Guiões de Cálculo I - Agrupamento 2

Guião 1

Funções reais de variável real

LINGUAGEM DA MATEMÁTICA

REVISÕES SOBRE FUNÇÕES REAIS DE VARIÁVEL REAL

FUNÇÕES TRIGONOMÉTRICAS INVERSAS

TEOREMAS SOBRE FUNÇÕES CONTÍNUAS E DERIVÁVEIS

Paula Oliveira

2019/20

Universidade de Aveiro

Conteúdo

1	A li	A linguagem da Matemática				
	1.1	Definições e Teoremas	1			
	1.2	Conceitos de Supremo e Ínfimo	4			
		1.2.1 Axioma do Supremo	5			
1.3 Distância no Conjunto dos Números Reais						
		1.3.1 Aproximação de Números Reais	6			
		1.3.2 Vizinhança	6			
	1.4	A reta "acabada"	7			
	1.5	Topologia da reta \mathbb{R}	7			
		1.5.1 Conjunto aberto, conjunto fechado	9			
		1.5.2 Ponto de acumulação e ponto isolado	9			
	1.6	Soluções dos exercícios do capítulo	11			
2	Funções reais de variável real: recordar					
	2.1	Conceito de função	12			
	2.2	Função composta	13			
	2.3 Funções injetivas e funções sobrejetivas		14			
2.4 Funções monótonas			15			
2.5 A função inversa			15			
2.6 Funções pares e ímpares		Funções pares e ímpares	16			
	2.7 Função limitada		17			
	2.8 As funções exponencial e logarítmica		18			
2.9 Limites de funções reais de variável real		Limites de funções reais de variável real	18			
		2.9.1 Definição sequencial de limite	18			
		2.9.2 Limite usando vizinhanças	20			
		2.9.3 Limites infinitos e limites "no infinito"	21			
		2.9.4 Limites laterais	22			
		2.9.5 Propriedades dos limites	22			
		2.9.6 Teoremas sobre Limites	24			
	2.10	Funções contínuas	25			
		2.10.1 Propriedades das funções contínuas	26			

CONTEÚDO 2

		2.10.2	Assíntotas	27
	2.11	Funçõe	s deriváveis	28
		2.11.1	Derivada de uma função num ponto	29
		2.11.2	Reta tangente	29
	2.12	Noção	de diferencial	30
		2.12.1	Derivadas laterais	32
		2.12.2	Continuidade e derivabilidade	32
		2.12.3	Função derivada	32
		2.12.4	Limites laterais da função derivada	33
		2.12.5	Regras de derivação	33
		2.12.6	Derivadas de ordem superior	34
		2.12.7	Derivada da função composta	34
		2.12.8	Derivada da função inversa	35
	2.13	Soluçõe	es dos exercícios do capítulo	35
0		. ~		0.0
3		_	s trigonométricas	38
	3.1		es trigonométricas diretas	38
	2.2	3.1.1	As funções secante, cossecante e cotangente	39
	3.2	_	es trigonométricas inversas	41
			Função arco seno	41
			Função arco coseno	42
		3.2.3	Função arco tangente	44
		3.2.4	Função arco cotangente	45
	3.3		cios	46
	3.4	Soluçõe	es dos exercícios do capítulo	47
4	Teo	remas s	sobre funções contínuas e funções deriváveis	49
	4.1	Teorem	nas sobre funções contínuas	49
		4.1.1	Teorema de Bolzano	49
		4.1.2	Teorema de Weierstrass	50
	4.2	Teorem	nas sobre funções deriváveis	53
		4.2.1	O Teorema de Rolle	53
		4.2.2	O Teorema de Lagrange	55
		4.2.3	Máximos e mínimos locais	57
		4.2.4	Convexidade, concavidade e pontos de inflexão	59
	4.3	Teorem	na e regra de Cauchy	61
	4.4		es dos exercícios do capítulo	67

Capítulo 1

A linguagem da Matemática

Neste capítulo vamos fazer uma introdução à linguagem usada em Cálculo e recordar algumas propriedades da Lógica.

O intuito é ajudar o estudante a entender um texto matemático, a saber distinguir definições de teoremas e conseguir elaborar demonstrações simples.

1.1 Definições e Teoremas

A Matemática é constituída por **definições** e **axiomas**, aceites como verdadeiros, como por exemplo, "Um triângulo é um polígono com 3 lados", e por **teoremas**, que têm de ser demonstrados, como por exemplo o Teorema de Pitágoras e a fórmula resolvente da equação do 2° grau.

Para provar os teoremas usa-se a dedução, um raciocínio que tem uma única condição:

não se pode deduzir algo falso a partir de factos verdadeiros.

Um teorema é um facto verdadeiro que pode ser deduzido pelas leis da Lógica a partir de definições ou de outros teoremas. É frequente formular um teorema na forma "se P então Q", que se escreve " $P \Rightarrow Q$ " (lê-se "P implica Q").

A implicação material é importante, pois é a base do raciocínio matemático:

uma dedução é uma sequência de implicações materiais verdadeiras.

A tabela de verdade da implicação material é a seguinte

P	Q	$P \Rightarrow Q$
V	V	V
\mathbf{V}	\mathbf{F}	F
F	V	V
F	F	V

Repare-se que só não é possível deduzir uma proposição Falsa a partir de uma proposição Verdadeira, este é o único caso em que $P \Rightarrow Q$ é Falsa.

Exercício 1.1 Verifique que $P \Rightarrow Q$ e $\sim Q \Rightarrow \sim P$ têm a mesma tabela de verdade.

Observação 1.1. $\sim P$ significa a negação da proposição P, assim, $\sim V = F$ e $\sim F = V$.

A implicação material pode ser definida usando outros conetivos lógicos. Pela sua definição, a implicação material $P\Rightarrow Q$ só é falsa quando P é Verdadeira e Q é Falsa, ou seja, quando $\sim P$ é Falsa e Q é Falsa. Esta é exatamente a propriedade da disjunção de $\sim P$ e Q, logo

$$P \Rightarrow Q$$
 é equivalente a $\sim P \vee Q$.

Usando as leis de De Morgan pode-se verificar que

$$\sim (P \Rightarrow Q)$$
 é equivalente a $P \land \sim Q$.

Se A(x) e B(x) são condições, a implicação material $A(x) \Rightarrow B(x)$ também o é. No estudo do seu Conjunto Solução (C.S.) usa-se a expressão equivalente $\sim A(x) \vee B(x)$.

Exemplo 1.1. $x^2 > x + 2 \Rightarrow x^2 < 3x$ é equivalente a $\sim (x^2 > x + 2) \vee x^2 < 3x$, ou seja, $x^2 - x - 2 \le 0 \vee x^2 - 3x < 0$; então o seu C.S. em \mathbb{R} é $[-1, 2] \cup [0, 3] = [-1, 3]$.

Exercício 1.2 Indique o valor lógico das seguintes proposições:

- 1. $n \in \mathbb{N} \land 2n^2 > 3n + 5 \Rightarrow 2n < 5$;
- 2. $x \in \mathbb{R} \land x^2 + 1 < 0 \Rightarrow xe^x = \operatorname{sen} x$.

Observação 1.2. Não é fácil perceber o porquê de $F \Rightarrow V$ e $F \Rightarrow F$ serem verdadeiras! Mas "se uma uma andorinha é um mamífero então um cão é uma ave." ou "se uma uma andorinha é um mamífero então um cão ladra." são proposições verdadeiras...

A proposição "para todo o x, se $x \in \mathbb{N}$ então $x \in \mathbb{Z}$ " é equivalente a $\mathbb{N} \subseteq \mathbb{Z}$ (verdadeira) e assim a implicação material tem de ser verdadeira para x = -1 $(F \Rightarrow V)$ e para $x = \pi$ $(F \Rightarrow F)$.

Os enunciados de teoremas podem ser escritos sob a forma de implicação $H \Rightarrow T$ em que H e T são ditas, respetivamente, **hipótese** e **tese** do teorema. Supondo que a hipótese é verdadeira, para que a implicação seja verdadeira é necessário que a tese também seja verdadeira.

Um **exemplo** satisfaz a hipótese **e** satisfaz a tese. Um **contra-exemplo** satisfaz a hipótese **mas não** satisfaz a tese.

Uma implicação é **verdadeira** se não admitir contra-exemplos. Como os enunciados dos teoremas são verdadeiros por definição, segue-se que um teorema admite apenas exemplos — não admite contra-exemplos.

Ao contrário, uma implicação é **falsa** se admitir contra-exemplos, ou seja uma implicação que admitir um contra-exemplo **não** é um teorema.

Exemplo 1.2. A implicação "Se mn é par então m e n são pares" não pode ser um teorema:

- a implicação admite exemplos se m=2 e n=4 então a hipótese é V e a tese V;
- $\bullet\,$ mas admite também contra-exemplos se m=1 e n=2 a hipótese é V e a tese F.

A **recíproca** de $A \Rightarrow B$ é $B \Rightarrow A$. Mesmo que $A \Rightarrow B$ seja verdadeira, $B \Rightarrow A$ pode não o ser. Por exemplo,

O enunciado "Se m e n são pares então mn é par" é um teorema, contudo, a sua recíproca, "Se mn é par então m e n são pares", não é um teorema.

Existem situações em que $A \Rightarrow B$ e $B \Rightarrow A$ são ambas verdadeiras. Nestes casos escreve-se $A \Leftrightarrow B$ (lê-se "A se e só se B" ou "A é equivalente a B").

Exemplo 1.3. "O número mn é par se e só se m ou n é par".

Se $A \Leftrightarrow B$ for V, A e B são **equivalentes** pois têm o mesmo valor lógico para toda a concretização das variáveis.

Num teorema $H \Rightarrow T$, é suficiente que a hipótese seja verdadeira para se poder afirmar que a tese é verdadeira; diz-se que H é **condição suficiente** para T.

Exemplo 1.4. "n é par" é condição suficiente para "2n é par".

Observação 1.3. Quando a hipótese for falsa não se pode concluir que é falsa a tese!

Note-se que, no exemplo anterior, mesmo que n seja ímpar, 2n é par.

No teorema $H \Rightarrow T$, para se garantir que a hipótese é verdadeira é necessário que a tese seja verdadeira; diz-se que T é **condição necessária** para H.

Exemplo 1.5. "m é múltiplo de 2" é condição necessária para "m é múltiplo de 4". Contudo, a condição "m é múltiplo de 2" não é suficiente para "m é múltiplo de 4", já que 6 satisfaz a primeira condição mas não satisfaz a segunda.

Se o enunciado for $H \Leftrightarrow T$, H é **condição necessária e suficiente** para T.

Exemplo 1.6. "n é par" é condição necessária e suficiente para "3n é par".

Para provar que um teorema é verdadeiro é preciso demonstrar que só admite exemplos, ou seja, que não admite contra-exemplos.

Observação 1.4. Mostrar alguns exemplos **não prova nada!** O enunciado "Se n é par então n+1 é primo" é verdadeiro para n=2,4,6 (três exemplos)... então é um teorema?

Podem fazer-se vários tipos de demonstrações. Vamos aqui referir os mais usados em Cálculo.

Na demonstração direta garante-se que só existem exemplos.

A partir da hipótese chega-se à tese por deduções sucessivas. Assim, sempre que a hipótese é verdadeira, também o é a tese de cada implicação até ao fim.

Exercício resolvido 1.1. Prove que "se $n \in \mathbb{N}$ é múltiplo de 9 então n é múltiplo de 3".

Resolução: Seja n um número natural arbitrário.

$$n$$
 é múltiplo de $9 \Rightarrow \exists k \in \mathbb{N} : n = 9k$
 $\Rightarrow n = 3(3k)$
 $\Rightarrow \exists h \in \mathbb{N} : n = 3h$ $(h = 3k)$
 $\Rightarrow n$ é múltiplo de 3.

Exercício 1.3 Mostre que

- 1. A soma de dois números ímpares é par.
- 2. A soma de um número par e de um número ímpar é ímpar.
- 3. O produto de números ímpares é um número ímpar.

A demonstração indireta de $H \Rightarrow T$ é uma demonstração direta de $\sim T \Rightarrow \sim H$.

As duas implicações são equivalentes mas a demonstração direta da segunda garante que se $\sim T$ é V, também $\sim H$ é V, ou seja, se a tese é falsa a hipótese não pode ser verdadeira.

Na demonstração indireta garante-se que **não existem contra-exemplos**.

Exemplo 1.7. Prove, no conjunto dos números naturais, que "se m^2 é ímpar então m é ímpar". A implicação dada é $H \Rightarrow T$, onde a hipótese é $H = "m^2$ é ímpar" e a tese é T = "m é ímpar", que é equivalente a

 $\sim T \Rightarrow \sim H$: "se mnão é ímpar então m^2 não é ímpar", ou seja,

"se
$$m$$
 é par então m^2 é par"

Seja m um número natural par qualquer.

$$m \in \text{par} \Rightarrow \exists k \in \mathbb{N} : m = 2k$$

 $\Rightarrow m^2 = (2k)^2 = 4k^2 = 2(2k^2)$
 $\Rightarrow \exists r \in \mathbb{N} : m^2 = 2r \qquad (r = 2k^2)$
 $\Rightarrow m^2 \in \text{par}$

Exercício 1.4 Mostre que:

- 1. Se m é impar então m^2 é impar .
- 2. O produto de dois números é par se e só se pelo menos um deles é par.
- 3. Se uma função é monótona em sentido estrito então é injetiva.

Na demonstração por redução ao absurdo garante-se que os contra-exemplos são contradições.

Para provar que $H \Rightarrow T$, mostra-se que a sua negação é falsa, ou seja, que

$$\sim (H \Rightarrow T) \Leftrightarrow H \land \sim T$$
é uma contradição

Observação 1.5. Se não houver contra-exemplos $H \wedge \sim T$ é uma condição impossível.

Exemplo 1.8. Prove que "se n^2 é par então n é par".

A hipótese é H: " n^2 é par". A tese afirma que n é par, logo a sua negação é $\sim T$: "n é ímpar". Assume-se portanto que $H \land \sim T$, ou seja, n^2 é par $\land n$ é ímpar. Então:

- $n^2 + n$ é impar, porque é a soma de um número par com um número impar;
- $n^2 + n = n(n+1)$ é par porque é o produto de um número par (n+1) por outro número.

Então, o número $m = n^2 + n$ é simultaneamente par e ímpar, o que é um absurdo.

Exercício 1.5

Demonstre, por redução ao absurdo, que se "n é múltiplo de 6 então n é múltiplo de 3".

Exercício 1.6 Supondo que f é monótona crescente, mostre que $\forall x_1, x_2 \in D_f$, $f(x_1) < f(x_2) \Rightarrow x_1 \le x_2$.

1.2 Conceitos de Supremo e Ínfimo

Seja A um subconjunto não vazio de \mathbb{R} , $A \subseteq \mathbb{R}$. Diz-se que A é um conjunto **majorado** se

$$\exists M \in \mathbb{R} : a \leq M, \ \forall a \in A,$$

(existe $M \in \mathbb{R}$ tal que $a \leq M$, qualquer que seja $a \in A$)

onde M é um **majorante** de A.

Ao menor dos majorantes dá-se a designação de *supremo* de A, i.e., $s \in \mathbb{R}$ diz-se o *supremo* de A, sup A, se as duas condições são satisfeitas:

- $\forall a \in A, \ a \leq s \ (s \in \text{majorante de } A);$
- $\forall \varepsilon > 0, \exists b \in A : s \varepsilon < b \ (s \text{ \'e o menor dos majorantes de } A).$

Diz-se que A é um conjunto minorado se

$$\exists m \in \mathbb{R} : m < a, \ \forall a \in A,$$

(existe $m \in \mathbb{R}$ tal que $a \geq m$, qualquer que seja $a \in A$)

onde m é um **minorante** de A.

Ao maior dos minorantes dá-se a designação de *ínfimo* de A, i.e., $i \in \mathbb{R}$ diz-se o *ínfimo* de A, inf A, se as duas condições são satisfeitas:

- $\forall a \in A, i \leq a \ (i \text{ \'e minorante de } A);$
- $\forall \varepsilon > 0, \exists b \in A : b < i + \varepsilon \ (i \notin o \text{ maior minorante de } A).$

1.2.1 Axioma do Supremo

Considere-se o conjunto dos números racionais cujo quadrado é menor do que 2:

$$A = \left\{ x \in \mathbb{Q} : x^2 < 2 \right\}.$$

No universo \mathbb{R} o conjunto A tem supremo, sup $A=\sqrt{2}$, contudo, como $\sqrt{2}\notin\mathbb{Q}$, no universo \mathbb{Q} o conjunto A não tem supremo.

Traduzimos este resultado dizendo que o conjunto dos números reais é **completo** e o conjunto dos números racionais é **incompleto**.

Axioma 1.1. Axioma do Supremo: Qualquer subconjunto de \mathbb{R} majorado (resp. minorado) tem supremo (resp. ínfimo) em \mathbb{R} .

Sejam $s = \sup A$ e $i = \inf A$. Se $s \in A$, s diz-se **máximo** de A; se $i \in A$, i diz-se **mínimo** de A.

Exemplo 1.9. Seja $A =]-\sqrt{3}, 4] \cup \{3\pi\}.$

O supremo de A é 3π e como o supremo pertence a A, 3π é máximo do conjunto A.

O ínfimo de $A \in -\sqrt{3}$, contudo, como $-\sqrt{3}$ não pertence a A, o conjunto A não tem mínimo.

1.3 Distância no Conjunto dos Números Reais

A distância entre dois números reais é dada por d(a,b) = |a-b| e satisfaz os seguintes axiomas:

i.
$$d(a,b) \ge 0, \ \forall a,b \in \mathbb{R}$$
 $(|a-b| \ge 0)$

iii.
$$d(a,b) = d(b,a), \forall a,b \in \mathbb{R}$$

 $(|a-b| = |b-a|)$

ii.
$$d(a,b) = 0$$
 se e só se $a = b$
 $(|a-b| = 0 \Leftrightarrow a = b)$

iv.
$$d(a,b) \le d(a,c) + d(b,c), \forall a,b,c \in \mathbb{R}$$

 $(|a-b| \le |a-c| + |b-c|)$

Observação 1.6. A distância de qualquer ponto a zero é d(a,0) = |a-0| = |a|. Então, pelo axioma (iv), obtemos a desigualdade triangular:

$$|a - (-b)| \le |a - 0| + |-b - 0| \Leftrightarrow |a + b| \le |a| + |-b| \Leftrightarrow |a + b| \le |a| + |b|.$$

Observação 1.7. Se $a \in \mathbb{R}$ e $\delta > 0$, dizer que $d(x, a) < \delta$ significa que $x \in]a - \delta, a + \delta[$ ou ainda que $a - \delta < x < a + \delta.$

Assim, o conjunto dos pontos cuja distância a 3 é inferior a 2, d(x,3) < 2, é

$$A = \{x \in \mathbb{R} : |x - 3| < 2\} = \{x \in \mathbb{R} : -2 < x - 3 < 2\} = \{x \in \mathbb{R} : -2 + 3 < x < 2 + 3\} =]1, 5[.$$

1.3.1 Aproximação de Números Reais

Definição 1.1. Sejam z um número real e δ um número real positivo $(\delta > 0)$. Diz-se que o número real y é uma **aproximação** de z com erro inferior a δ se a distância entre z e y é inferior a δ ,

$$d(z,y) = |z-y| < \delta$$

Exemplo 1.10. 1. Seja $z = \sqrt{2} = 1.414213562...$

- 1.4 é uma aproximação de $\sqrt{2}$ com erro inferior a 0.1: $|\sqrt{2}-1.4|<0.1$
- 1.414 é uma aproximação de $\sqrt{2}$ com erro inferior a 10^{-3} : $|\sqrt{2}-1.414| < 0.001$

1.414 é uma melhor aproximação de $\sqrt{2}$ do que 1.4!

2. O intervalo de números reais [2.998, 3.002] pode ser representado na forma |x-3| < 0.002.

Exercício resolvido 1.2. Determine um número real r tal que,

"Se a distância de x a 2 é menor do que r e a distância de y a 6 é menor do que r, então a distância de x+y a 8 é menor do que 0.1."

Traduzindo o problema em linguagem matemática temos:

$$\begin{vmatrix} |x-2| < r \\ |y-6| < r \end{vmatrix} \Longrightarrow |(x+y) - 8| < 0.1$$

Como $|(x+y)-8| = |(x-2)+(y-6)| \le |x-2|+|y-6| < r+r = 2r$, basta que 2r = 0.1, ou seja, r = 0.05 (naturalmente que se r for superior a este valor a desigualdade mantém-se válida).

1.3.2 Vizinhança

Uma *vizinhança de um ponto* $a \in \mathbb{R}$ é um intervalo aberto, contendo o ponto a. Usualmente denota-se por $\mathcal{V}(a)$.

No âmbito desta disciplina vamos considerar apenas **vizinhanças centradas no ponto** a, isto é, intervalos do tipo $|a - \delta, a + \delta|$, com $\delta > 0$.

Definimos ainda:

- *vizinhança esquerda* de a, que se denota por $\mathcal{V}(a^-)$, como sendo um intervalo $]a \delta, a[$, com $\delta > 0$.
- *vizinhança direita* de a, que se denota por $\mathcal{V}(a^+)$, como sendo um intervalo $]a, a + \delta[$, com $\delta > 0$.

É usual dizer que o raio da vizinhança $]a - \delta, a + \delta[$ é δ ou que se trata de uma vizinhança de raio δ de a. Se for necessário especificar o raio da vizinhança usam-se as notações $\mathcal{V}_{\delta}(a)$, $\mathcal{V}_{\delta}(a^{-})$ e $\mathcal{V}_{\delta}(a^{+})$.

Exemplo 1.11. • V(2) =]0, 4[=]2 - 2, 2 + 2[, sendo $\delta = 2;$

- V(2) =]1.99, 2.01[=]2 0.01, 2 + 0.01[, sendo $\delta = 0.01$;
- $\mathcal{V}(0^-) =]-0.001, 0[$, sendo $\delta = 0.001;$
- $\mathcal{V}(100^+) =]100, 100.05[$, sendo $\delta = 0.05$.

