Adaptive Methods for Optimization in Stochastic Environments

Xuedong Shang (xuedong.shang@inria.fr)
Supervised by Emilie Kaufmann and Michal Valko
Inria Lille, SequeL Team
February 2, 2018

CRISTAL & Inria Lille

Multi-armed Bandit

Multi-armed Bandit Game

• What is a MAB game?

Multi-armed Bandit Game

- · What is a MAB game?
- Objective: maximize the total reward

Source: Microsoft Research

- What we know: the number of arms K
- What we do not know: the reward distributions $(\nu_k)_{1 \leq k \leq K}$ of the arms

- What we know: the number of arms K
- What we do not know: the reward distributions $(\nu_k)_{1 \leq k \leq K}$ of the arms
- At time t, a player pulls one arm $k_t \in \{1, \dots, K\}$ and receives a reward $r_t \sim \nu_{k_t}$

- What we know: the number of arms K
- What we do not know: the reward distributions $(\nu_k)_{1 \leq k \leq K}$ of the arms
- At time t, a player pulls one arm $k_t \in \{1, \dots, K\}$ and receives a reward $r_t \sim \nu_{k_t}$
- A policy chooses one arm k_t to play

- What we know: the number of arms K
- What we do not know: the reward distributions $(\nu_k)_{1 \leq k \leq K}$ of the arms
- At time t, a player pulls one arm $k_t \in \{1, \dots, K\}$ and receives a reward $r_t \sim \nu_{k_t}$
- A policy chooses one arm k_t to play
- · We want to minimize the (cumulative) regret:

$$R_n = n\mu^* - \sum_{1 \le t \le n} \mu_{k_t}$$

- What we know: the number of arms K
- What we do not know: the reward distributions $(\nu_k)_{1 \le k \le K}$ of the arms
- At time t, a player pulls one arm $k_t \in \{1, \dots, K\}$ and receives a reward $r_t \sim \nu_{k_t}$
- A policy chooses one arm k_t to play
- · We want to minimize the (cumulative) regret:

$$R_n = n\mu^* - \sum_{1 \le t \le n} \mu_{k_t}$$

 However, this does not seem to be always the right way to base the strategies on in some scenarios...

- What we know: the budget *n*, the number of arms *K*
- What we do not know: the reward distributions $(\nu_k)_{1 \leq k \leq K}$ of the arms

- What we know: the budget n, the number of arms K
- What we do not know: the reward distributions $(\nu_k)_{1 \leq k \leq K}$ of the arms
- For each round $t=1,2,\cdots,n$, a player pulls one arm and receives a reward as before, but this time, the policy will output a recommendation j_n at the end of n rounds

- What we know: the budget n, the number of arms K
- What we do not know: the reward distributions $(\nu_k)_{1 \leq k \leq K}$ of the arms
- For each round $t=1,2,\cdots,n$, a player pulls one arm and receives a reward as before, but this time, the policy will output a recommendation j_n at the end of n rounds
- We want to minimize the (simple) regret:

$$S_n = \mu^* - \mu_{j_n}$$

- What we know: the budget n, the number of arms K
- What we do not know: the reward distributions $(\nu_k)_{1 \leq k \leq K}$ of the arms
- For each round $t=1,2,\cdots,n$, a player pulls one arm and receives a reward as before, but this time, the policy will output a recommendation j_n at the end of n rounds
- We want to minimize the (simple) regret:

$$S_n = \mu^* - \mu_{j_n}$$

Current State-of-the-Art

- Finitely-armed algorithms: Successive Reject [Audibert et al. 2010], Sequential Halving [Karnin et al. 2013], UGapE [Gabillon et al. 2013]...
- Infinitely-armed algorithms: SiRI [Carpentier and Valko 2015], Hyperband [Li et al. 2017]

Black Box Optimization and Beyond...

Reformulation in the context of Optimization

- An unknown noisy function $f: \mathcal{X} \to \mathbb{R}$.
- At each step t, a policy picks an action $\mathbf{x_t} \in \mathcal{X}$ and receives a reward $r_t = f(\mathbf{x_t}) + \epsilon_t$ where ϵ_t is the noise.
- · Simple regret:

$$S_n = f(\mathbf{x}^*) - f(\mathbf{x}_{j_n}).$$

· Cumulative regret:

$$R_n = \sum_{1 \le t \le n} (f(\mathbf{x}^*) - f(\mathbf{x}_t)).$$

Current State-of-the-Art

- Hierarchical Optimization: HOO [Bubeck et al. 2011], POO [Grill et al. 2015], HCT Gheshlaghi-Azar et al. 2014]...
- Bayesian Optimization: GP-UCB [Srinivas et al. 2009], TPE [Bergstra et al. 2011]...

