and the second s

1 1. A semiconductor processing system comprising:
a) a pod loader;

3 b) a transfer robot;

CLAIMS:

4 c) a load lock comprising:

i) a chamber; and

6 ii) a load lock robot disposed in the chamber; and

7 d) a process chamber.

1 2. The system of claim 1 wherein the load lock further comprises:

a) a bottom having one or more perforations; and

b) one of more lift pins slidably disposed through the one or more

4 perforations.

1 3. The system of claim 2 wherein the lift pins are coupled at one end to a linear

2 actuator

1 4. The system of claim 1 wherein the load lock further comprises a vacuum pump.

1 5. The system of claim 4 wherein the vacuum pump is in fluid communication

2 with the chamber.

1 6. The system of claim 1 wherein the load lock further comprises an elongated

2 substantially rectangular aperture.

7. The system of claim 6 wherein the load lock further comprises a hermetic

2 sealing apparatus adapted to substantially cover the aperture.

1 8. The system of claim 7 wherein the hermetic sealing apparatus comprises a slit

2 valve.

- 1 9. The system of claim 7 wherein the hermetic sealing apparatus comprises a gate valve.
- 1 10. The system of claim 1 wherein the load lock further comprises:
- a) a cover/defining an opening; and
- b) a lid adapted to substantially cover the opening.
- 1 11. The system of claim—10 wherein the lid further comprises at least one
- 2 stabilizing rod disposed through the lid and connected to the cover.
- 1 12. The system of claim 10 further comprising a transfer assembly adapted to
- transfer one or more objects to a plurality of positions.
- 1 13./ The system of claim 12 wherein the transfer assembly comprises:
- 2 / a) two pairs of rotational and vertically slidable lifting members each pair
- 3 being disposed through a pair of bores formed vertically through the lid;
- b) / a wafer lifting element attached to each lifting member at a first end; and
- 5 one or more actuators attached to each pair of lifting members at a
- 6 second end
- 1 14. The system of claim 13 wherein the one or more actuators impart vertical and
- 2 rotational movement to each lifting member.
- 1 15. The system of claim 13 wherein each pair of lifting members cooperate to
- 2 transfer an object to a plurality of positions.

l	16. The system of claim I wherein the load lock robot comprises:
2	a) a symmetrical linkage assembly comprising
3	i) a first drive arm having a first end and a second end, the first
4	drive arm being rotatable about a first axis at its first end;
5	ii) a second drive arm having a first end and second end, the second
6	drive arm being rotatable about a second axis at its first end, the first and second drive
7	arms being separated by a distance greater than a wafer diameter in their extended
8	positions such that a wafer may be vertically transferred between the drive arms;
9	iii) a first strut that is connected to the first drive arm at a first pivot
10	joint; and
11	iv) a second strut that is connected to the second drive arm at a
12	second pivot joint, the first and second pivot joints defining a lagging axis; and
13	b) a plade pivotally connected to the first strut at a first wrist joint and the
14	second strut at a second wrist joint, the first and second wrist joints defining a leading
15	axis which remains constantly parallel to, and horizontally displaced from, the lagging
16	axis.
,	17. The system of claim 16 wherein the blade is extended by the simultaneous and
1	
2	synchronous clockwise rotation of the first drive arm and counterclockwise rotation of
3	the second drive arm.
1	18. The system of claim 16 wherein the blade is retracted by the simultaneous and
2	synchronous counterclockwise rotation of the first drive arm and clockwise rotation of
3	the second drive arm.
1	19. The system of claim 1 wherein the load lock is connected to the process
2	chamber.

1	20.	A load lock compr	sing:
---	-----	-------------------	-------

- a) a chamber
- b) a load lock robot disposed in the chamber; and
- 4 c) a process chamber attached to the chamber.
- 1 21. The apparatus of claim 20 wherein the load lock further comprises:
- a) a bottom having one or more perforations; and
- b) one of more lift pins slipably disposed through the perforations.
- 1 22. The apparatus of claim 21 wherein the lift pins are coupled at one end to a linear
- 2 actuator.
- 1 23. The apparatus of claim 20 wherein the load lock further comprises a vacuum
- 2 pump
- 1 24. The apparatus of claim 23 wherein the vacuum pump is in fluid communication
- 2 with the chamber.
- 1 25. The apparatus of claim 20 wherein the load lock further comprises an elongated
- 2 substantially rectangular aperture providing for fluid communication between the
- 3 chamber and the process chamber.
- 1 26. The apparatus of claim 25 wherein the load lock further comprises a hermetic
- 2 sealing apparatus adapted to substantially cover the aperture.
- 1 27. The apparatus of claim 26 wherein the sealing apparatus is a slit valve.
- 1 28. The apparatus of claim 26 wherein the sealing apparatus is a gate valve.

The company of the second section of the second

1	29.	The apparatus of claim 20 where the load lock further comprises:
2	8	a) a cover defining an opening; and
3	ł	o) a lid adapted to substanfially cover the opening.
1	30.	The apparatus of claim 29 further comprising a transfer assembly adapted to
2	transfer	one or more objects to a plarality of positions.
1	31.	The system of claim 30 wherein the transfer assembly comprises:
2	8	two pairs of rotational and vertically slidable lifting members each pair
3	being di	sposed through a pair of bores formed vertically through the lid;
4	ł	a wafer lifting element attached to each lifting member at a first end; and
5	(c) one or more actuators attached to each pair of lifting members at a
6	second e	end.
1	32.	The system of claim 31 wherein the one or more actuators impart vertical and
2	rotation	al movement to each lifting member.
1	33.	The system of claim 31 wherein each pair of lifting members cooperate to
2	transfer	an object to a plurality of positions.
1	34.	The apparatus of claim 20 wherein the load lock robot comprises:
2	8	a) a symmetrical linkage assembly comprising
3		i) a first drive arm having a first end and a second end, the first
4	(lrive arm being rotatable about a first axis at its first end;
5		(i) a second drive arm having a first end and second end, the second
6	drive an	m being rotatable about a second axis at its first end, the first and second drive
7	arms be	ing separated by a distance greater than a wafer diameter in their extended
8	position	s such that a wafer may be vertically transferred between the drive arms;
9		iii) a first strut that is connected to the first drive arm at a first pivot
10	ioint: an	d /

