

組合せ論的ホッジ理論セミナー 第一回

1 有限集合のバーグマン扇

この節ではnを非負整数としEをn+1元からなる有限集合とする。

記法 1.1 ([AHK18, Sec. 2.1 と Sec. 2.2])

- 1. \mathbb{Z}^E で E を基底とする自由アーベル群を表す。
- 2. \mathbf{e}_i で元 $i \in E$ に対応する \mathbb{Z}^E の基底ベクトルを表す。また勝手な E の部分集合 I に対し \mathbf{e}_I を $\sum_{i \in I} \mathbf{e}_i$ と置く。
- 3. \mathbf{N}_E を商格子 $\mathbb{Z}^E/\langle \mathbf{e}_E \rangle$ と置く。ここで $\langle \mathbf{e}_E \rangle$ は \mathbf{e}_E が生成する \mathbb{Z}^E の部分群を表す。
- 4. $\mathbf{N}_E \otimes_{\mathbb{Z}} \mathbb{R}$ を $\mathbf{N}_{E,\mathbb{R}}$ と置く。
- 5. 半順序集合 $(2^E \setminus \{\emptyset, E\}, \subset)$ を $\mathcal{P}(E)$ と置くことにする。
- 6. $\mathcal{P}(E)$ の全順序部分集合を**非空狭義部分集合の旗**, あるいは簡潔に $\mathcal{P}(E)$ の**旗**と呼ぶ。記号 \mathcal{F} , \mathcal{F} , \mathcal{H} などを非空狭義部分集合の旗を表すものとして用いる。

定義 1.2 ([AHK18, Sec. 2.2 と Def. 2.1 と Def. 2.2]) テを非空狭義部分集合の旗とする。

(i) Eを全体集合とする交叉 $\bigcap \mathcal{F}$ を $\min \mathcal{F}$ と置く。つまり

$$\min \mathcal{F} = \begin{cases} F_1 & (\mathcal{F} \neq \emptyset \ \mathcal{T} \mathcal{F} = \{F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_r\} \ \& \\ E & (\mathcal{F} = \emptyset \ \mathcal{O} \ \& \ \& \ \& \end{cases}$$

で定める。

- (ii) E の狭義部分集合 I が \mathcal{F} と**適合する**とは $I \subsetneq \min \mathcal{F}$ が成立するときをいい, $I < \mathcal{F}$ と表してこれを**適合対**と呼ぶ。
- (iii) 適合対 $I < \mathcal{F}$ に対し、 $\mathbf{N}_{E,\mathbb{R}}$ 内のユニモジュラ錐 $\sigma_{I < \mathcal{F}}$ を

$$cone(\{\mathbf{e}_i \mid i \in I\} \cup \{\mathbf{e}_F \mid F \in \mathcal{F}\})$$

として定める。

注意 1.3 $\mathcal{F} = \emptyset$ の場合,定義より E の任意の狭義部分集合が \mathcal{F} と適合する。同様に \emptyset は,すべての非空狭義部分集合の旗と適合する。よって

$$\sigma_{I<\mathcal{F}} = \sigma_{I<\mathcal{O}} + \sigma_{\mathcal{O}<\mathcal{F}}$$

のように和に分けることができる。また対応 $I < \mathcal{F} \mapsto \sigma_{I < \mathcal{F}}$ は一対一ではない。実際 E が 二元以上からなるとき,元 i に対して $\sigma_{\{i\} < \emptyset} = \sigma_{\emptyset < \{\{i\}\}}$ が成立するからである。

定義 1.4 ([AHK18, Sec. 2.3]) $\mathcal{P}(E)$ の半順序部分集合 $\mathcal{P}(E)$ が順序フィルターであるとは、 $F \subset G$ を満たす $\mathcal{P}(E)$ の勝手な二元 $F \subset G$ に対し、 $F \in \mathcal{P}$ ならば $G \in \mathcal{P}$ が成立するときをいう。

定義 1.5 ([AHK18, Def. 2.3]) の を順序フィルターとする。

- 1. 適合対 $I < \mathcal{F}$ が \mathcal{P} **のバーグマン扇条件**を満たすとは, $I \notin \mathcal{P}$ かつ $\mathcal{F} \subset \mathcal{P}$ が成立するときをいう。
- 2. ゆのバーグマン扇とは錐の族

 $\{\sigma_{I<\mathscr{F}} \mid I<\mathscr{F}$ は \mathscr{P} のバーグマン扇条件を満たす適合対である $\}$

といい、Σφで表す。

例 1.6 $\mathcal{P} = \emptyset$ のとき

$$\Sigma_{\emptyset} = \{ \sigma_{I < \emptyset} \mid I \ \text{li} \ E \ \text{の狭義部分集合である} \}$$

$$= \{ \text{cone} \left(\{ \mathbf{e}_i \mid i \in I \} \right) \mid I \ \text{li} \ E \ \text{の狭義部分集合である} \}$$

であるので、 Σ_{α} は射影空間の扇であることがわかる。

例 1.7 $\mathcal{P} = \mathcal{P}(E)$ のとき

$$\Sigma_{\mathscr{P}(E)} = \{ \sigma_{\emptyset < \mathscr{F}} \mid \mathscr{F} \text{ は非空狭義部分集合の旗である} \}$$

$$= \{ \text{cone}(\{ \mathbf{e}_F \mid F \in \mathscr{F} \}) \mid \mathscr{F} \text{ は } \mathscr{P}(E) \text{ の旗である} \}$$

であるので、これは置換多面体の法扇である。

例 1.8 $E = \{0,1,2\}$ とし $\mathcal{P} = \{\{1,2\}\}$ とする。このとき $\Sigma_{\mathcal{P}}$ の錐は図 1 のように表すことができる。

図1 Σೄの錐とその包含関係

これは,ちょうど Σ_{\emptyset} の錐 $\sigma_{\{1,2\}<\emptyset}$ を,射線 $\sigma_{\emptyset<\{\{1,2\}\}}$ に沿って $\sigma_{\{1\}<\{\{1,2\}\}}$ と $\sigma_{\{2\}<\{\{1,2\}\}}$ に分割した扇である。

次の命題が本節の主命題である。

命題 1.9 ([AHK18, Prop. 2.4]) 順序フィルター \mathcal{P} に対し, $\Sigma_{\mathcal{P}}$ は扇である。 以降で命題 1.9 を示す。 **補題 1.10** 適合対 $I < \mathcal{F}$ と E の狭義部分集合 Z に対し, $\mathbf{e}_Z \in \sigma_{I < \mathcal{F}}$ が成立することは, $Z \subset I$ または $Z \in \mathcal{F}$ が成立することと同値である。

証明 $Z \subset I$ または $Z \in \mathcal{F}$ が成立するとき, $\mathbf{e}_Z \in \sigma_{I < \mathcal{F}}$ が成立することは明らかである。 $\mathbf{e}_Z \in \sigma_{I < \mathcal{F}}$ が成立するとする。 \mathbb{R}^E の元として

(1.1)
$$\left(\sum_{i \in I} \lambda_i \mathbf{e}_i + \sum_{F \in \mathcal{F}} \lambda_F \mathbf{e}_F\right) - \mathbf{e}_Z \in \langle \mathbf{e}_E \rangle$$

が成立するような正数 λ_i と λ_F が存在する。(1.1) の第一項目のベクトルは Z 上の座標で最大値を取るが,このようなことが起こるのは Z \subset Z のときか Z \in \mathcal{F} のときのいずれかである。

補題 1.11 \mathcal{P} を順序フィルターとする。このとき \mathcal{P} のバーグマン扇条件を満たす二つの適合対 $I < \mathcal{F}$ と $J < \mathcal{F}$ に対し, $\sigma_{I < \mathcal{F}} \subset \sigma_{J < \mathcal{F}}$ となるのは, $I \subset J$ かつ $\mathcal{F} \subset \mathcal{F}$ となるとき,かつそのときに限る。

証明 $I \subset J$ かつ $\mathcal{F} \subset \mathcal{F}$ のときに $\sigma_{I < \mathcal{F}} \subset \sigma_{J < \mathcal{F}}$ となることは定義から直ちに従う。逆に $\sigma_{I < \mathcal{F}} \subset \sigma_{J < \mathcal{F}}$ が成立するときを考える。するとi の勝手な元i に対し, $\mathbf{e}_I \in \sigma_{J < \mathcal{F}}$ が成立するので,補題 1.10 より $i \in J$ または $\{i\} \in \mathcal{F}$ が成立する。 $\{i\} \in \mathcal{F}$ だったとすると, \mathcal{F} が順序フィルターであるので, $I \in \mathcal{F}$ となり矛盾が生じる。ゆえに $i \in J$ が成立し, $I \subset J$ であることが従う。また \mathcal{F} の勝手な元 \mathcal{F} に対し, $\mathbf{e}_F \in \sigma_{J < \mathcal{F}}$ が成立すので,補題 1.10 より $\mathcal{F} \subset J$ または $\mathcal{F} \in \mathcal{F}$ が成立する。 $\mathcal{F} \subset J$ だったとすると, \mathcal{F} が順序フィルターであるので, $J \in \mathcal{F}$ となり矛盾する。ゆえに $\mathcal{F} \in \mathcal{F}$ が成立し, $\mathcal{F} \subset \mathcal{F}$ が従う。

定義 1.12 ([CLS11]) Σ を格子 N における扇 $^{1)}$ とし、v を $|\Sigma| \cap N$ に属す格子点とする。 Σ のv に沿う**星状細分** $\Sigma^*(v)$ とは

 $\{\sigma \in \Sigma \mid \mathbf{v} \notin \sigma\} \cup \{\text{cone}(\{\mathbf{v}\} \cup \tau) \mid \tau \text{ は } \mathbf{v} \text{ を含む } \Sigma \text{ の錐の面であり, } \mathbf{v} \text{ を含まない} \}$

