第三章 逻辑代数

- 3.1 逻辑代数运算法则
- 3.2 逻辑函数标准形式
- 3.3 逻辑函数的公式化简法
- 3.4 逻辑函数的卡诺图化简法

第3章 逻辑代数基础

逻辑代数是由英国数学家布尔在1849年发明的,所以也被称为布尔代数。逻辑代数组成了一种数学工具,用来描述逻辑门的输入输出行为。

变量是一个符号用来表示逻辑量,变量只有0 和1两种取值。

逻辑代数和代数是不同的。

§3.1 逻辑代数运算法则

A 的非运 算是 A

$$\overline{0} = 1$$

$$\bar{1} = 0$$

或运算 逻辑加

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

与运算 逻辑乘

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

1. 逻辑代数的基本定律

每一个定律给出两种形式:一种形式是加,另一种形式是乘,两种形式互换叫做"对偶式"。

加

乘

1) 定律1

A+B=B+A;

AB=BA

(交换律)

2) 定律 2

A+(B+C)=(A+B)+C; A(BC)=(AB)C (结合律)

3) 定律3

A+(BC)=(A+B)(A+C); A(B+C)=AB+AC; (分配律)

4) 定律4

 $A+0=A, A+1=1; A \cdot 1=A, A \cdot 0=0$

5) 定律5

 $A + \overline{A} = 1$;

 $A \cdot \overline{A} = 0$

(互补律)

6) 定律 6

A+A=A;

 $A \cdot A = A$

(重叠律)

定律 7 7)

 $\overline{A} = A$

(还原律)

 $\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$; 摩根定理 8)

 $\overline{AB} = \overline{A} + \overline{B}$

(摩根定理)

推论

 $\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$

 $\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$

2. 基本规则

1) 代入规则

等式两侧某一变量都用一个逻辑函数代入,等式仍成立。例如:

如果
$$\overline{AX} = \overline{A} + \overline{X}$$
 $X = BC$

左:
$$\overline{AX} = \overline{ABC}$$
 右: $\overline{A} + \overline{BC} = \overline{A} + \overline{B} + \overline{C}$

那么
$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$

我们已将其应用到了摩根定理的推论中。

2) 反演规则

反演规则是把表达式中所有"+"换成"•","•"换成"+","1" 换成"0","0"换成"1",原变量换反变量,反变量换原变量的 一种运算规则。

$$F \left\{ \begin{array}{c} 1 \iff 0 \\ + \iff \bullet \\ \hline \text{原变量} \end{array} \right. \begin{array}{c} \text{新函数} \\ \hline F \end{array}$$

函数F叫做F的反函数。如果函数F成立,那么F也成立。

3) 对偶规则

对偶规则是将表达式中所有 + 换成 • $, \bullet$ 换成 + $, \bullet$ 0 换成 1 $, \bullet$ 1 换成 0 $, \bullet$

函数
$$\mathbf{F}$$

$$\left\{ \begin{array}{c} + & \longrightarrow & \bullet \\ 1 & \longrightarrow & 0 \end{array} \right\} \quad \text{新函数 } \mathbf{F}'$$

新函数 F' 叫做 F 的对偶式。如果表达式 F 在一个逻辑代数中是成立的, F' 也成立。

如果 F 成立, F'也成立

注意: 1. 运算顺序不变

2. 多变量上的非号保持不变

例 1:

函数 F=A(B+C)+CD 分别给出 F' 和 F

例 2:

$$G = \overline{\overline{WX} + Y + \overline{Z}} + X$$

解:

$$F' = (A+B\overline{C})(C+D)$$

$$\overline{F} = (\overline{A} + \overline{B}C)(\overline{C} + \overline{D})$$

$$G' = \overline{(W + \overline{X})Y} \cdot \overline{Z} \cdot X$$

$$\overline{G} = \overline{\overline{(\overline{W} + X)}\overline{\overline{Y}} \cdot Z} \cdot \overline{X}$$

