and

$$s(u) = p_F(u) - p_G(u),$$

and since F and G are orthogonal, it follows that

$$p_F(u) \cdot p_G(v) = 0$$

and thus by (*)

$$||s(u)|| = ||p_F(u) - p_G(u)|| = ||p_F(u) + p_G(u)|| = ||u||,$$

so that s is an isometry.

Using Proposition 12.10, it is possible to find an orthonormal basis (e_1, \ldots, e_n) of E consisting of an orthonormal basis of F and an orthonormal basis of G. Assume that F has dimension p, so that G has dimension n-p. With respect to the orthonormal basis (e_1, \ldots, e_n) , the symmetry s has a matrix of the form

$$\begin{pmatrix} I_p & 0 \\ 0 & -I_{n-p} \end{pmatrix}.$$

Thus, $\det(s) = (-1)^{n-p}$, and s is a rotation iff n-p is even. In particular, when F is a hyperplane H, we have p=n-1 and n-p=1, so that s is an improper orthogonal transformation. When $F = \{0\}$, we have $s = -\mathrm{id}$, which is called the *symmetry with respect* to the origin. The symmetry with respect to the origin is a rotation iff n is even, and an improper orthogonal transformation iff n is odd. When n is odd, since $s \circ s = \mathrm{id}$ and $\det(s) = (-1)^n = -1$, we observe that every improper orthogonal transformation f is the composition $f = (f \circ s) \circ s$ of the rotation $f \circ s$ with s, the symmetry with respect to the origin. When G is a plane, p = n - 2, and $\det(s) = (-1)^2 = 1$, so that a flip about F is a rotation. In particular, when n = 3, F is a line, and a flip about the line F is indeed a rotation of measure π as illustrated by Figure 13.2.

Remark: Given any two orthogonal subspaces F, G forming a direct sum $E = F \oplus G$, let f be the symmetry with respect to F and parallel to G, and let g be the symmetry with respect to G and parallel to F. We leave as an exercise to show that

$$f \circ g = g \circ f = -\mathrm{id}$$
.

When F = H is a hyperplane, we can give an explicit formula for s(u) in terms of any nonnull vector w orthogonal to H. Indeed, from

$$u = p_H(u) + p_G(u),$$

since $p_G(u) \in G$ and G is spanned by w, which is orthogonal to H, we have

$$p_G(u) = \lambda w$$