DEPLOYING EMPLOYEE ATTRITION DATASET USING AWS

INTRODUCTION AND OVERVIEW

The Synthetic Employee Attrition Dataset is a simulated dataset designed for the analysis and prediction of employee attrition. It contains detailed information about various aspects of an employee's profile, including demographics, job-related features, and personal circumstances.

The dataset comprises 74,498 samples, split into training and testing sets to facilitate model development and evaluation. Each record includes a unique Employee ID and features that influence employee attrition. The goal is to understand the factors contributing to attrition and develop predictive models to identify at-risk employees.

This dataset is ideal for HR analytics, machine learning model development, and demonstrating advanced data analysis techniques. It provides a comprehensive and realistic view of the factors affecting employee retention, making it a valuable resource for researchers and practitioners in the field of human resources and organizational development

Purpose: This document aims to guide stakeholders through the process of deploying a machine learning model trained on the Employee Attrition dataset using AWS

Audience: Data scientists, developers, and operations teams involved in model deployment and maintenance.

SYSTEM ARCHITECTURE

Jupyter Notebook(Used for development and experimentation), AWS SageMaker(Provides a managed environment for training and deploying machine learning models. Components: SageMaker Training, SageMaker Endpoints, SageMaker Model Monitor, and SageMaker Pipelines), Amazon S3, IAM Roles.

DEPLOYMENT ENVIRONMENT

Hardware specifications:

 $System\ Manufacturer-HP$

Processor – 12th Gen Intel(R) Core(TM) i7-1255U, 1700 Mhz, 10 Core(s), 12 Logical Processor(s)

Hardware Abstraction Layer – Version= "10.0.22621.2506"

BIOS Version/Date - AMI F.19, 2023/07/03

RAM – 16.0 *GB*

Total Physical Memory – 15.7 GB

Total Virtual Memory – 32.6 GB

Software dependencies: When deploying a model on AWS, you need to manage various software dependencies, including machine learning frameworks, model serialization formats, Python packages, and AWS-specific tools and services. Ensuring these dependencies are correctly specified and managed will facilitate a smooth deployment and operation of your model in the AWS environment.

Operating System: I am using Microsoft Windows 11 home Single Language

DEPLOYMENT STEPS

Step 1: Open AWS SageMaker

Step 2 : Create Notebook Instance Create IAM Role

Step 3: Upload "train.csv" Dataset

Step 4: Create Amazon S3 Bucket

Step 5: Import needed Packages / Libraries

Step 6: Read Dataset

```
In [2]: df = pd.read_csv('train.csv')
        df.head
        <bound method NDFrame.head of
                                              Employee ID Age Gender Years at Company
                                                                                             Job Role Monthly Income \
                      8410
                             31
                                   Male
                                                        19
                                                             Education
                                                                                   5390
                     64756
30257
                             59 Female
                                                                 Media
                                                                                   5534
                                                        10 Healthcare
                             24 Female
                                                                                   8159
                     65791
                                                             Education
                                                                                   3989
                     65026
                             56
                                   Male
                                                             Education
                                                                                   4821
         59593
                     37195
                                                             Education
                                                                                   4414
        59594
                      6266 18
                                   Male
                                                         4 Healthcare
                                                                                   8040
                             22 Female
23 Male
                                                        14 Technology
8 Education
        59595
                     54887
                                                                                   7944
                                                                                   2931
                     15796
        59597
                             56
                                   Male
                                                        19 Technology
                                                                                   6660
```


Step 7: Count the empty values for each column

Step 8: Get the number of rows and columns

```
In [4]: #get the number of rows and columns
df.shape
Out[4]: (59598, 24)
```

Step 9: Get the number of employees that stayed or left the company

Step 10: Get the data types

```
In [6]: #Get the data types
                     df.dtypes
Out[6]: Employee ID
                                                                                                  int64
                      Age
                    Age
Gender
Years at Company
Job Role
Monthly Income
Work-Life Balance
Job Satisfaction
Performance Rating
Number of Promotions
                                                                                              object
int64
                                                                                               object
                                                                                              object
object
int64
                      Overtime
Distance from Home
                     Education Level
Marital Status
Number of Dependents
                                                                                              object
object
int64
                    Number of Dependents
Job Level
Company Size
Company Tenure
Remote Work
Leadership Opportunities
Innovation Opportunities
Company Reputation
Employee Recognition
Attrition
dtyne: object
                                                                                              object
object
int64
                                                                                              object
object
object
                                                                                               object
                      dtype: object
```

