Relatório - Regressão Linear

Trabalho - Lista 01

Instituição: Instituto Federal do Ceará - Campus Maracanaú

Disciplina: Reconhecimento de Padrões

Professor: Hericson Araújo

Aluno: Francisco Aldenor Silva Neto

Introdução

Esta atividade consiste na implementação e análise de um modelo de regressão linear simples sobre um conjunto de dados (artificial1d.csv), utilizando os métodos de Mínimos Quadrados Ordinários (OLS) e Gradiente Descendente (GD). O código foi desenvolvido em Python e utiliza as bibliotecas numpy, pandas e matplotlib para manipulação e visualização dos dados.

Dados Utilizados

O conjunto de dados artificialld.csv contém duas colunas: x (variável independente) e y (variável dependente). Os pontos foram visualizados em um gráfico de dispersão (scatter plot) para entendimento inicial da distribuição.

Implementação e Resultados

- 1. Regressão Linear com Mínimos Quadrados Ordinários (OLS) A Regressão Linear via OLS foi implementada utilizando uma fórmula fechada para cálculo dos parâmetros, minimizando o Erro Quadrático Médio (MSE) da reta de ajuste. Os parâmetros ($\rm w_0$) (intercepto) e ($\rm w_1$) (coeficiente) foram obtidos da seguinte forma:
 - Parâmetro (w_0) (intercepto): 0.0676
 - Parâmetro (w_1) (coeficiente): 1.5749
 - Erro Quadrático Médio (MSE): 0.2134

Os cálculos foram realizados através da inversão da matriz ($(X^T X)^{-1} X^T y$), onde (X) é a matriz de características.

Gráfico OLS Abaixo, o gráfico de dispersão com a reta de ajuste gerada pelo OLS.

2. Regressão Linear com Gradiente Descendente (GD) O Gradiente Descendente foi implementado com uma taxa de aprendizado (alpha = 0.01) e 1000 épocas. Durante as iterações, os parâmetros (w_0) e (w_1) foram atualizados utilizando a regra do gradiente, minimizando gradualmente o MSE.

Os parâmetros finais obtidos foram:

Figure 1: Regressão Linear - OLS

- Parâmetro (w_0) (intercepto) final: 0.0627
- Parâmetro (w_1) (coeficiente) final: 0.9523
- Último Erro Quadrático Médio (MSE): 0.3525
- Convergência atingida na época: 259

Gráfico GD Abaixo, o gráfico de dispersão com a reta de ajuste gerada pelo GD na última iteração.

Figure 2: Regressão Linear - Gradiente Descendente

3. Curva de Aprendizagem (MSE ao longo das épocas para o GD) A curva de aprendizagem, que mostra a redução do MSE ao longo das épocas do GD, foi plotada a seguir.

Conclusão

Os métodos **OLS** e **GD** geraram modelos lineares eficientes para ajustar os dados fornecidos, com o OLS alcançando resultados diretamente enquanto o GD ajusta os parâmetros gradualmente. A análise da curva de aprendizagem e da animação mostra a convergência do GD e reforça a eficácia de ambos os métodos para a tarefa de regressão linear simples.

Figure 3: Curva de Aprendizagem - Gradiente Descendente

Referências

• Repositório do projeto no GitHub: Regressão Linear OLS e GD