Trainings-, sondern anhand unabhängiger Testmengen:

$$\epsilon_{test} = \max_{\mu \in S_{train}} \Delta(X_N, \mu)$$
, meistens zufällige Parametermenge

Bemerkung (Monotonie).

- Im Allgemeinen gilt nicht $\Delta(X_N,\mu) \geq \Delta(X_{n+1},\mu)$
- Es kann daher vorkommen, dass $(\epsilon_n)_{n=1}^N$ nichtmonoton ist.
- Falls Beziehung zu Bestapproximation gilt, d. h. für ein C>0 unabhängig von n gilt:

$$\Delta(X_n,\mu) \le C \cdot \inf_{v \in X_n} ||u(\mu) - v||$$

kann zumindest eine Beschränkung oder asymptotischer Abfall erwartet werden.

• In bestimmten Fällen kann Monotonie bewiesen werden:

Satz 3.55 (Monotonie von (ϵ_n))

Das Greedy-Verfahren erzeugt monoton fallende Sequenzen $(\epsilon_n)_{n\geq 1}$ falls:

i)
$$\Delta(Y,\mu) := ||u(\mu) - P_{X_n}u(\mu)|| \text{ oder}$$

ii) (P) ist compliant, d. h. l=f und a symmetrisch und $\Delta(Y,\mu)=||u(\mu)-u_N(\mu)||_{\mu}$

Beweis. i) klar

ii) folgt aus 3.11

Bemerkung (Konvergenz des Greedy-Verfahrens).

• Einige Jahre lang war Greedy-Verfahren ein in der Praxis gut funktionierendes Verfahren, jedoch ohne theoretische Erklärung wann/warum es funktioniert.

• Notwendiges Kriterium für Erfolg des Greedy-Verfahren: Kolmogorov n-Weite von \mathcal{M} muss (schnell) abfallen. Sei $\Delta(Y,\mu)$ so gewählt, dass $\Delta(Y,\mu) \geq ||u(\mu - P_y u(\mu))||$

$$\Rightarrow \sup_{\mu \in \mathcal{P}} \Delta(Y, \mu) \ge \inf_{\substack{Y \subset X \\ \dim Y = n}} \sup_{\mu \in \mathcal{P}} ||u(\mu) - P_y u(\mu)|| = d_n(\mathcal{M})$$

 \Rightarrow Falls $\Phi_{GRE,n}$ gut, muss $d_n(\mathcal{M})$ klein sein. Falls $d_n(\mathcal{M})$ nicht klein, kann $\Phi_{GRE,n}$ keine gute Approximation liefern.

- Spannend ist umgekehrte Frage, ob abfallendes d_n auch hinreichend für Gelingen des Greedy-Verfahrens.
- Antwort auf diese Fragen wurden in letzten Jahren gegeben:

(BMPPT 2012): Buffa, Maday, Patera, Prud'homme, Turinici: A-priori convergence of the greedy algorithm for the parameterized reduced basis method

M2AN, 46:595-..., 2012

(BCDDPW): Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk: Convergence Rates for Greedy Algorithms in Reduced Basis Methods

SIAM J. Math. Anal., 43(3), 1455..., 2011.

• Die Hoffnung, ein Ergebnis der Form $\epsilon_n \leq cd_1(\mathcal{M})$ zu erhalten kann (ohne weitere Annahme) leider nicht erreicht werden. Dies sieht man durch Vergleich von

$$\bar{d}_n(\mathcal{M}) = \inf_{\substack{Y \subset \operatorname{span}(\mathcal{M}) \\ \operatorname{dim} Y = n}} d(Y, \mathcal{M}) \quad \text{und} \quad d_n(\mathcal{M})$$

Theorem 4.1 in (BCDDPW2011) besagt:

- i) Für jedes \mathcal{M} und $n \geq 0$ gilt $\bar{d}_n(\mathcal{M}) \leq (n+1)d_n(\mathcal{M})$
- ii) Für jedes n > 0 und $\epsilon > 0$ existiert \mathcal{M} , s. d.

$$\bar{d}_n(\mathcal{M}) \ge (n-1-\epsilon)d_n(\mathcal{M})$$

Wegen $\epsilon_n \geq \bar{d}_n(\mathcal{M})$ und ii) ist "direkter Vergleich" von ϵ_n und $d_n(\mathcal{M})$ mit C unabhängig von n nicht möglich.

• Lösung ist zusätzliche Annahmen von Raten des Abfalls von d_n , damit können ähnliche Abfallraten für ϵ_n gezeigt werden, z. B. zeigen (BMPPT2012):

Für
$$S_{train} = \mathcal{P}$$
 und $\Delta(Y,\mu) = ||u(\mu) - P_y u(\mu)||$:

$$\epsilon_n \le 2^{n+1}(n+1)d_n(\mathcal{M})$$

Falls d_n schnell genug abfällt (z. B. exponentiell $d_n(\mathcal{M}) \leq C \cdot e^{-\alpha n}$) so folgt dann auch exponentieller Abfall von ϵ_n (mit anderem α)

• Ein verbessertes Ergebnis (ohne Faktor (n+1)) und ein Ergebnis für Fall algebraischer (polynomiell in N^{-1}) Konvergenz liefert (BCDPW), welches wir in unserer Notation formulieren (ohne Beweis).

Satz 3.56 (Greedy Konvergenzraten)

Sei $S_{train} = \mathcal{P}$ kompakt und $\Delta(Y,\mu)$ so gewählt, dass ex. ein $\gamma \in (0,1]$ mit

$$||u(\mu^{(n+1)}) - P_{X_n} u(\mu^{(n+1)})|| \ge \gamma \sup_{u \in \mathcal{M}} ||u - P_{X_n} u||$$
(3.24)

i) (algebraische Konvergenz) Falls $d_n(\mathcal{M}) \leq M \cdot n^{-\alpha}$ für geeignetes $\alpha, M > 0$ und alle $n \in \mathbb{N}$ und $d_0(\mathcal{M}) \leq M$ dann gilt

$$\epsilon_n \le C \cdot M n^{-\alpha}, \quad n > 0$$

mit explizit berechenbarer Konstante C.

ii) (exponentielle Konvergenz) Falls $d_n(\mathcal{M}) \leq M \cdot e^{-an^{\alpha}}$ für $n \geq 0, M, a, \alpha > 0$ dann gilt

$$\epsilon_n < C\dot{M}e^{-cn\beta}, \quad n > 0$$

mit $\beta := \frac{\alpha}{\alpha+1}$ und geeignete Konstanten C, c > 0.

Bemerkung. "Quasi-Optimalität des Greedy-Verfahrens: bis auf Konstante so gut wie optimale Approximation.

Bemerkung ("strong" vs "weak" greedy).

• Für $\gamma = 1$ nennt man das Verfahren "strong greedy". Wird nur durch die Wahl

$$\Delta(Y,\mu) := \|u(\mu) - P_Y u(\mu)\|$$

realisiert.

- Für $\gamma < 1$ nennt man das Verfahren "weak greedy" d.h. statt schlechtest-approximiertes Element wird ein einigermaßen schlecht approximiertes Element gewählt zur Basisgenerierung.
- Achtung $\gamma \neq \gamma(\mu)$ Stetigkeitskonstante

Interessant ist Frage, ob Verwendung von Fehlerschätzern Bedingung (3.24) erfüllt für geeignetes γ . Für $\Delta(Y,\mu) := \Delta_N(\mu)$ kann dies positiv beantwortet werden.

Satz 3.57 (Δ_N liefert weak Greedy)

Das Greedy-Verfahren mit Fehlerindikator $\Delta(Y,\mu) := \Delta_N(\mu)$ stellt weak greedy Verfahren dar mit Konstante

 $\gamma := \frac{\bar{\alpha}^2}{\bar{\gamma}^2}$

mit $\bar{\alpha}$, $\bar{\gamma}$ uniforme untere/obere Schranke für Koerzivitäts-/Stetigkeitskonstante.

Beweis. Lemma von Cea 3.9, Fehlerschranke 3.13 und Effektivitätsschranke 3.16 gelten für alle Räume X_n , $n \ge 1$ also

$$||u(\mu^{(n+1)}) - P_{X_n}u(\mu^{(n+1)})|| = \inf_{v \in X_n} ||u(\mu^{(n+1)}) - v||$$

$$\geq \frac{\alpha(\mu)}{\gamma(\mu)} ||u(\mu^{(n+1)}) - u_N(\mu^{(n+1)})||$$

$$\stackrel{3.16}{\geq} \frac{\alpha(\mu)}{\gamma(\mu)\eta_N(\mu)} \cdot \Delta_N(\mu^{(n+1)})$$

Behauptung folgt mit

$$\frac{\alpha(\mu)}{\gamma(\mu)\eta_N(\mu)} \stackrel{3.16}{\geq} \frac{\alpha(\mu)}{\gamma(\mu)} \frac{\bar{\alpha}}{\bar{\gamma}} \geq \frac{\bar{\alpha}^2}{\bar{\gamma}^2} =: \gamma$$

und

$$\Delta_N(\mu^{(n+1)}) = \sup_{\mu \in \mathcal{P}} \Delta_N(\mu) \stackrel{3.13}{\geq} \sup_{\mu \in \mathcal{P}} \|u(\mu) - u_N(\mu)\| \geq \sup_{\mu \in \mathcal{P}} \|u(\mu) - P_{X_n}u(\mu)\|$$

Bemerkung.

- Für thermischen Block $B_1 = 2$, $B_2 = 1$ gesehen: d_n fällt exponentiell d.h. hier liefert Greedy-Verfahren exponentielle Konvergenz.
- "Lücke" zwischen Theorie & Praxis ist jedoch noch, dass $S_{train} \neq \mathcal{P}$ weil nur endliche Mengen S_{train} betrachtet werden können.
- In der Praxis beobachtet man jedoch auch für allgemeines B_1 , B_2 und solchen endlichen S_{train} konvergenz.

Numerische Beispiele:

demos_chapter3(5) Illustration von Gram-Schmidt ONB aus demos_chapter(3) d.h. $B_1 = B_2 = 3$ und nur μ_1 variiert. φ_1 ist normierter Snapshot, $\varphi_2, \ldots, \varphi_8$ weisen stärker werdende Gradienten auf mit lokalen Strukturen um Kanten von Ω_1 .

demos_chapter3(6) $B_1 = B_2 = 2, \ \mu \in \mathcal{P} = [0.5, 2]^4$

Greedy-Basis mit zufälliger Menge S_{train} , $|S_{train}| = 1000$. Fehlerindikator $\Delta(Y,\mu) = \Delta_N(\mu)$, Gram-Schmidt ON in jeder Iteration. Testmenge S_{test} , $|S_{test}| = 100$. Bestimmung von maximalem Testfehler und -Schätzer.

⇒ schöne exponentielle Konvergenz von

$$\max_{\mu \in S_{test}} \|u(\mu) - u_N(\mu)\| \quad \text{und} \quad \max_{\mu \in S_{test}} \Delta_N(\mu)$$

Schätzer ist sehr nah an echtem Fehler (gute Effektivität).

demos_chapter3(7) Effekt bei steigendem $p = B_1 \cdot B_2$

 $B_1 = B_2 = 2,3,4, \ \mu \in \mathcal{P} = [0.5,2]^p$, Greedy wie in vorigem Beispiel.

(Achtung 10 Minuten Laufzeit)

Illustration des Trainingsfehlers $(\epsilon_n)_{n\geq 1}$

 \Rightarrow Exponentielle Konvergenz, aber schlechtere Exponenten für größere p

Bemerkung (Trainingsmenge-Wahl).

- Die Trainingsmenge sollte möglichst repräsentativ für \mathcal{P} sein, kann aber nicht beliebig groß sein aus Laufzeitgründen. Sollte nicht zu klein gewählt werden, um nicht Overfitting zu bewirken. Sorgfältige Wahl von S_{train} kann also entweder Qualität des RB-Modells oder die Offline-Laufzeit verbessern. Hierzu gibt es einige Ansätze & Modifikationen des Greedy-Verfahrens:
- "Multistage-Greedy": Wähle sehr große Menge S_{train} , zerlege diese in Sequenz gröberer Mengen

$$S_{train}^{(0)} \subset S_{train}^{(1)} \subset \ldots \subset S_{train}^{(m)} = S_{train}$$

Erzeuge $\Phi_{GRE}^{(0)}$ aus $S_{train}^{(0)}$, dann erweitere diese Basis durch Greedy-Verfahren auf $S_{train}^{(1)}$, etc. Effekt ist wesentliche Beschleunigung des Greedy-Verfahren für S_{train} . Die meisten Iterationen werden nur mit kleiner Trainingsmenge durchgeführt (schnell), nur wenige Iterationen für $S_{train}^{(m)}$ erforderlich (teuer).

Ref.: Sen: Reduced-Basis Approximation and A Posteriori Error Estimation for Many-Parameter Heat Conduction Problems, Numerical Heat Transfer, Part B: Fundamentals 54(5): 369-389, 2008.

• Randomisiertes Greedy: Statt fester Menge S_{train} der Größe N_{train} in allen Iterationen, wähle in jeder Iteration eine neue Trainingsmenge der Größe N_{train} . Dadurch wird praktisch eine Trainingsmenge der Größe $N \cdot N_{train}$ in der Basisgenerierung verwendet.

Ref.: [HSZ2013]: Hesthaven, Stamm, Zhang: Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods. M2AN, 2013.

• Saturierungs-Annahme (?): Unter Annahme, dass ein Fehlerindikator für ein Parameter sich in einer Sequenz von Basiserweiterungen höchstens um Faktor C_s verschlechtert, besteht folgende Beschleunigungsmöglichkeit:

Für feste Menge S_{train} wird jeder Parameter μ , der im Laufe des Greedy-Verfahren $\Delta_N(\mu) \leq \frac{\epsilon_{tol}}{C_s}$ erfüllt, markiert und künftige Fehlerschätzer nicht mehr berechnet, da μ bereits präzise erfasst. [HSZ2013] mit weiteren technischen Schnörkeln.

