21. Нарисуйте график или запишите выражение, описывающее напряжение на конденсаторе $u_c(t)$ при подключении RC - цепи к источнику постоянного напряжения E при одинаковом направлении тока i(t) и источника напряжения E.

При анализе подключения RC-цепи к источнику напряжения $u_0(t)$ (рис. 1), согласно сказанному выше, из уравнений, составленных для цепи после коммутации, —

Рис. 1

при замкнутом ключе

$$Ri + u_C = u_0(t);$$
 $i = C du_C / dt$

исключим ток и сведем их к одному уравнению относительно переменной состояния u_{C} :

$$RC du_C / dt + u_C = u_0(t)$$
.

Общее решение полученного неоднородного дифференциального уравнения имеет вид суммы частного решения неоднородного и общего решения однородного уравнений

$$u_C = u'_C + u''_C .$$

Для нахождения второго из них составим характеристическое уравнение $RC\lambda + 1 = 0$, корнем которого является $\lambda = -1/RC$. Общее решение однородного уравнения — свободная составляющая напряжения u''_C — соответствует цепи с исключенным источником

$$u_C'' = A e^{-t/RC} = A e^{-t/\tau}$$
,

где A — пока неопределенная константа; τ = RC — величина, имеющая размерность времени, характеризующая скорость протекания переходного процесса, так называемая *постоянная времени*.

Характер частного решения — вынужденной составляющей u'_C — определяется видом воздействующего на цепь напряжения источника $u_0(t)$. В простейших случаях подключения цепи к постоянному источнику $u_0(t) = U_0 = \text{const}$ и замыкания конденсатора на резистор, когда $u_0(t) = 0$, составляющую u'_C можно найти, руководствуясь следующими

соображениями. Вид общего решения $u_C = u'_C + A e^{-t/\tau}$ показывает, что u'_C представляет собой значение напряжения на конденсаторе, которое будет достигнуто в установившемся режиме после окончания переходного процесса