Homework 3 for ECS 20

${\bf Tamim~Nekaien~(915803826)}$

October 20, 2019

This assignment was made with \heartsuit (and $\LaTeX).$

Contents

1	Question 1 1.1 Part 1 1.2 Part 2	ii ii ii
2	Question 2	ii
3	Question 3	ii
4	Question 4	ii
5	Question 5	ii
6	Question 6	iii

1 Question 1

1.1 Part 1

Direct Proof: $x, y, k, m \in \mathbb{Z}, x, y = 2k + 1 \text{(odd)}$, then x + y = 2m (even) x + y = (2k + 1) + (2k + 1) = 4k + 2 = 2(k + 1), k + 1 = m, 2(k + 1) = 2m 2m is a multiple of 2 and even, implying x+y is even QED.

1.2 Part 2

Proof by Contradiction: $x, y, k, m \in \mathbb{Z}, x, y = 2k + 1 \text{(odd)}, \text{ then } x + y = 2m + 1 \text{(odd)}$ x + y = (2k + 1) + (2k + 1) = 4k + 2 = 2(k + 1), k + 1 = m, 2(k + 1) = 2m2m is even, contradiction found, x+y is even QED.

2 Question 2

Direct Proof: $k, m \in \mathbb{Z}$, Two consecutive integers are odd and even, so $2k(2k+1) = 4k^2 + 2k = 2(2k^2 + k)$, $2k^2 + k = m$, $2(2k^2 + k) = 2m$ The product of two consecutive integer (odd and even) are even QED.

3 Question 3

Direct Proof: $x, k, m \in \mathbb{Z}, x^2 = 2k$ Making consecutive integers: $x^2 + x = x(x+1) = 2k$ $(x^2 + x = 2m) = x = 2m - 2k = 2(k - m)$. \therefore x is even QED

4 Question 4

Proof by Contradiction: Prove that you need less than 6 games a day for 41 games. Let games= g, $g \in \mathbb{N}$ g(max) = 5. There are 7 days in a week. 5*7 = 35, 35 < 41 Contradiction found, 5 games a day is not enough.

5 Question 5

Direct Proof: Let $n, m \in \mathbb{Z}$, n + (n + 1) + (n + 2) + (n + 3) + (n + 4) = 5n + 10 = 5(n + 2), (n + 2) = m, 5m

The sum of five consecutive numbers is a multiple of 5, QED

6 Question 6

Biconditional Proof: If n is odd then $3n^2 + 8$ is odd. Let $n, k, m \in \mathbb{Z}, n = 2k + 1, 3(2k + 1)^2 + 8 = 12k^2 + 12k + 11$ $= 2(6k^2 + 6k + 5) + 1, (6k^2 + 6k + 5) = m, 2m + 1 \text{ (odd)}.$ This statement is true, now for the inverse: If n is even then $3n^2 + 8$ is even. Let $n, k, m \in \mathbb{Z}, n = 2k, 3(2k)^2 + 8 = 12k^2 + 8$ $2(k^2 + 4), (k^2 + 4) = m, 2m \text{ (even)}.$ Statement is true both ways. QED