のことである。星状細分は扇である。

補題 1.13 $\mathcal{P}_+ = \mathcal{P}_-$ を満たす順序フィルター \mathcal{P}_+ と \mathcal{P}_- を考える。このとき $\Sigma_{\mathcal{P}_+} = \Sigma_{\mathcal{P}_-}^*(\mathbf{e}_Z)$ が成立する。

証明 \mathcal{P}_{-} のバーグマン扇条件を満たす適合対 $I < \mathcal{F}$ に対し、補題 1.10 より $\mathbf{e}_Z \in \sigma_{I < \mathcal{F}}$ であることが $Z \subset I$ であることと同値であるが、Z は $\mathcal{P}(E) \setminus \mathcal{P}_{-}$ の極大元であるから、Z = I であることと同値である。ゆえに $\Sigma_{\mathcal{P}_{-}}$ に属し \mathbf{e}_Z を含まない錐は、Z が適合する \mathcal{P}_{-} の旗 \mathcal{F}_{-} を用いて、 $\sigma_{Z < \mathcal{F}_{-}}$ と表すことができる。 $\sigma_{Z < \mathcal{F}_{-}}$ の面のうち \mathbf{e}_Z を含まないものは、Z の狭

¹⁾ N ⊗ ℝ 内の有理強凸錐の多面集合複体のこと

義部分集合 J と \mathcal{F} の任意の部分旗 \mathcal{F} を用いて $\sigma_{J<\mathcal{F}}$ と表される。 $\Sigma_{\mathcal{P}_{-}}$ の \mathbf{e}_{Z} に沿う星状 細分により $\sigma_{Z<\mathcal{F}}$ は $\mathrm{cone}(\{\mathbf{e}_{Z}\}) + \sigma_{J<\mathcal{F}} = \sigma_{J<\{Z\}\cup\mathcal{F}}$ の形の錐に置き変わる。 $J<\{Z\}\cup\mathcal{F}$ は \mathcal{P}_{+} のバーグマン扇条件を満たすので, $\Sigma_{\mathcal{P}_{-}}^{*}(\mathbf{e}_{Z}) \subset \Sigma_{\mathcal{P}_{+}}^{*}$ であることが従う。逆に \mathcal{P}_{+}^{*} の バーグマン扇条件を満たす適合対 $I<\mathcal{F}$ を考えると, $Z\in\mathcal{F}$ のとき $Z<(\mathcal{F}\setminus\{Z\})$ かつ $(\mathcal{F}\setminus\{Z\})\subset\mathcal{P}_{-}^{*}$ が成立するので, $\sigma_{I<\mathcal{F}}^{*}$ は星状細分の操作で追加される錐である。 $Z\notin\mathcal{F}$ の とき $I\neq Z$ かつ $\mathcal{F}\subset\mathcal{P}_{-}^{*}$ であるから, $\sigma_{I<\mathcal{F}}^{*}$ は星状細分の操作で変化しない錐である。ゆえ に $\Sigma_{\mathcal{P}_{+}}\subset\Sigma_{\mathcal{P}_{+}}^{*}(\mathbf{e}_{Z})$ が成立する。 \blacksquare

命題 1.9 の証明 \mathcal{P}_0 を空順序フィルター \emptyset として,i 番目の順序フィルター \mathcal{P}_1 に \mathcal{P}_1 の 極大元を一つ加えて i+1 番目の順序フィルター \mathcal{P}_{l+1} を定めることで,順序フィルターの 有限列

$$(\varnothing=\mathcal{P}_0\varsubsetneq\mathcal{P}_1\varsubsetneq\cdots\varsubsetneq\mathcal{P}_m=\mathcal{P})$$

を構成する。列 $(\mathfrak{R}_i)_{i=0}^m$ に関する帰納法で示す。i=0 の時に関しては Σ_{\emptyset} が n 次元単体 の法錐であることから従う。i>0 として, \mathfrak{P}_- を \mathfrak{R}_{i-1} , \mathfrak{P}_+ を \mathfrak{R}_i と置いて $\mathfrak{P}_+=\mathfrak{P}_-\cup\{Z\}$ と書くことにすると, $\Sigma_{\mathfrak{P}_+}$ は帰納法の仮定により扇であるから,補題 1.13 により $\Sigma_{\mathfrak{P}_+}=\Sigma_{\mathfrak{P}_-}^*(\mathbf{e}_Z)$ であり, $\Sigma_{\mathfrak{P}_+}$ は特に扇である。よって帰納法により題意は示された。

注意 1.14 一般論として,最大次元多面体の法扇を星状細分がまた最大次元多面体の法扇であることが知られている。よって命題 1.9 の証明は,実は $\Sigma_{\mathcal{P}}$ が n 次元多面体の法扇であることも示している。(i=0 の場合 $\Sigma_{\mathcal{O}}$ が n 次元単体の複体であることを用いる。)

系 1.15 \mathcal{P} を順序フィルターとする。このとき $\Sigma_{\mathcal{P}}$ のバーグマン扇条件を満たす勝手な適合対 $I < \mathcal{F}$ と $J < \mathcal{G}$ に対し, $\sigma_{I < \mathcal{F}} \cap \sigma_{J < \mathcal{G}} = \sigma_{(I \cap J) < (\mathcal{F} \cap \mathcal{G})}$ が成立する。

証明 定義から直ちに、右辺が左辺に含まれることが従うので、左辺が右辺に含まれることを示す。命題 1.9 から $\Sigma_{\mathscr{P}}$ は扇であるから、 $\sigma_{I<\mathscr{P}} \cap \sigma_{J<\mathscr{P}}$ は $\sigma_{I<\mathscr{P}}$ の面である。ゆえに $\sigma_{I<\mathscr{P}} \cap \sigma_{J<\mathscr{P}} = \sigma_{K<\mathscr{H}}$ かつ $K \subset I$ かつ $\mathscr{H} \subset \mathscr{P}$ を満たす $K \subset \mathscr{H}$ が存在する。さらに補題 1.11 から $K \subset J$ かつ $\mathscr{H} \subset \mathscr{P}$ も成立するので、 $K \subset I \cap J$ かつ $\mathscr{H} \subset \mathscr{P} \cap \mathscr{P}$ が成立し、目的の包含 が成立することが従う。

参考文献

[AHK18] Karim Adiprasito, June Huh, and Eric Katz. "Hodge theory for combinatorial geometries". In: **Ann. of Math. (2) 188**.2 (2018), pp. 381–452.

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck. **Toric varieties. 124**. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011, pp. xxiv+841.

組合せ論的ホッジ理論セミナー 第二回

2 マトロイドのバーグマン扇

この節では、n と r を非負整数,E を n+1 元からなる有限集合,M を E 上の階数 r+1 のループなしマトロイドとする。

記法 2.1

- 1. Mの非空狭義フラット全体の族が定める半順序集合を $\mathcal{P}(M)$ で表す。
- 2. $\mathcal{P}(M)$ の全順序部分集合を**非空狭義フラットの旗**, あるいは簡潔に $\mathcal{P}(M)$ の **旗**と呼ぶ。記号 \mathcal{F} , \mathcal{F} , \mathcal{H} などを非空狭義フラットの旗を表すものとして用いる。

定義 2.2 ([AHK18, Def. 3.1]) $\mathscr F$ を非空狭義フラットの旗とし、適合対 $I <_M \mathscr F$ を考える。I が M において $\mathscr F$ と適合するとは、 $\#I < \operatorname{rk}_M(\min \mathscr F)$ が成立するときといい, $I <_M \mathscr F$ と書く。

注意 2.3 M における適合対 $I <_M \mathcal{F}$ に対し,# $\mathcal{F} \leq r+1-\mathrm{rk}_M(\mathcal{F}) < r+1-\#I$ が成立するので, $\sigma_{I <_M \mathcal{F}}$ の次元は r 以下である。

定義 2.4 ([AHK18, Def. 3.2])

- 1. $\mathscr{P}(M)$ の部分半順序集合 \mathscr{P} が**順序フィルター**であるとは, $F \subset G$ を満たす $\mathscr{P}(M)$ の 勝手な二元 $F \in G$ に対し, $F \in \mathscr{P}$ ならば $G \in \mathscr{P}$ が成立するときをいう。
- 2. 𝒯(M) の順序フィルター ℱ に対し、ℱ を ℱ∪{E} と置く。
- 3. $\mathcal{P}(M)$ の順序フィルター \mathcal{P} と適合対 $I < \mathcal{P}$ に対し、 $I < \mathcal{P}$ が \mathcal{P} の**バーグマン扇条件** を満たすとは、 $\operatorname{cl}_M(I) \not\in \hat{\mathcal{P}}$ かつ $\mathcal{P} \subset \mathcal{P}$ が成立するときをいう。
- 4. 順序フィルター ም に対しその **バーグマン扇** を

 $\{\sigma_{I<\mathscr{F}} \mid I<\mathscr{F}$ が \mathscr{P} のバーグマン扇条件を満たす $\}$

として定め、 $\Sigma_{M,\mathcal{D}}$ で表す。

5. 順序フィルター ም に対しその 被約バーグマン扇 を

 $\{\sigma_{I <_M \mathcal{F}} \mid I <_M \mathcal{F} \ i \mathcal{F} \ o \ i \cap f$ マン扇条件を満たす $\}$

