金融市场的风险测度计算 VaR的计算方法

蒋志强*、储丽娅#

*zqjiang.ecust@qq.com *cherry_8621@163.com

金融风险管理

金融风险管理的基础与核心:量化风险

敏感度分析

- ▶ 指标 方差、久期、凸 性、beta、delta
- ▶ 优点 简单直观,反应 部分风险特征;
- 缺点缺全面综合考虑

在险价值VaR

- 定义给定置信水平下,在未来特定时间内的潜在最大损失
- → 缺点非一致性度量指标

期望损失ES

- 全定义 给定置信水平下, 左尾概率区间内潜 在的平均损失
- 优点无需假定损失分布一致性风险度量

在险价值VaR

在险价值 Value at Risk VaR

在一定的概率水平下(置信度 $1-\alpha$),某一金融资产(证券组合)在未来特定的一段时间内的最大可能损失

在险价值VaR

根据投资组合价值损失分布假设,VaR计算方法有三类:

一、参数法

假定资产收益率服从某种分布或随机过程,构造波动性模型,预测未来损益分布

RiskMetrics, Delta-N, Gamma-N, GARCH-N

二、非参数法

假定收益率独立同分布,且不对分布做任何假定,使用历 史数据或者模拟数据的生成经验概率分布

历史模拟法(HS)、蒙特卡洛模拟法(MCS)

三、半参数法

参数法中的参数估计问题+非参数方法中的取经验分位数

EVT, GARCH-EVT, Hawkes-EVT, ACD-EVT

假设收益率服从正态分布 $r\sim N(\mu,\sigma^2)$,则 $\frac{r-u}{\sigma}$ 服从标准正态分布

根据VaR的定义:
$$\alpha = P(r \le -\text{VaR}) = P\left(\frac{r - \mu}{\sigma} \le \frac{-\text{VaR} - \mu}{\sigma}\right)$$

$$x = \frac{r - \mu}{\sigma}, \int_{-\infty}^{z_{\alpha}} p(x) dr = \int_{-\infty}^{z_{\alpha}} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) dr = \alpha$$

$$\int_{-\infty}^{z_{\alpha}} p(x) dr = \phi(z_{\alpha}) = \alpha \quad \Rightarrow \quad z_{\alpha} = \phi^{-1}(\alpha) \quad \Rightarrow \quad \frac{-\text{VaR} - \mu}{\sigma} = z_{\alpha}$$

$$VaR_{\alpha} = -(\mu + z_{\alpha}\sigma)$$

其中 z_a 为概率水平 α 下,标准正态分布的分位数; σ 为波动率

1. 单资产的<u>单期VaR</u>估计

$$VaR_{\alpha} = -(\mu + z_{\alpha}\sigma)$$

- 2. 单资产的多期VaR估计
 - > 无自相关

某只股票单期收益率的均值为 μ , 方差为 σ^2 , 收益率无自相关则持有该股票两期的VaR为:

$$\begin{split} \log(\frac{P_{t}}{P_{t-2}}) &= \log(\frac{P_{t}}{P_{t-1}}\frac{P_{t-1}}{P_{t-2}}) = \log(\frac{P_{t}}{P_{t-1}}) + \log(\frac{P_{t-1}}{P_{t-2}}) \\ & E\left[\log(\frac{P_{t}}{P_{t-2}})\right] = E\left[\log(\frac{P_{t}}{P_{t-1}})\right] + E\left[\log(\frac{P_{t-1}}{P_{t-2}})\right] = 2\mu \\ \operatorname{var}\left[\log(\frac{P_{t}}{P_{t-2}})\right] &= \operatorname{var}\left[\log(\frac{P_{t}}{P_{t-1}})\right] + \operatorname{var}\left[\log(\frac{P_{t-1}}{P_{t-2}})\right] + 2\operatorname{cov}\left[\log(\frac{P_{t}}{P_{t-1}}), \log(\frac{P_{t-1}}{P_{t-2}})\right] = 2\sigma^{2} \end{split}$$

以此类推,单个资产持有T期的VaR为

$$VaR(T) = -(\mu T + z_{\alpha}\sigma\sqrt{T})$$

➤ 有自相关 例:持有两期的VaR计算

设:
$$r_t = c + \rho r_{t-1} + \varepsilon_t$$
, $\varepsilon_t \sim N(0, \sigma^2)$, $|\rho| < 1$

