## **Lecture 17: Recursive Thinking**

The next part of the course introduces a fundamental concept in computing known as *recursion*. Recursion is a phenomenon that spans math, computer science, and in fact, all of nature. We have all seen the self-similar "fractal" structure of a snowflake:



Figure 1: Snowflake

but less obvious examples of recursion occur even in other kinds of geometric shapes, such as seashells:



Figure 2: Sea Shells

The reason why recursion is so powerful is that it captures a rather simple way to:

Build complex structures out of very simple building blocks.

In what follows, we will build a theoretical framework for setting up recursions (or recurrences), understand how to solve recursions, and develop a powerful technique called *mathematical induction* that can be used to prove theorems about recursive relations (among several other things).

## Sequences, summations, and how to model them as recursions

We are regularly used to thinking about sequences of objects. Imagine the non-negative integers:

or non-negative odd numbers

It is not fun to exhaustively enumerate very long (or infinite) sequences of the form:

$$a_0, a_1, a_2, a_3, \dots$$

So a more compact way to represent them as a *recurrence relation*. Consider the non-negative integers. One can recursively define them using a two-step procedure. First, write down:

$$a_0 = 0$$
,

and then define every other element of the sequence as:

$$a_n = a_{n-1} + 1.$$

On the other hand, the odd numbers can be defined using the recursion:

$$a_0 = 1,$$
  
$$a_n = a_{n-1} + 2.$$

The first specification ( $a_0 = 1$ ) is called the *base case*, and the second is called the *recursive step*.

More generally, sequences of numbers (integers or reals) defined via a recursion of the form:

$$a_0 = b,$$
  
$$a_n = a_{n-1} + d.$$

are called *arithmetic progressions*. Observe that an arithmetic progression is any sequence of regularly-spaced numbers of the form  $(b, b+d, b+2d, b+3d, \ldots)$ .

Likewise, a different example. Suppose we invest b dollars in a bank, where the (monthly) appreciation ratio is r (i.e., at the end of each month the value gets multiplied by a factor r). In that case, a recursive relation for the amount of money in our account at the end of the nth month is given by:

$$a_0 = b,$$
  
$$a_n = ra_{n-1}.$$

Such a sequence provides numbers of the form:

$$b, b \cdot r, b \cdot r^2, b \cdot r^3, \dots$$

which is called a geometric progression.

The situation changes if we are a bit more fiscally prudent, and invest a fixed amount of money *each* month. In that case, the balance in the account at the  $n^{th}$  month,  $a_n$ , is given by:

$$a_0 = b,$$
  
$$a_n = ra_{n-1} + b.$$

## Recursions and closed form expressions

In the above examples, we have discussed how to set up a recursion. However, it is convenient to find a *closed-form* expression for the *n*th element of the recursion. Solving a recursion involves two steps: 1) guessing a *closed-form* expression and 2) *proving* that this is correct.

Let us go back to the example of an arithmetic progression defined above. How do we compute the  $n^th$  element of this sequence? The first way is to start at  $a_0 = b$ , obtain  $a_1 = b + d$ ,  $a_2 = a_1 + d = b + 2d$  and so on, until we apply the recursion n times. This is called *forward substitution*. A small amount of pattern matching lets us guess that the  $n^{th}$  element of the sequence is given by:

$$a_n = b + dn$$
.

Such a formula is a *closed-form expression*: it explicitly encodes  $a_n$  as terms of a function of n. Using such a closed-form expression, one can compute  $a_n$  for any arbitrary n without enumerating all intermediate elements in the sequence.

Similarly, consider a geometric progression (numbers of the form  $b, rb, r^2b, \ldots$ ), defined using the recursion:

$$a_0 = b,$$
  
$$a_n = a_{n-1}r.$$

To compute a closed-form expression for  $a_n$ , we can use forward substitution, as defined above. However, let's now try a slightly different approach. Start with  $a_n$ , and repeatedly invoke the recursion, i.e.,

$$a_n = a_{n-1}r.$$

$$= a_{n-2} \cdot r \cdot r$$

$$= a_{n-3} \cdot r \cdot r \cdot r$$

$$\dots$$

$$= a_0 r^{\text{n times}}$$

$$= br^n.$$

This method is called backward substitution.

Before we conclude this section, here is an **exercise**. Can you model the following sequences using a recursion, and if possible, guess a closed form expression?

$$3, 9, 27, 81, 327, \dots$$
  
 $1, 2, 6, 24, 120, 720, \dots$ 

$$1, 1, 2, 3, 5, 8, \dots$$

(The last sequence has a special name: it is called a *Fibonacci sequence*, and has some fascinating and surprising applications. Look it up!)

## **Summations**

Consider any sequence  $(a_0, a_1, a_2, \dots, a_n)$ . The *summation* of this sequence is given by:

$$S_n = a_0 + a_1 + \dots a_n = \sum_{i=0}^n a_i.$$

The lower and upper limits (below and above the  $\Sigma$  respectively) indicate the set of elements that participate in the summation.

Important note #0: any summation  $S_n$  itself is a sequence. (Observe that the value of  $S_n$  depends on n, which is an integer.)

Important note #1: any summation  $S_n$  can be defined using recursion! Here is the setup; the logic should be clear from the (literal) definition of summation.

$$S_0 = a_0$$
$$S_n = S_{n-1} + a_n.$$

Here are a few examples of summations.

$$\sum_{i=0}^{n} i = 1 + 2 + \dots + n.$$

$$\sum_{i=0}^{4} i^2 = 0 + 1 + 4 + 9 + 16 = 30.$$

$$\sum_{i=0}^{3} (-1)^i = 1 + (-1) + 1 + (-1) = 0.$$

$$\sum_{i=3}^{73} i^3 = 3^3 + 4^3 + 5^3 + 6^3 + \dots + 73^3.$$

Important note #2: the limits can be shifted using a change of variable. For example, in the last summation above, if i = j + 3, then we can plug in the counter j instead of i to obtain the (completely equivalent) summation:

$$\sum_{j=0}^{70} (j+3)^3 = 3^3 + 4^3 + 5^3 + 6^3 + \dots 73^3.$$

Note that the upper and lower limits have now changed; be mindful of this whenever you do a change of variables while doing a summation.

We can derive *closed* form expressions for some common summations. Consider the special case where the base is zero and the step-size is 1, i.e., the sequence is the natural numbers  $(1, 2, 3, 4, 5, \ldots)$ . Then, the sum of the arithmetic series is given by:

$$S_n = 1 + 2 + \ldots + n - 1 + n.$$

There is a particularly elegant way to simplify this summation. Trivially, one can observe that this is the same as

$$S_n = n + n - 1 + \ldots + 2 + 1.$$

Now, we will add the two equations term-by-term. We get:

$$2S_n = (n+1) + (n+1) + (n+1) + \dots + (n+1) = n(n+1)$$

or, solving for  $S_n$ , we get

$$S_n = \frac{n(n+1)}{2}.$$

For general arithmetic progressions  $(a, a+d, a+2d, \ldots)$ , one can show (as an **exercise**) that

$$S_n = a + (a+d) + \dots + (a+nd)$$
  
=  $\frac{n+1}{2}(2a+nd)$ .

(Aside: The sequence  $S_n$  is called the sequence of triangular numbers. A possibly apocryphal story is that the legendary mathematician Carl Friedrich Gauss figured out this derivation for  $S_n$ 

. . .

when he was in primary school.

So there's that.)