

UNIDADE I

Sistemas Operacionais Abertos e Mobile

Prof. Me. Michel Fernandes

Unidade I

Sistemas Operacionais Abertos:

- Conceitos de software livre.
- Histórico do Linux.
- Distribuições do Linux.
- Introdução ao sistema operacional Linux.

Sistemas Operacionais Mobile:

- Conceito de sistema mobile.
- Principais sistemas mobile: Android e iOS.
- Histórico do Android e iOS.

Sistema operacional GNU/Linux

- Linux é um sistema operacional de código aberto, utilizado por muitos desenvolvedores e times de TI para gerenciar seus ambientes e desenvolver novos códigos para o mercado.
- Desde o princípio, o Linux foi desenvolvido para ser um sistema operacional multitarefa e multiusuário.
- Em 1983, Richard Stallman iniciou o projeto que ficou conhecido como GNU, em que seu objetivo era o desenvolvimento de um sistema operacional baseado no Unix, mas sem cobrança de licenças de uso e com permissão de copiar, estudar, modificar ou até distribuir seu código.
 - Em 1985, Richard Stallman fundou a Free Software Foundation (FSF), uma organização sem fins lucrativos que se dedica à eliminação de restrições sobre cópia, estudo e modificação de programas de computador (bandeiras do movimento do software livre).

Sistema operacional GNU/Linux

- Em 1991, o finlandês Linus Torvalds desenvolveu um novo kernel chamado Linux.
- Este se uniu com as ferramentas desenvolvidas pelo projeto GNU, surgindo o que é conhecido atualmente como GNU/Linux.
- O desenvolvimento do Linux foi baseado no sistema Minix, criado em 1987 por Andrew Tanenbaum.

 O Minix se baseava nos padrões do Unix e, na época, era usado apenas na área acadêmica para estudos e desenvolvimentos específicos.

Tux: Mascote do Linux.

Fonte: https://commons.wikimedia.org/wiki/Linux#/media/File:Tux.svg

Leis da liberdade do software livre

Software de código livre ou open source significa que os usuários possuem as quatro liberdades essenciais:

- Liberdade n. 0: a liberdade de utilizar o programa para qualquer propósito;
- Liberdade n. 1: a liberdade de estudar como o programa funciona e adaptá-lo para as suas necessidades. Nesse sentido, o acesso ao código-fonte é um pré-requisito para essa liberdade;
 - Liberdade n. 2: a liberdade de redistribuir cópias, de modo que você possa ajudar o seu próximo;
 - Liberdade n. 3: a liberdade de aperfeiçoar o programa e liberar os seus aperfeiçoamentos, de modo que toda a comunidade se beneficie.

Distribuições Linux – Distro

- Uma distribuição Linux é um sistema operacional feito do kernel Linux, ferramentas do GNU, alguns programas adicionais e um gerenciador de pacotes. Versões para servidor e de desktop.
- Uma distribuição é um conjunto de vários softwares agrupados em mídias. Com esses instaladores customizados, é possível facilitar o trabalho do usuário e dos administradores.
- As distribuições também assumem a responsabilidade de fornecer atualizações para manter o kernel e outros utilitários atualizados.
 - Existem mais de 500 distribuições Linux.
 - Exemplos: Ubuntu, Debian, CentOS, Minti, Kali Linux, Fedora, Raspbian, openSuse.

- Com base nas quatro definições de liberdade estabelecidas para o uso do GNU/Linux, os usuários iniciaram um processo de personalização do sistema, programando-o de acordo com as necessidades individuais e dando início às distribuições.
- Uma distribuição ou distro é um conjunto de vários softwares agrupados em mídias. Com esses instaladores customizados, é possível facilitar o trabalho do usuário e dos administradores.
- As distribuições Linux começaram a ficar mais populares a partir do final dos anos 1990,
 quando se tornaram uma alternativa livre aos sistemas operacionais que existiam na época.
- Cada distribuição possui suas características particulares e muitas vezes exclusivas.
 - Observação: nem todas as distribuições Linux são gratuitas.
 Para evitar esse tipo de confusão, elas são organizadas em categorias.