として定め、 $\tilde{\Sigma}_{M,\mathfrak{D}}$ で表す。

補題 1.10 を用いることで、補題 1.11 と同様の主張が成立することが示される。

命題 2.5 \mathcal{P} を $\mathcal{P}(M)$ の順序フィルターとする。このとき \mathcal{P} のバーグマン扇条件を満たす二つの適合対 $I < \mathcal{P}$ と $J < \mathcal{P}$ に対し, $\sigma_{I < \mathcal{P}} \subset \sigma_{J < \mathcal{P}}$ となるのは, $I \subset J$ かつ $\mathcal{P} \subset \mathcal{P}$ となるとき,かつそのときに限る。

証明 補題 1.11 の証明と同様であるから、省略する。 ■

後の命題で被約バーグマン扇が純r次元の扇であることを示すが、対してバーグマン扇は一般に純次元ではない。

例 2.6 (純次元でないバーグマン扇の例) K を標数が 2 でない体とし、 K^3 のベクトル $f_0 = (1,0,0)$ 、 $f_1 = (0,1,0)$ 、 $f_2 = (0,0,1)$ 、 $f_3 = (0,0,-1)$ を用いて定まる $E = \{0,1,2,3\}$ 上のマトロイド M を考える。図 2 に M のフラットの束を表す。

図2 Mのフラットの束

このとき $\mathcal{P}=\{\{0,2,3\}\}$ は順序フィルターであり、 $\Sigma_{M,\mathcal{P}}$ の錐の包含関係は図 3 のようになり、 $\sigma_{\{0,1\}<\emptyset}$ と $\sigma_{\{0,2,3\}\}}$ は次元 2 の極大錐、 $\sigma_{\{1,2,3\}<\emptyset}$ と $\sigma_{\{2,3\}<\{\{0,2,3\}\}}$ は次元 3 の極大錐であるので、 $\Sigma_{M,\mathcal{P}}$ は純次元ではない。

図 3 Σೄの錐の包含関係

一方被約バーグマン扇 $\widetilde{\Sigma}_{M,\mathfrak{D}}$ では,図 3 の $\sigma_{\{1,2,3\}<\emptyset}$ と $\sigma_{\{2,3\}<\{\{0,2,3\}\}}$ が除かれるので,図 3 のようになり, $\widetilde{\Sigma}_{M,\mathfrak{D}}$ が純 2 次元であることがわかる。

図 4 $\tilde{\Sigma}_{M,\mathscr{P}}$ の錐の包含関係

次が本節の主命題である。

命題 2.7 ([AHK18, Prop. 3.3]) \mathscr{P} を $\mathscr{P}(M)$ の順序フィルターとする。このとき $\mathscr{P}(E)$ のある順序フィルター $\widetilde{\mathscr{P}}$ があって, $\Sigma_{M,\mathscr{P}}$ は $\Sigma_{\mathfrak{P}}$ の部分扇である。

命題 2.7 を示すための補題を述べる。

補題 2.8 \mathscr{P} を $\mathscr{P}(M)$ の順序フィルターとする。このとき $\Sigma_{M,\mathscr{P}}$ の勝手な錐 $\sigma_{I<\mathscr{P}}$ に対し,その面もすべて $\Sigma_{M,\mathscr{P}}$ に属す。

証明 \mathcal{P} のバーグマン扇条件を満たすように $I < \mathcal{P}$ を取っておく。一般論から $\sigma_{I < \mathcal{P}}$ の面は I の部分集合 J と \mathcal{P} の部分旗 \mathcal{P} を用いて $\sigma_{J < \mathcal{P}}$ という形をしているので, $\operatorname{cl}_M(J) \not\in \mathcal{P}$ であることをいえば良い。 $\operatorname{cl}_M(J) \in \mathcal{P}$ であったとすると, $\operatorname{cl}_M(J) \subset \operatorname{cl}_M(I)$ であるから $\operatorname{cl}_M(I) \in \mathcal{P}$ となり, \mathcal{P} のバーグマン扇条件に反する。ゆえに $\operatorname{cl}_M(J) \not\in \mathcal{P}$ であり, $\sigma_{J < \mathcal{P}} \in \Sigma_{M,\mathcal{P}}$ であることが従う。 \blacksquare

命題 2.7 の証明 補題 2.8 より $\Sigma_{M,\mathcal{P}}$ を含む扇が存在すれば、 $\Sigma_{M,\mathcal{P}}$ はその部分扇になる。 $\widetilde{\mathcal{P}}$ を

 $\{F \in \mathcal{P}(E) \mid F \text{ は } \mathcal{P} \text{ のフラットを少なくとも一つ含む} \}$

と置くと、これは $\mathcal{P}(E)$ の順序フィルターであり、命題 1.9 より $\Sigma_{\mathfrak{P}}$ は扇である。 $\Sigma_{M,\mathfrak{P}} \subset \Sigma_{\mathfrak{P}}$ であることを示したい。 $\Sigma_{M,\mathfrak{P}}$ の錐 $\sigma_{I<\mathfrak{P}}$ を取ると、 $\mathcal{F} \subset \mathfrak{P}$ であるから $I \notin \mathfrak{P}$ を示せば良いが、 $\operatorname{cl}_M(I) \notin \mathfrak{P}$ であることと \mathfrak{P} が順序フィルターであることから、 $\operatorname{cl}_M(I)$ が \mathfrak{P} のフラットを含むことはない。つまり $I \notin \mathfrak{P}$ である。

 \mathbf{X} **2.9** $\mathcal{P}(M)$ の順序フィルター \mathcal{P} に対し, $\widetilde{\Sigma}_{M,\mathcal{P}}$ は $\Sigma_{M,\mathcal{P}}$ の部分扇である。

証明 $\tilde{\Sigma}_{\mathcal{P}}$ が $\Sigma_{\mathcal{P}}$ の部分集合であり、補題 2.8 と同様の主張が $\tilde{\Sigma}_{\mathcal{P}}$ に対しても成立するので、 $\tilde{\Sigma}_{\mathcal{P}}$ は $\Sigma_{\mathcal{P}}$ の部分扇である。 \blacksquare

ここで被約バーグマン扇が純次元であることをも示しておく。

命題 2.10 ([AHK18, Prop. 3.4]) $\mathscr{P}(M)$ の順序フィルター \mathscr{P} に対し, $\widetilde{\Sigma}_{M,\mathscr{P}}$ は純 r 次元である。

証明 勝手な $\widetilde{\Sigma}_{M,\mathcal{P}}$ の勝手な錐 $\sigma_{I < M^{\mathcal{F}}}$ に対し, $\sigma_{I < M^{\mathcal{F}}}$ C $\sigma_{I' < M^{\mathcal{F}'}}$ かつ #I' + # \mathcal{F}' = r を満たす $\widetilde{\Sigma}_{M,\mathcal{P}}$ の錐 $\sigma_{I' < M^{\mathcal{F}'}}$ が存在することを示せば良い。I が M において適合し \mathcal{F} を含むような \mathcal{P} の旗の中で極大なものを一つ取り \mathcal{F}' と置く。 $\mathrm{crk}_M(\min \mathcal{F}')$ = # \mathcal{F}' である。続けて I を含み $\min \mathcal{F}'$ に狭義に含まれる M のフラットの中で極大なものを一つ取り F と置く。 $\mathrm{rk}_M(F)$ + 1 = $\mathrm{rk}_M(\min \mathcal{F}')$ である。すると

$$\#I \le \operatorname{rk}_{M}(\min \mathcal{F}') - 1 = r - \operatorname{crk}_{M}(\min \mathcal{F}') = r - \#\mathcal{F}' = \operatorname{rk}_{M}(F) \le \#F$$

となるので、# $I' = r - \# \mathcal{F}$ かつ $I \subset I' \subset F$ を満たす部分集合 I' を取ることができ、 $I' <_M \mathcal{F}'$ である。あとは $\operatorname{cl}_M(I') \not\in \mathcal{P}$ であることを示せば、 $I' <_M \mathcal{F}'$ が \mathcal{P} のバーグマン扇条件を満たし、証明が終わる。 $\operatorname{cl}_M(I') \in \mathcal{P}$ であったとすると、 \mathcal{P} が順序フィルターであることから $F \in \mathcal{P}$ である。 $I < (\{F\} \cup \mathcal{P})$ であることに加え、 \mathcal{F}' の極大性から $I \not<_M (\{F\} \cup \mathcal{F})$ であるので、 $\#I = \operatorname{rk}_M(F) = r - \operatorname{rk}_M(\min \mathcal{F}')$ が成立し、I = I' である。ところが $\operatorname{cl}_M(I) = \operatorname{cl}_M(I') \in \mathcal{P}$ となり、 $I < \mathcal{F}$ が \mathcal{P} がバーグマン扇条件を満たすことに反する。ゆえに $\mathcal{F}_{I \times \mathcal{P}'}$ が目的の錐である。 \blacksquare

ここで、バーグマン扇の星が高々二つの扇に分解できることを見ておく。この性質は主 定理 [AHK18, Thm. 8.8] の証明において重要である。

定義 2.11 Σ を $\mathbf{N}_{\mathbb{R}}$ 内の扇とし, Σ の錐 σ を一つ取る。 Σ の σ における**星**とは, $\mathbf{N}_{\mathbb{R}}/\langle \sigma \rangle$ 内の扇

 $\{\bar{\tau} \mid \tau \ \text{ti} \ \sigma \ e \ \text{含む} \ \Sigma \ \text{の錐で,} \ \bar{\tau} \ \text{ti} \ \mathbf{N}_{\mathbb{R}} / \langle \sigma \rangle \ \text{への} \ \tau \ \text{の像である} \}$

のことをいい、 $star(\sigma, \Sigma)$ で表す。また Σ に属す射線 σ の最初の格子点 \mathbf{e} に対して $star(\sigma, \Sigma)$ を $star(\mathbf{e}, \Sigma)$ と書くこともある。

