

제23장. 기하광학

제23장. 기하광학

들어서며

- **및 [적외선, 가시광선, 자외선 등] : 전자기파의 일종**
- 🥯 광학 : 빛과 매질사이의 상호작용을 연구하는 학문
 - ◎ 기하광학
 - 물리광학 (간섭과 회절)

- 입사면: 입사살 (incident ray)과 경계면에 대한 수직선을 포함하는 면
- 반사 (reflection)와 굴절 (refraction)은 한 입사면 상에서 일어남.

🍳 반사의 법칙 :

$$\theta_1 = \theta_1'$$

로절의 법칙 (Snell의 법칙) :

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

 n_1 : 입사매질의 굴절률

 n_2 : 굴절매질의 굴절률

▲ 그림 23.2 │ 반시빛살과 굴절빛살

🍳 굴절률과 빛속도

● 매질의 굴절률(n) = $\frac{$ 진공에서의 빛의 속도 $}{$ 매질에서의 빛의 속도 $}=\frac{c}{v}=n$ ● 진공의 굴절률 = 1

$$n = \frac{c}{v}$$

$$\mathbf{v} = \frac{c}{n}$$

- 공기의 굴절률은 근사적으로 1로 둔다.

\mathbf{Q} 빛의 속도 $v = f \cdot \lambda$

(a)

빛은 한 매질에서 다른 매질로 진행할 때 파장이 변한다.

예제 23.1 굴절의 법칙

수은등에서 나온 빛이 수정 유리의 표면으로 입사한다. 입사각은 수직선에서부터 30°이다. 이 입사광은 405 nm와 509 nm의 두 파장으로 구성되어 있고 수정의 굴절률은 각각의 파장에 대해 1.470과 1.463이다. 두 빛의 굴절빛살 사이의 각도는 얼마인가?

풀이]

From Snell's law $n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2}$ $1.000 \sin 30^{O} = 1.470 \sin \theta_{2}$ $\rightarrow \theta_{2} = 19.89^{O}$ $1.000 \sin 30^{O} = 1.463 \sin \theta_{2}^{'}$ $\rightarrow \theta_{2}' = 19.98^{O}$

 $\theta_2' - \theta_2 = 19.980 - 19.890 = 0.090$

₩ 색분산

● 매질의 굴절률은 빛의 파장에 따라 다르다.

🍳 매질에서의 색분산 효과 :

- 파장별로 굴절된 빛의 진행방향이 갈라짐.
- 매질의 굴절률은 짧은 파장 영역에서 크고 긴 파장영역에서는 작다.

그림 23.2

❖ 짧은 파장에 대해서

- 매질의 굴절률이 커지고
- 굴절각도는 작아짐 (즉, 굴절이 많이 됨)

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

🊇 여러 매질의 굴절률

매질	굴절률	매질	굴절률
공기 (STP)	1.00029	유리(typical crown glass)	1.52
물 (20oC)	1.33	Sodium chrolide	1.54
Sodium Fluoride	1.33	Polystrene	1.55
아세톤	1.36	Carbon disulfide	1.63
에틸알콜	1.36	유리 (heavy flint glass)	1.65
설탕물(30%)	1.38	사파이어	1.77
유리 (Fused quartz)	1.46	유리 (heaviest flint glass)	1.89
설탕물(80%)	1.49	다이아몬드	2.42

🊇 무지개 사진

예제 23.2 색분산 계산

주어진 액체의 빨간색 빛에 대한 굴절률은 1.320이며, 보라색 빛에 대한 굴절률은 1.332이다. 두 빛이 45°의 동일한 입사각으로 액체 표면에 입사하는 경우, 굴절각의 차이를 구하여라.

