3.55

常微分方程

2012-13(上)常微分方程考试参考答案及评分标准

1 求微分方程
$$\frac{dy}{dx} = \frac{x^3 + xy^2 - 2x}{2x^2y - y^3 - y}, y(0) = 1$$
的特解

解: 原方程组等价于
$$\frac{dy^2}{dx^2} = \frac{x^2 + y^2 - 2}{2x^2 - y^2 - 1}$$
,

解方程组
$$\begin{cases} x^2 + y^2 - 2 = 0\\ 2x^2 - y^2 - 1 = 0 \end{cases}$$
 得 $x^2 = 1$, $y^2 = 1$ (2分)

$$\frac{dY}{dX} = \frac{X+Y}{2X-Y},$$

令
$$u = \frac{Y}{X}$$
,则 $\frac{dY}{dX} = u + X \frac{du}{dX} = \frac{1+u}{2-u}$,
$$\frac{dX}{X} = \frac{2-u}{u^2 - u + 1} du$$
,两边积分得 $\ln |X| = \int \frac{2-u}{u^2 - u + 1} du$

$$\ln|X| = \int \frac{1}{2} \frac{-(2u-1)}{u^2 - u + 1} du + \int \frac{3}{2} \frac{1}{u^2 - u + 1} du = -\frac{1}{2} \ln|u^2 - u + 1| + \sqrt{3} \arctan \frac{2u - 1}{\sqrt{3}} + C$$

$$\ln|X| = -\ln\left|\sqrt{(\frac{Y}{X})^2 - \frac{Y}{X} + 1}\right| + \sqrt{3} \arctan \frac{2Y - X}{\sqrt{3}X} + C$$
(6 \(\frac{2}{2}\))

$$= -\ln\left|\frac{\sqrt{Y^2 - XY + X^2}}{X}\right| + \sqrt{3}\arctan\frac{2Y - X}{\sqrt{3}X} + C$$

化简得
$$-\ln\sqrt{Y^2 - XY + X^2} + \sqrt{3} \arctan \frac{2Y - X}{\sqrt{3}X} + C = 0$$

通解为
$$-\ln\sqrt{(y^2-1)^2-(x^2-1)(y^2-1)+(x^2-1)^2}+\sqrt{3}\arctan\frac{2(y^2-1)-(x^2-1)}{\sqrt{3}(x^2-1)}+C=0$$

由初值条件y(0) = 1, 得 $C = \frac{\sqrt{3}}{6}\pi$,

所以,特解为
$$\sqrt{3}$$
 arctan $\frac{2y^2 - x^2 - 1}{\sqrt{3}(x^2 - 1)} - \ln\sqrt{y^4 + x^4 - x^2y^2 - x^2 - y^2 + 1} + \frac{\sqrt{3}}{6}\pi = 0$ (8分)

2 利用常数变易法求解微分方程 $\frac{dy}{dx} - \frac{2y}{x-1} = (x-1)^3$

解: 令
$$x-1=X$$
, 则有 $\frac{dy}{dX} - \frac{2y}{X} = X^3$, (1分)

解对应的齐次方程
$$\frac{dy}{dX} - \frac{2y}{X} = 0$$
 得: $y = cX^2$ (3分)

令
$$y = c(X)X^2$$
, 并代入方程 $\frac{dy}{dX} - \frac{2y}{X} = X^3$ 得: $c'(X) = X$, (5分)

解得:
$$c(X) = \frac{X^2}{2} + c$$
, (6分)

于是原方程的通解为:
$$y = \frac{(x-1)^4}{2} + c(x-1)^2$$
. (8分)

3求解方程(x-2y)dx-xdy=0

解: 原方程可化为:
$$xdx-2ydx-xdy=0$$
, (1分)

两边同乘以
$$x$$
 得: $x^2 dx - 2yx dx - x^2 dy = 0$, (4分)

即:
$$d(\frac{x^3}{3}) - d(x^2y) = 0$$
, (6分)

从而原方程的通解为:
$$\frac{x^3}{3} - x^2 y = c.(c)$$
 为任意常数) (7分)

4 求解微分方程 $x(\frac{dy}{dx})^3 = 1 + \frac{dy}{dx}$

解: 令
$$\frac{dy}{dx} = p$$
,则有 $x = \frac{1+p}{p^3}$, (1分)

两过对
$$y$$
 求导并整理得: $dy = -\frac{2p+3}{p^3}dp$, (4分)

解得:
$$y = \frac{2}{p} + \frac{3}{2p^2} + c$$
 (6分)

从而原方程的通解为:
$$\begin{cases} x = \frac{1+t}{t^3} \\ y = \frac{2}{t} + \frac{3}{2t^2} + c \end{cases}$$
 (其中 t 为参数, c 为任意常数) (8 分)

5 求初值问题
$$\begin{cases} \frac{dy}{dx} = x^2 - y^2, \\ y(-1) = 0. \end{cases}$$
 的第二次近似解.

解: $\varphi_0(x) = 0$,

第一次近似解:
$$\varphi_1(x) = \int_{-1}^{x} (\xi^2 - \varphi_0^2(\xi)) d\xi = \frac{x^3}{3} + \frac{1}{3},$$
 (4分)

第二次近似解:
$$\varphi_{2}(x) = \int_{-1}^{x} (\xi^{2} - \varphi_{1}^{2}(\xi)) d\xi = \int_{-1}^{x} (\xi^{2} - \frac{\xi^{6}}{9} - \frac{2\xi^{3}}{9} - \frac{1}{9}) d\xi$$

$$= -\frac{x^{7}}{63} - \frac{x^{4}}{18} + \frac{x^{3}}{3} - \frac{x}{9} + \frac{11}{42}.$$
(8 分)

6 讨论方程 $\frac{dy}{dx} = \frac{y^2 - 1}{2}$ 分别通过点(0,0), $(\ln 2, -3)$ 的解的存在区间

解:原方程右端函数在整个平面内满足解的存在唯一性定理及延拓定理条件,

易求得该方程的通解为:
$$y = \frac{1 + ce^x}{1 - ce^x}$$
, (3分)

故通过点
$$(0,0)$$
 的解为 $y = \frac{1 - e^x}{1 + e^x}$, 这个解的存在区间为 $-\infty < x < +\infty$; (5分)

通过点
$$(\ln 2, -3)$$
 的解为 $y = \frac{1 + e^x}{1 - e^x}$, 这个解的存在区间为 $0 < x < +\infty$. (7 分)

7 求解微分方程 $y = 2x \frac{dy}{dx} + x^3 (\frac{dy}{dx})^4$, 并求奇解

解: 令
$$\frac{dy}{dx} = p$$
 得, $y = 2xp + x^3 p^4$,

两边关于
$$x$$
 求导并整理得: $(2xp^3 + 1)(2x\frac{dp}{dx} + p) = 0$. (2分)

从而原方程的通解为:
$$\begin{cases} x = \frac{c}{p^2}, \\ y = \frac{2c}{p} + c^2 \end{cases} (p \neq 0 \text{ 为对数, } c \text{ 为任意常数)}, \tag{5 分)}$$

