Espaces préhilbertiens

1 Matrice d'une forme bilinéaire/sesquilinéaire Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Soit f une forme bilinéaire sur E.

1. Montrer qu'il existe une unique matrice $M \in M_n(\mathbb{R})$ telle que

$$\forall x, y \in E \qquad f(x, y) = {}^{t}[x]_{\mathscr{B}} M[y]_{\mathscr{B}}$$
 (1)

et donner les coefficients de M en fonction de f et des vecteurs de \mathcal{B} . La matrice M est appelée matrice de f dans \mathcal{B} , et on la note $\mathrm{Mat}_{\mathcal{B}} f$.

- 2. Si $\mathscr C$ est une autre base de E, quelle relation y a-t-il entre $\mathrm{Mat}_\mathscr C f$, $\mathrm{Mat}_\mathscr B f$ et P (matrice de passage de $\mathscr B$ vers $\mathscr C$)?
- 3. À quelle condition sur M, nécessaire et suffisante, est-ce que f est symétrique?
- 4. On suppose que *f* est symétrique. À quelle condition sur M, nécessaire et suffisante, est-ce que *f* est positive? non dégénérée?
- 5. Reprendre ces questions dans le cas où E est un C-espace vectoriel, en remplaçant « bilinéaire » par « sesquilinéaire », et « symétrique » par « à symétrie hermitienne. »

2 Soient $a_1, ..., a_n$ dans \mathbb{C} , non tous nuls. On note $H = \{z \in \mathbb{C}^n \mid \sum_{k=1}^n a_k z_k = 0\}$. Calculer la matrice, dans la base canonique de \mathbb{C}^n , de la projection orthogonale sur H.

3 On travaille dans $\mathbb{R}[X]$ avec le produit scalaire $\langle | \rangle : (P, Q) \longmapsto \int_{[0;1]} PQ$. Est-ce qu'il existe $A \in \mathbb{R}[X]$ tel que

$$\forall P \in \mathbb{R}[X] \qquad \langle A \mid P \rangle = P(0)$$
?

Même question dans $\mathbb{R}_n[X]$.

4 Soit E un espace préhilbertien complexe. Soit $f \in \mathcal{L}(E)$ tel que

$$\forall x \in E \qquad f(x) \perp x$$

Montrer que

$$\forall x, y \in \mathbf{E} \qquad \langle f(x) \mid y \rangle = 0$$

et en déduire que f = 0. A-t-on la même conclusion si E est préhilbertien réel?

Remarque: Dans la suite, lorsque rien n'est précisé, on travaille dans un espace vectoriel euclidien $E \neq \{0\}$. La lettre n désigne un entier non nul.

- **5** Pour s'amuser avec le vocabulaire.
- 1. Une projection orthogonale est un endomorphisme orthogonal. Vrai ou faux?
- 2. Une projection est symétrique. Vrai ou faux?
- 3. Une symétrie est symétrique. Vrai ou faux?
- 4. Quels sont les endomorphismes orthogonaux symétriques?
- 5. Quels sont les endomorphismes orthogonaux diagonalisables?
- **6** Diagonaliser en base orthonormée, dans \mathbb{R}^3 , les matrices

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{bmatrix} \qquad \frac{1}{9} \begin{bmatrix} 23 & 2 & -4 \\ 2 & 26 & 2 \\ -4 & 2 & 23 \end{bmatrix}$$

7 On munit $M_n(\mathbb{R})$ du produit scalaire $\langle | \rangle : (A, B) \longrightarrow Tr({}^tAB)$. On fixe $P \in GL_n(\mathbb{R})$ et $A \in M_n(\mathbb{R})$. Trouver les adjoints des deux endomorphismes suivants :

$$M \longrightarrow PMP^{-1}$$
 $M \longmapsto AM - MA$

- Soit $A \in S_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Montrer que A = 0
- **9** Soit $A \in S_n(\mathbb{R})$. On suppose qu'il existe $k \in \mathbb{N}^*$, tel que $A^k = I_n$. Que peut-on en déduire sur A?
- Trouver toutes les matrices $M \in M_n(\mathbb{R})$ telles que $M({}^tMM)^2 = I_n$.
- 11 Soient p et q des projecteurs orthogonaux. Montrer : $qp = 0 \iff pq = 0$.
- **12** Soit $u \in \mathcal{L}(E)$. Déterminer $\operatorname{Ker} u^*$, $\operatorname{Im} u^*$ en fonction de $\operatorname{Ker} u$ et $\operatorname{Im} u$. Déterminer $\operatorname{Ker}(u^*u)$ et $\operatorname{Im}(u^*u)$ en fonction des noyaux et images de u et u^* .
- Soit $u \in \mathcal{L}(E)$. Montrer que les assertions suivantes sont équivalentes :
- 1. $u^* = -u$ (on dit que u est antisymétrique);
- 2. Dans toute base orthonormée, la matrice de u est antisymétrique;
- 3. $\forall x \in E \quad \langle ux \mid x \rangle = 0$.