1.4 A reta "acabada"

Se adicionarmos ao conjunto dos números reais os elementos $+\infty$ e $-\infty$ obtemos um novo conjunto, designado por **reta acabada**, $\widetilde{\mathbb{R}}$,

$$\widetilde{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}.$$

A noção de ordem estende-se naturalmente a este conjunto definindo

$$-\infty < x < +\infty, \forall x \in \mathbb{R}.$$

Podemos, parcialmente, estender a aritmética de \mathbb{R} a $\widetilde{\mathbb{R}}$. Se $a \in \widetilde{\mathbb{R}}$, então:

$$a + \infty = +\infty \quad \text{se } a \neq -\infty, \qquad \qquad a - \infty = -\infty \quad \text{se } a \neq +\infty$$

$$a \times (+\infty) = \begin{cases} +\infty & \text{se } a > 0 \\ -\infty & \text{se } a < 0 \end{cases} \qquad a \times (-\infty) = \begin{cases} -\infty & \text{se } a > 0 \\ +\infty & \text{se } a < 0 \end{cases}$$

$$a^{+\infty} = \begin{cases} +\infty & \text{se } a > 1 \\ ND & \text{se } a = 1 \\ 0 & \text{se } 0 < a < 1 \end{cases} \qquad a^{-\infty} = \begin{cases} 0 & \text{se } a > 1 \\ ND & \text{se } a = 1 \\ +\infty & \text{se } 0 < a < 1 \end{cases}$$

Note-se que as expressões $+\infty - \infty$, $1^{\pm\infty}$ e $0 \times (\pm \infty)$ não estão definidas e portanto não têm qualquer significado (dizem-se indeterminações).

Vizinhanças de ∞ :

- O conjunto $b, +\infty$, com $b \in \mathbb{R}$ é uma vizinhança esquerda de $+\infty$;
- O conjunto $]-\infty, b[$ com $b \in \mathbb{R}$ é uma vizinhança direita de $-\infty$.

1.5 Topologia da reta $\mathbb R$

Nesta secção vamos referir algumas noções que no 2^{o} semestre serão definidas em \mathbb{R}^{n} .

Complementar - O complementar de um conjunto $A \subseteq \mathbb{R}$, denotado por $\mathbb{R} \backslash A$, é o conjunto de todos os elementos que estão em \mathbb{R} e não estão em A.

Interior - $a \in A$ diz-se ponto interior do conjunto $A \subseteq \mathbb{R}$, se <u>existe</u> uma vizinhança $\mathcal{V}(a)$ de a, contida em A, $\mathcal{V}(a) \subseteq A$, isto é, $a \in A$ é ponto interior a A se e só se

$$\exists \delta > 0: \ \underbrace{]a - \delta, a + \delta[}_{\mathcal{V}_{\delta}(a)} \subseteq A.$$

O interior de A é o conjunto de todos os pontos interiores de A e denota-se por Int(A).

Exterior - $a \in \mathbb{R} \setminus A$ diz-se ponto exterior a $A \subseteq \mathbb{R}$ se existe uma vizinhança $\mathcal{V}(a)$ de a contida no complementar de A, $\mathcal{V}(a) \subseteq \mathbb{R} \setminus A$, isto é,

$$\exists \delta > 0 :]a - \delta, a + \delta [\subseteq \mathbb{R} \setminus A.$$

 $a \in \mathbb{R}$ é ponto exterior de A se e só se é ponto interior de $\mathbb{R} \setminus A$. (Porquê?)

O exterior de A é o conjunto de todos os pontos exteriores de A e denota-se por Ext(A).

Fronteira - Um ponto $a \in \mathbb{R}$ diz-se ponto fronteira de $A \subseteq \mathbb{R}$ se toda a vizinhança de a interseta A e interseta o complementar de A ($\mathbb{R} \setminus A$), isto é,

$$\forall \delta > 0, |a - \delta, a + \delta[\cap A \neq \emptyset \land |a - \delta, a + \delta[\cap \mathbb{R} \setminus A \neq \emptyset.$$

 $a \in \mathbb{R}$ é ponto fronteira de A se e só se é ponto fronteira de $\mathbb{R} \setminus A$. (Porquê?)

A fronteira de A é o conjunto de todos os pontos fronteira de A e denota-se por Frt(A).

Fecho (ou aderência) - O conjunto formado pelos pontos fronteira e pelos pontos interiores de $A \subseteq \mathbb{R}$ designa-se por fecho ou aderência de A e denota-se por \overline{A} , $\overline{A} = \text{Int}(A) \cup \text{Frt}(A)$. Os pontos de \overline{A} designam-se por pontos aderentes ou pontos de aderência.

Exemplo 1.12. Seja $A = [-1, 0] \cup [0, 1] \cup [\pi, 5]$.

- -1 e 0 não são pontos interiores a A nem a $\mathbb{R}\backslash A$;
- $-\frac{\sqrt{2}}{2}$, 0.5 e 4 são pontos interiores a A;
- $Int(A) =]-1,0[\cup]0,1[\cup]\pi,5[;$
- $\bullet \ \ \mathbb{R} \backslash A \ = \]-\infty, -1[\ \cup \ \{0\} \ \cup \ [1,\pi[\ \cup \ [5,+\infty[;$
- $\operatorname{Ext}(A) =]-\infty, -1[\cup]1, \pi[\cup]5, +\infty[;$
- $Frt(A) = \{-1, 0, 1, \pi, 5\};$
- $\overline{A} = [-1, 1] \cup [\pi, 5].$

Exercício 1.7 Seja $A =]-\infty,1] \cup \{3\} \cup [10,35]$. Determine:

- O interior de A;
- O complementar de A;
- O exterior de A;
- A fronteira de A;
- O fecho de A.

1.5.1 Conjunto aberto, conjunto fechado

Aberto - Um conjunto $A \subseteq \mathbb{R}$ diz-se aberto em \mathbb{R} se A = Int(A).

Fechado - Um conjunto $A \subseteq \mathbb{R}$ diz-se *fechado* em \mathbb{R} se o seu complementar é aberto, isto é, se $\mathbb{R} \setminus A = \operatorname{Ext}(A)$.

Exemplo 1.13. São conjuntos abertos os conjuntos $]-1,4[;]2,3[\cup]3,5[;]2,+\infty[;\mathbb{R};\emptyset.$

São conjuntos fechados os conjuntos [-1,4]; $]-\infty,3]$; $[2,3]\cup[4,+\infty[$; \mathbb{R} ; \emptyset .

Os conjuntos [-1, 3[e]4, 7] não são abertos nem fechados.

Observação 1.8. \mathbb{R} e \emptyset são conjuntos abertos e fechados.

Proposição 1.1. Um conjunto $A \subseteq \mathbb{R}$ é fechado em \mathbb{R} se e só se coincide com o seu fecho, i.e., $A = \overline{A}$. Equivalentemente, um conjunto $A \subseteq \mathbb{R}$ é fechado se e só se contém a sua fronteira, i.e., $A \supseteq \operatorname{Frt}(A)$.

Exemplo 1.14. Seja $A = [2, 8] \cup \{0, 1, 9\}.$

- Int(A) =]2, 8[
- $Frt(A) = \{0, 1, 2, 8, 9\}$
- $\overline{A} = Int(A) \cup Frt(A) = A$

Logo, A é um conjunto fechado.

1.5.2 Ponto de acumulação e ponto isolado

Seja $A \subseteq \mathbb{R}$. Um ponto $a \in \mathbb{R}$ diz-se **ponto de acumulação** de A se toda a vizinhança de a, $\mathcal{V}(a)$, interseta $A \setminus \{a\}$:

$$\forall \mathcal{V}(a), \mathcal{V}(a) \cap A \setminus \{a\} \neq \emptyset$$

Usando as vizinhanças centradas no ponto, podemos escrever a definição de ponto de acumulação na forma:

 $a \in \mathbb{R}$ é ponto de acumulação de A se e só se $\forall \delta > 0$, $|a - \delta, a + \delta| \cap A \setminus \{a\} \neq \emptyset$.

Ao conjunto dos pontos de acumulação de A chama-se **derivado** de A e denota-se por A'.

Um ponto $a \in A$ diz-se **ponto isolado de** A se existe uma vizinhança de a, $\mathcal{V}(a)$, que interseta A apenas no ponto a:

$$\exists \mathcal{V}(a) : \mathcal{V}(a) \cap A = \{a\}.$$

Usando de novo as vizinhanças centradas no ponto, podemos dizer que

$$a \in A$$
 é um ponto isolado de A se e só se $\exists \delta > 0 : |a - \delta, a + \delta| \cap A = \{a\}.$

Observe que $A' \cap \{\text{pontos isolados de } A\} = \emptyset$ e que $A' \cup \{\text{pontos isolados de } A\} = \overline{A}$.

Exemplo 1.15. Seja $A =]-\sqrt{7},3] \cup \{\pi\}$. Então o derivado de A é $A' = [-\sqrt{7},3]$ e π é o único ponto isolado de A. o fecho de A é o conjunto $[-\sqrt{7},3] \cup \{\pi\}$.

Observação 1.9. Em \mathbb{R} , o ponto $+\infty$ (resp. $-\infty$) pode ser considerado ponto de acumulação e de aderência de todo o subconjunto de \mathbb{R} superiormente (resp. inferiormente) ilimitado.

Por exemplo, se $A = [3, +\infty[$ podemos dizer que, em $\widetilde{\mathbb{R}}$, $a = +\infty$ é um ponto de acumulação e um ponto de aderência de A.

Proposição 1.2. Se $A \subseteq \mathbb{R}$, verificam-se as seguintes propriedades:

1.
$$Int(A) \subseteq A$$
;

2.
$$\operatorname{Int}(A) \cap \operatorname{Frt}(A) = \operatorname{Ext}(A) \cap \operatorname{Frt}(A) = \emptyset;$$

3.
$$\operatorname{Int}(A) \cup \operatorname{Frt}(A) \cup \operatorname{Ext}(A) = \mathbb{R}$$
;

4.
$$\overline{\operatorname{Int}(A)} \subseteq A'$$
;

5.
$$Int(A) \cap Ext(A) = \emptyset$$
:

6.
$$\overline{A} = A \cup \operatorname{Frt}(A)$$
;

7.
$$\operatorname{Ext}(A) = \operatorname{Int}(\mathbb{R} \setminus A);$$

8. O limite de uma sucessão convergente é um ponto de aderência do conjunto dos seus termos, i.e.,

$$Se \ l = \lim_{n \to +\infty} u_n \ ent\tilde{ao} \ l \in \overline{\{u_n : n \in \mathbb{N}\}}$$

Exemplo 1.16. As propriedades da proposição 1.2 aplicadas aos conjuntos

1.
$$A = [2, 3[:$$

•
$$\operatorname{Int}(A) =]2,3[\subset A]$$

•
$$Frt(A) = \{2, 3\}$$

•
$$\mathbb{R} \setminus A =]-\infty, 2[\cup[3, +\infty[$$

•
$$\operatorname{Ext}(A) =]-\infty, 2[\cup]3, +\infty[=\operatorname{Int}(\mathbb{R}\setminus A)$$

•
$$\overline{\operatorname{Int}(A)} = [2, 3]$$

•
$$\overline{A} = Int(A) \cup Frt(A) = [2, 3] \cup \{2, 3\} = [2, 3]$$

•
$$A' = [2, 3]$$

3 é ponto de acumulação de A porque qualquer vizinhança de 3 interseta A.

$$\forall \delta > 0, |3 - \delta, 3 + \delta| \cap A \neq \emptyset.$$

Repare que como $3 \notin A$ não é necessário escrever interseta $A \setminus \{3\}$.

- Todos os pontos de A são pontos de acumulação de A.
- A não tem pontos isolados.

2. e
$$B = \left\{ x_n = 5 + \frac{1}{n} : n \in \mathbb{N} \right\}$$
:

•
$$\operatorname{Int}(B) = \emptyset \subseteq B$$

•
$$\operatorname{Frt}(B) = B \cup \{5\}$$

Note-se que 5 é o limite da sucessão $(x_n)_n$.

•
$$\mathbb{R} \setminus B =]-\infty, 5] \cup \left\{ \left[5 + \frac{1}{n+1}, 5 + \frac{1}{n} \right[: n \in \mathbb{N} \right\} \cup]6, +\infty[$$

•
$$\operatorname{Ext}(B) = \mathbb{R} \setminus (B \cup \{5\}) = \operatorname{Int}(\mathbb{R} \setminus B)$$

•
$$\overline{\operatorname{Int}(B)} = \emptyset$$

•
$$\overline{B} = \operatorname{Int}(B) \cup \operatorname{Frt}(B) = B \cup \{5\}$$

• $B' = \{5\}$

5 é ponto de acumulação de B porque qualquer vizinhança de 5 contém pontos de B:

$$\forall \epsilon > 0, \exists x_n \in B : x_n \in]5 - \epsilon, 5 + \epsilon[$$

As condições $x_n \in]5 - \epsilon, 5 + \epsilon[$ e $|x_n - 5| < \epsilon$ são equivalentes. Assim,

$$|x_n - 5| < \epsilon \Leftrightarrow \frac{1}{n} < \epsilon \Leftrightarrow n > \frac{1}{\epsilon}$$

e se, por exemplo, $n = \left[\frac{1}{\epsilon}\right] + 1^1, x_n \in B \cap]5 - \epsilon, 5 + \epsilon[;$

 $\bullet\,$ Todos os pontos de Bsão pontos isolados, porque encontramos sempre uma vizinhança de cada um deles que só interseta o conjunto B no próprio ponto.

Observe-se que para cada $x_n \in B$, o ponto de B mais próximo de x_n é x_{n+1} e

$$d(x_n, x_{n+1}) = |x_n - x_{n+1}| = \frac{1}{n(n+1)}.$$

Assim, se considerarmos $\delta = \frac{1}{2n(n+1)}$, o único ponto de B que está em $]x_n - \delta, x_n + \delta[$ é o próprio x_n :

$$]x_n - \delta, x_n + \delta[\cap B = \{x_n\}.$$

1.6 Soluções dos exercícios do capítulo

Exercício 1.2

- 1. Falso;
- 2. Verdadeiro.

Exercício 1.7

- $Int(A) =]-\infty, 1[\cup]10, 35[;$
- $\mathbb{R} \setminus A =]1, 3[\cup]3, 10] \cup]35, +\infty[;$
- $\operatorname{Ext}(A) =]1, 3[\cup]3, 10[\cup]35, +\infty[;$
- $Frt(A) = \{1, 3, 10, 35\};$
- $\overline{A} =]-\infty, 1] \cup \{3\} \cup [10, 35].$

 $[\]frac{1}{\epsilon} \left[\frac{1}{\epsilon}\right]$ lê-se característica de $\frac{1}{\epsilon}$ e é o maior inteiro que não excede $\frac{1}{\epsilon}$.

Capítulo 2

Funções reais de variável real: recordar

Este capítulo é uma breve revisão do que foi estudado sobre este tema no ensino secundário e que é suposto os estudantes recordarem para ser usado na unidade curricular Cálculo I. Este capítulo pode ser complementado com materiais disponíveis na wiki Matemática Elementar.

2.1 Conceito de função

Sejam A e B conjuntos não vazios. Uma **função** $f:A\to B$ é uma correspondência que <u>a cada</u> elemento $x\in A$ associa <u>um único</u> elemento $f(x)\in B$. Isto escreve-se

$$f: A \to B \\ x \mapsto f(x)$$
e, em notação lógica,
$$\forall x \in A, \exists^1 y \in B: y = f(x)$$

O quantificador \exists^1 significa "existe um e um só" ou "existe um único".

Chama-se domínio de f ao conjunto A, conjunto de chegada ao conjunto B e contradomínio (ou conjunto das imagens) de f ao conjunto dado por

$$f(A) = \{f(x) : x \in A\} \subseteq B$$

O domínio de f denota-se por D_f e o seu contradomínio por $CD_f = f(D_f)$.

A função f é **real de variável real** se tem conjunto de chegada \mathbb{R} e o domínio de f é um subconjunto de \mathbb{R} , isto é, $D_f \subseteq \mathbb{R}$.

$$f: D_f \subseteq \mathbb{R} \to \mathbb{R}$$
 $x \mapsto f(x)$.

É preciso distinguir entre o domínio de uma função e o domínio da sua expressão (ou seja, o maior subconjunto de \mathbb{R} onde esta tem significado). Uma função definida só por uma expressão tem o domínio da expressão.

Funções que diferem apenas no domínio são diferentes!

Exemplo 2.1. A função $g: \mathbb{R}_0^+ \to \mathbb{R}$ dada por $g(x) = x^2$ não está definida para valores negativos apesar destes fazerem parte do domínio da expressão x^2 .

Observe-se que g é a restrição de f ao conjunto \mathbb{R}_0^+ . A restrição denota-se da seguinte forma $g = f|_{\mathbb{R}_0^+}$.

Figura 2.1: Gráfico das funções $f(x) = x^2$ com domínio $D_f = \mathbb{R}$ e $g(x) = x^2$ com domínio $D_g = \mathbb{R}_0^+$.

Exemplo 2.2. O domínio da função definida por

$$h(x) = \begin{cases} \frac{1}{1 - x^2} & \text{se } x \ge 0\\ \sqrt{x + 1} & \text{se } x < 0 \end{cases}$$

é o conjunto

$$D_h = \{x \in \mathbb{R} : 1 - x^2 \neq 0 \land x \geq 0\} \cup \{x \in \mathbb{R} : x + 1 \geq 0 \land x < 0\} = [-1, 0[\cup [0, +\infty[\setminus \{1\} = [-1, +\infty[\setminus$$

Chama-se **gráfico** da função f ao subconjunto de \mathbb{R}^2 definido por

$$Gr_f = \{(x, f(x)) \in \mathbb{R}^2 : x \in D_f\}$$

Os gráficos, sendo conjuntos de pontos no plano, permitem representar graficamente uma função. Nem sempre as curvas no plano são funções. Explique porque é que uma circunferência não pode ser o gráfico de uma função.

2.2 Função composta

Dadas duas funções $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ e $g: D_g \subseteq \mathbb{R} \to \mathbb{R}$, se o contradomínio de f for um subconjunto do domínio de g ($CD_f \subseteq D_g$) pode definir-se a **função composta** $g \circ f$:

$$g \circ f: D_f \to \mathbb{R}$$

 $x \mapsto g(f(x))$

Exemplo 2.3. Considere as funções f e g definidas por $f(x) = \sqrt{x}$ e $g(x) = x^2$. Vamos determinar as funções $g \circ f$ e $f \circ g$ (ou seja, os domínios **e** as respetivas expressões analíticas).

Como
$$D_f = \mathbb{R}_0^+$$
 e $D_g = \mathbb{R}$ (e $CD_f = CD_g = \mathbb{R}_0^+$ — verifique!), tem-se que

$$(g \circ f)(x) = (\sqrt{x})^2 = x$$
, com o domínio $D_{g \circ f} = \{x \in \mathbb{R} : x \in \mathbb{R}_0^+ \land f(x) \in \mathbb{R}\} = \mathbb{R}_0^+$
 $(f \circ g)(x) = \sqrt{x^2} = |x|$, com o domínio $D_{f \circ g} = \{x \in \mathbb{R} : x \in \mathbb{R} \land g(x) \in \mathbb{R}_0^+\} = \mathbb{R}$

Se h for uma função real de variável real definida pela composição de duas funções, ou seja, se

$$h(x) = (g \circ f)(x) = g(f(x))$$

então o domínio da função composta, h, é definido por: $D_{g \circ f} = \{x \in \mathbb{R} : x \in D_f \land f(x) \in D_g\}.$

Exemplo 2.4. Considere-se a função definida pela expressão analítica

$$f(x) = \sqrt{\frac{4-x}{x^2 - 2x}}.$$

O domínio de f será o maior subconjunto de $\mathbb R$ onde a expressão analítica tem significado. Note-se que $f = g \circ h$ com $g(x) = \sqrt{x}$ e $h(x) = \frac{4-x}{x^2-2x}$. Assim,

$$D_f = \{x \in \mathbb{R} : x \in D_h \land h(x) \in D_g\}$$
$$= \left\{x \in \mathbb{R} : x^2 - 2x \neq 0 \land \frac{4 - x}{x^2 - 2x} \ge 0\right\} =] - \infty, 0[\cup]2, 4]$$

pois $D_h = \{x \in \mathbb{R} : x^2 - 2x \neq 0\} \text{ e } D_g = \mathbb{R}_0^+.$

Exercício 2.1 Considere a função definida por $h(x) = \ln(1 - \sqrt{x})$:

- 1. Sendo $h = g \circ f$, com $g(x) = \ln x$ e $f(x) = 1 \sqrt{x}$, determine D_h .
- 2. Seja $i(x) = \ln(x+1)$. encontre j de forma a que $h = i \circ j$ e verifique que $D_{i \circ j} = D_h$.

Exercício 2.2 Sejam $f: D_f \to \mathbb{R}$ dada por $f(x) = \frac{1}{x-4}$ e $g: D_g \to \mathbb{R}$ dada por $g(x) = 5 + \sqrt{1-x}$

- 1. Determine os domínios de f e g, D_f e D_g , e o contradomínio de g, $CD_g = g(D_g)$.
- 2. Qual é o domínio da função f + g? E de $\frac{f}{g}$?

2.3 Funções injetivas e funções sobrejetivas

Definição 2.1. Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ diz-se **injetiva** se

$$\forall x, x' \in D_f, x \neq x' \Rightarrow f(x) \neq f(x').$$

Pode provar-se a injetividade de uma função usando o facto de que a função f é injetiva se e só se

$$\forall x, x' \in D_f, f(x) = f(x') \Rightarrow x = x'.$$

Definição 2.2. Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ diz-se sobrejetiva se

$$\forall y \in \mathbb{R}, \ \exists x \in D_f : f(x) = y.$$

Pode mostrar-se que uma função real f é sobrejetiva mostrando que o seu contradomínio é $CD_f = \mathbb{R}$.

Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ diz-se **bijetiva** se é injetiva e sobrejetiva, ou seja,

$$\forall y \in \mathbb{R}, \ \exists^1 x \in D_f : y = f(x).$$

Exercício 2.3 Considere a família de funções $f_a : \mathbb{R} \to \mathbb{R}$ definidas por $f_a(x) = a^x$ com $a \in \mathbb{R}^+$. Existe alguma função desta família que não seja injetiva?

