DILC-ESAE: Data-Info Envelope Stacked Autoencoder on correlation among samples rather than themselves

Complete experimental results

- B. Verification of effectiveness by Ablation study
 - In this subsection, several sensitivity experiments are designed to evaluate the proposed DILC-ESAE algorithm.
- 1) Verification of reconstructed samples on SVM

TABLE 4

EXPERIMENTAL RESULTS (MEAN ±STD) OF OUR PROPOSED METHOD IN DIFFERENT STAGES. (BEST RESULTS IN EACH COLUMN ARE HIGHLIGHTED IN BOLD.)

		*		*		
Dataset -			Acc	(%)		
Dataset	MSPC	KM	JCDR	KM+ICM	JCDR+ICM	DILC
AD	64.67 ±4.47	75.33 ±7.30	66.67±7.84	66.00±5.96	72.67 ±10.38	75.58±9.59
LSVT	94.29±3.98	92.86±1.67	95.24±4.45	94.76±2.61	95.80±3.33	96.54 ±4.48
PD	70.75 ± 1.74	66.21 ±1.70	66.84 ± 1.52	70.75±3.40	71.03 ± 1.40	74.14±4.18
Pendigits	98.62±0.07	98.64±0.28	99.09±0.35	98.83 ± 1.46	98.78 ± 0.12	99.27±0.26
Statlog	88.65 ±0.75	85.59±0.76	85.86±0.69	85.13±0.30	86.02±0.75	88.36±0.45
Vehicle	83.90±0.19	79.93 ±2.93	83.40±0.77	85.67±1.98	87.30 ±0.81	87.16±0.81
heart	85.56±2.83	90.89±0.50	90.91 ±4.08	88.44±2.30	91.20±4.25	92.44±3.37
Maxlittle	86.77 ±2.57	87.69±3.61	88.27 ± 3.86	88.31±3.19	89.23 ±5.65	91.25±8.39
Urban	90.67 ±2.65	72.62 ± 2.99	88.27 ± 2.36	76.49 ± 1.90	93.51 ±3.35	94.46 ±1.47
WDBC	97.57±1.38	97.99±0.24	98.59±0.38	98.73±0.29	98.99 ± 1.09	99.18±0.72
Wisconsin	97.18±1.48	97.53±1.01	97.89±0.79	97.89±0.85	98.06±0.50	98.41±0.74
PID	74.14±4.27	78.52 ± 2.52	80.08 ± 2.16	81.72±3.13	82.95 ±2.25	83.63±2.99
LR	89.65±0.21	87.73 ±0.33	87.92±0.30	89.83±0.15	89.06±0.11	89.79±0.3 4
GSAD	99.45±0.09	96.60±2.34	96.67 ± 1.04	$97.58 \pm \pm 0.12$	97.45±0.30	96.05±0.60
HAR	98.72±0.07	98.35±0.27	98.36±0.27	98.58 ± 0.16	98.35±0.15	99.10±0.26

Dataset			MACRO	-F1 (%)		
Dataset	MSPC	KM	JCDR	KM+ICM	JCDR+ICM	DILC
AD	64.78±8.32	53.70±8.28	72.09 ± 7.55	70.01 ±6.01	73.85±9.76	74.12 ±10.90
LSVT	93.61 ±4.60	92.50±5.34	94.75±4.86	94.19 ±2.92	95.24±6.52	95.77±5.62
PD	70.62 ± 1.73	62.62 ± 1.62	66.89 ± 1.52	70.79 ± 3.44	70.94 ± 2.46	71.54±3.18
Pendigits	99.04±0.09	98.62±0.28	97.95±0.05	96.21 ±0.41	98.03 ±0.09	99.04±0.09
Statlog	85.60 ±1.07	81.49±0.99	75.24±0.84	79.46±1.22	77.26±0.91	85.59 ± 1.05
Vehicle	84.55±0.96	81.51±0.73	90.53±0.83	85.88 ± 2.02	90.83 ±1.47	87.40±0.70
heart	86.14±2.63	79.77 ±2.99	90.43±2.92	88.54±2.43	90.86±3.72	91.09±3.67
Maxlittle	79.36±4.24	71.98±3.81	79.35±3.67	83.54±4.60	84.54±8.68	87.15±5.87
Urban	90.77 ±2.76	72.58 ± 5.98	87.32±1.81	77.31 ±4.93	9437±2.37	92.13±3.67
WDBC	97.63±1.52	95.94±1.68	97.31±0.46	98.65±0.31	98.80±0.69	98.85±1.47
Wisconsin	95.95±1.69	93.10±3.17	97.69 <u>±</u> 0.84	97.72±0.84	97.87 ±0.56	98.11±1.28
PID	74.82±2.20	72.66±2.95	77.43±2.66	74.54±2.08	74.66±3.16	75.98±1.90

LR	89.61±0.23	87.67±0.35	87.87±0.32	89.91 ±0.20	89.01 ±0.05	90.18±1.26
GSAD	99.43±0.10	96.42±2.49	96.55±0.99	97.49±0.10	97.37±0.33	96.17±0.47
HAR	98.79±0.08	98.46±0.25	98.46±0.25	98.65±0.17	98.42±0.14	99.20±0.22

Dataset			AUC	(%)		
Dataset	MSPC	KM	JCDR	KM+ICM	JCDR+ICM	DILC
AD	73.90±7.25	66.16±7.98	70.00±9.39	69.48±4.42	78.73±9.24	81.83 ±8.51
LSVT	94.83±3.15	92.14±6.00	96.75±1.90	93.70±4.70	93.30±9.26	96.59±3.92
PD	71.79±2.96	63.78±1.57	68.05±1.38	71.61 ±4.71	72.12±3.06	72.16±5.66
Pendigits	99.52±0.06	99.70±0.18	98.96±0.07	99.40±2.64	98.99 <u>±</u> 0.10	99.47±0.05
Statlog	91.98±0.59	90.12±0.67	87.61 ±0.65	87.20±1.12	88.77±0.71	91.29±0.60
Vehicle	89.62±1.24	88.04±1.32	90.53 ±2.20	90.98±1.31	92.52 ±0.42	92.12±1.19
heart	86.92±3.04	80.01 ±3.36	91.81±3.49	90.92±5.63	91.95 <u>±</u> 4.44	92.08±2.6°
Maxlittle	92.89±0.89	81.09 ±17.95	92.66±1.14	93.56±0.72	83.34±2.46	93.78±1.32
Urban	94.63±1.89	73.31 ±2.97	92.94±0.56	84.21 ±1.77	95.45 ±0.85	96.25 ±2.1
WDBC	98.77±1.16	97.67±1.40	98.08±0.36	98.27 <u>±</u> 0.01	98.30±0.83	98.61 ±1.1.
Wisconsin	96.08±1.12	96.92±1.87	97.62±1.05	97.88±1.37	97.29±1.00	98.01±0.5
PID	74.43±3.73	67.35 ±10.02	80.00±2.35	81.75 ±4.77	81.97 ±2.58	82.21 ±2.49
LR	94.57±0.11	93.57±0.17	93.66±0.16	94.66±0.08	94.25 ±0.05	95.88±0.5
GSAD	99.65±0.07	97.48±1.85	97.78±0.69	98.48±0.21	98.40±0.21	97.66±0.3
HAR	99.27±0.05	99.06±0.15	99.06±0.15	99.18±0.10	99.04 <u>±</u> 0.09	99.51±0.1
			AP (%)		
Dataset	MSPC	KM	JCDR	KM+ICM	JCDR+ICM	DILC
AD	78.21±8.08	70.18±10.17	77.78±10.81	75.52±1.48	82.42±5.54	84.38±8.77
LSVT	93.60±5.58	91.72±7.58	97.56±2.71	96.24±2.65	96.78±4.42	97.84±3.3
PD	71.60±2.62	61.82±2.17	66.39±1.93	71.63 ±4.95	73.00±3.48	73.76±3.35
Pendigits	98.89±0.09	99.70±0.05	99.58±0.02	92.57 <u>±</u> 0.98	99.59 <u>±</u> 0.04	99.80±0.04
Statlog	96.26±0.27	95.55±0.32	93.96±0.35	95.27 ±0.55	94.43 <u>±</u> 0.44	96.47 ±0.3
Vehicle	92.52±1.30	91.25±0.96	91.42±0.77	92.90 <u>±</u> 0.66	94.12±1.17	93.96±0.72
heart	83.15±5.18	81.00±4.36	89.84±5.37	87.66±4.77	90.28±5.39	92.02±5.5
Maxlittle	76.90±4.37	57.00±14.15	71.45 ±8.12	78.74±10.12	80.63±10.35	81.57 ±41
Urban	97.80 <u>±</u> 0.80	90.12±0.96	96.61 ±0.31	92.09 <u>±</u> 0.73	98.48±1.04	98.02±1.0
WDBC	96.54±2.46	95.65±2.46	95.94 <u>±</u> 0.66	96.92±1.31	97.43 ±0.64	97.81 ±1.3
Wisconsin	92.56±3.35	90.11±3.65	95.89±1.47	95.99±1.76	96.72±0.72	98.10±2.49
PID	75.31±5.34	70.31 ±6.04	78.05±3.05	80.11 ±4.06	75.40±3.60	80.85 ±2.74
LR	99.24±0.04	99.09±0.03	99.10 <u>±</u> 0.01	99.22±0.03	99.15±0.01	99.38±0.09
GSAD	99.66±0.09	98.90±0.51	99.03±0.34	99.14±0.05	99.09 <u>±</u> 0.07	96.17±0.65
HAR	99.53±0.09	99.34±0.19	99.34±0.19	99.47±0.06	99.36±0.09	99.54±0.0

$2) \ \ \textit{Verification of the reconstructed samples on ESAE}$

 ${\bf TABLE~5}$ Experimental results (mean \pm std) of the DILC on esae. (Best results in each column are highlighted in bold.)

