MINERIA DE DATOS

Estudio sobre las energías renovables en España

Elena Ballesteros
Francisco Javier Luna
Antonio Gómez
Sergio Herreros
Pedro Sánchez

CONTENIDOS

- Introducción
- Metodología
- Entregables
- Hipótesis
- Conclusiones

INTRODUCCIÓN

Problema: Aumento del consumo y precio de la electricidad.

Solución: Búsqueda de alternativas sostenibles, como el autoconsumo energético mediante energías renovables.

Objetivo: Identificar características demográficas y geográficas de clientes potenciales en España.

METODOLOGÍA

- Iterativo/incremental
- 3 entregables

ENTREGABLES

ENTREGABLE 1

- Comprensión del dominio.
- Recogida de datos.
- Hipótesis y objetivos del estudio.

ENTREGABLE 2

Arquitectura Medallion.

- Procesamiento.
- Limpieza.
- Transformación

ENTREGABLE 3

- Minería de datos.
- Interpretación y conocimiento.

Hipótesis 1:

LAS PROVINCIAS CON UNA EDAD MEDIA MENOR Y UNA RENTA MEDIA POR HOGAR MAYOR, SUELEN ESTAR MÁS CONCIENCIADAS CON EL USO DE ENERGÍAS RENOVABLES Y UTILIZAN MÁS DISPOSITIVOS QUE APROVECHAN ESTE TIPO DE ENERGÍA.

¿POR QUÉ PENSAMOS QUE ESTO ES ASÍ?

- Las generaciones más jóvenes, han crecido con una mayor conciencia sobre el cambio climático y la sostenibilidad.
- Los jóvenes tienen más tiempo para amortizar la inversión.
- Se necesita de una inversión inicial considerable.

ESTUDIO DE CORRELACIÓN

RELACIÓN NEGATIVA MODERADA ENTRE LA EDAD MEDIA Y EL PORCENTAJE DE HOGARES CON DISPOSITIVOS DE ENERGÍA RENOVABLE.

	Feature 1	Feature 2	Pearson Correlation	Pearson p-value	Spearman Correlation	Spearman p-value
0	Renta media por hogar	Edad media	-0.164277	0.269846	-0.113205	0.448667
1	Renta media por hogar	Porcentaje de hogares con dispositivos de ener	0.254432	0.084373	0.312905	0.032234
2	Edad media	Porcentaje de hogares con dispositivos de ener	-0.444344	0.001754	-0.511101	0.000241

CLUSTERING JERÁRQUICO

El clustering jerárquico agrupa los datos en un dendrograma que muestra la relación y jerarquía entre los clusters, desde la raíz (representa todos los elementos) hasta las hojas (corresponden a los grupos más similares).

METHOD: WARD

SILHOUETTE COEFFICIENT: 0.254

Resultados

HIPÓTESIS I VALIDADA!

Hipótesis 2:

EXISTE UNA RELACIÓN ENTRE EL PORCENTAJE DE VIVIENDAS DE BAJO, MEDIO Y ALTO CONSUMO DE UNA PROVINCIA Y SU TENDENCIA A ADOPTAR DISPOSITIVOS RENOVABLES

¿POR QUÉ PENSAMOS QUE ESTO ES ASÍ?

- Las viviendas de bajo consumo o esporádicas suelen ser viviendas secundarias
- Propietarios de viviendas de alto consumo suelen tener mayor poder adquisitivo
- Las viviendas de medio consumo suponen un equilibrio coste-beneficio

Tarjeta de datos

Variables	Tipo de dato	
Provincias	String	
Índice de viviendas renovables	Float	
Índice de viviendas de bajo consumo	Float	
Índice de viviendas de medio consumo	Float	
Índice de viviendas de alto consumo	Float	

ESTUDIO DE CORRELACIÓN

RELACIÓN POSITIVA MODERADA ENTRE EL ÍNDICE DE VIVIENDAS RENOVABLES Y EL DE VIVIENDAS DE MEDIO CONSUMO

Variable 1	Variable 2	Correlación	
Índice de viviendas renovables	Índice de viviendas de bajo consumo	-0.19	
Índice de viviendas renovables	Índice de viviendas de medio consumo	0.4	
Índice de viviendas renovables	Índice de viviendas de alto consumo	-0.029	

K-MEANS

• Se ha utilizado el elbow method y número de clusters óptimo es 3

¿HAN SIDO LOS CLÚSTERES FROMADOS CON SENTIDO O HAN SIDO FORZADOS?

REGRESIÓN LINEAL SIMPLE

- Un modelo para cada feature
- Se reducen los sesgos en las predicciones debidos a la multicolinealidad entre variables altamente correlacionadas

RESULTADOS

HIPÓTESIS 2 VALIDADA!

Hipótesis 3:

EN UN NÚCLEO FAMILIAR COMPUESTOS POR MÁS MIEMBROS ES MÁS PROBABLE QUE SE INVIERTA EN ENERGÍA RENOVABLE

¿POR QUÉ PENSAMOS QUE ESTO ES ASÍ?

