2.1

Maynooth University (National University of Ireland, Maynooth)

Department of Computer Science

T. Naughton

CS605: NP-completeness intro 1

March 2020

NP-completeness

 Alternative introduction to the class NP and to NP-completeness

Where are the tractable problems?

 Where do tractable problems end and intractable ones begin?

Where are the tractable problems?

 Some problems in P are 'practically' intractable, so it would make sense that the dividing line between tractable and intractable problems should be somewhere in P.

> logarithmic linear quadratic cubic

all others

Р

A new class of problems

- However, to confuse things, it became evident by the late 1960s that some seemingly simple problems resisted polynomial time algorithmic solutions.
- Worse, it could <u>not</u> be proved that they were exponential either!

A new class of problems

- Was it simply because no clever person had found a polynomial algorithm yet?
- And in the meantime, where do these problems belong?

A new class of problems

 The net result was that the dividing line between tractable and intractable had to move outside P.

A new class of problems

- In an attempt to classify this strange new family of problems, Steven Cook (and Leonid Levin, independently) defined a new class of problems.
- Their goal was to distinguish this new family from provably intractable (i.e. provably exponential) problems.

Verifiable in polynomial time

 Cook made a very useful observation:

given a problem in **P**, one should be able, at the very least, to **verify** a given correct solution in polynomial time.

Verifiable in polynomial time

 This makes sense, because when a correct algorithm solves a problem, then implicitly it is providing a proof that the answer is correct.

Verifiable in polynomial time

- It is likely to take only linear time to verify the correctness of a solution to a problem in P, but in the worst case all we have to do is rerun the whole polynomial algorithm to verify that the given solution is the correct one.
- If this <u>can't</u> be done for a particular problem in polynomial time, then the problem is definitely *intractable*.

Nondeterministic polynomial time

- Thus the family of problems for which one can verify the solution in polynomial time was born.
- The class was called nondeterministic polynomial time, or NP.

Nondeterministic polynomial time

The reasoning was,
in this class we are saying nothing
about how the answer was found,
it has been found in a
nondeterministic manner,
but we can verify that our answer is
the correct one in polynomial time.

A common misconception

- NP does <u>not</u> mean *non-polynomial* :
- As we have discussed, all problems solved in polynomial time are verifiable in polynomial time, so P is a subset of NP.
- To call NP "non-polynomial" is obviously wrong, because it does contain polynomial-time problems.

Aside:

- The new class of problems (such as TSP) that was neither provably tractable nor provably intractable was given the name NP-complete (justifaction given later).
- These problems are in NP, and (provisionally) outside P.
- They can appear to be very different from each other.
- They are related to each other in a very interesting way.

Aside:

- Whether P is a proper subset of NP is an open question.
- If a single one of the NP-complete problems is proved to be either in P or not, then the question will be answered.
- This problem, the P =? NP conjecture, first raised in the early 1970s, remains one of the most difficult unresolved problems in computer science.