Metrické prostory

Úvod. Metrický prostor je matematická struktura, pomocí které lze formálním způsobem definovat pojem vzdálenosti. Na metrických prostorech se poté definují další topologické vlastnosti jako např. otevřenost a uzavřenost množin, jejichž zobecnění pak vede na ještě abstraktnější matematický pojem topologického prostoru (každý metrický prostor je současně topologickým prostorem).

Poznámka. Maurice Fréchet zavedl pojem metrického prostoru ve své práci Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo 22 (1906) 1–74.

Definice. Metrickým prostorem nazýváme dvojici (P, ρ) , kde P je libovolná neprázdná množina a zobrazení $\rho: P \times P \to \mathbb{R}^+_0$ splňuje pro každé $x, y, z \in P$ následující tři axiomy:

- (M1) $\rho(x,y) = 0$ právě když x = y axiom totožnosti
- (M2) $\rho(x,y) = \rho(y,x)$ axiom symetrie
- (M3) $\rho(x,y) + \rho(y,z) \ge \rho(x,z)$ trojúhelníková nerovnost.

Zobrazení ρ nazýváme metrikou na P, prvky množiny P obvykle nazýváme body prostoru (P,ρ) , číslo $\rho(x,y)$ nazýváme vzdálenosti bodů x,y v prostoru (P,ρ) .

Cvičení. Dokažte, že z vlastností (M1)–(M3) plyne, že ρ je nezáporná funkce. Začněte

$$2\rho(x,y) = \rho(x,y) + \rho(x,y) = \dots$$

a postupně použijte vlastnosti (M2), (M3), (M1).

Příklady metrických prostorů.

1. Diskrétní metrický prostor

$$P \neq \emptyset$$
 libovolná množina, $\rho(x,y) = \left\{ \begin{array}{ll} 0, & x = y \\ 1, & x \neq y \end{array} \right.$

2. Metrika na R

$$P = \mathbb{R}, \ \rho(x, y) = |x - y|.$$

3. Metriky na \mathbb{R}^n

$$P = \mathbb{R}^n, \ x = [x_1, x_2, \dots, x_n], \ y = [y_1, y_2, \dots, y_n] \in \mathbb{R}^n$$

$$\rho_2(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
 euklidovská metrika
$$\rho_1(x, y) = \sum_{i=1}^n |x_i - y_i|$$
 součtová (taxikářská) metrika
$$\rho_\infty(x, y) = \max\{|x_i - y_i| : i = 1, 2, \dots, n\}$$
 maximální metrika

4. Metriky na množině spojitých funkcí

Buď
$$P=C[a,b]$$
 množina reálných funkcí spojitých na intervalu $[a,b]\subseteq\mathbb{R}$. Pro $f,g\in C[a,b]$ definujeme $\rho_C(f,g)=\max\{|f(x)-g(x)|:x\in[a,b]\}$ metrika stejnoměrné konvergence $\rho_I(f,g)=\int_a^b|f(x)-g(x)|dx$ integrální metrika

5. Metrika na prostoru ohraničených posloupností

Nechť
$$P = l_{\infty}$$
 je množina ohraničených posloupností reálných čísel. Pro $x = \{x_n\}_{n=1}^{\infty}, y = \{y_n\}_{n=1}^{\infty} \in l_{\infty}$ definujeme $\rho(x,y) = \sup_{k \in \mathbb{N}} |x_k - y_k|$.

6. Metrika na kružnici

Nechť
$$P$$
 je jednotková kružnice v rovině a pro $x=[x_1,x_2],y=[y_1,y_2]\in P$ (tj. $x_1^2+x_2^2=y_1^2+y_2^2=1$) definujme $\rho(x,y)$ jako délku kratšího z oblouků kružnice mezi body x,y .

