ALGEBRAIZATION OF FORMAL M-SCHEMES

1. Introduction

In these notes we prove some results concerning algebraization of formal schemes in equivariant setting.

2. Some 2-categorical limits

Consider a category \mathcal{C} and its endofunctor $T:\mathcal{C}\to\mathcal{C}$. Our goal is to construct certain 2-categorical limit associated with a pair (\mathcal{C},T) . Consider pairs (X,u) consisting of an object X of \mathcal{C} and an isomorphism $u:T(X)\to X$ in \mathcal{C} . If (X,u) and (Y,w) are two such pairs, then a morphism $f:(X,u)\to(Y,u)$ is a morphism $f:X\to Y$ in \mathcal{C} such that the following square

$$T(X) \xrightarrow{u} X$$

$$T(f) \downarrow \qquad \qquad \downarrow f$$

$$T(Y) \xrightarrow{w} Y$$

is commutative. This data give rise to a category $\mathcal{C}(T)$. There exists a forgetful functor $\pi:\mathcal{C}(T)\to\mathcal{C}$ that sends a morphism $f:(X,u)\to(Y,w)$ to $f:X\to Y$. Moreover, there exists a natural isomorphism $\sigma:T\cdot\pi\Rightarrow\pi$ such that the component of σ on an object (X,u) of $\mathcal{C}(T)$ is u. The next result states that the data above form a certain 2-categorical limit.

Theorem 2.1. Let (C, T) be a pair consiting of a category and its endofunctor $T : C \to C$. Suppose that D is a category, $P : D \to C$ is a functor and $\tau : T \cdot P \Rightarrow P$ is a natural isomorphisms. Then there exists a unique functor $F : D \to C(T)$ such that $P = \pi \cdot F$ and $\sigma_F = \tau$.

Proof. Suppose that $F: \mathcal{D} \to \mathcal{C}(T)$ is a functor such that $P = \pi \cdot F$ and $\sigma_F = \tau$. Pick an object X of \mathcal{D} . Then we have $\pi \cdot F(X) = P(X)$ and $\sigma_{F(X)} = \tau_X$. This implies that

$$F(X) = (P(X), \tau_X : T(P(X)) \rightarrow P(X))$$

Next if $f: X \to Y$ is a morphism in \mathcal{D} , then we derive that $\pi(F(f)) = P(f)$. Hence F(f) = P(f). This implies that there exists at most one functor F satisfying the properties above. Note also that formulas

$$F(X) = (P(X), \tau_X : T(P(X)) \to P(X)), F(f) = P(f)$$

for an object X in \mathcal{D} and a morphism $f: X \to Y$ in \mathcal{D} , give rise to a functor that satisfy $P = \pi \cdot F$ and $\sigma_F = \tau$. This establishes existence and the uniqueness of F.

Assume now that the pair (C, T) consists of a monoidal category C and a monoidal endofunctor T. Then there exists a canonical monoidal structure on C(T). We define $(-) \otimes_{C(T)} (-)$ by formula

$$(X,u) \otimes_{\mathcal{C}(T)} (Y,w) = (X \otimes_{\mathcal{C}} Y, (u \otimes_{\mathcal{C}} w) \cdot m_{X,Y})$$

where

$$m_{X,Y}: T(X \otimes_{\mathcal{C}} Y) \to T(X) \otimes_{\mathcal{C}} T(Y)$$

is the tensor preserving isomorphism of *T*. We also define the unit

$$I_{\mathcal{C}(T)} = (I, T(I) \cong I)$$

where isomorphism $T(I) \cong I$ is precisely the unit preserving isomorphism of the monoidal functor T. The associativity natural isomorphism for $(-) \otimes_{\mathcal{C}(T)} (-)$ and right, left units for $I_{\mathcal{C}(T)}$ in $\mathcal{C}(T)$ are associavity natural isomorphism and right, left units for \mathcal{C} , respectively. The structure makes a functor $\pi:\mathcal{C}(T)\to\mathcal{C}$ strict monoidal and σ a monoidal natural isomorphism. The next result states that the data with these extra monoidal structure form a 2-categorical limit in the 2-category of monoidal categories.

Theorem 2.2. Let (C,T) be a pair consiting of a monoidal category and its monoidal endofunctor $T:C \to C$. Suppose that D is a monoidal category, $P:D \to C$ is a monoidal functor and $\tau:T\cdot P \Rightarrow P$ is a monoidal natural isomorphisms. Then there exists a unique monoidal functor $F:D \to C(T)$ such that $P=\pi\cdot F$ and $\sigma_F=\tau$ as monoidal functors and monoidal transformations.

Proof. Note that *F* must be defined as it was described in the proof of Theorem 2.1. Namely we must have

$$F(X) = (P(X), \tau_X : T(P(X)) \to P(X)), F(f) = P(f)$$

for an object X in C and a morphism $f: X \to Y$ in C.

