House Price Prediction

GR5293 EODS – Project 2 Contributer: Lichun He / Yuqi Zhang / Haishan Mei / Lei Huang

Outline

- What's New
- Dataset Overview
- Data Cleaning
- Feature Selection
- Model Selection
- Model Evaluation
- Summary

What's New

Project 1

- Data Cleaning
- Feature Selection
 - LASSO
- Model Selection
 - based on LASSO

Project 2

- Data Cleaning (improved)
- Feature Selection (improved)
 - LASSO
 - Tree Based Model Feature
 Importance
- Model Selection (huge improved)
 - LASSO / Tree / GradiendBoost /...
 - Tuning process
- Model Evaluation

Dataset Overview

- House Prices dataset generated from Kaggle¹
 - 79 explanatory variables describing (almost) every aspect of residential homes in Ames, lowa;
 - 1 target variable SalePrice
- Pre-split two dataset
 - o Train dataset: (1460, 80) with 'SalePrice'
 - Test dataset: (1459, 79) without 'SalePrice'

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	 PoolArea	PoolQC	Fence	MiscFeature	MiscVal	MoSold	YrSold	SaleType	SaleCondition	SalePrice
Id																				
1	60	RL	65.0	8450	Pave	NaN	Reg	LvI	AllPub	Inside	 0	NaN	NaN	NaN	0	2	2008	WD	Normal	208500
2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllPub	FR2	 0	NaN	NaN	NaN	0	5	2007	WD	Normal	181500
3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	AllPub	Inside	 0	NaN	NaN	NaN	0	9	2008	WD	Normal	223500
4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	AllPub	Corner	 0	NaN	NaN	NaN	0	2	2006	WD	Abnorml	140000
5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllPub	FR2	 0	NaN	NaN	NaN	0	12	2008	WD	Normal	250000

5 rows x 80 columns

df train.head()

^{1:} https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data

Dataset Overview

- Mixture of numeric and categorical variables
 - Nominal variable
 - RoofStyle: Type of roof

Flat Flat
Gable Gable
Gambrel Gabrel (Barn)
Hip Hip
Mansard Mansard
Shed Shed

- Ordinal variable
 - OverallQual: Rates the overall material and finish of the house

10	Very Excellent
9	Excellent
2	Poor
1	Very Poor

Step 0: Extra target variable and drop it from train data;

Merge pre-split datasets together into our self-use train dataset

```
df_train = pd.concat((X, df_test))
df_train.shape
(2919, 79)
```

Step 1: Check duplicate data

```
df_train[df_train.duplicated(keep='first')]

MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities LotConfig ...
Id
Orows x 80 columns
```

Our dataset doesn't have duplicate data.

Step 2: Check missing data

```
def Missingtable(df,missing col name ='Missing Data Count'):
   missing df = pd.DataFrame(df.isnull().sum(), columns=[missing col name])
   return missing df[missing col name]!=0].sort values(missing col name,ascending=True)
print('Number of features having missing values: {}'.format(Missingtable(df train).shape[0]))
```

Number of features having missing values: 19

We find that there exists missing datas in our datasets.

However, after taking a closer look into our datas, we find that some NA actually has its meanings. i.e.: Alley: Type of alley access to property

> Grvl Gravel Pave Paved NA No alley access

Step 2: Check missing data (cont.)

- Manually handle missing values
 - Based on the features' defination
 - Fill NA with different specific words

```
# Alley : data description says NA means "no alley access"
df_train.loc[:, "Alley"] = df_train.loc[:, "Alley"].fillna("None")
```

■ Convert some "numerical" features into categorical features

Convert some "nominal" features into ordinal features

Step 2: Check missing values (cont.)

- Create new features
 - #1: Simplifications of existing features

• #2: Combinations of existing features

```
# Overall kitchen score
df_train["KitchenScore"] = df_train["KitchenAbvGr"] * df_train["KitchenQual"]
# Overall fireplace score
df_train["FireplaceScore"] = df_train["Fireplaces"] * df_train["FireplaceQu"]
```

Step 2: Check missing values (cont.)

