Formal Verification of Galois Field Arithmetic Circuits using Computer Algebra Techniques

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Some Background...

- My interests Design Automation and Verification
 - Formal Verification of RTL-descriptions
 - Word-level abstractions from designs, symbolic techniques
 - Verification of finite-precision arithmetic
- Equivalence check: specification (Spec) vs implementation (Impl)
 - RTL-1 & RTL-2: same function?
 - Word-level spec (polynomial, RTL) vs gate-level circuit: same function?
 - RTL: functions over k-bit-vectors
 - k-bit-vector \mapsto integers $\pmod{2^k} = \mathbb{Z}_{2^k}$
 - k-bit-vector \mapsto Galois (Finite) field \mathbb{F}_{2^k}
- Approach: Computer Algebra Techniques
 - ullet Model: Polynomial functions over \mathbb{Z}_{2^k} or \mathbb{F}_{2^k}
 - Devise decision procedures for polynomial function equivalence
 - ullet Commutative algebra, algebraic geometry + contemporary verification
- This talk, mostly about verification over Galois fields

My Collaborators

- Former PhD students
 - Namrata Shekhar: Synopsys, Formality Equivalence Checker
 - Sivaram Gopalakrishnan: Synopsys, Formality Equivalence Checker
 - Jinpeng Lv: Cadence, Conformal Equivalence Checker
- Collaborator: Prof. Florian Enescu
 - Mathematics & Statistics, Georgia State Univ.
 - Commutative Algebra & Algebraic Geometry
 - NOT a computer-algebra specialist, but thats good!
 - Think about problems "theoretically", algorithms can come later...

Agenda: Verification of Galois field circuits

- Motivation
 - Galois fields, hardware applications & their verification
- Target problems
 - Given Galois field \mathbb{F}_{2^k} , polynomial f, and circuit C
 - Verify: circuit *C* implements *f*; or find the bug
 - Given circuits C_1 , C_2 , is $C_1 \equiv C_2$ over \mathbb{F}_{2^k} ?
 - Given circuit C, with k-bit inputs and outputs
 - ullet Derive a polynomial representation for C over $f:\mathbb{F}_{2^k} o \mathbb{F}_{2^k}$
 - Word-level abstraction as a canonical polynomial representation
- Approach: Computer Algebra Techniques
 - Nullstellensatz + Gröbner Basis methods
 - Challenge: Complexity of Gröbner Basis algorithm
 - Contribution: A **term order** to **obviate** the Gröbner Basis algorithm for verification + custom F_4 -style reduction
- Results & Conclusions

Motivation

- Wide applications of Galois field circuits
 - Cryptography: RSA, Elliptic Curve Cryptography (ECC)
 - Error Correcting Codes, Digital Signal Processing, etc.
- Bugs in hardware can leak secret keys [Biham et al., "Bug Attacks", Crypto 2008]
- Data-path size in ECC crypto-systems can be very large
 - In \mathbb{F}_{2^k} , k = 163, 233, ... (NIST standard)
 - ECC-point addition for encryption, decryption, authentication
 - Custom arithmetic architectures hard to verify
 - Synthesized circuits are "easier" to verify
- Why use computer algebra?
 - Algebraic nature (finite field) of the computation (polynomial)
 - Verification infeasible with contemporary verification tools

Galois Field Overview

Galois field \mathbb{F}_q is a finite field with q elements, $q = p^k$

- Commutative Ring with unity, associate, distributive laws
- Closure property: $+, -, \times$, inverse (\div)
- $\mathbb{F}_p \equiv (\mathbb{Z} \pmod{p})$, where p = prime, is a field
 - $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$

Our interest: $\mathbb{F}_q = \mathbb{F}_{2^k}$, i.e. $q = 2^k$

- \mathbb{F}_{2^k} : k-dimensional extension of \mathbb{F}_2
 - k-bit bit-vector, AND/XOR arithmetic

To construct \mathbb{F}_{2^k}

- $\bullet \ \mathbb{F}_{2^k} \equiv \mathbb{F}_2[x] \ (\mathsf{mod} \ P(x))$
- $P(x) \in \mathbb{F}_2[x]$, irreducible polynomial of degree k

Field Elements: e.g. \mathbb{F}_8

Consider:
$$\mathbb{F}_{2^3} = \mathbb{F}_2[x] \pmod{x^3 + x + 1}$$

$$A \in \mathbb{F}_2[x]$$

A
$$(\text{mod } x^3 + x + 1) = a_2 x^2 + a_1 x + a_0$$
. Let $P(\alpha) = 0$:

