Statistik för Biologer F4: t-Test och Konfidensintervall

Shaobo Jin

Matematiska institutionen

Medelvärden

I många studier är vi intresserade av medelvärdet av en grupp:

- Vad är medelvärdet för vikten på pingvinhanar?
- Hur många personer per dag, i genomsnitt, smittades med covid-19 under förra veckan?

I många studier är vi också intresserade av medelvärden av två eller flera grupper:

• Hur stor är skillnaden i vikt mellan pingvinhonor och -hanar?

Att Mäta Pingviner

Det finns tre arter av pingviner. Forskarna har mätt bland annat

- Näbbens längd (mm)
- 2 Näbbens djup (mm)
- Vingens längd (mm)
- Vikt (g)
- Kön (hona/hane)
- Art (tre arter)

Vikten av Gentoo

Encyclopedia of Life påstår att åsnepingviner i genomsnitt väger 5,9 kg.

Hypotesprövning

Vi vill undersöka om påståendet om åsnepingviners vikt stämmer med ett statistiskt hypotestest.

 H_0 : den genomsnittliga vikten är 5.9 kg.

 H_1 : den genomsnittliga vikten är inte 5.9 kg.

Om det är en stor skillnad mellan 5.9 kg och medelvikten i data tyder det på att H_1 stämmer.

En Idé

För normalfördelningen gäller att 95% av alla observationer hamnar inom två standardavvikelser från väntevärdet:

$$P(\mu - 1.96\sigma \le X \le \mu + 1.96\sigma) \approx 0.95$$

 $P\left(-1.96 \le \frac{X - \mu}{\sigma} \le 1.96\right) \approx 0.95.$

Centrala gränsvärdessatsen

Om $X_1, X_2, ..., X_n$ är:

- oberoende slumpvariabler
- \circ som alla har samma fördelning, med $E(X_i) = \mu$ och $V(X_i) = \sigma^2$, så gäller att medelvärdet $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ är approximativt normalfördelat när n är tillräckligt stort.

Om n är tillräckligt stort så kommer alltså medelvärdet att ligga i spannet $\mu \pm 2\frac{\sigma}{\sqrt{n}}$ i 95% av alla studier!

Differens

Vi kan ta ut åsnepingvinernas vikt från våra pingvindata:

```
library(palmerpenguins)
gentoo <- subset(penguins, species == "Gentoo")</pre>
```

Medelvärdet i våra data (na.rm tar bort saknat värden)

```
mean(gentoo$body_mass_g, na.rm = TRUE)
## [1] 5076.016
```

Skillnaden beror på mätskalan

```
mean(gentoo$body_mass_g, na.rm = TRUE) - 5900 # gram
## [1] -823.9837
mean(gentoo$body_mass_g/1000, na.rm = TRUE) - 5.9 # kg
## [1] -0.8239837
```

Nytt mått på skillnad

 s/\sqrt{n} kallas för ett **medelfel**. Vi kan använda medelfelet s/\sqrt{n} för att skapa ett standardiserat mått på hur mycket medelvärdet avviker från μ_0 :

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}.$$

Beräkning med R:

```
# gram
xs <- mean(gentoo$body_mass_g, na.rm = TRUE)
s <- sd(gentoo$body_mass_g, na.rm = TRUE)
n <- sum(!is.na(gentoo$body_mass_g))
(xs - 5900) / (s / sqrt(n))
## [1] -18.12761</pre>
```

Spelar Skalan Någon Roll?

```
# gram
xs <- mean(gentoo$body_mass_g, na.rm = TRUE)
s <- sd(gentoo$body_mass_g, na.rm = TRUE)
n <- sum(!is.na(gentoo$body_mass_g))
(xs - 5900) / (s / sqrt(n))
## [1] -18.12761</pre>
```

```
# kg
xs <- mean(gentoo$body_mass_g/1000, na.rm = TRUE)
s <- sd(gentoo$body_mass_g/1000, na.rm = TRUE)
(xs - 5.9) / (s / sqrt(n))
## [1] -18.12761</pre>
```

Nytt mått på skillnad

- Måttet $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$ mäter antalet standardfel som resultatet (medelvärdet) avviker från nollhypotesen.
- Om nollhypotesen stämmer så kommer medelvärdet att ligga inom (approximativt) 2 standardfel från 5,9 kg i 95% av alla studier.
 - Beroende på hur stort n är så kommer medelvärdet i 95% av studierna ligga inom lite mer eller lite mindre än 2 standardfel.
- Här är avvikelsen mer än 18 standardfel!
- Vad är sannolikheten för en avvikelse som är minst så stor? (Det vill säga, vad är p-värdet?)

