M328K Homework 9

Joshua Dong

March 31, 2014

0.1 - 6.1.16

Show that if n is a composite integer with $n \neq 4$, then $(n-1)! \equiv 0 \pmod{n}$

If n is composite, then there two possibilities:

Case 1:

$$\exists a, b \in \mathbf{P}$$
 where $ab = n$ and $2 \le a < b \le n - 2$. $(ab - 1)! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot a \cdot \ldots \cdot b \cdot \ldots \cdot (ab - 1) \rightarrow ab \mid (ab - 1)!$

Case 2:

$$\nexists a, b \in \mathbf{P}$$
 where $ab = n$ and $2 \le a < b \le n - 2 \to \exists p \in \mathbf{P}$ where $p^2 = n$. Since $n > p$, $(n-1)! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot p \cdot \ldots \cdot (n-1)$. $\therefore p \mid (n-1)!$

Since $n \neq 4$ and all positive squares are greater than 4, 2p < n.

$$\therefore (n-1)! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot 2p \cdot \ldots \cdot (n-1).$$

$$\therefore 2p \mid (n-1)!$$

$$2p \mid (n-1)!$$
 and $p \mid (n-1)! \rightarrow 2p^2 \mid (n-1)! \rightarrow 2n \mid (n-1)! \rightarrow$

 $(n-1)! \equiv 0 \pmod{n}$ for all composites $n, n \neq 4$.

0.2 - 6.1.22

n | (n-1)!

Show that $30 \mid (n^9 - n) \ \forall n \in \mathbb{Z}^+$.

$$2,3,5 \mid n(n-1)(n+1)(n^2+1) \rightarrow 30 \mid n(n-1)(n+1)(n^2+1) \rightarrow 30 \mid n(n-1)(n+1)(n^2+1)(n^4+1) \rightarrow 30 \mid (n^9-n).$$

We now are left to prove that 2, 3, and 5 divide $n(n-1)(n+1)(n^2+1)$.

n(n-1) forms a sequence of two consecutive integers.

Therefore, one of them must divide 2 (this could be trivially shown with an enumeration of possibilities in the form 2q + r).

$$\therefore 2 \mid n(n-1)(n+1)(n^2+1) \ \forall n \in \mathbb{Z}^+.$$

n(n-1)(n+1) forms a sequence of three consecutive integers.

We can use the same argument we used to prove divisibility by two.

$$\therefore 3 \mid n(n-1)(n+1)(n^2+1) \ \forall n \in \mathbb{Z}^+.$$

Suppose 5 does not divide k(k-1)(k+1).

k must then be in the form 5t+2 or 5t+3 for some $t \in \mathbb{Z}^+$, as a form of 5t+0, 5t + 1, or 5t + 4 would result in the product having a term divisible by 5.

If k is in the form 5t + 2 or 5t + 3, then $(k^2 + 1)$ is in the form 25t + 4 + 1 or 25t + 9 + 1, both which are divisible by 5.

$$\therefore 5 \mid n(n-1)(n+1)(n^2+1) \ \forall n \in \mathbb{Z}^+.$$

$$\therefore 30 \mid (n^9 - n) \ \forall n \in \mathbb{Z}^+.$$

(However, it is worth noting that if n < 2, then the product is 0)

0.36.3.4

Show that if $a, m \in \mathbb{Z}^+$, (a, m) = (a - 1, m) = 1, then $1 + a + a^2 + ... + a^{\varphi(m) - 1} \equiv 0$ \pmod{m} .

Let
$$x \in \mathbb{Z}$$
 where $x = 1 + a + a^2 + \dots + a^{\varphi(m)-1}$ $ax = a + a^2 + \dots + a^{\varphi(m-1)} + a^{\varphi(m)}$ $ax + 1 = 1 + a + a^2 + \dots + a^{\varphi(m-1)} + a^{\varphi(m)}$ $ax + 1 = x + a^{\varphi(m)}$ $ax + \frac{1}{a-1} = x + a^{\varphi(m)} = \frac{a^{\varphi(m)} - 1}{a-1}$ $ax + \frac{1}{a-1} = \frac{1}{a-1} = 0$ (mod m) by Euler's totiont theorem, given

$$\frac{a^{\varphi(m)}-1}{a-1} \equiv \frac{1-1}{a-1} \equiv 0 \pmod{m}, \text{ by Euler's totient theorem, given } a > 1.$$

$$\vdots \quad 1+a+a^2+\dots+a^{\varphi(m)-1} \equiv 0 \pmod{m}, \quad \forall a, m \in \mathbb{Z}^+, (a,m)=(a-1,m)$$

0.46.3.10

Show that $a^{\varphi(b)} + b^{\varphi(a)} \equiv 1 \pmod{ab}$ given $a \perp b$.

 $a^{\varphi(b)} + b^{\varphi(a)} - 1 \equiv b^{\varphi(a)} - 1 \equiv 0 \pmod{a}$ by Euler's totient theorem $(a \perp b)$. Without loss of generality, $a^{\varphi(b)} + b^{\varphi(a)} - 1 \equiv 0 \pmod{b}$.

$$\therefore a^{\varphi(b)} + b^{\varphi(a)} - 1 \equiv 0 \pmod{ab}.$$

 $\therefore a^{\varphi(b)} + b^{\varphi(a)} \equiv 1 \pmod{ab}$ for all coprime integers a and b.