- $\langle a_2, a_1, a_0 \rangle = \langle 0, 0, 0 \rangle = 0$
- $\langle a_2, a_1, a_0 \rangle = \langle 0, 0, 1 \rangle = 1$
- $\langle a_2, a_1, a_0 \rangle = \langle 0, 1, 0 \rangle = \alpha$
- $\langle a_2, a_1, a_0 \rangle = \langle 0, 1, 1 \rangle = \alpha + 1$
- $\langle a_2, a_1, a_0 \rangle = \langle 1, 0, 0 \rangle = \alpha^2$
- $\langle a_2, a_1, a_0 \rangle = \langle 1, 0, 1 \rangle = \alpha^2 + 1$
- $\langle a_2, a_1, a_0 \rangle = \langle 1, 1, 0 \rangle = \alpha^2 + \alpha$
- $\langle a_2, a_1, a_0 \rangle = \langle 1, 1, 1 \rangle = \alpha^2 + \alpha + 1$

Elliptic Curves - Point addition

$$y^2 + xy = x^3 + ax^2 + b$$
 over $GF(2^k)$

Compute Slope: $\frac{y_2 - y_1}{x_2 - x_1}$

Computation of inverses over \mathbb{F}_{2^k} is expensive

Point addition using Projective Co-ordinates

- Curve: $Y^2 + XYZ = X^3Z + aX^2Z^2 + bZ^4$ over \mathbb{F}_{2^k}
- Let $(X_3, Y_3, Z_3) = (X_1, Y_1, Z_1) + (X_2, Y_2, 1)$

$$A = Y_2 \cdot Z_1^2 + Y_1$$
 $E = A \cdot C$
 $B = X_2 \cdot Z_1 + X_1$ $X_3 = A^2 + D + E$
 $C = Z_1 \cdot B$ $F = X_3 + X_2 \cdot Z_3$
 $D = B^2 \cdot (C + aZ_1^2)$ $G = X_3 + Y_2 \cdot Z_3$
 $Z_3 = C^2$ $Y_3 = E \cdot F + Z_3 \cdot G$

No inverses, just addition and multiplication

Multiplication in $GF(2^4)$

Input:

$$A = (a_3 a_2 a_1 a_0)$$

$$B = (b_3 b_2 b_1 b_0)$$

$$A = a_0 + a_1 \cdot \alpha + a_2 \cdot \alpha^2 + a_3 \cdot \alpha^3$$

$$B = b_0 + b_1 \cdot \alpha + b_2 \cdot \alpha^2 + b_3 \cdot \alpha^3$$

Irreducible Polynomial:

$$P = (11001)$$

 $P(x) = x^4 + x^3 + 1$, $P(\alpha) = 0$

Result:

$$A \times B \pmod{P(x)}$$

Multiplication over $GF(2^4)$

×			а ₃ b ₃	a ₂ b ₂	$a_1 \ b_1$	а ₀ b ₀
			$a_3 \cdot b_0$	$a_2 \cdot b_0$	$a_1 \cdot b_0$	$a_0 \cdot b_0$
		$a_3 \cdot b_1$	$a_2 \cdot b_1$	$a_1 \cdot b_1$	$a_0 \cdot b_1$	
	$a_3 \cdot b_2$	$a_2 \cdot b_2$	$a_1 \cdot b_2$	$a_0 \cdot b_2$		
$a_3 \cdot b_3$	$a_2 \cdot b_3$	$a_1 \cdot b_3$	$a_0 \cdot b_3$			
<i>s</i> ₆	<i>S</i> 5	<i>S</i> ₄	<i>5</i> 3	s ₂	s_1	<i>s</i> ₀

In polynomial expression:

$$S = s_0 + s_1 \cdot \alpha + s_2 \cdot \alpha^2 + s_3 \cdot \alpha^3 + s_4 \cdot \alpha^4 + s_5 \cdot \alpha^5 + s_6 \cdot \alpha^6$$

