Advanced Out-of-Distribution Detection Leveraging Vision Transformer with Adversarial Attack

JongHyeok Ahn, Leesang Youn, Minho Song

MS. Candidate

University of Seoul

Contents

- Introduction
- Related works
- Method
- Experiment

Limitation of prior Out-of-Distribution Detection

Introduction

Challenged of Near-OOD detection

- Near-OOD data is much more similar to ID data to make it harder for existing methods
- Distinguishing between CIFAR-10 and CIFAR-100 is challenging Near-OOD detection
- To overcome these limitations, we proposed the Attention Masking method to improve model to more accurately distinguish between ID and OOD data

Objective of Attention Masking OOD detection

Introduction

- Utilizing Vision Transformer(ViT) Models
- Identifying and preprocessing important patches
 - This approach allows the model to focus more on significant parts of the image
- Applying Mahalanobis distance calculation
- Near Out-of-Distribution image classification
 - Got improved results on CIFAR-10(in) vs. CIFAR-100(out) and vice versa

ENHANCING THE RELIABILITY OF OUT-OF-DISTRIBUTION IMAGE DETECTION IN NEURAL NETWORKS

Shiyu Liang

Coordinated Science Lab, Department of ECE University of Illinois at Urbana-Champaign sliang26@illinois.edu

R. Srikant

Coordinated Science Lab, Department of ECE University of Illinois at Urbana-Champaign rsrikant@illinois.edu

Yixuan Li

University of Wisconsin-Madison* sharonli@cs.wisc.edu

Input pre-processing(ODIN)

Related works

- In contrast to traditional FGSM (Fast Gradient Sign Method), which focuses on reducing the max probability by adding noise
- The approach in the referenced study introduces noise to increase the confidence score.
- The input pre-processing equation used in this method is:
 - $\hat{x} = x \epsilon \cdot sign(\nabla_x \log S(x)) = x \epsilon \cdot sign(\nabla_x L(x))$
 - We call this method as Reversed FGSM

Attention Masking for Improved Near Out-of-Distribution Image Detection

Minho Sim
School of Computing
KAIST
Daejeon, Republic of Korea
smh3946@kaist.ac.kr

Jongwhoa Lee
School of Computing
KAIST
Daejeon, Republic of Korea
jongwhoa.lee@kaist.ac.kr

Ho-Jin Choi
School of Computing
KAIST
Daejeon, Republic of Korea
hojinc@kaist.ac.kr

CLS Token for Attention Rollout Algorithm

Related works

Class Token(CLS Token)

- CLS Token is a special token added to the input of the ViT model that learns the summary information of the entire image.
- In each Transformer layer, the CLS token interacts with other patches through the attention mechanism, ultimately aggregating the important information of the entire image.

Attention Weights

Attention rollout heatmaps show how much the CLS token focuses on the image.
 This is what attention weights represent.

Visualization of Attention Mechanism

- Visualizing attention maps helps in understanding the model's decision-making process.
- The attention mechanism allows the model to focus on the most relevant parts of the image.

Masking strategy

Related works

In this paper the ratio was set to 20%

Masking Strategy	Patches to be Masked
Top-Ratio	Top N% of attention values
Bottom-Ratio	Bottom N% of attention values

How can we detect OODs?

- The feature is extracted from the penultimate layer to capture high-level abstract representations of the input
- Calculate the distance between the instance penultimate layer & mean penultimate vector of ID distribution.
 - Close distance: ID
 - Far distance: OOD

Which distance should we implement?

Mahalanobis distance based OOD detection

Mahalanobis distance is a measure of the distance between a point and a distribution.

- It is used to identify how far a point is from the mean of a distribution, normalized by the covariance of the distribution.
- In the context of OOD detection, it helps in distinguishing between ID and OOD samples based on their distance from the ID distribution.

