

Fig. 2

	ALDODAETHANOED
1	AIRCRAFT HANGER
2	CONTROL TOWER
3	TERMINAL
4	EMERGENCY RESPONSE
5	BAGGAGE HANDLING
6	AMUSEMENT RIDE
7	OFFICE BUILDING
8	RESTAURANT
9	RETAIL
10	CLASSROOM
11	DORMITORY
12	LIBRARY
13	DATA PROCESSING
14	BARRACKS
15	HOSPITAL
16	SEMICONDUCTOR FAB BLDG
17	WASTE WATER TREATMENT PLANT
18	AUTOMOTIVE MANUFACTURING
19	FOOD/BEVERAGE PROCESSING
20	PLASTIC EXTRUSION
21	CEMENT/GLASS/STONE
22	SMELTING
23	PAPER/WOOD/PULP
$\overline{}$	PETROCHEMICAL PROCESSING
25	PHARMACEUTICAL MANUFACTURING
26	PRINTING AND PUBLISHING
27	ARENA
28	CASINO
29	RUBBER/PLASTICS PROCESSING
30	METAL MINING
31	TEXTILE MANUFACTURING
32	OIL DRILLING
33	GYMNASIUM
34	UTILITIES/CENTRAL PLANT
35	SHIPPING
36	WAREHOUSE
37	FURNITURE MANUFACTURING
38	WATER TREATMENT
39	PARKING GARAGE
40	DAIRY
41	GIN
42	BULK MAIL PROCESSING
43	ELECTRONIC MANUFACTURING
44	RAILROAD SYSTEMS
45	WATER/SEWAGE PUMPING STATION
	OIL WELL
46	OIL WELL

	<u> </u>
47	AGRICULTURAL PROCESSING
48	METAL FOUNDRY
49	COAL MINE
50	SLAUGHTERHOUSE
51	VETERINARY MEDICINE
52	WATER DRILLING
53	BAKERY
54	MACHINE SHOP
55	COMMUNICATIONS
56	AEROSPACE MANUFACTURING
57	PUBLIC TRANSPORTATION
58	DOCK SHIPPING SHORE POWER
59	BANKING SERVICES
60	HOTEL
61	THEATRE
62	NURSING HOME
63	LABORATORY
64	Z00
65	CHURCH
66	COURTHOUSE
67	CORRECTIONAL INSTITUTION
68	AEROSPACE CONTROL

Fig. 3

LIGHTING, TUNGSTEN HALOGEN		-	-	_		-	0	_	0	0	0	0	0
LIGHTING, METAL HALIDE		-	-	-		-	0	_	0	0	0	0	0
ГІСНТІИС, МЕЯСИRY УАРОЯ		-	-	-		-	0	-	0	0	0	0	0
миідое, гр sodium		-	-	-		_	0	-	0	0	0	0	0
ПСНТІИС, НР SODIUM		-	-	-		_	0	-	0	0	0	0	0
LIGHTING, INCANDESCENT		1	-	-		-	1	-	-	-	-	1	-
LIGHTING, FLUORESCENT		-	-	-		-	-	-	-	-	-	-	-
ASD, AC VSI		0	-	0		0	Į	-	-	0	0	0	0
ASD, AC CSI		0	-	0		0	ļ	-	-	0	0	0	0
WWA CA AC PWM		0	-	0		0	l	-	-	0	0	0	0
ASD, DC		0	1	0		0	l	ļ	-	0	0	0	0
MOTORS, DC SERVO		1	1	0		0	1	1	0	0	0	0	0
мотока, рс вкизнсеза		1	1	0		0	1	1	0	0	0	0	0
МОТОРС, DC GEAR		1	ļ	0		0	1	1	0	0	0	0	0
мотока, Рогурназе, зүиснкоиоиз		1	l	0		0	1	ļ	1	0	0	0	0
мотока, Рогурнаѕе, іиристіои		1	-	0		0	1	-	1	0	0	0	0
	BUILDING TYPE	AIRCRAFT HANGER	CONTROL TOWER	TERMINAL	EMERGENCY	RESPONSE	BAGGAGE HANDLING	AMUSEMENT RIDE	OFFICE BUILDING	RESTAURANT	RETAIL	CLASSROOM	DORMITORY

