感知机 (PLA)

- 1. 目的与假设
- 2. 模型 (函数假设)
- 3. 策略 (损失函数)
 - a. 基于误分类点的总数
 - b. 基于误分类点到超平面的总距离
- 4. 算法 (优化方法)
 - a. 目标:
 - b. 梯度下降 (Gradient Descent) 3
 - b. 感知机学习算法的原始形式
 - c. 感知机学习算法的对偶形式6
- 5. 代码实例
- 6. 相关参考

感知机 (PLA)

主要参考资料:

《统计学习方法》第二章 感知机 《机器学习》第三章 线性模型 《模式识别与机器学习》第四章 分类的线性模型

1. 目的与假设

目的:解决二分类问题假设:训练集线性可分

2. 模型 (函数假设)

• 输入: 实例的特征向量

• 输出: 实例的类别, 取+1和-1

• 假设空间:

 $f(x) = sign(w \cdot x + b)$

其中:

$$sign(x) = \begin{cases} +1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$

- 模型性质:
 - 。 判别模型
 - 。 特征空间中的N维超平面, 如下图所示:

需要注意:

- 哪一边的实例是正例、哪边是反例
- ★于法向量的一点思考¹
- 备注: 输入向量的某些值可能是连续的, 也可能是离散的 (如 1, 2...)

3. 策略 (损失函数)

a. 基于误分类点的总数

• 不是参数 w, b 的连续可导函数,不容易优化

b. 基于误分类点到超平面的总距离

• R^n 中的任意一点 x_0 到超平面 S 的距离 (推导²):

$$\frac{1}{\|w\|} |w \cdot x_0 + b|$$

• 误分类点 (x_i, y_i) 的性质:

$$-y_i(w \cdot x_i + b) > 0$$

• 误分类点 (x_i, y_i) 到超平面的距离:

$$-\frac{1}{\|w\|}y_i(w\cdot x_i+b)$$

• 假设超平面 S 的误分类点集合为 M, 那么所有误分类点到超平面 S的总距离为:

$$-\frac{1}{\|w\|} \sum_{x_i \in M} y_i (w \cdot x_i + b)$$

• 感知机的损失函数(经验风险函数):

$$L(w,b) = -\sum_{x_i \in M} y_i(w \cdot x_i + b) \ge 0$$

- 不考虑 $\frac{1}{\|w\|}$ 的原因:
 - 。 求导之后可知, $\|w\|$ 只影响步长,并不影响方向,步长可以再用 η 调节(这种调节真的不会导致步长突然太大么?)
 - 。 也可以考虑为损失函数中的 w, b 是集合距离中 $\frac{w}{\|w\|}$ 和 $\frac{b}{\|w\|}$ 的替换,最后可以再乘回去,不会影响超平面(但是在实际过程中这两个向量并不是归一化的)
 - 。 可以从神经网络中感知机模型达到阈值的角度思考这个问题

Perceptron Learning Algorithm start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For t = 0, 1, ...

• find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, \mathbf{y}_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)}\right)\neq y_{n(t)}$$

(try to) correct the mistake by

$$\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t + y_{n(t)} \mathbf{X}_{n(t)}$$

- 。 这样可以简便运算(这条承认)
- 备注:
 - 。存在误分类点时损失函数是误分类点到平面的总距离,不存在误分类点时损失函数是0,因此损失函数对于w,b 是连续可导的(**函数对于参数可导也是需要严谨地证明的**)
 - 。 其实也可以考虑正确分类的点到超平面的间隔尽可能大 (SVM)

4. 算法 (优化方法)

a. 目标:

• 损失函数最小化

$$\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w \cdot x_i + b) = -\sum_{x_i \in M} y_i(w^T x_i + b)$$

- 因为负梯度方向函数下降最快4
- 假设误分类点集合 M 是固定的,那么损失函数 L(w,b) 的梯度由

$$\nabla_{w} L(w, b) = \nabla_{w} \left(-\sum_{x_{i} \in M} y_{i}(w^{T} x_{i} + b)\right)$$

