Graphs in Machine Learning

Daniele Calandriello

DeepMind Paris, France

Collaborators: Achraf Azize,

Michal Valko

Based on material by: Petar Veličković, Marc Lelarge

https://petar-v.com/communications.html

https://dataflowr.github.io

6 Mar. 2022

Message passing GNNs recapping

A recipe for graph neural networks

46 4 m s d n. 11/1

We can construct permutation equivariant functions
$$f(\mathbf{X}, \mathbf{A})$$
 by appropriately applying an invariant g over all local neighbourhoods:
$$f(\mathbf{X}, \mathbf{A}) = \begin{bmatrix} - & g(\mathbf{x}_1, \mathbf{X}_{\mathcal{N}_1}) & - \\ - & g(\mathbf{x}_2, \mathbf{X}_{\mathcal{N}_2}) & - \\ & \vdots & & \\ - & g(\mathbf{x}_n, \mathbf{X}_{\mathcal{N}_n}) & - \end{bmatrix}$$

A recipe for graph neural networks, visualised

$$\mathbf{X}_{\mathcal{N}_b} = \{\!\!\{\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c, \mathbf{x}_d, \mathbf{x}_e\}\!\!\}$$

The three "flavours" of GNN layers

$$\mathbf{h}_i = \phi \left(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}_i} c_{ij} \psi(\mathbf{x}_j) \right) \qquad \qquad \mathbf{h}_i = \phi \left(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}_i} a(\mathbf{x}_i, \mathbf{x}_j) \psi(\mathbf{x}_j) \right) \qquad \qquad \mathbf{h}_i = \phi \left(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}_i} \psi(\mathbf{x}_i, \mathbf{x}_j) \right)$$

$$\mathbf{h}_{i} = \phi \left(\mathbf{x}_{i}, \bigoplus_{j \in \mathcal{N}_{i}} a(\mathbf{x}_{i}, \mathbf{x}_{j}) \psi(\mathbf{x}_{j}) \right)$$

$$\mathbf{h}_i = \phi\left(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}_i} \psi(\mathbf{x}_i, \mathbf{x}_j)\right)$$

Spectral GNNs

the Laplacian strikes back

GCNs start from convolution, but then replaces it with permutation {in,equ}ivariance how far can we take vanilla convolutions in graph ML?

GCNs start from convolution, but then replaces it with permutation {in,equ}ivariance how far can we take vanilla convolutions in graph ML?

The convolution theorem defines a very attractive identity:

$$(\mathbf{x} \star \mathbf{y})(\xi) = \widehat{\mathbf{x}}(\xi) \cdot \widehat{\mathbf{y}}(\xi)$$
 with $\widehat{\mathbf{x}}(\xi) = \int_{-\infty}^{\infty} x(u)e^{-i\xi u}du$

GCNs start from convolution, but then replaces it with permutation {in,equ}ivariance how far can we take vanilla convolutions in graph ML?

The convolution theorem defines a very attractive identity:

$$(\mathbf{x} \star \mathbf{y})(\xi) = \widehat{\mathbf{x}}(\xi) \cdot \widehat{\mathbf{y}}(\xi)$$
 with $\widehat{\mathbf{x}}(\xi) = \int_{-\infty}^{\infty} x(u)e^{-i\xi u}du$

"convolution in the time domain is multiplication in the frequency domain"

X

Q

For special graphs (e.g., direct cycle) we can directly define a convolution over it:

For special graphs (e.g., direct cycle) we can directly define a convolution over it:

This convolution can be represented using a **circulant** matrix
$$C([b,c,0,\ldots,0,a])$$

$$f(\mathbf{X}) = \left[egin{array}{cccc} b & c & & & a \ a & b & c & & & \ & \ddots & \ddots & \ddots & & \ & a & b & c \ c & & & a & b \end{array}
ight] \left[egin{array}{cccc} & & \mathbf{x}_0 & - \ - & \mathbf{x}_1 & - \ \end{array}
ight]$$

Circulant matrices commute: $C(\mathbf{a}) C(\mathbf{b}) \mathbf{X} = C(\mathbf{b}) C(\mathbf{a}) \mathbf{X}$, for any parameters \mathbf{a} , \mathbf{b} matrices that commute are jointly **diagonalisable**

Circulant matrices commute: $C(\mathbf{a})C(\mathbf{b})\mathbf{X} = C(\mathbf{b})C(\mathbf{a})\mathbf{X}$, for any parameters \mathbf{a} , \mathbf{b} matrices that commute are jointly **diagonalisable**Let \mathbf{b} the eigenvectors of circulants are the discrete Fourier basis!

$$\phi = \frac{1}{\sqrt{n}} \left(1, e^{\frac{2\pi i l}{n}}, e^{\frac{2\pi i \cdot 2 \cdot l}{n}}, \dots, e^{\frac{2\pi i \cdot (n-1) \cdot l}{n}} \right)$$

Circulant matrices commute: $C(\mathbf{a})C(\mathbf{b})\mathbf{X} = C(\mathbf{b})C(\mathbf{a})\mathbf{X}$, for any parameters \mathbf{a} , \mathbf{b} matrices that commute are jointly **diagonalisable**Let the eigenvectors of circulants are the discrete Fourier basis!

$$\phi = \frac{1}{\sqrt{n}} \left(1, e^{\frac{2\pi i l}{n}}, e^{\frac{2\pi i \cdot 2 \cdot l}{n}}, \dots, e^{\frac{2\pi i \cdot (n-1) \cdot l}{n}} \right)$$

If we stack these Fourier basis vectors ϕ into a matrix Φ we recover the discrete Fourier transform (DFT) as multiplication by Φ^* (adjoint).