Fig.~4Load types present

		DA	ILY	WEE	KLY	MON	THLY
	INTERRUPTION WEIGHTING LIBRARY	SHORT-TERM INTERRUPTION (< 3 MIN)	LONG-TERM INTERRUPTION (>= 3 MIN)	SHORT-TERM INTERRUPTION (< 3 MIN)	LONG-TERM INTERRUPTION (>= 3 MIN)	SHORT-TERM INTERRUPTION (< 3 MIN)	LONG-TERM INTERRUPTION (>= 3 MIN)
BUILDING TYPE							
DEFAULT	0	1	1	2	2	3	3
AIRCRAFT HANGER	1	1	1	2	2	3	3
CONTROL TOWER	2	1	1	1	1	1	1
TERMINAL	3	1	1	2	2	3	3
EMERGENCY RESPONSE	4	1	1	2	2	3	3
BAGGAGE HANDLING	5	1	1	2	2	3	3
AMUSEMENT RIDE	6	1	_ 1	2	2	3	3
OFFICE BUILDING	7	1	1	2	2	3	3
RESTAURANT	8	1	1	2	2	3	3
RETAIL	9	1	1	2	2	3	3
CLASSROOM	10	1	1	2	2	3	3
DORMITORY	11	1	1	2	2	3	3

Fig. 5
INTERRUPTIONS WEIGHTING
LIBRARY (EXCERPT)

LOAD TYPE	CATEGORY WEIGHTS LIBRARY	UNDERVOLTAGE	OVERVOLTAGE	VOLTAGE UNBALANCE	WAVEFORM DISTORTION	FREQUENCY DEIVATION	INTERRUPTIONS	VOLTAGE SAGS	VOLTAGE SWELLS	FLICKER	TRANSIENT OVERVOLTAGES
DEFAULT	0	10	9	4	8	4	10	10	8	4	8
AC MOTORS	1	10	10	10	7	3	10	10	7	2	8
DC MOTORS	2	10	10	10	7	3	10	10	7	2	8
ASDS	3	10	10	8	10	3	10	10	8	3	8
LIGHTING 1 (INC., FLUOR.)	4	7	8	0	5	3	10	10	6	8	5
LIGHTING 2 (HID)	5	9	8	0	5	5	10	10	6	7	5
COMPUTERS	6	10	9	0	8	3	10	10	9	2	8
MEDICAL IMAGING EQUIPMENT	7	10	9	0	8	3	10	10	9	2	8
SEMICONDUCTOR MFG.											
EQUIPMENT	8	10	9	0	8	3	10	_10	9	2	8
CNC MACHINE TOOLS	9	10	9	0	8	3	10	10	9_	2	8
OFFICE EQUIPMENT	10	10	9	0	8	3	10	10	9	2	8 5
ARC FURNACES	11	9	9	5	10	3	10	10_	8	8	5
CAPACITORS	12	10_	10	8	10	3	3	5	5	5	5
TRANSFORMERS	13	10_	10	10	8	3	0	0	0_	5	8
REACTORS	14	8	8	8	0	0	0	8	8	0	0

