Mathématiques-Cryptographie

Anne Garcia-Sanchez

M2i cyber2 dev - CFA CCI Avignon

20 novembre 2023

Rappels: chiffrements par substitution mono-alphabétique

une lettre de l'alphabet d'origine est toujours remplacée par la même lettre ou le même symbole

- Chiffrement par décalage César ROT13 ROT47
- Chiffre Atbash, Atbah, Wolseley
- Chiffre Pigpen
- Carré de Polybe
- Chiffrement affine
- Cas général

Chiffrement par substitution poly-alphabétique: principe

poly-alphabétique: plusieurs alphabets.

une lettre correspond à plusieurs lettres selon sa position

A peut être remplacé par M ou P ou D

Chiffrement par substitution poly-alphabétique

Chiffre de Vigenère

Chiffre de Beaufort

Chiffre de Hill

Enigma

Blaise de Vigenère - XVI° siècle - 1586

Exemple: on chiffre le mot MESSAGE avec la clé KEY

clé	Κ	Ε	Υ	Κ	Ε	Υ	Κ
message clair	М	Ε	S	S	Α	G	Ε
rang lettre du message	12	4	18	18	0	6	4
rang lettre de la clé	10	4	24	10	4	24	10
somme rangs	22	8	42	28	4	30	14
réduction modulo 26	22	8	16	2	4	4	14
message chiffré	W	1	Q	C	Ε	Ε	0

TABLE DE VIGENERE

Texte clair

Anne Garcia-Sanchez

Mathématiques-Cryptographie

Chiffre de Beaufort

variante du chiffre de Vigenère.

on soustrait le message clair de la clé.

Exemple: on chiffre le mot MESSAGE avec la clé KEY

clé	Κ	Ε	Υ	Κ	Ε	Υ	Κ
message clair	М	Ε	S	S	Α	G	Ε
rang lettre de la clé	10	4	24	10	4	24	10
rang lettre du message	12	4	18	18	0	6	4
différence rangs	-2	0	6	-8	4	18	6
réduction modulo 26	24	0	6	18	4	18	6
message chiffré	Υ	Α	G	S	Ε	S	G

Chiffre de Beaufort

particularité:

si on chiffre deux fois un message, on retrouve le message original

$$C \equiv K - M \pmod{26}$$

 $C' \equiv K - C \pmod{26}$
 $C' \equiv K - (K - M) \pmod{26}$
 $C' \equiv M \pmod{26}$

Chiffre de Beaufort - variante allemande

on soustrait la clé au message clair.

clé	Κ	Ε	Υ	K	Ε	Υ	Κ
message clair	Μ	Ε	S	S	Α	G	Ε
rang lettre du message	12	4	18	18	0	6	4
rang lettre de la clé	10	4	24	10	4	24	10
différence rangs	2	0	-6	8	-4	-18	-6
réduction modulo 26	2	0	20	8	22	8	20
message chiffré	C	Α	U	ı	W	J	U

attaque par analyse de fréquences possible si longueur de clé connue (et texte assez long et clé pas trop longue)

on regarde les sous-chiffrés

Exemple: clé de longueur 3

ZUATIGXOYDLFWHUERJXOYDUKHGBKEVXRYTGDUPFKEVOFN

sous-chiffré 1: ZTXDWEXDHKXTUKO chiffré avec K sous-chiffré 2: UIOLHROUGERGPEF chiffré avec E sous-chiffré 3: AGYFUJYKBVYDFVN chiffré avec Y

Problème: trouver la longueur de la clé?

Test de Kasiski: 1863 Exemple (wikipedia):

KOOWEFVJPUJUUNUKGLMEKJINMMUXFQMKJBGWRLFNFGHUDWUUMBSVLPS
NCMUEKQCTESWREEKOYSSIWCTUAXYOTAPXPLWPNTCGOJBGGHTDWXIZA
YGFNSXCSEYNCISSPNTUJNYTGGWZGRWUUNEJUUQEAPYMEKQHUIDUXFP
GUYTSMTFFSHNUOCZGMRUWEYTRGKMEEDCTVRECFBJJQCUSWVBPNLGOYL
SKMTEFVJJTWWMFMWPNMENTHHRSPXFSSKFFSINUOCZGMDOEOYEEKCPJR
GPMURSKHFRSEIUEVGOYCWXIZAYGOSAAN: DOEOYJLWUNHAMEBFELXYVL
WNOJNSIOFRWUCCESWKVIDGMUCGOCRUWGNMAAFFVNSIUDEKQHCEUCPFC
MPVSUDGAVEMNYMAMVLFMAOYFNTQCUAFVFJNXKLNEIWCWODCCULWRIFT
WGMUSWOYMATNYBUHTCOCWFYTNMGYTQMKBBNLGFBTWOJFTWGNTEJKNEE
DCLDMYTYYJDGMVRDGMPLSWGJLAGOEEKJOFEKUYTAANYTDWIYBNLNYNP

		Longueurs de clef possibles (diviseurs de la distance					
Séquence répétée	Distance entre les répetitions	2	3	5	19		
WUU	95			х	×		
EEK	200	х		х			
WXIZAYG	190	x		х	×		
NUOCZGM	80	x		×			
DOEOY	45		х	×			
GMU	90	х	х	х			

La clé est probablement de longueur 5.

William F. Friedman: 1920

Indice de coïncidence

probabilité d'obtenir deux lettres identiques lorsqu'on tire simultanément deux lettres au hasard dans le texte

 n_i nombre d'occurence de la lettre de rang i dans le texte chiffré n est la longueur du texte chiffré

$$I = \sum_{i=0}^{25} \frac{n_i(n_i - 1)}{n(n-1)}$$

texte aléatoire: I = 0.0385

texte français I = 0.0746 environ