

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA MECÂNICA

ELETROTÉCNICA

Características da corrente alternada Prof. Roger Cruz

INTRODUÇÃO

Até agora analisamos apenas circuitos de corrente contínua, nos quais as tensões e correntes não variam com o tempo, exceto durante os transientes.

- Vamos agora dirigir nossa atenção para análise de circuitos nos quais a intensidade das fonte variam com tempo.
- É particularmente interessante estudar a tensão variante no tempo fornecida pelas *empresas geradores de energia elétrica (concessionárias)*, a qual é denominada **CA** (abreviação de **Corrente Alternada**).

TENSÃO CONTÍNUA

Uma tensão é chamada de contínua ou constante quando o seu valor não se altera com o tempo.

Exemplo de geradores de tensão contínua são as pilhas e baterias.

Exemplo de fonte de tensão contínua

TENSÃO ALTERNADA

A tensão alternada tem *intensidade* e *polaridade* que variam com o tempo. De acordo com a forma da variação da tensão, há diferentes tipos de tensão como: senoidal, quadrada, triangular entre outras.

Nesse estudo iremos analisar a *função senoidal* pois é a tensão fornecida nas fontes geradoras que alimentam as indústrias e residências.

TENSÃO ALTERNADA – FONTES GERADORAS

Esquema de geração de energia elétrica numa usina termelétrica

Gerador termoelétrico

Gerador hidroelétrico

Gerador eólico

É uma tensão que varia com o tempo de acordo com uma função senoidal. A expressão matemática é dada pela função:

$$v(t) = A_m \operatorname{sen}(\omega t) = A_m \operatorname{sen}(\alpha)$$

- A_m : é o valor máximo (ou valor de pico) da tensão em volts
- ω: é a frequência angular dada em rad/s
- $\alpha = \omega t$ em graus ou radianos

No caso de grandezas elétricas como a tensão e a corrente, as expressões gerais são:

$$i = I_m \operatorname{sen}(\omega t) = I_m \operatorname{sen}(\alpha)$$

 $e = E_m \operatorname{sen}(\omega t) = E_m \operatorname{sen}(\alpha)$

Onde as letras maiúsculas com índice *m* representam amplitudes e as letras minúsculas *i* e e representam os valores instantâneos da corrente e da tensão, respectivamente, em um instante *t* qualquer.

Representação gráfica da função senoidal

EXEMPLO Sabendo que $e = 5 \text{ se} n(\alpha)$, determine e para $\alpha = 40^{\circ} \text{ e } \alpha = 0.8 \pi \text{ rad.}$

EXEMPLO 7.1 Sabendo que $e = 5 sen(\alpha)$, determine e para $\alpha = 40^{\circ}$ e $\alpha = 0.8\pi$ rad.

SOLUÇÃO:

Para
$$\alpha = 40^{\circ}$$
, $e = 5 sen(40^{\circ}) = 5(0.6428) = 3.2139 V$

EXEMPLO Sabendo que $e = 5 \text{ se} n(\alpha)$, determine e para $\alpha = 40^{\circ} \text{ e } \alpha = 0.8\pi \text{ rad.}$

SOLUÇÃO:

$$\alpha_{radianos} = \frac{\alpha^{o} \chi \, \pi}{180}$$

$$\alpha^{o} = \frac{\alpha_{radianos} \times 180}{\pi}$$

Para
$$\alpha = 0.8\pi$$
, $\alpha^o = \frac{180^0}{\pi}(0.8\pi) = 144^0$

$$e = 5 sen(144^{\circ}) = 5(0.5878) = 2.939 V$$

O ângulo associado a um valor particular da tensão pode ser obtido a partir da manipulação da equação:

$$e = E_m \operatorname{sen}(\alpha)$$

Da seguinte forma:

$$\operatorname{sen}(\alpha) = \frac{e}{E_m}$$

$$\alpha = sen^{-1} \left(\frac{e}{E_m} \right)$$

O ângulo associado a um valor particular da tensão pode ser obtido a partir da manipulação da equação:

$$e = E_m \operatorname{sen}(\alpha)$$

Da seguinte forma:

$$\operatorname{sen}(\alpha) = \frac{e}{E_m}$$

$$\alpha = sen^{-1} \left(\frac{e}{E_m} \right)$$

Da mesma maneira para a corrente:

$$\alpha = sen^{-1} \left(\frac{i}{I_m} \right)$$

EXEMPLO

- a) Determine o ângulo para o qual o valor da função $v=10sen(377\ t)$ é 4V
- b) Determine o momento em que a função assume o valor dado no item
 a)

EXEMPLO

- a) Determine o ângulo para o qual o valor da função $v=10sen(377\ t)$ é 4V
- b) Determine o momento em que a função assume o valor dado no item
 a)

SOLUÇÃO

a)

$$\alpha = sen^{-1} \left(\frac{e}{E_m} \right)$$

EXEMPLO

- a) Determine o ângulo para o qual o valor da função $v=10sen(377\ t)$ é 4V
- b) Determine o momento em que a função assume o valor dado no item
 a)

SOLUÇÃO

a)

$$\alpha = sen^{-1} \left(\frac{e}{E_m} \right) = sen^{-1} \left(\frac{4}{10} \right) = 23.578^o$$

EXEMPLO

- a) Determine o ângulo para o qual o valor da função $v=10sen(377\ t)$ é 4V
- b) Determine o momento em que a função assume o valor dado no item
 a)

