Lecture 4 Part I

SETS

Definition

A set is an unordered collection of objects.

The objects in a set are called **elements** or **members** of the set.

Notation

 $x \in A$: Object x (is) in the set A.

 $x \notin A$: Object x (is) not in the set A.

Two ways of writing down the elements of a set:

- List all its elements (in any order, possibly repetitively) within a pair of braces. For example:
 - $\{1, -2, 5\} = \{-2, 1, 5\} = \{-2, 1, 5, -2, 5\}$
 - \blacktriangleright {1, 2, 3, ...}
- Describe its elements using a predicate P(x). For example, $\{x \in A \mid P(x)\}^1$ is the set containing those elements x of A such that P(x) is true.

Tan Kai Meng (NUS) Semester 1, 2019/20 2 / 30

¹Some authors write $\{x \in A : P(x)\}$.

Some common sets and their standard notations

- \bullet $\mathbb{C}, \mathbb{R}, \mathbb{Q}$: the sets of complex, real and rational numbers respectively.
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$: the set of integers.
- $\mathbb{Z}^+ = \{x \in \mathbb{Z} \mid x > 0\} = \{1, 2, \dots\}$: the set of positive integers.
- $\mathbb{Z}_{\geq 0} = \{x \in \mathbb{Z} \mid x \geq 0\} = \{0, 1, 2, \dots\}$: the set of positive integers.
- We also have analogous notations \mathbb{R}^+ and $\mathbb{R}_{\geq 0}$ for real numbers, as well as those for \mathbb{Q} .
- Ø: the empty set, containing no element.
- \mathbb{N} : the set of natural numbers. In this module, $\mathbb{N} = \mathbb{Z}_{\geq 0}$.
- \mathcal{U} : the universal set, containing all elements under discussion.

There are still controveries about whether N contains 0 or not => Try to avoid using N by using Z+ or Z>=0 instead.

Tan Kai Meng (NUS) Semester 1, 2019/20 3 / 30

Example

It is possible that an element of a set may be a set itself.

Eg: $\{\emptyset\}$ is a set whose only element is \emptyset .

Example

Let $A = \{\{1, 2\}, 3\}$. Determine which of the following statements is true:

- $\{1,2\} \in A$; True
- $1 \in A$. False

Primary Method For Proving an Element of a Set

Let A be a set. If the elements of A can be easily listed down, then proving that $a \in A$ is merely an observation that a is among of the list of elements of A.

If $A = \{x \mid p(x)\}$, then to prove that $a \in A$, we need to show that p(a) is true.

Example

Let $A = \{x \in \mathbb{R} \mid x^2 - 5x + 6 > 0\}.$

Is $5 \in A$?

Check: Let $p(x) = x^2 - 5x + 6 > 0$. Then $P(5) = 5^2 - 5(5) + 6 > 0$ is true. Thus $5 \in A$.

Is $2.5 \in A$?

Check: $P(2.5) = (2.5)^2 - 5(2.5) + 6 > 0$ is false. Thus $^{2.5} \notin A$.

◆□▶◆□▶◆□▶◆■▶ ■ 990

Tan Kai Meng (NUS)

5 / 30

Subsets

Definition

Let A and B be two sets. We say that A is a subset of B, denoted $A \subseteq B$, if every element of A is also an element of B. Symbolically,

$$A \subseteq B \equiv \forall x \ (x \in A \to x \in B).$$

We write $A \not\subseteq B$ for 'A is not a subset of B'. Thus

$$A \not\subseteq B \equiv \exists x \ (x \in A \land x \notin B) \equiv \exists x \in A \ (x \notin B).$$

Note

- For any set A, $\varnothing \subseteq A$ and $A \subseteq A$ are always true.
- If $a \in A$ and $A \subseteq B$, we may summarise this as

$$a \in A \subseteq B$$
,

6 / 30

from which we infer also that $a \in B$.

Example

The following are all the subsets of $\{1, 2, 3\}$:

$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$.

Note

Let p(x) and q(x) be predicates. Let $A = \{x \mid p(x)\}$ and $B = \{x \mid q(x)\}$.

Then

$$A \subseteq B \equiv \forall x, \ p(x) \to q(x).$$

7 / 30

Tan Kai Meng (NUS) Semester 1, 2019/20

Lemma

Let A, B and C be sets. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Direct proof.

We need to show that if $x \in A$ then $x \in C$.

