(NATURAL SCIENCE)

Vol. 62 No. 8 JUCHE105 (2016).

룡문대굴 풍년탑의 변색을 수복하기 위한 실험적연구

안은경, 황보현

룡문대굴 풍년탑은 돌순으로서 천정에서 떨어지는 탄산수용액에 의하여 동굴바닥에 형 성된것이다.

$$H_2O + CO_2 + CaCO_3 \rightleftharpoons Ca(HCO_3)_2$$

반응식에서 보는바와 같이 CO_2 의 분압이 높아지면 반응은 오른쪽으로 진행되면서 배태암의 $CaCO_3$ 이 물에 풀리며 물의 온도가 높아지면 $Ca(HCO_3)_2$ 이 분해되면서 $CaCO_3$ 결정이 형성된다.[1, 4] 이때 물에 포함된 이질물질들이 $CaCO_3$ 결정립자들사이에 끼여들면서 $CaCO_3$ 의 색을 변화시키게 된다. 이와 같이 룡문대굴 풍년탑을 이루고있는 방해석이 검은색으로 변색되므로 관상적가치가 떨어진다. 그러므로 우리는 풍년탑의 표면에서 $CaCO_3$ 결정을 빠른 속도로 형성시키기 위한 연구를 하였다.

탄산수용액에서 CaCO₃의 용해도가 온도에 반비례한다는것은 잘 알려져있다.[5] 그런데 CaCO₃은 온도차에 따르는 석출량이 매우 작다.[2, 3] 그러므로 우리는 방해석결정을 형성시키기 위하여 소석회를 리용하였다.

탄산수용액에서 소석회의 용해도변화는 그림 1과 같다.

그림 1에서 보는바와 같이 온도가 높아짐에 따라 $Ca(OH)_2$ 용해량이 점차 줄어들었으며 온도차에 따르는 석출량도 방해석보다 많다.

방해석결정을 다음과 같은 방법으로 형성시켰다.

먼저 온도 5℃이하의 물에 소석회가루(0.71μm이하)를 적당한 량만큼 넣고 교반시킨 다음 CO₂가스를 불어넣었다. 용액이 CO₂로 포화된 후 려과하여 얻은 Ca(OH)₂용액을 샤레 2개에 갈라넣었다. 이때 1개 샤레에는 풍년탑시료를 넣었다. 다음 2개의 샤레를 항온조((15±1)℃)에서 48h동안 방치하였다. 실험결과 약 10℃의 온도차로 인하여 2개의 샤레에서 모두 방해석결정들이 성장하였다.(그림 2, 3)

그림 1. 탄산수용액에서 Ca(OH)₂ 용해도의 온도의존성

그림 2. CO₂로 포화된 Ca(OH)₂용액에서 석출된 방해석결정(×75)

CO₂로 포화된 Ca(OH)₂용액으로 처리하지 않은 시료와 처리한 시료의 현미경(《CARL ZEISS JENA》) 사진은 그림 3과 같다.

그림 3. 풍년탑시료의 현미경사진(×75) 기 처리하지 않은 경우, L) 처리한 경우

그림 3에서 보는바와 같이 CO_2 로 포화된 $Ca(OH)_2$ 용액으로 처리하지 않은 시료의 표면에서는 결정들이 보이지 않지만 처리한 풍년탑시료의 표면에서는 흰색의 미세한 방해석결정들이 성장하였다.

맺 는 말

룡문대굴 풍년탑의 변색부위에서 방해석결정을 형성시키는 방법으로 본래의 상태를 파괴하지 않고 원상대로 수복할수 있다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 53, 4, 172, 주체96(2007).
- [2] 량흥모; 광물의 결정화학적성질과 그 응용, 김일성종합대학출판사, 27~43, 1994.
- [3] 량흥모 등; 지질 및 지리과학, 2, 51, 주체101(2012).
- [4] Derek Ford et al.; Karst Hydrogeology and Geomorphology, John Wiley & Sons Ltd, 40~45, 2007.
- [5] William B. White et al.; Encyclopedia of Caves, Elsevier, 85~89, 2012.

주체105(2016)년 4월 5일 원고접수

Experimental Research for Restoring Discolorment of Phungnyon Tower in Ryongmun Cavern

An Un Gyong, Hwangbo Hyon

We made an experiment for restoring discolorment of Phungnyon Tower by using temperature dependence of $Ca(OH)_2$ solubility in the water solution saturated with CO_2 .

According to our experiment, we can restore discolored position by growing calcite crystal in the surface of Phungnyon Tower of Ryongmun Cavern.

Key words: temperature dependence, discolorment, carbornated water solution