中国科学技术大学六系研究生课程《数字图像分析》

第四章:图像分割—边缘检测

中国科学技术大学 电子工程与信息科学系

主讲教师: 李厚强 (<u>lihq@ustc.edu.cn</u>)

周文罡 (zhwg@ustc.edu.cn)

助教: 谢乔康 (xieqiaok@mail.ustc.edu.cn)

周 浩 (zhouh156@mail.ustc.edu.cn)

边缘检测

- □ 边缘模型
- □ 边缘检测算子
- □ 边缘拟合
- □ 边缘搜索
- □ 多尺度边缘检测

边缘检测

- □ 边缘模型
- □ 边缘检测算子
- □ 边缘拟合
- □ 边缘搜索
- □ 多尺度边缘检测

边缘模型

图象边缘模型及其一阶、二阶导数

描述边缘的参数

描述边缘的参数

- □ 位置
 - 边缘(等效的)最大灰度不连续处
- □ 朝向
 - 跨越灰度最大不连续的方向
- □ 幅度
 - 灰度不连续方向上的灰度差
- □ 均值
 - 属于边缘的像素的灰度均值
- □ 斜率
 - 边缘在其朝向上的倾斜程度

边缘检测

- □ 边缘模型
- □ 边缘检测算子
- □ 边缘拟合
- □ 边缘搜索
- □ 多尺度边缘检测

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

正交梯度算子

□ 梯度算子

■ 一阶差分算子

矢量
$$\nabla f(x,y) = \begin{bmatrix} G_x & G_y \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}^{\mathrm{T}}$$

幅度
$$mag(\nabla f) = \left[G_x^2 + G_y^2 \right]^{1/2}$$

方向角
$$\phi(x, y) = \arctan(G_y/G_x)$$

剖面

二阶导数

正交梯度算子

梯度算子

利用模板(与图象进行)卷积

_	- 1	

- 1	1
- 1	1
- 1	1

- 1	- 1	- 1

- 1	1
- 2	2
- 1	1

1	2	1
- 1	- 2	- 1

Roberts (a)

(b) Prewitt

(c) Sobel

- 模板比较
 - ① 边缘粗细
 - ② 方向性

梯度图示例

梯度图示例: a)原图; b) Sobel 水平模板; c) Sobel 垂直模板; d) Sobel梯度图 (范数2) e) Sobel梯度图 (范数1) f) Sobel梯度图 (范数∞)

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

方向微分算子

□ 基于特定方向上的微分来检测边缘

八方向Kirsch(7×7)模板

- 5	3	3
- 5		3
- 5	3	3

3	3	3
- 5	0	3
- 5	- 5	3

3	3	3
3	0	3
- 5	- 5	- 5

3	3	3
3	0	- 5
3	- 5	- 5

3	3	- 5
3		- 5
3	3	- 5

- 5	- 5	3
- 5	0	3
3	3	3

方向微分算子

□ 边缘强度: 卷积值的极大值的绝对值

□ 边缘方向: 卷积值的极大值的符号

模板的对称性 → 模板数减半

1.0	1.0	1.0
-1.0	-1.0	-1.0
(a)		

1.0	1.0	0.7
0.8		-0.8
-0.7	-1.0	-1.0
(b)		

1.0	0.8	-0.7
1.0		-1.0
0.7	-0.8	-1.0
(c)		

-1.0		1.0
-1.0		1.0
-1.0		1.0
	(d)	

-0.7	0.8	1.0
-1.0		1.0
-1.0	-0.8	0.7
(e)		

0.7	1.0	1.0
-0.8		0.8
-1.0	-1.0	-0.7
(f)		

可将各系数值线性变换到整数值,其中绝对值最小的系数变换为单位1。

边界闭合

- □ 有噪声时:边缘象素常孤立/分小段连续
- □ 封闭边界(轮廓): 连接边缘象素
- □ 一种具体方法
 - 利用象素梯度的幅度和方向:

$$\left|\nabla f(x,y) - \nabla f(s,t)\right| \leq T$$

$$|\varphi(x,y)-\varphi(s,t)| \leq A$$

■ 象素(s, t)在象素(x, y)的邻域

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

二阶导数算子

□ 拉普拉斯算子

■ 二阶差分算子

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

0	- 1	0
- 1	4	- 1
0	- 1	0
(a)		

- 1	- 1	- 1
- 1	8	- 1
- 1	- 1	- 1
	(b)	

