Structure constants: complexity and asymptotics

Greta Panova

University of Southern California

OPAC May 2022

 S_n – irreducible representations: the Specht modules \mathbb{S}_{λ} for $\lambda \vdash n$.

 GL_N -irreducible [polynomial] representations: the Weyl modules V_α for $\ell(\lambda) \leq N$.

 S_n – irreducible representations: the Specht modules S_λ for $\lambda \vdash n$.

 GL_N -irreducible [polynomial] representations: the Weyl modules V_α for $\ell(\lambda) \leq N$.

Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$:

$$V_{\lambda}\otimes V_{\mu}=\oplus_{
u}V_{
u}^{\oplus c_{\lambda\mu}^{
u}}$$

 S_n – irreducible representations: the Specht modules S_λ for $\lambda \vdash n$.

 GL_N -irreducible [polynomial] representations: the Weyl modules V_α for $\ell(\lambda) \leq N$.

Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$:

$$V_{\lambda} \otimes V_{\mu} = \oplus_{\nu} V_{\nu}^{\oplus c_{\lambda\mu}^{\nu}}$$

 S_n tensor products decomposition (diagonal action):

$$\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu} = \bigoplus_{\nu \vdash n} \mathbb{S}_{\nu}^{\bigoplus g(\lambda, \mu, \nu)}$$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ – multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

 S_n – irreducible representations: the Specht modules \mathbb{S}_{λ} for $\lambda \vdash n$.

 GL_N -irreducible [polynomial] representations: the Weyl modules V_α for $\ell(\lambda) \leq N$.

Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$:

$$V_{\lambda} \otimes V_{\mu} = \bigoplus_{\nu} V_{\nu}^{\bigoplus c_{\lambda\mu}^{\nu}}$$

 S_n tensor products decomposition (diagonal action):

$$\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu} = \bigoplus_{\nu \vdash \eta} \mathbb{S}_{\nu}^{\bigoplus g(\lambda, \mu, \nu)}$$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ – multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

Plethysm: Compositions of GL-representations.

$$S^d(S^nV) = \bigoplus_{\lambda \vdash dn} V_{\lambda}^{a_{\lambda}(d[n])}$$

$$s_{\lambda}(x,y) = \sum_{\mu,\nu} c_{\mu\nu}^{\lambda} s_{\mu}(x) s_{\nu}(y) \quad \Longleftrightarrow \quad s_{\lambda/\mu}(x) = \sum_{\nu} c_{\mu,\nu}^{\lambda} s_{\nu}(x)$$

$$s_{\lambda}[x.y] = \sum_{\mu,\nu} g(\lambda,\mu,\nu) s_{\mu}(x) s_{\nu}(y) \iff \sum_{\lambda,\mu,\nu} g(\lambda,\mu,\nu) s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z) = \prod_{i,j,k} \frac{1}{1 - x_i y_j z_k}$$

$$h_d[h_n(x)] = \sum_{\lambda} a_{\lambda}(d[n])s_{\lambda}(x)$$

$$s_{\lambda}(x,y) = \sum_{\mu,\nu} c_{\mu\nu}^{\lambda} s_{\mu}(x) s_{\nu}(y) \quad \Longleftrightarrow \quad s_{\lambda/\mu}(x) = \sum_{\nu} c_{\mu,\nu}^{\lambda} s_{\nu}(x)$$

$$s_{\lambda}[x,y] = \sum_{\mu,\nu} g(\lambda,\mu,\nu) s_{\mu}(x) s_{\nu}(y) \iff \sum_{\lambda,\mu,\nu} g(\lambda,\mu,\nu) s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z) = \prod_{i,j,k} \frac{1}{1 - x_i y_j z_k}$$

$$h_d[h_n(x)] = \sum_{\lambda} a_{\lambda}(d[n])s_{\lambda}(x)$$

Via the irreducible characters χ^{λ} of \mathbb{S}_{λ} :

$$g(\lambda,\mu,\nu) = \frac{1}{n!} \sum_{w \in S_{-}} \chi^{\lambda}(w) \chi^{\mu}(w) \chi^{\nu}(w)$$

$$s_{\lambda}(x,y) = \sum_{\mu,\nu} c_{\mu\nu}^{\lambda} s_{\mu}(x) s_{\nu}(y) \quad \Longleftrightarrow \quad s_{\lambda/\mu}(x) = \sum_{\nu} c_{\mu,\nu}^{\lambda} s_{\nu}(x)$$

$$s_{\lambda}[x,y] = \sum_{\mu,\nu} g(\lambda,\mu,\nu) s_{\mu}(x) s_{\nu}(y) \iff \sum_{\lambda,\mu,\nu} g(\lambda,\mu,\nu) s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z) = \prod_{i,j,k} \frac{1}{1 - x_i y_j z_k}$$

$$h_d[h_n(x)] = \sum_{\lambda} a_{\lambda}(d[n])s_{\lambda}(x)$$

Via the irreducible characters χ^{λ} of \mathbb{S}_{λ} :

$$g(\lambda,\mu,\nu) = \frac{1}{n!} \sum_{w \in S_n} \chi^{\lambda}(w) \chi^{\mu}(w) \chi^{\nu}(w)$$

Theorem [Littlewood-Richardson, 1934] $c_{\lambda\mu}^{
u}$ is equal to the number of LR tableaux of shape ν/μ and type λ .

$$s_{\lambda}(x,y) = \sum_{\mu,\nu} c_{\mu\nu}^{\lambda} s_{\mu}(x) s_{\nu}(y) \quad \Longleftrightarrow \quad s_{\lambda/\mu}(x) = \sum_{\nu} c_{\mu,\nu}^{\lambda} s_{\nu}(x)$$

$$s_{\lambda}[x,y] = \sum_{\mu,\nu} g(\lambda,\mu,\nu) s_{\mu}(x) s_{\nu}(y) \iff \sum_{\lambda,\mu,\nu} g(\lambda,\mu,\nu) s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z) = \prod_{i,j,k} \frac{1}{1 - x_i y_j z_k}$$

Via the irreducible characters
$$\chi^{\lambda}$$
 of \mathbb{S}_{λ} :

$$g(\lambda,\mu,\nu) = \frac{1}{n!} \sum_{w \in S_n} \chi^{\lambda}(w) \chi^{\mu}(w) \chi^{\nu}(w)$$

 $h_d[h_n(x)] = \sum_i a_\lambda(d[n])s_\lambda(x)$

Theorem [Littlewood-Richardson, 1934] $c_{\lambda u}^{\nu}$ is equal to the number of LR tableaux of shape ν/μ and type λ .

$$(c_{(3,1)(4,3,2)}^{(6,4,3)}=2)$$

Problem (Murnaghan 1938, Stanley)

Find a positive combinatorial interpretation for $g(\lambda,\mu,\nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda,\mu,\nu}$, s.t. $g(\lambda,\mu,\nu)=\#\mathcal{O}_{\lambda,\mu,\nu}$.

Problem (Murnaghan 1938, Stanley)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu) = \#\mathcal{O}_{\lambda, \mu, \nu}$.

Theorem [Murnaghan] If $|\lambda| + |\mu| = |\nu|$ and $n > |\nu|$, then

$$g((n+|\mu|,\lambda),(n+|\lambda|,\mu),(n,\nu))=c_{\lambda\mu}^{\nu}.$$

Problem (Murnaghan 1938, Stanley)

Find a positive combinatorial interpretation for $g(\lambda,\mu,\nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda,\mu,\nu}$, s.t. $g(\lambda,\mu,\nu)=\#\mathcal{O}_{\lambda,\mu,\nu}$.