Step 11: Check for any missing /null values in the data

```
In [7]: #check for any missing /null values in the data
    df.isnull().values.any()
Out[7]: False
```

Step 12: Get the information about the "train.csv" dataset

```
In [8]: #Get the information about the datasets
df.info()
         <class 'pandas.core.frame.DataFrame'>
RangeIndex: 59598 entries, 0 to 59597
         Data columns (total 24 columns):
                                           Non-Null Count Dtype
              Employee ID
                                            59598 non-null
              Age
Gender
                                            59598 non-null
                                                             int64
                                            59598 non-null
                                                             object
              Years at Company
                                            59598 non-null
                                                             int64
              Job Role
                                            59598 non-null
                                                             object
              Monthly Income
Work-Life Balance
                                           59598 non-null
                                                             int64
                                            59598 non-null
                                                             object
              Job Satisfaction
                                            59598 non-null
                                                             object
              Performance Rating
                                            59598 non-null
              Number of Promotions
                                            59598 non-null
                                                             int64
          10 Overtime
11 Distance from Home
                                            59598 non-null
                                            59598 non-null
              Education Level
                                            59598 non-null object
              Marital Status
Number of Dependents
          13
                                            59598 non-null
                                                             object
                                            59598 non-null
          15
              Job Level
                                            59598 non-null
                                                             object
              Company Size
                                            59598 non-null object
          17
              Company Tenure
Remote Work
                                            59598 non-null int64
                                            59598 non-null
                                                             object
              Leadership Opportunities
          19
                                           59598 non-null
                                                             object
              Innovation Opportunities
                                           59598 non-null
              Company Reputation
Employee Recognition
          21
                                           59598 non-null
                                                             object
                                            59598 non-null
          23 Attrition
                                           59598 non-null object
         dtypes: int64(8), object(16)
         memory usage: 10.9+ MB
```

Step 13: Get all the data types and their unique values

```
In [9]: #Get all the data types and their unique values
         for column in df.columns:
             if df[column].dtype == object:
                  print(str(column)+ ' : '+ str(df|
print(df[column].value_counts())
                                           '+ str(df[column].unique()))
                : ['Male' 'Female']
         Gender
         Male
                    32739
                    26859
         Name: count, dtype: int64
         Job Role : ['Education' 'Media' 'Healthcare' 'Technology' 'Finance']
         Job Role
Technology
                        15507
         Healthcare
                        13642
         Education
         Media
                         9574
         Name: count, dtype: int64
         Work-Life Balance : ['Excellent' 'Poor' 'Good' 'Fair']
         Work-Life Balance
         Fair
                       18046
```

Step 14: Summary of statistics for the numerical columns in the DataFrame

Out[10]:									
		Employee ID	Age	Years at Company	Monthly Income	Number of Promotions	Distance from Home	Number of Dependents	Company Tenure
	count	59598.000000	59598.000000	59598.000000	59598.000000	59598.000000	59598.000000	59598.000000	59598.00000
	mean	37227.118729	38.565875	15.753901	7302.397983	0.832578	50.007651	1.648075	55.75841
	std	21519.150028	12.079673	11.245981	2151.457423	0.994991	28.466459	1.555689	25.41109
	min	1.000000	18.000000	1.000000	1316.000000	0.000000	1.000000	0.000000	2.00000
	25%	18580.250000	28.000000	7.000000	5658.000000	0.000000	25.000000	0.000000	36.00000
	50%	37209.500000	39.000000	13.000000	7354.000000	1.000000	50.000000	1.000000	56.00000
	75%	55876.750000	49.000000	23.000000	8880.000000	2.000000	75.000000	3.000000	76.00000
	max	74498.000000	59.000000	51.000000	16149.000000	4.000000	99.000000	6.000000	128.00000