定義 2.12 M のフラット F を一つ取る。

(i) $M \cap F \cap O$ 制限とは、フラット全体の族が

 $\{G \mid G \bowtie F$ に含まれるMのフラットである $\}$

として与えられる F 上のマトロイドのことをいい, M^F で表される。 M^F の階数は $\operatorname{rk}_M(F)$ である。

(ii) MのFへの**縮約**とは、フラット全体の族が

 $\{G \setminus F \mid G \bowtie F$ を含むMのフラットである $\}$

として与えられる $E\setminus F$ 上のマトロイドのことをいい, M_F で表される。 M_F の階数 は $\operatorname{crk}_M(F)$ である。

命題 2.13 \mathcal{P} を $\mathcal{P}(M)$ の順序フィルターとし、F を M のフラットとする。

- (1) $\mathcal{P} \cap \mathcal{P}(M^F)$ を \mathcal{P}^F と置く。このとき \mathcal{P}^F は $\mathcal{P}(M^F)$ の順序フィルターである。
- (2) $\{G \in \mathcal{P}(M_F) \mid G \cup F \in \mathcal{P}\}$ を \mathcal{P}_F と置く。このとき \mathcal{P}_F は $\mathcal{P}(M_F)$ の順序フィルターである。

証明省略する。 ■

命題 2.14 F を M のフラット,i を E の元とする。

- (1) 対応 $\sum_{j\in E} \lambda_j \mathbf{e}_j \mapsto \left(\sum_{j\in F} \lambda_j \mathbf{e}_j, \sum_{j\in E\setminus F} \lambda_j \mathbf{e}_j\right)$ は群同型 $\phi: \mathbf{N}_E/\langle \mathbf{e}_F \rangle \cong \mathbf{N}_F \oplus \mathbf{N}_{E\setminus F}$ を誘導する。
- (2) 対応 $\sum_{j \in E} \lambda_j \mathbf{e}_j \mapsto \sum_{j \in E \setminus \{i\}} \lambda_j \mathbf{e}_j$ は群同型 $\psi \colon \mathbf{N}_E / \langle \mathbf{e}_i \rangle \cong \mathbf{N}_{E \setminus \{i\}}$ を誘導する。

証明省略する。 ■

命題 2.15 ([AHK18, Prop. 3.5]) の を の(M) の順序フィルターとする。

- (1) \mathcal{P} に属すフラット F に対し、命題 2.14(1) の ϕ は $\mathrm{star}(\mathbf{e}_F, \Sigma_{M,\mathcal{P}})$ から $\Sigma_{M^F,\mathcal{P}^F} \times \Sigma_{M_F}$ への全単射を誘導する。
- (2) $\{i\}$ が M のフラットであるような E の元 i に対し、命題 2.14(2) の ψ は $\mathrm{star}(\mathbf{e}_i, \Sigma_{M,\mathcal{P}})$ から $\Sigma_{M_{\mathrm{BL}},\mathcal{P}_{\mathrm{BL}}}$ への全単射を誘導する。
- (1) の証明 まず ϕ ($\operatorname{star}(\mathbf{e}_F, \Sigma_{M,\mathcal{P}})$) $\subset \Sigma_{MF,\mathcal{P}F} \times \Sigma_{M_F}$ が成り立つこと,つまり $\operatorname{star}(\mathbf{e}_F, \Sigma_{M,\mathcal{P}})$ の勝手な錐 $\sigma_{I < \mathcal{F}}$ に対し, $\phi(\sigma_{I < \mathcal{F}})$ が $\Sigma_{MF,\mathcal{P}F} \times \Sigma_{M_F}$ に属すことを示す。ここで $I < \mathcal{F}$ は \mathcal{P} のバーグマン扇条件を満たす適合対で, $F \in \mathcal{F}$ であるものとする。 $\mathcal{F} = \{F_1 \subsetneq F_2 \subsetneq \cdots F_k\}$ と書き, $F_1 = F$ とする。このとき $\{F_1 \subsetneq \cdots \subsetneq F_{l-1}\}$ を \mathcal{F} とすると, $I < \mathcal{F}$ は \mathcal{P}^F のバーグマン扇条件を満たす適合対であり, $\{F_{l+1} \setminus F \subsetneq \cdots \subsetneq F_k \setminus F\}$ を \mathcal{H} とすると, \mathcal{H} は $\mathcal{P}(M_F)$ の旗である。I の勝手な元 i に対して $\phi(\mathbf{e}_i) = (\mathbf{e}_i, 0)$ であり,勝手な番号 j に対し

$$\phi\left(\mathbf{e}_{F_{j}}\right) = \begin{cases} \left(\mathbf{e}_{F_{j}}, 0\right) & (j < l \text{ の } と \text{ き}) \\ \left(0, \mathbf{e}_{F_{j} \setminus F}\right) & (j \ge l \text{ o } \text{ と } \text{ き}) \end{cases}$$

が成立するので、 $\phi(\bar{\sigma}_{I<\mathscr{F}}) = \sigma_{I<\mathscr{G}} \times \sigma_{\varnothing<\mathscr{H}}$ であり、右辺が $\Sigma_{MF,\mathscr{D}F} \times \Sigma_{M_F}$ に属す。 $\phi: \operatorname{star}(\mathbf{e}_F, \Sigma_{M,\mathscr{D}}) \to \Sigma_{MF,\mathscr{D}F} \times \Sigma_{M_F}$ の単射性は $\phi: \mathbf{N}_E/\langle \mathbf{e}_F \rangle \to \mathbf{N}_F \oplus \mathbf{N}_{E\backslash F}$ の単射性 から従うので、全射性を示す。 \mathscr{D}^F のバーグマン扇条件を満たす適合対 $I<\mathscr{G}$ と $\mathcal{P}(M_F)$ の旗 \mathcal{H} を取り、錐 $\sigma_{I<\mathscr{G}}\times\sigma_{\varnothing<\mathscr{H}}$ を考える。 $\mathscr{G}=\{F_1\subsetneq F_2\subsetneq\cdots\subsetneq F_{l-1}\}$ と書き、 $\mathcal{H}=\{F_{l+1}\setminus F\subsetneq F_{l+2}\setminus F\subsetneq\cdots\subsetneq F_k\setminus F\}$ と書くと、 $F\in\mathscr{P}$ であるので、 $\{F_1\subsetneq\cdots\subsetneq F_{l-1}\subsetneq F\subsetneq F_{l+1}\subsetneq\cdots\subsetneq F_k\}$ は \mathscr{P} の旗である。この旗を \mathscr{F} と置くと、I が \mathscr{F} に適合し、 $\phi(\sigma_{I<\mathscr{F}})=\sigma_{I<\mathscr{G}}\times\sigma_{\varnothing<\mathscr{H}}$ が成立する。ゆえに $\phi: \operatorname{star}(\mathbf{e}_F,\Sigma_{M,\mathscr{P}})\to\Sigma_{M^F,\mathscr{P}^F}\times\Sigma_{M_F}$ は 全射である。 \blacksquare

(2) の証明 $\{i\}$ < Ø が $\mathcal P$ のバーグマン扇条件を満たすのは, $\{i\} \not\in \mathcal P$ であるときかつそのときに限るので, $\{i\} \in \mathcal P$ であるかそうでないかで場合分けが生じる。

 $\{i\} \notin \mathcal{P}$ である場合 写像の well-defined 性 $\psi(\text{star}(\mathbf{e}_i, \Sigma_{M,\mathcal{P}})) \subset \Sigma_{M_{\{i\}},\mathcal{P}_{\{i\}}}$ が成り立つこと のみを示し、全単射性は省略する。 $\{i\} < \emptyset$ が \mathcal{P} のバーグマン扇条件を満たすので、命題 2.5 より $\Sigma_{M,\mathcal{P}}$ の錐 $\sigma_{I<\mathcal{F}}$ $(I < \mathcal{F}$ は \mathcal{P} のバーグマン扇条件を満たす)が \mathbf{e}_i を含むことは、 $i \in I$ であることと同値である。よって $\mathcal{P}_{\{i\}}$ の旗 $\{F \setminus \{i\} \mid F \in \mathcal{F}\}$ を \mathcal{F} と置くとき、 $\psi(\bar{\sigma}_{I<\mathcal{F}}) = \sigma_{(I\setminus \{i\})<\mathcal{F}}$ であり、後者は $\Sigma_{M_{\{i\}},\mathcal{P}_{\{i\}}}$ に属す。

 $\{i\}\in \mathcal{P}$ である場合 写像の well-defined 性 $\psi(\operatorname{star}(\mathbf{e}_i,\Sigma_{M,\mathcal{P}}))\subset \Sigma_{M_{\{i\}},\mathcal{P}_{\{i\}}}$ が成り立つことのみを示し、全単射性は省略する。 \mathcal{P} が順序フィルターであることから、 $\{i\}$ を含む $\mathcal{P}(M)$ のフラットはすべて \mathcal{P} に属す。ゆえに $\mathcal{P}_{\{i\}}=\mathcal{P}(M_{\{i\}})$ が成り立つ(つまり $\mathcal{P}_{\{i\}}$ はすべての $M_{\{i\}}$ の非空狭義フラットからなる)。また $\emptyset<\{i\}$ が \mathcal{P} のバーグマン扇条件を満たすので、命題 2.5 より $\Sigma_{M,\mathcal{P}}$ の錐 $\sigma_{I<\mathcal{F}}$ が \mathbf{e}_i を含むことは、 $\{i\}\in \mathcal{F}$ であることと同値であり、後者は $\min \mathcal{F}=\{i\}$ であることと同値である。またこのとき $I=\emptyset$ である。 $\mathcal{P}_{\{i\}}$ の旗 $\{F\setminus\{i\}\mid F\in \mathcal{F}\setminus\{\{i\}\}\}\}$ を \mathcal{F} を置くとき、 $\psi(\bar{\sigma}_{\emptyset<\mathcal{F}})=\sigma_{\emptyset<\mathcal{F}}$ が成立し、後者は扇 $\Sigma_{M_{\{i\}},\mathcal{P}_{\{i\}}}=\Sigma_{M_{\{i\}}}$ に属す。 \blacksquare

参考文献

[AHK18] Karim Adiprasito, June Huh, and Eric Katz. "Hodge theory for combinatorial geometries". In: **Ann. of Math. (2) 188**.2 (2018), pp. 381–452.

