Allgemein

Linearität

$$f(x) \cdot a = f(x \cdot a) \qquad \forall a \in \mathbf{R}, \forall x \in \mathbf{R}^n$$
 (1)

f(x) + f(y) = f(x+y) $V_{x,y} \in \mathbf{R}^n$

Lineares Beispiel: f(x) = 3x mit a = 3, x = 2, y = 5

1. Homogenitätstest: $f(2 \cdot 3) \stackrel{?}{=} 3 \cdot f(2)$ $f(6) = 6 \cdot 3 = 18$ vs. $3 \cdot 3 \cdot 2 = 3 \cdot 6 = 18$ $\Rightarrow 18 = 18$ (\checkmark)

2. Additivitätstest: $f(2) + f(5) \stackrel{?}{=} f(2+5)$ (3 · 2) + (3 · 5) = 6 + 15 = 21 vs. 3 · 7 = 21 \Rightarrow 21 = 21 (\checkmark)

Gegenbeispiel: $f(x) = x^2$ mit a = 2, x = 3, y = 4

- 1. Homogenitätstest: $f(3 \cdot 2) \stackrel{?}{=} 2 \cdot f(3)$ $f(6) = 6^2 = 36 \quad vs. \quad 2 \cdot 3^2 = 18 \quad \Rightarrow 36 \neq 18 \ (\times)$
- 2. Additivitätstest: $f(3) + f(4) \stackrel{?}{=} f(3+4)$ $3^2 + 4^2 = 9 + 16 = 25$ vs. $7^2 = 49 \implies 25 \neq 49$ (×)

Injektiv

Surjektiv

Bijektiv

Analysis

Polynome

Hornerschema

Polynomial example: $p(x) = 2x^3 + 3x^2 + 4x + 5$ evaluated at x = 1Where factors are calculated

	2	3	4	5
1		2 📐	5 📐	9 🔪
	2	5	9	14

5: $2 \times 1 + 3 = 5$ $5 \times 1 + 4 = 9$ $9 \times 1 + 5 = 14$

Nusstellen erraten

Trigonometrie

Einheitskreis

Sin	Cos	Tan	Cot
G	Α	G	Α
Н	Н	Α	G

Integrale

(2)

Integrationsgrenzen tauschen

Satz von Fubini

Substitution

Normale Substitution

$$\int_{a}^{b} f(g(x))dx \mid u(x) = g(x) \mid u'(x) = g'(x) \mid du = u'(x) \cdot dx$$

$$\int_{u(a)}^{u(b)} u(x) \frac{1}{u'(x)} du \mid dx = \frac{1}{u'(x)} du$$
(3)

Wenn nach einer Substitution noch ein ${\sf x}$ in der Gleichung vorhanden ist, muss dieses in ein u umgewandelt werden.

$$\int \frac{e^{2x}}{1+e^2} dx \quad | \quad u = 1 + e^x \quad | \quad u' = e^x \quad | \quad du = e^x dx \Leftrightarrow du = \frac{1}{e^x}$$

$$\int \frac{e^{2x}}{u} \cdot \frac{1}{e^x} du = \int \frac{e^x}{u} du \quad | \quad u = 1 + e^x \Leftrightarrow e^x = u - 1$$

$$\int \frac{u-1}{u} du = \int \frac{u}{u} - \frac{1}{u} du = \int 1 - \frac{1}{u} du = \underline{u - \ln|u| + c}$$

Umgekehrte Substitution (Example)

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx \quad | \quad x = \sin u \quad | \quad x' = \cos u$$

$$\int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2} u} \cdot \cos u \, du \quad | \quad dx = \cos u \, du \Leftrightarrow du = \frac{1}{\cos u} \, dx$$

$$\int_{0}^{\frac{\pi}{2}} \cos^{2} u \, du \quad = \quad \left[\frac{u}{2} + \frac{\sin 2u}{4} \right]_{0}^{\pi/2} = \frac{\pi}{4} + 0 = \frac{\pi}{4}$$

