VE216 Lecture 5

Z Transform

Concept Map

System Function in terms of Unit-sample Response

$$rac{Y}{X} = H(R) = h[0] + h[1]R + h[2]R^2 + \dots = \sum_n h[n]R^n$$

Z Transform

$$H(z) = \sum h[n] z^{-n} o X(z) = \sum_{-\infty}^{\infty} x[n] z^{-n}$$

Z Transform Pairs

example:
$$x[n]=(rac{7}{8})^nu[n]\leftrightarrow X(z)=rac{1}{1-rac{7}{8}z^{-1}}$$
 with $\left|rac{7}{8}z^{-1}
ight|<1$, i.e., $|z|>rac{7}{8}$.

Region of Convergence (ROC)

For the example above, the ROC is $|z| > \frac{7}{8}$

Z Transform Properties

Linearity Property

Predicate

- $x_1[n] \leftrightarrow X_1(z)$ for z in ROC_1
- $x_2[n] \leftrightarrow X_2(z)$ for z in ROC_2

Conclusion

• $x_1[n] + x_2[n] \leftrightarrow X_1(z) + X_2(z)$ for z in $(ROC_1 \cap ROC_2)$

Delay Property

Predicate

$$x[n] \leftrightarrow X(z)$$
 for z in ROC

Conclusion

$$x[n-1] \leftrightarrow z^{-1}X(z)$$
 for z in ROC

Generality

- $\delta[n] \leftrightarrow 1$
- $\delta[n-1] \leftrightarrow z^{-1}$
- $X(z)=\sum_{-\infty}^\infty x[n]z^{-n}$ Let y[n]=x[n-1], then $Y(z)=\sum_{-\infty}^\infty x[n-1]z^{-n}$ So $z^{-1}X(z)=Y(z)$

Rational Polynomials

A system can be described in **linear difference equation** with **constant coefficients** can also be described by a **Z transform** that is a **ratio of polynomials in** z.

$$\sum_{i=0}^k b_i y[n-i] = \sum_{i=0}^k a_i x[n-i]$$

$$\sum_{i=0}^{k} b_i z^{-i} Y(z) = \sum_{i=0}^{k} a_i z^{-i} X(z)$$

$$H(z) = rac{Y(z)}{X(z)} = rac{\sum_{i=0}^k a_i z^{-i}}{\sum_{i=0}^k b_i z^{-i}}$$

$$(x[n-p]=X(z)z^{-p})$$

Poles and Holes

$$H(z) = rac{Y(z)}{X(z)} = rac{\sum_{i=0}^k a_i z^{-i}}{\sum_{i=0}^k b_i z^{-i}} = rac{\sum_{i=0}^k a_i z^{k-i}}{\sum_{i=0}^k b_i z^{k-i}} = rac{\Pi_{i=0}^k (z-z_i)}{\Pi_{i=0}^k (z-p_i)}$$

So the roots for numerator are **holes**.

The roots for denominator are **poles**.

Region of Convergence (ROC)

Regions of convergence for Z transform are delimited by circles in Z-plane.

Edges of circles are at the poles.

Example

$$x[n]=lpha^nu[n]$$
 , so $X(z)=\sum_{k=0}^{\infty}lpha^kz^{-k}=rac{1}{1-lpha z^{-1}}$.

We need $|\alpha z^{-1}| < 1$, so $|z| > |\alpha|$. So ROC is in outer region.

Question: DT signal with ROC in Inner Region?

$$\frac{z}{z-\frac{7}{8}}; \quad |z|<\frac{7}{8}$$

We get the same difference equation for the system: $y[n+1] - rac{7}{8}y[n] = x[n+1]$

So corresponding to $y[n] = \alpha^n u[n]$ with $\alpha = \frac{7}{8}$ here and ROC outer region, the ROC inner region shows the result $y[n] = -\alpha^n u[-(n+1)]$.

ROC Comparison

$$\frac{z}{z - \frac{7}{8}}$$

Example Exercise

 $X(z)=rac{-3z}{2z^2-5z+2}$ inverse transform, ROC has the unit circle on z-plane.

$$X(z) = \frac{z}{z - \frac{1}{2}} - \frac{z}{z - 2}.$$

So $\frac{1}{2}$ pole is outer region and **2** pole is inner region.

So
$$x[n]=(rac{1}{2})^nu[n]-(-2^nu[-n-1])=(rac{1}{2})^nu[n]+2^nu[-n-1]$$

Z Transform Properties

Property
$$x[n]$$
 $X(z)$ ROC Linearity $ax_1[n]+bx_2[n]$ $aX_1(z)+bX_2(z)\supset (R_1\cap R_2)$ Delay $x[n-1]$ $z^{-1}X(z)$ R Multiply by n $nx[n]$ $-z\frac{dX(z)}{dz}$ R

Convolve in
$$n$$
 $\sum_{m=-\infty}^{\infty} x_1[m]x_2[n-m]$ $X_1(z)X_2(z)$ $\supset (R_1\cap R_2)$

Example

$$Y(z)=(rac{z}{z-1})^2$$
 inverse transform with $|z|>1$ (assume $x[n]=\delta[n]$)
$$Y(z)=(rac{z}{z-1})^2$$
, so $rac{Y}{X}=(rac{1}{1-R})^2=(1+R+R^2+\cdots)^2=\sum_{n=0}^{\infty}(n+1)R^n=(n+1)u[n]$

$$h[n] = rac{Y}{Y} = (n+1)u[n] = y[n]$$

Another approach

$$egin{aligned} & rac{z}{z-1} \leftrightarrow u[n] \ -zrac{d}{dz}(rac{z}{z-1}) = z(rac{1}{z-1})^2 \leftrightarrow nu[n] \ & z imes (-zrac{d}{dz}(rac{z}{z-1})) = (rac{z^2}{z-1})^2 \leftrightarrow (n+1)u[n] \end{aligned}$$