

Logique propositionnelle : Représentation

Dr. NSENGE MPIA HERITIER, Ph.D

Précédemment

- Concepts de l'IA:
 - Représentation des connaissances
 - Représentation formelle et langage naturel
 - Syntaxe et correspondance avec la sémantique
 - Qu'est-ce qui rend une représentation des connaissances efficace ?
 - Les bases de la logique
 - Arguments
 - Valides
 - Solides
 - Logique syllogistique
 - Syllogisme
 - Test star de validité
 - Vue d'ensemble du raisonnement
 - Déductif, inductif, abductif

Plan de leçon

• Qu'est-ce que la logique propositionnelle ?

• Le langage propositionnel

- Vérité propositionnelle
- Équivalence

Calcul logique

Pourquoi la logique propositionnelle ?

• Ces bases permettent d'acquérir les compétences nécessaires pour travailler, manipuler et raisonner avec des connaissances et des tâches plus complexes.

• Les compétences "calculatoires" nécessaires au raisonnement

Révision de la logique syllogistique

- Logique syllogistique
 - système de raisonnement utilisé par les Grecs anciens
- Examen des principes fondamentaux du transfert logique : Par exemple, si A=B et B=C, alors A=C

• La logique propositionnelle s'appuie sur la logique syllogistique.

Qu'est-ce que la logique propositionnelle?

Proposition

Une déclaration qui est soit vraie, soit fausse, mais pas les deux à la fois.

- Aussi connue comme: Formule
- Proposition atomique (c'est-à-dire des "faits" dont la vérité ou la fausseté ne dépend pas d'autres propositions)
- Exemples de propositions :
 - Propositions

•	1 + 1 = 2	Vrai
		VIGI

- Mampuya aime les soins des patients

 Vrai
- Nsenge est titulaire d'un doctorat en Physique
- Pas de propositions

- Quel beau livre!

 Inconnu
- Ta voiture est-elle rouge ? Inconnu

Paradoxe

Une affirmation à laquelle on ne peut attribuer une valeur de vérité

Un paradoxe ne peut pas être une proposition

- Exemple : le <u>paradoxe du menteur</u>
 - Cette affirmation est fausse

Le paradoxe du Menteur consiste à dire « je mens » ou, sous une forme plus précise : « la présente phrase est fausse ». Si cette phrase est vraie, alors elle est fausse (puisque c'est ce qu'elle dit) ; et si elle est fausse, comme c'est précisément ce qu'elle dit, elle est vraie ! On ne peut pas lui attribuer une valeur de vérité (« vraie » ou « fausse ») de façon cohérente.

Logique formelle moderne

- Aussi connue comme : logique booléenne, logique symbolique, calcul propositionnel, logique des énoncés, logique de l'ordre de Zéro.
- Repose sur les principes établis par la logique syllogistique
- Se préoccupe de la vérité et de la fausseté
 - Comment les valeurs de vérité s'étendent à travers une série de propositions

Vrai Fau

- "Nsenge est Informaticien" ET "Nsenge est un maçon" → FAUX
- Construit des énoncés plus complexes (c'est-à-dire des phrases) en combinant des propositions avec des connecteurs logiques
 - C'est la syntaxe de la logique propositionnelle.

Langage propositionnel

Langage propositionnel: Variables

- Pour formaliser les propositions atomiques, nous utilisons des symboles simples (c'est-à-dire primitifs).
 - Symboles simples : constantes propositionnelles
 - Ces symboles héritent des mêmes valeurs de vérité que les énoncés
 - F en tant que symbole est une proposition qui est toujours fausse
 - V en tant que symbole est une proposition qui est toujours vraie
- Une signature propositionnelle est un ensemble de constantes propositionnelles

Symboles

```
"1 + 1 = 2" = 'P' Vrai
"1 + 1 > 3" = 'Q' Faux
"Mampuya aime s'occuper des patients" = 'R' Vrai
"Nsenge est titulaire d'un doctorat en chimie" = 'S' Faux
```