D				Acc (%)		
Dataset	OF(ESAE)	MSPC(ESAE)	KM(ESAE)	JCDR(ESAE)	KM+ICM(ESAE)	JCDR+ICM(ESAE)	DILC-ESAE
AD	57.67 ±12.11	73.33±6.24	67.33±10.11	73.33 ±7.82	84.67±10.70	76.00 ±4.35	76.67 ±8.16
LSVT	82.38±9.00	96.19±3.61	96.07±9.85	96.46±6.18	95.05±11.72	97.41 ±5.86	97.62±1.68
PD	67.27±1.77	74.43 ±1.61	69.89 ± 2.74	73.68±5.38	72.36±1.68	74.60 ±4.56	75.98±4.29
Pendigits	98.94±0.09	99.51±0.17	98.84±0.57	99.20±0.46	98.93±0.80	99.50±0.82	99.54±0.11

Statlog	87.38±0.45	88.72±0.84	85.92±1.26	86.98±3.58	88.39±2.36	88.57 ±2.39	89.42±0.81
Vehicle	84.75±6.11	88.33±0.18	80.61 ±4.93	84.16±3.43	86.45 ±7.47	87.30±3.79	87.36±1.15
heart	82.22±2.24	87.43±3.48	90.96±5.28	91.11±5.56	90.55 ±4.87	92.67 ±3.20	94.67 ±2.98
Maxlittle	91.38±3.37	92.52±3.19	88.08±5.57	89.23±6.97	94.72±2.46	94.07 ±2.67	98.75±1.71
Urban	80.76±3.85	97.62±2.68	82.31 ±1.78	88.29±3.80	99.74±0.31	94.02±0.46	97.42±0.91
WDBC	96.64±3.79	98.09 ± 2.68	98.10±3.70	98.61 ±1.61	98.98±2.20	99.15 ±2.91	98.08±0.89
Wisconsin	96.65±1.31	99.19±1.28	97.86±1.37	98.68±0.44	98.68±0.88	99.12±0.44	99.82 ±0.40
PID	76.17±1.27	80.08 ± 2.49	78.95 ± 1.72	81.84±6.26	85.31 ±1.58	82.53±3.79	84.06±3.34
LR	88.69±2.53	90.14 ± 1.60	88.09 ± 2.62	89.94±10.59	84.15±6.96	90.07 ± 4.46	94.38±0.37
GSAD	99.81 ±6.16	99.04±3.17	97.94±1.57	95.33±4.79	98.06±1.85	97.72±0.40	96.71±0.33
HAR	98.63±5.25	98.86±0.31	98.81 ± 1.24	98.39±0.85	94.17±1.77	99.39±0.15	99.51 ±0.43
_				MACRO-F	1 (%)		
Dataset -	OF(ESAE)	MSPC(ESAE)	KM(ESAE)	JCDR(ESAE)	KM+ICM(ESAE)	JCDR+ICM(ESAE)	DILC-ESAE
AD	56.88±7.64	66.51 ±13.00	67.21±10.51	74.59±7.40	75.00±11.64	74.59 ±7.40	71.86±2.14
LSVT	82.20±9.83	95.24±3.88	90.41 ±2.81	90.62±5.25	92.18±5.96	94.73 ±4.27	95.79±3.97
PD	61.52±2.14	74.01 ±3.53	70.28±2.31	74.28±4.79	70.81 ±3.64	75.96±3.31	77.07 ±2.90
Pendigits	98.94±0.09	99.52±0.17	98.42±0.07	98.37±0.67	98.99±1.47	99.46±0.73	99.55±0.14
Statlog	84.67±1.06	86.45±0.44	82.73±3.57	84.13±2.71	85.95 ±5.78	86.81 ±1.58	87.81 ±1.04
Vehicle	81.96±4.06	84.68±8.11	82.48 ±4.19	90.85±4.46	86.04±4.18	91.54 ±2.59	91.61±3.79
heart	82.22±2.96	91.50±3.12	83.37 ±5.85	91.58±5.16	91.80±2.70	93.29 ±2.95	93.61 ±2.96
Maxlittle	88.14±4.83	91.62±3.56	81.26±8.59	87.30±6.10	87.54±3.67	91.58±2.33	92.43±3.25
Urban	76.41±1.13	79.33±2.32	71.62±2.99	71.74±3.89	74.98±3.13	75.58±4.98	81.31±1.99
WDBC	95.58±3.68	97.69±1.48	97.04±2.89	95.75±2.59	99.32±0.47	96.69 ±1.73	97.15±1.82
Wisconsin	96.37±1.39	98.68±1.01	97.72±1.47	98.56±0.49	98.56±0.49	98.57 ±0.47	99.13±0.80
PID	74.57±1.00	77.76±3.45	71.79±0.84	76.67±6.99	83.17±3.02	77.03±3.33	79.75±3.29
LR	88.85±2.46	90.30±1.49	88.37±2.34	80.35±10.53	84.32±6.69	89.77 ±1.33	91.67 ±2.48
GSAD	99.56±6.58	99.41±2.17	98.68±9.61	55.29±8.89	98.42±1.57	95.24 ±2.58	96.73±0.18
HAR	95.49±5.66	98.71±0.31	95.60±5.79	98.88±1.27	94.25±1.70	98.98±0.57	99.78±0.16
				AUC (%	(b)		
Dataset -	OF(ESAE)	MSPC(ESAE)	KM(ESAE)	JCDR(ESAE)	KM+ICM(ESAE)	JCDR+ICM(ESAE)	DILC-ESAE
AD	63.00±9.08	77.00±9.94	75.50±7.58	80.00±5.86	80.50±8.73	80.00±5.86	82.11±3.74
LSVT	90.08±3.78	94.29±5.27	96.42±8.74	89.29±4.55	91.43±4.96	93.30±5.90	96.62±2.67
PD	67.30±5.96	72.99±4.51	69.89±2.74	73.68±5.38	69.48±3.77	75.50±3.69	79.30±4.94
Pendigits	99.41±0.05	99.73±0.10	99.01 ±0.04	99.08±0.38	99.14±1.49	99.48±0.69	99.75±0.08
Statlog	90.85±0.74	92.74±0.74	90.54±2.18	87.93±1.92	88.62±7.78	89.72±1.56	92.69±0.94
Vehicle	87.92±4.33	83.86±5.48	89.57 ±4.56	91.28±1.59	91.14±3.89	92.99 ±1.29	93.11±0.48
heart	82.25 ±2.83	91.20±3.36	82.95 ±6.05	91.00±4.97	91.70±2.58	92.94 ±2.81	95.68±1.99
Maxlittle	94.38±0.39	94.61 ±1.88	82.74±2.91	94.66±2.47	93.72±2.11	90.31 ±4.22	95.68±1.99
Urban	85.95±4.11	87.75±1.57	78.84±3.22	82.92±2.71	85.14±1.83	98.53±1.37	90.61±1.94
WDBC	96.96±4.12	97.82±1.26	97.35 ±2.31	96.05±2.05	99.14±0.60	96.74±1.54	98.54±1.38
Wisconsin	96.72±1.27	98.94±0.79	97.97±1.62	98.57±0.78	98.57±0.78	98.69±0.72	99.03±0.94
PID	74.53±1.88	77.41 ±3.03	70.22 ±2.10	74.81±8.18	83.23 ±2.70	76.92±3.33	82.94±2.16
LR	94.10±1.31	94.85±0.83	93.80±1.31	79.11±5.53	91.72±6.77	94.33±3.07	97.56±0.14
GSAD	99.61±3.69	99.36±1.66	86.48±7.03	72.81±6.15	93.05±0.92	98.48±0.89	98.52±0.16
				99.08±0.51	96.48±1.17	99.46±0.24	99.67±0.08
HAR	97.30±3.37	99.22 ± 0.19	97.38 ± 3.42				
HAR	97.30±3.37	99.22±0.19	97.38±3.42)		
HAR Dataset	97.30±3.37 OF(ESAE)	99.22±0.19 MSPC(ESAE)	97.38±3.42 KM(ESAE)	AP (%) KM+ICM(ESAE)	JCDR+ICM(ESAE)	DILC-ESAE

