LSTM: A Search Space Odyssey

IEEE Transactions on Neural Networks and Learning Systems, 2017

K. Greff et. al.

Presentation by
GIST College Physics Concentration Hanse Kim

Basic Information

Authors: K. Greff, et. al. 4

Journal: IEEE Transactions on Neural Networks and Learning Systems, 2017

Citations: 2982

- RNNs and LSTM
- Variants of LSTM
- Analysis of LSTM

Introduction: RNNs

- RNN: Recurrent Neural Networks
 - NN that can input/output sequences of vectors of variable length
 - Internal state of previous events (memory) used in processing
 - FFNN hidden nodes connected along 'temporal sequence'
- Applications of RNN
 - Time series : Stock market predictions, cryptocurrency
 - NLP: Translation, sentiment analysis

Introduction: Problems of RNNs

- Vanishing Gradient Problem
 - Problem more prominent than in DNNs;
 same weight V used over all hidden layers
- Skip Connections
 - Reduced rate of parameter vanishing
 - Layers that influence each other are independent from others; acts like DNN
- Gated Recurrent Networks
 - Leaky Recurrent Parameters
 - Set parameter for each time step; new parameter for network to design
 - GRU, LSTM etc.

Introduction: LSTM

• LSTM

- Most popular variant of GRN
- Memory cell & Gating Units
- LSTM Unit, Cell State
 - Value passed between LSTM units
 - Each cell can decide to reset it, write to it, or read from it
 - Explicitly expressed in forms of 'gates';
 Forget, Input, Output

Introduction: Vanilla LSTM

Vanilla LSTM

- Peephole connections
- Full BPTT

$$\begin{split} & \mathbf{\bar{z}}^t = \mathbf{W}_z \mathbf{x}^t + \mathbf{R}_z \mathbf{y}^{t-1} + \mathbf{b}_z \\ & \mathbf{z}^t = g(\mathbf{\bar{z}}^t) & block input \\ & \mathbf{\bar{i}}^t = \mathbf{W}_i \mathbf{x}^t + \mathbf{R}_i \mathbf{y}^{t-1} + \mathbf{p}_i \odot \mathbf{c}^{t-1} + \mathbf{b}_i \\ & \mathbf{i}^t = \sigma(\mathbf{\bar{i}}^t) & input \ gate \\ & \mathbf{\bar{f}}^t = \mathbf{W}_f \mathbf{x}^t + \mathbf{R}_f \mathbf{y}^{t-1} + \mathbf{p}_f \odot \mathbf{c}^{t-1} + \mathbf{b}_f \\ & \mathbf{f}^t = \sigma(\mathbf{\bar{f}}^t) & forget \ gate \\ & \mathbf{c}^t = \mathbf{z}^t \odot \mathbf{i}^t + \mathbf{c}^{t-1} \odot \mathbf{f}^t & cell \\ & \mathbf{\bar{o}}^t = \mathbf{W}_o \mathbf{x}^t + \mathbf{R}_o \mathbf{y}^{t-1} + \mathbf{p}_o \odot \mathbf{c}^t + \mathbf{b}_o \\ & \mathbf{o}^t = \sigma(\mathbf{\bar{o}}^t) & output \ gate \\ & \mathbf{y}^t = h(\mathbf{c}^t) \odot \mathbf{o}^t & block \ output \end{split}$$

LSTM Variants

- One aspect each tuned
 - No peepholes
 - Full Gate Recurrence
 Recurrent connections between all gates

