Weilin Luo ¹. Rongzhen Ye ¹. Hai Wan ^{1,*}. Shaowei Cai ^{2,*}. Biging Fang ¹ Delong Zhang ¹

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China ² State Kev Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

HCP Report of AAAI 2022 Paper

Content

- Motivation
- 2 Approach: PC and PCC
- Preliminary Results
- 4 Conclusion and Future Work

Content

Motivation

• • • • • • •

- 1 Motivation
- Approach: PC and PCC
- 3 Preliminary Results
- 4 Conclusion and Future Work

Definition of Problem

Combinatorial optimization problems (COPs)

Minimum weight dominating set problem (MWDS)

Figure 1: Example for MWDS.

 Motivation
 Approach: PC and PCC
 Preliminary Results
 Conclusion and Future Work
 Reference

 0 ● 0 0 0
 00000000
 00
 0
 0

 Background
 0
 0
 0
 0

Definition of Problem

Combinatorial optimization problems (COPs)

Minimum weight dominating set problem (MWDS)

Figure 1: Example for MWDS.

■ Maximum weight clique problem (MWCP)

Figure 2: Example for MWCP.

 Motivation
 Approach: PC and PCC
 Preliminary Results
 Conclusion and Future Work
 Reference

 00 ● ○
 00000000
 00
 0
 0

 Background
 0
 0
 0
 0

Definition of Problem

Local search

lacksquare A popular method for solving COPs [4,9–11]

4 / 24

 Motivation
 Approach: PC and PCC
 Preliminary Results
 Conclusion and Future Work
 Reference

 00 ● ○
 00000000
 000000
 00
 0

 Background
 0
 0
 0
 0

Definition of Problem

Local search

- A popular method for solving COPs^[4,9–11]
- Configuration checking (CC)^[3]: alleviate the *cycling problem* for COPs

Figure 3: CC for MWCP.

 Motivation
 Approach: PC and PCC
 Preliminary Results
 Conclusion and Future Work
 Reference

 ○○●○
 ○○○○○○○
 ○○○○○
 ○○○○○
 ○○○○○○

 Related Work
 ○○○○○○
 ○○○○○○
 ○○○○○○
 ○○○○○○○

Related Work

The variants of CC

- Redefinition of configuration (What we focus)
 - 1-level neighborhoods: [1,2,10]
 - 2-level neighborhoods: [8,11]
- Multi-value CC
- Changes of CC rules

Related Work

Motivation

Related Work

The variants of CC

- Redefinition of configuration (What we focus)
 - 1-level neighborhoods: [1,2,10]
 - 2-level neighborhoods: [8,11]
- Multi-value CC
- Changes of CC rules

CC strategy of CC²FS^[11] (MWDS 2-level neighborhoods)

- lacktriangle When removing a vertex u from the candidate solution S
 - confCh[u] := 0;
 - for each vertex $w \in N_1(u) \cup N_2(u)$, confCh[w] is set to 1.
- lacktriangle When adding a vertex v to the candidate solution S
 - for each vertex $w \in N_1(u) \cup N_2(u)$, confCh[w] is set to 1.

Approach: PC and PCC Preliminary Results Conclusion and Future Work
00000000 00000 00

Related Work

Motivation

○○○●○

Related Work

The variants of CC

- Redefinition of configuration (What we focus)
 - 1-level neighborhoods: [1,2,10]
 - 2-level neighborhoods: [8,11]
- Multi-value CC
- Changes of CC rules

CC strategy of CC²FS^[11] (MWDS 2-level neighborhoods)

- lacktriangle When removing a vertex u from the candidate solution S
 - \bullet confCh[u] := 0;
 - for each vertex $w \in N_1(u) \cup N_2(u)$, confCh[w] is set to 1.
- lacktriangle When adding a vertex v to the candidate solution S
 - for each vertex $w \in N_1(u) \cup N_2(u)$, confCh[w] is set to 1.

What about 3-, 4-, or larger-level neighborhoods?

Motivating Example Motivating Example

Motivation ○○○○●

Neighborhoods with more than two levels can have an impact on a vertex and should be considered in the configuration.

Motivating Example Motivating Example

Motivation

Neighborhoods with more than two levels can have an impact on a vertex and should be considered in the configuration.

CC²FS-H: variants of CC²FS^[11] (2-level neighborhoods)

- lacktriangle When removing a vertex u from the candidate solution S
 - \bullet confCh[u] := 0;
 - randomly choose half neighborhoods as configuration
 - for each vertex w in the configuration, confCh[w] is set to 1.
- lacktriangle When adding a vertex v to the candidate solution S
 - randomly choose half neighborhoods as configuration
 - for each vertex w in the configuration, confCh[w] is set to 1.

