

Hyperplanes

Why

Definition

A hyperplane in n-dimensional space is an (n-1)-dimensional affine set.

Since the n-1-dimensional subspaces are the orthogonal complements of the one-dimensional subspaces, they are the sets which can be specified by

$$\{x \in \mathbf{R}^n \mid x \perp b\}$$

for $b \in \mathbb{R}^n$. The hyperplanes are translates of these,

$$\begin{aligned} \{x \in \mathbf{R}^n \mid x \perp b\} + a &= \{x + a \mid \langle x, b \rangle = 0\} \\ &= \{y \mid \langle y - a, b \rangle = 0\} = \{y \mid \langle y, b \rangle = \beta\}, \end{aligned}$$

where $\beta = \langle a, b \rangle$.

Characterization

PROPOSITION 1. $H \subset \mathbb{R}^n$ is a hyperplane if and only if there exists $\beta \in \mathbb{R}$ and nonzero $b \in \mathbb{R}^n$ so that

$$H = \{ x \in \mathbf{R}^n \mid \langle x, b \rangle = \beta \}.$$

Remark 2. b and β are unique up to a common nonzero multiple. For example, b, β and 2b, 2β give the same hyperplane.

Remark 3. The vector b is called a normal to the hyperplane.

