

编译原理与设计

北京理工大学 计算机学院

- 两个关键问题
 - •如何定义语言的词法规则
 - •如何识别输入字符串中的单词

Token定义

Token识别

正规式

DFA构造

确定有限 状态机

语言设计和定义

语言实现

- 设 Σ 为有限字母表, 在 Σ 上的正规式与正规 集可递归定义如下:
 - ε 和 Φ 是 Σ 上的正规式,它们表示的正规集分别为 $\{\varepsilon\}$ 和 Φ ;
 - 对任何 $a \in \Sigma$, a是 Σ 上的正规式,它的正规集为 $\{a\}$;
 - 若 r, s都是正规式,它们的正规集分别为 R和 S,则 (r/s)、(r·s)、(r)*也是正规式,它们分别表示的正规集是: R U S, R S, R*。
 - 有限次使用上述三条规则构成的表达式,称为 Σ 上的正规式,仅由这些正规式表示的集合为正规集。

- 相关说明
 - 正规式与相应的正规集是等价的,正规集给出了相应正规式所描述的全部单词(句子);
 - 正规式的运算结果是正规集;
 - 正规式不是集合,其运算结果正规集是集合,是特例;
 - ■正规式运算优先级从高到低"()、*、•、 /";
 - 同级运算从左到右。

• 令 Σ ={0,1},则0,1, ε 和**中**是 Σ 上的正规式;

正规式	正规集
0/1	{0, 1}
0 • 1	{01}
1 • 0	{10}
0*	{ε, 0, 00, 000,}
1*	{ε, 1, 11, 111,}
(0/1)0*	{ 0, 1,00,000,,10,100,1000, }
(0/1)01	{001, 101}

- •例: \diamondsuit $\Sigma=\{A, B, 0, 1\}$
 - •(A/B)(A/B/0/1)* => {标识符}
 - -(0/1)(0/1)* => {二进制数字串}
 - -1(01)* = (10)*1

若两个正规式r和s所表示的语言 L(r)=L(s),则称r,s等价,记为 r=s。

- · C语言有如下单词
 - int, if, else, for, while
 - •标识符、无符号整数
 - <, <=, >, >=, ==
- 对应的正规式描述为
 - int | if | else | for | while
 - <字母>(<字母>/<数字>)*
 - </<=/>/>=/==

• 正规式的相关性质

公理/定理	描述
s/t=t/s	/是可交换的
s/(t/r) = (s/t)/r	/是可结合的
(s t)r = s (t r)	连接是可结合的
s(t/r) = st/sr	连接对/可分配
(t/r) s = t s/r s	连接对/可分配
$\varepsilon s = s (s\varepsilon = s)$	ε 是连接的恒等元素
$s^* = (s/\varepsilon)^*$	*和ε间的关系
a* * =a *	*是幂等的

Token定义

正规式

语言设计和定义

Token识别

确定有限 状态机

语言实现

DFA构造

- 确定的有限自动机 (DFA)
 - DFA: Deterministic Finite Automata
 - 五元组定义: $M = (S, \Sigma, f, S_0, Z)$
 - S: 状态的有限集合,每个元素 $S_i(S_i \subset S)$ 称为一个状态
 - ▶∑: 输入字符的有限集合(或有穷字母表)。每个元素是 一个输入字符。
 - S_0 : M的惟一初态(也称开始状态), $S_0 \in S$
 - Z: M的终态集(或接受状态) Z_S
 - •f: 状态转换函数: 从 $S \times \Sigma \to S$ 的部分映射

- DFA的说明
 - DFA是具有离散输入、输出系统的一个纯数学模型;
 - DFA的技巧在于状态的设置;
 - · DFA映射的唯一性和初态的唯一性。
- •例子
 - 计算机系统
 - 电梯控制系统

