Rockchip RGB 和 MCU 接口开发指南

文件标识: RK-YH-YF-483

发布版本: V1.1.0

日期: 2023-07-15

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2023 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

文本主要介绍 Rockchip平台低速显示接口的调试验证指南。

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

硬件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	丁凌崧	2023-07-01	初始发布
V1.1.0	丁凌崧	2023-07-15	添加 mcu-timing 和 display-timings 的详细说明

目录

Rockchip RGB 和 MCU 接口开发指南

- 1. 基础概念
 - 1.1 RGB接口
 - 1.1.1 DE Mode
 - 1.1.2 SYNC Mode
 - 1.2 MCU 接口
 - 1.2.1 TX 时序
- 2. RK 平台支持情况
- 3. 硬件连接
- 4. 软件配置
 - 4.1 显示通路
 - 4.2 Panel 配置
 - 4.3 RGB接口
 - 4.4 MCU 接口
- 5. 调试流程
- 6. 常见问题
 - 6.1 RGB/MCU 屏可以显示图像但屏幕上有噪点或者存在显示错位现象

1. 基础概念

1.1 RGB 接口

RGB 接口也被称为 DPI(Display Pixel Interface) 接口,RGB 接口用于同步的信号有 Vsync、Hsync、Den(Enable)和 DCLK(Dotclk)四个引脚,根据同步方式的不同可以分为 DE mode 和 SYNC mode,Rockchip 平台 RGB 接口的输出时序可以同时兼容两者。

1.1.1 **DE Mode**

DB[23:0] 数据是否有效仅由 Den 信号决定,低电平时数据有效,反之无效。

1.1.2 SYNC Mode

DB[23:0] 数据由 Vsync 和 Hsync 信号来同步,按照上图时序扫描数据。

1.2 MCU 接口

MCU 接口也被称为 DBI 接口或 8080 接口,支持 TX 和 RX 端的双向通信, 有 RS(CSX)、CSN(D/CX)、WEN(WRX)和 REN(RDX)四个同步信号,RK 平台仅支持 MCU 接口的 TX 功能。

1.2.1 TX 时序

CSX、D/CX 和 WRX 引脚依次拉低,在 DB[23:0] 数据有效期间 WRX 信号会先拉低再拉高。

2. RK 平台支持情况

SOC 平台	是否支持 RGB	是否支持 MCU	Output Mode 支持
RK1808	Y	Y	RGB666/RGB565
RK312X/PX3SE	Y	N	RGB888/RGB666/RGB565
RK3288	Y	Y	RGB888/RGB666/RGB565/RGB3x8
RK3308B/RK3308BS	Y	Y	RGB888/RGB666/RGB565/RGB3x8
RK3326/PX30	Y	Y	RGB888/RGB666/RGB565
RK3562	Y	Y	RGB888/RGB666/RGB565/RGB3x8
RK3568	Y	N	RGB888/RGB666/RGB565
RV1103	Y	Y	RGB3x8
RV1106	Y	Y	RGB666/RGB565/RGB3x8
RV1109/RV1126	Y	Y	RGB888/RGB666/RGB565/RGB3x8

3. 硬件连接

1. RK3562 平台

Component Name	Pin Name	RGB888 (MCU)	RGB666 (MCU)	RGB565 (MCU)	RGB3x8 (MCU)
DCLK	VO_LCDC_CLK	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)
VSYNC	VO_LCDC_VSYNC	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)
HSYNC	VO_LCDC_HSYNC	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)
DEN	VO_LCDC_DEN	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)
R7_D23	VO_LCDC_D23	√	V	V	√(D7_m1)
R6_D22	VO_LCDC_D22	√	V	V	√(D6_m1)
R5_D21	VO_LCDC_D21	√	√	√	√(D5_m1)
R4_D20	VO_LCDC_D20	√	√	√	√(D4_m1)
R3_D19	VO_LCDC_D19	√	√	√	√(D3_m1)
R2_D18	VO_LCDC_D18	√	√	×	×
R1_D17	VO_LCDC_D17	√	×	×	×
R0_D16	VO_LCDC_D16	√	×	×	×
G7_D15	VO_LCDC_D15	√	√	√	√(D2_m1)
G6_D14	VO_LCDC_D14	√	√	√	√(D1_m1)
G5_D13	VO_LCDC_D13	√	√	√	√(D0_m1)
G4_D12	VO_LCDC_D12	√	√	√	√(D7_m0)
G3_D11	VO_LCDC_D11	√	√	√	√(D6_m0)
G2_D10	VO_LCDC_D10	√	√	√	√ (D5_m0)
G1_D9	VO_LCDC_D9	√	×	×	×
G0_D8	VO_LCDC_D8	√	×	×	×
B7_D7	VO_LCDC_D7	√	√	√	√ (D4_m0)
B6_D6	VO_LCDC_D6	√	√	√	√(D3_m0)
B5_D5	VO_LCDC_D5	√	√	√	√ (D2_m0)
B4_D4	VO_LCDC_D4	√	√	√	√ (D1_m0)
B3_D3	VO_LCDC_D3	√	√	√	√ (D0_m0)
B2_D2	VO_LCDC_D2	V	V	×	×
B1_D1	VO_LCDC_D1	V	×	×	×
B0_D0	VO_LCDC_D0	√	×	×	×

