1 Structure de $\mathbb{R}_2[X] = \{P \in \mathbb{R}[X] / \deg(P) \le 2\}$

1.1 $\mathbb{R}_2[X]$ est-il un groupe pour l'addition polynomiale ?

On sait que:

 $\star(\mathbb{R},+,\times)$ est un corps commutatif.

 $\star \text{Dans } \mathbb{R}_2[X]:$

Un polynôme est noté : $aX^2 + bX + c$ avec $a, b, c \in \mathbb{R}$.

L'addition polynomiale est définie par :

$$\forall P = aX^{2} + bX + c \in \mathbb{R}_{2}[X] \quad \forall Q = a'X^{2} + b'X + c' \in \mathbb{R}_{2}[X]$$
$$P + Q = (a + a')X^{2} + (b + b')X + (c + c')$$

 $(1)\mathbb{R}_2[X]$ est non vide : $\tilde{0}$, $\tilde{1}$, X, $X^2 \in \mathbb{R}_2[X]$.

$(2)\mathbb{R}_2[X]$ est-il stable pour l'addition polynomiale?

 \star Soient $P, Q \in \mathbb{R}_2[X]$.

$$\deg(P+Q) \le \max(\deg(P), \deg(Q)) \le 2$$

Donc : $(P+Q) \in \mathbb{R}_2[X]$

 \star Ainsi, $\mathbb{R}_2[X]$ est stable pour l'addition polynomiale.

$$\forall P, Q \in \mathbb{R}_2[X] \quad (P+Q) \in \mathbb{R}_2[X].$$

*De plus, posons : $P = aX^2 + bX + c$ et $Q = a'X^2 + b'X + c'$:

$$P + Q = \underbrace{(a+a')}_{\in \mathbb{R}} X^2 + \underbrace{(b+b')}_{\in \mathbb{R}} X + \underbrace{(c+c')}_{\in \mathbb{R}}$$
$$= (a'+a)X^2 + (b'+b)X + (c'+c)$$
$$= Q + P$$

*Ainsi, l'addition réelle étant commutative, on déduit que l'addition polynomiale est commutative :

$$\forall P, Q \in \mathbb{R}_2[X]$$
 $P + Q = Q + P$

(3)L'addition polynomiale est-elle associative?

*Soit $R \in \mathbb{R}_2[X]$. On pose : $R = a''X^2 + b''X + c''$.

$$(P+Q) + R = \underbrace{[(a+a')+a'']}_{[a+(a'+a'')]} X^2 + \underbrace{[(b+b')+b'']}_{[b+(b'+b'')]} X + \underbrace{[(c+c')+c'']}_{[c+(c'+c'')]}$$

$$\mathrm{Donc} : (P+Q) + R = P + (Q+R).$$

* Ainsi, l'addition réelle étant associative, on déduit que l'addition polynomiale est associative.

$$\forall P, Q, R \in \mathbb{R}_2[X] \qquad (P+Q) + R = P + (Q+R).$$

 $(4)\mathbb{R}_2[X]$ admet un élément neutre : $\tilde{0} = 0_{\mathbb{R}}X^2 + 0_{\mathbb{R}}X + 0_{\mathbb{R}}$.

$$(P + \tilde{0}) = \underbrace{(a + 0_{\mathbb{R}})}_{a} X^{2} + \underbrace{(b + 0_{\mathbb{R}})}_{b} X + \underbrace{(c + 0_{\mathbb{R}})}_{c} = P$$

Donc : $P + \tilde{0} = P$ et $\tilde{0} + P = P$ par commutativité de l'addition polynomiale.

 \star Ainsi :

$$\forall P \in \mathbb{R}_2[X] \quad P + \tilde{0} = \tilde{0} + P = P$$

(5) Tout polynôme de $\mathbb{R}_2[X]$ a-t-il un opposé?