Adaptive Trainingsmengen-Erweiterung:
 Idee: Übertragen des adaptiven FEM-Schemas "Solve, Estimate, Mark, Refine" auf das Parametergebiet:

Initiale Trainingsmenge (grob) $S_{train}^{(0)}$ ist Menge der Knoten eines Gitters auf \mathcal{P} . Auf $S_{train}^{(0)}$ wird ein Greedy-Verfahren mit "early stopping" angewandt, d.h. das Greedy-Verfahren wird abgebrochen, sobald Overfitting detektiert wird, d.h. $\frac{E_{val}}{E_{train}}$ zu groß wird, wobei E_{val} , E_{train} den aktuell maximalen Fehlerindikator über einer Validationsmenge (zufällig) und S_{train} darstellen. Sobald Overfitting detektiert wird, werden für alle Gitterelemente Fehlerindikatoren bestimmt (z.B. Fehlerschätzer im Mittelpunkt), ein Anteil $\Theta \in (0,1]$ der Elemente mit größten Indikatoren zur Verfeinerung markiert, das Parametergebiet verfeinert und seine Knoten ergeben erweiterte Trainingsmenge $S_{train}^{(1)}$. Dies wird wiederholt, bis ϵ_{tol} erreicht wird.

Ergebnis ist gleichverteilter Fehler und sehr problemangepasste Wahl von S_{train} z.B. führt dieser Algorithmus automatisch zu Verfeinerungen in wichtigen Bereichen. Bei Diffusion z.B. in bereichen kleiner Diffusionsparameter.

Ref.: [HDO11] Haasdonk, Dihlmann, Ohlberger: A Training Set and Multiple Basis Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space. MCMDS, 17: 423-442, 2011.

• Greedy mit Optimierung: Statt großer Menge S_{train} wird kleines S_{train} gewählt. Jedes $\mu \in S_{train}$ wird als Startwert eines Optimierungsproblems gewählt. Aus den N_{train} lokalen Optima wird $\mu^{(n+1)}$ als nächster Snapshotparameter gewählt.

Ref.: Urban, Volkwein, Zeeb: Greedy Sampling using Nonlinear Optimization. Kapitel in: Quarteroni, Rozza: Reduced Order Methods for Modeling and Computational Reduction, Springer MS&A Serie, 2014.

Bemerkung (Partitionsansätze). Bei komplexen Problemen kann die für gewünschtes ϵ_{tol} erforderliche Basisgröße N zu groß sein. Generell verhalten sich ϵ_{tol} und N gegenläufig und können nicht unabhängig gewählt werden.

Idee: Partitionierung des Parametergebiet durch Bisektions- oder strukturierte Gitter. Für jedes Teilgebiet wird eine Basis mit dem Greedy-Verfahren erzeugt. Diese Basen sind jeweils kleiner als einzelne globale Basis. In der Online-Phase wird zu $\mu \in \mathcal{P}$ das geeignete Teilgebiet bestimmt und dessen RB zur Simulation verwendet. Indem das Parametergitter adaptiv genügend fein gewählt wird, kann sowohl ϵ_{tol} als auch die maximale Basisgröße N_{max} , d.h. Online-Laufzeit vorgeschrieben werden.

"Haken": Offline-Phase teuer (Rechenzeit & Daten)

Ref.:

- a) Bisektionsgitter: Eftang, Patera, Ronquist: An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations. SJSC, 32(6): 3170-3200, 2010
- b) Hexaeder-Gitter: [HDO11]

3.5 Primal-Duale RB-Verfahren

Motivation

- Erinnerung: Für nichtsymmetrische, non-compliant Probleme konnten wir nur $\Delta_{N,s}(\mu)$ bereitstellen, welcher nur linear in $||v_r||$ skaliert und wir haben die Unmöglichkeit von Effektivitätsschranken für die Ausgabe gesehen (ohne weitere Annahmen).
- Stattdessen für compliant Fall skaliert $\bar{\Delta}_{N,s}$ quadratisch mit $||v_r||$ und wir konnten Effektivitätsschranken zeigen.
- Dieser Abschnitt: Verbesserte Ausgabeschätzung für allgemeine nichtsymmetrische oder nicht-compliant Probleme (aber immer noch keine Effektivitätsschranken)
- $(P(\mu))$ und $(P_N(\mu))$ werden weiter benötigt als "primale Probleme".

Definition 3.58 (Duales volles Problem $(P^{du}(\mu))$)

Seien a, f, l wie in $(P(\mu))$ gegeben. Dann ist für $\mu \in \mathcal{P}$ gesucht $u^{\mathrm{du}}(\mu) \in X$ als Lösung von

$$a(v, u^{\mathrm{du}}(\mu); \mu) = -l(v; \mu) \quad \forall x \in X$$

Bemerkung.

- Offensichtlich "negatives Ausgabefunktional" als rechte Seite und Vertauschen der Test- / Lösungsargumente in $a(\cdot,\cdot)$.
- Wohlgestelltheit für a koerziv: Existenz & Eindeutigkeit & Stabilität via Lax-Milgram.
- Duales Problem wird nur formell als Referenz verwendet zu welchem wir den dualen Fehlerabschätzer verwenden.
- Literatur zu diesem Abschnitt:

[Ro03]: Rovas: Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations, PhD-Thesis, MIT, 2003.

Dualer RB-Raum

• Wir nehmen an, dass wir einen dualen RB-Raum gewählt haben:

$$X_N^{\mathrm{du}} \subset X, \quad X_N^{\mathrm{du}} = \mathrm{span}\, \phi^{\mathrm{du}}, \quad \dim X_N^{\mathrm{du}} = N^{\mathrm{du}}$$

welcher duale Lösungen $u^{du}(\mu)$ gut approximiert.

• Es ist i.A. $X_n^{\text{du}} \neq X_N$, $N^{\text{du}} \neq N$, X_N^{du} kann durch Greedy / POD etc. Verfahren aus Snapshots $u^{\text{du}}(\mu)$ erzeugt werden.

Definition 3.59 (Primal-Duales RB-Problem $(P'_N(\mu))$) Sei ein Problem $(P(\mu))$ gegeben, X_N , X_N^{du} primaler & dualer RB-Raum. Zu $\mu \in \mathcal{P}$ sei $u_N(\mu) \in X_N$ **primale RB-Lösung** wie in $(P_N(\mu))$, d.h.

$$a(u_N(\mu), v; \mu) = f(v; \mu) \quad \forall v \in X_N$$

 $u_N^{\mathrm{du}}(\mu) \in X_N^{\mathrm{du}}. \text{ Sei } \textit{\textbf{duale } \textit{\textbf{RB-L\"osung}}, \text{ d.h. } a(v, u_N^{\mathrm{du}}(\mu); \mu) = -l(v; \mu), \, \forall v \in X_N^{\mathrm{du}}, \text{ und } u \in X_N^{\mathrm{du}}, \text{ and } u$ die RB-Ausgabe $s'_N(\mu) \in \mathbb{R}$ gegeben durch

$$s_N'(\mu) = l(u_N(\mu); \mu) - r(u_N^{\text{du}}(\mu); \mu)$$
(3.25)

wobei $r(\cdot;\mu) \in X'$ das **primale Residuum**, d.h. $r(v;\mu) = f(v;\mu) - a(u_N(\mu),v;\mu)$. Weiter benötigen wir das **duale Residuum** $r^{du}(\cdot; \mu) \in X'$ definiert durch

$$r^{\mathrm{du}}(v;\mu) := -l(v;\mu) - a(v,u_N^{\mathrm{du}}(\mu);\mu) \quad \forall v \in X$$

Bemerkung.

- Wohlgestelltheit wieder klar mit Lax-Milgram.
- In FEM-Literatur existiert der Begriff "dual-weighted residual" (DWR), ähnlich wie oben das Residuum und mit dualer Lösung kombiniert in (3.25).
- Im Vergleich zu $(P_N(\mu))$ haben wir $s'_N(\mu) = s_N(\mu) r(u_N^{\mathrm{du}}(\mu); \mu)$, somit stellt $r(u_N^{\mathrm{du}})$ ein Korrekturterm dar, der die verbesserte Ausgabeschätzung liefert.
- Wie im primalen Fall ist auch duales Residuum rechte Seite der dualen Fehlergleichung

$$a(v, u^{\mathrm{du}}(\mu) - u_N^{\mathrm{du}}(\mu); \mu) = r^{\mathrm{du}}(v; \mu) \quad \forall v \in X$$

• Reproduktion von Lösungen gilt analog zu $(P_N(\mu))$:

Falls
$$u(\mu) \in X_N$$
, $u_N^{\mathrm{du}}(\mu) \in X_N^{\mathrm{du}}$

$$\Rightarrow u_N(\mu) = u(\mu), \quad u_N^{\mathrm{du}}(\mu) = u^{\mathrm{du}}(\mu)$$

und $s_N'(\mu) = s(\mu)$. Letzteres sieht man:

$$s(\mu) - s_N'(\mu) = l(u) - l(\underbrace{u_N}_u) + r(u^{\mathrm{du}}) = f(\underbrace{u^{\mathrm{du}}}_{a(u,u^{\mathrm{du}})}) - a(\underbrace{u_N}_u,u^{\mathrm{du}}) = 0$$

Satz 3.60 (Beziehung zur Bestapproximation)

i) Für den dualen Fehler gilt

$$||u^{\mathrm{du}}(\mu) - u_N^{\mathrm{du}}(\mu)|| \le \frac{\gamma(\mu)}{\alpha(\mu)} \inf_{v \in X_N^{\mathrm{du}}} ||u^{\mathrm{du}}(\mu) - v||$$

ii) Für den Ausgabefehler gilt

$$|s(\mu) - s'_{N}(\mu)| = |a(u - u_{N}, u^{\mathrm{du}} - u_{N}^{\mathrm{du}})| \le \gamma(\mu) \|u - u_{N}\| \|u^{\mathrm{du}} - u_{N}^{\mathrm{du}}\|$$

$$\le \frac{\gamma(\mu)^{3}}{\alpha(\mu)^{2}} \inf_{v \in X_{N}} \|u - v\| \cdot \inf_{v \in X_{N}^{\mathrm{du}}} \|u^{\mathrm{du}} - v\|$$
(3.26)

Beweis.

i) Céa

ii)

$$s(\mu) - s'_{N}(\mu) = l(u) - l(u_{N}) + r(u_{N}^{du})$$

$$= \underbrace{l(u - u_{N})}_{-a(u - u_{N}, u^{du})} + \underbrace{f(u_{N}^{du})}_{a(u, u_{N}^{du})} - a(u_{N}, u_{N}^{du})$$

$$= -a(u - u_{N}, u^{du}) + a(u - u_{N}, u_{N}^{du})$$

$$= -a(u - u_{N}, u^{du} - u_{N}^{du})$$
(3.27)

Somit erste Gleichheit in (3.26), Ungleichheit in (3.27) dann klar wegen Stetigkeit und $2\times C\acute{e}a$.

In a-priori-Schranke (3.26) sehen wir den "multiplikativen Effekt", somit ist s_N' tatsächlich gute Schätzung und es besteht die Hoffnung dies durch a-posteriori Schranken zu verifizieren. Zunächst ganz analog zu primalem Problem eine a-posteriori Schranke für dualen Fehler:

Satz 3.61 (Duale a-posteriori Fehlerschranke & Effektivitätsschranke)

i)

$$||u^{\mathrm{du}}(\mu) - u_N^{\mathrm{du}}(\mu)|| \le \Delta_N^{\mathrm{du}}(\mu) := \frac{||r^{\mathrm{du}}(\mu)||_{X'}}{\alpha_{LB}(\mu)}$$

ii)

$$\eta_N^{\mathrm{du}}(\mu) := \frac{\Delta_N^{\mathrm{du}}(\mu)}{\|u^{\mathrm{du}}(\mu) - u_N^{\mathrm{du}}(\mu)\|} \le \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)} \le \frac{\bar{\gamma}}{\bar{\alpha}}$$

Beweis. Genauso wie für $(P_N(\mu))$.

Damit folgt gewünschte Schranke für Ausgabefehler:

Satz 3.62 (Primal-dualer Ausgabefehlerschätzer) Für alle μ gilt

$$|s(\mu) - s'_N(\mu)| \le \Delta'_{N,s}(\mu) := \frac{\|r(\mu)\|_{X'} \cdot \|r^{\mathrm{du}}(\mu)\|_{X'}}{\alpha_{LB}(\mu)}$$

Beweis. Mit (3.26) folgt mit $e := u - u_N$, $e^{du} = u^{du} - u_N^{du}$

$$|s - s'_N| = |a(e, e^{\mathrm{du}})| = |r(e^{\mathrm{du}})| \le ||r||_{X'} \cdot ||e^{\mathrm{du}}|| \le ||r||_{X'} \Delta_N^{\mathrm{du}} = \frac{||r|| ||r^{\mathrm{du}}||}{\alpha_{LR}} = \Delta'_{N,s}$$

Bemerkung hiultiplikativer Effekt" in $\Delta'_{N,s}$ erreicht.

• Dies liefert ein Kriterium zur Wahl von N, N^{du} : Wähle diese s.d. $||r|| \approx ||r^{\text{du}}||$, damit quadratischer Effekt auch numerisch realisiert wird.

• Man kann feststellen, dass ähnlich zu $\Delta_{N,s}$ auch $\Delta'_{N,s}$ ohne weitere Annahmen keine Effektivitätsschranke liefert: $\Delta'_{N,s}$ kann ungleich 0 sein, während $s-s'_N=0$.

Wähle
$$v_l \perp v_f \in X \setminus \{0\}, X_N = X_N^{\mathrm{du}} \perp \{v_f, v_l\}$$

$$a(u,v) := \langle u, v \rangle, \quad f(v) := \langle v_f, v \rangle, \quad l(v) := \langle v_l, v \rangle$$

$$\Rightarrow u = v_f, \ u^{\mathrm{du}} = -v_l, \ u_N = 0, \ u_N^{\mathrm{du}} = 0, \ e = v_f, \ e^{\mathrm{du}} = -v_l$$
$$\Rightarrow r \neq 0, \ r^{\mathrm{du}} \neq 0 \quad \Rightarrow \quad \Delta'_{N,s} \neq 0$$

aber
$$s - s'_N = -a(e, e^{\mathrm{du}}) = \langle v_f, v_l \rangle = 0.$$

• Erinnerung: Im Compliant Fall hatten wir definiert/gezeigt in 3.18

$$0 \le s - s_N \le \bar{\Delta}_{N,s}(\mu) := \frac{\|r\|^2}{\alpha_{LR}}$$

und Effektivitätsschranke erreicht.

