Álgebra 1º ESO

Índice

- Lenguaje algebraico
 - Expresiones Algebraicas
 - Valor numérico de una expresión algebraica
- 2 Monomios
 - Características de los monomios
 - Sumas y Restas
 - Producto
- 3 Ecuaciones
 - Propiedades
 - Solución de una ecuación
 - Equivalencia de ecuaciones
 - Resolución general de ecuaciones

EL LENGUAJE ALGEBRAICO

¿Para qué usamos las letras?

Ejemplo

En el siguiente ejemplo aparecen letras que representan números que todavía no conocemos.

Investiga:

Si c es el número 3, ¿cuáles son los números a y b?

Solución

¿Para qué usamos las letras?

Ejemplo

En el siguiente ejemplo aparecen letras que representan números que todavía no conocemos.

Investiga:

Si c es el número 3, ¿cuáles son los números a y b?

Solución

El 3 se puede descomponer como 0+3, 3+0 ó 1+2, 2+1. De todas las combinaciones, la única que cumple la suma sería a=1 y b=2.

¿Para qué usamos las letras?

Ejemplo

En el siguiente ejemplo aparecen letras que representan números que todavía no conocemos.

Investiga:

Si c es el número 3, ¿cuáles son los números a y b?

Solución

El 3 se puede descomponer como 0+3, 3+0 ó 1+2, 2+1. De todas las combinaciones, la única que cumple la suma sería a=1 y b=2.

Cuando no conocemos un número, podemos hacer referencia a él usando letras. La parte de las matemáticas que utiliza expresiones con letras y números se llama Álgebra.

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

• $3x^2$, x + 2, 2xy + 5 son expresiones algebraicas

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

- $3x^2$, x + 2, 2xy + 5 son expresiones algebraicas
- Observa como se expresan las siguientes operaciones:
 - $3 \times x \times x$ es lo mismo que $3 \cdot x \cdot x$, y que $3 \cdot x^2$. Por norma, se pone $3x^2$
 - ullet 1 imes x es lo mismo que 1x. Por norma, se pone solo x

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

- $3x^2$, x + 2, 2xy + 5 son expresiones algebraicas
- Observa como se expresan las siguientes operaciones:
 - $3 \times x \times x$ es lo mismo que $3 \cdot x \cdot x$, y que $3 \cdot x^2$. Por norma, se pone $3x^2$
 - ullet 1 imes x es lo mismo que 1x. Por norma, se pone solo x

Lenguaje Natural y Lenguaje Algebraico

"Un número más 5" podemos representarlo algebraicamente: x+5

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

- $3x^2$, x + 2, 2xy + 5 son expresiones algebraicas
- Observa como se expresan las siguientes operaciones:
 - $3 \times x \times x$ es lo mismo que $3 \cdot x \cdot x$, y que $3 \cdot x^2$. Por norma, se pone $3x^2$
 - ullet 1 imes x es lo mismo que 1x. Por norma, se pone solo x

Lenguaje Natural y Lenguaje Algebraico

"Un número más 5" podemos representarlo algebraicamente: x+5

Ejercicios:

"siete menos un número cualquiera"

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

- $3x^2$, x + 2, 2xy + 5 son expresiones algebraicas
- Observa como se expresan las siguientes operaciones:
 - $3 \times x \times x$ es lo mismo que $3 \cdot x \cdot x$, y que $3 \cdot x^2$. Por norma, se pone $3x^2$
 - ullet 1 imes x es lo mismo que 1x. Por norma, se pone solo x

Lenguaje Natural y Lenguaje Algebraico

"Un número más 5" podemos representarlo algebraicamente: x+5

Ejercicios:

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

- $3x^2$, x + 2, 2xy + 5 son expresiones algebraicas
- Observa como se expresan las siguientes operaciones:
 - $3 \times x \times x$ es lo mismo que $3 \cdot x \cdot x$, y que $3 \cdot x^2$. Por norma, se pone $3x^2$
 - ullet 1 imes x es lo mismo que 1x. Por norma, se pone solo x

Lenguaje Natural y Lenguaje Algebraico

"Un número más 5" podemos representarlo algebraicamente: x+5

Ejercicios:

"ocho veces un número"

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

- $3x^2$, x + 2, 2xy + 5 son expresiones algebraicas
- Observa como se expresan las siguientes operaciones:
 - $3 \times x \times x$ es lo mismo que $3 \cdot x \cdot x$, y que $3 \cdot x^2$. Por norma, se pone $3x^2$
 - ullet 1 imes x es lo mismo que 1x. Por norma, se pone solo x

Lenguaje Natural y Lenguaje Algebraico

"Un número más 5" podemos representarlo algebraicamente: x+5

Ejercicios:

		,			_	
"siete	e menos un	número	cualquiera"	 	<mark>7</mark>	-x
"b						0

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

- $3x^2$, x + 2, 2xy + 5 son expresiones algebraicas
- Observa como se expresan las siguientes operaciones:
 - $3 \times x \times x$ es lo mismo que $3 \cdot x \cdot x$, y que $3 \cdot x^2$. Por norma, se pone $3x^2$
 - ullet 1 imes x es lo mismo que 1x. Por norma, se pone solo x

Lenguaje Natural y Lenguaje Algebraico

"Un número más 5" podemos representarlo algebraicamente: x+5

Ejercicios:

"siete menos un número	cualquiera"	7-x
"ocho veces un número"		2~

[&]quot;un número más otro"

Expresiones Algebraicas

Una **expresión algebraica** es una combinación de letras, números y signos de operaciones.

- $3x^2$, x + 2, 2xy + 5 son expresiones algebraicas
- Observa como se expresan las siguientes operaciones:
 - $3 \times x \times x$ es lo mismo que $3 \cdot x \cdot x$, y que $3 \cdot x^2$. Por norma, se pone $3x^2$
 - ullet 1 imes x es lo mismo que 1x. Por norma, se pone solo x

Lenguaje Natural y Lenguaje Algebraico

"Un número más 5" podemos representarlo algebraicamente: x+5

Ejercicios:

•
"siete menos un número cualquiera"
"ocho veces un número" 8 <i>x</i>
"un número más otro"

Ejemplo

Juan y Oscar han pescado entre los dos 12 peces. Si representamos mediante x los peces que ha pescado Juan. ¿Cómo puedo expresar en lenguaje algebraico los que ha pescado Oscar?

Ejemplo

Juan y Oscar han pescado entre los dos 12 peces. Si representamos mediante x los peces que ha pescado Juan. ¿Cómo puedo expresar en lenguaje algebraico los que ha pescado Oscar?

Oscar ha pescado

Ejemplo

Juan y Oscar han pescado entre los dos 12 peces. Si representamos mediante x los peces que ha pescado Juan. ¿Cómo puedo expresar en lenguaje algebraico los que ha pescado Oscar?

Oscar ha pescado \longrightarrow 12 – \times peces

Ejemplo

Juan y Oscar han pescado entre los dos 12 peces. Si representamos mediante x los peces que ha pescado Juan. ¿Cómo puedo expresar en lenguaje algebraico los que ha pescado Oscar?

Oscar ha pescado \longrightarrow 12 – \times peces

Ejemplo

El precio por alquilar un coche es de $78 \le$ por día más $0,12 \le$ por km recorrido. Si los alquilamos durante un día y representamos mediante la letra x los km recorridos, ¿cómo puedes expresar el importe a pagar?

Ejemplo

Juan y Oscar han pescado entre los dos 12 peces. Si representamos mediante x los peces que ha pescado Juan. ¿Cómo puedo expresar en lenguaje algebraico los que ha pescado Oscar?

Oscar ha pescado \longrightarrow 12 – \times peces

Ejemplo

El precio por alquilar un coche es de $78 \le$ por día más $0,12 \le$ por km recorrido. Si los alquilamos durante un día y representamos mediante la letra x los km recorridos, ¿cómo puedes expresar el importe a pagar?

Hay que pagar

Ejemplo

Juan y Oscar han pescado entre los dos 12 peces. Si representamos mediante x los peces que ha pescado Juan. ¿Cómo puedo expresar en lenguaje algebraico los que ha pescado Oscar?

Oscar ha pescado \longrightarrow 12 – \times peces

Ejemplo

El precio por alquilar un coche es de $78 \le$ por día más $0,12 \le$ por km recorrido. Si los alquilamos durante un día y representamos mediante la letra x los km recorridos, ¿cómo puedes expresar el importe a pagar?

