Градиентный бустинг

Повторение

Устойчивость моделей

- $X = (x_i, y_i)_{i=1}^{\ell}$ обучающая выборка
- Обучаем модель a(x)
- Ожидаем, что модель устойчивая
- То есть не сильно меняется при небольших изменениях в $\it X$
- $ilde{X}$ случайная подвыборка, примерно 90% исходной

Композиция моделей

- У нас получилось N деревьев: $b_1(x), ..., b_N(x)$
- Объединим их через голосование большинством (majority vote):

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Выбираем класс, который выбрало выдавших класс у большинство деревьев

Композиция моделей

Общий вид: классификация

- $b_1(x), ..., b_N(x)$ базовые модели
- Каждая хотя бы немного лучше случайного угадывания
- Композиция: голосование по большинству (majority vote)

$$a_N(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^N [b_n(x) = y]$$

Общий вид: регрессия

- $b_1(x), ..., b_N(x)$ базовые модели
- Каждая хотя бы немного лучше случайного угадывания
- Композиция: усреднение

$$a_N(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

Бэггинг

- Bagging (<u>b</u>ootstrap <u>aggregating</u>)
- Базовые модели обучаются независимо
- Каждый обучается на подмножестве обучающей выборки
- Подмножество выбирается с помощью бутстрапа

Бутстрап

- Выборка с возвращением
- Берём ℓ элементов из X
- Пример: $\{x_1, x_2, x_3, x_4\} \rightarrow \{x_1, x_2, x_2, x_4\}$
- В подвыборке будет ℓ объектов, из них около 63.2% уникальных
- Если объект входит в выборку несколько раз, то мы как бы повышаем его вес

Случайные подпространства

- Выбираем случайное подмножество признаков
- Обучаем модель только на них
- Может быть плохо, если имеются важные признаки, без которых невозможно построить разумную модель

Виды рандомизации

- Бэггинг: случайная подвыборка
- Случайные подпространства: случайное подмножество признаков

Разложение ошибки на смещение и разброс

- Ошибка модели складывается из трёх компонент
- Шум (noise) характеристика сложности и противоречивости данных
- Смещение (bias) способность модели приблизить лучшую среди всех возможных моделей
- Разброс (variance) устойчивость модели к изменениям в обучающей выборке

Смещение и разброс: деревья

Бэггинг

- Смещение $a_N(x)$ такое же, как у $b_n(x)$
- Разброс $a_N(x)$:

$$\frac{1}{N}$$
 (разброс $b_n(x)$) + ковариация $(b_n(x), b_m(x))$

- Если базовые модели независимы, то разброс уменьшается в N раз!
- Чем более похожи выходы базовых моделей, тем меньше эффект от построения композиции

Смещение и разброс: бэггинг

Выбор предиката

$$j, t = \arg\min_{j,t} Q(R_m, j, t)$$

• Будем искать лучший предикат среди случайного подмножества признаков размера q

Случайный лес (Random Forest)

```
Для n = 1, ..., N:
```

- 1. Сгенерировать выборку $ilde{X}$ с помощью бустрапа
- 2. Построить решающее дерево $b_n(x)$ по выборке \widetilde{X}
- 3. Дерево строится, пока в каждом листе не окажется не более n_{min} объектов
- 4. Оптимальное разбиение ищется среди с случайных признаков

Выбираются заново при каждом разбиении!

Случайный лес (Random Forest)

• Регрессия:

$$a(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

• Классификация:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Универсальный метод

- Ошибка сначала убывает, а затем выходит на один уровень
- Случайный лес не переобучается при росте N

Out-of-bag

- Каждое дерево обучается примерно на 63% данных
- Остальные объекты как бы тестовая выборка для дерева
- $X_{\rm n}$ обучающая выборка для $b_{\rm n}(x)$
- Можно оценить ошибку на новых данных:

Исправление ошибок моделей и идея бустинга

Бэггинг

- Смещение $a_N(x)$ такое же, как у $b_n(x)$
- Разброс $a_N(x)$:
- $\frac{1}{N}$ (разброс $b_n(x)$) + ковариация $(b_n(x), b_m(x))$
- Если базовые модели независимы, то разброс уменьшается в N раз!
- Чем более похожи выходы базовых моделей, тем меньше эффект от построения композиции

Проблемы бэггинга

- Если базовая модель окажется смещённой, то и композиция не справится с задачей
- Базовые модели долго обучать и применять, дорого хранить

- Бустинг (англ. boosting усиление)
- Возьмём простые базовые модели
- Будем строить композицию последовательно и жадно
- Каждая следующая модель будет строиться так, чтобы максимально корректировать ошибки построенных моделей

