LEAD SCORING GROUP ASSIGNMENT

Content

- 1. Introduction
- 2. Problem Statement
- 3. Road Map
- 4. Data Understanding and Approch
- 5. Insights of EDA
- 6. Data set preparation for Model Building
- 7. Model Building and Evaluation
- 8. Recommendation & Summary

Hello!

I am Rakshaykumar

An experienced professional working at

Kirloskar Oil Engine Limited, Pune as Manager in Data Analytics Division

I am Akshath K R

An experienced professional working at Interactive Brokers, Hyderabad as Project Associate in L&D

I am Prerit Sharma

Serving Officer in Indian Army,
Having 11 years experience in Equipment
Management and Operation

2 This is a Problem Statement and Objective

Problem:

- An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.
- Build a machine learning model for the X Education to categorized the customer with lead score to get the maximum conversion rate. The target to achieve a ballpark of the target lead conversion rate to be around 80%.

Objective: Build a logistic regression model to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads. A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted.

Roadmap

4 — This is a Data Under Standing and Approch

- The X Education provided data set with 9270 rows and 37 columns.
- The Dataset contains 9270 rows and 37 columns
- The Dataset contains 5 numerical and 27 categorical columns
- Some columns have null values which are to be handled during EDA.
- The "Prospect ID" and "Lean Number" columns are not significant and to be drop during EDA
- The approach to the problem solving:
 - Data understanding with respect to objective of problem statement
 - Exploratory Data Analysis
 - Data Preparation
 - Model Building
 - Model Evaluation
 - Brief Summary

Exploratory Data Analysis

All the steps in Road Map performed in Jupyter Notebook with clear Markdown and Plots.

The insights and observations stated Markdown along with plots in Jupyter Notebook

Null Value Imputation and Dropped variables

- The column "TotalVisits" and "Page Views Per Visit" null values replaced by its mean
- The column "Lead Source" and "Last Activity" null values replaced by it's mode
- The variable India and Null values are approximate to 97% of total rows hence we decide to drop the Country column.
- The columns "Specialization" & "How did you hear about X Education" has a "Select" variable with 21% & 54% weighted. The "select" variable is completely different from other variables. Considering the variable "Select" and importance of columns, we decided to replace the "Select" variable with "Not declared" in "Specialization" and "Unknown" in "How did you hear about X Education".
- The null values in "Specialization" and "How did you hear about X Education" are replaced with Mode values.

Null Value Imputation and Dropped variables

- The column "What is your current occupation" has 29.11% null values which are replaced by "Other" variable
- The count of "Housewife" and "Businessman" are not significantly high which are pushed to the variable "Others" and "Working Professional" respectively.
- The columns 'Do Not Call','Tags','Update me on Supply Chain Content','Lead Profile', 'City','Get updates on DM Content','What matters most to you in choosing a course', 'Search', 'Magazine','Newspaper Article','X Education Forums', 'Newspaper', 'Digital Advertisement', 'Through Recommendations','Receive More Updates About Our Courses', 'I agree to pay the amount through cheque','Country' are not significant and does not provide sufficient information for problem statement, hense decided to drop the list of columns.

Insight from TARGET column "Converted"

Insight: Out of 9270 application, 3561 are converted which leaves ~39% Converted rate.

Insight from Numterical column

Insight: There are outlier in the "TotalVisits" but we are keeping the same since it is important data points. Since the mean is 1 count, we can interpreted that the converted applicant visited at least once to the website.

Insight: The applicant who are not converted does not show interest in exploring course on website.

The applicant who are converted have spend average time of 15 min before enrolling.