Skål!

Guinness kemist W.S. Gosset brottades med det här problemet i början av 1900-talet. Han publicerade lösningen, som använder t-fördelningen, under pseudonymen "Student". Testet kallas t-test eller Student's t-test.

Beräkning av p-värde

 $H_0: \mu = 5900$ g mot $H_1: \mu \neq 5900$ g. Ju mer den standardiserade differensen avviker från 0, desto extremare är resultatet. Om den standardiserade differensen t.ex är -1.25 så är p-värdet = arean för de vita områdena under kurvan:

t-test i R: dubbelsidig alternativhypotes

Mått i gram: $H_0: \mu = 5900 \text{g mot } H_1: \mu \neq 5900 \text{g}.$

```
t.test(gentoo$body_mass_g, mu = 5900)
##
##
   One Sample t-test
##
## data: gentoo$body_mass_g
## t = -18.128, df = 122, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 5900
## 95 percent confidence interval:
## 4986.034 5165.998
## sample estimates:
## mean of x
## 5076.016
```

t-test i R: dubbelsidig alternativhypotes

Mått i kg: $H_0: \mu = 5.9 \text{kg mot } H_1: \mu \neq 5.9 \text{kg}.$

```
t.test(gentoo$body_mass_g / 1000, mu = 5.9)
##
##
   One Sample t-test
##
## data: gentoo$body_mass_g/1000
## t = -18.128, df = 122, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 5.9
## 95 percent confidence interval:
## 4.986034 5.165998
## sample estimates:
## mean of x
## 5.076016
```

t-test i R: enkelsidig alternativhypotes

Mått i gram: $H_0: \mu \le 5900$ g mot $H_1: \mu > 5900$ g.

```
t.test(gentoo$body_mass_g, mu = 5900,
       alternative = "greater")
##
   One Sample t-test
##
##
## data: gentoo$body_mass_g
## t = -18.128, df = 122, p-value = 1
## alternative hypothesis: true mean is greater than 5900
## 95 percent confidence interval:
## 5000.678
                  Tnf
## sample estimates:
## mean of x
## 5076.016
```

t-test i R: enkelsidig alternativhypotes

Mått i gram: $H_0: \mu \ge 5900 \text{g mot } H_1: \mu < 5900 \text{g}.$

```
t.test(gentoo$body_mass_g, mu = 5900,
       alternative = "less")
##
##
   One Sample t-test
##
## data: gentoo$body_mass_g
## t = -18.128, df = 122, p-value < 2.2e-16
## alternative hypothesis: true mean is less than 5900
## 95 percent confidence interval:
        -Inf 5151.355
##
## sample estimates:
## mean of x
## 5076.016
```

Konfidensintervall och test

- ullet Ett konfidensintervall för väntevärdet täcker det sanna värdet på μ i $100 (1-\alpha)\%$ av alla studier.
- Hypotestest och konfidensintervall är olika sidor av samma mynt!
- Till varie test hör ett konfidensintervall, och vice versa.
- Ett $1-\alpha$ konfidensintervall för μ innehåller de värden på μ som inte skulle förkastas vid signifikansnivån α .
- Ett värde μ_0 kan förkastas vid signifikansnivån α om det inte ligger i $1-\alpha$ konfidensintervallet.

```
t.test(gentoo$body_mass_g, mu = 5900)
##
## One Sample t-test
##
## data: gentoo$body_mass_g
## t = -18.128, df = 122, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 5900
## 95 percent confidence interval:
## 4986.034 5165.998
## sample estimates:
## mean of x
## 5076.016
```

Detta brukar skrivas som ett intervall: (4986.304, 5165.998) eller $4986.304 < \mu < 5165.998$.

Konfidensintervall för väntevärdet μ

Spelar μ = i t.test() någon roll?

```
t.test(gentoo$body_mass_g, mu = 0)
##
   One Sample t-test
##
##
## data: gentoo$body_mass_g
## t = 111.67, df = 122, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 4986.034 5165.998
## sample estimates:
## mean of x
## 5076.016
```

Konfidensintervall

Konfidensintervallet kan beräknas för hand som:

$$\bar{x} \pm t_{\alpha/2}^{(n-1)} \frac{s}{\sqrt{n}}$$

där $t_{\alpha/2}^{(n-1)}$ anger inom hur många medelfel från μ som medelvärdet hamnar i $100(1-\alpha)\%$ av alla studier.