Langage propositionnel: Les connecteurs

- Aussi connu comme : Opérateurs logiques
- Phrase propositionnelle: Une déclaration obtenue en utilisant des connecteurs pour combiner:
 - des membres de la signature propositionnelle (c'est-à-dire une constante propositionnelle)

 $P \wedge Q$

Une expression composée formée à partir de membres de la signature propositionnelle

 $(S V P) \wedge Q$

- Les connecteurs :
 - Conjonction

(**^**, &, ·):

FT

Disjonction

(V, | , +):

OU

Négation

(¬ , ~):

NON

Implication

 $(\rightarrow, \Rightarrow, \supset)$:

SI ... ALORS

Biconditionnel/Equivalence (\leftrightarrow, ssi) :

SI ET SEULEMENT SI

Table de vérités

Décrit le comportement d'une proposition sous toutes les interprétations possibles des propositions atomiques incluses.

- Longueur de la table :
 - Etant donné *n* propositions atomiques différentes dans une proposition :
 - 2ⁿ lignes différentes dans la table de vérité de cette formule
 - Parce que chacune d'entre elles peut prendre l'une des deux valeurs suivantes : vrai ou faux.
- Propositions atomiques (pour les exemples suivants) :
 - "Mbuyi aime les gâteaux" = "p".
 - "Mbuyi mange des gâteaux" = "q".

Proposition atomique	Propositions

p	q	~p	~p v q
V	V	F	V
V	F	F	F
F	V	V	V
F	F	V	V

Connecteurs: Conjonction

• ET (∧, &, ·): Vrai uniquement lorsque les deux sont vrais

• Table de vérités

р	q	PΛq
V	V	V
V	F	F
F	V	F
F	F	F

= "Mbuyi aime les gâteaux ET Mbuyi mange des gâteaux"

Connecteurs: Disjonction

• OU (V, | , +): Faux uniquement lorsque les deux sont faux

• Table de vérités

р	q	PVq
V	V	V
V	F	V
F	V	V
F	F	F

= "Mbuyi aime les gâteaux OU Mbuyi mange des gâteaux"

Connecteurs : Négation

- NON (¬, ~):
 - Un seul argument suffit
 - Inversion de la vérité

= "Mbuyi n'aime pas les gâteaux "

• Table de vérités

р	¬ р
V	F
F	V

- $SI \dots ALORS (\rightarrow, \Rightarrow, \supset)$:
 - L'implication de Q par P est la proposition (¬P) ∨ Q, notée P ⇒ Q ou « P implique Q » qui est fausse seulement si la proposition P est vraie et la proposition Q est fausse.
 - L'implication est vraie dans tous les autres cas.
- Table de vérités

= "Si Mbuyi aime les gâteaux alors Mbuyi mange des gâteaux."

р	q	$P \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Conditions suffisantes et nécessaires

• En ce qui concerne les implications...

Lorsque $p \rightarrow q$, p est appelé une condition suffisante pour q, q est une condition nécessaire pour p.

- Être Congolais est une condition suffisante pour être Africain
- ≡ si quelqu'un est Congolais, il sera Africain
- Être Africain est une condition nécessaire pour être Congolais
- ≡ si quelqu'un n'est pas Africain, il ne peut pas être Congolais

Réciproque, Contraposée, et Inverse

- A partir de l'implication p → q, nous pouvons former de nouveaux énoncés conditionnels
 - Réciproque = $q \rightarrow p$
 - Contraposition = $\neg p \rightarrow \neg q$
 - Inverse = $\neg q \rightarrow \neg p$
- Exemple Implication :
 - "S'il pleut, je n'irai pas à l'Université".
 - Réciproque : "Si je ne vais pas à l'Université, alors il pleut".
 - Contraposition: "S'il ne pleut pas, alors j'irai à l'Université".
 - Inverse: "Si je vais à l'Université, alors il ne pleut pas".

