Automates

Quentin Fortier

January 19, 2023

Automate (non déterministe)

Définition

Un automate (non déterministe) est un 5-uplet (Σ, Q, I, F, E) où :

- ullet Σ est un alphabet
- Q est l'ensemble des états
- $I \in Q$ est l'ensemble des **états initiaux**
- $F \subseteq Q$ est l'ensemble des états acceptants (ou états finaux)
- $E \subseteq Q \times \Sigma \times Q$ est l'ensemble des **transitions**

On peut voir un automate comme un graphe orienté, où :

- ullet Q est l'ensemble des sommets
- une transition $(q_1, a, q_2) \in E$ est un arc étiqueté par une lettre a, représenté par :

Automate (non déterministe)

Soit $A = (\Sigma, Q, q_i, F, E)$ où :

- $\bullet \ \Sigma = \{a, b\}$
- $Q = \{0, 1, 2\}$
- $q_i = 0$
- $F = \{2\}$
- $E = \{(0, b, 0), (0, a, 1), (1, a, 0), (1, b, 2), (2, b, 2)\}$

A est représenté par :

Automate (non déterministe)

Définition

On peut remplacer l'ensemble E de transitions par une fonction de transition $\delta:Q\times\Sigma\longrightarrow\mathcal{P}(Q)$ telle que :

$$\delta(q, a) = \{ q' \in Q \mid (q, a, q') \in E \}$$

Question

Donner la fonction de transition pour l'automate suivant.

Pour implémenter la fonction de transition δ , on peut utiliser un dictionnaire.

Le module Hashtbl permet d'utiliser un dictionnaire implémenté par table de hachage :

```
let d = Hashtbl.create 42;;

(* 42 est la taille initiale du tableau de la table de hachage *)

Hashtbl.add d 1 "un";; (* ajoute la clé 1 avec la valeur "un" *)

Hashtbl.add d 3 "trois";;

Hashtbl.find d 1;; (* renvoie la valeur associée à la clé 1 *)

Hashtbl.find d 2;; (* exception *)

Hashtbl.mem d 1;; (* renvoie true *)

Hashtbl.mem d 2;; (* renvoie false *)
```

On suppose que les états sont numérotés à partir de 0.

Question

Proposer un type d'automate en OCaml.

On peut représenter un automate par le type suivant :

```
type automate = {
    initiaux : int list;
    finaux : int list;
    delta : (int*char, int list) Hashtbl.t
}
```

delta est donc un dictionnaire dont chaque clé est un couple (q,a) et la valeur associée est la liste des états accessibles depuis l'état q en lisant la lettre a.

```
type automate = {
    initiaux : int list;
    finaux : int list;
    delta : (int*char, int list) Hashtbl.t
}
```

Question

Définir l'automate ci-dessous avec ce type.


```
let d = Hashtbl.create 42;;
Hashtbl.add d (0, 'a') [1];;
Hashtbl.add d (1, 'a') [1];;
Hashtbl.add d (1, 'b') [1; 2];;

let a = {
  initiaux = [0];
  finaux = [1];
  delta = d
}
```

Définition

Soit A un automate.

Un **chemin** dans A est une suite de transitions consécutives de la forme:

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} \dots \xrightarrow{a_n} q_n$$

L'étiquette de ce chemin est le mot $a_1 a_2 ... a_n$.

Ce chemin est acceptant si $q_0 \in I$ et $q_n \in F$.

Exemple:

 $0 \xrightarrow{b} 0 \xrightarrow{b} 0 \xrightarrow{a} 1 \xrightarrow{b} 1$ est un chemin acceptant, d'étiquette bbab.

Définition

Soit A un automate.

- f 0 Un mot est **accepté** par A s'il est l'étiquette d'un chemin acceptant.
- 2 Le langage L(A) accepté (ou reconnu) par A est l'ensemble des mots acceptés par A.

Exercice

Quel est le langage reconnu par l'automate A ci-dessous ?

