Universidade de São Paulo Instituto de Física de São Carlos Laboratório de Ensino de Física

Prática II Módulo de Elasticidade

Gabriel Alves Lima nº 12558547 Jefter Santiago Mares nº 12559016 Vitória Bitencourte Galliac nº 12624818

> São Carlos 2021

1. Resumo

Nesta prática serão apresentados dois experimentos a respeito da deflexão elástica de uma barra metálica, que possui um de seus extremos fixados enquanto o extremo oposto sofre ação de uma força peso. No primeiro experimento, o ponto de fixação é mantido enquanto o peso aumenta. Já no segundo experimento, o peso permanece constante e o comprimento da barra é alterado. Dessa forma, foi calculado o módulo de Young nos dois experimentos observando o comportamento da deformação da barra metálica, nos dois experimentos o valor encontrado para o módulo de Young foi de $E = (21 \pm 1) \cdot 10^{10} Pa$. Após essa análise, foi possível concluir que por meio de ambos os métodos do cálculo do módulo de Young pode se chegar a valores precisos e compatíveis ao tabelado.

2. Objetivos

O objetivo deste relatório é apresentar e discutir os resultados dos experimentos realizados na segunda prática de laboratório. Tais resultados são os valores do módulo de Young da barra metálica - um para cada experimento - que serão comparados com o valor do módulo Young tabelado para o aço. A discussão envolve a análise do comportamento da deformação da régua em função da força aplicada (experimento 1) e em função de seu comprimento (experimento 2) com a linearização e com o cálculo do coeficiente angular da reta do gráfico formado.

3. Introdução

Qualquer material pode ser deformado devido a ação de uma força peso, porém existem materiais que estão mais sujeitos à deformação que outros. Assim, é determinado um valor constante para cada material, o módulo de elasticidade:

$$M_E = \frac{T}{x}$$

Onde:

T: tensão

x: deformação.

Tal constante mostra a resistência do material frente a uma tensão aplicada. A deformação será classificada como elástica - x reversível - se for aplicada uma tensão dentro de um valor limite definido V_L . Porém, se a tensão for maior que V_L , o material terá uma deformação permanente, em que x se torna irreversível.

Para a análise do comportamento da barra metálica frente a aplicação de uma força peso, foi feito o cálculo do módulo de Young - E - , uma propriedade que mede a rigidez de um material sólido.

4. Método Experimental

4.1. Materiais

Os materiais utilizados na prática foram: balança digital, paquímetro, micrômetro, régua - barra - metálica, pesos e dispositivo para medida da deflexão x da barra (materiais mostrados respectivamente nas imagens abaixo).

O dispositivo de medida de deflexão possui um suporte para a barra (no experimento será utilizado uma régua metálica), que irá fixá-la em um ponto escolhido para o controle de seu comprimento. Assim, para medir a deflexão, é utilizada uma régua de precisão 1 mm, que será posicionada verticalmente no final da barra metálica, mesmo lugar em que serão adicionados os pesos ao longo do experimento.

4.2. Descrição da determinação do módulo de Young com aplicação de peso variável

Para a obtenção do módulo de Young, primeiramente foi calculado a largura da régua com um paquímetro de precisão 0,05 mm e sua espessura com um micrômetro de precisão 0,01 mm. Em seguida, a régua foi fixada no dispositivo de medida da deflexão com seu comprimento fixado em 270 mm. Foi anotado os valores da deflexão x_i para 7 pesos diferentes e crescentes, tendo em vista que a régua presa verticalmente ao suporte marcava $x_0 = 20 \pm 1 \ mm$ antes de serem adicionados os pesos.

Após a obtenção dos valores x_i , foi construído um gráfico de F por x_i . Por se tratar de uma reação linear, foi traçada uma reta que melhor representa o conjunto dos dados obtidos no experimento e logo em seguida calculado o coeficiente angular $a = \frac{f_2 - f_1}{x_2 - x_1}$. Como o coeficiente angular equivale a k, foi usado na determinação do valor E, módulo de Young. A seguinte expressão:

$$E = \frac{4L^3k}{d^3h}$$

Onde:

L: comprimento medido entre o ponto de fixação e o ponto de aplicação da força peso;

d: espessura da barra metálica

b: largura da barra metálica

Dessa forma, é possível demonstrar a relação entre a força e a deformação elástica com:

$$F = \left(E \frac{d^3 b}{4L^3}\right) x \text{, onde } E \frac{d^3 b}{4L^3} = k$$

Por fim, com o módulo de Young calculado, foi feita uma análise do valor obtido com o valor do módulo tabelado para o aço $(20 \cdot 10^{10} Pa)$.

