2ème semestre TD n°4

NB : Cet exercice est la suite de la feuille de TD n°4 du premier semestre.

Dans un four à micro-ondes, une onde électromagnétique est créée afin de permettre le réchauffement d'aliments. Le but de cette partie est d'étudier la structure d'une micro-onde au cours de la traversée d'un aliment.

<u>Données</u>: Pour un champ vectoriel \overrightarrow{A} , rappelons que : $\overrightarrow{rot}(\overrightarrow{rot}\overrightarrow{A}) = \overrightarrow{grad}(\overrightarrow{div}\overrightarrow{A}) - \Delta \overrightarrow{A}$.

La vitesse de la lumière dans le vide est $c = 3,0.10^8 \text{ m.s}^{-1}$.

Le complexe j est tel que $j^2 = -1$.

B / ELECTROMAGNETISME DANS UN MILIEU DIELECTRIQUE

B1. La molécule d'eau est-elle polaire ? (justifier clairement la réponse)

Calculer l'ordre de grandeur du moment dipolaire en supposant comme dans la partie A que la molécule est une association de trois ions (utiliser le cas échéant pour la valeur de l'angle \angle HOH l'ordre de grandeur $2\theta \approx 90^{\circ}$).

La quantité ainsi obtenue est-elle à votre avis supérieure ou inférieure à la valeur expérimentale ? Pourquoi ?

<u>B2.</u> Définir le vecteur polarisation \vec{P} d'un milieu diélectrique et rappeler l'unité de cette grandeur. Pourquoi la polarisation \vec{P} de l'eau ou d'un aliment contenant de l'eau est-elle considérée comme nulle ?

Plaçons un dipôle permanent \bar{p} dans un champ électrique \bar{E} stationnaire et uniforme spatialement.

B3. Quelles sont les possibilités d'orientation à l'équilibre du dipôle p dans le champ E ? Préciser leur stabilité.

Désormais, le champ est supposé oscillant : $\vec{E}(t) = \vec{E}_0 \cos(\omega t)$; \vec{E}_0 est un vecteur donné et la pulsation ω est considérée comme faible.

B4. Décrire qualitativement l'effet de l'oscillation temporelle du champ sur l'orientation du dipôle. Que se passe-t-il si la pulsation ω est progressivement augmentée ? Quelles sont les conséquences du point de vue thermique ?

Dans la suite de cette partie sera étudiée la propagation d'une micro-onde dans un aliment congelé, qui sera considéré comme un matériau diélectrique homogène, isotrope, dépourvu de courants et charges libres. Dans ce milieu, la polarisation \vec{P} vérifie l'équation suivante en présence d'un champ électrique \vec{E} :

$$\tau \frac{\partial \vec{P}}{\partial t} + \vec{P} = \varepsilon_0 \chi_0 \vec{E}$$
, où $\tau = 1, 0.10^{-12}$ s et $\chi_0 = 75$ sont des constantes.

L'onde étudiée s'exprime en notation complexe sous la forme : $\underline{\vec{E}} = E_0 \exp j(\omega t - \underline{k}x)\overline{u}$, où E_0 est une constante réelle, ω la pulsation, $\underline{k} = k_1 + jk_2$ le vecteur d'onde, éventuellement complexe et \overline{u} un vecteur unitaire fixé. Les autres champs comportent un terme de phase similaire.

B5. Donner le sens physique des grandeurs χ_0 et τ . Pour cette dernière, étudier l'expression de l'évolution de la polarisation \vec{P} dans le cas où le champ électrique est annulé à partir de t=0.

<u>B6.</u> Montrer que la susceptibilité complexe $\underline{\chi}(\omega)$ du milieu diélectrique s'écrit :

$$\underline{\chi} \left(\omega \right) = \chi_1 \left(\omega \right) + j \chi_2 \left(\omega \right), \text{ avec } \chi_1 \left(\omega \right) = \chi_0 \frac{1}{1 + \omega^2 \tau^2} \text{ et } \chi_2 \left(\omega \right) = \chi_0 \frac{\beta \omega \tau}{1 + \omega^2 \tau^2} \text{ ,}$$

où β est un nombre qu'il conviendra d'expliciter.

<u>B7.</u> Donner l'allure des courbes $\chi_1(\omega)$ et $\chi_2(\omega)$. Faire intervenir les valeurs χ_0 et 1/τ sur les tracés. Commenter ces courbes (limites basse et haute pulsation, point(s) particulier(s)).

Dans tout milieu diélectrique possédant la polarisation \vec{P} existe une densité volumique de courants liés $\vec{j}_\ell = \frac{\partial \vec{P}}{\partial t}$.

- **B8.** Rappeler l'équation locale de conservation de la charge. En déduire que l'expression de la densité volumique de charges liées s'écrit : $\rho_{\ell} = K \operatorname{div}\vec{P}$, où K est une constante à expliciter. Préciser l'unité de la densité de courants liés \vec{j}_{ℓ} dans le Système International.
- **B9.** Ecrire les équations de MAXWELL dans le matériau diélectrique, en faisant intervenir les seuls champs électrique $\underline{\vec{E}}$ et magnétique $\underline{\vec{B}}$.
- **B10.** Montrer que le champ $\vec{\underline{E}}$ est transverse. Que dire de la direction de \vec{u} ?

 Dans la suite, \vec{u} sera choisi tel que $\vec{u} = \vec{u}_v$.
- **<u>B11.</u>** Trouver une équation vérifiée seulement par le champ électrique $\overline{\underline{E}}$ (équation de propagation).
- **<u>B12.</u>** En déduire l'équation de dispersion, soit l'expression de \underline{k}^2 en fonction de ω , c et $\underline{\chi}$.
- B13. En supposant que $\chi_0 \gg 1$ et $\omega \tau \ll 1$, trouver des nombres réels r_1 et r_2 (à exprimer en fonction de χ_0 , ω et τ) tels que $1+\underline{\chi}\cong \left(r_1+jr_2\right)^2$. (la relation $\sqrt{1+x}\cong 1+x/2$ pour $x\ll 1$ pourra être utilisée)
- **B14.** Ecrire le vecteur d'onde \underline{k} sous la forme $\underline{k} = k_1 + jk_2$. Exprimer les parties réelle k_1 et imaginaire k_2 , en fonction de ω , c, χ_0 , et τ .
- <u>B15.</u> En déduire l'expression précise du champ électrique réel \bar{E} en faisant notamment intervenir k_1 et k_2 . Commenter la forme de l'onde obtenue : est-elle plane, progressive (si oui, dans quelle direction), stationnaire (si oui, par rapport à quelle direction) ? Quelle est sa polarisation ? (toutes ces réponses seront clairement justifiées)
- B16. Exprimer la longueur d'onde λ de l'onde dans le diélectrique. Ecrire l'amplitude sous la forme $E_0 \exp(-x/\delta)$ et exprimer δ en fonction de k_1 et(ou) k_2 . Pourquoi l'amplitude de l'onde varie-t-elle ? Préciser le sens physique de δ .
- **<u>B17.</u>** Calculer ωτ, λ, puis δ pour une fréquence f = 2,45 GHz . Commenter le résultat.
- **B18.** Sans faire de calcul, donner la direction du vecteur de POYNTING moyen, ainsi que l'expression de sa dépendance par rapport aux variables spatiales.