МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Ярославский государственный университет им. П.Г. Демидова»

Кафедра математического анализа

Сдано на кафедру
«5» июня 2024 г.
Заведующий кафедрой
д. фм. н.
Невский М. В.

Курсовая работа

Восстановление треков заряженных частиц по данным электромагнитного калориметра

направление подготовки $01.03.02~\Pi$ рикладная математика и информатика

Научный руководитель Алексеев В.В. «5» июня 2024 г.
Студент группы ПМИ-33БО Нехаенко П.А. «5» июня 2024 г.

Содержание

1	Введение.	2
2	Постановка задачи.	3
3	Целевая функция.	3
4	Итеративное решение задачи оптимизации.	4
5	Параметризация и восстановление 3D-траектории.	6
6	Заключение.	7
	Список литературы	8

1 Введение.

В данной работе рассматривается задача реконструкции трехмерного распределения энерговыделений в калориметре на основе измерений в двух проекциях. Калориметр предназначен для регистрации энерговыделений заряженных частиц, проходящих через его структуру. Частицы, вза-имодействуя с материалом калориметра, либо ионизируют его и продолжают своё движение, либо вступают в реакции с веществом, порождая вторичные частицы, что обычно сопровождается более значительным энерговыделением. Считывание информации о энерговыделениях осуществляется отдельно в двух проекциях, что создаёт ограниченное количество данных для полноценной трёхмерной реконструкции.

Задача состоит в восстановлении трехмерного распределения размерности $22 \times 96 \times 96$ на основе двух двумерных проекций размерности 22×96 , 22×96 . Основные трудности заключаются в недоопределенности задачи — количество имеющихся уравнений значительно меньше количества неизвестных, что делает задачу недоопределенной и некорректной. Более того, раздельное считывание энерговыделений в разных проекциях приводит к отсутствию прямого соответствия между данными, что создаёт дополнительные трудности при решении задачи реконструкции.

Для решения этой проблемы предлагается использовать априорную информацию, полученную как из экспериментальных данных, так и из модельных данных, характеризующих энерговыделение в калориметре. Экспериментальные данные предоставляют возможность эмпирической проверки подходов, однако истинное распределение неизвестно, что затрудняет оценку качества восстановления.

Планируемый подход включает методы оптимизации и регуляризации для решения задачи реконструкции. Задача может быть решена с использованием методов оптимизации, которые включали мягкие ограничения и минимизацию целевой функции. Также рассматриваются алгебраические методы реконструкции, позволяющие эффективно восстановить трёхмерную картину энерговыделений в условиях ограниченной доступности проекционных данных.

Таким образом, целью данной работы является разработка и анализ методов восстановления трехмерного распределения энерговыделений в калориметре на основе двух проекций, с применением различных подходов к регуляризации и оптимизации, что позволит обеспечить максимально возможную точность при наличии неполных данных.

Рис. 1: Изображение проекций калориметра.

2 Постановка задачи.

Необходимо восстановить трёхмерное распределение энерговыделений в калориметре размером $22\times96\times96$, используя данные, представленные в виде двух двумерных проекций 22×96 , 22×96 . Это задача является недоопределённой, так как число неизвестных значительно превышает число имеющихся уравнений.

Формально задача реконструкции ставится следующим образом: необходимо найти трёхмерное распределение x_{ijk} , которое удовлетворяет следующим условиям:

$$\begin{cases} \sum_{i} x_{ijk} = c_{jk}, & \forall j, k, \\ \sum_{j} x_{ijk} = d_{ik}, & \forall i, k, \\ x_{ijk} \geq 0, & \forall i, j, k \end{cases}$$
 (1)

где $i \in 1,...,I, j \in 1,...,J, k \in 1,...,K$ - представляют размеры матриц, которые используются для построения трехмерного распределения x_{ijk} .

I - это проекция, связанная с осью, для которой используется у-проекция. Это соответствует числу элементов в первом измерении матрицы энерговыделений. Это ось, связанная с вертикальным направлением калориметра (по данным проекции). Ј - это проекция, связанная с осью, для которой используется х-проекция. Это соответствует числу элементов во втором измерении матрицы энерговыделений. К - количество сегментов вдоль оси глубины калориметра. В данном случае это количество элементов вдоль третьего измерения трёхмерной матрицы. Эта ось связана с глубиной проникновения частицы в калориметр, или количеством сегментов в направлении движения частицы.