組合せ論的ホッジ理論セミナー 第三回

3 区分的線型関数

この節では \mathbf{N} と \mathbf{M} を有限階数の自由アーベル群とし、 $\langle -, - \rangle$: $\mathbf{N} \times \mathbf{M} \to \mathbb{Z}$ を完全対 2 とする。 $\mathbf{N} \otimes_{\mathbb{Z}} \mathbb{R}$ と $\mathbf{M} \otimes_{\mathbb{Z}} \mathbb{R}$ をそれぞれまた $\mathbf{N}_{\mathbb{R}}$ と $\mathbf{M}_{\mathbb{R}}$ と置くことに, \mathbf{N} と \mathbf{M} の完全対を $\mathbf{N}_{\mathbb{R}}$ と $\mathbf{M}_{\mathbb{R}}$ の完全対に拡張したものも $\langle -, - \rangle$ と書くことにする。 Σ を \mathbf{N} 内のユニモジュラ 扇とし, Σ に属す射線の最初の格子点すべてからなる集合を \mathbf{K} と置くことにする。

定義 3.1 ([AHK18, Sec. 4.1])

- (i) 関数 $\ell: |\Sigma| \to \mathbb{R}$ が Σ 上の**区分的線型関数**であるとは、連続かつ Σ の各錐 σ に対し、 $\ell|_{\sigma} = f|_{\sigma}$ が成立するような $\mathbf{N}_{\mathbb{R}}$ 上の線型関数 f が存在するときをいう。
- (ii) $\ell(|\Sigma| \cap \mathbb{N}) \subset \mathbb{Z}$ が成立するとき,区分的線型関数 ℓ が**整**であるという。

 Σ 上の区分的整線型関数すべてからなる集合 $PL_{\mathbb{Z}}(\Sigma)$ は各点で和を取ることによりアーベル群の構造を持つ。 $PL_{\mathbb{Z}}(\Sigma)$ が有限生成自由アーベル群であることを見ておく。

定義 3.2 $|\Sigma|$ に属す点 \mathbf{v} に対し、 \mathbf{v} を相対内部に含む Σ の錐 $\sigma_{\mathbf{v}}$ が一意的に存在するので、 $\sigma_{\mathbf{v}} \cap V_{\Sigma}$ で添字付けられた正実数 $\lambda_{\mathbf{v},\mathbf{c}}$ によって

$$\mathbf{v} = \sum_{\mathbf{c} \in \sigma \cap V_{\Sigma}} \lambda_{\mathbf{v}, \mathbf{c}} \mathbf{c}$$

と一意的に表される (σ が単体的であることを用いている)。 V_2 に属す格子点 e に関連する**クーラン関数** x_e とは,

$$x_{\mathbf{e}}(\mathbf{v}) = \begin{cases} \lambda_{\mathbf{v}, \mathbf{e}} & (\mathbf{e} \in \sigma_{\mathbf{v}} \ \mathcal{O} \ \ \ \ \ \ \ \ \ \end{cases}$$
$$0 \qquad (\mathbf{e} \notin \sigma \ \mathcal{O} \ \ \ \ \ \ \ \ \)$$

で定まる $|\Sigma|$ 上の関数である。定義から x_e は区分的線型関数であり、さらに Σ がユニモジュラであることから、 x_e は整である。

 Σ 上の区分的(整)線型関数 ℓ の Σ の錐 σ への制限 $\ell|_{\sigma}$ は, σ \cap Σ の格子点の値のみで 定まるので,次の命題が得られる。

命題 3.3 $PL(\Sigma)$ は内部直和 $\bigoplus_{\mathbf{e} \in V_{\Sigma}} \mathbb{Z} x_{\mathbf{e}}$ と等しい。また Σ 上の区分的線型関数すべてがなす群 $PL_{\mathbb{R}}(\Sigma)$ は内部直和 $\bigoplus_{\mathbf{e} \in V_{\Sigma}} \mathbb{R} x_{\mathbf{e}}$ と等しく, $PL_{\mathbb{R}}(\Sigma)$ と $PL_{\mathbb{Z}}(\Sigma) \otimes_{\mathbb{Z}} \mathbb{R}$ は $x_{\mathbf{e}} \mapsto x_{\mathbf{e}} \otimes 1$ により \mathbb{R} 線型同型となる。

²⁾ $\langle -,- \rangle$ が $\mathbb Z$ 双線型写像で、対応 $x \mapsto \langle x,- \rangle$ と対応 $y \mapsto \langle -,y \rangle$ がそれぞれ $\mathbb N$ から $\hom_{\mathbb Z}(\mathbb M,\mathbb Z)$ への同型と $\mathbb M$ から $\hom_{\mathbb Z}(\mathbb N,\mathbb Z)$ への同型を誘導するものをいう。

 $\mathbf{N}_{\mathbb{R}}$ 上の整線型関数が誘導する Σ 上の区分的線型関数はクーラン関数の表現として次のように解釈できる。

定義 3.4 $\operatorname{res}_{\Sigma}$ とは、対応 $\mathbf{m}\mapsto\sum_{\mathbf{e}\in V_{\sigma}}\langle\mathbf{e},\mathbf{m}\rangle x_{\mathbf{e}}$ で定まる \mathbf{M} から $\operatorname{PL}_{\mathbb{Z}}(\Sigma)$ への群準同型である。

注意 3.5 定義より $\langle -, \mathbf{m} \rangle |_{|\Sigma|} = \operatorname{res}_{\Sigma}(\mathbf{m})$ が成立するので、 $\operatorname{res}_{\Sigma}$ の像は、 $\mathbf{N}_{\mathbb{R}}$ 上の整線型関数 が誘導する Σ 上の区分的線型関数すべてと一致する。

定義 3.6 $\operatorname{res}_{\Sigma}$ の余核を $A^1(\Sigma)$ と書く。 Σ 上の二つの区分的整線型関数 ℓ と ℓ' が \mathbb{Z} 上線型同値であるとは, $\ell-\ell'=\langle -,\mathbf{m}\rangle|_{|\Sigma|}$ を満たす \mathbf{M} の元 \mathbf{m} が存在するとき,あるいは同じことだが $A^1(\Sigma)$ における像が等しいときをいう。

命題 3.3 から $\operatorname{PL}_{\mathbb{R}}(\Sigma)$ と $\operatorname{PL}_{\mathbb{Z}}(\Sigma) \otimes_{\mathbb{Z}} \mathbb{R}$ は自然に同一視できる。このことから定義 3.6 は次のように自然に拡張できる。

定義 3.7 res \otimes 1: $\mathbf{M}_{\mathbb{R}} \to \operatorname{PL}(\Sigma) \otimes_{\mathbb{Z}} \mathbb{R}$ の余核を $A^{1}(\Sigma)_{\mathbb{R}}$ と書く。 Σ 上の二つの区分的線型関数 ℓ と ℓ' が線型同値であるとは, $\ell - \ell' = \langle -, \mathbf{m} \rangle$ を満たす $\mathbf{M}_{\mathbb{R}}$ の元 \mathbf{m} が存在するとき,あるいは同じことだが $A^{1}(\Sigma)_{\mathbb{R}}$ における像が等しいときをいう。

3.1 区分的線型関数の凸性

定義 3.8 Σ 上の区分的線形関数 ℓ と Σ の錐 σ を考える。

(i) Σ における σ の接続とは,

のことをいい、 $link(\sigma, \Sigma)$ で表す。

- (ii) ℓ が σ の周りで**凸**であるとは、 σ 上で零かつ link(σ , Σ) に属す射線上で非負であるような Σ 上の区分的線形関数と ℓ が線型同値であるときをいう。
- (iii) ℓ が σ の周りで**強凸**であるとは、 σ 上で零かつ $link(\sigma, \Sigma)$ に属す射線上で正であるような Σ 上の区分的線形関数と ℓ が線型同値であるときをいう。
- (iv) ℓ が**凸**であるとは、 Σ に属すすべての錐の周りで凸であるときをいう。
- (v) ℓ が**強凸**であるとは、 Σ に属すすべての錐の周りで強凸であるときをいう。

[Ful93, Sec. 3.4] の文脈で下に凸な区分的線型関数は、定義 3.8 の意味で凸である。

命題 3.9 Σ が完備であるとし、 Σ 上の区分的線型関数 ℓ を考える。

- (1) Σ の勝手な極大錐 σ に対し、 σ 上で零かつ $\mathbf{N}_{\mathbb{R}} \setminus \sigma$ 上で非負であるような区分的線型 関数と ℓ が線型同値であるとする。このとき ℓ は凸である。
- (2) Σ の勝手な極大錐 σ に対し、 σ 上で零かつ $N_{\mathbb{R}} \setminus \sigma$ 上で正であるような区分的線型関数と ℓ が線型同値であるとする。このとき ℓ は強凸である。

