Lecture 9: Transformer

From Attention to Self-Attention

Harvard

AC295/CS287r/CSCI E-115B

Chris Tanner

Self [Attention]

-- Mac Miller (2018)

https://wellness.huhs.harvard.edu/alcohol-substance-use

basics@huhs.harvard.edu

ANNOUNCEMENTS

- Quizzes 3 have been graded and are logged on Canvas
- HW1 is being graded. Solutions are posted on Canvas -> Files
- HW2 is due next Tues, Oct 5 @ 11:59pm! Determine your mystery language.
- Research Proposals are due tonight, Sept 30 @ 11:59pm.
 - If submitting w/ others, please see the updated Canvas instructions

RESEARCH PROJECTS

- Most research experiences/opportunities are "top-down"
- You're all creative and fully capable.
- Allow yourselves to become comfortable with the unknown.
- It's okay if your Phase 1 Proposals aren't *perfect* ideas. The point is to gain practice with the inquisition and overall process of executing your ideas.
- We'll help provide structure after Phase 1 (e.g., filtering projects, feedback, helping you find the optimal project partners, TF support, etc)

RESEARCH PROJECTS

- I'll filter projects by rating them according to:
 - researchy vs application
 - how grounded/well-reasoned it is
 - technical difficulty (there's a sweet spot)
 - feasibility (e.g., required compute power, data availability, metrics)
 - interestingness / significance

RECAP: L8

seq2seq models

- are a general-purpose <u>encoder-</u> <u>decoder</u> architecture
- can be implemented with RNNs (or Transformers even)
- Allow for $n \rightarrow m$ predictions
- Natural approach to Neural MT
- If implemented end-to-end can be good but slow

RECAP: L8

seq2seq models

- Attention allows a decoder, at each time step, to focus/use different amounts of the encoder's hidden states
- The resulting context vector c_i is used, with the decoder's current hidden state h_i , to predict \hat{y}_i

RECAP: L8

MT

$$\operatorname{argmax}_{\mathbf{y}} P(\mathbf{x}|\mathbf{y}) P(\mathbf{y})$$

- Converts text from a source language x to a target language y
- SMT made huge progress but was brittle
- NMT (starting w/ LSTM-based seq2seq models) blew SMT out of the water
- Attention greatly helps LSTM-based seq2seq models
- Next: Transformer-based seq2seq models w/ Self-Attention and Attention

Outline

seq2seq + Attention

Self-Attention

Outline

seq2seq + Attention

Self-Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

Attention (raw scores)

 e_1 1.5

 $e_2 \ 0.9$

 e_3 0.2

 $e_4 - 0.5$

DECODER RNN

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

ENCODER RNN

Attention (raw scores)

$$e_1$$
 1.5

$$e_2 \ 0.9$$

$$e_3 \ 0.2$$

$$e_4 - 0.5$$

Attention (softmax'd)

$$a_i^1 = \frac{\exp(e_i)}{\sum_i^N \exp(e_1)}$$

DECODER RNN

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

ENCODER RNN

DECODER RNN

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

ENCODER RNN

DECODER RNN

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

For convenience, here's the Attention calculation summarized on 1 slide

Attention output
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$a_k^{(t)} = \frac{\exp(\operatorname{score}(h_t, s_k))}{\sum_{i=1}^m \exp(\operatorname{score}(h_t, s_i))}, k = 1..m$$
 (softmax)
$$c^{(t)} = \frac{\exp(\operatorname{score}(h_t, s_k))}{\sum_{i=1}^m \exp(\operatorname{score}(h_t, s_i))}, k = 1..m$$
 (softmax)
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t "
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t " attention weight for source token t at decoder step t ."

Attention input
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 "source context for decoder step t " attention weight for source token t at decoder step t ."

Attention input
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 at decoder step t ."

Attention input
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 at decoder step t ."

Attention input
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 at decoder step t ?"

Attention input
$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$
 at decoder step t ?"

For convenience, here's the Attention calculation summarized on 1 slide

Popular Attention Scoring functions:

Attention:

- greatly improves seq2seq results
- allows us to visualize the contribution each encoding word gave for each decoder's word

Image source: Fig 3 in <u>Bahdanau et al., 2015</u>

Image source: Fig 3 in <u>Bahdanau et al., 2015</u>

CHECKPOINT

- seq2seq doesn't have to use RNNs/LSTMs
- seq2seq doesn't have to be used exclusively for NMT
- NMT doesn't have to use seq2seq
 (but it's natural and the best we have for now)

Constituency Parsing

Input: dogs chase cats

Output:

or a flattened representation

(S (NP dogs)_{NP} (VP chase (NP cats)_{NP})_{VP})_S

Constituency Parsing

Input: I shot an elephant in my pajamas

Output:

Figure 13.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which Captain Spaulding did the shooting in his pajamas.

