Два вопроса 1-30 и 31-60

2

К субботе подготовить план ответов.

- 5. Лексемы, алфавит разобрать жёстко.
- 6. Определение ключевого слова. Примеры и и для чего используется. Коротко. Наспамить много.
- 7. точки, запятые , точки с запятой, стрелки и тд. Перечислить, кратко за что отвечают. Многие значения одного знака.\
- 8. Определение, несколько примеров (создать свою переменную). Ниже привести примеры правильного и не правильного названия переменных (вроде 9)
- 9.Переменные, которые нельзя изменить. Можно назвать лексемой и почему. Может константой быть и функция. Может быть параметр. Почему используется. Хранится в памяти иначе(замена на этапе компиляции). Константный указатель. Документация с++ выжимку.
- 10. константные строки, как хранятся в памяти. С-строки константные. String константы. Открыть документацию
- 11. определение. Как то положить на бумагу. Не только в арифметических, но и логических операциях. В теле for тоже есть операнды
- 12. все типы данных (вообще все). Базовые и ещё short и long как модификаторы. size_t wchar_t отдельный тип, производный. Int 128(?). Во всех типах данных максимальные значения. IEEE 754
- 13. Определене переменной. Базовые типы данных в стеке. Что такое стек область памяти last in first out. Программа работает сверху вниз, при выходе удаляет в обратном порядке. Переменные в куче, объявление, что такое куча. Статическая память и глобальные переменные. Enum, структура. Struct of set. Обращенеие к элементам в стеке, в куче.
- 14. псевдокод, текстовый, словесный, на яп, блок-схема. Гост, стандарт предприятия, элементы и за что они отвечают. Правильная маленькая блок-схема пример без использования элементов языка программирования.
- 15. выражение возвращает значение?. Studfiles открыть с впн-ом.
- 16. Определение. Инверсия, присваивание, умножение, деление, приведение к типу. Взятие указателя, размера, ссылки, взятие-удаление деструктора.
- 17. Табличка на степике
- 18. поразрядные побитовые, отличаются от булевых (и или). Результат выражения множество нулей и единиц. Не входят логические операции, булевая логика.

Арифметические операции. Bool = true когда там любое ненулевое двоичное значение.

19. сдвигает множество нулей и едениц влево или вправо. Побитовый сдвиг умножает\делит число на 2. Циклический. Реализация в C++.

20.

21. Приведение типов упомянуть. Перегрузка. Внимание на структуры

22.

- 23. От меньшего к большему, от целого к вещественному. Почему написать
- 24. Выучить наизусть табличку
- 25. определение потока. Определение потока ввода. Метода которую вадим скидывал? Форматирование преобработка перед записью в память.
- 26. понятие потока. Понятие потока ввода-ввывода. Cin pick и т д
- **27**. определение оператора. Простой и составной оператор. Простой + = += * . Составной if for while do while switch case. Примеры и разница.
- 28. любые ветвления пропустить кусок кода. Ключевые слова, операции. Перечислить
- 29. if else
- 30. goto . Как связан со switch case и почему он не безопасен.
- 31. Определение цикла. Использование. Какие бывают. Рассказать про for
- 32, -||- while do while
- 33. Проблематика бесконечных циклов.

