

Introducción a Ciencia de la Computación Práctica Calificada 1 Pregrado 2020-I Profesor Jorge Alvarado Lab 1.01

Indicaciones específicas:

- Esta evaluación contiene 7 páginas (incluyendo esta página) con 4 preguntas. El total de puntos son 0.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta y tu código de estudiante. Por ejemplo:
 - 1. p1_codigoalumno.py
 - 2. p2_codigoalumno.py
 - 3. p3_codigoalumno.py
 - 4. p4_codigoalumno.py
- Luego deberás incluir estos archivos en una carpeta con nombre pc1; para que finalmente envíes esta carpeta comprimida pc1.zip a www.gradescope.com

Competencias:

- Para los alumnos de la carrera de Ciencia de la Computación
 - Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- Para los alumnos de las carreras de Ingeniería
 - Capacidad de aplicar conocimientos de ingeniería (**nivel 2**).

1. (5 points) Escribir un programa que permita determinar la magnitud de un temblor o terremoto en la escala de Ritcher, según se describe en la siguiente tabla:

Table 1: Escala de Ritcher Magnitud Descripción Menor a 2.0 Micro 2.0 a menor de 3.0Muy menor 3.0 a menor de 4.0Menor 4.0 a menor de 5.0Ligero 5.0 a menor de 6.0Moderado 6.0 a menor de 7.0Fuerte 7.0 a menor de 8.0Muy fuerte 8.0 a menor de 10.0Gran 10.0 o mas Cataclismo

- Lea la magnitud ingresada por el usuario y muestre la descripción correspondiente.
- Vea los casos indicados para una mejor comprensión de las respuestas.

Algunos ejemplos de diálogo de este programa serían:

Listing 1: Ejemplo 1

m:5.5		
Moderado		

Listing 2: Ejemplo 2

m:6.678	
Fuerte	

Listing 3: Ejemplo 3

m:3.0			
Menor			

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts).
	quiere (3pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no hay	sentencias son correc-	las sentencias son cor-
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).
	(1pts).	sintáxis. (0.5pts).	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts).

2. (5 points) Elabore un programa que calcule la siguiente sumatoria:

$$\sum_{i=1}^{n} \frac{1}{i(i+1)}$$

- Su programa solicita el valor de n, interprete la formula matemática y representela en forma algoritmica.
- Utilice solo bucle while
- n debe ser mayor a 0. En caso no lo sea, volver a solicitar el valor.
- Devuelva los valores a 4 decimales. Use **round**(respuesta,4)

Algunos ejemplos de diálogo de este programa serían:

Listing 4: Ejemplo 1

n:5
0.8333

Listing 5: Ejemplo 1

n:20	
0.9524	

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts).
	quiere (3pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no hay	sentencias son correc-	las sentencias son cor-
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).
	(1pts).	sintáxis. (0.5pts).	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts).

- 3. (5 points) Diseñe un algoritmo que calcule la velocidad (en metros/s) de los corredores de una carrera de 1500 metros (distancia). La entrada serán parejas de numeros (minutos, segundos) que darán el tiempo de cada corredor. Por cada corredor se imprime el tiempo en minutos y segundos, así como la velocidad media.
 - $\bullet\,$ El bucle se ejecutará hasta que la entrada se
a0minutos.

Esto será la marca de fin de datos de entrada.

- Recuerde que la velocidad es igual a distancia/tiempo, calcule el total de segundos por corredor para determinar la velocidad media.
- exprese la velocidad a 4 decimales.

Algunos ejemplos de diálogo de este programa serían:

Listing 6: Ejemplo 1

```
Ingrese los minutos:3
Ingrese los segundos:45
velocidad:6.6667 metros/s

Ingrese los minutos:4
Ingrese los segundos:43
velocidad:5.3004 metros/s

Ingrese los minutos:0
Ingrese los segundos:4
```

Listing 7: Ejemplo 2

```
Ingrese los minutos:3
Ingrese los segundos:40
velocidad:6.8182 metros/s

Ingrese los minutos:3
Ingrese los segundos:55
velocidad:6.383 metros/s

Ingrese los minutos:0
Ingrese los segundos:0
```

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts).
	quiere (2pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no hay	sentencias son correc-	las sentencias son cor-
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).
	(1pts).	sintáxis. (0.5pts).	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts) .
Iteración	Recorre adecuada-		No recorre los elemen-
	mente los elementos		tos del string de forma
	del string (1pts)		programática y solo
			funciona en algunos
			casos. (0 pts).

- 4. (5 points) Elabore un programa que contabilice cuantas combinaciones de i + j = 0 existen en un rango de los numeros enteros desde [-n, n], ingrese un valor de n > 0.
 - Utilice bucles anidados que van desde -n a n

Algunos ejemplos de diálogo de este programa serían:

Listing 8: Ejemplo 1

n=2 Son 5 combinaciones igual a 0

Listing 9: Ejemplo 2

n:3 Son 7 combinaciones igual a 0

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts).
	quiere (3pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no hay	sentencias son correc-	las sentencias son cor-
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).
	(1pts).	sintáxis. (0.5pts).	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts).