Gestión de Proyectos de Software

4.1. Gestión de tiempos, costos, recursos humanos y de riesgo

Administración de proyectos

¿Qué es administrar?

• "Es el proceso de lograr que las cosas se realicen por medio de la planeación, organización, delegación de funciones, integración de personal, dirección y control de otras personas, creando y manteniendo un ambiente en el cual la persona se pueda desempeñar entusiastamente en conjunto con otras, sacando a relucir su potencial, eficacia y eficiencia, logrando así fines determinados".

Administración de proyectos

Figura 2.5 Factores de éxito en la administración de un proyecto.

Procesos de administración

Proceso	Descripción	Resultado típico
Inicio	Consiste básicamente en la identificación, definición y autorización de un proyecto o, al menos, de su primera fase. Por lo regular, se presentan ideas u oportunidades que darán solución a un problema o a una necesidad.	Documento que describe el proyecto y autorización (o rechazo) del mismo
Planeación	Se definen las actividades, se estructuran, se les asignan tiempos y una secuencia. Se identifican los recursos y se asignan. Se estiman los costos del proyecto y se preparan planes complementarios, como el de calidad, comunicación y riesgos.	Plan del proyecto
Ejecución	Es el desarrollo o la ejecución de las actividades definidas en los planes establecidos en el proceso de planeación.	Productos del proyecto (entregables)
Monitoreo y control	Onitoreo y control Consiste en medir y comparar el avance real contra el avance planeado, tomando acciones preventivas o correctivas para lograr los objetivos del proyecto. Incluye realizar reuniones de seguimiento, identificar y documentar los cambios, y dar seguimiento a los riesgos.	
Cierre	Se trata de la formalización con el cliente de que el proyecto ya se terminó. Incluye las lecciones aprendidas, el cierre de contratos y los balances de costos.	Informe de cierre y de lecciones aprendidas

Tabla 2.1 Procesos de la administración de proyectos y sus resultados típicos.

Planeación de proyectos

- Project charter
- Work break-down structure (WBS)
- Matriz de responsabilidades
- Plan de comunicación
- Secuencias de actividades
- Dependencias entre actividades
- Diagrama de Gantt
- Milestones
- Redes de proyectos
- Ruta crítica
- Estimación

Análisis de riesgos

- 1. Listar los riesgos Identificar los riesgos latentes con los principales involucrados en el proyecto.
- 2.Definir probabilidad e impacto
 Determinar para cada riesgo la probabilidad de ocurrencia en valores entre 0 y 1, así como el impacto en valores entre 1 y 10. Se multiplican ambos valores para evaluar la importancia de los riesgos.
- 3.Establecer prioridad
 - En función de la importancia del riesgo (el valor probabilidad × el impacto), se prioriza la lista de riesgos.
- 4.Implementar acciones
 - Identificar las acciones para prevenir, evitar o mitigar los tres riesgos más importantes del proyecto.

Control del proyecto

Figura 7.1 Ciclo de control del proyecto.

Cierre de proyecto

• Un proyecto no se termina al entregar el producto, servicio o resultado para el que fue creado, sino cuando se completan los procesos formales de cierre. En ese momento se verifica, mediante una lista o un formato, que el cliente y/o el patrocinador recibieron los entregables, se documentaron las lecciones aprendidas y se reasignaron los recursos.

Estimación

COCOMO

- El COnstructive COst MOdel fue introducido por el libro de texto Software Engineering Economics del Dr. Barry Boehm. Este modelo se denomina ahora generalmente "COCOMO 81".
- Se refiere a un grupo de modelos y se utiliza para estimar los esfuerzos de desarrollo que conlleva un proyecto. COCOMO se basa en la estimación de las líneas de código (LDC) de un sistema y el tiempo.
- COCOMO también ha tenido en cuenta aspectos como los atributos del proyecto, el hardware, la evaluación de los productos, etc.
 Además, base de COCOMO es originalmente el ciclo de vida de un modelo en cascada.

COCOMO

Figura 1. Conceptualización básica de COCOMO. Elaboración propia.

COCOMO

- esfuerzo nominal en personas/mes (E)
- tiempo estimado en meses (T)
- personal requerido (P).
- miles de líneas de código (KLDC)
- multiplicadores de esfuerzo (ME)

Valores constantes por modo de desarrollo

Modo de desarrollo	COCOMO Básico a	COCOMO Intermedio A	b	с	d
Orgánico	2.4	3.2	1.05		0.38
Semiacoplado	3.0		1.12	2.50	0.35
Empotrado	3.6	2.8	1.20		0.32

Ecuaciones por tipo de modelo COCOMO: Básico e intermedio

Ecuación	Submodelo básico	Submodelo intermedio
Esfuerzo (E)	(E) = a * (KLDC)b	(E) = a * (KLDC)b * ME
Tiempo (T)	(T) = c * (E)d	(T) = c * (E)d
Personal (P)	(P)=E/T	(P) = E/T

Nota: (Boehm, 1981).

