Asynchronous versus Synchronous Resets

- Reset is needed for:
 - ▶ forcing the ASIC into a sane state for simulation
 - ▶ initializing hardware, as circuits have no way to self-initialize
- ▶ Reset is usually applied at the beginning of time for simulation ▶
- ▶ Reset is usually applied at power-up for real hardware
- ▶ Reset may be applied during operation by watchdog circuits <

Synchronous Resets

- ▶ Reset is sampled only on the clock edge
- ▶ Reset applied as any other input to the state machine

Synchronous Resets

- ► Sync reset advantages
 - ▶ The flip-flop is less complex, thus smaller in area
 - Circuit is completely synchronous
 - Synchronous resets provide filtering for the reset line 4-
- ► Sync reset disadvantages
 - ► Combinatorial logic grows and may cancel out the benefit
 - ► Reset buffer tree may have to be pipelined to keep all resets occurring within the same clock cycle
 - ► May need to pulse stretch reset so its is wide enough to be seen at a clock rising edge
 - Requires a clock to be present if reset is to occur
 - ► If internal tri-state buffers are present, separate asynchronous reset may still be required
 - Reset signal may take the fastest path to flip-flops

Asynchronous Resets

- Asynchronous reset advantages
 - Reset has priority over any other signal
 - ► Reset occurs with or without clock present
 - ▶ Data paths are always clear of reset signals
 - ▶ No coercion of synthesis tool needed for correct synthesis
- ► Asynchronous reset disadvantages
 - ▶ Reset deassertion to all flip-flops must occur in less than a clock cycle.
 - ▶ Reset line is sensitive to glitches at any time

Asynchronous Resets

- ▶ Asynchronous reset synchronization circuit
 - ► Synchronization circuit required with asynchronous reset
 - ► Circuit will provide asynchronous reset and synchronous deassertion

Asynchronous Resets

- ► Reset tree
 - ► Routing and buffering of the reset tree almost as critical as the clock tree
 - ▶ Reset goes to every flip-flop, possibly 100's of thousands
 - Capacitive load is very large

Reset deassertion must happen within 1 clock cycle and allow time for reset recovery time

clk

reset_n

reset_n

reset_recovery time