Diagnostic for state of exhaust system of internal combustion engine, uses measurement of pressure difference over particle filter to evaluate diagnostic at set stable engine operating points

Publication number: FR2832758

Publication date:

2003-05-30

Inventor:

BOURRET STEPHANE; LEPRIEUR LAURENT; MEURISSE

OLIVIER

Applicant:

RENAULT (FR)

Classification:

- international:

F01N3/035; F01N9/00; F01N11/00; F02D41/00; F02D41/14; F02B37/00; F02M25/07; F01N3/035; F01N9/00; F01N11/00; F02D41/00; F02D41/14; F02B37/00; F02M25/07; (IPC1-7):

F01N11/00

- european:

F01N3/035; F01N9/00F; F01N11/00B; F02D41/00D4;

F02D41/14D1D; F02D41/14D11C

Application number: FR20010015410 20011129 **Priority number(s):** FR20010015410 20011129

Also published as:

EP1316693 (A1) EP1316693 (B1) DE60203359T (T2)

Report a data error here

Abstract of FR2832758

The diagnostic system measures the pressure difference across the particle filter (28) in the exhaust (22) and computes the diagnostic parameter from this measure to detect failure of the particle filter. After measuring the pressure differential, stabilized operating points for the engine are detected and the diagnostic evaluated at these points.

Data supplied from the esp@cenet database - Worldwide

commandes de reproduction)

01 15410

PARIS

DE LA PROPRIÉTÉ INDUSTRIELLE

(21) No d'enregistrement national :

(51) Int CI7: F 01 N 11/00

DEMANDE DE BREVET D'INVENTION

A1

- (22) **Date de dépôt** : 29.11.01.
- 30) Priorité :

- (71) **Demandeur(s) : RENAULT Société anonyme —** FR.
- Date de mise à la disposition du public de la demande : 30.05.03 Bulletin 03/22.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- 60 Références à d'autres documents nationaux apparentés:
- Inventeur(s): BOURRET STEPHANE, LEPRIEUR LAURENT et MEURISSE OLIVIER.
- (73) Titulaire(s) :
- (74) Mandataire(s): CASALONGA ET JOSSE.
- PROCEDE ET DISPOSITIF DE DIAGNOSTIC DE L'ETAT DE FONCTIONNEMENT D'UNE LIGNE D'ECHAPPEMENT D'UN MOTEUR A COMBUSTION INTERNE.
- Pour le diagnostic de l'état de fonctionnement d'une ligne d'échappement (22) d'un moteur à combustion interne (10) équipée d'un filtre à particules (28), on mesure la pression différentielle régnant entre l'amont et l'aval du filtre à particules, on évalue un paramètre de diagnostic à partir de la valeur de pression différentielle mesurée et l'on traite le paramètre de diagnostic évalué pour la détection de l'état d'un dysfonctionnement du filtre à particules (28).

 Postérieurement à la mesure de la pression différentielle, on met en oeuvre une étape de détection de points de fonctionnement stabilisé du moteur et l'on évalue ledit paramètre de diagnostic en cas de fonctionnement stabilisé du

mètre de diagnostic en cas de fonctionnement stabilisé du moteur.

 α ш

Procédé et dispositif de diagnostic de l'état de fonctionnement d'une ligne d'échappement d'un moteur à combustion interne.

La présente invention concerne le domaine du traitement des gaz d'échappement d'un moteur à combustion interne, par exemple de véhicule automobile, et, plus particulièrement, un procédé et un dispositif de diagnostic de l'état de fonctionnement d'une ligne d'échappement d'un tel moteur.

La présence d'un filtre à particules dans la ligne d'échappement d'un moteur à combustion interne, en particulier d'un moteur Diesel, permet de diminuer considérablement la quantité de particules, poussières et autres suies, émises dans l'atmosphère, et de satisfaire ainsi aux normes antipollution.

Des dispositifs de régénération pilotés permettent de brûler périodiquement les particules piégées dans les filtres et d'éviter le colmatage de ces derniers.

Ces filtres sont généralement associés à des dispositifs de diagnostic, permettant de détecter les éventuels dysfonctionnements des différents moyens qui participent à l'élimination des particules.