另外,
$$y = 0$$
也为方程的解. (6分)

又由于解
$$\begin{cases} x = -\frac{1}{2p^3}, \\ y = -\frac{3}{4p^2}, p \neq 0. \end{cases}$$
 是原方程的 p —判别曲线, 故为奇解. (8 分)

8 求微分方程 $y'' + 2y' + 5y = 4e^{-x} + 17\sin 2x$ 的通解。

解:对应齐次方程的特征方程为:
$$\lambda^2+2\lambda+5=0$$
,解得 $\lambda_{1,2}=-1\pm 2i$, (2 分)

从而,对应齐次方程的通解为:
$$y = e^{-x}(c_1 \cos 2x + c_2 \sin 2x)$$
, (4分)

设原方程有特解:
$$y = Ae^{-x} + B\cos 2x + C\sin 2x$$
, (6分)

代入原方程得: $4Ae^{-x} + (B+4C)cox2x + (C-4B)\sin 2x = 4e^{-x} + 17\sin 2x$,

解得:
$$A = 1, B = -4, C = 1,$$
 (7分)

于是原方程的通解为:
$$y = e^{-x}(c_1 \cos 2x + c_2 \sin 2x) + e^{-x} - 4\cos 2x + \sin 2x$$
. (8分)

9 求微分方程组x' = -2x + y, y' = -x + 2y的一个基解矩阵, 并求 $\exp At$.

解:特征方程为:
$$\left|\lambda E - A\right| = \begin{vmatrix} \lambda + 2 & -1 \\ 1 & \lambda - 2 \end{vmatrix} = \lambda^2 - 3 = 0$$
,解得: $\lambda_1 = \sqrt{3}$, $\lambda_2 = -\sqrt{3}$,(2分)

当
$$\lambda_1 = \sqrt{3}$$
 时,解方程组
$$\begin{cases} (\sqrt{3} + 2)c_1 - c_2 = 0 \\ c_1 + (\sqrt{3} - 2)c_2 = 0 \end{cases}$$
 得特征向量: $v_1 = (1, \sqrt{3} + 2)$ (3 分)

当
$$\lambda_2 = -\sqrt{3}$$
,解方程组
$$\begin{cases} (-\sqrt{3}+2)c_1 - c_2 = 0 \\ c_1 + (-\sqrt{3}-2)c_2 = 0 \end{cases}$$
 得特征向量: $v_2 = (1, -\sqrt{3}+2)$ (4 分)

于是得一基解矩阵
$$\Phi(t) = \begin{pmatrix} e^{\sqrt{3}t} & e^{-\sqrt{3}t} \\ (\sqrt{3}+2)e^{\sqrt{5}t} & (-\sqrt{3}+2)e^{-\sqrt{3}t} \end{pmatrix}$$
, (6分)

因此,可得:

$$\exp At = \Phi(t)\Phi^{-1}(0) = \frac{1}{2\sqrt{3}} \begin{pmatrix} -(2-\sqrt{3})e^{\sqrt{3}t} + (2+\sqrt{3})e^{-\sqrt{3}t} & e^{\sqrt{3}t} - e^{-\sqrt{3}t} \\ e^{\sqrt{3}t} - e^{-\sqrt{3}t} & (2+\sqrt{3})e^{\sqrt{3}t} - (2-\sqrt{3})e^{-\sqrt{3}t} \end{pmatrix}$$
(8 分)

10 求微分方程 $t^2x'' + tx' - x = 0$ 的通解

解: 特征方程为:
$$k(k-1)+k-1=0$$
, 即 $k^2-1=0$, (3分)

解得:
$$k_1 = 1$$
, $k_2 = -1$ (5分)

于是, 原方程的通解为:
$$x = c_1 t + \frac{c_2}{t}$$
, (c_1, c_2) 为任意常数) (7分)

11 试证: 如果 $\varphi(t)$ 是方程组 x'=Ax 满足初始条件 $\varphi(t_0)=\eta$ 的解,那么 $\varphi(t)=[\exp A(t-t_0)]\eta$ 。

证明: 因为 $\exp At$ 为方程组 x' = Ax 的基解矩阵,

于是原方程组的通解为:
$$x = \exp At \cdot C$$
, 其中 C 为常数矩阵. (3分)

从而有,
$$\eta = \exp At_0 \cdot C$$
, 解得: $C = (\exp At_0)^{-1} \cdot \eta = \exp(-At) \cdot \eta$ (5分)

所以
$$\varphi(t) = \exp At \cdot C = \exp At \cdot \exp(-At_0) \cdot \eta = [\exp A(t - t_0)] \cdot \eta$$
 (7分)

$$12$$
 求方程组
$$\begin{cases} \frac{dx}{dt} = x - y - 2, \\ & \text{的奇点, 并判断奇点的类型及稳定性.} \\ \frac{dx}{dt} = x - 2y - 1. \end{cases}$$

解: 解方程组
$$\begin{cases} x - y - 2 = 0 \\ x - 2y - 1 = 0 \end{cases}$$
 得原微分方程组的奇点为: (3,1), (2分)

特征方程为:
$$\begin{vmatrix} \lambda - 1 & 1 \\ -1 & \lambda + 2 \end{vmatrix} = \lambda^2 + \lambda - 1 = 0, \tag{4分}$$

于是,该方程有两个不等的实根
$$\lambda_1$$
, λ_2 , 且 $\lambda_1 \cdot \lambda_2 = -1 < 0$ (6分)

13 试用形如 $V(x, y) = ax^2 + by^2$ 的李雅普诺夫函数确定方程组

$$\begin{cases} \frac{dx}{dt} = -xy^2, \\ \frac{dx}{dt} = -yx^2. \end{cases}$$

零解的稳定性。

解: 令
$$V(x, y) = x^2 + y^2$$
, 则 $V(x, y)$ 是定正函数. (3分)

于是:
$$\frac{dV}{dt} = \frac{\partial V}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial V}{\partial y} \cdot \frac{dy}{dt} = -4x^2y^2 \le 0$$
 (6分)

重庆邮电大学 2010-2011 学年度第一学期 《常微分方程》试卷(A)

答卷说明: 1. 闭卷, 120 分钟完卷.

2. 本试卷共五页,八个大题,满分100分.

题号	_	=	Ξ	四	五	六	七	八	总分	总分人
分数										

得分	评卷人

单项选择题: (本大题共5个小题,每小题3分,共15分)

- 1. n 阶线性齐次微分方程组基本解中解的个数恰好是() 个.
- (A) n (B) n-1 (C) n+1 (D) n+2
- - 2. 李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.

- (A) 必要 (B) 充分 (C) 充分必要 (D) 必要非充分
- 3. 方程 $\frac{dy}{dx} = \sqrt{1 y^2}$ 过点 $(\frac{\pi}{2}, 1)$ 共有 () 个解.
- (A) (B) 无数 (C) 两 (D) 三
- 4. 方程 $\frac{dy}{dx} = \sqrt{y-x} + x$ () 奇解.

