Геометрия, 1 курс

Городенский

Формула оценки: $\min\left(\frac{S+C+E+L+K}{40}, 10\right)$, где S, C, E, L, K — оценки за семинары, коллоквиум, экзамен, листки и контрольные; каждая из этих оценок от 0 до 100.

ВЕКТОРНЫЕ И АФФИННЫЕ ПРОСТРАНСТВА

Определение 1. Векторное пространство — множество V (элементы которого называются «векторами») с операциями $+: V \times V \to V$ и $\cdot: \mathbb{F} \times V \to V$, обладающими следующими свойствами:

- \bullet V абелева группа по сложению.
- $\forall \lambda, \mu \in \mathbb{F}, \overline{v} \in V : \lambda(\mu \overline{v}) = (\lambda \mu) \overline{v};$
- $\forall \lambda, \mu \in \mathbb{F}, \overline{v} \in V : (\lambda + \mu)\overline{v} = \lambda \overline{v} + \mu \overline{v};$
- $\forall \lambda \in \mathbb{F}, \overline{v}, \overline{w} \in V : \lambda(\overline{v} + \overline{w}) = \lambda \overline{v} + \lambda \overline{w};$
- $\forall \overline{v} \in V : 1 \cdot \overline{v} = \overline{v}$.

Определение 2. Линейное отображение — функция $f: U \to W$ (между векторными пространствами), такая, что $f(\lambda \overline{u} + \mu \overline{v}) = \lambda f(\overline{u}) + \mu f(\overline{v})$ для всех $\overline{u}, \overline{v} \in U$.

Определение 3. Изоморфизм пространств — биективное линейное отображение.

Определение 4. Одномерное пространство — пространство V, такое, что в нём есть $\overline{v} \neq \overline{0}$ и $\forall \overline{u} \in V \exists \lambda : \lambda \overline{v} = \overline{u}$.

Определение 5. Двумерное пространство — пространство V, такое, что в нём есть непропорциональные \overline{v} и \overline{w} , и $\forall \overline{u} \in V \exists \lambda, \mu \in \mathbb{F} : \overline{u} = \lambda \overline{v} + \mu \overline{w}$.

Определение 6. Определитель двумерной матрицы — выражение

$$\det\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} = \det\begin{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \end{pmatrix} = a_1b_2 - a_2b_1.$$

Лемма 1. Определитель билинеен и кососимметричен (т.е. $\det(\overline{v_1}, \overline{v_2}) = -\det(\overline{v_2}, \overline{v_1})$).

Теорема 2 (Крамер). Векторы $\overline{v_1}, \overline{v_2}$ образуют в \mathbb{F}^2 базис тогда и только тогда, когда $\det(\overline{v_1}, \overline{v_2}) \neq 0$. В этом случае для любого вектора $\overline{u} \in \mathbb{F}^2$ выполняется

$$\overline{u} = \frac{\det(\overline{u}, \overline{v_2})}{\det(\overline{v_1}, \overline{v_2})} \overline{v_1} + \frac{\det(\overline{v_1}, \overline{u})}{\det(\overline{v_1}, \overline{v_2})} \overline{v_2}.$$

Определение 7. Площадь ориентированного параллелограмма — функция $S:V imes V o \mathbb{F},$ обладающая следующими свойствами:

- $S(\overline{a}, \overline{b}) = S(\overline{a}, \overline{b} + \lambda \overline{a}) = S(\overline{a} + \mu \overline{b}, \overline{b});$
- $S(\lambda \overline{a}, \overline{b}) = \lambda S(\overline{a}, \overline{b}) = S(\overline{a}, \lambda \overline{b}).$

Теорема 3. На любом двумерном V существует ровно одна функция S с точностью до пропорциональности.

