1장 알고리즘: 효율성, 분석, 차수

책 소개

- 알고리즘 기초(Foundations of Algorithms)
- 리차드 네아폴리탄 저, 도경구 역, 홍릉과학출판사
- 주요 내용: 컴퓨터로 문제 푸는 기법 배우기

목차

• 1장: 알고리즘: 효율성, 분석, 차수

- 2장 6장: 다양한 문제풀이 기법 및 적용 예제
 - 2장 분할정복
 - 3장 동적계획
 - 4장 탐욕 알고리즘
 - 5장 되추적
 - 6장 분기한정법

• 7장 계산복잡도 소개: 정렬문제

• 8장 계산복잡도: 검색문제

• 9장 계산복잡도와 문제 난이도: NP 이론 소개

1장 주요 내용

- 1절 알고리즘
- 2절 효율적인 알고리즘 개발 중요성
- 3절 알고리즘 분석
- 4절 차수

1절 알고리즘

프로그램 설계 과정

알고리즘이란?

- 컴퓨터를 이용하여 주어진 문제를 해결하는 기법
- 컴퓨터 프로그램은 여러 방법 중에서 한 가지 방법을 선택하여 구현
- 프로그래밍 언어, 프로그래밍 스타일과 무관

알고리즘과 절차

• 절차: 문제해결 알고리즘 적용 순서

알고리즘 효율성 분석

- 효율성: 문제해결을 위한 필수 요소
 - 컴퓨터 속도가 아무리 빨라져도, 메모리 가격이 아무리 저렴해져도 효율성 문제는 언제 나 중요!
 - 수천년, 수만년 동안 실행되어야 끝나는 비효율적 알고리즘이 일반적으로 존재.

- 분석: 알고리즘의 효율성 판단
 - 효율성 판단 기준: 계산복잡도
 - 계산복잡도
 - 시간복잡도: 특정 연산의 실행 횟수
 - 공간복잡도: 메모리 공간 사용 정도

- 차수: 계산복잡도 판단 기준
 - 계산복잡도 함수의 차수(order) 기준
 - 차수를 이용하여 알고리즘을 계산복잡도를 기준으로 다양한 카테고리로 분류

알고리즘 효율성 비교 예제

- 문제: 전화번호부에서 '홍길동'의 전화번호 찾기
- 알고리즘 1: 순차검색
 - 첫 쪽부터 '홍길동'이라는 이름이 나올 때까지 순서대로 찾는다.
- 알고리즘 2: 이분검색
 - 전화번호부는 '가나다'순
 - 먼저 'ㅎ'이 있을 만한 곳을 적당히 확인
 - 이후 앞뒤로 뒤적여가며 검색

분석: 어떤 알고리즘이 더 효율적인가?

• 이분검색이 보다 효율적임.

알고리즘 표기법

- 자연어: 한글 또는 영어
 - 단점 1: 복잡한 알고리즘 설명과 전달 어려움
 - 단점 2: 실제로 구현하기 어려움

- 의사코드(Pseudo-code)
 - 실제 프로그래밍 언어와 유사한 언어로 작성된 코드
 - 자연어 사용의 단점 해결
 - 하지만 직접 실행할 수 없음.
 - 교재: C++에 가까운 의사코드 사용

강의에 사용되는 언어: 파이썬3

- 설치: 아나콘다(Anaconda) 패키지 설치 추천
- 주피터 노트북 활용
- 파이썬은 기본패키지만 사용

파이썬 활용의 장점

- 의사코드 수준의 프로그래밍 작성 가능
- 책의 의사코드와 매우 유사하게 구현하여 실행 가능

예제: 순차검색

- 문제: 리스트 S에 x가 항목으로 포함되어 있는가?
 - 입력 파라미터: 리스트 S와 값 x
 - 리턴값:
 - \circ x가 S의 항목일 경우: x의 위치 인덱스
 - 항목이 아닐 경우 -1.

- 알고리즘 (자연어):
 - $lacksymbol{x}$ 와 같은 항목을 찾을 때까지 S에 있는 모든 항목을 차례로 검사
 - 만일 *x*와 같은 항목을 찾으면 항목의 인덱스 내주기
 - $lacksymbol{\bullet}$ S를 모두 검사하고도 찾지 못하면 -1 내주기

```
In [1]: # 순차검색 알고리즘

def seqsearch(S, x):
    location = 0

# while 반복문 실행횟수 확인용
    loop_count = 0

while location < len(S) and S[location] != x:
    loop_count += 1
    location += 1

if location < len(S):
    return (location, loop_count)

else:
    return (-1, loop_count)
```

```
In [2]: | seq = list(range(30))
        val = 5
         print(seqsearch(seq, val))
        (5, 5)
In [3]: | seq = list(range(30))
         val = 10
         print(seqsearch(seq, val))
        (10, 10)
In [4]: | seq = list(range(30))
         val = 20
         print(seqsearch(seq, val))
         (20, 20)
In [5]:
        seq = list(range(30))
         val = 29
         print(seqsearch(seq, val))
        (29, 29)
```

• 입력값의 위치에 따라 while 반복문의 실행횟수가 선형적으로 달라짐.

