DEPARTEMENT DE MATHEMATIQUES UNIVERSITE DE BISKRA MODULE 2^{ième} Année Master Maths Premier semestre, année 2021/2022 Mouvement Brownien et calcul stochastique

DEVOIR

(A rendre le mercredi 26 Janvier 2022)

Exercice 1. Soit $\{B_t\}_{t\geq 0}$ un mouvement Brownien. Soit $W_t = B_{2t} - B_t$, pour $t \geq 0$.

- a) Est-ce que $\{W_t\}_{t>0}$ est un processus Gaussien?
- b) Est-ce que $\{W_t\}_{t>0}$ est un mouvement Brownien?

Exercice 2. Soit $\{B_t\}_{t\geq 0}$ un mouvement Brownien standard avec sa filtration naturelle $\{\mathcal{F}_t\}_{t\geq 0}$, où $\mathcal{F}_t = \sigma\left(B_s, 0 \leq s \leq t\right)$.

- a) Calculer $E[B_t^4/\mathcal{F}_s]$ pour $t > s \ge 0$.
- b) Considérons la fonction $f(t, x = x^4 6tx^2 + 3t^2)$. Montrer que $\{M_t\}_{t\geq 0}$ donné par $M_t = f(t, B_t) = B_t^4 6tB_t^2 + 3t^2$

est une martingale adaptée à la filtration $\{\mathcal{F}_t\}_{t\geq 0}$.

Exercice 3. (Pont Brownien) Pour $0 \le t \le 1$, on pose $X_t = \int_0^t \frac{X_s}{s-1} ds + B_t$

- a) Montrer que $X_t = (1-t) \int_0^t \frac{dB_s}{1-s}$.
- b) Montrer que X est un processus gaussien independant de B_1 et préciser sa loi.
- c) Montrer que $\lim_{t \to 1} X_t = 0$

Exercice 4. Soit $(B_t)_{t\geq 0}$ un mouvement Brownien et Soit X_t l'intégrale stochastique $X_t = \int\limits_0^t e^{s-t} dB_s$.

- (1) Déterminer l'espérance $E[X_t]$ et la variance $var(X_t)$ de X_t .
- (2) Montrer qua la variable aléatoire $Z_t = \sqrt{2(t+1)}X_{\log(t+1)/2}$ admet la loi $Z_t \sim \mathcal{N}(0,t)$.

Exercice 5. (processus d'Ornstein-Uhlenbeck)

Soit $\{B_t\}_{t\geq 0}$ un mouvement Brownien, X_0 une variable aléatoire réelle gaussienne indépendante de B et soit $a, \sigma \in \mathbb{R}$. pour $t \geq 0$, on pose

$$V_t = V_0 - \int_0^t aV_s ds + \sigma B_t$$

- a) Montrer que $V_t = e^{-at}V_0 + \int_0^t \sigma e^{-a(t-s)} dB_s$.
- b) Donner la loi de V.
- c) Soit $t \ge 0$, donner la loi de $\int_0^t V_s ds$.