数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

时序逻辑电路分析

时序逻辑电路的分析方法

确定系统变量(输入变量、输出变量、状态变量)

- ① 列驱动方程(控制函数)
- ② 列输出方程(输出函数)
- ③ 列状态方程(次态方程)
- ④ 列写状态转换表
- ⑤ 画出状态图
- ⑥ 画出波形图(如必要)

- ■同步时序电路
- 异步时序电路

时序逻辑电路分析——示例1:同步时序

① 输入方程

$$J_2=K_2=X\oplus Q_1^n$$

$$Q_2^{n+1} = X \oplus Q_1^{n} \oplus Q_2^{n}$$

$$Q_1^{n+1} = \overline{Q_1}^n$$

71 -171									
现	态	Q ₂ n+1 (Q ₁ n+1/ Z						
Q ₂ ⁿ Q ₁ ⁿ		X=0	X=1	4					
0	0	01/0	11/1	7					
0	1	10/0	00/0						
1	0	11/0	01/0						
1	1	00/1	10/0						

④ 状态转换表

 $Z = XCP\overline{Q}_2^n\overline{Q}_1^n \cdot \overline{X}CPQ_2^nQ_1^n$

 $= XCP\overline{Q}_{2}^{n}\overline{Q}_{1}^{n} + \overline{X}CPQ_{2}^{n}Q_{1}^{n}$

输入	、	.态	次	态	输出
X	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	0

时序逻辑电路分析——示例1:同步时序

④ 状态转换表

顼	态	Q ₂ ⁿ⁺¹ Q ₁ ⁿ⁺¹ / Z				
Q ₂ ⁿ	Q_1^n	X=0	X=1			
0	0	01/0	11/1			
0	1	10/0	00/0			
1	0	11/0	01/0			
1	1	00/1	10/0			

⑤ 状态图

结论: 模4可逆计数器

■ X=0: 加计数

■ X=1: 减计数

Z: 进位和借位输出标志

时序逻辑电路分析 ·示例2:同步时序

① 输入方程

次态方程

$$D_{4} = Y_{3}^{n} \qquad Y_{4}^{n+1} = Y_{3}^{n}$$

$$D_{3} = Y_{2}^{n} \qquad Y_{3}^{n+1} = Y_{2}^{n}$$

$$D_{2} = Y_{1}^{n} \qquad Y_{2}^{n+1} = Y_{1}^{n}$$

$$D_{1} = \overline{Y_{3}^{n} \overline{Y_{1}^{n}}} \overline{Y_{4}^{n}} \qquad Y_{1}^{n+1} = Y_{1}^{n} \overline{Y_{4}^{n}} + \overline{Y_{3}^{n} \overline{Y_{4}^{n}}}$$

$$= Y_{1}^{n} \overline{Y_{4}^{n}} + \overline{Y_{3}^{n} \overline{Y_{4}^{n}}}$$

现态 次态 $Y_4^n Y_3^n Y_2^n Y_1^n Y_4^{n+1} Y_3^{n+1} Y_2^{n+1} Y_1^{n+1}$

序号

1 2

(3)

4 8

(7)

0

状态转换表

1	1	0	1	1	0	1	0	
1	1	1	0	1	1	0	0	(
1	1	1	1	1	1	1	<u>6</u> 5	(F

时序逻辑电路分析——示例2:同步时序

③ 状态转换表

	现	态			次	态		序号
Y ₄ n	Y ₃ n	Y ₂ n	Y ₁ ⁿ	Y ₄ n+1	Y ₃ n+1	Y ₂ n+1	Y ₁ n+1	
0	0	0	0	0	0	0	1	1
0	0	0	1	0	0	1	1	2
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	1	3
0	1	0	0	1	0	0	0	
0	1	0	1	1	0	1	1	
0	1	1	0	1	1	0	0	
0	1	1	1	1	1	1	1	4
1	0	0	0	0	0	0	0	8
1	0	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	
1	0	1	1	0	1	1	0	
1	1	0	0	1	0	0	0	7
1	1	0	1	1	0	1	0	
1	1	1	0	1	1	0	0	6
1	1	1	1	1	1	1	0	<u>(5)</u>

④ 状态图

结论:

模8计数器(格雷码输出),能够自启动

时序逻辑电路分析——同步时序总结

同步时序逻辑电路分析方法总结

确定系统变量(输入变量、输出变量、状态变量)

- ① 列写三组方程:
 - 驱动方程(控制函数)
 - 状态方程(次态方程)
 - 输出方程(输出函数)
- ② 列写状态转换表:
 - 写出所有输入及现态的取值组合;
 - 将每一种取值组合带入次态方程和输出方程, 计算后的得出次态值和输出值;
 - 从表中第一行开始,寻找状态转换规律;
- ③ 画出完整的状态图;
- ④ 得出电路功能,并说明能否自启动