- ② Since $A \subseteq B$ ($\equiv x \in A \rightarrow x \in B$), we have $x \in B$ (modus ponens).
- lacksquare since $B\subseteq C$ ($\equiv x\in B \to x\in C$), we have $x\in C$ (modus ponens).

Note

If $A \subseteq B$ and $B \subseteq C$, we may summarise this as

 $A \subseteq B \subseteq C$

from which (according to the above lemma) we infer also that $A \subseteq C$.

Tan Kai Meng (NUS) Semester 1, 2019/20 8 / 30

4 D F 4 P F 4 B F 4 B F B

Definition

A subset A of B is proper if $A \neq B$. Thus A is a proper subset of B, denoted $A \subseteq B$, if and only if

$$(\forall x \in A, x \in B) \land (\exists y \in B, y \notin A).$$

Example

 $\mathbb{Z} \subsetneq \mathbb{Q}$; $\mathbb{Z}_{\geq 0} \subsetneq \mathbb{Z}^+$.

Remarks

We do not use the symbol \subset in this module, because it is a little ambiguous.

Tan Kai Meng (NUS)

9 / 30

Definition

Two sets \underline{A} and \underline{B} are equal if they contain the same elements. More precisely,

$$A = B \equiv A \subseteq B \land B \subseteq A \equiv \forall x (x \in A \leftrightarrow x \in B).$$

Example

Let
$$A = \{n \in \mathbb{R} \mid n^2 = 1\}$$
 and $B = \{-1, 1\}$. Then $A = B$.

Exercise

Is
$$\emptyset = \{\emptyset\}$$
?

No, because the LHS contains no element, while the RHS contains 1 element

4 D > 4 A > 4 B > 4 B > B 90 0

Tan Kai Meng (NUS)

Primary Method For Proving Set (In)Equalities

To show that $A \subseteq B$, we start with $x \in A$ and aim for the conclusion $x \in B$.

In other words, we aim to prove $x \in A \Rightarrow x \in B$.

To show that A = B, we show $A \subseteq B$ and $B \subseteq A$.

More precisely, we start with $x \in A$ and aim for the conclusion $x \in B$; then start with $y \in B$ and aim for the conclusion $y \in A$.

Sometimes, when we are lucky, we may be able to cut this short by showing $x \in A \Leftrightarrow x \in B$.

We call this method of proof the **element method**.

Differentiate between => and ->:

When we use ->, the statement we say may be true or false; but when we use =>, we want to state that the statement is true

Tan Kai Meng (NUS)

Set Operations

Definition

Let A and B be sets.

• The union of A and B, denoted $A \cup B$, is the set

$$A \cup B = \{x \in \mathcal{U} \mid x \in A \text{ or } x \in B\}.$$

• The intersection of A and B, denoted $A \cap B$, is the set

$$A \cap B = \{x \in \mathcal{U} \mid x \in A \text{ and } x \in B\}.$$

• The **complement** of B in A, denoted A - B (or $A \setminus B$), is the set

$$A - B = \{ x \in A \mid x \notin B \}.$$

We further write \overline{B} for $\mathcal{U} - B$, simply called the complement of B.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Set identities

Theorem (Theorem 6.2.2)

Let A, B and C be subsets of the universal set \mathcal{U} .

Commutative Laws:

$$A \cup B = B \cup A, \qquad A \cap B = B \cap B.$$

Associative Laws:

$$(A \cup B) \cup C = A \cup (B \cup C),$$
 $(A \cap B) \cap C = A \cap (B \cap C).$

Distributive Laws:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Identity Laws:

$$A \cup \emptyset = A, \qquad A \cap \emptyset = \emptyset.$$

13 / 30

Tan Kai Meng (NUS) Semester 1, 2019/20

Set identities (Cont'd)

Theorem (Cont'd)

Complement Laws:

$$A \cup \overline{A} = \mathcal{U}, \qquad A \cap \overline{A} = \emptyset.$$

Double Complement Law:

$$(\overline{A}) = A.$$

Idempotent Laws:

$$A \cup A = A, \qquad A \cap A = A.$$

• Universal Bound Laws:

$$A \cup \mathcal{U} = \mathcal{U}, \qquad A \cap \mathcal{U} = A.$$

Set identities (Cont'd)

Theorem (Cont'd)

De Morgan's Laws:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \qquad \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Absorption Laws:

$$A \cup (A \cap B) = A, \qquad A \cap (A \cup B) = A.$$

Set Difference Law:

$$A - B = A \cap \overline{B}$$
.