LSVT	82.61 ±10.81	96.68±2.66	81.40±14.28	92.57 ±4.71	93.14±5.26	96.33 ±2.47	97.24±2.88
PD	68.15±3.04	75.45 ±5.48	70.21±3.56	73.54±7.31	69.27 ±6.33	76.40±3.14	76.91 ±4.06
Pendigits	99.76±0.05	99.92±0.04	99.88±0.04	99.65 ±0.17	93.23±1.17	99.65 ±0.17	99.92±0.04
Statlog	95.99±0.29	96.69±0.12	95.94±1.01	94.60±1.18	95.98 ± 2.56	95.72±0.21	96.77 ±0.17
Vehicle	91.04 ± 1.45	92.62 ± 1.50	93.31 ±0.80	94.09±3.66	94.17 ± 2.06	95.11±1.56	94.81 ±2.42
heart	79.67 ± 5.26	90.53±5.13	82.99±5.44	89.87 ±9.20	93.24±4.14	93.93±1.76	92.46±5.83
Maxlittle	84.84 ±8.53	90.68 ± 4.64	78.18 ± 11.03	86.23 ± 10.12	88.46 ±4.82	91.61 ±4.61	91.41±3.88
Urban	95.32±1.00	95.58±0.26	91.68±1.94	94.27 ±1.14	94.28 ±0.64	95.17±1.33	95.96±0.43
WDBC	94.64±2.32	97.89 ± 1.79	97.56±1.49	96.61 ±1.75	99.20±0.56	96.96±1.81	97.91±1.05
Wisconsin	93.60 ± 2.46	97.50±2.31	95.49±3.02	97.52±0.73	97.52±0.73	97.38±0.93	98.62±1.63
PID	74.34±4.73	77.95 ± 6.48	73.70±2.91	78.14±4.51	82.72 ± 4.60	78.18 ± 0.77	81.11 ±4.00
LR	99.11±0.20	99.24±0.12	99.10±0.19	98.52 ± 0.99	94.52 ± 2.83	99.41±0.16	99.73±0.22
GSAD	99.74±1.12	99.29 ± 0.84	93.65 ± 3.63	85.85 ± 3.30	96.14 ± 0.26	96.34±0.46	97.10±0.31
HAR	98.41 ± 1.82	99.46±0.22	98.46 ± 1.74	99.43 ± 0.94	97.95±0.96	99.47±0.37	99.78±0.09

C. Comparison on different classifier

1) Comparison with original sample oriented EASE

 $TABLE\ 6$ Comparison sample with correlation information (Best results in each column are highlighted in bold)(%)

Dataset	Measure	OF	Two-ESAE	DILC-ESAE
	ACC	54.00±9.55	53.10±10.90	76.67 ±8.16
AD	MACRO-F1	50.24 ±8.44	51.34±8.44	71.86 ±2.14
AD	AUC	58.04±3.75	55.77 ±5.57	82.11±3.74
	AP	71.46±9.75	67.95 ±2.41	71.86 ±2.14
	Acc	80.48±6.39	87.62 ±7.22	97.62 ±1.68
LSVT	MACRO-F1	76.57 ±4.38	88.33 <u>±</u> 6.96	95.79±3.97
LSVI	AUC	79.02 ±7.72	86.78±8.61	96.62 ± 2.67
	AP	78.08±5.49	91.07±5.71	97.24±2.88
	Acc	98.13±0.05	98.56±0.19	99.54±0.11
Pendigits	MACRO-F1	97.74±0.13	98.42±0.05	99.55±0.14
Pendigits	AUC	99.10±0.18	98.67±0.15	99.75±0.08
	AP	99.56±0.03	98.85±0.03	99.92±0.04
	Acc	95.66±1.52	97.02±3.86	98.08±0.89
WDBC	MACRO-F1	95.23±1.33	96.61 ±1.64	97.15±1.82
WDBC	AUC	96.00±1.80	96.39±0.98	98.54±1.38
	AP	94.15±2.05	96.33±1.01	97.91±1.05
	ACC	85.84±0.16	85.43±0.21	94.38±0.37
LR	MACRO-F1	85.83±0.19	85.40±0.22	91.67 ±2.48
LK	AUC	92.59 ± 0.09	92.37±0.11	97.56±0.14
	AP	98.96 ± 0.02	98.92 ± 0.02	99.73±0.22
	Acc	98.25±0.32	97.55±2.53	99.51±0.43
HAD	MACRO-F1	98.35±0.29	97.20±2.48	99.78±0.16
HAR	AUC	98.99±0.18	96.70±2.40	99.67±0.08
	AP	99.31±0.16	96.14±3.98	99.78±0.09

 $TABLE\ 7$ Comparison of different feature-learning algorithms The bold values indicate the best results, respectively.

				Ac	c (%)			
Dataset	OF	PCA	LDA	LPP	Relief	Lasso	P_value	DILC-ESAE
AD	54.00±9.55	60.00±8.50	62.67 ±4.94	60.67±7.60	54.00±10.90	54.00±9.55	48.67 ±7.67	76.67 ±8.16
LSVT	80.48±6.39	90.48±3.37	87.14±3.61	90.48±3.76	88.57±3.10	76.67±5.16	75.71 ±5.93	97.62±1.68
PD	62.70±1.86	64.94±1.95	64.20±1.74	65.29±1.47	64.08±1.13	62.70±1.86	56.61 ±3.92	75.98±4.29
Pendigits	98.13±0.05	98.07±0.13	97.87 ± 0.23	97.97±0.11	97.82±0.23	98.13±0.05	92.87 ± 1.46	99.54±0.11
Statlog	86.13±0.53	87.23±0.54	87.09±0.63	87.27 ± 0.48	86.10±0.40	86.15±0.51	86.13±0.68	89.42 ±0.81
Vehicle	80.35 ±1.31	82.34±1.05	82.55±0.92	81.77±0.89	78.16±0.19	80.781.05	75.39±0.89	87.36±1.15
heart	78.89 ± 3.42	85.33±2.53	84.67 ±2.14	84.22±3.37	81.78±3.00	78.29 ± 3.42	62.00±4.67	94.67 ±2.98
Maxlittle	84.62±3.92	88.62±2.79	88.62±4.16	86.77 ±4.43	85.85 ± 5.03	85.23 ±4.16	76.62 ± 2.75	98.75 ±1.71
Urban	79.91±3.87	82.40±2.80	83.38±2.10	82.93±2.53	80.18±2.53	79.91 ±3.84	80.44±2.67	97.42±0.91
WDBC	95.66±1.52	97.88±0.84	97.46±0.69	97.35±0.53	97.04±1.43	95.78±1.54	88.78±2.19	98.08±0.89
Wisconsin	96.30±1.72	97.18±1.19	96.83±1.26	97.00±1.18	96.74±1.83	96.30±1.72	93.66±1.67	99.82±0.40
PID	70.40 ± 2.74	72.34±1.98	75.78±3.49	69.67±5.54	73.29±4.51	70.39 ± 2.74	73.91±3.55	84.06±3.34
LR	85.84±0.16	85.30±0.26	85.43±0.21	85.39±0.27	84.89 ± 0.07	85.84±0.16	84.21±0.63	94.38±0.37
GSAD	99.20±0.15	99.27±0.14	99.41±0.10	99.29±0.14	99.19±0.16	99.23±0.13	99.23±0.13	96.71±0.33
HAR	98.25±0.32	98.44±0.28	98.40±0.29	98.43±0.26	98.30±0.26	99.23±0.31	97.92±0.39	99.51±0.43
_				MACF	RO-F1(%)			
Dataset	OF	PCA	LDA	LPP	Relief	Lasso	P_value	DILC-ESAE
AD	50.24±8.44	55.64±4.31	51.73 ±8.81	55.64±4.31	51.44±8.44	55.60±4.26	64.28±3.32	71.86±2.14
LSVT	76.57 ±4.38	76.57±4.38	76.57 ±4.38	76.96±4.62	79.29±7.22	73.21 ±5.84	69.31 ±5.18	95.79±3.97
PD	60.12±1.65	62.95±1.80	63.35±1.58	62.95±1.80	62.72±1.78	62.95 ±1.80	56.80±3.11	77.07 ±2.90
Pendigits	97.74±0.13	98.12±0.12	98.00±0.23	98.09±0.15	98.02±0.16	98.25±0.17	93.24±1.30	99.55±0.14
Statlog	80.98±1.85	93.04±1.13	82.89±0.99	83.14±0.97	82.74±1.15	82.91 ±1.17	82.61 ±1.09	87.81±1.04
Vehicle	80.57±0.56	80.63±0.88	80.75±1.49	80.49±1.01	78.07±0.59	80.56±1.05	75.43±1.19	91.61±3.79
heart	79.95 ±4.23	82.36±4.25	80.62±4.17	78.78 ± 1.60	81.88±3.61	80.60±4.23	64.08 ±4.52	93.61±2.96
Maxlittle	80.30±4.78	80.96±6.37	81.24±6.29	80.96±6.37	80.92±6.72	80.96±6.37	68.90±3.42	92.43±3.25
Urban	76.06±2.12	80.70±1.55	80.75 ±1.52	80.70±1.55	79.68±1.35	80.46±1.91	82.23±3.18	81.31±1.99
WDBC	95.23±1.33	95.23±1.33	95.36±0.76	95.23±1.33	94.81±0.96	95.23±1.33	88.21 ±1.65	97.15±1.82
Wisconsin	95.16±1.59	95.17±2.30	95.75±1.89	95.16±1.59	95.94±1.88	95.16±1.59	93.09±1.66	99.13±0.80
PID	71.23±3.96	73.27±4.01	73.32±4.14	73.77±3.44	71.85±3.21	73.23±3.96	70.30±4.75	79.75±3.29
LR	85.83±0.19	85.24±0.28	85.40±0.22	85.38±0.30	84.87±0.10	85.83±0.19	84.17±0.63	90.18±1.26
GSAD	99.16±0.15	99.16±0.15	99.17±0.14	99.16±0.15	99.03±0.14	99.19±0.14	99.21±0.13	96.73±0.18
HAR	98.35±0.29	98.35±0.29	98.33±0.29	98.35±0.29	98.28±0.26	98.34±0.29	98.00±0.38	99.78±0.16
				AU	C (%)			
Dataset	OF	PCA	LDA	LPP	Relief	Lasso	P_value	DILC-ESAE
AD	58.04±3.75	57.78±5.79	55.52±6.56	57.78±5.79	55.91±5.57	59.09±7.08	67.46±4.93	82.11±3.74
LSVT	79.02±7.72	79.01 ±7.72	79.02±7.72	79.65±8.43	83.56±9.43	76.06±2.36	60.63±11.01	96.62±2.67
PD	60.14±3.58	64.30±3.35	63.83±2.61	64.30±3.65	64.25±3.71	64.30±3.35	56.83±3.76	79.30±4.94
Pendigits	99.10±0.18	99.02±0.12	98.96±0.16	98.95±0.06	97.95±0.15	99.06±0.14	96.45±0.70	99.75±0.08
Statlog	90.36±0.75	90.50±0.87	90.45 ±0.62	90.55±0.91	90.39±0.82	90.43 ±0.83	90.26±0.77	92.69±0.94
Vehicle	87.29±0.68	87.28±0.70	87.33±0.03	87.24±0.70	85.19±0.33	87.35±0.73	84.78±1.85	93.11±0.48
heart	81.64±5.54	85.19±5.27	82.46±4.15	82.50±5.23	84.47±5.99	82.50±5.23	66.72±4.65	95.68±1.99
Maxlittle	93.34±0.94	93.48±1.03	93.64±0.92	93.49±1.03	93.23±0.69	93.49±1.03	56.67±14.91	95.68±1.99
Urban	89.48±1.00	89.48±1.00	89.79±1.07	89.48±1.00	88.99±1.08	89.68±1.26	89.57±1.71	90.61±1.94