- 34. break continue. Break на какой уровень выходит. При каких случаях break работает как continue
- 35. определение массива. Инициализация статического и динамического. Одномерный, двумерный. Побольше про стат массивы и их положение в стеке.
- 36. определение, зачем и почему. Массив указателей, использование указателей в массивах. Положение указателей в памяти в куче. Скорость обращения к динамич. Массиву меньше чем к статическому.
- 37. указатели разного порядка. *** на ** чё будет.
- 38. определение указателя. Инкремент увеличивает не на единицу, а на машинное слово 4 байта, 8 байт и т д. Арифметика указателей используется в массивах. Разименование адреса. Любой адрес unsigned long long
- 39. стат не меняются. Динамич меняются. Способы выделения и освобождения памяти. Где что используется. Табличка отличий со степика написать. Большинство стандартных
- 40. пример на рекурсии и на цикле. Что быстрее. Проблема переполнение стека
- 41. все алгоритмы сортировки. Худший лучший средний случай. Qsort реализация. Запомнить наизусть
- 42. что такое строка. В языке С массив символов. String.h. прототип. писать какие типы данных аргументы принимают. В c++ лучше не использовать.
- 43. // . и массив символов и класс стринг. Функции указываем с типами данных. Стринг можно привести к с-строке. Как правильно передать массив символов в стринг?(на 10)ж 44-45. существует struct. Можно через typedef можно нет. Structset не к степени двойки. Вложенные и встроенные струтуры. Область видимости. Можно работать и как с классом(?), но лучше как с Инициализация полей, правила. Как можно получить доступ. 45 точно. Какой размер структуры если игнорировать правила инициализирования от
- меньшего к большему. Что будет если написать pragma pack 1 или pragma pack 59, размер структуры.
- 46. что такое, чем отличается, область видимости.
- В ЧЁМ РАЗНИЦА ПРИ ИНИЦИАЛИЗАЦИИ ЧЕРЕЗ УКАЗАТЕЛЬ И НЕ ЧЕРЕЗ УКАЗАТЕЛЬ, ОБРАЩЕНИЕ ЧЧЕРЕЗ ТОЧКУ И СТРЕЛОЧКУ (44-46)
- 47. пример объявления структуры через указатель. Структура может хранить указатель на саму себя
- 48. показать что будет если создать стракт и поле на 1 байт. Имена не конкретному биту, а множеству битов как.
- 49. локальные внутри области видимости, глобальные вне. Разные типы данных. Статические объекты. Зачем создавать огромный массив в статической памяти.
- 50 не про auto. Про область видимости. Она в какой-то момент времени её life-cycle закончился при выходе из области видимости. В конце упомянуть, что есть auto.
- 51. extern, static, глобальные переменные. Примеры использования
- 52. директивы препроцессора какие кто зачем почему. Подробно про дефайн, какие подводные, взять с документации гугла. Про инклюд подробно. Что можно включать в инклюд.
- 53. определение. Что это за директивы.
- 54. учебник по информматике 10 класс. История не интересно. Чем отличается алгоритм от программы и способы описания алгоритмов. Блок-схемы
- 55. подробно расписывать . Что это зачем это и как работает. О-Нотация по тактам и не по тактам. Мы используем не по тактам. Существуют скрытые константы и примеры. Можно привести в пример умножение матриц и разные его алгоритмы.
- 56. определение массива, поиска. Поиск переменной, объекта, слова, подстроки и т д. Несколько примеров целочисленного поиска. Бинарный поик написать кодом. 57.

- 58. операция поиска что такое. А теперь к нечёткому поиску . Ищет вхождение подстроки в строку именно с возможностью дать пользователю ошибится. Рисовать таблицу. Два разных расст. Лев.
- 59. Алгоритм. Оптимизированное и неоптимизированное. Написать код умножения матриц просто запомнить
- 60. есть c++ он компилируемый. Что такое коммпиляция. Какими средствами смаке, ручная. Рассмотрим ручную . Флаги чё делают. Подключение нескольких файлов, санитайзеры 61. ручна компиляция библиотек. Как руками скомпилировать и интегрировать 62 тоже.

Вопрос строится фундаментально. Первое что всегда пишем — определение того, на чём строится билет. Если определение неверное — всё из него следующее аннулируется.

```
писать на компе в LMS код на листочке 200 задач возможно на компе на solve-е на листочке — простая на компе — средне-сложная
```

19. Операции сдвига (побитовый, циклический)

Все числа в памяти представлены в двоичной форме. Операция побитового сдвига применяется для целочисленных значений и позволяет сдвинуть биты числа влево («) или вправо (»). Синтаксис:

```
6 » 1 — сдвиг вправо на один бит. 0110 \rightarrow 0011. Результат — 3. 6 « 1 — сдвиг влево на один бит. 0110 \rightarrow 1100. Результат — 12.
```

При сдвиге в какую-либо сторону, с противоположной стороны на месте сдвинутых появляются нули. Если число имеет в знаковом разряде еденицу (отрицательное число), то при сдвиге влево на месте сдвинутых появляются не нули, а единицы — происходит расширение знака. Для отрицательных чисел выполнение побитового сдвига не рекомендуется — лучше поиграться с преобразованием в беззнаковый.

Сдвиг влево эквивалентен умножению на два. Сдвиг вправо — делению на два.

При сдвиге информация о битах, ушедших за границу разрядности переменной (размер переменной в памяти) теряется полностью. Если это был значимый бит(1) — происходит потеря данных.

