Comentarios de las Actividades

Bloque 2 Actividad 3

- 1. Los objetos siempre caen debido a la gravedad que el centro de la Tierra ejerce sobre ellos.
- 2. Cuando se "dejar caer" un objeto, su velocidad inicial es cero, y cuando se "avienta hacia abajo", el objeto es lanzado con cierta velocidad inicial.
- 3. El signo del valor de la aceleración de la gravedad es negativo cuando se lanza un objeto hacia arriba porque va en contra de la gravedad.
- 4. Al lanzar un objeto hacia arriba, este va perdiendo poco a poco su velocidad debido a la fuerza de rozamiento contra el viento debida a la gravedad, hasta detenerse por completo (*vf* = 0) cuando alcanza su máxima altura y comenzar su movimiento de regreso.

5.

a)

Datos	Fórmula y despejes	Sustitución
$v_{f} = \xi?$ $v_{i} = 0$ $t = 10 \text{ s}$ $g = 9.81 \text{ m/s}^{2}$	$g = \frac{g}{gt} = \frac{g}{t}$ $gt + v_i = v_f$	$v_{\rm f} = (9.8 \text{ m/s}^2)(10 \text{ s}) + 0 \text{ m/s}$

Resultado: $v_f = 98.1 \text{ m/s}$

b)

Datos	Fórmula y despejes	Sustitución
d = i? $v_i = 0 \text{ m/s}$ t = 8 s $g = 9.81 \text{ m/s}^2$	$d = v_i t + \frac{1}{2}gt^2$	$d = (0 \text{ m/s})(8 \text{ s}) + \frac{1}{2} (9.81 \text{ m/s}^2)$ $(8 \text{ s})^2$

Resultado: d = 313.92 m

Comentarios de las Actividades

c)

Datos	Fórmula y despejes	Sustitución
$d = 7 \text{ m}$ $v_i = 0 \text{ m/s}$ $t = \cite{1.5}$ $g = 9.81 \text{ m/s}^2$	$d = v_i t + \frac{1}{2}gt^2$ $d - vit = \frac{1}{2}gt^2$ $como v_i = 0, v_i t = 0$ $2d = gt^2 \frac{2d}{g} = t^2$ $t = \sqrt{\frac{d}{g}}$	$t = \sqrt{\frac{7 \text{ m}}{9.81 \frac{\text{m}}{\text{s}^2}}}$ $t = \sqrt{1.43 \text{ s}}$

Resultado: t = 1.19 s

d)

Datos	Fórmula y despejes	Sustitución
$v_i = 80 \text{ m/s}$ $v_f = 0 \text{ m/s}$ $g = -9.81 \text{ m/s}^2$ $d_{\text{máx}} = \cite{t}$?	$V_f = V_i - gt$ $V_f - V_i = -gt$ $t = \frac{V_f - V_i}{-g}$ $d = \left(\frac{V_i + V_f}{2}\right)t$	$t = \frac{0\frac{m}{s} \cdot (80\frac{m}{s})}{-9.81\frac{m}{s^2}} = 8.15 \text{ s}$ $d = \left(\frac{0\frac{m}{s} + 80\frac{m}{s}}{2}\right) (8.15 \text{ s})$

Resultado: t = 8.15 s d = 326 m