• #3: Polynomials on the *top 10 existing features*

```
# Find most important features relative to target
print("Find most important features relative to target")
corr = df train.corr()
corr.sort values(["SalePrice"], ascending = False, inplace = True)
corr.SalePrice
Find most important features relative to target
SalePrice
                  1.000000
OverallOual
                  0.819240
AllsF
                  0.817272
AllFlrsSF
                  0.729421
GrLivArea
                  0.718844
                    . . .
LandSlope
                 -0.040114
SimplExterCond
                 -0.042183
KitchenAbvGr
                 -0.147891
EnclosedPorch
                 -0.148636
LotShape
                 -0.285903
Name: SalePrice, Length: 88, dtype: float64
```

```
df train["OverallQual-s2"] = df train["OverallQual"] ** 2
df train["OverallQual-s3"] = df train["OverallQual"] ** 3
df train["OverallQual-Sq"] = np.sgrt(df train["OverallQual"])
df train["AllSF-2"] = df train["AllSF"] ** 2
df train["AllSF-3"] = df train["AllSF"] ** 3
df train["AllSF-Sq"] = np.sqrt(df train["AllSF"])
df train["AllFlrsSF-2"] = df train["AllFlrsSF"] ** 2
df train["AllFlrsSF-3"] = df train["AllFlrsSF"] ** 3
df train["AllFlrsSF-Sq"] = np.sqrt(df train["AllFlrsSF"])
df train["GrLivArea-2"] = df train["GrLivArea"] ** 2
df train["GrLivArea-3"] = df train["GrLivArea"] ** 3
df train["GrLivArea-Sq"] = np.sgrt(df train["GrLivArea"])
df train["SimplOverallQual-s2"] = df train["SimplOverallQual"] ** 2
df train["SimplOverallQual-s3"] = df train["SimplOverallQual"] ** 3
df train["SimplOverallQual-Sq"] = np.sqrt(df train["SimplOverallQual"])
df train["ExterQual-2"] = df train["ExterQual"] ** 2
df train["ExterOual-3"] = df train["ExterOual"] ** 3
df train["ExterOual-Sg"] = np.sgrt(df train["ExterOual"])
df train["GarageCars-2"] = df train["GarageCars"] ** 2
df train["GarageCars-3"] = df train["GarageCars"] ** 3
df train["GarageCars-Sg"] = np.sgrt(df train["GarageCars"])
df train["TotalBath-2"] = df train["TotalBath"] ** 2
df train["TotalBath-3"] = df train["TotalBath"] ** 3
df train["TotalBath-Sq"] = np.sgrt(df train["TotalBath"])
df train["KitchenQual-2"] = df train["KitchenQual"] ** 2
df train["KitchenQual-3"] = df train["KitchenQual"] ** 3
df train["KitchenQual-Sq"] = np.sqrt(df train["KitchenQual"])
df train["GarageScore-2"] = df train["GarageScore"] ** 2
df train["GarageScore-3"] = df train["GarageScore"] ** 3
df train["GarageScore-Sg"] = np.sgrt(df train["GarageScore"])
```

Step 2: Check missing values (cont.)

- Differentiate numerical features (minus the target) and categorical features
- Inpute remaining missing values for numerical features using median

```
train_num = train_num.fillna(train_num.median())
print("Remaining NAs for numerical features in train : " + str(train_num.isnull().values.sum()))
Remaining NAs for numerical features in train : 0
```

Create dummy features for categorical values via one-hot encoding

```
print("NAs for categorical features in train : " + str(train_cat.isnull().values.sum()))
train_cat = pd.get_dummies(train_cat)
print("Remaining NAs for categorical features in train : " + str(train_cat.isnull().values.sum()))

NAs for categorical features in train : 2
Remaining NAs for categorical features in train : 0
```

✓ Our dataset are ready for next step!

Step 3: Check skewness

Step 3: Check skewness (cont.)

```
[229] y = df_train['SalePrice']
   plt.figure(2); plt.title('Normal');
   sns.distplot(y, kde=False, fit=st.norm);
   plt.figure(3); plt.title('Log Normal');
   sns.distplot(y, kde=False, fit=st.lognorm);
```


It is apparent that SalePrice doesn't follow normal distribution, so before performing regression it has to be transformed.