7. Sférická metrika

Buď $P=\{[x,y,z]\in\mathbb{R}^3: x^2+y^2+z^2=1\}$ jednotková sféra v \mathbb{R}^3 . Nechť $a,b\in P$ jsou dva body na sféře a $\varphi\in[0,\pi]$ je úhel, který svírají úsečky spojující oba body se středem sféry P, jímž je počátek souřadnic. Funkce $\rho(a,b)=\varphi$ je tzv. sférická metrika. Je to délka kratšího z oblouků, na něž oba body dělí hlavní kružnici na P, která jimi prochází.

8. Metrika na grafu

Buď P souvislý graf G = (V, E) s množinou vrcholů V, $\rho(u, v) =$ počet hran na (nějaké) nejkratší cestě v G spojující vrcholy u a v.

1

9. Metrika na množině slov

Nechť P je množina všech slov skládajících se z n písmen ($n \in \mathbb{N}$ a k tomu, zda dané slovo má, nebo nemá význam v českém jazyce, nepřihlížíme). Vzdáleností dvou slov A, B je počet pozic, na kterých mají tato slova různá písmena. Např. pro n=5 je $\rho(\text{mladý}, \text{mladá})=1$, $\rho(\text{mladý}, \text{slabý})=2$ atd. Metriky tohoto typu na množině n-tic nějakých prvků mají široké použití v chemii a biologii.

Poznámka. Metrika na dané množině P je tedy definována axiomaticky — je to libovolná nezáporná funkce na kartézském součinu $P \times P$ splňující axiomy (M1)–(M3), přičemž, jak jsme viděli v předchozích příkladech, množina P může být libovolná neprázdná množina. Jako u každé axiomatické definice je třeba ukázat, že tato definice je korektní, tj. systém axiomů je nezávislý a bezesporný. Bezespornost axiomů (tj. skutečnost, že platnost některých dvou z axiomů (M1)–(M3) nevylučuje platnost třetího) jsme již ukázali předchozími příklady. Nezávislost axiomů (tj. skutečnost, že z platnosti některých dvou neplyne třetí) lze rovněž dokázat konstrukcí vhodných příkladů, viz například následující cvičení, část (e)).

Cvičení.

- (a) Dokažte platnost axiomů (M1)–(M3) u součtové a maximální metriky v \mathbb{R}^n .
- (b) Určete vzdálenost bodů x = [1, 1] a y = [3, 2] v součtové, euklidovské a maximální metrice.
- (c) Pro $i = 1, 2, \infty$ načrtněte v rovině "jednotkové kružnice" $\mathcal{K}_i = \{[x, y] \in \mathbb{R}^2 : \rho_i([x, y], [0, 0]) = 1\}.$
- (d) Na reálném intervalu [0,1] určete vzdálenost funkcí $f(x) = e^x$, $g(x) = \frac{x}{3}$ v metrice ρ_C a ρ_I .
- (e) Na kartézském čtverci tříprvkové množiny $P = \{a, b, c\}$ definujte nezáporné reálné funkce d_1, d_2, d_3 tak, aby byly vždy splněny pouze dvě z podmínek (M1)–(M3) a třetí nikoliv.
- (f) Příklad o úsečkách. Ukažme, že ne vše v metrických prostorech funguje tak, jak bychom očekávali. Například bychom mohli očekávat nějaké nejkratší spojnice dvou bodů, které bychom nazývali úsečky. Precizněji, úsečkou v metrickém prostoru (P,ρ) spojující body $x,y\in P$ by mohla být množina bodů $z\in P$ takových, že $\rho(x,z)+\rho(z,y)=\rho(x,y)$ (tedy ani trochu si nezajdeme tím, že půjdeme přes bod z). Střed úsečky by potom byl bod, ze kterého je to stejně daleko do x jako do y, tj. bod s splňující $\rho(x,s)=\rho(y,s)=\frac{\rho(x,y)}{2}$. Uveďte jednoduché příklady metrických prostorů, kde
 - (i) úsečka může mít nekonečně mnoho středů
 - (ii) úsečka vůbec střed nemá.
- (g*) Dokažte, že stereografická projekce je metrikou.