S should be further reduced $\pmod{P(x)}$

Multiplication over $GF(2^4)$

$$s_4 \cdot \alpha^4 \pmod{\alpha^3 + \alpha + 1} = s_4 \cdot \alpha^3 + s_4$$

$$s_5 \cdot \alpha^5 \pmod{\alpha^3 + \alpha + 1} = s_5 \cdot \alpha^3 + s_5 \cdot \alpha + s_5$$

$$s_6 \cdot \alpha^6 \pmod{\alpha^3 + \alpha + 1} = s_6 \cdot \alpha^3 + s_6 \cdot \alpha^2 + s_6 \cdot \alpha + s_6$$

$$G = g_0 + g_1 \cdot \alpha + g_2 \cdot \alpha^2 + g_3 \cdot \alpha^3$$

Montgomery Architecture

Figure: Montgomery multiplier over $GF(2^k)$

Montgomery Multiply: $F = A \cdot B \cdot R^{-1}$, $R = \alpha^k$

- Barrett architectures do not require precomputed R^{-1}
- We can verify 163-bit circuits, and also catch bugs!
- Conventional techniques fail beyond 16-bit circuits

Verification: The Mathematical Problem

- Given specification polynomial: $f: Z = A \cdot B \pmod{P(x)}$ over \mathbb{F}_{2^k} , for given k, and given P(x), s.t. $P(\alpha) = 0$
- Given circuit implementation C
 - Primary inputs: $A = \{a_0, \dots, a_{k-1}\}, B = \{b_0, \dots, b_{k-1}\}$
 - Primary Output $Z = \{z_0, \ldots, z_{k-1}\}$
 - $A = a_0 + a_1 \alpha + a_2 \alpha^2 + \cdots + a_{k-1} \alpha^{k-1}$
 - $B = b_0 + b_1 \alpha + \dots + b_{k-1} \alpha^{k-1}, \ Z = z_0 + z_1 \alpha + \dots + z_{k-1}$
- Does the circuit C correctly compute specification f?

Mathematically:

- ullet Model the circuit (gates) as polynomials $\{f_1,\ldots,f_s\}\in \mathbb{F}_{2^k}[x_1,\ldots,x_d]$
- Do solutions to f = 0 (spec) agree with solutions to $f_1 = f_2 = \cdots = f_s = 0$ (implement)?
- Does f vanish on the Variety $V(f_1, \ldots, f_s)$?

Example Formulation

Model circuit as polynomials in $\mathbb{F}_2 \subset \mathbb{F}_{2^k}$:

$$z_0 = s_0 + s_3 \implies f_1 : z_0 + s_0 + s_3$$

 $s_0 = a_0 \cdot b_0 \implies f_2 : s_0 + a_0 \cdot b_0$
 \vdots

$$A + a_0 + a_1 \alpha$$
, $B + b_0 + b_1 \alpha$, $Z + z_0 + z_1 \alpha$

Computer Algebra Terminology

Let
$$\mathbb{F}_q = GF(2^k)$$
:

- $\mathbb{F}_q[x_1,\ldots,x_n]$: ring of all polynomials with coefficients in \mathbb{F}_q
- Given a set of polynomials:
 - $f, f_1, f_2, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_n]$
 - Find solutions to $f_1 = f_2 = \cdots = f_s = 0$
- Variety: Set of ALL solutions to a given system of polynomial equations: $V(f_1, \ldots, f_s)$
 - In $\mathbb{R}[x, y]$, $V(x^2 + y^2 1) = \{all \ points \ on \ circle : x^2 + y^2 1 = 0\}$
 - In $\mathbb{R}[x]$, $V(x^2 + 1) = \emptyset$
 - In $\mathbb{C}[x]$, $V(x^2+1) = \{(\pm i)\}$
- Variety depends on the ideal generated by the polynomials.
- Reason about the Variety by analyzing the Ideals

Ideals in Rings

Definition

Ideals of Polynomials: Let $f_1, f_2, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_n]$. Let

$$J = \langle f_1, f_2 \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s \}$$

 $J = \langle f_1, f_2, \dots, f_s \rangle$ is an ideal generated by f_1, \dots, f_s and the polynomials are called the generators.

Definition

Ideal Membership: Let $f, f_1, f_2, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_n]$. Let $J = \langle f_1, f_2, \ldots, f_s \rangle$ be an ideal $\subset \mathbb{F}_q[x_1, \ldots, x_n]$. If $f = f_1h_1 + f_2h_2 + \cdots + f_sh_s$, then $f \in J$.

If f is a member of the ideal $J = \langle f_1, f_2, \dots, f_s \rangle$, then f agrees with solutions of $f_1 = \dots = f_s = 0$.

