MA1102

Series & Matrices

Assignment-2 Series Representation of Functions

1. Determine the interval of convergence for each of the following power series:

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 (b) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ (c) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$

- 2. Determine the interval of convergence of the series $\frac{2x}{1} \frac{(2x)^2}{2} + \frac{(2x)^3}{3} \cdots$
- 3. Determine power series expansion of the following functions:

(a)
$$\ln(1+x)$$
 (b) $\frac{\ln(1+x)}{1+x}$

(b)
$$\frac{\ln(1+x)}{1-x}$$

- 4. The function $\frac{1}{1-x}$ has interval of convergence (-1,1). However, prove that it has power series representation around any $c \neq 1$.
- 5. Find the sum of the alternating harmonic series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$.
- 6. Give an approximation scheme for $\int_0^a \frac{\sin x}{x} dx$ where a > 0.
- 7. Give an example of an infinitely differentiable function which has a Taylor series expansion at a point but the Taylor series does not represent the function around that point.
- 8. Show that $1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{1}{7} + \dots = \frac{\pi}{2}$.
- 9. Find the Fourier series of f(x) given by: f(x) = 0 for $-\pi \le x < 0$; and f(x) = 1 for $0 \le x \le \pi$. Say also how the Fourier series represents f(x). Hence give a series expansion of $\pi/4$.
- 10. Considering the fourier series for |x|, deduce that $\frac{\pi^2}{8} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$.
- 11. Considering the fourier series for x, deduce that $\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$.
- 12. Considering the fourier series for f(x) given by: f(x) = -1, for $-\pi \le x < 0$ and f(x) = 1 for $0 \le x \le \pi$ deduce that $\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$.
- 13. Considering $f(x) = x^2$, show that for each $x \in [0, \pi]$,

$$\frac{\pi^2}{8} + 2\sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2} = \sum_{n=1}^{\infty} \frac{n\pi^2(-1)^{n+1} + 2(-1)^n - 2}{n^2\pi} \sin nx.$$

14. Represent the function f(x) = 1 - |x| for $-1 \le x \le 1$ as a cosine series.