Siddharth Maddali, Ph.D

Research Scientist (BBP Division)

NOTE: Icons are clickable links.

Education

Doctor of Philosophy (**Ph.D**) in *physics* (Carnegie Mellon University, 2016) Master of Science (M.S.) in *physics* (Carnegie Mellon University, 2010) Master of Science (M.Sc) in physics (Indian Institute of Technology Madras, 2009) Bachelor of Science (B.Sc) in physics, mathematics, electronics (Bangalore University, 2007)

Experience

Research Scientist, KLA Corp. (KLA-Tencor) Broadband Plasma (BBP) division, Nov 2022 - present

Assistant Scientist, Argonne National Laboratory Synchrotron Radiation Studies of Materials group, Oct 2019 - Oct 2022

Post-doctoral researcher, Argonne National Laboratory Coherent diffraction imaging of materials structure, Jan 2017 - Sept 2019

Post-doctoral researcher, National Energy Technology Laboratory Materials discovery with machine learning, May 2016 - Sept 2016

Graduate research assistant, Carnegie Mellon University Department of Physics, 2012 - May 2016

Graduate teaching assistant, Carnegie Mellon University Department of Physics, 2009 - 2012

Intern, National University of Singapore Department of Physics, May 2008

Research interests

Optics/imaging:

Defect inspection using optical nanoscopy Electromagnetic scattering Coherent diffraction imaging (CDI) of tensor fields Coherent dark-field x-ray microscopy (DFXM) High-energy x-ray diffraction microscopy (HEDM) Multiscale characterization with x-ray & other light probes X-ray photon correlation spectroscopy (XPCS), dynamic light scattering (DLS)

Condensed matter physics:

Light-matter interaction Crystallography Meso/nanoscale structure & strain Interfacial dynamics in polycrystals

Computational methods:

Electromagnetic simulations Inverse problems, phase retrieval Signal processing and optimization

Data science, machine learning, reinforcement learning -based experimental control High-performance computing and scientific software development

Presentations (\square = link to accepted abstract)

Invited (presenter)

1) Advanced	Photon	Source	Scientific	Computation	Seminar,	Argonne	National	Laboratory,	Lemont,	ΙL
(March 2022) 🗆									

- 2) Materials Science Division Colloquium, Argonne National Laboratory, Lemont, IL (October 2021) [
- 3) Workshop on Advanced Probes & Data Analytics for Enabling Single-Pulse Imaging under Dynamic Conditions, Santa Fe, NM (August 2019)
- 4) The Minerals, Metals and Materials Society (TMS), San Antonio, TX (March 2019)
- 5) LANS seminar series, Mathematics & Computer Science Division, Argonne National Laboratory, Lemont, IL (Sept 2018) $\hfill \Box$
- 6) Department of physics, Carnegie Mellon University, Pittsburgh, PA (May 2018)

Select contributed (presenter)

- 1) Gordon X-ray Science Seminar, Easton, MA (July-August 2019: seminar & poster; July-August 2017: discussion leader)
- 2) Coherence: International workshop on phase retrieval and coherent scattering, Port Jefferson, NY (June 2018)
- 3) Materials Research Society Spring Meeting & Exhibit, Phoenix, AZ (April 2018) [
- 4) The Minerals, Metals and Materials Society (TMS), Orlando, FL (March 2015: Poster)
- 5) Materials Science and Technology (MS&T), Pittsburgh, PA (October 2014: seminar; October 2012: poster)

Miscellaneous (co-author)

- 1) The Minerals, Metals and Materials Society (TMS) 2023, San Diego, CA, 2023.
- 2) The American Physical Society (APS) March Meeting, Chicago, IL, 2022.
- 3) The Materials Research Society (MRS) Spring Meeting & Exhibit, Phoenix, AZ, 2018.
- 4) The American Physical Society (APS) March Meeting, New Orleans, LA, 2017. \Box