Réciproque

- En mathématiques et en logique, la réciproque (converse en anglais) d'une proposition logique n'est pas toujours vraie même si la proposition initiale l'est.
 - pour simplifier, un théorème n'admet pas toujours de réciproque (par contre sa contraposée est toujours vraie).
 - C'est à dire que si la proposition logique est vraie, sa réciproque ne l'est pas toujours.

Proposition	Réciproque (converse)		
Si \overline{A} alors \overline{B}	Si \overline{B} alors \overline{A}		

- Pa exemple:
 - Proposition: Si je suis dans la Ville de Kinshasa alors je suis en RDC
 - Réciproque fausse dans ce cas: Si je suis en RDC alors je suis à Kinshasa
 - Ce qui n'est évidemment pas une proposition toujours vraie, je peux me trouver à Bunia

Contraposée

- En mathématiques et en logique, la contraposée (Contraposition en anglais) d'une proposition logique est toujours équivalente à la proposition initiale.
 - C'est à dire que si la proposition logique est vraie, sa contraposée l'est aussi :

Proposition		Contraposée (Contraposition)		
5	Si \overline{A} alors \overline{B}	Si $\overline{non\ B}$ alors $\overline{non\ A}$		

- Pa exemple:
 - Proposition: Si je suis dans la Ville de Kinshasa alors je suis en RDC
 - Contraposition: Si je ne suis pas en RDC alors je ne suis pas à Kinshasa

Connecteurs: Equivalence

- $SI\ ET\ SEULEMENT\ SI\ (\leftrightarrow\ ,\ ssi)$:
 - Vrai si p et q sont tous deux Vrai ou Faux

• Table de vérités

р	q	$P \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

= "Si Mbuyi aime les gâteaux, alors Mbuyi mange des gâteaux, et vice versa."

Langage propositionnel: Grammaire

- Propositions abstraites :
 - Plus générales que les propositions atomiques
 - Ça peut être toute proposition syntaxiquement correcte
 - c'est-à-dire une formule bien formée (fbf)
 - Peut imbriquer des propositions complexes aussi profondément que nécessaire
 - Les parenthèses () sont utilisées pour le regroupement.
 - Omettre autant de parenthèses que possible, sans toutefois créer d'ambiguïté.
 - La négation a la plus haute priorité

```
Exemples:  ((\neg a) \lor (\neg b)) \quad \stackrel{1}{\leadsto} \quad (\neg a) \lor (\neg b) \quad \stackrel{2}{\leadsto} \quad \neg a \lor \neg b   ((\neg a) \land b) \quad \stackrel{1}{\leadsto} \quad (\neg a) \land b \quad \stackrel{2}{\leadsto} \quad \neg a \land b   (\neg (a \land b)) \quad \stackrel{1}{\leadsto} \quad \neg (a \land b) \quad \stackrel{?}{\leadsto} \quad \neg a \land b  Non!
```

Exemples corrects

```
a
b
(\neg a)
((\neg a) \land b)
(((\neg a) \land b) \lor b)
```

Mauvais exemples

```
\begin{array}{c}
a \land \\
\Rightarrow \Rightarrow a \\
a \neg b
\end{array}
```

Priorité des opérateurs logiques

Opérateur	Priorité
¬	1
Λ	2
V	3
\rightarrow	4
\leftrightarrow	5

p \lor q \rightarrow \neg r est équivalent à (p \lor q) \rightarrow \neg r si le sens voulu est p \lor (q \rightarrow \neg r) il faut alors utiliser des parenthèses

Vérité propositionnelle

Calcul des tables de vérité

UAC UCONGO

- Pour chaque proposition (non atomique), calculer la table de vérité
- Utiliser les règles respectives pour les connecteurs
- L'ordre de la table de vérité est déterminé par la "préséance".