Motivation Motivating Example

> Neighborhoods with more than two levels can have an impact on a vertex and should be considered in the configuration.

CC²FS-H: variants of CC²FS^[11] (2-level neighborhoods)

- \blacksquare When removing a vertex u from the candidate solution S
 - \bullet confCh[u] := 0;
 - randomly choose half neighborhoods as configuration
 - for each vertex w in the configuration, confCh[w] is set to 1.
- \blacksquare When adding a vertex v to the candidate solution S
 - randomly choose half neighborhoods as configuration
 - for each vertex w in the configuration, confCh[w] is set to 1.

Table 1: CC2FS vs. CC2FS-H.

	CC ² FS CC ² FS-H			-H		
Instances	min	avg	time	min	avg	time (s)
frb30-15-1	212	214.2	2.59	212	212.0	0.11
frb30-15-2	242	242.0	8.81	242	242.0	0.18
frb30-15-3	175	175.0	0.01	175	175.0	0.03
frb30-15-4	166	168.6	0.19	166	166.0	0.08
frb30-15-5	160	160.0	0.01	160	160.0	0.02
frb35-17-1	274	274.9	0.57	274	274.0	0.11
frb35-17-2	208	208.3	67.44	208	208.0	0.29
frb35-17-3	201	201.0	0.38	201	201.0	0.10
frb35-17-4	286	286.8	0.73	286	286.0	0.45
frb35-17-5	295	295.7	5.60	295	295.0	0.11
frb40-19-1	262	262.0	1.99	262	262.0	0.14
frb40-19-2	243	243.9	0.66	243	243.0	0.18
frb40-19-3	250	251.8	102.43	250	250.0	3.88
frb40-19-4	250	250.0	0.07	249	249.0	95.82
frb40-19-5	272	282.3	0.31	272	277.6	82.50
frb45-21-1	328	328.3	7.82	328	328.0	0.64
frb45-21-2	259	261.7	46.82	259	259.1	1.39
frb45-21-3	233	233.9	9.19	233	233.0	0.89
frb45-21-4	399	399.2	22.67	399	399.0	0.95
frb45-21-5	312	318.8	128.19	312	312.0	1.82
frb50-23-1	261	264.7	90.71	261	261.0	8.97
frb50-23-2	277	277.0	0.01	277	277.0	0.17
frb50-23-3	299	301.9	1.21	281	292.2	31.13
frb50-23-4	265	265.0	3.04	265	265.0	0.47
frb50-23-5	410	418.8	128.09	410	411.1	158.96
frb53-24-1	229	230.0	95.41	229	229.0	2.35
frb53-24-2	298	298.0	1.04	298	298.0	0.38
frb53-24-3	182	182.1	0.01	182	182.0	0.26
frb53-24-4	189	189.0	0.02	189	189.0	0.27
frb53-24-5	204	204.0	0.01	204	204.0	0.29
frb56-25-1	229	229.2	0.32	229	229.0	0.41
frb56-25-2	319	319.5	25.27	319	319.0	3.46
frb56-25-3	336	338.7	30.21	336	336.0	38.80
frb56-25-4	268	268.0	0.21	268	268.0	0.41
frb56-25-5	425	427.6	103.13	425	425.0	1.83
frb59-26-1	262	264.0	1.62	262	262.0	25.31
frb59-26-2	383	391.1	97.04	383	383.0	5.64
frb59-26-3	248	248.0	1.13	246	246.0	14.24
frb59-26-4	248	248.9	47.47	248	248.0	0.62
frb59-26-5	288	288.8	195.62	288	288.0	3.26
frb100-40	350	350.0	2.04	350	350.0	9.70

Motivation Motivating Example

> Neighborhoods with more than two levels can have an impact on a vertex and should be considered in the configuration.

CC²FS-H: variants of CC²FS^[11] (2-level neighborhoods)

- \blacksquare When removing a vertex u from the candidate solution S
 - \bullet confCh[u] := 0;
 - randomly choose half neighborhoods as configuration
 - for each vertex w in the configuration, confCh[w] is set to 1.
- \blacksquare When adding a vertex v to the candidate solution S
 - randomly choose half neighborhoods as configuration
 - for each vertex w in the configuration, confCh[w] is set to 1.
- I Is there a general way to define the configuration of a vertex?
- 2 How does the new configuration lead to a further improvement of the CC strategy?

Table 1: CC2FS vs. CC2FS-H.

	CC ² FS			CC2FS-H		
Instances	min	avg	time	min	avg	time (s)
frb30-15-1	212	214.2	2.59	212	212.0	0.11
frb30-15-2	242	242.0	8.81	242	242.0	0.18
frb30-15-3	175	175.0	0.01	175	175.0	0.03
frb30-15-4	166	168.6	0.19	166	166.0	0.08
frb30-15-5	160	160.0	0.01	160	160.0	0.02
frb35-17-1	274	274.9	0.57	274	274.0	0.11
frb35-17-2	208	208.3	67.44	208	208.0	0.29
frb35-17-3	201	201.0	0.38	201	201.0	0.10
frb35-17-4	286	286.8	0.73	286	286.0	0.45
frb35-17-5	295	295.7	5.60	295	295.0	0.11
frb40-19-1	262	262.0	1.99	262	262.0	0.14
frb40-19-2	243	243.9	0.66	243	243.0	0.18
frb40-19-3	250	251.8	102.43	250	250.0	3.88
frb40-19-4	250	250.0	0.07	249	249.0	95.82
frb40-19-5	272	282.3	0.31	272	277.6	82.50
frb45-21-1	328	328.3	7.82	328	328.0	0.64
frb45-21-2	259	261.7	46.82	259	259.1	1.39
frb45-21-3	233	233.9	9.19	233	233.0	0.89
frb45-21-4	399	399.2	22.67	399	399.0	0.95
frb45-21-5	312	318.8	128.19	312	312.0	1.82
frb50-23-1	261	264.7	90.71	261	261.0	8.97
frb50-23-2	277	277.0	0.01	277	277.0	0.17
frb50-23-3	299	301.9	1.21	281	292.2	31.13
frb50-23-4	265	265.0	3.04	265	265.0	0.47
frb50-23-5	410	418.8	128.09	410	411.1	158.96
frb53-24-1	229	230.0	95.41	229	229.0	2.35
frb53-24-2	298	298.0	1.04	298	298.0	0.38
frb53-24-3	182	182.1	0.01	182	182.0	0.26
frb53-24-4	189	189.0	0.02	189	189.0	0.27
frb53-24-5	204	204.0	0.01	204	204.0	0.29
frb56-25-1	229	229.2	0.32	229	229.0	0.41
frb56-25-2	319	319.5	25.27	319	319.0	3.46
frb56-25-3	336	338.7	30.21	336	336.0	38.80
frb56-25-4	268	268.0	0.21	268	268.0	0.41
frb56-25-5	425	427.6	103.13	425	425.0	1.83
frb59-26-1	262	264.0	1.62	262	262.0	25.31
frb59-26-2	383	391.1	97.04	383	383.0	5.64
frb59-26-3	248	248.0	1.13	246	246.0	14.24
frb59-26-4	248	248.9	47.47	248	248.0	0.62
frb59-26-5	288	288.8	195.62	288	288.0	3.26
frb100-40	350	350.0	2.04	350	350.0	9.70

Content

- Motivation
- 2 Approach: PC and PCC
- 3 Preliminary Results
- 4 Conclusion and Future Work

■ An undirected graph G = (V, E) consists of a vertex set V and an edge set $E \subseteq V \times V$.

- $\blacksquare \ \, \text{An undirected graph} \,\, G = (V,E) \,\, \text{consists of a vertex set} \,\, V \,\, \text{and an edge set} \,\, E \subseteq V \times V.$
- \blacksquare For an edge $e=\{u,v\}$, vertices u and v are the endpoints of edge e.

- lacksquare An undirected graph G=(V,E) consists of a vertex set V and an edge set $E\subseteq V\times V$.
- lacksquare For an edge $e=\{u,v\}$, vertices u and v are the endpoints of edge e.
- Two vertices are *neighboring vertices* if and only if they belong to one edge.

- lacksquare An undirected graph G=(V,E) consists of a vertex set V and an edge set $E\subseteq V\times V$.
- lacksquare For an edge $e=\{u,v\}$, vertices u and v are the endpoints of edge e.
- Two vertices are *neighboring vertices* if and only if they belong to one edge.
- For a vertex v, the set of its neighboring vertices is $N(v) = \{u \in V \mid \{u,v\} \in E\}$, and its degree is deg(v) = |N(v)|.

- lacksquare An undirected graph G=(V,E) consists of a vertex set V and an edge set $E\subseteq V\times V$.
- \blacksquare For an edge $e=\{u,v\}$, vertices u and v are the endpoints of edge e.
- Two vertices are *neighboring vertices* if and only if they belong to one edge.
- For a vertex v, the set of its neighboring vertices is $N(v) = \{u \in V \mid \{u,v\} \in E\}$, and its degree is deg(v) = |N(v)|.
- The distance between two vertices u and v, denoted by dist(u, v), is the number of edges in the shortest path between them.

