EC 513 Problem Set 5 CARTER YANCEY

1a. None appear stationary.

- 1b. Running adf.test() yields a high p-value; we fail to reject the null and conclude that the time series is not stationary because of the unit root.
- 1c. Running adf.test() yields a high p-value; we fail to reject the null and conclude that the time series is not stationary because of the unit root.

1d.

Coefficients:

(Intercept) m1.ts 28.53710 0.05575

1e. Probably not stationary

1f. In this case, adf.test() does not yield as high p-value before, but it is still significantly above 0.05; we fail to reject the null.

1g. The high R-squared value suggests a linear correlation. However, the fact that we failed to reject the null on the Dickey-Fuller for part (f) indicates that the residual is not stationary. The regression must be spurious.

2a. Definitely non-stationary.

2b. Running DF on the log timeseries for pUS and exCA yields p-values greater than 0.05, so we fail to reject the null. However, the DF test on the log of pCA less than 0.01, so we reject the null.

2d. For PPP to hold, we need

$$ex = a + B(p - p^*) + error, B=1$$

where 'ex' is exhange rate, p is log domestic price and p* is log foreign price. Here, B is approximately 1.4, so PPP does not hold.


```
#Q1
data.df <- read.csv("~/Downloads/1607.csv",header=TRUE, sep=",")
indpro.ts <- ts(data=data.df[c("indpro")], frequency=4, start=c(1960,1), end=c(2008,1))
m1.ts <- ts(data=data.df[c("M1NSA")], frequency=4, start=c(1960,1), end=c(2008,1))
urate.ts \leftarrow ts(data=data.df[c("urate")], frequency=4, start=c(1960,1), end=c(2008,1))
plot(indpro.ts, col="blue", main="indpro.ts", xlab="Year")
plot(m1.ts, col="blue", main="m1.ts", xlab="Year")
plot(urate.ts, col="blue", main="urate.ts", xlab="Year")
#b
adf.test(indpro.ts)
#c
adf.test(m1.ts)
y \le lm(indpro.ts \sim m1.ts)
y
#e
res <- (indpro.ts-fitted(y))
acf(res)
pacf(res)
#f
adf.test(res)
plot.zoo(indpro.ts, m1.ts)
#Q2
data.df <- read.csv("~/Downloads/1604.csv",header=TRUE, sep=",")
pUS.ts <- ts(data=data.df[c("p_us")], frequency=4, start=c(1973,1), end=c(2008,2))
pCA.ts <- ts(data=data.df[c("p_ca")], frequency=4, start=c(1973,1), end=c(2008,2))
exCA.ts < -ts(data=data.df[c("ex ca")], frequency=4, start=c(1973,1), end=c(2008,2))
plot(log(pUS.ts), col="blue", main="pUS", xlab="Year")
```

```
\begin{array}{l} plot(log(pCA.ts),\,col="blue",\,main="pCA",\,xlab="Year")\\ plot(log(exCA.ts),\,col="blue",\,main="exCA",\,xlab="Year")\\ \#b\\ adf.test(log(exCA.ts))\\ adf.test(log(pCA.ts),k=0)\\ adf.test(log(pUS.ts),k=1)\\ \#c\\ y<-lm(log(exCA.ts)\sim log(pUS.ts)+log(pCA.ts))\\ y\\ \#d\\ \#e\\ res<-(log(exCA.ts)-fitted(y))\\ acf(res)\\ pacf(res) \end{array}
```