Chapitre 10 Inéquations produit et quotient

Table 10.1 – Objectifs. À fin de ce chapitre 10...

	Pour m'entraîner <u></u>		r <u>/</u>
Je dois connaître/savoir faire	۵	•	Ö
Fonctions polynomiales			
compléter un tableau de signes	10.1, 10.2, 10.3	10.4, 10.5	
étudier le signe d'un polynôme factorisé		10.6, 10.7	
résoudre des inéquations de signe évident		10.8	
résoudre des inéquations à l'aide d'un tableau de signe		10.9, 10.10	
Fonctions rationnelles			
compléter un tableau de signes d'un quotient simple	10.11, 10.12, 10.13	10.14	
dresser le tableau de signe d'une fraction rationnelle		10.15, 10.16	
résoudre des inéquations rationnelles à l'aide d'un tableau de signe		10.17, 10.18	
Problèmes			

10.1 Étude du signe d'une expression polynomiale

- Exemple 10.1 polynômes de degré 1.
- 1. Pour tout $x \in \mathbb{R}$: $P_1(x) = 2x 3$. Ici m = 2 > 0, et la racine est $x = \frac{3}{2}$.

					_
x	$-\infty$		$\frac{3}{2}$		$+\infty$
2x - 3		_	0	+	

2. Pour tout $x \in \mathbb{R}$: $P_2(x) = 5 - 3x$. Ici m = -3 < 0, et la racine est $x = \frac{5}{3}$.

x	$-\infty$		$\frac{5}{3}$		$+\infty$
5 <u>~</u> 3x		+	0	_	

- Les polynômes de degré 1 avec P(x)=mx+c $(m\neq 0)$ changent obligatoirement de signe. Les polynômes de degré 2 avec $P(x)=ax^2+bx+c$ $(a\neq 0)$ peuvent ne pas changer de signe.
- Exemple 10.2 polynômes de degré 2 sans racines ou racine unique.
- 1. Pour tout $x \in \mathbb{R}$: $P_1(x) = 2(x-3)^2$ est positive et a pour racine x=3.

x	$-\infty$		3		$+\infty$
$2(x-3)^2$		+	0	+	

2. Pour tout $x \in \mathbb{R}$: $P_2(x) = 9(8x - 4)^2 + 7$ est strictement positive et n'a pas de racines :

x	$-\infty$	$+\infty$
$9(8x - 4)^2 + 7$	+	

3. Pour tout $x \in \mathbb{R}$: $P_3(x) = -8(3x-1)^2$ est négative et a pour racine $x = \frac{1}{3}$.

x	$-\infty$		$\frac{1}{3}$		$+\infty$
$-8(3x-1)^2$		_	0	_	

4. Pour tout $x \in \mathbb{R}$: $P_4(x) = -7(9x+3)^2 - 3$ est strictement négative et n'a pas de racines :

4	(ω) $(\delta\omega + \delta)$	ost stricterment megative	0011
	x	$-\infty$	$+\infty$
	$-7(9x+3)^2 - 3$	_	

L'étude de signe de tout polynôme factorisé se ramène à l'étude des signes de ses facteurs.

- Exemple 10.3 Signe d'un polynôme factorisé avec facteurs irréductibles.
- 1. Soit $P_1(x) = 3(9x + 10)(3x + 1)$:
 - a) Étudier le signe de $P_1(x)$ selon les valeurs de x.
 - b) En déduire les solutions de l'inéquation $P_1(x) < 0$.
- **2.** Soit $P_2(x) = -\frac{1}{4}(-2x+1)(5x^2+1)$
 - a) Étudier le signe de $P_2(x)$ selon les valeurs de x.
 - b) En déduire les solutions de l'inéquation $P_2(x) \geqslant 0$.

solution.

1. a) Dresser le tableau de signe du produit après avoir cherché les zéros de $P_1(x)$:

x	$-\infty$	$+\infty$
3		
9x + 10		
3x + 1		
3(9x+10)(3x+1)		

- 2. a) Dresser le tableau de signe du produit après avoir cherché les zéros de $P_2(x)$:

x	$-\infty$	$+\infty$
$-\frac{1}{4}$		
-2x + 1		
$5x^2 + 1$		
$-\frac{1}{4}(-2x+1)(5x^2+1)$		

b) Les solutions de l'inéquation $-\frac{1}{4}(-2x+1)(5x^2+1) \ge 0$ sont $\mathscr{S} = \dots$

10.2 Résolution d'inéquations polynomiales ou rationnelles

■ Exemple 10.4 — résolution d'inéquations polynomiales évidentes.

$$(I_1) 8(-x+5)^2 \geqslant 0$$

$$(I_3) 4(-10x-9)^2 + 1 > 0$$

$$(I_3) 4(-10x - 9)^2 + 1 > 0$$
 $(I_5) -10(6x + 10)^2 - 5 \le 0$

$$(I_2) 3(-x-5)^2 > 0$$

$$(I_4) \ 10(-9x-2)^2 + 3 \le 0$$

$$(I_6) - 10(3x+5)^2 - 2 \ge 0$$

solution.

1. $8(-x+5)^2=0$. Le polynôme $8(-x+5)^2$ est positif et s'annule pour x=5. $\mathcal{S}=\mathbb{R}$

$$-x + 5 = 0$$

$$x = 5$$

2. $3(-x-5)^2=0$. Le polynôme $3(-x-5)^4$ est positive et s'annule pour x=-5. $\mathcal{S}=\mathbb{R}\setminus\{-5\}$

$$-x - 5 = 0$$

$$x = -5$$

3. Le polynôme $4(-10x-9)^2+1$ est strictement positif sans racines. $\mathcal{S}=\mathbb{R}$

4. Le polynôme $10(-9x-2)^2+3$ est strictement positif sans racines. $\mathcal{S}=\emptyset$

5. Le polynôme $-10(6x+10)^2-5$ est strictement négatif sans racines. $\mathcal{S}=\mathbb{R}$

6. Le polynôme $-10(3x+5)^2-2$ est strictement négatif sans racines. $\mathcal{S}=\emptyset$

■ Exemple 10.5 — résolution d'inéquations polynomiales nécessitant une factorisation.

$$(I_1) (x-3)^2 - 2 > 0$$

$$(I_2) x^2 + 10x + 25 \leqslant 0$$

solution.

1.
$$(x-3)^2 - 2 \ge 0 \iff (x-3-\sqrt{2})(x-3+\sqrt{2}) > 0$$

On dresse le tableau de signe du produit $P(x) = (x - 3 - \sqrt{2})(x - 3 + \sqrt{2})$:

x	$-\infty$	$3-\sqrt{2}$	$3+\sqrt{2}$	$+\infty$
$x-3-\sqrt{2}$				
$x-3+\sqrt{2}$				
P(x)				

On conlut: $\mathscr{S} = \dots$

2. $x^2 + 10x + 25 \le 0 \iff (x+5)^2 \le 0$. Le signe de $(x+5)^2$ est évident.

On peut conclure (sans tableau de signe) : $\mathcal{S} = \dots$

■ Exemple 10.6 — inéquations non linéaires. Résoudre dans $\mathbb R$ les inéquations suivantes :

$$(I_1) \ x^2 \leqslant -5x$$

$$(I_2) x^2 (1 - 3x) > 4(1 - 3x)$$
 $(I_3) x^2 \le 9 - 6x$

$$(I_3) \ x^2 \leqslant 9 - 6x$$

solution.

- $x^2 \leqslant -5x$ On transforme en une comparaison à zéro $\iff x^2 + 5x \leqslant 0$ On factorise le membre non nul $\iff x(x+5) \leqslant 0$ 1. a)
 - b) Dresser le tableau de signe de la forme factorisée après avoir cherché ses zéros :

x(x+5) =	0
x = 0 où $x =$	-5

x	$-\infty$	-5	0	$+\infty$
x				
(x+5)				
x(x+5)		0	0	

- c) Conclure à l'aide du tableau de signe : $\mathscr{S} = \dots$
- 2. a) $\iff (x-2)(x+2)(1-3x) > 0$

 $x^2(1-3x)>4(1-3x)$ On transforme en une comparaison à zéro $\iff x^2(1-3x)-4(1-3x)>0$ On factorise le membre non nul $\iff (x^2-4)(1-3x)>0$ Factorisation complète

b) Dresser le tableau de signe de la forme factorisée après avoir cherché ses zéros :

(x-2)(x+2)(1-3x) = 0)
x = 2 où $x = -2$ où $x = -2$	$\frac{-1}{3}$
	9

x	$-\infty$	-2	$-\frac{1}{3}$	2	$+\infty$
(x-2)					
(x+2)					
(1-3x)					
(x-2)(x+2)(1-3x)		0	0	0	

- c) Conclure à l'aide du tableau de signe : $\mathscr{S} = \dots$
- $x^2>6x-9$ On transforme en une comparaison à zéro $\iff x^2-6x+9>0$ On factorise le membre non nul $\iff (x-3)^2>0$ 3. a)
 - b) Dresser le tableau de signe de la forme factorisée après avoir cherché ses zéros :

x	$-\infty$	3	$+\infty$
$(x-3)^2$		0	

- x = 3
- c) Conclure à l'aide du tableau de signe : $\mathcal{S} = \dots$

■ Exemple 10.7 — signe d'expressions rationnelles simples.

- 1. Pour tout $x \in \mathbb{R} : R_1(x) = \frac{-2}{3x 7}$:

 - b) Dresser le tableau de signe du quotient :

x	$-\infty$	$+\infty$
-2		
3x - 7	0	
$\frac{-2}{3x-7}$		

- - b) Dresser le tableau de signe du quotient :

x	$-\infty$	$+\infty$
-3x+6		
9x+4		
$\frac{-3x+6}{9x+4}$		

- 3. Pour tout $x \in \mathbb{R}$: $R_3(x) = \frac{2}{5(x-3)^2}$:
 - a) Valeurs interdites : $5(x-3)^2 = 0$, donc x = 3. Domaine de R_3 est
 - b) Dresser le tableau de signe du quotient

ucii.		
x	$-\infty$	$+\infty$
2		
$5(x-3)^2$	0	
$\frac{2}{5(x-3)^2}$		

- 4. Pour tout $x \in \mathbb{R}$: $R_4(x) = \frac{2x-1}{9(x-4)^2+7}$:
 - a) V.I. : $9(x-4)^2 + 7 = 0$, pas de solutions. Domaine de R_4 est
 - b) Dresser le tableau de signe du quotient :

x	$-\infty$	$+\infty$
2x - 1		
$9(x-4)^2 + 7$		
$\frac{2x-1}{9(x-4)^2+7}$		

■ Exemple 10.8 — inéquations rationnelles.

Résoudre dans \mathbb{R} les inéquations suivantes : (I_1) $\frac{1}{4x-3} \ge 2$ (I_2) $\frac{1}{4x+3} > \frac{3}{2x}$

$$(I_2) \ \frac{1}{4x+3} > \frac{3}{2x}$$

solution.

