音樂生成基礎

Deep-people #9

前回のおさらい

AutoEncoder

- 音->音の変換タスクに用いる
- 情報を圧縮してまた復元というプロセスを辿る
- 特徴抽出や音源分離・合成に用いられる
- エンコーダが畳み込みの場合はデコーダでは転置畳み込みを用いる

今日の参考資料

- Juhanの資料
- https://mac.kaist.ac.kr/~juhan/gct634/Slides/
 [week12-1]%20symbolic%20music%20generation.pdf

今回のお話

・音楽を生成する方法

- いままでは存在する音響信号から情報を抽出・分析したり音を変換する方法にフォーカス
- 0から新しく音楽を作り出すという問題も存在
 - Label-to-Score, Score-to-MIDI, Midi-to-Audio etc...

音樂生成

• Symbolic music generation; 楽譜ドメインでの生成

今回はこっち

- 音楽を<u>楽譜</u>の形で生成(ほとんどはMIDI)
- 音楽言語モデル(Musical LM)に従って生成する -> 自然言語処理の方法が応用される
- RNNやTransformer等, 系列を扱うモデルがよく用いられる

• Audio generation; 音響信号ドメインでの生成

- 音楽を波形 or スペクトログラムの形で生成
- 連続的な値をとる波形 or スペクトログラムを生成 -> 画像処理の方法が応用される
- クオリティが大事;GANやDiffusion model等が用いられる

音楽生成~自然言語処理との共通点~

言語モデルで捉えることができる

自然言語処理 における言語モデル

ある単語の次の単語を予測

音楽における言語モデル

ある音符の次の音符を予測

言語モデル

$$p(x_t|x_1,...,x_{t-1})$$

 x_t : input representation vector

音/単語の並べ方の ルール (文法) を 表現するもの

音楽生成~自然言語処理との差異①~

音楽の場合、多声を扱うことも

- メロディと伴奏が存在、依存関係も当然存在
- MIDIだと伴奏があろうが1次元で表現
- 同時発音をどう考慮すればいいのか?

Time	Message	Channel	Note	Velocity
(Ticks)			Number	
60	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	63	100
0	NOTE ON	2	51	100
0	NOTE ON	2	39	100
240	NOTE OFF	1	63	0
0	NOTE OFF	2	51	0
0	NOTE OFF	2	39	0

音楽生成~自然言語処理との差異②~

Harmony

スケール、リズム、ハーモニーという制約条件

- グローバルな調性が存在、音符の調の中に存在する音の方が頻度が高くなる傾向
- 同時に発音される音高はコードに依存
- リズムパターンの中で音符は配置される

音楽生成~自然言語処理との差異③~

楽曲の構成(特に長期にわたる繰り返し)の存在

- ・ 音楽は構造を持つことが多い (ジャンルにも依るけど)
 - 繰り返しとその変形
 - ポピュラーならAメロ-Bメロ-サビ,クラシックなら AABB…等
 - ・ソナタ形式、ロンド形式等、特有の構造
- このような長期の構造の学習はとてもチャレンジング

モデルへの入力表現

ファイル形式

MIDI

60	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	63	100
0	NOTE ON	2	51	100
0	NOTE ON	2	39	100
240	NOTE OFF	1	63	0
0	NOTE OFF	2	51	0
0	NOTE OFF	2	39	0

Music XML

ABC

T:sooranbushi
M:2/4
L:1/8
K:F
C2 DF | A2 GF | G2 FC | D2 FC | D2 D2 | z2 z2 ||
zG AA | GA AA | GA AA | GF D2 | zA, CA, | CD GF | zG AF | DC FD | D z CC |
DF A2| A3 c | G F2 C | D2 D2 | D2 z2||

https://ja.wikipedia.org/wiki/ ABC%E8%A8%98%E8%AD%9C%E6%B3%95

各音符のON/OFF情報を 時系列にしたファイル

各音符の情報を マークアップ形式で記述

文字を並べる記法

他にもあるけど滅多に見ないので割愛

ピアノロール

- ・ 音符を2次元のバイナリ行列 (or 1次元のマルチホットベクトル) として表現
 - 直感的でわかりやすく、多声の表現も簡単
 - 冗長であるが、16分音符ごとに量子化すると減らせる
 - 量子化は実演奏とアライメントを取ったものには有効でない