 $t_{\alpha/2}^{(n-1)}$ är den $\alpha/2$ -kvantilen för t-fördelningen med n-1 frihetsgrader,

$$P\left(T \ge t_{\alpha/2}^{(n-1)}\right) = \frac{\alpha}{2},$$

där T är t-fördelad med n-1 frihetsgrader

Konfidensintervall för väntevärdet μ

Vi kan kontrollera konfidensgraden $1 - \alpha$.

```
t.test(gentoo$body_mass_g, conf.level = 0.99) # alpha = 0.01
##
##
   One Sample t-test
##
## data: gentoo$body_mass_g
## t = 111.67, df = 122, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 99 percent confidence interval:
## 4957.074 5194.959
## sample estimates:
## mean of x
## 5076.016
```

t-kvantiler

Kvantilerna för ett 95% konfidensintervall ($\alpha=0.05,\,\alpha/2=0.025$) beror på stickprovsstorleken n:

Stickprovsstorlek n	$t_{0.025}^{(n-1)}$
5	2.776
10	2.262
20	2.093
50	2.01
100	1.984
1000	1.962
∞	1.96

Om slumpvariabel $X \sim N(0,1)$ har vi

$$P(X \le 1.96) = 0.975,$$

 $P(X \ge 1.96) = 0.025.$

Förutsättningar!

- Vi har inte outliers
- 2 Normalfördelade data!
 - Resultaten som fås via t-fördelningen är **exakta** om data är normalfördelade, oavsett värdet på *n*.
 - Resultaten som fås via t-fördelningen är approximativa om data inte är normalfördelade men n är stort.
 - Ni ska studera olika sätt att undersöka om data är normalfördelade i Datalab S3.
- $X_1, X_2, ..., X_n$ är oberoende slumpvariabler

Strunta i Dem

- Kursboken beskriver en metod f\u00f6r att utf\u00f6ra t-test som anv\u00e4nder sig av olika tabeller. Ingen gör någonsin så nuförtiden! Använd R istället.
- Boken nämner också z-testet. Använd t-testet istället.

I många studier är vi också intresserade av skillnaderna mellan två eller flera grupper:

- Hur stor är skillnaden i vikt mellan pingvinhonor och -hanar?
- Finns storleksskillnader mellan könen för respektiv art?
- Söker könen föda på samma sätt?

- Vi har mätt hanarnas vikter: $z_1, z_2, ..., z_n$ och beräknat medelvärdet $\bar{z} = \sum_{i=1}^n z_i/n$.
- Vi har mätt honornas vikter: $x_1, x_2, ..., x_m$ och beräknat medelvärdet $\bar{x} = \sum_{i=1}^m x_i/m$.
- \bullet n och m behöver inte vara samma!
- Differensen är $\bar{z} \bar{x}$.

Hur kan vi få ett standardiserat mått på differens, som inte beror på vilken viktenhet vi använder?

Standardiserade differens

När vi har två stickprov blir den standardiserade differensen:

$$t = \frac{\bar{z} - \bar{x}}{\sqrt{s_z^2/n + s_x^2/m}}$$

Om nollhypotesen $H_0: \mu_z = \mu_x$ är sann så är t t-fördelad, vilket gör att vi kan beräkna p-värdet.

t-Test för två stickprov med R: variant 1

Om vi har det uppmätta värdet och grupptillhörighet som variabler i en tabell (data frame):

```
t.test(body_mass_g ~ sex, data = gentoo)
##
##
   Welch Two Sample t-test
##
## data: body_mass_g by sex
## t = -14.761, df = 116.64, p-value < 2.2e-16
## alternative hypothesis: true difference in means between gro
## 95 percent confidence interval:
## -913.1130 -697.0763
## sample estimates:
## mean in group female mean in group male
               4679.741
##
                                    5484.836
```

t-Test för två stickprov med R: variant 2

Om vi har data i två vektorer:

```
females <- subset(gentoo, sex == "female")</pre>
males <- subset(gentoo, sex == "male")</pre>
t.test(males$body_mass_g, females$body_mass_g)
##
##
   Welch Two Sample t-test
##
## data: males$body_mass_g and females$body_mass_g
## t = 14.761, df = 116.64, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal
## 95 percent confidence interval:
## 697.0763 913.1130
## sample estimates:
## mean of x mean of y
    5484.836 4679.741
```

Vi har nu sett två sorters t-test:

- En grupp: ensticksprovs-t-test
- 2 Två grupper: tvåsticksprovs-t-test

De används för olika frågeställningar, men går under samma namn eftersom de bygger på samma matematiska modell: t-fördelningen.

