${\bf Subject_14}$

our Average	Total Average
ſΑ	2080.11
$^{T}\mathrm{A}$	88.57
$^{T}\mathrm{A}$	89.97
$^{T}\mathrm{A}$	225.55
IA	21.96
	JA JA JA

MicroNutrients

Warning: Removed 48 rows containing missing values (position_stack).

Daily Calorie Intake

Warning: Removed 8 rows containing missing values (geom_bar).

Microbiome Daily Relative Abundance

```
# make ggplot bar chart of top 10 most abundant species per day
ggplot(mergedf2, aes(x = StudyDayNo, y = value, fill = rn)) +
 geom_bar(stat = "identity") +
  scale_x_discrete(drop = FALSE) +
 theme_classic() +
  theme(strip.text.y = element_text(angle = 0, size = 8, face = "italic"),
        axis.text.x = element_text(angle = 45, hjust = 1),
        axis.title.x = element_blank(),
       plot.title = element_text(hjust = 0.5),
        strip.background = element_rect(color = "grey")) +
  guides(fill = guide_legend(reverse = TRUE,
                             keywidth = 1,
                             keyheight = 1,
                             ncol = 1)) +
 ylab("Relative Abundance\n") +
  ggtitle("Main species within your gut per day")
```


for (i in names(subtaxa)){ dates <- names(subtaxa) #timestamp for each observed sample abund <- subtaxa [,dates[i]] #abundances for selected timestamps most abund<- tail(sort(abund),10) #vector of 10 most abundant species (their counts, at least)

```
}  lst <- list() \\ for(i in names(subtaxa)){ lst[[i]]<- (subtaxa[,i]) } }
```