			_	_
	_	_		
_	õ	00/3/	=	Ē
	04/	3	Ē	
-	2	2		
í	Ξ	?		
		-		Ξ
		į	Ī	Ē

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE (C-1390 (Modified)

533 Rec'd PCT/PTO

TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US)

CONCERNING A FILING UNDER 35 U.S.C. 371

TTORNEY'S	DOCKET	NUMBE

PA-9912

METERNATIONAL APPLICATION NO.

INTERNATIONAL FILING DATE

PRIORITY DATE CLAIMED

PCT/GB00/00916 March 10, 2000 March 12, 1999 FITLE OF INVENTION

APPLICANT(S) FOR DO/EO/US

Genetic Analysis

Michael A. Reeve, Nicholas I. Workman, and Luis Martin-Parras

Appi	icant i	herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information
1.	\boxtimes	This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
_		THE STREET

- This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
- This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include itens (5), (6), 3. X (9) and (24) indicated below.
- The US has been elected by the expiration of 19 months from the priority date (Article 31). 4. \boxtimes
- \boxtimes A copy of the International Application as filed (35 U.S.C. 371 (c) (2))
 - \boxtimes is attached hereto (required only if not communicated by the International Bureau).
 - b. 🛛 has been communicated by the International Bureau.
 - is not required, as the application was filed in the United States Receiving Office (RO/US). c. 🗌
- An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).
 - a. 🔲 is attached hereto.
 - has been previously submitted under 35 U.S.C. 154(d)(4).
- Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3)) \square .
 - are attached hereto (required only if not communicated by the International Bureau).
 - b. □ have been communicated by the International Bureau.
 - c. 🗆 have not been made; however, the time limit for making such amendments has NOT expired.
 - d. 🗆 have not been made and will not be made.
- An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
- 9. \boxtimes An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)).
- 10. An English language translation of the annexes of the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371 (c)(5)).
- 11. A copy of the International Preliminary Examination Report (PCT/IPEA/409).
- 12. A copy of the International Search Report (PCT/ISA/210).

Items 13 to 20 below concern document(s) or information included:

- 13. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- 14. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
- \boxtimes 15. A FIRST preliminary amendment.
- 16. A SECOND or SUBSEQUENT preliminary amendment.
- 17. A substitute specification.
- 18. A change of power of attorney and/or address letter.
- 19. A computer-readable form of the sequence listing in accordance with PCT Rule 13ter.2 and 35 U.S.C. 1.821 - 1.825.
- A second copy of the published international application under 35 U.S.C. 154(d)(4). `20.
- 21. A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4).
- 22. X Certificate of Mailing by Express Mail
- \boxtimes 23. Other items or information:

copy of this transmittal letter for charging purposes return postcard

PPLICATION NO. (IF KNOWN, SEE <u>37</u> CFR INTERNATIONAL APPLICATION NO. ATTORNEY'S DOCKET NUMBER PCT/GB00/00916 PA-9912 The following fees are submitted ... CALCULATIONS PTO USE ONLY BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)) : Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$1000.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the ÉPO or JPO \$860.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$710.00 International preliminary examination fee (37 CFR 1.482) paid to USPTO but all claims did not satisfy provisions of PCT Article 33(1)-(4)..... \$690.00 International preliminary examination fee (37 CFR 1.482) paid to USPTO and all claims satisfied provisions of PCT Article 33(1)-(4)..... \$100.00 **ENTER APPROPRIATE BASIC FEE AMOUNT =** \$860.00 Surcharge of \$130.00 for furnishing the oath or declaration later than months from the earliest claimed priority date (37 CFR 1.492 (e)). \$0.00 NUMBER FILED NUMBER EXTRA RATE Total claims 4 - 20 = \$18.00 \$72.00 0 Independent claims - 3 = \$84.00 \$0.00 Multiple Dependent Claims (check if applicable). \$0.00 TOTAL OF ABOVE CALCULATIONS \$932.00 Applicant claims small entity status. (See 37 CFR 1.27). The fees indicated above are reduced by 1/2. \$0.00 **SUBTOTAL** \$932.00 Processing fee of \$130.00 for furnishing the English translation later than □ 30 months from the earliest claimed priority date (37 CFR 1.492 (f)). \$0.00 TOTAL NATIONAL FEE \$932.00 Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) (check if applicable). \$0.00 TOTAL FEES ENCLOSED \$932.00 Amount to be: refunded charged a. A check in the amount of to cover the above fees is enclosed. \mathbf{X} b. Please charge my Deposit Account No. 500-588 in the amount of \$932.00 to cover the above fees. A duplicate copy of this sheet is enclosed. \boxtimes The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 500-588 A duplicate copy of this sheet is enclosed. Fees are to be charged to a credit card. WARNING: Information on this form may become public. Credit card d. information should not be included on this form. Provide credit card information and authorization on PTO-2038. NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status. SEND ALL CORRESPONDENCE TO: Royal N. Ronning, Jr. Amersham Pharmacia Biotech, Inc. 800 Centennial Avenue Royal N. Ronning, Jr. Piscataway, New Jersey 08855 **NAME** (732) 457-8423 32,529 REGISTRATION NUMBER August 28, 2001

Ġ

DATE

fication upon delivery. sse telephone:

914604

EXPRESS
MAIL
D STATES POSTAL SERVICE®

POST OFFICE TO ADDRESSEE

EL717698470US

EMCA or government agency, fill in account number on label.

nove label backing and adhere over these instructions. sure to remove the Express Mail number from the backing and in for your records.

I 1-800-222-1811 for our convenient pick-up service ne low fee no matter how many pieces) or drop off your Express Mail package at a post office, or an Express Mail box.

Rec'd PCT/PTO 31 JAN 2002

PA-9912

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of:

M. Reeve, et al.

Group Art Unit:

To be assigned

Serial Number:

09/914,604

Examiner:

To be assigned

Filing Date:

August 28, 2001

Title:

Genetic Analysis

SECOND PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Box PCT Washington, D.C. 20234

Sir:

Please consider the following amendments and remarks in connection with the prosecution of the captioned application.

In the Specification

At the end of the written description, before the claims, please insert the Sequence Listing attached hereto.

Remarks

Applicants have amended the specification by insertion of a sequence listing. The sequence listing has also been submitted under separate cover in an initial computer readable form as well as on a paper copy in response to the "Notification of Missing Requirements Under 35 U.S.C. 371 in the United States Designated/Elected Office (DO/EO/US)" having a mailing date of October 25, 2001.

Early and favorable consideration is requested.

Respectfully submitted,

Stephen G. Ryan 39,015 Attorney for Applicants

Amersham Biosciences 800 Centennial Avenue P. O. Box 1327 Piscataway, New Jersey 08855-1327

Tel: (732) 457-8071 Fax: (732) 457-8463

SEQUENCE LISTING

```
<110> Reeve, Michael Alan
Workman, Nicholas Ian
Martin-Parras, Luis
```

```
<120> Genetic Analysis
```

```
<130> PA9912
```

<140> 09/914,604

<141> 2001-08-28

<150> PCT/GB00/00916

<151> 2000-03-10

<150> EPO 99301933.0

<151> 1999-03-12

<160> 32

<170> PatentIn Ver. 2.1

<210> 1

<211> 3954

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 Plasmid

<400> 1

```
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcaggggcgg tcagcgggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 240 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 atccgcatt caggctgcg aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta accgcagggt 360 tttcccagtc acgacgttg aaaacgacgg ccagtgaatt cgagctcggt accgggccc 420 ccctcgaggt cgacggttat gataagctg accaggtg atcgcaggtg ggaagatgttg gggtgttgta acaatatcga ttccaaattca gcgggggcca cctgatatcc 540 tttgtatta attaaagact tcaagcggtc aactatgaag aagtgttcgt cttcgtcca 600 gtaaggatcc gcactttgaa ttttgtaatc ctgaagggat cgtaaaaaca gctcttcttc 660 aaatctatac attaagacga cccgaaatcc acatatcaaa tatccgagtg tagtaaccat 720 tccaaaaccg tgatgaaca gaacaacact taaatgtaca ccctggtaa ccgtttagaa 780 atccatgata ataatttct ggattattgg taatttttt tgcacgttca aaattttttg 840 caaccccttt ttggaaacaa acactacggt aggctgcaa atgttcatc tgttgagcaa 900
```

ttcacgttca ttataagctt ttcactgcat acgacgattc tgtgatttgt attcagccca 960 tatcgtttca tagcttctgc caaccgaacg gacatttcga agtattccgc gtacgtgatg 1020 ttcacctcga tatgtgcatc tgtaaaagca attgttccag gaaccagggc gtatctcttc 1080 atagccatgg aatacgcctt tttcagtgtt gcgatgctaa tgccgttaca aataatccga 1140 gcaccaagaa tggctgcgcg cttgcctggt acttgacgtc gtatttgacg gggtccttga 1200 gaaagtattt aaactggaac acaatctgag gaatgatcaa agcaaccaac gccaacgcat 1260 aataactagt gcaataccaa gacctcccaa taatagcacc cagacttgtg taataacctc 1320 tggctctgat attgctccag atggaattgg acgatatggc tcattaattg cgtcgatatc 1380 tctatcatac cagtcgttga ttgtctgtgt atagccagta agacaaggac cagacatcat 1440 catgcaaaga atcgcttaag cccttcttgg cctttatgag gatctctctg atttttcttg 1500 cgtcgagttt tccggtaaga cctttcggta cttcgtccac aaacacaact cctccgcgca 1560 actttttcgc ggttgttact tgactggcca cgtaatccac gatctctttt tccgtcatcg 1620 tctttccgtg ctccaaaaca acaacggcgg cgggtccgga ttaccagctg cgatcaagct 1680 tatcgatacc gtcgacctcg acctgcaggc atgcaagctt ggcgtaatca tggtcatagc 1740 gttttcctgt gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca 1800 taaagtgtaa agcctggggt gcctaatgag tgagctaact cacattaatt gcgttgcgct 1860 cactgoogge tttccagtcg ggaaacctgt cgtgccagct gcattaatga atcggccaac 1920 gcgcggggag aggcggtttg cgtattgggc gctcttccgc ttcctcgctc actgactcgc 1980 tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt 2040 tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg 2100 ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc cccctgacg 2160 agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat 2220 accaggegtt teeceetgga ageteeeteg tgegetetee tgtteegaee etgeegetta 2280 ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct 2340 gtaggtatet cagtteggtg taggtegtte getecaaget gggetgtgtg caegaaceee 2400 ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa 2460 gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg 2520 taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag 2580 tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt 2640 gateeggeaa acaaaceaee getggtageg gtggtttttt tgtttgeaag cageagatta 2700 cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc 2760 agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca 2820 cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa 2880 cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat 2940 ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct 3000 taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt 3060 tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat 3120 ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgccagtta 3180 atagtttgcg caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg 3240 gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt 3300 tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt aagttggccg 3360 cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg 3420 taagatgett ttetgtgaet ggtgagtaet caaccaagte attetgagaa tagtgtatge 3480 ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca catagcagaa 3540 ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac 3600 cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt 3660 ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg 3720 gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa 3780

```
gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata 3840
 aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc taagaaacca 3900
 ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtc
 <210> 2
 <211> 37
 <212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Oligonucleotide
<400> 2
cgcagctggt aatccggacg cccgcgtcga agatqtt
                                                                   37
<210> 3
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Oligonucleotide
<400> 3
cgcagctggt aatccggacc cgccgccgtt gttgtt
                                                                   36
<210> 4
<211> 2946
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Plasmid
<400> 4
atgaccatga ttacgccaag ctctaatacg actcactata gggaaagctt ccggacgtct 60
caggetaatg ttggcccacc gacgttccac gatggggcgc tcttaagggc ttagaccctc 120
gtcgggagta tttctgtgat ctggcgacac tcacgcgaga agtcattacc ggcgatatga 180
attcactggc cgtcgtttta caacgtcgtg actgggaaaa ccctggcgtt acccaactta 240
ategeettge ageacatece cetttegeea getggegtaa tagegaagag gecegeaceg 300
ategecette ceaacagttg egeageetga atggegaatg ggaaattgta aacgttaata 360
ttttgttaaa attcgcgtta aatttttgtt aaatcagctc attttttaac caataggccg 420
```

¥ 1) •

aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg agtgttgttc 480 cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa 540 ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt 600 cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt agagcttgac 660 ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta 720 gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg 780 cgccgctaca gggcgcgtca ggtggcactt ttcggggaaa tgtgcgcgga acccctattt 840 gtttattttt ctaaatacat tcaaatatgt atccgctcat gagacaataa ccctgataaa 900 tgcttcaata atattgaaaa aggaagagta tgagtattca acatttccgt gtcgccctta 960 ttcccttttt tgcggcattt tgccttcctg tttttgctca cccagaaacg ctggtgaaag 1020 taaaagatgc tgaagatcag ttgggtgcac gagtgggtta catcgaactg gatctcaaca 1080 gcggtaagat ccttgagagt tttcgccccg aagaacgttt tccaatgatg agcactttta 1140 aagttetget atgtggegeg gtattateee gtattgaege egggeaagag caacteggte 1200 gccgcataca ctattctcag aatgacttgg ttgagtactc accagtcaca gaaaagcatc 1260 ttacggatgg catgacagta agagaattat gcagtgctgc cataaccatg agtgataaca 1320 ctgcggccaa cttacttctg acaacgatcg gaggaccgaa ggagctaacc gcttttttgc 1380 acaacatggg ggatcatgta actcgccttg atcgttggga accggagctg aatgaagcca 1440 taccaaacga cgagcgtgac accacgatgc ctgtagcaat ggcaacaacg ttgcgcaaac 1500 tattaactgg cgaactactt actctagett cccggcaaca attaatagac tggatggagg 1560 cggataaagt tgcaggacca cttctgcgct cggcccttcc ggctggctgg tttattgctg 1620 ataaatctgg agccggtgag cgtgggtctc gcggtatcat tgcagcactg gggccagatg 1680 gtaagccctc ccgtatcgta gttatctaca gcacggggag tcaggcaact atggatgaac 1740 gaaatagaca gatcgctgag ataggtgcct cactgattaa gcattggtaa ctgtcagacc 1800 aagtttactc atatatactt tagattgatt taaaacttca tttttaattt aaaaggatct 1860 aggtgaagat cetttttgat aateteatga caaaaateee ttaaegtgag ttttegttee 1920 actgagcgtc agaccccgta gaaaagatca aaggatcttc ttgagatcct ttttttctgc 1980 gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc agcggtggtt tgtttgccgg 2040 atcaagagct accaactctt tttccgaagg taactggctt cagcagagcg cagataccaa 2100 atactgtcct tctagtgtag ccgtagttag gccaccactt caagaactct gtagcaccgc 2160 ctacatacct cgctctgcta atcctgttac cagtggctgc tgccagtggc gataagtcgt 2220 gtcttaccgg gttggactca agacgatagt taccggataa ggcgcagcgg tcgggctgaa 2280 cggggggttc gtgcacacag cccagcttgg agcgaacgac ctacaccgaa ctgagatacc 2340 tacagcgtga gctatgagaa agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc 2400 cggtaagcgg cagggtcgga acaggagagc gcacgaggga gcttccaggg ggaaacgcct 2460 ggtatettta tagteetgte gggtttegee acetetgaet tgagegtega tttttgtgat 2520 gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa cgcggccttt ttacggttcc 2580 tggccttttg ctggcctttt gctcacatgt tctttcctgc gttatcccct gattctgtgg 2640 ataaccgtat taccgccttt gagtgagctg ataccgctcg ccgcagccga acgaccgagc 2700 gcagcgagtc agtgagcgag gaagcggaag agcgcccaat acgcaaaccg cctctccccg 2760 cgcgttggcc gattcattaa tgcagctggc acgacaggtt tcccgactgg aaagcgggca 2820 gtgagcgcaa cgcaattaat gtgagttagc tcactcatta ggcaccccag gctttacact 2880 ttatgcttcc ggctcgtatg ttgtgtggaa ttgtgagcgg ataacaattt cacacaggaa 2940 acagct 2946

<210> 5

<211> 19

<212> DNA

<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>		
gtttt	cccag tcacgacgt	19
<210>	6	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
400		
<400>		0.0
Leegga	acgtc tcaggctaat gtt	23
<210>	7	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Degenintion of Autificial Company, Combatin	
<443>	Description of Artificial Sequence: Synthetic Oligonucleotide	
	Oligonacieotide	
<400>	7	
tgtaac	gaca cattgctgga tacc	24
01.0		
<210><211>		
<211>		
	Artificial Sequence	
/		
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>		0.1
atataa	ctct cgctccttga taac	24

<210>	. 9	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>	9	
aggcg	totga ggotgoggot atgg	24
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
000		
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>	10	
	gtcgc gacgagagtc taag	24
aaccc	geoge gaogagagee caag	44
<210>	11	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>		
gatat	acgtg atatattttg attg	24
<210>	12	
<211>		
<211>		
	Artificial Sequence	
/		
<220>		
	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	

<400> 12 gateggtate cageaatgtg tegttaca	28
<210> 13 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic Oligonucleotide	
<400> 13 agctgttatc aaggagcgag agttatat	28
<210> 14 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic Oligonucleotide	
<400> 14 catgccatag ccgcagcctc agacgcct	28
<210> 15 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic Oligonucleotide	
<400> 15 ctagcttaga ctctcgtcgc gacgggtt	28
<210> 16 <211> 28 <212> DNA <213> Artificial Sequence	

<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>	16	
ttaaca	aatca aaatatatca cgtatatc	28
<210>	17	
<211>	29	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>		
tgtaac	gaca cattgctgga taccgatcc	29
<210>	10	
<211>		
<212>		
	Artificial Sequence	
1220		
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>	18	
atataa	ctct cgctccttga taacagctt	29
<210>	19	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
(Oligonucleotide	
-400:	10	
<400> :		
ayycqt	ctga ggctgcggct atggcatgg	29

<210>	· 20	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
	1	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>	20	
aaccc	gtcgc gacgagagtc taagctagt	29
<210>	21	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>	21	
yatat	acgtg atatattttg attgttaag	29
<210>	22	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>		
gcgcta	aggga teettaetgg gaegaagaeg aa	32
<210>	22	
<211>		
<211>		
	Artificial Sequence	
/		
<220>		
	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	

	<400>	23	
9	gcgct	aggga teettactgg gaegaagaeg aa	32
,	<210>	24	
	<211>	93	
	<212>	DNA	
•	<213>	Artificial Sequence	
		-	
<	<220>		
•	<223>	Description of Artificial Sequence: Synthetic	
		Oligonucleotide	
		-	
<	<400>	24	
(ccqq	gggat cctcgtttta ttgggccgag ttttggtccg tagtgcttgg ttagatatgc	60
		ttcac aaaatcatcc ttgtacagaa ttc	93
	J	and an analogue object of the control of the contro	23
<	(210>	25	
	211>		
	(212>		
		Artificial Sequence	
	213/	Arctitetat bequence	
_	:220>		
	_	Description of Artificial Sequence: Synthetic	
	.2257	Oligonucleotide	
		origonacieotide	
_	400>	25	
		ggat cetegittta tigggeegag tittggieeg tagigeatgg tiagatatge	<i>-</i> ^
٠	catg	secure addaceded trytacayaa ttt	93
_	210>	26	
	211>		
	212>		
		Artificial Sequence	
`	2137	Arcificial sequence	
_	220>		
		Description of Artificial Sequence: Synthetic	
_		Oligonucleotide	
		Oligonacieotide	
_	400>	26	
		tgta cacaaaagtt tacctgaaga acgtgggggg tegtgectgg tettgegtea (
اب	yy c	ctca ggagagggtc cccatgggaa ttc	93
٫.	210>	27	
	210>		
~ 4		+ ∪	

<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Oligonucleotide	
-	
<400> 27	
ctactgatcg gatccccg	18
<210> 28	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Oligonucleotide	
<400> 28	
aaacgacggc cagtgaat	18
<210> 29	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Oligonucleotide	
<400> 29	
ctactgatcg gatccccg	18
<210> 30	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Oligonucleotide	
400 20	
<400> 30	
aaacgacggc cagtgaat	10

<210>	31	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic Oligonucleotide	
<400>	31	
ggccga	gttt tggtccgtag	20
<210>	32	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Oligonucleotide	
<400>	32	
gtcttg	cgtc acctggtctc ag	22

PA-9912

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of:

M. Reeve, et al.

Group Art Unit:

To be assigned

Serial Number:

To be assigned

Examiner:

To be assigned

Filing Date:

August 28, 2001

Title:

Genetic Analysis

FIRST PRELIMINARY AMENDMENT

Honorable Assistant Commissioner of Patents Box Patent Application Washington, D.C. 20231

Sir:

Please consider the following amendments and remarks in connection with the prosecution of the captioned application, which is a filing under 35 U.S.C. § 371 and claims priority to international application number PCT/GB00/00916 filed March10, 2000. This application also claims priority to application number 99301933.0 filed in the European Patent Office on March 12, 1999.

In the Claims

Please amend page 155, line 1 as follows:

[CLAIMS]

What is claimed is:

Please cancel claims 3, 12, 13, 19, 20, and 26, without prejudice.

Please amend claim 1 as follows:

- 1. (once amended) [A]<u>In a</u> method of providing a mixture of DNA fragments enriched in fragments that are characteristic of a phenotype of interest, [by]<u>which</u> method includes providing affected DNA in fragmented form and providing unaffected DNA in fragmented form, [which method comprises]<u>the improvement</u> comprising:
 - a) mixing the fragments of the affected DNA and the fragments of the unaffected DNA under hybridising conditions to form hybrids;
 - b) recovering a mixture of hybrids that contain mismatches;
 - c) recovering fragments of the affected DNA from the mixture of hybrids that contain mismatches[;

and optionally repeating steps a), b) and c) one or more times].

Please amend claim 2 as follows:

2. (once amended) The method of claim 1 wherein the affected DNA is pooled DNA of one or more individuals who show the phenotype of interest, and the unaffected DNA is pooled DNA of one or more individuals who do not show the phenotype of interest.

Please amend claim 6 as follows:

6. (once amended) The method of [any one of claims 1 to 5]claim 1, wherein step b) is performed by use of a mismatch-binding protein.

Please amend claim 7 as follows:

7. (once amended) The method of [any one of claims 1 to 6]claim 1, wherein either the fragments of the affected DNA or the fragments of the unaffected DNA are tagged by one member of a specific binding pair, and step c) is performed by using the other member of the specific binding pair.

Please amend claim 9 as follows:

9. (once amended) The method of [any one of claims 1 to 8] claim 1,

[wherein] further comprising subjecting the mixture of DNA fragments enriched in fragments that are characteristic of the phenotype of interest[, is subjected] to self-hybridisation [followed by recovery of] to form duplexes and subsequently recovering the perfectly matched duplexes.

نو بن

Please amend claim 10 as follows:

10. (once amended) The method of [any one of claims 1 to 9]claim 1,

[wherein]further comprising mixing the mixture of DNA fragments enriched in

fragments that are characteristic of the phenotype of interest[, is mixed] with an

excess of the fragments of the affected DNA under hybridisation conditions[,] to

form duplexes and subsequently recovering the[followed by recovery of]

perfectly matched duplexes.

Please amend claim 11 as follows:

of the affected DNA and the unaffected DNA is provided in fragmented form by digestion with from 4 to 7 six-cutter restriction endonuclease enzymes together with from 0 to 50 four-cutter restriction endonuclease enzymes.

Please amend claim 15 as follows:

15. (once amended) The method of [claim 13 or]claim 14, wherein steps a to f) are repeated using each different subset of r restriction endonuclease enzymes to give (n!)/[(n-r)!r!] different arrays.

Please amend claim 16 as follows:

16. (once amended) The method of [any one of claims 13 to 15] claim 14, wherein the n restriction endonuclease enzymes are selected from 4-cutters and 5-cutters and 6-cutters.

Please amend claim 17 as follows:

17. (once amended) The method of [any one of claims 13 to 16] claim 14, wherein the n is 3 to 10 and r is 2 to 4.

Please amend claim 21 as follows:

21. (once amended) [The]A set of arrays [of claim 19 or claim 20]produced by the method of claim 14, derived from a set of n = 6 six-cutter restriction endonuclease enzymes which are BamHI; Bsr GI; Hind III; Ncol; Spel; and AfIII.

Please amend claim 22 as follows:

22. (once amended) [The] \underline{A} set of arrays [of claim 19 or claim 20] $\underline{produced}$ by the \underline{method} of claim 14, derived from the set of n = 6 six-cutter restriction

نع : ن**نید**

endonuclease enzymes which are EcoRI; BspHI; BgIII; Xbal; Acc65I; and ApaLI.

Please amend claim 23 as follows:

23. (once amended) A nucleic acid characterisation method which comprises presenting to [the]a set of arrays [of any one of claims 19 to 22]produced by the method of claim 14 a nucleic acid fragment of interest under hybridisation conditions, and observing a pattern of hybridisation.

Please amend claim 28 as follows:

- 28. (once amended) The double-stranded DNA molecule of claim 27, wherein[the following criteria are satisfied]:
 - a) inter-fragment length differences are greater for larger fragments;
 - b) all possible fragments are unambiguously resolvable by electrophoresis from one another;
 - c) size gaps between bands comprising different numbers of inter-restriction-site units are larger than size gaps between bands comprising the same number of inter-restriction-site units;
 - d) the size gaps and size spread from the largest to the smallest fragment are electrophorectically compatible.

ن^ر 'رز

Please add new claim 29 as follows:

29. (new) The method of claim 1 which further comprises steps a), b) and c) one or more times.

Please add new claim 30 as follows:

30. (new) The method of claim 14 wherein one of the restriction enzyme specific primers is tagged.

Remarks

Claims 1-28 are pending in the instant application. Applicants have amended claims 1, 2, 6, 7, 9, 10, 11, 15, 16, 17, 21, 22, 23, and 28 to more fully conform with U.S. practice and to delete multiple dependencies. Applicants have cancelled, without prejudice, claims 3, 12, 13, 19, 20, and 26. Applicants have also added new claims 29 and 30. A version of the claims marked up to show the amendments, as well as a clean version of the claims encompassing the amendments, is attached hereto.

Applicants respectfully assert that all amendments are fairly based on the specification, and respectfully request their entry.

Applicants believe that the claims, as amended, are in allowable form, and earnestly solicit the allowance of claims 1, 2, 4-11, 14-18, 21-25, and 27-30.

Respectfully submitted,

Royal N. Ronning, Jr. 32,529 Attorney for Applicants

Amersham Pharmacia Biotech, Inc. 800 Centennial Avenue P. O. Box 1327 Piscataway, New Jersey 08855-1327

Tel: (732) 457-8423 Fax: (732) 457-8463 نع التي

Claims (marked-up version showing amendment(s))

[CLAIMS]

What is claimed is:

- (once amended) [A]In a method of providing a mixture of DNA fragments
 enriched in fragments that are characteristic of a phenotype of interest, [by]which
 <u>method includes</u> providing affected DNA in fragmented form and providing
 unaffected DNA in fragmented form, [which method comprises]the improvement
 comprising:
 - a) mixing the fragments of the affected DNA and the fragments of the unaffected
 DNA under hybridising conditions to form hybrids;
 - b) recovering a mixture of hybrids that contain mismatches;
 - c) recovering fragments of the affected DNA from the mixture of hybrids that contain mismatches[;
 - and optionally repeating steps a), b) and c) one or more times].
- 2. (once amended) The method of claim 1 wherein the affected DNA is pooled DNA of <u>one or more</u> individuals who show the phenotype of interest, and the unaffected DNA is pooled DNA of <u>one or more</u> individuals who do not show the phenotype of interest.

نع بر

- 6. (once amended) The method of [any one of claims 1 to 5]claim 1, wherein step b) is performed by use of a mismatch-binding protein.
- 7. (once amended) The method of [any one of claims 1 to 6]claim 1, wherein either the fragments of the affected DNA or the fragments of the unaffected DNA are tagged by one member of a specific binding pair, and step c) is performed by using the other member of the specific binding pair.
- 9. (once amended) The method of [any one of claims 1 to 8]claim 1,

 [wherein]further comprising subjecting the mixture of DNA fragments enriched in fragments that are characteristic of the phenotype of interest[, is subjected] to self-hybridisation [followed by recovery of]to form duplexes and subsequently recovering the perfectly matched duplexes.
- 10. (once amended) The method of [any one of claims 1 to 9]claim 1,

 [wherein]further comprising mixing the mixture of DNA fragments enriched in

 fragments that are characteristic of the phenotype of interest[, is mixed] with an

 excess of the fragments of the affected DNA under hybridisation conditions[,] to

 form duplexes and subsequently recovering the[followed by recovery of]

 perfectly matched duplexes.

نو س

- 11. (once amended) The method of [any one of claims 1 to 10] claim 1, wherein each of the affected DNA and the unaffected DNA is provided in fragmented form by digestion with from 4 to 7 six-cutter restriction endonuclease enzymes together with from 0 to 50 four-cutter restriction endonuclease enzymes.
- 15. (once amended) The method of [claim 13 or]claim 14, wherein steps a to f) are repeated using each different subset of r restriction endonuclease enzymes to give (n!)/[(n-r)!r!] different arrays.
- 16. (once amended) The method of [any one of claims 13 to 15] claim 14, wherein the n restriction endonuclease enzymes are selected from 4-cutters and 5-cutters and 6-cutters.
- 17. (once amended) The method of [any one of claims 13 to 16] claim 14, wherein the n is 3 to 10 and r is 2 to 4.
- 21. (once amended) [The]A set of arrays [of claim 19 or claim 20]produced by the method of claim 14, derived from a set of n = 6 six-cutter restriction endonuclease enzymes which are BamHI; Bsr GI; Hind III; Ncol; Spel; and AfIII.
- 22. (once amended) [The]A set of arrays [of claim 19 or claim 20] produced by the

نو ۱۲۰۰

method of claim 14, derived from the set of n = 6 six-cutter restriction endonuclease enzymes which are *EcoRI*; *BspHI*; *BgIII*; *XbaI*; *Acc65I*; and *ApaLI*.

