

Homework 10 Solutions

Weihao Li Fudan University

Problem 1

This is equivalent to solve a least square problem

$$min_{\lambda}||\lambda^2 Mx + \lambda Cx + Kx||_2.$$

Hence we have the orthogonal condition

$$(2\lambda Mx + Cx)^*(\lambda^2 Mx + \lambda Cx + Kx) = 0,$$

which is a scalar cubic equation of λ . Then we can find three approximate $\hat{\lambda}$, and choose one that has the smallest $||\lambda^2 Mx + \lambda Cx + Kx||_2$.

Problem 2

Let $B=LL^T$ be the cholesky decomposition of B.

 $AB=ALL^T$ is similar to L^TAL , which is a real symmetric matrix, hence diagonalizable. To find all the eigenvalue and eigenvector of AB, just compute $B=LL^T$ first and find the all the eigenvalue and eigenvector of real symmetric matrix L^TAL (using symmetric QR, Jacobi, etc.).

Problem 3

see prob03.py.

(The "optimum choices" of some norm of A is from the table 1 in [1])

Problem 4

Since Hermitian matrices that commute are also simultaneously diagonalizable, there is some unitary \boldsymbol{U} that

$$U^*AU = D_A, U^*EU = D_E,$$

in which we denote $D_A=diag(a_1,a_2,\ldots,a_n), D_E=diag(e_1,e_2,\ldots,e_n).$ Then

$$egin{aligned} ||exp(A+E)-exp(A)||_2 &= ||\exp(D_A+D_E)-exp(D_A)||_2 \ &= max_{1 \leq i \leq n} |\exp(a_i)(exp(e_i)-1)| \ &\leq max_{1 \leq i \leq n} |\exp(a_i)|max_{1 \leq i \leq n}|(exp(e_i)-1)| \ &= \exp(||A||_2) \exp(||E||_2-1). \end{aligned}$$

Problem 5

see prob05.py and prob05output.xlsx.

[1]C. B. Moler and C. F. Van Loan, *Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later*, SIAM Rev., 45 (2003), pp. 3–49.