INELE DE POLINOAME

Pe parcursul acestui capitol inelele vor fi comutative şi unitare iar morfismele de inele vor fi unitare.

1. Inele de polinoame într-o nedeterminată

Fie R un inel comutativ şi unitar. Notăm cu $R^{(\mathbb{N})}$ mulţimea şirurilor $(a_n)_{n\in\mathbb{N}}$ cu elemente din R şi care au doar un număr finit de termeni nenuli. Pe $R^{(\mathbb{N})}$ definim două operații algebrice:

$$(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} = (a_n + b_n)_{n\in\mathbb{N}},$$
$$(a_n)_{n\in\mathbb{N}} \cdot (b_n)_{n\in\mathbb{N}} = (c_n)_{n\in\mathbb{N}},$$

unde $c_n = \sum_{i+j=n} a_i b_j$.

Propoziția 1.1. $(R^{(\mathbb{N})}, +, \cdot)$ este inel comutativ și unitar.

Definim un morfism injectiv de inele unitare $\underline{\varepsilon}: R \to R^{(\mathbb{N})}, \ \varepsilon(a) = (a, 0, 0, \dots)$ care ne permite să-l identificăm pe R cu un subinel al lui $R^{(\mathbb{N})}$. Vom nota cu X şirul $(0, 1, 0, 0, \dots)$ şi-l vom numi nedeterminată. Observăm că

$$\underline{X^n = (\underbrace{0, \dots, 0}_{n \text{ termeni}}, 1, 0, 0, \dots)}$$

pentru orice $n \in \mathbb{N}^*$. Ca de obicei, considerăm X^0 ca fiind egal cu elementul unitate. Se observă că $(a_0, a_1, \ldots, a_n, 0, 0, \ldots) = \varepsilon(a_0) + \varepsilon(a_1)X + \cdots + \varepsilon(a_n)X^n$ iar prin identificarea lui R cu un subinel al lui $R^{(\mathbb{N})}$ dată de ε putem scrie

$$(a_0, a_1, \dots, a_n, 0, 0, \dots) = a_0 + a_1 X + \dots + a_n X^n.$$

Definiția 1.2. Inelul $R^{(\mathbb{N})}$ se notează cu R[X] și se numește inelul polinoamelor în nedeterminata X cu coeficienți în R.

Dacă $f \in R[X]$, atunci $f = a_0 + a_1X + \cdots + a_nX^n$, $a_i \in R$ şi f se numeşte polinom în nedeterminata X. Polinoamele X^n , $n \in \mathbb{N}$ se numesc monoame în nedeterminata X. Aşadar orice polinom este în mod unic o combinație liniară de monoame cu coeficienți în R. Polinoamele a_iX^i cu $a_i \neq 0$ se numesc termeni ai lui f, iar $a_i \neq 0$ coeficienți. Definim $\deg f = \max\{i : a_i \neq 0\}$ și-l numim gradul lui f. Dacă $n = \deg f$, atunci a_n se numește coeficientul dominant al lui f. Polinoamele al căror coeficient dominant este 1 se numesc polinoame monice.

În cele ce urmează vom face următoarea convenție: $deg 0 = -\infty$.

Propoziția 1.3. Fie $f, g \in R[X]$. Atunci:

- (i) $\deg(f+g) \le \max(\deg f, \deg g)$.
- (ii) $\deg(fg) \leq \deg f + \deg g$, cu egalitate dacă și numai dacă produsul coeficienților dominanți ai lui f și g este nenul.

Corolarul 1.4. Fie R un inel integru. Atunci $\deg(fg) = \deg f + \deg g$ pentru orice $f, g \in R[X]$. Mai mult, R[X] este, de asemenea, inel integru.

Corolarul 1.5. Fie R un inel integru. Atunci U(R[X]) = U(R).

Remarca 1.6. Proprietatea de mai sus nu mai rămâne adevărată dacă R nu este inel integru. Fie $R = \mathbb{Z}/4\mathbb{Z}$ și $f = \widehat{1} + \widehat{2}X \in R[X]$. Avem $f^2 = \widehat{1}$, deci $f \in U(R[X])$, dar $f \notin U(R)$.

Exercițiul 1.7. Fie R un inel comutativ unitar și $f = a_0 + a_1 X + \cdots + a_n X^n \in R[X]$. Să se arate că:

- (i) f este nilpotent dacă şi numai dacă a_i este nilpotent pentru orice $0 \le i \le n$.
- (ii) f este inversabil dacă şi numai dacă a_0 este inversabil şi a_i este nilpotent pentru orice $1 \le i \le n$.