Insight from Lead Origin Catogorical columns

Insight: The "Lead Import" having highest conversion rate. API and "Landing Page Submission" conversion rate is lower compare to "Lead Import"

Insight from NAME_TYPE_SUITE Catogorical columns

Assumption:

- The variables "Google", "google", "bing", "Welingak Website", "Referral Sites", "Organic Search" are considered as a "Search_referral_Source"
- The variable "Direct Traffic", "Olark Chat", "Live Chat" are considered as a "Direct_Site_Source"
- The variable
 "Facebook","Click2call","Social
 Media","blog","youtubechannel","Refere
 nce","Press_Release","Pay per Click
 Ads","WeLearn","welearnblog_Home","t
 estone","NC_EDM" are considered as a
 "Social_Media_Source"

Insight from Last Activity Catogorical columns

Assumption:

- The variable "Email Opened", "Olark Chat Conversation", "Converted to Lead" are mapped as "Activity Active"
- The variable "SMS Sent", "Page Visited on Website", "Email Link Clicked", "Form Submitted on Website", "Had a Phone Conversation", "Resubscribed to emails" are mapped as "Activity_Moderate"
- The variables "Email
 Bounced", "Unreachable", "Unsubscribed"
 , "Approached upfront", "View in browser
 link Clicked", "Email Received", "Email
 Marked Spam", "Visited Booth in
 Tradeshow" are mapped as
 "Activity_Incative"

Insight from Specialization Catogorical columns

Insight from Specialization Catogorical columns

Insight:

- The null values and Select specializations are considered as Not declared
- Considering the important variables, we have not disturb the Specialization columns

Insight from Current Occupation column

Insight: The applicant with Working Professional occupation have high conversion rate while the student have lowest.

Insight from Numeric to Numeric columns

Insight:

The correlation between the "Page views Per Visit" and "TotalVisits" are high (0.51)

Data Preparation

Data Preparation for Logistic Regression or any other machine learning algorithm is essential and crusial process.

Insight from Amount Columns respect to TARGET

- 1) Prepared dummy variables for column "Lead Origin", "Lead Source", "Last Activity", "Specialization" and "What is your current occupation"
- 2) Get target/dependent variable on y and independent variables on X
- 3) Splitting the dataset for train and test by train_test_split
- 4) Scale the data set with MinMaxScaler

Model Building and Evaluation

LogisticRegression from Sklearn and Statemodel.api are used for model building

Insight of Model-0 with Statemodel.api

In [3317]:	1 # ModeL_0	with all varia	bLes			
	<pre>2 lr0 = sm.GLM(y_train,(sm.add_constant(X_train)), family = sm.families.Binomial()) 3 lr0.fit().summary()</pre>					
317]:	Generalized Linear N	Indal Pagrassion Ra	cults			
	Dep. Variable:		No. Observa	tions:	6468	
	Model:	GLM	Df Resi		8435	
	Model Family:	Binomial	Df N	Model:	32	
	Link Function:	Logit			1.0000	
	Method:	IRLS	Log-Likeli			
	Date: Time:	Sat, 12 Aug 2023 20:14:39	Dev		5817.9	
	No. Iterations:		Pseudo R-squ			
	Covariance Type:	nonrobust				
			coef st	derr	z P> z	I IN 025
		cons	t -0.7349 0			
		Do Not Emai	il -1.3834 0	.186 -	7.428 0.00	-1.748
			s 3.4279 1			
		ne Spent on Websit Page Views Per Visi				
	A free copy of Mas	-				
		-	1 -3.5278 0			
	Landir	ng Page Submission	n -4.6598 0	.348 -1	3.391 0.00	-5.342
		Direct_Site_Source				
	Sea	rch_referral_Source				
		Activity_Activ				
	Ranking Invest	ment And Insurance				

Insight: The multiple variables have very high p-value, so decided to get best fit variable by Recursive Features Elimination(RFE)

Apply Recursive Features Elimination

The RFE method gave 25 best fit columns as listed-

'Do Not Email', 'TotalVisits', 'Total Time Spent on Website', 'Page Views Per Visit', 'API', 'Landing Page Submission', 'Direct_Site_Source', 'Search_referral_Source', 'Activity_Moderate', 'Banking, Investment And Insurance', 'Business Administration', 'E-COMMERCE', 'Finance Management', 'Healthcare Management', 'Human Resource Management', 'IT Projects Management', 'Marketing Management', 'Media and Advertising', 'Operations Management', 'Rural and Agribusiness', 'Supply Chain Management', 'Travel and Tourism', 'Student', 'Unemployed', 'Working Professional'

