Chương 4. Phép tính vi phân hàm nhiều biến

Trường Đại học Công nghiệp Thực phẩm TP. HCM

4.1. Các khái niệm mở đầu [xem thêm]

4.1.1. Tập hợp trong \mathbb{R}^n (n=2, n=3) Miền phẳng \mathbb{R}^2 .

- Trong mặt phẳng $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x, y \in \mathbb{R}\}$, ta chọn một hệ trục tọa độ Descertes vuông góc Oxy.
- Trục ngang Ox đgl trục hoành. Trục thẳng đứng $Oy \perp Ox$ đgl trục tung.
- Điểm $M \in \mathbb{R}^2$, M = (x, y), $x, y \in \mathbb{R}$, ta cũng viết M(x, y).

Cho M(x,y) và M'(x',y') thuộc \mathbb{R}^2 . Khoảng cách giữa M và M', ký hiệu là MM' cho bởi

$$MM' = \sqrt{(x - x')^2 + (y - y')^2}.$$
 (1)

4.1.2. Định nghĩa hàm hai biến

Cho $\Omega \subset \mathbb{R}^2$.

- Ta gọi ánh xạ $f:\Omega\to\mathbb{R}$ là một hàm hai biến xác định trên Ω , Ω đgl miền xác định của hàm f.
- Ký hiệu f: (x, y) → z = f(x, y), hay z = f(x, y), trong đó x, y gọi là các biến độc lập, z gọi là biến phụ thuộc.

Qui ước:

Hàm z=f(x,y) có miền xác định là $D=\{(x,y)\in\mathbb{R}^2:f(x,y)$ có nghĩa $\}.$

4.1.3. Biểu diễn hình học của hàm 2 biến

Cho hàm hai biến $f:(x,y)\longmapsto z=f(x,y),\ (x,y)\in\Omega.$ Ta có thể xem hàm f(x,y) là hàm của điểm M(x,y):

$$f: M \longmapsto z = f(M) \tag{2}$$

và có thể biểu diễn hình học như sau:

- Vẽ hệ trục tọa độ Descartes vuông góc Oxyz. Mỗi điểm $M(x,y) \in \Omega$ ứng với một điểm P(x,y,f(x,y)) trong không gian Oxyz.
- Tập hợp

$$\{P(x, y, f(x, y)) : (x, y) \in \Omega\}$$
 (3)

đgl đồ thị của hàm z = f(x, y) xác định trên Ω .

 Đồ thị của hàm hai biến nói chung là một mặt cong trong không gian ba chiều.

Ví dụ 4.1. Hàm $z = x^2 + y^2$ có đồ thị là một mặt paraboloid tròn xoay. Miền xác định là toàn bộ mặt phẳng (Hình 1.4).

Ví dụ 4.2. Hàm $z=\sqrt{1-x^2-y^2}$ có đồ thị là nửa mặt cầu đơn vị, tâm tại gốc tọa độ, nằm về phía $z\geq 0$. Miền xác định là tập những điểm (x,y) sao cho $1-x^2-y^2\geq 0$ hay $x^2+y^2\leq 1$. Đó là hình tròn đơn vị đóng tâm O.

Ví dụ 4.3. Hàm $z = \ln(x+y-1)$ chỉ xác định với các giá trị x, y sao cho x+y-1>0. Đó là nửa mặt phẳng mở nằm ở phía trên đường thẳng x+y=1. (Hình 1.6).

Sự hội tụ

Định nghĩa 4.1. Dãy điểm $\{M_k(x_k, y_k)\}$ trong \mathbb{R}^2 được gọi là *hội tụ* đến $M_0(x_0, y_0)$, nếu

$$\lim_{k \to \infty} M_k M_0 = \lim_{k \to \infty} \sqrt{(x_k - x_0)^2 + (y_k - y_0)^2} = 0.$$
 (4)

Chú ý:

$$M_k \to M_0 \Longleftrightarrow x_k \to x_0 \text{ và } y_k \to y_0.$$

Dãy điểm hội tụ trong \mathbb{R}^3 được định nghĩa một cách tương tự.

4.2. Giới hạn và liên tục của hàm hai biến

Định nghĩa 4.2.

• Cho $\Omega \subset \mathbb{R}^2$ và $M_0 \in \mathbb{R}^2$. Ta nói rằng M_0 là điểm tự của Ω nếu tồn tại một dãy điểm $\{M_k\}$ sao cho

$$M_0 \neq M_k \in \Omega, \ \forall k \in \mathbb{N}, \ M_k \to M_0.$$
 (5)

• Cho hàm $f:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ và $M_0(x_0,y_0)\in\mathbb{R}^2$ là điểm tụ *của* Ω . Ta nói hàm số f(x,y) có giới hạn là L tại $M_0(x_0,y_0)$ (khi M tiến về M_0), nếu:

$$\forall \varepsilon > 0, \ \exists \delta > 0 : \forall M \in \Omega : 0 < MM_0 < \delta \Longrightarrow |f(M) - L| < \varepsilon.$$
 (6)

Chú ý: Giới hạn của hàm số nếu có là duy nhất.

4.2. Giới hạn và liên tục của hàm hai biến

Ký hiêu

$$\lim_{M\to M_0} f(M) = L, \text{ hay } \lim_{(x,y)\to(x_0,y_0)} f(x,y) = L,$$

$$\text{hay } \lim_{X\to x_0, \\ y\to y_0} f(x,y) \to L \text{ khi } (x,y)\to (x_0,y_0), \text{ hay } f(M)\to L \text{ khi } M\to M_0.$$

$$(7)$$

4.2. Giới hạn và liên tục của hàm hai biến

• Khái niệm giới hạn vô hạn được định nghĩa:

$$\lim_{M \to M_0} f(M) = +\infty \stackrel{\text{d/n}}{\Longleftrightarrow} (\forall A \in \mathbb{R}, \ \exists \delta > 0 : \forall M \in \Omega :$$
$$0 < MM_0 < \delta \Longrightarrow f(M) > A.)$$

 Khái niệm giới hạn hàm nhiều hơn 2 biến cũng được định nghĩa một cách tương tự.

Chú ý: Trong định nghĩa giới hạn của hàm nhiều biến cũng như một biến, điểm M_0 có thể không thuộc Ω . Điểm M_0 được giả sử là điểm tự của Ω .