MIDIイベント (Magenta形式)

- MIDIのイベントを388次元のワンホットに押し込む
 - ノートオン (128音高) + ノートオフ (128音高) + ヴェロシティ (32レベル) +
 タイムシフト (100シフト: 10ms ~ 1000ms)
 - ・多声音楽の表現も容易

トークン表現

- 音符を音楽要素の情報を保持してパースしたもの
 - 拍子、調、テンポ、音符の情報等を保持した系列
 - 情報量が多く、より音楽的に自然な生成が可能に
 - 現在急成長中で、あまり標準化されていない

特徴表現~スタンダードな方法~

MIDIトークン

音高・音量・音長 ノートON/OFFのイベント列

⊜:音符ごとの記述(処理で有用なことが多い)

②:拍の概念と相性×、同時に多数の音が鳴る場合に 効率が悪い、音符の長さがわかりにくい

ピアノロール

音高×時間のバイナリ行列

⊜:直感的

②:密になる、長い音なのか短い音の連発 なのかの区別ができない

モデル・評価方法

Performance RNN [Oore 18]

- RNNベースのモデルの代表的なモデル
 - 3層のLSTMの後, softmaxによってどの単語(音符)が次に来るかを随時予測
 - 予測の"分布"を、正解音符によって最適化していく

- Magenta形式のMIDI表現が入力
- テンポの変更と移調によりデータ拡張を行う

Performance RNN

訓練時(train)と推論時(test)で挙動が異なる

訓練時

入力データをそのまま次の入力にする (teacher-forcing)

推論時

その時点での出力が次の入力になる

Softmaxにより 出力される確率値に従って サンプルして生成

どうやって評価をするのか?

- 定量的評価:
 - パープレキシティ (PPL):確率の逆数
 - ざっくり言うと「次の予測がどれぐらい難しいか」
 - =「モデルが文法を捉えられていない度」
 - 自然言語処理では、一般的に低いほどよい
 - ・ →音楽では、一概にそうとは言えない (多様性を求めるとPPLは低くなる)

$$P(X) = \prod_{t=1}^{T} \left(\frac{1}{P_{LM}(x_t|x_{< t})}\right)^{1/T}$$

T: 系列長

どうやって評価をするのか?

- 定性的評価
 - Mean opinion score (MOS):被験者実験を行い、5段階のリッカート尺度で評価をとって平均する
 - Discrimination test:本物と生成物をまぜて聴かせ 区別できるかをテスト
 - 特定ドメインの音楽生成において行われる (例: Deepbach [Hadjeres 17])

補足

Seq2Seq (Many-to-Many RNN)

- ・ 入出力が1対1対応しない系列の変換でのモデル
 - エンコーダー・デコーダーモデル (一般化)
- ・ 実装上では2つの部分に分ける
 - エンコーダー -> 入力からコンテキストを得る
 - many-to-one
 - デコーダー -> コンテキストから出力を得る(自 己回帰形式)
 - one-to-many

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Attention付きSeq2Seq

- Seq2Seqでは入力を全て固定長のベクトルにしていた
- →入力の長さが異なるうが全て同じ情報量を保つ
- →Attention (注意機構) を用いて、入力のどこに着目するかを決定

https://lenavoita.github.io/ nlp_course/ seq2seq_and_attention. html

バッハの賛美歌を自動生成

• Sony CSL発、音楽のプロ1600人の半分が本物と間違う

- 入出力:前までの音の並びから次の音を予測(逆側からも) モデル
- ラベル:予測時点の構成音