WDBC	96.00±1.80	96.82±1.40	96.78±2.08	96.82±1.40	96.16±2.74	96.82±1.40	93.07 ±2.24	98.54±1.38
Wisconsin	95.81 ±1.61	96.43±1.62	96.35 ± 1.49	95.46±2.06	96.73±1.33	95.46±2.06	96.35 ± 2.02	99.03±0.94
PID	73.51 ±4.11	73.37 ± 2.40	74.45 ± 2.49	73.66±2.15	72.91±4.16	73.94±1.86	73.29 ±4.72	82.94±2.16
LR	92.59±0.09	92.28±0.14	92.37±0.11	92.35 ± 0.14	92.09±0.04	92.59±0.09	91.73±0.33	97.56±0.14
GSAD	99.48±0.09	99.48±0.09	99.48±0.08	99.48±0.09	99.37±0.08	99.49±0.09	99.51±0.09	98.52±0.16
HAR	98.99±0.18	98.99±0.18	98.99±0.18	98.99±0.18	98.95±0.16	98.99±0.18	98.79±0.23	99.67±0.08
				AI	P (%)			
Dataset	OF	PCA	LDA	LPP	Relief	Lasso	P_value	DILC-ESAE
AD	71.46±9.75	66.92±4.43	63.93 ±8.47	66.92±4.44	67.65±2.41	67.06±4.54	70.75±3.72	71.86±2.14
LSVT	78.08 ± 5.49	78.08 ± 5.49	80.09 ± 7.97	78.07±6.66	80.78±6.72	75.47 ±7.60	76.07±6.73	97.24±2.88
PD	60.18±3.32	62.10±3.95	62.46±3.78	62.10±3.95	61.63±3.93	62.10±3.95	57.01 ±3.35	76.91 ±4.06
Pendigits	99.56±0.03	99.61 ±0.04	99.58±0.04	99.61±0.03	99.59±0.05	99.65±0.02	98.60±0.33	99.92±0.04
Statlog	95.28±0.24	90.70±0.32	95.67±0.28	95.74±0.32	95.57±0.29	95.67±0.36	95.61 ±0.33	96.77 ±0.17
Vehicle	89.93±1.01	90.64±0.49	90.80±0.75	90.73±0.55	89.48±0.45	90.90±0.74	88.23±0.89	94.81 ±2.42
heart	77.70±7.72	79.57±7.38	78.35 ±7.39	77.70±7.72	81.96±4.92	77.70±7.72	67.90±3.38	92.46±5.83
Maxlittle	77.01 ±5.23	79.91 ±5.00	80.83 ±5.17	79.91±5.00	80.84±6.36	79.91 ±5.00	43.27 ±4.08	91.41±3.88
Urban	94.01 ±0.84	95.81±0.72	95.84±0.61	95.81±0.72	95.75±0.66	95.75±0.66	95.76±0.97	95.96±0.43
WDBC	94.15 ±2.05	95.15±2.05	93.95±1.66	94.15±2.05	93.14±1.63	94.15 ±2.05	83.90±2.88.	97.91 ±1.05
Wisconsin	92.41 ±2.71	91.82±3.37	93.00±3.90	92.41 ±2.71	92.68±4.11	92.41 ±2.71	90.34±2.84	98.62±1.63
PID	74.08±5.54	75.12±4.28	73.72 ±±5.40	74.90±3.91	72.68 ± 2.20	74.08 ± 5.54	72.56±4.85	81.11 ±4.00
LR	98.96±0.02	98.92±0.02	98.92±0.02	98.93±0.01	98.88±0.01	98.96±0.02	98.83±0.05	99.73±0.22
GSAD	99.59±0.05	99.59±0.05	99.60±0.04	99.59±0.05	99.57±0.06	99.60±0.05	99.60±0.09	97.10±0.31
HAR	99.31±0.16	99.31±0.16	99.30±0.15	99.31±0.16	99.27±0.13	99.30±0.13	99.12±0.14	99.78±0.09

3) Comparison with the state-of-the-art stacked autoencoders

 $\label{table 8} {\bf Compare\ the\ performance\ of\ different\ autoencoder\ algorithms}$

							Acc (%)				
Dataset	CCAF	CDCAE	GDG A F	ESGSAE-	CCTAE	WCLAF	DCAE	COAF	S-	AAMRS	DILC-
	SSAE	SDSAE	SPSAE	FF	GSTAE	WGLAE	DSAE	SGAE	MMAE	AE	ESAE
4.0	56.67±5.2	55.58±4.	57.78±4.2	67.33±2.4	71.11±8.1	52.67±5.4	56.67±5.2	56.11±1.	48.80±4.	53.33 ±	76.67 ±8.
AD	7	36	7	9	6	8	7	07	52	7.48	16
LCVT	83.33±5.8	76.62±5.	84.33±5.3	92.76±0.6	84.66±4.3	75.71 ± 5.4	72.38±5.4	71.59±5.	$79.52 \pm$	85.71 \pm	97.62±1.
LSVT	3	29	6	2	2	3	8	77	5.75	7.22	68
PD	64.48±2.0	64.88±1.	64.22±2.3	66.72±0.8	73.89±4.2	64.00±6.8	59.63±3.1	63.88±1.	$53.79~\pm$	$63.45~\pm$	75.98±4.
PD	5	84	4	7	7	1	4	71	2.73	3.09	29
Pendigit	93.80±0.5	75.17±1.	91.60	98.00	93.53±0.7	98.85±1.2	92.53±1.2	90.33±0.	93.42±0.	98.98 \pm	99.54±0.
S	1	88	±0.57	±0.12	7	4	2	30	33	0.21	11
Statles	84.85±0.8	98.60±0.	$85.87\pm$	87.28±0.1	85.42±0.3	99.83±0.1	85.31±0.5	74.13 ±0.	86.13±0.	$87.85~\pm$	89.42±0.
Statlog	4	34	0.86	2	8	2	0	24	53	0.45	81
Vehicle	70.00±2.9	72.00 <u>+</u> 2.	74.76±2.9	81.91±0.4	79.71 <u>+</u> 2.9	83.48±12.	55.25 ±2.2	65.86±0.	75.39±0.	$75.04~\pm$	87.36±1.
venicie	9	25	3	2	3	53	2	23	89	1.64	15
boomt	82.89 ± 3.2	94.58 \pm	88.90±2.5	84.67±1.9	82.56±3.5	80.22±9.2	82.67 ±1.2	69.67±3.	$68.67~\pm$	81.11 \pm	94.67 ±2.
heart	0	0.53	3	9	5	1	7	60	10.31	2.43	98
Maxlittl	92.92±4.1	$83.65 \pm$	91.93±4.2	92.00±3.3	92.15±4.9	89.54±6.1	81.23 ±1.2	88.97 <u>+2</u> .	75.38	$82.46~\pm$	98.75±1.
e	6	0.71	2	4	4	0	9	86	±0.17	0.75	71
Urban	98.89±0.1	93.20±1.	77.81 ± 1.1	83.20±1.0	76.98±0.7	72.53±8.6	70.49 ±2.7	82.90±0.	72.91±3.	$78.04~\pm$	97.42±0.
Orban	7	17	7	1	3	3	5	15	84	2.40	91

