

Introdução

Conforme referido anteriormente, a maioria dos circuitos digitais opera em modo binário, ou seja, os dados de entrada e de saída são **0**s ou **1**s.

Esta característica dos circuitos digitais, permite a utilização da **álgebra de Boole** como uma ferramenta de análise e projecto de sistemas digitais.

Trata-se de uma ferramenta matemática relativamente simples, que permite descrever as relações entre as entradas e saídas dos referidos circuitos, na forma de equações algébricas.

Variáveis e funções lógicas

Variável lógica - tem por domínio 2 valores lógicos distintos: 0 e 1.

Função lógica - função de variáveis lógicas, que tem como contradomínio o conjunto lógico {0,1}.

Funções lógicas elementares

Negação ou Inversão

Α	A
0	1
1	0

Intersecção ou Produto Lógico

$$F(A,B) = A.B$$

Α	В	A.B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Reunião ou Soma Lógica

Α	В	A + B	
0	0 0		
0	1	1	
1	0 1		
1	1	1	

Descrição das funções lógicas

As funções lógicas podem ser descritas por:

- Expressões lógicas
- Tabelas de verdade
- Mapas de Karnaugh

Expressões lógicas

As expressões lógicas ligam variáveis e constantes lógicas através das funções elementares, como por exemplo:

$$F(A,B,C) = \overline{A}.B + C$$
$$F(A,B,C) = \overline{A}.B + 0 + \overline{B}.C$$

Formas de expressões lógicas

Soma de produtos: Quando a expressão é composta por somas lógicas de produtos lógicos.

$$A.B.C + \overline{A}D + B.D$$

Produto de somas: Quando a expressão é composta por produtos lógicos de somas lógicas.

$$(A+B+C).(\overline{A}+D).(B+D)$$

Há quatro formas particulares:

Forma canónica soma de produtos: Quando a expressão é composta por somas lógicas de produtos lógicos <u>que contêm todas as variáveis da função</u>.

$$F(A,B,C) = A.B.C + \overline{A.B.C} + A.B.\overline{C}$$
Mintermos

Forma canónica produto de somas: Quando a expressão é composta por produtos lógicos de somas lógicas <u>que contêm todas as variáveis da função</u>.

$$F(A,B,C) = (A+B+C).(\overline{A}+B+C).(A+B+\overline{C})$$
Maxtermos

Sistemas Digitais 2017/2018

Forma mínima soma de produtos: Quando a expressão é composta por somas de produtos em que o número de termos e de variáveis é mínimo.

$$F(A, B, C, D) = \overline{A}.\overline{B}.C.D + B.\overline{C}$$

Forma mínima produto de somas: Quando a expressão é composta por produtos de somas em que o número de factores e de variáveis é mínimo.

$$F(A,B,C,D) = (\overline{B} + \overline{C}).(B+C).(\overline{A} + \overline{C})$$

Geralmente, a implementação de circuitos digitais faz-se a partir de **formas mínimas**:

- Não são necessariamente únicas
- Não implicam necessariamente a realização lógica mais simples em termos de *hardware*

Postulados da álgebra de Boole

P1	X = 0 ou X = 1		
P2	0.0=0	1 . 1 = 1	
P3	0.1=1.0 = 0	0 + 1 = 1 + 0 = 1	
P4	1 + 1 = 1	1 + 1 = 1	
P5	$\bar{0} = 1$ $\bar{1} = 0$		

Teoremas da álgebra de Boole

T1	A.0=0	A+1=1	
T2	A.1=A	A+0=A	
T3	A.A=A	A+A=A	
T4	$A.\overline{A}=0$	$A + \overline{A} = 1$	
T5	$\stackrel{=}{A} = A$		
Т6	A.B=B.A	A+B=B+A	

