Off-Road Drivable Area Segmentation Using 3D LiDAR Data

Biao Gao*, Anran Xu*, Yancheng Pan*, Xijun Zhao[†], Wen Yao[†], Huijing Zhao*

*Peking University, Beijing, China

†China North Vehicle Research Institute, Beijing, China

Abstract—This electronic document is a live template. The various components of your paper [title, text, heads, etc.] are already defined on the style sheet, as illustrated by the portions given in this document.

I. INTRODUCTION

This template provides authors with most of the formatting specifications needed for preparing electronic versions of their papers. All standard paper components have been specified for three reasons: (1) ease of use when formatting individual papers, (2) automatic compliance to electronic requirements that facilitate the concurrent or later production of electronic products, and (3) conformity of style throughout a conference proceedings. Margins, column widths, line spacing, and type styles are built-in; examples of the type styles are provided throughout this document and are identified in italic type, within parentheses, following the example. Some components, such as multi-leveled equations, graphics, and tables are not prescribed, although the various table text styles are provided. The formatter will need to create these components, incorporating the applicable criteria that follow.

II. RELATED WORKS

It may be used for A4 paper size if the paper size setting is suitably modified.

III. METHODOLOGY

- A. Problem Definition
- B. Data Processing
- C. Drivable Area Segmentation / Network Architecture
- D. Cost Map Generation

IV. IMPLEMENTATION DETAILS

- A. Training Setup
- B. Ground Truth Labeling

 $\begin{array}{c} {\rm TABLE~I} \\ {\rm An~Example~of~a~Table} \end{array}$

	One	Two
ĺ	Three	Four

We suggest that you use a text box to insert a graphic (which is ideally a 300 dpi TIFF or EPS file, with all fonts embedded) because, in an document, this method is somewhat more stable than directly inserting a picture.

Fig. 1. Inductance of oscillation winding on amorphous magnetic core versus DC bias magnetic field

C. Evaluation

V. EXPERIMENTAL RESULTS

A conclusion section is not required. Although a conclusion may review the main points of the paper, do not replicate the abstract as the conclusion. A conclusion might elaborate on the importance of the work or suggest applications and extensions.

- A. Data set
- B. Proposed Method Results
- C. Limitations

VI. CONCLUSION

A conclusion section is not required. Although a conclusion may review the main points of the paper, do not replicate the abstract as the conclusion. A conclusion might elaborate on the importance of the work or suggest applications and extensions.

APPENDIX

Appendixes should appear before the acknowledgment.

ACKNOWLEDGMENT

The preferred spelling of the word acknowledgment in America is without an e after the g. Avoid the stilted expression, One of us (R. B. G.) thanks . . . Instead, try R. B. G. thanks . Put sponsor acknowledgments in the unnumbered footnote on the first page.

References are important to the reader; therefore, each citation must be complete and correct. If at all possible, references should be commonly available publications.

References

- G. O. Young, Synthetic structure of industrial plastics (Book style with paper title and editor), in Plastics, 2nd ed. vol. 3,
 J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 15 64.
- [2] W.-K. Chen, Linear Networks and Systems (Book style).
 Belmont, CA: Wadsworth, 1993, pp. 123 135.
- [3] H. Poor, An Introduction to Signal Detection and Estimation. New York: Springer-Verlag, 1985, ch. 4.

- [4] B. Smith, An approach to graphs of linear forms (Unpublished work style), unpublished.
- [5] E. H. Miller, A note on reflector arrays (Periodical style Accepted for publication), IEEE Trans. Antennas Propagat., to be publised.
- [6] J. Wang, Fundamentals of erbium-doped fiber amplifiers arrays (Periodical style Submitted for publication), IEEE J. Quantum Electron., submitted for publication.
- [7] C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private communication, May 1995.
- [8] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, Electron spectroscopy studies on magneto-optical media and plastic substrate interfaces(Translation Journals style), IEEE Transl. J. Magn.Jpn., vol. 2, Aug. 1987, pp. 740 741 [Dig. 9th Annu. Conf. Magnetics Japan, 1982, p. 301].
- [9] M. Young, The Techincal Writers Handbook. Mill Valley, CA: University Science, 1989.
- [10] J. U. Duncombe, Infrared navigation Part I: An assessment of feasibility (Periodical style), IEEE Trans. Electron Devices, vol. ED-11, pp. 34 39, Jan. 1959.
- [11] S. Chen, B. Mulgrew, and P. M. Grant, A clustering technique for digital communications channel equalization using radial basis function networks, IEEE Trans. Neural Networks, vol. 4, pp. 570 578, July 1993.
- [12] R. W. Lucky, Automatic equalization for digital communication, Bell Syst. Tech. J., vol. 44, no. 4, pp. 547 588, Apr. 1965.
- [13] S. P. Bingulac, On the compatibility of adaptive controllers (Published Conference Proceedings style), in Proc. 4th Annu. Allerton Conf. Circuits and Systems Theory, New York, 1994, pp. 8 16.
- [14] G. R. Faulhaber, Design of service systems with priority reservation, in Conf. Rec. 1995 IEEE Int. Conf. Communications, pp. 38.
- [15] W. D. Doyle, Magnetization reversal in films with biaxial anisotropy, in 1987 Proc. INTERMAG Conf., pp. 2.2-1 2.2-6.
- [16] G. W. Juette and L. E. Zeffanella, Radio noise currents n

- short sections on bundle conductors (Presented Conference Paper style), presented at the IEEE Summer power Meeting, Dallas, TX, June 22 27, 1990, Paper 90 SM 690-0 PWRS.
- 17] J. G. Kreifeldt, An analysis of surface-detected EMG as an amplitude-modulated noise, presented at the 1989 Int. Conf. Medicine and Biological Engineering, Chicago, IL.
- [18] J. Williams, Narrow-band analyzer (Thesis or Dissertation style), Ph.D. dissertation, Dept. Elect. Eng., Harvard Univ., Cambridge, MA, 1993.
- [19] N. Kawasaki, Parametric study of thermal and chemical nonequilibrium nozzle flow, M.S. thesis, Dept. Electron. Eng., Osaka Univ., Osaka, Japan, 1993.
- [20] J. P. Wilkinson, Nonlinear resonant circuit devices (Patent style), U.S. Patent 3 624 12, July 16, 1990.