- (A) 有一个 (B) 有两个 C) 无 (D) 有无数个
- 5. 函数 $V(x,y) = (x+y)^2$ 是 ().
 - (A) 常正的 (B) 定正的 C) 定负的 (D) 变号的

得分	评卷人

- **二. 填空题** (本大题共 8 道小题,每小题 4 分,共 32 分)
- 1、微分方程是指含有自变量、未知函数及其()的关系式。
- 2、方程 $\frac{dy}{dx} = y^3$ 在 () 处不满足解的存在唯一性定理的条件。
- 3、M(x,y)dy + N(x,y)dx = 0 是恰当(全微分)方程的充要条件是()。
- 4、齐次线性方程 $\frac{dy}{dx} = g(\frac{y}{x})$ 可以通过变量替换 () 化为变量分离方程。
- 5、方程 $y'' + 4y = x^2 \sin 2x$ 的特解形如()(不必求出待定系数)
- 6、欧拉方程 $x^2y'' + 5xy' + 4y = 0$, x > 0 的通解为 ()
- 7、设微分方程组 x' = Ax 的基解矩阵为 $\Phi(t)$,则 exp At= (

得分 评卷人

三. 求微分方程 $(x^2 + y^2 + 2x)dx + 2ydy = 0$ 的通解 (7分)

得分	评卷人

四. 求微分方程 $xy' + y = x^3y^6$ 的通解. (7分)

五. 求微分方程 $y'' + 4y' + 4y = e^{ax}$ 的通解. (9分)

得分	评卷人

六. 求微分方程组 x' = Ax 的标准基本解矩阵,其中 $A = \begin{bmatrix} 4 & -1 & 0 \\ 3 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$

得分	评卷人

七. 一质量为m 质点作直线运动,从速度为零的时刻起,有一个和时间成正比(比例系数为 k_1)的力作用在它上面,此外质点又受到介质的阻力,这阻力和速度成正比(比例系数为 k_2)。试求此质点的速度与时间的关系。(10 分)

得分	评卷人

八. 如果 $\Phi(t)$, $\Psi(t)$ 在区间 $a \le t \le b$ 上是 x' = Ax 的两个基解矩阵,那么,存在一个非奇异 $n \times n$ 常数矩阵 C,使得在区间 $a \le t \le b$ 上有 $\Psi(t) = \Phi(t)C$.

- 一、选择题 1.A 2.B 3.B 4.C 5.A
- 二、填空题

1、导数 2、
$$y=0$$
 3、 $\frac{\partial N}{\partial y} = \frac{\partial M}{\partial x}$ 4、 $u = \frac{y}{x}$

$$5, y = x(P(x)\cos 2x + Q(x)\sin 2x)$$

6、
$$y = (c_1 + c_2 \ln |x|)x^{-2}$$
, 7、 $Φ(t)C$ 8、常负函数或等于零

$$\equiv (x^2 + y^2 + 2x)dx + 2ydy = 0$$

解. 由原方程可得
$$(x^2+y^2)dx+d(x^2+y^2)=0$$

得到
$$dx + \frac{d(x^2 + y^2)}{x^2 + y^2} = 0$$

于是原方程解为 $x + \ln(x^2 + y^2) = c$

$$\mathbf{x}y'+y=x^3y^6$$

解. 该方程为贝奴利方程. $xy^{-6}y'+y^{-5}=y^3$.

$$y^{-5} = u$$
, $-5y^{-6}y' = u'$, $-\frac{x}{5}u' + u = x^3$

$$u' - \frac{5}{x}u = -5x^2$$
 $u = x^5(c + \frac{5}{2}x^{-2})$

于是
$$y^{-5} = cx^5 + \frac{5}{2}x^3$$

$$\pm y'' + 4y' + 4y = e^{ax}$$

解. 特征方程
$$\lambda^2 + 4\lambda + 4 = 0$$
, $\lambda_{1,2} = -2$, $\bar{y} = (c_1 + c_2 x)e^{-2x}$

$$\dot{a} = -2$$

$$y^{\bullet} = \frac{1}{(D+2)^2} e^{-2x} = e^{-2x} \frac{1}{(D-2+2)^2} 1 = \frac{1}{2} x^2 e^{-2x}$$

$$y^{\bullet} = \frac{1}{(D+2)^2} e^{ax} = \frac{e^{ax}}{(a+2)^2}$$

$$\mathcal{Y} = \begin{cases} (c_1 + c_2 x)e^{-2x} + \frac{1}{(a+2)^2}e^{ax} \\ \\ (c_1 + c_2 x)e^{-2x} + \frac{1}{2}x^2e^{-2x} & a \neq -2 \\ \\ a = -2 \end{cases}$$

六、由 $|\lambda E - A| = 0$,知特征根 2 是三重,用公式

$$e^{At} = e^{\lambda t} \sum_{i=0}^{n-1} \frac{t^i}{i!} (A - \lambda E)^i$$

$$= e^{2t} \begin{bmatrix} 1 + 2t + \frac{t^2}{2!} & -t - \frac{t^2}{2!} & \frac{t^2}{2!} \\ 3t + t^2 & 1 - t - t^2 & -t + t^2 \end{bmatrix}$$

$$t + \frac{t^2}{2!} & -\frac{t^2}{2!} & 1 - t + \frac{t^2}{2!}$$

七、解: 因为 F=ma=m
$$\frac{dv}{dt}$$
,又 F= F_1 - F_2 = k_1 - k_2 v,即 m $\frac{dv}{dt}$ = k_1 - k_2 v (v(0)=0),即 $\frac{dv}{dt}$ = $\overline{k_1}$ - $\overline{k_2}$ v (v(0)=0),解得 v= $\frac{k_1m}{k_2}e^{\frac{k_2}{m}t}$ + $\frac{k_1}{k_2}$ (t- $\frac{m}{k_2}$).

八、证明过程见教材 210 页

《 常微分方程 》期末考试试卷 (1)

学号

班级

姓名 成绩

	题号		二	三	总分	
	分数					
得分		(每格3分,	共 30 分)			
1, 7	_		y) d y有只与		分因子的充要	条件
2、若					J线性无关的充要	更条件
			0			
3、差		都是 $x = A(x)$	t)x 的基解矩阵	\mathcal{F} ,则 $\Phi(t)$ 和	$\psi(t)$ 具有的关	系是
	函 数 $f(x,y)$	称为在矩形	° ·域 R 上 关 ∃	上 y 满足利	普希兹条件	,如
c						
5、当			时,方		+N(x,y)dy=0)称为
4	合当方程,或称	全微分方程。				
6、若	$\Phi(t) \not = X' = A$	(t)x的基解矩阵	E,则 $x' = A(t)$	x = f(t) 满足 $x($	$(t_0) = \eta$	
É						
7、若	$x_i(t)(i = 1,2, \dots)$	n 为 n 阶齐线	性方程 $x^{(n)} + a$	$(t)x^{(n)} + \cdots + a$	$x_n(t)x = 0$ 的 n 个	线性
无	关解,则这一齐:	线性方程的通解	罕可表为			0
8、求	$\frac{dy}{dx} = f(x,y)$ 满足	$y(x_0) = y_0$ 的解	等价于求积分为	7程		的解。
9、如	果 $f(x,y)$ 在 R	上 <u> </u>	_且关于 y 满足	李普希兹条件,	则方程 $\frac{dy}{dx} = f($	(x, y)

