

 $\langle \phi_{R} | \phi_{N} \rangle = \langle \phi_{R} | \int_{0}^{\infty} dx | x \rangle \langle x | \phi_{R} \rangle$ 4a-96=0, 211... => ein= cith {1R>,16>} [141=K414) φη(X) = (x1φη) -1/3 φη(x) = φη/x> (Ψη(x) = 1/2 e i/o (e i(2 n+ho)x + e -i(2 n+ho)x) ρ= to 2 π \[
\left(\text{m} | \Phi_n) = \int \dx | \Phi \cos \left(\text{m} \text{m}) = \int \dx \left(\text{m} \frac{1}{2} = \left(\frac{1}{2} = \frac{1}{2} = \f < \$\left(\phi) = \(\phi\) dx (x) \(\phi\) => (\frac{2\pi}{2\pi}n+h_0) \(\frac{1}{2} = \frac{\pi}{2}(2e-1), e=1,2,... => K_0=-\frac{\pi}{2}\) (\$\left(\text{\text{\$\left(\text{\$\left(\text{\text{\$\left(\text{\$\left(\text{\text{\$\left(\text{\$\left(\text{\text{\$\left(\text{\$\left(\text{\text{\$\left(\text{\$\left(\text{\text{\$\left(\text{\$\lef a = 10-18m = - th (-2 + (2 = (x-x)) = - (x-x) H-> H=- to 22+V(2); HYG= to 20 20 4 = EGYG A= 1 (2 Ta) /40/= (2 Ta) 24 V(x) = 1 m w2 (x-x,)2 -> m w2 = tr myay => w= tr 2ma 1. à +b' = (u+ib)(a-ib); a,b eR; 2 (ap ibx)(ap-ibx), a,b eR; 2 (x-x0); = < 401(x-x0) 140) H=(ap+ibx)(ap-ibx)=bat, a== 1 mib= 2 mw2 2 Dy: C+ This (ap + ibx); C= (to (ap - ibx)=> H=twc+c = Sdr Yn (x)(x-x,) (x) (20 t) | w, ee C) {+1} isu(1)=5 A-> wAn 1 + 2to) 10= (01) [G= (01), 5= (0-0); 5= (0-0) S; = 5; i = [12] = Sdx 4 (x) (x-x) 4(x)= Sdx(x-x)4

Physik ist ...

... die Suche nach Gesetzmäßigkeiten und quantitativen Modellen zur Erklärung grundlegender Naturphänomene

Ein wesentliches Ziel:

Rückführung aller beobachteten Phänomene auf möglichst wenige Grundprinzipien

Aber:

Die fundamentalsten Prinzipien führen oft zu mathematischen Modellen, die zu kompliziert sind, um gelöst zu werden.

vereinfachte Modelle + Näherungsverfahren

Biologie und Physik

https://xkcd.com/435/

Physik von ...

- Vorgängen in lebenden Systemen ...
 - Chemie
 - Zelle
 - Gewebe
 - Organe
 - Gesamtorganismus
- ... und drum herum:
 - Ökosystem
 - Umwelt
- Methoden der Biologie
 - Mikroskopie
 - Röntgen-Strukturanalyse
 - Elektrophorese

Bild von NASA/Apollo 17 crew, gemeinfrei, https://de.wikipedia.org/wiki/Erde#/media/File: The_Earth_seen_from_Apollo_17.jpg

Bild aus: Olaf Fritsche, Physik für Biologen und Mediziner, Springer 2013, <u>Kap. 3</u>.

Bilder aus: Olaf Fritsche, Physik für Biologen und Mediziner, Springer 2013.

Bilder aus: Olaf Fritsche, Physik für Biologen und Mediziner, Springer 2013.

- Sprechstunde
- Tutorium
- Prüfung
- Prüfungstermine

Christian Roos ICT-Gebäude, 3. Stock

christian.roos@uibk.ac.at,
0512 507-4728

- Sprechstunde
- Tutorium
- Prüfung
- Prüfungstermine

Tutor

Johannes Franke

- Übungsaufgaben / Fragen
- Prüfungsvorbereitung
- Termin: Wann?

- Sprechstunde
- Tutorium
- Prüfung
- Prüfungstermine

- Schriftlich
- Multiple Choice über Prüfungsserver
 - Beispielklausuren siehe OLAT
- Erlaubte Hilfsmittel:
 - Formelsammlung (liegt bei, im Vorhinein bekannt)
 - Taschenrechner
 - Lineal
 - Schreibgeräte

- Sprechstunde
- Tutorium
- Prüfung
- Prüfungstermine

- 1. Termin letzteSemesterwoche(?):wird noch bekannt gegeben
- Danach
 - Anfang März
 - Ende Juni

Lernziele / -ergebnisse

Nach Absolvierung der Vorlesung ...