Step 3: Check skewness (cont.)

- Log transform of the skewed numerical features to lessen impact of outliers
 - Inspired by Alexandru Papiu's script¹
 - I skewness I > 0.5 is considered at least moderately skewed

```
skewness = train_num.apply(lambda x: skew(x))
skewness = skewness[abs(skewness) > 0.5]
print(str(skewness.shape[0]) + " skewed numerical features to log transform")
skewed_features = skewness.index
train_num[skewed_features] = np.log1p(train_num[skewed_features])
```

87 skewed numerical features to log transform

Our dataset are ready for fitting model!

Correlation

Finding Correlation coefficients between numeric features and SalePrice.

```
[223] correlation = numeric features.corr()
     print(correlation['SalePrice'].sort values(ascending = False),'\n')
     SalePrice
                       1.000
     OverallQual
                       0.791
     GrLivArea
                       0.709
     GarageCars
                       0.640
                       0.623
     GarageArea
     TotalBsmtSF
                       0.614
                       0.606
     1stFlrSF
                       0.561
     FullBath
     TotRmsAbvGrd
                       0.534
     YearBuilt
                       0.523
     YearRemodAdd
                       0.507
     GarageYrBlt
                       0.486
     MasVnrArea
                       0.477
     Fireplaces
                       0.467
                       0.386
     BsmtFinSF1
                                           MoSold
                                                            0.046
                       0.352
     LotFrontage
                                           3SsnPorch
                                                            0.045
     WoodDeckSF
                       0.324
                                           BsmtFinSF2
                                                           -0.011
     2ndFlrSF
                       0.319
                                           BsmtHalfBath
                                                           -0.017
     OpenPorchSF
                       0.316
                                           MiscVal
                                                           -0.021
                       0.284
     HalfBath
                                           LowQualFinSF
                                                           -0.026
                       0.264
     LotArea
                                           YrSold
                                                           -0.029
                                                           -0.078
                                           OverallCond
     BsmtFullBath
                       0.227
     BsmtUnfSF
                       0.214
                                           MSSubClass
                                                           -0.084
                                           EnclosedPorch
                                                           -0.129
     BedroomAbvGr
                       0.168
                                           KitchenAbvGr
                                                           -0.136
                       0.111
     ScreenPorch
                                           Name: SalePrice, dtype: float64
     PoolArea
                       0.092
```

Correlation

Visualizing correlations

- 'OverallQual', 'GrLivArea' and 'TotalBsmtSF' are strongly correlated with 'SalePrice'.
- 'GarageCars' and 'GarageArea' are strongly correlated variables. It is because the number of cars that fit into the garage is a consequence of the garage area.
- 'YearBuilt' appears slightly correlated with 'SalePrice'. This required more analysis to arrive at a conclusion may be do some time series analysis.

SalePrice -	1	0.79	0.71	0.64	0.62	0.61	0.61	0.56	0.53	0.52	0.51
OverallQual -	0.79	1	0.59	0.6	0.56	0.54	0.48	0.55	0.43	0.57	0.55
GrLivArea -	0.71	0.59	1	0.47	0.47	0.45	0.57	0.63	0.83	0.2	0.29
GarageCars -	0.64	0.6	0.47	1	0.88	0.43	0.44	0.47	0.36	0.54	0.42
GarageArea -	0.62	0.56	0.47	0.88	1	0.49	0.49	0.41	0.34	0.48	0.37
TotalBsmtSF -	0.61	0.54	0.45	0.43	0.49	1	0.82	0.32	0.29	0.39	0.29
1stFIrSF -	0.61	0.48	0.57	0.44	0.49	0.82	1	0.38	0.41	0.28	0.24
FullBath -	0.56	0.55	0.63	0.47	0.41	0.32	0.38	1	0.55	0.47	0.44
TotRmsAbvGrd -	0.53	0.43	0.83	0.36	0.34	0.29	0.41	0.55	1	0.096	0.19
YearBuilt -	0.52	0.57	0.2	0.54	0.48	0.39	0.28	0.47	0.096	1	0.59
YearRemodAdd -	0.51	0.55	0.29	0.42	0.37	0.29	0.24	0.44	0.19	0.59	1
,	SalePrice -	OverallQual -	GrLivArea -	GarageCars -	GarageArea –	TotalBsmtSF -	1stFirSF -	FullBath -	otRmsAbvGrd –	YearBuilt -	earRemodAdd -

- 0.4

Split Dataset

- Split cleaned data into training and testing dataset based on their Id
 - for predict target test

```
new_train = train.iloc[:1460,:]
new_test = train.iloc[1460:,:]
```

- Split train data with 80% as training set & 20% as testing set
 - for validation test

Feature Selection

LASSO regularization drives the coefficient of uninformative features to 0

```
from sklearn.linear_model import LogisticRegression

# Now with LASSO
logr = LogisticRegression(C=0.1, penalty="l1", solver="liblinear", random_state=123)
logr.fit(X_train, y_train.astype('int'))

sorted_tuples = sorted(list(zip(X_train.columns.values,logr.coef_[0])),key=lambda x:x[1],reverse=True)
for feature,coef in sorted_tuples:
    print(f'{feature:30s} : {coef: 0.3f}')

# which columns were kept?
X_train.columns[logr.coef_[0] != 0]
```

Feature Selection

Feature to keep by doing Lasso:

['YearRemodAdd','BsmtFinSF1', BsmtUnfDF', 'TotalBsmtSF'. 'GarageArea', 'WoodDeckSF', 'OpenPorchDF', 'EnclosedPorch', 'MiscVal', 'YrSold'. 'OverallGrade', 'AllPorchSF', 'GrLivArea-Sq', 'GarageScore-Sq']

What matters?

Remodel date, the area of first-time finished basement, unfinished basement area, how big the basement is, the size of garage, wood deck area, open porch area, enclosed porch area, ...

Feature Selection

Slope, General shape of the property, overall material and finish quality, ...

Different from Lasso!

Tree Based Model Feature Importance

```
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(random state=123).fit(X train,y train)
rf.feature importances
feature importances = pd.Series(rf.feature importances ,index=X train.columns)
feature importances.sort values(ascending=False).round(3)
# which columns were kept?
X train.columns[feature importances != 0]
Index(['LotFrontage', 'LotArea', 'Street', 'LotShape', 'LandSlope',
       'OverallOual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea',
       'SaleType ConLw', 'SaleType New', 'SaleType Oth', 'SaleType WD',
       'SaleCondition Abnorml', 'SaleCondition AdjLand',
       'SaleCondition Alloca', 'SaleCondition Family', 'SaleCondition Normal',
       'SaleCondition Partial'],
      dtype='object', length=309)
```

Baseline model

- Model with full features
 - From this table, we choose three models (with score more than 0.9): Ridge,
 XGBoost, GradientBoost
 - We use **GridSearch** to find best parameters.
 - Ridge: We find the best alpha for ridge is 10.
 - XGBoost and GradientBoost: learning_rate = 0.01, max_depth =4, n_estimators = 2000, subsample = 0.5.

model	unstandard	standard
LinearRegression	0.889	0.902
KNN	0.730	0.831
SVR	0.738	0.823
Ridge	0.906	0.909
DecisionTree	0.745	0.717
ExtraTree	0.764	0.721
XGBoost	0.908	0.918
RandomForest	0.891	0.889
AdaBoost	0.831	0.825
GradientBoost	0.917	0.917
Bagging	0.871	0.874