- 23. (once amended) A nucleic acid characterisation method which comprises presenting to [the]a set of arrays [of any one of claims 19 to 22]produced by the method of claim 14 a nucleic acid fragment of interest under hybridisation conditions, and observing a pattern of hybridisation.
- 28. (once amended) The double-stranded DNA molecule of claim 27, wherein[the following criteria are satisfied]:
 - a) inter-fragment length differences are greater for larger fragments;
 - b) all possible fragments are unambiguously resolvable by electrophoresis from one another;
 - size gaps between bands comprising different numbers of inter-restriction-site units are larger than size gaps between bands comprising the same number of inter-restriction-site units;
 - d) the size gaps and size spread from the largest to the smallest fragment are electrophorectically compatible.
- 29. (new) The method of claim 1 which further comprises steps a), b) and c) one or more times.

30. (new) The method of claim 14 wherein one of the restriction enzyme specific primers is tagged.

Claims (clean version encompassing amendments)

What is claimed is:

- (once amended) In a method of providing a mixture of DNA fragments enriched
 in fragments that are characteristic of a phenotype of interest, which method
 includes providing affected DNA in fragmented form and providing unaffected
 DNA in fragmented form, the improvement comprising:
 - a) mixing the fragments of the affected DNA and the fragments of the unaffected
 DNA under hybridising conditions to form hybrids;
 - b) recovering a mixture of hybrids that contain mismatches;
 - c) recovering fragments of the affected DNA from the mixture of hybrids that contain mismatches.
- 2. (once amended) The method of claim 1 wherein the affected DNA is pooled DNA of one or more individuals who show the phenotype of interest, and the unaffected DNA is pooled DNA of one or more individuals who do not show the phenotype of interest.
- 4. The method of claim 1, wherein the affected DNA is DNA of one individual who shows the phenotype of interest, and the unaffected DNA is pooled DNA of a

complete set of ancestors who do not show the phenotype of interest.

- 5. The method of claim 1, wherein the affected DNA is DNA from cells of an individual that show the phenotype of interest, and the unaffected DNA is DNA from cells of the individual that do not show the phenotype of interest.
- 6. (once amended) The method of claim 1, wherein step b) is performed by use of a mismatch-binding protein.
- 7. (once amended) The method of claim 1, wherein either the fragments of the affected DNA or the fragments of the unaffected DNA are tagged by one member of a specific binding pair, and step c) is performed by using the other member of the specific binding pair.
- 8. The method of claim 7, wherein the fragments of the unaffected DNA are tagged with biotin, and step c) is performed by use of immobilised streptavidin.
- 9. (once amended) The method of claim 1, further comprising subjecting the mixture of DNA fragments enriched in fragments that are characteristic of the phenotype of interest to self-hybridisation to form duplexes and subsequently recovering the perfectly matched duplexes.

10. (once amended) The method of claim 1, further comprising mixing the mixture of DNA fragments enriched in fragments that are characteristic of the phenotype of interest with an excess of the fragments of the affected DNA under hybridisation conditions to form duplexes and subsequently recovering the perfectly matched duplexes.

- 11. (once amended) The method of claim 1, wherein each of the affected DNA and the unaffected DNA is provided in fragmented form by digestion with from 4 to 7 six-cutter restriction endonuclease enzymes together with from 0 to 50 four-cutter restriction endonuclease enzymes.
- 14. A method of making a set of arrays of fragments of DNA of interest, which method comprises;
 - a) selecting, from a set of n restriction endonuclease enzymes, a subset of r restriction endonuclease enzymes;
 - b) digesting genomic DNA with the subset of r enzymes;
 - c) ligating to the resulting fragments restriction-enzyme-cutting-site-specific adapters with unique polymerase chain reaction amplifiable sequences;
 - d) splitting the resulting fragments into r² aliquots;
 - e) amplifying each aliquot with two restriction-enzyme-specific primers;
 - f) forming an array of the r² aliquots of non-tagged amplimer strands; and

- g) repeating steps a) to f) using one or more different subsets of r restriction endonuclease enzymes.
- 15. (once amended) The method of claim 14, wherein steps a to f) are repeated using each different subset of r restriction endonuclease enzymes to give (n!)/[(n-r)!r!] different arrays.
- 16. (once amended) The method of claim 14, wherein the n restriction endonuclease enzymes are selected from 4-cutters and 5-cutters and 6-cutters.
- 17. (once amended) The method of claim 14, wherein the n is 3 to 10 and r is 2 to 4.
- 18. The method of claim 17, wherein n = 6 and r = 3.
- 21. (once amended) A set of arrays produced by the method of claim 14, derived from a set of n = 6 six-cutter restriction endonuclease enzymes which are *BamHI*; *Bsr GI*; *Hind III*; *Ncol*; *Spel*; and *AfIII*.
- 22. (once amended) A set of arrays produced by the method of claim 14, derived from the set of n = 6 six-cutter restriction endonuclease enzymes which are *EcoRI*;

 BspHI; BgIII; Xbal; Acc65I; and ApaLI.

نو دير

- 23. (once amended) A nucleic acid characterisation method which comprises presenting to a set of arrays produced by the method of claim 14 a nucleic acid fragment of interest under hybridisation conditions, and observing a pattern of hybridisation.
- 24. The method of claim 23, wherein a plurality of nucleic acid fragments of interest are separately presented to the set of arrays, and the resulting patterns of hybridisation are compared.
- 25. The method of claim 24, wherein the plurality of nucleic acid fragments of interest are drawn from the mixture of DNA fragments, enriched in fragments that are characteristic of a phenotype of interest, of claim 13.
- A double-stranded DNA molecule having the sequence a-A-b-B...X-y-Y-z where A, B...X and Y are unique restriction sites for n different restriction endonuclease enzymes, and a, b...y, z denotes distances in base pairs, characterised in that each fragment, obtainable by cutting the DNA molecule by means of any one or more up to n of the restriction enzymes, has a different length from every other fragment.
- 28. (once amended) The double-stranded DNA molecule of claim 27, wherein:

- a) inter-fragment length differences are greater for larger fragments;
- b) all possible fragments are unambiguously resolvable by electrophoresis from one another;
- size gaps between bands comprising different numbers of inter-restriction-site units are larger than size gaps between bands comprising the same number of inter-restriction-site units;
- d) the size gaps and size spread from the largest to the smallest fragment are electrophorectically compatible.
- 29. (new) The method of claim 1 which further comprises steps a), b) and c) one or more times.
- 30. (new) The method of claim 14 wherein one of the restriction enzyme specific primers is tagged.

WO 00/55364

5 PRTS

PCT/GB00/00916

GENETIC ANALYSIS

INTRODUCTION

Limitations of the current approaches

There are a number of limitations to carrying out association studies using single nucleotide polymorphisms (SNPs) and linkage disequilibrium within human populations (see Science, Vol 278, p1580, (1997) for a review of such methods). We have no control over recombination frequency around a given locus or over past human genetic crossing. Some mutations will be closely correlated with nearby SNPs and others will not.

15

20

25

30

Ю

5

The need for whole genome analysis

With the SNP and linkage disequilibrium approach (and many others), markers are essentially used as a surrogate for sequencing - the more markers, the better. The logical endpoint of the above argument is to look at every base in the human genome - and carry out what could be termed a whole genome association study. In essence, the sequence at every base would be determined for the genome of each member of a phenotypically 'affected' and a phenotypically 'unaffected' population. Statistical correlations (associations) could then be drawn between sequence differences and phenotype. Such associations would have future predictive values for the phenotype of interest, knowing the genotype and could be of great value in medicine and pharmacogenetics.

The current invention selectively enriches for DNA fragments that determine phenotype in the 'affected' population and thus makes the prospect of carrying out whole genome association studies for humans and other species a very real possibility.

10

15

20

25

30

Definition of terms used with the current invention

Within the scope of the current invention, the individuals chosen for whole genome analysis may be human, animal or plant and they may be eukaryotic, prokaryotic or archaebacterial in origin.

The terms 'affected' and 'unaffected' are used without limitation in order to categorise individuals into two groups – those that possess a defined phenotype of interest ('affected' individuals) and those that do not possess the phenotype of interest ('unaffected' individuals). The phenotype common to the 'affected' individuals may be either beneficial (e.g. for these individuals, a particular pharmaceutical entity might show high efficacy in a phase II clinical trial) or detrimental (e.g. for these individuals, a particular pharmaceutical entity might show adverse toxicology in a phase I clinical trial).

The 'affected' population may comprise one or more individuals and the 'unaffected' population may similarly comprise one or more individuals according to the particular embodiment of the invention (see below).

The term DNA is used throughout for simplicity. Within the scope of the current invention, the term DNA may equally well apply to all or part of the haploid, diploid or polyploid genomic DNA content of one or more germ line or somatic cell(s). The DNA may be extracted from cells taken directly from the individual(s), the DNA may be extracted from cells cultured or immortalised from the individual(s) or the DNA may be prepared from a library of clones - with inserts derived from the individual(s) and propagated in some appropriate host and cloning vector system. For the particular case wherein the term DNA refers to the expressed part of the haploid, diploid or polyploid genomic DNA content of one or more somatic cells and the DNA is prepared from a library of clones - with inserts derived from the individual(s) and propagated in some appropriate host and cloning vector system, a cDNA library (normalised or otherwise) may be used.

15

20

25

30

enriched fragments.

In the current invention. DNA is compared in fragmented form. Fragmentation can be performed after DNA extraction, prior to cloning and/or after cloning. Restriction enzyme digestion is the preferred method for such fragmentation - though other methods (e.g. shearing or sonication) will be obvious to those skilled in the art.

For the particular case wherein the DNA is prepared from a library of clones (either genomic clones or cDNA clones) - with inserts derived from the individual(s) and propagated in some appropriate host and cloning vector system and wherein restriction enzyme fragmentation is used prior to cloning, polymerase chain reaction amplification can be used to prepare the DNA for comparison in fragmented form. Priming sites within the vector sequence flanking the cloned restriction enzyme fragmented inserts may be usefully employed for one or more cycles of polymerase chain reaction amplification of the fragmented DNA of interest. The primers used for polymerase chain reaction amplification of the fragmented DNA of interest could again be used after the phenotypedetermining fragment enrichment process to 'rescue' and clone the

Within the scope of the current invention, the terms biotinylation and streptavidin capture are used both as an example and as the currently preferred embodiment for the invention. The streptavidin may be surface attached to inert particles (magnetic or otherwise) or to vessel walls (e.g. microtitre plate wells). The biotin may be introduced via a deoxynucleotide triphosphate analogue using a polymerase; by using a biotin-conjugated primer and polymerase chain reaction amplification; chemically or photochemically. The use of biotin and streptavidin is not a limitation for the invention. The invention could equally be used with other high affinity capture systems well known to those skilled in the art (e.g. 'his tag' introduction and metal ion affinity capture).

Within the scope of the current invention, the term 'abnormal' - used with respect to the term 'normal' - is used without limitation in order

15

20

25

30

to denote a somatic cell (or somatic cells) with a discernable phenotypic characteristic (or characteristics) arising from the acquisition of a different somatic mutation (or set of somatic mutations) from that (or those) seen in the 'normal' counterpart. Cells will most usually be considered 'abnormal' with respect to their 'normal' counterparts through the acquisition of a different somatic mutation (or set of somatic mutations) leading to one or more of the following phenotypic characteristics: altered marker gene expression, altered genomic organisation, growth under certain selective culture conditions, immortalised growth in culture, unrestrained growth *in vivo* or *in vitro*, failure of normal apoptotic control mechanisms *in vivo* or *in vitro*, induction of neovascularisation, escape of cells across epithelium, migratory cell survival or metastasis.

Within the scope of the current invention, the term mismatch recognition protein is used without limitation to denote a protein of eukaryotic, prokaryotic or archaebacterial origin capable of the selective recognition of (and binding to) a DNA duplex that is not perfectly matched along its entire length. Recognition of (and binding to) will be preferably for bases that are not engaged in correct Watson and Crick pairing and for small deletions or insertions. Many such proteins are known to those skilled in the art. Prokaryotic and eukaryotic mutS homologues, phage T4 endonuclease VII, phage T7 endonuclease I and the plant enzyme CEL-1 are just some examples.

inter-population perfectly matched duplex depletion

In the inter-population perfectly matched duplex depletion approach, we compare (in fragmented form) the pooled DNA of 'affected' individuals with the pooled DNA of 'unaffected' individuals (both from populations as outbred and otherwise similar to each other as possible). We are only interested in those regions where differences occur between 'affected' and 'unaffected' DNA molecules. For populations as above, the only prevalent sequence differences within the 'affected' pool (compared to

20

25

30

the 'unaffected' pool) should be somewhere within the gene(s) (using the term gene in its widest sense to include exons, introns and all associated upstream and downstream regulatory sequences) that actually determine(s) their common phenotype. This means that we are no longer tied into working with rare (and perhaps atypical) populations where there is high genetic homogeneity.

Pooling the DNA from entire phenotypically-defined populations massively reduces the amount of labour involved.

10 DNA sequence variation in populations

Nickerson *et al*, Nature Genetics, Vol 19, p233 (1998), sequenced 9.7 kb of the lipoprotein lipase gene from 71 individuals (24 African-Americans, 24 Europeans and 23 European-Americans). This gene is fairly typical (90 % intron and 10 % exon - total size 30 kb with 10 exons).

88 sequence variants were found (i.e. one per 110 bp on average). Most variations were found in non-coding sequence. 90 % of these were SNPs (60 % of which were transitions and 40 % were transversions). All of the SNPs were biallelic. 10 % of the sequence variants were insertions or deletions at repeat sequences.

58 % of the sequence variants were present in all three ethnic populations. Half of these were found in heterozygous form and half in homozygous form.

Nucleotide diversity (defined as the expected number of nucleotide differences per site between a random pair of chromosomes drawn from the population) is 1/500 for DNA in general and 1/2,000 for coding sequence DNA. This means that, on average, any two DNA fragments annealed together from such a population will contain a mismatch every 500 bases.

DNA sequence variants are therefore very common. They are not, however, totally random - the variants that occur every 500 bases or so are limited; they are generally biallelic at just that single base. It is

10

15

this fact that the inter-population perfectly matched duplex depletion approach selectively exploits.

Statistical analysis of the inter-population perfectly matched duplex depletion fragmentation process

If the length of the DNA fragments is F bases and the average length between sequence differences between any two DNA molecules is 500 bases, the probability that a hybrid duplex between any two random DNA fragments will contain no mismatches is given by

$$Pr(0) = e^{-(F/500)}$$

and the probability that a hybrid duplex between any two random DNA molecules will contain any mismatches is given by

$$Pr(\geq 1) = \{1-(e^{-(F/500)})\}$$

Example values for Pr(0) and Pr(≥1) for different values of F are given below

F	Pr(0)	Pr(≥1)
10	0.98	0.02
20	0.96	0.04
50	0.90	0.10
100	0.82	0.18
200	0.67	0.33
300	0.55	0.45
400	0.45	0.55
500	0.37	0.63
600	0.30	0.70
700	0.25	0.75
800	0.20	0.80
900	0.17	0.83
1000	0.14	0.86

- 7 -

Example average restriction fragment sizes for DNA digestion with six 6 bp cutters and up to four 4 bp cutters

Each 6 bp cutter will cut DNA every 4.096 bp on average and each 4 bp cutter will cut DNA every 256 bp on average.

For a given set of A 6 bp cutters and B 4 bp cutters (with no duplication of restriction enzyme cutting sequence), the average fragment length F will be

$$\{(A/4.096)+(B/256)\}^{-1}$$

10

5

Example values for F as A and B are varied are given in the following table

Α	В	average size
		(F)
6	0	683
6	1	186
6	2	108
6	3	76
6	4	59

15

20

We should note that the above situation assumes that none of the 4 bp cutter recognition sites lie within any of the 6 bp cutter recognition sites. If, for example, we have a 4 bp cutter recognition site nested within a 6 bp cutter recognition site (e.g. from the use of *Mbol* and *BamHI* in the fragmentation), then we should reduce the value of A from 6 to 5 in the above.

In general, if we have a given set of A enzymes that cut DNA every a bp on average, B enzymes that cut DNA every b bp on average, ..., Z enzymes that cut DNA every z bp on average (with no duplication of restriction enzyme cutting sequence), the average fragment length F will be

25

$$\{(A/a)+(B/b)+...+(Z/z)\}^{-1}$$

Example sets of 6 bp cutters and 4 bp cutters for fragmentation

Example sets of 6 bp cutters and 4 bp cutters that contain panels of six 6 bp cutters that are compatible with terminal restriction site profiling array (TRSPA) analysis (see below) are given in the following:

Example enzyme set 1

For restriction in M buffer + BSA

Number	Enzyme	Site	M+BSA	Optimum	U / μΙ	Supplier	Inactivate
			%	-C			°C/min
			activity				
1	Mbol	GATC	100	37	25	NEB	65/20
2	Haelll	GGCC	100	37	50	NEB	80/20
3	Msel	TTAA	100	37	20	NEB	65/20

Number	Enzyme	Site	M+BSA	Optimum	U / μl	Supplier	Inactivate
			%	°C			°C/min
			activity				
1	BamHI	GGATCC	100	37	100	NEB	80 / 20
2	BsrGI	TGTACA	100	37	10	NEB	80 / 20
3	Hındili	AAGCTT	100	37	>40	APB	65 / 20
4	Ncol	CCATGG	100	37	50	NEB	65 / 20
5	Spel	ACTAGT	100	37	50	NEB	65 / 20
6	AfIII	CTTAAG	100	37	10	APB	60 / 15

10

Example enzyme set 2

For restriction in M buffer + BSA

Number	Enzyme	Site	M+BSA	Optimum	U/µl	Supplier	Inactivate
			%	°C			°C/min
			activity				
1	Mbol	GATC	100	37	25	NEB	65/20
2	Haelll	GGCC	100	37	50	NEB	80/20
3	Msel	TTAA	100	37	20	NEB	65/20

- 9 -

Number	Enzyme	Site	M+BSA	Optimum	U / μl	Supplier	Inactivate
			%	°C			°C/min
			activity				
1	EcoRI	GAATTC	100	37	>40	APB	65 / 20
2	BspHl	TCATGA	100	37	10	APB	65 / 20
3	Bgill	AGATCT	75	37	>40	APB	No
4	Xbal	TCTAGA	100	37	100	NEB	65 / 20
5	Acc651	GGTACC	75	37	10	NEB	65 / 20
6	ApaLi	GTGCAC	100	37	10	NEB	No

Aspect (I)

20

In one aspect the invention provides a method of providing a mixture of DNA fragments enriched in fragments that are characteristic of a phenotype of interest, by providing affected DNA in fragmented form and providing unaffected DNA in fragmented form, which method comprises:

- a) mixing the fragments of the affected DNA and the fragments of the unaffected DNA under hybridising conditions;
- recovering a mixture of hybrids that contain mismatches;
- c) recovering fragments of the affected DNA from the mixture of hybrids that contain mismatches;

and optionally repeating steps a), b) and c) one or more times.

15 Inter-population mismatch-containing duplex selection

'Affected' versus 'unaffected' (i.e. inter-population) mismatch-containing duplex selection can be achieved by attaching a mismatch-binding protein to a solid support (or using the mismatch-binding protein in solution followed by subsequent solid-phase capture), taking fragmented and denatured 'affected' DNA and hybridising this to an excess of fragmented, denatured and biotinylated 'unaffected' DNA with ensuing capture of mismatch-containing duplex molecules. Releasing the mismatch-containing duplex molecules without denaturation, streptavidin

capture and then release of the non-biotinylated strands will give only the desired species as shown below.

Method

5	Fragment the 'affected' DNA. Fragment and derivatise the
	'unaffected' DNA with biotin. Only DNA from this population will be
	streptavidin captured. Melt and anneal to give

biotin	biotin	Biotin	 biotin
	 biotin		 biotin

Mismatch-binding protein select. Capture only the mismatchcontaining duplexes. Release without denaturation to give

biotin	 biotin
	 biotin

- 11 -

Streptavidin capture to give

biotin biotin

Release the non-biotinylated strands to give

5

Repeat as necessary.

Repetition of the above sequence of reactions will lead to inter-population perfectly matched duplex depletion.

10

15

20

What will be purified?

Inter-population mismatch-containing duplex selection as above ensures that all of the various phenotype-determining fragments (unique to the 'affected' population) are captured for subsequent analysis but it also causes the co-purification of very many SNP-containing ('noise') fragments.

We now need to consider the fate of the various types of fragment (i.e. those that determine the phenotype and those that do not) as we carry out inter-population perfectly matched duplex depletion cycles as above.

Recovery of 'affected' DNA molecules after streptavidin capture

For a particular fragment, if we have X molecules of 'affected' DNA and Y molecules of 'unaffected' biotinylated DNA, after complete hybridisation, there will be a ratio of $\{Y/(X+Y)\}$ streptavidin-capturable molecules to $\{X/(X+Y)\}$ streptavidin-non-capturable molecules. We can thus manipulate the yield of streptavidin-capturable hybrids by varying X and Y.

Example recovery and loss figures for various X and Y are shown in the following table

10

20

ratio	recovery	Loss
(Y/X)	$= \{Y/(X+Y)\}$	= {X/(X+Y)}
1	50 %	50 %
2	67 %	33 %
3	75 %	25 %
4	80 %	20 %
9	90 %	10 %
19	95 %	5 %
99	99%	1 %
999	99.9 %	0.1 %

After n cycles, the recovery for a phenotype-determining fragment will be given by $\{Y/(X+Y)\}^n$

Loss of general SNP-containing ('noise') fragments during interpopulation perfectly matched duplex depletion cycles

If we anneal fragmented DNA molecules together and capture only the mismatch-containing duplexes, then n repetitions of such a process will reduce the original number of fragments to the following fraction

$$\{1-(e^{-(F/500)})\}^n-\{Y/(X+Y)\}^n$$

The enrichment for phenotype-determining fragments over SNP-containing ('noise') fragments during inter-population perfectly matched duplex depletion cycles will therefore be given by

$$\{1-(e^{-(F/500)})\}^{-n}$$

Example figures for enrichment are given below with F = 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1,000 and n = 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

t	1	١
ŧ	3	ľ

15

20

5

		n =									
F	1	2	3	4	5	6	7	8	9	10	
50	11	110	1,160	12,194	128,135	1.346,489	1.E+07	1.E+08	2.E+09	2.E+10	
100	6	30	168	926	5,110	28,187	155.500	857,841	4.732,415	3.E+07	
200	3	9	28	85	257	779	2.362	7,166	21,735	65,929	
300	2	5	11	24	53	119	263	582	1,291	2,860	
400	2	3	6	11	20	36	65	118	215	390	
500	2	3	4	6	10	16	25	39	62	98	
600	1	2	3	4	6	9	12	18	25	36	
700	1	2	2	3	4	5	7	10	13	17	
800	1	2	2	2	3	4	5	6	8	10	
900	1	1	2	2	2	3	4	4	5	6	
1,000	1	1	2	2	2	2	3	3	4	4	

Loss of specific SNP-containing ('noise') fragments during interpopulation perfectly matched duplex depletion cycles

The non-polymorphic and SNP-containing ('noise') fragments will be depleted as described above.

Not all fragments will, however, be depleted at the same rate. An individual SNP-containing ('noise') fragment will be depleted with every cycle of inter-population perfectly matched duplex depletion as outlined below.

Let us assume that there are two alleles for the polymorphism within a particular fragment. Let these be called P and Q. Let p be the

fraction of the P allele in the (outbred) 'affected' and 'unaffected' populations and let q be the fraction of the Q allele. Let (p+q)=1, so that q=(1-p).

After denaturation and annealing, the four possible events are PP, PQ, QP and QQ. PP and QQ will form perfectly matched duplexes and will therefore be lost - whereas PQ and QP will form mismatch-containing duplexes and will consequently be recovered.

After one cycle, the fraction of recovered molecules will be

10
$$\{2pq/(p^2+2pq+q^2)\}$$

$$= \{2pq/((p+q)^2)\}$$

$$= 2pq$$

=2p(1-p)

Hence if we start out with M molecules of DNA from the population, there will be 2Mpq molecules remaining after the first round of inter-population mismatch-containing duplex selection. Let us denote the number of molecules entering the second round of inter-population mismatch-containing duplex selection by M', where

$$M' = 2Mpq$$

25

20

and the fraction of lost molecules will be

$$\{(p^2+q^2)/(p^2+2pq+q^2)\}$$

$$= \{ (p^2 + q^2)/((p+q)^2) \}$$

15

20

25

30

 $= p^{2}+q^{2}$ $= p^{2}+\{1-2p+p^{2}\}$ $= 1-2p+2p^{2}$ = 1-2p(1-p) = 1-2pq

The fractional loss of P-allelic molecules will be p^2 and the fractional loss of Q-allelic molecules will be q^2 (= $(1-p)^2$).

If we start out with M molecules of DNA from the population, there will be Mp of the P-allelic molecules and Mq = M(1-p) of the Q-allelic molecules before inter-population mismatch-containing duplex selection. After inter-population mismatch-containing duplex selection, there will therefore be Mp-Mp² = Mp(1-p) = Mpq of the P-allelic molecules and Mq-Mq² = Mq(1-q) = Mqp of the Q-allelic molecules. In other words, after the first round of mismatch-containing duplex selection, there will be the same number of P-allelic molecules as Q-allelic molecules.

We can define new allelic frequencies p' and q' as follows

$$p' = q' = 0.5$$

If we now perform a second round of inter-population mismatch-containing duplex selection, we start out with M' molecules of DNA from the first round. There will be M'p' of the P-allelic molecules and M'q' of the Q-allelic molecules before inter-population mismatch-containing duplex selection.

After inter-population mismatch-containing duplex selection, there will therefore be M'p'-Mpp'=M'p'(1-p)=M'p'q of the P-allelic

- 16 -

molecules and M'q'-Mqq'=M'q'(1-q)=M'q'p of the Q-allelic molecules. The total number of molecules (M") will be

$$M'p'q + M'q'p$$

5

$$= M'(p'q-q'p)$$

but
$$p' = q' = 0.5$$

10

hence
$$M'' = 0.5*M'(p+q)$$

but
$$(p+q) = 1$$

so
$$M'' = (M'/2)$$

15

In other words, after the second round of inter-population mismatch-containing duplex selection, there will again be the same number of P-allelic molecules as Q-allelic molecules. Thus the new allelic frequencies p" and q" remain as previously p" = q" = 0.5.

20

A pattern now emerges. After the first cycle of interpopulation mismatch-containing duplex selection, the allelic frequencies are equalled and the number of molecules is reduced to 2Mpq (Mpq of each allelic molecule). Thereafter, every cycle halves the number of molecules and keeps both alleles at the same frequency.

25

Consequently, after n cycles, the number of P-allelic molecules will be

$$Mpq(0.5)^{n-1}$$

30 and the number of Q allelic molecules will be

15

20

25

 $Mqp(0.5)^{n-1}$

both are, of course, equal.

If we now take the capture yield (see above) into

consideration, the SNP-containing ('noise') fragment yield will be given by

$$2Mpq(0.5)^{n-1} \cdot \{Y/(X+Y)\}^n$$

where both allelic variants are deemed to be captured 'noise'.

Polymorphisms that interfere with the pattern of restriction digestion

For both the loss of general and specific SNP-containing ('noise') fragments during inter-population perfectly matched duplex depletion cycles (described above) and where the SNP interferes with the pattern of restriction digestion, if the mismatch-binding protein also binds to duplex molecules with unequal lengths (e.g. from inter-population annealing around a site of restriction site polymorphism), then the above analysis still holds (with perfectly matched duplex being replaced by equal length duplex and mismatch-containing duplex being replaced by unequal partner-length duplex).

In the rare cases where a restriction site is lost due to a sequence change that actually determines the phenotype of interest, a double-length fragment will be obtained. This will give rise to a double terminal restriction site profiling array (TRSPA) signature (see below). Multiple isolates of the particular double signature will be indicative of an association between the fragment and the phenotype of interest.

25

30

Further 'kinetic' enrichment to enhance the selective removal of SNP-containing 'noise' from the pool of phenotype determining fragments

After multiple cycles of enrichment by the above procedure, the enriched DNA pool should contain many copies of all phenotypedetermining fragments but also low numbers of copies of many different phenotype non-determining fragments. The total number of 'noise' fragments may exceed the number of phenotype determining fragments, despite the number of each individual 'noise' species being very small. The 'noise' fragments would therefore increase the number of probes required for TRSPA analysis before a pattern emerges. To largely eliminate this problem, a further kinetic enrichment procedure is used. Either one or both of strategies A and B below can be employed to achieve 'kinetic' enrichment.

Strategy A – Subtraction of the enriched DNA from inter-population mismatch containing duplex depletion

The enriched fragment pool from inter-population mismatch containing duplex depletion is rapidly self-hybridised - enabling the common phenotype-determining fragments to form perfectly matched duplexes with greater efficiency than the rare 'noise' fragments. Selection for perfectly matched duplexes then yields a selectively further enriched pool of fragments. Multiple cycles of subtraction could be carried out if necessary.

Strategy B – Hybridisation of the enriched DNA from inter-population mismatch containing duplex depletion against the 'affected' DNA pool

The enriched fragment pool from inter-population mismatch containing duplex depletion is then hybridised to an excess of biotinylated DNA from the 'affected' pool. This allows the common phenotype-determining fragments to form perfectly matched duplexes with greater efficiency than the rare 'noise' fragments. Selection for perfectly matched

10

20

25

30

duplexes followed by streptavidin capture and denaturation to release the non-biotinylated strands then yields a further enriched pool of fragments. Multiple such 'affected' pool back-hybridisations could be carried out if necessary.

Extension of the invention to the case of single phenotypically 'affected' individuals within populations where the distinction between 'affected' and 'unaffected' is clear

The above has described inter-population perfectly matched duplex depletion between non-biotinylated DNA fragments from an 'affected' population and biotinylated DNA fragments from an 'unaffected' population. Provided the 'unaffected' population is sufficiently complex that it contains all the non-phenotype-determining sequence variants found in a single 'affected' individual, then inter-population perfectly matched duplex depletion should be possible for single phenotypically 'affected' individuals against an 'unaffected' population where the distinction between 'affected' and 'unaffected' is clear. The latter proviso is needed in order to ensure that a small number of misdiagnosed 'affected' individuals in the 'unaffected' population do not cause the removal of phenotype-determining fragments during inter-population perfectly matched duplex molecular depletion.