Standardintegrale

Standard

$$\int a^x dx = \frac{a^x}{\ln x} + c \qquad \int e^x dx = e^x \tag{4}$$

$$\int x^n \, dx = \frac{1}{n+1} \cdot x^{n+1} + c \quad n \neq -1 \tag{5}$$

$$\int x^{-1} \, dx = \int \frac{1}{x} \, dx = \ln|x| + c \tag{6}$$

Sinus

$$\int \sin x \cdot \cos x \, dx = \frac{1}{2} \cdot \sin^2 x + c \tag{7}$$

$$\int \sin^2 x \, dx = \frac{1}{2} (x - \sin x \cdot \cos x) + c \tag{8}$$

$$\int \sinh x \, dx = \cosh x + c$$

Cosinus

$$\int \frac{1}{\cos^2 x} \, dx = \int 1 + \tan^2 x = \tan x + c \tag{10}$$

$$\int \cosh x \, dx = \sinh x + c \tag{1}$$

$$\int \cot x \, dx = \frac{1}{\tan x} + c = \ln|\sin x| + c = \frac{\cos x}{\sin x} + c \tag{12}$$

$$\int \coth x \, dx = \frac{\cosh x}{\sinh x} + c \tag{13}$$

Tangents

$$\int \tan x \, dx = \frac{1}{\cot x} + c = -\ln|\cos x| + c = \frac{\sin x}{\cos x} + c$$

$$\int \tanh x \, dx = \frac{\sinh x}{\cosh x} + c \tag{1}$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x$$

Add these derrivatives somewhere usefull

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \tag{1}$$

$$\frac{d}{dx}\cot x = -1 - \cot^2 x \tag{18}$$

Integralfläche berechnen (analytisch)

Sobald sich Funktionen schneiden, muss das Integral aufgeteilt werden. Wenn die Fläche über/unter der X-Achse berechnet werden soll, kann diese als Funktion g(x)=0 angesehen werden.

$$A = \int_{a}^{b} |f(x) - g(x)| \, dx \tag{19}$$

Anleitung

- 1. Funktionen gleich setzen, um Nullstellen zu berechnen
- 2. Integrale bilden
- 3. Berechnen

Trapezformel (Numerisch)

$$S_1 = y_1 + y_n S_2 = y_1 + y_2 + \dots + y_{n-1}$$

$$\frac{1}{2} \cdot h \cdot S_1 + h \cdot S_2 (20)$$

- 1. Stützstellen bestimmen und ausrechnen
- 2. Mit Taschenrechner alle Stützstellen mittels Formel 20 zusammenrechnen

Partialle Integration

(15) Formel

(14)

$$\int f(x) \cdot g(x) \, dx$$

$$\Rightarrow \sum_{k=0}^{n-1} (-1)^k \cdot f^k(x) \cdot g^{-1-k}(x) + (-1)^n \int f^n(x) \cdot g^{-n}(x) \, dx \tag{21}$$

$$\frac{\int f(x) \cdot g(x) \, dx = F(x) \cdot g(x) - \int F(x) \cdot g(x) \, dx}{\text{Vorzeichen} \quad \text{Differenzieren} \quad \text{Integrieren}} + f \qquad \text{g}$$
(22)

Volumenintegral berechnen

Anleitung

 $V = \pi \int_a^b f(x)^2 dx \tag{23}$

- 1. Rotation um Y-Achse → Umkehrfunktion bestimmen
- 2. Mit der Formel 23 das Volumen berechnen

Komplexe Zahlen

Imaginäre Zahlen

Konjugierte

Multiplikation

Division

Koordinaten

Kartesische Koordinaten

Ein System, das Punkte durch (x, y) beschreibt

Polarkoordinaten

Punkte werden durch den Abstand r und den Winkel φ dargestellt: (r, φ)

Polarkoordinaten - Komplexe Representation

 $\operatorname{cis}\varphi = \operatorname{cos}\varphi \cdot i \cdot \operatorname{sin}\varphi$

