Algo-01-AlgorithmsIntro

2020년 8월 28일 금요일 오후 3:27

Algo-01-Al gorithmsl...

1장 알고리즘: 효율성, 분석, 차수

책 소개

- 알고리즘 기초(Foundations of Algorithms)
- 리차드 네아폴리탄 저, 도경구 역
- 홍릉과학출판사
- 주요 내용: 컴퓨터로 문제 푸는 기법 배우기

목차	
 1장: 알고리즘: 효율성, 분석, 차수 	

1장 주요 내용

- 1. 알고리즘
- 1. 효율적인 알고리즘 개발 중요성
- 1. 알고리즘 분석
- 1. 차수

알고리즘이란?

- 컴퓨터를 이용하여 주어진 문제를 해결하는 기법
- 프로그래밍 언어, 프로그래밍 스타일과 무관
- 컴퓨터 프로그램은 여러 방법 중에서 한 가지 방법을 선택하여 구현
- 절차: 문제해결 알고리즘 적용 순서

다음 슬라이드라 내용 경복

알고리즘과 절차
● 절차: 문제해결 알고리즘 적용 순서

프로그램 설계 과정

● 차수: 계산복잡도 판단 기준 ■ 계산복잡도 함수의 차수(order) 기준 ■ 차수를 이용하여 알고리즘을 계산복잡도별로 분류 가능

알고리즘 효율성 비교 예제

- 문제: 전화번호부에서 '홍길동'의 전화번호 찾기
- 알고리즘 1: 순차검색
 - 첫 쪽부터 '홍길동'이라는 이름이 나올 때까지 순서대로 찾는다.
- 알고리즘 2: 이분검색
 - 전화번호부는 '가나다'순
 - 먼저 'ㅎ'이 있을 만한 곳을 적당히 확인
 - 이후 앞뒤로 뒤적여가며 검색

분석: 어떤 알고리즘이 더 효율적인가?	
군국. 이건 결꼬니듬이 더 요필적인기?	
● 이분검색이 보다 효율적임.	
, , , ,	

예제: 순차검색• 문제: 리스트(배열) S에 x가 항목으로 포함되어 있는가? ■ 입력 파라미터: 리스트(배열) S와 값 x ■ 리턴값: x가 S의 항목일 경우 인덱스, 항목이 아닐 경우 -1.

70/


```
In [2]: # 순차검색 알고리즘

def seqsearch(S, x):
    location = 0

# while 반복문 실행횟수 확인용
    loop_count = 0

while location < len(S) and S[location] != x:
    loop_count += 1
    location += 1

if location < len(S):
    return (location, loop_count)

else:
    return (-1, loop_count)
```

```
In [77]: seq = list(range(30))
    val = 5
    print(seqsearch(seq, val))

(5, 5)

In [78]: seq = list(range(30))
    val = 10
    print(seqsearch(seq, val))

(10, 10)

In [79]: seq = list(range(30))
    val = 20
    print(seqsearch(seq, val))

(20, 20)

In [80]: seq = list(range(30))
    val = 29
    print(seqsearch(seq, val))

(29, 29)
```

```
In [81]: seq = list(range(30)) val = 30 print(seqsearch(seq, val))

(-1, 30)

In [82]: seq = list(range(30)) val = 100 print(seqsearch(seq, val))

(-1, 30)

• 입력값의 위치에 따라 while 반복문의 실행횟수가선형적 달라짐.

10 한정적-3
```


순차검색 분석

- 특정 값의 위치를 확인하기 위해서 S의 항목 몇 개를 검색해야 하는가?
 - 특정 값과 동일한 항목의 위치에 따라 다름
 - 최악의 경우: *S*의 길이, 즉, 항목의 개수
- 좀 더 빨리 찾을 수는 없는가?
 - *S*에 있는 항목에 대한 정보가 없는 한 더 빨리 찾을 수 없음.

효율적 검색 알고리즘 예제: 이분검색

- 문제: 항목이 비내림차순(오름차순)으로 정렬된 리스트(배열) S에 x가 항목으로 포함되어 있는가?
 - 입력 파라미터: 리스트(배열) S와 값 x
 - 리턴값: *x*가 *S*의 항목일 경우 인덱스, 항목이 아닐 경우 -1.

