學號: R06942082 系級: 電信碩一 姓名: 黃釋平

1. (1%) 請說明你實作的 CNN model, 其模型架構、訓練過程和準確率為何? (Collaborators:鄭立晟、黃梓鳴、姚嘉昇) 答

CNN Model Structure:

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	44, 44, 16)	416
activation_1 (Activation)	(None,	44, 44, 16)	0
max_pooling2d_1 (MaxPooling2	(None,	22, 22, 16)	0
conv2d_2 (Conv2D)	(None,	18, 18, 128)	51328
activation_2 (Activation)	(None,	18, 18, 128)	0
max_pooling2d_2 (MaxPooling2	(None,	9, 9, 128)	0
conv2d_3 (Conv2D)	(None,	7, 7, 32)	36896
batch_normalization_1 (Batch	(None,	7, 7, 32)	128
activation_3 (Activation)	(None,	7, 7, 32)	0
max_pooling2d_3 (MaxPooling2	(None,	3, 3, 32)	0
flatten_1 (Flatten)	(None,	288)	0
dense_1 (Dense)	(None,	128)	36992
batch_normalization_2 (Batch	(None,	128)	512
activation_4 (Activation)	(None,	128)	0
dropout_1 (Dropout)	(None,	128)	0

dense_2 (Dense)	(None,	512)	66048
batch_normalization_3 (Batch	(None,	512)	2048
activation_5 (Activation)	(None,	512)	0
dropout_2 (Dropout)	(None,	512)	0
dense_3 (Dense)	(None,	7)	3591
Total params: 197,959 Trainable params: 196,615 Non-trainable params: 1,344			

CNN Trainning Accurancy:

CNN Validation Accurancy:

尋找過程試過很多種架構,包含三層 CNN、單層 DNN、調 kernal_size、調 padding…等,這篇 report 中是其中一個嘗試過的,想要在 20 個 epoch 之內達到 40% accurancy。也許架構設計不良,導致卡在 40%上不去,不過觀察 validation accurancy 比 trainning accurancy 還高,應該不是 overfitting,所以接下來試著增加複雜度。

之後也跟同學討論過,稍微參考他們的做法,像是連續做 CNN、圖片 normalize,最新的上傳能達到 Public score = 0.635,尚有待改進。

2. (1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼?

(Collaborators:)

答:

DNN Model Structure:

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	96)	221280
batch_normalization_1 (Batch	(None,	96)	384
activation_1 (Activation)	(None,	96)	0
dense_2 (Dense)	(None,	64)	6208
batch_normalization_2 (Batch	(None,	64)	256
activation_2 (Activation)	(None,	64)	0
dropout_1 (Dropout)	(None,	64)	0
dense_3 (Dense)	(None,	7)	455
Total params: 228,583 Trainable params: 228,263 Non-trainable params: 320	=====		=======

使用兩層 DNN ,Params 數量略比 CNN 的多一點,並加一層 dropout=0.5。

DNN Trainning Accurancy:

跑 50 個 epoch ,Training accurancy 達到 0.55 左右,epoch 設定為 50 的目的是觀察 overfitting 現象。

DNN Validation Accurancy:

在 epoch=19 時就已經達到最好的 validation accurancy,之後開始震盪,而同時 trainning accurancy 卻在上升,所以應該是 overfitting。

設定的 unit 數量不多,但已經有如此龐大的 params,而效果跟 CNN 差不多,甚至更為不穩定,可以看出來 CNN 在這部分的確比 DNN 來的有效率。

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析]

(Collaborators:)

答:

觀察到非常有趣的事,最好的 confusion matrix 應該在對角線上都是 1.0,但在「Disgust」那格卻是 0,甚至沒有其他資料被判成 Disgust;而「Happy」部分雖然精準度很高,但也許並不是判斷的好,而是大部分的東西都被當作「Happy」了,本身當然包括在內,從「Happy」的直排數字都偏高可以觀察出來。此外,「Surprise」準確率也相當不錯,也正好也是「Happy」中比例最低 (0.07)的一項,也就是說,這兩類在這 model 中不易搞混。

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份? (Collaborators:)

答:

5. (1%) 承(1)(2),利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate。

(Collaborators:)

答: