المباراة العامة للعلوم والتقنيات 2012

موضوع الرياضيات

المملكة المغربية

أكاكيمية الحسن الثاني

وزارة التربية الواصنية

المباراة العامة للعلوم والتقنيات 2012

مدة الإنجاز: 4 ساعات

الرباضيات

يوليوز 2012

الأشكال الأربوعية الصحيحة في المستوى: دراسة وتطبيقات

تعـــاريف ورمـــوز

1. التطبيقات الخطية في المستوى والمصفوفات المربعة من الرتبة الثانية

- نرمز بـ $\binom{\alpha}{\gamma}$ لمجموعة المصفوفات المربعة من الرتبة الثانية $\binom{\alpha}{\gamma}$ حيث α و β و β أعداد حقيقية .
- و و و β و α التي من أجلها توجد أعداد حقيقية α و β و α التي من أجلها توجد أعداد حقيقية α و و α و β و α التي من أجلها توجد أعداد حقيقية α و α بحيث ، لكل عنصر α من α الخطية α الدينا:

.
$$f(x,y) = (\alpha x + \beta y, \gamma x + \delta y)$$

ب معرف بـ $\mathcal{L}(\mathbb{R}^2)$ من f معرف بـ - نربط کل تطبیق خطی

$$f(x,y) = (\alpha x + \beta y, \gamma x + \delta y), (x,y) \in \mathbb{R}^2$$

. $M(f) = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ المعرفة ب $\mathcal{M}_2(\mathbb{R})$ من M(f) من اعداد حقيقية، بالمصفوفة و M(f) من المعرفة ب

:عكسيا، نربط كل مصفوفة $f_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ بالتطبيق الخطى $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ المعرف بما يلى: - عكسيا، نربط كل مصفوفة $f_A(x,y) = (\alpha x + \beta y, \gamma x + \delta y), \ (x,y) \in \mathbb{R}^2$

2. محددة ومنقول مصفوفة مربعة من الرتبة الثانية

- . A المصفوفة $A = \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix}$ ونسمى $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ عن $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ عن نربط كل مصفوفة ونسمى $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$
 - ب نسمى محددة المصفوفة $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ ، العدد الحقيقى الذى نرمز إليه بـ $\det A$ والمعرف بـ

. $\det A = \alpha \delta - \gamma \beta$

3. مقلوب مصفوفة مربعة من الرتبة الثانية قابلة للقلب

- نُذَكِر أن عملية ضرب المصفوفات معرفة على $\mathcal{M}_2(\mathbb{R})$ يلى -

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \alpha' & \beta' \\ \gamma' & \delta' \end{pmatrix} = \begin{pmatrix} \alpha \alpha' + \beta \gamma' & \alpha \beta' + \beta \delta' \\ \gamma \alpha' + \delta \gamma' & \gamma \beta' + \delta \delta' \end{pmatrix}$$

وأن هذه العملية غير تبادُلِية .

7

المباراة العامة للعلوم والتقنيات 2012

- نرمز بـ I_2 للمصفوفة المعرفة بـ $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ، ونُذَكِر أن المصفوفة I_2 هى العنصر المحايد فى مجموعة المصفوفات المربعة $\mathcal{M}_2(\mathbb{R})$ ، مزودة بعملية الضرب المعرفة أعلاه .
 - تحقق $M_2(\mathbb{R})$ مصفوفة من B من الآي مقلوبا إذا وُجِدَت مصفوفة من الآي . $M_2(\mathbb{R})$ تحقق A تحقق . $AB=BA=I_2$

. A أن المصفوفة B إذا وُجدَت فإنها وحيدة P يرمز إليها بـ A^{-1} وتسمى مقلوب المصفوفة

نتائيج مقبولية يمكن استعمالها

- ب- لتكن $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ باذا وفقط إذا كان A . $M_2(\mathbb{R})$ ، وفى $A=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ بوفى هذه الحالة لدينا:

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$$

ج- لتكن A و B مصفوفتين من $\mathcal{M}_2(\mathbb{R})$ تقبل كل واحدة منهما مقلوبا . نذكر أن المصفوفة AB تقبل هى الأخرى مقلوبا و أن $(AB)^{-1} = B^{-1}A^{-1}$.

