

Performance Evaluation

강필성 고려대학교 산업경영공학부 Bflysoft & WIGO AI LAB

AGENDA

- 01 모델 평가의 필요성
- 02 회귀 모형의 성능 평가
- 03 분류 모형의 성능 평가

모델 평가의 필요성

• 과적합^{Overfitting}: 학습 데이터에 존재하는 불필요한 정보까지 학습하여 일반화 성능 이 저하되는 현상

> 학습 데이터 (Training data)

검증 데이터 (Validation data)

테스트 데이터 (Test data)

붉은색 경계면이 파란색 경계면에 비해 우수한가?

모델 평가의 필요성

• 과적합^{Overfitting}: 학습 데이터에 존재하는 불필요한 정보까지 학습하여 일반화 성능 이 저하되는 현상

학습 데이터를 완벽히 외우는 것은 일반화 성능을 저하시키는 위험(과적합)이 존재! 학습 데이터 (Training data) 검증 데이터 (Validation data) 테스트 데이터 (Test data)

모델 평가의 필요성

- 분류 문제나 회귀 문제를 풀 수 있는 다양한 알고리즘 존재
 - ✓ Classification:
 - Naïve bayes, linear discriminant, k-nearest neighbor, classification trees, etc.
 - ✓ Prediction:
 - Multiple linear regression, neural networks, regression trees, etc.
- 어떤 알고리즘은 최적의 파라미터 설정이 필요함
 - ✓ k-인접이웃기법: 이웃 개체의 수(k), 인공 신경망: 은닉 노드의 수 등
- 주어진 문제를 해결하기 위한 최적의 방법론을 선택하기 위해 개별 모델을 동등한
 조건에서 평가할 필요가 있음
 - ✔ 검증 데이터: 다양한 파라미터 조합 중 최적의 파라미터를 찾는 데 주로 사용
 - ✔ 테스트 데이터: 여러 기계학습 알고리즘 중 최적의 알고리즘을 찾는데 주로 사용

AGENDA

- 01 모델 평가의 필요성
- 02 회귀 모형의 성능 평가
- 03 분류 모형의 성능 평가

• 예시: 설비 파라미터 X에 대한 제품의 수율(y) 예측

예측 모형이 얼마나 정확한가?

- 성능지표 I: 평균오차 (Average Error)
 - ✓ 실제 값에 비해 과대/과소 추정 여부를 판단
 - ✓ 부호로 인해 잘못된 결론을 내릴 위험이 있음

Average Error =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')$$

Υ	Υ'	Y-Y'
95	90	5
90	93	-3
92	95	-3
88	85	3
75	80	-5
97	94	3
91	88	3
84	87	-3
83	86	-3
79	79 75	
Average Error		0.1

- 성능지표 2: 평균 절대 오차(Mean absolute error; MAE)
 - ✓ 실제 값과 예측 값 사이의 절대적인 오차의 평균을 이용

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - y_i'|$$

Υ	Y'	Y-Y'
95	90	5
90	93	3
92	95	3
88	85	3
75	80	5
97	94	3
91	88	3
84	87	3
83	86	3
79	75	4
MAE		3.5

- 성능지표 3: Mean absolute percentage error (MAPE)
 - ✓ MAE의 단점: 실제 값과 절대적인 차이에 대한 정보만 제공하고, 상대적인 차이에 대한 정보를 제공하지 못함
 - ✔ 아래 두 예시의 MAE는 모두 I임

Υ	Y'	Y-Y'
I	0	1
I	2	1
I	0	1
I	2	1
I	0	1
I	2	1
I	0	1
I	2	1
I	0	1
I	2	1
MAE		I

Y	Y'	Y-Y'
100	99	1
100	101	1
100	99	1
100	101	1
100	99	1
100	101	1
100	99	1
100	101	1
100	99	1
100	101	1
MAE		I

- 성능지표 3: Mean absolute percentage error (MAPE)
 - ✔ 실제값 대비 얼마나 예측 값이 차이가 있는지를 %로 표현
 - ✓ 상대적인 오차를 추정하는데 주로 사용

MAPE =
$$\frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - y_i'}{y_i} \right|$$

Y	Y'	Y-Y'	Y-Y' / Y
95	90	5	5.26%
90	93	3	3.33%
92	95	3	3.26%
88	85	3	3.41%
75	80	5	6.67%
97	94	3	3.09%
91	88	3	3.30%
84	87	3	3.57%
83	86	3	3.61%
79	75	4	5.06%
M	AE	3.5	4.06%