Hay que pagar \longrightarrow 78 + 0, 12x euros

Ejemplo

Jugando a baloncesto, la puntuación de Joseba es el **doble** que la de Miguel y éste tiene el **triple** que los obtenidos por Indira **más uno**. Expresamos con x la puntutación de Indira:

Ejemplo

Jugando a baloncesto, la puntuación de Joseba es el **doble** que la de Miguel y éste tiene el **triple** que los obtenidos por Indira **más uno**. Expresamos con x la puntutación de Indira:

Indira lleva

Ejemplo

Jugando a baloncesto, la puntuación de Joseba es el **doble** que la de Miguel y éste tiene el **triple** que los obtenidos por Indira **más uno**. Expresamos con x la puntutación de Indira:

Indira Ileva $\longrightarrow \times$ puntos Miguel Ileva

Ejemplo

Jugando a baloncesto, la puntuación de Joseba es el **doble** que la de Miguel y éste tiene el **triple** que los obtenidos por Indira **más uno**. Expresamos con x la puntutación de Indira:

Indira Ileva $\longrightarrow x$ puntos Miguel Ileva $\longrightarrow 3x + 1$ puntos Joseba Ileva

Ejemplo

Jugando a baloncesto, la puntuación de Joseba es el **doble** que la de Miguel y éste tiene el **triple** que los obtenidos por Indira **más uno**. Expresamos con x la puntutación de Indira:

Indira Ileva $\longrightarrow x$ puntos Miguel Ileva $\longrightarrow 3x + 1$ puntos Joseba Ileva $\longrightarrow 2 \cdot (3x + 1)$ puntos

Valor Numérico de una expresión

El **valor numérico** de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Ejemplos

•
$$2x^2 + 8x + 1$$
para $x = 1$

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Ejemplos

•
$$2x^2 + 8x + 1$$
para $x = 1 \dots 11$

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Ejemplos

•
$$2x^2 + 8x + 1$$
para $x = 1 \dots 11$

•
$$2x^2 + 8x + 1$$
para $x = 2$

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Ejemplos

•
$$2x^2 + 8x + 1$$
para $x = 1 \dots 11$

•
$$2x^2 + 8x + 1$$
para $x = 2 \dots 25$

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Ejemplos

•
$$2x^2 + 8x + 1$$
 para $x = 1 \dots 11$

•
$$2x^2 - 6x$$
 para $x = -2$

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Ejemplos

- $2x^2 + 8x + 1$ para $x = 1 \dots 11$
- $2x^2 6x$ para x = -2......20

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Ejemplos

- $2x^2 + 8x + 1$ para $x = 1 \dots 11$

- $2x^2 6x$ para x = 2

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Ejemplos

- $2x^2 6x$ para x = -2......20
- $2x^2 6x$ para $x = 2 \dots -4$

Valor Numérico de una expresión

El valor numérico de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones indicadas.

• El valor numérico de 15 + 20x para x = 2 es 55, porque $15 + 20 \cdot (2) = 15 + 40 = 55$

Ejemplos

- $2x^2 6x$ para x = -2......20
- $2x^2 6x$ para $x = 2 \dots -4$

Índice

MONOMIOS

- Un monomio es una expresión algebraica formada por el producto de un número (coeficiente) y de letras (parte literal). El grado de un monomio es el exponente de la parte literal (si hay más de una letra, se suman).
 - $2x^3$

- Un monomio es una expresión algebraica formada por el producto de un número (coeficiente) y de letras (parte literal). El grado de un monomio es el exponente de la parte literal (si hay más de una letra, se suman).
 - $2x^3$ es un monomio de coeficiente

- Un monomio es una expresión algebraica formada por el producto de un número (coeficiente) y de letras (parte literal). El grado de un monomio es el exponente de la parte literal (si hay más de una letra, se suman).
 - $2x^3$ es un monomio de coeficiente 2 y de parte literal

- Un monomio es una expresión algebraica formada por el producto de un número (coeficiente) y de letras (parte literal). El grado de un monomio es el exponente de la parte literal (si hay más de una letra, se suman).
 - $2x^3$ es un monomio de coeficiente 2 y de parte literal x^3 . El grado es

- Un monomio es una expresión algebraica formada por el producto de un número (coeficiente) y de letras (parte literal). El grado de un monomio es el exponente de la parte literal (si hay más de una letra, se suman).
 - $2x^3$ es un monomio de coeficiente 2 y de parte literal x^3 . El grado es 3

- Un monomio es una expresión algebraica formada por el producto de un número (coeficiente) y de letras (parte literal). El grado de un monomio es el exponente de la parte literal (si hay más de una letra, se suman).
 - $2x^3$ es un monomio de coeficiente 2 y de parte literal x^3 . El grado es 3
- OBSERVA: En un monomio no hay sumas ni restas
 - \bullet x + 2x

- Un monomio es una expresión algebraica formada por el producto de un número (coeficiente) y de letras (parte literal). El grado de un monomio es el exponente de la parte literal (si hay más de una letra, se suman).
 - $2x^3$ es un monomio de coeficiente 2 y de parte literal x^3 . El grado es 3
- OBSERVA: En un monomio no hay sumas ni restas
 - x + 2x no es monomio (es la suma de los monomios 2x y x)

- Un monomio es una expresión algebraica formada por el producto de un número (coeficiente) y de letras (parte literal). El grado de un monomio es el exponente de la parte literal (si hay más de una letra, se suman).
 - $2x^3$ es un monomio de coeficiente 2 y de parte literal x^3 . El grado es 3
- OBSERVA: En un monomio no hay sumas ni restas
 - x + 2x no es monomio (es la suma de los monomios 2x y x)
- OBSERVA: Los números son monomios de grado 0.
 - 5 se puede poner como

- Un monomio es una expresión algebraica formada por el producto de un número (coeficiente) y de letras (parte literal). El grado de un monomio es el exponente de la parte literal (si hay más de una letra, se suman).
 - $2x^3$ es un monomio de coeficiente 2 y de parte literal x^3 . El grado es 3
- OBSERVA: En un monomio no hay sumas ni restas
 - x + 2x no es monomio (es la suma de los monomios 2x y x)
- OBSERVA: Los números son monomios de grado 0.
 - 5 se puede poner como \longrightarrow 5 x^0

Rellena la siguiente tabla

| coeficiente | parte literal | grado $5x^3$

	coeficiente	parte literal	grado
$5x^{3}$	5		

	coeficiente	parte literal	grado
$5x^3$	5	<i>x</i> ³	

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$			

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1		

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$			

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3		

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	3
12			

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	3
12	12		

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	3
12	12	No tiene	

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	3
12	12	No tiene	0
<u>x</u> 2			

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	3
12	12	No tiene	0
$\frac{x}{2}$	$\frac{1}{2}$		

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	3
12	12	No tiene	0
$\frac{x}{2}$	$\frac{1}{2}$	Х	

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	3
12	12	No tiene	0
$\frac{x}{2}$	$\frac{1}{2}$	X	1
-3x			

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	3
12	12	No tiene	0
$\frac{x}{2}$	$\frac{1}{2}$	X	1
-3x	-3		

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	<i>x</i> ⁴	4
$3x^2y$	3	x^2y	3
12	12	No tiene	0
$\frac{x}{2}$	$\frac{1}{2}$	X	1
-3x	-3	X	

	coeficiente	parte literal	grado
$5x^{3}$	5	<i>x</i> ³	3
$-x^4$	-1	x ⁴	4
$3x^2y$	3	x^2y	3
12	12	No tiene	0
<u>x</u> 2	$\frac{1}{2}$	X	1
-3x	-3	X	1

Rellena la siguiente tabla

	coeficiente	parte literal	grado
$5x^3$	5	<i>x</i> ³	3
$-x^4$	-1	x ⁴	4
$3x^2y$	3	x^2y	3
12	12	No tiene	0
$\frac{x}{2}$	$\frac{1}{2}$	X	1
-3x	-3	X	1

Monomios semejantes

Diremos que dos monomios son semejantes cuando tengan la misma parte literal

Rellena la siguiente tabla

	coeficiente	parte literal	grado
$5x^3$	5	<i>x</i> ³	3
$-x^4$	-1	x^4	4
$3x^2y$	3	x^2y	3
12	12	No tiene	0
<u>x</u> 2	$\frac{1}{2}$	X	1
-3x	-3	X	1

Monomios semejantes

Diremos que dos monomios son semejantes cuando tengan la misma parte literal

• En la tabla anterior, sólo son semejantes $\frac{x}{2}$ y -3x, ya que tienen la misma parte literal (x)

Suma y resta de Monomios

•
$$12x^2 + 3x^2 =$$

Suma y resta de Monomios

Para sumar o restar monomios semejantes se suman o se restan los coeficientes y se deja la misma parte literal.

• $12x^2 + 3x^2 = 15x^2$, porque la parte literal es la misma (x^2)

Suma y resta de Monomios

- $12x^2 + 3x^2 = 15x^2$, porque la parte literal es la misma (x^2)
- -x + 5x =

Suma y resta de Monomios

- $12x^2 + 3x^2 = 15x^2$, porque la parte literal es la misma (x^2)
- -x + 5x = 4x, porque la parte literal es la misma (x)

Suma y resta de Monomios

- $12x^2 + 3x^2 = 15x^2$, porque la parte literal es la misma (x^2)
- -x + 5x = 4x, porque la parte literal es la misma (x)
- $\frac{x^2}{2} + \frac{3}{2}x^2 =$

Suma y resta de Monomios

- $12x^2 + 3x^2 = 15x^2$, porque la parte literal es la misma (x^2)
- -x + 5x = 4x, porque la parte literal es la misma (x)
- $\frac{x^2}{2} + \frac{3}{2}x^2 = 2x^2$, porque la parte literal es la misma (x^2)

Suma y resta de Monomios

- $12x^2 + 3x^2 = 15x^2$, porque la parte literal es la misma (x^2)
- -x + 5x = 4x, porque la parte literal es la misma (x)
- $\frac{x^2}{2} + \frac{3}{2}x^2 = 2x^2$, porque la parte literal es la misma (x^2)
- $10x^2y + 2x^2y =$

Suma y resta de Monomios

- $12x^2 + 3x^2 = 15x^2$, porque la parte literal es la misma (x^2)
- -x + 5x = 4x, porque la parte literal es la misma (x)
- $\frac{x^2}{2} + \frac{3}{2}x^2 = 2x^2$, porque la parte literal es la misma (x^2)
- $10x^2y + 2x^2y = 12x^2y$, porque la parte literal es la misma (x^2y)

Suma y resta de Monomios

Para sumar o restar monomios semejantes se suman o se restan los coeficientes y se deja la misma parte literal.