Ces dispositifs de diagnostic ont essentiellement pour fonction de surveiller l'état de fonctionnement de la ligne d'échappement du moteur, en particulier du filtre à particules en vue de provoquer, en cas de défaillance d'un élément agissant sur le niveau de pollution du moteur, soit l'activation d'un mode de fonctionnement dégradé pour la mise en œuvre de mesures préventives, soit encore l'arrêt du véhicule.

Ces dispositifs de diagnostic fonctionnent essentiellement en mesurant la pression différentielle régnant entre l'amont et l'aval du filtre à particules.

Ainsi, il est connu de comparer la valeur de la pression différentielle avec une valeur de seuil, obtenue par exemple par apprentissage préalable, en dessous de laquelle on considère que le filtre à particules est dégradé, voire hors service.

10

5

15

20

25

Ce type de technique présente cependant un inconvénient majeur, dans la mesure où elle ne tient pas compte des conditions d'acquisition de la pression différentielle.

En effet, au cours de phases transitoires, apparaissant notamment lors de fortes accélérations ou lors de fortes décélérations du moteur, des phénomènes transitoires ainsi engendrés provoquent des bruits de mesure relativement importants et ce, d'autant plus que le filtre est dégradé.

Le but de l'invention est donc de pallier cet inconvénient et de fournir un procédé et un dispositif de diagnostic aptes à détecter des dysfonctionnements d'un filtre à particules d'une ligne d'échappement d'un moteur à combustion interne et ce, avec une fiabilité accrue.

Ainsi, selon l'invention, il est proposé un procédé de diagnostic de l'état de fonctionnement d'une ligne d'échappement d'un moteur à combustion interne équipée d'un filtre à particules, comprenant les étapes de mesure de la pression différentielle régnant en amont et en aval du filtre à particules, d'évaluation d'un critère de diagnostic à partir de la valeur de la pression différentielle mesurée et de traitement du paramètre de diagnostic pour la détection d'un dysfonctionnement du filtre à particules.

Selon un aspect de ce procédé, postérieurement à la mesure de la pression différentielle, on met en œuvre une étape de détection de points de fonctionnement stable du moteur, et l'on évalue ledit paramètre de diagnostic en cas de fonctionnement stable du moteur.

Selon une autre caractéristique de ce procédé, l'étape de détection des points de fonctionnement stable du moteur comprend le calcul de la moyenne glissante et de l'écart type de la pression différentielle, l'évaluation du rapport entre l'écart type et la valeur moyenne glissante calculés et de comparaison de la valeur du rapport évalué avec une valeur de seuil de détection de fonctionnement stable.

Selon un exemple de mise en œuvre, le procédé comprend en outre une étape de détermination de la valeur moyenne glissante du débit volumique de gaz d'échappement dans le filtre à particules. Au cours de l'étape d'évaluation du paramètre de diagnostic, on extrait de

20

25

5

10

15

moyens de mémorisation, dans lesquels sont stockées un ensemble de valeurs de pression différentielle $\overline{\Delta P}$ ' régnant entre l'amont et l'aval d'un filtre à particules dépourvu de suies qui correspondent chacune à une valeur de débit volumique de gaz d'échappement, une valeur correspondante de pression différentielle $\overline{\Delta P}$, et l'on calcule la valeur du paramètre de diagnostic à partir de la valeur de pression différentielle mesurée $\overline{\Delta P}$ et de la valeur de pression différentielle $\overline{\Delta P}$ ' extraite des moyens de mémorisation.

Par exemple, le paramètre de diagnostic C est élaboré à partir de la relation suivante :

$$C = 1 - \frac{\overline{\Delta P}}{\overline{\Delta P}}$$

dans laquelle:

 $\overline{\Delta P}$ désigne la valeur de la pression différentielle mesurée ; et $\overline{\Delta P}$ ' désigne la valeur de la pression différentielle extraite des moyens de mémorisation.

Le paramètre de diagnostic C peut également être élaboré à partir de la relation suivante :

$$C = \frac{\overline{\Delta P}}{\overline{\Delta P \max}}$$

5

10

15

25

30

dans laquelle:

 $\overline{\Delta P}$ désigne la valeur de la pression différentielle mesurée ; et $\overline{\Delta P}$ max désigne la valeur maximale de la pression différentielle autorisée pour le filtre à particules ;

Selon un autre aspect de ce procédé, on détermine la valeur moyenne glissante du débit volumique de gaz d'échappement et la pression différentielle entre l'amont et l'aval du filtre à particules, on calcule la valeur du paramètre de diagnostic en continu pour chaque point de fonctionnement stable, on élabore un paramètre de diagnostic global à partir des paramètres de diagnostic de chaque point de fonctionnement, et l'on compare la valeur du paramètre de diagnostic

global avec une valeur de seuil de détection d'un dysfonctionnement du filtre à particules.

