Home work 2

Vasanth Reddy Baddam

02/13/2020

I pledge that this test/assignment has been completed in compliance with the Graduate Honor Code and that I have neither given nor received any unauthorized aid on this test/assignment

Name: Vasanth Reddy Baddam

Signature: VB

Q1.

p = [5,10,3,12,5,50,6]

n = length(p) - 1

Let's assume two matrices m and s of size n*n

Let's say we are going through the chain of matrices of length

for l = 1, Assuming that we only have one matrix on the multiplication. Then the cost for that multiplication would be zero.

So we replace the elements of matrix m (m[i][i]) with zero

for l = 2

$$\begin{split} m[1,2] &= m[1,1] + m[2,2] + p[0] * p[1] * p[2] \\ m[1,2] &= 0 + 0 + 5 * 10 * 3 \\ m[1.2] &= 150 \\ m[2,3] &= m[2,2] + m[3,3] + p[2] * p[3] * p[4] \\ m[2,3] &= 0 + 0 + 10 * 3 * 12 \\ m[2.3] &= 360 \\ m[3,4] &= m[3,3] + m[4,4] + p[3] * p[4] * p[5] \\ m[3,4] &= 0 + 0 + 3 * 12 * 5 \\ m[3,4] &= 180 \\ m[4,5] &= m[4,4] + m[5,5] + p[5] * p[4] * p[6] \end{split}$$

$$m[4,5] = 0 + 0 + 12 * 5 * 50$$

$$m[4,5] = 3000$$

$$m[5,6] = m[5,5] + m[6,6] + p[5] * p[6] * p[7]$$

$$m[5,6] = 0 + 0 + 5 * 50 * 6$$

$$m[5,6] = 1500$$

for l = 2

$$m[1,3] = \min(m[1,1] + m[2,3] + p[0] * p[1] * p[3]), (m[1,2] + m[3,3] + p[0] * p[2] * p[3])$$

$$m[1,3] = \min(0 + 360 + 600), (150 + 0 + 180)$$

$$m[1,3] = \min960, 330$$

$$m[1,3] = 330$$

Using the recursive value from the above findings for l=2 from l=1Similarly filling the matrix m, we get

i/j	1	2	3	4	5	6
1	0	150	330	405	1655	2010
2	0	0	360	330	2430	1950
3	0	0	0	180	930	1770
4	0	0	0	0	3000	1860
5	0	0	0	0	0	1500
6	0	0	0	0	0	0

K table is given by

i/j	1	2	3	4	5	6
1	0	1	2	2	4	2
2	0	0	2	2	2	2
3	0	0	0	3	4	4
4	0	0	0	0	4	4
5	0	0	0	0	0	5
6	0	0	0	0	0	0

Q2.

i/j	0	S	Р	A	N	K	Ι	N	G
0	0	0	0	0	0	0	0	0	0
A	0	0	0	1	1	1	1	1	1
M	0	0	0	1	1	1	1	1	1
Р	0	0	1	1	1	1	1	1	1
U	0	0	1	1	1	1	1	1	1
T	0	0	1	1	1	1	1	1	1
A	0	0	1	2	2	2	2	2	2
T	0	0	1	2	2	2	2	2	2
I	0	0	1	2	2	2	3	3	3
О	0	0	1	2	2	2	3	3	3
N	0	0	1	2	3	3	4	4	4

Direction table is given by:

Π.									
l i/j	0	\mathbf{S}	Р	A	Ν	K	Ι	N	G
0	0	0	0	0	0	0	0	0	0
A	0	\uparrow	\uparrow	\uparrow	_	\leftarrow	\leftarrow	\leftarrow	\leftarrow
M	0	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
P	0	\uparrow	_	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
U	0	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
\parallel T	0	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
A	0	\uparrow	\uparrow	_	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
$\parallel ext{ T}$	0	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
\parallel I	0	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	_	\leftarrow	\leftarrow
О	0	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
N	0	\uparrow	\uparrow	\uparrow	_	\leftarrow	\uparrow	_	\leftarrow

Following the diagonal arrows we get the longest common sub sequence is PAIN

Q4.

Given that the splits in quick sort are in the proportion of $1-\alpha$ and α

As we seen that minimum depth always take the smaller part of the split i.e.. α . Where as the maximum depth always takes the larger split i.e.. $1-\alpha$. As the number of passes increases, α and $1-\alpha$ changes to α^a and $1-\alpha^b$ respectively

At the end of the tree with one node remaining for minimum depth, then

$$n*\alpha^a=1$$

$$\alpha^a = \frac{1}{n}$$

applying log on both sides,

$$a * \log(\alpha) = -\log(n)$$

$$a = -\frac{\log(n)}{(\alpha)}$$

At the end of the tree with one node remaining for maximum depth, then

$$n*(1-\alpha)^b$$

$$(1-\alpha)^b = \frac{1}{n}$$

applying log on both sides,

$$b * \log(1 - \alpha) = -\log(n)$$
$$b = -\frac{\log(n)}{(1 - \alpha)}$$

Q5.

As we know, the condition i.e ..

$$n = \frac{D*E}{P+E}$$

where D is Maximum number of elements can be in an array

E is Space for data value

P is Space for pointer

a).

space of an array = number of elements can hold*size of data field

size of an array =
$$20 * 8$$

bytes

size of an array
$$= 160$$

bytes

space for an one node in linked list requires = 8 + 4 bytes Condition to an linked list when:

$$n * 12 <= 160$$

$$n <= 13.33$$

for $n \le 13$, linked list needs space less than array **b**).

space of an array = number of elements can hold*size of data field

size of an array = 30 * 2

bytes

size of an array = 60

bytes

space for an one node in linked list requires = 4 + 2 bytes Condition to an linked list when:

$$n*6 \le 60$$

for n < 10, linked list needs space less than array

c).

space of an array = number of elements can hold*size of data field

size of an array = 30 * 1

bytes

size of an array = 30

bytes

space for an one node in linked list requires = 1 + 4 bytes Condition to an linked list when:

$$n * 5 \le 30$$

for n < 6, linked list needs space less than array

d).

space of an array = number of elements can hold*size of data field

size of an array = 40 * 32

bytes

size of an array = 1280

bytes

space for an one node in linked list requires = 32 + 4 bytes

Condition to an linked list when:

$$n * 36 \le 1280$$
 $n < 35.55$

for n < 35, linked list needs space less than array

Q3.

Algorithm 1 Rod-Cutting w/Cost

```
0: procedure ROD-CUTTING(p,n,c)

0: let r[0,1,..n] be a new array)

0: r[0] = 0

0: for j = 1 to n do

0: q = p[j]

0: for i = 1 to j -1 do

0: q = max(q, p[i] + r[j-i] - c)
 r[j] = q

0: return(r[n])
 =0
```