存在唯一的解 $y = \varphi(x)$, 定义于区间 $|x - x_0| \le h$ 上, 连续且满足初始条件 $\varphi(x_0) = y_0$, $\sharp + h = \underline{\qquad}$, $M = \max_{(x,y) \in R} |f(x,y)|$

得分 二、计算题(每题 10 分,共 50 分)

10、求方程
$$\frac{dy}{dx} = \frac{1+y^2}{xy+x^2y}$$
 的解。

11、求方程
$$\frac{dy}{dx} = x - y^2$$
通过点(1,0)的第二次近似解。

- 12、求非齐线性方程 $x'' + x = \sin t$ 的特解。
- 13、求解恰当方程 $(y-3x^2)dx-(4y-x)dy=0$ 。
- 14、求伯努利方程 $\frac{dy}{dx} = 6\frac{y}{x} xy^2$ 的通解。

三、证明. (20分)

15、1) 试验证初值问题
$$x' = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix} x$$
, $\varphi(0) = \eta = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix}$ 的解为:
$$\varphi(t) = e^{3t} \begin{bmatrix} \eta_1 + t(-\eta_1 + \eta_2) \\ \eta_2 + t(-\eta_1 + \eta_2) \end{bmatrix};$$

2) 求该微分方程组的 expAt。

试卷(1)答案

- 一、填空(每格3分,共30分)
- 1、方程M(x,y)dx + N(x,y)dy = 0有只与x有关的积分因子的充要条件

是
$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \varphi(x)$$
。

- 2、若 $x_1(t),x_2(t),\cdots,x_n(t)$ 为n阶齐线性方程的n个解,则它们线性无关的充要条件是 $w[x_1(t),x_2(t),\cdots,x_n(t)] \neq 0$ 。
- 3、若 $\Phi(t)$ 和 $\psi(t)$ 都是x' = A(t)x的基解矩阵,则 $\Phi(t)$ 和 $\psi(t)$ 具有的关系是 $\psi(t) = \Phi(t)C, \quad (a \le t \le b)C$ 为非奇异常数矩阵。
- 4、函数 f(x,y) 称为在矩形域 R 上关于 y 满足利普希兹条件,如果 存在常数 L > 0,对于所有 $(x_1,y_1),(x_2,y_2) \in R$ 都有使得不等式 $|f(x_1,y_1)-f(x_2,y_2)| \le L|y_1-y_2|$ 成立。
- 5、当 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ 时,方程 M(x,y)dx + N(x,y)dy = 0 称为恰当方程,或称全微分方程。
- 6、若 $\Phi(t)$ 是x' = A(t)x的基解矩阵,则x' = A(t)x = f(t)满足 $x(t_0) = \eta$ 的解 $x(t) = \Phi(t)\Phi^{-1}(t_0)\eta + \Phi(t)\int_{t_0}^t \Phi^{-1}(s)f(s)ds$ 。
- 7、若 $x_i(t)(i=1,2,...)n$ 为 n 阶齐线性方程 $x^{(n)}+a_1(t)x^{(n)}+\cdots+a_n(t)x=0$ 的 n 个线性 无关解,则这一齐线性方程的通解可表为 $x(t)=\sum_{i=1}^n c_i x_i(t)$,其中 c_1,c_2,\ldots,c_n 是任意 常数。
- 8、求 $\frac{dy}{dx}$ =f(x,y)满足 $y(x_0) = y_0$ 的解等价于求积分方程 $\underline{y=y_0} \pm \int_{x_0}^x f(x,y)dx$ 的解。

其中 ______h = min(a,
$$\frac{b}{M}$$
), $M = \max_{(x,y)\in R} |f(x,y)|$ 。

二、计算题(每题 10 分,共 50 分)

10、求方程
$$\frac{dy}{dx} = \frac{1+y^2}{xy+x^2y}$$
 的解。

解: 原式可化为
$$\frac{dy}{dx} = \frac{1+y^2}{y(x+x^2)}$$

分离变量得
$$\frac{y \, d \, y}{1 + y^2} = \frac{d \, x}{x(\!\!\! \ \, \!\!\! \perp \!\!\! \mid x \,)}$$
 两边积分后 $\frac{1}{2} \ln \left| 1 + y^2 \right| = \ln \left| x \right| - \ln \left| 1 + x \right| + c_1$ 即 $(1 + y^2)(1 + x)^2 = cx^2$

故原方程的通解为 $(1+y^2)(4x^2)=cx^2$

11、求方程 $\frac{dy}{dx} = x - y^2$ 通过点(1,0)的第二次近似解。

解: $\phi \varphi_0(x) = 0$

则
$$\varphi_1(x) = y_0 + \int_1^x (x - y_0^2) dx = \int_1^x x dx = \frac{1}{2}x^2 - \frac{1}{2}$$

$$\varphi_2(x) = y_0 + \int_1^x \left[x - \varphi_1^2(x) \right] dx = \int_1^x \left[x - \left(\frac{1}{2}x^2 - \frac{1}{2}\right)^2 \right] dx = \frac{1}{2}x^2 - \frac{1}{20}x^5 + \frac{1}{6}x^3 - \frac{1}{4}x - \frac{11}{30}x^5 + \frac{1}{20}x^5 - \frac{1}{20}x^5 + \frac{1}{20}x^5 - \frac{1}{20}x$$

12、求非齐线性方程 $x'' + x = \sin t$ 的特解。

解:线性方程x''+x=0的特征方程 $\lambda^2+1=0$,故特征根 $\lambda=\pm i$ 。

又 $f(t) = \sin t$, $\lambda = i$ 是特征单根,所以原方程有特解

 $x=t(A\cos t+B\sin t)$,将其代入原方程得 $A=-\frac{1}{2}$, B=0 。故原方程的特 解为 $x=-\frac{1}{2}t\cos t$ 。

13、求解恰当方程 $(y-3x^2)dx-(4y-x)dy=0$ 。

解:
$$\frac{\partial M}{\partial y} = 1$$
, $\frac{\partial N}{\partial x} = 1$.

则
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
.

所以此方程为恰当方程。

凑微分,
$$ydx + xdy - 3x^2dx - 4ydy = 0$$

$$得 \quad x^3 - xy + 2y^2 = C$$

14、求伯努利方程 $\frac{dy}{dx} = 6\frac{y}{x} - xy^2$ 的通解。

解: 这是 n=2 时的伯努利不等式,令 z= y^{-1} , 算得 $\frac{dz}{dx} = -y^{-2} \frac{dy}{dx}$

代入原方程得到 $\frac{dz}{dx} = -\frac{6}{x}z + x$,这是线性方程,求得它的通解为 $z = \frac{c}{x^6} + \frac{x^2}{8}$

带回原来的变量 y,得到 $\frac{1}{y} = \frac{c}{x^6} + \frac{x^2}{8}$ 或者 $\frac{x^6}{y} - \frac{x^8}{8} = c$,这就是原方程的解。

此外方程还有解 y=0.