- An undirected graph G = (V, E) consists of a vertex set V and an edge set $E \subseteq V \times V$.
- lacksquare For an edge $e=\{u,v\}$, vertices u and v are the endpoints of edge e.
- Two vertices are *neighboring vertices* if and only if they belong to one edge.
- For a vertex v, the set of its neighboring vertices is $N(v) = \{u \in V \mid \{u,v\} \in E\}$, and its degree is deg(v) = |N(v)|.
- The distance between two vertices u and v, denoted by dist(u,v), is the number of edges in the shortest path between them.

Definition 1 (*i***-th-level Neighborhoods)**

For a vertex v, we define its i-th-level neighborhoods as $N_i(v) = \{u \in V \mid dist(u,v) = i\}$, i-level neighborhoods as $N_{\leq i}(v) = \bigcup_{j=1}^i N_j(v)$, and its i^+ -level neighborhoods as $N_{>i}(v) = \bigcup_{j=i+1}^i N_j(v)$, particularly, $N_1(v) = N_{\leq 1}(v) = N(v)$.

Definition 2 (Probabilistic Configuration (PC))

Given an undirected graph G=(V,E) and a candidate solution S, the probabilistic configuration (PC) of a vertex $v\in V$ is a vector consisting of the states of all vertices in $(\bigcup_{i=1}^2 (N_i(v))^{p_i}) \cup (N_{>2}(v))^{p_3}$, where $p_i\in [0,1],\ i=1,2,3$, and $\{*\}^{p_i}$ is randomly chosen vertices from the set $\{*\}$ with the size of $\lceil |\{*\}| \cdot p_i \rceil$.

Probabilistic Configuration

Definition 2 (Probabilistic Configuration (PC))

Given an undirected graph G=(V,E) and a candidate solution S, the probabilistic configuration (PC) of a vertex $v\in V$ is a vector consisting of the states of all vertices in $(\bigcup_{i=1}^2 (N_i(v))^{p_i}) \cup (N_{>2}(v))^{p_3}$, where $p_i\in [0,1]$, i=1,2,3, and $\{*\}^{p_i}$ is randomly chosen vertices from the set $\{*\}$ with the size of $\lceil |\{*\}| \cdot p_i \rceil$.

Existing configurations are *special cases* of the PC.

Table 2: Configurations in the form of PC.

Configuration	Probabilistic configuration form
$N_1(v)$	$(N_1(v))^{1.0} \cup (N_2(v))^{0.0} \cup (N_{>2}(v))^{0.0}$
$N_1(v) \cup N_2(v)$	$\bigcup_{i=1}^{2} (N_{i}(v))^{1.0} \cup (N_{\geq 2}(v))^{0.0}$

8 / 24

Probabilistic Configuration Checking

Probabilistic Configuration Checking (PCC)

- \blacksquare At beginning, compute the 1st-, 2nd-, and 2^+ -level neighborhoods for each vertex
 - \blacksquare quickly implemented with a breadth-first search algorithm ($O(|V|\cdot|E|))$
 - only needs to be run once

Probabilistic Configuration Checking (PCC)

Approach: PC and PCC

- 1 At beginning, compute the 1st-, 2nd-, and 2⁺-level neighborhoods for each vertex
 - lacktriangle quickly implemented with a breadth-first search algorithm $(O(|V|\cdot|E|))$
 - only needs to be run once
- 2 In each search step, for the operated vertex v, select vertices from $N_1(v)$, $N_2(v)$ and $N_{>2}(v)$ to form its configuration

Algorithm 2 SelectConf(v, $N_1(v)$, $N_2(v)$, $N_{>2}(v)$, P)

Input: a vertex v and $N_1(v)$, $N_2(v)$, $N_{>2}(v)$, $P = \{p_1, p_2, p_3\}$ a set of probabilities. **Output**: the configuration Conf.

- 1. O / randomly shapes [[N (a)] m] vertices
- 1: $Q_1 \leftarrow \text{randomly choose } \lceil |N_1(v)| \cdot p_1 \rceil \text{ vertices from } N_1(v);$
- 2: $Q_2 \leftarrow$ randomly choose $\left[|N_2(v)| \cdot p_2 \right]$ vertices from $N_2(v)$;
- 3: $Q_3 \leftarrow \text{randomly choose } \lceil |N_{>2}(v)| \cdot p_3 \rceil \text{ vertices from } N_{>2}(v);$
- 4: $Conf(v) \leftarrow Q_1 \cup Q_2 \cup Q_3$;
- 5: **return** Conf(v);

Example 1

Definition of PC and PCC

PC:
$$p_1 = p_2 = p_3 = 0.5$$

For
$$v = 3$$
, $N_1(3) = \{2, 4, 7\}$, $N_2(3) = \{1, 5\}$, $N_{>2}(3) = \{6\}$.

Calculate Conf[3] according to Algorithm 1.

