Data Scientist / Applied ML Scientist Portfolio Data Science, Data Analysis, Data Engineering, Project Design, Project Management

Kwangmin Kim

2025-08-09

Table of contents

	1.1	 프로젝트 개요
	1.2	주요 문제점 및 도전과제
		솔루션 설계 및 전략
		기술 스택 및 요구 역량
		결과 및 성과
		기대효과
	1.7	추후 과제
2	Real-	Time PCR 진단 시스템을 위한 지능형 신호 처리
		프로젝트 개요
		주요 문제점 및 도전과제
		솔루션 설계 및 전략
		기술 스택
	2.5	결과 및 성과
	2.6	기대효과
3		진출을 위한 진단 알고리즘 안전성 검증 자동화
		프로젝트 개요
	3.2	솔루션 설계 및 전략
		주요 도전과제 및 해결방안
		기술 스택 및 요구 역량
		결과 및 성과
	3.6	기대효과
	ו בי וגב	U pula parad 아그리즈이 pata prima 전혀
4	레거시	시 Rule-Based 알고리즘의 Data-Driven 전환
4	4.1	프로젝트 개요
4	4.1 4.2	프로젝트 개요
4	4.1 4.2 4.3	프로젝트 개요
4	4.1 4.2 4.3	프로젝트 개요
4	4.1 4.2 4.3	프로젝트 개요
4	4.1 4.2 4.3 4.4 4.5	프로젝트 개요
4	4.1 4.2 4.3 4.4 4.5	프로젝트 개요
	4.1 4.2 4.3 4.4 4.5 4.6	프로젝트 개요 주요 문제점 및 도전과제 해결 접근법 규제 환경에서의 설명력(Explainability) 근거 기술 스택 성과
	4.1 4.2 4.3 4.4 4.5 4.6 진단	프로젝트 개요
	4.1 4.2 4.3 4.4 4.5 4.6 DE 5.1	프로젝트 개요
	4.1 4.2 4.3 4.4 4.5 4.6 진단 5.1 5.2	프로젝트 개요
	4.1 4.2 4.3 4.4 4.5 4.6 DE 5.1 5.2 5.3	프로젝트 개요
	4.1 4.2 4.3 4.4 4.5 4.6 DE 5.1 5.2 5.3 5.4	프로젝트 개요
5	4.1 4.2 4.3 4.4 4.5 4.6 DE 5.1 5.2 5.3 5.4 5.5	프로젝트 개요 주요 문제점 및 도전과제 해결 접근법 규제 환경에서의 설명력(Explainability) 근거 기술 스택 성과 Lesson Learned 장비 QC 프로세스 자동화 및 알고리즘 고도화 프로젝트 개요 솔루션 설계 및 전략 기술 스택 및 요구 역량 결과
5	4.1 4.2 4.3 4.4 4.5 4.6 진단 5.1 5.2 5.3 5.4 5.5 치매	프로젝트 개요 주요 문제점 및 도전과제 해결 접근법 지제 환경에서의 설명력(Explainability) 근거 기술 스택 성과 Lesson Learned 장비 QC 프로세스 자동화 및 알고리즘 고도화 프로젝트 개요 솔루션 설계 및 전략 기술 스택 및 요구 역량 결과 기대효과 Biomarker 규명: 대사체 통계 분석 및 머신러닝 방법론 비교 연구
5	4.1 4.2 4.3 4.4 4.5 4.6 진단 5.1 5.2 5.3 5.4 5.5 치매 6.1	프로젝트 개요 주요 문제점 및 도전과제 해결 접근법 규제 환경에서의 설명력(Explainability) 근거 기술 스택 성과 Lesson Learned 장비 QC 프로세스 자동화 및 알고리즘 고도화 프로젝트 개요 솔루션 설계 및 전략 기술 스택 및 요구 역량 결과 기대효과 Biomarker 규명: 대사체 통계 분석 및 머신러닝 방법론 비교 연구 프로젝트 개요
5	4.1 4.2 4.3 4.4 4.5 4.6 진단 5.1 5.2 5.3 5.4 5.5 치매 6.1 6.2	프로젝트 개요 주요 문제점 및 도전과제 해결 접근법 규제 환경에서의 설명력(Explainability) 근거 기술 스택 성과 Lesson Learned 장비 QC 프로세스 자동화 및 알고리즘 고도화 프로젝트 개요 솔루션 설계 및 전략 기술 스택 및 요구 역량 결과 기대효과 Biomarker 규명: 대사체 통계 분석 및 머신러닝 방법론 비교 연구 프로젝트 개요 주요 문제점 및 도전과제
5	4.1 4.2 4.3 4.4 4.5 4.6 진단 5.1 5.2 5.3 5.4 5.5 치매 6.1 6.2 6.3	프로젝트 개요 주요 문제점 및 도전과제 해결 접근법
5	4.1 4.2 4.3 4.4 4.5 4.6 진단 5.1 5.2 5.3 5.4 5.5 치매 6.1 6.2 6.3	프로젝트 개요 주요 문제점 및 도전과제 해결 접근법 규제 환경에서의 설명력(Explainability) 근거 기술 스택 성과 Lesson Learned 장비 QC 프로세스 자동화 및 알고리즘 고도화 프로젝트 개요 솔루션 설계 및 전략 기술 스택 및 요구 역량 결과 기대효과 Biomarker 규명: 대사체 통계 분석 및 머신러닝 방법론 비교 연구 프로젝트 개요 주요 문제점 및 도전과제
5	4.1 4.2 4.3 4.4 4.5 4.6 DE 5.1 5.2 5.3 5.4 5.5 NIII 6.2 6.3 6.4 6.5	프로젝트 개요 주요 문제점 및 도전과제 해결 접근법

1 NLP를 활용한 Data Governance 시스템 단계적 구축

So-What: 전사 데이터 표준화 체계를 확립해 데이터 품질과 활용도를 향상.