三、证明. (20分)

15 、 1) 试验证初值问题
$$x'=\begin{bmatrix}2&1\\-1&4\end{bmatrix}x$$
 , $\varphi(0)=\eta=\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}$ 的解为:

$$\varphi(t) = e^{3t} \begin{bmatrix} \eta_1 + t(-\eta_1 + \eta_2) \\ \eta_2 + t(-\eta_1 + \eta_2) \end{bmatrix};$$

2) 求该微分方程组的 expAt。

1) 证明:
$$p(\lambda) = \begin{vmatrix} \lambda - 2 & -1 \\ 1 & \lambda - 4 \end{vmatrix} = \lambda^2 - 6\lambda + 9 = 0$$
解得 $\lambda_{1,2} = 3$ 此时 $k=1$ $n_1 = 2$

$$\eta = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = v \quad \varphi(t) = e^{3t} \left[\sum_{i=0}^{1} \frac{t^i}{i!} (A - 3E)^i \right] \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = e^{3t} \begin{bmatrix} \eta_1 + t(-\eta_1 + \eta_2) \\ \eta_2 + t(-\eta_1 + \eta_2) \end{bmatrix}$$

2) 解: 由公式 expAt=
$$e^{\lambda t} \sum_{i=0}^{n-1} \frac{t^i}{i!} (A - \lambda E)^i$$
 得

$$\exp At = e^{3t} \left[E + t(A - 3E) \right] = e^{3t} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + t \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \right\} = e^{3t} \begin{bmatrix} 1 - t & t \\ -t & 1 + t \end{bmatrix}$$

《 常微分方程 》期末考试试卷 (2)

	班级	学号		, 1	成绩	
	HT []	'			V 10	
	题号		<u> </u>	三	总分	
	分数					
得分						
	一、填空	(每格3分,	共30分)			
1 7	= 担 M(v _v)	dr Mri) <i>4</i> v 右口片	V方头的和。	公田子的玄西	タ 併
1 \ /.					分因子的充要	宋 什
				n个解,则它们]线性相关的充要	条件
ţ	Ē		0			
3、君	$\Phi(t)$ 和 $\psi(t)$	都是 $x' = A(t)$	<i>t</i>) <i>x</i> 的基解矩阵	F,则 Φ (t)和	$\psi(t)$ 具有的关	系是
_			0			
4 、	函 数 $f(x,y)$	称为在矩形	域R上关于	· y 满足利·	普希兹条件,	,如
				•		
0	<u> </u>					
5、当			时,方	万程 M(x, y)dx・	+N(x,y)dy=0)称为
				· · · · · · · · · · · · · · · · · · ·	() ()	
			· 51 / 4/3	C(A) 2# [] ((4) O	
6、右	$\Phi(t) \not\equiv X = A(t)$	(t)x的基解矩阵	x, iff X = A(t)	x = f(t) 满足 $x($	$(t_0) = 0$	
É	勺解					_°
7、若	$x_i(t)$ (i=1,2,	-, n)是对应齐	线性方程的一个	个基本解组, \bar{x}	(t) 为非齐线性方	ī程的
-	一个特解,则非是	齐线性方程的所	有解可表为			0
					以解的表边	

9、如果 f(x,y) 在 R 上连续且关于______满足李普希兹条件,则方程 $\frac{dy}{dx} = f(x,y)$ 存在唯一的解 $y = \varphi(x)$, 定义于区间 $|x - x_0| \le h$ 上, 连续且满足初始条件 $\varphi(x_0) = y_0$, $\sharp + h = \underline{\qquad}$, $M = \max_{(x,y) \in R} |f(x,y)|$

得分 三、计算题(每题 10 分,共 50 分)

10、求方程
$$\frac{dy}{dx} = \frac{1+y^2}{xy + x^2y}$$
 的解。

11、求伯努利方程
$$\frac{dy}{dx} = 6\frac{y}{x} - xy^2$$
的通解。

- 12、求常系数非齐线性方程 $x'' + x = \cos t$ 的特解。
- 13、求解恰当方程 $2xydx + (x^2 + 1)dy = 0$ 。
- 14、求方程 $\frac{dy}{dx} = x y^2$ 通过点(1,0)的第二次近似解。

三、证明. (20分)

15、 1) 试验证初值问题
$$x'=\begin{bmatrix}2&1\\0&2\end{bmatrix}x$$
, $\varphi(0)=\eta=\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}$ 的解为:
$$\varphi(t)=e^{2t}\begin{bmatrix}\eta_1+t\eta_2\\\eta_2\end{bmatrix};$$

2) 求该微分方程组的 expAt。

试卷 (2) 答案

- 一、填空(每格3分,共30分)
- 1、方程M(x,y)dx + N(x,y)dy = 0有只与y有关的积分因子的充要条件

是
$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \varphi(y)$$
。

- 2、若 $x_1(t),x_2(t),\cdots,x_n(t)$ 为n阶齐线性方程的n个解,则它们线性相关的充要条件是 $w[x_1(t),x_2(t),\cdots,x_n(t)]\equiv 0$ 。
- 3、若 $\Phi(t)$ 和 $\psi(t)$ 都是x' = A(t)x的基解矩阵,则 $\Phi(t)$ 和 $\psi(t)$ 具有的关系是 $\psi(t) = \Phi(t)C, \quad (a \le t \le b)C$ 为非奇异常数矩阵。
- 4、函数 f(x,y) 称为在矩形域 R 上关于 y 满足利普希兹条件,如果 存在常数 L > 0,对于所有 $(x_1,y_1),(x_2,y_2) \in R$ 都有使得不等式 $|f(x_1,y_1)-f(x_2,y_2)| \le L|y_1-y_2|$ 成立。
- 5、当 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ 时,方程 M(x, y)dx + N(x, y)dy = 0 称为恰当方程,或称全微分方程。
- 6、若 $\Phi(t)$ 是x' = A(t)x的基解矩阵,则x' = A(t)x = f(t)满足 $x(t_0) = \eta$ 的解 $x(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s) f(s) ds$ 。
- 7、若 $x_i(t)$ (i=1,2,---,n)是对应齐线性方程的一个基本解组, $\overline{x}(t)$ 为非齐线性方程的
 - 一个特解,则非齐线性方程的所有解可表为 $x(t) = \sum_{i=1}^{n} c_i x_i(t) + \overline{x}(t)$ 。
- 8、求 $\frac{dy}{dx}$ =f(x,y)满足 $y(x_0) = y_0$ 的第一次近似解的表达式为 $\varphi_1(x) = y_0 + \int_{x_0}^x f(x,y_0) dx$ 。

