Boosting: AdaBoost

Hunter Glanz

OUTLINE

Ensemble Continued

 $\mathsf{AdaBoost}$

Foundational Machine Learning

- You've learned about:
 - ► Traditional Regression
 - Logistic Regression
 - K-Nearest Neighbors
 - Discriminant Analysis
 - Support Vector Machines
 - Tree-Based Methods

Foundational Machine Learning

- You've learned about:
 - ► Traditional Regression
 - Logistic Regression
 - K-Nearest Neighbors
 - Discriminant Analysis
 - Support Vector Machines
 - Tree-Based Methods

Remember there's no free lunch!

Ensemble Learning Strategies

- ► Ensemble learning refers to algorithms that combine the predictions from two or more models:
 - Let's team up!

Ensemble Learning Strategies

- ► Ensemble learning refers to algorithms that combine the predictions from two or more models:
 - Let's team up!
 - Near infinite number of ways to do this so we'll talk generally about three broad strategies:
 - Bagging
 - Stacking
 - Boosting

Ensemble Learning Strategies

- ► Ensemble learning refers to algorithms that combine the predictions from two or more models:
 - Let's team up!
 - Near infinite number of ways to do this so we'll talk generally about three broad strategies:
 - 1. Bagging
 - 2. Stacking
 - 3. Boosting

Today we will focus on AdaBoost

Motivation

A procedure that combines the outputs of many "weak" learners to produce a powerful "committee."

Motivation

A procedure that combines the outputs of many "weak" learners to produce a powerful "committee."

Most people cite **Adaptive Boosting (AdaBoost)** by Freund and Schapire (1997) as the big emergence of boosting.

AdaBoost.M1

► Consider a two-class problem, with the output variable coded as -1 and 1, and a single vector of predictor variables, X.

AdaBoost.M1

- ► Consider a two-class problem, with the output variable coded as -1 and 1, and a single vector of predictor variables, X.
- ▶ A weak classifier is one whose error rate is only slightly better than random guessing (i.e. a coin flip).

AdaBoost.M1

- ► Consider a two-class problem, with the output variable coded as -1 and 1, and a single vector of predictor variables, X.
- ▶ A weak classifier is one whose error rate is only slightly better than random guessing (i.e. a coin flip).

Sequentially apply the weak classification algorithm to repeatedly modified versions of the data.

The AdaBoost.M1 Visual

$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

▶ The α_m :

$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

- ▶ The α_m :
 - Computed by the boosting algorithm
 - Weight the contribution of each respective $G_m(x)$
 - ► Giver higher influence to the more accurate classifiers in the sequence

$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

- ▶ The α_m :
 - Computed by the boosting algorithm
 - Weight the contribution of each respective $G_m(x)$
 - Giver higher influence to the more accurate classifiers in the sequence
- ▶ The weighted samples/data (w_i) :

$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

- ▶ The α_m :
 - Computed by the boosting algorithm
 - Weight the contribution of each respective $G_m(x)$
 - Giver higher influence to the more accurate classifiers in the sequence
- ▶ The weighted samples/data (w_i) :
 - ▶ Weights applied to each of the training observations
 - ▶ Initially all set to $w_i = 1/N$
 - Observations that are misclassified have their weights increased, whereas weights are decreased for those correctly classified

AdaBoost Notes

▶ When and How to use?!

AdaBoost Notes

- When and How to use?!
 - You can technically **boost** most, if not all, machine learning algorithms!
 - Implementations have converged on some very popular and successful versions

AdaBoost Notes

- When and How to use?!
 - You can technically **boost** most, if not all, machine learning algorithms!
 - Implementations have converged on some very popular and successful versions
- Elements of Statistical Learning example (pg. 339, not PDF page):
 - Each weak learner is a "stump": two-terminal node classification tree
 - Boosting reduces the prediction error rate by almost a factor of four
 - ▶ It outperforms a single large classification tree

Small trees are popular choices for the weak learners