풀이]

From Snell's law

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$1.000 \sin 45^{\circ} = 1.32 \sin \theta_R$$

$$\rightarrow \theta_R = 32.4^{\circ}$$

$$1.000 \sin 45^{\circ} = 1.332 \sin \theta_{V}$$

$$\rightarrow \theta_V = 32.1^{O}$$

$$\therefore \theta_R - \theta_V = 32.4^{\circ} - 32.1^{\circ} = 0.3^{\circ}$$

2. 전반사

🎱 입사매질의 굴절률이 굴절매질의 굴절률보다 큰 경우

 \mathbf{e} 굴절각이 90도가 되는 입사각 = 임계각 (θ_c) $n_1 \sin \theta_c = n_2 \sin 90^O = n_2$

$$\sin \theta_c = \frac{n_2}{n_1} \longrightarrow \theta_c = \sin^{-1} \frac{n_2}{n_1}$$
 (23.4)

- ullet 전반사 : $heta_I > heta_c$ 인 경우, 모든 빛살은 반사된다.
 - $n_2 > n_1$ 이면, \sin 값이 1보다 클 수가 없으므로, 임계각 존재 불가능

● 전반사를 이용하여 빛을 전송

그림 23.7 광섬유

예제 23.3 전반사 계산

그림과 같이 공기 중에 직각삼각형 프리즘의 윗면에서 빛을 수직으로 입사하여 빛이 빗면에서 전반사되는 모습을 보여주고 있다. 이런 현상을 갖기 위한 프리즘의 굴절률의 조건은 무엇인가?

풀이]

● 전반사의 임계각이 되기 위한 조건 $n \sin(45^{\circ}) \ge 1 \sin 90^{\circ} = 1$ $n \ge 1/\sin(45^{\circ}) = \sqrt{2} = 1.414$

3. 편광과 반사

🊇 빛의 편광

- ◉ 빛(전자기파)의 진행방향과 전기장의 방향은 일반적으로 수직하다.
- 전기장의 방향 : 편광방향

▲ 그림 23.8 │ 전자기파

빛의 전기장은 입사면에 대해 수직(TE) 및 수평(TM)성분 보유.

→ "무편광" 빛일 경우에는 수직 및 수평 성분 동일

3. 편광과 반사

브루스터 각도 (Brewster Angle)

전기장의 수평 성분이 반사되지 않을 때의 입사각

(수직 성분 TE 모드만 반사)

- 입사각이 브루스터 각도인 경우
 - $\bullet \quad \theta_{\scriptscriptstyle B} + \theta_{\scriptscriptstyle r} = 90^{\scriptscriptstyle 0}$
 - Snell법칙을 이용하면,

$$n_1 \sin \theta_B = n_2 \sin \theta_r$$

$$n_1 \sin \theta_B = n_2 \sin(90^O - \theta_B) = n_2 \cos \theta_B$$

$$\sin(90^O - \theta_B) = \sin 90^O \cdot \cos \theta_B - \cos 90^O$$

▲ 그림 23.9 │ 입사면에 대한 편광 방향

$$\theta_B = \tan^{-1} \frac{n_2}{n_1}$$

n₁ = 1.0 일 경우에는

$$\theta_B = \tan^{-1} n_2$$

질문: 낚시꾼이나 스키어 들이 편광 선글래스를 쓰는 이유는?

예제 23.4 유리판의 브루스터 각

굴절률이 1.50인 평평한 유리판을 편광기로 사용하려고 한다. 입사광에 대해 어떤 각도로 유리판을 놓아야 하며, 이때 굴절각은 얼마인가?

풀이]

◉ 브루스터 각도

$$\theta_B = \tan^{-1} \frac{n_2}{n_1}$$

$$= \tan^{-1} \frac{n_2}{1} = \tan^{-1} (1.5) = 56.3^{\circ}$$
 입사간

$$\theta_r = 90^\circ - \theta_R = 90^\circ - 56.3^\circ = 33.7^\circ$$
 굴절각

❷물체 (Object): (구면파를 발생하는) 점물체의 집합

🊇 상 (Image)

- 물체와 동일한 모습이며 단지 크기만 다름
- ◉ 허상(virtual image):
 - 상으로 부터 빛이 나온 것처럼 보임 (거울 속의 물체, 물 속의 동전)
- 실상(real image) :
 - 실제로 빛이 통과함 (사진필름, 스크린의 강의록)