Định lý 4.1. Cho $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ và $M_0 \in \mathbb{R}^2$ là điểm tụ của Ω . Khi đó,

$$\lim_{M\to M_0} f(M) = L \Longleftrightarrow \left[\begin{array}{c} \textit{V\'{o}i m\'{o}i d\~{a}y } \{M_k\} \; \textit{trong } \Omega \backslash \{M_0\}, \\ M_k \to M_0 \Longrightarrow f(M_k) \to L \end{array} \right].$$

Định lý 4.2. Cho f, $g:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ và $M_0\in\mathbb{R}^2$ là điểm tụ của Ω . Giả sử $\lim_{M\to M_0} f(M)=L_1$, $\lim_{M\to M_0} g(M)=L_2$. Khi đó

- $\lim_{M \to M_0} [f(M) + g(M)] = L_1 + L_2$,
- $\bullet \lim_{M\to M_0}[f(M)g(M)]=L_1L_2,$
- $\lim_{M\to M_0} kf(M) = kL_1$, $k\in\mathbb{R}$,
- $\lim_{M \to M_0} \frac{f(M)}{g(M)} = \frac{L_1}{L_2}$, $n \hat{e} u \ L_2 \neq 0 \neq g(M)$, $\forall M \in \Omega$.

Định lý 4.3.

Cho f, g, h: $\Omega \subset \mathbb{R}^2 \to \mathbb{R}$ và $M_0 \in \mathbb{R}^2$ là điểm tụ của Ω . Giả sử

$$f(M) \le g(M) \le h(M), \ \forall M \in \Omega.$$

$$N\acute{e}u\lim_{M o M_0}f(M)=\lim_{M o M_0}h(M)=L$$
, thì tồn tại $\lim_{M o M_0}g(M)$ và $\lim_{M o M_0}g(M)=L$.

Ví dụ 4.4. Tìm
$$\lim_{(x,y)\to(0,1)} f(x,y)$$
 với $f(x,y) = \frac{x-1}{x^2+y^2}$.

Giải.

Lấy dãy $(x_k,y_k) o (0,1)$, tức $x_k o 0$ và $y_k o 1$, ta có

$$\lim_{(x,y)\to(0,1)} f(x,y) = \lim_{(x_k,y_k)\to(0,1)} \frac{x_k - 1}{x_k^2 + y_k^2} = -1. \blacksquare$$

Ví dụ 4.5. Chứng minh $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0.$

Giải.

Ta có

$$0 \le \left| \frac{x^2 y}{x^2 + y^2} \right| \le \frac{1}{2} \left| x \right| \to 0 \text{ khi } (x, y) \to (0, 0). \blacksquare$$

Ví dụ 4.6. Tính
$$L = \lim_{(x,y)\to(0,0)} \frac{\sin xy}{2-\sqrt{4-xy}}$$
.

Giải. Khi $(x, y) \rightarrow (0, 0)$, ta có $xy \rightarrow 0$.

Do đó $\sin xy \sim xy$,

$$2 - \sqrt{4 - xy} = -2(\sqrt{1 - \frac{xy}{4}} - 1) \sim -2.\frac{1}{2}.\left(-\frac{xy}{4}\right) = \frac{xy}{4}.$$

Vậy

$$L = \lim_{(x,y)\to(0,0)} \frac{\sin xy}{2 - \sqrt{4 - xy}} = \lim_{(x,y)\to(0,0)} \frac{xy}{\frac{xy}{4}} = 4.$$

Ví dụ 4.7. Tính
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
.

Giải. Ký hiệu $f(x,y)=\dfrac{xy}{x^2+y^2}$. Lấy hai dãy điểm $M_k(x_k,y_k)$ và

 $M_k'(x_k',y_k')$ với

•
$$x_k = y_k = \frac{1}{k} \Rightarrow f(x_k, y_k) = \frac{x_k y_k}{x_k^2 + y_k^2} = \frac{\frac{1}{k} \cdot \frac{1}{k}}{\frac{1}{k^2} + \frac{1}{k^2}} = \frac{1}{2} \to \frac{1}{2}$$

•
$$x'_k = \frac{1}{k}$$
, $y'_k = \frac{2}{k} \Rightarrow f(x'_k, y'_k) = \frac{x'_k y'_k}{(x'_k)^2 + (y'_k)^2} = \frac{\frac{1}{k} \cdot \frac{2}{k}}{\frac{1}{k^2} + \frac{4}{k^2}} = \frac{2}{5} \to \frac{2}{5}$,

tức là với hai dãy điểm $M_k(x_k,y_k)$ và $M_k'(x_k',y_k') \to (0,0)$ ta có hai giới hạn khác nhau, nên không tồn tại giới hạn. \blacksquare

4.2.2 Liên tục của hàm hai biến

Định nghĩa 4.3. Cho $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ và $M_0 \in \Omega$.

- Ta nói rằng M_0 là điểm cô lập của Ω nếu tồn tại r>0: $B_r(M_0)\cap (\Omega\backslash\{M_0\})=\emptyset$.
- Nếu M_0 là điểm cô lập của Ω , ta qui ước hàm f liên tục tại điểm M_0 ;
- Nếu M_0 là điểm tụ của Ω , ta nói rằng hàm f liên tục tại điểm M_0 , nếu $\lim_{M\to M_0} f(M) = f(M_0)$, tức là

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall M \in \Omega : MM_0 < \delta$$

$$\Longrightarrow |f(M) - f(M_0)| < \varepsilon. \tag{8}$$

• Ta nói rằng hàm f liên tục trên Ω , nếu f liên tục tại mọi điểm thuộc Ω .

Các tính chất

Định lý 4.3. Cho $f:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ và $M_0\in\Omega$ là điểm tụ của Ω . Khi đó,

f liên tục tại $M_0 \iff V$ ới mọi dãy $\{M_k\}$ trong Ω hội tụ về M_0 , ta có dãy tương ứng $\{f(M_k)\}$ luôn luôn hội tụ về $f(M_0)$.

Định lý 4.4. Cho f, $g: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ và $M_0 \in \Omega$. Nếu f, g liên tục tại M_0 (trên Ω) thì,

- $f \pm g$ liên tục tại M_0 (trên Ω),
- fg liên tục tại M₀ (trên Ω),
- kf (k là hằng số), liên tục tại M_0 (trên Ω),
- Nếu $g(M_0) \neq 0$ $(g(M) \neq 0$ với mọi $M \in \Omega)$, thì $\frac{f}{g}$ liên tục tại M_0 (trên Ω).