	93.02±5.0	95.77±0.	93.03±2.4	99.81±0.4	99.34±1.2	95.05±5.9	94.29±1.9	90.65±0.	90.16 ±	96.51 ±	98.08±0.
WDBC	9	<i>)</i> 3.77 <u>±</u> 0.	9	5	7).54 <u>±1.2</u>	9	6	26	2.36	0.72	89
Wiscons	97.71±1.2	97.65±0.	96.62±2.4	97.09±1.3	96.92±1.5	97.19±2.4	96.32±0.8	88.97±0.	96.12 ±	96.39 ±	99.82±0.
in	97.71±1.2 2	97.05±0.	90.02±2.4 0	97.09±1.3	90.92±1.3	97.19±2.4	90.32±0.8	52 52		90.39 ±	99.82±0.
111									1.56		
PID	76.41±3.2	76.17±1.	78.76±3.6	72.27±3.4	77.81 ±2.8	95.19±4.6	69.30±1.6	73.29±1.	65.00 ±	75.08 ±	84.06±3.
I.D.	0	03	2	6	4	0 0 10 1 5	0	83	0.19	2.92	34
LR	91.38±1.7	93.20±1.	94.88±0.1	95.55±0.7	92.10±0.9	96.18±1.5	89.50±2.0	84.30±0.	72.52	84.21	94.38±0.
	1	17	2	8	9	5	8	05	±1.35	±0.63	37
GSAD	95.78±0.6	95.77±0.	98.89±0.5	99.07 ±0.3	97.42±0.4	98.78±0.1	91.17 ±4.3	87.86±1.	91.17±1.	99.20 ±	96.71 ±0.
	3	17	9	6	3	7	1	22	33	0.18	33
HAR	98.82±1.1	97.36±0.	98.13±0.4	97.81±0.1	98.22±1.1	99.02±0.1	97.88±0.9	97.03 ±4.	97.42	98.90	99.51±0.
	9	72	5	8	0	1	0	18	±0.33	±0.23	43
							MACRO-F1	(%)			
Dataset	SSAE	SDSAE	SPSAE	ESGSAE-	GSTAE	WGLAE	DSAE	SGAE	S-	AAMRS	DILC-
	SSAE	SDSAL	SESAL	FF	GSTAL	WOLAE	DSAL	SOAL	MMAE	AE	ESAE
4.5	64.51±5.4	66.99±6.	67.02±2.1	69.32±9.4	67.19±8.2	42.78±8.4	54.21 ±5.9	66.67±3.	45.19±4.	42.64 ±	71.86±2.
AD	8	60	1	7	1	9	4	24	30	5.11	14
	80.36±6.3	72.60±2.	81.87±8.5	88.92±5.5	63.25 ±4.8	73.32±6.3	66.70±10.	78.53 ±2.	$75.77 \pm$	85.44 ±	95.79±3.
LSVT	5	22	2	6	9	0	12	20	7.64	7.53	97
	76.54±3.2	63.47±1.	63.93±6.8	68.09±2.0	67.10±5.9	63.87±6.8	58.73±3.5	65.21±9.	53.11 ±	63.33 ±	77.07 ±2.
PD	1	69	0	0	1	2	2	46	2.60	3.01	90
Pendigit	91.27±2.2	73.20±2.	91.51±2.4	99.36±0.3	91.68±0.8	98.84±1.2	92.56±1.2	91.51±0.	91.57±0.	98.98 ±	99.55±0.
s	6	30	9	4	2	6	3	40	32	0.21	14
_	70.39±2.6	72.62±6.	75.75±3.2	82.76±0.8	81.71±1.1	99.80±0.1	81.78±0.4	75.55 ±4.	82.61±1.	87.61 ±	87.81±1.
Statlog	1	69	8	0	6	3	3	69	09	0.50	04
	71.54±4.5	74.75±5.	70.19±4.2	73.56±8.6	70.41±3.3	82.58±13.	53.42±1.3	68.27 ±6.	70.43±1.	73.75 ±	91.61±3.
Vehicle	71.54 <u>-</u> 4.5	12	3	4	3	96	3	24	19	1.79	79.01±3.
	82.83±3.0		81.24±4.6	84.53z±2.	82.54±4.8	78.95±10.	81.90±1.2	57.16±4.			93.61±2.
heart		79.44±1.							63.47 ±	81.05 ±	
N. 111	6	48	1	04	4	43	6	00	1.69	2.37	96
Maxlittl	90.63±5.5	85.13±1.	87.02±5.1	89.09±4.8	95.95±5.0	83.06±8.4	70.88±2.8	84.29 ±2.	64.80	79.13 ±	92.43±3.
e	7	64	0	7	4	5	8	52	±1.22	1.15	25
Urban	79.07±16.	72.30±0.	78.29±2.9	76.09±5.7	72.51 ± 1.3	61.58±9.3	61.28±4.7	81.22 ±4.	72.51 ±0.	77.89 ±	81.31±1.
	10	51	2	2	7	3	7	89	37	2.47	99
WDBC	93.35±4.3	95.05±4.	94.36±3.3	94.44±2.6	94.30±1.0	94.91 ±6.0	93.84±2.0	92.83±3.	89.78 ±	96.50 ±	97.15±1.
	7	18	9	5	1	5	9	42	2.61	0.72	82
Wiscons	97.58 ± 1.2	97.46±0.	96.81±1.1	96.91±1.3	95.51 ±1.9	96.97±2.6	95.91 ±0.9	84.29 ±4.	$96.14 \pm$	96.39 ±	99.13±0.
in	1	21	6	0	8	2	3	81	1.54	1.19	80
PID	74.80 ± 2.6	73.76±0.	82.04 ±4.0	68.22±3.9	69.52±6.9	94.92±4.5	64.08 ± 1.3	$66.52\pm7.$	$51.21 \pm$	$74.38~\pm$	79.75±3.
TID	5	32	6	7	6	1	1	74	0.24	3.52	29
LR	90.28±1.4	95.59±3.	96.28±1.7	96.34±3.0	83.27 ±2.2	92.29±2.7	89.74±4.3	87.41 ±0.	72.63	84.17	90.18±1.
	8	49	6	5	7	9	2	01	± 1.23	±0.63	26
GSAD	93.68±3.2	97.83±1.	99.39±0.5	99.37±0.1	95.35±2.0	93.76±0.9	91.36±1.6	89.50±0.	95.35±0.	99.20 ±	96.73 ±0.
	5	96	3	6	4	4	5	69	97	0.18	18
HAR	95.66±1.1	98.18±1.	98.72±0.3	99.08±0.6	97.39±0.3	93.24±1.5	97.31±3.3	96.60±3.	95.35	98.90	99.78±0.
	6	75	7	9	7	7	7	57	±0.67	±0.33	16
							AUC (%)				
Detect				ESGSAE-			-100 (70)		S-	AAMRS	DILC-
Dataset			SPSAE	LUUD/AL-	GSTAE					4 24 2171110	2110

