પ્રશ્ન 1(અ) [3 ગુણ]

પેકેટ સ્વીચીંગ નેટવર્ક સમજાવો.

જવાબ:

પેકેટ સ્વીચીંગ એ નેટવર્ક કમ્યુનિકેશન પદ્ધતિ છે જેમાં ડેટા ટ્રાન્સમિશન પહેલા નાના પેકેટ્સમાં વિભાજિત કરવામાં આવે છે.

આકૃતિ:

- સ્વતંત્ર રાઉટિંગ: દરેક પેકેટ નેટવર્કમાં સ્વતંત્ર રીતે પ્રવાસ કરે છે
- લવચીક માર્ગો: પેકેટ્સ ડેસ્ટિનેશન સુધી પહોંચવા માટે અલગ-અલગ રૂટ્સ લઈ શકે છે
- કાર્યક્ષમતા: નેટવર્ક બેન્ડવિડ્થનો વધુ સારો ઉપયોગ

મેમરી ટ્રીક: "DIVE" - ડેટા ઇન્ટ્રુ વેરિયસ એલિમેન્ટ્સ

પ્રશ્ન 1(બ) [4 ગુણ]

OSI રેફરન્સ મોડેલનાં કોઈ પણ 4 સ્તરોનું કાર્ય સમજાવો.

જવાબ:

OSI મોડેલ નેટવર્ક કમ્યુનિકેશનને સાત અલગ-અલગ સ્તરોમાં વિભાજિત કરે છે, દરેક સ્તરની યોક્કસ કાર્યો છે.

સ્તર	รเช้	મુખ્ય પ્રોટોકોલ્સ
એપ્લિકેશન	યુઝર એપ્લિકેશનને સીધી નેટવર્ક સેવાઓ પ્રદાન કરે છે	HTTP, FTP, SMTP
પ્રેઝન્ટેશન	ડેટાનું અનુવાદ, એન્ક્કિપ્શન અને કમ્પ્રેશન કરે છે	SSL, TLS, JPEG
સેશન	કનેક્શન સ્થાપિત, સંચાલિત અને સમાપ્ત કરે છે	NetBIOS, RPC
ટ્રાન્સપોર્ટ	એન્ડ-ટુ-એન્ડ ડેટા ટ્રાન્સફર સુનિશ્ચિત કરે છે	TCP, UDP

• એપ્લિકેશન લેચર: નેટવર્ક અને એપ્લિકેશન વચ્ચે ઇન્ટરફેસ

• પ્રેઝન્ટેશન લેચર: ડેટા ફોર્મેટિંગ અને એન્ક્રિપ્શન

• સેશન લેચર: ડાયલોગ કંટ્રોલ અને સિંક્રોનાઇઝેશન

• ટ્રાન્સપોર્ટ લેચર: એન્ડ-ટુ-એન્ડ કનેક્શન અને વિશ્વસનીયતા

મેમરી ટ્રીક: "All People Seem To Need Data Processing" (બધા લોકોને ડેટા પ્રોસેસિંગની જરૂર લાગે છે)

પ્રશ્ન 1(ક) [7 ગુણ]

નેટવર્ક ટોપોલોજી આકૃતિ સાથે સમજાવો.

જવાબ:

નેટવર્ક ટોપોલોજી નેટવર્કમાં ડિવાઇસની ભૌતિક અથવા તાર્કિક ગોઠવણને દર્શાવે છે.

ટોપોલોજી	ફાયદાઓ	ગેરફાયદાઓ
어관	સરળ, સસ્તી	એક પોઇન્ટ ફેલ્યોર
ક્ટાર	સહેલાઈથી ટ્રબલશૂટિંગ, કેન્દ્રીય	હબ/સ્વિચ ફેલ્યોરથી બધા પ્રભાવિત
રિંગ	બધા નોડ્સને સમાન એક્સેસ	એક કેબલ ફેલ્યોર નેટવર્કને અસર કરે
મેશ	ઉચ્ચ વિશ્વસનીયતા, ટ્રાફિક સમસ્યાઓ નહીં	ખર્ચાળ, જટિલ
ટ્રી	સરળતાથી વિસ્તરણીય, સંરચિત	રૂટ પર આધારિત, જટિલ

આકૃતિ:

- બસ ટોપોલોજી: બધા ડિવાઇસ સિંગલ કેબલ સાથે જોડાયેલા
- સ્ટાર ટોપોલોજી: બધા ડિવાઇસ સેન્ટ્રલ હબ/સ્વિચ સાથે જોડાયેલા
- રિંગ ટોપોલોજી: ડિવાઇસ બંધ લૂપમાં જોડાયેલા
- મેશ ટોપોલોજી: દરેક ડિવાઇસ દરેક અન્ય ડિવાઇસ સાથે જોડાયેલું
- ટ્રી ટોપોલોજી: હાયરાર્કિકલ સ્ટાર નેટવર્ક્સ બસ વાયા કનેક્ટેડ

મેમરી ટ્રીક: "BSRMT" - "બેટર સોલ્યુશન્સ રિક્વાયર મલ્ટિપલ ટોપોલોજીસ"

પ્રશ્ન 1(ક) અથવા [7 ગુણ]

TCP/IP પ્રોટોકોલ સ્થુટનો ડાયાગ્રામ દોરો અને એપ્લીકેશન લેયર, ટ્રાન્સપોર્ટ લેયર અને નેટવર્ક લેયરનું કાર્યપધ્ધતી સમજાવો.

જવાબ:

TCP/IP પ્રોટોકોલ સ્યુટ નેટવર્ક કોમ્યુનિકેશનને ચાર કાર્યાત્મક સ્તરોમાં વ્યવસ્થિત કરે છે.

આકૃતિ:

+
APPLICATION LAYER
(HTTP, FTP, SMTP, DNS, TELNET)
+
TRANSPORT LAYER
(TCP, UDP)
+
INTERNET LAYER
(IP, ICMP, ARP, RARP)
+
NETWORK ACCESS LAYER
(Ethernet, Wi-Fi, Token Ring)
+

સ્તર	મુખ્ય કાર્ય	મુખ્ય પ્રોટોકોલ્સ
એપ્લિકેશન	એપ્લિકેશન્સને નેટવર્ક સેવાઓ પ્રદાન કરે	HTTP, FTP, SMTP
ટ્રાન્સપોર્ટ	એન્ડ-ટુ-એન્ડ કોમ્યુનિકેશન, ડેટા ફ્લો કંટ્રોલ	TCP, UDP
ઈન્ટરનેટ (નેટવર્ક)	લોજિકલ એડ્રેસિંગ અને રાઉટિંગ	IP, ICMP, ARP

- **એપ્લિકેશન લેચર**: નેટવર્ક માટે યુઝર ઇન્ટરફેસ, એપ્લિકેશન-સ્પેસિફિક પ્રોટોકોલ્સ
- ટ્રાન્સપોર્ટ લેચર: વિશ્વસનીય ડેટા ટ્રાન્સમિશન, એરર રિકવરી, ફ્લો કંટ્રોલ
- **નેટવર્ક લેચર**: નેટવર્ક્સ વચ્ચે પેકેટ્સ રાઉટિંગ, IP એડ્રેસિંગ

મેમરી ટ્રીક: "ATN works" - એપ્લિકેશન, ટ્રાન્સપોર્ટ, નેટવર્ક સાથે મળીને કામ કરે છે

પ્રશ્ન 2(અ) [3 ગુણ]

કનેક્શન ઓરિએન્ટેડ પ્રોટોકોલ અને કનેક્શન લેસ પ્રોટોકોલની સરખામણી કરો.

