Manutenção de Software e Gerência de Configuração

Evaldo de Oliveira evaldo.oliveira@gmail.com

- □ Ciclo de Vida do Software
 - Levantamento de Requisitos
 - Projeto
 - Codificação
 - Testes
 - Implantação
 - Manutenção

- □ A evolução da Engenharia de Software também tem o foco na Manutenção de Software, devido a:
 - Crescente quantidade de software em funcionamento em todo o planeta
 - Representar altos investimentos para a implantação
 - Para dar continuidade no funcionamento e operação das transações e processos dentro das organizações, evitando a substituição e reformulação de novos softwares

- ☐ Precisa ser conhecida e explorada
- ☐ É necessário que existam profissionais com conhecimento nos métodos, técnicas e ferramentas
- □ A configuração do software deve ser:
 - Mapeada
 - Documentada
 - Rastreada (Who? Where? Why? When?)

- □ Motivação:
 - Como documentar a manutenção de software?
 - Como os componentes do software se relacionam?
 - O software possui controle de versão?
 - As equipes de desenvolvimento estão distribuídas?
 - Como registrar as mudanças na configuração do software?

- □ Objetivos:
 - Manter a disponibilidade
 - Corrigir falhas
 - Melhorar o desempenho
 - Adequar funcionalidade aos novos requisitos

- Manutenção é a atividade que permite o software evoluir
- Consome a maior parte dos recursos financeiros, humanos e tecnológicos
- □ Representa 80% do orçamento total do ciclo de vida do software

□ Afirmação

A manutenção de software não é apenas uma atividade de correção de erros que poderia ser evitada se o desenvolvimento da aplicação fosse conduzido de maneira mais eficiente

Estudos apontam que 20% dos projetos de manutenção são para correção de código

□ Realidade

- Sem a Manutenção de Software os sistemas se tornariam defasados em relação ao mundo real dentro das empresas, como:
 - □ *O crescimento natural da estrutura organizacional*
 - □ Mudança de leis regendo as condições de operação
 - □ Concorrente oferecendo novos produtos ou serviços

- Um processo de manutenção deve garantir que:
 - Todos os pedidos de manutenção sejam documentados
 - Todos os pedidos de manutenção sejam tratados através de uma seqüência bem definida de atividades
 - Todas as versões e variantes de cada produto sejam identificadas e eventualmente recuperadas
 - Um histórico das várias alterações aplicadas possa ser produzido

- Processo e Planejamento
 - Padrão de Processo proposto pelo IEEE 1219/1993. Std. For Sw Maintenance

Identificação do Problema

- •Id do Pedido
 •Data de Abertura
 •Descrição do Problema

- •Classificação quanto ao tipo de manutenção
 •Prioridade

 - •Envio ao Grupo de Controle de Configuração (Equipe de Desenvolvimento)

- •Relatório de Rejeição da Alteração
 •Aviso de incorporação ao banco de dados
 •Validação do Pedido de Manutenção

■ Análise do Pedido de Manutenção

Projeto da Modificação do Software

- •Relatório de Avaliação do Pedido
 •Proposta de Alteração
 •Itens da linha básica a serem alterados (modelos e documentos)

- •Alterar modelos e documentos
- Preparar casos de teste para as alterações
 Identificar testes de regressão aplicáveis
 Atualizar Proposta de Alteração

 - •Revisar Proposta de Alteração e itens alterados

- Saída

 •Proposta de Alteração revisada
 •Descrição dos testes
 •Itens alterados

Implementação da Modificação do Software

- Itens alterados (modelos e documentos)
 Proposta de Alteração revisada
 Itens a serem alterados (código)

- •Alterar o código
 •Realizar testes de unidade
 •Realizar testes de integração
 •Atualizar modelos e documentos se preciso
 •Revisar itens alterados

- Saída

 •Itens alterados (código)

 •Itens alterados (modelos e documentos)

 •Relatório dos testes realizados

 •Versão do produto (preliminar)

Testes para Modificação do Software

- •Itens a serem alterados (código)
 •Itens alterados (modelos e documentos)
 •Descrição dos Testes

- •Realizar testes de regressão
 •Realizar testes de sistemas
 •Revisar itens alterados

 - •Realizar auditoria de configuração

- •Nova versão do produto
 •Cópias dos itens a serem (re)instalados junto ao cliente
 •Aviso de incorporação da alteração à linha básica

■ Instalação da Modificação do Software

Saída

Saída Aviso de aceitação

□ GCS (Gerencia de Configuração de Software ou SCM - Software Configuration Management), é uma metodologia para gerenciar um projeto de software em desenvolvimento, controlando e registrando versões e as alterações nos componentes da aplicação

É considerada também como um conjunto de atividades de apoio que permite a absorção controlada das mudanças inerentes ao desenvolvimento de software, mantendo a estabilidade na evolução do projeto

- □ A GCS responde à questões básicas, que depois são desmembradas em outras questões mais específicas, ou seja:
 - Quais mudanças aconteceram no software?
 - Por que estas mudanças aconteceram?
 - O sistema continua íntegro mesmo depois das mudanças?

