The Constructive Model of Univalence in Cubical Sets

Literature review

W. Vanhulle¹ A. Nuyts² D. Devriese³

¹Student

²Supervisor

³Promoter

45 min. public seminar

Outline

Introduction

Cubical model

Applications

A mathematician is asked by a friend who is a devout Christian:
"Do you believe in one God?"

What does he reply?

A mathematician is asked by a friend who is a devout Christian: "Do you believe in one God?"

What does he reply?

He answers: "Yes – up to isomorphism." (\mathbb{C} Michael Benjamin Stepp)

figures/isomorphism.jpg

Figure: Monkeys looking at isomorphic monkeys.

Algebraic Topology

Isomorphism in algebraic topology is "homotopy equivalence"

figures/donut.jpg

Figure: A mug

Figure: A donut

homotopy equivalent spaces have the same "number of *n*-dimensional holes"

Holes are homotopy groups

computed by looking at homotopy classes of continous embeddings

$$S^n \to X$$
, or $[0,1]^n \to X$

figures/loops.png

Figure: A donut has two 1-dimensional homotopy classes.

Figure: A ball without center has two 2-dimensional homotopy classes.

Type theory's origin

Russel, 1907

Invented to prevent paradox:

$$R = \{x \mid x \notin x\}, R \in R \Leftrightarrow \notin R$$

Solution was:

replace sets (and propositions) by types and elements by terms,

$$x \in R \Rightarrow x : R$$

types belong to universe hierarchy

$$\exists i, R : \mathcal{U}_i, \quad \mathcal{U}_0 : \mathcal{U}_1 : \dots$$

constructive logic and formation rules

 $x \notin x$ is not a valid proposition anymore

Type theory

Two meanings/subfields:

verifying computation in programming languages

Figure: A typed recursive function in Haskell

alternative constructive foundation of mathematics

```
\_ \circ \_ : ( \forall \{x\} (y : B x) \to C y) \to (g : (x : A) \to B x) 
((x : A) \to C (g x))
f \circ g = \lambda x \to f (g x)
```

Figure: Definition of the topological space S^1 in Agda

Type theory

Two meanings/subfields:

verifying computation in programming languages

Figure: A typed recursive function in Haskell

alternative constructive foundation of mathematics

Figure: Definition of the topological space S^1 in Agda

Type theory as foundation for mathematics

Deductive system of judgements with typing rules:

$$\frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash a : A}{\Gamma \vdash b : B}$$

- judgments express wether a type is inhabited
- all judgements have contexts
- typing rules tell how to form and combine types and terms

Equality in type theory

Martin-Löf, 1984

Definitional equality in type theory is for type checking, "denoted =" in code:

```
data Nat : Set where
  zero : Nat
  suc : (n : Nat) → Nat

_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
```

Figure: An example of definitional equality.

Mathematics needs a "softer" equality as in:

Example (Leibniz's extensionality principle)

$$f = g \Leftrightarrow f(x) = g(x), \forall x$$

Identity type

Martin-Löf, 1984

... introduction of propositional equality in form of "identity type"

Definition (Introduction rule)

Given a a: X, refl(a): a = a.

Elimination rule of equality type:

Definition (path induction)

Given the following terms:

- ▶ a predicate $C: \prod_{x,y,A} (x =_A y) \to \mathcal{U}$
- ▶ the base step $c: \prod_{x:A} C(x, x, refl_x)$

there is a function $f: \prod_{x,y:A} \prod_{p:x=Ay} C(x,y,p)$ such that $f(x,x,\text{refl}_x) \equiv c(x)$.

- weaker than equality "by definition".
- stronger than equivalence.

Intuition identity eliminator

Role of eliminator:

To prove a property C that depends on terms x, y and equalities p: x = y it suffices to consider all the cases where

- x is definitionally equal to y
- ▶ the term of the intensional equality type under consideration is $refl_x$: x = x.

