1 THE INTERNAL CORE MODEL INDUCTION

Introduction

1.1 Operators and hybrid mice

Define model operator, (hybrid) mouse operator, mouse reflection, condenses finely/well, determines itself on generic extensions, relativises well...

1.2 The hybrid core model dichotomy

Lemma 1.2.1. Let θ be a regular uncountable cardinal or $\theta = \infty$ and let \mathcal{N} be a tame hybrid mouse operator on H_{θ} which relativises well. Then \mathcal{N} is countably iterable iff it's (θ, θ) -iterable, guided by \mathcal{N} . Furthermore, for every $x \in H_{\theta}$, if $M_1^{\mathcal{N}}(x)$ exists and is countably iterable, then it's also (θ, θ) -iterable, guided by \mathcal{N} .

PROOF. We first show that $\mathcal{N}(x)$ is (θ, θ) -iterable. Let $\mathcal{T} \in H_{\theta}$ be a normal tree of limit length on $\mathcal{N}(x)$. Let $\eta \gg \mathrm{rk}(\mathcal{T})$ and let

$$\mathcal{H} := \mathrm{cHull}^{H_{\eta}}(\{x, \mathcal{N}(x), \mathcal{T}\})$$

with uncollapse $\pi \colon \mathcal{H} \to H_{\eta}$. Set $\overline{a} := \pi^{-1}(a)$ for every $a \in \operatorname{ran} \pi$. Note that $\overline{\mathcal{N}(x)} = \mathcal{N}(\overline{x})$ since \mathcal{N} relativises well. Now $\overline{\mathcal{T}}$ is a normal, countable iteration tree on $\mathcal{N}(\overline{x})$ and hence our iteration strategy yields a wellfounded cofinal branch $\overline{b} \in V$ for $\overline{\mathcal{T}}$. Note that $\overline{\mathcal{Q}} := \mathcal{Q}(\overline{b}, \overline{\mathcal{T}})$ exists, since if \overline{b} drops then there's nothing to do, and otherwise we have that

$$\rho_1(\mathcal{M}_{\overline{b}}^{\overline{T}}) = \rho_1(\mathcal{N}(\overline{x})) = \operatorname{rk} \overline{x} < \delta(\overline{T}),$$

Change this to model operators; perhaps change parts of the proof and/or assumptions needed. so $\delta(\overline{\mathcal{T}})$ is not definably Woodin over $\mathcal{M}_{\overline{b}}^{\overline{\mathcal{T}}}$.

Claim 1.2.1.1.
$$\overline{Q} \subseteq \mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$$

PROOF OF CLAIM. If $\overline{\mathcal{Q}} = \mathcal{M}(\overline{\mathcal{T}})$ then the claim is trivial, so assume that $\mathcal{M}(\overline{\mathcal{T}}) \triangleleft \overline{\mathcal{Q}}$. Note that $\overline{\mathcal{Q}} \unlhd M_{\overline{b}}^{\overline{\mathcal{T}}}$ by definition of \mathcal{Q} -structures, and that $M_{\overline{b}}^{\overline{\mathcal{T}}}$ satisfies (2) of the definition of relativises well, meaning that

$$M_{\overline{b}}^{\overline{T}} \models \lceil \forall \eta \forall \zeta > \eta : \text{if } \eta \text{ is a cutpoint then } M_{\overline{b}}^{\overline{T}} | \zeta \not\models \varphi_{\mathcal{N}}[\bar{x}, p_{\mathcal{N}}] \rceil.$$
 (1)

This statement is Π_2^1 and $\overline{\mathcal{Q}}$ is Π_2^1 -correct since it contains a Woodin cardinal, so that \mathcal{Q} satisfies the statement as well. Since \mathcal{N} is tame we get that $\delta(\overline{\mathcal{T}})$ is a cutpoint of $\overline{\mathcal{Q}}$, so that $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) = \mathcal{N}(\overline{\mathcal{Q}}|\delta(\overline{\mathcal{T}}))$ is not a proper initial segment of $\overline{\mathcal{Q}}$. Further, as we're assuming that both $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ and $\mathcal{M}_{\overline{b}}^{\overline{\mathcal{T}}}$ are (ω_1+1) -iterable above $\delta(\overline{\mathcal{T}})$ the same thing holds for $\overline{\mathcal{Q}} \unlhd \mathcal{M}_{\overline{b}}^{\overline{\mathcal{T}}}$, so that we can compare $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ with $\overline{\mathcal{Q}}$ (in V). Let