Các tính chất

Định lý 4.5. Cho $f:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ là một hàm liên tục trên tập đóng và bị chận Ω . Khi đó

• f là một hàm bị chận trên Ω , nghĩa là:

$$\exists C > 0 : |f(M)| \le C \ \forall M \in \Omega. \tag{9}$$

• f đạt được giá trị lớn nhất và nhỏ nhất trên Ω , tức là, tồn tại ít nhất hai điểm M_1 , $M_2 \in \Omega$ sao cho

$$f(M_1) \le f(M) \le f(M_2) \ \forall M \in \Omega.$$
 (10)

Giá trị $f(M_1)$ gọi là giá trị nhỏ nhất trên Ω , đạt tại điểm M_1 , ký hiệu là $\min_{M \in \Omega} f(M)$,

Giá trị $f(M_2)$ gọi là giá trị lớn nhất trên Ω , đạt tại điểm M_2 , ký hiệu là $\max_{M \in \Omega} f(M)$.

Ví dụ 4.8.

Xét tính liên tục của hàm

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Giải. Ta **c**ó f xác định trên \mathbb{R}^2 .

- Với $(x,y) \neq (0,0)$, ta có $f(x,y) = \frac{x^2-y^2}{\sqrt{x^2+y^2}}$ liên tục trên $\mathbb{R}^2 \setminus \{(0,0)\}$.
- Tại (x, y) = (0, 0), ta có

Ví dụ 4.8.

$$f(0,0) = 0$$

$$0 \le |f(x,y)| = \frac{|x^2 - y^2|}{\sqrt{x^2 + y^2}} \le \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2} \to 0$$

$$khi (x,y) \to (0,0).$$

$$\Rightarrow \lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0) \Rightarrow f$$
 liên tục tại $(0,0)$.

Vậy f liên tục trên \mathbb{R}^2 .

Ví dụ 4.9.

Tìm $a \in \mathbb{R}$ để hàm số sau liên tục tại (0,0)?

$$f(x,y) = \begin{cases} \frac{\sqrt[3]{8 - x^2 - y^2} - 2}{x^2 + y^2}, & (x,y) \neq (0,0), \\ a, & (x,y) = (0,0). \end{cases}$$

Giải. Ta có f xác định trên \mathbb{R}^2 .

Ta có

$$f(0,0)=a$$

Ví dụ 4.9.

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sqrt[3]{8-x^2-y^2-2}}{x^2+y^2}$$

$$= \lim_{(x,y)\to(0,0)} \frac{2(\sqrt[3]{1-\frac{x^2+y^2}{8}}-1)}{x^2+y^2}$$

$$= \lim_{(x,y)\to(0,0)} \frac{2 \cdot \frac{1}{3}(-\frac{x^2+y^2}{8})}{x^2+y^2} = -\frac{1}{12}.$$

Vậy
$$f$$
 liên tục tại $(0,0)\Leftrightarrow \lim_{(x,y)\to(0,0)}f(x,y)=f(0,0)\Leftrightarrow a=-\frac{1}{12}.$

4.3. Đạo hàm riêng và vi phân cấp một

4.3.1. Đạo hàm riêng cấp một

Định nghĩa 4.7. Cho tập mở $\Omega \subset \mathbb{R}^2$ và $f:\Omega \to \mathbb{R}$. Cho $M_0(x_0,y_0) \in \Omega$, lấy Δx , $\Delta y \in \mathbb{R}$ sao cho $(x_0 + \Delta x,y_0)$, $(x_0,y_0+\Delta y) \in \Omega$.

Nếu tồn tại

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = L \in \mathbb{R}$$

thì ta nói f có đạo hàm riêng theo biến x tại $M_0(x_0,y_0)$, và L gọi là đạo hàm riêng theo biến x của hàm số f tại $M_0(x_0,y_0)$, ký hiệu

$$L = \frac{\partial f}{\partial x}(x_0, y_0) = D_x f(x_0, y_0) = D_1 f(x_0, y_0)$$
$$= f'_x(x_0, y_0) = f_x(x_0, y_0)$$
$$= \frac{\partial f}{\partial x}(M_0) = D_x f(M_0) = D_1 f(M_0)$$
$$= f'_x(M_0) = f_x(M_0).$$

4.3.1. Đạo hàm riêng cấp một

Tương tự giới hạn (nếu có)

$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y} = K \in \mathbb{R}$$

gọi là đạo hàm riêng theo biến y của hàm số f tại (x_0,y_0) , ký hiệu

$$K = \frac{\partial f}{\partial y}(x_0, y_0) = D_y f(x_0, y_0) = D_2 f(x_0, y_0)$$

$$= f'_y(x_0, y_0) = f_y(x_0, y_0)$$

$$= \frac{\partial f}{\partial y}(M_0) = D_y f(M_0) = D_2 f(M_0)$$

$$= f'_y(M_0) = f_y(M_0).$$

Đạo hàm riêng cấp một

Nhận xét. Biểu thức $\frac{\partial f}{\partial x}(x,y)$ được tính như là đạo hàm theo một biến x, khi coi biến y là hằng số, tính $\frac{\partial f}{\partial y}(x,y)$ được tính như là đạo hàm theo một biến y, khi coi biến x là hằng số.

Ví dụ 4.10. Cho hàm $f(x,y) = x^3y - 3x^2y + y^3$. Tính $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

Giải. Ta có

$$\frac{\partial f}{\partial x} = 3x^2y - 6xy, \ \frac{\partial f}{\partial y} = x^3 - 3x^2 + 3y^2. \blacksquare$$

Ví dụ 4.11. Cho hàm $f(x,y) = \cos\left(\frac{y}{x}\right)$. Tính $f'_x(1,\frac{\pi}{2})$, $f'_y(1,\frac{\pi}{2})$. **Giải.** Ta có

$$\begin{cases} f_x' = -\left(\frac{y}{x}\right)_x' \sin\left(\frac{y}{x}\right) = \frac{y}{x^2} \sin\left(\frac{y}{x}\right), \\ f_y' = -\left(\frac{y}{x}\right)_y' \sin\left(\frac{y}{x}\right) = -\frac{1}{x} \sin\left(\frac{y}{x}\right), \\ \Rightarrow f_x'(1, \frac{\pi}{2}) = \frac{\pi}{2}, \ f_y'(1, \frac{\pi}{2}) = -1. \end{cases}$$

4.3.2. Vi phân cấp một

Định nghĩa (Vi phân toàn phần). Cho tập mở $\Omega \subset \mathbb{R}^2$ và hàm $f:\Omega \to \mathbb{R}$. Cho $M_0(x_0,y_0) \in \Omega$, và lấy Δx , $\Delta y \in \mathbb{R}$ khá bé sao cho $(x_0+\Delta x,y_0+\Delta y) \in \Omega$. Nếu số gia toàn phần

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$
 (11)

có thể biểu diễn được dưới dạng

$$\Delta f = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y = A\Delta x + B\Delta y + o(\rho),$$

trong đó A, B là hằng số, còn $\alpha \to 0$, $\beta \to 0$, khi $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0$ thì ta nói f khả vi tại $M_0(x_0,y_0)$, biểu thức $A\Delta x + B\Delta y$ đgl vi phân toàn phần của hàm z = f(x,y) tại điểm $M_0(x_0,y_0)$, ký hiệu là

$$df(x_0, y_0) = A\Delta x + B\Delta y.$$

Các tính chất

Nếu hàm f khả vi tại mọi điểm thuộc Ω thì ta nói rằng nó $\mathit{khả}$ vi trên Ω .