Jak lze z jednoho metrického prostoru dostat mnoho jiných? Myšlenka je velmi jednoduchá: nějaké body zapomeneme a máme stále metrický prostor. Přesněji, máme-li metrický prostor (P, ρ) a A podmnožinu P. Označme σ restrikci ρ na $A \times A$, potom (A, σ) je metrický prostor, který se nazývá podprostorem prostoru (P, ρ) . Jelikož se funkce σ na svém definičním oboru shoduje s ρ , budeme často trochu nepřesně psát jen (A, ρ) namísto (A, σ) . Například jako podprostory (\mathbb{R}^2, ρ_2) dostáváme prostory (\mathbb{Q}^2, ρ_2) a dvoubodový prostor, jehož dva různé body mají vzdálenost 1.

Definice. Nechť (P, ρ) je metrický prostor, $A \subseteq P$. Definujme na množině A metriku σ takto: $\forall x, y \in A : \sigma(x, y) = \rho(x, y)$. Řekneme, že metrický prostor (A, σ) je vnořen do prostoru (P, ρ) a metrika σ je indukována metrikou ρ .

Příklad. Uvažujeme-li $\mathbb R$ jako podmnožinu $\mathbb R^2$ (tj. reálná čísla ztotožníme s dvojicemi reálných čísel tvaru [a,0]), pak každá z metrik $\rho_1,\,\rho_2,\,\rho_\infty$ na $\mathbb R^2$ indukuje euklidovskou metriku na $\mathbb R$.

Definice. Nechť (P, ρ) je metrický prostor. Pro $\emptyset \neq A, B \subseteq P$ definujeme

$$\rho(A, B) = \inf\{\rho(x, y); x \in A, y \in B\}$$

$$d(A) = \sup\{\rho(x, y); x, y \in A\}.$$

Pokud není množina $\{\rho(x,y); x,y\in A\}$ shora ohraničená, klademe $d(A)=\infty$. Číslo $\rho(A,B)$ se nazývá vzdálenost množin A,B, číslo d(A) se nazývá průměr množiny A. Je-li $b\in P$, definujeme vzdálenost bodu b od množiny A vztahem

$$\rho(b, A) = \rho(\{b\}, A).$$

Množina $A \subseteq P$ se nazývá omezená nebo také ohraničená, jestliže $d(A) < \infty$.

Cvičení.

- (a) Určete vzdálenost bodu A = [0, 1] od přímky y = -x v součtové, euklidovské a maximální metrice.
- (b) Určete vzdálenost přímky $y=c, c \leq 0$, od paraboly $y=x^2-2x+1$ v metrikách $\rho_1, \rho_2, \rho_\infty$.
- (c) Určete vzdálenost bodu A = [6, 6] a bodu B = [3, 6] od kružnice $x^2 + y^2 = 25$ v součtové metrice ρ_1 .
- (d*) Nechť $A = \{f(x) = x^n; x \in [0,1], n \in \mathbb{N}\} \subseteq C[0,1]$. Určete d(A) v metrice ρ_C a v metrice ρ_I .

Jednoduchým příkladem zobrazení probíraným ve středoškolské matematice, je zobrazení mezi euklidovskými prostory zachovávající vzdálenost bodů. Uveďme jeho definici pro libovolné metrické prostory.

Definice. Nechť (P_1, ρ_1) , (P_2, ρ_2) jsou metrické prostory. Zobrazení $f: P_1 \to P_2$ se nazývá *izometrické*, jestliže pro každé $x, y \in P_1$ je

$$\rho_2(f(x), f(y)) = \rho_1(x, y).$$

Poznámka. Izometrické zobrazení je injektivní. Je-li surjektivní, existuje k němu inverzní zobrazení definované na P_2 , které je rovněž izometrické. Proto lze pomocí izometrických zobrazení objekty zkonstruované v jedné metrice přenášet do druhé metriky.

