2024학년도 2학기

문제해결프로그래밍 강의 13주차

2024.12.05

지난시간 복습

- 1. 사회적 거리두기 단계에 따른 감염 양상은?
 - 2. 사회적 거리두기 몇 단계가 효과적일까?

SEIHR 모델 (병원 및 격리가 추가된 모델)

$$\frac{d}{dt}S(t) = -\beta S(t)\frac{I(t)}{N} + \delta R(t)$$

$$\frac{d}{dt}E(t) = \beta S(t) \frac{I(t)}{N} - \alpha E(t)$$

$$\frac{d}{dt}I(t) = \alpha E(t) - \theta I(t) \longleftarrow$$
신규 감염자

$$\frac{d}{dt}H(t) = \theta I(t) - \gamma H(t)$$

$$\frac{d}{dt}R(t) = \gamma H(t) - \delta R(t)$$

사회적 거리두기 단계 (SD)에 따라 우리의 모델은 어떤 것이 변화하나? β

 β 와 SD는 어떤 관계가 있는가? SD \uparrow β \downarrow

β 감소율과 SD를 함수 형태로 나타낼 수 있는가?

Sin 함수로 생각해 보자.

X축은 SD, y축은 β 감소율 이다.

그리고 기본 SD 1단계라고 할 때, 이 제곱근 함수는 점 (SD, β 감소율) = (1,0) 를 지난다.

그러므로

 β 감소율 = sinA(SD - 1)

$$\beta$$
 감소율 = $sinA(SD - 1)$

A값은 어떻게 구할 수 있을까?

우리는 쉽게 사회적 거리두기가 완전 봉쇄 단계라고 할 때, β 감소율 = 1 이라는 것을 알 수 있다.

우리 정부는 2020년 8월에 사회적 거리두기를 1~3단계까지 정의했으며, 실제로 시행한 가장 높은 단계가 2.5단계였다.

따라서 우리는 임의로 3단계가 완전 봉쇄 단계라고 가정해보자.

최종적으로 β 감소율과 SD의 함수는 다음과 같다.

$$\beta$$
 감소율 = $sin\frac{\pi}{4}(SD-1)$

2주간(8.16~) 서울·경기지역 사회적 거리 두기 2단계 격상

서울시와 경기도의 주민들께서는 앞으로 <mark>2주간은 모임이나 외출을 삼가시고,</mark> 꼭 필요한 외출 외에는 **집에 머물러 주실 것**을 부탁드립니다.

- 01. 집합·모임·행사*자제 권고 '실내50인, 실외 100인 이상
- 02. 클럽 등 일부 고위험시설 추가 방역 수칙 의무화
- 03, 위험도가 높은 다중이용시설* 핵심 방역수칙 준수 의무화 *학원, 결혼식장, 장례식장, 영화관, 목욕탕 등
- 04. 실내 국공립시설 이용인원 제한
- 05. 스포츠 행사 무관중 경기 전환
- 06. 학교 원격수업 전환 권고 집단발생지속발생한시군구
- 07. 기관·기업 유연·재택근무 등을 통해 근무인원 제한 권고

수도권 등 사회적 거리 두기 1.5단계 격상 (11.19.(목) 0시부터, 2주간)

수능시험(12.3.) 대비 수능특별방역기간 설정 및 방역관리(11.19.~)

- #1 수도권·강원도 일부 지역, 2주간 식사동반 모임 취소 권고
 - 재택근무·점심시간 시차 운영, 시차출퇴근제 권고
- #2 1.5단계 격상 조치에 따른 강화된 방역 조치
 - 일반관리시설 이용 인원 4m당 1명 제한, 좌석 띄우기 실시
 - 중점관리시설 중 유흥시설 춤추기·좌석 간 이동 금지, 노래연습장·공연장 음식섭취 금지
 - 국·공립 시설 이용 인원 50% 제한, 스포츠 관람 30% 관중 입장 제한
 - 사회복지시설 운영 유지 및 긴급돌봄 등 제공
 - 위험도 높은 집합·모임(집회·시위, 대규모 콘서트, 학술행사, 축제 등) 100인 미만 인원 제한
 - 종교활동 좌석 30% 이내 인원 제한, 소모임·식사 등 금지

정부에서 일반적으로 사회적 거리두기 전략을 2주 간격으로 정하고 있다.

