AMENDMENTS TO THE CLAIMS

- Claim 1. (currently amended) A method for manufacturing a multi-slants reflector[[,]] comprising the steps of:
- 5 providing a substrate;
 - forming a plurality of thin film transistors and a
 plurality of multi-layered structures on the
 substrate simultaneously;[[and]]
- coating an organic layer on said thin film transistors and said multi-layered structures;
 - performing a baking step to smooth the organic layer so
 as to form a plurality of asymmetric slants; and
 forming a reflective metal layer on the organic
 layer[[.]];
- wherein each of said asymmetric slants comprises said

 multi-layered structure, and each layer of said

 multi-layered structure has substantially different

 widths.
- 20 Claim 2. (original) The method of claim 1 for manufacturing a multi-slants reflector, wherein each of said asymmetric slants has substantially different angles between an upper surface of the reflective metal layer and an upper surface of the substrate.

Claim 3. (original) The method of claim 1 for manufacturing a multi-slants reflector, wherein each of said asymmetric slants has substantially different heights.

Claim 4. (canceled)

5

10

20

- Claim 5. (currently amended) The method of claim 4 claim 1 for manufacturing a multi-slants reflector, wherein said multi-layered structure is a random composition of a gate metal layer, an insulation layer, an a-Si layer, an N* layer, and a source/drain metal layer.
- Claim 6. (original) The method of claim 2 for manufacturing

 a multi-slants reflector, wherein said angles range from

 degrees to approximately 10 degrees.
 - Claim 7. (currently amended) A multi-slants reflector applied in a liquid crystal display (LCD), the multi-slants reflector comprising:
 - a substrate:
 - a plurality of thin film transistors disposed on the substrate;
 - a reflective metal layer;

- a plurality of asymmetric slants, each comprising a

 multi-layered structure, located between the

 substrate and the reflective metal layer; and
 an organic layer located between said reflective metal
 layer and said multi-layered structure;
- wherein each layer of said multi-layered structure has substantially different widths.
- Claim 8. (original) A multi-slants reflector according to

 10 claim 7, wherein each of said asymmetric slants has
 substantially different angles between an upper surface
 of the reflective metal layer and an upper surface of the
 substrate.
- 15 Claim 9. (original) A multi-slants reflector according to claim 7, wherein each of said asymmetric slants has substantially different heights.

Claim 10 (canceled)

20

5

Claim 11. (original) A multi-slants reflector according to claim 7, wherein said multi-layered structure is a random composition of a gate metal layer, an insulation layer, an a-Si layer, an N⁺ layer, and a source/drain metal layer.

Claim 12. (original) A multi-slants reflector according to claim 8, wherein said angles range from 0 degrees to approximately 10 degrees.

5

10

Claim 13. (currently amended) A method for manufacturing a multi-slants reflector[[,]] comprising the steps of: providing a substrate:

forming a plurality of thin film transistors and a plurality of multi-layered structures on the substrate simultaneously;

coating a protection layer on said thin film transistors and said multi-layered structures; and forming a reflective metal layer on said protection layer; wherein each layer of said multi-layered structure has

15

substantially different widths.

20