Доказательство. С одной стороны, $f(\overline{a}, \overline{b}) = \det(\overline{a}, \overline{b})$ подходит. Пусть $\overline{u}, \overline{v}$ — базис на V и $c = S(\overline{u}, \overline{v})$. Рассмотрим $S(\overline{a}, \overline{b})$:

$$S(\overline{a}, \overline{b}) = S(x_1 \overline{u} + y_1 \overline{v}, x_2 \overline{u} + y_2 \overline{v}) = S(\overline{u}, \overline{v}) \cdot (x_1 y_2 - x_2 y_1) = c \cdot \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}. \blacksquare$$

Определение 8. Аффинное пространство — множество \mathbb{A} (элементы которого называются «точками») такое, что $\forall a,b \in \mathbb{A} \exists \overline{ab} \in V$ со следующими свойствами:

- $\forall p \in \mathbb{A}$ верно, что $f : \mathbb{A} \to V, q \mapsto \overline{pq}$ биективно;
- $\forall a, b, c \in \mathbb{A} : \overline{ab} + \overline{bc} = \overline{ac}$.

Определение 9. Центр тяжести набора точек — точка c, такая, что $\sum_i \mu_i \overline{cp_i} = 0$, где p_i — точки набора, а $\mu_i \in \mathbb{F}$ — веса этих точек.

Теорема 4. Если $\sum \mu_i \neq 0$, то центр тяжести существует и единственен.

Лемма 5. Пусть есть системы точек (p_i, λ_i) и (q_i, μ_i) , при этом $\sum \lambda_i \neq 0, \sum \mu_i \neq 0$. Пусть P, Q — центры тяжести этих систем. Тогда центр тяжести объединения этих систем совпадает с центром тяжести системы $\{(P, \sum \lambda_i), (Q, \sum \mu_i)\}$.

Определение 10. Коллинеарные точки — три элемента $a,b,p\in\mathbb{A}$ такие, что $\overline{pa}\sim\overline{pb}$.

Определение 11. Аффинная прямая — множество таких p, что a,b,p коллинеарны для фиксированных a,b.

Определение 12. Координатный репер — тройка $(O \in \mathbb{A}, \overline{v}, \overline{w})$ такая, что $\overline{v} \not\sim \overline{w}$. Если $Y = O + \lambda \overline{v} + \mu \overline{w}$, то пара (λ, μ) называется координатами Y в этом репере.

Определение 13. Треугольник — тройка неколлинеарных точек из \mathbb{A}^2 .

Определение 14. Площадь треугольника — функция $S(a,b,c)=\frac{1}{2}S(\overline{ab},\overline{ac})$, где $S(\overline{u},\overline{v})$ — площадь параллелограмма.

Лемма 6. Для любых точек $p,a,b,c\in\mathbb{A}^2$ таких, что a,b,c неколлинеарны, выполняется S(abc)=S(pab)+S(pbc)+S(pca).

Определение 15. Барицентрические координаты — набор весов α, β, γ такой, что $\alpha + \beta + \gamma = 1$ и $p = a\alpha + b\beta + c\gamma$ (где p — точка, координаты которой мы ищем).

Лемма 7. Координаты точки p равны $\alpha = \frac{S(pbc)}{S(abc)}, \beta = \frac{S(pca)}{S(abc)}, \gamma = \frac{S(pab)}{S(abc)}$

Аффинные преобразования

Определение 16. Полуаффинное преобразование — биекция $f: \mathbb{A}^2 \to \mathbb{A}^2$, переводящая прямые в прямые.

Определение 17. Дифференциал полуаффинного преобразования — функция $D_f:V \to V, \overline{ab} \mapsto \overline{f(a)f(b)}.$

Свойства

- f сохраняет параллельность и переводит параллелограммы в параллелограммы.
- Дифференциал определён корректно, кроме того, $D_f(\overline{v}) + D_f(\overline{w}) = D_f(\overline{v} + \overline{w}).$
- $D_f(\lambda \overline{v})$ пропорционален $D_F(\overline{v})$.

Обозначим за $\psi_v(\lambda)$ такую функцию $\mathbb{F} \to \mathbb{F}$, что $D_f(\lambda \overline{v}) = \psi_v(\lambda) D_f(\overline{v})$.

Лемма 8. ψ_v не зависит от v (дальше мы будем обозначать эту функцию ψ).

