$$C_n \cong \bigoplus_{p \in \mathbb{P}} C_{p^{e_p}}$$

für die zyklische Gruppe C_n der Ordnung $n = \prod_{p \in \mathbb{P}} p^{e_p}$. .) De Con iet ryklische Gruppe": Als olireble Summe von ryklischen Gruppen ist De Coer eine Gruppe q & P bel. The per (1+ per I) per = (TT per + per I) per = TT per (fra) + per I) per , who fra fra = 0, tells p = q and $f_p(q) = 1$, falls p = q; wir exhalter also mit $l_q := \prod_{p \in P(q)} p^{e_p} \mod q^{e_q} \in \{1, ..., q^{e_q} - 1\}$ TT per (9+per Z) per = la (fp (9)+per Z)per Da nach Props. 3.74.9 (g ein ersengender Element von Cgeq ist, gill er ein mg EN mil mg lq (fr(q) + per I) per = (fp(q) + per I)per Also: mat T per (1+ per Z) per = (fr (q) + per Z) per Fin bel. (kp + pep Z)pep & (pep estables wis also (kp + pep Z)pep = (Z kg mg T per (1+ per Z)pep Also ist A Cper = < (1+per II)pep) und damit eine zyfelische Gruppe. ·), n-elementy": n (1+pep I)pep = II pep (1+pep I)pep = (0+pep I)pep also ist die D Cor höcken n-elementig Doi (fp(q) + pep l)pep & Cpep with non, dass es rumindest 1/ pep = n Elemente gelen muse Als n-elementinge ryblighe Grype ist nach Prop. 3.2. 47: \$\ Cpen \cong Cn

Proposition 3.2.5.6. Sei G eine Gruppe. Für alle $g \in G$ definieren wir $\pi_g \colon G \to G$ $x \mapsto gxg^{-1}$ und betrachten die Abbildung $\Phi: g \mapsto \pi_g$. Dann gilt: 1. Für $g,h \in G$ gilt $\pi_g \circ \pi_h = \pi_{gh}$. Somit ist Φ ein Homomorphismus von G in die Automorphismengruppe Aut(G). 2. Für alle $g \in G$ ist π_g ein Automorphismus (genannt der durch Konjugation mit ginduzierte innere Automorphismus von G). 3. Für den Kern von Φ gilt $\ker(\Phi) = Z(G) = \{ g \in G : \ \forall h \in G : \ gh = hg \}.$ Insbesondere ist $\Phi: G \to \operatorname{Aut}(G)$ eine isomorphe Einbettung genau dann, wenn das Einselement $e \in G$ das einzige ist, das mit allen $g \in G$ vertauscht. 4. Die inneren Automorphismen bilden einen Normalteiler $\Phi(G) \triangleleft \operatorname{Aut}(G)$ der Automorphismengruppe von G. (Die Faktorgruppe $Aut(G)/\Phi(G)$ nennt man auch die äußere Automorphismengruppe von G.) UE 164 ▶ Übungsaufgabe 3.2.5.7. (W) Beweisen Sie Proposition 3.2.5.6 **◄** UE 164 \$\phi(gh) = \tag{17g} = \tag{17g} \cdot (\tag{1}h) = \phi(\text{g}) \cdot \phi(\text{h}) = \phi(\text{g}) \text{ formour or phienres } can zee show, dass \tag{7g} \in Act (\text{G}) \text{ siche '(2)} 2) $\pi_{g}(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = \pi_{g}(x)\pi_{g}(y)$ $\pi_{\varrho^{-1}}\left(\pi_{\varrho}(x)\right) = \pi_{\varrho^{-1}}\left(\Im \times g^{-1}\right) = g^{-1}g \times g^{-1}g = x = g \varrho^{-1} \times g g^{-1} = \pi_{\varrho}\left(\pi_{\varrho^{-1}}(x)\right) = \pi_{\varrho^{-1}} = \pi_{\varrho}\left(\pi_{\varrho^{-1}}(x)\right) = \pi_{\varrho^{-1}}\left(\pi_{\varrho^{-1}}(x)\right) = \pi_{\varrho^{-1}}\left(\pi_{\varrho^{-1}}($ Also ist Tig & Aul(G) 3) ·) \$\phi(q) = e => TTq = id => \frac{1}{4} \in G: Tq(h) = . \end{array} \forall h \in G: q hq -1 = \times \forall h \in G: 9h = h \in G =) her (4) = { g & G | + h & G: g h = h g } .) In $\phi:G \to Aut(G)$ rismorphe Einlettung Se g è her $\phi \Rightarrow \phi(g) = \pi_g = id = \pi_g o(\pi_g)^{-1} = \pi_g o \pi_{g-1} = \pi_{gg-1} = \pi_e = \phi(e) \Leftrightarrow g = e \Rightarrow her \phi = \ell e \hat{g}$ 1) Sei her \$ = de} und \$\phi(q) = \phi(h)\$ TTg = TTe (5) TTg o(TTe) -1 = id (5) TTge-1 = io (5) (gh-1) = id = gh-1 = lea (5) gh-1 = e (5) g = h ollo ist O injelelio 4) Als Bild enter Unlergryge under einem Homomorphismus in O(G) Eine Undergryge von Act (G) (vgl. Prop. 7.3. 1.24) fix Auf G bel. To e o(G), hEG f(T(g(h)) = f(ghg-1) = f(g)f(h)f(g)-1 = T(g)(f(h)) => foT(g) T(g), of ⇒ fod(6) = \$(6)0f => \$(6) \$\alpha\$ Aut 6

