ATIS - Software Reverse Engineering

Prof. Dr. Christian Dietrich

1 Exercise: Introduction

1.1 Forward and Reverse Engineering

- a. Zeichnen Sie ein Diagramm, das Forward Engineering und Reverse Engineering schematisch in Anlehnung an Chikofsky/Cross darstellt.
- b. Wie bezeichnet man den Schritt des Reverse Engineerings, um Maschinencode in Assembly zu überführen?
- c. Wie bezeichnet man den Schritt des Reverse Engineerings, um Assembly in eine Hochsprache zu überführen?

1.2 Instruction Set Architecture and CPU

- a. Wie heisst die grundlegende Befehlssatzarchitektur (Instruction Set Architecture), die in der Vorlesung Software Reverse Engineering behandelt wird?
- b. Benennen Sie die CPU-Ringe und ihre Verwendungen.

1.3 Data representation

a. Aus der Vorlesung ist bekannt, dass ein typischer Hexdump aus 4 Spalten besteht und wie oben dargestellt aussieht. Bei folgendem Hexdump sind die Inhalte der ASCII-Spalte und der Kommentarspalte abhanden gekommen. Vervollständigen Sie die ASCII-Spalte:

Pos	Hexadecimal numbers	ASCII representation
0000	53 6F 66 74 77 61 72 65	
0008	52 65 76 65 72 73 65 45	
0010	6E 67 69 6E 65 65 72 69	
0018	6E 67	

- b. Wie lautet die Hexadezimaldarstellung der als little endian double word kodierten Ganzzahl 1234567?
- c. Wie lautet die Hexadezimaldarstellung derselben Zahl als big endian double word?

1.4 Computations

Berechnen Sie jeweils und notieren Sie das Ergebnis als Hexadezimalzahl mit dem Praefix 0x:

- a. 3 + 0x8 =
- b. 2 * 0x10 =
- c. 0x10 * 0x10 =
- d. 0x1000 1 =
- e. 0b101010 & 0b010101 =
- f. $0b101010 \oplus 0b010101 =$
- g. 0b10 + 0x10 =