AD	71.36±4.5	52.00±4.	58.19±2.2	79.00±12.	75.27±4.6	37.67±0.9	48.49±2.3	62.81±3.	68.47 ±6.	63.33 ±	82.11±3.
AD	2	47	7	94	9	6	7	00	29	3.26	74
LSVT	89.24±4.6	66.07±3.	77.50±12.	61.43±19.	75.50±5.0	76.00±7.8	67.86±9.4	66.43 ±4.	$88.06~\pm$	$86.73~\pm$	96.62±2.
LSVI	4	09	28	50	2	3	5	76	6.70	7.47	67
DD.	63.93±8.7	60.73 <u>±</u> 2.	63.93±6.8	67.87 ±2.0	71.72±3.8	64.13±7.0	60.06 ± 2.8	63.35 ±2.	$55.34 \pm$	$68.82~\pm$	79.30±4.
PD	5	72	0	0	3	9	6	61	2.79	4.04	94
Pendigit	89.42±11.	68.64±1.	93.29±1.7	99.09±0.1	81.42±0.7	89.41±0.6	86.08±0.6	94.35±0.	89.31±0.	99.92 ±	99.75±0.
s	35	21	3	9	2	4	8	37	46	0.02	08
G. d	78.35±2.1	80.11±5.	87.72±3.1	89.62±0.4	89.36±0.7	83.25±0.0	74.19±0.2	84.42±0.	90.26±0.	98.12 ±	92.69±0.
Statlog	7	06	7	6	4	6	7	82	77	0.27	94
	72.24±5.7	67.51±3.	70.96±1.2	82.48±5.5	74.80±2.1	66.68±6.4	54.36±1.4	60.19±3.	84.78±1.	92.45 ±	93.11±0.
Vehicle	1	54	4	9	5	8	0	21	85	0.94	48
	82.90±3.0	84.90±1.	87.16±1.9	84.25±1.9	85.25 ±4.2	80.24±0.8	81.46±1.2	60.19±5.	80.65 ±	89.34 ±	95.68±1.
heart	5	62	8	0	4	6	1	32	4.85	1.80	99
Maxlittl	90.68±6.7	84.12±6.	86.52±8.2	87.54±7.4	77.19±10.	85.24±9.8	68.50±2.9	80.77±3.	81.22 ±	84.52 ±	95.68±1.
e	0	31	9	9	06	5	8	79	4.94	3.37	99
	79.92±11.	67.32±1.	75.69±6.7	85.17±3.8	90.15±1.4	72.68±5.5	70.05 ±2.3	80.03 <u>±</u> 0.	89.57±1.	96.83 ±	90.61 ±1.
Urban	90	12	2	9	3	3	5	53	71	0.49	94
	93.87±3.6	95.25±3.	96.13±1.3	96.94±2.8	95.07±0.6	95.32±5.5	94.23±1.7	95.57±3.	97.54 ±	99.29 ±	98.54±1.
WDBC	0	17	9	5	2	2	9	24	1.15	0.23	38
Wiscons	98.13±0.8	97.71±0.	96.60±1.4	97.42±1.0	96.74±1.3	97.07±1.8	95.95±0.6	80.77±3.	99.10 ±	99.47 ±	99.03±0.
in	6	27	8	4	4	2	6	79	0.46	0.39	94
111	74.14±3.1	73.24±1.	78.30±4.3	66.41 ±4.4	71.92±4.0	95.40±3.7	63.72±1.2	60.78±3.	46.04 ±	80.67 ±	82.94±2.
PID	2	21	9	7	6	75.40 ±5.7	7	80	11.90	4.00	16
LR	91.64±1.2	96.52±0.	95.57±1.7	98.08±0.8	91.81±3.0	91.39±1.2	89.93±3.7	85.19±5.	97.56	91.73	97.56±0.
	8	54 54	5 5	3	4	7	9	29	± 0.24	±0.33	77.30 <u>±</u> 0.
GSAD	96.06±0.1	98.48±0.	99.26±0.0	99.10±0.2	95.75±2.5	87.19±3.0	92.82±1.1	94.46±0.	94.51±	99.87 ±	98.52±0.
USAD	90.00±0.1	98.48±0. 34		99.10±0.2 8	93.73±2.3 9	9	92.82±1.1 1				
	9		1	0				14 95.15±0.	0.09	0.06	16
TIAD	06.20 :0.8		00.42.0.2	00.07.0.0				97.17#1			
HAR	96.39±0.8	98.23±1.		98.97±0.9			94.63±1.2		95.75	99.97	99.67±0.
HAR	96.39±0.8 7		98.42±0.3	98.97 <u>±</u> 0.9	97.17±1.8 8	0	4	58	95.75 ±0.23	99.97 ±0.21	99.67 ±0.
HAR		98.23±1.		4					±0.23	±0.21	08
HAR Dataset		98.23±1.		4 ESGSAE-			4		±0.23		08
	7	98.23±1. 38	4 SPSAE	4 ESGSAE- FF	8	0 WGLAE	4 AP (%)	58	±0.23	±0.21	08
Dataset	7	98.23±1. 38	4	4 ESGSAE-	8	0	4 AP (%)	58	±0.23	±0.21	DILC- ESAE
	7 SSAE	98.23±1. 38 SDSAE	4 SPSAE	4 ESGSAE- FF	8 GSTAE	0 WGLAE	4 AP (%) DSAE	58 SGAE	±0.23 S- MMAE	±0.21 AAMRS AE	DILC- ESAE
Dataset	7 SSAE 80.34±6.1 2 83.66±3.7	98.23±1. 38 SDSAE 60.49±7.	4 SPSAE 67.05±3.4	4 ESGSAE- FF 72.07±9.2	8 GSTAE 69.36±11.	0 WGLAE 39.20±9.9	4 AP (%) DSAE 45.81±9.1	58 SGAE 58.02±2.	±0.23 S- MMAE 55.90±6.	±0.21 AAMRS AE 46.62 ±	08 DILC- ESAE 71.86±2.
Dataset	7 SSAE 80.34±6.1 2	98.23±1. 38 SDSAE 60.49±7. 78	4 SPSAE 67.05±3.4 0	4 ESGSAE- FF 72.07±9.2 3	8 GSTAE 69.36±11. 84	0 WGLAE 39.20±9.9 6	4 AP (%) DSAE 45.81±9.1 3	58 SGAE 58.02±2. 78	±0.23 S- MMAE 55.90±6. 75	±0.21 AAMRS AE 46.62 ± 1.87	08 DILC- ESAE 71.86±2. 14
Dataset AD LSVT	7 SSAE 80.34±6.1 2 83.66±3.7	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7.	4 SPSAE 67.05±3.4 0 84.53±10.	4 ESGSAE- FF 72.07±9.2 3 76.71±16.	8 GSTAE 69.36±11. 84 93.68±16.	0 WGLAE 39.20±9.9 6 82.31±5.6	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8	58 SGAE 58.02 ±2. 78 76.66 ±4.	±0.23 S- MMAE 55.90±6. 75 92.00 ±	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ±	DILC- ESAE 71.86 ±2. 14 97.24 ±2. 88
Dataset	7 SSAE 80.34±6.1 2 83.66±3.7 2	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65	4 SPSAE 67.05±3.4 0 84.53±10.	4 ESGSAE- FF 72.07±9.2 3 76.71±16.	8 GSTAE 69.36±11. 84 93.68±16. 47	0 WGLAE 39.20±9.9 6 82.31±5.6 4	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5	58 SGAE 58.02 ±2. 78 76.66 ±4. 45	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47	DILC- ESAE 71.86 ±2. 14 97.24 ±2. 88
Dataset AD LSVT	7 SSAE 80.34±6.1 2 83.66±3.7 2 61.76±10.	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65 60.38±1.	4 SPSAE 67.05±3.4 0 84.53±10. 63 61.50±5.6	4 ESGSAE- FF 72.07±9.2 3 76.71±16. 15 67.46±2.0	8 GSTAE 69.36±11. 84 93.68±16. 47 74.59±3.9	0 WGLAE 39.20±9.9 6 82.31±5.6 4 58.39±4.1	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5 55.79±3.6	58 SGAE 58.02 ±2. 78 76.66 ±4. 45 64.73 ±3.	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06 53.68 ±	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47 66.10 ±	08 DILC- ESAE 71.86 ±2. 14 97.24 ±2. 88 76.91 ±4. 06
AD LSVT PD	7 SSAE 80.34±6.1 2 83.66±3.7 2 61.76±10. 18	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65 60.38±1. 70	4 SPSAE 67.05±3.4 0 84.53±10. 63 61.50±5.6 8	4 ESGSAE- FF 72.07±9.2 3 76.71±16. 15 67.46±2.0 3	8 GSTAE 69.36±11. 84 93.68±16. 47 74.59±3.9	0 WGLAE 39.20±9.9 6 82.31±5.6 4 58.39±4.1	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5 55.79±3.6 0	58 SGAE 58.02±2. 78 76.66±4. 45 64.73±3. 30	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06 53.68 ± 1.76	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47 66.10 ± 4.40	08 DILC- ESAE 71.86±2. 14 97.24±2. 88 76.91±4.
Dataset AD LSVT PD Pendigit s	7 SSAE 80.34±6.1 2 83.66±3.7 2 61.76±10. 18 92.49±4.1	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65 60.38±1. 70 88.53±0.	4 SPSAE 67.05 ±3.4 0 84.53 ±10. 63 61.50 ±5.6 8 94.35 ±0.1	4 ESGSAE- FF 72.07±9.2 3 76.71±16. 15 67.46±2.0 3 99.57±0.0	8 GSTAE 69.36±11. 84 93.68±16. 47 74.59±3.9 4 90.31±0.9	0 WGLAE 39.20±9.9 6 82.31±5.6 4 58.39±4.1 2 88.99±1.1	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5 55.79±3.6 0 82.64±1.2	58 SGAE 58.02 ±2. 78 76.66 ±4. 45 64.73 ±3. 30 87.31 ±0.	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06 53.68 ± 1.76 92.38±0.	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47 66.10 ± 4.40 99.92 ±	08 DILC- ESAE 71.86±2. 14 97.24±2. 88 76.91±4. 06 99.92±0.
Dataset AD LSVT PD Pendigit	7 SSAE 80.34±6.1 2 83.66±3.7 2 61.76±10. 18 92.49±4.1 8	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65 60.38±1. 70 88.53±0. 52	4 SPSAE 67.05±3.4 0 84.53±10. 63 61.50±5.6 8 94.35±0.1 6	4 ESGSAE- FF 72.07±9.2 3 76.71±16. 15 67.46±2.0 3 99.57±0.0	8 GSTAE 69.36±11. 84 93.68±16. 47 74.59±3.9 4 90.31±0.9 0	0 WGLAE 39.20±9.9 6 82.31±5.6 4 58.39±4.1 2 88.99±1.1	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5 55.79±3.6 0 82.64±1.2 5	58 SGAE 58.02 ±2. 78 76.66 ±4. 45 64.73 ±3. 30 87.31 ±0. 57	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06 53.68 ± 1.76 92.38±0. 47	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47 66.10 ± 4.40 99.92 ± 0.02	08 DILC- ESAE 71.86 ±2. 14 97.24 ±2. 88 76.91 ±4. 06 99.92 ±0. 04
Dataset AD LSVT PD Pendigit s Statlog	7 SSAE 80.34±6.1 2 83.66±3.7 2 61.76±10. 18 92.49±4.1 8 90.58±1.0	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65 60.38±1. 70 88.53±0. 52 90.93±2.	4 SPSAE 67.05 ±3.4 0 84.53 ±10. 63 61.50 ±5.6 8 94.35 ±0.1 6 91.16 ±1.9	4 ESGSAE- FF 72.07±9.2 3 76.71±16. 15 67.46±2.0 3 99.57±0.0 9 95.46±0.2	8 GSTAE 69.36±11. 84 93.68±16. 47 74.59±3.9 4 90.31±0.9 0 97.94±0.6	0 WGLAE 39.20±9.9 6 82.31±5.6 4 58.39±4.1 2 88.99±1.1 0 83.14±0.1	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5 55.79±3.6 0 82.64±1.2 5 69.43±0.6	58 SGAE 58.02 ±2. 78 76.66 ±4. 45 64.73 ±3. 30 87.31 ±0. 57 86.75 ±6.	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06 53.68 ± 1.76 92.38±0. 47 85.61±0.	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47 66.10 ± 4.40 99.92 ± 0.02 90.53 ±	08 DILC- ESAE 71.86 ±2. 14 97.24 ±2. 88 76.91 ±4. 06 99.92 ±0. 04 96.77 ±0.
Dataset AD LSVT PD Pendigit s	7 SSAE 80.34±6.1 2 83.66±3.7 2 61.76±10. 18 92.49±4.1 8 90.58±1.0 3	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65 60.38±1. 70 88.53±0. 52 90.93±2. 29	4 SPSAE 67.05±3.4 0 84.53±10. 63 61.50±5.6 8 94.35±0.1 6 91.16±1.9 5	4 ESGSAE- FF 72.07±9.2 3 76.71±16. 15 67.46±2.0 3 99.57±0.0 9 95.46±0.2 4	8 GSTAE 69.36±11. 84 93.68±16. 47 74.59±3.9 4 90.31±0.9 0 97.94±0.6 5	0 WGLAE 39.20±9.9 6 82.31±5.6 4 58.39±4.1 2 88.99±1.1 0 83.14±0.1	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5 55.79±3.6 0 82.64±1.2 5 69.43±0.6 1	58 SGAE 58.02 ±2. 78 76.66 ±4. 45 64.73 ±3. 30 87.31 ±0. 57 86.75 ±6. 04	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06 53.68 ± 1.76 92.38±0. 47 85.61±0. 33	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47 66.10 ± 4.40 99.92 ± 0.02 90.53 ± 0.95	08 DILC- ESAE 71.86 ±2. 14 97.24 ±2. 88 76.91 ±4. 06 99.92 ±0. 04 96.77 ±0.
Dataset AD LSVT PD Pendigit s Statlog Vehicle	7 SSAE 80.34±6.1 2 83.66±3.7 2 61.76±10. 18 92.49±4.1 8 90.58±1.0 3 73.11±3.9	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65 60.38±1. 70 88.53±0. 52 90.93±2. 29 76.13±2.	4 SPSAE 67.05±3.4 0 84.53±10. 63 61.50±5.6 8 94.35±0.1 6 91.16±1.9 5 79.74±2.9	4 ESGSAE- FF 72.07±9.2 3 76.71±16. 15 67.46±2.0 3 99.57±0.0 9 95.46±0.2 4 87.11±4.5	8 GSTAE 69.36±11. 84 93.68±16. 47 74.59±3.9 4 90.31±0.9 0 97.94±0.6 5 74.46±3.6	0 WGLAE 39.20±9.9 6 82.31±5.6 4 58.39±4.1 2 88.99±1.1 0 83.14±0.1 7 64.01±11.	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5 55.79±3.6 0 82.64±1.2 5 69.43±0.6 1 42.22±1.9	58 SGAE 58.02 ±2. 78 76.66 ±4. 45 64.73 ±3. 30 87.31 ±0. 57 86.75 ±6. 04 69.43 ±3.	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06 53.68 ± 1.76 92.38±0. 47 85.61±0. 33 78.23±0.	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47 66.10 ± 4.40 99.92 ± 0.02 90.53 ± 0.95 79.30 ±	08 DILC- ESAE 71.86 ±2. 14 97.24 ±2. 88 76.91 ±4. 06 99.92 ±0. 04 96.77 ±0. 17 94.81 ±2. 42
Dataset AD LSVT PD Pendigit s Statlog	7 SSAE 80.34±6.1 2 83.66±3.7 2 61.76±10. 18 92.49±4.1 8 90.58±1.0 3 73.11±3.9 1	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65 60.38±1. 70 88.53±0. 52 90.93±2. 29 76.13±2. 76	4 SPSAE 67.05±3.4 0 84.53±10. 63 61.50±5.6 8 94.35±0.1 6 91.16±1.9 5 79.74±2.9 6	4 ESGSAE- FF 72.07±9.2 3 76.71±16. 15 67.46±2.0 3 99.57±0.0 9 95.46±0.2 4 87.11±4.5 2	8 GSTAE 69.36±11. 84 93.68±16. 47 74.59±3.9 4 90.31±0.9 0 97.94±0.6 5 74.46±3.6 8	0 WGLAE 39.20±9.9 6 82.31±5.6 4 58.39±4.1 2 88.99±1.1 0 83.14±0.1 7 64.01±11.	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5 55.79±3.6 0 82.64±1.2 5 69.43±0.6 1 42.22±1.9 7	58 SGAE 58.02 ±2. 78 76.66 ±4. 45 64.73 ±3. 30 87.31 ±0. 57 86.75 ±6. 04 69.43 ±3. 49	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06 53.68 ± 1.76 92.38±0. 47 85.61±0. 33 78.23±0. 89	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47 66.10 ± 4.40 99.92 ± 0.02 90.53 ± 0.95 79.30 ± 2.62	08 DILC- ESAE 71.86 ±2. 14 97.24 ±2. 88 76.91 ±4. 06 99.92 ±0. 04 96.77 ±0. 17 94.81 ±2. 42
Dataset AD LSVT PD Pendigit s Statlog Vehicle	7 SSAE 80.34±6.1 2 83.66±3.7 2 61.76±10. 18 92.49±4.1 8 90.58±1.0 3 73.11±3.9 1 79.73±4.2	98.23±1. 38 SDSAE 60.49±7. 78 75.09±7. 65 60.38±1. 70 88.53±0. 52 90.93±2. 29 76.13±2. 76 82.96±2.	4 SPSAE 67.05±3.4 0 84.53±10. 63 61.50±5.6 8 94.35±0.1 6 91.16±1.9 5 79.74±2.9 6 72.83±2.0	4 ESGSAE- FF 72.07±9.2 3 76.71±16. 15 67.46±2.0 3 99.57±0.0 9 95.46±0.2 4 87.11±4.5 2 82.09±4.7	8 GSTAE 69.36±11. 84 93.68±16. 47 74.59±3.9 4 90.31±0.9 0 97.94±0.6 5 74.46±3.6 8 88.83±6.5	0 WGLAE 39.20±9.9 6 82.31±5.6 4 58.39±4.1 2 88.99±1.1 0 83.14±0.1 7 64.01±11. 43 68.34±15.	4 AP (%) DSAE 45.81±9.1 3 76.45±5.8 5 55.79±3.6 0 82.64±1.2 5 69.43±0.6 1 42.22±1.9 7 72.62±2.0	58 SGAE 58.02 ±2. 78 76.66 ±4. 45 64.73 ±3. 30 87.31 ±0. 57 86.75 ±6. 04 69.43 ±3. 49 60.02 ±5.	±0.23 S- MMAE 55.90±6. 75 92.00 ± 5.06 53.68 ± 1.76 92.38±0. 47 85.61±0. 33 78.23±0. 89 85.00 ±	±0.21 AAMRS AE 46.62 ± 1.87 91.47 ± 5.47 66.10 ± 4.40 99.92 ± 0.02 90.53 ± 0.95 79.30 ± 2.62 90.93 ±	08 DILC- ESAE 71.86±2. 14 97.24±2. 88 76.91±4. 06 99.92±0. 04 96.77±0. 17 94.81±2. 42 92.46±5.