2.4 Funções monótonas

Definição 2.3. Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ é monótona crescente se

$$\forall x_1, x_2 \in D_f, \ x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$$

e é monótona decrescente se

$$\forall x_1, x_2 \in D_f, \ x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2).$$

Definição 2.4. Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ é monótona estritamente crescente se

$$\forall x_1, x_2 \in D_f, \ x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

 $e \ \acute{e} \ mon \acute{o}tona \ estritamente \ decrescente \ se$

$$\forall x_1, x_2 \in D_f, \ x_1 < x_2 \Rightarrow f(x_1) > f(x_2).$$

Exercício 2.4 Seja $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por $f(x) = \frac{1}{x}$. Mostre, usando a negação da definição, que f não é monótona decrescente no seu domínio.

Observe, contudo, que a função é monótona decrescente em \mathbb{R}^- e monótona decrescente em \mathbb{R}^+ .

2.5 A função inversa

Seja $f: D_f \to \mathbb{R}$ uma função **injetiva**. Então, a **cada** $y \in CD_f$ está associado um **único** $x \in D_f$ tal que y = f(x). Por isso, conclui-se que existe uma função $g: CD_f \to \mathbb{R}$ tal que $y = f(x) \Rightarrow g(y) = x$.

Denota-se por f^{-1} a função (dita **inversa** de f) que satisfaz esta propriedade. Se existe, a inversa é **única**.

Uma função diz-se **invertível** se admite inversa.

f é invertível (com inversa g) se e só se existe $g: CD_f \to \mathbb{R}: \forall x \in D_f, (g \circ f)(x) = x$.

Observação 2.1. O gráfico de f^{-1} é obtido do gráfico de f por simetria em relação à reta y = x.

Figura 2.2: Função inversa

Nunca confundir a função inversa com a potência de f de expoente -1

$$f^{-1}(x) \neq (f(x))^{-1} = \frac{1}{f(x)}$$

Observação 2.2. Repare-se que se f invertível e a sua inversa é f^{-1} , então f é a inversa de f^{-1} e portanto $(f \circ f^{-1})(y) = y$, $\forall y \in CD_f = D_{f^{-1}}$.

Porém, pode haver funções f e $g:CD_f\to\mathbb{R}$ tal que $(f\circ g)(y)=y,\ \forall y\in CD_f,$ sem que f seja invertível!

Exercício 2.5 Prove que a função definida por $f(x) = x^2$ não é invertível. Verifique que se $g(x) = \sqrt{x}$, então f(g(y)) = y, $\forall y \in CD_f$.

Porém, g não é f^{-1} nem f é g^{-1} . Porquê?

Teorema 2.1. Se f é estritamente monótona então f é injetiva (e invertível).

A recíproca é verdadeira?

Teorema 2.2. A função f é estritamente crescente [resp. decrescente] em D_f se e só se a função f^{-1} é estritamente crescente [resp. decrescente] em CD_f .

Exercício 2.6 Verifique que $f(x) = x^2$ com $D_f = \mathbb{R}_0^-$ é invertível e determine a sua inversa.

Teorema 2.3. Sejam f e g duas funções invertíveis. No seu domínio, a função composta $f \circ g$ também é invertível e a sua inversa é $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Exercício 2.7 Determine as inversas (com domínios!) de $f(x) = \frac{1}{1+x}$, de $g(x) = \sqrt{x}$ e de $f \circ g$.

2.6 Funções pares e ímpares

Seja $D \subseteq \mathbb{R}$ um **conjunto simétrico** em relação à origem, isto é, se $x \in D$ o seu simétrico, -x, também está em D:

$$\forall x \in D, -x \in D$$

Uma função $f:D\subseteq\mathbb{R}\to\mathbb{R}$ diz-se

- par se $f(-x) = f(x), \forall x \in D$.
- **impar** se $f(-x) = -f(x), \forall x \in D$.

As funções pares têm gráficos simétricos em relação ao eixo das ordenadas. As funções ímpares têm gráficos simétricos em relação à origem do referencial.

Figura 2.3: Função par e função ímpar.

Exemplo 2.5. Considerem-se as funções definidas em \mathbb{R} por $f(x) = 2x^4 - 3x^2$, $g(x) = -2x^3 + 4x$ e $h(x) = 2x^2 - 3x$.

f é uma função par; g é uma função ímpar e h não é par nem ímpar.

2.7 Função limitada

Definição 2.5. Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ diz-se limitada se

$$\exists M \in \mathbb{R} : \forall x \in D_f, |f(x)| \leq M.$$

Pode traduzir-se a definição de função limitada de forma equivalente por:

$$\exists A, B \in \mathbb{R} : A \leq f(x) \leq B, \ \forall x \in D_f.$$

Em linguagem corrente poderemos dizer que o gráfico de uma função limitada está contido entre duas retas paralelas ao eixo das abcissas.

Exemplo 2.6. A função definida em \mathbb{R} por $f(x) = \frac{3}{x^2+4}$ é uma função limitada. Basta observar que $x^2+4\geq 4, \ \forall x\in\mathbb{R}$ e portanto,

$$0 < \frac{3}{x^2 + 4} \le \frac{3}{4}.$$

Contudo, a função $g(x) = \frac{3}{x+4}$, com $x \neq -4$ não é limitada. Qualquer que seja o número real positivo L, existe $x \in D_g$ tal que g(x) > L, basta escolher x tal que $-4 < x < \frac{3}{L} - 4$.

Figura 2.4: Gráficos das funções f e g.

O gráfico da função f situa-se entre as retas y=0 e $y=\frac{3}{4}$, mas o gráfico da função g não é limitado.

Exercício 2.8 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2$. Mostre que f não é limitada.

2.8 As funções exponencial e logarítmica

As funções exponencial, \exp_a , e logarítmica, \log_a , de base $a \in \mathbb{R}^+ \setminus \{1\}$ são a inversa uma da outra.

$$\exp_a : \mathbb{R} \to \mathbb{R}$$

$$\log_a : \mathbb{R}^+ \to \mathbb{R}$$

$$x \mapsto y = \exp_a x = a^x$$

$$x \mapsto y = \log_a x$$

- $D_{\exp} = \mathbb{R} = CD_{\log} \in D_{\log} = \mathbb{R}^+ = CD_{\exp}$
- São estritamente monótonas crescentes se a > 1 e decrescentes se 0 < a < 1
- Pelas propriedades da inversa, $\log_a a^x = x, \, \forall x \in \mathbb{R} \text{ e } a^{\log_a x} = x, \, \forall x \in \mathbb{R}^+$

Assim, usando as propriedades do logaritmo, obtém-se a importante fórmula (base a = e)

$$\forall x \in \mathbb{R}^+, \, \forall y \in \mathbb{R}, \, x^y = e^{y \ln x}.$$

Figura 2.5: Função exponencial e função logarítmica.

2.9 Limites de funções reais de variável real

Nesta secção recorda-se a noção de limite e algumas propriedades dos limites de funções reais de variável real.

Para efeitos de limite vamos considerar a reta acabada $\widetilde{\mathbb{R}}$ (isto é, consideraremos os casos em que a e l poderão assumir os valores $\pm \infty$) e se D for ilimitado superiormente (resp. inferiormente), $+\infty$ (resp. $-\infty$) é um ponto de acumulação de D.

2.9.1 Definição sequencial de limite

Seja $f:D\subseteq\mathbb{R}\to\mathbb{R},\,a\in\widetilde{\mathbb{R}}$ um ponto de acumulação de D e $l\in\widetilde{\mathbb{R}}$. Diz-se que f tem limite l quando x tende para a em D,

$$\lim_{x \to a} f(x) = l,$$

se para toda a sucessão $(x_n)_{n\in\mathbb{N}}$, de elementos de D, distintos de a, que tende para a,

$$\lim_{n \to +\infty} x_n = a,$$

a correspondente sucessão das imagens $(f(x_n))_{n\in\mathbb{N}}$ tende para l,

$$\lim_{n \to +\infty} f(x_n) = l.$$

Em linguagem simbólica temos:

$$\lim_{x \to a} f(x) = l \Leftrightarrow \forall (x_n)_n, x_n \in D \setminus \{a\} : x_n \to a \Rightarrow f(x_n) \to l.$$

Recordemos que o limite, quando existe, é único.

Exemplo 2.7. Seja $f(x) = \frac{x}{x^2 + 2}$ com $D_f = \mathbb{R}$, e considere-se a sucessão $x_n = 1 + \frac{(-1)^n}{n}$.

$$x_n \in D_f \setminus \{1\}, \forall n \in \mathbb{N}, \lim_{n \to +\infty} x_n = 1 \text{ e } \lim_{n \to +\infty} f(x_n) = \frac{1}{3}.$$

Considerando apenas esta sucessão poderemos concluir que $\lim_{x\to 1} f(x) = \frac{1}{3}$?

Figura 2.6: A noção de limite.

Considere a sucessão definida por $u_n = 1 - \frac{20}{n}$ e calcule os primeiros 30 termos da sucessão $(f(u_n))_n$. Ainda acha que o limite de f(x) quando x tende para 1 é $\frac{1}{3}$?

Deveremos ter cuidado com as conclusões, quando consideramos apenas uma sucessão! Para garantir que o limite é $\frac{1}{3}$, devemos considerar **qualquer** sucessão:

$$\forall (x_n)_n, \ x_n \in D_f \setminus \{1\}, \forall n \in \mathbb{N}, x_n \to 1 \ \Rightarrow \ f(x_n) = \frac{x_n}{x_n^2 + 2} \to \frac{1}{1^2 + 2} = \frac{1}{3}.$$

Exemplo 2.8. Considere a função definida em \mathbb{R} por

$$f(x) = \begin{cases} 1+x & \text{se } x \ge 1\\ 1-x & \text{se } x < 1 \end{cases}$$

Se considerarmos as sucessões de termo geral $x_n = 1 + \frac{1}{n}$ e $y_n = 1 - \frac{1}{n}$, ambas convergentes para 1, temos que

$$f(x_n) = 1 + x_n = 1 + 1 + \frac{1}{n} = 2 + \frac{1}{n} e f(y_n) = 1 - \left(1 - \frac{1}{n}\right) = \frac{1}{n}.$$

A sucessão $(f(x_n))_n$ converge para 2 e a sucessão $(f(y_n))_n$ converge para 0. O que nos permite concluir que não existe limite de f(x) quando x tende para 1.

2.9.2 Limite usando vizinhanças

Podemos definir o limite em termos de vizinhanças:

$$\lim_{x \to a} f(x) = l \iff \forall \mathcal{V}(l), \ \exists \mathcal{V}(a) : \ f(D \cap \mathcal{V}(a) \setminus \{a\}) \subseteq \mathcal{V}(l),$$

ou seja, para cada vizinhança $\mathcal{V}(l)$ de $l \in \mathbb{R}$, existe uma vizinhança $\mathcal{V}(a)$ de $a \in \mathbb{R}$ tal que $f(x) \in \mathcal{V}(l)$, para todo o $x \in \mathcal{V}(a) \cap D$, distinto de a.

Exemplo 2.9. Voltando à função do exemplo 2.7, $f:D_f\subseteq\mathbb{R}\to\mathbb{R}$ dada por $f(x)=\frac{x}{x^2+2}$:

Figura 2.7: A noção de limite-2.

 $\lim_{x\to 1} f(x) = \frac{1}{3} \text{ porque para cada vizinhança de } \frac{1}{3}, \ \mathcal{V}(\frac{1}{3}), \text{ existe uma vizinhança de } 1, \ \mathcal{V}(1), \text{ tal que,}$ $f(\mathcal{V}(1)) \subseteq \mathcal{V}(\frac{1}{3}), \text{ ou seja,}$

$$\forall \epsilon > 0, \ \exists \, \delta > 0: \ \forall x \in D, \ 0 < |x - 1| < \delta \Rightarrow \left| f(x) - \frac{1}{3} \right| < \epsilon.$$

em que $\mathcal{V}(\frac{1}{3}) = \left[\frac{1}{3} - \epsilon, \frac{1}{3} + \epsilon\right] \in \mathcal{V}(1) = \left[1 - \delta, 1 + \delta\right].$

Exemplo 2.10. Considerem-se as funções $g \in f$.

$$g(x) = \begin{cases} x \ln x & \text{se } x > 0 \\ x & \text{se } x < 0 \end{cases} \quad \text{e} \quad f(x) = \begin{cases} \frac{\sin(x-1)}{x-1} & \text{se } x \neq 1 \\ 0 & \text{se } x = 1 \end{cases}$$

O domínio de $g \in \mathbb{R} \setminus \{0\}$, mas existe $\lim_{x \to 0} g(x)$.

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} x \ln x = 0 \quad \text{e} \quad \lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} x = 0.$$

O domínio de f é $\mathbb R$ e o $\lim_{x\to 1} f(x)$ existe mas é diferente de f(1).

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sin(x-1)}{x-1} = \lim_{y \to 0} \frac{\sin y}{y} = 1$$

Figura 2.9: Gráfico da função f.

Figura 2.8: Gráfico da função g.

2.9.3 Limites infinitos e limites "no infinito"

A definição de limite dada aplica-se quer no caso de $a=\pm\infty$, quer no caso de $l=\pm\infty$, considerando vizinhanças esquerdas de $+\infty$ ou vizinhanças direitas de $-\infty$.

Se $a \in \mathbb{R}$,	$\mathcal{V}(a) =]a - \delta, a + \delta[$	Se $l \in \mathbb{R}$,	$\mathcal{V}(l) =]l - \varepsilon, l + \varepsilon[$
Se $a = +\infty$,	$\mathcal{V}(a^-)=]\delta,+\infty[$	Se $l = +\infty$,	$\mathcal{V}(l^-) =]\epsilon, +\infty[$
Se $a = -\infty$,	$\mathcal{V}(a^+) =]-\infty, \delta[$	Se $l = -\infty$,	$\mathcal{V}(l^+) =]-\infty, \epsilon[$

Sejam $f:D\subseteq\mathbb{R}\to\mathbb{R},\ a\in\widetilde{\mathbb{R}}$ um ponto de acumulação de D e $l\in\widetilde{\mathbb{R}}$. Em linguagem simbólica o $\lim_{x\to a}f(x)=l$ escreve-se

Se $l, a \in \mathbb{R}$

$$\forall \epsilon > 0, \ \exists \ \delta > 0: \ \forall x \in D, \ 0 < |x - a| < \delta \Rightarrow |f(x) - l| < \epsilon.$$

e basta notar que $\mathcal{V}(l) =]l - \epsilon, l + \epsilon[e \mathcal{V}(a)] =]a - \delta, a + \delta[$

Se $l \in \mathbb{R}$ e $a = +\infty$

$$\forall \epsilon > 0, \ \exists \delta > 0: \ \forall x \in D, \ x > \delta \Rightarrow |f(x) - l| < \epsilon.$$

e basta notar que $\mathcal{V}(l) = [l - \epsilon, l + \epsilon]$ e $\mathcal{V}(a^{-}) = [\delta, +\infty[$

Se $l = +\infty$ e $a \in \mathbb{R}$

$$\forall \epsilon > 0, \ \exists \, \delta > 0 : \ \forall x \in D, \ 0 < |x - a| < \delta \Rightarrow f(x) > \epsilon.$$

e basta notar que $\mathcal{V}(l^-) =]\epsilon, +\infty[$ e $\mathcal{V}(a) =]a - \delta, a + \delta[$

Se $l = +\infty$ e $a = +\infty$

$$\forall \epsilon > 0, \ \exists \ \delta > 0 : \ \forall x \in D, \ x > \delta \Rightarrow f(x) > \epsilon.$$

e basta notar que $\mathcal{V}(l^-) =]\epsilon, +\infty[$ e $\mathcal{V}(a^-) =]\delta, +\infty[$

Se $l = -\infty$ e $a = +\infty$

$$\forall \epsilon > 0, \ \exists \, \delta > 0 : \ \forall x \in D, \ x > \delta \Rightarrow -f(x) > \epsilon.$$

e basta notar que $\mathcal{V}(l^+) =]-\infty, \epsilon[$ e $\mathcal{V}(a^-) =]\delta, +\infty[$

Exemplo 2.11. Usemos a definição para mostrar que $\lim_{x\to-\infty}\frac{1}{x}=0$.

$$\forall \epsilon > 0, \exists \delta > 0: -x > \delta \Rightarrow \left|\frac{1}{x} - 0\right| < \epsilon \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0: -x > \delta \Rightarrow -\frac{1}{x} < \epsilon.$$

Observe-se que se $-x>\frac{1}{\epsilon}$ então $-\frac{1}{x}<\epsilon.$ Assim,

$$\forall \epsilon > 0, \exists \delta = \frac{1}{\epsilon} > 0 : -x > \delta \Rightarrow \underbrace{\left|\frac{1}{x} - 0\right|}_{= -\frac{1}{x}} < \epsilon \Leftrightarrow \forall \epsilon > 0, \exists \delta = \frac{1}{\epsilon} > 0 : -x > \frac{1}{\epsilon} \Rightarrow -\frac{1}{x} < \epsilon.$$

2.9.4 Limites laterais

Diz-se que f tem limite l quando x tende para a, por valores à direita de a em D

$$\lim_{x \to a^+} f(x) = l$$

se, para cada vizinhança $\mathcal{V}(l)$ de l em $\widetilde{\mathbb{R}}$, existe uma vizinhança direita $\mathcal{V}(a^+)$ de a em \mathbb{R} , tal que $f(x) \in \mathcal{V}(l)$, para todo o $x \in \mathcal{V}(a^+) \cap D$, ou seja,

Se
$$l \in \mathbb{R}$$
, $\forall \epsilon > 0, \exists \delta > 0 : x \in]a, a + \delta[\cap D \Rightarrow |f(x) - l| < \epsilon$

Se
$$l = +\infty$$
, $\forall \epsilon > 0, \exists \delta > 0 : x \in]a, a + \delta[\cap D \Rightarrow f(x) > \epsilon]$

Se
$$l = -\infty$$
, $\forall \epsilon > 0, \exists \delta > 0 : x \in]a, a + \delta[\cap D \Rightarrow -f(x) > \epsilon]$

Diz-se que f tem limite l quando x tende para a, por valores à esquerda de a em D

$$\lim_{x \to a^{-}} f(x) = l$$

se, para cada vizinhança $\mathcal{V}(l)$ de l em $\widetilde{\mathbb{R}}$, existe uma vizinhança esquerda $\mathcal{V}(a^-)$ de a em \mathbb{R} , tal que $f(x) \in \mathcal{V}(l)$, para todo o $x \in \mathcal{V}(a^-) \cap D$, ou seja,

Se
$$l \in \mathbb{R}$$
, $\forall \epsilon > 0, \exists \delta > 0 : x \in]a - \delta, a[\cap D \Rightarrow |f(x) - l| < \epsilon$

Se
$$l = +\infty$$
, $\forall \epsilon > 0, \exists \delta > 0 : x \in]a - \delta, a[\cap D \Rightarrow f(x) > \epsilon]$

Se
$$l = -\infty$$
, $\forall \epsilon > 0, \exists \delta > 0 : x \in]a - \delta, a[\cap D \Rightarrow -f(x) > \epsilon]$

2.9.5 Propriedades dos limites

Unicidade do limite Se existe em $\widetilde{\mathbb{R}}$ o $\lim_{x\to a} f(x)$ então esse limite é único. Porquê?

Limite e limites laterais Sejam $f:D\subseteq\mathbb{R}\to\mathbb{R}$ e a um ponto de acumulação de D,

$$\lim_{x \to a} f(x) = l \text{ se e s\'o se } \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = l.$$

a menos que f esteja apenas definida à direita de a ou à esquerda de a.

Se f está definida apenas à direita de a,

$$\lim_{x \to a} f(x) = \lim_{x \to a^{+}} f(x)$$

e se f está definida apenas à esquerda de a

$$\lim_{x \to a} f(x) = \lim_{x \to a^{-}} f(x)$$

Todas as propriedades enunciadas para limites também são válidas para os limites laterais.

2.9.5.1 Infinitésimos e infinitamente grandes

- Se $\lim_{x\to a} f(x) = 0$, f diz-se um **infinitésimo** com a.
- Se $\lim_{x\to a} f(x) = \pm \infty$, f diz-se um infinitamente grande com a.

Teorema 2.4. Sejam $f: D \subseteq \mathbb{R} \to \mathbb{R}$ uma função e a um ponto de acumulação de D.

- Se $\lim_{x\to a} f(x) = 0$, com $f(x) \neq 0$ numa vizinhança de a, então $\lim_{x\to a} \frac{1}{|f(x)|} = +\infty$.
- $Se \lim_{x \to a} |f(x)| = +\infty$, $ent\tilde{a}o \lim_{x \to a} \frac{1}{f(x)} = 0$.

Estes resultados costumam traduzir-se dizendo que o inverso de um infinitésimo é um infinitamente grande e que o inverso de um infinitamente grande é um infinitésimo.

2.9.5.2 Propriedades Aritméticas dos Limites

Sejam $f:D_f\subseteq\mathbb{R}\to\mathbb{R}$ e $g:D_g\subseteq\mathbb{R}\to\mathbb{R},$ a um ponto de acumulação de $D_f\cap D_g.$

Se $\lim_{x\to a} f(x) = l$ e $\lim_{x\to a} g(x) = m$, com $l, m \in \widetilde{\mathbb{R}}$, então:

 $\bullet \quad \lim_{x \to a} \left(f(x) \pm g(x) \right) = l \pm m; \qquad \bullet \quad \lim_{x \to a} \left(f(x) \, g(x) \right) = l \, m; \qquad \bullet \quad \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l}{m} \text{ se } m \neq 0.$

Observação 2.3. • Não estão definidas as operações do tipo $\pm \infty \times 0$; $+\infty -\infty$ (indeterminações).

- O quociente $\frac{l}{m}$ pode ser encarado como um produto: $l \times \frac{1}{m}$. Assim, as indeterminações do tipo $\frac{\infty}{\infty}$ e $\frac{0}{0}$, podem ser consideradas como $0 \times \infty$ (ou vice-versa).
- Se $\sqrt[n]{f(x)}$, $\forall x \in D_f$ e $\sqrt[n]{l}$ existem em \mathbb{R} e $\lim_{x \to a} f(x) = l$ então $\lim_{x \to a} \sqrt[n]{f(x)} = ?$ E se $l = +\infty$?

