Statistical Machine Translation without Parallel Data

Maryam Siahbani

Supervisor: Dr. Anoop Sarkar

Natural Language Laboratory
Simon Fraser University

$$e = \arg\max_{e} \{\Pr(e \mid f)\}$$
 e: target sentence f: source sentence
$$f \to \frac{\text{Translation}}{\text{System}} \to e$$

$$e = \underset{e}{\operatorname{arg max}} \{ \Pr(e | f) \}$$

Noisy channel

 $\Pr(e \mid f) \propto \Pr(e).\Pr(f \mid e)$

Log-linear model

$$\Pr(e \mid f) \propto \exp \sum_{i} \lambda_{i} h_{i}(e, f)$$

Methods

- Translation lexicon
 - ➤ Limited parallel resource
 - ➤ Monolingual corpora

Translation system

Translation Lexicon Induction Limited Parallel Data

Prazan

Prazan

Prazan Prazdny

Inducing Translation Lexicon: Bridge language (Mann and Yarowsky, 2001)

Operations in Levenshtein:

Substitution: Otpor -> Odpor, cost (t,d)

Insertion: Pravo -> Vprovo , $cost(\epsilon, v)$

Deletion: Chvala -> Hvaliti , cost (c, ϵ)

False cognates

SFU Nat Lang Lab

Inducing Translation Lexicon: Bridge language (Schafer and Yarowsky 2002)

Additional similarity measures

Inducing Translation Lexicon: Bridge language (Schafer and Yarowsky 2002)

Additional similarity measures

Inducing Translation Lexicon: Using Seed Lexicon

 Given: an initial small lexicon between source and target

Goal: a translation lexicon between S and T

- Methods: extending the seed lexicon
 - Context similarity

- Modeling the context
 - Window of fixed size (Rapp 95),(Rapp 99),(Fung & Yee 98)

- Modeling the context
 - Window of fixed size (Rapp 95),(Rapp 99),(Fung & Yee 98)

Position	Adjacent context
-2	para
-1	el
+1	У
+2	la

Modeling the context

- Window of fixed size (Rapp 95),(Rapp 99),(Fung & Yee 98)
- Using dependency trees (Garera et al., 2009)

Position	Adjacent context	Dependency context
-2	para	
-1	el	
+1	У	
+2	la	

Modeling the context

- Window of fixed size (Rapp 95),(Rapp 99),(Fung & Yee 98)
- Using dependency trees (Garera et al., 2009)

Position	Adjacent context	Dependency context
-2	para	camino
-1	el	para
+1	У	
+2	la	

Modeling the context

- Window of fixed size (Rapp 95),(Rapp 99),(Fung & Yee 98)
- Using dependency trees (Garera et al., 2009)

... el camino para el **crecimiento** y la prosperidad económica ... (the) (path) (to) (the) (growth) (and) (the) (prosperity) (economic)

Position	Adjacent context	Dependency context
-2	para	camino
-1	el	para
+1	У	prosperidad, y, el
+2	la	la, economica

Dynamic context size

- Modeling the context
 - Window of fixed size (Rapp 95), (Rapp 99), (Fung & Yee 98)
 - Using dependency trees (Garera et al., 2009)

... el camino para (the) (path)

8% Improvement over adjacent context

dad económica ... ty) (economic)

	Adjacent	1 03101011
_	context	
Sp	para	-2
(1000 m	el	-1
prosperidad, y, e	У	+1
la, economica	la	+2

anish-English ost frequent words)

No Parallel Data

Inducing Translation Lexicon: Monolingual Data (Similarity measures)

- Similarities in monolingual corpora (Koehn & Knight 2002)
 - Identical words

Inducing Translation Lexicon: Monolingual Data (Similarity measures)

- Similarities in monolingual corpora (Koehn & Knight 2002)
 - Identical words
 - Orthographic similarity (cognates)

SFU Nat Lang Lab

Inducing Translation Lexicon: Monolingual Data (Similarity measures)

- Similarities in monolingual corpora (Koehn & Knight 2002)
 - Identical words
 - Orthographic similarity (cognates)
 - Context similarity