Theorem [Murnaghan] If $|\lambda| + |\mu| = |\nu|$ and $n > |\nu|$, then

$$g((n+|\mu|,\lambda),(n+|\lambda|,\mu),(n,\nu))=c_{\lambda\mu}^{\nu}.$$

Combinatorial formulas for $g(\lambda, \mu, \nu)$, when:

- $\nu=(n-k,k)$ (and $\lambda_1\geq 2k-1$, [Ballantine–Orellana, 2006]
- $\nu=(n-k,k), \ \lambda=(n-r,r)$ [Remmel–Whitehead, 1994; Blasiak–Mulmuley–Sohoni,2013]
- $u = (n-k,1^k)$ (Hasiak 2012, Blasiak-Liu 2014)
- Other special cases [Colmenarejo-Rosas, Ikenmeyer-Mulmuley-Walter, Pak-Panova, Mishna-Rosas-Sundaram].

Problem (Murnaghan 1938, Stanley)

Find a positive combinatorial interpretation for $g(\lambda,\mu,\nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda,\mu,\nu}$, s.t. $g(\lambda,\mu,\nu)=\#\mathcal{O}_{\lambda,\mu,\nu}$.

Input: I, size(I) = n (bits)

Problem: C(I)

Input: I, size(I) = n (bits)

Problem: C(I)

Decision problems: is there...

... an object
$$X$$
, s.t. $X \in C(I)$? Is $C(I) \neq \emptyset$?

Input: I, size(I) = n (bits)

Problem: C(I)

Decision problems: is there...

... an object X, s.t. $X \in C(I)$? Is $C(I) \neq \emptyset$?

P : yes/no answer in time $O(n^d)$

NP: "yes" can be *verified* in $O(n^d)$: Is $X \in C(I)$? Answer in $O(n^d)$.

Input: I, size(I) = n (bits)

Problem: C(I)

Decision problems: is there...

... an object X, s.t. $X \in C(I)$? Is $C(I) \neq \emptyset$?

P : yes/no answer in time $O(n^d)$

NP: "yes" can be *verified* in $O(n^d)$: Is $X \in C(I)$? Answer in $O(n^d)$.

Counting problems:

Compute |C(I)| = ?

FP : |C(I)| in $O(n^d)$ time.

#P : |C(I)| for $C \in NP$.

Input: I, size(I) = n (bits)

Problem: C(I)

Decision problems: is there...

... an object X, s.t. $X \in C(I)$? Is $C(I) \neq \emptyset$?

P : yes/no answer in time $O(n^d)$

NP: "yes" can be *verified* in $O(n^d)$: Is $X \in C(I)$? Answer in $O(n^d)$.

Millennium Problem: Is P = NP?

Counting problems:

Compute |C(I)| = ?

FP : |C(I)| in $O(n^d)$ time.

#P: |C(I)| for $C \in NP$.

Littlewood-Richardson:

LR: Input: λ, μ, ν Output: $c_{\mu\nu}^{\lambda}$

LRPOS: Input: λ, μ, ν Output: Is $c_{\mu\nu}^{\lambda} > 0$?

 $\mathsf{LR}\;\mathsf{rule}\Longrightarrow \mathrm{LR}\in \#\mathsf{P}$

[Knutson-Tao'01]: LRPOS \in P.

Littlewood-Richardson:

LR: Input: λ, μ, ν Output: $c_{\mu\nu}^{\lambda}$

 ${\rm LR}_{\rm POS:} \ \ {\rm Input:} \ \ \lambda, \mu, \nu \qquad \ \ {\rm Output:} \ \ {\rm Is} \ \ c_{\mu\nu}^{\lambda} > 0?$

 $\mathsf{LR}\;\mathsf{rule}\Longrightarrow \mathrm{LR}\in \#\mathsf{P}$

[Knutson-Tao'01]: LRPOS \in P.

Characters:

CHAR: Input: $n, \lambda, \alpha \vdash n$ (unary) Output: Is $\chi^{\lambda}[\alpha] \neq 0$?

 $[\mathsf{Pak}\text{-}\mathsf{P}]\text{: }\mathrm{CHAR}\in\mathsf{NP}.$

Littlewood-Richardson:

LR: Input: λ, μ, ν Output: $c_{\mu\nu}^{\lambda}$

LRPOS: Input: λ, μ, ν Output: Is $c_{\mu\nu}^{\lambda} > 0$?

 $\mathsf{LR}\;\mathsf{rule}\Longrightarrow \mathrm{LR}\in \#\mathsf{P}$

[Knutson-Tao'01]: LRPOS \in P.

Characters:

Char: Input: $n, \lambda, \alpha \vdash n$ (unary) Output: Is $\chi^{\lambda}[\alpha] \neq 0$?

 $[\mathsf{Pak}\text{-}\mathsf{P}]\text{: }\mathrm{CHAR}\in\mathsf{NP}.$

Kronecker:

Kron: Input: λ, μ, ν Output: $g(\lambda, \mu, \nu)$

 $\mbox{KronPos: Input: } \lambda, \mu, \nu \qquad \mbox{Output: Is } g(\lambda, \mu, \nu) > 0?$

Littlewood-Richardson:

LR: Input: λ, μ, ν Output: $c_{\mu\nu}^{\lambda}$

LRPOS: Input: λ, μ, ν Output: Is $c_{\mu\nu}^{\lambda} > 0$?

 $LR \text{ rule} \Longrightarrow LR \in \#P$

[Knutson-Tao'01]: LRPOS \in P.

Characters:

Char: Input: $n, \lambda, \alpha \vdash n$ (unary) Output: Is $\chi^{\lambda}[\alpha] \neq 0$?

[Pak-P]: Char \in NP.

Kronecker:

Kron: Input: λ, μ, ν Output: $g(\lambda, \mu, \nu)$

KronPos: Input: λ, μ, ν Output: Is $g(\lambda, \mu, \nu) > 0$?

[Bürgisser-Ikenmeyer, Pak-P]: $KRON \in GapP$.

[Ikenmeyer-Mulmuley-Walter]: KRONPOS is [strongly] NP-hard.

Question[Pak-P]: is $KRON \in \#P$?

Conjecture (Tensor square, Saxl'12)

For every $n \geq 9$ there is an irreducible S_n representations, \mathbb{S}_{λ} , such that $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\lambda}$ contains every irreducible representation. I.e. $g(\lambda, \lambda, \mu) > 0$ for every $\mu \vdash n$. Saxl conjecture: for $n = \binom{k}{2}$ such partition is $\lambda = \delta_k = (k-1, \dots, 1)$

Note: $\lambda = \lambda'$.

Conjecture (Tensor square, Saxl'12)

For every $n \geq 9$ there is an irreducible S_n representations, \mathbb{S}_{λ} , such that $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\lambda}$ contains every irreducible representation. I.e. $g(\lambda, \lambda, \mu) > 0$ for every $\mu \vdash n$. Saxl conjecture: for $n = \binom{k}{2}$ such partition is $\lambda = \delta_k = (k-1, \dots, 1)$

Note: $\lambda = \lambda'$.

Partial results:

[Pak-P-Vallejo'13]: for μ - 2-row, hook, hook + boxes etc

$$[\mathsf{PPV'13}], [\mathsf{PP'16}] \qquad g(\lambda, \lambda, \mu) \geq |\chi^{\mu}(2\lambda_1 - 1, 2\lambda_2 - 3, \ldots)| \qquad \text{ for } \lambda = \lambda'$$

Conjecture (Tensor square, Saxl'12)

For every $n \geq 9$ there is an irreducible S_n representations, \mathbb{S}_{λ} , such that $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\lambda}$ contains every irreducible representation. I.e. $g(\lambda,\lambda,\mu)>0$ for every $\mu \vdash n$. Saxl conjecture: for $n=\binom{k}{2}$ such partition is $\lambda=\delta_k=(k-1,\dots,1)$

Note: $\lambda = \lambda'$.