*On pose : $(-P) = (-a)X^2 + (-b)X + (-c)$.

$$(P+(-P)) = \underbrace{(a+(-a))}_{0_{\mathbb{R}}} X^2 + \underbrace{(b+(-b))}_{0_{\mathbb{R}}} X + \underbrace{(c+(-c))}_{0_{\mathbb{R}}}$$

 ${\rm Donc}: P+(-P)=\tilde{0}$ et $(-P)+P=\tilde{0}$ par commutativité de l'addition polynomiale.

 \star Ainsi :

$$\forall P \in \mathbb{R}_2 [X] \quad \exists (-P) \in \mathbb{R}_2 [X] \ / \ P + (-P) = (-P) + P = \tilde{0}$$

1.2 $\mathbb{R}_2[X]$ est-il un groupe pour la multiplication polynomiale ?

$$\underbrace{X}_{\in \mathbb{R}_2[X]} \times \underbrace{X^2}_{\in \mathbb{R}_2[X]} = \underbrace{X^3}_{\notin \mathbb{R}_2[X]}$$

 \star Ainsi, on a montré qu'il existe deux polynômes de $\mathbb{R}_2[X]$ dont le produit est de degré strictement plus grand que 2. Donc $\mathbb{R}_2[X]$ n'est pas stable pour la multiplication polynomiale.

1.3 Conclusion

 $\star(\mathbb{R}_2[X],+)$ est un groupe commutatif.

 $\star \mathbb{R}_2[X]$ n'est pas pas un groupe pour la multiplication polynomiale.

2 Structure de $\mathbb{U}_4 = \{z \in \mathbb{C} \ / \ z^4 = 1\}$

2.1 \mathbb{U}_4 est-il un groupe pour l'addition complexe?

On sait que:

 $\star(\mathbb{C},+,\times)$ est un corps commutatif.

$$\star \ \mathbb{U}_4 = \{1, -1, i, -i\} :$$

Les éléments de \mathbb{U}_4 sont de module 1.

L'addition complexe est définie par :

$$\forall z, z' \in \mathbb{C}$$

$$z + z' = (\operatorname{Re}(z) + \operatorname{Re}(z')) + i(\operatorname{Im}(z) + \operatorname{Im}(z'))$$

$$\underbrace{1}_{\in \mathbb{U}_4} + \underbrace{1}_{\in \mathbb{U}_4} = \underbrace{2}_{\notin \mathbb{U}_4}$$

 \star Ainsi, on a montré qu'il existe que l'addition de deux éléments de \mathbb{U}_4 est un complexe de module différent de 1. Donc \mathbb{U}_4 n'est pas stable pour l'addition complexe.

2.2 \mathbb{U}_4 est-il un groupe pour la multiplication complexe?

*La multiplication complexe est définie par :

$$\forall z, z' \in \mathbb{C}$$

$$z \times z' = |z| \times |z'| e^{Arg(z) + Arg(z')}$$

 \star Table de multiplication dans \mathbb{U}_4 :

×	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

- (1) \mathbb{U}_4 est stable pour la multiplication complexe.
- (2) La multiplication dans \mathbb{C} est associative.

Or
$$\mathbb{U}_4 \subset \mathbb{C}$$
.

La multiplication est donc associative dans \mathbb{U}_4 .

(3) 1 est neutre pour la multiplication dans \mathbb{C} donc dans \mathbb{U}_4 .

 $1 \in \mathbb{U}_4$: donc 1 est l'élément neutre de \mathbb{U}_4 .

(4) La multiplication dans $\mathbb C$ est commutattive.

Or
$$\mathbb{U}_4 \subset \mathbb{C}$$
.

La multiplication est donc commutative dans \mathbb{U}_4 .

(5) Tout élément de \mathbb{U}_4 a un inverse dans \mathbb{U}_4 .

2.3 Conclusion.

- $\star \mathbb{U}_4$ n'est pas un groupe pour l'addition complexe.
- \star (U₄, ×) est un groupe commutatif.

