概率统计试卷 2004.1

院系专业	学号	姓名	得分
一、 选择题(每题:	3分,共15分)		
1. 设 <i>A</i> , <i>B</i> 是两个随机	1事件,下列等式中	中一定成立的是()
$(A) (A \cup B) - B = A$	(B) $P(A)$	\overline{B}) = $P(A) - P(AB)$)
(C) $P(AB) = P(A)P$	(B) (D) 若A	$\bigcup B = B , \emptyset P(A)$	$) \ge P(B)$
2. 设 <i>A</i> , <i>B</i> 是两个随机	L事件, $P(\overline{A}) = 0.2$	$P(B) = 0.7, P(A \mid A)$	$B) = 0.8$, \square ()
(A) A,B相互独立	(B) $A, B \stackrel{\mathcal{H}}{=}$	ī斥	
(C) $A \subset B$	(D) $P(A \bigcup$	B) = P(A) + P(B)	
3. 设随机变量 <i>X</i> 的	概率密度函数 $f(x)$	满足 $f(2-x) = f$	(x) , X 的方差为 σ^2 ,
$\text{III } p = P\left(\frac{ 1-x }{a} > 1\right)$	的一个估计式是(
(A) $p \ge \frac{\sigma}{a}$ (B)	$p \le a\sigma$ (C) p	$o \le \frac{\sigma^2}{a^2}$ (D) p	$o \le a^2 \sigma^2$
4. 设 X_1, X_2, \dots, X_n	是来自总体 X~	$\sim N(0,\sigma^2) \ (\sigma > 0)$)的样本,且统计量
$\chi^2 = \sum_{i=1}^n X_i^2 $	由度为 n 的 χ^2 分布	ī, 则常数σ等∃	= ()
(A) 1 (B) n	(C) n^2	(D) \sqrt{n}	
5. 设 X ₁ ,X ₂ 是两个木	相互独立的连续型	型随机变量,它	们的概率密度分别为
$f_1(x), f_2(x)$,分布	函数分别是 $F_1(x), F_2(x)$	$F_2(x)$,则()	
$(A) f_1(x) + f_2(x) $	为某一随机变量的	概率密度;	
(B) $f_1(x)f_2(x)$ 必为	某一随机变量的概	率密度;	

- (C) $F_1(x) + F_2(x)$ 必为某一随机变量的分布函数;
- (D) $F_1(x)F_2(x)$ 必为某一随机变量的分布函数.

二、填空题(每题3分,共15分)

- 1. 同时抛三枚硬币,则至少两枚出现正面的概率为
- 2. 设 A,B 为 两 个 随 机 事 件 , P(A) = 0.5, P(B) = 0.6 , $P(A \cup B) = 0.8$, 则 $P(AB) = \underline{\hspace{1cm}}$.
- 3. 设随机变量 $X \sim N(1, \sigma^2)$ 且 P(0 < X < 2) = 0.5,则 $P(X \le 2) =$ ______.
- 4. 设随机变量 X 的概率密度是 $f(x) = \begin{cases} x+1, x \in [-1,0] \\ 1-x, x \in (0,1] \end{cases}$,则 X 的数学期望 0, 其它

$$E(X) = \underline{\hspace{1cm}}.$$

5. 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ ($\sigma > 0$) 的样本,则当c =______

时,
$$c\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2$$
是 σ^2 的无偏估计.

- 三、设随机变量 X 服从参数为 p 的 0-1 分布, Y 服从参数为 n, p 的二项分布, Z 服从参数为 2p 的 Poisson 分布.
 - (1) 写出 X,Y,Z 的分布律.
 - (2) 如果已知 X 取值为 0 的概率是 Y 取值为 0 的概率的 9 倍, X 取值为 1 的概率是 Y 取值为 1 的概率的 3 倍, 求 P(Z < 2). (10 分)

四、一台机器正常工作时产出的废品率是 0.0009, 发生故障时的废品率是 0.05, 而发生故障的概率是 0.01.

- (1) 求该机器的产品的废品率;
- (2) 现从该机器的一批产品中任意抽取一件,若已知取得的是废品,问这时机器是处于正常状态还是有故障的可能性更大? (10分)

五、已知随机变量 X 的分布律为

X	-2	-1	0	2
P	1/8	2/8	3/8	2/8

- (1) 求随机变量 $Y = 2X^2 1$ 的分布律,写出其分布函数,并计算 Y的方差 D(Y).
- (2) 随机变量 Z 与 Y 同分布, Z 与 X 相互独立,试写出二维随机变量 (X,Z) 的联合分布律,并求 $P(Z \le X)$ · (10 分)

六、设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 < 1\\ 0, & 其他 \end{cases}$$

- (1) 求X,Y的边缘密度函数 $f_X(x),f_Y(y)$.
- (2) Rightarrow E(X), D(X).
- (3) 求E(2X-3Y+1), E(XY), D(X+Y), D(1-2Y).
- (4) 据理判断 X与Y 是否相互独立,是否相关.(20分)

七、设总体 X 的概率密度为

$$f(x) = \begin{cases} (a+1)x^a, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$$

 X_1, X_2, \dots, X_n 是来自 X 的样本,试求总体参数 a 的矩估计和最大似然估计. (10分)

八、某食用糖厂用自动装袋机装糖,规定:每袋重量为 500g,标准差不超过 10g. 每天定时检查. 某天抽取 9 袋,测得平均重量为 \overline{X} = 499 g,标准差为 S = 16.03 g. 假设袋装糖的重量 X 服从正态分布. 问这一天这台装袋机工作是否正常? (α = 0.05)参考数据: $t_{0.05/2}(8)$ = 2.306, $\chi^2_{0.05}(8)$ = 15.5