

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Ηρώων Πολυτεχνείου 9, Ζωγράφου, 157 80 Αθήνα, Τηλ: 210-772.2503, Fax: 210-772.1452 e-mail: maglaris@netmode.ntua.gr, URL: http://www.netmode.ntua.gr

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΣΗ

(ΔΠΜΣ Επιστήμη Δεδομένων & Μηχανική Μάθηση)

Ο Αλγόριθμος Bellman-Ford

Να εκτελέσετε τον αλγόριθμο Bellman-Ford για να βρείτε τις συντομότερες διαδρομές από τον κόμβο Α προς τους υπόλοιπους κόμβους του ακόλουθου γράφου:

Σε κάθε κόμβο i αντιστοιχούμε το ζεύγος $(L_i, P(i))$, όπου L_i είναι το τρέχον εκτιμώμενο κόστος από την πηγή A και P(i) η απόφαση επιλογής προηγούμενου κόμβου στην τρέχουσα εκτίμηση δρόμου από την πηγή A προς τον κόμβο (κατάσταση) i.

Αρχικοποίηση: Η πηγή (κόμβος A) αρχικοποιείται με label $L_A=0$, ενώ οι υπόλοιποι κόμβοι με άπειρη τιμή. Ως προηγούμενος κόμβος της πηγής A αρχικοποιείται ο εαυτός της P(A)=A, ενώ για τις υπόλοιπες κανένας κόμβος.

Κανόνας ανανέωσης των labels L_i των κόμβων $i \neq A$ μέσω των εξισώσεων δυναμικού προγραμματισμού: $L_i \leftarrow \min_i \{L_j + d_{ij}\}$, $\forall j$ που γειτονεύει με τον i.

Σειρά ανανέωσης των κόμβων: Β, C, D, F, E

Πρώτη επανάληψη:

 Ανανέωση για τον κόμβο B: Η μόνη διαδρομή από τον κόμβο A είναι μόνο η απευθείας σύνδεση με κόστος L_B = 7 και προηγούμενο κόμβο P(B) = A. Όλες οι άλλες διαδρομές έχουν άπειρο κόστος.

Ανανέωση για τον κόμβο C: Εναλλακτικές διαδρομές από τον κόμβο A είναι η απευθείας σύνδεση με κόστος $L_{\rm C}=9$ ή διαμέσου του B με κόστος $L_{\rm C}=10+7=17$. Όλες οι άλλες διαδρομές έχουν άπειρο κόστος. Επιλέγεται η απευθείας διαδρομή με $L_{\rm C}=9$ και $P({\rm C})={\rm A}$.

Ανανέωση για τον κόμβο D: Εναλλακτικές διαδρομές από τον κόμβο A είναι διαμέσου του C με κόστος $L_{\rm D}=11+9=20$ ή διαμέσου του B με κόστος $L_{\rm D}=15+7=22$. Όλες οι άλλες διαδρομές έχουν άπειρο κόστος. Επιλέγεται η διαδρομή διαμέσου του C με $L_{\rm D}=20$ και $P({\rm D})={\rm C}$.

Ανανέωση για τον κόμβο F: Εναλλακτικές διαδρομές από τον κόμβο A είναι η απευθείας σύνδεση με κόστος $L_F=14$ ή διαμέσου του C με κόστος $L_F=2+9=11$. Όλες οι άλλες διαδρομές έχουν άπειρο κόστος. Επιλέγεται η διαδρομή διαμέσου του C με $L_F=11$ και P(F)=C.

Ανανέωση για τον κόμβο Ε: Εναλλακτικές διαδρομές από τον κόμβο Α είναι η διαδρομή διαμέσου του D με κόστος $L_{\rm E}=6+20=26$ ή διαμέσου του F με κόστος $L_{\rm E}=9+11=20$. Επιλέγεται η διαδρομή διαμέσου του F με $L_{\rm E}=20$ και $P({\rm E})={\rm F}$.

Δεύτερη επανάληψη: Παρατηρούμε ότι τα labels των κόμβων δε θα αλλάξουν. Έτσι, ο αλγόριθμος τερματίζεται.

Το τελικό δέντρο βέλτιστης δρομολόγησης με ρίζα την πηγή A προκύπτει από τις τελικές αποφάσεις δρομολόγησης P(i), i=B, C, D, E, F ως εξής:

Σειρά ανανέωσης των κόμβων: Β, D, E, F, C

Πρώτη επανάληψη:

Ανανέωση για τον κόμβο Β:

Ανανέωση για τον κόμβο D:

Ανανέωση για τον κόμβο Ε:

Ανανέωση για τον κόμβο F:

Ανανέωση για τον κόμβο C:

Δεύτερη επανάληψη:

Ανανέωση για τον κόμβο Β: καμία αλλαγή

Ανανέωση για τον κόμβο D:

Ανανέωση για τον κόμβο Ε:

Ανανέωση για τον κόμβο F:

Ανανέωση για τον κόμβο C: καμία αλλαγή

Τρίτη επανάληψη:

Ανανέωση για τον κόμβο Β: καμία αλλαγή

Ανανέωση για τον κόμβο D: καμία αλλαγή

Ανανέωση για τον κόμβο Ε:

Υπόλοιπες επαναλήψεις: Παρατηρούμε ότι τα labels των κόμβων δε θα αλλάξουν. Έτσι, ο αλγόριθμος τερματίζεται.

Το τελικό δέντρο βέλτιστης δρομολόγησης με ρίζα την πηγή A προκύπτει από τις τελικές αποφάσεις δρομολόγησης P(i), i=B, C, D, E, F ως εξής:

Συντάχθηκε από τους υπεύθυνους εργαστηριακής υποστήριξης του μαθήματος Νίκο Κωστόπουλο και Δημήτρη Πανταζάτο, Υποψήφιους Διδάκτορες Ε.Μ.Π.