Multiplicadores de esfuerzo (ME)		Valoración						
			Muy bajo	Bajo	Nominal	Alto	Muy alto	Extr. alto
		Atributos del producto						
1.	RELY	Fiabilidad requerida del software	0,75	0,88	1.00	1,15	1,40	
2.	DATA	Tamaño de la base de datos		0,94	1.00	1,08	1,16	
3.	CPLX	Complejidad del producto	0,70	0,85	1.00	1,15	1,30	1,65
	Atributos de la computadora							
4.	TIME	Restricciones del tiempo de ejecución			1.00	1,11	1,30	1,66
5.	STOR	Restricciones del almacenamiento princ.			1.00	1,06	1,21	1,56
6.	VIRT	Inestabilidad de la máquina virtual		0,87	1.00	1,15	1,30	
7.	TURN	Tiempo de respuesta del computador		0,87	1.00	1,07	1,15	
		Atributos del personal						
8.	ACAP	Capacidad del analista	1,46	1,19	1.00	0,86	0,71	
9.	AEXP	Experiencia en la aplicación	1,29	1,13	1.00	0,91	0,82	
10.	PCAP	Capacidad de los programadores	1,42	1,17	1.00	0,86	0,70	
11.	VEXP	Experiencia en S.O. utilizado	1,21	1,10	1.00	0,90		
12.	LEXP	Experiencia en el lenguaje de progr.	1,14	1,07	1.00	0,95		
		Atributos del proyecto						
13.	MODP	Uso de prácticas de programación modernas	1,24	1,10	1.00	0,91	0,82	
14.	TOOL	Uso de herramientas software	1,24	1,10	1.00	0,91	0,83	
15.	SCED	Restricciones en la duración del proy.	1,23	1,08	1.00	1,04	1,10	

Fuente: : http://dx.doi.org

• Enel 2009, se funda la empresa de Pagos Electrónicos PEL S.A con el objetivo de desarrollar soluciones de software para transacciones financieras, gestiones de pagos y cobros electrónicos, todo esto a través de un proceso de recaudación en línea interconectado con las diferentes entidades financieras del país. El 4 de enero, después de una negociación, ingresa una petición de un nuevo desarrollo, en el cual se incluirán las funcionalidades de gestiones de pagos, para que la clientela pueda realizar de forma segura y recurrente recaudaciones en línea de los diversos servicios que ofrece. La gerencia

• El tipo de desarrollo que enfrenta su equipo de trabajo contendrá unas 100,000 líneas de código (100 KLDC). Entre las principales especificaciones: el cliente necesita un software de alta fiabilidad, pues el tipo de transacciones del nuevo sistema involucra pérdidas fácilmente recuperables, hasta grandes pérdidas financieras; se requiere que un alto porcentaje del equipo de trabajo tenga al menos 1 año de experiencia en el desarrollo de aplicaciones similares, por lo que cada salario mensual de quienes lo desarrollan se promedia en \$4.000.

• Estimar el costo de un proyecto de 100,000 líneas de código de forma básica, utilizando el modelo COCOMO básico.

Solución ejemplo #1. COCOMO básico modo semi-acoplado

Ecuación	Submodelo básico	Aplicación de la ecuación		
Esfuerzo (E)	(E) = a * (KLDC)b	$= 3 * (100)^{1.12}$ = $3 * 173.78$ = $521,34$		
Tiempo (T)	(T) = c * (E)d	$= 2.5 * (521.34)^{0.35}$ $= 2.5 * 8,93$ $= 22,33$		
Personal (P)	(P) = E/T	= 521.34 / 22.3 = 23.34		

• En el segundo ejemplo, se desea estimar el costo del proyecto, utilizando el modelo COCOMO intermedio, ajustado con la característica de la fiabilidad requerida del software(RELY) con una valoración de "alto".

Solución ejemplo #2. COCOMO intermedio, modo semiacoplado con ME = RELY "alto"

Ecuación	Submodelo intermedio	Aplicación de la ecuación
Esfuerzo (E)	(E) = a * (KLDC)b * ME	$= 3 * (100)^{1.12} * 1.15$ $= 3 * 173.78 * 1.15$ $= 599.54$
Tiempo (T)	(T) = c * (E)d	$= 2.5 * (599.541)^{0.35}$ $= 2.5 * 9.38$ $= 23.45$
Personal (P)	(P) = E/T	= 599.541 / 23.45 = 25.57

• En el tercer ejemplo, se desea estimar del costo del proyecto, utilizando el modelo COCOMO intermedio, ajustado con las características fiabilidad requerida del software (RELY) con una valoración de "alto", y experiencia en la aplicación (AEXP) con una valoración de "bajo"

Solución ejemplo #3. COCOMO intermedio, modo semiacoplado los ME RELY "alto" y AEXP "bajo"

Ecuación	Submodelo intermedio	Aplicación de la ecuación
Esfuerzo (E)	(E) = a * (KLDC)b * ME	$= 3 * (100)^{1.12} * 1.15 * 1.13$ $= 3 * 173.78 * 1.299$ $= 677.22$
Tiempo (T)	(T) = c * (E)d	$= 2.5 * (677.22)^{0.35}$ $= 2.5 * 9.78$ $= 24.45$
Personal (P)	(P) = E/T	= 677.22 / 24.45 = 27.69