그럼 SD가 각각

- 1단계
- 1.5단계
- 2단계
- 2.5단계
- 3단계

일 때, 2주간 신규 감염자가 어떻게 될 지 예측해보자.

새로운 COVID-19 감염자 데이터 (2020년 8월)

정부의 사회적거리두기 적용 시기

2020-08-03 2020-08-04 13 2020-08-05 13 2020-08-06 23 2020-08-07 2020-08-08 30 2020-08-09 30 2020-08-10 17 2020-08-11 23 2020-08-12 35 2020-08-13 47 2020-08-14 2020-08-15 154 2020-08-16 267 2020-08-17 188 2020-08-18 235 2020-08-19 283 276 2020-08-20 2020-08-21 315 2020-08-22 315 2020-08-23 386 2020-08-24 258 2020-08-25 264 2020-08-26 307 2020-08-27 434 2020-08-28 359 2020-08-29 308 2020-08-30 283

date

Cases

거리두기 적용전 (13일)

거리두기 적용후 (14일)

2주간 예측을 위해 새로운 시간과 추정한 $oldsymbol{eta}$, 8월 16일의 초기값을 정의한다.

$$beta = param.x$$

import math

Sin, π 등 수학 함수를 사용하기 위한 라이브러리

```
def beta_SD(SD):
  return math.sin(math.pi * (SD.item() - 1) / 4)
```

 β 감소율 함수를 정의하자.

$$\beta$$
 감소율 = $sin\frac{\pi}{4}(SD-1)$

결과를 result_SD에 데이터프레임 형식으로 저장해보자.

```
result_SD=pd.DataFrame()
```

```
for SD in np.linspace(1.0,3.0,5):
  result_SD.loc[0,'SD_'+str(SD)] = pred_cases[n1]
  for num,i in enumerate(range(n1,n)):
    y[i+1,:] = rk4_SD(f_SD, y[i,:], h, SD) SD적용
    result_SD.loc[num+1,'SD_'+str(SD)] = theta*y[i,2]
```

신규 감염자를 result에 입력

SD를 1부터 0.5간격으로 3까지		SD_1.0	SD_1.5	SD_2.0	SD_2.5	SD_3.0
,5): ()] = pred_cases[n1] e(n1,n)): [i,:], h, <u>SD</u>) SD적용 estr(SD)] = theta*y[i,2]	0	230.219123	230.219123	230.219123	230.219123	230.219123
	1	321.982888	321.982888	321.982888	321.982888	321.982888
	2	450.319171	431.246490	415.379780	404.932597	401.293418
	3	629.800384	551.387512	488.992376	449.326586	435.775001
	4	880.801849	692.498153	552.468593	468.201951	440.289482
	5	1231.809281	863.470714	611.620951	470.408069	425.514836
	6	1722.640626	1073.467338	670.011392	461.938062	399.033123
	7	2408.941567	1332.889479	729.886320	446.837827	366.148329

결과를 그림으로 그려보자.

```
SD 1.5
                                                                   SD 2.0
                                                                   SD 2.5
                                                           600
                                                         Population
                                                                --- SD 3.0
                                                           400
plt.figure(figsize=(7,4))
                                                           200
plt.plot(time, data['Cases'], '*k')
plt.plot(time[:n1+1],pred_cases[:n1+1],'r')
                                                                                10
                                                                                       15
                                                                                               20
                                                                                    time
for i in np.linspace(1.0,3.0,5):
  plt.plot(time[n1:],result_SD['SD_'+str(i)],'--')
plt.xlabel('time')
plt.ylabel('Population')
plt.ylim([0,1000])
plt.legend(('Observed', 'Fitting', 'SD_1.0', 'SD_1.5', 'SD_2.0', 'SD_2.5', 'SD_3.0'), loc='best')
plt.show()
```

Observed **Fitting** SD 1.0

25

코로나로 인해 발생할 수 있는 피해는?

- 감염으로 인한 피해
- 사망으로 인한 피해

거리두기로 인해 발생할 수 있는 피해는?