Partial results:

[Pak-P-Vallejo'13]: for μ - 2-row, hook, hook + boxes etc

$$[\mathsf{PPV'13}], [\mathsf{PP'16}] \qquad g(\lambda, \lambda, \mu) \geq |\chi^{\mu}(2\lambda_1 - 1, 2\lambda_2 - 3, \ldots)| \qquad \text{ for } \lambda = \lambda'$$

[Ikenmeyer'15]: $g(\delta_k, \delta_k, \mu) > 0$ if $\mu \not \leq \delta_k$ (dominance order)

[Luo-Sellke'15]: $g(\delta_k, \delta_k, \mu) > 0$ for (1 - o(1)) many μ 's.

Conjecture (Tensor square, Saxl'12)

For every $n \geq 9$ there is an irreducible S_n representations, \mathbb{S}_{λ} , such that $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\lambda}$ contains every irreducible representation. I.e. $g(\lambda, \lambda, \mu) > 0$ for every $\mu \vdash n$. Saxl conjecture: for $n = \binom{k}{2}$ such partition is $\lambda = \delta_k = (k-1, \ldots, 1)$

Note: $\lambda = \lambda'$.

Partial results:

[Pak-P-Vallejo'13]: for μ - 2-row, hook, hook + boxes etc

$$[\mathsf{PPV'13}], [\mathsf{PP'16}] \qquad g(\lambda, \lambda, \mu) \geq |\chi^{\mu}(2\lambda_1 - 1, 2\lambda_2 - 3, \ldots)| \qquad \text{ for } \lambda = \lambda'$$

[Ikenmeyer'15]: $g(\delta_k, \delta_k, \mu) > 0$ if $\mu \not \leq \delta_k$ (dominance order)

[Luo-Sellke'15]: $g(\delta_k, \delta_k, \mu) > 0$ for (1 - o(1)) many μ 's.

Other positivity results:

[Ikenmeyer-P, '16]:

 $g((N-ab,a^b),(N-ab,a^b),(N-|\gamma|,\gamma)) > 0$ for large N and almost all γ,a,b (with some restrictions), related to Geometric Complexity Theory.

Algebraic P vs NP: VP vs VNP

Arithmetic Circuits:

Input: X_1, \ldots, X_n and constants from \mathbb{F} .

Circuit: nodes are $+, -, \times, \div$ gates.

Output: Polynomial $y = f_n \in \mathbb{F}[X_1, \dots, X_n]$.

Algebraic P vs NP: VP vs VNP

Arithmetic Circuits:

Input: X_1, \ldots, X_n and constants from \mathbb{F} .

Circuit: nodes are $+, -, \times, \div$ gates.

Output: Polynomial $y = f_n \in \mathbb{F}[X_1, \dots, X_n]$.

Class VP (Valliant's P): polynomials that can be computed with circuits with poly(n) nodes

Class VNP (Valliant's NP): polynomials f_n , s.t. $\exists g_n \in VP$ with $f_n = \sum_{b \in \{0,1\}^n} g_n(X_1, \dots, X_n, b_1, \dots, b_n)$.

Algebraic P vs NP: VP vs VNP

Arithmetic Circuits:

Input: X_1, \ldots, X_n and constants from \mathbb{F} .

Circuit: nodes are $+, -, \times, \div$ gates.

Output: Polynomial $y = f_n \in \mathbb{F}[X_1, \dots, X_n]$.

Class VP (Valliant's P): polynomials that can be computed with circuits with poly(n) nodes

Class VNP (Valliant's NP): polynomials f_n , s.t. $\exists g_n \in VP$ with $f_n = \sum_{b \in \{0,1\}^n} g_n(X_1, \dots, X_n, b_1, \dots, b_n)$.

Theorem[Bürgisser]:

If VP = VNP over finite \mathbb{F} or Generalized Riemann Hypothesis holds, then P = NP.

VP vs VNP : permanent vs determinant

$$\det_n := \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \operatorname{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

VP vs VNP : permanent vs determinant

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78]:

The (normalized) permanent $x_{11}^{n-m} \mathrm{per}_m \neq \det_n[A\mathbf{x}^T]$ $(n \times n \text{ determinant of affine linear forms in } \{x_{ij}\}_{i,j=1}^m \}$ for n = poly(m). (and thus $\mathsf{VP} \neq \mathrm{VNP})$

VP vs VNP : permanent vs determinant

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[A\mathbf{x}^T]$ $(n \times n \operatorname{determinant}$ of affine linear forms in $\{x_{ij}\}_{i,j=1}^m$) for $n = \operatorname{poly}(m)$. (and thus $\mathsf{VP} \neq \mathrm{VNP}$)

$$x_{11}^{n-m}\mathrm{per}_m = \mathsf{det}_n[A\mathbf{x}^T] \Longrightarrow \overline{\mathit{GL}_{n^2}x_{11}^{n-m}\mathrm{per}_m} \subset \overline{\mathit{GL}_{n^2}\mathsf{det}_n}$$

GCT program (Mulmuley and Sohoni): If $\mathbb{C}[\overline{GL}_{n^2}\mathrm{per}_m^n]_d \subset \mathbb{C}[\overline{GL}_{n^2}\mathrm{det}_n]_d$, show that n > poly(m).

VP vs VNP : permanent vs determinant

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[Ax^T]$ $(n \times n \operatorname{determinant} \operatorname{of affine} \operatorname{linear} \operatorname{forms} \operatorname{in} \{x_{ij}\}_{i,i=1}^m)$ for $n = \operatorname{poly}(m)$. (and thus $\operatorname{VP} \neq \operatorname{VNP}$)

$$x_{11}^{n-m} \operatorname{per}_m = \operatorname{det}_n[Ax^T] \Longrightarrow \overline{GL_{n^2}x_{11}^{n-m} \operatorname{per}_m} \subset \overline{GL_{n^2}\operatorname{det}_n}$$

GCT program (Mulmuley and Sohoni): If $\mathbb{C}[\overline{GL_{n^2}}\operatorname{per}_m^n]_d \subset \mathbb{C}[\overline{GL_{n^2}}\det_n]_d$, show that n > poly(m).

$$\mathbb{C}[\overline{\mathit{GL}_{n^2}\mathsf{det}_n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}_{n^2}}\mathrm{per}_m^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for $n > poly(m) \Longrightarrow VP \neq VNP$.

VP vs VNP : permanent vs determinant

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78]:

The (normalized) permanent $x_{1}^{n-m} \operatorname{per}_{m} \neq \operatorname{det}_{n}[A\mathbf{x}^{T}]$ $(n \times n \text{ determinant of affine linear forms in } \{x_{ij}\}_{i,i=1}^{m}\}$ for $n = \operatorname{poly}(m)$. (and thus $\mathsf{VP} \neq \mathsf{VNP}$)

$$\mathsf{x}_{11}^{n-m}\mathrm{per}_m = \mathsf{det}_n[\mathsf{A}\mathsf{x}^\mathsf{T}] \Longrightarrow \overline{\mathsf{GL}_{n^2}\mathsf{x}_{11}^{n-m}\mathrm{per}_m} \subset \overline{\mathsf{GL}_{n^2}\mathsf{det}_n}$$

GCT program (Mulmuley and Sohoni): If $\mathbb{C}[\overline{GL_{n^2}}\operatorname{per}_m^n]_d \subset \mathbb{C}[\overline{GL_{n^2}}\det_n]_d$, show that n > poly(m).

$$\mathbb{C}[\overline{\mathit{GL}_{n^2}\mathsf{det}_n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}_{n^2}}\mathrm{per}_m^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for $n > poly(m) \Longrightarrow \mathsf{VP} \neq \mathsf{VNP}$. If also $\delta_{\lambda,d,n} = 0$, then λ is an **occurrence obstruction**.

Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show n > poly(m).

VP vs VNP: permanent vs determinant

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[A\mathbf{x}^T]$ ($n \times n$ determinant of affine linear forms in $\{x_{ij}\}_{i,i=1}^m$) for n = poly(m). (and thus $VP \neq VNP$)

$$\mathsf{x}_{11}^{n-m}\mathrm{per}_m = \mathsf{det}_n[\mathsf{A}\mathsf{x}^\mathsf{T}] \Longrightarrow \overline{\mathsf{GL}_{n^2}\mathsf{x}_{11}^{n-m}\mathrm{per}_m} \subset \overline{\mathsf{GL}_{n^2}\mathsf{det}_n}$$

GCT program (Mulmuley and Sohoni): If $\mathbb{C}[\overline{GL_{n^2}\mathrm{per}_m^n}]_d \subset \mathbb{C}[\overline{GL_{n^2}\mathrm{det}_n}]_d$, show that n > poly(m).

$$\mathbb{C}[\overline{\mathit{GL}_{n^2}\mathsf{det}_n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}_{n^2}}\mathrm{per}_m^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for $n > poly(m) \Longrightarrow VP \neq VNP$. If also $\delta_{\lambda,d,n}=0$, then λ is an occurrence obstruction.

Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show n > poly(m).

Theorem (Bürgisser-Ikenmeyer-P)

This Conjecture is false. There are no such occurrence obstructions for $n > m^{25}$.

Kronecker coefficients and GCT

VP vs VNP

$$\mathbb{C}[\overline{\mathit{GL}_{n^2}\mathsf{det}_n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}_{n^2}\mathsf{per}_m^n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for $n > poly(m) \Longrightarrow VP \neq VNP$.

$$\delta_{\lambda,d,n} \leq g(\lambda, n^d, n^d)$$
 $\gamma_{\lambda,d,n,m} \leq a_{\lambda}(d[n])$

Kronecker coefficients and GCT

VP vs VNP

$$\mathbb{C}[\overline{\mathit{GL}_{n^2}\mathsf{det}_n}]_d \simeq \bigoplus_{\lambda \vdash \mathit{nd}} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}_{n^2}\mathsf{per}_m^n}]_d \simeq \bigoplus_{\lambda \vdash \mathit{nd}} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for $n > poly(m) \Longrightarrow VP \neq VNP$.

$$\delta_{\lambda,d,n} \le g(\lambda, n^d, n^d)$$
 $\gamma_{\lambda,d,n,m} \le a_{\lambda}(d[n])$

Conjecture (GCT, Mulmuley and Sohoni)

There exist λ , s.t. $g(\lambda, n^d, n^d) = 0$ and $\gamma_{\lambda, d, n, m} > 0$ for some n > poly(m).

Theorem (Ikenmeyer-P)

Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n^d, n^d) = 0$ (so $mult_{\lambda}\mathbb{C}[GL_{n^2}\det_n] = 0$), then $mult_{\lambda}(\mathbb{C}[\overline{GL_{n^2}}\operatorname{per}_n^n] = 0$.

Theorem (Ikenmeyer-P)

For every partition ρ , let $n \ge |\rho|$, $d \ge 2$, $\lambda := (nd - |\rho|, \rho)$. Then $g(\lambda, n^d, n^d) \ge a_{\lambda}(d[n])$.

No occurrence obstructions: positive Kroneckers

Theorem (Ikenmeyer-Panova)

Let $n>3m^4$, $\lambda \vdash nd$. If $g(\lambda, n\times d, n\times d)=0$ (so $\operatorname{mult}_{\lambda}\mathbb{C}[\overline{GL_{n^2}\mathrm{det}_n}]_d=0$), then $\operatorname{mult}_{\lambda}(\mathbb{C}[\overline{GL_{n^2}\mathrm{per}_m^n}]_d=0$.

No occurrence obstructions: positive Kroneckers

Theorem (Ikenmeyer-Panova)

Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n \times d, n \times d) = 0$ (so $\operatorname{mult}_{\lambda} \mathbb{C}[\overline{GL_{n^2} \operatorname{det}_n}]_d = 0$), then $\operatorname{mult}_{\lambda}(\mathbb{C}[\overline{GL_{n^2} \operatorname{per}_m^n}]_d = 0$.

Proof ingredients:

Theorem (Kadish-Landsberg)

 $\text{If } \mathrm{mult}_{\lambda}\mathbb{C}[\overline{\textit{GL}_{n^2}\textit{per}_m^n}]_d>0, \text{ then } \lambda_1\geq \textit{nd}-\textit{md and }\ell(\lambda)\leq \textit{m}^2.$

Theorem (Degree lower bound, [IP])

If $\lambda_1 \geq nd-md$ with $\gamma_{\lambda,d,n,m} > g(\lambda,n\times d,n\times d)$, then $d>\frac{n}{m}$.

No occurrence obstructions: positive Kroneckers

Theorem (Ikenmeyer-Panova)

Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n \times d, n \times d) = 0$ (so $\operatorname{mult}_{\lambda} \mathbb{C}[\overline{GL_{n^2} \operatorname{det}_n}]_d = 0$), then $\operatorname{mult}_{\lambda}(\mathbb{C}[\overline{GL_{n^2} \operatorname{per}_m^n}]_d = 0$.

Proof ingredients:

Theorem (Kadish-Landsberg)

If $\operatorname{mult}_{\lambda}\mathbb{C}[\overline{GL_{n^2}per_m^n}]_d>0$, then $\lambda_1\geq nd-md$ and $\ell(\lambda)\leq m^2$.

Theorem (Degree lower bound, [IP])

If $\lambda_1 \geq nd - md$ with $\gamma_{\lambda,d,n,m} > g(\lambda, n \times d, n \times d)$, then $d > \frac{n}{m}$.

Theorem (Kronecker positivity, [IP])

If $\ell(\lambda) \le m^2$, $\lambda_1 \ge nd - md$, $d > 3m^3$, and $n > 3m^4$, then $g(\lambda, n \times d, n \times d) > 0$, except for 6 special cases.

Proof uses semigroup property, symmetries, positivity for squares.