1.1 프로젝트 개요

- 소속: Seegene
- 기간
 - Phase1: 데이터 표준화 시스템 구축 2024.10 ~ 2025.08 (파일럿 완료)
- Phase2~3: 데이터 거버넌스 시스템 구축 2025.09 ~ 2027.09
- 참여인원: 20명 (Data Scientist, Data Engineer, SW 개발자, BT 개발자, DBA)
- 대내적 의의: 총괄장 수명 프로젝트 및 전사 자동화 시스템 구축의 시발점
 - 실험 자동화, 시약 개발 자동화, 분석 자동화, Data Driven 의사 결정
- 대외적 의의: 글로벌 기술 공유 사업의 시발점
 - Microsoft, Springer Nature, KPMG 등 각 국 정부기관 및 기업 등
- 역할: Technical Lead
 - 표준화 체계, 아키텍처 및 프로세스 구축
 - 1명의 Junior Data Scientist 멘토링: 문제정의, 데이터 분석 역량 강화
 - 19명의 IT/BT 개발자 멘토링: 데이터 거버넌스 70% 이해도 달성

1.2 주요 문제점 및 도전과제

• 문제점

- 16개 부서 53개 DB의 83% 메타데이터 불일치로 인한 데이터 활용도 저하 문제
- 데이터 거버넌스 체계 부재, Data Silo 현상, 데이터 통합 및 검증 체계 부재

• 도전과제

- 표준화 체계 구축
 - * 문제: 독립적으로 개발된 시스템 및 외주 개발 시스템 통합 불가
 - * 해결방안: 표준화 현황 분석 및 표준화 프레임워크 확립
- 데이터의 품질 평가 자동화
 - * 문제: 영문 약어 생성 규칙 구현의 어려움 & 표준화 KPI (품질 평가 지표) 부재
 - * 해결방안: 계층적 Rule Engine 설계 & 원칙 기반 평가 지표 개발
- BT & IT 용어 표준화
 - * 문제: (관용어 vs 표준화 원칙) & (SI 단위계 vs 업계 관행)
 - * 해결방안: 업무 전문가와의 협업을 통한 사전 구축
- 조직내 낮은 Data 성숙도 및 교육의 어려움
 - * 문제: 임원진과 실무진의 막연한 두려움 & 표준화 지식 부족
 - * 해결방안: 추상적 개념 구체화, 동기부여 및 교육

1.3 솔루션 설계 및 전략

Figure 1: 표준화 프레임워크 아키텍처(단계적 확장·자동화 기반)

- Phase 1: 표준화 프레임워크 구축 (Proof of Concept)
 - 표준화 프래임워크 실증 + 현실적 범위 설정 + 단계적 표준화 진행
 - 표준화 프레임워크 구축 (원칙 + 표준 사전 + 품질 평가)
 - 표준화 프로세스 반자동화 시스템 구축: Hybrid Rule Engine
 - * Rule Based 표준화 프로세스 구축

- * Data Driven (딥러닝을 활용) 표준화 프로세스 병목 현상 해결
- Phase 2 ~ 3: 표준화 범위 확장 및 데이터 거버넌스 시스템 구축
 - DB 확장 시 표준화 프로세스 시스템 확장
 - MS Azure Data Factory & Databricks 연동
 - 거버넌스 체계 구축, 표준화 교육 및 캠페인 진행
 - 표준화 모니터링 시스템 구축 - 자동화 워크 플로우 구축
 - 데이터 활용방안 모색

1.4 기술 스택 및 요구 역량

- 데이터 처리: Python (pandas, NumPy, regex, NLTK, KoNLPy, PyArrow)
- 자연어 처리: PyTorch (Hugging Face Transformers, KoBERT, KoSRoBERTa)
- 머신러닝: scikit-learn (HDBSCAN, PCA, UMAP, silhouette score, 등)
- 시각화 & 모니터링: Streamlit, Matplotlib/Seaborn, Plotly, NetworkX
- RAG: LangChain, OpenAI (GPT-40), FAISS, Hugging Face, pdfplumber
- 기술적 역량
 - 복잡한 비즈니스 규칙의 알고리즘 설계 능력
 - 딥러닝 모델 설계 및 훈련 데이터 생성 능력
- 업무적 역량
 - 데이터 표준화 프레임워크 구축 (표준화 원칙 및 표준 사전 구축)
 - 도메인 전문가와의 협업 및 요구사항 분석
 - 표준화 정책 수립 및 이행 관리
 - 경영진 및 실무진과의 커뮤니케이션 능력

1.5 결과 및 성과

- 정량적 성과: 데이터 품질 향상
 - 표준화 체계 수립: 0% → 100% (최초 구축)
 - * 표준화 원칙, 표준 사전, 표준 데이터 계층 구조, 품질 평가 프로세스 구축
 - 메타데이터 완전성: 29.6% → 100% (80.4% 개선)
 - 메타데이터 일관성: 8.4% → 98.7% (90.3% 개선)
- 효율성 개선
 - 물리명 규칙 검증 시간: 수동 8시간 → 자동 0.73초 (99.27% 단축, 전체 컬럼
 - 약어 규칙 준수율: 수동 생성 72% → 자동 100% (28% 향상)
 - NLP를 활용한 표준화 프로세스 간소화: 도메인 분류 자동화
- 시스템 구축 성과
 - 표준화 (품질 평가 및 약어생성) 프로그램 핵심 모듈 8개 개발
 - 표준화 세부 규칙 200여개 생성
 - 품질 지표 16개 개발 및 자동 산출 체계 구축
 - NLP(KoBERT)를 통한 도메인 그룹 분류: 용어 중복 방지, 도메인 항목 관리 및 도메인 그룹 관리
 - * 예시: "USER_ID", "고객번호", "제품코드", "비밀번호" 등
 - * 총 5,632개 훈련 용어, 14개 도메인 그룹, 훈련/테스트 분할 80%/20%
 - * 정확도 96.89%, Macro-F1 0.97, '일반단어' 클래스 최저 F1 0.88, 그 외 다수 클래스 0.95 ~1.00
 - NLP(KoSRoBERTa)를 통한 유사 용어 Clustering: 금칙어 관리 및 표준안 관리
 - * 예시: "사용자ID", "UserID", "User", "user_id" 등 금칙어 관리
 - * Silhouette Score, 0.2752 -> 0.4374 (스키마 정규화로 58.9% 향상, 물리명/논리명 2,214개 기준)
 - RAG(LangChain + FAISS + OpenAI API)을 활용한 표준화 지원
 - * 표준화 원칙 정보 검색 및 QnA
 - * 코드 스니펫을 입력받아 논리명 추천