4.3. Descrição da análise da relação comprimento-deformação (peso fixo)

Para a análise da relação entre o comprimento e a deformação da barra (régua), foi selecionado uma força peso constante de aproximadamente3, $239 \pm 0,001 \, N$. O ponto de fixação da barra foi alterado durante o experimento, reduzindo seu comprimento de $27 \pm 0,05 \, cm$ até $14 \pm 0,05 \, cm$. Após a coleta dos resultados, foi feito um gráfico em papel log-log de x contra L e calculado seu coeficiente angular, para verificar se existe uma relação linear ou não-linear entre o comprimento e a deformação da barra.

Em seguida, foi construído um gráfico de L^3 em função de x. A Partir do gráfico, o módulo de Young (E) foi calculado por meio de 2 etapas:

$$Ca = \frac{x_2 - x_1}{L_2^3 - L_1^3}$$

Para então calcular o módulo E com

$$E = \frac{4F}{d^3b \, CA}$$

Onde

Ca: diferença do $x_{m\acute{a}x}$ pelo $x_{m\acute{n}n}$ dividido pela diferença do $L^3_{m\acute{a}x}$ com o $L^3_{m\acute{n}n}$

F: força peso

d: espessura da barra metálica

b: largura da barra metálica

Por fim, foi feita uma discussão a respeito da compatibilidade de ambos os valores E - calculados no experimento 1 e 2 - e da eficiência dos métodos utilizados para tal cálculo.

5. Resultados e Discussão

5.1. Experimento 1 - Determinação do módulo de Young

Neste experimento foi anotado a deflexão da barra x_t com um comprimento $L=0,27\,m$, em função da força peso aplicada em sua extremidade, tendo em vista que o equipamento de medida de deflexão antes do experimento já media $x_0=0,02\,m$. Os valores obtidos foram organizados na seguinte tabela:

Tabela 1- Medidas de xvs F, onde $x = (x_t - x_0)$, com L = 0, 27 m e $x_0 = 0$, 02 m

i	$m (10^{-2} kg) \pm 0.01 \cdot 10^{-2} kg$	$F(N) \pm 1 \cdot 10^{-3} N$	$x (10^{-2} m) \pm 0, 1 \cdot 10^{-2} m$
1	6,65	0,652	1,0
2	10,82	1,062	1,6
3	14,79	1,450	2,2
4	19,13	1,877	2,8
5	23,47	2,303	3,5
6	28,23	2,769	4,1
7	33,02	3,239	4,7

Assim, utilizando os dados encontrados foi construído um gráfico que mostra a relação linear entre a força e a deflexão da barra:

Gráfico 1:

Força F na barra com comprimento fixo

Calculando o coeficiente angular da reta do gráfico pela equação $k = \frac{f_2 - f_1}{x_2 - x_1}$ foi encontrado que $k = 68, 3 \pm 0, 8$. Com a largura da barra metálica $b = 0,02525 \pm 0,00005 \, m$ e sua espessura $d = 0,00100 \pm 0,00001 \, m$, foi possível obter o valor do módulo de Young, a partir de $E = \frac{4L^3k}{d^3b}$, o valor obtido foi $E_1 = (21 \pm 1).10^{10} Pa$. Comparando o valor encontrado com o valor da tabela utilizando a equação de compatibilidade chaga-se:

$$\left| E_1 - E \right| < 2 \cdot \left(\Delta E_1 + \Delta E \right)$$

 $\left| 21 - 20 \right| \cdot 10^{10} < 2 \cdot (1 + 0) \cdot 10^{10}$
 $1 \cdot 10^{10} < 2 \cdot 10^{10}$

Dessa forma, pode-se concluir que os valores do módulo de Young calculado no experimento 1 e o tabelado são compatíveis.

