

## UFRN – Universidade Federal do Rio Grande do Norte DCA – Departamento de Engenharia de Computação e Automação Inteligencia Artificial Aplicada

### Componentes:

Cássio Daniel Pacheco de Sousa Evandro Carlos Barbosa dos Santos Graco Babeuf Vieira Silva

Professor(a): Sergio Natan Silva

Lógica Fuzzy
Sistema de umidade do solo

# Sumário

| 1 | Des          | crição                                      |                                    | 2 |  |  |  |
|---|--------------|---------------------------------------------|------------------------------------|---|--|--|--|
|   | 1.1          | Variáveis do Sistema - Variáveis de entrada |                                    |   |  |  |  |
|   |              | 1.1.1                                       | TPLAN-RAIZ                         | 3 |  |  |  |
|   |              | 1.1.2                                       | TPLAN-DH                           | 4 |  |  |  |
|   |              | 1.1.3                                       | ESTAG-C                            | 5 |  |  |  |
|   |              | 1.1.4                                       | TEMP                               | 6 |  |  |  |
|   | 1.2          | Variáv                                      | eis do Sistema - Variável de saída | 6 |  |  |  |
|   |              | 1.2.1                                       | UMD                                | 6 |  |  |  |
| 2 | 2 Resultados |                                             |                                    |   |  |  |  |
| 3 | Ref          | erência                                     | as                                 | 9 |  |  |  |

# 1 Descrição

O projeto de unidade (PU) tem como objetivo a implementação de um sistema Fuzzy para se saber a umidade do solo adequada para cada período (Germinação, Crescimento, Floração e Maturação) de um determinado tipo de plantação. Isso se deve ao motivo que cada planta possui as suas próprias características, como o tipo de raiz, o seu coeficiente de crescimento, capacidade de sobreviver a um determinado período sem a quantidade de água adequada.



Figura 1: Sistema Fuzzy

## 1.1 Variáveis do Sistema - Variáveis de entrada

As variáveis de entradas utilizadas foram:

- TPLAN-RAIZ (tipo-de-planta-raiz);
- TPLAN-DH (tipo-de-planta-déficit-hídrico);
- ESTAG-C (estágio-de-crescimento-da-planta);
- TEMP (temperatura)

#### 1.1.1 TPLAN-RAIZ

TPLAN-RAIZ (TIPO-DE-PLANTA-RAIZ): Essa variável está associada à profundidade do sistema radicular da planta no solo, ou, à Profundidade Efetiva das raízes da planta onde se concentram 80% de suas raízes. Quanto maior a profundidade das raízes, maior a necessidade de dotação hídrica.

| AD 1 1 | 4  | TO C    | 1.1 1   | · ·      | 1   | ,      |
|--------|----|---------|---------|----------|-----|--------|
| Tabela |    | Profile | abebibi | Δ†Δ†1379 | doc | 170C   |
| Tabela | т. | I IOIUI | iaiaaac | cretiva  | uas | Talzes |

| Cultura                 | Gomes (1994) | Pires et al. (1999) |
|-------------------------|--------------|---------------------|
| Abacaxi                 | 30-60        | 20-70               |
| Hortaliças (ex. alface) | 20-40        | 10-15               |
| Arroz                   | -            | 10-25               |
| Algodão                 | 80-180       | 30                  |
| Cana-de-açúcar          | 50-100       | 70                  |
| Cítricos (ex. laranja)  | 90-150       | 60                  |
| Melancia                | 100-150      | -                   |
| Melão                   | 70-100       | -                   |
| Milho                   | 60-120       | 40                  |
| Morango                 | -            | 30                  |
| Tomate                  | 60-120       | 50                  |



Figura 2: Tipo de raiz de cada planta

#### 1.1.2 TPLAN-DH

TPLAN-DH (TIPO-DE-PLANTA-DÉFICIT-HÍDRICO): O deficit hídrico tolerável representa a tolerância das plantas à redução do conteúdo de água no solo, mantendo, ainda, sua capacidade de absorção de água.

Tabela 2: Déficit hídrico tolerável para diferentes culturas

| Cultura        | Déficit Hídrico Tolerável (%)<br>Gomes(1994) |  |  |
|----------------|----------------------------------------------|--|--|
| Alface         | 35                                           |  |  |
| Cana-de-açúcar | 15                                           |  |  |
| Feijão         | 50                                           |  |  |
| Laranja        | 35                                           |  |  |
| Melão          | 20                                           |  |  |
| Milho          | 40                                           |  |  |
| Morango        | 10                                           |  |  |
| Tomate         | 45                                           |  |  |

Exemplificando para o milho: a absorção de água pelas suas raízes fica comprometida quando a retirada é maior que 40% da capacidade de água disponível no solo.



