SRM Institute of Science and Technology

Faculty of Engineering and Technology

Department of Mathematics

Question Bank- Applications of Partial Differential Equations(Unit-3)

- 1. The proper solution of the problems on vibration of string is
 - (A) $y(x,t) = (Ae^{\lambda x} + Be^{-\lambda x})(Ce^{\lambda at} + De^{-\lambda at})$
 - (B) y(x, t) = (Ax + B)(Ct + D)
 - (C) $y(x, t) = (A \cos \lambda x + B \sin \lambda x)(C \cos \lambda at + D \sin \lambda at)$
 - (D) y(x,t) = (Ax + B)

ANSWER: C

- 2. The one dimensional wave equation is
 - (A) $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$
 - (B) $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$
 - (C) $\frac{\partial y}{\partial t} = a \frac{\partial^2 y}{\partial x^2}$
 - (D) $\frac{\partial^2 y}{\partial x^2} = a \frac{\partial^2 y}{\partial t^2}$

ANSWER: B

- 3. In wave equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$, a^2 stands for
 - (A) $\frac{T}{m}$
 - (B) $\frac{k}{c}$
 - (C) $\frac{m}{T}$
 - (D) $\frac{k}{m}$

ANSWER: A

- 4. In heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$, α^2 stands for
 - (A) $\frac{k}{\rho}$
 - (B) $\frac{T}{m}$
 - (C) $\frac{k}{\rho c}$
 - (D) $\frac{k}{c}$

ANSWER: C

5. The one dimensional heat equation in steady state is

- (A) $\frac{\partial u}{\partial t} = 0$
- (B) $\frac{\partial^2 u}{\partial t^2} = 0$
- (C) $\frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial t} = 0$
- (D) $\frac{\partial^2 u}{\partial x^2} = 0$

ANSWER: D

- 6. The proper solution of $u_t = \alpha^2 u_{xx}$
 - (A) u = (Ax + B)C
 - (B) $u = (A\cos\lambda x + B\sin\lambda x)e^{-\alpha^2\lambda^2 t}$
 - (C) $u = (Ae^{\lambda x} + Be^{-\lambda x})e^{\alpha^2 \lambda^2 t}$
 - (D) u = At + B

ANSWER: B

- 7. The proper solution in steady state heat flow problems is
 - (A) $u = (Ae^{\lambda x} + Be^{-\lambda x})e^{\alpha^2 \lambda^2 t}$
 - (B) u = Ax + B
 - (C) $u = (A\cos\lambda x + B\sin\lambda x)e^{-\alpha^2\lambda^2 t}$
 - (D) $u = (Ae^{\lambda x} + Be^{-\lambda x})(Ce^{\lambda at} + De^{-\lambda at})$

ANSWER: B

- 8. The one dimensional heat equation is
 - (A) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
 - (B) $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$
 - (C) $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$
 - (D) $\frac{\partial u}{\partial x} = \alpha^2 \frac{\partial^2 u}{\partial t^2}$

ANSWER: B

- 9. How many initial and boundary conditions are required to solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$
 - (A) Four
 - (B) Two
 - (C) Three
 - (D) Five

ANSWER: C

10.	How many initial and boundary conditions are required to solve $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$ (A) Two (B) Three (C) Five (D) Four ANSWER: D
	One dimensional wave equation is used to find (A) Temperature (B) Displacement (C) Time (D) Mass ANSWER: B
12.	One dimensional heat equation is used to find (A) Density (B) Temperature distribution (C) Time (D) Displacement ANSWER: B
13.	Heat flows from —— temperature (A) Higher to Lower (B) Uniform (C) Lower to higher (D) Stable ANSWER: A
14.	The tension T caused by stretching the string before fixing it at the end points is (A) Large (B) Decreasing (C) Constant (D) Zero ANSWER: A
15.	A string is stretched between two fixed points $x = 0$ and $x = 1$. The initial conditions are

(A) y(0, t) = 0, y(x, t) = 0

(B) $y(x, 0) = 0, \frac{\partial y}{\partial t}(x, 0) = 0$

(C) y(0,t) = 0, y(l,t) = 0

(D) $\left(\frac{\partial y}{\partial x}\right)_{(0,t)} = 0, \left(\frac{\partial y}{\partial x}\right)_{(l,t)} = 0$

ANSWER: C

16. The amount of heat required to produce a given temperature change in a body is proportional to

(A) Weight of the body

(B) Mass of the body

(C) Density of the body

(D) Tension of the body

ANSWER: B

17. The general solution for the displacement y(x, t) of the string of length l vibrating between fixed end points with initial velocity zero and initial displacement f(x) is

(A) $\Sigma B_n \sin\left(\frac{n\pi x}{l}\right) \cos\left(\frac{n\pi at}{l}\right)$

(B) $\Sigma B_n \sin\left(\frac{n\pi x}{l}\right) \sin\left(\frac{n\pi at}{l}\right)$

(C) $\Sigma B_n \cos\left(\frac{n\pi x}{l}\right) \sin\left(\frac{n\pi at}{l}\right)$