Selon un autre aspect de ce procédé, l'étape d'élaboration du paramètre de diagnostic comprend une sommation des paramètres de diagnostics respectifs des points de fonctionnement stable.

De préférence, l'étape d'élaboration du paramètre de diagnostic global comprend une pondération de la valeur calculée des paramètres de diagnostic des points de fonctionnement stable en fonction de la valeur moyenne glissante du débit volumique de gaz d'échappement dans le filtre à particules.

Selon l'invention, il est également proposé un dispositif de diagnostic de l'état de fonctionnement d'une ligne d'échappement d'un moteur à combustion interne équipé d'un filtre à particules, comprenant des moyens de mesure de la pression différentielle régnant entre l'amont et l'aval du filtre à particules et une unité centrale comprenant des moyens pour l'évaluation d'un paramètre de diagnostic à partir de la valeur de la pression différentielle mesurée et des moyens de traitement du paramètre de diagnostic évalué pour la détection d'un dysfonctionnement du filtre à particules.

Ce dispositif comporte en outre des moyens de détection de points de fonctionnement stabilisé du moteur à particules, ledit paramètre de diagnostic étant évalué en cas de fonctionnement stable du moteur.

Selon une caractéristique de ce dispositif, l'unité centrale comporte des moyens de calcul de la moyenne glissante et de l'écart type de la pression différentielle, des moyens pour évaluer le rapport entre l'écart type et la valeur moyenne glissante calculés et des moyens de comparaison de la valeur du rapport évalué avec une valeur de seuil de détection de fonctionnement stabilisé.

Selon une autre caractéristique de ce dispositif, l'unité centrale comporte des moyens de mémorisation dans lesquels sont stockées un ensemble de valeurs moyennes de pression différentielle régnant entre l'amont et l'aval d'un filtre à particules dépourvu de suies qui correspondent chacune à une valeur de débit volumique de gaz

20

25

5

10

15

d'échappement, pour le calcul du paramètre de diagnostic à partir de la pression différentielle régnant entre l'amont et l'aval du filtre à particules et une valeur correspondante extraite des moyens de mémorisation.

5

10

15

Selon encore une autre caractéristique de ce dispositif, l'unité centrale comporte en outre des moyens de mémorisation dans lesquels est stockée une valeur maximale de pression différentielle autorisée pour le filtre à particules, pour le calcul du paramètre de diagnostic à partir de la pression différentielle régnant entre l'amont et l'aval du filtre à particules et ladite valeur maximale de pression différentielle extraite des moyens de mémorisation.

Par exemple, le dispositif comporte des moyens de pondération des paramètres de diagnostic de chaque point de fonctionnement stabilisé du moteur, des moyens de sommation des paramètres de diagnostic pondérés pour l'élaboration d'un paramètre de diagnostic global et des moyens de comparaison du paramètre de diagnostic global avec une valeur de seuil de détection de dysfonctionnement du filtre à particules.

20

D'autres buts, caractéristiques et avantages de l'invention ressortiront de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels:

25

-la figure 1 est une vue schématique d'un moteur à combustion interne équipé d'une ligne d'échappement pourvue d'un filtre à particules associé à un dispositif de diagnostic conforme à l'invention; et

-la figure 2 est un organigramme montrant les principales phases d'un procédé de diagnostic conforme à l'invention.

30

Sur la figure 1, on a représenté de manière schématique la structure générale d'un moteur à combustion interne d'un véhicule automobile, désigné par la référence numérique générale 10.

Dans l'exemple de réalisation considéré, le moteur 10 est pourvu de quatre cylindres 12 en ligne.

Les cylindres 12 sont alimentés en air par l'intermédiaire d'un répartiteur d'admission 14, lui-même alimenté par une conduite 16 pourvue d'un filtre à air (non représenté) et d'un turbocompresseur 18 de suralimentation du moteur en air.

5

Un collecteur d'échappement 20 récupère les gaz d'échappement issus de la combustion et évacue ces derniers vers l'extérieur, en passant par le compresseur 18, et par une ligne d'échappement 22.