Vi phân của hàm nhiều hơn hai biến cũng được định nghĩa tương tự.

Chú thích 4.1. Nếu hàm f khả vi tại điểm (x_0, y_0) , thì f liên tục tại (x_0, y_0) .

Định lý 4.7. Nếu hàm f khả vi tại điểm $M_0(x_0, y_0)$, thì tại $M_0(x_0, y_0)$ hàm f có các đhr $\frac{\partial f}{\partial x}(x_0, y_0)$, $\frac{\partial f}{\partial y}(x_0, y_0)$ và ta có

$$df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y.$$

Chú thích 4.2. Điều ngược lại của định lí 1.7, là không đúng.

Vi phân cấp một-Ví dụ

Định lý 4.8. Nếu hàm f có các đạo hàm riêng $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ trong một lận cận của (x_0, y_0) và các đạo hàm riêng $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ liên tục tại điểm (x_0, y_0) , thì hàm f khả vị tại điểm (x_0, y_0) .

Chú thích 4.3. Cũng như đối với hàm số một biến số, nếu x, y là biến số độc lập thì $dx = \Delta x$, $dy = \Delta y$, do đó

$$dz = f_x'dx + f_y'dy.$$

Các tính chất của vi phân

Ta có các tính chất sau

- $d(f \pm g) = df \pm dg$,
- $\bullet \ d(fg) = gdf + fdg,$
- $d\left(\frac{f}{g}\right) = \frac{gdf fdg}{g^2}(g \neq 0).$

Ví dụ 4.12. Tính vi phân toàn phần của hàm số $z = \sqrt{x^2 + y^2}$.

Giải. Hàm số xác định trên \mathbb{R}^2 .

Vì các đạo hàm riêng $\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}$, $\frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$ liên tục tại mọi $(x, y) \neq (0, 0)$ nên z khả vi trên $\mathbb{R}^2 \setminus \{(0, 0)\}$ và

$$dz = \frac{xdx + ydy}{\sqrt{x^2 + y^2}}. \blacksquare$$

Ví dụ 4.13.

Tính vi phân toàn phần của hàm số $u = xe^{yz}$.

Giải. Vì các đạo hàm riêng

$$\frac{\partial u}{\partial x} = e^{yz}, \ \frac{\partial u}{\partial y} = xze^{yz}, \ \frac{\partial u}{\partial z} = xye^{yz}$$

liên tục trên toàn \mathbb{R}^3 nên u khả vi trên toàn \mathbb{R}^3 và

$$du = e^{yz}dx + xze^{yz}dy + xye^{yz}dz.$$

4.3.4. Ứng dụng vi phân toàn phần để tính gần đúng

Nếu hàm f khả vi tại điểm (x_0, y_0) , ta có

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y + o(\varrho),$$
với $\varrho = \sqrt{(\Delta x)^2 + (\Delta y)^2}.$
(12)

Do đó

$$f(x_0 + \Delta x, y_0 + \Delta y) \simeq f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y.$$
 (13)

4.3.4. Ứng dụng vi phân toàn phần để tính gần đúng

Với kí hiệu $x=x_0+\Delta x$, $y=y_0+\Delta y$, ta có

$$f(x,y) \simeq f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$
 (14)

Vế phải của (14) là một hàm bậc nhất, ta kí hiệu nó là $\mathcal{L}(x,y)$. Như vậy, trong lân cận của (x_0,y_0) thì hàm f(x,y) được xấp xỉ bằng một hàm tuyến tính $\mathcal{L}(x,y)$. Hàm số

$$\mathcal{L}(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$
 (15)

được gọi là $x \hat{a} p x \hat{i} tuy \hat{e} n tính$ của f(x,y) trong lân cận của điểm (x_0,y_0) .

Ví dụ 4.14.

Tính gần đúng
$$A = \sqrt{(3,012)^2 + (3,997)^2}$$
.

Giải. Xét hàm
$$f(x,y)=\sqrt{x^2+y^2}$$
. Chọn $(x_0,y_0)=(3,4)$, $\Delta x=0,012, \, \Delta y=-0,003$. Khi đó

$$A = f(x_0 + \Delta x, y_0 + \Delta y) \simeq f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y.$$

Ta có:
$$f(x_0, y_0) = \sqrt{3^2 + 4^2} = 5$$
, $\frac{\partial f}{\partial x}(x_0, y_0) = \frac{x_0}{\sqrt{x_0^2 + y_0^2}} = \frac{3}{5}$, $\frac{\partial f}{\partial y}(x_0, y_0) = \frac{y_0}{\sqrt{x_0^2 + y_0^2}} = \frac{4}{5}$. Vậy

$$A \simeq 5 + \frac{3}{5} \times 0,012 + \frac{4}{5} \times (-0,003) = 5,0048.$$

Đạo hàm của hàm hợp

Cho z=f(u,v), trong đó u,v là hai hàm theo hai biến độc lập x,y: $u=u(x,y),\ v=v(x,y)$. Khi đó ta nói rằng z là một hàm hợp của x,y thông qua hai biến trung gian u,v:

$$z = f(u(x, y), v(x, y)).$$

Định lý 4.8. Nếu hàm f khả vi và nếu u, v có các đạo hàm riêng $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ liên tục, thì tồn tại các đạo hàm riêng $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ và ta có

$$\begin{cases} \frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y} \end{cases}$$

Ví dụ 4.12.

Cho
$$z = e^u \ln v$$
, $u = xy$, $v = x^2 + y^2$. Tính $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

Giải. Ta có

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = (e^u \ln v) y + \left(e^u \frac{1}{v}\right) 2x$$
$$= e^{xy} \left[y \ln(x^2 + y^2) + \frac{2x}{x^2 + y^2} \right],$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} = (e^u \ln v) x + \left(e^u \frac{1}{v}\right) 2y$$
$$= e^{xy} \left[x \ln(x^2 + y^2) + \frac{2y}{x^2 + y^2} \right]. \blacksquare$$

Đạo hàm riêng cấp cao

Cho hàm hai biến z = f(x, y). Các đạo hàm riêng $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ đgl các đhr cấp một, và là các hàm theo hai biến x, y.