(D) $\Sigma B_n \sin\left(\frac{n\pi x}{l}\right)$

ANSWER: A

18. The steady state temperature of a rod of length l whose ends are kept at 30° and 40° is

 $(A) \ u = \frac{10x}{l} + 30$

(B) $u = \frac{20x}{l} + 30$

(C) $u = \frac{10x}{I} + 20$

(D) $u = \frac{10x}{l}$

ANSWER: A

19. When the ends of a rod is non-zero for one dimensional heat flow equation, the temperature function u(x,t) is modified as the sum of steady state and transient

4

state temperatures. The transient part of the solution which

- (A) Increases with increase of time
- (B) Decreases with increase of time
- (C) Increases with decrease of time
- (D) Decreases with decrease of time

ANSWER: B

20. A rod of length 1 has its ends A and B kept at 0° and 100° respectively, until steady state conditions prevail. Then the initial condition is given by

(A)
$$u(x, 0) = ax + b + 100l$$

(B)
$$u(x, 0) = \frac{100x}{l}$$

(C)
$$u(x, 0) = 100xl$$

(D)
$$u(x, 0) = (x + l)100$$

ANSWER: B

21. The partial differential equations which satisfy certain initial and boundary conditions are called

- (A) Boundary value problem
- (B) initial value problem
- (C) Convex problem
- (D) Equilibrium problem

ANSWER: A

22. Classification of one dimensional heat equation is

- (A) Elliptic
- (B) parabolic
- (C) Hyperbolic
- (D) Deterministic

ANSWER: B

23. Classification of one dimensional wave equation is

- (A) Elliptic
- (B) parabolic
- (C) Hyperbolic

(D) Deterministic

ANSWER: C

- 24. Elliptic, Parabolic and Hyperbolic are the classifications of
 - (A) A linear PDE of order 2
 - (B) A PDE of order 2
 - (C) A linear PDE of order 1
 - (D) A non-linear PDE of order 2

ANSWER: A

- 25. $B^2 4AC < 0$ of the linear PDE of order 2 is referred as
 - (A) Parabolic
 - (B) Elliptic
 - (C) Hyperbolic
 - (D) Deterministic

ANSWER: B

- 26. $B^2 4AC > 0$ of the linear PDE of order 2 is referred as
 - (A) Parabolic
 - (B) Elliptic
 - (C) Hyperbolic
 - (D) Deterministic

ANSWER: C

- 27. $B^2 4AC = 0$ of the linear PDE of order 2 is referred as
 - (A) Parabolic
 - (B) Elliptic
 - (C) Hyperbolic
 - (D) Deterministic

ANSWER: A

- 28. Classification of the PDE $f_{xx} + 3f_{xy} + 4f_{yy} + f_x 3f_y = 0$ is
 - (A) Parabolic
 - (B) Elliptic
 - (C) Hyperbolic

(D) Deterministic

ANSWER: B

- 29. Classification of the PDE $2f_{xx} + f_{xy} f_{yy} + f_x + 3f_y = 0$ is
 - (A) Parabolic
 - (B) Elliptic
 - (C) Hyperbolic
 - (D) Deterministic

ANSWER: C

- 30. If two ends of a bar of length l is insulated then what are the conditions to solve the heat flow equation?
 - (A) $u_x(0,t) = 0 = u_x(l,t)$
 - (B) $u_t(0,t) = 0 = u_t(l,t)$
 - (C) u(0,t) = 0 = u(l,t)
 - (D) $u_{xx}(0,t) = 0 = u_{xx}(l,t)$

ANSWER: A

- 31. Partial differential equation requires
 - (A) Exactly one independent variable
 - (B) More than one dependent variable
 - (C) two or more independent variables
 - (D) equal number of dependent and independent variables

ANSWER: B

- 32. The classification of partial differential equation is $5\frac{\partial^2 z}{\partial x^2} + 6\frac{\partial^2 z}{\partial y^2} = xy$
 - (A) Elliptic
 - (B) parabolic
 - (C) Hyperbolic
 - (D) Deterministic

ANSWER: A

- 33. The partial differential equation $\frac{\partial^2 z}{\partial x^2} 5\frac{\partial^2 z}{\partial y^2} = 0$ is classified as
 - (A) Elliptic
 - (B) parabolic

- (C) Hyperbolic
- (D) Deterministic

ANSWER: C

- 34. When solving a 1-Dimensional wave equation using variable separable method, we get the solution if ———-
 - (A) k is positive
 - (B) k is negative
 - (C) k is 0
 - (D) k can be anything

ANSWER: B

- - (A) Positive
 - (B) Negative
 - (C) Zero
 - (D) Can be anything

ANSWER: B

- 36. A rod of 30cm length has its ends P and Q kept $20^{\circ}C$ and $80^{\circ}C$ respectively until steady state condition prevail. The temperature at each point end is suddenly reduced to $0^{\circ}C$ and kept so. Find the conditions for solving the equation.
 - (A) u(0, t) = 0 = u(30, t) and u(x, 0) = 20 + 60/10x
 - (B) $u_x(0,t) = 0 = u_x(30,t)$ and u(x,0) = 20 + 60/30x
 - (C) $u_t(0,t) = 0 = u_t(30,t)$ and u(x,0) = 20 + 60/10x
 - (D) u(0, t) = 0 = u(30, t) and u(x, 0) = 20 + 60/30x

ANSWER: B