Übung 4: Zahlensysteme

in **"Digitaltechnik"** WS 2008/09

Aufgabe 1

(a) Wie lässt sich allgemein eine n-stellige natürliche Zahl in einem beliebigen Zahlensystem darstellen? Geben Sie jeweils für das duale, dezimale bzw. hexadezimale Zahlensystem die Basis und den Zeichenvorrat an!

$$(Z)_{B} = \sum_{i=0}^{n-1} C_{i}B^{i} = C_{n-1}B^{n-1} + C_{n-2}B^{n-2} + \dots + C_{1}B^{1} + C_{0}B^{0}; \qquad C = Faktor$$

$$B = Basis$$

$$(174)_{10} = 1*10^2 + 7*10^1 + 4*10^0$$

Zahlensystem	Basis	Zeichenvorrat
Dezimal	10	0,1,2,3,4,5,6,7,8,9
Dual	2	0,1
Hexadezimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
Oktal	8	0,1,2,3,4,5,6,7

(b) Notieren Sie die folgenden Zahlen in verschiedenen Zahlensystemen:

$$(375)_{10} \rightarrow (N)_2, (N)_{16}$$
 $(1001011)_2 \rightarrow (N)_{10}$

(375) ₁₀ →	(N) ₂	
375 : 2 = 187	Rest 1	
187 : 2 = 93	Rest 1	
93 : 2 = 46	Rest 1	
46:2=23	Rest 0	
23:2=11	Rest 1	
11:2=5	Rest 1	
5:2=2	Rest 1	
2:2=1	Rest 0	
1:2=0	Rest 1	

Dezimal → Dual (Binär)

$(375)_{10}$ \rightarrow	(N) ₁₆	
$16^3 = 4096 > 375$	0	
$16^2 = 256 < 375$ $375 - 1 * 16^2 = 119$	0	
$16^{1} = 16 < 119$ $119 - 7 * 16^{1} = 7$	7	
$16^0 = 1 < 7$ $7 - 7 * 16^0 = 0$	7	

 \rightarrow

Dezimal → Hexadezimal

$$(1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1)_{2}$$

$$(1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1)_{2} = \underbrace{1 \times 2^{8}}_{256} + \underbrace{0 \times 2^{7}}_{0} + \underbrace{1 \times 2^{6}}_{64} + \underbrace{1 \times 2^{5}}_{32} + \underbrace{1 \times 2^{4}}_{16}$$

$$+ \underbrace{0 \times 2^{3}}_{0} + \underbrace{1 \times 2^{2}}_{4} + \underbrace{1 \times 2^{1}}_{2} + \underbrace{1 \times 2^{0}}_{1}$$

$$= 256 + 64 + 32 + 16 + 4 + 2 + 1 = 375$$

 $(177)_{16}$

Oder!!!

 $(375)_{10}$

$(375)_{10} \rightarrow$	(N) ₁₆
375 : 16 = 23	Rest 7
23:16=1	Rest 7
1:16=0	Rest 1
$(375)_{10} \rightarrow$	$(177)_{16}$

Dezimal → Hexadezimal

$(375)_{10} \rightarrow (N)_{8}$ $375: 8 = 46 \qquad \text{Rest } 7$ $46: 8 = 5 \qquad \text{Rest } 6$ $5: 8 = 0 \qquad \text{Rest } 5$ $(375)_{10} \rightarrow (567)_{8}$

Dezimal → Oktal

$(1001011)_2 \rightarrow (N)_{10}$

Dual → Dezimal

 $(1\ 0\ 0\ 1\ 0\ 1\ 1)_2$

$$\begin{pmatrix} 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} = \underbrace{1 * 2^{6}}_{64} + \underbrace{0 * 2^{5}}_{0} + \underbrace{0 * 2^{4}}_{0} + \underbrace{1 * 2^{3}}_{8} + \underbrace{0 * 2^{2}}_{0} + \underbrace{1 * 2^{1}}_{2} + \underbrace{1 * 2^{0}}_{1}$$
$$= 64 + 8 + 2 + 1 = 75$$

 $(1001011)_2 \rightarrow (75)_{10}$

$(1001011)_2 \rightarrow (N)_{16}$

 $(1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1)_2$

 $\left(\underbrace{0\ 1\ 0\ 0}_{4} \quad \underbrace{1\ 0\ 1\ 1}_{R}\right) = \left(4B\right)_{16}$