Příklad. Shodná zobrazení $\mathbb{E}^2 \to \mathbb{E}^2$ (posunutí, osová souměrnost, středová souměrnost, otočení), která známe ze středoškolské geometrie, jsou izometrická zobrazení z $\mathbb{E}^2 \to \mathbb{E}^2$.

Cvičení.

- (a) Nechť P = C[-1,1] a nechť $F: P \to P$ je pro $f \in C[-1,1]$ definováno předpisem F(f(x)) = f(-x). Dokažte, že F je izometrické zobrazení P do sebe jak v metrice ρ_C , tak i v metrice ρ_I .
- (b*) Nechť P je množina všech čtvercových matic stupně 2 majících nuly na hlavní diagonále. Pro

$$A = \left(\begin{array}{cc} 0 & a_1 \\ a_2 & 0 \end{array}\right), \quad B = \left(\begin{array}{cc} 0 & b_1 \\ b_2 & 0 \end{array}\right)$$

definujeme

$$\rho(A,B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}.$$

Ověřte, že (P,ρ) je metrický prostor. Poté dokažte, že je-li $\varphi\in\mathbb{R}$ a definujeme-li zobrazení $T_{\varphi}:P\to\mathbb{E}^2$ takto:

$$A = \begin{pmatrix} 0 & a_1 \\ a_2 & 0 \end{pmatrix} \mapsto [a_1 \cos \varphi + a_2 \sin \varphi, -a_1 \sin \varphi + a_2 \cos \varphi],$$

pak je T_{φ} izometrické zobrazení.

Dále zobecníme pojem koule (kruhu) v metrických prostorech a zjistíme, že můžeme dostat zajímavé útvary. V eukleidovském prostoru se kruh (koule) se středem S a poloměrem r obvykle definuje jako množina všech bodů, které mají od bodu S vzdálenost nejvýše (méně než) r. Proč tuto definici nepoužít pro metrické prostory?

Definice. Nechť (P, ρ) je metrický prostor. *Koulí* se středem x a poloměrem r budeme rozumět množinu $B_{\rho}(x, r) = \{y \in P; \rho(x, y) < r\}$. *Uzavřenou koulí* je množina $B_{\rho}^{u}(x, r) = \{y \in P; \rho(x, y) \leq r\}$.

Cvičení.

- (a) Načrtněte v \mathbb{R}^2 obrázky uzavřených koulí se středem v počátku a poloměrem 1 a to v eukleidovské, součtové a maximální metrice.
- (b) Navrhněte, jak v metrickém prostoru (P, ρ) definovat omezenou (neboli ohraničenou) množinu $A \subseteq P$ pomocí pojmu koule.

Dále zavedeme dvě významné podmnožiny metrických prostorů, které se nazývají otevřené a uzavřené. Tyto množiny mají klíčový význam v matematické disciplíně, která se nazývá topologie.

Definice. Nechť (P, ρ) je metrický prostor.

- 1. Množinu $G \subseteq P$ nazveme $otev \check{r}enou$, právě když ke každému bodu $x \in G$ existuje nějaká koule B v prostoru P obsahující bod x, která je celá obsažena v G.
- 2. Množinu F nazveme *uzavřenou*, právě když je množina $X \setminus F$ otevřená.

Příklady.

- (a) Koule jsou podle předchozí definice otevřené množiny.
- (b) Prázdná množina a celý prostor jsou vždy otevřené i uzavřené množiny.
- (c) Každá jednobodová podmnožina P je uzavřená.

Cvičení.

- (a) Dokažte, že uzavřená koule je uzavřená množina.
- (b) Dokažte, že sjednocení libovolného počtu (i nekonečného) otevřených množin je otevřená množina a průnik konečného počtu otevřených množin je otevřená množina.
- (c) Dokažte, že průnik konečného počtu uzavřených množin je uzavřená množina a průnik libovolného počtu uzavřených množin je uzavřená množina.