Extension of the invention to the case of disease gene identification in cases where novel phenotype-determining mutations arise spontaneously within a family

Except for a small number of sequence changes, each of us contains DNA sequence derived from our parents - our individuality resulting from precisely which parental alieles we receive. If one of the above small number of sequence changes results in a change in phenotype, then we can use inter-population perfectly matched duplex depletion to enrich for fragments encoding this change in phenotype.

cells derived from a complete set of 'unaffected' ancestors - e.g. both parents, or mother plus two paternal grandparents, or father plus two maternal grandparents and two paternal grandparents and two paternal grandparents etc.) as the source of our biotinylated fragments and cells from an 'affected' descendent as the source of our non-biotinylated fragments, any fragments that have acquired phenotype-determining sequence changes between 'unaffected' ancestral generations and the 'affected' descendent generation will be unable to form perfectly matched duplexes with the biotinylated 'unaffected total ancestral' fragments. Successive cycles of such inter-population perfectly matched duplex depletion will thus lead to the enrichment of fragments carrying all such sequence - the degree of enrichment per cycle being as described below.

15 Statistical analysis

20

25

Let us assume that equal numbers of fragments are used from each of the 'unaffected' ancestors. Let the number of such ancestors be A.

{1/A} of the annealings in the inter-population perfectly matched duplex depletion will be self-against-ancestral-transmitted alleles - statistically equivalent to self-against-self inter-population perfectly matched duplex depletion (see below).

{(A-1)/A} of the annealings in the inter-population perfectly matched duplex depletion will be self-against-ancestral-nontransmitted alleles - statistically equivalent to inter-population perfectly matched duplex depletion between unrelated individuals.

Α	{1/A}	{(A-1)/A}
2	1/2	1/2
3	1/3	2/3
4	1/4	3/4

15

20

25

30

From the data of Nickerson *et al.* a DNA sequence variation between unrelated individuals should occur every 500 base pairs (it is this figure that we use for inter-population perfectly matched duplex depletion with self-against-ancestral-nontransmitted alleles and inter-population perfectly matched duplex depletion between unrelated individuals). In addition, a given individual should be heterozygous once every 573 base pairs (this figure is used for inter-population perfectly matched duplex depletion with self-against-ancestral-transmitted alleles and self-against-self inter-population perfectly matched duplex molecular depletion). Inter-population perfectly matched duplex depletion against the transmitted alleles and the nontransmitted alleles will now be considered separately.

Self-against-ancestral-transmitted alleles inter-population perfectly matched duplex depletion

If we anneal the two complementary strands for a fragment using DNA from an 'affected' descendent and DNA containing the transmitted alleles of 'unaffected' ancestors, then {1-e^(-F/573)} of fragments will contain one or more site of heterozygosity. {1/A} of the annealings will be of this type. For such annealings, where a site of heterozygosity is present, the probability of obtaining a mismatch-containing duplex between a biotinylated fragment and a non-biotinylated fragment containing the site of heterozygosity is 0.5.

Self-against-ancestral-nontransmitted alleles inter-population perfectly matched duplex depletion

If we anneal the two complementary strands for a fragment using DNA from an 'affected' descendent and DNA containing the nontransmitted alleles of 'unaffected' ancestors, then {1-e^(-F/500)} of fragments will contain one or more site of DNA sequence variation. {(A-1)/A} annealings will be of this type.

- 22 -

Phenotype-determining fragment enrichment

The fraction of fragments carried through the first cycle of inter-population perfectly matched duplex depletion will therefore be

$$5 \qquad \qquad ([0.5 \cdot \{1/A\} \cdot \{1 - e^{(-F/573)}\}] + [\{(A-1)/A\} \cdot \{1 - e^{(-F/500)}\}]) \cdot \{Y/(X+Y)\}$$

where $\{Y/(X+Y)\}$ represents the yield of streptavidincapturable molecules.

Hence n repetitions of such a process will reduce the original number of fragments to the following fraction

$$([0.5\cdot\{1/A\}\cdot\{1-e^{(-F/573)}\}]+[\{(A-1)/A\}\cdot\{1-e^{(-F/500)}\}])^n\cdot\{Y/(X+Y)\}^n$$

The enrichment for phenotype-determining fragments over

SNP-containing ('noise') fragments during inter-population perfectly

matched duplex depletion cycles will therefore be given by

$$([0.5 \cdot \{1/A\} \cdot \{1 - e^{(-F/573)}\}] + [\{(A-1)/A\} \cdot \{1 - e^{(-F/500)}\}])^{-n}$$

Example figures for enrichment are given for A = 2, 3 and 4 below with F = 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1,000 and n = 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

For A=2

						n=				
F	1	2	3	4	5	6	7	8	9	10
50	15	213	3,115	45.494	664.427	9.703,694	1.E+08	2.E+09	3.E+10	4.E+11
100	8	59	448	3.430	26.250	200.887	1,537.367	1.E+07	9.E+07	7.E+08
200	4	18	74	309	1.296	5.434	22.782	95,524	400.520	1,679,340
300	3	9	28	87	265	811	2,475	7,558	23,078	70,468
400	2	6	16	39	97	241	600	1,497	3,734	9,313
500	2	5	10	22	48	103	224	485	1,051	2,277
600	2	4	7	15	29	56	109	213	416	813
700	2	3	6	11	19	35	63	114	207	374
800	2	3	5	8	14	24	42	71	121	205
900	2	3	4	7	11	18	30	49	79	128
1,000	2	2	4	6	9	15	23	36	57	89

For A=3

5

				· · · · · · · · · · · · · · · · · · ·		n=		<u>,, , , , , , , , , , , , , , , , , , ,</u>		
F	1	2	3	4	5	6	7	8	9	10
50	13	167	2,154	27.823	359,340	4,640,941	6.E+07	8.E+08	1.E+10	1.E+11
100	7	46	311	2,104	14,251	96,516	653.682	4.427,241	3.E+07	2.E+08
200	4	14	51	191	709	2,633	9,786	36,365	135,135	502,173
300	3	7	20	54	146	396	1,073	2,909	7.882	21,361
400	2	5	11	24	53	119	263	582	1,290	2,859
500	2	4	7	14	27	51	99	190	367	707
600	2	3	5	9	16	28	48	84	147	255
700	2	3	4	7	11	18	28	46	74	119
800	2	2	4	5	8	12	19	28	43	66
900	1	2	3	4	6	9	14	20	29	41
1,000	1	2	3	4	5	8	11	15	21	29

15

20

For A=4

						n=				
F	1	2	3	4	5	6	7	8	9	10
50	12	149	1,826	22.316	272,759	3.333,771	4.E+07	5.E+08	6.E+09	7.E+10
100	6	41	264	1.690	10.834	69,465	445.373	2.855.512	2.E+07	1.E+08
200	4	12	44	154	540	1.902	6,696	23,570	82,967	292,045
300	3	7	17	44	112	287	737	1.894	4,864	12,494
400	2	4	9	20	41	86	181	381	800	1,681
500	2	3	6	11	20	37	68	125	229	418
600	2	3	5	7	12	20	34	56	92	152
700	2	2	4	5	8	13	20	30	46	71
800	1	2	3	4	6	9	13	19	27	39
900	1	2	3	4	5	7	9	13	18	25
1.000	1	2	2	3	4	6	7	10	13	17

Extension of the invention to the case of fully comprehensive 'abnormal' cell mutational profiling within an individual

If we now take 'normal' cells as the source of our biotinylated fragments and 'abnormal' cells from the same individual as the source of our non-biotinylated fragments, any fragments that have acquired sequence changes on the way to becoming 'abnormal' will be unable to form perfectly matched duplexes with the biotinylated 'normal' fragments. Successive cycles of such inter-population perfectly matched duplex depletion will thus lead to the enrichment of fragments carrying all those sequence differences between the 'normal' cells and the 'abnormal' cells - the degree of enrichment per cycle being as described below.

From the data of Nickerson *et al*, a given individual should be heterozygous about once every 573 base pairs.

If we anneal the two complementary strands for a fragment using DNA from 'abnormal' cells and DNA from 'normal' cells, then {1-e^(-F/573)} of fragments will contain one or more site of heterozygosity.

For a heterozygous site, p and q are both 0.5. The probability of obtaining a perfectly matched duplex between a biotinylated fragment

10

and a non-biotinylated fragment containing the site is 0.5. Similarly, the probability of obtaining a mismatch-containing duplex between a biotinylated fragment and a non-biotinylated fragment containing the site is also 0.5.

The fraction of fragments carried through the first cycle of inter-population perfectly matched duplex depletion will therefore be

$$0.5 \cdot \{1 - e^{(-F/573)}\} \cdot \{Y/(X+Y)\}$$

hence n repetitions of such a process will reduce the original number of fragments to the following fraction

$$[0.5\cdot\{1-e^{(-F/573)}\}]^n\cdot\{Y/(X+Y)\}^n$$

The enrichment for phenotype-determining fragments over SNP-containing ('noise') fragments during inter-population perfectly matched duplex depletion cycles will therefore be given by

$$[0.5 \cdot \{1 - e^{(-F/573)}\}]^{-n}$$

20

15

Example figures for enrichment are given below with F = 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1,000 and n = 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

						n=				
F	1	2	3	4	5	6	7	8	9	10
50	24	573	13,711	328,171	7.854.627	2.E+08	4.E+09	1.E+11	3.E+12	6.E+13
100	12	156	1,948	24.329	303,844	3.794,731	5.E+07	6.E+08	7.E+09	9.E+10
200	7	46	313	2.123	14.412	97,830	664.076	4.507.784	3.E+07	2.E+08
300	5	24	118	580	2.845	13.958	68,490	336.072	1,649,059	8,091,708
400	4	16	63	251	999	3,977	15,831	63,012	250.815	998,346
500	3	12	41	139	479	1,644	5,650	19,411	66,688	229,114
600	3	9	29	90	278	856	2,638	8,128	25,047	77,179
700	3	8	23	65	183	520	1.475	4,183	11,862	33,639
800	3	7	19	50	133	353	937	2,491	6,621	17,599
900	3	6	16	41	103	259	654	1.652	4,171	10,532
1,000	2	6	14	34	84	202	490	1,188	2,880	6,978

This approach will enrich for fragments containing *all* sequence differences within the 'abnormal' cells - no prior knowledge of the genes (oncogenes, tumour suppressor genes etc.) that may need to be investigated is required.

Having thus isolated a fragment (or fragments) determining differences between the 'affected' and 'unaffected' populations, we can now proceed to their analysis.

Aspect (II)

5

10

15

In another aspect the invention provides a method of making a set of arrays of fragments of DNA of interest, which method comprises:

- a) selecting, from a set of n restriction endonuclease enzymes, a subset of r restriction endonuclease enzymes;
- b) digesting genomic DNA with the subset of r enzymes;
- c) ligating to the resulting fragments restriction-enzyme-cuttingsite-specific adapters with unique polymerase chain reaction amplifiable sequences;
- 20 d) splitting the resulting fragments into r² aliquots;
 - e) amplifying each aliquot with two-restriction enzyme-specific

10

20

25

primers;

- f) forming an array of the r² aliquots of the amplimers; and
- g) repeating steps a) to f) using a different subset of r restriction endonuclease enzymes. The invention also includes sets of arrays obtained or obtainable by the method.

The n restriction endonuclease enzymes may be selected from 4-cutters and 5-cutters and 6-cutters, and a set may include enzymes from one or two or three of these categories. The value of n is preferably 3 to 10, for reasons discussed below. The value of r is less than n and is preferably 2 to 4, chosen with reference to the frequency with which the chosen enzymes cut nucleic acids, and ease of fragment amplification by PCR.

15 Terminal restriction site profiling arrays (TRSPAs)

If we use a total of n 6 bp cutter restriction enzymes within the total set of enzymes used for fragmentation, let us use subsets of r 6 bp cutter enzymes (taken from the total set n) to make (rxr) TRSPA test matrices as follows.

Version 1 - (TRSPA-1)

For each (rxr) TRSPA test matrix, digest DNA to completion with all r restriction enzymes. Ligate on restriction enzyme cutting-site-specific adaptors with unique polymerase chain reaction amplifiable tags. Split into r^2 aliquots and for each aliquot, amplify with biotinylated restriction enzyme_i and non-biotinylated restriction enzyme_k tag-specific primers and array the non-biotinylated strands for all values of j and k between 1 and r.

Example

Consider the following dsDNA

where the restriction enzyme cutting sites are denoted A, B and C and the fragments after restriction digestion are denoted 1, 2, 3, 4 and 5. + and - denote the sense of the strands.

Cut to completion with A. B and C to give

- 29 -

Polymerase chain reaction amplify according to the following

5 primer matrix and streptavidin capture to give

	Α	В	С
	Α		
bio-A		bio-A1B +	C4A +
		A1B -	C4A-bio -
		bio-A5B +	
		A5B -	
bio-B	A1B +	bio-B2B +	bio-B3C +
	A1B-bio -	B2B -	B3C -
	A5B +	B2B +	
	A5B-bio -	B2B-bio -	
bio-C	bio-C4A +	B3C +	
	C4A -	B3C-bio -	

Keep only the non-biotinylated strands to give

	Α	В	С
bio-A		A1B -	C4A +
		A5B -	
bio-B	A1B+	B2B -	B3C -
	A5B+	B2B +	
bio-C	C4A -	B3C +	

- 30 -

In simplified form

	A	В	С
bio-A		1-, 5-	4+
bio-B	1+. 5+	2-, 2+	3-
bio-C	4-	3+	

Repeat for all ⁿC_r combinations of restriction enzymes to generate the TRSPA.

TRSPA-1 hybridisation patterns

The two types of TRSPA-1 hybridisation pattern we should expect using a probe resulting from inter-population perfectly matched duplex depletion are

- Hybridisation to an off-diagonal element (e.g. row x, column y where x and y are different) and its complementary element reflected across the diagonal (i.e. row y, column x) and
- 2. Hybridisation to an on-diagonal element (e.g. the element at row z, column z).

TRSPA-1 analysis - a worked example for n=3 and r=2 Let us take the dsDNA

20 -C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

where

A, B and C denote restriction enzyme cutting sites. 1, 2, 3, 4, 5, 6, 7, 8 and 9 denote the restriction fragments after digestion.

The TRSPA-1 test matrices

There are ${}^{3}C_{2}$ =3 TRSPA-1 test matrices - AB, BC and AC.

25

10

grant gran

- 31 -

The test matrix hybridisation patterns

There are $\{(2\cdot(2+1))/2\}=3$ possible hybridisation patterns for each of the test matrices

5

The combinatorial diversity

If there are three possible TRSPA-1 test matrix hybridisation patterns and three possible test matrices, then there will be 3³=27 possible TRSPA-1 signatures.

10

Fragment 4 analysis - the AB TRSPA-1 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

15

Cut with A and B to give

-C-1-B

B-2-B

20 B-3-A

A-4-A

A-5-C-6-C-7-B

B-8-A

A-9-A-

25

The fragment complementary to fragment 4 will be

A-4-A

- 32 -

Polymerase chain reaction amplify and hybridise with just fragment 4 to give

AB matrix	А	В
bio-A		
bio-B		

Fragment 4 analysis - the BC TRSPA-1 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

10 Cut with B and C to give

-C-1-B

B-2-B

B-3-A-4-A-5-C

15 C-6-C

C-7-B

B-8-A-9-A-

The fragment complementary to fragment 4 will be

20

B-3-A-4-A-5-C

Polymerase chain reaction amplify and hybridise with just fragment 4 to give

25

- 33 -

BC matrix	В	С
bio-B		
bio-C		

Fragment 4 analysis - the AC TRSPA-1 matrix

Take the dsDNA

5

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with A and C to give

10 -C

C-1-B-2-B-3-A

A-4-A

A-5-C

C-6-C

15 C-7-B-8-A

A-9-A

A٠

The fragment complementary to fragment 4 will be

20

A-4-A

Polymerase chain reaction amplify and hybridise with just fragment 4 to give

AC matrix	A	С
bio-A	To the second of	
bio-C		

25

- 34 -

Fragment 5 analysis - the AB TRSPA-1 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

5

Cut with A and B to give

-C-1-B

B-2-B

10 B-3-A

A-4-A

A-5-C-6-C-7-B

B-8-A

A-9-A-

15

20

The fragment complementary to fragment 5 will be

A-5-C-6-C-7-B

Polymerase chain reaction amplify and hybridise with just fragment 5 to give

AB matrix	 `	В	
bio-A			
bio-B	÷		

Fragment 5 analysis - the BC TRSPA-1 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

District Asset (v. a.) v.

Cut with B and C to give

-C-1-B

B-2-B

5 B-3-A-4-A-5-C

C-6-C

C-7-B

B-8-A-9-A-

The fragment complementary to fragment 5 will be

B-3-A-4-A-5-C

Polymerase chain reaction amplify and hybridise with just

15 fragment 5 to give

BC matrix	В	С
bio-B		
bio-C		

Fragment 5 analysis - the AC TRSPA-1 matrix

Take the dsDNA

20

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with A and C to give

25 -C

C-1-B-2-B-3-A

A-4-A

A-5-C

- 36 -

C-6-C

C-7-B-8-A

A-9-A

A-

5

The fragment complementary to fragment 5 will be

A-5-C

Polymerase chain reaction amplify and hybridise with just fragment 5 to give

AC matrix	Α	С
bio-A		
bio-C		

Fragment 6 analysis - the AB TRSPA-1 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with A and B to give

20

-C-1-B

B-2-B

B-3-A

A-4-A

25 A-5-C-6-C-7-B

B-8-A

A-9-A-

- 37 -

The fragment complementary to fragment 6 will be

A-5-C-6-C-7-B

5 Polymerase chain reaction amplify and hybridise with just fragment 6 to give

AB matrix	Α	В
bio-A		
bio-B		

Fragment 6 analysis - the BC TRSPA-1 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with B and C to give

15

-C-1-B

B-2-B

B-3-A-4-A-5-C

C-6-C

20 C-7-B

B-8-A-9-A-

The fragment complementary to fragment 6 will be

25 C-6-C

Polymerase chain reaction amplify and hybridise with just fragment 6 to give

- 38 **-**

BC matrix	В	С	
bio-B			
bio-C			

Fragment 6 analysis - the AC TRSPA-1 matrix

Take the dsDNA

5

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with A and C to give

10 -C

C-1-B-2-B-3-A

A-4-A

A-5-C

C-6-C

15 C-7-B-8-A

A-9-A

A-

The fragment complementary to fragment 6 will be

20

C-6-C

Polymerase chain reaction amplify and hybridise with just fragment 6 to give

AC matrix	A	C
bio-A		
bio-C		

- 39 **-**

Overall results

Fragment 4 TRSPA-1 analysis

Fragment 5 TRSPA-1 analysis

Fragment 6 TRSPA-1 analysis

Version 2 - (TRSPA-2)

For each (rxr) TRSPA test matrix, digest DNA to completion with all r restriction enzymes. Ligate on restriction enzyme cutting-site-specific adaptors with unique polymerase chain reaction amplifiable tags. Split into r² aliquots and for each aliquot, amplify with non-biotinylated restriction enzyme_j and non-biotinylated restriction enzyme_k tag-specific primers and array the denatured strands for all values of j and k between 1 and r.

20

15

- 40 -

Example

Consider the following dsDNA

where the restriction enzyme cutting sites are denoted A, B and C and the fragments after restriction digestion are denoted 1, 2, 3, 4 and 5. + and - denote the sense of the strands.

Cut to completion with A. B and C to give

Polymerase chain reaction amplify according to the following primer matrix to give

	Α	В	С
Α		A1B+	C4A +
		A1B -	C4A -
		B2 B +	
		B2B -	
		A5B +	
		A5B -	
В	A1B+	B2B+	B2B+
	A1B -	B2B -	B2B -
	B2B+		B3C+
	B2B -		B3C -
	A5B+		
	A5B -		
ŀ			
С	C4A +	B2B+	
	C4A -	B2B -	
		B3C +	
		B3C -	

In simplified form

	А В		С
Α		1, 2, 5	4
В	1, 2, 5	2	2, 3
С	4	2, 3	

5

Repeat for all $^{n}\text{C}_{r}$ combinations of restriction enzymes to generate the TRSPA.

- 42 -

TSPSA-2 hybridisation patterns

The two types of TRSPA-2 hybridisation pattern we should expect using a probe resulting from inter-population perfectly matched duplex depletion are

- Hybridisation to an off-diagonal element (e.g. row x, column y
 where x and y are different) and its complementary element reflected
 across the diagonal (i.e. row y, column x) and
 - 2. Hybridisation to a whole row and column intersecting at an on-diagonal element (e.g. all of row z and all of column z).

10

TRSPA-2 analysis - a worked example for n=3 and r=2

Let us take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

15

25

where

A, B and C denote restriction enzyme cutting sites. 1, 2, 3, 4, 5, 6, 7, 8 and 9 denote the restriction fragments after digestion.

20 The TRSPA-2 test matrices

There are ${}^3C_2=3$ TRSPA-2 test matrices - AB, BC and AC.

The test matrix hybridisation patterns

There are {(2-(2+1))/2}=3 possible hybridisation patterns for each of the test matrices

The combinatorial diversity

If there are three possible TRSPA-2 test matrix hybridisation

patterns and three possible test matrices, then there will be 3^3 =27 possible TRSPA-2 signatures.

Fragment 4 analysis - the AB TRSPA-2 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with A and B to give

10

5

-C-1-B

B-2-B

B-3-A

A-4-A

15 A-5-C-6-C-7-B

B-8-A

A-9-A-

The fragment complementary to fragment 4 will be

20

A-4**-**A

Polymerase chain reaction amplify and hybridise with just fragment 4 to give

25

Fragment 4 analysis - the BC TRSPA-2 matrix

Take the dsDNA

- 44 -

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-Cut with B and C to give

-C-1-B

5 B-2-B

B-3-A-4-A-5-C

C-6-C

C-7-B

B-8-A-9-A-

10

15

The fragment complementary to fragment 4 will be

B-3-A-4-A-5-C

Polymerase chain reaction amplify and hybridise with just fragment 4 to give

Fragment 4 analysis - the AC TRSPA-2 matrix

20 Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with A and C to give

25

-C

C-1-B-2-B-3-A

A-4-A

- 45 -

A-5-C

C-6-C

C-7-B-8-A

A-9-A

5 A-

The fragment complementary to fragment 4 will be

A-4-A

10

Polymerase chain reaction amplify and hybridise with just fragment 4 to give

Fragment 5 analysis - the AB TRSPA-2 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with A and B to give

20

-C-1-B B-2-B

B-3-A

25 A-4-A

A-5-C-6-C-7-B

B-8-A

A-9-A-

- 46 **-**

The fragment complementary to fragment 5 will be

A-5-C-6-C-7-B

5 Polymerase chain reaction amplify and hybridise with just fragment 5 to give

AB matrix	A	В
Α		
В		

Fragment 5 analysis - the BC TRSPA-2 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with B and C to give

15

-C-1-B

B-2-B

B-3-A-4-A-5-C

C-6-C

20 C-7-B

B-8-A-9-A-

The fragment complementary to fragment 5 will be

25 B-3-A-4-A-5-C

Polymerase chain reaction amplify and hybridise with just fragment 5 to give

- 47 -

BC matrix	В	С
В		
С		

Fragment 5 analysis - the AC TRSPA-2 matrix

Take the dsDNA

5

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with A and C to give

10 -C

C-1-B-2-B-3-A

A-4-A

A-5-C

C-6-C

15 C-7-B-8-A

A-9-A

A-

The fragment complementary to fragment 5 will be

20

A-5-C

Polymerase chain reaction amplify and hybridise with just

fragment 5 to give

AC matrix	Α	С
Α		
С		

- 48 -

Fragment 6 analysis - the AB TRSPA-2 matrix

Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

5

Cut with A and B to give

-C-1-B

B-2-B

10 B-3-A

A-4-A

A-5-C-6-C-7-B

B-8-A

A-9-A-

15

20

The fragment complementary to fragment 6 will be

A-5-C-6-C-7-B

Polymerase chain reaction amplify and hybridise with just fragment 6 to give

AB matrix	Α	В
Α		
В		

Fragment 6 analysis - the BC TRSPA-2 matrix

25 Take the dsDNA

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

福祉報行 生様がた コナ

- 49 -

Cut with B and C to give

-C-1-B

B-2-B

5 B-3-A-4-A-5-C

C-6-C

C-7-B

B-8-A-9-A-

01

The fragment complementary to fragment 6 will be

C-6-C

Polymerase chain reaction amplify and hybridise with just

15 fragment 6 to give

BC matrix	В	С
В		
С		

Fragment 6 analysis - the AC TRSPA-2 matrix

Take the dsDNA

20

-C-1-B-2-B-3-A-4-A-5-C-6-C-7-B-8-A-9-A-

Cut with A and C to give

25 -C

C-1-B-2-B-3-A

A-4-A

A-5-C

- 50 -

C-6-C

C-7-B-8-A

A-9-A

A-

5

The fragment complementary to fragment 6 will be

C-6-C

Polymerase chain reaction amplify and hybridise with just fragment 6 to give

AC matrix	A	С
Α		* *
С		

Overall results

15

Fragment 4 TRSPA-2 analysis

Fragment 5 TRSPA-2 analysis

- 51 -

Fragment 6 TRSPA-2 analysis

The number of test matrices

For a total of n enzymes used for fragmentation and a panel of r enzymes per (rxr) test matrix, there will be ⁿC_r possible (rxr) test matrices, where

$${}^{n}C_{r} = (n!)/[(n-r)!-r!]$$

10

15

5

ⁿC_r for various n and r is given in the following table

	n=							
r	3	4	5	6	7	8	9	10
1	3	4	5	6	7	8	9	10
2	3	6	10	15	21	28	36	45
3	1	4	10	20	35	56	84	120
4	-	1	5	15	35	70	126	210
5	-	-	1	6	21	56	126	252
6	-	-	٠	1	7	28	84	210
7	-	-	-	-	1	8	36	120
8	-	1	-	-	-	1	9	45
9	-	•	-	-	-	-	1	10
10	-	-	•		-	-	•	1

The number of TRSPA spots arrayed

The total number of TRSPA spots is given by

$$r^2 \cdot \{^n C_r\} = r^2 \cdot \{(n!)/[(n-r)! \cdot r!]\}$$

- 52 -

 $r^2 - {^nC_r}$ for various n and r is given in the following table

					n =			
R	3	4	5	6	7	8	9	10
1	3	4	5	6	7	8	9	10
2	12	24	40	60	84	112	144	180
3	9	36	90	180	315	504	756	1,080
4	•	16	80	240	560	1,120	2.016	3.360
5	-	-	25	150	525	1,400	3,150	6,300
6	-	-	-	36	252	1,008	3.024	7.560
7	•	-	-	-	49	392	1,764	5.880
8	-	-	-	-	-	64	576	2,880
9	-	-	-	-	-		81	810
10	-	-	-	-	-	-	-	100

Each test as above will give rise to a particular hybridisation

5 'signature'.

TRSPA-1

TRSPA-2

(for n=6 and r=3)

(for n=6 and r=3)

10

15

There will be $\{1+2+\ldots+r\} = \{r(r+1)/2\}$ patterns per (rxr) test matrix. If there are nC_r (rxr) test matrices, the total possible number of signatures will be given by $\{r(r+1)/2\}$ raised to the power nC_r . We require that the number of such different signatures is greatly in excess over the

- 53 **-**

number of fragments generated upon fragmentation.

If we choose n=6 and r=3, there will be 6 possible hybridisation patterns per test and 20 possible tests - giving a combinatorial diversity of $6^{20} \approx 3.7 \cdot 10^{15}$. The preferred scheme therefore employs six enzymes, tested in groups of three - giving 180 spots per experiment. In order to avoid restriction fragment length polymorphism problems, a duplicate analysis could be performed with a different set of enzymes sharing no cutting sites in common with the first set.

Example restriction enzyme sets for the preparation of test matrices for TRSPAs

Criteria for enzyme choice

In order to make TRSPAs, the selection of suitable enzymes is an important factor. Ideally, two sets of different enzymes are required to eliminate the small possibility that a phenotype-determining polymorphism might fall within a chosen restriction site and therefore compromise the specificity of the resulting signature. The selection of enzymes can be based upon a number of criteria

- a) The enzymes should be 6 bp cutters.
- b) Cleavage by any selected enzyme should leave a 4 bp overhang at the 5' end.
- c) The selected enzymes in each set should all work efficiently under the same buffer conditions.
- 25 d) The selected enzymes in each set should ideally work efficiently at a single incubation temperature.
 - e) The chosen enzymes should be commercially available ideally at concentrations of 10 U / μl or more.
- f) The 5' overhangs left by any two enzymes in the same set should not be identical.
 - g) No enzyme should appear in both sets for TRSPA fabrication.

HARLE PERMIT PLANE

5

15

20

- 54 -

h) Enzymes should be selected to avoid or minimise the effects of mammalian methylation patterns. In particular, enzymes with CG dinucleotides in their recognition sites should be avoided unless the enzyme is known to be able to restrict ^{m5}CpG sites.

DNA methylation

In vertebrates, DNA is often methylated at the 5th position of cytosine in the sequence of CpG and this is the only chemical modification that DNA of vertebrates contains under physiological conditions. By the careful selection of enzymes which do not contain CpG sequences within the recognition site, or the selection of enzymes which freely restrict ^{m5}CpG methylated sites, it is possible to remove the potentially adverse effects of DNA methylation from the TRSPA analysis. 6 bp cutters which are known to restrict ^{m5}CpG modified DNA efficiently to leave a 5' four base overhang are *BspEl* and *Xmal*. These enzymes are therefore the only enzymes with restriction sites containing CpG dinucleotides that are potentially useful in a TRSPA analysis.

Enzyme selection method

Sixteen possible four base pair overhangs exist (excluding unusual enzymes with asymmetrical recognition sequences such as *BssSI* or *BsiI*), five of which contain CG in the sequence. A further four overhangs could potentially contain CG sequences within the restriction recognition site if preceded by a C and followed by a G. Enzymes are therefore preferentially selected from the remaining six groups.

Excluding isoschizomers, there are up to four possible enzymes which would leave a particular 5' four bp overhang. For example, enzymes leaving a CTAG overhang are

10

15

Avril - CCTAGG
Nhel - GCTAGC
Spel - ACTAGT
Xbal - TCTAGA

Enzymes to cleave sites with all the combinations of flanking bases are not available for all overhangs - hence the enzyme choice is more limited for some overhang groups than others.

As a primary step towards enzyme selection, the enzymes supplied by Amersham Pharmacia Biotech, New England Biolabs and Promega are ordered below by overhang sequence. Supplementary details such as the percentage activity in common buffers, the reaction temperature, concentration and supplier are also recorded. For three overhang sequences, there are no available enzymes, the remaining 13 are described below. Enzymes considered unsuitable due to methylation sensitivity are shaded (darker shade). Enzymes considered unfavourable due to the presence of CpG sites even though they do restrict methylated DNA to some degree are also shaded (lighter shaded).