Un chemin est acceptant ssi il passe par un nombre impair de a, donc $L(A) = \{$ mot avec un nombre impair de a $\} = L(b^*a(b^*ab^*ab^*)^*).$

Définition

Un langage L est **reconnaissable** s'il existe un automate A tel que L = L(A).

Remarque : On verra plus tard qu'un langage est reconnaissable ssi il est rationnel.

Question

Montrer que le langage $a(a + b)^*b$ est reconnaissable.

Exercice

- **1** Montrer que $ab \mid abc \mid c$ est reconnaissable.
- ② Montrer que l'ensemble des mots de longueur paire sur $\Sigma = \{a, b\}$ est reconnaissable.
- **3** Montrer que $(b \mid ab \mid ba \mid aba)^*$ est reconnaissable.

Test d'appartenance au langage d'un automate

Question

Comment déterminer informatiquement si un automate A accepte un mot $m=m_1...m_n$?

On part de l'ensemble I des états initiaux.

On calcule l'ensemble Q_1 des états accessibles à partir d'un état de I en lisant la lettre m_1 .

On calcule l'ensemble Q_2 des états accessibles à partir d'un état de Q_1 en lisant la lettre m_2 .

. . .

On calcule l'ensemble Q_n des états accessibles à partir d'un état de Q_{n-1} en lisant la lettre m_n .

Si Q_n contient un état final (c'est à dire $Q_n \cap F \neq \emptyset$), alors m est accepté par A.

Test d'appartenance au langage d'un automate

Question

Écrire une fonction etape a etats lettre qui renvoie la liste des états accessibles depuis la liste etats en lisant lettre, dans l'automate a.

Remarque : @ peut introduire des doublons... On pourrait utiliser une structure d'ensemble (Hashtbl ou Set) à la place de list.

Test d'appartenance au langage d'un automate

Question

Écrire une fonction accepte a (mot : string) qui détermine si le mot mot est accepté par l'automate a.

```
let accepte a mot =
  let etats = ref a.initiaux in
  for i = 0 to String.length mot - 1 do
    etats := etape a !etats mot.[i]
  done;
  List.exists (fun e -> List.mem e a.finaux) !etats
```

 $\frac{\mathsf{Complexit\acute{e}}}{\mathsf{donne}\ \mathsf{une}} : \ \mathsf{etats}\ \mathsf{peut}\ \mathsf{contenir}\ \mathsf{au}\ \mathsf{plus}\ 2^n\ \mathsf{\acute{e}tats},\ \mathsf{o\grave{u}}\ n = |\mathit{Q}|,\ \mathsf{ce}\ \mathsf{qui}$ donne une complexit\acute{e} exponentielle en n...

Définition

Deux automates sont équivalents s'ils ont le même langage.

Étant donné un automate, il est intéressant de trouver un automate équivalent plus simple.

Définition

Un automate (Σ, Q, I, F, E) est **complet** si:

$$\forall q \in Q, \ \forall a \in \Sigma, \ \exists (q, a, q') \in E$$

Autrement dit : depuis tout état q et pour chaque lettre $a\in \Sigma$, il existe au moins une transition étiquetée par a (pas de blocage).

Théorème

Tout automate (Σ, Q, I, F, E) est équivalent à un automate complet

Preuve:

- f 0 On ajoute un état « poubelle » q_{∞} à Q
- ② Pour toute lettre $a \in \Sigma$, on ajoute une transition $q_{\infty} \stackrel{a}{\longrightarrow} q_{\infty}$
- § S'il n'y a pas de transition étiquetée par a depuis un état q, on ajoute une transition $q \stackrel{a}{\longrightarrow} q_{\infty}$

Question

Donner un automate complet équivalent à l'automate ci-dessus ($\Sigma = \{a, b\}$).

Définition

Un automate (Σ, Q, I, F, E) est **déterministe** si:

- $oldsymbol{0} \ |I|=1$: il n'y a qu'un seul état initial
- ② $(q,a,q_1) \in E \land (q,a,q_2) \in E \implies q_1 = q_2$: il y a au plus une transition possible en lisant une lettre depuis un état

Remarque: si un automate est déterministe et complet alors il existe une unique transition possible depuis un état en lisant une lettre. La fonction de transition est alors de la forme $\delta: Q \times \Sigma \longrightarrow Q$.

