LPMS Note

1 General Linear Programming Problem

General LP Problem: Decision Variables: x_i parameters: a_{ij} , b_i , c_i Objective Function: f Constraints: subject to 后边的部分

LP problem can be written as:

$$\begin{array}{ll} \text{maximize} & f = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \\ \\ \text{subject to} & a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ \\ \vdots & \\ & a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m \\ & x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0 \end{array}$$

We can also write the LP problem in matrix form:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
maximize $f = \mathbf{c}^T \mathbf{x}$
subject to $A\mathbf{x} \le \mathbf{b}$ $\mathbf{x} \ge 0$

Feasible Solution: If x satisfies all constraints (i.e. $Ax \le b$), then x is a feasible solution. (可行解) Optimal Sol: (最优解) (可多个) Find Optimal Solution: Graphical Method: 略. Vertex Enumeration: 所有顶点检查, 找出最优解. Simplex Method: 后面详述. Slack Variables: For each inequality constraint, we introduce a slack variable x_i (i > n) to convert it to an equation. (松弛变量)

LP problem can be written as: $ps: x_i \ge 0 \ (i > n)$. maximize $f = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n + x_{n+1} = b_1$ $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n + x_{n+2} = b_2$ \vdots $a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n + x_{n+m} = b_m$ $x_1 \ge 0, x_2 \ge 0, \dots, x_{n+m} \ge 0$

We can also write the LP problem in matrix form:

$$\overline{A} = [A \ I_m], \mathbf{b} = \mathbf{b}, \overline{\mathbf{c}} = \begin{pmatrix} \mathbf{c} \\ \mathbf{0}_{m \times 1} \end{pmatrix}, \mathbf{x} = \begin{pmatrix} \mathbf{x} \\ \vdots \\ \mathbf{x}_{n+m} \end{pmatrix}$$

maximize $f = \overline{\mathbf{c}}^T \mathbf{x}$

subject to $\overline{A}\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge 0$

Solving: $\mathbf{x} = \mathbf{x}_b + \mathbf{v}$ where $\overline{A}\mathbf{v} = 0$ and $\mathbf{x}_b = [\mathbf{0} \ \mathbf{b}]^T$

Feasible Region: It's the set K of the solutions to $\overline{A}\mathbf{x} = \mathbf{b}$ Convex Set: The set K is convex if $\forall \mathbf{x}, \mathbf{x}' \in K$, $\forall \theta \in [0, 1], \mathbf{x}_{\theta} = (1 - \theta)\mathbf{x} + \theta \mathbf{x}' \in K$.

Vertex on Convex Set: A vertex of the convex set K is a point $\mathbf{x} \in K$ which doesn't lie strictly inside any line segment connecting two points in K.

• **Theorem**: If LP has a unique optimal solution is a vertex. **Theorem**: If LP has a non-unique solution, \exists optimal solution at vertex

2 Simplex Method

Solve LP Problem: Assume $f = \overline{\mathbf{c}}^T \mathbf{x}$ with $\overline{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$.

- 1. 修改 x_i /列顺序,A 中换顺序后得到可逆的 $B_{m \times m} \Rightarrow \overline{A} \mathbf{x} = \mathbf{b} \Leftrightarrow B \mathbf{x}_B + N \mathbf{x}_N = \mathbf{b} \quad \overline{\mathbf{c}} \to [\mathbf{c}_B \ \mathbf{c}_N]^T \quad \overline{A} \to [B \ N] \quad \mathbf{x} \to [\mathbf{x}_B \ \mathbf{x}_N]^T \quad \text{Let } \widehat{\mathbf{b}} = B^{-1} \mathbf{b} \quad \widehat{N} = B^{-1} N$
- 2. **Solution**: $\mathbf{x}_B = \widehat{\mathbf{b}} \widehat{N}\mathbf{x}_N$ If $\mathbf{x}_N = 0 \Rightarrow \text{It's a basic solution}$. (But we need to check whether $\mathbf{x}_B \ge 0$) Using \mathcal{B}, \mathcal{N} : Index set of independent/else.
- 3. Basic Variables: x_R Nonbasic Variables: x_N
- 4. At Basic Solution: $\mathbf{x}_B = \hat{\mathbf{b}}, \mathbf{x}_N = \mathbf{0} \implies \text{If } \hat{\mathbf{b}} \ge 0$. Corresponding \mathbf{x} is: 1 vertex of K; 2 Basic Feasible Solution (BFS)
- 5. Basic Costs: \mathbf{c}_B^T Nonbasic Costs: \mathbf{c}_N^T Reduced Costs: $\hat{\mathbf{c}}_N = \mathbf{c}_N \widehat{N}^T \mathbf{c}_B = \mathbf{c}_N N^T B^{-T} \mathbf{c}_B$ $\widehat{f} = \mathbf{c}_B^T \widehat{\mathbf{b}}$ $\mathbf{x}_B, \mathbf{x}_N \ge 0$
- 6. **Objective Value**: $f = \overline{\mathbf{c}}^T \mathbf{x} = \mathbf{c}_R^T \mathbf{x}_R + \mathbf{c}_N^T \mathbf{x}_N = \hat{f} + \hat{\mathbf{c}}_N^T \mathbf{x}_N$ If $\hat{\mathbf{c}}_N \leq 0$, then $f \leq \hat{f} \Rightarrow$ Corresponding \mathbf{x} is optimal.
- 7. If $\hat{\mathbf{c}}_N \leq 0$ doesn't hold, we using **Simplex Algorithm**.

Simplex Algorithm:

- 1. Initial Basic Feasible Solution: Try $\mathcal{B} = \{n+1,...,n+m\}$ and $\mathcal{N} = \{1,...,n\} \Rightarrow \mathcal{B} = I, \mathcal{N} = A$, $\mathbf{x}_B = \hat{\mathbf{b}} = \mathbf{b}$, $\mathbf{x}_N = \mathbf{0}$, $\mathbf{c}_B = \mathbf{0}$, $\mathbf{c}_N = \mathbf{c}$
- 2. If $\mathbf{b} \ge 0$. \Rightarrow Basis is feasible + cont. Else: solved by **Two-Phase Simplex Method**.
- 3. If $\hat{\mathbf{c}}_N \leq 0$. \Rightarrow Optimal Solution Else: cont.
- 4. Let $q' \in \mathcal{N}$ 对应 $\hat{\mathbf{c}}_N$ 中最大 positive 分量的 index 同理, 对应的最大正分量值为 \hat{c}_q 对应的 variable 为 $x_{q'}$ 对应 N 中的 [q'] 列为 \mathbf{a}_q
- 5. Let $\widehat{\mathbf{a}_q} = B^{-1}\mathbf{a_q}$. If $\widehat{\mathbf{a}_q} \le 0 \Rightarrow \text{LP}$ is unbounded. Else: LP is bounded + cont.
- 6. Let $p' \in \mathcal{B}$ be the index corresponding to $p = \arg\min_{i=1,\dots,m}$; $\widehat{a}_{iq} > 0$ $\frac{\widehat{b_i}}{\widehat{a}_{iq}}$ p 是对应的 index,not value π $\overline{\alpha} = \frac{\widehat{b_p}}{\widehat{a}_{pq}}$ 代表值 $\widehat{b_i}$, \widehat{a}_{iq} 代表 \widehat{b} 的第 i 个分量, $\widehat{a_q}$ 的第 i 个分量 p' 代表能使 $\frac{\widehat{b_i}}{\widehat{a}_{iq}}$ 的值最小的 index, 前提条件是 $\widehat{a}_{iq} > 0$ 对应的 variable 为 $x_{p'}$
- 7. Exchange p' and q' between \mathcal{B} and $\mathcal{N} \Rightarrow \text{values of new } x_B = \hat{\mathbf{b}} \overline{\alpha} \, \hat{\mathbf{a}}_a$ Update $\mathcal{B}, \mathcal{N}, B, N, \hat{\mathbf{b}}, ...$
- 8. Go to 3.