3. 常用公式

1) A+AB=A; A(A+B)=A 吸收律

证明: A+AB = A(1+B) = A

2)
$$AB + A\overline{B} = A$$
; $(A + B)(A + \overline{B}) = A$

证明: $AB+A\overline{B}=A(B+\overline{B})=A$

推论:
$$AB + \overline{AC} + BCDE = AB + \overline{AC}$$

5) 异或公式

$$A \oplus B = \overline{A \odot B}$$

证明:
$$\overline{AB} + \overline{AB} = (\overline{A} + \overline{B})(A + B) = \overline{AB} + A\overline{B}$$

$$A \oplus A = 0$$
, $A \oplus \overline{A} = 1$, $A \oplus 0 = A$, $A \oplus 1 = \overline{A}$

多变量异或,变量为1的个数为奇数,异或结果为1; 1的个数为偶数,结果为0;与变量为0的个数无关。

§3.2 逻辑函数的标准形式

3.2.1 最小项及标准与或式

1. 最小项(标准与项)

与项定义为原变量或其反变量的逻辑乘项.

 $AB \quad B\overline{C}D \quad \overline{A}E$

最小项(标准与项): n 变量函数, n 变量组成的与项中, 每个变量都以原变量或反变量形式出现一次, 且只出现一次。

n 个变量 ⇒ 2ⁿ 个最小项

例如: 三个变量A, B, C, 它们是 $2^3 = 8$ 个最小项:

ABC ABC ABC ABC ABC ABC ABC ABC

2. 最小项真值表

\		最久	小 值	\mathbf{m}_0	\mathbf{m}_1	m_2	m_3	m_4	m_5	m_6	m_7
变 A	量 B	C	最小项	ĀBC	A BC	AB C		ABC	ABC	ABC	ABC
0	0	0		1	0	0	0	0	0	0	0
0	0	1		0	1	0	0	0	0	0	0
0	1	0		0	0	1	0	0	0	0	0
0	1	1		0	0	0	1	0	0	0	0
1	0	0		0	0	0	0	1	0	0	0
1	0	1		0	0	0	0	0	1	0	0
1	1	0		0	0	0	0	0	0	1	0
1	1	1		0	0	0	0	0	0	0	1

▶ 当 A B C 取某一组值时,只有一个最小项值为 1, 其他都等于 0

➤ 使某一最小项为1时,变量取值的二进制数对应的十进制数为此最小项的编号

例如:

ABC: 010
$$\overline{ABC} = 1$$
 010 = 2

最小项 ABC 是数 m₂

例如:

2 变量 A, B:
$$m_1 = \overline{A}B$$
, $m_3 = AB$

4 变量 A, B, C, D:
$$m_1$$
 = ABCD

$$m_5 = \overline{A}B\overline{C}D$$

$$m_{13} = AB\overline{C}D$$

1: 原变量 变量取1对应于原变量

0: 反变量 变量取0对应于反变量

3. 最小项特点

① 对变量的任意一组取值,只有一个最小项值为1,其他项皆为0

$$m_i \cdot m_j = 0$$

$$\sum m_i = 1$$

4. 标准与或式

$$F = \overline{AB} + A\overline{C} + A\overline{BC}$$
 与或式

如果与或式中的与项均为最小项(标准与项),构成最小项之和的形式,称为逻辑函数的标准与或式。

例如:

$$F_{1}(A,B,C) = \overline{A}B\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + \overline{A}BC$$

$$= m_{2} + m_{6} + m_{3} + m_{7}$$

$$= \sum_{1} m(2,3,6,7)$$

$$m 可以忽略$$

与或式说明,变量取何值时函数F=1。

例 1: 把下列函数转化为标准与或式:

$$F(A,B,C) = AB + BC + AC$$

 $= AB(C+\overline{C}) + BC(A+\overline{A}) + AC(B+\overline{B})$
 $= ABC + AB\overline{C} + \overline{A}BC + A\overline{B}C$
 $= m_7 + m_6 + m_3 + m_5$
 $= \sum m(3,5,6,7)$

