Niveau 4

TCP - UDP

UDP ou TCP?

- IP est « Best effort »
- Adresse: numéro de port (16 bits)
- TCP
 - Connexion oriented
 - Fiable
 - Complexe
 - Similaire au téléphone
- UDP
 - Packet switching oriented (connexionless)
 - Non Fiable
 - Simple
 - Similaire à la poste

Ports

- Réservé: 0 1023 (IANA)
- Disponibles: les autres (1024 65535)
- Ceci, c'est la théorie, la pratique est légèrement différente!

TCP – Caractéristiques

- Transmission Control Protocol (pas 'Transport')
- RFC 793
- Basé sur la notion de flux (les données sont vues comme un flux, pas comme des paquets)
- Fiable
- Permet un contrôle de flux
- Full duplex
- Basé sur des numéros de séquence

Paquet TCP

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Source port						Destination port			
Sequence Number									
Acknowledgement Number									
Data Offset	Reserved U R C S S S Y I Window Size G K H T N N								
Checksum							Urgent Pointer		
Options									Padding
DATA									

TCP – Session

- Etablissement d'une session de bout en bout!
- Basé sur les 'sliding windows'
- Offre un transfert d'information fiable en:
 - renvoyant, si besoin est, des paquets perdus ou arrivant hors délais
 - reséquençant les paquets, s'ils arrivent dans un ordre différent de celui dans lequel ils ont été envoyés
- Ces opérations rendent le protocole complexe!

TCP – Seq & Ack numbers, Window Size

- Ce sont des nombres de 32 bits, indépendants l'un de l'autre, déterminant:
 - le numéro du premier byte du paquet envoyé (seq number)
 - Le numéro du dernier byte reçu (ack number)
- Le champ 'Window Size' indique le nombre de bytes disponibles pour recevoir des informations.
- Ces informations sont utilisées pour
 l'implémentation des « sliding windows » !

TCP – Exemple

```
Transmission Control Protocol, Src Port: ftp (21), Dst Port: 1137 (1137), Seq:
607915605, Ack: 4403356
    Source port: ftp (21)
    Destination port: 1137 (1137)
    Sequence number: 607915605
    Acknowledgement number: 4403356
    Header length: 28 bytes
    Flags: 0x0012 (SYN, ACK)
        0... = Congestion Window Reduced (CWR): Not set
        .0.. = ECN-Echo: Not set
        ..0. .... = Urgent: Not set
        ...1 .... = Acknowledgment: Set
        \dots 0... = Push: Not set
        .... .0.. = Reset: Not set
        \dots 1. = Syn: Set
        \dots 0 = Fin: Not set
    Window size: 5840
    Checksum: 0x7f70 (correct)
    Options: (8 bytes)
        Maximum segment size: 1460 bytes
        NOP
        NOP
        SACK permitted
```

TCP – 3 way handshake

Yves Gancberg Internet – Intranet – v 6.3 Slide 9 / 15

TCP – Contrôle de flux

- Idée: empêcher une machine rapide de 'noyer' une machine plus lente!
- Il faut donc un mécanisme permettant à la machine la plus lente de prévenir la plus rapide qu'elle ne sait plus suivre!

TCP – Sliding Window

- Idée: utiliser un buffer pour permettre le transfert de plusieurs trames l'une à la suite de l'autre.
- Si un une trame est plus grosse que le buffer: problème!
- Si les trames sont plus petites que le buffer... on les stocke les unes derrière les autres!
- Idéalement, l'application lit les données à la vitesse à laquelle elles arrivent!

 Data

Internet – Intranet – v 6.3 Slide 11 / 15

Window size

Application

Buffer

Physique

TCP – Principaux protocoles

- 20 FTP (data)
- 21 FTP (control)
- 22 SSH
- 23 Telnet
- 25 SMTP
- 80 HTTP

- 110 POP3
- 143 IMAP4
- 179 BGP
- 646 LDP

Paquet UDP

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Source port	Destination port				
Length	Checksum				
DATA					
· .					

UDP

- User Datagram Protocol
- RFC 768
- On envoie et... on espère!
- N'offre que le checksum et... le multiplexage par port!
- Simple

UDP – Principaux protocoles

- 53 DNS
- 67 Serveur DHCP
- 68 Client DHCP
- 69 TFTP
- 123 NTP
- 161 SNMP
- 520 RIP
- 521 RIPng

- 5060 SIP
- Port négocié en SDP (partie de SIP) – RTP