Reamintim că există un morfism (canonic) de inele unitare $\varepsilon: R \to R[X]$ dat prin $\varepsilon(a) = a$ pentru orice $a \in R$.

Teorema 1.8. (Proprietatea de universalitate a inelelor de polinoame într-o nedeterminată) $Fie \varphi: R \to S$ un morfism de inele comutative unitare şi $s \in S$. Atunci există un morfism unitar $\overline{\varphi}: R[X] \to S$ unic cu proprietatea că $\overline{\varphi} \circ \varepsilon = \varphi$ şi $\overline{\varphi}(X) = s$.

Proof. Să vizualizăm această proprietate cu ajutorul următoarei diagrame:

Definim $\overline{\varphi}(a_0 + a_1X + \cdots + a_nX^n) = \varphi(a_0) + \varphi(a_1)s + \cdots + \varphi(a_n)s^n$. Se arată uşor că $\overline{\varphi}$ este morfism unitar de inele care satisface cele două proprietăți. Mai mult, acesta este unic, deoarece $\overline{\varphi}(X) = s$ conduce la $\overline{\varphi}(X^i) = s^i$ pentru orice $i \geq 1$ iar $\overline{\varphi} \circ \varepsilon = \varphi$ este echivalent cu $\overline{\varphi}(a) = \varphi(a)$ pentru orice $a \in R$.

1.1. Funcții polinomiale. Rădăcini. Fie S un inel comutativ și unitar, $R \subseteq S$ un subinel și $i: R \to S$ morfismul incluziune. Fie $s \in S$. Din proprietatea de universalitate a inelelor de polinoame într-o nedeterminată există un morfism unitar $\bar{i}_s: R[X] \to S$ unic cu proprietatea că $\bar{i}_s \circ \varepsilon = i$ și $\bar{i}_s(X) = s$.

$$R \xrightarrow{\varepsilon} R[X]$$

$$i \qquad \qquad \downarrow \tilde{i}_s$$

$$S$$

Dacă $f \in R[X]$, $f = a_0 + a_1X + \cdots + a_nX^n$, atunci $\bar{i}_s(f) = a_0 + a_1s + \cdots + a_ns^n$. Notăm $a_0 + a_1s + \cdots + a_ns^n$ cu f(s) și avem $\bar{i}_s(f) = f(s)$.

Definiția 1.9. Un element $s \in S$ cu proprietatea că f(s) = 0 se numește rădăcină a lui f.

Pentru orice polinom $f \in R[X]$ putem defini o funcție $\tilde{f}: S \to S$ prin $\tilde{f}(s) = f(s)$ pentru orice $s \in S$.

Definiția 1.10. Funcția $\widetilde{f}: S \to S$ definită mai sus se numește funcția polinomială pe S asociată lui f. $C\hat{a}nd$ S = R, funcția $\widetilde{f}: R \to R$ se numește funcția polinomială asociată lui f.

Remarca 1.11. Polinoame diferite pot avea funcții polinomiale egale. De exemplu, $f, g \in \mathbb{Z}_2[X], f = X$ și $g = X^2$. Avem că $\widetilde{f}, \widetilde{g} : \mathbb{Z}_2 \to \mathbb{Z}_2, \ \widetilde{f}(\widehat{0}) = \widetilde{g}(\widehat{0}) = \widehat{0}$ și $\widetilde{f}(\widehat{1}) = \widetilde{g}(\widehat{1}) = \widehat{1}$.

Vom vedea însă că acest lucru nu mai este posibil dacă $f, g \in R[X]$, unde R este un domeniu de integritate *infinit*.

2. Teorema de împărțire cu rest pentru polinoame într-o nedeterminată

Teorema 2.1. (Teorema de împărțire cu rest) Fie R un inel, $f, g \in R[X]$, $g \neq 0$ iar coeficientul dominant al lui g este inversabil. Atunci există $q, r \in R[X]$ unice cu proprietatea că f = gq + r și $\deg r < \deg g$.

Proof. Dacă $\deg f < \deg g$, atunci scriem $f = g \cdot 0 + f$. În cazul în care $\deg f \ge \deg g$ facem inducție după $\deg f$.

Unicitatea rezultă imediat folosind Propoziția 1.3(ii).

Corolarul 2.2. Fie R un inel, $f \in R[X]$ şi $\alpha \in R$. Atunci există $q \in R[X]$ şi $r \in R$ unice cu proprietatea că $f = (X - \alpha)q + r$.

Corolarul 2.3. (Bézout) Fie R un inel, $f \in R[X]$ şi $\alpha \in R$. Atunci $X - \alpha \mid f$ dacă şi numai dacă $f(\alpha) = 0$.