设:
$$r_t = c + \rho r_{t-1} + \varepsilon_t$$
, $\varepsilon_t \sim N(0, \sigma^2)$, $|\rho| < 1$ 两边求期望 $E(r_t) = E(r_{t-1}) \Rightarrow E(r_t) = \frac{c}{1 - \rho}$

两边求方差

$$Var(r_t) = \rho^2 Var(r_{t-1}) + Var(\varepsilon_t) + 2Cov(r_{t-1}, \varepsilon_t) \implies Var(r_t) = \frac{\sigma^2}{1 - \rho^2}$$

两期收益率
$$r_{t,2} = \log(P_t/P_{t-2}) = \log(P_t/P_{t-1}) + \log(P_{t-1}/P_{t-2}) = r_t + r_{t-1}$$

$$E(r_{t,2}) = 2E(r_t) = \frac{2c}{1-\rho}$$

$$Var(r_{t,2}) = Var(r_t + r_{t-1}) = Var(r_t) + Var(r_{t-1}) + 2\rho \sqrt{Var(r_t)Var(r_{t-1})} = 2Var(r_t) + 2\rho Var(r_t) = \frac{2\sigma^2}{1-\rho}$$

持有两期的VaR: VaR =
$$-(\mu + z_{\alpha}\sigma) = -\left[\frac{2c}{1-\rho} + z_{\alpha}\sqrt{\frac{2\sigma^2}{1-\rho}}\right]$$

3. <u>多资产</u>的 VaR 估计

假设两个资产收益率为 r_1 和 r_2 ,投资权重分别为 ω_1 和 ω_2 收益率的期望分别为 μ_1 和 μ_2 ,收益率的标准差分别为 σ_1 和 σ_2

- 1. 组合收益: $r_p = \omega_1 r_1 + \omega_2 r_2$
- 2. 组合期望: $E(r_p) = E(\omega_1 r_1 + \omega_2 r_2) = \omega_1 \mu_1 + \omega_2 \mu_2$
- 3. 组合方差: $Var(r_p) = \sigma_p^2 = \omega_1^2 \sigma_1^2 + \omega_2^2 \sigma_2^2 + 2\omega_1 \omega_2 \sigma_1 \sigma_2 \rho$
- 4. 组合VaR:

$$VaR_{p} = -(\mu_{p} + z_{\alpha}\sigma_{p})$$

$$= -\left[\omega_{1}\mu_{1} + \omega_{2}\mu_{2} + z_{\alpha}\sqrt{\omega_{1}^{2}\sigma_{1}^{2} + \omega_{2}^{2}\sigma_{2}^{2} + 2\omega_{1}\omega_{2}\sigma_{1}\sigma_{2}\rho}\right]$$

参数法 - Delta和Gamma类方法

V(t,x) 为组合的价值函数,组合价值变化 ΔV 满足一元正态分布

➤ Delta-Normal 模型 (组合价值取一阶近似)

$$V(t+\Delta t, x+\Delta x) - V(t, x) \approx \theta_t \Delta t + \delta \Delta x$$
 $\theta_t = \frac{\partial V(t, x)}{\partial t}$

➤ Gamma-Normal 模型(组合价值取<u>二阶近似</u>)

$$V(t+\Delta t, x+\Delta x) - V(t, x) \approx \theta_t \Delta t + \delta \Delta x + (\gamma/2)(\Delta x)^2$$

参数法 - Delta-Normal

ΔV 表示 $\Delta V(\Delta t, \Delta x)$ 的一阶近似, ΔV 服从一元正态分布

$$\Delta V(\Delta t, \Delta x) = V(t + \Delta t, x + \Delta x) - V(t, x) \approx \theta_t \Delta t + \delta \Delta x$$
$$\Delta V = \theta_t \Delta t + \delta \Delta x$$
$$E(\Delta V) = E(\theta_t \Delta t + \delta \Delta x) = \theta_t \Delta t$$
$$Var(\Delta V) = Var(\theta_t \Delta t + \delta \Delta x) = \delta^{\prime} Var(\Delta x) \delta = \delta^{\prime} \Sigma \delta$$

VaR的计算公式转化为:
$$P\left(\frac{\Delta V - \theta_t \Delta t}{\sqrt{\delta' \Sigma \delta}} \le \frac{-\text{VaR} - \theta_t \Delta t}{\sqrt{\delta' \Sigma \delta}}\right) = \alpha$$