 - * 데이터 표준화 원칙 (약 200개 Rules) 기반 논리명 추천 * LLM 논리명을 입력받아 커스텀 약어생성모듈로 물리명 추천
 - * 표준화 관련 회의 및 QnA 건 수 감소 (약 70건/주 → 약 4건/주, 94.3% 단축)
- 정성적 성과
 - 표준화 정책 수립, 거버넌스 체계 구축 및 16개 부서 통합 데이터 표준 확립

1.6 기대효과

- 단기 기대효과
 - 데이터 통합 작업 시간 단축 (2시간 → 약 5분, 95.8% 단축)
 - 신규 시스템 구축 시 신속한 표준안 적용 가능
 - 데이터 품질 이슈 사전 예방 체계 확립
- 장기적 비즈니스 가치
 - 부서 간 데이터 공유 활성화, 통합 작업 시간 단축 및 활용도 향상
 - 실험 데이터 모니터링 시스템 구축
 - 글로벌 기술 공유사업 본격화

1.7 추후 과제

- 표준화 범위 확대
- Airflow를 활용한 자동화 워크플로우 구축
- 통합: Big2Core Data Suite(거버넌스 관리) ↔ 인텔리전스 레이어(NLP engines) 간단 API 연계(표준 사전 등록/승인/감사)
- FastAPI 서빙, Docker/Helm 배포, Airflow 오케스트레이션, MLOps: MLflow(실험·모델 레지스트리), GitHub Actions CI/CD, Prometheus/Grafana 모니터링

2 Real-Time PCR 진단 시스템을 위한 지능형 신호 처리

So-What: 불확실한 신호에도 견고한 baseline 처리로 위음성률을 비약적으로 개선.

2.1 프로젝트 개요

- 소속: Seegene
- 기간: 2024.01 ~ 2024.09 (9개월)
- 참여 인원: Data Scientist 3명, Data Engineer 2명, Biologist 2명
- Rule Based 진단 알고리즘을 Data Driven 알고리즘으로의 점진적 개선
 - 기존 rule-based 알고리즘의 한계로 인한 다양한 PCR 신호 패턴 대응 부족
 - 표준화되지 않은 baseline fitting 알고리즘 사용으로 인한 일관성 문제
 - 진단 정확도 향상 및 위양성/위음성 결과 최소화
- 역할: Project Manager & Data Scientist

2.2 주요 문제점 및 도전과제

- 기술적 문제점
 - 신호 노이즈 복잡성: 화학/광학/기계적 반응의 측정 불가능한 노이즈 패턴
 - 알고리즘 분산화: 여러 baseline fitting 알고리즘 병존 및 소통 장애
- Gray Zone 신호: 시약 성능 및 환경 요인으로 인한 모호한 판독 구간 존재 • 운영적 도전과제
 - 데이터 파이프라인 부재: 체계적인 신호 데이터 수집 및 분석 프로세스 미구축
 - 성능 평가 기준 부재: 객관적인 알고리즘 성능 비교 메트릭 부족
 - 주관적 신호 선별: 1년간 수동으로 특이 신호를 육안 식별하는 비효율적 프로세스
- 제약 조건
 - 호환성 요구: Python에서 C++로의 원활한 포팅을 위한 최소 패키지 사용
 - 이해관계자 다양성: 생물학자, 비전문가 임원 등 다양한 배경의 stakeholder 고려
 - 적은 데이터 포인트: 제한적인 baseline 데이터에서의 robust 알고리즘 필요

2.3 솔루션 설계 및 전략

- 1. 데이터 파이프라인 구축
- 다양한 PCR 신호 패턴 수집 및 전처리 자동화
- MuDT 전/후 신호 처리 분석 체계 구축
- 성능 평가를 위한 end-to-end 데이터 처리 워크플로우

Figure 2: 엔드투엔드 신호 파이프라인(검증·시각화 자동화)

2. 알고리즘 비교 분석

- 1st Panel [After BPN]: normalized Raw Data를 보여준다.
- 2nd Panel [CFX]: (대조군1) 타사 기기전용 SW에 내재된 Black Box 알고리즘
- 3rd Panel [DSP]: (대조군2) DS팀의 공식적으로 배포된 Legacy Rule-Based 알고리즘
- 4th Panel [Auto]: (대조군3) 생물 실험자들이 사용하는 Legacy Rule-Based 알고리즘 • 5th Panel [Strep+N]: (실험군1) N+1 번째 [DSP]를 보완용 Rule-Based 알고리즘
- 6th Panel [ML]: (실험군2)본인의 특성방정식을 활용한 data driven ML 알고리즘
 - Taylor Series에서 함수를 다항식으로 근사할 수 있다는 점에서 착안
 - 다항식 기저 함수를 사용한 선형 회귀로 데이터를 적합하는 방법을 시도
 - 특성 공간 확장을 통해 데이터 내 복잡한 비선형 관계 모델링
 - 적절한 차수 선택과 정규화를 통해 baseline 신호에 적합
 - 로그 정규화 > 기저 함수 > 특성 방정식 > 비용 함수 > 그래디언트 > Momentum > 예측 > 역정규화
- 3. 시각화 중심 검증 체계: 비전문가를 위한 직관적 성능 평가
- 복수 신호 분석: 6개 알고리즘의 총체적 성능 비교
- 단일 신호 분석: 특이 신호에 대한 세부 성능 평가
- 신호 유형별 분석: 증가/감소/MuDT 특이 신호 패턴별 성능 검증

2.4 기술 스택

- 언어: Python (C++ 포팅 고려), MATLAB (Legacy 알고리즘)
- 라이브러리: NumPy, pandas (최소화 정책)
- 시각화: Matplotlib, Plotly
- 수학적 구현: 특성방정식, 신경망 (without PyTorch, TensorFlow, Keras)

2.5 결과 및 성과

- 알고리즘 성능 검증
 - ML 알고리즘: White noise에 가장 근접한 차감 결과로 최우수 성능 입증

- 개선된 Rule-based: 기존 대비 특이 신호 처리 능력 향상
- Black Box 알고리즘: 업계 1위 타사 알고리즘과 성능 비교 완료 - 위음성률 개선: 0.47% → 0.04% (91.49% 개선)
- 프로세스 개선
 - 개발 프로세스 표준화: 시약 개발 시 일관된 알고리즘 적용 체계 구축 - 검증 체계: 정성적 평가 방법론을 통한 알고리즘 성능 검증 프레임워크
- 시스템 개선
 - 표준화: 분산된 baseline fitting 알고리즘의 단일화 방향 제시
 - 자동화: 수동적 신호 선별 과정을 체계적 파이프라인으로 대체
 - 시각화 도구: 비전문가도 이해 가능한 직관적 성능 비교

PCRD: 4. admin_2017-05-22 14-38-11_BR101644 Gi9801XY MOM [][][][][(Ahyd, Avero, Sbong) pydsp Version: None, Channel: Cal Red 610, Temperature: Low, The Number of Signals: 84

Figure 3: 복수 신호에서 ML이 White noise 근접(최우수) 성능 입증

Figure 4: 특이 신호에서 Gray zone 판독 안정성 개선 입증

2.6 기대효과

- 즉시적 효과
 - 진단 정확도 향상: 위양성/위음성 결과 감소로 환자 안전성 제고
 - 개발 효율성: 표준화된 알고리즘으로 시약 개발 시간 단축
- 품질 일관성: 단일화된 baseline fitting으로 제품 간 성능 편차 최소화
- 장기적 영향
 - 규제 대응 강화: V&V 프로세스 기반의 알고리즘 검증 체계 구축
 - 기술 경쟁력: Data-driven 접근으로 차세대 진단 알고리즘 기술 확보
 - 확장성: 다른 진단 알고리즘 영역으로의 방법론 확산 가능
- 비즈니스 가치
 - 시장 차별화: 업계 최고 수준의 신호 처리 기술 확보
 - 리스크 관리: 진단 오류로 인한 법적/재정적 리스크 감소
 - 혁신 문화: data-driven 의사결정 문화 확산의 기반 마련

So-What: 규제 레벨 검증을 자동화해 승인 준비 시간을 대폭 단축.

프로젝트 개요

- 소속: Seegene
- 기간: 2023.05 ~ 2023.12 (8개월)
- 참여 인원: 데이터 사이언티스트 3명, 데이터 엔지니어 2명, 생물학자 8명, 특허
- 의료 장비 및 시약 제품의 글로벌 진출 시 각국 정부의 규제 사항 존재
 - 시약의 안정성 검증 & 장비의 안정성 검증
 - 진단 알고리즘의 안정성 검증
- 북미 진단 시장 진출을 위한 알고리즘 안전성 검증용 통계 분석 문서 작성 반자동화
- 기존 Software Engineering Test보다 더 엄격한 Advanced Testing 요구
- 역할: Data Scientist & Project Lead
 - 전체 검증 시스템 설계 및 구현 주도
 - 통계 분석 책임자: Switch Model 기반 검증 방법론 개발
 - Junior Data Scientist 1명 멘토링: 통계 분석, 실험설계 및 리포팅 작성 역량 강화
 - 팀 리더십: 15명 다학제 팀 관리 및 FDA 규제 교육
 - 역할 분배: unit test, integration test, system test, statistical test

솔루션 설계 및 전략

- 알고리즘 안전성을 통계적으로 입증하는 시스템 기획
- Statistical Validation System 확립을 통한 통계적 분석 입증
- 알고리즘 리스크 정의 및 **정량적 영향도 분석**
- 코드 변화 대응을 위한 자동화 시스템 구축
- SGS 가이던스(EN62304) 참고
- FDA General Principles of Software Validation 문서 기반 시스템 확립
- Structural Testing (코드 기반) & Statistical Testing (통계 분석 기반) 병행
- Seegene BT(생명공학)와 IT(정보기술) 부문 협력 체계 구축
- 창의적 Testing Model 기획 및 Statistical Analysis Design 구체화
- Analytical endpoints(비임상, bench): precision/repeatability, reproducibility, linearity, LoD/LoQ, interference/cross-reactivity, stability

Figure 5: 검증 자동화 파이프라인(레포트 6개월→3주)

3.3 주요 도전과제 및 해결방안

- 문제: BT 부서 생성 데이터 입력 시스템 부재
- 해결: 실험 설계 파일, 의료기기 원시 데이터, 추출 데이터의 디지털화 시스템 구축
- 문제: BT 및 Data Science 팀 업무 기술서 부재
- 해결: 부서간 협업을 통한 업무 문서화 진행 및 기대 정답 기준 확립
- 5단계 Data OC Process 강화
 - 오타 교정, 결측치 처리, 이상 데이터 처리, 알고리즘 데이터 정합성 1,2차 검정
- 제약 조건
 - 호환성 요구: Python에서 C++로의 원활한 포팅을 위한 최소 패키지 사용
 - 통계 분석 결과 시각화 및 문서화 자동화 시스템 구축

3.4 기술 스택 및 요구 역량

- 규제 지식: FDA Software Validation
- 통계 분석: Statistics (2-Way Repeated Measures ANOVA, McNemar, Breslow-Day, Cochran-Mantel-Haenszel), Analytical Performance Evaluation (CLSI 3.6 기대효과 EP05/EP06/EP17), Experimental Design (DoE)
- 프로그래밍: R (Statistical Testing), Python (Engineering), MATLAB (진단 알고리즘)
- 워크플로우: Apache Airflow
- 문서 자동화: Quarto (200페이지 FDA 보고서 자동 생성 시스템)
- 도메인 지식: Biology, Biostatistics, Epidemiology

