Classification

Domain	Question		
Telecom	Is a customer likely to leave the network? (churn prediction)		
Retail	Is he a prospective customer? that is likelihood of purchase vs. non-purchase?		
Insurance	To issue insurance should a customer be sent for a medical checkup?		
Insurance	Will the customer renew the insurance?		
Banking	Will a customer default on the loan amount?		
Banking	Should a customer be given a loan?		
Manufacturing	Will the equipment fail?		
Health Care	Is the patient infected with a disease?		
Health Care	What type of disease does a patient have?		
Entertainment	What is the genre of music?		

New

Data

Data

Preprocessing

Validation

Prediction

Logistic Regressions

(Classification)

Simple Linear Regression overview

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + \dots + b_n * x_n$$

Simple Linear Regression:

Retail (Like hood to rchase) Purchased (Y/N) $\Pi \rightarrow Nnn-Purchased$ $1 \rightarrow Purchased$ 00000Salary

Linear Regression Prediction in Retail (Like hood to purchase)

Probability of Likely hood to purchase

Probability of Likely hood to purchase

The Line above and below the probability limit is telling that there is more likely to purchased and not-purchased

Logistic Regression

• Fundamental Idea is to introduce **sigmoid** or **Logit function** to regression equation.

Eq. of linear regression:
$$y = b_0 + b_1 * x_1$$

Logistic regression can be explained better in odd ratios.

"Odd of an event occurring are defined =
$$\frac{\text{probability of event occurring}}{\text{probability of event not occurring}}$$
"

odd ratio of purchased vs not purchased =
$$\frac{P(y=1)}{1 - P(y-1)}$$

$$logits = y = log_e \left(\frac{P(y=1)}{1 - P(y-1)} \right)$$

From Linear Regression

$$y = b_0 + b_1 * x_1$$

$$\log_e\left(\frac{P}{1-P}\right) = b_0 + b_1 * x_1$$

$$\log_e\left(\frac{P}{1-P}\right) = b_0 + b_1 * x_1$$

$$p = \frac{1}{1 + e^{-(b_0 + b_1 * x_1)}}$$

Logistic Regression is same as

linear regression as best fit line

Logistic Regression

Logistic Regression

Classification Model Performance

True Negatives (TN): Actual FALSE, which was predicted as FALSE

False Positives (FP): Actual FALSE, which was predicted as TRUE (Type I error)

False Negatives (FN): Actual TRUE, which was predicted as FALSE (Type II error)

True Positives (TP): Actual TRUE, which was predicted as TRUE

Classification Performance Metric

Metric	Description	Formula
Accuracy	What % of the prediction were correct?	(TP + TN)/ (TP + TN + FP + FN)
Misclassification rate	What % of prediction were wrong ?	(FP + FN)/(TP + TN + FP + FN)
True Positive rate or Sensitivity or Recall	What % of positive classes did model catch ?	TP / (TP + FN)
False positive rate	What % of "No" were predicted "Yes"	FP / (FP + TN)
Specificity	What % of "No" were predicted "No"	TN / (TN + FP)
Precision (exactness)	what % of positive predictions were correct?	TP/(TP+FP)
F1 score	Weighted average of precision and recall	2*((precision * recall) / (precision + recall))

Hands on Logistic Regression

INNOMATICS TECHNOLOGY HUB