거울

▲ 그림 23.13 │ 평면거울

🧶 평면거울

- ◉ 허상을 만듦
- 거울로부터 상(I)까지 거리 = 거울로부터 물체(O)까지 거리
- 상과 물체는 서로 거울 반대쪽에 위치i = -o
- 물체 (Object) 와 거울 거리 : 0
- 상 (Image)과 거울 거리 : *i* 허상일 경우 부호는 "-"

🥨 평면거울에 의한 상 형성 및 광선 추적

▲ 그림 23.11 │ 평면거울 - 그림 23.10 중에서 두 빛살의 모양

예제 23.5 전신을 볼 수 있는 거울의 길이

키가 200 cm인 농구 선수가 자신의 전신을 볼 수 있기 위해서는 거울의 길이가 최소한 얼마여야 하는가?

풀이]

• 농구선수의 키 h = a + b

거울의 길이

$$l = \frac{a}{2} + \frac{b}{2} = \frac{h}{2}$$

거울의 크기 전신의 ½

▲ **그림 23.12** │ 평면거울에 대한 예제

[№] 곡률 반경이 r 인 구면거울

- 곡률중심이 물체와 같은 쪽에 있을 때 : 오목거울
 - 빛을 모으는 데 사용
 - 예) 거울을 이용한 불을 생성, 천체망원경의 대물렌즈
- 곡률중심이 물체와 반대 쪽에 있을 때 : 볼록거울
 - 넓은 영역를 볼 때 사용
 - 예) 자동차의 오른쪽 거울, 감시용 거울

🊇 초점

빛(평행광)이 모이는 지점

- ◉ 초점거리
 - 거울면에서 초점까지의 거리

▲ **그림 23.16** │ 구면거울의 초점

f: 초점 (focal point)

오목거울:+f

볼록거울:-f

$$f = r/2$$

學 물체(○), 상(I) 그리고 거울의 상관관계

◉ 거울공식

$$\frac{1}{o} + \frac{1}{i} = \frac{1}{f} = \frac{2}{r}$$

🌘 배율

배율:
$$m = -\frac{i}{o}$$

▲ **그림 23. 17** │ 물체의 위치와 상의 변화

o, i, r 에 대한 부호규약

- 물체, 상, 곡률중심이 거울의 앞쪽에 위치하면
 - *o, i, r* 은 양수
- ◎ 물체, 상, 곡률중심이 거울의 뒤쪽에 위치하면
 - *o, i, r* 은 음수

m > 0 이면, 바로 선 상 (정립)

 $m < \theta$ 이면, 꺼꾸로선 상 (도립)

🌳 구면 거울에 대한 질문

식 (23.13)으로부터 평면 거울의 결과인 식 (23.11)을 유도해 보라.

$$\frac{1}{o} + \frac{1}{i} = \frac{1}{f} = \frac{2}{r}$$
(23.11)
$$i = -o$$
(23.9)

예제 23.6 오목거울

오목거울 앞 6.0 m에 물체가 있으며 물체의 상 역시 물체와 동일한 곳에 생겼다면 오목거울의 곡률반지름은 얼마인가?

풀이]

◉ 거울공식

부호약속을 꼭 고려(o:+,i:+)

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f} = \frac{2}{r}$$

$$\frac{1}{o} + \frac{1}{o} = \frac{2}{o} = \frac{1}{f}$$

$$\therefore f = 3 \text{ m} \qquad \therefore r = 2f = 6 \text{ m}$$

예제 23.7 볼록거울

곡률반지름이 40.0 cm인 볼록거울 앞 30.0 cm에 길이 5.0 cm의 물체가 있다. 상까 지의 거리와 상의 길이는 각각 얼마인가?