Configuração de um sistema é uma coleção de versões específicas de itens de configuração (hardware, firmware ou software) que são combinados de acordo com procedimentos específicos de construção para servir a uma finalidade particular

- Motivos para adotar GCS
 - Grandes aplicações necessitam de controle de versão
 - Gerencia do desenvolvimento e modificação de várias aplicações ao mesmo tempo; Controle da inserção de novos requisitos
 - Garantir que a última versão da aplicação será recuperada

- A GCS auxilia os desenvolvedores no armazenamento e conhecimento das dependências entre os componentes de software, ou seja:
 - Evita que as dependências sejam conhecidas localmente
 - Permite o compartilhamento dos componentes de software
 - Permite a recuperação das versões do software

■ A GCS faz parte de modelos importantes de maturidade de processo de desenvolvimento de software, tais como o CMMi, MPS-Br e o SPICE

- Segundo o CMMi, as atividades relacionadas à GC são:
 - Identificação da configuração dos produtos de trabalho selecionados que compõem as baselines em um determinado ponto no tempo
 - Controle das mudanças nos itens de configuração
 - Construção ou fornecimento de especificações para construir produtos de trabalho a partir do sistema de gerenciamento de configuração
 - Manutenção da integridade das <u>baselines</u>
 - Fornecimento de dados precisos de status e configuração corrente a desenvolvedores, usuários finais e clientes

■ Baseline é uma configuração formalmente aprovada para servir de referência para o desenvolvimento posterior do sistema

□ Durante a manutenção de software deve existir mecanismos para compartilhar o conhecimento sobre estas dependências, a fim de facilitar a manutenção do software por outros desenvolvedores. Por exemplo, softwares de controles de versão e de gerência da configuração

Do ponto de vista das ferramentas existentes, a
 GC é formada pelas seguintes atividades

- As ferramentas de controle de versão apóia as atividades de controle de mudança e integração contínua. Fornece os seguintes serviços
 - Identificação, armazenamento e gerenciamento dos itens de configuração e de suas versões durante todo o ciclo de vida do software
 - Histórico de todas as alterações efetuadas nos itens de configuração
 - Recuperação de uma configuração em um determinado momento desejado do tempo

- □ As ferramentas de controle de mudanças complementa o serviço oferecido pelo sistema de controle de versão
- □ Tem foco nos procedimentos pelos quais as mudanças de um ou mais itens de configuração são propostas, avaliadas, aceitas e aplicadas
- Oferece serviços para identificar, rastrear, analisar e controlar as mudanças nos itens de configuração

- ☐ As ferramentas de integração contínua garantem que as mudanças no projeto são construídas, testadas e registradas
- Recupera a configuração correta no sistema de controle de versão e a construção dos arquivos executáveis e de instalação do produto
- Normalmente as ferramentas para este tipo de atividade monitora a construção do software e alterações no controle de versão

Ferramentas para GCS

Tipo de Ferramenta	Open Source	Comercial	
Controle de Versão	SubversionCVSAegisArch	ClearCaseStarTeamPerforceBitKeepr	
Controle de Mudança	TracMantisBugzillaScarab	•JIRA •FogBugZ •CaliberRM •ClearQuest •Perforce	
Integração Contínua	•SCons •Bitten •Ant •Maven •CruiseControl •Gump •TinderBox	•AntHill Pro •FinalBuilder •BuildForge	

- ☐ A execução de um projeto é repleto de incertezas que podem ocasionar vários problemas durante sua execução:
 - O usuário final pode negar informações;
 - Inexperiência da equipe de projetos;
 - Falta de conhecimento sobre o servi
 ço e ou escopo do projeto a ser executado;
 - Ausência do usuário no processo de execução do projeto;
- Os processos de gestão de riscos estabelece atividades para mitigar perdas ou custos afundados durante a execução do projeto;

- □ A gerência de riscos é uma série de passos que ajudam uma equipe de software a entender e administrar a incerteza;
- □ Um risco é um problema em potencial que pode ou não ocorrer;
- É importante "<u>estar alerta</u>", identificando os riscos e tomando medidas proativas para evitá-los ou administrá-los;

- □ Existem duas estratégias de riscos:
 - Proativas;
 - Reativas;
- □ Seja proativo, ou senão,
 - "Se você não atacar ativamente os riscos eles irão atacá-lo ativamente."
- Estratégias de risco reativas tem sido zombeteiramente chamadas "escolas de gestão de riscos Indiana Jones", ou seja, quando o problema acontece e o risco não foi identificado o gerente diz a seguinte frase: "não se preocupe, vou pensar em alguma coisa".

