

Utilizing protein 3D structures for predictions

3D CNNs for processing protein structures

- We can encode all atoms in a 3D grid (3-dimensional array)
 - Each voxel (analogous to a pixel in a 2D image) stores the information which atom is present at this position
 - One channel for each atom type (carbon, nitrogen, sulfur, oxygen, phosphor)
- 3D objects can be processed using convolutional neural networks (CNNs)
 - Similar to CNNs for images
 - Instead of 2D convolutional filters moving along the x- and y-axes, we have 3D filters also moving along the z-axis

Examples of 3D CNNs for proteins

- Examples for existing 3D CNNs for proteins
 - EnzyNet (2017):
 - Side chain information is ignored
 - 3DCNN for full protein for EC number prediction

- 3DCNN_MQA (2018):
 - Encodes all atoms in the protein in a 3D grid
 - CNNs for quality assessment of predicted protein structures

GNNs for processing protein structures (1)

Transformer Networks are graph neural networks (GNNs)

Transformer Network

Graph Neural Network

- Transformers are a special type of GNNs
 - Protein Transformers mostly attend to amino acid tokens that are close in the 3D structure
 - We can aid the model in doing this by using a GNN with edges between amino acids that are close in the 3D structure

GNNs for processing protein structures (2)

- Initialization of amino acid representations in GNNs:
 - In principle, node representations could be learned during training
 - We can use representations learned from protein language models
- Examples for protein GNNs for protein function prediction:
 - DeepFRI (2021):
 - LSTM was trained on 10M proteins for masked token prediction
 - GNN nodes initialized with LSTM representations
 - 3-layered GNN: Edges between close amino acids (predicted)
 - ESM-GearNet (2023):
 - Using ESM-2 to compute node presentation for the GNN
 - Using AlphaFold 2 to compute edges between amino acids
 - Architecture: 6 layers of GNN with 512 as hidden dimension
 - Training:
 - Pre-training using contrastive learning
 - Fine-tuned on protein function prediction tasks

Performance & Limitations

Performance of GNNs compared to protein language models (PLMs):

Method	PLM	Struct. Info.	EC	GO-BP	GO-MF	GO-CC	PSR	MSP
			F _{max}	F _{max}	F _{max}	F _{max}	Global ρ	AUROC
ProtBERT-BFD ¹	✓	X	0.838	0.279	0.456	0.408	-	-
$ESM-2-650M^{1}$	\checkmark	×	0.880	0.460	<u>0.661</u>	0.445	-	-
GearNet ESM-GearNet	×	✓	0.730	0.356	0.503	0.414	0.708	0.549
- w/ serial fusion			0.890	0.488	<u>0.681</u>	0.464	0.829	0.685

- Potential limitation:
 - Only encodes proximity between amino acids but not the exact 3D confirmation of all atoms