10

Un circuit de recirculation des gaz d'échappement, comprenant une partie du circuit d'alimentation du moteur en air et une partie du circuit d'échappement, récupère une partie des gaz d'échappement dans le collecteur d'admission 18, de manière à limiter la quantité d'oxyde d'azote produit par la combustion tout en évitant la formation de fumées dans les gaz d'échappement.

15

Comme on le voit sur cette figure 1, le circuit de recirculation comporte essentiellement une soupape de réglage du flux de gaz d'échappement recirculés, désignée par la référence numérique 24.

20

En ce qui concerne la ligne d'échappement 22, celle-ci comporte essentiellement un convertisseur catalytique 26 de type classique et, en aval, en considérant le sens de circulation des gaz d'échappement dans la ligne d'échappement 22, un filtre à particules 28 adapté pour piéger les particules ou suies contenues dans les gaz d'échappement.

25

Enfin, le moteur 10 est associé à une unité centrale 30 assurant le contrôle du fonctionnement du moteur 10, notamment le réglage de ses paramètres de fonctionnement, ainsi que le contrôle du fonctionnement du filtre à particules 28, et le diagnostic de son état de fonctionnement.

30

Pour procéder au contrôle du fonctionnement du moteur 10, celui-ci est pourvu d'un capteur 32 de pression de suralimentation et d'un capteur 33 de température d'admission d'air dans le répartiteur d'admission 14, ainsi qu'un capteur de débit 34 équipant la conduite 16 d'alimentation. Ces capteurs, ainsi que les principaux organes

fonctionnels du moteur et de son circuit d'alimentation en air, sont raccordés à l'unité centrale 30.

En ce qui concerne le contrôle du fonctionnement du filtre à particules 28 ou, de manière générale, de la ligne d'échappement 22 et, en particulier, le diagnostic de son état de fonctionnement, la ligne d'échappement 22 est pourvue d'un capteur différentiel 36, de type classique, apte à mesurer la pression différentielle régnant entre l'amont et l'aval du filtre à particules 28. En outre, des capteurs de température 38 et 40 sont disposés respectivement en amont et en aval du filtre à particules 28.

5

10

15

20

25

30

Les capteurs 36, 38 et 40 et, en particulier, le capteur de pression différentielle 36, sont raccordés à l'unité centrale 30. Celle-ci incorpore, stockés en mémoire, tous les moyens logiciels permettant de procéder au contrôle du fonctionnement du filtre à particules 28, en particulier à partir de la pression différentielle régnant de part et d'autre du filtre 28, en calculant, à partir de cette dernière, la valeur d'un paramètre de diagnostic et en traitant la valeur de ce paramètre pour détecter tout dysfonctionnement susceptible de se produire, comme cela sera décrit par la suite.

Plus particulièrement, pour procéder au contrôle du fonctionnement du filtre à particules, l'unité centrale 30 est pourvue de moyens permettant de détecter les points de fonctionnement stable du moteur, de manière à n'évaluer le paramètre de diagnostic qu'en cas de fonctionnement stabilisé.

A cet effet, l'unité centrale 30 procède à un calcul de la moyenne glissante et de l'écart type de la pression différentielle sur une durée prédéterminée calibrable, procède au calcul du rapport entre l'écart type et la valeur moyenne glissante calculée, puis compare la valeur du rapport ainsi calculé avec une valeur de seuil de détection de fonctionnement stabilisée.

Ainsi, pour chacun de ces points de fonctionnement stabilisés détectés, il est procédé à un diagnostic de l'état de fonctionnement du filtre à particules, de manière à détecter tout dysfonctionnement ou toute défaillance de ce dernier.

On notera que, de préférence, on procède à l'évaluation d'un paramètre de diagnostic pour chaque point de fonctionnement stabilisé, et l'on évalue un paramètre de diagnostic global à partir de l'ensemble de ces paramètres de diagnostic pour détecter les dysfonctionnements à partir des paramètres de diagnostic évalués pour chacun des points de fonctionnement stabilisé.

5

10

15

20

25

30

On va maintenant décrire, en référence à la figure 2, les principales phases du procédé de diagnostic mis en œuvre au sein de l'unité centrale 30.