Các đạo hàm riêng (nếu có) của đhr cấp một đg
l các đhr cấp hai của z. Ta có 4 đạo hàm riêng cấp hai:

$$\frac{\partial}{\partial x}(\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial x^2} = f_{xx}^{"}(x, y) = f_{x^2}^{"}(x, y), \tag{16}$$

$$\frac{\partial}{\partial y}(\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial x \partial y} = f_{xy}''(x, y), \tag{17}$$

$$\frac{\partial}{\partial x}(\frac{\partial f}{\partial y}) = \frac{\partial^2 f}{\partial y \partial x} = f_{yx}''(x, y), \tag{18}$$

$$\frac{\partial}{\partial y}(\frac{\partial f}{\partial y}) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"}(x, y) = f_{y^2}^{"}(x, y), \tag{19}$$

Người ta cũng định nghĩa đạo hàm riêng cấp $n \ge 3$ một cách tương tự.

Ví dụ 4.13.

Cho hàm $f(x,y) = x^2y - xy^4$. Tính các đạo hàm riêng cấp hai của f. **Giải**. Ta có

$$\frac{\partial f}{\partial x} = 2xy - y^4, \frac{\partial f}{\partial y} = x^2 - 4xy^3,$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} (2xy - y^4) = 2y,$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} (2xy - y^4) = 2x - 4y^3,$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} (x^2 - 4xy^3) = 2x - 4y^3,$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} (x^2 - 4xy^3) = -12xy^2.$$

Định lý 4.9 (Schwartz)

Cho hàm hai biến f(x,y) có các đạo hàm riêng đến cấp hai và chúng liên tục trong tập mở U. Khi đó

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}. \blacksquare \tag{20}$$

Ví dụ 4.13'. Tính đạo hàm $u_{x^2yz}^{(4)}$ biết hàm $u=z^2e^{x-yz}$.

Giải. Ta có

- $u_x' = z^2 e^{x yz}$
- $u''_{y^2} = z^2 e^{x-yz}$
- $u_{x^2y}^{\prime\prime\prime} = z^2 e^{x-yz} \cdot (-z) = -z^3 e^{x-yz}$
- $u_{x^2yz}^{(4)} = -\left[3z^2e^{x-yz} + z^3e^{x-yz}.(-y)\right] = -(3z^2 z^3y)e^{x-yz}.$

Vi phân cấp cao

Xét hàm số z = f(x, y). Vi phân cấp một

$$dz = f_x' dx + f_y' dy, (21)$$

nếu tồn tại, cũng là một hàm số của x, y.

Vi phân toàn phần của dz nếu tồn tại, được gọi là vi phân cấp hai của z và được kí hiệu là d^2z . Vậy

$$d^{2}z = d(dz) = d(f'_{x}dx + f'_{y}dy).$$
 (22)

Cứ tiếp tục như vậy ta định nghĩa các vi phân cấp cao hơn

$$d^3z = d(d^2z)$$

$$\vdots$$

$$d^n z = d(d^{n-1}z). (23)$$

Vậy

$$d^{2}z = f_{x^{2}}^{"}(dx)^{2} + 2f_{xy}^{"}dxdy + f_{y^{2}}^{"}(dy)^{2}$$
 (24)

Vi phân cấp cao

Công thức (21) và (24) có thể viết lại

$$dz = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy \equiv \left(\frac{\partial \cdot}{\partial x}dx + \frac{\partial \cdot}{\partial y}dy\right)f, \qquad (25)$$

$$d^{2}z = \frac{\partial^{2} f}{\partial x^{2}} (dx)^{2} + 2 \frac{\partial^{2} f}{\partial x \partial y} dx dy + \frac{\partial^{2} f}{\partial y^{2}} (dy)^{2}$$
 (26)

$$\equiv \left(\frac{\partial \cdot}{\partial x}dx + \frac{\partial \cdot}{\partial y}dy\right)^2 f. \tag{27}$$

Tương tự, bằng qui nạp, với vi phân cấp n, ta có thể viết lại

$$d^{n}z = \left(\frac{\partial \cdot}{\partial x}dx + \frac{\partial \cdot}{\partial y}dy\right)^{n}f \equiv \sum_{k=0}^{n} C_{n}^{k} \frac{\partial^{n}f}{\partial x^{k}\partial y^{n-k}}(dx)^{k}(dy)^{n-k}.$$
 (28)

Vi phân cấp cao

Chú ý. Để đơn người ta viết dx^2 thay cho $(dx)^2$. Tương tự với dx^k thay cho $(dx)^k$.

Ví dụ 4.15. Cho hàm số $z = x^4 + y^4 - 4x^2y^2$. Tính d^2z .

Giải. Ta có

$$\frac{\partial z}{\partial x} = 4x^3 - 8xy^2, \ \frac{\partial z}{\partial y} = 4y^3 - 8x^2y.$$

Suy ra

$$\frac{\partial^2 z}{\partial x^2} = 12x^2 - 8y^2, \ \frac{\partial^2 z}{\partial x \partial y} = -16xy, \ \frac{\partial^2 z}{\partial y^2} = 12y^2 - 8x^2.$$

Vậy

$$d^2z = (12x^2 - 8y^2)dx^2 - 32xydxdy + (12y^2 - 8x^2)dy^2. \blacksquare$$

Công thức Taylor

Định lý 4.12. Giả sử hàm số f(x,y) có các đạo hàm riêng đến cấp (n+1) liên tục trong một lân cận nào đó của điểm $M_0(x_0,y_0)$ và điểm $M(x_0+\Delta x,y_0+\Delta y)$ cũng nằm trong lân cận đó. Khi đó, tồn tại $\theta\in(0,1)$ sao cho:

$$f(x_0 + \Delta x, y_0 + \Delta y) = \sum_{i=0}^{n} \frac{1}{i!} d^i f(x_0, y_0) + \frac{1}{(n+1)!} d^{n+1} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y), \quad (29)$$

$$v\acute{\sigma}i\ d^0f(x,y)=f(x,y).$$

Ví dụ 4.16.

Khai triển Taylor của hàm số $f(x,y)=y^x$ ở lân cận điểm (1,1) đến số hạng bậc hai.

