

Módulo 4:

Fundamentos de Redes e Internet

Agenda

- Bases de Redes
 - Cliente-Servidor
 - Redes Informáticas
- Protocolo de Internet
 - Definiciones
 - Stack

¿Por qué necesitamos las redes de Internet?

- Para mejorar la funcionalidad de las cosas
- Para acceder a bases de datos o poder computacional fuera de nuestro host

Transacciones Cliente-Servidor

- Para mejorar la funcionalidad de las cosas
- Para acceder a bases de datos o poder computacional fuera de nuestro host

- Cliente usualmente menos potente
- Servidor usualmente basado en la nube

Redes informáticas: sistema jerárquico de computadoras que se comunican

- LAN (Local Area Network)
 - Relativamente pequeña
 - Routers de WiFi, ethernet
 - Ejemplo: la red la universidad
- WAN (Wide Area Network)
 - Existe una jerarquía de computadoras comunicándose entre si
 - El Internet es una WAN
 - Tiene protocolos de comunicación

Redes informáticas

- MANET (Mobile Ad Hoc Network)
 - Red de Área Local Inalámbrica
 - Red construida por dispositivos móviles inalámbricos que varía constantemente.
 - Típicamente de rango corto.
 - Red más común para dispositivos IoT.
 - La red se reconfigura dinámicamente.
 - Ejemplo: cuando comparten datos del celular (hotspot)

Estructura LAN

- Ejemplo de LAN es el ethernet
- Muy estructurada
 - Ejemplo: departamento IT de una compañía
- Hub
 - Componente de una red que tiene puertos I/O
 - Cableada o inalámbrica
 - Cada vez que recibe un paquete a uno de sus puertos automáticamente copia a todos los otros puertos
- Switch
 - Mas inteligente que un Hub
 - Mira el header del mensaje para saber dónde enviarlo

Puente: traduce diferentes protocolos

Estructura WAN

- Muy Inestructurada
- Un grupo de LANs comunicadas con routers
- Routers
 - Poseen protocolos para saber a dónde enviar los data
 - Evitan saturacion de mensajes
- Concepto Hop (Ruta)
 - La sequencia para comunicar una LAN con otra

Estructura del Internet

- Ad hoc de redes
- Estructura impredecible
- Puede ser modificada por todos
- Los mensajes viajan de fuente a destinación con hopping
- Ejemplo: Clases virtuales --> la LAN de mi casa comunicándose con la LAN de mis estudiantes

¿Como es posible enviar mensajes por diferentes redes de internet?

Problema: cada LAN puede tener su propio protocolo diferente

Solucion: Protocolos de Internet

- Un protocolo es un conjunto de reglas de comunicación
 - Todos en la red deben obedecer estas reglas
 - Las reglas deben ser minimas para no sobrecargar la LAI
- Ejemplo: guardias de seguridad hablando por la radio
 - Cambio y fuera!

¿Como es posible enviar mensajes por diferentes redes de internet?

- El protocolo de una red
 - Controla cómo host y routers cooperan para transferir data entre LAN y LAN
- TCP/IP es el protocolo global de Internet
 - IP: Internet protocol
 - TCP: Transmission control protocol
 - Si su computadora quiere acceder a Internet, debe estar usando este protocolo
 - También se puede usar UDP/IP
 - User Diagram protocol

¿Qué hace un protocolo de Internet?

- Provee un esquema de nomenclatura(nombres)
- Define un formato único para las direcciones de los hosts
- Ejemplo: dirección IP
 - Cada host y router es asignado al menos una de estas
 - Un host puede tener más de una IP
 - Ejemplo: laptop con wifi y puerto ethernet
 - Cada adaptador de red tiene una IP
- Problema: direcciones IP no son tan largas
 - Ejemplo: 192.168.11.10
 - No hay suficientes direcciones IP para todos los dispositivos IP que están por venir
 - Investigación de soluciones en proceso

What is IP Address?

₹IPXO

¿Qué hace un protocolo de Internet?

- Definen las rutas y la forma de entrega de los mensajes
- Definen Header y payload
 - Header es un identificador
 - Payload es los datos a enviar
- Modelo OSI
 - Existen muchas tareas que los protocolos deben manejar
 - Ruteado, control de flujo, sistema de prioridad
 - OSI divide estas tareas en capas de abstracción

OSI MODEL

Stack de un protocolo (Concepto OSI)

- El mensaje es recibido en cada capa donde se toman decisiones
- Algunas capas se definen en SW otras en HW
- Ejemplo: ruteado
 - La capa de ruteado toma un mensaje M como Input
 - El output es el mismo mensaje con información extra en el header M' M'
 - El mensaje M' es pasado a la siguiente capa
- Como programadores, nos preocupamos por cada capa individualmente
- Capas de transmisión y recepción
 - Capa físicas --> cables y conectores

M

Capa R