$$(p \lor q) \rightarrow \neg r$$

р	q	r	¬r	p V q	$p V q \rightarrow \neg r$
V	V	V	F	V	F
V	V	F	V	V	V
V	F	V	F	V	F
V	F	F	V	V	V
F	V	V	F	V	F
F	V	F	V	V	V
F	F	V	F	F	V
F	F	F	V	F	V

Interprétation des tables de vérité

UAC WAC

- Chaque ligne est une interprétation possible (c'est-à-dire un modèle) :
 - Les interprétations sont des mondes possibles
 - La recherche des valeurs de vérité possibles des propositions constitutives nous donne le sens de la phrase.
- Interprétation propositionnelle :
 - Cartographie de vérité des constantes propositionnelles
 - p = "Il pleut"
 - q = "Il y a de l'insécurité dans la ville"
 - r = "Il y a cours aujourd'hui"
- Interprétation des phrases :
 - Cartographie de la vérité des phrases propositionnelles

Il ne pleut pas mais il y a de l'insécurité dans la ville, donc il n'y a pas cours aujourd'hui.

Fonction d'interprétation

- On peut créer une fonction afin d'interpréter une formule de proposition
 - Soit la formule donnée ci-dessous:
 - Formule: $f = (\neg A \land B) \leftrightarrow C$
 - On peut obtenir le modèle ci-dessous:
 - Modèle: $w = \{A: 1, B: 1, C: 0\}$
 - Ce qui peut s'interpréter comme suit:
 - Interprétation:

Interprétation

Dans le graphe ci-contre, on peut voir que le dernier nœud gauche I(A, w) vaut 1 (Vrai) car A est positif, en montant dans le niveau suivant $I(\neg A, w)$ vaut 0 (Faux) car ici A est négatif tandis qu'à droite de ce nœud I(B, w) vaut 1 (Vrai) puisque B est positif. Le nœud qui vient juste au dessus $I(\neg A \land B, w)$ vaut 0 (Faux) car la conjonction est vrai seulement lorsque A et B sont vrais alors qu'ici nous avons le scénario de $\neg A = 0$ et B = 1. I(C, w) vaut 0 ici car pour que notre formule soit vraie (cad l'équivalence), il faut que $(\neg A \land B)$ soit vraie et C soit vrai ou que $(\neg A \land B)$ soit fausse et C soit fausse. Etant donné que $I(\neg A \land B, w)$ vaut 0 (faux), par déduction C est aussi égal à 0 (faux)

Fonction d'interprétation (Cont.)

• Partant du modèle obtenu dans le slide précédent, nous avions d'abord écrit notre Formule sous forme d'arborescence comme suit:

Propriétés des propositions abstraites

• Chaque interprétation est satisfaite (c'est-à-dire vraie)

Contingent

Certaines interprétations le satisfont, mais pas d'autres

Insatisfaisant

Aucune interprétation n'est satisfaite

Tautologie

Une proposition abstraite qui est toujours vraie

• Exemple :

- Ce cours est facile ou ce cours n'est pas facile
- a ∨ (¬a) ≡ V (vraie)
- La colonne de la table de vérité est toujours Vrai
- (0 = Faux, 1 = Vrai)

\boldsymbol{a}	\boldsymbol{b}	$b \Rightarrow a$	$a \Rightarrow (b \Rightarrow a)$
0	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

Contradiction

Une proposition abstraite qui est toujours fausse

• Exemple :

- Ce cours est facile et ce cours n'est pas facile
- a ∧ (¬a) ≡ F
- La colonne de la table de vérité est toujours Faux
- (0 = Faux. 1 = Vrai)

a	b	$a \Rightarrow b$	$\neg b$	$a \wedge \neg b$	$(a \Rightarrow b) \land (a \land \neg b)$
0	0	1	1	0	0
0	1	1	0	0	0
1	0	0	1	1	0
1	1	1	0	0	0

Contingence

Proposition abstraite qui n'est ni une tautologie ni une contradiction.