Suppose now that F admits a structure of a monoidal functor such that $P = \pi \cdot F$ as monoidal functors. Let

$$\left\{m_{X,Y}^F: F(X \otimes_{\mathcal{D}} Y) \to F(X) \otimes_{\mathcal{C}(T)} F(Y)\right\}_{X,Y \in \mathcal{C}'} \phi^F: F(I_{\mathcal{D}}) \to I_{\mathcal{C}(T)}$$

be the data forming that structure. Since π is a strict monoidal functor and $P = \pi \cdot F$ as monoidal functors, we derive that for any objects X, Y of C

$$\pi(m_{X,Y}^F): P(X \otimes_{\mathcal{D}} Y) \to P(X) \otimes_{\mathcal{C}} P(Y)$$

is the tensor preserving isomorphism $m_{X,Y}^P: P(X \otimes_{\mathcal{D}} Y) \to P(X) \otimes_{\mathcal{C}} P(Y)$ of the monoidal functor P. By the same argument

$$\pi(\phi_F): P(I_{\mathcal{D}}) \to I_{\mathcal{C}(T)}$$

is the unit preserving isomorphism $\phi^P: P(I_D) \to I_{\mathcal{C}(T)}$ of P. Thus we deduce that for any objects X,Y of \mathcal{C} we have $m_{X,Y}^F = m_{X,Y}^P$ and $\phi^F = \phi^P$. This implies that there exists at most one monoidal functor F such that $P = \pi \cdot F$ as monoidal functors.

On the other hand define $m_{X,Y}^F = m_{X,Y}^P$ for objects X,Y in \mathcal{C} and $\phi^F = \phi^P$. We check now that F equipped with these data is a monoidal functor. Fix objects X,Y in \mathcal{C} . The square

$$T(P(X \otimes_{\mathcal{D}} Y)) \xrightarrow{\tau_{X \otimes_{\mathcal{C}} Y}} P(X \otimes_{\mathcal{C}} Y)$$

$$T(m_{X,Y}^{p}) \downarrow \qquad \qquad \downarrow m_{X,Y}^{p}$$

$$T(P(X) \otimes_{\mathcal{C}} P(Y)) \xrightarrow{(\tau_{X} \otimes_{\mathcal{C}} \tau_{Y}) \cdot m_{P(X),P(Y)}^{T}} P(X) \otimes_{\mathcal{C}} P(Y)$$

is commutative due to the fact that $\tau: T\cdot P\Rightarrow P$ is a monoidal natural isomorphisms. This implies that $m_{X,Y}^F$ is a morphism in $\mathcal{C}(T)$. It follows that $m_{X,Y}^F$ is a natural isomorphism and due to the definition of associativity in $\mathcal{C}(T)$, we derive its compatibility with $m_{X,Y}^F$. Similarly, since the square

$$T(P(I_{\mathcal{D}})) \xrightarrow{\tau_{I_{\mathcal{D}}}} P(I_{\mathcal{D}})$$

$$T(\phi^{P}) \downarrow \qquad \qquad \downarrow \phi^{P}$$

$$T(I_{\mathcal{C}}) \xrightarrow{\phi^{T}} I_{\mathcal{C}}$$

is commutative, we deduce that ϕ^F is a morphism in $\mathcal{C}(T)$. By definition of left and right unit in $\mathcal{C}(T)$, we derive their compatibility with ϕ^F . This finishes the verification of the fact that F with $\{m_{X,Y}^F\}_{X,Y\in\mathcal{C}}$ and ϕ^F is a monoidal functor. Definitions of $\{m_{X,Y}^F\}_{X,Y\in\mathcal{C}}$ and ϕ^F show that the identities $P=\pi\cdot F$ holds on the level of monoidal structures. Since the 2-forgetful functor from 2-category of monoidal categories into 2-category of categories is faithful on 2-cells, the identity $\sigma_F=\tau$ of natural isomorphisms is also the identity of monoidal natural isomorphisms.

Theorem 2.3. Let (C, T) be a pair consiting of a category and its endofunctor $T : C \to C$. Assume that T preserves colomits. Then the following assertions hold.

- **(1)** $\pi: \mathcal{C}(T) \to \mathcal{C}$ creates colimits.
- **(2)** Suppose that \mathcal{D} is a category, $P: \mathcal{D} \to \mathcal{C}$ a functor preserving small colimits and $\tau: T \cdot P \Rightarrow P$ a natural isomorphisms. Then the unique functor $F: \mathcal{D} \to \mathcal{C}(T)$ such that $P = \pi \cdot F$ and $\sigma_F = \tau$ preserves small colimits.

Proof. Let I be a small category and $D: I \to \mathcal{C}(T)$ be a diagram such that the composition $\pi \cdot D: I \to \mathcal{C}$ admits a colimit given by cocone $(X, \{g_i\}_{i \in I})$. Since T preserves colimits, we derive that $(T(X), \{T(u_i)\}_{i \in I})$ is a colimit of $T \cdot \pi \cdot D: I \to \mathcal{C}$. Now $\sigma_D: T \cdot \pi \cdot D \to \pi \cdot D$ is a natural isomorphism. Hence there exists a unique arrow $u: T(X) \to X$ such that $u \cdot T(g_i) = g_i \cdot \sigma_{D(i)}$ for $i \in I$. Clearly u is an isomorphism and hence (X, u) is an object of $\mathcal{C}(T)$. Moreover, the family $\{g_i\}_{i \in I}$ together with (X, u) is a colimiting cocone over D. This proves (1). Now (2) is a consequence of (1).

