| Test Result |    |   |       |         |      |        |        |
|-------------|----|---|-------|---------|------|--------|--------|
| t           | S0 | r | sigma | Delta_t | N    | Sample | Sample |
|             |    |   |       |         |      | mean   | std    |
| 0.05        | 1  | 0 | 1     | 0.005   | 1000 | 1.0057 | 0.2250 |

Histogram od St: s0=1,sigma=1.0,r=0.0,t=0.05



| Test Result |    |   |       |         |      |        |        |
|-------------|----|---|-------|---------|------|--------|--------|
| t           | S0 | r | sigma | Delta_t | N    | Sample | Sample |
|             |    |   |       |         |      | mean   | std    |
| 0.5         | 1  | 0 | 1     | 0.005   | 1000 | 1.0057 | 0.2250 |

Histogram od St: s0=1,sigma=1.0,r=0.0,t=0.5

| Test Result |    |   |       |         |      |        |        |
|-------------|----|---|-------|---------|------|--------|--------|
| t           | S0 | r | sigma | Delta_t | N    | Sample | Sample |
|             |    |   |       |         |      | mean   | std    |
| 1           | 1  | 0 | 1     | 0.005   | 1000 | 1.0057 | 0.2250 |



As we can see, when we change t from 0.05 to 1, the skewness of distribution become more obvious, meaning the frequency of extreme value could be larger, which leads to the difficulty of estimating E[St] for large t.