Exercițiul 2.4. Fie R inel comutativ unitar și $\alpha \in R$. Atunci $R[X]/(X-\alpha) \simeq R$.

Exercițiul 2.5. Arătați că:

- (i) $\mathbb{R}[X]/(X^2+1) \simeq \mathbb{C}$.
- (ii) $\mathbb{Z}[X]/(X^2-2) \simeq \mathbb{Z}[\sqrt{2}].$

Exercițiul 2.6. Să se arate că $R = \mathbb{Z}[X]/(2, X^2 + 1)$ este un inel cu 4 elemente, dar R nu este izomorf cu $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Exercițiul 2.7. Considerăm idealul $I = (3, X^3 - X^2 + 2X + 1)$ în $\mathbb{Z}[X]$. Să se arate că I nu este ideal principal și că $\mathbb{Z}[X]/I$ nu este inel integru.

Exercițiul 2.8. Aflați inversul lui 4X + 3 în inelul factor $\mathbb{Z}_{11}[X]/(X^2 + 1)$.

Propoziția 2.9. Fie R un inel integru și $f \in R[X]$, $\deg f = n$. Atunci f are cel mult n rădăcini distincte în R.

Proof. Fie $\alpha_1, \ldots, \alpha_m \in R$ distincte cu proprietatea că $f(\alpha_i) = 0$ pentru orice $i = 1, \ldots, m$. Vom demonstra prin inducție după m că $(X - \alpha_1) \cdots (X - \alpha_m) \mid f$. Cazul m = 1 rezultă din corolarul 2.3. Dacă m > 1, atunci, din ipoteza de inducție $(X - \alpha_1) \cdots (X - \alpha_{m-1}) \mid f$ și putem scrie $f = (X - \alpha_1) \cdots (X - \alpha_{m-1})g$ cu $g \in R[X]$. Din $f(\alpha_m) = 0$ obținem $(\alpha_m - \alpha_1) \cdots (\alpha_m - \alpha_{m-1})g(\alpha_m) = 0$. Dar cum R este integru și $\alpha_i \neq \alpha_m$ pentru orice $i \neq m$ rezultă $g(\alpha_m) = 0$ și din corolarul 2.3 deducem că $X - \alpha_m \mid g$.

În concluzie, $n = \deg f \ge m$.

Remarca 2.10. Dacă R nu este integru, atunci proprietatea de mai sus este falsă. De exemplu, polinomul $f \in \mathbb{Z}_6[X]$, $f = X^3 - X$ are șase rădăcini distincte în \mathbb{Z}_6 .

Corolarul 2.11. Fie R un inel integru infinit și $f, g \in R[X]$. Dacă $\widetilde{f} = \widetilde{g}$, atunci f = g.

Proof. Fie h = f - g. Deoarece $\widetilde{f} = \widetilde{g}$ avem $\widetilde{h} = 0$, adică $h(\alpha) = 0$ pentru orice $\alpha \in R$. Din propoziția 2.9 rezultă h = 0.

Propoziția 2.12. (Relațiile lui Viète) Fie R un inel integru, $f \in R[X]$, $f = a_0 + a_1X + \cdots + a_nX^n$, $a_n \neq 0$. Presupunem că f are n rădăcini $\alpha_1, \ldots, \alpha_n \in R$. Atunci au loc relațiile:

$$\sum_{i=1}^{n} \alpha_i = -\frac{a_{n-1}}{a_n}$$

$$\sum_{1 \le i < j \le n}^{n} \alpha_i \alpha_j = \frac{a_{n-2}}{a_n}$$

$$\vdots$$

$$\prod_{i=1}^{n} \alpha_i = (-1)^n \frac{a_0}{a_n}$$

Proof. Arătăm prin inducție după n că $f = a_n(X - \alpha_1) \cdots (X - \alpha_n)$ și apoi identificăm coeficienții.

3. Inele de polinoame într-un număr finit de nedeterminate

Definiția 3.1. Fie R un inel. Atunci inelul de polinoame în nedeterminatele X_1, \ldots, X_n cu coeficienți în R se definește inductiv ca fiind $R[X_1, \ldots, X_{n-1}][X_n]$ și se notează $R[X_1, \ldots, X_n]$. Elementele inelului $R[X_1, \ldots, X_n]$ se numesc polinoame în nedeterminatele X_1, \ldots, X_n .

Remarca 3.2. Orice polinom $f \in R[X_1, \dots, X_n]$ se scrie (în mod unic) sub forma

$$f = f_0 + f_1 X_n + \cdots + f_r X_n^r$$

cu $f_i \in R[X_1, \dots, X_{n-1}]$ pentru orice $i = 0, 1, \dots, r$.

