Une méthode de calibration non paramétrique pour les calorimètres de CMS

Samuel Niang

23 août 2017

Détecteur

Figure – Une esquisse des interactions spécifiques des particules dans une tranche transversale du détecteur CMS.

Illustration de particules simulées

Figure – Énergie vraie $E_{
m true}$ en fonction de l'énergie mesurée dans le ECAL, $E_{
m ecal}
eq 0$, et de l'énergie mesurée dans le HCAL.

$E_{\rm calib}/E_{\rm true}$ moyens en fonction de $(E_{\rm ecal}, E_{\rm heal})$

- (a) Régression linéaire
- (b) Méthode non paramétrique binée

(c) Plus proches voisins

Figure – Chaque pixel correspond à la moyenne d'un fit gaussien de points $E_{\rm calib}/E_{\rm true}$ proches des coordonnées du pixel pour les particules qui interagissent avec le ECAL et le HCAL.

$E_{\rm calib}/E_{\rm true}$ moyens en fonction de $(E_{\rm ecal}, E_{\rm heal})$

- (a) Plus proches voisins
- (b) Plus proches voisins (c) Plus proches voisins -Nettovage gaussien
 - Fit gaussien

Figure – Chaque pixel correspond à la moyenne d'un fit gaussien de points $E_{\rm calib}/E_{\rm true}$ proches des coordonnées du pixel pour les particules qui interagissent avec le ECAL et le HCAL.

$E_{\rm calib}/E_{\rm true}$ moyens en fonction de $E_{\rm true}$

Figure – $E_{\rm calib}/E_{\rm true}$ moyens en fonction de $E_{\rm true}$ dans les cas $E_{\rm ecal}=0$ et σ du fit gaussien correspondant.

Conclusion