Z diferenciálního počtu funkcí jedné proměnné je známo (druhá Weierstrassova věta), že spojitá funkce f definovaná na uzavřeném intervalu [a,b] zde nabývá své nejmenší a největší hodnoty. Nechť nyní (P,ρ) je metrický prostor $A\subseteq P$ a $f:A\to\mathbb{E}^1$. Chtěli bychom najít podmínky na množinu A a zobrazení f, aby platilo obdobné tvrzení. Projdeme-li si důkaz druhé Weierstrassovy věty, zjistíme, že kromě spojitosti funkce f je nejdůležitejší skutečností fakt, že z každé posloupnosti bodů uzavřeného intervalu lze vybrat konvergentní podposloupnost (toto tvrzení je známo jako Bolzanova-Weierstrassova věta). Tímto je také motivována následující definice.

Definice. Metrický prostor (P, ρ) se nazývá kompaktní, jestliže z každé posloupnosti jeho bodů lze vybrat konvergentní podposloupnost. Množina $A \subseteq P$ se nazývá kompaktní, jestliže A s metrikou indukovanou metrikou ρ je kompaktní prostor, tj. z každé posloupnosti bodů množiny A lze vybrat podposloupnost mající v A limitu.

Věta. Nechť A je kompaktní množina v metrickém prostoru (P, ρ) . Pak A je uzavřená a ohraničená.

Věta. Nechť $A \subseteq \mathbb{E}^n$. Množina A je kompaktní, právě když je uzavřená a ohraničená.

Připomeňme, že reálná funkce f je spojitá v bodě x_0 , jestliže ke každému okolí V bodu $f(x_0)$ existuje okolí U bodu x_0 takové, že pro každé $x \in U$ platí $f(x) \in V$. Analogicky definujeme spojité zobrazení mezi libovolnými metrickými prostory.

Definice. Nechť (P, ρ) , (Q, σ) jsou metrické prostory a F je zobrazení z P do Q. Řekneme, že toto zobrazení je spojité v bodě x_0 , jestliže ke každému okolí V bodu $F(x_0)$ v Q existuje okolí U bodu x_0 v P takové, že $F(x) \in V$ pro každé $x \in U$. Řekneme, že F je spojité na P, je-li spojité v každém bodě P.

Následující věta je velmi důležitým nástrojem při vyšetřování spojitosti různých zobrazení mezi metrickými prostory a v literatuře se často objevuje jako definice spojitého zobrazení.

Věta. Nechť (P, ρ) , (Q, σ) jsou metrické prostory. Zobrazení $F: P \to Q$ je spojité v bodě $x_0 \in P$, právě když pro každou posloupnost bodů v P, pro niž $x_n \to_{\rho} x_0$, platí $F(x_n) \to_{\sigma} F(x_0)$.

Příklady na spojitost.

(a) Zobrazení F prostoru $(C[a,b], \rho_C)$ do \mathbb{E}^1 definované takto:

$$F(f) = f(\frac{a+b}{2}),$$

(tj. každé funkci spojité na intervalu [a,b] je přiřazeno reálné číslo rovné funkční hodnotě funkce ve středu intervalu [a,b]) je spojité.

(b)) Nechť (P, ρ) je metrický prostor, $a \in P$, $A \subseteq P$. Pak jsou zobrazení $f, g : P \to \mathbb{E}^1$ daná vztahy $f(x) = \rho(x, a)$, $g(x) = \rho(x, A)$ spojitá.

Cvičení.

(a) Nechť P je prostor komplexních čísel s obvyklou metrikou (tj. stejnou jako v \mathbb{E}^2). Rozhodněte, zda zobrazení $F(z) = |z|, G(z) = \overline{z}$ jsou spojitá.

- (b) Dokažte, že zobrazení $f: P \to Q$ je spojité, právě když pro každou otevřenou podmnožinu $A \subseteq Q$ je množina $f^{-1}(A) = \{x \in P; f(x) \in A\}$ otevřená v P. Může být slovo otevřená v tomto tvrzení nahrazeno slovem uzavřená?
- (c) Nechť (P,ρ) je metrický prostor a $f:P\to P$ je spojité zobrazení. Rozhodněte, zda zobrazení $F:P\to \mathbb{E}^1$ definované předpisem $F(x)=\rho(x,f(x))$ je spojité.