Supposons u antisymétrique. Prouver que (Ker u)° = Im u et les valeurs propres de u^2 sont négatives. À quelle condition u est-il diagonalisable?

14 Soit $u \in \mathcal{L}(E)$ tel que $u u^* u = u$. On note $A = \{x \in E \mid ||ux|| = ||x||\}$. Prouver que

$$A = Ker(u^*u - id_E)$$
 et $A \perp Ker u$

Soient f et g deux endomorphismes autoadjoints. Prouver que les assertions suivantes sont équivalentes :

- 1. fg est autoadjoint;
- 2. fg = gf;
- 3. *f* et *g* sont diagonalisables dans une même base orthonormée.

16 Endomorphismes positifs Si $u \in \mathcal{L}(E)$, on dit que

- u est positif si, et seulement si, u est autoadjoint et $\forall x \in E \ \langle ux \mid x \rangle \geqslant 0$. L'ensemble des endomorphismes positifs est noté $\mathscr{S}^+(E)$.
- u est défini positif si, et seulement si, u est autoadjoint et $\forall x \in E \ \langle ux \mid x \rangle > 0$. L'ensemble des endomorphismes définis positifs est noté $\mathscr{S}^{++}(E)$.
- 1. Caractériser le fait d'être positif ou défini positif à l'aide des valeurs propres.
- 2. Soit $u \in \mathcal{S}^+(E)$. Prouver qu'il existe un unique $v \in \mathcal{S}^+$ tel que $u = v^2$.
- 3. Application 1 : Soient $u \in \mathcal{S}^{++}(E)$, et $v \in \mathcal{S}^{+}(E)$. Montrer que uv est diagonalisable et que ses valeurs propres sont positives.
- 4. Application 2 : Soit $u \in \mathcal{GL}(E)$. Montrer qu'il existe ω orthogonal et s défini positif, uniques, tels que $u = \omega s$. C'est ce qu'on appelle la *décomposition polaire de u*.

Endomorphismes normaux réels On dit qu'un endomorphisme de E est normal si, et seulement si, il commute avec son adjoint.

- 1. Trouver les endomorphismes normaux nilpotents de E.
- 2. Montrer qu'un projecteur est normal si, et seulement si, il est orthogonal.
- 3. Soit $u \in \mathcal{L}(E)$, normal. Montrer qu'il est diagonalisable si, et seulement si, χ_u est scindé.
- 4. On suppose ici que E est de dimension 2. Montrer que $u \in \mathcal{L}(E)$ est normal si, et seulement si, dans une base orthonormée, la matrice de u est de la forme

$$\begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \quad \text{avec} \quad \alpha, \beta \in \mathbb{R}$$
 (*)

- 5. Soit $u \in \mathcal{L}(E)$, normal.
 - (a) Prouver que $u+u^*$ et u^*u sont autoadjoints et commutent. En déduire qu'ils ont un vecteur propre commun, noté x.
 - (b) Prouver que Vect (x, u(x)) est de dimension 1 ou 2, stable par u et u^* .
- 6. Conclusion : Montrer que $u \in \mathcal{L}(E)$ est normal si, et seulement si, il existe une base orthonormée de E dans laquelle la matrice de u est diagonale par blocs, avec sur la diagonale uniquement des blocs 1×1 , ou des blocs 2×2 de la forme (\star) .

Soit $u \in \mathcal{L}(E)$, autoadjoint. Pour tout sous-espace F, on note $\mathcal{S}_F = \{x \in F \mid ||x|| = 1\}$ la sphère de rayon 1 dans F.

- 1. Montrer que $x \mapsto \langle ux \mid x \rangle$ a un minimum et un maximum sur \mathscr{S}_E . Les exprimer en fonction des valeurs propres de u.
- 2. En déduire que, si F est un sous-espace de E, alors $x \mapsto \langle ux \mid x \rangle$ a un minimum et un maximum sur \mathscr{S}_{F} .