Tout d'abord, pour procéder à la détection des points de fonctionnement stabilisé, on calcule la valeur du débit volumique Qvol des gaz d'échappement dans le filtre à particules (étape 42). Puis, lors de l'étape 44 suivante, on calcule la valeur moyenne glissante \overline{Qvol} du débit volumique des gaz d'échappement.

Parallèlement, au cours de cette étape 44, on acquiert la valeur ΔP de la pression différentielle régnant de part et d'autre du filtre à particules 28, telle que délivrée par le capteur 36, puis on calcule la valeur moyenne glissante $\overline{\Delta P}$ et l'écart type $\sigma \Delta P$ de la pression différentielle. Comme indiqué précédemment, ces étapes sont effectuées sur une durée prédéterminée.

Au cours de l'étape 46 suivante, on calcule le rapport R entre l'écart type et la valeur moyenne glissante calculée et l'on compare la valeur du rapport ainsi calculée avec une valeur de seuil S1 de détection de fonctionnement stabilisée.

Ainsi, au cours de cette étape 46, pour un point de fonctionnement du filtre à particules 28, on vérifie que ce point de fonctionnement correspond à un fonctionnement stabilisé du moteur, en vérifiant l'inégalité suivante :

$$\frac{\sigma \Delta P}{\overline{\Delta P}} < S1 \tag{1}$$

Dans le cas où il est détecté que le point de fonctionnement considéré est un point de fonctionnement stabilisé pour le moteur, on

stocke alors en mémoire un couple $(\overline{Qvol}, \overline{\Delta P})$ de valeurs moyennes glissante de débit volumique des gaz d'échappement et de pression différentielle (étape 48) qui correspondent à ce point de fonctionnement.

Le procédé se poursuit alors par une phase proprement dite de diagnostic de l'état de fonctionnement du filtre à particules.

5

10

15

20

25

30

Cette phase de diagnostic est mise en œuvre pour chaque couple de points $(\overline{Qvol}, \overline{\Delta P})$ mémorisé.

Cette phase débute par une première étape 50, au cours de laquelle on extrait, des moyens de mémorisation de l'unité centrale 30, dans laquelle sont chargées un ensemble de valeurs moyennes glissantes de pression différentielle régnant de part et d'autre d'un filtre à particules non dégradé, exempt de suie et de résidus, obtenues par apprentissage préalable, pour différentes valeurs moyennes de débit volumique de gaz d'échappement, une valeur de pression différentielle $\overline{\Delta P}$ correspondant à la valeur de débit volumique de gaz d'échappement \overline{Qvol} .

Lors de l'étape 52 suivante, le paramètre de diagnostic C est alors élaboré.

Ce paramètre C est élaboré à partir de la relation suivante :

$$C = 1 - \frac{\overline{\Delta P}}{\overline{\Lambda P}} \tag{2}$$

Lors de l'étape 54 suivante, on compare la valeur du paramètre de diagnostic C avec une valeur de seuil S2.

Dans le cas où le paramètre de diagnostic est supérieur à la valeur de seuil S2, on positionne à 1 une valeur binaire bi pour le point de fonctionnement i considéré (étape 56).

Si tel n'est pas le cas, c'est-à-dire si la valeur du paramètre de diagnostic est inférieure à la valeur de seuil S2, la valeur binaire bi est positionnée à 0 ou -1 (étape 58), de préférence -1.

On notera que postérieurement à l'étape 48 de mémorisation du couple (\overline{Qvol} , $\overline{\Delta P}$) de valeurs moyennes glissantes de débit volumique

de gaz d'échappement et de pression différentielle, et en parallèle aux étapes 50 et 52 d'évaluation du paramètre de diagnostic, on procède de manière optionnelle à une pondération de la valeur de seuil S2 en fonction du débit volumique de gaz d'échappement, par exemple à partir de données obtenues par apprentissage préalable, de manière à prendre en considération les variations engendrées, dans la mesure et dans le calcul de la valeur moyenne glissante de la pression différentielle, par une variation du niveau de pression différentiel, et donc du débit d'air (étape 60).

10

5

Au cours de cette étape 60, on élabore, pour chaque point de fonctionnement, un coefficient de pondération. Ces coefficients sont destinés à être appliqués respectivement aux valeurs binaires bi calculées lors des étapes 56 et 58 précédemment mentionnées, pour chaque point de fonctionnement successivement considérés, pour pondérer ces valeurs en fonction de la valeur moyenne glissante du débit volumique des gaz d'échappement.