Now we apply the results above to certain more general diagrams of categories.

Definition 2.4. A diagram

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

of categories and functors is called a telescope of categories.

Definition 2.5. Let

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

be a telescope of monoidal categories and monoidal (finitely) cocontinuous functors. Then a 2-categorical limit of the telescope consists of a monoidal category \mathcal{C} , a family of monoidal (finitely) cocontinuous functors $\{\pi_n:\mathcal{C}\to\mathcal{C}_n\}_{n\in\mathbb{N}}$ and a family of monoidal natural isomorphisms $\{\sigma_n:F_{n+1}\cdot\pi_{n+1}\Rightarrow\pi_n\}_{n\in\mathbb{N}}$ such that the following universal property holds. For any monoidal category \mathcal{D} , family $\{P_n:\mathcal{D}\to\mathcal{C}_n\}_{n\in\mathbb{N}}$ of (finitely) cocontinuous monoidal functors and a family $\{\tau_n:F_nP_{n+1}\Rightarrow P_n\}_{n\in\mathbb{N}}$ of monoidal natural isomorphisms there exists a unique monoidal (finitely) cocontinuous functor $F:\mathcal{D}\to\mathcal{C}$ satisfying $P_n=\pi_n\cdot F$ and $(\sigma_n)_F=\tau_n$ for every $n\in\mathbb{N}$.

Corollary 2.6. Let

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

be a telescope of monoidal categories and monoidal (finitely) cocontinuous functors. Then its 2-limit exists.

Proof. We decompose the task of constructing its 2-limit as follows. First note that one may form a product $C = \prod_{n \in \mathbb{N}} C_n$. Next the functors $\{F_n\}_{n \in \mathbb{N}}$ induce an endofunctor $T = \prod_{n \in \mathbb{N}} F_n \times t$, where **1** is the terminal category (it has single object and single identity arrow) and $t : C_0 \to \mathbf{1}$ is the unique functor. Consider the category C(T). We define $\{\pi_n : C(T) \to C_n\}_{n \in \mathbb{N}}$ to be a family of functors given by coordinates of $\pi : C(T) \to C$ and $\{\sigma_n : F_n \cdot \pi_{n+1} \Rightarrow \pi_n\}_{n \in \mathbb{N}}$ to be a family of

natural isomorphisms given by coordinates of $\sigma : \pi \cdot T \Rightarrow \pi$. Now this data form a 2-limit of the telescope by compilation of Theorem 2.2 and Theorem 2.3.

3. FORMAL M-SCHEMES

This section is devoted to introducing some notions from formal geometry that play a fundamental role in these notes.

Definition 3.1. Let **M** be a monoid *k*-scheme. A formal **M**-scheme consists of a sequence $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ of **M**-schemes together with **M**-equivariant closed immersions

$$Z_0 \longrightarrow Z_1 \longrightarrow \dots \longrightarrow Z_n \longrightarrow Z_{n+1} \longrightarrow \dots$$

satisfying the following assertions.

- (1) We have $Z_0 = Z_n^{\mathbf{M}}$ scheme-theoretically for every $n \in \mathbb{N}$.
- (2) Let \mathcal{I}_n be an ideal of \mathcal{O}_{Z_n} defining Z_0 . Then for every $m \le n$ the subscheme $Z_m \subset Z_n$ is defined by \mathcal{I}_n^{m+1} .

Example 3.2. Let **M** be a monoid k-scheme and let Z be a **M**-scheme. Consider a quasi-coherent ideal \mathcal{I} of fixed point subscheme $Z^{\mathbf{M}}$ of Z. Then for every $n \in \mathbb{N}$ ideal \mathcal{I}^n is **M**-equivariant and hence

$$V(\mathcal{I}) \longrightarrow V(\mathcal{I}^2) \longrightarrow \dots \longrightarrow V(\mathcal{I}^n) \longrightarrow \dots$$

is a formal **M**-scheme. We denote it by \widehat{Z} .

Definition 3.3. Let **M** be a monoid k-scheme and let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **M**-scheme. We say that \mathcal{Z} is *locally noetherian* if for all $n \in \mathbb{N}$ scheme Z_n is locally Noetherian.