☐ Um consenso geral envolve duas características sobre riscos:

- Incerteza –> o risco pode ou não acontecer; isto é não há riscos 100% prováveis. Um risco 100% provável é uma restrição ao projeto;
- Perda -> Se o risco torna-se real, consequências indesejadas ou perdas ocorrerão;

- O planejamento de Gerenciamento de Riscos deve acontecer logo no início do projeto;
- □ Este planejamento deve ter uma breve reflexão de como lidar com os riscos do projeto e neste caso o gerente deve responder às seguintes questões:
 - Existe algum sistema gerencial para Gerenciamento de Riscos?
 - Existirão resistências no uso do Gerenciamento de Riscos no projeto por parte dos *stakeholders*?
 - Quem serão os stakeholders envolvidos com o gerenciamento de riscos no projeto e quais suas responsabilidades no processo?
 - Quais os formulários e relatórios que serão usados por todos os *stakeholders* no gerenciamento de riscos do projeto?

- □ Para desenvolver o Gerenciamento de Riscos do projeto, é necessário considerar os documentos até então tratados pelo projeto:
 - O termo de abertura;
 - Os documentos de requisitos e escopo;
 - A estrutura do projeto e suas principais atividades (WBS)
- É importante considerar também padrões de documentos utilizados em projetos anteriores, ou adotados pela própria empresa em seu escritório de projetos;

 O planejamento e as respostas aos riscos, devem ser feitos desde da fase de concepção do projeto;

Deve ser iniciado após planejamento do projeto, isto é, já existir uma definição do objetivo, ter desenvolvido a WBS, planejado as entregas, o cronograma, as estimativas de custo, enfim a proposta concluída;

□ Pode levar o gerente de software a identificar novos riscos, bem como gerar alterações no que havia sido previamente definido em termos de escopo, tempo, custo ou resultado;

- □ As seguintes atividades devem ser consideradas no planejamento. São elas:
 - Identificar os riscos;
 - Analisar os riscos;
 - Planejar respostas aos riscos;
 - Monitorar os Riscos;
 - Controlar os Riscos;
 - Comunicar os Riscos;

- O processo de Identificação de Riscos gera uma lista daqueles que podem ameaçar ou gerar danos em relação aos objetivos do projeto;
- □ A Identificação pode ser vista como um procedimento a ser desenvolvido em três etapas distintas e complementares:
 - Analogia com projetos anteriores;
 - Identificação de novos riscos;
 - Desenvolvimento de uma lista de riscos com as respectivas categorizações;

- A Analogia refere-se ao esforço em buscar informações históricas e conhecimento acumulado em projetos de natureza semelhante;
- Projetos com características semelhantes podem possuir riscos típicos, e portanto podem se repetir em projetos subseqüentes;
- □ A lista de riscos típicos pode ser reutilizada;

- □ Ao final do processo de identificação dos riscos, os mesmos devem ser categorizados, realizando o agrupamento dos riscos por afinidade ou tipo;
- □ As categorias podem ser: Dimensões Técnicas,
 Organizacionais, Gerenciais ou do Ambiente Externo;
- □ A categorização dos riscos pode ser representada por uma Risk Breakdown Strucutre (RBS) ou estrutura analítica de riscos (EAR);

Categoria dos Riscos

□ Riscos técnicos, de qualidade ou desempenho:

- Estão associados a tecnologias pouco conhecidas, complexas ou modificações tecnológicas previstas no decorrer do projeto;
- Riscos de desempenho podem compreender metas de desempenho pouco realistas;

Categoria dos Riscos

- □ Riscos de gerenciamento do projeto:
 - Planejamento inadequado do cronograma e dos recursos;

- □ Riscos organizacionais:
 - Falta de financiamento ou desvio de fundos para outros projetos;
- □ Riscos externos:
 - Novas legislações ou marcos regulatórios, dificuldades trabalhistas, condições meteorológicas ou política 59 estrangeira;

Estrutura Analítica de Riscos

- □ Pode-se considerar que todas as áreas de conhecimento de gerenciamento de projetos podem ser fontes geradoras potenciais de riscos, como por exemplo:
 - Riscos associados ao escopo: escopo mal-definido;
 - Riscos associados aos prazos: prazos inviáveis;
 - Riscos associados a recursos humanos em projetos: doenças, absenteísmo, produtividade ou demissão;

