Assignment-Regression Algorithm

1.Problem Statement:

The problem statement is Insurance charge prediction.

2.Basic Information About Dataset:

- The dataset has 1338 rows and 6 columns,
- It has 2 object columns,
- It does not have any null values,
- That 2 object columns are in nominal categories.

3.Pre-Process:

- Since it has 2 object column, so we need to change into numeric category, so here I used get_dummies function that is used to change the data from string to numeric.
- The object column has how many category in the column this function change into column.

4. Using algorithm and Select The Best Model:

Algorithms:

- Linear Regression
- Support Vector Machine Regression
- Decision Tree Regression
- Random Forest Regression

Best Model:

- Random Forest Regression
- R2_score is 0.857188792260074

5.Hyper Tuning The Model:

• Support Vector Machine:

Hype r tunin g	Liner R2 score	Rbf R2 score	Poly R2 scor	Sigmoid R2 scor
C=1	-	-	-	-
	0.1115364540020058	0.08844250999130	0.064569828857374	0.08994346957721
	5	221	17	744

C=10	0.001701922164501 1573	0.08188099505418 855	0.093099033995141 41	0.09093075300415 654
C=100	0.543221029625509	- 0.12450697022511 292	-0.099238575921484	- 0.11850300514767 609
C=100 0	0.633867642690701 7	- 0.11761756075675 889	- 0.054656238441107 785	1.71123067017426 8
C=200 0	0.689865681848145 8	- 0.10789588180042 786	- 0.001644488593601 7783	5.81905140101882 4

• Decision Tree Regression:

Hyper Tuning	Best	Random	
Squard_error	0.6853929611148636	0.7136673777311497	
Friedman_mse	0.7035115242265604	0.7553651044987816	
Absolute_error	0.7122197459942505	0.7097883877331236	
Poisson	0.6885518858152145	0.6618545493945871	

• Random Forest Regression:

Hyper Tuning	Squard_error	Friedman_mse	Absolute_error	Poisson
n_estimators=1	0.8495405267588	0.8497408161149	0.8559045679543	0.8500111541415
	179	084	424	122
n_estimators=1	0.8520068982644	0.8521401722278	0.8575465261063	0.8540849675044
	705	331	395	023

Console:

Finaly the good model is Random Forest Regression that accuracy is 0.857188792260074