السجسسزء الأول

نتائج حول التطبيقات الخطية

لیکن f و g عنصرین من $\mathcal{L}(\mathbb{R}^2)$ معرفین بما یلی:

 $f(x,y) = (\alpha x + \beta y, \gamma x + \delta y), \ g(x,y) = (\alpha' x + \beta' y, \gamma' x + \delta' y), \ (x,y) \in \mathbb{R}^2$

. حيث α و β و γ و δ و γ و γ و γ و عداد حقيقية

- . لیکن λ عددا حقیقیا . نرمز ب \circ لترکیب تطبیقین . 1.1
- :قق: عناصر من $\mathcal{L}(\mathbb{R}^2)$ وأن المصفوفات المرتبطة بها تحقق: $\Lambda(\lambda f) = \lambda M(f), \ M(f+g) = M(f) + M(g), \ M(f\circ g) = M(f)M(g)$
- ، f^{-1} أن f تقابل من \mathbb{R}^2 إلى \mathbb{R}^2 إذا وفقط إذا كان f كان f و بين في هذه الحالة أن f . f التطبيق العكسى للتطبيق f ، هو كذلك تطبيق خطى ثم أعط تعبير $f^{-1}(x,y)$ لكل عنصر f التطبيق العكسى للتطبيق f ، هو كذلك تطبيق خطى ثم أعط تعبير f ي التطبيق العكسى التطبيق f و f f أن العكسى التطبيق أعلى التط
 - . $f(\lambda e_1 + \eta e_2) = \lambda f(e_1) + \eta f(e_2)$ نین أن e_2 و e_3 ، و e_3 و e_3 ، و e_3 و عددین حقیقیین و e_3 .2.1
- ناهداد الأعداد وفقط إذا كانت الأعداد المحدف من هذه الفقرة هو أن نبرهن على أن : التطبيق f يحقق g يحقق الأعداد الأعداد الأعداد الطبية و g نسبية و g نسبية
- $\det M(f)$ = ±1 ققق M(f) تحقق المصفوفة (M(f) تحقق α و α و α و α و α و α و α المصفوفة (α . 1.3.1 المصفوفة α . 1.3.1 المصفوفة α يحقق α يحقق α يحقق α المصفوفة (α المصفوفة المصفوفة (α المصفوفة (α
 - . $f(\mathbb{Z}^2) = \mathbb{Z}^2$ عكسيا ، نفترض أن التطبيق f يحقق .2.3.1
 - . يين أن الأعداد α و β و γ و محيحة نسبية واستنتج أن (1.2.3.1)

المباراة العامة للعلوم والتقنيات 2012

الرياضيات

- و (0,1) و $f(u_2)=(0,1)$ و $f(u_1)=(1,0)$ و u_2 و u_1 و u_2 و u_3 بين أن الأسرة .2.2.3.1 . \mathbb{R}^2 .
 - . $f^{-1}(\mathbb{Z}^2)$ = \mathbb{Z}^2 كذلك \mathbb{Z}^2 يحقق كذلك \mathbb{R}^2 وأن تطبيقه العكسى 3.2.3.1
 - . $\det M(f) = \pm 1$ تحقق M(f) تحقق أن المصفوفة .4.2.3.1
- نضع $\mathcal{L}^+(\mathbb{Z}^2)$ ، $f(\mathbb{Z}^2)=\mathbb{Z}^2$ نضع $\mathcal{L}(\mathbb{Z}^2)=\mathbb{Z}^2$ ، مجموعة التطبيقات الخطية f من f التى تحقق f التى نصع f التى أن f أرمرة وأن f أرمرة وأن f أرمرة وأن f أرمرة وزئية من f أرمرة وزئية من f أرمرة جزئية من أركزي أ

السجسسزء الثسانسسي

 \mathbb{R}^2 الأشكال الاربوعية الصحيحة في المستوى المتجهى

b و a نقول أن تطبيقا $\mathbb{R}^2 \to \mathbb{R}$ شكل أربوعي على المستوى المتجهى \mathbb{R}^2 إذا وجدت أعداد حقيقية a و a نقول أن تطبيقا a بكل عنصر a من a ، لدينا:

 $q(x,y) = ax^2 + bxy + cy^2$

تسمى الأعداد a و b و a معاملات الشكل الأربوعى a ونقول أن a **شكل أربوعي صحيح** إذا كانت معاملاتة أعدادا صحيحة نسبية .

