

Disponible sur:

- https://shiny.migale.inrae.fr/app/ShinySBM
- https://forgemia.inra.fr/theodore.vanrenterghem/shinySbm

Figure 1 : Réseau d'espèces d'arbres connectées entre elles par le nombre d'espèces de champignons en commun

Application pour des données de réseaux :

- Nœuds (individus) -
- **Arêtes** (relations)

Les réseaux sont :

- des structures omniprésentes
- des données souvent complexes à récolter
- difficiles à lire et à interpréter

Figure 2 : Réseau d'amis dans un réseau social

```
Data dimension: 403 rows x 2 columns
            V1
                       V2
     rn
                 Armelle
         Aaran
                     Eric
         Aaran
                    Hugo
         Aaran
                  Jacques
         Aaran
         Aaran
                      Jay
                 Michele
         Aaran
         Aaran
                    Misae
                 Therese
         Aaran
                     Zaho
         Aaran
     10 Albert
                 Armelle
    394 Yvonne
                    Aaran
    395 Yvonne
                    Azmar
                    Clara
    396 Yvonne
                Mohammed
    397 Yvonne
    398 Yvonne Sebastien
    399 Yvonne
                     Wren
                 Armelle
          Zaho
    400
          Zaho
                   Izumi
    401
          Zaho
                      Rye
    402
    403
          Zaho
                 Sylvain
```

Disponible sur:

- https://shiny.migale.inrae.fr/app/ShinySBM
- https://forgemia.inra.fr/theodore.vanrenterghem/shinySbm

Deux formats:

- Liste d'arêtes
- Matrice d'adjacence

Réseau d'amis:

- Liste d'arêtes
- Binaire (connexion ou non)
- Unipartite: Les nœuds peuvent tous se connecter entre eux

Figure 2 : Réseau d'amis dans un réseau social

Data dimension: 403 rows x 2 columns V1 rn Armelle Aaran Eric Aaran Hugo Aaran Aaran Jacques Aaran Jay Michele Aaran Aaran Misae Aaran Therese Zaho Aaran 10 Albert Armelle 394 Yvonne Aaran 395 Yvonne Azmar Clara 396 Yvonne Mohammed 397 Yvonne 398 Yvonne Sebastien 399 Yvonne Wren Armelle Zaho 401 Zaho Izumi Rye 402 Zaho Zaho Sylvain 403

Disponible sur:

- https://shiny.migale.inrae.fr/app/ShinySBM
- https://forgemia.inra.fr/theodore.vanrenterghem/shinySbm

Deux formats:

- Liste d'arêtes
- Matrice d'adjacence

Réseau d'amis:

- Liste d'arêtes
- Binaire (connexion ou non)
- Unipartite : Les nœuds peuvent tous se connecter entre eux

Réseau Arbres/Champignons:

- Matrice d'adjacence
- Comptage (nombre de connexions observées)
- **Bipartite** : Deux types de nœuds, connexion entre types différents

Figure 3 : Réseau d'espèces arbres et de champignons connectés par co-présences

Data dimension: 154 rows x 51 columns

rn Abies ... Abies ... Large ... Amphip... Apiogn... Apiogn... Armill... Armill... Armill... Armill... Astero... Biscog... Bjerka... Tramet... Trunca... Valsa ... Valsa ... Valsa ... Valsa ... Ventur... Ventur... Vertic... Zythio...

Le modèle à blocs stochastiques :

- Groupe les nœuds par profils de connexion similaire
- Structure le réseau par blocs/groupes
- Simplifie l'interprétation

Disponible sur:

- https://shiny.migale.inrae.fr/app/ShinySBM
- https://forgemia.inra.fr/theodore.vanrenterghem/shinySbm

Le modèle à blocs stochastiques :

- Groupe les nœuds par profils de connexion similaire
- Structure le réseau par blocs/groupes
- **Simplifie** l'interprétation

Modèle **très flexible**, il permet la détection de :

- Sous-communauté
- Strates dans le réseau (emboitement)
- Individus généralistes/centraux
- Individus spécialistes

Le modèle à blocs stochastiques :

- Groupe les nœuds par profils de connexion similaire
- Structure le réseau par blocs/groupes
- **Simplifie** l'interprétation

Modèle **très flexible**, il permet la détection de :

- Sous-communauté
- Strates dans le réseau (emboitement)
- Individus généralistes/centraux
- Individus spécialistes

Modèle statistique à variable latente :

- Pas d'aprioris sur les groupes
- Information produite vraissemblable
- Les blocs contiennent des nœuds significativement proches
- Modèle génératif

Fonctionnalité de base :

- Liste d'arêtes → matrice d'adjacences
- Application de modèles SBM
- Sélection nombre de groupes
- Visualisation de graphes et matrices simplifiés/organisés

Extraction:

- des visuels sous forme d'images
- des groupes prédits sous formes de tableaux de données
- de rapport de modélisation automatique (pdf ou html)

Figure 7 : Réseau d'arbres (de la figure 1) : Exemple de groupes prédits à extraire