Awards and honors

Oak Ridge Institute for Science and Education (ORISE) post-doctoral fellowship (2016) The Indian Institute of Technology Madras Merit Scholarship (2007-2009) Bangalore University overall rank 5 (2007)

Research grants

ANL LDRD 2021-0012: Coherence-enhanced dark-field imaging for structural heterogeneity in materials

Role: Principal investigator

Funding: Argonne LDRD (Laboratory Directed Research and Development) program

Period: 1st Oct 2020 — 30th Sept 2023 (3 years)

Amount: \$900,000

ANL LDRD 2019-0042: Finding Critical Processes of Deformation in Structural Materials with Artificial Intelligence

Role: Principal investigator

Funding: Argonne LDRD (Laboratory Directed Research and Development) program

Period: 1st Oct 2020 — 30th Sept 2021 (1 year)

Amount: \$100,000

Professional activity

Society membership

Americal Physical Society (APS), Materials Research Society (MRS), The Minerals, Metals and Materials Society (TMS)

Editorial

Aug 2021 — **present**: Guest editor for *MDPI*: *Crystals* special issue: Synchrotron studies of materials.

Peer review R

US Department of Energy: Basic Energy Sciences (BES) Program , Philosophical Magazine , Computational Materials Science , New Journal of Physics , Optics Letters , Physical Review X , Crystal Research and Technology , Journal of Applied Physics , Physical Review Letters , Physical Review B , IUCr Journal of Synchrotron Radiation , Optics Express , Journal of Applied Crystallography , Integrating Materials and Manufacturing Innovation

Organization

- 1) Workshop (Session chair): *Dark field x-ray microscopy for mesoscale phenomena in ordered materials at APS-U*: APS/CNM Users Meeting, Lemont, IL, USA (May 2022)
- 2) Workshop: Advances in Phase Retrieval Methods for High-Resolution X-ray Imaging , APS/CNM Users Meeting, Argonne National Laboratory, Lemont, IL, USA (August 2020)
- 3) Workshop: Advanced Probes and Data Analytics for Enabling Single Pulse Imaging Under Dynamic Conditions, Santa Fe, NM, USA (August 2019)

Technical reports

[1] R. Pokharel, C. Bolme, J. Bohon, A. Mandal, D. Pagan, F. Hofmann, **S. Maddali**, A. Rack, *Advanced probes and data analytics for enabling 3-D imaging under dynamic conditions* **LAUR-19-31832**, **Los Alamos National Laboratory**, 2019.

[2] N. Krishnamurthy, **S. Maddali**, A. Verma, L. Bruckman, J. Carter, R. French, V. Romanov, J. Hawk, *Data analytics for alloy qualification*, **NETL-PUB-21550**, **National Energy technology Laboratory**, 2017. DOI 10.2172/1456238

References

Supervisor Synchrotron Studies of Materials Materials Science Division Argonne National Laboratory Chicago, IL (USA) Ph.D advisor
Department of physics
Carnegie Mellon University

Pittsburgh, PA (USA)

Dr. Anthony D. Rollett # 🖾 📞

Collaborator, materials science Department of Materials Science and Engineering Carnegie Mellon University Pittsburgh, PA (USA) Dr. Marc Allain ⊕ ⊠

Collaborator, computation/mathematics Institut Fresnel Aix-Marseille University Grenoble, France

Publications

- [23] **S. Maddali**, T. D. Frazer, N. Delegan, K. J. Harmon, S. E. Sullivan, M. Allain, W. Cha, A. Dibos, I. Poudyal, S. Kandel, Y. S. G. Nashed, F. J. Heremans, H. You, Y. Cao and S. O. Hruszkewycz, Concurrent multi-peak Bragg coherent x-ray diffraction imaging of 3D nanocrystal lattice displacement via global optimization, **npj Computational Materials**, May 2023

