Quando duas teorias físicas são equivalentes?*

JÚLIO C. V. BARCZYSZYN

Universidade Federal de Santa Catarina

11 de abril, 2025

Apresentação para a Semana Acadêmica de Filosofia no semestre 2025-1

*Relacionado a pesquisas realizadas sob a supervisão do Prof. Jonas R. Becker Arenhart e desenvolvidas com apoio do programa de bolsas PIBIC/CNPq

Roteiro

Talvez, a pergunta mais importante...

Um pouco de história da Física

Noções sobre equivalência de teorias

A noção de "estrutura" de North

O que as teorias físicas estão nos dizendo sobre o mundo?

A história da relação entre teorias físicas é fascinante...

1687 Isaac Newton funda a Mecânica e une os céus e a Terra.

A história da relação entre teorias físicas é fascinante...

1687 Isaac Newton funda a Mecânica e une os céus e a Terra.

1788 Joseph-Louis Lagrange reformula a Mecânica.

- 1687 Isaac Newton funda a Mecânica e une os céus e a Terra.
- 1788 Joseph-Louis Lagrange reformula a Mecânica.
- 1835 William R. Hamilton reformula de novo a Mecânica. :D

- 1687 Isaac Newton funda a Mecânica e une os céus e a Terra.
- 1788 Joseph-Louis Lagrange reformula a Mecânica.
- 1835 William R. Hamilton reformula de novo a Mecânica. :D
- 1845 James P. Joule conecta Termodinâmica com Mecânica.

- 1687 Isaac Newton funda a Mecânica e une os céus e a Terra.
- 1788 Joseph-Louis Lagrange reformula a Mecânica.
- 1835 William R. Hamilton reformula de novo a Mecânica. :D
- 1845 James P. Joule conecta Termodinâmica com Mecânica.
- 1870 James C. Maxwell unifica Eletricidade e Magnetismo.

- 1687 Isaac Newton funda a Mecânica e une os céus e a Terra.
- 1788 Joseph-Louis Lagrange reformula a Mecânica.
- 1835 William R. Hamilton reformula de novo a Mecânica. :D
- 1845 James P. Joule conecta Termodinâmica com Mecânica.
- 1870 James C. Maxwell unifica Eletricidade e Magnetismo.
- 1880 Ludwig Boltzmann funda a Mecânica Estatística.

A história da relação entre teorias físicas é fascinante...

- 1687 Isaac Newton funda a Mecânica e une os céus e a Terra.
- 1788 Joseph-Louis Lagrange reformula a Mecânica.
- 1835 William R. Hamilton reformula de novo a Mecânica. :D
- 1845 James P. Joule conecta Termodinâmica com Mecânica.
- 1870 James C. Maxwell unifica Eletricidade e Magnetismo.
- 1880 Ludwig Boltzmann funda a Mecânica Estatística.
- 1890 Lord Kelvin estava bastante otimista:

"Agora não há mais nada novo a ser descoberto na física. Tudo o que resta é uma medição mais e mais precisa."

1900 Max Planck sugere a hipótese de quantização.

1900 Max Planck sugere a hipótese de quantização.

1905 Ano miraculoso de Albert Einstein.

- 1900 Max Planck sugere a hipótese de quantização.
- 1905 Ano miraculoso de Albert Einstein.
- 1925 Werner Heisenberg formula a Mecânica Quântica Matricial.

- 1900 Max Planck sugere a hipótese de quantização.
- 1905 Ano miraculoso de Albert Einstein.
- 1925 Werner Heisenberg formula a Mecânica Quântica Matricial.
- 1926 Erwin Schrödinger formula a Mecânica Quântica Ondulatória.

- 1900 Max Planck sugere a hipótese de quantização.
- 1905 Ano miraculoso de Albert Einstein.
- 1925 Werner Heisenberg formula a Mecânica Quântica Matricial.
- 1926 Erwin Schrödinger formula a Mecânica Quântica Ondulatória.
- 1927 Paul A. M. Dirac introduz o formalismo de bra-ket.