Giải. Ta có f(1,1) = 1,

$$df(x,y) = f'_x(x,y)dx + f'_y(x,y)dy = y^x \ln y dx + xy^{x-1} dy$$

$$\Rightarrow df(1,1) = dy = y - 1.$$

$$d^{2}f(x,y) = f_{xx}''(x,y)dx^{2} + 2f_{xy}''(x,y)dxdy + f_{yy}''(x,y)dy^{2}$$

$$= y^{x} \ln^{2} ydx^{2} + 2y^{x-1}(x \ln y + 1)dxdy$$

$$+ x(x-1)y^{x-2}dy^{2}.$$

Ví du 4.16.

$$\Rightarrow d^2f(1,1)=2dxdy=2(x-1)(y-1).$$
 Vậy
$$f(x,y)=1+(y-1)+(x-1)(y-1)+0(arrho^2),$$
 với $arrho=\sqrt{(x-1)^2+(y-1)^2}.lacksquare$

4.4. Cực trị của hàm hai biến

4.4.1. Cực trị không điều kiện (cực trị tự do)

4.4.1.1. Định nghĩa

Cho hàm hai biến $f:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ và cho $M_0(x_0,y_0)\in\Omega$. Ta nói rằng hàm f đạt *cực tiểu* (địa phương) tại M_0 nếu có một hình tròn mở $B_r(M_0)\subset\Omega$ sao cho

$$f(x,y) \ge f(x_0,y_0), \ \forall (x,y) \in B_r(M_0).$$
 (30)

Tương tự, ta nói rằng hàm f đạt cực đại (địa phương) tại M_0 nếu có một hình tròn mở $B_r(M_0)\subset\Omega$ sao cho

$$f(x,y) \le f(x_0,y_0), \ \forall (x,y) \in B_r(M_0).$$
 (31)

Nếu hàm f đạt cực tiểu hay cực đại (địa phương) tại M_0 thì ta nói hàm f đạt cực trị (địa phương) tại M_0 .

4.4.1.2. Qui tắc tìm cực trị không điều kiện

Định lý 4.13 (Điều kiện cần). Nếu hàm f đạt cực trị (địa phương) tại $M_0(x_0,y_0)\in\Omega$ và nếu f có các đạo hàm riêng tại $M_0(x_0,y_0)$ thì $\frac{\partial f}{\partial x}(x_0,y_0)=\frac{\partial f}{\partial y}(x_0,y_0)=0$ hoặc ít nhất một trong các đhr $\frac{\partial f}{\partial x}(x_0,y_0), \frac{\partial f}{\partial y}(x_0,y_0)$ không tồn tại.

Diểm (x_0, y_0) mà tại đó $\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$, được gọi là điểm dừng.

4.4.1.2. Qui tắc tìm cực trị không điều kiện

Định lý 4.14 (Điều kiện đủ của cực trị). Giả sử hàm hai biến f có các đạo hàm riêng đến cấp hai liên tục trong lân cận của điểm dừng $M_0(x_0, y_0)$. Đặt:

$$A = \frac{\partial^2 f}{\partial x^2}(x_0, y_0), \ B = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0), \ C = \frac{\partial^2 f}{\partial y^2}(x_0, y_0). \tag{32}$$

Khi đó:

- a) Nếu $\Delta=AC-B^2>0$ và A>0 (hay C>0) thì f đạt cực tiểu tại M_0 ,
- b) Nếu $\Delta=AC-B^2>0$ và A<0 (hay C<0) thì f đạt cực đại tại M_0 ,
- c) Nếu $\Delta = AC B^2 < 0$ thì f không đạt cực trị tại M_0 ,
- d) Nếu $\Delta = AC B^2 = 0$ ta chưa kết luận và cần phải xét cụ thể.

4.4.1.2. Cực trị không điều kiện-Ví dụ

Ví dụ 4.17. Tìm cực trị của hàm số $z = x^3 + y^3 - 3xy$.

Giải.

Giải hệ

$$\begin{cases} z'_x = 3x^2 - 3y = 0, \\ z'_y = 3y^2 - 3x = 0. \end{cases}$$

ta được hai điểm dừng $M_1(1,1)$ và $M_2(0,0)$.

Ta có

$$z_{xx}'' = 6x$$
, $z_{xy}'' = -3$, $z_{yy}'' = 6y$.

Tại $M_1(1,1)$ ta có: A=6, B=-3, C=6, $\Delta=AC-B^2=27>0$. Vậy hàm z đạt cực tiểu tại M_1 và $z_{\min}=z(1,1)=-1$.

Tại
$$M_2(0,0)$$
 ta có: $A=0$, $B=-3$, $C=0$, $\Delta=AC-B^2=-9<0$.

Vậy hàm z không đạt cực trị tại M_2 .
■

4.4.2. Cực trị có điều kiện (cực trị ràng buộc)

4.4.2.1. Định nghĩa Cho đường cong $(\gamma): \varphi(x,y)=0$. Ta nói rằng hàm f(x,y) với điều kiện $\varphi(x,y)=0$ đạt *cực tiểu* tại điểm $M_0(x_0,y_0)$ nếu tồn tại một hình tròn mở $B_r(M_0)\subset\Omega$ sao cho

$$f(x,y) \ge f(x_0,y_0), \ \forall (x,y) \in (\gamma) \cap B_r(M_0). \tag{33}$$

Như vậy ta chỉ so sánh $f(M_0)$ với f(M) khi M nằm trên $(\gamma) \cap B_r(M_0)$. Ta cũng định nghĩa *cực đại có điều kiện* một cách tương tự. Cực tiểu có điều kiện và cực đại có điều kiện được gọi chung là *cực trị có điều kiên*.

4.4.2.2. Các phương pháp tìm cực trị có điều kiện

1/ Đưa về bài toán tìm cực trị của hàm một biến

Ví dụ 4.19. Tìm cực trị của hàm $z=f(x,y)=\sqrt{1-x^2-y^2}$ với điều kiện x+y-1=0.

Giải.

Ta có
$$x + y - 1 = 0 \Leftrightarrow y = 1 - x$$
.

$$\Rightarrow z = \sqrt{1 - x^2 - (1 - x)^2} = \sqrt{2}\sqrt{x - x^2}.$$

z xác dịnh khi
$$x - x^2 \ge 0 \Leftrightarrow 0 \le x \le 1$$
.

Ta có

$$\frac{dz}{dx} = \frac{\sqrt{2}}{2} \frac{1 - 2x}{\sqrt{x - x^2}}.$$

$$\frac{dz}{dx} = 0 \text{ khi } x = \frac{1}{2}.$$

Ví dụ 4.19(tt).