. $M_q = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}: M_q$ بالرمز إليها بالرمز $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ بالمصفوفة ونرمز إليه بالرمز d(q) ونرمز إليه بالرمز ونذكر أن نسمى العدد d(q) ونرمز إليه بالرمز ونذكر أن

. $4\det M_q = d(q) = 4ac - b^2$

 $\mathbb{R}^2 \setminus \{(0,0)\}$ نقول أن الشكل الأربوعي q(x,y) > 0 معرف موجب إذا كان q(x,y) > 0 يحقق

نرمز بـ $\mathcal Q$ لمجموعة الأشكال الأربوعية الصحيحة على $\mathbb R^2$ ، وبـ $\mathcal Q^+$ لمجموعة الأشكال الأربوعية من $\mathcal Q$ ، المعرفة موجبة .

1.2. دراسة بعض الأمثلة

- معرف \mathbb{R}^2 من (x,y) من بن أن الشكل الأربوعي q_1 المعرف على \mathbb{R}^2 ب \mathbb{R}^2 با كل عنصر q_1 معرف q_2 معرف .
- من (x,y) من ، $q_2(x,y)=x^2+xy+y^2$ بين كذلك أن الشكل الأربوعي q_2 المعرف على q_2 بين كذلك أن الشكل الأربوعي q_2 المعرف على q_2 . معرف موجب . \mathbb{R}^2
- معرف \mathbb{R}^2 ، معرف الشكل الأربوعي q_3 المعرف على \mathbb{R}^2 ب \mathbb{R}^2 ب \mathbb{R}^2 ، معرف $q_3(x,y)=x^2-y^2$ ، معرف على عنصر q_3
 - 2.2. شـرط لازم وكـاف للأ شكـال الأربـوعية المعرفة مـوجـبة

لیکن q شکلا أربوعیا علی \mathbb{R}^2 ، معرفا بـ

 $q(x,y) = ax^2 + bxy + cy^2, (x,y) \in \mathbb{R}^2$

. حيث a و b و b عداد حقيقية

. q(-b,2a) و q(0,1) و q(1,0) حسب .1.2.2

المباراة العامة للعلوم والتقنيات 2012

- الدينا: \mathbb{R}^2 من (x,y) من عنصر (x,y) عنصر عنصر العدد a عنير منعدم فإن لكل عنصر a الدينا: a الدينا: a
- d(q) > 0 و a > 0 استنتج أن الشكل الأربوعي a > 0 معرف موجب إذا وفقط إذا كان a > 0 الشكل الأربوعي a > 0
- .3.2 ليكن $ax^2 + bxy + cy^2$ شكلا أربوعيا من $ax^2 + bxy + cy^2$ وليكن عددا صحيحا طبيعيا . نعتبر المجموعة . $ax^2 + bxy + cy^2$. بين أن $E_q(n) = \{(x,y) \in \mathbb{Z}^2 : q(x,y) = n\}$ مخمن \mathbb{Z}^2 ، المعرفة ب
- ، $q(x,y)=ax^2+bxy+cy^2$ و $f(x,y)=(\alpha x+\beta y,\gamma x+\delta y)$ حيث \mathcal{Q}^+ حيث $f(x,y)=(\alpha x+\beta y,\gamma x+\delta y)$ عنصرا من \mathcal{Q}^+ و عنصرا من \mathcal{Q}^+ عنصرا من \mathcal{Q}^+ . \mathcal{Q}^+ التطبيق \mathcal{Q}^+ د لكل عنصر \mathcal{Q}^+ من \mathcal{Q}^+ . نعتبر التطبيق \mathcal{Q}^+ التطبيق \mathcal{Q}^+ د نعتبر التحديد التحديد د نعتبر التحديد التح
 - . \mathbb{R}^2 على أن q' شكل أربوعى على q' .1.4.2

