IPS = f/CPI 每个字中最小的字节地址为字地址 (PC) + A = 2002H + A = 1F00H A = 1F00H - 2002H = 1EFFH - 2002H +1H = FEFDH+1H = FEFEH

指令周期: CPU从主存中每取出并执行一条指令所需的全部时间。 指令周期常常用若干机器周期来表示,机器周期又叫CPU周期。 一个机器周期又包含若干时钟周期(也称为节拍、T周期或CPU时钟周期,它是CPU操作的最基本单位)。

1. 吞吐率 吞吐率是指在单位时间内流水线所完成的任务数量,或是输出结果的数量。 设任务数为n; 处理完成n个任务所用的时间为 T_k

则计算流水线吞吐率(TP)的最基本的公式为 $TP = \frac{n}{T_k}$

理想情况下,流水线的时空图如下:

当连续输入的任务 $n\to\infty$ 时,得最大吞吐率为 $TP_{max}=1/\Delta t$ 。

$$T_k = (k+n-1) \Delta t$$

流水线的实际吞吐率为

$$TP = \frac{n}{(k+n-1)\Delta t}$$

- 一条指令的执行分为k个阶段,每个阶段耗时 Δt ,一般取 Δt =一个时钟周期
- 2. 加速比 完成同样一批任务,不使用流水线所用的时间与使用流水线所用的时间之比。

设 au_0 表示不使用流水线时的执行时间,即顺序执行所用的时间; au_k 表示使用流水线时的执行时间

则计算流水线加速比(S)的基本公式为 $S = \frac{T_0}{T_L}$

当连续输入的任务 $n\to\infty$ 时,最大加速比为 $S_{\max}=k$ 。

理想情况下,流水线的时空图如下:

单独完成一个任务耗时为 $k \Delta t$,则顺序完成n个任务耗时 $T_0 = nk \Delta t$

$$T_k = (k+n-1) \Delta t$$

实际加速比为

$$S = \frac{kn\Delta t}{(k+n-1)\Delta t} = \frac{kn}{k+n-1}$$

- SI 2 3 n-1. 2 3 n-1n2 3 ... n-1n n-1n 0 $k\Delta t$ $(n-1)\Delta t$ $(k+n-1)\Delta t$
 - 一条指令的执行分为k个阶段,每个阶段耗时 Δt ,一般取 Δt =一个时钟周期
- 3. 效率 流水线的设备利用率称为流水线的效率。

在时空图上,流水线的效率定义为完成,个任务占用的时空区有效面积与

n个任务所用的时间与k个流水段所围成的时空区总面积之比。

则流水线效率(E)的一般公式为 $E=\frac{n$ 个任务占用k时空区有效面积 $=\frac{T_0}{kT_k}$

理想情况下,流水线的时空图如下:

当连续输入的任务 $n\to\infty$ 时,最高效率为 $E_{max}=1$ 。

一条指令的执行分为k个阶段,每个阶段耗时 Δt ,一般取 Δt =一个时钟周期

数据的基本操作: 读(R)、写(W)

冲突的基本类型: RAW、WAR、WAW

RAW D

注: "按序发射,按序完成"时,只可能出现RAW相关。

I1: ADD R5, R2, R4; (R2)+(R4) -> R5

12: ADD R4, R5, R3; (R5)+(R3) -> R4

WAR

I1: STA M, R2;

(R2) -> M,M为主存单元

乱序发射,编写程序的时候希望11在12前完成,

I2: ADD R2, R4, R5; (R4)+(R5)->R2 但优化手段导致I2在I1前发射。

WRW

I1: MUL R3, R2, R1; (R2)*(R1)->R3

存在多个功能部件时, 后一条指

12: SUB R3, R4, R5; (R4)-(R5)->R3

令可能比前一条指令先完成。

1. 部件功能级、处理机级和处理机间级流水线

根据**流水线使用的级别**的不同,流水线可分为部件功能级流水线、处理机级流水线和处理机间流水线。 **部件功能级流水**就是将复杂的算术逻辑运算组成流水线工作方式。例如,可将浮点加法操作分成求阶 差、对阶、尾数相加以及结果规格化等4个子过程。