20 Candidate restriction enzymes leaving a 5' overhang of GTAC

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/µl	Supplier	Inactivate
		% activity	m°C			°C/min
Acc651	GGTACC	10/50/100	37	10	NEB	65 / 20
BsiWI	CGTACG	100(50)/100(50)/25(-)	55 (37).	_≫ 12 .	NEB	80/2/
BsrGI	TGTACA	10/100/100	37	10	NEB	80 / 20
Spll (BsiWI)	CGTACG	100/20/60	55	10	APB	

- 56 -

Candidate restriction enzymes leaving a 5' overhang of TTAA

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/µl	Supplier	Inactivate
		% activity	m °C	,		°C/min
AfIII	CTTAAG	25/100/100	37	10	APB	60 / 15

Candidate restriction enzymes leaving a 5' overhang of AATT

5

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/μl	Supplier	Inactivate
		% activity	m °C			°C/min
EcoRI	GAATTC	100/100/100	37	>40	APB/NEB	65 / 20
Mfel	CAATTG	10/50/100	37	10	NEB	65 / 20

Candidate restriction enzymes leaving a 5' overhang of CATG

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/µl	Supplier	Inactivate
		% activity	m°C			°C/min
BspHI	TCATGA	50/100/100	37	10	NEB/APB	65 / 20
Ncol	CCATGG	100/100/100	37	50	NEB/APB	65 / 20

o Candidate restriction enzymes leaving a 5' overhang of GATC

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/µl	Supplier	Inactivate
		% activity	m °C			°C/min
BamHI	GGATCC	50/100/75	37	>40	APB/NEB	80 / 20
Bcll	TGATCA	100/100/75	50 (37)	10	NEB	No
BgIII	AGATCT	100/75/10	37	>40	APB/NEB	No

- 57 -

Candidate restriction enzymes leaving a 5' overhang of CCGG

Enzyme	Site	H/M/T buffer + BSA	Optimu	U / µl	Supplier	Inactivate
		° activity	m ^c C			°C/min
BspEI	TCCGGA	100/10/0	37	10	NEB	80 / 20
NgoM IV	GCCGGC	10/50/100	37	10	NEB	80 / 20
Xmal	CCCGGG	0/100/100	37	10	NEB	65 / 20

Candidate restriction enzymes leaving a 5' overhang of GCGC

5

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/μl	Supplier	Inactivate
		% activity	m °C			°C/min
Kasi	GGCGCC	75/1 00/75	37	5 .	NEB	65 / 20 🛶

Candidate restriction enzymes leaving a 5' overhang of TCGA

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/µI	Supplier	Inactivate
		% activity	m °C			°C/min
PaeR7I	CTCGAG	10/100/100	37	20	NEB	No.
Sall	GTCGAC	50/ 0/0	- 37	>40	APB/NEB	60115
Xhol	CTCGAG	100/100/100	37	>40	APB/NEB	65 / 20

10 Candidate restriction enzymes leaving a 5' overhang of AGCT

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/μl	Supplier	Inactivate
		% activity	m °C -			°C/min
HindIII	AAGCTT	10/100/50	37	>40	NEB/APB	65 / 20

Candidate restriction enzymes leaving a 5' overhang of CGCG

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/µI	Supplier	Inactivate
		% activity	m°C			°C/min
BssHII	GCGCGC	100/100/100	50	20	NEB/APB	80./:20
Mlul	ACGCGT	100/75/50	37	10	APB/NEB	65 / 20

Candidate restriction enzymes leaving a 5' overhang of GGCC

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/µl	Supplier	Inactivate
		% activity	m°C			°C/min
Eagl	CGGCCG	100/25/10	37	50	NEB.	65/20
Eco52I	CGGCCG	20/20/20	37	10	APB	60 / 15
(Eagl)		-				

Candidate restriction enzymes leaving a 5' overhang of TGCA

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/µl	Supplier	Inactivate
		% activity	m °C			°C/min
ApaLi	GTGCAC	10/100/100	37	10	NEB/APB	70 / 15
Alw44I	GTGCAC	-/50/-	37	10	Promega	70 / 15

10 Candidate restriction enzymes leaving a 5' overhang of CTAG

Enzyme	Site	H/M/T buffer + BSA	Optimu	U/µl	Supplier	Inactivate
		% activity	m °C			°C/min
Avril	CCTAGG	50/100/100	37	4	NEB	No
Nhel	GCTAGC	10/100/100	37	10	APB/NEB	65 / 20
Spel	ACTAGT	25/100/75	37	50	NEB	65 / 20
Xbal	TCTAGA	75/100/75	37	100	NEB	65 / 20
Bini(Avrii)	CCTAGG	40/20/20	37	10	APB	No

- 59 -

From the above tables, a short-list of the most useful enzymes is given below for each of the buffer conditions shown

Overhang	Buffer H + BSA		Buffer I	M + BSA	Buffer T + BSA		
	Enzyme	Efficiency	Enzyme	Efficiency	Enzyme	Efficiency	
AATT	EcoRI	100	EcoRI	100	Mfel	100	
			Mfel	50	-	-	
CATG	Ncol	100	Ncol	100	Ncol	100	
	BspHI	50	BspHl	100	BspHI	100	
GATC	BgIII	100	BamHI	100	BamHl	75	
!	BamHI	50	BgIII	75	~	-	
TATA	-	-	-	-	•	-	
ACGT	•	-	-	-	-	-	
CCGG	BspEl	100	Xmal	100	Xmal	100	
GCGC	-	-	-	-	-	-	
TCGA	-	-	•	-	•	*	
AGCT	+	-	HindIII	100	HindIII	50	
CGCG	-	-	-	-		-	
GGCC	-	-	-	-	-	-	
TGCA	-	-	ApaLl	100	ApaLI	100	
ATAT	-	-		-	-	•	
CTAG	Xbal	75	Xbal	100	Nhel	100	
	Avrii	50	Spel	100	Avrli	100	
	BlnI	40	Nhel	100	Xbal	75	
	-	-	Avrll	100	Spel	75	
GTAC	Acc65I	100	BsrGl	100	BsrGI	100	
			Acc65I	75	-	-	
TTAA	-	•	AfIII	100	Afili	100	

Taking into account all of the criteria explained above, an

- 60 -

example selection of two six-enzyme sets is described below. Reserve enzymes, which could also be used, are shown as well. These reserve enzymes can be substituted (provided this does not cause overhang duplication) if practical problems regarding enzyme availability or performance should occur.

Example enzyme set 1 - for restriction in buffer M + BSA

Number	Enzyme	Site	M+BSA	Optimum	U / μ۱	Supplier	Inactivate
			%	°C			°C/min
			activity				
1	BamHl	GGATCC	100	37	100	NEB	80 / 20
2	BsrGI	TGTACA	100	37	10	NEB	80 / 20
3	Hındlll	AAGCTT	100	37	>40	APB	65 / 20
4	Ncol	CCATGG	100	37	50	NEB	65 / 20
5	Spel	ACTAGT	100	37	50	NEB	65 / 20
6	AfIII	CTTAAG	100	37	10	APB	60 / 15

Example enzyme set 2 - for restriction in buffer M + BSA

Number	Enzyme	Site	M+BSA	Optimum	U/µl	Supplier	Inactivate
			%	°C			°C/min
			activity				
1	EcoRI	GAATTC	100	37	>40	APB	65 / 20
2	BspHI	TCATGA	100	37	10	APB	65 / 20
3	Bgill	AGATCT	75	37	>40	APB	No
4	Xbal	TCTAGA	100	37	100	NEB	65 / 20
5	Acc65I	GGTACC	75	37	10	NEB	65 / 20
6	ApaL1	GTGCAC	100	37	10	NEB	No

- 61 -

1. Example reserve enzymes

Number	Enzyme	Site	M+BSA	Optimum	U/µl	Supplier	Inactivate
]		%	°C		!	°C/min
			activity				
r1	Xmai	cccggg	100	37	10	NEB	65 / 20
r2	BspEi	TCCGGA	100	37	10	NEB	80 / 20
r3	Nhel	GCTAGC	100	37	10	APB	65/20
r4	Avrll	CCTAGG	100	37	4	NEB	No

Example specific (3x3) terminal restriction site profiling array (TRSPA) test matrices for above two sets of six enzymes

Triplet combinations from BamHI, BsrGI, HindIII, Ncol, Spel and AfIII

For example set 1 - BamHI, BsrGI, HindIII, Ncol, Spel and

AfIII - the 20 (= ⁶C₃) triplet combinations are

BsrGl Spel Aflli BsrGl HindIII Ncol BamHI BsrGI HindIII BamHl HindIII Spel HindIII Ncol Spel BsrGl HindIII Spel BamHI BsrGI Ncol BamHI HindIII AfIII BamHI BsrGI Spel BamHi Ncol Spel BsrGl HindIII AfIII HindIII Ncol AfIII BamHi Ncol Afili BsrGI Ncol Spel HindIII Spel AfIII BamHl BsrGl Afill BsrGl Ncol Afill Ncol Spel Afill BamHI HindIII Ncol BamHl Spel AfIII

Triplet combinations from EcoRI, BspHI, BgIII, XbaI, Acc65I and ApaLI

For example set 2 - EcoRI, BspHI, BgIII, XbaI, Acc65I and ApaLI - the 20 (= 6C_3) triplet combinations are

15

EcoRl BspHl Bgill	EcoRi Bgili Acc65i	BspHl Bglll Xbal	BspHl Acc65l ApaLl
EcoRl BspHl Xbal	EcoRi Bgili ApaLi	BspHl Bglll Acc65l	Bgill Xbal Acc65I
EcoRl BspHl Acc65l	EcoRl Xbal Acc65l	BspHI BgIII ApaL I	Bgili Xbal ApaLi
EcoRl BspHl ApaLl	EcoRl Xbal ApaLl	BspHl Xbal Acc65l	Bgili Acc65i ApaLi
EcoRl Bglll Xbal	EcoRi Acc65i ApaLi	BspHl Xbal ApaLl	Xbal Acc65l ApaLl

- 62 -

Example TRSPA-1 test matrices for set 1 - BamHI, BsrGI, HindIII, Ncol, Spel and AfIII

matrix 1	5'-HO-BamHI-primer	5'-HO-BsrGI-primer	5'-HO-Hindill-primer
5'-biotin-BamHI-primer	1	2	3
5'-biotin-BsrGl-primer	4	5	6
5'-biotin- <i>HindIII</i> -primer	7	8	9

matrix 2	5'-HO-BamHI-primer	5'-HO-BsrGI-primer	5'-HO- <i>Ncol</i> -primer
5'-biotin-BamHI-primer	1	2	3
5'-biotin-BsrGl-primer	4	5	6
5'-biotin- <i>Ncol</i> -primer	7	8	9

 matrix 3
 5'-HO-BamHi-primer
 5'-HO-BsrGi-primer
 5'-HO-Spel-primer

 5'-biotin-BamHi-primer
 1
 2
 3

 5'-biotin-BsrGi-primer
 4
 5
 6

 5'-biotin-Spel-primer
 7
 8
 9

matrix 4	5'-HO- <i>BamHI</i> -primer	5'-HO- <i>BsrGI</i> -primer	5'-HO-AfIII-primer
5'-biotin-BamHI-primer	1	2	3
5'-biotin-BsrGI-primer	4	5	6
5'-biotin-Afili-primer	7	8	9

matrix 5	5'-HO-BamHI-primer	5'-HO-HindIII-primer	5'-HO-Ncol-primer
5'-biotin-BamHI-primer	1	2	3
5'-biotin- <i>Hindill</i> -primer	4	5	6
5'-biotin- <i>Ncol</i> -primer	7	8	9

matrix 6	5'-HO-BamHI-primer	5'-HO-HindIII-primer	5'-HO-Spel-primer
5'-biotin-BamHI-primer	1	2	3
5'-biotin-HindIII-primer	4	5	6
5'-biotin-Spel-primer	7	8	9

matrix 7	5'-HO-BamHI-primer	5'-HO- <i>HindIII-</i> primer	5'-HO-AfIII-primer
5'-biotin-BamHI-primer	1	2	3
5'-biotin-HindIII-primer	4	5	6
5'-biotin-Afili-primer	7	8	9

matrix 8	5'-HO-BamHI-primer	5'-HO-Ncol-primer	5'-HO-Spel-primer
5'-biotin-BamHI-primer	1	2	3
5'-biotin-Ncol-primer	4	5	6
5'-biotin-Spel-primer	7	8	9

matrix 9	5'-HO-BamHI-primer	5'-HO-Ncol-primer	5'-HO- <i>Aflli</i> -primer
5'-biotin-BamHI-primer	1	2	3
5'-biotin-Ncol-primer	4	5	6
5'-biotin-AfIII-primer	7	8	9

matrix 10	5'-HO-BamHI-primer	5'-HO-Spel-primer	5'-HO-AfIII-primer
5'-biotin-BamHI-primer	1	2	3
5'-biotin-Spel-primer	4	5	6
5'-biotin-AfIII-primer	7	8	9

matrix 11	5'-HO-BsrGl-primer	5'-HO-Hındlli-primer	5'-HO-Ncol-primer
5'-biotin-BsrGl-primer	1	2	3
5'-biotin-HindIII-primer	4	5	6
5'-biotin-Ncol-primer	7	8	9

matrix 12	5'-HO-BsrGI-primer	5'-HO-Hindlli-primer	5'-HO-Spel-primer
5'-biotin- <i>BsrGI</i> -primer	1	2	3
5'-biotin-Hindlil-primer	4	5	6
5 -biotin-Spel-primer	7	8	9

matrix 13	5'-HO-BsrGI-primer	5'-HO- <i>HindIII-</i> primer	5'-HO-AfIII-primer
5'-biotin- <i>BsrGI</i> -primer	1	2	3
5'-biotin-HindIII-primer	4	5	6
5'-biotin-AfIII-primer	7	8	9

matrix 14	5'-HO-BsrGi-primer	5'-HO- <i>Ncol</i> -primer	5'-HO-Spel-primer
5'-biotin-BsrGl-primer	1	2	3
5'-biotin-Ncol-primer	4	5	6
5'-biotin-Spel-primer	7	8	9

matrıx 15	5'-HO-BsrGI-primer	5'-HO- <i>Ncol</i> -primer	5'-HO-Afill-primer
5'-biotin-BsrGl-primer	1	2	3
5'-biotin-Ncol-primer	4	5	6
5'-biotin-AfIII-primer	7	8	9

- 64 -

matrix 16	5'-HO-BsrGl-primer	5'-HO-Spel-primer	5'-HO- <i>AfIII</i> -primer
5'-biotin- <i>BsrGl</i> -primer	1	2	3
5'-biotin-Spel-primer	4	5	6
5'-biotin-AfIII-primer	7	8	9

matrix 17	5'-HO- <i>Hindlil</i> -primer	5'-HO- <i>Ncol</i> -primer	5'-HO-Spel-primer
5'-biotin- <i>Hindlli</i> -primer	1	2	3
5'-biotin-Ncol-primer	4	5	6
5'-biotin-Spel-primer	7	8	9

matrix 18	5'-HO-HindIII-primer	5'-HO- <i>Ncol</i> -primer	5'-HO- <i>AfIII</i> -primer
5'-biotin-HindIII-primer	1	2	3
5'-biotin-Ncol-primer	4	5	6
5'-biotin-Afili-primer	7	8	9

matrix 19	5'-HO-Hindill-primer	5'-HO-Spel-primer	5'-HO- <i>AfIII</i> -primer
5'-biotin- <i>Hindill</i> -primer	1	2	3
5'-biotin-Spel-primer	4	5	6
5'-biotin-AfIII-primer	7	8	9

matrix 20	5'-HO-Ncol-primer	5'-HO-Spel-primer	5'-HO-Afill-primer
5'-biotin-Ncol-primer	1	2	3
5'-biotin-Spel-primer	4	5	6
5'-biotin-AfIII-primer	7	8	9

Example TRSPA-1 test matrices for set 2 - *EcoRI*, *BspHI*, *BgIII*, *XbaI*, *Acc65I* and *ApaLI*

matrix 21	5'-HO-EcoRI-primer	5'-HO- <i>BspHI</i> -primer	5'-HO- <i>Bgill</i> -primer
5'-biotin- <i>EcoRI</i> -primer	1	2	3
5'-biotin- <i>BspHI</i> -primer	4	5	6
5'-biotin-Bglll-primer	7	8	9

matrix 22	5'-HO-EcoRI-primer	5'-HO- <i>BspHI</i> -primer	5'-HO-Xbal-primer
5'-biotin- <i>EcoRI</i> -primer	1	2	3
5'-biotin-BspHI-primer	4	5	6
5'-biotin- <i>Xbal</i> -primer	7	8	9

matrix 23	5'-HO-EcoRI-primer	5'-HO-BspHI-primer	5'-HO-Acc65l-primer
5'-biotin- <i>EcoRI</i> -primer	1	2	3
5'-biotin-BspHl-primer	4	5	6
5'-biotin-Acc65l-primer	7	8	9

matrix 24	5'-HO-EcoRI-primer	5'-HO- <i>BspHI</i> -primer	5'-HO-ApaLI-primer
5'-biotin- <i>EcoRI</i> -primer	1	2	3
5'-biotin-BspHI-primer	4	5	6
5'-biotin-ApaLI-primer	7	8	9

matrix 25	5'-HO-EcoRI-primer	5'-HO- <i>Bglll</i> -primer	5'-HO-Xbal-primer
5'-biotin-EcoRI-primer	1	2	3
5'-biotin-BgIII-primer	4	5	6
5'-biotin- <i>Xbal</i> -primer	7	8	9

matrıx 26	5'-HO- <i>EcoRI</i> -primer	5'-HO- <i>BgllI</i> -primer	5'-HO-Acc65I-primer
5'-biotin-EcoRI-primer	1	2	3
5'-biotin-Bglil-primer	4	5	6
5'-biotin-Acc65l-primer	7	8	9

matrıx 27	5'-HO- <i>EcoRI</i> -primer	5'-HO- <i>Bglll</i> -primer	5'-HO-ApaLI-primer
5'-biotin- <i>EcoRI</i> -primer	1	2	3
5'-biotin- <i>Bglll</i> -primer	4	5	6
5'-biotin- <i>ApaLI</i> -primer	7	8	9

matrix 28	5'-HO-EcoRI-primer	5'-HO-Xbal-primer	5'-HO-Acc65I-primer
5'-biotin-EcoRI-primer	1	2	3
5'-biotin-Xbal-primer	4	5	6
5'-biotin-Acc65l-primer	7	8	9
matrix 29	5'-HO-EcoRI-primer	5'-HO-Xbal-primer	5'-HO-ApaLI-primer
5'-biotin- <i>EcoRI</i> -primer	1	2	3
5'-biotin-Xbal-primer	4	5	6
5'-biotin- <i>ApaLI</i> -primer	7	8	9

matrix 30	5'-HO-EcoRI-primer	5'-HO-Acc65I-primer	5'-HO-ApaLI-primer
5'-biotin- <i>EcoRI</i> -primer	1	2	3
5'-biotin-Acc65I-primer	4	5	6
5'-biotin-ApaLl-primer	7	8	9

matrix 31	5'-HO- <i>BspHI</i> -primer	5'-HO-BgIII-primer	5'-HO-Xbal-primer
5'-biotin- <i>BspHil</i> -primer	1	2	3
5'-biotin-Bglll-primer	4	5	-6
5'-biotin-Xbal-primer	7	8	9

matrix 32	5'-HO-BspHI-primer	5'-HO- <i>Bglll</i> -primer	5'-HO-Acc65I-primer
5'-biotin-BspHI-primer	1	2	3
5'-biotin-Bglll-primer	4	5	6
5'-biotin-Acc65l-primer	7	8	9

matrix 33	5'-HO-BspHI-primer	5'-HO- <i>Bglii</i> -primer	5'-HO-ApaLI-primer
5'-biotin-BspHI-primer	1	2	3
5'-biotin-Bglll-primer	4	5	6
5'-biotin-ApaLl-primer	7	8	9

matrix 34	5'-HO- <i>BspHI</i> -primer	5'-HO-Xbal-primer	5'-HO-Acc65l-primer
5'-biotin-BspHI-primer	1	2	3
5'-biotin-Xbal-primer	4	5	6
5'-biotin-Acc65I-primer	7	8	9

5'-HO-BspHI-primer	5'-HO-Xbal-primer	5'-HO-ApaLI-primer
1	2	3
4	5	6
7	8	9
	5'-HO- <i>BspHI</i> -primer 1 4 7	5'-HO- <i>BspHI</i> -primer 5'-HO- <i>XbaI</i> -primer 1 2 4 5 7 8

matrix 36	5'-HO- <i>BspHI</i> -primer	5'-HO-Acc65I-primer	5'-HO-ApaLI-primer
5'-biotin-BspHI-primer	1	2	3
5'-biotin-Acc65I-primer	4	5	6
5'-biotin-ApaLI-primer	7	8	9

matrix 37	5'-HO-Bglll-primer	5'-HO-Xbal-primer	5'-HO-Acc65I-primer
5'-biotin-Bglll-primer	1	2	3
5'-biotin-Xbal-primer	4	5	6
5'-biotin-Acc65I-primer	7	8	9

matrıx 38	5'-HO- <i>Bglil</i> -primer	5'-HO-Xbal-primer	5'-HO-ApaLI-primer
5'-biotin-Bglll-primer	1	2	3
5'-biotin-Xbal-primer	4	5	6
5'-biotin-ApaLI-primer	7	8	9

matrix 39	5'-HO- <i>Bglll</i> -primer	5'-HO-Acc65I-primer	5'-HO- <i>ApaLı</i> -primer
5'-biotin- <i>Bgll1</i> -primer	1	2	3
5'-biotin-Acc65I-primer	4	5	6
5'-biotin-ApaLI-primer	7	8	9

matrix 40	5'-HO-Xbal-primer	5'-HO-Acc65i-primer	5'-HO- <i>ApaLI</i> -primer
5'-biotin-Xbal-primer	1	2	3
5'-biotin-Acc65I-primer	4	5	6
5'-biotin-ApaLI-primer	7	8	9

Example TRSPA-2 test matrices for set 1 - BamHI, BsrGI, HindIII, Ncol, Spel and AfIII

matrix 1	5'-HO-BamHl-primer	5'-HO-BsrGl-primer	5'-HO-Hindlli-primer
5'-HO-BamHI-primer	1	2	3
5'-HO-BsrGI-primer	4	5	6
5'-HO-Hindill-primer	7	8	9

matrix 2	5'-HO-BamHI-primer	5'-HO- <i>BsrGI</i> -primer	5'-HO- <i>Ncol</i> -primer
5'-HO-BamHI-primer	1	2	3
5'-HO-BsrGI-primer	4	5	6
5'-HO- <i>Ncol</i> -primer	7	8	9

matrix 3	5'-HO-BamHI-primer	5'-HO- <i>BsrGI</i> -primer	5'-HO-Spel-primer
5'-HO-BamHI-primer	1	2	3
5'-HO- <i>BsrGI</i> -primer	4	5	6
5'-HO-Spel-primer	7	8	9

matrix 4	5'-HO-BamHI-primer	5'-HO-BsrGI-primer	5'-HO-AfIII-primer
5'-HO-BamHI-primer	1	2	3
5'-HO-BsrGI-primer	4	5	6
5'-HO-Afill-primer	7	8	9

matrix 5	5'-HO- <i>BamHI</i> -primer	5'-HO-HindIII-primer	5'-HO- <i>Ncol</i> -primer
5'-HO-BamHI-primer	1	2	3
5'-HO- <i>HindIII</i> -primer	4	5	6
5'-HO- <i>Ncol</i> -primer	7	8	9

- 68 **-**

matrix 6	5'-HO-BamHI-primer	5'-HO-Hindlil-primer	5'-HO-Spel-primer
5'-HO-BamHI-primer	1	2	3
5'-HO- <i>Hindill</i> -primer	4	5	6
5'-HO-Spel-primer	7	8	9

matrix 7	5'-HO-BamHl-primer	5'-HO-Hindill-primer	5'-HO-Aflil-primer
5'-HO-BamHI-primer	1	2	3
5'-HO-HindIII-primer	4	5	6
5'-HO-AfIII-primer	7	8	9

matrix 8	5'-HO- <i>BamHI</i> -primer	5'-HO-Ncol-primer	5'-HO-Spel-primer
5'-HO-BamHI-primer	1	2	3
5'-HO- <i>Ncol</i> -primer	4	5	6
5'-HO-Spel-primer	7	8	9

matrix 9	5'-HO-BamHI-primer	5'-HO-Ncol-primer	5'-HO-AfIII-primer
5'-HO-BamHI-primer	1	2	3
5'-HO- <i>Ncol</i> -primer	4	5	6
5'-HO-AfIII-primer	7	8	9

matrix 10	5'-HO-BamHI-primer	5'-HO-Spel-primer	5'-HO-AfIII-primer
5'-HO-BamHI-primer	1	2	3
5'-HO-Spel-primer	4	5	6
5'-HO-AfIII-primer	7	8	9

5'-HO-Ncol-primer 5'-HO-HindIII-primer 5'-HO-BsrGI-primer matrix 11 2 3 1 5'-HO-BsrGl-primer 6 5 4 5'-HO-Hindill-primer 9 8 5'-HO-Ncol-primer 7

matrix 12	5'-HO-BsrGI-primer	5'-HO-Hindili-primer	5'-HO-Spel-primer
5'-HO-BsrGI-primer	1	2	3
5'-HO-Hindlil-primer	4	5	6
5'-HO-Spel-primer	7	8	9

matrix 13	5'-HO-BsrGI-primer	5'-HO-HindIII-primer	5'-HO-AfIII-primer
5'-HO-BsrGI-primer	1	2	3
5'-HO-Hindili-primer	4	5	6
5'-HO-Aflil-primer	7	8	9

matrix 14	5'-HO- <i>BsrGi</i> -primer	5'-HO- <i>Ncol</i> -primer	5'-HO-Spei-primer
5'-HO-BsrGI-primer	1	2	3
5'-HO- <i>Ncol</i> -primer	4	5	6
5'-HO-Spei-primer	7	. 8	9

matrix 15	5'-HO- <i>BsrGI</i> -primer	5'-HO-Ncol-primer	5'-HO-AfIII-primer
5'-HO- <i>BsrGI</i> -primer	1	2	3
5'-HO- <i>Ncol</i> -primer	4	5	6
5'-HO-AfIII-primer	7	8	9

matrix 16	5'-HO- <i>BsrGI</i> -primer	5'-HO-Spel-primer	5'-HO- <i>AfIII</i> -primer
5'-HO-BsrGl-primer	1	2	3
5'-HO-Spel-primer	4	. 5	6
5'-HO-AfIII-primer	7	8	9

matrix 17	5'-HO-HınallI-primer	5'-HO- <i>Ncol</i> -primer	5'-HO-Spel-primer
5'-HO-HindIII-primer	1	2	3
5'-HO-Ncol-primer	4	5	6
5'-HO-Spel-primer	7	8	9

matrix 18	5'-HO-Hindill-primer	5'-HO-Ncol-primer	5'-HO-AfIII-primer
5'-HO- <i>HindIII</i> -primer	1	2	3
5'-HO-Ncol-primer	4	5	6
5'-HO-AfIII-primer	7	8	9

matrix 19	5'-HO-Hindill-primer	5'-HO-Spel-primer	5'-HO-AfIII-primer
5'-HO-HindIII-primer	1	2	3
5'-HO-Spel-primer	4	5	6
5'-HO-AfIII-primer	7	8	9

matrix 20	5'-HO- <i>Ncol</i> -primer	5'-HO-Spel-primer	5'-HO-Afill-primer
5'-HO-Ncol-primer	1	2	3
5'-HQ-Spel-primer	4	5	6
5'-HO-AfIII-primer	7	8	9

- 70 -

Example TRSPA-2 test matrices for set 2 - *EcoRI*, *BspHI*, *BgIII*, *XbaI*, *Acc65I* and *ApaLI*

matrix 21	5'-HO- <i>EcoRI</i> -primer	5'-HO- <i>BspHI</i> -primer	5'-HO- <i>Bglll</i> -primer
5'-HO- <i>EcoRI</i> -primer	1	2	3
5'-HO- <i>BspHI</i> -primer	4	5	6
5'-HO- <i>Bglll</i> -primer	7	8	9

matrix 22	5'-HO-EcoRI-primer	5'-HO- <i>BspHI</i> -primer	5'-HO-Xbal-primer
5'-HO-EcoRI-primer	1	2	3
5'-HO- <i>BspHI</i> -primer	4	5	6
5'-HO-Xbai-primer	7	8	9

matrix 23	5'-HO-EcoRI-primer	5'-HO- <i>BspHI</i> -primer	5'-HO-Acc65I-primer
5'-HO-EcoRI-primer	1	2	3
5'-HO-BspHI-primer	4	5	6
5'-HO-Acc65I-primer	7	8	9

matrix 24	5'-HO-EcoRI-primer	5'-HO-BspHI-primer	5'-HO-ApaLI-primer
5'-HO-EcoRI-primer	1	2	3
5'-HO- <i>BspHI</i> -primer	4	5	6
5'-HO-ApaLI-primer	7	8	9

matrix 25	5'-HO-EcoRI-primer	5'-HO- <i>BgIII</i> -primer	5'-HO-Xbal-primer
5'-HO- <i>EcoRI</i> -primer	1	2	3
5'-HO- <i>Bglll</i> -primer	4	5	6
5'-HO-Xbal-primer	7	8	9

matrix 26	5'-HO-EcoRI-primer	5'-HO- <i>BgIII</i> -primer	5'-HO-Acc65I-primer
5'-HO- <i>EcoRI</i> -primer	1	2	3
5'-HO- <i>BgIII</i> -primer	4	5	6
5'-HO- <i>Acc65I</i> -primer	7	8	9

matrix 27	5'-HO-EcoRI-primer	5'-HO- <i>Bglll</i> -primer	5'-HO-ApaLI-primer
5'-HO-EcoRI-primer	1	2	3
5'-HO- <i>Bglil</i> -primer	4	5	6
5'-HO-ApaLI-primer	7	8	9

matrix 28	5'-HO- <i>EcoRI</i> -primer	5'-HO-Xbal-primer	5'-HO-Acc65I-primer
5'-HO-EcoRI-primer	1	2	3
5'-HO-Xbal-primer	4	5	6
5'-HO- <i>Acc65I</i> -primer	7	8	9

matrıx 29	5'-HO-EcoRI-primer	5'-HO- <i>Xbal</i> -primer	5'-HO- <i>ApaLI</i> -primer
5'-HO- <i>EcoRI</i> -primer	1	2	3
5'-HO-Xbal-primer	4	5	6
5'-HO-ApaLI-primer	7	8	9

matrix 30	5'-HO-EcoRI-primer	5'-HO- <i>Acc65I</i> -primer	5'-HO- <i>ApaLI</i> -primer
5'-HO-EcoRI-primer	1	2	3
5'-HO- <i>Acc65I</i> -primer	4	5	6
5'-HO-ApaLI-primer	7	8	9

matrıx 31	5'-HO- <i>BspHI</i> -primer	5'-HO- <i>Bglll</i> -primer	5'-HO-Xbal-primer
5'-HO-BspHI-primer	1	2	3
5'-HO- <i>Bglll</i> -primer	4	5	6
5'-HO-Xbal-primer	7	8	9

matrix 32	5'-HO- <i>BspHI</i> -primer	5'-HO- <i>Bglll</i> -primer	5'-HO-Acc65I-primer
5'-HO- <i>BspHI</i> -primer	1	2	3
5'-HO- <i>Bglll</i> -pnmer	4	5	6
5'-HO- <i>Acc65I</i> -primer	7	8	9

matrix 33	5'-HO-BspHI-primer	5'-HO- <i>Bglll</i> -primer	5'-HO-ApaLi-primer
5'-HO-BspHI-primer	1	2	3
5'-HO- <i>Bglil</i> -primer	4	5	6
5'-HO-ApaLI-primer	7	8	9

matrix 34	5'-HO- <i>BspHI</i> -primer	5'-HO- <i>Xbal</i> -primer	5'-HO-Acc65I-primer
5'-HO-BspHI-primer	1	2	3
5'-HO-Xbal-primer	4	5	6
5'-HO- <i>Acc65I</i> -primer	7	8	9

matrix 35	5'-HO-BspHI-primer	5'-HO- <i>Xbal</i> -primer	5'-HO-ApaLI-primer
5'-HO- <i>BspHI</i> -primer	1	2	3
5'-HO-Xbal-primer	4	5	6
5'-HO-ApaLI-primer	7	8	9

matrix 36	5'-HO-BspHI-primer	5'-HO-Acc65I-primer	5'-HO- <i>ApaLI</i> -рпmer
5'-HO- <i>BspHI</i> -primer	1	2	3
5'-HO-Acc65I-primer	4	5	6
5'-HO-ApaLI-primer	7	8	9

matrix 37	5'-HO- <i>BgIII</i> -primer	5'-HO- <i>Xbal</i> -primer	5'-HO-Acc65I-primer
5'-HO- <i>Bglll</i> -primer	1	2	3
5'-HO-Xbal-primer	4	5	6
5'-HO-Acc65I-primer	7	8	9

matrıx 38	5'-HO- <i>Bglll</i> -primer	5'-HO-Xbal-primer	5'-HO- <i>ApaLI</i> -primer
5'-HO- <i>Bglll</i> -primer	1	2	3
5'-HO-Xbal-primer	4	5	6
5'-HO- <i>ApaLI</i> -primer	7	8	9

matrıx 39	5'-HO- <i>Bglll</i> -primer	5'-HO-Acc65I-primer	5'-HO- <i>ApaLI</i> -primer
5'-HO- <i>Bglll</i> -primer	1	2	3
5'-HO-Acc65I-primer	4	5	6
5'-HO-ApaLI-primer	7	8	9

matrix 40	5'-HO-Xbal-primer	5'-HO-Acc65I-primer	5'-HO- <i>ApaLI</i> -primer
5'-HO-Xbal-primer	1	2	3
5'-HO-Acc65I-primer	4	5	6
5'-HO-ApaLI-primer	7	8	9

Hybridisation patterns

There are six possible hybridisation patterns for a given probe fragment from inter-population perfectly matched duplex depletion enrichment with a (3x3) test matrix in TRSPA-1 analysis.