We can now eigendecompose any circulant as $C(\theta) = \Phi \Theta \Phi^*$ \vdash here Θ is a diagonal matrix of $C(\theta)$'s eigenvalues $\widehat{\theta}$.

We can now eigendecompose any circulant as $C(\theta) = \Phi \Theta \Phi^*$ \vdash here Θ is a diagonal matrix of $C(\theta)$'s eigenvalues $\widehat{\theta}$.

The convolution theorem naturally follows:

$$f(\mathbf{x}) = C(\boldsymbol{\theta})\mathbf{X} = \boldsymbol{\Phi}\boldsymbol{\Theta}\boldsymbol{\Phi}^* = \boldsymbol{\Phi}\begin{bmatrix}\widehat{\boldsymbol{\theta}}_0 & & \\ & \ddots & \\ & & \widehat{\boldsymbol{\theta}}_n\end{bmatrix}\boldsymbol{\Phi}^{*\mathbf{X}} = \boldsymbol{\Phi}(\widehat{\boldsymbol{\theta}}\cdot\widehat{\mathbf{X}})$$

and as long as we know Φ we can express convolutions as multiplications in $\widehat{ heta}$.

The spectral CNN blueprint

Spatial Circulant matrix $f(\mathbf{X})$ $\mathbf{C}(\theta)$ DFT Φ^* Elementwise product $\widehat{f(\mathbf{X})}$ $\hat{\theta}_0$ $\hat{\theta}_1$ **Spectral**

For which convolutions we know Φ ?

ightharpoonup cycle ightharpoonup DFT

```
For which convolutions we know \Phi? 
 Lycycle \rightarrow DFT 
 grid \rightarrow n-way DFT 
 general graph \rightarrow ????
```

For which convolutions we know Φ ?

Lycycle \to DFT

grid \to n-way DFT

general graph \to eigenvectors of Laplacian!

This allows us to re-express $\mathbf{L} = \boldsymbol{\Phi} \boldsymbol{\Theta} \boldsymbol{\Phi}^\mathsf{T}$, as before \boldsymbol{L} changing the eigenvalues in $\boldsymbol{\Theta}$ expresses any one

igcup changing the eigenvalues in $oldsymbol{\Theta}$ expresses any operation that commutes with $oldsymbol{L}$ commonly referred to as the graph Fourier transform (Bruna et al., ICLR'14)

For which convolutions we know Φ ?

This allows us to re-express $\mathbf{L} = \mathbf{\Phi} \mathbf{\Theta} \mathbf{\Phi}^{\mathsf{T}}$, as before

igcup changing the eigenvalues in $oldsymbol{\Theta}$ expresses any operation that commutes with $oldsymbol{L}$ commonly referred to as the graph Fourier transform (Bruna et al., ICLR'14)

To convolve with some feature matrix X we do as usual (the diagonal can be **learned**):

$$f(\mathbf{x}) = \mathbf{\Phi} egin{bmatrix} \widehat{m{ heta}}_0 & & & \\ & \ddots & & \\ & & \widehat{m{ heta}}_n \end{bmatrix} \mathbf{\Phi}^* \mathbf{X} = \mathbf{\Phi} (\widehat{m{ heta}} \cdot \widehat{\mathbf{X}})$$

Spectral GNNs in practice

Directly learning the eigenvalues is typically inappropriate

→ Not localised, doesn't transfer to other graphs, computationally expensive, ...

Spectral GNNs in practice

Directly learning the eigenvalues is typically inappropriate

→ Not localised, doesn't transfer to other graphs, computationally expensive, ...

Instead, make the eigenvalues a polynomial function of the eigenvalues of ${f L}$

$$ightharpoonup$$
 i.e., $f(\mathbf{X}) = \mathbf{\Phi} p_k(\mathbf{\Theta}) \mathbf{\Phi}^{\mathsf{T}} = p_k(\mathbf{L}) \mathbf{X}$

→ Cubic splines (Bruna et al., ICLR'14)

Chebyshev polynomials (Defferrard et al., NeurIPS'16)

Cayley polynomials (Levie et al., Trans. Sig. Proc.'18)

Spectral GNNs in practice

Directly learning the eigenvalues is typically inappropriate

→ Not localised, doesn't transfer to other graphs, computationally expensive, ...