处理机级流水是把一条指令解释过程分成多个子过程,如前面提到的取指、译码、执行、访存及写回5个子过程。

处理机间流水是一种宏流水,其中每一个处理机完成某一专门任务,各个处理机所得到的结果需存放 在与下一个处理机所共享的存储器中。

- 结构:双总线结构有两条总线,一条是主存总线,用于CPU、主存和通道之间进行数据 传送;另一条是I/O总线,用于多个外部设备与通道之间进行数据传送。
- · 优点: 将较低速的I/O设备从单总线上分离出来,实现存储器总线和I/O总线分离。
- 缺点: 需要增加通道等硬件设备。

1. 总线的传输周期(总线周期)

一次总线操作所需的时间(包括申请阶段、 寻址阶段、传输阶段和结束阶段),通常 由若干个总线时钟周期构成。

2. 总线时钟周期

即<mark>机器的时钟周期</mark>。计算机有一个统一的 时钟,以控制整个计算机的各个部件,总 线也要受此时钟的控制。

3. 总线的工作频率

总线上各种操作的频率,为总线周期的倒数。 若总线周期=N个时钟周期,则总线的工作频率=时钟频率/N。 实际上指一秒内传送几次数据。

4. 总线的时钟频率

即机器的时钟频率,为<mark>时钟周期的倒数</mark>。 若时钟周期为T,则时钟频率为1/T。 实际上指一<mark>秒内有多少个时钟周期</mark>。

仲裁方式 对比项目	链式查询	计数器定时查询	独立请求
控制线数	3	「log ₂ n]+2	2n+1
	总线请求: 1	总线请求: 1	总线请求: n
	总线允许: 1	总线允许:「log ₂ n]	总线允许: n
	总线忙: 1	总线忙: 1	总线忙: 1
优点	优先级固定 结构简单,扩充容易	优先级较灵活	响应速度快 优先级灵活
缺点	对电路故障敏感	控制线较多	控制线多
	优先级不灵活	控制相对复杂	控制复杂

总线周期的四个阶段

- **1) 申请分配阶段:**由需要使用总线的主模块(或主设备)提出申请,经总线仲裁机构决定将下一传输周期的总线使用权授予某一申请者。也可将此阶段细分为传输请求和总线仲裁两个阶段。
- 2) 寻址阶段: 获得使用权的主模块通过总线<mark>发出</mark>本次要访问的从模块的<mark>地址</mark>及有关<mark>命令</mark>, 启动参与本次传输的从模块。
- 3) 传输阶段: 主模块和从模块进行数据交换,可单向或双向进行数据传送。
- 4) 结束阶段: 主模块的有关信息均从系统总线上撤除, 让出总线使用权。

总线定时是指总线在双方交换数据的过程中需要时间上配合关系的控制,这种控制称为总线定时,它的实质是一种协议或规则

· 同步通信(同步定时方式) 由 统一时钟 控制数据传送

异步通信(异步定时方式) 采用 应答方式,没有公共时钟标准

半同步通信 同步、异步结合

分离式通信 充分 挖掘 系统 总线每瞬间 的 潜力

同步 发送方用系统时钟前沿发信号 接收方用系统时钟后沿判断、识别

异步 允许不同速度的模块和谐工作

半同步通信:统一时钟的基础上,增加一个"等待"响应信号WAIT

上述三种通信的共同点

一个总线传输周期(以输入数据为例)

 主模块发地址、命令 使用总线

从模块准备数据 不使用总线 总线空闲

 从模块向主模块发数据 使用总线

分离式通信的一个总线传输周期

子周期1 主模块申请占用总线,使用完后 放弃总线的使用权

子周期2 从模块申请占用总线, 将各种信 特点:

- 1. 各模块均有权申请占用总线
- 2. 采用同步方式通信,不等对方回答
- 3. 各模块准备数据时, 不占用总线
- 4. 总线利用率提高

VGA: Video Graphics Array,也称为D-sub端口 传输模拟: CRT显示器,模拟信号:数字信号—>模拟信号—>VGA—>CRT LCD液晶显示器,数字信号:模拟信号—>VGA—>数字信号—>LCD 模拟信号在超过1280×1024分辨率—>转换损耗明显 传输模拟信号

