2. Run a LASSO version of logistic regression, using CV to estimate optimal shrinkage in the logistic regression parameters using minimum CV-error.

```
93 ### 2. Run a LASSO version of logistic regression, using CV to estimate optimal shrinkage
  94 # in the logistic regression parameters using minimum CV-error.
  96 # (a) Report a list of the variables included/excluded in each logit. Does
  97
     # the pattern seem somewhat consistent with the ANOVA results from
 98 # earlier? Explain in a sentence.
 99 X.train.scale = as.matrix(data.train.scale[,-19])
 100 Y.train = data.train.scale[,19]
 101 X.valid.scale = as.matrix(data.valid.scale[,-19])
 102 Y.valid = data.valid.scale[,19]
 103
 104
 105 ### Let's repeat our logistic regression analysis using the glmnet package.
 106 #fit.log.glmnet = cv.glmnet(X.train.scale, Y.train, family = "multinomial")
 107 all.LASSOs = cv.glmnet(X.train.scale, Y.train, family = "multinomial")
 108
 109 lambda.min = all.LASSOs$lambda.min
 110 lambda.1se = all.LASSOs$lambda.1se
### Get predictions and investigate performance. The predict() function
### for glmnet() can give several different types of output. To get
### predicted values, set type="class". Remember to set s=0 for logistic
 114 ### regression.
 115 # pred.log.glmnet = predict(fit.log.glmnet, X.valid.scale, type = "class",
 116 #
                                    s = 0
pred.log.glmnet.min = predict(fit.log.glmnet, X.valid.scale, type = "class", s = lambda.min)
                                  s = lambda.min)
 119 pred.log.glmnet.1se = predict(fit.log.glmnet, X.valid.scale, type = "class",
 120
                                  s = lambda.1se
 121
122
 123 # table(Y.valid, pred.log.glmnet, dnn = c("Observed", "Predicted"))
table(Y.valid, pred.log.glmnet.min, dnn = c("Observed", "Predicted"))
table(Y.valid, pred.log.glmnet.lse, dnn = c("Observed", "Predicted"))
 126
127 (misclass.log.glmnet = mean(Y.valid != pred.log.glmnet.min))
128 (misclass.log.glmnet = mean(Y.valid != pred.log.glmnet.1se))
131 lasso.min.coef = coef(all.LASSOs, s="lambda.min",exact=TRUE, family="multinomial")
132 lasso.lse.coef = coef(all.LASSOs, s="lambda.lse",exact=TRUE, family="multinomial")
```

(a) Report a list of the variables included/excluded in each logit. Does the pattern seem somewhat consistent with the ANOVA results from earlier? Explain in a sentence.

>lasso.min.coef 10.47789955 (Intercept) -6.43735489 Compactness Circularity 4.33621387 Distance.Circularity -0.28083026 Radius.Ratio 18.69867552 Pr.Axis.Aspect.Ratio -28.96879784 -4.05453435 Max.Length.Aspect.Ratio Scatter.Ratio 0.05192484 Elongatedness 3.17196076 Pr.Axis.Rectangularity Max.Length.Rectangularity -7.57664804 Scaled. Variance. Along. Major. Axis -1.51693002 Scaled. Variance. Along. Minor. Axis 15.67578846 Scaled.Radius.of.Gyration -3.10578781 Skewness.About.Major.Axis -14.41921897 Skewness.About.Minor.Axis 0.04195768

Kurtosis.About.Minor.Axis	0.20849110
Kurtosis. About. Major. Axis	1.07739497
Hollows.Ratio	-5.46839934

\$`4D`

19 x 1 sparse Matrix of class "dgCMatrix"

	1
(Intercept)	13.5155248
Compactness	4.5758051
Circularity	-12.3226861
Distance.Circularity	0.2808303
Radius.Ratio	21.2169082
Pr.Axis.Aspect.Ratio	-28.5843066
Max.Length.Aspect.Ratio	-10.0694529

Scatter.Ratio

Elongatedness -3.1719608 Pr.Axis.Rectangularity 8.0309236 Max.Length.Rectangularity -0.8662893

Scaled.Variance.Along.Major.Axis

Scaled.Variance.Along.Minor.Axis -10.6377616
Scaled.Radius.of.Gyration 6.2865542
Skewness.About.Major.Axis -10.7250672
Skewness.About.Minor.Axis 0.1011371
Kurtosis.About.Minor.Axis -0.2084911
Kurtosis.About.Major.Axis -12.7160699
Hollows.Ratio 5.4683993

\$BUS

19 x 1 sparse Matrix of class "dgCMatrix"

	1
(Intercept)	0.1965590
Compactness	-4.5758051
Circularity	
Distance.Circularity	-6.5642736
Radius Ratio	-64 6005083

Radius.Ratio -64.6005083 Pr.Axis.Aspect.Ratio 105.6089591 Max.Length.Aspect.Ratio 4.0545344

Scatter.Ratio .

