Hoofdstuk 1: De OPAMP

1: Definitie

- 1.1: Uitvoeringsvormen
- 2: Hoofdeigenschappen van een (ideale) opamp
 - 2.1: De spanningsversterking
 - 2.2: De ingangsstromen
 - 2.3: De uitgangsweerstand
 - 2.4: Andere kenmerken
- 3: Niet-idealiteiten van een reële opamp
 - 3.1: De common mode range
 - 3.2: De uitgangsspanning
 - 3.3: De open loop versterking
 - 3.4: De common mode versterking
 - 3.5: De common mode rejection ratio
 - 3.6: De power supply rejection ratio
 - 3.7: De intput offset spanning
 - 3.8: De input noise voltage
 - 3.9: De input bias current
 - 3.10: De input offset current
 - 3.11: De ingangsimpedantie
 - 3.12: De slewing rate
 - 3.13: De transition rise time en transition fall time
 - 3.14: De settling time

4: De interne werking van de opamp

Hoofdstuk 2: Praktische opampschakelingen 1

- 1: Inleiding
- 2: De opamp als comparator
 - 2.1: Opmerkingen en vragen
 - 2.2: De comparator: toepassing 1
 - 2.3: De comparator: toepassing 2
- 3: Opampschakelingen met een terugkoppeling
 - 3.1: Een negatieve terugkoppeling
 - 3.2: Instabiliteit van opampschakelingen met tegenkoppeling
 - 3.3: Toepassingen
- 4: De inverterende versterker
 - 4.1: De spanningsversterking
 - 4.2: Opgave
 - 4.3: Belangrijke opmerkingen
- 5: De inverterende versterker op basis van een niet-ideale opamp
 - 5.1: De invloed van de input offset spanning
 - 5.2: De invloed van de open loop gain
 - 5.3: De invloed van de open loop gain bij AC-signalen
 - 5.4: Opgave 1
 - 5.5: Opgave 2
- 6: De inverterende optelschakeling

- 6.1: Opgave
- 6.2: De inverterende optelschakeling op basis van een niet-ideale opamp
- 6.3: Toepassingsvoorbeeld: thermometer interface
- 6.4: Toepassingsvoorbeeld: mengpaneel

Hoofdstuk 3: Praktische opampschakelingen 2

- 1: De niet-inverterende versterker
 - 1.1: De spanningsversterking
 - 1.2: De ingangsimpedantie
 - 1.3: De uitgangsimpedantie
 - 1.4: De buffer
 - 1.5: De buffer: toepassingen
- 2: De niet-inverterende versterker op basis van een niet-ideale opamp
 - 2.1: De invloed van de input offset spanning
 - 2.2: De invloed van de open loop gain
 - 2.3: Opgave
 - 2.4: De buffer op basis van een niet-ideale opamp
- 3: De verschilversterker
 - 3.1: De spanningsversterking
 - 3.2: De ingangsimpedanties
 - 3.3: Geleide oefeningen
- 4: De differentiator
- 5: De integrator

- 5.1: Geleide oefeningen
- 6: Infrared voice communicator
 - 6.1: Het zendgedeelte
 - 6.2: Het ontvangstgedeelte
 - 6.3: Situering
- 7: De tiptoetsregelaar

Hoofdstuk 4: Gestabiliseerde voedingen

- 1: Inleiding
- 2: De kwaliteit van een spanningsstabilisator
 - 2.1: De absolute stabilisatiefactor
 - 2.2: De relatieve stabilisatiefactor
 - 2.3: Opgave
 - 2.4: De inwendige weerstand
 - 2.5: Opmerkingen
- 3: Parallelstabilisatie
 - 3.1: Principe
 - 3.2: Praktische schakelingen
- 4: Seriestabilisatie
 - 4.1: Principe
 - 4.2: Praktische schakeling 1
 - 4.3: Praktische schakeling 2
 - 4.4: Praktische schakeling 3

- 4.5: Praktische schakeling 4
- 5: Geïntegreerde gestabiliseerde voedingen
 - 5.1: De 78-reeks en de 79-reeks
 - 5.2: De ingangsspanning bij de 78/79-reeksen
 - 5.3: Het gebruik van de 78/79-reeksen
 - 5.4: Het bekomen van een regelbare uitgangsspanning
 - 5.5: De LM117, de LM317A en de LM317
- 6: Opgave
- 7: Geschakelde voedingen
 - 7.1: Geleide oefeningen

Hoofdstuk 5: Laagfrequent vermogenversterkers

- 1: De gemeenschappelijke emitterschakeling
 - 1.1: AC-signalen gesuperponeerd op een DC-instelling
 - 1.2: Het rendement
- 2: De klasse A versterker
 - 2.1: De DC-instelling
 - 2.2: AC-signalen gesuperponeerd op een DC-instelling
 - 2.3: Het rendement
- 3: De klasse B versterker
 - 3.1: Principe
 - 3.2: De volledige schakeling
 - 3.3: Het rendement

- 4: De klasse AB versterker
 - 4.1: De vervorming van een klasse B en een klasse AB versterker
 - 4.2: Werkingsprincipe
- 5: Klasse B versterker zonder transformatoren
 - 5.1: De DC-instelling
 - 5.2: De golfvormen
 - 5.3: Een tweetrapsversterker
- 6: Klasse AB versterker zonder transformatoren
- 7: Geïntegreerde vermogenversterkers
 - 7.1: De TDA2002
 - 7.2: Eerste verterkerschakeling op basis van de TDA2002
 - 7.3: Tweede versterkerschakeling op basis van de TDA2002

Bibliografie

Bijlage 1: Datasheets opamp

Bijlage 2: Eerste orde systemen

- 1: Een RC-kring
 - 1.1: Het frequentiegedrag
 - 1.2: Het stapantwoord
- 2: Het Bode diagram
 - 2.1: Het Bode diagram van een eerste orde systeem
 - 2.2: Opmerking

3: De opamp

- 3.1: De spanningsvolger
- 3.2: Stapantwoord van een spanningsvolger

Bijlage 3: Datasheets LM3914

Bijlage 4: De Bar Display Driver