Table 5.5: P-value Summary of the McNemar Tests for the Negative Concentration

template	concentration	scenario	accuracy	p-value		
S	negative	scenario00	100.0	NA		
S	negative	scenario01	100.0	NA		
S	negative	scenario02	80.6	< 0.001		
S	negative	scenario03	100.0	NA		
S	negative	scenario04	100.0	NA		
S	negative	scenario05	100.0	NA		
S	negative	scenario06	100.0	NA		
S	negative	scenario07	100.0	NA		
S	negative	scenario08	100.0	NA		
S	negative	scenario99	80.6	< 0.001		
Note: Inf (infinity), NA (Not Available) and NaN (Not-a-Number) are normal calculation results that occur when positivity or						
negativity is observed at 100% in the experiments or deter-						
mined as 100% in the DSP scenarios.						
Inf: constant over zero						
NaN: zero over zero or Inf over Inf						
NA: NaN treated as NA in the caret package						

Figure 6: FDA용 통계표 자동 생성(검증 재현성 강화)

Figure 7: 전반 성능 지표 시각화(이해관계자 커뮤니케이션 향상)

Figure 8: 모듈별 성능 비교(리스크 포커스 분석)

- FDA 제출용 verification & validation report 초안 완성 (FDA 미제출)
- 문서화 시스템: 업무 소통 및 RDB 시스템 구축을 위한 자동화 시스템
- 리스크 관리 통계 분석: 시약/장비 고유 효과 및 교란 요인 위험 관리 분석
- 성능 평가 체계: 사내 최초 알고리즘 및 시약 제품 종합 성능 평가 관리 체계
- 리포팅 자동화: 수동 6개월 → 자동화 3주 (87.5% 시간 단축)
- 99.2%의 시약 + 알고리즘 안전성 통계적 입증
- 혁신성: 사내 고유 Switch Model 기반 모듈별 검증 방법론 개발

- 북미 시장 진출을 위한 FDA 규제 대응 체계 확립
- 알고리즘 안전성에 대한 통계적 증명 체계 구축
- 시약, 장비, 소프트웨어 및 알고리즘 통합 인허가 시스템 구축

4 레거시 Rule-Based 알고리즘의 Data-Driven 전환

So-What: 설명 및 검증 가능한 하이브리드 모델로 레거시의 구조적 해결 방향 제시.

4.1 프로젝트 개요

- 소속: Seegene
- 기간: 2021.10 ~ 2023.04 (1년 6개월)
- 참여 인원: Data Scientist 4명, Data Engineer 2명
- Rule Based 진단 알고리즘을 Data Driven 알고리즘으로의 점진적 개선
 - 복잡한 조건문 기반 신호 보정 시스템의 근본적 한계 해결
 - 10+단계 보정 과정에서 발생하는 systematic bias 및 비선형 상호작용 문제
 - 비효율적인 유지보수 레거시 알고리즘을 데이터 기반 시스템으로 전환
- 프로젝트 구성
 - Phase 1: 레거시 알고리즘 Reverse Engineering (12개월)
 - Phase 2: 알고리즘 개선안 설계 및 제안 (6개월)
- 역할: Data Scientist (Statistical Learning을 활용한 알고리즘 분석 및 개선안 설계)

4.2 주요 문제점 및 도전과제

- 기술적 도전과제
- 알고리즘 문서 부재, 코드 주석 부재 및 가독성이 매우 낮은 변수명의 Legacy MAT-LAB 코드의 역공학(reverse engineering)의 필요성
 - 유지보수성 저하: 10+단계의 보청과 각 단계별 5+가지 조건으로 수백 가지 실행 경로 생성
 - Systematic Bias 누적: 각 보정 단계에서 발생하는 작은 편향들의 누적으로 최종 결과의 체계적 왜곡
 - 비선형 상호작용: 보정 단계들 간의 복잡한 비선형 상호작용으로 인한 sensitivity analysis 불가능
- 운영적 도전화제
 - 과적합 위험: 특정 장비나 데이터셋에 맞춰진 구체적 조건문들의 새로운 환경에서의 실패 가능성
 - 테스트 어려움: 모든 조건 조합 테스트의 사실상 불가능성과 특정 조건에서만 발생하는 버그 발견의 어려움
 - 예측 불가능성: 유사한 입력 데이터가 미세한 분기점에서 완전히 다른 보정 경로를 따르는 결과 일관성 부족
 - 조직 내 소통 장벽: 통계 비전공자에게 결정론적 규칙의 한계, 편향누적 및 민감도 분석 등의 통계 개념 설명 어려움
 - 기존 워크플로우와의 충돌: 레거시 알고리즘에 익숙한 생물학자들의 새로운 방법론에 대한 저항과 학습 곡선
- 제약 조건
 - C++ 포팅 요구: 최종 목표가 모든 알고리즘을 C++로 포팅하는 것이므로 re- 임상적 해석력 (Clinical Interpretability) verse engineering을 통한 명확한 로직 이해 필수 및 알고리즘 개선안을 low level 프로그래밍으로 구현
 - 확장성 문제: 새로운 노이즈 패턴 발견 시마다 조건문 추가로 인한 복잡도의 기하급수적 증가
 - 팀 문화적 제약: Data Science팀 내에서도 수학/통계적 접근보다 엔지니어링 4.4 기술 스택 관점을 우선시하는 문화
 - 통계적 엄밀성보다 실행 및 운영 가능성을 우선하는 개발 철학의 차이

4.3 해결 접근법

1단계: Legacy 시스템 역공학 및 포팅

- Legacy MATLAB 코드 분석
 - 비문서화 알고리즘의 체계적 분석 및 논리적 흐름 해석
 - * 주석 부재 및 가독성 낮은 변수명으로 구성된 코드의 의미 추론
 - * 50+개 경험적 파라미터들 간의 의존성 분석 및 각 조건문의 의미 추론
 - * 10+단계 보정 과정의 수학적/통계적 근거 문서화
- 알고리즘 로직 플로우 명세화
 - 각 보정 단계의 입력/출력 관계 정의
 - 조건분기 구조의 결정 트리 형태 시각화
 - Data Engineer의 C++ 포팅을 위한 상세 기술 문서 작성