There are also six possible hybridisation patterns for a given probe fragment from inter-population perfectly matched duplex depletion enrichment with a (3x3) test matrix in TRSPA-2 analysis.

We can denote these patterns as follows

- 73 -

TRSPA-1 analysis

Pattern a (1 only)

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'-biotin-X-primer		2	3
5'-biotin-Y-primer	4	5	6
5'-biotin-Z-primer	7	8	9

Pattern b (2 and 4)

matrıx #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'-biotin-X-primer	1		3
5'-biotin-Y-primer	3	5	6
5'-biotin-Z-primer	7	8	9

Pattern c (3 and 7)

10

5

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'-biotin-X-primer	1	2	
5'-biotin-Y-primer	4	5	6
5'-biotin-Z-primer		8	9

Pattern d (5 only)

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'-biotin-X-primer	1	2	3
5'-biotin-Y-primer	4		6
5'-biotin-Z-primer	7	8	9

- 74 -

Pattern e (6 and 8)

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'-biotin-X-primer	1	2	3
5'-biotin-Y-primer	4	5	
5'-biotin-Z-primer	7		9

Pattern f (9 only)

5

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'-biotin-X-primer	1	2	3
5'-biotin-Y-primer	4	5	6
5'-biotin-Z-primer	7	8	

TRSPA-2 analysis

Pattern a (row 1 and column 1)

10

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'-HO-X-primer		// * // * // * // * // * // * // * //	
5'-HO-Y-primer		5	6
5'-HO-Z-primer		8	9

Pattern b (2 and 4)

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'- HO -X-primer	1		3
5'- HO -Y-primer		5	6
5'- HO -Z-primer	7	8	9

- 75 -

Pattern c (3 and 7)

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'- HO -X-primer	1	2	
5'- HO -Y-primer	4	5	6
5'- HO -Z-primer		8	9

Pattern d (row 2 and column 2)

5

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'- HO -X-primer	1		3
5'- HO -Y-primer	(***		
5'- HO -Z-primer	7		9

Pattern e (6 and 8)

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'- HO -X-primer	1	2	3
5'- HO -Y-primer	4	5	
5'- HO -Z-primer	7		9

Pattern f (row 3 and column 3)

matrix #	5'-HO-X-primer	5'-HO-Y-primer	5'-HO-Z-primer
5'- HO -X-primer	1	2	
5'- HO -Y-primer	4	5	
5'- HO -Z-primer			

Signatures

If we have 40 such (3x3) test matrices and we denote the possible hybridisation patterns a, b, c, d, e and f, then we can write the overall TRSPA hybridisation signature as follows

Matrix	Pattern	matrix	pattern
1	a.b,c.d.eorf	21	a, b, c, d, e or f
2	a.b,c,d.eorf	22	a, b, c. d, e or f
3	a.b.c,d,eorf	23	a, b, c, d, e or f
4	a.b, c, d, e or f	24	a, b, c, d, e or f
5	a, b, c, d, e or f	25	a, b, c, d, e or f
6	a, b, c, d, e or f	26	a, b, c, d, e or f
7	a.b.c.d.eorf	27	a, b, c, d, e or f
8	a, b, c, d, e or f	28	a, b, c, d, e or f
9	a, b, c, d, e or f	29	a, b, c, d, e or f
10	a, b, c, d, e or f	30	a, b, c, d, e or f
11	a, b, c, d, e or f	31	a, b. c, d, e or f
12	a, b, c, d, e or f	32	a.b, c, d, e or f
13	a, b, c, d, e or f	33	a, b, c, d, e or f
14	a, b, c, d, e or f	34	a, b, c, d, e or f
15	a, b, c, d, e or f	35	a, b, c, d, e or f
16	a, b, c, d, e or f	36	a, b, c, d, e or f
17	a, b, c, d, e or f	37	a, b, c, d, e or f
18	a, b, c, d, e or f	38	a, b, c, d, e or f
19	a, b, c, d, e or f	39	a, b, c, d, e or f
20	a, b, c, d, e or f	40	a.b,c,d,eorf

Aspect (III)

In another aspect the invention provides a nucleic acid characterisation method which comprises presenting to the set of arrays as defined above a nucleic acid fragment of interest under hybridisation conditions, and observing a pattern of hybridisation. Preferably, a plurality of nucleic acid fragments of interest are separately presented to the set of arrays, and the resulting patterns of hybridisation are compared.

Preferably, the plurality of nucleic acid fragments of interest are drawn from the mixture of DNA fragments, enriched in fragments that are characteristic of a phenotype of interest, as described under the invention (1) above.

Thus in this aspect the invention provides a method of identifying fragments of DNA that are characteristic of a phenotype of

15

20

25

30

interest, which method comprises recovering, cloning and amplifying individual DNA fragments from the mixture of DNA fragments obtained under invention (1) above, presenting the individual DNA fragments to the set of arrays as defined under hybridisation conditions, observing a pattern of hybridisation generated by each individual DNA fragment, and subjecting to further investigation any two or more individual DNA fragments whose hybridisation patterns are similar or identical.

TRSPA signatures and whole genome association studies

After a given number of cycles of inter-population perfectly matched duplex depletion, phenotype determining fragments will be enriched but will not be entirely free from 'noise' fragments. Noise may result from unequal allelic frequencies for certain SNPs between the two populations. Noise will also result from the presence of somatic mutations in the cells used to prepare DNA fragments and from the use of polymerase chain reaction in some of the embodiments of the current invention.

For the preferred embodiment, DNA is prepared from a library of clones (either genomic clones or cDNA clones) - with inserts derived from the individual(s) and propagated in some appropriate host and cloning vector system. Restriction enzyme fragmentation is used prior to cloning and polymerase chain reaction amplification is used to prepare the DNA for comparison in fragmented form. Priming sites within the vector sequence flanking the cloned restriction enzyme fragmented inserts are employed for one or more cycles of polymerase chain reaction amplification of the fragmented DNA of interest. The primers used for polymerase chain reaction amplification of the fragmented DNA of interest are again used after the phenotype-determining fragment enrichment process to 'rescue' and clone the enriched fragments. Cloned enriched fragments are colony purified, picked into appropriate storage containers, catalogued and archived, DNA probes are prepared from these single clones and are

15

20

30

individually hybridised against 180 spot TRSPA arrays as above. TRSPA signatures are determined for many colonies. Most noise fragments will be random in nature and will thus be randomly distributed amongst the $6^{20} = 3.7 \cdot 10^{15}$ possible types of TRSPA signature. Phenotype-determining signal fragments, however, will be those where repeat TRSPA signatures are obtained as more and more colonies are sampled. The more frequently the repetition of a given TRSPA signature occurs per unit colonies sampled, the greater the signal to noise ratio and the more successful has been the enrichment.

A great many of the steps in this process are amenable to high throughput automation - enabling very large numbers of single colony TRSPA signatures to be determined with ease and extending the power of the current invention to cases where signal to noise ratios are beyond current approaches.

Statistical correlations (associations) can initially be drawn between TRSPA signatures and phenotype. The clones giving rise to a particular TRSPA signature showing a useful association with a phenotype of interest can then be sequenced in order to determine at a DNA sequence level the association(s) with the phenotype of interest. Such associations have future predictive values for the phenotype of interest, knowing the genotype and will be of great value in medicine and pharmacogenetics.

If the genome of interest is wholly or partially sequenced, we can also *in silico* restrict the DNA with all n enzymes, calculate the expected signature for each fragment and pattern match these expected signatures with the observed signature (taking into account any loss or gain of restriction sites due to polymorphic variation compared to the reference sequence) to immediately identify the fragment of interest within a gene, genomic region, chromosome or whole genome. This latter method will be of great value in those cases where a great many phenotype-determining fragments are obtained and repeat signatures are rare or unobtained. The

clustering of phenotype-determining fragments to adjacent DNA regions thus gives an association between those genomic regions and the phenotype of interest.

5 Aspect (IV)

10

15

20

25

In yet another aspect the invention provides a double-stranded DNA molecule having the sequence a-A-b-B...X-y-Y-z where A, B...X and Y are unique restriction sites for n different restriction endonuclease enzymes, and a, b...y, z denotes distances in base pairs, characterised in that each fragment. obtainable by cutting the DNA molecule by means of any one or more up to n of the restriction enzymes, has a different length from every other fragment.

An example totally diagnostic internal control DNA which allows both the extent and exact nature of any example set 1 (or example set 2) 6 bp cutter partial digestion to be unambiguously determined for interpopulation perfectly matched duplex depletion or TRSPA restriction

In both of the above schemes, it is important that limit digestion products are obtained. Monitoring the extent of partial digestion resulting from multi-enzymatic restriction and determining precisely which enzymes have failed to cut is a task of great importance.

If we have up to six enzymes for DNA digestion - let us label these A, B, C, D, E and F. We need to somehow determine that these have all cut to completion during the fragmentation stage for interpopulation perfectly matched duplex depletion and also for the digestion step prior to adaptor ligation in TRSPA fabrication. If any of the enzymes have failed to cut to completion, we need to know which ones and to what degree in order to effectively rectify the problem.

30 The structure of the internal control DNA

If we construct a double stranded DNA molecule with the

1()

20

25

30

- 80 -

following structure

end---t---A---u---B---v---C---w---D---x---E---y---F---z---end

where the A, B, C. D, E and F denote the sites for restriction enzyme cutting and t, u, v, w, x, y and z denote distances in base pairs.

This internal control DNA is either uniformly pre-labelled and added to the DNA of interest at an appropriate concentration prior to restriction or is Southern blot probed with a complementary sequence not found in the DNA of interest after restriction.

All six enzymes can cut in only one way.

One enzyme can fail to cut in ${}^6C_1=6$ ways, these are: A, B, C, D, E or F failing to cut.

Two enzymes can fail to cut in ${}^6C_2 = 15$ ways, these are: AB,

15 AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF or EF failing to cut.

Three enzymes can fail to cut in ${}^6C_3 = 20$ ways, these are:

ABC, ABD, ABE, ABF, ACD, ACE, ACF, ADE, ADF, AEF, BCD, BCE, BCF, BDE, BDF, BEF, CDE, CDF, CEF or DEF failing to cut.

Four enzymes can fail to cut in ${}^6C_4 = 15$ ways, these are:

ABCD, ABCE, ABCF, ABDE, ABDF, ABEF, ACDE, ACDF, ACEF, ADEF, BCDE, BCDF, BCEF, BDEF or CDEF failing to cut.

Five enzymes can fail to cut in ${}^6C_5 = 6$ ways, these are: ABCDE, ABCDF, ABCEF, ABDEF, ACDEF or BCDEF failing to cut.

All six enzymes can fail to cut in only one way.

Each of the above possibilities will generate one or more fragments from the internal control DNA. If each possible fragment has a discernible size from any other, then we can determine exactly which enzymes have cut and which have not from the size distribution of the fragments generated. The task is therefore to design such a DNA molecule.

- 81 -

Example simulations

Seven simulations are given below - varying the size of intersite fragments. Criteria for a successful outcome include the following

- 1. The inter-fragment spacing should be greater for larger fragments (so as to aid electrophoretic resolution).
 - 2. All possible fragments should be unambiguously resolvable in size from each-other.
 - 3. Size gaps between bands comprising different numbers of inter-site units should be greater than the size gaps between bands comprising the same number of inter-site units.
 - 4. The size gaps and size spread from largest to smallest fragment should be electrophoretically compatible.

Simulation 1

15

EndA	AB	BC	CD	DE	EF	Fend
80	90	100	110	120	130	140

	Fragment length	size gap to the next
	(in bp)	smallest fragment
		(in bp)
one unit fragments		
endA	80	
AB	90	10
BC	100	10
CD	110	10
DE	120	10
EF	130	10
Fend	140	10
two unit fragments		
endB	170	30
AC	190	20
BD	210	20
CE	230	20
DF	250	20
Eend	270	20
three unit fragments		
endC	270	0
AD	300	30
BE	330	30
CF	360	30
Dend	390	30
four unit fragments		
endD	380	-10
AE	420	40
BF	460	40
Cend	500	40
five unit fragments		
endE	500	0
AF	550	50
Bend	600	50
six unit fragments		
endF	630	30
Bend	690	60
seven unit fragments		
endend	770	80

- 83 -

Spread = 690 bp

Simulation 2

Inter-site fragment sizes (in bp)

endA	f :					
90	100	110	120	130	140	150

Possible digestion products obtained (in bp)

	fragment length	size gap to the next
	(in bp)	smallest fragment
	(11, 54)	(in pb)
- turning		
one unit fragments	90	
endA		10
AB	100	10
BC	110	10
CD	120	
DE	130	10
EF	140	10
Fend	150	10
two unit fragments		
endB	190	40
AC	210	20
BD	230	20
CE	250	20
DF	270	20
Eend	290	20
three unit fragments		
endC	300	10
AD	330	30
BE	360	30
CF	390	30
	420	30
Dend		
four unit fragments		0
endD	420	40
AE	460	40
BF	500	
Cend	540	40
tive unit fragments		
endE	550	10
AF	600	50
Bend	650	50
six unit fragments	,	
endF	690	40
Bend	750	60
seven unit fragmer	nts	
endend	840	90
endend	7.3	

Spread = 750 bp

ONLY THE STATE

Simulation 3

Inter-site fragment sizes (in bp)

endA	AB	BC	CD	DE	EF	Fend
100	110	120	130	140	150	160
1	1	i				

Possible digestion products obtained (in bp)

- 86 -

Spread = 810 bp

- 87 -

Simulation 4

Inter-site fragment sizes (in bp)

endA	AB	BC	CD	DE	EF	Fend
110	120	130	140	150	160	170

Possible digestion products obtained (in bp)

	fragment length	size gap to the next
	(in bp)	smallest fragment
		(in bp)
one unit fragments		
endA	110	
AB	120	10
BC	130	10
ÇD	140	10
DE	150	10
EF	160	10
Fend	170	10
two unit fragments		
endB	230	60
AC	250	20
BD	270	20
CE	290	20
DF	310	20
Eend	330	20
three unit fragments		
endC	360	30
AD	390	30
BE	420	30
CF	450	30
Dend	480	30
four unit fragments		
endD	500	20
AE	540	40
BF	580	40
Cend	620	40
tive unit fragments		
endE	650	30
AF	700	50
Bend	750	50
six unit fragments		
endF	810	60
Bend	870	60
seven unit fragment	S	
endend	980	110

Spread = 870 bp

Marcona ... II.

- 89 -

Simulation 5

Inter-site fragment sizes (in bp)

endA	AB	BC	CD	DE	EF	Fend
120	130	140	150	160	170	180

Possible digestion products obtained (in bp)

5

	fragment length	size gap to the next
	(in bp)	smallest fragment
	(in op)	(in bp)
		(a) op;
one unit fragments		
endA	120	
AB	130	10
BC	140	10
CD	150	10
DE	160	10
EF	170	10
Fend	180	10
two unit fragments		
endB	250	70
AC	270	20
BD	290	20
CE	310	20
DF	330	20
Eend	350	20
three unit fragments		
endC	390	40
AD	420	30
BE	450	30
CF	480	30
Dend	510	30
four unit fragments		
endD	540	30
AE	580	40
BF	620	40
Cend	660	40
five unit fragments		
endE	700	40
AF	750	50
Bend	800	50
six unit fragments	-	
endF	870	70
Bend	930	60
	930	30
seven unit fragments	1050	120
endend	1050	120

Spread = 930 bp

- 91 -

Simulation 6

Inter-site fragment sizes (in bp)

endA	АВ	BC	CD	DE	EF	Fend
130	140	150	160	170	180	190

Possible digestion products obtained (in bp)

(in bp) smallest fragment (in bp) one unit fragments (in bp) endA 130 AB 140 10 BC 150 10 CD 160 10 DE 170 10 EF 180 10 Fend 190 10 two unit fragments		fragment length	size gap to the next
(in bp) one unit fragments (in bp) endA 130 AB 140 10 BC 150 10 CD 160 10 DE 170 10 EF 180 10 Fend 190 10 two unit fragments			smallest fragment
endA 130 AB 140 10 BC 150 10 CD 160 10 DE 170 10 EF 180 10 Fend 190 10 two unit fragments 10 10 endB 270 80 AC 290 20 BD 310 20 CE 330 20 DF 350 20 Eend 370 20 three unit fragments 10 20 Eend 370 20 DF 350 30 BE 480 30 CF 510 30 Dend 540 30 four unit fragments 10 40 BF 660 40 Cend 700 40 Bend 850 50		, ,,	(in bp)
endA 130 AB 140 10 BC 150 10 CD 160 10 DE 170 10 EF 180 10 Fend 190 10 two unit fragments 10 10 endB 270 80 AC 290 20 BD 310 20 CE 330 20 DF 350 20 Eend 370 20 three unit fragments 10 20 Eend 370 20 DF 350 30 BE 480 30 CF 510 30 Dend 540 30 four unit fragments 10 40 BF 660 40 Cend 700 40 Bend 850 50	one unit fragments		
AB 140 10 BC 150 10 CD 160 10 DE 170 10 EF 180 10 Fend 190 10 two unit fragments 10 10 endB 270 80 AC 290 20 BD 310 20 CE 330 20 DF 350 20 Eend 370 20 three unit fragments endC 420 50 AD 450 30 BE 480 30 CF 510 30 Dend 540 30 four unit fragments 90 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments 90 50 Bend 850 50 Six unit fragments 990 60		130	
BC 150 10 CD 160 10 DE 170 10 EF 180 10 Fend 190 10 two unit fragments 270 80 AC 290 20 BD 310 20 BF 350 20 DF 350 20 Eend 370 20 three unit fragments 20 50 AD 450 30 BE 480 30 CF 510 30 Dend 540 30 four unit fragments 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments 50 Bend 850 50 six unit fragments 60 60 seven unit fragments 60		140	10
CD 160 10 DE 170 10 EF 180 10 Fend 190 10 two unit fragments 270 80 AC 290 20 BD 310 20 BF 350 20 DF 350 20 Eend 370 20 three unit fragments 50 30 BE 480 30 Dend 540 30 four unit fragments 40 30 BE 620 40 AE 620 40 Cend 700 40 five unit fragments 50 Bend 850 50 six unit fragments 60 Bend 990 60 seven unit fragments 60 60		150	10
DE 170 10 EF 180 10 Fend 190 10 two unit fragments		160	10
EF 180 10 Fend 190 10 two unit fragments endB 270 80 AC 290 20 BD 310 20 CE 330 20 DF 350 20 three unit fragments endC 420 50 AD 450 30 BE 480 30 CF 510 30 Dend 540 30 four unit fragments endD 580 40 AE 620 40 BE 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Six unit fragments endF 930 80 Seven unit fragments endF 930 80 Seven unit fragments endF 930 80 Seven unit fragments		170	10
Fend 190 10 two unit fragments 80 endB 270 80 AC 290 20 BD 310 20 CE 330 20 DF 350 20 Eend 370 20 three unit fragments		180	10
endB 270 80 AC 290 20 BD 310 20 BE 330 20 DF 350 20 Eend 370 20 three unit fragments		190	10
endB 270 80 AC 290 20 BD 310 20 CE 330 20 DF 350 20 Eend 370 20 three unit fragments			
AC 290 20 BD 310 20 CE 330 20 DF 350 20 Eend 370 20 three unit fragments endC 420 50 AD 450 30 BE 510 30 CF 510 30 Dend 540 30 four unit fragments endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Six unit fragments endF 930 80 Bend 990 60 seven unit fragments		270	80
BD 310 20 CE 330 20 DF 350 20 Eend 370 20 three unit fragments endC 420 50 BE 480 30 CF 510 30 Dend 540 30 four unit fragments endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments			20
CE 330 20			20
DF 350 20 Eend 370 20 three unit fragments endC 420 50 AD 450 30 BE 480 30 CF 510 30 Dend 540 30 four unit fragments endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Six unit fragments endF 930 80 Bend 990 60 seven unit tragments			
Eend 370 20 three unit fragments endC 420 50 AD 450 30 BE 480 30 CF 510 30 Dend 540 30 four unit fragments endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Bend 850 50 Six unit fragments endF 930 80 Bend 990 60 seven unit fragments			
three unit fragments endC		1	
endC 420 50 AD 450 30 BE 480 30 CF 510 30 Dend 540 30 four unit fragments 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments 50 Bend 850 50 six unit fragments 50 Bend 930 80 Bend 990 60 seven unit fragments 400	l		20
AD 450 30 BE 480 30 CF 510 30 Dend 540 30 four unit fragments endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments			50
BE 480 30 CF 510 30 Dend 540 30 four unit fragments endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments			
CF 510 30 Dend 540 30 four unit fragments endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments	AD		
Dend 540 30 four unit fragments endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments	1		
four unit fragments endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments	CF	l	
endD 580 40 AE 620 40 BF 660 40 Cend 700 40 five unit fragments 50 AF 800 50 Bend 850 50 six unit fragments 80 80 Bend 990 60 seven unit fragments 400 400	Dend	540	30
## AE	four unit fragments	3	
BF 660 40 Cend 700 40 five unit fragments endE 750 50 AF 800 50 Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments	endD	580	
Cend 700 40 five unit fragments endE 750 50 AF 800 50 Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments	AE	620	
five unit fragments endE 750 50 AF 800 50 Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments	BF	660	
endE 750 50 AF 800 50 Bend 850 50 six unit fragments 80 endF 930 80 Bend 990 60 seven unit fragments 100	Cend	700	40
## AE 800 50	five unit fragment	S	
Bend 850 50 six unit fragments endF 930 80 Bend 990 60 seven unit fragments	endE	750	
Six unit fragments Six uni	AF	800	50
endF 930 80 Bend 990 60 seven unit fragments 100	Bend	850	50
endF 930 80 Bend 990 60 seven unit fragments 100	six unit fragment	s	
Bend 990 60 seven unit fragments			80
seven unit fragments		990	60
100	1	nts	
	endend		130

Spread = 990 bp

- 93 -

Simulation 7

Inter-site fragment sizes (in bp)

endA	AB	BC	CD	DE	EF	Fend
140	150	160	170	180	190	200

Possible digestion products obtained (in bp)

Supple Supple of

1 111 1 1 11

	fragment length	size gap to the next
	(in bp)	smallest fragment
	(11100)	(in bp)
one unit fragments	110	
endA	140	10
AB	150	10
BC	160	
CD	170	10
DE	180	10
EF	190	10
Fend	200	10
two unit fragments		
endB	290	90
AC	310	20
BD	330	20
CE	350	20
DF	370	20
Eend	390	20
three unit fragments		
endC	450	60
AD	480	30
BE	510	30
CF	540	30
	570	30
Dend		
four unit fragments	620	50
endD		40
AE	660	40
BF	700	40
Cend	740	40
five unit fragments		60
endE	800	
AF	850	50
Bend	900	50
six unit fragments	3	
endF	990	90
Bend	1050	60
seven unit fragmer	nts	
endend	1190	140

Spread = 1050 bp

According to the above criteria for success, simulation 7 above clearly fulfils all of the requirements.

An example totally diagnostic internal control DNA which allows both the extent and exact nature of any example set 1 (or example set 2) 4 bp cutter partial digestion to be unambiguously determined for interpopulation perfectly matched duplex depletion

If we have up to three enzymes for DNA digestion - let us label these A, B and C. We need to somehow determine that these have all cut to completion during the fragmentation stage for inter-population perfectly matched duplex depletion. If any of the enzymes have failed to cut to completion, we need to know which ones and to what degree in order to effectively rectify the problem.

15 The structure of the internal control DNA

If we construct a double stranded DNA molecule with the following structure

20

where the A, B and C denote the sites for restriction enzyme cutting and t, u, v and w denote distances in base pairs.

This internal control DNA is uniformly pre-labelled and added to the DNA of interest at an appropriate concentration prior to restriction or is Southern blot probed with a complementary sequence not found in the DNA of interest after restriction.

All three enzymes can cut in only one way.

One enzyme can fail to cut in ${}^3C_1=3$ ways, these are: A, B or C failing to cut.

Two enzymes can fail to cut in ${}^3C_2 = 3$ ways, these are: AB, AC or BC failing to cut.

- 96 -

All three enzymes can fail to cut in only one way.

Each of the above possibilities will generate one or more fragments from the internal control DNA. If each possible fragment has a discernible size from any other (and from any of the fragments in simulation

7 above for the panel of up to 6 enzymes), then we can determine exactly which enzymes have cut and which have not from the size distribution of the fragments generated. The task is therefore to design such a DNA molecule.

10 Example simulations

Six simulations are given below - varying the size of inter-site fragments. Criteria for a successful outcome included the following:

- 1. The inter-fragment spacing should be greater for larger fragments (so as to aid electrophoretic resolution).
- 2. All possible fragments should be unambiguously resolvable in size from each-other.
 - 3. Size gaps between bands comprising different numbers of inter-site units should ideally be greater than the size gaps between bands comprising the same number of inter-site units.
- 20 4. The size gaps and size spread from largest to smallest fragment should be electrophoretically compatible.
 - 5. The largest fragment obtained should ideally be smaller than the smallest fragment obtained in simulation 7 above for the panel of up to six enzymes.