Věta. Nechť (P, ρ) a (Q, σ) jsou metrické prostory, $F: P \to Q$ je spojité zobrazení a $A \subseteq P$ je kompaktní. Pak F(A) je kompaktní v Q.

Poznámka. Jak jsme se již zmínili výše, jedním z nejdůležitejších výsledků teorie spojitých funkcí jedné proměnné jsou Weierstrassovy věty, jež říkají, že funkce, která je spojitá na uzavřeném intervalu, je na tomto intervalu ohraničená a nabývá zde své nejvetší a nejmenší hodnoty. Tyto věty jsou důsledkem předchozí věty týkající se zobrazení kompaktních metrických prostorů.

Věta. Metrický prostor (P, ρ) je kompaktní, právě když každé spojité zobrazení $F: P \to \mathbb{R}$ nabývá svého maxima. **Cvičení.**

- (a) Nechť A je kompaktní množina v metrickém prostoru (P,ρ) . Dokažte, že existují $a_1,a_2\in A$ taková, že $\rho(a_1,a_2)=\sup_{a,b\in P}\rho(a,b)=d(A)$.
- (b*) Mezi všemi trojúhelníky, které mají vrcholy na kružnici k lze najít trojúhelník s maximálním obsahem. Jak se přitom využije věta o kompaktnosti?

Poslední část věnujeme pojmu homeomorfní zobrazení.

Definice. Nechť (P, ρ) a (Q, σ) jsou metrické prostory a $f: P \to Q$ je bijekce. Zobrazení f se nazývá homeomorfní, jestliže zobrazení f i f^{-1} jsou spojitá. Existuje-li mezi dvěma metrickými prostory homeomorfní zobrazení, pak řekneme, že tyto prostory jsou homeomorfní.

Cvičení. Uveďte spojité zobrazení f, k němuž inverzní zobrazení f^{-1} spojité není.

Důležitost pojmu homeomorfního zobrazení v teorii metrických prostorů popisuje následující věta.

Věta. Nechť $f: P \to Q$ je homeomorfní zobrazení. Pak platí:

- (a) Množina $A \subseteq P$ je uzavřená v P, právě když množina f(A) je uzavřená v Q.
- (b) Množina $A \subseteq P$ je otevřená v P, právě když množina f(A) je otevřená v Q.

Příklady

- 1. Nechť P je množina všech funkcí tvaru $f(x) = x^n$, $n \in \mathbb{N}$ s metrikou $\rho(x^n, x^m) = |n m|$ a $Q = \mathbb{N}$ s metrikou indukovanou z \mathbb{E}^1 . Pak lze snadno oveřit, že $f: P \to \mathbb{N}$ definované předpisem $f(x^n) = n$ je homeomorfní zobrazení z P na Q.
- 2. Nechť P je kulová plocha bez severního pólu. Pak P je homeomorfní s \mathbb{E}^2 , přičemž homeomorfním zobrazením mezi těmito prostory je stereografická projekce. Spojitost stereografické projekce a k ní inverzního zobrazení plyne z explicitního předpisu pro toto zobrazení.

Cvičení.

- 1. Dokažte, že každé izometrické zobrazení je homeomorfní.
- 2. Dokažte, že metriky ρ_1, ρ_2 na množině P jsou ekvivalentní, právě když metrické prostory (P, ρ_1) a (P, ρ_2) jsou homeomorfní.

Literatura.

- Z. Došlá, O. Došlý: Metrické prostory (teorie a příklady). Brno, 2006. Dostupné [22. 10. 2018] na https://is.muni.cz/th/jcomj/cd-priloha/skripta/mp/metricke-prostory-pro-obrazovku.pdf?so=nx
- Seriál o metrických prostorech. Dostupné [22. 10. 2018] na https://mks.mff.cuni.cz/archive/25/9.pdf