- verstehen Sie, dass die Physik die Grundlage aller Naturwissenschaften ist
- können Sie die wichtigsten physikalische Größen definieren und deren Einheiten angeben und umrechnen
- kennen Sie die wichtigsten physikalischen Gesetze (Gleichungen) und können diese nach einer gesuchten Größe auflösen
- können Sie die physikalischen Gesetze auf einfache physikalische Problemstellungen anwenden
- können Sie das Ergebnis einer Berechnung auf Plausibilität prüfen

Vorlesung

• Literatur:

Olaf Fritsche, *Physik für Biologen und Mediziner*, Springer 2013.

E-Book zugänglich über ULB

 VO-Unterlagen auf OLAT, meistens am Abend davor

Konzept:

- Physik als Grundlage der Lebenswissenschaften
- Physik als mathematische Beschreibung der Natur
- Keine mathematischen Herleitungen
- Bezug zum Leben
- Angeleitete Aufgaben in der VO

Bild aus: Olaf Fritsche, Physik für Biologen und Mediziner, Springer 2013.

13

Vorlesung – Inhalt

Physik - Vorlesung 01

1. Einführung

- 1. Physik des Lebens
- 2. Größen und Einheiten

- Physik der Fortbewegung
 - 1. Bewegungen
 - 2. Kräfte, Energie
 - 3. Spezielle Bewegungen
 - 4. Bewegung in Medien

3. Physik der Wahrnehmung

- 1. Schwingungen und Wellen
- 2. Optik

- 4. Elektrische Phänomene
 - 3. Ladungen und Felder
 - 4. Ströme

Größen und Einheiten

• Physikalische Größen

```
Größe = Zahl · Einheit
Größe = {Größe} · [Größe]
z. B. l = 1 \text{ m} = 1 \cdot \text{m}, \{d\} = 1, [d] = \text{m}
```

- Wichtig
 - Mit Einheiten kann ganz normal gerechnet werden!
 - Ohne Einheit ist die Zahl bedeutungslos!
 - Ergebnis nicht genauer angeben als Angaben!

- Einheiten System SI (Système International d'Unités)
 - Sieben Basiseinheiten
 - Viele abgeleitete Einheiten
 - SI-Präfixe, z. B. mikro-, milli-, Kilo-, Mega-, ...

SI Basiseinheiten

Größe	Symbol	I H I N N P I F	Einheiten- zeichen	Definition der Einheit
<u>Länge</u>	1	<u>Meter</u>	m	Länge der Strecke, die das Licht im Vakuum während der Dauer von 1 / 299 792 458 Sekunde zurücklegt.
<u>Masse</u>	m	<u>Kilogramm</u>	kg	Bis 2018: Das Kilogramm ist gleich der Masse des Internationalen Kilogrammprototyps. Seit 2019: über den Wert der Planck'schen Naturkonstante <i>h</i>
<u>Zeit</u>	t	<u>Sekunde</u>	S	Das 9 192 631 770-fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Cäsium-Isotops ¹³³ Cs entsprechenden Strahlung.
<u>Stromstärke</u>	I	<u>Ampere</u>	A	Seit 2019 definiert über die Elementarladung e : 1 A entspricht einem Strom von $1/1.602176654*10^{-19}$ Elementarladungen pro Sekunde.
Thermo- dynamische Temperatur	Т	<u>Kelvin</u>	К	Bis 2018: $1/273,16$ der thermodynamischen Temperatur des Tripelpunkts von Wasser Seit 2019: über den Wert der Boltzmann'schen Naturkonstante $k_{\rm B}$.
Stoffmenge	n	<u>Mol</u>	i mai	Bis 2018: Die Stoffmenge eines Systems, das aus ebenso vielen Einzelteilchen besteht, wie Atome in 12 Gramm des Kohlenstoff-Isotops ¹² C in ungebundenem Zustand enthalten sind. Seit 2019: Ein Mol eines Stoffes enthält genau 6,02215076*10 ²³ Teilchen.
<u>Lichtstärke</u>	I_V	<u>Candela</u>	cd	Die Lichtstärke in einer bestimmten Richtung einer Strahlungsquelle, die monochromatische Strahlung der Frequenz 540·10 ¹² Hz aussendet und deren Strahlstärke in dieser Richtung 1 / 683 Watt pro Steradiant beträgt.