9、如果 f(x,y) 在 R 上连续且关于 y 满足李普希兹条件,则方程 $\frac{dy}{dx} = f(x,y)$ 存在唯一的解 $y = \varphi(x)$,定义于区间 $|x - x_0| \le h$ 上,连续且满足初始条件 $\varphi(x_0) = y_0$,其中

$$\underline{\qquad} h = \min(a, \frac{b}{M}) , \quad M = \max_{(x,y) \in R} |f(x,y)| .$$

四、计算题(每题 10 分,共 50 分)

10、求方程
$$\frac{dy}{dx} = \frac{1+y^2}{xy+x^2y}$$
 的解。

解: 原式可化为
$$\frac{dy}{dx} = \frac{1+y^2}{y(x+x^2)}$$

分离变量得
$$\frac{y \, d \, y}{1+y^2} = \frac{d \, x}{x(\!\!\! \ \, \!\!\! \perp \!\!\!\! + x \,)}$$
 两边积分后 $\frac{1}{2} \ln \left| 1 + y^2 \right| = \ln \left| x \right| - \ln \left| 1 + x \right| + c_1$ 即 $(1+y^2)(1+x)^2 = cx^2$

故原方程的通解为 $(1+ y^2)(4x^2)=cx^2$

11、求伯努利方程 $\frac{dy}{dx} = 6\frac{y}{x} - xy^2$ 的通解。

解: 这是 n=2 时的伯努利不等式,令 z= y^{-1} ,算得 $\frac{dz}{dx} = -y^{-2} \frac{dy}{dx}$

代入原方程得到 $\frac{dz}{dx} = -\frac{6}{x}z + x$,这是线性方程,求得它的通解为 $z = \frac{c}{x^6} + \frac{x^2}{8}$

带回原来的变量 y,得到 $\frac{1}{y} = \frac{c}{x^6} + \frac{x^2}{8}$ 或者 $\frac{x^6}{y} - \frac{x^8}{8} = c$,这就是原方程的解。

此外方程还有解 y=0.

- 12、求常系数非齐线性方程 $x'' + x = \cos t$ 的特解。
- 解:线性方程x'' + x = 0的特征方程 $\lambda^2 + 1 = 0$,故特征根 $\lambda = \pm i$ 。

又 $f(t) = \sin t$, $\lambda = i$ 是 特 征 单 根 , 所 以 原 方 程 有 特 解

 $x=t(A\cos t+B\sin t)$,将其代入原方程得 A=0 , $B=\frac{1}{2}$ 。所以原方程的特解为 $x=\frac{1}{2}t\sin t$ 。

13、求解恰当方程 $2xydx + (x^2 + 1)dy = 0$ 。

解: 因为 (2xydx+ x 2 dy) +dy=0

$$\mathbb{H} d(x^2y)+dy=0$$

也即
$$d(x^2 y+y)=0$$

故方程的解为 x^2 y+y=C。

14、求方程 $\frac{dy}{dx} = x - y^2$ 通过点(1,0)的第二次近似解。

$$\emptyset \qquad \varphi_1(x) = y_0 + \int_1^x (x - y_0^2) dx = \int_1^x x dx = \frac{1}{2}x^2 - \frac{1}{2}$$

$$\varphi_2(x) = y_0 + \int_1^x \left[x - \varphi_1^2(x) \right] dx = \int_1^x \left[x - \left(\frac{1}{2} x^2 - \frac{1}{2} \right)^2 \right] dx = \frac{1}{2} x^2 - \frac{1}{20} x^5 + \frac{1}{6} x^3 - \frac{1}{4} x - \frac{11}{30} x^4 + \frac{1}{20} x^4 - \frac{$$

三、证明. (20分)

15、1) 试验证初值问题
$$x' = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} x$$
, $\varphi(0) = \eta = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix}$ 的解为:

$$\varphi(t) = e^{3t} \left[\frac{\eta_1 + t(-\eta_1 + \eta_2)}{\eta_2 + t(-\eta_1 + \eta_2)} \right];$$

2) 求该微分方程组的 expAt。

1) 证明:
$$p(\lambda) = \begin{vmatrix} \lambda - 2 & -1 \\ 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^2 = 0$$
解得 $\lambda_{1,2} = 2$ 此时 $k=1$ $n_1 = 2$

$$\eta = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = v \quad \varphi(t) = e^{2t} \left[E + t(A - 2E) \right] \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = e^{2t} \begin{bmatrix} \eta_1 + t\eta_2 \\ \eta_2 \end{bmatrix}$$

2) 解: 由公式 expAt=
$$e^{\lambda t} \sum_{i=0}^{n-1} \frac{t^i}{i!} (A - \lambda E)^i$$
 得

$$\exp At = e^{2t} \begin{bmatrix} E + t(A - 2E) \end{bmatrix} = e^{2t} \begin{Bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + t \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{Bmatrix} = e^{2t} \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}.$$

《 常微分方程 》期末考试试卷 (3)

	班级	学号			_成绩	
	题号	_	二	三	总分	
	分数					
得分						
	一、填空	(每格3分,	共 30 分)			
1 -	方程 M(r v)	dx + N(x, y)	<i>dy</i> = 0 有只含	> 、的和分压	1子的玄更多	く仕
11 /				1 Y 11177771 12	11 即几女牙	S IT
	是		o			
2,		称 为	黎卡提力	了程,它 ³	有积分因	子 -
		_°				
3,			称为伯努和	列方程,它	它有积分 因	3子-
	o					
4,	若 $X_1(t), X_2$	$(t), \cdots, X_n(t)$	为n阶齐线	性方程的n-	个解,则它	们线
性无	关的充要条	:件是			_ 0	
5,	形如		的方程和	你为欧拉方 和	<u>;</u> 王。	
6,	若 $\phi(t)$ 和 $\psi($	(t)都是x = x	A(t)x 的基解	⁻ 矩阵,则 φ ((t)和ψ(t)具	有的
关系	.是			•		
7、	当方程的特	F征根为两个	、 共轭虚根是	上,则当其实	宗部为	
时,	零解是稳定	的,对应的]奇点称为	0		

得分

五、计算题(每题 10 分,共 60 分)

$$8, \quad ydx - (x + y^3)dy = 0$$

$$9, x'' + x = \sin t - \cos 2t$$

10、若
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$
,试求方程组 $x' = Ax$ 的解 $\varphi(t), \varphi(0) = \eta = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix}$ 并求

expAt.

11.
$$(\frac{dy}{dx})^3 - 4xy\frac{dy}{dx} + 8y^2 = 0$$
.