- **(1) の証明** Σ の勝手な錐 τ に対して, τ を含む極大錐 σ を取り, ℓ $\mathrm{res}_{\Sigma}(\mathbf{m})$ が σ 上で零かつ $\mathbf{N}_{\mathbb{R}} \setminus \sigma$ 上で非負となるように, $\mathbf{M}_{\mathbb{R}}$ の元 \mathbf{m} を取れば, ℓ $\mathrm{res}_{\Sigma}(\mathbf{m})$ が特に $\mathrm{link}(\tau, \Sigma)$ に属す射線上で非負であるから, ℓ は τ の周りで凸である。
- (2) の証明 Σ の錐 τ を勝手に取り、 τ を含む Σ の極大錐 σ を一つ取ると、仮定より ℓ -res $_{\Sigma}(m)$ が $\mathbf{N}_{\mathbb{R}} \setminus \sigma$ 上で正かつ σ 上で零となるような $\mathbf{M}_{\mathbb{R}}$ の元 m が存在する。 ℓ -res $_{\Sigma}(m)$ は特に τ 上で零である。 σ を生成する \mathbf{N} の基底を $\mathbf{e}_1, \dots, \mathbf{e}_n$ とし、そのうち $\mathbf{e}_1, \dots, \mathbf{e}_m$ が τ を生成するように並べ替えておく。ここで正実数 ϵ に対し、

$$\langle \mathbf{e}_1, \mathbf{m}_{\epsilon} \rangle = 0, \dots, \langle \mathbf{e}_m, \mathbf{m}_{\epsilon} \rangle = 0, \langle \mathbf{e}_{m+1}, \mathbf{m}_{\epsilon} \rangle = -\epsilon, \dots, \langle \mathbf{e}_n, \mathbf{m}_{\epsilon} \rangle = -\epsilon$$

で定まる $\mathbf{M}_{\mathbb{R}}$ の元 \mathbf{m}_{ϵ} を考える。すると $\ell - \operatorname{res}_{\Sigma}(\mathbf{m} + \mathbf{m}_{\epsilon})$ は τ 上で零かつ $\sigma - \tau$ 上で正である。 $\operatorname{cone}(\{\mathbf{e}\}) \in \operatorname{link}(\tau, \Sigma)$ を満たす Σ の格子点 \mathbf{e} のうち, $\mathbf{e}_{m+1}, \dots, \mathbf{e}_n$ でないものを考える。 \mathbf{m} の取り方から $\langle \mathbf{e}, \mathbf{m} \rangle < \ell(\mathbf{e})$ であり,また $\langle \mathbf{e}, \mathbf{m}_{\epsilon} \rangle$ が $\lim_{\epsilon \to +0} \langle \mathbf{e}, \mathbf{m}_{\epsilon} \rangle = 0$ となる $(0, \infty)$ 上の連続関数であるので, $\langle \mathbf{e}, \mathbf{m} + \mathbf{m}_{\epsilon} \rangle < \ell(\mathbf{e})$ が勝手な \mathbf{e} に対して成立する ϵ が存在する。ゆえに ℓ は τ の周りで強凸である。

系 3.10 Σ が $\mathbf{M}_{\mathbb{R}}$ の最大次元多面体 P の法扇であるとき, Σ 上の強凸区分的線型関数が存在する。

証明 P が有界閉集合であることに注意して、 $\ell(\mathbf{u}) = \max_{\mathbf{v} \in P} \langle \mathbf{u}, \mathbf{v} \rangle$ によって $\mathbf{N}_{\mathbb{R}}$ 上の関数 ℓ を定める。 Σ が P の法扇であることから、 Σ の各錐 σ は、 ℓ の一意的な面 ℓ を用いて ℓ を ℓ を ℓ を ℓ と、 ℓ が ℓ 上で最大値を取る} と表されるので、 ℓ の元 ℓ を ℓ と、 ℓ は特に ℓ 上で線型である。また ℓ の二つの錐 ℓ と ℓ に対し ℓ の ℓ が共通の面であるから、 ℓ なが ℓ の ℓ に対応する ℓ の面に属し、 ℓ に対し ℓ の ℓ が ℓ は ℓ の ℓ と ℓ で等しい。ゆえに ℓ は連続関数である。 ℓ が強凸であることを見るため、 ℓ の極大錐 ℓ を考える。 ℓ に対応する ℓ の面 ℓ は ℓ は ℓ なわち ℓ の ℓ ない点 ℓ に対し、 ℓ ない点 ℓ に対し、 ℓ ない点 ℓ に対し、 ℓ ない点 ℓ が強凸であることが能 ℓ ので、 ℓ に属さない点 ℓ に対し、 ℓ に対し、 ℓ の ℓ が強凸であることが能 ℓ の ℓ に ℓ に ℓ の ℓ に ℓ に ℓ の ℓ に ℓ の ℓ に ℓ に ℓ に ℓ の ℓ に ℓ の ℓ に ℓ の ℓ の ℓ に ℓ に ℓ の ℓ に ℓ の ℓ の ℓ に ℓ の ℓ の ℓ に ℓ の ℓ

この部分節の最後に命題 3.9 の逆も成立することを見ておく。

命題 3.11 Σ が完備であるとし、 Σ 上の区分的線型関数 ℓ を考える。

- (1) ℓ が凸であるとき、 Σ の勝手な極大錐 σ に対し、 σ 上で零かつ $\mathbf{N}_{\mathbb{R}} \setminus \sigma$ 上で非負であるような区分的線型関数と ℓ が線型同値である。
- (2) ℓ が強凸であるとき、 Σ の勝手な極大錐 σ に対し、 σ 上で零かつ $\mathbf{N}_{\mathbb{R}} \setminus \sigma$ 上で正であるような区分的線型関数と ℓ が線型同値である。

この命題を示すための重要な補題を述べる。極大錐 σ に対し, σ 上で ℓ と一致する線型 関数が一意的に定まるので,これに対応する $\mathbf{M}_{\mathbb{R}}$ の元を \mathbf{m}_{σ} で表すことにする。

補題 3.12 ℓ が凸であるとする。共通の面 $\sigma \cap \sigma'$ が余次元 1 であるような相異なる極大錐 σ と σ' に対し、部分空間 $\langle \sigma \cap \sigma' \rangle$ が分ける半空間を考える。このとき σ' と同じ側の半空間の点 \mathbf{u} に対し、 $\langle \mathbf{u}, \mathbf{m}_{\sigma'} \rangle \leq \langle \mathbf{u}, \mathbf{m}_{\sigma'} \rangle$ が成立する。また ℓ が強凸かつ $\mathbf{u} \notin \sigma$ であるなら、 $\langle \mathbf{u}, \mathbf{m}_{\sigma'} \rangle$ が成立する。

証明 σ を生成する \mathbf{N} の基底を $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$ とし、 σ' を生成する \mathbf{N} の基底を $\mathbf{e}_1', \mathbf{e}_2, ..., \mathbf{e}_n$ と する。 σ と σ' の内部が交わらないので、 $\mathbf{e}_1' = \lambda_1 \mathbf{e}_1 + \cdots + \lambda_n \mathbf{e}_n$ と表したとき、 $\lambda_1 < 0$ である。次に、 ℓ が $\sigma \cap \sigma'$ の周りで凸であるから、

$$\langle \mathbf{e}_2, \mathbf{m} \rangle = \ell(\mathbf{e}_2), \langle \mathbf{e}_2, \mathbf{m} \rangle = \ell(\mathbf{e}_2), \langle \mathbf{e}_n, \mathbf{m} \rangle = \ell(\mathbf{e}_n), \langle \mathbf{e}_1, \mathbf{m} \rangle \leq \ell(\mathbf{e}_1), \langle \mathbf{e}_1', \mathbf{m} \rangle \leq \ell(\mathbf{e}_1)$$

を満たす $\mathbf{M}_{\mathbb{R}}$ の元 \mathbf{m} が存在する。 $\mathbf{M}_{\mathbb{R}}$ の元 \mathbf{m}' を

$$\langle \mathbf{e}_1, \mathbf{m}' \rangle = \ell(\mathbf{e}_1) - \langle \mathbf{e}_1, \mathbf{m} \rangle, \langle \mathbf{e}_2, \mathbf{m}' \rangle = \dots = \langle \mathbf{e}_n, \mathbf{m}' \rangle = 0$$

で定まるものとすると, $\mathbf{m} + \mathbf{m}' = \mathbf{m}_{\sigma}$ である。すると

$$(3.1) \langle \mathbf{e}'_1, \mathbf{m}_{\sigma} \rangle = \langle \mathbf{e}'_1, \mathbf{m} \rangle + \lambda_1 \langle \mathbf{e}_1, \mathbf{m}' \rangle \leq \langle \mathbf{e}'_1, \mathbf{m} \rangle \leq \ell(\mathbf{e}'_1) = \langle \mathbf{e}'_1, \mathbf{m}_{\sigma'} \rangle$$

と計算できる。さて $\langle \sigma \cap \sigma' \rangle$ が分ける半空間のうち, σ' と同じ側の半空間に属す点 \mathbf{u} は,非負実数 μ と実数 μ_2, \dots, μ_n を用いて

$$\mathbf{u} = \mu \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 + \cdots + \lambda_n \mathbf{e}_n$$

と表すことができるので、 $\langle -, \mathbf{m}_{\sigma} \rangle$ と $\langle -, \mathbf{m}_{\sigma'} \rangle$ が $\sigma \cap \sigma'$ 上で一致することに注意して、

(3.2)
$$\langle \mathbf{u}, \mathbf{m}_{\sigma} \rangle = \mu \langle \mathbf{e}'_{1}, \mathbf{m}_{\sigma} \rangle + \lambda_{2} \langle \mathbf{e}_{2}, \mathbf{m}_{\sigma} \rangle + \dots + \lambda_{n} \langle \mathbf{e}_{n}, \mathbf{m}_{\sigma} \rangle$$
$$\leq \mu \langle \mathbf{e}'_{1}, \mathbf{m}_{\sigma'} \rangle + \lambda_{2} \langle \mathbf{e}_{2}, \mathbf{m}_{\sigma'} \rangle + \dots + \lambda_{n} \langle \mathbf{e}_{n}, \mathbf{m}_{\sigma'} \rangle$$
$$= \langle \mathbf{u}, \mathbf{m}_{\sigma'} \rangle$$