^{2.} RK3568 平台

Component Name	Pin Name	RGB888	RGB666	RGB565
DCLK	LCDC_CLK	DCLK	DCLK	DCLK
VSYNC	LCDC_VSYNC	VSYNC	VSYNC	VSYNC
HSYNC	LCDC_HSYNC	HSYNC	HSYNC	HSYNC
DEN	LCDC_DEN	DEN	DEN	DEN
R7_D23	LCDC_D23	V	V	V
R6_D22	LCDC_D22	V	V	V
R5_D21	LCDC_D21	V	V	V
R4_D20	LCDC_D20	V	V	V
R3_D19	LCDC_D19	V	V	V
R2_D18	LCDC_D18	V	V	×
R1_D17	LCDC_D17	V	×	×
R0_D16	LCDC_D16	V	×	×
G7_D15	LCDC_D15	V	V	V
G6_D14	LCDC_D14	V	√	V
G5_D13	LCDC_D13	V	V	V
G4_D12	LCDC_D12	V	V	V
G3_D11	LCDC_D11	V	V	V
G2_D10	LCDC_D10	V	V	V
G1_D9	LCDC_D9	V	×	×
G0_D8	LCDC_D8	V	×	×
B7_D7	LCDC_D7	V	V	V
B6_D6	LCDC_D6	V	V	V
B5_D5	LCDC_D5	V	√	√
B4_D4	LCDC_D4	V	√	√
B3_D3	LCDC_D3	V	√	√
B2_D2	LCDC_D2	V	√	×
B1_D1	LCDC_D1	√	×	×
B0_D0	LCDC_D0	V	×	×

^{3.} RK312X/PX3SE/RK3288/RK3308B/RK3308BS/RK3328/RK3326/PX30/RV1109/RV1126 平台

Component Name	Pin Name	RGB888 (MCU)	RGB666 (MCU)	RGB666_CPADHI (MCU)	RGB565 (MCU)	RGB565_CPADHI (MCU)	RGB3x8 (MCU)
DCLK	LCDC_CLK/LCD_CLK	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)
VSYNC	LCDC_VSYNC/LCD_VSYNC	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)
HSYNC	LCDC_HSYNC/LCD_HSYNC	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)
DEN	LCDC_DEN/LCD_DEN	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)
R7_D23	LCDC_D23/LCD_D23	√	×	√	×	√	×
R6_D22	LCDC_D22/LCD_D22	√	×	√	×	√	×
R5_D21	LCDC_D21/LCD_D21	√	×	√	×	√	×
R4_D20	LCDC_D20/LCD_D20	√	×	√	×	√	×
R3_D19	LCDC_D19/LCD_D19	√	×	√	×	√	×
R2_D18	LCDC_D18/LCD_D18	√	×	√	×	×	×
R1_D17	LCDC_D17/LCD_D17	√	V	×	×	×	×
R0_D16	LCDC_D16/LCD_D16	√	V	×	×	×	×
G7_D15	LCDC_D15/LCD_D15	√	V	√	V	√	×
G6_D14	LCDC_D14/LCD_D14	√	V	√	√	√	×
G5_D13	LCDC_D13/LCD_D13	√	V	√	V	√	×
G4_D12	LCDC_D12/LCD_D12	√	V	√	√	√	×
G3_D11	LCDC_D11/LCD_D11	√	V	√	V	√	×
G2_D10	LCDC_D10/LCD_D10	√	V	√	√	√	×
G1_D9	LCDC_D9/LCD_D9	√	V	×	V	×	×
G0_D8	LCDC_D8/LCD_D8	√	V	×	√	×	×
B7_D7	LCDC_D7/LCD_D7	√	V	V	√	√	V
B6_D6	LCDC_D6/LCD_D6	√	V	√	√	√	√
B5_D5	LCDC_D5/LCD_D5	√	V	V	√	√	V
B4_D4	LCDC_D4/LCD_D4	√	V	√	√	√	V
B3_D3	LCDC_D3/LCD_D3	√	V	V	√	√	V
B2_D2	LCDC_D2/LCD_D2	√	V	√	V	×	V
B1_D1	LCDC_D1/LCD_D1	√	V	×	V	×	V
B0_D0	LCDC_D0/LCD_D0	√	V	×	√	×	√

