

# Mejorar la predicción de default para clientes con tarjetas de crédito

Alain Alejo Huarachi, Erison Mostacero Ramirez, John E. Miller y Ricardo Linares Juarez Facultad de Ingeniería, Pontificia Universidad Católica del Perú

16 Julio 2019

## Contexto del Problema

- o Conjunto de Datos
  - Información del cliente, datos de la deuda y pagos realizados, clase binaria de «default» (0=no, 1=si)
  - o Datos de 30,000 clientes (80% entren, 10% val, 10% prueba)
- o Medida de Calidad
  - $\circ$  Costo adaptado: J = -1TP + 5FN + 1FP + 0TN
  - Exactitud: Acc = (TP + TN)/N
- o Muestreo
  - o Conjunto desbalanceado (22.1% «default», 77.9% OK)
  - «Oversampling» y transformaciones (raíz cuadrado de dinero, categorizaron de pago)

## Melodologia

- K Nearest Neighbor (KNN)
  - o Vecinos más cercanos para predecir «default»
- Random Forests (RF)
  - o Árboles multiples de decisiones para predecir «default»
  - Experimentar con: cantidad y profundidad de arboles, y decremento de impureza
- Support Vector Machines (SVM)
  - Busca la separación mas amplia del hiperplano de los datos para predecir «default»
  - Experimentar con kernels: «linear, poly, rbf, sigmoid»
- Neural Networks (NN)
  - Red neuronal de entrada de datos, capas escondidas de procesar, salida de probabilidad de «default»
  - © Experimentar con configuraciones (32x16x8), (64x32x16x8), (64x16), y con la función de perdida  $J=c_yy\log(h(x))+(1-y)\log(1-h(x))$

## Experimentación y Resultados

#### o Random Forest (ejemplar)



## Experimentación y Resultados Redes Neuronales (Ejemplar)



## Experimentación y Resultados de todos los algoritmos

| Algoritmo               | Conjunto   | Costo | Exactitud |
|-------------------------|------------|-------|-----------|
| Red neuronal            | Validación | 0.375 | 0.528     |
|                         | Prueba     | 0.413 | 0.484     |
| Random forests          | Validación | 0.453 | 0.742     |
|                         | Prueba     | 0.451 | 0.762     |
| Support vector machines | Validación | 0.484 | 0.772     |
|                         | Prueba     | 0.474 | 0.781     |
| K nearest neighbor      | Validación | 0.594 | 0.675     |
|                         | Prueba     | 844,0 | 0.616     |

## CONCLUSIONES

- El modelo red neuronal es el mejor basado en nuestra medida de costo adaptado.
- o Aprendizajes:
  - Los datos desbalanceados tienen impacto negativo en todos los algoritmos, oversampling fue efectivo.
  - Una función de costo adaptado puede chocar con la de pérdida y tener otros efectos colaterales.
  - La transformación de datos con raíz cuadrada y categorización no ayudó a random forest ni a red neuronal.
  - SVM mantiene su exactitud cuando baja el costo. Podemos ahondar la investigación de esta técnica en un siguiente trabajo.