Definition 3.4. Let \mathbf{M} be a monoid k-scheme. Suppose that $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ and $\mathcal{W} = \{W_n\}_{n \in \mathbb{N}}$ are formal \mathbf{M} -schemes. Then a morphism $f : \mathcal{Z} \to \mathcal{W}$ of formal \mathbf{M} -schemes consists of a family of \mathbf{M} -equivariant morphisms $f = \{f_n : Z_n \to W_n\}_{n \in \mathbb{N}}$ such that the diagram

$$Z_{0} \longleftrightarrow Z_{1} \longleftrightarrow \dots \longleftrightarrow Z_{n} \longleftrightarrow Z_{n+1} \longleftrightarrow \dots$$

$$f_{0} \downarrow \qquad \qquad f_{1} \downarrow \qquad \qquad f_{n} \downarrow \qquad \qquad f_{n+1} \downarrow$$

$$W_{0} \longleftrightarrow W_{1} \longleftrightarrow \dots \longleftrightarrow W_{n} \longleftrightarrow W_{n+1} \longleftrightarrow \dots$$

is commutative.

Definition 3.5. Let **M** be a monoid k-scheme. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be locally noetherian a formal **M**-scheme. Then we have the corresponding telescope of monoidal categories

...
$$\longrightarrow \mathfrak{Coh}_{\mathbf{M}}(Z_{n+1}) \longrightarrow \mathfrak{Coh}_{\mathbf{M}}(Z_n) \longrightarrow ... \longrightarrow \mathfrak{Coh}_{\mathbf{M}}(Z_2) \longrightarrow \mathfrak{Coh}_{\mathbf{M}}(Z_1) \longrightarrow \mathfrak{Coh}_{\mathbf{M}}(Z_0)$$

and finitely cocontinuous monoidal functors given by restricting **M**-equivariant coherent sheaves to closed **M**-subschemes. Then we define a category $\mathfrak{Coh}_{\mathbf{M}}(\mathcal{Z})$ of coherent **M**-equivariant sheaves on \mathcal{Z} as a monoidal category which is a 2-limit of the telescope above. This category is defined uniquely up to a monoidal equivalence.

Fix now a monoid k-scheme M. Let Z be a locally noetherian M-scheme and suppose that $Z^{\mathbf{M}}$ exists. Suppose that \mathcal{I} is a coherent ideal of $Z^{\mathbf{M}}$. We have a commutative diagram

in the category of M-schemes. Thus restriction functors $\mathfrak{Coh}_{\mathbf{M}}(Z) \to \mathfrak{Coh}_{\mathbf{M}}(V(\mathcal{I}^n))$ for $n \in \mathbb{N}$ induce a unique finitely cocontinuous monoidal functor $\mathfrak{Coh}_{\mathbf{M}}(Z) \to \mathfrak{Coh}_{\mathbf{M}}(\widehat{Z})$.

Definition 3.6. Let Z be a locally noetherian M-scheme such that Z^M exists. Then a unique finitely cocontinuous monoidal functor $\mathfrak{Coh}_{\mathbf{M}}(\widehat{Z}) \to \mathfrak{Coh}_{\mathbf{M}}(\widehat{Z})$ is called *the comparison functor*.

Since group *k*-scheme is also a monoid *k*-scheme, definitions above can be applied to group *k*-schemes.

Definition 3.7. Let **M** be a monoid k-scheme with group of units **G**. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a locally noetherian formal **M**-scheme. A locally noetherian **M**-scheme Z is called *an algebraization of* Z if the following two conditions are satisfied.

- (1) Z is isomorphic to \widehat{Z} in the category of formal **M**-schemes.
- (2) The comparison functor $\mathfrak{Coh}_{\mathbf{G}}(Z) \to \mathfrak{Coh}_{\mathbf{G}}(\widehat{Z})$ is an equivalence of monoidal categories.

4. Locally linear **M**-schemes

Definition 4.1. Let **M** be a monoid *k*-scheme and let *X* be a **M**-scheme. Suppose that each point of *X* admits an open affine **M**-stable neighborhood. Then we say that *X* is *a locally linear* **M**-scheme.

Proposition 4.2. Let M be a monoid k-scheme and let X be a M-scheme. Suppose that Z is a closed M-stable subscheme of X defined by the ideal with nilpotent sections. Consider an open subset U of X. Then the following are equivalent.

- (1) U is M-stable.
- **(2)** *Scheme-theoretic intersection* $U \cap Z$ *is* **M**-*stable.*

Proof. Let $\alpha: \mathbf{M} \times_k X \to X$ be the action of \mathbf{M} on X. Fix open subset U of X. If U is \mathbf{M} -stable, then $U \cap Z$ is \mathbf{M} -stable. So suppose that $U \cap Z$ is \mathbf{M} -stable. Since ideal of Z has nilpotent sections and \mathbf{M} is affine, we derive that closed immersions $U \cap Z \hookrightarrow U$ and $\mathbf{M} \times_k (U \cap Z) \hookrightarrow \mathbf{M} \times_k U$ induce homeomorphisms on topological spaces. Consider the commutative diagram

where the bottom horizontal arrow is the induced action on $U \cap Z$ and vertical morphisms are homeomorphisms. The commutativity of the diagram implies that $\alpha(\mathbf{M} \times_k U)$ is contained settheoretically in U. Since U is open in X, we derive that morphism of schemes $\alpha_{|\mathbf{M} \times_k U}$ factors through U. Hence U is \mathbf{M} -stable.