设 z_a 为置信水平 $1-\alpha$ 下,标准正态分布的分位数

$$z_{\alpha} = \frac{-\text{VaR} - \theta_t \Delta t}{\sqrt{\delta' \Sigma \delta}} \quad \Rightarrow \quad \text{VaR} = -\left(\theta_t \Delta t + z_{\alpha} \sqrt{\delta' \Sigma \delta}\right)$$

VaR计算可简化为 VaR =
$$-z_{\alpha}\sigma_{p}\sqrt{\Delta t}$$
, $\sigma_{p} = \sqrt{\delta'\Sigma\delta}$ δ 为敏感度 $\delta' = \left[\frac{\partial V(t,x)}{\partial x_{1}}, \frac{\partial V(t,x)}{\partial x_{2}}, \cdots, \frac{\partial V(t,x)}{\partial x_{r}}\right]$

参数法 - GARCH-Normal

金融时序特点:波动聚集、分布尖峰厚尾、条件异方差、自相关

基于条件波动率的收益率模型 $\begin{cases} r_t = \mu_t + \epsilon_t \\ \epsilon_t \equiv \sigma_t Z_t \end{cases}$

$$\begin{cases} r_t = \mu_t + \epsilon_t \\ \epsilon_t \equiv \sigma_t z_t, \end{cases}$$

若 ϵ_t 满足标准正态分布, r_t/r_{t-1} 满足以 μ_t 为均值, σ_t^2 为方差的正态分布

$$f(r_t|r_{t-1}) = \frac{1}{\sqrt{2\pi}\sigma_t} \exp\left[-\frac{(r_t - \mu)^2}{2\sigma_t^2}\right]$$

单期 $VaR = -(\mu_t + z_\alpha \sigma_t)$

多期 VaR = $-(\mu_t \Delta t + z_\alpha \sigma_t \sqrt{\Delta t})$

思考:考虑 ϵ ,为其他分布,如标准t分布,VaR如何计算?

$$VaR_t^{\alpha} = \mu_t + q_{\varepsilon}^{\alpha}\sigma_t$$

 q^{α}_{ϵ} is the α quantile of the distribution of ϵ_{t}

非参数法 - 历史模拟法

> 历史模拟法

使用历史数据的经验概率分布来计算 VaR

假定历史会重现,利用资产组合的收益率历史数据,在给定置信水平下,确定资产组合在持有期内的最低收益。

单资产:

给定资产收益率序列,计算t+1时刻的VaR

- **▶ 提取出100个历史收益率数据(** t-99:t)
- > 将历史收益率数据从小到大排序
- ▶ 在置信度为95%下, VaR为第5个收益率值

非参数法 - 蒙特卡洛模拟法

> 蒙特卡洛模拟法

使用模拟数据的经验概率分布来计算VaR

利于<u>随机过程和分布重复模拟</u>未来特定时期内可能发生的、不同情景下的资产价格路径,得到资产在未来特定期间内损益及其分布,估算在险价值.

主要步骤

- 情景产生。选择市场风险因子 ,确定市场因子随机过程和分 布,估计参数,模拟市场因子 随机变化的路径;
- 组合估价。利于市场因子的模拟价值,计算组合的N个可能价值,估计出价值变化和分布;
- ▶ VaR估计。根据模拟的组合价值 变化分布,计算给定置信度的 VaR。

假设资产价格服从几何布朗运动:

 $dS = \mu S dt + \sigma S dz$, $dz = \varepsilon (dt)^{1/2}$, $\varepsilon \sim N(0,1)$ 可模拟资产从 S_t 到 S_T 的价格路径。

半参数法

- 1. 极值理论(EVT)
- ▶ BMM方法 (Block Maxima Method)
 设序列i.i.d.,分块提极值,用GEV建模
- ➤ <u>POT (Peaks over threshold) 方法</u> 选择一个足够大的阈值*u* , 超过阈值的为极值 , 用GPD建模
- 2. 分位数回归理论(Quantile Regression Theory)将VaR视为在当前的信息条件下,未来收益条件分布的分位数,可用分位数回归的方法来估计。

厚尾数据效果好,CAViaR模型 (Engle and Manganelli, 1999)