Implications:

- proves transitivity, symmetry
- equality type can have multiple terms

Homotopy type theory (HoTT)

Awodey, 2006

Gives *homotopy* interpretation to equality type:

$$p,q: a =_X b$$
 $r,s: p =_{Id_X(a,b)} q$

 \Rightarrow alternative foundations for mathematics based on type theory and topology

Role of univalence

Voevodsky, 2009

Axiom (Univalence axiom)

Given types $X, Y : \mathcal{U}$ for some universe \mathcal{U} , the map $\Phi_{X,Y} : (X = Y) \to (X \simeq Y)$ is an equivalence of types.

equivalence of types is a bijection for set-like types

$$\mathbb{N}\simeq\mathbb{N}_0$$

univalence implies

$$\mathbb{N}\simeq\mathbb{N}_0\Rightarrow\mathbb{N}=\mathbb{N}$$

forces multiple terms of equality

⇒ terms of equality are like paths

Role of univalence

Voevodsky, 2009

Axiom (Univalence axiom)

Given types $X,Y: \mathscr{U}$ for some universe \mathscr{U} , the map $\Phi_{X,Y}: (X=Y) \to (X \simeq Y)$ is an equivalence of types.

equivalence of types is a bijection for set-like types

$$\mathbb{N}\simeq\mathbb{N}_0$$

univalence implies

$$\mathbb{N}\simeq\mathbb{N}_0\Rightarrow\mathbb{N}=\mathbb{N}$$

- forces multiple terms of equality
 - ⇒ terms of equality are like paths

Consequences of path interpretation

in general:

- equivalence behaves like homotopy equivalence
- mathematics "up to homotopy"
- lifting of path p as in algebraic topology: transport gives the other ending point of p*

Figure: Jeff Erickson, 2009

Origin univalence

Grayson, 2018

figures/voevodsky.jpg

Why is it called "univalent"?

... these foundations seem to be faithful to the way in which I think about mathematical objects in my head ...

faithful = univalent in a Russion translation of Boardman (2006)

Figure: Vladimir Voevodsky (1966 - 2017)

Origin univalence

Grayson, 2018

figures/voevodsky.jpg

Why is it called "univalent"?
... these foundations
seem to be faithful to
the way in which I think
about mathematical objects in my head ...

 $\begin{array}{l} \mbox{faithful} = \mbox{univalent in a Russion} \\ \mbox{translation of Boardman (2006)} \end{array}$

Figure: Vladimir Voevodsky (1966 - 2017)

Personal remark

The univalence axiom adds:

- intuitive explanation of equaity
- alternative foundations with types
- ▶ field of mathematics: HoTT

But does not:

- make all proofs easier or shorter
- eliminate proofs of equivalence

Computing with univalence Huber, 2015

What about:

- ▶ implementing HoTT?
- ▶ calculations with very simple types as N?

Can we, given a term $t: \mathbb{N}$ constructed using the univalence axiom, construct two terms $u: \mathbb{N}$ and $p: t =_{\mathbb{N}} u$ such that u does not involve the univalence axiom?

 \Rightarrow canonicity of $\mathbb N$ in cubical type theory (CTT)

$$t \equiv ua(...) \rightsquigarrow u \equiv S(...(0)...) : \mathbb{N}$$

What about:

- ▶ implementing HoTT?
- ▶ calculations with very simple types as N?

Can we, given a term $t:\mathbb{N}$ constructed using the univalence axiom, construct two terms $u:\mathbb{N}$ and $p:t=_{\mathbb{N}}u$ such that u does not involve the univalence axiom?

 \Rightarrow canonicity of $\mathbb N$ in cubical type theory (CTT)

$$t \equiv ua(...) \rightsquigarrow u \equiv S(...(0)...) : \mathbb{N}$$

Cubical type theory

Cohen et al., 2015

A constructive extension of HoTT with dimension variables $i, j, k : \mathbb{I}$ (cubes) as primitives:

```
figures/cubes.png
```

Figure: Discrete "n-cubes". Huber (2016)

- univalence becomes constructable
- computational interpretation for univalence

Are cubes a good idea?