Corollary 4.3. Let M be a monoid k-scheme and let X be a M-scheme. Suppose that Z is a closed M-stable subscheme of X defined by the nilpotent ideal. Consider an open subset U of X. Then the following are equivalent.

(1) *U is* **M**-stable and affine.

(2) $U \cap Z$ *is* **M**-stable and affine.

Proof. Since ideal of Z is nilpotent, we derive that U is affine if and only if $U \cap Z$ is affine. Combining this with Proposition 4.2, we deduce the result.

Corollary 4.4. Let M be a monoid k-scheme and let X be a M-scheme. Suppose that Z is a closed M-stable subscheme of X defined by the nilpotent ideal. Then X is locally linear M-scheme if and only if Z is locally linear M-scheme.

Proof. This is a consequence of Corollary **4.3**.

5. Some results on formal M-schemes

Corollary 5.1. Let **M** be an affine monoid k-scheme and let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **G**-scheme. Then Z_n is locally linear **G**-scheme for every $n \in \mathbb{N}$.

Proof. Let \mathcal{I}_n be an ideal defining Z_0 in Z_n . Since \mathcal{Z} is a formal **M**-scheme, we derive that $\mathcal{I}_n^{n+1} = 0$ and Z_0 is locally linear **M**-scheme. Thus we apply Corollary 4.4 and derive that Z_n is locally linear **M**-scheme.

We are particularly interested in formal M-schemes for monoid M with zero. For this we need the following elementary result.

Proposition 5.2. Let M be a monoid k-scheme with zero o and let X be a M-scheme. Then the following results hold.

- (1) The multiplication by zero $\mathbf{o} \cdot (-) : X \to X$ factors through $X^{\mathbf{M}}$ inducing a \mathbf{M} -equivariant retraction $\pi_{\mathbf{M}} : X \twoheadrightarrow X^{\mathbf{M}}$.
- (2) If N is a submonoid k-scheme of M and o is a k-point of N, then $\pi_M = \pi_N$.
- (3) If M is affine and X is locally linear M-scheme, then π_M is affine.

Proof. The multiplication $\mathbf{o} \cdot (-) : \mathfrak{P}_X \to \mathfrak{P}_X$ factors as an \mathfrak{P}_M -equivariant epimorphism $\mathfrak{P}_X \to \mathfrak{P}_{X^M}$ composed with a closed immersion $\mathfrak{P}_{X^M} \to \mathfrak{P}_X$. The \mathfrak{P}_M -equivariant epimorphism $\mathfrak{P}_X \to \mathfrak{P}_{X^M}$ corresponds to a **M**-equivariant morphism $\pi_M : X \to X^M$ of k-schemes such that π_M restricted to X^M is the identity 1_{X^M} . This proves (1).

For the proof of (2) note that $\mathbf{o} \cdot (-) : \mathfrak{P}_X \to \mathfrak{P}_X$ is defined similarly for \mathbf{M} and \mathbf{N} (provided that \mathbf{o} is a k-point of \mathbf{N}). Thus $\pi_{\mathbf{M}} = \pi_{\mathbf{N}}$.

Suppose now that **M** is affine and *X* is locally linear **M**-scheme. Consider the action $\alpha : \mathbf{M} \times_k X \to X$ of **M** on *X*. Since *X* is locally linear and **M** is affine, we derive that α is an affine morphism of k-schemes. Now $\mathbf{o} \cdot (-) : X \to X$ is given as a composition

$$X \xrightarrow{\cong} \mathbf{o} \times_k X \longleftrightarrow \mathbf{M} \times_k X \xrightarrow{\alpha} X$$

The morphism above is affine (as a composition of affine morphisms). Since the composition of π with a closed immersion $X^{\mathbf{M}} \hookrightarrow X$ is $\mathbf{o} \times_k (-)$ and hence an affine morphism, we derive that π is affine. This proves (3).

Let us note the immediate consequence of this result.

Corollary 5.3. Let \mathbf{M} be an affine monoid k-scheme with zero and let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal \mathbf{M} -scheme. Then \mathcal{Z} is a part of the commutative diagram

in which vertical morphisms $\pi_n: Z_n \twoheadrightarrow Z_0$ are affine \mathbf{M} -equivariant morphisms such that $\pi_{n|Z_0} = 1_{Z_0}$. Moreover, if \mathbf{N} is a submonoid k-scheme of \mathbf{M} containing the zero of \mathbf{M} , then \mathcal{Z} is a formal \mathbf{N} -scheme.

Proof. This is an immediate consequence of Corollary 5.1 and Proposition 5.2.

6. Toruses and toric monoid k-schemes

Definition 6.1. Let T be an affine algebraic group over k. Suppose that there exists $n \in \mathbb{N}$ such that for every algebraically closed extension K of k there exists an isomorphism

$$T_K \cong \operatorname{Spec} K \times_k \underbrace{\mathbb{G}_m \times_k \mathbb{G}_m \times_k \dots \times_k \mathbb{G}_m}_{n \text{ times}}$$

of group schemes over *K*. Then *T* is called *a torus over k*.