Distribuições livres

Mantidas por comunidades de colaboradores que não visam aos lucros sobre suas distribuições. As distribuições livres estão nas seguintes versões:

- Debian v 9.1.
- CentOSv 7.0.
- Slackwarev 14.1.

Fonte: https://eriberto.pro.br/wik i/images/c/cb/Debian_lo go.jpg?20130404193147

CentOS

Fonte: https://logodownload.org/wp-content/uploads/2017/10/centos-logo.png

Distribuições corporativas

Mantidas por empresas que cobram pelo suporte prestado.

As versões atuais são as seguintes:

- Oracle Linux v.7.
- Red Hat Enterprise Linux v.7.
- SuseLinux Enterprise v.12.

Distribuições corporativas

Mantidas por empresas e possuem as seguintes características:

- Disponibilidade de suporte técnico especializado, conforme a distribuição utilizada.
- Homologação para a instalação de alguns programas corporativos.

As versões atuais são as seguintes:

- Oracle Linux v.7.
- Red Hat Enterprise Linux v.7.
- SuseLinux Enterprise v.12.

Instalação de distribuição do Linux

- Instalação da distribuição CentOS.
- Ela é derivada da distribuição Red Hat e é bastante utilizada em servidores.
- Sugestão: executar a instalação dessa distribuição em uma máquina virtual, como a Oracle VirtualBox.
- Isso permite explorar a instalação e a configuração de uma distribuição GNU/Linux sem que precisemos nos preocupar com um hardware real.
 - Instalações em uma máquina real podem resultar em perda de dados, caso sejam realizadas em uma máquina que já tenha um sistema operacional instalado.

Distribuições para iniciantes (estação de trabalho)

São aquelas que permitem ao usuário fazer tudo aquilo que faria no sistema operacional que já domina, com interface gráfica amigável, opções claras, usabilidade e ferramentas gráficas. As versões atuais são as seguintes:

- Linux Mint v.18.2.
- Ubuntu v.16.10.
- Kubuntu v.16.10.

Interatividade

Em relação ao software livre, assinale a alternativa correta.

- a) Qualquer software que não cobre pela licença é um software livre.
- b) Após alterar o código-fonte de um software livre, é possível vender a licença desse software modificado.
- c) Após o pagamento da licença, qualquer software vira software livre.
- d) Um dos requisitos fundamentais do software livre é o acesso ao código-fonte.
- e) Como o software é livre, nenhuma empresa desenvolvedora terá quaisquer receitas advindas de serviços desse software.

Resposta

Em relação ao software livre, assinale a alternativa correta.

- a) Qualquer software que não cobre pela licença é um software livre.
- b) Após alterar o código-fonte de um software livre, é possível vender a licença desse software modificado.
- c) Após o pagamento da licença, qualquer software vira software livre.
- d) Um dos requisitos fundamentais do software livre é o acesso ao código-fonte.
- e) Como o software é livre, nenhuma empresa desenvolvedora terá quaisquer receitas advindas de serviços desse software.

Instalação do Linux via máquina virtual

Distribuição Ubuntu Versão Ubuntu 22.04.2 LTS

Hardware necessário:

Computador com no mínimo 25 GB de espaço em disco rígido.

Realizar download da imagem do sistema operacional.

Disponível em: https://ubuntu.com/download/desktop

Software para máquina virtual: Oracle VirtualBox.

https://www.virtualbox.org/

Componentes do sistema Linux

Linux é composto por três corpos de código principais:

- Kernel;
- Bibliotecas do sistema;
- Utilitários do sistema.

programas de gerenciamento do sistema	processos de usuário	programas utilitários de usuário	compiladores		
bibliotecas compartilhadas do sistema					
kernel do Linux					
módulos carregáveis do kernel					

Fonte: adaptado de: Silberschatz et al, 2015, p.433.