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Results

Model	English			Chinese		
	LR	LP	F1	LR	LP	F1
Shen et al. (2018)	92.0	91.7	91.8	86.6	86.4	86.5
Fried and Klein (2018)	-	-	92.2	-	-	87.0
Teng and Zhang (2018)	92.2	92.5	92.4	86.6	88.0	87.3
Vaswani et al. (2017)	-	-	92.7	-	-	- 1
Dyer et al. (2016)	-	-	93.3	-	-	84.6
Kuncoro et al. (2017)	-	-	93.6	-	-	-
Charniak et al. (2016)	-	-	93.8	-	-	-
Liu and Zhang (2017b)	91.3	92.1	91.7	85.9	85.2	85.5
Liu and Zhang (2017a)	-	-	94.2	-	-	86.1
Suzuki et al. (2018)	-	-	94.32	-	-	- 1
Takase et al. (2018)	-	-	94.47	-	-	-
Fried et al. (2017)	-	-	94.66	-	-	-
Kitaev and Klein (2018)	94.85	95.40	95.13	-	-	-
Kitaev et al. (2018)	95.51	96.03	95.77	91.55	91.96	91.75
Zhou and Zhao (2019)	95.70	95.98	95.84	92.03	92.33	92.18
(BERT)					100	
Zhou and Zhao (2019)	96.21	96.46	96.33	-	-	-
(XLNet)						
Our work	96.24	96.53	96.38	91.85	93.45	92.64

Table 3: Constituency Parsing on PTB & CTB test sets.

Input: image

Output: generated text

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

Input: image

Output: generated text

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

A large white bird standing in a forest.

A woman holding a <u>clock</u> in her hand.

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A woman is sitting at a table with a large pizza.

A person is standing on a beach with a <u>surfboard</u>.

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

SUMMARY

- LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)
- seq2seq+Attention was an even more revolutionary idea (Google Translate used it)
- Attention allows us to place appropriate weight to the encoder's hidden states
- But:

SUMMARY

- LSTMs are sequential in nature (prohibits parallelization). Very wasteful.
- No explicit modelling of long- and short- range dependencies
- Language is naturally hierarchical (can we do better than Stacked LSTMs?)
- Can we apply the concept of Attention to improve our **representations**? (i.e., contextualized representations)

Ashish Vaswani (2019)

Outline

seq2seq + Attention

Self-Attention

Outline

seq2seq + Attention

Self-Attention

Goals

- Each word in a sequence to be transformed into a rich, abstract representation (context embedding) based on the weighted sums of the other words in the same sequence (akin to deep CNN layers)
- Inspired by Attention, we want each word to determine, "how much should I be influenced by each of my neighbors"
- Want positionality

Self-Attention's goal is to create great representations, z_i , of the input

Self-Attention's goal is to create great representations, z_i , of the input

 z_1 will be based on a weighted contribution of x_1 , x_2 , x_3 , x_4

Self-Attention's goal is to create great representations, z_i , of the input

 z_1 will be based on a weighted contribution of x_1 , x_2 , x_3 , x_4

 a_i^1 is "just" a weight. More is happening under the hood, but it's effectively weighting <u>versions</u> of x_1 , x_2 , x_3 , x_4

Under the hood, each x_i has 3 small, associated vectors. For example, x_1 has:

- Query **q**i
- Key k_i
- Value v_i

Step 1: Our Self-Attention Head has just 3 weight matrices W_q , W_k , W_v in total. These same 3 weight matrices are multiplied by each x_i to create all vectors:

$$q_i = w_q x_i$$

 $k_i = w_k x_i$
 $v_i = w_v x_i$

Under the hood, each x_i has 3 small, associated vectors. For example, x_1 has:

- Query q₁
- Key k₁
- Value \mathbf{v}_1

 $\mathbf{s}_2 = \mathbf{q}_1 \cdot \mathbf{k}_2 = 96$

$$s_1 = q_1 \cdot k_1 = 112$$

$$q_1 \quad k_1 \quad v_1$$

$$q_2 \quad k_2 \quad v_2$$

$$q_3 \quad k_3 \quad v_3$$

$$q_4 \quad k_4 \quad v_4$$

$$q_4 \quad k_4 \quad v_4$$

$$q_5 \quad k_1 \quad v_1$$

$$q_7 \quad k_1 \quad v_1$$

$$q_8 \quad k_2 \quad v_2$$

$$q_8 \quad k_2 \quad v_2$$

$$q_8 \quad k_1 \quad v_4$$

 $s_3 = q_1 \cdot k_3 = 16$

$$s_2 = q_1 \cdot k_2 = 96$$
 $s_1 = q_1 \cdot k_1 = 112$
 $q_1 \quad k_1 \quad v_1$
 $q_2 \quad k_2 \quad v_2$
 $q_3 \quad k_3 \quad v_3$

The brown $q_3 \quad k_4 \quad v_4$
 $q_4 \quad k_4 \quad v_4$
 $q_5 \quad k_6 \quad k_6 \quad k_8 \quad k$

$$s_4 = q_1 \cdot k_4 = 8$$

 $s_3 = q_1 \cdot k_3 = 16$

$$s_2 = q_1 \cdot k_2 = 96$$

$$s_1 = q_1 \cdot k_1 = 112$$

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax it

$$s_4 = q_1 \cdot k_4 = 8$$
 $a_4 = \sigma(s_4/8) = 0$ $a_3 = q_1 \cdot k_3 = 16$ $a_3 = \sigma(s_3/8) = .01$ $s_2 = q_1 \cdot k_2 = 96$ $a_2 = \sigma(s_2/8) = .12$ $s_1 = q_1 \cdot k_1 = 112$ $a_1 = \sigma(s_1/8) = .87$ The brown $q_1 \quad k_1 \quad v_1$ $q_2 \quad k_2 \quad v_2$ $q_3 \quad k_3 \quad v_3$ $q_4 \quad k_4 \quad v_4$ The $q_4 \quad k_4 \quad v_4$ $q_5 \quad k_6 \quad k_6 \quad k_6 \quad k_6 \quad k_7 \quad k_8 \quad$

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax it

$$s_4 = q_1 \cdot k_4 = 8$$

$$s_3 = q_1 \cdot k_3 = 16$$

$$s_2 = q_1 \cdot k_2 = 96$$

$$s_1 = q_1 \cdot k_1 = 112$$

$$\mathbf{a_4} = \boldsymbol{\sigma}(s_4/8) = 0$$

$$a_3 = \sigma(s_3/8) = .01$$

$$a_2 = \sigma(s_2/8) = .12$$

$$a_1 = \sigma(s_1/8) = .87$$

Instead of these $\mathbf{a_i}$ values directly weighting our original $\mathbf{x_i}$ word vectors, they directly weight our $\mathbf{v_i}$ vectors.

Step 4: Let's weight our v_i vectors and simply sum them up!

Step 5: We repeat this for all other words, yielding us with great, new z_i representations!

Step 5: We repeat this for all other words, yielding us with great, new z_i representations!

$$z_3 = a_1 \cdot v_1 + a_2 \cdot v_2 + a_3 \cdot v_3 + a_4 \cdot v_4$$

Step 5: We repeat this for all other words, yielding us with great, new z_i representations!

Let's illustrate another example:

Remember, we use the same 3 weight matrices

 W_q , W_k , W_v as we did for computing z_1 .

This gives us q_2 , k_2 , v_2

Step 1: Our Self-Attention Head I has just 3 weight matrices W_q , W_k , W_v in total. These same 3 weight matrices are multiplied by each x_i to create all vectors:

$$q_i = w_q x_i$$

 $k_i = w_k x_i$
 $v_i = w_v x_i$

Under the hood, each x_i has 3 small, associated vectors. For example, x_1 has:

- Query q₁
- Key k₁
- Value \mathbf{v}_1

 $s_2 = q_2 \cdot k_2 = 124$

 X_1

$$s_1 = q_2 \cdot k_1 = 92$$

$$q_1 \quad k_1 \quad v_1$$

$$q_2 \quad k_2 \quad v_2$$

$$q_3 \quad k_3 \quad v_3$$

$$q_4 \quad k_4 \quad v_4$$

$$q_4 \quad k_4 \quad v_4$$

$$q_5 \quad k_1 \quad v_1$$

$$q_7 \quad k_2 \quad v_2$$

$$q_8 \quad k_2 \quad v_2$$

$$q_8 \quad k_1 \quad v_4$$

 $s_3 = q_2 \cdot k_3 = 22$

 X_1

$$s_2 = q_2 \cdot k_2 = 124$$
 $s_1 = q_2 \cdot k_1 = 92$

The brown $k_1 = k_2 =$

$$s_4 = q_2 \cdot k_4 = 8$$

 $s_3 = q_2 \cdot k_3 = 22$
 $s_2 = q_2 \cdot k_2 = 124$
 $s_1 = q_2 \cdot k_1 = 92$

