

数据库系统概论

An Introduction to Database System

第二章 关系数据库(续)

第二章关系数据库

- 2.1 关系模型概述
- 2.2 关系数据结构
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

2.4 关系代数

• 概述

• 传统的集合运算

• 专门的关系运算

概述

表2.4 关系代数运算符

运算	符	含义	运第	工符	含义
集合运算符	→←×	并差交 笛积	比较运算符		大于等于 大于等于 小于等于 小于等于 不等于

概 述(续)

表2.4 关系代数运算符(续)

运算符	含义		运算符	含义	
专门的 关系运 算符	σ π ×	选择 投影 连接 除		\ \ \	非与或

2.4 关系代数

- 概述
- 传统的集合运算
- 专门的关系运算

1. 并(Union)

- *R*和*S*
 - -具有相同的目n(即两个关系都有n个属性)
 - 相应的属性取自同一个域

- $R \cup S$
 - 仍为n目关系,由属于R或属于S的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

并(续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
	В	С
S		C c_2
S A	В	

В	C
b_1	c_1
b_2	c_2
b_2	c_1
b_3	c_2
	$egin{array}{c} b_1 \ b_2 \ b_2 \end{array}$

2. 差(Difference)

- R和S
 - 具有相同的目n
 - 相应的属性取自同一个域

- R S
 - 仍为n目关系,由属于R而不属于S的所有元组组成

$$R - S = \{ t | t \in R \land t \notin S \}$$

差(续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

R-S		
A	В	C
a_1	b_1	c_1

3. 交 (Intersection)

• *R*和*S*

- 具有相同的目n
- 相应的属性取自同一个域

• $R \cap S$

- 仍为n目关系,由既属于R又属于S的元组组成

$$R \cap S = \{ t | t \in R \land t \in S \}$$

$$R \cap S = R - (R-S)$$

交(续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
	В	С
S		C c_2
S A	В	

$R \cap S$		
A	В	C
a_1	b_2	c_2
a_2	b_2	c_1

4. 笛卡尔积(Cartesian Product)

- 严格地讲应该是广义的笛卡尔积 (Extended Cartesian Product)
- R: n目关系, k_1 个元组
- S: m目关系, k_2 个元组
- $R \times S$
 - -列: (n+m)列元组的集合
 - 元组的前n列是关系R的一个元组
 - 后m列是关系S的一个元组
 - 行: $k_1 \times k_2$ 个元组
 - $R \times S = \{ t_{r} t_{s} | t_{r} \in R \land t_{s} \in S \}$

笛卡尔积(续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \times S$					
R.A	R.B	R.C	S.A	S.B	S.C
a_1	b_1	c_1	a_1	b_2	c_2
a_1	b_1	c_1	a_1	b_3	c_2
a_1	b_1	c_1	a_2	b_2	c_1
a_1	b_2	c_2	a_1	b_2	c_2
a_1	b_2	c_2	a_1	b_3	c_2
a_1	b_2	c_2	a_2	b_2	c_1
a_2	b_2	c_1	a_1	b_2	c_2
a_2	b_2	c_1	a_1	b_3	c_2
a_2	b_2	c_1	a_2	b_2	c_1

2.4 关系代数

- 概述
- 传统的集合运算
- 专门的关系运算

2.4.2 专门的关系运算

先引入几个记号

(1) $R, t \in R, t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为R

t∈R表示t是R的一个元组

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量

(2) A, t[A], \overline{A}

 $t[A] = (t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t在属性列A上诸分量的集合。

 \overline{A} 则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩余的属性组。

 $(3) \quad \widehat{t_{\rm r} t_{\rm s}}$

R为n目关系,S为m目关系。

 $t_{\rm r} \in R$, $t_{\rm s} \in S$, $t_{\rm r} t_{\rm s}$ 称为元组的连接。

 $t_{\rm r}t_{\rm s}$ 是一个n+m列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组。

(4) 象集Z_x

给定一个关系R(X, Z),X和Z为属性组。

当t[X]=x时,x在R中的**象集**(Images Set)为:

 $\mathbf{Z}_{\mathbf{x}} = \{t[Z] | t \in R, t[X] = x\}$

它表示R中属性组X上值为x的诸元组在Z上分量的集合

7)
Ι	1

11	
x_1	Z_1
x_1	Z_2
x_1	Z_3
x_2	Z_2
x_2	Z_3
x_3	Z_1
x_3	Z_3

象集举例

• x_1 在R中的象集

$$Z_{x1} = \{Z1, Z2, Z3\},$$

• x_2 在R中的象集

$$Z_{x2} = \{Z2, Z3\},$$

• x_3 在R中的象集

$$Z_{x3} = \{Z1, Z3\}$$

- 选择
- 投影
- 连接
- 除

4) 学生-课程数据库: 学生关系Student、课程关系Course和选修关系SC

Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
200215121	李勇	男	20	CS
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

Course

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

SC

学号	课程号	成绩	
Sno	Cno	Grade	
200215121	1	92	
200215121	2	85	
200215121	3	88	
200215122	2	90	
200215122	3	80	

1. 选择(Selection)

- 1) 选择又称为限制(Restriction)
- 2) 选择运算符的含义
 - 在关系R中选择满足给定条件的诸元组

$$\sigma_{F}(R) = \{t | t \in R \land F(t) = '\dot{\Xi}'\}$$

-F: 选择条件,是一个逻辑表达式,基本形式为:

$$X_1 \theta Y_1$$

选择(续)

• 3) 选择运算是从关系R中选取使逻辑表达式F为真的元组,是从行的角度进行的运

选择(续)

[例1] 查询信息系(IS系)全体学生

$$\sigma_{Sdept\ =\ 'IS'}(Student)$$

或
$$\sigma_{5='IS'}$$
 (Student)

结果Şno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215125	张立	男	19	IS

选择(续)

[例2] 查询年龄小于20岁的学生

 $\sigma_{Sage < 20}(Student)$

或 $\sigma_{4<20}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

2. 投影(Projection)

- 1)投影运算符的含义
 - 从R中选择出若干属性列组成新的关系

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$
 $A \nearrow R$ 中的属性列

2. 投影(Projection)

• 2) 投影操作主要是从列的角度进行运算

- 但投影之后不仅取消了原关系中的某些列, 而且还可能取消某些元组(避免重复行)

投影 (续)

• [例3] 查询学生的姓名和所在系即求Student关系上学生姓名和所在系两个属性上的投影

 $\pi_{\text{Sname}, \text{ Sdept}}(\text{Student})$ 或 $\pi_{2, 5}(\text{Student})$

结果:

投影(续)

Sname	Sdept
李勇	CS
刘晨	IS
王敏	MA
张立	IS

投影(续)

[**例**4] 查询学生关系Student中都有哪些系 π_{Sdept}(Student)

结果:

Sdept

CS

IS

MA

3. 连接(Join)

- 1)连接也称为0连接
- 2) 连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定 条件的元组

$$R \bowtie_{A \theta B} S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[A] \theta t_s[B] \}$$

- $\triangleright A \cap B$. 分别为 $R \cap S$ 上度数相等且可比的属性组
- $\triangleright \theta$: 比较运算符
- 连接运算从R和S的广义笛卡尔积 $R \times S$ 中选取(R关系)在A属性组上的值与(S关系)在B属性组上值满足比较关系 θ 的元组

连接(续)

- 3) 两类常用连接运算
 - 等值连接(equijoin)
 -)什么是等值连接θ为"="的连接运算称为等值连接
 - >等值连接的含义

从关系R与S的广义笛卡尔积中选取A、B属性值相等的那些元组,即等值连接为:

$$R \bowtie S = \{ \widehat{t_{\mathbf{r}}t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] = t_{\mathbf{s}}[B] \}$$

连接(续)

- 自然连接(Natural join)
 - 自然连接是一种特殊的等值连接
 - ▶两个关系中进行比较的分量必须是相同的属性组
 - ▶在结果中把重复的属性列去掉
 - 自然连接的含义 R和S具有相同的属性组B

$$R \bowtie S = \{ t_{\mathbf{r}} t_{\mathbf{s}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[B] = t_{\mathbf{s}}[B] \}$$

• 4) 一般的连接操作是从行的角度进行运算。

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

• [例5]关系R和关系S如下所示:

R		
A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

S

一般连接 $\mathbf{R}_{C < E}^{\bowtie}$ S的结果如下:

 $R \bowtie S$ $C \leq E$

A	R.B	С	S.B	E
a_1	b_1	5	b_2	7
a_1	b_1	5	b_3	10
a_1	b_2	6	b_2	7
a_1	b_2	6	b_3	10
a_2	b_3	8	b_3	10