UE 168 ▶ Übungsaufgabe 3.2.5.15. (F) Sei $G := S_4$. Wir geben die Elemente von G in Zy- ◀ **UE 168** klenschreibweise an. Sei U die vom Element (1234) erzeugte Untergruppe und $N = \{id, (12)(34), (13)(24), (14)(23)\}$. Begründen Sie, warum $N \triangleleft S_4$ ein Normalteiler ist. Bestimmen Sie die Gruppen $NU, N \cap U, NU/N, U/(N \cap U)$ und geben Sie den kanonischen Isomorphismus zwischen NU/N und $U/(N \cap U)$ explizit an.

```
Nenshäll vom lermulationstyp (4,0,...) sin Elment und room lermulationstyp (0,2,0,...) alle 3 Elemense
  und sont here, it also rach Prop. 3.2.5.11 lunh (4 ein Normalleilen von S4

10 (1234) 0 (1234) = (13) (24) und (13) (24) 0 (1234) = (1234) 0 (13) (24) = (1432)
                          (1234) o (1432) = id uno (1432) o (1234) = id und (1432) o (13)(24) = (13) (24) o (1432) = (1234)
                          (13)(24) 0 (13) (24) = id and (1432) 0 (1432) = (73) (24)
                          win estables U= (1234) = fid, (1234), (1432), (13) (24)}
V(4): (12)(34) \circ (1234) = (1)(24)(3) \text{ and } (12)(34) \circ (1432) = (13)(2)(4) \text{ and } (12)(34) \circ (13)(24) = (14)(23) \text{ and } (12)(34) \circ (12)(34) \circ (13)(24) = (14)(23) \text{ and } (12)(34) \circ (12)(3
                              Dd U Undergrupple won Sy in and (13) (24) EU gill (13) (24) OU = U
                              (14) (23) 0 (1234) = (13) (2) (4) and (14) (23) 0 (1432) = (1) (24) (3) and (14) (23) 0 (12) (24) = (12)(34)
                             MM = \{26((1234), (1432), (13)(24), (12)(34), (1)(24)(3), (13)(2)(4), (14)(23)\}
     NOU": NOU = (ib, (13)(74) & rus Konholle: il wieder Undergruppe
       "NU/": NU/ = { fid, (12) (34), (13) (24), (14) (13)}, {(1234), (1432), (1) (24) (3), (13) (2)(4)}}
        " ! Whan": Whan = { { { & vol, (13) (24) }, { (1432), (1234) } }
                                                                                                                                                                                                                                                                                                                      Ech 3, 2.1. 4
```

Proposition 3.3.1.6. Sei R ein Ring und $A \subseteq R$. Bezeichne I den Schnitt aller Ideale, $J \triangleleft R$ mit $A \subseteq J$. (I ist also das kleinste A umfassende Ideal in R, genannt das von A erzeugte Ideal, symbolisch I = (A), im $Fall\ A = \{a_1, \ldots, a_n\}$ auch $I = (a_1, \ldots, a_n)$. Dann gilt:

(1) I ist die Menge aller

Falls A= La? Evia = (E vi) a

$$\sum_{i=1}^{n} r_i a_i s_i + \sum_{j=1}^{m'} r'_j b_j + \sum_{k=1}^{n'} c_k s'_k + \sum_{l=1}^{m} d_l$$

 $mit\ n, m', n', k \in \mathbb{N},\ a_i, b_j, c_k, d_l$ ϵ AU-A $\ und\ r_i, s_i, r'_j, s'_k \in R.$