Internationaler Kilogrammprototyp

Abgeleitete Einheiten

- Größengleichungen können zu neuen Einheiten führen, z. B. das Volumen eines Quaders: $V = l \cdot b \cdot h$ definiert den Liter: $1 l = 1 \text{ dm} \cdot 1 \text{ dm} \cdot 1 \text{ dm} = 1 \text{ dm}^3$
- Viele solche Einheiten werden auch vom SI definiert, z. B. Pascal, Newton, Joule, Watt, ...
- In gedruckten Dokumenten müssen *Größen* immer *kursiv*, Einheiten aber immer aufrecht geschrieben werden damit man die beiden nicht verwechselt

$$l \cdot h \cdot h = 1$$

Größenordnungen

Faktor	SI-Präfix	Symbol	Beispiel
10 ¹²	Tera-	Т	(Tbyte)
10 ⁹	Giga-	G	GW
106	Mega-	M	MJ
103	kilo-	k	km
102	hekto-	h	hl
10 ¹	deka-	da	dag

Faktor	SI-Präfix	Symbol	Beispiel
10-1	dezi-	d	dm
10-2	centi-	С	cl
10-3	milli-	m	ms
10-6	mikro-	μ	μg
10-9	nano-	n	nm
10-12	pico-	p	pl

Einheiten

Laser-Entfernungsmessung
Bild von: http://en-us.fluke.com/products/laser-distancemeters/fluke-419d-laser-distance-meter.html

Primäre Cäsium-Atomuhr der USA

Bild von: http://tf.nist.gov/general/museum/nist-f1.jpg

Neudefinition des Kilogramm über perfekte Silizium Kugel

Bild von: http://www.nist.gov/pml/si-redef/kg_new_silicon.cfm

Vorlesung – Inhalt

Physik - Vorlesung 01

1. Einführung

- 1. Physik des Lebens
- 2. Größen und Einheiten

- Physik der Fortbewegung
 - 1. Bewegungen
 - 2. Kräfte, Energie
 - 3. Spezielle Bewegungen
 - 4. Bewegung in Medien

3. Physik der Wahrnehmung

- 1. Schwingungen und Wellen
- 2. Optik

- 4. Elektrische Phänomene
 - 3. Ladungen und Felder
 - 4. Ströme

Leben bewegt sich

Bewegung = Veränderung des Ortes in der Zeit

- Bezugssystem
- Typen
 - Translation
 - Rotation
- Abstraktion: Massenmittelpunkt

Massenmittelpunkt

 Aufsummieren der Positionen aller kleinen Massenelemente

 Gegenstand an Randpunkten aufhängen

 Mittelwert ergibt Position des Massenmittelpunkts Schnittpunkt der Schwerelinien/ebenen ergibt Massenmittelpunkt

Experiment

Translationen

- **Weg-Zeit Diagramme** charakterisieren eindimensionale Bewegungen
 - Applet: https://phet.colorado.edu/en/simulation/moving-man
- **Verschiebung**: $\Delta x = x_{\rm Ende} x_{\rm Anfang}$
- Geschwindigkeit: $v = \frac{\Delta x}{\Delta t}$
 - Mittlere Geschwindigkeit = ges. Weg / ges. Zeit
 - Momentangeschwindigkeit $v(t) = \frac{dx}{dt} = x'(t)$
- Beschleunigung: $a = \frac{dv}{dt} = v'(t) = x''(t)$

Physik - Vorlesung 01

Frage: Mittlere Geschwindigkeit

Sie wollen mit dem Auto eine Strecke von 100 km fahren und beginnen zuerst gemächlich mit einer Geschwindigkeit von 50 km/h. Nach 50 km haben Sie es plötzlich eilig und möchten so schnell fahren, dass Sie die gesamte 100 km Strecke mit einer Durchschnittsgeschwindigkeit von 100 km/h bewältigen. Wie schnell müssen Sie also den Rest der Strecke fahren?

?

50 km/h 100 km/h 150 km/h 200 km/h unendlich schnell

Aufgabe Mittlere Geschwindigkeit

Erythrocyten haben eine durchschnittliche Lebensdauer von 120 Tagen und bewegen sich bei jungen Menschen mit Momentangeschwindigkeiten von 0,3 mm/s in den Kapillaren und 50 cm/s in der Aorta. Ca. 90% der Zeit verbringen sie dabei im Kapillarsystem.

