10.4 Comparison Tests

Main Ideas

• Direct Comparison Test (page 568)

$$\sum a_n$$
 and $\sum b_n$ are two series where $0 \le a_n \le b_n$ for all n

- 1. If $\sum b_n$ converges, then $\sum a_n$ also converges.
- 2. If $\sum a_n$ diverges, then $\sum b_n$ also diverges.
- Limit Comparison Test (page 569)

If
$$a_n > 0$$
 and $b_n > 0$ for all $n \ge N$ where N is some integer

1. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c \text{ and } c>0 \text{ then } \sum a_n \text{ and } \sum b_n \text{ both converge or both diverge}.$$

2. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=0 \text{ and } \sum b_n \text{ converges, then } \sum a_n \text{ converges.}$$

3. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\infty \text{ and } \sum b_n \text{ diverges, then } \sum a_n \text{ diverges.}$$

Homework Problems

1.

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 30}$$

is similar to the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^2}$

$$\implies \frac{1}{n^2+30} < \frac{1}{n^2} \text{ for all } n \ge 1$$

since the p-series with p=2 converges, so does our series by direct comparison

3.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} - 1}$$

is similar to the *p*-series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$

$$\implies \frac{1}{\sqrt{n}-1} > \frac{1}{\sqrt{n}}$$
 for all n

since the p-series with p = 1/2 diverges, so does our series by direct comparison

5.

$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^{3/2}}$$

since \cos^2 is always between 0 and 1,

$$0 \le \frac{\cos^2 n}{n^{3/2}} \le \frac{1}{n^{3/2}}$$

since $\frac{1}{n^{3/2}}$ is a *p*-series with p = 3/2 > 1, meaning it converges, then by the direct comparison test our series also converges

9.

$$\sum_{n=1}^{\infty} \frac{n-2}{n^3 - n^2 + 3}$$

compare with $1/n^2$ $\lim_{n\to\infty} \frac{\frac{1}{n^2}}{\frac{n-2}{n^3-n^2+3}}$

$$= \lim_{n \to \infty} \frac{n^3 - n^2 + 3}{n^2(n-2)}$$

$$= \lim_{n \to \infty} \frac{n^3 - n^2 + 3}{n^3 - 2n^2} = 1$$

 \implies converges since $1/n^2$ converges

11.

13.

$$\sum_{n=1}^{\infty} \frac{5^n}{\sqrt{n} \ 4^n}$$

compare with series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

$$\implies \lim_{n \to \infty} \frac{\frac{5^n}{\sqrt{n} \, 4^n}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{5^n}{4^n} = \lim_{n \to \infty} (5/4)^n = \infty$$

since the series on the bottom diverges (p-series where $p=1/2\leq 1$) the series on top diverges also by limit comparison

19.

21.

33.

$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2 - 1}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{(n+1)^2 - 1}} = \sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n^2 + 2n}}$$

after change of bounds (start with n=1) is similar to the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^2}$

$$\implies \frac{1}{(n+1)\sqrt{n^2+2n}} < \frac{1}{n^2} \text{ for all } n \ge 1$$

and since p = 2 > 1 means the p-series converges, our series also converges by direct comparison