

IIC1253 — Matemáticas Discretas — 1' 2019

PAUTA TAREA 5

Pregunta 1

Pregunta 1.1

Una posible solución para demostrar que \mathbb{R} y \mathbb{C} son equinumerosos es mostrar que existen dos funciones $f_1:\mathbb{R}\to\mathbb{C}$ y $f_2:\mathbb{C}\to\mathbb{R}$, ambas inyectivas:

- Es fácil ver que $f_1(a) = a + 0i$ es una inyección de \mathbb{R} a \mathbb{C} .
- Para la inyección de vuelta consideramos $f_2(a+bi) = a_n b_n ... a_2 b_2 a_1 b_1, a_{-1} b_{-1} ...$ donde $x_n ... x_2 x_1, x_{-1} x_{-2} ...$ es la expansión decimal de $x \in \mathbb{R}$, y podemos suponer sin perder generalidad que la expansión de a y b tienen la misma cantidad de dígitos, pues en caso de que no, podemos rellenar con ceros a la izquierda. Por ejemplo, $f_2(30 + 1234i) = 010223304$ y no $f_2(30 + 123i) = 123304$.

Para mostrar que es inyectiva, supongamos que $f_2(a+bi) = f_2(c+di)$. Luego:

$$f(c+di) = a_n b_n ... a_2 b_2 a_1 b_1, a_{-1} b_{-1} ...$$

Así, por definición de la función, la expansión decimal de c es $a_n...a_2a_1, a_{-1}a_{-2}...$ y la de d es $b_n...b_2b_1, b_{-1}b_{-2}...$ Finalmente, a = c y b = c, es decir, a + bi = c + di.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Mostrar ambas funciones junto con una demostración correcta y clara de la inyectividad.
- (3 puntos) Mostrar ambas funciones y pequeños errores demostrando inyectividad.
- (0 puntos) Otros casos.

Pregunta 1.2

Para esta pregunta había que utilizar el argumento de la diagonalización de Cantor. En efecto, supongamos que Σ^{ω} es numerable: $\Sigma^{\omega} = \{s_0, s_1, ...\}$. Sea $s_k = s_{1k}s_{2k}s_{3k}...$ la k-ésima palabra en la enumeración de Σ^{ω} . Finalmente, consideremos $s^{\omega} = s'_1s'_2s'_3...$ una palabra con letras de Σ tal que s'_i es una letra (símbolo) distinto a s_{ii} (notar que se puede elegir $s'_i \neq s_{ii}$ por que el alfabeto tiene al menos dos letras). Entonces $s^{\omega} \notin \Sigma^{\omega}$, porque difiere siempre en al menos una letra con todas las palabras del conjunto. Por otro lado, s^{ω} es una secuencia de letras de Σ , por lo que $s^{\omega} \in \Sigma^{\omega}$, resultando una contradicción.

- (4 puntos) Demostración correcta y clara utilizando el argumento de la diagonal de Cantor.
- (3 puntos) Demostración con pequeños errores u omisiones.
- (0 puntos) Otros casos.

Pregunta 2

Pregunta 2.1

Una posible solución consiste en hacer uso de lo demostrado en el problema 1.2. Considere el grafo G_1 :

Sea $\Sigma = \{0,1\}$ un alfabeto finito, donde claramente $|\Sigma| \ge 2$ y w una palabra en Σ^w . Si $w = v_0 v_1 v_2 ...$ tal que $v_i \in \Sigma$, se puede asignar la secuencia $v_0 v_1 v_2 ...$ como un camino infinito en G_1 . Por tanto $C_{G_1}^w$ es no numerable. Alternativamente, se puede argumentar utilizando el argumento de la diagonal de Cantor.

Dado lo anterior, el puntaje asignado es el siguiente:

- (0 puntos) Por no dar ejemplo o por darlo sin argumentación .
- (3 puntos) Por dar ejemplo y argumentar con errores pequeños.
- (4 puntos) Por dar ejemplo y argumentar correctamente.

Pregunta 2.2

Considere el siguiente grafo G_2 :

Sea $S \in C^w_{G_2}$, tal que $S = \underbrace{000000}_{\text{O}} \cdots 1111111.$ Se puede definir la función $f: C^w_{G_2} \to \mathbb{N}$ tal que,

$$f(S) = k + 1$$

y para $S^* \in C^w_{G_2}$ donde $S^* = 000000000\cdots000000\ldots$

$$f(S^*) = 0$$

Como fue definida f, es fácil demostrar que es biyectiva.

Dado lo anterior, el puntaje asignado es el siguiente:

- (0 puntos) Por no dar ejemplo o por darlo sin argumentación.
- (3 puntos) Por dar ejemplo y argumentar con errores pequeños.
- (4 puntos) Por dar ejemplo y argumentar correctamente.