- a) Welche Strecke legen sie also in den Kapillaren insgesamt zurück?
- b) Welche Strecke legt ein rotes Blutkörperchen damit im Laufe seines Lebens zurück?
- c) Wie groß ist seine mittlere Geschwindigkeit?

Bild von Rogeriopfm - Own work, partly based on blutkreislauf.jpg by Sansculotte, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8626685

Vorlesung – Inhalt

1. Einführung

- 1. Physik des Lebens
- 2. Größen und Einheiten

2. Physik der Fortbewegung

- 1. Bewegungen
 - 1. Translationen
 - 2. Rotation
 - 3. Beschleunigte Bewegungen
 - 4. Freier Fall
- 2. Kräfte
 - 1. Newtonsche Axiome
 - 2. Masse und Trägheit
- 3. Energie
- 4. Spezielle Bewegungen
- 5. Bewegung in Medien

3. Physik der Wahrnehmung

- 1. Schwingungen und Wellen
- 2. Optik

- 3. Ladungen und Felder
- 4. Ströme

Kräftefreie Bewegungsformen

• Translationen: Verschiebungen entlang einer Geraden

Wenn keine Kräfte wirken: gleichförmige Bewegung entlang einer Geraden

- Rotationen: Drehung eines Körpers um seinen Schwerpunkt
- Allgemeinste Bewegungsform eines starren Körpers: <u>Translation + Rotation</u>

Auf der Erde sind kräftefreie Bewegungen kaum zu realisieren aufgrund der Schwerkraft und Reibungskräften.

Rotationsbewegungen in der Biologie

- Zentrifugen zur Trennung von Stoffen
- Rollen als Fortbewegung

Flagellen zur Fortbewegung

Rotationen

- Bewegung im Drehwinkel φ
- Winkelgeschwindigkeit

$$\omega = \frac{\Delta \varphi}{\Delta t} = \varphi'(t)$$

- Bahngeschwindigkeit $v = \omega \cdot r$ bzw. $\vec{v} = \vec{\omega} \times \vec{r}$
- Bahngeschwindigkeit ist immer tangential, ändert daher ständig die Richtung!

Rotationsgrößen

- Drehwinkel φ
- Winkelgeschwindigkeit $\omega = \frac{\Delta \varphi}{\Delta t}$
- Umlaufzeit / Periode *T*
- Frequenz / Drehzahl $f = \frac{1}{T}$

Bild von TEy~commonswiki, CC BY-SA 3.0, https://de.wikipedia.org/wiki/Drehzahlmesser#/media/File:Revcounter.jpg

• Bahngeschwindigkeit $v = \omega \cdot r = \frac{2\pi r}{T}$ (= Umfang/Periode)

Aufgabe Zentrifuge

Eine Ultrazentrifuge dreht sich mit 100000 Umdrehungen/min. Ihr Rotor hat einen Durchmesser von 10 cm.

- a) Wie groß ist die Winkelgeschwindigkeit ω ,
- b) wie groß die Bahngeschwindigkeit v außen am Rotor?

Gleichmäßig beschleunigte Bewegung

• Beschleunigung $a = \frac{\Delta v}{\Delta t} = \text{konst.}$

• Zur Zeit
$$t = 0$$
: $x(0) = 0$, $v(0) = 0$

Geschwindigkeit wächst linear:

$$v(t) = a \cdot t$$

• Der Weg wächst quadratisch:

$$x(t) = \int v(t) dt = \frac{1}{2}a t^2$$

https://phet.colorado.edu/en/simulation/moving-man

Freier Fall

- Erdbeschleunigung $g = 9.81 \frac{\text{m}}{\text{s}^2}$
- Gefallene Strecke $\Delta x = \frac{1}{2}gt^2$
- Geschwindigkeit $v = gt = \sqrt{2g \Delta x}$

- In Atmosphäre:
 Luftwiderstand → konstante Geschwindigkeit
 (z.B. Entenküken, Fallschirmspringer, ...)
- https://www.youtube.com/watch?v=KDp1tiUsZw8

Im Vakuum

Aufgabe freier Fall

Nach welcher Zeit erreicht ein Entenküken den Boden, wenn es aus 15 m Höhe von einem Baum springt?

- a) Welche Geschwindigkeit hat es dann erreicht?

 (Den Luftwiderstand vernachlässigen wir in dieser Aufgabe.)
- b) Welche Beschleunigung muss es aushalten, wenn es am Boden innerhalb von 5 cm vollständig abgebremst wird?

https://www.youtube.com/watch?v=VK0NsIrWI5Q

