Hypotheses Testing

```
In [1]: # Importing pandas for dataframe operations
import pandas as pd

# Importing scipy.stats for statistical computations
import scipy.stats
import statsmodels.stats
```

Reading CSV file

```
In [2]: cars_data=pd.read_csv('cars_sampled.csv' )
```

Creating copy

```
In [3]: cars=cars_data.copy()
```

Working range of data

One sample test for mean

Three years back, the average price of a used car was 6000 \$. Has it changed now?

Hypotheses	H0 : µ = 6000 HA : µ ≠ 6000
Sample Statistics	$ar{x}$ "s" being used as an estimator of " σ "
Test Statistics	"t" value-?
Critical Values	?
Max Uncertainty α	0.05
Computed Uncertainty p	?
Decision on H0	?

Arriving at a sub sample from 'cars' data

```
In [5]: sample_size=1000
sample1=cars.sample(sample_size,random_state=0)
```

Postulated mean and sample mean

```
In [6]:    pos_mean = 6000
In [7]:    print(sample1['price'].mean())
    6188.337
```

Importing the package for one sample t-test

```
In [8]: from scipy.stats import ttest_1samp
In [9]: statistic,pvalue = ttest_1samp(sample1['price'],pos_mean)
    print(statistic,pvalue)
```

0.8148683326967585 0.41534189398889065

Calculating the degrees of freedom

```
In [10]: # No. of observations/records in data
n = len(sample1['price'])
# Degrees of freedom= n-1
df = n-1
print(n,df)
```

1000 999

Significance level

```
In [11]: alpha=0.05
```

Importing the package for t distribution

, be meses resum a cobs	
Hypotheses	H0 : µ = 6000 HA : µ ≠ 6000
Sample Statistics	$ar{x}$ = 6188.34
Canny Commons	"s" being used as an estimator of " σ "
Test Statistics	"t" value=0.815
Critical Values	[-1.96,+1.96]
Max Uncertainty α	0.05
Computed Uncertainty p	0.415
Decision on H0	Do Not Reject Null Hypothesis Conclude $\mu = 6000$

One sample test for proportion

Three years back, % of used car with automatic transmission were 23%. Has it changed now?

Hypotheses	H0: π = 0.23 HA: π ≠ 0.23
Sample Statistics	\hat{p} "H0" is used to compute " σ "
Test Statistics	"z" value-?
Critical Values	?
Max Uncertainty α	0.05
Computed Uncertainty p	?
Decision on H0	?

We will be using 'sample1' again

Importing the package for one sample z-test

```
In [14]: from statsmodels.stats.proportion import proportions_ztest
```

```
In [15]: | # No.of gearbox='automatic'
          count = sample1['gearbox'].value_counts()[1]
          # Total no. of observations
          nobs = len(sample1['gearbox'])
          # Hypothesized value
          p0 = 0.23
In [16]: | # In the sample
          sample1['gearbox'].value_counts()/nobs
                       0.771
          manual
Out[16]:
```

automatic

0.214 Name: gearbox, dtype: float64

$$\sigma_p = \sqrt{rac{\pi(1-\pi)}{n}}$$
 $z = rac{\hat{p}-\pi}{\sigma}$

-1.233678008148831 0.21732291189942932

[-1.95996398 1.95996398]

Hypotheses	H0 : π = 0.23 HA : π ≠ 0.23
Sample Statistics	\hat{p} =0.214
Test Statistics	"z" value= -1.23
Critical Values	[-1.96, +1.96]
Max Uncertainty α	0.05
Computed Uncertainty p	0.22
Decision on H0	Do Not Reject Null Hypothesis Conclude $\pi = 0.23$

Two sample test for means

Is the mean price of cars that have run 30000 - 60000 KM, the same as that for cars that have run 70000 - 90000 KM?

	Hypotheses	$egin{aligned} \mathrm{H}_0: \mu_1 = \mu_2 \ \mathrm{H}_\mathrm{A}: \mu_1 eq \mu_2 \end{aligned}$
--	------------	--

 \bar{x}

Sample Statistics

"s" being used as an estimator of " σ "

Test Statistics	Depends on whether the two groups have equal or unequal variance
Critical Values	?
Max Uncertainty α	0.05
Computed Uncertainty p	?
Decision on H0	?

We first need to test whether the variance in price of cars that have run 30000 - 60000 KM, the same as the variance in price of cars that have run 70000 - 90000 KM?