Variant med lika standardavvikelse

I en del situationer har man anledning att anta att standardavvikelsen är densamma i båda grupperna.

• Exempel: variationen beror till största delen på mätfel, som beter sig på samma sätt för båda grupperna.

I sådana fall kan man beräkna den standardiserade differensen på ett lite annat sätt, vilket påverkar p-värdet.

Varianten där vi inte antar att grupperna har samma standardavvikelse är den vi oftast ska använda! Den kallas **Welch t-test** som är approximativt t-fördelat.

Variant med lika standardavvikelse

```
t.test(body_mass_g ~ sex, data = gentoo, var.equal = TRUE)
##
##
   Two Sample t-test
##
## data: body_mass_g by sex
## t = -14.722, df = 117, p-value < 2.2e-16
## alternative hypothesis: true difference in means between gro
## 95 percent confidence interval:
## -913.4008 -696.7886
## sample estimates:
## mean in group female mean in group male
##
           4679.741
                                    5484.836
```

Bästa sättet att söva älgar

Veterinärer vid Kolmården ville utvärdera olika metoder för att söva älgar. Man vill testa följande hypoteser:

- \bullet H_0 : älgens puls är densamma vid sövningens start och slut
- \bullet H_1 : älgens puls är inte densamma vid sövningens start och slut

Puls före och efter sövning

$F\ddot{\text{o}}\text{re}$	Efter
43	42
46	60
43	47
29	36
42	30
38	30
46	107
	43 46 43 29 42 38

Vi kan inte testa om det finns en skillnad genom ett vanligt tvåstickprovs-t-test eftersom vi har gjort flera mätningarna på samma individer! Vi kan beräkna skillnaden Slut – Start för varje individ! Varje individ blir sin egen kontroll:

Namn	Före	Efter	Differens
Flash	43	42	-1
Frostar	46	60	14
$_{ m Hagel}$	43	47	4
${ m Hj\ddot{o}rdis}$	29	36	7
Linus	42	30	-12
Rosa Linda	38	30	-8
Helga	46	107	-61

Puls före och efter sövning

Man vill testa följande hypoteser:

- H_0 : älgens puls är densamma vid sövningens start och slut
 - År samma sak som H_0 : väntevärdet för differensen är 0
- H_1 : älgens puls är inte densamma vid sövningens start och slut
 - År samma sak som H_1 : väntevärdet för differensen är inte 0

Test

Vi kan utvärdera hypoteserna med ett t-test för differensen:

```
differens <-c(-1, 14, 4, 7, -12, -8, 61)
t.test(differens, mu = 0)
##
  One Sample t-test
##
##
## data: differens
## t = 1.0047, df = 6, p-value = 0.3538
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -13.32870 31.90013
## sample estimates:
## mean of x
## 9.285714
```

Test

Testet kallas t-test vid stickprov i par. Vi kan utföra det direkt utan att behöva beräkna differensen:

```
start \leftarrow c(43, 46, 43, 29, 42, 38, 46)
slut \leftarrow c(42, 60, 47, 36, 30, 30, 107)
t.test(slut, start, mu = 0, paired = TRUE)
##
##
   Paired t-test
##
## data: slut and start
## t = 1.0047, df = 6, p-value = 0.3538
## alternative hypothesis: true mean difference is not equal to
## 95 percent confidence interval:
## -13.32870 31.90013
```

sample estimates:
mean difference

Outliers och icke-normalitet

Här har vi en outlier!

Namn	Före	Efter	Differens
Flash	43	42	-1
$\operatorname{Frostar}$	46	60	14
$_{ m Hagel}$	43	47	4
Hjördis	29	36	7
Linus	42	30	-12
Rosa Linda	38	30	-8
\mathbf{Helga}	46	107	-61

Orsaken kan vara

- mätfel?
- Viktigt specialfall?
- eller flera.

Måste vi vara orolig?

t-test fungerar ofta inte som tänkt om vi har outliers (testet får fel signifikansnivå).

Möjliga lösningar (icke-parametriska metoder):

- Bootstrap-test: jämför medelvärdet efter och före (t-test utan normalfördelning)
- Rangtest: jämför medianen efter och före, utan normalfördelning (vidareutveckling av teckentestet)

Sammanfattning

- Hypoteser om medelvärden kan testas med t-test
 - En grupp: ensticksprovs-t-test
 - Två grupper: tvåsticksprovs-t-test
 - Två mätningar på samma individer: t-test för stickprov i par
- Förutsättningar!