풀이]

◉ 볼록거울의 초점거리

부호약속을 꼭 고려(f: -)

$$f = -\frac{r}{2} = -20 \text{ cm}$$

$$\frac{1}{i} = \frac{1}{f} - \frac{1}{o} = \frac{1}{-20 \text{ cm}} - \frac{1}{30 \text{ cm}} = -\frac{1}{12 \text{ cm}} \qquad \left(\because \frac{1}{i} + \frac{1}{o} = \frac{1}{f}\right)$$

$$m = \frac{y_i}{y_o} = -\frac{i}{o} = 0.4$$

$$\therefore y_i = 0.4y_o = (0.4)(5 \text{ cm}) = 2 \text{ cm}$$
 물체보다 작고 바로 서 있는 허상

□ 구면거울에 대해서, 다음 4 가지 빛살 중에서 □ 가지를 추적함으로써 상을 작도할 수 있다 (ray tracing)

- 1) 축에 나란하게 거울 면에 입사하는 빛살은 그 곳에서 초점을 잇는 선을 통해 반사
- 2) 물체에서 초점을 잇는 선을 통해 거울 면에 입사하는 빛살은 축에 나란하게 반사
- 3) 물체에서 곡률 중심을 잇는 선을 통해 거울 면에 입사하는 빛살은 오던 길로 되 반사
- 4) 축과 교차하는 거울 면의 점에 입사하는 빛살은 축에 대칭으로 반사

▲ 그림 23.18 │ 구면거울에 대한 작도법

🚇 볼록거울

● 항상 물체보다 작은 정립허상

허상 (virtual)

정립:물체와 같은 방향으로

바로 선 상

🖳 오목거울

o > 2f: 물체보다 작은 도립 실상

● 2f>o>f : 물체보다 큰 도립 실상

o < f : 물체보다 큰 정립 허상

실상 (real)

도립:물체의 방향과

반대 방향으로 선 상

▲ 그림 23.17 │ 물체의 위치와 상의 변화

🊇 빛살추적의 질문

물체 \bigcirc 가 2f(=r) 인 위치에 있을 때 맺히는 상의 배율과 상의 방향은?

🧶 렌즈의 두께가 상대적으로 무척 얇을 때

(물체 및 상 까지의 거리, 곡률 반경에 비해서)

- 초점거리를 렌즈에서 중심까지로 취해도 무방
- 콘텍트렌즈는 두꺼운 렌즈로 취급 (왜 그럴까?)

🥞 얇은 렌즈의 초점거리 : Lens Maker's formula

$$\frac{1}{f} = (n-1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \begin{vmatrix} n & : 렌즈의 굴절률 \\ r_1 & : 앞면의 굴절반경 \\ r_2 & : 뒷면의 굴절반경 \end{vmatrix}$$

오목렌즈

렌즈의 중심의 두께가 가장자리보다 얇은 경우 (f < 0)

볼록렌즈

렌즈의 중심의 두께가 가장자리보다 두꺼운 경우 (f > 0)

🍳 얇은 렌즈의 빛살추적

- 1) 축에 나란하게 렌즈로 입사하는 빛살은 초점을 통하여 진행한다.
- 2) 초점을 통과하여 렌즈로 입사하는 빛살은 축과 나란하게 진행한다.
- 3) 렌즈의 중심으로 입사하는 빛살은 굴절없이 진행한다.

▲ 그림 23.19 | 볼록렌즈에서의 빛살 추적

▲ 그림 23.20 │ 오목렌즈에서의 빛살 추적

엑 렌즈를 통한 물체와 상의 상관관계

$$\frac{1}{o} + \frac{1}{i} = \frac{1}{f}$$

❷ 블록렌즈(오목거울과 동일)

o > 2f: 물체보다 작은 도립 실상

● 2*f*> *o* > *f* : 물체보다 큰 도립 실상

 \circ o < f : 물체보다 큰 정립 허상

오목렌즈(볼록거울과 동일)

● 항상 물체보다 작은 정립 허상

- 🧶 물체(O), 상(I) 그리고 렌즈의 상관관계
 - \bullet 물체, 상, 곡률중심이 렌즈의 반대 쪽에 위치하면 o, i, r은 양수

🍳 상의 배율과 방향

물체 O가 2f(=r) 인 위치에 있을 때 맺히는 상의 배율 과 상의 방향은?

f(수렴):+, i:(렌즈 뒤+)

f(발산):-, i:(렌즈 앞 -)

예제 23.8 얇은 볼록렌즈의 초점거리

굴절률이 1.5인 유리로 볼록렌즈를 만들었으며 볼록렌즈의 양쪽 곡률반지름은 40 cm이다. 이 렌즈의 초점거리를 구하여라.