- $12x^2 + 3x^2 = 15x^2$, porque la parte literal es la misma (x^2)
- -x + 5x = 4x, porque la parte literal es la misma (x)
- $\frac{x^2}{2} + \frac{3}{2}x^2 = 2x^2$, porque la parte literal es la misma (x^2)
- $10x^2y + 2x^2y = 12x^2y$, porque la parte literal es la misma (x^2y)

Si los monomios **no son semejantes** la suma o resta se deja indicada. Si una expresión algebraica está formada por monomios no todos ellos semejantes, únicamente se suman o restan los que son semejantes entre si.

•
$$3x + 2x^2 + 7x - x^2 =$$

Suma y resta de Monomios

Para sumar o restar monomios semejantes se suman o se restan los coeficientes y se deja la misma parte literal.

- $12x^2 + 3x^2 = 15x^2$, porque la parte literal es la misma (x^2)
- -x + 5x = 4x, porque la parte literal es la misma (x)
- $\frac{x^2}{2} + \frac{3}{2}x^2 = 2x^2$, porque la parte literal es la misma (x^2)
- $10x^2y + 2x^2y = 12x^2y$, porque la parte literal es la misma (x^2y)

Si los monomios **no son semejantes** la suma o resta se deja indicada. Si una expresión algebraica está formada por monomios no todos ellos semejantes, únicamente se suman o restan los que son semejantes entre si.

•
$$3x + 2x^2 + 7x - x^2 = 10x - x^2$$

Esta operación recibe el nombre de reducción de términos semejantes.

Relaciona las expresiones de la izquierda con la derecha

$a)3x^2 + 5x^2$	$1)-8x^2$
b) $3x^2 - 5x^2$	$(2)2x^2$
c) $-3x^2 + 5x^2$	$3)-2x^2$
d) $-3x^2 - 5x^2$	4) $8x^2$

a)

$a)3x^2 + 5x^2$	1) $-8x^2$
b) $3x^2 - 5x^2$	$(2)2x^2$
c) $-3x^2 + 5x^2$	$3)-2x^2$
d) $-3x^2 - 5x^2$	4) $8x^2$

a) $3x^2 + 5x^2$	1) $-8x^2$
b) $3x^2 - 5x^2$	$2)2x^{2}$
c) $-3x^2 + 5x^2$	$3)-2x^2$
d) $-3x^2 - 5x^2$	4) $8x^2$

a) $3x^2 + 5x^2$	$1)-8x^2$
b) $3x^2 - 5x^2$	$(2)2x^2$
c) $-3x^2 + 5x^2$	$3)-2x^2$
d) $-3x^2 - 5x^2$	4) $8x^2$

a) $3x^2 + 5x^2$	$1)-8x^2$
b) $3x^2 - 5x^2$	$(2)2x^2$
c) $-3x^2 + 5x^2$	$3)-2x^2$
d) $-3x^2 - 5x^2$	4) $8x^2$

```
a) . . . . . . . . . . . . . . . . . 4)
b) . . . . . . . . . . . . . . . . . 3)
c)
```

a) $3x^2 + 5x^2$	$1)-8x^2$
b) $3x^2 - 5x^2$	$2)2x^{2}$
c) $-3x^2 + 5x^2$	$3)-2x^2$
d) $-3x^2 - 5x^2$	4) $8x^2$

a)	٠																									4	
-----	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--

Relaciona las expresiones de la izquierda con la derecha

a) $3x^2 + 5x^2$	$1)-8x^2$
b) $3x^2 - 5x^2$	$2)2x^{2}$
c) $-3x^2 + 5x^2$	$3)-2x^2$
d) $-3x^2 - 5x^2$	4) $8x^2$

```
a).....4)
```

d)

a) $3x^2 + 5x^2$	1) $-8x^2$
b) $3x^2 - 5x^2$	$(2)2x^2$
c) $-3x^2 + 5x^2$	$3)-2x^2$
d) $-3x^2 - 5x^2$	4) $8x^2$

a)) .														4)
- 1		-	-													,

Relaciona las expresiones de la izquierda con la derecha

a) $3x^2 + 5x^2$	$1)-8x^2$	a)4)
b) $3x^2 - 5x^2$	$2)2x^{2}$	b)3)
c) $-3x^2 + 5x^2$	$3)-2x^2$	c)
d) $-3x^2 - 5x^2$	4) $8x^2$	d)1)

Selecciona la opción correcta

Relaciona las expresiones de la izquierda con la derecha

a) $3x^2 + 5x^2$	$1)-8x^{2}$	a)4)
b) $3x^2 - 5x^2$	$(2)2x^2$	b)3)
c) $-3x^2 + 5x^2$	$3)-2x^2$	c)
d) $-3x^2 - 5x^2$	4) $8x^2$	d))

Selecciona la opción correcta

La edad del perro es superior en 3 años a la del guepardo. Si representamos con x la edad del perro, ¿Cuál de las siguientes expresiones algebraicas indica la suma de las edades de los dos animales?

- a) x + 3
- b) x 3• c) 2x + 3
- d) $x^2 + 3$

SOLUCIÓN:

Relaciona las expresiones de la izquierda con la derecha

$a j 3x^2 + 5x^2$	$1)-8x^{2}$	a)4)
b) $3x^2 - 5x^2$	$(2)2x^2$	b)
c) $-3x^2 + 5x^2$	$3)-2x^2$	c)
d) $-3x^2 - 5x^2$	4) $8x^2$	d)

Selecciona la opción correcta

La edad del perro es superior en 3 años a la del guepardo. Si representamos con x la edad del perro, ¿Cuál de las siguientes expresiones algebraicas indica la suma de las edades de los dos animales?

- a) x + 3
- b) x 3• c) 2x + 3
- d) $x^2 + 3$ SOLUCIÓN:....c)

$$x + (x + 3) = x + x + 3 = 2x + 3$$

Producto de Monomios

•
$$8x^5 \cdot 3x^2 =$$

Producto de Monomios

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

Producto de Monomios

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

$$\bullet$$
 $-x \cdot 5x =$

Producto de Monomios

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

•
$$-x \cdot 5x = ((-1) \cdot 5) \cdot (x \cdot x) = -5x^2$$

Producto de Monomios

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

•
$$-x \cdot 5x = ((-1) \cdot 5) \cdot (x \cdot x) = -5x^2$$

$$\bullet \ \frac{x^2}{2} \cdot \frac{3}{2}x^2 =$$

Producto de Monomios

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

•
$$-x \cdot 5x = ((-1) \cdot 5) \cdot (x \cdot x) = -5x^2$$

$$• \frac{x^2}{2} \cdot \frac{3}{2}x^2 = \left(\frac{1}{2} \cdot \frac{3}{2}\right) \cdot \left(x^2 \cdot x^2\right) = \frac{3}{4}x^4$$

Producto de Monomios

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

•
$$-x \cdot 5x = ((-1) \cdot 5) \cdot (x \cdot x) = -5x^2$$

•
$$\frac{x^2}{2} \cdot \frac{3}{2}x^2 = \left(\frac{1}{2} \cdot \frac{3}{2}\right) \cdot \left(x^2 \cdot x^2\right) = \frac{3}{4}x^4$$

$$\bullet 10x^2y \cdot 2xy =$$

Producto de Monomios

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

•
$$-x \cdot 5x = ((-1) \cdot 5) \cdot (x \cdot x) = -5x^2$$

•
$$10x^2y \cdot 2xy = (10 \cdot 2) \cdot (x^2 \cdot y \cdot x \cdot y) = 20x^3y^2$$

Producto de Monomios

Para multiplicar dos monomios se multiplican los coeficientes y se multiplican las partes literales.

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

•
$$-x \cdot 5x = ((-1) \cdot 5) \cdot (x \cdot x) = -5x^2$$

$$\bullet \ \frac{x^2}{2} \cdot \frac{3}{2}x^2 = \left(\frac{1}{2} \cdot \frac{3}{2}\right) \cdot \left(x^2 \cdot x^2\right) = \frac{3}{4}x^4$$

•
$$10x^2y \cdot 2xy = (10 \cdot 2) \cdot (x^2 \cdot y \cdot x \cdot y) = 20x^3y^2$$

Para multiplicar un número por un monomio se multiplica el número por el coeficiente del monomio y se deja la misma parte literal.

$$\bullet$$
 $-2 \cdot 5x =$

Producto de Monomios

Para multiplicar dos monomios se multiplican los coeficientes y se multiplican las partes literales.

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

•
$$-x \cdot 5x = ((-1) \cdot 5) \cdot (x \cdot x) = -5x^2$$

$$\bullet \ \frac{x^2}{2} \cdot \frac{3}{2}x^2 = \left(\frac{1}{2} \cdot \frac{3}{2}\right) \cdot \left(x^2 \cdot x^2\right) = \frac{3}{4}x^4$$

•
$$10x^2y \cdot 2xy = (10 \cdot 2) \cdot (x^2 \cdot y \cdot x \cdot y) = 20x^3y^2$$

Para multiplicar un número por un monomio se multiplica el número por el coeficiente del monomio y se deja la misma parte literal.

•
$$-2 \cdot 5x = (-2) \cdot x^0 \cdot 5 \cdot x^1 = ((-2) \cdot 5) \cdot (x^{0+1}) = -10x$$

Producto de Monomios

Para multiplicar dos monomios se multiplican los coeficientes y se multiplican las partes literales.

•
$$8x^5 \cdot 3x^2 = (8 \cdot 3) \cdot (x^5 \cdot x^2) = (8 \cdot 3) \cdot x^{5+2} = 24x^7$$

•
$$-x \cdot 5x = ((-1) \cdot 5) \cdot (x \cdot x) = -5x^2$$

•
$$10x^2y \cdot 2xy = (10 \cdot 2) \cdot (x^2 \cdot y \cdot x \cdot y) = 20x^3y^2$$

Para multiplicar un número por un monomio se multiplica el número por el coeficiente del monomio y se deja la misma parte literal.

