Inorganic Chemistry Experiment 1 Synthesis of light sensitive potassium iron (III) oxalate

Max Shi, Jeremy Meyerberg, Marie Daschbach, Christian Teterycz

I pledge my honor that I have abided by the Stevens Honor System.

Purpose

The purpose of this experiment is to illustrate the synthesis of iron oxalate, the "solvent exchange" method, and the stability of coordination complexes and the light sensitivity of iron oxalate.

Drawing of structure of the main compound or balanced chemical equation if synthesis is performed

$$\begin{split} &\text{FeSO}_4 + \text{H}_2 \text{C}_2 \text{O}_4 \rightarrow \text{FeC}_2 \text{O}_4 + \text{H}_2 \text{SO}_4 \\ &6 \, \text{FeC}_2 \text{O}_4 + 3 \, \text{H}_2 \text{O}_2 + 6 \, \text{K}_2 \text{C}_2 \text{O}_4 \rightarrow 4 \, \text{K}_3 [\text{Fe}(\text{C}_2 \text{O}_4)_3] + 2 \, \text{Fe}(\text{OH})_3 \\ &3 \, \text{H}_2 \text{C}_2 \text{O}_4 + 2 \, \text{Fe}(\text{OH})_3 + 3 \, \text{K}_2 \text{C}_2 \text{O}_4 \rightarrow 2 \, \text{K}_3 [\text{Fe}(\text{C}_2 \text{O}_4)_3] + 6 \, \text{H}_2 \text{O} \end{split}$$

$$\begin{array}{c|c}
 & N & \\
 & N & \\
 & C & \\
 & C & \\
 & C & \\
 & C & \\
 & N & \\
 & C & \\
 & C & \\
 & N & \\
 &$$

Potassium Ferrioxalate

Reagents and Major Product

Name	M.W. (g/mol)	Density (g/cm³)	Amount (mL / grams)	Moles	Hazards/Precaution s	Role of Reagent
FeSO ₄ ·7H ₂ O Ferrous Sulfate Heptahydrate	278.01	1.90	3.6 grams	0.013	Harmful if swallowed, causes skin and eye irritation. May cause respiratory tract irritation.	Reactant
H ₂ SO ₄ Sulfuric Acid	98.08	1.83	Drops of 3 M		Very corrosive. Causes eye and skin burns. Also internal and respiratory burns. Handle in a fume hood and with gloves.	Reactant
H ₂ C ₂ O ₄ ·2H ₂ O Oxalic Acid Dihydrate	126.07	1.65	1.7 grams	0.013	Causes burns, harmful of swallowed, inhaled, or absorbed through skin.	Reactant
FeC ₂ O ₄ ·2H ₂ O Iron (II) Oxalate Dihydrate	179.89	2.28			Can cause skin and upper respiratory tract irritation.	Precipitate
K ₂ C ₂ O ₄ ·H ₂ O Potassium Oxalate Monohydrate	182.24	2.08	3.5 grams	0.019	Can cause skin, eye, and digestive tract irritation. Also possible burns with contact.	Reactant
H ₂ O ₂ Hydrogen Peroxide	34.01	1.45	8 mL of 6%		A strong oxidizer and can be corrosive to the eyes, skin and respiratory system.	Reactant
K ₃ Fe(CN) ₆ Potassium Ferricyanide	329.24	1.89			Harmful if swallowed, causes skin and eye irritation. May cause respiratory tract irritation.	Product

Procedure

Part 1: Preparation of FeC₂O₄.2H₂O

- Solution A: Weight 3.6g FeSO₄.7H₂O, add several drops of 3M H₂SO₄ (Why?) first and followed by water until FeSO₄.7H₂O is totally dissolved;
- Solution B: Weight 1.7g H₂C₂O₄.2H₂O, add water until sample is totally dissolved. Remove any insolvable substance.
- Slowly mix solution A and solution B. Boil the solution for 4 mins with constant stirring. Get rid of the supernatant, and wash the FeC₂O₄.2H₂O precipitation with hot water for several times to remove left SO₄²⁻ (how can you know SO₄²⁻ is completely removed).

Part 2: Preparation of K₃[Fe(C₂O₄)₃]

- Weight 3.5g K₂C₂O₄.H₂O and add 10 ml H₂O to dissolve the sample completely (heat may be needed).
- Add K₂C₂O₄ solution to prepared FeC₂O₄ crystals and then place the solution in 40 °C water bath. Slowly add 8 ml 6% H₂O₂(aq) with continue stirring. Solution will become turbidity when all H₂O₂ solution is added.
- Place one drop of reaction solution into a well on the assay plate, and then add another drop of K₃[Fe(CN)₆]. Development of blue color indicates the presence of Fe ²⁺. More H₂O₂ will be needed until all Fe²⁺ are converted into Fe³⁺.
- Boil the solution with continuous stirring. Add 6 ml 0.5M H₂C₂O₄ into the solution. Keep adding H₂C₂O₄ until the solution is clear. Record added H₂C₂O₄ volume.