Example Formulation

- Polynomials for all the gates: f_1, \ldots, f_s ; ideal $J = \langle f_1, \ldots, f_s \rangle$
- Polynomial specification: $f: Z = A \times B$
- Spec f "agrees with" all solutions to $f_1 = \cdots = f_s = 0$
- f vanishes on variety $V_{\mathbb{F}_{2^k}}(J)$?

Variety over \mathbb{F}_q or over $\overline{\mathbb{F}_q}$?

Where are the solutions of $f_1 = f_2 = \cdots = f_s = 0$?

- Algebraically closed field \mathbb{F} : Every $f(x) \in \mathbb{F}[x]$ has a root in \mathbb{F}
- Galois fields are not algebraically closed!
- ullet $\overline{\mathbb{F}_q}=$ algebraic closure of $\mathbb{F}_q\colon \overline{\mathbb{F}_q}\supset \mathbb{F}_q$
 - Similar to $\mathbb{C} \supset \mathbb{R}$

Restricting the Variety to \mathbb{F}_q ?

- Property of Finite fields: $\forall x \in \mathbb{F}_q, x^q x = 0$
- Vanishing Polynomials: $x^q x$ are vanishing polynomials of \mathbb{F}_q
- Therefore $V(x^q x) = \mathbb{F}_q$
- Restrict the solutions to \mathbb{F}_q : $V_{\mathbb{F}_q}(f_1, \dots, f_s) = V_{\overline{\mathbb{F}_q}}(f_1, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n)$

Our Problem Formulation (Finally!)

Given f (spec) and f_1, \ldots, f_s (circuit) over $\mathbb{F}_q[x_1, \ldots, x_n]$

- $J = \langle f_1, f_2 \dots, f_s \rangle$, Polynomials from the design
- $J_0 = \langle x_1^q x_1, \dots, x_n^q x_n \rangle$, Vanishing polynomials generated
- $J + J_0 = \langle f_1, f_2, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n \rangle$; Variety $V(J + J_0) =$ circuit configuration
- Is $f \in J + J_0$? If so, the circuit is correct. Otherwise there is a bug.
- ullet This result is derived from Strong Nullstellensatz over \mathbb{F}_q

If f vanishes on $V_{\mathbb{F}_q}(J)$, then:

$$f \in I(V_{\mathbb{F}_q}(J)) = I(V_{\overline{\mathbb{F}_q}}(J+J_0)) = \sqrt{J+J_0} = J+J_0$$

Our problem: Test of $f \in (J+J_0)$ Requires the computation of a Gröbner basis of $J+J_0$

Ideal Membership Test Requires a Gröbner Basis

- Different generators can generate the same ideal
- $\langle f_1, \cdots, f_s \rangle = \cdots = \langle g_1, \cdots, g_t \rangle$
- Some generators are a "better" representation of the ideal
- A Gröbner basis is a "canonical" representation of an ideal

Given $F = \{f_1, f_2, \cdots, f_s\}$, Compute a Gröbner Basis $G = \{g_1, g_2, \cdots, g_t\}$, such that $I = \langle F \rangle = \langle G \rangle$

$$V(F) = V(G)$$

Grobner Basis G decides ideal membership:

$$G = GB(I) \iff \forall f \in I, f \stackrel{g_1, g_2, \cdots, g_t}{\longrightarrow} + 0$$

Buchberger's Algorithm Computes a Gröbner Basis

Buchberger's Algorithm

INPUT :
$$F = \{f_1, \dots, f_s\}$$

OUTPUT : $G = \{g_1, \dots, g_t\}$
 $G := F$;
REPEAT
 $G' := G$
For each pair $\{f, g\}, f \neq g$ in G' DO
 $S(f, g) \xrightarrow{G'} r$
IF $r \neq 0$ THEN $G := G \cup \{r\}$
UNTIL $G = G'$

$$S(f,g) = \frac{L}{lt(f)} \cdot f - \frac{L}{lt(g)} \cdot g$$

L = LCM(Im(f), Im(g)), Im(f): leading monomial of f

Complexity of Gröbner Basis and Term Orderings

- For $J \subset \mathbb{F}_q[x_1, \dots, x_n]$, Complexity $GB(J + J_0) : q^{O(n)}$
- GB complexity very sensitive to term ordering
- A term order has to be imposed for systematic polynomial computation

Let
$$f = 2x^2yz + 3xy^3 - 2x^3$$

- LEX x > y > z: $f = -2x^3 + 2x^2yz + 3xy^3$
- DEGLEX x > y > z: $f = 2x^2yz + 3xy^3 2x^3$
- DEGREVLEX x > y > z: $f = 3xy^3 + 2x^2yz 2x^3$

Recall, S-polynomial depends on term ordering:

$$S(f,g) = \frac{L}{lt(f)} \cdot f - \frac{L}{lt(g)} \cdot g;$$
 $L = LCM(lm(f), lm(g))$

Effect of Term Orderings

If
$$Im(f) \cdot Im(g) = LCM(Im(f), Im(g))$$
, then $S(f,g) \xrightarrow{G'} 0$.