파이썬튜터 활용: 순차검색

• 위 순차검색 코드를 <u>PythonTutor: 순차검색</u> (http://pythontutor.com/visualize.html#code=%23%20%EC%88%9C%EC%B0%A8%E1,%20loop_count%29%0A%0Aseq%20%3D%20list%28range%2830%29%29%0Aval

순차검색 분석

- 특정 값의 위치를 확인하기 위해서 S의 항목 몇 개를 검색해야 하는가?
 - 특정 값과 동일한 항목의 위치에 따라 다름
 - 최악의 경우: *S*의 길이, 즉, 항목의 개수
- 좀 더 빨리 찾을 수는 없는가?
 - $lacksymbol{\bullet}$ S에 있는 항목에 대한 정보가 없는 한 더 빨리 찾을 수 없음.

2절 효율적 알고리즘 개발 중요성

효율적 검색 알고리즘 예제: 이분검색

- 문제: 항목이 비내림차순(오름차순)으로 정렬된 리스트 S에 x가 항목으로 포함되어 있는가?
 - 입력 파라미터: 리스트 S와 값 x
 - 리턴값:
 - \circ x가 S의 항목일 경우: x의 위치 인덱스
 - 항목이 아닐 경우 -1.

- 알고리즘 (자연어):
 - S의 중간에 위치한 항목과 x를 비교
 - \circ 만일 x와 같으면 해당 항목의 인덱스 내주기
 - \circ 만일 x가 중간에 위치한 값보다 작으면 중간 왼편에 위치한 구간에서 새롭게 검색
 - \circ 만일 x가 중간에 위치한 값보다 크면 중간 오른편에 위치한 구간에서 새롭게 검색
 - *x*와 같은 항목을 찾거나 검색 구간의 크기가 0이 될 때가지 위 절차 반복

```
In [8]: # 이분검색 알고리즘
        def binsearch(S, x):
             low, high = 0, len(S)-1
             location = -1
             # while 반복문 실행횟수 확인용
             loop_count = 0
             while low <= high and location == -1:</pre>
                 loop count += 1
                 mid = (low + high)//2
                 if x == S[mid]:
                     location = mid
                 elif x < S[mid]:</pre>
                     high = mid - 1
                 else:
                     low = mid + 1
             return (location, loop count)
```

```
In [9]: | seq = list(range(30))
          val = 5
          print(binsearch(seq, val))
          (5, 5)
In [10]: | seq = list(range(30))
          val = 10
          print(binsearch(seq, val))
          (10, 3)
In [11]: | seq = list(range(30))
          val = 20
          print(binsearch(seq, val))
          (20, 4)
In [12]:
          seq = list(range(30))
          val = 29
          print(binsearch(seq, val))
          (29, 5)
```

• 입력값이 달라져도 while 반복문의 실행횟수가 거의 변하지 않음.

파이썬튜터 활용: 이분검색

이분검색 분석

- 이분검색으로 특정 값의 위치를 확인하기 위해서 S의 항목 몇 개를 검색해야 하는가?
 - while 반복문이 실행될 때마다 검색 대상의 총 크기가 절반으로 감소됨.
 - 따라서 최악의 경우 $(\lg n + 1)$ 개의 항목만 검사하면 됨.
 - 여기서 lg := log₂.

순차검색 vs 이분검색

• 최악의 경우 확인 항목수

순차 검색	배열 크기	이분 검색
n	n	$\lg n + 1$
128	128	8
1,024	1,024	11
1, 048, 576	1, 048, 576	21
4, 294, 967, 296	4, 294, 967, 296	33

이분검색 활용

• 다음, 네이버, 구글, 트위터 등등 수백에서 수천만의 회원을 대상으로 검색을 진행하고자 한다면 어떤 알고리즘 선택?

당연히 이분검색!

• 이분 검색은 검색 속도가 사실상 최고로 빠름

예제: 피보나찌 수 구하기 알고리즘

• 피보나치 수열 정의

$$f_0 = 0$$

 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2} \quad (n \ge 2)$

• 피보나찌 수 예제

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

피보나찌 수 구하기 알고리즘(재귀)

- 문제: 피보나찌 수열에서 n번째 수를 구하라.
 - 입력: 음이 아닌 정수
 - 출력: *n*번째 피보나찌 수

```
In [15]:
         # 피보나찌 수 구하기 알고리즘(재귀)
         def fib(n):
             if (n <= 1):
                 return n
             else:
                 return fib(n-1) + fib(n-2)
In [16]: | fib(3)
Out[16]: 2
In [17]:
         fib(6)
Out[17]:
In [18]:
         fib(10)
          55
Out[18]:
In [19]:
         fib(13)
          233
Out[19]:
```

fib 함수 분석

- 작성하기도 이해하기도 쉽지만, 매우 비효율적임.
- 이유는 동일한 값을 반복적으로 계산하기 때문.

