Inferential Analysis

Part 2

Probability

- Probability is a branch of mathematics that deals with calculating the likelihood of a given event's occurrence.
- Probability is the measure of the likeliness that an event will occur.
- Probability is quantified as a number between o and 1 (where o indicates impossibility and 1 indicates certainty).
- The higher the probability of an event, the more certain that the event will occur.

Probability is written as,

Probabilit (Event happening) =
$$\frac{\text{Number of ways it can happen}}{\text{Total Number of Outcomes}}$$

Key Terms in Probability

- Probability: A number between 0 and 1 that indicates the chance or likelihood of an event happening.
- Probability Experiment: A situation where number of trials are conducted to determine probability.
- Sample spaces: Set of all possible of outcomes of any trial in a probability experiment.
- Sample point: One element of the sample spaces.
- Outcome: Result of the one trial in probability experiment.
- Equally likely outcomes: Outcomes with the same probability.
- Expected frequency: Number of times a specific outcomes is expected to occur when a probability experiment or a trial is repeated number of times.
- · Observed frequency: Number of times that specific outcome did occur.
- Event: One or more favourable outcomes of probability experiment.
- Complement of an Event: All outcomes that are not the Event.

Key Terms in Probability

- **Independent Events:** Events that don't affect or are not affected by another event or events. Each event has exactly the same probability.
- **Dependent Events:** Events that affect or are affected by another event or events.
- **Mutually Exclusive Events:** Events that cannot happen at same time. The probability of mutually exclusive events is Zero.

Types of Events

- Dependent Event: Dependent event also called "Conditional", where one event is affected by other events
- Example: Drawing 2 Cards from a Deck. After taking one card from the deck there is one card less than the previous, so the probability changes!
- **Independent Event:** One event is not affected by any other events.

• Example: You toss a coin three times and it comes up "Heads" each time. what is the chance that the next toss will also be a "Head"? The chance is simply 1/2, or 50%, just like ANY OTHER toss of the coin. What it did in the past will not affect the current toss.

Conditional Probability

- A Conditional probability is a probability whose sample space has been limited to only those outcomes that fulfill a certain condition.
- A rule that can be used to determine a conditional probability from unconditional probabilities is:

$$P(A \mid B) = P(A \cap B) / P(B)$$

where:

- P(A | B) = Conditional probability that event A will occur given that event B has occurred already
- $P(A \cap B)$ = Unconditional probability that event A and event B both occur
- P(B) = Probability that event B occurs
- The usual notation for "event A occurs given that event B has occurred" is "A | B" (A given B).
- The symbol | is a vertical line and does not imply division.

Bayes theorem

- Bayes theorem shows the relationship between one conditional probability and its inverse
- It provides a mathematical rule for revising an estimate of experience and observation

Related terms in Bays theorem

P(A): The probability of event A not concerning its associated event B.

This is also called as Prior probability of A

P(B): The probability of event B not concerning its associated

This is also called as Prior probability of A

P(B|A): Conditional probability of B given A.

This is also called as likelihood

P(A|B): Conditional probability of A given B.

This is also called as posterior probability

1.1 Discrete Distributions

	Notation ¹	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\left[X ight]$	$M_X(s)$
Uniform	$\mathrm{Unif}\left\{a,\dots,b\right\}$	$\begin{cases} 0 & x < a \\ \frac{ x -a+1}{b-a} & a \le x \le b \\ 1 & x > b \\ & (1-p)^{1-x} \end{cases}$	$\frac{I(a < x < b)}{b - a + 1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$	$\frac{e^{as}-e^{-(b+1)s}}{s(b-a)}$
Bernoulli	$\mathrm{Bern}(p)$	$(1-p)^{1-x}$	$p^{x}\left(1-p\right)^{1-x}$	p	p(1-p)	$1-p+pe^s$
Binomial	$\mathrm{Bin}(n,p)$	$I_{1-p}(n-x,x+1)$	$\binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)	$\left(1-p+pe^s\right)^n$
Multinomial	$\operatorname{Mult}\left(n,p\right)$		$rac{n!}{x_1!\dots x_k!}p_1^{x_1}\cdots p_k^{x_k} \sum_{i=1}^k x_i = n$	np_i	$np_i(1-p_i)$	$\left(\sum_{i=0}^k p_i e^{s_i}\right)^n$
Hypergeometric	$\mathrm{Hyp}\left(N,m,n\right)$	$\approx \Phi\left(\frac{x-np}{\sqrt{np(1-p)}}\right)$	$\frac{\binom{m}{x}\binom{m-x}{n-x}}{\binom{N}{x}}$	$\frac{nm}{N}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	
Negative Binomial	$\mathrm{NBin}(n,p)$	$I_p(r,x+1)$	$\binom{x+r-1}{r-1}p^r(1-p)^x$	$r\frac{1-p}{p}$	$r\frac{1-p}{p^2}$	$\left(\frac{p}{1-(1-p)e^s}\right)$
Geometric	$\mathrm{Geo}\left(p\right)$	$1-(1-p)^x x \in \mathbb{N}^+$	$p(1-p)^{x-1}$ $x \in \mathbb{N}^+$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1-(1-p)e^s}$
Poisson	$Po(\lambda)$	$e^{-\lambda} \sum_{i=0}^{x} \frac{\lambda^{i}}{i!}$	$rac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^{s}-1)}$