LEX:
$$x_0 > x_1 > x_2 > x_3$$

- $f = x_0x_1 + x_2, g = x_1x_2 + x_3$
- $Im(f) = x_0x_1$; $Im(g) = x_1x_2$
- $S(f,g) \xrightarrow{G'} x_0x_3 + x_2^2$

LEX:
$$x_3 > x_2 > x_1 > x_0$$

- $f = x_2 + x_0x_1, g = x_3 + x_1x_2$
- $Im(f) = x_2$; $Im(g) = x_3$, $S(f,g) \xrightarrow{G'} 0$

Problem: Find a "term order" that makes ALL $\{Im(f), Im(g)\}$ relatively prime.

For Circuits, such an order can be derived

$$f_1: s_0 + a_0 \cdot b_0, \ Im = s_0; \quad f_2: s_1 + a_0 \cdot b_1, \ Im = s_1$$

 $f_3: s_2 + a_1 \cdot b_0, \ Im = s_2; \quad f_4: s_3 + a_1 \cdot b_1, \ Im = s_3$
 $f_5: r_0 + s_1 + s_2, \ Im = r_0; \quad f_6: z_0 + s_0 + s_3, \ Im = z_0$
 $f_7: z_1 + r_0 + s_3, \ Im = z_1$

- Reverse Topological Traversal of the Circuit
- ${z_0 > z_1} > {r_0 > s_0 > s_3} > {s_1 > s_2} > {a_0 > a_1 > b_0 > b_1}$
- Make every gate output a leading term

Our Discovery: Gröbner Basis of $J + J_0$

Using Our Topological Term Order:

- $F = \{f_1, \dots, f_s\}$ is a Gröbner Basis of $J = \langle f_1, \dots, f_s \rangle$
- $F_0 = \{x_1^q x_1, \dots, x_n^q x_n\}$ is also a Gröbner basis of J_0
- But we have to compute a Gröbner Basis of $J + J_0 = \langle f_1, f_2, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n \rangle$
- We show that $\{f_1, f_2, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n\}$ is a Gröbner basis!!
- From our circuit: $f_i = x_i + P$
- Only pairs to consider: $S(f_i, x_i^q x_i)$ in Buchberger's Algorithm:

$$S(f_i, x_i^q - x_i) \xrightarrow{J} P^q - P \xrightarrow{J_0} 0$$

Conclusion: Our term order makes $\{f_1, \dots, f_s, x_1^q - x_1, \dots, x_n^q - x_n\}$ a Gröbner Basis

Our Term Order: Already a Gröbner basis

$$f_1: s_0 + a_0 \cdot b_0, \ Im = s_0; \quad s_0^q - s_0$$

 $f_2: s_2 + a_1 \cdot b_0, \ Im = s_2; \quad s_2^2 - s_2$

- Every gate: $f_i: x_i + P \in J$
- Every vanishing polynomial: $x_i^q x_i \in J_0$

$$S(f_i, x_i^q - x_i) \xrightarrow{J} P^q - P \xrightarrow{J_0} 0$$

$$\{f_1, \dots, f_s, x_1^q - x_1, \dots, x_n^q - x_n\} \text{ is a Gr\"{o}bner basis}$$

Our Overall Approach

- Given the circuit, perform reverse topological traversal
- Derive the term order to represent the polynomials for every gate
- The set: $\{F, F_0\} = \{f_1, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n\}$ is a Gröbner Basis
- Obtain: $f \xrightarrow{F,F_0} r$
- If r = 0, the circuit is correct
- If $r \neq 0$, then r contains only the primary input variables
- Any SAT assignment to $r \neq 0$ generates a counter-example
- Counter-example found in no time as r is simplified by Gröbner basis reduction

Experimental Results: Correctness Proof

Table: Verification Results of SAT, SMT, BDD, ABC.

