\mathbf{H} : Let's suppose that there exists a 1000-approximaton algorithm \mathcal{A} for TSP.

O: We will show that by using this algorithm \mathcal{A} the NP-complete decision problem HAM-CYCLE could be solved in poly time which would imply P = NP.

L: To show that HAM-CYCLE is in P, a polinomial algorithm \mathcal{B} will be created using algorithm \mathcal{A} : this algorithm \mathcal{B} can decide for any undirected graph G whether G has a Hamiltonian-cycle or not.

I: This algo \mathcal{B} first constructs the following edge-weighted, complete graph G'.

D: The graph G' has as many nodes as G has, in G' all pairs of nodes are connected, and the edge weight is 1 if this edge was present in G, otherwise the edge-weight is $1000 \cdot n + 1$ (where n is the number of the nodes in G).

A: After having constructed this G', algorithm \mathcal{B} runs the approximation algo \mathcal{A} on G' and ...

Y: if \mathcal{A} returns a hamiltonian cycle with length at least $1000 \cdot n + 1$ then algo \mathcal{B} says that G has no hamiltonian cycle, otherwise algo \mathcal{B} says that G has a hamiltonian cycle.