Example 6.2. If $T \cong G_m \times_k G_m \times_k ... \times_k G_m$, then T is a torus. We call toruses T of this form S of this form

toruses.

Example 6.3. Define

$$S^1 = \operatorname{Spec} k[x, y]/(x^2 + y^2 - 1)$$

a scheme over k and let \mathfrak{P}_{S^1} be its functor of points. Then for every k-algebra A we have

$$\mathfrak{P}_{S^1}(A) = \{(u, v) \in A \times_k A \mid u^2 + v^2 = 1\}$$

There is also a morphism $\mathfrak{P}_{\mathbf{S}^1} \times_k \mathfrak{P}_{\mathbf{S}^1} \to \mathfrak{P}_{\mathbf{S}^1}$ of *k*-functors given by

$$\mathfrak{P}_{\mathbf{S}^1}(A) \times_k \mathfrak{P}_{\mathbf{S}^1}(A) \to \mathfrak{P}_{\mathbf{S}^1} \ni ((u_1, v_1), (u_2, v_2)) \mapsto (u_1 u_2 - v_1 v_2, u_1 v_2 + u_2 v_1) \in \mathfrak{P}_{\mathbf{S}^1}(A)$$

for every k-algebra A. This makes \mathfrak{P}_{S^1} into a group k-functor. Thus S^1 with the group structure described above is an affine algebraic group over k. We call it the circle group over k.

Now suppose that $char(k) \neq 2$ and K is an algebraically closed extension of k. Consider an element $i \in K$ such that $i^2 = -1$. For every K-algebra A we have a map

$$\mathfrak{P}_{\mathbf{S}^1}(A) \ni (u,v) \mapsto u + iv \in A^*$$

First note that this map is bijective. Indeed, its inverse is given by

$$A^* \ni a \mapsto \left(\frac{1}{2}(a+a^{-1}), \frac{1}{2i}(a-a^{-1})\right) \in \mathfrak{P}_{\mathbf{S}^1}(A)$$

Moreover, the map $\mathfrak{P}_{S^1}(A) \to A^*$ is a homomorphism of abstract groups. Thus \mathfrak{P}_{S^1} restricted to the category \mathbf{Alg}_K of K-algebras is isomorphic with $\mathfrak{P}_{\operatorname{Spec} K \times_k \mathbb{G}_m}$ as a group k-functor. Hence

$$\mathbf{S}_K^1 \cong \operatorname{Spec} K \times_k \mathbb{G}_m$$

as algebraic group schemes over K. Hence S^1 is a torus over k.

Now assume that $k = \mathbb{R}$. Then abstract groups

$$\mathfrak{P}_{\mathbf{S}^1}(\mathbb{R}) = \{z \in \mathbb{C} \mid |z| = 1\} \subseteq \mathbb{C}^*, \mathbb{R}^*$$

are not isomorphic. Indeed, the left hand side group has infinite torsion subgroup and the right hand side group has torsion subgroup equal to $\{-1,1\}$. This implies that over \mathbb{R} algebraic groups \mathbf{S}^1 and \mathbb{G}_m are not isomorphic. Hence \mathbf{S}^1 is not a split torus over \mathbb{R} .

Corollary 6.4. *Let T be a torus over k. Then T is a linearly reductive algebraic group.*

Definition 6.5. Let T be a torus over k and let \overline{T} be a linearly reductive monoid having T as the group of units. Then \overline{T} is a toric monoid over k

Theorem 6.6. Let \overline{T} be a toric monoid over k with group of units T and let K be an algebraically closed extension of k. Suppose that N is a dimension of T.

(1) The group of characters of T_K is isomorphic to \mathbb{Z}^N and there exists an abstract submonoid S of \mathbb{Z}^N such that the open immersion

$$T_K = \operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m\right) \hookrightarrow \operatorname{Spec}\left(\bigoplus_{m \in S} K \cdot \chi^m\right) = \overline{T}_K$$

is induced by the inclusion $S \to \mathbb{Z}^N$.

(2) Let $\{V_{\lambda}\}_{{\lambda} \in \mathbf{Irr}(T)}$ be a set of irreducible representation of T such that V_{λ} is in isomorphism class λ . For every λ there exists a finite subset A_{λ} of \mathbb{Z}^N such that

$$K \otimes_k V_\lambda = \bigoplus_{m \in A_\lambda} K \cdot \chi^m$$

If λ *is in* $Irr(\overline{T})$ *, then* A_{λ} *is a subset of* S*. Moreover, we have*

$$\mathbb{Z}^N = \coprod_{\lambda \in \mathbf{Irr}(T)} A_{\lambda}$$

and $A_{\lambda_0} = \{0\}$, where λ_0 is the class of the trivial representation of T.