- 오프라인 매장 영업 피해 (이용객 감소, 이용시간 감소)
- 관련 중소, 대기업 적자
- 소비 불황
- 정부의 방역체계에 따른 관리 비용

코로나 감염과 사망으로 인한 직접 피해 비용과 거리두기로 인한 피해 비용

어떻게 계산할 수 있을까?

- 직접 의료비
 실제 감염자의 치료에 필요한 비용
- 감염자의 치료 비용
- 코로나-19 진단검사 비용
- 비의료비
 의료비를 제외한 직접비용
- 역학조사비용
- 역학조사관 인건비
- 데이터 구축비
- 육아 및 가사노동 비용
- 3. 간접비 확진자와 격리대상자가 일하지 못해 발생하는 경제적 비용
- 확진자의 경제적 손실비용
- 격리대상자의 경제적 손실 비용

코로나19로 인한 질병비용은 얼마나 들까

연합뉴스가 코로나19 유행 시나리오를 바탕으로 코로나19 질병비용 분석 (사회적 거리두기로 인한 영업중단, 등교연기 등에 의해 파생된 경제적 손실 제외)

환자 1명당 최소 4,400만원

1명의 코로나19 슈퍼전파자가 4일 후 21명을 집단으로 감염시키고, 이들 21명이 4일 후 3.5명씩 감염시켜 8일간 총 95.5명의 환자가 발생했다고 가정

● 직접 의료비

- 1인당 **625**만원
- •95,5명이총 **5억9,673**만원

무증상 경증환자:

4억6,327만원

중증환자:

1억3,346만원

② 비직접 의료비

- 1인당 **430**만원
- · 총 **4**억원

역학조사 비용: 620만원

데이터 관리비:2억7,000만원

육아 및 가사노동 비용:

1억3,100만원

③ 간접비 (노동손실액*

- •1인당 3,370만원
 - ·총 32억1,475만원

격리대상자 1인당: 77만원

확진자 1인당: 155만원

◆확진자 1명당 접촉자 수십명 격리

*확진자와 격리대상자가 일하지 못해 발생한 경제적 손실

자료/ 질병관리본부, 건강보험공단 등

⑦연압뉴스

김영은 기자 / 20200518

트위터 @yonhap_graphics 페이스북 tuney,kr/LeYN1

재난지원금 14.3조+7.8조+9.3조+20.6조+8.6조 =60.6조 코로나 대략 600일 60.6조/600일=1010억

24일 국회는 본회의에서 총 34조9000억 원 **규모**의 추경안을 통과했다. 이 중 5차 재난지원금으로 쓰이는 금액은 총 8조6000억 원으로, 국민 87.7%에게 1인당 25만 원씩 지급할 예정이다. 1인 가구 기준 연소득 5000만 원 이상의 고소득자는 제외된다. 2021, 7, 26.

1 11 11 11 11 11 11 11 11 11 11

거리두기 비용 SD 2차 함수로 생각해 보자.

X축은 SD, y축은 거리두기 비용이다.

그리고 기본 SD 1단계라고 할 때, 이 제곱근 함수는 점 (SD, 거리두기 비용) = (1,0) 를 지난다.

또한 3단계 봉쇄비용이 C라고 가정하면,

(SD, 거리두기 비용) = (3,C) 를 지난다. 그때 이 두점을 지나는 2차함수는?

거리두기 비용 =
$$\frac{C}{4}(SD-1)^2$$

그러므로 하루 3단계 SD 비용(c)에 따라 최적의 SD 결과가 달라질 것이다. 그래서 다음과 같이 비용(c)이

- 100억
- 300억
- 500억
- 1000억
- 5000억

일 때, 2주간 최적의 SD와 그에 따른 신규 감염자 양상을 추정해 보자.

```
#C 봉쇄비용이라 가정

def Cost_SD(C,SD):
  return C*((SD-1)**2)/4
```


