Properties of the Error Locator and the Error Evaluator Polynomials

Let $S(x) = S_1 + S_2 x + \ldots + S_{2t} x^{2t-1}$ be the syndrome polynomial where

$$S_i = \sum_{l=1}^{\nu} \delta_l \beta_l^i, \tag{1}$$

 $1 \le \nu \le t$, the δ_l 's are nonzero elements, and the β_l 's are nonzero distinct elements.

The error locator polynomial is given by

$$\sigma(x) = \prod_{j=1}^{\nu} (1 - \beta_j x) \tag{2}$$

and the error evaluator polynomial is given by

$$Z_0(x) = \sum_{l=1}^{\nu} \delta_l \beta_l \prod_{j=1, j \neq l}^{\nu} (1 - \beta_j x).$$
 (3)

Lemma 1 The polynomials $\sigma(x)$ and $Z_0(x)$ are nonzero and $\sigma(0) = 1$. We also have

- 1. $\sigma(x)S(x) \equiv Z_0(x) \pmod{x^{2t}}$. This is called the key equation.
- 2. $\deg Z_0(x) < \deg \sigma(x) \le t$.
- 3. $GCD(\sigma(x), Z_0(x)) = 1$.

Proof. Clearly, $\sigma(x)$ is a nonzero polynomial with $\sigma(0) = 1$. From (1), we have

$$S(x) = \sum_{i=1}^{2t} S_i x^{i-1}$$

$$= \sum_{i=1}^{2t} \sum_{l=1}^{\nu} \delta_l \beta_l^i x^{i-1}$$

$$= \sum_{l=1}^{\nu} \delta_l \beta_l \sum_{i=1}^{2t} \beta_l^{i-1} x^{i-1}$$

$$= \sum_{l=1}^{\nu} \delta_l \beta_l \sum_{i=0}^{2t-1} (\beta_l x)^i$$

$$\equiv \sum_{l=1}^{\nu} \frac{\delta_l \beta_l}{1 - \beta_l x} \pmod{x^{2t}},$$

where the congruency follows from the fact that

$$\frac{1}{1 - \beta_l x} = \sum_{i=0}^{\infty} (\beta_l x)^i \equiv \sum_{i=0}^{2t-1} (\beta_l x)^i \pmod{x^{2t}}.$$

From (2) and (3), we have

$$\sigma(x)S(x) \equiv \prod_{j=1}^{\nu} (1 - \beta_j x) \sum_{l=1}^{\nu} \frac{\delta_l \beta_l}{1 - \beta_l x} \pmod{x^{2t}}$$

$$\equiv \sum_{l=1}^{\nu} \delta_l \beta_l \prod_{j=1, j \neq l}^{\nu} (1 - \beta_j x) \pmod{x^{2t}}$$

$$\equiv Z_0(x) \pmod{x^{2t}}.$$

This proves 1) in the lemma. From (2) and (3), $\deg \sigma(x) = \nu$ and $\deg Z_0(x) < \nu$. Since $\nu \leq t$, this proves 2) in the lemma. From (2), it follows that if $GCD(\sigma(x), Z_0(x)) \neq 1$, then $Z_0(x)$ is divisible by $1 - \beta_i x$ for some $i, 1 \leq i \leq \nu$, which implies that $Z_0(\beta_i^{-1}) = 0$. However,

$$Z_{0}(\beta_{i}^{-1}) = \sum_{l=1}^{\nu} \delta_{l} \beta_{l} \prod_{j=1, j \neq l}^{\nu} (1 - \beta_{j} \beta_{i}^{-1})$$

$$= \delta_{i} \beta_{i} \prod_{j=1, j \neq i}^{\nu} (1 - \beta_{j} \beta_{i}^{-1})$$

$$\neq 0.$$

This proves 3) in the lemma and also proves that $Z_0(x)$ is a nonzero polynomial.

Extended Euclid's Algorithm for Polynomials

Let a(x) and b(x) be nonzero polynomials over some field where $a(x) \neq 0$ and $\deg a(x) > \deg b(x)$. Consider the following algorithm for computing the polynomials $r_i(x)$, $f_i(x)$, and $g_i(x)$.

