## Problem

As shown in the figure, BD, CE are the altitudes on AC, AB of  $\triangle ABC$ , respectively.  $EM \perp BD$  at  $M, DN \perp CE$  at N. Show that MN//BC.



## Solution

 $\angle BEC = \angle BDC = 90^{\circ}.$  Thus points B, C, D, and E are concyclic. Draw the circle as shown. So  $\angle CED = \angle CBD = \alpha$  (they face the same arc CD).  $\angle EMD = \angle END = 90^{\circ}.$  Thus points E, M, N, and D are concyclic. So  $\angle NED = \angle NMD = \alpha$  (they face the same chord DN). Since  $\angle CBD = \angle NMD = \alpha, MN//BC$ .