જવાબ:

કનેક્શન-ઓરિએન્ટેડ અને કનેક્શનલેસ પ્રોટોકોલ્સ ડેટા ટ્રાન્સમિશનના હેન્ડલિંગમાં અલગ પડે છે.

ફીચર	કનેક્શન-ઓરિએન્ટેડ	કનેક્શનલેસ
કનેક્શન	ટ્રાન્સમિશન પહેલા સ્થાપિત	કોઈ કનેક્શન સેટઅપ નહીં
વિશ્વસનીયતા	ગેરંટેડ ડિલિવરી	ક્રોઈ ડિલિવરી ગેરંટી નહીં
એરર થેકિંગ	વિસ્તૃત	મર્યાદિત અથવા કોઈ નહીં
ઉદાહરણ	TCP	UDP
ઉપયોગ	ફાઈલ ટ્રાન્સફર, વેબ બ્રાઉઝિંગ	સ્ટ્રીમિંગ, DNS લુકઅપ્સ

મેમરી ટ્રીક: "REACH" - રિલાયબિલિટી એક્ઝિસ્ટ્સ ઇન ઓલ કનેક્શન હેન્ડશેક્સ

પ્રશ્ન 2(બ) [4 ગુણ]

ફાસ્ટ ઇથરનેટ અને ગીગાબાઈટ ઈથરનેટ સમજાવો.

જવાબ:

ફાસ્ટ ઇથરનેટ અને ગીગાબિટ ઇથરનેટ મૂળ ઇથરનેટ સ્ટાન્ડર્ડના ઉચ્ચ-સ્પીડ વર્ઝન છે.

ફીચર	ફાસ્ટ ઇથરનેટ	ગીગાબિટ ઇથરનેટ
સ્પીડ	100 Mbps	1000 Mbps (1 Gbps)
IEEE स्टान्डर्ड	802.3u	802.3z/802.3ab
કેબલ ટાઇપ	Cat5 UTP	Cat5e/Cat6 UTP, ફાઇબર
મેક્સ ડિસ્ટન્સ	100m (કોપર)	100m (કોપર), 5km (ફાઇબર)

- ફાસ્ટ ઇથરનેટ: ઓરિજિનલ 10Base-T ઇથરનેટથી 10x ઝડપી
- ગીગાબિટ ઇથરનેટ: ફાસ્ટ ઇથરનેટથી 10x ઝડપી, બેકવર્ડ કમ્પેટિબલ
- કેબલિંગ: વધુ સ્પીડ માટે ઉચ્ચ ગુણવત્તાવાળા કેબલિંગનો ઉપયોગ
- એપ્લિકેશન્સ: હાઈ-બેન્ડવિડ્થ નેટવર્ક બેકબોન્સ, સર્વર કનેક્શન્સ

મેમરી ટ્રીક: "Fast Gets Going" - 100થી 1000 Mbps સુધીની પ્રગતિ

પ્રશ્ન 2(ક) [7 ગુણ]

રાઉટર, હબ અને સ્વીચ વચ્ચેનો તફાવત આપો.

જવાબ:

રાઉટર, હબ અને સ્વિચ અલગ-અલગ ક્ષમતાઓ અને કાર્યો ધરાવતા નેટવર્ક ડિવાઇસ છે.

ફીચર	રાઉટર	હલ	સ્વિય
OSI લેયર	નેટવર્ક (3)	ફિઝિકલ (1)	કેટા લિંક (2)
કાર્ય	નેટવર્ક્સ કનેક્ટ કરે	ડિવાઇસ કનેક્ટ કરે	ડિવાઇસ કનેક્ટ કરે
ડેટા હેન્ડલિંગ	ઇન્ટેલિજન્ટ રાઉટિંગ	બધાને બ્રોડકાસ્ટ	ચોક્કસ ડિવાઇસને મોકલે
સિક્યોરિટી	ફાયરવોલ પ્રદાન કરે	કોઈ સિક્યોરિટી નહીં	બેઝિક ફિલ્ટરિંગ
એડ્રેસિંગ	IP એડ્રેસનો ઉપયોગ	કોઈ એડ્રેસિંગ નહીં	MAC એડ્રેસનો ઉપયોગ
કાર્યક્ષમતા	ઉચ્ચ	નીચી	ઉચ્ચ
બુદ્ધિમત્તા	સ્માર્ટ	ŚН	મધ્યમ સ્માર્ટ

આકૃતિ:

ROUTER	HUB	SWITCH
++	++	++
Routes	Shares	Forwards
between	signal	to MAC
networks	to all	address
	ports	
++	++	++

મેમરી ટ્રીક: "RHS order" - "રાઉટર હેઝ સ્માર્ટ્સ, હબ શેર્સ સિગ્નલ, સ્વિય સેન્ડ્સ સ્પેસિફિકલી"

પ્રશ્ન 2(અ) અથવા [3 ગુણ]

ઈ-મેઈલ સીસ્ટમની વ્યાખ્યા આપો અને ઈ-મેઈલનાં ઉપયોગો જણાવો.

જવાબ:

ઈમેલ સિસ્ટમ એ નેટવર્ક સેવા છે જે યુઝર્સ વચ્ચે ડિજિટલ મેસેજનું આદાન-પ્રદાન કરવાની મંજૂરી આપે છે.

કોમ્પોનન્ટ	รเช้
મેઇલ યુઝર એજન્ટ (MUA)	એન્ડ-યુઝર્સ દ્વારા ઉપયોગમાં લેવાતા ઈમેઇલ ક્લાયન્ટ સોફ્ટવેર
મેઇલ ટ્રાન્સફર એજન્ટ (MTA)	ઈમેઇલ્સ ટ્રાન્સફર કરતું સર્વર સોફ્ટવેર
મેઇલ ડિલિવરી એજન્ટ (MDA)	પ્રાપ્તકર્તાના મેઇલબોક્સમાં ઈમેઇલ ડિલિવર કરે છે
પ્રોટોકોલ્સ	SMTP, POP3, IMAP

ઈમેઇલના ઉપયોગો:

- બિઝનેસ કોમ્યુનિકેશન
- પર્સનલ મેસેજિંગ
- ફાઇલ શેરિંગ

- માર્કેટિંગ અને ન્યૂઝલેટર્સ
- નોટિફિકેશન્સ અને એલર્ટ્સ

મેમરી ટ્રીક: "BCPFN" - "બિઝનેસ કોમ્યુનિકેશન, પર્સનલ, ફાઇલ્સ, ન્યૂઝલેટર્સ"

પ્રશ્ન 2(બ) અથવા [4 ગુણ]

IPv4 અને IPv6નો તફાવત આપો.

જવાબ:

IPv4 અને IPv6 ઇન્ટરનેટ પ્રોટોકોલ વર્ઝન્સ છે જેમાં નોંધપાત્ર તફાવતો છે.

