Automatic Feature Engineering for Answer Selection and Extraction

Aliaksei Severyn¹, Alessandro Moschitti^{1,2}

¹DISI, University of Trento, Italy ²QCRI, Qatar Foundation, Doha, Qatar

Abstract

Goal:

Reduce effort put into tedious feature engineering for Question
 Answering

Tasks:

- Answer sentence selection
- Answer extraction

Previous work:

- Represent each q/a pair with a large number of features capturing lexical, syntactic, semantic similarities between question and its answer
- State-of-the-art methods rely on powerful syntactic features from Tree Edit Distance features [Wang et al. 2007, Yao et al. 2013]

Our approach:

- Model q/a pairs explicitly as linguistic structures (shallow syntactic and dependency trees) [CoNLL,2013]
- Rely on Kernel Learning to automatically extract and learn powerful discriminative syntactic patterns
- Exploit semantically motivated relational linking between question and answer passages trhough Question type and Focus classifiers + NER
- Treat answer extraction as a classification task

QA Pair classification with kernels

- Represent each QA pair as a triple of question and answer sentence trees and traditional similarity feature vector:
- lacktriangle Define QA similarity kernel between as follows: $m{x} = \langle m{T}_a, m{T}_s, m{v}
 angle$

$$egin{array}{lll} K(oldsymbol{x}^i,oldsymbol{x}^j) &=& K_{ ext{TK}}(oldsymbol{T}_q^i,oldsymbol{T}_q^j) \ &+& K_{ ext{TK}}(oldsymbol{T}_s^i,oldsymbol{T}_s^j) \ &+& K_{ ext{V}}(oldsymbol{v}^i,oldsymbol{v}^j) \end{array}$$

Tree Kernels

- Syntactic (STK) and Partial Tree Kernel (PTK) (Moschitti, 2006)
- PTK generalizes STK (Collins and Duffy, 2002) to generate more general tree fragments
- PTK is suitable for constituency and dependency structures

Semantic Linking

- Use Question Category (QC) and Focus Classifiers (FC) to find question category and focus word
- Run NER on the answer passage text
- Connect focus word with related NERs (according to the question category) in the answer

EAT	Named Entity types
HUM	Person
LOCATION	Location
ENTITY	Organization, Person, Misc
\mathbf{DATE}	Date, Time, Number
QUANTITY	Number, Percentage
CURRENCY	Money, Number

Semantic linking with QC + FC + NER

Answer Extraction as Classification

- Consider a set S of all NP chunks as anwer candidates
- For each chunk in S generate a tree with a subtree containing c tagged with ANS tag
- TRAIN: Chunks spanning correct answers create +1 examples and the others are -1 -- can train a simply binary classifier
- TEST: predict the answer by taking the tree with the highest prediction score

Question classifier

- Tree kernel SVM multi-classifier
- Data
- 5500 questions from UIUIC
- 6 coarse classes:
- ABBR, DESC, ENTY, HUM, LOC, NUM

DATASET	STK	PTK
UIUIC	86.1	82.2
TREC TEST	79.3	78.1

Focus classifier

94.5

90.0

96.9

SEC0-600

BUNESCU

Answer sentence reranking on TREC 13

Test on public benchmark TREC 13

System	MAP	MRR
Wang et al. (2007)	0.6029	0.6852
Heilman & Smith (2010)	0.6091	0.6917
Wang & Manning (2010)	0.5951	0.6951
Yao et al. (2013)	0.6319	0.7270
+ WN	0.6371	0.7301
shallow tree (S&M, 2012)	0.6485	0.7244
+ semantic tagging	0.6781	0.7358

Answer Extraction (simple majority voting)

- Replicate the setting in Yao et al., (2013) on TREC 13
- Best answer selection -- major voting scheme

system	set	Р	R	$\overline{F1}$
Yao et al. (2013)	TRAIN	55.7	43.8	49.1
+ forced		54.5	53.9	54.2
+ WN		55.2	53.9	54.5
this work		66.2	66.2	66.2
Yao et al. (2013)	ALL	67.2	50.6	$\overline{57.7}$
+ forced		60.9	59.6	60.2
+ WN		63.6	62.9	63.3
this work		70.8	70.8	70.8
+ WN		63.6	62.9	63.3

Sources of error

- Chunking: each answer is assumed to be spanned by a single chunk
- Semantic linking: relies on QC and NER
- Candidate answer classification: high recall, low precision introduce more semantic constraints on possible answers
- Best answer selection: naive major voting, ignores global view on the candidates

Conclusions

- Treat q/a pairs **directly** encoding them into linguistic structures augmented with semantic information
- Structural kernel technology to automatically extract and learn syntactic/semantic features
- Semantic linking using question and focus classifiers (trained with same tree kernel technology) and NERs
- Automatic feature engineering vs. previous TED approaches
- State-of-the-art results on two important QA tasks: Answer
 Sentence Selection and Answer Extraction

Acknowledgments

This research has been supported by the European Community's Seventh Framework Program (FP7/2007-2013) under the #288024 LIMOSINE project. Aliaksei Severyn is supported by Google Europe Doctoral Fellowship in Machine Learning.