. \mathbb{R}^2 من $q'(x,y)=a'x^2+b'xy+c'y^2$ من اعداد حقیقیة بحیث a' من a'

- - . $M_{q'} = {}^{t}M(f)M_{q}M(f)$ تحقق من أن .3.4.2
 - . Q^+ ثم بين أن الشكل الأربوعي q' ينتمى إلى المجموعة d(q) ثم بين أن الشكل الأربوعي d(q') .4.4.2
 - 5.2. نحتفظ بنفس المعطيات الواردة في السؤال 4.2. أعلاه .
- ان لكل عدد صحيح طبيعى n ، لدينا $E_{q'}(n) = f^{-1}\big(E_q(n)\big)$ ، ثم استنتج أن المجموعتين .1.5.2 و $E_{q'}(n)$ لهما نفس عدد العناصر .
 - . e(q') = e(q) للقاسم المشترك الأكبر لمعاملات الشكل الأربوعي e(q) بين أن e(q) . 2.5.2
- q' و q صيث $\mathcal{L}^+(q,q') = \{f \in \mathcal{L}^+(\mathbb{Z}^2) \; ; \; q' = q \circ f\}$ ، المعرفة بـ $\mathcal{L}^+(\mathbb{Z}^2)$ ، ضمن $\mathcal{L}^+(q,q')$ مجموعة منتهية . $\mathcal{L}^+(q,q')$ مجموعة منتهية . $\mathcal{L}^+(q,q')$ مجموعة منتهية .

Q^+ عــلاقــة تكــافؤ فــى .7.2

- 1.7.2. العالقة ~ تكافئية
- بين أن ~ تحقق الخاصيات التالية:
- . $q \sim q$ انعكاسية: أي أن لكل عنصر q من \mathcal{Q}^+ ، لدينا 1.1.7.2
- . $q \sim q'$ إذا وفقط إذا $q' \sim q$ لدينا: $q' \sim q'$ لكل عنصرين $q' \sim q'$ عنصرين و $q' \sim q'$ الكل عنصرين عنصرين عنصرين و أداء الكل عنصرين عنصرين و أداء الكل عنصرين الكل عنصرين و أداء ال
- و $q'' \sim q'$ و $q' \sim q$ و المجموعة Q^+ أذا كان Q^+ فإن $q'' \sim q'$ من عناصر المجموعة أى أنه لكل مثلوث $q'' \sim q''$ من عناصر المجموعة $q'' \sim q''$ و $q'' \sim q'' \sim q''$
 - . علل جوابك . أعلاه متكافئان ؟ علل جوابك . q_2 و q_1 المعرفان في السؤال q_2 . أعلاه . إشارة : يمكن استعمال نتائج السؤال q_2 .

المباراة العامة للعلوم والتقنيات 2012

- 3.7.2. ليكن $q' = q \circ f$ عنصرين متكافئين من المجموعة \mathcal{Q}^+ نفترض أن $q' = q \circ f$ عنصر من $\mathcal{L}^+(q',q') = \{f^{-1} \circ g \circ f \; ; \; g \in \mathcal{L}^+(q,q)\}$ بين أن $\mathcal{L}^+(q',q') = \{f^{-1} \circ g \circ f \; ; \; g \in \mathcal{L}^+(q,q)\}$ ثم قارن عدد عناصر كل من المجموعتين $\mathcal{L}^+(q',q') = \mathcal{L}^+(q',q')$
- و $q_1(x,y) = x^2 + y^2$ من \mathbb{R}^2 من $q_1(x,y) = x^2 + y^2$ التطبيق و q_1 التطبيق . $q_4 = q_1 \circ f_1$ نضع $M(f_1) = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$ المرتبط بالمصفوفة $\mathcal{L}^+(\mathbb{Z}^2)$ نضع $\mathcal{L}^+(\mathbb{Z}^2)$
 - $q_4(0,1)$ و $q_1(0,1)$ و أن الشكلين q_1 و q_2 متكافئان ، ثم احسب
- حدد عناصر المجموعة $E_{q_1}(2)=\{(x,y)\in\mathbb{Z}^2\ ;\ q_1(x,y)=2\}$ عناصر المجموعة $E_{q_4}(2)=\{(x,y)\in\mathbb{Z}^2\ ;\ q_4(x,y)=2\}$
- حدد عناصر کل من المجموعتین $\{(x,y)\in\mathbb{N}^2\;;\;q_1(x,y)=2\}$ و $\{(x,y)\in\mathbb{N}^2\;;\;q_1(x,y)=2\}$. هل لهذه المجموعتين نفس عدد العناصر ؟

