Single Neuron Models

吴思 心理与认知科学学院 麦戈文脑科学研究所 北大--清华生命科学联合中心 北京大学

Neuronal state: Membrane potential

$$V_m = V_{in} - V_{out}$$

Dynamics of single Ion channels

2

Properties of Ion Channels

单个离子通道的开放特性:

- 1) All-or-none 全或无
- 2) small current 微小电流
- 3) stochastic 开放概率
- 4) ion permeation 通透的离子选择性
- 5) Gating 门控开关

4

Types of Ion Channels

- A) 电压门控 Voltage-gated channel: K+, Na+, Ca2+, Cl-, HCN channels
- B) 配基(递质)门控 Ligand-gated channel : glutamate/GABA receptor channels;
- C) 蛋白(磷酸化)修饰门控 Phosphorylation-gated channel
- D) 机械张(压)力门控 Pressure-gated channel

Voltage-gated Na+ channel

关闭 → 激活(开放) → 失活 → 去失活

Ion selectivity of channels

- 1) 合适的通过孔道和水合离子的大小
- 2) 孔道壁上相反的弱电荷氨基酸
- 3) 疏水性氨基酸

K⁺ channels are 100-fold more permeable to K⁺ than to Na⁺.

Na⁺ channels are 10~20-fold more permeable to Na⁺ than to K

Water-filled pore:

R_K: 0.133 nm R_{Na}: 0.095 nm

Speciality of Membrane

- Permeability of the membrane
- Ions types: Potassium, Sodium, Calcium and Chloride
- Ion channel types:
 - Leakage channel: always open
 - Voltage-gated channel: sensitive to the magnitude of membrane potentials
 - Neurotransmitter -gated channel: sensitive to neurotransmitters
 - Ion bump: generating concentration difference for ions within and outside the cell
 - And others

Resting membrane potential

静息膜电位

Ion gradient results from the activity of ion transporters

The Na+-K+ pump (ATPase, Na-K ATP泵) Na-K-Cl-pump (NKCC1, NKCC2)

Segregation of ions by the cell membrane

Electrochemical gradient

电化学梯度 (电化学势)

lon	Concentration outside (in mM)	Concentration inside (in mM)	Ratio Out : In
K ⁺	5	100	1:20
Na ⁺	150	15	10:1
Ca ²⁺	2	0.0002	10,000 : 1
Cl-	150	13	11.5 : 1

Equilibrium potential: 平衡电位

Resulting from a selectively permeable membrane

K+,带负电的蛋白质A: 内>外

胞内K+与带负电的蛋白质浓度 >> 细胞外浓度; 静息时膜只对K+通透

- →K+顺浓度差由胞内移到细胞外,负电的蛋白质离子不能透出细胞,
- →K+外移造成膜内变负而膜外变正,
- \rightarrow "外正内负"的状态可随K+的外移而增加,同时,K+外移形成的电势差阻碍K+的进一步外移,
- →达到一种因浓度差和电势差的平衡,使K+内外移动量相同,无净电流。

Equilibrium potential: 平衡电位

平衡电位 Nernst Equation:

RT/F = 25 mV at 25 °C, and the constant for converting from log_{10} to log_2 is 2.3:

$$Ex = \frac{RT}{zF} \ln \frac{[X]o}{[X]i}$$

$$Ex = \frac{58 \text{ mV}}{z} \log \frac{[X]o}{[X]i}$$

R: 气体常数; T: 绝对温度; F: 法拉第常数; z: 离子电荷数

例:
$$E_k = \frac{58 \text{ mV}}{1} \log \frac{2.5}{140} = -101 \text{ mV}$$

Resting membrane potential

- Ion pump generates concentration difference of ions; Under natural force, ions diffuse from high to low concentrations
- •Positive charged ions (cations) leak through leakage channels, but the membrane is not permeable to the anions binding to cations; A electrical potential is generated.
- •A balance is reached between the electrical and the diffusion forces

Action potential

动作电位

Action potential recorded

ION channel dynamics of Spike

Na+内流总量

Hodgkin & Huxley revealed the ionic mechanisms for action potential.

