a set M consisting of n fruits. A permutation is a sequence $x = (x_1, x_2, ..., x_n)$ such that $\{x_1, ..., x_n\} = M$. Ivan prefers some (at least one) of these permutations. He realized that for every preferred permutations.

Fix positive integers n and k such that $2 \le k \le n$ and

mutations. He realized that for every preferred permutation x, there exist k indices $i_1 < i_2 < \ldots < i_k$ with the following property: for every $1 \le j < k$, if he swaps x_{i_j} and $x_{i_{j+1}}$, he obtains another preferred permutation.

Prove that he prefers at least k! permutations.