# Unit 4.7: Transfer Functions for Circuit Analysis

# Contents

- Agenda
- Transfer Functions for Circuits
- Examples 14
- Summary
- Next time
- References
- Matlab Solutions

The preparatory reading for this section is <u>Chapter 4.4 [Karris, 2012]</u> which discusses transfer function models of electrical circuits. We have also adapted content from <u>3.6 The System Function</u> from [Hsu, 2020].

Follow along at <u>cpjobling.github.io/eg-150-textbook/laplace\_transform/7/tf\_for\_circuits</u>



# Agenda

In this unit, we will explore how transfer functions introduced in <u>Unit 4.6: Transfer Functions</u> can be applied to the analysis of circuits.

- Transfer Functions for Circuits
- Examples 14

```
% Initialize MATLAB clearvars cd ../matlab pwd format compact
```

```
ans =
```

 $'/Users/eechris/code/src/github.com/cpjobling/eg-150-textbook/laplace\_transform/matlab'$ 

## **Transfer Functions for Circuits**

When doing circuit analysis with components defined in the complex frequency domain, the ratio of the output voltage  $V_{\mathrm{out}}(s)$  to the input voltage  $V_{\mathrm{in}}(s)$  under zero initial conditions is of great interest.

This ratio is known as the *voltage transfer function* denoted  $G_v(s)$ :

$$G_v(s) = rac{V_{
m out}(s)}{V_{
m in}(s)}$$

Similarly, the ratio of the output current  $I_{\text{out}}(s)$  to the input current  $I_{\text{in}}(s)$  under zero initial conditions, is called the *current transfer function* denoted  $G_i(s)$ :

$$G_i(s) = rac{I_{
m out}(s)}{I_{
m in}(s)}$$

In practice, the current transfer function is rarely used, so we will use the voltage transfer function denoted:

$$G(s) = rac{V_{
m out}(s)}{V_{
m in}(s)}$$

# Examples 14

We will work through these and demonstrate the MATLAB solutions in class.

# Example 14.1

Derive an expression for the transfer function G(s) for the circuit shown in Fig. 67.

In this circuit  $R_g$  represents the internal resistance of the applied (voltage) source  $v_s$ , and  $R_L$  represents the resistance of the load that consists of  $R_L$ , L and C.



Fig. 67 Circuit for Example 14.1

#### Sketch of Solution for Example 14.1

- ullet Replace  $v_s(t)$ ,  $R_g$ ,  $R_L$ , L and C by their transformed (complex frequency) equivalents:  $V_s(s)$ ,  $R_g$ ,  $R_L$ , sL and 1/(sC)
- Use the Voltage Divider Rule to determine  $V_{
  m out}(s)$  as a function of  $V_s(s)$
- $\bullet \ \ \mbox{Form} \ G(s)$  by writing down the ratio  $V_{
  m out}(s)/V_s(s)$

Switch to virtual whiteboard in OneNote.



#### Worked solution for Example 14.1

Pencast: ex6.pdf - open in Adobe Acrobat Reader.

#### **Answer for Example 14.1**

$$G(s) = rac{V_{ ext{out}}(s)}{V_s(s)} = rac{R_L + sL + 1/sC}{R_q + R_L + sL + 1/sC}.$$

### Example 14.2

Compute the transfer function for the op-amp circuit shown in <u>Fig. 68</u> in terms of the circuit constants  $R_1$ ,  $R_2$ ,  $R_3$ ,  $C_1$  and  $C_2$ .



Fig. 68 OpAmp circuit for Example 14.2

Then replace the complex variable s with  $j\omega$ , and the circuit constants with their numerical values and plot the magnitude

$$|G(j\omega)| = rac{|V_{
m out}(j\omega)|}{|V_{
m in}(j\omega)|}$$

versus radian frequency  $\omega$  rad/s.

#### Sketch of Solution for Example 14.2

- Replace the components and voltages in the circuit diagram with their complex frequency equivalents
- ullet Use nodal analysis to determine the voltages at the nodes either side of the 50K resistor  $R_3$

#### Sketch of Solution for Example 14.2 (continued)

- Note that the voltage at the input to the op-amp is a virtual ground
- Solve for  $V_{\mathrm{out}}(s)$  as a function of  $V_{\mathrm{in}}(s)$
- ullet Form the reciprocal  $G(s) = V_{
  m out}(s)/V_{
  m in}(s)$

Switch to virtual whiteboard in OneNote.