• Im compliant Fall ist primal-dualer Ansatz überflüssig, denn für $X_N = X_N^{\text{du}}$:

$$s'_N(\mu) = s_N(\mu)$$
 und $\Delta'_{N,s}(\mu) = \bar{\Delta}_{N,s}(\mu)$

Mit l = f und Symmetrie folgt: a(v,u) = a(u,v) = f(v) = l(v)

$$\Rightarrow u = -u^{\mathrm{du}}$$
, analog $u_N = -u_N^{\mathrm{du}}$

also
$$r(v) = f(v) - a(u_N, v) = l(v) + a(u_N^{\mathrm{du}}, v) = l(v) + a(v, u_N^{\mathrm{du}}) = -r^{\mathrm{du}}(v)$$

$$\Rightarrow ||r|| = ||r^{\mathrm{du}}|| \Rightarrow \Delta'_{N,s} = \bar{\Delta}_{N,s}$$

Weiter ist $r(u_N^{du}) = -r(u_N) = 0 \implies s_N' = l(u_N) - r(u_N^{du}) = l(u_N) = s_N$. Bemerkung (Basisgenerierung).

• Erste Möglichkeit: Separate Greedy-Verfahren für X_N , X_N^{du} mit **identischem** ϵ_{tol} , um quadratischen Effekt zu bewirken.

• Zweite Möglichkeit: Kombiniertes Greedy-Verfahren zur simultanen Erzeugung von X_N , X_N^{du} , indem $\Delta'_{N,s}$ als Fehlerschätzer gewählt wird und $u(\mu^{(n)})$, $u^{\text{du}}(\mu^{(n)})$ als Anreicherung in X_N , X_N^{du} hinzugefügt werden.

Bemerkung (Offline-Online für s'_N). Im Fall separierbarer Parameterabhängigkeit folgt Offline/Online für A_N , f_N , l_N , $\|r\|^2$, $\|r^{\mathrm{du}}\|^2$ analog zu §3.3. Zerlegung für Korrekturterm in $s'_N(\mu)$ ergibt sich ähnlich aus $u^{\mathrm{du}}_N = \sum u^{\mathrm{du}}_{N,n} \varphi^{\mathrm{du}}_n$ mit dualer Basis $\Phi^{\mathrm{du}} = \sum u^{\mathrm{du}}_{N,n} \varphi^{\mathrm{du}}_n$

$$\left\{\varphi_1^{\mathrm{du}},\dots,\varphi_{N^{\mathrm{du}}}^{\mathrm{du}}\right\},\ \underline{u}_N^{\mathrm{du}}=\left(u_{N,n}^{\mathrm{du}}\right)_{n=1}^{N^{\mathrm{du}}}$$

$$r(u_N^{\mathrm{du}}) = \sum_{q=1}^{Q_r} \Theta_r^q(\mu) r^q(u_N^{\mathrm{du}}) = \sum_{q=1}^{Q_r} \sum_{n=1}^{N^{\mathrm{du}}} \Theta_r^q(\mu) \, u_{N,n}^{\mathrm{du}}(\mu) \underbrace{r^q(\varphi_n^{\mathrm{du}})}_{\langle v_r^q, \varphi_n^{\mathrm{du}} \rangle}$$

 \Rightarrow Offline: $G_{r,\mathrm{du}} := \left(\langle v_r^q, \varphi_n^{\mathrm{du}} \rangle \right)_{q=1,n=1}^{Q_r,N^{\mathrm{du}}}$ Online: $r(u_N^{\mathrm{du}}) = \Theta_r^q(u)^T G_{r,\mathrm{du}} \underline{u}_N$

3.6 Geometrieparametrisierung

Motivation

- Neben Koeffizientenfunktionen in elliptischen PDEs oder Randwerten können auch Geometrieparametrisierungen behandelt werden.
- Hohe Anwendungsrelevanz: Beispiel Fahrzeugkarosserie oder Flügelprofil zur Optimierung des Widerstandsbeiwerts.
- Problem: Zu $\mu \in \mathcal{P}$ sei Gebiet $\Omega(\mu) \in \mathbb{R}^d$ und Lösungsraum $X(\mu) := H_0^1(\Omega(\mu))$ parameterabhängig. Löse $(P(\mu))$ nach $u(\mu) \in X(\mu)$.
- Hindernis: Snapshots $u(\mu)$ lassen sich nicht linear kombinieren, Konstruktion eines X_N unklar.
- Idee/Lösung: Wahl eines Referenzparameter $\hat{\mu} \in \mathcal{P}$, Referenzgeometrie $\hat{\Omega} := \Omega(\hat{\mu})$ und $T(\mu) : \hat{\Omega} \to \Omega(\mu)$ invertierbare Abbildung. ("Geometrieabbildung", "Referenzabbildung")

TODO: Skizze Referenzabbildung

• Mittels $T(\mu)$ oder $T^{-1}(\mu)$ sind Lösungen vergleichbar:

$$x \in \Omega(\mu) \quad \Leftrightarrow \quad T^{-1}(x;\mu) =: \hat{x} \in \hat{\Omega}$$

Falls T geeignete Regularität, so ist für u:

$$\hat{u}(\hat{x};\mu) := u(T(\hat{x};\mu);\mu) \quad \Rightarrow \quad \hat{u}(\cdot;\mu) \in X(\hat{\mu})$$

• Definiere $\hat{X} := X(\hat{\mu})$, zu $\mu \in \mathcal{P}$ suche $\hat{u}(\mu) \in \hat{X}$ als Lösung eines geeigneten $(\hat{P}(\mu))$, dann $u(x;\mu) := \hat{u}(T^{-1}(x;\mu);\mu)$ Lösung von $(P(\mu))$.

• Damit ist RB-Behandlung klar. Suche $\hat{X}_N \subset \hat{X}$ und RB-Lösung $\hat{u}_N(\mu) \in \hat{X}_N$ wie in §3.1-3.5. Dann ist $u_N(x;\mu) := \hat{u}_N(T^{-1}(x;\mu);\mu) \approx u(\mu)$.

Referenz: [RHP08]: Rozza, Huynh, Patera: Reduced Basis Approximation and A Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations - Application to Transport and Continuum Mechanics, Archives of Computational Methods in Engineering, 15(3): 229-275, 2008.

Definition 3.63 (Stückweise affine Geometrie transformation) Sei $\Omega(\mu) \subseteq \mathbb{R}^d$ parameterabhängiges Gebiet mit Partition $\{\Omega_k(\mu)\}_{k=1}^K$, d.h.:

$$\Omega_k(\mu) \cap \Omega_{k'}(\mu) = \emptyset \text{ für } k = k', \quad \text{und} \quad \overline{\Omega(\mu)} = \bigcup_{k=1}^K \overline{\Omega_k(\mu)}$$

Wähle $\hat{\mu} \in \mathcal{P}$ und $\hat{\Omega} := \Omega(\hat{\mu}), \ \hat{\Omega}_k := \Omega_k(\hat{\mu})$. Wir nennen $T(\mu) : \hat{\Omega} \to \Omega(\mu)$ stückweise affine Geometrietransformation falls ex. $T_k(\mu) : \hat{\Omega}_k \to \Omega_k(\mu)$ affin und bijektiv, d.h.

$$T_k(\hat{x}; \mu) := M_k(\mu) \cdot \hat{x} + t_k(\mu), \quad M_k(\mu) \in \mathbb{R}^{d \times d} \text{ regulär}, t_k(\mu) \in \mathbb{R}^d$$

und T ist stückweise durch $\{T_k\}$ definiert via $T(\mu)|_{\hat{\Omega}_k} = T_k(\mu)$ und ist für jedes μ stetig auf $\bigcup_{k=1}^K \partial \hat{\Omega}_k$ fortsetzbar, d.h.

$$T_k(\hat{x};\mu) = T_{k'}(\hat{x};\mu) \quad \forall \hat{x} \in \partial \hat{\Omega}_k \cap \partial \hat{\Omega}_{k'}$$

Bemerkung.

- Insbesondere also $T(\mu) \in C(\hat{\Omega}, \Omega(\mu))$, also stetig bzgl. x (nicht notwendig bzgl. μ).
- Unter T_k für $\hat{\Omega}_k \subseteq \mathbb{R}^2$ ist Bild von Dreieck ein Dreieck, entsprechend Formerhaltung von n-Eck, Parallelogramm, Ellipsen. In höheren Dimensionen analog für Simplex, Parallelepiped, Ellipsoid.
- Als $\hat{\Omega}_k \subseteq \mathbb{R}^2$ werden meist Dreiecke, Rechtecke, Parallelogramme oder allgemeiner "elliptic triangles" oder "curvy triangles".

TODO: Skizze Dreieck/Parallelogramm/elliptic triangles...

- Um T_k zu bestimmen, reicht es, in $\Omega \subseteq \mathbb{R}^2$ 3 korrespondierende nicht ko-lineare Punkte zu kennen (3×2 Gleichungen für 4+2 Unbekannte), in $\Omega \subseteq \mathbb{R}^3$ entsprechend 4 nicht ko-planare Punkte (4×3 Gleichungen für 9+3 Unbekannte)
- Wir nennen $\{\hat{\Omega}_k\}_{k=1}^K$ auch "Makro-Gitter" der Geometrieparametrisierung. Typischerweise wird FEM-Gitter eine Verfeinerung dieses Gitters sein.
- Stückweise affine Geometrieparametrisierungen sind kompatibel mit Sobolev/FEM-Lösungsraum:

$$\hat{u} \in H_0^1(\hat{\Omega}) \quad \Leftrightarrow \quad u := \hat{u} \circ T^{-1}(\mu) \in H_0^1(\Omega(\mu))$$

Falls \mathcal{T}_h das aus $\hat{\mathcal{T}}_h$ mit $T(\mu)$ transformierte Gitter ist, gilt

$$\hat{u}_h \in \mathbb{P}_{m,0}(\hat{\mathcal{T}}_h) \quad \Leftrightarrow \quad u_h := \hat{u}_h \circ T^{-1}(\mu) \in \mathbb{P}_{m,0}(\mathcal{T}_h)$$

weil Polynome von Grad m unter affinen Abbildungen wieder Polynome von Grad m ergeben.

Beispiele

- i) **TODO:** Skizze Falls $\hat{\Omega}$, $\Omega(\mu)$, Ω_k Rechtecke sind, so sind auch $\Omega_k(\mu)$ notwendig Rechtecke, denn für T_k nur achsenparallele Streckung möglich (keine Rotation oder Scherung des mittleren Quadrates).
- ii) **TODO:** Skizze Durch Dreiecke sind auch Rotationen / Scherungen des mittleren Quadrats möglich. Man wird meist $T(\mu)$ auch stetig bzgl. μ wählen, z.B. $\mu = Punkt-koordinate$, Verschiebungsparameter, Rotationswinkel oder Skalierungsfaktor, etc. Das mögliche Intervall für Rotationswinkel des mittleren Quadrats ist durch Regularitätsanforderung der M_k (Nichtdegenerieren der Ω_k) beschränkt, z.B. hier keine Drehung um 90° möglich, weil "mittlere" Dreiecke an jeder Kante degenerieren.
- iii) Durch genügend feines Makro-Gitter und Verwendung von Zwischenschichten kann Rotationswinkel *beliebig* vergrößert werden:

Kreisring mit Radien $r_2 < r_1$

TODO: Skizze

 $T(\mu)$ Rotation des inneren Kreises um Winkel $\mu \in (-\varphi_{min}, + \varphi_{max})$ mit $\varphi_{max} = \varphi_{max}(\frac{r_1}{r_2})$ realisierbar, analog $\varphi_{min}(\frac{r_1}{r_2})$. Durch genügend viele Punkte auf beiden Kreisen ist stückweise affine Geometrieparametrisierung definierbar, welche Makro-Dreiecksgitter regulär transformiert. Bei Verwendung von L solcher Ringe ist also insgesamt Rotation um $\mu \in (-L\varphi_{min}, + L\varphi_{max})$ für inneres n-Eck realisierbar. Durch konforme Fortsetzung der Triangulierung der Scheiben auf Innen- & Außengebiet ist somit beliebige Rotation in Beispiel ii) möglich.

TODO: Skizze

Transformation auf Referenzgebiet

• Sei allgemeine elliptische PDE zweiter Ordnung gegeben. Zu $\mu \in \mathcal{P}$ suche $u: \Omega(\mu) \to \mathbb{R}$ als Lösung von

$$-\nabla \cdot (A(\mu)\nabla u) + \nabla \cdot (b(\mu)u) + c(\mu)u = q(\mu) \qquad \text{auf } \Omega(\mu)$$
$$u = 0 \qquad \text{auf } \partial \Omega(\mu)$$

• Schwache Form: Zu $\mu \in \mathcal{P}$ such $u \in H_0^1(\Omega(\mu))$ sodass

$$\int_{\Omega(\mu)} (A(\mu)\nabla u) \cdot \nabla v - u(b(\mu) \cdot v) + c(\mu)uv = \int_{\Omega} qv \quad \forall v \in H_0^1(\Omega(\mu))$$

$$\Leftrightarrow \int_{\Omega(\mu)} (\nabla u^T, u) \underbrace{\begin{pmatrix} A(\mu) & 0 \\ b(\mu)^T & c \end{pmatrix}}_{B(\mu)} \begin{pmatrix} \nabla v \\ v \end{pmatrix} = \underbrace{\int_{\Omega} qv}_{f(v;\mu)} \quad \forall v \in H_0^1(\Omega(\mu))$$

- Dies ist Instanz von $(P(\mu))$ wenn noch beliebiges Ausgabefunktional gewählt wird. Wir ignorieren die Ausgabe hier.
- Unter geeigneten Bedinungen an $B(\mu)$ ist $(P(\mu))$ koerzives Problem mit stetiger Linear-/Bilinearform auf $X(\mu)$. (siehe NumPDE 14/15)
- Transformation der Gradienten auf Ω_k :

Sei $\hat{u}(\hat{x}) \in H_0^1(\hat{\Omega}), \ u(x) := \hat{u}(T^{-1}(x; \mu)), \ x \in \Omega_k$

$$\Rightarrow \nabla_x u(x) = (\mathbf{D}_x u)^T = (\mathbf{D}_{\hat{x}} \hat{u}(T^{-1}(x;\mu)) \cdot \mathbf{D}_x T^{-1}(x;\mu))^T$$
$$= (\nabla_x \hat{u}(\underbrace{T^{-1}(x;\mu)}_{\hat{x}})^T \cdot M_k^{-1})^T = M_k^{-T} \cdot \nabla_{\hat{x}} \hat{u}(\hat{x})$$

• Transformation der Bilinearform-Komponenten:

Mit $v := \hat{v} \circ T^{-1}$

$$\begin{split} & \int_{\Omega_k} (\nabla u^T, u) B(\mu) \begin{pmatrix} \nabla v \\ v \end{pmatrix} dx \\ & = \int_{\hat{\Omega}_k} (\nabla_{\hat{x}} \hat{u}^T, \hat{u}) \begin{pmatrix} M_k^{-1} & 0 \\ 0 & 1 \end{pmatrix} B(\mu) \begin{pmatrix} M_k^{-T} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \nabla_{\hat{x}} \hat{v} \\ \hat{v} \end{pmatrix} |\det M_k| d\hat{x} \end{split}$$

analog Linearform.