$$\begin{split} &\bar{\mathbf{z}}^t = \mathbf{W}_z \mathbf{x}^t + \mathbf{R}_z \mathbf{y}^{t-1} + \mathbf{b}_z \\ &\mathbf{z}^t = g(\bar{\mathbf{z}}^t) & block input \\ &\bar{\mathbf{i}}^t = \mathbf{W}_i \mathbf{x}^t + \mathbf{R}_i \mathbf{y}^{t-1} + \mathbf{p}_i \odot \mathbf{c}^{t-1} + \mathbf{b}_i \\ &\mathbf{i}^t = \sigma(\bar{\mathbf{i}}^t) & input gate \\ &\bar{\mathbf{f}}^t = \mathbf{W}_f \mathbf{x}^t + \mathbf{R}_f \mathbf{y}^{t-1} + \mathbf{p}_f \odot \mathbf{c}^{t-1} + \mathbf{b}_f \\ &\mathbf{f}^t = \sigma(\bar{\mathbf{f}}^t) & forget gate \\ &\mathbf{c}^t = \mathbf{z}^t \odot \mathbf{i}^t + \mathbf{c}^{t-1} \odot \mathbf{f}^t & cell \\ &\bar{\mathbf{o}}^t = \mathbf{W}_o \mathbf{x}^t + \mathbf{R}_o \mathbf{y}^{t-1} + \mathbf{p}_o \odot \mathbf{c}^t + \mathbf{b}_o \\ &\mathbf{o}^t = \sigma(\bar{\mathbf{o}}^t) & output gate \\ &\mathbf{y}^t = h(\mathbf{c}^t) \odot \mathbf{o}^t & block output \end{split}$$

NIG: No Input Gate: $\mathbf{i}^t = \mathbf{1}$ NFG: No Forget Gate: $\mathbf{f}^t = \mathbf{1}$ NOG: No Output Gate: $\mathbf{o}^t = \mathbf{1}$ NIAF: No Input Activation Function: $g(\mathbf{x}) = \mathbf{x}$ NOAF: No Output Activation Function: $h(\mathbf{x}) = \mathbf{x}$ CIFG: Coupled Input and Forget Gate: $\mathbf{f}^t = \mathbf{1} - \mathbf{i}^t$ NP: No Peepholes: $\mathbf{i}^t = \mathbf{W}_i \mathbf{x}^t + \mathbf{R}_i \mathbf{y}^{t-1} + \mathbf{b}_i$

$$\bar{\mathbf{f}}^t = \mathbf{W}_f \mathbf{x}^t + \mathbf{R}_f \mathbf{y}^{t-1} + \mathbf{b}_f$$
$$\bar{\mathbf{o}}^t = \mathbf{W}_o \mathbf{x}^t + \mathbf{R}_o \mathbf{y}^{t-1} + \mathbf{b}_o$$

FGR: Full Gate Recurrence:

$$\bar{\mathbf{i}}^{t} = \mathbf{W}_{i}\mathbf{x}^{t} + \mathbf{R}_{i}\mathbf{y}^{t-1} + \mathbf{p}_{i} \odot \mathbf{c}^{t-1} + \mathbf{b}_{i} \\
+ \mathbf{R}_{ii}\bar{\mathbf{i}}^{t-1} + \mathbf{R}_{fi}\mathbf{f}^{t-1} + \mathbf{R}_{oi}\mathbf{o}^{t-1} \\
\bar{\mathbf{f}}^{t} = \mathbf{W}_{f}\mathbf{x}^{t} + \mathbf{R}_{f}\mathbf{y}^{t-1} + \mathbf{p}_{f} \odot \mathbf{c}^{t-1} + \mathbf{b}_{f} \\
+ \mathbf{R}_{if}\bar{\mathbf{i}}^{t-1} + \mathbf{R}_{ff}\mathbf{f}^{t-1} + \mathbf{R}_{of}\mathbf{o}^{t-1} \\
\bar{\mathbf{o}}^{t} = \mathbf{W}_{o}\mathbf{x}^{t} + \mathbf{R}_{o}\mathbf{y}^{t-1} + \mathbf{p}_{o} \odot \mathbf{c}^{t-1} + \mathbf{b}_{o} \\
+ \mathbf{R}_{io}\bar{\mathbf{i}}^{t-1} + \mathbf{R}_{fo}\mathbf{f}^{t-1} + \mathbf{R}_{oo}\mathbf{o}^{t-1}$$

Evaluation

- Datasets
 - TIMIT : Speech corpus, acoustic modelling benchmark
 - IAM Online: Handwriting database, time series of pen movement
 - JSB Chorales : Next-step prediction for music
- Network Architecture
 - JSB Chorales : Single-layer LSTM
 - TIMIT, IAM Online : Bi-directional LSTM
- Hyperparametres evaluated by random search

Results & Discussion

Conclusion

- LSTM attempts to improve upon RNN
- Vanishing gradient solved by non-linear output activation function, forget gate; ability to 'memorise' and 'forget'
- Empirical analysis backs the assertion

References

- Websites
 - https://en.wikipedia.org/wiki/Recurrent neural network