• 예를들어, fib(5)를 계산하기 위해 fib(2)가 세 번 호출됨. 아래 나무구조 그림 참조.

fib 함수 호출 횟수

- T(n) = fib(n)을 계산하기 위해 fib 함수를 호출한 횟수.
 - 즉, fib(n)을 위한 재귀 나무구조에 포함된 마디(node)의 개수
- 아래 부등식 성립.

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = T(n-1) + T(n-2) + 1 \quad (n \ge 2)$$

$$> 2 \times T(n-2) \qquad (T(n-1) > T(n-2))$$

$$> 2^{2} \times T(n-4)$$

$$> 2^{3} \times T(n-6)$$
...
$$> 2^{n/2} \times T(0) = 2^{n/2}$$

- 증명
- 수학적 귀납법 활용
- 교재 14쪽, 정리 1.1 참조.

정리 1.1

• 재귀적 알고리즘으로 구성한 재귀 나무구조의 마디의 수를 T(n)이라고 하면, $n \geq 2$ 인 모든 n에 대하여 다음이 성립한다.

$$T(n) > 2^{n/2}$$

• 증명: (n에 대한 수학적 귀납법으로 증명)

• 귀납시작:

■
$$T(2) = T(1) + T(0) + 1 = 3 > 2 = 2^{2/2}$$

$$T(3) = T(2) + T(1) + 1 = 5 > 2.83 \approx 2^{3/2}$$

• 귀납가정(IH): $2 \le m < n$ 인 모든 m 에 대해서 $T(m) > 2^{m/2}$ 이라고 가정.

• 귀납절차: $T(n) > 2^{n/2}$ 임을 보이면 됨. T(n) = T(n-1) + T(n-2) + 1 $> 2^{(n-1)/2} + 2^{(n-2)/2} + 1 \quad \text{by (IH)}$ $> 2^{(n-2)/2} + 2^{(n-2)/2}$ $= 2 \times 2^{(n/2)-1}$ $= 2^{n/2}$

피보나찌 수 구하기 알고리즘 (반복)

- 한 번 계산한 값을 리스트에 저장.
- 중복계산 없음: 필요할 때 저장된 값 활용

```
In [20]:
         # 피보나찌 수 구하기 알고리즘 (반복)
          def fib2(n):
              f = []
              f.append(0)
              if n > 0:
                  f.append(1)
                  for i in range(2, n+1):
                      fi = f[i-1] + f[i-2]
                      f.append(fi)
              return f[n]
In [21]: | fib2(3)
Out[21]: 2
In [22]:
         fib2(6)
Out[22]:
In [23]:
         fib2(10)
          55
Out[23]:
         fib2(13)
In [24]:
          233
Out[24]:
```

• 중복 계산이 없는 반복 알고리즘은 수행속도가 훨씬 더 빠름.

fib2 함수 분석

- fib2 함수 호출 횟수 T(n)
 - T(n) = n + 1
 - 즉, f [0] 부터 f [n] 까지 한 번씩만 계산

두 피보나찌 알고리즘의 비교

• 가정: 피보나찌 수 하나를 계산하는 데 걸리는 시간 = 1 ns.

■
$$1 \text{ ns} = 10^{-9} \, \bar{\Delta}$$

■
$$1 \mu s = 10^{-6} \, \bar{\Delta}$$

n	n+1	$2^{n/2}$	반복	재귀
40	41	1, 048, 576	41 ns	1048 μs
60	61	1.1×10^{9}	61 ns	1 초
80	81	1.1×10^{12}	81 ns	18 분
100	101	1.1×10^{15}	101 ns	13 일
120	121	1.2×10^{18}	121 ns	36 년
160	161	1.2×10^{24}	161 ns	3.8 × 10 ⁷ 년
200	201	1.3×10^{30}	201 ns	4 × 10 ¹³ 년

3절 알고리즘 분석

- 설계한 알고리즘의 효율성 분석
- 알고리즘 분석에 사용하는 용어와 표준 분석방법 학습

시간복잡도 분석

- 알고리즘 효율성 분석 기법
- 기준: 입력크기에 대해 특정 단위연산이 수행되는 횟수

입력크기 : 입력값의 크기

- 예제
- 리스트의 길이
- 행렬의 행과 열의 수
- 나무(트리)의 마디와 이음선의 수
- 그래프의 정점과 간선의 수
- 주의: 입력과 입력크기는 일반적으로 다름.
 - 피보나찌 함수 fib에 사용되는 입력값 n의 크기는 n을 이진법으로 표기했을 때의 길이인 $(\lg n + 1)$ 이다.
 - 예제: n = 13의 입력크기는 $\lfloor \lg 13 \rfloor + 1 = 4$.

단위연산: 명령문 또는 명령문 덩어리(군)

- 단위연산의 실행 횟수가 알고리즘의 실행 시간 결정
- 예제
- 비교문(comparison)
- 지정문(assignment)
- 반복문
- 모든 기계적 명령문 각각의 실행
 - 예제: PythonTutor의 Step 계산
- 순차검색과 이분검색 알고리즘의 단위 연산: while 반복문 전체
- 피보나찌 함수의 단위 연산: 함수 본체 전체

주의사항

- 단위연산을 지정하는 일반적인 규칙 없음.
- 경우에 따라 두 개의 다른 단위연산을 고려해야 할 수도 있음.
 - 예제: 키를 비교하여 정렬하는 경우
 - 비교와 지정이 서로 다른 비율로 발생하기에 서로 독립적인 단위연산으로 다 룸
- 단위연산의 실행횟수가 입력크기뿐만 아니라 입력값에도 의존할 수 있음.

