

Học viện Công nghệ Bưu chính Viễn thông Khoa Công nghệ thông tin 1

Nhập môn trí tuệ nhân tạo

Logic mệnh đề (Propositional logic)

Nguyễn Thị Mai Trang

Nội dung

- Vấn đề biểu diễn tri thức và suy diễn
- Logic mệnh đề
- Suy diễn với logic mệnh đề

Sự cần thiết của tri thức và suy diễn

- Con người sống trong môi trường
 - Nhận thức được thế giới nhờ các giác quan (tai, mắt, ...)
 - Thông tin thu thập sẽ được tích lũy thành tri thức
 - Sử dụng tri thức tích lũy được và nhờ khả năng lập luận, suy diễn, từ đó đưa ra các hành động hợp lý
- Một hệ thống thông minh cần phải có khả năng sử dụng tri thức và suy diễn
 - Tính mềm dẻo cao
 - Việc kết hợp tri thức và suy diễn cho phép tạo ra tri thức mới
 - Cho phép hệ thống hoạt động trong trường hợp thông tin không đầy đủ
 - Kết hợp tri thức chung để bổ sung cho thông tin quan sát được
 - Thuận lợi cho việc xây dựng hệ thống
 - Chỉ cần thay đổi cơ sở tri thức, giữ nguyên thủ tục suy diễn
 - Hệ dựa trên tri thức bao gồm cơ sở tri thức và thủ tục suy diễn.

Biểu diễn tri thức

- 1. Tri thức cần được biểu diễn dưới dạng thuận tiện cho việc mô tả và suy diễn
- 2. Ngôn ngữ biểu diễn tri thức phải là ngôn ngữ hình thức
- 3. Tri thức về thế giới của bài toán được biểu diễn dưới dạng tập hợp các *câu* hay các *công thức* ===== tạo thành ====> cơ sở tri thức
- 4. Thủ tục suy diễn được sử dụng để tạo ra những câu mới => trả lời cho các vấn đề của bài toán.
- 5. Thay vì trực tiếp hành động trong thế giới thực của bài toán, hệ thống có thể suy diễn dựa trên cơ sở tri thức.

Ngôn ngữ biểu diễn tri thức

- Logic là phương tiện để biểu diễn tri thức và suy diễn
- Dạng biểu diễn tri thức cổ điển nhất trong máy tính là logic
- 2 dạng logic phổ biến:
 - Logic mệnh đề
 - Logic vị từ

Ngôn ngữ biểu diễn tri thức

Ngôn ngữ biểu diễn tri thức = Cú pháp + Ngữ nghĩa + Cơ chế lập luận

Cú pháp

 Bao gồm các ký hiệu và các quy tắc liên kết các ký hiệu (các luật cú pháp) để tạo thành các câu (công thức) trong ngôn ngữ

Ngữ nghĩa

 Cho phép ta xác định ý nghĩa của các câu trong một miền nào đó của thế giới thực

Cơ chế lập luận

- Là một quá trình tính toán
- Input: tập các công thức (đặc tả hình thức của tri thức đã biết)
- Output: tập các công thức mới (đặc tả hình thức của tri thức mới)

Ngôn ngữ biểu diễn tri thức tốt

Khả năng biểu diễn tốt

Cho phép biểu diễn mọi tri thức cần thiết của bài toán

Hiệu quả

- Cho phép biểu diễn tri thức ngắn gọn
- Để đi tới các kết luận, thủ tục suy diễn đòi hỏi ít thời gian tính toán và ít không gian nhớ

Gần với ngôn ngữ tự nhiên

Thuận lợi cho người sử dụng trong việc mô tả tri thức

Nội dung

- Vấn đề biểu diễn tri thức và suy diễn
- Logic mệnh đề
 - Cú pháp
 - Ngữ nghĩa
- Suy diễn với logic mệnh đề

Cú pháp của logic mệnh đề (1/2)