Bảng biến thiên

$$\begin{array}{c|cccc}
x & 0 & \frac{1}{2} & 1 \\
\hline
\frac{dz}{dx} & + & 0 & - \\
\hline
z & 0 & \frac{\sqrt{2}}{2} & 0
\end{array}$$

Vậy z đạt cực đại có điều kiện tại điểm $M(\frac{1}{2},\frac{1}{2})$ và giá trị cực đại là

$$z_{\mathsf{max}} = \frac{\sqrt{2}}{2}. \blacksquare$$

2/ Phương pháp nhân tử Lagrange. ĐK cần của cực trị có điều kiên

Xét bài toán: Tìm cực trị của hàm z=f(x,y) với điều kiện $\varphi(x,y)=0$. Điểm $M_0(x_0,y_0)$ được gọi là *điểm kỳ dị* của đường cong $(\gamma): \varphi(x,y)=0$ nếu

$$\frac{\partial \varphi}{\partial x}(x_0, y_0) = \frac{\partial \varphi}{\partial y}(x_0, y_0) = 0. \tag{34}$$

Định lý 4.15 (Nhân tử Lagrange). Cho điểm $M_0(x_0, y_0)$ thỏa

- i) Điểm M_0 không là điểm kỳ dị của đường cong (γ) .
- ii) Các hàm số f(x,y), $\varphi(x,y)$ và các đạo hàm riêng cấp một của chúng liên tục trong lân cận của M_0 .
- iii) Hàm f(x, y) đạt cực trị có điều kiện tại M_0 .

Định lý 4.15 (Nhân tử Lagrange)(tt)

Khi đó tồn tại một số thực λ sao cho (x_0,y_0,λ) là nghiệm của hệ phương trình

$$\begin{cases}
\frac{\partial f}{\partial x}(x,y) + \lambda \frac{\partial \varphi}{\partial x}(x,y) = 0, \\
\frac{\partial f}{\partial y}(x,y) + \lambda \frac{\partial \varphi}{\partial y}(x,y) = 0, \\
\varphi(x,y) = 0.
\end{cases} (35)$$

Số thực λ được gọi là *nhân tử Lagrange*.

Hàm $L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$ được gọi là hàm Lagrange.

Thuật toán tìm cực trị có điều kiện bằng PP nhân tử Lagrange

• Bước 1. Lập hàm Lagrange

$$L(x,y) = f(x,y) + \lambda \varphi(x,y). \tag{36}$$

• Bước 2. Giải hệ phương trình

$$\begin{cases} L'_{x} = 0 \\ L'_{y} = 0 \\ L'_{\lambda} = 0 \end{cases}$$

tìm điểm dừng $M_0(x_0, y_0)$ ứng với λ_0 .

• **Bước 3.** Tính vi phân cấp hai của hàm L(x, y) tại (x_0, y_0) :

$$d^{2}L(M_{0}) = L_{xx}''(M_{0})(dx)^{2} + 2L_{xy}''(M_{0})dxdy + L_{yy}''(M_{0})(dy)^{2}, \quad (37)$$

3/ Điều kiện đủ của cực trị có điều kiện

với dx, dy thỏa điều kiện

$$\begin{cases}
 \phi'_x(x_0, y_0) dx + \varphi'_y(x_0, y_0) dy = 0, \\
 (dx)^2 + (dy)^2 > 0.
\end{cases}$$
(38)

Khi đó,

- Nếu $d^2L(M_0) > 0$, thì hàm f đạt cực tiểu tại M_0 .
- Nếu $d^2L(M_0) < 0$, thì hàm f đạt cực đại tại M_0 .
- Nếu $d^2L(M_0)$ thay đổi dấu, thì hàm f không đạt cực trị tại M_0 .

Ví dụ 4.22.

Tìm cực trị của hàm z = x + y với điều kiện xy = 1.

Giải. Ta có hàm Lagrange $L(x,y,\lambda)=x+y+\lambda(xy-1)$. Giải hệ phương trình

$$\begin{cases} L'_{x} = 1 + \lambda y = 0, \\ L'_{y} = 1 + \lambda x = 0, \\ L'_{\lambda} = xy - 1 = 0. \end{cases}$$

Ta có 2 điểm dừng $M_1(1,1)$ tương ứng với $\lambda=-1$, và $M_2(-1,-1)$ tương ứng với $\lambda=1$.

Mặt khác

$$L''_{xx} = 0$$
, $L''_{xy} = \lambda$, $L''_{yy} = 0$, $d^2L(x, y) = 2\lambda dx dy$.

Ví dụ 4.22.

Hơn nữa, từ điều kiện ràng buộc xy-1=0, ta có

$$ydx + xdy = 0.$$

Tại $M_1(1,1)$, ta có

$$dx + dy = 0 \Rightarrow dy = -dx.$$

$$\Rightarrow d^2L(1, 1) = 2(dx)^2 > 0$$

 \Rightarrow hàm z đạt cực tiểu có điều kiện tại $M_1(1,1)$ và $z_{\mathsf{min}} = z(1,1) = 2$.

Ví dụ 4.22.

Tại
$$M_2(-1,-1)$$
, ta có
$$-dx-dy = 0 \Rightarrow dy = -dx.$$

$$\Rightarrow d^2L(-1,-1) = -2(dx)^2 < 0$$

 \Rightarrow hàm z đạt cực đại có điều kiện tại $M_2(-1,-1)$ và $z_{\max}=z(-1,-1)=-2.lacksquare$

GTNN và GTLN trên một miền đóng và bị chận

Xét bài toán: Tìm giá trị nhỏ nhất và giá trị lớn nhất(còn gọi là cực trị tuyệt đối) của một hàm liên tục f trên một miền đóng và bị chận $\Omega \subset \mathbb{R}^2$.

Giả sử $\Omega=D\cup C$ trong đó D là một tập mở và C là một đường cong trơn (khả vi). Giả sử thêm rằng hàm f có các đạo hàm riêng cấp một liên tục trên D. Do đó để tìm các giá trị nầy, ta làm theo các bước sau:

- Dùng định lý Weierstrass về sự tồn tại cực trị của hàm liên tục trên $D \cup C$.
- Xét bài toán tìm cực trị ở trong D bằng cách giải hệ

$$\begin{cases} f'_x(x,y) = 0, \\ f'_y(x,y) = 0. \end{cases}$$

GTNN và GTLN trên một miền đóng và bị chận

- Xét bài toán tìm cực trị ở trên C bằng định lý nhân tử Lagrange.
- Sau đó lấy giá trị nhỏ nhất hay lớn nhất tại các điểm tính ra từ hai bước trên.

Ví dụ 4.23.

Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số $z=f(x,y)=x^2y(2-x-y)$ trong tam giác đóng Ω giới hạn bởi các đường thẳng: $x=0,\ y=0,\ x+y=6.$

Giải. Ta có $\Omega = \{(x,y): x \geq 0, y \geq 0, x+y \leq 6\}$ là tập đóng và bị chận. Đây là một tam giác đóng có ba đỉnh O(0,0), A(6,0), B(0,6), $D = \{(x,y): x > 0, y > 0, x+y < 6\}$ là phần trong của Ω .