15

En effet, lors de l'étape 62 suivante, on élabore un paramètre de diagnostic global pour l'ensemble des points de fonctionnement stable.

20

Pour ce faire, au cours de cette étape, on procède à une pondération des valeurs binaires des points de fonctionnement stable en utilisant les coefficients de pondération Cp élaborés lors de l'étape 60 précédente en multipliant, pour chaque point de fonctionnement, la valeur binaire bi par le coefficient de pondération Cp correspondant et en procédant au calcul de la somme des valeurs binaires pondérées.

25

On procède alors à un test par comparaison de la valeur du paramètre de diagnostic global avec un seuil de détection de dysfonctionnement du filtre à particules (étape 64).

30

Ainsi, s'il est détecté, lors de cette étape 64, que le paramètre de diagnostic global est supérieur à la valeur de seuil, on décide, lors de l'étape 66 suivante, que le filtre à particules est défectueux.

Au contraire, si la valeur du paramètre de diagnostic est inférieure à cette valeur de seuil de détection de dysfonctionnement, on décide, lors de l'étape 68 suivante, que le chiffre à particules a conservé son intégrité.

On notera que l'invention n'est pas limitée au mode de réalisation décrit.

En effet, dans le mode de réalisation décrit en référence à la figure 2, le paramètre de diagnostic est élaboré à partir de la relation suivante :

$$C = 1 - \frac{\overline{\Delta P}}{\overline{\Lambda P}} \tag{2}$$

10

15

5

Il serait également possible, en variante, d'élaborer le paramètre de diagnostic à partir de toute autre relation mathématique liant la valeur moyenne glissante de la pression différentielle régnant entre l'amont et l'aval du filtre à particules et une valeur correspondante extraite des moyens de mémorisation de l'unité centrale 30.

Pour le diagnostic du colmatage du filtre, le paramètre de diagnostic pourrait être élaboré à partir de la relation suivante :

$$C = \frac{\overline{\Delta P}}{\overline{\Delta P \max}} \tag{3}$$

dans laquelle:

ΔPmax représente une valeur maximale de pression différentielle autorisée pour le filtre à particules, de manière à détecter le colmatage du filtre en vue d'interdire toute régénération de ce dernier qui serait susceptible d'engendrer une élévation de température trop importante.

REVENDICATIONS

1. Procédé de diagnostic de l'état de fonctionnement d'une ligne d'échappement d'un moteur à combustion interne équipée d'un filtre à particules (28), comprenant les étapes de mesure de la pression différentielle régnant entre l'amont et l'aval du filtre à particules, d'évaluation d'un paramètre de diagnostic (C) à partir de la valeur de la pression différentielle mesurée et de traitement du paramètre de diagnostic pour la détection d'un dysfonctionnement du filtre à particules, caractérisé en ce que postérieurement à la mesure de la pression différentielle, on met en œuvre une étape de détection de points de fonctionnement stable du moteur, et l'on évalue ledit paramètre de diagnostic (C) en cas de fonctionnement stable du moteur.

- 2. Procédé selon la revendication 1, caractérisé en ce que l'étape de détection des points de fonctionnement stable du moteur comprend le calcul de la moyenne glissante $(\overline{\Delta P})$ et de l'écart type $(\sigma\Delta P)$ de la pression différentielle, l'évaluation du rapport entre l'écart type et la valeur moyenne glissante calculés et de comparaison de la valeur du rapport évalué avec une valeur de seuil (S1) de détection de fonctionnement stable.
- 3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce qu'il comprend en outre une étape de détermination de la valeur moyenne glissante du débit volumique de gaz d'échappement dans le filtre à particules (28), et en ce qu'au cours de l'étape d'évaluation du paramètre de diagnostic (C), on extrait de moyens de mémorisation, dans lesquels sont stockées un ensemble de valeurs de pression différentielle $\overline{\Delta P}$ ' régnant entre l'amont et l'aval d'un filtre à particules dépourvu de suies qui correspondent chacune à une valeur de débit volumique de gaz d'échappement, une valeur correspondante de pression différentielle $\overline{\Delta P}$, et l'on calcule la valeur du paramètre de diagnostic à partir de la valeur de pression différentielle mesurée $\overline{\Delta P}$ et de la valeur de pression différentielle mesurée $\overline{\Delta P}$ et de la valeur de pression différentielle mesurée $\overline{\Delta P}$ et de la valeur de pression différentielle mesurée $\overline{\Delta P}$ et de la valeur de pression différentielle $\overline{\Delta P}$ ' extraite des moyens de mémorisation.