Лемма 9. ψ является автоморфизмом \mathbb{F} .

Лемма 10. Полуаффинное преобразование однозначно задаётся f(o) и $D_f(\overline{v})$, а дифференциал полулинеен, т.е. $\exists \psi : \mathbb{F} \to \mathbb{F}; D_f(\lambda \overline{u} + \mu \overline{v}) = \psi(\lambda) f(\overline{u}) + \psi(\mu) f(\overline{v}).$

Рассмотрим в \mathbb{F} простое подполе (множество элементов вида $\frac{1\pm 1\pm ...\pm 1}{1\pm 1\pm ...\pm 1}$). Очевидно, что на нём автоморфизм — это тождественное преобразование. Тогда если \mathbb{F} само простое (т.е. \mathbb{Q} или $\mathbb{Z}/\mathbb{Z}p$), то $\psi(x)=x$. Кроме того, из непрерывности \mathbb{R} получается то же самое для \mathbb{R} . Почему это так: $x\in\mathbb{R}>0\iff\exists y:x=y^2$, поэтому ψ будет монотонной, а ещё $\psi(t)=t\forall t\in\mathbb{Q}$.

Теорема 11 (по анализу). $\psi(x): \mathbb{R} \to \mathbb{R}$ возрастает, и $\psi(x) = x \forall x \in \mathbb{Q}$. Тогда $\psi(x) = x \forall x$.

Определение 18. Аффинное преобразование — функция $f: \mathbb{A}(U) \to \mathbb{A}(W)$ (между аффинными пространствами над векторными пространствами U,W), такая, что существует линейное отображение $D_f: U \to V$ такое, что $\forall p \in \mathbb{A}(U): f(p) = f(o) + D_f(\overline{op})$ для некоторой фиксированной точки $o \in \mathbb{A}(U)$.

Лемма 12. В качестве o можно выбрать любую точку в $\mathbb{A}(U)$, и D_f не зависит от выбора.

Лемма 13. Отображение $f: \mathbb{A}(U) \to \mathbb{A}(V)$ аффинно тогда и только тогда, когда

$$\forall p_1, \dots, p_n \in \mathbb{A}(U), \mu_1, \dots, \mu_n \in \mathbb{F} : f(\mu_1 p_1 + \dots + \mu_n p_n) = \mu_1 f(p_1) + \dots + \mu_n f(p_n).$$

Лемма 14. Аффинное преобразование $f: \mathbb{A}(U) \to \mathbb{A}(V)$ однозначно задаётся значениями f(o) и $D_f(e_i)$, где $o \in \mathbb{A}(U)$ и $\{e_i\}$ — базис в \mathbb{U} .

Лемма 15. Для любого $\triangle abc \in \mathbb{A}(U)$ и любых точек $x, y, z \in \mathbb{A}(V)$ существует единственное аффинное преобразование, переводящее a, b, c в x, y, z соответственно.

Определение 19. Произведение матриц — такая матрица $C = A \times B$, что $c_{i,j} = \sum_k a_{i,k} b_{k,j}$. В частности, произведение строки (a_1, \ldots, a_n) на столбец (b_1, \ldots, b_n) равно $\sum_i a_i b_i$.

Пусть V,W двумерные, $f:V\to W$ линейно, $f\binom{1}{0}=f\binom{a_{11}}{a_{21}}$ и $f\binom{0}{1}=f\binom{a_{12}}{a_{22}}$. Тогда

$$f\binom{x_1}{x_2} = x_1 \binom{a_{11}}{a_{21}} + x_2 \binom{a_{12}}{a_{22}} = \binom{a_{11} \ a_{22}}{a_{21} \ a_{22}} \times \binom{x_1}{x_2}.$$

Значит, все линейные отображения имеют вид $\overline{x} \mapsto A\overline{x}$, где столбцы A — это координаты $f(e_k)$ (по крайней мере для двумерных пространств, но для n-мерных это тоже верно).