Subsetting records based on kilometer limits and drawing 500 samples from each

```
In [19]: km_70000_90000=cars[(cars.kilometer <= 90000) & (cars.kilometer >= 70000)]
   km_30000_60000=cars[(cars.kilometer <= 60000) & (cars.kilometer >= 30000)]

In [20]: sample_70000_90000=km_70000_90000.sample(500,random_state=0)
   sample_30000_60000=km_30000_60000.sample(500,random_state=0)
```

Sample variance

```
In [21]: print(sample_70000_90000.price.var())
    print(sample_30000_60000.price.var())
```

86753098.35060121 155442577.94620845

Sample mean

```
In [22]: print(sample_70000_90000.price.mean())
    print(sample_30000_60000.price.mean())
```

9450.59 14515.678

Computing the F statistic

```
In [23]: from scipy.stats import f
F=sample_70000_90000.price.var()/sample_30000_60000.price.var()
print(F)
```

0.5581038316324275

Calculating the degrees of freedom for the two samples

```
In [24]: df2=len(sample_70000_90000)-1
    df1=len(sample_30000_60000)-1

In [25]: scipy.stats.f.cdf(F, df1, df2)

Out[25]: 5.0498268005416406e-11

In [26]: f.ppf([alpha/2,1-alpha/2],df1, df2)

Out[26]: array([0.83888578, 1.1920574])
```

Hypotheses	$egin{aligned} \mathrm{H}_0:\sigma_1^2&=\sigma_2^2\ \mathrm{H}_\mathrm{A}:\sigma_1^2& eg\sigma_2^2 \end{aligned}$
Sample Statistics	Variance 30000-60000=155442577.95 70000-90000=86753098.35
Test Statistics	F statistic=0.56
Critical Values	[0.84,1.19]
Max Uncertainty α	0.05
Computed Uncertainty p	$5.05*10^{-11}$
Decision on H0	Reject H0 $\sigma_1^2 eq \sigma_2^2$ Unequal variances

Welch t test for unequal variances

Trypotheses results steps	
Hypotheses	$egin{aligned} \mathrm{H}_0: \mu_1 &= \mu_2 \ \mathrm{H}_\mathrm{A}: \mu_1 & eq \mu_2 \end{aligned}$
Sample Statistics	$ar{x}$ "s" being used as an estimator of " σ "
Test Statistics	Welch t test for unequal variance
Critical Values	?
Max Uncertainty α	0.05
Computed Uncertainty p	?
Decision on H0	?

In [27]: | from scipy.stats import ttest_ind statistic_twomean,pvalue_twomean=ttest_ind(sample_30000_60000.price,sample_70000_90000.p rice,equal var=False) print(statistic twomean, pvalue twomean)

7.277610434526923 7.258473522297715e-13

To get critical values we need degrees of freedom

$$dfpproxrac{\left(rac{s_1^2}{N_1}+rac{s_2^2}{N_2}
ight)^2}{rac{s_1^4}{N_1^2df_1}+rac{s_2^4}{N_2^2df_2}}$$

```
In [28]: N1=len(sample_30000_60000)
    N2=len(sample_70000_90000)
    s12=sample_30000_60000.price.var()
    s22=sample_70000_90000.price.var()
    df=(((s12/N1)+(s22/N2))**2)/((((s12/N1)**2)/(N1-1))+(((s22/N2)**2)/(N2-1)))
    print(df)

923.7016134521467

In [29]: cv_t = t.ppf([alpha/2,1-alpha/2],df)
    print(cv_t)
```

[-1.96253552 1.96253552]

1) potrioses resting etops	
Hypotheses	$egin{aligned} \mathrm{H}_0: \mu_1 &= \mu_2 \ \mathrm{H}_\mathrm{A}: \mu_1 eq \mu_2 \end{aligned}$
Sample Statistics	\overline{x} 30000-60000=14515.68 dollar 70000-90000=9450.59 dollar
Test Statistics	Welch t test for unequal variance t statistic = 7.28
Critical Values	[-1.96,+1.96]
Max Uncertainty α	0.05
Computed Uncertainty p	7.26^*10^{-13}
Decision on H0	Reject H0 μ1≠μ2

Two sample test for proportion

Are the proportion petrol cars in two different time periods 2009 – 2013, and 2014 – 2018, different?

Hypotheses	$egin{aligned} \mathrm{H}_0:\pi_1=\pi_2\ \mathrm{H}_\mathrm{A}:\pi_1 eq\pi_2 \end{aligned}$
Sample Statistics	\hat{p} Pooled estimate is used to compute " σ "
Test Statistics	"z" value-?
Critical Values	?
Max Uncertainty α	0.05
Computed Uncertainty p	?
Decision on H0	?