- 1. a) V.I. : $4x 3 = 0 \iff x = \dots$ Domaine de résolution $D = \dots$
 - $\frac{\frac{1}{4x-3}\geqslant 2}{\iff \frac{1}{(4x-3)}-2\geqslant 0}$ On transforme en une comparaison à zéro $\iff \frac{1}{(4x-3)}-2\frac{(4x-3)}{(4x-3)}\geqslant 0$ On ramène au même dénominateur le membre non nul 1-2(4x-3)b) $\iff \frac{1-2(4x-3)}{(4x-3)}\geqslant 0 \\ \iff \frac{(7-8x)}{(4x-3)}\geqslant 0$ factorisation complète du numérateur et dénominateur
 - c) Dresser le tableau de signe après avoir cherché ses zéros des facteurs :

7 - 8x = 0	4x - 3 = 0
x =	x =

x	$-\infty$	$+\infty$
$\frac{(7-8x)}{(4x-3)}$		

- d) Conclure à l'aide du tableau de signe : $\mathscr{S} = \dots$
- 2. a) V.I.: $x(4x+3)=0 \iff x=\dots$ et x=0. Domaine de résolution $D=\dots$
- $\frac{1}{(4x+3)} > \frac{3}{2x}$ On transforme en une comparaison à zéro $\iff \frac{1}{(4x+3)} \frac{3}{2x} > 0$ On ramène au même dénominateur le membre non nul $\frac{(2x)}{(4x+3)(2x)} \frac{3(4x+3)}{(2x)(4x+3)} > 0$ b) $\iff \frac{2x-3(4x+3)}{2x(4x+3)} > 0$ $\iff \frac{(-10x-9)}{2x(4x+3)} > 0$ $\iff \frac{(-10x-9)}{2x(4x+3)} > 0$ The plant of the interval of the property of the
 - c) Dresser le tableau de signe après avoir cherché ses zéros des facteurs :

-10x - 9 = 0		x	$-\infty$	$+\infty$
x =				
2x = 0	4x + 3 = 0			
x =	x =	(-10x - 9)		
		2x(4x+3)		

d) Conclure à l'aide du tableau de signe : $\mathscr{S}=\dots$

Exercice 10.1 Compléter les tableaux de signes suivants, vous commencerez par déterminer les racines des facteurs utilisés.

$$2x - 3 = 0$$

 $2x = \dots; \quad x = \dots$

x	$-\infty$		$+\infty$
2x-3		0	

$$-3x - 2 = 0$$

 $x = \dots$

x	$-\infty$	$+\infty$
-10		
-3x - 2		
-10(-3x-2)		

$$5(-x+2)^2 = 0$$

$$x = \dots$$

x	$-\infty$	$+\infty$
$5(-x+2)^2$		

5x +	3	=	(
------	---	---	---

$$5x = \dots; \quad x = \dots$$

x	$-\infty$		$+\infty$
$(5x+3)^2$		0	

$$3x - 2 = 0$$

$$x = \dots$$

x	$-\infty$	$+\infty$
5		
$(3x-2)^2$		
$5(3x-2)^2$		

$$2(x+1)^2 + 1 = 0$$

$$x -\infty +\infty$$

$$2(x+1)^2 + 1$$

Exercice 10.2 — racines trop évidentes. Les tableaux de signes suivants peuvent induire en erreur par leur simplicité. Compléter les soigneusement.

<u> </u>		0
x	$-\infty$	$+\infty$
x		
x	$-\infty$	$+\infty$
$-x^2$		
x	$-\infty$	$+\infty$
$(1-x)^2$		

x	$-\infty$	$+\infty$
-x		
x	$-\infty$	$+\infty$
x + 1		
x	$-\infty$	$+\infty$
$x^2 + 1$		

Exercice 10.3

Pour chaque tableau de signe, entourez les expressions dont le signe selon les valeurs de x correspond. Plusieurs ou aucune des propositions peut correspondre

1. (A)
$$x-2$$
 (B) $x+2$ (C) $-3x+6$ (D) $5x+10$

(B)
$$x + 2$$

(C)
$$-3x + 6$$

(D)
$$5x + 10$$

2. (A)
$$x-2$$

(B)
$$x^2 - 4$$

2. (A)
$$x-2$$
 (B) x^2-4 (C) $5(x+2)^2$ (D) $(x+2)^2$

(D)
$$(x+2)^2$$

(B)
$$x^2 + 1$$

(C)
$$(x+1)^2$$

3. (A)
$$x$$
 (B) $x^2 + 1$ (C) $(x+1)^2$ (D) $(1-x)^2 + 3$

4. (A)
$$-x + 3$$

(B)
$$x^2 - 3$$

(C) le signe du produit est mal complété ou faux.

