

A comparison of different joint models for longitudinal and competing risks data

With application to an epilepsy drug randomized control trial

GL Hickey¹, P Philipson², A Jorgensen¹, R Kolamunnage-Dona¹

¹ Department of Biostatistics, University of Liverpool

² Department of Mathematics, Physics, and Electrical Engineering, University of Northumbria

SANAD trial

- SANAD (Standard And New Antiepileptic Drugs) was a non-blinded randomized control trial recruiting patients with epilepsy to test anti-epilepsy drugs (AEDs)
- Patients were randomized to one of 5 drugs
- Subgroup analysis (n = 605 patients) comparing 2 drugs:
 LTG (newer drug) vs. CBZ (standard)
- Primary outcome was time to treatment failure, which could be attributed to either:
 - Inadequate seizure control (ISC)
 - Unacceptable adverse effects (UAE)

Competing risks

- If we consider the time to treatment failure due to a specific cause, we have competing risks data
- Secondary objective: Is LTG superior to CBZ in terms of UAE and ISC?

Drug titration

- It was suggested that different titration rates may have been to the disadvantage of standard drug CBZ
- AED titrated more quickly brings benefits in terms of seizure control but be more likely to cause adverse effects

Joint modelling of a longitudinal outcome and competing risks: a general formulation

Joint modelling

- For subject i (= 1, ..., n) with observation times t_{ij} = 1, ..., n_i , with X_i = 1 (LTG) or = 0 (CBZ)
- Longitudinal sub-model (drug titration):
 - $y_i(t_{ij}) = \mu_i(t_{ij}) + \varepsilon_{ij}$
 - $\mu_i(t_{ij}) = \beta_0^{(1)} + \beta_1^{(1)} t_{ij} + \beta_2^{(1)} X_i + \overline{\beta_3^{(1)} X_i t_{ij} + W_i^{(1)} (t_{ij})}$ $= \beta_0^{(1)} + \beta_1^{(1)} t_{ij} + \beta_2^{(1)} X_i + \overline{\beta_3^{(1)} X_i t_{ij} + b_{i0} + b_{i1} t_{ij}}$
 - $\overline{\varepsilon_{ij}} \sim N(0, \sigma_{\varepsilon}^2)$
 - $(b_{i0}, b_{i1})^T \sim N_2(0, \Sigma)$
- Time-to-event sub-model (treatment failure due to competing risks):
 - $\lambda_{ig}(t) = \lambda_{0g}(t) \exp \left\{ X_i \beta_g^{(2)} + W_{ig}^{(2)}(t) \right\}$

Models evaluated

Model	Reference	
1	Williamson PR et al. Joint modelling of longitudinal and competing risks data. <i>Stat Med</i> . 2008;27: 6426–6438.	
2	Elashoff RM et al. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. <i>Biometrics</i> . 2008;64: 762–771.	
3	Rizopoulos D. <i>Joint Models for Longitudinal and Time-to-Event Data, with Applications in R</i> . Boca Raton, FL: Chapman & Hall/CRC; 2012.	
4	Andrinopoulou E-R et al. Joint modeling of two longitudinal outcomes and competing risk data. <i>Stat Med</i> . 2014;33: 3167–3178.	
5	Proust-Lima C et al. Joint modelling of repeated multivariate cognitive measures and competing risks of dementia and death: a latent process and latent class approach. <i>Stat Med</i> . 2015; In press.	

Only ones with code / software packages available

Primary model differences: Distribution, software, estimation algorithm

Model	Baseline hazards	Software	Estimation algorithm
1	Non-parametric (unspecified)	R code	MLE (EM algorithm) + bootstrap for SE / Cls
2	Non-parametric (unspecified)	C code	MLE (EM algorithm)
3	B-spline basis (on log-hazard scale)	R package (JM)	MLE (EM + Newton-Raphson algorithms)
4	Piecewise constant	WinBUGS	Bayesian MCMC
5a	Weibull	Danakasa	NAL E
5b	Piecewise constant	R package (lcmm)	MLE (Marquardt algorithm)
5C	Cubic M-splines	(icitiiii)	(marquarae argorremin)

Primary model differences: Latent association structure

Model	Туре	$W_{ig}^{(2)}(t)$
1	Current value of latent process parameterization	$\alpha_g W_i^{(1)}(t)$
2	Random effects parameterization	$lpha_g heta_i$ with $lpha_1 = 1$, $\operatorname{Cov}(b_i, heta_i) = \Sigma_{b heta}$ and $\operatorname{Var}(heta) = \sigma_{ heta}^2$
3 a	Current value parameterization	$\alpha_g \mu_i(t)$
3p	Time-dependent slopes parameterization	$\alpha_g^{(1)}\mu_i(t) + \alpha_g^{(2)}\frac{d}{dt}\mu_i(t)$
3c	Lagged-effects parameterization	$\alpha_g \mu_i(\max\{t-c,0\})$
3d	Cumulative effects parameterization	$\alpha_g \int_0^t \mu_i(s) ds$
3e	Weighted-cumulative effects parameterization	$\alpha_g \int_0^t w(t-s)\mu_i(s) ds$
3f	Special case of the random effects parameterization (with fixed component)	$\alpha_g \left(\beta_1^{(1)} + b_{i1} \right)$
4	Random effects parameterization (with fixed component)	$\alpha_g^{\top}(\tilde{\beta}^{(1)}+b_i)$
5	Association between sub-models accounted entirely for by latent classes	N/A

