Simulación de la gráfica por series de Fourier

 $t_1 \coloneqq -2, -1.9..2$

$$t_2 = 2, 2.1..8$$

$$f_1\left(t_1
ight)\coloneqq {t_1}^2-4$$

$$f_2(t_2) \coloneqq 0$$

 t_2

 $f_{1}\left(t_{1}
ight) \ f_{2}\left(t_{2}
ight)$

Función propuesta:

$$\begin{bmatrix} t^2 + 4 & -2 \le t \le 2 \\ 0 & 2 \le t \le 8 \end{bmatrix}$$

 $T \coloneqq 10 \qquad k \coloneqq 10000 \qquad d_1 \coloneqq 2 \qquad d_2 \coloneqq 3 \qquad r \coloneqq 0.01$

 $t_4\!\coloneqq\!-d_1\!\cdot\! T, -d_1\!\cdot\! T\!+\!r..d_2\!\cdot\! T \qquad \qquad t_5\!\coloneqq\! 0, r..T$

 $w \coloneqq \frac{2 \pi}{T}$ $a_0 \coloneqq \frac{-32}{15}$ $n \coloneqq 1, 2...k$

 $a_n(n) \coloneqq \frac{1}{5} \left(\frac{5}{n \cdot \pi} \right)^2 \cdot \left(8 \cos \left(\frac{2 \pi \cdot n}{5} \right) - \frac{20}{\pi \cdot n} \sin \left(\frac{2 \pi \cdot n}{5} \right) \right)$

 $b_n(n) = 0$

 $f(t) \coloneqq \frac{a_0}{2} + \sum_{n=1}^k \left(a_n(n) \cdot \cos\left(n \cdot w \cdot t\right) + b_n(n) \cdot \sin\left(n \cdot w \cdot t\right) \right)$