等值连接 $R \bowtie S$ 的结果如下:

A	R.B	С	S.B	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

自然连接 $R \bowtie S$ 的结果如下:

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

在自然连中讨论以下内容

- 外连接
 - 如果把舍弃(没匹配上)的元组也保存在结果关系中, 而在其他属性上填空值(Null),这种连接就叫做外连接 (OUTER JOIN)。
- 左外连接
 - 如果只把左边关系R中要舍弃(没匹配上)的元组保留就叫做左外连接(LEFT OUTER JOIN或LEFT JOIN)
- 右外连接
 - 如果只把右边关系S中要舍弃(没匹配上)的元组保留 就叫做右外连接(RIGHT OUTER JOIN或RIGHT JOIN)。

下图是例5中关系R和关系S的外连接

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL
NULL	b_5	NULL	2

(a) 外连接

图(b)是例5中关系R和关系S的左外连接,图(c)是右外连接

A	В	C	Е
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL

A	В	С	Ε
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
NULL	b_5	NULL	2

(b) 左外连接

(c) 右外连接

4. 除(Division)

给定关系R(X, Y)和S(Y, Z),其中X, Y,Z为属性组。

R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。

R与S的除运算得到一个新的关系P(X),

P是R中满足下列条件的元组在X属性列上的投影:

元组在X上分量值x的象集 Y_x 包含S在Y上投影的集合,记作:

$$R \div S = \{ t_{r} [X] \mid t_{r} \in R \land \pi_{Y} (S) \subseteq Y_{X} \}$$

$$Y_X$$
: X 在 R 中的象集, $X = t_{r}[X]$

除(续)

• 2) 除操作是同时从行和列角度进行运算

除(续)

[例6]设关系R、S分别为下图的(a)和(b), $R\div S$ 的结果为图(c)

R		
A	В	C
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	b_2	c_3
a_4	b_6	c_6
a_2	b_2	c_3
a_1	b_2	c_1
(a)		

S		
В	C	D
b_1	c_2	d_1
b_2	c_1	d_1
b_2	<i>C</i> ₃	d_2
	(b)	
$R \div S$		
A		
a_1		

分析

- 在关系R中,A可以取四个值{a1, a2, a3, a4} a_1 的象集为 { (b_1, c_2) , (b_2, c_3) , (b_2, c_1) } a_2 的象集为 { (b_3, c_7) , (b_2, c_3) } a_3 的象集为 { (b_4, c_6) } a_4 的象集为 { (b_6, c_6) }
- S在(B, C)上的投影为
 {(b1, c2), (b2, c1), (b2, c3)}
- 只有 a_1 的象集包含了S在(B, C)属性组上的投影 所以 $R \div S = \{a_1\}$

5. 综合举例

以学生-课程数据库为例 (P56)

[例7] 查询至少选修1号课程和3号课程的学生号码

 首先建立一个临时关系K:
 Cno

 1
 3

然后求: $\boldsymbol{\pi}_{Sno,Cno}(SC)$ ÷ K

· 例 7续 π _{Sno,Cno} (SC)	Sno	Cno
	200215121	1
200215121象集{1,2,3} 200215122象集{2,3}	200215121	2
	200215121	3
K={1, 3} 于是:	200215122	2
$\pi_{\text{Sno,Cno}}(\text{SC}) \div K = \{20021512 $	200215122	3

[例 8] 查询选修了2号课程的学生的学号。

$$\pi_{\text{Sno}} \left(\sigma_{\text{Cno}='2'} \left(\text{SC} \right) \right)$$
= { 200215121, 200215122}

[**例**9] 查询至少选修了一门其直接先行课为5号课程的学生姓名

$$\pi_{\text{Sname}}(\sigma_{\text{Cpno}='5'}(\text{Course} \bowtie \text{SC} \bowtie \text{Student}))$$

或

或

$$\pi_{\text{Sname}}(\sigma_{\text{Cpno}='5'}(\text{Course}) \bowtie SC \bowtie \pi_{\text{Sno, Sname}}(\text{Student}))$$

$$\pi_{\text{Sname}} (\pi_{\text{Sno}} (\sigma_{\text{Cpno}='5'} (\text{Course}) \bowtie \text{SC}) \bowtie \pi_{\text{Sno}, \text{Sname}} (\text{Student}))$$