Propoziția 3.3. Pentru orice polinom $f \in R[X_1, ..., X_n]$ există şi sunt unice $k_1, ..., k_n \in \mathbb{N}$ şi $a_{i_1,...,i_n} \in R$, unde $0 \le i_1 \le k_1, ..., 0 \le i_n \le k_n$ astfel încât

$$f = \sum_{i_1=0}^{k_1} \cdots \sum_{i_n=0}^{k_n} a_{i_1,\dots,i_n} X_1^{i_1} \cdots X_n^{i_n}.$$

Proof. Inducție după n. Scriem $f = f_0 + f_1 X_n + \dots + f_{k_n} X_n^{k_n}$ cu $f_i \in R[X_1, \dots, X_{n-1}]$ și aplicăm ipoteza de inducție.

Pentru unicitate fie

$$f = \sum_{i_1=0}^{k_1} \cdots \sum_{i_n=0}^{k_n} a_{i_1,\dots,i_n} X_1^{i_1} \cdots X_n^{i_n}$$

şi să presupunem că f=0. Scriem

$$f = f_0 + f_1 X_n + \dots + f_{k_n} X_n^{k_n},$$

unde $f_j = \sum_{i_1=0}^{k_1} \cdots \sum_{i_{n-1}=0}^{k_{n-1}} a_{i_1,\dots,i_{n-1},j} X_1^{i_1} \cdots X_{n-1}^{i_{n-1}} \in R[X_1,\dots,X_{n-1}]$. Deoarece f=0 rezultă $f_j=0$ pentru orice $j=0,1,\dots,k_n$ și din ipoteza de inducție $a_{i_1,\dots,i_{n-1},j}=0$ pentru orice $j=0,1,\dots,k_n$.

Un polinom de forma $X_1^{i_1} \cdots X_n^{i_n}$ se va numi monom în nedeterminatele X_1, \ldots, X_n iar gradul său se consideră a fi $i_1 + \cdots + i_n$. Așadar orice polinom $f \in R[X_1, \ldots, X_n]$ este (în mod unic) o combinație liniară de monoame cu coeficienți în R. Polinoamele $a_{i_1,\ldots,i_n}X_1^{i_1}\cdots X_n^{i_n}$ cu $a_{i_1,\ldots,i_n}\neq 0$ se numesc termeni ai lui f, iar $a_{i_1,\ldots,i_n}\neq 0$ coeficienți. Definim gradul lui f ca fiind maximul gradelor monoamelor care apar în scrierea sa. Dacă toate monoamele au același grad, atunci f se numește polinom omogen.

Remarca 3.4. Orice polinom se scrie în mod unic ca o sumă de polinoame omogene. Mai precis, dacă $f \in R[X_1, \ldots, X_n]$, atunci $f = f_0 + f_1 + \cdots + f_t$ cu $f_i \in R[X_1, \ldots, X_n]$ polinom omogen de grad i. În plus, f = 0 dacă și numai dacă $f_i = 0$ pentru orice $i = 0, 1, \ldots, t$.

Propoziția 3.5. Fie $f, g \in R[X_1, ..., X_n]$. Atunci:

- (i) $\deg(f+g) \le \max(\deg f, \deg g)$.
- $(ii) \deg(fg) \le \deg f + \deg g.$

Corolarul 3.6. Fie R un inel integru. Atunci $R[X_1, ..., X_n]$ este, de asemenea, integru şi $\deg(fg) = \deg f + \deg g$ pentru orice $f, g \in R[X_1, ..., X_n]$.

Proof. Prima afirmaţie rezultă imediat prin inducţie după $n \geq 1$. Pentru cea de-a doua vom scrie $f = f_0 + f_1 + \dots + f_p$, respectiv $g = g_0 + g_1 + \dots + g_q$ cu f_i, g_j polinoame omogene de grad i (respectiv, j). Presupunem că $f_p \neq 0$ şi $g_q \neq 0$. De aici rezultă că deg f = p şi deg g = q. Cum însă $R[X_1, \dots, X_n]$ este inel integru vom avea $f_p g_q \neq 0$, deci deg(fg) = p + q.

Corolarul 3.7. Fie R un inel integru. Atunci $U(R[X_1, ..., X_n]) = U(R)$.

Reamintim că există un morfism canonic $\varepsilon: R \to R[X_1, \dots, X_n]$ dat prin $\varepsilon(a) = a$ pentru orice $a \in R$.