Satz 3.64 (Transformation auf Referenzgebiet, $(\hat{P}(\mu))$) Zu $\mu \in \mathcal{P}$ löst $u(\mu) \in X(\mu)$ das Problem $a(u(\mu), v; \mu) = f(v; \mu), \forall v \in X(\mu)$ mit

$$a(u, v; \mu) = \sum_{k=1}^K \int_{\Omega_k(\mu)} (\nabla u^T, u) B(\mu) \begin{pmatrix} \nabla v \\ v \end{pmatrix}, \quad f(v; \mu) = \sum_{k=1}^K \int_{\Omega_k(\mu)} q(\mu) v$$

genau dann, wenn $\hat{u}(\hat{x};\mu) := u(T(\hat{x};\mu);\mu)$ löst

$$\hat{a}(\hat{u}(\mu), \hat{v}; \mu) = \sum_{k=1}^K \int_{\hat{\Omega}_k} (\nabla \hat{u}^T, \hat{u}) \hat{B}^k(\mu) \begin{pmatrix} \nabla \hat{v} \\ \hat{v} \end{pmatrix} = \sum_{k=1}^K \int_{\Omega_k} \hat{q}^k(\mu) \hat{v} =: \hat{f}(\hat{v}; \mu) \quad \forall \hat{v} \in \hat{X}$$

mit

$$\hat{B}^k(\mu) = \begin{pmatrix} M_k(\mu)^{-1} & 0\\ 0 & 1 \end{pmatrix} B(\mu) \begin{pmatrix} M_k(\mu)^{-T} & 0\\ 0 & 1 \end{pmatrix} |\det M_k|$$

und

$$\hat{q}^k(\mu) := q(\mu) \cdot |\det M_k(\mu)|$$

Bemerkung (Separierbare Parameterabhängigkeit).

- Durch Vorgabe von $M_k(\mu) \in \mathbb{R}^{d \times d}$ ist also $M_k^{-1}(\mu) \in \mathbb{R}^{d \times d}$ explizit bekannt, ebenso $|\det M_k(\mu)|$, also die Matrixeinträge/Determinante als Koeffizientenfunktion verwendbar.
- Mit $B(\mu)$ separierbar parametrisch ist also auch $\hat{B}^k(\mu)$ separierbar parametrisch mit $Q_{\hat{B}} \leq (d^2+1)Q_B$, mit $q(\mu)$ separierbar parametrisch ist auch $\hat{q}^k(\mu)$ separierbar parametrisch mit $Q_{\hat{q}} = Q_q$.
- Durch Ausmult. ist auch \hat{a} separierbar parametrisch

$$(\hat{a}^q(\hat{u},\hat{v}))_{q=1}^{Q_{\hat{a}}} := (\int_{\hat{\Omega}_1} \frac{\partial}{\partial \hat{x}_1} \hat{u} \frac{\partial}{\partial \hat{x}_1} \hat{v} \cdot \hat{B}_{11}^{1,1}, \dots, \int_{\hat{\Omega}_1} \frac{\partial}{\partial \hat{x}_1} \hat{u} \frac{\partial}{\partial \hat{x}_1} \hat{v} \cdot \hat{B}_{11}^{1,q_{\hat{B}}}, \dots, \int_{\hat{\Omega}_k} \hat{u} \hat{v} \cdot \hat{B}_{(d+1),(d+1)}^{K,Q_{\hat{B}}})$$

mit $Q_{\hat{a}} = (d+1)^2 K \cdot Q_{\hat{B}}$ und entsprechenden Koeff. $(\Theta_{\hat{a}}^q)_{q=1}^{Q_{\hat{a}}}$, die sich aus $M_k(\mu)$, $\Theta_{B_i,j^k}^q(\mu)$, etc. ergeben.

- $Q_{\hat{a}}$ kann sehr groß sein. Diese Anzahl kann reduziert werden, falls es Koeff. $\Theta_{\hat{a}}^q(\mu)$ gibt, die
 - Null sind, z. B. bei eingeschränkten Transformationen (nur Skalierung, nur Translation) $\Rightarrow (M_k)_{1,2} = (M_k)_{2,1} = 0$
 - linear abhängig sind. Falls z. B. $\Theta_{\hat{a}}^q(\mu) = C \cdot \Theta_{\hat{a}}^{q'}(\mu)$

$$\Rightarrow \Theta_{\hat{a}}^{q}(\mu)\hat{a}^{q}(\,\cdot\,,\cdot\,) + \Theta_{\hat{a}}^{q'}(\mu)\hat{a}^{q'}(\,\cdot\,,\cdot\,) = \underbrace{\Theta_{\hat{a}}^{q'}(\mu)}_{\rightarrow 1 \text{ Komponente statt 2}} (C\hat{a}^{q}(\,\cdot\,,\cdot\,) + \hat{a}^{q'}(\,\cdot\,,\cdot\,))$$

also $Q_{\hat{a}}$ reduziert.

- "Zusammenfassen" von linear abh. Termen kann automatisiert werden durch symbolische Arithmetik \leadsto rbMIT Software-Paket
- Für mögl. kleines $Q_{\hat{a}}$ ist nicht unbedingt kleines K sinnvoll, sondern möglichst identisch transformierte Teilgebiete.
- K = 16 Zerlegung führt auf kleineres $Q_{\hat{a}}$ als K = 8 Zerlegung.

TODO: Skizze

Bemerkung (Inhomogene Neumann-Randbedingung). (bzw. ähnliche Argumentation bei Fluss-Kurven-Integralen als Ausgabe)

Sei $\partial\Omega = \Gamma_D \cup \Gamma_N$ mit $\Gamma_N \neq \emptyset$ Neumann Rand, $g_N : \Gamma_N \to \mathbb{R}$ Neumann RW.

Für $v \in H^1_{\Gamma_D}(\Omega(\mu))$ lautet $(P(\mu))$ rechts:

$$f(v;\mu) = \int_{\Gamma_N} g_N v$$

Ein Fluss-Kurvenintegral als Ausgabe z. B.

$$l(v; \mu) = \int_{\Gamma_N} (A(\mu)\Delta v) \cdot n$$

- Für Transformation dieser Integrale ist Rand-Geom. abb $T_{\Gamma}: \hat{\Gamma_N} \to \Gamma_N(\mu)$ und entsprechende Jacobi-Matrix/Determinante
- Problem besteht, falls Γ_N gekrümmt
 - $\Rightarrow n = n(x; \mu)$ ortsabhängig.
 - \Rightarrow Randintegralterm trotz separierbarem $A(\mu)$ eventuell nicht mehr separierbar parametrisch. Explizite Referenzabbildung notwendig und "hochdimensional". Auswertung des Integrals, d. h. ohne Offline-Online-Zerlegung.

Bemerkung (Fehlermaße).

- Im Raum $\hat{X} = X(\hat{\mu})$ hat Norm $||(\hat{u}(\mu)||_{H^1(\hat{\Omega})}$ keine physikalische Bedeutung für Funktionen $u(x;\mu) := \hat{u}T^{-1}(x;\mu);\mu$), kann sich wesentlich von von $||u(\mu)||_{H^1(\Omega(\mu))}$ unterscheiden.
- Die Energie(norm?) ist plausibler, kann jedoch bei starken Größenvariationen von $\Omega(\mu)$ unterschiedliche Größenordnungen annehmen.
- Im Greedy-Verfahren macht relativer Energienorm-Fehler/-Schätzer Sinn, da dieser Größenvariationen von $\Omega(\mu)$ ausgleicht.

Bemerkung (Weitere Möglichkeiten der Geometrieparametrisierung).

- In der Literatur existieren weitere Methoden, anstelle der stückweise affinen Geometrieparametrisierung: z. B. "Free-Form-Deformation" (Gitterförmig angeordnete Kontrollpunkte für Interpolation mit Bernstein-Polynomen), "Radiale Basisfunktionen Interpolation" (beliebige Platzierung von wenigen Kontrollpunkten und RBF Interpolation der Koordinatenfunktionen), 'Transfinite Mapping"
- Diese AAnsätze führen meist auf nicht-separierbare Parameterabhängigkeit in $(\hat{P}(\mu))$. Mit Techniken aus § 4 (z. B. "empirische Interpolationen") sind approx. separierbare Darstellungen konstruierbar.

4 Allgemeinere Lineare Probleme

4.1 Allgemeine Parameterabhängigkeit

Es folgt zunächst eine allgemeine Approximationsmethode für parametrische Funktionen, welche anschließend für RB-Behandlung von allgemeinen parametrisierten Problemen verwendet werden kann.

Empirische Interpolation (EI)

Motivation

- § 3 zeigte Relevanz der separierbaren Parameterabhängigkeit für effiziente Offline/Online-Zerlegung und Glattheit der Lösung $u(\mu)$ bzgl. μ .
- Gesucht: Approximationsverfahren für parametrische Funktion

$$q:\Omega\times\mathcal{P}\to\mathbb{R}$$

der Form

$$g(x;\mu) \approx I_{\mu}(g(\cdot;\mu))(x) = \sum_{m=1}^{M} \Theta_g^m(\mu)g^m(x)$$

mit skalaren Funktionen $\Theta_q^m(\mu)$ und "kollaterale reduzierter Basis" $Q_\mu = \{g^m\}_{m=1}^M$

- Statt allg. approx. Räume (z. B. FEM-Räume, zu hohe Dimension) oder Taylor-Ansatz (nur lokale Approx.) wird wieder Snapshot-basierter Ansatz gewählt, d. h. $Q_M \subset \operatorname{span}\{g(\cdot,\mu)|_{\mu \in S_{train} \subset \mathcal{P}}\}$
- Die empirische Interpolation ist eine Mögllichkeit. Details finden sich in

BMNP04 Barrault, Maday, Nguyen, Patera: An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations

MNPP07 Maday, Nguyen, Patera, Pau: A general, multipurpose interpolation procedure: the magic points

Definition 4.1 (Empirische Interpolation)

Sei $G \subset C^0(\bar{\Omega},\mathbb{R})$ Menge von zu interpolierenden Funktionen. Für $\mu \in \mathbb{N}$, $M \leq \dim(\operatorname{span}(G))$ definiere rekursiv Interpolationspunktemenge $T_{\mu} \subset \bar{\Omega}$ und die kollaterale Basis $Q_{\mu} \subset \operatorname{span}(G)$

$$M = 1 : \tilde{q}_1 := \operatorname{argmax}_{g \in G} ||g||_{\infty}$$

$$x_1 := \operatorname{argmax}_{x \in \bar{\Omega}} |\tilde{q}_1(x)|$$

$$T_1 := \{x_1\}$$

$$q_1 := \frac{\tilde{q}_1}{\tilde{q}_1(x_1)}$$

$$Q_1 := \{q_1\}$$

$$\begin{split} M > 1 : \tilde{q}_M := & \operatorname{argmax}_{g \in G} ||g - I_{M-1}(g)||_{\infty} \\ r_M := & \tilde{q}_M - I_{M-1} \tilde{q}_M \\ x_M := & \operatorname{argmax}_{x \in \bar{\Omega}} |r_M(x)| \\ T_M := & T_{M-1} \cup \{x_M\} \\ q_M := & \frac{r_M}{r_M(x_\mu)} \\ Q_M := & Q_{M-1} \cup \{q_M\} \end{split}$$

wobei $I_M: C^0(\bar{\Omega}, \mathbb{R}) \to \operatorname{span}(Q_\mu)$ den Interpolationsparameter zu Punkten T_M bezeichnet, d. h. $I_M(g)(x_i) = g(x_i) \ \forall \ g \in C^0(\bar{\Omega}, \mathbb{R}), \ i = 1, \dots, M.$

Bemerkung.

- In der Praxis werden obige Optimierungsprobleme zur Bestimmung von \tilde{q}_m , x_m durch einfache lineare Suche realisiert, indem endliche $\bar{\Omega}$ und G betrachtet werden.
- Es sind Mehrdeutigkeiten von \tilde{q}_m und x_m möglich, welche durch Aufzählung der Mengen und "Wahl des ersten Auftretens" eindeutig werden.
- Die Basis Q_M ist weder orthogonal noch nodal, aber hierarchisch, d. h. $Q_{M-1} \subseteq Q_M$.

Bemerkung.

• Q_M sind beschränkt

$$1 = q_m(x_m) = ||q_m||_{\infty}$$

Für analytische Untersuchungen wird später die nodale Basis $\zeta_M \subset \text{span}(Q_M)$ zu Knoten T_M betrachtet, welche jedoch nicht mehr hierarchisch sind, d. h. $\zeta_{M-1} \not\subseteq \zeta_M$

• Die Erzeugung von Q_M und T_M kann als Greedy-Minimierungsstrategie für

$$\min_{\substack{X_M\subset \operatorname{span}(G)\\\dim(X_M)=M\\T_M\subset\bar{\Omega}\\|T_M|=M}}\max_{g\in G}||g-I_M(g)||_{\infty} \text{ interpretiert werden.}$$

Es kann jedoch kein monotoner Fehlerabfall garantiert werden.