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax it

$$s_4 = q_2 \cdot k_4 = 8$$
 $s_3 = q_2 \cdot k_3 = 22$
 $s_2 = q_2 \cdot k_2 = 124$
 $s_1 = q_2 \cdot k_1 = 92$
 $s_1 = q_2 \cdot k_1 = 92$
 $s_2 = q_2 \cdot k_2 = 124$
 $s_1 = \sigma(s_1/8) = .08$

The brown $s_2 = q_2 \cdot k_2 = 124$
 $s_2 = \sigma(s_2/8) = .91$
 $s_3 = \sigma(s_1/8) = .08$

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax it

$$s_4 = q_2 \cdot k_4 = 8$$

$$s_3 = q_2 \cdot k_3 = 22$$

$$s_2 = q_2 \cdot k_2 = 124$$

$$s_1 = q_2 \cdot k_1 = 92$$

$$\mathbf{a_4} = \boldsymbol{\sigma}(s_4/8) = 0$$

$$a_3 = \sigma(s_3/8) = .01$$

$$a_2 = \sigma(s_2/8) = .91$$

$$a_1 = \sigma(s_1/8) = .08$$

Instead of these a; values directly weighting our original x_i word vectors, they directly weight our v_i vectors.

 X_2

Step 4: Let's weight our v_i vectors and simply sum them up!

Tada! Now we have great, new representations z_i via a self-attention head

Self-Attention may seem strikingly like Attention in seq2seq models

$$\mathbf{s}_{4} = h_{1}^{D} * h_{4}^{E}$$
 $\mathbf{a}_{4} = \sigma(s_{4})$
 $\mathbf{s}_{3} = h_{1}^{D} * h_{3}^{E}$ $\mathbf{a}_{3} = \sigma(s_{3})$
 $\mathbf{s}_{2} = h_{1}^{D} * h_{2}^{E}$ $\mathbf{a}_{2} = \sigma(s_{2})$
 $\mathbf{s}_{1} = h_{1}^{D} * h_{1}^{E}$ $\mathbf{a}_{1} = \sigma(s_{1})$

Attention

$$\mathbf{s}_{4} = h_{1}^{D} * h_{4}^{E}$$
 $\mathbf{a}_{4} = \sigma(s_{4})$
 $\mathbf{s}_{3} = h_{1}^{D} * h_{3}^{E}$ $\mathbf{a}_{3} = \sigma(s_{3})$
 $\mathbf{s}_{2} = h_{1}^{D} * h_{2}^{E}$ $\mathbf{a}_{2} = \sigma(s_{2})$
 $\mathbf{s}_{1} = h_{1}^{D} * h_{1}^{E}$ $\mathbf{a}_{1} = \sigma(s_{1})$

We multiply each encoder's hidden layer by its a_i^1 attention weights to create a context vector c_1^D

Attention

$$\mathbf{s}_{4} = h_{1}^{D} * h_{4}^{E}$$
 $\mathbf{a}_{4} = \sigma(s_{4})$
 $\mathbf{s}_{3} = h_{1}^{D} * h_{3}^{E}$ $\mathbf{a}_{3} = \sigma(s_{3})$
 $\mathbf{s}_{2} = h_{1}^{D} * h_{2}^{E}$ $\mathbf{a}_{2} = \sigma(s_{2})$
 $\mathbf{s}_{1} = h_{1}^{D} * h_{1}^{E}$ $\mathbf{a}_{1} = \sigma(s_{1})$

We multiply each encoder's hidden layer by its a_i^1 attention weights to create a context vector c_1^D

$$c_1^D = a_1 \cdot h_1^E + a_2 \cdot h_2^E + a_3 \cdot h_3^E + a_4 \cdot h_4^E$$

