Statistical Outlier Detection

In statistics, if a data distribution is approximately normal, then we can use the mean and standard derivation to estimate the probability of a data point falls into a certain range:

- 68% data falls in mean +/- one standard derivation
- 95% data falls in mean +/- two standard derivations
- 99.7% data falls in mean +/- three standard derivations Thus, we can use mean +/ three standard derivations as the boundary of normal data. Any data falls out of the boundary will be considered as outliers.

Setup

import numpy as np
import pandas as pd

df = pd.read_csv('/content/Nov2Temp.csv')
df

₽		high	low
	0	58	25
	1	26	11
	2	53	24
	3	60	37
	4	67	42
	113	119	33
	114	127	27
	115	18	38
	116	15	51
	117	30	49

118 rows × 2 columns

▼ Run the detection

```
df[(df['low']< (df['low'].mean() - 3 * df['low'].std()))|
(df['low']> (df['low'].mean() + 3 * df['low'].std()))]
```

	high	low
109	48	-11
110	43	-21
111	64	-33

df['low'].plot(kind='box')

▼ Remove the outliers

```
df.drop((df[(df['low'] < (df['low'].mean() - 3 * df['low'].std()))|
(df['low'] > (df['low'].mean() + 3 * df['low'].std()))]).index, inplace = True)
```

df['low'].plot(kind = 'box')

Practice

Play with df['high']