Initialization:

$$r_{-1}(x) = a(x), \quad f_{-1}(x) = 1, \quad g_{-1}(x) = 0,$$

 $r_{0}(x) = b(x), \quad f_{0}(x) = 0, \quad g_{0}(x) = 1.$

for
$$(i = 1; r_{i-1}(x) \neq 0; i = i + 1)$$

 $q_i(x)$ is the quotient obtained by dividing $r_{i-2}(x)$ by $r_{i-1}(x)$.

$$r_i(x) = r_{i-2}(x) - q_i(x)r_{i-1}(x)$$

$$f_i(x) = f_{i-2}(x) - q_i(x)f_{i-1}(x)$$

$$q_i(x) = q_{i-2}(x) - q_i(x)q_{i-1}(x)$$

end for

Let i_{max} be the maximum value of $i \geq -1$ for which $r_i(x) \neq 0$.

Lemma 2
$$f_i(x)g_{i-1}(x) - f_{i-1}(x)g_i(x) = (-1)^{i+1}$$
 for $i = 0, 1, ..., i_{max} + 1$.

Proof. Equality holds for i = 0. Suppose it holds for values less than $i \ge 1$. Then,

$$f_{i}(x)g_{i-1}(x) - f_{i-1}(x)g_{i}(x) = (f_{i-2}(x) - q_{i}(x)f_{i-1}(x))g_{i-1}(x)$$

$$- f_{i-1}(x)(g_{i-2}(x) - q_{i}(x)g_{i-1}(x))$$

$$= -(f_{i-1}(x)g_{i-2}(x) - f_{i-2}(x)g_{i-1}(x))$$

$$= -(-1)^{(i-1)+1} \text{ (by the induction hypothesis)}$$

$$= (-1)^{i+1}.$$

Lemma 3 $f_i(x)a(x) + g_i(x)b(x) = r_i(x)$ for $i = -1, 0, ..., i_{max} + 1$.

Proof. Equality holds for i = -1 and i = 0. Suppose it holds for values less than $i \ge 1$. Then,

$$f_i(x)a(x) + g_i(x)b(x) = (f_{i-2}(x) - q_i(x)f_{i-1}(x))a(x) + (g_{i-2}(x) - q_i(x)g_{i-1}(x))b(x)$$

$$= (f_{i-2}(x)a(x) + g_{i-2}(x)b(x)) - q_i(x)(f_{i-1}(x)a(x) + g_{i-1}(x)b(x))$$

$$= r_{i-2}(x) - q_i(x)r_{i-1}(x) \text{ (by the induction hypothesis)}$$

$$= r_i(x).$$

Lemma 4 deg $g_i(x)$ + deg $r_{i-1}(x)$ = deg a(x) for $i = 0, 1, ..., i_{max} + 1$.

Proof. Equality holds for i=0. Suppose it holds for values less than $i\geq 1$. Notice that $\deg r_{-1}(x)>\deg r_0(x)>\deg r_1(x)>\cdots>\deg r_{i_{\max}}(x)$ as $r_i(x)$ is the remainder obtained by dividing $r_{i-2}(x)$ by $r_{i-1}(x)$ for $i=1,2,\ldots,i_{\max}$. We conclude based on the induction hypothesis that $\deg g_0(x)<\deg g_1(x)<\cdots<\deg g_{i-1}(x)$. Notice that $r_{i-2}(x)=q_i(x)r_{i-1}(x)+r_i(x)$ with $\deg r_i(x)<\deg r_{i-1}(x)$ implies that

$$\deg r_{i-2}(x) = \deg(q_i(x)r_{i-1}(x)) = \deg q_i(x) + \deg r_{i-1}(x). \tag{4}$$

Also, $g_i(x) = g_{i-2}(x) - q_i(x)g_{i-1}(x)$ with deg $g_{i-2}(x) < \deg g_{i-1}(x)$ implies that

$$\deg g_i(x) = \deg(q_i(x)g_{i-1}(x)) = \deg q_i(x) + \deg g_{i-1}(x).$$
(5)

From (4) and (5), we have

$$\deg g_i(x) + \deg r_{i-1}(x) = (\deg q_i(x) + \deg g_{i-1}(x)) + (\deg r_{i-2}(x) - \deg q_i(x))$$

$$= \deg g_{i-1}(x) + \deg r_{i-2}(x)$$

$$= \deg a(x) \text{ (by the induction hypothesis)}$$

Lemma 5 deg $f_i(x)$ + deg $r_{i-1}(x)$ = deg b(x) for $i = 1, 2, ..., i_{max} + 1$.

Proof. Equality holds for i = 1 since $f_1(x) = f_{-1}(x) - q_1(x)f_0(x) = f_{-1}(x) = 1$ and $r_0(x) = b(x)$. We then use induction on i as in the proof of Lemma 4.

Lemma 6 Any divisor of a(x) and b(x) divides $r_i(x)$ for $i = -1, 0, ..., i_{max} + 1$.

Proof. This follows from Lemma 3.

