

An interactive Python notebook as an educational tool for neuromuscular control

Ricardo G. Molinari^{1*} and Leonardo A. Elias ^{1,2}

1. Neural Engineering Research Laboratory, Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil

2. Center for Biomedical Engineering, University of Campinas, Campinas, Brazil

e-mail: molinari@gmail.com

1. Introduction

- We developed an interactive Python notebook for the use as a learning and research tool of mechanisms underlying muscle force control;
- The notebook was designed in **Jupyter** using the **Python** programming language.

2. Methods

- Two basic neuromuscular structures were included: the spinal cord and the muscle;
- The spinal cord structure is composed by a motorneuron pool model, which is excited by the common drive and generates the neural command;
- The muscle structure includes two models: electromyogram (EMG) and force generation.

Block diagram of the neuromuscular model

- The **neural command** was based on a phenomenological model, proposed by Fuglevand et al. (1993);
- Recruitment and rate coding were adopted to represent the activity of a population of spinal motor neurons;

- Discharge rate **variability** and **synchronization** (Yao et al., 2000) between motor neuron discharges was also represented in the model.
- Muscle **force** generated by each motor unit was represented as the impulse response of a second-order critically-damped system (Milner-Brown et al., 1973);

 Muscle force saturates (non-linear function) depending on motor unit firing rate.

 Motor unit action potentials (MUAPs) were represented as Hermite-Rodriguez functions (Lo Conte et al., 1994);

 Morphology of muscle cross-sectional area and the distribution of motor units within the cross section can be altered to represent specific muscle features;

• Amplitude and duration of MUAPs depend on the relative distance between surface electrode and motor units position.

3. Results

 All properties of the system can be easily modified to study how each element of the neuromuscular system influences force and EMG generation;

 Both time- and frequency-domain analyses of force and EMG were included in the notebook.

4. Conclusion

- Simulations performed with the notebook shows that **force-EMG** relation, **force variability**, and **EMG power spectrum** produced by the model match experimental outcomes from humans.
- The interactive notebook is freely available at <u>www.github.com/molinaris</u>.

5. Acknowledgements

- RGM was funded by an undergraduate scholarship (#1163636/2018-4) from CNPq (Brazilian NSF). Currently, he holds a master's scholarship (#132567/2019-9) from CNPq.
- LAE is funded by CNPq Grant (#409302/2016-3) and CNPq Research Productivity Fellowship (#312442/2017-3).

