

## NARSIMHAREDDY ENGINEERING COLLEGE (UGC AUTONOMOUS)

| Hall Ticket No.: |
|------------------|
|------------------|

## I B.Tech II Semester (NR23) I Assignment Examinations, March 2025

## SUBJECT NAME (SUBJECT CODE) (Name of the Department)

Date:XX-XX-2025 Time: 03:00PMto 04:00PM Max.Marks:10

| CO1 | Find the solutions of first order first degree differential equations and their applications.   |  |  |  |
|-----|-------------------------------------------------------------------------------------------------|--|--|--|
| CO2 | Solve higher differential equation and apply the concept of differential equation to real world |  |  |  |
|     | problems.                                                                                       |  |  |  |
| CO3 | Use the Laplace transforms techniques for solving ordinary differential equations.              |  |  |  |
| CO4 | Calculate gradient of scalar point function and divergence, curl of vector point function.      |  |  |  |
| CO5 | Evaluate the line, surface and volume integrals and converting them from one to another.        |  |  |  |

| Q.No                                                                                     | Question                                                               | Mark | СО  | ВТ | PO      |  |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|-----|----|---------|--|--|
|                                                                                          |                                                                        | S    |     |    |         |  |  |
| 1                                                                                        | Solve $2xydy - (x^2 - y^2 + 1)dx = 0$                                  | 5M   | CO1 | L1 | PO<br>1 |  |  |
| 2                                                                                        | Solve $(y - xy^2)dx - (x + x^2y)dy = 0$ .                              | 5M   | CO1 | L1 | PO<br>1 |  |  |
| 3                                                                                        | $Solve x^2 y dx - (x^3 + y^3) dy = 0$                                  | 5M   | CO1 | L2 | PO<br>1 |  |  |
| 4                                                                                        | Solve $(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$                      | 5M   | CO1 | L1 | PO<br>2 |  |  |
| 5                                                                                        | Solve $x \frac{dy}{dx} + y = x^2 y^6$                                  | 5M   | CO1 | L2 | PO<br>1 |  |  |
| 6                                                                                        | Solve $(x^3 + 3xy^2) dx + (y^3 + 3x^2y) dy = 0$                        | 5M   | CO1 | L1 | PO<br>2 |  |  |
| 7                                                                                        | If the temperature of the air is 20°C and the temperature of the body  | 5M   | CO1 | L2 | РО      |  |  |
|                                                                                          | drops from 100°C to 80°C in 10 mins. What will be its temperature      |      |     |    | 2       |  |  |
|                                                                                          | after 20 mins? When the temperature will be 40°C?                      |      |     |    |         |  |  |
| 8                                                                                        | If 30% of a radioactive substance disappears in 10 days, how long will | 5M   | CO1 | L2 | РО      |  |  |
|                                                                                          | it take for 90% of it to disappear?                                    |      |     |    | 1       |  |  |
| 9                                                                                        | Solve $p^2 + 2py \cot x = y^2$ for p.                                  | 5M   | CO1 | L1 | PO<br>2 |  |  |
| 10                                                                                       | Solve $x log x \frac{dy}{dx} + y = 2 log x$                            | 5M   | CO1 | L1 | PO<br>2 |  |  |
| BT: L1-Remembering, L2-Understanding, L3-Applying, L4-Analyzing, L5-Evaluate, L6-Create. |                                                                        |      |     |    |         |  |  |