Urban	93.07±3.6	89.13±0.	92.67 ± 2.8	94.62±1.5	96.18±6.6	63.70 ± 9.5	60.09 ± 1.9	82.57 ± 5 .	78.76±0.	$82.89~\pm$	95.96±0.
Orban	6	54	5	9	5	3	8	36	97	1.55	43
WDDC	95.05±1.6	96.51±0.	96.38±2.1	97.50±5.5	96.75±2.3	90.59±8.5	87.39±4.6	98.04±1.	$98.30~\pm$	99.54 ±	97.91 ±1.
WDBC	2	92	8	0	0	9	2	09	0.98	0.17	05
Wiscons	96.91±2.3	96.45±1.	92.35±2.5	94.97±1.4	94.66±3.6	93.98±6.1	91.46±2.6	80.73±3.	99.55 ±	99.74 ±	98.62±1.
in	9	55	0	4	1	5	7	60	0.26	0.18	63
DID	74.36±6.3	72.31±3.	76.70±4.6	71.04±3.5	75.64±4.6	89.83±8.1	66.60±3.7	61.21±5.	$62.36 \pm$	$87.98~\pm$	81.11 ±4.
PID	5	81	1	6	9	0	8	93	7.19	2.81	00
LR	93.73±3.1	98.08±1.	98.16±0.7	99.33±0.9	93.99±4.6	93.45±1.5	92.72±3.4	84.17±0.	78.61	98.83	99.73±0.
	6	54	2	4	1	8	8	46	± 1.57	±0.05	22
GSAD	97.53±0.8	99.22±0.	99.62±0.2	99.30±0.3	95.85±2.5	90.39±1.6	96.68±0.2	90.35±0.	94.60±	99.62 \pm	97.10±0.
	5	32	6	9	9	5	1	23	0.09	0.16	31
HAR	97.68±0.1	98.70±0.	98.55±1.0	99.35±0.0	99.34±1.0	85.90±1.2	96.36±3.3	94.22±3.	95.85	99.86	99.78±0.
	0	65	9	8	7	6	3	00	±0.41	±0.42	09

