SAR LANG LAB Multi-Tier Evaluation Framework

Status In progress

Project Summary

The PharmaSwarm–SAR LANG LAB Multi-Tier Evaluation Framework was developed during an advanced Data Science and Machine Learning Bootcamp to bridge the gap between AI reasoning and experimental science in drug discovery.

While current AI models can predict promising molecules, they often fail to explain *why* or *how* those predictions hold up under experimental validation. This framework introduces a structured, reproducible method to evaluate whether **large language model** (**LLM**) outputs are both mechanistically sound and scientifically testable.

The system integrates two components: **SAR-LANG LAB (Tiers 0–2)**, which assesses reasoning accuracy and causal structure in *Structure–Activity Relationship* (SAR) analysis, and **PharmaSwarm (Tier 3)**, which validates hypotheses through *in silico* and *in vitro* experiments. Together, they create an evidence-based pipeline demonstrating how Al can move beyond prediction to deliver explainable, verifiable contributions to real-world drug discovery.

Tier 0 - SAR Report Format & Evaluation Rubric

Goal: Standardize and quantitatively evaluate model-generated SAR reports before higher-tier validation.

- Format: SAR Report V4 (structured template with visual and reference sections)
- Evaluation Rubric V2: Scores reports across Accuracy, Comprehensiveness, Clarity, Reasoning, Evidence

Dimension	Criteria	Metric	Score	Remarks
Accuracy	Match with reference report	Domain accuracy	10	Count × 2
	Quantitative errors (SMILES, pKi, etc.)	- 5 (Penalty)	Deduct per error	
Comprehensiveness	Template compliance (V4)	Structure adherence	5	_
Clarity & Communication	Visualization + highlights	Completeness	5	_
Reasoning & Evidence	RAGAS metrics (≥ 0.7 each)	Faithfulness / relevance	15	× 3
	Logical causal structure	Quantified reasoning	10	× 2
	Literature citation	Citation completeness	5	_
Total			50 pts	

Experimental Step:

Select one Activity Cliff (e.g., (R)- vs (S)-thalidomide), generate 5 reports each for Base, Tier 1, Tier 2 models, and evaluate using the rubric.

Tier 1 – Agent Performance Evaluation

 $\pmb{\textbf{Agents:}} \ \ \, \texttt{base_agent} \ \, , \ \, \texttt{biological_agent} \ \, , \ \, \texttt{futurehouse_agent} \ \, , \ \, \texttt{structural_agent}$

Benchmark: Five Activity Cliffs evaluated across vendors (openai , gemini , futurehouse).

Parameters (Periodically Retuned):

Task	Temperature	Max Tokens	Purpose
Accuracy Evaluation	0.0 - 0.2	500 – 1000	Deterministic replication
Hypothesis Generation	0.6 - 0.8	1500 +	Creative reasoning
Automated Reporting	0.3 - 0.5	2000 +	Balanced narrative

Stage-Specific Guide

Stage	Task	Temp.	Tokens	Rationale
1	Activity Cliff Detection	0.0-0.2	100-300	Stable numeric outputs
2	LLM Hypothesis Generation	0.6-0.8	500-1000	Mechanistic reasoning
3	Report Generation	0.3-0.5	1000-2000	Structured summary
4	Brainstorming / Novel Idea Exploration	0.7-1.0	1500-2500	Creative divergence

Other Controls

- Safety: Dictionary-based taboo filtering \rightarrow automatic penalty/rejection
- Evidence: Check PMID/DOI links retrieved via RAG for proper citation
- Weighting: Expert consensus tunes embedding / ROUGE vs form / domain / safety

(RAG evaluation itself handled in Tier 2.)

Tier 2 - Utility.app (RAG / RAGAS Evaluation)

Objective:

Measure how well retrieval (PubMed via RAG) supports generated reasoning.

- Compare: RAG On vs Off
- **Vary:** k = 1, 5, 10

```
params = {
  'db': 'pubmed',
  'term': search_term,
  'retmax': max_results, # number of top papers fetched
  'sort': 'relevance'
}
```

Setting	Effect	
max_results = 1	Highest precision (one paper)	
max_results = 5	Balanced recall/precision	
max_results = 20	Highest recall + noise risk	

↑ retmax → ↑ Recall, ↓ Precision

Composite Metric:

Integrate RAGAS scores (context_precision , recall , faithfulness , answer_relevancy) into a weighted index for final Tier validation.

→ Ref: <u>Judy-Choi RAGAS Tutorial</u>

Tier 3 - PharmaSwarm Hypothesis Validation (4 Tiers)

SAR-LANG LAB feeds into PharmaSwarm's scientific validation pipeline for drug discovery LLMs.

PharmaSwarm Tier	Stage Title	Objective	Methods / Techniques	Metrics	Key Question
1	Retrospective Benchmarking	Recreate known drug discoveries with period data	Historical case reconstruction (e.g., oncology)	Recall@K, Precision@K, Kendall's Tau, MAP	Can the system rediscover past success cases?
2	Prospective In Silico Assessment	Validate new targets/compounds computationally	Docking (Vina, Glide), MD (50–100 ns), ADMET (pkCSM, ADMETIab)	Docking affinity, MD stability, ADMET concordance	Are hypotheses physically and pharmacologically sound?
3	Experimental Evaluation	Wet-lab verification	SPR/ITC (Kd), IC_{50} assay, in vivo model	Kd < 100 nM, IC ₅₀ < 1 μ M = "hit"	Do predicted compounds show measurable efficacy?
4	Expert User Studies	Human-in-the-loop evaluation	Comparative user studies vs standard workflow	Time savings, novelty/plausibility, Wilcoxon test	Does PharmaSwarm improve scientific productivity and credibility?

Integrated View

Pipeline Layer	System / Module	Validation Focus
Tier 0-2	SAR-LANG LAB	Report accuracy → Agent tuning → Retrieval reasoning
Tier 3	PharmaSwarm	Scientific validation (in silico, experimental, expert)

Together they form a **closed-loop evaluation ecosystem**—from LLM-generated SAR reasoning to computational and experimental verification.