极值理论 - POT模型

假设F(x)为序列 $\{x_i\}$ 的累积分布 定义超出量y = x - u,则y的累积分布 $F_u(y)$ 为

$$F_u(y) = P(x - u \le y | x \ge u)$$

依据贝叶斯条件概率公式

$$F_{u}(y) = \frac{P(x - u \le y, x \ge u)}{P(x \ge u)} = \frac{F(y + u) - F(u)}{1 - F(u)}$$
$$F(x) = F_{u}(y)(1 - F(u)) + F(u)$$

当阈值u足够大,超出值的条件分布近似于GPD (Pickands,1975)

$$F_u(y) \approx G_{\varepsilon,\sigma}(y) = \begin{cases} 1 - \left(1 + \varepsilon \frac{y}{\sigma}\right)^{-\frac{1}{\varepsilon}}, & \varepsilon \neq 0, \\ 1 - \exp\left(-\frac{y}{\sigma}\right), & \varepsilon = 0, \end{cases}$$

尺度参数 $\sigma > 0$; 形状参数 $\varepsilon > 0$ 时, GPD具有厚尾的特点

极值理论 - POT模型

基于POT模型的VaR计算

$$F(x) = F_u(y)(1 - F(u)) + F(u)$$

$$F_u(y) = 1 - \left(1 + \varepsilon \frac{y}{\sigma}\right)^{-\frac{1}{\varepsilon}}$$

设 N_u 为超出阈值部分的样本个数 , 则 $F(u) = (n - N_u)/n$

$$F(x) = 1 - \frac{N_u}{n} \left[1 + \frac{\varepsilon}{\sigma} (x - u) \right]^{-\frac{1}{\varepsilon}}$$

给定置信水平 1 - α, VaR 计算公式

$$VaR_{\alpha} = u + \frac{\sigma}{\varepsilon} \left\{ \left[(1 - \alpha) \frac{n}{N_u} \right]^{-\varepsilon} - 1 \right\}$$

极值理论 - 学术研究

Duration-POT $f(y_i, \tau_i \mid S)$

 $f(y_i, \tau_i \mid \mathcal{H}_{t_i}) = g(y_i \mid \mathcal{H}_{t_i}) q(\tau_i \mid \mathcal{H}_{t_i})$

Intensity-POT $\lambda(t, y_i | \mathcal{H}_t) = g(y_i | \mathcal{H}_t) \lambda_g(t | \mathcal{H}_t)$

极值理论 - 学术研究

> ACD模型条件强度函数 (标准间隔满足Gamma分布)

$$\lambda_{g}(t|\mathcal{H}_{t};\theta) = \frac{\frac{\gamma\left(t-t_{N(t)}\right)^{k\gamma-1}}{\phi_{N(t)}^{k\gamma}\Gamma(k)}exp\left\{-\left(\frac{t-t_{N(t)}}{\phi_{N(t)}}\right)^{\gamma}\right\}}{I\left(k,\left(\frac{t-t_{N(t)}}{\phi_{N(t)}}\right)^{\gamma}\right)},$$

> Hawkes模型条件强度函数

$$\lambda_{g}(t|\mathcal{H}_{t}) = k + \phi \sum_{i:t_{i} < t} g(t - t_{i}, y_{i})$$

核密度函数 g(*) 满足

$$g_H(t-t_i,y) = (1+\delta y) \exp(-\gamma (t-t_i))$$

$$g_E(t-t_i,y) = \frac{(1+\delta y)}{\left(1+\frac{t-t_i}{\gamma}\right)^{1+\rho}},$$

极值理论 - 学术研究

➤ POT模型:广义帕累托分布(GPD)

$$g(y|\mathcal{H}_t,t) = \frac{1}{\beta} \left(1 + \xi \frac{y-u}{\beta} \right)_+^{-1/\xi-1}$$

ACD 模型: $\beta(t,y|\mathcal{H}_t) = \beta_0 + \beta_1 y_{N(t)} + \beta_2 \lambda_g(t|\mathcal{H}_t).$

Hawkes 模型: $\beta(t, y|\mathcal{H}_t) = \beta_0 + \eta \sum_{i:t_i < t} g(t - t_i, y_i)$

VaR的计算公式:

$$\operatorname{VaR}_{\alpha}^{t+1} = u + \frac{\beta(t, y | \mathcal{H}_t)}{\xi} \left(\left(\frac{1 - \alpha}{1 - \exp\left(-\lambda_g(t | \mathcal{H}_t; \theta)\right)} \right)^{-\xi} - 1 \right)$$