الـــجــــزء الثـــالـــث

الأشكال الأربوعية الصحيحة المختصرة

b و a من Q^+ شكل أربوعى مختصر إذا كانت معاملاته $a:(x,y)\mapsto ax^2+bxy+cy^2$ نقول أن عاملاته a:c و a تحقق ما يلى:

- $|b| \le a \le c$ •
- . $0 \le b$ فإن a = c وإذا كان a = b أو

$$q_1(x,y) = x^2 + y^2$$
, $q_2(x,y) = x^2 + xy + y^2$, $q_5(x,y) = 3x^2 - 2xy + y^2$

لكل عنصر (x,y) من \mathbb{R}^2 . لاحظ أن الشكلين q_2 و q_3 مختصران ، وأن الشكل \mathbb{R}^2 غير مختصر.

- . \mathbb{R}^2 من (x,y) ، لكل عنصر (x,y) من بالكن $q(x,y)=ax^2+bxy+cy^2$ معرفا بالكن مغتصر معرفا مغتصر . 1.3
 - . $\frac{\sqrt{d(q)}}{2} \le c \le \frac{d(q)}{3a}$ و أن $a \le \sqrt{\frac{d(q)}{3}}$ يين أن. 1.1.3
 - 2.1.3. ادرس حالات التساوى في كل من المتفاوتات الثلاث السالفة .
- نذکر (x,y) من (x,
- عنصرا أصغر نرمز إليه بـ m . حدد . m = q(x,y) أن المجموعة $\{q(x,y) \; ; \; (x,y) \in \mathbb{Z}^2 \setminus \{(0,0)\} \}$ تقبل عنصرا أصغر نرمز إليه بـ m = q(x,y) . m = q(x,y) التى تحقق m وأوجد جميع الأزواج (x,y) من المجموعة $a \neq c$ ؛ a = b = c عنص دراسة الحالات الثلاث $a \neq c$ ؛ a = b = c عنص دراسة الحالات الثلاث عنص المجموعة والمحالات الثلاث عنص المحالات المحالا
- عنصرا أصغرا نرمز إليه بـ m_1 عنصرا أن المجموعة m_1 عنصرا أوجد جميع الأزواج m_1 من المجموعة m_1 التى تحقق m_1 قيمة m_1 وأوجد جميع الأزواج m_1 من المجموعة (m_1) عنصرا أن المجموعة (m_1) عنصرا أن
- \mathbb{R}^2 من $q(x,y) = ax^2 + bxy + cy^2$ معرفا بـ Q^+ معرفا أربوعيا من q(x,y) من Q^+ من Q^+

.
$$C(q) = \{q' \in Q^+ ; q' \sim q\}$$

 $_{11}$. q المجموعة C(q) صنف تكافؤ الشكل

المباراة العامة للعلوم والتقنيات 2012

الهدف من الأسئلة الموالية هو أن نبين أن كل شكل أربوعى q يكافئ شكلا أربوعيا مختصرا ، وبتعبير آخر أن كل صنف التكافؤ C(q) يحتوى على شكل أربوعي مختصر .

