OUTLINE

- Introduction
- **■** Problem Formulation
- **■** Proposed Approaches
 - Controller Structure
 - Proposed Controllers
- Simulation Examples
 - Deployment
 - Retrieval
- Summary

54-18

Dan Nowlan Specialist - GN&C Advanced Flight Systems (714) 896-1418

!MDSSC-SSD#

Introduction

- Tethers can provide
 - Momentum exchange
 - Mechanical/electrical conversion
 - Electrical/mechanical conversion
- Technology applications
 - Acceleration environment control
 - Payload transportation
 - Electrical power generation
 - Attitude and orbital control

Relevance

- Project applications
 - Atmospheric science research
 - Payload boost/deboost
 - Spacecraft power generation
- Advantages
 - Data gathering
 - Application alternatives (Safety)
- NASA near term activities
 - Delta II/SEDS flight experiment
 - STS/Tethered Satellite System

Problem Overview

- Operational phases
 - Deployment,retrieval
 - Stationkeeping
- Dynamics
 - Nonlinear, time-varying, coupled
 - Unstable, elastic, uncertain
- Performance criteria
 - Libration magnitude
 - Deployment/retrieval time
 - Payload disturbances

MDSSC-SSD!

PROBLEM FORMULATION

- Rigid body simplifications
 - Point masses (Station and subsatellite)
 - Station mass >> Subsatellite mass
 - Massless, rigid tether
 - Spherical earth
 - Circular orbit

$$\ddot{\mathbf{I}} - [\dot{\phi}^2 + \cos^2\phi(\omega_0 + \dot{\theta})^2 - \omega_0^2 + 3\omega_0^2\cos^2\phi\cos^2\theta]\mathbf{I} = \frac{\mathbf{Q_I}}{\mathbf{m_p}}$$

$$2\dot{\mathbf{I}}(\omega_0 + \dot{\theta})$$

$$\ddot{\theta} + \frac{2\dot{I}(\omega_0 + \dot{\theta})}{I} - 2tan\phi(\omega_0 + \dot{\theta})\dot{\phi} + 3\omega_0^2 sin\theta cos\theta = \frac{Q_\theta}{m_p I^2 cos^2 \phi}$$

$$\ddot{\phi} + \frac{2\dot{l}\dot{\phi}}{l} + \cos\phi\sin\phi[(\omega_0 + \dot{\theta})^2 + 3\omega_0^2\cos^2\theta] = \frac{Q_\phi}{m_p l^2}$$

- Observations
 - Dynamics are nonlinear (trig, products of states)
 - Retrieval dynamics involve negative libration damping

■MDSSC-SSD■

PROPOSED APPROACHES (CONTROLLER STRUCTURE)

Feedback control

385

■MDSSC-SSD**=**

PROPOSED APPROACHES (PROPOSED CONTROLLERS)

- Quadratic optimal nonlinear controllers
 - Tension Optimal Nonlinear Controller
 - Newton-Raphson, steepest descent
 - Divergence (explicit feedback, tension delay)
 - Length Rate Optimal Nonlinear Controller (LRONC)
 - Steepest Descent
 - Direct damping control
 - Suboptimal Nonlinear Controller (SONC)
 - Feedback structure (gain optimization)
 - Powell's Method
- **■** Lyapunov-based nonlinear controllers
 - Mission/distance function concept
 - Mission Function Control (MFC)
 - Lyapunov Optimal Feedback Controller (LOFC)
- Sensor/actuator options
 - Measurements length, tension, deployment attitude, P/L accels
 - Actuators spring ejection mechanism, reel, thrusters

MDSSC-SSD

MDSSC-SSD=

LRONC - RETRIEVAL TIME HISTORIES

SUMMARY

- **■** Tethered systems have many potential applications
- Tether dynamics encompass typical spacecraft control issues (stability, nonlinearities, coupled dynamics)
- Tether control improvements could provide benefits in such areas as retrieval stability and mission timelines
- Question Can fuzzy logic control techniques help with the tethered systems control problem?

Tethered Systems Control Dan Nowlan Topic: Presenter:

No notes were taken during this presentation.