

L'esperimento di Fleischmann e Pons, 35 anni dopo

La storia è scritta dai vincitori (prov.) piuttosto sarà che la storia è scritta dai posteri che per definizione sono coloro sufficientemente distanti, temporalmente ed emotivamente, dagli eventi narrati da poter essere oggettivi nella loro narrazione. Il tempo è galantuomo (prov.)

La produzione di neutroni è solo l'indicatore universalmente riconosciuto per confermare il fenomeno della fusione nucleare dopo la "delusione" della fusione a freddo di Martin Fleischmann e Stanley Pons, che magari c'erano pure riusciti perché inizialmente non si curavano di misurare i neutroni essendo dei chimici e quando si è cominciato a far peer-review seriamente il muro di Berlino e l'URSS erano già caduti.

Il motivo per il quale si cercano neutroni è spiegato in una nota in fondo all'articolo e fondamentalmente riguarda il fatto che la fusione deuterio+deuterio non produce elio-4, direttamente ma quella deuterio+trizio che comunque rilascia anch'essa un neutrone.

Più in generale si cercano le evidenze sperimentali, quindi i sottoprodotti di una reazione nucleare. Che nel caso di produzione di Trizio potrebbero essere protoni. Oppure nel caso dell'elio-3, gli isotopi che abbiano catturato un neutrone libero.

Per mia curiosità personale mi sono andato a leggere un po' di articoli usciti negli anni immediatamente dopo l'annuncio di Fleischmann & Pons. Fra quelli che ho letto, l'articolo che ho decisamente apprezzato più di tutti è questo qui del 1989.

MASS/CHARGE ANOMALIES IN Pd AFTER ELECTROCHEMICAL LOADING WITH DEUTERIUM by Debra R. Rolison and William E. O'Grady for the Naval Research Laboratory

https://lnkd.in/evdPvf9f

A questo link qui sopra, oltre all'articolo il cui titolo è stato citato, si trovano 711 pagine di rapporti inerenti alla {ripetibilità, validazione, confutazione} dell'esperimento di Fleischmann e Pons a firma di vari autori. Poi c'è un'altra collezione di articoli interessanti, sempre incentrati sullo stesso tema, di 511 pagine.

https://lnkd.in/eSHAZ7Vu

In tutto, almeno 1222 pagine. Tanta roba!

Ma cosa accomuna tutti questi lavori?

- 1. cercano di ripetere un esperimento che ha avuto grande eco e che ha generato tante aspettative ma che anche nella versione originale è rimasto molto lontano dal produrre effetti pratici indiscutibili.
- 2. cercano quello che pensano dovrebbe esserci e invece manca, trovano delle anomalie nella composizione del materiale catalizzatore (palladio) ma non riescono a distinguere queste anomalie da possibili inquinamenti di altri materiali.

- 3. intuiscono che possa trattarsi di trasmutazione nucleare, cosa però che non dovrebbe avvenire qui sulla terra ma nelle stelle dove avviene anche la fusione nucleare, per altro.
- 4. di fronte a risultati che non sono unanimemente inequivocabili non provano approcci diversi del tipo: a) non è fusione ma trasmutazione; b) allora considerate le anomalie cambiamo elementi in gioco.

Dal punto **#4** avrebbero dovuto provare con argento e trizio insieme con palladio ed elio 3.

Perché la probabilità che un atomo di deuterio passi per effetto tunnel la barriera che lo separa da un palladio-105 per produrre un elio-4 e un rodio-103 - più stabili quindi con massa complessiva inferiore quindi con rilascio di energia - è prossima a zero.

Invece palladio e elio-3 oppure argento e trizio, potrebbero fare trasmutazioni con salto di singola particella elementare, neutrone o protone, per generare una particella alfa (nucleo di elio-4).

Perché il gioco vale la candela quando i prodotti delle reazioni nucleari sono più stabili degli elementi di partenza e quindi c'è una rilascio di energia.

- {fissione, fusione} <- fenomeni estremi
- TRASMUTAZIONI <- fenomeni ancora da investigare e comprendere
- {decadimenti} <- fenomeni naturali

Non sappiamo, proviamo! Invece, pare di no. L'esperimento di Martin Fleischmann e Stanley Pons è stato considerato un caso scuola di auto-inganno o truffa scientifica e chiunque abbia cercato di occuparsene - seriamente - era o sarebbe stato bollato come un ciarlato alla ricerca del moto perpetuo.

Già nel 1993/94 era ormai consolidata l'opinione che chi si fosse occupato di quell'esperimento lo avrebbe dovuto fare di nascosto o per niente affatto. Infatti per qualche anno la ricerca sulla fusione a freddo è andata avanti cercando di comprendere e sfruttare il fenomeno della fono-luminescenza UV in acqua pesante.

La produzione di elio-3 (3He) invece di elio-4 (4He) nella fusione di due atomi di deuterio (2H)

Sezione seguente prodotta usando ChatGPT 4o

La produzione di elio-3 (³He) invece di elio-4 (⁴He) nella fusione di due atomi di deuterio (²H) è determinata dalla natura delle interazioni nucleari e dalla conservazione dell'energia e del momento. Ecco perché succede:

1. Conservazione dell'energia e del momento

La fusione di due nuclei di deuterio deve rispettare la conservazione dell'energia e del momento. Quando due nuclei di deuterio si fondono, ci sono alcune opzioni su come i prodotti finali possano suddividere l'energia.

2. Produzione di elio-4 richiede un processo a tre corpi

La fusione diretta di due nuclei di deuterio per formare un nucleo di elio-4 (⁴He) senza ulteriori prodotti (come un neutrone o un protone) richiederebbe la presenza di un processo a tre corpi o il rilascio di una quantità significativa di energia in un altro modo (ad esempio attraverso radiazione gamma).

Tuttavia, i processi a tre corpi sono estremamente improbabili, specialmente a basse energie, poiché è difficile per tre particelle interagire simultaneamente in modo tale da bilanciare sia l'energia che il momento.

3. Meccanismi principali della fusione del deuterio

Nella fusione del deuterio, le due reazioni principali che avvengono sono:

- La reazione (${}^{2}H + {}^{2}H$) --> ${}^{3}He + n$ produce un atomo di elio-3 e un neutrone.
- La reazione (${}^{2}H + {}^{2}H$) --> ${}^{3}H + p^{+}$ produce un atomo di trizio e un protone.

Questi due meccanismi sono molto più probabili rispetto alla formazione diretta di elio-4, perché permettono un bilancio adeguato di energia e momento. Inoltre, l'elio-3 e il trizio possono essere successivamente coinvolti in ulteriori reazioni di fusione, eventualmente portando alla produzione di elio-4, ma non direttamente nella fusione iniziale di due nuclei di deuterio.

4. Produzione di elio-4

L'elio-4 viene effettivamente prodotto in reazioni di fusione successive, come quella tra un deuterio e un trizio:

• La reazione (${}^{2}H + {}^{3}H$) --> ${}^{4}He + n$ produce un atomo di elio-4 e un neutrone.

In sintesi, la fusione di due nuclei di deuterio tende a produrre elio-3 e un neutrone (o trizio e un protone) invece di elio-4 perché ciò è reso possibile dalle leggi di conservazione e dalla natura delle interazioni nucleari. La produzione diretta di elio-4 richiede un processo meno probabile rispetto alle alternative che rispettano più facilmente i vincoli fisici.

Share alike

© 2024, **Roberto A. Foglietta**, licensed under Creative Common Attribution Non Commercial Share Alike v4.0 International Terms (**CC BY-NC-SA 4.0**).