Fig. 6
CATEGORY WEIGHTS
LIBRARY

OVER FLICKER LEVEL 2	5	3	90	5	5	5	3	3 5	5 5	5
OVER FLICKER LEVEL 1	50	3	20	20	20	50	5	2 2	20	20
UNDER FREQUENCY LEVEL 2	0017		9917	9917	9917	9917	170	9917	9917	9917
UNDER FREQUENCY LEVEL 1	9950	88	9950	9950	9950	9950	0.00	9920	9950	9950
OVER FREQUENCY LEVEL 2	10083	3	10083	10083	10083	10083	0007	10083	10083	10083
OVER FREQUENCY LEVEL 1	10050	200	10050	10050	10050	10050	0.007	10050	10050	10050
OVER WORST HARMONIC LEVEL 2) (2	8	300	300	300	300	6		300	300
OVER WORST HARMONIC LEVEL 1	250	3	250	250	250	250	0,10	250	250	250
OVER THD LEVEL 2	500	3	200	200	200	200	6	200	200	200
OVER THD LEVEL 1	400	3	400	400	400	400	9	400	400	400
VOLTAGE UNBALANCE LEVEL 2	200		200	200	200	200	G	200	. 200	200
VOLTAGE UNBALANCE LEVEL 1	150		150	150	150	150	0.1	150	150	150
OVERVOLTAGE LEVEL 2	11000		11000	11000	11000	11000	000	1100	11000	11000
OVERVOLTAGE LEVEL 1	10500		10500	10500	10500	10500	1000	10500	10500	10500
UNDERVOLTAGE LEVEL 2	0006		0006	9000	0006	0006	0000	0006	0006	0006
UNDERVOLTAGE LEVEL 1	9500		9500	9500	9200	9500	0000	9500	9500	9500
YAAABIJ TUIOGTES MAAJA	c		_	2	3	4	u	၁ ဖ	7	8
	LOAD TYPE	MOTORS, POLYPHASE.	INDUCTION	MOTORS, DC GEAR	ASD, DC	LIGHTING, FLOURESCENT	LIGHTING, HP	COMPUTERS	MEDICAL IMAGING EQUIPMENT	SEMICONDUCTOR MANUFACTURING EQUIPMENT

8/13

CNC MACHINE																	
TOOLS	တ	9200	9200 9000	10500	0500 11000	150	200	400	200	250	300	10050	10083	9950	9917	20	100
OFFICE						•									1		
EQUIPMENT				,												_	
(COPIERS,																	
PRINTERS)	10	9500	9000	10500	11000	150	200		200	250	300	10050	10083			22	100
ARC FURNACE	11	9500	0006	10500	10500 11000	150	200	400	200	250	300	10050	10083	9950	9917	ည	100
CAPACITORS	12	9200	0006	10500	11000	150	200		200	250	300	10050	10083			20	100
TRANSFORMERS	13	9500	0006		11000	150	200		200	250	300	10050	10083			20	100
REACTOR	14	9200	0006	10500	11000	150	200	1	200	250	300	10050	10083		1	22	100

Fig. 7-1

				,								,		,		
ONEK FLICKER LEVEL 2	8	09	8	99	8	09	8	G	3	99	8	9	09	09	09	09
OVER FLICKER LEVEL 1	900	800	800	800	80	800	800	008	3	800	8	800	800	800	800	800
LEVEL 2 UNDER FREQUENCY	8	30	30	8	೫	೫	တ္တ	Ş	3	8	೫	9	8	8	ၕ	30
LEVEL 1 UNDER FREQUENCY	120	120	120	120	120	120	120	120	2	120	120	120	120	120	120	120
LEVEL 2 OVER FREQUENCY	ಜ	30	30	೫	30	30	8	30	3	8	30	30	30	8	99	30
FEAEF 1 ONEB EBEGNENCA	120	120	120	120	120	120	120	120	ì	120	120	120	120	120	120	120
OVER WORST HARMONIC LEVEL 2	9	10	9	9	9	9	9	5	2	9	10	ę	19	9	10	10
OVER WORST HARMONIC LEVEL 1	99	009	009	009	009	009	000	600		900	009	900	009	900	009	009
OVER THD LEVEL 2	9	10	9	9	9	19	9	10	2	9	10	Ç	9	9	9	10
OVER THD LEVEL 1	000	009	009	009	009	009	009	900	3	009	009	900	009	009	009	009
VOLTAGE UNBALANCE LEVEL 2	100	100	199	100	100	100	9	5	3	9	9	100	9	100	9	100
VOLTAGE UNBALANCE	909	009	99	009	009	009	009	909		009	99	900	000	009	900	909
OVERVOLTAGE LEVEL 2	120	120	120	120	120	120	120	120		120	120	120	120	120	120	120
OVERVOLTAGE LEVEL 1	240	240	240	240	240	240	240	240		240	240	240	240	240	240	240
UNDERVOLTAGE LEVEL 2	120	120	120	120	120	120	120	120		120	120	120	120	120	120	120
UNDERVOLTAGE LEVEL 1	240	240	240	240	240	240	240	240		240	240	240	240	240	240	240
ALARM WEIGHTING YAAABIJ	0	-	2	က	4	5	9	7		∞	6	10	11	12	13	14
LOAD TYPE	DEFAULT	MOTORS, POLYPHASE, INDUCTION	MOTORS, DC GEAR	ASD, DC	LIGHTING, FLOURESCENT	LIGHTING, HP SODIUM	COMPUTERS	MEDICAL IMAGING	SEMICONDUCTOR	MANUFACTURING EQUIPMENT	CNC MACHINE TOOLS	OFFICE EQUIPMENT (COPIERS, PRINTERS)	ARC FURNACE	CAPACITORS	TRANSFORMERS	REACTOR

