Name:	
	Saurabh Darekar
Netid:	
	sdare1

CS 441 - HW1: Instance-based Methods

Complete the sections below. You do not need to fill out the checklist.

Total	Points <i>A</i>	Available	[]/145
1.	Retriev	al, K-means, 1-NN on MNIST	
	a.	Retrieval	[]/5
	b.	K-means	[]/15
	C.	1-NN	[]/10
2.	Make i	t fast	
	a.	K-means plot	[]/15
	b.	1-NN error plots	[]/8
	C.	1-NN time plots	[]/7
	d.	Most confused label	[]/5
3.	Tempe	rature Regression	
	a.	RMSE Tables	[]/20
4.	Conce	ptual questions	[]/15
5.	Stretch	n Goals	
	a.	Evaluate effect of K for MNIST	[]/15
	b.	Evaluate effect of K for Temp Reg.	[]/15
	C.	Compare Kmeans more iterations vs. restarts	[]/15

1. Retrieval, K-means, 1-NN on MNIST

a. What index is returned for x_test[1]?

b. Paste the display of clusters after the 1st and 10th iteration for K=30.

c. Error rate for first 100 test samples, using first 10,000 training samples (x.x%)

7.0%

2. Make it fast

a. KMeans plot of RMSE vs iterations for K=10, 30, 100

b. Nearest neighbor error vs training size plot

c. Nearest neighbor time vs training size plot

d. What label is most commonly confused with '3'?

8

3. Temperature Regression

a. Table of RMSE for KNN with K=5 (x.xx)

	KNN (K=5)
Original Features	3.18
Normalized Features	2.90

4. Test your understanding

Fill in the letter corresponding to the answer. If you're not sure, you can sometimes run small experiments to check.

1. Is K-means guaranteed to decrease RMSE between each sample and its nearest cluster center in each iteration until convergence?

	b				
2. If you increase K, is K-means expanded b. Expected but not guaranted c. Not expected	_	uaranteed ·	to achieve I	ower RMSI	Ξ?
 3. In K-NN regression, for training la be predicted for any query? a. Min(y) b. Mean(y) c. Can't be determined 	abels y, who	at is the low	vest target v	∕alue that c	an possibly
4. Would you expect the "training er classification? Training error is the a. Lower b. Higher c. It's problem-dependent		_			N for
5. Would you expect the test error for regression?a. Lowerb. Higherc. It's problem-dependent	or 1-NN to	be higher o	r lower thai	n for 3-NN t	for
5. Stretch Goals (optional)a. Select best K parameter for K-NN MNIST classification in K=1, 3, 5, 11, 25. (x.xx)					
Validation Set Performance	K=1	K=3	K=5	K=11	K=25

a. Nob. Yes

% error	3.04	2.85	3.02	3.5	4.3
7					

Best K:

3

Test % error (x.xx)

2.83

b. Select best K parameter for K-NN temperature regression in K=1, 3, 5, 11, 25. (x.xx)

Validation Set RMSE	K=1	K=3	K=5	K=11	K=25
Original Features	4.33	3.25	3.12	3.00	3.03
Normalized Features	3.94	3.26	3.08	2.92	2.92

Best Setting (K, feature type):

25,Normalized

Test RMSE (x.xx)

2.77

c. Kmeans, MNIST: compare average and standard deviation RMSE based on number of iterations and number of restarts

(4 digit precision)

K=30	RMSE avg	RMSE std
20 iterations, 1 restart	5.7862	0.0107
4 iterations, 5 restarts	5.8261	0.0065
50 iterations, 1 restart	7.7800	0.0082
10 iterations, 5 restarts	5.7842	0.0086

Acknowledgments / Attribution

List any outside sources for code or ideas or "None".

I have used StackOverFlow , Medium, GeeksForGeeks articles and ChatGPT..