2단계: 개선안 설계 및 제안

- 규제 환경 고려사항 분석
 - FDA 규제 대응: 의료기기, 의료시약 및 의료 알고리즘 승인을 위한 알고리즘 설명력(explainability) 요구사항 분석
 - 딥러닝/ML 블랙박스 모델의 설명력 부족으로 인한 규제 리스크 평가
 - 기존 rule-based 접근법의 설명력 확보 명분과 실제 성능 간 trade-off 문제 분석
- Hybrid Modeling 개선단 실계
 - ´- 메카니스틱 모델 기반 접근: 생물학적 메커니즘을 반영한 해석 가능한 모델
 - 로지스틱 시그모이드 일반형을 RT-PCR kinetics의 수학적 표현으로 활용
 - 주요 전처리 함수 3개와 메카니스틱 모델의 합성함수(composite function) 구성

합성 함수 정의

i Note

보안 고지: 규제 목적의 설명력을 위해 개념 및 수식 수준으로만 기술했으며, 소스코드, 세부 알고리즘 로직, 파라미터 규칙 등 민감 정보는 보안상의 이유로 공유하지 않습니다.

 $f(x;\phi_1,\phi_2,\phi_3,\beta) = g_3(g_2(g_1(x,\phi_1),\phi_2),\phi_3) + \mathrm{sigmoid}_{\sigma}(x;L_{\min},L_{\max},k,x_0)$

일반형 로지스틱 시그모이드 정의(예시):

$$\mathrm{sigmoid}_g(x;L_{\min},L_{\max},k,x_0) = L_{\min} + \frac{L_{\max} - L_{\min}}{1 + e^{-k(x-x_0)}}$$

목적 함수

$$\hat{\theta} = \arg\min_{\phi_1,\phi_2,\phi_3,\beta,\sigma^2} \sum_{i=1}^n [y_i - f(x_i;\phi_1,\phi_2,\phi_3,\beta)]^2$$

- 통계적 모델링 통합: 잔차의 확률적 특성을 명시적으로 모델링
 - 결합추정(joint estimation)을 통한 전체 파라미터의 동시 최적화로 systematic
 - 합성함수와 실제 데이터 간 잔차의 정규분포 가정 및 white noise 조건 확인

정규분포 가정

$$y_i|x_i, \theta \sim \mathcal{N}(f(x_i; \phi_1, \phi_2, \phi_3, \beta), \sigma^2) = \mathcal{N}(f(x_i; \theta), \sigma^2) = \mathcal{N}(\mu, \sigma^2)$$

where
$$\theta = (\phi_1, \phi_2, \phi_3, L_{\min}, L_{\max}, k, x_0, \sigma^2)^T$$

규제 환경에서의 설명력(Explainability) 근거

생물학적 해석가능성 (Biological Interpretability)

- 모형-현상 매핑: 합성함수의 각 구성요소(g1/g2/g3, sigmoid)가 신호 전처리·메커니즘과 일대일로 대응되어 파라미터 변화의 의미를 생물학적으로 해석 가능
- RT-PCR kinetics의 수학적 표현을 통해 각 파라미터가 실제 생물학적 프로세스와
- 로지스틱 시그모이드 일반형의 파라미터들 $(L_{\min},L_{\max},k,x_0)$ 이 각각 물리적 의미를
- 합성함수의 각 구성요소 (g_1,g_2,g_3) 가 신호 전처리 단계와 일대일 대응되어 생물학적 메커니즘으로 설명 가능

통계적 검증 가능성 (Statistical Validation)

- 명시적 확률 모델을 통해 불확실성 정량화
- 잔차 분석(ACF, QQ-plot, Ljung-Box test)으로 모델 가정 검증
- 신뢰구간과 가설검정을 통한 성능의 수치적 입증
- 규제 심사에서 요구되는 "통계적으로 유의한 성능"을 객관적으로 제시
- 예시: 정확도 94.5% [95% CI: 93.8-95.2], LoD = 35.2, 선형성 R² = 0.992, p<0.001

결정론적 재현성 (Deterministic Reproducibility)

- 목적함수가 완전히 명시되어 동일 입력에 대한 동일 출력이 재현적으로 확인됨
- Black-box ML과 달리 모든 계산 과정이 수학적으로 추적 가능
- 알고리즘 변경 시 어떤 부분이 어떻게 바뀌었는지 명확한 documentation

- 각 파라미터 변화가 진단 결과에 미치는 영향을 정량적으로 설명
- 민감도 분석을 통해 어떤 요인이 최종 결과에 가장 큰 영향을 미치는지 파악
- 임상의가 결과를 해석하고 의사결정에 활용할 수 있는 명확한 근거 제공

- 언어: Python (C++ 포팅 고려), MATLAB (Legacy 알고리즘 역공학)
- 라이브러리: NumPy, pandas, pyarrow (최소화 청책)
- 통계적 방법론: mechanistic modeling, composite function optimization, Joint parameter estimation, residual analysis, white noise testing

4.5 성과

- 달성 성과
- Legacy MATLAB 코드의 완전한 reverse engineering 및 문서화 80% 완료
 - Data Engineer팀의 C++ 포팅을 위한 상세 기술 명세서 제공
 - 통계적으로 엄밀한 hybrid modeling 개선안 설계 완료
- 조직적 한계
 - BT(Biotechnology) 부서들의 새로운 방법론에 대한 저항 우려
 - 팀장 차원에서 개선안 도입 거부 결정
 - 기존 워크플로우 유지를 우선하는 조직 문화로 인한 혁신 제약