Primary model differences: Model 5 as a special case

- Association is <u>not captured</u> by specification of $W_{ig}^{(2)}(t)$
- Basic idea: assumes each subject i belongs to a single latent class, $a_i \in \{1, 2, ..., R\}$, and consider covariates (+ coefficients) as being global- or class-specific
- Re-write the sub-models conditional on class, $\mu_i(t_{ij} \mid a_i)$ and $\lambda_{ig}(t \mid a_i)$, and specify a distribution over the classes
- Choose R (=5 in SANAD example) by fitting range of models, and choose one that minimizes BIC statistic

Results

Model	$oldsymbol{eta}_1^{(2)}$ [ISC] (95% CI)	$lpha_1$ [ISC] (95% CI)	$oldsymbol{eta}_2^{(2)}$ [UAE] (95% CI)	$lpha_2$ [UAE] (95% CI)	Computation time
Separate	0.015 (-0.344, 0.374)	NA NA	-0.608 (-1.102, -0.192)	NA NA	<15
1	0.028 (-0.329, 0.366)	0.590 (0.425, 0.768)	- 0.660 (-1.090, -0.221)	- <mark>0.925</mark> (-1.378, -0.519)	17s [MLEs] 45m [SEs]
2	-0.306 (-0.744, 0.131)	-1.502 (-1.941, -1.062)	- <mark>0.543</mark> (-0.997 , -0.089)	1.000 Reference	5h 22m
3a	-0.119 (-0.482, 0.244)	0.598 (0.448, 0.747)	- <mark>0.625</mark> (-1.044, -0.207)	- <mark>0.926</mark> (-1.246 , -0.607)	5 4 S
3b	- <mark>0.592</mark> (-1.036, -0.148)	0.120 [CV] (-0.138, 0.377) 2.334 [Slope] (1.360, 3.308)	-1.212 (-1.832, -0.593)	-1.239 [CV] (-1.642, -0.836) 2.724 [Slope] (1.002, 4.447)	528
3c	-0.055 (-0.417, 0.306)	0.591 (0.426, 0.756)	- <mark>0.696</mark> (-1.118, -0.274)	-1.016 (-1.347, -0.684)	525
3d	-0.035 (-0.395, 0.326)	0.212 (0.133, 0.291)	- <mark>0.612</mark> (-1.027, -0.196)	-0.156 (-0.381, 0.070)	56s
3e	-0.074 (-0.436, 0.288)	1.495 (1.095, 1.895)	- <mark>0.613</mark> (-1.029, -0.196)	-0.869 (-1.848, 0.110)	518
3f	-0.090 (-0.497, 0.317)	2.619 (2.027, 3.212)	-0.868 (-1.446, -0.290)	- 8.558 (-10.143, -6.972)	53s
4	-0.211 (-0.680, 0.254)	-0.213 [Intercept] (-0.554, 0.088) 2.937 [Slope] (2.200, 3.854)	- 0.815 (-1.341, -0.307)	-1.420 [Intercept] (-1.889, -0.972) 1.713 [Slope] (0.052, 2.998)	26h 22m
5a	-0.366 (-0.866, 0.134)	NA	- <mark>0.876</mark> (-1.391, -0.360)	NA	3m 34s
5b	-0.142 (-0.597, 0.314)	NA	- <mark>0.693</mark> (-1.178, -0.207)	NA	2m 50s
5C	NA	NA	NA	NA	NA

Results: Model 5a

Longitudinal sub-model

Competing risks sub-model

Model pros & cons

Model	Software	Speed	Other
1	 Currently, only code available – not yet in an R package 	SEs estimated by bootstrap can be slow	Extends the seminal model by Henderson et al. (2000)
2	 Currently only available as C code files – not standard software choice of biostatisticians 	Slow to converge	Constraints on latent association structure complicates interpretation
3	Available as a comprehensive joint model package in R	Very fast	 Flexible range of latent association structures Fits a contrasts model; i.e. estimates ψ and φ such that β₂⁽²⁾ = β₁⁽²⁾ + ψ and α₂ = α₁ + φ, respectively
4	 Code and data requires substantial manipulation – need to be fluent in BUGS language 	WinBUGS is slow to converge + poor mixing	 Model was originally developed for multivariate longitudinal data (incl. ordinal outcomes)
5	Available as a comprehensive joint model package in R	 Need to fit multiple models with different number of classes – moderately slow Need to fit final model from multiple initial values to ensure reached global maximum – slow 	 Flexible choice of survival models Can't quantify the association between two sub-models Don't need to worry about correctly specifying form of W_{ig}⁽²⁾(t)

Conclusions on joint models

- Methodological research into joint models of longitudinal and competing risks data is growing
- Software for fitting models is limited
- Limited model fit statistics, diagnostics, and predictive assessment tools
- Limited guidance on model choice and association structure
- More work required before integration into routine biostatistical analyses can be realized

Questions?

Code and data available from https://github.com/graemeleehickey/comprisk

Project funded by MRC MR/Mo13227/1

UoL joint model research group: goo.gl/k7BpBq

R package **joine**R soon to be updated with competing risks code