と計算でき、題意が従う。また ℓ が強凸かつ $\mathbf{u} \not\in \sigma$ であるとき、 $\mu < 0$ なので (3.1) の等号が不成立で、(3.2) の不等号も不成立になる。

(1) の証明 極大錐 σ を固定する。 \mathbf{N}_{σ} 上で $\langle -, \mathbf{m}_{\sigma} \rangle \leq \ell$ であることを示せばよい。 \mathbf{N}_{σ} の 点 \mathbf{u} を取り, σ の内部の点 \mathbf{v} を結ぶ開線分 (\mathbf{u}, \mathbf{v}) を考える。 Σ の余次元 1 の錐すべてを τ_1, \ldots, τ_m とし,部分空間 $\langle \tau_i \rangle$ が (\mathbf{u}, \mathbf{v}) と交わるようなものすべてを τ_1, \ldots, τ_k とする。 \mathbf{v} を 極大錐 σ の内部として取っているので, (\mathbf{u}, \mathbf{v}) 上の点が高々一つの $\langle \tau_i \rangle$ と交わるようにす

ることができる。 \mathbf{u} から \mathbf{v} へ進むときに τ_1, \dots, τ_k の順番で交わるとする。各 τ_i はちょうど 二つの極大錐に含まれるので,それら極大錐を \mathbf{u} に近い順に $\sigma_1, \dots, \sigma_{k+1}$ とする。 σ_1 は \mathbf{u} を含み,かつ $\sigma_{k+1} = \sigma$ である。補題 3.12 より

$$\ell(\mathbf{u}) = \langle \mathbf{u}, \mathbf{m}_{\sigma_1} \rangle \ge \langle \mathbf{u}, \mathbf{m}_{\sigma_2} \rangle \ge \cdots \ge \langle \mathbf{u}, \mathbf{m}_{\sigma_{k+1}} \rangle = \langle \mathbf{u}, \mathbf{m}_{\sigma} \rangle$$

と計算でき、大意が従う。 ■

(2) の証明 極大錐 σ を固定し、 $N_{\mathbb{R}} \setminus \sigma$ の点 \mathbf{u} に対して、 $\langle \mathbf{u}, \mathbf{m}_{\sigma} \rangle < \ell(\mathbf{u})$ が成立することを示せば良い。(1) の証明の記法を引き継ぐと、部分空間が (\mathbf{u}, \mathbf{v}) と交わるような余次元 1 の錐が少なくとも一つ存在するので、補題 3.12 より

$$\ell(\mathbf{u}) = \left\langle \mathbf{u}, \mathbf{m}_{\sigma_1} \right\rangle > \left\langle \mathbf{u}, \mathbf{m}_{\sigma_2} \right\rangle > \dots > \left\langle \mathbf{u}, \mathbf{m}_{\sigma_{k+1}} \right\rangle = \left\langle \mathbf{u}, \mathbf{m}_{\sigma} \right\rangle$$

となり大意が従う。 ■

3.2 数値的非負錐と豊富錐

定義 3.13

- (i) 凸区分的線型関数の線型同値類すべてからなる $A^1(\Sigma)$ の部分集合を**数値的非負錐**といい, \mathcal{N}_{Σ} で表される。 \mathcal{N}_{Σ} は閉凸錐である。
- (ii) 強凸区分的線型関数の線型同値類すべてからなる $A^1(\Sigma)$ の部分集合を**豊富錐**といい, \mathcal{X}_{Σ} で表される。 \mathcal{X}_{Σ} は開凸錐である。

以下で数値的非負錐と豊富錐の開核と閉包の関係について調べる。

命題 3.14 \mathcal{K}_{Σ} が空でなければ、 \mathcal{K}_{Σ} の閉包 $\bar{\mathcal{K}}_{\Sigma}$ と \mathcal{N}_{Σ} は等しい。

証明 $\mathcal{K}_{\Sigma} \subset \mathcal{N}_{\Sigma}$ かつ \mathcal{N}_{Σ} であることから, $\mathcal{R}_{\Sigma} \subset \mathcal{N}_{\Sigma}$ が従う。逆に, ℓ を凸区分的線型関数 とし, ℓ' を強凸区分的線型関数とする。すると,勝手な正実数 ϵ に対し, $\ell + \epsilon \ell'$ が強凸区分的線型関数であるから, $A^{1}(\Sigma)$ の元として ℓ は \mathcal{K}_{Σ} の触点である。ゆえに $\mathcal{N}_{\Sigma} \subset \bar{\mathcal{N}}_{\Sigma}$ が成立する。 \blacksquare

命題 3.15 \mathcal{X}_{Σ} が空でなければ、 \mathcal{N}_{Σ} の開核 $\mathcal{N}_{\Sigma}^{\circ}$ と \mathcal{X}_{Σ} は等しい。

この命題は、凸開集合の閉包の開核が自身と一致することから示される。このことを示しておく。

補題 3.16 X を $N_{\mathbb{R}}$ 内の凸集合とする。このとき X の閉包 \bar{X} も凸集合である。

証明 \bar{X} の二点 \mathbf{x} と \mathbf{y} を勝手に取る。区間 [0,1] の任意の実数 λ に対し, $\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x})\in \bar{X}$ が成立することを示せば良い。 \mathbf{x} と \mathbf{y} が \bar{X} に属すことから,それぞれ \mathbf{x} と \mathbf{y} に収束するX内の点列 $(\mathbf{x}_n)_{n=1}^{\infty}$ と $(\mathbf{y}_n)_{n=1}^{\infty}$ が存在する。Xが凸であることから, $(\mathbf{x}_n+\lambda(\mathbf{y}_n-\mathbf{x}_n)\in X)$ が成立

し、 $(\mathbf{x}_n + \lambda(\mathbf{y}_n - \mathbf{x}_n))_{n=1}^{\infty}$ が $\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})$ に収束する X の点列であるから、 $\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}) \in \bar{X}$ である。ゆえに \bar{X} は凸である。

補題 3.17 X を $\mathbf{N}_{\mathbb{R}}$ 内の凸開集合とする。(-)° を開核作用素, (-)° を閉包作用素とするとき, $X = ((X)^{-})^{\circ}$ が成立する。

証明 X が空集合であるときは明らかであるから,X は空集合でないとする。X が開集合であることから, $X \subset ((X)^{-})^{\circ}$ は成り立つ。逆に $((X)^{-})^{\circ}$ の点 \mathbf{x} を取り,X の点 \mathbf{y} を一つ固定しておく。 \mathbf{x} が \bar{X} の内点であるから, $\bar{B}_{\varepsilon}(\mathbf{x}) \subset \bar{X}$ が成立するような正実数 ε が存在する。同様に,X が開集合であるから, $\bar{B}_{\delta}(\mathbf{y}) \subset X$ となるような正実数 δ が存在する。ここで, $\mathbf{N}_{\mathbb{R}}$ のノルム $|\cdot|$ を固定し, $\bar{B}_{\varepsilon}(\mathbf{x})$ が \mathbf{x} を中心とする半径 ε の閉球を表すとする。 \mathbf{e} を $\mathbf{x}-\mathbf{y}$ 方向の単位ベクトルとし, $\frac{1}{1+\varepsilon/|\mathbf{x}-\mathbf{y}|}$ を λ と置くとき,

$$\mathbf{x} = \lambda(\mathbf{x} + \epsilon \mathbf{e}) + (1 - \lambda)\mathbf{y}$$

が成立する。また $\mathbf{x}+\epsilon\mathbf{e}\in \bar{B}_{\epsilon}(\mathbf{x})$ であるから,この点は特に \bar{X} に属す。ゆえに $\bar{B}_{\frac{(1-\lambda)\delta}{\lambda}}(\mathbf{x}+\epsilon\mathbf{e})$ と X は交わるので,そのような点 \mathbf{z} を取る。またこのとき $B_{\frac{(1-\lambda)\delta}{\lambda}}$ の点 \mathbf{u} を用いて $\mathbf{z}=(\mathbf{x}+\epsilon\mathbf{e})+\mathbf{u}$ と表すことができる。ここまでの準備により,

$$\mathbf{x} = \lambda(\mathbf{x} + \epsilon \mathbf{e}) + (1 - \lambda)\mathbf{y}$$
$$= \lambda(\mathbf{z} - \mathbf{u}) + (1 - \lambda)\mathbf{y}$$
$$= \lambda\mathbf{z} + (1 - \lambda)\left(\mathbf{y} - \frac{\lambda}{1 - \lambda}\mathbf{u}\right)$$

となり、 $\left|\frac{\lambda}{1-\lambda}\mathbf{u}\right| \leq \delta$ であるから、 $\mathbf{y} - \frac{\lambda}{1-\lambda}\mathbf{u} \in X$ である。X が凸であるので、 $\mathbf{x} \in X$ である。 ゆえに $((X)^-)^\circ \subset X$ が成立する。 \blacksquare

命題 3.15 の証明 $\mathcal{K}_{\Sigma} \neq \emptyset$ なので命題 3.14 より $\mathcal{N}_{\Sigma} = \overline{\mathcal{K}_{\Sigma}}$ であるから, $\mathcal{K}_{\Sigma} = ((\mathcal{K}_{\Sigma})^{-})^{\circ} = \mathcal{N}_{\Sigma}^{\circ}$ が成立する。 \blacksquare