Componentes do sistema Linux

- Kernel: parte central do sistema e é responsável por manter o sistema operacional.
- Bibliotecas do sistema: definem um conjunto-padrão de funções por meio das quais as aplicações podem interagir com o kernel.
- <u>Utilitários do sistema</u>: programas que executam tarefas de gerenciamento individuais especializadas.
 - Suporte a módulos: composto por 4 partes: sistema de gerenciamento de módulos, carregador e descarregador de módulos, sistema de registro de drivers e mecanismo de resolução de conflitos.

Particularidades do sistema Linux

- Além da interface gráfica, a interface de linha de comando é bastante utilizada.
- No Linux não há chance de falha na configuração do sistema. Se um arquivo de configuração for danificado, apenas essa função será interrompida, e o restante funcionará.
- Existe um sistema de arquivos de raiz única cujo caminho é "/".
- Administrador é chamado de root e o acesso de root somente é utilizado quando estritamente necessário. Interfaces modernas enviam avisos ao usuário sobre a senha de root quando for preciso.

Buscando documentação

Fontes de consulta para Linux:

- Sites de comunidades de usuários Linux lista de comunidades em: https://www.vivaolinux.com.br/comunidades/
- Guia Foca: lançada em 1999, apresenta de forma didática explicações sobre sistema
 GNU/Linux para usuários iniciantes, intermediários e avançados: https://www.guiafoca.org/
- HowTo: pode ser encontrado nos diversos sites oficiais ou não oficiais, como blogs.
- Manuais técnicos.

Buscando documentação

- As partes importantes de qualquer sistema operacional são a documentação, os manuais técnicos que descrevem o uso e o funcionamento dos programas.
- O sistema GNU/Linux possui uma ampla documentação técnica oficial.
- A documentação dos comandos pode ser acessada pelo programa MAN (manual), seguido pelo comando desejado.

```
LS(1)
                                 User Commands
                                                                         LS(1)
NAME
       ls - list directory contents
SYNOPSIS
       ls [OPTION]... [FILE]...
DESCRIPTION
      List information about the FILEs (the current directory by default).
       Sort entries alphabetically if none of -cftuvSUX nor --sort is speci-
       fied.
      Mandatory arguments to long options are mandatory for short options
       too.
       -a, --all
              do not ignore entries starting with .
       -A, --almost-all
              do not list implied . and ..
       --author
 Manual page ls(1) line 1 (press h for help or q to quit)
```

Página Man do comando Is.
Fonte: autoria

própria.

Participação de mercado do Linux

- A utilização de sistemas operacionais Linux é bem relevante nos servidores utilizados pelas empresas.
- Em 2019, a participação do Linux no mercado global de servidores foi de 13,6%, com uma aumento de participação em relação a 2018, quando era 12,9%.

Participação do mercado global de servidores por sistema operacional em 2019

Interatividade

Qual programa nativo do Linux pode conter ampla documentação de determinados programas e funções?

- a) HELP.
- b) INFO.
- c) CLS.
- d) MAN.
- e) IWCONFIG.

Resposta

Qual programa nativo do Linux pode conter ampla documentação de determinados programas e funções?

- a) HELP.
- b) INFO.
- c) CLS.
- d) MAN.
- e) IWCONFIG.

Sistemas operacionais mobile

- Um <u>sistema operacional móvel</u> é utilizado em equipamentos de uso pessoal compactos, como smartphones, assistente digital pessoal (PDA) e tablets.
- As principais prioridades são a gestão eficiente da energia de bateria, a conectividade nos diversos tipos de rede, por exemplo, Wi-Fi, Bluetooth.

Fonte: adaptado de: Maziero,

2019, p. 235.

Evolução dos smartphones

- Aumento exponencial da quantidade de dispositivos móveis no Brasil e no mundo desde 2010.
- Evolução de capacidade dos dispositivos móveis em relação à capacidade de processamento e memória.

Fonte: Meirelles, 2022.