4) Model Visualization and Convergence Analysis.

Fig.7. Visualization of the embedding space learned by different methods on the Statlog dataset, and the final output of the encoder is used as the visual embedding. Different colors correspond to different classes.

D. Parameter analysis

1) Effect of the MSPC splicing number v.

 $\label{eq:table 9}$ Classification accuracy (mean ±STD) of the MSPC splicing number

Dataset	$\upsilon = 0$	$\upsilon = 1$	$\upsilon = 2$
AD	57.67 ±12.11	64.67 ±4.47	76.67 ±8.16
LSVT	82.38±9.00	97.62±1.68	95.71±5.16
PD	62.70 ± 1.86	70.75 ± 1.74	75.98±4.29
Pendigits	98.13±0.05	98.62 ± 0.07	99.54±0.11
Statlog	87.38±0.45	88.65 ± 0.75	89.42±0.81
Vehicle	84.75±6.11	83.90±0.19	87.36±1.15
heart	82.22±2.24	85.56±2.83	94.67 ±2.98
Maxlittle	91.38±3.37	96.77 ±2.57	98.75±1.71
Urban	80.76±3.85	73.42±2.48	97.42±0.91
WDBC	96.64±3.79	97.57 ± 1.38	98.08±0.89
Wisconsin	96.65 ± 1.31	99.82±0.40	98.15±0.85
PID	76.17 ± 1.27	74.14±4.27	84.06±3.34
LR	88.69 ± 2.53	89.65±0.21	94.38±0.37
GSAD	99.81 ±6.16	96.71±0.33	92.45±0.09
HAR	98.63±5.25	98.72±0.07	99.51±0.43

2) Effect of the μ , σ , γ .

 $Fig. 8.\ Performance\ of\ JCDR\ with\ respect\ to\ different\ parameter\ value\ sets\ on\ Statlog.\ (a)\ ACC;\ (b)\ MACRO-F1;\ (c)\ AUC;\ (d)\ AP.$

3) Effect of JCDR dimension reduction δ in the JCDR.

Fig. 9. Influence of the different dimensions for the proposed framework measured by (a)ACC, (b)MACRO-F1, (c)AUC and (d)AP on 12 datasets

4) Comparison on different classifier

TABLE 10 ${\it CLASSIFICATION\ ACCURACY\ (MEAN\pm STD)\ OF\ THE\ PROPOSED}$ ${\it ALGORITHM\ WITH\ DIFFERENT\ CLASSIFIERS}$

Dataset	SVM (%)	RF (%)	ELM (%)
AD	76.67±8.16	68.89±14.18	74.67±15.58
LSVT	97.62±1.68	91.43±5.22	94.29±3.98
PD	75.98±4.29	75.06±6.56	73.22±6.29
Pendigits	99.54±0.11	98.22±0.77	95.84±1.36
Statlog	89.42±0.81	88.06±1.47	86.92 <u>±</u> 0.99
Vehicle	87.36±1.15	71.06±11.46	74.04±6.90
heart	94.67 ±2.98	94.67 <u>+2</u> .98	94.67±3.53
Maxlittle	98.75±1.71	92.50±4.19	99.38±1.90
Urban	97.42±0.91	79.12±5.56	77.68±4.55
WDBC	98.08±0.89	96.93±2.98	98.51 ±1.21
Wisconsin	99.82±0.40	99.47 ±0.48	99.47 ±0.48
PID	84.06±3.34	83.44±3.84	82.03±3.82
LR	94.38±0.37	95.40±0.68	93.90±0.36
GSAD	96.71±0.33	95.09±0.19	95.69±1.67
HAR	99.51±0.43	98.33±1.25	98.71 ±1.27

5) Confusion matrix

Fig. 10. Confusion matrix on datasets.

E. Time Analysis

1) Computational complexity:

 $\label{table 11} TIME\ cost\ (\mbox{Mean}\ \pm STD)\ \mbox{of\ different\ methods}$

.	Time (s)									
Dataset	SSAE	SDSAE	SPSAE	ESGSAE-FF	GSTAE	WGLAE	DSAE	SGAE	DILC-ESAE	
4.0	115.00	216.96	184.46	141.16	36.03	79.16	72.97	41.73	251.20	
AD	±7.21	±19.06	±6.74	±12.07	±1.04	±1.32	±0.23	±6.04	±2.43	
LCVT	414.92	644.68	1405.18	2466.83	955.61	228.86	4.79	40.26	971.47	
LSVT	±9.77	±12.51	±25.13	±278.36	±18.60	±1.82	±0.02	±3.59	±60.52	
PD	890.68	256.60	167.26	464.14	165.82	895.74	244.01	976.88	1274.31	
PD	±49.29	±18.41	±4.40	±134.29	±24.41	±12.50	±0.60	±187.48	±24.19	
Dandigita	2262.58	1486.54	2632.23	2816.48	714.47	570.36	1840.71	24767.38	3989.00	
Pendigits	±104.55	±28.29	±83.11	±326.35	±23.94	±9.99	±46.41	±1922.50	±64.27	
C4-41	208.66	1816.99	919.22	186.23	275.96	236.49	217.81	8601.45	1320.95	
Statlog	±73.08	±53.82	±61.99	±36.35	±18.27	±7.86	± 0.08	±772.69	±47.50	
Vehicle	53.86	236.33	174.11	208.15	132.20	119.71	187.99	250.14	129.60	
venicie	±1.66	±25.79	±26.21	±21.22	±9.82	±6.67	±0.55	±28.43	±7.19	
heart	160.82	247.08	242.48	488.22	162.67	149.37	74.56	93.95	318.00	
neart	±9.51	± 63.85	±21.68	±24.20	±7.77	±3.87	±1.52	±13.54	±3.74	
Maxlittle	168.26	76.58	66.19	418.50	89.42	131.19	74.32	117.97	437.78	
Maxitute	±9.60	±4.52	±4.62	±15.34	±26.31	±6.51	±0.95	±6.11	±7.42	
Urban	368.54	564.69	324.80	341.60	139.30	325.45	59.83	700.43	712.56	
Orban	±52.22	±99.29	± 26.42	±14.62	±13.63	±14.30	±0.57	±118.90	±38.20	
WDBC	271.41	141.39	263.71	637.48	66.65	446.41	131.78	331.14	509.27	
WDBC	±13.08	±7.08	±27.87	±25.04	±15.94	±9.13	±0.35	±9.88	±50.59	
Wisconsin	161.79	198.77	235.75	317.09	76.05	197.04	186.81	67.38	339.51	
Wisconsin	±2.74	±12.76	±30.31	±76.87	±7.43	±6.24	± 0.44	±6.11	±9.23	
PID	165.49	207.24	274.50	662.60	48.98	167.9	190.89	258.53	325.42	
ТID	±6.58	±7.88	±6.67	±73.98	±9.53	±9.41	±3.66	±13.69	±3.04	
LR	2346.00	2039.00	2469.00	10694	660.01	1723.45	7387.27	9663.76	10999.26	
	± 10.77	±71.42	±21.70	± 69.09	±17.22	±32.27	±322.11	±946.27	±224.32	
GSAD	701.73	1351.05	1960.53	2058.03	2392.22	2604.37	2141.69	5146.21	5621.88	
	±17.33	±19.81	±59.01	±25.37	±35.74	±164.85	±11.9	± 145.35	±142	
HAR	18002.00	9724.00	9214.00	6453	4904.64	4322.69	2697.61	1483.06	1983.63	

±67.63 ±49.26 ±45.71 ±26.79 ±9.79 ±405.60 ±55.34 **±67.01** ±258