Solvers for the Vlasov Equation

Michael Updike, Sina Atalay

Overview of The Vlasov Equation

- The fundamental equation of plasma physics. Used to model fusion devices, astrophysical systems, etc. Basis of fluid-theory, MHD.
- Fundamental variable if f(x, v, t), the phase space density of particles
- Describes particles interacting consistently with self-generated fields:

$$\partial_t f(x, v, t) + v \partial_x f + \partial_v (E(x, t)f) = 0$$

$$E'(x, t) = -\int dv f(x, v, t) dx$$

- E can also be prescribed for testing. E.g., $E = 0 \implies f(x, v, t) = f(x vt, v, 0)$.
- Vlasov equation is a hyperbolic conservation law. Simulate using finite volume.

Finite Volumes

• Let (x_i, v_i) be equispaced mesh of domain. Define

$$f(x, v, t) = \frac{1}{\Delta x \Delta v} \int_{x_i}^{x_{i+1}} \int_{v_i}^{v_i} f(x, v, t) dv dx$$

Vlasov equation becomes

$$\frac{df_{i+1/2,j+1/2}}{dt} + \frac{F_{i+1,j+1/2}^{x} - F_{i,j+1/2}^{x}}{\Delta x} + \frac{F_{i+1/2,j+1}^{v} - F_{i+1/2,j}^{v}}{\Delta v} = 0$$

with
$$F_{i+1/2,j}^v = \frac{1}{\Delta x} \int_{x_i}^{x_{i+1}} E(x,t) f(x,v_j,t) dx$$
, $F_{i,j+1/2}^x = \frac{1}{\Delta v} \int_{v_i}^{v_{j+1}} v f(x_i,v,t) dv$.

- To second order, approximate numerical fluxes by $F_{i+1/2,j}^{\nu} \approx \nu_{j+1/2} f(x_{i+1/2}, \nu_j)$.
- $f(x_i, v_{j+1/2})$ can be reconstructed from right $(f_{i+1/2, j+1/2}^+)$ or left $(f_{i, j+1/2}^-)$ of edge.
- Upwinding! Use left value $f_{i,j+1/2}^-$ when $v_{j+1/2} > 0$. Otherwise, use $f_{i,j+1/2}^+$.
- Similar for $f_{i+1/2,j}^{\pm}$. Upwinding determined by $E(x_{i+1/2})$.

First Order Scheme

- To first order accuracy, set $f_{i,i+1/2}^{\pm} = f_{i+\pm 1/2,j+1/2}$. Use to get $F^x[f], F^v[f]$.
- Use Forward Euler to integrate semi-discrete form. Discrete Vlasov equation reads

$$\frac{f_{i+1/2,j+1/2}^{n+1} - f_{i+1/2,j+1/2}^{n}}{dt} + \frac{F_{i+1,j+1/2}^{x} - F_{i,j+1/2}^{x}}{\Delta x} + \frac{F_{i+1/2,j+1}^{v} - F_{i+1/2,j}^{v}}{\Delta v} = 0$$

- Scheme is stable and positivity-preserving if $C^n = (\frac{\Delta t}{\Delta x} + \frac{\Delta t \max(|E^n|)}{\Delta v}) < 1$.
- Time step must be adapted at each step to ensure $C^n < 1$.
- Eⁿ solved for at each step using

$$E^{n}(x_{i+1}) - E^{n}(x_{i}) = C + \Delta x \Delta v \sum_{i,j} f_{i+1/2,j+1/2}^{n}.$$

- C such that the system is solvable. Choose $\sum_i E(x_i) = 0$.
- To second order accuracy, $E(x_{i+1/2})$ is set to $\frac{1}{2}(E(x_i) + E(x_{i+1}))$.
- The first-order scheme is very diffusive. Better solvers are needed.

Second Order Scheme

- To second-order accuracy, use $f_{i,j+1/2}^{\pm} = f_{i+\pm 1/2,j+1/2} \mp \frac{1}{2} (\Delta^{\times} f_{i+\pm 1/2,j+1/2})$.
- $(\Delta^x f_{i+1/2,j+1/2})$ are the reconstructed slopes. We use the central slope

$$(\Delta^{\times} f_{i+1/2,j+1/2})_{C} = \frac{f_{i+3/2,j} - f_{i-1/2,j}}{2}$$

Other choices are the left and right slopes

$$(\Delta^{x} f_{i+1/2,j+1/2})_{R} = f_{i+3/2,j} - f_{i+1/2,j}, \ (\Delta^{x} f_{i+1/2,j+1/2})_{L} = f_{i+1/2,j} - f_{i=1/2,j}$$

- Numerical fluxes obtained from f^{\pm} using upwinding (Fromm scheme).
- Time integration of semi-discrete performed using RK(2) and the $E(x_{i+1/2})$ solver.
- Scheme is stable for C < 1. A timestep must be repeated if $C^{n+1/2} > 1$.
- Scheme not positivity preserving. Spurious oscillations from numerical dispersion.
- Scheme is second-order in space and time.

Slope Limited Second Order Scheme

- Slope limiter prevents oscillations, better preserves positivity.
- Assume, temporarily, that f is monotonically increasing in x.
- The moncen limiter ensures $f_{i+1/2,j+1/2} < f_{i,j+1/2}^+ < f_{i+1,j+1/2}^- < f_{i+3/2,j+1/2}^-$.
- Moncen takes $(\Delta^{\times} f_{i+1/2,j+1/2})_{M} = 2 \min((\Delta^{\times} f_{i+1/2,j+1/2})_{C}, 2(\Delta^{\times} f_{i+1/2,j+1/2})_{L}, (\Delta^{\times} f_{i+1/2,j+1/2})_{R}).$
- $(\Delta^{x} f_{i+1/2,i+1/2})_{M} = 0$ at extremum.
- $(\Delta^{\times} f_{i+1/2,j+1/2})_M$ reduces to $(\Delta^{\times} f_{i+1/2,j+1/2})_C$ in smooth regions.
- We replace $(\Delta^{\times} f_{i+1/2,j+1/2})_C$ in last scheme by $(\Delta^{\times} f_{i+1/2,j+1/2})_M$.
- New scheme second-order and stable for C < 1. Positivity preserving for C < 1/2.
- Vlasov solver with moncen limiting tends to be positive and non-oscillatory.
- A very good method overall.

Example Outputs

 We compare the first and slope-limited second-order scheme for simulating a two-stream instability. We show the output at a fixed time.

Figure: Left: First order method. Right: Second order w/ limiter.