3 Целевая функция.

Целевая функция f(x) состоит из двух основных компонент — ошибки по проекции c_{jk} и ошибки по проекции d_{ik} , которые выражаются как суммы квадратов отклонений между измеренными и восстановленными значениями.

Целевая функция имеет вид:

$$f(x) = \sum_{j=1}^{J} \sum_{k=1}^{K} \left(\sum_{i=1}^{I} x_{ijk} - c_{jk} \right)^{2} + \sum_{i=1}^{I} \sum_{k=1}^{K} \left(\sum_{j=1}^{J} x_{ijk} - d_{ik} \right)^{2}$$
(2)

Первая часть целевой функции:

$$\sum_{i=1}^{J} \sum_{k=1}^{K} \left(\sum_{i=1}^{I} x_{ijk} - c_{jk} \right)^{2} \tag{3}$$

отвечает за отклонение между рассчитанными суммами энерговыделений вдоль оси X измеренной проекцией c_{jk} . Сумма по индексу i даёт оценку общей энергии, накопленной вдоль оси глубины для каждой пары индексов j и k. Это слагаемое минимизирует разницу между восстановленным распределением и измеренной проекцией, что позволяет учитывать данные стрипов, расположенных вдоль соответствующего направления. Можно сказать, что данную часть целевой функции можно обозначить, как ошибку по проекции c_{jk} :

$$error_c = \sum_{j=1}^{J} \sum_{k=1}^{K} \left(\sum_{i=1}^{I} x_{ijk} - c_{jk} \right)^2$$
 (4)

Вторая часть целевой функции:

$$\sum_{i=1}^{I} \sum_{k=1}^{K} \left(\sum_{j=1}^{J} x_{ijk} - d_{ik} \right)^{2} \tag{5}$$

отвечает за отклонение между рассчитанными суммами энерговыделений вдоль оси Y и измеренной проекцией d_{ik} .

Здесь сумма по индексу j даёт оценку общей энергии вдоль другого направления, что помогает согласовать восстановленное распределение с данными стрипов, ориентированных вдоль другой оси калориметра. То есть данную часть целевой функции можно обозначить, как ошибку по проекции d_{ik} :

$$error_d = \sum_{j=1}^{J} \sum_{k=1}^{K} \left(\sum_{i=1}^{I} x_{ijk} - c_{jk} \right)^2$$
 (6)

После данных пояснений и нововведений мы можем скорректировать нашу целевую функцию:

$$f(x) = error_c + error_d = \sum_{j=1}^{J} \sum_{k=1}^{K} \left(\sum_{i=1}^{I} x_{ijk} - c_{jk} \right)^2 + \sum_{i=1}^{I} \sum_{k=1}^{K} \left(\sum_{j=1}^{J} x_{ijk} - d_{ik} \right)^2$$
(7)

4 Итеративное решение задачи оптимизации.

Данная задача имеет больше неизвестных, чем уравнений, и включает физические ограничения, такие как неотрицательность энерговыделений, поэтому было необходимо использовать итеративный подход, который позволяет постепенно находить оптимальное решение. Для этой цели использовался метод доверительного региона, известный своей устойчивостью и способностью справляться с нелинейными ограничениями.

Начальные условия: формирование исходного распределения

Оптимизационный процесс начинается с выбора начальных условий, которые играют важную роль в эффективности поиска решения. В данной работе начальное приближение x_0 было выбрано как равномерное распределение:

$$x_0 = \{1, 1, \dots, 1\}, \quad x_0 \in \mathbb{R}^{I \times J \times K}$$

Выбор единичных значений для всех элементов x_{ijk} обеспечил ненулевые начальные данные, что помогло избежать возможных проблем с застреванием алгоритма в начальной нулевой точке. При использовании оптимизации начальное приближение играет роль "отправной точки", от которой алгоритм начинает искать наилучшее распределение, постепенно корректируя значения переменных на каждом шаге.