Solve in OneNote

#### Answer for Example 14.2

$$G(s)=rac{V_{
m out}(s)}{V_{
m in}(s)}=rac{-1}{R_1\left((1/R_1+1/R_2+1/R_3+sC_1
ight)(sC_2R_3)+1/R_2
ight)}$$
 (41)

#### Worked solution for Example 14.2

Pencast: <u>ex7.pdf</u> - open in Adobe Acrobat Reader.

#### Sketch of Solution for Example 14.2 (continued)

- ullet Use MATLAB to calculate the component values, then replace s by  $j\omega$ .
- Compute  $|G(j\omega)|$  and plot on log-linear "paper".

#### The Matlab Bit

Set up the symbols we will be using. In this case just the Laplace complex frequency  $\boldsymbol{s}.$ 

syms s

Now define the values of the components

```
R1 = 200*10^3;

R2 = 40*10^3;

R3 = 50*10^3;

C1 = 25*10^(-9);

C2 = 10*10^(-9);
```

Define the transfer function derived from analysis (Eq. eg:ex14.2)

```
den = R1*((1/R1+ 1/R2 + 1/R3 + s*C1)*(s*R3*C2) + 1/R2)
```

```
den =
```

```
100*s*((7555786372591433*s)/302231454903657293676544 + 1/20000) + 5
```

Simplify coefficients of s in the denominator. Note sym2poly converts a symbolic polynomial with numerical coefficients into a MATLAB polynomial.

```
format long
denG = sym2poly(den)
```

Now define the denominator

```
numG = -1;
```

#### Plot the frequency response

For convenience, define coefficients a and b:

```
a = denG(1);
b = denG(2);
```

$$G(j\omega) = \frac{-1}{a\omega^2 - jb\omega + 5}$$

```
\begin{cases} w = 1:10:10000; \\ Gw = -1./(a*w.^2 - j.*b.*w + denG(3)); \end{cases}
```

Plot  $|G(j\omega)|$  against  $\omega$  on log-lin "graph paper".

```
semilogx(w, abs(Gw))
xlabel('Radian frequency w (rad/s')
ylabel('|Vout/Vin|')
title('Magnitude Vout/Vin vs. Radian Frequency')
grid
```



Note that this is a low-pass filter. Sinusoids at low frequencies are passed with a gain of 0.2. For frequencies above around 100 ra/s, the filter starts to reduce the attenuation of the passed signal. At 10,000 rad/s, the attenuation is 1/10 of the attenuation at 1 rad/s.

# Summary

In this unit, we will explored how transfer functions introduced in <u>Unit 4.6: Transfer Functions</u> can be applied to the analysis of circuits.

- Transfer Functions for Circuits
- Examples 14

# Take Away

The ratio of the output voltage  $V_{\rm out}(s)$  to the input voltage  $V_{\rm in}(s)$  under zero initial conditions is of great interest. We call this ratio the *voltage transfer function* 

$$G_v(s) = rac{V_{
m out}(s)}{V_{
m in}(s)}$$

We can consider other ratios such as the current transfer function

$$G_i(s) = rac{I_{
m out}(s)}{I_{
m in}(s)}$$

but in practice this is rarely used.

# Next time

We explore the facilties provided by other toolboxes in MATLAB, most notably the *Control Systems Toolbox* and the simulation tool Simulink in <u>Unit 4.8: Computer-Aided Systems Analysis and Simulation</u>. We will also look at some of the problems you have studied in **EG-152 Analogue Design** hopefully confirming some of the results you have obbserved in the lab.

• Unit 4.8: Computer-Aided Systems Analysis and Simulation

## References

[Hsu20] Hwei P. Hsu. Schaums outlines signals and systems. McGraw-Hill, New York, NY, 2020. ISBN 9780071634724. Available as an eBook. URL: https://www.accessengineeringlibrary.com/content/book/9781260454246.

[Kar12] Steven T. Karris. Signals and systems with MATLAB computing and Simulink modeling. Orchard Publishing, Fremont, CA., 2012. ISBN 9781934404232. Library call number: TK5102.9 K37 2012. URL: <a href="https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?docID=3384197">https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?docID=3384197</a>.

# Matlab Solutions

For convenience, single script MATLAB solutions to the examples are provided and can be downloaded from the accompanying <u>MATLAB</u> folder.

• ex:14.2 [example\_14.2.mlx]

By Dr Chris P. Jobling
© Copyright Swansea University (2023).

This page was created by <u>Dr Chris P. Jobling</u> for <u>Swansea University</u>.