ફીચર	IPv4	IPv6
એડ્રેસ લંબાઈ	32-બિટ (4 બાઇટ્સ)	128-બિટ (16 બાઇટ્સ)
ફોર્મેટ	ડોટેડ ડેસિમલ (192.168.1.1)	હેક્સાડેસિમલ વિથ ક્રોલન્સ (2001:0db8:85a3:0000:0000:8a2e:0370:7334)
એડ્રેસ સ્પેસ	~4.3 બિલિયન એડ્રેસ	340 અન્ડેસિલિયન એડ્રેસ
સિક્યોરિટી	સિક્યોરિટી પછીથી ઉમેરાયેલી	બિલ્ટ-ઇન IPSec
કોન્ફિગરેશન	મેન્યુઅલ અથવા DHCP	સ્ટેટલેસ ઓટો-કોન્ફિગરેશન
હેડર	જટિલ, ચલ	સરળ, ફિક્સ્ડ

• IPv4: મર્યાદિત સ્પેસ સાથે પરંપરાગત એડ્રેસિંગ

• **IPv6**: વિશાળ ક્ષમતા સાથે આગામી-પેઢી એડ્રેસિંગ

• ટ્રાન્ઝિશન: ક્યુઅલ-સ્ટેક, ટનલિંગ અને ટ્રાન્સલેશન મેકેનિઝમ્સ

મેમરી ટ્રીક: "4 SMALL, 6 HUGE" - IPv4 નાનો એડ્રેસ સ્પેસ, IPv6 વિશાળ એડ્રેસ સ્પેસ

પ્રશ્ન 2(ક) અથવા [7 ગુણ]

નેટવર્કમાં ફાયરવોલ સાથે કોન્સેપ્ટ, પ્રિન્સીપલ, લીમીટેશન, trusted system, Kerberos-conceptની ચર્ચા કરો.

જવાબ:

ફાયરવોલ્સ ક્રિટિકલ નેટવર્ક સિક્યોરિટી સિસ્ટમ્સ છે જે ઇનકમિંગ અને આઉટગોઇંગ ટ્રાફિકને મોનિટર અને કંટ્રોલ કરે છે.

ફાયરવોલ ટાઇપ	รเช้	ઉદાહરણ
પેકેટ ફિલ્ટરિંગ	પેકેટ હેડર તપાસે	રાઉટર ACLs
સ્ટેટફુલ ઇન્સ્પેક્શન	કનેક્શન સ્ટેટ ટ્રેક કરે	મોટાભાગના હાર્ડવેર ફાયરવોલ્સ
એપ્લિકેશન લેયર	ડેટા કન્ટેન્ટ ઇન્સ્પેક્ટ કરે	વેબ એપ્લિકેશન ફાયરવોલ્સ
નેક્સ્ટ-જનરેશન	એકાધિક ટેકનિક્સ જોડે	પાલો આલ્ટો, ફોર્ટિનેટ

ફાયરવોલના સિદ્ધાંતો:

• ડિફોલ્ટ ડિનાય: સ્પષ્ટપણે મંજૂર ન હોય ત્યાં સુધી બધું બ્લોક કરો

• ડિફેન્સ ઇન ડેપ્થ: મલ્ટિપલ સિક્યોરિટી લેયર્સ

• લીસ્ટ પ્રિવિલેજ: ન્યૂનતમ જરૂરી એક્સેસ

મર્યાદાઓ:

- અધિકૃત યુઝર્સ સામે રક્ષણ આપી શકતું નથી
- એન્ક્રિપ્ટેડ મેલિશિયસ ટ્રાફિક સામે મર્યાદિત
- નેટવર્ક પરફોર્મન્સ પર અસર

ટ્રસ્ટેડ સિસ્ટમ્સ:

- યોક્કસ સિક્યોરિટી આવશ્યકતાઓને પૂર્ણ કરતી સિસ્ટમ્સ
- ફોર્મલ સિક્યોરિટી પોલિસી એન્ફોર્સમેન્ટ
- એક્સેસ કંટોલ અને ઓથેન્ટિકેશન મેકેનિઝમ્સ

કર્બેરોસ કોન્સેપ્ટ:

- ટ્રસ્ટેડ થર્ડ પાર્ટીનો ઉપયોગ કરતો ઓથેન્ટિકેશન પ્રોટોકોલ
- ટિકિટ-આદ્યારિત એક્સેસ કંટ્રોલ સિસ્ટમ
- ક્લાયન્ટ અને સર્વર વચ્ચે મ્યુચ્યુઅલ ઓથેન્ટિકેશન
- રિપ્લે એટેક્સને રોકવા માટે **સમય-સંવેદનશીલ** ટિકિટ્સ

મેમરી ટ્રીક: "FLASK" - "ફાયરવોલ્સ લોક એક્સેસ, સિક્યોર વિથ કર્બેટોસ"

પ્રશ્ન 3(અ) [3 ગુણ]

ડેટા લિંક લેચરના સબ લેચર્સ સમજાવો.

જવાબ:

OSI મોડેલમાં ડેટા લિંક લેયર બે અલગ-અલગ કાર્યો સાથે બે સબલેયર્સમાં વિભાજિત છે.

સબલેયર	รเข้	સ્ટાન્ડર્ટ્સ
લોજિકલ લિંક કંટ્રોલ (LLC)	ફ્લો કંટ્રોલ, એરર ચેકિંગ	IEEE 802.2
મીડિયા એક્સેસ કંટ્રોલ (MAC)	ચેનલ એક્સેસ, એડ્રેસિંગ	IEEE 802.3, 802.11

આકૃતિ:

+		-
	NETWORK LAYER	
+	+	-
	LOGICAL LINK CONTROL	< Flow control, Error handling
	(LLC - 802.2)	Multiplexing, Connection mgmt
+	+	-
	MEDIA ACCESS CONTROL	< MAC addressing, Channel access
	(MAC - 802.3, 802.11)	Frame delimiting, Error detection
+	+	-
	PHYSICAL LAYER	
+	+	-

• LLC: નેટવર્ક લેયર માટે ઇન્ટરફેસ પ્રદાન કરે છે, એરર/ફ્લો કંટ્રોલ

• MAC: ફિઝિકલ એડ્રેસિંગ અને મીડિયા એક્સેસનું સંચાલન કરે છે

મેમરી ટ્રીક: "MAC LLCs order" - "MAC લોઅર લેયર હેન્ડલ કરે છે, LLC હાયર કોઓર્ડિનેટ કરે છે"

પ્રશ્ન 3(બ) [4 ગુણ]

IP layer protocols વિસ્તૃતમાં સમજાવો.

જવાબ:

IP લેયરમાં કેટલાક મહત્વપૂર્ણ પ્રોટોકોલ્સ છે જે ઇન્ટરનેટવર્ક કોમ્યુનિકેશનમાં સાથે મળીને કામ કરે છે.

પ્રોટોકોલ	รเช	મુખ્ય ફીચર્સ
IP	બેઝિક ડેટાગ્રામ ડિલિવરી	એડ્રેસિંગ, ફ્રેગમેન્ટેશન, TTL
ICMP	નેટવર્ક ડાયગ્નોસ્ટિક્સ	એરર રિપોર્ટિંગ, પિંગ, ટ્રેસરાઉટ
ARP	એડ્રેસ રિઝોલ્યુશન	IP થી MAC એડ્રેસ મેપિંગ
RARP	રિવર્સ એડ્રેસ રિઝોલ્યુશન	MAC થી IP એડ્રેસ મેપિંગ
IGMP	મલ્ટિકાસ્ટ ગ્રુપ મેનેજમેન્ટ	હોસ્ટ ગ્રુપ્સનું મેનેજમેન્ટ

• IP: એડ્રેસિંગ અને પેકેટ્સ રાઉટિંગ માટે કોર પ્રોટોકોલ

• ICMP: એરર મેસેજ અને ઓપરેશનલ ઇન્ફોર્મેશન

• ARP/RARP: લેચર્સ વચ્ચે એડ્રેસ ટ્રાન્સલેશન

• IGMP: મલ્ટિકાસ્ટ ગ્રુપ મેમ્બરશિપનું મેનેજમેન્ટ

મેમરી ટ્રીક: "I PAIR-up" - IP, ICMP, ARP, RARP એક ટીમ તરીકે કામ કરે છે

પ્રશ્ન 3(ક) [7 ગુણ]

વિવિદ્ય પ્રકારની IP એડ્રેસિંગ સ્કીમનું વર્ણન કરો અને ક્લાસફુલ IP એડ્રેસિંગમાં વિવિદ્ય વર્ગોને ઉદાહરણ સાથે સમજાવો.

