Implementierung eines Mikrorechners in VHDL auf einem FPGA

Markus Schneider

30. Oktober 2016

Inhaltsverzeichnis

Abkürzungsverzeichnis 3									
Αŀ	Abbildungsverzeichnis								
Ta	belle	nverzeichnis	5						
1	Einl	eitung Was ist ein FPGA?	6						
	1.2	Beschreibung des genutzten FPGA und Entwicklungsboards	6						
2	Hardware 7								
	2.1 2.2 2.3	2.1.5 Stack 2.1.6 Arbeitsspeicher 2.1.7 Registerbelegung Befehlssatz Ein- und Ausgabe 2.3.1 Eingabe	7 8 9 10 11 12 13 14 14 14						
3	Implementierung in VHDL 1								
	3.1 3.2	Beschreibung wichtiger Module	15 16 16 17 18						
4	Fazi		19						
	4.1 4.2		19 20						

Abkürzungsverzeichnis

EPU Educational Processing Unit

CPU Central Processing Unit

Abbildungsverzeichnis

Tabellenverzeichnis

2.1 Registerbelegung		13
----------------------	--	----

1 Einleitung

Diese Dokumentation beschreibt den Aufbau und die Funktionsweise der Educational Processing Unit (EPU). Das Projekt kam dadurch zustande, dass die Struktur und die Arbeitsweise eines Computers, insbesondere der Central Processing Unit (CPU) besser verstanden werden soll. Um dieses Ziel zu erreichen, wurde die EPU gebaut, da sie als lehrreicher Computer, wobei der Hauptteil der EPU nur aus einer CPU besteht, die Funktionsweise und den Aufbau eines Alltagscomputer erklärt und somit Verständnis für die Komplexität unserer heutingen Rechner einbringt.

1.1 Was ist ein FPGA?

1.2 Beschreibung des genutzten FPGA und Entwicklungsboards

2 Hardware

- 2.1 Aufbau
- 2.1.1 Steuerwerk

2.1.2 Rechenwerk

2.1.3 Dekodierer

2.1.4 Programmzähler

2.1.5 Stack

2.1.6 Arbeitsspeicher

2.1.7 Registerbelegung

Die EPU besitzt 16 Register, welche durch Selektion von $\log_2(16) = 4$ Adressbits angesprochen werden. Mithilfe der Tabelle 2.1 soll eine Übersicht aller Register dargestellt werden.

Selektion	Name	Zweck
0000	R0	Akkumulator
0001	R1	Allgemeine Verwendung
0010	R2	Laufvariable
0011	R3	Datenregister
0100	R4	Allgemeine Verwendung
0101	R5	Allgemeine Verwendung
0110	R6	Allgemeine Verwendung
0111	R7	Allgemeine Verwendung
1000	R8	Allgemeine Verwendung
1001	R9	Allgemeine Verwendung
1010	R10	Allgemeine Verwendung
1010	R11	Allgemeine Verwendung
1100	R12	Allgemeine Verwendung
1101	R13	Allgemeine Verwendung
1110	FLA	Flagregister
1111	ID	Interruptdaten Verwendung

Tabelle 2.1: Registerbelegung

- 2.2 Befehlssatz
- 2.3 Ein- und Ausgabe
- 2.3.1 Eingabe
- 2.3.2 Ausgabe

3 Implementierung in VHDL

3.1 Schemata

3.2 Beschreibung wichtiger Module

3.2.1 top – Verbindung mit der Hardware

3.2.2 core - Topmodul der CPU

3.2.3 memory_control - Speichercontroller

4 Fazit

4.1 Umfang und Aufwand

4.2 Ziele