•
$$-2 \cdot 5x = (-2) \cdot x^0 \cdot 5 \cdot x^1 = ((-2) \cdot 5) \cdot (x^{0+1}) = -10x$$

Así, el resultado obtenido tanto al multiplicar dos monomios como al multiplicar un número por un monomio es un monomio.

Relaciona las expresiones de la izquierda con la derecha

$a)-4x\cdot 2x$	1)8 x^2
b) $-4 \cdot 2x^3$	$2)-8x^2$
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$
$d)(-8x)\cdot(-x)$	4) 8 <i>x</i> ³

a)

$a)-4x\cdot 2x$	$1)8x^2$
b) $-4 \cdot 2x^3$	$(2)-8x^2$
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$
$d)(-8x)\cdot(-x)$	4) 8 <i>x</i> ³

a)-4x · 2x	$1)8x^2$
b) $-4 \cdot 2x^3$	$2)-8x^2$
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$
$d)(-8x)\cdot(-x)$	4) $8x^3$

a)-4x · 2x	$1)8x^2$
b) $-4 \cdot 2x^3$	$2)-8x^2$
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$
$d)(-8x)\cdot(-x)$	4) $8x^3$

a)-4x · 2x	$1)8x^{2}$
b) $-4 \cdot 2x^3$	$2)-8x^2$
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$
$d)(-8x)\cdot(-x)$	4) $8x^3$

a)-4x · 2x	$1)8x^{2}$
b) $-4 \cdot 2x^3$	$(2)-8x^2$
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$
$d)(-8x)\cdot(-x)$	4) 8 <i>x</i> ³

$a)-4x\cdot 2x$	$1)8x^2$
b) $-4 \cdot 2x^3$	$(2)-8x^2$
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$
$d)(-8x)\cdot(-x)$	4) 8 <i>x</i> ³

$a)-4x\cdot 2x$	$1)8x^2$
b) $-4 \cdot 2x^3$	$(2)-8x^2$
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$
$d)(-8x)\cdot(-x)$	4) $8x^3$

Relaciona las expresiones de la izquierda con la derecha

a)-4x · 2x	$1)8x^2$	a)2)
b) $-4 \cdot 2x^3$	$2)-8x^2$	b) 3)
$c)2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$	c) 4)
$d)(-8x)\cdot(-x)$	4) $8x^3$	d) 1)

Selecciona la opción correcta

Relaciona las expresiones de la izquierda con la derecha

a)−4 <i>x</i> · 2 <i>x</i>	$ 1)8x^2$	a)2)
b) $-4 \cdot 2x^3$	$2)-8x^2$	b) 3)
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$	c) 4)
$d)(-8x)\cdot(-x)$	4) 8 <i>x</i> ³	d) 1)

Selecciona la opción correcta

La altura de una lámina rectangular mide la tercera parte de lo que mide su base. Si representamos por x la longitud de la base, ¿cuál de los siguientes monomios indica el área de la lámina?

- a) 3*x*
- b) $3x^2$
- c) $\frac{2}{3}x^2$
- d) $\frac{1}{3}x^2$

SOLUCIÓN:

Relaciona las expresiones de la izquierda con la derecha

1)8~2

a) $+\lambda$ -2λ	1,07
b) $-4 \cdot 2x^3$	$(2)-8x^2$
c) $2x \cdot (-2x) \cdot (-2x)$	$3)-8x^3$
$d)(-8x)\cdot(-x)$	4) $8x^3$

a) 2) b) 3)

c)4) d)1)

Selecciona la opción correcta

la lámina?

2) 1× 2×

La altura de una lámina rectangular mide la tercera parte de lo que mide su base. Si representamos por x la longitud de la base, ¿cuál de los siguientes monomios indica el área de

- a) 3x
- b) $3x^2$
- c) $\frac{2}{3}x^2$ • d) $\frac{1}{3}x^2$

u) 3/3/

Como el área es base x altura, la expresión será: $x \cdot \frac{1}{2}x = \frac{1}{2}x^2$

ECUACIONES

Definición y características

Una igualdad está formada por dos expresiones separadas por el signo =. Si en alguna de ellas intervienen letras se tiene una **igualdad algebraica**.

Definición y características

Una igualdad está formada por dos expresiones separadas por el signo =. Si en alguna de ellas intervienen letras se tiene una **igualdad algebraica**.

- Son ejemplos de igualdades algebraicas:
 - $2x^2 + 3 = 0$
 - *x* = 2
 - 3 = x + 1
 - x + x = 2x
- ullet 7 + 2 = 9, no es una igualda algebraica, es una igualdad numérica

$$5x^3 + 2 = 8$$

Definición y características

Una igualdad está formada por dos expresiones separadas por el signo =. Si en alguna de ellas intervienen letras se tiene una **igualdad algebraica**.

- Son ejemplos de igualdades algebraicas:
 - $2x^2 + 3 = 0$
 - x = 2
 - 3 = x + 1
 - x + x = 2x
- ullet 7 + 2 = 9, no es una igualda algebraica, es una igualdad numérica

$$7 + 3 = 10$$

Definición y características

Una igualdad está formada por dos expresiones separadas por el signo =. Si en alguna de ellas intervienen letras se tiene una **igualdad algebraica**.

- Son ejemplos de igualdades algebraicas:
 - $2x^2 + 3 = 0$
 - *x* = 2
 - 3 = x + 1
 - x + x = 2x
- ullet 7 + 2 = 9, no es una igualda algebraica, es una igualdad numérica

$$4x = 2^2$$

Definición y características

Una igualdad está formada por dos expresiones separadas por el signo =. Si en alguna de ellas intervienen letras se tiene una **igualdad algebraica**.

- Son ejemplos de igualdades algebraicas:
 - $2x^2 + 3 = 0$
 - x = 2
 - 3 = x + 1
 - x + x = 2x
- ullet 7 + 2 = 9, no es una igualda algebraica, es una igualdad numérica

$$2 + 3 = 3 - (8 - 10)$$

Definición y características

Una igualdad está formada por dos expresiones separadas por el signo =. Si en alguna de ellas intervienen letras se tiene una **igualdad algebraica**.

- Son ejemplos de igualdades algebraicas:
 - $2x^2 + 3 = 0$
 - x = 2
 - 3 = x + 1
 - x + x = 2x
- ullet 7 + 2 = 9, no es una igualda algebraica, es una igualdad numérica

	, ,	,
Algebraica	$x^3+2=8\ldots\ldots\ldots$	$5x^3 + 2$
Numérica	$+3=10\ldots\ldots\ldots$	7 + 3 =
	$x = 2^2 \dots \dots$	$4x = 2^{2}$
Numérica	$+3 = 3 - (8 - 10) \dots$	2 + 3 =

Tipos de Igualdades algebraicas

Tipos de Igualdades algebraicas

- Identidades son aquellas que se cumplen para cualquier valor de la x:
 - x + x = 2x es una identidad

Tipos de Igualdades algebraicas

- Identidades son aquellas que se cumplen para cualquier valor de la x:
 - x + x = 2x es una identidad. Si sustituimos la x, por ejemplo, por 3: $3 + 3 = 2 \cdot 3$. Puedes probar con cualquier otro valor de la x y verás que se cumple la igualdad.

Tipos de Igualdades algebraicas

- Identidades son aquellas que se cumplen para cualquier valor de la x:
 - x + x = 2x es una identidad. Si sustituimos la x, por ejemplo, por 3: $3 + 3 = 2 \cdot 3$. Puedes probar con cualquier otro valor de la x y verás que se cumple la igualdad.
- Ecuaciones, son las igualdades algebraicas que no son identidades:
 - x + x = 3x es una ecuación,

Tipos de Igualdades algebraicas

Las igualdades algebraicas pueden ser de dos tipos: **Identidades o ecuaciones**.

- Identidades son aquellas que se cumplen para cualquier valor de la x:
 - x + x = 2x es una identidad. Si sustituimos la x, por ejemplo, por 3: $3 + 3 = 2 \cdot 3$. Puedes probar con cualquier otro valor de la x y verás que se cumple la igualdad.
- Ecuaciones, son las igualdades algebraicas que no son identidades:
 - x + x = 3x es una ecuación, Si sustituimos la x, por ejemplo, por 4: $4 + 4 \neq 3 \cdot 4$

$$5x^3 + 2 = 8$$

Tipos de Igualdades algebraicas

Las igualdades algebraicas pueden ser de dos tipos: **Identidades o ecuaciones**.

- Identidades son aquellas que se cumplen para cualquier valor de la x:
 - x + x = 2x es una identidad. Si sustituimos la x, por ejemplo, por 3: $3 + 3 = 2 \cdot 3$. Puedes probar con cualquier otro valor de la x y verás que se cumple la igualdad.
- Ecuaciones, son las igualdades algebraicas que no son identidades:
 - x + x = 3x es una ecuación, Si sustituimos la x, por ejemplo, por 4: $4 + 4 \neq 3 \cdot 4$

Tipos de Igualdades algebraicas

Las igualdades algebraicas pueden ser de dos tipos: **Identidades o ecuaciones**.

- Identidades son aquellas que se cumplen para cualquier valor de la x:
 - x + x = 2x es una identidad. Si sustituimos la x, por ejemplo, por 3: $3 + 3 = 2 \cdot 3$. Puedes probar con cualquier otro valor de la x y verás que se cumple la igualdad.
- Ecuaciones, son las igualdades algebraicas que no son identidades:
 - x + x = 3x es una ecuación, Si sustituimos la x, por ejemplo, por 4: $4 + 4 \neq 3 \cdot 4$

Tipos de Igualdades algebraicas

Las igualdades algebraicas pueden ser de dos tipos: **Identidades o ecuaciones**.