(C)
$$(x+3)^2$$

4. (A)
$$-x+3$$
 (B) x^2-3 (C) $(x+3)^2$ (D) $-2(3-x)^2$

x	$-\infty$		-2		$+\infty$
A(x)		_	0	+	
x	$-\infty$		2		$+\infty$
B(x)		+	0	+	
x	$-\infty$				$+\infty$
C(x)			+		
C(x) x	$-\infty$		+ 3		+∞

Exercice 10.4

Proposer pour chaque tableau de signe deux polynômes qui correspondent.

x	$-\infty$		5		$+\infty$
A(x)		+	0	_	

x	$-\infty$		$+\infty$
B(x)		_	

x	$-\infty$		-5		$+\infty$
C(x)		+	0	+	

Année 2024/2025

Exercice 10.5

Indiquer si le tableau de signes du produit est correctement dressé, où préciser si : (A) les zéros des facteurs sont mal ordonnées (B) l'étude de signe d'un des facteurs est fausse

x	$-\infty$	$-\frac{3}{5}$	$+\frac{3}{5}$	$+\infty$	x	$-\infty$	-	$-\frac{9}{10}$		$-\frac{3}{2}$		$+\infty$
10x - 6	_	_	0	+	10x + 9		_	0	+		+	
5x + 3	+	0 -		_	2x + 3		_		_	0	+	
(10x - 6)(5x + 3)	_	0 +	0	-	(10x+9)(2x+3)		+	0	_	0	+	
x	$-\infty$	$-\frac{4}{5}$	$-\frac{2}{9}$	$+\infty$	x	$-\infty$		$-\frac{7}{2}$		$-\frac{9}{7}$		$+\infty$
x = 9x + 2	$-\infty$	$-\frac{4}{5}$		+∞	x $2x + 7$	$-\infty$	_	$-\frac{7}{2}$	+	$-\frac{9}{7}$	+	$+\infty$
	-∞ - +	$-\frac{4}{5}$ - 0 -		:		$-\infty$	_		+	$-\frac{9}{7}$		+∞

Exercice 10.6

Déterminer les racines des polynômes donnés puis compléter le tableau de signe.

- -		
x	$-\infty$	$+\infty$
P(x) = (-2x+3)(-3x-5)		

x	$-\infty$	$+\infty$
P(x) = (5x - 65)(-2x + 7)		

x	$-\infty$	$+\infty$
P(x) = (2x + 14)(6x + 24)		

x	$-\infty$ $+\infty$
P(x) = (-3x - 72)(-4x - 96)	

x	$-\infty$ $+\infty$
P(x) = 5x(3x - 2)	

x	$-\infty$ $+\infty$
$P(x) = x^2(5x+2)$	

x	$-\infty$ $+\infty$
$P(x) = (x^2 + 1)(2 - 5x)$	

x	$-\infty$	$+\infty$
P(x) = (x+1)(x+2)(x-1)		

Exercice 10.7 On souhaite dresser le tableau de signe de la fonction polynôme P. Indiquer s'il s'agit du bon tableau à remplir et s'il est correctement dressé. Si ce n'est pas le cas préciser si :

- (A) la factorisation de P(x) n'est pas complète
- (B) les termes étudiés ne sont pas des facteurs de P(x)
- (C) oubli qu'un facteur est de signe évident ou qu'il est élevé au carré
- 1. $P(x) = (x-4)(-x-7)^2$

x	$-\infty$		-7		4		$+\infty$
x-4		_		_	0	+	
-x-7		+	0	_		_	
f(x)		_	0	+	0	_	

2. $P(x) = 3((-3x+3)^2 - 36)$

1 (10) 3 (1 310	/		<u> </u>				
x	$-\infty$		-1		3		$+\infty$
-3x - 3		+	0	_		_	
-3x + 9		+		+	0	_	
3		+		+		+	
f(x)		+	0	_	0	+	

