

TEMA 4. Análisis de requisitos

Ingeniería del Software

Raquel Martínez España

Grado en Ingeniería Informática

Análisis de requisitos

- □ <u>Especificación de requisitos:</u> Generación ERS
- ☐ Modelado de requisitos del sistema:
 - Escenarios/casos de uso
- □Elaboración del modelo de requisitos
- ■Validación de los requisitos
- □Análisis de requisitos de la práctica

Análisis de requisitos - Pasos

□ Concepción
□ Indagación
□ Elaboración
□ Negociación
□ Especificación
□ Validación
□ Gestión de los requisitos

Análisis de requisitos - Concepto

- □La ingeniería de requisitos ofrece los mecanismos para:
 - ✓ Entender lo que desea el cliente
 - ✓ Analizar las necesidades
 - ✓ Evaluar la factibilidad
 - ✓ Negociar una solución razonable
 - ✓ Especificar la solución sin ambigüedades
 - √ Validar la especificación
 - ✓ Gestionar los requisitos a medida que surgen, desaparecen o se modifican.

Análisis de requisitos - Concepto

- □Objetivo: producir un documento de especificación de requisitos que describa qué tiene que hacer el sistema pero no cómo.
 - ■No sólo análisis, también síntesis.
- □Análisis de requisitos (IEEE): El proceso de estudio de las necesidades de los usuarios para llegar a una definición de los requisitos del sistema, de hardware o de software, así como el proceso de estudio y refinamiento.
- □Requisito (IEEE): Condición o capacidad que necesita el usuario para resolver un problema o conseguir un objetivo determinado.
- □Definición de requisitos (Especificación de Requisitos Software, ERS) debe ser fruto del trabajo conjunto: clientes y desarrolladores.

Análisis de requisitos – Tres grandes actividades (1)

□Definir los requisitos software:

- ■Tarea iterativa para crear especificación preliminar de requisitos que debe cumplir el software.
- •Utilizar técnicas de extracción de requisitos.

□Definir los requisitos de las interfaces:

- ■Definir la interacción con otros elementos del sistema como el usuario, el hardware u otras aplicaciones.
- ■Interacción con el usuario es crítica para la facilidad de uso.

□Integrar los requisitos en un documento y asignarles prioridades:

- Contrato entre el usuario y el cliente.
- ■Prioridades para saber relevancia de los mismos.
- Resultado: Documento de Especificación de Requisitos software.

Análisis de requisitos – cuatro grandes actividades (2)

- Extracción o determinación de requisitos: proceso mediante el cual los clientes del software descubren, revelan, articulan y comprenden los requisitos que desean.
- Análisis de requisitos: Proceso de razonamiento sobre (1), detectando y resolviendo posibles inconsistencias o conflictos.
- 3. Especificación de requisitos: proceso de redacción o registro.
- Validación de requisitos: proceso de confirmación y verificación.

Tipos de requisitos

- Requisitos funcionales: expresan algún aspecto relativo al comportamiento del sistema -> Tarea a realizar
- 2. Requisitos no funcionales: expresan propiedades del sistema, entre ellos:
 - 2.1 Restricciones: Describen los límites del sistema.
 - 2.2 De funcionamiento: recogen especificaciones de diseño, a nivel del sistema, de hardware o de software.
 - 2.3 Manejo de excepciones: Describen los posibles comportamientos anormales del sistema y sus tratamientos correspondientes.

Ejemplos de tipos de requisitos

- 1. El día 26 de cada mes deben generarse las nóminas de los empleados de la empresa.
- 2. Cuando el número de existencias en stock sea menor de 5 se debe realizar un pedido a la empresa proveedora.
- 3. La edad de un empleado debe ser siempre mayor de 16 años.
- 4. La aplicación se ejecutará sobre un i7, utilizando el sistema operativo linux.
- Como herramienta para desarrollar el análisis se va a utilizar Easy Case.
- 6. Cuando se produzca un error al introducir un dato, se debe mostrar un mensaje en la pantalla que proporcione información, lo más detallada posible, respecto a la causa que lo origino.

Especificación de Requisitos del software (ERS)

- □ Documentación de los requisitos esenciales (funcionales, rendimiento, diseño, restricciones y atributos) del software y sus interfaces externas -> Objetivo final de la etapa.
- □ 2 Características fundamentales:
 - Debe contener información con las necesidades reales del cliente.
 - Debe comunicar dicha información de forma eficaz.
- □ Qué hay que desarrollar, no cómo ni cuándo:
 - Sólo requisitos del software necesarios (Dejar a un lado futuribles).
 - No hay detalles del diseño, de su verificación o dirección del proyecto, excepto las restricciones (pej. Limitación hardware disponible).