12、求伯努利方程
$$\frac{dy}{dx} = 6\frac{y}{x} - xy^2$$
的通解。

13、求方程
$$\frac{dy}{dx} = x + y^2$$
经过(0, 0)的第三次近似解。

得分

三、证明. (10分)

14、n阶齐线性方程一定存在n个线性无关解。

试卷3答案

一、填空题

$$1 \cdot \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{-M} = \varphi(y)$$

$$2 \cdot \frac{dy}{dx} = p(x)y^2 + Q(x)y + R(x)$$
 $y = -y + Q(x)y + Q($

3,
$$\frac{dy}{dx} = p(x)y + Q(x)y^n$$
 $u(x,y) = y^{-n}e^{\int (n-1)p(x)dx}$

4 ,
$$w[x_1(t), x_2(t), \dots, x_n(t)] \neq 0$$

$$5 \cdot x^{n} \frac{d^{n} y}{dx^{n}} + a_{1} \frac{d^{n-1}}{dx^{n-1}} + \dots + a_{n-1} \frac{dy}{dx} + a_{n} y = 0$$

$$6 \cdot \psi(t) = \phi(t)C$$

7、零

稳定中心

二、计算题

8、解: 因为
$$\frac{\partial M}{\partial y} = 1$$
, $\frac{\partial N}{\partial x} = -1$, 所以此方程不是恰当方程,方程有

积 分 因 子
$$\mu(y) = e^{\int \frac{2}{-y} dy} = e^{-\ln y^2} = \frac{1}{y^2}$$
 , 两 边 同 乘 $\frac{1}{y^2}$ 得
$$\frac{dx}{y} - \frac{x+y^3}{y^2} dy = 0$$

所以解为
$$\int \frac{1}{y} dx + \int \left[\frac{-x + y^3}{y^2} - \frac{\partial \frac{x}{y}}{\partial y} \right] dy = c$$

$$\frac{x}{y} + \frac{y^2}{2} = c$$
 即 $2x = y(y^2 + c)$ 另外 y=0 也是解

9、线性方程 x'' + x = 0 的特征方程 $\lambda^2 + 1 = 0$ 故特征根 $\lambda = \pm i$

 $f_1(t) = \sin t$ $\lambda = i$ 是特征单根,原方程有特解

$$\overline{x} = (t \land a) + st \quad B \quad \text{(1)} \quad \text{(2)} \quad \text{(3)} \quad \text{(3)} \quad \text{(3)} \quad \text{(3)} \quad \text{(4)} \quad \text{(4)} \quad \text{(4)} \quad \text{(5)} \quad \text{(5)} \quad \text{(5)} \quad \text{(5)} \quad \text{(6)} \quad \text{$$

 $f_2(t) = -\cos 2t$ $\lambda = 2i$ 不是特征根,原方程有特解

$$\bar{x} = Acos 2$$
 Bsi代入原方程 $A = \frac{1}{3}$ B=0

所以原方程的解为 $x = c_1 \cos t + c_2 \sin t - \frac{1}{2} t \cos t + \frac{1}{3} \cos 2t$

10、解:
$$p(\lambda) = \begin{vmatrix} \lambda - 2 & -1 \\ 1 & \lambda - 4 \end{vmatrix} = \lambda^2 - 6\lambda + 9 = 0$$
解得 $\lambda_{1, \mathbb{Z}}$ 3此时

 $k=1 n_1 = 2$

$$\eta = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = v \quad \varphi(t) = e^{3t} \begin{bmatrix} \sum_{i=0}^{1} \frac{t^i}{i!} (A - 3E)^i \\ \eta_2 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix} = e^{3t} \begin{bmatrix} \eta_1 + t(-\eta_1 + \eta_2) \\ \eta_2 + t(-\eta_1 + \eta_2) \end{bmatrix}$$

由公式 expAt= $e^{\lambda t} \sum_{i=0}^{n-1} \frac{t^i}{i!} (A - \lambda E)^i$ 得

$$\exp At = e^{3t} \left[E + t(A - 3E) \right] = e^{3t} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + t \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \right\} = e^{3t} \begin{bmatrix} 1 - t & t \\ -t & 1 + t \end{bmatrix}$$

11、解: 方程可化为
$$x = \frac{\left(\frac{dy}{dx}\right)^3 + 8y^2}{4y\frac{dy}{dx}}$$
令 $\frac{dy}{dx} = p$ 则有 $x = \frac{p^3 + 8y^2}{4yp}$ (*)

(*) 两边对 y 求导:
$$2y(p^3-4y^2)\frac{dp}{dy} + p(8y^2-p^3) = 4y^2p$$

即
$$(p^3 - 4y^2)(2y\frac{dp}{dy} - p) = 0$$
 由 $2y\frac{dp}{dy} - p = 0$ 得 $p = cy^{\frac{1}{2}}$ 即 $y = (\frac{p}{c})^2$ 将

y 代入 (*) $x = \frac{c^2}{4} + \frac{2p}{c^2}$ 即方程的 含参数形式的通解为:

$$\begin{cases} x = \frac{c^2}{4} + \frac{2p}{c^2} \\ y = (\frac{p}{c})^2 \end{cases}$$
 p 为参数

又由 $p^3 - 4y^2 = 0$ 得 $p = (4y^2)^{\frac{1}{3}}$ 代入(*)得: $y = \frac{4}{27}x^3$ 也是方程的解

$$\varphi_0 = y_0 = 0$$

$$\varphi_1 = y_0 + \int_0^x x dx = \frac{x^2}{2}$$

$$12 \cdot \text{AF}:$$

$$\varphi_2 = y_0 + \int_0^x (x + \frac{x^2}{4}) dx = \frac{x^2}{2} + \frac{x^5}{20}$$

$$\varphi_3 = y_0 + \int_0^x (x + \frac{x^4}{4} + \frac{x^{10}}{400} + \frac{x^7}{20}) dx = \frac{x^2}{2} + \frac{x^5}{20} + \frac{x^{11}}{4400} + \frac{x^8}{160}$$

13、解: 由
$$\begin{cases} -x-y+1=0 \\ x-y-5=0 \end{cases}$$
解得奇点(3, -2)令 X=x-3,Y=y+2 则

$$\begin{cases} \frac{dx}{dt} = -x - y \\ \frac{dy}{dt} = x - y \end{cases}$$

因为
$$\begin{vmatrix} -1 & -1 \\ 1 & -1 \end{vmatrix} = 1+1 \neq 0$$
 故有唯一零解(0,0)

$$\begin{vmatrix} \lambda + 1 & 1 \\ -1 & \lambda + 1 \end{vmatrix} = \lambda^2 + 2\lambda + 1 + 1 = \lambda^2 + 2\lambda + 2 = 0 \ \text{#} \ \lambda = -1 \pm i \ \text{th} (3, -2)$$

为稳定焦点。

三、 证明题

14、由解的存在唯一性定理知: n 阶齐线性方程一定存在满足如下 条件的 n 解:

$$x_1(t_0) = 1, x_2(t_0) = 0, \dots, x_n(t_0) = 0$$

 $x_1(t_0) = 0, x_2(t_0) = 1, \dots, x_n(t_0) = 0$

$$x_1^{n-1}(t_0) = 0, x_2^{n-1}(t_0) = 0, \dots, x_n^{n-1}(t_0) = 1$$

考虑
$$w[x_1(t_0), x_2(t_0), \dots, x_n(t_0)] = \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix} = 1 \neq 0$$