Procedure Cont.

Part 3: Solvent-exchange precipitation

- Add 10 ml alcohol into the transparent K₃[Fe(C₂O₄)₃] solution.
- Place one end of a cotton string into the solution and tie another end of the string to a glass rod
 placed cross the mouth of the beaker.
- Cover the beaker with a paper and leave it at a dark place overnight.
- Collect K₃[Fe(C₂O₄)₃] crystals through filtration. Wash crystals with alcohol and dry the samples.
 Weight and calculate yield.

Part 4: Light sensitivity test

Prepare 0.5 ml $K_3[Fe(C_2O_4)_3]$ saturated solution.

Use the solution as the ink to write words or draw on the paper.

Expose the paper to light and observe the appearance of the words/drawings

Stepwise Procedure

Preparation of FeC₂O₄·H₂O

1. Prepare solution A by weighing out 3.6 g $FeSO_4 \cdot 7H_2O$, adding several drops of 3M H_2SO_4 , followed by water until $FeSO_4 \cdot 7H_2O$ is completely dissolved.

Preparation of FeC₂O₄·H₂O

2. Prepare solution B by weighing 1.7 grams $H_2C_2O_4 \cdot 2H_2O$, and adding water until sample is dissolved. Remove any insolubles from both solutions.

Preparation of FeC₂O₄·H₂O

3. Slowly mix solution A and solution B. Boil the solution for 4 min with constant stirring. Decant supernatant, and wash FeC_2O_4 precipitation with hot water several times to get rid of leftover SO_4^{2-}

2.Preparation of K3[Fe(C2O4)3]

•Weight 3.5g K2C2O4.H2O and add 10mlH2O to dissolve the sample completely (heat may be needed).

Add K2C2O4 solution to prepared FeC2O4 crystals and then place the solution in 40 oC water

bath.

Add K2C2O4 solution to FeC2O4 and then place in water bath

- •Slowly add 8 ml 6% H2O2 with continue stirring. Solution will become turbidity when all H2O2 solution is added.
- Place one drop of reaction solution into a well on the assay plate, and then add another drop of K3Fe(CN)6. Development of blue color indicates the presence of Fe 2+.

reaction

solution

no Fe2+ present

Add 8 mL 6%

H2O2

solution

- More H2O2 will be needed until all Fe 2+are converted into Fe 3+. Boil the solution with continuous stirring.
- Add 6 ml 0.5M H2C2O4 into the solution. Keep adding H2C2O4 until the solution is clear. Record added H2C2O4 volume.

Boil the solution with constant stirring

Add 6mL 0.5M oxalic acid

Add until solution is clear, and record added volume

Solvent-exchange precipitation

1. Add 10 mL ethanol to the transparent $K_3[Fe(C_2O_4)_3]$ solution. Place one end of a cotton string into the solution and tie another end of the string to a glass rod placed across the mouth of the beaker.

Solvent-exchange precipitation

Cover the beaker with paper and leave it in a dark place overnight. Collect $K_3[Fe(C_2O_4)_3]$ crystals through filtration. Wash crystals with alcohol and dry samples. Weigh and calculate yield

Part 4: Light Sensitivity Test

Prepare 0.5 ml K_3 [Fe(C_2O_4) $_3$] saturated solution. Use the solution as the ink to write words or draw on the paper. Expose the paper to light and observe the appearance of the words/drawings

Conclusion

The synthesis of iron oxalate was demonstrated using the "solvent exchange" method". Also, the stability of coordination complexes and light sensitivity of iron oxalate were illustrated. The FeC₂O₄ crystals were created using ferrous sulfate, sulfuric acid, and oxalic acid. The resulting precipitate was FeC₂O₄ crystals. Sulfuric acid had to be added to prevent hydrolysis of the Fe²⁺ ions and to prevent the Fe²⁺ ions from being oxidized to Fe³⁺ ions. $K_3[Fe(C_2O_4)]$ was prepared by adding potassium oxalate to the FeC₂O₄ crystals and then heating them. For the solvent-exchange method, a cotton string was used with the solution because the complex binds more easily to the cotton string.

Post Lab Questions

Why a cotton string is needed in $K_3[Fe(C_2O_4)_3]$ crystallization? What may happen if you do not do it like that?

The complex binds more easily to the cotton string, allowing for better accumulation, which will make it easier to weigh it at the end to determine percent yield.

Do you have any methods to erase the developed words/drawings on the paper in the light sensitive experiments?

Adding a strong acid or a strong base to the solution would react with it and change the composition of the solution and therefore alter its pH. This would erase the words/drawings.