Características de una buena ERS

- ✓ No ambigua: Un requisito solo puede tener una interpretación (OJO: Lenguaje natural).
- ✓ Completa:
 □Es completa si
 - 1. Incluye todos los requisitos significativos del software:
 - Funcionalidad
 - Ejecución
 - Restricciones
 - Atributos de calidad
 - Interfaces externa
- 2. Define la respuesta ante cualquier entrada (correcta o no)
- 3. Cumple con los estándares de especificación a aplicar (pej IEEE 830).
- 4. Están etiquetadas y referenciadas todas las figuras, tablas y diagramas.
- 5. Están definidos todos los términos y unidades de medida -> ACRÓNIMOS
- ☐ Si no es completa indicar TBD (To Be Determined) y por qué

Características de una buena ERS

√ Fácil de verificar:
□Requisitos difícil de verificar: "El programa no debe entrar nunca en un bucle infinito"
□Tenemos que dar métodos para verificar requisitos, en caso contrario, eliminar del ERS.
Consistente: No hay conflictos entre los requisitos. Tres posibles de conflictos:
□Describir el mismo requisitos varias veces.
□Contradictorios.
□Lógico o temporal: Un requisito sumar y otro multiplicar.
✓ Fácil de modificar -> Debe estar bien estructurado (tabla de contenidos).
□Si hay requisitos relacionados, enlazarlos.

Características de una buena ERS

- √ Facilidad para identificar el origen y las consecuencias de cada requisito (Trazabilidad).
 - ☐Relación entre dos o más productos del ciclo de vida.
 - □Establecer el origen claro y referencias en desarrollos futuros.
 - 1. Referencia hacía atrás: A documentos previos al desarrollo.
 - 2.Referencia hacía adelante: A documentos posteriores del desarrollo.
- ✓ Facilidad de utilización durante la fase de explotación y de mantenimiento.
 - □Personal que no ha desarrollado el software se encarga del mantenimiento y puede provocar cambios en la documentación.

Evolución de la ERS

- ✓Imposible especificar todos los detalles -> por ejemplo detalles de todas las pantallas.
- ✓ Cambios por deficiencias encontradas.
- ✓ Objetivo: Intentar especificar los requisitos de la manera mas detallada.
- ✓ Desarrollar un proceso formal de cambio para identificar, controlar, seguir e informar de cambios.
 - ☐Generar nuevas versiones de la ERS.

Estructura para la ERS (IEEE 830)

1. Introducción

- 1.1. Objetivo
- 1.2. Ámbito
- 1.3. Definiciones, siglas y abreviaturas
- 1.4. Referencias
- 1.5. Visión global

2. Descripción general

- 1.1. Perspectiva del producto
- 1.2. Funciones del producto
- 1.3. Características del usuario
- 1.4. Limitaciones generales
- 1.5. Supuestos y dependencias

3. Requisitos específicos Apéndices Índice

3. Requisitos específicos

UCAM | UNIVERSIDAD CATÓLICA DE MURCIA

- 3.1 Requisitos funcionales
 - 3.1.1 Requisitos funcional 1
 - 3.1.1.1 Introducción
 - 3.1.1.2 Entradas
 - 3.1.1.3 Procesamiento
 - 3.1.1.4 Salidas
 - 3.1.2 Requisito funcional 2

.....

- 3.1.n Requisito funcional n
- 3.2 Requisitos de interfaz externa
 - 3.2.1 Interfaces de usuario
 - 3.2.2 Interfaces hardware
 - 3.2.3 Interfaces software
 - 3.2.4 Interfaces de comunicación
- 3.3 Requisitos de ejecución
- 3.4 Restricciones de diseño
 - 3.4.1 Acatamiento de estándares
 - 3.4.2 Limitaciones de hardware

.

- 3.5 Atributos de calidad
 - 3.5.1 Seguridad
 - 3.5.2 Mantenimiento

.