Ограничения и реализация физических условий

Поскольку энерговыделение не может быть отрицательным, необходимо было ввести ограничение на значения x_{ijk} :

$$x_{ijk} \geq 0, \quad \forall i, j, k.$$

Для этой цели в функции *minimize* использовался параметр *bounds*, который обеспечивал физически реалистичные значения энерговыделений. Это ограничение позволяло избежать некорректных решений, которые не имеют физического смысла в контексте задачи.

Алгоритм оптимизации: метод доверительного региона

Основной метод, использованный для решения задачи, — это trust-constr (метод доверительного региона), который является одним из мощных инструментов для оптимизации в условиях ограничений. Основная идея метода заключается в создании локального аппроксимирующего "доверительного региона", в котором строится модель целевой функции, которой оптимизатор "доверяет". На каждой итерации строится квадратичная аппроксимация функции, и оптимизатор решает локальную задачу в этом регионе, постепенно обновляя значение.

Основная идея метода заключается в поиске такого вектора x, который минимизирует целевую функцию, с учётом ограничений:

$$x = arg\ minf(x),$$
 при $x_{ijk} \geq 0, \forall i, j, k$

Преимущества метода trust-constr заключаются в:

- 1. **Устойчивости к сложным условиям**: метод хорошо справляется с ситуациями, когда целевая функция может быть нелинейной и не всегда гладкой.
- 2. **Контролируемость шагов:** если на каком-то шаге аппроксимирующая модель оказывается неэффективной, "доверительный регион"корректируется, что позволяет избежать слишком больших шагов и улучшает общую сходимость.

Процесс оптимизации: Итерации и критерии остановки Мы можем выделить несколько шагов оптимизации:

- 1. **Инициализация и первая итерация:** оптимизатор начинает с оценки целевой функции для начального распределения. На основе этой оценки строится линейная модель для первой итерации.
- 2. Обновление решения: в ходе каждой итерации метод изменяет значения x_{ijk} в рамках доверительного региона, чтобы минимизировать целевую функцию f(x). После каждого изменения проводится проверка, насколько улучшилась целевая функция и насколько эффективен данный шаг.
- 3. **Динамическое изменение региона:** если выбранный шаг приводит к улучшению значений целевой функции, "доверительный регион"увеличивается, что позволяет ускорить сходимость. Если улучшение отсутствует, регион уменьшается, чтобы метод мог искать более глубже.
- 4. **Проверка сходимости:** оптимизация продолжалась до достижения заданной точности (параметр *gtol*, который определяет градиентный критерий остановки) или достижения максимального количества итераций (*maxiter*). Это предотвращало бесконечные вычисления и ограничивало процесс поиска в условиях, когда дальнейшие улучшения были незначительными.

После выполнения поиска наши итоговые данные хранятся в переменной res. В res хранятся следующие данные: статус успешности оптимизации (success), оптимальное значение переменной (x), значение целевой функции в найденной точке (fun), сообщение о статусе завершения (message), количество выполненных итераций (nit), числовой код завершения (status), значение градиента в найденной точке (jac), аппроксимированная инвертированная гессианская матрица $(hess_inv)$.

```
res1
            message: `gtol` termination condition is satisfied.
            success: True
             status: 1
                 fun: 8.198768922744113
                   x: [ 2.000e-03  2.000e-03 ... 2.000e-03  2.000e-03]
                 nit: 73
               nfev: 345069
                njev: 69
                nhev: 0
           cg_niter: 1046
      cg_stop_cond: 4
                       [ 8.001e-02 8.001e-02 ... 8.001e-02 8.001e-02]
[ 9.454e-11 9.477e-11 ... 9.430e-11 9.466e-11]
               grad:
  lagrangian_grad:
                       [array([ 2.000e-03, 2.000e-03, ..., 2.000e-03, 2.000e-03])]
             constr:
                 jac: [<Compressed Sparse Row sparse matrix of dtype 'float64'</pre>
                            with 5000 stored elements and shape (5000, 5000)>]
       constr_nfev: [0]
       constr_njev: [0]
constr_nhev: [0]
                   v: [array([-8.001e-02, -8.001e-02, ..., -8.001e-02,
-8.001e-02])]
        method: tr_interior_point
optimality: 8.456517108860041e-05
 constr_violation: 0.0
   execution_time: 29.527947902679443
tr_radius: 214375.00000000434
   constr penalty: 1.0
barrier_parameter: 0.000160000000000000007
barrier_tolerance: 0.000160000000000000007
              niter: 73
```

Рис. 2: Итоговые значения работы алгоритма.