풀이]

🏿 렌즈 제작자 공식

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = (1.5 - 1)\left(\frac{1}{0.4 \text{ m}} - \frac{1}{-0.4 \text{ m}}\right) = \frac{1}{0.4 \text{ m}}$$

부호약속: 곡률중심이 렌즈 앞에 있으면(-), 뒤에 있으면(+)

$$\therefore f = 0.4 \text{ m}$$

예제 23.9 볼록렌즈

초점 거리가 4.0 cm인 볼록렌즈의 앞 6.0 cm 되는 곳에 길이 2.0 cm의 물체가 놓여 있다. 렌즈에서 상까지의 거리와 상의 길이를 구하여라.

풀이]

◉ 얇은렌즈 공식

$$\frac{1}{o} + \frac{1}{i} = \frac{1}{f}$$

$$\frac{1}{i} = \frac{1}{f} - \frac{1}{o} = \frac{1}{40 \text{ cm}} - \frac{1}{6.0 \text{ cm}} = \frac{1}{12 \text{ cm}}$$

∴ *i* = 12 cm [실상 : 렌즈 뒤(오른쪽) 12 cm]

◎ 상의 배율

$$m = -\frac{i}{o} = -\frac{12 \text{ cm}}{6.0 \text{ cm}} = -2.0$$

$$\therefore y_i = |m|y_o = (2.0)(2.0 \text{ cm}) = 4.0 \text{ cm}$$
 거꾸로서 있는 상

🊇 사람 눈

 초점과 빛의 량을 자동 조절 가능한 초정밀 광학 기기 (평균 지름이 약 2.3 cm 인 구형)

🚇 빛의 경로 :

- 각막 → 수양액 → 수정체 → 유리액 → 망막
- 망막에서는 시신경에 의해 생화학 전기신호 바뀐 후 뇌로 전달됨.

🍳 눈의 구조와 조절 작용

- 각막(굴절률 n = 1.376)
 공기 굴절률 1.0과의 큰 차이로
 대부분의 굴절이 여기에서 이루어짐.
- 수정체
 (중심 n = 1.406, 가장자리 n = 1.386)
 모양근의 근육에 의해
 곡률과 두께가 조절되면서
 망막에서 상이 맺히도록 초점이 미세 조정됨
- 빛의 량(세기) 조절은홍채의 조정을 통해 동공의 크기를 확대 및 수축

▲ 그림 23.21 │ 사람 눈의 단면도

🦞 정상적인 눈

● 근점이 약 25 cm이며, 근점에서 무한대의 물체의 상을 망막에 형성

❷ 원시안

- 근점이 25 cm보다 길며, 가까운 물체의 상을 망막에 형성하는 것이 곤란
- 🌘 볼록레즈로 교정

🎱 근시안

- 근점이 25 cm보다 짧으며,
 먼 거리의 물체에 대한 상을 망막에 형성하는 것이 곤란
- ◉ 오목렌즈로 교정

🧶 난시안

- 각막이나 수정체 렌즈의 표면이 부드러운 구면이 아닌 굴곡이나 흠이 있는 경우 망막에 초점이 제대로 맞지 않아 물체의 상이 흐려짐.
- ◉ 각막이나 수정체의 굴곡이나 흠을 보상해 줄 수 있는 렌즈를 사용해서 교정