4. RK1808/RV1106 平台

Component Name	Pin Name	RGB666 (MCU)	RGB565 (MCU)	RGB565 (MCU)	RGB3x8 (MCU)
DCLK	LCDC_CLK/LCD_CLK	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)
VSYNC	LCDC_VSYNC/LCD_VSYNC	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)
HSYNC	LCDC_HSYNC/LCD_HSYNC	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)
DEN	LCDC_DEN/LCD_DEN	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)
R5_D17	LCDC_D17/LCD_D17	√	×	×	×
R4_D16	LCDC_D16/LCD_D16	V	×	×	×
R3_D15	LCDC_D15/LCD_D15	V	1	√	×
R2_D14	LCDC_D14/LCD_D14	√	V	√	×
R1_D13	LCDC_D13/LCD_D13	V	V	V	×
R0_D12	LCDC_D12/LCD_D12	V	V	V	×
G5_D11	LCDC_D11/LCD_D11	V	V	V	×
G4_D10	LCDC_D10/LCD_D10	V	V	V	×
G3_D9	LCDC_D9/LCD_D9	√	V	√	×
G2_D8	LCDC_D8/LCD_D8	√	V	√	×
G1_D7	LCDC_D7/LCD_D7	√	V	√	√
G0_D6	LCDC_D6/LCD_D6	√	V	√	V
B5_D5	LCDC_D5/LCD_D5	V	V	V	V
B4_D4	LCDC_D4/LCD_D4	V	V	V	V
B3_D3	LCDC_D3/LCD_D3	√	V	√	V
B2_D2	LCDC_D2/LCD_D2	√	V	√	V
B1_D1	LCDC_D1/LCD_D1	√	V	√	V
B0_D0	LCDC_D0/LCD_D0	√	√	√	V

5. RV1103 平台

Component Name	Pin Name	RGB3x8 (MCU)		
DCLK	LCDC_CLK	DCLK(RS)		
VSYNC	LCDC_VSYNC	VSYNC(CSN)		
HSYNC	LCDC_HSYNC	HSYNC(WRN)		
DEN	LCDC_DEN	DEN(RDN)		
D7	LCDC_D7	V		
D6	LCDC_D6	√		
D5	LCDC_D5	√		
D4	LCDC_D4	√		
D3	LCDC_D3	√		
D2	LCDC_D2	√		
D1	LCDC_D1	√		
D0	LCDC_D0	V		

4.1 显示通路

VOP(Video Output Process)是 RK 平台的显示处理单元,存在 VOP 1.0 和 VOP 2.0 两种架构主要区别是对多显的支持方式不同,详细的介绍可以查阅文档

《Rockchip_Developer_Guide_DRM_Display_Driver_CN》。左右框图分别对应 VOP 1.0 和 VOP 2.0 架构 RGB/MCU 接口的显示通路,VOP 会从 DDR 中读取图像数据并处理,再送到显示接口 RGB/MCU 上,接口模块则会将图像数据转换为符合协议的数据流,最后传输到屏幕上显示。