$$(\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})),\overline{\mathcal{Q}}) \rightsquigarrow (\mathcal{P},\mathcal{R})$$

be the result of the coiteration. We claim that $\mathcal{R} \unlhd \mathcal{P}$. Suppose $\mathcal{P} \lhd \mathcal{R}$. Then there is no drop in $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) \leadsto \mathcal{P}$ and in fact $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) = \mathcal{P}$ since $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ projects to $\delta(\overline{\mathcal{T}})$. Furthermore, as we established that $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) = \mathcal{N}(\overline{\mathcal{Q}}|\delta(\overline{\mathcal{T}}))$ isn't a proper initial segment of $\overline{\mathcal{Q}}$ it can't be a proper initial segment of \mathcal{R} either, as the coiteration is above $\delta(\overline{\mathcal{T}})$. But we're assuming that $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) = \mathcal{P} \lhd \mathcal{R}$, a contradiction. So $\mathcal{R} \unlhd \mathcal{P}$.

Since $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ and $\overline{\mathcal{Q}}$ agree up to $\delta(\overline{\mathcal{T}})$ and there is no drop $\overline{\mathcal{Q}} \leadsto \mathcal{R}$ we have that $\overline{\mathcal{Q}} = \mathcal{R}$. If $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) \leadsto \mathcal{P}$ doesn't move either we're done, so assume not. Let F be the first exit extender of $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ in the coiteration. We have $\mathrm{lh}(F) \leq o(\overline{\mathcal{Q}})$, $\overline{\mathcal{Q}} \leq \mathcal{P}$ and $\mathrm{lh}(F)$ is a cardinal in \mathcal{P} .

As $\overline{\mathcal{Q}}$ is $\delta(\overline{\mathcal{T}})$ -sound and projects to $\delta(\overline{\mathcal{T}})$ it follows that $J(\overline{\mathcal{Q}}|\operatorname{lh}(F))$ collapses $\operatorname{lh}(F)$, so it has to be the case that $\overline{\mathcal{Q}}|\operatorname{lh}(F)=\mathcal{P}$ and thus $o(\mathcal{P})=\operatorname{lh}(F)$. But this means that $\mathcal{P}=\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ even though we assumed that $\mathcal{N}(\mathcal{M}(\mathcal{T})) \leadsto \mathcal{P}$ moved, a contradiction.

Now, in a sufficiently large collapsing extension extension of \mathcal{H} , \bar{b} is the unique cofinal, wellfounded branch of $\overline{\mathcal{T}}$ such that $\mathcal{Q}(\bar{b}, \overline{\mathcal{T}}) \leq \mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ exists. Hence, by the homogeneity of $\operatorname{Col}(\omega, \theta)$, $\bar{b} \in H$. By elementarity there is a unique cofinal, wellfounded branch b of \mathcal{T} such that $\mathcal{Q}(b, \mathcal{T}) \leq \mathcal{N}(\mathcal{M}(\mathcal{T}))$. This proves that M is (uniquely) On-iterable and virtually the same argument yields the iterability of M via successor-many stacks of normal trees.

To show that M is fully iterable, it remains to be seen that the unique iteration strategy (guided by \mathcal{N}) of M outlined above leads to wellfounded direct limits for stacks of normal trees on M of limit length. Let λ be a limit ordinal and $\vec{\mathcal{T}} = (\mathcal{T}_i \mid i < \lambda)$ a stack according to our iteration strategy. Suppose $\lim_{i < \lambda} \mathcal{M}_{\infty}^{\mathcal{T}_i}$ is illfounded.

Redefine $\eta \gg \operatorname{rk}(\vec{\mathcal{T}})$, $\mathcal{H} := \operatorname{cHull}^{H_{\eta}}(\{x,M,\vec{\mathcal{T}}\})$ and $\pi: \mathcal{H} \to H_{\eta}$ the uncollapse, again with $\overline{a} := \pi^{-1}(a)$ for every $a \in \operatorname{ran} \pi$. By elementarity we get that $\mathcal{H} \models \lceil \lim_{i < \overline{\lambda}} \mathcal{M}_{\infty}^{\overline{\mathcal{T}}_i}$ is illfounded $\overline{\mathcal{T}}$. But $\overline{\vec{\mathcal{T}}}$ is countable and according to the iteration strategy guided by \mathcal{N} , so that

$$V \models \lceil \lim_{i < \overline{\lambda}} \mathcal{M}_{\infty}^{\overline{T}_i} \text{ is wellfounded.} \rceil$$

Now note that $(\lim_{i<\overline{\lambda}}\mathcal{M}_{\infty}^{\overline{\mathcal{T}}_i})^{\mathcal{H}}=(\lim_{i<\overline{\lambda}}\mathcal{M}_{\infty}^{\overline{\mathcal{T}}_i})^V$ and well foundedness is absolute between \mathcal{H} and V, a contradiction.

Now assume that $M_1^{\mathcal{N}}(x)$ exists for some $x \in H_{\theta}$, and that it's countably iterable. We then do exactly the same thing as with $\mathcal{N}(x)$ except that in the claim we replace (1) with

$$\overline{\mathcal{Q}} \models \forall \eta(\overline{\mathcal{Q}} | \eta \not\models \lceil \delta(\overline{\mathcal{T}}) \text{ is not Woodin} \rceil),$$

so that if $\mathcal{P} \triangleleft \mathcal{R}$ then $\delta(\overline{\mathcal{T}})$ is still Woodin in $\mathcal{P} = \mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$, contradicting the defining property of $M_1^{\mathcal{N}}(x)$ (and thus also of \mathcal{R}). The rest of the proof is a copy of the above.

Theorem 1.2.2 (Hybrid core model dichotomy). Let θ be a \beth -fixed point or $\theta = \infty$, and let F be a tame model operator on H_{θ} that condenses well. Let $x \in H_{\theta}$. Then either:

I don't think tame is needed here, as we're only indexing extenders at F-initial segments.
-Dan

- (i) The core model $K^F(x)|\theta$ exists and is (θ,θ) -iterable; or
- (ii) $M_1^F(x)$ exists and is (θ, θ) -iterable.

PROOF. Assume first that $K^{c,F}(x)|\theta$ reaches a premouse which isn't Fsmall; let \mathcal{N}_{ξ} be the first part of the construction witnessing this. Then $\mathfrak{C}(\mathcal{N}_{\xi}) = M_1^F(x)$, and by Lemma 1.2.1 it suffices to show that $M_1^F(x)$ is countably iterable.

Insert argument?

Show that $M_1^F(x)$ is countably iterable.

We can thus assume that $K^{c,F}(x)|\theta$ is F-small. Note that if $K^{c,F}(x)|\theta$ has a Woodin cardinal then because the model is F-closed we contradict F-smallness, so the model has no Woodin cardinals either, making it (θ,θ) -iterable.

Let $\kappa < \theta$ be any uncountable cardinal and let $\Omega := \beth_{\kappa}(\kappa)^+$. Note that $\Omega < \theta$ since we assumed that θ is a \beth -fixed point and $\kappa < \theta$. If Ω is a limit cardinal in $K^{c,F}(x)|\theta$ then let $\S := \operatorname{Lp}(K^{c,F}(x)|\Omega)$ and otherwise let $\S := K^{c,F}(x)|\Omega$. Then by Lemma 3.3 of [?] we get that \S is countably iterable, with largest cardinal Ω in the "limit cardinal case".

This also means that Ω isn't Woodin in $L[\S]$, as it's trivial in the case where Ω is a successor cardinal of $K^{c,F}(x)|\theta$ by our case assumption, and in the "limit cardinal case" it also holds since

$$K^{c,F}(x)|\Omega^{+K^{c,F}(x)|\theta} \subseteq \S.$$

By [?] and [?] this means that we can build $K^F(x)|\kappa$, as the only places they use that there's no inner model with a Woodin are to guarantee that $K^{c,F}(x)|\Omega$ exists and has no Woodin cardinals, and in Lemma 4.27 of [?] in which they only require that Ω isn't Woodin in $L[\S]$.

