Nominal Disunification

Seminários Teoria da Computação - UnB

Deivid Vale, Advisor: Daniele Nantes

November 9, 2018

Department of Mathematics - University of Brasilia

Table of contents

- 1. Nominal Terms and Syntax
- 2. Freshness and Equality
- 3. Nominal Unification
- 4. Nominal Disunification

Nominal Terms and Syntax

Nominal Terms

Consider countable disjoint sets of *meta-variables* (or just *variables*) $\mathbb{X} = \{X, Y, Z, \dots\}$ and atoms $\mathbb{A} = \{a, b, c, d, \dots\}$.

Nominal Terms

Definition (Nominal Terms)

The set $T(\Sigma, \mathbb{A}, \mathbb{X})$ of all nominal terms is inductively generated by the following grammar:

$$s, t, u, v ::= a \mid \pi \cdot X \mid [a] t \mid f(t_1, \ldots, t_n)$$

Terms are called, respectively, atoms, moderated variable, abstractions, and function application.

3

Permutation Action

Definition

The **object-level** action of a permutation π on a term t is defined by induction on the structure of t, as follows:

$$\pi \cdot a \equiv \pi(a) \quad \pi \cdot (\gamma \cdot X) \equiv (\pi \cdot \gamma) \cdot X \quad \pi \cdot [a] \ t \equiv [\pi \cdot a] \ (\pi \cdot t)$$
$$\pi \cdot f(t_1, \dots, t_n) \equiv f(\pi \cdot t_1, \dots, \pi \cdot t_n)$$

Substitutions

Definition

The **meta-level** action of a substitution σ on a term t, denoted as $t\sigma$, is inductively defined by:

$$a\sigma \equiv a \quad (\pi \cdot X)\sigma \equiv \pi \cdot (X\sigma) \quad ([a] t)\sigma \equiv [a] (t\sigma)$$

$$f(t_1, \dots, t_n)\sigma \equiv f(t_1\sigma, \dots, t_n\sigma)$$

Permutation and Substitution Action

Lemma (Commutation Lemma)

$$\pi \cdot (t\sigma) \equiv (\pi \cdot t)\sigma.$$

Freshness and Equality

Freshness Constraints and Contexts

Definition (Contexts)

A freshness constraint is a pair a#t of an atom a and a term t. Call freshness constraints a#a and a#X primitive and write Δ and ∇ for finite sets of primitive freshness constraints and call them freshness contexts.

We say a context Δ is consistent iff it does not contain any freshness constraint of the form a#a.

Derivation Rules for Freshness

$$\frac{\pi^{-1}(a)\#X}{a\#\pi\cdot X} (\#X) (\pi \neq id)$$

$$\frac{\pi^{-1}(a)\#X}{a\#\pi\cdot X} (\#X) (\pi \neq id)$$

$$\frac{\pi^{-1}(a)\#X}{\pi^{-1}(a)\#X} (\#X) (\pi^{-1}(a)\#X} (\#X)$$

Table 1: Derivation rules for freshness

Derivation Rules for α **-equivalence**

$$\frac{-a \approx_{\alpha} a}{a \approx_{\alpha} a} (\#ab) \qquad \frac{\Delta \vdash \operatorname{ds}(\pi, \gamma) \# X}{\pi \cdot X \approx_{\alpha} \gamma \cdot X} (Ds)$$

$$\frac{t_{1} \approx_{\alpha} u_{1} \cdots t_{n} \approx_{\alpha} u_{n}}{f(t_{1}, \dots, t_{n}) \approx_{\alpha} f(u_{1}, \dots, u_{n})} (F)$$

$$\frac{t \approx_{\alpha} u}{[a] t \approx_{\alpha} [a] u} (Abs-a) \qquad \frac{(a \ b) \cdot t \approx_{\alpha} u \ \Delta \vdash b \# t}{[a] t \approx_{\alpha} [b] u} (Abs-b)$$

Table 2: Derivation rules for α -equivalence

Judgment Forms

Nominal algebra ([3]) has two judgment forms:

- 1. A freshness judgment form $\Delta \vdash a\#t$.
- 2. An equality judgment form $\Delta \vdash t \approx_{\alpha} u$.