4 バーグマン扇上の凸区分的線型関数

 $M \in n+1$ 元集合 E 上の階数 r+1 のマトロイドとする。 \mathbb{Z}^E に対して基底 $\{\mathbf{e}_i \mid i \in E\}$ に関する標準内積 $\langle -, - \rangle$: $\mathbb{Z}^E \times \mathbb{Z}^E \to \mathbb{Z}$ を与える。このとき,格子 $\{\mathbf{u} \in \mathbb{Z}^E \mid \langle \mathbf{u}, \mathbf{e}_E \rangle \}$ を \mathbf{M}_E 3) とすれば, $\langle -, - \rangle$ は完全対 $\langle -, - \rangle$: $\mathbf{N}_E \times \mathbf{M}_E \to \mathbb{Z}$ を誘導する。

³⁾ E の元 i を固定すれば、 $\mathbf{M}_E = \bigoplus_{i \in E \setminus \{i\}} \mathbb{Z}(\mathbf{e}_i - \mathbf{e}_i)$ である。

命題 4.1 \mathcal{P} を $\mathcal{P}(M)$ の順序フィルターとし、 $\Sigma_{M,\mathcal{P}}$ の数値的非負錐を $\mathcal{N}_{M,\mathcal{P}}$ 、 $\Sigma_{M,\mathcal{P}}$ の豊富 錐を $\mathcal{X}_{M,\mathcal{P}}$ で表す。このとき次が成立する。

- (1) $\mathcal{K}_{M,\mathcal{D}} \neq \emptyset$ である。
- (2) $\mathcal{N}_{M,\mathcal{P}} = \bar{\mathcal{K}}_{M,\mathcal{P}}$ である。
- (3) $\mathcal{K}_{M,\mathcal{P}} = \mathcal{N}_{M,\mathcal{P}}^{\circ}$ である。

命題 4.1(1) の証明 $\Sigma_{M,\mathcal{P}} \subset \Sigma_{\mathcal{P}}$ であり、 $\Sigma_{\mathcal{P}}$ 上の強凸区分的線型関数 ℓ が系 3.10 より存在 する。すると $\ell|_{|\Sigma_{M,\mathcal{P}}|}$ が $\Sigma_{M,\mathcal{P}}$ 上の強凸区分的線型関数であるから、 $A^1(\Sigma_{M,\mathcal{P}})$ 豊富類を定める。 \blacksquare

命題 4.1(2) と (3) の証明 $\mathcal{K}_{M,\mathcal{P}} \neq \emptyset$ であるので、命題 3.14 と命題 3.15 から示される。 \blacksquare M のマトロイド構造の観点からすると E に余分な元が存在するときがあるので、そのような元を潰すことを考える。

定義 4.2 M の階数 1 のフラットすべてからなる集合を \bar{E} とする。M のフラット F に対し, $\{A \in \bar{E} \mid A \subset F\}$ を \bar{F} と置くとき, $\{\bar{F} \in 2^{\bar{E}} \mid F$ は M のフラットである $\}$ は \bar{E} 上のフラットの族を与える。こうして定まるマトロイドを \bar{M} で表し,M の組合せ論的構造と呼ぶ。 \bar{M} は単純,すなわち一元のサーキットも二元のサーキットも持たない。

注意 4.3 M と \bar{M} はマトロイドとして同型ではないが、 $\mathcal{P}(M)$ と $\mathcal{P}(\bar{M})$ は $F \mapsto \bar{F}$ により半順序集合として同型である。

この節の目標は、 $\mathcal{N}_{M,\mathcal{P}}$ と $\mathcal{K}_{M,\mathcal{P}}$ が、それぞれ $\mathcal{N}_{\bar{M},\bar{\mathcal{P}}}$ と $\mathcal{K}_{\bar{M},\bar{\mathcal{P}}}$ と同等であることを示すことにある。これ以降で、自然な全射写像 $\pi: E \to \bar{E}^{4}$ の切断 $\iota: \bar{E} \to E$ を一つ固定する。ここで $\mathrm{PL}_{\mathbb{Z}}(\Sigma_{M,\mathcal{P}})$ と $\mathrm{PL}_{\mathbb{Z}}(\Sigma_{\bar{M},\bar{\mathcal{P}}})$ の基底について言及しておく。

命題 4.4 \mathscr{D} を $\mathscr{P}(M)$ の順序フィルターとし、 \mathscr{P} を対応する $\mathscr{P}(\bar{M})$ の順序フィルターとする。 $\Sigma_{M,\mathscr{P}}$ に属す射線の最初の格子点すべてからなる集合を $V_{M,\mathscr{P}}$, $\Sigma_{\bar{M},\mathscr{P}}$ に属す射線の最初の格子点すべてからなる集合を $V_{M,\mathscr{P}}$ で表すことにする。このとき

 $V_{M,\mathcal{P}} = \{\mathbf{e}_i \mid i \ \mathrm{lt} \ \pi(i) \notin \mathcal{P} \ e \ \mathrm{att} \ E \ \mathrm{o} \ \mathrm{c} \ \mathrm{c} \ \mathrm{o} \ \mathrm{c} \ \mathrm{o} \ \mathrm{c} \} \cup \{\mathbf{e}_F \mid F \in \mathcal{P}\}$ $V_{\bar{M},\bar{\mathcal{P}}} = \{\mathbf{e}_A \mid A \ \mathrm{lt} \ A \notin \mathcal{P} \ e \ \mathrm{att} \ \mathrm{c} \ \mathrm{o} \ \mathrm{c} \ \mathrm{c} \ \mathrm{o} \ \mathrm{c} \ \mathrm{o} \ \mathrm{c} \} \cup \{\mathbf{e}_{\bar{F}} \mid F \in \mathcal{P}\}$

が成立する。

証明 省略する。 ■

命題 4.5 対応 $\mathbf{e}_i - \mathbf{e}_j \mapsto \mathbf{e}_{\pi(i)} - \mathbf{e}_{\pi(j)}$ により定まる \mathbf{M}_E から $\mathbf{M}_{\bar{E}}$ への全射群準同型を $\pi_{\mathbf{M}}$ で表すことにする。このとき,M のフラット F と \mathbf{M}_E の元 \mathbf{m} に対し, $\langle \mathbf{e}_F, \mathbf{m} \rangle = \langle \mathbf{e}_{\bar{F}}, \pi_{\mathbf{M}}(\mathbf{m}) \rangle$

⁴⁾ $\pi(i) = \operatorname{cl}_M(\{i\})$ である。

が成立する。

証明 F = E のときは $\mathbf{e}_F = 0$ かつ $\mathbf{e}_{\bar{F}} = 0$ であるから主張が正しい。 $F \neq E$ とし, $E \setminus F$ の元j を一つ固定する。すると $E \setminus \{j\}$ の各元i に対して, $i \in F$ が成立することと $\pi(i) \in F$ が成立することと同値である。また $\pi(i) \neq \pi(j)$ であるから,

$$\langle \mathbf{e}_{F}, \mathbf{e}_{i} - \mathbf{e}_{j} \rangle = \begin{cases} 1 & (i \in F \ \mathcal{O} \ \succeq \) \\ 0 & (i \notin F \ \mathcal{O} \ \succeq \) \end{cases}$$

$$= \begin{cases} 1 & (\pi(i) \in \overline{F} \ \mathcal{O} \ \succeq \) \\ 0 & (\pi(i) \notin \overline{F} \ \mathcal{O} \ \succeq \) \end{cases}$$

$$= \langle \mathbf{e}_{\overline{F}}, \mathbf{e}_{\pi(i)} - \mathbf{e}_{\pi(j)} \rangle$$

$$= \langle \mathbf{e}_{F}, \pi_{\mathbf{M}}(\mathbf{e}_{i} - \mathbf{e}_{j}) \rangle$$

が成立する。ゆえに

$$\langle \mathbf{e}_{F}, \mathbf{m} \rangle = \left\langle \mathbf{e}_{F}, \sum_{i \in E \setminus \{j\}} \langle \mathbf{e}_{i}, \mathbf{m} \rangle \left(\mathbf{e}_{i} - \mathbf{e}_{j} \right) \right\rangle$$

$$= \sum_{i \in E \setminus \{j\}} \langle \mathbf{e}_{i}, \mathbf{m} \rangle \left\langle \mathbf{e}_{F}, \mathbf{e}_{i} - \mathbf{e}_{j} \right\rangle$$

$$= \sum_{i \in E \setminus \{j\}} \langle \mathbf{e}_{i}, \mathbf{m} \rangle \left\langle \mathbf{e}_{\bar{F}}, \pi_{\mathbf{M}} \left(\mathbf{e}_{i} - \mathbf{e}_{j} \right) \right\rangle$$

$$= \left\langle \mathbf{e}_{\bar{F}}, \pi_{\mathbf{M}} \left(\sum_{i \in E \setminus \{j\}} \langle \mathbf{e}_{i}, \mathbf{m} \rangle \mathbf{e}_{i} - \mathbf{e}_{j} \right) \right\rangle$$

$$= \left\langle \mathbf{e}_{\bar{F}}, \pi_{\mathbf{M}} (\mathbf{m}) \right\rangle$$

と計算できる。■

系 4.6 対応

$$\{\pi(i) \notin \mathcal{P}$$
を満たす E の元 i に対し、 $x_{\mathbf{e}_i} \mapsto \mathbf{e}_a$

参考文献

[AHK18] Karim Adiprasito, June Huh, and Eric Katz. "Hodge theory for combinatorial geometries". In: **Ann. of Math. (2) 188**.2 (2018), pp. 381–452.

[Ful93] William Fulton. Introduction to toric varieties. 131. Annals of Mathematics Studies. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993, pp. xii+157.