■ DFA表示

形式定义

状态转换图

状态矩阵

$$M = (\{0,1,2,3\}, \{a,b\}, f, 0, \{3\})$$

$$f(0,a)=1$$

$$f(0,b)=2$$

$$f(1,a)=3$$

$$f(1,b)=2$$

$$f(2,a)=1$$

$$f(2,b)=3$$

$$f(3,a)=3$$

$$f(3,b) = 3$$

■ DFA表示

形式定义

状态转换图

状态矩阵

■ DFA: 识别C语言块注释的DFA


```
phonor java.util.ArrayList;

import bit.minisys.minicc.MinicCcfg;
import bit.minisys.minicc.util.MinicCutil;

file import bit.minisys.minicc.util.MinicCutil;

for import bit.minisys.minicc.util.MinicCutil;

for import bit.minisys.minicc.util.MinicCutil;

for import bit.minisys.minicc.util.MinicCutil;

for import bit.minisys.minicc.MinicCutil;

for import bit.miniscottili.

for import bit.minisc
```

```
//PROGRAM --> FUNC_LIST
public TreeNode program() {
   TreeNode p = new TreeNode(TreeNodeType.TN_TYPE_PROGRAM);
   TreeNode fl = funcList();
   if(fl! = null) {
      p.getSubNodes().add(fl);
   }
   return p;
}
```

The state of the s

词法分析: 有限状态自动机

- DFA: 识别机制
 - •例DFA M1可以识别偶数个0或(和)偶数个1。

- DFA: 识别机制
 - •对于 Σ 上的任何字 α ,如果存在一条从初态到某一终态结点的路径,且该路径上所有弧的标记符连接成的字等于 α ,则称 α 为DFAM所识别(接受)。
 - 若DFA仅一个状态结点,该状态结既是初态又是 终态,则空字集合{ε}为DFA M所接受。
 - 一个DFA M所能接受的字的全体记为L(M)。

■ DFA: 语言和等价关系

:: 有限状态自动机M所接受的语言为:

$$L(M) = \{ \alpha / f(S_0, \alpha) \in \mathbb{Z} \& \alpha \in V_T^* \}$$

设有FA M 和 FA M',若L(M) = L(M'),则称 M 和 M' 等价。

The state of the s

词法分析: 有限状态自动机

- •实际问题中映射函数往往是多值函数。
 - C语言: +/++/+=
- ■NFA: 定义
 - ■非确定的有限自动机M (NFA M)五元组

$$M = (S, \Sigma, f, S_0, Z)$$

- S, Σ , Z, S_0 \square DFA
- F: 状态转换函数: 从 $S \times \Sigma^* \to 2^S$ 的映射

■NFA: 表示

形式定义

状态转换图

状态矩阵

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, 0, f, q_0, \{q_2, q_4\})$$

$$f(q_0, 0) = q_0 \qquad f(q_0, 0) = q_3$$

$$f(q_0, 1) = q_0 \qquad f(q_0, 1) = q_1$$

$$f(q_1, 0) = \Phi \qquad f(q_1, 1) = q_2$$

$$f(q_2, 0) = q_2 \qquad f(q_2, 1) = q_2$$

$$f(q_3, 0) = q_4 \qquad f(q_3, 1) = \Phi$$

$$f(q_4, 0) = q_4 \qquad f(q_4, 1) = q_4$$

■NFA: 表示

形式定义

状态转换图

状态矩阵

NFA: 识别机制

■ DFA与NFA区别

DFA	NFA
$oldsymbol{\Sigma}$	Σ^* ($\varepsilon \in \Sigma^*$)
$f(S \times \Sigma)$	$f(S \times \Sigma^*)$
$f(S \times \Sigma) \rightarrow S$	$f(S \times \Sigma^*) \rightarrow 2^S$

■ DFA与NFA等价性

对任何一个NFA M, 都存在一个DFA

M', 使 L(M')=L(M)。

The state of the s

词法分析: 有限状态自动机

- ■NFA确定化: 子集法
 - •消去ε弧: ε-closure(I)
 - ϵ -closure($\{5\}$) = $\{5, 6, 2\}$
 - ε -closure({1,5})={1,2,5,6}
 - ·解决映射不唯一问题:求Ia
 - $I_a = \{2, 5\}_a = \{3, 8\}$
 - $I_a = \{1\}_a = \{2, 3, 4, 5, 6, 7, 8\}$

■NFA确定化: 子集法

	I		$\mathbf{I_0}$	$\mathbf{I_i}$	
0*	{ p }	1	{q, s}	{ q }	2
1	{q, s}	3	{ r }	{ q,r,p }	4
2	{q}	3	{r}	{ q,r }	5
3	{r}	6	{ s }	{ p }	0
4*	{ q,r,p }	7	{ q,r,s }	{ q,r,p }	4
5	{ q,r }	8	{ r,s }	{ q,r,p }	4
6	{ s }			{ p }	0
7	{ q,r,s }	8	{ r,s }	{ q,r,p }	4
8	{ r,s }	6	{ s }	{ p }	0