Figura 3: Deficit hídrico da planta

#### 1.1.3 ESTAG-C

ESTAG-C (ESTÁGIO-DE-CRESCIMENTO-DA-PLANTA): Em geral, a planta tem um aumento progressivo de consumo hídrico até o período de floração e frutificação. A variável ESTAG-C, assume diferentes valores de acordo com o tipo de cultura e a fase de crescimento da planta.



Figura 4

Tabela 3: Valores médios do coeficiente de cultivo

| Cultura                | Plantio-Germinação<br>Período 1 | Crescimento<br>Período 2 | Floração<br>Período 3 | Maturação<br>Período 4 |
|------------------------|---------------------------------|--------------------------|-----------------------|------------------------|
| Alface                 | $0,\!45$                        | 0,6                      | 1                     | 0,9                    |
| Cana-de-açúcar         | 0,5                             | 1                        | 1,1                   | $0,\!65$               |
| Cítricos (ex. laranja) | $0,\!65$                        | 0,7                      | 1,7                   | $0,\!65$               |
| Melão                  | $0,\!45$                        | 0,75                     | 1                     | 0,75                   |
| Milho                  | $0,\!4$                         | 0,8                      | 1,15                  | 1                      |
| Tomate                 | $0,\!45$                        | 0,75                     | 1,15                  | 0,8                    |



Figura 5: Estágio de crescimento da planta

#### 1.1.4 TEMP

**TEMP (TEMPERATURA):** Essa variável está associada à temperatura (em graus Celsius).



Figura 6: Temperatura do ambiente na plantação

### 1.2 Variáveis do Sistema - Variável de saída

#### 1.2.1 UMD

UMD (UMIDADE-DO-SOLO): A variável de saída UMD estabelece a referência de umidade que o solo deve possuir para o tipo de plantação em conjunto com todas as variáveis de entrada para um determinado momento da vida da planta (Germinação, Crescimento, Floração e Maturação).



Figura 7: Umidade que se deseja para um determinado tipo de plantação

## 2 Resultados

O tipo de plantação base usado para esse trabalho foi a Cana-de-açúcar, mas outros tipos de plantio foram testados e se obteve o resultado desejado. Por esse motivo os resultados que serão apresentados, tem como plantio base a Cana-de-açúcar.

Segue abaixo algumas das regras de produção utilizadas:



Figura 8: Regras de produção

Como exemplo começaremos atribuindo os seguintes valores para as variáveis de entrada:

TPLAN-RAIZ: RAIZ-MEDIA

ESTAG-C: BAIXO

TEMP: QUENTE

TPLAN-DH: BAIXO

Obtemos o seguinte resultado:



Figura 9: Resultado 1

Nessas condições a variável de saída UMD é igual a 20. Se alterarmos as variáveis de entrada da seguinte forma:

TPLAN-RAIZ: RAIZ-MEDIA

ESTAG-C: ALTO

TEMP: MQUENTE

### TPLAN-DH: BAIXO

Obtemos o seguinte resultado:



Figura 10: Resultado 2

Como esperado com o estágio de crescimento da planta alterado para alto (floração), o qual requer um maior consumo hídrico, e a temperatura alterada para muito quente, a umidade ideal para o solo aumenta para 27,7. Com base nesses resultados concluímos que o sistema fuzzy implementado correspondeu as expectativas do projeto.

# 3 Referências

JANTZEN, Jan.  $Tutorial\ On\ Fuzzy\ Logic$ . Disponível em: www.iau.dtu.dk/jj/pubs/logic.pdf. Acesso em: 27/08/2018.

FELICIANO, Rafaelle A. C. Controle Fuzzy Espacialmente Diferenciado Para Um Sistema de Irrigação. Dissertação. Programa de Pós-Graduação em Engenharia Elétrica e da Computação, UFRN, 2009.

SILER, William. BUCKLEY, James J. Fuzzy Expert Systems And Fuzzy Reasoning. Hoboken: John Wiley & Sons, Inc., 2005.

J. M. Mendel. Fuzzy logic systems for engineering: A tutorial. *Proc. of the IEEE, Special Issue on Fuzzy Logic in Engineering Applications*, 83(3):345–377, Março de 1995.