3 Exercice : vérifier la structure de \mathbb{R} -espace vectoriel.

3.1 Rappel de l'énoncé.

Soit $E = \mathbb{R}_+^* \times \mathbb{R}$. On définit :

 \star l'addition interne sur E ainsi :

$$\forall u = (x, y), \ v = (x', y') \in E$$
$$u + v = (x, y) + (x', y') = (xx', y + y')$$

 \star l'opération externe sur $\mathbb{R} \times E$ ainsi :

$$\forall \lambda \in \mathbb{R}, \ \forall u = (x, y) \in E$$

$$\lambda \cdot u = \lambda \cdot (x, y) = (x^{\lambda}, \lambda y)$$

3.2 Vérifions que (E,+) est un groupe commutatif.

- $(1)E \neq \emptyset$. En effet : $(1,0) \in E$.
- (2) E est stable par +. En effet : soient $u=(x,y),\ v=(x',y')\in E$

$$u+v=(\underbrace{x\times x'}_{\in\mathbb{R}_+^*},\underbrace{y+y'}_{\in\mathbb{R}})$$

 $\star(\mathbb{R}_+^*,\times)$ est un groupe commutatif.

 $\star(\mathbb{R},+)$ est un groupe commutatif.

 \mathbf{L} 'addition dans E est associative et commutative.

(3)E admet un élément neutre pour +:

$$0_E = (1,0)$$

(4) Tout élément de E admet un opposé pour +:

$$\forall u = (x, y) \in E \ (-u) = (\frac{1}{x}, -y)$$

3.3 Vérifions que $(E, +, \cdot)$ est un \mathbb{R} -espace vectoriel.

(1) L'action de $1_{\mathbb{R}}$ sur E est neutre :

$$\forall u = (x, y) \in E$$
 $1_{\mathbb{R}} \cdot u = (x^1, 1 \times y) = (x, y)$

(2) · est pseudo-distributive sur $+_E$:

Soient
$$u = (x, y), v = (x', y') \in E \quad \forall \lambda \in \mathbb{R}$$

$$\lambda \cdot (u +_E v) = \lambda \cdot (xx', y + y') = ((xx')^{\lambda}, \lambda(y + y'))$$

$$= (x^{\lambda}x'^{\lambda}, \lambda y + \lambda y')$$

$$= (x^{\lambda}, \lambda y) + (x'^{\lambda}, \lambda y')$$

$$= \lambda \cdot (x, y) + \lambda \cdot (x', y')$$

$$= \lambda \cdot u + \lambda \cdot v$$

(3) \cdot est pseudo-distributive sur $+_{\mathbb{R}}$:

Soient
$$u = (x, y) \in E$$
 λ , $\mu \in \mathbb{R}$
$$(\lambda + \mu) \cdot u = (\lambda + \mu) \cdot (x, y) = (x^{\lambda + \mu}, (\lambda + \mu)y)$$
$$= (x^{\lambda}x^{\mu}, \lambda y + \mu y)$$
$$= (x^{\lambda}, \lambda y) + (x^{\mu}, \mu y)$$
$$= \lambda \cdot (x, y) + \mu \cdot (x, y)$$
$$= \lambda \cdot u + \mu \cdot u$$

(4) · est pseudo-associative :

Soient
$$u = (x, y) \in E$$
 λ , $\mu \in \mathbb{R}$
$$(\lambda \times \mu) \cdot u = (\lambda \times \mu) \cdot (x, y) = (x^{\lambda \times \mu}, (\lambda \times \mu)y)$$
$$= (x^{\mu \times \lambda}, (\lambda \times \mu) \times y)$$
$$= ((x^{\mu})^{\lambda}, \lambda \times (\mu y))$$
$$= \lambda \cdot (x^{\mu}, \mu y)$$
$$= \lambda \cdot (\mu \cdot (x, y))$$
$$= \lambda \cdot (\mu \cdot u)$$

3.4 Conclusion.

- ★ $(\mathbb{R}, +, \times)$ est un corps commutatif.
- \star (E,+) est un groupe commutatif.
- \star La loi externe \cdot vérifie les axiomes d'une loi externe de $\mathbb{R}\text{-espace}$ vectoriel.
- \star $(E, +, \cdot)$ est un \mathbb{R} -espace vectoriel.