	Word size of the operands k -bits									
Solver	8	12	16							
MiniSAT	22.55	TO	TO							
CryptoMiniSAT	7.17	16082.40	TO							
PrecoSAT	7.94	TO	TO							
PicoSAT	14.85	TO	TO							
Yices	10.48	TO	TO							
Beaver	6.31	TO	TO							
CVC	TO	TO	TO							
Z3	85.46	TO	TO							
Boolector	5.03	TO	TO							
Sonolar	46.73	TO	TO							
SimplifyingSTP	14.66	TO	TO							
ABC	242.78	TO	TO							
BDD	0.10	14.14	1899.69							

Experimental Results: Correctness Proof

Table: Verify bug-free and buggy Mastrovito multipliers. SINGULAR computer algebra tool used for division.

Size k-bits	32	64	96	128	160	163
#variables	1155	4355	9603	16899	26243	27224
#polynomials	1091	4227	9411	16643	25923	26989
#terms	7169	28673	64513	114689	179201	185984
Compute-GB:	93.80	MO	МО	МО	МО	МО
Ours: Bug-free	1.41	112.13	758.82	3054	9361	16170
Ours: Bugs	1.43	114.86	788.65	3061	9384	16368

Improve GB-reduction: F_4 -style reduction

New algorithm to compute a Gröbner basis by J.C. Faugère: F_4

- Buchberger's algorithm $S(f,g) \xrightarrow{G}_+ r$
- Instead, compute a "set" of S(f,g) in one-go
- Reduces them "simultaneously"
- Significant speed-up in computing a Gröbner basis
- Models the problem using sparse linear algebra
- Gaussian elimination on a matrix representation of the problem

Our term order: already a Gröbner basis. We only need F_4 -style reduction: $f \xrightarrow{F,F_0} r$

- Spec: $f: Z + A \cdot B$, compute $f \stackrel{f_1, \dots, f_s}{\longrightarrow}_+ r$
- Find a polynomial f_i that divides f, or "cancels" LT(f)
- $Z = z_0 + z_1 \alpha$, $A = a_0 + a_1 \alpha$, $B = b_0 + b_1 \alpha$
- Construct a matrix: rows = polynomials, columns = monomials, entries = coefficient of monomial present in the polynomial

	Z	AB	Ba_0	Ba_1	<i>z</i> ₀	z_1	r_0	a_0b_0	a_0b_1	a_1b_0	a_1b_1
f	/ 1	1	0	0	0	0	0	0	0	0	0 \
f_3	1	0	0		1	α	0	0	0	0	0
Bf_1	0	1	1	α	0	0	0	0	0	0	0
$a_0 f_2$	0	0	1	0	0	0		1		0	0
a_1f_2	0	0	0	1	0	0	0	0	0	1	α
f_5	0	0	0	0	1	0	0	1	0	0	1
f_6	0	0	0	0	0	1	1	0	0	0	1
f_4	0 /	0	0	0	0	0	1	0	1	1	0 /

- Spec: $f: Z + A \cdot B$, compute $f \xrightarrow{f_1, \dots, f_s} r$
- $f_3: Z = z_0 + z_1 \alpha$

	Z	AB	Ba_0	Ba_1	<i>z</i> ₀	z_1	r_0	a_0b_0	a_0b_1	a_1b_0	a_1b_1
f	/ 1	1	0	0	0	0	0	0	0	0	0 \
f_3	1	0	0	0	1	α	0	0	0	0	0
Bf_1	0	1	1	α	0	0	0	0	0	0	0
$a_0 f_2$	0	0	1	0	0	0	0	1	α	0	0
a_1f_2	0	0	0	1	0	0	0	0	0	1	α
f_5	0	0	0	0	1	0	0	1	0	0	1
f_6	0	0	0	0	0	1	1	0	0	0	1
f_4	0 /	0	0	0	0	0	1	0	1	1	0 /

- To cancel the term AB
- $f_1: A = a_0 + a_1 \alpha$
- $\bullet Bf_1: AB = Ba_0 + Ba_1\alpha$

	Z	AB	Ba_0	Ba_1	z_0	z_1	r_0	$a_0 b_0$	a_0b_1	a_1b_0	a_1b_1
f	/ 1	1	0	0	0	0	0	0	0	0	0 \
f_3	1	0	0	0	1	α	0	0	0	0	0
Bf_1	0	1	1		0	0		0	0	0	0
$a_0 f_2$	0	0	1	0	0	0	0	1	α	0	0
a_1f_2	0	0	0	1	0	0	0	0	0	1	α
f_5	0	0	0	0	1	0	0	1	0	0	1
f_6	0	0	0	0	0	1	1	0	0	0	1
f_4	0 /	0	0	0	0	0	1	0	1	1	0 /

