

EXPLORE MOON to MAR

Enabling Spaceflight using Metal Additive Manufacturing

Paul Gradl
NASA Marshall Space Flight Center

18 February 2022
LAMDA Additive Manufacturing Frontiers Conference 2022

The Case for Additive Manufacturing in Propulsion

- Metal Additive Manufacturing (AM) provides significant advantages for lead time and cost over traditional manufacturing for rocket engines
 - Lead times reduced by 2-10x
 - Cost reduced by more than 50%
- Complexity is inherent in liquid rocket engines and AM provides new design and performance opportunities
- Materials that are difficult to process using traditional techniques, long-lead, or not previously possible are now accessible using metal additive manufacturing

Part Cha
Complexity A

Challenging Alloys

Processing Economics

Case Study for AM

As AM process technologies evolve using multi-materials and processes, additional design and programmatic advantages are being discovered

Additive Manufacturing in use on NASA Space Launch System (SLS)

Successful hot-fire testing of full-scale additive manufacturing (AM) Part to be flown on SLS RS-25 RS-25 Pogo Z-Baffle – Used existing design with AM to reduce complexity from 127 welds to 4 welds

AM Processes for various applications

A) Laser Powder Bed Fusion [https://doi.org/10.1016/j.actamat.2017.09.051], B) Electron Beam Powder Bed Fusion [Credit: Courtesy of Freemelt AB, Sweden], C) Laser Powder DED [Credit: Formalloy], D) Laser Wire DED [Credit: Ramlab and Cavitar], E) Arc Wire DED [Credit: Institut Maupertuis and Cavitar], F) Electron Beam DED [NASA], G) Cold spray [Credit: LLNL], H) Additive Friction Stir Deposition [NASA], I) Ultrasonic AM [Credit: Fabrisonic].

<u>Reference:</u> Gradl, P., Tinker, D., Park, A., Mireles, P., Garcia, M., Wilkerson, R., Mckinney, C. (2022). "Robust Metal Additive Manufacturing Process Selection and Development for Aerospace Components". Journal of Material Engineering and Performance (JMEP). Article in Review.

Additive Manufacturing (AM) Development at NASA for Liquid Rocket Engines

environment

Laser Powder Directed Energy Deposition (DED)

Laser Powder Directed Energy Deposition (LP-DED) Large Scale Nozzles

60" (1.52 m) diameter and 70" (1.78 m) height with integral channels

95" (2.41 m) dia and 111" (2.82 m) height Near Net Shape Forging Replacement

Additive Manufacturing Typical Process Flow

Proper AM process selection requires an integrated evaluation of all process lifecycle steps

Emerging Areas of Development

- Maturing each of the AM processes and understanding of microstructure, properties, build limitations, and methods for design and post-processing.
- Ongoing development for large scale AM using DED and other processes.
- Continuous hot-fire and component testing to advance various combustion chambers, injectors, nozzles, ignition systems, turbomachinery, valves, lines, ducts, in-space thrusters.
- Polishing (surface enhancements internally) and post-processing development.
- Combining various AM processes for multi-alloy solutions or additional design options.
- Advancement of commercial supply chain for unique alloys (GRCop-42, NASA HR-1, JBK-75).
- New alloy development (Refractory, Ox-rich environments, AM-specific alloys).
- Material databases of metal AM properties to allow for conceptual design tensile, fatigue, and thermophysical.
- Design complexity using lattices, topology optimization, generative design, and thin-wall structures.
- Standards and certification of metal AM are evolving for human spaceflight.

Industrial Maturity and TRL of AM Processes

AW-DED

LW-DED

15:23:08

General Summary

- It's *all* welding, so same physics apply
- Additive manufacturing is <u>not a solve-all</u>; consider trading with other manufacturing technologies and use <u>only</u> when it makes sense
- Complete understanding of design process, build-process, and post-processing critical to take full advantage of AM
- Various processes exist each with unique advantages and disadvantages
- Additive manufacturing takes practice!
- Standards and certification of the processes in-work
- AM is evolving and there is a lot of work ahead

