1. Sean a, b y c tres números reales no nulos. Sea A la matriz de tamaño 3×3 :

$$A = \left(\begin{array}{ccc} a^2 & ba & ca \\ ab & b^2 & cb \\ ac & bc & c^2 \end{array}\right)$$

- a) Hallar la imagen y el rango de A.
- b) Determinar el núcleo y la nulidad de A.
- 2. Sea A la matriz 3×3 dada por:

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

- a) Determine los valores propios de A y halle los vectores propios asociados a cada valor propio de A.
- *b*) Sean los tres vectores de \mathbb{R}^3 dados por:

$$\vec{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \vec{u}_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad \vec{u}_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

Mostrar que \vec{u}_1 , \vec{u}_2 y \vec{u}_3 son vectores propios de A.

- c) Mostrar que los vectores \vec{u}_1 , \vec{u}_2 y \vec{u}_3 forman una base de \mathbb{R}^3 .
- 3. Sea la matriz

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{array}\right)$$

Determinar una matriz diagonal D, definida por $D = P^{-1}AP$.

- 4. Considere el espacio vectorial \mathbb{R}^3 equipado con el producto interior euclidiano. Aplique el proceso de Gram-Schmidt para transformar la base $\vec{v}_1=(0,0,2), \vec{v}_2=(0,3,4), \vec{v}_3=(5,6,7)$ en una base ortonormal.
- 5. Sea n un número natural no nulo. Sea H un subespacio vectorial de \mathbb{R}_n . Sea $\{\vec{u}_1,\ldots,\vec{u}_m\}$ una base ortonormal de H. Sea H^{\perp} el *el complemento ortogonal de* H definido por:

$$H^{\perp} = \{ \vec{v} \in \mathbb{R}^n : \vec{v} \text{ es ortonormal a todo vector de } H \}.$$

- a) Probar que H^{\perp} es un subespacio vectorial de \mathbb{R}^n .
- b) Probar que para todo vector \vec{w} de \mathbb{R}^n , el vector $\vec{w} Proy_H \vec{w}$ pertenece a H^{\perp} .
- c) Probar que para todo vector \vec{w} de \mathbb{R}^n , existen dos vectores \vec{w}_1 y \vec{w}_2 de \mathbb{R}^n , tales que:

1

- $\bullet \ \vec{w} = \vec{w}_1 + \vec{w}_2,$
- \vec{w}_1 es elemento de H y
- \vec{w}_2 es elemento de H^{\perp} .