EIID / Advanced Image Analysis (EIID/AIA)

Machine and Deep Learning (ML/DL)

2020-2021, 2nd semester

EIID/AIA standard project
and
Multidisciplinary project

Iris Segmentation and Recognition

Alessandro Bria

email: a.bria@unicas.it

Claudio Marrocco email: c.marrocco@unicas.it

Motivations

- iris recognition is an important biometric identification method
 - classical systems assume ideal environmental conditions and cooperative users
 - when such conditions do not hold, their biometrics can be negatively affected
- iris **segmentation** is a critical part in iris recognition systems
 - errors in this initial stage are propagated to subsequent processing stages

Goal

- implement a reusable module for automated Iris Segmentation and Recognition
 - if(EIID/AIA standard project): implement only segmentation

Materials

- IITD dataset (2,240 images)
 - -320×240 pixels
 - 224 subjects (distinct folders), 10 images per subject

iris images (8-bit)
/dataset/images

manual segmentations
/dataset/groundtruths

Performance evaluation (Segmentation)

average F1-score (F1)

$$P = \frac{tp}{tp + fp} \qquad R = \frac{tp}{tp + fn}$$

tp: pixels $\neq 0$ in the output and in the groundtruth fp: pixels $\neq 0$ in the output and = 0 in the groundtruth fn: pixels = 0 in the output and $\neq 0$ in the groundtruth

Performance evaluation (Recognition)

ROC curves

- Genuine Acceptance Rate (GAR) vs.
 False Acceptance Rate (FAR), 100%
 equivalent to True Positive Rate (TPR) vs. False Positive Rate (FPR)
- see blue curve on the right as reference
- Equal Error Rate (EER)
- Decidability Index (DI)
- See "Comparison and combination of iris matchers for reliable personal authentication" in /literature

Challenges

- partially occluded eyes
- different viewpoints
- some blurry images
- many classes (224)
- few images per-class (10)
- low resolution images

Hints

segmentation

- edge-based + geometrical approaches
- if(multidisciplinary project): you can refine it using machine learning

feature extraction

- Haar wavelets, Gabor wavelets
- features from autoencoders

ML

- feature / classifier combination
- clustering approaches

DL

- 2-step (e.g. segmentation with U-Net + image classification with ResNet)
- end-to-end: joint segmentation and classification with two branches (e.g. Mask R-CNN)
- use other datasets to pre-train (pre-fine-tune) the network

Constraints (multidisciplinary project)

- split the data class-wise into a training and a test set
 - training set = first 50% of the images, class-wise
 - test set = second 50% of the images, class-wise
 - no random split (this way different groups will adopt the same fixed split)
 - train your ML/DL models on the training set, evaluate performance on the test set
- ML: test several models and find your own (possibly novel) method
 - ...it is not okay to train/test only one model because 'it just works'
- DL: it is ok to implement and/or fine-tune an architecture found on the web...
 - ...if it works on the first attempt, at least try something different, like different hyperparameters and slight modifications of the architecture

If you want to do more (optional)

- use other datasets to pre-train
- use autoencoders to boost feature extraction and ML