Assume $Q_1 \leftarrow \{4,7\}, \ Q_2 \leftarrow \{1\}, \ Q_3 \leftarrow \{6\}.$

$$Conf[3] \leftarrow Q_1 \cup Q_2 \cup Q_3 = \{1, 4, 6, 7\}.$$

Figure 4: Example for vertex 3.

A PCC Strategy for MWDS

Definition of PC and PCC

When removing a vertex u from the candidate solution S

- \bullet confCh[u] := 0;
- \blacksquare calculate Conf[u] according to Algorithm 1;
- for each vertex $w \in Conf[u]$, confCh[w] is set to 1.

When adding a vertex v to the candidate solution S

- \blacksquare calculate Conf[v] according to Algorithm 1;
- for each vertex $w \in Conf[v]$, confCh[w] is set to 1.

A PCC Strategy for MWCP

When removing a vertex u from the candidate solution S

 \bullet confCh[u] := 0;

When adding a vertex v to the candidate solution S

- lacktriangledown calculate Conf[v] according to Algorithm 1;
- for each vertex $w \in Conf[v]$, confCh[w] is set to 1.

When swapping a vertex u from the candidate solution S with a vertex v

- \bullet confCh[u] := 0;
- calculate Conf[v] according to Algorithm 1;
- for each vertex $w \in Conf[v]$, confCh[w] is set to 1.

Complexity Analysis

■ Given an undirected graph G = (V, E), we use $\Delta(G)$ to denote $max\{|deg(v)| \mid v \in V\}$.

Complexity Analysis

- lacksquare Given an undirected graph G=(V,E), we use $\Delta(G)$ to denote $max\{|deg(v)| \mid v \in V\}$.
- \blacksquare For the updating rules of the 1-level neighborhoods configuration, the worst time complexity is $O(\Delta(G)).$

- Given an undirected graph G = (V, E), we use $\Delta(G)$ to denote $max\{|deg(v)| \mid v \in V\}$.
- For the updating rules of the 1-level neighborhoods configuration, the worst time complexity is $O(\Delta(G))$.
- As for the rules of the 2-level neighborhoods configuration, the worst time complexity is $O(\Delta(G)^2)$.

- Given an undirected graph G = (V, E), we use $\Delta(G)$ to denote $max\{|deg(v)| \mid v \in V\}$.
- For the updating rules of the 1-level neighborhoods configuration, the worst time complexity is $O(\Delta(G))$.
- As for the rules of the 2-level neighborhoods configuration, the worst time complexity is $O(\Delta(G)^2)$.
- For PC, the worst time complexity is O(|V|) $(p_i = 1.0 \text{ for all } 1 \leq i \leq 3)$
 - Time-consuming
 - Fortunately, p_i is not 1.0 after a training process in most cases

- Given an undirected graph G = (V, E), we use $\Delta(G)$ to denote $max\{|deg(v)| \mid v \in V\}$.
- For the updating rules of the 1-level neighborhoods configuration, the worst time complexity is $O(\Delta(G))$.
- As for the rules of the 2-level neighborhoods configuration, the worst time complexity is $O(\Delta(G)^2)$.
- For PC, the worst time complexity is O(|V|) $(p_i = 1.0 \text{ for all } 1 \leq i \leq 3)$
 - Time-consuming
 - lacktriangledown Fortunately, p_i is not 1.0 after a training process in most cases

The complexity of PCC is roughly comparable with CC.

Automatic Configuration Process

Three parameters in the definition of PC: $p_1,p_2,$ and p_3

■ configurator: like SMAC^[5]

Automatic Configuration Process

Three parameters in the definition of PC: p_1, p_2 , and p_3

■ configurator: like SMAC^[5]

Training set

Automatic Configuration Process

COP	Benchmarks	Instances	t.t.(s)			
	T1	1000_1000_1, 1000_5000_3, 1000_10000_6, 1000_15000_6, 1000_20000_1	2			
MWDS	T2	1000_1000_4, 1000_5000_6, 1000_10000_2, 1000_15000_6, 1000_20000_1	2			
2	UDG	S3N800U150, S0N800U200, S7N1000U150, S6N1000U200				
	BHSOLIB 50-23-1.mis, 53-24-3.mis, 56-25-3.mis, 59-26-4.mis					
	DIMACS	brock800_4.mis, C4000.5.mis, DSJC1000.5.mis, gen400_p0.9_75.mis, hamming10-4.mis, keller6.mis, MANN_a81.mis, p_hat1500-3.mis	10			
	BHSOLIB	50-23-5.clq, 53-24-4.clq, 56-25-3.clq, 59-26-1.clq	30			
MWCP	DIMACS	brock800_4.clq, C4000.5.clq, DSJC1000.5.clq, gen400_p0.9_75.clq, hamming10-4.clq, keller6.clq, MANN_a81.clq, p_hat1500-3.clq	10			

Table 3: The detail about the training set, where 't.t.' means the evaluation time of each instance during training.

