Álgebra I. Hoja de ejercicios 1: Conjuntos Universidad de El Salvador, ciclo impar 2019

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2019@googlegroups.com.

Ejercicio 1. Sean A_i , $i \in I$ y B conjuntos.

1) Demuestre que

$$\left(\bigcap_{i\in I}A_i\right)\cup B=\bigcap_{i\in I}(A_i\cup B)\quad \text{y}\quad \left(\bigcup_{i\in I}A_i\right)\cap B=\bigcup_{i\in I}(A_i\cap B).$$

2) Demuestre que si $A_i \subseteq X$ para todo $i \in I$, entonces

$$X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X \setminus A_i)$$
 y $X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (X \setminus A_i).$

Ejercicio 2. Sea X un conjunto. Para dos subconjuntos $A, B \subseteq X$ su **diferencia simétrica** se define por

$$A\triangle B:=(A\cup B)\setminus (A\cap B).$$

- 0) Demuestre que $A \triangle A = \emptyset$ y $A \triangle \emptyset = A$.
- 1) Demuestre que $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- 2) Demuestre que $(A\triangle B)\triangle C = A\triangle (B\triangle C)$. Encuentre una fórmula simétrica en A,B,C para este conjunto.
- 3) Demuestre que $(A\triangle B)\cap C=(A\cap C)\triangle(B\cap C)$.

Ejercicio 3. Sean $f: X \to Y$ una aplicación, $X_i \subseteq X$, $Y_j \subseteq Y$ familias de subconjuntos.

1) Demuestre que

$$f\left(\bigcup_{i\in I} X_i\right) = \bigcup_{i\in I} f(X_i)$$
 y $f\left(\bigcap_{i\in I} X_i\right) \subseteq \bigcap_{i\in I} f(X_i)$.

Encuentre un ejemplo cuando $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$.

2) Demuestre que

$$f^{-1}\Big(\bigcup_{j\in J}Y_j\Big)=\bigcup_{j\in J}f^{-1}(Y_j)\quad \text{y}\quad f^{-1}\Big(\bigcap_{j\in J}Y_j\Big)=\bigcap_{j\in J}f^{-1}(Y_j).$$

Ejercicio 4. Sea $f: X \to Y$ una aplicación entre conjuntos. Demuestre las siguientes propiedades.

- 1a) Para cualquier subconjunto $B \subseteq Y$ se tiene $f(f^{-1}(B)) \subseteq B$. Además, si f es sobreyectiva, entonces $f(f^{-1}(B)) = B$.
- 1b) Para cualquier subconjunto $A \subseteq X$ se tiene $A \subseteq f^{-1}(f(A))$. Además, si f es inyectiva, entonces $f^{-1}(f(A)) = A$.
- 2a) Si $A_1 \subseteq A_2 \subseteq X$, entonces $f(A_1) \subseteq f(A_2)$.
- 2b) Si $B_1 \subseteq B_2 \subseteq Y$, entonces $f^{-1}(B_1) \subseteq f^{-1}(B_2)$.

Ejercicio 5. Sean *X* e *Y* conjuntos finitos.

- 1) ¿Cuántos elementos tiene $X \times Y$ e $X \sqcup Y$?
- 2) ¿Cuántos subconjuntos tiene X?
- 3) ¿Cuántas aplicaciones distintas $X \rightarrow Y$ hay?
- 4) ¿Cuántas biyecciones distintas $X \rightarrow X$ hay?

Ejercicio 6. Sea $X = \{1, 2, 3\}$ un conjunto de tres elementos. Describa todas las biyecciones $X \to X$. Compile la tabla de composición de estas biyecciones:

Ejercicio 7. Encuentre una biyección entre el conjunto de los números enteros \mathbb{Z} y algún subconjunto propio $X \subsetneq \mathbb{Z}$.

Ejercicio 8. Sean $f: X \to Y$ e $g: X \to Z$ dos aplicaciones biyectivas. Demuestre que la aplicación

$$X \to Y \times Z$$
,
 $x \mapsto (f(x), g(x))$

no es biyectiva si X tiene más de un elemento.

Ejercicio 9. Sea $f: X \to Y$ una aplicación entre conjuntos. Definamos la siguiente relación de equivalencia sobre los elementos de X:

$$x \sim x' \iff f(x) = f(x')$$

Demuestre que *f* induce una biyección

$$X/\sim \to f(X),$$

 $[x]\mapsto f(x).$

Ejercicio 10. Sea $f: X \rightarrow Y$ una aplicación.

- 1) Asumamos que $X \neq \emptyset$. Demuestre que f es inyectiva si y solo si existe una aplicación $r: Y \to X$ tal que $r \circ f = \mathrm{id}_X$.
- 2) Demuestre que f es sobreyectiva si y solo si existe una aplicación $s: Y \to X$ tal que $f \circ s = id_Y^*$.

^{*}De hecho, este resultado es equvalente al **axioma de elección**.