- S의 중간에 위치한 항목과 x를 비교
 - 만일 *x*와 같으면 해당 항목의 인덱스 내주기
 - \circ 만일 x가 중간에 위치한 값보다 작으면 중간 왼편에 위치한 구간에서 새롭게 검색
 - \circ 만일 x가 중간에 위치한 값보다 크면 중간 오른편에 위치한 구간에서 새롭게 건생
- 검색 구간의 크기가 O이 될 때가지 위 절차 반복 ☞ X C 같은 항목을 찾게나 검색 구분이 크기가 o이 될 때까지 반복

```
In [3]: # 이분검색 알고리즘

def binsearch(S, x):
    low, high = 0, len(S)-1
    location = -1

# while 반복문 실행횟수 확인용
    loop_count = 0

while low <= high and location == -1:
    loop_count += 1
    mid = (low + high)//2

if x == S[mid]:
    location = mid
    elif x < S[mid]:
        high = mid - 1
    else:
        low = mid + 1

return (location, loop_count)
```

```
In [70]: seq = list(range(30))
    val = 5
    print(binsearch(seq, val))

(5, 5)

In [71]: seq = list(range(30))
    val = 10
    print(binsearch(seq, val))

(10, 3)

In [72]: seq = list(range(30))
    val = 20
    print(binsearch(seq, val))

(20, 4)

In [73]: seq = list(range(30))
    val = 29
    print(binsearch(seq, val))

(29, 5)
```

• 입력값이 달라져도 while 반복문의 실행횟수가 거의 변하지 않음.

순차검색 vs 이분검색

배열의 크기	순차검색	이분검색
n	n	$\lg n + 1$
128	128	8
1,024	1,024	11
1,048,576	1,048,576	21
4,294,967,296	4,294,967,296	33

이분검색 활용

• 다음, 네이버, 구글, 페이스북, 트위터 등등 수백에서 수천만의 회원을 대상으로 검색을 진행하고 자 한다면 어떤 알고리즘 선택?

당연히 이분검색!

· 순차 검색에 비해 이건 검색은 검색 속도가 매우 바스기 때문에 많은 송의 데이터에서 검색이 필요할 경우 활용됨

예제: 피보나찌 수 구하기 알고리즘

• 피보나치 수열 정의

$$f_0 = 0$$

 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2} \quad (n \ge 2)$

• 피보나찌 수 예제

 $0,\,1,\,1,\,2,\,3,\,5,\,8,\,13,\,21,\,34,\,55,\,89,\,144,\,233,\,\dots$


```
In [84]: # 四보中网 수 구하기 알고리즘(재귀)

def fib(n):
    if (n <= 1):
        return n
    else:
        return fib(n-1) + fib(n-2)

In [55]: fib(3)

Out[55]: 2

In [56]: fib(6)

Out[56]: 8

In [57]: fib(10)

Out[57]: 55

In [60]: fib(13)

Out[60]: 233
```


• 예를들어, fib(5)를 계산하기 위해 fib(2)가 세 번 호출됨. 아래 나무구조 그림 참조.

f ib 함수 호출 횟수

- *T*(*n*) = fib(n)을 계산하기 위해 fib 함수를 호출한 횟수. 즉, fib(n)을 위한 재귀 나무구조에 포함된 마디(node)의 개수
- 아래 부등식 성립.

$$T(0) = 1$$

 $T(1) = 1$
 $T(n) = T(n-1) + T(n-2) + 1$ $(n \ge 2)$
 $> 2 \times T(n-2)$ $(T(n-1) > T(n-2))$
 $> 2^2 \times T(n-4)$
 $> 2^3 \times T(n-6)$
...
 $> 2^{n/2} \times T(0)$
 $= 2^{n/2}$

정리 1.1 • 재귀적 알고리즘으로 구성한 재귀 나무구조의 마디의 수를 T(n)이라고 하면, $n \geq 2$ 인 모든 n에 대하여 다음이 성립한다. $T(n) > 2^{n/2}$ • 증명: (n에 대한 수학적 귀납법으로 증명)

