PEP 552 Theory of Relativity

Week 1	Special Relativity Basics
	- Relativity as a coordinate symmetry
	- Coordinate symmetries
	- Postulates of special relativity
	- Lorenz transformations
Week 2	Geometric Formulation of Special Relativity
WCCR 2	- Minkowski spacetime
	- Four vectors and particle dynamics
	,
Week 3	Equivalence Principle
	- Newton's gravity
	- Strong equivalence principle
	- Paradoxes
Week 4	Metric Description of Curved Space
	- Metric tensor
	- Curvature
Week 5	Geometric Theory of Gravity
	- Curved spacetime and gravitational field
	- Geodesic equation as equation of motion
	- Tidal forces and curvature of spacetime
Week 6	Schwarzschild geometry
	- Spherically symmetric metric tensor
	- Tests of general relativity
Week 7	Tensors in special relativity
	- Covariant and contravariant components
	- Covariant formulation of electromagnetism
	- Energy-momentum tensor
Week 8	Tensors in general relativity
	- Derivatives in curved space
	- Christoffel symbols
	- Parallel transport
	- Curvature tensor
Week 10	Linearized theory of metric field
	- Gauge transformation
	- Plane waves and polarization tensor
	- Emission and detection of gravitational waves

Week 11	Black holes
	- Non-rotating black holes
	- No-hair theorem
	- Kerr black holes
	- Black hole thermodynamics
Week 12	Homogenous and isotropic universe
	- Cosmological principle
	- Robertson-Walker spacetime
Week 13	Expanding universe
	- Friedmann equations
	- Big-bang cosmology
	- Cosmic microwave background
Week 14	Inflation and accelerating universe
	- Inflationary epoch
	- Cosmological constant revisited
	- Dark energy

Textbook:

Ta-Pei Cheng, *Relativity, Gravitation and Cosmology: A Basic Introduction*, Oxford University Press, 2010.