As $\kappa < \theta$ was arbitrary we then get that $K^F(x)|\theta$ exists. Note that $K^F(x)|\theta$ has no Woodin cardinals either and is F-small, so that \mathcal{Q} -structures trivially exist, making it (θ, θ) -iterable.

1.3 The hybrid witness equivalence

Definition 1.3.1. asd

Define coarse (k, U, x)-Woodin pairs

0

Definition 1.3.2. Let F be a total condensing operator and let α be an ordinal. Then the coarse mouse witness condition at α with F, written $W_{\alpha}^{*}(F)$, states that given any scaled-co-scaled $U \subseteq \mathbb{R}$ whose associated sequences of prewellorderings are elements of $\operatorname{Lp}_{\alpha}^{F}(\mathbb{R})$, we have for every $k < \omega$ and $x \in \mathbb{R}$ a coarse (k, U, x)-Woodin pair (N, Σ) with $\Sigma \upharpoonright \mathsf{HC} \in \operatorname{Lp}_{\alpha}^{F}(\mathbb{R})$.

Check if this is a reasonable defini-

Theorem 1.3.3 (Hybrid witness equivalence). Let $\theta > 0$ be a cardinal, $g \subseteq \operatorname{Col}(\omega, <\theta)$ V-generic, $\mathbb{R}^g := \bigcup_{\alpha < \theta} \mathbb{R}^{V[g \upharpoonright \alpha]}$, F a total radiant operator and α a critical ordinal of $\operatorname{Lp}^F(\mathbb{R}^g)$. Assume that $\operatorname{Lp}^F(\mathbb{R}^g) \models DC + \lceil W_{\beta}^*(F) \text{ holds for all } \beta \leq \alpha \rceil$. Then there is a hybrid mouse operator $\mathcal{N} \in V$ on $H_{\aleph_1^{V[g]}}$ such that

$$\operatorname{Lp}^F(\mathbb{R}^g) \models W_{\alpha+1}^*(F)$$
 iff $V \models \lceil M_n^{\mathcal{N}} \text{ is total on } H_{\aleph_1^{V[g]}} \text{ for all } n < \omega \rceil$

Furthermore, if $\theta < \aleph_1^V$ then we only need to assume that F is total and condensing.

Be more explicit about what the given operator \mathcal{N} looks like.

1.4 Determinacy in mice from DI

Proposition 1.4.1. If ω_1 carries a saturated ideal then mouse reflection holds at ω_1 .

PROOF. Let \mathcal{N} be a mouse operator defined on HC and fix some $x \in H_{\omega_2}$; we want to show that $\mathcal{N}(x)$ is defined. Let $j: V \to M$ be the generic ultrapower with crit $j = \omega_1^V$ and note that $j(\omega_1^V) = \omega_1^M = \omega_1^{V[g]} = \omega_2^V$ by saturation of the ideal. This means in particular that $\mathsf{HC} \prec H_{\omega_2}^M$. Since

$$\mathsf{HC} \models \lceil \mathcal{N}(y) \text{ exists for all sets } y \rceil$$

1.4. DETERMINARY INDIVIDUE ORE MODEL INDUCTION

we get that $H_{\omega_2}^M$ believes the same is true. But $H_{\omega_2}^V \subseteq H_{\omega_2}^M$ since crit $j = \omega_1^V$, so that in particular $H_{\omega_2}^M$ believes that x^{\sharp} exists. Since M is closed under ω -sequences in V[g] by Proposition ??, we get that x^{\sharp} exists in V[g] and hence also in V as set forcing can't add sharps.

Prove this or give a reference.

Proposition 1.4.2. If ω_1 carries a precipitous ideal then HC is closed under sharps. If the ideal is furthermore saturated then H_{ω_2} is closed under sharps.

PROOF. Proposition ?? gives the latter statement if we show the former, so fix an $x \in HC$ and let $j: V \to M$ be the generic ultrapower from a precipitous ideal on ω_1^V . Since j(x) = x we get that $j: L[x] \to L[x]$ with crit $j > \operatorname{rk} x$, implying that x^{\sharp} exists in the generic extension. But set forcing can't add sharps so x^{\sharp} exists in V as well.