Teorema 3.8. (Proprietatea de universalitate a inelelor de polinoame într-un număr finit de nedeterminate) $Fie \varphi : R \to S$ un morfism de inele comutative unitare şi $s_1, \ldots, s_n \in S$. Atunci există un morfism unitar de inele $\overline{\varphi} : R[X_1, \ldots, X_n] \to S$ unic cu proprietatea că $\overline{\varphi} \circ \varepsilon = \varphi$ şi $\overline{\varphi}(X_i) = s_i$ pentru orice $i = 1, \ldots, n$.

Proof. Să vizualizăm această proprietate cu ajutorul următoarei diagrame:

Procedăm prin inducție după n aplicând în mod repetat teorema 1.8.

Exercițiul 3.9. Fie R inel comutativ unitar și $\alpha_1, \ldots, \alpha_n \in R$. Atunci avem următorul izomorfism: $R[X_1, \ldots, X_n]/(X - \alpha_1, \ldots, X - \alpha_n) \simeq R$.

4. Polinoame simetrice

Fie R un inel comutativ şi unitar, $n \geq 2$ şi $\sigma \in S_n$. Din teorema 3.8 rezultă că există un morfism unitar de inele $\overline{\sigma}: R[X_1, \ldots, X_n] \to R[X_1, \ldots, X_n]$ cu proprietatea că $\overline{\sigma} \circ \varepsilon = \varepsilon$ şi $\overline{\sigma}(X_i) = X_{\sigma(i)}$ pentru orice $i = 1, \ldots, n$.

Exemplul 4.1. Fie $f \in R[X_1, X_2, X_3]$, $f = X_1^2 X_3 + X_1 X_2 X_3^2$ şi $\sigma = (1 \ 2 \ 3)$. Atunci $\overline{\sigma}(f) = X_1 X_2^2 + X_1^2 X_2 X_3$.

În general vom avea că $\overline{\sigma}(f(X_1,\ldots,X_n))=f(X_{\sigma(1)},\ldots,X_{\sigma(n)})$ pentru orice $f\in R[X_1,\ldots,X_n]$.

Remarca 4.2. (i) Dacă $\sigma, \tau \in S_n$, atunci $\overline{\sigma \circ \tau} = \overline{\sigma} \circ \overline{\tau}$.

(ii) $\overline{e}(f) = f$ pentru orice $f \in R[X_1, \dots, X_n]$, unde $e \in S_n$ este permutarea identică. (iii) $\overline{\sigma}$ este un izomorfism, iar $\overline{\sigma}^{-1} = \overline{\sigma}^{-1}$.

Definiția 4.3. Fie $f \in R[X_1, ..., X_n]$. Dacă $\overline{\sigma}(f) = f$ pentru orice $\sigma \in S_n$, atunci f se numește polinom simetric.

Remarca 4.4. $f \in R[X_1, \dots, X_n]$ este polinom simetric dacă și numai dacă $\overline{\tau}(f) = f$ pentru orice transpoziție $\tau \in S_n$.

Exemplul 4.5. Polinomul $f \in R[X_1, X_2]$, $f = X_1^2 + X_2^2$ este simetric. Să observăm că dacă îl considerăm pe f ca polinom în $R[X_1, X_2, X_3]$, atunci acesta nu mai este simetric.

Propoziția 4.6. Mulțimea $\Sigma = \{ f \in R[X_1, \dots, X_n] : f \text{ polinom simetric} \}$ este un subinel unitar al lui $R[X_1, \dots, X_n]$.

Proof. Rezultă din faptul că $\overline{\sigma}$ este morfism de inele pentru orice $\sigma \in S_n$.

Propoziția 4.7. Polinoamele $s_k \in R[X_1, \ldots, X_n]$ definite prin

$$s_k = \sum_{1 \le i_1 < \dots < i_k \le n} X_{i_1} \cdots X_{i_k},$$

pentru orice k = 1, ..., n, sunt polinoame simetrice.

Proof. Se consideră polinomul

$$q(T) = (T - X_1) \cdots (T - X_n),$$

 $g \in R[X_1, \dots, X_n][T]$. Avem că

$$g(T) = T^n - s_1 T^{n-1} + s_2 T^{n-2} - \dots + (-1)^n s_n.$$

Fie $\sigma \in S_n$. Definim

$$\overline{\sigma}: R[X_1, \dots, X_n, T] \to R[X_1, \dots, X_n, T]$$

astfel: $\overline{\sigma}(X_i) = X_{\sigma(i)}$ pentru orice i = 1, ..., n și $\overline{\sigma}(T) = T$. Atunci

$$\overline{\sigma}(g) = (T - X_{\sigma(1)}) \cdots (T - X_{\sigma(n)}) = g.$$

Pe de altă parte,

$$\overline{\sigma}(g) = \overline{\sigma}(T^n - s_1 T^{n-1} + s_2 T^{n-2} - \dots + (-1)^n s_n) =$$

$$= T^n - \overline{\sigma}(s_1) T^{n-1} + \overline{\sigma}(s_2) T^{n-2} - \dots + (-1)^n \overline{\sigma}(s_n).$$

De aici rezultă că $s_k = \overline{\sigma}(s_k)$ pentru orice k = 1, ..., n, deci polinoamele s_k sunt simetrice.