• Exemples :

- 1. *a*
- 2. $a \Rightarrow \neg a$
- 3. $a \wedge b$
- 4. $a \vee b$
- $5. \ \neg a \Rightarrow (b \land c)$

Equivalence

Propositions équivalentes

- Les propositions abstraites ayant des colonnes identiques sont dites équivalentes
 - c'est-à-dire que les valeurs de vérité correspondantes dans chaque modèle
- Toutes les tautologies et contradictions sont équivalentes

a	b	$a \Rightarrow b$	$\neg(a \Rightarrow b)$	$\neg a$	$\neg a \lor b$	$\neg(\neg a \lor b)$
0	0	1	0	1	1	0
0	1	1	0	1	1	0
1	0	0	1	0	0	1
1	1	1	0	0	1	0

Propositions équivalentes (Cont.)

• Exemples:

- "Nsenge n'est pas marié mais Georgine n'est pas célibataire" (つh ∧ つb)
- "Georgine n'est pas célibataire et Nsenge n'est pas marié" (¬b∧¬h)
- "Ni Georgine n'est célibataire ni Nsenge n'est marié" (¬(b∨h)).
- Ces trois énoncés sont équivalents

•
$$\neg h \land \neg b \equiv \neg b \land \neg h \equiv \neg (b \lor h)$$

b	h	¬b	¬h	b V h	(¬h∧¬b)	(¬b∧¬h)	¬(b∨h)
V	V	F	F	V	F	F	F
V	F	F	V	V			
F	V	V	F	V			F
F	F	V	V	F			

Notation étendue

- si *P* est équivalent à *Q*, on écrit $P \stackrel{val}{=} Q$
- **Note**: <u>val</u> ne fait pas partie du vocabulaire du langage des propositions abstraites ; c'est un méta-symbole.
- Ainsi,

Commutativité et associativité

• Les équivalences standard - c'est-à-dire les règles de transformation

Commutativité:

Commutativité :
 Associativité :

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$
 $(P \wedge Q) \wedge R \stackrel{val}{=} P \wedge (Q \wedge R)$
 $P \vee Q \stackrel{val}{=} Q \vee P$
 $(P \vee Q) \vee R \stackrel{val}{=} P \vee (Q \vee R)$
 $P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$
 $(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$

$$NB: P \Rightarrow Q \stackrel{val}{\neq} Q \Rightarrow P$$

$$\mathsf{NB} \colon P \Rightarrow Q \overset{\mathit{val}}{\neq} Q \Rightarrow P \qquad \qquad \mathsf{NB} \colon P \Rightarrow (Q \Rightarrow R) \overset{\mathit{val}}{\neq} (P \Rightarrow Q) \Rightarrow R$$

$$\begin{array}{c|ccc} P & Q & P \Rightarrow Q & Q \Rightarrow P \\ \hline 0 & 1 & 1 & 0 \\ \end{array}$$

$$\begin{array}{c|cccc} P & Q & P \Rightarrow Q & Q \Rightarrow P \\ \hline 0 & 1 & 1 & 0 \\ \end{array} \qquad \begin{array}{c|cccc} P & Q & P \Rightarrow (Q \Rightarrow R) & (P \Rightarrow Q) \Rightarrow R \\ \hline 0 & 1 & 0 & 1 \\ \end{array}$$

Idempotence et double négation

• Les équivalences standard - c'est-à-dire les règles de transformation

Idempotence:

$$P \wedge P \stackrel{val}{=} P$$
$$P \vee P \stackrel{val}{=} P$$

NB:
$$P \Rightarrow P \overset{val}{\neq} P$$

 $P \Leftrightarrow P \overset{val}{\neq} P$ (II s'avère == à Vrai)

$$P \Leftrightarrow P \neq P$$
 (II s'avère == à Vrai

Double négation

$$\neg \neg P \stackrel{val}{=} P$$

« Ce n'est pas que je n'aime pas les épinards »

N.B.: Dans la logique propositionnelle, la nuance voulue ne peut pas être saisie.