1. Kupiec检验(非条件覆盖检验)

比较VaR序列与真实收益序列,判断失败次数是否等于给定覆盖率。

- ➤ 把实际损失超过VaR值记为失败,把实际损失低于VaR值记为成功。
- ho 假定VaR估计具有时间独立性,则前面的标记过程代表一系列独立的伯努利实验,失败的期望概率为 p^* (与 α 一致,即 $p^*=\alpha$)。
- 产 在给定置信水平下,检验事件的实际失败率是否显著不同于预期失败率,可
 判断VaR模型是否有效。

原假设 H_0 : $p = p^*$, 计算似然比统计量 (Kupiec, 1995)

$$LR_{uc} = -2 \ln \left[(1 - p^*)^{T - N} (p^*)^N \right] + 2 \ln \left[(1 - N/T)^{T - N} (N/T)^N \right] \sim \chi^2(1)$$

其中, N失败天数, T总天数

只要 LR_{uc} 统计量不落在拒绝域里面(LR_{uc} <3.8415),则不能拒绝原假设

失败概率与预期失败率无显著差别,模型估计VaR的能力与预期一致,模型有效

2. Christoffersen检验(超出值独立性检验)

一个好的预测在市场波动平稳时较窄,在市场波动较大时自动变宽,落在区间预测外的观测值应均匀分布在整个样本区间,无波动聚集性。(Christoffersen, 1998)

- > 若给定某天 VaR 没被超出,则偏差指标I,为 0, 否则为 1。
- > 数 $n_{00}, n_{01}, n_{10}, n_{11}$ 的个数 , 计算似然比统计量

$$LR_{ind} = -2 \ln \frac{(1 - \pi_2)^{n_{00} + n_{10}} \pi_2^{n_{01} + n_{11}}}{(1 - \pi_{01})^{n_{00}} \pi_{01}^{n_{01}} (1 - \pi_{11})^{n_{10}} \pi_{11}^{n_{11}}} \sim \chi^2(1)$$

其中, n_{ij} 表示同时出现状态(i,j)的个数。(i,j=0,1)

$$\pi_{01} = \frac{n_{01}}{n_{01} + n_{00}}, \quad \pi_{11} = \frac{n_{11}}{n_{10} + n_{11}}, \quad \pi_{2} = \frac{n_{01} + n_{11}}{n_{00} + n_{01} + n_{10} + n_{11}}$$

若满足独立性假设,原假设为: $\pi_{01}=\pi_{11}=\pi_2$

- 3. 条件覆盖检验
- ➤ VaR模型预测有效:非条件覆盖和独立性 ⇒ 联合检验
- ➤ 定义一个VaR失败事件序列的条件覆盖, VaR 必为一个 独立同分布的随机过程 (Christoffersen, 1998)

计算似然比统计量 $LR_{cc} = LR_{uc} + LR_{ind} \sim \chi^2(2)$

经整理可写成

$$LR_{cc} = -2 \ln \frac{(1 - p^*)^{n_0} (p^*)^{n_1}}{(1 - \pi_{01})^{n_{00}} \pi_{01}^{n_{01}} (1 - \pi_{11})^{n_{10}} \pi_{11}^{n_{11}}} \sim \chi^2(2)$$

4. 超出值序列的自相关性检验

如果发生失败的事件之间存在相关关系,那就可能连续发生损失超过前期设定的风险值,所以还需检验 VaR 序列的相关性。

- ▶ 检验超出值序列独立性:超出值序列 I, 的自相关分析
- > 序列自相关的原假设

$$H_0$$
: corr $\{I_r, I_{t-s}\} = 0, \forall s$

$$H_1$$
: corr $\{I_r, I_{t-s}\} \neq 0, \exists s$

- ✓ 用Ljung-Box的Q统计量来进行检验
- ✓ 最优滞后阶数建议使用1周(5天) (Boudoukh,1998)

5. 动态分位数检验(DQ检验)

利用当前的失败事件与前期的失败事件构建线性回归方程以检验 失败事件间是否相关。(Engle and Manganelli, 2004)

计算碰撞序列 $Hit_t(\alpha)$: $Hit_t(\alpha) = I(r_t < VaR_t(\alpha)) - \alpha$

考虑线性回归方程:

$$Hit_{t}(\alpha) = \delta + \sum_{k=1}^{M} \beta_{k} Hit_{t-k}(\alpha)$$

$$+ \sum_{k=1}^{M} r_{k} g\left(Hit_{t-k}(\alpha) + Hit_{t-k-1}(\alpha) + \dots + x_{t-k} + x_{t-k-1} + \dots\right) + \varepsilon_{t}$$