给出,又因为

$$\frac{\partial w^T x}{\partial w} = x$$

所以

$$\nabla_w L(w, b) = -\sum_{x_i \in M} y_i x_i$$

同理

$$\nabla_b L(w, b) = -\sum_{x_i \in M} y_i$$

• 感知机学习算法中采用的是随机梯度下降 (Stochastic Gradient Descent)

b. 感知机学习算法的原始形式

算法 2.1 (感知机学习算法的原始形式)

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$, 其中 $x_i \in \mathcal{X} = \mathbb{R}^n$, $y_i \in \mathcal{Y} = \{-1, +1\}$, $i = 1, 2, \cdots, N$; 学习率 $\eta(0 < \eta \le 1)$;

输出: w,b; 感知机模型 $f(x) = sign(w \cdot x + b)$.

- (1) 选取初值 wo, bo
- (2) 在训练集中选取数据(x_i,y_i)
- (3) 如果 y_i(w·x_i+b)≤0

$$w \leftarrow w + \eta y_i x_i$$
$$b \leftarrow b + \eta y_i$$

- (4) 转至(2), 直至训练集中没有误分类点.
- 备注:
 - 。 $\eta y_i x_i$ 的变化规律是什么?
 - 。 感知机学习算法由于采用不同的初值或者选取不同的误分类点, 解可以不同
 - 。 感知机模型只求正确分类就好,这里求的是全局最优么还是局部最优? 损失函数是凸函数 么?
 - 。 感知机学习算法原始形式算法收敛性证明⁵

c. 感知机学习算法的对偶形式⁶

• 思路: 在感知机算法的原始形式中,假设 $w_0 = 0, b_0 = 0$,因为

$$w \leftarrow w + \eta y_i x_i$$
$$b \leftarrow b + \eta y_i$$

所以**对这个误分类点**修改 n_i 次后,w,b关于 (w_i,y_i) 的增量分别是 $\alpha_i y_i x_i$ 和 $\alpha_i y_i$,其中 $\alpha_i = n_i \eta$,因此有

$$w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$b = \sum_{i=1}^{N} \alpha_i y_i$$

其中 N 是样本点数,**当** $\eta = 1$ 时 α 表示的是第 i 个实例点由于误分而进行的更新次数,更新次数越多,说明它距离超平面越近,就越难以正确分类,对学习结果影响越大。

• 对偶形式

算法 2.2 (感知机学习算法的对偶形式)

输入: 线性可分的数据集 $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, 其中 $x_i \in \mathbb{R}^n$, $y_i \in \{-1,+1\}$, $i = 1,2,\dots,N$; 学习率 η (0< $\eta \le 1$);

输出: α, b ; 感知机模型 $f(x) = \text{sign}\left(\sum_{j=1}^{N} \alpha_j y_j x_j \cdot x + b\right)$.

其中 $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N)^T$.

- (1) $\alpha \leftarrow 0$, $b \leftarrow 0$
- (2) 在训练集中选取数据(x,y)

(3) 如果
$$y_i \left(\sum_{j=1}^N \alpha_j y_j x_j \cdot x_i + b \right) \le 0$$

$$\alpha_i \leftarrow \alpha_i + \eta$$

$$b \leftarrow b + \eta y_i$$

(4) 转至(2) 直到没有误分类数据.

其中内积可以提前计算并存储成Gram矩阵形式

5. 代码实例

6. 相关参考

• "机器学习技法", 林轩田

1. 关于法向量的一点思考:

$w \cdot x + b = ||w|| \cdot ||x|| \cos \theta + b = ||w|| (||x|| \cos \theta) + b$

IIxII cosθ 其实是原点到平面的距离 ↔

- 2. 距离公式的推导: ↩
- 3. 几种常见梯度下降方法的比较: ↩
- 4. 负梯度方向函数下降最快的证明: 泰勒展开式 ↩
- 5. 感知机学习算法原始形式算法收敛性证明 ↔
- 6. 为什么叫做"对偶形式": ↩
- 7. Gram矩阵 ←