Các ký hiệu

- \circ Các ký hiệu chân lý (hằng logic): True (T) và False (F)
- Các ký hiệu mệnh đề (biến mệnh đề): P, Q, ...
- o Các kết nối logic: ∧,∨, ¬, ⇒, ⇔
- Các dấu ngoặc (và)

Các quy tắc xây dựng công thức

- Các ký hiệu chân lý và các biến mệnh đề là công thức
- Nếu A và B là công thức thì
 - (A ∧ B): "A hội B" hoặc "A và B"
 - (A ∨ B): "A tuyển B" hoặc "A hoặc B"
 - (¬A): "phủ định A"
 - (A ⇒ B): "A kéo theo B" hoặc "nếu A thì B"
 - •($A \Leftrightarrow B$): "A và B kéo theo nhau" là các công thức

Cú pháp của logic mệnh đề (2/2)

- Bỏ đi các cặp dấu ngoặc không cần thiết
 - Ví dụ: ((A ∨ B) ∧ C) sẽ được viết là (A ∨ B) ∧ C
- Thứ tư thực hiện các phép nối

```
\circ \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow
```

- Các câu là các ký hiệu mệnh đề được gọi là câu đơn (câu nguyên tử)
 - Ví du: P, Q
- Nếu P là ký hiệu mênh đề thì P và ¬P được gọi là literal \circ P là literal dương, $\neg P$ là literal âm
- Câu phức hợp có dạng $A_1 \vee A_2 \vee ... \vee A_m$, trong đó A_i là các literal được gọi là câu tuyển (clause)

Ngữ nghĩa của logic mệnh đề (1/2)

- Mỗi ký hiệu mệnh đề có thể tương ứng với một phát biểu mệnh đề
 - P = "Paris là thủ đô của nước Pháp"
 - Q = "Hằng số Pi là số nguyên"
- Một phát biểu chỉ có thể đúng (True) hoặc sai (False)
 - ∘ *P* đúng, *Q* sai
- Một minh họa là một cách gán cho mỗi biến mệnh đề một giá trị chân lý True hoặc False

A	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
True	True	False	True	True	True	True
True	False	False	False	True	False	False
False	True	True	False	True	True	False
False	False	True	False	False	True	True

Ngữ nghĩa của logic mệnh đề (2/2)

- Một công thức là thỏa được (satisfiable) nếu nó đúng trong một minh họa nào đó
 - $\circ (P \land Q) \lor \neg R$
- Một công thức là không thỏa được nếu nó sai trong mọi minh họa
 - $\circ P \wedge \neg P$
- Một công thức là vững chắc (valid) nếu nó đúng trong mọi minh họa
 - $P \vee \neg P$
- Một mô hình (model) của một công thức là một minh họa sao cho công thức là đúng trong minh họa này
 - o { $P \leftarrow False, Q \leftarrow True, R \leftarrow False$ }

Các công thức tương đương (1/2)

- Hai công thức A và B được gọi là tương đương nếu chúng có cùng giá trị chân lý trong mọi minh họa
 - ∘ Ký hiệu: $A \equiv B$
- Một số công thức tương đương cơ bản
 - $A \Rightarrow B \equiv \neg A \lor B$
 - $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$
 - $\neg (\neg A) \equiv A$
- Luật De Morgan
 - $\neg (A \lor B) \equiv \neg A \land \neg B$
 - $\circ \neg (A \land B) \equiv \neg A \lor \neg B$

Các công thức tương đương (2/2)

- Luật giao hoán
 - $A \lor B \equiv B \lor A$
 - $A \wedge B \equiv B \wedge A$
- Luật kết hợp
 - \circ $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - $(A \land B) \land C \equiv A \land (B \land C)$
- Luật phân phối
 - $\circ A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
 - \circ $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

Dạng chuẩn tắc hội (1/2)