Mahalanobis distance based OOD detection

- $\widehat{\mu_c} = \frac{1}{N_c} \sum_{i; y_i \in c} f(x_i)$, c: class label
- $\widehat{\Sigma} = \frac{1}{N} \sum_{c} \sum_{i:y_i=c} (f(x_i) \widehat{\mu_c}) (f(x_i) \widehat{\mu_c})^T$
- $M(x) = \min_{c} (f(x_i) \widehat{\mu_c})^T \widehat{\Sigma^{-1}} \cdot (f(x_i) \widehat{\mu_c})$
- Attention Masking effectively helps in differentiating ID and OOD samples.
- By focusing on the most relevant parts of the image, the model enhances its ability to distinguish between ID and OOD data
 - 1.Assume a Gaussian distribution for each of the 10 labels(Cifar-10)
 - 2. Calculate the Mahalanobis distance for each distribution
 - 3. Select the nearest label

Pseudo Labeling for input pre-processing

- Pseudo-labeling is applied in our method, where OOD(Outof-distribution) data is unknown.
- In our method, unknown data is pseudo-labeled with the nearest label.
- $\hat{x} = x \epsilon \cdot sign(\nabla_x L(x)), L(x)$: CE loss
 - Target is unknown for test dataset

Input pre-processing

- Reduce the distortion of the original image
- So, input pre-processing is applied to partial patches with attention scores strategies.
- The input pre-processing equation used in this method is:
 - $\hat{x} = x \epsilon \cdot sign(\nabla_x L(x))$, L(x): CE loss with pseudo label

Pipeline of Attention Adversarial OOD

- 1. The process begins with the input image. This is a raw image from the dataset
- 2. The input image is divided into smaller, non-overlapping patches. Each patch is processed individually by the Vision Transformer (ViT) model
- 3. The Vision Transformer model computes attention scores for each patch.
 - An attention map is generated, highlighting the areas of the image that the model focuses on the most.
- 4. Based on the attention scores, more important patches are identified and subtract adversarial noise.
 - This step enhances the model's focus on the significant parts of the image by removing or deemphasizing the less relevant areas.
- 5. Generate perturbed image
 - Adversarial image by fgsm attack
 - Adversarial image * masking + original image * (1 masking)

Pipeline of Attention Adversarial OOD

Pipeline of Attention Adversarial OOD

- 6. Input the masked image back into the ViT model to extract new feature vectors (F_{adv}) .
- 7. Mahalanobis Distance Calculation and classify ood
 - Mahalanobis distance is calculated using the feature vector extracted from the penultimate layer of the ViT model through which the masked image is passed.
 - Mahalanobis distance is used to measure how much a given feature vector deviates from the training data distribution
 - $D_M = \sqrt{(F_{adv} \mu)^T \sum^{-1} (F_{adv} \mu)}$

Pseudo code

methods

Require: Pre-trained ViT model, Input image I, OOD detection score threshold T, Perturbation ϵ Ensure: OOD Detection score 1: Step 1: Extract Attention Weights Initialize the ViT model with pre-trained weights Extract attention weights from all transformer layers for input I 4: Step 2: Compute Attention Map 5: $A_{\text{rollouto}} = I$ (Identity matrix) 6: for each layer L in ViT do Compute attention scores A_L for each patch in I $A_{\text{rollout}_L} = (A_L + I) \cdot A_{\text{rollout}_{L-1}}$ 9: end for 10: $A_{\text{final}} = A_{\text{rollout}_L}$ 11: Step 3: Identify Important Patches 12: Determine threshold T for masking based on attention scores 13: for each patch p in I do if Attention score of p > T then Point patch p end if 16: 17: end for 18: Step 4: Adversarial Noise 19: Set parameters: ϵ , iterations, τ 20: for each image I, label in dataset do Initialize image gradient for 1 to iterations do 22: 23: Compute loss and gradients Apply attention filter: $grad \leftarrow grad \times (attention > \tau)$ 24: Update image: $I \leftarrow I - \frac{\epsilon}{\text{iterations}} \cdot \text{sign}(grad)$ for pointed patches only 25: Clamp image to valid range 26: end for 27: Evaluate model accuracy with and without partial input preprocessing 29: end for 30: Step 5: Evaluate Updated Image 31: Forward perturbed image $I_{\text{perturbed}}$ through ViT model 32: Extract penultimate layer features F_{perturbed} 33: Calculate Mahalanobis distance D_M using $F_{perturbed}$ and training distribution statistics 34: Step 6: OOD Detection 35: Determine OOD score based on D_M 36: if $D_M >$ threshold then Classify I as OOD 38: else Classify I as ID 40: end if 41: return OOD Detection score