References

- P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Fluid and particle dynamics in laser powder bed fusion, Acta Mater. 142 (2018) 107–120. https://doi.org/10.1016/j.actamat.2017.09.051.
- B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. du Plessis, Metaladditive manufacturing in a erospace: A review, Mater. Des. 209 (2021) 110008. https://doi.org/10.1016/j.matdes.2021.110008.
- S.C. Altıparmak, B. Xiao, A market assessment of additive manufacturing potential for the aerospace industry, J. Manuf. Process. 68 (2021) 728–738. https://doi.org/10.1016/i.imapro.2021.05.072.
- R. Liu, Z. Wang, T. Sparks, F. Liou, J. Newkirk, Aerospace a pplications of laser additive manufacturing, Laser Addit. Manuf. Mater. Des. Technol. Appl. (2017) 351–371. https://doi.org/10.1016/B978-0-08-100433-3.00013-0.
- A. Uriondo, M. Esperon-Miguez, S. Perinpanayagam, The present and future of additive manufacturing in the aerospace sector: A review of important aspects, Proc. Inst. Mech.Eng. Part G J. Aerosp. Eng. 229 (2015) 2132–2147. https://doi.org/10.1177/0954410014568797.
- P.R. Gradl, S.E. Greene, C. Protz, B. Bullard, J. Buzzell, C. Garcia, J. Wood, K. Cooper, J. Hulka, R. Osborne, Additive manufacturing of liquid rocket engine combustion devices: As ummary of process developments and hot-fire testing results, in: 2018 Jt. Propuls. Conf., AIAA, 2018. https://doi.org/10.2514/6.2018-4625.
- F. Kerstens, A. Cervone, P. Gradl, End to end process evaluation for additively manufactured liquid rocket engine thrust chambers, Acta Astronaut. 182 (2021) 454–465. https://doi.org/10.1016/j.actaastro.2021.02.034.
- B. Barroqueiro, A. Andrade-Campos, R.A.F. Valente, V. Neto, Metal additive manufacturing cycle in a erospace industry: A comprehensive review, J. Manuf. Mater. Process. 3 (2019) 1–21. https://doi.org/10.3390/immp3030052.
- T.A. Rodrigues, V. Duarte, R.M. Miranda, T.G. Santos, J.P. Oliveira, Current status and perspectives on wire and arc additive manufacturing (WAAM), Materials (Basel). 12 (2019). https://doi.org/10.3390/ma12071121.
- A. Vafadar, F. Guzzomi, A. Rassau, K. Hayward, Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges, Appl. Sci. 11 (2021) 1213. https://doi.org/10.3390/app11031213.
- S. Negi, A.A. Nambolan, S. Kapil, P.S. Joshi, M. R, K.P. Karunakaran, P. Bhargava, Review on electron beam based additive manufacturing, Rapid Prototyp. J. 26 (2020) 485–498. https://doi.org/10.1108/RPJ-07-2019-0182.
- S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Mater. Today. 21 (2018) 22–37. https://doi.org/10.1016/j.mattod.2017.07.001.
- Gradl, P., Tinker, D., Park, A., Mireles, P., Garcia, M., Wilkerson, R., Mckinney, C. (2021). "Robust Metal Additive Manufacturing Process Selection and Development for Aeros pace Components". (Journal Article In Review)
- Gradl, P. R., Teasley, T. W., Protz, C. S., Garcia, M. B., Ellis, D., & Kantzos, C. (2021). Advancing GRCop-based Bi metallic Additive Manufacturing to Optimize Component Design and Applications for Liquid Rocket Engines. *AIAA Propulsion and Energy 2021*, 1–28. https://doi.org/10.2514/6.2021-3231
- Gradl, P., Mireles, O., Andrews, N. (2021). Introduction to Additive Manufacturing for Propulsion and Energy Systems. AIAA Propulsion and Energy Forum 2021. August. 10.13140/RG.2.2.29815.55209
- A. Gamon, E. Arrieta, P.R. Gradl, C. Katsarelis, L.E. Murr, R.B. Wicker, F. Medina, Microstructure and hardness comparison of as-built Inconel 625 alloy following various additive manufacturing processes, Results Mater. 12 (2021). https://doi.org/10.1016/j.rinma.2021.100239.
- P.R. Gradl, D.C. Tinker, J. Ivester, S.W. Skinner, T. Teasley, J.L. Bili, Geometric Feature Reproducibility for Laser Powder Bed Fusion (L-PBF) Additive Manufacturing with Inconel 718, Addit. Manuf. 47 (2021) 102305.
 https://doi.org/10.1016/j.addma.2021.102305.