- $\succ \varepsilon_t$ 满足 i.i.d., g(*)是 $Hit_t(\alpha)$ 滞后项和外生变量 x_{t-k} 的函数。
- > 外生变量:收益率、收益率的平方、VaR的预测值、隐含波动率等。

DQ检验的零假设:

$$H_0$$
: $\delta = \beta_k = \gamma_k = 0$, $k = 1, 2, ..., M$

- \triangleright $\beta_k = \gamma_k = 0$ 表示 $Hit_t(\alpha)$ 与包含过去信息的变量是相互独立
- $> \delta = 0$ 表示满足非条件覆盖
- ightharpoonup 定义模型的参数向量 $\omega=[\delta,\,eta_1\,,...,\,eta_k\,,\,\gamma_1\,,\,...,\,\gamma_k\,]$ ',X为解释变量矩阵,构建似然比统计量:

$$DQ = \frac{\hat{\omega}' X' X \hat{\omega}}{\alpha (1 - \alpha)} \sim \chi^2 (2M + 1)$$

Engle and Manganelli (2004)的DQ检验,解释变量矩阵包含6个部分:

常数项 δ , $Hit_t(\alpha)$ 的四个滞后项 $Hit_{t-1}(\alpha)$, $Hit_{t-2}(\alpha)$, $Hit_{t-3}(\alpha)$, $Hit_{t-4}(\alpha)$ 和VaR序列,

$$X = [\delta, Hit_{t-1}(\alpha), Hit_{t-2}(\alpha), Hit_{t-3}(\alpha), Hit_{t-4}(\alpha), VaR]$$

例1:考虑股票 S_1 和 S_2 的资产组合的在险价值

期望分别为 μ_1 = 0.155%和 μ_2 = 0.0338%,标准差分别为 σ_1 = 2.42%和 σ_2 = 1.68%,相关系数 ρ = 0.14;该资产组合含 n_1 =100股 S_1 股票,股价为 P_1 =91.7元, n_2 =120股 S_2 股票,股票为 P_2 =79.1元

提示:计算组合价值,计算投资比重,计算组合均值和方差,计算VaR

$$V = n_1 P_1 + n_2 P_2 = 18662$$

$$x_1 = n_1 P_1 / V = 0.49, \quad x_2 = n_2 P_2 / V = 0.51$$

$$\mu_x = x_1 \mu_1 + x_2 \mu_2 = 0.093\%$$

$$\sigma_x^2 = x_1^2 \sigma_1^2 + x_2^2 \sigma_2^2 + 2x_1 x_2 \rho \sigma_1 \sigma_2 = 0.00024, \quad \sigma_x = 1.55\%$$

$$VaR = -V(\mu_x + z_\alpha \sigma_x) = 458.23$$

例2: GARCH-Normal VaR计算

数据来源:上证综合指数 2006.1.5-2018.9.3 日度数据

数据处理:

> 将价格指数转换为对数收益率序列

$$r_t = 100(\log p_t - \log p_{t-1})$$

> 2006.1.5-2018.9.3共计3081个样本点;

2006.1.5-2017.6.16为样本内数据;

2017.6.17-2018.9.3为样本外数据;

选用的波动率模型为AR(1) - GARCH(1,1) , 有:

均值方程: $r_t = \gamma r_{t-1} + \varepsilon_t$

条件方差方程: $\sigma_t^2 = w + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$

用样本内数据估计模型参数,再进行滚动窗口预测,滚动300次, 得VaR的300个预测值。

参数估计结果

AR(1)-GARCH(1,1)-Normal								
γ	W	а	b					
0.0214	0.00715	0.05665	0.94291					
$r_t = 0.0214r_{t-1} + \varepsilon_t$ $\sigma_t^2 = 0.00715 + 0.05665\varepsilon_{t-1}^2 + 0.94291\sigma_{t-1}^2$								
	VaR_{2782}							

α	z_{lpha}	σ_t	VaR ₂₇₈₂
1%	-2.326	0.652	1.52
5%	-1.645	0.652	1.08
10%	-1.281	0.652	0.84

