ECE411 Lecture 15 Memory Subsystem

How to store a bit?

D-flip-flop

SRAM Bit

SRAM Array

SRAM

- Fast (usually)
- CMOS compatible
 - Can be fabricated on the same die as logics
- Relatively area efficient
 - At least compared to D-flip-flop
- But can we be more area efficient?

DRAM bit

DRAM Read

- Need some amplifier on bitline
 - Cannot fully charge bitline to logic level
- Destructive read
 - Non restoring
 - Limited charge in capacitor
- Need to write back after each read
 - Also called precharge or closing the page

DRAM Refresh

- It is a capacitor
 - Non restoring, compare to SRAM's inverter
- It is very small
 - Electron do be tunneling
- Need to periodically read and re-write the data back
 - Otherwise the data will be gone in a bit
 - Typically done every ~64ms for every single row
- Hence the name Dynamic RAM

DRAM Array

Row

- Word lines
- Also sometimes called a page
- Not to be confused with virtual memory page

Row buffer

- Because of destructive read
- Implemented using DFF/SRAM

Column

- Bit lines
- A row is very wide
- Need to further select a subset
- Array is usually a square

DRAM

- Slower than SRAM
- Destructive read
- Needs constant refresh
- Needs to use special fabrication technology
 - Cannot be on the same chip as normal logic
- But is more area efficient

Timing

DRAM Timing

- Row access
 - Also called "active", "activate a row"
 - smh called tRCD not tRAS
- Column access
 - o tCAS / CL
- Precharge
 - o tRP
- And more!
 - Active to precharge delay (tRAS)
 - Active to active delay (tRC)
 - Write to precharge delay (tWR)
 - o Etc. etc.

SRAM Timing

- Usually boils down to one single value
 - o tA
 - Row access time + column access time
 - No other restrictions like DRAM

Gaming

- In the order of CL, tRCD, tRP, and tRAS
- These are written in cycles
 - Cycles of the data bus
- Actually constant real time
 - Not constant cycles
 - So overclocking your RAM doesn't actually reduce access latency..?

Table 1: Key Timing Parameters

		Data Rate (MT/s) CL =											
Speed	PC4-	24	22	21	20\ 19	18\ 17	16\ 15	14\ 13	12\ 11	10\ 9	^t RCD ns	^t RP ns	^t RC ns
-3G2	3200	3200, 2933	3200, 2933	2933	2666\ 2666	2400\ 2400	2133\ 2133	1866\ 1866	1600\ 1600	1333\ -	13.75	13.75	45.75
-2G9	2933	-	2933	2933	2666\ 2666	2400\ 2400	2133\ 2133	1866\ 1866	1600\ 1600	1333\ -	14.32 (13.75) ¹	14.32 (13.75) ¹	46.32 (45.75) ¹
-2G6	2666	-	-	L	2666\ 2666	2400\ 2400	2133\ 2133	1866\ 1866	1600\ 1600	1333\ -	14.25 (13.75) ¹	14.25 (13.75) ¹	46.25 (45.75) ¹

Details

Capacity	32GB (2 x 16GB)
Туре	288-Pin PC RAM
Speed ②	DDR4 3600 (PC4 28800)
CAS Latency ②	18
Timing ②	18-22-22-42
Timing ② Voltage ②	18-22-22-42 1.35V
Voltage ②	1.35V

DRAM Timing (Real)

CL is about 20 ns for this specific DRAM

Table 12: Electrical Characteristics and Recommended AC Operating Conditions

Notes 1–5 apply to all parameters and conditions

		-6A		-7E		-75			
Parameter	Symbol	Min	Max	Min	Max	Min	Мах	Unit	Notes
ACTIVE-to-PRECHARGE command	^t RAS	42	120,000	37	120,000	44	120,000	ns	
ACTIVE-to-ACTIVE command period	^t RC	60	_	60	_	66	-	ns	11
ACTIVE-to-READ or WRITE delay	^t RCD	18	_	15	_	20	-	ns	
Refresh period (8192 rows)	^t REF	_	64	_	64	_	64	ms	
Refresh period – automotive (8192 rows)	^t REF _{AT}	_	16	, - ,	16	-	16	ms	
AUTO REFRESH period	^t RFC	60	_	66	_	66	-	ns	
PRECHARGE command period	^t RP	18	-	15	-	20	-	ns	
ACTIVE bank <i>a</i> to ACTIVE bank <i>b</i> command	^t RRD	12	-	14	-	15	-	ns	
Transition time	^t T	0.3	1.2	0.3	1.2	0.3	1.2	ns	12
WRITE recovery time	^t WR	1 CLK + 6ns	_	1 CLK + 7ns	-	1 CLK + 7.5ns		ns	13
		12		14	<u> </u>	15		ns	14

DRAM Timing (s I o w)

- Closing the current page and opening another page is slow
- Reading from the opened row is not that slow
- Only if we could have more row buffer...

DRAM Banking

- Not to be confused with whatever Wall Street is doing
- Array of arrays
 - More row buffers
 - o yay!

DRAM Bank Interleaving

DRAM Bursting

- Pin is limited
 - DRAM chips usually have 4, 8, 16 bit wide versions
 - DRAM stick usually is 64 bit wide
 - Each chip supply 4/8/16 bit of the total 64 bit
- Row buffer is wide
 - Usually ~1kB
- Instead of sending one 64 bit, how about we send 4*64 bit over 4 cycles?
 - LLC will usually have cacheline size to be the same as this burst size (or vice versa)
 - Spatial locality

DRAM Row Buffer Policy

• When to close a page??

Open Page

- Keep the page open until another page is needed
- On page hit:
 - No need to pay precharge time and row access time
 - Only need to pay column access time
- On page miss:
 - Need to pay prechage time first, then row then column access time

Close Page

- Write back page after every access
- There will never be page hit
- On page miss (which is all the time):
 - Only need to pay row and column access time
 - Precharge time is already paid on the last access

Open Page vs Close page

- Open page:
 - Good for access pattern with spatial locality
 - For random access pattern each access will have additional latency
- Close page:
 - Good for random access pattern
 - Never page hit so minimum latency is still high

Queuing

- Imagine having OoO processor with out of order memory capability
 - Or multicore which share a single memory controller
- There could be a lot of outstanding memory request
 - Who should go first?

FCFS / FIFO

- First come first serve / first in first out
- Very fair
- But could it be better?
 - Can we exploit the row buffer speed?

FR-FCFS

- First ready first come first serve
- Those request that will be a hit in the row buffer will be prioritized
 - Very fast to serve access that are in the same row
 - Plain FCFS will need to precharge-row-column-access later which is unnecessary

Actual DRAM Read/Write Timing Diagram

Other DRAM stick stuff

- Ranks
- Channel
- DIMM
- UDIMM
- RDIMM
- LRDIMM
- ECC

Disk stuff

- HDD
- SSD
 - o page/block
 - o FTL
- RAID