- Trước hết ta tìm điểm dừng trong D bằng cách giải hê

$$\begin{cases} z'_x = xy(4-3x-2y) = 0, \\ z'_y = x^2(2-x-2y) = 0. \end{cases}$$

Ví du 4.23.

Vì
$$x > 0$$
, $y > 0$ nên ta được $x = 1$, $y = \frac{1}{2}$.

• Điểm $M_0(1, \frac{1}{2}) \in D$, $z(M_0) = \frac{1}{4}$.

Ví dụ 4.23.

- Xét trên biên
 - Trên OA và OB thì z=0.
 - ullet Trên AB thế y=6-x vào hàm đã cho ta được

$$z = -4x^2(6-x)$$
, $0 \le x \le 6$.
 $z'(x) = 12x(x-4) = 0 \iff x_1 = 0, x_2 = 4$.

- Tương ứng ta có hai điểm trên AB là: $M_1(0,6)$, $M_2(4,2)$.
- Tại điểm $M_1(0,6) \equiv B$ đã xét.
- Tại điểm $M_2(4,2)$, $z(M_2) = z(4,2) = -128$.

Vậy giá trị nhỏ nhất là $z(M_2)=z(4,2)=-128$, giá trị lớn nhất là $z(M_0)=z(1,\frac12)=\frac14.$

Ví dụ 4.24.

Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số $z = f(x, y) = \sin x + \sin y + \sin(x + y)$ trong miền $\Omega : 0 \le x \le \frac{\pi}{2}$,

$$0 \le y \le \frac{\pi}{2}$$
.

Giải. Ta có Ω là tập đóng và bị chận. Đây là một hình vuông đóng có bốn đỉnh đỉnh $O(0,0),\ A(\frac{\pi}{2},0),\ B(\frac{\pi}{2},\frac{\pi}{2}),\ C(0,\frac{\pi}{2}).$

$$D = \{(x,y) : 0 < x < \frac{\pi}{2}, 0 < y < \frac{\pi}{2}\} \text{ là phần trong của } \Omega.$$

- Trước hết ta tìm điểm dừng trong D bằng cách giải hệ

$$\begin{cases} f'_x = \cos x + \cos(x+y) = 0, \\ f'_y = \cos y + \cos(x+y) = 0. \end{cases}$$

Ta được điểm dừng là $N(\frac{\pi}{3}, \frac{\pi}{3}) \in D$ và $f(N) = \frac{3\sqrt{3}}{2}$.

Ví dụ 4.24.

- Xét trên biên
 - Trên $OA: y = 0, 0 \le x \le \frac{\pi}{2}$.
 - Ta có $z = 2\sin x$, $z'(x) = 2\cos x \ge 0$, z(0) = 0, z(A) = 2.
 - Trên $OC: x = 0, 0 \le y \le \frac{\pi}{2}$.
 - Ta có $z = 2 \sin y$, $z'(y) = 2 \cos y \ge 0$, z(O) = 0, z(C) = 2.
 - Trên $AB: x = \frac{\pi}{2}$, $0 \le y \le \frac{\pi}{2}$.
 - $\bullet \ \ \mathsf{Ta} \ \mathsf{có} \ z = 1 + \sin y + \sin(\frac{\pi}{2} + y) = 1 + \sin y + \cos y,$
 - $z'(y) = \cos y \sin y = 0 \Leftrightarrow y = \frac{\pi}{4}$, các điểm nghi ngờ A, B, $M(\frac{\pi}{2}, \frac{\pi}{4})$.
 - $z(A) = 2 = z(B), z(M) = 1 + \sqrt{2}.$

Ví dụ 4.24.

- Trên $BC: y = \frac{\pi}{2}$, $0 \le x \le \frac{\pi}{2}$.
 - Ta có $z = 1 + \sin x + \sin(\frac{\pi}{2} + x) = 1 + \sin x + \cos x$,
 - $z'(x) = \cos x \sin x = 0 \Leftrightarrow x = \frac{\pi}{4}$, các điểm nghi ngờ B, C, $P(\frac{\pi}{4}, \frac{\pi}{2})$.
 - z(B) = 2 = z(C), $z(P) = 1 + \sqrt{2}$.

Vậy giá trị lớn nhất là $\max_\Omega z = \frac{3\sqrt{3}}{2}$ đạt được tại N, giá trị nhỏ nhất là $\min_\Omega z = 0$ đạt được tại $O.\blacksquare$

Vídu 4.24

Tìm giá trị lớn nhất, nhỏ nhất của hàm số $f(x,y)=x^2+y^2-12x+16y$ trên miền $\Omega: x^2+y^2 \leq 25$.

Giải

Trước hết, ta xét các điểm dừng trên miền $D: x^2 + y^2 < 25$

Giải hệ

$$\begin{cases} \frac{\partial f}{\partial x} = 2x - 12 = 0\\ \frac{\partial f}{\partial y} = 2y + 16 = 0 \end{cases}$$

ta được điểm $(6, -8) \notin D$.

Vídu 4.24

Ta xét cực trị của hàm $f(x,y)=x^2+y^2-12x+16y$ với điều kiện $x^2+y^2=25$.

Lập hàm Lagrange $L(x,y;\lambda)=x^2+y^2-12x+16y+\lambda(x^2+y^2-25)$. Giải hệ

$$\begin{cases} \frac{\partial L}{\partial x} = 2x - 12 + 2\lambda x = 0\\ \frac{\partial L}{\partial y} = 2y + 16 + 2\lambda y = 0\\ \frac{\partial L}{\partial \lambda} = x^2 + y^2 - 25 = 0 \end{cases}$$

Ví dụ 4.24

ta có hai điểm nghi ngờ là $P_1(3,-4)$ và $P_2(-3,4)$ tương ứng với $\lambda=1$ và $\lambda=-3$.

Ta có
$$f(3, -4) = -75$$
, $f(-3, 4) = 125$.

Vậy
$$\max_{\Omega} f(x, y) = 125 = f(-3, 4)$$
 và $\min_{\Omega} f(x, y) = -75 = f(3, -4)$.

BÀI TẬP

- 1) Tìm cực trị của hàm số z = 2x + y với điều kiện $x^2 + y^2 = 5$.
- 2) Tìm cực trị của hàm số $z=x^2+y^2$ với điều kiện $x^2+y^2=3x+4y$.
- 3) Tìm cực trị của hàm số z = xy với điều kiện $\frac{x^2}{8} + \frac{y^2}{2} = 1$.
- 4) Tìm GTLN và GTNN của hàm số $z=x^2+y^2$ trong miền

$$\Omega: x^2 - x + y^2 \le \frac{3}{4}.$$