

COMP20008 Elements of Data Processing

Semester 2 2018

Lecture 11: Classification Methodologies: Decision Tree

Announcements

• Phase 3 Oral Presentation Schedule is on the LMS

Where have we got to? Halfway ...

- Preprocessing (4 lectures): Weeks 1-3
 - Data types and processing, data cleaning including outliers, missing data
- Visualisation (3 lectures): Weeks 3-4
 - Plotting and visualisation methods, clustering, dimensionality reduction
- Analysis (4 lectures): Weeks 5-6
 - Correlations, basic prediction techniques
- Infrastructure and Distributed (4 lectures): Weeks 7-9
 - Data linkage and integration, blockchain
- Social, ethical and privacy issues (3 lectures): Weeks 10-12
 - K-anonymity, I-diversity, location privacy, ethics

Plan

- Introduction to classification (prediction)
 - Decision tree classification (start today)
 - k nearest neighbor classification (on Friday)

Classification

- We now start the topic of classification
 - Making predictions about the future, based on historical data
- · Predictive modelling/classification
 - The sexy part of data science ?!
 - A foundation for machine intelligence, AI, machines replacing humans and taking our jobs

Classification

· Predicting disease from microarray data

	Gene 1	Gene 2	Gene 3		Gene n	Cancer			
Person 1	2.3	1.1	0.3		2.1	1			
Person 2	3.2	0.2	1.2		1.1	1			
Person 3	1.9	3.8	2.7		0.2	0			
						•••			
Person m	2.8	3.1	2.5		3.4	0			
	Test data								
	Gene 1	Gene 2	Gene 3		Gene n	Cancer			

	Gene 1	Gene 2	Gene 3	 Gene n	Cancer
Person m+1	2.1	0.9	0.6	 1.9	?

Classification example

· Animal classification

Name	Body Temperature	Skin Cover	Gives Birth	Aquatic Creature	Aerial Creature	Has Legs	Hiber- nates	Class Label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	reptile
salmon	cold-blooded	scales	no	yes	no	no	no	fish
whale	warm-blooded	hair	yes	ves	no	no	no	mammal
frog	cold-blooded	none	no	semi	no	yes	yes	amphibian
komodo	cold-blooded	scales	no	no	no	yes	no	reptile
dragon						1.50		
bat	warm-blooded	hair	yes	no	yes	yes	yes	mammal
pigeon	warm-blooded	feathers	no	no	yes	ves	no	bird
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
leopard	cold-blooded	scales	yes	yes	no	no	no	fish
shark	300000000000000000000000000000000000000			-	100000	100210		
turtle	cold-blooded	scales	no	semi	no	yes	no	reptile
penguin	warm-blooded	feathers	no	semi	no	yes	no	bird
porcupine	warm-blooded	quills	ves	no	no	ves	ves	mammal
eel	cold-blooded	scales	no	yes	no	no	no	fish
salamander	cold-blooded	none	no	semi	no	yes	yes	amphibian

Test data								
Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
	11 111-1	1	0.00	(22/2/	200	*****		- 2

https://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf

Classification example

• Banking: classifying borrower

	A	catego	rical	Jous
	binary	categ	conti	class
Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training set for predicting borrowers who will default on loan payments.

Tid	Home Owner	Marital status	Annual Income	Defaulted Borrower
11	No	Single	55K	?

· Detecting tax fraud/tax cheats

	cate	go cated	conti	in clas
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Test data

Tid	Refund	Marital Status	Taxable Income	Tax Cheat
11	Yes	Married	125K	?

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one class label.
- Find a predictive model for class label as a function of the values of other attributes.

$$y = f(x_1, x_2, ..., x_n)$$

- y: discrete value, target variable
- x_{1,}... x_n: <u>attributes, predictors</u>
- f. is the predictive model (a tree, a rule, a mathematical formula, ...)
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

THE UNIVERSITY OF MELBOURNE

Classification framework

Regression

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of target variable.
- · Learn predictive model from data

$$y = f(x_1, x_2, ..., x_n)$$

- y: continuous real value, target variable
- x₁... x_n: attributes, predictors

• Predicting ice-creams consumption from temperature: y = f(x)

THE UNIVERSITY OF MELBOURNE

Regression

· Predicting activity level of a target gene

	Gene 1	Gene 2	Gene 3	 Gene n	Gene n+1
Person 1	2.3	1.1	0.3	 2.1	3.2
Person 2	3.2	0.2	1.2	 1.1	1.1
Person 3	1.9	3.8	2.7	 0.2	0.2
Person m	2.8	3.1	2.5	 3.4	0.9

	Gene 1	Gene 2	Gene 3	 Gene n	Gene n+1
Person m+1	2.1	0.9	0.6	 1.9	?

Machine prediction is everywhere

- Exercise
 - Write down two circumstances where your mobile phone software is making predictions. What is the historical data, what is the test data, what is being predicted?
 - Word suggestion and autocorrect
 - Facebook friend suggestions
 - · Face recognition and
 - Recommendations: spotify
 - Personal assistants: voice recognition finger print...

Classification and Regression

- What is Classification and Regression?
- Classification algorithms:
 - Decision tree (starting today)
 - K-Nearest Neighbor Classifier (K-NN) (Friday)

THE UNIVERSITY OF MELBOURNE Decision Trees

· Decision tree

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

Decision Tree Creation

- · Many Algorithms:
 - We will look at a representative one (Hunt's algorithm)

Stopping condition: leaf node

- If D_t contains records that belong the same class $y_t,$ then t is a leaf node labeled as y_t
- If D_{t} is an empty set, then t is a leaf node labeled by the default class, y_{d}

Model: Decision Tree

Tree Induction (creation)

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting
 - When node has only a single class of instances

Tree Induction

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

THE UNIVERSITY OF MELBOURNE Splitting Based on Nominal Attributes

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

• Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
Need to find optimal partitioning.

· What about this split?

Splitting Based on Continuous Attributes

- · Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or $(A \ge v)$
 - · consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

Points to remember from this lecture

(i) Binary split

(ii) Multi-way split

- Understand what is meant by the terms classification and regression and why it is useful to build models for these tasks
- Understand how a decision tree may be used to make predictions about the class of a test instance
- · Understand the key steps in building a decision tree
 - How to split the instances, how to specify the attribute test condition, how to determine the best split and how to decide when to stop splitting
- Understand the use of entropy as a node impurity measure for decision tree node splitting. Understand the benefits of entropy for this task and why it is effective for assessing the goodness of a split

References and Acknowledgement

This lecture was prepared using some material adapted from:

- https://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf
- CS059 Data Mining -- Slides
- http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap4_basic_classification.ppt