Циклический сдвиг — при котором биты, уходящие за границу разрядности не исчезают, а заменяют собой сдвигаемые с противоположной стороны. В C++ можно использовать данную реализацию:

Пусть дано число \mathbf{x} надо совершить циклический сдвиг его битов на величину \mathbf{d} . Желаемый результат можно получить, если объединить числа, полученные при выполнении обычного битового сдвига в желаемую сторону на \mathbf{d} и в противоположном направлении на разность между разрядностью числа и величиной сдвига. Таким образом, мы сможем поменять местами начальную и конечную части числа.

```
int32 rotateLeft(x, d: int32):
    return (x << d) | (x >>> (32 - d))

int32 rotateRight(x, d: int32):
    return (x >>> d) | (x << (32 - d))</pre>
```

20. Операции отношения, логические операции

В C++ существуют операции отношиения и логические операции. В зависимости от операндов, к которым они применяются, операция возвращает значение true или false.

Операции отношения:

- == эквиваленция. Если операнды равны, возвращает true(1), иначе false(0)
- != неравенство. Если операнды не равны, возвращает true(1), иначе false(0)
- < меньше
- > больше
- <= меньше или равно
- >= больше или равно

Логические операции:

- && логическое И. Возврашает true(1), еслы все операнды истинны
- | логическое ИЛИ. Возвращает true(1), если хотя бы один из операндов истиннен
- ! унарное НЕ. Возвращает true(1), если исходная операция возвращала false(0) и наоборот, если исходная false(0), то возвращает true(1).

21. Операция присваивания

Операция присваивания выполняется над двумя операндами и сохраняет значение второго операнда в объект, указанный первым операндом.

```
Синтаксис: a = 10; b = a.
```

Если оба объекта имеют арифметические типы, правый операнд преобразуется в тип операнда слева перед выполнением операции.

Существуют составные операторы присваивания, сочитающие операцию присваивания с другими операциями:

- += сложение с присваиванием
- -= вычитание с присваиванием
- *= умножение с присваиванием
- /= деление с присваиванием
- <<= сдвиг влево с присваиванием
- >>= сдвиг вправо с присваиванием
- &= поразрядная конъюнкция с присваиванием
- |= поразрядная дизюнкция с присваиванием
- ^= поразрядное исколючающее ИЛИ с присваиванием

22. Условная трехместная (тернарная) операция

Тернарная операция — операция с тремя операндами. В C++ существует тернарный оператор. Он имеет следующий синтаксис:

выражение ? выражение : выражение

Тернарный оператор работает следующим образом:

- Первый операнд преобразуется в bool
- Если первый операнд является true (1), то выполняется второй операнд
- Если первый операнд является false (0), то выполняется третий операнд

Результатом тернарного оператора является второй или третий операнд.

Если типы второго и третьего операндов не одинаковы, то компилятором вызывается преобразование типов в соответствии со стандартом C++, что может привести к неверной работе программы. Лучше следить за типами вручную.

Следует помнить, что любое значение кроме единицы в переменной типа bool воспринимается как false.

Тернарные операторы можно вкладывать друг в друга, получая многоуровневые условные конструкции.

23. Безопасность преобразования типов

Тип данных — это характеристика значений, которые может принимать переменная или функция.

C++ - язык программирования со статической типизацией. Это значит, что переменная имеет только один изначально назначенный ей тип данных, и поменять мы его не можем. Но часто возникает необходимость присвоить переменной значение другого типа. Тогда используется преобразование типов. Это перевод значения из одного типа данных в другой.

Если присвоить переменной значение, выходящее за диапозон её типа данных, то компилятор произведёт неявное преобразование значения к соответствующему типу. В арифметических операциях все операнды должны быть одного типа, и компилятор приводит все значения к типу данных с наибольшим диапозоном, участвующим в операции. При этом велика вероятность потери информации, так что этого лучше избегать.

Существует два способа преобразованияя типов: круглые скобки и static_cast. Круглые скобки — унаследованный от С способ, static_cast появился уже в С++ и является более приоритетным, как более безопастный. Пример:

```
int a = 6;
double b = (double)a;
double c = static_cast<double>(a);
```

Безопастное преобразование типов — при котором не происходит потеря информации. Опастное — при котором происходит потеря информации. Общее правило безопастного преобразования — от меньшего к большему, от целого к вещетсвенному.