- Identidades son aquellas que se cumplen para cualquier valor de la x:
 - x + x = 2x es una identidad. Si sustituimos la x, por ejemplo, por 3: $3 + 3 = 2 \cdot 3$. Puedes probar con cualquier otro valor de la x y verás que se cumple la igualdad.
- Ecuaciones, son las igualdades algebraicas que no son identidades:
 - x + x = 3x es una ecuación, Si sustituimos la x, por ejemplo, por 4: $4 + 4 \neq 3 \cdot 4$

$$5x^3 + 2 = 8$$

$$7x + 3x = 10x$$

$$x^2 + 2 - x^2 = 2$$

$$2x + 3 = 3x + 3$$
Ecuación
Identidad

Tipos de Igualdades algebraicas

Las igualdades algebraicas pueden ser de dos tipos: **Identidades o ecuaciones**.

- Identidades son aquellas que se cumplen para cualquier valor de la x:
 - x + x = 2x es una identidad. Si sustituimos la x, por ejemplo, por 3: $3 + 3 = 2 \cdot 3$. Puedes probar con cualquier otro valor de la x y verás que se cumple la igualdad.
- Ecuaciones, son las igualdades algebraicas que no son identidades:
 - x + x = 3x es una ecuación, Si sustituimos la x, por ejemplo, por 4: $4 + 4 \neq 3 \cdot 4$

$5x^3 + 2 = 8 \dots \dots$	Ecuación
$7x + 3x = 10x \dots \dots$	dentidad
-2 + 2 + 2 + 2 = 2	المحامة فيستماما

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

Conceptos

Sea la siguiente igualdad algebraica: x + 5 = 11

• Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.

Conceptos

Sea la siguiente igualdad algebraica: x + 5 = 11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos **solución** de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

Jane 200 2 Barrier	Segundo Miembro	Incógnita
2 = x - 3		·

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

Primer Miembro Segundo Miembro Incógn				
2 = x - 3	2			

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

	Primer Miembro	Segundo Miembro	Incógnita
2 = x - 3	2	x – 3	

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

Tijute en la signiente tabla.				
	Primer Miembro	Segundo Miembro	Incógnita	
2 = x - 3	2	x – 3	X	
3a = 6				

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

	Primer Miembro	Segundo Miembro	Incógnita
2 = x - 3	2	x – 3	Х
3a = 6	3 <i>a</i>		

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

Tijute en la signiente tabla.			
	Primer Miembro	Segundo Miembro	Incógnita
2 = x - 3	2	x – 3	Х
3a = 6	3 <i>a</i>	6	

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

Tijate en la signiente tabla.			
	Primer Miembro	Segundo Miembro	Incógnita
2 = x - 3	2	x – 3	X
3a = 6	3 <i>a</i>	6	а
5y - 4 - y - 3			

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

	Primer Miembro	Segundo Miembro	Incógnita
2 = x - 3	2	x – 3	X
3a = 6	3 <i>a</i>	6	а
5y - 4 = y - 3	5y - 4		

Conceptos

Sea la siguiente igualdad algebraica: x+5=11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

Tigute en la signiente tabla.				
	Primer Miembro	Segundo Miembro	Incógnita	
2 = x - 3	2	x – 3	X	
3a = 6	3 <i>a</i>	6	а	
5y - 4 = y - 3	5 <i>y</i> – 4	<i>y</i> − 3		

Conceptos

Sea la siguiente igualdad algebraica: x + 5 = 11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos solución de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

i ijate en la sigulente tabla.				
	Primer Miembro	Segundo Miembro	Incógnita	
2 = x - 3	2	<i>x</i> – 3	Х	
3a = 6	3 <i>a</i>	6	а	
5y - 4 = y - 3	5 <i>y</i> – 4	<i>y</i> − 3	у	
6 I E — 26				

Ecuaciones

Conceptos

Sea la siguiente igualdad algebraica: x + 5 = 11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos **solución** de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x=6, porque 6+5=11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

Fíjate en la siguiente tabla:

Tijate en la signiente tabla.					
	Primer Miembro	Segundo Miembro	Incógnita		
2 = x - 3	2	x – 3	X		
3a = 6	3 <i>a</i>	6	а		
5y - 4 = y - 3	5y - 4	<i>y</i> − 3	у		
-b + 5 = 2b	-b + 5	4.0	48 4 7 8 4		

Ecuaciones

Conceptos

Sea la siguiente igualdad algebraica: x + 5 = 11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos **solución** de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x = 6, porque 6 + 5 = 11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

Fíjate en la siguiente tabla:

Tijute en la siguiente tabla.					
	Primer Miembro	Segundo Miembro	Incógnita		
2 = x - 3	2	x – 3	Х		
3a = 6	3 <i>a</i>	6	а		
5y - 4 = y - 3	5 <i>y</i> – 4	<i>y</i> − 3	у		
-b+5=2b	-b + 5	2 <i>b</i>	(周) (三) (

Ecuaciones

Conceptos

Sea la siguiente igualdad algebraica: x + 5 = 11

- Es una **ecuación** porque sólo es cierta para un determinado valor de la letra x (a la que llamaremos **incógnita**). Sólo se cumple si x es 6.
- Llamaremos **solución** de una ecuación al valor de la x que hace que la igualdad se cumpla. Tiene como solución x = 6, porque 6 + 5 = 11.
- Llamaremos primer miembro a la parte que queda a la izquierda del "=". Y segundo miembro a la parte de la derecha. x + 5 es el primer término y 11 es el segundo
- A los monomios que aparezcan les llamaremos miembros: x, 5 y 11 son los miembros de la ecuación

Fíjate en la siguiente tabla:

Tijute en la signiente tabla.						
	Primer Miembro	Segundo Miembro	Incógnita			
2 = x - 3	2	x – 3	Х			
3a = 6	3 <i>a</i>	6	а			
5y - 4 = y - 3	5 <i>y</i> – 4	<i>y</i> − 3	у			
-b+5=2b	-b + 5	2 <i>b</i>	b b • • • • • • • • • • • • • • • • • • •			

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

Dada una ecuación, por ejemplo x+3=2 podemos utilizar la estrategia del tanteo:

• Para x=0, el valor numérico de la expresión de la izquierda es

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

Dada una ecuación, por ejemplo x+3=2 podemos utilizar la estrategia del tanteo:

• Para x=0, el valor numérico de la expresión de la izquierda es 3

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

Dada una ecuación, por ejemplo x+3=2 podemos utilizar la estrategia del tanteo:

 Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

Dada una ecuación, por ejemplo x+3=2 podemos utilizar la estrategia del tanteo:

 Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

Dada una ecuación, por ejemplo x+3=2 podemos utilizar la estrategia del tanteo:

 Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , 3 ≠ 2 por tanto 0 no es solución

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

- Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , 3 ≠ 2 por tanto 0 no es solución
- Para x=1, el valor numérico de la expresión de la izquierda es

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

- Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , 3 ≠ 2 por tanto 0 no es solución
- Para x=1, el valor numérico de la expresión de la izquierda es 4

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

- Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , 3 ≠ 2 por tanto 0 no es solución
- Para x=1, el valor numérico de la expresión de la izquierda es $4 \cdot 4 \neq 2$ luego 1 no es solución.

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

- Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , 3 ≠ 2 por tanto 0 no es solución
- Para x=1, el valor numérico de la expresión de la izquierda es $4 \cdot 4 \neq 2$ luego 1 no es solución.
- Probemos con x=-1, el valor numérico de la expresión de la izquierda es

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

- Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , $3 \neq 2$ por tanto 0 no es solución
- Para x=1, el valor numérico de la expresión de la izquierda es $4 \cdot 4 \neq 2$ luego 1 no es solución.
- Probemos con x=-1, el valor numérico de la expresión de la izquierda es 2

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

- Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , 3 ≠ 2 por tanto 0 no es solución
- Para x=1, el valor numérico de la expresión de la izquierda es $4 \cdot 4 \neq 2$ luego 1 no es solución.
- Probemos con x=-1, el valor numérico de la expresión de la izquierda es 2 y el de la derecha es

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

- Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , 3 ≠ 2 por tanto 0 no es solución
- Para x=1, el valor numérico de la expresión de la izquierda es $4 \cdot 4 \neq 2$ luego 1 no es solución.
- Probemos con x=-1, el valor numérico de la expresión de la izquierda es 2 y el de la derecha es 2

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

- Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , 3 ≠ 2 por tanto 0 no es solución
- Para x=1, el valor numérico de la expresión de la izquierda es $4 \cdot 4 \neq 2$ luego 1 no es solución.
- Probemos con x=-1, el valor numérico de la expresión de la izquierda es 2 y el de la derecha es 2 , 2 = 2, y por tanto x = -1 es la solución

Recuerda

Un número es **solución** de la ecuación si al sustituir la incógnita por este número la igualdad se verifica. Así, el número 6 es solución de la ecuación x+5=11 ya que al sustituir x por 6 se obtiene la igualdad 6+5=11.