注: F(A,B,C) 必须写全, 涉及字母顺序即最小项编号

3.2.2 最大项及标准或与式

和项(或项)定义为字母(原变量或反变量)的逻辑加项。

$$A+B$$
 $\overline{A}+B+\overline{C}$ $\overline{D}+E+F$

1. 最大项

n 变量组成的或项中,每个变量都以原变量或反变量的形式出现一次,且只出现一次,此或项为最大项(标准或项)。

3变量的最大项真值表

7	变量	<u>三</u> ,	M_0	\mathbf{M}_{1}	M_2	M_3	M_4	M_{5}	M_{6}	M ₇
	В		A+B+C	$A + B + \overline{0}$	\overline{C} , $A + \overline{B} +$	C, $A + \overline{B} + \overline{C}$	\overline{C} , $\overline{A} + B + C$	$C, \overline{A} + B + \overline{C}$	$\overline{A} + \overline{B} + C$	$, \overline{A} + \overline{B} + \overline{C}$
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

➤ 当 ABC 取某一组值时,只有一个最大项值为0, 其他都等于1

 \triangleright 使某一最大项 M_i 为0时, ABC取值的二进制数对应的十进制数 i 为此最大项的编号

例如:

$$M_2 = A + \overline{B} + C$$
 (010 $\notin A + \overline{B} + C = 0$)

$$M_4 = \overline{A} + B + C$$

$$M_2 = A+B+C+D$$

$$\mathbf{M}_{10} = \mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D}$$

2. 标准或与式

$$F = (A + \overline{B})(B + C)$$
 或与式

逻辑函数表达式为一组最大项之积的形式,称为标准或与式。

或与式说明,变量取何值时,函数F=0。

例如:

$$F_2(A,B,C) = (A+B+C)(A+B+C)(A+B+C)(A+B+C)$$

 $0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$
 $= M_0 \cdot M_1 \cdot M_4 \cdot M_5$
 $= \prod M(0,1,4,5)$ M可以被忽略

3.2.3 两种标准式间的关系

1) 最大项与最小项互为反函数

$$\begin{split} \overline{\overline{m_i}} &= M_i \\ \overline{\overline{M_j}} &= M_j \end{split} \qquad \begin{split} F(A,B,C) : \overline{m_1} &= \overline{\overline{A}} \ \overline{\overline{B}} \ C \end{split} = A + B + \overline{C} = M_1 \\ 001 \\ \overline{\overline{M_j}} &= m_j \end{split} \qquad \begin{matrix} 001 \\ \overline{\overline{B}} \ \sqrt{\overline{\gamma}} \overline{\overline{\overline{Q}}} \end{matrix} \qquad \qquad \begin{matrix} 001 \\ \overline{\overline{B}} \ \sqrt{\overline{\gamma}} \overline{\overline{\overline{\overline{Q}}}} \end{matrix}$$

2) 如果不在最小项中出现的编号,一定出现在最大项的编号中。

ABC	F	F_1	F_2	
0 0 0	0		M_0	$F = F_1 = F_2$
0 0 1	0		\mathbf{M}_1	F ₁ 说明函数何时为 1
0 1 0	1	m_2		
0 1 1	1	m_3		F2说明函数何时为 0
1 0 0	0		M_4	
1 0 1	0		M_5	标准与或式和标准或与式
1 1 0	1	m_6		是一个逻辑关系的两种表
1 1 1	1	m_7		达方式。

§ 3.3 逻辑函数的公式化简

化简目的: 少用元件完成同样目的, 成本低。

例如: 用门电路来实现函数功能:

$$F_{1} = \overline{A}B + B + A\overline{B}$$

$$F_{2} = A + B$$

$$A \longrightarrow F_{1}$$

$$B \longrightarrow F_{2}$$

用逻辑代数(定律,定理,公式)化简逻辑函数

例 1: 化简函数

$$F = A\overline{B} + \overline{AC} + \overline{BC}$$

$$= A\overline{B} + \overline{AC} \cdot \overline{BC}$$

$$= A\overline{B} + (A + \overline{C})(B + \overline{C})$$

$$= A\overline{B} + AB + A\overline{C} + B\overline{C} + \overline{C}$$

$$= A + \overline{C}$$

例 2: 化简函数

$$F = \overline{ABC} + \overline{ABC} + \overline{DE}(B+G) + \overline{D} + (\overline{A}+B)D + \overline{ABCDE} + \overline{ABDEG}$$

