Quanten Analogien

Kevin Mika kevin.mika@tu-dortmund.de

Noah Krystiniak noah.krystiniak@tu-dortmund.de

Durchführung: 27.11.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Auswertung]
---	------------	--	---

1 Auswertung

Die Spektren für verschiedene Rohrlängen sind in Abbildung 1 und 2 zu sehen. Bei längeren Röhren sind mehr Resonanzen zu sehen. Die Resonanzenfrequenzen wird in Abbildung 3 gegen den Index n aufgetragen. Daraufhin kann mit einer Linearen Regression die Schallgeschwindigkeit bestimmt werden. Resonanzen treten auf, wenn die Bedingung

Abbildung 1: Schallamplitude in verschieden langen Röhren L bei variierender Frequenz.

Abbildung 2: Schallamplitude in verschieden langen Röhren L bei variierender Frequenz.

$$2 \cdot L = \frac{n \cdot c}{f} \tag{1}$$

erfüllt ist. Dabei ist L die Länge der Röhre, n eine Natürliche Zahl, c die Schallgeschwindigkeit und f die Frequenz. Umgestellt nach f:

$$\underbrace{f}_{y} = \underbrace{\frac{c}{2 \cdot L}}_{m} \underbrace{\cdot n}_{x} + \underbrace{0}_{b}.$$
(2)

Die Steigung m der Linearen Regression entspricht somit $\frac{c}{2 \cdot L}$. Aufgelöst nach c ergibt sich damit:

$$c = m \cdot 2 \cdot L. \tag{3}$$

Da m fehlerbehaftet ist, muss der Ausdruck nach m abgeleitet werden:

$$\frac{\partial c}{\partial m} = 2 \cdot L. \tag{4}$$

Eingesetzt in die Fehlerentwicklung nach Gauß:

Abbildung 3: Resonanzfrequenzen für Schallwellen bei verschieden Langen Röhren L sowie die entsprechende Lineare Regression.

$$\Delta c = \sqrt{\sum_{i} (\frac{\partial c}{\partial x_{i}} \cdot \Delta x_{i})^{2}}$$
 (5)

$$\Delta c = 2 \cdot L \cdot \Delta m \tag{6}$$

Die Steigungen der Linearen Regression m, sowie die daraus bestimmte Schallgeschwindigkeit c der verschiedenen Längen L sind in Tabelle 1 zu finden. Der gemittelte Wert

Tabelle 1: Steigung der Linearen Regression m der Resonanzfrequenzen aufgetragen gegen den Index n bei verschiedenen Längen L, sowie die daraus berechnete Schallgeschwindigkeit c.

L / mm	$\mid m / \mathrm{Hz}$	$\Delta m / \mathrm{Hz}$	c / m/s	$\Delta c / \text{m/s}$
75	2252.0	10.39	337.80	1.60
150	1141.1	0.89	342.32	0.27
225	762.0	0.48	342.90	0.22
300	572.4	0.30	343.41	0.18
600	286.7	0.07	344.06	0.09

für die Schallgeschwindigkeit, welcher sich nach

$$\overline{x} = \frac{1}{N} \cdot \sum_{i=1}^{N} x_i \tag{7}$$

bestimmt, beträgt $c=(342.098\pm 2.22)\text{m/s}$. Der angegebene Fehler ist die Standardabweichung, welche nach

$$\sigma = \overline{x^2} - \overline{x}^2 \tag{8}$$

bestimmt wurde. Verglichen mit dem Literaturwert von $343\,\mathrm{m/s}$ ergibt sich eine Abweichung von

$$p = \left(\frac{c_{\text{Exp}}}{c_{\text{Lit}}} - 1\right) \cdot 100 \tag{9}$$

$$p = -0.26\%. (10)$$

Für $12~50\,\mathrm{mm}$ ist das Spektrum in Abbildung 4 abgebildet. Die Frequenz ist in Abbildung 5 gegen die Wellenzahl k aufgetragen. Die Wellenzahl k wird mit

Abbildung 4: Spektrum von einer Röhre, bestehend aus 12 50 mm langen Partien.

$$k = \frac{2 \cdot \pi \cdot n}{L} \tag{11}$$

bestimmt. Es wird an der Abbildung deutlich, dass es ein lineares Verhältnis $f(k)=d\cdot k$ sichtbar. Der Fitparameter für die Dispersion beträgt d=5473.63. Somit ist die Dispersionsrelation $f(k)=5473.63\cdot k$. Aus Abbildung 7 wird deutlich, dass die Bänder mit steigendem Irisdurchmesser d auch breiter werden. Der Vergleich zwischen verschieden Langen Röhren mit einem Irisdurchmesser von 16 mm ist in Abbildung 8 zu sehen. Die Amplitude wird für kleinere Rohrlängen größer, die Resonanzen scheinen bei gleicher Frequenz zu liegen. Beim Vergleich der Spektren für 8 einzelröhren mit der Länge $l=50\,\mathrm{mm}$ und 75 mm (Abbildung 9) fällt auf, dass die Amplitude bei kleineren Rohrlängen zunimmt und die Resonanzfrequenzen sich verschieben.

Abbildung 5: Frequenzspektrum aufgetragen gegen die Wellenzahl k für 12 50 mm Röhren.

Abbildung 6: Spektrum einer Röhre mit variierendem Durchmesser der Iris zwischen den Rohrabschnitten.

Abbildung 7: Frequenz einer Röhre mit variierendem Durchmesser der Iris zwischen den Rohrabschnitten abhängig von der Wellenzahl k.

Abbildung 8: Spektren von $n \cdot 50\,\mathrm{mm}$ Röhren und einem Irisdurchmesser von $d = 16\,\mathrm{mm}.$

Abbildung 9: Spektren von Röhren, bestehend aus 8 Stücken mit der Länge l und dem Irisdurchmesser $d=16\,\mathrm{mm}.$