જવાબ

IP એડ્રેસિંગ સ્કીમ્સ IP એડ્રેસના ફાળવણી અને સ્ટ્રક્ચરને વ્યાખ્યાયિત કરે છે.

IP એડ્રેસિંગ સ્ક્રીમ	นย์ฯ	ઉદાહરણ
ક્લાસફુલ	5 ક્લાસમાં પરંપરાગત વિભાજન	ક્લાસ A: 10.0.0.0
ક્લાસલેસ (CIDR)	ફ્લેક્સિબલ પ્રિફિક્સ, વધુ કાર્યક્ષમ	192.168.1.0/24
પ્રાઇવેટ	આંતરિક ઉપયોગ માટે નોન-રાઉટેબલ એડ્રેસ	192.168.0.0/16
સ્પેશિયલ પર્પંઝ	યોક્કસ કાર્યો માટે અનામત	127.0.0.1 (લોકલહોસ્ટ)

ક્લાસફુલ IP એડ્રેસિંગ:

ક્લાસ	પ્રથમ બિટ્સ	પ્રથમ બાઇટ રેન્જ	ડિફોલ્ટ સબનેટ માસ્ક	ઉદાહરણ	નેટવર્ક્સ	હોસ્ટ્સ/નેટવર્ક
А	0	1-127	255.0.0.0 (/8)	10.52.36.12	126	16,777,214
В	10	128-191	255.255.0.0 (/16)	172.16.52.63	16,384	65,534
С	110	192-223	255.255.255.0 (/24)	192.168.10.15	2,097,152	254
D	1110	224-239	N/A (મલ્ટિકાસ્ટ)	224.0.0.5	N/A	N/A
Е	1111	240-255	N/A (એક્સપેરિમેન્ટલ)	240.0.0.1	N/A	N/A

• **કલાસ A**: મોટી સંસ્થાઓ, હોસ્ટ્સની વિશાળ સંખ્યા

• કલાસ B: મધ્યમ કદની સંસ્થાઓ

• **ક્લાસ C**: ઓછા હોસ્ટ્સ સાથેના નાના નેટવર્ક્સ

• **કલાસ D**: મલ્ટિકાસ્ટ ગ્રુપ્સ

• ક્લાસ E: પ્રાયોગિક ઉપયોગ માટે અનામત

મેમરી ટ્રીક: "All Businesses Care During Exams" - ક્લાસ A, B, C, D, E

પ્રશ્ન 3(અ) અથવા [3 ગુણ]

ડીજીટલ સબસ્કાઈબર લાઈન ટેકનોલોજી સમજાવો.

જવાબ:

ડિજિટલ સબસ્ક્રાઇબર લાઇન (DSL) એ ટેલિફોન લાઇન્સ પર ડિજિટલ ડેટા ટ્રાન્સમિશન પ્રદાન કરતી ટેકનોલોજી છે.

DSL टार्थप	સ્પીડ (ડાઉન/અ૫)	ડિસ્ટન્સ	એપ્લિકેશન
ADSL	8 Mbps/1 Mbps	5.5 km સુધી	હોમ ઇન્ટરનેટ
SDSL	2 Mbps/2 Mbps	3 km સુધી	બિઝનેસ
VDSL	52 Mbps/16 Mbps	1.2 km સુધી	વિડીયો સ્ટ્રીમિંગ
HDSL	2 Mbps/2 Mbps	3.6 km સુધી	T1/E1 રિપ્લેસમેન્ટ

આકૃતિ:

• સ્પેક્ટ્રમ ઉપયોગ: અવાજ કરતાં ઉચ્ચ ફ્રિક્વન્સીનો ઉપયોગ

• ઓલવેઝ-ઓન: સતત કનેક્શન, ડાયલ-અપ નહીં

• xDSL: અલગ-અલગ ક્ષમતાઓ સાથે ટેકનોલોજીનો પરિવાર

મેમરી ટ્રીક: "SAVE Bandwidth" - SDSL, ADSL, VDSL, HDSL બેન્ડવિડ્થ ઓપ્શન્સ

પ્રશ્ન 3(બ) અથવા [4 ગુણ]

કેબલ મોડેમ સીસ્ટમને ચર્ચા કરો.

જવાબ:

કેબલ મોડેમ સિસ્ટમ કેબલ ટીવી માટે વપરાતા એજ કોએક્સિયલ કેબલ દ્વારા ઇન્ટરનેટ એક્સેસ પ્રદાન કરે છે.

કોમ્પોનન્ટ	รเช้
કેબલ મોડેમ	ડિજિટલ સિગ્નલ્સ કન્વર્ટ કરતું યુઝર-એન્ડ ડિવાઇસ
CMTS	પ્રોવાઇડર એન્ડ પર કેબલ મોડેમ ટર્મિનેશન સિસ્ટમ
HFC	હાઇબ્રિડ ફાઇબર-કોએક્સિયલ નેટવર્ક ઇન્ફ્રાસ્ટ્રક્ચર
DOCSIS	ડેટા ઓવર કેબલ સર્વિસ ઇન્ટરફેસ સ્પેસિફિકેશન

આકૃતિ:

• શેર્ડ મીડિયમ: નેબરહુડ બેન્ડવિડ્થ શેર કરે છે

• **એસિમેટ્રિક**: સામાન્ય રીતે અપલોડ કરતાં ડાઉનલોડ ઝડપી

• DOCSIS સ્ટાન્ડર્ડ્સ: સ્પીડ/ફીચર્સ માટે વિકસિત થતાં સ્પેસિફિકેશન્સ

મેમરી ટ્રીક: "CHAMPS" - "કેબલ, HFC, એક્સેસ, મોડેમ, પ્રોવાઇડર, શેર્ડ"

પ્રશ્ન 3(ક) અથવા [7 ગુણ]

સંક્ષિપ્તમાં તમામ ટ્રાન્સમિશન મીડિયાનું વર્ણન કરો.

જવાબ:

ટ્રાન્સમિશન મીડિયા એ ભૌતિક પાથ છે જેના દ્વારા નેટવર્કમાં ડેટા પ્રવાસ કરે છે.