Add argument or reference.

Definition 1.4.3. Let $j:V\to M$ be an elementary embedding in some V[g] and let F be a model operator. Then F is j-radiant if it condenses well, determines itself on generic extensions and satisfies the extension property, which says that $F\subseteq j(F)$ and $j(F)\upharpoonright \mathsf{HC}^{V[g]}$ is definable in V[g].

Lemma 1.4.4 (DI). M_1^F is total on H_{ω_2} for any j-radiant model operator F on H_{ω_2} .

PROOF. We want to use the hybrid core model dichotomy $\ref{eq:thm.problem}$, but the problem is that F is not total. We solve this by going to a smaller model; the model $W := L^F_{\omega_2^V}(\mathbb{R})$ will be a first attempt (note that $\mathbb{R} \in \text{dom } F$ as we're assuming CH). To be able to apply the dichotomy in a model we need it to satisfy ZFC. The following claim is the first step towards this.

Claim 1.4.4.1. Given any real $x, L_{\omega_2}^F(x) \models \ulcorner \omega_1^V$ is inaccessible \urcorner .

PROOF OF CLAIM. Letting $j:V\to M$ be the generic elementary embedding, note that j doesn't move x, so that

$$j \upharpoonright L_{\omega_2^V}^F(x) : L_{\omega_2^V}^F(x) \to L_{\omega_2^M}^{j(F)}(x).$$

Since F has the extension property, $L_{\omega_2^M}^{j(F)}(x)$ is just an end-extension of $L_{\omega_2^V}^F(x)$. In particular ω_1^V is still a cardinal in there, meaning that, for every $\alpha < \omega_1^V$,

$$L_{\omega_1^M}^{j(F)}(x) \models \lceil \text{there's a cardinal} > \alpha \rceil.$$

By elementarity this makes ω_1^V a limit cardinal in $L_{\omega_2^V}^F(x)$ and by GCH in $L_{\omega_2^V}^F(x)$ it's inaccessible.

This claim is now transferred to M, and as \mathbb{R}^V is a real from the point of view of M, we get that

$$L^{j(F)}_{\omega_2^M}(\mathbb{R}^V) \models \ulcorner \omega_1^M \text{ is inaccessible} \urcorner.$$

Noting that $\omega_1^M = \omega_2^V$ and again using the extension property of F, we get that $W \models \mathsf{ZF}$. We don't get choice in W as it doesn't contain a wellorder of the reals, so we we'll work with W[h] instead, where $h \subseteq \mathrm{Col}(\omega_1, \mathbb{R})^W$ is W-generic. Since we're assuming CH we get that $g \in V$, making $W[h] \in V$ as well, W[h] is still closed under F since F determines itself on generic extensions, and $W[h] \models \mathsf{ZFC}$.

Claim 1.4.4.2. $j(K) \in V$.

PROOF OF CLAIM. This is where we'll be using homogeneity of our ideal. Firstly K is definable in W[h] and thus also in W by homogeneity of $\operatorname{Col}(\omega_1,\mathbb{R})$, so that j(K) is definable in j(W). But j(W) is definable in V[g] as the unique j(F)-premouse over \mathbb{R} of height ω_1 , making j(K) definable in V[g] with $j(F) \upharpoonright \mathsf{HC}$ as a parameter. But $j(F) \upharpoonright \mathsf{HC}$ is definable in V[g] since F satisfies the extension property, so homogeneity of our ideal implies that $j(F) \in V$ and hence $j(K) \in V$ as well.

This claim also implies that ω_1^V is inaccessible in K, as if it wasn't, say $\omega_1^V = \lambda^{+K}$, then $\omega_2^V = j(\omega_1^V) = j(\lambda)^{+j(K)} = \lambda^{+j(K)}$, so that ω_2^V isn't a cardinal in V, ξ .

We then also get that $(\omega_1^V)^{+j(K)} < \omega_2^V$, since if they were equal then elementarity would imply that ω_1^V was a successor in $K, \mbox{\em 4}$.

Since $K|\omega_1^V=j(K)|\omega_1^V$, elementarity and the above implies that

$$j^{2}(K)|(\omega_{1}^{V})^{+j^{2}(K)} = j(K)|(\omega_{1}^{V})^{+j(K)},$$

which makes sense as $j(K) \in V$.

