A Characterisation of Convolutional Spiking Autoencoders

Luke Alderson - 02523332

The Foundations

The Foundations

Spikes and Surrogate Gradients

Spikes and Surrogate Gradients

Artificial and Natural Receptive Fields

Convolutional Neural Network

Note: Darker pixels indicate higher activations.

Autoencoders

Convolutional, Spiking Autoencoder

MNIST - From Floats to Spikes

DVS Gesture - Natively Neuromorphic

Native:

- 128 x 128
- Microsecond

Downsampled:

- 28 x 28
- Millisecond

Experiments

Increasing kernel size reduces loss

	d) Origi	nal data	a and rec	construc	tions					
OM_O	Ø	/	2	Ф	4	4	6	7	S	٩
OM_R	0	1	2	B	4	Ś	6	7	8	٩
EM_O	0	1	2	3	4	6	6	7	8	9
EM_R	O	1	2	3	4	5	6	7	8	

Optimal Parameters				
Batch Size	64			
Learning Rate	1e-4			
Kernel Size	7			

Disparity in rate coding acts as contrast

Loss v. Max Encoding Frequency

Disparity in rate coding acts as contrast

Recurrence did not reduce loss

(a) SAE trained on MNIST data with varying kernel size

(b) SAE trained on DVS data with varying kernel size

(c) SAE trained on DVS data with varying training targets

(d) Classifier trained on DVS data with varying kernel size

Kernel Size

Embedding Size *generally* lowers loss

Spiking Reconstructions

Loss v. Embedding Size

Discussion - Hyperparameter Sweep

Discussion - Encoding Strategy

Discussion - Recurrence

MNIST

No effect (Bouanane et al., 2023)

DVS

- 1-Layer, implicit or explicit no effect.
- Try different loss function.
 - o (Cramer et al., 2020)
- 2-Layer increased loss.
- Vanishing gradients?
 - o (Zheng et al,. 2021; Ledinauskas et al,. 2020)

Discussion - Embedding Size

Limitations and Future work

- Only encoding rate was varied.
 - Constrain hidden layer firing rates with regularisation (Hübotter et al., 2021).

- Vanishing gradient problems.
 - E-prop instead of conventional backpropagation (Hoyer et al., 2022).

- Reliance on rate coding.
 - Temporal / Delta / Novel Coding Schemes (Mehta et al., 2002; Ainsworth et al., 2012).

Thank you for listening!

Any questions?

Appendices - References

- Ainsworth, M., Lee, S., Cunningham, M.O., Traub, R.D., Kopell, N.J. and Whittington, Miles A. (2012). Rates and Rhythms: A Synergistic View of Frequency and Temporal Coding in Neuronal Networks. *Neuron*, 75(4), pp.572–583. doi:https://doi.org/10.1016/j.neuron.2012.08.004.
- Benmeziane, H., Ounnoughene, Amine Ziad, Hamzaoui, I. and Bouhadjar, Y. (2023). Skip Connections in Spiking Neural Networks: An Analysis of Their Effect on Network Training. *arXiv* (Cornell University). doi:https://doi.org/10.48550/arxiv.2303.13563.
- Ben-Shaul, I., Shwartz-Ziv, R., Galanti, T., Dekel, S. and LeCun, Y. (2023). Reverse Engineering Self-Supervised Learning. *arXiv* (*Cornell University*). doi:https://doi.org/10.48550/arxiv.2305.15614.
- Burkitt, A.N. (2006). A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input. *Biological Cybernetics*, 95(1), pp.1–19. doi:https://doi.org/10.1007/s00422-006-0068-6 Cramer, B., Yannik Stradmann, Schemmel, J. and Zenke, F. (2022). The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking Neural Networks. *IEEE transactions on neural networks and learning*
- systems, 33(7), pp.2744–2757. doi:https://doi.org/10.1109/tnnls.2020.3044364.