피보나찌 수 구하기 알고리즘 (반복) • 한 번 계산한 값을 리스트(배열)에 저장해두고 필요할 때 활용. • 중복 계산 없음. • 한 번 계산한 값을 리스트(배열)에 저장해두면 형목 계산할 필요가 없음

```
In [1]: # 피보나찌 수 구하기 알고리즘 (반복)
        def fib2(n):
           f = []
           f.append(0)
           if n > 0:
               f.append(1)
               for i in range(2, n+1):
                  fi = f[i-1] + f[i-2]
                  f.append(fi)
           return f[n]
In [2]: fib2(3)
Out[2]: 2
In [3]: fib2(6)
Out[3]: 8
In [4]: fib2(10)
Out[4]: 55
In [5]: fib2(13)
Out[5]: 233
           • 중복 계산이 없는 반복 알고리즘은 수행속도가 훨씬 더 빠름.
```


두 피보나찌 알고리즘의 비교

n	n+1	$2^{n/2}$	Iterative	Recursive (Lower bound)
40	41	1,048,576	41 ns	1048 μs
60	61	1.1×10 ⁹	61 ns	1 sec
80	81	1.1×10 ¹²	81 ns	18 min
100	101	1.1×10 ¹⁵	101 ns	13 days
120	121	1.2×10 ¹⁸	121 ns	36 years
160	161	1.2×10 ²⁴	161 ns	3.8×10^7 years
200	201	1.3×10 ³⁰	201 ns	4×10 ¹³ years

- $1 \text{ ns} = 10^{-9} \text{ 초}$ $1 \mu \text{s} = 10^{-6} \text{ 초}$ 가정: 피보나찌 수 하나를 계산하는 데 걸리는 시간 = 1 ns.

• 설계한 알고리즘의 효율성 분석
• 알고리즘 분석에 사용하는 용어와 표준 분석방법 학습

입력크기 : 특정 입력값의 크기

- 예제
- 리스트(배열)의 길이
- 행렬의 행과 열의 수
- 나무(트리)의 마디와 이음선의 수
- 그래프의 정점과 간선의 수
- 주의: 입력과 입력크기는 일반적으로 다름.
 - 피보나찌 함수 fib에 사용되는 입력값 n의 크기는 n을 이진법으로 표기했을 때의 길이인 $\log n + 1$ 이다.
 - 예제: n = 13의 입력크기는 [lg 13] + 1 = 4.

단위연산: 명령문 또는 명령문 덩어리(군) → 알고기증에 의해 수행된 총 각압은 이 명령문 혹은 명령문 덩여리의 횟수에 비계

- 예제
- 비교문(comparison)
- 지정문(assignment)
- 반복문
- 모든 기계적 명령문 각각의 실행(
 - 예제: PythonTutor의 Step 계산
- 순차검색과 이분검색 알고리즘에서는 비교 while 반복문에 실행되는 명령문들의 덩어리를 단위 연산으로 보았음.
- 피보나찌 함수의 경우 함수 본체 전체를 단위연산으로 사용됨.
- 주위 의
 - 단위연산을 지정하는 일반적인 규칙 없음.
 - 경우에 따라 두 개의 다른 단위연산을 고려해야 할 수도 있음.
 - 예제: 키를 비교하여 정렬하는 경우, 비교와 지정이 서로 다른 비율로 발생하여, 서로 독립적인 단위연산으로 간주해야함.
 - 단위연산의 실행횟수♪ 입력크기뿐만 아니라 입력에도 의존함.

따라서 알고기능의 시간 보잡도 분약은 입력 크기의 각 값에 대해 단위 면반이 수행되는 횟수를 확장한 것

시간복잡도 종류

- 단위연산 실행횟수가 입력값에 상관없이 입력크기에만 의존하는 경우
 - 일정 시간복잡도: *T(n)*
- 단위연산 실행횟수가 입력값과 입력크기 모두에 의존하는 경우
 - 최악 시간복잡도: W(n)
 - 평균 시간복잡도: A(n)
 - 최선 시간복잡도: *B*(*n*)