Satz 4.2 (Berechnung der Interpolation)

Seien $T_M = \{x_1, \dots, x_M\}$ und $Q_M = \{q_1, \dots, q_M\}$ gemäß Def. 4.1 gegeben. Dann ist die Matrix $\underline{Q}_M := (\underline{q}_j(x_i))_{i,j=1}^M \in \mathbb{R}^{M \times M}$ eine untere Dreiecksmatrix mit 1-Diagonale, also regulär. Sei $g \in C^0(\bar{\Omega}, \mathbb{R}), \underline{g}_M = (g(x_i))_{i=1}^M \in \mathbb{R}^M, \underline{\alpha}_M := (\alpha_i)_{i=1}^M \in \mathbb{R}^M$ Lösung von

$$Q_M \underline{\alpha}_M = g_M$$

Dann ist die Interpolierte von g gerade

$$I_M(g) = \sum_{i=1}^{M} \alpha_i \underline{q}_i \tag{4.1}$$

Beweis. Seien $i, j = 1, \dots, M$

$$i = j : (\underline{Q}_M)_{ii} = \underline{q}_i(x_i) = \frac{r_i(x_i)}{r_i(x_i)} = 1$$

$$j > i : (\underline{Q}_M)_{ij} = \underline{q}_j(x_i) = \frac{r_j(x_i)}{r_i(x_j)} = 0$$

weil $r_j(x_i) = \underline{\tilde{q}}^{(x_i)} - I_{j-1}(\underline{\tilde{q}}_j)(x_i) = 0$ da I_{j-1} Interpolierende zu T_{j-1} und $x_i \in T_{j-1}$.

Also \underline{Q}_M untere Dreiecksmatrix mit 1-Diagonale.

Für 4.1 zeige Übereinstimmung von beiden Seiten in allen Interpolationspunkten T_M : Für $i=1,\ldots,M$ ist

$$\sum_{j=1}^{M} \alpha_j \underline{q}_j(x_i) = \sum_{j=1}^{M} \alpha_j (\underline{Q}_M)_{ij} = (\underline{Q}_M \underline{\alpha}_M)_i = (g_M)_i = g(x_i) = I_M(g)(x_i)$$

Beispiel (EI für Polynome) Sie $G = \{1, x, x^2\}$ Monome auf $\bar{\Omega} = [-1, 1]$.

Dann ist

$$\underline{\tilde{q}}_1 := \mathrm{argmax}_{g \in G} \, ||g||_{\infty}$$
beliebig, z. B. $\underline{\tilde{q}}_1(x) = 1$

und

$$x_1 = \operatorname{argmax}_{x \in [-1,1]} |\underline{\tilde{q}}_1(x)$$
beliebig, z. B. $x_1 = -1$

somit ergibt sich

$$\underline{q}_1(x) = \frac{\underline{\tilde{q}}_1(x)}{\underline{\tilde{q}}_1(x_1)} = 1$$

Dann ist

$$\underline{\tilde{q}}_2 := \operatorname{argmax}_{g \in G} ||g - I_1(g)||_{\infty} = x,$$

$$\begin{split} r_2 &= \underline{\tilde{q}}_2 - I_1(\underline{\tilde{q}}_2) = x + 1, \\ x_2 &:= \mathrm{argmax}_{x \in [-1,1]} \, |r_2(x)| = 1 \text{ und} \\ \underline{q}_2(x) &= \frac{r_2(x)}{r_2(x_2)} = \frac{1}{2}(x+1) \end{split}$$

schließlich

$$\begin{split} \tilde{\underline{q}}_3 &:= \mathrm{argmax}_{g \in G} \, ||g - I_2(g)||_\infty = x^2 \\ r_3 &= x^2 - 1 \;\;, \;\; x_3 := \mathrm{argmax}_{x \in [-1,1]} \, |r_3(x)| = 0 \\ \underline{q}_3(x) &= \frac{r_3(x)}{r_3(x_3)} = 1 - x^2 \end{split}$$

i	x^i	$ x _{\infty}$	$ x^i - I_1(x^i) _{\infty}$	$ x^i - I_2(x^i) _{\infty}$
0	1	1	$ 1-1 _{\infty}=0$	0
1	x	1	$ x - (-1) _{\infty} = 2$	0
2	x^2	1	$ x^2 - 1 _{\infty} = 1$	$ x^2 - 1 _{\infty} = 1$

Numerisches Beispiel demos_chapter4(1)

$$G = \{x^i\}_{i=0}^{29}$$

- \Rightarrow alle q_i beschränkt, $||q_i||_{\infty} = 1$
- Fehler fällt nicht monoton
- $\cos^{-1}(T_M)$ ist etwa äquidistant, T_M approximieren also qualitativ die Tschebyscheff-Knoten, die für polynomiale Interpolation als beste Wahl bekannt sind $\Rightarrow T_M$ sind sogennante "Magic Points" weil sie "auf magische Weise" wichtige Bereiche von Ω identifizieren.

Eigenschafen der EI Wir untersuchen zunächst Stabilität der Interpolation. Dies geschieht durch Untersuchung der Lebesgue-Konstante (siehe Numerik I).

Satz 4.3 (Lebesgue-Konstante)

Sie $I_M: C^0(\Omega,\mathbb{R}) \to X_M:= \operatorname{span}(\zeta_i)_{i=1}^M \in C^0(\bar{\Omega},\mathbb{R})$ Interpolationsoperator zu den Punkten $\{x_i\}_{i=1}^M$ und $\{\zeta\}_{i=1}^M$ nodal, d. h. $\zeta_i(x_j) = \delta_{ij}$, $I_M(u) = \sum_{i=1}^M \zeta_i(x_i)$. Dann ist

$$\Lambda_M := \max_{x \in \bar{\Omega}} \sum_{i=1}^{M} |\zeta_i(x)|$$

die Lebesgue-Konstante der Interpolation.

i) Es gilt

$$||u - I_M(u)||_{\infty} \le (1 + \Lambda_M) \inf_{v \in X_M} ||u - v||_{\infty}$$

$$\forall u \in C^0(\bar{\Omega}, \mathbb{R})$$

ii) Für EI gilt

$$\Lambda_M \leq 2^M - 1$$

Beweis. i) Sei $u \in C^0(\bar{\Omega}, \mathbb{R}), x \in \bar{\Omega} \text{ und } v = \sum a_i \zeta_i \in X_M.$

Dann ist

$$|u(x) - I_{M}(u)(x)| = |u(x) - \sum_{i=1}^{M} a_{i}\zeta_{i}(x) + \sum_{i=1}^{M} a_{i}\zeta_{i}(x) - \sum_{i=1}^{M} u(x_{i})\zeta_{i}(x) |$$

$$\leq |u(x) - v(x)| + |\sum_{i=1}^{M} \zeta_{i}(x) \cdot (a_{i} - u(x_{i}))| \qquad (4.2)$$

Für letzten Term gilt wegen $\{\zeta_i\}$ nodal

$$|\sum_{i=1}^{M} \zeta_i(x) \cdot (a_i - u(x_i))| = |\sum_{i=1}^{M} \zeta_i(x) \cdot ((\sum_{j=1}^{M} a_j \zeta_j(x_i)) - u(x_i))|$$

$$\leq \sum_{i=1}^{M} |\zeta_i(x)| |v(x_i) - u(x_i)|$$

$$\leq (\max_x \sum_{i=1}^{M} |\zeta_i(x)|) \cdot ||u - v||_{\infty}$$

Also für (4.3):

$$||u - I_M(u)||_{\infty} \le ||u - v||_{\infty} + \Lambda_M ||u - v||_{\infty} = (1 + \Lambda_M)||u - v||_{\infty}$$

nach Infimum über $v \in X_M$ folgt Behauptung.

ii) \rightarrow Übung.

Bemerkung.

- Obige Abschätzung für Λ_M ist sehr pessimistisch, in der Praxis meist bessere Raten/Lebesgue-Konstanten (langsameres Wachstum), jedoch ist die Schranke scharf, d. h. es ex. Beispiele mit $\Lambda_M = 2^M 1$.
- Für gewisse Mengen G ist sogar exponentielle Konvergenz des Interpolationsfehleres beweisbar, wie in folgendem Satz. Dort auftretende Forderung ist "Beschränktheit durch Müslipackung", d. h. Polytop mit exponentiell abfallenden Seitenlängen.

Satz 4.4 (Exponentielle Konvergenz der EI)

Falls es Sequenz von exponentiell approx. Unterräumen gibt, d. h. $Z_1 \subset Z_2 \subset \cdots \subset Z_M \cdots \subset \operatorname{span}(G), \dim Z_M = M$ und ex. $c > 0, \alpha > \log 4$ so dass $\inf_{v \in Z_M} ||u - v|| \leq c \cdot e^{-\alpha M} \ \forall u \in G, M \in \mathbb{N}$, dann findet der EI-Basiskonstruktionsprozess "fast so gute Räume" indem

$$||u - I_M(u)|| \le c \cdot e^{-(\alpha - \log 4)M}$$
.

Beweis. siehe MNPP07 \Box

Neben solchen a priori-Aussagen ist auch a posteriori-Fehlerkontrolle möglich.

Satz 4.5 (A posteriori-Fehlerschätzer für EI)

Seien $I_M, I_{M'}: C^0(\bar{\Omega}, \mathbb{R}) \to \operatorname{span}(G)$ EI-Operatoren für $M' > M, Q_M \subset Q_{M'} = \{q_i\}_{i=1}^{M'}, T_M \subset T_{M'} = \{x_i\}_{i=1}^{M'}.$

Sei
$$\underline{Q}:=(\underline{q}_i(x_i))_{i,j=M+1}^{M'}$$
. Für $g\in G$ sei $\underline{g}:=(g(x_i))-I_M(g)(x_i))_{i=M+1}^{M'}$ und $\underline{\alpha}':=\{\alpha_i'\}_{i=M+1}^{M'}:=\underline{Q}^{-1}\underline{g}'$.

Falls $g \in \text{span}(Q_{M'})$, so gelten folgende a posteriori-Fehlerschranken für den Interpolationsfehler:

$$||g - I_M(g)||_{\infty} \le \Delta_{M,M',\infty}(g) := ||\underline{\alpha}'||_1 = \sum_{i=M+1}^{M'} |\alpha_i'|$$
$$||g - I_M(g)||_{L^2} \le \Delta_{M,M',L^2}(g) := \sqrt{(\underline{\alpha}')^T K_Q \underline{\alpha}'}$$

mit
$$K_Q := (\int_{\Omega} q_i q_j)_{i,j=M+1}^{M'}$$

Beweis. Nach Def. der EI gilt

$$I_M(g) = \sum_{i=1}^{M} \alpha_i \underline{q}_i , \ I_{M'}(g) = \sum_{i=1}^{M'} \alpha'_i \underline{q}_i$$

 $\text{mit } \underline{Q}_M\underline{\alpha}_M=\underline{g}_M \text{ und } \underline{Q}_{M'}\underline{\alpha}_{M'}=\underline{g}_{M'} \text{ mit } \underline{\alpha}_M=(\alpha_i)_{i=1}^M, \underline{\alpha}_{M'}=(\alpha_i')_{i=1}^{M'}.$

Da \underline{Q}_{M} oberer linker Block von $\underline{Q}_{M'}$ und \underline{Q} unterer rechter Block von $\underline{Q}_{M'}$, und jeweils untere Dreiecksmatrizen gilt $\alpha_i = \alpha_i'$, $i = 1, \ldots, M$ und $g - I_M(g) = I_{M'}(g) - I_M(g) = \sum_{i=M+1}^{M'} \alpha_i' \underline{q}_i$

Für
$$L^{\infty}$$
-Norm folgt $||g-I_M(g)||_{\infty} \leq \sum_{i=M+1}^{M'} |\alpha_i'| \underbrace{||\underline{q}_i||_{\infty}}_{1} = ||\underline{\alpha}'||_{1}$

Für
$$L^2$$
-Norm gilt $||g - I_M(g)||_2 = \left(\sum_{i,j=M+1}^{M'} \alpha_i' \alpha_j' \int_{\bar{\Omega}} \underline{q}_i \underline{q}_j\right)^{\frac{1}{2}} = \Delta_{M,M',L^2}(g)$

Satz 4.6 (Erhaltungseigenschaft)

Sie $f \in [C^0(\bar{\Omega},\mathbb{R})]'$ und $f(g) = 0 \ \forall g \in G$.

Dann ist auch $f(I_M(g)) = 0 \ \forall g \in G$.

Beweis. wg. Linearität folgt $f(\sum \beta_i g_i) = 0 \ \forall \beta_i \in \mathbb{R}, g_i \in G$

$$\Rightarrow f(g) = 0 \ \forall g \in \operatorname{span}(G)$$

Nach Konstruktion ist $Q_M \subseteq \operatorname{span}(g)$, also $f(\underline{q}_i) = 0, i = 1, \dots, M$, also auch $f(I_M(g)) = f(\sum \alpha_i q_i) = 0 \ \forall g \in G$

Bemerkung. Anschauliche Beispiele

- Falls $g(\bar{x}) = 0 \ \forall g \in G \Rightarrow I_M(g)(\bar{x}) = 0 \text{ via } f \equiv \text{Punktauswertung in } \bar{x}.$
- Falls $g \in G$ haben Mittelwert 0, d. h. $\int\limits_{\Omega} g(x) dx = 0 \; \forall \, g \in G$

$$\Rightarrow \int_{\Omega} I_M(g) = 0 \ \forall g \in G.$$

Anwendung in RB-Methoden Falls eine Koeffizientenfunktion nicht separierbar parametrisch ist, erzeuge mittels EI eine separierbar parametrische Approximation.

Definition 4.7 (EI für Funktionale)

Sie $f(v;\mu) = \int_{\Omega} g(x,\mu)v(x)dx$ parametrisch stetige Linearform, $g(\cdot;\mu) \in C^0(\bar{\Omega},\mathbb{R})$. Wähle $S_{train} \subset \mathcal{P}$ endliche Teilmenge, setze $G := \{g(\cdot;\mu)|\mu \in S_{train}\}$ Konstruiere EI-Basis $Q_M = \{q^i\}_{i=1}^M$ und EI-Punkte $T_M = \{x_i\}_{i=1}^M$ gemäß Definition 4.1. Dann ist $g(x;\mu) \approx \sum_{m=1}^M \Theta^m(\mu)q^m(x)$ also

$$f(v;\mu) \approx \tilde{f}(v;\mu) := \sum_{m=1}^{M} \Theta^{m}(\mu) \underbrace{\int\limits_{\Omega} q^{m}(x)v(x)dx}_{\tilde{f}^{m}(v)} =: \sum_{m=1}^{M} \Theta^{m}(\mu)\tilde{f}^{m}(v)$$

Mit Komponenten $\{\tilde{f}^m\}_{m=1}^M$ und Koeffizienten $(\Theta^1(\mu), \dots, \Theta^m(\mu))^T := \underline{Q}_M^{-1}\underline{g}(\mu)$, wobei $g\mu$) durch lokale Auswertungen definiert ist

$$g(\mu) = (g(x_1; \mu), \dots, g(x_M; \mu))^T$$

Bemerkung.