(2) Hat R ein Einselement, so ist I auch darstellbar als die Menge aller

$$\sum_{i=1}^{n} r_i a_i s_i$$

 $mit \ n \in \mathbb{N}, \ a_i \in A \ und \ r_i, s_i \in R.$

(3) Ist R kommutativ mit 1, so ist (A) darstellbar als die Menge aller Summen (Linearkombinationen)

$$\sum_{i=1}^{n} r_i a_i$$

 $mit \ n \in \mathbb{N}, \ a_i \in A \ und \ r_i \in R.$ Ist außerdem $A = \{a\}, \ einelementig, \ so \ ist$

$$I = (a) = \{ra: r \in R\}.$$

UE 172 ► Übungsaufgabe 3.3.1.10. (B) Geben Sie ein Beispiel eines Rings und eines Linksideals UE 172 I an, sodass I kein Ideal ist. (Hinweis: Matrizen.) R := {A ∈ N ^{2×2} } ein ling mil 1, ola nicht femmuladir uf.																																			
	/) <u>:</u> =	- F	Α	c N) ZXZ	7.	01.	P			1 .	1	1.		:1	1	0		11/10	1 -		1													
													щ	rv	ww	1	(LOV	m	w nu	IW	· <u>-</u> y	¥,													
	I:	=	5	(01 L	0)	1	a,	bЕ	M?																										
	In	N	201	loli.	M	- e	Ch	lerg,	wy	re																									
									" /																										
		/U	×	1),	101	0)_	= (000	ow	+6	X	0		+-				_	_ 1			0	0		n										
		\mathcal{U}	4	1/1	Ь	0 /	_	1	ol V	+6	y	0/	1 6	L	=)	V	1	$\subseteq J$	_		lco	hi	wk	Ud	eat) a	ske	1						
		11	0	1/	0 /	1		10	1	1	T		. 1		1		1 /		,																
		(0	0		0 ()/ -	7	0	0/	¢	L	1 6	W	0	ne	in	Jale	al	,																
		E	I		E 1	2																													
							-				-																								
							+																												
							+																												
							-																												
							-																												
							+																												
							+																										\dashv		
							+																												
							_																												
							-																												
							+																										\dashv		
							+																												
							+																												

Proposition 3.3.5.10. 1. Sei R ein Unterring mit 1 eines Körpers K. Dann ist

$$K' := \{ \frac{p}{q} : p, q \in R, q \neq 0 \}$$

ein Unterkörper von K.

- 2. Der Körper K' aus dem ersten Teil ist der kleinste Unterkörper von K, der R enthält, symbolisch $K' = \langle R \rangle_{K\"{o}rper}$. Explizit bedeutet das: Jeder Unterkörper K'' von K mit $R \subseteq K''$ umfasst K'.
- 3. In derselben Situation ist K (zusammen mit der Inklusionsabbildung) genau dann ein Quotientenkörper von R, wenn K = K' gilt.
- 4. Ist $\iota: R \to K$ eine isomorphe Einbettung des Integritätsbereichs R in einen Körper K und Q der von $\iota(R)$ erzeugte Unterkörper von K, so ist Q zusammen mit ι ein Quotientenkörper von R.

UE 183 ▶ Übungsaufgabe **3.3.5.11.** (W) Beweisen Sie 3.3.5.10 **⋖** UE 183 1) ·) 11 + 11 g + m = pn+ma ∈ K', volei qn ≠ 0, veil g, n ∈ K und K Körper g, n ± 0 n Körpe Kullkerlerhei ·) 0" 7 EK' newhole Element by . + ·) 1" 7 EK' newholes Element by . . $(-1)^{2} - (-1)^{2} + (-1)^{2} = 0$.), -111 p = 0 \$ 19 = 7 ·). / f. m = pm & K' 2) R in sogar Integrila Wereich, weil der Karper K hommuholiv in und 0 + 1 in Korper gill R(0) ill ein kurkeres multiphiloohies Undernagnoid von R, dern & n = 2 & = in = & Nach Sal 3.3.5.8 ligt mil K'ein Quohinlenkörger von Für einen beel Kärger Q', in welchen sich Risomonth einhellen lässt, gibt er schen eine romorphe Einhellung el: K-DQ' Quotienterlisque sind lis son yomorphic eindeulie 3) ,, => " K Quohinlenhörger von R, darm gill wach Folgerung 3.3.5.3 K = K' und wegen K' E K =) K'=K (= " K' ist anohementeorgen und wegen K'= K auch K 4) (R) ist Mering mil 7 van Q, weil promongyhes Ridd eines Mepriläjebereicher. Vach (1) und (1) hernen wir Q', dan blainsten Underleignes des URI enthiell. Aus (3) wersen wir, dass Q weges Q' = Q ein Quolintentioner von ((R) ist und old ((R) = R ift Quolintentioner zu R $R \longrightarrow L(R) \xrightarrow{\tau_1 \tau_1} V$