거리두기 비용 =
$$\frac{C}{4}(SD-1)^2$$

C 비용에 따른 최적의 SD를 계산하는 코드를 구현해보자.

```
bound_SD = (1.0,3.0) ← SD는 1-3단계 범위
SD_0 = 2.0 ← 최적화를 위한 SD 초기값
for num, C in enumerate(Max_cost):
 SD_optimal = minimize(Obj_cost, SD_O, method = 'SLSQP', bounds = (bound_SD,))
                                                                         Minimize 사용
 optimal_cost_SD[num] = SD_optimal.x.item() ← 최적의 SD 결과저장
 optimal_result.loc[0, 'Cost_'+str(C)] = pred_cases[n1]
 for num, i in enumerate(range(n1,n)):
   y[i+1,:] = rk4_SD(f_SD, y[i,:], h, SD_optimal.x) 			 최적의 SD에 따른 모델 시뮬레이션
   optimal_result.loc[num+1, 'Cost_'+str(C)] = theta*y[i,2]
                                             최적의 SD에 따른 신규 감염자 저장
```

C 비용에 따른 최적의 SD 결과를 확인해보자.

```
optimal_cost_SD
array([2.68123262, 2.38494523, 2.23391812, 2.03061997, 1.59553633])
```

100억 300억 500억 1000억 5000억

사회적 SD 비용이 비쌀 수록 감염자를 줄이기 위한 강한 거리두기를 하기 주저하게 된다.

C 비용에 따른 최적의 SD를 적용했을때, 신규 감염자 양상을 확인해보자.

```
Cost 100
                                                                         Cost 300
                                                                         Cost 500
plt.figure(figsize=(7,4))
                                                                          Cost 1000
                                                                       --- Cost 5000
plt.plot(time,data['Cases'],'*k')
                                                                  400
plt.plot(time[:n1+1],pred_cases[:n1+1],'r')
                                                                  200
for C in Max cost:
  plt.plot(time[n1:],optimal_result['Cost_'+str(C)],'--')
                                                                                            15
                                                                                                    20
                                                                                                           25
plt.xlabel('time')
                                                                                          time
plt.ylabel('Population')
plt.ylim([0,1000])
plt.legend(('Observed', 'Fitting', 'Cost_'+str(Max_cost[0]), 'Cost_'+str(Max_cost[1]),
             'Cost_'+str(Max_cost[2]),'Cost_'+str(Max_cost[3]),'Cost_'+str(Max_cost[4])),loc='best')
plt.show()
```

Observed

조별 발표 순서 및 시간

1번: 1조. 14:00~14:20

2번: 4조. 14:20~14:40

3번: 2조. 14:40~15:00

4번: 3조. 15:10~15:30

5번: 5조. 15:30~15:50

6번: 9조. 16:00~16:20

7번: 7조. 16:20~16:40

8번: 6조. 16:40~17:00

과제 평가 기준

발표 평가 (15점)

- 1. 발표 내용의 논리적 구성과 흐름 (4점)
- 2. 아파트값 예측에 대한 완성도와 정확도 (4점)
- 3. 발표 능력 및 청중전달 능력 (4점)
- 4. 발표 시간관리와 질의응답 (3점)

기말고사

시험 시간: 2024년 12월 19일 14:00~15:50

코딩: 2문제 (15점+15점=30점, 부분 문항 있음)

코딩외 추가문제: 10문제(1점*10=10점)

코딩 시험 : 본인이 자필로 필기한 내용 참고 가능 (분량 무제한)

ppt 및 프린트 (안됨), 수업시간 진행한 코딩(안됨)

분류 예제

- 1. 데이터을 받고 train, test 나누기
- 2. GridSearch 알고리즘 적용
- 3. 머신러닝 학습후 오차행렬과 4가지 정확도 계산
- 4. ROC 곡선을 구현하고 AUC 값 계산
- 5. 특정 데이터가 주어졌을 때, 학습한 모델로 분류 결과 판단

미분방정식과 최적화 예제

- 1. 제시된 미분방정식을 제시하고 시뮬레이션 하기.
- 2. 실제 데이터와 미분방정식의 시뮬레이션 값 비교 (예 : 실제 데이터의 신규 감염자와 모델의 신규감염자) .
- 3. 최소화 해야할 목적을 주고 목적함수를 구현 및 minimize를 사용해 최소값과 그때의 변수를 추정하는 문제.

