#7: Weighted Enumerative Search

Sankha Narayan Guria

EECS 700: Introduction to Program Synthesis

Scaling enumerative search

Prune

Discard useless subprograms

$$m * (N - 1)^2$$

Prioritize

Explore more promising candidates first

Order of search

- Enumerative search explores programs by depth / size
 - Good default bias: small solution is likely to generalize
 - But far from perfect
- Result:
 - Scales poorly with the size of the smallest solution to a given spec

Top-down search (revisited)

Turn off the rightmost sequence of 1s: 000101 \rightarrow 00100

01010 \rightarrow 01000

10110 \rightarrow 10000

S -> $0 \mid 1 \mid x \mid$ S + S

S - S

S & S

X&(1+(x|x-5))

x&(1+(x|x-1))

Explores many unlikely programs!

S << S

S >> S

Biasing the search

- Idea: explore programs in the order of likelihood, not size
- Q1: how do we know which programs are likely?
 - hard-code domain knowledge
 - learn from a corpus of programs
 - learn on the fly
- Q2: how do we use this information to guide search?
 - our focus today!

Weighted enumerative search

Example: DeepCoder

Balog et al. DeepCoder: Learning to Write Programs. ICLR'17

Probabilistic Grammars

Weighted top-down search

Weighted bottom-up search

DeepCoder

Input: IO-
$$[-17 -3 \ 4 \ 11 \ 0 \ -5 \ -9 \ 13 \ 6 \ 6 \ -8 \ 11]$$
 examples $\rightarrow [-12 \ -20 \ -32 \ -36 \ -68]$

Output: Program in a list DSL

```
a <- [int]
b <- Filter (<0) a
c <- Map (*4) b
d <- Sort c
e <- Reverse d
```

DeepCoder

Output: Program in a list DSL
Goal: Minimize sum of component
weights

DeepCoder: search strategies

- Top-down DFS
 - Picks expansions for the current non-terminal in the order of probability
- Sort-and-add
 - start with N most probable functions
 - when search fails, add next N functions
- Pros and cons?

Recall: goal is to explore programs in the order of total weight!

Weighted enumerative search

DeepCoder

Probabilistic Grammars
Weighted top-down search

Weighted bottom-up search

Probabilistic Language Models

- Originated in Natural Language Processing
- In general: a probability distribution over sentences in a language
 - P(s) for $s \in L$
- In practice:
 - must be in a form that can be used to guide search
 - for enumerative search: probabilistic (or weighted) grammars

Probabilistic (Tree) Grammar

- Production probability: $\wp: \mathbb{R} \times T_{\Sigma}(N) \to [0,1]$
 - for example: $\wp(S \to x \mid S) = 0.3$ $\wp(S \to x \mid x S) = 0.0001$
 - only defined for contexts where rule's LHS is the leftmost non-terminal
 - probabilities of all productions in the same context add up to 1:

$$\forall \tau. S \to^* \tau \wedge \tau \notin T_{\Sigma} \Rightarrow \sum_{r \in dom(P(.|\tau))} P(r \mid \tau) = 1$$

- Term probability:
 - let $S = \tau_0 \to^{r_1} \tau_1 \to^{r_2} \dots \to^{r_n} \tau_n = \tau$ be the unique derivation of partial program τ $\wp(\tau) = \prod_i \wp(r_i \mid \tau_i)$

Types of context

$$\wp: \mathbb{R} \times T_{\Sigma}(N) \to [0,1]$$

- In general, can depend on any part of the context term!
- But this is unwieldy
 - bad for learning
 - bad for (some) search algorithms
- In practice we want to restrict the context
 - PCFG
 - n-grams
 - PHOG

Probabilistic Context-Free Grammars (PCFG)

		$\wp(R)$
S ->	0	0.13
S ->	1	0.13
S ->	X	0.18
S ->	S + S	0.11
S ->	S - S	0.11
S ->	S & S	0.12
S ->	SS	0.12
S ->	S << S	0.05
S ->	S >> S	0.05

$$\wp: \mathbb{R} \to [0,1]$$

- Encodes the popularity of each production (operation)
 - here: variable more likely than constant, plus more likely than shift

Probabilistic Context-Free Grammars (PCFG)