Elongatedness -19.7803722

Pr.Axis.Rectangularity

Max.Length.Rectangularity 0.8662893 Scaled.Variance.Along.Major.Axis 46.2307520

Scaled.Variance.Along.Minor.Axis

Scaled.Radius.of.Gyration 3.1057878 Skewness.About.Major.Axis 10.7250672 Skewness.About.Minor.Axis -5.1044260

Kurtosis. About. Minor. Axis	3.1220789
Kurtosis. About. Major. Axis	47.7261462
Hollows.Ratio	-25.2995979

\$VAN

19 x 1 sparse Matrix of class "dgCMatrix"

,	
	1
(Intercept)	-24.18998339
Compactness	12.94557435
Circularity	•
Distance.Circularity	21.91993544
Radius.Ratio	-18.69867552
Pr.Axis.Aspect.Ratio	28.58430664
Max.Length.Aspect.Ratio	29.33960573
Scatter.Ratio	-35.12848043
Elongatedness	9.29536204
Pr.Axis.Rectangularity	-19.40725058
Max.Length.Rectangularity	37.68734783
Scaled.Variance.Along.Major.Axis	
Scaled.Variance.Along.Minor.Axis	•
Scaled.Radius.of.Gyration	-19.04715083
Skewness.About.Major.Axis	35.85145712
Skewness.About.Minor.Axis	-0.04195768
Kurtosis.About.Minor.Axis	-3.22501509
Kurtosis.About.Major.Axis	-1.07739497
Hollows.Ratio	13.67304898

L	asso	o.1	se.	.co	ef

(Intercept)	7.49601576
Compactness	-6.19399153
Circularity	1.88339320
Distance.Circularity	-0.01332511
Radius.Ratio	11.93254099
Pr.Axis.Aspect.Ratio	-19.56533341
Max.Length.Aspect.Ratio	-0.06776796
Scatter Ratio	

Scatter.Ratio

Elongatedness 1.95032211

Pr.Axis.Rectangularity Max.Length.Rectangularity -4.05991526 Scaled.Variance.Along.Major.Axis -0.77740303 Scaled.Variance.Along.Minor.Axis 12.21014816 Scaled.Radius.of.Gyration -2.43221848 Skewness.About.Major.Axis -11.87408238 Skewness.About.Minor.Axis 0.23303965 Kurtosis.About.Minor.Axis 0.09133776

Kurtosis.About.Major.Axis

Hollows.Ratio -4.22927907

\$`4D`

19 x 1 sparse Matrix of class "dgCMatrix"

	1
(Intercept)	8.99540239
Compactness	3.44488105
Circularity	-11.36835569
Distance.Circularity	0.01332511
Radius.Ratio	14.84922077
Pr.Axis.Aspect.Ratio	-20.45341274
Max.Length.Aspect.Ratio	-5.35577614
Coattor Datio	

Scatter.Ratio

Elongatedness -1.95032211
Pr.Axis.Rectangularity 4.10408335
Max.Length.Rectangularity -0.30553560

Scaled.Variance.Along.Major.Axis

Scaled.Variance.Along.Minor.Axis
Scaled.Radius.of.Gyration
Skewness.About.Major.Axis
Skewness.About.Minor.Axis
Curtosis.About.Minor.Axis
Curtosis.About.Major.Axis
Hollows.Ratio
-4.71025706
5.98296974
-9.00831800
-9.00831807
-0.33918807
-0.09133776
-10.81017188

\$BUS

19 x 1 sparse Matrix of class "dgCMatrix"

(Intercept) 0.73796804 Compactness -3.44488105

Circularity .

Distance.Circularity -3.91462628
Radius.Ratio -45.29986372
Pr.Axis.Aspect.Ratio 73.72073905
Max.Length.Aspect.Ratio 0.06776796

Scatter.Ratio .

Elongatedness -14.95283732

Pr.Axis.Rectangularity

Max.Length.Rectangularity 0.30553560 Scaled.Variance.Along.Major.Axis 30.29959732

Scaled.Variance.Along.Minor.Axis

Scaled.Radius.of.Gyration 2.43221848
Skewness.About.Major.Axis 9.00831800
Skewness.About.Minor.Axis -3.78573575
Kurtosis.About.Minor.Axis 1.76934625

Kurtosis.About.Major.Axis 32.16611869 Hollows.Ratio -17.62158854

\$VAN

19 x 1 sparse Matrix of class "dgCMatrix"

	1
(Intercept)	-17.2293862
Compactness	9.3044324
Circularity	
D1 : 0: 1 ::	40 40 45 70 7

Distance.Circularity 13.1945727 Radius.Ratio -11.9325410 Pr.Axis.Aspect.Ratio 19.5653334 Max.Length.Aspect.Ratio 18.3302287 Scatter.Ratio -23.2613542 Elongatedness 7.8143496 Pr.Axis.Rectangularity -8.5801997 Max.Length.Rectangularity 26.7657963

Scaled.Variance.Along.Major.Axis . Scaled.Variance.Along.Minor.Axis .

Scaled.Radius.of.Gyration -13.5295229 Skewness.About.Major.Axis 21.9994724 Skewness.About.Minor.Axis -0.2330397 Kurtosis.About.Minor.Axis -2.3249012

Kurtosis.About.Major.Axis

Hollows.Ratio 7.3440734

The variable with numerical values (not just dot) looks like variables in a list from ANOVA

(b) Compute and report training and test error. How does test error compare to other methods?

```
> (miss.lasso.min = mean(Y.valid != pred.lasso.min))
[1] 0.2169811
> (miss.lasso.lse = mean(Y.valid != pred.lasso.lse))
[1] 0.2122642
```

-> The error is lower than other methods.