息送至总线上

DVI: Digital Visual Interface 传输数字信号 但在分辨率1024×768以下时与VGA差别不大

HDMI: High Definition Multimedia Interface

理论最大传输速度可达Gb/s 影像数据+8声道的音讯信号 源于DVI技术 三种类型

A型: 高清电视, 投影仪等 C型: 平板电脑, MP4等 D型: 智能手机, 平板电脑等

也称刷新存储器,为了不断提高刷新图像的信号,必须把一帧图像信息存储在刷新存储器中。其存储容 量由图像分辨率和灰度级决定,分辨率越高,灰度级越多,刷新存储器容量越大。

VRAM容量 = 分辨率 × 灰度级位数

2.磁盘的性能指标

① 磁盘的容量: 一个磁盘所能存储的字节总数称为磁盘容量。磁盘容量有非格式化容量和格式化容量之分。 非格式化容量是指磁记录表面可以利用的磁化单元总数。 格式化容量是指按照某种特定的记录格式所能存储信息的总量。

② 记录密度: 记录密度是指盘片单位面积上记录的二进制的信息量,通常以道密度、位密度和面密度表示。

道密度是沿磁盘半径方向单位长度上的磁道数; 位密度是磁道单位长度上能记录的二进制代码位数; 相等的, 并不是圆越大信息越多, 故每个 面密度是位密度和道密度的乘积。

注意: 磁盘所有磁道记录的信息量一定是 磁道的位密度都不同。

③ 平均存取时间:

平均存取时间 = 寻道时间(磁头移动到目的磁道)+ 旋转延迟时间(磁头定位到所在扇区)+ 传输时间(传输数据所花费的时间)

④ 数据传输率:磁盘存储器在单位时间内向主机传送数据的字节数,称为数据传输率。

假设磁盘转数为r(转/秒),每条磁道容量为N个字节,则数据传输率为D,=rN

RAID的分级如下所示。在RAID1~RAID5的几种方案中,无论何时有磁盘损坏,都可以随时拔出受损的磁盘再插入好的磁盘,而数据不会损坏。

RAIDO: 无冗余和无校验的磁盘阵列

RAID1: 镜像磁盘阵列。

RAID2:采用纠错的海明码的磁盘阵列。 RAID3:位交叉奇偶校验的磁盘阵列。

RAID4: 块交叉奇偶校验的磁盘阵列。

RAID5: 无独立校验的奇偶校验磁盘阵列。

RAIDO把连续多个数据块交替地存放在不同物理磁盘的扇区中,几个磁盘交叉并行读写,不仅扩大了存储容量,而且提高了磁盘数据存取速度,但RAIDO没有容错能力。

RAID1是为了提高可靠性,使两个磁盘同时进行读写,互为备份,如果一个磁盘出现故障,可从另一磁盘中读出数据。两个磁盘当一个磁盘使用,意味着容量减少一半。

CPU响应中断必须满足以下3个条件:

- ① 中断源有中断请求。
- ② CPU允许中断即开中断。
- ③一条指令执行完毕,且没有更紧迫的任务。

	单重中断	多重中断	
中断隐指令	关中断	关中断	
	保存断点 (PC)	保存断点(PC)	
	送中断向量	送中断向量	
中断服务程序	保护现场	保护现场和屏蔽字	
	-	开中断	
	执行中断服务程序	执行中断服务程序	
	-	关中断	
	恢复现场	恢复现场和屏蔽字	
	开中断	开中断	
	中断返回	中断返回	

屏蔽字设置的规律:

- 1. 一般用'1'表示屏蔽, '0'表示正常申请。
- 2. 每个中断源对应一个屏蔽字(在处理该中断源的中断服务程序时,屏蔽寄存器中的内容 为该中断源对应的屏蔽字)。
- 3. 屏蔽字中'1'越多,优先级越高。每个屏蔽 字中至少有一个'1'(至少要能屏蔽自身的中断)。

命中---写回法: Cache 被换出时才写回主存;全写法(写直通法):同时写入 Cache 和主存未命中---写分配法:主存中的块调入 Cache,在 Cache 中修改,搭配写回法非写分配法:只写入主存,不调入 Cache,搭配全写法