•

$$\overline{\mathcal{U}} = \varnothing, \qquad \overline{\varnothing} = \mathcal{U}.$$

Proof of Set Identities

All identities can be proved by the element method or using the truth table as illustrated below.

Proof of Distributive Law by the element method.

$$x \in A \cap (B \cup C) \equiv (x \in A) \land (x \in B \cup C)$$

$$\equiv (x \in A) \land (x \in B \lor x \in C)$$

$$\Leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C)$$

$$\equiv (x \in A \cap B) \lor (x \in A \cap C)$$

$$\equiv x \in (A \cap B) \cup (A \cap C).$$

< ロ > → 4 回 > → 4 直 > → 1 至 → りへ(^)

Proof of Set Identities (Cont'd)

Proof of Absorption Law using truth table.

$x \in A$	$x \in B$	$x \in A \cup B$	$x \in A \cap (A \cup B)$
Т	T	Т	Т
Т	F	Т	Т
F	Т	T	F
F	F	F	F

From the table, we see that the first and last columns are the same. Thus $A=A\cap (A\cup B)$.

The other set identities can be proved similarly, which we leave for you as an exercise.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Proving Set Equalities using Set Identities

We now have a new method of proving equalities of sets, using set identities.

Example

Prove that $(A \cup B) \cap (A \cup \overline{B}) = A$.

Solution:

$$\begin{array}{ll} (A \cup B) \cap (A \cup \overline{B}) = A \cup (B \cap \overline{B}) & \text{(Distributive Law)} \\ &= A \cup \varnothing & \text{(Complement Law)} \\ &= A & \text{(Identity Law)}. \end{array}$$

Conclusion: Proving set equality (3 methods) Flement method Truth table

Set identities

Venn Diagram (not recommended)

Venn Diagrams

Sometimes, to understand complicated situations involving 3 sets or less, it helps to draw a Venn diagram.

In such a diagram, a set is usually represented as the region enclosed by a circle (or an ellipse).

Figure: A Venn diagram involving two sets A and B

Figure: A Venn diagram involving three sets A, B and C

Warning!

Venn diagrams can only be used as a tool to help us understand, and does not constitute a formal proof of set (in)equalities.

Are Venn diagrams useful for a situation involving four sets?

◄□▶◀圖▶◀불▶◀불▶ 불 ∽

Disjoint Sets

Definition

Two sets A and B are disjoint if $A \cap B = \emptyset$.

A Venn diagram of two disjoint sets.

Definition

Let $\mathscr C$ be a collection of sets. The sets in $\mathscr C$ are **pairwise disjoint** if and only if for all $A, B \in \mathscr C$ with $A \neq B$, we have $A \cap B = \varnothing$.

Union and Intersection of 3 or more sets

By the Associative Laws, we may write $A \cup B \cup C$ and $A \cap B \cap C$ without any ambiguity.

This generalises to any number of sets, and we have the following shorthand:

$$A_i := A_1 \cup A_2 \cup \dots \cup A_n;$$

$$A_i := A_1 \cap A_2 \cap \dots \cap A_n.$$

Cartesian Products

Let A and B be sets. The Cartesian product of A and B, denoted $A \times B$, is the set

$$A \times B := \{(a, b) \mid a \in A, b \in B\}.$$

The elements of $A \times B$, which are of the form (a, b), are called **ordered** pairs. Note that $(a, b) \neq (b, a)$ unless a = b.

Generalising, when A_1, A_2, \ldots, A_n are sets, the Cartesian product of A_1, A_2, \ldots, A_n , denoted $A_1 \times A_2 \times \cdots \times A_n$, is the set

$$A_1 \times A_2 \times \cdots \times A_n := \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1, \ a_2 \in A_2, \ \dots, \ a_n \in A_n\}.$$

The elements of $A_1 \times A_2 \times \cdots \times A_n$, which are of the form (a_1, a_2, \dots, a_n) , are called *n*-**tuples**.

We also write A^n for

$$\underbrace{A \times A \times \cdots \times A}_{n}.$$

Power Sets

Definition

Let A be a set. The **power set** of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A, i.e.