Multiplicity obstructions in GCT

$$\mathbb{C}[\overline{\mathit{GL}_{n^2}\mathsf{det}_n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}_{n^2}\mathrm{per}_m^n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

[GCT paradigm] : There exist multiplicity obstructions that show n > poly(m), so $VP \neq VNP$, i.e. there is some λ and n, m with n > poly(m), s.t. $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$

Other models: Matrix power vs permanent, Iterated Matrix Multiplication vs permanent. (multiplicities for the orbits express in terms of LR, Kron, plethysms)

Multiplicity obstructions in GCT

$$\mathbb{C}[\overline{\mathit{GL}}_{n^2} \underline{\mathsf{det}}_n]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}}_{n^2} \underline{\mathsf{per}}_m^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

[GCT paradigm] : There exist multiplicity obstructions that show n > poly(m), so $VP \neq VNP$, i.e. there is some λ and n, m with n > poly(m), s.t. $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$

Other models: Matrix power vs permanent, Iterated Matrix Multiplication vs permanent. (multiplicities for the orbits express in terms of LR, Kron, plethysms)

Toy problem: Factor $\ell_1^n + \cdots + \ell_k^n$ into linear forms? (k > 2)

$$\mathsf{Ch}^n_m := \{\ell_1 \cdots \ell_n \mid \ell_i \in V\} \qquad \mathsf{vs} \qquad \mathsf{Ps}^n_{m,k} := \overline{\{\ell_1^n + \cdots + \ell_k^n \mid \ell_i \in V\}},$$

Multiplicity obstructions in GCT

$$\mathbb{C}[\overline{\mathit{GL}}_{n^2} \underline{\mathsf{det}}_{n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}}_{n^2} \underline{\mathsf{per}}_{m}^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

[GCT paradigm] : There exist multiplicity obstructions that show n > poly(m), so $VP \neq VNP$, i.e. there is some λ and n, m with n > poly(m), s.t. $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$

Other models: Matrix power vs permanent, Iterated Matrix Multiplication vs permanent. (multiplicities for the orbits express in terms of LR, Kron, plethysms)

Toy problem: Factor $\ell_1^n + \cdots + \ell_k^n$ into linear forms? (k > 2)

$$\mathsf{Ch}^{n}_{m} := \{\ell_{1} \cdots \ell_{n} \mid \ell_{i} \in V\} \qquad \mathsf{vs} \qquad \mathsf{Ps}^{n}_{m,k} := \overline{\{\ell_{1}^{n} + \cdots + \ell_{k}^{n} \mid \ell_{i} \in V\}},$$

Theorem (Dörfler–Ikenmeyer-P'20)

Let $m\geq 3$, $n\geq 2$. We have $\operatorname{mult}_{\lambda}(\mathbb{C}[\operatorname{Ch}_m^n]_{n+1})<\operatorname{mult}_{\lambda}(\mathbb{C}[\operatorname{Ps}_{m,n+1}^n]_{n+1})$ for $\lambda=(n^2-2,n,2)$, i.e., λ is a multiplicity obstruction that shows $P_{m,n+1}^n\not\subseteq\operatorname{Ch}_m^n$. No occurrence obstructions, for explicit values of k,n,m.

[BIP'16] $\operatorname{mult}_{\lambda}(\mathbb{C}[\operatorname{Ps}_{m,k}^n]_d) = a_{\lambda}(d[n])$ for $k \geq d$.

[Landsberg] $\operatorname{mult}_{\lambda}(\mathbb{C}[\mathsf{Ch}_m^n]_d) \leq a_{\lambda}(n[d])$

Explicit plethysm formula: $a_{(n^2-2,n,2)}((n+1)[n]) = 1 + a_{(n^2-2,n,2)}(n[n+1])$

= 4)40

$$\begin{split} \rho_n(\ell,m) := \#\{\lambda \vdash n; \ \lambda \subset (m^\ell)\} \\ \sum_{k \geq 0} \rho_n(\ell,m) q^n \ = \ \begin{bmatrix} m+\ell \\ m \end{bmatrix}_q \end{split}$$

$$\begin{split} \rho_n(\ell,m) := \#\{\lambda \vdash n; \ \lambda \subset (m^\ell)\} \\ \sum_{k \geq 0} \rho_n(\ell,m) q^n \ = \ {m+\ell \brack m}_q \end{split}$$

Theorem (Pak-P'15)

For all $m \ge \ell \ge 8$ and $2 \le k \le \ell m/2$, let $s = \min\{2k, \ell^2\}$. We have:

$$g(m^\ell, m^\ell, (m\ell-k, k)) = p_k(\ell, m) - p_{k-1}(\ell, m) > 0.004 \, \frac{2^{\sqrt{s}}}{s^{9/4}} \, .$$

$$\begin{split} \rho_n(\ell,m) := \#\{\lambda \vdash n; \ \lambda \subset (m^\ell)\} \\ \sum_{k \geq 0} \rho_n(\ell,m) q^n \ = \ {m+\ell \brack m}_q \end{split}$$

Theorem (Pak-P'15)

For all $m \ge \ell \ge 8$ and $2 \le k \le \ell m/2$, let $s = \min\{2k, \ell^2\}$. We have:

$$g(m^{\ell}, m^{\ell}, (m\ell - k, k)) = p_k(\ell, m) - p_{k-1}(\ell, m) > 0.004 \frac{2^{\sqrt{s}}}{s^{9/4}}.$$

Theorem (Melczer-P-Pemantle'19)

Let $A:=rac{\ell}{m}$ $B:=rac{n-1}{m^2}$. Let c,d be solutions of [a system of integral equations]

$$p_n(\ell,m)-p_{n-1}(\ell,m)\sim \frac{d}{m}p_{n-1}(\ell,m)\sim \frac{d}{m}e^{m\left[cA+2dB-\log(1-e^{-c-d})\right]}}{2\pi m^3\sqrt{D}}.$$

$$\begin{split} \rho_n(\ell,m) := \#\{\lambda \vdash n; \ \lambda \subset (m^\ell)\} \\ \sum_{k > 0} \rho_n(\ell,m) q^n \ = \ {m+\ell \brack m}_q \end{split}$$

Theorem (Pak-P'15)

For all $m \ge \ell \ge 8$ and $2 \le k \le \ell m/2$, let $s = \min\{2k, \ell^2\}$. We have:

$$g(m^{\ell}, m^{\ell}, (m\ell-k, k)) = p_k(\ell, m) - p_{k-1}(\ell, m) > 0.004 \frac{2^{\sqrt{s}}}{s^{9/4}}.$$

Theorem (Melczer-P-Pemantle'19)

Let $A:=rac{\ell}{m}$ $B:=rac{n-1}{m^2}$. Let c,d be solutions of [a system of integral equations]

$$g(m^{\ell}, m^{\ell}, (m\ell - n, n)) = p_n(\ell, m) - p_{n-1}(\ell, m) \sim \frac{d}{m} p_{n-1}(\ell, m) \sim \frac{d}{m} e^{m \left[cA + 2dB - \log(1 - e^{-c - d})\right]}}{2\pi m^3 \sqrt{D}}$$

Maximal multiplicities

Theorem [Stanley]

$$\max_{\lambda \vdash n} \max_{\mu \vdash n} \max_{\nu \vdash n} \; g \big(\lambda, \mu, \nu \big) \, = \, \sqrt{n!} \, \mathrm{e}^{-\mathit{O}(\sqrt{n})} \, ,$$

$$\max_{0 \leq k \leq n} \max_{\lambda \vdash n} \max_{\mu \vdash k} \max_{\nu \vdash n - k} \ c_{\mu,\nu}^{\lambda} \, = \, 2^{n/2 - \mathit{O}(\sqrt{n})}.$$

Maximal multiplicities

Theorem [Stanley]

$$\max_{\lambda \vdash n} \max_{\mu \vdash n} \max_{\nu \vdash n} \ g(\lambda, \mu, \nu) = \sqrt{n!} \ \mathrm{e}^{-O(\sqrt{n})} \,,$$

$$\max_{0 \leq k \leq n} \max_{\lambda \vdash n} \max_{\mu \vdash k} \max_{\nu \vdash n - k} \ c_{\mu,\nu}^{\lambda} \ = \ 2^{n/2 - O(\sqrt{n})}.$$

Question: [Stanley] For which λ, μ, ν are these maxima achieved?

