Particle spectrograph

Wave operator and propagator

$\sigma_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#2}{}_{lphaeta}$	${\mathfrak r}_1^{\#1}$	$\sigma_{1^-\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{lpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_1^{\#2} lpha$
	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$t_{1}^{\#1} + \alpha \beta \frac{i \sqrt{2} k}{t_{1} + k^2 t_{1}} $	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2(r_1+r_5)(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 (r_1+r_5) (t_1+t_3))}$	0	$-\frac{2ik(t_1\!-\!2t_3)}{(1\!+\!2k^2)(3t_1t_3\!+\!2k^2(r_1\!+\!r_5)(t_1\!+\!t_3))}$
	0	0	$-\frac{\sqrt{2}\;(t_1\!-\!2t_3)}{(1\!+\!2k^2)(3t_1t_3\!+\!2k^2(r_1\!+\!r_5)(t_1\!+\!t_3))}$	$\frac{6k^2(r_1+r_5)+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	0	$\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$
	0	0	0	0	0	0
	0	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	$-\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	0	$\frac{2k^2(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$

				$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁				$\frac{t_1}{2}$		
				$f_{0}^{#2}$	0	0	0	0	$\omega_{2}^{\#1}{}_{lphaeta\chi}$	0	0	+		
_	$\sigma_{2^{+}\alpha\beta}^{\#1}$ $\sigma_{2^{+}}^{\#1}$		$J_2^{\#1}_{\alpha\beta\chi}$	$f_{0}^{\#1}$	$i\sqrt{2}kt_3$	$2 k^2 t_3$	0	0	$\epsilon_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	$0 k^2 r_1.$		
	$\frac{2}{(1+2k^2)^2t_1} - \frac{2i\sqrt{1+2k}}{(1+2k^2)^2t_1}$		0	<u>∵</u> +		$\sqrt{2} kt_3$			$\omega_2^{\#1}{}_{\alpha\beta}$)	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0		
$\tau_{2^+}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1} \frac{4k^2}{(1+2k^2)^2}$	$\frac{2}{(t_1)^2 t_1}$	0	$\omega_{0^+}^{\#1}$		ū		0	3			χχ		
$\sigma_2^{\sharp 1} \dagger^{lphaeta\chi}$	0 0	2	$\frac{2}{k^2 r_1 + t_1}$		$\omega_{0}^{\#1}\dagger$	$f_0^{\#1}$ †	$f_0^{\#2} \uparrow$	$\omega_{0}^{\#1} \dagger$		$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} + \alpha^{\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$		
_	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1^{+}\alpha\beta}^{\#1}$			$\omega_1^{\#1}$	α			ι	$\sigma_{1}^{\#2}\alpha$		$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\sharp 1} \dagger^{lpha eta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$			0					0		0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0			0					0		0	0
$f_1^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0			0					0		0	0
$\omega_1^{\sharp 1}\dagger^lpha$	0	0	0	$\frac{1}{6}$ (6)	k^2 (r_1	+ r ₅	$)+t_{1}$	1 + 4	·t ₃)	<u>t</u>	$\frac{1-2t_3}{3\sqrt{2}}$		0	$\frac{1}{3}$ <i>i k</i> (t_1 - 2 t_3)
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0		$\frac{t_1-2t_3}{3\sqrt{2}}$			<u>t</u>	1+t ₃		0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$		
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0		0			0		0	0			
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0		$-\frac{1}{3}$ \bar{I}	k (t ₁	-2 <i>t</i> 3	3)	-	$\frac{1}{3}$ \bar{l} $\sqrt{2}$	$\frac{1}{2} k (t_1)$	$+t_{3}$)	0	$\frac{2}{3}k^2(t_1+t_3)$