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение первой модели (b_1):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, b_1(x_i)) \to \min_{b_1(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение первой модели (b_1):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, b_1(x_i)) \to \min_{b_1(x)}$$

• Пытаемся подобрать модель b_1 , минимизирующую ошибку

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели (b_N) :

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$
 фиксировано учится

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели (b_N) :

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Пытаемся подобрать модель b_N , минимизирующую ошибку итоговой композиции $a_N = a_{N-1} + b_N$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели (b_N) :

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Обучение N-й модели (b_N) :

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

- Нет такого алгоритма машинного обучения, который учил бы «добавку»
- Попробуем понять, как можно сформулировать задачу с точки зрения ML

Резюме

- В бустинге базовые модели обучаются последовательно
- Каждая следующая корректирует ошибки уже построенных
- В общем случае получается функционал, на который может быть сложно обучать деревья

Бустинг для среднеквадратичной ошибки

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• MSE:

$$L(y, \hat{y}) = (y - \hat{y})^2$$

Бустинг для MSE

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a_{N-1}(x_i) + b_N(x_i) - y_i)^2 \to \min_{b_N(x)}$$

Бустинг для MSE

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

$$s_i^{(N)} = y_i - a_{N-1}(x_i)$$
 — остатки

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

•
$$s_i^{(N)} = y_i - a_{N-1}(x_i) - \text{остатки}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

- $s_i^{(N)} = y_i a_{N-1}(x_i) \text{остатки}$
- Если b_N научится выдавать остатки $s_i^{(N)}$, то задача будет решена идеально

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

- $s_i^{(N)} = y_i a_{N-1}(x_i) \text{остатки}$
- Если b_N научится выдавать остатки $s_i^{(N)}$, то задача будет решена идеально

$$y_i = a_{N-1}(x_i) + s_i^{(N)} = a_{N-1}(x_i) + b_N(x_i)$$

Пример

•
$$y_i = 12$$

$$a_{N-1}(x_i) = 10$$

• $y_i = 12$ $a_{N-1}(x_i) = 10$ • $s_i^{(N)} = ?$

 $b_N(x_i) = ?$ $a_N(x_i) = ?$

Пример

•
$$y_i = 12$$

$$a_{N-1}(x_i) = 10$$

•
$$y_i = 12$$
 $a_{N-1}(x_i) = 10$
• $s_i^{(N)} = 2$

$$b_N(x_i) = 2$$

$$b_N(x_i) = 2$$

$$a_N(x_i) = 12$$

Первая итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (b_1(x_i) - y_i)^2 \to \min_{b_1(x)}$$

Вторая итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_2(x_i) - \left(y_i - b_1(x_i) \right) \right)^2 \to \min_{b_2(x)}$$

Третья итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_3(x_i) - \left(y_i - b_1(x_i) - b_2(x_i) \right) \right)^2 \to \min_{b_3(x)}$$

Визуализация

Визуализация

Визуализация

Random Forest

Ошибка бустинга на обучении и тесте

Резюме

- В случае с MSE обучение базовых моделей сводится к обычной процедуре обучения с заменой целевой переменной
- Бустинг может переобучаться, поэтому надо следить за ошибкой на тестовой выборке

Сложности с произвольной функцией потерь

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i - a_{N-1}(x_i), b_N(x_i)) \to \min_{b_N(x)}$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i - a_{N-1}(x_i), b_N(x_i)) \to \min_{b_N(x)}$$

• Хотим, чтобы модель b_N выдавала $y_i - a_{N-1}(x_i)$

$$a_{N}(x) = \operatorname{sign} \sum_{n=1}^{N} b_{n}(x)$$

$$L(y,z) = \log(1 + \exp(-yz))$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

$$a_{N}(x) = \operatorname{sign} \sum_{n=1}^{N} b_{n}(x)$$

$$L(y,z) = \log(1 + \exp(-yz))$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

$$a_{N}(x) = \operatorname{sign} \sum_{n=1}^{N} b_{n}(x)$$

$$L(y,z) = \log(1 + \exp(-yz))$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- Если $y_i = a_{N-1}(x_i)$, то объект не участвует в обучении
- Тогда модель $\,b_{
 m N}(x_{
 m i})$ может выдавать что угодно и испортить композицию

$$a_{N}(x) = \operatorname{sign} \sum_{n=1}^{N} b_{n}(x)$$

$$L(y,z) = \log(1 + \exp(-yz))$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