Motivation Approach: PC and PCC Preliminary Results Conclusion and Future Work Reference
00000 00000 0000000 0000000 0

Automatic Configuration Process

Automatic Configuration Process

Three parameters in the definition of PC: p_1, p_2 , and p_3

■ configurator: like SMAC^[5]

Training set

COP	Benchmarks	Instances	t.t.(s)			
	T1	1000_1000_1, 1000_5000_3, 1000_10000_6, 1000_15000_6, 1000_20000_1	2			
MWDS	T2	1000_1000_4, 1000_5000_6, 1000_10000_2, 1000_15000_6, 1000_20000_1	2			
2	UDG	S3N800U150, S0N800U200, S7N1000U150, S6N1000U200				
	BHSOLIB 50-23-1.mis, 53-24-3.mis, 56-25-3.mis, 59-26-4.mis					
	DIMACS	brock800_4.mis, C4000.5.mis, DSJC1000.5.mis, gen400_p0.9_75.mis, hamming10-4.mis, keller6.mis, MANN_a81.mis, p_hat1500-3.mis	10			
	BHSOLIB	50-23-5.clq, 53-24-4.clq, 56-25-3.clq, 59-26-1.clq	30			
MWCP	DIMACS	brock800_4.clq, C4000.5.clq, DSJC1000.5.clq, gen400_p0.9_75.clq, hamming10-4.clq, keller6.clq, MANN_a81.clq, p_hat1500-3.clq	10			

Table 3: The detail about the training set, where 't.t.' means the evaluation time of each instance during training.

Training

- average scores of the training set as the evaluate metric
- 24 hours for the entire configuration process

Content

- Motivation
- Approach: PC and PCC
- Preliminary Results
- Conclusion and Future Work

Setting

Setting

Benchmarks

- MWDS: T1^[7], T2^[7], UDG^[7], BHOSLIB^[12], DIMACS^[6]
- MWCP: BHOSLIB^[12], DIMACS^[6]

Setting

Benchmarks

- MWDS: T1^[7], T2^[7], UDG^[7], BHOSLIB^[12], DIMACS^[6]
- MWCP: BHOSLIB^[12], DIMACS^[6]

Competitors

- MWDS
 - CC²FS^[11]
 - CC²FS-P (ours. one PC for each COP)
 - CC²FS-SP (ours, one PC for each benchmark)
- MWCP
 - LSCC^[10]
 - LSCC-P (ours, one PC for each COP)
 - LSCC-SP(ours, one PC for each benchmark)

Comparison PCC with CC in MWDS

Table 4: Comparison results of CC^2FS and CC^2FS -P on 7 benchmarks. We also report the sum of difference ('sum of diff') between CC^2FS -P and CC^2FS in 'min' and 'avg'. The smaller the difference, the better for CC^2FS -P.

	l	l	CC2FS		CC^2	S-P	sum of diff		
	Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	min	avg	
	T1	5	0	0	5	5	-167	-167.0	
_	T2	5	0	0	3	3	-49	-49.0	
train	UDG	4	4	4	0	0	30	30.0	
₽	BHOSLIB	4	0	0	1	4	-1	-8.4	
	DIMACS	8	0	0	0	0	0	0.0	
	T1	525	10	10	152	152	-2129	-2129.0	
	T2	525	0	0	57	57	-697	-697.0	
test	UDG	116	81	81	16	16	541	541.0	
-	BHOSLIB	37	0	0	6	26	-52	-105.1	
	DIMACS	29	0	0	2	9	-4	-27.2	
To	tal	1258	95	95	242	272	-2528	-2611.7	

- CC²FS-P is the better solver (except the UDG)
- CC²FS-P performs worse even in the training set for UDG

 Approach:
 PC and PCC
 Preliminary Results
 Conclusion and Future Work

 000000000
 00 ● 0000
 00

Comparison PCC with CC in MWDS

Result Analysis

Table 4: Comparison results of CC^2FS and CC^2FS -P on 7 benchmarks. We also report the sum of difference ('sum of diff') between CC^2FS -P and CC^2FS in 'min' and 'avg'. The smaller the difference, the better for CC^2FS -P.