Inducing Translation Lexicon: Monolingual Data (Similarity measures)

- Similarities in monolingual corpora (Koehn & Knight 2002)
 - Identical words
 - Orthographic similarity (cognates)
 - Context similarity

German-English 1000 most frequent nouns

39%

Inducing Translation Lexicon:

No Parallel Data (Model Translation Lexicon as a Mapping)

 A generative model for matching between S and T (Haghighi et al., 2008)

Inducing Translation Lexicon: No Parallel Data (Haghighi et al., 2008)

- Orthographic (n-gram characters)
- Contextual features

Inducing Translation Lexicon: No Parallel Data (Haghighi et al., 2008)

Observed words in source and target spaces are projected to a common latent space

Canonical Correlation Analysis (CCA)

(Haghighi et al., 2008)

Inducing Translation Lexicon: No Parallel Data (Haghighi et al., 2008)

Observed words in source and target spaces are projected to a common latent space

Canonical Correlation Analysis (CCA)

Methods

- Inducing Translation Lexicon
 - Limited Parallel Data
 - Monolingual Data

- Translation System
 - Word-based
 - Phrase-based

Word-based: MT as decipherment (Ravi and Knight 2011)

f: source sentence e: target sentence

Train parameters to maximize probability of **observed sentence pairs (e,f)**:

$$\underset{\theta}{\operatorname{argmax}} P_{\theta}(e, f) \simeq \underset{\theta}{\operatorname{argmax}} \prod_{e, f} P_{\theta}(f|e)$$

$$P(f|e)$$
English-Spanish
Translation Model

Word-based: MT as decipherment (Ravi and Knight 2011)

f: source sentence e: target sentence

Training without Parallel data

Word-based: MT as decipherment (Ravi and Knight 2011)

f: source sentence e: target sentence

Word-based: MT as decipherment (Ravi and Knight 2011)

f: source sentence e: target sentence

Training with Parallel data

- Restricting the translation model (Nuhn et al., 2012)
 - Determining a set of active translations
 - Estimating the probabilities of active translations

- Restricting the translation model (Nuhn et al., 2012)
 - Determining a set of active translations
 - Estimating the probabilities of active translations

Initialization using word frequency ranks

- Restricting the translation model (Nuhn et al., 2012)
 - Determining a set of active translations
 - Estimating the probabilities of active translations

EM training (Ravi and Knight 2011)
 with limited iterations (20-30)

- Restricting the translation model (Nuhn et al., 2012)
 - Determining a set of active translations
 - Estimating the probabilities of active translations

Inducing active translations using results of EM

- Restricting the translation model (Nuhn et al., 2012)
 - Determining a set of active translations
 - Estimating the probabilities of active translations

- Restricting the translation model (Nuhn et al., 2012)
 - Determining a set of active translations
 - Estimating the probabilities of active translations

Limited Parallel Data

Phrase-based Translation System: Limited Parallel Data(Klementiev et al.,2012)

- Parameters in phrase-based translation systems
 - Large amounts of parallel data for estimating parameters

Phrase-based Translation System: Limited Parallel Data(Klementiev et al.,2012)

- Parameters in phrase-based translation systems
 - Large amounts of parallel data for estimating parameters
- Extract features from monolingual data
 - Extend the idea of translation lexicon induction to phrases (using seed lexicon)
 - Reordering model

Phrase-based Translation System: Limited Parallel Data(Klementiev et al.,2012)

- Parameters in phrase-based translation systems
 - Large amounts of paralle
 Bilingual Features
 Bilingual Features
 Bilingual Features
 21.87 BLEU score
 22.92 BLEU score
 - Extend the idea of translation lexicon induction to phrases (using seed lexicon)
 - Reordering model

Conclusion

- Translation lexicon induction:
 - Depend on context and orthographic similarities
 - Does not work on historically unrelated language pairs
 - Scalability: Just applied on small word sets(1000 or so)
- Translation Systems:
 - New research direction
 - Scalability: applicable to limited vocabularies and data sets
 - Low translation quality

