2/18/12 Ouiz Feedback

Coursera Dong-Bang Tsai About Feedback Logout

Probabilistic Graphical Models

Daphne Koller, Kevin Murphy Winter 2011-2012

Home

Feedback — Inference in Temporal Models

Quizzes

Theory Problems

Assignments

Assignment Questions

Video Lectures

Discussion Forums

Course Wiki

Lecture Slides

Course Schedule

Course Logistics

Course Information

Course Staff

Octave Installation

You achieved a score of 3.00 out of 3.00

Question 1

Unrolling DBNs. Which independencies hold in the unrolled network for the following 2-TBN for all t?

(Hint: it may be helpful to draw the unrolled DBN for several slices)

Your Answer		Score	Explanation
$lacksquare (Weather^t ot Location^t \mid Velocity^t, Obs^{1t})$	✓	0.17	One can trace an active path between $Weather^t$ and $Location^t$ in the unrolled DBN.
$lacksquare$ $(Failure^t \perp Location^t \mid Obs^{1t})$	~	0.17	One can trace an active path

2/18/12 Quiz Feedback

			between $Failure^t$ and $Location^t$ due to the active v-structure given by Obs^t
$ \bullet (Failure^t \perp Velocity^t \mid Obs^{1t}) $	₩	0.17	One can trace an active path between $Failure^t$ and $Velocity^t$ in the unrolled DBN.
$oldsymbol{arphi} oldsymbol{(Weather^t oldsymbol{\perp} Velocity^t \mid Weather^{(t-1)}, Obs^{1t})}$	~	0.17	$Weather^t$ is blocked by $Weather^{t-1}$ for all t .
None of these	•	0.17	Some of the independencies do hold. Perhaps you could try to draw the unrolled DBN and see whether active paths exist between the variables in question.
$ \hspace{0.5cm} \bullet \hspace{0.5cm} (Weather^t \perp Velocity^t \mid Obs^{1t})$	❤	0.17	One can trace an active path between $Weather^t$ and $Velocity^t$ in the unrolled DBN.
Total		1.00	

Question 2

*Limitations of Inference in DBNs. What makes inference in DBNs difficult?

Your Answer		Score	Explanation
$\hfill \square$ As t grows large, we generally lose all independencies in the ground network	✓	0.25	We do indeed lose some independencies, but do we lose all independencies? For instance, consider whether variables in time step $t+1$ are independent of variables in time step $t-1$ given those in time step t .

2/18/12 Quiz Feedback

 Standard clique tree inference cannot be applied to a DBN 	✓	0.25	We can apply clique tree inference to a DBN; it just might be slow and undesirable in certain cases.
✓ In many networks, maintaining an exact belief state over the variables requires a full joint distribution over all variables in each time slice	✓	0.25	This is true because we generally lose independencies relating variables in the belief state due to entanglement. Hence, the only way to maintain an exact belief state often requires a full joint distribution.
As t grows large, we generally lose independencies of the form $(X^{(t)} \perp Y^{(t)} \mid Z^{(t)})$	✓	0.25	This is true, and this phenomenon is known as entanglement.
Total		1.00	

Question 3

Entanglement in DBNs. Which of the following are consequences of entanglement in Dynamic Bayesian Networks over discrete variables?

Your Answer		Score	Explanation
The belief state <i>never</i> factorizes.	✓	0.25	This is not a consequence of entanglement; there are some DBNs for which the belief state still factorizes.
✓ The size of an exact representation of the belief state is exponentially large in the number of variables.	✓	0.25	This is true, since the only way to represent the belief state exactly is to maintain a full joint distribution.
The belief state factorizes in the unrolled DBN if the belief state	✓	0.25	This is not a consequence of entanglement. In fact, even if the belief state factorizes in the 2-

2/18/12 Quiz Feedback

factorizes in the 2-TBN for the DBN.		TBN for the DBN, it is unlikely to factorize in the unrolled network due to entanglement.
All variables in the unrolled DBN become correlated.	~ 0.	This is not true; only variables in the belief state become correlated.
Total	1.	00