图象

剖面

一阶导数

二阶导数

二阶导数算子

- □ 拉普拉斯算子
 - 对图象中的噪声相当敏感
 - 产生双象素宽的边缘
 - 不能提供边缘方向的信息

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

二阶导数算子

□ 马尔算子

- 1. 用一个2-D的高斯平滑模板与源图象卷积
 - ✓ 等价于低通滤波
- 2. 计算卷积后图象的拉普拉斯值
- 3. 检测拉普拉斯图象中的过零点作为边缘点

$$h(x, y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \qquad g(x, y) = h(x, y) \otimes f(x, y)$$

$$\nabla_g^2 = \nabla^2 [h(x, y) \otimes f(x, y)] = \nabla^2 h(x, y) \otimes f(x, y)$$

$$= \left(\frac{r^2 - \sigma^2}{\sigma^4}\right) \exp\left(-\frac{r^2}{2\sigma^2}\right) \otimes f(x, y)$$

$$\nabla^2 h = h''(r) = \left(\frac{r^2 - \sigma^2}{\sigma^4}\right) \exp\left(-\frac{r^2}{2\sigma^2}\right) \qquad (LOG)$$

二阶导数算子

□ 马尔算子

 $\nabla^2 h$ 的剖面和对应的转移函数

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

最优边缘检测算子

- □ 坎尼算子
 - 好的边缘检测算子应具有的三个指标
 - 低失误概率
 - ✓ 既要少将真正的边缘丢失也要少将非边缘判为边缘
 - 高位置精度
 - ✓ 检测出的边缘应在真正的边界上
 - 对每个边缘有唯一的响应
 - ✓ 得到的边界为单象素宽

• **J. Canny** *A Computational Approach to Edge Detection*, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, Nov. 1986

坎尼边缘检测方法

- □ Canny算子近似
 - Canny 算子可以用高斯函数的一阶微分算子来近似
- □ Canny边缘检测流程:
 - 高斯滤波平滑
 - 计算梯度大小与方向
 - 非极大值抑制
 - 双阈值检测和连接

• **J. Canny** *A Computational Approach to Edge Detection*, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, Nov. 1986

高斯平滑及差分

- □ 先对图像进行高斯卷积平滑滤波,然后计算梯度
 - 卷积算子和差分算子均为线性算子,可以交换运算顺序

$$S = \nabla(I * h) = \nabla(h * I) = (\nabla h) * I = \begin{bmatrix} h_{\chi} \\ h_{\chi} \end{bmatrix} * I = \begin{bmatrix} h_{\chi} * I \\ h_{\chi} * I \end{bmatrix}$$

高斯滤波器:
$$h = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{x^2 + y^2}{2\sigma^2})$$

高斯差分(DoG)滤波器:
$$h_x = \frac{\partial h}{\partial x}, h_y = \frac{\partial h}{\partial y}$$

图像梯度幅值:
$$G = \sqrt{(h_x * I)^2 + (h_y * I)^2}$$

实例结果

 $h_x * I$

非极大值抑制(non-maxima suppression, NMS)

- □ 沿着梯度方向,抑制梯度值非最大的点
 - 细化幅值图像M[i, j]中的屋脊带(ridge),只 保留幅值局部变化最大的点。
 - NMS通过抑制梯度线上所有非屋脊峰值的幅值来细化边缘。

- □ 基于最近邻进行最大值消除
 - 将梯度角θ[i, j]的变化范围分为四个扇区ζ[i,j] = Sector(θ[i, j]);
 - 用3x3邻域作用于幅值图像M[i, j], 邻域中心像素M[i, j]与沿着梯度线方向的两个像素进行比较
 - 若M[i, j]不比沿梯度线方向的两个相邻点幅 值大,则像素的(i, j)被抑制, M[i, j] 被置为0。

用插值进行非最大消除

□ 用插值进行最大值消除:

- 通过对相邻单元的梯度幅值的插值估计梯度线上的相邻幅值
- 如果P点的梯度值小于 S_1 或 S_2 的梯度值,则P点梯度值被置为O
- 精确但计算量大

$$G_{S_1} = (1-d)G_{P_1} + dG_{P_2}$$

实例结果

原图 梯度图 非极大值抑制结果图

双阈值算法

- □ 双阈值算法采用两个阈值 τ_1 和 τ_2 ,且 τ_2 ≈ $2\tau_1$
- □ 得到两个阈值边缘图像 $T_1[i,j]$ 和 $T_2[i,j]$
- \square $T_2[i,j]$ 含有的假边缘少,但有断点
- □ 以 $T_2[i,j]$ 为指导,在 $T_1[i,j]$ 中相应8邻域点寻找可以连接到轮廓上的点
- □ 不断在 $T_1[i,j]$ 收集边缘,直到将 $T_2[i,j]$ 中所有的间隙连接起来为止