- Analoge Vorgehensweise bei Ausgabefunktional oder Bilinearform möglich. Anschließend Offline/Online Zerlegung wie in §3 realisierbar.
- Fehlerschätzer aus §3 sind mit EI im Allgemeinen nicht rigoros, da der Interpolationsfehler zusätzlich berücksichtigt werden muss. Falls $g(\cdot; \mu) \in \text{span}(Q_M)$ (starke Annahme) so sind Schätzer weiterhin rigoros.

• Falls Interpolatinosfehler $\neq 0$, aber Fehlerschätzer für EI vorhanden, so kann mittels eines Hilfsproblems (hochdimensionales interpoliertes Problem) ($\tilde{\mathcal{P}}(\mu)$) Fehlerkontrolle für das interpolierte und reduzierte Problem realisiert werden. (wir ignorieren wieder Ausgabe im Folgenden).

Definition 4.8 (Interpolierte Probleme $(\tilde{P}(\mu)), (\tilde{P}_N(\mu))$)

Sei eine Instanz von $(P(\mu))$ gegeben mit $a(\cdot,\cdot;\mu)$ koerziv. Seien Approximationen $\tilde{a}(\cdot,\cdot;\mu)$ und $\tilde{f}(\cdot;\mu)$ bilinear/linear gegeben mit \tilde{a}, \tilde{f} separierbar parametrisch und

$$|a(u,v;\mu) - \tilde{a}(u,v;\mu)| \le \epsilon_a ||u|| ||v|| \qquad \forall u,v \in X, \mu \in \mathcal{P}$$
$$|f(v;\mu) - \tilde{f}(v;\mu)| \le \epsilon_f ||v|| \qquad \forall v \in X, \mu \in \mathcal{P}$$

mit möglichen kleinen Approximationsfehlern ϵ_a , $\epsilon_f \geq 0$.

Wir nennen $\tilde{u}(\mu) \in X$ Lösung des vollen interpolierten Problems $(\tilde{P}(\mu))$

$$\tilde{a}(\tilde{u}(\mu), v; \mu) = \tilde{f}(v; \mu) \quad \forall v \in X$$

und $\tilde{u}_N \in X_N$ Lösung des reduzierten interpolierten Problems $(\tilde{P}_N(\mu))$

$$\tilde{a}(\tilde{u}_N(\mu), v; \mu) = \tilde{f}(v; \mu) \quad \forall v \in X_N$$

für beliebige gewählten $X_N \subset X$.

Bemerkung (Beispiele für ϵ_a , ϵ_f , aus EI). Sie $X = H_0^1(\Omega)$ und $f(v) = \int_{\Omega} q(x)v(x)dx$ mit $q \in L^1(\Omega) \cap C^0(\Omega)$ und q_M EI von q, damit $\tilde{f}(v) := \int_{\Omega} q_M(x)v(x)dx$

$$\Rightarrow |f(v) - \tilde{f}(v)| = |\int_{\Omega} (q(x) - q_M(x))v(x)dx| \overset{CS}{\leq} ||q - q_M||_{L^2} \underbrace{||v||_{L^2}}_{\leq ||v||_{H^1_0}} \overset{4.5}{\leq} \Delta_{\mu;\mu;2}(q)||v||$$

 $\Rightarrow \epsilon_f := \Delta_{\mu;\mu;2}(q)$ (bzw. Supremum über \mathcal{P} falls q parametrisch)

Sei z. B. $a(u,v) = \int_{\Omega} \kappa(x;\mu)u(x)v(x)dx$ mit $\kappa(x;\mu) \in C^0(\bar{\Omega})$ und κ_{μ} EI von κ

$$\tilde{a}(u,v) = \int_{\Omega} \kappa_{\mu}(x;\mu)u(x)v(x)dx$$

$$\Rightarrow |a(u,v) - \tilde{a}(u,v)| \le ||\kappa - \kappa_{\mu}||_{\infty} \underbrace{|\int_{\Omega} u(x)v(x)dx|}_{\le ||u||_{L^{2}}||v||_{L^{2}}} \le ||u||_{H^{1}_{0}}||v||_{H^{1}_{0}}\Delta_{\mu;\mu;\infty}(\kappa)$$

$$\Rightarrow \epsilon_{a} := \sup_{u \in \mathcal{P}} \Delta_{\mu;\mu;\infty}(\kappa(\cdot;\mu))$$

Bemerkung (Wohlgestelltheit von $(\tilde{P}(\mu))$, $(\tilde{P}_N(\mu))$). Falls ϵ_a , ϵ_f genügend klein, sind \tilde{a} , \tilde{f} stetig, \tilde{a} ist koerziv, damit ist $(\tilde{P}(\mu))$ nach Lax-Milgram wohlgestellt (Existenz & Eindeutigkeit & Stabilität bzgl. rechter Seite). Genauer: Bei ϵ_a , $\epsilon_f < \infty$ folgt Stetigkeit.

$$\begin{split} |\tilde{f}(v)| &\leq |\tilde{f}(v) - f(v)| + |f(v)| \leq \epsilon_f ||v|| + ||f|| \cdot ||v|| = (\epsilon_f + ||f||_{X'}) ||v|| \\ \Rightarrow &\tilde{f} \in X' \text{ mit } ||\tilde{f}|| \leq ||f|| + \epsilon_f \end{split}$$

Falls $\epsilon_a < \alpha$ mit α Koerzivitätskonstante von $a(\cdot, \cdot)$, so folgt

$$\frac{\tilde{a}(u,u)}{||u||^2} = \frac{a(u,u) - (a(u,u) - \tilde{a}(u,u))}{||u||^2} \ge \underbrace{\frac{a(u,u)}{||u||^2}}_{>\alpha} - \underbrace{\frac{|\tilde{a}(u,u)|}{||u||^2}}_{<\epsilon_a} \ge \alpha - \epsilon_a > 0$$

also \tilde{a} koerziv mit Koerzivitätskonstante $\tilde{\alpha} \geq \alpha - \epsilon_a$.

Bemerkung (Schranke $||u - \tilde{u}||$). Falls $\epsilon_a < \alpha$ so folgt mit Störungsargument eine Schranke für $||u - \tilde{u}||$ bezüglich ϵ_a , ϵ_f

$$a(u - \tilde{u}, v) = a(u, v) - a(\tilde{u}, v) = f(v) - a(\tilde{u}, v) =: r(v, \tilde{u})$$

Lax-Milgram liefert also mit $r(v,\tilde{u}) = f(v) - \underbrace{\tilde{f}(v) + a(\tilde{u},v)}_{0} - a(\tilde{u},v).$

$$||u - \tilde{u}|| \le \frac{|||r(\cdot; \tilde{u})||_{X'}}{\alpha} \le \frac{1}{\alpha} (\epsilon_f + \epsilon_a ||\tilde{u}||) \tag{4.3}$$

Für $||\tilde{u}||$ liefert Lax-Milgram

$$||\tilde{u}|| \le \frac{||\tilde{f}||}{\tilde{\alpha}} \le \frac{||\tilde{f}||}{\alpha - \epsilon_a}$$

also insgesamt in 4.3

$$||u - \tilde{u}|| \le \frac{1}{\alpha} \epsilon_f + \frac{||\tilde{f}||}{\alpha(\alpha - \epsilon_a)} \epsilon_a =: \Delta_{EI}$$
 (4.4)

Dreiecksungleichung $||u - \tilde{u}_N|| \le ||u - \tilde{u}|| + ||\tilde{u} - \tilde{u}_N||$ und deren Schranken (4.4) bzw. Δ_N liefern:

Korollar 4.9 (EI-RB Fehlerschranke)

Seien $(P(\mu))$, $(P(\mu))$, $(P(\mu))$ wie in Definition 4.8 gegeben und $\epsilon_a < \alpha$ Dann gilt die Fehlerschranke

$$||u(\mu) - u_N(\mu)|| \leq \Delta_{EI}(\mu) + \Delta_N(\mu)$$

mit $\Delta_{EI}(\mu)$ aus (4.4) und $\Delta_N(\mu)$ Standard RB-Fehlerschranke für $||\tilde{u} - \tilde{u}_N||$ aus Satz 3.13 ii).

4.2 Inf-sup stabile Probleme

Definition 4.10 (inf-sup Stabilität)

Eine stetige Bilineaform $a: X_1 \times X_2 \to \mathbb{R}$ heißt inf-sup stabil auf $X_1 \times X_2$ mit inf-sup-Konstante β falls

$$\beta := \inf_{v \in X_1 \setminus \{0\}} \sup_{w \in X_2 \setminus \{0\}} \frac{a(v, w)}{||v|| ||w||} > 0$$

Wir fassen einige Einsichten/Aussagen zu inf-sup stabilen Problemen zusammen, für Beweise siehe Skript NUMPD14/15 oder Braess FEM.

Bemerkung (Beziehung zwischen α/β).

• inf-sup Stabilität ist allgemeinerer Stabilitätsbegriff als Koerzivität.

falls a koerziv \Rightarrow a inf-sup stabil mit $\beta \geq \alpha$

falls a koerziv & symmetrisch \Rightarrow a inf-sup stabil mit $\beta = \alpha$

 β ist also immer "bessere" (oder gleich gute) Konstante als α .

• inf-sup Stabilität vererbt sich nicht auf Teilräume dies stellt bei FEM- und RB-Behandlung ein Problem dar.

Bemerkung (Beispiel).

a) Divergenzgleichung: Sie Ω Lipschitz-Gebiet und beschränkt

Für
$$q \in Q_1 := L_0^2(\Omega) = \{ p \in L^2(\Omega) | \int_{\Omega} p(x) dx = 0 \}$$
 und $v \in V := H_0^1(\Omega)^d$ ist $a(q,v) = \int_{\Omega} q \operatorname{div}(v)$ inf-sup stabil auf $Q \times V$.

b) Stokes-Problem:

$$-\mu\Delta u + \nabla p = r$$
 in Ω , div $u = 0$ in Ω , $u = 0$ auf Γ

ergibt mit $X_1:=X_2:=H^1_0(\Omega)^d\times L^2_0(\Omega)$ schwache Form:

Suche
$$(u,p) \in X_1$$
 so dass $a((u,p),(v,q)) = f((v,q))$ $\forall (v,q) \in X_2$

mit
$$a((u,p),(v,q)) := \mu \int_{\Omega} \nabla u : \nabla v - \int_{\Omega} p \operatorname{div}(v) - \int_{\Omega} q \operatorname{div}(u).$$

Dann ist a inf-sup stabil auf $X_1 \times X_2$.

Der folgende Satz garantiert Wohlgestelltheit für inf-sup stabile Probleme

Satz 4.11 (Nečas-Theorem)

Sei $a: X_1 \times X_2$ stetig Bilinearform, $l \in X_2'$. Die Gleichung

$$a(u,v) = l(v) \qquad \forall v \in X_2$$

hat eine eindeutige Lösung $u \in X_1$ und ist stetig von den Daten abhängig via

$$||u||_{X_1} \le \frac{1}{\beta}||l||_{X_2'}$$

für ein $\beta > 0$ (unabhängig von l) genau dann wenn eine der folgenden Bedingungen gilt:

i)
$$a(\cdot,\cdot)$$
 erfüllt $\inf_{v} \sup_{w} \frac{a(v,w)}{||v||_{X_1}||w||_{X_2}} \ge \beta > 0$

und $\forall w \in X_2, w \neq 0 \text{ ex. } v \in X_1 \text{ mit } a(v,w) \neq 0.$

ii)
$$a(\,\cdot\,,\cdot\,)$$
 erfüllt $\inf_w \sup_v \frac{a(v,w)}{||v||_{X_1}||w||_{X_2}} \geq \beta > 0$

und $\forall v \in X_1, v \neq 0$ ex. $w \in X_2$ mit $a(v,w) \neq 0$.

Beweis. z.B. Satz 3.57 in NUMPDE14/15

Bemerkung.

- inf-sup Stabilität ist also "allgemeinerer" Stabilitätsbegriff, welcher Wohlgestelltheit impliziert.
- Lax-Milgram kann als Korollar von 4.11 gezeigt werden
- Aus 4.11 folgt insbesondere

wohlgestellt
$$\Rightarrow \inf_{v \in X_1} \sup_{w \in X_2} \frac{a(v, w)}{||v|| ||w||} = \beta = \inf_{w \in X_2} \sup_{v \in X_1} \frac{a(v, w)}{||v|| ||w||}$$
 (4.5)

also dasselbe β für beide Richtungen. Umgekehrte Richtung in (4.6) gilt auch.

Satz 4.12 (Eigenschaften von β / Suprimierender Operator) Sie $a(\cdot,\cdot)$ stetige Bilinearform auf $X_1\times X_2$ und

$$a(u,v) = \langle Au, v \rangle_{X_2} \qquad \forall (u,v) \in X_1 \times X_2$$

mit Operator $A \in L(X_1, X_2)$. Dann gilt:

i) A ist suprimierender Operator,

$$\sup_{v \in X_2} \frac{a(u,v)}{||v||} = \frac{a(u,Au)}{||Au||} \qquad \forall u \in X_1 \setminus \{0\}$$

ii)
$$\beta = \inf_{u \neq 0} \frac{||Au||}{||u||}$$

iii)
$$\gamma = \sup_{u \neq 0} \frac{||Au||}{||u||}$$

- iv) $\forall u \in X_1 \text{ ex. } v \in X_2 \text{ s. d. } \beta||u||||v|| \leq a(u,v)$
- v) A ist injektiv, d. h. $\forall v \neq 0$ gilt $Av \neq 0$.

Beweis. Satz 3.32 in NUMPDE14/15

Bemerkung. Solches A existiert wegen Riesz: $a(u, \cdot) \in X_2'$ also existiert Riesz-Repräsentant $Au \in X_2$ mit $a(u, \cdot) = \langle Au, \cdot \rangle_{X_2}$.