EnigmaChord, 2016

figures/cube-joke.jpg

Figure:

(yes, they model n-dimensional homotopies)

Are cubes a good idea?

EnigmaChord, 2016

figures/cube-joke.jpg

Figure:

(yes, they model n-dimensional homotopies)

Cubes model homotopy

Altenkirch, Brunerie, Licata, et. al 2013

Homotopy groups are defined as equivalence classes of *continous* embeddings:

$$[0,1]^n \rightarrow X$$

In HoTT, higher-dimensional eqalities behave like these embeddings

Level	Types	Cubes	Topology
1	p, q : (a = b)	edge	line
2	r,s:(p=q)	face	path homotopy
			\dots
n		n-hypercube	n-dimensional homotopy

Cubes model homotopy

Altenkirch, Brunerie, Licata, et. al 2013

Homotopy groups are defined as equivalence classes of *continous* embeddings:

$$[0,1]^n \rightarrow X$$

In HoTT, higher-dimensional eqalities behave like these embeddings

Level	Types	Cubes	Topology
1	p,q:(a=b)	edge	line
2	r,s:(p=q)	face	path homotopy
			\dots
n	•••	n-hypercube	n-dimensional homotopy

Operations on cubes

Bezem, Coquand, Huber et al., 2013

figures/kan.jpg

Figure: Daniel Kan (1927 — 2013)

Necessary for modelling HoTT:

- ▶ composition ⇒ equality type
- ▶ glueing ⇒ univalence

figures/extension.png

Presheaf model on $\mathscr C$ Dybjer, 1994

Give interpretation for stuff in type theory:

- ▶ base category *C* contains "extra tools" for model
- ightharpoonup every context Γ is modelled as presheaf on \mathscr{C} , denoted $\widehat{\mathscr{C}}$.
- lacktriangle types and terms also interpreted in $\widehat{\mathscr{C}}$

Goals:

- verify consistency of type theory in sets
- justify primitives for implementations

Denoted as "presheaf model $\widehat{\mathscr{C}}$ ".

Presheaf model on \mathscr{C} Dybjer, 1994

Give interpretation for stuff in type theory:

- ightharpoonup base category $\mathscr C$ contains "extra tools" for model
- ightharpoonup every context Γ is modelled as presheaf on \mathscr{C} , denoted $\widehat{\mathscr{C}}$.
- lacktriangle types and terms also interpreted in $\widehat{\mathscr{C}}$

Goals:

- verify consistency of type theory in sets
- justify primitives for implementations

Denoted as "presheaf model $\widehat{\mathscr{C}}$ ".

Contexts in presheaf model $\widehat{\mathscr{C}}$

Definition (Presheaves $\widehat{\mathscr{C}}$)

Contravariant functors $\mathscr{C} \to \mathbf{Set}$

- generalize sheaves (see sheafication)
- model contexts

figures/presheaf.png

Figure: A representation of a preseheaf

Contexts in presheaf model $\{0,1\}$

Example (Reflexive directed graph) Take $\mathscr{C}=\{0,1\}$ and $\mathsf{Hom}_\mathscr{C}=\{B,E,R\}$, $\Gamma\in\widehat{\{0,1\}}$, then Applying functorial identities:

Figure: Reflexive graph

Types in presheaf model \mathscr{C}

Lemma (Types in a presheaf model)

If $\Gamma \in \widehat{\mathscr{C}}$ a context, then the types are

$$\{(\Delta,\sigma) \mid \Delta \in \widehat{\mathscr{C}}, \sigma \in \mathit{Hom}_{\mathit{Ctx}}(\Delta,\Gamma)\}.$$

Helps to characterize types without using presheaves explicitly.