Model Building Process

- Selected 25 best fit columns for Model Building Process
- Logistic Regression model build on Statemodel.api libraries with GLM
- Models performance evaluated by p-value and VIF
- Model evaluation process iterated with 13 various model converge to the p-value below 0.05 and VIF value below 5.0
- VIF of "Search_referral_Source" column is 5.11 which is very near to 5.0, hence decided to keep.

Final Model Details

```
# Build the final model for further testing and evaluation
X_train_sm = sm.add_constant(X_train[col])
final_model = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = final_model.fit()
res.summary()
```

	Features	VIF
5	Search_referral_Source	5.11
4	Direct_Site_Source	3.55
2	Page Views Per Visit	3.22
11	Unemployed	2.70
3	API	2.24
1	Total Time Spent on Website	2.11
6	Activity_Moderate	1.75
12	Working Professional	1.22
8	Finance Management	1.18
0	Do Not Email	1.10
7	Banking, Investment And Insurance	1.06
10	Student	1.05
9	Healthcare Management	1.03

Dep. Variable:	Converted	No. O	bservatio	ns:		6468		
Model:	GLM	D	f Residu	als:		6454		
Model Family:	Binomial		Df Mo	del:		13		
Link Function:	Logit	Scale: Log-Likelihood:			1.0000			
Method:	IRLS							
Date:	Sat, 12 Aug 2023	Deviance:			5967.8			
Time:	20:14:42	P	earson c	hi2:	6.48	e+03		
No. Iterations:	6	Pseudo	R-squ. (C	S):	0	.3341		
Covariance Type:	nonrobust							
		coef	std err		z	P> z	[0.025	0.975]
	const	-0.5317	0.166	-3.2	202	0.001	-0.857	-0.206
	Do Not Email	-1.1719	0.148	-7.9	904	0.000	-1.463	-0.881
Total Time	Total Time Spent on Website				95	0.000	3.552	4.131
Pag	Page Views Per Visit				086	0.000	-11.402	-6.953
	API	0.2005	0.078	2.5	79	0.010	0.048	0.353
Di	irect_Site_Source	-2.3353	0.159	-14.6	553	0.000	-2.648	-2.023
Search	n_referral_Source	-2.0718	0.166	-12.4	146	0.000	-2.398	-1.746
1	Activity_Moderate	1.0091	0.066	15.3	375	0.000	0.881	1.138
Banking, Investme	ent And Insurance	0.3476	0.172	2.0)23	0.043	0.011	0.684
Fina	ince Management	0.2435	0.106	2.2	294	0.022	0.035	0.452
Health	care Management	0.5293	0.256	2.0	71	0.038	0.028	1.030
	Student	1.2911	0.222	5.8	305	0.000	0.855	1.727
	Unemployed				706	0.000	1.122	1.442
Wor	king Professional	3.6681	0.186	19.6	88	0.000	3.303	4.033

Model Evaluation

Insight: The trade of between the precision and recall at approximate at 0.4 which considered as threshold for predicting the dependent variable

Evaluation Matrix

Classification	Report of	Train Set	:							
	precision	recall	f1-score	support						
0	0.84	0.80	0.82	4002						
1	0.70	0.75	0.73	2466						
accuracy			0.78	6468						
macro avg	0.77	0.78	0.77	6468						
weighted avg	0.79	0.78	0.79	6468						
Classification Report of Test Set :										
	precision	recall	f1-score	support						
0	0.83	0.81	0.82	1677						
1	0.72	0.75	0.73	1095						
accuracy			0.79	2772						
macro avg	0.78	0.78	0.78	2772						
weighted avg	0.79	0.79	0.79	2772						

