Text Mining Assignment1

Jiameng Ma(4255445) Huishi Wang(4256875)

October 2024

Question 1

We utilize the sklearn.datasets library to load the 20 Newsgroups dataset, ensuring that we classify all 20 categories. The dataset is split into training and testing sets using an 80-20 split.

Question 2

In this part, we choose TF-IDF feature, use Naive Bayes, Logistic Regression and LinearSVC on this task. We split the test set by 20%. We can see from

Metric	Precision	Recall	F1-Score
Accuracy	0.88		
Macro Avg	0.89	0.87	0.87
Weighted Avg	0.89	0.88	0.87

Table 1: Naive Bayes

Metric	Precision	Recall	F1-Score
Accuracy	0.90		
Macro Avg	0.90	0.90	0.90
Weighted Avg	0.90	0.90	0.90

Table 2: Logistic Regression

Metric	Precision	Recall	F1-Score
Accuracy	0.93		
Macro Avg	0.93	0.93	0.93
Weighted Avg	0.93	0.93	0.93

Table 3: Linear SVC

the tables above that LinearSVC performs the best among these three models

as indicated by its higher accuracy, macro average, and weighted average for precision, recall, and F1-score.

Question 3

Three feature extraction methods are evaluated:

- 1. Count Vectorizer: Converts text documents to a matrix of token counts.
- 2. **TF** (Term Frequency): Normalizes word counts.
- 3. **TF-IDF** (Term Frequency-Inverse Document Frequency): Weighs words based on their frequency across documents, reducing the importance of common words.

The results of the evaluations yield the precision, recall, and F1-score for each classifier-feature combination. The following table summarizes the results:

Classifier	Feature Type	Precision	Recall	Recall
Naive Bayes	Count	0.89	0.87	0.87
Naive Bayes	TF	0.86	0.84	0.83
Naive Bayes	TF-IDF	0.83	0.87	0.87
Logistic Regression	Count	0.89	0.89	0.89
Logistic Regression	TF	0.87	0.87	0.87
Logistic Regression	TF-IDF	0.90	0.90	0.90
Linear SVC	Count	0.89	0.89	0.89
Linear SVC	TF	0.91	0.91	0.91
Linear SVC	TF-IDF	0.93	0.93	0.93

Table 4: The results of the evaluations

These results mean that the best performance comes from LinearSVC with TF-IDF features on the highest precision, recall, and F1-score among all tested combinations. This also proves that the LinearSVC works well in the case of multi-class text classification when the TF-IDF feature extraction method is applied, giving emphasis on more informative words by reducing the weight of common terms.

Question 4

In this part, we focused on several key parameters: lowercasing, stop words, analyzer configurations, and max features. The results from these experiments help us evaluate the impact of these parameters on the performance of the Linear SVC classifier.

Configuration	Lowercasing	Stop Words	Analyzer	N-gram Range	Max Features
Vectorizer 1	True	English	Word	(1, 1)	5000
Vectorizer 2	False	None	Word	(1, 1)	5000
Vectorizer 3	True	English	Word	(2, 2)	5000
Vectorizer 4	True	None	Char	(3, 3)	5000
Vectorizer 5	True	None	Word	(1, 1)	10000

Table 5: Configurations of CountVectorizer

Configuration	Accuracy	
Vectorizer 1	0.88	
Vectorizer 2	0.87	
Vectorizer 3	0.74	
Vectorizer 4	0.86	
Vectorizer 5	0.90	

Table 6: Accuracy Results for CountVectorizer Configurations

According to the accuracy of these five combinitions, vectorizer5 has the best performance.