Instead, make the eigenvalues a polynomial function of the eigenvalues of ${f L}$

$$ightharpoonup$$
 i.e., $f(\mathbf{X}) = \mathbf{\Phi} p_k(\mathbf{\Theta}) \mathbf{\Phi}^{\mathsf{T}} = p_k(\mathbf{L}) \mathbf{X}$

→ Cubic splines (Bruna et al., ICLR'14)

Chebyshev polynomials (Defferrard et al., NeurIPS'16)

Cayley polynomials (Levie et al., Trans. Sig. Proc.'18)

This is equivalent to some conv-GNN!

Most efficient spectral approaches "spatialise" themselves in similar ways
The "spatial-spectral" divide is often *not really a divide* but a **design tool!**

Transformers signal that the input is a sequence of words by using positional embeddings

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}}), \qquad PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}}),$$

Transformers signal that the input is a sequence of words by using positional embeddings

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\rm model}}), \qquad PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\rm model}}),$$

Very similar to the DFT eigenvectors!

interpretation as basis/eigenvectors of the grid graph assumed by transformers

Transformers signal that the input is a sequence of words by using positional embeddings

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}}), \qquad PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}}),$$

Very similar to the DFT eigenvectors!

interpretation as basis/eigenvectors of the grid graph assumed by transformers

Can use this idea to run Transformers with positional embeddings for general graphs!

Transformers signal that the input is a sequence of words by using positional embeddings

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}}), \qquad PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}}),$$

Very similar to the DFT eigenvectors!

interpretation as basis/eigenvectors of the grid graph assumed by transformers

Transformers signal that the input is a sequence of words by using positional embeddings

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}}), \qquad PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}}),$$

Very similar to the DFT eigenvectors!

interpretation as basis/eigenvectors of the grid graph assumed by transformers

Can use this idea to run Transformers with positional embeddings for general graphs!

- $\mathrel{\buildrel igspace{+}}$ just feed some eigenvectors of the graph Laplacian (columns of Φ)
 - → Another flavor of Graph Transformers! (Dwivedi & Bresson, 2021)

GNNs' expressiveness

and new architectural directions

A problematic pair of graphs

Separating power

Let \mathcal{F} be a set of functions $f: \mathcal{X} \to \mathbb{R}$, then \mathcal{F} 's equivalence relation $\rho(\mathcal{F})$ on \mathcal{X} is:

$$(\mathbf{x}, \mathbf{x}') \in \rho(\mathcal{F}) \iff \forall f \in \mathcal{F}, f(\mathbf{x}) = f(\mathbf{x}').$$

Given two sets of functions \mathcal{F} and \mathcal{H} , \mathcal{F} is more separating than \mathcal{H} if $\rho(\mathcal{F}) \subset \rho(\mathcal{H})$.

2-Weisfeiler-Lehman test

2-Weisfeiler-Lehman test

How Powerful Are Graph Neural Networks?, Xu et al., ICLR 2019

Message Passing GNNs are as powerful as 2-Weisfeiler-Lehman test

On the Universality of Invariant Networks, Maron et al., ICML 2019

On the Universality of Invariant Networks, Maron et al., ICML 2019

Minimal required order is $k \ge n^2$ to be able to approximate any invariant function.

Provably Powerful Graph Networks, Maron et al., NeurIPS 2019

Folklore GNN (FGNN)

$$\mathbf{h}'_{i\to j} = g\left(\mathbf{h}_{i\to j}, \sum_{k\in\mathcal{V}} \psi(\mathbf{h}_{i\to k}) \odot \psi(\mathbf{h}_{k\to j})\right)$$

Provably Powerful Graph Networks, Maron et al., NeurIPS 2019

Folklore GNN (FGNN)

$$\mathbf{h}'_{i\to j} = g\left(\mathbf{h}_{i\to j}, \sum_{k\in\mathcal{V}} \psi(\mathbf{h}_{i\to k}) \odot \psi(\mathbf{h}_{k\to j})\right)$$

$$\rho(\mathsf{FGNN}) \not\subset \rho(2-\mathsf{WL}) = \rho(\mathsf{MGNN})$$

JAX intro

just autograd and XLA

https://www.assemblyai.com/blog/why-you-should-or-shouldnt-be-using-jax-in-2023/

https://www.assemblyai.com/blog/why-you-should-or-shouldnt-be-using-jax-in-2023/

Tape-based autograd, e.g. PyTorch:

Backprop/reverse-mode autodiff by following the graph/tape

https://sjmielke.com/jax-purify.htm

Pure transformation-based autograd: JAX

https://sjmielke.com/jax-purify.htm

Two introductory colabs

```
https:
//github.com/deepmind/dm-haiku/blob/main/docs/notebooks/basics.ipynb
https://github.com/deepmind/dm-haiku/blob/main/docs/notebooks/
parameter_sharing.ipynb
```

Daniele Calandriello
dcalandriello@google.com

ENS Paris-Saclay, MVA 2022/2023
https://sites.google.com/view/daniele-calandriello/