	l	l	CC2		CC ² F	S-P	sum of diff		
	Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	min	avg	
	T1	5	0	0	5	5	-167	-167.0	
_	T2	5	0	0	3	3	-49	-49.0	
train	UDG	4	4	4	0	0	30	30.0	
₽	BHOSLIB	4	0	0	1	4	-1	-8.4	
	DIMACS	8	0	0	0	0	0	0.0	
	T1	525	10	10	152	152	-2129	-2129.0	
	T2	525	0	0	57	57	-697	-697.0	
test	UDG	116	81	81	16	16	541	541.0	
-	BHOSLIB	37	0	0	6	26	-52	-105.1	
	DIMACS	29	0	0	2	9	-4	-27.2	
To	tal	1258	95	95	242	272	-2528	-2611.7	

- CC²FS-P is the better solver (except the UDG)
- CC²FS-P performs worse even in the training set for UDG

the adverse bias generated from training data from other benchmarks

16 / 24

 Approach: PC and PCC
 Preliminary Results
 Conclusion and Future Work

 00000000
 000●000
 00

Comparison PCC with CC in MWCP

Table 5: Experimental results of LSCC and LSCC-P on DIMACS and BHOSLIB benchmarks. We report the sum of difference between LSCC-P and LSCC in 'min' and 'avg'. The larger the difference, the better for LSCC-P.

	l		LS	CC	LSC	C-P	sum of diff		
	Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	min	avg	
.⊑	BHOSLIB	4	1	0	2	4	13	67	
train	DIMACS	8	0	1	3	3	124	166.8	
+;	BHOSLIB	37	2	3	14	26	315	462.7	
test	DIMACS	29	2	2	0	2	-19	52.9	
To	tal	78	5	6	19	35	433	749.4	

- LSCC-P achieves better performance than LSCC in BHOSLIB
- LSCC-P achieves comparable performance with LSCC in DIMACS

Approach: PC and PCC Peliminary Results Conclusion and Future Work

00000000 00 00 00 00

Discussion About the Bias of Training in MWDS

Table 6: Comparison results of CC²FS and CC²FS-SP.

Table 7: Comparison results of CC^2FS-P and CC^2FS-SP .

		l	CC^2	FS	CC ² F	S-SP	sum	of diff		l		CC ² F	S-P	CC ² F	S-SP	sum	of diff
	Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	min	avg		Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	min	avg
	T1	5	0	0	5	5	-184	-184.0		T1	5	0	0	2	2	-17	-17.0
_	T2	5	0	0	3	3	-49	-49.0	_	T2	5	0	0	0	0	0	0.0
rain	UDG	4	1	1	2	2	-8	-8.0	rain	UDG	4	0	0	4	4	-38	-38.0
Ţ	BHOSLIB	4	0	0	1	4	-1	-8.4	Ţ	BHOSLIB	4	0	0	0	0	0	0.0
	DIMACS	8	0	0	0	0	0	0.0		DIMACS	8	0	0	0	0	0	0.0
	T1	525	10	10	154	154	-2205	-2205.0		T1	525	17	17	36	36	-76	-76.0
	T2	525	0	0	58	58	-697	-697.0		T2	525	1	1	1	1	0	0.0
test	UDG	116	47	47	41	41	-14	-14.0	tes	UDG	116	22	22	82	82	-555	-555.0
-	BHOSLIB	37	0	0	6	26	-52	-109.1		BHOSLIB	37	0	0	0	1	0	-4.0
	DIMACS	29	0	0	2	9	-4	-27.1		DIMACS	29	0	1	0	0	0	0.1
Tot	tal	1258	58	58	272	302	-3214	-3301.6	To	tal	1258	40	41	125	126	-686	-689.9

- CC²FS-SP achieves a better performance than CC²FS-P
- CC²FS-SP and CC²FS are comparable in UDG

Discussion About the Bias of Training in MWCP

Table 8: Comparison results of LSCC and LSCC-SP.

		l	LS	CC	LSC	C-SP	sum of diff		
	Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	max	avg	
.⊑	BHOSLIB	4	1	0	2	4	8	69.4	
train	DIMACS	8	0	1	3	3	124	166.8	
	BHOSLIB	37	2	2	14	27	371	502.3	
test	DIMACS	29	2	2	0	2	-19	52.9	
Tot	tal	78	5	5	19	36	484	791.4	

Table 9: Comparison results of LSCC-P and LSCC-SP.

	l <u>.</u>	l	LSC	C-P	LSC	C-SP	sum of diff		
	Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	max	avg	
.⊑	BHOSLIB	4	1	2	2	2	-5	2.4	
train	DIMACS	8	0	0	0	0	0	0	
-	BHOSLIB	37	9	8	6	15	56	39.6	
test	DIMACS	29	0	0	0	0	0	0	
Tot	tal	78	10	10	8	17	51	42	

- specially PC for each benchmark can improve the performance
- in DIMACS, LSCC-SP and LSCC-P are the same because they share the same PC

Approach: PC and PCC Preliminary Results Conclusion and Future Work

00000000 0000 00

Performance on Reducing the Cycling Problem

Figure 5: (a) Comparison of the number of different candidate solutions of non-CC, CC, PCC, SPCC. (b) Comparison of CPU time. (c) The scores of CC^2FS-P with different configurations on MWDS benchmark. The X-axis, Y-axis, and Z-axis represent p_1, p_2 , and p_3 respectively.