原图

强/弱边缘检测结果

最后边缘检测结果

实例结果

原图

强/弱边缘检测结果

最后边缘检测结果

边缘检测对比

Roberts	Sobel
Log	Canny

边缘检测算子

- □ 正交梯度算子
 - 梯度算子
- □ 方向微分算子
 - Kirsch算子
- □ 二阶导数算子
 - 拉普拉斯(Laplacian)算子
 - 马尔(Marr)算子
- □ 最优边缘检测算子
 - 坎尼(Canny)算子
- □ SUSAN 算子

□ 核同值区:相对于模板的核,模板中有一定的区域与它有相同的灰度

USAN: Univalue Segment Assimilating Nucleus

- □ USAN面积携带了关于图象中核象素处结构的主要信息
 - 当核象素处在图象中的灰度一致区域,USAN的面积会达到最大
 - 当核处在直边缘处该面积约为最大值的一半,而当核处在角点处则为最大值的1/4
- □ 使用USAN面积作为特征起到了增强边缘和角点的效果

□ SUSAN: 最小(Smallest) 核同值区(USAN)

检测模板: 37个象素, 半径为3.4象素

$$C(x_0, y_0; x, y) = \begin{cases} 1 & \text{if } |f(x_0, y_0) - f(x, y)| \le T \\ 0 & \text{if } |f(x_0, y_0) - f(x, y)| > T \end{cases}$$

- □ 检测对模板中的每个象素进行
- □ 得到输出的游程和(running total)

$$S(x_0, y_0) = \sum_{(x,y) \in N(x,y)} C(x_0, y_0; x, y)$$

□ 边缘响应

$$R(x_0, y_0) = \begin{cases} G - S(x_0, y_0) & \text{如果} \quad S(x_0, y_0) < G \\ 0 & \text{否则} \end{cases}$$

几何阈值 $G = 3S_{max}/4$ (为了达到最佳信噪比), 其中 S_{max} 是S所能取的最大值,即模版面积。

SUSAN边缘检测

□ 特点

- 有噪声时的性能较好
 - ✓ 不需要计算微分
 - ✓ 对面积计算中的各个值求和(积分)
 - ✓ 非线性响应特点
- 易自动化实现
 - ✓ 控制参数的选择简单
 - ✓ 参数的任意性较小

图 5.1.5 用 SUSAN 算子检测到的角点

SUSAN算子检测实例

左:原图。

中: SUSAN检测结果。

右:含高斯白噪声的结果。(SNR=0.5)

边缘检测

- □ 边缘模型
- □ 边缘检测算子
- □ 边缘拟合
- □ 边缘搜索
- □ 多尺度边缘检测

边缘拟合(Edge Fitting)

- □ 对图象中一个子区域,用理想灰度阶跃或斜变去拟合实际 图象数据,从而求出拟合的理想模型参数,如阶跃幅度、 斜变倾角等,并以此为这个子区域的边缘强度和方向度量
- □ 从某种意上说,拟合是匹配滤波,旨在从失真和噪声中检测出理想边缘来。因此,有较强的<mark>抗噪声</mark>能力

边缘拟合

- □ 灰度阶跃的拟合
- □ 基于斜面模型的边缘检测

灰度阶跃的拟合

- □ 构造原图象(或子图、小区域) 的拟合曲面,再在拟合曲面上利 用曲面的参数检测出边缘
- □ 如:灰度阶跃边缘拟合。用理想 灰度阶跃模型去拟合一个2×2 的子图。将子图 f(x,y)展开成基 函数表达式。由均方误差最小求 边缘幅度和角度

$H(x,y) = \langle$	$\int S$	$x\sin\theta > y\cos\theta$
	$\int t$	其他

灰度阶跃的拟合

$$H(x,y) = \begin{cases} s & x \sin \theta > y \cos \theta \\ t & 其他 \end{cases}$$