SOLUÇÃO

$$\alpha = 23.578^{\circ}$$

b)

$$\alpha = \omega t \to t = \frac{\alpha}{\omega}$$

Vamos transformar α de graus para radianos pois ω está em rad/s.

$$\alpha(rad) = \frac{\pi}{180^0}(23.578^o) = 0.411 \, rad$$

EXEMPLO

- a) Determine o ângulo para o qual o valor da função $v=10sen(377\ t)$ é 4V
- b) Determine o momento em que a função assume o valor dado no item
 a)

SOLUÇÃO

$$\alpha = 23.578^{\circ}$$

b)

Assim temos que:

$$t = \frac{\alpha}{\omega} = \frac{0.411 \, rad}{377 \, rad/s} = 1,09 \, ms$$

EXEMPLO – Dado $i = 6x10^{-3}sen(1000t)$, calcule *i* para t = 2 ms.

$$i = 6x10^{-3}sen(1000x2x10^{-3}) = 6x10^{-3}sen(2 rad) = 5.45 mA,$$

Obs.: 2 radianos = 114,59 graus

RELAÇÕES DE FASE

Até aqui temos considerando apenas ondas senoidais com máximo e mínimos em $\pi/2$ e $3\pi/2$, e zeros em 0, π e 2π . Se a forma de onda for deslocada para a esquerda ou para a direita de 0° , a expressão passa a ser:

$$A_m sen(\omega t \pm \theta)$$

Onde θ é o ângulo, em graus ou radianos, que a forma da onda foi deslocada.

$$e = 10 \operatorname{sen}\left(314 t - \frac{\pi}{6}\right)$$

Nesse caso, no qual foi subtraído um ângulo (fase), a função será deslocada para a direita.

A relação de fase entre duas formas de onda indica qual delas está adiantada ou atrasada e de quantos graus ou radianos.

EXEMPLO Qual a relação de fase entre as formas de onda senoidais em cada um dos seguintes pares:

a)
$$v = 10sen(\omega t + 30^{\circ}) e i = 5sen(\omega t + 70^{\circ})$$

Neste caso podemos dizer que i está adianta 40° em relação a v. Podemos visualizar melhor essa relação no gráfico das curvas mostrados a seguir:

a)
$$v = 10sen(\omega t + 30^{\circ}) e i = 5sen(\omega t + 70^{\circ})$$

b)
$$v = 15sen(\omega t + 60^{\circ})$$
 e $i = 10sen(\omega t - 20^{\circ})$

Nesse caso a curva *i* estará atrasada 20° enquanto que a curva *v* estará adiantada de 60°, ou seja, a defasagem de fase entre as curvas será de 80°.

b)
$$v = 15sen(\omega t + 60^{\circ})$$
 e $i = 10sen(\omega t - 20^{\circ})$

Nesse caso a curva *i* estará atrasada 20° enquanto que a curva *v* estará adiantada de 60°, ou seja, a defasagem de fase entre as curvas será de 80°.

VALOR MÉDIO

- O valor de pico é o máximo A_m que a tensão ou corrente podem assumir
- O valor de pico a pico é igual ao dobro do valor de pico, quando os picos positivos e negativos são simétricos.
- O valor médio corresponde à média aritmética de todos os valores numa onda senoidal, seja de tensão ou de corrente, considerando-se meio ciclo.

VALOR MÉDIO

Prova-se matematicamente que o valor médio é 0.637xvalor de pico.
 Essa relação vale para valores de tensão e corrente.

VALOR EFICAZ

- O valor eficaz ou rms de uma forma de onda senoidal de tensão ou de corrente corresponde à mesma quantidade de tensão ou corrente contínua capaz de produzir a mesma potência dissipada.
- Prova-se matematicamente que:

$$V_{rms} = \frac{V_p}{\sqrt{2}}$$
 e $I_{rms} = \frac{I_p}{\sqrt{2}}$

VALOR EFICAZ

 O valor eficaz de qualquer grandeza, cuja a variação com o tempo é conhecida, pode ser calculado a partir da seguinte equação:

$$A_{rms} = \sqrt{\frac{\int_{0}^{T} i^{2}(t)dt}{T}}$$
Ou
$$A_{rms} = \sqrt{\frac{\acute{a}rea(i^{2}(t))}{T}}$$

EXEMPLO Calcule o valor eficaz da forma de onda vista abaixo:

$$V_{rms} = \sqrt{\frac{3^2 x^4 + (-1)^2 x^4}{8}} = \sqrt{\frac{40}{8}} = 2.236 V$$

EXEMPLO Calcule o valor eficaz da forma de onda vista abaixo:

$$V_{rms} = \sqrt{\frac{(-10)^2 x^2 + (4)^2 x^2 + 0^2 x^2 + (-2)^2 x^2 + 0^2 x^2}{10}} = \sqrt{\frac{240}{10}} = 4.899 V_{rms}$$

ATIVIDADE ESTRUTURADA Nº 1

Para a forma de onda mostrada na figura abaixo, determine o valor eficaz da tensão:

Bibliografia

Boylestad, Robert L. Introdução a Análise de Circuitos. São Paulo, . 10^a Ed. LTC, 2014.

DOS SANTOS, Alex Ferreira. Eletricidade Aplicada. 1 ed, 2016.