时序逻辑电路分析——示例3: 异步时序

① 输入方程

$$\begin{cases}
J_4 = Y_3^n Y_2^n \\
K_4 = 1 \\
J_3 = K_3 = 1 \\
J_2 = \overline{Y_4}^n, K_2 = 1 \\
J_1 = K_1 = 1
\end{cases}$$

② 次态方程

$$\begin{cases} Y_4^{n+1} = J_4 \overline{Y_4}^n + \overline{K_4} Y_4^n = \overline{Y_4}^n Y_3^n Y_2^n & CP_4 = Y_1 \downarrow \\ Y_3^{n+1} = J_3 \overline{Y_3}^n + \overline{K_3} Y_3^n = \overline{Y_3}^n & CP_3 = Y_2 \downarrow \\ Y_2^{n+1} = J_2 \overline{Y_2}^n + \overline{K_2} Y_2^n = \overline{Y_4}^n \overline{Y_2}^n & CP_2 = Y_1 \downarrow \\ Y_1^{n+1} = J_1 \overline{Y_1}^n + \overline{K_1} Y_1^n = \overline{Y_1}^n & CP_1 \downarrow \end{cases}$$

时序逻辑电路分析——异步时序示例3

② 次态方程

$$\begin{cases} Y_{4}^{n+1} = J_{4}\overline{Y_{4}}^{n} + \overline{K}_{4}Y_{4}^{n} = \overline{Y_{4}}^{n}Y_{3}^{n}Y_{2}^{n} & CP_{4} = Y_{1} \downarrow \\ Y_{3}^{n+1} = J_{3}\overline{Y_{3}}^{n} + \overline{K}_{3}Y_{3}^{n} = \overline{Y_{3}}^{n} & CP_{3} = Y_{2} \downarrow \\ Y_{2}^{n+1} = J_{2}\overline{Y_{2}}^{n} + \overline{K}_{2}Y_{2}^{n} = \overline{Y_{4}}^{n}\overline{Y_{2}}^{n} & CP_{2} = Y_{1} \downarrow \\ Y_{1}^{n+1} = J_{1}\overline{Y_{1}}^{n} + \overline{K}_{1}Y_{1}^{n} = \overline{Y_{1}}^{n} & CP_{1} \downarrow \end{cases}$$

④ 状态图

8421 BCD 码异步加法计数器

③ 状态转换表

	现	<u></u> 态			次次				时		
Y ₄ n	Y ₃ n	Y ₂ n	Y ₁ n	Y ₄ n+1	Y ₃ n+1	Y ₂ n+1	Y ₁ ⁿ⁺¹	cp ₄	cp ₃	cp ₂	cp ₁
0	0	0	0	0	0	0	1	无	无	无	↓
0	0	0	1	0	0	1	0	\downarrow	无	\downarrow	\downarrow
0	0	1	0	0	0	1	1	无	无	无	\downarrow
0	0	1	1	0	1	0	0	\downarrow	\downarrow	\downarrow	\downarrow
0	1	0	0	0	1	0	1	无	无	无	\downarrow
0	1	0	1	0	1	1	0	\downarrow	无	\downarrow	↓
0	1	1	0	0	1	1	1	无	无	无	↓
0	1	1	1	1	0	0	0	\downarrow	\downarrow	\downarrow	↓
1	0	0	0	1	0	0	1	无	无	无	↓
1	0	0	1	0	0	0	0	\downarrow	无	\downarrow	↓
1	0	1	0	1	0	1	1	无	无	无	\downarrow
1	0	1	1	0	1	0	0	\downarrow	\downarrow	\downarrow	↓
1	1	0	0	1	1	0	1	无	无	无	↓
1	1	0	1	0	1	0	0	\downarrow	无	↓	↓
1	1	1	0	1	1	1	1	无	无	9无	↓
1	1	1	1	0	0	0	0	↓	\downarrow		↓

时序逻辑电路分析——异步时序总结

异步时序逻辑电路分析方法总结

确定系统变量(输入变量、输出变量、状态变量)

- ① 确定每个触发器的时钟由谁供给?
- ② 列写三组方程:
 - 驱动方程(控制函数)、状态方程(次态方程)、输出方程(输出函数)
- ③ 列写状态转换表:
 - 首先,从假定(或给定)的某一个初始状态开始,每来一个外输入及外接时钟脉冲,确定与之对应的触发器次态及输出;
 - 其次,确定该触发器的状态改变能否给其它触发器提供需要的时钟边沿。若能,则与 之相应的其它触发器动作。否则,与之相应的其它触发器保持;重复该步骤,直到所 有触发器的次态都确定为止。
 - ■接着,该次态成为新的现态,来一个外输入及外接时钟脉冲,重复上述操作,直到所有的2ⁿ个现态到次态的转换都已计算完毕;从表中第一行开始,寻找状态转换规律;
- ③ 画出完整的状态图; ④ 得出电路功能,并说明能否自启动