4. Procédé selon la revendication 3, caractérisé en ce que le paramètre de diagnostic C est élaboré à partir de la relation suivante :

$$C = 1 - \frac{\overline{\Delta P}}{\Delta P^{\mathsf{T}}}$$

5

10

20

25

30

dans laquelle:

 $\overline{\Delta P}$ désigne la valeur de la pression différentielle mesurée ; et $\overline{\Delta P}$ 'désigne la valeur de la pression différentielle extraite des moyens de mémorisation.

5. Procédé selon la revendication 3, caractérisé en ce que le paramètre de diagnostic C est élaboré à partir de la relation suivante :

$$C = \frac{\overline{\Delta P}}{\overline{\Delta P \max}}$$

dans laquelle:

 $\frac{\Delta P}{\Delta P} \text{ désigne la }$

 $\overline{\Delta P}$ désigne la valeur de la pression différentielle mesurée ; et $\overline{\Delta P}$ max désigne la valeur maximale de la pression différentielle autorisée pour le filtre à particules ;

- 6. Procédé selon l'une quelconque des revendications 3 à 5, caractérisé en ce que l'on détermine la valeur moyenne glissante du débit volumique (\overline{Qvol}) de gaz d'échappement et la pression différentielle $(\overline{\Delta P})$ entre l'amont et l'aval du filtre à particules, on calcule la valeur du paramètre de diagnostic en continu pour chaque point de fonctionnement stable, on élabore un paramètre de diagnostic global à partir des paramètres de diagnostic de chaque point de fonctionnement, et l'on compare la valeur du paramètre de diagnostic global avec une valeur de seuil de détection d'un dysfonctionnement du filtre à particules.
- 7. Procédé selon la revendication 6, caractérisé en ce que l'étape d'élaboration du paramètre de diagnostic comprend une sommation des paramètres de diagnostics respectifs des points de fonctionnement stable.
- 8. Procédé selon la revendication 7, caractérisé en ce que l'étape d'élaboration du paramètre de diagnostic global comprend une

pondération de la valeur calculée des paramètres de diagnostic des points de fonctionnement stable en fonction de la valeur moyenne glissante du débit volumique de gaz d'échappement dans le filtre à particules.

5

10

15

20

25

- 9. Dispositif de diagnostic de l'état de fonctionnement d'une ligne d'échappement d'un moteur à combustion interne équipée d'un filtre à particules (28), comprenant des moyens de mesure (36) de la pression différentielle régnant entre l'amont et l'aval du filtre à particules (28) et une unité centrale (30) comprenant des moyens pour l'évaluation d'un paramètre de diagnostic à partir de la valeur de la pression différentielle (AP) mesurée et des moyens de traitement du détection diagnostic évalué pour la dysfonctionnement du filtre à particules, caractérisé en ce qu'il comporte en outre des moyens de détection de points de fonctionnement stable du moteur, ledit paramètre de diagnostic étant évalué en cas de fonctionnement stable du moteur.
- 10. Dispositif selon la revendication 9, caractérisé en ce que l'unité centrale comporte des moyens de calcul de la moyenne glissante $(\overline{\Delta P})$ et de l'écart type $(\sigma \Delta P)$ de la pression différentielle, des moyens pour évaluer le rapport entre l'écart type et la valeur moyenne glissante calculés et des moyens de comparaison de la valeur du rapport évalué avec une valeur de seuil de détection de fonctionnement stabilisé.
- 11. Dispositif selon l'une des revendications 9 et 10, caractérisé en ce que l'unité centrale (30) comporte des moyens de mémorisation dans lesquels sont stockées un ensemble de valeurs moyennes de pression différentielle régnant entre l'amont et l'aval d'un filtre à particules dépourvu de suies qui correspondent chacune à une valeur de débit volumique de gaz d'échappement, pour le calcul du paramètre de diagnostic à partir de la pression différentielle régnant entre l'amont et l'aval du filtre à particules et une valeur correspondante extraite des moyens de mémorisation.
- 12. Dispositif selon l'une quelconque des revendications 9 à 11, caractérisé en ce que l'unité centrale comporte en outre des

moyens de mémorisation dans lesquels est stockée une valeur maximale de pression différentielle autorisée pour le filtre à particules, pour le calcul du paramètre de diagnostic à partir de la pression différentielle régnant entre l'amont et l'aval du filtre à particules et ladite valeur maximale de pression différentielle extraite des moyens de mémorisation.