Derivability

We define a *notion of derivability* by the natural deduction rules given in Tables 1 and 2.

- 1. We say $\Delta \vdash a\#t$ is a valid judgment when there exists a derivation of a#t using the elements of Δ as assumptions.
- 2. We also say $\Delta \vdash t \approx_{\alpha} u$ is a valid judgment when there exists a derivation of $t \approx_{\alpha} u$ using elements of Δ as assumptions.

Nominal Unification

Unification Problems

Definition

A unification problem P is a finite set

$$P = \left\langle a_1 \overset{?}{\#} u_1, \cdots, a_n \overset{?}{\#} u_j \mid\mid s_1 \overset{?}{\approx_{\alpha}} t_1, \cdots, s_n \overset{?}{\approx_{\alpha}} t_n \right\rangle$$

of freshness problems $a_i \# u_i$ and equational problems $s_k \stackrel{?}{\approx}_{\alpha} t_k$.

Simplification Rules on Problems

$$a\#b, P \Longrightarrow P$$
 $a\#\pi \cdot X, P \Longrightarrow \pi^{-1}(a)\#X, P \quad \pi \neq \text{id}$
 $a\#[a]t, P \Longrightarrow P$
 $a\#[b]t, P \Longrightarrow a\#t, P$
 $a\#f(t_1, \dots, f_n), P \Longrightarrow a\#t_1, \dots, a\#t_n, P$

Table 3: Simplification rules for freshness

Simplification Rules on Problems

$$a \approx_{\alpha} a, P \Longrightarrow P$$

$$\pi \cdot X \approx_{\alpha} \gamma \cdot X, P \Longrightarrow ds(\pi, \gamma) \# X, P$$

$$f(s_{1}, \dots, s_{n}) \approx_{\alpha} f(t_{1}, \dots, t_{n}), P \Longrightarrow s_{1} \approx_{\alpha} t_{1}, \dots, s_{n} \approx_{\alpha} t_{n}, P$$

$$[a] t \approx_{\alpha} [a] u, P \Longrightarrow t \approx_{\alpha} u, P$$

$$[b] l \approx_{\alpha} [a] r, P \Longrightarrow (a \ b) \cdot l \approx_{\alpha} r, a \# l, P$$

Table 4: Simplification rules for α -equivalence

Properties of Simplification Rules

Lemma

The relation \implies is confluent and strongly normalizing.

Unification Normal Forms

We write the *unique* normal form of an unification problem P as $\langle P \rangle \downarrow$. So the problem P can be written as

$$\langle P \rangle \downarrow = \left\langle \Delta \mid\mid s_1' \stackrel{?}{\approx_{\alpha}} t_1', \cdots, s_l' \stackrel{?}{\approx_{\alpha}} t_l' \right\rangle$$

We call Δ an **initial context** and the equational predicates $s_i \stackrel{?}{\approx}_{\alpha} t_i$ the equations that remains to be solved.

From now on we always consider problems in normal forms.

Unification Problems

A solution of an unification problem P is a pair (Γ, σ) of a consistent context Γ and a substitution σ such that:

- 1. $\Gamma \vdash \Delta \sigma$.
- 2. $\Gamma \vdash s_i \sigma \stackrel{?}{\approx}_{\alpha} t_i \sigma$, for all $1 \leq i \leq n$.

We write $\mathcal{U}(Pr)$ for the set of all solutions of P.

An Algorithm for Nominal Unification

We now derive an *algorithm* for nominal unification by enriching the *simplification rules* with the two following additional rules: (as done in [2]).

$$\pi \cdot X \stackrel{?}{\approx_{\alpha}} u, P \xrightarrow{X \mapsto \pi^{-1} \cdot u} P[X \mapsto \pi^{-1} \cdot u] \quad (X \notin \text{vars}(u))$$

$$u \stackrel{?}{\approx_{\alpha}} \pi \cdot X, P \xrightarrow{X \mapsto \pi^{-1} \cdot u} P[X \mapsto \pi^{-1} \cdot u] \quad (X \notin \text{vars}(u))$$

We denote this algorithm as $\mathrm{Unif}(P)$ or if we need to be more specific $\mathrm{Unif}(\Delta, s_1 \approx_{\alpha} t_1, \cdots, s_n \approx_{\alpha} t_n)$.