The Status of Channels

The Minimal Mechanism of Spiking

Depolarization Phase:

- The membrane voltage change triggers the opening of voltage-gated sodium channels
- The influx of sodium depolarizes the neuron (up to V=+65mV)

Hyper-polarization Phase:

- The sodium channels become inactive at around 1ms after their opening
- Meanwhile, the potassium channels open—the efflux of potassium ions overshoots the resting potential (down to V=-80mV).

Re-setting phase

- The hyper-polarization causes the close of potassium and sodium channels
- Ion bump may be called to retain the concentration gradients of potassium and sodium ions

HH Model (1)

- Neuron as a capacitor: the membrane potential V, the capacitance C, the excess internal charge Q: Q=CV.
- The reversal potential E_i (i index the ion type): the equilibrium potential that balance the diffusion force.

$$(K+: -70\sim -90 \text{mV}, \text{Na}+: 50 \text{mV})$$

- The membrane current I_i: the net movement of ion i across the membrane due to the opening of voltage-gated channels.
- The electrical conductance g_i (the inverse of resistance): reflecting the number of opening channels for the ion i (sensitive to voltage).

HH model (2)

- For ion i: $I_i = g_i(V E_i)$
- The leakage current (g_L constant): $I_L = g_L(V E_L)$
- The dynamics of the membrane potential:

$$C\frac{dV}{dt} = -\sum_{i} g_{i}(V - E_{i}) - g_{L}(V - E_{L}) + I(t)$$

where I(t) represents the external current, e.g., the current from the neurotransmitter-gated channels.

Dynamics of HH Model

■ The Hodgkin-Huxley equation:

$$C\frac{dV}{dt} = -g_L(V - E_L) - g_k(V - E_K) - g_{Na}(V - E_{Na}) + I(t)$$

■ The voltage-sensitive conductance

$$g_k = \overline{g}_k \cdot n^4$$
$$g_{Na} = \overline{g}_{Na} \cdot m^3 h$$

 \overline{g}_k , \overline{g}_{Na} : the maxium conductances n,m & h are time variables

 n^4 : the activation of K^+ channels

 m^3 : the activation of Na^+ channels

h: the inactivation of Na^+ channels

Eg: The dynamics of g_K

■ The channel activation is determined activities of 4 independent subunit gates. The probability of each subunit open is n.

Thus
$$g_k = \overline{g}_k \cdot n^4$$

■ Consider the opening and closing rates of one subunit gate are $\alpha(V)$ and $\beta(V)$, respectively,

$$\frac{dn}{dt} = \alpha(V)(1-n) - \beta(V)n$$

$$\tau_n \frac{dn}{dt} = -[n - n_{\infty}(V)]$$

where
$$\tau_n(V) = \frac{1}{\alpha(V) + \beta(V)}$$
$$n_{\infty} = \frac{\alpha(V)}{\alpha(V) + \beta(V)}$$

$\alpha(V), \beta(V), n_{\infty} \text{ and } \tau_n$

The dynamics of *n*,*m*,*h*

$$\tau_n \frac{dn}{dt} = -[n - n_{\infty}(V)]$$

$$\tau_m \frac{dm}{dt} = -[m - m_{\infty}(V)]$$

$$\tau_h \frac{dh}{dt} = -[h - h_{\infty}(V)]$$

Predictions of the HH model

- •The membrane potential. External input was initiated at t=5ms
- •The membrane current (the summation of Na+ and K+ currents)
- •The dynamics of m
- •The dynamics of h

•The dynamics of n

Stereo-typed action potential

动作电位:(1或0)

The Simplified Integrate-and-Firing Model

•The simplest I & F model
$$\tau \frac{dV}{dt} = -V + I(t)$$

V: the membrane potential

I(t): the external input

 τ : the time constant

the term (-V) represents the leaky effect

If
$$V > V_{threshold}$$

the neuron fires, sending out a signal to connected neurons, and *V* is reset to be 0.

The Synapse

- Chemical Synapse: Action potential triggers the release of neurotransmitter
- •Neurotransmitters diffuse across the synaptic cleft
- •Neurotransmitter-gated channels open, generating postsynaptic potential
- •Dependent on the sign of PSP, synapses are clarified as excitatory and inhibitory ones.

Synaptic current

$$\tau \frac{dV}{dt} = -V + w \sum_{i} \delta(t - t_i)$$

Synapse Efficacy=Connection Weight