Can butterflies stand the heat? The physiological consequences of increased warming in diapausing *Pieris rapae* butterflies

Emily Mikucki

Mean temperature departure from average

Dec. 2015 - Feb. 2016 (Winter)

Base Period: 1901 - 2000

Overwintering organisms will be exposed to novel thermal conditions under winter warming

What are the physiological consequences of temperature anomalies on diapausing Pieris rapae?

Cabbage white good system for studying species' responses to climate change

Seasonal metamorphic cycle of a VT cabbage white

Environmental factors that induce diapause have been previously studied (over 40 years ago!)

GEOGRAPHIC VARIATION OF DIAPAUSE

IN INSECTS*

Appl. Ent. Zool. 5(4): 213-224 (1970)

-

Sinzo Masaki Laboratory of Entomology

Photoperiodic Induction of Diapause in *Pieris rapae crucivora*BOISDUVAL (Lepidoptera: Pieridae)

Ent. exp. & appl. 8 (1965): 27-32. North-Holland Publishing Co., Amsterdam

Inhibition of Diapause in *Pieris rapae* L. by Brief Supplementary Photophases

Insect Physiology Laboratory, Entomology Research Division, Agricultural Research Service, U.S. Department of Agriculture, Beltsville (Maryland, U.S.A.), October 29, 1962. LIGHT-DARK CYCLES AND DIAPAUSE INDUCTION

IN PIERIS RAPAE (L.)

BY

ROY J. BARKER1 and CHARLES F. COHEN

Diapause is primarily induced by reduced photoperiod

Population	Diapause Induction
Tokyo, Japan (Kono 1970) Maryland, USA (Barker 1962) Vermont, USA	13 hours \geq light $==>$ Diapause 13 hours \geq light $==>$ Diapause ?

Diapause induction varies across photoperiods and temperatures in a VT population

Treatment	16L:8D	14L:10D	12	2L:12D	8L:16D
Temperature	22°C	25°C	22°C	12°C-32°C	22°C
Percent of pupae that entered diapause (N≈30)	0%	20%	78.5%	95%	100%

Diapause is primarily induced by reduced photoperiod – latitude

Population	Diapause induction	Latitude
Tokyo, Japan (Kono 1970)	13 hours ≥ light → Diapause	35.6895° N
Maryland, USA (Barker 1962)	13 hours ≥ light → Diapause	38.9847° N
Vermont, USA	14 hours ≥ light → Diapause	44.4759° N

Conclusions: Diapause induction

- ► Photoperiod differentially induces diapause in different populations (potentially due to latitude)
- ▶ VT populations enter diapause under longer photoperiod (14L:10D)
- Potential interaction between photoperiod and temperature that affects the diapause response

Short-term increased warming in diapausing pupae

Treatment	14L:10D	12	8L:16D	
Original temp. Experimental	25°C	22°C	12°C-32°C	22°C
temp. (+5°C)	30°C	27°C	27°C	22°C
Number of diapausing pupae (N≈10)				(CONTROL)

Pupal weight decreased under short-term warming

Temperature affects pupal weight under 12L:12D photoperiod

Photoperiod does not affect pupal weight under 22°C

Conclusions: Short-term warming

- Pupal weight decreased under short-term warming
- ▶ P. rapae pupae from the fluctuating temperature treatment lost the least weight under short-term warming
- Photoperiod had no effect on pupal weight under increased warming
- Will P. rapae be resilient under increased temperature variation/winter warming?

What are the physiological consequences of temperature anomalies on diapausing Pieris rapae?

- ► Diapause induction & exit
- ► Metabolic rate
- Pupation length
- ► Survial & success to eclosion

Future Directions

- 1. The physiological consequences of short-term & long-term winter warming
- 2. VT populations vs. NC populations: differential responses to winter temperature and seasonal anomalies?

Acknowledgements

Dr. Brent Lockwood & lab members Dr. Alison Brody & lab members

Field crew:

Rose Scavotto

Sarah Howe

Ben Chomitz

Hailey Moll

Pieris Project Collaborators Dr. Sean Ryan