- يحقق m روره ويره من m العنصر الأصغر من المجموعة $\mathbb{Z}^2 \setminus \{(0,0)\}$ يحقق m العنصر الأصغر من المجموعة المجموعة $\{q(x,y) : (x,y) \in \mathbb{Z}^2 \setminus \{(0,0)\}\}$ المجموعة $\{q(x,y) : (x,y) \in \mathbb{Z}^2 \setminus \{(0,0)\}\}$ المجموعة ويد عددان صحيحان نسبيان p ويحققان p يحققان p يحققان المجموعة المحيدان صحيحان نسبيان p ويحققان p يحققان المحيدان صحيحان نسبيان p ويحققان p ويحققان المحيدان صحيحان نسبيان p ويحققان p ويحققان المحيدان صحيحان نسبيان p ويحققان p ويحققان المحيدان صحيحان نسبيان p ويحققان المحيدان معيدان صحيحان نسبيان p ويحققان المحيدان صحيحان نسبيان p ويحققان المحيدان صحيحان نسبيان p ويحدد عددان صحيحان نسبيان p ويحققان المحيدان المحيدان
- ين أن الشكل الأربوعي . $\begin{pmatrix} x_0 & v \\ y_0 & u \end{pmatrix}$. بين أن الشكل الأربوعي . $\mathcal{L}^+(\mathbb{Z}^2)$. بين أن الشكل الأربوعي . $a' \leq c'$ و a' = m و b' و a' و أن معاملاته a' و a' و a' و a' عكافئ الشكل a' و أن معاملاته a' و a' و a' تحقق a'
- . $-m < b' + 2mn \le m$ بحيث n بحيث n بحيث عدد صحيح طبيعى . $m < b' + 2mn \le m$ بحيث n بحيث n بحيث n بعتبر التطبيق الخطى n من n من n المعرف بـ n المعرف بـ n المعرف n المعرف n بعتبر التطبيق الخطى n من n من n المعرف n المعرف n المعرف n بعتبر التطبيق الخطى n من n بعتبر التطبيق n المعرف n بعتبر n المعرف n بعتبر n بعتبر
 - 4.3.3. س نحتفظ بنفس المعطيات الواردة في السؤال 3.3.3. أعلاه .
 - . يفترض أن |b''| يساوى m ؛ بين أن q'' شكل أربوعى مختصر . 1.4.3.3
- وينتمى مختصر وينتمى مختصر وينتمى مختصر وينتمى وينتمى مختصر وينتمى ينقرض أن $p''': (x,y) \mapsto q''(y,-x)$ الى صنف التكافؤ C(q)
- لشكل و بين أن هذا الشكل أربوعي مختصر يكافئ الشكل و بين أن هذا الشكل المختصر وحيد . 4.3

5.3. تـطبيــقات

- q_6 المعرف بـ $11x^2 + 7xy + 4y^2$ المختصر المكافئ للشكل الأربوعي المختصر المكافئ الشكل الأربوعي المختصر المكافئ المكافئ المختصر المكافئ المكافئ المختصر المكافئ ا
 - . $(x,y) \mapsto 2x^2 + 10xy + 13y^2$ بالمعرف بـ q_7 المعرف بالنسبة للشكل .2.5.3
- 6.3. بين أن مميز كل شكل أربوعي يوافق 0 أو 3 بترديد 4 ، ثم حدد جميع الأشكال الأربوعية المختصرة التي مميزها أصغر أو يساوي 12 .
 - إشارة : يمكن استعمال المتفاوتات الواردة في السؤال 1.1.3.
- ميع ، c و b و a a المعاملات a و a و b و a a بجميع . a. . a b بجميع . a . a . a b بجميع المصفوفات المرتبطة بعناصر المجموعة . a
 - . $a \neq c$ ؛ b = 0 و a = c ؛ a = b = c الثلاث الثلاث يمكن دراسة الحالات الثلاث
- 8.3. ليكن q شكلا أربوعيا من Q^+ و m عددا صحيحا طبيعيا غير منعدم ؛ نفترض أنه يوجد عددان صحيحان m و q يحققان m ۽ نقول أن m و q كتابة فعلية للعدد m بواسطة الشكل q إذا كان العددان q و q أوليان فيما بينهما.
- q' بين أن للعدد m كتابة فعلية بواسطة الشكل q إذا وفقط إذا كان الشكل p يكافئ شكلا أربوعيا m من أن للعدد m معرفا بm معرفا بm معرفا بm معرفا بm معرفا بالمعرفا بالمع