Satz 4.13 (Eigenwert für β/γ)

Seien X_1, X_2 Hilberträume, $a: X_1 \times X_2$ stetige Bilinearform mit $a(u,v) = \langle Au, v \rangle$ und A, A^* komp. Operator d.h. $A \in K(X_1, X_2), A^* \in L(X_2, X_1)$ und $\sigma := \sigma(A^*A)$ Spektrum von A^*A . Dann gilt:

i) $\forall \lambda \in \sigma \text{ ex. } u \in X_1$:

$$\langle Au, Av \rangle_{X_2} = \lambda \langle u, v \rangle_{X_1} \qquad \forall v \in X_1$$

ii)
$$\beta^2 = \inf \sigma$$

iii)
$$\gamma^2 = \max \sigma$$

Beweis. i) Seien u, λ EV/EW von $A^*A \Rightarrow \langle A^*Au, v \rangle_{X_1} = \langle \lambda u, v \rangle_{X_1}$ $\forall v \in X_1$ $\Rightarrow \langle Au, Av \rangle_{X_1} = \lambda \langle u, v \rangle_{X_1}$ $\forall v \in X_1$

ii) Wegen A^*A komp. & selbstadjungiert folgt mit Spektralsatz

$$A^*Au = \sum_{i \in I} \lambda_i \langle u, \varphi_i \rangle \varphi_i$$

und $\sigma = {\lambda_i}_{i \in I}$ oder $\sigma = {\lambda_i}_{i \in I} \cup {0}$

$$\text{Nach 4.12 ii) } \beta = \inf_{u \neq 0} \frac{||Au||}{||u||} = \inf_{u \neq 0} \sqrt{\frac{||Au||^2}{||u||^2}} = \inf_{||u||=1} \sqrt{\langle Au, Au \rangle} = \inf_{||u||=1} \sqrt{\langle A^*Au, A \rangle}$$

$$\beta^2 = \inf_{\|u\|=1} \langle A^* A u, u \rangle \tag{4.6}$$

Falls $0 \in \sigma$ mit EV $\varphi^0 \Rightarrow 0 \le \beta^2 = \langle A^*A\varphi^0, \varphi^0 \rangle = 0 \Rightarrow \beta^2 = 0 = \inf \sigma$.

Falls $0 \notin \sigma \Rightarrow \{\varphi_i\}_{i \in I}$ ist vollständiges ONS von X_1

$$\Rightarrow \forall u \in X_1 \text{ mit } ||u|| = 1 \text{ ex. } u_i \in \mathbb{R} \text{ mit } u = \sum_{i \in I} u_i \varphi_i, \sum_i u_i^2 = 1$$

$$\overset{(4.6)}{\Rightarrow}\beta = \inf_{||u||=1} \langle A^*Au, u \rangle = \inf_{||u||=1} \sum \lambda_i u_i^2 \underbrace{\geq}_{\text{Konvexkombination}} \inf\{\lambda_i\} = \inf \sigma$$

und
$$\beta^2 = \inf_{||u||=1} \sum \lambda_i u_i^2 \underbrace{\leq}_{u=\varphi_i} \sum \lambda_i u_i^2 = \lambda_j \Rightarrow \beta^2 \leq \inf\{\lambda_i\} \Rightarrow \beta^2 = \inf \sigma$$

iii) analog zu ii)

Korollar 4.14 (Inf-sup Stabilität im Endlichdimensionalen)

Sei $X_1 = \mathbb{R}^m, X_2 = \mathbb{R}^n, A \in \mathbb{R}^{n \times m}, m \leq n$ und $a(u,v) := \langle Au, v \rangle$. Seien $\{\sigma_i\}_{i=1}^m$ Singulärwerte von A. Dann

i)
$$\beta = \min_{i=1,\dots,m} \sigma_i$$

ii) a inf-sup stabil \iff A hat vollen Spaltenrang

Beweis. i) a stetig und A, A^T kompakter linearer Operator, da endlichdimensionale Bilder. Mit 4.13 folgt wegen $\sigma(A^TA) = \{\sigma_i^2\}_{i=1}^m : \beta^2 = \inf \sigma(A^TA) = \min_{i=1,\dots,m} \{\sigma_i^2\}.$ Weil $\beta \geq 0, \sigma_i \geq 2 \Rightarrow \beta = \min_{i=1,\dots,m} (\sigma_i).$

ii) a inf-sup-stabil $\iff \beta > 0 \stackrel{i)}{\iff} \sigma_i > 0 \,\forall i \iff A \text{ hat Rang } m \iff A \text{ hat vollen Spaltenrang.}$

RB-Methode folgt mit Petrov Galerkin-Projektion

Definition 4.15 $((P(\mu)), (P_N(\mu)))$ für inf-sup stabilen Fall)

Sei $a: X_1 \times X_2 \times \mathcal{P} \to \mathbb{R}$ stetig param. Bilinearform, $a(\cdot,\cdot;\mu)$ inf-sup stabil mit $\beta(\mu)$ inf-sup Konstante $f(\cdot;\mu)$ stetig param. Linearform. Zu $\mu \in \mathcal{P}$ ist $u(mu) \in X_1$ Lösung des vollen Problems

$$a(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in X_2$$

Seien $X_{N,1}\subseteq X_1,\ X_{N,2}\subseteq X_2$ mit $N=\dim X_{N,1}=\dim X_{N,2}$ RB-Räume. Dann ist $u_N(\mu)\in X_{N,1}$ RB-Lösung von

$$a(u_N(\mu), v; \mu) = f(v; \mu) \quad \forall v \in X_{N,2}$$

Bemerkung.

• Wir verzichten in 4.15 auf das Ausgabefunktional, dies kann analog zu §3.5 behandelt werden, d. h. l parametrische Linearform

$$s'_N(\mu) = l(u_N(\mu); \mu) - r(u_N^{du}; \mu) \text{ mit } u_N^{du} \in X_{N,2}^{du} \text{ L\"osung von}$$

$$\tag{4.7}$$

$$a(v,u_N^{du};\mu)=-l(v;\mu) \ \forall \ v\in X_{N,1}^{du} \ \text{und dualen RB-R\"{a}umen} \ X_{N,1}^{du},X_{N,2}^{du} \ \ (4.8)$$

• Wahl von $X_{N,1}, X_{N,2}$ ist nicht beliebig, sondern müssen geeignet gewählt werden, so dass $(P_N(\mu))$ gute Approximation liefert (wie in §3. Wähle $X_{N,2}$ s. d. $(P_N(\mu))$ möglichst stabil, d. h. möglichst große diskrete inf-sup Konstante.

Wegen $\dim X_{N,1} = \dim X_{N,2}$ vereinfacht sich Charakterisierung von inf-sup Stabilität.

Satz 4.16 (Diskrete inf-sup Bedingung)

Für $a: X_{N,1} \times X_{N,2} \to \mathbb{R}$ sind äquivalent

i)
$$\inf_{v \in X_{N,1}} \sup_{w \in X_{N,2}} \frac{a(v,w)}{||v||||w||} = \beta_N > 0$$

ii)
$$\inf_{w \in X_{N,2}} \sup_{v \in X_{N,1}} \frac{a(v,w)}{||v|| ||w||} = \beta_N > 0$$

- iii) $\forall \ w \in X_{N,2} w \neq 0$ ex. $v \in X_{N,1}$ mit $a(v,w) \neq 0$ (A surjektiv)
- iv) $\forall v \in X_{N,1}v \neq 0$ ex. $w \in X_{N,2}$ mit $a(v,w) \neq 0$ (A injektiv)

Beweis. Satz 3.46 in NUMPDE14/15

Korollar 4.17 (Wohlgestelltheit von (P_N))

Falls a eine der Bedingungen aus 4.16 erfüllt, dann hat ads PRoblem $(P_N(\mu))$ aus 4.15 eindeutige Lösung $u_N(\mu) \in X_{N,1}$ mit

$$||u_N(\mu)|| \le \frac{||f||_{X_2'}}{\beta_N(\mu)}$$

Beweis. klar mit Nečas

Petrov-Galerkin Projektion erlaubt Approximationsaussage:

Satz 4.18 (Beziehung zur Bestapproximation)

Sei a inf-sup stabil mit $\beta_N > 0$. Dann gilt

$$||u(\mu) - u_N(\mu)|| \le \frac{\gamma(\mu)}{\beta_N(\mu)} \inf_{v \in X_{N,1}} ||u(\mu) - v||$$

Beweis. Satz 3.55 in NUMPDE14/15

Bemerkung.

 $\bullet\,$ Es gilt wieder "Reproduktion von Lösung":

Falls $u(\mu) \in X_{N,1} \Rightarrow u_N(\mu) = u(\mu)$

• Im Fall von primal-dualem Ansatz (4.7), (4.8) gilt analoge Aussage wie Satz 3.60, insbesondere multiplikativer Effekt für Ausgabefehler

$$||u^{du} - u_N^{du}|| \le \frac{\gamma(\mu)}{\beta_N^{du}} \inf ||u^{du} - v||$$

$$|s(\mu) - s_N'(\mu)| \le \gamma(\mu) ||u - u_N|| ||u^{du} - u_N^{du}||$$

Satz 4.19 (A-posteriori Fehlerschätzer)

Sei $\beta_{LB}(\mu) > 0$ untere Schranke für $\beta_N(\mu)$. Dann gilt

$$||u - u_N|| \le \Delta_N(\mu) := \frac{||v_r||}{\beta_{LB}}$$

mit $v_r \in X_2'$ Riesz-Repräsentant des Residuums wie in §3.

Beweis. $u - u_N$ ist Lösung von $a(u - u_N, v) = r(v) \ \forall \ v \in X_2$, also folgt mit Nečas

$$||u - u_N|| \le \frac{||r||_{X_2'}}{\beta_N(\mu)} \le \frac{||v_r||_{X_2}}{\beta_{LB}} = \Delta_N$$

Bemerkung.

• Ident. zu Satz 3.16 ii) folgt Effektivitätsschranke

$$\eta_N(\mu) := \frac{\Delta_N(\mu)}{||e||} \le \frac{\gamma_{LB}(\mu)}{\beta_{LB}(\mu)}$$

• Analog zu 3.61 & 3.62 gilt Schranke für duale Lösung & Ausgabe

$$||u^{du} - u_N^{du}|| \le \Delta_N^{du}(\mu) := \frac{||r^{du}||}{\beta L B^{du}}$$

$$|s - s'_N| \le \Delta'_{N,s}(\mu) : 0 \frac{||v_r|| \cdot ||v_r^{du}||}{\beta_{LB}(\mu)}$$

also multiplikativer Effekt erreicht.

- Zusammenfassend: (fast) alle Aussagen aus §3 gelten mit α_{LB} ersetzt durch β_{LB} , bzw. α durch β .
- Offline-Online-Zerlegung folgt analog zu §3.
- Einzig offene Punkte: Wahl von $X'_{N,2}$ und Bestimmung von β_{LB} . Das sind kritische Komponenten: Weil inf-sup Stabilität nicht auf Teilräume vererbt wird, kann $\beta_N(\mu)$ und damit $\beta_{LB}(\mu)$ beliebig klein, sogar Null werden.

 \rightarrow singuläres red. System trotz $\beta(\mu) > 0$. Ziel ist daher Wahl von $X_{N,2}$ s. d. $\beta_N(\mu)$ möglichst groß uniform in N, d. h. Verhindern von $\lim_{N\to\infty} \beta_N(\mu) \to 0$. Idealerweise Ziel:

$$\beta_N(\mu) \ge \beta(\mu) > 0$$

Satz 4.20 (Kriterium für $X_{N,2}$)

Sei $A(\mu)$ suprimierender Operator aus 4.12. Falls für alle $v \in X_{N,1}$ gilt, dass $A(\mu) \in X_{N,2}$, dann ist a inf-sup stabil auf $X_{N,1} \times X_{N,2}$ mit $\beta_N(\mu) \ge \beta(\mu)$.

Beweis. Übung.
$$\Box$$

Bemerkung (Min. Residuum Verfahren).

- Sei $X_{N,1} = \operatorname{span}\{\varphi_1, \dots, \varphi_N\}$. Wähle $X_{N,2} := \operatorname{span}\{A(\mu)\varphi_1, \dots, A(\mu)\varphi_N\} \Rightarrow \dim X_{N,1} = \dim X_{N,2}$ wegen Injektivität von A.
 - Wegen Linearität gilt: $\forall v \in X_{N,1} \Rightarrow A(\mu)v \in X_{N,2}$ also ideales RB-Verfahren gemäß 4.20 erreicht. Aber $X_{N,2}$ ist μ -abhängig. Dies stellt jedoch kein Problem dar, denn Offline-Online weiter möglich.
- Petrov-Galerkin-System entspricht einem Galerkin-RB-System eines koerziven, symmetrischen Problems mit separierbar parametrischen Bilinearform \tilde{a} :

Definiere
$$\tilde{a}(u,v;\mu) := \langle A(\mu)u, A(\mu)v \rangle_{X_2} \quad \forall u,v \in X_1$$

 $\Rightarrow \tilde{a}$ ist bilinear, stetig, symmetrisch. \tilde{a} ist koerziv

$$\frac{\tilde{a}(u,u)}{||u||^2} = \frac{\langle Au, Au \rangle}{||u||^2} = \frac{||Au||^2}{||u||^2} \ge \left(\inf_{v \ne 0} \frac{||Av||}{||v||}\right)^2 \stackrel{4.12ii}{=} (\beta_N(\mu))^2 > 0$$

also $\tilde{a} := \beta(\mu)^2$ Koerzivitätskonstante von \tilde{a}

 \tilde{a} ist separierbar parametrisch $Q_{\tilde{a}}=(Q_a)^2$ Komp. $\{\langle A^q\cdot,A^q\cdot\rangle\}_{q,q'=1}^{Q_a}$ und Koeffizienten $\Theta_a^q(\mu),\Theta_a^{q'}(\mu)$.

Für Petrov-Galerkin-System gilt mit $\overline{\varphi_i} := A(\mu)\varphi_i$

$$A_N \underline{u}_N = \underline{f}_N \text{ mit } (A_N)_{ij} = a(\varphi_j, \overline{\varphi}_i) = a(\varphi_j, A(\mu)\varphi_i)$$

= $\langle A\varphi_j, A\varphi_i \rangle = \tilde{a}(\varphi_j, \varphi_i)$

also RB-?? für \tilde{a} . Analog $(\underline{f}_N)_i=f(\overline{\varphi}_i;\mu)=f(A\varphi_i)=\tilde{f}(\varphi;\mu)$ mit $\tilde{f}:=f\circ A$

• Darstellung durch FEM-Matrizen: Seien $\underline{A}, K, \underline{\Phi_N}, \underline{f}$ die bekannten FEM-Matrizen/Vektoren aus §3.3.