평균 시간복잡도 🦯 위

- 평균 시간 복잡도 A(n): 입력크기 n에 대한 단위연산의 실행횟수 기대치(평균)
- 평균 단원연산 실행횟수가 중요한 경우 활용
- 각 입력값에 대해 확률 할당 가능
- 최악의 경우 분석보다 💢 계산이 보다 복잡함

시간복잡도 특성

T(n)이 존재하는 경우:

$$T(n) = W(n) = A(n) = B(n)$$

• 일반적으로:

$$B(n) \le A(n) \le W(n)$$

일정 시간복잡도를 구할 수 없는 경우

- 최선의 경우 보다 최악 또는 평균의 경우 분석을 일반적으로 진행
- 평균 시간복잡도 분석
 - 다른 입력을 여러 번 사용할 때 평균적으로 걸리는 시간 알려줌.
 - 예를 들어, 속도가 느린 정렬 알고리즘이라도 평균적으로 시간이 좋게 나오는 경우 사용가능.
- 최악 시간복잡도 분석
 - 핵발전소 감시시스템 경우처럼 단 한 번의 사고가 치명적인 경우 활용.


```
In [7]: # 리스트(배열)의 항목 모두 더하기

def sum(S):
    result = 0
    for i in range(len(S)):
        result = result + S[i]
    return result

In [9]: seq = list(range(11))
    sum(seq)

Out[9]: 55
```



```
In [10]: # 교환정렬

def exchangesort(S):
    for i in range(i=1, len(S)):
        if (S[j] < S[i]):
            S[i], S[j] = S[j], S[i]

In [11]: seq = [1, 4, 5, 2, 7]
    exchangesort(seq)
    print(seq)

[1, 2, 4, 5, 7]
```

교환정렬 알고리즘의 $T(n)$ 구하기 : 조건문 기준
 ● 단위연산: 조건문 (S[j]와 S[i]의 비교) ● 입력크기: 리스트(배열)의 길이 n

- 모든 경우 분석:
 - j-반복문이 실행할 때마다 조건문 한 번씩 실행
 - 조건문의 총 실행횟수

$$\circ$$
 $i = 1일 때: n - 1 번$

$$\circ$$
 $i = 2일 때: n - 2 번$

$$\circ$$
 $i = 3일 때: n - 3 번$

0

○
$$i = n - 1$$
일 때: 1 번

○ 따라서 다음이 성립한다.

$$T(n) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2}$$

- 최악의 경우 분석:
 - 조건문의 결과에 따라서 교환 연산의 실행여부 결정
 - 최악의 경우
 - 조건문이 항상 참(true)이 되는 경우
 - 즉, 입력 배열이 취꾸로 정렬되어 있는 경우
 - ୁ ○ 이때, 조건문 실행 횟수와 동일하게 실행됨.

$$W(n) = \frac{(n-1)n}{2}$$

- 평균의 경우 분석 (경우 1)
 - 가정
- x가 리스트(배열) s안에 있음
- 리스트(배열)의 항목이 모두 다름.
- x가 리스트(배열)의 특정 위치에 있을 확률 동일, 즉 1/n. 단, n은 리스트(배열) s의 길이.
- \mathbf{x} 가 리스트(배열)의 k 번째 있다면, \mathbf{s} 를 찾기 위해서 수행하는 단위연산의 횟수는 k.
- 따라서 다음이 성립

$$A(n) = \sum_{k=1}^{n} \left(k \times \frac{1}{n} \right)$$
$$= \frac{1}{n} \times \sum_{k=1}^{n} k$$
$$= \frac{1}{n} \times \frac{n(n+1)}{2}$$
$$= \frac{n+1}{2}$$

순차검색 알고리즘의 A(n) 구하기 (경우 2)

- 가정
- x가 리스트(배열) s 안에 없을 수도 있음.
- x가 리스트(배열) S 안에 있을 확률: p
- x가 배열에 없을 확률: 1 p
- x가 리스트(배열)의 k 번째 항목일 확률: p/n
- 따라서 다음이 성립.

$$A(n) = \sum_{k=1}^{n} \left(k \times \frac{p}{n} \right) + n (1 - p)$$
$$= \frac{p}{n} \times \frac{n(n+1)}{2} + n (1 - p)$$
$$= n \left(1 - \frac{p}{2} \right) + \frac{p}{2}$$

• p 일때: = 1

$$A(n) = (n+1)/2$$

 최선의 경우 분석: x가 S[0]일 때, 입력의 크기에 상관없이 단위연산이 한 번 수행 따라서 B(n) = 1.