Цепочки безопастного преобразования:

```
bool \rightarrow char \rightarrow short \rightarrow int \rightarrow double \rightarrow long double
bool \rightarrow char \rightarrow short \rightarrow int \rightarrow long \rightarrow long long
unsigned char \rightarrow unsigned short \rightarrow unsigned int \rightarrow unsigned long
float \rightarrow double \rightarrow long double
```

24. Приоритет операций и порядок вычисления выражений.

В C++ существует приоритет выполнения операций. Если у всех операций в выражении одинаковый приоритет, то почти всегда они выполняются слева направо. Если в выражении операции с разным приоритетом — операции выполняются по убыванию приоритета.

Ссылка на таблицу: https://en.cppreference.com/w/cpp/language/operator_precedence На русском: https://pvs-studio.ru/ru/blog/terms/0064/

Приоритет операций в С++:

Приоритет	Оператор	Описание
1	::	Разрешение области видимости
2	a++ a	Суффиксный/постфиксный инкремент и декремент
	тип() тип{}	Функциональный оператор приведения типов
	a()	Вызов функции
	a[]	Индексация
	>	Доступ к элементу
3	++aa	Префиксный инкремент и декремент
	+a -a	Унарные плюс и минус
	! ~	Логическое НЕ и побитовое НЕ
	(тип)	Приведение типов в стиле С
	*a	Косвенное обращение (разыменование)
	&a	Взятие адреса
	sizeof	Размер в байтах
	co_await	Выражение await (C++20)
	new new[]	Динамическое распределение памяти
	delete delete[]	Динамическое освобождение памяти
4	.* ->*	Указатель на элемент
5	a*b a/b a%b	Умножение, деление и остаток от деления
6	a+b a-b	Сложение и вычитание
7	<< >>	Побитовый сдвиг влево и сдвиг вправо
8	<=>	Оператор трехстороннего сравнения (C++20)
9	< <= > >=	Для операторов отношения < и ≤ и > и ≥ соответственно
10	== !=	Операторы равенства = и ≠ соответственно
11	&	Побитовое И
12	^	Побитовый XOR (исключающее или)
13	1	Побитовое ИЛИ (включающее или)
14	8.8	Логическое И
15	П	Логическое ИЛИ
16	a?b:c	Тернарный условный оператор
	throw	Оператор throw
	co_yield	Выражение yield (C++20)
	=	Прямое присваивание
	+= -=	Присваивание с сложением и вычитанием
	*= /= %=	Присваивание с умножением, делением и остатком
	<<= >>=	Присваивание с побитовым сдвигом влево и вправо
	&= ^= =	Присваивание с побитовым И, XOR и ИЛИ
17	,	Запятая

25. Функции форматированного вывода printf и ввода информации scanf

Поток — непрерывный процесс, который обрпбатывает и выполняет команды. Поток вводавывода нужен для получения данных (из файла, от пользователя) и для вывода данных (например, в консоль). При обмене с потоком используется вспомогательный участок памяти — буфер потока. Для работы с потоками ввода и вывода в С необходимо подключить заголовочный файл stdio.h.

Для вывода информации используется функция printf(). Общая форма записи:

printf("СтрокаФорматов", объект1, объект2, ..., объектn);

Строка формата состоит из следующих элементов:

• управляющие символы

- текст, предназначенный для непосредственного вывода
- форматы, предназначенные для вывода значений переменных

Управляющие символы не выводятся на экран, а управляют расположением выводимых символов. Отличительной чертой управляющего символа является наличие обратного слэша ' перед ним. Основные - /n — перевод строки и /t — горизонтальная табуляция.

Форматы нужны для того, чтобы указывать вид, в котором информация будет выведена на экран. Отличительной чертой формата является наличие символа процент '%' перед ним:

- %d int
- %u unsigned int
- %x int в шестнадцатиричной
- %f float
- %lf double
- %c char
- %s строка
- %р указатель

Пример:

```
int x = 5; printf("У меня %d яблок", x);
```

Для форматированного ввода информации используется функция scanf(). Общая форма записи:

```
scanf ("Строка\Phiорматов", адрес1, адрес2,...);
```

В данной функции работаем не переменную, а её адрес!

Строка форматов аналогична функции printf().