13. Dispositif selon l'une quelconque des revendications 9 à 12, caractérisé en ce qu'il comporte des moyens (30) de pondération des paramètres de diagnostic de chaque point de fonctionnement stabilisé du moteur, des moyens de sommation (30) des paramètres de diagnostic pondérés pour l'élaboration d'un paramètre de diagnostic global et des moyens de comparaison du paramètre de diagnostic global avec une valeur de seuil de détection de dysfonctionnement du filtre à particules.

FIG.1

FIG.2

2832758

RAPPORT DE RECHERCHE PRÉLIMINAIRE

N° d'enregistrement national

établi sur la base des dernières revendications déposées avant le commencement de la recherche FA 611467 FR 0115410

DOCL	IMENTS CONSIDÉRÉS COMME PER	Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI		
Catégorie	Citation du document avec indication, en cas de beso des parties pertinentes	in,		o . mvennon pai i mpi	
A	FR 2 795 132 A (RENAULT) 22 décembre 2000 (2000-12-22) * page 1, ligne 25 - page 2, li * page 4, ligne 11 - page 5, li * figure 1 *		1-13	F01N11/00	
A	FR 2 799 504 A (RENAULT) 13 avril 2001 (2001-04-13) * page 7, ligne 6 - page 9, lig * figure 1 *		1-13		
A	EP 0 115 722 A (PEUGEOT ;CITROE 15 août 1984 (1984-08-15) * page 2, ligne 16 - page 2, li * page 3, ligne 25 - page 4, li * figure 1 *	gne 33 *	1-13		
A	FR 2 774 421 A (PEUGEOT) 6 août 1999 (1999-08-06) * page 1, ligne 27 - page 5, li * figure 1 *		1-13	DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)	
Α	US 4 522 027 A (SHINZAWA MOTOHI 11 juin 1985 (1985-06-11) * colonne 2, ligne 63 - colonne * * colonne 6, ligne 66 - colonne * * figure 1 *	4, ligne 7	1-13	F01N	
Α	US 5 511 413 A (STEINER PETER 30 avril 1996 (1996-04-30) * abrégé * * figure 1 *	ET AL)	1-13	·	
	Date d'achèveme	nt de la recherche		Examinateur	
		llet 2002	Ikas		
X : partic Y : partic autre A : arriè O : divul	ATÉGORIE DES DOCUMENTS CITÉS culièrement pertinent à lui seul culièrement pertinent en combinaison avec un document de la même catégorie re-pian technologique gation non-écrite ment intercalaire	T: théorie ou principe E: document de brev à la date de dépôt de dépôt ou qu'à u D: cité dans la demar L: cité pour d'autres r	l à la base de l'in et bénéficiant d'u et qui n'a été pu inde date postérie nde alsons	vention une date antérieure bilé qu'à cette date ure.	

1

EPO FORM 1503 12.99 (P04C14)

ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0115410 FA 611467

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date d09-07-2002Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)		Date de publication	
FR 2	2795132	A	22-12-2000	FR	2795132	A1	22-12-2000
FR 2	2799504	Α	13-04-2001	FR	2799504	A1	13-04-2001
				WO	0127447	A1	19-04-2001
EP (0115722	A	15-08-1984	FR	2538448	A1	29-06-1984
				DE	3366146	D1	16-10-1986
				EP	0115722	A1	15-08-1984
				JP	59134317	Α	02-08-1984
FR 2	2774421	Α	06-08-1999	FR	2774421	A 1	06-08-1999
US 4	4522027	Α	11-06-1985	JP	1743243	С	15-03-1993
				JP	4032924	В	01-06-1992
				JP	59153914	A	01-09-1984
US 5	5511413	A	30-04-1996	DE	4230180	A1	10-03-1994
				ΑT	149634	T	15-03-1997
			,	DE	59305582		10-04-1997
				EP	0587146	A2	16-03-1994
			4.*	JP	7091227	A	04-04-1995

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☐ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.