4.6 Lesson Learned

- 시스템적 사고와 최적화 전략
 - 복잡한 rule-based 시스템의 근본적 한계를 systematic bias와 비선형 상호작용 관점에서 분석
 - 개별 구성요소 최적화가 아닌 전체 시스템의 global optimization 필요성 인식 - 결합추정을 통한 통합적 접근법이 순차적 최적화보다 우수함을 이론적으로
- 확립 • 도메인 특화 모델링 역량
 - 메카니스틱 모델과 통계적 방법론을 결합한 hvbrid modeling의 실무 적용성
 - FDA 규제 환경에서 설명력과 성능을 동시에 만족하는 방법론 설계 경험
 - 생물학적 현상을 수학적 모델로 정확히 표현하여 도메인 전문가와의 소통 개선
- 레거시 시스템 분석 및 리엔지니어링
 - 문서화되지 않은 복잡한 시스템을 체계적으로 역공학하는 방법론 정립 - 파라미터와 10+ 보정 단계의 상호의존성을 논리적 플로우로 재구성하는 분석
 - 기존 시스템의 한계를 정량적으로 진단하고 통계적 근거를 바탕으로 개선 방향 제시
- 조직 변화 관리와 기술 도입 전략
 - 기술적 우수성과 조직 수용성 간의 균형점 탐색: BT 부서의 저항과 팀장의 리스크 회피 성향 경험
 - 통계적 개념(편향 누적, 민감도 분석)을 비전공자에게 전달하는 커뮤니케이션 역량의 중요성
 - 기술적 완성도보다 stakeholder buy-in과 점진적 변화 전략이 실행 성공의 핵심

5 진단 장비 QC 프로세스 자동화 및 알고리즘 고도화

So-What: 공정 단축과 비용 절감을 동시에 달성하는 자동화 QC 파이프라인 확립.

5.1 프로젝트 개요

- 소속: Seegene
- 기간: 2020.12 ~ 2021.09 (9개월)
- 참여 인원: 데이터 사이언티스트 1명, Full Stack 개발자 3명, 기계공학자 4명, 특허 담당자 3명
- PCR 진단 시약을 타사 장비 공급업체의 장비에 탑재
- 진단 서비스 결과의 정확도를 위해 2 Step 장비 QC 프로세스를 통해 장비의 성능 평가
- 프로젝트의 목적
 - 1. 부정확한 **QC 알고리즘 개선**
 - 2. 투입 리소스가 많은 QC프로세스 과정을 간소화시켜 현업의 부담을 경감
- 2 Step QC Process
 - QC Step 1: 자사 시약에 맞게 장비간 신호 Scale Calibration
 - QC Step 2: 장비의 성능을 평가하여 합격/불합격 분류 문제점 발생
 - * 엑셀을 이용한 **수동검사**, 비효율적인 데이터 및 장비 추적 관리
 - * 수동 검사 과정에서 신호의 증폭 크기에 따라 왜곡된 QC 결과 발생
 - * 기계 결함 및 휴먼 에러 구별 불가
- 역할: Data Scientist & Project Manager
 - 문제정의 및 QC 프로세스 및 알고리즘 개선 방향 제시
 - 데이터 분석 파이프라인 구축
 - 프로젝트 진행 및 추진
 - 프로젝트 결과 보고서 작성 및 특허 출원

Figure 9: 기존 수동 QC 프로세스(병목·왜곡 발생)

5.2 솔루션 설계 및 전략

- Data Engineering: 산재된 Excel QC data ETL
- QC Step2의 장비 성능 평가 지표를 생성하여 장비 성능 측정 고도화
- 합격/불합격 분류 뿐만 아니라 장비 등급을 차등 부여하여 고객사에 차등 공급
- 시간에 따른 장비의 성능을 지속적으로 모니터링하여 장비의 성능 분석
- QC Process 간소화
 - QC Step 1 데이터를 통해 QC Step 2 결과를 예측하는 **딥러닝 모델 개발**
 - 예측 결과로 장비성능이 Fail로 확실시 되는 장비에 한해서 QC Step 2 검사 진행
 - Web App 로 분석 결과 및 시각화 Dashboard 제공
 - 실무 담당자가 데이터 업로드 하면 자동으로 분석 결과 제공

Figure 10: 개선된 자동화 QC 프로세스(QC시간 14배 단축)

5.3 기술 스택 및 요구 역량

- 데이터 엔지니어링: QC Data ETL
- 머신러닝: Clustering (PCA, t-SNE, DBSCAN), Anomaly Detection (Isolation Forest), Outlier Detection (IQR, Z score, 3-Sigma Rule)
- 딥러닝: PyTorch (LSTM), scikit-learn
- 통계/신호처리: SNR, RSS 계산, 시계열 분해 등
- 웹앱 개발: R Shiny (대시보드 및 시각화)
- 도메인 지식: PCR 기술, 의료기기 QC, 통계적 공정관리, 광학 장비 성능 평가

5.4 결과

- PCR기기 2201대를 2552번의 실험해서 만들어진 61,248개의 신호 데이터 확보
- QC Process Step 2 장비 성능 평가 메트릭 생성

- 신호 증폭 효율성 측정
- SNR (Signal to Noise Ratio) 측정
- 기준선 안전성 측정
- 광학 균일성 측정
- 장비 온도 균일성 측정음성 신호 추세 측정
- 양성 신호 노이즈 측정시계열 분해 기반 노이즈 측정
- Outlier 및 Anomaly Data 탐지로 labeling (IQR. Z score, PCA, t-SNE, DBSCAN, 3-Sigma Rule, Isolation Forest)
- 신호 RSS (Residual Sum of Squares) 측정
- 평가 메트릭 QC 등급 분류: Pass (A+,A,B), Fail (F)

Figure 11: 장비 성능 클러스터링(등급화·공급 최적화 근거)

- LSTM을 활용한 Step 1 데이터를 통한 Step 2 결과 예측 모델 개방
 - 합격/불합격 분류 정확도: 94.5%
 - 장비 성능 등급 분류 정확도: 82.7%

Figure 12: LSTM 혼동행렬(합불 94.5% 정확도)

Figure 13: LSTM ROC(등급 분류 82.7% 정확도)

- Web App Dashboard Prototype 개발
 - 실무자가 데이터 업로드 하면 자동으로 분석 결과 제공
 - 시각화 및 데이터 관리 기능 제공
- 총괄장 R&D 부문 우수상 수상 및 2개의 특허 출원

5.5 기대효과

- 편의성 증가: QC시간 약 14배 감소
- (As-Was: 약 400시간/100대) vs (As-Is: 약 28시간/100대)
- 웹 기반 자동화 플랫폼 제공
 - 연간 비용 약 13배 감소 (QC 시간 및 약 6억원의 비용 감소)
- Mechanical Engineers의 신기술 개발 지원

6 치매 Biomarker 규명: 대사체 통계 분석 및 머신러닝 6.5 결과 방법론 비교 연구 · Sparse I

So-What: 고차원·소표본 환경에서 임상 타당성 높은 후보를 통계·ML 융합으로 도출.