- Một câu (mệnh đề) tuyển là tuyển của các mệnh đề nguyên thủy
 - \circ Câu tuyến có dạng $P_1 \vee P_2 \vee ... \vee P_n$ trong đó P_i là các mệnh đề nguyên thủy
- Một công thức ở dang chuẩn tắc hội nếu nó là hội của các câu tuyển
 - $\circ (A \lor E \lor F \lor G) \land (B \lor C \lor D)$

Dạng chuẩn tắc hội (2/2)

- Ta có thể biến đổi một công thức bất kỳ về dạng chuẩn tắc hội bằng cách biến đổi theo nguyên tắc sau:
 - Khử các phép tương đương: $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$
 - Solution Khử các phép kéo theo: $A \Rightarrow B \equiv \neg A \lor B$
 - Chuyển các phép phủ định vào sát các ký hiệu mệnh đề bằng cách áp dụng luật De Morgan
 - ∘ Khử phủ định kép: $\neg(\neg A) \equiv A$
 - ∘ Áp dụng luật phân phối: $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

 Sử dụng bảng chân lý chứng minh các công thức tương đương cơ bản

```
1. A \Rightarrow B \equiv \neg A \lor B (khử kéo theo)

2. A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A) (khử tương đương)

3. \neg(\neg A) \equiv A (khử phủ định kép)

4. \neg(A \lor B) \equiv \neg A \land \neg B (Luật De Morgan)

5. \neg(A \land B) \equiv \neg A \lor \neg B (Luật De Morgan)

6. A \land (B \lor C) \equiv (A \land B) \lor (A \land C)(Luật phân phối)

7. A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)(Luật phân phối)
```


Chứng minh các mệnh đề sau là vững chắc

$$(P \land Q) \Rightarrow P$$

$$b) \quad P \Rightarrow (P \vee Q)$$

$$c) \neg P \Rightarrow (P \Rightarrow Q)$$

$$d$$
) $(P \land Q) \Rightarrow (P \Rightarrow$

$$e) \neg (P \Rightarrow Q) \Rightarrow P$$

$$f) \neg (P \Rightarrow Q) \Rightarrow \neg Q$$

$$\mathsf{g}) \neg P \land (P \lor Q) \Rightarrow Q$$

h)
$$(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$$

i)
$$(P \land (P \Rightarrow Q)) \Rightarrow Q$$

$$j) ((P \lor Q) \land (P \Rightarrow R) \land (Q \Rightarrow R)) \Rightarrow R$$

Chứng minh các mệnh đề sau là vững chắc

$$(P \land Q) \Rightarrow P$$

$$b) \quad P \Rightarrow (P \vee Q)$$

$$(c) \quad \neg P \Rightarrow (P \Rightarrow Q)$$

$$d$$
) $(P \land Q) \Rightarrow (P \Rightarrow Q)$

$$e) \neg (P \Rightarrow Q) \Rightarrow P$$

$$f) \neg (P \Rightarrow Q) \Rightarrow \neg Q$$

Ví du a)

$$(P \land Q) \Rightarrow P$$

$$\equiv \neg (P \land Q) \lor P$$

$$\equiv \neg P \lor \neg Q \lor P$$

$$\equiv (\neg P \lor P) \lor \neg Q$$

$$\equiv T(true) \vee \neg Q$$

$$\equiv T$$

$$g) \neg P \land (P \lor Q) \Rightarrow Q$$

h)
$$(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$$

i)
$$(P \land (P \Rightarrow Q)) \Rightarrow Q$$

$$\mathbf{j}) ((P \lor Q) \land (P \Rightarrow R) \land (Q \Rightarrow R)) \Rightarrow R$$

Chứng minh các tương đương logic sau

1)
$$(P \Leftrightarrow Q) \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