A	В
C	D

当 θ 在第一象限:

$$\theta = \frac{\pi}{4} (1 - \frac{B - C}{A - D})$$
 $s = \frac{B}{4} - \frac{A - D}{2}$ $t = \frac{B}{4} + \frac{A - D}{2}$

边缘幅度: |s-t|=|*A*−*D*|

当 θ 在第二象限:

边缘幅度: |s-t|=|B-C|

整副图象边缘幅度: $\max\{|A-D|, |B-C|\}$

与Roberts算子的结果相同

边缘拟合

- □ 灰度阶跃的拟合
- □ 基于斜面模型的边缘检测

基于斜面模型的边缘检测

- □ 拟合模型
 - 将 $M \times N$ 的数字图像划分为相连接的区域集合P , $P = (P_1, P_2, \dots, P_i, \dots)$
 - P_i 的大小设定R×C(通常为3×3)

$$\hat{f}(x, y) = \alpha x + \beta y + \gamma$$

- □ 对每一个小区域,用一个斜平面来近似
- 山 拟合误差 $e^2 = \sum_{R} \sum_{x \in C} [\alpha x + \beta y + \gamma f(x, y)]^2$

基于斜面模型的边缘检测

斜面拟合

- 由均方误差最小来求 α 、 β 、 γ ,
- 区域 3×3,原点取在中心点时,有

$$\alpha = \sum_{R \times C} \sum x f(x, y) / \sum \sum x^{2}$$

$$\beta = \sum_{R \times C} \sum y f(x, y) / \sum \sum y^{2}$$

$$\gamma = \sum_{R \times C} \sum f(x, y) / \sum \sum 1$$

代入误差算式,得出误差值。

误差较小时,认为拟合可靠。

基于斜面模型的边缘检测

□ 斜面交界的判断

- 对于"可靠"的斜面,把该拟合斜平面的参数作为小区域的参数(不重叠划分)或小区域中心点的参数(重叠划分)。
- 可得: 梯度值 $\alpha^2 + \beta^2$

方向为
$$\theta = \tan^{-1} \frac{\alpha}{\beta}$$

然后用斜面参数判断各个斜面间 是否有边缘存在。

即考察
$$a_1 = a_2$$
? $\beta_1 = \beta_2$? $\gamma_1 = \gamma_2$?

一般步骤:

- 1. 选取适合的拟合区域
- 2. 根据模型求解拟合系数
- 3. 求拟合斜面各点灰度值
- 4. 计算误差,判断斜面的可靠性
- 5. 对于可靠的斜面, 计算相邻点或区域不在同一斜面上的 度量
- 6. 选出边缘度量值局部最大的点, 定为边缘点

边缘检测

- □ 边缘模型
- □ 边缘检测算子
- □ 边缘拟合
- □ 边缘搜索
- □ 多尺度边缘检测

跟踪方法

- □ 跟踪的一般步骤:
 - 确定搜索的起点,对于边缘跟踪则起点是某一边缘点
 - 采取一种合适的<mark>数据结构</mark>和<mark>搜索机理</mark>,在已有边缘点的基础上 进行搜索,不断确定新的边缘点
 - 规定搜索终止的条件,在满足条件时停止搜索

图搜索

□ 基本概念

- <mark>边界点和边界段</mark>可以用图结构标示,通过在图中搜索达到某一目标的最佳路径(最短路径,最小消耗路径)寻找边缘 。
- 路径评价函数可以定义为: f(n)=g(n)+h(n)
 - \checkmark n: 搜索过程进行到的当前节点。
 - \checkmark g(n): 为从起始节点到当前节点所有路径代价。
 - ✓ h(n):是当前节点到目标节点将要经过的所有路径的代价。
 - ▶ 一般为对真实代价h(n)的估计值, 从而为启发项

将边缘象素和边界段用图表示

图:
$$G = \{N, A\}$$

结点集 $\{n_1, ...\}$ 结点对集 $\{(n_i, n_j)\}$

通路代价

$$C = \sum_{i=2}^{K} c(n_{i-1}, n_i)$$

图的建立

显著边缘点的方向 (右) 相应的图

启发式图搜索

- □ 利用问题拥有的启发信息来引导搜索,
 - 减少搜索范围
 - 降低问题复杂度
- 口 代价函数 f(n)=g(n)+h(n)
 - $abplice{abplice} = abplice{abplice} = abplice$
 - 当无启发项(h(n)=0)时,一定能找到全局最优,但搜索范围加大。

