М	Т	W	T	F	S	S
Page	No.:					3 1
Date:					YO	UVA

CL249: ASSIGNMENT 4

PROBLEM

The are given moduices A and B of size 15x15 and 15x1 respectively. We have to solve this equation Ax=b using Jacobi and Grauss stedel Theration Techniques, and have to compare the number of operations of Jacobi, branss-Siedel and Gaus Elimination.

Description of Method

· Jacobi Itaration method,

In Jacobi nuthed, me have $\chi^{(0)} = initial ques$

An= B

,	Q ₁₁	an T	7	70	b,	-
	921		u	2 =	bz	
		, , ,	!		1	
	901	9nh	n		bn	

91121+ a12 12 + - - + a11 2n = b1

$$\alpha_1^{(1)} = b, -\sum_{j=2}^{n} a_{ij} \alpha_j^{(0)}$$

In general, $\chi_{i}^{(k \in I)} = b_{i} - \sum_{i=1}^{h} a_{ij} \chi_{i}^{(k)}$

М	T	W	T	F	s	S
Page	No.:					
Date:	and the second		47		YO	AVU
101	10	4	1 1	1.		

the standard and		V TIM	MUNICIPAL	1 PHOLI			
	lalı	basically	undate	natus &	X (K+1)		iteration
		th of		U)	MIN M	

· & Gaus Siedel

we have An = but

911 x10) + 912 (22) + - - + 91 210) - 5,

$$(2x_1^{(6)}) = b_1 + \sum_{j=2}^{\infty} a_{ij} x_j^{(6)}$$

.! 911

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$\alpha_{i}^{(k+1)} = b_{i} - \sum_{j=i+1}^{k-1} \alpha_{ij} \alpha_{j}^{(k+1)} - \sum_{j=i+1}^{k-1} \alpha_{ij} \alpha_{j}^{(k+1)}$$

Conwiging could Hon.

$$\left|\frac{X_{j}-X_{i}^{2}}{X_{j}}\right| < tolerance$$

M T	W	T	F	S	S
Page No.:				YO	UVA
Date:				100	an A A j A

0			11
PSEUDO	-	-	-
130000	- (L)	C

jacobi.m

iteration loop 7

Loop therough rains of A

Xy(i) = Bi) - sum [aij xi

add operations

(XI = X+

iturate through nous of X; if any element - X; cersor continue

else break

main file just de clare motrices and uses there functions.

gauss_stedel.m

declare &g and &f

iterating loop

iterate through 1 to j-1

sum += Aij Xylis)

ituate through it1, h

sum = Aij Kg (1) X,(1) = Blil - sum

ituate through Xi rows

if X4(1)-Xi(1) (40)

```
A = load('A.txt');
n = length(A);
B = zeros(n, 1) + 61;

[X_jacobi jacobi_ops] = jacobi(A, n, B); % Solving through Jacobi method
[X_gSiedel gSiedel_ops] = gauss_siedel(A, n, B); % Solving through Gauss Siedel \( \sqrt{method} \)

[X_gElim gElim_ops] = gauss_elimination(A, B, n, n); % Solving through Gauss \( \sqrt{Elimination} \)

X_jacobi
jacobi_ops

X_gSiedel
gSiedel_ops

X_gElim
gElim_ops
```

```
function [Xf, operations] = jacobi(A, n, B)
    % Declaring XI, Xf, and operations
    operations = 0;
    Xi = zeros(n,1);
    Xf = zeros(n,1);
    error = 10^{(-6)};
    % iteration loop
    while 1>0
        for i = 1:n
            sum = 0;
            for j = 1:n
                if(i~=j)
                    sum = sum + (A(i,j)*Xi(j));
                    operations = operations + 1;
                end
            end
            % setting values to Xf by using previous X's
            Xf(i) = (B(i) - sum)/A(i,i);
            operations = operations + 2;
        end
        isConverging = 1; % like boolean value for checking convergence
        % checking convergence for every element
        for k = 1:n
            if abs((Xf(k) - Xi(k))/Xf(k)) > error
                isConverging = 0;
            end
        end
        if(isConverging == 1) % if converging, then break
            break;
        end
        Xi = Xf;
    end
    return
end
```

```
function [Xf operations] = gauss_siedel(A, n, B)
    % Declaring XI, Xf, and operations
    operations = 0;
    Xg = zeros(n,1);
    Xf = zeros(n,1);
    tol = 10^{(-10)};
    while 1>0
        for i = 1:n
            sum = 0;
            % Sum of updated elements
            for j1 = 1:i-1
                sum = sum + A(i, j1)*Xf(j1);
                operations = operations + 2;
            % Sum of non-updated previous elements
            for j2 = i+1:n
                sum = sum + A(i, j2)*Xg(j2);
                operations = operations + 2;
            end
            % Setting Xf values
            Xf(i) = (B(i) - sum)/A(i,i);
            operations = operations + 2;
        end
        isConverging = 1; % like boolean value for checking convergence
        % checking convergence for every element
        for k = 1:n
            if abs((Xf(k) - Xg(k))/Xf(k)) > tol
                isConverging = 0;
            end
        end
        if(isConverging == 1) % break if every element is converging
            break;
        end
        Xg = Xf;
    end
    return
end
```

```
function [Xf operations] = gauss_siedel(A, n, B)
    % Declaring XI, Xf, and operations
    operations = 0;
    Xg = zeros(n,1);
    Xf = zeros(n,1);
    tol = 10^{(-10)};
    while 1>0
        for i = 1:n
            sum = 0;
            % Sum of updated elements
            for j1 = 1:i-1
                sum = sum + A(i, j1)*Xf(j1);
                operations = operations + 2;
            % Sum of non-updated previous elements
            for j2 = i+1:n
                sum = sum + A(i, j2)*Xg(j2);
                operations = operations + 2;
            end
            % Setting Xf values
            Xf(i) = (B(i) - sum)/A(i,i);
            operations = operations + 2;
        end
        isConverging = 1; % like boolean value for checking convergence
        % checking convergence for every element
        for k = 1:n
            if abs((Xf(k) - Xg(k))/Xf(k)) > tol
                isConverging = 0;
            end
        end
        if(isConverging == 1) % break if every element is converging
            break;
        end
        Xg = Xf;
    end
    return
end
```


>> Assignment4

X_jacobi =

NaN

-Inf

NaN

NaN

NaN

jacobi_ops =

328080

X_gSiedel =

1.0e+05 *

0.0183

0.1006

0.2385

0.4239

0.6496 0.9089

1.1956

1.5043

1.8300

2.1685

2.5162

2.8700

3.2275 3.5868

3.9467

gSiedel_ops =

62707050

X_gElim =

1.0e+05 *

```
0.0183
```

0.1006

0.2385

0.4239

0.6496

0.9089

1.1956

1.5043

1.8300

2.1685

2.5162

2.8700

3.2275

3.5868

3.9467

gElim_ops =

1130

>>

Answey

Operations from Jacobi = 328080 But nector not communique to a meal nature

Operations from Grown Siedel: 62707050 Converged to a nature

Operations from Grown Elimination: 1130

Gauss elimination is marking best for this given motion