3. $P(x) = (3x+3)((x-5)^2+4)$

x	$-\infty$		-1		5		$+\infty$
3x + 3		_	0	+		+	
$(x-5)^2+4$		+		+	0	+	
f(x)		_	0	+	0	+	

4. $P(x) = (4x+8)\left(-(-2x+6)^2 - 9\right)$

x	$-\infty$		-2		3		$+\infty$
4x + 8		_	0	+		+	
$-(-2x+6)^2$		_		_	0	_	
-9		_		_		_	
f(x)		_	0	+	0	+	

Exercice 10.8 Résoudre dans \mathbb{R} les inéquations suivantes sans utiliser un tableau de signe.

- $(I_1) (-3x 2)^2 3 < 0$ $(I_2) 7(2x + 1)^2 + 2 \ge 0$ $(I_3) (x 2)^2 \ge 0$ $(I_4) 2(-8x 3)^2 > 0$ $(I_5) (-6x 5)^2 < 0$ $(I_6) 6(3x 1)^2 + 10 \ge 0$

Exercice 10.9

Résoudre dans \mathbb{R} les inéquations suivantes après factorisation complète du membre non nul.

- $(I_1) \ 4x^2 + 5x \ge 0$ $(I_2) \ (2x+5)(x-4)(-x-8) < 0$ $(I_3) \ 6(x+1)^2(5x-3) \le 0$ $(I_4) \ -(2x-3)(2-x) > 0$ $(I_5) \ (2x^2+5)(3x-2) \le 0$ $(I_6) \ 3x(x+3) (x+3)^2 < 0$ $(I_7) \ x^3 + 2x^2 + x \ge 0$ $(I_8) \ (4x^2-9)(x+1) > 0$ $(I_9) \ (2x-\sqrt{3})(x-\sqrt{2}) > 0$

Exercice 10.10 Résoudre dans \mathbb{R} les inéquations suivantes.

- $(I_1) \ x^2 > 4$

 $| (I_7) (2x+3)^2 > (2x+3)(x-3)$ $| (I_8) (x+1)(x-3) \ge x^2 - 9$

 $(I_2) \ x^2 \le 2$

 $(I_3) \ x^2 > 3x$

- $(I_4) \ x^3 \geqslant 9x$ $(I_5) \ 3x^3 \leqslant 5x^2$ $(I_6) \ x^2 4x \leqslant -2x 1$

Exercice 10.11

Compléter les tableaux de signes suivants, vous commencerez par déterminer les racines des facteurs utilisés.

$$x - 6 = 0$$
; $x = \dots$

x	$-\infty$	$+\infty$
x-6	0	
$R(x) = \frac{1}{x - 6}$		

$$3 - 5x = 0 \; ; \qquad x = \dots$$

x	$-\infty$	$+\infty$
3-5x	0	
$R(x) = \frac{1}{3 - 5x}$		

$$3x + 2 = 0 \; ; \qquad x = \dots$$

x	$-\infty$	$+\infty$
5		
3x + 2		
$R(x) = \frac{5}{3x+2}$		

$$5x + 4 = 0 \; ; \qquad x = \dots$$

$$-x - 3 = 0 \; ; \qquad x = \dots$$

$$2x^2 + 3 = 0$$
; $x = \dots$

x	$-\infty$ $+\infty$
-2	
-x - 3	
$R(x) = \frac{-2}{-x-3}$	

x	$-\infty$	$+\infty$
-5		
$2x^2+3$		
$R(x) = \frac{-5}{2x^2 + 3}$		

Exercice 10.12 — racines trop évidentes. Les tableaux de signes suivants peuvent induire en erreur par leur simplicité. Compléter les soigneusement.