알고리즘의 시간복잡도

- 입력값의 입력크기 n에 대해 지정된 단위연산이 수행되는 횟수 f(n)을 계산하는 함수 f로 표현
- 시간복잡도 함수: 시간복잡도를 표현하는 함수

시간복잡도 종류

- 단위연산 실행횟수가 입력값에 상관없이 입력크기에만 의존하는 경우
 - 일정 시간복잡도: *T*(*n*)
- 단위연산 실행횟수가 입력값과 입력크기 모두에 의존하는 경우
 - 최악 시간복잡도: *W*(*n*)
 - 평균 시간복잡도: *A*(*n*)
 - 최선 시간복잡도: *B*(*n*)

일정 시간복잡도

- 일정 시간복잡도 *T*(*n*)
 - 입력값에 상관없이 입력크기 n에만 의존하는 단위연산 실행횟수
- 예제
- 리스트의 원소 모두 더하기
- 교환정렬
- 행렬곱셈(2장)

최악 시간복잡도

- 최악 시간복잡도 W(n): 입력크기 n에 대한 단위연산의 최대 실행횟수
- 예제
- 핵발전소 시스템의 경우처럼 나쁜 사례에 대한 최악의 반응시간이 중요한 경우 활용

평균 시간복잡도

- 평균 시간복잡도 A(n): 입력크기 n에 대한 단위연산의 실행횟수 기대치(평균)
- 평균 단위연산 실행횟수가 중요한 경우 활용
- 각 입력값에 대해 확률 할당 가능
- 최악의 경우 분석보다 계산이 보다 복잡함

최선 시간복잡도

- 최선 시간복잡도 B(n): 입력크기 n에 대한 단위연산의 최소 실행횟수
- 잘 사용되지 않음.

시간복잡도 특성

• *T*(*n*)이 존재하는 경우:

$$T(n) = W(n) = A(n) = B(n)$$

• 일반적으로:

$$B(n) \le A(n) \le W(n)$$

일정 시간복잡도를 구할 수 없는 경우

- 최선의 경우 보다 최악 또는 평균의 경우 분석을 일반적으로 진행
- 평균 시간복잡도 분석
 - 다른 입력을 여러 번 사용할 때 평균적으로 걸리는 시간 알려줌.
 - 예를 들어, 속도가 느린 정렬 알고리즘이라도 평균적으로 시간이 좋게 나오는 경우 사용가능.
- 최악 시간복잡도 분석
 - 핵발전소 감시시스템 경우처럼 단 한 번의 사고가 치명적인 경우 활용.

공간(메모리)복잡도

- 알고리즘의 메모리 사용 효율성 분석
- 책에서는 시간복잡도에 집중.
- 필요한 경우 공간복잡도 분석 활용.

예제: 일정 시간복잡도 분석

알고리즘: 리스트 항목더하기

- 문제: 크기가 n인 리스트 S의 모든 항목을 더하라.
- 입력: 리스트 S
- 출력: 리스트 S에 있는 항목의 합

```
In [25]: # 리스트의 항목 모두 더하기

def sum(S):
    result = 0

    for i in range(len(S)):
        result = result + S[i]
    return result

In [26]: seq = list(range(11))
    sum(seq)
```

Out[26]: 55

리스트 항목더하기 알고리즘의 T(n) 구하기: 덧셈 기준

- 단위연산: 덧셈
- 입력크기: 리스트의 크기 n

- 모든 경우 분석:
 - 리스트의 내용에 상관없이 for-반복문 n번 실행.
 - 반복마다 덧셈 1회 실행.
 - 따라서 T(n) = n.

알고리즘: 교환정렬

- 문제: 리스트의 항목을 비내림차순(오름차순)으로 정렬하기
- 입력: 리스트 S
- 출력: 비내림차순으로 정렬된 리스트

[1, 2, 4, 4, 5, 7]

교환정렬 알고리즘의 T(n) 구하기 : 조건문 기준

- 단위연산: 조건문 (S[j]와 S[i]의 비교)
- 입력크기: 리스트의 길이 n

교환정렬 알고리즘 일정 시간복잡도 분석

- j-반복문이 실행할 때마다 조건문 한 번씩 실행
- 조건문의 총 실행횟수
 - i = 1인 경우: (n 1) 번
 - i = 20 경우: (n 2) 번
 - *i* = 3인 경우: (*n* 3) 번
 - **.**.
 - i = (n인 경우: 1 번−1)
- 그러므로 다음 성립:

$$T(n) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2}$$

• 확인

15

● 실제로

$$15 = \frac{6 \cdot 5}{2}$$

예제: 최악 시간복잡도 분석

교환정렬 알고리즘의 W(n) 구하기 : 교환 기준

- 단위연산: 교환하는 연산 (S[i]와 S[j]의 교환)
- 입력크기: 정렬할 항목의 수 n

- 최악의 경우 분석:
 - 조건문의 결과에 따라서 교환 연산의 실행여부 결정
 - 최악의 경우
 - 조건문이 항상 참(true)인 경우
 - 즉, 입력 배열이 거꾸로 정렬되어 있는 경우
 - 이때, 조건문 실행 횟수와 동일하게 실행됨. 즉, 일정 시간복잡도와 동일.