 [DOI 10.1038/s41524 023 010227] preprint arxiv:2208.00970 [Insert arxiv:2208.00970]
- [22] M. O. Hill, P. Schmiedeke, C. Huang, **S. Maddali**, X. Hu, S. O. Hruszkewycz, J. J. Finley, G. Koblm $\{\u]$ ller and L. J. Lauhon, 3D Bragg Coherent Diffraction Imaging of Extended Nanowires: Defect Formation in Highly Strained InGaAs Quantum Wells, **ACS Nano**, Nov 2022
- [21] N. Bertaux, M. Allain, J. Weizeorick, J. -S. Park, P. Kenesei, S. D. Shastri, J. Almer, M. J. Highland, S. **Maddali** and S. O. Hruszkewycz, *Sub-pixel high-resolution imaging of high-energy x-rays inspired by sub-wavelength optical imaging*, **Opt. Express**, Oct 2021
- [20] S. Kandel, **S. Maddali**, Y. S. G Nashed, S. O. Hruszkewycz, C. Jacobsen and M. Allain, *Efficient ptychographic phase retrieval via a matrix-free Levenberg-Marquardt algorithm*, **Opt. Express**, Jul 2021
- [19] M. J. Wilkin, **S. Maddali**, S. O. Hruszkewycz, A. Pateras, R. L. Sandberg, R. Harder, W. Cha, R. M. Suter and A. D. Rollett, Experimental demonstration of coupled multi-peak Bragg coherent diffraction imaging with genetic algorithms, **Phys. Rev. B**, Jun 2021
- [18] **S. Maddali**, J.-S. Park, H. Sharma, S. Shastri, P. Kenesei, J. Almer, R. Harder, M. J. Highland, Y. Nashed and S. O. Hruszkewycz, *High-Energy Coherent X-Ray Diffraction Microscopy of Polycrystal Grains: Steps Toward a Multiscale Approach*, **Phys. Rev. Applied**, Aug 2020
- [17] **S. Maddali**, P. Li, A. Pateras, D. Timbie, N. Delegan, A. L. Crook, H. Lee, I. Calvo-Almazan, D. Sheyfer, W. Cha, F. J. Heremans, D. D. Awschalom, V. Chamard, M. Allain and S. O. Hruszkewycz, General approaches for shear-correcting coordinate transformations in Bragg coherent diffraction imaging. Part I, **Journal of Applied Crystallography**, Apr 2020
- [16] Y. Cao, D. Sheyfer, Z. Jiang, **S. Maddali**, H. You, B. X. Wang, Z. G. Ye, E. M. Dufresne, H. Zhou, G. B. Stephenson and S. O. Hruszkewycz, *The Effect of Intensity Fluctuations on Sequential X-ray Photon Correlation Spectroscopy at the X-ray Free Electron Laser Facilities*, *Crystals*, December 2020
- [15] **S. Maddali**, M. Allain, P. Li, V. Chamard and S. O. Hruszkewycz, *Detector Tilt Considerations in Bragg Coherent Diffraction Imaging: A Simulation Study, Crystals*, December 2020
- [14] P. Li, **S. Maddali**, A. Pateras, I. Calvo-Almazan, S.O. Hruszkewycz, W. Cha, V. Chamard and M. Allain, General approaches for shear-correcting coordinate transformations in Bragg coherent diffraction imaging. Part II, **Journal of Applied Crystallography**, Apr 2020