1.2 Continuous Distributions

	Notation	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\left[X ight]$	$M_X(s)$
Uniform	$\mathrm{Unif}(a,b)$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x > b \end{cases}$	$\frac{I(a < x < b)}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{sb} - e^{sa}}{s(b-a)}$
Normal	$\mathcal{N}\left(\mu,\sigma^2 ight)$	$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$	$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2	$\exp\left\{\mu s + \frac{\sigma^2 s^2}{2}\right\}$
Log-Normal	$\ln \mathcal{N}\left(\mu,\sigma^2\right)$	$\frac{1}{2} + \frac{1}{2}\operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2\sigma^2}}\right]$	$\frac{1}{x\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}$	$e^{\mu+\sigma^2/2}$	$(e^{\sigma^2}-1)e^{2\mu+\sigma^2}$	
Multivariate Normal	$\operatorname{MVN}\left(\mu,\Sigma\right)$		$(2\pi)^{-k/2} \Sigma ^{-1/2}e^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$	μ	Σ	$\exp\left\{\mu^T s + \frac{1}{2} s^T \Sigma s\right\}$
Student's t	$\mathrm{Student}(\nu)$	$I_x\left(rac{ u}{2},rac{ u}{2} ight)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-(\nu+1)/2}$	0	0	
Chi-square	χ_k^2	$\frac{1}{\Gamma(k/2)}\gamma\left(\frac{k}{2},\frac{x}{2}\right)$	$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2}e^{-x/2}$	k	2k	$(1-2s)^{-k/2}\ s<1/2$
F	$\mathrm{F}(d_1,d_2)$	$I_{rac{d_1x}{d_1x+d_2}}\left(rac{d_1}{2},rac{d_1}{2} ight)$	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{x\mathrm{B}\left(\frac{d_1}{2},\frac{d_1}{2}\right)}$	$\frac{d_2}{d_2-2}$	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$	
Exponential	$\operatorname{Exp}\left(eta ight)$	$1 - e^{-x/\beta}$	$\frac{1}{eta}e^{-x/eta}$	β	β^2	$\frac{1}{1-\beta s} \left(s < 1/\beta \right)$
Gamma	Gamma (α, β)	$rac{\gamma(lpha,x/eta)}{\Gamma(lpha)}$	$rac{1}{\Gamma\left(lpha ight)eta^{lpha}}x^{lpha-1}e^{-x/eta}$	$\alpha\beta$	$lphaeta^2$	$\left(\frac{1}{1-\beta s}\right)^{\alpha} (s<1/\beta)$
Inverse Gamma	InvGamma (α, β)	$\frac{\Gamma\left(\alpha, \frac{\beta}{x}\right)}{\Gamma\left(\alpha\right)}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-\alpha-1}e^{-\beta/x}$	$\frac{\beta}{\alpha-1} \; \alpha > 1$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)^2}\;\alpha>2$	$rac{2(-eta s)^{lpha/2}}{\Gamma(lpha)}K_lpha\left(\sqrt{-4eta s} ight)$
Dirichlet	$\mathrm{Dir}\left(\alpha\right)$		$\frac{\Gamma\left(\sum_{i=1}^k \alpha_i\right)}{\prod_{i=1}^k \Gamma\left(\alpha_i\right)} \prod_{i=1}^k x_i^{\alpha_i-1}$	$\frac{\alpha_i}{\sum_{i=1}^k \alpha_i}$	$\frac{\mathbb{E}\left[X_{i}\right]\left(1-\mathbb{E}\left[X_{i}\right]\right)}{\sum_{i=1}^{k}\alpha_{i}+1}$	
Beta	$\mathrm{Beta}(\alpha,\beta)$	$I_x(lpha,eta)$	$\frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}x^{\alpha-1}\left(1-x\right)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{s}{k}$
Weibull	$\mathrm{Weibull}(\lambda,k)$	$1 - e^{-(x/\lambda)^k}$	$\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$	$\lambda\Gamma\left(1+\frac{1}{k}\right)$	$\lambda^2 \Gamma \left(1 + \frac{2}{k}\right) - \mu^2$	$\sum_{n=0}^{\infty} \frac{s^n \lambda^n}{n!} \Gamma\left(1 + \frac{n}{k}\right)$
Pareto	$\operatorname{Pareto}(x_m, \alpha)$	$1 - \left(\frac{x_m}{x}\right)^{\alpha} x \ge x_m$	$\alpha \frac{x_m^{\alpha}}{x^{\alpha+1}}$ $x \ge x_m$	$\frac{\alpha x_m}{\alpha - 1} \alpha > 1$	$\frac{x_m^{\alpha}}{(\alpha-1)^2(\alpha-2)} \alpha > 2$	$\alpha(-x_ms)^{\alpha}\Gamma(-\alpha,-x_ms)\ s<$