$$\hat{p} = rac{n_1 P_1 + n_2 P_2}{n_1 + n_2}$$

$$S_{P_1-P_2} = \sqrt{\hat{p}(1-\hat{p})\left[rac{1}{n_1}+rac{1}{n_2}
ight]}$$

$$Z=rac{P_1-P_2}{S_{P1-p2}}$$

Subsetting records based on year and drawing 1000 samples from each

```
In [32]: from statsmodels.stats.proportion import proportions_ztest
    count = [(sample_2014_2018['fuelType']=='petrol').sum(),(sample_2009_2013['fuelType']==
    'petrol').sum()]
    nobs = [len(sample_2014_2018),len(sample_2009_2013)]

In [33]: print(count[0]/nobs[0])
    print(count[1]/nobs[1])

0.494
```

0.506

Trypotheses resting steps	
Hypotheses	$egin{aligned} \mathrm{H}_0:\pi_1&=\pi_2\ \mathrm{H}_\mathrm{A}:\pi_1 eq\pi_2 \end{aligned}$
Sample Statistics	<i>p̂</i> 2009-2013=0.506 2014-2018=0.494
Test Statistics	"z" value= -0.54
Critical Values	[-1.96,+1.96]
Max Uncertainty α	0.05
Computed Uncertainty p	0.59
Decision on H0	Do Not Reject Null Hypothesis Conclude $\pi 1 = \pi 2$

Chi-square test of independence

Is vehicleType dependent on fuelType?

In [37]: # Cross table between fuelType and vehicleType
 cross_table=pd.crosstab(cars['fuelType'],cars['vehicleType'])

In [38]: cross_table

Out[38]:

vehicleType	bus	cabrio	coupe	limousine	others	small car	station wagon	suv
fuelType								
cng	31	1	1	6	2	11	16	0
diesel	2257	195	324	3446	159	839	4266	1120
electro	0	0	0	1	0	9	0	0
hybrid	0	0	2	19	1	6	5	3
lpg	74	35	47	218	3	64	137	92
other	0	1	1	3	0	0	1	0
petrol	1183	2500	1831	7755	142	8020	3406	592

```
In [39]:
         scipy.stats.chi2 contingency(cross table)
          (7987.74154009857,
Out[39]:
           0.0,
           42,
           array([[6.20888603e+00, 4.78495815e+00, 3.86369607e+00, 2.00505860e+01,
                   5.37694784e-01, 1.56737154e+01, 1.37155956e+01, 3.16486800e+00],
                  [1.15101790e+03, 8.87046800e+02, 7.16261069e+02, 3.71702480e+03,
                   9.96791243e+01, 2.90563024e+03, 2.54262939e+03, 5.86710676e+02],
                  [9.13071475e-01, 7.03670316e-01, 5.68190599e-01, 2.94861558e+00,
                   7.90727624e-02, 2.30495815e+00, 2.01699936e+00, 4.65421764e-01],
                  [3.28705731e+00, 2.53321314e+00, 2.04548616e+00, 1.06150161e+01,
                   2.84661945e-01, 8.29784932e+00, 7.26119768e+00, 1.67551835e+00],
                  [6.11757888e+01, 4.71459111e+01, 3.80687701e+01, 1.97557244e+02,
                   5.29787508e+00, 1.54432196e+02, 1.35138957e+02, 3.11832582e+01],
                  [5.47842885e-01, 4.22202189e-01, 3.40914359e-01, 1.76916935e+00,
                   4.74436574e-02, 1.38297489e+00, 1.21019961e+00, 2.79253059e-01],
                  [2.32184945e+03, 1.78936325e+03, 1.44485187e+03, 7.49803457e+03,
                   2.01074127e+02, 5.86127807e+03, 5.12902766e+03, 1.18352100e+03]]))
```

In [40]:

Explain output

pd.crosstab(cars['fuelType'],cars['vehicleType'],margins=True)

Out[40]:

vehicleType	bus	cabrio	coupe	limousine	others	small car	station wagon	suv	All
fuelType									
cng	31	1	1	6	2	11	16	0	68
diesel	2257	195	324	3446	159	839	4266	1120	12606
electro	0	0	0	1	0	9	0	0	10
hybrid	0	0	2	19	1	6	5	3	36
lpg	74	35	47	218	3	64	137	92	670
other	0	1	1	3	0	0	1	0	6
petrol	1183	2500	1831	7755	142	8020	3406	592	25429
All	3545	2732	2206	11448	307	8949	7831	1807	38825

$$E_{ij}=rac{R_iC_j}{N}$$

$$E_{ij}=rac{R_iC_j}{N}$$
 $\chi^2=\sumrac{(O-E)^2}{E}$

In [41]:

68*3545/38825

6.20888602704443 Out[41]:

Hypotheses	H0: vehicleType dependent on fuelType HA:vehicleType is not dependent on fuelType				
Test Statistics	$\chi^2 = 7987.7$				
Critical Values	[25.99,61.78]				
Max Uncertainty α	0.05				
Computed Uncertainty p	0				
Decision on H0	Reject Null Hypothesis Conclude vehicleType is not dependent on fuelType				