Instantiation

We order solutions by the *instantiation order*: We say (Γ_2, σ_2) is an *instance* of (Γ_1, σ_1) iff there exists a substitution δ such that for all variables X the following conditions hold:

- 1. $\Gamma_2 \vdash X\sigma_2 \approx_{\alpha} X\sigma_1\delta$.
- 2. $\Gamma_2 \vdash \Gamma_1 \delta$.

We denote this fact by writing:

$$(\Gamma_1, \sigma_1) \leq_{\delta} (\Gamma_2, \sigma_2)$$

Instantiation of Solutions

Lemma

The instantiation order is a partial order on $\mathcal{U}(P)$. ([2])

Nominal Disunification

Disunification Problems

Now we discuss an extension to the nominal syntax of the work on First Order Disunification done by W. Buntine and H. Bürckert in [1].

Disunification Problems

Definition

A nominal disunification problem P is an ordered pair $P = \langle E \mid\mid D \rangle$ where E is an equational problem and D is a disequational problem as follows:

$$E = \left\langle \Delta \mid\mid s_1 \stackrel{?}{\approx_{\alpha}} t_1, \cdots, s_n \stackrel{?}{\approx_{\alpha}} t_n \right\rangle$$

$$D = \left\langle \nabla \mid\mid p_1 \not\approx_{\alpha}^? q_1, \cdots, p_m \not\approx_{\alpha}^? q_m \right\rangle$$

and Δ , ∇ are consistent contexts. We call them the **initial contexts** of the problem P.

Remark

We consider Δ , ∇ as the initial freshness constraints we impose on equations and disequations of P, respectively.

Example

Example

$$P_{1} = \left\langle \emptyset, X \stackrel{?}{\approx_{\alpha}} Y \mid \mid \emptyset, X \stackrel{?}{\approx_{\alpha}} a \right\rangle$$

$$P_{2} = \left\langle b \# Z, (b \ a) \cdot X \stackrel{?}{\approx_{\alpha}} Y \mid \mid \emptyset, [a] X \stackrel{?}{\approx_{\alpha}} [b] Y \right\rangle$$

Solutions to Disunification

Definition

A solution to a disunification problem $P = \langle E \mid \mid D \rangle$ is a pair (Γ, σ) of a consistent context Γ and a substitution σ satisfying the following conditions:

- 1. (Γ, σ) is a solution of E.
- 2. (Γ, σ) satisfies the disequations in D. That is:
 - 2.1 $\Gamma \nvdash \Delta \sigma$, or
 - 2.2 $\Gamma \nvdash p \approx_{\alpha} q$, for all $p \not\approx_{\alpha} q$ in D.

Definition

A "pair with exception" is a pair $\langle \Gamma \mid \mid \sigma \rangle - \Psi$ of a **pair** $\langle \Gamma \mid \mid \sigma \rangle$ and an indexed family of **pairs** $\Psi = \{(\nabla_I, \psi_I) \mid I \in I\}$

.

Definition

We say a **pair** (Γ, σ) is an instance of a family Ψ iff each instance of (Γ, σ) is a instance of some $(\nabla_I, \psi_I) \in \Psi$.

We then write $\Psi \leq (\Gamma, \sigma)$.

Definition

A pair (Δ, λ) is an instance of a "pair with exceptions" $\langle \Gamma \mid \mid \sigma \rangle - \Psi$ iff (Δ, λ) is an instance of (Γ, σ) but not an instance of Ψ .

We denote this fact by $\langle \Gamma \mid \mid \sigma \rangle - \Psi \leq (\Delta, \lambda)$.

Definition

We call a "pair with exceptions" $\langle \Gamma \mid \mid \sigma \rangle - \Psi$ consistent iff it has at least one instace.

Inconsistence Characterization

Lemma (Inconsistence Lemma)

A "pair with exceptions" $\langle \Gamma \mid \mid \sigma \rangle - \Psi$ is inconsistent iff (Γ, σ) is an instance of Ψ .