4.2 Panel 配置

RGB panel 驱动可以参考 drivers/gpu/drm/panel/panel-simple.c 中的实现,下面为典型的 panel 节点配置:

```
panel: panel {
    compatible = "simple-panel";
    bus-format = <MEDIA_BUS_FMT_RGB888_1X24>;
    backlight = <&backlight>;
    enable-gpios = <&gpio3 RK_PA6 GPIO_ACTIVE_LOW>;
    enable-delay-ms = <20>;
    reset-gpios = <&gpio3 RK_PB0 GPIO_ACTIVE_LOW>;
    reset-delay-ms = <10>;
    status = "okay";

display-timings {
    native-mode = <&fx070_dhm11boe_timing>;
}
```

```
fx070 dhm11boe timing: timing0 {
                 clock-frequency = <50000000>;
                 hactive = <1024>;
                 vactive = <600>;
                 hback-porch = <140>;
                 hfront-porch = <160>;
                 vback-porch = <20>;
                 vfront-porch = <20>;
                 hsync-len = \langle 20 \rangle;
                 vsync-len = <2>;
                 hsync-active = <0>;
                 vsync-active = <0>;
                 de-active = <0>;
                 pixelclk-active = <0>;
             };
         };
        port {
             panel_in_rgb: endpoint {
                 remote-endpoint = <&rgb out panel>;
             } ;
         };
    };
};
&backlight {
    pwms = \langle \&pwm9 \ 0 \ 25000 \ 0 \rangle;
    status = "okay";
};
```

• bus-format 属性根据屏端支持的 display mode 配置,通常可以通过 panel datasheet 引脚定义说明及 panel 驱动 IC 的显示模式支持等章节确定。DTS 中配置的宏定义详见 kernel 文件 include/uapi/linux/media-bus-format.h,与硬件连接的对应关系如下:

Display Mode	Bus Format	Cycles Per Pixel
RGB888 (24bit)	MEDIA_BUS_FMT_RGB888_1X24	1
RGB666 (18bit)	MEDIA_BUS_FMT_RGB666_1X18	1
RGB666_CPADHI (18bit)	MEDIA_BUS_FMT_RGB666_1X24_CPADHI	1
RGB565 (16bit)	MEDIA_BUS_FMT_RGB565_1X16	1
RGB565_CPADHI (16bit)	MEDIA_BUS_FMT_RGB565_1X24_CPADHI	1
RGB3x8 (8bit)	MEDIA_BUS_FMT_RGB888_3X8	3

- backlight 节点的 pwms 配置需要根据硬件实际的连接情况修改,在显示图像前需要确保背光已经正常点亮。详见 pwm 模块参考文档《Rockchip_Developer_Guide_Linux_PWM_CN》。
- enable-gpios/reset-gpios 和 enable-delay-ms/reset-delay-ms/prepare-delay-ms/unprepare-delay-ms/disable-delay-ms 配置需要根据 panel datasheet中上下电和复位的时序要求,以及实际硬件电路的设计来修改。
 - 。 (可选)enable 引脚通常用于屏端供电的使能,gpio 配置取决于供电电路的具体设计。
 - (可选)reset 引脚通常屏端会直接引出,并在 datasheet 中说明触发复位功能的条件,gpio 配置取决于复位电路的具体设计。

- display-timings 时序节点屏幕 datasheet 会提供推荐配置,用户也可以根据具体的应用需求在指定的上下阈值区间内微调,下图为示例 panel 节点配置对应的 panel datasheet:

	ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	Note
	Dot Clock	1/tCLK	45	51.2	57	MHz	
	DCLK pulse duty	Tcwh	40	50	60	%	
	Horizontal total Time	tH	1324	1344	1364	tCLK	
DE	Horizontal effective Time	tHA		1024		tCLK	
MODE	Horizontal Blank Time	tHB	300	320	340	tCLK	
	Vertical total Time	tV	625	635	645	tH	
	Vertical effective Time	tVA		600		tH	
	Vertical Blank Time	tVB	25	35	45	tH	
	Horizontal total Time	TH	1324	1344	1364	tCLK	
	Horizontal Pulse Width	Thpw		20	-	tCLK	thb + thpw =160DCLK is
	Horizontal Back Porch	Thb		140	-	tCLK	fixed
	Horizontal Front Porch	Thfp	140	160	180	tCLK	
SYNC	Horizontal effective Time	THA		1024		tCLK	
MODE	Vertical total Time	TV	625	635	645	tH	
	Vertical Pulse Width	Tvpw		3	-	th	tvpw + tvb
	Vertical Back Porch	Tvb	•	20	-	th	=23th is fixed
	Vertical Front Porch	Tvfp	2	12	22	th	
	Vertical Valid	Tvd		600	·	th	