Adsorption

- Équivalences standard
 - c'est-à-dire règles de transformation
 - Simplification/Réduction

$$p \vee (p \wedge q) \equiv p$$

 $p \wedge (p \vee q) \equiv p$

Vrai et Faux (V & F)

- Équivalences standard c'est-à-dire règles de transformation
- Simplification des propositions abstraites en constantes de vérité

Inversion ¬ Vrai $\stackrel{val}{=}$ Faux ¬ Faux $\stackrel{val}{=}$ Vrai

Contradiction
$$P \land \neg P \stackrel{val}{=} \text{Faux}$$

Milieu exclu
$$P \vee \neg P \stackrel{val}{=\!\!\!=\!\!\!=}$$
 Vrai

Négation
$$\neg P \stackrel{val}{=\!\!\!=\!\!\!=} P \Rightarrow \text{Faux}$$

$$\begin{array}{cccc} & \mathbf{Vrai/faux\text{-}\'elimination} \\ P \wedge & \mathbf{Vrai} & \stackrel{val}{=} P \\ P \wedge & \mathbf{Faux} & \stackrel{val}{=} \mathbf{Faux} \\ P \vee & \mathbf{Vrai} & \stackrel{val}{=} \mathbf{Vrai} \\ P \vee & \mathbf{Faux} & \stackrel{val}{=} P \end{array}$$

Distributivité

Distributivité : $P \wedge (Q \vee R) \stackrel{val}{=\!\!\!=} (P \wedge Q) \vee (P \wedge R)$ $P \vee (Q \wedge R) \stackrel{val}{=\!\!\!=} (P \vee Q) \wedge (P \vee R)$

- Équivalences standard c'est-à-dire règles de transformation
- Peut reconnaître des noms et des modèles issus de l'algèbre

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

$$(A \cdot B) + (A \cdot C) = A \cdot (B + C)$$

Les lois de Morgan

En plus des trois opérations de base ET, OU et NON, qui suffisent pour tout faire, on trouve aussi des opérations NON-ET, NON-OU et OU exclusif.

Circuit: Portes logiques

$$\hat{A} = \hat{A} + \overline{B}$$

Une porte NAND est équivalente à une inversion suivie d'un OU

$$\hat{A} + \overline{B}$$

$$\hat{A} + \overline{B}$$

$$\hat{A} + \overline{B}$$

$$\hat{A} + \overline{B}$$

Une porte **NOR** est équivalente à une inversion suivie d'un **ET**

	Symbole de la porte logique	Opératio booléenn
ET (AND)	A — out	A · B
OU (OR)	A out	A + B
NON (NOT)	A — out	\overline{A}

sortie est

(NAND)

NON-OU

(NOR)

exclusif

(XOR)

		,	-
	1		0
	Entrées		Sortie
	A	В	A NAND B
$\overline{\mathbf{A}\!\cdot\!\mathbf{B}}$	0	0	1
A·B	0	1	1
	1	0	1
	1	1	0
	Ent	rées	Sortie
	A	В	A NOR B
	0	0	1
$\overline{A+B}$	0	1	0
	1	0	0
	1	1	0
	Ent	rées	Sortie
$A \oplus B$	A	В	A xor B
АФВ	0	0	0
, 5 - 5	0	1	1
$= \mathbf{A} \cdot \overline{\mathbf{B}} + \overline{\mathbf{A}} \cdot \mathbf{B}$	-1	0	1

A AND B

A or B

NOT A

Calcul logique

Calcul: Calcul logique

Autres équivalences fondamentales

```
1. (Réflexivité :) P \stackrel{val}{=} P

2. (Symétrie : ) Si P \stackrel{val}{=} Q, alors Q \stackrel{val}{=} P

3. (Transitivité :) Si P \stackrel{val}{=} Q et Q \stackrel{val}{=} R, alors P \stackrel{val}{=} R
```

Substitution

Le remplacement de toutes les occurrences d'une "lettre" par une formule

Exemple:

Si nous remplaçons $Q \wedge P$ pour P dans l'équivalence valide

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
,

alors nous obtenons l'équivalence valide :

$$(Q \wedge P) \Rightarrow Q \stackrel{val}{=} \neg (Q \wedge P) \vee Q$$
.