Step 15: Check whether there are any missing values in each column

ut[11]: Employee ID	False							
Age	False							
Gender	False							
Years at Company	False							
Job Role	False							
Monthly Income	False							
Work-Life Balance	False							
Job Satisfaction	False							
Performance Rating	False							
Number of Promotions	False							
Overtime	False							
Distance from Home	False							
Education Level	False							
Marital Status	False							
Number of Dependents	False							
Job Level	False							
Company Size	False							
Company Tenure	False							
Remote Work	False							
Leadership Opportunities	False							
Innovation Opportunities	False							
Company Reputation	False							
Employee Recognition	False							
Attrition	False							
dtype: bool								

Step 16: Convert attrition to label

In [12]:	fro le df[m sklearı = LabelEı	n.preprod ncoder()	Ü	nport Lal	oelEncoder	ı'])								
Out[12]:	er of	Overtime	Distance from Home	Education Level	Marital Status	Number of Dependents	Job Level	Company Size	Company Tenure		Leadership Opportunities	Innovation Opportunities	Company Reputation	Employee Recognition	Attritic
	2	No	22	Associate Degree	Married	0	Mid	Medium	89	No	No	No	Excellent	Medium	
	3	No	21	Master's Degree	Divorced	3	Mid	Medium	21	No	No	No	Fair	Low	
	0	No	11	Bachelor's Degree	Married	3	Mid	Medium	74	No	No	No	Poor	Low	
	1	No	27	High School	Single	2	Mid	Small	50	Yes	No	No	Good	Medium	
	0	Yes	71	High School	Divorced	0	Senior	Medium	68	No	No	No	Fair	Medium	
	3	No	37	Bachelor's Degree	Married	0	Mid	Medium	47	No	No	Yes	Fair	High	
	1	Yes	75	High School	Divorced	3	Entry	Small	93	No	No	No	Good	Medium	
	2	No	5	Master's Degree	Married	4	Entry	Medium	88	No	No	No	Excellent	Low	
	1	Yes	39	High School	Married	4	Entry	Medium	75	No	No	No	Fair	Medium	
	1	Yes	57	PhD	Single	4	Entry	Large	45	No	No	Yes	Good	Low	
	1	No	51	High School	Single	1	Entry	Small	17	No	No	No	Good	Medium	
	2	No	26	Master's Degree	Single	0	Mid	Medium	38	No	No	No	Poor	Medium	

```
In [13]: stayed = df.Attrition ==0
left = df.Attrition ==1
```

Step 17: Plot Graphs

Histograms based on the number of years in the company and Attrition:

Plotting Distributions:

Step 18: Convert categorical labels into numerical values using LabelEncoder

Step 19: Split Data into x and y

Step 20: xTrain and yTrain

Step 21: The .join() method combines xTrain and yTrain into a single DataFrame, aligning them based on their indices. trainDF contains all columns from xTrain along with the target column from yTrain. This method is useful for consolidating feature and target data into a single DataFrame for easier manipulation, analysis, or model training.

In [30]:		OF= xTrair OF.head()	ı.joi	n(yTrain	1)											
Out[30]:		Employee ID	Age	Gender	Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number of Promotions	Overtime	Distance from Home	Education Level	Marital Status	Nui Depe
	656	33881	44	Male	23	Media	6288	Fair	High	Low	0	No	69	Associate Degree	Single	
	42724	68010	47	Male	36	Technology	9150	Good	Low	Average	0	Yes	79	Bachelor's Degree	Divorced	
	1739	22195	54	Male	13	Finance	8973	Good	Low	High	3	No	24	Bachelor's Degree	Divorced	
	26376	14885	59	Male	4	Media	6325	Good	Medium	Below Average	0	Yes	42	Master's Degree	Married	
	10397	69384	44	Male	16	Finance	10063	Poor	Low	High	2	No	94	Master's Degree	Married	
	4															Þ
In [31]:		= xTest. =.head()	join	(yTest)												•
In [31]: Out[31]:					Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number of Promotions	Overtime	Distance from Home	Lavel		Nun Depe
		Employee ID	Age			Job Role Technology		Life	Job Satisfaction High	Performance Rating Below Average	Number of Promotions	Overtime	Distance from Home	Level	Status	
	testDF	Employee ID	Age	Gender			Income	Life Balance	Sunsinction	Below	Tromodons		Home	Associate Degree	Status Married	
	12608	Employee ID 37481 24839	Age 56 46	Gender Male	22	Technology	10554 7244	Life Balance Poor	High	Below Average	4	No No	Home 13	Associate Degree Bachelor's Degree	Married Married	
	12608 35077	Employee ID 37481 24839 35575	Age 56 46	Gender Male Male	22 17	Technology Finance	10554 7244	Poor Poor	High Very High	Below Average High	4	No No No	13 37	Associate Degree Bachelor's Degree Associate Degree	Married Married Married	

