吉林大学 2016-2017 学年第一学期"数学分析 I"期末复习试题

共七道大题 满分 100 分 时间 180 分钟

一、(共8分)叙述确界定理并用其证明单调有界数列必然收敛.

二、(共10分)用定义证明

(1)
$$\lim_{n\to\infty} \frac{2n^2+7}{n^2-8} = 2$$
; (2) $\lim_{x\to 2} \frac{x+2}{x^2-1} = \frac{4}{3}$.

三、(共25分)计算下列各题.

(1)
$$\lim_{x \to +\infty} x[e - (1 + \frac{1}{x})^x];$$
 (2) $\lim_{n \to \infty} \frac{1}{\ln n} \sum_{k=1}^n \frac{1}{k};$ (3) $\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4};$

(4)
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2-1}}$$
; (5) $\int \frac{\mathrm{d}x}{1+x^3}$.

四、(共24分)按要求计算下列导数或微分.

(1)
$$\stackrel{\text{def}}{\not\sim} f(x) = \arctan \sqrt{x^2 - 1} - \arccos \frac{1}{x}, \quad \stackrel{\text{def}}{\not\sim} f'(x);$$

(3) 已知函数
$$y = f(x)$$
 在极坐标 (r,θ) 中的方程为 $r = a(1+\cos\theta), \theta \in (0,\frac{2\pi}{3})$,求 $f'(x)$;

五、(共16分)证明题.

(1) 已知数列
$$\{x_n\}$$
 满足 $x_0 = 1, x_{n+1} = \frac{x_n(x_n^2 + 12)}{3x_n^2 + 4}$,试讨论其敛散性,并说明理由.若其收敛,

请求出其极限;

(2) 设函数
$$f(x)$$
 在区间[1,+∞) 可微,且 $\lim_{x\to +\infty} f'(x) = 0$,证明 $\lim_{x\to +\infty} \frac{f(x)}{x} = 0$.

六、(共 12 分) 设函数 $f(x) = (x-2)e^{-\frac{1}{x}}$.

- (1) 求函数 f(x) 的单调区间;
- (2) 求函数 f(x) 的凹凸区间;
- (3) 求函数 f(x) 的渐近线.

七、(共 5 分) 设函数 f(x) 在区间 $[0,+\infty)$ 一致收敛,且对 $\forall \alpha > 0$ 有 $\lim_{n\to\infty} f(\alpha n) = 0$,证明 $\lim_{x\to +\infty} f(x) = 0$.