$$C+\overline{C}$$

$$\overline{AB} + \overline{D} + \overline{ABD}$$

$$= \overline{AB} + \overline{D} + \overline{D} + \overline{D} = \overline{AB} + \overline{D} + \overline{D} = \overline{D} + \overline{D} = \overline{D} + \overline{D} + \overline{D} = \overline{D} + \overline{D} + \overline{D} + \overline{D} = \overline{D} + \overline{D}$$

例 3: 将以下函数化简为最简或与式

$$G = (A + B + \overline{C})(A + B)(A + \overline{C})(B + \overline{C})$$

解: 对偶规则

$$G' = AB\overline{C} + AB + A\overline{C} + B\overline{C}$$
$$= AB + A\overline{C} + B\overline{C}$$

$$G = (A + B)(A + \overline{C})(B + \overline{C})$$

例 4:

$$L = AB + A\overline{C} + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + ADE(F+G)$$

$$= A\overline{B}C + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + ADE(F+G)$$

$$= A + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D}$$

$$= A + \overline{B}C\overline{D} + \overline{B}C\overline{D} + \overline{B}C\overline{D} + \overline{B}C\overline{D} + \overline{B}C\overline{D} + \overline{B}C\overline{D}$$

$$= A + \overline{B}D + B\overline{C} + \overline{C}\overline{D}$$

$$= A + \overline{B}D + B\overline{C} + \overline{C}\overline{D}$$

$$= A + \overline{B}D + B\overline{C} + \overline{C}\overline{D}$$

$$A + \overline{A}B = A$$

$$AB + A\overline{B} = A$$

§ 3.4 卡诺图化简逻辑函数

当我们使用逻辑代数简化逻辑函数时,有时并不确定函数是否为最简形式。卡诺图是一种用来简化逻辑函数的最有效工具。

3.4.1 卡诺图

卡诺图与真值表相似,列出了所有输入值和输出值。卡诺图由一组单元格组成,每个单元格代表一组二进制输入值。

卡诺图中**单元格**数目为**2**ⁿ, n 是变量的个数。 每个格子代表一个最小项。

n个变量 $\rightarrow 2^n$ 个单元格

2个变量的卡诺图: F(A,B)

变量位置确定,每小格代表的最小项就确定。

3个变量的卡诺图: F(A,B,C)

F∖ AB							
	00	01	11	10			
$\begin{bmatrix} \mathbf{C} \\ 0 \end{bmatrix}$	\mathbf{m}_0	2	6	4			
1	m_1	3	7	5			

每两个相邻的单元 格之间只有一个变 量不同。

卡诺图的另外画法:

每个小格有 n 个相邻格 相邻格与排列方式无关

4个变量的卡诺图: F(A,B,C,D)

每个单元格有四个相邻格。

3.4.2 用卡诺图表示逻辑函数

例 1: 用卡诺图表示真值表:

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1_	1	1	1

F∖ AB					
C	00	01	11	10	
$\begin{bmatrix} C \\ 0 \end{bmatrix}$	0	0	1	0	
1	0	1	1	1	

例 2: 画出标准与或式和或与式

$$F(X,Y,Z) = \sum m(0,4,6) \qquad F(X,Y,Z) = \prod M(1,2,3,5,7)$$

F 何时为1(最小项) F 何时为0(最大项)

FX	Y 00	01	11	10
$\begin{bmatrix} Z \\ 0 \end{bmatrix}$	1	0	1	1
1	0	0	0	0

$F \setminus X$	Y			
_ \	00	01	11	10
$\begin{bmatrix} Z \\ 0 \end{bmatrix}$	1	0	1	1
1	0	0	0	0