Stat mech motivation: lozenge tilings

$$\lim_{n\to\infty}\frac{s_{\lambda^n}(x_1,\ldots,x_k,1^{n-k})}{s_{\lambda^n}(1^n)}$$

[Gorin-P'15] effective asymptotics giving GUE near boundary, also in [Novak, Petrov] etc, subsequently used for LLN and CLT for trapezoidal domains [Bufetov-Gorin, Aggarwal-Gorin] etc

Stat mech motivation: lozenge tilings

$$\lim_{n\to\infty}\frac{s_{\lambda^n}(x_1,\ldots,x_k,1^{n-k})}{s_{\lambda^n}(1^n)}$$

[Gorin-P'15] effective asymptotics giving GUE near boundary, also in [Novak, Petrov] etc, subsequently used for LLN and CLT for trapezoidal domains [Bufetov-Gorin, Aggarwal-Gorin] etc

Question: What about nontrapezoidal domains, can we ana-

lyze asymptotically $\frac{s_{\lambda/\mu}(x_1,\ldots,x_k,1^{n-k})}{s_{\lambda/\mu}(1^n)}$?

Question: Asymptotics of $K_{\lambda/\mu,\nu}, c_{\mu\nu}^{\lambda}$ etc as λ, μ, ν grow..?

Largest Kroneckers

Inequalities

$$\sum_{\lambda,\mu,
u\vdash n} g(\lambda,\mu,
u)^2 = \sum_{\alpha\vdash n} z_{lpha} \geq z_{1^n} = n!,$$

where $z_{\alpha}=1^{m_1}m_1!2^{m_2}m_2!\cdots$ when $\alpha=(1^{m_1}2^{m_2}\ldots)$,

Largest Kroneckers

Inequalities

$$\sum_{\lambda,\mu,\nu\vdash n} g(\lambda,\mu,\nu)^2 = \sum_{\alpha\vdash n} z_\alpha \ge z_{1^n} = n!,$$

where $z_{\alpha} = 1^{m_1} m_1 ! 2^{m_2} m_2 ! \cdots$ when $\alpha = (1^{m_1} 2^{m_2} ...)$,

Theorem (Pak-Panova-Yeliussizov'18)

Let $\{\lambda^{(n)} \vdash n\}$, $\{\mu^{(n)} \vdash n\}$, $\{\nu^{(n)} \vdash n\}$ be three partition sequences, such that

(*)
$$g(\lambda^{(n)}, \mu^{(n)}, \nu^{(n)}) = \sqrt{n!} e^{-O(\sqrt{n})}.$$

Then $\lambda^{(n)}, \mu^{(n)}, \nu^{(n)}$ are Plancherel (i.e. VKLS shape). Conversely, for every two Plancherel sequences $\{\lambda^{(n)} \vdash n\}$ and $\{\mu^{(n)} \vdash n\}$, there exists a Plancherel partition sequence $\{\nu^{(n)} \vdash n\}$, s.t. (*) holds.

Largest Kroneckers

Inequalities

$$\sum_{\lambda,\mu,\nu\vdash n} g(\lambda,\mu,\nu)^2 = \sum_{\alpha\vdash n} z_\alpha \ge z_{1^n} = n!,$$

where $z_{\alpha} = 1^{m_1} m_1 ! 2^{m_2} m_2 ! \cdots$ when $\alpha = (1^{m_1} 2^{m_2} ...)$,

Theorem (Pak-Panova-Yeliussizov'18)

Let $\{\lambda^{(n)} \vdash n\}$, $\{\mu^{(n)} \vdash n\}$, $\{\nu^{(n)} \vdash n\}$ be three partition sequences, such that

(*)
$$g(\lambda^{(n)}, \mu^{(n)}, \nu^{(n)}) = \sqrt{n!} e^{-O(\sqrt{n})}.$$

Then $\lambda^{(n)}, \mu^{(n)}, \nu^{(n)}$ are Plancherel (i.e. VKLS shape). Conversely, for every two Plancherel sequences $\{\lambda^{(n)} \vdash n\}$ and $\{\mu^{(n)} \vdash n\}$, there exists a Plancherel partition sequence $\{\nu^{(n)} \vdash n\}$, s.t. (*) holds.

$$\mathbf{D}(n) := \max_{\lambda \vdash n} f^{\lambda}$$

Theorem[PPY]: Let $\mu, \nu \vdash n$, s.t. $f^{\mu}, f^{\nu} \geq \mathbf{D}(n)/a$ for some $a \geq 1$. Then there exist $\lambda \vdash n$, s.t.

$$f^{\lambda} \, \geq \, rac{\mathbf{D}(n)}{\mathsf{a}\sqrt{p(n)}} \quad ext{and} \quad \mathsf{g}(\lambda,\mu,
u) \, \geq \, rac{\mathbf{D}(n)}{\mathsf{a}^2\,p(n)} \, .$$

Littlewood-Richardson

Theorem (PPY'18)

There exists a constant d > 0, s.t. for all $n > k \ge 1$:

$$\sqrt{\binom{n}{k}}\,\mathrm{e}^{-d\sqrt{n}}\,\leq\,\max_{\lambda\vdash n}\,\max_{\mu\vdash k}\,\max_{\nu\vdash n-k}\,c_{\mu,\nu}^\lambda\,\leq\,\sqrt{\binom{n}{k}}.$$

Littlewood-Richardson

Theorem (PPY'18)

There exists a constant d > 0, s.t. for all n > k > 1:

$$\sqrt{\binom{n}{k}}\,e^{-d\sqrt{n}}\,\leq\,\max_{\lambda\vdash n}\,\max_{\mu\vdash k}\,\max_{\nu\vdash n-k}\,c_{\mu,\nu}^{\lambda}\,\leq\,\sqrt{\binom{n}{k}}.$$

Theorem (PPY'18)

Fix $0 < \theta < 1$ and let $k_n := |\theta n|$. Then:

1. for every Plancherel partition sequence $\{\lambda^{(n)} \vdash n\}$, there exist Plancherel partition sequences $\{\mu^{(n)} \vdash k_n\}$ and $\{\nu^{(n)} \vdash n - k_n\}$, s.t.

$$(**) c_{\mu^{(n)}, \nu^{(n)}}^{\lambda^{(n)}} = \binom{n}{k_n}^{1/2} e^{-O(\sqrt{n})},$$

- 2. for all Plancherel partition sequences $\{\mu^{(n)} \vdash k_n\}$ and $\{\nu^{(n)} \vdash n k_n\}$, there exists a Plancherel partition sequence $\{\lambda^{(n)} \vdash n\}$, s.t. (**) holds,
- 3. for all Plancherel partition sequences $\{\lambda^{(n)} \vdash n\}$ and $\{\mu^{(n)} \vdash k_n\}$, there exists a partition sequence $\{\nu^{(n)} \vdash n k_n\}$, s.t.

$$f^{\nu^{(n)}} = \sqrt{n!} \, e^{-O(n^{2/3} \log n)}$$
 and $c^{\lambda^{(n)}}_{\mu^{(n)}, \, \nu^{(n)}} = \binom{n}{k_n}^{1/2} e^{-O(n^{2/3} \log n)}$.