Principais sistemas operacionais

- Sistemas operacionais mais relevantes atualmente: Android e iOS.
- Participação de mercado de sistemas operacionais para Smartphones em 2023:

Região	Android	t iOS
Brasil	80%	20%
Estados Unidos	43%	57%
Mundo	71%	29%

Fonte: Statcounter.

Sistema operacional Android

- O Android foi construído com base no núcleo do sistema operacional Linux.
- Projetado pela <u>Open Handset Alliance</u>: consórcio de empresas de tecnologia com objetivo de popularizar e melhorar dispositivos móveis e serviços utilizando a plataforma Android.
- Esse consórcio é dirigido principalmente pela Google e é responsável por controlar importantes etapas do desenvolvimento do sistema.
 - Os participantes dessa aliança são operadoras de telefonia móvel, fabricantes de smartphones, fabricantes de circuitos integrados (Cls), empresas de software e empresa de serviços.

Sistema operacional Android

- Com a junção de esforços de empresas por meio da aliança, foi possível desenvolver, manter e aprimorar o sistema operacional Android, alavancando a inovação, melhorando a experiência do usuário (UX) e reduzindo os custos de desenvolvimento, em relação aos esforços de uma empresa isolada.
- Como o sistema operacional móvel Android tem sua base de apoio no núcleo do sistema operacional Linux, ele pode ser customizado e alterado pelos fabricantes.
- Atualmente a maioria dos smartphones vendidos no mundo tem sistema operacional Android.

Histórico do Android

- A Android Inc. foi fundada em 2003 em Palo Alto, California, por Andy Rubin, Rich Miner, Nick Sears e Chris White.
- A Google adquiriu a Android Inc. em 2005, tornando a Android Inc. uma empresa integralmente pertencente à Google Inc.
- Em 2007, é formado o consórcio Open Handset Alliance, o consórcio de empresas que atua no Android.
- Em outubro de 2008, ocorre o lançamento do Android 1.0 para o público.

Fonte: https://www.techtudo.com.br/noticias/2022/1 1/evolucao-do-android-relembre-as-versoes-do-sistema-nesses-15-anos.ghtml

Sistema Android tem código aberto

- Como o kernel foi desenvolvido baseado no sistema Linux, resultou em um sistema de Código Aberto ou Open Source.
- Possibilidade de alteração e personalização do código em função das necessidades e desejos dos fabricantes de smartphones e, inclusive, da comunidade de usuários, desenvolvedores e programadores.
- Com isso, o Android é utilizado em diferentes dispositivos (smarthphones, tablets, smart TVs, smartwatches) de diversos fabricantes como Samsung, Motorola, HTC).

Evolução das versões do Android

Até a versão 10,
 o nome das versões do
 Android eram doces,
 em ordem alfabética.

Número da Versão	Nome da Versão	Ano de lançamento
1.5	Cupcake	2009
1.6	Donut	2009
2.0	Eclair	2010
2.2	Froyo	2010
2.3	Gingerbread	2011
3.0	Honeycomb	2011
4.0	Ice Cream Sandwich	2011
4.1	Jelly Bean	2012
4.4	KitKat	2013
5.0	Lolipop	2015
6.0	Marshmallow	2015
7.0	Nougat	2016
8.0	Oreo	2017
9.0	Pie	2018
10.0	Android 10	2019

Fonte: livro-texto.

Arquitetura do sistema Android

- Baseada uma pilha de software baseados em Linux.
- Conjunto de componentes independentes que permitem a implementação do aplicativo de forma facilitada.
- Utilização do Kernel Linux.
- Camada de Abstração de Hardware (HAL), são fornecidas as interfaces-padrão que expõem as capacidades de hardware do dispositivo para a estrutura de API na linguagem Java de maior nível.

Fonte: adaptado de: Android, 2020.

Arquitetura do sistema Android

Android RunTime (ART)

- Sistema de suporte à execução.
- Permite que programas complexos sejam executados em aparelhos com configurações limitadas para memória, bateria e processamento.

Bibliotecas nativas da linguagem C e C++:

Implementa diversos componentes e serviços principais.

