COMUNICAZIONE NUMERICHE 3 Aprile 2023

Esercizio 1. Un processo bianco Gaussiano X(t) con densita' spettrale di potenza pari a $N_0/2$ viene dato in ingresso ad un sistema lineare stazionario con risposta impulsiva $h(t) = \exp(-t)u(t)$. Si calcolino il valore medio e la densita' spettrale di potenza del processo in uscita Y(t). Si scriva inoltre la densita' di probaiblita' della variabile aleatoria Y_0 ottenuta campionando il processo Y(t) all'istante generico Y_0 .

Esercizio 2. In un sistema di comunicazione numerico PAM, il segnale trasmesso è

$$s(t) = \sum_{k} x[k]p(t - kT)$$

dove i simboli $x[k] \in A_s = \{-1, 1\}$ sono indipendenti ed equiprobabili. L'impulso sagomatore è $p(t) = 2B sinc^2$ (2Bt), T = 1/B. Il canale di propagazione ha risposta impulsiva c(t) = 4B sinc (4Bt) e la DSP del rumore in ingresso al ricevitore è $S_n(f) = N_0/2$. Il filtro in ricezione è un filtro passa basso ideale di banda 2B. La soglia di decisione è $\lambda = 0$. Calcolare:

- L'energia media per simbolo trasmesso;
- · La potenza di rumore in uscita al filtro in ricezione;
- · La probabilità di errore sul simbolo.