B4B01DMA

Jakub Adamec Domácí úkol č. 8A

15. 12. 2024

Tento úkol vypracujte a pak přineste na cvičení č. 9.

- 1. Nechť A je množina předmětů vyučovaných katedrou matematiky. Definujeme \mathcal{R} na A takto: Předměty X,Y jsou v relaci, pokud se shodují první písmena jejich oficiálních třípísmenných zkratek. a) Dokažte, že \mathcal{R} je ekvivalence.
- b) Najděte $[DMA12]_{\mathcal{R}}$ neboli třídu ekvivalence příslušnou předmětu Diskrétní matematika. Tip: V důkazu se může hodit zavést si indikátor I předmětu p definovaný takto: I(p) je první písmeno oficiální třípísmenné zkratky předmětu p.
- 2. Dokažte indukcí, že pro $n\in\mathbb{N}$ je $\sum_{k=1}^n 0=0$. Poznámka: Může pro vás být jednodušší to vidět jako $\underbrace{0+0+\ldots+0}_{n\text{ krát}}=0$.

Bonus:

Nechť \mathcal{R},\mathcal{S} jsou relace na A. Dokažte: Je-li \mathcal{R} reflexivní, tak je i u $\mathcal{R}\cup\mathcal{S}$ reflexivní.

1. Například DMA \mathcal{R} DRN.

a)

Nechť I(a) je první písmeno třípísmenné zkratky předmětu $a \in A$.

Reflexivita: Symetrie: Tranzivita:

$$a\mathcal{R}a, a \in A. \qquad a, b \in A \text{ libovoln\'e}. \qquad a, b, c \in A \text{ libovoln\'e}.$$

$$I(a) = I(a) \text{ plat\'i v\'zdy} \Longrightarrow a\mathcal{R}a. \qquad \text{p\'redpoklad: } a\mathcal{R}b. \qquad \text{p\'redpoklad: } (a\mathcal{R}b) \land (b\mathcal{R}c).$$

$$\blacksquare I(a) = I(b). \qquad I(a) = I(b) \land I(b) = I(c).$$

$$\texttt{a tedy } I(b) = I(a) \Longrightarrow b\mathcal{R}a. \qquad \blacksquare \text{ což znamen\'a } I(a) = I(c).$$

Protože $\mathcal R$ splňuje Reflexivitu, Symetrii a Tranzivitu, $\mathcal R$ je ekvivalence.

b)

Nechť I(X) je první písmeno třípísmenné zkratky předmětu $X \in A$.

$$[\mathrm{DMA12}]_{\mathcal{R}} = \{X \in A; \mathrm{DMA12}\ \mathcal{R}\ X\} = \{I(X) = D\}.$$

2. Bonus.

(0)
$$n = 1 : 0 \stackrel{?}{=} 0 \checkmark$$

(1) $n \ge 1 : \text{indukční předpoklad: } \sum_{k=1}^{n} 0 = 0.$
Pak: $\sum_{k=1}^{n+1} (0) = \sum_{k=1}^{n} (0) + 0 \stackrel{\text{IP}}{=} 0 + 0 = 0.$

předpoklad: \mathcal{R} je reflexivní. pak $[(a,a)\in\mathcal{R} \lor (a,a)\in\mathcal{S}] \longrightarrow [(a,a)\in\mathcal{R}\cup\mathcal{S}] \longrightarrow \mathcal{R}\cup\mathcal{S}$.