Algorithm 1 Differential masking OOD detection

Experiment

experiment

- Datasets: CIFAR-10(id), CIFAR-100(ood)
- Models: CIFAR-10-finetuned ViT
- Image Processing:
 - CIFAR images scaling 32x32 to 224x224
- Metrics: AUROC, AUPR_ood
- Experiment:
 - Near-OOD detection with fine-tuning
- Baseline method:
 - Mahalanobis Distance

Result

experiment

Table 1: Perturb Attention Top 50%

Metric	baseline	$\epsilon = 0.1$	$\epsilon = 0.01$	$\epsilon = 0.001$	$\epsilon = -0.001$	$\epsilon = -0.01$
auroc	0.9857	0.9371	0.9379	0.9846	0.9859	0.9348
aupr	0.9875	0.9465	0.945	0.9865	0.9877	0.9463

Table 2: Perturb Attention Bottom 50%

Metric	baseline	$\epsilon = 0.1$	$\epsilon = 0.01$	$\epsilon = 0.001$	$\epsilon = -0.001$	$\epsilon = -0.01$
auroc	0.9857	0.8607	0.8907	0.9844	0.9860	0.8544
aupr	0.9875	0.8782	0.9008	0.9846	0.9880	0.8991

baseline

experiment

Result

experiment

Compare two strategy top 50% and bottom 50%

Result

Baseline

Limitation

Limitation of method

- Dataset is too easy, making it difficult to confirm whether detection is being performed accurately. So we should try using a different dataset.
- The base performance of ViT is too high
- Result may depend on fine-tuned ViT model

Appendix

CLS Token for Attention Rollout Algorithm

appendix

Calculation of Attention Rollout

- Attention Rollout calculates the degree to which the CLS token attends to the patches at each layer.
- To do this, it sequentially multiplies the attention weights of each layer to compute the final attention map.

Conclusion

- The Attention Rollout Algorithm calculates how much the CLS token attends to each patch to generate the final attention map.
- This final map visually expresses the importance of each patch in the model's final output.
- In other words, it calculates and visualizes the importance of patches based on the attention given by the CLS token to each patch.

Attention rollout algorithm

appendix

- Proposed at "Quantifying Attention Flow in Transformers"
 - Visualizes and interprets how attention mechanisms in transformers contribute to model decisions.
 - Visualizes the effect of multi-head attention in a single graph.
- Attention rollout Visualize multi-head Attention`s effect by one graph

Attention rollout algorithm

appendix

- Process of Attention rollout
 - 1. Extract Attention Weights: $A_L = Attention Weights from Layer L$
 - For each transformer layer, extract the attention weights for all attention heads.
 - 2. Head Fusion: $A_L = \frac{1}{h} \sum_{k=1}^h A_L^k$ or $A_L = \max_{k=1}^h A_L^k$
 - Integrate the attention weights from multiple heads into a single matrix by averaging or taking the maximum values.
 - 3. Recursive Aggregation: $AttentionRollout_L = (A_L + I)AttentionRollout_{L-1}$
 - Here, A_{ij} represents how much the j-th patch in the previous layer attends to the i-th patch in the current layer.
 - AttentionRollout₀ is identity matrix
 - Calculate the aggregated attention rollout using the attention weights.
 - Starting from the final layer, recursively multiply the attention weights through the layers to aggregate the overall attention for each token.
 - 4. Normalize Attention Scores: $NormalizedAttention_L = \frac{AttentionRollout_L}{\sum_{k=1}^{N} AttentionRollout_{ij}}$
 - Normalize the aggregated attention scores to ensure they sum to 1, providing a clear distribution for focus
 - 5. Visualization
 - Visualize the result attention map