મીડિયમ ટાઇપ	ઉદાહરણો	મેક્સ ડિસ્ટન્સ	મેક્સ બેન્ડવિડ્થ	એપ્લિકેશન
ગાઇડેડ (વાચર્ડ)				
ટ્વિસ્ટેડ પેર	UTP, STP	100m	10 Gbps	ઓફિસ LANs
કોએક્સિયલ કેબલ	RG-6, RG-59	500m	10 Gbps	કેબલ TV, ઇન્ટરનેટ
ફાઇબર ઓપ્ટિક	સિંગલ-મોડ, મલ્ટી-મોડ	100km+	100+ Tbps	બેકબોન્સ, લોંગ-ડિસ્ટન્સ
અનગાઇડેડ (વાયરલેસ)				
રેડિયો વેવ્સ	WiFi, સેલ્યુલર	100m-50km	600 Mbps	વાયરલેસ નેટવર્ક્સ
માઇક્રોવેવ્સ	ટેરેસ્ટ્રિયલ, સેટેલાઇટ	લાઇન ઓફ સાઇટ	10 Gbps	પોઇન્ટ-ટુ-પોઇન્ટ લિંક્સ
ઇન્ફ્રારેડ	IrDA	1m	16 Mbps	રિમોટ કંટ્રોલ્સ

આકૃતિ:

- ગાઇડેડ મીડિયા: સિગ્નત્સને સીમિત કરતા ભૌતિક પાથ
- અનગાઇડેડ મીડિયા: હવા/શૂન્યાવકાશ દ્વારા વાયરલેસ ટ્રાન્સમિશન
- લાક્ષણિકતાઓ: બેન્ડવિડ્થ, એટેન્યુએશન, નોઇઝ ઇમ્યુનિટી, કોસ્ટ

મેમરી ટ્રીક: "TRIM-CWF" - "ટ્વિસ્ટેડ, રેડિયો, ઇન્ફ્રારેડ, માઇક્રોવેવ, કોએક્સિયલ, વાયરલેસ, ફાઇબર"

પ્રશ્ન 4(અ) [3 ગુણ]

DNS પર નોંધ લખો.

જવાબ:

ડોમેન નેમ સિસ્ટમ (DNS) માનવ-મૈત્રીપૂર્ણ ડોમેન નેમ્સને IP એડ્રેસમાં અનુવાદિત કરે છે.

કોમ્પોનન્ટ	รเช้
sìમેન નેમ	હાયરાર્કિકલ, વાંચી શકાય તેવું એડ્રેસ (<u>www.example.com</u>)
DNS સર્વર	ડોમેન નેમ્સને IP એડ્રેસમાં રિઝોલ્વ કરે છે
રૂટ સર્વર	DNS હાયરાર્કીનો ટોપ, TLDs તરફ પોઇન્ટ કરે છે
TLD સર્વર	ટોપ-લેવલ ડોમેન્સ (.com, .org) મેનેજ કરે છે
રેકોર્ડ ટાઇપ્સ	A, AAAA, MX, CNAME, NS, PTR, વગેરે

આકૃતિ:

- ડિસ્ટ્રિબ્યુટેડ ડેટાબેઝ: હાયરાર્કિકલ, ગ્લોબલી ડિસ્ટ્રિબ્યુટેડ
- કેશિંગ: પરફોર્મન્સ સુધારે છે, લોડ ઘટાડે છે
- ક્રિટિકલ ઇન્ફ્રાસ્ટ્રક્ચર: ઇન્ટરનેટ ફંક્શનાલિટી માટે આવશ્યક

મેમરી ટ્રીક: "DIRT" - "ડોમેન નેમ્સ ઇન્ટુ રાઉટેબલ TCP/IP"

પ્રશ્ન 4(બ) [4 ગુણ]

ફાઇલ ટ્રાન્સફર પ્રોટોકોલ સમજાવો.

જવાબ:

ફાઇલ ટ્રાન્સફર પ્રોટોકોલ (FTP) નેટવર્ક પર ક્લાયન્ટ અને સર્વર વચ્ચે ફાઇલ્સના ટ્રાન્સફરને સક્ષમ બનાવે છે.

ફીચર	વર્ણન
પોર્ટ	કંટ્રોલ: 21, ડેટા: 20
મોડ	એક્ટિવ અને પેસિવ
સિક્યોરિટી	બેઝિક (ક્લિયર ટેક્સ્ટ), અથવા એન્ક્રિપ્શન માટે FTPS/SFTP
કમાન્ડ્સ	GET, PUT, LIST, DELETE, વગેરે
કનેક્શન	અલગ કંટ્રોલ અને ડેટા કનેક્શન્સનો ઉપયોગ કરે છે

આકૃતિ:

• **ક્યુઅલ ચેનલ**: કંટ્રોલ ચેનલ અને ડેટા ચેનલ

• **ઓથેન્ટિકેશન**: યુઝરનેમ/પાસવર્ડ જરૂરી

• **મોડ્સ**: ASCII (ટેક્સ્ટ) અથવા બાઇનરી (રો ડેટા)

• **એક્ટિવ vs પેસિવ**: અલગ કનેક્શન સ્થાપના પદ્ધતિઓ

મેમરી ટ્રીક: "CAPS" - "કંટ્રોલ એન્ડ પોર્ટ સેપરેશન"

પ્રશ્ન 4(ક) [7 ગુણ]

વિવિદ્ય ઇન્ટરનેટ સેવાઓનું વર્ગીકરણ કરો અને વિગતવાર સમજાવો.

જવાબ:

ઇન્ટરનેટ સેવાઓ નેટવર્ક પર વિવિધ કાર્યક્ષમતા પ્રદાન કરે છે.

સેવા કેટેગરી	સામાન્ય પ્રોટોકોલ્સ	વર્ણન	એપ્લિકેશન ઉદાહરણો
કોમ્યુનિકેશન	SMTP, POP3, IMAP	મેસેજનું આદાન-પ્રદાન	ઇમેઇલ, ઇન્સ્ટન્ટ મેસેજિંગ
ઇન્ફોર્મેશન એક્સેસ	HTTP, HTTPS	માહિતી સ્રોતોનો એક્સેસ	વર્લ્ડ વાઇડ વેબ, પોર્ટલ્સ
ફાઇલ શેરિંગ	FTP, BitTorrent, SMB	ફાઇલ્સનું ટ્રાન્સફર અને શેરિંગ	ફાઇલ હોસ્ટિંગ, P2P શેરિંગ
રિમોટ એક્સેસ	SSH, Telnet, RDP	રિમોટ કમ્પ્યુટર્સનો એક્સેસ	રિમોટ એડમિનિસ્ટ્રેશન
રિયલ-ટાઇમ સર્વિસિસ	VoIP, WebRTC	લાઇવ કોમ્યુનિકેશન	વિડિયો કોન્ફરન્સિંગ, VoIP
ડોમેન સર્વિસિસ	DNS, DHCP	નેટવર્ક ઇન્ફ્રાસ્ટ્રક્ચર	એડ્રેસ રિઝોલ્યુશન

ઇન્ફોર્મેશન એક્સેસ સર્વિસિસ (વેબ):

• HTTP/HTTPS: હાયપરટેક્સ્ટ ટ્રાન્સફર પ્રોટોકોલ, વેબનો પાયો

• HTML: કન્ટેન્ટ ડિસ્પ્લે કરવા માટેનું ડોક્યુમેન્ટ ફોર્મેટ

• વેબ બ્રાઉઝર્સ: વેબ કન્ટેન્ટ એક્સેસ અને રેન્ડર કરવા માટે ક્લાયન્ટ સોફ્ટવેર

• વેબ સર્વર્સ: વેબસાઇટ્સ અને એપ્લિકેશન્સ હોસ્ટ કરે છે

કોમ્યુનિકેશન સર્વિસિસ (ઇમેઇલ):

• SMTP: ઇમેઇલ મોકલવા માટે

• POP3/IMAP: ઇમેઇલ પ્રાપ્ત કરવા માટે

• કોમ્પોનન્ટ્સ: મેઇલ યુઝર એજન્ટ્સ, ટ્રાન્સફર એજન્ટ્સ, ડિલિવરી એજન્ટ્સ

કાઇલ શેરિંગ સર્વિસિસ:

• FTP: પરંપરાગત ફાઇલ ટાન્સફર પ્રોટોકોલ

• P2P: સેન્ટ્રલ સર્વર વગર ડિસ્ટ્રિબ્યુટેડ ફાઇલ શેરિંગ

• કલાઉડ સ્ટોરેજ: રિમોટ ફાઇલ સ્ટોરેજ અને સિંક્રોનાઇઝેશન

મેમરી ટ્રીક: "CIFRRD" - "કોમ્યુનિકેશન, ઇન્ફોર્મેશન, ફાઇલ, રિમોટ, રિયલ-ટાઇમ, ડોમેન"

પ્રશ્ન 4(અ) અથવા [3 ગુણ]

મેઇલ પ્રોટોકોલ્સ સમજાવો.

