Exercise sheet 4 - Topics in Topology

February 28, 2022

- 1. Make sure that for an n-dimensional vector space V, the following two notions of orientation are equivalent:
 - An equivalence class of basis $[\{e_1, \ldots, e_n\}]$, where two bases $\{e_1, \ldots, e_n\}$, $\{e'_1, \ldots, e'_n\}$ are equivalent if the change of basis matrix has positive determinant.
 - An equivalence class of an *n*-form $[\omega]$, $\omega \in \Lambda^n V$, where two *n*-forms ω, ω' are equivalent if $\omega' = \lambda \omega$ for $\lambda > 0$.
- 2. Show that ∂Mob_3 is diffeomorphic to a Klein bottle.
- 3. Let $r: D^2 \to D^2$ be the reflexion along the x-axis. Let φ be the composite $D^2 \hookrightarrow D^1 \times D^1 \twoheadrightarrow \text{Mob}_2$, where the first map is the inclusion of a disc with radius 0.2. Show explicitly that the maps φ and $r \circ \varphi$ are isotopic.
- 4. Show that if M_1 is orientable, M_2 non-orientable, $\varphi_1: D^n \hookrightarrow M_1$ is an orientation-preserving embedding, $\overline{\varphi}_1: D^n \hookrightarrow M_1$ is an orientation-reversing embedding and $\varphi_2: D^n \hookrightarrow M_2$, then there is a diffeomorphism

$$(M_1, \varphi_1) \# (M_2, \varphi_2) \cong (M_1, \overline{\varphi}_1) \# (M_2, \varphi_2).$$

(*Hint*: Consider a reflexion $r: D^n \to D^n$ and compose it with φ_2).

- 5. Understand the isomorphism $H_g \cong \sharp_g(D^2 \times S^1)$.
- 6. Show that for a closed, connected *n*-manifold M, there is a diffeomorphism $M\#S^n\cong M$. Show that for a closed, connected *n*-manifold M with boundary, there is a diffeomorphism $M\#D^n\cong M$.
- 7. Show that $\partial(M_1 \not \bowtie M_2) \cong \partial M_1 \# \partial M_2$ for closed, connected manifolds with boundary M_1, M_2 .
- 8. Let $\varphi_0: S^{k-1} \hookrightarrow \partial M$ be an embedding, where M is an n-dimensional manifold. Show that the normal space $N_x(\varphi_0(S^{k-1}))$ in ∂M , $x \in \varphi_0(S^{k-1})$, has dimension n-k. Conclude that a trivialisation of the normal bundle $N(\varphi_0(S^{k-1}))$ is a diffeomorphism with $S^{k-1} \times \mathbb{R}^{n-k}$.