

On the Parameterized Complexity of Semitotal Dominating Set On Graph Classes

Lukas Retschmeier

Informatik 7 - Theoretical Foundations of Artificial Intelligence Faculty of Informatics Technical University of Munich

February 28th, 2023

Creative Introduction

88-41--41

.....

Definitions

Reduction Rules

Our Plan for Today

Motivat

Theory

Kernel Definitions

References

Motivation

2 Theory

Kernel
 Definitions
 Reduction Rules

Retschmeier

Motivation

Motivatio

Kernel

Definitions

Definitions
Reduction Rule

References

DOMINATING SET

Question

Input Graph $G = (V, E), k \in \mathbb{N}$

Is there a set $D \subseteq V$ of size at most k such that

$$N[D] = V$$
?

- The domination number is the minimum cardinality of a ds of G, denotes as $\gamma(G)$
- Observation: In connected G every $v \in D$ has another $z \in D$ with $d(v,z) \leq 3$.

Retschmeier

Motivation

References

Motivation

TOTAL DOMINATING SET

Graph $G = (V, E), k \in \mathbb{N}$ Input

Question Is there a set $D \subseteq V$ of size at most k such that for

all $d_1 \in X$ exists $d_2 \in X \setminus \{d_1\}$ s.t. $d(d_1, d_2) \leq 1$?

• The total domination number is the minimum cardinality of a tds of G, denoted as $\gamma_t(G)$.

Lukas Retschmeier

Motivation

Wotivatio

.....

Definitions

References

Motivation

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$ Question Is there a subset $D \subseteq V$

Is there a subset $D\subseteq V$ with $|D|\leq k$ such that

N[D] = V and for all $d_1 \in X$ there exists another

 $d_2 \in X$ such that $d(d_1, d_2) \leq 2$?

- The semitotal domination number is the minimum cardinality of a sds of G, denoted as $\gamma_{2t}(G)$.
- Observation: $\gamma(G) \leq \gamma_{2t}(G) \leq \gamma t(G)$

Retschmeier

Motivation

DOMINATING SET

SEMITOTAL DOMINATING SET

TOTAL DOMINATING SET

Parameterized Complexity

Retschmeier

Theory

Kernel

Definitions
Reduction Rule

References

- Developed by Downey and Fellows
- Idea: Limit combinatorial explosion to some aspect of the problem

•

Fixed-parameter tractability

Theory

W----

Definitions

Reduction Bull

Kernelization

Lukas Retschmeie

Theory

,

Definitions Reduction Rule

Reference

• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

Lukas Retschmeier

Motiva

Theory

Kernel
Definitions

References

Kernelization

• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

Complexity Status

Lukas Retschmei

Motiva

Theory

Definitions

Lukas Retschmeie

Motivation

Theor

Kernel

Reduction Bule

References

A Linear Kernel for Planar Semitotal Dominating Set The main result of the thesis

Kernel

Related Work

Problem PLANAR DOMINATING SET PLANAR TOTAL DOMINATING SET PLANAR SEMITOTAL DOMINATING SET	$\begin{array}{c} \textbf{Size} \\ 67k \\ 410k \\ xxxxk \end{array}$	Source Diekert and Durand 2005 Garnero and Sau 2018 This work
PLANAR EDGE DOMINATING SET PLANAR EFFICIENT DOMINATING SET PLANAR RED-BLUE DOMINATING SET	14k $84k$ $43k$	Guo and Niedermeier 2007 Guo and Niedermeier 2007 Garnero, Sau, and Thilikos 2017
PLANAR CONNECTED DOMINATING SET PLANAR DIRECTED DOMINATING SET	130k Linear	Luo et al. 2013 Alber, Dorn, and Nieder- meier 2006

Lukas

Main Theorem

Kerne

Definitions

Reduction Rules

Introducing Region Decompositions

Motiva

Thoom

Kernel Definitions

Reduction Rule

$\mathbf{Splitting}\;\mathbf{up}\;N(v)$

Kernel

Definition:

Reduction Rules

Rule 1: Shrinking $N_3(v)$

88-41--41-

Kernel

Definitions

Reduction Rules

Lukas

Rule 2

Motivatio

Theory

Kernei

Reduction Rules

riedaction nate

Rule 3: Shrinking the size of simple regions

Motivat

Theory

Kernel

Reduction Rules

.....

Proof Outline

Reduction Rules

We will now prove the correctness

Future Work

Kerne

Definitions

Reduction Rules

References I

- Alber, Jochen, Britta Dorn, and Rolf Niedermeier (2006). "A General Data Reduction Scheme for Domination in Graphs". In: SOFSEM 2006: Theory and Practice of Computer Science, 32nd Conference on Current Trends in Theory and Practice of Computer Science, Merin, Czech Republic, January 21-27, 2006, Proceedings. Ed. by Jiri Wiedermann et al. Vol. 3831. Lecture Notes in Computer Science. Springer, pp. 137–147. DOI: 10.1007/11611257_{1}{1}. URL: https://doi.org/10.1007/11611257_11.
- Diekert, Volker and Bruno Durand, eds. (2005). STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, February 24-26, 2005, Proceedings. Vol. 3404. Lecture Notes in Computer Science. Springer. ISBN: 3-540-24998-2. DOI: 10.1007/b106485.
- Garnero, Valentin and Ignasi Sau (May 2018). "A Linear Kernel for Planar Total Dominating Set". In: Discrete Mathematics & Theoretical Computer Science Vol.

References II

20 no. 1. Sometimes we explicitly refer to the arXiv preprint version: https://doi.org/10.48550/arXiv.1211.0978. DOI: 10.23638/DMTCS-20-1-14. eprint: 1211.0978. URL: https://dmtcs.episciences.org/4487.

Guo, Jiong and Rolf Niedermeier (2007). "Linear Problem Kernels for NP-Hard Problems on Planar Graphs". In: *Automata, Languages and Programming*. Ed. by Lars Arge et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 375–386. ISBN: 978-3-540-73420-8.

References III

Luo, Weizhong et al. (2013). "Improved linear problem kernel for planar connected dominating set". In: *Theor. Comput. Sci.* 511, pp. 2–12. DOI: 10.1016/j.tcs.2013.06.011.