Model Selection

- Model with full features
 - Unstandard
 - Ridge 0.906
 - Ridge10 0.917
 - XGBoost_tuned 0.921
 - GradientBoost_tuned 0.921
 - Standard
 - Ridge10 0.9
 - XGBoost_tuned 0.921
 - GradientBoost_tuned 0.922

	model	unstandard	standard
0	LinearRegression	0.889	-2.71
1	KNN	0.730	0.821
2	SVR	0.738	0.790
3	Ridge	0.906	0.896
4	Ridge10	0.917	0.900
5	DecisionTree	0.746	0.724
6	ExtraTree	0.760	0.764
7	XGBoost	0.908	0.916
8	XGBoost_tuned	0.921	0.921
9	RandomForest	0.885	0.890
10	AdaBoost	0.828	0.824
11	GradientBoost	0.916	0.916
12	GradientBoost_tuned	0.921	0.922
13	Bagging	0.877	0.868

Model Selection

- Models with lasso selected features
 - Unstandard
 - XGBoost 0.889
 - GradientBoost 0.894
 - Standard
 - XGBoost 0.898
 - GradientBoost_tuned 0.895

0	LinearRegression	0.879	0.879
1	KNN	0.730	0.835
2	SVR	0.739	0.831
3	Ridge	0.879	0.879
4	Ridge10	0.879	0.877
5	DecisionTree	0.713	0.717
6	ExtraTree	0.720	0.754
7	XGBoost	0.889	0.898
8	XGBoost_tuned	0.885	0.891
9	RandomForest	0.873	0.875
10	AdaBoost	0.812	0.812
11	GradientBoost	0.894	0.894
12	GradientBoost_tuned	0.894	0.895
13	Bagging	0.867	0.867

model unstandard standard

Model Selection

- Models with tree selected features
 - Unstandard
 - Ridge 0.906
 - Ridge10 0.917
 - XGBoost_tuned 0.921
 - GradientBoost_tuned 0.925
 - Standard
 - Ridge10 0.902
 - XGBoost_tuned 0.921
 - GradientBoost_tuned 0.923

	model	unstandard_tree	standard_tree
0	LinearRegression	0.888	0.888
1	KNN	0.730	0.821
2	SVR	0.738	0.797
3	Ridge	0.906	0.897
4	Ridge10	0.917	0.902
5	DecisionTree	0.710	0.709
6	ExtraTree	0.745	0.687
7	XGBoost	0.908	0.916
8	XGBoost_tuned	0.921	0.921
9	RandomForest	0.892	0.886
10	AdaBoost	0.831	0.831
11	GradientBoost	0.917	0.916
12	GradientBoost_tuned	0.925	0.923
13	Bagging	0.872	0.881

Summary

	${\tt unstandard_full}$	$standard_full$	${\tt unstandard_lasso}$	standard_lasso	${\tt unstandard_tree}$	$standard_tree$
model						
LinearRegression	0.889	-2.71	0.879	0.879	0.888	0.888
KNN	0.730	0.821	0.730	0.835	0.730	0.821
SVR	0.738	0.790	0.739	0.831	0.738	0.797
Ridge	0.906	0.896	0.879	0.879	0.906	0.897
Ridge10	0.917	0.900	0.879	0.877	0.917	0.902
DecisionTree	0.746	0.724	0.713	0.717	0.710	0.709
ExtraTree	0.760	0.764	0.720	0.754	0.745	0.687
XGBoost	0.908	0.916	0.889	0.898	0.908	0.916
XGBoost_tuned	0.921	0.921	0.885	0.891	0.921	0.921
RandomForest	0.885	0.890	0.873	0.875	0.892	0.886
AdaBoost	0.828	0.824	0.812	0.812	0.831	0.831
GradientBoost	0.916	0.916	0.894	0.894	0.917	0.916
GradientBoost_tuned	0.921	0.922	0.894	0.895	0.925	0.923
Bagging	0.877	0.868	0.867	0.867	0.872	0.881

Project 1 Best Model - Ridge

Ridge model score on train: 0.9462

On test: 0.9175

RMSE_test: 0.1133 RMSE_train: 0.0918

Final Best Model - GradientBoost

Final Best Model - GradientBoost (Cont.)

GBoost model score on train: 0.9921 On test: 0.9254

RMSE_test: 0.1088 RMSE_train: 0.0351

Improvement!

VS

Ridge model score on train: 0.9462 On test: 0.9175

RMSE_test: 0.1133 RMSE_train: 0.0918

Thank you!