- 3.6 Otros requisitos
 - 3.6.1 Base de datos
 - 3.6.2 Operaciones
 - 3.6.3 Adaptación de situación

Análisis de requisitos

- ☐ Especificación de requisitos: Generación ERS
- □ Modelado de requisitos del sistema: Escenarios/casos de uso
- □Elaboración del modelo de requisitos
- ■Validación de los requisitos
- □Análisis de requisitos de la práctica

Escenarios/casos de uso

"un caso de uso capta un contrato que describe el comportamiento del sistema en distintas condiciones en las que el sistema responde a una petición de alguno de sus participantes" (Alistair Cockburn, 2001)

¿Qué se necesita saber a fin de desarrollar un caso de uso eficaz?

- ¿Quién es el actor principal y quién son los secundarios?
- ¿Cuáles son los objetivos de los actores?
- ¿Qué precondiciones deben existir antes de empezar la historia?
- ¿Qué tareas principales son realizadas por el actor?
- ¿Qué excepciones deben ser consideradas al describir la historia?
- ¿Qué variaciones son posibles en la interacción del actor?
- ¿Qué información del sistema adquiere, produce o cambia el actor?
- ¿Tendrá que informar el actor al sistema acerca de cambios en el ambiente externo?
- ¿Qué información desea obtener el actor del sistema?
- ¿Quiere el actor ser informado sobre cambios inesperados?

Escenarios/casos de uso

D	efine	<u>:</u>

□Actores (actor ≠ usuario) – distintas personas o dispositivos que usan el sistema
□Objetivo del caso de uso
□Precondiciones
□Disparador
□Escenario – qué acción realiza cada actor en el sistema
□Excepciones
□Prioridad
□Cuándo estará disponible
□Frecuencia de uso
□Canal (interfaz) para el actor
□ Aspectos pendientes

Escenarios/casos de uso

Análisis de requisitos

- ☐ Especificación de requisitos: Generación ERS
- ☐ Modelado de requisitos del sistema:
 - Escenarios/casos de uso
- □ Elaboración del modelo de requisitos
- ■Validación de los requisitos
- □Análisis de requisitos de la práctica

Proceso de definición de los requisitos

Elaboración del modelo de requisitos

A medida que se avanza, los modelos se hacer	n más estables.
☐¿Utilizar un modo de representación o varios?	Diagrama de casos de uso
□Tipos de elementos presentes en todos los mo	odelos: Diagrama de clases

- ✓ <u>Basados en el escenario</u> desde el punto de vista del usuario, definición de casos de uso (<u>actores, escenario, detalles</u>).
- ✓ <u>Basados en clases</u> un caso de uso es un <u>conjunto de objetos</u> que manipula un actor cuando interactúa con el sistema (clase de objetos). Especifican herencia, colaboraciones, interacciones...
- ✓ <u>De comportamiento</u> representación de los <u>estados</u> del sistema y <u>eventos</u> que se producen
- ✓ Orientados al flujo estudia las relaciones de transformación de las entradas y salidas a lo largo de los procesos en el sistema.

Diagrama de estados

Diagrama de flujo de datos

Elaboración del modelo de requisitos

Elaboración del modelo de requisitos

□Patrones de análisis:

- ✓ Responden a comportamientos recurrentes en un mismo dominio de aplicación.
- ✓ Modelos de análisis reutilizables (descripción, ventajas, limitaciones, ...)
- ✓ Aceleran el desarrollo de los modelos de análisis abstractos que capturan los principales requerimientos del problema.
- ✓ Deben estar bien identificados en la documentación.

Análisis de requisitos

- ☐ Especificación de requisitos: Generación ERS
- ☐ Escenarios/casos de uso
- ☐ Elaboración del modelo de requisitos
- □ Validación de los requisitos
- ☐ Análisis de requisitos de la práctica

Validación de los requisitos

□¿Es coherente cada requerimiento con los objetivos generales del sistema o producto?
□¿Se han especificado todos los requerimiento en el nivel apropiado de abstracción? ¿Algunos de ellos están detallados a un nivel que no correspondo con la etapa?
□¿Cada requerimiento es realmente necesario o representa una característica agregada que tal vez no sea esencial para el objetivo del sistema?
□¿Cada requerimiento esta acotado y no es ambiguo?
□¿Existen requerimientos en conflicto?
□¿Cada requerimiento es asequible en el ambiente técnico del sistema?
□¿Puede probarse una vez implementada su solución?
□¿Se refleja de manera adecuada la información, función y funcionamiento del sistema?
□¿Se ha utilizado algún patrón de requerimientos para simplificar el modelado?

Bibliografía básica

- □ Pressman, R. "Ingeniería del Software: Un enfoque práctico". 7ª edición. Madrid: McGraw Hill, 2010.
 - ✓ Capítulo 5