복잡도의 표기법

- O
- Big O, asymptotic upper bound
- Ω
- Omega, asymptotic lower bound
- Θ
- Theta, order, asymptotic tight bound ($O \cap \Omega$)

대표적인 복잡도 카테고리

- $\Theta(\lg n)$
- $\Theta(n)$: 1 $\bar{}$ (linear time algorithm)
- $\Theta(n \lg n)$
- $\Theta(n^2)$: $2\bar{r}$ (quadratic time)
- $\Theta(n^3)$: $3\bar{\wedge}$ (cubic time)
- $\Theta(2^n)$: 지수 (exponential time)
- $\Theta(n!)$

최고차 항이 궁극적으로 지배한다

n	$0.1n^2$	$0.1n^2+n+100$	
10	10	120	
20	40	160	
50	250	400	
100	1,000	1,200	
1,000	100,000	101,100	

- g(n) order of n^2
 - $= 5n^2$
 - + 100n
 - + 20
 - $\in \theta$
 - $(n^2) \equiv$

복잡도 함수의 증가율

시간복잡도별 실행시간 비교

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^{3}$	$f(n) = 2^{n}$
10	0.003 µs*	0.01 µs	$0.033 \mu s$	0,10 µs	1,0 µs	1 μs
20	$0.004 \mu s$	$0.02 \mu s$	$0.086 \mu s$	$0.40 \mu s$	8.0 µs	1 ms
30	$0.005 \mu s$	$0.03 \mu s$	$0.147 \mu s$	$0.90 \mu s$	27.0 µs	1 s
40	$0.005 \mu s$	$0.04 \mu s$	$0.213 \mu s$	$1.60 \mu s$	64.0 µs	18,3 min
50	$0,006 \mu s$	$0.05 \mu s$	$0.282 \mu s$	$2.50 \mu s$	125,0 μs	13 days
10^{2}	$0.007 \mu s$	$0.10 \mu s$	$0.664 \mu s$	10,00 µs	1,0 ms	4×10 ¹³ years
10 ³	0,010 µs	$1.00 \mu s$	9,966 µs	1,00 ms	1.0 s	
104	0,013 µs	10,00 µs	130,000 µs	100,00 ms	16,7 min	
105	0,017 µs	0,10 ms	1,670 ms	10,00 s	11,6 days	
10 ⁶	$0.020 \mu s$	1,00 ms	19,930 ms	16,70 min	31,7 years	
10 ⁷	$0.023 \mu s$	0,01s	2,660 s	1,16 days	31,709 years	
10 ⁸	$0.027 \mu s$	0.10 s	2,660 s	115,70 days	3,17×107 years	
10°	0,030 µs	1,00 s	29,900 s	31,70 years		

^{*1} $\mu s = 10^{-4}$ second, †1 ms = 10^{-3} second,

Big O 표기법

- 정의: 점근적 상한 (Asymptotic Upper Bound)
 - 분석된 복잡도함수 g(n)이 어떤 함수 f(n)에 대해서 $g(n) \in O(f(n))$.
 - $n \ge N$ 인 모든 정수 n에 대해서 $g(n) \le c \times f(n)$ 이 성립하는 실수 c > 0와 음이 아닌 정수 N이 존재한다.
- $g(n) \in O(f(n))$ 읽는 방법:
 - g(n)의 점근적 상한은 f(n)이다.
 - Asymptotic upper bound of g(n) is f(n).
- 의미:
- 입력 크기 n에 대해서 이 알고리즘의 수행시간은 궁극적으로 f(n)보다 나쁘지는 않다.