- not have much more time consumption
- potentially alleviates the cycling problem
- necessary to tune for an optimal PC

Content

- Motivation
- 2 Approach: PC and PCC
- 3 Preliminary Results
- Conclusion and Future Work

Conclusion and Future Work

Conclusion:

- We observe that neighborhoods with different levels should have different contributions to alleviate the cycling problem.
- We expand the configuration with probability, i.e., probabilistic configuration (PC), to capture the contributions of vertices at different levels, resulting in the probabilistic configuration checking (PCC) strategy.
- Our experimental results confirm that the PC can improve existing local search algorithms in two classic COPs, i.e., MWDS and MWCP, due to alleviating the cycling problem.

 Approach: PC and PCC
 Preliminary Results
 Conclusion and Future Work
 References

 00000000
 0000000
 0
 0

Conclusion and Future Work

Conclusion:

- We observe that neighborhoods with different levels should have different contributions to alleviate the cycling problem.
- We expand the configuration with probability, i.e., probabilistic configuration (PC), to capture the contributions of vertices at different levels, resulting in the probabilistic configuration checking (PCC) strategy.
- Our experimental results confirm that the PC can improve existing local search algorithms in two classic COPs, i.e., MWDS and MWCP, due to alleviating the cycling problem.

Future work:

- 1 making the method suitable for massive graphs.
- 2 extending our approach to other COPs.

Approach: PC and PCC Preliminary Results Conclusion and Future Work References
00000000 00000 00 00 0

References I

- [1] Cai, S.; and Su, K. 2013. Local search for Boolean Satisfiability with configuration checking and subscore. *Artificial Intelligence*, 204: 75–98.
- [2] Cai, S.; Su, K.; Luo, C.; and Sattar, A. 2013. NuMVC: An efficient local search algorithm for minimum vertex cover. Journal of Artificial Intelligence Research, 46: 687–716.
- [3] Cai, S.; Su, K.; and Sattar, A. 2011. Local search with edge weighting and configuration checking heuristics for minimum vertex cover. *Artificial Intelligence*, 175(9-10): 1672–1696.
- [4] Chen, P.; Wan, H.; Cai, S.; Li, J.; and Chen, H. 2020. Local Search with Dynamic-Threshold Configuration Checking and Incremental Neighborhood Updating for Maximum k-plex Problem. In *Proceedings of the Thirty-Fourth AAAI Conference* on Artificial Intelligence, (AAAI 2020), 2343–2350.
- [5] Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Sequential model-based optimization for general algorithm configuration. In LION, 507–523.
- [6] Johnson, D. S.; and Trick, M. A. 1996. Cliques, coloring, and satisfiability: second DIMACS implementation challenge, October 11-13, 1993, volume 26. American Mathematical Soc.
- [7] Jovanovic, R.; Tuba, M.; and Simian, D. 2010. Ant colony optimization applied to minimum weight dominating set problem. In *Proceedings of the 12th WSEAS international conference on Automatic control, modelling & simulation*, (ACMOS-2010), 322–326.
- [8] Wang, Y.; Cai, S.; Chen, J.; and Yin, M. 2018. A Fast Local Search Algorithm for Minimum Weight Dominating Set Problem on Massive Graphs. In *Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, (IJCAI-2018)*, 1514–1522.
- [9] Wang, Y.; Cai, S.; Chen, J.; and Yin, M. 2020. SCCWalk: An efficient local search algorithm and its improvements for maximum weight clique problem. *Journal of Artificial Intelligence*, 280: 103230–103263.

4 D M 4 D M

Approach: PC and PCC Preliminary Results Conclusion and Future Work References

OOOOOOOO OO OO O

References II

- [10] Wang, Y.; Cai, S.; and Yin, M. 2016. Two efficient local search algorithms for maximum weight clique problem. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, (AAAI-2016), 805–811.
- [11] Wang, Y.; Cai, S.; and Yin, M. 2017. Local Search for Minimum Weight Dominating Set with Two-Level Configuration Checking and Frequency Based Scoring Function. *Journal of Artificial Intelligence Research*, 58: 267–295. ArXiv: 1702.04594.
- [12] Wu, Q.; Hao, J.-K.; and Glover, F. 2012. Multi-neighborhood tabu search for the maximum weight clique problem. Annals of Operations Research, 196(1): 611–634.

Thank you for your listening!