 $(1001011)_2 \rightarrow (4B)_{16}$

$(1001011)_2 \rightarrow (N)_8$

 $(1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1)_2$

 $\left(\underbrace{0\ 0\ 1}_{1}\ \underbrace{0\ 0\ 1}_{1}\ \underbrace{0\ 1\ 1}_{3}\right) = (113)_{8}$

 $(1001011)_2 \rightarrow (113)_8$

Dual → Hexadezimal

Dual → Oktal

$(17B)_{16} \rightarrow (N)_2$

1= 0 0 0 1

7 = 0 1 1 1

 $B = 1 \ 0 \ 1 \ 1$

 \Rightarrow $(17B)_{16} \rightarrow (0001\ 0111\ 1011)_{2}$

Hexadezimal → Dual

$(10011010)_2 \rightarrow (N)_8$

 $(1\ 0\ 0\ 1\ 1\ 0\ 1\ 0)_2$

 $\left(\underbrace{1\ 0\ 0\ 1}_{9}\ \underbrace{1\ 0\ 1\ 0}_{A}\right) = (N_{16}) = (9A)_{16}$

Dual → Hexadezimal

(c) Welcher Wertebereich positiver, ganzer Dualzahlen kann mit einem Datenwort der Länge 4 Bit dargestellt werden? Welchen Wertebereich erhält man, wenn ganze Dualzahlen dargestellt werden sollen?

Verallgemeinern Sie auf N Bit lange Datenworte!

positive ganze Dualzahlen (4 - Bit)

	Dual	Dezimal	
größter Wert	1111	15	[0.1 14.15]
Kleinster Wert	0000	0	$\left.\right\} \left[0,1,,14,15\right]$

N – Bit
$$\left[0,1,...,2^{N}-1\right]$$

a) Format mit Betrag & Vorzeichen MSB(Most Significant Bit = $h\ddot{o}chstwertige$ Bit) $0 \stackrel{\triangle}{=} +; 1 \stackrel{\triangle}{=} -$

	Dual	Dezimal	
größter Wert	0111	7	
Kleinster Wert	1111	-7	$\left. \left\{ -7,-6,,+6,+7 \right] \right\}$

b) MSB(Most Significant Bit = $h\ddot{o}chstwertige$ Bit) $0 \stackrel{\triangle}{=} +; 1 \stackrel{\triangle}{=} -$

positive Zahlen: Betrag

negative Zahlen: Zweierkomplement (ZK)

Dual	Dezimal	Dual	Dezimal
0 111	+7	1 111	-1
0 110	+6	1 110	-2
0 101	+5	1 101	-3
0 100	+4	1 100	-4
0 011	+3	1 011	-5
0 010	+2	1 010	-6
0 001	+1	1 001	-7
0 000	0	1 000	-8

Wertebereich: N – Bit= $\left\lceil -\left(2^{N-1}\right), \dots, +\left(2^{N-1}-1\right)\right\rceil$

Eigenschaften des Komplementären Zahlenraums

$$ZK + Z = B^N$$
 $N = Bitlänge; B = Basis; Z = Zahl$
 $EK + Z = B^N - 1$

Bildung Einerkomplement (EK)

Alle Stellen der Zahl werden invertiert $0\ 1\ 0\ 1 \rightarrow 1\ 0\ 1\ 0(EK)$

Bildung des Zweierkomplements (ZK)

$$EK + LSB$$
 (LSB = Least Significant Bit)

 $\mathsf{ZK}\,\mathsf{von}\,\,0\,\,1\,\,0\,\,1$

oder:
$$\begin{array}{ccc} 0 & 1 & 0 & 1 \\ & & \downarrow \\ & \rightarrow & 1 & 0 & 1 & 1 \end{array}$$

- 1. Fange bei der rechten Stelle (niedrigstwertiges Bit) an.
- 2.
 - a. Wenn diese Stelle eine **0** ist, schreibe eine **0** und gehe zu *Punkt 3*;
- b. Wenn diese Stelle eine 1 ist, schreibe eine 1 und gehe zu Punkt 4.
- 3. Gehe ein Zeichen nach links und wiederhole Punkt 2.
- 4. Invertiere alle restlichen Stellen bis zum höchstwertigen Bit.

Aufgabe 2

Führen Sie die folgenden Rechenoperationen durch:

a) $(1100 \ 0101)_2 + (0110 \ 0110)_2$ Format: positive 8bit-Dualzahlen

b) $(1101)_2 \cdot (1011)_2$

Format: positive 4bit-Dualzahlen

c) 1) $(00000111)_2 - (00000100)_2$ 0 0 0 0 1 1 1 | 7

2) $(00000011)_2 - (00000111)_2$

3) $(011111111)_2 - (11111111)_2$