• Иначе $y_i - a_{N-1}(x_i) = \pm 2$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\frac{y_i - a_{N-1}(x_i)}{2} b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- Если $y_i = a_{N-1}(x_i)$, то объект не участвует в обучении
- Если $y_i \neq a_{N-1}(x_i)$, то базовая модель учится выдавать корректный класс

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\frac{y_i - a_{N-1}(x_i)}{2} b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

•
$$y_i = +1$$
, $\sum_{n=1}^{N-1} b_n(x_i) = -0.5 \rightarrow$ надо $b_N(x_i) > 0.5$

•
$$y_{\rm i} = +1$$
, $\sum_{\rm n=1}^{\rm N-1} b_{\rm n}(x_{\rm i}) = -100
ightarrow {\rm надо}\ b_{\rm N}(x_{\rm i}) > 100$

$$rac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp\left(-rac{y_i - a_{N-1}(x_i)}{2} b_{N}(x_i)
ight)
ight)
ightarrow \min_{b_N(x)}$$
 $y_i = +1, \sum_{n=1}^{N-1} b_n(x_i) = -0.5
ightarrow$ надо $b_N(x_i) > 0.5$ $y_i = +1, \sum_{n=1}^{N-1} b_n(x_i) = -100
ightarrow$ надо $b_N(x_i) > 100$

- Но на обоих объектах будет одинаково максимизироваться отступ
- На объектах с корректными ответами никак не контролируется выход $b_N(x)$

• Mean Squared Logarithmic Error (среднеквадратичная логарифмическая ошибка)

$$L(y,z) = (\log(z+1) - \log(y+1))^2$$

$$a_N(x) = \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = (\log(z+1) - \log(y+1))^2$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\log(b_N(x_i) + 1) - \log(y_i - a_{N-1}(x_i) + 1))^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = (\log(z+1) - \log(y+1))^2$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\log(b_N(x_i) + 1) - \log(y_i - a_{N-1}(x_i) + 1))^2 \to \min_{b_N(x)}$$

• Аргумент второго логарифма может оказаться отрицательным

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\log(b_N(x_i) + 1) - \log(y_i - a_{N-1}(x_i) + 1))^2 \to \min_{b_N(x)}$$

Уi	$a_{N-1}(x_i)$	b _N (x _i)	Улучшение MSLE композиции	Улучшение функционала базовой модели
1000	100	2	0.09	13.7
2	0	2	1.2	1.2

Резюме

- Нельзя заменить обучение добавки к композиции на обучение базовой модели на отклонение от ответов
- Не учитываются особенности функции потерь

Градиентный бустинг в общем виде

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

- Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?
- Посчитать производную

Производная

Задача обучения базовой модели

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Посчитаем антипроизводную:

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)}$$

Задача обучения базовой модели

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Посчитаем антипроизводную:

$$S_i^{(N)} = -rac{\partial}{\partial z} L(y_i, z)$$
 прогноз и прогноз модели производная по х модели

в качестве z подставляем в результат предсказание композиции

Задача обучения базовой модели

• Посчитаем антипроизводную:

$$s_{i}^{(N)} = -\frac{\partial}{\partial z} L(y_{i}, z) \bigg|_{z=a_{N-1}(x_{i})}$$

- Знак показывает, в какую сторону сдвигать прогноз на x_i , чтобы уменьшить ошибку композиции на нём
- Величина показывает, как сильно можно уменьшить ошибку, если сдвинуть прогноз
- Если ошибка почти не сдвинется, то нет смысла что-то менять

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$s_i^{(N)} = -rac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{
m N}=1} - {
m c}$$
двиги

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$s_i^{(N)} = -rac{\partial}{\partial z}L(y_i,z)\Big|_{z=a_{\mathrm{N}-1}(x_i)}$$
— сдвиги

• Таким образом, мы обучаем базовую модель $\,b_N^{}$ так, чтобы на $\,x_i^{}$ она выдавала $\,s_i^{(N)}$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_{N}(x_{i}) - s_{i}^{(N)} \right)^{2} \rightarrow \min_{b_{N}(x)}$$

$$S_{i}^{(N)} = -\frac{6}{6z}L(y_{i},z)\Big|_{z=a_{N-1}(x_{i})}$$
— сдвиги

- Как бы градиентный спуск в пространстве алгоритмов
- Базовая модель будет делать корректировки на объектах так, чтобы как можно сильнее уменьшить ошибку композиции
- Сдвиги учитывают особенности функции потерь

