

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME						
CENTRE NUMBER		CANDIDATE NUMBER				
MATHEMATICS			9709/13			
Paper 1 Pure Mathe	matics 1 (P1)	May/June 2017				
			1 hour 45 minutes			
Candidates answer	on the Question Paper.					
Additional Materials:	List of Formulae (MF9)					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

constant a.						
		•••••				
•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••		•••••			•••••	
••••••	••••••	••••••	••••••	••••••	••••••	•••••
		•••••				
		•••••				
•••••						
		•••••				•••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••		•••••				
•••••		•••••	••••••	••••••	••••••	•••••
•••••	•••••	•••••				
•••••						•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
•••••	•••••	•••••	•••••	••••••	••••••	•••••
•••••		•••••				
•••••	•••••	•••••	•••••		•••••	
		•••••				
•••••		•••••	•••••	•••••	•••••	•••••
			/			

2

(i)	Show that $S = 2 - r$.	[2
ii)	Find the set of possible values that S can take.	[2

•••••	•••••••••	•••••	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		••••••	•••••
•••••	•••••		••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••
											•••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••
											•••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••
								•••••			•••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••
								•••••			•••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
											•••••
•••••	••••••			•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••
•••••				•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••

4	Relative to an	n origin O , t	he position	vectors of	points A	and B are	e given	bv
•	reciail to to ai		ne position	, cotors or	Pomesia	una D un	51,011	-

$$\overrightarrow{OA} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}$.

The point *P* lies on *AB* and is such that $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$.

(i)	Find the position vector of P .	[3]
		•••••
(ii)	Find the distance <i>OP</i> .	[1]
(iii)	Determine whether OP is perpendicular to AB . Justify your answer.	[2]
		•••••

•	$\sin \theta + \cos \theta$	$\tan \theta$ may be expressed as \cos^2	$0 - 2 \sin \theta$.
			••••••
			•••••
			• • • • • • • • • • • • • • • • • • • •
			•••••
			•••••
			•••••
			•••••
			•••••

···	TT 1 41 41	$2\sin\theta + \cos\theta$	24 05 00 10 1000	[2]
(11)	Hence solve the equation	$\frac{1}{\sin\theta + \cos\theta} =$	$= 2 \tan \theta$ for $0^{\circ} < \theta < 180^{\circ}$.	[3]
		•••••		••••••
				•••••
				•••••
		• • • • • • • • • • • • • • • • • • • •		•••••
		• • • • • • • • • • • • • • • • • • • •		•••••
		• • • • • • • • • • • • • • • • • • • •		•••••
		• • • • • • • • • • • • • • • • • • • •		•••••
				•••••

••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••
						•••••					•••••	•••••
•••••			•••••	•••••				••••••	••••••	••••••	•	
•••••			••••••	•••••	•••••	•••••		•••••	••••••	••••••	•••••	•••••
						•••••					•••••	
••••••	•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •				•••••	• • • • • • • • • • • • • • • • • • • •	•••••
						•••••					•••••	
•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	,
	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
						•••••					•••••	
•••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••	••••••	•••••	••••••	•••••	•••••
	•••••		•••••	•••••		•••••		•••••			•••••	•••••
•••••		•••••	••••••	•••••	•••••	•••••	••••••	••••••	••••••	••••••	••••••	
	•••••		•••••			•••••		•••••			•••••	•••••
•••••	•••••		•••••		•••••	•••••					•••••	
						•••••					•••••	•••••
•••••	•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	••••••	••••••	•••••	•••••

 			•••••
		••••••	• • • • • • • • • • • • • • • • • • • •
 			•••••
 			•••••
 	•••••	••••••	•••••
 			•••••
			•••••

7

The diagram shows two circles with centres A and B having radii 8 cm and 10 cm respectively. The two circles intersect at C and D where CAD is a straight line and AB is perpendicular to CD.

(i)	Find angle <i>ABC</i> in radians. [1]
ii)	Find the area of the shaded region. [6]

	Find an expression for b in terms of a .	
•••		
•••		•••••
•••		
•••		
•••		••••
••		••••••
•••		
•••		
•••		
•••		••••••
 ii) <i>B</i>	R(10, -1) is a third point such that $AP = AB$. Calculate the coordinates of P .	the possible pos
 of	B(10, -1) is a third point such that $AP = AB$. Calculate the coordinates of P .	
of	f <i>P</i> .	
B of	f <i>P</i> .	
of	f <i>P</i> .	
of	f <i>P</i> .	
B of	f <i>P</i> .	
B of	f <i>P</i> .	
B of	f <i>P</i> .	
B of	f <i>P</i> .	
B of	f <i>P</i> .	
ii) <i>B</i> of	f <i>P</i> .	

function f is defined by $f(x) = 9x^2 - 6x + 6$ for $x \ge p$, where p is a constant.
State the smallest value of p for which f is a one-one function.

(iii)	For this value of p , obtain an expression for $f^{-1}(x)$, and state the domain of f^{-1} . [4]]
		•
		•
		•
		•
(:)	State the set of values of a few which the counties f(x) a has see solution	1
(IV)	State the set of values of q for which the equation $f(x) = q$ has no solution. [1]	J
		•
		•
		•
		•
		•

10 (a)

Fig. 1

Fig. 1 shows part of the curve $y = x^2 - 1$ and the line y = h, where h is a constant.

(i)	The shaded region is rotated through 360° about the y-axis . Show that the volume of revolution, V , is given by $V = \pi(\frac{1}{2}h^2 + h)$. [3]
(ii)	Find, showing all necessary working, the area of the shaded region when $h = 3$. [4]

(b)	
	h
	Fig. 2
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is increasing when the height of the water level is 3 cm. [4]
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is

	Find $f'(x)$.	
		•••••
		••••••
		•••••
		•••••
		••••
		••••••••••••
S	now given that $f''(0)$, $f'(0)$ and $f(0)$ are the first three terms respect	ctively of an ar
gı	ression.	
١.	Find the value of $f(0)$.	
,		
,		
,		•••••
,		
,		
,		
,		
,		

•••••
•••••
•••••
•••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.