同时 DRM 框架对于 display_timing 结构体及其变量的描述可以在文件 include/video/display_timing.h 中找到,如下所示:

```
* Single "mode" entry. This describes one set of signal timings a display can
* have in one setting. This struct can later be converted to struct videomode
* (see include/video/videomode.h). As each timing entry can be defined as a
* range, one struct display timing may become multiple struct videomodes.
* Example: hsync active high, vsync active low
             Active Video
        * |<- sync ->|<- back ->|<---- active ---->|<- front ->|<- sync..
   | porch |
                           | porch |
* HSync _| ____|
* VSync -|_____|
struct display timing {
  struct timing entry pixelclock;
  struct timing entry hactive; /* hor. active video */
  struct timing_entry hfront_porch;  /* hor. front porch */
  struct timing_entry hback_porch;  /* hor. back porch */
  struct timing_entry hsync_len; /* hor. sync len */
  struct timing entry vactive; /* ver. active video */
  struct timing_entry vfront_porch;  /* ver. front porch */
  struct timing entry vback porch; /* ver. back porch */
  };
```

4.3 RGB 接口

rgb 驱动对应文件 drivers/gpu/drm/rockchip/rockchip_rgb.c,参考 dts 配置如下:

```
&rgb {
   status = "okay";
   pinctrl-0 = <&rgb666 pins>;
   ports {
       port@1 {
           reg = <1>;
            rgb_out_panel: endpoint {
               remote-endpoint = <&panel in rgb>;
            };
        };
   };
};
//VOP 1.0
&rgb_in_vop {
   status = "okay";
};
//VOP 2.0
&rgb_in_vp0 {
    status = "okay";
};
```

- 对于 VOP 1.0 和 VOP 2.0 两种架构, RGB 接口相关节点的配置有所不同,参考配置:
 - VOP 1.0: arch/arm/boot/dts/rv1106-evb-ext-rgb-v10.dtsi_o
 - 。 VOP 2.0: 可以参考 arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-rgb-FX070-DHM11BOE-A.dts。
- pinctrl 配置需要根据实际的硬件连接确定,可以在 rkxxxx-pinctrl.dtsi/rvxxxx-pinctrl.dtsi 文件中找到 各种线序对应的定义。

4.4 MCU 接口

mcu 接口及 mcu panel 驱动可以查看 drivers/gpu/drm/rockchip/rockchip_rgb.c,dts 配置与 rgb 接口基本相同,额外需要加上切换 mcu 模式的标志和 timing,参考配置如下:

```
&rgb {
    status = "okay";
    rockchip,data-sync-bypass;
    pinctrl-names = "default";
    pinctrl-0 = <&rgb565_pins>;

mcu_panel: mcu-panel {
        bus-format = <MEDIA_BUS_FMT_RGB565_1X16>;
        backlight = <&backlight>;
        enable-gpios = <&gpio1 RK_PA3 GPIO_ACTIVE_LOW>;
        enable-delay-ms = <20>;
```

```
reset-gpios = <&gpio1 RK_PA4 GPIO_ACTIVE_LOW>;
reset-value = <0>;
reset-delay-ms = <10>;
prepare-delay-ms = <20>;
unprepare-delay-ms = <20>;
disable-delay-ms = <20>;
width-mm = <217>;
height-mm = <136>;
// type:0 is cmd, 1 is data
panel-init-sequence = [
    //type delay num val1 val2 val3
     00 00 01 e0
     01 00 01 00
      01 00 01 07
      . . . . . .
      00 78 01 11
      00 32 01 29
     00 00 01 2c
];
panel-exit-sequence = [
    //type delay num val1 val2 val3
     00 0a 01 28
     00 78 01 10
];
display-timings {
    native-mode = <&kd050fwfba002_timing>;
    kd050fwfba002 timing: timing0 {
        clock-frequency = <20000000>;
       hactive = <320>;
       vactive = <480>;
        hback-porch = <10>;
       hfront-porch = <5>;
        vback-porch = <10>;
       vfront-porch = <5>;
       hsync-len = <10>;
       vsync-len = <10>;
       hsync-active = <0>;
        vsync-active = <0>;
       de-active = <0>;
        pixelclk-active = <1>;
    };
};
port {
        panel in rgb: endpoint {
           remote-endpoint = <&rgb_out_panel>;
        } ;
    } ;
} ;
ports {
    rgb_out: port@1 {
       reg = <1>;
        #address-cells = <1>;
```

```
\#size-cells = <0>;
                rgb out panel: endpoint@0 {
                    reg = <0>;
                    remote-endpoint = <&panel in rgb>;
                } ;
            };
        } ;
   };
};
//VOP 1.0
&rgb_in_vop {
   status = "okay";
};
} qov&
   status = "okay";
   mcu-timing {
       mcu-pix-total = <9>;
        mcu-cs-pst = <1>;
       mcu-cs-pend = <8>;
       mcu-rw-pst = <2>;
        mcu-rw-pend = <5>;
       mcu-hold-mode = <0>; // default set to 0
   };
} ;
//VOP 2.0
&rgb_in_vp0 {
   status = "okay";
};
} 0qv&
   mcu-timing {
       mcu-pix-total = <9>;
        mcu-cs-pst = <1>;
       mcu-cs-pend = <8>;
       mcu-rw-pst = \langle 2 \rangle;
        mcu-rw-pend = <5>;
       mcu-hold-mode = <0>; // default set to 0
   } ;
};
```