 Dobson, J.E. (2023). On reading and interpreting black box deep neural networks. *International Journal of Digital Humanities*, 5(2-3), pp.431–449. doi:https://doi.org/10.1007/s42803-023-00075-w.
- Eimantas Ledinauskas, Ruseckas, J., Alfonsas Jursenas and Giedrius Burachas (2020). Training Deep Spiking Neural Networks. arXiv (Cornell University). doi:https://doi.org/10.48550/arxiv.2006.04436.
- Eshraghian, J.K., Ward, M., Emre Neftci, Wang, X., Lenz, G., Dwivedi, G., Bennamoun, M., Doo Seok Jeong and Lü, W. (2023). Training Spiking Neural Networks Using Lessons From Deep Learning. *Proceedings of the IEEE*, 111(9), pp.1016–1054. doi:https://doi.org/10.1109/jproc.2023.3308088.
- Hoyer, M., Shahram Eivazi and Otte, S. (2022). Efficient LSTM Training with Eligibility Traces. Lecture notes in computer science, pp.334–346. doi:https://doi.org/10.1007/978-3-031-15934-3_28.
- Hubel, D.H. and Wiesel, T.N. (1962). Receptive fields, Binocular Interaction and Functional Architecture in the cat's Visual Cortex. *The Journal of Physiology*, [online] 160(1), pp.106–154. doi:https://doi.org/10.1113/jphysiol.1962.sp006837.
- Hübotter, J.F., Lanillos, P. and Tomczak, J.M. (2021). Training Deep Spiking Auto-encoders without Bursting or Dying Neurons through Regularization. *arXiv* (Cornell University). doi:https://doi.org/10.48550/arxiv.2109.11045.
- LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. and Jackel, L.D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. *Neural Computation*, 1(4), pp.541–551. doi:https://doi.org/10.1162/neco.1989.1.4.541.
- Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T. (2018). Visualizing the Loss Landscape of Neural Nets. [online] arXiv.org. doi:https://doi.org/10.48550/arXiv.1712.09913.
- McInnes, L., Healy, J., Saul, N. and Großberger, L. (2018). UMAP: Uniform Manifold Approximation and Projection. Journal of Open Source Software, 3(29), p.861. doi:https://doi.org/10.21105/joss.00861.
- Mehta, M.R., Lee, A.K. and Wilson, M.A. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. *Nature*, [online] 417(6890), pp.741–746. doi:https://doi.org/10.1038/nature00807.
- Mohamed Sadek Bouanane, Cherifi, D., Chicca, E. and Lyes Khacef (2023). Impact of spiking neurons leakages and network recurrences on event-based spatio-temporal pattern recognition. *Frontiers in Neuroscience*, 17(17). doi:https://doi.org/10.3389/fnins.2023.1244675.
- Putra, and Shafique, M. (2024). A Methodology for Improving Accuracy of Embedded Spiking Neural Networks through Kernel Size Scaling. *arXiv* (Cornell University). doi:https://doi.org/10.48550/arxiv.2404.01685.
- Zheng, H., Wu, Y., Deng, L., Hu, Y. and Li, G. (2021). Going Deeper With Directly-Trained Larger Spiking Neural Networks. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(12), pp.11062–11070. doi:https://doi.org/10.1609/aaai.v35i12.17320.

Appendices - CNN

X

1	2	3	4	2	1
4	5	6	5	0	1
7	8	9	2	2	1
9	3	2	4	2	1
5	7	3	2	1	9
4	4	3	2	8	1

W

$$Y = \sigma(W \cdot X + b)$$

Assume b = 0 and the activation function is the identity.

Appendices - CNN

X

1	2	3	4	2	1
4	5	6	5	0	1
7	8	9	2	2	1
9	3	2	4	2	1
5	7	3	2	1	9
4	4	3	2	8	1

$$Y = \sigma(W \cdot X + b)$$

Assume b = 0 and the activation function is the identity.

Appendices - CNN

X

1	2	3	4	2	1
4	5	6	5	0	1
7	8	9	2	2	1
9	3	2	4	2	1
5	7	3	2	1	9
4	4	3	2	8	1

W

1	1	0
0	0	0
0	0	1

Y

$$Y = \sigma(W \cdot X + b)$$

Assume b = 0 and the activation function is the identity.

Appendices - Loss Function

$$L(\theta)_{nRMSE} = \frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \hat{X}_i)^2}}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X}_i)^2}} = \frac{L(\theta)_{RMSE}}{\sigma_X}$$

where

 $L(\theta)_{RMSE}$ is the RMSE loss as a function of the network parameters.

N is the number of neurons.

 X_i is the input spike count of the *i*th neuron.

 \hat{X}_i is the output spike count of the *i*th neuron.

 \bar{X} is the mean input spike count.

 σ_X is the standard deviation of the input data.

Appendices - Spike Encoding

$$p_i = \Delta t [(f_{on} - f_{off})x_i + f_{off}] \tag{6}$$

where

 Δt is the size of the time-step for the simulation

 x_i is the normalised value of the *i*th pixel in the input image

 $f_{off} \in [0, \frac{1}{\Delta t}]$ is the minimum firing rate in Hz

 $f_{on} \in [0, \frac{1}{\Delta t}]$ is the maximum firing rate in Hz

$$S_i^{(t)} \sim Bin(T, p_i) \tag{5}$$

where

 $S_i^{(t)} \in \{0,1\}$ is the random variable describing spike generation from neuron i at time t

T is the total number of time-steps in the spike train

 p_i is the probability of a spike occurring from neuron i

Appendices - Backpropagation

Backpropagation faces challenges when applied directly to SNNs because spikes are modelled as instances of the Dirac-delta function, making them non-differentiable. The general form of the chain rule for a SNN is given by:

$$\frac{\partial L}{\partial W_{ij}} = \frac{\partial L}{\partial S_{out}} \frac{\partial S_{out}}{\partial U} \frac{\partial U}{\partial W_{ij}} \tag{2}$$

where L is the loss function, such as the Euclidean norm, W_{ij} represents the weight between the ith neuron of a given layer and the jth neuron in thee subsequent layer, and S_{out} is the spike released from the neuron as a function of the membrane potential, U.

The weight update is then computed as:

$$W_{ij}^{t+1} = W_{ij}^t - \alpha \frac{\partial L}{\partial W_{ij}^t} \tag{3}$$

where W_{ij}^{t+1} is the updated weight, W_{ij}^t is the current weight, and α is the learning rate.

Direct application of the chain rule in spiking neuron layers is problematic because it ultimately prevents useful weight updates as described below:

$$\frac{\partial S_{out}}{\partial U} \in \{0, \infty\} \implies \frac{\partial L}{\partial W_{ij}^t} \in \{0, \infty\} \implies W_{ij}^{t+1} \in \{W_{ij, -\infty}^t\}$$
 (4)