Misure di focali

Sommario

Lo scopo dell'esperienza è la misura delle focali di una lente convergente ed di una divergente.

MATERIALE A DISPOSIZIONE

- Banco ottico con sorgente luminosa, schermo mobile e supporti per lenti;
- cofanetto con un *set* di lenti (convergenti e divergenti) di varie lunghezze focali;
- metro a nastro (risoluzione 1 mm).

Misure da effettuare ed analisi

Per la legge delle lenti sottili, detta p la distanza tra la sorgente e la lente e q la distanza tra la lente e l'immagine (a fuoco) si ha

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f},\tag{1}$$

dove f è la distanza focale della lente.

Lente convergente

FIGURA 1: Schema ottico per la lente convergente.

Si scelga una lente convergente dal cofanetto e si ponga sul banco ottico. Fissata una distanza p_i della lente dalla sorgente si sposti lo schermo fino a che l'immagine non è a fuoco, e si misuri la corrispondente distanza q_i . Si iteri il procedimento più volte (ad esempio 10), si costruisca il grafico cartesiano di $(1/p_i,\ 1/q_i)$ e si esegua un fit lineare per determinare il potere diottrico della lente, che corrisponde all'intercetta.

La misura della focale ottenuta è compatibile con il valore riportato sul bordo della lente?

Si verifichi che il coefficiente angolare restituito dal fit sia compatibile con -1. Se ciò non fosse verificato, a cosa potremmo ascrivere la discrepanza?

LENTE DIVERGENTE

Dato che la lente divergente non forma immagini reali, per questa misura occorre anche una lente convergente di potere diottrico maggiore (in modulo) rispetto a quello

della divergente. Possiamo considerare l'immagine prodotta dalla lente convergente come una sorgente virtuale per la lente divergente.

FIGURA 2: Schema ottico per la lente divergente. Notare che la sorgente per la lente divergente è virtuale.

In pratica: si ponga la lente convergente sul banco ottico e si metta a fuoco l'immagine sullo schermo. A questo punto si posizioni la lente divergente tra la convergente e lo schermo e si misuri la distanza p_i (da prendere con il segno negativo) tra la divergente e lo schermo stesso. Si allontani lo schermo in modo da rimettere a fuoco l'immagine e si misuri la nuova distanza q_i (questa volta positiva) tra la divergente e lo schermo. Come nel caso precedente, si iteri il procedimento più volte (ad esempio 10) e si stimi il potere diottrico tramite un fit lineare.

Considerazioni pratiche

Quando si misura la distanza tra una lente ed una sorgente, potrebbe non essere sufficiente prendere come errore la risoluzione del metro a nastro, in quanto la posizione della lente nella ghiera di montaggio non è ben definita. In altre parole la lente non è molto più sottile (e nemmeno più sottile) della risoluzione del metro a nastro.

Quando si misura la distanza tra la lente e l'immagine, il contributo maggiore all'errore di misura potrebbe essere dovuto alla messa a fuoco—può capitare che l'immagine appaia a fuoco su un intervallo molto più grande del mm di risoluzione del metro a nastro.