Regression Fit

Jeffrey Arnold

May 10, 2016

1. Standard error of the regression

- 1. Standard error of the regression
- 2. R-squared

- 1. Standard error of the regression
- 2. R-squared
- 3. Adjusted R-squared

- 1. Standard error of the regression
- 2. R-squared
- 3. Adjusted R-squared
- 4. F-test

- 1. Standard error of the regression
- 2. R-squared
- 3. Adjusted R-squared
- 4. F-test
- 5. Advice

- 1. Standard error of the regression
- 2. R-squared
- 3. Adjusted R-squared
- 4. F-test
- 5. Advice
- 6. More . . .

R^2

Ratio of variance of fitted values to sample y

$$R^2 = \frac{\mathsf{Var}(\hat{\boldsymbol{y}})}{\mathsf{Var}\,\boldsymbol{y}}$$

Ratio of variance of fitted values to sample y

$$R^2 = \frac{\mathsf{Var}(\hat{\boldsymbol{y}})}{\mathsf{Var}\,\boldsymbol{y}}$$

Ratio of variance "explained" by the regression

$$R^2 = 1 - SSE/SST = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

Ratio of variance of fitted values to sample y

$$R^2 = \frac{\mathsf{Var}(\hat{\boldsymbol{y}})}{\mathsf{Var}\,\boldsymbol{y}}$$

▶ Ratio of variance "explained" by the regression

$$R^2 = 1 - SSE/SST = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

► For bivariate regression, correlation of *Y* and *X* squared,

$$R^2 = \operatorname{Cor}(\boldsymbol{x}, \boldsymbol{y})^2 = \hat{\beta}_1 \frac{\operatorname{sd} \boldsymbol{y}}{\operatorname{sd} \boldsymbol{x}}$$

Ratio of variance of fitted values to sample y

$$R^2 = \frac{\mathsf{Var}(\hat{\boldsymbol{y}})}{\mathsf{Var}\,\boldsymbol{y}}$$

▶ Ratio of variance "explained" by the regression

$$R^2 = 1 - SSE/SST = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

▶ For bivariate regression, correlation of *Y* and *X* squared,

$$R^2 = \operatorname{Cor}(\mathbf{x}, \mathbf{y})^2 = \hat{\beta}_1 \frac{\operatorname{sd} \mathbf{y}}{\operatorname{sd} \mathbf{x}}$$

 $ightharpoonup R^2 \in [0,1]$ where 1 is all points are on a line/plane

R-squared is dependent on scale of X

$$\hat{\sigma}^2 = 0.3, R^2 = 0.91$$

R-squared is dependent on scale of X

Same data, regression on subset

In-sample fit always increases as variables are added

R-squared always increases as variables are added

1. Does not measure goodness of fit

- 1. Does not measure goodness of fit
 - 1.1 To get R^2 large, make X spread out

- 1. Does not measure goodness of fit
 - 1.1 To get R^2 large, make X spread out
 - 1.2 To get \mathbb{R}^2 small, make X not spread out

- 1. Does not measure goodness of fit
 - 1.1 To get R^2 large, make X spread out
 - 1.2 To get R^2 small, make X not spread out
- 2. Does not measure prediction

- 1. Does not measure goodness of fit
 - 1.1 To get R^2 large, make X spread out
 - 1.2 To get R^2 small, make X not spread out
- 2. Does not measure prediction
- 3. Cannot compare different datasets (including transformed Y)

- 1. Does not measure goodness of fit
 - 1.1 To get R^2 large, make X spread out
 - 1.2 To get R^2 small, make X not spread out
- 2. Does not measure prediction
- 3. Cannot compare different datasets (including transformed Y)
- 4. Not variance "explained" in causal sense

$$\hat{\sigma} = \sqrt{\frac{1}{N - K - 1} \sum \varepsilon_i^2}$$

► "Average" error

$$\hat{\sigma} = \sqrt{\frac{1}{N - K - 1} \sum \varepsilon_i^2}$$

- "Average" error
- ▶ RMSE is similar, with denominator N instead of N K 1.

$$\hat{\sigma} = \sqrt{\frac{1}{N - K - 1} \sum \varepsilon_i^2}$$

- "Average" error
- ▶ RMSE is similar, with denominator N instead of N K 1.
- \triangleright On the same scale as y

$$\hat{\sigma} = \sqrt{\frac{1}{N - K - 1} \sum \varepsilon_i^2}$$

- "Average" error
- ▶ RMSE is similar, with denominator N instead of N K 1.
- On the same scale as y
- \triangleright Often suggested as alternative to R^2