$$W(n) = \frac{(n-1)n}{2}$$

순차검색 알고리즘의 W(n) 구하기: 항목 비교 연산 기준

- 단위연산: 리스트 S의 항목과 값 x와의 비교연산
 - S[location] != x
- 입력크기: 리스트 크기 *n*

- 최악의 경우 분석:
 - \mathbf{x} 가 리스트의 마지막 항목이거나, 리스트에 포함되지 않은 경우, 단위연산이 n번 수행된다. 즉,

$$W(n) = n$$

• 주의: 입력(S와 x)에 따라서 검색횟수가 달라지므로, 일정 시간복잡도 분석 불가능.

예제: 평균 시간복잡도 분석

순차검색 알고리즘의 A(n) 구하기: 항목 비교 연산 기준

- 단위연산: 리스트 S의 항목과 값 x와의 비교연산
 - S[location] != x
- 입력크기: 리스트 크기 *n*

- 경우 1
 - 가정
- x가 리스트 S안에 있음
- 리스트의 항목이 모두 다름.
- \circ \mathbf{x} 가 리스트의 특정 위치에 있을 확률 동일, 즉 1/n. 단, n은 리스트 \mathbf{S} 의 길이.
- lacktriangle x 가 리스트의 k 번째 있다면, S 를 찾기 위해서 수행하는 단위연산의 횟수는 k.

경우 2

- 가정
- x가 리스트 S 안에 없을 수도 있음.
- x가 리스트 S 안에 있을 확률: p
- x가 배열에 없을 확률: 1 p
- x가 리스트의 *k* 번째 항목일 확률: *p/n*

$$A(n) = \sum_{k=1}^{n} \left(k \times \frac{p}{n} \right) + n (1 - p)$$
$$= \frac{p}{n} \times \frac{n(n+1)}{2} + n (1 - p)$$
$$= n \left(1 - \frac{p}{2} \right) + \frac{p}{2}$$

•
$$p$$
 일때: $A(n)$

$$= 1)$$

$$= \frac{n+1}{2}$$

예제: 최선 시간복잡도 분석

교환정렬 알고리즘의 B(n) 구하기 : 교환 기준

- 단위연산: 교환하는 연산 (S[i]와 S[j]의 교환)
- 입력크기: 정렬할 항목의 수 n

- 최선의 경우 분석:
 - 조건문의 결과에 따라서 교환 연산의 실행여부 결정
 - 최선의 경우
 - 조건문이 항상 거짓(false)이 되는 경우
 - 즉, 입력 배열이 이미 오름차순(비내림차순)으로 정렬되어 있는 경우
 - 이때, 교환이 전혀 발생하지 않음.
 - \circ 따라서 B(n) = 0.

• 확인

```
In [32]: seq = [1, 2, 4, 4, 5, 7]
print(exchangesort_2(seq))
```

순차검색 알고리즘의 $oldsymbol{B}(n)$ 구하기: 항목 비교 연산 기준

- 단위연산: 리스트 S의 항목과 값 x와의 비교연산
 - S[location] != x
- 입력크기: 리스트 크기 *n*

- 최선의 경우 분석:
 - x가 S [0]일 때, 입력의 크기에 상관없이 단위연산이 한 번 수행
 - 따라서 B(n) = 1.

복잡도 함수 예제

$$f(n) = 1$$

$$f(n) = \lg n$$

$$f(n) = n$$

$$f(n) = 1000n$$

$$f(n) = n^{2}$$

$$f(n) = \frac{n(n-1)}{2}$$

$$f(n) = 3n^{2} + 4n^{2}$$

복잡도 함수와 실행시간

예제

- 아래 두 알고리즘 중에서 어떤 알고리즘 선택?
 - 알고리즘 A의 시간복잡도: 1000*n*
 - 알고리즘 B의 시간복잡도: n^2
- n^2 이 1000n 보다 복잡도가 커보임. 하지만...
- 정답: *n*의 크기에 따라 달라짐.
 - $n \le 1,000$: 알고리즘 B 선택
 - *n* > 1,000: 알고리즘 A 선택
- 이유:

$$n^2 > 1000n \iff n > 1000$$

4절 차수

- 아래 두 알고리즘 중에서 어떤 알고리즘 선택?
 - 알고리즘 A의 시간 복잡도: 100*n*
 - 알고리즘 B의 시간 복잡도: 0.01*n*²
- $0.01n^2$ 과 100n 중에 누구의 복잡도가 더 커보임?
- 정답: *n*의 크기에 따라 달라짐.
 - $n \le 10,000$: 알고리즘 B 선택
 - *n* > 10,000: 알고리즘 A 선택
- 이유:

$$0.01n^2 > 100n \quad \iff \quad n^2 > 10000n$$
$$\iff \quad n > 10000$$

"궁극적으로 더 빠름"

• 'n > 10,000인 임의의 양의 정수 n에 대해 $0.01n^2$ 이 100n 보다 크다'를 다르게 표현하면 다음과 같음.