6.1 프로젝트 개요

- 소속: The Taub Institute, Columbia University Irving Medical Center (CUIMC)
- 2차 세계 대전 후 Baby Boomer 세대의 대규모 치매 발병에 대비한 치매 인자 규명
- 모집단: 장수마을에 거주하는 백인 참여자 (LLFS Long Life Family Study)
- 기간: 2018.12 ~ 2020.05 (18개월)
- 역할: Research Statistician & Data Scientist
- 참여 인원: 23명 (Epidemiologists, 생물통계학자, 유전통계학자, 신경외과 의사, 생화학자, 임상연구 코디네이터, 데이터 엔지니어)

6.2 주요 문제점 및 도전과제

- 의학적 문제점
 - 알츠하이머병은 증상 발현까지 20년간 진행되어 전임상 단계 생리학 이해 필요
 - 유전적 요인(ex. APOE)이 알츠하이머병에 50% 기여하나 구체적 메커니즘 불명
- 데이터 분석적 도전과제
 - 다중 센터 데이터 수집으로 인한 데이터 품질 불일치
 - 고차원 데이터 (약 3,000개 변수) 대비 작은 표본 크기 (146개 관측치)
 - Mass Spectrometry 데이터의 복잡한 결측치 및 이상치 패턴
 - Multiple testing으로 인한 1종 오류 증가 위험
- 연구 환경적 제약
 - 8개월간 연구소에서 파악하지 못한 강력한 교란자 존재
 - 유전체, 전사체, 단백질체, 대사체 다층 분석 필요성
 - 다학제 팀 간 소통 및 결과 공유 복잡성

6.3 솔루션 설계 및 전략

- 데이터 수집 및 전처리
 - 다중 센터 (New York, Boston, Pittsburgh, Denmark) 혈액 샘플링
 - Mass Spectrometry를 통한 대사체 데이터 디지털화
 - 체계적 데이터 품질 관리 프로세스 구축

Figure 14: 다층 오믹스 데이터 파이프라인(품질관리·전처리 체계)

- 데이터 품질 관리 (QC) 전략
 - 이상치 및 결측치 식별: 생화학자와의 협업을 통한 실험실 기준 적용
 - Missing Value Analysis: MCAR, MAR, MNAR 분류 및 처리 방안 결정
 - 데이터 포함/제외 기준: rowwise 및 columnwise 결측치 비율 5% 기준 적용
 - 데이터 전처리: Log transformation 및 Standardization
- 3단계 분석 파이프라인
 - _ 1단계 EDA & Data Mining & 임상 지식: 패턴 발견 및 교란자 규명
 - 2단계 Statistical Analysis: 다변량 회귀분석 및 생존분석
 - 3단계 Machine Learning: 다양한 알고리즘 성능 비교 및 최적 모델 선택

6.4 기술 스택 및 요구 역량

- 프로그래밍: R (Tidyverse, ggplot2, mixOmics, survival, glmnet, etc.)
- \bullet EDA: Student t-tests, Wilcoxon Mann-Whitney tests, χ^2 tests, Fisher Exact Tests, ANOVA, Kruskal-Wallis Tests
- 통계분석: Linear/ Logistic regression, Cox Proportional Hazards(PH) regression, Linear Mixed Effect Model, GEE, GWAS, Multiple Comparison Tests
- 머신러닝: Lasso, Ridge regression, Elastic net, Random forests, AdaBoost, Gradient boosting, SVM, PLS, Sparse PLS
- 데이터 마이닝: KNN, PCA, K-means clustering, DBSCAN
- 통계적 검증: Permuted p-values를 통한 multiple Testing correction
- 도메인 지식: 생리학, 생화학, 신경의학, 역학, 생물통계학, 유전학 • 협업 역량: 다학제 팀 (의사, 생물학자, 생물정보학자, 역학자) 소통

- Sparse PLS 선택 (ML): variable extraction & selection, 해석가능성 확보
- Cox PH Model 선택: 알츠하이머병의 본질적 특성(시간 의존, right censoring, semiparametric) 반영
- GEE (Stat): 가족 구성원 간 유전적 상관관계 존재, 같은 가족 내 구성원들의 Working correlation이 틀려도 일관된 추정값 산출
- Permutation Test 적용 (Stat): 작은 표본 크기에서 parametric assumption 위반 시 robust한 통계적 추론
- 기존 8개월간 미지의 강력한 교란자를 EDA 및 Data Mining을 통해 3주 만에 규명
- 약 3,000개 대사물질 중 약 60개가 질병과 5% 유의수준에서 유의한 관련성 있음
- 약 60개 중 13개의 대사물질이 질병과 1% 이하의 유의수준에서 유의한 관련성 있음
- GWAS를 통해 유의한 대사물질과 유의한 관련이 있는 유전자 규명
- Sparse Partial Least Squares가 최적 성능의 분류기로 선정 (분류 정확도 84%)

Figure 15: 질환-대사체 상관 구조 탐색(강력 교란자 규명)

Figure 16: GWAS로 유의 유전자 규명(생물학적 타당성 강화)

Figure 17: ML 분류기 성능 비교(최적 sPLS, 84% 정확도)

Figure 18: ML Classifier ROC(분류 성능 시각화)

6.6 성과 및 기대효과

- Columbia University Mailman School of Public Health 연례 연구 발표회 포스터 발표
- 연례 연구 경진대회에서 약 100명의 대학원생 중 상위 3명 선정, 상금 \$1,000 및 학과장상 수상
- Columbia University Irving Medical Center 신경외과 정규직 Job Offer 획득
- 고차원 대사체 데이터에 대한 체계적 분석 파이프라인 구축
- 다학제 협업 연구 모델 및 분석 방법론 제안