- 성능지표 4 & 5: (Root) Mean squared error ((R)MSE)
 - ✔ 부호의 영향을 제거하기 위해 절대값이 아닌 제곱을 취한 지표

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')^2$$
, RMSE = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')^2}$

Y	Y'	(Y-Y') ²
95	90	25
90	93	9
92	95	9
88	85	9
75	80	25
97	94	9
91	88	9
84	87	9
83	86	9
79	75	16
MSE		12.9

$$RMSE = \sqrt{12.9} = 3.59$$

AGENDA

- 01 모델 평가의 필요성
- 02 회귀 모형의 성능 평가
- 03 분류 모형의 성능 평가

- 예시: 성별 분류
 - ✔ 한 사람의 체지방률만을 이용하여 남성/여성 분류

✔ 단순 분류기: 체지방률이 20보다 크면 여성으로, 작으면 남성으로 분류

✔ 위 분류기의 성능을 어떻게 평가할 것인가?

- 정오 행렬^{Confusion Matrix}
 - ✓ 실제 범주와 예측된 범주를 이용하여 생성한 2X2 행렬

✔ 위 결과에 대한 정오 행렬은 다음과 같이 생성됨

Confusion Matrix		Predicted	
		F	M
Actual -	F	4	I
	M	2	3

• 정오 행렬^{Confusion Matrix}

✓ 정오행렬을 통해 다음과 같이 다양한 분류 성능 평가 지표를 계산할 수 있음

Confusion Matrix		Predicted	
		I (+)	0(-)
Actual	l(+)	n _{II}	n ₁₀
	0(-)	n ₀₁	n ₀₀

- 민감도(Sensitivity), true positive, 재현율(recall) = n₁₁/(n₁₁+n₁₀)
- 특이도(Specificity, true negative) = $n_{00}/(n_{01}+n_{00})$
- 정밀도(Precision) = n₁₁/(n₁₁+n₀₁)
- 제1종 오류(Type I error, false negative) = n₁₀/(n₁₁+n₁₀)
- 제2종 오류(Type II error, false positive) = n₀₁/(n₀₁+n₀₀)

• 정오 행렬^{Confusion Matrix}

✔ 정오행렬을 통해 다음과 같이 다양한 분류 성능 평가 지표를 계산할 수 있음

Confusion Matrix		Predicted	
		l(+)	0(-)
A 24.1.2 l	I(+)	n _{II}	n _{I0}
Actual	0(-)	n ₀₁	n ₀₀

- 오분류율(Misclassification error) = (n₀₁+n₁₀)/(n₁₁+n₁₀+n₀₁+n₀₀)
- 정분류율(Accuracy = I-misclassification error) = (n₁₁+n₀₀)/(n₁₁+n₁₀+n₀₁+n₁₁)

■ 균형 정확도 (Balanced correction rate) =
$$\sqrt{\frac{n_{11}}{n_{11} + n_{10}} \cdot \frac{n_{00}}{n_{01} + n_{00}}}$$

■ FI measure (정밀도와 재현율의 조화평균) =
$$F1$$
 measure = $\frac{2 \times \text{Recall} \times \text{Precision}}{\text{Recall} + \text{Precision}}$

• 정오 행렬^{Confusion Matrix}

✔ 이전 예시에서 여성(F)을 I(+) 범주로 정의할 경우

Confusion Matrix		Predicted	
		F	M
Actual	F	4	I
	М	2	3

- Sensitivity: 4/5 = 0.8, Specificity: 3/5 = 0.6
- Recall: 4/5 = 0.8, Precision: 4/6 = 0.67
- Type I error: I/5 = 0.2, Type II error: 2/5 = 0.4
- Misclassification error: (1+2)/(4+1+2+3) = 0.3, accuracy = 0.7
- Balanced correction rate: sqrt(0.8*0.6) = 0.69
- FI measure: (2*0.8*0.67)/(0.8+0.67) = 0.85

- 분류 알고리즘의 Cut-off 설정
 - ✓ 새로운 분류기: 체지방률이 θ보다 크면 여성으로 분류

✔ 레코드들을 체지방률의 내림차순으로 정렬

✔ 분류를 위한 최적의 cut-off를 어떻게 설정할 것인가?