x	$-\infty$	 +∞
$\frac{1}{x}$		
x	$-\infty$	$+\infty$
$\frac{-1}{x^2}$		
x	$-\infty$	$+\infty$
$\frac{1}{(1-x)^2}$		

x	$-\infty$	$+\infty$
$\frac{-1}{x}$		
x	$-\infty$	$+\infty$
$\frac{1}{x+1}$		
x	$-\infty$	$+\infty$
$\frac{-1}{x^2+1}$		

Exercice 10.13

Pour chaque tableau de signe, entourez les expressions dont le signe selon les valeurs de x correspond. Plusieurs ou aucune des propositions peut correspondre.

1. (A)
$$x-7$$
 (B) $\frac{2}{x-7}$ (C) $\frac{1}{(x-7)^2}$ (D) $\frac{2}{(-x+7)^2}$

x	$-\infty$		7		$+\infty$
A(x)		_		+	
r	_~		2		⊥~

2. (A)
$$2x-6$$
 (B) $\frac{1}{2x-6}$ (C) $\frac{3}{(2x-6)^2}$ (D) $\frac{-5}{(2x-6)^2}$

A(x)		_		+	: : : : : : :
x	$-\infty$		3		$+\infty$
B(x)		_		_	

3. (A)
$$-4x-5$$
 (B) $\frac{3}{-4x-5}$ (C) $\frac{-5}{-4x-5}$ (D) $\frac{-2}{(-4x-5)^2}$

$$\begin{array}{c|cccc}
x & -\infty & -\frac{5}{4} & +\infty \\
\hline
C(x) & + & - & -
\end{array}$$

4. (A)
$$-4x-4$$
 (B) $\frac{-8}{-4x-4}$ (C) $\frac{2}{(-4x-4)^2}$ (D) $\frac{-5}{(-4x-4)^2}$

$$\begin{array}{c|cccc}
x & -\infty & -1 & +\infty \\
\hline
D(x) & + & + \\
\hline
x & -\infty & +\infty
\end{array}$$

+

5. (A)
$$3x + 1$$
 (B) $3x^2 + 1$ (C) $\frac{2}{(3x+1)^2}$ (D) $\frac{1}{3x^2 + 1}$

Exercice 10.14

Proposer pour chaque tableau de signe deux expressions rationnelles qui correspondent.

			<u> </u>	O		*		-		•	
x	$-\infty$	-5	$+\infty$	x	$-\infty$	$+\infty$	x	$-\infty$, , , , , , , , , , , , , , , , , , ,	7 3	$+\infty$
A(x)		+	_	B(x)		-	C(x)		+	+	

Exercice 10.15

Pour les expressions rationnelles simples ci-dessous, déterminer les racines des facteurs du numérateur et dénominateurs et compléter le tableau de signe.

	I	
x	$-\infty$	$+\infty$
$R(x) = \frac{-x}{x+12}$		

E(x)

x	$-\infty$	$+\infty$
$R(x) = \frac{2x - 5}{7 + 21x}$		

x	$-\infty$	$+\infty$
$R(x) = \frac{x^2}{5x+3}$		

x	$-\infty$	$+\infty$
$R(x) = \frac{-14x + 12}{x^2 + 3}$		

x	$-\infty$ +c	∞
$R(x) = \frac{(x-1)(2x+1)}{1-9x}$		

x	$-\infty$	$+\infty$
$R(x) = \frac{5+x}{(x-6)(7x+8)}$		

Exercice 10.16 On souhaite dresser le tableau de signe de la fonction rationnelle f. Indiquer s'il s'agit du bon tableau à remplir et s'il est correctement dressé. Si ce n'est pas le cas préciser si :

- (A) les termes étudiés ne sont pas des facteurs de f(x) (factorision non complète)
- (B) oubli qu'un facteur est de signe évident ou qu'il est élevé au carré
- (C) oubli de valeurs interdites ou de zéros.