■NFA确定化: 子集法

	I		$\mathbf{I_0}$	$\mathbf{I_i}$	
0*	{ p }	1	{q, s}	{ q }	2
1	{q, s}	3	{ r }	{ q,r,p }	4
2	{ q }	3	$\{\mathbf{r}\}$	{ q,r }	5
3	{r}	6	{ s }	{ p }	0
4*	{ q,r,p }	7	{ q,r,s }	{ q,r,p }	4
5	{ q,r }	8	{ r,s }	{ q,r,p }	4
6	{ s }			{ p }	0
7	{ q,r,s }	8	{ r,s }	{ q,r,p }	4
8	{ r,s }	6	{ s }	{ p }	0

state	0	1
0*	1	2
1	3	4
2	3	5
3	6	0
4*	7	4
5	8	4
6		0
7	8	4
8	6	0

- DFA最小化:划分法
 - 无关状态:如果从DFA M的初态开始,任何输入 序列都不能到达的那些状态称为无关状态。
 - •**等价状态**: 设DFA M的两个不同状态 q1, q2, 如果对任意输入字符串ω,从q1,q2状态出发,总是同时到达接收状态或拒绝状态之中,称q1,q2是等价的。
 - •如果DFA M既没有无关状态,且没有彼此等价的状态,则称DFA M是规约的(即最小的DFA M)。

■DFA最小化:划分法

Step1: 形成初始划分。划分为终态集和非终态集。

考察: {0,1}_a ={1} ⊂ {0,1}

不可对{0,1}再分 $\{0,1\}_b = \{2\} \subset \{2\}$

Step2: 重新命名。令 {0,1}为0, 令{2}为1。

■DFA最小化:划分法

■DFA最小化:划分法

step1: 形成初始划分

 π = { Z, K—Z } // K是M的所有状态

→ step2: 对当前的划分 $\pi = \{I_1, I_2, ..., I_m\}$ 中的每个状态集 I_i 考察是否可区分,可区分则进行划分,形成新的划分 π_{new} 。

- step3:若π_{new}≠π,则将π_{new}作为π重复step2;

step4: 对所得的最后划分π重新命名。

Token定义

正规式

语言设计和定义

Token识别

确定有限 状态机

语言实现

DFA构造

- 定理
 - •字母表 Σ 上的确定的有限自动机M所接受的语言 L(M)是 Σ 上的一个正规集;
 - •对于 Σ 上的每一个正规式 r,存在一个 Σ 上的非确定有限自动机M,使得: L(M)=L(r)。

 Σ 上的单词集 $V \in \Sigma^*$ 是正规的,当且仅当存在 Σ 上的DFA M,使得V=L(M)。

■FA转RE: 规则

■FA转RE: 拓广

The state of the s

词法分析: 正规式与FA等价性

- RE转FA: 规则

RE转FA: 拓广与替换

RE转FA: 拓广与替换

RE转FA: 确定化

	I		I_a	I_{b}		
0	{X,1,5}	1	{5, 3, 1}	{5, 4, 1}	2	
1	{5, 3, 1}	3	{5, 3, 1,2,6,Y}	{5, 4, 1}	2	
2	{5, 4, 1}	1	{5, 3, 1}	{5,4, 1,2,6,Y}	4	
3* {5, 3	3, 1,2,6, <mark>Y</mark> }	3	{5, 3, 1,2,6,Y}	{5,4, 1,6,Y}	5	
4* {5,4	4, 1,2,6, Y }	6	{5,3, 1,6,Y}	{5,4, 1,2,6,Y}	4	
5* {5	5,4, 1,6, <mark>Y</mark> }	6	{5,3, 1,6,Y}	{5,4, 1,2,6,Y}	4	
6* {5	5,3, 1,6, Y }	3	{5, 3, 1,2,6,Y}	{5,4, 1,6,Y}	5	

RE转FA: 最小化

state	a	b			
0	1	2	state	a	b
1	3	2	0	1	2
2	1	4	1	3	2
3*	3	5	2	1	3
4*	6	4	3*	3	3
5*	6	4		_	
6*	3	5			
	•				