Java Framework APIs:

 Android oferece APIs com objetivo de expor a funcionalidade de algumas dessas bibliotecas nativas aos aplicativos.

Aplicativos de sistema:

 Conjunto de aplicativos principais para e-mail, envio de SMS, calendários, navegador de internet, contatos etc.

Fonte: adaptado de: Android, 2020.

Sistema Android abrange diversos dispositivos

- Como o Android é adotado por muitos fabricantes, isso resulta em uma maior participação no mercado e o torna mais rico em termos de hardware.
- É possível encontrar desde smartphones com telas pequenas até tablets com telas grandes, variando de hardwares simples a hardwares poderosos, com recursos inovadores.
- A gama de preços varia muito.
- Importante fator é garantir a popularidade desse sistema.

Fonte: https://blog.google/products/android/modern-look/

Liberdade de personalização

- O Android não vincula o usuário à interface padrão do sistema.
- Cada fabricante pode oferecer uma interface própria, e o usuário pode ir além dela, usando launchers, pacotes de ícones, aplicativos de temas etc.
- Isso não exige acesso de administrador do sistema.
- Já com esse direito, é possível personalizar mais, alterando o framework do sistema ou substituindo por ROMs que componham um visual diferente.

Variedade de aplicativos

- O Android conta com variados aplicativos em sua loja (Play Stores): mais de um milhão de apps.
- Não há obrigatoriedade de uso dos aplicativos do fabricante.
- No entanto, o excessivo número de aplicativos disponíveis pode tornar cansativa e demorada a escolha do melhor para ser instalado na máquina.

Dalvik Virtual Machine

- Dalvik Virtual Machine.
- Provê o ambiente no qual são executadas todas as aplicações Android.
- Cada aplicação Android é executada em seu próprio processo, com sua própria instância da Dalvik Virtual Machine.
- A Dalvik foi escrita de tal maneira que um dispositivo pode executar eficientemente diversas Máquinas Virtuais.
- É uma máquina virtual baseada em registradores.

Interatividade

Considere as seguintes afirmações sobre o sistema Android:

- I. Foi construído sobre o kernel do sistema Linux.
- II. É um sistema de código aberto.
- III. Os fabricantes de dispositivos que utilizam Android não têm possibilidade de customizar o sistema operacional.

É correto o que se afirma em:

- a) I, apenas.
- b) I e II, apenas.
- c) II e III, apenas.
- d) I e III, apenas.
- e) I, II e III.

Resposta

Considere as seguintes afirmações sobre o sistema Android:

- I. Foi construído sobre o kernel do sistema Linux.
- II. É um sistema de código aberto.
- III. Os fabricantes de dispositivos que utilizam Android não têm possibilidade de customizar o sistema operacional.

É correto o que se afirma em:

- a) I, apenas.
- b) I e II, apenas.
- c) II e III, apenas.
- d) I e III, apenas.
- e) I, II e III.

Sistema operacional iOS

- Em julho/2007, a Apple lançou o primeiro iPhone nos Estados Unidos durante o evento MacWorld 2007.
- Inovação revolucionária para a época, focada na experiência do cliente, principalmente pela utilização da tecnologia de múltiplos toques na tela.
- Foi desenvolvido o sistema operacional iOS (iPhone Operating System), projetado como uma versão miniatura do sistema operacional MacOS, utilizado nos computadores Mac.
 - O sistema iOS foi desenvolvido exclusivamente para dispositivos da Apple e nos dispositivos iPhone, iPod touch e iPad.

Camadas do sistema operacional iOS

 Estrutura do sistema baseada em 4 camadas: Core OS, Core Services, Media e Cocoa Touch.

Camada Core OS:

- Escrita em linguagem de máquina.
- Possibilita a implementação de outras tecnologias em camadas superiores.

Camada Core Services

Possui serviços essenciais dos sistemas e que são utilizados por todos os aplicativos.

 Tecnologia in-app dispatch, que possibilita que os desenvolvedores vendam conteúdos e serviços dentro de suas aplicações.

