2.9. ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ ФУНКЦИОНИРОВАНИЯ ЭВМ

К технико-экономическим относятся такие показатели ЭВМ, которые характеризуют экономическую сторону разработки, производства, ввода в действие и эксплуатации машины как единого комплекса аппаратурно-программных средств. В данном параграфе будут введены стоимостные параметры, связанные с эксплуатацией ЭВМ, и цена операции, будет достаточно детально описан аналитический подход к технико-экономическому анализу функционирования машины; будет изучена взаимосвязь между надежностью и стоимостью ЭВМ.

2.9.1. Стоимость эксплуатации ЭВМ

Рассмотрим суммарные расходы V_1 , связанные с эксплуатацией ЭВМ в течение достаточно длительного времени T ;

$$V_1 = \sum_{i=1}^6 v_i,$$

где компоненты v_i определяются за время T , причем:

 v_1 — стоимость амортизации ЭВМ и вспомогательного оборудования к ней; $v_1 = kv$, v_- *цена машины* и вспомогательного оборудования к ней; k_- коэффициент амортизации;

 v_2 — стоимость содержания восстанавливающего устройства (бригады обслуживания);

 v_3 — стоимость запасных технических средств (материалов, деталей, приборов, интегральных схем и типовых элементов замены и т.п.), расходуемых при устранении отказов в ЭВМ;

 v_4 — стоимость вспомогательных средств (бумаги, картриджей, дискет, компактдисков и т.д.), необходимых для нормального функционирования ЭВМ;

 v_5 — стоимость электроэнергии, потребляемой при эксплуатации ЭВМ и вспомогательного оборудования;

 v_6 – накладные расходы (амортизация помещения и т.д.).

Величину T – часть времени T , использованную на решение задач, будем считать полезным временем эксплуатации ЭВМ.

Отношение $c_1^{'} = V_1/T$ будет себестоимостью единицы полезного времени при эксплуатации машины. Стоимостью эксплуатации (3BM) назовем

$$c_1 = (V_1 + V_2)/T, (2.27)$$

где $V_2 = v_7 + v_8$, v_7 — плановая прибыль от эксплуатации машины; v_8 — отчисления в фонд развития (т.е. на расширение аппаратурно-программного сервиса: приобретение и подключение новых технических средств, составление стандартных программ, разработку пакетов прикладных программ и языков программирования и т.д.) за время T .

Себестоимостью и стоимостью содержания восстанавливающего устройства в единицу времени будут величины:

$$c_2 = v_2 / \Gamma$$
; $c_2 = v_2 / T$. (2.28)

Стоимостью запасных технических средств, расходуемых при однократном восстановлении отказавшей ЭВМ, будет

$$c_3 = v_3(\lambda + \mu)(\mathsf{T}\,\lambda\mu)^{-1}$$
, (2.29)

где λ — интенсивность отказов ЭВМ; μ — интенсивность восстановления ЭВМ восстанавливающим устройством. В самом деле, среднее время между двумя восстановлениями ЭВМ равно $\lambda^{-1} + \mu^{-1} = (\lambda + \mu)(\lambda \mu)^{-1}$ и, следовательно, число восстановлений за время T составляет T $\lambda \mu (\lambda + \mu)^{-1} = l$. Тогда стоимость $c_3 = v_3/l$, что и доказывает справедливость (2.29).

Рассмотренные стоимостные параметры v, c_1, c_2, c_2 и c_3 будут использованы в последующем анализе технико-экономической эффективности функционирования ЭВМ.

2.9.2. Цена быстродействия ЭВМ

В отечественных и зарубежных исследованиях выявлен эмпирический закон, устанавливающий взаимосвязь между производительностью и стоимостью ЭВМ. Этот закон связывают с X. Грошем (Grosch's Law) и записывают в виде:

$$\omega = hv^a$$
,

где ω — показатель производительности машины (как правило, ω — номинальное быстродействие ЭВМ (2.5)); ν — цена машины; константа $a \ge 2$ и коэффициент h, имеющий размерность, зависят от технологии производства. Закон Гроша используется при оценке качества проектирования средств вычислительной техники. Следует заметить, что он имеет силу в ограниченном диапазоне производительности (до 10^8 опер./с), точнее, для вычислительных средств, структура которых близка к ЭВМ Дж. фон Неймана. При переходе к параллельным структурам вычислительных средств закон Гроша теряет силу.

Широкое распространение получила на практике количественная характеристика ЭВМ

$$\sigma = v/\omega$$
.

которую называют *ценой* (одной) *операции* (в секунду). Если в качестве ω берется не номинальное быстродействие (2.5), а среднее быстродействие (2.4), то величина σ называется *ценой быстродействия* ЭВМ.