- 97 -

Simulation 1

Inter-site fragment sizes (in bp)

endA	AB	BC	Cend
10	20	30	40

5

Possible digestion products obtained (in bp)

	fragment length	size gap to the next
	(in bp)	smallest fragment
		(in bp)
one unit fragments		
endA	10	
AB	20	10
BC	30	10
Cend	40	10
two unit fragments		
endB	30	-10
AC	50	20
Bend	70	20
three unit fragments		
endC	60	-10
Aend	90	30
four unit fragments		
endend	100	10

Spread = 90 bp

10

Simulation 2

endA	AB	BC	Cend
15	25	35	45

	fragment length	size gap to the next
	(in bp)	smallest fragment
		(in bp)
one unit fragments		
endA	15	
AB	25	10
BC	35	10
Cend	45	10
two unit fragments		
endB	40	-5
AC	60	20
Bend	80	20
three unit fragments		
endC	75	-5
Aend	105	30
four unit fragments		
endend	120	15

Spread = 105 bp

5

Simulation 3

Inter-site fragment sizes (in bp)

endA	AB	BC	Cend
20	30	40	50

10

PCT/GB00/00916

Possible digestion products obtained (in bp)

	froment jength	size gap to the next
	fragment length	1
	(in bp)	smailest fragment
		(in bp)
one unit fragments		
endA	20	
AB	30	10
BC	40	10
Cend	50	10
two unit fragments		-
endB	50	0
AC	70	20
Bend	90	20
three unit fragments		
endC	90	0
Aend	120	30
four unit fragments		
endend	140	20

Spread = 120 bp

Simulation 4

endA	AB	ВС	Cend
25	35	45	55

	fragment length	size gap to the next
	(in bp)	smallest fragment
		(in bp)
one unit fragments		
endA	25	
A8	35	10
B C	45	10
Cend	55	10
two unit fragments		
endB	60	5
AC	80	20
Bend	100	20
three unit fragments		
endC	105	5
Aend	135	30
four unit fragments		
endend	160	25 -

Spread = 135 bp

Simulation 5

endA	AB	BC	Cend
20	25	30	35

	fragment length	size gap to the next
	(in bp)	smallest tragment
		(in bp)
one unit tragments		
endA	20	
AB	25	5
BC	30	5
Cend	35	5
two unit fragments		
endB	45	10
AC	55	10
Bend	65	10
three unit fragments		
endC	75	10
Aend	90	15
four unit fragments		
endend	110	20

Spread = 90 bp

5

Simulation 6

ſ	endA	AB	BC	Cend
ſ	25	30	35	40

	fragment length	size gap to the next
	un bp)	smallest fragment
		(in bp)
one unit fragments		
endA	25	
AB	30	5
BC	35	5
Cend	40	5
two unit fragments		
endB	55	15
AC	65	10
Bend	75	10
three unit fragments		
endC	90	15
Aend	105	15
four unit fragments		
endend	130	25

Spread = 105 bp

5

10

According to the above criteria for success, simulation 6 clearly fulfils all of the requirements.

Example determination of the entire set of internal control DNA limit and partial digestion patterns for a panel of up to six restriction enzymes

For the example simulation 7, the entire set of internal control DNA limit and partial digestion patterns for a panel of up to six restriction enzymes can be determined as below.

- 103 -

Inter-site fragment sizes (in bp)

endA	AB	BC	CD	DE	EF	Fend
140	150	160	170	180	190	200

Possible digestion products obtained

All six enzymes can cut in only one way.

failed digests	pp	bp	bp	рb	рр	bp	рb
none	140	150	160	170	180	190	200

One enzyme can fail to cut in 6C_1 = 6 ways, these are: A, B, C, D, E or F failing to cut.

10

5

failed digest	bp	рp	рþ	pp	bp	bp
A	290	160	170	180	190	200
В	140	310	170	180	190	200
C	140	150	330	180	190	200
D	140	150	160	350	190	200
Ε	140	150	160	170	370	200
F	140	150	160	170	180	390

- 104 -

Two enzymes can fail to cut in 6C_2 = 15 ways, these are: AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF or EF failing to cut.

	,	· · ·			
failed digests	bp	рb	ρp	pb	pb
AB	450	170	180	190	200
AC	290	330	180	190	200
AD	290	160	350	190	200
AE	290	160	170	370	200
AF	290	160	170	180	390
BC	140	480	180	190	200
BD .	140	310	350	190	200
BE	140	310	170	370	200
BF	140	310	170	180	390
CD	140	150	510	190	200
CE	140	150	330	370	200
CF	140	150	330	180	390
DE	140	150	160	540	200
DF	140	150	160	350	390
EF	140	150	160	170	570

5

Three enzymes can fail to cut in $^6C_3=20$ ways, these are: ABC. ABD. ABE. ABF, ACD, ACE, ACF. ADE. ADF, AEF, BCD. BCE, BCF, BDE, BDF, BEF. CDE. CDF, CEF or DEF failing to cut.

failed digests	pb	pp	bp	bp
ABC	620	180	190	200
ABD	450	350	190	200
ABE	450	170	370	200
ABF	450	170	180	390
ACD	290	510	190	200
ACE	290	330	370	200
ACF	290	330	180	390
ADE	290	160	540	200
ADF	290	160	350	390
AEF	290	160	170	570
BCD	140	660	190	200
BCE	140	480	370	200
BCF	140	480	180	390
BDE	140	310	540	200
BDF	140	310	350	390
BEF	140	310	170	570
CDE	140	150	700	200
CDF	140	150	510	390
CEF	140	150	330	570
DEF	140	150	160	740

- 106 -

Four enzymes can fail to cut in 6C_4 = 15 ways, these are: ABCD, ABCE, ABCF, ABDE, ABDF, ABEF, ACDE, ACDF, ACEF, ADEF, BCDE, BCDF, BCEF, BDEF or CDEF failing to cut.

failed digests	bp	bр	bp
ACCD	800	190	200
ABCE	620	370	200
ABCF	620	180	390
ABDE	450	540	200
ABDF	450	350	390
ABEF	450	170	570
ACDE	290	700	200
ACDF	290	510	390
ACEF	290	330	570
ADEF	290	160	740
BCDE	140	850	200
BCDF	140	660	390
BCEF	140	480	570
BDEF	140	310	740
CDEF	140	150	900

10

Five enzymes can fail to cut in ${}^6C_5 = 6$ ways, these are: ABCDE, ABCDF, ABCEF, ABDEF, ACDEF or BCDEF failing to cut.

failed digests	bр	bp
ABCDE	990	200
ABCDF	800	390
ABCEF	620	570
ABDEF	450	740
ACDEF	290	900
BCDEF	140	1050

All six enzymes can fail to cut in only one way.

failed digests	ър
all	1190

Example determination of the entire set of internal control DNA limit and partial digestion patterns for a panel of up to three restriction enzymes

For the example simulation 6, the entire set of internal control DNA limit and partial digestion patterns for a panel of up to three restriction enzymes can be determined as below.

15 Inter-site fragment sizes (in bp)

endA	АВ	BC	Cend
25	30	35	40

Possible digestion products obtained

All three enzymes can cut in only one way.

20

failed digests	рр	bp	рþ	bp
none	25	30	35	40

- 108 -

One enzyme can fail to cut in ${}^3C_1=3$ ways, these are: A. B or C failing to cut.

failed digests	bр	рb	bр
А	55	35	40
В	i		40
С	25	30	75

5 Two enzymes can fail to cut in ${}^3C_2 = 3$ ways, these are: AB, AC or BC failing to cut.

failed digests	bр	рb
AB	90	40
AC	55	75
BC	25	105

All three enzymes can fail to cut in only one way.

10

failed digests	bp
all	130

- 109 -

Example 1a – The digestion internal control plasmid for the 6 bp cutter set 1 TRSPA enzymes *BamHI*, *BsrGI*, *HindIII*, *NcoI*, *SpeI*, and *AfIII*

The plasmid pNW33 (shown below) was constructed to contain an insert with all of the 6 bp cutter TRSPA enzyme sites.

BspEl sites define the outer ends of the 140 bp and the 200 bp fragments. The full sequence for pNW33 is shown below:

20

25

30

35

atgttcacctcgatatgtgcatctgtaaaagcaattgttccaggaaccagggcgtatctcttcatagccatggaatacgcctttttc agtgttgcgatgctaatgccgttacaaatattccgagcaccaagaatggctgcgcgcttgcctggtacttgacgtcgtatttgacg caataccaagacctcccaataatagcacccagacttgtgtaataacctctggctctgatattgctccagatggaattggacgat atggctcattaattgcgtcgatatctctatcataccagtcgttgattgtctgtgtatagccagtaagacaaggaccagacatcatca tgcaaagaatcgcttaagcccttcttggcctttatgaggatctctctgatttttcttgcgtcgagttttccggtaagacctttcggtactt cgtccacaaacacacactcctccgcgcaactttttcgcggttgttacttgactggccacgtaatccacgatctctttttccgtcatcgtctttccgtgctccaaaacaacagcggggggggtccggattaccagctgcgatcaagcttatcgataccgtcgacctcgacct geaggeatgeaagettggegtaateatggteatagetgttteetgtgtgaaattgttateegeteacaatteeacacaacataega cagtogggaaacctgtogtgocagctgcattaatgaatcggccaacgcggggggagagggggtttgcgtattgggcgctcttc atccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaaggccagcaaaaaggccaggaaccgtaaaaag geogegitgetggegittiticeataggeteegeeeeeetgaegageateaeaaaaategaegeteaagteagaggtggegaa acccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccg gatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcg ctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacag agttettgaagtggtggeetaactaeggetaeactagaaggacagtatttggtatetgegetetgetgaageeagttaeettegga agaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggatt aaacttggtetgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgact ccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctca ccggctccagatttatcagcaataaaccagccagccggaagggccgagcagaagtggtcctgcaactttatccgcctcc atogtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgt actgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaafagtgta tgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcatt ggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaac tgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataag ggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggataca tatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtctaagaaacc attattatcatgacattaacctataaaaataggcgtatcacgaggccctttcgtc

The state of the s

The insert was introduced as a four fragment ligation of 140 (KpnI-BamHI), 150 / 160 (BamHI-HindIII), 170 / 180 (HindIII-SpeI) and 190 / 200 (SpeI-XhoI) into KpnI / Sall digested pUC19c DNA (Genbank X02514). The Sall and XhoI sites were lost as a result of the joining of their compatible sticky ends. The insert can be removed with BspEI or PvuII.

The insert region of 1190 bp and the short flanking regions to the vector junctions were sequenced twice in each direction in order to establish the plasmid sequence. In addition, a total of 63 analytical restriction digests and one minus-enzyme control were performed as detailed in the following table:

	-	Expected band sizes							
Digest	Weil	bp	bp	bo	bp	bp	bр	bp	
Uncut	1	1190					·	1.	
BamHI	2	140	1050						
BsrGI	3	290	900					1	
Hindill	4	450	740					1	
Ncol	5	620	570 .	1. 1.				10000	
Spel	6	800	390		1				
AfIII	7	990	200						
BamHi BsrGi	8	140	150	900				1	
BamHI HindIII	9	140	310	740				يرانجران	
BamHi Ncol	10	140	480	570	1			1	
BamHi Spel	11	140	660	390					
BamHI Aflil	12	140	850	200				1	
BsrGl Hındill	13	290	160	740				 	
BsrGi Ncoi	14	290	330	570					
BsrGl Spel	15	290	510	390					
BsrGi Afili	16	290	700	200				T-	
Hındlli Ncol	17	450	170	570					
Hındili Spei	18	450	350	390					
HindIII AfIII	19	450	540	200				1	
Ncol Spel	20	620	180	390					
Ncoi Afili	21	620	370	200				1	
Spel Affili	22	800	190	200					
BamHl BsrGl Hindlll	23	140	150	160	740			1	
BamHI BsrGI Ncol	24	140	150	330	570			\top	
BamHi BsrGi Spel	25	140	150	510	390			1	
BamiHi BsrGI Afilii	26	140	150	700	200				

gggregger ser

WHILE A CO. CO. CO. CO. CO. CO.

BamHI Hindiii Ncol	27	140	310	170	570	T	T	T
BamHi Hindill Spei	28	140	310	350	390		 	
SamHl Hindill Afil!	29	140	310	540	200	†	 	
BamHl Ncol Spel	30	140	480	180	390	 	 	
BamHI Ncol AfIII	31	140	480	370	200		 	1
BamHl Spel Afill	32	140	660	190	200	 	 	
BsrGl Hindill Ncol	33	290	160	170	570	<u> </u>	1	1
BsrGl Hindlll Spel	34	290	160	350	390		 	
BsrGl Hindill Afill	35	290	160	540	200	 	1	
BsrGl Ncol Spel	36	290	330	18C	390		1	
BsrGl Ncol Aflii	37	290	330	370	200	1	1	3. 潜道
BsrGI Spel Aflii	38	290	510	190	200	 	1	
Hindill Ncol Spel	39	450	170	180	390			
Hindlil Ncol Affili	40	450	170	370	200		 	
Hındili Spel Afili	41	450	350	190	200			
Ncol Spel Afili	42	620	180	190	200		<u> </u>	
BamHl BsrGl Hındlli Ncol	43	140	150	160	170	570	<u> </u>	
BamHl BsrGl Hindlll Spel	44	140	150	160	350	390		
SamHl BsrGl Hindill Allii	45	140	150	160	540	200		
BamHl BsrGl Ncol Spel	46	140	150	330	180	390		
BamHi BsrGi Ncol Afili	47	140	150	330	370	200		
BamHl BsrGl Spel Afili	48	140	150	510	190	200		
BamHI Hindlit Ncol Spel	49	140	310	170	180	390	, - ½- b	74
BamHl Hindill Ncol Afill	50	140	310	170	370	200		
BamHI Hindili Spel Aflii	51	140	310	350	190	200		
BamHl Ncol Spel Afill	52	140	480	180	190	200		
BsrGi Hindill Ncol Spel	53	290	160	170	180	390		
BsrGl Hindill Ncol Afili	54	290	160	170	370	200		
BsrGi Hindili Spei Aflii	55	290	160	350	190	200		
BsrGl Ncol Spel Afill	56	290	330	180	190	200		
Hindill Ncol Spel Afill	57	450	170	180	190	200		
BamHl BsrGi Hindlil Ncol Spei	58	140	150	160	170	180	390	
BamHi BsrGi Hindili Ncol Afili	59	140	150	160	170	370	200	
BamHi BsrGi Hındlil Spel Afili	60	140	150	160	350	190	200	
BamHi BsrGi Ncoi Spei Afili	61	140	150	330	180	190	200 :	P10.
BamHl Hındlil Ncol Spel Aflil	62	140	310	170	180	190	200	
BsrGl Hindlli Ncol Spel Afill	63	290	160	170	180	190	200	
BamHi BsrGi Hındili Ncol Spel Atlii	64	140	150	160	170	180	190	200

All of these digests produced the expected fragment patterns on agarose gel electrophoresis and a number of these, shaded in the table above, are shown in figure 1. The restriction digests illustrated in figure 1

- 113 -

were carried out using the following conditions:

Digest 1 (Minus enzyme control)

10 µІ	100 μg/ml internal control plasmid DNA in 1x NEB buffer #2 + 100 μg/ml BSA
90 µl	1x NEB buffer #2 + 100 μg/ml BSA

5

Digest 5

15 μΙ	0.33 U/μί <i>Ncol</i> in 1x NEB buffer #2 + 100 μg/ml BSA
10 μΙ	100 μg/ml internal control plasmid DNA in 1x NEB buffer #2 + 100 μg/ml BSA
75 µl	1x NEB buffer #2 + 100 μg/ml BSA

Digest 9

10

15 μΙ	0.33 U/μl BamHl in 1x NEB buffer #2 + 100 μg/ml BSA
15 μΙ	0.33 U/μl HindIII in 1x NEB buffer #2 + 100 μg/ml BSA
10 μΙ	100 μg/ml internal control plasmid DNA in 1x NEB buffer #2 + 100 μg/ml BSA
60 µl	1x NEB buffer #2 + 100 μg/ml BSA

Digest 37

15 μΙ	0.33 U/μl BsrGl in 1x NEB buffer #2 + 100 μg/ml BSA	
15 μΙ	0.33 U/μl Ncol in 1x NEB buffer #2 + 100 μg/ml BSA	
15 μΙ	0.33 U/μl AfIII in 1x NEB buffer #2 + 100 μg/ml BSA	
10 μΙ	100 μg/ml internal control plasmid DNA in 1x NEB buffer #2 + 100 μg/ml BSA	
45 µl	1x NEB buffer #2 + 100 μg/ml BSA	

15

THE PROPERTY OF THE PROPERTY O

- 114 -

Digest 49

15 μΙ	0.33 U/μi BamHl in 1x NEB buffer #2 + 100 μg/ml BSA
15 µl	0.33 U/μl HindIII in 1x NEB buffer #2 + 100 μg/ml BSA
15 μΙ	0.33 U/μl Ncol in 1x NEB buffer #2 + 100 μg/ml BSA
15 ul	0.33 U/μl Spel in 1x NEB buffer #2 + 100 μg/ml BSA
10 µl	100 μg/ml internal control plasmid DNA in 1x NEB buffer #2 + 100 μg/ml BSA
30 ш	1x NEB buffer #2 + 100 μg/ml BSA

Digest 61

5

. 15 μΙ	0.33 U/µl <i>BamHl</i> in 1x NEB buffer #2 + 100 µg/ml BSA
15 µl	0.33 U/μl BsrG/ in 1x NEB buffer #2 + 100 μg/ml BSA
15 μΙ	0.33 U/μl Ncol in 1x NEB buffer #2 + 100 μg/ml BSA
15 µl	0.33 U/μl Spel in 1x NEB buffer #2 + 100 μg/ml BSA
15 μΙ	0.33 U/μl AflII in 1x NEB buffer #2 + 100 μg/ml BSA
10 μΙ	100 μg/ml internal control plasmid DNA in 1x NEB buffer #2 + 100 μg/ml BSA
15 μΙ	1x NEB buffer #2 + 100 μg/ml BSA

All 64 restriction digests were incubated at 37°C for 6 hours and samples were then electrophoresed on 2.5 % FMC MetaPhor agarose gels as illustrated in figure 1. The lanes marked M contain mixed samples from all of the digests 1-64 and these lanes were used as size markers after confirmation of the fragment sizes against Stratagene Kb ladder markers.

When spiked into a genomic DNA digest the internal control restriction fragment pattern produced is indicative of both the degree of digestion and the nature of any partial restriction at less than limit digestion. It is possible to deduce from the bands present which, if any, of the enzymes have failed to cut and therefore to take action to correct this before the DNA is used in a subsequent analysis or enrichment procedure.

gggg conductions

15

- 115 -

Preparation of BspEl-released internal control DNA on a large scale

The method used for generating internal control PCR product DNA (free from contaminating dNTPs) is depicted in the following figure:

5

15

Primers and PCR

20 μM BIO140UP

10 5' biotin-CGCAGCTGGTAATCCGGACGCCCGCGTCGAAGATGTT 3'

20 µM BIO200DOWN

5' biotin-CGCAGCTGGTAATCCGGACCCGCCGCCGTTGTTGTT 3'

Bulk PCR amplification (192x 100 μ l reactions) was carried out according to the conditions described below:

	per 20 mi	final conditions
100 mM dATP	20 μί	100 µM
100 mM dCTP	20 μί	100 μΜ
100 mM dGTP	20 μΙ	100 μΜ
100 mM dTTP	20 µl	100 μΜ
10x PCR buffer	2 mi	1x
25 mM MgCl ₂	400 μΙ	1/50th volume
1 ng/µl pNW33	400 µl	2 ng per PCR
20 μM BIO140UP	200 µl	20 pmol per PCR
20 μM BIO200DOWN	200 μί	20 pmol per PCR
Tag DNA polymerase	100 μί	2.5 U per PCR

The master mix was rapidly dispensed into PCR tubes.

Thermal cycling was initiated using the following parameters: 30 cycles of 97°C for 1 min, 50°C for 2 min, and 72°C for 3 min; 72°C for 5 min; and then 4°C.

After PCR amplification, samples were pooled and subjected to capture of biotinylated PCR product termini and BspEl release of internal control DNA.

10 Capture of biotinylated PCR product termini and *BspEl* release of internal control DNA

All separations were carried out using a Dynal MPC-1 separator (Dynal, product #12001).

20 ml of pooled PCR reaction were mixed with 20 ml of Dynabeads M-280 in 20 mM tris-HCl (pH 7.4), 2 mM EDTA (pH 8.0), 2 M NaCl. The tube was incubated at room temperature for 1 hour with rolling.

The Dynabeads were then washed four times with 20 ml of 10 mM tris-HCl (pH 7.4), 1 mM EDTA (pH 8.0), 1 M NaCl.

BspEl digestion was carried out for 1 hour at 37°C in 2 ml of 0.5 U/μl BspEl in 1x NEB buffer #3. The digest was then ethanol precipitated by the addition of 0.1 volume of 3 M sodium acetate (pH 5.2) and 2.5 volumes of ethanol, chilling to -20°C and then centrifugation. Pellets were rinsed with 70 % ethanol prior to redissolution in 500 μl of 1x TE buffer.

1 μ I of the BspEI-released internal control DNA was mixed with 10 μ I of 50 % glycerol AGE loading dye and electrophoresed on a 1.5 % agarose gel to confirm that the size of the purified DNA was in accordance with that expected.

25

15

High molecular weight genomic DNA digestion in the presence of internal control DNA with a dilution series of a mixture of the six set 1 6 bp cutters

High molecular weight canine genomic DNA was first mixed with a dilution series of a mixture of the six set 1 6 bp cutters – each at the same number of units. Aliquots were then removed and mixed with the BspEl-released internal control DNA described above. 20 μg of canine genomic DNA was digested with 0.25, 0.025, 0.0025, 0.00025, 0.000025, 0.000025 and 0 U/μl BamH1 / BsrGl / HindIII / Ncol / Spel / AfIII in 200 μl. 0.4 μg of canine genomic DNA and 1 μl of BspEl-released internal control DNA were digested with 0.25, 0.025, 0.0025, 0.00025, 0.000025, 0.000025 and 0 U/μl BamH1 / BsrGl / HindIII / Ncol / Spel / AfIII in 4 μl. Vistra Green staining was used to monitor the extent of internal control DNA digestion and high molecular weight DNA digestion. The fragment pattern from the internal control DNA is diagnostic of both the degree of digestion and the nature of any partial restriction at less than limit digestion.

A premix of restriction enzymes, buffer and BSA was prepared as detailed below:

component	μΙ
100 U/µI <i>BamHI</i>	1 μΙ
10 U/μl <i>BsrGI</i>	10 μΙ
40 U/μl <i>HindIII</i>	2.5 µl
50 U/µl <i>Ncol</i>	2 μΙ
50 U/นl <i>Spel</i>	2 µI
20 U/µl <i>AfIII</i>	5 μί
10x NEB buffer #2	4 μΙ
100x BSA	0.4 μΙ
water	13. 1 μΙ

20

Total volume = $40 \mu l$

The premix therefore contained each restriction enzyme at

2.5 U/µl in 1x NEB buffer #2 and 1x BSA. Serial 10-fold dilutions of this premix were then prepared in 1x NEB buffer #2 and 1x BSA.

Premixes of canine genomic DNA, buffer and BSA were also prepared as detailed below:

Component	Щ
1 mg/mi canine genomic DNA	20 µl
10x NEB buffer #2	انب 8
100x BSA	0.8 μΙ
Water	51. 2 μΙ

These premixes therefore contain canine genomic DNA at 0.25 mg/ml in 1x NEB buffer #2 and 1x BSA.

Canine genomic DNA and restriction enzyme mixes were then set up as follows: 10

tube	component #1	component #2
	80 µl of canine genomic DNA at 0.25	20 μl of each restriction enzyme at 2.5
1	mg/ml in 1x NEB buffer #2 and 1x BSA	U/μl in 1x NEB buffer #2 and 1x BSA
	80 µl of canine genomic DNA at 0.25	20 μl of each restriction enzyme at 0.25
2	mg/ml in 1x NEB buffer #2 and 1x BSA	U/μl in 1x NEB buffer #2 and 1x BSA
	80 µl of canine genomic DNA at 0.25	20 μl of each restriction enzyme at 0.025
3	mg/ml in 1x NEB buffer #2 and 1x BSA	U/µl in 1x NEB buffer #2 and 1x BSA
	80 μl of canine genomic DNA at 0.25	20 μl of each restriction enzyme at
4	mg/ml in 1x NEB buffer #2 and 1x BSA	0.0025 U/μl in 1x NEB buffer #2 and 1x
		BSA
	80 μl of canine genomic DNA at 0.25	20 µl of each restriction enzyme at
5	mg/ml in 1x NEB buffer #2 and 1x BSA	0.00025 U/μl in 1x NEB buffer #2 and 1x
		BSA
	80 µl of canine genomic DNA at 0.25	20 μl of each restriction enzyme at
6	mg/ml in 1x NEB buffer #2 and 1x BSA	0.000025 U/μl in 1x NEB buffer #2 and
		1x BSA
	80 μl of canine genomic DNA at 0.25	20 μl of 1x NEB buffer #2 and 1x BSA
7	mg/ml in 1x NEB buffer #2 and 1x BSA	

20

 $2~\mu l$ aliquots were then removed from tubes 1-7 and added to $1~\mu l$ of BspEl-released internal control DNA and $1~\mu l$ of 2x NEB buffer #2 and 2x BSA to give samples 1-7ic. Samples 1-7ic were then overlaid with 50 μl of mineral oil in order to prevent evaporation.

The remaining volume from tubes 1-7 was then added to 100 μ l of 1x NEB buffer #2 and 1x BSA.

All samples were finally incubated at 37°C overnight.

After digestion, 20 μl of digests 1-7 were mixed with 10 μl of 50 % glycerol AGE loading dye and 4 μl of digests 1-7ic were mixed with 2 μl of 50 % glycerol AGE loading dye. Digests in loading dye were then electrophoresed on a 2.5 % MetaPhor agarose gel in 1x TBE. The gel was stained for 60 min in 500 ml of 1x TBE containing 50 μl of Vistra Green. The stained gel was finally imaged on a Fluorimager with the following settings: a 488 nm laser; a 570 DF 30 filter; a PMT setting of 700 V; 200 μm resolution; and low sensitivity.

Restriction digests - final conditions

Restriction digests 1-7 were therefore performed under the following conditions:

tube	μg	Ú	Ú	U	U	Ų	Ų	NEB	μg/ml
	canine	BamH1	BsrGl	Hind[[]	Ncol	Spel	Aftit	buffer #2	BSA
	genomic								
	DNA								
1	20	50	50	50	50	50	50	1x	100
2	20	5	5	5	5	5	5	1x	100
3	20	0.5	0.5	0.5	0.5	0.5	0.5	1x	100
4	20	0.05	0.05	0.05	0.05	0.05	0.05	1x	100
5	20	0.005	0.005	0 005	0.005	0.005	0.005	1x	100
6	20	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	1x	100
7	20	0	0	0	0	0	0	1x	100

Total volume = $200 \mu l$

Likewise, restriction digests 1-7ic were performed under the following conditions:

tube	µg	ш	U	U	U	Ų	U	Ų	NEB	μg/ml
	canine	IC	BamH1	BsrGI	Hındlil	Ncol	Spei	Aflii	buffer	BSA
	genomic	DNA	l						#2	
	DNA									
1:0	0.4	1	1	1	1	1	1	1	1x	100
2ıc	0.4	1	0.1	0.1	0.1	0.1	0.1	0.1	1x	100
31¢	04	1	0.01	0 01	0.01	0.01	0.01	0.01	1x	100
41C	0.4	1	0.001	0.001	0.001	0 001	0.001	0.001	1x	100
5ıc	0.4	1	0.0001	0.0001	0 0001	0.0001	0.0001	0.0001	1 x	100
віс	0.4	1	0 00001	0.00001	0.00001	0 00001	0.00001	0.00001	1x	100
7ıc	0.4	1	0	0	0	0	0	0	1x	100

IC = BspEl-released internal control DNA

Total volume = 4 μl

The results are shown in figure 2.

- 121 -

Example 1b – The digestion internal control plasmid for the 4 bp cutter set 1 TRSPA enzymes *Haelli*, *Mbol*, and *Msel*

The plasmid pNW35 (shown below) was constructed to contain an insert with all of the 4 bp cutter TRSPA enzyme sites.

HindIII and EcoRI sites define the outer ends of the 25 bp and the 40 bp fragments. The sequence of pNW35 is shown below with the inserted region shown in bold type:

II HARLE SURES OF

5

10

15

20

1()

15

20

25

35

attatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaaqcatottacqqatqqcatqacaqtaagagaattatqcagtqctqccataaccatgagtqataacactgeggcc a actta ctt ctg acaac gateggaggac cg aag gag cta acc gettittig cacaa cat gg gg gate at gta act cg cett gategat gateggaggat cat gategat gategcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgtt gaccact tctgcgctcggccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacga aatagacagatcqctgagataggtqcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgat ttaaaacttcattttaatttaaaaqqatctaqqtqaaqatcctttttqataatctcatgaccaaaatcccttaacqtqaqttttcqttcc aaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcg cagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctc tgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataa ggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatac ctacagcqtqaqctatgaqaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcg gaa caggagag cgcacgagggagct tccagggggaa acgcctggtatctttat agtcctgtcgggtttcgccacctctgacttttttactgacettttactcacatattettteetacattateecetgattetggataacegtattacegeetttgagtgagetgataeege tcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctc teccegegegttggccgattcattaatgcagetggcacgacaggttteccgactggaaagegggcagtgagegcaacgcaat taatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataa caatttcacacaggaaacagct

The 4 bp internal control plasmid for restriction enzymes
HaeIII, MboI, and MseII was prepared by the insertion of a synthetic 130 bp
fragment into HindIII / EcoRI-digested pMOSblue (Amersham Pharmacia
Biotech).

The insert region of 130 bp was sequenced twice in each direction in order to establish the plasmid sequence. The presence of the restriction sites and the mobility of the fragments released were also checked by restriction digestion and polyacrylamide gel electrophoresis.

Preparation of the internal control spike DNA from the plasmid

The following illustration describes the strategy used for the preparation of EcoRI-released internal control DNA:

- 123 -

Primers and PCR

5 U-19 mer bio primer

5' bio-GTTTTCCCAGTCACGACGT 3'

ICPCR(F) primer

5' TCCGGACGTCTCAGGCTAATGTT 3'

Bulk PCR amplification (96x 100 μl reactions, repeated to 10 give 192 reactions in total) was carried out according to the conditions described below (all volumes are in μl):

	x1 (μl)	x100 (ய)	Final conditions
Water	84.4	8440	-
10x PCR buffer	10	1000	1x
25 mM dNTP mix	0.8	80	200 μ M
20 μM T7 promoter-bio primer	1	100	20 pmol per PCR
20 μM U19 mer-bio primer	1	100	20 pmol per PCR
1 ng/μl pNW35	2	200	2 ng per PCR
5 U/μl <i>Taq</i> polymerase	0.8	80	4U per PCR
Total	100	10000	

10

15

20

25

The PCR master mix was rapidly dispensed into 96 PCR tubes. Thermal cycling was initiated using the following parameters: 94°C for 2 min; 50 °C for 2 min; 29 cycles of 72°C for 2 min, 94°C for 45 sec, and 50°C for 1 min; 72°C for 8 min; and then 4°C.

- 124 -

Capture of biotinylated PCR product termini and *EcoRI*- release of internal control DNA

All separations were carried out using a Dynal MPC-1 separator (Dynal, product #12001).