Lemma 7 $r_{i_{\max}}(x)$ divides $r_i(x)$ for $i = i_{\max} - 1, i_{\max} - 2, \dots, 0, -1$.

Proof. We have $r_{i_{\max}+1}(x) = r_{i_{\max}-1}(x) - q_{i_{\max}+1}(x)r_{i_{\max}}$. Since $r_{i_{\max}+1}(x) = 0$, then $r_{i_{\max}}(x)$ divides $r_{i_{\max}-1}(x)$. Suppose the lemma holds for values greater than $i \leq i_{\max} - 2$. Then, $r_{i_{\max}}(x)$ divides $r_{i+1}(x)$ and $r_{i+2}(x)$. From $r_{i+2}(x) = r_i(x) - q_{i+2}(x)r_{i+1}(x)$, it follows that $r_{i_{\max}}(x)$ divides $r_i(x)$.

Lemma 8 $r_{i_{\text{max}}}(x) = GCD(a(x), b(x)).$

Proof. Since $r_{-1}(x) = a(x)$ and $r_0(x) = b(x)$, it follows from Lemma 7 that $r_{i_{\max}}(x)$ divides a(x) and b(x). From Lemma 6, any divisor of a(x) and b(x) divides $r_{i_{\max}}(x)$.

Lemma 9 Let g(x) and r(x) be nonzero polynomials such that

- 1. $q(x)b(x) \equiv r(x) \pmod{a(x)}$.
- 2. $\deg g(x) + \deg r(x) < \deg a(x)$.
- 3. GCD(g(x), r(x)) = 1.

Then, there is an index j, $0 \le j \le i_{max}$, and a nonzero constant β such that $g(x) = \beta g_j(x)$ and $r(x) = \beta r_j(x)$.

Proof. Since $r_{-1}(x) = a(x)$, then $\deg r_{-1}(x) = \deg a(x) > \deg r(x)$. Also, the degree of $r_i(x)$ is decreasing with $r_{i_{\max}+1}(x) = 0$, i.e., a polynomial of degree $-\infty$. Hence, for some index j, $0 \le j \le i_{\max} + 1$,

$$\deg r_j(x) \le \deg r(x) < \deg r_{j-1}(x). \tag{6}$$

From Lemma 3,

$$f_i(x)a(x) + g_i(x)b(x) = r_i(x). \tag{7}$$

From the first condition in the lemma, there exists a polynomial f(x) such that

$$f(x)a(x) + g(x)b(x) = r(x).$$
(8)

Multiplying (7) by g(x) and (8) by $g_j(x)$ and subtracting, we get

$$(f_j(x)g(x) - f(x)g_j(x))a(x) = g(x)r_j(x) - g_j(x)r(x).$$
(9)

Next, notice by the second condition in the lemma and (6) that

$$\deg g(x) + \deg r_i(x) \le \deg g(x) + \deg r(x) < \deg a(x)$$

and by Lemma 4 and (6),

$$\deg g_j(x) + \deg r(x) = \deg a(x) - \deg r_{j-1}(x) + \deg r(x) < \deg a(x).$$

Hence, the right hand side of (9) has degree less than that of a(x). Therefore, the left hand side, which is a multiple of a(x), is zero. Hence,

$$g(x)r_j(x) = g_j(x)r(x).$$

From the third condition in the lemma, r(x) divides $r_j(x)$. Notice that $r_j(x) = 0$ if and only if $j = i_{\text{max}} + 1$. In this case, $g_{i_{\text{max}}+1}(x) = 0$ since $r(x) \neq 0$ by assumption. However, from Lemma 4,

$$\deg g_{i_{\max}+1}(x) = \deg a(x) - \deg r_{i_{\max}}(x) \ge \deg a(x) - \deg r_{-1}(x) = 0.$$

Hence, $g_{i_{\max}+1}(x)$ is not equal to zero. We conclude that $r_j(x) \neq 0$ and $j \leq i_{\max}$. From (6), it follows that $r(x) = \beta r_j(x)$ for some nonzero constant β . This implies that $g(x) = \beta g_j(x)$.

Lemma 9 shows that Euclid's algorithm yields the polynomials g(x) and r(x) up to a constant multiple. Next, we want to uniquely specify the index j such that $g_j(x)$ and $r_j(x)$ are nonzero constant multiples of g(x) and r(x), respectively. For this purpose, we bound their degrees as shown in the next lemma.