Question

Les automates suivants sont-ils déterministes ?

Les automates déterministes modélisent les **machines à calculer** : un automate prend une entrée (un mot), effectue une suite de transitions en lisant le mot lettre par lettre et renvoie vrai ou faux, suivant que le mot est accepté ou non.

C'est un premier pas vers les **machines de Turing** (constituées d'un automate et d'une mémoire), qui est la définition mathématique d'un ordinateur.

On peut alors prouver que certains problèmes ne peuvent pas être résolus par un algorithme.

Question

Donner un type OCaml pour représenter un automate déterministe complet.

```
type afdc = {
   initial : int;
   finaux : int list;
   delta : (int*char, int) Hashtbl.t
}
```

Question

Réécrire la fonction accepte : afdc -> string -> bool pour un automate déterministe complet.

```
let accepte a mot =
  let etat = ref a.initial in
  for i = 0 to String.length mot - 1 do
    etat := Hashtbl.find a.delta (!etat, mot.[i])
  done;
  List.mem !etat a.finaux
```

Complexité : O(n), où n est la longueur du mot.

Théorème

Tout automate $A=(\Sigma,Q,I,F,\delta)$ est équivalent à un automate déterministe complet

Preuve:

Soit $A' = (\Sigma, \mathcal{P}(Q), \{I\}, F', \delta')$ (l'automate des parties) tel que:

- lacktriangle les états de A' sont les sous-ensembles de Q
- 2 le seul état initial de A' est $I \subseteq Q$
- $\bullet \ \, \forall X \subseteq \mathit{Q} \text{, } \forall a \in \Sigma \text{, } \delta'(X,a) = \bigcup_{q \in X} \delta(q,a) \text{: il y a une transition}$
 - $X \stackrel{a}{\longrightarrow} X'$, où X' est l'ensemble des états accessibles depuis un état de X en lisant a.

A' est clairement déterministe et complet.

Montrons par récurrence sur la longueur |m| d'un mot m la propriété:

Dans A, il existe un chemin étiqueté par m d'un état de I vers un état q \iff

Dans A^\prime , il existe un chemin étiqueté par m de I vers un état contenant q

La propriété est clairement vraie si |m| = 0.

Supposons la propriété vraie pour des mots de longueur n-1. Soit $m=m_1...m_n$ un mot de longueur n.

Soit $q_1 \in I \xrightarrow{m_1} q_2 \xrightarrow{m_2} \dots \xrightarrow{m_{n-1}} q_n \xrightarrow{m_n} q \in F$ un chemin dans A. Alors il y a un chemin de q_1 vers q_n d'étiquette $m_1 \dots m_{n-1}$ Par hypothèse de récurrence, $m_1 \dots m_{n-1}$ est l'étiquette d'un chemin de I vers X contenant q_n et $\delta(X, m_n)$ contient q. Donc $m_1 \dots m_n$ est l'étiquette d'un chemin de I vers un état contenant q.

Montrons par récurrence sur la longueur |m| d'un mot m la propriété:

Dans A, il existe un chemin étiqueté par m d'un état de I vers un état q

Dans $A^\prime,$ il existe un chemin étiqueté par m de I vers un état contenant q

La propriété est clairement vraie si |m| = 0.

Supposons la propriété vraie pour des mots de longueur n-1. Soit $m=m_1$, m_2 un mot de longueur n

Soit $m = m_1...m_n$ un mot de longueur n.

: preuve similaire.

On a donc montré que L(A) = L(A').