🎱 정상 시력과 교정

(a) 원거리 물체에 대한 정상 시력

(c) 교정되지 않은 근시안

(e) 교정되지 않은 원시안

▲ 그림 23.22 │ 정상 시력과 근시, 원시 및 렌즈 교정

(b) 근거리 물체에 대한 정상 시력

(d) 교정된 근시안

(f) 교정된 원시안

- **일 안경의 디옵터**(diopter) *D*
 - ◉ 렌즈의 강도를 표시
 - 초점거리 (m 단위)의 역수 값 [즉, D = 1/f(m)]
 - D = +1.0 old, f = 1 m (볼록렌즈)
 - D = +4.0 이면, f = 0.25 m (볼록렌즈)
 - D = -2.0 이면, f = -0.5 m (오목렌즈)
 - 디옵터 값이 클수록 렌즈의 초점이 짧아져야 하고 눈이 더욱 비정상 상태임.
 - 근시안에게는 교정 렌즈로 음의 디옵터 값을 가진 렌즈가 필요
 - 원시안에게는 교정렌즈로 양의 디옵터 값을 가진 렌즈가 필요.
- 렌즈 표면에서의 반사를 줄이기 위해 유전체 물질의 무반사 코팅이 사용되기도 함.
- 자외선 및 햇빛 등의 세기를 줄이기 위해 투과되는 빛의 스펙트럼 또는 편광 일부를 차단하거나 광량을 줄이는 기능을 가진 선글라스 (sunglass)가 사용되기도 함.

🍳 확대경

- 근점: 정상의 눈으로부터 약 25 cm이며, 물체를 가장 가까이 볼 수 있는 위치 (예외: 근시안, 원시안)
- 물체를 근점보다 더 가까이 놓으면, 크게 보이나, 선명하지 않게 된다.
- 볼록렌즈를 눈 앞에 두고, 물체를 볼록렌즈의 초점(초점거리 = f)에 맞추면, 근점보다 더 크고 선명한 상을 볼 수 있다.
- ◎ 이 때의 배율을 각배율이라 한다 :
- ◎ 일반적으로 각배율은 2-3 정도이다.

$$m_{\theta} = 25 \, cm/f$$

$$m_{\theta} = \theta'/\theta$$

$$\theta \approx h/25cm$$

$$\theta' \approx h/f$$

$$m_{\theta} = \frac{25 cm}{f}$$

❷ 현미경

- ◉ 작은 물체를 확대시키는 광학장치
- 대물렌즈 (초점거리 = f_{ob})를 이용하여 물체보다 큰 도립 실상을 만들고,
- 대안렌즈인 확대경을 이용하여 상을 본다.
- 총배율 = 대물렌즈의 배율 x 확대경의 각배율

$$m = \frac{h'}{h} = -\frac{s \tan \theta}{f_{\text{ob}} \tan \theta} = -\frac{s}{f_{\text{ob}}}$$
$$m_{\theta} = 25cm/f_{ey}$$

("-" 부호는 거꾸로 된 상을 표시)

$$M = m \times m_{\theta} = -\frac{s}{f_{ob}} \frac{25 \, cm}{f_{ey}}$$

❷ 망원경

- 먼 곳에 있는 큰 물체를 관측하기 위한 광학장치
- 대물렌즈 (초점거리 = f_{ob})를 이용하여 먼 곳에 있는 물체의 작은 도립 실상을 만들고,
- 대안렌즈인 확대경을 이용하여 상을 본다
- 🍳 망원경의 각배율

$$m_{\theta} = \frac{\theta_{ey}}{\theta_{ob}} = \frac{-\dot{h'}/f_{ey}}{\dot{h'}/f_{ob}} = -\frac{f_{ob}}{f_{ey}}$$

- 대물렌즈와 대안렌즈의 초점이 일치
- "-" 부호는 거꾸로 된 상을 표시

🊇 쌍안경형 망원경

- 프리즘 이용 → 빛의 경로 변경으로 망원경 길이 축소 및
 상의 상하 변경으로 바로 선 상 관측이 가능.
- 대물렌즈나 접안렌즈를 두 개 혹은 세 개의 복합렌즈로 구성하여 색수차 제거

쌍안경의 구조와 원리