Definiția 4.8. Polinoamele s_k , k = 1, ..., n, definite mai sus se numesc polinoamele simetrice fundamentale în nedeterminatele $X_1, ..., X_n$.

Definiția 4.9. Vom defini pe mulțimea monoamelor în n nedeterminate o relație de ordine astfel:

$$X_1^{i_1} \cdots X_n^{i_n} > X_1^{j_1} \cdots X_n^{j_n}$$

dacă există $s \in \{1, \ldots, n\}$ cu proprietatea că $i_1 = j_1, \ldots, i_{s-1} = j_{s-1}$ şi $i_s > j_s$. Aceasta se va numi ordinea lexicografică.

Propoziția 4.10. Ordinea lexicografică este o relație de ordine totală pe mulțimea monoamelor.

Definiția 4.11. Fie $f \in R[X_1, \ldots, X_n]$, $f \neq 0$ și fie $X_1^{i_1} \cdots X_n^{i_n}$ cel mai mare monom în ordinea lexicografică dintre cele care apar în scrierea lui f ca o combinație liniară de monoame. Acesta se numește monomul principal al lui f și se notează LM(f). Dacă $a \in R$, $a \neq 0$ este coeficientul monomului principal al lui f, atunci a se numește coeficientul principal al lui f și se notează LC(f) iar $aX_1^{i_1} \cdots X_n^{i_n}$ se numește termenul principal al lui f și se notează LC(f).

În mod evident avem LT(f) = LC(f)LM(f).

Exemplul 4.12. Fie $f \in \mathbb{Q}[X_1, X_2, X_3]$, $f = 2X_1^2X_2^2 + 3X_1X_2^3X_3 - X_1^2X_2X_3^5$. Atunci $LM(f) = X_1^2X_2^2$, LC(f) = 2 și $LT(f) = 2X_1^2X_2^2$.

Lema 4.13. Fie $m_1, m_2 \in R[X_1, \dots, X_n]$ monoame cu $m_1 > m_2$. Atunci:

- (i) $m_1m > m_2m$, oricare ar fi $m \in R[X_1, ..., X_n]$ monom.
- (ii) Dacă $m'_1, m'_2 \in R[X_1, \dots, X_n]$ sunt monoame și $m'_1 > m'_2$, atunci $m_1 m'_1 > m_2 m'_2$.

Proof. (i) Fie $m_1 = X_1^{i_1} \cdots X_n^{i_n}$, $m_2 = X_1^{j_1} \cdots X_n^{j_n}$ şi $m = X_1^{k_1} \cdots X_n^{k_n}$. Deoarece $m_1 > m_2$ există $s \in \{1, \ldots, n\}$ cu proprietatea că $i_1 = j_1, \ldots, i_{s-1} = j_{s-1}$ şi $i_s > j_s$. Atunci $i_1 + k_1 = j_1 + k_1, \ldots, i_{s-1} + k_{s-1} = j_{s-1} + k_{s-1}$ şi $i_s + k_s > j_s + k_s$, deci $m_1 m > m_2 m$.

(ii) Rezultă din (i): $m_1 > m_2 \implies m_1 m_1' > m_2 m_1'$ iar $m_1' > m_2' \implies m_2 m_1' > m_2 m_2'$.

Propoziția 4.14. Fie $f_1, f_2 \in R[X_1, \dots, X_n]$ polinoame nenule. Dacă $LT(f_1) = a_1m_1$, $LT(f_2) = a_2m_2$ și $a_1a_2 \neq 0$, atunci $LT(f_1f_2) = (a_1a_2)m_1m_2 = LT(f_1)LT(f_2)$.

Proof. Rezultă din lema 4.13.

Lema 4.15. Fie $f \in R[X_1, \ldots, X_n]$, $f \neq 0$ polinom simetric și $LM(f) = X_1^{i_1} \cdots X_n^{i_n}$. Atunci $i_1 \geq \cdots \geq i_n$.