Пример:

```
scanf("%f", &y);
```

Функция scanf() является незащищённой, так что для её работы в современных компиляторах необходимо разрешить её использование, добавив в программу строчку #define _CRT_SECURE_NO_WARNINGS

Существует защищённый вариант — scanf_s().

26. Методы форматированного вывода cout и ввода информации cin

Поток — непрерывный процесс, который обрпбатывает и выполняет команды. Поток вводавывода нужен для получения данных (из файла, от пользователя) и для вывода данных (например, в консоль). При обмене с потоком используется вспомогательный участок памяти — буфер потока. Для работы с потоками ввода и вывода в С++ необходимо подключить библиотеку iostream.

Основными функциями для работы с потоками ввода-вывода являются cin и cout. Они находятся в пространстве имён std, поэтому их вызов записывается следующим образом:

```
std::cin » a;
std::cout « a « b;
```

Для операций ввода-вывода переопределены операции поразрядного сдвига:

- >>получить из входного потока
- <<поместить в выходной поток

Для работы с широкими символами (wchar_t) существуют аналоги: wcout и wcin.

Существуют функции-манипуляторы. Функцию — манипулятор потока можно включать в операции помещения в поток и извлечения из потока (<<, >>). В С++ имеется ряд манипуляторов. Рассмотрим основные:

- endl очищает буфер потока и переходит на новую строку
- width устанавливает ширину поля вывода
- precision устанавливает количество цифр после запятой

У потока ввода также есть функции:

- cin.peek возвращает следующий символ без извлечения
- cin.ignore(число, символ) удаляет из потока ввода *число* символов, пока не встретит *символ*.

27. Понятие оператора. Оператор простой и составной, блок оператора

Оператор — это команда, обозначающая определенное математическое или логическое действие, выполняемое с данными (операндами).

В языке С существует следующие группы операторов:

- Условные операторы (if, switch)
- Операторы цикла (while, for, do-while)
- Операторы безусловного перехода (break,continue,goto,return)
- Метки (case,default)
- Операторы-выражения операторы, состоящие из допустимых выражений.

Блоки – фрагмент текста программы, оформленный фигурными скобками {}. Блок иногда называют составным оператором.

Простым оператором является такой оператор, который не содержит в себе других операторов.

Составной оператор – представляет собой два или более операторов, объединенных с помощью фигурных скобок. Составной оператор иногда называют блоком. Составной оператор рассматривается компилятором как один оператор.

На языке Си любой оператор заканчивается точкой с запятой. Операторы можно условно подразделить на две категории: исполняемые - с их помощью реализуется алгоритм

орешаемой задачи, и описательные, необходимые для определения типов пользователя и объявления объектов программы, например, переменных.

Исполняемые операторы также можно разбить на две группы: простые и структурированные. В структурированных операторах можно выделить части, которые сами могут выступать в качестве отдельных операторов, а простые операторы на более элементарные разложить не удастся.

К простым операторам относятся: оператор присваивания, оператор-выражение, пустой оператор, операторы перехода (goto, continue, break, return), вызов функции как отдельного оператора.

Структурированные операторы – это операторы ветвления (if), выбора (switch), цикла (for, while, do).

28. Виды управляющих конструкций программы

Программы не ограничиваются линейной последовательностью выполнения команд. Во время выполнения программа может повторять сегменты кода или разветвляться в зависимости от некоторого условия. Для реализации этого существуют управляющие конструкции.

В С++ несколько видов управляющих конструкций:

- Ветвление
- Циклы
- break
- continue
- goto

Добавить общее описание каждой конструкции, привести примеры.

29. Операторы ветвления, условный оператор

Для реализации ветвления в C++ существует условный оператор if else. Он имеет следующий синтаксис:

```
if(условие) {
    код
} if else(условие) {
    код
} else {
    код
}
```

Оператор if проверяет условие в скобках на истинность. Если оно истинно — код дальше выполняется, если ложно — проверяет следующий if else. Если if и все if else ложны, выполняется блок кода else. Блоки if else и блок else являются необязательными.

30. Метки и переходы. Оператор выбора (switch-case)

В дополнение к стандартным методам работы с ветвлением в C++ существует оператор **goto**. Он позволяет перейти в конкретное место в коде, заданное **меткой** — идентификатором, состоящим из названия и двоеточия после него. В функции не может быть двух меток с одинаковыми названиями. Пример:

Switch-case — конструкция для ветвления, позволяющая выбирать между несколькими разделами кода в зависимости от значения **целочисленного** выражения. Она также использует метод переходов по меткам.