- 对于 VOP 1.0 和 VOP 2.0 两种架构, MCU 接口相关节点的配置有所不同,参考配置:
 - VOP 1.0: arch/arm/boot/dts/rv1106-evb-ext-mcu-v10.dtsio
 - VOP 2.0:可以参考 arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-mcu-k350c4516t.dts。
- 驱动中会根据 rgb 节点下的 rockchip,data-sync-bypass 属性来切换 mcu 和 rgb 两种接口模式,不加该属性默认为 rgb 接口,使能后则切换到 mcu 接口。
- 在 kernel-5.10 及以上的版本,mcu 接口对应的 panel 配置推荐放在 rgb 节点下,kernel-4.19 及更早版本的内核,则作为独立的节点通过 simple-panel 驱动初始化。若将 simple-panel 驱动对应的 panel 节点移植到 rgb 节点下需要注意:

- 。 确保 panel 节点命名为 mcu-panel, 驱动中根据此去识别并解析 mcu panel 参数。
- 。 compatible 属性可以删除,无需配置。
- mcu panel 通常需要通过初始化序列来初始化 display mode/pixel format/frame rate 等配置(具体由 panel 的驱动 IC 确定),以及通过去初始化序列来确保 panel 关闭或进入 low-power 模式等。相关 panel-init-sequence 和 panel-exit-sequence 属性的注意点如下:
 - 。 序列由屏厂提供,通常需要从 c 文件转换为 DTS 配置。
 - 。 序列每行从左往右依次为:指令类型cmd/data、延迟时间(ms)、数据长度(byte)、数据。
 - 。 帧率的配置通常也在序列初始化阶段进行,下面是实例驱动 IC 手册中的说明:

5.3.2. Frame Rate Control (In Normal Mode/Full Colors) (B1h)

B1h		FRMCTR1 (Frame Rate Control (In Normal Mode/Full colors))											
	D/CX	D/CX RDX WRX D [23:8] D7 D6 D5 D4					D3	D2	D1	D0	HEX		
Command	0	1	1	XX	1 0 1 1				0	0	0	1	B1h
1 st Parameter	1	1	1	XX		FRS [3:0] 0 0 DIVA [1:0]				[1:0]	B0h		
2 nd Parameter	1	1	1	XX	0 0 0 RTNA [4:0] 11				11h				

	FRS	[3:0]		CNT	Frame rate(Hz) Tearing Effect Line OFF(R34h)	Frame rate(Hz) Tearing Effect Line ON(R35h) VBP+VFP <24
0	0	0	0	37	28.78	27.64
0	0	0	1	35	30.38	29.17
0	0	1	0	33	32.17	30.89
0	0	1	1	31	34.18	32.82
0	1	0	0	29	36.46	35.01
0	1	0	1	27	39.06	37.51
0	1	1	0	25	42.07	40.40
0	1	1	1	23	45.57	43.76
1	0	0	0	21	49.71	47.74
1	0	0	1	19	54.69	52.52
1	0	1	0	17	60.76	58.35
1	0	1	1	15	68.36	65.65
1	1	0	0	13	78.13	75.03
1	1	0	1	11	91.15	87.53