Proof. Să presupunem, de exemplu, că $i_1 < i_2$. Atunci

$$X_1^{i_2}X_2^{i_1}\cdots X_n^{i_n} > X_1^{i_1}X_2^{i_2}\cdots X_n^{i_n}.$$

Dar monomul $X_1^{i_2}X_2^{i_1}\cdots X_n^{i_n}$ apare cu certitudine în f, deoarece f este simetric şi $\overline{\tau}(f)=f$, unde $\tau=(1\ 2)$.

Propoziția 4.16. Orice şir strict descrescător de monoame $X_1^{i_1} \cdots X_n^{i_n}$ cu $i_1 \geq \cdots \geq i_n$ este finit.

Proof. Reamintim că $X_1^{i_1} \cdots X_n^{i_n} > X_1^{j_1} \cdots X_n^{j_n}$ dacă există $s \in \{1, \dots, n\}$ cu proprietatea că $i_1 = j_1, \dots, i_{s-1} = j_{s-1}$ și $i_s > j_s$. Deoarece avem $j_1 \ge \cdots \ge j_n$ rezultă că $i_s > j_s \ge j_{s+1} \ge \cdots \ge j_n$, deci $i_1 \ge j_k$ pentru orice $k = 1, \dots, n$. Așadar numărul monoamelor $X_1^{j_1} \cdots X_n^{j_n}$ cu $j_1 \ge \cdots \ge j_n$ care sunt mai mici decât $X_1^{i_1} \cdots X_n^{i_n}$ este finit.

Exercițiul 4.17. Arătați că orice şir strict descrescător de monoame este finit.

Teorema 4.18. (Teorema fundamentală a polinoamelor simetrice) Orice polinom simetric se scrie în mod unic ca polinom de polinoamele simetrice fundamentale.

Proof. Mai precis, avem de demonstrat că oricare ar fi $f \in R[X_1, ..., X_n]$ polinom simetric există şi este unic un polinom $g \in R[X_1, ..., X_n]$ astfel încât

$$f(X_1,\ldots,X_n) = g(s_1(X_1,\ldots,X_n),\ldots,s_n(X_1,\ldots,X_n)).$$

Existența: Fie LT $(f)=aX_1^{i_1}\cdots X_n^{i_n}$. Deoarece f este simetric avem $i_1\geq \cdots \geq i_n$. Mai mult, LT $(s_k)=X_1\cdots X_k$ pentru orice $k=1,\ldots,n$. De aici se obține că

$$LT(as_1^{i_1-i_2}\cdots s_{n-1}^{i_{n-1}-i_n}s_n^{i_n}) = LT(f).$$

Fie $f_1 = f - as_1^{i_1 - i_2} \cdots s_{n-1}^{i_{n-1} - i_n} s_n^{i_n}$. În mod evident f_1 este polinom simetric şi, în plus, $LM(f_1) < LM(f)$.

Unicitatea: Vom demonstra că dacă $h \in R[X_1, \ldots, X_n]$ şi $h(s_1, \ldots, s_n) = 0$, atunci h = 0. Scriem

$$h = \sum_{i_1=0}^{k_1} \cdots \sum_{i_n=0}^{k_n} a_{i_1,\dots,i_n} X_1^{i_1} \cdots X_n^{i_n}$$

şi din $h(s_1, \ldots, s_n) = 0$ obţinem

$$\sum_{i_1=0}^{k_1} \cdots \sum_{i_n=0}^{k_n} a_{i_1,\dots,i_n} s_1^{i_1} \cdots s_n^{i_n} = 0.$$

Se remarcăm acum că

$$LM(s_1^{i_1}\cdots s_n^{i_n})=X_1^{k_1}\cdots X_n^{k_n},$$

unde $k_1 = i_1 + \dots + i_n, k_2 = i_2 + \dots + i_n, \dots, k_n = i_n.$

Se observă că dacă $(i_1,\ldots,i_n)\neq (j_1,\ldots,j_n)$, atunci $(k_1,\ldots,k_n)\neq (l_1,\ldots,l_n)$, unde $k_r=i_r+\cdots+i_n$, respectiv $l_r=j_r+\cdots+j_n$ pentru orice $r=1,\ldots,n$. Aceasta înseamnă că $\mathrm{LM}(s_1^{i_1}\cdots s_n^{i_n})\neq \mathrm{LT}(s_1^{j_1}\cdots s_n^{j_n})$ dacă $(i_1,\ldots,i_n)\neq (j_1,\ldots,j_n)$, deci $a_{i_1,\ldots,i_n}=0$ pentru orice i_1,\ldots,i_n .