例 3: 画出非标准与或表达式

$$F(X,Y,Z) = XY + \overline{Y}Z + \overline{X}\overline{Z}$$

$$= XY(Z + \overline{Z}) + \overline{Y}Z(X + \overline{X}) + \overline{X}\overline{Z}(Y + \overline{Y})$$

$$= XYZ + XY\overline{Z} + X\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + \overline{X}Y\overline{Z}$$

$$= \sum m(0,1,2,5,6,7)$$

直接填入XY:

F X	Y 00	01	11	10
$\begin{bmatrix} Z \\ 0 \end{bmatrix}$	1	1	1	
1	1		1	1

在 XY = 11 的两个格中填1

F X	Y 00	01	11	10
$\begin{bmatrix} Z \\ 0 \end{bmatrix}$	1	1	1	
1	1		1	1

3.4.3 卡诺图化简

1. 求最简与或式

方法:

圈相邻格中的1,合并最小项

根据下面规则将含有1的相邻格圈在一起

- ① 一组必须是一个矩形, 2" 个相邻格
- ② 尽可能多圈1
- ③ 每个圈中至少有一个其它圈未圈过的1,1可以重复圈,所有的1都要圈
- ④ 消去圈内同一变量的原变量和反变量,留下不变的变量是1的写原变量,是0的写反变量,组成"与"项
- ⑤ 加和各圈之间为"或"关系

尽可能多地把相邻的矩形的 2n 个 1 圈在一起,消去变化了的n 个变量,留下不变的变量是 1 写原变量,是 0 写反变量,组成"与"项;每个圈中至少有一个别的圈没圈过的 1,所有的 1 都要圈;1 可以重复圈;圈之间为"或"的关系。

图 1个1, 2个1, 4个1, 8个1, 16个1

例 1: 用卡诺图法化简下列函数:

$$F(A,B) = \sum (0,1,3)$$

解:

- ①用卡诺图表示
- ② 圏 1
- ③ 所有与项相加:

$$F = \overline{A} + B$$

例 2: 化简函数

可以划分成多少个组?

$$F = \overline{B} + AC$$

2. 求最简或与式

尽可能多的把相邻矩形个0圈在一起,消去变化了的n个变量,留下不变的变量,(是0写原变量,是1写反变量)组成或项;每个圈中至少有一个别的圈没圈过的0,所有0都要圈,0可重复圈,圈之间为与关系.

例 3 圈 0:

与或式与或与式能够相互转换

总结: 与或式 —— 图1

或与式 —— 圈0

例 4: 把下列函数简化为最简与或式

$$G = \overline{BD} + \overline{ABC} + \overline{ABCD}$$

例 5: 把下列函数简化为最简与或式

$$F = \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{AB}$$

$$= \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{BC}$$

例 6:

把下列函数分别简化为最简与或式和最简或与式

$$F(A,B,C,D) = (\overline{A} + \overline{C})(\overline{A} + B + \overline{D})(\overline{B} + D)(\overline{A} + B + \overline{C} + D)$$
1 1 1 0 1 0 1 0

解: 画出卡诺图,直接圈出0

最简或与式:圈0

$$F(A, B, C, D) = (\overline{B} + D)(\overline{A} + \overline{C})(\overline{A} + B + \overline{D})$$

最简与或式:圈1

$$F(A, B, C, D) = \overline{A} \cdot \overline{B} + \overline{A}D + B\overline{C}D + \overline{B} \cdot \overline{C} \cdot \overline{D}$$

例7: 化简函数

$$F(W,X,Y,Z) = \overline{\overline{WX}} + \overline{YZ} + (\overline{W} + Y)X\overline{Z} + (\overline{W} + Z)(\overline{\overline{W}} + \overline{Y})$$

$$\overline{F} = WX + YZ + WXZ + XYZ + WZ + WY$$

$$\overline{W} + \overline{Z} + \overline{W} + \overline{Y}$$

直接在F K-map中填1,圈0

$$\overline{F} = (\overline{W} + Y + Z)(W + \overline{X} + \overline{Y} + \overline{Z})$$

$$F = \overline{F} = \overline{\overline{W} + Y + Z} + \overline{W + \overline{X} + \overline{Y} + \overline{Z}}$$
$$= W\overline{Y}\overline{Z} + \overline{W}XYZ$$