Solución por tanteo

- Para x=0, el valor numérico de la expresión de la izquierda es 3 y el de la derecha es 2 , 3 ≠ 2 por tanto 0 no es solución
- Para x=1, el valor numérico de la expresión de la izquierda es $4 \cdot 4 \neq 2$ luego 1 no es solución.
- Probemos con x=-1, el valor numérico de la expresión de la izquierda es 2 y el de la derecha es 2 , 2 = 2, y por tanto x = -1 es la solución

Ejercicios

Busca por tanteo las soluciones a las siguientes ecuaciones:

- x 1 = 4
- 3x = 6
- 2x + 5 = 11

Ejercicios

Busca por tanteo las soluciones a las siguientes ecuaciones:

- x 1 = 4
- 3x = 6
- 2x + 5 = 11

$$\overline{x - 1 = 4}$$

Ejercicios

Busca por tanteo las soluciones a las siguientes ecuaciones:

- x 1 = 4
- 3x = 6
- 2x + 5 = 11

$$x-1=4$$
——— λ ¿ A qué número hay que restar 1 para obtener 4?

Ejercicios

Busca por tanteo las soluciones a las siguientes ecuaciones:

- x 1 = 4
- 3x = 6
- 2x + 5 = 11

$$x-1=4$$
 \longrightarrow ¿A qué número hay que restar 1 para obtener 4? \longrightarrow 5 $3x=6$

Ejercicios

Busca por tanteo las soluciones a las siguientes ecuaciones:

- x 1 = 4
- 3x = 6
- 2x + 5 = 11

$$x-1=4$$
 \longrightarrow ¿A qué número hay que restar 1 para obtener 4? \longrightarrow 5 $3x=6$ \longrightarrow ¿El triple de qué número es 6?

Ejercicios

Busca por tanteo las soluciones a las siguientes ecuaciones:

- x 1 = 4
- 3x = 6
- 2x + 5 = 11

$$x-1=4$$
 \longrightarrow ¿A qué número hay que restar 1 para obtener 4? \longrightarrow 5 $3x=6$ \longrightarrow ¿El triple de qué número es 6? \longrightarrow 2 $2x+5=11$

Ejercicios

Busca por tanteo las soluciones a las siguientes ecuaciones:

- x 1 = 4
- 3x = 6
- 2x + 5 = 11

$$x-1=4$$
 $\longrightarrow_{\dot{\iota}} A$ qué número hay que restar 1 para obtener 4? $\longrightarrow_{\dot{\iota}} S$ $3x=6$ $\longrightarrow_{\dot{\iota}} El$ triple de qué número es 6? $\longrightarrow_{\dot{\iota}} S$ $2x+5=11$ $\longrightarrow_{\dot{\iota}} A$ qué número hay que restar 5 para obtener 11? $\dot{\iota}$ Cuál es el triple de 2?

Ejercicios

Busca por tanteo las soluciones a las siguientes ecuaciones:

- x 1 = 4
- 3x = 6
- 2x + 5 = 11

Soluciones:

$$x-1=4$$
 \longrightarrow ¿A qué número hay que restar 1 para obtener 4? \longrightarrow 5 $3x=6$ \longrightarrow ¿El triple de qué número es 6? \longrightarrow 2 $2x+5=11$ \longrightarrow ¿A qué número hay que restar 5 para obtener 11? ¿Cuál es el triple de 2? \longrightarrow 3

¡Veamos cómo podemos mecanizar la resolución de ecuaciones!

Ejercicios

Dos ecuaciones que tienen las mismas soluciones se dice que son ecuaciones equivalentes

• x-1=4 y 2x=10 son equivalentes (5 es la solución de las dos)

Ejercicios

Dos ecuaciones que tienen las mismas soluciones se dice que son ecuaciones equivalentes

• x-1=4 y 2x=10 son equivalentes (5 es la solución de las dos)

¿Cómo resolver ecuaciones?

Podemos ir transformando las ecuaciones en ecuaciones equivalentes pero más sencillas que la anterior hasta que obtengamos una muy sencilla de resolver

Ejercicios

Dos ecuaciones que tienen las mismas soluciones se dice que son ecuaciones equivalentes

• x-1=4 y 2x=10 son equivalentes (5 es la solución de las dos)

¿Cómo resolver ecuaciones?

Podemos ir transformando las ecuaciones en ecuaciones equivalentes pero más sencillas que la anterior hasta que obtengamos una muy sencilla de resolver

Reglas de equivalencia

- Si sumamos o restamos una misma cantidad a ambos miembros de la ecuación obtenemos una ecuación equivalente
 - x + 5 = 8 es equivalente a x + 5 5 = 8 5, o lo que es lo mismo x=3. Solución: 3

Ejercicios

Dos ecuaciones que tienen las mismas soluciones se dice que son ecuaciones equivalentes

• x-1=4 y 2x=10 son equivalentes (5 es la solución de las dos)

¿Cómo resolver ecuaciones?

Podemos ir transformando las ecuaciones en ecuaciones equivalentes pero más sencillas que la anterior hasta que obtengamos una muy sencilla de resolver

Reglas de equivalencia

- Si sumamos o restamos una misma cantidad a ambos miembros de la ecuación obtenemos una ecuación equivalente
 - x+5=8 es equivalente a x+5-5=8-5, o lo que es lo mismo x=3. Solución: 3
- Si multiplicamos o dividimos una misma cantidad a ambos miembros de una ecuación obtenemos una ecuación equivalente
 - 2x = 6 es equivalente a $\frac{2x}{2} = \frac{6}{2}$, que es lo mismo que x=3. Solución:3

Ejercicios

Dos ecuaciones que tienen las mismas soluciones se dice que son ecuaciones equivalentes

• x-1=4 y 2x=10 son equivalentes (5 es la solución de las dos)

¿Cómo resolver ecuaciones?

Podemos ir transformando las ecuaciones en ecuaciones equivalentes pero más sencillas que la anterior hasta que obtengamos una muy sencilla de resolver

Reglas de equivalencia

- Si sumamos o restamos una misma cantidad a ambos miembros de la ecuación obtenemos una ecuación equivalente
 - x + 5 = 8 es equivalente a x + 5 5 = 8 5, o lo que es lo mismo x=3. Solución: 3
- Si multiplicamos o dividimos una misma cantidad a ambos miembros de una ecuación obtenemos una ecuación equivalente
 - 2x = 6 es equivalente a $\frac{2x}{2} = \frac{6}{2}$, que es lo mismo que x=3. Solución:3

Las ecuaciones podemos representarlas con una balanza:

x + 5 = 8

Balanza Algebraica

Figura: Ecuación Original

Explicación

Inicialmente tenemos la ecuación x+5=8 ¿ Qué pasa si quitamos 5 unidades de la derecha y de la izquierda?

Las ecuaciones podemos representarlas con una balanza:

x + 5 = 8

Balanza Algebraica

Figura: Ecuación Original

Explicación

Inicialmente tenemos la ecuación x+5=8 ¿ Qué pasa si quitamos 5 unidades de la derecha y de la izquierda? La balanza se debería mantener, puesto que quitamos las mismas unidades.

Las ecuaciones podemos representarlas con una balanza:

x + 5 = 8

Balanza Algebraica

Figura: Ecuación Original

Explicación

Inicialmente tenemos la ecuación x+5=8 ¿ Qué pasa si quitamos 5 unidades de la derecha y de la izquierda? La balanza se debería mantener, puesto que quitamos las mismas unidades.

Algebraicamente: x + 5 - 5 = 8 - 5 (hemos restado ambos miembros por 5)

x+5=8 (Continuación)

Balanza Algebraica

Figura: Ecuación Equivalente

Explicación

Fíjate: Inicialmente teníamos la ecuación x+5=8Hemos quitado 5 unidades a ambos miembros. La balanza se mantiene en equilibrio. ¿Cuál es la ecuación equivalente resultante?

Reglas de equivalencia. Sumas y restas

x+5=8 (Continuación)

Balanza Algebraica

Figura: Ecuación Equivalente

Explicación

Fíjate: Inicialmente teníamos la ecuación x + 5 = 8Hemos quitado 5 unidades a ambos miembros. La balanza se mantiene en equilibrio. ¿Cuál es la ecuación equivalente resultante? x + 5 - 5 = 8 - 5, que operando es: x = 3

Reglas de equivalencia. Sumas y restas

x+5=8 (Continuación)

Balanza Algebraica

Figura: Ecuación Equivalente

Explicación

Fíjate: Inicialmente teníamos la ecuación x+5=8Hemos quitado 5 unidades a ambos miembros. La balanza se mantiene en equilibrio. ¿Cuál es la ecuación equivalente resultante? x+5-5=8-5, que operando es:

x = 3 Solución:

Reglas de equivalencia. Sumas y restas

x+5=8 (Continuación)

Balanza Algebraica

Figura: Ecuación Equivalente

Explicación

Fíjate: Inicialmente teníamos la ecuación x + 5 = 8Hemos quitado 5 unidades a ambos miembros. La balanza se mantiene en equilibrio. ¿Cuál es la ecuación equivalente resultante? x + 5 - 5 = 8 - 5, que operando es: x = 3

x = 3Solución: x vale 3.

