Review

1-What is a sensitivity analysis?
What is the most common used tool in doing sensitivity analysis?

- 1-What is a sensitivity analysis?
- Sensitivity analysis is used to help understand how our decision might be affected if our original estimates are incorrect.
 Sensitivity analysis determines different values of an independent variable affect a particular dependent variable under a given set of assumptions. It is also known as a whatif analysis.

- What is the most common used tool in doing sensitivity analysis?
- Spider chart

2-What are the limitations of sensitivity analysis in making investment decisions?

- 2-What are the limitations of sensitivity analysis in making investment decisions?
- Only shows the impact of changes on one variable at a time
- It does not show how far the variable might change
- It does not address the probability of different values of variable's change
- It does not address the impact of correlation between variable on the result

• 3-How we describe an uncertain input to the economic analysis?

- 3-How we describe an uncertain input to the economic analysis?
- Random variable that is presented by probability distribution
- We construct the probability distribution by using the historical data, by presenting the frequency of occurrence of various values as a percentage or relative frequency.

• Example: Zinc-Lead-Silver mining project

• Estimated capital cost: 26 US\$

Event	Number of occurrence	Frequency of occurrence	Probability
23	1	1/18	0.05
24	2	2/18	0.11
25	2	2/18	0.11
26	3	3/18	0.17
27	5	5/18	0.28
28	3	3/18	0.17
29	2	2/18	0.11

5-Apply the expected value and variance concepts to a small premixed-concrete plant project. Suppose that the estimated probabilities of attaining various capacity utilizations are as follows:

Capacity (%)	Probability	Annual Revenue
50	0.10	\$405,000
65	0.30	526,500
75	0.50	607,500
90	0.10	729,000

•
$$(A \times B) = $575,100.$$

• Variance of annual revenue:

•
$$(A \times C) - (575,100)^2 = 6495390000$$

• Standard Deviation: 80593.98241

i	Capacity (%)	(A) Probability $p(x_i)$	(B) Revenue x _i	(A) × (B) Expected Revenue	$(C) = (B)^2$ x_i^2	(A) × (C)
1	50	0.10	\$405,000	\$40,500	1.64×10^{11}	0.164×10^{11}
2	65	0.30	526,500	157,950	2.77×10^{11}	0.831×10^{11}
3	75	0.50	607,500	303,750	3.69×10^{11}	1.845×10^{11}
4	90	0.10	729,000	72,900	5.31×10^{11}	0.531×10^{11}
				\$575,100		$3.371 \times 10^{11}(\$)^2$

•