(3) If \overline{T} has a zero, then there exists a homomorphism $f: \mathbb{Z}^N \to \mathbb{Z}$ of abelian groups such that $f_{|S\setminus\{0\}} > 0$. In particular, f induces a closed immersion

$$\operatorname{Spec} K \times_k \mathbb{G}_m = \operatorname{Spec} K[\mathbb{Z}] \hookrightarrow \operatorname{Spec} \left(\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m \right) = T_K$$

of group K-schemes that extends to a zero preserving closed immersion $\mathbb{A}^1_K \hookrightarrow \overline{T}_K$ of monoid K-schemes

Proof. Since *T* is a torus, we derive that

$$T_K = \operatorname{Spec} K \times_k \underbrace{\mathbb{G}_m \times_k \mathbb{G}_m \times_k ... \times_k \mathbb{G}_m}_{N \text{ times}} = \operatorname{Spec} \left(\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m \right)$$

and hence

$$\overline{T}_K = \operatorname{Spec}\left(\bigoplus_{s \in S} K \cdot \chi^s\right)$$

for some abstract submonoid S of \mathbb{Z}^N . Moreover, the open immersion $T_K \to \overline{T}_K$ is induced by the inclusion $S \to \mathbb{Z}^N$. This proves (1).

We have identification

$$k[T] = \bigoplus_{\lambda \in \mathbf{Irr}(T)} V_{\lambda}^{n_{\lambda}}$$

of *T*-representations, where $n_{\lambda} \in \mathbb{N} \setminus \{0\}$ for each λ . Thus

$$\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m = K \otimes_k k[T] = \bigoplus_{\lambda \in \mathbf{Irr}(T)} (K \otimes_k V_{\lambda})^{n_{\lambda}}$$

This implies that n_{λ} = 1 for every λ and moreover, we derive that

$$K \otimes_k V_{\lambda} = \bigoplus_{m \in A_{\lambda}} K \cdot \chi^m$$

for some finite set $A_{\lambda} \subseteq \mathbb{Z}^N$. We also have $A_{\lambda_0} = \{0\}$ and $A_{\lambda} \subseteq S \setminus \{0\}$ for $\lambda \in Irr(\overline{T})$. This proves (2).

Since \overline{T} admits a zero, we derive that

$$\mathfrak{m} = \bigoplus_{m \in S \smallsetminus \{0\}} K \cdot \chi^s \subseteq \bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m$$

is an ideal. This implies that $S \setminus \{0\}$ is closed under addition. In particular, there exists a homomorphism of abelian groups $f : \mathbb{Z}^N \to \mathbb{Z}$ such that $f_{|S \setminus \{0\}} > 0$. This implies (3).

7. COMMUTING ACTIONS

Proposition 7.1. Let \mathfrak{G} and \mathfrak{H} be monoid k-functors. Denote by Λ the set of isomorphism classes of irreducible \mathfrak{H} -representations. Suppose that V is a representation of both \mathfrak{G} and \mathfrak{H} and assume that their actions on V commute. Assume that V is completely reducible as a \mathfrak{H} -representation and consider the decomposition

$$V = \bigoplus_{\lambda \in \Lambda} V[\lambda]$$

onto isotypic components with respect to the action of \mathfrak{H} . Then for every λ in Λ the subspace $V[\lambda]$ is a \mathfrak{G} -subrepresentation of V.

Proof. Consider morphisms $\rho: \mathfrak{G} \to \mathcal{L}_V$ and $\delta: \mathfrak{H} \to \mathcal{L}_V$ determining the structure of V as the \mathfrak{G} -representation and \mathfrak{H} -representation, respectively. Fix k-algebra A and $g \in \mathfrak{G}(A)$. Consider $A \otimes_k V$ as a tensor product of \mathfrak{H} -representation V with A as a trivial \mathfrak{H} -representation. We claim that $\rho(g): A \otimes_k V \to A \otimes_k V$ is an endomorphism of this \mathfrak{H} -representation. For this consider k-algebra B and $h \in \mathfrak{H}(B)$. Since actions of \mathfrak{G} and \mathfrak{H} on V commute, we derive that

$$(1_B \otimes_k \rho(g)) \cdot (1_A \otimes_k \delta(h)) = (1_A \otimes_k \delta(h)) \cdot (1_B \otimes_k \rho(g))$$

Sonce this holds for every k-algebra B and every $h \in \mathfrak{H}(B)$, we deduce that indeed $\rho(g)$ is a \mathfrak{H} -endomorphism of $A \otimes_k V$. Next we have

$$(A \otimes_k V)[\lambda] = A \otimes_k V[\lambda]$$

for every $\lambda \in \Lambda$. Thus

$$\rho(g)\left(A\otimes_k V[\lambda]\right)\subseteq A\otimes_k V[\lambda]$$

for every λ in Λ . This holds for every k-algebra A and $g \in \mathfrak{G}(A)$. Hence $V[\lambda]$ is a \mathfrak{G} -subrepresentation of V.

8. Algebraization of formal M-schemes

This section proves some results in equivariant formal geometry.