	Nodes_names	A
1	Abies alba	Group_Trees_3
2	Abies grandis	Group_Trees_3
3	Abies nordmanniana	Group_Trees_3
4	Large Maples (Acer platanoides, Acer pseudoplatanus)	Group_Trees_2
5	Small Maples (Acer campestre, Acer monspessulanum, Acer negundo, Acer opalus)	Group_Trees_4
6	Alnus glutinosa	Group_Trees_4
7	Betulus spp (Betula pendula, Betula pubescens)	Group_Trees_4
8	Carpinus betulus	Group_Trees_4
9	Castanea sativa	Group_Trees_2
10	Cedrus spp (Cedrus atlantica, Cedrus libani)	Group_Trees_3
11	Cupressus sempervirens	Group_Trees_4
12	Fagus silvatica	Group_Trees_2
13	Fraxinus spp (Fraxinus angustifolia, Fraxinus excelsior)	Group_Trees_2
14	Juglans spp (Juglans nigra, Juglans regia)	Group_Trees_2
15	Larix decidua	Group_Trees_3

Fonctionnalité de base :

- Liste d'arêtes → matrice d'adjacences
- Application de modèles SBM
- Sélection nombre de groupes
- Visualisation de graphes et matrices simplifiés/organisés

Extraction:

- des visuels sous forme d'images
- des groupes prédits sous formes de tableaux de données
- de rapport de modélisation automatique (pdf ou html)

Aide à l'utilisation du package {sbm} de R :

- L'application tourne grâce à {sbm}
- Les **lignes de codes** permettant son **exploration** sont affichées dans l'application

<u>Figure 8 : Réseau arbres/champignon (de la figure 3) : Exemple rapport automatique</u>

Table 2: Proportion des groupes en lignes

Fungus_1	Fungus_2	Fungus_3	Fungus_4
0.03	0.06	0.32	0.59

Ici par exemple 59% des Fungus sont dans le groupe Fungus_4.

Table 3: Table de connectivité

	Trees_1	$Trees_2$	${ m Trees}_3$	Trees_4
Fungus_1	0.97	0.08	0.84	0.07
Fungus_2	0.52	0.58	0.23	0.11
Fungus_3	0.32	0.00	0.10	0.01
Fungus_4	0.02	0.15	0.00	0.02

Les valeurs dans ce tableau sont les paramètres de connectivité du model sbm (Bernoulli).

Par exemple, si l'on prend un noeud A dans le groupe Fungus_1 en lignes et un noeud B dans le groupe Trees_2 en colonnes. Alors le noeud A à une probabilité 0.08 d'être connecté au noeud B. Le modèle séléctionné possède une entropie (Indice globale de certitude d'appartenance aux groupes attribués) de 17.47.

Visualisation du SBM

À noter que sur cette image, colonnes et lignes sont inversées.

Références

- Chiquet J, Donnet S, Barbillon P (2023). sbm: Stochastic Blockmodels. R package version 0.4.5, https://CRAN.R-project.org/package=sbm.
- Vanrenterghem T, Julie A (2023). ShinySBM: A shiny application for Stochastic Blockmodels. R
 package on gitlab,
 https://forgemia.inra.fr/theodore.vanrenterghem/shinySbm.
- We are grateful to the INRAE MIGALE bioinformatics facility (MIGALE, INRAE, 2020. Migale bioinformatics Facility, doi: 10.15454/1.5572390655343293E12) for providing help and/or computing and/or storage resources.

2

Résumé:

- Application pour des données de réseaux
- Public: novices en R ou personnes souhaitant apprendre à utiliser le package {sbm}
- Application et analyse des résultats de modèles à blocs stochastiques et visualisation de réseaux
- Extractions des groupes, visuels et rapports automatiques

Accessible:

- Serveur Migale: https://shiny.migale.inrae.fr/app/ShinySBM
- **Registre**: https://forgemia.inra.fr/theodore.vanrenterghem/shinySbm
- **Sur R:** remotes::install github("Jo-Theo/shinySbm")
- Image docker: docker pull registry.forgemia.inra.fr/theodore.vanrenterghem/shinysbm:latest

Résumé:

- Application pour des données de réseaux
- Public: novices en R ou personnes souhaitant apprendre à utiliser le package {sbm}
- Application et analyse des résultats de modèles à blocs stochastiques et visualisation de réseaux
- Extractions des groupes, visuels et rapports automatiques

Accessible:

- Serveur Migale: https://shiny.migale.inrae.fr/app/ShinySBM
- Registre: https://forgemia.inra.fr/theodore.vanrenterghem/shinySbm
- Sur R: remotes::install github("Jo-Theo/shinySbm")
- Image docker: docker pull registry.forgemia.inra.fr/theodore.vanrenterghem/shinysbm:latest

Références / Remerciements :

- Chiquet J, Donnet S, Barbillon P (2023). sbm: Stochastic Blockmodels. R package version 0.4.5, https://CRAN.R-project.org/package=sbm.
- Nous remercions le centre de bioinformatique MIGALE de l'INRAE (MIGALE, INRAE, 2020. Migale bioinformatics Facility, doi : 10.15454/1.5572390655343293E12) pour avoir fourni de l'aide et/ou des ressources de calcul et/ou de stockage.

Merci pour votre attention!