		$\wp(R)$
S ->	0	0.13
S ->	1	0.13
S ->	X	0.18
S ->	S + S	0.11
S ->	S - S	0.11
S ->	S & S	0.12
S ->	SS	0.12
S ->	S << S	0.05
S ->	S >> S	0.05

N-grams

```
N[left sibling, parent] -> rhs
```

```
\wp
S[x,-] \rightarrow 1
                            0.72
S[x,-] \rightarrow x
                            0.02
S[x,-] \rightarrow S + S
                          0.12
S[x,-] \rightarrow S - S
                            0.12
S[1,+] -> 1
                            0.26
S[1,+] \rightarrow X
                            0.25
S[1,+] \rightarrow S + S
                            0.19
S[1,+] \rightarrow S - S
                            0.08
```

- Encodes likelihood of a production in a fixed context
 - fixed set of AST nodes determined relative to the focus nonterminal
 - e.g. left sibling and parent

here: x is not likely in x - S? but likely in 1 + S?

N-grams

Probabilistic Higher-Order Grammar (PHOG)

- The same fixed context might not work for every problem
- Idea:
- 1. 1. define context as a program that traverses the AST
- 2. 2. learn the best context together with probabilities

Bielik, Raychev, Vechev. PHOG: Probabilistic Model for Code. ICML'16

Conditional models

- Unconditional model
- Which programs are more natural in this DSL?

- + easier to get data / learn
- need more context to capture interesting properties

- Conditional model
- Which programs are more likely to solve a given spec?
- harder to get data / learn
- can get away with less context

Weighted enumerative search

DeepCoder

Probabilistic Grammars

Weighted top-down search

Lee, et al: Accelerating Search-Based Program Synthesis using Learned Probabilistic Models. PLDI'18

Weighted bottom-up search

Barke, Peleg, Polikarpova. Just-in-Time Learning for Bottom-Up Enumerative Synthesis. OOPSLA'20

Shi, Bieber, Singh. TF-Coder: Program Synthesis for Tensor Manipulations. arXiv

Weighted top-down search

Wanted: explore programs in the ^{3e-5} order of probability

$$\wp(t) = \prod_{(r_i, \tau_i) \in S \to {}^*t} \wp(r_i \mid \tau_i)$$

Hard to maximize multiplicative cost... but easy to minimize additive cost!

= shortest path

$$cost(t) = \sum_{(r_i, \tau_i) \in S \to *t} weight(r_i \mid \tau_i)$$

$$-\log_2 \mathcal{D}(t) = \sum_{(r_i, \tau_i) \in S \to *t} -\log_2 \mathcal{D}(r_i \mid \tau_i)$$

Weighted top-down search

Assigns weights to edges:

$$weight(r_i \mid \tau_i) = -\log_2 \wp(r_i \mid \tau_i)$$

Now cost(t) < cost(t') iff t is more likely than t'!

We can use shortest path algo (e.g. Dijkstra) to search by cost!

Weighted top-down search (Dijkstra)

```
top-down(\langle \Sigma, N, R, S \rangle, [i \rightarrow o]) {
                                                  wl now stores candidates (nodes)
  wl := [\langle S, 0 \rangle] \leftarrow
                                                  together with their costs
  while (wl != [])
     <t,c> := wl.dequeue min(c);
                                                   Dequeue the node with minimal cost
     if (complete(\tau) \&\& \tau([i]) = [o])
       return τ;
     wl.enqueue(unroll(\tau,c));
unroll(\tau,c) {
  wl' := []
                                                   Distance to a new node: add the
  A := left-most nonterminal in \tau
                                                   w(R)
  forall (A \rightarrow rhs) in R:
     wl' += \langle \tau[A \rightarrow rhs], c + w(A \rightarrow rhs|\tau) \rangle
  return wl';
```

Can we do better?