المباراة العامة للعلوم والتقنيات 2012

- نرمز بـ I_2 للمصفوفة المعرفة بـ $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ، ونُذَكِر أن المصفوفة I_2 هى العنصر المحايد فى مجموعة المصفوفات المربعة $\mathcal{M}_2(\mathbb{R})$ ، مزودة بعملية الضرب المعرفة أعلاه .
 - تحقق $M_2(\mathbb{R})$ مصفوفة من B من الجان مقلوبا إذا وُجِدَت مصفوفة من الجA تقول أن A تقول أن A تقول أن A تحقق . $AB=BA=I_2$

. A أن المصفوفة B إذا وُجدَت فإنها وحيدة A يرمز إليها ب A^{-1} وتسمى مقلوب المصفوفة

نتائيج مقبولية يمكن استعمالها

- . ${}^t(AB)={}^tB\,{}^tA$ و أن $\det(AB)=\det(AB)=\det(A)$. نقبل أن $\det(AB)=\det(A)$ و أن $\det(AB)=\det(A)$
- ب- لتكن $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ باذا وفقط إذا كان A . $M_2(\mathbb{R})$ ، وفى $A=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ بوفى هذه الحالة لدينا:

 $A^{-1} = \frac{1}{\det A} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$

ج- لتكن A و B مصفوفتين من $\mathcal{M}_2(\mathbb{R})$ تقبل كل واحدة منهما مقلوبا . نذكر أن المصفوفة AB تقبل هى الأخرى مقلوبا و أن $(AB)^{-1} = B^{-1}A^{-1}$.

السجسسزء الأول

نتائج حول التطبيقات الخطية

لیکن f و g عنصرین من $\mathcal{L}(\mathbb{R}^2)$ معرفین بما یلی:

 $f(x,y) = (\alpha x + \beta y, \gamma x + \delta y), \ g(x,y) = (\alpha' x + \beta' y, \gamma' x + \delta' y), \ (x,y) \in \mathbb{R}^2$

. حيث α و β و γ و δ و γ و γ و γ و عداد حقيقية

- . لیکن λ عددا حقیقیا . نرمز ب \circ لترکیب تطبیقین . 1.1
- :قق: عناصر من $\mathcal{L}(\mathbb{R}^2)$ وأن المصفوفات المرتبطة بها تحقق: $\Lambda(\lambda f) = \lambda M(f), \ M(f+g) = M(f) + M(g), \ M(f\circ g) = M(f)M(g)$
- ، f^{-1} أن f تقابل من \mathbb{R}^2 إلى \mathbb{R}^2 إذا وفقط إذا كان f كان f و بين في هذه الحالة أن f . f التطبيق العكسى للتطبيق f ، هو كذلك تطبيق خطى ثم أعط تعبير $f^{-1}(x,y)$ لكل عنصر f التطبيق العكسى للتطبيق f ، هو كذلك تطبيق خطى ثم أعط تعبير f ي التطبيق العكسى التطبيق f و f f أن العكسى التطبيق أعلى التط
 - . $f(\lambda e_1 + \eta e_2) = \lambda f(e_1) + \eta f(e_2)$ نیکن e_2 و e_2 و e_3 ، و e_3 و e_3 عددین حقیقیین و بین آن e_2 .2.1
- عداد الهدف من هذه الفقرة هو أن نبرهن على أن : التطبيق f يحقق \mathbb{Z}^2 إذا وفقط إذا كانت الأعداد . $\det M(f)=\pm 1$
- - . $f(\mathbb{Z}^2)$ = \mathbb{Z}^2 عكسيا ، نفترض أن التطبيق f يحقق 2.3.1
 - . بين أن الأعداد lpha و eta و γ و δ صحيحة نسبية واستنتج أن $\det M(f)$ عدد صحيح نسبي . 1.2.3.1