જવાબ:

મેઇલ પ્રોટોકોલ્સ વપરાશકર્તાઓ વચ્ચે ઇલેક્ટ્રોનિક મેસેજિંગ સરળ બનાવે છે.

પ્રોટોકોલ	รเช้	પોર્ટ	દિશા
SMTP	સિમ્પલ મેઇલ ટ્રાન્સફર પ્રોટોકોલ	25, 587	મેઇલ મોકલવું
POP3	પોસ્ટ ઓફિસ પ્રોટોકોલ v3	110	મેઇલ પ્રાપ્ત કરવું
IMAP	ઇન્ટરનેટ મેસેજ એક્સેસ પ્રોટોકોલ	143	એડવાન્સ્ડ મેઇલ રિટ્રિવલ
MIME	મલ્ટિપરપઝ ઇન્ટરનેટ મેઇલ એક્સટેન્શન	N/A	એટેથમેન્ટ એન્કોડિંગ

આકૃતિ:

+		SMTP +-	+	POP3/IMAP ++
-	Sender	>	Mail -	> Receiver
	Client		Server	Client
+		+-	+	++

• SMTP: આઉટગોઇંગ મેઇલ ડિલિવરી, પુશ પ્રોટોકોલ

• POP3: સરળ મેઇલ રિટ્રિવલ, ડાઉનલોડ અને ડિલીટ કરે છે

• IMAP: એડવાન્સ્ક રિટ્રિવલ, સર્વર-સાઇડ સ્ટોરેજ, ફોલ્કર્સ

• MIME: નોન-ટેક્સ્ટ કન્ટેન્ટ માટે ઇમેઇલ ક્ષમતા વિસ્તારે છે

મેમરી ટ્રીક: "SIM-P" - "SMTP સેન્ડ્સ, IMAP મેનેજીસ, POP3 પુલ્સ"

પ્રશ્ન 4(બ) અથવા [4 ગુણ]

સંક્ષિપ્તમાં VOIP નું વર્ણન કરો.

જવાબ:

વોઇસ ઓવર ઇન્ટરનેટ પ્રોટોકોલ (VoIP) IP નેટવર્ક્સ પર વોઇસ કોમ્યુનિકેશન ટ્રાન્સમિટ કરે છે.

કોમ્પોનન્ટ	รเช้
કોડેક	વોઇસ સિગ્નલ્સ એન્કોડ/ડિકોડ કરે છે
સિગ્નલિંગ પ્રોટોકોલ	ક્રોલ સેટઅપ/ટિયરડાઉન (SIP, H.323)
ટ્રાન્સપોર્ટ પ્રોટોકોલ	વોઇસ પેકેટ ડિલિવરી (RTP)
QoS મેકેનિઝમ	વોઇસ ક્વોલિટી સુનિશ્ચિત કરે છે

આકૃતિ:

- **પેકેટાઇઝેશન**: એનાલોગ વોઇસને ડિજિટલ પેકેટ્સમાં કન્વર્ટ કરે છે
- લાલો: કોસ્ટ સેવિંગ્સ, ફ્લેક્સિબિલિટી, એપ્સ સાથે ઇન્ટિગ્રેશન
- યેલેન્જીસ: ક્વોલિટી ઓફ સર્વિસ, લેટન્સી, જિટર, પેકેટ લોસ

મેમરી ટ્રીક: "PALS" - "પેકેટ્સ એલાઉઇંગ લાઇવ સ્પીચ"

પ્રશ્ન 4(ક) અથવા [7 ગુણ]

TCP અને UDP પ્રોટોકોલ્સનું વર્ણન કરો.

જવાબ:

TCP અને UDP TCP/IP સ્યુટમાં પ્રાથમિક ટ્રાન્સપોર્ટ લેયર પ્રોટોકોલ્સ છે.

ફીચર	ТСР	UDP
કનેક્શન	કનેક્શન-ઓરિએન્ટેડ	કનેક્શનલેસ
વિશ્વસનીયતા	ગેરંટેડ ડિલિવરી	બેસ્ટ-એફર્ટ ડિલિવરી
હેડર સાઇઝ	20-60 બાઇટ્સ	8 બાઇટ્સ
સ્પીડ	ઓવરહેડને કારણે ધીમું	મિનિમલ ઓવરહેડ સાથે ઝડપી
ઓર્ડર	સિક્વન્સ જાળવે છે	કોઈ સિક્વન્સ પ્રિઝર્વેશન નહીં
ફ્લો કંટ્રોલ	હા	ના
એરર રિકવરી	રિટ્રાન્સમિશન	કોઈ નહીં
ઉપયોગ	વેબ, ઇમેઇલ, ફાઇલ ટ્રાન્સફર	સ્ટ્રીમિંગ, DNS, VoIP

TCP થ્રી-વે હેન્ડશેક:

TCP ફીચર્સ:

• વિશ્વસનીયતા: એક્નોલેજમેન્ટ્સ, રિટ્રાન્સમિશન

• ફલો કંટ્રોલ: વિન્ડો-બેઝ્ડ, ઓવરવ્હેભિંગને રોકે છે

• કન્જેશન કંટ્રોલ: સ્લો સ્ટાર્ટ, કન્જેશન અવોઇડન્સ

• કનેક્શન મેનેજમેન્ટ: સ્થાપના, મેઇન્ટેનન્સ, ટર્મિનેશન

UDP ફીચર્સ:

• લાઇટવેઇટ: મિનિમલ હેડર્સ, કોઈ કનેક્શન સ્ટેટ નહીં

• લો લેટન્સી: કોઈ હેન્ડશેકિંગ કે એક્નોલેજમેન્ટ્સ નહીં

• **કોઈ ગેરંટી નહીં**: ડેટા આઉટ ઓફ ઓર્ડર, ડુપ્લિકેટેડ, અથવા બિલકુલ ન આવે

• બ્રોડકાસ્ટ/મલ્ટિકાસ્ટ: વન-ટુ-મેની ટ્રાન્સમિશનને સપોર્ટ કરે છે

મેમરી ટ્રીક: "CRUFS" - "કનેક્શન, રિલાયબિલિટી, UDP ફાસ્ટ, સિમ્પલ"

પ્રશ્ન 5(અ) [3 ગુણ]

ક્રિપ્ટોગ્રાફીનું વર્ણન કરો.

જવાબ:

ક્રિપ્ટોગ્રાફી એ માહિતીનું રક્ષણ કરતી સુરક્ષિત કોમ્યુનિકેશન ટેકનિક્સનું વિજ્ઞાન છે.