<div style="text-align:center"; $>0.01n^2$ 이 100n 보다 궁극적으로 크다</div>

• 다음 성질을 갖는 정수 $N \geq 0$ 이 존재할 때 f(n)이 g(n) 보다 궁극적으로 크다고 말함:

<div style="text-align:center";>n > N인 임의의 양의 정수 n에 대해 f(n) > g(n)

• 시간 복잡도의 기준으로 볼 경우:

 <div style="text-align:center";>g(n)이 f(n) 보다 궁극적으로 빠르다 \iff f(n)이 g(n) 보다 궁극적으로 크다</div>

차수(Θ , 쎄타)의 직관적 이해

- Θ(n): 1차 시간 복잡도
 - 100*n*
 - 0.001*n*
 - + 10000
 - 등등
- $\Theta(n^2)$: 2차 시간 복잡도
 - $-5n^2$
 - $-0.1n^2$
 - + *n*
 - + 100
 - 등등

고차항의 지배력

• 예제: $0.1n^2 + n + 100$ 에서 2차 항 $0.1n^2$ 이 함수 전체를 지배함

n	$0.1n^2$	$0.1n^2 + n + 100$
10	10	120
20	40	160
50	250	400
100	1,000	1,200
1,000	100,000	101,100

복잡도 카테고리의 직관적 이해

• 1차, 2차, 3차 등의 시간복잡도를 갖는 함수들의 집합을 복잡도 카테고리라고 함.

매우 효율적인 알고리즘의 복잡도 예제

- Θ(1): 상수 복잡도
 - **O**
 - **1**
 - **1000**
 - 1억 등등 모든 상수
- $\Theta(\lg n)$: 로그 복잡도
 - lg
 - n
 - 2 lg
 - n
 - **•**]
 - /2
 - ·lg
 - n
 - + 3
 - **.**..

- Θ(n): 1차 복잡도
 - **■** *n*
 - 100*n*
 - -0.001n
 - + 10000
 - **...**
- $\Theta(n \lg n)$: 엔 로그 엔(n log n) 복잡도
 - \blacksquare $n \lg n$
 - 2*n* lg *n*
 - - n + 3
 - **-** ...

경우에 따라 괜찮은 알고리즘의 복잡도 예제

- $\Theta(n^2)$: 2차 복잡도
 - n^2
 - $-5n^2$
 - $-0.1n^2$
 - + *n*
 - + 100
 - **.**.

사실상 사용할 수 없는 알고리즘의 복잡도 예제

- $\Theta(2^n)$: 지수 복잡도
 - 2ⁿ
 - **0.001**
 - $\cdot 2^n$
 - $+5n^{3}$
 - +2n
 - + 7 3
 - $\cdot 2^n$
 - $+ 100n^3$
 - + *n*
 - + 100

복잡도 함수의 증가율

시간복잡도별 실행시간 비교

• 가정: 단위연산 실행시간 = 1 ns

n	$\lg n$	n	$n \lg n$	n^2	n^3	
10	$0.003~\mu$ s	0.01 μs	$0.033~\mu$ s	$0.10~\mu$ s	1.0 μs	
20	$0.004~\mu$ s	$0.02~\mu$ s	$0.086~\mu$ s	$0.40~\mu$ s	$8.0~\mu$ s	
30	$0.005~\mu$ s	$0.03~\mu$ s	$0.147~\mu s$	$0.90~\mu$ s	$27.0~\mu$ s	
40	$0.005~\mu$ s	$0.04~\mu$ s	$0.213~\mu s$	1.60 μs	$64.0 \; \mu$ s	
50	$0.006~\mu$ s	$0.05~\mu$ s	$0.282~\mu$ s	$2.50 \; \mu$ s	$125.0 \ \mu s$	
10^{2}	$0.007~\mu$ s	$0.10~\mu$ s	$0.664~\mu$ s	$10.00~\mu$ s	1.0 ms	4 ×
10^{3}	$0.010~\mu$ s	$1.00~\mu$ s	9.966 μs	1.00 ms	1.0 초	
10 ⁴	$0.013~\mu$ s	$10.00~\mu$ s	$130.000~\mu$ s	$100.00\mathrm{ms}$	16.7 분	
10 ⁵	$0.017~\mu$ s	$0.10~\mathrm{ms}$	1.670 ms	10.00 초	11.6 일	
10^{6}	$0.020~\mu$ s	1.00 ms	19.930 ms	16.70 초	31.7 년	
10^{7}	$0.023~\mu$ s	0.01 초	0.230 초	1.16 일	31, 709 년	
108	$0.027~\mu$ s	0.10 초	2.660 초	115.70 일	3.17 × 10 ⁷ 년	
109	0.030 μs	1.00 초	29.900 초	31.70 년		