- Ce serait le cas pour toute substitution de Q
- Ou pour P et Q simultanément

La substitution préserve l'équivalence

Règle de Leibniz

Le remplacement d'une sous-formule par une sous-formule équivalente

Exemple

A partir de l'équivalence valide

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$

nous pouvons créer de nouvelles équivalences valides en remplaçant $P\Rightarrow Q$ dans une formule complexe par $\neg P\lor Q$, par exemple

$$(\neg P \land (P \Rightarrow Q)) \lor R \stackrel{val}{=} (\neg P \land (\neg P \lor Q)) \lor R$$

Prouver les tautologies (Exemple 1)

• Prouver par un calcul que $\neg (P \land \neg P)$ est une tautologie

• Alors $\neg (P \land \neg P)$ est une tautologie

Prouver les tautologies (exemple 2)

- Prouver par un calcul que $\neg(Q \rightarrow R) \leftrightarrow (\neg R \land Q)$ est une tautologie
- Solution:
 - Tout d'abord, nous établissons, à l'aide d'un calcul, que $\neg (Q \rightarrow R) \stackrel{val}{=} (\neg R \land Q)$

$$\neg (Q \Rightarrow R)$$

$$\stackrel{val}{=} \ \{ \text{ Implication } \} \quad \text{Avec la loi de Leibniz} \quad P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$

$$\neg (\neg Q \lor R) \quad \text{Avec la loi de substitution} \quad \neg (P \land Q) \stackrel{val}{=} \neg P \lor \neg Q$$

$$\neg \neg Q \land \neg R \quad P \stackrel{val}{=} \quad \{ \text{ Double négation } \} \quad \neg P \stackrel{val}{=} \quad P$$

De
$$\neg(Q \Rightarrow R) \stackrel{val}{=} \neg R \land Q$$
 il s'ensuit que $\neg(Q \Rightarrow R) \Leftrightarrow (\neg R \land Q)$ est une tautologie

Résumé de la représentation de la logique propositionnelle

- 1. Le langage de la logique (en tant que représentation)
 - Propositions atomiques
 - NB: Symboles ayant une signification fixe (ce ne sont pas des "variables")
- 2. Les connecteurs et la façon dont ils transforment la véracité d'une phrase propositionnelle
- Les tables de vérité, les tautologies et les contradictions sont des concepts importants pour résumer la vérité et la fausseté d'une phrase propositionnelle.
 - Nous traitons ici des phrases propositionnelles uniques à la fois.
- 4. Équivalence comprendre quand des propositions distinctes signifient la même chose (et pourraient être échangées l'une contre l'autre)
 - Comment l'équivalence peut-elle être utilisée (par exemple pour prouver une tautologie) ?

Travail pratique 2

• Objectifs:

- Logique propositionnelle et logique du premier ordre
 - S'entraîner à travailler avec la syntaxe et la sémantique de la logique
 - S'entraîner à manipuler des expressions logiques de manière "algébrique".
 - Appliquer la logique pour faire des déductions et déterminer la "vérité".
 - Comprendre deux des approches d'inférences les plus simples sur lesquelles nous nous concentrerons principalement dans ce cours :
 - Le chaînage avant
 - Le chaînage arrière

Au contraire, poursuivit Tweedledee, si c'était ainsi, cela pourrait être ; et si c'était ainsi, cela serait ; mais comme ce n'est pas le cas, cela ne l'est pas. C'est la logique.

- LEWIS CARROLL -