Лемма 16. Любые 3 различные конкурентные прямые в $\mathbb{A}(U)$ можно перевести в любые 3 различные конкурентные прямые в $\mathbb{A}(V)$ ровно одним аффинным преобразованием с точностью до гомотетии в точке пересечения прямых.

Пусть у нас 4 конкурентные прямые, пересекающиеся в точке O, и с направляющими векторами $e_1, e_2, e_1 + e_2, e_2 + te_1$ (с концами в точках P_1, P_2, P_3, P_4), где $t \in \mathbb{F} \cup \infty$ (при значениях $\infty, 0, 1$ получаются соответственно первая, вторая и третья прямые). Тогда если преобразование из прошлой задачи перевело первые 3 прямые в m_1, m_2, m_3 , то 4-ю прямую оно переведёт в m_4 с таким же значением t.

Лемма 17. В предыдущем рассуждении выполняется

$$t = \frac{S(\overline{OP_1}, \overline{OP_3})S(\overline{OP_2}, \overline{OP_4})}{S(\overline{OP_1}, \overline{OP_4})S(\overline{OP_2}, \overline{OP_3})}.$$

Определение 20. Двойное отношение четвёрки прямых — t из леммы. Обозначение: $(l_1:l_2:l_3:l_4)$.

Как меняется площадь при аффинном преобразовании. Можно считать, что f линейно, т.к. аффинное преобразование — композиция линейного и сдвига. Пусть $S(\overline{u},\overline{v})$ — ненулевая функция площади. Тогда $S_f(\overline{u},\overline{v}):=S(f(\overline{u}),f(\overline{v}))$ — тоже функция площади (т.к. $S_f(\lambda\overline{u},\overline{v})=\lambda S_f(\overline{u},\overline{v})$ и $S_f(\overline{u}+\lambda\overline{v},\overline{v})=S_f(\overline{u},\overline{v})$). Значит, площадь при аффинном преобразовании умножается на какую-то константу.

Определение 21. Определитель линейного преобразования — такое число $\det(f)$, что $S(f(\overline{u}), f(\overline{v})) = \det(f)S(\overline{u}, \overline{v})$ (это число равно определителю матрицы отображения f).

Заметим, что композиция двух линейных отображений (в одном и том же векторном пространстве) линейна, и биективные линейные отображения обратимы. Значит, биективные линейные отображения образуют группу. Эту группу будем обозначать GL(V). Кроме того, то же верно и для аффинных отображений, эту группу будем обозначать Aff(V).

Обозначим $au_{\overline{v}}$ — параллельный перенос на вектор \overline{v} . Пусть F аффинно. Тогда

$$F \circ \tau_{\overline{v}}(p) = F(p + \overline{v}) = F(p) + D_F(\overline{v}) \implies F \circ \tau_{\overline{v}} \circ F^{-1} = \tau_{D_F(\overline{v})}.$$

Лемма 18. Подгруппа Aff(V) из преобразований с фиксированной неподвижной точкой изоморфна GL(V).

Лемма 19. Aff(V) изоморфна $GL(V) \times V$, и композиция двух преобразований из Aff(V) вычисляется следующим способом (это полупрямое произведение):

$$(v, F) \circ (w, G) = (v + F(w), F \circ G).$$

В этом разделе мы предполагаем, что $\mathbb{F} = \mathbb{R}$.

Определение 22. Скалярное произведение — функция $V \times V \to \mathbb{R}$, обладающая следующими свойствами:

- Билинейность: (ax + by, cz + dt) = ac(x, z) + ad(y, t) + bc(y, z) + bd(y, t) (здесь x, y, z, t вектора, а $a, b, c, d \in \mathbb{R}$);
- Симметричность: (v, w) = (w, v);
- Положительность: (v, v) > 0 при $v \neq 0$.

Определение 23. Евклидова структура — векторное пространство со скалярным произведением.

Определение 24. Длина вектора — число $|v| = \sqrt{(v,v)}$.