Dijkstra: explores a lot of intermediate nodes that don't lead to any cheap leaves

A*: introduce heuristic function h(p) that estimates how close we are to the closest leaf

Weighted top-down search (A*)

```
top-down(\langle \Sigma, N, R, S \rangle, [i \rightarrow o]) {
  w1 := [\langle S, 0, h(S) \rangle]
  while (wl != [])
      \langle \tau, c, h \rangle := wl.dequeue_min(c + h);
      if (complete(\tau) \&\& \tau([i]) = [o])
        return τ;
      wl.enqueue(unroll(\tau,c));
unroll(\tau,c) {
  wl' := []
  A := leftmost nonterminal in τ
   forall (A \rightarrow rhs) in R:
     wl' += \langle \tau[A \rightarrow rhs], c + w(A \rightarrow rhs|\tau), h(\tau[A \rightarrow rhs]) \rangle
   return wl';
```

Roughly how close is this program to the closest leaf

Weighted enumerative search

DeepCoder

Balog et al. DeepCoder: Learning to Write Programs. ICLR'17

Weighted top-down search

Lee, et al: Accelerating Search-Based Program Synthesis using Learned Probabilistic Models. PLDI'18

Weighted bottom-up search

Barke, Peleg, Polikarpova. Just-in-Time Learning for Bottom-Up Enumerative Synthesis. OOPSLA'20

Shi, Bieber, Singh. TF-Coder: Program Synthesis for Tensor Manipulations. TOPLAS'22

Bottom-up search (revisited)

```
bottom-up (\langle \Sigma, N, R, S \rangle, [i \rightarrow o]):
  bank[A,d] := {} forall A, d
  for d in [0..]:
     forall (A \rightarrow rhs) in R:
        forall p in new-terms(A \rightarrow rhs, d, bank):
                                                                          Search by
           if (A = S \land p([i]) = [o]):
                                                                          depth
             return p
           bank[A,d] += p;
new-terms(A \rightarrow \sigma(A_1...A_n), d, bank):
 if (d = 0 \land n = 0) yield \sigma
 else forall \{d_1,...,d_n\} in [0...d-1]^n s.t. \max(d_1,...,d_n) = d-1:
         forall \langle p_1, ..., p_n \rangle in bank [A_1, d_1] \times ... \times bank [A_n, d_n]:
            yield \sigma(p_1,...,p_n)
```

Bottom-up variations

```
new-terms(A \rightarrow \sigma(A_1...A_n), d, bank):
 if (d = 0 \land n = 0) yield \sigma
 else forall \{d_1,...,d_n\} in [0...d-1]^n s.t. \max(d_1,...,d_n) = d-1:
                                                                                                             by depth
          forall \langle p_1, ..., p_n \rangle in bank [A_1, d_1] \times ... \times bank [A_n, d_n]:
             yield \sigma(p_1,...,p_n)
new-terms(A \rightarrow \sigma(A_1...A_n), s, bank):
 if (s = 1 \land n = 0) yield \sigma
 else forall (s_1,...,s_n) in [0...s-1]^n s.t. sum(s_1,...,s_n) = s-1:
                                                                                                             by size
          forall \langle p_1, ..., p_n \rangle in bank [A_1, s_1] \times ... \times bank [A_n, s_n]:
             yield \sigma(p_1,...,p_n)
new-terms (A \rightarrow \sigma(A_1...A_n), c, bank):
 budget = c - w(A \rightarrow \sigma(A_1...A_n))
 if (budget = 0 \land n = 0) yield \sigma
                                                                                                             by cost!
 else forall \langle c_1,...,c_n \rangle in [0... budget]<sup>n</sup> s.t. sum(c_1,...,c_n) = budget:
          forall \langle p_1,...,p_n \rangle in bank [A_1,c_1] \times ... \times bank [A_n,c_n]:
             yield \sigma(p_1,...,p_n)
```

Bottom-up by cost: discussion

- What kind of cost functions are supported?
 - positive
 - integer
 - context-free

Bottom-up: example

by depth

```
s= 1: x
      sort(x)
s =2:
      X + X
s = 3:
      sort(sort(x))
s = 4: sort(x + x)
      sort(sort(x)))
      x + sort(x)
      sort(x) + x
s = 5: ...
```

```
cost
                         10
 L ::= sort(L)
        L + L
        X
       by cost
c= 1: X
c = 2,3,4:
c = 5: x + x
c = 6,7,8:
c = 9: x + (x + x)
       (x + x) + x
c = 10:
c = 11: sort(x)
c = 12:
 c = 13: x + (x + (x + x))
        (x + x) + (x + x)
```

(x + (x + x)) + x

Weighted search

Top-down

- Supports real-valued weights: optimal enumeration order
- Supports context-dependent weights

Bottom-up

 Inherits benefits of bottom up: dynamic programming, OE