Multiple-Choice-Test Diskrete Strukturen (A) TU Berlin, 01.06.2023

(Weller/Froese/Kunz/Peters Sommersemester 2023)

Arbeitszeit: 45 Minuten, Gesamtpunktzahl: 25

Hinweise:

- Je Aufgabe ist **mindestens** eine Antwortmöglichkeit korrekt.
- Auch Fragen der Form "Wieviele . . . gibt es?" können mehrere richtige Antworten haben!
- Wenn eine falsche Antwortmöglichkeit angekreuzt wurde, so gibt es Null Punkte für die betroffene Aufgabe.

Wir erinnern an folgende Definitionen aus der Vorlesung:

- Die Null ist eine natürliche Zahl.
- Die Reihenfolge der Buchstaben eines Wortes ist wichtig! Z.B. sind die Wörter aba und aab nicht identisch.
- $n^{\underline{k}} := \frac{n!}{(n-k)!}$ und $\binom{n}{k} := \frac{n^{\underline{k}}}{k!} = \frac{n!}{k!(n-k)!}$
- Es gelten die folgenden Formeln für das Ziehen von k Elementen aus einer n-elementigen Menge, beziehungsweise die Anzahl totaler Funktionen f von $\{1, \ldots, k\}$ auf $\{1, \ldots, n\}$

Zurücklegen mit ohne				f total	f total & injektiv	
geordnet	n^k	$n^{\underline{k}}$	Funktion engleich heit	n^k	$n^{\underline{k}}$	
ungeordnet	$\binom{n+k-1}{k}$	$\binom{n}{k}$	Gleichheit nach Umsortieren	$\binom{n+k-1}{k}$	$\binom{n}{k}$	

- \bullet Die Stirling-Zahl 1. Art s(n,k) ist die Anzahl der Permutationen von n Elementen mit genau k Zyklen.
- Die Stirling-Zahl 2. Art S(n,k) ist die Anzahl der k-Partitionen einer n-elementigen Menge. Eine k-Partition einer Menge M ist eine Menge von genau k nichtleeren, disjunkten Teilmengen $M_i \subseteq M$ mit $M = \biguplus_{i=1}^k M_i$.

Aufgabe 1: Relationen Welche der folgenden Aussagen sind l	sorrekt?			(4 Punkte)
Jede Bijektion vom Typ N × N in X Relationen können gleichzeitig sy Eine Äquivalenzrelation ist reflex X Jede reflexive Relation vom Typ Aufgabe 2: Wörter Sie möchten ein Passwort der Länge 8	ymmetrisch und antisyr kiv und transitiv, aber $\mathbb{N} \times \mathbb{N}$ ist surjektiv.	nmetrisch sein. nicht symmetrisch.	# C	(4 Punkte)
einmal vorkommen. Wieviele Möglich	keiten gibt es?		$ 3^8 - 3 \cdot 2^8 - 8^{\underline{3}} $	3
Aufgabe 3: Stirling-Zahlen Welche der folgenden Aussagen sind k X Für alle $n \in \mathbb{N}$ mit $n \geq 2$ gilt $S(n)$	s(n, n-1) = s(n, n-1).		$ \begin{array}{l} \mathbf{J} = \mathbf{S}(\mathbf{N}, \mathbf{A}) + \mathbf{J} \cdot \mathbf{S}(\mathbf{N}, \mathbf{A}) \\ = \mathbf{A} + \mathbf{J}^{\mathbf{A}} - \mathbf{A} \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \text{ gilt } \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) + \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) + \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) + \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) + \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) + \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) + \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) + \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb{N} \cdot \mathbf{S}(\mathbf{n}, \mathbf{A}) \\ \mathbf{S} \leq \mathbf{n} \in \mathbb$	k) = s(n, k).
Für alle $n \in \mathbb{N}$ gilt $S(n, 1) = s(n \times \mathbb{N})$ X Für alle $n \in \mathbb{N}$ mit $n \ge 2$ gilt $S(n, 1) = s(n \times \mathbb{N})$ Aufgabe 4: Wörter Seien $n, m \in \mathbb{N}$ mit $m \ge n$. Wievield	$s(n,1) \leq s(n,1).$ e Wörter der Länge $n \in \mathbb{R}$	Für alle $n \in \mathbb{N}$ $\begin{array}{c} \mathbf{S(2,3)} \\ \mathbf{S(nfA_{12})} \\ \end{array}$ $+ m \text{ über dem Alph}$		$(2,2) = 2^{n-1} - 1.$ (4 Punkte)
Buchstabe a und m mal der Buchstab $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		eme zwei as auiema	$X \binom{m+1}{m+1-n}$ $M \binom{m+n}{n}$	(3 Punkte)
Seien A, B nichtleere endliche Menger X Es gibt keine surjektive Funktion X Es gibt eine Teilmenge $B' \subseteq B$, s	n von A auf B . sodass eine Bijektion zw	wischen A und B' ex	cistiert.	(o'r amice)
Es gibt eine Teilmenge $A' \subseteq A$, s X Für jede totale Funktion $f : B$ Für jede totale Funktion $f : B$	A existiert ein $y \in A$,	sodass $ \{x \in B \mid f(x)\} $	$ x = y\} \ge \frac{ B }{ A }.$	
Aufgabe 6: Wörter Seien $x, y, z \in \mathbb{N}$. Wieviele Wörter der y mal der Buchstabe b und z mal der	Buchstabe c enthalten			(4 Punkte) mal der Buchstabe a,
$\begin{array}{c} \left[X \right] \left(\begin{array}{c} (x+y+z) \\ x \end{array} \right) \cdot \left(\begin{array}{c} \bullet \\ y \end{array} \right) \cdot \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \\ \left[\begin{array}{c} X \cdot y \cdot z \end{array} \right]$				(2 D 14)
Aufgabe 7: Wörter Seien $n, m \in \mathbb{N}$ mit $m \geq 2n$. Wieviel Buchstabe a und m mal der Buchstababab ist also erlaubt, das Wort bab	be b enthalten ist und babb jedoch nicht.) Hin	zwischen je zwei a's weis: Genau eine Ar	s mindestens zwei t ntwort ist korrekt.	
	$\begin{bmatrix} X & \binom{m-n+2}{m-2(n-1)} \\ & & \end{bmatrix} m^{2n}$	a bb b a	$ \begin{array}{c} \frac{m!}{n!} \\ \begin{pmatrix} m+n \\ n \end{pmatrix} \end{array} $	
	(m - 2	n+1-1)	= (M-N+2)	