Komplexe Zahlen: $z = r \cdot \operatorname{cis} \varphi$

Exponential Koordinaten

Verwendung der Euler'schen Formel: $z=re^{i\varphi}$

$$x = r \cdot \cos \phi \quad | \quad y = r \cdot \sin \phi \tag{24}$$

$$v = \arctan \frac{x}{y} \tag{25}$$

$$z = re^{i\varphi} = x + iy = r \cdot \operatorname{cis}\varphi \tag{26}$$

$$\arg(z) = \begin{cases} 0 & \text{if } \operatorname{Re}(z) \geqslant 0 \wedge \operatorname{Im}(z) = 0 & | & \operatorname{CASE} \ 1 \\ \arctan\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right) & \text{if } \operatorname{Re}(z) > 0 \wedge \operatorname{Im}(z) > 0 & | & \operatorname{CASE} \ 2 \\ \frac{\pi}{2} & \text{if } \operatorname{Re}(z) = 0 \wedge \operatorname{Im}(z) > 0 & | & \operatorname{CASE} \ 3 \\ \arctan\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right) + \pi & \text{if } \operatorname{Re}(z) < 0 & | & \operatorname{CASE} \ 4 \\ \pi & \text{if } \operatorname{Re}(z) < 0 \wedge \operatorname{Im}(z) = 0 & | & \operatorname{CASE} \ 5 \\ \frac{3\pi}{2} & \text{if } \operatorname{Re}(z) = 0 \wedge \operatorname{Im}(z) < 0 & | & \operatorname{CASE} \ 6 \\ \arctan\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right) + 2\pi & \text{if } \operatorname{Re}(z) > 0 \wedge \operatorname{Im}(z) < 0 & | & \operatorname{CASE} \ 7 \end{cases}$$

Koordinaten Wechsel

(23) Kartesisch ⇒ Polar

$$z = |\operatorname{Re}\{z\} + \operatorname{Im}\{z\}| \cdot \operatorname{cis}(\arg(z))$$
(27)

Scale Plot and make a better example

- 1. Betrag von $|\operatorname{Re}\{z\} + \operatorname{Im}\{z\}|$ berechnen mittels $\sqrt{\operatorname{Re}^2z + \operatorname{Im}^2z}$
- 2. Bestimmen in welchem Quadrant die Zahl liegt
- 3. Taschenrechner mit RAD Modus $\frac{\text{CASE}}{\pi} \Rightarrow \text{Winkel in } \pi = \varphi$
- 4. $|z| \cdot \operatorname{cis} \varphi$

Polar ⇒ Kartesisch

Lineare Algebra

Vektoranalysis

Nabla Operator

Tangentialebene

$$z = f(x_0; y_0) + \nabla f_x(x_0; y_0) \cdot (x - x_0) + \nabla f_y(x_0; y_0) \cdot (y - y_0)$$
(28)

- Faktorisieren
- Additionsverfahren
- Umstellen und Einsetzen

Beisppiel

$$f(x,y) = x^3 + x^2 \cdot \ln y^2 + 1 - 3x$$

$$\nabla f(x,y) = \frac{3x^2 - 2x \cdot \ln y^2 + 1 - 3x^2 - 2x \cdot \ln y^2}{-\frac{2x^2 y}{3x^2 + 1}}$$

$$f(3;1) = 27 - 9 \cdot \ln 2 - 9 = 18 - 9 \cdot \ln 2$$

$$\nabla f_x(3;1) = 27 - 6\ln 2 - 3 = 24 - 6\ln 2$$

$$\nabla f_y(3;1) = -9$$

$$-45 + 9 \ln 2 - 6x \ln 2 + 24x - 9y$$

Totales Differential

Hessematrix

Extremwertstellen

Matrizen

Standardmatrizen

Determinante

2x2 Matrizen

$$\det \begin{pmatrix} a \\ c \end{pmatrix} =$$

 $\frac{(a\cdot d)-(c\cdot b)}{}$ (29)

3x3 Matrizen

4x4 Matrizen / nxn Matrix

$$\begin{pmatrix} a^{+} & b^{-} & c^{+} & d^{-} \\ e^{-} & f^{+} & g^{-} & h^{+} \\ \vdots & \vdots & k^{+} & 1 \\ m^{-} & n^{+} & o^{-} & p^{+} \end{pmatrix} = A$$

- 1. Spalte/Reihe mit den meisten Nullen auswählen
- 2. Die Vorfaktoren der Spalten/Reihenwerte mit der Vorzeichenmatrix (+, -) bestimmen

test

3. test

Inverse berechnen mittels Adjunkter Matrix

1. Determinante berechnen

Eigenwerte

Spur

Alle Einträge der Matrix auf der Diagonalen summiert. Aussagefähigkeit:

• $trace(A) = \sum_{0}^{n} \lambda_n$