Switch-case имеет следующий синтаксис:

case и **default** — **метки**. Если выражение в объявлении совпадает со значением **case**, то выполнение кода переходит на эту метку и продолжается в обычном режиме. Для того, чтобы другие случаи case не выполнились, необходимо добавить оператор прерывания **break**. Случай **default** выполняется, если выражение в объявлении не соответствует ни одному case.

Инициализация переменной в объявлении необязательна, при её отсутствии нет необходимости оставлять пустое место и ставить запятую.

Хорошим тоном считается каждый блок case заключать в свою область видимости {}(как в циклах).

В целом использование **goto** и **swicth-case** не рекомендуется. Переход в произвольное место кода нарушает ход следования чтения программы сверху-вниз. С помощью метки возможен переход прямо в центр другого блока кода, цикла, ветвления, что также плохо для понимания. Возникают трудноотслеживаемые ошибки. Компилятору труднее (а иногда — невозможно) оптимизировать такой код.

Однако в некоторых случаях **goto** является хорошим инструментом. Один из примеров — выход из глубоко вложенного цикла.

31. Понятие цикла. Операторы цикла: цикл с заданным числом повторений

Цикл — управляющая конструкция, которая заставляет блок кода повторятся несколько раз. В программировании используются повсеместно для повторения каких-либо инструкций, например — проход по массиву и изменение каждого элемента. В C++ существуют циклы с заданным числом повторений (for), циклы с предусловием (while), и циклы с постусловием (do while).

Цикл с заданным числом повторений в C++ это цикл **for**. Синтаксис цикла **for** при определении имеет следующую форму:

```
for(инициализатор; условие; итерация ){ //очень важный код; }
```

Все параметры являются **обязательными** при определении. Поле параметра при надобности можно оставить пустым, но точка с запятой необходимы. Инициализатор — обычно используется для инициализации итерируемой переменной Пример:

```
for(int i = 0; ; ){}
```

Условие — условие выхода из цикла. Зачастую в условии используется итерируемая переменная, но это не обязательно. Если возвращает true — цикл продолжается, если false — цикл прерывается.

Пример:

```
for(int i = 0; i < 10; ){}
```

Итерация — действие, которое производится после выполнения одного повторения цикла. Зачастую это изменение итерируемой переменной на некоторый шаг. Пример:

```
for(int i = 0; i < 10; ++i){ //очень важный код; }
```

Последний цикл повторит очень важный код 10 раз. В первой итерации i=0, в последней итерации i=9. При проверке на следующее повторение цикла i станет равна 10, и при проверке условия i<10 будет неверным, что не позволит циклу повториться и программа пойдёт обрабатывать команды дальше.

32. Понятие цикла. Операторы цикла: цикл с предусловием и с постусловием

Цикл — управляющая конструкция, которая заставляет блок кода повторятся несколько раз. В программировании используются повсеместно для повторения каких-либо инструкций, например — проход по массиву и изменение каждого элемента. В C++ существуют циклы с заданным числом повторений (for), циклы с предусловием (while), и циклы с постусловием (do while).

Цикл с предусловием перед выполнением блока кода проверяет на истинность условие. Если оно ложно, то блок не выполняется. Если истинно — то блок кода выполняется и условие проверяется заново с последующим повторением (или нет) выполнением кода. Таким образом образуется цикл с предусловием. В C++ цикл с предусловием имеет следующий синтаксис:

```
while(условие){
// код
}
```

Для выхода из такого рода циклов часто кроме условия используется оператор прерывания цикла **break**, который позволяет прямо в цикле прервать его выполнение. Обычно используется в связке с условным оператором **if**.

Цикл с постусловием отличается от цикла с предусловием тем, что блок кода **в любом случае** выполняется 1 раз и после этого при истинности условия выполняется ещё раз. В C++ имеет следующий синтаксис:

```
do {
// код
} while (условие)
```

Данные виды циклов повсеместно используются в написании программ. Такие циклы используются, когда неизвестно необходимое количество повторений кода для получения нужного разельтата. Часто цикл с предусловием используется для подсчёта инераций. Для этого заводится переменная-счётчик.