Alguns dos **limites notáveis** que deveremos ter presentes são os seguintes:

$$\bullet \lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1 \quad \bullet \lim_{x \to 0} \frac{\operatorname{cos} x - 1}{x} = 0 \quad \bullet \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \quad \bullet \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty, \ \ p \in \mathbb{R} \quad \bullet \lim_{x \to +\infty} \frac{\ln x}{x^p} = 0, \ p \in \mathbb{R}^+ \quad \bullet \lim_{x \to 0^+} x^p \ln x = 0, \ p \in \mathbb{R}^+.$$

2.9.6 Teoremas sobre Limites

Teorema 2.5. (Teorema da Permanência do Sinal) Sejam $f: D \subseteq \mathbb{R} \to \mathbb{R}$ uma função e a um ponto de acumulação de D.

Se $\lim_{x\to a} f(x) = l \neq 0$ então existe uma vizinhança de a, $\mathcal{V}(a)$, tal que, para todo o $x \in \mathcal{V}(a) \cap D \setminus \{a\}$, f(x) tem o sinal de l.

Se $\lim_{x\to a}f(x)=l>0$ então existe uma vizinhança de $a,\,\mathcal{V}(a)$, tal que

$$f(x) > 0, \forall x \in \mathcal{V}(a) \cap D \setminus \{a\}.$$

Se $\lim_{x\to a}f(x)=l<0$ então existe uma vizinhança de $a,\,\mathcal{V}(a)$, tal que

$$f(x) < 0, \forall x \in \mathcal{V}(a) \cap D \setminus \{a\}.$$

Teorema 2.6. (Teorema do Enquadramento) Sejam f, g e h funções definidas em $D \subseteq \mathbb{R}$ e a um ponto de acumulação de D. Se existe uma vizinhança $\mathcal{V}(a)$ de a tal que $f(x) \leq h(x) \leq g(x), \ \forall x \in \mathcal{V}(a) \cap D \setminus \{a\}$ e

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = l \in \widetilde{\mathbb{R}},$$

 $ent\~ao$

$$\lim_{x \to a} h(x) = l.$$

Exercício 2.9 Para cada uma das funções cujos gráficos estão esboçados nas figuras abaixo indique, caso existam em $\widetilde{\mathbb{R}}$, os limites $\lim_{x\to a^+} f(x)$ e $\lim_{x\to a^-} f(x)$.

Figura 2.10: Funções do exercício 2.9.

Exercício 2.10 Mostre, usando a definição de limite que $\lim_{x\to 1} 2(x+1) = 4$.

Exercício 2.11 Seja $f:]1, +\infty[\to \mathbb{R}$ definida por $f(x) = \frac{1}{x}$. Mostre, usando sucessões, que $\lim_{x \to +\infty} f(x) = 0$.

Exercício 2.12 Seja $f: D \subseteq \mathbb{R} \to \mathbb{R}$. Se existe uma sucessão $(x_n)_{n \in \mathbb{N}}: x_n \longrightarrow a, x_n \in D \setminus \{a\}$ e $(f(x_n))_{n \in \mathbb{N}}$ não converge então que dizer sobre

- 1. $\lim_{x \to a} f(x)$?
- 2. $\lim_{x\to 0} \sin \frac{1}{x} = ?$

Exercício 2.13 Justifique que:

- $1. \lim_{x \to a} x = a$
- $2. \lim_{x \to a} c = c;$
- 3. $\lim_{x\to 0} \frac{1}{x}$ não existe em $\widetilde{\mathbb{R}}$;
- 4. $\lim_{x\to 0} \frac{1}{x^2} = +\infty$.

Exercício 2.14 Calcule:

- 1. $\lim_{x \to 0} \frac{\sin(x^2)}{x^2}$;
- $2. \lim_{x \to +\infty} \frac{\sin x}{x};$
- 3. $\lim_{x \to -\infty} \frac{5x^2 \sin(3x)}{x^2 + 10}$.

Exercício 2.15 Seja $\lim_{x\to a} f(x) = l$. Indique o valor lógico de cada uma das proposições:

- 1. Se l=0 existe uma vizinhança de a, $\mathcal{V}(a)$, tal que f(x)=0, $\forall x\in\mathcal{V}(a)\cap D\setminus\{a\}$;
- 2. Se $l = 2\pi$ existe uma vizinhança de a, $\mathcal{V}(a)$, tal que f(x) > 0, $\forall x \in \mathcal{V}(a) \cap D \setminus \{a\}$;
- 3. Se $l = -\infty$ existe uma vizinhança de $a, \mathcal{V}(a)$, tal que $f(x) < 0, \forall x \in \mathcal{V}(a) \cap D \setminus \{a\}$.

2.10 Funções contínuas

Definição 2.6. Seja $f: D \subseteq \mathbb{R} \to \mathbb{R}$. A função f é contínua em $a \in D$ se e só se para toda a vizinhança V(f(a)) de f(a), existe uma vizinhança V(a) de a, tal que

$$f(\mathcal{V}(a) \cap D) \subseteq \mathcal{V}(f(a)).$$

A definição de continuidade pode ainda traduzir-se por:

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \in D, |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$$

Da definição resulta imediatamente que se a for ponto isolado de D, a função f é contínua em a. Contudo, não iremos estudar a continuidade em pontos isolados do domínio da função.

Se $a \in D$ for um ponto de acumulação de D, dizer que f é contínua em a significa que

$$\lim_{x \to a} f(x) = f(a).$$

Se f não for contínua em a, f diz-se **descontínua** em a.

Definição 2.7. Seja $f:D\subseteq\mathbb{R}\to\mathbb{R}$. f diz-se contínua se é contínua em todos os pontos de D.

Observação 2.4. 1. Seja $f: D \subseteq \mathbb{R} \to \mathbb{R}$ e $A \subseteq D$. f é contínua em A se e só se $f|_A$ é contínua.

2. Se a função está definida num intervalo $[a,b],\ f$ diz-se contínua em a se $\lim_{x\to a^+} f(x)=f(a).$ Analogamente, f diz-se contínua em b se $\lim_{x\to b^-} f(x)=f(b).$

2.10.1 Propriedades das funções contínuas

Teorema 2.7. (Propriedades aritméticas das funções contínuas) Se $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ e $g: D_g \subseteq \mathbb{R} \to \mathbb{R}$ são funções contínuas em $a \in D_f \cap D_g$ então as seguintes funções também são contínuas em a:

(a)
$$f \pm g$$
; (b) $f \cdot g$; (c) $\frac{f}{g}$, se $g(a) \neq 0$.

A recíproca da proposição anterior é falsa. Dê exemplos de funções descontínuas em que

- $f \pm g$ seja contínua;
- $f \cdot g$ seja contínua;
- $\frac{f}{g}$, com $g(a) \neq 0$ seja contínua.

Teorema 2.8. (Composição de funções) Se $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ tem limite $l \in \mathbb{R}$ quando x tende para $a \in g: D_g \subseteq \mathbb{R} \to \mathbb{R}$ é contínua em $l \in D_g$ então a função composta $g \circ f$ tem limite g(l) quando x tende para a:

$$\lim_{x \to a} g(f(x)) = g(\lim_{x \to a} f(x)) = g(l).$$

Como consequência, a composição de funções contínuas é contínua.

Corolário 1. Se $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ é uma função contínua em $a \ e \ g: D_g \subseteq \mathbb{R} \to \mathbb{R}$ é contínua em $f(a) \in D_g$ então a função composta $g \circ f$ é contínua em a.

Teorema 2.9. (Continuidade da função inversa) Seja D_f um intervalo de números reais, $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ uma função contínua em D_f e invertível. Então a sua inversa, $f^{-1}: CD_f \to \mathbb{R}$, é contínua em CD_f .

Exercício 2.16

Caracterize a função inversa da função f e estude-a quanto à continuidade, sendo

(a)
$$f(x) = e^{1-2x}$$
 (b) $f(x) = \frac{5\ln(x-3) - 1}{4}$

2.10.1.1 Mais algumas indeterminações

Se $h:D\subseteq\mathbb{R}\to\mathbb{R}$, é definida por $h(x)=f(x)^{g(x)}$ e $f(x)>0,\ \forall x\in D$, pode usar-se a transformação

$$f(x)^{g(x)} = e^{\ln f(x)^{g(x)}} = e^{g(x)\ln f(x)}$$

para efeitos de determinação do seu limite.

Como a função exponencial é contínua, se existir o $\lim_{x\to a}g(x)\ln f(x)$ então,

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} g(x) \ln f(x).$$

Este facto usa-se para "levantar" indeterminações do tipo $0^0, 1^\infty$ e ∞^0 . Exercício resolvido 2.1. Determinar o limite $\lim_{x\to 0^+} 2x^{\sin x}$.

Resolução: $\lim_{x\to 0^+} x=0$ e $\lim_{x\to 0^+} \sec x=0$, o que conduz a uma indeterminação do tipo 0^0 . Atendendo a que, x>0 porque $x\to 0^+$,

$$x^{\text{sen } x} = e^{\ln(x^{\text{sen } x})} = e^{\sin x \ln x} = \lim_{x \to 0^+} e^{\sin x \ln x} = e^{x \to 0^+}$$

basta determinar o $\lim_{x\to 0^+} \sin x \ln x$.

$$\lim_{x \to 0^+} \sin x \ln x = \lim_{x \to 0^+} \frac{\sin x}{x} x \ln x = 1 \cdot 0 = 0$$

Então,

$$\lim_{x \to 0^+} 2x^{\operatorname{sen} x} = 2\lim_{x \to 0^+} e^{\operatorname{sen} x \ln x} = 2e^{x \to 0^+} = 2e^0 = 2$$

Exercício resolvido 2.2. Determinar o $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\operatorname{tg} x}$.

Resolução: Neste caso temos uma indeterminação do tipo ∞^0 .

O $\lim_{x\to 0^+} \left(\operatorname{tg} x \ln \frac{1}{x}\right)$ é ainda uma indeterminação, mas do tipo $0\times\infty$. Sabemos que

$$\lim_{y \to +\infty} \frac{\ln y}{y} = 0 \text{ e } \lim_{y \to 0^+} \frac{\operatorname{tg} y}{y} = \lim_{y \to 0} \frac{\operatorname{sen} y}{y} \frac{1}{\cos y} = 1,$$

então,

$$\lim_{x\to 0^+} \left(\operatorname{tg} x \ln \frac{1}{x}\right) = \lim_{x\to 0^+} \left(\frac{\operatorname{tg} x}{x} \frac{\ln \frac{1}{x}}{\frac{1}{x}}\right) = 1 \cdot 0 = 0.$$

Assim.

$$\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{\operatorname{tg} x} = e^{\lim_{x \to 0^+} \left(\operatorname{tg} x \ln \frac{1}{x}\right)} = e^0 = 1.$$

Exercício 2.17

- 1. $\lim_{x \to 0^+} (\operatorname{tg} x)^{\operatorname{sen} x}$ 2. $\lim_{x \to +\infty} \left(\frac{1}{x}\right)^{\frac{1}{x}}$ 3. $\lim_{x \to +\infty} x^{\frac{1}{1+\ln x}}$
- **4.** $\lim_{x \to +\infty} x^{\frac{1}{\sqrt{\ln x}}}$ **5.** $\lim_{x \to 0^+} (1 + \sin x)^{\frac{1}{x}}$ **6.** $\lim_{x \to 0^+} (1 + x^2)^{\frac{1}{\sin x}}$ **7.** $\lim_{x \to +\infty} \left(\frac{x-1}{x+1}\right)^x$

2.10.2 Assíntotas

Assíntotas não verticais: Seja $f: D \subseteq \mathbb{R} \to \mathbb{R}$ uma função tal que D contém um intervalo da forma $]a, +\infty[$, para algum $a \in \mathbb{R}$. A reta de equação

$$y = mx + b$$

é uma assíntota ao gráfico de f à direita se

$$\lim_{x \to +\infty} [f(x) - (mx + b)] = 0$$

Se existirem, em \mathbb{R} , os limites $m = \lim_{x \to +\infty} \frac{f(x)}{x}$ e $b = \lim_{x \to +\infty} [f(x) - mx]$ então a equação da assímptota é y = mx + b.

Como se define a assíntota ao gráfico de f à esquerda?

Assíntotas verticais: Seja $f: D \subseteq \mathbb{R} \to \mathbb{R}$ e $a \in \mathbb{R}$ um ponto de acumulação de D. A reta de equação x = a diz-se uma assíntota vertical ao gráfico de f se se verifica uma das condições:

$$\lim_{x \to a^{+}} f(x) = \pm \infty \quad \text{ ou } \quad \lim_{x \to a^{-}} f(x) = \pm \infty$$

Exercício 2.18 Considere a função $f: D \subseteq \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \ln(2 + \frac{1}{x})$.

- 1. Determine, caso existam, as assímptotas ao gráfico de f.
- 2. Mostre que a reta de equação $y = (\ln 2)x + \frac{1}{2}$ é uma assímptota bilateral (à esquerda e à direita) do gráfico de g, sendo g(x) = xf(x).

Exercício 2.19 Mostre que a função definida por $f(x) = \ln x$ não tem assíntotas oblíquas.

2.11 Funções deriváveis

Definição 2.8. Seja f uma função real de variável real. Uma reta que passa por dois pontos distintos do gráfico de f diz-se **reta secante** ao gráfico de f.

Figura 2.11: Interpretação geométrica da reta secante.

Verifique que a equação da reta secante ao gráfico de f em a e b é dada por:

$$y = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

Ao declive da reta secante, $\frac{f(b)-f(a)}{b-a}=\operatorname{tg}\theta$, chama-se **taxa de variação** da função f no intervalo [a,b].

Observação 2.5. Se f é estritamente crescente, b-a e f(b)-f(a) têm o mesmo sinal; se é estritamente decrescente, têm sinais opostos. Daqui podemos concluir que o declive da reta secante é positivo se f é estritamente crescente e é negativo se f é estritamente decrescente.

• O que acontece se a função for monótona em sentido lato?

Se a função for monótona apenas em alguns intervalos, a análise do declive da reta secante não nos dá uma informação correta sobre a sua monotonia.

Figura 2.12: Reta secante e monotonia.

Se na figura 2.12, tomarmos valores $b_1, b_2, b_3,...$ cada vez mais próximos de a, as retas secantes s_1 , $s_2, s_3,...$ aproximam-se da reta r que numa vizinhança de a, $\mathcal{V}(a)$, intersecta o gráfico de f apenas no ponto (a, f(a)).

À reta r chama-se **reta tangente** ao gráfico de f em a.

2.11.1 Derivada de uma função num ponto

Definição 2.9. Sejam $f:D\subseteq\mathbb{R}\to\mathbb{R}$ e $a\in D$. Se a é ponto de acumulação de D e

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

existe e é finito, a este limite chama-se a **derivada** da função f no ponto a e denota-se por f'(a). Sendo assim, diz-se que f é **derivável**¹ no ponto a.

Exemplo 2.12. Lembre-se do significado de velocidade média e velocidade instantânea. Se s(t) representa a posição no instante t de um corpo em movimento retilíneo então

- $\diamond \Delta s = s(t) s(t_0)$ é o deslocamento do corpo no intervalo de tempo $\Delta t = t t_0$;
- $\Rightarrow \frac{\Delta s}{\Delta t} = \frac{s(t) s(t_0)}{t t_0}$ é a velocidade média (declive da reta secante!);
- $\Rightarrow \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{t \to t_0} \frac{s(t) s(t_0)}{t t_0} \text{ \'e a velocidade no instante } t_0.$

A velocidade do corpo no instante t_0 é a derivada da função posição calculada nesse instante,

$$v(t_0) = s'(t_0).$$

Exercício 2.20 Calcule a derivada, caso exista, da função no ponto x = a indicado:

1.
$$f(x) = 3$$
, $a = \frac{1}{2}$; 2. $f(x) = 3x - 7$, $a = 1$; 3. $f(x) = |x|$, $a = 1$ e $a = -1$.

2.11.2 Reta tangente

A derivada da função f no ponto a é o limite da taxa de variação da função, logo, é igual ao declive da reta tangente ao gráfico de f no ponto a.

Assim, se f é derivável em a, a equação da reta tangente ao seu gráfico nesse ponto é

$$y = f'(a)(x - a) + f(a).$$

¹ Alguns autores consideram que derivável pode ter derivada infinita e **diferenciável** que tem derivada finita

Se o declive da reta tangente ao gráfico de f em a (ou seja o valor da derivada da função em a) for positivo ou negativo, podemos concluir que a função é estritamente monótona crescente ou descrescente, respetivamente, numa vizinhança de a.

Exercício 2.21

- 1. Determine a equação da reta tangente ao gráfico de $f(x) = x^2$ em x = -1.
- 2. Mostre que a reta tangente ao gráfico da função f(x) = mx + q em qualquer ponto $a \in \mathbb{R}$ é a própria reta y = mx + q.

2.12 Noção de diferencial

Atendendo ao conceito de derivada e taxa de variação apresentados nas secções anteriores, na figura 2.13 está representada a variação da função no intervalo $[x_1, x_1 + \Delta x]$, denotada por

$$\Delta y = f(x_1 + \Delta x) - f(x_1).$$

Figura 2.13: O diferencial dy e o acréscimo Δx .

O diferencial de uma função, dy, é o acréscimo sofrido pela ordenada da reta tangente correspondente a um acréscimo Δx sofrido por x. Sendo y = mx + b a reta tangente ao gráfico da função f no ponto

 $(x_1, f(x_1))$ a sua equação será

$$y - f(x_1) = f'(x_1)(x - x_1) \Leftrightarrow y = f'(x_1)(x - x_1) + f(x_1).$$

Desigando por g a função que define a reta tangente,

$$g(x) = f'(x_1)(x - x_1) + f(x_1)$$

podemos escrever o diferencial dy como

$$dy = g(x_1 + \Delta x) - g(x_1) = f'(x_1)(x_1 + \Delta x - x_1) + f(x_1) - (f'(x_1)(x_1 - x_1) + f(x_1)) = f'(x_1)\Delta x$$

Se designarmos o acréscimo Δx por dx (diferencial na variável independente), faz sentido usar a notação para derivada como um quociente

$$f'(x_1) = \frac{dy}{dx}(x_1).$$

Exercício resolvido 2.3. Considere a função $f(x) = 2x^3 - 3x - 4$. Determine o diferencial da função.

Resolução: Como $f'(x) = 6x^2 - 3$, o diferencial em qualquer ponto é dado por

$$dy = (6x^2 - 3) dx.$$

O diferencial torna-se muito útil na questão de aproximação de uma função derivável pela sua reta tangente, num valor próximo do ponto de tangência. Este processo de aproximação toma a designação de **linearização**.

Aproximando Δy por dy o erro cometido é dado por

$$\epsilon = |\Delta y - dy|$$

que no caso de uma função derivável será tanto menor quanto $\Delta x (= dx)$. Assim, para valores suficientemente pequenos de Δx podemos dizer que $\Delta y \approx dy$ (é aproximadamente). Como, $dy = f'(x)\Delta x$ (ou dx), podemos escrever

$$\Delta y \approx f'(x)\Delta x \Leftrightarrow f(x+\Delta x) - f(x) \approx f'(x)\Delta x \Leftrightarrow f(x+\Delta x) \approx f'(x)\Delta x + f(x)$$

ou seja, numa vizinhança de x a função pode ser aproximada pela reta tangente em x, por isso se designa este processo por **linearização**.

Exemplo 2.13. Consideremos de novo a função do exercício resolvido 2.3 e os pontos $x_1 = 2.1$ e $x_2 = 2.01$. Relativamente ao ponto (2, f(2)), podemos dizer que $x_1 = x + \Delta x = 2 + 0.1$ e $x_2 = 2 + 0.01$ e $x_2 = 2 + 0.01$ e $x_3 = 2 + 0.01$ e $x_4 = 2 + 0.01$ e $x_5 =$

$$f(2.1) \approx f'(2)\Delta x + f(2) = 21 \times 0.1 + 6 = 8.1$$

e

$$f(2.01) \approx f'(2)\Delta x + f(2) = 21 \times 0.01 + 6 = 6.21$$

Efetivamente, f(2.1) = 8.222 e f(2.01) = 6.211202. Ao fazer a linearização, no caso x = 2.1 o erro cometido é 0.122 e no caso de x = 2.01 o erro cometido é 0.001202. Para valores de Δx menores, a aproximação usando diferenciais é melhor.

Exercício 2.22 Calcule um valor aproximado para $\sqrt[3]{65.5}$ usando diferenciais.

2.12.1 Derivadas laterais

Seja a um ponto de acumulação de $D_f \subseteq \mathbb{R}$. Quando existem em $\widetilde{\mathbb{R}}$, os limites

$$f'_{-}(a) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a}$$
 e $f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a}$

designam-se por derivada lateral esquerda e derivada lateral direita, respetivamente, da função f no ponto a. Se a for um ponto interior do domínio de f, a derivada f'(a) existe se e só se

$$f'_{+}(a) = f'_{-}(a) \in \mathbb{R}$$
 e $f'(a) = f'_{-}(a) = f'_{+}(a)$.

Observação 2.6. Seja $f:[a,b]\to\mathbb{R}$. Se $f'_+(a)\in\mathbb{R}$ então considera-se $f'(a)=f'_+(a)$. Analogamente, para o ponto x=b, se $f'_-(b)\in\mathbb{R}$ então considera-se $f'(b)=f'_-(b)$.

Exercício 2.23

- 1. A função definida por f(x) = |x| é derivável em x = 0? E a função $f|_{[0,+\infty[}]$?
- 2. A função com domínio \mathbb{R} e expressão analítica

$$g(x) = \begin{cases} x \operatorname{sen} \frac{1}{x} & \operatorname{se} x \neq 0 \\ 0 & \operatorname{se} x = 0 \end{cases}$$

é derivável em x = 0? Possui derivadas laterais?

2.12.2 Continuidade e derivabilidade

Teorema 2.10. Se $f: D \subseteq \mathbb{R} \to \mathbb{R}$ é derivável em $a \in D$ então f é contínua em a.

Atenção: f pode ser contínua num ponto e não ser derivável nesse ponto.

Exercício 2.24

Demonstre o teorema 2.10 observando que

$$\lim_{x \to a} f(x) - f(a) = \lim_{x \to a} (f(x) - f(a)) \frac{x - a}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a) = \cdots$$

Exemplo 2.14. 1. A função dada por f(x) = |x| é contínua e não derivável em 0.

- 2. A função definida por $g(x) = \begin{cases} x \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$ é contínua mas não derivável em 0.
- 3. A função dada por $h(x) = \sqrt{|x|}$ é contínua em 0 mas não é derivável em 0.

2.12.3 Função derivada

Chama-se **função** derivada de f e denota-se por f' à função que a cada elemento $a \in D_f$ em que f admite derivada faz corresponder f'(a).

Observe-se que
$$D_{f'} \subseteq D_f$$
 e que $\forall x \in D_{f'}, f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

Exercício 2.25

- 1. Indique pelo menos um caso em que $D_{f'} \neq D_f$.
- 2. Mostre que a derivada de uma função constante é a função nula.
- 3. Mostre que a derivada de $f(x) = ax^2 + bx + c$, com $a, b, c \in \mathbb{R}$, é f'(x) = 2ax + b.
- 4. Mostre que a derivada de $f(x) = e^x$ é $f'(x) = e^x$. (Use o limite $\lim_{h\to 0} \frac{e^h 1}{h} = 1$.)
- 5. Mostre que a derivada de $f(x) = \operatorname{sen} x$ é $f'(x) = \cos x$. (Ajuda: $\operatorname{sen}(x+h) = \operatorname{sen} x \cos h + \operatorname{sen} h \cos x$, $\lim_{h \to 0} \frac{\operatorname{sen} h}{h} = 1$, $\lim_{h \to 0} \frac{\cos h 1}{h} = 0$.)
- 6. Dada uma função f definam-se g(x) = f(x+c) e h(x) = f(x) + c com $c \in \mathbb{R}$. Verifique que g'(x) = f'(x+c) e que h'(x) = f'(x).
- 7. Prove que a derivada de $f(x) = \cos x$ é $f'(x) = -\sin x$. (Ajuda: $\cos x = \sin(x + \frac{\pi}{2})$ e $\sin(x + \pi) = -\sin x$).

2.12.4 Limites laterais da função derivada

Seja f uma função contínua mas não derivável em $a \in D_f$ (logo, $a \notin D_{f'}$).

É possível estudar os limites laterais de f' em a, caso existam:

- Se $\lim_{x\to a^+} f'(x) \neq \lim_{x\to a^-} f'(x)$, o gráfico de f tem um "ponto anguloso" em a.
- Se $\lim_{x\to a^+} f'(x) = \lim_{x\to a^-} f'(x)$ e não são finitos (isto é, são ambos iguais a $+\infty$ ou a $-\infty$), a reta vertical x=a é tangente ao gráfico de f no ponto a.

Nestes casos as derivadas laterais de f são iguais aos correspondentes limites laterais de f'.

Exercício 2.26 Verifique, pela definição de derivada, que $f(x) = e^{|x|}$ e $g(x) = \sqrt[3]{x}$ têm em x = 0 um ponto anguloso e uma tangente vertical, respetivamente.

Figura 2.14: Ponto anguloso e tangente vertical.

Exercício 2.27 Verifique que se f(x) = |x| e $g(x) = \frac{|x|}{x} = \frac{x}{|x|}$, então f' = g (atenção aos domínios!).

2.12.5 Regras de derivação

Teorema 2.11. Sejam f e g funções deriváveis em $D \subseteq \mathbb{R}$ e $\alpha, \beta \in \mathbb{R}$. Então:

• $\alpha f + \beta g$ é derivável em D e $(\alpha f + \beta g)' = \alpha f' + \beta g'$ ("linearidade");

- $fg \notin deriv \acute{a} vel \ em \ D \ e \ (fg)' = f'g + fg' \ ("Regra \ de \ Leibniz");$
- $\frac{f}{g}$ é derivável em D desde que $\frac{f}{g}$ esteja definida e nesse caso, $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.

Exercício 2.28

- 1. Prove que $(\operatorname{tg} x)' = 1 + \operatorname{tg}^2 x = \frac{1}{\cos^2 x}$.
- 2. Seja $f(x) = 2x^3 x^2 + 3x 1$. Determine a função derivada f'.
- 3. Mostre que a derivada de $g(x) = x^n$ com $n \in \mathbb{N}$ é $g'(x) = nx^{n-1}$.
- 4. Calcule a derivada das seguintes funções:

$$f(x) = \frac{\sin x}{x}; \quad g(t) = t \cos t - \sin t$$

2.12.6 Derivadas de ordem superior

A derivada da função f', ou seja (f')', denota-se por f'' e designa-se por função derivada de segunda ordem ou segunda derivada.

Analogamente, a derivada de f'' é a derivada de terceira ordem f''' = (f'')'.

Repetindo (se possível) este processo n vezes obtém-se a função derivada de ordem n que se denota por $f^{(n)}$.

De modo análogo, a função f' designa-se também por derivada de primeira ordem.

Para designar derivadas usa-se frequentemente a notação de Leibniz:

$$f'(x) = \frac{df(x)}{dx} = \frac{d}{dx}f(x)$$
 e $f^{(n)}(x) = \frac{d^n f(x)}{dx^n} = \frac{d^n}{dx^n}f(x)$.

Exercício 2.29

- 1. Seja $f(x) = 2x^3 x^2 + 3x 1$. Calcule f'', f''' e $f^{(4)}$. O que é que se pode concluir acerca das derivadas de ordem superior a quatro?
- 2. Encontre a derivada de ordem $n \in \mathbb{N}$ da função $f(x) = \operatorname{sen} x$.
- 3. Verifique que a derivada de ordem n da função $g(x) = x^n$ é $g^{(n)}(x) = n!$.
- 4. Encontre a expressão da derivada de ordem $n \in \mathbb{N}$ da função $f(x) = e^{ax}$ com $a \in \mathbb{R}$.

2.12.7 Derivada da função composta

Sejam f e g duas funções e $h = f \circ g$. Se g é derivável em a e f é derivável em g(a) então h é derivável em a e h'(a) = f'(g(a))g'(a). Assim,

$$\forall x \in D_{h'}, h'(x) = f'(q(x))q'(x).$$

Observação 2.7. A fórmula de cálculo da derivada da função composta é chamada regra da cadeia porque a derivada é calculada derivando cada composição sucessivamente. Por exemplo, no caso da composição de 3 funções, tem-se:

$$[f(g(h(x)))]' = f'(g(h(x)))[g(h(x))]' = f'(g(h(x)))g'(h(x))h'(x)$$

Exemplo 2.15. A função $h(x) = \text{sen}(3x^2 + 5)$ é a composição de f(x) = sen x após $g(x) = 3x^2 + 5$. A derivada de f é $f'(x) = \cos(x)$ e a derivada de g é g'(x) = 6x, logo $h'(x) = \cos(3x^2 + 5)$ (6x) = $6x\cos(3x^2 + 5)$.

Exercício 2.30

- 1. Seja $f: D \to \mathbb{R}$ definida por $f(x) = \operatorname{tg}^2(\operatorname{sen} x)$. Encontre o domínio D, averigue se f é derivável em D e escreva a expressão analítica de f'.
- 2. Encontre o domínio e calcule a derivada da função definida por $g(x) = e^{\frac{x^2}{x+1}}$.
- 3. Sendo $k: \mathbb{R} \to \mathbb{R}$ derivável, caracterize a derivada de k(|x|) e de |k(x)|.

2.12.8 Derivada da função inversa

Seja f uma função invertível no domínio D_f com inversa $f^{-1}:CD_f\to\mathbb{R}$. Se f é derivável e f' nunca se anula em D, então f^{-1} é derivável em CD_f e

$$\forall y \in CD_f, \ (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$
 (2.1)

Observação 2.8. Para simplificar a notação, note-se que se y = f(x) então

$$(f^{-1})'(y) = \frac{1}{f'(x)}.$$

Exercício 2.31 Obtenha a fórmula 2.1 derivando a identidade $y = f(f^{-1}(y)), \forall y \in CD_f$.

Exercício 2.32

- 1. Caracterize a função derivada de $f(x) = \ln x$.
- 2. Calcule a derivada de $g(x) = \ln |x|$ e compare $D_{q'}$ com $D_{f'}$ do exercício 1.
- 3. Calcule a derivada de $h(x) = a^x$ e da sua inversa. (Ajuda: $a^b = e^{b \ln a} \ \forall \ a > 0, \ b \in \mathbb{R}$).
- 4. Mostre que a derivada de $k(x) = x^b$ é $k'(x) = bx^{b-1}$ para todo o $b \in \mathbb{R}$.

2.13 Soluções dos exercícios do capítulo

Exercício 2.1

- 1. $D_h = [0, 1[.$
- 2. $j(x) = -\sqrt{x}$.

Exercício 2.2

- 1. $D_f = \mathbb{R} \setminus \{4\}; D_g =]-\infty, 1]; CD_g = [5, +\infty[.$
- 2. $D_{f+g} = D_f \cap D_g =]-\infty, 1]; D_{\frac{f}{g}} = D_f \cap D_g \cap \{x \in \mathbb{R} : g(x) \neq 0\} =]-\infty, 1].$

Exercício 2.3 Sim, se a = 1.

Exercício 2.6 $f^{-1}(x) = -\sqrt{x}, x \ge 0.$

$$\textbf{Exercício 2.7} \ f^{-1}(x) = \frac{1}{x} - 1, D_{f^{-1}} = \mathbb{R} \backslash \{0\}; \ g^{-1}(x) = x^2, D_{g^{-1}} = [0, +\infty[; (f \circ g)^{-1}(x) = \left(\frac{1}{x} - 1\right)^2, D_{(f \circ g)^{-1}} =]0, 1].$$

Exercício 2.9 1. $\lim_{x \to a^+} f(x)$ não existe e $\lim_{x \to a^-} f(x) = +\infty$; 2. $\lim_{x \to a^+} f(x) = +\infty$ e $\lim_{x \to a^-} f(x) = -\infty$;

- 3. $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = -\infty$; 4. $\lim_{x\to a^+} f(x) = +\infty$ e $\lim_{x\to a^-} f(x)$ não existe;
- 5. $\lim_{x \to a^+} f(x)$ não existe e $\lim_{x \to a^-} f(x) = -\infty$; 6. $\lim_{x \to a^+} f(x) = 0$ e $\lim_{x \to a^-} f(x) = +\infty$.

Exercício 2.14

- 1. $\lim_{x \to 0} \frac{\sin(x^2)}{x^2} = 1;$
- $2. \lim_{x \to +\infty} \frac{\sin x}{x} = 0;$
- 3. $\lim_{x \to -\infty} \frac{5x^2 \sin(3x)}{x^2 + 10} = 5.$

Exercício 2.15

- 1. Falsa;
- 2. Verdadeira;
- 3. Verdadeira.

Exercício 2.16 (a) $f(x) = e^{1-2x}$ contínua, $D_f = \mathbb{R}$, $CD_f = \mathbb{R}^+$. $f^{-1}(x) = \frac{1}{2}(1 - \ln x)$ é contínua em $D_{f^{-1}} = CD_f$. (b) $f(x) = \frac{5\ln(x-3)-1}{4}$ contínua em $D_f =]3, +\infty[$; $CD_f = \mathbb{R}$. $f^{-1}(x) = 3 + e^{\frac{4x+1}{5}}$ contínua em $D_{f^{-1}} = CD_f$.

Exercício 2.17

- 1. $\lim_{x \to 0^+} (\operatorname{tg} x)^{\operatorname{sen} x} = 1$ 2. $\lim_{x \to +\infty} \left(\frac{1}{x}\right)^{\frac{1}{x}} = 1$ 3. $\lim_{x \to +\infty} x^{\frac{1}{1 + \ln x}} = e$
- 4. $\lim_{x \to +\infty} x^{\frac{1}{\sqrt{\ln x}}} = +\infty$ 5. $\lim_{x \to 0^+} (1 + \sin x)^{\frac{1}{x}} = e$ 6. $\lim_{x \to 0^+} (1 + x^2)^{\frac{1}{\sin x}} = 1$ 7. $\lim_{x \to +\infty} \left(\frac{x-1}{x+1}\right)^x = e^{-2}$.

Exercício 2.18

1. $D_f = \left[-\infty, -\frac{1}{2}\right[\cup]0, +\infty[$. $y = \ln 2$ assíntota horizontal bilateral; x = 0 e $x = -\frac{1}{2}$ são assíntotas verticais.

Exercício 2.20 1. $f'(\frac{1}{2}) = 0;$ 2. f'(1) = 3; 3. f'(1) = 1 e f'(-1) = -1.

Exercício 2.21

1.
$$y = -2x - 1$$
.

Exercício 2.22 $\sqrt[3]{65.5} \approx 4.03125$.

Exercício 2.23

- 1. f(x) = |x| não é derivável em x = 0 mas a função $f|_{[0,+\infty[}$ é derivável em x = 0.
- 2. Não é derivável em x=0 e não possui derivadas laterais nesse ponto.

Exercício 2.28

2.
$$f'(x) = 6x^2 - 2x + 3$$
.

4.
$$f'(x) = \frac{x \cos x - \sin x}{x^2}$$
; $g'(t) = -t \sin t$

Exercício 2.29

1.
$$f'(x) = 6x^2 - 2x + 3$$
, $f''(x) = 12x - 2$, $f'''(x) = 12$, $f^{(n)} = 0$, $\forall n \ge 4$.

2.
$$f^{(2k)}(x) = (-1)^k \operatorname{sen} x e f^{(2k+1)}(x) = (-1)^k \cos x, \forall k \in \mathbb{N}_0.$$

4.
$$f^{(n)}(x) = a^n e^{ax} \text{ com } a \in \mathbb{R}$$
.

Exercício 2.30

1.
$$D = \mathbb{R}; f'(x) = \frac{2 \operatorname{tg} (\operatorname{sen} x) \cos x}{\cos^2 (\operatorname{sen} x)}, \forall x \in D.$$

2.
$$g'(x) = \frac{x^2 + 2x}{(x+1)^2} e^{\frac{x^2}{x+1}}, D = \mathbb{R} \setminus \{-1\}.$$

3.
$$k'(|x|) = \begin{cases} k'(x) & \text{se } x > 0 \\ -k'(x) & \text{se } x < 0 \end{cases}$$
.

Se $k(x) \ge 0$, $\forall x \in \mathbb{R}$, |k(x)|' = k'(x); se $k(x) \le 0$, $\forall x \in \mathbb{R}$, |k(x)|' = -k'(x); se k(x) mudar de sinal em \mathbb{R} , nos pontos onde k(x) se anula não há derivada.

Exercício 2.32

1.
$$f'(x) = \frac{1}{x}, x > 0.$$

2.
$$g'(x) = \frac{1}{x}, x \neq 0.$$

3.
$$h'(x) = a^x \ln a$$
; $(h^{-1})'(x) = \frac{1}{x \ln a}$.

Capítulo 3

As funções trigonométricas

Neste capítulo vamos focar o nosso estudo nas funções trigonométricas inversas. Começamos por recordar as funções trigonométricas seno, cosseno e tangente, introduzimos as funções secante, cossecante e cotangente e finalmente fazemos o estudo das funções arco seno, arco cosseno, arco tangente e arco cotangente.

3.1 Funções trigonométricas diretas

As funções trigonométricas seno, cosseno e tangente são definidas geometricamente no círculo trigonométrico, como estudado no Ensino Secundário.

Figura 3.1: As funções seno, cosseno e tangente no círculo trigonométrico.

Exercício 3.1 Mostre que tg $x = \frac{\sin x}{\cos x}$, determine domínio e contradomínio de sen, cos, tg e prove que sen² $x + \cos^2 x = 1, \forall x \in \mathbb{R}$.

Seja $p \in \mathbb{R}^+$ e D um subconjunto não vazio de \mathbb{R} verificando a propriedade

$$x \in D$$
 se e só se $x + p \in D$.

Uma função $f: D \to \mathbb{R}$ diz-se **periódica** com período p se e só se

$$\forall x \in D, f(x+p) = f(x) \tag{3.1}$$

As funções trigonométricas são periódicas. O período das funções seno e cosseno é 2π e o período da função tangente é π . Contudo, poderíamos dizer que estas funções têm outros períodos, por exemplo, 4π já que

$$sen(x + 4\pi) = sen x$$
; $cos(x + 4\pi) = cos x e tg(x + 4\pi) = tg x$.

Usualmente diz-se que o menor $p \in \mathbb{R}^+$ que satisfaz a condição 3.1 é o **período** da função f.

Observação 3.1. Uma função constante é periódica e o seu período é qualquer p > 0.

3.1.1 As funções secante, cossecante e cotangente

Para além de seno, cosseno e tangente, outras funções trigonométricas são definidas conforme indicado no círculo trigonométrico da figura 3.2: secante (sec), cossecante (csc), cotangente (cotg).

Figura 3.2: As funções cosecante (csc), secante (sec) e cotangente (cot) no círculo trigonométrico.

3.1.1.1 A função secante

Chama-se secante à função

$$\sec: D_{\sec} \to \mathbb{R}$$

$$x \mapsto \sec x = \frac{1}{\cos x}$$

Figura 3.3: A função secante (sec).

Exercício resolvido 3.1. 1. Determine $D_{\text{sec}} \in CD_{\text{sec}}$.

- 2. Qual o período? Em que intervalos é monótona?
- 3. Verifique que $1 + \operatorname{tg}^2 x = \sec^2 x$, $\forall x \in D_{\operatorname{sec}}$.
- 4. Determine, caso existam, os zeros desta função.

Resolução:

- 1. $D_{\text{sec}} = \{x \in \mathbb{R} : \cos x \neq 0\} = \mathbb{R} \setminus \{k\pi + \frac{\pi}{2} : k \in \mathbb{Z}\} \text{ e } CD_{\text{sec}} =]-\infty, -1] \cup [1, +\infty[, \text{ atendendo a que } -1 \leq \cos x \leq 1.$
- 2. O período é o mesmo da função cosseno: $p=2\pi$. Monótona crescente em $\left]2k\pi+\frac{\pi}{2},(2k+1)\pi\right[$ e em $\left]2k\pi,2k\pi+\frac{\pi}{2}\right[$ (nos intervalos onde a função cosseno é decrescente) e é monótona decrescente em $\left](2k+1)\pi,(2k+1)\pi+\frac{\pi}{2}\right[$ e em $\left](2k+1)\pi,(2k+1)\pi+\frac{\pi}{2}\right[$ (nos intervalos onde a função cosseno é crescente).
- 4. A função não tem zeros já que o numerador da expressão que a define é diferente de zero.

3.1.1.2 A função cossecante

Chama-se cossecante à função

$$\csc: D_{\csc} \to \mathbb{R}$$

$$x \mapsto \csc x = \frac{1}{\sec x}$$

Figura 3.4: A função cossecante (csc).

Exercício 3.2 Determine $D_{\rm csc}$ e $CD_{\rm csc}$. Qual o período? Em que intervalos é monótona? Determine, caso existam, os zeros da função.

3.1.1.3 A função cotangente

Chama-se cotangente à função

$$\cot g: D_{\cot g} \to \mathbb{R}$$

$$x \mapsto \cot g x = \frac{\cos x}{\sin x}$$

Figura 3.5: A função cotangente.

Exercício 3.3 Determine D_{cotg} e CD_{cotg} . Qual o período? Em que intervalos é monótona? Determine os zeros desta função. Verifique que $1 + \cot^2 x = \csc^2 x$, $\forall x \in D_{\text{cotg}}$.

Exercício 3.4

- 1. A igualdade $\cot x = \frac{1}{\tan x}$ é verdadeira para todo o $x \in D_{\cot x}$? E $\cot (x \frac{\pi}{2}) = -\tan x$?
- 2. Para que valores de x é verdadeira a igualdade $\frac{\sin x}{\cos x} = \frac{\sec x}{\csc x}$?
- 3. Mostre que se $x \neq \frac{n\pi}{2}$, $\forall n \in \mathbb{Z}$,

$$\operatorname{tg} x + \operatorname{cotg} x = \sec x \csc x \quad \text{e} \quad (\operatorname{tg} x + \cot x)^2 = \sec^2 x + \csc^2 x$$

4. Explique porque as funções trigonométricas não são invertíveis

3.2 Funções trigonométricas inversas

Como se referiu, as funções trigonométricas não admitem inversa, já que, sendo periódicas não são injetivas. Contudo, podemos considerar restrições aos domínios dessas funções, onde o conjunto das imagens continua a ser o contradomínio da função original, mas o domínio escolhido faz com que as restrições a essas funções sejam funções injetivas.

3.2.1 Função arco seno

A restrição da função seno ao intervalo $I = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ é injetiva, logo a função

$$S: \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \to \mathbb{R}$$

$$x \mapsto S(x) = \operatorname{sen} x$$

é invertível. À sua inversa chama-se ${\bf arco~seno}$ e denota-se por arcsen.

Figura 3.6: A restrição da função seno ao intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

Figura 3.7: A função arco-seno.

Como o contradomínio de S é [-1,1], a inversa de S é a função

$$S^{-1}: [-1,1] \rightarrow \mathbb{R}$$

$$x \mapsto S^{-1}(x) = \arcsin x$$

com contradomínio $CD_{S^{-1}}=D_S=[-\frac{\pi}{2},\frac{\pi}{2}].$ Assim, usando a definição de S,

$$\forall x \in [-1, 1], \forall y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \ y = \arcsin x \Leftrightarrow \sin y = x.$$

Pelas propriedades da função inversa escreve-se também

$$\forall x \in [-1, 1], \operatorname{sen}(\operatorname{arcsen} x) = x \quad e \quad \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \operatorname{arcsen}(\operatorname{sen} x) = x.$$

Exercício 3.5

- 1. Seja f definida por $f(x) = \arcsin(\sin x)$. Pode-se afirmar que $f(x) = x, \forall x \in D_f$?
- 2. Mostre que se $-1 \le x \le 1$ então $\cos(\arcsin x) = \sqrt{1-x^2}$.
- 3. Considere a função dada por $f(x) = \arcsin(\ln x)$.
 - (a) Determine o domínio e o contradomínio de f.
 - (b) Determine, caso existam, os zeros de f.