[例10] 查询选修了全部课程的学生号码和姓名。

$$\pi_{\text{Sno, Cno}}$$
 (SC) $\div \pi_{\text{Cno}}$ (Course) $\bowtie \pi_{\text{Sno, Sname}}$ (Student)

小结

- 关系代数运算
 - 关系代数运算并、差、交、笛卡尔积、投影、选择、连接、除
 - 基本运算并、差、笛卡尔积、投影、选择
 - 一 交、连接、除可以用5种基本运算来表达引进它们并不增加语言的能力,但可以简化表达

小结(续)

- 关系代数表达式
 - 关系代数运算经有限次复合后形成的式子
- 典型关系代数语言
 - ISBL (Information System Base Language)
 - ➤由IBM United Kingdom研究中心研制
 - ▶用于PRTV(Peterlee Relational Test Vehicle)实 验系统

第二章关系数据库

- 2.1 关系模型概述
- 2.2 关系数据结构
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

2.5 关系演算

- 关系演算
 - 以数理逻辑中的谓词演算为基础
- 按谓词变元不同 进行分类
 - 1.元组关系演算:

以元组变量作为谓词变元的基本对象

元组关系演算语言ALPHA

2.域关系演算:

以域变量作为谓词变元的基本对象

域关系演算语言OBE

2.5.1 元组关系演算语言ALPHA

- 由E.F.Codd提出 INGRES所用的QUEL语言是参照ALPHA语言研制的
- 语句检索语句
 - GET

更新语句

■ PUT, HOLD, UPDATE, DELETE, DROP

一、检索操作

• 语句格式:

GET <u>工作空间名</u> [(<u>定额</u>)](<u>表达式1</u>)

[: 操作条件] [DOWN/UP <u>表达式2</u>]

定额: 规定检索的元组个数

• 格式: 数字

表达式1: 指定语句的操作对象

• 格式:

关系名| 关系名. 属性名| 元组变量. 属性名| 集函数 [, ...] 操作条件:将操作结果限定在满足条件的元组中

• 格式: 逻辑表达式

表达式2: 指定排序方式

• 格式: 关系名. 属性名| 元组变量. 属性名[, ...]

(1) 简单检索

GET 工作空间名 (表达式1)

[例1] 查询所有被选修的课程号码。 GET W (SC.Cno) [例2] 查询所有学生的数据。

GET W (Student)

(2) 限定的检索

格式

GET 工作空间名(表达式1):操作条件

[例3]查询信息系(IS)中年龄小于20岁的学生的学号和年龄

GET W (Student.Sno, Student.Sage):

Student.Sdept='IS' ∧ Student.Sage<20

(3) 带排序的检索

格式

 GET
 工作空间名(表达式1) [: 操作条件]

 DOWN/UP 表达式2

[例4]查询计算机科学系(CS)学生的学号、年龄,结果按年龄降序排序

GET W (Student.Sno, Student.Sage):

Student.Sdept='CS' DOWN Student.Sage

(4) 带定额的检索

格式

GET 工作空间名(定额)(表达式1)

[: 操作条件] [DOWN/UP 表达式2]

[例5] 取出一个信息系学生的学号。

GET W (1) (Student.Sno):

Student.Sdept='IS'

[**例**6] 查询信息系年龄最大的三个学生的学号及其年龄,结果按年龄降序排序。

GET W (3) (Student.Sno, Student.Sage):

Student.Sdept='IS' DOWN Student.Sage

(5) 用元组变量的检索

- 元组变量的含义
 - 表示可以在某一关系范围内变化(也称为范围变量Range Variable)
- 元组变量的用途
 - ① 简化关系名:设一个较短名字的元组变量来代替较长的关系名。
 - ②操作条件中使用量词时必须用元组变量。
- 定义元组变量
 - 格式: RANGE 关系名 变量名
 - 一个关系可以设多个元组变量

(6) 用存在量词的检索

• 操作条件中使用量词时必须用元组变量 [例8] 查询选修2号课程的学生名字。

RANGE SC X

GET W (Student.Sname): $\exists X(X.Sno=Student.Sno \land X.Cno='2')$

[例9] 查询选修了这样课程的学生学号,其直接先行课是6号课程。

RANGE Course CX

GET W (SC.Sno):