• 원서 오류 주의: 0.230 초 (추정치)

차수 정의

• 차수(Θ)를 엄밀하게 정의하려면 "큰 O(big O)"와 " Ω (Omega, 오메가)" 개념 필요

'큰 *O*' 표기법

- 다음 성질을 갖는 양의 실수 c와 음이 아닌 정수 N이 존재할 때 $g(n) \in O(f(n))$ 성립: < div style="text-align:center";> $n \geq N$ 인 임의의 정수 n에 대해 $g(n) \leq c \cdot f(n)$ </div>
- $g(n) \in O(f(n))$ 읽는 방법:
 - *g*(*n*)은 *f*(*n*)의 큰 *O*이다.
 - g(n)의 점근적 상한은 f(n)이다.

• 의미: 입력크기 n에 대해 시간 복잡도 g(n)의 수행시간은 궁극적으로 f(n)보다 나쁘지는 않다.

'큰 O' 표기법 예제

•
$$n^2 + 10n \in O(n^2)$$

• $n \ge 10$ 인경우: $n^2 + 10n \le 2n^2$

• 그러므로 $c = 2$ 와 $N = 10$ 선택

• $n \ge 1$ 인경우: $n^2 + 10n \le n^2$
 $+ 10n^2 = 11n^2$

• 그러므로 $c = 11$ 와 $N = 1$ 선택

•
$$2n^2$$
과 n^2 의비교
+ $10n$

•
$$5n^2 \in O(n^2)$$

- n > 0인 경우: $5n^2 < 5n^2$
- 그러므로 c = 5와 N = 0 선택

•
$$T(n) = n(n-1)/2$$

$$\in O(n^2)$$

■
$$n \ge 0$$
인 경우: $n(n-1)/2$

$$\leq n^2/2$$

■ 그러므로
$$c = 1/2$$
과 $N = 0$ 선택

•
$$n^2 \in O(n^2 + 10n)$$

■
$$n \ge 0$$
인 경우: $n^2 \le 1 \times (n^2)$

$$+ 10n$$

$$lacksymbol{\bullet}$$
 그러므로 $c=1$ 과 $N=0$ 선택

•
$$n \in O(n^2)$$

- $n \ge 1$ 인 경우: $n \le 1 \times n^2$ 이 성립한다.
- 그러므로 c = 1과 N = 1 선택

- $n^3 \notin O(n^2)$
 - c와 N을 아무리 크게 지정하더라도, N 보다 큰 어떤 수 n에 대해 $n^3 > c \cdot n^2$ 이 성립한다.
 - 예를 들어, n > c로 잡으면 됨.
- $O(n^2)$: 특정 양의 실수 c에 대해 c n^2 보다 궁극적으로 작은 값을 가지는 함수들의 집합

Ω 표기법

- 다음 성질을 갖는 양의 실수 c와 음이 아닌 정수 N이 존재할 때 $g(n) \in \Omega(f(n))$ 성립: < div style="text-align:center";> $n \geq N$ 인 임의의 정수 n에 대해 $g(n) \geq c \cdot f(n)$ </div>
- $g(n) \in \Omega(f(n))$ 읽는 방법:
 - *g*(*n*)은 *f*(*n*)의 오메가이다.
 - g(n)의 점근적 하한은 f(n)이다.

• 의미: 입력크기 n에 대해 시간 복잡도 g(n)의 수행시간은 궁극적으로 f(n)보다 효율적이지 못하다.

Ω 표기법 예제

- $n^2 + 10n \in \Omega(n^2)$ • $n \ge 0$ 인 경우: $n^2 + 10n$ $\ge n^2$ • 그러므로 c = 1과 N = 0 선택
- $5n^2 \in \Omega(n^2)$
 - $n \ge 0$ 인 경우: $5n^2 \ge 1 \cdot n^2$
 - $lacksymbol{\blacksquare}$ 그러므로, c=1과 N=0 선택
- T(n) = n(n-1)/2 $\in \Omega(n^2)$
 - $n \ge 2 인 경우: \frac{n(n-1)}{2}$

$$\geq \frac{1}{4}n^2$$

■ 그러므로 c = 1/4과 N = 2 선택

- $n \notin \Omega(n^2)$
 - ullet c를 아무리 작게, N을 아무리 크게 지정하더라도, $n \leq c \cdot n^2$ 을 만족시키는 $n \geq N$ 이 존재.
 - 예를 들어, $n \ge 1/c$ 로 잡으면 됨.
- $\Omega(n^2)$: 특정 양의 실수 c에 대해 c n^2 보다 궁극적으로 큰 값을 가지는 함수들의 집합

Θ 표기법

- $g(n) \in \Theta(f(n))$ 읽는 방법:
 - g(n)의 f(n)의 **차수**이다.