A função $f(x) = \operatorname{sen} x$ é invertível e tem derivada $f'(x) = \cos x$ não nula no intervalo $D_f =]-\frac{\pi}{2}, \frac{\pi}{2}[$. Portanto a sua inversa é derivável (aplica-se o teorema da função inversa) e

$$\forall y \in CD_f =]-1, 1[, (\arcsin y)' = \frac{1}{\cos(\arcsin y)} = \frac{1}{\sqrt{1-y^2}}.$$

3.2.2 Função arco coseno

A restrição da função coseno ao intervalo $[0,\pi]$ é injetiva. Assim, a função

$$\begin{array}{ccc} C: & [0,\pi] & \to & \mathbb{R} \\ & x & \mapsto & C(x) = \cos x \end{array}$$

é invertível. A sua inversa, designada por arco coseno, denota-se por arccos.

Figura 3.8: A restrição da função cosseno ao intervalo $[0, \pi]$.

Figura 3.9: A função arco-cosseno.

Sendo [-1,1] o contradomínio de C, tem-se que

$$\begin{array}{cccc} C^{-1} : & [-1,1] & \to & \mathbb{R} \\ & x & \mapsto & C^{-1}(x) = \arccos x \end{array}$$

O domínio da função arccos é [-1,1] e, pela definição de C,

$$\forall y \in [0, \pi], \ \forall x \in [-1, 1], \ y = \arccos x \Leftrightarrow \cos y = x.$$

Como consequência das propriedades da função inversa obtém-se que

$$\forall x \in [-1,1], \ \cos(\arccos x) = x \quad \text{e} \quad \forall x \in [0,\pi], \ \arccos(\cos x) = x.$$

Exercício 3.6

- 1. Seja g definida por $g(x) = \cos(\arccos x)$. Pode-se afirmar que $g(x) = x, \forall x \in D_g$?
- 2. Considere a função dada por $f(x) = \arccos(e^x)$.
 - (a) Determine o domínio e o contradomínio de f.
 - (b) Determine, caso existam, os zeros de f.
- 3. Mostre que se $-1 \le x \le 1$ então $\operatorname{sen}(\arccos x) = \sqrt{1-x^2}$.

A função $f(x) = \cos x$ é invertível e tem derivada $f'(x) = -\sin x$ não nula no intervalo $D_f =]0, \pi[$. Portanto a sua inversa é derivável e

$$\forall y \in CD_f =]-1,1[, (\arccos y)' = -\frac{1}{\sin(\arccos y)} = -\frac{1}{\sqrt{1-y^2}}.$$

Exercício 3.7 Caracterize a função inversa da função f e estude-a quanto à continuidade, sendo $f(x) = \pi - \arccos(2x + 1)$

3.2.3 Função arco tangente

A função tangente não é injetiva no seu domínio mas a sua restrição ao intervalo] $-\frac{\pi}{2}, \frac{\pi}{2}$ [é. A função

$$T:]-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow \mathbb{R}$$
 $x \mapsto T(x) = \operatorname{tg} x$

tem inversa, designada por **arco tangente** e denotada por arctan, com domínio $\mathbb R$ pois T é sobrejetiva

$$\begin{array}{cccc} T^{-1} : & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & T^{-1}(x) = \arctan x \end{array}$$

Figura 3.11: A função arcotangente.

Figura 3.10: A restrição da função tangente ao intervalo $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$.

$$\forall x \in \mathbb{R}, \forall y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \ y = \arctan x \Leftrightarrow \operatorname{tg} y = x \right]$$

Por definição de inversa:

$$\forall x \in \mathbb{R}, \ \operatorname{tg}(\arctan x) = x; \ \ \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \ \operatorname{arctan}(\operatorname{tg} x) = x.$$

A função $f(x)=\operatorname{tg} x$ é invertível e tem derivada $f'(x)=\frac{1}{\cos^2 x}=\sec^2 x$ não nula no intervalo $D_f=\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. Portanto a sua inversa é derivável e

$$\forall y \in CD_f = \mathbb{R}, \ (\arctan y)' = \frac{1}{\cos^2(\arctan y)} = \frac{1}{1+y^2}.$$

Exercício 3.8 Mostre que as retas $y=x+\frac{\pi}{2}$ e $y=x-\frac{\pi}{2}$ são assíntotas ao gráfico da função $f(x)=x+\arctan x$.

Exercício 3.9 Mostre que $\sec(\arctan x) = \sqrt{1+x^2}$, para todo o $x \in \mathbb{R}$.

Exemplo 3.1. A função definida em $D_f =]0, +\infty[$, por

$$f(x) = \begin{cases} \arctan \frac{1}{x}, & x > 1 \\ \frac{\pi}{4} + \ln x, & 0 < x \le 1 \end{cases}$$

é contínua.

A função $l(x) = \ln x$ é contínua em \mathbb{R}^+ , logo a sua restrição ao intervalo]0,1[é contínua e portanto a função f é contínua em]0,1[.

Considere-se a função invertível $a:]1, +\infty[\to \mathbb{R}$ definida por $a(x) = \arctan \frac{1}{x}$. A sua inversa é a função definida em $]0, \frac{\pi}{4}[$ por $f^{-1}(x) = \frac{1}{\operatorname{tg} x}$.

Como a função tangente é contínua e não se anula neste intervalo, a função a é contínua em $]1,+\infty[$ e assim, f é contínua neste intervalo.

Falta analisar a continuidade de f em x = 1.

$$f(1) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left(\frac{\pi}{4} + \ln x \right) = \frac{\pi}{4} = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \arctan \frac{1}{x}$$

logo f é contínua em x = 1.

3.2.4 Função arco cotangente

A função cotangente não é injetiva no seu domínio $D_{\text{cotg}} = \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$ mas a sua restrição a $[0, \pi[$ é. Assim,

$$G:]0, \pi[\rightarrow \mathbb{R}$$

 $x \mapsto G(x) = \cot x$

tem inversa, com domínio $\mathbb R$ e contradomínio $]0,\pi[$. Chama-se **arco cotangente** e denota-se por arccot

$$\begin{array}{cccc} G^{-1}: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & G^{-1}(x) = \operatorname{arccot} x \end{array}$$

Figura 3.13: A função arco-cotangente.

Figura 3.12: A restrição da função cotangente ao intervalo $]0,\pi[.$

$$\forall x \in \mathbb{R}, \forall y \in]0, \pi[, y = \operatorname{arccot} x \Leftrightarrow \operatorname{cotg} y = x.$$

Por definição de inversa:

$$\forall x \in \mathbb{R}, \ \operatorname{cotg}(\operatorname{arccot} x) = x; \ \forall x \in]0, \pi[, \ \operatorname{arccot}(\operatorname{cotg} x) = x.$$

A função $f(x) = \cot x$ é invertível e tem derivada $f'(x) = -\frac{1}{\sin^2 x} = -\csc^2 x$ não nula no intervalo $D_f =]0, \pi[$. Portanto a sua inversa é derivável e

$$\forall y \in CD_f = \mathbb{R}, \ (\operatorname{arccot} y)' = -\frac{1}{\operatorname{sen}^2(\operatorname{arccot} y)} = -\frac{1}{1+y^2}.$$

3.3 Exercícios

Exercício 3.10 Determine k por forma a que a função f seja contínua no seu domínio.

(a)
$$f(x) = \begin{cases} \arcsin\left(\frac{1}{x}\right), & x > 1 \\ kx^2, & x \le 1 \end{cases}$$
 (b) $f(x) = \begin{cases} \arccos\left(\frac{2}{x}\right), & x \ge 2 \\ 2k e^{x-2}, & x < 2 \end{cases}$

Exercício 3.11 Considere a função dada por $f(x) = \arctan \frac{1}{x+1}$.

- 1. Determine o domínio, o contradomínio e, caso existam, os zeros de f.
- 2. Estude f quanto à monotonia.

Exercício 3.12 Calcule, caso existam, os seguintes limites:

(a)
$$\lim_{x\to 0} \frac{\arccos(5x)}{x}$$
 (b) $\lim_{x\to +\infty} \arccos\frac{1}{x}$ (c) $\lim_{x\to +\infty} \frac{1}{x} \cot \frac{2}{x}$ (d) $\lim_{x\to +\infty} (\sin x + e^x)$

(e)
$$\lim_{x \to +\infty} \arctan(1-x)$$
 (f) $\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^x$ (g) $\lim_{x \to 0} \arccos \frac{1}{x}$ (h) $\lim_{x \to +\infty} \arccos \frac{1}{x^2}$

Exercício 3.13 Determine o domínio da função dada por $g(x) = \frac{3 + 2x^2}{\cot x - 1}$.

Exercício 3.14 Caracterize a inversa da função h em $D \subseteq D_h$, sendo $h(x) = \frac{1}{2} \operatorname{sen} \left(x + \frac{\pi}{2} \right)$ e D o maior intervalo tal que $h|_D$ seja invertível e $0 \in D$.

Exercício 3.15 Seja k a função dada por $k(x) = \frac{\pi}{2} - \frac{2\arcsin(1-x)}{3}$.

- 1. Represente o domínio de k sob a forma de intervalo de números reais.
- 2. Caracterize a função inversa de k.
- 3. Calcule sen(k(2)).

Exercício 3.16 Considere a função dada por $f(x) = \arcsin\left(\frac{x+3}{x-2}\right)$. Determine:

- 1. o domínio de f;
- 2. os valores de x tais que $f(x) \ge 0$.

Exercício 3.17 Determine o domínio e os zeros da função dada por

$$g(x) = \begin{cases} \arccos(x^2) & \text{se } x < 0\\ e^{-x+1} & \text{se } x \ge 0. \end{cases}$$

Exercício 3.18 Determine domínio, contradomínio e zeros da função dada por $h(x) = -\frac{\pi}{3} + \operatorname{arccot}(-3x)$.

3.4 Soluções dos exercícios do capítulo

Exercício 3.2 $D_{\rm csc} = \mathbb{R} \setminus \{k\pi: k \in \mathbb{Z}\}$ e $CD_{\rm csc} =]-\infty,-1] \cup [1,+\infty[$. O período é 2π . Monótona crescente em $\Big] 2k\pi + \frac{\pi}{2}, (2k+1)\pi \Big[$ e em $\Big] (2k+1)\pi, (2k+1)\pi + \frac{\pi}{2} \Big[$ e é monótona decrescente em $\Big] 2k\pi, 2k\pi + \frac{\pi}{2}, \Big[$ e em $\Big] (2k-1)\pi + \frac{\pi}{2}, 2k\pi \Big[$. A função não tem zeros.

Exercício 3.3 $D_{\text{cotg}} = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$ e $CD_{\text{cotg}} = \mathbb{R}$. Período $= \pi$. Monótona decrescente em $]2k\pi, (2k+1)\pi[$; zeros em $x = k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$.

Exercício 3.4

- 1. A igualdade $\cot x = \frac{1}{\lg x}$ não é verdadeira para $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, porque estes pontos pertencem ao domínio da cotangente mas não pertencem ao domínio da tangente. A igualdade $\cot(x \frac{\pi}{2}) = -\lg x$ é verdadeira para todos os pontos do domínio da cotangente.
- 2. $\frac{\operatorname{sen} x}{\cos x} = \frac{\operatorname{sec} x}{\csc x}$ para $x \neq \frac{\pi}{2} + k\pi$ e para $x \neq k\pi$, $k \in \mathbb{Z}$.

Exercício 3.5

- 1. $f(x) = x, \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ e não para $x \in D_f = \mathbb{R}$.
- 3. (a) $D_f = \left[\frac{1}{e}, e\right]$ e $CD_f = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
 - (b) $f(x) = 0 \Leftrightarrow x = 1$.

Exercício 3.6

- 1. Sim.
- 2. (a) $D_f =]-\infty, 0]; CD_f = \left[0, \frac{\pi}{2}\right].$
 - (b) x = 0.

Exercício 3.7 $f(x) = \pi - \arccos(2x+1)$ contínua em $D_f = [-1,0]; CD_f = [0,\pi].$ $f^{-1}(x) = \frac{1}{2}(\cos(\pi - x) - 1)$ é contínua em $D_{f^{-1}} = CD_f$.

Exercício 3.10 (a) $k = \frac{\pi}{2}$; (b) k = 0.

Exercício 3.11

- 1. $D_f = \mathbb{R} \setminus \{-1\}; CD_f = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}; \text{ não tem zeros.}$
- 2. A função é decrescente em] $-\infty, -1[$ e em] $-1, +\infty[.$

Exercício 3.12 (a) Seja $y = \arcsin(5x)$, ou seja, sen y = 5x. Se $x \to 0$ então $y \to 0$, logo,

$$\lim_{x \to 0} \frac{\arcsin(5x)}{x} = \lim_{y \to 0} \frac{y}{\frac{1}{5} \sin y} = \lim_{y \to 0} 5 \frac{y}{\sin y} = 5 \lim_{y \to 0} \frac{1}{\frac{\sin y}{y}} = 5;$$

- (b) $\frac{\pi}{2}$;
- (c) Como cot
g $y=\frac{\cos y}{\sin y}$ e se $x\to +\infty,$ então $y=\frac{1}{x}\to 0,$ temos,

$$\lim_{x \to +\infty} \frac{1}{x} \cot g \ \frac{2}{x} = \lim_{y \to 0} y \frac{\cos{(2y)}}{\sin{(2y)}} = \lim_{y \to 0} \frac{1}{2} \frac{2y}{\sin{(2y)}} \cos{(2y)} = \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2};$$

(d)
$$+\infty$$
; (e) $-\frac{\pi}{2}$; (f) e^2 ; (g) Não existe; (h) $+\infty$.

Exercício 3.13
$$D_g = \left\{ x \in \mathbb{R} : x \neq k\pi \wedge x \neq k\pi + \frac{\pi}{4}, k \in \mathbb{Z} \right\}.$$

Exercício 3.14
$$D=[-\pi,0];\, h^{-1}(x)=rcsen{(2x)}-\frac{\pi}{2} \in D_{h^{-1}}=\left[-\frac{1}{2},\frac{1}{2}\right].$$

Exercício 3.15

1.
$$D_k = [0, 2]$$
.

2.
$$k^{-1}(x) = 1 - \operatorname{sen}\left(\frac{3\pi}{4} - \frac{3}{2}x\right), D_{k^{-1}} =$$

3.
$$\operatorname{sen}(k(2)) = \frac{1}{2}$$
.

Exercício 3.16

$$1. D_f = \left] -\infty, -\frac{1}{2} \right];$$

2.
$$x \in]-\infty, -3]$$
.

Exercício 3.17 $D_g = [-1, +\infty[$; o único zero é x = -1.

Exercício 3.18
$$D_h = \mathbb{R}$$
; $CD_h = \left] -\frac{\pi}{3}, \frac{2\pi}{3} \right[$; o único zero é $x = -\frac{\sqrt{3}}{9}$.

Capítulo 4

Teoremas sobre funções contínuas e funções deriváveis

Neste capítulo serão estudados alguns teoremas sobre funções contínuas e funções deriváveis e a sua aplicação ao estudo completo de funções.

4.1 Teoremas sobre funções contínuas

Os teoremas seguintes foram estudados no ensino secundário e são aqui revisitados.

4.1.1 Teorema de Bolzano

Teorema 4.1. (Teorema de Bolzano ou dos valores intermédios) Se f é uma função contínua num intervalo [a,b], a < b, e f(a) < Y < f(b) ou f(b) < Y < f(a) então existe $X \in]a,b[$ tal que f(X) = Y.

Figura 4.1: Interpretação geométrica do Teorema de Bolzano.

Este teorema estabelece que uma função contínua em [a, b] assume todos os valores intermédios entre f(a) e f(b) (uma ou mais vezes).

Corolário 1. Se f é contínua em [a,b] e $f(a) \cdot f(b) < 0$ então existe $x_0 \in]a,b[$ tal que $f(x_0) = 0$.

Exemplo 4.1. A equação sen x + 2x - 1 = 0 tem pelo menos uma solução em \mathbb{R} .

Consideremos a função contínua em \mathbb{R} , definida por $f(x) = \operatorname{sen} x + 2x - 1$. Calculando f(0) e $f\left(\frac{\pi}{2}\right)$ obtemos:

f(0) = -1 e $f\left(\frac{\pi}{2}\right) = \pi$, portanto $f(0) \cdot f\left(\frac{\pi}{2}\right) = -\pi < 0$

e o Teorema de Bolzano (ou o seu corolário) permite-nos afirmar que a função se anula neste intervalo. Veremos à frente que esta função tem um único zero em \mathbb{R} .

Corolário 2. Seja I um intervalo qualquer de \mathbb{R} e $f:I\to\mathbb{R}$ uma função contínua. Então f(I) é um intervalo.

Demonstração. Sejam $y_1, y_2 \in f(I)$ arbitrários e suponha-se, sem perda de generalidade, que $y_1 < y_2$. Então $\forall y \in \mathbb{R} \quad y_1 < y < y_2 \Rightarrow y \in f(I)$

ou seja, $[y_1, y_2] \subseteq f(I)$, o que prova ser f(I) um intervalo.

4.1.1.1 Método da Bissecção

Uma das aplicações do corolário do teorema de Bolzano é a localização de raízes de equações não lineares.

Exemplo 4.2. Seja $f(x) = 4x^3 - 6x^2 + 3x - 2$. Pretende-se encontrar \overline{x} entre 1 e 2 tal que $f(\overline{x}) = 0$. Como,

$$\left. \begin{array}{l} f(1)f(2) < 0 \\ \\ f \ \mbox{\'e contínua em } \left[1,2 \right] \end{array} \right\} \Rightarrow \exists \ \overline{x} \in]1,2[:f(\bar{x}) = 0$$

Consideremos agora o ponto médio de [1,2], $x_1 = 1.5$. Como $|x_1 - \overline{x}| < 0.5$, x_1 é uma aproximação de \overline{x} com erro inferior a 0.5. Aplicando novamente o teorema,

$$\left.\begin{array}{l} f(1)f(x_1)<0\\\\ f\text{ \'e contínua em }[1,x_1] \end{array}\right\}\Rightarrow\exists\;\overline{x}\in]1,x_1[:f(\bar{x})=0$$

Uma raiz da equação está em]1,1.5[. Repetindo o processo anterior, seja $x_2 = 1.25$ (ponto médio de [1,1.5]), temos

 $|x_2 - \overline{x}| < 0.25$ e portanto x_2 é uma aproximação da raiz da equação com erro inferior a 0.25.

Como,

$$\left. \begin{array}{c} f(1)f(x_2) < 0 \\ \\ f \ \text{\'e contínua em} \ \ [1,x_2] \end{array} \right\} \Rightarrow \exists \ \overline{x} \in]1, x_2[: f(\bar{x}) = 0$$

podemos aplicar sucessivamente o resultado até obter uma aproximação de \overline{x} com a precisão desejada.

4.1.2 Teorema de Weierstrass

Este teorema garante a existência de máximo e mínimo de uma função contínua num intervalo fechado. Comecemos por recordar estas noções.

Seja $f: D_f \to \mathbb{R}$ com contradomínio CD_f . Um ponto $c \in D_f$ é

- ponto de máximo (mínimo) global se f(c) é o máximo (mínimo) de CD_f ;
- ponto de $m\'{a}ximo$ $(m\'{i}nimo)$ local se existe uma vizinhança $\mathcal{V}(c)$ tal que c é ponto de m\'{a}ximo $(m\'{i}nimo)$ global da restrição da função f ao conjunto $D \cap \mathcal{V}(c)$.

Um ponto c de máximo ou de mínimo local (global) diz-se ponto de extremo local (global) de f. Ao valor f(c) chama-se extremo local (global) de f.

Para encontrar os extremos globais é preciso estudar os extremo locais e compará-los.

Um ponto de extremo c da função f diz-se extremo estrito quando $f(x) \neq f(c)$ para todo o x diferente de c numa vizinhança de c.

Exercício 4.1 Encontre extremos e pontos de extremo locais e globais da função definida em [-4, 6] pelo gráfico representado na figura 4.2, indicando os extremos estritos:

Figura 4.2: Gráfico da função.

Teorema 4.2. (Teorema de Weierstrass) Seja $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$. Se D_f é um conjunto limitado e fechado e f é contínua em D_f , então f atinge em D_f o seu máximo e o seu mínimo, isto é, existem $x_m, x_M \in D_f$ tais que, $f(x_m) \leq f(x) \leq f(x_M)$, para todo o $x \in D_f$.

Figura 4.3: Interpretação geométrica do Teorema de Weierstrass.

Demonstração. Comecemos por provar que f é limitada. Suponha-se, pelo contrário, que f é contínua, mas não limitada em [a,b]. Então, para todo o $n \in \mathbb{N}$, existe $x_n \in [a,b]$ tal que se tem $|f(x_n)| > n$.

A sucessão $(x_n)_{n\geq 1}$ é limitada, já que $a\leq x_n\leq b, \ \forall n\in\mathbb{N}$, e, portanto, admite uma subsucessão $(x_{n_\tau})_{\tau\geq 1}$, convergente¹. Seja $\lim_{\tau\to\infty}x_{n_\tau}=\overline{x}\in[a,b]$.

Tem-se então, por um lado, que

$$\lim_{\tau \to \infty} |f(x_{n_{\tau}})| = +\infty$$

enquanto que

$$\lim_{\tau \to \infty} |f(x_{n_{\tau}})| = |f(\overline{x})| < +\infty$$

já que, da continuidade de f decorre (como facilmente se verifica) a continuidade de |f|. A contradição resultou de se ter suposto que a função f era não limitada.

Seja $M = \sup f(x)$ e suponha-se que

$$f(x) < M$$
, $\forall x \in [a, b]$.

Então a função $g:[a,b]\to\mathbb{R}$ definida por

$$g(x) = \frac{1}{M - f(x)} , \ a \le x \le b$$

é contínua e, portanto, de acordo com o
 que vimos no início da demonstração para a função f, é limitada.

Seja $c = \sup g(x)$. É claro que se tem c > 0 e

$$g(x) \le c$$
, $\forall x \in [a, b]$

donde resulta que

$$f(x) \le M - \frac{1}{c}, \ \forall x \in [a, b]$$

o que é contrário à definição de M.

Consequentemente,

$$\exists x_1 \in [a, b] : f(x_1) = M$$

e, portanto, $M = \max f(x)$.

Demonstração análoga se pode fazer para o caso do mínimo.