20 ml of pooled PCR reaction were mixed with 20 ml of Dynabeads M-280 in 20 mM tris-HCl (pH 7.4), 2 mM EDTA (pH 8.0), 2 M NaCl. The tube was incubated at room temperature for 1 hour with mixing on a Denley Spiramix 5.

The Dynabeads were then washed four times with 20 ml of 10 mM tris-HCl (pH 7.4), 1 mM EDTA (pH 8.0), 1 M NaCl. A fifth wash was performed in 20 ml of 1x buffer M.

EcoRI-digestion was carried out for 1 hour at 37°C in 5 ml of 0.25 U/ μ I EcoRI in 1x buffer M. The digest was then divided into ten 500 μ I aliquot parts. Each aliquot was ethanol precipitated by the addition of 1 μ I of See DNA, 0.1 volume of 3 M sodium acetate (pH 5.2), and 2.5 volumes of ethanol. The precipitations were mixed and chilled to 0°C on ice for 30 minutes and then centrifugation at 20,000 maxRCF for 10 minutes. The pellets were rinsed with 70 % ethanol before dissolving in a total of 500 μ I of 1x TE buffer.

A 1 μ I aliquot of the EcoRI-released internal control DNA was electrophoresed on an 8 % polyacrylamide gel to confirm that the size of the purified DNA was in accordance with that expected.

20

High molecular weight genomic DNA digestion in the presence of the 4 bp cutter internal control DNA with a dilution series of the enzymes *Haelll, Msel,* and *Mbol*

High molecular weight human placental DNA was mixed with a dilution series of a mixture of the three set 1.4 bp cutter restriction endonucleases – each at the same number of units. Aliquots were then removed and mixed with the EcoRI-released internal control DNA. 3.6 μg of Human placental DNA (Sigma) was digested with 0.5 U/μl, 0.1 U/μl, 0.02 U/μl, 0.004 U/μl, and 0 U/μl each of HaeIII, MboI, and MseI in a total volume of 36 μl. 0.4 μg of placental DNA and 1 μl of EcoRI-released internal control DNA were digested with 0.5 U/μl, 0.1 U/μl, 0.02 U/μl, 0.004 U/μl, and 0 U/μl each of HaeIII, MboI, and MseI in a total volume of 4 μl. Vistra Green (Amersham Pharmacia Biotech) staining was used to monitor the extent of internal control DNA digestion and high molecular weight DNA digestion.

A premix of restriction enzymes (5 U/ μ I each enzyme), buffer, and BSA was prepared as described below:

Component	μl
50 U/μl <i>Haelll</i>	1
20 U/µI <i>Msel</i>	2.5
25 U/µI <i>Mbol</i>	2
10x NEB buffer #2	1
10x BSA	1
Water	2.5
Total	10

Serial 5-fold dilutions of the premix were prepared in 1x NEB buffer #2 and 1x BSA.

A 6x premix of human placental DNA, buffer, and BSA were also prepared as described below:

Component	6x mix (μl)		per reaction (μl)
1mg/ml human placental DNA	24	!	4
10x NEB buffer #2	9.6	i	1.6
10x BSA	9.6		1.6
Water	52.8	i	8.8

This premix contained placental DNA at 0.25 mg/ml in 1x NEB buffer #2 and 1x BSA.

Human placental DNA and restriction mixes were then set up as follows:

Tube	Component #1	Component #2
1	16 μl of placental DNA at 0.25 mg/ml in	4 μl of each restriction enzyme at 5 U/μl
	1x NEB buffer #2 and 1x BSA	in 1x NEB buffer #2 and 1x BSA
2	16 μl of placental DNA at 0.25 mg/ml in	4 μl of each restriction enzyme at 1 U/μl
	1x NEB buffer #2 and 1x BSA	in 1x NEB buffer #2 and 1x BSA
3	16 μl of placental DNA at 0.25 mg/ml in	4 μl of each restriction enzyme at 0.2
	1x NEB buffer #2 and 1x BSA	U/μl in 1x NEB buffer #2 and 1x BSA
4	16 μl of placental DNA at 0.25 mg/ml in	4 μl of each restriction enzyme at 0.04
	1x NEB buffer #2 and 1x BSA	U/μl in 1x NEB buffer #2 and 1x BSA
5	16 μl of placental DNA at 0.25 mg/ml in	4 μl of 1x NEB buffer #2 and 1x BSA
	1x NEB buffer #2 and 1x BSA	

 $2 \mu l$ aliquots were then removed from tubes 1-5 and added to 1 μl of EcoRI-released internal control DNA and 1 μl of 2x NEB buffer #2 and 2x BSA to give samples 1-5ic. Samples 1-5ic were then overlaid with 50 μl of mineral oil in order to prevent evaporation.

The remaining volume from tubes 1-5 was then added to 18 μ l of 1x NEB buffer #2 and 1x BSA.

All samples were finally incubated at 37°C overnight.

Restriction digests - final conditions

Restriction digests 1-5 were therefore performed under the following conditions:

tube	на µпшар	U	U	U	NEB	µg/ml
	placental	Haeili	Msel	Mbol	buffer #2	BSA
	DNA)	
1	3.6	20	20	20	1x	100
2	3.6	4	4	4	1x	100
3	3.6	0.8	0.8	0.8	1x	100
4	3.6	0.16	0.16	0.16	1x	100
5	3.6	Ö	0	0	1x	100

Total volume = 36 μl

Likewise, restriction digests 1-5ic were performed under the following conditions:

1	

5

tube	μg human	μΙ	U	υ	υ	NEB	μg/ml
	placental	1C	Haelll	Msel	Mbol	buffer #2	BSA
	DNA	DNA					
1	0.4	1	2	2	2	1x	100
2	0 4	1	0.4	0.4	0.4	1x	100
3	0.4	1	0.08	0.08	0.08	1x	100
4	0.4	1	0.016	0.016	0.016	1x	100
5	04	1	0	0	0	1x	100

IC = EcoRI-released internal control DNA

Total volume = $4 \mu i$

15

20

10 μ l of digests 1-5 were each mixed with 3 μ l of loading dye and 4 μ l of digests 1-5ic were mixed with 1 μ l of loading dye. To sample number 5ic, 180 ng of PCR molecular weight markers were added to serve as size standards. The band sizes for these markers are 50 bp, 100 bp, 200 bp, 300 bp, 400 bp, 500 bp, 525 bp, 700 bp, and 1000 bp. The digests

were then electrophoresed on an 8 % polyacrylamide gel in 1x TBE as described below:

10 ml of 10x TBE

19.5 ml of 40 % acrylamide

19 ml of 2 % methylene bisacrylamide

50.4 ml of water

1 ml of freshly prepared 10 % (w/v) ammonium persulphate

100 ul of TEMED

10

15

25

30

A Cambridge Electrophoresis Ltd. vertical protein electrophoresis unit was used with 1 mm plate spacing. The samples were electrophoresed at 30 mA for 2 hours in 1x TBE. The gel was then stained for 30 minutes in 500 ml of 1x TBE containing 50 μ l of Vistra Green. The stained gel was imaged on a Fluorimager with the following settings: a 488 nm laser; a 570 DF 30 filter; a PMT setting of 700 V; 200 μ m resolution; and low sensitivity.

The results are shown in figure 3.

20 Example 2

TRSPA-2 analysis with the pNW33 BamHI, HindIII, and AfIII matrix and the pNW33 HindIII, Ncol, and Spel matrix probed with the 140 bp

BspEl to BamHI fragment from pNW33

As an example of the case where the probe hybridizes to an arrayed PCR fragment with a different restriction site at each end, the pNW33 BamHI, HindIII, and AfIII matrix (matrix #7) was probed with a PCR product from the 140 bp BspEI (466) to BamHI (605) restriction fragment within pNW33. In this example, the probe binds to a 204 bp HindIII to BamHI PCR product derived from the 160 bp HindIII (445) to BamHI (605) restriction fragment within pNW33 (see below).

As an example of the case where the probe hybridizes to an arrayed PCR fragment with the same restriction site at each end, the pNW33 HindIII, Ncol, and Spel matrix (matrix #17) was probed with a PCR product from the 140 bp BspEl (466) to BamHl (605) restriction fragment within pNW33. In this example, the probe binds to a 514 bp HindIII to HindIII PCR product derived from the 470 bp HindIII (445) to HindIII (915) restriction fragment within pNW33 (see above).

Oligonucleotides

10

BamHI short PCR primer 5' TGTAACGACACATTGCTGGATACC 3'

HindIII short PCR primer 5' ATATAACTCTCGCTCCTTGATAAC 3'

Ncol short PCR primer 5' AGGCGTCTGAGGCTGCGGCTATGG 3'

Spel short PCR primer 5' AACCCGTCGCGACGAGAGTCTAAG 3'

AfIII short PCR primer 5' GATATACGTGATATTTTGATTG 3'

20 BamHI adaptor 5' pGATCGGTATCCAGCAATGTGTCGTTACA 3'
HindIII adaptor 5' pAGCTGTTATCAAGGAGCGAGAGTTATAT 3'
Ncol adaptor 5' pCATGCCATAGCCGCAGCCTCAGACGCCT 3'
Spel adaptor 5' pCTAGCTTAGACTCTCGTCGCGACGGGTT 3'

- 130 -

AfIII adaptor

5' pTTAACAATCAAAATATATCACGTATATC 3'

BamHI long PCR primer

5' TGTAACGACACATTGCTGGATACCGATCC 3'

HindIII long PCR primer

5' ATATAACTCTCGCTCCTTGATAACAGCTT 3'

5 Ncol long PCR primer

5' AGGCGTCTGAGGCTGCGGCTATGGCATGG 3'

Spel long PCR primer

5' AACCCGTCGCGACGAGAGTCTAAGCTAGT 3'

AfIII long PCR primer

5' GATATACGTGATATATTTTGATTGTTAAG 3'

Luc140down primer

10 5' GCGCTAGGGATCCTTACTGGGACGAAGACGAA 3'

Luc140up-bio primer

5' biotin-CGCAGCTGGTAATCCGGACGCCCGCGTCGAAGATGTT3'

15 Restriction digestion of pNW33

Restriction digests of pNW33 were set up by combining the following:

Matrix #7

20

450 μΙ	22 μg/ml pNW33 in 1x NEB buffer #2 + 100 μg/ml BSA
50 μΙ	0.6 U/μl BamHl in 1x NEB buffer #2 + 100 μg/ml BSA
50 μΙ	0.6 U/μl HindIII in 1x NEB buffer #2 + 100 μg/ml BSA
50 μΙ	0.6 U/μl AfIII in 1x NEB buffer #2 + 100 μg/ml BSA

Matrix #17

450 μΙ	22 μg/ml pNW33 in 1x NEB buffer #2 + 100 μg/ml BSA
50 μΙ	0.6 U/μl HindIII in 1x NEB buffer #2 + 100 μg/ml BSA
50 μί	0.6 U/μl Ncol in 1x NEB buffer #2 + 100 μg/ml BSA
50 μΙ	0.6 U/μl <i>Spel</i> in 1x NEB buffer #2 + 100 μg/ml BSA

15

30

The samples were then vortex mixed, and incubated at 37°C overnight.

Calf intestinal alkaline phosphatase (CIAP) digestion of pNW33 restriction digests

400 μl fractions of the 20 restriction digests (each containing 6.6 μg of digested pNW33) were ethanol precipitated by the addition of 1 μl of See DNA, 0.1 volume of 3 M sodium acetate (pH 5.2), and 2.5 volumes of ethanol, chilling to -20°C, and then centrifugation. Pellets were rinsed with 70 % ethanol prior to re-dissolution in 20 μl of 1x CIAP buffer containing 40 U of CIAP. The CIAP digests were carried out for 5 hours at 37° C and were then made up to 400 μl with 1x TE buffer.

Phenol extraction of pNW33 CIAP digests

The diluted digests were extracted with 400 µl of phenol and then ethanol precipitated as described above but with a 100 % ethanol wash after the 70 % ethanol wash. Samples were finally re-dissolved in 20 µl of TE buffer.

20 Annealing of short PCR primers to cognate adaptors

Short PCR primers and their cognate adaptors were annealed by adding 1 μ I of 200 μ M short PCR primer to 1 μ I of 200 μ M cognate adaptor in 20 μ I of 50 mM NaCI, 1x TE buffer. The mixed oligonucleotides were overlaid with 30 μ I of light mineral oil and were then heated to 90°C for 5 minutes followed by slow cooling to room temperature. The annealed short PCR primer / cognate adaptor complexes were then diluted with 1 mI of 1x TE buffer and stored frozen at -20°C.

Ligation to annealed short PCR primers and cognate adaptors

 $_{
m 1}$ $_{
m H}$ of phenol extracted pNW33 digest was used per ligation. Ligations were performed in 100 $_{
m H}$ of 1x ligase buffer containing 1 $_{
m mM}$ ATP

and 10 μ l (100 U) of T4 DNA ligase. 20 μ l aliquots from the 1 ml of annealed short PCR primer / cognate adaptor complexes were added according to the following table.

#7	BamHI / HindIII / AfIII
#17	Hındili / Ncol / Spei

5

Ligation reactions were carried out for 24 hours at 16°C. Samples were then diluted to 1 ml with TE buffer and stored at -20°C.

The diluted ligation reactions were then further diluted 1 in 10 and 10 μ l was used as PCR template per 100 μ l reaction.

10

Restriction digestion of human placental DNA

1 U (~50 μg) of human placental DNA was digested overnight at 37°C with 100 U each of *BamHI*, *BsrGI*, *HindIII*, *NcoI*, *SpeI*, and *AfIII* in 400 μI of 1x NEB buffer #2 containing 100 μg/mI BSA.

15

20

25

CIAP digestion of human placental DNA restriction digest

The digest was ethanol precipitated by the addition of 1 μ I of See DNA, 0.1 volume of 3 M sodium acetate (pH 5.2), and 2.5 volumes of ethanol, chilling to -20°C, and then centrifugation. The pellet was rinsed with 70 % ethanol prior to re-dissolution in 50 μ I of 1x CIAP buffer containing 100 U of CIAP. The CIAP digest was carried out for 5 hours at 37°C and was then made up to 400 μ I with 1x TE buffer.

Phenol extraction of human placental DNA CIAP digest

The diluted CIAP digest was extracted with 400 µl of phenol and then ethanol precipitated as described above – again with a 100 % ethanol wash after the 70 % ethanol wash. The sample was finally redissolved in 10 µl of TE buffer.

Ligation to annealed short PCR primers and cognate adaptors

Short PCR primers were annealed to their cognate adaptors as described above.

The ligation to annealed short PCR primers and cognate adaptors was carried out in 100 μ l of 1x ligase buffer with 1 mM ATP. 100 U of T4 DNA ligase and 10 μ l of each of the six short PCR primer / cognate adaptor complexes as above.

The ligation reaction was carried out for 24 hours at 16°C.

The sample was then diluted to 1 ml with 1x TE buffer and stored at -20°C.

0.2 µl was used as PCR template per 100 µl reaction.

PCR amplification conditions

An initial touch-down reaction was carried out in 50 μ I of 1x PCR buffer with all four dNTPs at 200 μ M and Taq DNA polymerase at 0.05 U/ μ I. Long PCR primers were used at 400 nM. 10 μ I of pNW33 PCR template was used per reaction and 0.2 μ I of human placental DNA PCR template was used per reaction. The samples were overlaid with 40 μ I of light mineral oil and were touch-down thermocycled as described below:

98°C for 1 min, 72°C for 2 min, 72°C for 5 min 98°C for 1 min, 69°C for 2 min, 72°C for 5 min 98°C for 1 min, 66°C for 2 min, 72°C for 5 min 98°C for 1 min, 63°C for 2 min, 72°C for 5 min 98°C for 1 min, 60°C for 2 min, 72°C for 5 min

25

30

10

15

20

The main thermal cycling was then carried out in 100 μ l of 1x PCR buffer with all four dNTPs at 200 μ M and Taq DNA polymerase at 0.05 U/ μ l. Long PCR primers were used at 400 nM. The samples were subjected to 20 cycles of 98°C for 1 min, 60°C for 2 min, 72°C for 5 min and then 72°C for 10 min followed by chilling at 10°C and recovery from under oil.

Arraying onto nylon membranes

1 μ I aliquots from the PCR amplified samples were spotted onto Hybond N+ nylon membranes. The membranes were then transferred to a stack of three sheets of 3MM paper, saturated with 0.4 M NaOH, and incubated for 10 minutes. The NaOH was rinsed away in 2x SSC and the membranes were used directly for the pre-hybridization.

Probe synthesis

10

A PCR master mix was prepared as follows (all volumes are in μI):

Master Mix Preparation	140
Water	183.6
10x PCR buffer	30
2 mM dATP	15
	15
2 mM dGTP	
2 mM dTTP	15
2 mM dCTP	3
140 probe template	1
Luc140up-bio	2.5
Luc140down	2.5
Taq DNA polymerase (5 U/μl)	2.4
Total	270

Five PCR reactions were performed. For each reaction, 5 μ l of 33P-labelled dCTP was added to the PCR tube. The reactions were then made up to 50 μ l by the addition of 45 μ l of the master mix to each tube. Each reaction was gently mixed.

10

15

20

25

PCR cycling parameters

94°C	2 min		
50 °C	2 min		
72°C	2 min	1	
94°C	45 sec	}	25 cycles
50 °C	1 min		
72°C	8 min		
4°C	hold		

After thermal cycling, the five PCR amplifications were pooled. The 250 µl of labelled DNA was then used for the following magnetic bead purification procedure.

Capture of biotinylated PCR product and release of non-biotinylated strands

All separations were carried out using a Dynal MPC-4 separator (Dynal, product #12004).

250 µl of the pooled PCR was mixed with an equal volume of 10 mg/ml streptavidin-coated colloidal Fe3O4 particles in 20 mM tris-HCl (pH 7.4), 2 mM EDTA (pH 8.0), 2 M NaCl. The tube was incubated at room temperature for 1 hour with mixing on a Denley Orbital Mixer.

The streptavidin-coated colloidal Fe3O4 particles were then washed with 1 ml of 10 mM tris-HCl (pH 7.4), 1 mM EDTA (pH 8.0), 1 M NaCl. Three more identical washes were performed.

The washed streptavidin-coated colloidal Fe3O4 particles were incubated in 500 µl of 0.1 M NaOH for 10 minutes at room temperature. The supernatant was removed and added to 500 µl of 0.5 M HEPES. The samples were then ethanol precipitated by the addition of 0.1 volume of 3 M sodium acetate (pH 5.2) and 2.5 volumes of ethanol, chilling to 0°C (on ice for 30 minutes), and then centrifugation at 20,000 maxRCF for 10 minutes. The pellets were rinsed with 70 % ethanol before dissolving in 100 μl of TE buffer.

Hybridization

10

15

Each membrane was placed in a 55 mm x 35 mm x 21 mm plastic box and 1.25 ml of pre-hybridization solution (5x SSC; Denhardt's solution; 1 % SDS; 10 % dextran sulphate [Mw 500,000]; 0.3 % tetrasodium pyrophosphate: 100 μ g/ml denatured, sonicated DNA – prewarmed to 65°C) was added. Each box was closed and incubated at 65°C for 50 minutes on a rocking platform. The pre-hybridization solution was removed and replaced with hybridization solution (5x SSC; Denhardt's solution; 1 % SDS; 10 % dextran sulphate [Mw 500,000]; 0.3 % tetrasodium pyrophosphate; 100 μ g/ml denatured, sonicated DNA – containing 5 μ l of the appropriate 33P-labelled probe) and the box was incubated at 65°C for 3 hours on a rocking platform.

20 Washing

The membranes were drained and transferred to 200 ml of 2x SSC, 0.1 % SDS at 68°C for 30 minutes. A further wash was carried out in 0.2x SSC, 0.1 % SDS at 71°C for 30 minutes. The membranes were rinsed in 2x SSC at room temperature and laid out on blotting paper to remove excess liquid. Once dry, the membrane was covered in Saran Wrap and exposed to a Kodak Phosphor Screen for 1 hour. The phosphor screen was subsequently imaged using a Molecular Dynamics Storm 860 Phosphorimager.

Results are shown in figures 4 and 5.

25

15

25

30

Example #3a

A single cycle of inter-population perfectly matched duplex depletion wherein E.coli MutS protein is used to capture an A/A mismatch-containing duplex

'Affected' versus 'unaffected' (i.e. inter-population) mismatch-containing duplex selection can be achieved by: attaching a mismatch-binding protein to a solid support (or using the mismatch-binding protein in solution followed by subsequent solid-phase capture); taking denatured 'affected' DNA fragments and hybridizing these to denatured and biotinylated 'unaffected' DNA fragments; and capture of mismatch-containing duplex molecules with the mismatch-binding protein. Releasing the mismatch-containing duplex molecules (without strand denaturation), streptavidin capture and then release of the non-biotinylated strands will give only the desired species.

In this example, PCR fragments are prepared and used to demonstrate each of the individual steps for a single cycle of interpopulation perfectly matched duplex depletion using E.coli MutS protein.

20 Clone insert design

The clone inserts were constructed using standard cloning methodology well known to those skilled in the art and were inserted between the *Aval* site and *EcoRI* of pMOS*Blue* (Amersham Pharmacia Biotech).

The clone inserts contain a common 9 base pair internal core sequence in which a single nucleotide change or an insertion can be located. The internal core sequence is derived from codons 272-274 of human p53. These codons (GTG CGT GGT) correspond to a mutational hotspot found in lung and other types of cancer (R273L). For the design of the clone inserts containing a mismatch (only one from a complete series of which is shown below), the nucleotide in position 5 of this core sequence is

modified (GTGCXTGGT).

The internal core sequence is flanked by a random sequence – allowing the independent detection of the clone #1 and the clone #7 insert sequence in a mixed population of clone inserts.

5

Clone #1

Mutant sequence (#1M)

10 5 CCCGGGGGATCCTCGTTTTATTGGGCCGAGTTTTGGTCCGTAGTGCTTGGTTAGATATGCTTAT
3 GGGCCCCCTAGGAGCAAAATAACCCGGCTCAAAACCAGGCATCACGAACCAATCTATACGAATA

GTTCACAAAATCATCCTTGTACAGAATTC3' CAAGTGTTTTAGTAGGAACATGTCTTAAG5'

15

Control sequence (#1C)

5 'CCCGGGGGATCCTCGTTTTATTGGGCCGAGTTTTGGTCCGTAGTGCATGGTTAGATATGCTTAT 3 'GGGCCCCTAGGAGCAAAATAACCCGGCTCAAAACCAGGCATCACGTACCAATCTATACGAATA

20

GTTCACAAAATCATCCTTGTACAGAATTC3 'CAAGTGTTTTAGTAGGAACATGTCTTAAG5 '

Clone #7

25

Control sequence (#7C)

 $\verb§5'CCCGGGTGTACACAAAAGTTTACCTGAAGAACGTGGGGGGGTCGTGCCTGGTCTTGCGTCACCTG$

30

GTCTCAGGAGAGGGTCCCCATGGGAATTC3

CAGAGTCCTCTCCCAGGGGTACCCTTAAG5'

Preparation of upper strand 5'-biotinylated and lower strand 5'-biotinylated #1C double-stranded PCR product, and upper strand 5'-biotinylated and lower strand 5'-biotinylated #7C double-stranded PCR product

Oligonucleotides

BIOUPST2

5' bio-CTACTGATCGGATCCCCG 3'

BIODOWN3

5' bio-AAACGACGGCCAGTGAAT 3'

10 PCR reaction set-up (#1C)

	#1C in pMOS <i>Blue</i> at 2.50 μg/ml	100 μl
	Water	8400 µl
	10x PCR buffer	1000 μl
15	50 μM BIOUPST2	100 μΙ
	50 μM BIODOWN3	100 µІ
	10 mM dNTPs	200µl
	Taq DNA polymerase (5 U/μl)	100 μl

20 PCR reaction set-up (#7C)

	#7C in pMOS <i>Blue</i> at 3.32 μg/ml	100 µl
	Water	8400 µl
	10x PCR buffer	1000 μΙ
25	50 μM BIOUPST2	100 μΙ
	50 μM BIODOWN3	100 μl
	10 mM dNTPs	200µl
	Taq DNA polymerase (5 U/μl)	100 μί

- 140 -

 $96x\ 200\ \mu l$ reactions were carried out for template #1C and $96x\ 200\ \mu l$ reactions were carried out for template #7C on a 96-well Perkin Elmer Cetus GeneAmp PCR System 9600 machine as described below:

5

10

The PCR products were pooled together and precipitated by adding 0.1 volumes of 3 M sodium acetate and 1 volume of isopropanol followed by centrifugation at 16.000 rpm for 30 minutes at 4°C (in a Centrikon T-2070 ultracentrifuge; swinging bucket Kontron rotor TST 41.14). Pellets were washed with 14 ml of ethanol and centrifuged at 20,000 rpm for 30 minutes. Finally, the pellets were air-dried and resuspended in a total volume of 0.6 ml of TE buffer.

The 0.6 ml PCR sample was purified in twelve Microspin S-300 HR columns (50 μ l per column) following the manufacturer's protocol. Briefly, the resin in the columns was resuspended by vortexing. Columns were centrifuged at 735 x g (3000 rpm in a microfuge) for 1 minute. The sample was then applied to the centre of the resin, being careful not to disturb the bed. The columns were centrifuged at 735 x g for 2 minutes and the flow-through containing the PCR product was collected. The twelve eluted 50 μ l volumes were pooled together (pool 1). Columns were washed with 50 μ l of TE buffer and the eluted fractions were loaded onto a fresh S-300 HR column. Product yield and removal efficiency of the PCR primers were analysed on a 1.5 % agarose gel.

20

3,

Preparation of non-biotinylated #1M single-stranded DNA and non-biotinylated #7C single-stranded DNA

Oligonucleotides

5

BIOUPST2	5' bio-CTACTGATCGGATCCCCG
DOWN3	5' AAACGACGGCCAGTGAAT 3'

PCR reaction set-up (#1M)

10

	#1M in pMOS <i>Blue</i> at 3.56 μg/ml	100 μΙ
	Water	8400 µl
	10x PCR buffer	1000 μl
	50 μM BIOUPST2	100 μΙ
15	50 μM DOWN3	100 μΙ
	10 mM dNTPs	200μΙ
	Taq DNA polymerase (5 U/µI)	100 μΙ

PCR reaction set-up (#7C)

20

	#7C in pMOS <i>Blue</i> at 3.32 μg/ml	100 µІ
	Water	الم 8400
	10x PCR buffer	1000 ய
	50 μM BIOUPST2	100 μΙ
25	50 μM DOWN3	100 µl
	10 mM dNTPs	200µl
	Taq DNA polymerase (5 U/μl)	100 μΙ

48x 200 μl reactions were carried out for template #1M and

0 48x 200 μl reactions were carried out for template #7C on a 96-well Perkin

10

15

Elmer Cetus GeneAmp PCR System 9600 machine as described below:

95 °C, 5 minutes 1 cycle
95 °C, 1 minute |
50 °C, 1 minute | 30 cycles
72 °C, 1 minute |
72 °C, 5 minutes 1 cycle
4°C, hold

Capture of biotinylated PCR product strands and release of nonbiotinylated strands for the preparation of non-biotinylated #1M single-stranded DNA and non-biotinylated #7C single-stranded DNA

10 ml of pooled #1M and #7C PCR amplifications were each mixed with an equal volume of 4 mg/ml streptavidin-coated colloidal Fe $_3$ O $_4$ particles taken up in 20 mM tris-HCl (pH 7.4), 2 mM EDTA (pH 8.0), 2 M NaCl. The tubes were incubated at room temperature for 60 minutes with mixing.

The streptavidin-coated colloidal Fe $_3O_4$ particles were then washed with 20 ml of 10 mM tris-HCl (pH 7.4), 1 mM EDTA (pH 8.0), 1 M NaCl. Two more identical washes were performed.

The washed streptavidin-coated colloidal Fe $_3O_4$ particles were finally incubated in 800 μ l of 0.1 M NaOH for 10 minutes at room temperature. The supernatants were removed and added to 200 μ l of 2 M HEPES (free acid). Samples were quantified by absorbance at 260 nm.

20 Denaturation and annealing

Denaturation and annealing reactions were prepared by mixing:

10

15

20

- 143 -

A = 400 ng of upper strand 5'-biotinylated and lower strand 5'biotinylated #1C double-stranded PCR product

 $B \approx 400$ ng of upper strand 5'-biotinylated and lower strand 5'-biotinylated #7C double-stranded PCR product

C = 200 ng of non-biotinylated #1M single-stranded DNA (the lower of the two #1M strands shown above)

D = 200 ng of non-biotinylated #7C single-stranded DNA (the lower of the two #7C strands shown above)

Reannealing between the upper strand of A and the singlestranded C will therefore give rise to an A/A mismatch-containing duplex, 5'-biotinylated on the upper strand, for clone insert #1.

Reannealing between the upper strand of B and the singlestranded D will therefore give rise to a perfectly matched duplex, 5'-biotinylated on the upper strand, for clone insert #7.

0.1 volumes of 1 M NaOH were then added, followed by incubation at room temperature for 10 minutes. 0.25 volumes of 2 M HEPES (free acid) were finally added followed by incubation at 42°C for 1 hour.

Samples were adjusted to 50 µl and were made 1x in PBS and 1 mg/ml in BSA ready for reaction with MutS protein-coated magnetic beads.

One 50 μ l sample (the pre-enrichment control, sample 6) was used directly for capture of biotinylated PCR product strands and release of non-biotinylated strands.

Mismatch capture

 $20~\mu l$ of M_2B_2 MutS protein-coated magnetic particles (Genecheck, lot #20) were added to the annealed DNA above. Samples were incubated for 1 hour at room temperature with shaking.

Samples were then washed twice with 200 µl of ice-cold PBS.

ti nggazi

Samples were finally eluted from the magnetic beads for 10 minutes at room temperature in 50 µl of the following:

Sample 1	1 M NaCl
Sample 2	PBS
Sample 3	1 M urea
Sample 4	1% (w/v) SDS
Sample 5	10 mM NaOH

Capture of biotinylated PCR product strands and release of nonbiotinylated strands

All separations were carried out using an Amersham magnetic separator (RPN1682, batch #1).

50 μl of the eluates from the MutS protein-coated magnetic beads and the pre-enrichment control (sample 6) were each mixed with an equal volume of 4 mg/ml streptavidin-coated colloidal Fe₃O₄ particles in 20 mM tris-HCl (pH 7.4), 2 mM EDTA (pH 8.0), 2 M NaCl. The tubes were incubated at room temperature for 30 minutes with regular mixing.

