УТВЕРЖДЕНО

Заместитель председателя оргкомитета заключительного этапа республиканской олимпиады

	К.С. Фарино.
«	» декабря 2006 года

Республиканская физическая олимпиада (III этап) 2007 год Теоретический тур

<u> 11 класс.</u>

Задача 1. «Взрывная эмиссия»

В данной задаче Вам предстоит исследовать явления, происходящие при эмиссии (по-русски «испускании») электронов поверхностью металла (в данном случае платины). Вам понадобятся некоторые характеристики платины, представленные в таблице.

Характеристики платины.

Pt
195
21450
134
71,6
2045
1,1·10 ⁻⁷

1. Концентрация электронов.

Основными носителями заряда в металлах являются электроны. Оцените концентрацию электронов проводимости в платине, считая, что от каждого атома в зону проводимости перешел один электрон.

Число Авогадро $N_4 = 6,023$ моль⁻¹.

2. Электрическое поле

Для того чтобы электрон смог покинуть металл, необходимо ему «помочь», создав, например, электрическое поле у поверхности и/или повысив температуру металла. В частности, это может быть электрическое поле, создаваемое самим металлом, если у него есть какой-то электрический потенциал.

Рассмотрим установку, работу которой Вам предстоит исследовать. Она представляет собой металлический анод и платиновый образец-катод, находящиеся в глубоком вакууме. Анод заземлен. Потенциал катода отрицательный и равен $-\varphi$.

Будем считать, что электроны, вылетевшие с поверхности металла, сразу же уносятся электрическим полем к аноду и никакого влияния на происходящие в установке процессы не оказывают.

На поверхности платинового катода, как бы хорошо она ни была отшлифована, всегда имеются шероховатости, неровности, микровыступы. В случае необходимости, микроострия могут быть созданы специально. Рассмотрим одно такое острие. Оно представляет собой тонкую цилиндрическую

иголочку длиной l=500 мкм и радиусом r=10 мкм, заканчивающуюся полусферическим острием такого же радиуса r=10 мкм.

К катоду приложен потенциал $-\varphi$. Покажите, что модуль напряженности вблизи острия равен $E \approx \frac{\varphi}{r}$, где r - радиус кривизны острия.

3. Теплопроводность.

Если тело нагрето неравномерно, то возникает перенос тепла из более горячих частей в более холодные, при этом поток теплоты (то есть теплота, переносимая через единичную площадь за единицу времени $q=\frac{\Delta Q}{\Delta S \Delta t}$) определяется законом Фурье $q=-\kappa\frac{\Delta T}{\Delta x}$, где ΔT - разность температур в близких точках, расстояние между которыми Δx , а коэффициент κ - так называемая теплопроводность вещества. Знак минус подчеркивает, что тепло переносится от частей с большей температурой к частям с меньшей температурой.

Рассмотрим однородный стержень длиной l , площадью поперечного сечения S и теплопроводностью κ .

3.1. Боковая поверхность стержня теплоизолирована. На первом торце (x=0) температура поддерживается равной T_0 , на втором (x=l) T_1 . Найдите распределение температуры T(x) вдоль стрежня. Изобразите примерный график распределения температуры.

- **3.2.** Весь стержень теплоизолирован, кроме торца x=0, на котором поддерживается температура T_0 . Найдите распределение температуры вдоль стержня. Изобразите примерный график этой зависимости.
- **3.3.** Пусть в единице объема стержня в единицу времени выделяется теплота w (ещё её можно назвать плотностью мощности тепловыделения). Весь стержень теплоизолирован, кроме торца x=0, который поддерживается при постоянной температуре T_0 . Покажите,

что распределение температуры вдоль стержня $T(x) = T_0 + \frac{w}{\kappa} x (l - \frac{x}{2})$. Чему равна температура торца (x = l) T_l ?

3.4. Стержень сделан из металла с удельным сопротивлением γ и по нему течет ток плотностью j. Весь стержень теплоизолирован, кроме торца x=0, который поддерживается при постоянной температуре T_0 . Найдите температуру торца (x=l) T_l .

4. Эмиссия электронов.

Вернемся к платиновому образцу. Если потенциал металла отрицательный, то вблизи поверхности металла создается электрическое поле, которое помогает электронам покинуть металл. Плотность тока с поверхности металла зависит от

напряженности электрического поля E и температуры T, причем зависимость эта достаточно сложная, но в интересующем нас диапазоне напряженностей и температур её можно аппроксимировать следующим образом

$$j(T) = \begin{cases} a, & T < b \\ a + k(T - b), T \ge b \end{cases}$$

причем сами коэффициенты а,b,k зависят от напряженности электрического поля

$$a = a_1 \exp(a_2 E)$$
$$b = b_1 - b_2 E$$
$$k = k_1 \exp(k_2 E)$$

$a_1 = 2,60 \cdot 10^5 \frac{A}{M^2}$	$b_1 = 1983K$	$k_1 = 319 \frac{A}{M^2 K}$
$a_2 = 1,01 \cdot 10^{-9} \frac{M}{B}$	$b_2 = 1,67 \cdot 10^{-8} K \cdot M / B$	$k_2 = 9.39 \cdot 10^{-10} \text{M/B}$

- **4.1.** Изобразите примерный график зависимости плотности тока от температуры j(T) при отсутствии электрического поля. Как изменится этот график, при наличии электрического поля?
- **4.2.** К катоду приложили отрицательный потенциал по абсолютной величине равный $50\kappa B$. Определите установившуюся температуру T_i острия платиновой иголочки. Основание иголочки поддерживается при температуре $T_0 = 300 K$, вся остальная иголочка теплоизолирована (потерями на излучение можно пренебречь). Считайте, что эмиссия электронов происходит только с полусферического острия иголки.
- **4.3.** Если температура острия достигает температуры плавления, то происходит его разрушение быстрое испарение в вакуум. Определите критический потенциал $\varphi_{\kappa p}$, т.е. максимальный потенциал, который можно приложить к катоду, чтобы ещё не произошло разрушение острия иголочки.
- **4.4.** К катоду приложили отрицательный потенциал, по величине равный $\varphi = 130 \kappa B$. Чему равна плотность тока сразу после включения? Найдите время после включения, через которое произойдет взрыв иголочки.

Задача 2 «Динамик»

В данной задаче Вам предстоит рассмотреть работу простейшего динамического громкоговорителя (проще говоря, динамика).

представляет собой Динамик тонкую круглую упругую мембрану $r_d = 10,0cM$, которой радиусом края жестко закреплены круглой металлической рамке. К центру мембраны приклеена маленькая круглая проволочная катушка радиусом r = 10,0 MMчислом витков N = 100, индуктивностью L=1,0мк Γ н R = 4.0OM. сопротивлением Macca

катушки m=50,0г (масса мембраны гораздо меньше массы катушки). Катушка может совершать вместе с мембраной колебания в вертикальной плоскости, причем собственная частота колебаний (т.е. частота колебаний в вакууме) равна $f_0=30\Gamma \mu$. При колебаниях в