普通搜索过程演示

启发式搜索过程演示

代价函数的设计

- □ 使用"启发"信息,构造评价函数,计算路径的耗费, 是启发式搜索的关键。
- □ 具体如何构造则要分析该问题的具体情况,将多种因素 合理的分离开来,把实际情况中的约束转化为计算机可 操作的表达式。
 - 灰度梯度的幅度
 - 灰度梯度的方向
 - 路径的曲率
 - 路径与某一函数的近似程度
 - 到目标点的距离等

有序搜索法 (A算法)

- 1. 将初始节点 S_0 放入Open表中
- 2. 如Open表为空,则搜索失败,退出
- 3. 把Open表的第一个节点取出,放入到Closed表中,并 把该节点记为节点n;
- 4. 如果节点n是目标节点,则搜索成功,求得一个解,退出;
- 5. 扩展节点n,生成一组子节点,对既不在Open表中也不在Closed表中的子节点,计算出相应的估价函数值;
- 6. 把节点n的子节点放到Open表中;
- 7. 对Open表中的各节点按估价函数值从小到大排列;
- 8. 转到步骤2。

八数码难题

$$f(n) = g(n) + h(n)$$

- --g(n)为从初始节点到当前节点 的步数(层数);
- --h(n)为当前节点"不在位"的 方块数。

边缘检测

- □ 边缘模型
- □ 边缘检测算子
- □ 边缘拟合
- □ 边缘搜索
- □ 多尺度边缘检测

多尺度边缘检测

□ 现象

- 大尺度下能较可靠地消除误检,检测到真正边缘点,但定位不准;
- 小尺度定位较准,但误检增加;
- 大尺度检测真正边缘点,小尺度精确定位
- 图像不同的边缘信息会在不同的尺度下表现

口 方法

■ 融合各个尺度的检测结果,获得稳定的边缘信息

基于二进小波的多尺度边缘检测

用于边缘检测的二进小波:

母函数: $\varphi(x,y) = \exp(-(x^2 + y^2)/\sigma^2)/2\pi\sigma^2$; (高斯核函数)

小波函数:
$$\psi^1 = \frac{\partial \varphi}{\partial x}; \psi^2 = \frac{\partial \varphi}{\partial y};$$

二进小波变换: $\mathbf{S}_{2^j}f \to \{W^1_{2^j}f,W^2_{2^j}f,\mathbf{S}_{2^{j+1}}f\}$ (离散算法 α – trous)

$$W_{2^{i}}^{i} f = \langle f, \psi_{2^{i}}^{i} \rangle; i = 1, 2;$$
 (分别对应水平和竖直边缘)

$$S_{2^{j+1}}f = \langle f, \varphi_{2^j} \rangle;$$
 (平滑信号)

模值 $M_{2^j}f = \sqrt{|W_{2^j}^1f|^2 + |W_{2^j}^2f|^2};$ 幅角 $A_{2^j}f = \arctan(W_{2^j}^1f/W_{2^j}^2f);$

模极大链:

小波系数的模极大值(即导数的过零点),在尺度空间会形成"向下开口"的连续曲线。

小波变换示例

Wavelet

	wavelet				
Wavelet transform along the horizontal direction	Wavelet transform along the vertical direction	Wavelet transform modulus	Wavelet transform angle for a non zero modulus	Wavelet transform modulus maxima	transform modulus maxima after some thresholding
PA)		13/			
1	21	rell			3.7

基于二进小波的多尺度边缘检测

□ 算法步骤:

- 1.选择二进小波 $\{\psi^1,\psi^2\}$,分解级数J,和模阈值T;
- 2.对图像f进行二进小波变换,得到 $S_{2^{J}}f$ 和 $\left\{W_{2^{j}}^{1}f,W_{2^{j}}^{2}f\right\}_{j=1}^{J}$;
- 3.计算模值 $M_{2^j} f = \sqrt{|W_{2^j}^1 f|^2 + |W_{2^j}^2 f|^2};$
- 4.计算幅角 $A_{2^j}f = \arctan(W_{2^j}^1 f / W_{2^j}^2 f)$;
- 5.用非极大值抑制得到小波系数的局部模极大值点;
- 6.把局部模极大值点延尺度连起来,得到极值链;
- 7. 利用模阈值T和极值链长度阈值,去除由噪声引起或不感兴趣的的边界;