

RDKit derived reaction labels for improved retrosynthetic route finding

Esben Jannik Bjerrum, Principal Scientist

RDKit UGM 2020

2020 may 29

Agenda

- Speeding up design-make-testanalyze cycles with machine learning
- Reaction prediction
- Retrosynthesis planning with MCTS tree search
- Policy model failures
- Artificial Labels and applicability filtering
- Slow combinations of template applications

Design-Make-Test-Analyse cycles in Drug Discovery (DMTA)

Multiple of DMTA cycles
4-6 weeks per cycle
Hand-overs between multiple labs

The challenge: Find ways to speed up and improve the process using AI

Drug Design

Molecular Al group provides tools for the projects:

What to make next?

De novo design

How to make it?

Retrosynthesis

RDKit UGM 2019: SMILES, RNNs and RDKit, - To the molecular universe and beyond

From Design to Compound: Make step

Different Objectives for Synthetis Prediction

Chemistry Reaction Data for the Data driven approach

Template Extraction – here from the USPTO dataset

RDChiral for template extraction and application https://github.com/connor coley/rdchiral

RDKit

The extracted template (R1)

Dataset	Size	Templates Extracted
Pistachio (incl. PGs)	6,839,427	308,951
USPTO 1976-2016	3,748,191	252,877
Reaxys	6,540,786	361 603
All Data	17 523 783	675 530

Template Extraction

Explicit Handling of Protection Groups increase template quality

Searching the tree of possible reaction routes

Monte Carlo Tree Search

	Chess	Go	Retrosynthesi
			S
Search Breadth	~35	~250	> 500,000
Search Depth	~80	~150	~12

Neural Network selects and prioritizes => More Manageable Problem

Alpha Go architecture

Results in Seconds to Minutes

Model: USPTO

Time taken: 3.26 s

$$\longrightarrow \bigoplus_{CH_3}^{CH_3} \xrightarrow{H} \bigoplus_{N_3 \subset C}^{CH_3} \longrightarrow \bigoplus_{H_3 \subset C}^{CH_3} \longrightarrow \bigoplus_{H$$

Making the tool available

Web-GUI based on MIT MLDPS consortium tools

Jupyter based GUI

The Value: Chemists can quickly get suggested routes/ideas to purchasable compounds.
Cheminformaticians can filter datasets into "synthesizable/not-synthasizable"

Scripting access via Python Objects

Open Sourced: https://github.com/MolecularAl/aizynthfinder

Genheden et al. AiZynthFinder: A Fast Robust and Flexible Open-Source Software for Retrosynthetic Planning. 2020. https://doi.org/10.26434/chemrxiv.12465371.v1.

An Issue: Policy suggested templates don't necessarily

work

Not applicable

Compound = Chem.MolFromSmiles('C=CCCCC[C@H](NC(=O)OC(C)(C)C)C(=O)O')

[C:3]-[O;H0;D2;+0:4]-[CH2;D2;+0:1]-[C:2])>>(Br-[CH2;D2;+0:1]-[C:2]).([C:3]-[OH;D1;+0:4]

 $\label{top_reaction} \begin{tabular}{ll} top_reaction = AllChem.ReactionFromSmarts(template_0.retro_template) \\ outcome = top_reaction.RunReactants([compound]) \\ outcome \end{tabular}$

 Neural network suggests templates

[C:3]-[O;H0;D2;+0:4]-[CH2;D2;+0:1]-[C;**D1;H3**:2])>>(I-[CH2;D2;+0:1]-[C;D1;H3:2]).([C:3]-[OH;D1;+0:4]

$$C:3$$
 $C:2$ $C:1$ $C:2$ $C:3$ $C:3$

top3_reaction = AllChem.ReactionFromSmarts(template_3.retro_template)
top3_reaction.RunReactants([compound])

()

Cummulative Applicability

Sometimes we need to try a lot to get 50 working templates for the tree-search!

RDKit derived artificial Labels for filter training

960 000 000 000 REACTION MATCHES

♥Scipy Sparse**♥**

Orders of magnitude more non-applicable than applicable

Filtering via second neural network

Recall must be high!

Recall = TP/P

Why does it work so suspiciously well?

- Noise-free artificial data
- Morgan fingerprints contain the relevant information
- Easy to rule out negatives (e.g. atomtype not found in template => non-applicable)

However, we do take a "slow" serial process on 150.000 templates (seconds) and turn it into a fast parallel process on the GPU (milliseconds)

Improved filtering of templates gives more solved routes

Long application times for some template-compound combinations

Examples of Filtered compounds

Example of slow templates

In-silico testing of the templates revealed some unusual templates

Conclusions

- Data driven retro-synthetic algorithms are performant
- Specialized neural networks can provide alternatives in single step predictions
- Policy networks gets many template suggestions wrong
- Calculation of artificial labels for training pre-filter networks can improve route search performance

Acknowledgements

Molecular Al group:

Ola Engkvist, Associate Director, Molecular Al Jiazhen He, post.doc. Molecular Al Amol Thakkar, Ph.D student, BIGCHEM Dean Sumner, Graduate Scientist, Graduate Programme Veronika Chadimova, Graduate Scientist, Graduate Programme

Samuel Genheden, Data Scientist/Software Engineer Atanas Patronov, Associate Principal Scientist Isabella Feierberg, Associate Principal Scientist Thierry Kogej, Associate Principal Scientist Preeti Lyer, Machine Learning and Cheminformatics Experts Christian Margreitter, Data Scientist Papadopoulos, Kostas, Associate Principal Scientist Lewis Mervin, Machine Learning and Cheminformatics Expert Christos Kannas Machine Learning/Cheminformatics Expert Alexey Voronov, Data Scientist/Software Engineer

Panagiotis-Christos Kotsias, Graduate Scientist, Graduate Programme
Josep Arus Pous, Ph.D student, BIGCHEM
Rocio Mercado, Post.doc
Tomas Bastys, Post.doc
Simon Johansson, Ph.D Student WASP
Hampus Gummesson Svensson, Ph.D Student WASP
Sebastian Nilsson, Master Student
Tobias Rastemo, Master Student
Emil Sandström, Master Student
Jonathan Sundkvist, Master Student
Huifang You, Master Student
Carl Blomgren, Master Student

Collaborators:

Prof. Dr. Jean-Louis Reymond · Dept. of Chemistry & Biochemistry University of Berne Christian Tyrchan, Team Leader - Computational Chemistry Boris Sattarov, Informatics Programmer, Science Data Software LLC

Hongming Chen, Professor, Centre of Chemistry and Chemical Biology, Guangzhou, China

Nidhal Selmi, Research Outsourcing Specialist, Hit Discovery Peter Varkonyi, Senior Research Scientist | Computational Chemistry

Questions

Toolkits – Source code - Links

ReInvent: https://github.com/MolecularAI/Reinvent

Molvecgen: https://github.com/Ebjerrum/molvecgen

Deep Drug Coder: https://github.com/pcko1/Deep-Drug-Coder

AiZynthFinder: https://github.com/MolecularAl/aizynthfinder

Blogposts: www.cheminformania.com

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com