Types in a presheaf model $\widehat{\{0,1\}}$

Example (Dependent directed reflexive graph) Applying previous lemma to the type A in $\{0,1\}$:

figures/type_lemma.png

Figure: Modelled by two contexts and a surjective morphism

CTT as a presheaf model

Dimension variables and cubes have an abstract representation as "hypercubes" in a base category:

```
figures/cube_presheaf.png
```

Figure: Presheaf acting on cubes

- proves consistency of CTT and HoTT
- justifies primitives used in implementations

Distributive lattice

Necessary to make cubical model CTT

 \mathbb{A} : countable set of "dimension variables"

CTT built with presheaves on "cube" category \square :

- ▶ objects: $\{I \mid |I| < \infty, I \subset \mathbb{A}\}$
- ▶ morphisms $J \rightarrow I$: maps $I \mapsto dM(J)$
 - distributive lattice
 - $x \land 0 = 0, x \lor 1 = 1$
 - ightharpoonup
 abla 0 = 1 and
 abla 1 = 0

Figure: A simple lattice

Contexts in presheaf model $\widehat{\Box}$

Example (Cubical contexts ("cubical sets"))

A presheaf $\Gamma \in \widehat{\square}$ is a functor $\square \to \mathbf{Set}$

- ▶ $\Gamma \in \widehat{\square}$ applied to $\{i,j\}$ gives square $\rho \in \Gamma(i,j)$
- ightharpoonup morphisms in lattice dM(i,j) give corners of ho

Types in presheaf model $\widehat{\Box}$

Type A is presheaf $\widehat{\int_{\mathscr{C}} \Gamma}$, a functor $\int_{\mathscr{C}} \Gamma \to \mathbf{Set}$:

- $ho \in \Gamma(i)$ is a line
- ▶ endpoints $\rho(0), \rho(1)$ lifted to $u(0), u(1) \in A(i, \rho)$

Figure: A type A within context Γ . Huber (2016)

Types in general presheaf models

In the presheaf model on \square :

- types more complicated
- types no longer simply nested graphs

Interpreting types in presheaf model \square hard but possible.

... transition from interpretation in model to syntax of types

Path type

Bezem, Coquand, 2013

Syntactical definition of Path type with typing rules:

$$\frac{i: \mathbb{I} \vdash t: A \qquad i: \mathbb{I} \vdash t(i/0) = a: A \qquad i: \mathbb{I} \vdash t(i/1) = b: A}{\left(\right) \vdash \langle i \rangle \ t: \text{Path } a \ b}$$

- almost models equality type
- ▶ not necessarily transitive ⇒ composition operation

$$\begin{array}{ccc}
 a & ---- & c \\
 refl & q & j \\
 a & \xrightarrow{p i} & b
\end{array}$$

Figure: Transitivity can be proven with composition operation.

Constructive model of type theory

Other types can be interpreted in the presheaf model $\widehat{\Box}$ for constructive model for type theory:

- product, sum types3
- natural numbers

Univalence proven with:

- concepts from simplicial set model (Streicher, Voevodsky, Kapulkin et al. 2006 – 2012)
- partial types and glueing construction

figures/simplex.phg

Figure: Related concept of a simplicial complex

Partial types

Bezem, Coquand, Huber 2013

Partial types only defined on subpolyhedra of cubes.

- ightharpoonup u 1-dimensional cube, line and type A:
- **Partial type** A(i/0) in type A:

```
figures/types_side.png
```

Figure: Huber, 2015

red = $A[(i=0) \mapsto A(i/0)]$ (syntax)

Proving univalence

Cohen, Coquand, Huber, Moertberg (2015)

Axiom (Univalence axiom)

Given types $X,Y:\mathscr{U}$ for some universe \mathscr{U} , the map $\Phi_{X,Y}:(X=Y)\to (X\simeq Y)$ is an equivalence of types.

Proof.

- 1. existence ua: $(X \simeq Y) \rightarrow (X = Y)$ with Glue construction.
- 2. for any partial $f: X \to Y$, Glue $[\phi \mapsto (X, f)] Y \simeq Y$
- 3. for any type Y, $\sum_X X \simeq Y$ contractible
- 4. existence of an equivalence "eliminator".
- 5. the trivial map $p: X = Y \rightarrow X \simeq Y$ is an inverse "up-to-path" of ua
- ⇒ map ua is equivalence

Constructing ua

Definition

ua:
$$\forall X Y: \mathcal{U}, X \simeq Y \rightarrow X = Y$$

$$\begin{array}{ccc}
X & -\frac{\text{ua} f}{f} & Y \\
\downarrow f & & \downarrow \text{idEquiv } Y \\
Y & & & Y
\end{array}$$

Input:

- partial equivalence f, type X
- ▶ a dimension variable or parameter i

Output:

- lacktriangle ua $f\equiv ext{Glue} \ [(i=0)\mapsto (X,f),(i=1)\mapsto (X, ext{idEquiv}\ Y)]\ Y$
- ▶ ua f is path with endpoints X and Y.

