

## UNIVERSITY OF GHANA

(All rights reserved)

# BSc/BA, SECOND SEMESTER EXAMINATIONS: 2016/2017

### SCHOOL OF ENGINEERING SCIENCES

### DEPARTMENT OF BIOMEDICAL ENGINEERING

FAEN 202: DIFFERENTIAL EQUATIONS (4 credits)

#### INSTRUCTION:

ANSWER ANY FIVE OUT OF THE FOLLOWING SEVEN QUESTIONS TIME ALLOWED:

#### THREE (3) HOURS

1. (a) Find the eigenvalues and eigenvectors of  $A = \begin{pmatrix} -4 & 1 & 1 \\ 1 & 5 & -1 \\ 0 & 1 & -3 \end{pmatrix}$ .

Hence or otherwise, solve  $\frac{dx}{dt} = Ax$ , where x is a function of t. (25 marks)

- (b) When a cake is removed from an oven, its temperature is measured at 300° F. Three minutes later its temperature is 200° F.
  - i. Find the temperature T(t) of the cake after t minutes assuming the room temperature is  $30^{\circ}F$ .
  - ii. How long will it take for the cake to cool off to 40°F?

    [Assume Newton's law of cooling] (15 marks)
- 2. (a) Give a precise definition of the Fourier series of a function.

Compute the Fourier series of  $f(x) = \begin{cases} -1, & -3 \le x < 0 \\ 1 & 0 < x \le 3 \end{cases}$  for  $x \in [-3, 3]$ .

(25 marks)

- (b) A 12 volt battery is connected to a series circuit in which the inductance is  $\frac{1}{2}$  henry and the resistance is 10 ohms. Assuming that E is constant,
  - i. Determine the current i if the initial current is zero.
  - ii. Find the limiting value of the current as  $t \to \infty$ .

(15 marks)

[The differential equation for the LR series circuit with voltage E(t) and currents i(t) is given by  $L\frac{di}{dt} + Ri = E(t)$ , where L and R are constants known as the inductance and resistance respectively].

EXAMINER: E. Djabang



- 3. (a) Let y be a function of x. Solve
  - i.  $\frac{dy}{dx} = \sin 2x \sec y$  for  $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ , given that  $y = \frac{\pi}{6}$  at  $x = \frac{\pi}{6}$ ;
  - ii.  $(\cos x) \frac{dy}{dx} + y \sin x = \sin x \cos^3 x$ , given that  $y = 2\sqrt{2}$  at  $x = \frac{\pi}{4}$ .

(20 marks)

- (b) Given that y is a function of x, express the solution of  $4\frac{d^2y}{dx^2} y = 0$  in the form of a power series about x = 0. (20 marks)
- 4. (a) Given that y is a function of x, verify that the following differential equations are exact. Find the function F(x, y) whose differential corresponds to the left hand side of
  - i.  $(\cos x \sin x xy^2)dx + y(1 x^2)dy = 0$ ;
  - ii.  $(2xy 9x^2)dx + (2y + x^2 + 1)dy = 0$ .

(20 marks)

- (b) i. Let f(t) be a real valued function defined on  $(0,\infty)$ . Define the Laplace transform F(s) of f stating the values of s for which F(s) is defined.
  - ii. Use the definition in (i) above to determine the Laplace transform of

$$f(t) = \begin{cases} 2, & 0 < t < 5 \\ 0, & 5 < t < 10 \\ e^{4t}, & t > 10. \end{cases}$$

(20 marks)

- 5. (a) Let y be a function of t. Use Laplace transforms to solve the initial value problem  $\frac{d^2y}{dt^2} 6\frac{dy}{dt} + 9y = t^2e^{3t}, \quad y(0) = 0, \frac{dy}{dt} = 6 \text{ at } t = 0. \tag{15 marks}$ 
  - (b) Find the inverse Laplace transform of  $F(s) = \frac{s}{s^2 + 6s + 11}$ . (5 marks)
  - (c) Find the general solution of the equation  $\frac{dy}{dx} 2y = 4 x$ .

(20 marks)

- 6. (a) Use the substitution y = zx, where z is a function of x, to solve the differential equation  $x^2 \frac{dy}{dx} = y(x+y), x > 0.$  (15 marks)
  - (b) Determine the fourier transform of  $f(x) = \left\{ \begin{array}{ll} e^{2x}, & x < 0 \\ e^{-x} & x > 0 \end{array} \right\}$

(10 marks)

(c) The vertical motion of a weight attached to a spring is modelled by the initial value problem  $\frac{1}{4}\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 0, x(0) = 4 \text{ and } \frac{dx}{dt} = 2 \text{ at } x = 0, \text{ where the displacement, } x \text{ is a function of time } t. \text{ Determine the vertical displacement of the spring at time } t. \qquad (15 \text{ marks})$ 

7. (a) Given that x > 1 and y > 0, find the general solution of the differential equation  $\frac{dy}{dx} = \frac{xy}{x-1}.$ 

Given that y = 1 at  $x = \frac{5}{3}$ , find the value y at x = 2, giving your answer in the form  $y = ke^c$  where k and c constants to be found.

(20 marks)

(b) Use the method of undetermined coefficients to solve  $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 54e^{2x}$ , given that y(0) = 0 and  $\frac{dy}{dx} = 3$  at x = 0.

(20 marks)

Brief Table of Laplace Transforms

| f(t)                      | $F(s) = \mathcal{L}\{f\}(s)$ $\frac{1}{s}, \ s > 0$ |
|---------------------------|-----------------------------------------------------|
| 1                         | $\frac{1}{s}$ , $s > 0$                             |
| $e^{at}$ .                | $\frac{1}{s-a}$ , $s>a$                             |
| $t^n, n=1,2,\ldots$       | $\frac{n!}{s^{n+1}}, s > 0$                         |
| $\sin bt$                 | $\frac{b}{s^2+b^2},  s>0$                           |
| $\cos bt$                 | $\frac{s}{s^2+b^2},  s>0$                           |
| $e^{at}t^n, n=1,2,\ldots$ | $\frac{n!}{(s-a)^{n+1}},  s > a$                    |
| $e^{at}\sin bt$           | $\left  \frac{b}{(s-a)^2+b^2},  s > a \right $      |
| $e^{at}\cos bt$           | $\frac{s-a}{(s-a)^2+b^2},  s>a$                     |