• 분류 알고리즘의 Cut-off 설정

✔ 다양한 Cut-off에 따른 분류 성능 비교

체지방률	성별
28.6	F
25.4	M
24.2	F
23.6	F
22.7	F
21.5	M
19.9	F
15.7	M
10.0	M
8.9	M
	28.6 25.4 24.2 23.6 22.7 21.5 19.9 15.7 10.0

• If $\theta = 24$,

Confusion Matrix		Predicted	
		F	М
Actual	F	2	3
	М	I	4

- Misclassification error: 0.4
- Accuracy: 0.6
- Balanced correction rate: 0.57
- FI measure = 0.5

• 분류 알고리즘의 Cut-off 설정

✔ 다양한 Cut-off에 따른 분류 성능 비교

No.	체지방률	성별
1	28.6	F
2	25.4	M
3	24.2	F
4	23.6	F
5	22.7	F
6	21.5	M
7	19.9	F
8	15.7	M
9	10.0	M
10	8.9	M

• If $\theta = 22$,

Confusio	on Magniye	Predicted		
Confusion Matrix		F	М	
Actual	F	4	I	
Actual	М	I	4	

- Misclassification error: 0.2
- Accuracy: 0.8
- Balanced correction rate: 0.8
- FI measure = 0.8

• 분류 알고리즘의 Cut-off 설정

✔ 다양한 Cut-off에 따른 분류 성능 비교

	No.	체지방률	성별
	ı	28.6	F
	2	25.4	M
	3	24.2	F
	4	23.6	F
	5	22.7	F
	6	21.5	M
	7	19.9	F
•	8	15.7	М
	9	10.0	M
	10	8.9	М

• If $\theta = 18$,

Confusion Matrix		Predicted		
		F	М	
Al	F	5	0	
Actual	М	2	3	

• Misclassification error: 0.2

• Accuracy: 0.8

• Balanced correction rate: 0.77

• FI measure = 0.83

- 분류 알고리즘의 Cut-off 설정
 - ✓ 일반적으로 분류 알고리즘은 특정 범주에 속할 확률(probability)이나 우도(likelihood) 값을 생성함
 - ✓ 동일한 확률값 하에서도 Cut-off가 어떻게 설정되느냐에 따라서 분류 성능이크게 좌우되는 상황이 발생할 수 있음
 - ✔ 분류 알고리즘간의 정확한 비교를 위해서는 Cut-off에 독립적인 측정 지표가 필요함
 - ✓ 리프트 도표(Lift charts), receiver operating characteristic (ROC) curve 등이 사용

- ROC Curve 예시
 - ✔ Glass 불량 진단 문제:
 - Glass의 불량(NG) 여부를 판별
 - 총 100장의 Glass 중 20장의 Glass가 불량
 - 불량 확률: 0.2
 - Label: I(NG), 0(G)

• 특정 분류 알고리즘에 의해 산출된 NG 범주에 속할 확률과 실제 Label 정보

Glass	P(NG)	Label	Glass	P(NG)	Label	Glass	P(NG)	Label	Glass	P(NG)	Label
I	0.976	I	26	0.716	I	51	0.41	0	76	0.186	0
2	0.973	I	27	0.676	0	52	0.406		77	0.183	0
3	0.971	0	28	0.672	0	53	0.378	0	78	0.178	0
4	0.967	I	29	0.662	0	54	0.376	0	79	0.176	0
5	0.937	0	30	0.647	0	55	0.362	0	80	0.173	0
6	0.936	I	31	0.64	I	56	0.355	0	81	0.17	0
7	0.929	I	32	0.625	0	57	0.343	0	82	0.133	0
8	0.927	0	33	0.624	0	58	0.338	0	83	0.12	0
9	0.923	I	34	0.613	I	59	0.335	0	84	0.119	0
10	0.898	0	35	0.606	0	60	0.334	0	85	0.112	0
11	0.863	I	36	0.604	0	61	0.328	0	86	0.093	0
12	0.862	I	37	0.601	0	62	0.313	0	87	0.086	0
13	0.859	0	38	0.594	0	63	0.285	I	88	0.079	0
14	0.855	0	39	0.578	0	64	0.274	0	89	s0.071	0
15	0.847	I	40	0.548	0	65	0.273	0	90	0.069	0
16	0.845	I	41	0.539	I	66	0.272	0	91	0.047	0
17	0.837	0	42	0.525	I	67	0.267	0	92	0.029	0
18	0.833	0	43	0.524	0	68	0.265	0	93	0.028	0
19	0.814	0	44	0.514	0	69	0.237	0	94	0.027	0
20	0.813	0	45	0.51	0	70	0.217	0	95	0.022	0
21	0.793	I	46	0.509	0	71	0.213	0	96	0.019	0
22	0.787	0	47	0.455	0	72	0.204		97	0.015	0
23	0.757	I	48	0.449	0	73	0.201	0	98	0.01	0
24	0.741	0	49	0.434	0	74	0.2	0	99	0.005	0
25	0.737	0	50	0.414	0	75	0.193	0	100	0.002	0

• 정오행렬

- ✓ Cut-off를 0.9로 설정할 경우
 - NG if P(NG) > 0.9, else G

Confusion Matrix		Pred	icted
		М	В
A 24.12	М	6	14
Actual	В	3	77

- Misclassification error = 0.17
- Accuracy = 0.83
- ✓ 이 모델은 우수한 분류 모델인가?