Step 22: Creates and displays a bar chart showing the counts of each unique value in the Attrition column.

Step 23: Label Encoding

Step 24: Predict

Step 25: Feature Selection

```
Out[37]:
      Age Gender Years at Job Monthly Work-
Life Balance Satisfaction Rating Promotions Overtime
                                                  Distance from Level Status Level Size Company Company
     0 31
                          0
                                      0
                                                    22
                                                                         89
               19
                  0
                     2611
     2 24 0 10 2 5380
                               0
                                          0 0 11
                                                                         74
                7
                                                0
                                                    27
                                                          2
                                                             2
                                                                         50
     3 36
           0
                     1212
                  0
     4 56 1 41 0 2042
                                         0 1 71
                                                                         68
```

Step 26: Training Data

In [53]:	TrainD	aying the Data = xTr Data.head(ain.													
Out[53]:		Employee ID	Age	Gender	Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number of Promotions	Overtime	Distance from Home	Education Level	Marital Status	Nu Dep
	27869	30490	55	Male	28	Healthcare	9185	Fair	Medium	Below Average	0	Yes	23	High School	Single	
	30503	47426	26	Female	10	Technology	9719	Fair	High	Average	1	No	28	High School	Married	
	43242	33737	56	Male	45	Education	6139	Excellent	High	Average	3	No	61	High School	Single	
	6403	25911	41	Female	15	Education	5214	Fair	High	Low	1	No	16	Master's Degree	Married	
	16551	45851	30	Male	16	Technology	9935	Fair	High	Average	2	Yes	11	Bachelor's Degree	Married	
	4															

Step 27: Testing Data

Tes	<pre>#Display all the testing data TestData=xTest.join(yTest) TestData.head()</pre>															
t[55]: 	E	Employee ID	Age	Gender	Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number of Promotions	Overtime	Distance from Home	Education Level	Marital Status	Nui Depe
340	689	49286	28	Male	5	Media	5293	Fair	High	Average	0	Yes	70	High School	Married	
362	243	37667	21	Male	5	Media	6818	Good	Very High	High	0	No	19	Associate Degree	Married	
56	151	55562	27	Female	4	Healthcare	8749	Fair	High	Average	0	No	65	Master's Degree	Single	
194	403	31150	48	Female	35	Technology	9857	Fair	Low	Below Average	3	No	2	Bachelor's Degree	Single	
148	843	37912	29	Male	19	Technology	10892	Excellent	High	High	0	No	71	High School	Single	

Step 28: Saving Test and Training Data to CSV Files

```
In [56]: # Saving the trained data
TrainData.to_csv('TrainData.csv', index=False, index_label='Row', header=False)

In [57]: #Saving the test data
TestData.to_csv('TestData.csv', index=False, index_label='Row', header=False)
```