- Un núcleo familiar compuesto por más miembros tiene un consumo energético más elevado.
- No se depende de la red eléctrica ni de compañías eléctricas
- Incentivos por instalar tecnología renovable

TARJETA DE DATOS

NOMBRE DEL CAMPO

TIPO DE DATO

Provincias

String

Índice DER

Float

Tipos de núcleos familiares

Familia monoparental con 0 hijos

Float

• •

(9 tipos)

• Pareja casada con 2 hijos o más

ESTUDIO DE CORRELACIÓN

Variable 1	Variable 2	Correlación	
ÍNDICE DER	Familia monoparental con 0 hijos	-0,464	
ÍNDICE DER	Pareja casada con 0 hijos	-0,534	
ÍNDICE DER	Pareja casada con 2 hijos o más	0,366	
ÍNDICE DER	Pareja no casada con 2 hijos o omás	0,548	

Correlación negativa

Correlación positiva

K-MEANS

- Análisis de Componentes Principales (componentes = 2).
- ¿Mejor número de clústeres? Elbow Method > Codo = 3

SILHOUETTE COEFFICIENT: 0,366

¿HAN SIDO LOS CLÚSTERES FROMADOS CON SENTIDO O HAN SIDO FORZADOS?

ANÁLISIS INTRACLÚSTER

• Valores medios por clúster

	Clúster 0	Clúster 1	Clúster 2
Índice DER	5,04%	3,79%	6,74%
Familia monoparental con 0 hijos	3,8%	5,17%	3,7%
Familia monoparental con 2 hijos o más	3,86%	3,46%	4,55%
Pareja no casada con 2 hijos o más	2,53%	1,95%	2,89%

ANÁLISIS INTERCLÚSTER

Boxplots

- Outliers del clúster 0: Soria y Huelva.
- Soria tiene un alto porcentaje familias monoparentales con 0 hijos.
- Huelva es de las provincias del clúster 0 con mayor porcentaje de familias compuestas por pocos miembros.

ANÁLISIS INTERCLÚSTER

- Análisis de Componentes Principales (componentes = 2).
- ¿Mejor número de clústeres? Elbow Method Codo = 3

SILHOUETTE COEFFICIENT: 0,366

¿HAN SIDO LOS CLÚSTERES FROMADOS CON SENTIDO O HAN SIDO FORZADOS?

HIPÓTESIS 3 VALIDADA!

Hipótesis 4:

LAS PROVINCIAS AL SUR DE MADRID TIENDEN A UTILIZAR MENOS ENERGÍAS RENOVABLES

Tarjeta de datos

Variables % Dispositivos Renta Edad media Producción media Nº familias 1 padre - 0 hijos Nº familias 1 padre - 1 hijo Nº familias 1 padre - 2 hijos Nº familias 2 padres - 0 hijos Nº familias 2 padres - 1 hijo Nº familias 2 padres - 2 hijos

¿POR QUÉ PENSAMOS QUE ESTO ES ASÍ?

- El clima del norte es más frío.
- En el norte hay más desarrollo industrial lo que puede aumentar la renta.
- ¿Influyen las tradiciones y el tipo de familias?
- Estudiar todas las variables de nuestros datasets.

Dendrograma jerárquico

CLUSTERING JERÁRQUICO

Método: WARD

Coeficiente Silhouette: 0.329

Resultados

iHIPÓTESIS 4 NO VALIDADA!

Hipótesis 5:

¿QUÉ CANTIDAD DE PLACAS SOLARES FOTOVOLTAICAS SE NECESITARÍAN INSTALAR PARA ABASTECER EL CONSUMO ELÉCTRICO DE LOS HOGARES DE CASTILLA-LA MANCHA EN EL AÑO 2028?

¿POR QUÉ NOS INTERESA SABER ESTO?

- El aumento del precio energético provoca una búsqueda de alternativas para abastecer esa necesidad.
- La instalación de placas puede ser un mercado en auge y una buena idea de negocio.

TARJETA DE DATOS

NOMBRE DEL CAMPO

TIPO DE DATO

DESCRIPCIÓN

Provincias

String

Las 5 provincias

Potencia MWh

Float

Potencia eléctrica anual de 1m² de placa fotovoltaica

X

Float

Consumo eléctrico en MWh para el año X (de 2014 a 2023)

Modelos evaluados:

- RandomForest
- GradientBoosting
- Regresión Polinomial
- Decision Tree

Criterios de selección:

- Coeficiente de determinación (R²)
- Error cuadrático medio (MSE)

Seleccionado: RandomForest

R²: 0.982

SELECCIÓN DEL MODELO DE PREDICCIÓN

Resultados Predicción 2028

★ Toledo: 3.260.288 placas

★ Ciudad Real: 2.035.302 placas

★ Albacete: 1.420.673 placas

★ Guadalajara: 1.076.719 placas

★ Cuenca: 664.122 placas

Para ser sostenible con energía solar Castilla La Mancha necesitaría 8.457.102 m² de placas fotovoltaicas

iGRACIAS!

¿ALGUNA PREGUNTA?