Current State-of-the-Art

- Hierarchical Optimization: HOO [Bubeck et al. 2011], POO [Grill et al. 2015], HCT Gheshlaghi-Azar et al. 2014]...
- Bayesian Optimization: GP-UCB [Srinivas et al. 2009], TPE [Bergstra et al. 2011]...
- · Perspective:
 - New best arm identification algorithms based on hierarchical exploration?
 - · Adaptive partitioning?
 - · Anytime?

Hyperparameter Optimization

Experiment

- select a set of hyper-parameters \mathbf{x}_t as an arm
- \cdot \mathbf{x}_t is then used in some machine learning classifier
- · recommend an arm \mathbf{x}_{j_t}
- · Loss function:
 - · Logistic loss for classification problems
 - · Mean squared error for regression problems
- The underlying task is to find some classifier $g_{\mathbf{x}_t}$ which minimizes the expected loss $f(g_{\mathbf{x}_t}) = \mathbb{E}\left[\mathcal{L}(\mathbf{y}, g_{\mathbf{x}_t}(\mathbf{X}))\right]$

 \cdot Hyperband consists of several brackets/iterations

- · Hyperband consists of several brackets/iterations
- At each bracket *i*, given *B* and *N_i* (budget can be time, epochs, dataset subsampling, etc):
 - sample randomly N_i configurations
 - · run Sequential Halving based on validation losses

- Hyperband consists of several brackets/iterations
- At each bracket *i*, given *B* and *N_i* (budget can be time, epochs, dataset subsampling, etc):
 - sample randomly N_i configurations
 - · run Sequential Halving based on validation losses
- Trade-off between N_i and B/N_i

- Hyperband consists of several brackets/iterations
- At each bracket *i*, given *B* and *N_i* (budget can be time, epochs, dataset subsampling, etc):
 - sample randomly N_i configurations
 - · run Sequential Halving based on validation losses
- Trade-off between N_i and B/N_i
- · Output: the best intermediate loss ever seen

Beyond Hyperband?

- · Pros: strong anytime performance, easily parallelizable
- Cons: convergence to global optimum heavily limited by its reliance on randomly-drawn configurations

Beyond Hyperband?

- Pros: strong anytime performance, easily parallelizable
- Cons: convergence to global optimum heavily limited by its reliance on randomly-drawn configurations
- Perspective: take into account previously sampled configurations? → TPE+Hyperband [Falkner et al. 2017]

Contextual Bandits and Algorithm
Selection

Contextual Bandits

- At time *t*:
 - receive some context $c_t \in C$
 - the player pulls an arm $k_t \in \{1, \dots, K\}$
 - receive some reward $r_t(k_t)$

Contextual Bandits

- At time *t*:
 - receive some context $c_t \in C$
 - the player pulls an arm $k_t \in \{1, \dots, K\}$
 - receive some reward $r_t(k_t)$
- A policy $\pi \in \Pi = \{\pi : C \to 1 \cdots K\}$ chooses one arm k_t to play

Contextual Bandits

- At time *t*:
 - receive some context $c_t \in C$
 - the player pulls an arm $k_t \in \{1, \dots, K\}$
 - receive some reward $r_t(k_t)$
- A policy $\pi \in \Pi = \{\pi : C \to 1 \cdots K\}$ chooses one arm k_t to play
- · We want to minimize the (cumulative) regret:

$$R_n = \max_{\pi \in \Pi} \sum_{1 \leq t \leq n} r_t(\pi(c_t)) - \sum_{1 \leq t \leq n} r_t(k_t)$$

Online Algorithm Selection

 Idea: a set of complementary algorithms performing well on different instances

Online Algorithm Selection

- Idea: a set of complementary algorithms performing well on different instances
- Using supervised learning techniques to build a selection mapping λ : instance \rightarrow algorithm
- · Each instance is characterized by a set of features
- Online setting: initialize λ with offline training data, then make predictions for online new instances

Online Algorithm Selection

- Idea: a set of complementary algorithms performing well on different instances
- Using supervised learning techniques to build a selection mapping λ : instance \rightarrow algorithm
- · Each instance is characterized by a set of features
- Online setting: initialize λ with offline training data, then make predictions for online new instances
- · Can be seen as a contextual bandit problem
- Perspective: LinUCB [Li et al. 2010]? Comparable to greedy approach?