 $\exists CX (CX.Cno=SC.Cno \land CX.Pcno='6')$

用存在量词的检索(续)

[例10]查询至少选修一门其先行课为6号课程的学生名字

RANGE Course CX

SC SCX

GET W (Student.Sname): \exists SCX (SCX.Sno=Student.Sno \land

 $\exists CX (CX.Cno = SCX.Cno \land CX.Pcno = '6'))$

前束范式形式:

GET W (Student.Sname):

∃SCX∃CX (SCX.Sno=Student.Sno ∧

CX.Cno=SCX.Cno \(\subsetext{CX.Pcno='6'}\)

(7) 带有多个关系的表达式的检索

[例11] 查询成绩为90分以上的学生名字与课程名字。

RANGE SC SCX

GET W(Student.Sname, Course.Cname):

∃SCX (SCX.Grade≥90 ∧

SCX.Sno=Student.Sno∧

Course.Cno=SCX.Cno)

(8) 用全称量词的检索

[例12] 查询不选1号课程的学生名字

RANGE SC SCX

GET W (Student.Sname):

∀SCX (SCX.Sno≠Student.Sno ∨SCX.Cno≠'1')

用存在量词表示:

RANGE SC SCX

GET W (Student.Sname):

 $\neg \exists$ SCX (SCX.Sno=Student.Sno \land SCX.Cno='1')

(9) 用两种量词的检索

[例13] 查询选修了全部课程的学生姓名。

RANGE Course CX

SC SCX

GET W (Student.Sname):

 \forall CX \exists SCX (SCX.Sno=Student.Sno \land

SCX.Cno=CX.Cno)

(10) 用蕴函(Implication)的检索

[**例**14] 查询最少选修了200215122学生所选课程的学生学号

RANGE Couse CX

SC SCX

SC SCY

GET W (Student.Sno): \forall CX(\exists SCX

 $(SCX.Sno='200215122' \land SCX.Cno=CX.Cno)$

⇒ ∃SCY(SCY.Sno=Student.Sno \
SCY.Cno= CX.Cno))

(11) 聚集函数

常用聚集函数(Aggregation function)或内部函数(Build-in function)

函数名	功能
COUNT	对元组计数
TOTAL	求总和
MAX	求最大值
MIN	求最小值
AVG	求平均值

关系演算中的聚集函数

聚集函数(续)

[例15] 查询学生所在系的数目。

GET W (COUNT(Student.Sdept))

COUNT函数在计数时会自动排除重复值。

[例16] 查询信息系学生的平均年龄

GET W (AVG(Student.Sage):

Student.Sdept='IS')

二、更新操作

- (1) 修改操作
- (2) 插入操作
- (3) 删除操作

(1) 修改操作步骤

① 用HOLD语句将要修改的元组从数据库中读到工作空间中

HOLD 工作空间名(表达式1)[: 操作条 件]

HOLD语句是带上并发控制的GET语句

- ② 用宿主语言修改工作空间中元组的属性
- ③ 用UPDATE语句将修改后的元组送回数据库中

[例17] 把200215121学生从计算机科学系转到信息系。

HOLD W (Student.Sno, Student.Sdetp):

Student.Sno='200215121'

(从Student关系中读出95007学生的数据)

MOVE 'IS' TO W.Sdept

(用宿主语言进行修改)

UPDATE W

(把修改后的元组送回Student关系)

(2) 插入操作

步骤

- ① 用宿主语言在工作空间中建立新元组
- ② 用PUT语句把该元组存入指定关系中

PUT 工作空间名 (关系名)

PUT语句只对一个关系操作,关系演算中的聚集 函数

插入操作(续)

[例18] 学校新开设了一门2学分的课程"计算机组织与结构",其课程号为8,直接先行课为6号课程。插入该课程元组

MOVE '8' TO W.Cno

MOVE '计算机组织与结构' TO W.Cname

MOVE '6' TO W.Cpno

MOVE '2' TO W.Ccredit

PUT W (Course)

(3) 删除操作

步骤

① 用HOLD语句把要删除的元组从数据库中读到工作空间中

②用DELETE语句删除该元组

DELETE 工作空间名

删除操作(续)

[例19] 200215125学生因故退学,删除该学生元组

HOLD W (Student): Student.Sno='200215125'

DELETE W

删除操作(续)