11	iv) a second strut that is connected to the second drive arm at a
12	second pivot joint, the first and second pivot joints defining a lagging axis; and
13	b) a blade pivotally connected to the first strut at a first wrist joint and the
14	second strut at a second wrist joint, the first and second wrist joints defining a leading
15	axis which remains constantly parallel to, and horizontally displaced from, the lagging
16	axis.
1	35. The apparatus of claim 34 wherein the blade is extended by the simultaneous
2	and synchronous clockwise rotation of the first drive arm and counterclockwise rotation
3	of the second drive arm.
1	36. The apparatus of claim 34 wherein the blade is retracted by the simultaneous
2	and synchronous counterclockwise rotation of the first drive arm and clockwise rotation
3	of the second drive arm.
1	37. An apparatus for transferring objects between a first position and a second
2	position comprising:
3	a) a symmetrical linkage assembly comprising
4	i) a first drive arm having a first end and a second end, the drive
5	arm being rotatable about a first axis at its first end;
6 -	ii) / a second drive arm having a first end and second end, the drive
7	arm being rotatable about a second axis at its first end;
8	iii) a first strut that is pivotally connected to the first drive arm at a
9	first pivot joint; and
10	iv a second strut that is pivotally connected to the second drive arm
11	at a second pivor joint, the first and second pivot joints defining a lagging axis; and
12	b) blade pivotally connected to the first strut at a first wrist joint and the
13	second strut at a second wrist joint, the first and second wrist joints defining a leading
14	axis remaining constantly parallel to, and horizontally displaced from, the lagging axis.

1	38.	A me	thod for transferring wafers between a plurality of positions comprising:
2	50.		providing a load lock comprising:
		a)	Γ
3			i) a chamber; and
4			ii) a first transfer as embly disposed in the chamber, the first
5		transi	fer assembly occupying a first horizontal plane;
6		b)	disposing a wafer onto the first transfer assembly; and
7		c)	actuating the first transfer assembly.
1	39.	The n	nethod of claim 38 wherein actuating the first assembly comprises the
2	steps		
3		a)	lowering the first transfer assembly along the first plane; and
4		b)	raising the first transfer assembly along the first plane.
1	40.	The n	nethod of claim 38 further comprising the steps of:
2		a)	providing a second transfer assembly disposed in the chamber, the
3	secon		fer a sembly occupying a second plane substantially perpendicular to the
4	first p		Jeanness, conference frame encommunity perpendicular to the
5	mot p	b)	positioning a wafer on the second transfer assembly; and
		•	
6		c)	actuating the second transfer assembly.
1	41.		nethod of claim 40 wherein positioning the wafer onto the second transfer
2	assem	ibly cor	murises the steps of:
3		a)	lowering the first transfer assembly along the first plane from a position
4	above	the sec	cond plane to a position coplanar with the second plane, the first transfer
5	assem	ibly car	Tying the wafer;
6		b)	depositing the wafer onto the second transfer assembly;
7		c)	retracting the first transfer assembly; and
8		d)	raising the first transfer assembly.

1	42.	The n	nethod of claim 41 wherein depositing the first transfer assembly from the
2	wafer	the firs	st transfer assembly comprising a pair of rods diametrically placed rods
3	respe	cting the	e wafer and a lifting element coupled to each rod at one end, the wafer
4	gravit	tationall	y resting on the lifting elements comprises the steps of rotating the first
5	transf	er asser	nbly about a central axis, such that the lifting elements are removed from
6	one a	nother a	distance greater than the diameter of the wafer.
1	43.	The n	nethod of claim 40 wherein actuating the second transfer assembly
2	comp	rises the	e steps of:
3		a	extending the second transfer assembly along the second plane; and
4		b)	retracting the second transfer assembly along the second plane.
1	44.	A me	thod for transferring wafers between a plurality of positions comprising:
2		a)	providing a load lock comprising:
3			i) a chamber
4			(i) a first transfer assembly disposed in the chamber, the first
5		transf	er assembly moving along a vertical first plane; and
6		/	iii) a second transfer assembly disposed in the chamber, the second
7		transf	er assembly moving horizontally along second plane perpendicular to the
8		first p	plane;
9		b)	positioning at least two wafers onto the first transfer assembly;
10		d) .	lowering the first transfer assembly
11		ф	positioning a first wafer onto the second transfer assembly;
12		e)(raising the first transfer plane;
13		f)	extending the second transfer assembly beyond the load lock, the second
14	transi	fer asser	nbly carrying the first wafer;
15		g)	retracting the second transfer assembly;
16		h)	lowering the first transfer assembly;
17		i)	removing the first wafer from the second transfer assembly; and
18		j)	raising the first transfer assembly above the second plane;
			1

- 1 45. A method for transferring a wafer into and out of a load lock, the load lock
- 2 comprising a lid and a transfer assembly, the method comprising the steps of:
- a) raising the lid above a transfer plane;
- b) raising the transfer assembly above the transfer plane;
- 5 c) positioning a wafer on the transfer assembly;
- d) / lowering the transfer assembly below the transfer plane; and
- e) / lowering the lid below the transfer plane.

ADDAI

Md B37