Indication: Introduire la projection orthogonale sur F.

19 Théorème du Minimax On note $n = \dim E$. Soit $f \in \mathcal{L}(E)$, autoadjoint. On note ses valeurs propres $\lambda_1, \ldots, \lambda_n$ (comptées avec multiplicités) et on suppose qu'elles sont ordonnées :

$$\forall k \in [[1; n-1]] \quad \lambda_k \leq \lambda_{k+1}$$

D'après le théorème spectral, on peut trouver une base orthonormée $(e_1, ..., e_n)$ de E, telle que chaque e_k est vecteur propre de f pour λ_k .

1. Soit $k \in [[1; n]]$; on note $E_k = \text{Vect}(e_1, ..., e_k)$ et $F_k = \text{Vect}(e_k, ..., e_n)$.

$$\lambda_k = \max_{\substack{x \in \mathcal{E}_k \\ \|x\| = 1}} \langle f(x) \mid x \rangle = \min_{\substack{x \in \mathcal{F}_k \\ \|x\| = 1}} \langle f(x) \mid x \rangle$$

2. On pose $\forall k \in [[1; n]]$ $\mathscr{A}_k = \{F \text{ s.e.v. de } E \mid \dim F = k\}$

Prouver
$$\forall k \in [[1; n]]$$

$$\underset{F \in \mathscr{A}_k}{\text{Min}} \left[\underset{\substack{x \in F \\ \|x\|=1}}{\text{Max}} \langle f(x) \mid x \rangle \right] = \underset{F \in \mathscr{A}_{n+1-k}}{\text{Max}} \left[\underset{\substack{x \in F \\ \|x\|=1}}{\text{Min}} \langle f(x) \mid x \rangle \right] = \lambda_k$$

Indication : Si $F \in \mathcal{A}_k$, alors $F \cap F_k \neq \{0\}$; si $F \in \mathcal{A}_{n+1-k}$, alors $F \cap E_k \neq \{0\}$.

20 Théorème d'entrelacement de Cauchy Soit $f \in \mathcal{L}(E)$, autoadjoint. Ses valeurs propres (comptées avec multiplicités) sont notées $\lambda_1 \leq \cdots \leq \lambda_n$.

Soient G un hyperplan de E et p la projection orthogonale sur G. Alors G est stable par pf, et on note g l'endomorphisme induit.

- 1. Montrer que g est autoadjoint. On note $\lambda_1' \leqslant \cdots \leqslant \lambda_{n-1}'$ ses valeurs propres (comptées avec multiplicités).
- 2. En utilisant le théorème du Minimax, montrer que

$$\forall k \in [[1; n-1]]$$
 $\lambda_k \leqslant \lambda'_k \leqslant \lambda_{k+1}$

On dit que les valeurs propres de f et g sont entrelacées, c'est-à-dire qu'entre deux valeurs propres consécutives de f, on trouve une valeur propre de g:

$$\lambda_1 \leqslant \lambda_1' \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{n-1} \leqslant \lambda_{n-1}' \leqslant \lambda_n$$

Mathématiques Spéciales Espaces Préhilbertiens

Vocabulaire

Français	中文
Espace préhilbertien	准希尔伯特空间
Forme bilinéaire	双线性型
Forme bilinéaire symétrique	双线性对称型
Forme non dégénérée	非退化线性型
Norme	范数
Homogène	齐次的
Inégalité triangulaire	三角不等式
Espace vectoriel normé	赋范线性空间
Topologie	拓扑
Produit scalaire (réel, complexe)	(实、复)的内积、(实、复)的数量积、点乘
Norme euclidienne	欧式范数
Application semi-linéaire	半线性映射、共轭线性映射
Symétrie hermitienne	埃尔米特对称
Norme hermitienne	埃尔米特范数
Orthogonal	正交
Famille orthogonale	正交族
Orthonormé	标准正交、正交规范
Théorème de Pythagore	毕达哥拉斯定理
Algorithme de Schmidt	施密特算法
Automorphisme orthogonal	正交自同构
Groupe orthogonal	正交群
Groupe unitaire	酉矩阵、幺正矩阵
Adjoint d'un endomorphisme	子同态的伴随
Autoadjoint	自伴的
Normal	正规的
Théorème spectral (réel)	(实的)谱定理
Projecteur orthogonal	正交投影
Symétrie orthogonale	正交对称