README.md 2024-02-27

This build process needs a better way to check for errors in the build.

Linear Slider Drivers

This is a package that includes the hardware description, hardware interface, and controller interface for the linear slider.

Running the linear slider

Simulation

Gazebo

Real-world

Actual hardware

Package Contents

linear_slider_bringup: Launches all of the interfaces.

linear_slider_controllers: Manages the control node for interfacing with ROS2.

linear_slider_description: Defines the geometry and links in a URDF file. Also specifies controller interfaces through <ros2_control> tag.

linear_slider_hardware_interface: Defines the hardware and controller interfaces for the linear slider

Testing the linear slider

Each of the packages has a set of launch files that help guide the creation of your drivers. A brief description of each of the test files is below:

- linear_slider_description/launch/view_robot.launch.py -- Spawns a joint_state_publisher_gui window, allowing the user to monitor the URDF's build process.
- 2. 'linear_slider_bringup/launch/linear_slider.launch.py-- Spawns the/controller_manager` node, allowing the activation of various controller libraries. This also links the controller interface to the hardware interface.

Linear Slider Description:

Default state interface values can be found in

linear_slider_description/config/initial_state.yaml.

Under the <ros2_control> tag, there are two ros2_control hardware interface types, **Joints** and **Sensors**. The <joint> tag defines the state and command interfaces for the controllers defined in linear_slider_bringup/config/linear_slider_controllers.yaml.

README.md 2024-02-27

Hardware Interface

This package defines the UDP communication with the external microcontroller, and presents a custom LinearSliderHardware class to store the state of the system. The class also translates the rpm of the motor the the horizontal distance of the moving_base and vice versa. The class is an attribute within the high-level LinearSliderSystemInterface class.

This high-level class inherits the boiler-plate ros2_control hardware_interface::SystemInterface class, where several class methods must be overwritten:

- on_init(): runs at the startup, reads parameters, allocates memory, etc. Hardware enters unconfigured state.
- on_configure(): Establish comms. Takes us to the inactive state
- on_activate(): Engage actuators. Takes us to the active state. Here, we can send read/write commands.
- on_deactivate(): Disengage actuators. Takes us back to the inactive state.
- on_cleanup(): Takes us from the inactive state to the unconfigured state, disabling comms.
- on_shutdown(): Shuts down the whole thing (gracefully).
- read(): Read the value from the external device.
- write(): Write a value to the external device.

These methods provide us with a simple way to engage, communicate, and disengate with our external hardware. Much of the functionality takes place within the read and write methods. The values are stored in LinearSliderSystemInterface::linear_slider_ and eventually published to the /joint_states topic.

Linear Slider Description: Defines the physical robot. This includes STL meshes, URDF and SRDF files, MoveIt configurations, etc.

Things to look at:

https://control.ros.org/master/doc/gazebo_ros2_control/doc/index.html