Inconsistence Characterization

Corollary

Let $\langle \Gamma \mid \mid \sigma \rangle - \Psi$ be a "pair with exceptions". If there is some $(\nabla_I, \psi_I) \in \Psi$ such that: there exists δ a substitution, for all X,

$$\Gamma \vdash X\sigma \approx_{\alpha} X\psi_I \delta$$

Then $\langle \Gamma \mid \mid \sigma \rangle - \Psi$ is inconsistent iff $\Gamma \cap \nabla_I \neq$ emptyset or $\Gamma \vdash X\delta$.

Representation of Solutions

As with the case for unification problems we are interested in generate a *complete set* of solutions to a disunification problem P.

Definition

We call a set S of "pair with exceptions" a *complete representation* of solutions to the disunification problem P iff S satisfies the following conditions:

- 1. If $(\Delta, \lambda) \ge \langle \Gamma \mid \mid \sigma \rangle \Psi$ for some $\langle \Gamma \mid \mid \sigma \rangle \Psi$ in S then (Δ, λ) solves P.
- 2. If (Delta, λ) solves P then it is an instance of some $\langle \Gamma \mid | \sigma \rangle \Psi$ in S.
- 3. $\langle \Gamma \mid \mid \sigma \rangle \Psi$ is consistent for all $\langle \Gamma \mid \mid \sigma \rangle \Psi \in S$.

Representation Theorem

Theorem

Let $P = \left\langle \Delta, s_1 \stackrel{?}{\approx_{\alpha}} t_1, \cdots, s_n \stackrel{?}{\approx_{\alpha}} t_n \mid\mid \nabla, p_1 \not\approx_{\alpha} q_1, \cdots, p_m \not\approx_{\alpha} q_m \right\rangle$ be a disunification problem. Define the family

$$\Psi := \bigcup_{\substack{?\\p \not\approx_{\alpha} q \in D}} c\mathcal{U}\left(p \approx_{\alpha}^? q\right)$$

Then the set

$$S = \left\{ \left\langle \Gamma \mid \mid \sigma \right\rangle - \Psi \mid \left(\Gamma, \sigma \right) \in c\mathcal{U} \left(E \right) \text{ but not } \Psi (\Gamma, \sigma) \right\}$$

is a complete representation of solutions to the problem P.

Inconsistence Algorithm

3

6

9

10

11

```
input : \langle \Gamma \mid | \sigma \rangle - \psi a finite pair with exceptions
   output: BOOL: True if the input is consistent False otherwise
 1 LET CON: BOOL:
2 foreach (\nabla_I, \psi_I) \in \Psi do
        if matching ((\Gamma, X\sigma \approx_{\alpha} X\psi_I) = (\Gamma', \delta)) then
            if \Gamma \cap \nabla_I \neq \emptyset OR \Gamma \vdash X\delta then
                 RETURN FALSE AND STOP
             else
                 CON := TRUE
             end
        else
             RETURN FALSE AND STOP
        end
12 end
```

Disunification Algorithm

```
input: A disunification problem P = \langle E \mid \mid D \rangle.
   output: a set S of pair with exceptions (can be emptyset)
1 LET (\Gamma, \sigma) := \text{Unify}(E);
2 LET \Psi := \left\{ \left( \nabla_i, \psi_i \right) = \text{Unify}(\nabla, p_i \approx q_i) \right\};
                  ?
p;≉'a;∈D
3 if Consistent(\langle \Gamma \mid \mid \sigma \rangle - \Psi) then
       RETURN \langle \Gamma || \sigma \rangle - \Psi
5 else
       RETURN ∅ and STOP
7 end
```

Algorithm 2: Disunification Algorithm

Future Work

We plan to continue working on Nominal Disunification. That's our task list:

- Extend Disunification to Nominal Equational Theories E (in the the context of Nominal Universal Algebras, [3]), like AC and C for example.
- 2. Study more general equational problems, like *Disunification* with parameters.

References I

W. L. Buntine and H.-J. Bürckert.

On solving equations and disequations.

J. ACM, 41(4):591–629, July 1994.

M. Fernández and M. J. Gabbay.

Nominal rewriting (journal version).

205(6):917-965, June 2007.

M. J. Gabbay and A. Mathijssen.

Nominal universal algebra: equational logic with names and binding.

19(6):1455-1508, December 2009.