Определение 25. Перпендикулярные вектора — два вектора v, w такие, что (v, w) = 0. Примеры таких структур

- Стандартная евклидова структура: $V = \mathbb{R}^n$ и $\overline{x} \cdot \overline{y} = \sum x_i y_i$.
- Непрерывные функции $[0,1] \to \mathbb{R}$, и скалярное произведение равно $f \cdot g = \int_0^1 f(x)g(x)dx$.

Теорема 20 (Пифагор). $a \perp b$ тогда и только тогда, когда $|a+b|^2 = |a|^2 + |b|^2$. **Лемма 21.** $\forall \overline{a} \neq 0, \overline{b} \; \exists ! b_a, b_{a\perp}$ со следующими свойствами:

- $b = b_a + b_{a\perp}$;
- $b_a = \lambda a$;
- $b_{a\perp} \perp a$.

Теорема 22 (Неравенство Коши-Буняковского-Шварца). $\forall a, b : (a, b)^2 \le (a, a)(b, b)$, и равенство тогда и только тогда, когда $\lambda a + \mu b = 0$.

Доказательство. Если a=0, то утверждение тривиально. Пусть $a\neq 0$. Тогда $(b_{a\perp},b_{a\perp})\geq 0$ и равенство тогда и только тогда, когда a и b пропорциональны. Тогда

$$0 \le (b_{a\perp}, b_{a\perp}) = \left(b - a\frac{(a,b)}{(a,a)}, b - a\frac{(a,b)}{(a,a)}\right) = (b,b) - (b,a)\frac{(a,b)}{(a,a)} = \frac{(a,a)(b,b) - (a,b)^2}{(a,a)},$$

откуда и следует утверждение.

Лемма 23 (Неравенство треугольника). $|a+b| \le |a| + |b|$ и равенство, только если $\lambda a + \mu b = 0$, где $\lambda \mu \le 0$.

Доказательство. Возведём в квадрат: $(a+b,a+b) \le (a,a) + (b,b) + 2|a||b|$. Это равносильно тому, что $(a,b) \le |a||b|$, что верно при (a,b) < 0 и равносильно **Т. 22** в противном случае.

Определение 26. Ортонормальный базис — базис (e_1, e_2) т.ч. $(e_1, e_2) = 0$ и $|e_1| = |e_2| = 1$. Лемма 24. Ортонормальный базис всегда существует.

Доказательство. Пусть (a,b) — базис. Рассмотрим $e_1=\frac{a}{|a|}$ и $e_2=\frac{b_{a\perp}}{|b_{a\perp}|}$. Они подходят.

Определение 27. Матрица Грама — матрица $G_u = \binom{u_1}{u_2}(u_1,u_2) = \binom{(u_1,u_1)}{(u_2,u_1)} \binom{u_1,u_2}{(u_2,u_2)}$. Лемма 25. Пусть $\overline{x} = (x_1,x_2)\binom{u_1}{u_2}, \overline{y} = (u_1,u_2)\binom{y_1}{y_2}$. Тогда $(\overline{x},\overline{y}) = (x_1,x_2)G_u\binom{y_1}{y_2}$.

Рассмотрим аффинное пространство \mathbb{A} , ассоциированное с V.

Определение 28. Отрезок — множество таких $x \in \mathbb{A}$, что |x - a| + |b - x| = |b - a|.

Лемма 26. Пусть $(u_1,u_2)=(e_1,e_2)G_u$. Тогда $s^2(u_1,u_2)=s^2(e_1,e_2)\det G_u$. Лемма 27. Если (e_1,e_2) и (e_1',e_2') — два ортонормальных базиса, то $s(e_1,e_2)=\pm s(e_1',e_2')$.

Из **Т. 27** следует, что есть два типа ортонормальных базисов: «положительно ориентированные» и «отрицательно ориентированные».

Пусть (e_1, e_2) положительно ориентированный и $u = x_1e_1 + x_2e_2$. Тогда $|u| = 1 \iff x_1^2 + y_1^2 = 1$. Значит, $\exists! t \in [0, 2\pi k) : u = \cos t \cdot e_1 + \sin t \cdot e_2$. Это t называется углом между e_1 u u.