Big O 표기법 (예)

- 어떤 함수 g(n)이 $O(n^2)$ 에 속한다는 말은
 - 함수g(n)은 궁극에 가서는 (즉, 어떤 N값 이후부터는) 어떤 2차 함수 cn2 보다는 작은 값을 가지게 된다는 것을 뜻한다. (그래프 상에서는 아래에 위치)
- $n^2 + 10n \in O(n^2)$?
 - $n \ge 10$ 인 모든 정수 n에 대해서 $n^2 + 10n \le 2n^2$ 이 성립한다. 그러므로 c = 2와 N = 10을 선택하면, 'Big O'의 정의에 의해서 $n^2 + 10n \in O(n^2)$ 이라고 결론지을 수 있다.
 - $n \ge 1$ 인 모든 정수 n에 대해서 $n^2 + 10n \le n^2 + 10n^2 = 11n^2$ 이 성립한다. 그러므로 c = 11와 N = 1을 선택하면, '큰 O'의 정의에 의해서 $n^2 + 10n \in O(n^2)$ 이라고 결론지을 수 있다.

•
$$2n^2$$
과 n^2 의비교
+ $10n$

- $5n^2 \in O(n^2)$?
 - c=5와 N=0을 선택하면, $n\geq 0$ 인 모든 정수 n에 대해서 $5n^2\leq 5n^2$ 이 성립한다
- T(n) = n(n-1)/2?
 - $n \ge 0$ 인 모든 정수 n에 대해서 $n(n-1)/2 \le n^2/2$ 이 성립한다. 그러므로 c = 1/2과 N = 0을 선택하면, $T(n) \in O(n^2)$ 이라고 결론지을 수 있다.
- $n^2 \in O(n^2 + 10n)$?
 - $n \ge 0$ 인 모든 정수 n에 대해서, $n^2 \le 1 \times (n^2 + 10n)$ 이 성립한다. 그러므로, c = 1와 N = 0을 선택하면, $n^2 \in O(n^2 + 10n)$ 이라고 결론지을 수 있다.

- $n \in O(n^2)$?
 - $n \ge 1$ 인 모든 정수 n에 대해서, $n \le 1 \times n^2$ 이 성립한다. 그러므로, c = 1와 N = 1을 선택하면, $n \in O(n^2)$ 이라고 결론지을 수 있다.
- $n^3 \in O(n^2)$?
 - $n \ge N$ 인 모든 n에 대해서 $n^3 \le c \cdot n^2$ 이 성립하는 c와 N값은 존재하지 않는다. 즉, 양변을 n^2 으로 나누면, $n \le c$ 가 되는데, c를 아무리 크게 잡더라도 그 보다 더 큰 n이 존재한다. (성립하지 않음)

• $O(n^2)$: cn^2 보다 작은 값을 가지는 모든 함수.

Ω 표기법

- 정의: 점근적 하한 (Asymptotic Lower Bound)
 - 분석된 복잡도함수 g(n)이 어떤 함수 f(n)에 대해서 $g(n) \in \Omega(f(n))$
 - $n \ge N$ 인 모든 정수 n에 대해서 $g(n) \ge c \cdot f(n)$ 이 성립하는 실수 c > 0와 음이 아닌 정수 N이 존재한다.
- $g(n) \in \Omega(f(n))$ 읽는 방법:
 - g(n)의 점근적 하한은 f(n)이다.
 - Asymptotic lower bound of g(n) is f(n).
- 의미:
- 입력 크기 n에 대해서 이 알고리즘의 수행시간은 궁극적으로 f(n)보다 효율적이지는 못하다.

Ω 표기법

Ω 표기법 : 예

- 어떤 함수 g(n)이 $\Omega(n^2)$ 에 속한다는 말은
 - 그 함수는 궁극에 가서는 (즉 어떤 N 값 이후부터는) 어떤 2차 함수 $c \cdot n^2$ 의 값보다는 큰 값을 가지게 된다는 것을 뜻한다(그래프 상에서는 위에 위치).
- $n^2 + 10n \in \Omega(n^2)$?
 - $n \ge 0$ 인 모든 정수 n에 대해서 $n^2 + 10n \ge n^2$ 이 성립한다. 그러므로 c = 1와 N = 0을 선택하면, $n^2 + 10n \in \Omega(n^2)$ 이라고 결론지을 수 있다.
- $5n^2 \in \Omega(n^2)$?
 - $n \geq 0$ 인 모든 정수 n에 대해서, $5n^2 \geq 1 \cdot n^2$ 이 성립한다. 그러므로, c=1와 N=0을 선택하면, $5n^2 \in \Omega(n^2)$ 이라고 결론지을 수 있다.