5.2. Experimento 2 - Análise da relação comprimento-deformação

Para o cálculo do módulo de Young no experimento 2, foi analisada a deformação da barra em função de seu comprimento L, com um peso fixo $m_7=0$, 33 \pm 1. $10^{-4}kg$. O equipamento de medida possuía um $x_0=0$. 02 m, assim, foi anotado uma deformação x_t

para cada comprimento, e depois foi feita a subtração $x=(x_t-x_0)$ para a obtenção do valor real da deformação(x). Os valores medidos foram:

Tabela 2 - Comprimento da regra L, L^3 e sua deformação xcausada por uma força constante

i	$L(m) \pm 0,0005 m$	$L^{3} (10^{-3} m) \pm \Delta L \cdot 10^{-3} m$	$x (10^{-2} m) \pm 0, 1 \cdot 10^{-2}$
1	0,2700	19,70 ± 0,10	4,7
2	0,2600	17,60 ± 0,10	4,3
3	0,2500	15,63± 0,09	4,0
4	0,2400	13,82 ± 0,09	3,5
5	0,2300	12,17 ± 0,08	3,0
6	0,2200	10,65 ± 0,07	2,7
7	0,2100	9,26 ± 0,07	2,4
8	0,2000	8,00 ± 0,06	2,0
9	0,1800	5,83 ± 0,05	1,4
10	0,1600	4, 10 ± 0, 04	1,0
11	0,1400	2,74 ± 0,03	0,7

Em seguida, com os valores de Lex, foi feito um gráfico com escalalog - log:

Gráfico 2:

L (m)

Ao calcular o coeficiente angular do gráfico por meio da seguinte equação:

$$Ca = \frac{\log(x_2) - \log(x_1)}{\log(L_2) - \log(L_1)}$$

foi encontrado o valor de 2 , 89 \pm 0 \oplus . Comparando esse valor com o valor do expoente de L^3 , n=3, temos que:

$$|Ca - n| < 2 \cdot (\Delta Ca + \Delta n)$$

$$|2,89 - 3| < 2 \cdot (0,06 + 0)$$

Assim, pode-se observar que o valor do coeficiente angular do gráfico é compatível com o valor esperado na equação:

$$F = \left(E \frac{d^3 b}{4L^3}\right) x$$

Observando o gráfico 2, conclui-se que ao tornar as escalas do gráfico logarítmicas aparece uma relação não-linear entre a deformação (x) e o comprimento da barra (L). Além disso, retomando a conclusão chegada ao analisar o coeficiente angular deste gráfico pode se afirmar que a relação esperada entre a deformação e o comprimento da barra é coerente com a equação $F = \left(E \frac{d^3b}{4L^3}\right)x$, visto que x varia diretamente proporcional ao cubo da deformação da barra.

Também foi construído um gráfico com eixos em escala linear, de x em função de L^3 : Deformação com L^3

O valor do coeficiente $CA = \frac{x_2 - x_1}{L_2^3 - L_1^3}$ obtido foi $CA = 2.450 \pm 0.042$. Assim, a partir de $E = \frac{4F}{d^3b CA}$

o segundo módulo de Young foi calculado, onde $E_2=(21\pm1).\,10^{10}\,Pa$. Comparando o valor E_2 com o valor tabelado para o módulo de Young do aço $(20.\,10^{10}Pa)$ nota-se uma diferença de $(1\pm1).\,10^{10}Pa$. Para confirmar que o valor encontrado é compatível com E, foi feito:

$$|E_2 - E| < 2 \cdot (\Delta E_1 + \Delta E)$$

 $|21.10^{10} - 20.10^{10}| < 2 \cdot (1.10^{10} + 0)$
 $1.10^{10} < 2.10^{10}$

Logo, E, e E podem ser considerados equivalentes.

5.3 Discussão dos resultados do módulo de Young

Pode-se perceber que a diferença entre os valores E_2 e $E\left[(1\pm1).10^{10}Pa\right]$ é igual à diferença entre o valor E_1 e $E\left[(1\pm1).10^{10}Pa\right]$. Assim, o resultado dos dois experimentos é próximo do valor esperado (módulo tabelado para o aço) e são considerados compatíveis. Além disso, ambos os métodos de obtenção do valor do módulo de Young são igualmente eficientes e confiáveis.

6. Conclusão

Ambos métodos de determinação do módulo de Young apresentaram valores similares próximos de $E_1 = (21 \pm 1)$. $10^{10} Pa$, constatamos que são equivalentes e convergem para o valor tabelado para o E do aço $20 \cdot 10^{10} Pa$. Como os valores das duas análises ficaram tão próximos supomos que não deve haver diferença significativa entre os dois métodos.

7. Referências

HODGMAN, Charles D. *et al* (ed.). **Handbook of Chemistry and Physics**. 43. ed. Cleveland: The Chemical Rubber, 1961.

SCHNEIDER, José F. Laboratório de Física 1: Livro de práticas. São Carlos: 2016.