Лемма 28. Если |u|=1, то $(e_1,u)=\cos\angle(e_1,u)$ и $s(e_1,u)=\sin\angle(e_1,u)$.

Лемма 29. Для любых a, b выполняется $\cos \angle (a, b) = \frac{(a, b)}{|a||b|}$ и $\sin \angle (a, b) = \frac{s(a, b)}{|a||b|}$.

Тригонометрия. Пусть (e, e^{\perp}) — ортонормальный базис, |f| = |g| = 1. Заметим, что если $f = xe + ye^{\perp}$, то $f^{\perp} = xe^{\perp} - ye$. Тогда

$$(e,e^\perp) \binom{\cos \angle(e,g)}{\sin \angle(e,g)} = g = (f,f^\perp) \binom{\cos \angle(f,g)}{\sin \angle(f,g)} = (e,e^\perp) \binom{\cos \angle(e,f), -\sin \angle(e,f)}{\sin \angle(e,f), \cos \angle(e,f)} \binom{\cos \angle(f,g)}{\sin \angle(f,g)}.$$

Отсюда можно вывести формулы для $\sin(a+b)$ и $\cos(a+b)$.

Движения

Определение 29. Движение — отображение $f: \mathbb{A}(V) \to \mathbb{A}(V)$ евклидовой плоскости такое, что |f(a), f(b)| = |a, b|.

Свойства

- Любое движение переводит прямые в прямые.
- Любое движение биективно, а значит, аффинно.
- Движения сохраняют скалярное произведение.

Как мы знаем, любое движение — композиция движения с неподвижной точкой O и параллельного переноса (см. **Т. 19**). Попытаемся понять, как устроены линейные движения (они образуют группу, которая обозначается O(V)). При движении ортонормальный базис (e_1, e_2) переходит в ортонормальный базис $(f(e_1), f(e_2))$. Будем считать, что $s(e_1, e_2) = 1$, тогда $s(f(e_1), f(e_2)) = \pm 1$. Если $s(f(e_1), f(e_2)) = 1$, то движение называется собственным (они образуют группу, которая обозначается SO(V)), иначе несобственным.

Лемма 30. Любое собственное движение, сохраняющее точку O, является поворотом вокруг O, а несобственное — отражением относительно прямой, проходящей через O.

Будем обозначать τ_v — сдвиг на вектор v, $\rho_{O,\varphi}$ — поворот вокруг O на угол φ , σ_ℓ — симметрия относительно прямой ℓ .

Лемма 31. Композиция $\tau_v \circ \rho_{O,\varphi}$ — собственное движение.

Доказательство. Если $\varphi = 0$, то это очевидно. Пусть $\varphi \neq 0$. Построим p, q так, что $\overline{pq} = v$ виден из O под углом φ . Тогда эта композиция будет поворотом $\rho_{p,\varphi}$.

Определение 30. Скользящая симметрия — композиция $\tau_v \circ \sigma_\ell$ такая, что $\ell \perp v$ (преобразование однозначно определяет ℓ , т.к. это ГИТ $\frac{1}{2}(x+f(x))$).

Лемма 32. Любое несобственное движение является скользящей симметрией. Иными словами, даже если v,ℓ не перпендикулярны, $\tau_v \circ \sigma_\ell$ — скользящая симметрия.

Доказательство. Докажем, что $\tau_v \circ \sigma_\ell = \tau_w \circ \sigma_{\tau_{v/2}(\ell)}$), где w — ортогональная проекция v на ℓ . Это так, потому что можно взять репер (O, e_1, e_2) для $O \in \ell$ и $e_1 \parallel \ell$ и на нём эти два преобразования одинаковы.

Теорема 33 (Шаль). Любое собственное движение евклидовой плоскости является сдвигом или поворотом, а любое несобственное — скользящей симметрией.

Определение 31. Преобразование подобия — отображение $f: \mathbb{A}(V) \to \mathbb{A}(V)$ евклидовой плоскости, если $\exists \gamma \forall a, b: |f(a), f(b)| = \gamma |a, b|$. γ называется коэффициентом подобия.