- 정오행렬
 - ✓ Cut-off를 0.9로 설정할 경우
 - NG if P(NG) > 0.8, else G

Confusion Matrix		Predicted	
		М	В
A atual	М	10	10
Actual	В	10	70

- Misclassification error = 0.20
- Accuracy = 0.80
- ✓ 이 모델은 이전 모델보다 열등한 모델인가?

- ROC 생성 절차
 - ✓ 모든 개체를 P(interesting class)를 기준으로 내림차순 정렬
 - ✓ 가능한 모든 Cut-off 경우에 대해 True Positive Rate와 False Positive Rate를 계산
 - P(NG)에 동률이 없을 경우 이론적으로 IOI개의 cut-off 설정이 가능
 - ✓ X축이 False Positive Rate, Y축이 True Positive Rate가 되는 2차원 그래프 도시

• ROC 생성 절차

✓ 첫 번째 Cut-off 설정

Glass	P(NG)	Label	
I	0.976	I	
2	0.973	I	
3	0.971	0	
4	0.967	I	
5	0.937	0	

•

Confusio	on Matrix	예	측
Confusion Matrix		NG	G
실제	NG	0	20
결제	G	0	80

$$TPR = \frac{0}{20} = 0$$

$$FPR = \frac{0}{80} = 0$$

• ROC 생성 절차

✓ 두 번째 Cut-off 설정

Glass	P(NG)	Label	TPR	FPR
			0	0
I	0.976	I		
2	0.973	I		
3	0.971	0		
4	0.967			
5	0.937	0		

Confusio	n Matrix	여	측
Confusion Matrix		NG	G
실제	NG	I	19
결세	G	0	80

$$TPR = \frac{1}{20} = 0.05$$

$$FPR = \frac{0}{80} = 0$$

• ROC 생성 절차

✓ 세 번째 Cut-off 설정

Glass	P(NG)	Label	TPR	FPR
			0	0
l	0.976		0.05	0
2	0.973	I		
3	0.971	0		
4	0.967			
5	0.937	0		

5	0.937	0		
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Confusio	on Matrix	예측		
Confusion Matrix		NG	G	
실제	NG	2	18	
결계	G	0	80	

$$TPR = \frac{2}{20} = 0.10$$

$$FPR = \frac{0}{80} = 0$$

• ROC 생성 절차

✓ 네 번째 Cut-off 설정

Glass	P(NG)	Label	TPR	FPR
			0.00	0.00
ļ	0.976		0.05	0.00
2	0.973		0.10	0.00
3	0.971	0		
4	0.967	I		
5	0.937	0		

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Confusio	n Matrix	예측		
Confusion Matrix		S S	G	
실제	NG	2	18	
크세	G	I	79	

$$TPR = \frac{2}{20} = 0.10$$

$$FPR = \frac{1}{80} = 0.0125$$

• ROC 생성 절차

- ✓ 모든 가능한 Cut-off 값에 대한 TPR/FPR 계산 완료
- ✓ FPR을 x축으로 하고,TPR을 y축으로 하는 그래프 생성

	P(ING)	Labei	IFK	FFK
			0.000	0.000
I	0.976		0.050	0.000
2	0.973	ı	0.100	0.000
3	0.971	0	0.100	0.013
4	0.967		0.150	0.013
5	0.937	0	0.150	0.025
6	0.936		0.200	0.025
7	0.929	l	0.250	0.025
8	0.927	0	0.250	0.038
•	•	•	•	•
•	•	•	•	•
96	0.019	0	1.000	0.950
96 97	0.019	• • 0 0	1.000	0.950 0.963
97	0.015	0	1.000	0.963

FPR

• ROC Curve 범위

- Area Under ROC Curve (AUROC)
 - ✔ ROC curve 아래의 면적
 - ✓ 이상적인 분류기는 I의 값을 갖고, 무작위 분류기는 0.5의 값을 가짐
 - ✓ Cut-off에 독립적인 알고리즘 성능 평가 지표로 사용될 수 있음

