

Capteurs

Ou faire en sorte que l'on puisse faire la différence entre votre robot et Gilbert Montagné.

D'après Lïam LOTTE

Sommaire:

- II) Capteurs
 - 1) Kesako un capteur et une chaîne d'information?
 - 2) Types de capteurs et leurs sorties
 - 3) Protocoles de communications classiques
 - 4) Les capteurs du robot de l'année dernière

I) Kesako un capteur et une chaîne d'information ?

"Un **capteur** est un dispositif transformant l'état d'une grandeur physique observée en une grandeur utilisable, telle qu'une tension électrique, une hauteur de mercure, un courant électrique ou la déviation d'une aiguille."

Source : Wikipédia (t'inquiète)

I) Kesako un capteur et une chaîne d'information ?

I) Kesako un capteur et une chaîne d'information ?

Cela nous sert à donner la perception du monde au robot, sans ça il est simplement aveugle...

Exemple:

Passif: Pas d'alimentation propre

Exemple: Capteur Résistifs (résistance variant en fonction d'un paramètre donné).

Actif: Alimentation Propre

Exemple : Capteurs Ultrasons

Passif: Pas d'alimentation propre

Exemple: Capteur Résistifs (résistance variant en fonction d'un paramètre donné).

Actif : Alimentation Propre <- Majorité de nos capteurs

Exemple : Capteurs Ultrasons

Types de sorties : *TOR*

Types de sorties : *TOR*

How to deal with ? : Entrée de base du microcontrôleur avec la fonction digitalRead() d'Arduino

Types de sorties : *Temps de réponse*

How to deal with?: Vous attendez avec des delay()

(processus bloquant!)

Il existe des méthodes plus malignes en utilisant les interruptions du microcontrôleur (méthode plus complexe).

Types de sorties : *Analogique*

Types de sorties : Analogique

How to deal with ? : Convertisseur Analogique Numérique du µC grâce à la fonction Arduino "analogRead()"

Warning: Votre PIN d'entrée doit être connecté à un ADC (Convertisseur Analogique Numérique)

Types de sorties : **PWM** (Pulse Width Modulation)

Types de sorties : **PWM** (Pulse Width Modulation)

How to deal with?: Convertisseur Analogique Numérique du µC grâce à la fonction Arduino "analogRead()"... again

Warning: Votre PIN d'entrée doit être connecté à un ADC (Convertisseur Analogique Numérique)... encore et encore

Types de sorties : Plein de protocoles de communications...

How to deal with ? : En général trouver une bibliothèque... mais on va donner des exemples !

UART:

Différence
entre full-duplex
et half-duplex

UART:

USART:

merci Marques

UART et USART:

Comment on fait mon capitaine ? : Bibliothèque <Serial.h> native sur Arduino.

I²C:

 I^2C :

Attention!: Protocole esclave maître

- Un esclave ne peut communiquer avec un autre esclave!
- Idem pour les maîtres!

I^2C :

Comment on fait mon capitaine ? : Bibliothèque <Wire.h> native sur Arduino.

Full Duplex

III) Protocoles de communications classiques

SPI:

SPI: en gros l'I²C mais en rapide

SPI:

Comment on fait mon capitaine ? : Bibliothèque <SPI.h> native sur Arduino.

Protocole :	U(S)ART	I ² C	SPI
Avantage :	RapideSimpleBi Directionnel	Simple d'utilisationCommun	- Rapide - Modulaire
Inconvénient :	- Uniquement point à point	- Lent	- Plus de câbles que l'I ² C

Point à Point / Série

IV) Les capteurs du robot de l'année dernière

Robot:

- Capteurs fin de course -> Fonction digitalRead()
- Capteurs Ultrasons -> Bibliothèque <Ultrasonic.h>
- Capteurs à effet halls -> Fonction analogRead()

Le panier :

Capteur de force -> Fonction analogRead()

IV) Les capteurs du robot de l'année dernière

Robot:

- Capteurs fin de course -> Fonction digitalRead()
- Capteurs Ultrasons -> Bibliothèque <Ultrasonic.h> <- Librairie spéciale !
- Capteurs à effet halls -> Fonction analogRead()

Le panier :

Capteur de force -> Fonction analogRead()

La règle maîtresse

Pour chaque chose que vous avez à faire, faites les recherches de la datasheet de votre capteur et cherchez si des bibliothèques existent déjà!

Vous gagnerez du temps

La règle maîtresse

Si vous utilisez des capteurs, documentez les ! Pour stocker votre documentation, utilisez le saint GitHub !

Chad mec qui documente son travail

Virgin codeur fou

AREM OF

https://github.com/AREM-Proiets/documentation-capteurs

Go faire des robots les zamis