- 1900 Max Planck sugere a hipótese de quantização.
- 1905 Ano miraculoso de Albert Einstein.
- 1925 Werner Heisenberg formula a Mecânica Quântica Matricial.
- 1926 Erwin Schrödinger formula a Mecânica Quântica Ondulatória.
- 1927 Paul A. M. Dirac introduz o formalismo de bra-ket.
- 1932 John von Neumann formaliza a Mecânica Quântica*.

- 1900 Max Planck sugere a hipótese de quantização.
- 1905 Ano miraculoso de Albert Einstein.
- 1925 Werner Heisenberg formula a Mecânica Quântica Matricial.
- 1926 Erwin Schrödinger formula a Mecânica Quântica Ondulatória.
- 1927 Paul A. M. Dirac introduz o formalismo de bra-ket.
- 1932 John von Neumann formaliza a Mecânica Quântica*.

:

*As formulações de Heisenberg e Schrödinger são usualmente ditas equivalentes, mas isto é controverso. Ver sobre na trilogia de artigos *The Equivalence Myth of Quantum Mechanics* de Frederik A. Muller.

Agora, precisamos arrumar a casa para filosofar...

Agora, precisamos arrumar a casa para filosofar...

• Inter-relações: equivalência, redução, unificação.

Agora, precisamos arrumar a casa para filosofar...

- Inter-relações: equivalência, redução, unificação.
- Distinção lógica importante:

teorias (formais) vs. modelos

Agora, precisamos arrumar a casa para filosofar...

- Inter-relações: equivalência, redução, unificação.
- Distinção lógica importante:

teorias (formais) vs. modelos

• Distinção filosófica importante:

teorias (formais) vs. teorias científicas

Agora, precisamos arrumar a casa para filosofar...

- Inter-relações: equivalência, redução, unificação.
- Distinção lógica importante:

teorias (formais) vs. modelos

• Distinção filosófica importante:

teorias (formais) vs. teorias científicas

Noções sobre equivalência de teorias

Algumas propostas para equivalência de teorias...

Noções sobre equivalência de teorias

Algumas propostas para equivalência de teorias...

- "Lógica"
- Modelo-teorética
- Definicional
- Morita
- Categórica
- Empírica

• Três formulações: newtoniana, lagrangiana e hamiltoniana.

- Três formulações: newtoniana, lagrangiana e hamiltoniana.
- Literatura física: tidas como fisicamente equivalentes.

- Três formulações: newtoniana, lagrangiana e hamiltoniana.
- Literatura física: tidas como *fisicamente* equivalentes.
- Equivalentes? Em 2009, a filósofa Jill North publica um artigo no qual defende que não seriam equivalentes.

- Três formulações: newtoniana, lagrangiana e hamiltoniana.
- Literatura física: tidas como *fisicamente* equivalentes.
- Equivalentes? Em 2009, a filósofa Jill North publica um artigo no qual defende que não seriam equivalentes.
- O argumento: para North, equivalência (de formulações) não é só uma questão de histórias fisicamente possíveis, mas sim de histórias fisicamente possíveis em um espaço de estados particular.

 Para North, a discussão sobre equivalência não é só sobre o que uma teoria ou formulação conta como história, mas também "onde ela acontece": a estrutura na qual a história se passa.

- Para North, a discussão sobre equivalência não é só sobre o que uma teoria ou formulação conta como história, mas também "onde ela acontece": a estrutura na qual a história se passa.
- No artigo de 2009, North introduz uma metodologia para distinguir/descobrir sobre qual estrutura uma teoria postula.

- Para North, a discussão sobre equivalência não é só sobre o que uma teoria ou formulação conta como história, mas também "onde ela acontece": a estrutura na qual a história se passa.
- No artigo de 2009, North introduz uma metodologia para distinguir/descobrir sobre qual *estrutura* uma teoria *postula*.
- Ideia: o sistema de coordenadas que uma teoria privilegia nos fornece uma "janela" para a estrutura subjacente da teoria.