Lemma 10 If r(x) and g(x) in Lemma 9 satisfy

$$\deg g(x) \le \frac{1}{2} \deg a(x)$$
 and $\deg r(x) < \frac{1}{2} \deg a(x)$,

then j, $0 \le j \le i_{max}$ is the unique index for which

$$\deg r_j(x) < \frac{1}{2} \deg a(x) \le \deg r_{j-1}(x).$$

Proof. If i < j, then $\deg r_i(x) \ge \deg r_{j-1}(x) \ge \frac{1}{2} \deg a(x)$, and, therefore, $r(x) \ne \beta r_i(x)$ for a nonzero constant β . If i > j, then from Lemma 4,

$$\deg g_i(x) = \deg a(x) - \deg r_{i-1}(x)$$

$$\geq \deg a(x) - \deg r_j(x)$$

$$> \deg a(x) - \frac{1}{2} \deg a(x)$$

$$= \frac{1}{2} \deg a(x),$$

and, therefore, $g(x) \neq \beta g_i(x)$ for a nonzero constant multiple β .

Lemma 11 Let g(x) and r(x) be nonzero polynomials such that

- 1. $g(x)b(x) \equiv r(x) \pmod{a(x)}$.
- 2. $\deg r(x) < \deg g(x) \le \frac{1}{2} \deg a(x)$.
- 3. GCD(g(x), r(x)) = 1.

Then, $g(x) = \beta g_j(x)$ and $r(x) = \beta r_j(x)$ for a nonzero constant β and the unique index j, $0 \le j \le i_{\text{max}}$, satisfying

$$\deg r_j(x) < \frac{1}{2} \deg a(x) \le \deg r_{j-1}(x).$$
 (10)

Furthermore, this j is the unique index j' satisfying

$$\deg r_{j'}(x) < \deg g_{j'}(x) \le \frac{1}{2} \deg a(x).$$
 (11)

Proof. From the second condition on r(x) and g(x), it follows that $\deg g(x) + \deg r(x) < \deg a(x)$. Hence, r(x) and g(x) satisfy the conditions in Lemma 9. We conclude that $g(x) = \beta g_j(x)$ and $r(x) = \beta r_j(x)$ for the unique index j satisfying (10). This implies that

$$\deg r_j(x) < \deg g_j(x) \le \frac{1}{2} \deg a(x).$$

It remains to argue that if (11) holds, then j' = j. Indeed, from Lemma 4, we have $\deg g_{j'}(x) + \deg r_{j'-1}(x) = \deg a(x)$. Hence, if (11) holds, then

$$\deg r_{j'}(x) < \frac{1}{2} \deg a(x) \le \deg r_{j'-1}(x)$$

holds. By the uniqueness of the index j satisfying (10), it follows that j' = j.

Example 1 Let a(x) and b(x) be real polynomials given by

$$a(x) = x^6 + 2x^5 + 2x^4 - 3x^3 - 9x^2 - 9x - 5$$

$$b(x) = x^4 - x^2 - 2x - 1.$$

Find nonzero polynomials g(x) and r(x) such that

- 1. $g(x)b(x) \equiv r(x) \pmod{a(x)}$.
- 2. $\deg r(x) < \deg g(x) \le \frac{1}{2} \deg a(x)$.
- 3. GCD(g(x), r(x)) = 1.

i	$r_i(x)$	$q_i(x)$	$f_i(x)$	$g_i(x)$
-1	$x^6 + 2x^5 + 2x^4 - 3x^3 - 9x^2 - 9x - 5$		1	0
0	$x^4 - x^2 - 2x - 1$		0	1
1	$x^3 - x^2 - x - 2$	$x^2 + 2x + 3$	1	$-x^2 - 2x - 3$
2	$x^2 + x + 1$	x+1	-x - 1	$x^3 + 3x^2 + 5x + 4$
3	0	x-2	$x^2 - x - 1$	$-x^4 - x^3 + 4x + 5$

Solution:

$$g(x) = \beta(x^3 + 3x^2 + 5x + 4)$$

 $r(x) = \beta(x^2 + x + 1),$

where β is a nonzero number.

Decoding of BCH and RS Codes Using Euclid's Algorithm

We apply Euclid's algorithm with $a(x)=x^{2t}$ and b(x)=S(x). From Lemmas 1 and 11, $\sigma(x)=\beta g_j(x)$ and $Z_0(x)=\beta r_j(x)$ for the unique index $j,\,0\leq j\leq i_{\max}$ satisfying

$$\deg r_j(x) < t \le \deg r_{j-1}(x)$$

or equivalently

$$\deg r_j(x) < \deg g_j(x) \le t.$$

Since $\sigma(0)=1$ as stated in Lemma 1, $\beta=g_j^{-1}(0).$