Так же мы можем узнать, что находится в логах minimize. В логах хранится следующая информация, которая помогает анализировать корректность работы алгоритма: условие завершения оптимизации (gtol), количество итераций $(Number\ of\ iterations)$, количество вызовов функции $(function\ evaluations)$, количество итераций сопряжённого градиента $(CG\ iterations)$, оптимальность (optimality), нарушение ограничений $(constraint\ violation)$, время выполнения $(execution\ time)$. В нашем случае:

```
`gtol` termination condition is satisfied.
Number of iterations: 73, function evaluations: 345069, CG iterations: 1046, optimalit
y: 8.46e-05, constraint violation: 0.00e+00, execution time: 3e+01 s.
Решение найдено
```

Рис. 3: Логи работы алгоритма.

5 Параметризация и восстановление 3D-траектории.

После успешного восстановления трёхмерного распределения энерговыделений x_{ijk} . в калориметре необходимо использовать полученные данные для визуализации трека частицы. Восстановление трёхмерной траектории частицы позволяет увидеть, как частица двигалась через калориметр, и исследовать характеристики её взаимодействия с материалом детектора. В данной задаче для восстановления траектории используются известные начальные параметры движения частицы, такие как углы θ , ϕ , начальные координаты X_0 , Y_0 , и конечная координата Z_{end} .

Параметризация трека

Для того чтобы восстановить траекторию частицы, необходимо описать её движение в трёхмерном пространстве с помощью параметризации. В данной работе параметризация основана на использовании параметра $t \in [0, Z_{end}/\cos(\theta)]$, который описывает положение частицы вдоль траектории:

1. **Углы движения:** : сначала исходные углы θ , ϕ , которые определяют направление движения частицы, переводятся в радианы:

$$\theta_{rad} = \frac{\pi}{180} \times \theta, \quad \phi_{rad} = \frac{\pi}{180} \times \phi$$

2. Полученные данные после работы алгоритма: распределение x_{ijk} было использовано для описания интенсивности взаимодействий частицы в различных точках трека. Для этого была рассчитана средняя интенсивность по осям i, j в каждом слое калориметра:

$$sizes(t) = \frac{1}{I \times J} \sum_{i=1}^{I} \sum_{j=1}^{J} x_{ijk}(t)$$

где t представляет различные шаги параметризации вдоль оси Z. Величина описывает среднее энерговыделение в каждом слое и используется для визуализации размера и цвета точек на треке частицы, что даёт более полное представление о процессе взаимодействия.

3. Параметризация координат: с помощью параметра t были восстановлены трёхмерные координаты траектории X(t), Y(t), Z(t):

$$X(t) = X_0 + t \times (Z_{end} - X_0) \times \sin(\theta_{rad}) \times \cos(\phi_{rad})$$
$$Y(t) = Y_0 + t \times (Z_{end} - Y_0) \times \sin(\theta_{rad}) \times \sin(\phi_{rad})$$
$$Z(t) = t \times \cos(\theta)$$

Рис. 4: Трехмерная визуализация полёта частицы.

6 Заключение.

В работе решена задача реконструкции трёхмерного распределения энерговыделений в калориметре на основе двух проекций. Применение оптимизации позволило найти физически обоснованное распределение, согласующееся с измеренными данными, и построить 3D модель траектории частицы. Подход показал свою эффективность даже при ограниченности данных, что открывает перспективы для дальнейших улучшений.

Список литературы

- [1] Иванов В. К., Васин В. В., Танана В. П. Теория линейный некорректных задач и ее приложения // Академия Наук СССР // Уральский Научный центр. Институт Математики и Механики. 1978.
- [2] Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач // Наука. Главная редакция физико-математической литературы. 1979.
- [3] Поляк Б. Т. Введение в оптимизацию// Наука. Главная редакция физико-математической литературы. 1983.