> Outras tecnologias: grand central dispatch, SQLite e XML support.

Cocoa Touch

Media

Core Services

Core OS

Fonte: livro-texto.

Camadas do sistema operacional iOS

Camada Media:

- Contém as tecnologias de gráfico, áudio e vídeo.
- Projetada para tornar mais fácil a implementação de aplicativos multimídia.

Camada Cocoa Touch

- É onde ficam os principais frameworks para a construção de aplicações.
- Define a infraestrutura para as tecnologias fundamentais, tais como multitarefa, serviço de notificação Apple push e diversos serviços de alto nível do sistema.

Cocoa Touch

Media

Core Services

Core OS

Fonte: livro-texto.

Ecossistema para desenvolvimento de aplicativos

- Três elementos-chave em um ecossistema: um centralizador, uma plataforma e um conjunto de agentes de nicho.
- Centralizador ou keystone: papel de um governante de plataforma.
- A plataforma central é o sistema operacional iOS.

Agentes de nicho nesse contexto são as operadoras de telefonia móvel, os desenvolvedores

de aplicações, os usuários e os fabricantes de hardware.

Fonte: Miranda, 2016, p. 29.

Interatividade

Em que camada do sistema iOS estão localizados os principais frameworks utilizados na construção de aplicativos?

- a) Camada HAL.
- b) Camada Cocoa Touch.
- c) Camada Media.
- d) Camada Core OS.
- e) Camada Core Services.

Resposta

Em que camada do sistema iOS estão localizados os principais frameworks utilizados na construção de aplicativos?

- a) Camada HAL.
- b) Camada Cocoa Touch.
- c) Camada Media.
- d) Camada Core OS.
- e) Camada Core Services.

Referências

- ALVES, D. Sistemas operacionais de redes (Windows/Linux). São Paulo: Editora Sol, 2018.
- ANDROID, Arquitetura da Plataforma. 2020. Disponível em: https://developer.android.com/guide/platform?hl=pt-br. Acesso em 06 ago. 2023.
- BALL, B.; DUFF, H. Dominando Linux: Red Hat e Fedora. São Paulo: Pearson, 2004.
- BATTISTI, J.; POPOVICI, E. Windows Server 2012 R2 e Active Directory. São Paulo: Instituto Alpha, 2015.
- BINNIE, C. Segurança em servidores Linux. São Paulo: Novatec, 2017.
- MACHADO, F. B.; MAIA, L. P. Arquitetura de sistemas operacionais. 5. ed. Rio de Janeiro: LTC, 2013.
 - MACKIN, J. C.; THOMAS, O. Exam Ref 70-412: configuração dos serviços avançados do Windows Server 2012 R2. Porto Alegre: Bookman, 2016.
 - MAZIERO, C. A. Sistemas operacionais: conceitos e mecanismos [recurso eletrônico]. Curitiba: DINF - UFPR, 2019.

Referências

- MEIRELLES, F. S. 33ª Pesquisa do uso de TI nas empresas. FGV. 2022. Disponível em: https://eaesp.fgv.br/producao-intelectual/pesquisa-anual-uso-ti. Acesso em: 17 mar. 2023.
- NEMETH, E.; SNYDER, G.; HEIN, T. R. Manual completo de Linux: guia do administrador.
 São Paulo: Pearson, 2007.
- SILBERSCHATZ, A.; GALVIN, P. B. GAGNE, G. Fundamentos de sistemas operacionais.
 9. ed. Rio de Janeiro: LTC: 2015.
 - STATCOUNT. Mobile operating system market share worldwide. Disponível em: https://gs.statcounter.com/osmarket-share/mobile/worldwide/#monthly-201001-202301. Acesso em: 29 set. 2023.
 - TANENBAUM, S. A.; WOODHULL, S. Sistemas operacionais: projetos e implementação o livro do Minix. 3. ed. Porto Alegre: Bookman, 2008.

ATÉ A PRÓXIMA!