Image segmentation

Methods

Thresholding → Intensity clipping

Otsu's thresholding

Applications

- High-throughput cytometry
 - Cell size
 - Cell counting

Cell tracking

Workflow

Input 1: N2DH-GOWT1 cells

- GFP-Gowt1 mouse embryonic stem cells
- Time-lapse confocal microscopy and GFPstaining
- Leica TCS SP5 microscope
- Investigate genomic integrity of the cells

Input 2: N2DH-HeLa cells

- Human epithelial cells of cervical cancer
- Live imaging of fluorescently labelled chromosomes
- Olympus IX81 microscope
- Phenotypic profiling of the human genome

Input 3: NIH3T3 cells

- Several mouse embryonic fibroblast cells
- Fluorescence microscopy images
- Evaluation of image analysis pipelines

Problems

Low contrast

Reflections

Random noise

Preprocessing

Solutions:

- Random noise
- → Gaussian filter
- Reflections

Low contrast

Original

Gaussian filter ($\sigma = 3$)

Preprocessing

Solutions:

- Random noise
- → Gauss filter, median filter
- Reflections
- **→** Thresholding
- Low contrast

Preprocessing

Solutions:

- Random noise
- → Gauss filter, median filter
- Reflections
- **→** Thresholding
- Low contrast
- **→** Histogram stretching

Contrast stretching

Low contrast image

Threshold value $k \in [0,255]$

Between-class variance

$$\sigma_{\rm B} = \omega_0 \omega_1 (\mu_1 - \mu_0)^2$$

 $\omega_{0,1}=$ probability of class occurrence $\mu_{0,1}=$ mean intensity values

Threshold value $k \in [0,255]$

Image clipping

$$g_{clip}(x,y) = \begin{cases} 0 & \text{if } g(x,y) \le k \\ 255 & \text{if } g(x,y) > k \end{cases}$$

Gray-value histogram

Bad prediction

$$DSC = \frac{2 \times |A \cap B|}{|A| + |B|}$$

A: Predicted shape

B: Ground truth

$$DSC = \frac{2 \times |A \cap B|}{|A| + |B|}$$

Our goal: compare ground truth images with our results

Further ideas

- 2D Otsu
- Algorithm for counting cells

Timeline

Thank you for your attention!

Laura Wächter, Hannah L. Winter, Elizaveta Chernova, Veronika Schuler

Additional slide – Histogram stretching

$$a = 0, b = 255$$

c – lowest pixel intensity in the image

d – highest pixel intensity in the image

$$P_{out} = (P_{in} - c) \left(\frac{b - a}{d - c}\right) + a$$

Additional slide – Histogram stretching

Additional slide – Gaussian filter

$$G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

Additional slide – Criterion measure

Criterion measure

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_T^2}$$

 σ_B = between-class variance σ_T = total variance $\eta(k) \in [0,1]$

Threshold value $k \in [0,255]$

Additional slide – Criterion measure

Otsu, 1979

Additional slide – Otsu disadvantages

Additional slide – Pair Programming

Additional slide – 2D Otsu

Intensity level of pixel is compared with immediate neighborhood pixels Algorithm:

- For each pixel calculate average gray-level of neighborhood
- Gray level of pixel and average gray levels are divided in L discrete values
- Form pairs: pixel gray level *i* and neighborhood average *j*
- There are $L \times L$ possible pairs
- Frequency $f_{i,j}$ of a pair (i,j) divided by the total pixel number N defines probability mass function in a 2D histogram:

$$P_{i,j} = \frac{f_{i,j}}{N} \qquad \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} P_{i,j} = 1$$

Additional slide – IoU

IoU = Intersection-Over-Union Area of Overlap Area of Union

Additional slide - MSD

MSD = mean surface distance

$$d(p,S') = \min_{p' \in S'} ||p - p'||_2$$

$$ext{MSD} = rac{1}{n_S + n_{S'}} \Biggl(\sum_{p=1}^{n_S} d(p, S') + \sum_{p'=1}^{n_{S'}} d(p', S) \Biggr)$$

Additional slide – Hausdorff

HD=max[d(S,S'),d(S',S)]