Reccomendation & Summary

8 Recommendation & Summary

Recommendations

- 1. Total Time Spent on Website: The feature "Total Time Spent on Website" has a positive coefficient in the model, indicating that leads who spend more time on the website are more likely to convert. This suggests that enhancing website engagement and content quality could be beneficial. Consider optimizing the user experience, providing valuable content, and ensuring clear calls to action to keep leads engaged and interested.
- 2. Direct Traffic Source: Leads coming from the "Direct_Site_Source" have a negative impact on conversion. Focus on improving the user experience for visitors arriving directly to website. Implement user-friendly navigation, intuitive design, and personalized content to increase their likelihood of converting.
- **3. Search and Referral Sources:** Similar to direct traffic, leads from "Search_referral_Source" also show a negative impact on conversion. Optimize the search engine visibility and referral sources to ensure that the content aligns with the leads' interests. This could involve improving the strategy and fostering partnerships with relevant referral websites.
- **4. Working Professionals and Students:** The categories "Working Professional" and "Student" have positive coefficients, indicating a higher likelihood of conversion for these groups. Tailor marketing efforts to resonate with their needs and preferences. Highlight how offerings can benefit them specifically, addressing their pain points and motivations.
- **5. Do Not Email:** The "Do Not Email" feature negatively impacts conversion. This implies that leads who opt out of receiving emails are less likely to convert. While respecting privacy preferences, try to provide value through email communication. Send personalized and relevant content that nurtures leads and keeps them engaged with the brand.
- **6. Improve Page Views Per Visit:** The negative coefficient for "Page Views Per Visit" suggests that too many page views might overwhelm or confuse leads. Work on streamlining the user journey and ensuring that each page visit provides clear and relevant information. Use data-driven insights to optimize the website's layout and content.

8 Recommendation & Summary

Lead Score: The "Lead Score" can serve as a useful tool for ranking and prioritizing leads. Allocate resources more efficiently by focusing on leads with higher scores. The lead score generated by a logistic regression model to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads. A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted.

The results indicate that the logistic regression model exhibited consistent performance across the training and test datasets. With an accuracy of approximately 78.37% on the training set and 78.64% on the test set, the model demonstrates a balanced ability to classify instances correctly, maintaining its efficacy when encountering new, unseen data.

Accuracy: The accuracy represents the percentage of correctly classified instances out of the total instances. In our case, the accuracy is around 78.37% for the training set and 78.64% for the test set. These accuracy values are quite similar, indicating that the model is generalizing reasonably well to unseen data.

Precision: Precision measures the proportion of true positive predictions among all positive predictions made by the model. Higher precision indicates fewer false positives. The model achieved a precision of around 70.19% on the training set and 72.16% on the test set for the positive class. These precision values are acceptable and show that when the model predicts the positive class, it's correct around 70-72% of the time.

Recall / Sensitivity: Recall (also known as sensitivity) measures the proportion of true positive predictions among all actual positive instances. It's an indicator of how well the model is capturing positive instances. The model achieved a recall of about 75.22% on the training set and 74.79% on the test set for the positive class. These values indicate that the model is capturing around 75% of the actual positive instances.

Specificity: Specificity measures the proportion of true negative predictions among all actual negative instances. It's an indicator of how well the model is identifying negative instances. The model achieved a specificity of 80.0% on the training set and 81.0% on the test set. These values suggest that the model is good at correctly identifying negative instances.

Overall, model seems to have balanced performance across various metrics on both the training and test sets. The small differences between the training and test set metrics indicate that the model is not overfitting.

Thanks!

You can find us at,

Rakshaykumar

- <u>rakskru@rediffmail.com</u>
- https://www.linkedin.com/in/Rakshaykumar

Akshath K R

- Akshath.kusumaravi7@gmail.com
- https://www.linkedin.com/in/akshath-kr-541049a6/

Prerit Sharma

focusedprerit9999@gmail.com