- Para North, a discussão sobre equivalência não é só sobre o que uma teoria ou formulação conta como história, mas também "onde ela acontece": a estrutura na qual a história se passa.
- No artigo de 2009, North introduz uma metodologia para distinguir/descobrir sobre qual estrutura uma teoria postula.
- **Ideia:** o sistema de coordenadas que uma teoria privilegia nos fornece uma "janela" para a estrutura subjacente da teoria.
- Para a filósofa, se quisermos ser realistas, devemos nos comprometer com a estrutura (mínima) que uma teoria postula (não só no caso do espaço-tempo na Teoria da Relatividade).

- Para North, a discussão sobre equivalência não é só sobre o que uma teoria ou formulação conta como história, mas também "onde ela acontece": a estrutura na qual a história se passa.
- No artigo de 2009, North introduz uma metodologia para distinguir/descobrir sobre qual estrutura uma teoria postula.
- **Ideia:** o sistema de coordenadas que uma teoria privilegia nos fornece uma "janela" para a estrutura subjacente da teoria.
- Para a filósofa, se quisermos ser realistas, devemos nos comprometer com a estrutura (mínima) que uma teoria postula (não só no caso do espaço-tempo na Teoria da Relatividade).
- Já é leitura essencial no debate, mas tem recebido críticas.

• Uma equivalência "puramente" formal é suficiente?

- Uma equivalência "puramente" formal é suficiente?
- Como entender uma teoria física que salva as aparências?

- Uma equivalência "puramente" formal é suficiente?
- Como entender uma teoria física que salva as aparências?
- E se duas teorias "equivalentes" não dizem o mesmo?

- Uma equivalência "puramente" formal é suficiente?
- Como entender uma teoria física que salva as aparências?
- E se duas teorias "equivalentes" não dizem o mesmo?
- A equivalência de teorias pode lançar luz sobre a discussão mais geral acerca da noção de teoria científica (debate que existe desde o surgimento do Círculo de Viena).

- Uma equivalência "puramente" formal é suficiente?
- Como entender uma teoria física que salva as aparências?
- E se duas teorias "equivalentes" não dizem o mesmo?
- A equivalência de teorias pode lançar luz sobre a discussão mais geral acerca da noção de teoria científica (debate que existe desde o surgimento do Círculo de Viena).
- North pensa que sua proposta é ortogonal a esse debate (?)

- Uma equivalência "puramente" formal é suficiente?
- Como entender uma teoria física que salva as aparências?
- E se duas teorias "equivalentes" não dizem o mesmo?
- A equivalência de teorias pode lançar luz sobre a discussão mais geral acerca da noção de teoria científica (debate que existe desde o surgimento do Círculo de Viena).
- North pensa que sua proposta é ortogonal a esse debate (?)
- Pode ajudar no debate sobre redução de uma teoria a outra.

- Uma equivalência "puramente" formal é suficiente?
- Como entender uma teoria física que salva as aparências?
- E se duas teorias "equivalentes" não dizem o mesmo?
- A equivalência de teorias pode lançar luz sobre a discussão mais geral acerca da noção de teoria científica (debate que existe desde o surgimento do Círculo de Viena).
- North pensa que sua proposta é ortogonal a esse debate (?)
- Pode ajudar no debate sobre redução de uma teoria a outra.
- Os debates sobre unificação podem se beneficiar também*.

*Neste ano, o livro *The Philosophy and Physics of Duality* de Sebastian de Haro & Jeremy Butterfield, indo nesta direção, será lançado.

Referências principais

Jill North

The "Structure" of Physics

Journal of Philosophy, v. 106, p. 57–88, 2009

Jill North

Physics, Structure, and Reality

Oxford University Press, 2021

Thomas William Barrett

On the Structure of Classical Mechanics *Brit. J. Phil. Sci.*, v. 66, p. 801–828, 2015

Thomas William Barrett

Coordinates, Structure, and Classical Mechanics *Philosophy of Science*, v. 89, p. 644–653, 2022

Décio Krause & Jonas R. Becker Arenhart The Logical Foundations of Scientific Theories Routledge, 2016

Hans Halvorson

The Logic in Philosophy of Science Cambridge University Press, 2019

Roman Frigg Models and Theories Routledge, 2022