Littlewood-Richardson

Theorem (PPY'18)

There exists a constant d > 0, s.t. for all n > k > 1:

$$\sqrt{\binom{n}{k}}\,\mathrm{e}^{-d\sqrt{n}}\,\leq\,\max_{\lambda\vdash n}\,\max_{\mu\vdash k}\,\max_{\nu\vdash n-k}\,c_{\mu,\nu}^{\lambda}\,\leq\,\sqrt{\binom{n}{k}}.$$

Theorem (PPY'18)

Fix $0 < \theta < 1$ and let $k_n := |\theta n|$. Then:

1. for every Plancherel partition sequence $\{\lambda^{(n)} \vdash n\}$, there exist Plancherel partition sequences $\{\mu^{(n)} \vdash k_n\}$ and $\{\nu^{(n)} \vdash n - k_n\}$, s.t.

$$(**) c_{\mu^{(n)}, \nu^{(n)}}^{\lambda^{(n)}} = \binom{n}{k_n}^{1/2} e^{-O(\sqrt{n})},$$

- 2. for all Plancherel partition sequences $\{\mu^{(n)} \vdash k_n\}$ and $\{\nu^{(n)} \vdash n k_n\}$, there exists a Plancherel partition sequence $\{\lambda^{(n)} \vdash n\}$, s.t. (**) holds,
- 3. for all Plancherel partition sequences $\{\lambda^{(n)} \vdash n\}$ and $\{\mu^{(n)} \vdash k_n\}$, there exists a partition sequence $\{\nu^{(n)} \vdash n k_n\}$, s.t.

$$f^{\nu^{(n)}} = \sqrt{n!} \, \mathrm{e}^{-O(n^{2/3} \log n)} \quad \text{and} \quad c^{\lambda^{(n)}}_{\mu^{(n)}, \; \nu^{(n)}} = \binom{n}{k_n}^{1/2} \, \mathrm{e}^{-O(n^{2/3} \log n)} \, .$$

[Belinschi-Guionnet-Huang'20+]: General upper bounds on $c_{\mu\nu}^{\lambda}$ for "nice measures" via elliptical [random matrix] integrals.

Small number of rows

Theorem (Pak-P'20)

Let $\lambda, \mu, \nu \vdash n$ such that $\ell(\lambda) = \ell$, $\ell(\mu) = m$, and $\ell(\nu) = r$. Then:

$$g(\lambda,\mu,\nu) \leq \left(1 + \frac{\ell mr}{n}\right)^n \left(1 + \frac{n}{\ell mr}\right)^{\ell mr}.$$

Corollary: Let $\lambda = (\ell^2)^{\ell}$, where $\ell = \sqrt[3]{n}$, then

$$g(\lambda,\lambda,\lambda) \leq 4^n$$
.

Small number of rows

Theorem (Pak-P'20)

Let $\lambda, \mu, \nu \vdash n$ such that $\ell(\lambda) = \ell$, $\ell(\mu) = m$, and $\ell(\nu) = r$. Then:

$$\mathsf{g}\big(\lambda,\mu,\nu\big)\,\leq\, \left(1+\frac{\ell mr}{n}\right)^n \left(1+\frac{n}{\ell mr}\right)^{\ell mr}.$$

Corollary: Let $\lambda = (\ell^2)^{\ell}$, where $\ell = \sqrt[3]{n}$, then

$$g(\lambda, \lambda, \lambda) \leq 4^n$$
.

Proof via contingency arrays:

$$T(\lambda, \mu, \nu) = \#\{(X_{i,j,k}) \in \mathbb{Z}_{\geq 0}^{\ell mr} : \sum_{j=1,k=1}^{m,r} X_{i,j,k} = \lambda_i, \sum_{i=1,k=1}^{\ell,r} X_{i,j,k} = \mu_j, \sum_{i=1,j=1}^{\ell,m} X_{i,j,k} = \nu_k\},$$

$$\sum_{\lambda,\mu,\nu} g(\lambda,\mu,\nu) s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z) = \sum_{\alpha,\beta,\gamma} T(\alpha,\beta,\gamma) x^{\alpha} y^{\beta} z^{\gamma}.$$

$$\implies g(\lambda,\mu,\nu) < T(\lambda,\mu,\nu),$$

Small number of rows

Theorem (Pak-P'20)

Let $\lambda, \mu, \nu \vdash n$ such that $\ell(\lambda) = \ell$, $\ell(\mu) = m$, and $\ell(\nu) = r$. Then:

$$g(\lambda,\mu,
u) \, \leq \, \left(1 + rac{\ell m r}{n}
ight)^n \left(1 + rac{n}{\ell m r}
ight)^{\ell m r}.$$

Corollary: Let $\lambda = (\ell^2)^{\ell}$, where $\ell = \sqrt[3]{n}$, then

$$g(\lambda, \lambda, \lambda) \leq 4^n$$
.

Proof via contingency arrays:

$$\begin{split} T(\lambda,\mu,\nu) &= \#\{(X_{i,j,k}) \in \mathbb{Z}_{\geq 0}^{\ell mr} : \sum_{j=1,k=1}^{m,r} X_{i,j,k} = \lambda_i, \sum_{i=1,k=1}^{\ell,r} X_{i,j,k} = \mu_j, \sum_{i=1,j=1}^{\ell,m} X_{i,j,k} = \nu_k\}, \\ &\sum_{\lambda,\mu,\nu} g(\lambda,\mu,\nu) \, s_{\lambda}(x) \, s_{\mu}(y) \, s_{\nu}(z) \, = \, \sum_{\alpha,\beta,\gamma} T(\alpha,\beta,\gamma) \, x^{\alpha} \, y^{\beta} \, z^{\gamma} \, . \end{split}$$

[Barvinok]: The number of 3d contingency tables with marginals (α, β, γ) is

$$\leq \exp\left(\max_{Z\in P(\alpha,\beta,\gamma)} \sum_{i,j,k} (Z_{ijk}+1) \log(Z_{ijk}+1) - Z_{ijk} \log(Z_{ijk})\right)$$

 $\Longrightarrow g(\lambda, \mu, \nu) < T(\lambda, \mu, \nu),$

 $[\mathsf{Bessenrodt\text{-}Behns}]: \quad \mathsf{g}(\lambda,\lambda,\lambda) \geq 1 \quad \text{ for } \lambda = \lambda'$

[Bessenrodt-Behns] :
$$g(\lambda, \lambda, \lambda) \ge 1$$
 for $\lambda = \lambda'$

 $Pyr(\alpha,\beta,\gamma):=\#$ of pyramids (3d partitions) with marginals $\alpha,\beta,\gamma.$ Theorem [Manivel, Vallejo]

$$g(\lambda, \mu, \nu) \ge Pyr(\lambda', \mu', \nu')$$

[Bessenrodt-Behns]:
$$g(\lambda, \lambda, \lambda) \ge 1$$
 for $\lambda = \lambda'$

 $Pyr(\alpha,\beta,\gamma):=\#$ of pyramids (3d partitions) with marginals $\alpha,\beta,\gamma.$ Theorem [Manivel, Vallejo]

$$g(\lambda, \mu, \nu) \ge Pyr(\lambda', \mu', \nu')$$

Proposition For some $\alpha, \beta, \gamma \vdash n$ we have

$$Pyr(\alpha, \beta, \gamma) = \exp \Theta(n^{2/3}).$$

[Bessenrodt-Behns]:
$$g(\lambda, \lambda, \lambda) \ge 1$$
 for $\lambda = \lambda'$