从而 $x_i(t)(i=1,2,\cdots n)$ 是线性无关的。

《 常微分方程 》期末考试试卷(4)

班级	学号			_成绩	
					ı
题号	1	11	111	总分	

分数

一、填空(每格5分,共30分)

- 1、形如______的方程,称为变量分离方程,这里. $f(x).\varphi(y)$ 分别为 x.y的连续函数。

- 4、形如______的方程,称为欧拉方程,这里 a_1,a_2 ,是常数。
- 5、设 $\phi(t)$ 是x' = Ax的基解矩阵, $\varphi(t)$ 是 x' = A(t)x + f(t)的某一解,则它的任一解 $\gamma(t)$ 可表为

得分

六、计算题(每题 10 分,共 40 分)

- 6、求方程 $\frac{dy}{dx} = 6\frac{y}{x} xy^2$ 的通解。
- 7、求方程 $\frac{dy}{dx} + \frac{y}{x} = e^{xy}$ 的通解。

- 8、求方程 $x''+6x'+5x=e^{2t}$ 的隐式解。
- 9、求方程 $\frac{dy}{dx} = x + y^2$ 通过点 (0.0) 的第三次近似解。

得分

三、证明. (30分)

10、试验证
$$\Phi(t) = \begin{bmatrix} t^2 & t \\ 2t & 1 \end{bmatrix}$$
是方程组 $\mathbf{x} = \begin{bmatrix} 0 & 1 \\ -\frac{2}{t^2} & \frac{2}{t} \end{bmatrix} \mathbf{x}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$,在任何不包含

原点的区

间 $a \le t \le b$ 上的基解矩阵。

11、设 $\Phi(t)$ 为方程 $\mathbf{x}' = \mathbf{A}\mathbf{x}$ (A 为 $\mathbf{n} \times \mathbf{n}$ 常数矩阵)的标准基解矩阵 (即 Φ (0) =E),证明: $\Phi(t)\Phi^{-1}(\mathbf{t}_0) = \Phi(\mathbf{t} - \mathbf{t}_0)$ 其中 \mathbf{t}_0 为某一值.

试卷 (4) 答案

一、填空题(每格5分)

$$1\frac{dy}{dx} = f(x)\varphi(y) \qquad 2, \quad \frac{dy}{dx} = P(x)y + Q(x)y^{n} \qquad z = y^{1}$$
$$3|f(x, y_{1}) - f(x, y_{2})| \le L|y_{1} - y_{2}|$$

4.
$$x^{n} \frac{d^{n} y}{dx^{n}} + a_{1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_{n-1} x \frac{dy}{dx} + a_{n} y = 0$$

$$5, \quad \gamma(t) = \phi(t) + \varphi(t)$$

二、计算题(每题10分)

6、这是 n=2 时的伯努利不等式,令 z=
$$y^{-1}$$
,算得 $\frac{dz}{dx} = -y^{-2} \frac{dy}{dx}$

代入原方程得到 $\frac{dz}{dx} = -\frac{6}{x}z + x$,这是线性方程,求得它的通解为 $z = \frac{c}{x^6} + \frac{x^2}{8}$

带回原来的变量 y,得到 $\frac{1}{y} = \frac{c}{x^6} + \frac{x^2}{8}$ 或者 $\frac{x^6}{y} - \frac{x^8}{8} = c$,这就是原方程的解。 此外方程还有解 y=0.

$$7. \text{ } \text{ } \text{ } \text{ } \text{ } \frac{dy}{dx} = e^{xy} - xy = \frac{xe^{xy} - y}{x}$$

$$xdy = (xe^{xy} - y)dx$$

$$xdy + ydx = xe^{xy}dx$$

$$dxy = xe^{xy}dx$$

$$\frac{dxy}{e^{xy}} = xdx$$

积分:
$$-e^{-xy} = \frac{1}{2}x^2 + c$$

故通解为:
$$\frac{1}{2}x^2 + e^{-xy} + c = 0$$

8、解: 齐线性方程 x''+6x'+5x=0 的特征方程为 $\lambda^2+6\lambda+5=0$,

$$\lambda_1 = -1, \lambda_2 = -5$$
, 故通解为 $x(t) = c_1 e^{-t} + c_2 e^{-5t}$

 $\lambda = 2$ 不是特征根,所以方程有形如 $\overline{x(t)} = Ae^{2t}$

把 $\overline{x(t)}$ 代回原方程 $4Ae^{2t} + 12Ae^{2t} + 5Ae^{2t} = e^{2t}$

$$A = \frac{1}{21}$$

于是原方程通解为 $x(t) = c_1 e^{-t} + c_2 e^{-5t} + \frac{1}{21} e^{2t}$

9、解 $\varphi_0(x) = 0$

$$\varphi_1(x) = \int_0^x [x + \varphi_0^2(x)] dx = \frac{x^2}{2}$$

$$\varphi_2(x) = \int_0^x [x + \varphi_1^2(x)] dx = \frac{x^2}{2} + \frac{x^5}{20}$$

$$\varphi_3(x) = \int_0^x [x + \varphi_2^2(x)] dx = \frac{x^2}{2} + \frac{x^5}{20} + \frac{x^8}{160} + \frac{x^{11}}{4400}$$

三、证明题(每题15分)

10、证明: 令
$$\Phi(t)$$
的第一列为 $\varphi_1(t) = \begin{pmatrix} t^2 \\ 2t \end{pmatrix}$,这时 $\varphi_1(t) = \begin{pmatrix} 2t \\ 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\frac{2}{t^2} & \frac{2}{t} \end{pmatrix} \varphi_1(t)$ 故 $\varphi_1(t)$

是一个解。同样如果以
$$\varphi_2(t)$$
表示 $\Phi(t)$ 第二列,我们有 $\varphi_2(t)=\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}0&1\\-\frac{2}{t^2}&\frac{2}{t}\end{pmatrix}\varphi_2(t)$ 这

样 φ_2 (t)也是一个解。因此 $\Phi(t)$ 是解矩阵。又因为 $\det \Phi(t)$ =- t^2 故 $\Phi(t)$ 是基解矩阵。

11、证明: (1) $\Phi(t)$, $\Phi(t-t_0)$ 是基解矩阵。

(2) 由于 $\Phi(t)$ 为方程 $\mathbf{x}' = \mathbf{A}\mathbf{x}$ 的解矩阵,所以 $\Phi(t)\Phi^{-1}(\mathbf{t}_0)$ 也是 $\mathbf{x}' = \mathbf{A}\mathbf{x}$ 的解矩

阵,而当 $\mathbf{t}=\mathbf{t}_0$ 时, $\Phi(\mathbf{t}_0)\Phi^{-1}(\mathbf{t}_0)=E$, $\Phi(\mathbf{t}-\mathbf{t}_0)=\Phi$ (0)=E. 故由解的存在唯一性定理,得 $\Phi(t)\Phi^{-1}(\mathbf{t}_0)=\Phi(\mathbf{t}-\mathbf{t}_0)$