Recall:

1. Mapping

- a. Developed code for basic mapping pipeline
- Manage to map part of Klaus with images captured at specific poses
- c. Encounter problem when trying to map a close environment

2. Localization

- a. Developed code for basic mapping pipeline
- b. The result is wrong

3. Proposal

- a. Written a proposal focus on autonomous blimp
- b. Revise the proposal

Plan:

1. Proposal

The proposal will be organized in 4 parts:

- a. Autonomous Blimp Design
- b. Mapping Structure from Motion (brief)
- c. Localization based on prebuilt feature map (Currently)
- d. Control (brief)

2. Mapping

- a. Test on different inputs to find the problem
- 3. Localization
 - a. Literature Review
- 4. Control

Astrobee

Related Papers:

Brian Coltin, et al, Localization from Visual Landmarks on a Free-flying Robot, 2016 IROS. Pyojin Kim, et al, Robust Visual Localization in Changing Lighting Conditions, 2017 ICRA.

Maria G Bualat, Astrobee: A New Tool for ISS Operations, 2018 SpaceOps Conference.

Lorenzo Fluvkiger, Astrobee Robot Software: Enabling Mobile Autonomy on the ISS, 2018.

Source Code:

https://github.com/nasa/astrobee.git

Fig. 1. Astrobee Video: https://w ww.youtube.c om/watch?v= G64Fs8UVUY E

a. Mapping

Collect Images (Sequence)

Surf Feature Detection

Feature Matching

Tracking Building

Initial Map Guess

Incremental Bundle
Adjustment

Global Bundle Adjustment

Rebuilding with BRISK

Registration

Bag of Words Database

b. Localization

Fig. 2. Prebuilt Map

Fig. 3. Localization

Trajectory Estimator (Localization) Basic Pipeline Development:

Pipeline:

Load the mapping result, includes landmark points and their corresponding normalized averaged descriptor values.

Top Level Unittest - Result (pass)

Fig 1. Along the z axis

Input with collected images - Result (wrong)

Fig 2. Along the z axis

Red crosses are landmarks. Poses (triangles at the pose origins) are poses generated through the mapping pipeline, which are the ground truths in this unittest.

Inputs:

- a. The map Landmark Object (3 lists: landmarks, descriptors, keypoints)
- b. The first image from the input image set of the mapping pipeline

Output:

a. A trajectory of one pose (circle) - list

Inputs:

- a. The map
- b. 6 images collected along the x axis from Pose2 to Pose3.

Output:

a. A trajectory of six poses (circle)

Analysis:

- a. too few landmarks
- Parameters effect matched feature key point distances, matched descriptors L2 distances
- The normalized averaged descriptors may cause matching problem and required further analysis.

Localization:

Ideas:

- a. Descriptors type
- b. Map data can be stored in KD tree for future fast matching
- c. Descriptor Matching(the type of distance)
- d. Filter Outlier

Matching Progress

- i. Use keypoint position to filter landmark points that can not be projected in the current view
- ii. Find feature matches
- iii. Filter feature matches with essential matrix
- iv. Some people store color information

Mapping:

Reconstruct Library with 4X8 Images

Fig 1. Top Down

Reconstruct Library with 2X3 Images

Fig 2. Forward

Fig 3. Top Down

Problems:

- 1. Jing C++ code
 - a. Has problem when two images do not have any matches
 - b. Have problem with large size images

2. GTSAM error

a. Only run Optimization

```
# Optimization
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial_estimate)
sfm result = optimizer.optimize()
```

b. Run Optimization and Marginalize

RuntimeError:

Indeterminant linear system detected while working near variable 8070450532247928845 (Symbol: pl3).

Thrown when a linear system is ill-posed. The most common cause for this error is having underconstrained variables. Mathematically, the system is underdetermined. See the GTSAM Doxygen documentation at http://borg.cc.gatech.edu/ on gtsam::IndeterminantLinearSystemException for more information.