 [DOI 10.1107/51600576720001375] [PROPRING LANGE LANGE
- [13] I. Calvo-Almazan, A. P. Ulvestad, E. Colegrove, T. Ablekim, M. V. Holt, M. O. Hill, **S. Maddali**, L. J. Lauhon, M. I Bertoni, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, S. O. Hruszkewycz and M. E. Stuckelberger, *Strain Mapping of CdTe Grains in Photovoltaic Devices*, *IEEE Journal of Photovoltaics*, Oct 2019
- [12] A. Ulvestad, S. O. Hruszkewycz, M. V. Holt, M. O. Hill, I. Calvo-Almazan, **S. Maddali**, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, L. J. Lauhon, N. Rodkey, M. I. Bertoni and M. E. Stuckelberger, *Multimodal X-ray imaging of grain-level properties and performance in a polycrystalline solar cell*, **Journal of Synchrotron Radiation**, Jul 2019
- [11] Yu-Feng Shen, **S. Maddali**, D. Menasche, A. Bhattacharya, G. S. Rohrer and R. M. Suter, Importance of outliers: A three-dimensional study of coarsening in α -phase iron, **Phys. Rev. Materials**, Jun 2019
- [10] N. Krishnamurthy, **S. Maddali**, J. A. Hawk and V. N. Romanov, *9Cr steel visualization and predictive modeling*, **Computational Materials Science**, Mar 2019

- [9] S. Kandel, **S. Maddali**, M. Allain, S. O. Hruszkewycz, C. Jacobsen and Y. Nashed, *Using automatic differentiation as a general framework for ptychographic reconstruction*, *Opt. Express*, Jun 2019
- [8] I. Calvo-Almazan, M. Allain, **S. Maddali**, V. Chamard and S. O. Hruszkewycz, *Impact and mitigation of angular uncertainties in Bragg coherent x-ray diffraction imaging*, **Scientific Reports**, Apr 2019
- [7] **S. Maddali**, M. Allain, W. Cha, R. Harder, J.-S. Park, P. Kenesei, J. Almer, Y. Nashed and S. O. Hruszkewycz, *Phase retrieval for Bragg coherent diffraction imaging at high x-ray energies*, *Phys. Rev.*A, May 2019

 [DOI 10.1103/PhysRevA.99.053838] [Preprint arxiv:1811.06181] [Am] [Social Content of the content o
- [6] A. Ulvestad, W. Cha, I. Calvo-Almazan, **S. Maddali**, S. M. Wild, E. Maxey, M. Dupraz and S. O. Hruszkewycz, *Bragg Coherent Modulation Imaging: Strain- and Defect- Sensitive Single Views of Extended Samples*, *arXiv*, Jul 2018
- [5] S. O. Hruszkewycz, **S. Maddali**, C. P. Anderson, W. Cha, K. C. Miao, M. J. Highland, A. Ulvestad, D. D. Awschalom and F. J. Heremans, *Strain annealing of SiC nanoparticles revealed through Bragg coherent diffraction imaging for quantum technologies*, **Phys. Rev. Materials**, Aug 2018
- [4] **S. Maddali**, I. Calvo-Almazan, J. Almer, P. Kenesei, J.-S. Park, R. Harder, Y. Nashed and S. O. Hruszkewycz, *Sparse recovery of undersampled intensity patterns for coherent diffraction imaging at high X-ray energies*, **Scientific Reports**, Mar 2018
- [3] M. J. Highland, S. O. Hruszkewycz, D. D. Fong, C Thompson, P. H. Fuoss, I. Calvo-Almazan, S. Maddali, A. Ulvestad, E. Nazaretski, X. Huang, H. Yan, Y. S. Chu, H. Zhou, P. M. Baldo and J. A. Eastman, In-situ synchrotron x-ray studies of the microstructure and stability of In2O3 epitaxial films, Applied Physics Letters, Oct 2017
- [2] L. Renversade, R. Quey, W. Ludwig, D. Menasche, **S. Maddali**, R. M. Suter and A. Borbely, Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy, **IUCrJ**, Jan 2016
- [1] **S. Maddali**, S. Ta'asan and R. M. Suter, Topology-faithful nonparametric estimation and tracking of bulk interface networks, **Computational Materials Science**, Dec 2016

 [DOI 10.1016/j.commatsci.2016.08.021] preprint arxiv:1601.04699 [An] [SCORT | 1]

© 2019-2023 Siddharth Maddali, all rights reserved. PDF generated on 2023-06-03 18:30:00 -0700.