MDP and RL Tutorial – Solutions

3.1 One form of MDP formulation $\{S, A, T, R\}$ is as follows.

State space is $S = \{0,1,2,...,W\}$

Action space $A = \{0, 1, 2, ..., W\}$

The reward term $R(s_t, a_t)$ consists of three components:

- the cost of buying a_t items are $Buy(a_t)$
- cost for storing $(s_t + a_t)$. This cost is fixed and presumably it is equal to $Store(s_t + a_t)$.
- Assume the selling price of D_t items is $f(D_t)$. The total sale price is

$$Sell(s_t + a_t) = \sum_{d=0}^{s_a + a_t} p(D_t = d) f(d)$$

In summary, the reward function is

$$R(s_t, a_t) = Sell(s_t + a_t) - buy(a_t) - Store(s_t + a_t)$$

The transition function T(s' = j | s = i, a) has three cases:

- If j > i + a, then T(j|s = i, a) = 0. That means even after sale the remaining in the warehouse cannot exceed the current capacity.
- If $j \le i + a$ and j > 0, that means the demands at time t does not exceed the capacity. Hence $T(j|i,a) = p(D_t = i + a j)$
- If j = 0, that means the demand is equal to or exceeds the capacity. Hence

$$T(j|i,a) = p(D_t \ge i + a) = \sum_{d=i+a}^{\infty} p(D_t = d)$$

3.2 (a) Apply the Bellman backups $V_{i+1}(s) = \max_{a} (\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_i(s')))$ twice. We just show the computation for the max actions. Most of the terms will be zero, which are omitted here for compactness.

S =	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)
$V_0(S) =$	0	0	0	0	0	0
$V_1(S) =$	0	0	0	0	$0.8 \times 5 = 4.0$	0
$V_2(S) =$		$0.9 \times 0.8 \times 4 + 0.1 \times -5 = 2.38$	0	$0.8 \times 0.9 \times 4.0$ = 2.88	0.8×5 + $0.1(0$ + $0.9 \times 4.0)$ = 4.36	0

- (b) The agent must be able to explore the world by taking actions and observing the effects.
- (c) To compute the estimates, average the rewards received in the trajectories that went through the indicates states.

$$V((1,1)) = ((-5+5+5))/3 = 5/3 = 1.666$$

 $V((2,2)) = ((5+5))/2 = 5$

(d) The general Q-learning update is:

$$\begin{aligned} Q_{new}(s,a) &= Q_{old}(s,a) + \\ \alpha [r + \gamma \underset{a'}{max} Q_{old}(s',a') - Q_{old}(s,a)] \end{aligned}$$

After trial 1, all of the updates will be zero, expect for:

$$Q((1,2), right) = 0 + .1(-5 + 0.9 \times 0 - 0) = -0.5$$

After trial 2, the non-zero updates will be:

$$Q((1,2),right) = -0.5 + .1(0 + 0.9 \times 0 - (-0.5))$$

= -0.45
$$Q((2,2),right) = 0 + .1(5 + 0.9 \times 0 - 0) = 0.5$$