- A função $f:]-1,1[\to \mathbb{R}$ dada por $f(x) = \frac{1}{1-x^2}$ não é limitada. Isto contradiz o teorema anterior?
- A função $g: [0, +\infty[\to \mathbb{R} \text{ dada por } g(x) = \frac{1}{1+x^2} \text{ \'e contínua e limitada. Assume o valor máximo em } x = 0$, mas não existe $x \in [0, +\infty[\text{ tal que } g(x) \text{ seja mínimo. Porquê?}]$

Exercício 4.2 Considere a função f definida por

$$f(x) = \begin{cases} \frac{1}{2} + \arctan x & \text{se } x \ge 0\\ e^{\frac{1}{x}} & \text{se } x < 0. \end{cases}$$

- 1. Estude f quanto à continuidade.
- 2. Determine, caso existam, as assímptotas ao gráfico de f.
- 3. Determine os pontos de intersecção do gráfico de f com a reta de equação $y = \frac{1}{2}$.

¹Toda a sucessão limitada admite uma subsucessão convergente.

Exercício 4.3 Considere a função g dada por

$$g(x) = \frac{3\pi}{5} - \arccos\left(\frac{x-1}{2}\right).$$

Utilize o teorema de Bolzano para justificar que g admite uma raiz no intervalo]0,2[.

Exercício 4.4 Considere a função f, real de variável real, tal que $f(x) = \frac{1}{x-1}$

- 1. f é contínua em]1,2]? f é limitada em]1,2]?
- 2. Existe contradição com o teorema de Weierstrass?

4.2 Teoremas sobre funções deriváveis

Vamos estudar alguns teoremas sobre funções deriváveis em intervalos de \mathbb{R} que nos permitem fazer o estudo completo de funções, incluindo monotonia, extremos e sentidos das concavidades dos seus gráficos.

4.2.1 O Teorema de Rolle

Teorema 4.3. (Teorema de Rolle) Seja f uma função contínua em [a,b] e derivável em]a,b[. Se f(a) = f(b) então existe $c \in]a,b[$ tal que f'(c) = 0.

Figura 4.4: Teorema de Rolle.

Podemos afirmar que nas condições do Teorema de Rolle a função tem um ponto no interior do intervalo [a,b] onde a tangente é uma reta horizontal.

Demonstração. Nas condições do Teorema de Rolle, f tem máximo e mínimo em [a,b] (pelo Teorema de Weierstrass).

Se a função for constante em [a, b], isto é, f(x) = k onde k = f(a) = f(b), $\forall x \in [a, b]$ e o máximo é igual ao mínimo e igual a k. Então, em qualquer ponto do intervalo]a, b[a derivada é nula, pelo que o teorema é verdadeiro neste caso.

Suponhamos agora que f não é constante. Como f é contínua, então, pelo Teorema de Weierstrass, admite no intervalo [a,b] um máximo M e um mínimo m e $m \neq M$ já que a função não é constante.

Então a função admite no interior do intervalo [a, b] um máximo, um mínimo ou até os dois.

Admita-se que f admite o valor máximo M no ponto c tal que a < c < b.

Então para valores de x < c vem x - c < 0 e também $f(x) - f(c) \le 0$ e portanto

$$\frac{f(x) - f(c)}{x - c} \ge 0.$$

Como f é derivável no intervalo, vem

$$\lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} = f'(c) \ge 0.$$

Para valores de x à direita de c, x-c>0 e $f(x)-f(c)\leq 0$ e portanto

$$\frac{f(x) - f(c)}{x - c} \le 0,$$

e também,

$$\lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} = f'(c) \le 0.$$

Mas então conclui-se que

$$f'(c) \ge 0 e f'(c) \le 0$$

o que só é possível se f'(c) = 0, provando-se assim o teorema.

A prova seria análoga se considerássemos o mínimo m atingido num ponto do interior do intervalo. \square

Exercício resolvido 4.1. 1. Seja f contínua em [a,b] e derivável em]a,b[com $f'(x) \neq 0, \forall x \in [a,b[$. f é injetiva em [a,b]? E monótona?

- 2. Se f é estritamente monótona e derivável em [a, b[, então $f'(x) \neq 0, \forall x \in]a, b[$?
- 3. Prove que entre duas raízes (dois zeros) consecutivas duma função, derivável em \mathbb{R} , existe uma raiz da sua derivada. Prove ainda que entre raízes consecutivas da derivada existe quando muito uma raiz da função.

Resolução do exercício 4.1. 1. Provemos que f é injetiva. Suponhamos, por redução ao absurdo, que f não era injetiva, isto é, que existiam x_1 e x_2 distintos $(x_1 < x_2)$ mas $f(x_1) = f(x_2)$. Se aplicarmos o Teorema de Rolle ao intervalo $[x_1, x_2]$, como f é contínua neste intervalo, derivável em $]x_1, x_2[$ e $f(x_1) = f(x_2)$, existiria um $c \in]x_1, x_2[\subseteq]a, b[$ tal que f'(c) = 0, contrariando a hipótese de que $f'(x) \neq 0$, $\forall x \in]a, b[$.

Logo f é injetiva em [a, b].

Provemos agora que a função é estritamente monótona em [a,b]. Suponhamos que não, isto é, ou existem x_1 e x_2 em [a,b] distintos tais que $f(x_1) = f(x_2)$ e neste caso a função não seria injetiva, ou existem $x_1 < x_2 < x_3$ em [a,b] tais que $f(x_1) < f(x_2)$ e $f(x_2) > f(x_3)$ ou $f(x_1) > f(x_2)$ e $f(x_3) > f(x_2)$.

Consideremos o primeiro caso, isto é, $x_1 < x_2 < x_3$ com $f(x_1) < f(x_2)$ e $f(x_3) < f(x_2)$. Podem suceder duas situações: $f(x_1) > f(x_3)$ ou $f(x_1) < f(x_3)$. Se $f(x_1) > f(x_3)$, pelo Teorema de Bolzano (4.1), existirá um $c \in]x_2, x_3[$ tal que $f(c) = f(x_1)$ e a função não seria injetiva.

Se $f(x_1) < f(x_3)$, pelo Teorema de Bolzano (4.1), existirá um $d \in]x_1, x_2[$ tal que $f(d) = f(x_3)$ e a função não seria injetiva.

A prova seria análoga para o caso em que $f(x_1) > f(x_2)$ e $f(x_3) > f(x_2)$. Portanto podemos afirmar que a função tem que ser estritamente monótona em [a, b].

- 2. Não. Seja f a função definida em [-1,1] por $f(x)=x^3$. Esta função é estritamente crescente e no entanto a derivada anula-se em x=0.
- 3. Sejam $r_1 < r_2$ dois zeros consecutivos de f, isto é, $f(r_1) = f(r_2) = 0$. f é contínua em $[r_1, r_2]$, derivável em $]r_1, r_2[$ e $f(r_1) = f(r_2)$. Aplicando o Teorema de Rolle podemos afirmar que existe um zero da derivada em $]r_1, r_2[$.

Sejam agora $s_1 < s_2$ duas raízes consecutivas da derivada de f. Suponhamos que existiam dois zeros distintos de f, $r_1 < r_2$, entre s_1 e s_2 , isto é, $s_1 \le r_1 < r_2 \le s_2$. Pelo que foi dito no parágrafo anterior, existiria um zero da derivada, s_3 , entre r_1 e r_2 , contrariando o facto de que s_1 e s_2 são zeros consecutivos de f', ou seja, teríamos $s_1 \le r_1 < s_3 < r_2 \le s_2$.

4.2.2 O Teorema de Lagrange

O seguinte teorema é também conhecido por Teorema dos Acréscimos Finitos.

Teorema 4.4. (Teorema de Lagrange) Seja f uma função contínua em [a,b] e derivável em]a,b[. Então existe um ponto $c \in]a,b[$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Figura 4.5: Interpretação geométrica do Teorema de Lagrange.

Demonstração. Seja

$$\begin{array}{ccc} g & [a,b] & \longrightarrow & \mathbb{R} \\ & x & \mapsto & f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a). \end{array}$$

Então g também é contínua em [a, b] e derivável em]a, b[. Além disso, g(a) = g(b) = 0. Logo, pelo Teorema de Rolle, existe algum $c \in]a, b[$ tal que g'(c) = 0. Mas

$$g'(c) = 0 \Longleftrightarrow f'(c) - \frac{f(b) - f(a)}{b - a} = 0 \Longleftrightarrow f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Pelo teorema existe um ponto $c \in]a, b[$ em que a reta r tangente ao gráfico da função f é paralela à reta secante em a e b (a reta s, na figura).

Facilmente se constata que estando c estritamente compreendido entre a e b, então pode expressar-se de forma única como

$$c = a + \theta(b - a), 0 < \theta < 1$$

e, portanto, a fórmula dos acréscimos finitos pode tomar o seguinte aspecto

$$f(b) = f(a) + (b - a)f'(a + \theta(b - a)), \ 0 < \theta < 1$$

ou ainda, fazendo b = a + h,

$$f(a+h) = f(a) + hf'(a+\theta h), \ 0 < \theta < 1.$$

Exercício 4.5 Seja $f:[3,2+e] \to \mathbb{R}$ dada por $f(x)=x+\ln(x-2)$. Verifique que f satisfaz a hipótese do Teorema de Lagrange e encontre a equação da reta tangente ao gráfico e paralela à secante nos extremos do domínio.

4.2.2.1 Monotonia e Teorema de Lagrange

Da definição de derivada resulta que, sendo $f: D \to \mathbb{R}$ uma função derivável em $[a, b] \subseteq D$,

se f é crescente em sentido lato em [a, b] então $f'(x) \ge 0, \forall x \in]a, b[$;

se f é decrescente em sentido lato em [a,b] então $f'(x) \leq 0, \forall x \in]a,b[$;

(em particular) sef(x) é constante em [a,b] então $f'(x)=0, \forall x\in]a,b[$.

Contudo, o Teorema de Lagrange permite inferir acerca das recíprocas destas proposições. São consequências imediatas do Teorema de Lagrange as seguintes proposições:

Corolário 3. Sendo f uma função definida e derivável num intervalo aberto $I \subseteq \mathbb{R}$ (com mais de um ponto) tal que f'(x) = 0, $\forall x \in I$, então f é uma função constante em I.

Demonstração. Sejam x_1 e x_2 pontos arbitrários em I, com $x_1 < x_2$. Sendo f derivável em I, pode aplicar-se o Teorema de Lagrange ao intervalo $[x_1, x_2]$ e portanto existe $c \in]x_1, x_2[$ tal que

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Como $f'(x) = 0, \forall x \in I$, resulta que f'(c) = 0 e consequentemente,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0, \text{ ou seja, } f(x_2) = f(x_1).$$

Como x_1 e x_2 são pontos arbitrários de I podemos concluir que f é constante.

Corolário 4. Se f e g são funções deriváveis em D e f'(x) = g'(x), $\forall x \in D$, então em cada intervalo $I \subseteq D$ existe $C \in \mathbb{R}$ tal que f(x) = g(x) + C, $\forall x \in I$.

Corolário 5. Se f é uma função derivável em I e para todo o x pertencente a um intervalo aberto $I \subseteq \mathbb{R}$ (com mais de um ponto) se tiver f'(x) > 0, então f é estritamente crescente em I e, se for f'(x) < 0, $\forall x \in I$, então f é estritamente decrescente em I.

Demonstração. Sejam x_1 e x_2 pontos arbitrários em I, com $x_1 < x_2$. Sendo f derivável em I, pode aplicar-se o Teorema de Lagrange ao intervalo $[x_1, x_2]$ e portanto existe $c \in]x_1, x_2[$ tal que

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Se f'(x) > 0, $\forall x \in I$, resulta que f'(c) > 0 e consequentemente,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0, \text{ ou seja, } f(x_2) > f(x_1) (\text{ já que } x_2 > x_1).$$

Como x_1 e x_2 são pontos arbitrários de I podemos concluir que f é estritamente crescente.

Se f'(x) < 0, $\forall x \in I$, resulta que f'(c) < 0 e consequentemente,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < 0, \text{ ou seja}, f(x_2) < f(x_1) \text{ (já que } x_2 > x_1).$$

Como x_1 e x_2 são pontos arbitrários de I podemos concluir que f é estritamente decrescente.

Note-se que nestes dois corolários I designa sempre um intervalo, pois de contrário não fica garantida a veracidade das afirmações feitas: por exemplo, a função

$$f(x) = \frac{|x|}{x}, \ x \in \mathbb{R} \setminus \{0\}$$

tem derivada nula em todos os pontos do seu domínio (que não é um intervalo) e, no entanto, não é constante nesse domínio.

Pode ainda deduzir-se do Teorema de Lagrange o seguinte corolário:

Corolário 6. Dadas duas funções $f, g : [a, b] \to \mathbb{R}$ deriváveis, então

$$f(a) \le g(a) \land f'(x) \le g'(x) \Rightarrow f(x) \le g(x), \ \forall x \in [a, b[$$

Demonstração. Seja $x \in [a, b[$ qualquer e $\varphi : [a, b[\to \mathbb{R} \text{ a função definida por } \varphi(x) = f(x) - g(x).$ Pela fórmula dos acréscimos finitos, para cada $x \in [a, b[$, existe pelo menos um $c \in [a, x[$ tal que

$$\varphi(x) - \varphi(a) = (x - a)\varphi'(c).$$

Como $\varphi'(c) = f'(c) - g'(c) \le 0$ qualquer que seja $c \in [a, b[$, então obtém-se

$$\varphi(x) - \varphi(a) \le 0, \ \forall x \in]a, b[$$

donde resulta

$$f(x) - g(x) \le f(a) - g(a) \le 0$$

ou seja,

$$f(x) \le g(x), \ \forall x \in [a, b[$$

como se pretendia provar.

Exercício 4.6

- 1. Mostre que $\arcsin x + \arccos x = \frac{\pi}{2}, \forall x \in [-1, 1]$
- 2. Estude o domínio e o gráfico de $f(x) = \arctan x + \arctan \frac{1}{x}$. (Ajuda: calcule f'!)

Exemplo 4.3. Mostremos que $f(x) = x + k \operatorname{sen} x$ é invertível se e só se $|k| \leq 1$.

A derivada de $f \notin f'(x) = 1 + k \cos x$ e $f'(x) = 0 \Leftrightarrow k \cos x = -1$.

- Se |k| < 1 então $|k \cos x| = |k| |\cos x| \le |k| < 1$ e assim $f'(x) > 0, \forall x \in \mathbb{R}$.
- Se $k = \pm 1$ então $f'(x) \ge 0$ e $f'(x) = 0 \Leftrightarrow \cos x = \pm 1$ é satisfeita em pontos isolados
- Se |k| > 1 então f' muda de sinal: f'(0) = 1 + k e $f'(\pi) = 1 k$ têm sinais opostos.

Conclui-se que f é estritamente crescente, logo invertível, se e só se $|k| \leq 1$.

4.2.3 Máximos e mínimos locais

O elemento $a \in \text{Int}(D_f)$ é ponto crítico de f se f'(a) = 0 ou se $a \notin D_{f'}$, ou seja, se a derivada se anula nesse ponto ou se não existe derivada nesse ponto.

Exemplo 4.4. Seja $f:]-2, 2[\to \mathbb{R}, \text{ tal que } f(x) = |1-x^2|.$ Os pontos críticos são $\{-1, 0, 1\}.$

Esta função não tem derivada em c=-1 nem em c=1 e a derivada anula-se em c=0.

Teorema 4.5. (Teorema de Fermat) Seja f uma função definida e derivávell num intervalo aberto |a,b|, a < b. Se f tiver um extremo local num ponto $c \in [a,b[$, então f'(c) = 0.

Demonstração. (a) Suponha-se que f tem um máximo local em $c \in]a,b[$. Então, existe $\varepsilon > 0$ tal que

$$\forall x \in]a, b[\quad x \in]c - \varepsilon, c + \varepsilon[\Rightarrow f(x) \le f(c)]$$

e, portanto, qualquer que seja $x \in [a, b]$,

se
$$c - \varepsilon < x < c$$
, então $\frac{f(x) - f(c)}{x - c} \ge 0$

se
$$c < x < c + \varepsilon$$
, então $\frac{f(x) - f(c)}{x - c} \le 0$

donde resulta, por passagem ao limite quando $x \to c$ à esquerda e à direita, que

$$f'_e(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \ge 0$$
 e $f'_d(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \le 0$.

Como f é derivável em c, então ter-se-á $f'_e(c) = f'(c) = f'_d(c)$, o que implica que seja f'(c) = 0.

(b) Analogamente se demonstra o caso em que f tem um mínimo local no ponto $c \in]a,b[$.

Exemplo 4.5. Um ponto crítico pode não ser de extremo. As funções f(x) = |x| + 2x e $g(x) = x^3$ em x = 0 têm um ponto crítico que não é extremo.

Figura 4.6: Ponto crítico que não é extremo.

Seja f for contínua no ponto crítico c. A derivada f' muda de sinal em c se e só se c é ponto de extremo estrito (mesmo que a derivada não exista em c).

Considere-se por exemplo a função f(x) = |x| definida em \mathbb{R} . f é contínua, o único ponto crítico é c = 0, não existindo derivada neste ponto. Contudo, se x < 0 a função derivada f'(x) = -1 e se x > 0, f'(x) = 1. c = 0 é um minimizante e nesse ponto a derivada muda de sinal.

Se f' passar de positiva para negativa, f passa de estritamente crescente para decrescente, isto é, atinge um máximo (vice-versa para o mínimo).

Exercício 4.7

- 1. Seja $f(x) = |1-x^2|$ com domínio D =]-1, 2[. Usando a derivada, justifique que 0 e 1 são pontos de extremo local. Classifique os pontos críticos e encontre os extremos globais.
- 2. Estude os extremos locais da função $g(x) = \sqrt{\frac{4-x^2}{x+3}}$.

Em Cálculo II será estudado o Teorema de Taylor que justifica o seguinte resultado

Teorema 4.6. Seja $c \in \text{Int}(D_f)$ um ponto crítico da função f. Se existir f''(c), então:

- c é ponto de máximo quando f''(c) < 0;
- c é ponto de mínimo quando f''(c) > 0.

Por ser útil no estudo de extremos locais de funções deriváveis que admitem segunda derivada, enunciamos aqui o resultado.

Exercício 4.8 Encontre e classifique os pontos de extremo da função $f(x) = x - \ln x$.

4.2.4 Convexidade, concavidade e pontos de inflexão

Definição 4.1. Uma função $f: D \to \mathbb{R}$ é **convexa** no intervalo $I \subseteq D$ se para qualquer intervalo $[a,b] \subseteq I$, o gráfico da função não está acima da reta secante nos pontos $a \in b$.

Uma função $f: D \to \mathbb{R}$ é **côncava** no intervalo $I \subseteq D$ se para qualquer intervalo $[a, b] \subseteq I$, o gráfico da função não está abaixo da reta secante nos pontos $a \in b$.

Se f é convexa, diz-se que tem a concavidade voltada para cima e se f é côncava, diz-se que tem a concavidade voltada para baixo.

O ponto $c \in \text{Int}(D)$ é ponto de inflexão da função f se em x = c o seu gráfico muda o sentido da concavidade.

Figura 4.7: Exemplos de funções côncavas e convexas.

Seja $[a,b]\subseteq I$ um qualquer intervalo fechado contido em I. A equação da reta secante nos pontos a e b é

$$y = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

• Dizer que o gráfico de f não está acima da reta secante significa que para qualquer $x \in [a, b]$,

$$f(x) \le \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

Podemos então afirmar que uma função $f:D\to\mathbb{R}$ é **convexa** no intervalo $I\subseteq D$ se para qualquer intervalo $[a,b]\subseteq I$ e para qualquer $x\in [a,b]$ se verifica

$$f(x) \le \frac{f(b) - f(a)}{b - a}(x - a) + f(a). \tag{4.1}$$

• Dizer que o gráfico de f não está abaixo da reta secante significa que para qualquer $x \in [a, b]$,

$$f(x) \ge \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

Podemos então afirmar que uma função $f:D\to\mathbb{R}$ é **côncava** no intervalo $I\subseteq D$ se para qualquer intervalo $[a,b]\subseteq I$ e para qualquer $x\in [a,b]$ se verifica

$$f(x) \ge \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

Proposição 4.1. Seja f contínua. Se f \acute{e} convexa em I então para todo o $a,b \in I$,

$$f\left(\frac{a+b}{2}\right) \le \frac{f(a)+f(b)}{2}.$$

Obtém-se uma proposição análoga para f côncava.

Demonstração. Se na desigualdade (4.1) fizermos $x = \frac{a+b}{2}$ vem

$$f\left(\frac{a+b}{2}\right) \le \frac{f(b) - f(a)}{b-a} \frac{b-a}{2} + f(a) = \frac{f(a) + f(b)}{2}.$$

Se f é derivável em $I \subseteq D_f$, pode-se estudar a sua concavidade a partir da função derivada f'.

Se f é convexa em I então a reta tangente em qualquer ponto $c \in I$ fica abaixo do gráfico da função em I. Se f é côncava em I então a reta tangente em qualquer ponto $c \in I$ fica acima do gráfico da função em I.

Seja f uma função definida num intervalo aberto I de \mathbb{R} e suponha-se que f é derivável num ponto $c \in I$. A função $g : \mathbb{R} \to \mathbb{R}$ definida por

$$g(x) = f(c) + (x - c)f'(c)$$

representa no plano a reta tangente ao gráfico de f no ponto x=c. Se existir $\delta>0$ tal que

$$x \in]c - \delta, c + \delta[\cap I \Rightarrow f(x) \ge g(x)]$$

então dir-se-á que f é **convexa** no ponto c (ou que o gráfico de f tem, no ponto c, a concavidade voltada para cima).

Se existir $\delta' > 0$ tal que

$$x \in]c - \delta', c + \delta'[\cap I \Rightarrow f(x) \le g(x)]$$

então dir-se-á que f é **côncava** no ponto c (ou que o gráfico de f tem, no ponto c, a concavidade voltada para baixo).

Pode também acontecer que exista $\delta'' > 0$ tal que num dos intervalos $]c - \delta'', c[$ ou $]c, c + \delta''[$ se tenha $f(x) \le g(x)$ enquanto que no outro se tem $f(x) \ge g(x)$. Nesta hipótese diz-se que x = c é um **ponto** de inflexão de f (ou que o gráfico de f tem uma inflexão nesse ponto).

Se f é contínua no ponto c e se $f'(c) = +\infty$ ou $f'(c) = -\infty$ também, nestas condições, se dirá que c é um ponto de inflexão de f.

