Vertex Model

Dingjue Ji

Minimizing the Vertex Model

1. The plot of input data, see 'plot1.eps'

2. Verify the energy function:

See 'vertexenergy.m'.

Calculate the energy:

For all parameters equal 1, we only need to check the values

E_elastic = 0.54859

E_tension = 50.2365

E contractility = 212.158

These values are consistent with those in the reference

- 3. See 'vertexforces.m'.
- 4. Print out the value you get for dE and the value you used for ε .

dE = 0.99997 with epsilon = 0.000001

- 5. Case III energy minimization:
 - (a) See 'plot_5a.eps'

6. To verify the energy of soft network:

Calculate the energy:

 $E_elastic/(Nc*K*A0^2) = 3.125e-08$

 $E_{tension}/(Nc*K*A0^2) = 0.22332$

 $E_{contractility}/(Nc*K*A0^2) = 0.27706$

 $E/(Nc*K*A0^2) = 0.50038$

These values are consistent with those in the reference

(a) Plot of cells, see 'plot6_a.eps':

(b) Plot of energy, see 'plot6_b.eps':

7. Add a barostat to your code.

See 'scaleenergy.m' and 'scaleforces.m'.

We will still calculate dE when epsilon and epsilon_L are small enough, namely the ratio of energy increment and the reference calculated increment, which should give a value near 1.

dE = 0.99724 when epsilon and epsilon_L are 0.00001

Case I:

It is minimized into hexagons.

Calculate the energy:

 $E/(Nc*K*A0^2) = 0.41912$

This value is consistent with that for case I in the reference

Case II:

It is minimized into hexagons.

Calculate the energy: $E/(Nc*K*A0^2) = 0.45287$ This value is consistent with that for case II in the reference.

Case III:

It is not minimized into hexagons.

- 8. See 'celldiv.m'
- 9. See 'Case I', 'Case III', 'Case III' section following 'full operation'.
- 10. 360 divisions were adopted.

Case I (see 'full_model_case I.eps'):

Case II (see 'full_model_case_II.eps'):

Case III (see 'full_model_case_III.eps'):

11. Histogram of #sides for each cell

Case I (see 'hist_case_I.eps'):

Case II (see 'hist_case_II.eps'):

Case III (see 'hist_case_III.eps'):

12. Calculate the relative area of polygons

Case I (see 'area_case_I.eps'):

Case II (see 'area_case_II.eps'):

Case III (see 'area_case_III.eps'):

13. Calculate the shape index

p0 of Case I = 3.8835 p0 of Case II = 3.9407

p0 of Case III = 4.3002

Based on the calculated value, all these cases are more likely to be fluid, because they are greater than 3.81.

in these cases, Case I seems to be a little glassy, and Case II and Case III are more fluid-like.

Compared with the target shape index, an increasing pattern of case shape index along with the increase of target shape index.

Acknowledgement:

Thanks for the help from Prof. Corey O'hern, Dr Wendell Smith and Qikai. Thanks for your efforts. I feel really happy to receive these trainings both from this course and your lab.

Hope everything goes better and better for all of you!