Fig.~8alarm weights library

				Dl	IRATIO	N (T) S	ECON	DS			
DEPTH (D) % NOMINAL	0.01<= t < 0.02	0.02<= t <0.05	0.05<= t <0.1	0.1<= t <0.2	0.2<= t <0.5	0.5<= t <1	1<= t < 3	3<= t <10	10<= t <20	20<= t <60	60<= t <180
10 <= D < 20	OK	OK	ОК	OK	OK	OK	OK	OK	1	1	1
20 <= D < 30	OK	OK	OK	OK	OK	1	1	1	1	1	1
30 <= D < 40	OK	1	· 1 ·	1.	1	1	1	1	1	1	1
40 <= D < 50	OK	1	1	1	1	1	1	1	1	1	1
50 <= D < 60	OK	1	1	1	1	1	1	1	1	1	1
60 <= D < 80	OK	1	1	1	1	1	1	1	1	1	1
80 <= D < 99	OK	1	1	1	1	1	1	1	1	1	1

Fig. 9

VOLTAGE SAGS WEIGHTING
LIBRARY (EXCERPT)

MAGNITUDE (M) % NOMINAL	0.01<= t < 0.02	0.02<= t <0.05	0.05<= t <0.1	0.1<= t <0.2	0.2<= t <0.5	0.5<= t <1	1<= 1 <3	3<= 1<10	10<= t <20	20<= t <60	60<= t <180
110 < M <= 120	OK	OK	OK	OK	OK	1	1	1	1	1	1
120 < M <= 130	1	1	1	1	1	1	1	1	1	1	1
130 < M <= 140	1	1	1	_ 1	1	1	1	1	1	1	1
140 < M <= 150	1	1	1	1	1	1	1	1	1	1	1
150 < M <= 170	1	1	1	1	1	1_	1	1	1	1	1
170 < M <= 200	1	1	1	1	1	1	1	1	1	1	1
M > 200	1	1	1	1	1	1	1	1	1	1	1

Fig. 10
VOLTAGE SWELLS WEIGHTING
LIBRARY (EXCERPT)

		DURA	TION (t) MICF	ROSEC	ONDS	
DAILY - MAGNITUDE (M) % NOMINAL	t < 20	20 <= t < 50	50 <= t < 100	100 <= t < 200	200 <= t < 500	500 <= t < 1000	1000 <= t < 2000
200 < M <= 300	4	4	4	4	4	2	2
300 < M <= 400	4	4	4	4	2	2	2
400 < M <= 500	4	4	4	2	2	2	2
500 < M <= 600	4	4	3	2	2	2	2
600 < M <= 700	4	3	3	2	2	2	2
700 < M <= 800	4	3	3	2	2	2	2
800 < M <= 900	3	3	3	2	2	2	2
900 < M <= 1000	3	3	3	2	2	2	2
M > 1000	3	3	3	2	2	2	2

Fig. 11
TRANSIENT OVERVOLTAGE
WEIGHTING LIBRARY (EXCERPT)

Fig.~12display of overall power quality index summary

Fig. 13 DISPLAY OF POWER QUALITY INDEX READINGS