Пример:

```
int number = 100;
int count = 0;
while(number > 10){
    number = number / 2;
    ++count;
}
std::cout « count; // сколько раз нужно число number разделить на 2, чтобы оно стало меньше
```

Также стоит упомянуть схему написания всегда истинных циклов с условием. Пример:

```
while (true){}
```

Для выхода из таких циклов используется оператор прерывания **break**.

33. Понятие цикла. Бесконечные циклы. Проблемы

Цикл — управляющая конструкция, которая заставляет блок кода повторятся несколько раз. В программировании используются повсеместно для повторения каких-либо инструкций, например — проход по массиву и изменение каждого элемента. В C++ существуют циклы с заданным числом повторений (for), циклы с предусловием (while), и циклы с постусловием (do while).

Бесконечный цикл — цикл, условие выхода из которого никогда не выполняется. Если программа захоидт в бесконечный цикл, зачастую это заканчивается ошибкой, чаще всего — переполнением стэка (stack overflow).

При создании программы важно следить, чтобы используемые циклы никогда в условиях программы не могли превратиться в бесконечные.

Примеры бесконечных циклов:

34. Понятие цикла. Операторы прерывания и продолжения цикла

Цикл — управляющая конструкция, которая заставляет блок кода повторятся несколько раз. В программировании используются повсеместно для повторения каких-либо инструкций, например — проход по массиву и изменение каждого элемента. В С++ существуют циклы с заданным числом повторений (for), циклы с предусловием (while), и циклы с постусловием (do while).

Операторы перехода:

Оператор **break** завершает выполнение ближайшего внешнего цикла или оператора switch. Оператор **continue** начинает новую итерацию ближайшего внешнего цикла.

Оператор **break** завершает выполнение только одного цикла. Для выхода из нескольких вложенных циклов искользуются другие методы.

35. Одномерные и многомерные массивы статические массивы

Массив — это определённое число ячеек памяти, расположенных подряд. Они позволяют эффективно хранить однотипные данные. Имя массива является указателем на его первый элемент. Все элементы массива имеют одинаковый тип данных.

По способу хранения в памяти массивы различаются на два вида: статические и динамические.

Статические массивы хранятся в статической памяти. Объявляются в глобальной области видимости. Их размер определяется на этапе компиляции и не может быть изменён. Объявление статического массива:

тип элемента[размер массива]

```
int a[16] int array[5] = { 0, -9, 23, 61, -15 };
```

Динамический массив хранится в динамической памяти(куче). Скорость обращения к нему немного меньше, но его размер мы можем определять произвольно и во время выполнения программы. Для этого нужно выделить место в куче и создать указатель на это место. После отработки массива хорошим тоном считается очистка занимаемой им памяти. Пример объявления динамического массива:

```
int *numbers = new int[4];
```

Массивам, объявленым в локально, выделяется память в стеке, нужно учитывать её ограниченность.

Массивы бывают одномерные и многомерные.

Одномерный массив — простая последовательность элементов.

Многомерные массивы — массивы указателей. Как частный пример многомерного массива можно привести матрицу — двухмерный массив.

Доступ к элементам массива осуществляется через индексатор:

```
int a[4];
a[0] = 42;
int t = a[3];
```

Выход за границы массива не контролируется, ошибка может привести к неопределённому поведению.

36. Указатели. Связь между указателями и динамическими массивами

Указатель – переменная, значением которой является адрес ячейки памяти. Может ссылаться на переменную или функцию. Для взятия адреса существует унарная операция &

Указатели используются для передачи по ссылке данных, что намного ускоряет процесс обработки этих данных (в том случае, если объём данных большой), так как их не надо копировать, как при передаче по значению, то есть, используя имя переменной.

Для определения указателя надо указать тип объекта, на который указывает указатель, и символ звездочки *

```
int a = 5;
int *p = &a; // p — указатель на а
```

Так как указатель хранит адрес, то мы можем по этому адресу получить хранящееся там значение, то есть значение переменной х. Для этого применяется операция * или операция разыменования, то есть та операция, которая применяется при определении указателя. Результатом этой операции всегда является объект, на который указывает указатель.

Указатели используются для организации динамических массивов. Имя массива — указатель на его первый элемент

36. определение, зачем и почему. Массив указателей, использование указателей в массивах. Положение указателей в памяти в куче. Скорость обращения к динамич. Массиву меньше	
чем к статическому.	