Attention

$$s_4 = q_2 \cdot k_4$$
 $a_4 = \sigma(s_4/8)$

$$s_3 = q_2 \cdot k_3$$
 $a_3 = \sigma(s_3/8)$

$$s_2 = q_2 \cdot k_2 \qquad a_2 = \sigma(s_2/8)$$

$$s_1 = q_2 \cdot k_1 \qquad a_1 = \sigma(s_1/8)$$

We multiply each word's value vector by its a_i^1 attention weights to create a better vector z_1

$$z_1 = a_1 \cdot v_1^E + a_2 \cdot v_2^E + a_3 \cdot v_3^E + a_4 \cdot v_4^E$$

Self-Attention

ENCODER RNN

Self- Attention	Attention	Description
q _i	h_i^D	the probe
k _i	h_i^E	item being compared
V _i	h_i^E	item being weighted

vector by its a_i^1 attention weights to create a better vector z_1

$$z_1 = a_1 \cdot v_1^E + a_2 \cdot v_2^E + a_3 \cdot v_3^E + a_4 \cdot v_4^E$$

Self-Attention

ENCODER RNN

AttentionAttentionDescription q_i h_i^D the probe k_i h_i^E item being compared v_i h_i^E item being weighted

All of these are like surrogates/proxies/abstractions.

This provides flexibility and fewer constraints.

More room for rich abstractions.

Self-Attention

ENCODER RNN

Self-Attention

Let's further pass each \mathbf{z}_i through a FFNN

Self-Attention + FFNN

Let's further pass each z_i through a FFNN

Self-Attention + FFNN

Let's further pass each z_i through a FFNN

We concat w/ a residual connection to help ensure relevant info is getting forward passed.

We perform LayerNorm to stabilize the network and allow for proper gradient flow.

Self-Attention + FFNN

Let's further pass each z_i through a FFNN

We concat w/ a residual connection to help ensure relevant info is getting forward passed.

We perform LayerNorm to stabilize the network and allow for proper gradient flow.

Each z_i can be computed in parallel, unlike LSTMs!

Yay! Our r_i vectors are our new representations, and this entire process is called a Transformer Encoder

Yay! Our r_i vectors are our new representations, and this entire process is called a **Transformer Encoder**

Problem: there is no concept of positionality. Words are weighted as if a "bag of words"

Yay! Our r_i vectors are our new representations, and this entire process is called a **Transformer Encoder**

Problem: there is no concept of positionality. Words are weighted as if a "bag of words"

Solution: append each input word x_i with a positional encoding: sin(i)cos(i)

A Self-Attention Head has just one set of query/key/value weight matrices w_q , w_k , w_v

Words can relate in many ways, so it's restrictive to rely on just one Self-Attention Head in the system.

Let's create Multi-headed Self-Attention

Each Self-Attention Head produces a z_i vector.

We can, in parallel, use multiple heads and concat the z_i 's.

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding ri of each word xi

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding ri of each word xi

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding ri of each word xi

Why stop with just 1
Transformer Encoder?
We could stack several!

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding ri of each word xi

Why stop with just 1
Transformer Encoder?
We could stack several!

The <u>original Transformer</u> model was intended for Machine Translation, so it had Decoders, too

Transformer Encoders
produce contextualized
embeddings of each word

Transformer Decoders generate new sequences of text

NOTE

Transformer Decoders are identical to the Encoders, except they have an additional Attention Head in between the Self-Attention and FFNN layers.

This additional Attention

Head focuses on parts of
the encoder's
representations.

NOTE

The query vector for a Transformer Decoder's Attention Head (not Self-Attention Head) is from the output of the previous decoder layer.

However, the **key** and **value** vectors are from the **Transformer Encoders**' outputs.

NOTE

The query, key, and value vectors for a Transformer Decoder's Self-Attention Head (not Attention Head) are all from the output of the previous decoder layer.

IMPORTANT

The Transformer

Decoders have positional embeddings, too, just like the Encoders.

Critically, each position is only allowed to attend to the previous indices. This masked Attention preserves it as being an auto-regressive LM.

Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Machine Translation results: state-of-the-art (at the time)

Model	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3 \cdot 10^{18}$ $2.3 \cdot 10^{19}$		
Transformer (big)	28.4	41.8			

Machine Translation results: state-of-the-art (at the time)

You can train to translate from Language A to Language B.

Then <u>train</u> it to translate from <u>Language B</u>. to <u>Language C</u>.

Then, without training, it can translate from Language A to Language C

What if we don't want to decode/translate?

• Just want to perform a particular task (e.g., classification)

Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not being restricted to a particular form (e.g., CNNs)