 $Pyr(\alpha,\beta,\gamma):=\#$ of pyramids (3d partitions) with marginals $\alpha,\beta,\gamma.$ Theorem [Manivel, Vallejo]

$$g(\lambda, \mu, \nu) \ge Pyr(\lambda', \mu', \nu')$$

Proposition For some $\alpha, \beta, \gamma \vdash n$ we have

$$Pyr(\alpha, \beta, \gamma) = \exp \Theta(n^{2/3}).$$

Conjecture [Pak-P'20]:

$$\sum_{\lambda \vdash n, \lambda = \lambda'} g(\lambda, \lambda, \lambda) = \exp\left(\frac{1}{2} n \log n + O(n)\right).$$

$$\begin{split} \overline{g}(\alpha,\beta,\gamma) &:= \lim_{n \to \infty} g \big(\alpha[n], \beta[n], \gamma[n] \big), \quad \alpha[n] := (n - |\alpha|, \alpha_1, \alpha_2, \ldots), \ n \geq |\alpha| + \alpha_1, \\ \overline{g}(\alpha,\beta,\gamma) &= c_{\beta\gamma}^{\alpha} \quad \text{for} \quad |\alpha| \, = \, |\beta| \, + \, |\gamma| \, , \end{split}$$

$$\overline{g}(\alpha,\beta,\gamma) := \lim_{n \to \infty} g(\alpha[n],\beta[n],\gamma[n]), \quad \alpha[n] := (n-|\alpha|,\alpha_1,\alpha_2,\ldots), \quad n \ge |\alpha| + \alpha_1,$$

$$\overline{g}(\alpha,\beta,\gamma) = c_{\beta\gamma}^{\alpha} \quad \text{for} \quad |\alpha| = |\beta| + |\gamma|,$$

Conjecture (Kirillov, Klyachk)

The reduced Kronecker coefficients satisfy the saturation property:

$$\overline{g}(N\alpha, N\beta, N\gamma) > 0$$
 for some $N \ge 1 \implies \overline{g}(\alpha, \beta, \gamma) > 0$.

$$\overline{g}(\alpha,\beta,\gamma) := \lim_{n \to \infty} g(\alpha[n],\beta[n],\gamma[n]), \quad \alpha[n] := (n-|\alpha|,\alpha_1,\alpha_2,\ldots), \quad n \ge |\alpha| + \alpha_1,$$

$$\overline{g}(\alpha,\beta,\gamma) = c_{\beta\gamma}^{\alpha} \quad \text{for} \quad |\alpha| = |\beta| + |\gamma|,$$

Conjecture (Kirillov, Klyachk)

The reduced Kronecker coefficients satisfy the saturation property:

$$\overline{g}(\textit{N}\alpha,\textit{N}\beta,\textit{N}\gamma)>0\quad \textit{for some } \textit{N}\geq 1 \quad \Longrightarrow \quad \overline{g}(\alpha,\beta,\gamma)>0\,.$$

Theorem (Pak-P, '20)

For all $k \geq 3$, the triple of partitions $(1^{k^2-1}, 1^{k^2-1}, k^{k-1})$ is a counterexample to the Conjecture. For every partition γ s.t. $\gamma_2 \geq 3$, there are infinitely many pairs $(a,b) \in \mathbb{N}^2$ s.t. (a^b,a^b,γ) is a counterexample.

$$\begin{split} \overline{g}(\alpha,\beta,\gamma) \; := \; \lim_{n \to \infty} \; g\big(\alpha[n],\beta[n],\gamma[n]\big), \qquad \alpha[n] := (n-|\alpha|,\alpha_1,\alpha_2,\ldots), \;\; n \geq |\alpha| + \alpha_1, \\ \overline{g}(\alpha,\beta,\gamma) \; = \; c^{\alpha}_{\beta\gamma} \quad \text{for} \quad |\alpha| \; = \; |\beta| \, + \, |\gamma| \, , \end{split}$$

Conjecture (Kirillov, Klyachk)

The reduced Kronecker coefficients satisfy the saturation property:

$$\overline{g}(N\alpha, N\beta, N\gamma) > 0$$
 for some $N \ge 1 \implies \overline{g}(\alpha, \beta, \gamma) > 0$.

Theorem (Pak-P, '20)

For all $k \geq 3$, the triple of partitions $(1^{k^2-1}, 1^{k^2-1}, k^{k-1})$ is a counterexample to the Conjecture. For every partition γ s.t. $\gamma_2 \geq 3$, there are infinitely many pairs $(a,b) \in \mathbb{N}^2$ s.t. (a^b,a^b,γ) is a counterexample.

Example:

$$\overline{g}(1^5, 1^5, (3,3)) = 0$$
, but $\overline{g}(2^5, 2^5, (6,6)) > 0$.

$$\overline{g}(\alpha,\beta,\gamma) := \lim_{n \to \infty} g(\alpha[n],\beta[n],\gamma[n]), \quad \alpha[n] := (n-|\alpha|,\alpha_1,\alpha_2,\ldots), \quad n \ge |\alpha| + \alpha_1,$$

$$\overline{g}(\alpha,\beta,\gamma) = c_{\beta\gamma}^{\alpha} \quad \text{for} \quad |\alpha| = |\beta| + |\gamma|,$$

Conjecture (Kirillov, Klyachk)

The reduced Kronecker coefficients satisfy the saturation property:

$$\overline{g}(\textit{N}\alpha,\textit{N}\beta,\textit{N}\gamma)>0\quad \textit{for some } \textit{N}\geq 1 \quad \Longrightarrow \quad \overline{g}(\alpha,\beta,\gamma)>0\,.$$

Theorem (Pak-P, '20)

For all $k \geq 3$, the triple of partitions $(1^{k^2-1},1^{k^2-1},k^{k-1})$ is a counterexample to the Conjecture. For every partition γ s.t. $\gamma_2 \geq 3$, there are infinitely many pairs $(a,b) \in \mathbb{N}^2$ s.t. (a^b,a^b,γ) is a counterexample.

Theorem (Pak-P'20)

$$\max_{a+b+c \leq 3n} \max_{\alpha \vdash a} \max_{\beta \vdash b} \max_{\gamma \vdash c} \ \overline{g} \big(\alpha,\beta,\gamma\big) = \sqrt{n!} \ e^{O(n)}$$

$$\begin{split} \overline{g}(\alpha,\beta,\gamma) \; := \; \lim_{n \to \infty} \; g\big(\alpha[n],\beta[n],\gamma[n]\big), \quad & \alpha[n] := (n-|\alpha|,\alpha_1,\alpha_2,\ldots), \; n \geq |\alpha| + \alpha_1, \\ \overline{g}(\alpha,\beta,\gamma) \; = \; c_{\beta\gamma}^{\alpha} \quad \text{for} \quad |\alpha| \; = \; |\beta| \; + \; |\gamma| \, , \end{split}$$

Conjecture (Kirillov, Klyachk)

The reduced Kronecker coefficients satisfy the saturation property:

$$\overline{g}(\textit{N}\alpha,\textit{N}\beta,\textit{N}\gamma)>0\quad \textit{for some } \textit{N}\geq 1 \quad \Longrightarrow \quad \overline{g}(\alpha,\beta,\gamma)>0.$$

Theorem (Pak-P, '20)

For all $k \geq 3$, the triple of partitions $(1^{k^2-1},1^{k^2-1},k^{k-1})$ is a counterexample to the Conjecture. For every partition γ s.t. $\gamma_2 \geq 3$, there are infinitely many pairs $(a,b) \in \mathbb{N}^2$ s.t. (a^b,a^b,γ) is a counterexample.

Theorem (Pak-P'20)

$$\max_{a+b+c \leq 3n} \max_{\alpha \vdash a} \max_{\beta \vdash b} \max_{\gamma \vdash c} \ \overline{g} \big(\alpha,\beta,\gamma\big) \ = \ \sqrt{n!} \ \mathrm{e}^{O(n)}$$

Theorem (Pak-P'20)

Computing the reduced Kronecker coefficients $\overline{g}(\alpha,\beta,\gamma)$ is strongly #P-hard.

Thank you!

21