ELEC/COMP 576: Introduction to Deep Learning

Rice Electrical & Computer Engineering and Baylor College of Medicine Neuroscience

Schedule and Syllabus

Note: This syllabus is subject to change based on the needs of the class

Event Type	Date	Description	Course Material
Lecture	Aug 25	Overview of Deep Learning Applications	[slides F20]
Lecture	Aug 25,	History of Deep Learning	[slides F20]
	Sep 1	Assignment #0 available	
Lecture	Sep 1	Stochastic Gradient Descent, Neural Networks, & Backpropagation	[slides F20]
Lecture	Sep 8	Neural Networks & Backpropagation (cont.)	[slides F20]
		Asssigment #0 due	
		Assignment #1 available	
Lecture	Sep 15	Neural Networks & Backpropagation (cont.)	[slides F20]
		Introduction to ConvNets (architectures – AlexNet, VGG, Inception,	
		ResNet, DenseNet – loss surface,)	[slides F20]

Guest Lecture: Erik Enquist, Rice RCSG

Lecture	Sep 22	Introduction to ConvNets (architectures – AlexNet, VGG, Inception, ResNet, DenseNet – loss surface,) (cont.)	[slides F20]
		Training ConvNets	[slides F20]
Lecture	Sep 29	Species of ConvNets	[slides F20]
Lecture	Oct 6	Understanding and Visualizing Convnets &	[slides F20]
		Introduction to Recurrent Neural Networks	
		Assignment #1 due	
Lecture	Oct	Recurrent Neural Networks Applications	[slides F20]
		Assignment #2 available	
Lecture	Oct 20	Recurrent Neural Networks Applications (cont.)	[slides F20]
Lecture	Oct 27	Recurrent Neural Networks Applications (cont.)	[slides F20]
		Assignment #2 due	
Lecture	Nov 3	Deep Reinforcement Learning	[slides F20]
		Understanding Neural Nets as Splines	Fathala a
		Final Project Proposal due	[slides F20]
Lecture	Nov 10	Understanding Neural Nets as Splines (cont.)	[slides F20]
		Deep Reinforcement Learning	[slides
		Proposal reviews available	F20]
Lecture	Nov 17	Guest Lecture: Randall Balaestriero	

Spline Operators and Deep Networks

Lecture Nov

24

Thanksgiving - No class

Final

Dec 1 Project Presentation

Project

Dec

15,

23:59 Project Report Due