On peut construire le déterminisé de proche en proche, par parcours de l'automate des parties :

Algorithme de déterminisation

 $X' \leftarrow$ ensemble des états accessibles depuis un état de X

```
Entrée : Automate A=(\Sigma,Q,I,F,\delta)
```

Sortie : Automate déterministe $A' = (\Sigma, \mathcal{P}(Q), \{I\}, F', \delta')$

```
\mathsf{next} \leftarrow \{I\}
```

Tant que next $\neq \emptyset$:

Extraire un élément X ($X \subseteq Q$) de next

Pour $a \in \Sigma$:

en lisant aSi X' n'a pas déjà été visité :

Ajouter une transition $X \stackrel{a}{\longrightarrow} X'$ à A'Ajouter X' à next

Théorème

Tout automate $A=(\Sigma,Q,I,F,\delta)$ est équivalent à un automate déterministe complet

L'automate déterministe complet A^\prime de la preuve précédente possède :

- \bullet $2^{|Q|}$ états.
- 2 $2^{|Q|} \times |\Sigma|$ transitions.

La construction demande une complexité exponentielle en $|{\it Q}|$, mais on a besoin de le faire qu'une seule fois.

Ensuite, savoir si un mot m appartient à L(A') se fait en O(|m|).

Théorème

Soit L un langage reconnaissable, sur un alphabet $\Sigma.$

Alors \overline{L} (= $\Sigma^* \backslash L$) est reconnaissable.

Preuve:

Soit $A=(\Sigma,Q,q_i,F,\delta)$ un automate <u>déterministe complet</u> reconnaissant L.

Alors $A'=(\Sigma,Q,q_i,Q\backslash F,\delta)$ a pour langage \overline{L} (on inverse états finaux et non-finaux).

Soient $A_1=(Q_1,q_1,F_1,\delta_1)$ et $A_2=(Q_2,q_2,F_2,\delta_2)$ deux automates finis déterministes complets sur un même alphabet.

Définition

On appelle **automate produit** un automate de la forme $(Q_1 \times Q_2, (q_1, q_2), F, \delta)$ où :

- ullet l'ensemble d'états est le produit cartésien $Q_1 imes Q_2$
- l'état initial est (q_1, q_2)
- la fonction de transition δ est définie par $\delta((q,q'),a)=(\delta_1(q,a),\delta_2(q',a))$
- un certain ensemble d'états finaux F.

Théorème

Si L_1 et L_2 sont reconnaissables alors:

- $L_1 \cap L_2$ est reconnaissable.
- $L_1 \cup L_2$ est reconnaissable.
- $L_1 \setminus L_2$ est reconnaissable.

<u>Preuve</u>: soient $A_k = (\Sigma, Q_k, i_k, F_k, \delta_k)$ des automates déterministes complets reconnaissants L_k $(k \in \{1, 2\})$ et

$$\begin{array}{l} A_1\times A_2\stackrel{\mathrm{def}}{=}(\Sigma,Q_1\times Q_2,(i_1,i_2),F,\delta) \text{ où }\\ \delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a)) \end{array}$$

- Si $F = F_1 \times F_2 : A_1 \times A_2$ reconnaît $L_1 \cap L_2$.
- Si $F=\{(q_1,q_2)\mid q_1\in F_1 \text{ ou } q_2\in F_2\}: A_1\times A_2 \text{ reconnaît } L_1\cup L_2.$
- Si $F = \{(q_1, q_2) \mid q_1 \in F_1 \text{ et } q_2 \notin F_2\}$: $A_1 \times A_2$ reconnaît $L_1 \setminus L_2$.

Question

Dessiner un automate reconnaissant les mots sur $\Sigma=\{a,b\}$ contenant un nombre pair de a et un nombre de b égal à 2 modulo 3.

États accessibles et co-accessibles

Définition

Soit $A = (\Sigma, Q, I, F, \delta)$ un automate et $q \in Q$.

- $oldsymbol{0}$ q est accessible s'il existe un chemin depuis un état initial vers q.
- ${f 2}$ q est **co-accessible** s'il existe un chemin depuis q vers un état final.

Question

Donner un algorithme en complexité linéaire pour déterminer tous les états accessibles/co-accessibles d'un automate.

États accessibles et co-accessibles

Définition

Un automate est **émondé** si tous ses états sont accessibles et co-accessibles.

Lemme

Montrer que tout automate est équivalent à un automate émondé.