4. Übungsblatt

- 1. Aufgabe. Wie lauten
- a) die ersten 3 Summanden in der binomischen Formel für $(1+x)^{20}$,
- b) die letzten 4 Summanden in der binomischen Formel für $(1-x)^{10}$,
- c) alle Summanden in der binomischen Formel für $\left(2a \frac{1}{2}b\right)^4$?
- 2. Aufgabe. Berechnen Sie mithilfe der binomischen Formel:
- a) 101^4
- b) 99^3
- 3. Aufgabe. Führen Sie folgende Berechnungen auf der Menge der rationalen Zahlen durch:
- a) $\frac{1/2}{1/3}$,
- b) $\frac{1}{1-\frac{2}{2}}$,
- c) $\frac{1}{2/3} \cdot \frac{2-\frac{5}{4}}{1+\frac{2}{3}}$.
- 4. Aufgabe. Welche der beiden Zahlen

$$a = \frac{2 + \frac{1}{3}}{1 - \frac{1}{2}}$$
 oder $b = \frac{5}{4} \cdot \frac{3 - \frac{1}{2} - \frac{1}{3}}{3/2}$

ist größer?

5. Aufgabe. Vereinfachen Sie für $a \neq b, b \neq c, c \neq a$:

$$\frac{a^2}{(a-b)(a-c)} + \frac{b^2}{(b-a)(b-c)} + \frac{c^2}{(c-a)(c-b)}.$$

- 6. Aufgabe. Formen Sie folgende rationale Zahlen zu endlichen bzw. unendlichen periodischen Dezimalbrüchen um:
- a) $r_1 = \frac{7}{4}$,
- b) $r_2 = -\frac{11}{16}$, c) $r_3 = -\frac{2}{3}$.

- d) $r_4 = \frac{8}{17}$.
- 7. Aufgabe. Formen Sie folgende Dezimalbrüche zu rationalen Zahlen um:
- a) $d_1 = 0, \overline{3}$
- b) $d_2 = 1, \overline{35}$
- c) $d_3 = -2, 12\overline{571}$.
- 8. Aufgabe. Für die komplexen Zahlen
- a) $z_1 = 2 3i$; $z_2 = -1 + i$,
- b) $z_1 = \frac{1}{2} + 2i$; $z_2 = \frac{1}{3} \frac{3}{2}i$,
- c) $z_1 = -4 2, 2i; \ z_2 = -1, 3 + 3i$

berechnen Sie jeweils $z_1 + z_2$, $z_1 - z_2$, $z_1 \cdot z_2$ und z_1/z_2 .

- 9. Aufgabe. Berechnen Sie die folgenden Ausdrücke:
- $a)\frac{3-2i}{4-3i} + 3(i-8),$
- b) $(2-4i)^2 + \frac{1-3i}{i}$.
- 10. Aufgabe. Für die komplexen Zahlen

$$2+3i; \quad \frac{3}{5}-\frac{4}{5}i; \quad -1,3+2,4i$$

berechnen Sie jeweils ihre Beträge und komplex konjugierte Zahlen. Zeichnen Sie die vorgegebenen komplexen Zahlen sowie ihre komplex konjugierte Zahlen auf der komplexen Ebene (auf einem rechtwinkligen Koordinatensystem).

- 11. Aufgabe. Für die komplexen Zahlen
- a) $z_1 = 1 + 3i$; $z_2 = -2 + 2i$,
- b) $z_1 = \frac{1}{3} + i$; $z_2 = \frac{1}{3} \frac{3}{2}i$,
- c) $z_1 = -2 i$; $z_2 = 1 + i$

berechnen Sie jeweils z_1+z_2 und z_1-z_2 und zeichnen sowohl die vorgegebenen komplexen Zahlen als auch ihre Summen und Differenzen auf der komplexen Ebene in Form von Ortsvektoren. Was kann man über die Ortsvektoren für z_1+z_2 und z_1-z_2 sagen?