Quadratic (free) action
$S_{F} ==$
$\iiint \int (\frac{1}{6} \left(-2 \left(t_1 - 2 t_3\right) \omega_{_{I}}^{\alpha_{I}} \omega_{_{K\alpha}}^{\alpha_{I}} - 6 t_1 \omega_{_{I}}^{K\lambda} \omega_{_{K\lambda}}^{\prime} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 6 t_1 \omega_{_{I}}^{K\lambda} \omega_{_{I}}^{\prime} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 6 t_1 \omega_{_{I}}^{\prime} \omega_{_{I}}^{\prime} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 6 t_1 \omega_{_{I}}^{\prime} \omega_{_{I}}^{\prime} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 6 t_1 \omega_{_{I}}^{\prime} \omega_{_{I}}^{\prime} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 6 t_1 \omega_{_{I}}^{\prime} \omega_{_{I}}^{\prime} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 6 t_1 \omega_{_{I}}^{\prime} + 6 \sigma_{_{I}}^{\prime} + 6 \sigma_$
$6r_5\partial_{_{\it I}}\omega^{\kappa\lambda}_{\kappa}\partial^{_{\it I}}\omega_{\lambda}^{\alpha}-4r_1\partial^{\beta}\omega^{\theta\alpha}_{\kappa}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}-4r_1\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta}+$
$4 r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - 6 r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} + 6 r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda} -$
$6r_5\partial_\alpha\omega_{\lambda\theta}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} + 12r_5\partial_\theta\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 3t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\theta}^{\theta} - 3t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\theta}^{\theta} -$
$3t_1\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\alpha\lambda} + 2t_1\ \omega_{\kappa\alpha}^{\ \alpha}\partial^\kappa f'_{\ \prime} - 4t_3\ \omega_{\kappa\alpha}^{\ \alpha}\partial^\kappa f'_{\ \prime} + 2t_1\ \omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f'_{\ \prime} -$
$4t_3\omega_{\kappa\lambda}^{\lambda}\partial^\kappa f^\prime_{\prime} + 4t_1\partial^\alpha f_{\lambda}\partial^\kappa f^\prime_{\prime} - 8t_3\partial^\alpha f_{\lambda}\partial^\kappa f^\prime_{\prime} - 2t_1\partial_\kappa f^\lambda_{\lambda}\partial^\kappa f^\prime_{\prime} +$
$4t_3\partial_\kappa f^\lambda_{\lambda}\partial^\kappa f^\prime_{\prime} + 12t_1\omega_{\iota\kappa\theta}\partial^\kappa f^{\prime\theta} - 2t_1\omega_{\iota\alpha}^{\alpha}\partial^\kappa f^\prime_{\kappa} + 4t_3\omega_{\iota\alpha}^{\alpha}\partial^\kappa f^\prime_{\kappa} -$
$2 t_1 \omega_{i\lambda}^{\ \lambda} \partial^{\kappa} f_{\kappa}^{i} + 4 t_3 \omega_{i\lambda}^{\ \lambda} \partial^{\kappa} f_{\kappa}^{i} + 3 t_1 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\lambda\alpha} + 3 t_1 \partial_{\kappa} f_{\theta}^{\ \lambda} \partial^{\kappa} f_{\lambda}^{\ \theta} +$
$3t_1\partial_\kappa f^\lambda_{\ \theta}\partial^\kappa f_{\lambda}^{\ \theta}-2t_1\partial^\alpha f^\lambda_{\ \alpha}\partial^\kappa f_{\lambda\kappa}^{\ }+4t_3\partial^\alpha f^\lambda_{\ \alpha}\partial^\kappa f_{\lambda\kappa}^{\ }+4r_1\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta}^{\ }-$
$4r_1\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} + 4r_1\partial^\beta\omega_{_I}^{\alpha\lambda}\partial_\lambda\omega_{\alpha\beta}^{\prime} - 16r_1\partial^\beta\omega_{_I}^{\lambda\alpha}\partial_\lambda\omega_{\alpha\beta}^{\prime} +$
$6r_5\partial_\alpha\omega_{\lambda\theta}^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{}-6r_5\partial_\theta\omega_{\lambda\alpha}^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{}))[t,x,y,z]dzdydxdt$

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$

auge generators	Multiplicities	1	1	3	3	3	5	16
Source constraints/gauge generators	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha = 0$	$t_{1}^{\#_{1}\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0 \ \ 3$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	Total constraints:

Massive and massless spectra

	Massive particle						
	Pole residue:	$-\frac{3(-2t_1t_3(t_1+t_3)+r_1(t_1^2+2t_3^2)+r_5(t_1^2+2t_3^2))}{2(r_1+r_5)(t_1+t_3)(-3t_1t_3+r_1(t_1+t_3)+r_5(t_1+t_3))} > 0$					
- ?	Polarisations:	3					
- 1	Square mass:	$-\frac{3t_1t_3}{2(r_1+r_5)(t_1+t_3)} > 0$					
	Spin:	1					
	Parity:	Odd					

Massive particl	le
Pole residue:	$-\frac{1}{r_1} > 0$
Polarisations:	5
Square mass:	$-\frac{t_1}{2r_1} > 0$
Spin:	2
Parity:	Odd

(No massless particles)

Unitarity conditions