- Construct the Matrix for polynomial reduction
- Apply Gaussian elimination on the matrix
- Last row = result of reduction = $\alpha^2 + \alpha + 1 = 0$

Z	AB	Ba_0	Ba_1	z_0	z_1	r_0	a_0b_0	a_0b_1	a_1b_0	a_1b_1
/1	1	0	0	0	0	0	0	0	0	0 \
0	1	0	0	1	α	0	0	0	0	0
0	0	1	α	1	α	0	0	0	0	0
0	0	0	α	1	α	0	1	α	0	0
0	0	0	0	1	α	0	1	α	α	α^2
0	0	0	0	0	α	0	0	α	α	$\alpha^2 + 1$
0	0	0	0	0	0	α	0	α	α	$\alpha^2 + \alpha + 1$
/ 0	0	0	0	0	0	0	0	0	0	$\alpha^2 + \alpha + 1$

Results

Table: Runtime for verifying bug-free and buggy Montgomery multipliers. TO = timeout of 10hrs. Time is given in seconds. * denotes SINGULAR's capacity exceeded.

Operand size k	32	48	64	96	128	163
#variables	1194	2280	4395	6562	14122	91246
#polynomials	1130	2184	4267	6370	13866	89917
#terms	10741	18199	40021	55512	134887	484738
Bug-free (Singular)	1.50	11.03	27.70	1802.75	10919	*
Bug-free (F ₄)	0.86	4.47	10.11	700.59	4539	18374
Bugs (Singular)	1.52	11.10	28.18	1812.15	11047	*
Bugs (F_4)	0.88	4.49	10.12	709.03	4564	17803

 F_4 -style reduction 2.5X faster than use of Singular

Prior Work

Wienand et al CAV'2008: Similar approach for verification of integer multipliers

- Works over rings \mathbb{Z}_{2^k}
- They derive the same term order: $f \xrightarrow{F}_+ g$
- Then the circuit is correct if g is a vanishing polynomial; $g \in F_0$ over \mathbb{Z}_{2^k}
- But they do not investigate if F, F_0 is a Gröbner basis....

Mukopadhyaya, TCAD 2007 (< 16-bit circuits), our own approach VLSI Design 2012, other theorem proving papers....

BLUVERI from IBM, A. Lvov, et al., FMCAD 2012.

Polynomial Interpolation from Circuits

- Circuit: $f: \mathbb{B}^k \to \mathbb{B}^k$
- $\bullet \ f: \mathbb{Z}_{2^k} \to \mathbb{Z}_{2^k} \ \text{or} \quad f: \mathbb{Z}_{2^k} \to \mathbb{Z}_{2^k}$
- Interpolate a polynomial from the circuit: Y = F(A)
- $A = a_0 + a_1 \alpha + \dots + a_{k-1} \alpha^{k-1}, \quad Y = y_0 + y_1 \alpha + \dots + y_{k-1} \alpha^{k-1}$
- Compute Gröbner basis of circuit polynomials with Elimination order: circuit-variables > Y > A
- Obtain Y = F(A) as a unique, canonical, polynomial representation from the circuit

Polynomial Interpolation from Circuits

Hierarchical Interpolation

- Partition the circuit into sub-circuits
- Interpolate Polynomials F_1, F_2, \ldots from Partitions
- Re-compute Gröbner basis of $\{F_1, F_2, \dots\}$
- Eliminate internal variables to obtain Y = F(A)

Conclusions

- Formal Verification of large Galois Field circuits
- Computer algebra approach:
 - Nullstellensatz+Gröbner Bases methods
 - \bullet Engineering \to a term order to obviate Gröbner basis computation
 - Can verify upto 163-bit circuits
 - NIST specified 163-bit field.... practical verification!
- Our approach relies only on polynomial division
- ullet Complexity of polynomial division: Polynomial in the size of f_1,\ldots,f_s
- Almost the same time to catch bugs
- Conventional approaches fail miserably.....
- Future Work: Verify sequential GF-arithmetic Circuits
 - State-space traversal: Quantifier Elimination over Gröbner Basis