Let now E be the (ω_1^V, ω_2^V) -extender derived from $j \upharpoonright j(K)$, and note that $E \upharpoonright \alpha \in M$ for every $\alpha < \omega_2^V = \omega_1^M$ as M is closed under countable sequences in V[g].

Claim 1.4.4.3. $E \upharpoonright \alpha$ is on the j(K)-sequence for every $\alpha < \omega_2^V$.

Why is this sufficient?

PROOF OF CLAIM. We need to show that

$$j(W) \models \lceil \langle \langle j(K), \text{Ult}(j(K), E \upharpoonright \alpha) \rangle, \alpha \rangle$$
 is On-iterable.

What kind of reflection?

Assume not. Then by reflection we get, in j(W), a countable \overline{K} and an elementary $\sigma : \overline{K} \to \text{Ult}(j(K), E \upharpoonright \alpha)$ with $\sigma \upharpoonright \alpha = \text{id}$ and $\langle \langle j(K), \overline{K} \rangle, \alpha \rangle$ isn't ω_1 -iterable.

Let $k: \mathrm{Ult}(j(K), E \upharpoonright \alpha) \to j^2(K)$ be the factor map with $k \upharpoonright \alpha = \mathrm{id}$ and define $\psi := k \circ \sigma : \overline{K} \to j^2(K)$, so that $(k \circ \sigma) \upharpoonright \alpha = \mathrm{id}$. We have both ψ and \overline{K} in M, which is the generic ultrapower $\mathrm{Ult}(V, g)$, so we also get

CHAPTER 1. THE INTERNALI. CORTECTED TO THE INTERNALIA CORT

that $\psi = [\vec{\psi}_{\xi}]_g$, $\overline{K} = [\vec{K}_{\xi}]_g$ and $\alpha = [\vec{\alpha}_{\xi}]_g$. We need to show that

For g-almost every $\xi < \omega_1^V$ it holds that $W \models \lceil \langle \langle K, K_{\xi} \rangle, \alpha_{\xi} \rangle$ is ω_1 -iterable

By Łoś' Lemma we have that, in V and hence also in V[g], there are embeddings $\psi_{\xi}: K_{\xi} \to j(K)$ with $\psi_{\xi} \upharpoonright \alpha_{\xi} = \mathrm{id}$ for g-almost every $\xi < \omega_{1}^{V}$. As j(W) is closed under countable sequences in V[g] it sees that the K_{ξ} 's are countable, so that an application of absoluteness of wellfoundedness shows that j(W) also has elementary embeddings $\psi_{\xi}^{*}: K_{\xi} \to j(K)$ with $\psi_{\xi}^{*} \upharpoonright \alpha_{\xi}$.

Include this argument perhaps.

But $j(K) = K^{j(F)}(x)^{j(W[h])}$, so j(W[h]) sees that $\langle \langle K, K_{\xi} \rangle, \alpha_{\xi} \rangle$ is ω_1 -iterable, which is therefore also true in W since $W \cap \mathbb{R} \subseteq \mathbb{R}^{V[g]} = j(W[h]) \cap \mathbb{R}$.

Our desired contradiction is then showing that K has a Shelah cardinal, which is impossible. Let $f: \omega_1^V \to \omega_1^V$ be a function in j(K) and pick some $\alpha \in (j(f)(\kappa), \omega_2^V)$. Letting

Insert argument?

$$k: \mathrm{Ult}(j(K), E \upharpoonright \alpha) \to j^2(K)$$

be the factor map, we get that $\operatorname{crit} k \geq \alpha$ by coherence of extenders on the K-sequence and hence that $i_{E \upharpoonright \alpha}(f)(\omega_1^V) < \alpha$ as well. This shows that ω_1^V is Shelah in j(K) and hence K has a Shelah cardinal by elementarity, ξ .

Theorem 1.4.5 (DI). Lp^{Γ,Σ}(\mathbb{R}) \models AD for all "nice" Γ and Σ .

Specify niceness.

Proof.

Show that all the operators occurring in the $\mathrm{Lp}^{\Gamma,\Sigma}(\mathbb{R})$ induction are j-radiant.