Idempotência

Comutatividade

Sistemas Digitais 2017/2018

Т7	A.B.C=A.(B.C)=(A.B).C	A+B+C=A+(B+C)=(A+B)+C	Associatividade
Т8	A.(B+C)=A.B+A.C	A+B.C=(A+B).(A+C)	Distributividade
Т9	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A} + \overline{B} = \overline{A}.\overline{B}$	De Morgan
T10	A+A.B=A	A.(A+B)=A	Absorção
T11	$A + \overline{A}.B = A + B$	$A.(\overline{A}+B)=A.B$	Termo/Factor Menor
T12	$A.B + A.\overline{B} = A$	$(A+B).(A+\overline{B})=A$	Adjacência Lógica
T13	$A.B + \overline{A}.C + B.C = A.B + \overline{A}.C$	$(A+B).(\overline{A}+C).(B+C) = (A+B).(\overline{A}+C)$	Termo/Factor Incluído

Simplificação de expressões pelos teoremas

A simplificação de expressões lógicas pelos teoremas é um processo heurístico:

Progredimos no sentido que parece melhor mas não há a certeza de ser atingida a melhor solução (expressão mais simples)

Exemplos:

Aplicação do Teorema T10

$$X + X.Y = X$$

Se um termo ou expressão (X) ocorre num termo "maior" (XY), o termo "maior" é redundante!

$$F = C.D + A.\overline{B}.\overline{C} + B.C.D \Leftrightarrow$$

Considerando X=C.D e Y=B, pode-se aplicar o teorema T10, obtendo-se:

$$\Leftrightarrow$$
 $F = C.D + A.\overline{B}.\overline{C}$

Aplicação do Teorema T11

$$X + \overline{X}.Y = X + Y$$

Se uma variável ou expressão (X) ocorre num termo "maior" (XY) mas na forma negada, essa variável ou expressão na forma negada é redundante!

Sistemas Digitais 2017/2018

$$F = A.B + B.E.F + \overline{A.C.D} + \overline{B.C.D} \Leftrightarrow$$

Pelo teorema da Distributividade (T8), coloca-se o termo C.D em evidência:

$$\Leftrightarrow$$
 F = A.B + B.E.F + C.D.($\overline{A} + \overline{B}$) \Leftrightarrow

Aplicando o teorema de De Morgan (T9), transforma-se o termo A+B em $\overline{A.B}$:

$$\Leftrightarrow$$
 F = A.B + B.E.F + C.D.(A.B) \Leftrightarrow

Considerando X=A.B, Y=C.D e X = A.B, pode-se aplicar o teorema T11, obtendo-se finalmente:

$$\Leftrightarrow$$
 F = A.B + B.E.F + C.D

Aplicação do Teorema T12

$$X.Y + X.\overline{Y} = X$$

Se dois termos de uma expressão só diferem numa variável, que num dos termos ocorre na forma directa e no outro na forma negada, essa variável é redundante em ambos!

$$F = A.B.C + A.B.C + \overline{A}.\overline{B}.C + \overline{A}.\overline{B}.C \Leftrightarrow$$

Aplicando o Teorema T12, duas vezes, obtém-se:

$$\Leftrightarrow$$
 $F = A.B + \overline{A}.\overline{B}$

Situações que podem ocorrer

Na expressão seguinte, o teorema T12 seria provavelmente aplicado da seguinte forma:

$$F = A.\overline{B}.\overline{C} + A.\overline{B}.\overline{C} + \overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.\overline{C} \Leftrightarrow F = A.\overline{B} + \overline{A}.\overline{C}$$

Mas, se a mesma expressão fosse apresentada por outra ordem, aparentemente só se poderia aplicar uma única vez esse teorema:

$$F = \overrightarrow{A}.\overrightarrow{B}.\overrightarrow{C} + \overrightarrow{A}.\overrightarrow{B}.\overrightarrow{C} + \overrightarrow{A}.\overrightarrow{B}.\overrightarrow{C} + \overrightarrow{A}.\overrightarrow{B}.\overrightarrow{C} + \overrightarrow{A}.\overrightarrow{B}.\overrightarrow{C} + \overrightarrow{A}.\overrightarrow{B}.\overrightarrow{C}$$

$$\Leftrightarrow F = \overrightarrow{B}.\overrightarrow{C} + \overrightarrow{A}.\overrightarrow{B}.\overrightarrow{C} + \overrightarrow{A}.\overrightarrow{B}.\overrightarrow{C}$$

Esta não é a expressão mais simples, no entanto, nenhum teorema lhe pode ser aplicado de forma imediata!