 $A\varphi_j$ ist Riesz-Repräsentant von $a(\varphi_j,\cdot)$

$$\Rightarrow A\varphi_j \in X_1$$
hat FEM Koeff.-Vektor $K^{-1}(a(\varphi_j\psi_i)_{i=1}^H = K^{-1}\underline{A}\varphi_j$

$$A_N = (\langle A\varphi_j, A\varphi_i \rangle_{i,j=1}^N = \underline{\Phi}_N^T \underline{A}^T K^{-1} \underline{A} \underline{\Phi}_N$$

analog
$$\underline{f}_N = \underline{\Phi}_N^T \underline{A} K^{-1} \underline{f}$$

5 Nichtlineare Probleme

Satz 5.1

Satz 5.2

Satz 5.3

Satz 5.4

Satz 5.5

Satz 5.6

$$a + b = c \tag{5.1}$$

$$a + b = c (5.2)$$

$$a + b = c (5.2)$$

$$a + b = c (5.3)$$

$$a + b = c (5.4)$$

(5.5)

Bemerkung.

• β_{LB} im Zähler sieht zunächst seltsam aus. Weil $\tau \in [0,1]$ ist $(1-\sqrt{1-\tau}) \in [0,1]$, also insbesondere $\sqrt{(\cdot)}$ wohldefiniert und

$$\Delta_N \leq \frac{\beta_{LB}}{2L_{DF}}\tau = \frac{\beta_{LB}}{2L_{DF}} \cdot \frac{4\epsilon L_{DF}}{\beta_{LB}^2} = \frac{2\epsilon}{\beta_{LB}}$$

Also gewohnte Struktur: Residuum durch Stabilitätskonstante, jedoch Faktor 2.

Beweis. Ähnlich zu 5.4, statt festem Radius betrachte Kugel mit variablem Radius α . Weil DF Lipschitz-stetig, ist $H(x) = x - (DF|_{u_N})^{-1}H(x)$ Kontraktion auf $B(u_N,\alpha)$ falls $\alpha \leq \frac{\beta_{LB}}{2L_{DF}} = \frac{\beta_{LB}}{4\gamma_a} =: \hat{\alpha}$:

Für $x, x' \in B(u_N, \alpha)$ ist mit (5.2')

$$||H(x) - H(x')|| \stackrel{(5.2')}{\leq} \underbrace{\gamma}_{Y} \underbrace{L(\alpha)}_{\leq L_{DF}} \leq \frac{1}{\beta_{LB}} \cdot L_{DF} \cdot \frac{\beta_{LB}}{2L_{DF}} ||x - x'|| = \frac{1}{2} ||x - x'||$$

$$\leq L_{DF} \alpha \leq L_{DF} \cdot \frac{\beta_{LB}}{2L_{DF}}$$

Suche nun Bedingung für α sodass H Selbstabbildung auf $B(u_N,\alpha)$. Mit (5.2) folgt für $x \in B(u_N,\alpha)$

$$||H(x) - u_N|| \le \underbrace{\gamma}_{\le \frac{1}{\beta_{LB}}} \left(\int_0^1 ||DF|_{u_N} - DF|_{u_N + t(x - u_N)}||_{X;X'} \right) \underbrace{||x - u_N||}_{\le \alpha} + \gamma \cdot \epsilon$$

$$\le \frac{1}{\beta_{LB}} L_{DF} \alpha^2 + \frac{1}{\beta_{LB}} \epsilon$$

Falls also

$$\frac{L_{DF}}{\beta_{LB}}\alpha^2 + \frac{\epsilon}{\beta_{LB}} \le \alpha \tag{5.6}$$

so ist H Selbstabbildung.

$$(5.6) \Leftrightarrow \alpha^{2} - \frac{\beta_{LB}}{L_{DF}} \alpha + \frac{\beta_{LB}}{L_{DF}} \cdot \frac{\epsilon}{\beta_{LB}} \leq 0$$

$$\Leftrightarrow \alpha \in [\alpha_{-}, \alpha_{+}] \text{ mit } \alpha_{\pm} := \frac{\beta_{LB}}{2L_{DF}} \pm \sqrt{\frac{\beta_{LB}^{2}}{4L_{DF}^{2}} - \frac{\epsilon}{L_{DF}}}$$

$$\alpha_{\pm} = \hat{\alpha} \left(1 \pm \sqrt{1 - \frac{\epsilon}{L_{DF} \hat{\alpha}^{2}}} \right) = \hat{\alpha} (1 \pm \sqrt{1 - \tau})$$

weil

$$\frac{\epsilon}{L_{DF}\hat{\alpha}^2} = \frac{\epsilon}{L_{DF}} \cdot \frac{4L_{DF}^2}{\beta_{LR}^2} = \frac{4L_{DF}}{\beta_{LR}^2} \epsilon = \tau \le 1$$

also α_{\pm} wohldefiniert.

Für $\alpha \in [\alpha, \hat{\alpha}]$ ist H Selbstabbildung und Kontraktion. Für kleinstes $\alpha = \alpha_-$ erhalte beste Schranke, also ex. $u \in B(u_N, \alpha_-)$ mit

$$||u - u_N|| < u_N = \alpha_-$$

Für Effektivitätsschranke setze $e:=u-u_N.$ Sei $v_r\in X$ Riesz-Repräsentant des Residuums

$$\langle v_r, v, = \rangle F(u_N)(v)$$

Benötigt Fehler-Residuums-Beziehung für quadratisches Problem

$$F(u_{N}) = a(u_{N}, u_{N}, \cdot) - b(u_{N}, \cdot) - \underbrace{f(\cdot)}_{=a(u, u, \cdot) - b(u, \cdot)}$$

$$= 2a(u_{N}, u_{N}, \cdot) - 2a(u_{N}, u_{N}, \cdot) - a(u_{N}, u_{N}, \cdot)$$

$$+ 2a(u_{N}, u_{N}, \cdot) - a(u_{N}, u_{N}, \cdot) - b(u_{N}, u_{N}, \cdot)$$

$$= -2a(u_{N}, e, \cdot) - b(e, \cdot) - a(e, e, \cdot)$$

$$= -DF|_{u_{N}}(e) - a(e, e, \cdot)$$

$$\Rightarrow ||v_{r}||^{2} = \langle v_{r}, v_{r}, = \rangle F(u_{N})(v_{r}) = -DF|_{u_{N}}(e)(v_{r}) - a(e, e, v_{r})$$

$$\leq \gamma_{DF}(u_{N})||e||||v_{r}|| + \gamma_{a}||e||||v_{r}||$$

$$\Rightarrow ||v_{r}|| \leq \gamma_{DF}(u_{N})||e|| + \gamma_{a}||e||^{2}$$

Mit $\|v_r\| = \epsilon$ und $\Delta_N \overset{(5.4)}{\leq} \frac{2\epsilon}{\beta_{LB}}$ folgt

$$\Delta_N \leq \frac{2\|v_r\|}{\beta_{LB}} \leq \frac{2}{\beta_{LB}} \gamma_{DF} \|e\| + \frac{2}{\beta_{LB}} \gamma_a \underbrace{\|e\|^2}_{\leq \Delta_N \cdot \Delta_N}$$

Wegen

$$\frac{2}{\beta_{LB}}\gamma_a\Delta_N \leq \frac{2\gamma_a}{\beta_{LB}} \cdot \frac{2\epsilon}{\beta_{LB}} = \frac{4\gamma_a\epsilon}{\beta_{LB}^2} = \frac{1}{2}\tau \leq \frac{1}{2}$$

folgt

$$\begin{split} \Delta_N &\leq \frac{2}{\beta_{LB}} \gamma_{DF} \|e\| + \frac{1}{2} \Delta_N \quad \Rightarrow \quad \frac{1}{2} \Delta_N \leq \frac{2}{\beta_{LB}} \gamma_{DF} \|e\| \\ &\Rightarrow \frac{\Delta_N}{\|e\|} \leq \frac{4 \gamma_{DF}(u_N)}{\beta_{LB}} \end{split}$$

Bemerkung.

- Lokale Existenz und Eindeutigkeit und Fehlerschranken gilt analog für allgemeinere Nichtlinearitäten F, welche Lipschitz-stetige Ableitungen besitzen. Nur die Effektivitätsschranke in 5.6 verwendet die Struktur des quadratischen nichtlinearen Problems.
- Ausgabe-Fehlerschranken sind einfach möglich analog zu $\Delta_{N,s}$ aus §3. Auch verbesserte Abschätzung mittels geeigneten dualen Problems ist möglich.
- Berechnung von β_{LB} durch SCM-ähnliche Techniken möglich, siehe [VPP03].
- Falls PDE linear, aber Ausgabe quadratisch nichtlinear, lässt sich ein erweitertes Hilfsproblem formulieren, welche linear, inf-sup-stabil, symmetrisch ist und identische Ausgabe wie Originalproblem mittels geeignetem linearen Ausgabefuntionals liefert. ⇒ Techniken aus §3 und §4 anwendbar. Damit z.B. Fehlerfunktionale

 $s(\mu)=\int_{\Omega}(u(\mu)-u_d)^2$ oder Variationen oder Energien in verschiedenen Versionen behandelbar.

Referenz: [HP07]: "Reduced basis approximation and a posteriori error estimation for stress intensity factors", IJNME, 72, 1219-1259, 2007.

- Falls PDE polynomiell in u der Ordnung p, lässt sich eine p+1 Multilinearform-Formulierung der schwachen Form finden und Techniken aus §5 analog anwenden. Problem wird für $p \gg 3$ jedoch die Offline-Online-Zerlegung (...???) weil Komponenten-Tensoren der Stufe p+1, also sind Offline Datenmengen und Assemblierungskosten $\mathcal{O}(Q_aN^{p+1})$.
- Falls PDE nichtpolynomiell nichtlinear, kann mit Hilfe der EI ein nichtlineares reduziertes Problem formuliert werden. Eine Variante ist die Empirische Operatorinterpolation in
 - [HOR08]: Haasdonk, Ohlberger, Rozza: A Reduced Basis Method for Evolution Schemes with Parameter-Dependent Explicit Operators, ETNA, 32:145-161, 2008.
 - [DHO12]: Drohmann, Haasdonk, Ohlberger: Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation, SJSC, 34:A937-A969, 2012.

6 Zeitabhängige Probleme

Motivation:

Anfangs-Randwertprobleme, z.B. Wärmeleitung. Suche $u(x,t), x \in \Omega, t \in [0,T]$

$$\partial_t u - \Delta u = q$$
 in $\Omega \times (0,T)$
 $u(x,t) = g_D(x,t)$ auf $\partial \Omega \times (0,T)$
 $u(x,0) = u_0(x)$ in Ω

Numerischer Ansatz:

Zeitdiskretisierung: Wähle $K \in \mathbb{N}, \Delta t := \frac{T}{K}$

$$t^k := k \cdot \Delta t, \quad k = 0, \dots, K$$

Wähle $X \subseteq Y := L^2(\Omega)$ Lösungsraum bezüglich Ortsraum, z.B. $X = L^2(\Omega)$ oder $X = H_0^1(\Omega)$ oder $X = \operatorname{span}(\mathbbm{1}_{e_i})_{i=1}^H$ Finite-Volumen-, oder $X = \operatorname{span}(\psi_i)_{i=1}^H$ Finite-Elemente-Raum, etc.

Suche Lösungssequenz $u = (u^k)_{k=0}^K \in (X)^{K+1}$ mit $u^k(x) \approx u(x,t^k)$.

Referenzen:

- Für PDE-Diskretisierung siehe NUMPDE14/15.
- Für Folgende RB-Behandlung siehe auf S. 8 genanntes Tutorial.

Bemerkung. Statt variationeller Formulierung betrachte im Folgenden operatorbasierte Formulierung, dies erfasst auch Finite-Differenzen oder Finite-Volumen Diskretisierungen. Alles Folgende könnte auch durch Variationsformulierung ausgedrückt werden.

Definition 6.1 (Volles Evolutionsproblem $(E(\mu))$)

Sei X Hilbertraum, $\mu \in \mathcal{P}$: $u(\mu) = (u^k(\mu))_{k=0}^K \in (X)^{K+1}$ Lösungen von

$$\mathcal{L}_I^k(\mu)u^{k+1} = \mathcal{L}_E^k(\mu)u^k + b^k(\mu)$$
$$u^0 := P_X(u_0)$$

mit \mathcal{L}_I^k , $\mathcal{L}_E^k \in L(X)$, $P_X: Y \to X$ beliebige stetige Projektion.

Bemerkung.

- Wir verzichten hier wieder auf Ausgabefunktionale.
- Obiges erfasst allgemeine implizite/explizite Zeitdiskretisierung wie impliziter/expliziter Euler oder Crank-Nicolson-Verfahren für parabolische oder hyperbolische DGL.
- \mathcal{L}_{I}^{k} , \mathcal{L}_{E}^{k} , b^{k} hängen typischerweise von Δt ab.

Annahmen an Operatoren:

- \mathcal{L}_{I}^{k} , \mathcal{L}_{E}^{k} seien stetig mit Konstanten $\gamma_{I}^{k}(\mu)$, $\gamma_{E}^{k}(\mu)$ und uniform in t, μ , d.h. $\gamma_{I}^{k}(\mu) \leq \bar{\gamma}$, $\gamma_{E}^{k}(\mu) \leq \bar{\gamma}_{E}$.
- \mathcal{L}^k_I sei uniform koerziv bzgl. μ und k,d.h. ex. $\bar{\alpha}_I,\,\alpha_I^k(\mu)$ mit

$$0 < \bar{\alpha}_I \le \alpha_I^k(\mu) := \inf_v \frac{\langle \mathcal{L}_I^k v, v \rangle_X}{\|v\|^2}$$

- b^k seien uniform beschränkt $||b^k(\mu)|| \leq \bar{\gamma}_b \ \forall k, m.$
- $\mathcal{L}_I^k,\,\mathcal{L}_E^k$ seien separierbar parametrisch mit zeitunabhängigen Komponenten

$$\mathcal{L}_{I}^{k}(\mu) = \sum_{q=1}^{Q_{I}} \Theta_{I,q}^{k}(\mu) \mathcal{L}_{I,q}, \quad \mathcal{L}_{I,q} \in L(X)$$

analog für \mathcal{L}_E , b^k , u_0 .