De manera práctica: El 5 está sumando en un miembro, pasa al otro restando (y al revés uno restando pasa al otro lado sumando)

Recuerda: Regla de equivalencia de sumas y restas

- Si sumamos o restamos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un término que está sumando puede pasar al otro lado restando. O si está restando pasará sumando

$$x + 7 = 12$$

Recuerda: Regla de equivalencia de sumas y restas

- Si sumamos o restamos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un término que está sumando puede pasar al otro lado restando. O si está restando pasará sumando

Resuelve las siguientes ecuaciones

$$x + 7 = 12$$

$$x + 7 - 7 = 12 - 7$$

$$x = 5$$

Recuerda: Regla de equivalencia de sumas y restas

- Si sumamos o restamos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un término que está sumando puede pasar al otro lado restando. O si está restando pasará sumando

Resuelve las siguientes ecuaciones

$$x + 7 = 12$$
 $5 + x = 12$ $x + 7 - 7 = 12 - 7$ $x = 5$

Recuerda: Regla de equivalencia de sumas y restas

- Si sumamos o restamos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un término que está sumando puede pasar al otro lado restando. O si está restando pasará sumando

Resuelve las siguientes ecuaciones

$$x + 7 = 12$$
 $5 + x = 12$
 $x + 7 - 7 = 12 - 7$ $5 + x - 5 = 12 - 5$
 $x = 5$ $x = 7$

Solución: x es 5 Solución: x es 7

Recuerda: Regla de equivalencia de sumas y restas

- Si sumamos o restamos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un término que está sumando puede pasar al otro lado restando. O si está restando pasará sumando

Resuelve las siguientes ecuaciones

$$x + 7 = 12$$
 $5 + x = 12$ $5 = 12 + x$
 $x + 7 - 7 = 12 - 7$ $5 + x - 5 = 12 - 5$
 $x = 5$ $x = 7$

Solución: x es 5 Solución: x es 7

Recuerda: Regla de equivalencia de sumas y restas

- Si sumamos o restamos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un término que está sumando puede pasar al otro lado restando. O si está restando pasará sumando

Resuelve las siguientes ecuaciones

$$x + 7 = 12$$
 $5 + x = 12$ $5 = 12 + x$
 $x + 7 - 7 = 12 - 7$ $5 + x - 5 = 12 - 5$ $5 - 12 = 12 + x - 12$
 $x = 5$ $x = 7$ $-7 = x$

Solución: x es 5 Solución: x es 7

Recuerda: Regla de equivalencia de sumas y restas

- Si sumamos o restamos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un término que está sumando puede pasar al otro lado restando. O si está restando pasará sumando

Resuelve las siguientes ecuaciones

$$x + 7 = 12$$
 $5 + x = 12$ $5 = 12 + x$
 $x + 7 - 7 = 12 - 7$ $5 + x - 5 = 12 - 5$ $5 - 12 = 12 + x - 12$
 $x = 5$ $x = 7$ $-7 = x$

Solución: x es 5 Solución: x es 7

Las ecuaciones podemos representarlas con una balanza:

2x=6

Balanza Algebraica

Figura: Ecuación Original

Explicación

Inicialmente tenemos la ecuación 2x = 6 ¿ Qué pasa si quitamos la mitad del peso de la derecha y de la izquierda?

Las ecuaciones podemos representarlas con una balanza:

2x=6

Balanza Algebraica

Figura: Ecuación Original

Explicación

Inicialmente tenemos la ecuación 2x = 6 ¿ Qué pasa si quitamos la mitad del peso de la derecha y de la izquierda?

La balanza se debería mantener, puesto que quitamos la mitad de cada lado.

Las ecuaciones podemos representarlas con una balanza:

2x=6

Balanza Algebraica

Figura: Ecuación Original

Explicación

Inicialmente tenemos la ecuación 2x = 6

¿ Qué pasa si quitamos la mitad del peso de la derecha y de la izquierda?

La balanza se debería mantener, puesto que quitamos la mitad de cada lado

Algebraicamente: 2x: 2 = 6: 2 (hemos dividido ambos miembros por 2)

2x=6 (Continuación)

Balanza Algebraica

Figura: Ecuación Equivalente

Explicación

Fíjate: Inicialmente teníamos la ecuación 2x = 6Hemos quitado la mitad de unidades a ambos miembros. La balanza se mantiene en equilibrio. ¿Cuál es la ecuación equivalente resultante?

2x=6 (Continuación)

Balanza Algebraica

Figura: Ecuación Equivalente

Explicación

Fíjate: Inicialmente teníamos la ecuación 2x = 6Hemos quitado la mitad de unidades a ambos miembros. La balanza se mantiene en equilibrio. ¿Cuál es la ecuación equivalente resultante?

$$\frac{2x}{2} = \frac{6}{2}$$
, que operando es:
 $x = 3$

2x=6 (Continuación)

Balanza Algebraica

Figura: Ecuación Equivalente

Explicación

Fíjate: Inicialmente teníamos la ecuación 2x = 6Hemos quitado la mitad de unidades a ambos miembros. La balanza se mantiene en equilibrio. ¿Cuál es la ecuación equivalente resultante?

 $\frac{2x}{2} = \frac{6}{2}$, que operando es: x = 3

Solución:

2x=6 (Continuación)

Balanza Algebraica

Figura: Ecuación Equivalente

Explicación

Fíjate: Inicialmente teníamos la ecuación 2x = 6Hemos quitado la mitad de unidades a ambos miembros. La balanza se mantiene en equilibrio. ¿Cuál es la ecuación equivalente resultante? $\frac{2x}{2} = \frac{6}{2}$, que operando es: x = 3

Solución: x vale 3.

De manera práctica: El 2 está multiplicando a la x, pasa al otro dividiendo a todo (y al revés algo dividiendo pasa al otro lado multiplicando)

Recuerda: Regla de equivalencia de multiplicación y división

- Si multiplicamos o dividimos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un número que está multiplicando a todo el miembro puede pasar al otro lado dividiendo. O si está dividiendo pasará multiplicando

$$3x = 12$$

Recuerda: Regla de equivalencia de multiplicación y división

- Si multiplicamos o dividimos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un número que está multiplicando a todo el miembro puede pasar al otro lado dividiendo. O si está dividiendo pasará multiplicando

$$3x = 12$$

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

Recuerda: Regla de equivalencia de multiplicación y división

- Si multiplicamos o dividimos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un número que está multiplicando a todo el miembro puede pasar al otro lado dividiendo. O si está dividiendo pasará multiplicando

$$3x = 12$$

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

Recuerda: Regla de equivalencia de multiplicación y división

- Si multiplicamos o dividimos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un número que está multiplicando a todo el miembro puede pasar al otro lado dividiendo. O si está dividiendo pasará multiplicando

Resuelve las siguientes ecuaciones

$$3x = 12$$

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

$$\frac{5x}{5} = 10 \cdot 5$$

$$x = 50$$

Solución: x es 4

Recuerda: Regla de equivalencia de multiplicación y división

- Si multiplicamos o dividimos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un número que está multiplicando a todo el miembro puede pasar al otro lado dividiendo. O si está dividiendo pasará multiplicando

Resuelve las siguientes ecuaciones

$$3x = 12$$

$$\frac{x}{5} = 10$$

$$24 = 12x$$

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

$$x = 50$$

Solución: x es 4

Recuerda: Regla de equivalencia de multiplicación y división

- Si multiplicamos o dividimos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un número que está multiplicando a todo el miembro puede pasar al otro lado dividiendo. O si está dividiendo pasará multiplicando

Resuelve las siguientes ecuaciones

$$3x = 12$$
 $\frac{x}{5} = 10$ $24 = 12x$ $\frac{3x}{3} = \frac{12}{3}$ $\frac{5x}{5} = 10 \cdot 5$ $\frac{24}{12} = \frac{12x}{12}$ $x = 4$ $x = 50$ $2 = x$

Solución: x es 4

Recuerda: Regla de equivalencia de multiplicación y división

- Si multiplicamos o dividimos la misma cantidad a ambos miembros de una ecuación obtenemos otra ecuación equivalente a la primera
- O de forma práctica, un número que está multiplicando a todo el miembro puede pasar al otro lado dividiendo. O si está dividiendo pasará multiplicando

Resuelve las siguientes ecuaciones

$$3x = 12$$
 $\frac{x}{5} = 10$ $24 = 12x$ $\frac{3x}{3} = \frac{12}{3}$ $\frac{5x}{5} = 10 \cdot 5$ $\frac{24}{12} = \frac{12x}{12}$ $x = 4$ $x = 50$ $2 = x$

Solución: x es 4

Solución: x es 50

Veamos como resolver ecuaciones más complejas, fíjate en los pasos:

7x-2=5x+4

 Primero: Realizamos una transposición de términos pasando a un miembro todos los términos que contienen la incógnita y al otro miembro los que no la contienen:

$$7x-2 = 5x + 4$$

Veamos como resolver ecuaciones más complejas, fíjate en los pasos:

7x-2=5x+4

 Primero: Realizamos una transposición de términos pasando a un miembro todos los términos que contienen la incógnita y al otro miembro los que no la contienen:

$$7x-2 = 5x + 4$$

$$7x - 5x = 4 + 2$$

Veamos como resolver ecuaciones más complejas, fíjate en los pasos:

7x-2=5x+4

 Primero: Realizamos una transposición de términos pasando a un miembro todos los términos que contienen la incógnita y al otro miembro los que no la contienen:

$$7x-2 = 5x + 4$$

 $7x - 5x = 4 + 2$

 Segundo: Realizamos las operaciones correspondientes:

Veamos como resolver ecuaciones más complejas, fíjate en los pasos:

7x-2=5x+4

 Primero: Realizamos una transposición de términos pasando a un miembro todos los términos que contienen la incógnita y al otro miembro los que no la contienen:

$$7x-2 = 5x + 4$$

 $7x - 5x = 4 + 2$

Segundo: Realizamos las operaciones correspondientes:

$$2x = 6$$

• Tercero: Despejamos la incognita:

Veamos como resolver ecuaciones más complejas, fíjate en los pasos:

7x-2=5x+4

 Primero: Realizamos una transposición de términos pasando a un miembro todos los términos que contienen la incógnita y al otro miembro los que no la contienen:

$$7x-2 = 5x + 4$$

$$7x - 5x = 4 + 2$$

 Segundo: Realizamos las operaciones correspondientes:

$$2x = 6$$

• Tercero: Despejamos la incognita:

$$x = \frac{6}{2}$$

$$x = 3$$

Veamos como resolver ecuaciones más complejas, fíjate en los pasos:

7x-2=5x+4

 Primero: Realizamos una transposición de términos pasando a un miembro todos los términos que contienen la incógnita y al otro miembro los que no la contienen:

$$7x-2 = 5x + 4$$

 $7x - 5x = 4 + 2$

Segundo: Realizamos las operaciones correspondientes:

$$2x = 6$$

Tercero: Despejamos la incognita:

$$x = \frac{6}{2}$$
$$x = 3$$

Es una buena costumbre comprobar la solución:

$$7x - 2 = 5x + 4 \text{ si}$$

$$\text{hacemos } x = 3$$

Veamos como resolver ecuaciones más complejas, fíjate en los pasos:

7x-2=5x+4

 Primero: Realizamos una transposición de términos pasando a un miembro todos los términos que contienen la incógnita y al otro miembro los que no la contienen:

$$7x-2 = 5x + 4$$

$$7x - 5x = 4 + 2$$

 Segundo: Realizamos las operaciones correspondientes:

$$2x = 6$$

• Tercero: Despejamos la incognita:

$$x = \frac{6}{2}$$

$$x = 3$$

Veamos como resolver ecuaciones más complejas, fíjate en los pasos:

7x-2=5x+4

 Primero: Realizamos una transposición de términos pasando a un miembro todos los términos que contienen la incógnita y al otro miembro los que no la contienen:

$$7x-2 = 5x + 4$$

 $7x - 5x = 4 + 2$

 Segundo: Realizamos las operaciones correspondientes:

$$2x = 6$$

• Tercero: Despejamos la incognita:

$$x = \frac{6}{2}$$
$$x = 3$$

Es una buena costumbre comprobar la solución:

$$7x - 2 = 5x + 4$$
 si hacemos $x=3$

$$7\cdot 3 - 2 = 5\cdot 3 + 4$$

$$21 - 2 = 15 + 4$$

$$19 = 19$$

$$3x - 3 = 12$$

Resuelve las siguientes ecuaciones

$$3x - 3 = 12$$

$$3x = 12 + 3$$

$$3x = 15$$

$$x = \frac{15}{3}$$

$$x = 5$$

Resuelve las siguientes ecuaciones

$$3x - 3 = 12$$

$$\frac{x}{5} - 3 = 12$$

$$3x = 12 + 3$$

$$3x = 15$$

$$x = \frac{15}{3}$$

$$x = 5$$

Resuelve las siguientes ecuaciones

$$3x - 3 = 12$$
 $\frac{x}{5} - 3 = 12$
 $3x = 12 + 3$ $\frac{x}{5} = 12 + 3$
 $3x = 15$ $\frac{x}{5} = 15$
 $x = \frac{15}{3}$ $x = 15 \cdot 5$
 $x = 5$ $x = 75$

Solución: x es 5

Ejercicios

Resuelve las siguientes ecuaciones

$$3x - 3 = 12$$
 $\frac{x}{5} - 3 = 12$
 $3x = 12 + 3$ $\frac{x}{5} = 12 + 3$
 $3x = 15$ $\frac{x}{5} = 15$
 $x = \frac{15}{3}$ $x = 15 \cdot 5$
 $x = 5$ $x = 75$

Solución: x es 5

Solución: x es 75

24-3x = 12x-21

Ejercicios

Resuelve las siguientes ecuaciones

$$3x - 3 = 12$$
$$3x = 12 + 3$$

$$3x = 15$$

$$x = \frac{15}{3}$$

$$x = 5$$

Solución: x es 5

$$\frac{x}{5} - 3 = 12$$

$$\frac{x}{5} = 12 + 3$$

$$\frac{x}{5} = 15$$

$$x = 15 \cdot 5$$

$$x = 75$$

$$24 - 3x = 12x - 21$$

$$24 + 21 = 12x + 3x$$

$$45 = 15x$$

$$\frac{45}{15} = x$$

$$3 = x$$

Solución: x es 3

Ejercicios

Resuelve las siguientes ecuaciones

$$3x - 3 = 12$$
$$3x = 12 + 3$$

$$3x = 15$$

$$x = \frac{15}{3}$$

$$x = 5$$

Solución: x es 5

$$\frac{x}{5} - 3 = 12$$

$$\frac{x}{5} = 12 + 3$$

$$\frac{x}{5} = 15$$

$$x = 15 \cdot 5$$

$$x = 75$$

$$24 - 3x = 12x - 21$$

$$24 + 21 = 12x + 3x$$

$$45 = 15x$$

$$\frac{45}{15} = x$$

$$3 = x$$

Solución: x es 3

Algunos **problemas** se pueden resolver traduciendo el lenguaje natural a lenguaje algebraico, y en el caso de obtener una ecuación y resolverla

Enunciado

Algunos **problemas** se pueden resolver traduciendo el lenguaje natural a lenguaje algebraico, y en el caso de obtener una ecuación y resolverla

Enunciado

El doble de un número menos 2 es 8. ¿Qué número es?

 No conocemos el número, luego le llamo x

Algunos **problemas** se pueden resolver traduciendo el lenguaje natural a lenguaje algebraico, y en el caso de obtener una ecuación y resolverla

Enunciado

- No conocemos el número, luego le llamo x
- "el doble de un número menos 2"

Algunos **problemas** se pueden resolver traduciendo el lenguaje natural a lenguaje algebraico, y en el caso de obtener una ecuación y resolverla

Enunciado

- No conocemos el número, luego le llamo x
- "el doble de un número menos 2" $\longrightarrow 2x 2$
- "es igual a 8"

Algunos **problemas** se pueden resolver traduciendo el lenguaje natural a lenguaje algebraico, y en el caso de obtener una ecuación y resolverla

Enunciado

El doble de un número menos 2 es 8. ¿Qué número es?

- No conocemos el número, luego le llamo x
- "el doble de un número menos 2" → 2x - 2
- "es igual a 8" $\longrightarrow 2x 2 = 8$

Resuelvo la ecuación:

•
$$2x - 2 = 8$$

•
$$2x = 10$$

•
$$x = \frac{10}{2}$$

•
$$x = 5$$

Comprobamos la solución:

Algunos **problemas** se pueden resolver traduciendo el lenguaje natural a lenguaje algebraico, y en el caso de obtener una ecuación y resolverla

Enunciado

- No conocemos el número, luego le llamo x
- "el doble de un número menos 2" $\longrightarrow 2x 2$
- "es igual a 8" $\longrightarrow 2x 2 = 8$

- Resuelvo la ecuación:
 - 2x 2 = 8
 - 2x = 10
 - $x = \frac{10}{2}$
 - x = 5
- Comprobamos la solución:
 El doble de 5 es 10,

Algunos **problemas** se pueden resolver traduciendo el lenguaje natural a lenguaje algebraico, y en el caso de obtener una ecuación y resolverla

Enunciado

El doble de un número menos 2 es 8. ¿Qué número es?

- No conocemos el número, luego le llamo x
- "el doble de un número menos 2" → 2x - 2
- "es igual a 8" $\longrightarrow 2x 2 = 8$

Resuelvo la ecuación:

•
$$2x - 2 = 8$$

•
$$2x = 10$$

•
$$x = \frac{10}{2}$$

•
$$x = 5^{-}$$

 Comprobamos la solución:
 El doble de 5 es 10, si le quito 2 obtengo 8

Enunciado

Enunciado

En una clase hay 28 alumnos y el número de chicos es inferior en 4 al número de chicas. ¿Cuántos chicos y chicas hay?

 No conocemos el número de chicos, luego le llamo x. Nota que cuando resuelva la ecuación x será el número de chicos (no de chicas).

Enunciado

- No conocemos el número de chicos, luego le llamo x. Nota que cuando resuelva la ecuación x será el número de chicos (no de chicas).
- "el número de chicos es inferior en 4 al de chicas". Chicas hay

Enunciado

- No conocemos el número de chicos, luego le llamo x. Nota que cuando resuelva la ecuación x será el número de chicos (no de chicas).
- "el número de chicos es inferior en 4 al de chicas".
 Chicas hay \(\to x + 4 \)
- "en total hay 28"

Enunciado

- No conocemos el número de chicos, luego le llamo x. Nota que cuando resuelva la ecuación x será el número de chicos (no de chicas).
- "el número de chicos es inferior en 4 al de chicas".
 Chicas hay \(\to x + 4 \)
- "en total hay 28" $\longrightarrow x + (x + 4) = 28$

- Resuelvo la ecuación:
 - x + (x + 4) = 28
 - 2x + 4 = 28
 - 2x = 24
 - x = 12 (12 chicos y 12+4 chicas)
- Comprobamos la solución:

Enunciado

- No conocemos el número de chicos, luego le llamo x. Nota que cuando resuelva la ecuación x será el número de chicos (no de chicas).
- "el número de chicos es inferior en 4 al de chicas".
 Chicas hay \(\to x + 4 \)
- "en total hay 28" $\longrightarrow x + (x + 4) = 28$

- Resuelvo la ecuación:
 - x + (x + 4) = 28
 - 2x + 4 = 28
 - 2x = 24
 - x = 12 (12 chicos y 12+4 chicas)
- Comprobamos la solución: número de chicos es 12,

Enunciado

- No conocemos el número de chicos, luego le llamo x. Nota que cuando resuelva la ecuación x será el número de chicos (no de chicas).
- "el número de chicos es inferior en 4 al de chicas".
 Chicas hay \(\to x + 4 \)

- Resuelvo la ecuación:
 - x + (x + 4) = 28
 - 2x + 4 = 28
 - 2x = 24
 - x = 12 (12 chicos y 12+4 chicas)
- Comprobamos la solución: número de chicos es 12, el de chicas será 12+4=16, y 16+12=28 en total