例8: $F = \overline{ABC} + \overline{AD} + \overline{ABD} + \overline{ABCD} + \overline{ABCD}$

化简上述函数,并分别使用与非门和或非门电路实现。

解: 用卡诺图表示

1) 用与非门

$$F = \overline{\overline{AD} + BD + ABC}$$

 $= AD \cdot BD \cdot ABC$

卷 1

$$F = \overline{\overline{AD} \cdot \overline{BD} \cdot \overline{ABC}}$$

$$= \overline{\overline{AD} \cdot \overline{BD} \cdot \overline{ABC}}$$

2) 用或非门

$$F = \overline{(A+D)(B+D)(A+B+C)}$$

$$F = \overline{A + D} + \overline{B} + \overline{D} + \overline{A} + B + C$$

或与 或非 - 或非

化简:每个圈需一个门实现,各圈之间加一个门

$$F = \overline{A + D} + \overline{B} + \overline{D} + \overline{A} + B + C$$

或非-或非门

3.4.4 具有随意项的逻辑函数的化简

实际逻辑电路中,有些变量(输入)组合不会出现或不允许出现,如BCD码中1010~1111;这些组合对输出不产生任何影响(是1是0不影响输出),这种组合称"随意项".

例子:

我们使用 A,B,C 分别表示正转,反转,停:

 A=1
 正转

 B=1
 反转
 任何时候仅一个结果

 C=1
 停

ABC $\left\{\begin{array}{ll} 100 \text{ or} & 000 \\ 010 \text{ or} & 011 \\ 001 & 110 \\ 111 & 111 \end{array}\right\}$ 随意项

随意项

d() 括号中为最小项编号

化简时,根据化简需要, φ可作1或作0; 但不能既当1同时又当0

例1: 用卡诺图化简函数

$$F(A,B,C,D) = \sum m(1,3,7,11,15) + d(0,2,5)$$

解:卡诺图

下图中的标示: Φ_1 , Φ_2 , 和 Φ_3

如果:

$$\Phi_3 = 1, \Phi_1 = \Phi_2 = 0$$

圈 1:

$$F = CD + \overline{A}D$$

圈 0:

$$F = D(\overline{A} + C)$$

如果: $\Phi_1 = \Phi_2 = 1, \Phi_3 = 0$

圈 1:

$$F = \overline{A} \cdot \overline{B} + CD$$

例 2: 化简带有随意项的逻辑函数

$$G = \overline{AC} + \overline{AB}$$
, $AB + AC = 0$
 $AB = \Phi$ $AC = \Phi$

物理意义:这两项 在函数中不起作用, 不是数学上的等于0

$$G = B + \overline{A} \cdot \overline{C}$$

3.4.5 引入变量卡诺图

当变量多于五个时,可用VEM 方法来简化逻辑表达式,对于一个含有n 变量的表达式,拿出一个变量当做新变量,然后画出n-1 卡诺图。

例 1: 化简函数

$$F(A,B,C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + AB\overline{C} + A\overline{B} \cdot \overline{C} + ABC$$
 3-变量

拿出变量 C 在一个 2-变量卡诺图中将其画出:

例 2: $F(C,D,E) = C\overline{E} + \overline{C}E + \overline{D}E + CDE$

拿出 E 作为一个新 变量(通常是最后 一个变量)

$$F = E + C$$

小 结

- ■逻辑运算的基本定律、规则、公式
- ■公式法化简逻辑函数
- ■卡诺图法化简逻辑函数
 - ·含随意项的函数化简
 - ·变量卡诺图

作业:

- 3.8(1-10)
- 3.10
- 3.11(1, 3, 5, 7)
- 3.12 (1, 3, 5, 7)
- 3.15 (1, 3, 5, 7, 9)
- 3.17 (2, 4, 6)
- 3.18(1,3)

- 3.19(1,3)
- 3.20
- 3.21(1,3)
- 3.22(1,3)
- 3.23(2)