2)
$$\neg P \Leftrightarrow Q \equiv P \Leftrightarrow \neg Q$$

3)
$$\neg (P \Leftrightarrow Q) \equiv \neg P \Leftrightarrow Q$$

Chuẩn hóa về dạng chuẩn tắc hội

$$(P \Rightarrow Q) \lor \neg (R \lor \neg S)$$

Chuẩn hóa về dạng chuẩn tắc hội

$$(P \Rightarrow Q) \lor \neg (R \lor \neg S)$$

1. Khử kéo theo & chuyển phủ định:

$$(\neg P \lor Q) \lor (\neg R \land S)$$

2. Áp dụng luật phân phối

$$(\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor S)$$

Nội dung

- Vấn đề biểu diễn tri thức và suy diễn
- Logic mệnh đề
- Suy diễn với logic mệnh đề
 - Suy diễn logic
 - Suy diễn sử dụng bảng chân lý
 - Sử dụng các quy tắc suy diễn

Suy diễn logic

- Một công thức H được gọi là hệ quả logic của một tập công thức $G = \{G_1, \dots, G_m\}$ nếu trong bất kỳ minh họa nào mà G đúng thì H cũng đúng
- Thủ tục suy diễn gồm một tập các điều kiện và một kết luân

tập các điều kiện kết luận

- Đúng đắn (sound): nếu kết luận là hệ quả logic của điều kiện
- Đầy đủ (complete): nếu tìm ra mọi hệ quả logic của điều kiện
- Một số ký hiệu
 - KB: cơ sở tri thức, tập các công thức đã có (Knowledge Base)
 - \circ KB $-\alpha$: α là hệ quả logic của KB

Suy diễn sử dụng bảng chân lý

- Sử dụng bảng chân lý có thể xác định một công thức có phải là hệ quả logic của một tập các công thức trong cơ sở tri thức hay không
 - Ví dụ: $KB = \{A \lor C, B \lor \neg C\}, \alpha = A \lor B$
- Tính chất của suy diễn với logic mệnh đề sử dụng bảng chân lý
 - Đúng đắn?
 - Có
 - Đầy đủ?
 - Có
 - Độ phức tạp tính toán
 - Lớn

Sử dụng các quy tắc suy diễn (1/2)

Trên thực tế thay vì sử dụng bảng chân lý, các thủ tục suy diễn dựa trên việc kết hợp các luật suy diễn đơn giản

Luât Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

Luât Modus Tollens

$$\frac{\alpha \Rightarrow \beta, \ \neg \beta}{\neg \alpha}$$

Luật loại trừ và

$$\frac{\alpha_1 \wedge \ldots \wedge \alpha_i \wedge \ldots \wedge \alpha_m}{\alpha_i}$$

Luật nhập đề và

$$\alpha_1, \ldots, \alpha_i, \ldots, \alpha_m$$
 $\alpha_1 \wedge \ldots \wedge \alpha_i \wedge \ldots \wedge \alpha_m$

 α , β , α_i là các công thức

Sử dụng các quy tắc suy diễn (2/2)

Luật nhập đề hoặc

$$\frac{\alpha_i}{\alpha_1 \vee \ldots \vee \alpha_i \vee \ldots \vee \alpha_m}$$

Luật loại trừ phủ định kép

$$\frac{\neg(\neg\alpha)}{\alpha}$$

Luật bắc cầu

$$\frac{\alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\alpha \Rightarrow \gamma}$$

 $\alpha, \beta, \gamma, \alpha_i$ là các công thức

Phép giải đơn vị

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

Phép giải

$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Sử dụng phương pháp bảng chân lý chứng minh

1.
$$\{A \Rightarrow B, A\} \vdash B$$

2.
$$\{A \Rightarrow B, \neg B\} \vdash \neg A$$

3.
$$\{A \Rightarrow B, B \Rightarrow C\} \vdash A \Rightarrow C$$

4.
$$\{A \lor B, \neg B\} \vdash A$$

• Cho cơ sở tri thức *KB*:

$$Q \land S \Rightarrow G \land H$$
 (1)
 $P \Rightarrow Q$ (2)
 $R \Rightarrow S$ (3)
 P (4)
 R (5)

Sử dụng các quy tắc suy diễn chứng minh: $KB \vdash G$