设 clock 为 display-timings 节点下 clock-frequency 属性值,ptotal 为 mcu-timing 节点下 mcu-pix-total 的值,同时 htotal 和 vtotal 可以根据以下公式计算:

htotal = hactive + hback-porch + hfront-porch + hsync-len

vtotal = vactive + vback-porch + vfront-porch + vsync-len

综上,则 MCU 屏帧率 rate 的计算公式为:

rate = clock / htotal / vtotal / ptotal

• mcu-timing 用于配置 MCU 接口控制信号 CSN/WEN/REN 的时序,各属性分别对应下图中各区间的 时间。同时,display-timings 节点下 clock-frequency 属性值的配置需要根据这些时序信息去确定, 下面会说明具体的计算方法:

• mcu-timing 中各属性配置建议保持默认,根据 panel datasheet 的时序要求修改 display-timings 配置中 clock-frequency 属性的值即可,下图为示例 datasheet 中的时序要求:

Signal	Symbol	Parameter	Min	Max	Unit	Description
D/CX	T _{AST}	Address setup time	0		ns	
DICX	T _{AHT}	Address hold time (Write/Read)	10		ns	-
	T _{CHW}	Chip select "H" pulse width	0		ns	
	Tcs	Chip select setup time (Write)	15		ns	
CSX	T _{RCS}	Chip select setup time (Read ID)	45		ns	
CSA	T _{RCSFM}	Chip select setup time (Read FM)	355		ns	
	T _{CSF}	Chip select wait time (Write/Read)	10		ns	
	T _{CSH}	T _{CSH} Chip select hold time			ns	
	Twc	Write cycle	66		ns	
WRX	T _{WRH}	Control pulse "H" duration	15		ns	
	T _{WRL}	Control pulse "L" duration	15		ns	
	T _{RC}	Read cycle (ID)	160		ns	
RDX (ID)	T _{RDH}	Control pulse "H" duration (ID)	90		ns	When read ID data
9	T _{RDL}	Control pulse "L" duration (ID)	45		ns	
RDX	T _{RCFM}	Read cycle (FM)	450		ns	When read from
(FM)	T _{RDHFM}	Control pulse "H" duration (FM)	90		ns	When read from
	T _{RDLFM}	T _{RDLFM} Control pulse "L" duration (FM)			ns	frame memory
D[7:0]	T _{DST}	Data setup time	10		ns	For CL=30pF

- clock-frequency 会受到 bus-format 的影响,主要取决于将一个 pixel 的数据分成几个 cycle 去发送(详见<u>《Panel 配置》</u>中的 bus-format 表格),下述计算基于 Cycles Per Pixel 为 1 的情况,**若为 MEDIA_BUS_FMT_RGB888_3X8 配置下需要将最终计算结果再乘以 3**。
- 假设此时帧率配置 rate 为常见的 60 Hz,ptotal 为 mcu-timing 中 mcu-pix-total 的值(默认为 9),按照上述示例 dts 的 display-timings 配置则可以计算出 clock-frequency 的理想值 dclk_p 为:

```
\begin{aligned} &htotal = hactive + hback-porch + hfront-porch + hsync-len = 345 \\ &vtotal = vactive + vback-porch + vfront-porch + vsync-len = 505 \\ &dclk_p = rate * htotal * vtotal * ptotal = 94081500(Hz) \end{aligned}
```

■ 设变量 ptotal 为 mcu-timing 中 mcu-pix-total 的值(默认为 9),panel datasheet 中要求 MCU PIX TOTAL 区间时间不小于 t_{min}:

$$t_{min} = T_{CHW} + T_{AST} + T_{WC} + T_{CHW} = 66(ns)$$

则可以计算出 clock-frequency 的最小值 dclk_{max}(单位为 Hz)为:

$$dclk_{max} = ptotal * 10000000000 / t_{min} = 136363636(Hz)$$

根据 $dclk_p$ 可以算出 $MCU_PIXTOTAL$ 区间时间在 60 帧下的理想值 t_p 为:

$$t_p = ptotal * 1000000000 / dclk_p = 95(ns)$$

综上, t_p 和 $dclk_p$ 均满足上述计算出的限制条件,则 clock-frequency 属性值应配置为 94081500。

5. 调试流程

1. 确认 rgb/mcu 接口各 pin 脚的硬件连接,需要注意每个平台 pin 脚的映射方式可能会有所不同,具体看上文<u>《硬件连接》</u>章节。

LCDC_CLK_C	R9002 OR 1 2 R0402 5%	LCDC_CLK	5
LCDC DEN C	D0003 0D 1 2 D0402 59		
LCDC HSYNC C	D0004 0D 1 2 D0402 E9	LCDC_DEN	5
LCDC VSYNC C	2005 00 1	LCDC_HSYNC	5
		LCDC_VSYNC	5
LCDC DO C	R9006 OR 1 2 R0402 5%	A ana na	-
LCDC D1 C	D0007 0D 1 2 D0402 ES	LCDC_D0	5
LCDC D2 C	DODOO OD 1 * * 0 DODOO EQ	LCDC_D1	5
LCDC D3 C	DODOO OD 1 * * 2 DODO ES	LCDC_D2	5
LCDC D4 C	DQN1N ND 1 * * 2 DN/N2 ES	LCDC_D3 LCDC_D4	5 5
LCDC D5 C	DO011 OD 1 * * 2 DO402 EQ	LCDC_D4	5
LCDC D6 C		LCDC_D6	5
LCDC D7 C		LCDC_D7	5
	(TCDC_D7	5
LCDC D8 C	R9014 OR 1	LCDC D8	5
LCDC D9 C	DO01E 0D 1 * * 2 D0402 ES	LCDC D9	5
LCDC D10 C		LCDC_D10	5
LCDC D11 C	DO017 OD 1 V V 2 DO402 EQ	LCDC D11	5
LCDC D12 C	DO010 0D 1 * * 2 D0402 EQ	LCDC D12	5
LCDC D13 C	DQN1Q ND 1 * * 2 DN/N2 ES	LCDC D13	5
LCDC D14 C	DQD2D DD 1 * * 2 DDAD2 E9 \	LCDC D14	5
LCDC D15 C		LCDC D15	5
		CECEC_PIS	,
LCDC_D16_C	R9022 OR 1 2 R0402 5%	LCDC D16	5
LCDC D17 C	D0023 0D 1 * * 2 D0402 E9	LCDC D17	5
LCDC D18 C	DQD24 DD 1 * * 2 DD4D2 E9 \	LCDC D18	5
LCDC_D19_C	DOOGE OD 1 * * 0 DOAGO EQ	LCDC D19	5
LCDC D20 C		LCDC D20	5
LCDC D21 C	D0027 0D 1 * * 2 D0402 ES	LCDC D21	5
LCDC D22 C	R9028 OR 1 2 R0402 5%	LCDC D22	5
LCDC D23 C		LCDC D23	5
		V	5

2. 根据 panel datasheet 正确配置 enable/reset 控制引脚极性和上电时序,以及背光所用到的 pwm 通道。若为 mcu 屏,还需要配置正确的初始化序列。

VOCON RESET C	R9030 OR 1 2 R0402 5%	—>>LCD RST 5
VOCON PWREN C	R9031 OR 1 2 R0402 5%	LCD PWREN 5
VOCON_LEDPWM_C	R9030 0R 1 2 R0402 5% R9031 0R 1 2 R0402 5% R9032 0R 1 2 R0402 5%	LCDC BL PWM 5

3. 确保背光已点亮的情况下,需再确认下 enable/reset 控制引脚是否为正确的电平,若实际测量仍非预期值,则确认下 iomux 是否正确配置为 GPIO。

6. 常见问题

6.1 RGB/MCU 屏可以显示图像但屏幕上有噪点或者存在显示错位现象

答: 可以尝试翻转下 dclk 时钟极性,改变 dclk 与 data 信号的相对相位:

```
display-timings {
  native-mode = <&fx070_dhm11boe_timing>;

fx070_dhm11boe_timing: timing0 {
    clock-frequency = <50000000>;
    hactive = <1024>;
```

```
vactive = <600>;
    hback-porch = <140>;
    hfront-porch = <160>;
    vback-porch = <20>;
    vfront-porch = <20>;
    hsync-len = <20>;
    vsync-len = <2>;
    hsync-active = <0>;
    vsync-active = <0>;
    de-active = <0>;
    pixelclk-active = <0>; // 1 翻转, 0 不翻转
};
};
```