The streptavidin-coated colloidal Fe $_3O_4$ particles were then washed twice with 500 μ l of 10 mM tris-HCl (pH 7.4), 1 mM EDTA (pH 8.0), 1 M NaCl at room temperature.

The washed streptavidin-coated colloidal Fe $_3$ O $_4$ particles were incubated in 10 μ l of 0.1 M NaOH for 10 minutes at room temperature. The supernatant was removed and added to 2.5 μ l of 2 M HEPES (free acid).

 $5~\mu l$ fractions were finally spotted onto Hybond N+ nylon membranes along with 200 ng, 20 ng, 2 ng, and 200 pg amounts of the following:

10

15

20

- 145 -

C = non-biotinylated #1M single-stranded DNA
(the lower of the two #1M strands shown previously)

D = non-biotinylated #7C single-stranded DNA
(the lower of the two #7C strands shown previously)

Probe labelling

Oligonucleotides

.,

#1 probe oligo

5' GGCCGAGTTTTGGTCCGTAG 3'

#7 probe oligo

5' GTCTTGCGTCACCTGGTCTCAG 3'

10 Preparation of probes

#1 probe oligo and #7 probe oligo were radioactively 5' end-labelled using T4 polynucleotide kinase as described below (all volumes are in μ I):

	#1 probe	#7 probe
#1 probe oligo (25 pmol)	1.25	-
#7 probe oligo (25 pmol)	-	1.25
10x PNK buffer	2.5	2.5
[γ- ³³ P] ATP >92 TBq/mmol, >2500 Ci/mmol, 370	12.5	12.5
mBq/ml, 10 mCi/ml,		,
(Amersham Pharmacia Biotech., AH9968, lot #B0006)		
T4 PNK (10 U/μl)	2.5	2.5
(Amersham International, E70031Y, lot #201226)		
Water	6.25	6.25

- 146 -

then heated to 70°C for 5 minutes to denature the enzyme.

MicroSpin G-25 column purification

Two G-25 columns (APB 27-5325-01, lot #9015325011) were resuspended by vortexing, and the bottom closures were snapped off as described in the manufacturer's instructions. A pre-spin of the columns was carried out for 1 minute at 730 maxRCF – 2670 rpm in a Hettich Zeutrifugen EBA 12 benchtop centrifuge – and the eluates were discarded. The 25 μ I reactions were applied to each column, and the columns were centrifuged for 2 minutes at 730 maxRCF. The eluates from the second spin were stored and used as probes.

Hybridization

15

20

25

30

Each membrane was placed in a 55 mm x 35 mm x 21 mm plastic box and 2.5 ml of pre-hybridization solution (5x SSC; Denhardt's solution; 1 % SDS; 10 % dextran sulphate [MW 500,000]; 0.3 % tetrasodium pyrophosphate; 100 μg/ml denatured, sonicated DNA – pre-warmed to 42°C) was added. Each box was closed and incubated at 42°C for 1 hour on a rocking platform. The pre-hybridization solution was removed and replaced with hybridization solution (5x SSC; Denhardt's solution; 1 % SDS; 10 % dextran sulphate [MW 500,000]; 0.3 % tetrasodium pyrophosphate; 100 μg/ml denatured, sonicated DNA – containing 2.5 μl of the appropriate ³³P-labelled probe) and the box was incubated at 42°C overnight on a rocking platform.

Washing

The membranes were drained and transferred to 200 ml of 2x SSC, 0.1 % SDS at 42°C for 10 minutes. A further wash was carried out in 0.2x SSC, 0.1 % SDS at 42°C for 10 minutes. The membranes were rinsed in 2x SSC at room temperature and laid out on blotting paper to remove excess liquid. Once dry, the membrane was covered in Saran

Open or approximate

- 147 -

Wrap and exposed to a Kodak Phosphor Screen for 1 hour. The phosphor screen was subsequently imaged using a Molecular Dynamics Storm 860 Phosphorimager.

5 Dot blot layout

Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
5 μl fraction					
200 ng	20 ng	2 ng	200 pg	•	-
#1M ssDNA	#1M ssDNA	#1M ssDNA	#1M ssDNA		
200 ng	20 ng	2 ng	200 pg	•	-
#7C ssDNA	#7C ssDNA	#7C ssDNA	#7C ssDNA		

ssDNA = single-stranded DNA

10 Probe hybridisation results

Signal intensities from the spots above were reported using ImageQuant 5.0 software (Molecular Dynamics), with the SumAboveBG figures being used after drawing a 6x3 grid over the array of spots.

#1 probe SumAboveBG signals

Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
142257	24356	180359 394296 465242		658323	
200 ng	20 ng	2 ng	200 pg -		-
#1M ssDNA	#1M ssDNA	#1M ssDNA	#1M ssDNA		
15961011	2842937	252392	25316	2281	2475
200 ng	20 ng	2 ng	200 pg	-	-
#7C ssDNA	#7C ssDNA	#7C ssDNA	#7C ssDNA		
66536	37955	10621	2736	1955	1934

#7 probe SumAboveBG signals

	· · · · · · · · · · · · · · · · · · ·				,
Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
66392	17071	118109	153372	166211	666853
200 ng	20 ng	2 ng	200 pg	-	-
#1M ssDNA	#1M ssDNA	#1M ssDNA	#1M ssDNA		
80873	23256	6371	2399	1831	1857
80873 200 ng	23256 20 ng	6371 2 ng	2399 200 pg	1831	1857
				1831	1857

Recovery

Elution conditions	#1 signal	#7 signal	#1/#7 signal ratio
	(% input ssDNA)	(% input ssDNA)	
1 M NaCl	21.6 %	10.0 %	2.2
PBS	3.7 %	2.6 %	1.4
1 M urea	26.4 %	17.7 %	1.5
1 % SDS	59.9 %	23.0 %	2.6
10 mM NaOH	70 .7 %	24.9 %	2.8

Recovery figures are plotted below for the various different elution conditions:

5

is spikteriotische wessenschandereinigt, ablikt abso. 20 miles betaamt die besteutstelle en eine die sensonstille man Konstitutionere eine die des besteutschandes besteutschand des besteutschands die besteutschands der der der d

5 Example #3b

10

15

20

A single cycle of inter-population perfectly matched duplex depletion wherein bacteriophage T4 endonuclease VIII protein containing a cleavage-inactivating N62D point mutation is used to capture an A/A mismatch-containing duplex

In this example, PCR fragments are again prepared and used to demonstrate each of the individual steps for a single cycle of interpopulation perfectly matched duplex depletion using bacteriophage T4 endonuclease VIII protein containing a cleavage-inactivating N62D point mutation.

Clone design and DNA preparation

Clone insert design was exactly as described in example #3a (see clone #1: mutant sequence (#1M), control sequence (#1C) and clone #7: control sequence (#7C)).

10

15

25

30

Preparation of upper strand 5'-biotinylated and lower strand 5'-biotinylated #1C double-stranded PCR product, and upper strand 5'-biotinylated and lower strand 5'-biotinylated #7C double-stranded PCR product were as described in example #3a.

Preparation of non-biotinylated #1M single-stranded DNA and non-biotinylated #7C single-stranded DNA were again as described in example #3a.

Denaturation and annealing

Denaturation and annealing reactions were prepared as described in example #3a.

Reannealing will therefore again give rise to an A/A mismatch-containing duplex, 5'-biotinylated on the upper strand, for clone insert #1 and a perfectly matched duplex, 5'-biotinylated on the upper strand, for clone insert #7.

One 50 µl sample (the pre-enrichment control) was adjusted to 100 µl with TE buffer and was used directly for capture of biotinylated PCR product strands and release of non-biotinylated strands.

20 Mismatch capture

50 μl samples of the annealing reaction were mixed with an equal volume of 200 mM sodium phosphate (pH 6.5), 100 mM KCl. 10 μg of GST-tagged T4 endonuclease VII N62D mutant (obtained from Prof. Börries Kemper, Univ. Cologne) were added to the annealed DNA and the samples were incubated for 15 minutes at 16°C.

Samples were then mixed with 200 µl of a 50 % slurry of Glutathione Sepharose 4B (Amersham Pharmacia Biotech, lot #279991) in 100 mM sodium phosphate (pH 6.5), 50 mM KCl. The tubes were incubated at 16°C for 30 minutes with regular mixing. The mixture was then transferred to a spin column to separate solid from liquid phases.

Samples were finally eluted from the Glutathione Sepharose

чдр

1()

15

20

- 151 -

4B matrix for 10 minutes at room temperature in 100 μ l of 10 mM reduced glutathione in 50 mM tris-HCl (pH 8.0).

Capture of biotinylated PCR product strands and release of nonbiotinylated strands

All separations were carried out using an Amersham magnetic separator (RPN1682, batch #1).

100 μl of the eluate from the N62D T4 endonuclease VII mismatch-capture reaction, and the pre-enrichment control were each mixed with an equal volume of 4 mg/ml streptavidin-coated colloidal Fe₃O₄ particles in 20 mM tris-HCl (pH 7.4), 2 mM EDTA (pH 8.0), 2 M NaCl. The tubes were incubated at room temperature for 30 minutes with regular mixing.

The streptavidin-coated colloidal Fe $_3O_4$ particles were then washed twice with 500 μ l of 10 mM tris-HCl (pH 7.4), 1 mM EDTA (pH 8.0), 1 M NaCl at room temperature.

The washed streptavidin-coated colloidal Fe $_3$ O $_4$ particles were incubated in 10 μ l of 0.1 M NaOH for 10 minutes at room temperature. The supernatant was removed and added to 2.5 μ l of 2 M HEPES (free acid).

 $5~\mu l$ fractions were finally spotted onto Hybond N+ nylon membranes along with 200 ng, 20 ng, 2 ng, and 200 pg amounts of the following:

C = non-biotinylated #1M single-stranded DNA

(the lower of the two #1M strands shown previously)

D = non-biotinylated #7C single-stranded DNA

(the lower of the two #7C strands shown previously)

25

Probe labelling

Probe labelling was exactly as described in example #3a.

Hybridization

Each membrane was placed in a 55 mm x 35 mm x 21 mm plastic box and 2.5 ml of pre-hybridization solution (5x SSC; Denhardt's solution: 1 % SDS; 10 % dextran sulphate [MW 500,000]; 0.3 % tetrasodium pyrophosphate: 100 μg/ml denatured. sonicated DNA – pre-warmed to 42°C) was added. Each box was closed and incubated at 42°C for 10 minutes on a rocking platform. The pre-hybridization solution was removed and replaced with hybridization solution (5x SSC; Denhardt's solution; 1 % SDS; 10 % dextran sulphate [MW 500.000]; 0.3 % tetrasodium pyrophosphate; 100 μg/ml denatured, sonicated DNA – containing 2.5 μl of the appropriate ³³P-labelled probe) and the box was incubated at 42°C overnight on a rocking platform.

Washing

10

15

20

25

The membranes were drained and transferred to 200 ml of 2x SSC, 0.1 % SDS at 42°C for 10 minutes. A further wash was carried out in 0.2x SSC, 0.1 % SDS at 42°C for 10 minutes. The membranes were rinsed in 2x SSC at room temperature and laid out on blotting paper to remove excess liquid. Once dry, the membrane was covered in Saran Wrap and exposed to a Kodak Phosphor Screen for 1 hour. The phosphor screen was subsequently imaged using a Molecular Dynamics Storm 860 Phosphorimager.

Signal intensities from the spots above were again reported using ImageQuant 5.0 software (Molecular Dynamics), with the SumAboveBG figures being used after drawing a grid over the array of spots.

#1 probe SumAboveBG signals

200 ng	20 ng	2 ng	200 pg	GSH eluted
#1M ssDNA	#1M ssDNA	#1M ssDNA	#1M ssDNA	sample
22418970	3317389	270664	25763	144398
200 ng	20 ng	2 ng	200 pg	Pre-
#7C ssDNA	#7C ssDNA	#7C ssDNA	#7C ssDNA	enrichment
229951	105343	16354	3632	control
				997077

#7 probe SumAboveBG signals

5

200 ng	20 ng	2 ng	200 pg	GSH eluted
#1M ssDNA	#1M ssDNA	#1M ssDNA	#1M ssDNA	sample
117267	42226	9421	2812	113608
200 ng	20 ng	2 ng	200 pg	Pre-
#7C ssDNA	#7C ssDNA	#7C ssDNA	#7C ssDNA	enrichment
3665967	22248096	203869	19406	control
				1135786

Recovery

Elution conditions	#1 signal	#7 signal	#1/#7 signal ratio
	(% input ssDNA)	(% input ssDNA)	
10 mM reduced	14.5 %	10.0 %	1.45
glutathione in 50 mM			
tris-HCl (pH 8.0)			

The enrichment results are presented graphically below:

Dedicated to the memory of Chris Griffin and Richard Beer

25

30

- 155 -

CLAIMS

- 5 1. A method of providing a mixture of DNA fragments enriched in fragments that are characteristic of a phenotype of interest, by providing affected DNA in fragmented form and providing unaffected DNA in fragmented form, which method comprises:
- a) mixing the fragments of the affected DNA and the fragments of the unaffected DNA under hybridising conditions;
 - b) recovering a mixture of hybrids that contain mismatches;
 - c) recovering fragments of the affected DNA from the mixture of hybrids that contain mismatches;

and optionally repeating steps a), b) and c) one or more times.

- 2. The method of claim 1 wherein the affected DNA is pooled DNA of individuals who show the phenotype of interest, and the unaffected DNA is pooled DNA of individuals who do not show the phenotype of interest.
- 3. The method of claim 1, wherein the affected DNA is DNA of one individual who shows the phenotype of interest, and the unaffected DNA is pooled DNA of individuals who do not show the phenotype of interest.
 - 4. The method of claim 1, wherein the affected DNA is DNA of one individual who shows the phenotype of interest, and the unaffected DNA is pooled DNA of a complete set of ancestors who do not show the phenotype of interest.

- 5. The method of claim 1, wherein the affected DNA is DNA from cells of an individual that show the phenotype of interest, and the unaffected DNA is DNA from cells of the individual that do not show the phenotype of interest.
- 6. The method of any one of claims 1 to 5, wherein step b) is performed by use of a mismatch-binding protein.
- 7. The method of any one of claims 1 to 6, wherein either the fragments of the affected DNA or the fragments of the unaffected DNA are tagged by one member of a specific binding pair, and step c) is performed by using the other member of the specific binding pair.
- 8. The method of claim 7, wherein the fragments of the unaffected DNA are tagged with biotin, and step c) is performed by use of immobilised streptavidin.
- 9. The method of any one of claims 1 to 8, wherein the mixture of DNA fragments enriched in fragments that are characteristic of the phenotype of interest, is subjected to self-hybridisation followed by recovery of perfectly matched duplexes.
 - 10. The method of any one of claims 1 to 9, wherein the mixture of DNA fragments enriched in fragments that are characteristic of the phenotype of interest, is mixed with an excess of the fragments of the affected DNA under hybridisation conditions, followed by recovery of perfectly matched duplexes.

11. The method of any one of claims 1 to 10, wherein each of the affected DNA and the unaffected DNA is provided in fragmented form by digestion with from 4 to 7 six-cutter restriction endonuclease enzymes together with from 0 to 5 four-cutter restriction endonuclease enzymes.

12. A mixture of DNA fragments enriched in fragments that are characteristic of the phenotype of interest, provided by the method of any one of claims 1 to 11.

- 10 13. A method of making a set of arrays of fragments of DNA of interest, which method comprises:
 - a) selecting, from a set of n restriction endonuclease enzymes, a subset of r restriction endonuclease enzymes;
 - b) digesting genomic DNA with the subset of r enzymes;
- c) ligating to the resulting fragments restriction-enzyme-cuttingsite-specific adapters with unique polymerase chain reaction amplifiable sequences;
 - d) splitting the resulting fragments into r^2 aliquots;
- e) amplifying each aliquot with two restriction-enzyme-specific primers of which one is tagged;
 - f) forming an array of the r² aliquots of non-tagged amplimer strands; and
 - g) repeating steps a) to f) using one or more different subsets of r restriction endonuclease enzymes.

- 14. A method of making a set of arrays of fragments of DNA of interest, which method comprises:
- a) selecting, from a set of n restriction endonuclease enzymes, a subset of r restriction endonuclease enzymes;
- digesting genomic DNA with the subset of r enzymes;
 - c) ligating to the resulting fragments restriction-enzyme-cuttingsite-specific adapters with unique polymerase chain reaction amplifiable sequences;
 - d) splitting the resulting fragments into r² aliquots;
- e) amplifying each aliquot with two restriction-enzyme-specific primers;
 - f) forming an array of the r² aliquots of the amplimer strands; and
 - g) repeating steps a) to f) using one or more different subsets of r restriction endonuclease enzymes.
 - 15. The method of claim 13 or claim 14, wherein steps a to f) are repeated using each different subset of r restriction endonuclease enzymes to give $\frac{n!}{(n-r)!r!}$ different arrays.
 - 16. The method of any one of claims 13 to 15, wherein the n restriction endonuclease enzymes are selected from 4-cutters and 5-cutters and 6-cutters.
- The method of any one of claims 13 to 16, wherein n is 3 to 10 and r is 2 to 4.
 - 18. The method of claim 17, where n = 6 and r = 3.
- 30 19. A set of arrays of fragments of DNA of interest, which set results from performance of the method of any one of claims 13 to 18.

25

30

- 159 -

- 20. The set of arrays of claim 19, which set results from performance of the method of claim 13 and claim 14 and claim 15.
- 5 21. The set of arrays of claim 19 or claim 20, derived from a set of n = 6 six-cutter restriction endonuclease enzymes which are *BamHI*;

 Bsr GI; Hind III; Ncol; SpeI; and AfIII.
- 22. The set of arrays of claim 19 or claim 20, derived from the set of n = 6 six-cutter restriction endonuclease enzymes which are *EcoRI*; BspHI: BgIII; XbaI; Acc65I; and ApaLI.
 - 23. A nucleic acid characterisation method which comprises presenting to the set of arrays of any one of claims 19 to 22 a nucleic acid fragment of interest under hybridisation conditions, and observing a pattern of hybridisation.
- 24. The method of claim 23, wherein a plurality of nucleic acid fragments of interest are separately presented to the set of arrays, and the resulting patterns of hybridisation are compared.
 - 25. The method of claim 24, wherein the plurality of nucleic acid fragments of interest are drawn from the mixture of DNA fragments, enriched in fragments that are characteristic of a phenotype of interest, of claim 13.
 - 26. A method of identifying fragments of DNA that are characteristic of a phenotype of interest, which method comprises recovering, cloning and amplifying individual DNA fragments from the mixture of DNA fragments of claim 12, presenting the individual DNA fragments to the set of arrays of any one of claims 19 to 22 under

hybridisation conditions, observing a pattern of hybridisation generated by each individual DNA fragment, and subjecting to further investigation any two or more individual DNA fragments whose hybridisation patterns are similar or identical, or near to each other in a genome of interest.

5

10

- 27. A double-stranded DNA molecule having the sequence a-A-b-B...X-y-Y-z where A, B...X and Y are unique restriction sites for n different restriction endonuclease enzymes, and a, b...y, z denotes distances in base pairs, characterised in that each fragment, obtainable by cutting the DNA molecule by means of any one or more up to n of the restriction enzymes. has a different length from every other fragment.
- 28. The double-stranded DNA molecule of claim 27, wherein the following criteria are satisfied:
- 15 a) inter-fragment length differences are greater for larger fragments;
 - b) all possible fragments are unambiguously resolvable by electrophoresis from one another;
 - c) size gaps between bands comprising different numbers of inter-restriction-site units are larger than size gaps between bands comprising the same number of inter-restriction-site units;
 - d) the size gaps and size spread from the largest to the smallest fragment are electrophorectically compatible.

PCT/GB00/00916

PCT/GB00/00916

Figure 2

Vistra Green fluorescence

1 μg of Stratagene Kb DNA Ladder (band sizes: 250 bp, 500 bp, 750 bp, 1 kb, 1.5 kb, 2 kb, 3 kb, 4 kb, 5 kb, 6 kb, 7 kb, 8 kb, 9 kb, 10 kb and 12 kb), 3x gaps, 2 μg of canine genomic DNA digested with 0.25, 0.025, 0.0025, 0.00025, 0.000025, 0.0000025 and 0 U/μl BamH1 / BsrGf / HindIII / Ncol / Spel / AfIII, gap, 0.4 μg of canine genomic DNA and 1 μl of BspEl-released internal control DNA digested with 0.25, 0.025, 0.0025, 0.00025, 0.000025, 0.0000025 and 0 U/μl BamH1 / BsrGf / HindIII / Ncol / Spel / AfIII.

From the results above, the fragment pattern from the internal control DNA is diagnostic of both the degree of digestion and the nature of any partial restriction at less than limit digestion.

Very little digestion of canine genomic DNA and BspEI-released internal control DNA is observed for 0.00025 U/µl BamH1 / BsrG1 / HindIII / NcoI / SpeI / AfIII and fewer units. With 0.0025 U/µl, BamHI and AfIII are both failing to cut more than the other enzymes (the 140 bp and 200 bp bands in 3ic are diagnostic of this). With 0.025 U/µl, most enzymes have cut – though not quite to completion. 0.25 U/µl thus appears to be necessary in order to achieve limit digestion of 20 µg of canine genomic DNA in a volume of 200 µl.

Figure 3 shows the products of the restriction digests after electrophoresis on an 8 % polyacrylamide qel. The numbers 1-5 indicate the dilution of enzyme mix used. 1=0.5 U/μl, 2=0.1 U/μl, 3=0.02 U/μl, 4=0.004 U/μl, and 5=0 U/μl. 'ic' indicates the samples that were spiked with 4 bp cutter internal control DNA. PM indicates that 180 ng of PCR molecular weight markers were added as a size standard.

All five of the partial digestion products are visible in lane ic4, between the top 130 bp band and the bottom 40 bp band, indicating that all three enzymes have failed to cut to completion at 0.004 U/µl. In lane ic3, the four complete digestion products are all visible but the 65 bp band is also present. HaellI and Mbol have digested to completion but the Msel digestion is still partial at 0.2 $U/\mu l$. At 0.1 $U/\mu l$ and at 0.5 U/µl all three enzymes have produced limit digests.

Using the internal control spike, it is a great deal easier to determine the point at which limit digestion has occurred. The undigested internal control DNA is 130 bp. Partial digestion products generate bands of 105 bp, 90 bp, 75 bp, 65 bp, and 55 bp. The products of complete digestion generate bands of 40 bp, 35 bp, 30 bp, and 25 bp. The fragment pattern from the internal control DNA is therefore diagnostic of both the degree of digestion and the nature of any partial restriction at less than limit digestion.

Expected TRSPA-2 pattern for the pNW33 BamHI, HindIII, and AfIII matrix probed with the 140 bp BspEI to BamHI fragment from pNW33

The TRSPA-2 pattern expected for matrix #7 (*BamHI*, *HindIII*, and *AfIII*) hybridized with a ³³P-labelled probe derived from the 140 bp *BspEI* – *BamHI* fragment of pNW33 is shown below:

#7	BamHl	HindIII	AfIII
BamHl	-	HYB	~
HindIII	НҮВ	-	,
AfIII	-	•	•

Observed TRSPA-2 pattern for the pNW33 BamHI, HindIII, and AfIII matrix probed with the 140 bp BspEI to BamHI fragment from pNW33

The TRSPA-2 pattern observed for matrix #7 (*BamHI*, *HindIII*, and *AfIII*) hybridized with a ³³P-labelled probe derived from the 140 bp *BspEI* – *BamHI* fragment of pNW33 is shown below:

Figure 5

Expected TRSPA-2 pattern for the pNW33 Hindlll, Ncol, and Spel matrix probed with the 140 bp BspEl to BamHI fragment from pNW33

The TRSPA-2 pattern expected for matrix #17 (Hindlil, Ncol, and Spel) hybridized with a 33P-labelled probe derived from the 140 bp BspEl - BamHl fragment of pNW33 is shown below:

#17	HindIII	Ncol	Spel
HindIII	HYB	HYB	HYB
Ncol	НҮВ	1	-
Spel	НҮВ	•	-

Observed TRSPA-2 pattern for the pNW33 HindIII, Ncol, and Spel matrix probed with the 140 bp BspEl to BamHI fragment from pNW33

The TRSPA-2 pattern expected for matrix #17 (HindIII, Ncol, and Spel) hybridized with a 33P-labelled probe derived from the 140 bp BspEl - BamHl fragment of pNW33 is shown below:

Please type a plus sign (+) insi	ide this box	→ [+	
----------------------------------	--------------	-------------	--

required)

e type a plus sign (+) inside this box \longrightarrow + PTO/SB/01 (12-97)

Approved for use through 3/30/00. OMB 0651-0032

Palent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

PA-9912 Attorney Docket Number **DECLARATION FOR UTILITY OR** M. Reeve First Named Inventor **DESIGN** COMPLETE IF KNOWN PATENT APPLICATION 09 / 914,604 (37 CFR 1.63) Application Number 28-Aug-2001 Filing Date Declaration ☑ Declaration To be assigned QR Submitted after Initial Group Art Unit Submitted Filing (surcharge (37 CFR 1.16 (e)) with Initial Examiner Name Filing To be assigned

As a below named inven	As a below named inventor, I hereby declare that:					
My residence, post office address, and citizenship are as stated below next to my name.						
I believe I am the original, names are listed below) o	first and sole inventor (if only f the subject matter which is	y one name is listed below) claimed and for which a pat	or an original, fil ent is sought on	rst and joint inver the invention ent	itor (if plural	
Genetic Analys	is					
the specification of which is attached herelo) (Title	e of the Invention)			_	
OR x was filed on (MM/D	08/28/200	1 as United	d States Applica	tion Number or P	CT International	
Application Number 09/	914,604 and w	as amended on (MM/DD/Y)	YYY)		(if applicable).	
I hereby state that I have n	eviewed and understand the ent specifically referred to abo	contents of the above ident	ífied specificatio	n, including the c	laims, as	
	ent specifically referred to about		defined in 37 CF	R 1 56		
acknowledge the daty to t	disclose information which is	material to pateritability as	demica in or or	11 1.00.		
I hereby claim foreign priori certificate, or 365(a) of any America, listed below and ha or of any PCT international a	ity benefits under 35 U.S.C. PCT international application ave also identified below, by application having a filing date	on which designated at leas checking the box, any forei	st ane country (an application fo	other than the U Ir patent or invent	nited States of	
Prior Foreign Application Number(s)	Country	Foreign Filing Date (MM/DD/YYYY)	Priority Not Claimed	Certified Co	py Attached? NO	
99301933.0	EPO	03/12/1999	0000	0000		
☐ Additional foreign applic	Additional foreign application numbers are listed on a supplemental priority data sheet PTO/SB/02B attached hereto:					
			application(s) lis	ited below.		
I hereby claim the benefit under 35 U.S.C. 119(e) of any United States provisional application(s) listed below. Application Number(s) Filing Date (MM/DD/YYYY) Additional provisional application numbers are listed on a supplemental priority data sheet PTO/SB/02B attached hereto.					n a data sheet	

[Page 1 of 2]
Burden Hour Statement: This form is estimated to take 0.4 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

PTO/SB/02A (3-97)
sign (+) inside this box

Approved for use through 9/30398. OMB 0651-0032

Palent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

DECLARATION

ADDITIONAL INVENTOR(S) Supplemental Sheet Page 1 of 1

Name of Additional Joint Inventor, if any:				A petition has been filed for this unsigned inventor						
Given Name (first and middle [if any])				Family Name or Surname						
Nicholas lan				Workman						
Inventor's Signature	N.Z. Wohman						Date Zoc		6 OCT 2001	
Residence: City		State		c	ountry	GB		Citizens	hip	GB
Post Office Address	4 Cranford Court, Aylesbury									
Post Office Address	Buckinghamshire, Great Britain HP21 7NZ GBN									
City		State			ZIP		Countr	у		
Name of Addition	onal Joint Inventor, if any: A petition has been filed for this unsigned inventor									
Given Nar	me (first and middle [if any]) Family Name or S						Surname			
<u>Luis</u>	Martin-Parras									
Inventor's Signature	Jum awal 16 oct 2001									
Residence: City		State			Country	GB		Citizer	nship	ES
Post Office Address	7 Gladstone Rise, High Wycombe									
Post Office Address	Buckinghamshire, Great Britain HP13 7NW GBN									
City		State			ZIP Count		try			
Name of Additional Joint Inventor, if any: A petition has been filed for this unsigned inventor									entor	
Given Name (first and middle [if any]) Family Name or						ne or S	Surname			
Inventor's Signature								Da	te	
Residence: City		State			Country			Citize	nship	
Post Office Address										
Post Office Address									1	
City		State			ZIP			Country		

Burden Hour Statement: This form is estimated to take 0.4 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

9	1	0
		2
đ		S.
4	Ē	Š
L	J	J

Please type a plus sign (+) inside this box 👄

Additional inventors are being named on the 1

PTO/SB/01 (12-97)

s sign (+) inside this box + + Approved for use through 9/30/00. OMB 0651-0032

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains

DECLARATION -- Utility or Design Patent Application

I hereby claim the benefit under 35 U.S.C. 120 of any United States application(s), or 365(c) of any PCT international application designating the United States of America, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application. U.S. Parent Application or PCT Parent Parent Filing Date Parent Patent Number Number (MM/DD/YYYY) (if applicable) PCT/GB00/00916 03/10/2000 Additional U.S. or PCT international application numbers are listed on a supplemental priority data sheet As a named inventor, I hereby appoint the following registered practitioner(s) to prosecute this application and the As a named inventor, Thereby appoint in the same of th OR Registered practitioner(s) name/registration number listed below Registration PATENT TR PHINGO Name Number Additional registered practitioner(s) named on supplemental Registered Practitioner Information sheet PTO/SB/02C attached hereto Direct all correspondence to: 🔲 Customer Number 22840 OR Correspondence address below or Bar Code Label Name Address Address City State 7IP Telephone I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. A petition has been filed for this unsigned inventor Name of Sole or First Inventor: Given Name (first and middle [if anv]) Family Name or Surname Michael Alan Reeve Inventor's 200 Signature GB Residence: City GB Country Citizenship 118 St. Andrews Road, Henley-on-Thames Post Office Address Oxfordshire, Great Britain RG9 1PL GBM Post Office Address City Country

supplemental Additional Inventor(s) sheet(s) PTO/SB/02A attached heret