

Wide Area Cluster Monitoring with Ganglia

Federico Sacerdoti, Mason Katz, Matt Massie, David Culler

IEEE Clusters 2003 Conference Hong Kong

Introduction

- Monitoring Clusters with Ganglia
 - alive heartbeat,
 - cpu_load, mem_free,
 - bytes_in, bytes_out
- 1000-node cluster: done
- 10,000 nodes over groups of clusters: our problem

Contribution

• With our technique, you can monitor 1,000,000 nodes, not be overwhelmed, and still have meaningful data to show.

Contribution

- Monitored nodes can reside in one large cluster or many grid endpoints.
- Monitoring load is split between N ganglia agents.
- Introduce notion of a *Monitoring Tree* to handle load.

Ganglia Intro

- Ganglia has two components: Gmond (within cluster), Gmetad (between clusters).
- Gmond runs on each cluster node.
 - Lightweight
 - UDP multicast to publish "metrics"
 - Each gmond agent has global cluster knowledge.
 - Isomorphic output from all nodes allows for easy failover.

Ganglia Intro: Gmetad

- Gmetad runs on a management node.
 - Relatively Heavyweight.
 - Collects monitoring info from gmond.
 - Keeps metric histories over time.
 - Uses TCP to pull XML Ganglia data over the wide area.

Ganglia Metrics

• Metrics are monitored by gmond, presented by gmetad.

Monitoring Tree

- Experimental evidence: A single gmetad can only monitor ~1000 nodes before it is overwhelmed.
 - RRD metric history database maintenance is trouble spot.
- Solution: Tree structure.
 - Requires nodes to perform a data reduction.

Monitoring Tree

- Solution: Tree structure.
 - Requires nodes to perform a data reduction.
- Each gmetad does an average of its metrics
 - Only works for numeric metrics.
 - Provide sum, set size for each reduction.
- Enables Summary graphs

Delegation

- If we only have a summary, where is the raw data?
- Each summary metric graph is associated with an *authority pointer* (url) to a delegate gmetad.
- More detail is available from gmetads closer to the desired source in the monitoring tree.
 - Delegating work within tree is the main source of resource savings in our design
 - Less redundancy in system, in terms of metric history RRDs.

Query Support

- Ganglia web frontend: each page is generated using XML output from a local gmetad.
 - Queries are in the critical path
- Would like to return only relevant data for host views, etc.
 - XML parsing is slow.
 - Less stress on webserver
- New gmetad design introduces support for simple subtree queries.
 - XPath like
 - Implemented with Hash tables for O(1) lookup speed.

Query Support

- Cluster view, Host View.
 - Query support makes host view more efficient.

00:20

00:40

CPUs Total: Onyx Load last hour Hosts up: Hosts down: Avg Load (15, 5, 1m): 17%, 17%, 17% Localtime: ■ 1-min Load ■ Nodes ■ CPUs ■ Running Processes 2003-11-24 00:47 Onyx Memory last hour Cluster Load Percentages 50-75 (12.50%) 25-50 (12.50%) 0-25 (62.50%) 00:20 Memory Shared Memory Cached ■ Memory Buffered ■ Memory Swapped ■ Total In-Core Memory Onyx CPU last hour ■ User CPU ■ Nice CPU ■ System CPU □ Idle CPU Onvx Network last hou

🔲 In 🔲 Out

	Constant Metrics
Name	Value
cpu_num	2
cpu_speed	2193 MHz
mem_total	1030596 KB
mtu	1500 B
swap_total	1020116 KB

Experimental Setup

- Experiments to demonstrate the effectiveness of our monitoring technique.
 - 10-Node Linux cluster. Each node is 2-way P4 Xeon,
 - 2.2Ghz, 1G memory.
 - Removed unnecessary variables
 - Disk I/O
 - Network bandwidth/latency to monitored clusters
 - 12 monitored clusters of identical size

- Measured Average CPU utilization over 60 min of monitoring
 - Each gmetad runs on an otherwise unloaded cluster node
- 1-level graph set is older Gmetad design: 2.5.1
- *N-level* is new Gmetad 2.5.4 using techniques from paper.

Experimental Results

- Load Delegation: CPU usage per gmetad node in monitoring tree.
- Tree monitors 12 clusters of 100 nodes each.
- Scaling: CPU usage sum over all gmetads for various cluster sizes.

Discussion

- Monitoring load moved away from root gmetad, transferred towards the leaves of tree (*physics*, *attic*).
 - Shows scalability of design
- Leaf monitors (those closest to raw clusters) pay penalty for summarization tasks.
 - Higher load for leaf monitors, but acceptable.
- No bottleneck at root node as in previous design.
- Large speedup in webpage generation from query support as expected.

Limitations

- Trust model between Gmetad nodes in tree.
 - Must explicitly allow connections on both ends of edges.
 - MDS has a better trust model for essentially the same problem using Public Keys.
- No automatic failover between Gmetad monitors in the wide area.
 - Related to trust problem.
 - Difficult

Ganglia Demos

- iVDGL Physics Grid
 - 800+ nodes worldwide, use new Ganglia with described techniques to distribute load.
 - Been stable for 6+ months at this scale.
 - http://gocmon.uits.iupui.edu/ganglia-webfrontend/

Ganglia Demos

- PlanetLab
 - Oldest Ganglia Grid: 93 clusters worldwide.
 - http://www.planet-lab.org/ganglia.beta/

Ganglia Demos

- Rocks Monitoring Network
 - 450 nodes, regional grid. Uses newest Ganglia design.
 - http://meta.rocksclusters.org/Rocks-Network/

Conclusion

- Technique presented that enables scalable cluster monitoring over the wide area.
 - Delegation model with additive reductions of data at every node.
 - Automatic, pointer-based method of navigating tree.
- Experiments show validity of design.
- Used in real-world projects on many different scales with good results.
- Shortcomings include interesting areas of future work.

Authors

- Federico Sacerdoti, SDSC (NPACI)
 - Fds@sdsc.edu
- Matt Massie, Berkeley (NPACI). Original Ganglia author, lead developer.
 - Massie@cs.berkeley.edu
- Mason Katz, SDSC. Cluster/Grid group leader
 - Mjk@sdsc.edu
- Dr. David Culler, Berkeley.
 - Culler@cs.berkeley.edu

Ganglia available at: Ganglia.sourceforge.net