ટાઇપ	વર્ણન	ઉદાહરણ
સિમેટ્રિક	એન્ક્રિપ્શન અને ડિક્રિપ્શન માટે એક જ કી	AES, DES
એસિમેટ્રિક	એન્ક્રિપ્શન અને ડિક્રિપ્શન માટે અલગ કી	RSA, ECC
હેશ ફંક્શન્સ	વન-વે ફંક્શન્સ, ફિક્સ્ડ આઉટપુટ સાઇઝ	SHA-256, MD5
ડિજિટલ સિગ્નેચર	ઓથેન્ટિકેશન અને ઇન્ટિગ્રિટી વેરિફિકેશન	RSA સિગ્નેથર

આકૃતિ:

SYMMETRIC:

Sender -- (Encrypt with Key K)--> [Ciphertext] -- (Decrypt with Key K)--> Receiver

ASYMMETRIC:

Sender --(Encrypt with Public Key)--> [Ciphertext] --(Decrypt with Private Key)--> Receiver

- કોન્ફિડેન્શિયાલિટી: અનધિકૃત એક્સેસથી માહિતીનું રક્ષણ
- ઇન્ટિગ્નિટી: માહિતી બદલાઈ નથી તે સુનિશ્ચિત કરવું
- ઓથેન્ટિકેશન: કોમ્યુનિકેટિંગ પક્ષોની ઓળખ ચકાસવી

મેમરી ટ્રીક: "SHAPE" - "સિમેટ્રિક, હેશિંગ, એસિમેટ્રિક, પ્રોટેક્ટ, એન્ક્રિપ્ટ"

પ્રશ્ન 5(બ) [4 ગુણ]

સામાજિક મુદ્દાઓ સમજાવો અને હેકિંગ તેની સાવચેતીઓની પણ ચર્ચા કરો.

જવાબ:

સાયબર સિક્યોરિટીમાં સામાજિક મુદ્દાઓમાં માનવ મેનિપ્યુલેશન અને સાયબર ખતરાઓની સામાજિક અસરો શામેલ છે.

સામાજિક મુદ્દો	นณ์ฯ	ઉદાહરણ
સોશિયલ એન્જિનિયરિંગ	માહિતી જાહેર કરવા માટે લોકોને મેનિપ્યુલેટ કરવા	ફિશિંગ, પ્રિટેક્સ્ટિંગ
પ્રાઇવસી કન્સર્ન	અનધિકૃત ડેટા કલેક્શન અને ઉપયોગ	ડેટા બ્રીય, સર્વેલન્સ
ડિજિટલ ડિવાઇડ	ટેકનોલોજી એક્સેસમાં અસમાનતા	ગ્રામીણ વિસ્તારોમાં મર્યાદિત ઇન્ટરનેટ
સાયબરબુલિંગ	અન્યને હેરાન કરવા માટે ટેકનોલોજીનો ઉપયોગ	ઓનલાઇન હેરાસમેન્ટ, ધમકીઓ

હેકિંગ ટાઇપ્સ:

- બાઇટ હેટ: એથિકલ હેકિંગ, સિક્યોરિટી સુધારણા
- **લ્લેક હેટ**: મેલિશિયસ હેકિંગ, ગેરકાયદેસર પ્રવૃત્તિઓ
- ગ્રે હેટ: એથિકલ અને શંકાસ્પદ ક્રિયાઓનું મિશ્રણ

સાવચેતીઓ:

- એજ્યુકેશન: નિયમિત સિક્યોરિટી અવેરનેસ ટ્રેનિંગ
- સ્ટ્રોંગ પોલિસીઝ: સ્પષ્ટ સિક્યોરિટી પ્રક્રિયાઓ અને નીતિઓ
- ટેકનિકલ કંટ્રોલ્સ: ફાયરવોલ્સ, એન્ટિવાઇરસ, એન્ક્રિપ્શન
- રેગ્યુલર અપડેટ્સ: વલ્નરેબિલિટી સામે સિસ્ટમ્સ પેચિંગ
- **મોનિટરિંગ**: એક્ટિવિટી લોગ્સ, ઇન્ટ્રઝન ડિટેક્શન

મેમરી ટ્રીક: "STEPS" - "સોશિયલ એન્જિનિયરિંગ, ટ્રેનિંગ, એન્ક્રિપ્શન, પેચિસ, સ્ટ્રોંગ પાસવર્ડ્સ"

પ્રશ્ન 5(ક) [7 ગુણ]

IP સુરક્ષાને વિગતવાર સમજાવો.

જવાબ:

IP સિક્યોરિટી (IPsec) એ IP લેયર પર કોમ્યુનિકેશન સુરક્ષિત કરતો પ્રોટોકોલ સ્યુટ છે.

કોમ્પોનન્ટ	รเช่	વર્ણન
АН	ઓથેન્ટિકેશન હેડર	ઇન્ટિગ્રિટી અને ઓથેન્ટિકેશન પ્રદાન કરે છે
ESP	એન્કેપ્સુલેટિંગ સિક્યોરિટી પેલોડ	કોન્ફિડેન્શિયાલિટી, ઇન્ટિગ્રિટી, ઓથેન્ટિકેશન પ્રદાન કરે છે
IKE	ઇન્ટરનેટ કી એક્સચેન્જ	સિક્યોરિટી એસોસિએશન સ્થાપિત અને સંચાલિત કરે છે
SA	સિક્યોરિટી એસોસિએશન	કનેક્શન માટે સિક્યોરિટી પેરામીટર્સ

IPsec મોડ્સ:

મોડ	વર્ણન	એપ્લિકેશન
ટ્રાન્સપોર્ટ	માત્ર પેલોડને સુરક્ષિત કરે છે	હોસ્ટ-ટુ-હોસ્ટ કોમ્યુનિકેશન
ટનલ	સંપૂર્ણ પેકેટને સુરક્ષિત કરે છે	ગેટવે-ટુ-ગેટવે (VPN)

आहृति:

IPsec સર્વિસિસ:

• ઓથેન્ટિકેશન: સેન્ડરની ઓળખ ચકાસે છે

• ક્રોન્ફિડેન્શિયાલિટી: ઇવ્સડ્રોપિંગ રોકવા માટે ડેટા એન્ક્રિપ્ટ કરે છે

• ઇન્ટિગ્નિટી: ડેટા મોડિફાઈ નથી થયો તે સુનિશ્ચિત કરે છે

• એન્ટી-રિપ્લે: પેકેટ રિપ્લે એટેક રોકે છે

IPsec ઇમ્પ્લિમેન્ટેશન:

• VPNs: સિક્યોર રિમોટ એક્સેસ અને સાઇટ-ટુ-સાઇટ કનેક્શન

• L2TP/IPsec: ટનલિંગને સિક્યોરિટી સાથે જોડે છે

• ઓથેન્ટિકેશન મેથડ્સ: પ્રી-શેર્ડ કી, સર્ટિફિકેટ્સ, કર્બેરોસ

મેમરી ટ્રીક: "ACCEPT" - "ઓથેન્ટિકેશન, કોન્ફિડેન્શિયાલિટી, ક્રિપ્ટોગ્રાફી, એન્કેપ્સુલેશન, પ્રોટોકોલ્સ, ટનલ"

પ્રશ્ન 5(અ) અથવા [3 ગુણ]

નેટવર્ક સુરક્ષા વ્યાખ્યાયિત કરો અને તેના ઘટકો સમજાવો.

