Geometría Diferencial 2021

Lista 02

17.febrero.2021

- 1. Mostrar que el cilindro $\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=1\}$ es una superficie regular, y encuentre parametrizaciones que cubran dicha superficie. Mostrar que el cono $C: x^2+y^2=z^2$ no es superficie.
- 2. Sea $f(x,y,z)=z^2$. Muestre que 0 no es un valor regular de f y que aún así, $f^{-1}(0)$ es una superficie regular.
- 3. Sea $f(x, y, z) = (x + y + z 1)^2$.
 - a) Localizar los puntos críticos y valores críticos de f.
 - b) ¿Para qué valores de c e conjunto f(x, y, z) = c es una superficie regular?
 - c) Responder las preguntas en (a) y (b) para la función $g(x, y, z) = xyz^2$.
- 4. Probar que $\mathbf{x}:U\subseteq\mathbb{R}^2\to\mathbb{R}^3$ dada por

$$\mathbf{x}(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u), \quad a, b, c \neq 0,$$

con $0 < u < \pi, 0 < v < 2\pi$, es una parametrización para el elipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Describir geométricamente las curvas u = const. sobre el elipsoide.

- 5. Una forma de definir un sistema de coordenadas para la esfera S^2 , dada por $x^2+y^2+(z-1)^2=1$, es considerar la **proyección estereográfica** $\pi:S^2-\{N\}\to\mathbb{R}^2$ que lleva el punto $\mathbf{p}=(x,y,z)$ en la esfera S^2 menos el polo norte N=(0,0,2) sobre la intersección del plano xy con la recta que conecta N con \mathbf{p} (Fig. abajo). Sea $(u,v)=\pi(x,y,z)$, donde $(x,y,z)\in S^2-\{N\}$ y $(u,v)\in \text{plano }xy$.
 - a) Pruebe que $\pi^{-1}:\mathbb{R}^2 o S^2$ está dada por

$$x = \frac{4u}{u^2 + v^2 + 4}, \quad y = \frac{4v}{u^2 + v^2 + 4}, \quad z = \frac{2(u^2 + v^2)}{u^2 + v^2 + 4}.$$

b) Muestre que es posible, usando la proyección estereográfica, cubrir la esfera con dos cartas locales.

- 6. Sea $S^2=\{(x,y,z)\in\mathbb{R}^3; x^2+y^2+z^2=1\}$ la esfera unitaria y sea $A:S^2\to S^2$ el mapa antipodal A(x,y,z)=(-x,-y,-z). Pruebe que A es un difeomorfismo.
- 7. Sea $S \subseteq \mathbb{R}^3$ una superficie regular y sea $\pi: S \to \mathbb{R}^2$ el mapa que toma cada punto $\mathbf{p} \in S$ y lo lleva a su proyección ortogonal sobre \mathbb{R}^2 . ¿Es π diferenciable?
- 8. a) Mostrar que el paraboloide $z = x^2 + y^2$ es difeomorfo al plano.
 - b) Construir un difeomorfismo entre el elipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ y la esfera unitaria $S^2: x^2 + y^2 + z^2 = 1$.
- 9. Defina una curva regular en analogía con una superficie regular. Demostrar lo sigueinte:
 - a) La imagen inversa de un valor regular de una función diferenciable $f:U\subseteq\mathbb{R}^2\to\mathbb{R}$ es una curva plana regular. Dé un ejemplo de tal curva que sea no conexa.
 - b) La imagen inversa de un valor regular de un mapa diferenciable $F:U\subseteq\mathbb{R}^3\to\mathbb{R}^2$ es una curva regular en \mathbb{R}^3 . Muestre la relación entre esta proposición y la forma clásica de definir una curva en \mathbb{R}^3 como la intersección de dos superficies.
 - c) El conjunto $C=\{(x,y)\in\mathbb{R}^2: x^2=y^3\}$ no es una curva regular.
- 10. a) Sea C una curva regular y sean $\alpha:I\subseteq\mathbb{R}\to C$, $\beta:J\subseteq\mathbb{R}\to C$ dos parametrizaciones de C en una vecindad de $\mathbf{p}\in\alpha(I)\cap\beta(J)=W$. Sea $h=\alpha^{-1}\circ\beta:\beta^{-1}(W)\to\alpha^{-1}(W)$ el cambio de coordenadas. Probar que h es un difeomorfismo.
 - b) Defina la noción de función diferenciable en una curva regular, incluyento todas las hipótesis necesarias.
 - c) Muestre que el mapa $E:\mathbb{R} \to S^1$ dado por

$$E(t) = (\cos t, \sin t), \quad t \in \mathbb{R},$$

es diferenciable (geométricamente, E "envuelve" la recta real \mathbb{R} alrededor de S^1).