CS116 - LẬP TRÌNH PYTHON CHO MÁY HỌC

Bài 03 - A QUY TRÌNH XÂY DỰNG MÔ HÌNH MÁY HỌC

Machine learning Pipeline

TS. Nguyễn Vinh Tiệp

What-why-how

What

Why

How

What: Vấn đề/đối tượng là gì? Why: Tại sao phải dùng đối tượng đó? Tại sao phải giải quyết vấn đề đó?

How: Chúng ta phải làm như thế nào?

ML Pipeline là gì?

- □ ML pipeline là một cách để mã hóa và tự động hóa quy trình làm việc của mô hình ML
- □ Bao gồm nhiều bước tuần tự thực hiện mọi thứ từ trích xuất dữ liệu, xử lý dữ liệu đến huấn luyện, đánh giá và triển khai mô hình

https://machinelearningcoban.com/tabml_book/ch_intro/pipeline.html

Data preparation

- Data fusion
- Data cleaning
- Data augmentation
- Data visualization
- Data splitting
- •

Data splitting

- Testing data → kiểm tra hiệu suất mô hình
- Validation data

 tối ưu hyper-parameters

Data splitting

Ví dụ: train : test : valid = 7: 2 : 1

https://insideaiml.com/blog/Everything-you-need-to-know-about-Splitting-Dataset-1156

Model training

- Lựa chọn mô hình ML (bài toán)
- Phương pháp tối ưu mô hình (deep learning)
- Chon hyper-parameter

Model overfiting

Overfitting

Right Fit

Underfitting

Classification

Regression

Model overfiting

Error	Overfitting	Right Fit	Underfitting
Training	Low	Low	High
Test	High	Low	High

Model analysis

- Đánh giá hiệu suất mô hình dựa trên số liệu và hình ảnh
- Tùy chỉnh hyper-parameter

Tại sao chọn ML Pipeline?

01	Tiêu chuẩn hóa và hiệu quả	Tự động hóa và chuẩn hóa quy trình xây dựng, đánh giá và triển khai các mô hình ML → tiết kiệm thời gian và nguồn lực
02	Khả năng lặp lại	Làm cho nó có thể tái tạo kết quả của một thử nghiệm học máy
03	Độ lặp lại	Làm cho nó có thể và đáng tin cậy để lặp lại cùng một quá trình nhiều lần
04	Hợp tác	Toàn bộ quá trình được mã hóa trong mã → chia sẻ ý tưởng và làm việc cùng nhau

Tại sao chọn ML Pipeline?

Giới thiệu về EDA

□ Trong thống kê, EDA là một cách tiếp cận phân tích các tập dữ liệu để tóm tắt các đặc điểm chính của chúng, thường sử dụng đồ họa thống kê và các phương pháp trực quan hóa dữ liệu khác

Data Science Process

https://en.wikipedia.org/wiki/Exploratory data analysis

EDA - Phân tích dữ liệu thăm dò

EDA - Phân tích dữ liệu thăm dò

Mục tiêu của EDA

Mục tiêu của EDA là:

- □ Cho phép khám phá bất ngờ trong dữ liệu
- □ Đề xuất các giả thuyết về nguyên nhân của các hiện tượng quan sát được
- □ Đánh giá các giả định dựa trên suy luận thống kê nào
- □ Hỗ trợ lựa chọn các công cụ và kỹ thuật thống kê phù hợp
- □ Cung cấp cơ sở để thu thập thêm dữ liệu thông qua khảo sát hoặc thí nghiệm

QUIZ & CÂU HỞI