Observe-se que se f é convexa num intervalo I e é derivável nesse intervalo, a função derivada é crescente. Analogamente, se f é côncava num intervalo I e é derivável nesse intervalo, a função derivada é decrescente. Assim, existindo a segunda derivada, f'', em I poderemos dizer que

f é convexa em I se e só se $\forall x \in I$, $f''(x) \ge 0$.

$$f$$
 é côncava em I se e só se $\forall x \in I, f''(x) \leq 0$.

Observação 4.1. Mesmo que f seja não derivável num número finito de pontos do intervalo I,

- f é convexa em I se e só se f' é crescente onde existe em I;
- f é côncava em I se e só se f' é decrescente onde existe em I;
- $c \in \text{Int}(I)$ é ponto de inflexão de f se e só se f' está definida numa vizinhança de c e, à esquerda e à direita, é estritamente monótona com sentidos opostos.

Figura 4.8: Ponto de inflexão.

• Um ponto $c \in \text{Int}(D_f)$ é de inflexão para f se e só se f'' muda de sinal em c. f'' pode mudar de sinal em c sem existir no ponto. Consequentemente, só zeros de f'' ou pontos onde f'' não existe podem ser pontos de inflexão de f.

Exercício 4.9 Verifique que $f(x) = \operatorname{sen} x$ tem pontos de inflexão em $x = k\pi$ para todo o $k \in \mathbb{Z}$.

Exercício 4.10 Estude a concavidade de $f(x) = x^3 - 12x$ indicando, os pontos de inflexão, caso existam.

Exercício 4.11 Estude a concavidade das seguintes funções e averigue se 0 é ponto de inflexão.

- 1. f(x) = |x|(mx + q) e $g(x) = mx^2 + q|x|$, com $m, q \in \mathbb{R} \setminus \{0\}$ (esboce e analise o gráfico!);
- 2. $h(x) = x\sqrt{|x|} e k(x) = x^2\sqrt{|x|}$.

Exercício 4.12 Esboce o gráfico das seguintes funções

$$f(x) = \frac{x^3}{x^2 + 1},$$
 $g(x) = \frac{e^x}{x},$ $h(x) = 5|x|e^{-|x|}.$

e estude a função quanto a

- domínio;
- sinal e zeros;
- assíntotas;
- intervalos de monotonia e pontos de extremo;
- concavidade e pontos de inflexão;
- contradomínio.

4.3 Teorema e regra de Cauchy

Sejam $f, g:[a,b]\to\mathbb{R}$ duas funções nas condições do Teorema de Lagrange. Então existem dois pontos $c_1, c_2\in]a,b[$, em geral distintos, tais que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c_1)}{g'(c_2)}$$

supondo $g'(c_2) \neq 0$ (o que implica, pelo Teorema de Lagrange que seja $g(b) \neq g(a)$).

O Teorema de Cauchy, no entanto, permite expressar aquela razão à custa de um único ponto $c \in [a, b]$.

Teorema 4.7. (Teorema de Cauchy) Sejam f e g duas funções contínuas no intervalo [a,b] e em [a,b[. Se $g'(x) \neq 0, \forall x \in]a,b[$, então existe pelo menos um ponto $c \in]a,b[$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Demonstração. Das hipóteses relativas à continuidade e diferenciabilidade da função g e ao facto de ser $g'(x) \neq 0, \forall x \in]a, b[$, resulta, pelo Teorema de Rolle, que se tem $g(b) - g(a) \neq 0$ e, sendo assim, está bem definido o primeiro membro da igualdade a demonstrar.

Considere-se agora a função auxiliar

$$\varphi(x) = (g(b) - g(a))f(x) - (f(b) - f(a))g(x)$$

definida em [a, b]. É de imediata verificação que

- (1) φ é contínua em [a, b];
- (2) φ é derivável em a, b;
- (3) $\varphi(a) = \varphi(b)$.

Então φ satisfaz as condições do Teorema de Rolle e, portanto, existe $c \in]a,b[$ tal que $\varphi'(c)=0.$ Consequentemente, vem

$$0 = (g(b) - g(a))f'(c) - (f(b) - f(a))g'(c)$$

donde resulta a igualdade pretendida.

Este teorema é também conhecido por Teorema dos Acréscimos Finitos Generalizado.

Observação 4.2. Substituindo no Teorema de Cauchy g(x) por x obtém-se o Teorema de Lagrange.

Do ponto de vista prático, uma das aplicações mais importantes do Teorema de Cauchy é a seguinte

Teorema 4.8. (Regra de Cauchy) Sejam f e g duas funções definidas e deriváveis em todos os pontos de um intervalo aberto $I \subseteq \mathbb{R}$. Suponha-se que $a \in \mathbb{R}$ é um dos extremos de I e que $g'(x) \neq 0$ em todo o ponto $x \in I$.

Se, quando $x \to a$, f(x) e g(x) tendem simultaneamente para zero ou ambas para infinito (podendo $ser +\infty$, $-\infty$ ou uma para $+\infty$ e outra para $-\infty$) e existe em $\tilde{\mathbb{R}}$ o limite de $\frac{f'(x)}{g'(x)}$ quando $x \to a$,

então existe o limite de $\frac{f(x)}{g(x)}$ em $\tilde{\mathbb{R}}$ quando $x \to a$ e

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Demonstração. A demonstração deste teorema pode ser vista em [Campos Ferreira, Introdução à Análise Matemática, Cap.IV]. $\hfill\Box$

Visto que a regra de Cauchy é aplicável tanto ao caso do limite superior como ao caso do limite inferior do intervalo aberto I então, por combinação destas duas situações, pode obter-se

Corolário 7. Sejam I um intervalo aberto, c um ponto de I e f e g duas funções deriváveis em $I \setminus \{c\}$. Se $g'(x) \neq 0$, $\forall x \in I \setminus \{c\}$, e se as funções f e g tendem ambas para zero quando $x \to c$ ou ou ambas para infinito quando $x \to c$, então

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

sempre que o limite do segundo membro exista em $\tilde{\mathbb{R}}$.

Exemplo 4.6. Seja $\alpha \in \mathbb{R}^+$ uma constante. O limite

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}}$$

assume a forma indeterminada $\frac{\infty}{\infty}$.

Como as funções $f(x) = \ln x$ e $g(x) = x^{\alpha}$ são deriváveis em $]0, +\infty[$ e $g'(x) \neq 0$ neste intervalo, pode aplicar-se a regra de Cauchy, obtendo-se então

$$\lim_{x \to +\infty} \frac{(\ln x)'}{(x^{\alpha})'} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\alpha x^{\alpha-1}} = \lim_{x \to +\infty} \frac{1}{\alpha x^{\alpha}} = 0$$

logo

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0.$$

Observação 4.3. (a) Observe-se que pode existir o limite de $\frac{f(x)}{g(x)}$ e, verificando-se todas as outras condições da regra de Cauchy (Teorema 4.8), não existir o limite de $\frac{f'(x)}{g'(x)}$. É o que se passa no caso em que

$$f(x) = x^2 \cos\left(\frac{1}{x}\right)$$
 e $g(x) = x$

e se consideram os limites quando $x \to 0$.

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \left(2x \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \right)$$

Este limite não existe, contudo, existe o limite

$$\lim_{x \to 0} \frac{x^2 \cos\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0$$

(b) Se f'(x) e g'(x) tendem ambas para zero ou para infinito quando $x \to a$ e a regra de Cauchy é aplicável a $\frac{f'(x)}{g'(x)}$, tem-se

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f''(x)}{g''(x)}$$

e assim sucessivamente.

(c) Os símbolos $0 \times \infty$ ou $+\infty - \infty$ que podem surgir no cálculo do limite de f(x)g(x) ou de f(x)-g(x), respetivamente, reduzem-se a $\frac{0}{0}$ ou $\frac{\infty}{\infty}$ pelas seguintes transformações

$$f(x)g(x) = \frac{f(x)}{\frac{1}{g(x)}} = \frac{g(x)}{\frac{1}{f(x)}}$$

$$f(x) - g(x) = f(x)g(x) \left[\frac{1}{g(x)} - \frac{1}{f(x)} \right].$$

(d) No caso da potência exponencial

$$f(x)^{g(x)}, f(x) > 0, \forall x \in I$$

podem levantar-se indeterminações tendo em conta que

$$f(x)^{g(x)} = e^{g(x)\ln(f(x))}.$$

Teorema 4.9. Seja f uma função definida num intervalo aberto I e n vezes derivável num ponto $c \in I$. Se

$$f(c) = f'(c) = \dots = f^{(n-1)}(c) = 0$$

 $ent\~ao$

$$\lim_{x \to c} \frac{f(x)}{(x - c)^n} = \frac{f^{(n)}(c)}{n!}.$$

Demonstração. A demonstração pode fazer-se por indução sobre n.

(1) Se n = 1, uma vez que f(c) = 0, vem

$$\lim_{x \to c} \frac{f(x)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)$$

(resulta da definição de derivada de f em c).

(2) Suponha-se a afirmação verdadeira para n=p, ou seja, se

$$f(c) = f'(c) = \dots = f^{(p-1)}(c) = 0$$

então verifica-se

$$\lim_{x \to c} \frac{f(x)}{(x-c)^p} = \frac{f^{(p)}(c)}{p!}.$$
(4.2)

Suponha-se ainda que $f(c) = f'(c) = \dots = f^{(p-1)}(c) = f^{(p)}(c) = 0$.

Usando a regra de Cauchy vem

$$\lim_{x \to c} \frac{f(x)}{(x-c)^{p+1}} = \lim_{x \to c} \frac{f'(x)}{(p+1)(x-c)^p} = \frac{1}{(p+1)} \lim_{x \to c} \frac{f'(x)}{(x-c)^p}$$
(4.3)

e, como $f'(c)=(f')'(c)=\ldots=(f')^{(p-1)}(c)=0$, então de (4.2) resulta

$$\lim_{x \to c} \frac{f'(x)}{(x-c)^p} = \frac{(f')^{(p)}(c)}{p!} = \frac{f^{(p+1)}(c)}{p!}.$$
(4.4)

De (4.3) e (4.4) obtém-se

$$\lim_{x \to c} \frac{f(x)}{(x-c)^{p+1}} = \frac{f^{(p+1)}(c)}{(p+1)!}.$$

De (1) e (2) resulta provado o teorema.

Teorema 4.10. (Regra de l'Hôpital) Sejam f e g duas funções definidas num intervalo aberto I e deriváveis num ponto $c \in I$. Suponha-se que $g(x) \neq 0$ em $I \setminus \{c\}$, f(c) = g(c) = 0 e $g'(c) \neq 0$. Então, $\frac{f(x)}{g(x)}$ tem limite quando $x \to c$ e

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}.$$

Demonstração. Em $I \setminus \{c\}$, tem-se

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(c)}{g(x) - g(c)} = \frac{\frac{f(x) - f(c)}{x - c}}{\frac{g(x) - g(c)}{x - c}}$$

donde, passando ao limite quando $x \to c$, se obtém o resultado pretendido.

Observação 4.4. (a) A regra de l'Hôpital é válida se g'(c) = 0 e $f'(c) \neq 0$ e, neste caso, o limite de $\frac{f(x)}{g(x)}$ quando $x \to c$ é infinito. A regra ainda é válida se uma das derivadas f'(c) ou g'(c) (mas não ambas) for infinita com as convenções habituais $\frac{\infty}{\alpha} = \infty$ e $\frac{\alpha}{\infty} = 0$, $\alpha \in \mathbb{R}$.

(b) É de observar que a regra de l'Hôpital não é um caso particular de regra de Cauchy: as hipóteses são diferentes, já que neste caso se exige que as funções estejam definidas em c.

Exercício 4.13 Deduza os Teoremas de Rolle e de Lagrange a partir do Teorema de Cauchy.

Exercício 4.14 Calcule os seguintes limites $\lim_{x\to 0} \frac{f(x)}{g(x)}$ e $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ com $f(x) = x + \sin x$ e $g(x) = x + \cos x$. Pode aplicar a Regra de Cauchy para o cálculo destes limites?

Exercício 4.15 A Regra de Cauchy pode utilizar-se para limites laterais. Calcule o limite $\lim_{x\to 0^+} x \ln x$.

Exercício 4.16 Verifique que $\frac{e^{\frac{1}{x}}}{x} = \frac{\frac{1}{x}}{e^{-\frac{1}{x}}}$ e aplique a regra aos limites $\lim_{x\to 0^-} \frac{e^{\frac{1}{x}}}{x}$ e $\lim_{x\to 0^-} \frac{\frac{1}{x}}{e^{-\frac{1}{x}}}$.

Exercício 4.17 Verifique que se f tiver assímptota não vertical direita y = mx + b e $\lim_{x \to +\infty} f'(x) = l$, então m = l (analogamente à esquerda).

Exercício 4.18 Calcule os seguintes limites:

(a)
$$\lim_{x \to 0} \frac{x \sin x}{1 - \cos x}$$
; (b) $\lim_{x \to 1} \frac{x^4 - 2x^3 + 2x - 1}{x^3 - 3x + 2}$; (c) $\lim_{x \to 0} (1 + x)^{\frac{1}{x}}$; (d) $\lim_{x \to 0^+} x^x$; (e) $\lim_{x \to +\infty} x \operatorname{arccot} x$.

Analisemos agora um exemplo de uma função definida por ramos. Seja a um ponto de acumulação de D_f , domínio da função contínua dada por

$$f(x) = \begin{cases} g(x) & \text{se } x < a \\ b & \text{se } x = a \\ h(x) & \text{se } x > a \end{cases}$$

Note-se que $b = \lim_{x \to a^-} g(x) = \lim_{x \to a^+} h(x)$ pela continuidade de f.

- A derivada de f coincide com a derivada de g para x < a e com a derivada de h para x > a (nos pontos em que g e h são deriváveis).
- Contudo f'(a) pode existir ou não. Considerem-se as funções

$$f_1(x) = \begin{cases} \frac{\sin x}{x} & \text{se } x < 0\\ 1 & \text{se } x = 0\\ \cos x & \text{se } x > 0 \end{cases} \quad \text{e} \quad f_2(x) = \begin{cases} x & \text{se } x < 0\\ 0 & \text{se } x = 0\\ -x & \text{se } x > 0 \end{cases}$$

Uma das derivadas existe e a outra não: $f_1'(0) = 0$ e $f_2'(0)$ não existe.

Lema 4.1. Seja f contínua em a. Pode-se afirmar que

Se
$$\lim_{x\to a^+} f'(x) = l \in \widetilde{\mathbb{R}}$$
 então $f'_+(a) = l$ e se $\lim_{x\to a^-} f'(x) = l \in \widetilde{\mathbb{R}}$ então $f'_-(a) = l$.

Exercício 4.19

Verifique que, nas condições do lema, pode usar a Regra de de l'Hôpital para calcular $f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a}$ e $f'_{-}(a) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a}$.

Teorema 4.11. Seja f contínua em a. Se $\lim_{x\to a} f'(x) = l \in \mathbb{R}$ então f'(a) = l.

Exemplo 4.7. Vamos caracterizar a derivada da função definida por

$$f(x) = \begin{cases} x^2 & \text{se } x \le 1\\ 2x - 1 & \text{se } x > 1. \end{cases}$$

A função f é contínua em $\mathbb R$ pois x^2 é contínua em $x \leq 1, 2x-1$ é contínua em x > 1 e

$$f(1) = 1^2 = \lim_{x \to 1^+} (2x - 1).$$

Se x < 1 então f'(x) = 2x e se x > 1 então f'(x) = 2. Em x = 1 tem-se $f'_{-}(1) = f'_{+}(1) = 2$, ou seja, f'(1) = 2. Assim,

$$f'(x) = \begin{cases} 2x & \text{se } x \le 1, \\ 2 & \text{se } x > 1. \end{cases}$$

Exercício 4.20 Caracterize a derivada da função definida por

$$g(x) = \begin{cases} e^x & \text{se } x < 0\\ \arctan x & \text{se } x \ge 0, \end{cases}$$

explicando porque é que $D_{g'} \neq \mathbb{R}$.

Observação 4.5. Mesmo que os limites laterais da derivada f' não existam no ponto a, podem existir as derivadas laterais em a mas é preciso calculá-las pela definição. Note-se que, neste caso, a derivada pode existir em a mas não é contínua.

Exercício resolvido 4.2. Verifique que a função dada por

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

é contínua em \mathbb{R} .

Prove ainda que $f'(x) = 2x \operatorname{sen} \frac{1}{x} - \cos \frac{1}{x} \operatorname{se} x \neq 0$ e que não existe o $\lim_{x \to 0} f'(x)$. Apesar disso, a função é derivável também em x = 0 e assim $D_{f'} = \mathbb{R}$.

De facto, pela definição,

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} h \operatorname{sen} \frac{1}{h} = 0.$$

4.4 Soluções dos exercícios do capítulo

Exercício 4.1 O domínio da função é [-4,6[. Em x=-4 a função tem um mínimo local, f(-4)=2; não tem mínimo global. Tem o máximo local 3 em x=-3, x=-2, $x\in[0,1[$ e $x\in[4,5]$. Tem o máximo local 2 em x=2 e em $x\in[3,4[$. 3 é o máximo global da função. são extremos estritos f(-4), f(-3) e f(-2), f(-1) e f(2).

Exercício 4.2

- 1. f contínua em $\mathbb{R} \setminus \{0\}$.
- 2. $y = \frac{\pi+1}{2}$ é uma assíntota horizontal à direita; y = 1 é uma assíntota horizontal à esquerda e não tem assíntotas verticais.
- 3. $\left(0, \frac{1}{2}\right) \in \left(-\frac{1}{\ln 2}, \frac{1}{2}\right)$.

Exercício 4.3 $g(0) = -\frac{\pi}{15} < 0$ e $g(2) = \frac{4\pi}{15} > 0$, como g é contínua em [0,2], g tem um zero neste intervalo.

Exercício 4.4 f é contínua em]1,2] mas não é limitada em]1,2]. Não existe contradição com o Teorema de Weierstrass já que a continuidade não se verifica num intervalo fechado.

Exercício 4.5 $y - f(c) = \frac{e}{e-1}(x-c)$ onde c = e+1.

Exercício 4.8 f(1) é um mínimo local e absoluto.

Exercício 4.10 (0, f(0)) ponto de inflexão; $]-\infty, 0]$ côncava; $[0, +\infty[$ convexa.

Exercício 4.11

- 1. f(x) = |x|(mx + q) se m > 0 convexa em $]0, +\infty[$ e côncava em $]-\infty, 0[$; se m < 0 côncava em $]0, +\infty[$ e convexa em $]-\infty, 0[$; 0 é ponto de inflexão.
 - $g(x) = mx^2 + q|x|$, se m > 0 convexa e se m < 0 côncava em \mathbb{R} e 0 não é ponto de inflexão.
- 2. $h(x) = x\sqrt{|x|}$ convexa em]0, $+\infty[$ e côncava em] $-\infty,0[$. 0 é ponto de inflexão.
 - $k(x) = x^2 \sqrt{|x|}$ convexa em \mathbb{R} e 0 não é ponto de inflexão.

Exercício 4.12

- $D_f = D_h = \mathbb{R}; D_g = \mathbb{R} \setminus \{0\}.$
- $f(x) = 0 \Leftrightarrow x = 0$, $f(x) < 0 \Leftrightarrow x < 0$ e $f(x) > 0 \Leftrightarrow x > 0$; g não tem zeros, $g(x) < 0 \Leftrightarrow x < 0$ e $g(x) > 0 \Leftrightarrow x > 0$; $h(x) = 0 \Leftrightarrow x = 0$, $h(x) \ge 0$, $\forall x \in \mathbb{R}$.
- y=x assíntota bilateral para f; x=0 assíntota vertical para g e y=0 assíntota à esquerda para g; y=0 assíntota bilateral para h.
- f é crescente em \mathbb{R} ; g decrescente em $]-\infty,0[$ e em]010[, crescente em $]1,+\infty[$ e mínimo local em (1,g(1))=(1,e);, intervalos de monotonia e pontos de extremo; h é crescente em $]-\infty,-1[$ e em]0,1[, decrescente em]-1,0[e em $]1,+\infty[$, mínimo local e absoluto em (0,h(0))=(0,0) e máximo local e absoluto em (1,h(1))=(1,5/e) e em (-1,h(-1))=(1,5/e)
- f tem concavidade voltada para baixo em] $-\infty$, 0[e voltada para cima em]0, $+\infty$ [, (0, f(0)) = (0, 0) é ponto de inflexão; g tem concavidade voltada para baixo em] $-\infty$, 0[e voltada para cima em]0, $+\infty$ [, não tem ponto de inflexão; h tem concavidade voltada para cima em] $-\infty$, -2[e em]2, $+\infty$ [e tem concavidade voltada para baixo em] -2, 0[e em]0, 2[, pontos de inflexão $(-2, h(-2)) = (-2, 10/e^2)$ e $(2, h(2)) = (2, 10/e^2)$.
- $CD_f = \mathbb{R}; CD_g =]-\infty, 0[\cup [e, +\infty[; CD_h =]0, 5/e].$

Exercício 4.14 $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$ e $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = 2$. Não.

Exercício 4.15 0

Exercício 4.16
$$\lim_{x\to 0^-} \frac{e^{\frac{1}{x}}}{x} = \lim_{x\to 0^-} \frac{\frac{1}{x}}{e^{-\frac{1}{x}}} = 0.$$

Exercício 4.18 (a)
$$\lim_{x\to 0} \frac{x \sin x}{1-\cos x} = 2$$
; (b) $\lim_{x\to 1} \frac{x^4-2x^3+2x-1}{x^3-3x+2} = 0$; (c) $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$; (d) $\lim_{x\to 0^+} x^x = 1$; (e) $\lim_{x\to +\infty} x \operatorname{arccot} x = +\infty$.

Exercício 4.20

$$g(x) = \begin{cases} e^x & \text{se } x < 0\\ \frac{1}{1+x^2} & \text{se } x > 0. \end{cases}$$

Nota

Este texto teve como base textos de apoio da unidade curricular usados em anos anteriores e o livro Curso de Análise Matemática de José J. M. de Sousa Pinto, Ed. Universidade de Aveiro, 2010.

Agradeço aos colegas Domenico Catalano e Jorge Sá Esteves pela leitura cuidada e correção de erros.