Chuan Lu, 13300180056, chuanlu13@fudan.edu.cn

Problem 1. Prove Implicit Euler Iteration is of first-order convergence for Dahlquist test.

Proof. According to (2.2.20), $u_n = \frac{1}{(1-a\Delta t)^n}u_0$. For $e_n = u(t_n) - u_n$, we have $e_n = u_0(e^{at_n} - e^{-nln(1-a\Delta t)})$. From Taylor expansion we can know that

$$e_n = -u_0 e^{at_n} \left(\frac{a^2 t_n}{2} \Delta t + O(\Delta t^2)\right).$$

In consequence, for a fixed $T=N\Delta t, \|u(T)-u(N)\|\leqslant C\Delta t$, which means the implicit iteration is of first-order convergence.

Problem 2. Compute $\frac{du}{dt} = au$ with Euler Iterations, and show the convergence by image.

Result.

Figure 1: The convergence of Euler Iteration.

Figure 2: The error of Euler Iteration.