Ω 표기법 : 예 (계속)

- T(n) = n(n-1)/2?
 - $n \ge 2$ 인 모든 n에 대해서 $n-1 \ge n/2$ 이 성립한다. 그러므로, $n \ge 2$ 인 모든 n에 대해서 $n(n-1)/2 \ge n/2 \cdot n/2 = 1/4n^2$ 이 성립한다. 따라서 c=1/4과 N=2를 선택하면, $T(n) \in \Omega(n^2)$ 이라고 결론지을 수 있다.
- $n^3 \in \Omega(n^2)$?
 - $n \ge 1$ 인 모든 정수 n에 대해서, $n^3 \ge 1 \cdot n^2$ 이 성립한다. 그러므로, c = 1과 N = 1을 선택하면, $n^3 \in \Omega(n^2)$ 이라고 결론지을 수 있다.

Ω 표기법 : 예 (계속)

- $n \in \Omega(n^2)$?
 - 모순유도에 의한 증명(Proof by contradiction)
 - $n \in \Omega(n^2)$ 이라고 가정. 그러면 $n \ge N$ 인 모든 정수 n에 대해서, $n \ge c \cdot n^2$ 이 성립하는 실수 c > 0, 그리고 음이 아닌 정수 N이 존재한다. 위의 부등식의 양변을 $c \cdot n$ 으로 나누면 $1/c \ge n$ 이 된다. 그러나 이 부등식은 절대로 성립할 수 없다. 따라서위의 가정은 모순이다.

Ω 표기법: 예 (Cont)

• $\Omega(n^2)$

Θ 표기법

- 정의: Asymptotic Tight Bound
 - 분석된 복잡도함수 g(n)이 어떤 함수 f(n)에 대해서 $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$.
 - $n \ge N$ 인 모든 정수 n에 대해서 $c \cdot f(n) \ge g(n) \le d \cdot f(n)$ 이 성립하는 실수 c > 0와 d > 0, 그리고 음이 아닌 정수 N이 존재한다.
- $g(n) \in \Theta(f(n))$ 읽는 방법:
 - g(n)의 차수(order=asymptotic tight bound)는 f(n)이다.
 - Asymptotic tight bound of g(n) is f(n).
- 예:T(n) = n(n-1)/2은 $O(n^2)$ 이면서 $\Omega(n^2)$ 이다. 따라서 $T(n) = \Theta(n^2)$.

$oldsymbol{\Theta}$ 표기법

작은(Small) o 표기법

- 정의:작은 o
 - 분석된 복잡도 함수 g(n)이 어떤 함수 f(n)에 대해서 $g(n) \in o(f(n))$
 - 어떤 N값 이후부터는 모든 실수 c>0에 대해서 $g(n)\leq c\cdot f(n)$
- 참고: $g(n) \in o(f(n))$ 은 "g(n)은 f(n)의 작은 오(o)"라고 한다.

큰 O vs 작은 o

- 큰 O와의 차이점
 - 큰 *O*: 실수 *c* > 0 중에서 하나만 성립하여도 됨
 - lacktriangle 작은 o: 모든 실수 c>0에 대해서 성립하여야 함
- $g(n) \in o(f(n))$ 은 쉽게 설명하자면
 - g(n)이 궁극적으로 f(n)보다 '훨씬' 낫다(좋다)는 의미이다.

작은 o 표기법 : 예

- $n \in o(n^2)$?
- 증명:

c>0이라고 하자. $n\geq N$ 인 모든 n에 대해서 $n\leq c\cdot n^2$ 이 성립하는 N을 찾아야 한다. 이 부등식의 양변을 $cc\dot{n}$ 으로 나누면 $1/c\leq n$ 을 얻는다. 따라서 $N\geq 1/c$ 가 되는 어떤 N을 찾으면된다. 여기서 N의 값은 c에 의해 좌우된다.