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

Градиентный бустинг для асимметричной функции

$$L(y,z) = \frac{1}{2}([z < y](z - y)^2 + 5[z \ge y](z - y)^2)$$

$$s_i^{(N)} = -\frac{\partial}{\partial z}L(y_i, z)\Big|_{z=a_{N-1}(x_i)} =$$

$$= [z < y](y - z) + 5[z \ge y](y - z)$$

Градиентный бустинг для асимметричной функции

$$s_i^{(N)} = [z < y](y - z) + 5[z \ge y](y - z)$$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 5$: $s_i = 5$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 15$: $s_i = -25$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_i z)) \Big|_{z=a_{N-1}(x_i)} =$$

$$= \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))}$$

$$s_{i}^{(N)} = -\frac{\partial}{\partial z} L(y_{i}, z) \Big|_{z=a_{N-1}(x_{i})} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_{i}z)) \Big|_{z=a_{N-1}(x_{i})} =$$

$$= \frac{y_{i}}{1 + \exp(y_{i}a_{N-1}(x_{i}))}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_{N}(x_{i}) - \frac{y_{i}}{1 + \exp(y_{i} a_{N-1}(x_{i}))} \right)^{2} \to \min_{b_{N}(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_{N}(x_{i}) - \frac{y_{i}}{1 + \exp(y_{i} a_{N-1}(x_{i}))} \right)^{2} \to \min_{b_{N}(x)}$$

• Отступ большой положительный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx 0$

• Отступ большой отрицательный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx \pm 1$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_{N}(x_{i}) - \frac{y_{i}}{1 + \exp(y_{i} a_{N-1}(x_{i}))} \right)^{2} \to \min_{b_{N}(x)}$$

- Отступ большой положительный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx 0$
- Отступ большой отрицательный: $\frac{y_i}{1+e (y_i a_{N-1}(x_i))} \approx \pm 1$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = -0.7$: $s_i = 0.67$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = 2$: $s_i = 0.12$

Резюме

- Чтобы учесть особенности функции потерь, можно посчитать её производные в точке текущего прогноза композиции
- Базовую модель будем обучать на эти производные (со знаком минус)

Гиперпараметры и регуляризация в бустинге

$$a_N(x) = a_{N-1}(x_i) + b_N(x_i)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

•
$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{\mathrm{N}} = 1} - \mathsf{c}$$
двиги

Глубина деревьев

- Градиентный бустинг уменьшает смещение базовых моделей
- Разброс может увеличиться

Глубина деревьев

- Градиентный бустинг уменьшает смещение базовых моделей
- Разброс может увеличиться
- Поэтому в качестве базовых моделей стоит брать...

Глубина деревьев

- Градиентный бустинг уменьшает смещение базовых моделей
- Разброс может увеличиться
- Поэтому в качестве базовых моделей стоит брать **неглубокие** деревья

Гиперпараметры

- Глубина базовых деревьев
- Число деревьев

Проблемы бустинга

- Сдвиги показывают направление, в котором надо сдвинуть композицию на всех объектах обучающей выборки
- Базовые модели, как правило, очень простые
- Могут не справиться с приближением этого направления

Проблемы бустинга

- Сдвиги показывают направление, в котором надо сдвинуть композицию на всех объектах обучающей выборки
- Базовые модели, как правило, очень простые
- Могут не справиться с приближением этого направления
- Выход: добавлять деревья в композицию с небольшим весом

Длина шага

$$a_N(x) = a_{N-1}(x_i) + \eta b_N(x_i)$$

- $\eta \in (0,1]$ длина шага (learning rate)
- Можно сказать, что это регуляризация композиции
- Снижает вклад каждой модели в композицию
- Чем меньше η , тем больше надо деревьев

Длина шага

Рандомизация

- Можно обучать деревья на случайных подмножествах признаков
- Бустинг уменьшает смещение, поэтому итоговая композиция всё равно получится качественной
- Может снизить переобучение

• Можно обучать деревья на подмножествах объектов — способ борьбы с шумом в данных

Рандомизация

Гиперпараметры

- Глубина базовых деревьев
- Число деревьев
- Длина шага
- Размер подвыборки для обучения
- и т.д.

Резюме

- Чтобы снизить переобучение, можно добавлять модели в композицию с небольшими весами
- Также может помочь обучение моделей на подвыборках

Полезные ссылки

- https://www.gormanalysis.com/blog/gradient-boosting-explained/
- https://youtu.be/3CC4N4z3GJc
- https://en.wikipedia.org/wiki/Gradient boosting
- https://dyakonov.org/2017/06/09/градиентный-бустинг/

Спасибо за внимание!

Ildar Safilo

@Ildar_Saf irsafilo@gmail.com https://www.linkedin.com/in/isafilo/