准确性检验结果

VaR in-sample $(\alpha = 0.05, \chi^2(1) = 3.84, \chi^2(2) = 5.99, \chi^2(7) = 14.06$								
Failures	Failures $LR_{uc} \sim \chi^2(1)$ $LR_{ind} \sim \chi^2(1)$ $LR_{cc} \sim \chi^2(2)$ $DQ_{VaR} \sim \chi^2(7)$ $DQ_{hit} \sim \chi^2(7)$ LB_{VaR}							
138 (2781)	0.0084	1.38	1.54	3.21	2.27	0(1)		

VaR backtesting $(\alpha = 0.05, \chi^2(1) = 3.84, \chi^2(2) = 5.99, \chi^2(7) = 14.06)$								
Failures	Failures $LR_{uc} \sim \chi^2(1)$ $LR_{ind} \sim \chi^2(1)$ $LR_{cc} \sim \chi^2(2)$ $DQ_{VaR} \sim \chi^2(7)$ $DQ_{hit} \sim \chi^2(7)$ LB_{VaR}							
13 (300) 0.29 0.30 0.6851 2.89 2.04 0.0003(1)								

例3. ACD-POT、Hawkes-POT VaR 计算

1.数据:WTI原油期货收盘价:1983.4.3-2018.10.22

2.参数估计结果:

	Parameters								
Models	ACD model								
	ω	а	b	δ	γ	K	φ	η	ρ
gACD1	0.184	0.1466	0.7349		0.9459	0.6421			
gACDI	0.031	0.023	0.256		0.397	0.214			
glogACD1	0.2542	0.2508	0.6851		0.7899	1.0001			
glogACDI	0.125	0.089	0.158		0.259	0.035			
Hawkes-POT					0.0285	0.0225	0.0114	0.1005	
nawkes-PO1				0.081	0.007	0.005	0.004	0.029	
ETAS-POT				1.508	5.09E-05	0.0473	0.0018	0.0253	497.7784
LIAS-IOI				0.956	1.04E-03	0.012	0.008	0.009	30.546

POT me	odel			Loglik	AIC	
ξ	β_0	β_1	β_2			
0.0977	0.0049	0.0719	0.0762	-54.59234	127.1847	
0.035	0.001	0.015	0.026	-34.39234	127.1047	
0.0972	0.0044	0.0874	0.0795	20 4516	124 0022	
0.024	0.001	0.045	0.012	-28.4516	134.9032	
0.0841	0.6862			2740.2	7404.5	
0.024	0.312			-3740.3	7494.5	
0.1106	0.5643			-3740.3	7494.5	
0.023	0.153			-3140.3	1494.3	

极值理论-ACD-POT、Hawkes-POT

3. 准确性检验

			VaR	in-sample	e		
		Exc	LRuc	LRind	LRcc	DQhit	DQvar
gACD1	0.95	412	0.92	0.13	0.28	0.12	0.18
	0.99	72	0.32	0.38	0.31	0.29	0.1
	0.999	11	0.75	0.95	0.93	0.08	0
glogACD1	0.95	409	0.89	0.52	0.77	0.36	0.28
	0.99	79	0.3	0.39	0.68	0.89	0.64
	0.999	7	0.16	0.93	0.58	0.51	0.47
Hawkes-POT	0.95	387	0.27	0.86	0.66	0.78	0.96
	0.99	74	0.19	0.82	0.6	0.38	0.62
	0.999	11	0.75	0.47	0.39	0.97	0.79
ETAS-POT	0.95	373	0.31	0.78	0.53	0.37	0.56
	0.99	68	0.66	0.64	0.75	0.89	0.93
	0.999	9	0.38	0.34	0.22	0.92	0.96

VaR out-sample							
		Exc	LRuc	LRind	LRcc	DQhit	DQvar
gACD1	0.95	44	0.33	0.8	0.16	0.51	0.08
	0.99	6	0.76	0.54	0.28	0.04	0.1
	0.999	0	0.5	1	0.79	0	0.02
gACD1	0.95	48	0.13	0.74	0.81	0.07	0.03
	0.99	8	0.35	0.07	0.19	0.89	0.59
	0.999	0	0.5	1	0.79	NA	NA
Hawkes-POT	0.95	41	0.8	0.3	0.22	0.78	0.96
	0.99	7	0.66	0.53	0.6	0.38	0.65
	0.999	0	0.5	1	0.79	NA	NA
ETAS-POT	0.95	32	0.98	0.35	0.57	0.29	0.33
	0.99	3	0.98	0.87	0.39	0.83	0.68
	0.999	0	0.5	1	0.79	NA	NA