예를 들어 만약 c=0.0001이라고 하면, N의 값은 최소한 10,000이 되어야 한다. 즉, $n\geq 10,000$ 인 모든 n에 대해서 $n\leq 0.0001\cdot n^2$ 이 성립한다.

작은 o 표기법 : 예 (계속)

- $n^{0}|o(5n)$?
- 모순 유도에 의한 증명: c = 1/6이라고 하자.

 $n \in o(5n)$ 이라고 가정하면, $n \ge N$ 인 모든 정수 n에 대해서, $n \le 1/6 \cdot 5 \cdot n \le 5/6 \cdot n$ 이 성립하는 음이 아닌 정수 N이 존재해야 한다.

그러나 그런 N은 절대로 있을 수 없다. 따라서 위의 가정은 모순이다.

극한(limit)을 이용하여 차수를 구하는 방법

• 정의:

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=\begin{cases} c & \text{for some }c>0 \text{ if }g(n)\in\Theta(f(n))\,,\\ 0 & \text{if }g(n)\in o(f(n))=O(f(n))\backslash\Theta(f(n))\,,\\ \infty & \text{if }g(n)\in\Omega(f(n))\backslash\Theta(f(n))\,. \end{cases}$$

• 예:다음이 성립함을 보이시오.

•
$$\frac{n^2}{2} \in o(n^3)$$
 ○ 이유: $\lim_{n \to \infty} \frac{n^2/2}{n^3} = \lim_{n \to \infty} \frac{1}{2n} = 0$
• $b > a > 0$ 일 때, $a^n \in o(b^n)$
 ○ 이유: $0 < \frac{a}{b} < 1$. 따라서 $\lim_{n \to \infty} \frac{a^n}{b^n} = \lim_{n \to \infty} \left(\frac{a}{b}\right)^n = 0$.

로피탈(L'Hopital)의 법칙

• 정리: 로피탈(L'Hopital)의 법칙:

$$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} g(n) = \infty$$
 이면 $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$ 이다.

- 예 : 다음이 성립함을 보이시오.
 - $\lg n \in o(n)$, 이유는

$$\lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln 2}}{1} \right) = 0$$

$$\log_a n \in \Theta(\log_b n), 0 \mid \Re \succeq 1$$

$$\lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln a}}{\frac{1}{n \ln b}} \right) = \frac{\log b}{\log a} > 0$$

차수의 주요 성질 |

```
1. g iff f . 

(n (n ) ) \in O \in \Omega (f (g (n (n )) ))
```

- $g(n) \in \Theta(f(n))$ iff $f(n) \in \Theta(g(n))$.
- b>1이고 a>1이면, $\log_a n\in\Theta(\log_b n)$ 은 항상 성립. 다시 말하면 로그(logarithm) 복잡도 함수는 모두 같은 카테고리에 속한다. 따라서 통상 $\Theta(\lg n)$ 으로 표시한다.
- b > a > 0이면, $a^n \in o(b^n)$. 다시 말하면, 지수(exponential) 복잡도 함수가 모두 같은 카테고리 안에 있는 것은 아니다.

차수의 주요 성질 🏽

- 1. a>0인 모든 a에 대해서, $a^n\in o(n!)$. 다시 말하면, n!은 어떤 지수 복잡도 함수보다도 나쁘다.
- 2. 복잡도 함수를 다음 순으로 나열해 보자.

$$\Theta(\lg n), \Theta(n), \Theta(n \lg n), \Theta(n^2), \Theta(n^j), \Theta(n^k), \Theta(a^n), \Theta(b^n), \Theta(n!)$$

여기서 k > j > 2이고 b > a > 1이다.

복잡도 함수 g(n)이 f(n)을 포함한 카테고리의 왼쪽에 위치하면, $g(n) \in o(f(n))$.

 $3. c \ge 0, d > 0, g(n) \in O(f(n))$, 그리고 $h(n) \in \Theta(f(n))$ 이면,

$$c \cdot g(n) + d \cdot h(n) \in \Theta(f(n))$$

• ex) $5n + 3 \lg n + 10n \lg n + 7n^2 \in \Theta(n^2)$.