CLAIMS

I claim:

1	1.	A method for causing hypothermia, said method comprising:
2		providing a circulating fluid apparatus having a chiller and a flexible catheter, said
3		catheter having an inner lumen and a hollow flexible heat transfer element
4		adjacent its distal tip;
5		inserting said catheter through the vascular system of a patient to place said heat
6		transfer element in a portion of the vasculature;
7		supplying chilled fluid to said inner lumen of said catheter;
8		cooling the interior of said heat transfer element with said chilled fluid;
9		cooling blood flowing in said portion of the vasculature with said heat transfer
10		element; and
11		returning said fluid to said chiller.

1	2.	A method for selective organ hypothermia, said method comprising:
2		providing a circulating fluid apparatus having a chiller and a flexible coaxial
3		catheter, said catheter having an insulated inner lumen and a hollow
4		flexible heat transfer element adjacent its distal tip;
5		inserting said catheter through the vascular system of a patient to place said heat
6		transfer element in a feeding artery of a selected organ;
7		supplying chilled perfluorocarbon fluid to said insulated inner lumen of said
8		coaxial catheter;
9		cooling the interior of said heat transfer element with said chilled perfluorocarbon
10		fluid;
11		cooling blood flowing in said feeding artery with said heat transfer element, to
12		enable said cooled blood to flow distally into said selected organ and cool
13		said organ; and
14		returning said perfluorocarbon fluid to said chiller.

1	3.	A method for selective organ hypothermia, said method comprising:
2		providing a coaxial catheter, said catheter having an insulated inner lumen and a
3		metallic heat transfer element;
4		introducing said coaxial catheter into the vascular system of a patient to place said
5		metallic heat transfer element in a feeding artery of an organ of the patient;
6		cooling said metallic heat transfer element by circulating a refrigerant through
7		said insulated inner lumen of said coaxial catheter;
8		cooling blood in said feeding artery by contact with said cooled metallic heat
9		transfer element; and
10		cooling said organ by flow of said cooled blood through said feeding artery.

1	4.	A method for selective brain hypothermia, comprising:
2		providing a flexible coaxial catheter, said flexible catheter having an insulated
3		inner lumen and a flexible metallic heat transfer element;
4		introducing said flexible coaxial catheter into the vascular system of a patient to
5		place said flexible metallic heat transfer element in the carotid artery of the
6		patient;
7		cooling said flexible metallic heat transfer element by circulating a refrigerant
8		through said insulated inner lumen of said flexible coaxial catheter;
9		cooling blood in said carotid artery by contact with said cooled flexible metallic
10		heat transfer element; and
11		cooling the brain of the patient by flow of said cooled blood through said carotid
12		artery.

1	5.	A method for selective hypothermia of the heart of a patient, comprising:
2		providing a flexible coaxial catheter, said flexible coaxial catheter having an
3		insulated inner lumen and a flexible metallic heat transfer element;
4		introducing said flexible coaxial catheter into the vascular system of a patient to
5		place said flexible metallic heat transfer element in a feeding artery of the
6		heart of the patient;
7		cooling said flexible metallic heat transfer element by circulating a refrigerant
8		through said insulated inner lumen of said flexible coaxial catheter;
9		cooling blood in said feeding artery by contact with said cooled flexible metallic
10		heat transfer element; and
11		cooling the heart of the patient by flow of said cooled blood through said feeding
12		artery

1	o. An apparatus for selective organ hypothermia, said apparatus comprising.
2	a circulating unit adapted for chilling and circulating a fluid;
3	a flexible elongated catheter;
4	a flexible tubular outer catheter body on said catheter;
5	a flexible fluid supply tube within said outer catheter body, a proximal end of a
6	central lumen of said fluid supply tube being connected in fluid flow
7	communication with an outlet of said circulating unit;
8	a fluid return lumen within said outer catheter body, a proximal end of said fluid
9	return lumen being connected in fluid flow communication with an inlet
10	of said circulating unit; and
11	a flexible heat transfer element mounted to a distal end of said outer catheter
12	body, said heat transfer element having a partially helical shape to
13	increase the surface area available for heat transfer.

1	7. A cooling apparatus, comprising:
2	a circulating unit adapted for chilling and circulating a fluid;
3	a flexible elongated catheter;
4	a flexible tubular outer catheter body on said catheter;
5	a flexible, insulated, supply tube within said outer catheter body, a proximal end
6	of a central lumen of said supply tube being connected in fluid flow
7	communication with an outlet of said circulating unit;
8	a return lumen within said outer catheter body, said return lumen substantially
9	surrounding said fluid supply tube, a proximal end of said return lumer
10	being connected in fluid flow communication with an inlet of said
11	circulating unit; and
12	a flexible heat transfer element mounted to a distal end of said outer catheter
13	body, said heat transfer element having a partially helical shape to increase
14	the surface area available for heat transfer;
15	wherein said fluid supply tube comprises a wall having insulating properties to
16	reduce heat transfer from said return lumen to said central lumen of said
17	fluid supply tube.

1	8. An apparatus for causing hypothermia, said apparatus comprising:
2	a circulating unit adapted for chilling and circulating a fluid;
3	a flexible elongated catheter;
4	a flexible tubular outer catheter body on said catheter;
5	a flexible fluid supply tube within said outer catheter body, a proximal end of a
6	central lumen of said fluid supply tube being connected in fluid flow
7	communication with an outlet of said circulating unit;
8	a fluid return lumen within said outer catheter body, a proximal end of said fluid
9	return lumen being connected in fluid flow communication with an inle
10	of said circulating unit; and
11	a flexible heat transfer element mounted to a distal end of said outer catheter
12	body, said heat transfer element having an at least partially ballooned
13	shape to increase the surface area available for heat transfer.

I	9. An apparatus for causing hypothermia, said apparatus comprising.
2	a circulating unit adapted for chilling and circulating a fluid;
3	a flexible elongated catheter;
4	a flexible tubular outer catheter body on said catheter;
5	a flexible fluid supply tube within said outer catheter body, a proximal end of a
6	central lumen of said fluid supply tube being connected in fluid flow
7	communication with an outlet of said circulating unit;
8	a fluid return lumen within said outer catheter body, a proximal end of said fluid
9	return lumen being connected in fluid flow communication with an inlet
10	of said circulating unit; and
11	a flexible heat transfer element mounted to a distal end of said outer catheter
12	body, said heat transfer element having an at least partially oval shape to
13	increase the surface area available for heat transfer.