[例20] 将学号200215121改为200215126

HOLD W (Student): Student.Sno='200215121'
DELETE W

MOVE '200215126' TO W.Sno

MOVE '李勇' TO W.Sname

MOVE '男' TO W.Ssex

MOVE '20' TO W.Sage

MOVE 'CS' TO W.Sdept

PUT W (Student)

删除操作(续)

[例21] 删除全部学生

HOLD W (Student)

DELETE W

为保证参照完整性,删除Student中元组时相应 地要删除SC中的元组

HOLD W (SC)

DELETE W

小结:元组关系演算语言ALPHA

- 检索操作 GET
 GET 工作空间名 [(定额)](表达式1)
 [:操作条件][DOWN/UP表达式2]
- 插入操作
 - 建立新元组--PUT
- 修改操作
 - HOLD--修改--UPDATE
- 删除操作
 - HOLD--DELETE

2.5 关系演算

· 2.5.1 元组关系演算语言ALPHA

• 2.5.2 域关系演算语言QBE

2.5.2 域关系演算语言QBE

- 一种典型的域关系演算语言
 - 由M.M.Zloof提出
 - 以元组变量的分量即域变量作为谓词变元的基本对象
- QBE: Query By Example
 - 基于屏幕表格的查询语言
 - 查询要求: 以填写表格的方式构造查询
 - 用示例元素(域变量)来表示查询结果可能的情况
 - 查询结果: 以表格形式显示

QBE操作框架

一、检索操作

1.简单查询

[例1]求信息系全体学生的姓名

操作步骤为:

- (1) 用户提出要求;
- (2) 屏幕显示空白表格;

简单查询(续)

(3) 用户在最左边一栏输入要查询的关系名Student;

Student			

(4) 系统显示该关系的属性名

Student	Sno	Sname	Ssex	Sage	Sdept

简单查询(续)

(5) 用户在上面构造查询要求

Student	Sno	Sname	Ssex	Sage	Sdept
		P. <u>李勇</u>			IS

- 李勇是示例元素,即域变量
- (6) 屏幕显示查询结果

Student	Sno	Sname	Ssex	Sage	Sdept
		李勇			IS
		张立			

构造查询的几个要素

- 示例元素 即域变量 一定要加下划线
 示例元素是这个域中可能的一个值,它不必 是查询结果中的元素
- 打印操作符P. 实际上是显示
- 查询条件

可使用比较运算符>, \geq ,<, \leq ,=和 \neq 其中=可以省略

简单查询(续)

[例2] 查询全体学生的全部数据

Studen	Sno	Sname	Ssex	Sage	Sdept
	P.200215121	P. <u>李勇</u>	P. <u>男</u>	P. <u>20</u>	P. <u>CS</u>

简单查询(续)

显示全部数据也可以简单地把P.操作符作用在关系名上。

Student	Sno	Sname	Ssex	Sage	Sdept
P.					

2. 条件查询

[例3] 求年龄大于19岁的学生的学号

Student	Sno	Snam e	Ssex	Sage	Sdept
	P. <u>200215121</u>			>19	

条件查询(与条件)

[例4] 求计算机科学系年龄大于19岁的学生的学号。

方法(1): 把两个条件写在同一行上

Student	Sno	Sname	Ssex	Sage	Sdept
	P. <u>20021512</u> <u>1</u>			>19	CS

条件查询(与条件)

方法(2): 把两个条件写在不同行上,但使用相同的示例元素值

Student	Sno	Sname	Ssex	Sage	Sdept
	P.2002151 21 P.2002151 21			>19	CS

条件查询(与条件)

[例5] 查询既选修了1号课程又选修了2 号课程的学生的学号。

Sc	Sno	Cno	Grade
	P. <u>200215121</u>	1	
	P. <u>200215121</u>	2	

条件查询(或条件)

[例6]查询计算机科学系或者年龄大于19岁的学生的学号。

Student	Sno	Sname	Ssex	Sage	Sdept
	P. <u>200215121</u>				CS
	P.200215122			>19	

条件查询(多表连接)

[例7] 查询选修1号课程的学生姓名。

Stude nt	Sno	Sname	Ssex	Sage	Sdept
	20021512 1	P. <u>李勇</u>			

Sc	Sno	Cno	Grade
	20021512	1	
	<u>1</u>		

注意:示例元素Sno是连接属性,其值在两个表中要相同。

条件查询(非条件)

