Aula 4

Carlos Amaral Fonte: Cristiano Quevedo Andrea

UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica

Curitiba, Março de 2012.

Resumo

- Diagramas de Blocos
- 2 Movendo Blocos
- Simplificações
- Exercícios

- Um subsistema pode ser representado por um bloco com uma entrada, uma saída e uma função de transferência.
- Muitos sistemas são compostos por vários subsistemas, tais como ilustrado abaixo.

- Quando vários subsistemas são interconectados, necessitamos de mais elementos para o diagrama de Blocos, tais como junção de soma ou subtração, pontos de ramificação.
- Todos os componentes que formam um diagrama de blocos são ilustrados a seguir:

FORMA CASCATA

FORMA PARALELA

FORMA EM REALIMENTAÇÃO

Movendo Blocos

Movendo Blocos

Simplificações

Tabela 3-1 Regras da álgebra de blocos

	Diagramas de Blocos Originais	Diagramas de Blocos Equivalentes
1	AG - B	$ \begin{array}{c c} A & B \\ \hline B & AG - B \\ \hline G & B \end{array} $
2	$A \longrightarrow G$ AG AG	$\begin{array}{c c} A & & AG \\ \hline & G & & AG \\ \hline & G & & & & \\ \hline \end{array}$
3	$A \longrightarrow G \longrightarrow AG$	$\begin{array}{c c} A & & AG \\ \hline & AG & \hline & AG \\ \hline & AG & \hline & A \end{array}$
4	G_1 G_2 B	$A \longrightarrow \boxed{\frac{1}{G_2}} \longrightarrow \boxed{G_2} \longrightarrow \boxed{G_1} \longrightarrow B$
5	G_1 G_2 B	$A \longrightarrow G_1 \longrightarrow B$ $1 + G_1G_2 \longrightarrow B$

 Combinando blocos em cascata

 Deslocando para a frente um ponto de soma situado atrás de um bloco

 Deslocando para trás um ponto de derivação situado à frente de um bloco

$$X_1 \longrightarrow G \longrightarrow X_2 \longrightarrow$$

Simplifique o seguinte diagrama de blocos.

Resposta:

$$\begin{array}{c|c}
R(s) & G_3(s)G_2(s)G_1(s) & C(s) \\
\hline
1 + G_3(s)G_2(s)[H_1(s) - H_2(s) + H_3(s)] & C(s)
\end{array}$$
(c)

Encontre a função de transferência C(s)/R(s) do seguinte circuito.

Resposta:

