Two Populations:

Test

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

- Suppose that $X_{1,1}, X_{1,2}, ..., X_{1,n_1}$ is a random sample of size n_1 from the normal distribution with mean μ_1 and variance σ_1^2 .
- Suppose that $X_{2,1}, X_{2,2}, ..., X_{2,n}$ is a random sample of size n_2 from the normal distribution with mean μ_2 and variance σ_2^2 .
- Suppose that σ_1^2 and σ_2^2 are unknown and that the samples are independent.
 - Don't assume that σ_1^2 and σ_2^2 are equal!

There is no known exact test

 This is known as the Behrens-Fisher problem.

 The most popular approximate solution is given by Welch's t-test.

Welch says that:

$$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

has an approximate t-distribution with r degrees of freedom where

$$r = \frac{S_1^2/n_1 + S_2^2/n_2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$$

rounded down.

Example: (In R)

```
-0.287 <sup>0</sup> 0.287
```

```
> x<-c(1.2,3.2,2.7,1.6,2.1)
> y<-c(4.2,0.8,2.2,2.3,1.5,3.0)
> t.test(x,y)

Welch Two Sample t-test

data: x and y
t = -0.28741, df = 8.742, p-value = 0.7805
alternative hypothesis: true difference in mean
95 percent confidence interval:
-1.543768 1.197102
```

sample estimates:
mean of x mean of y
2.1600000 2.3333333 2*pt(-0.28741,8.742)
= 0.7804947

Example:

A random sample of 6 students' grades were recorded for Midterm 1 and Midterm 2.

Assuming exam scores are normally distributed, test whether the true (total population of students) average grade on Midterm 2 is greater than Midterm 1.

$$\alpha = 0.05$$

The Data

Student	Midterm 1 Grade	Midterm 2 Grade
1	72	81
2	93	89
3	85	87
4	77	84
5	91	100
6	84	82

The data are "paired".

The Data

Differences:

Student	Midterm 1 Grade	Midterm 2 Grade	Midterm 2 minus Midterm 1
	72	81	9
2	93	89	-4
3	85	87	2
4	77	84	7
5	91	100.	9
6	84	82	-2

The Hypotheses:

Let μ be the true average difference for all students.

$$H_0: \mu = 0$$

$$H_1: \mu > 0$$

This is simply a one sample t-test on the differences.

Data:

$$\sum X_i = 23$$
 $\sum X_i^2 = 267$ $n = 6$

This is simply a one sample t-test on the differences.

$$X_i = 23$$

$$\sum X_i = 23$$
 $\sum X_i^2 = 267$ $n = 6$

This is simply a one sample t-test on the differences.

$$\overline{X} = 3.5$$

$$s^{2} = \frac{\sum x_{i}^{2} - (\sum x_{i})^{2}/n}{n-1} = 32.3$$

Normal Q-Q Plot

$$H_0: \mu = 0$$
 $H_1: \mu > 0$

$$t_{\alpha,n-1} = t_{0.05,5} = 2.01$$

Reject H_0 , in favor of H_1 , if

$$\overline{X} > \mu_0 + t_{\alpha, n-1} \frac{S}{\sqrt{n}}$$
3.5
$$4.66$$

Conclusion:

We fail to reject H_0 , in favor of H_1 , at 0.05 level of significance.

These data do not indicate that Midterm 2 scores are higher than Midterm 1 scores.