Para evitar tais riscos associados, uma série de ferramentas e técnicas de dinâmica de grupo estão disponíveis para uma equipe de projetos, como, por exemplo a Análise *Swot* (*Strengths*, *Weakness*, *Opportunities* e *Threats*), ou forças, fraquezas, oportunidades e ameaças;

Ambiente	Pontos Positivos	Pontos Negativos
Interno	Forças	Fraquezas
Externo	O portunidades	Ameaças

□ Elementos da Análise Swot:

Ambiente Externo

- Oportunidades: Tendências sociais, econômicas, comerciais, mercadológicas e políticas, com conseqüências potencialmente positivas para o projeto;
- □ Ameaças: Tendências sociais, econômicas, comerciais, mercadológicas e políticas, com conseqüências potencialmente negativas para o projeto;

□ Elementos da Análise Swot:

■ Ambiente Interno

- □ **Forças**: Recursos e conseqüências superiores de que se dispõem para explorar/alavancar oportunidades e minimizar ameaças;
- □ Fraquezas: Deficiências que inibem a capacidade de desempenho e devem ser superadas para explorar/alavancar oportunidades e minimizar ameaças.

- □ A análise SWOT fornece uma orientação estratégica bastante significativa, pois permite:
 - Eliminar pontos fracos existentes no projeto que representam ameaças para sua execução;
 - Compreender oportunidades descobertas a partir de seus pontos fortes;
 - Corrigir pontos fracos em que o projeto vislumbra oportunidades potenciais;
 - Estabelecer os pontos fortes e evitar possíveis riscos e incertezas;

- □ Durante a identificação de riscos pode-se montar uma planilha para documentar os riscos;
- □ Tal planilha serve para divulgação e monitoramento dos riscos, e deve conter os seguintes campos:
 - Descrição dos riscos;
 - Categoria;
 - Probabilidade;
 - Impacto;

- □ As categorias de risco representam uma forma de identificar sistematicamente os riscos e servem de base para sua compreensão;
- □ As categorias de riscos serão utilizadas durante o processo de Identificação de Riscos e devem ser documentadas no plano de gerenciamento de riscos;

□ O probabilidade de ocorrência do risco é colocada na coluna de probabilidade, que pode ser estimada por cada membro da equipe, opinando seqüencialmente, até que a avaliação de probabilidade de risco comece a convergir;

- - 1 Catastrófico;
 - 2 Crítico;
 - 3 Marginal;
 - 4 Negligível;
- Em seguida, a tabela é ordenada por probabilidade e por impacto. Ou seja, riscos com alta probabilidade e alto impacto vão para o topo da tabela. Assim, é possível obter a priorização de riscos;

□ Priorização de Riscos

Risco	Categoria	Prob.	Impacto
Mudança nos requisitos	Cliente	80%	2
Falta de treinamento no uso das ferramentas	Pessoal	80%	3
Pouca reutilização de software	Tamanho	70%	2
Baixa Estimativa de Tamanho	Tamanho	60%	2
Rotatividade do pessoal será alta	Pessoal	60%	2
Prazo de entrega apertado	Negócio	50%	2
Financiamento será perdido	Negócio	40%	1
Resistência dos usuários	Negócio	40%	3
Falta de experiência do pessoal	Pessoal	30%	2
Mais usuários do que o previsto	Tamanho	30%	3
Tecnologia não satisfará o cliente	Cliente	30%	3

Dimensionamento de Riscos

- □ Além de identificar e prever os possíveis riscos, é possível avaliá-los;
- □ A exposição ao risco é uma forma de avaliação de risco desenvolvida pela força aérea americana, e os seguintes passos são recomendados para determinar as conseqüências gerais de um risco:
 - Determine o valor médio da probabilidade de ocorrência do risco;
 - Determine o impacto;
 - Acrescente o valor à tabela de riscos;

Dimensionamento de Riscos

A exposição ao risco (risk exposure) é determinada usando a seguinte relação:

P é a probabilidade
C é o custo para o projeto caso o risco ocorra

Dimensionamento de Riscos

- □ Exemplo:
 - Identificação do risco: Apenas 70% dos componentes de software programados para reuso serão, de fato, integrados à aplicação. A funcionalidade restante terá que ser desenvolvida sob medida;
 - **Probabilidade do risco**: 80% (aproximadamente)
 - Impacto do Risco: Sessenta componentes de software reusáveis forma planejados. Se apenas 70% podem ser efetivamente usados, 18 componentes teriam que ser desenvolvidos a partir do zero. Como o tamanho médio do componente é 100 LOC (*line of code*) e os dados locais indicam que o custo para cada LOC é de 14 dólares. Desta forma, o custo geral (impacto) para desenvolver os componentes seria:

18 X 100 X 14 = R\$ 25.200,00

□ Exposição ao Risco: