MAT1571

DERIVATIVE OF f

$$(a, \pm a)$$

$$(f'(a), a)$$

$$(x + b)$$

THEOREM SUPPOSE f(x) is insterious and

DIEFERENTIAMSLE.

1E $f'(f'(a)) \neq 0$,

THEN f'(x) is preferentially AF X=a.

AND $(f^{-1})'(a) = \frac{1}{f'(f'(a))}$

PROOF:
$$(f^{-1})'(a) = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h}$$

User's where $b = f'(a)$.

Denote $b+k = f^{-1}(a+h)$.

Lo $\lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h} = \lim_{h \to 0} \frac{k}{h}$

Since $b+k = f^{-1}(a+h)$

Since $b+k = f^{-1}(a+h)$
 $f(b+k) = a+h$.

 $h = f(b+k) - a = f(b+k) - f(b)$

So $\lim_{h \to 0} \frac{k}{h} = \lim_{h \to 0} \frac{k}{h}$

So $\lim_{h \to 0} \frac{k}{h} = \lim_{h \to 0} \frac{k}{h}$

So $\lim_{h \to 0} \frac{k}{h} = \lim_{h \to 0} \frac{k}{h}$

So $\lim_{h \to 0} \frac{k}{h} = \lim_{h \to 0} \frac{k}{h}$

Lo
$$11m$$
 k $h \to 0$ $f(6-5h)-f(h)$
 $f(8-5h)-f(6)$
 $f(8-5h)-f(6)$

Example Venil' $f(0) = tan \cdot 0$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. BNCE 1-1, f'(0)= pro. We can for (arcton) $\frac{d}{dt}\left(\operatorname{arten} t\right) = \frac{1}{f'(f'(t))}$ see? (d-1/E)) = Tee? (arcton 6)