ยวร	વર્ણન	ઉદાહરણો
એક્સેસ કંટ્રોલ	નેટવર્ક એક્સેસને મર્યાદિત કરવું	પાસવર્ડ, મલ્ટી-ફેક્ટર ઓથ
થ્રેટ પ્રિવેન્શન	એટેક બ્લોક કરવા	ફાયરવોલ્સ, IDS/IPS
એન્ક્રિપ્શન	ટ્રાન્ઝિટમાં ડેટા સુરક્ષિત કરવો	SSL/TLS, IPsec
વલ્નરેબિલિટી મેનેજમેન્ટ	નબળાઈઓ ઓળખવી	સ્કેનિંગ, પેચિંગ
મોનિટરિંગ	નેટવર્ક એક્ટિવિટી નિરીક્ષણ	SIEM, લોગ એનાલિસિસ

આકૃતિ:

- કોન્ફિડેન્શિયાલિટી: અનધિકૃત એક્સેસથી માહિતીનું રક્ષણ
- ઇન્ટિગ્રિટી: માહિતીની ચોકસાઈ અને વિશ્વસનીયતા સુનિશ્ચિત કરવી
- અવેલેબિલિટી: જરૂર પડે ત્યારે સિસ્ટમ્સ એક્સેસિબલ રાખવા

મેમરી ટ્રીક: "CIMA TV" - "કોન્ફિડેન્શિયાલિટી, ઇન્ટિગ્રિટી, મોનિટરિંગ, એક્સેસ કંટ્રોલ, થ્રેટ્સ, વલ્નરેબિલિટીસ"

પ્રશ્ન 5(બ) અથવા [4 ગુણ]

સંક્ષિપ્તમાં માહિતી ટેકનોલોજી (સુધારા) અધિનિયમ, 2008 અને ભારતમાં સાયબર કાયદાઓ પર તેની અસરનું વર્ણન કરો.

જવાબ:

IT (સુધારા) એક્ટ, 2008 ઉભરતા સાયબર સિક્યોરિટી પડકારોને સંબોધવા માટે ભારતના સાયબર કાયદાઓ અપડેટ કર્યા.

મુખ્ય પાસાં	વર્ણન
સાયબર ક્રાઇમ	નવા ગુના ઉમેર્યાં, પેનલ્ટી મજબૂત કરી
ઇલેક્ટ્રોનિક એવિડન્સ	કોર્ટમાં ડિજિટલ પુરાવાને માન્યતા આપી
ડેટા પ્રોટેક્શન	સંવેદનશીલ ડેટા માટે ફરજો લાદી
ઇન્ટરમીડિયરી લાયબિલિટી	સર્વિસ પ્રોવાઇડર્સ માટે જવાબદારીઓ વ્યાખ્યાયિત કરી

મુખ્ય સેક્શન્સ:

• સેક્શન 43: અનધિકૃત એક્સેસ, ડેટા થેફ્ટ માટે પેનલ્ટી

• સેક્શન 66: કમ્પ્યુટર સંબંધિત ગુનાઓ અને સજાઓ

• સેક્શન 69: ઇન્ટરસેપ્શન અને મોનિટરિંગ માટે અધિકારો

• **સેક્શન 72A**: વ્યક્તિગત ડેટા ગોપનીયતાનું રક્ષણ

સાયબર કાયદાઓ પર અસર:

• વધુ મજબૂત અમલ: સાયબર ક્રાઇમ માટે વધારેલી જોગવાઈઓ

• વિસ્તૃત અવકાશ: નવા ટેકનોલોજિકલ વિકાસને આવરી લીધા

• કોર્પોરેટ જવાબદારી: ડેટા માટે સિક્યોરિટી પ્રેક્ટિસની આવશ્યકતા

• ગ્લોબલ એલાઇન્મેન્ટ: આંતરરાષ્ટ્રીય ધોરણો સાથે સંકલન

મેમરી ટ્રીક: "SPEC" - "સિક્યોરિટી, પ્રાઇવસી, એવિડન્સ, સાયબર ક્રાઇમ્સ"

પ્રશ્ન 5(ક) અથવા [7 ગુણ]

SMTP, PEM, PGP, S/MINE, સ્પામના સંદર્ભમાં ઇમેઇલ સુરક્ષા સમજાવો.

જવાબ:

ઇમેઇલ સિક્યોરિટી ઇમેઇલ કન્ટેન્ટ અને એકાઉન્ટ્સને અનધિકૃત એક્સેસ અને એટેક્સથી સુરક્ષિત કરે છે.

ટેકનોલોજી	รเช้	ફીચર્સ
SMTP	સિમ્પલ મેઇલ ટ્રાન્સફર પ્રોટોકોલ	બેઝિક ઇમેઇલ ટ્રાન્સમિશન, મર્યાદિત સિક્યોરિટી
PEM	પ્રાઇવસી એન્હાન્સ્ડ મેઇલ	અર્લી ઇમેઇલ એન્ક્રિપ્શન સ્ટાન્ડર્ડ
PGP	પ્રિટી ગુડ પ્રાઇવસી	એન્ડ-ટુ-એન્ડ એન્ક્રિપ્શન, ડિજિટલ સિગ્નેચર
S/MIME	સિક્યોર/મલ્ટિપરપઝ ઇન્ટરનેટ મેઇલ એક્સટેન્શન	સર્ટિફિકેટ-બેઝ્ડ એન્ક્રિપ્શન અને સાઇનિંગ
એન્ટી-સ્પામ	અવાંછિત ઇમેઇલ ફ્લ્ટિરિંગ	કન્ટેન્ટ ફિલ્ટરિંગ, બ્લેકલિસ્ટ, ઓથેન્ટિકેશન

SMTP સિક્યોરિટી ઇશ્યુ:

- મૂળ રૂપે સિક્યોરિટી વગર ડિઝાઇન કરાયેલ
- પછીથી ઓથેન્ટિકેશન એક્સટેન્શન (AUTH) ઉમેરાયા

- એન્ક્રિપ્શન વગર ઇવ્સડ્ડોપિંગ માટે વલ્નરેબલ
- એન્ક્રિપ્ટેડ ટ્રાન્સમિશન માટે STARTTLS સપોર્ટ

PGP ઇમેઇલ સિક્યોરિટી:

S/MIME ફીચર્સ:

- ઓથેન્ટિકેશન માટે X.509 સર્ટિફિકેટસનો ઉપયોગ
- એન્ક્રિપ્શન અને ડિજિટલ સિગ્નેચર પ્રદાન કરે છે
- ઘણા ઇમેઇલ ક્લાયન્ટ્સમાં ઇન્ટિગ્રેટેડ
- સર્ટિફિકેટ ઇન્ફ્રાસ્ટ્રક્ચરની જરૂર

સ્પામ પ્રોટેક્શન:

- કન્ટેન્ટ ફિલ્ટરિંગ: મેસેજ કન્ટેન્ટનું એનાલિસિસ
- સેન્ડર વેરિફિકેશન: SPF, DKIM, DMARC
- **બિહેવિયરલ એનાલિસિસ**: પેટર્ન રિકર્ગ્નિશન
- બ્લેકલિસ્ટ/વ્હાઇટલિસ્ટ: ચોક્કસ સેન્ડર્સને બ્લોકિંગ/એલાઉ કરવા

ઇમેઇલ સિક્યોરિટી બેસ્ટ પ્રેક્ટિસિસ:

- એન્ક્રિપ્શન: મેસેજ કન્ટેન્ટની ગોપનીયતા સુનિશ્ચિત કરવી
- ઓથેન્ટિકેશન: સેન્ડરની ઓળખ ચકાસવી
- એક્સેસ કંટ્રોલ્સ: ઇમેઇલ એકાઉન્ટ્સનું રક્ષણ કરવું
- કિલ્ટરિંગ: મેલિશિયસ અને અવાંછિત મેસેજ બ્લોક કરવા
- યુઝર એજ્યુકેશન: ફિશિંગ પ્રયાસો ઓળખવા

મેમરી ટ્રીક: "SPEED" - "S/MIME, PGP, એન્ક્રિપ્શન, ઇમેઇલ સિક્યોરિટી, DMARC"