Step 29: Upload to S3 Bucket, Do the Training and Deployment

```
In [43]: #First lest us upload out trained and test data to s3 bucket or other cloud service
                          #We do the training and deployment in your sageMake
#Import needed Libraries
In [58]: import boto3 #this package is to integrate with s3 bucket or other cloude service// import re #this package is to folow a strict pattern to save your work/regular expresession//
In [67]: bucketNM = 'nontobekobucket
                          TrainFile = r'attritiondata/traineddataattritions/TrainData.csv'
TestFile = r'attritiondata/testddataattritions/TestData.csv'
ValFile = r'attritiondata/Val/Val.csv'
ModelFolder = r'attritiondata/model/'
In [68]:
s3ModelOutput = r's3://{0}/{1}'.format(bucketNM,ModelFolder)
s3Train = r's3://{0}/{1}'.format(bucketNM,TrainFile)
s3Test = r's3://{0}/{1}'.format(bucketNM,TestFile)
s3Val = r's3://{0}/{1}'.format(bucketNM,ValFile)
In [69]: s3ModelOutput
Out[69]: 's3://nontobekobucket/attritiondata/model/'
In [71]: with open('TrainData.csv','rb') as f:
    boto3.Session().resource('s3').Bucket(bucketNM).Object(TrainFile).upload_fileobj(f)
In [72]: with open('TestData.csv','rb') as f:
    boto3.Session().resource('s3').Bucket(bucketNM).Object(TestFile).upload_fileobj(f)
   In [92]: import sagemaker
from sagemaker import get_execution_role
   In [93]: sagemakerSess=sagemaker.Session()
    role=get_execution_role()
    In [94]: sagemakerSess.boto_region_name
    Out[94]: 'us-east-1'
    In [95]: ECRdockercontainer=sagemaker.amazon_estimator.get_image_uri(sagemakerSess.boto_region_name, 'linear-learner', 'latest')
                             WARNING:sagemaker.deprecations:The method get_image_uri has been renamed in sagemaker>=2.

See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.

INFO:sagemaker.image_uris:Same images used for training and inference. Defaulting to image scope: inference.

WARNING:sagemaker.image_uris:Defaulting to the only supported framework/algorithm version: 1. Ignoring framework/algorithm version: 1. 
                              ion: latest.
INFO:sagemaker.image_uris:Ignoring unnecessary instance type: None.
    In [96]: LogisticModel=sagemaker.estimator.Estimator(image_uri=ECRdockercontainer,
                                                                                                                                                      role=role.
                                                                                                                                                        train_instance_count=1,
train_instance_type='ml.m4.xlarge',
output_path=s3ModelOutput,
sagemaker_session=sagemakerSess,
                                                                                                                                                        base_job_name = 'Logistic-Demo-v1'
                              WARNING:sagemaker.deprecations:train_instance_count has been renamed in sagemaker>=2. See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
WARNING:sagemaker.deprecations:train_instance_type has been renamed in sagemaker>=2.
                               See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
```


TESTING AND VALIDATION

Procedure for testing the deployed model to ensure it performs as expected:

- (a) Environment Configuration
- (b) Data Preparation
- (c) Input Data Validation
- (d) Testing
- (e) Prediction Output & Accuracy Assessment
- (f) Performance Testing
- **(g)** Integration Testing
- (h) Validation Against Baselines
- (i) Bias and Fairness Testing
- (j) Documentation of Testing Results
- (k) Iterative Refinement

MONITORING AND LOGGING

Monitoring the performance and health of a deployed model is crucial for ensuring it continues to operate effectively and meets service level expectations. AWS provides tools and services that can be leveraged for performance monitoring: AWS SageMaker Model Monitor.

AWS SageMaker Model Monitor - Provides automatic monitoring of the performance of your machine learning models deployed in SageMaker. It helps you detect data drift, anomalies, and changes in model performance.

SCALABILITY AND PERFORMANCE

Scalability Considerations

When scaling a machine learning model to handle increased traffic or larger datasets on AWS, several considerations come into play to ensure optimal performance and efficiency:

Compute Resources: Use services like Amazon SageMaker or AWS Lambda for scalable compute resources. SageMaker offers managed infrastructure that can scale based on your model's requirements. [Auto-scaling, Data Storage, Load Balancing, Caching]

Performance Optimization

Optimizing the performance of a machine learning model on AWS involves enhancing its speed, efficiency, and resource utilization. Here are techniques and benchmarks for achieving optimal performance:

Model Optimization, Hardware Acceleration, Batch Processing, Model Compression, Pipeline Optimization, Benchmarking and Monitoring.

DATA VISUALIZATION USING POWER BI

Plot Attrition by Job Role

Plot Attrition by Job Satisfaction

Plot Attrition by Work-Life Balance

Plot Attrition by Marital Status

Plot the distribution of Age

Plot the confusion matrix

Violin Plots

DATA VISUALIZATION USING PYTHON

Plotting Hitmap