Exercițiul 4.19. Să se arate că următoarele polinoame sunt simetrice şi să se scrie fiecare dintre ele ca polinom de polinoamele simetrice fundamentale:

(i)
$$X_1^3 X_2 + X_1^3 X_3 + X_1 X_2^3 + X_1 X_3^3 + X_2^3 X_3 + X_2 X_3^3$$
.

(ii)
$$(X_1^2 + X_2^2)(X_1^2 + X_3^2)(X_2^2 + X_3^2)$$
.

În cele ce urmează vom nota $p_i = X_1^i + \cdots + X_n^i$, pentru orice $i \geq 1$. Evident, acestea sunt polinoame simetrice. În mod uzual definim $p_0 = n$.

Lema 4.20. Fie $f \in R[X_1, \ldots, X_n]$ polinom simetric omogen de grad k < n. Dacă $f \neq 0$, atunci $f(X_1, ..., X_k, 0, ..., 0) \neq 0$.

Proof. Fie LM $(f) = X_1^{i_1} \cdots X_n^{i_n}$. Avem $i_1 \ge \cdots \ge i_n$ și $i_1 + \cdots + i_n = k$. Deoarece k < n rezultă $i_{k+1} = \cdots = i_n = 0$. Deci $LM(f) = X_1^{i_1} \cdots X_k^{i_k}$ și îl regăsim în $f(X_1, \ldots, X_k, 0, \ldots, 0)$. In concluzie, $f(X_1, \ldots, X_k, 0, \ldots, 0) \neq 0$.

Teorema 4.21. (Formulele lui Newton)

(i)
$$p_k - p_{k-1}s_1 + \dots + (-1)^n p_{k-n}s_n = 0$$
 pentru orice $k \ge n$.
(ii) $p_k - p_{k-1}s_1 + \dots + (-1)^{k-1} p_1 s_{k-1} + (-1)^k k s_k = 0$ pentru orice $k = 1, \dots, n-1$.

Proof. (i) Considerăm din nou polinomul $g \in R[X_1, \ldots, X_n, T]$,

$$g(T) = (T - X_1) \cdots (T - X_n).$$

Avem că $g(T) = T^n - s_1 T^{n-1} + s_2 T^{n-2} - \dots + (-1)^n s_n$. Cum $g(X_i) = 0$ pentru orice $i = 1, \ldots, n$ obtinem

$$X_i^n - s_1 X_i^{n-1} + s_2 X_i^{n-2} - \dots + (-1)^n s_n = 0$$

pentru orice $i=1,\ldots,n$. Prin înmulțire cu X_i^{k-n} obținem

$$X_i^k - s_1 X_i^{k-1} + s_2 X_i^{n-2} - \dots + (-1)^n s_n X_i^{k-n} = 0$$

pentru orice i = 1, ..., n. Adunăm aceste relații și obținem

$$p_k - s_1 p_{k-1} + \dots + (-1)^n s_n p_{k-n} = 0.$$

(ii) Fie $f = p_k - p_{k-1}s_1 + \dots + (-1)^{k-1}p_1s_{k-1} + (-1)^k ks_k$, unde k < n. Acesta este polinom simetric omogen de grad k și

$$f(X_1, \dots, X_k, 0, \dots, 0) = p'_k - p'_{k-1}s'_1 + \dots + (-1)^{k-1}p'_1s'_{k-1} + (-1)^k ks'_k,$$

unde $p_i',\,s_j'$ sunt polinoamele definite anterior, dar de data aceasta în nedeterminatele X_1, \ldots, X_k . Din (i), cazul k = n, se obţine $f(X_1, \ldots, X_k, 0, \ldots, 0) = 0$ şi conform lemei 4.20, f = 0.

Exercițiul 4.22. (i) Să se calculeze $x_1^5 + x_2^5 + x_3^5$, unde x_1, x_2, x_3 sunt rădăcinile polinomului $X^3 - 3X + 1$.

(ii) Să se calculeze $x_1^3+x_2^3+x_3^3+x_4^3$, unde x_1,x_2,x_3,x_4 sunt rădăcinile polinomului $X^4+X^3+2X^2+X+1$.

Exercițiul 4.23. Considerăm elementele $x_1, \ldots, x_n \in \mathbb{C}$ cu proprietatea că x_1^k + $\cdots + x_n^{\bar{k}} = 0$ pentru orice $1 \le k \le n$. Să se arate că $x_1 = \cdots = x_n = 0$.

Exercițiul 4.24. Să se rezolve în numere reale ecuația $\sqrt[4]{97-x} + \sqrt[4]{x} = 5$.

Exercițiul 4.25. Să se rezolve în numere reale sistemul de ecuații

$$\begin{cases} x^5 + y^5 = 33 \\ x + y = 3 \end{cases}$$