计算物理 A——Homework 2

何金铭 PB21020660

1 题目描述

用 16807 产生器测试随机数序列中满足关系 $X_{n-1} > X_{n+1} > X_n$ 的比重。讨论 Fibonacci 延迟产生器中出现这种关系的比重。

1.1 大致思路

- 1. 先利用 16807 产生器产生随机数序列,记录关系 $X_{n-1} > X_{n+1} > X_n$ 的比重
- 2. 再利用 Fibonacci 延迟产生器生成另一组随机数,再分析关系 $X_{n-1} > X_{n+1} > X_n$ 的比重
- 3. 分析上述两种现象,同时可以进一步分析两种随机数产生器的优劣。

2 算法过程

2.1 16807 产生器

利用 Lehmer 线性同余产生器和 Schrage 法制作的随机数产生器,于作业一报告中详细讨论,此处就不再赘述.

2.2 Fibonacci 延迟产生器

Fibonacci 延迟产生器的一般表达式为:

$$I_n = I_p \bigotimes I_q \bmod m \tag{1}$$

2.2.1 一个最简单的例子

由于 Fibonacci 延迟器种类繁多,这里讨论最简单的一种:

$$I_n = I_{n-1} + I_{n-2} \bmod (2^{31} - 1)$$
(2)

化简之后可得:

$$I_n = \begin{cases} I_{n-1} + I_{n-2} & (I_{n-1} + I_{n-2} < 2^{31} - 1) \\ I_{n-1} + I_{n-2} - (2^{31} - 1) & (I_{n-1} + I_{n-2} - 2^{31} - 1) \end{cases}$$
(3)

但是在计算机中 $I_{n-1} + I_{n-2}$ 的操作就已经会造成溢出, 这里需要关注运算的顺序, 应该先进行 $I_{n-1} - (2^3 1 - 1)$ 再执行 $+ I_{n-2}$.

2.2.2 对于更加复杂 Fibonacci 延迟产生器的讨论

在下面会讨论一类加法 Fibonacci 延迟产生器, 形如 $p=,q=,\bigotimes=+$ 会取的值有:

• p = 31, q = 74

- p = 6, q = 31
- p = 418, q = 1279

2.2.3 Marsaglia 延迟产生器

$$x_n = \begin{cases} x_{n-p} - x_{n-q} & if \ge 0\\ x_{n-p} - x_{n-q} + 1 & otherwise \end{cases}$$
 (4)

其中的 [p,q] 整数对的值选为 [97,33], 因此其算法要求存储所有前面的 97 个随机数值。

3 程序说明

3.1 主要程序

schrage.c 16807 随机数生成器的代码

fibonacci_2.c $p = 31, q = 74, \otimes = +$ 的 Fibonacci 延迟产生器

fibonacci_3.c $p = 6, q = 31, \bigotimes = +$ 的 Fibonacci 延迟产生器

fibonacci_4.c $p = 418, q = 1279, \bigotimes = +$ 的 Fibonacci 延迟产生器

marsaglia.c 一种 Marsaglia 延迟产生器

counter.py 用于计算 $X_{n-1} > X_{n+1} > X_n$ 比重的计数器

3.2 程序结果

schrage.exe 16807 PRNG

fibonacci_2.exe $p = 31, q = 74, \bigotimes = +$ 的 Fibonacci 延迟产生器执行文件

fibonacci_3.exe $p = 6, q = 31, \bigotimes = +$ 的 Fibonacci 延迟产生器执行文件

fibonacci_4.exe $p = 418, q = 1279, \bigotimes = +$ 的 Fibonacci 延迟产生器执行文件

marsaglia.exe 一种 Marsaglia 延迟产生器执行文件

16807.csv 一个种子数为"23942907" 的样本随机数文件

fibonacci_2.csv $p = 31, q = 74, \bigotimes = +$ 的 Fibonacci 延迟产生器结果

fibonacci_3.csv $p = 6, q = 31, \bigotimes = +$ 的 Fibonacci 延迟产生器结果

fibonacci_4.csv $p = 418, q = 1279, \bigotimes = +$ 的 Fibonacci 延迟产生器结果

marsaglia.csv 一种 Marsaglia 延迟产生器的结果

3.3 其他说明

1. 数据都写于 CSV 文件中

2. 其中 Python 程序用到的库有:

• numpy:用于数据处理

• csv:用于读写 CSV 文件

4 结果分析

4.1 16807 产生器结果

\mathbf{scale}	$N = 10^2$	$N = 10^3$	$N = 10^4$	$N = 10^{5}$	$N = 10^{6}$	$N = 10^{7}$
16807PRNG	0.1531	0.1814	0.1671	0.1657	0.1663	0.1666

分析可得:

1. 随着随机数数目 N 的增大, 比重 $X_{n-1} > X_{n+1} > X_n$ 趋于稳定 (中心极限定理)

2. 且其值近似为 0.1666

4.2 Fibonacci 延迟产生器结果

scale	$N = 10^2$	$N = 10^{3}$	$N = 10^4$	$N = 10^5$	$N = 10^6$	$N = 10^7$
$p = 31, q = 74, \bigotimes = +$	0.1327	0.1573	0.1637	0.1670	0.1666	0.1667
$p = 6, q = 31, \bigotimes = +$	0.1429	0.1483	0.1627	0.1665	0.1669	0.1666
$p = 418, q = 1279, \bigotimes = +$	0.1429	0.1653	0.1666	0.1659	0.1666	0.1668
Marsaglia 延迟产生器	0.1429	0.1663	0.1717	0.1674	0.1669	0.1666

分析可得:

- 1. 随着随机数数目 N 的增大, 不同 Fibonacci 延迟产生器比重 $X_{n-1} > X_{n+1} > X_n$ 均趋于稳定 (中心极限定理)
- 2. 不同 Fibonacci 延迟产生器产生的随机数中 $X_{n-1} > X_{n+1} > X_n$ 比重不完全一样, 但十分接近, 约为 0.1666

可得, 当 Fibonacci 延迟产生器取值特定时, 其效果与 16807PRNG 效果相近. 但也不完全是这样, 当 $p=1, q=2, \bigotimes = +$ 时, 比重 $X_{n-1} > X_{n+1} > X_n$ 为 0! 可见 p, q, \bigotimes 的取值不是任意的.

5 总结

1. 16807 随机数产生器中 $X_{n-1} > X_{n+1} > X_n$ 比重值约为 0.1666

- 2. 一些 Fibonacci 延迟产生器和某些 Marsaglia 延迟产生器中, $X_{n-1}>X_{n+1}>X_n$ 比重也约为 0.1666, 与 16807PRNG 类似.
- 3. 并不是所有的 Fibonacci 延迟产生器都具有良好的性质.