usage_distribution

May 11, 2025

1 Hourly Usage Distribution Report

This notebook visualizes the distribution of electricity and gas usage over a day, based on the aggregated data in hourly_usage.csv. The data represents the average hourly usage across the period from 2022-10-09 to 2025-01-30 (limited by SmartThings data range).

```
[1]: # Import libraries
import pandas as pd
import matplotlib.pyplot as plt

# Load the data
df = pd.read_csv('hourly_usage.csv')

# Display the first few rows
df.head()
```

```
[1]:
       hour
               t1_kwh t2_kwh
                                 gas_m3
          0 0.087222
                          0.0 0.028675
          1 0.062111
    1
                          0.0 0.019908
    2
          2 0.048431
                          0.0 0.018488
    3
          3 0.046333
                          0.0 0.019202
             0.045521
                          0.0 0.019934
```

```
[2]: # Plot the hourly usage distribution
    plt.figure(figsize=(10, 6))
    plt.plot(df['hour'], df['t1_kwh'], label='T1 Electricity (kWh)', marker='o')
    plt.plot(df['hour'], df['t2_kwh'], label='T2 Electricity (kWh)', marker='o')
    plt.plot(df['hour'], df['gas_m3'], label='Gas (m³)', marker='o')
    plt.xlabel('Hour of Day')
    plt.ylabel('Average Usage')
    plt.title('Hourly Usage Distribution (Electricity and Gas)')
    plt.legend()
    plt.grid(True)

# Save the plot
    plt.savefig('hourly_usage_plot.png')
    plt.show()
```


1.1 Analysis of Gas/Electricity:

• Hourly Patterns:

The graph illustrates the average hourly usage of electricity (T1 and T2) and gas over a 24-hour period. T1 electricity peaks at hour 21 (\sim 0.123 kWh), likely due to evening activities like lighting or cooking, while T2 electricity remains mostly at 0, with small spikes (e.g., 0.085 kWh at hour 20), indicating limited off-peak usage. Gas usage also peaks at hour 21 (0.0544 m³), possibly linked to heating or hot water use, and dips to its lowest at hour 2 (0.0185 m³) during early morning hours when activity is minimal.

• Statistical Component (ANOVA):

An ANOVA test on T1 electricity usage across hours would likely show significant differences, given the clear variation (e.g., from 0.046 kWh at hour 3 to 0.123 kWh at hour 21). If the p-value is below 0.05 (as in the weekly analysis), we'd reject the null hypothesis, confirming that T1 electricity usage varies significantly by hour, reflecting distinct daily activity patterns. I can perform the ANOVA if you'd like to see the exact F-statistic and p-value!