Applying ua from univalence

Example (Monoids)

$$M_1 \equiv (\mathbb{N}, (m, n) \mapsto m + n, 0)$$

and

$$M_2 \equiv (\mathbb{N}_0, (m,n) \mapsto m+n-1,1)$$

▶ are isomorphic by

$$\lambda n \rightarrow n+1$$

▶ (path-) equal in CTT

Definition of a monoid magma

isMagma = ...,

setoid encoding uses operator "•" and equivalence "≈":

```
notZero n = \Sigma N (\lambda m \rightarrow (n \equiv (suc m)))
\mathbb{N}_0 = \Sigma \mathbb{N} \ (\lambda \ n \rightarrow \text{notZero } n)
op<sub>2</sub>: Op<sub>2</sub> \mathbb{N}_0
op_{2}(x, p)(y, q) =
       (predN (x + y) , (predN (predN (x + y)) , sumLem x y)
M, : Algebra.Magma _ _
M_2 = record {
   Carrier = \mathbb{N}_0;
   _≈_ = (_≡_) ;
   \bullet = op_2;
```

Equality of carrier sets

```
\mathbb{N} \to \mathbb{N}_0 : n \mapsto n+1 is bijection
```

- is equivalence of (set-like) types
- univalence/ua returns equality N ≡ N₀

```
\begin{array}{l} f: \ \mathbb{N} \to \mathbb{N}_0 \\ f \ n = (suc \ n \ , \ ( \ n \ , \ refl \ ) \end{array}) \\ \dots \\ f Equiv : \ \mathbb{N} \simeq \mathbb{N}_0 \\ f Equiv = (f \ , \ isoToIsEquiv \ (iso f g l' r')) \\ \\ f Eq : \ \mathbb{N} \equiv \mathbb{N}_0 \\ f Eq \ i = ua \ f Equiv \ i \end{array}
```

Equality of monoids magmas

Defined for every component of record type:

```
mPath : s_1 \equiv s_2
mPath = \lambda i \rightarrow record {
    Carrier = (fEq i) ;
    \[ \approx = \ \eq \eq \];
    \[ \approx = \ \ \eq \ \text{transOp' i ;}
    \] isMagma = record {
    isEquivalence = \ \eq \ \eq \ \text{v-cong} = ?
    \] }
}
```

transOp' defined by transporting along $\mathbb{N} \equiv \mathbb{N}_0$, proofs can be transported over $s_1 \equiv s_2$.

Higher homotopies of spheres

Types in HoTT and CTT are topological spaces. Higher homotopy groups compute number of higher-dimensional holes in S^n :

figures/groups.png

Figure: HoTT Book, 2013

Homotopy groups can be defined in CTT as datatypes

Implementation in CTT

Brunerie, 2016

Theorem

$$\pi_4(S^3) \cong \mathbb{Z}_n$$
 for $n=2$

- proven in HoTT with univalence
- n implemented in CTT as a function
- canonicity predicts termination

(bug in Agda or CTT prevents evaluation)

figures/loops.png

Figure: The case S^1 is simply \mathbb{Z} (drawing from science4all)

Other research

Licata, Harper, Cavallo, Orton et al., 2018

- computational type theory is an alternative implementation
- composition operation may not be necessary
- alternatives to complicated glue types: fundamental axioms and language of topoi

Summary

- ► HoTT redefines equality
- ► CTT implements HoTT
- ► HoTT can be verified in computers

Thanks for watching!

For Further Reading I