[例8] 查询未选修1号课程的学生姓名

Student	Sno	Sname	Ssex	Sage	Sdept
	200215121	P. <u>李勇</u>			

Sc	Sno	Cno	Grade
	200215121	1	

思路:显示学号为200215121的学生名字,而该学生选修1号课程的情况为假

条件查询(续)

[例9] 查询有两个人以上选修的课程号。

Sc	Sno	Cno	Grade
	200215121	P. <u>1</u>	
	<u>200215121</u>	<u>1</u>	

思路:查询这样的课程1,它不仅被200215121选修而且也被另一个学生(-200215121)选修了

3. 聚集函数

常用聚集函数:

函数名	功能
CNT	对元组计数
SUM	求总和
AVG	求平均值
MAX	求最大值
MIN	求最小值

QBE中的聚集函数

聚集函数 (续)

[例10] 查询信息系学生的平均年龄。

Student	Sno	Sname	Ssex	Sage	Sdep t
				P.AVG.ALL	IS

4.对查询结果排序

- 升序排序:
 - 对查询结果按某个属性值的升序排序,只需在相应列中填入"AO."
- 降序排序:
 - 按降序排序则填"DO."
- 多列排序:
 - 如果按多列排序,用 "AO(i)."或 "DO(i)."表示, 其中i为排序的优先级,i值越小,优先级越高

对查询结果排序(续)

[例11] 查全体男生的姓名,要求查询结果按所在系升序排序,对相同系的学生按年龄降序排序。

Student	Sno	Sname	Ssex	Sage	Sdept
		P. <u>李勇</u>	男	DO (2).	AO (1).

二、更新操作

1.修改操作

[例12] 把200215121学生的年龄改为18岁。

方法(1): 将操作符"U."放在值上

Studen t	Sno	Sname	Ssex	Sage	Sdept
	20021512			U.18	

方法(2): 将操作符"U."放在关系上

Student	Sno	Sname	Ssex	Sage	Sdept
U.	200215121			18	

码200215121标明要修改的元组。

"U."标明所在的行是修改后的新值。

由于主码是不能修改的,所以系统不会混淆要修改的属性。

[例13] 把200215121学生的年龄增加1岁

Student	Sno	Snam e	Ssex	Sage	Sdept
U.	200215121 200215121			<u>17</u> <u>17</u> +1	

操作涉及表达式,必须将操作符"U."放在关系上

[例14] 将计算机系所有学生的年龄都增加1岁

Studen	Sno	Sname	Ssex	Sage	Sdept
t					
	20021512			<u>18</u>	CS
U.	<u>2</u>			<u>18</u> +1	
	20021512				
	$\frac{}{2}$				

2.插入操作

[**例**15] 把信息系女生200215701,姓名张三,年龄17岁存入数据库中。

Stude nt	Sno	Sname	Ssex	Sage	Sdept
I.	20021570	张三	女	17	IS

3. 删除操作

[例17] 删除学生200215089

Student	Sno	Snam e	Ssex	Sage	Sdept
D.	200215089				

为保证参照完整性,删除200215089学生前,先删除200215089学生选修的全部课程

Sc	Sno	Cno	Grade
D.	200215089		

第二章关系数据库

- 2.1 关系模型概述
- 2.2 关系数据结构
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

2.6 小结

- 关系数据库系统是目前使用最广泛的数据库系统
- 关系数据库系统与非关系数据库系统的区别:
 - 关系系统只有"表"这一种数据结构;
 - 非关系数据库系统还有其他数据结构,以及 对这些数据结构的操作

- 关系数据结构
 - 关系
 - 域
 - 笛卡尔积
 - 关系
 - 关系,属性,元组
 - 候选码, 主码, 主属性
 - 基本关系的性质
 - 关系模式
 - 关系数据库

- 关系操作
 - 查询
 - ▶选择、投影、连接、除、并、交、差
 - 数据更新
 - ▶插入、删除、修改

- 关系的完整性约束
 - 实体完整性
 - 参照完整性
 - ▶外码
 - 用户定义的完整性

- 关系数据语言
 - 关系代数语言
 - 关系演算语言
 - ▶元组关系演算语言 ALPHA
 - ▶域关系演算语言 QBE

下煤了。。。

休息一会儿。。。