❷ 표기법 예제

•
$$T(n) = n(n-1)/2$$
:

$$\in \Theta(n^2)$$

■
$$n \ge 2$$
인 경우: $n(n-1)$

$$/2 \ge \frac{1}{4}n^2$$

■ $n \ge 0$ 인 경우: n(n-1)

$$1/2 \le \frac{1}{2}n^2$$

■ 그러므로, $c = \frac{1}{4}$, $d = \frac{1}{2}$, N = 2.

작은 o(small o) 표기법

• 임의의 양의 실수 c에 대해 다음 성질을 갖는 음이 아닌 정수 N이 존재할 때 $g(n) \in o(f(n))$ 성립:

 <div style="text-align:center";> $n \geq N$ 인 임의의 정수 n에 대해 $g(n) \leq c \cdot f(n)$ </div>

- $g(n) \in o(f(n))$ 읽는 방법:
 - g(n)은 f(n)의 '작은 오(small o)이다.

- 의미
- g(n)이 f(n)에 비해 궁극적으로 하찮을 만큼 작다.
- 알고리즘 분석적 측면: 복잡도 g(n)이 복잡도 f(n) 보다 궁극적으로 훨씬 좋다.
 - \circ 이유: c>0이 아무리 작더라도, n이 충분히 크면 g(n)< f(n) 성립하기 때문.

큰 O vs 작은 o

- 큰 O: 하나의 양의 실수 c에 대해서 부등식 성립
- 작은 o: 모든 양의 실수 c에 대해서 부등식 성립

작은 o 표기법 예제

- $n \in o(n^2)$ • c > 0가 주어졌을 때, $n \ge 1/c$ 인 모든 n에 대해 $n \le c \cdot n^2$ 성립.
- $n \notin o(5n)$ • c < 1/5인 경우, 임의의 음이 아닌 정수 n에 대해 $n > c \cdot 5n$ 성립.
- $n^2 \notin o(5n)$ n 이기 때문. $\notin o(5n)$

작은 o 특성

• g(n) 이면 다음도 성립: $\in o(f(n))$ $g(n) \in O(f(n)) - \Omega(f(n))$

• 증명: 생략.

차수의 특성

•
$$g(n) \in O(f(n)) \iff f(n) \in \Omega(g(n))$$

•
$$g(n) \in \Theta(f(n)) \iff f(n) \in \Theta(g(n))$$

• 임의의 *a*, *b* > 1에 대해

$$\log_a n \in \Theta(\log_b n)$$

즉, 로그 함수는 모두 동일한 복잡도 카테고리에 속함.

• b > a > 0이면 다음 성립:

$$a^n \in o(b^n)$$

즉, 지수 함수는 밑수가 다르면 다른 복잡도 카테고리에 속함.

• 임의의 양의 실수 *a*에 대해 다음 성립:

$$a^n \in o(n!)$$

즉, n!은 어떠한 지수 복잡도함수보다 더 나쁘다(느리다).

• 많이 언급되는 복잡도 카테고리를 순서대로 나열하면 다음과 같음:

$$\Theta(\lg n)$$
 $\Theta(n)$ $\Theta(n \lg n)$ $\Theta(n^2)$ $\Theta(n^j)$ $\Theta(n^k)$ $\Theta(a^n)$ $\Theta(b^n)$ $\Theta(n!)$

- \blacksquare 단, k > j > 2이고 b > a > 1임.
- g(n)이 f(n)의 카테고리 보다 왼편에 위치한 카테고리에 속한 경우 다음 성립:

$$g(n) \in o(f(n))$$

• $c \ge 0, d > 0, g(n) \in O(f(n)), h(n) \in \Theta(f(n))$ 인 경우 다음 성립:

 $c \cdot g(n) + d \cdot h(n) \in \Theta(f(n))$

예제

```
• Θ
   (\log_4
   n
   \in \Theta (lg
   n )
• lg
   n
  \in o
   (n
• n^{10}
   \in o
(2^n)
```

극한(limit)을 이용하여 차수를 구하는 방법

정리

- $\lim_{n\to\infty} \frac{g(n)}{f(n)}$ 의 값이
 - 만약c > 0이면, $g(n) \in \Theta(f(n))$,
 - 만약 0 이면, $g(n) \in o(f(n))$,
 - 만약 ∞ , 즉, 발산하면, $f(n) \in o(g(n))$.

예제

•
$$\frac{n^2}{2}$$
:
 $\in o$
 (n^3)

$$\lim_{n \to \infty} \frac{n^2/2}{n^3} = \lim_{n \to \infty} \frac{1}{2n} = 0$$

•
$$b$$
 일때, a^n : $> a \in o$ $> 0 (b^n)$

$$\lim_{n \to \infty} \frac{a^n}{b^n} = \lim_{n \to \infty} \left(\frac{a}{b}\right)^n = 0$$

로피탈(L'Hopital)의 법칙

• $\lim_{n\to\infty} f$ 이성립하면: $(n) = \lim_{n\to\infty} g(n)$ $= \infty$

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=\lim_{n\to\infty}\frac{g'(n)}{f'(n)}$$

예제

$$\lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln 2}}{1} \right) = 0$$

•
$$\log_a$$
:
 n
 $\in \Theta$
 $(\log_b$
 n