Adjust R^2 for sample size and variables,

$$R^2 = 1 - \frac{SSE/(N-K-1)}{SST/(N-1)}$$

▶ Slightly penalizes R^2 for more variables

Adjust R^2 for sample size and variables,

$$R^2 = 1 - \frac{SSE/(N - K - 1)}{SST/(N - 1)}$$

- ▶ Slightly penalizes R^2 for more variables
- ▶ Adjustment only relevant for cases where $N \approx K$

Adjust R^2 for sample size and variables,

$$R^2 = 1 - \frac{SSE/(N - K - 1)}{SST/(N - 1)}$$

- ▶ Slightly penalizes R^2 for more variables
- ▶ Adjustment only relevant for cases where $N \approx K$
- No theory as to what it is good for

Adjust R^2 for sample size and variables,

$$R^{2} = 1 - \frac{SSE/(N - K - 1)}{SST/(N - 1)}$$

- ▶ Slightly penalizes R^2 for more variables
- ▶ Adjustment only relevant for cases where $N \approx K$
- ▶ No theory as to what it is good for
- ▶ Doesn't fix any important problem with R². Pointless for comparing models

Problems with $\hat{\sigma}$

1. Less affected by changes in scale of X

Problems with $\hat{\sigma}$

- 1. Less affected by changes in scale of X
- 2. But almost all problems with R² related to in-sample performance

Problems with $\hat{\sigma}$

- 1. Less affected by changes in scale of X
- 2. But almost all problems with R² related to in-sample performance
- 3. To interpret $\hat{\sigma}$ need to compare to scale (variance) of \mathbf{y} , but then almost the same as R^2 .

F-test

 $ightharpoonup R^2$ and \hat{sigma} are statistics, but generally not used in tests

F-test

- $ightharpoonup R^2$ and $si\hat{gma}$ are statistics, but generally not used in tests
- *F*-test with $H_O: \beta_1 = \cdots = \beta_K = 0$

F-test

- $ightharpoonup R^2$ and $si\hat{gma}$ are statistics, but generally not used in tests
- *F*-test with $H_O: \beta_1 = \cdots = \beta_K = 0$
- ► F-statistic is a function of the SSE of models

F-test

- $ightharpoonup R^2$ and $si\hat{gma}$ are statistics, but generally not used in tests
- *F*-test with $H_O: \beta_1 = \cdots = \beta_K = 0$
- ► F-statistic is a function of the SSE of models
- ▶ Inherits most of the same problems as R^2

F-test

- $ightharpoonup R^2$ and $si\hat{gma}$ are statistics, but generally not used in tests
- *F*-test with $H_O: \beta_1 = \cdots = \beta_K = 0$
- F-statistic is a function of the SSE of models
- ▶ Inherits most of the same problems as R^2
- Assumes that linear model is correct, not whether it is a good model

1. Focus on what's important:

- 1. Focus on what's important:
 - 1.1 If prediction: out of sample performance

- 1. Focus on what's important:
 - 1.1 If prediction: out of sample performance
 - 1.2 If causation:

- 1. Focus on what's important:
 - 1.1 If prediction: out of sample performance
 - 1.2 If causation:
 - identification of β (omitted variable bias or design)

- 1. Focus on what's important:
 - 1.1 If prediction: out of sample performance
 - 1.2 If causation:
 - identification of β (omitted variable bias or design)
 - assumptions of model (other diagnostics)

- 1. Focus on what's important:
 - 1.1 If prediction: out of sample performance
 - 1.2 If causation:
 - identification of β (omitted variable bias or design)
 - assumptions of model (other diagnostics)
- 2. Focus on results/average of many models not the "best" model

Next time

Comparing predictive performance of models using cross-validation

References

► Gary King "How Not to Lie With Statistics: Avoiding Common Mistakes in Quantitative Political Science."

References

- ► Gary King "How Not to Lie With Statistics: Avoiding Common Mistakes in Quantitative Political Science."
- ▶ Cosmo Shalizi, F-Tests, R2 ad, and Other Distractions.

References

- ► Gary King "How Not to Lie With Statistics: Avoiding Common Mistakes in Quantitative Political Science."
- ▶ Cosmo Shalizi, F-Tests, R2 ad, and Other Distractions.
- R-squared: useful or evil?