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}.$$

Example

- $\bullet \ \mathcal{P}(\{1,2,3\}) = \{\varnothing, \ \{1\}, \ \{2\}, \ \{3\}, \ \{1,2\}, \ \{1,3\}, \ \{2,3\}, \ \{1,2,3\}\}.$
- $\mathcal{P}(\varnothing) = \{\varnothing\}.$

Partitions

Definition

Let A be a set. A **partition** of A is an Unodered collection of pairwise disjoint, non-empty subsets of A whose union is A. In other words, P is a partition of A if and only if:

- $P \subseteq \mathcal{P}(A)$;
- $\varnothing \notin P$;
- for all $X,Y\in P$ with $X\neq Y$, we have $X\cap Y=\varnothing$ (distinct elements of P are pairwise disjoint);
- $\bullet \bigcup_{X \in P} X = A.$

Example

- Both $\{\{1\}, \{2\}, \{3\}\}$ and $\{\{1\}, \{2,3\}\}$ are partitions of $\{1,2,3\}$.
- Both $\{\{1,2\},\{2,3\}$ and $\{\{1\},\{3\}\}$ are not partitions of $\{1,2,3\}$.
- If A is non-empty, then $\{A\}$ is a partition of A.

Lemma

Let A and B be sets. Then $\{A \cap B, A - B, B - A\}$ is a partition of $A \cup B$.

Proof using truth tables.

Let
$$S = (A \cap B) \cup (A - B) \cup (B - A)$$
.

$x \in A$	$x \in B$	$x \in A \cap B$	$x \in A - B$	$x \in B - A$	$x \in S$	$x \in A \cup B$
Т	Т	T	F	F	T	Т
Т	F	F	Т	F	T	Т
F	Т	F	F	Т	T	Т
F	F	F	F	F	F	F

From the table, we find that $A \cap B$, A - B and B - A are pairwise disjoint (at most one T in each row for the columns in the middle), and that $A \cup B = S$. Thus $\{A \cap B, A - B, B - A\}$ is a partition of $A \cup B$.

Finite and Infinite Sets

Definition

A set is **finite** if it contains only finitely many **distinct** elements.

A set is **infinite** if it contains infinitely many (distinct) elements.

If S is a finite set, we write |S| for the number of distinct elements in S.

Example

- ullet \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are all infinite sets.
- \varnothing , $\{-1, 0.5, \sqrt{2}, -1, \sqrt{2}\}$, $\{x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, and $\{x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, repeated $\{x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ and $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ and $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ and $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ and $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ and $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ and $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ and $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ and $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ are all finite sets, $\|x \in \mathbb{Z}^+ \mid x \le 10^{100}\}$ and $\|x \in \mathbb$

$$|\{-1, 0.5, \sqrt{2}, -1, \sqrt{2}\}| = 3,$$

 $|\{x \in \mathbb{Z}^+ \mid x \le 10^{100}\}| = 10^{100}.$

Note

- The union of finitely many finite sets is a finite set.
- If A and B are disjoint finite sets, then $|A \cup B| = |A| \cup |B|$.
- If A_1, A_2, \ldots, A_n are pairwise disjoint finite sets, then $|\bigcup_{i=1}^n A_i| = \sum_{i=1}^n |A_i|$.

Lemma

Let A and B be finite sets, not necessarily disjoint. Then

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Tan Kai Meng (NUS)

Proof.

• Recall that $\{A \cap B, A - B, B - A\}$ is a partition of $A \cup B$. Thus,

$$|A\cup B|=|A\cap B|+|A-B|+|B-A|.$$

- $(A \cap B) \cup (A B) = (A \cap B) \cup (A \cap \overline{B}) = A \cap (B \cup \overline{B}) = A \cap \mathcal{U} = A.$
 - $\mathbf{Q} \ A \cap B$ and A B are disjoint (since they are elements in a partition), so $|A| = |(A \cap B) \cup (A - B)| = |A \cap B| + |A - B|$, or

$$|A - B| = |A| - |A \cap B|.$$

 \odot Interchanging the roles of A and B in (2), we also get

$$|B - A| = |B| - |A \cap B|.$$

4 Substituting (2.2) and (3) into (1), we get

$$|A \cup B| = |A \cap B| + (|A| - |A \cap B|) + (|B| - |A \cap B|) = |A| + |B| - |A \cap B|.$$

Semester 1, 2019/20 29 / 30

Summary

We have covered:

- How to define a set
- How to prove that an element lies in a given set
- Subsets
- How to prove set (in)equalities
- Union and intersection and complement of sets
- Set identities
- Venn diagrams
- Cartesian products of sets
- Power sets and partitions
- (In)finite sets, and number of elements in a finite set