

Differentiation: Implicit 3ii

Subject & topics: Maths Stage & difficulty: A Level P2

Part A Derivative

For the curve $2x^2+xy+y^2=14$, find $rac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B **Stationary points**

Find the coordinates of the points at which the tangents to the curve $2x^2+xy+y^2=14$ are parallel to the x-axis.

(, ()

Used with permission from UCLES A-level Maths papers, 2003-2017.

Differentiation: Implicit 5i

Subject & topics: Maths Stage & difficulty: A Level P2

Part A

Derivative

Given that $y\sin 2x + rac{1}{x} + y^2 = 5$, find an expression for $rac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y.

The following symbols may be useful: Derivative(y, x), cos(), cosec(), cot(), sec(), sin(), tan(), x, y

Part B

Gradient

Find the gradient of the curve $4x^2+2xy+y^2=12$ at the point (1,2).

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 28 - Implicit & Parametric Equations

& Integration

Differentiation: Implicit 3i

Subject & topics: Maths Stage & difficulty: A Level P2

The equation of a curve is $xy^2 = 2x + 3y$.

Part A

Implicit Differentiation

Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y.

The following symbols may be useful: Derivative(y, x), x, y

Part B **Tangents**

Give the number of tangents to this curve which are parallel to the y-axis.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 28 - Implicit & Parametric Equations

Sketching a Parametric Curve

Subject & topics: Maths | Functions | Graph Sketching Stage & difficulty: A Level P2

A curve has parametric equations $x=1-\cos t$, $y=\sin t\sin 2t$, for $0\leq t\leq \pi$.

Part A x -axis
Find the coordinates of the points where the curve meets the x -axis.
Part B Derivative

Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of t.

The following symbols may be useful: Derivative(y, x), arccos(), arccosec(), arccot(), arcsec(), arcsin(), arctan(), cos(), cosec(), cot(), sec(), sin(), t, tan(), x, y

Part C

Stationary points

Hence find the coordinates of the stationary points. Give your answer to 3 significant figures.

Part D

Cartesian equation

Find the cartesian equation of the curve. Give your answer in the form y=f(x), where f(x) is a polynomial.

The following symbols may be useful: x, y

Part E **Sketch**

Sketch the curve.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 28 - Implicit & Parametric Equations

Parametric Equations 2i

Subject & topics: Maths Stage & difficulty: A Level P2

A curve has parametric equations

$$x = \frac{1}{t+1}, y = t-1.$$

The line y=3x intersects the curve at two points.

Part A

Value of t

Show that the value of t at one of these points is -2 and find the value of t at the other point.

The following symbols may be useful: t

Part B

Normal

Find the equation of the normal to the curve at the point for which t=-2, giving your answer in the form y=f(x).

The following symbols may be useful: x, y

Part C $ \textbf{Value of } t $
Find the value of t at the point where this normal meets the curve again.
The following symbols may be useful: t

Part D Cartesian Equation

Find a cartesian equation of the curve, giving your answer in the form y=f(x).

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 28 - Implicit & Parametric Equations

Parametric Equations 3i

Subject & topics: Maths Stage & difficulty: A Level P2

The parametric equations of a curve are

$$x=2 heta+\sin2 heta,y=4\sin heta$$

and part of its graph is shown in Figure 1.

Figure 1: A sketch of the curve.

Part A Value of θ at A

Find the value of θ at A.

The following symbols may be useful: pi, theta

(2025, 08:58	Parametric Equations 3i — Isaac Science
Part B Value of θ at B	
Find the value of $ heta$	at B.
The following symbols	s may be useful: pi, theta
Part C Derivative	
Find an expression	for $rac{\mathrm{d}y}{\mathrm{d}x}$ in terms of $ heta.$
	s may be useful: Derivative(y, x), arccos(), arccosec(), arccot(), arcsec(), arcsin(), arctan(), cos(),), sin(), tan(), theta, x, y
Part D Coordinates	
At the point C on th	be curve the gradient is 2 . Find the coordinates of C , giving your answer to 3 significant figures.

Part E

Nature of Origin

Point O is at the origin. State the nature of point O, justifying your answer by reference to suitable values of $\frac{dy}{dx}$.

At O, we find that heta= and $frac{\mathrm{d} y}{\mathrm{d} x}=$. Hence, O is not a stationary point.

When heta=0.1, we find that $x=igcup (2 ext{ sf})$ and $rac{ ext{d} y}{ ext{d} x}=igcup (4 ext{ sf})$.

When heta=-0.1, we find that $x=(2 ext{ sf})$ and $ext{d} ext{d} ext{d} ext{d} ext{d} = (4 ext{ sf})$.

Since $\frac{dy}{dx}$ is On both sides of O than it is at O, O must be a non-stationary

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 28 - Implicit & Parametric Equations

Parametric Integration 1

Subject & topics: Maths | Calculus | Integration Stage & difficulty: A Level P3

The curve ${\cal C}$ has parametric equations

$$x=2t^2-3 \qquad y=t(4-t^2)$$

The curve crosses the x-axis at the points A and B and the region R is enclosed by the loop of the curve, as shown in Figure 1.

Figure 1: A graph of the curve C.

025, 08:58	Parametric Integration 1 — Isaac Science
Part A Point A	
Find the x -coordinate	of the point A .
Part B Point B	
Find the x -coordinate	of the point B.
Part C Area of R	
The region R is enclose	ed by the loop of the curve, as shown in Figure 1 . Find the exact value of the area of R.
Created for isaacphysics.o	rg by Matthew Rihan
Question deck: STEM SMART Double Math & Integration	hs 28 - Implicit & Parametric Equations

Partial Fractions 1i

Subject & topics: Maths Stage & difficulty: A Level P2

Part A

Partial Fractions

Express $\frac{2+x^2}{(1+2x)(1-x)^2}$ in the form $\frac{A}{1+2x}+\frac{B}{1-x}+\frac{C}{(1-x)^2}$.

The following symbols may be useful: x

Part B

Integration

Hence find $\int_0^{rac{1}{4}} rac{2+x^2}{(1+2x)(1-x)^2} \,\mathrm{d}x$ in exact form.

The following symbols may be useful: ln(), log()

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 28 - Implicit & Parametric Equations

Integration with Partial Fractions 4

Pre-Uni Maths for Sciences K5.4

Subject & topics: Maths | Calculus | Integration Stage & difficulty: Further A P2

Part A

Find A, B and C

Write the function $rac{2z^2-z-3}{(z+2)(z^2-2z-1)}$ in the form $rac{A}{z+2}+rac{B+Cz}{z^2-2z-1}$.

Drag and drop the correct values in the expression below.

$$\frac{\bigcirc}{z+2} + \frac{\bigcirc+\bigcirc z}{z^2-2z-1}$$

Items:

Part B

Integrate

Hence find $\displaystyle \int_1^2 \dfrac{2z^2-z-3}{(z+2)(z^2-2z-1)} \; \mathrm{d}z.$

Created for isaacphysics.org by Julia Riley