stat interference

ΙD

```
# Exponential Distribution compare to Central limit Theorem
# The project consists of two parts:
# 1. A simulation exercise.
# 2. Basic inferential data analysis.
# 1: A simulation exercise
# Overview
\# In this project the exponential distribution is investigated in R and compare it with Central Limit T
# Simulations
# A series of 1000 simulations is run to create a data set for comparison purpose. Each simulation cont
# Given data: n = 40; simNum = 1000; lambda = 0.2
# For reproducibility, set seed = 10000
# Exponential sampling parameters
# set seed for reproducability
set.seed(31)
# set lambda to 0.2
lambda <- 0.2
# 40 samples
n < -40
# 1000 simulations
simulations <- 1000
# simulate
simulated_exponentials <- replicate(simulations, rexp(n, lambda))</pre>
simExp = function(n, lambda){
    mean(rexp(n,lambda))
simul = data.frame(ncol=2,nrow=simulations)
names(simul) = c("Sample", "Mean")
for (i in 1:simulations)
{
    simul[i,1] = i
    simul[i,2] = simExp(n,lambda)
}
# calculate mean of exponentials
means_exponentials <- apply(simulated_exponentials, 2, mean)</pre>
#Question 1
#Show where the distribution is centered at and compare it to the theoretical center of the distributio
analytical_mean <- mean(means_exponentials)</pre>
analytical_mean
```

[1] 4.993867

```
# analytical mean
theory_mean <- 1/lambda
theory_mean</pre>
```

[1] 5

Exponential Distribution of Sample Means

The analytics mean is 5.006 the theoretical mean 5. The center of distribution of averages of 40 exponentials is very close to the theoretical center of the distribution.

Question 2

Show how variable it is and compare it to the theoretical variance of the distribution..

```
# standard deviation of distribution
standard_deviation_dist <- sd(means_exponentials)</pre>
standard_deviation_dist
## [1] 0.7931608
# standard deviation from analytical expression
standard_deviation_theory <- (1/lambda)/sqrt(n)</pre>
standard_deviation_theory
## [1] 0.7905694
# variance of distribution
variance_dist <- standard_deviation_dist^2</pre>
variance_dist
## [1] 0.6291041
# variance from analytical expression
variance theory <- ((1/lambda)*(1/sqrt(n)))^2</pre>
variance_theory
## [1] 0.625
```

Standard Deviation of the distribution is 0.7931608 with the theoretical SD calculated as 0.7905694. The Theoretical variance is calculated as ((1/??) * (1/???n))2 = 0.625. The actual variance of the distribution is 0.6291041

Question 3

```
# Show that the distribution is approximately normal.
xfit <- seq(min(means_exponentials), max(means_exponentials), length=100)
yfit <- dnorm(xfit, mean=1/lambda, sd=(1/lambda/sqrt(n)))
hist(means_exponentials,breaks=n,prob=T,col="skyblue",xlab = "means",main="Density of means",ylab="dens lines(xfit, yfit, pch=22, col="red", lty=5)</pre>
```

Density of means

compare the distribution of averages of 40 exponentials to a normal distribution qqnorm(means_exponentials) qqline(means_exponentials, col = 2) # Due to Due to the central limit theorem (CLT), the distribution of averages of 40 exponentials is very close to a normal distribution. # 2. Basic inferential data analysis. # Load the ToothGrowth data and perform some basic exploratory data analyses

```
# load the data ToothGrowth
data(ToothGrowth)
# preview the structure of the data
str(ToothGrowth)
  'data.frame':
                   60 obs. of 3 variables:
   $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
   \ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 ...
   $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
# preview first 5 rows of the data
head(ToothGrowth, 5)
      len supp dose
## 1
     4.2
            VC
               0.5
```

2 11.5

7.3

5.8

6.4

3

4

5

VC

VC

VC

VC

0.5

0.5

0.5

0.5

```
# Provide a basic summary of the data.
# data summary
summary(ToothGrowth)
##
        len
                   supp
                                dose
## Min. : 4.20
                   OJ:30 Min. :0.500
## 1st Qu.:13.07 VC:30 1st Qu.:0.500
## Median :19.25
                           Median :1.000
                           Mean :1.167
## Mean :18.81
## 3rd Qu.:25.27
                           3rd Qu.:2.000
## Max. :33.90
                           Max. :2.000
# compare means of the different delivery methods
tapply(ToothGrowth$len,ToothGrowth$supp, mean)
##
                 VC
        OJ
## 20.66333 16.96333
# plot data graphically
library(ggplot2)
ggplot(ToothGrowth, aes(factor(dose), len, fill = factor(dose))) +
 geom_boxplot() +
  # facet_grid(.~supp)+
 facet_grid(.~supp, labeller = as_labeller(
    c("OJ" = "Orange juice",
     "VC" = "Ascorbic Acid"))) +
 labs(title = "Tooth growth of 60 guinea pigs by dosage and\nby delivery method of vitamin C",
      x = "Dose in milligrams/day",
      y = "Tooth Lengh") +
  scale_fill_discrete(name = "Dosage of\nvitamin C\nin mg/day") +
  theme_classic()
```

Tooth growth of 60 guinea pigs by dosage and by delivery method of vitamin C


```
# Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.
# comparison by delivery method for the same dosage
t05 <- t.test(len ~ supp,
              data = rbind(ToothGrowth[(ToothGrowth$dose == 0.5) &
                                          (ToothGrowth$supp == "OJ"),],
                           ToothGrowth[(ToothGrowth$dose == 0.5) &
                                          (ToothGrowth$supp == "VC"),]),
              var.equal = FALSE)
t1 <- t.test(len ~ supp,
             data = rbind(ToothGrowth[(ToothGrowth$dose == 1) &
                                        (ToothGrowth$supp == "OJ"),],
                          ToothGrowth[(ToothGrowth$dose == 1) &
                                        (ToothGrowth$supp == "VC"),]),
             var.equal = FALSE)
t2 <- t.test(len ~ supp,
             data = rbind(ToothGrowth[(ToothGrowth$dose == 2) &
                                        (ToothGrowth$supp == "OJ"),],
                          ToothGrowth[(ToothGrowth$dose == 2) &
                                        (ToothGrowth$supp == "VC"),]),
             var.equal = FALSE)
```

summary of the conducted t.tests, which compare the delivery methods by dosage,

take p-values and CI

Conclusion

For dosage of .5 milligrams/day and 1 milligrams/day does matter the delivery method. the delivery method for 2 milligrams/day. For dosage of 2 milligrams/day the delivery method doesn't matter.