1 f(f(x) =	10x + 6
1.	J(x) =	$-(x+7)^2-9$

-(x+1)							
x	$-\infty$		-7		$-\frac{3}{5}$		$+\infty$
10x + 6		_		_	0	+	
$-(x+7)^2$		_	0	-		_	
-9		_		_		_	
f(x)		_		_	0	+	

2.
$$f(x) = \frac{-8x+6}{-(-x+8)^2-25}$$

(x + 0)	20				
x	$-\infty$		$\frac{3}{4}$		$+\infty$
-8x + 6		+	0	_	
$-(-x+8)^2-25$		_		_	
f(x)		_	0	+	

3.
$$f(x) = \frac{-x+2}{(-2x-7)^2}$$

\							
x	$-\infty$		$-\frac{7}{2}$		2		$+\infty$
-x + 2		+		+	0	_	
-2x - 7		+	0	_		-	
f(x)		+		_	0	+	
E	2						

4.
$$f(x) = 1 + \frac{-5x - 2}{5x - 10}$$

	10						
x	$-\infty$		$-\frac{2}{5}$		2		$+\infty$
1		+		+		+	
-5x-2		+	0	_		_	
5x - 10		+		+	0	_	
f(x)		+		_		+	

Exercice 10.17

Résoudre dans $\mathbb R$ les inéquations rationnelles simples suivantes.

$$(I_1) \frac{2x}{6x+1} < 0$$

$$(I_2) \frac{-3x+9}{-4x+7} < 0$$

$$(I_3) \frac{x^2+4x}{2x^2+3} > 0$$

$$(I_2) \ \frac{-3x+9}{-4x+7} < 0$$

$$(I_3) \ \frac{x^2 + 4x}{2x^2 + 3} > 0$$

$$\left| (I_4) \right| \frac{2x-4}{x+2} > 0$$

$$(I_5) \ \frac{-2x+8}{3x-2} < 0$$

$$(I_6) \ \frac{2x^2}{-(x+1)(x+3)} \geqslant 0$$

$$\begin{vmatrix} (I_4) & \frac{2x-4}{x+2} > 0 \\ (I_5) & \frac{-2x+8}{3x-2} < 0 \\ (I_6) & \frac{2x^2}{-(x+1)(x+3)} \ge 0 \end{vmatrix}$$

$$(I_7) & \frac{(x+1)(x-2)}{x^2+2} \le 0 \\ (I_8) & \frac{-5x}{(2x-7)^2} \ge 0 \\ (I_9) & \frac{1+2x^2}{7-x} \ge 0$$

$$(I_8) \frac{-5x}{(2x-7)^2} \geqslant 0$$

$$(I_9) \ \frac{1+2x^2}{7-x} \geqslant 0$$

Exercice 10.18

Résoudre dans \mathbb{R} les inéquations suivantes.

$$(I_1) \frac{1}{x} > 2$$

$$(I_1) \frac{1}{x} > 2$$

$$(I_2) \frac{1}{x^2} < 3$$

$$(I_3) \frac{3}{x} \geqslant 5x$$

$$(I_3) \ \frac{x}{3} \geqslant 5x$$

$$(I_4) \frac{4}{1-5x} < 2$$

$$\left| (I_5) \right| 3 \leqslant \frac{-6}{7x - 4}$$

$$(I_7) \frac{3x+1}{6-5x} \geqslant 2$$

$$| (I_7) \frac{3x+1}{6-5x} \geqslant 2$$

$$| (I_8) \frac{3x+1}{5-2x} \leqslant -3$$

$$| (I_9) \frac{x+5}{x-1} \leqslant \frac{x-3}{x+2}$$

$$(I_9) \frac{x+5}{x-1} \leqslant \frac{x-5}{x+2}$$