Theorem 8.1. Let \mathbf{M} be a Kempf monoid and let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal \mathbf{M} -scheme. Then there exists a locally linear \mathbf{M} -scheme Z equipped with an action of \mathbf{M} such that \widehat{Z} is isomorphic to \mathcal{Z} .

Setup. Monoid M is affine and admits zero o. Hence by Corollary 5.3 formal M-scheme $\mathcal Z$ corresponds to a sequence of surjections

...
$$\longrightarrow$$
 $\mathcal{A}_{n+1} \longrightarrow \mathcal{A}_n \longrightarrow$... \longrightarrow $\mathcal{A}_1 \longrightarrow \mathcal{A}_0 = \mathcal{O}_{Z_0}$

of quasi-coherent **M**-algebras on Z_0 such that $\mathcal{A}_n^{\mathbf{M}} = \mathcal{A}_0$ for every $n \in \mathbb{N}$ and if \mathcal{I}_n is the kernel of $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_0$ in \mathcal{A}_n , then \mathcal{I}_n^{m+1} is the kernel of $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_m$ for $m \le n$ and $n \in \mathbb{N}$. Since **M** is a Kempf monoid, there exists a closed subgroup T of the center $Z(\mathbf{G})$ of the unit group \mathbf{G} of \mathbf{M} such that T is a torus and the scheme-theoretic closure \overline{T} of T in \mathbf{M} contains the zero \mathbf{o} of \mathbf{M} . We derive by Corollary 5.3 that $\mathcal{A}_n^{\overline{\mathbf{I}}} = \mathcal{A}_0$ for every $n \in \mathbb{N}$. By definition \overline{T} is a toric monoid k-scheme with

T as a group of units. Let $\{V_{\lambda}\}_{{\lambda} \in \mathbf{Irr}(T)}$ be a set of irreducible representations of *T* such that V_{λ} is contained in λ .

Lemma 8.1.1. *Let* λ *be in* $\mathbf{Irr}(T)$. *Then there exists* $n_{\lambda} \in \mathbb{N}$ *such that for each* $n > n_{\lambda}$ *and any* $\lambda_1, ..., \lambda_n \in \mathbf{Irr}(\overline{T}) \setminus {\lambda_0}$ *the representation*

$$\bigotimes_{i=1}^{n} V_{\lambda_i}$$

has trivial isotypic component of type λ . We have $n_{\lambda_0} = 0$, where λ_0 is an isomorphism type of the trivial representation of T.

Proof of the lemma. Let K be an algebraically closed extension of k. Pick A_{λ} and f as in Theorem 6.6 and define

$$n_{\lambda} = \sup_{m \in A_{\lambda}} f(m)$$

We have

$$K \otimes_k V_{\lambda_1} \otimes_k \ldots \otimes_k V_{\lambda_n} = \bigoplus_{(m_1, \ldots, m_n) \in A_{\lambda_1} \times_k \ldots \times_k A_{\lambda_n}} K \cdot \chi^{m_1 + \ldots + m_n}$$

and since $m_1,...m_n \in A_{\lambda_1} \cup ... \cup A_{\lambda_n} \subseteq S \setminus \{0\}$ we derive that

$$f(m_1 + ... + m_n) = f(m_1) + ... + f(m_n) \ge n > n_\lambda = \sup_{m \in A_\lambda} f(m)$$

This implies that isotypic component of $V_{\lambda_1} \otimes_k ... \otimes_k V_{\lambda_n}$ corresponding to λ is trivial.

Lemma 8.1.2. Fix λ in Irr(T). Then $A_{n+1}[\lambda] \twoheadrightarrow A_n[\lambda]$ is an isomorphism for $n \ge n_{\lambda}$.

Proof of the lemma. For $\lambda \notin \mathbf{Irr}(\overline{T}) \setminus \{\lambda_0\}$ we have $\mathcal{A}_{n+1}[\lambda] = \mathcal{A}_n[\lambda] = 0$, because \mathcal{A}_{n+1} and \mathcal{A}_n are quasi-coherent \overline{T} -algebras. Fix $\lambda \in \mathbf{Irr}(\overline{T})$. Consider an affine open subset U of Z_0 . By Lemma 8.1.1 we derive that

$$\underbrace{\left(\Gamma\left(U,\mathcal{I}_{n+1}\right)\otimes_{k}\Gamma\left(U,\mathcal{I}_{n+1}\right)\otimes_{k}...\otimes_{k}\Gamma\left(U,\mathcal{I}_{n+1}\right)\right)}_{n+1\text{ times}}[\lambda]=0$$

for every $n \ge n_{\lambda}$. We have canonical surjection

$$\underbrace{\left(\Gamma\left(U,\mathcal{I}_{n+1}\right)\otimes_{k}\Gamma\left(U,\mathcal{I}_{n+1}\right)\otimes_{k}...\otimes_{k}\Gamma\left(U,\mathcal{I}_{n+1}\right)\right)}_{n+1\text{ times}} \longrightarrow \Gamma\left(U,\underbrace{\left(\mathcal{I}_{n+1}\otimes_{\mathcal{O}_{Z_{0}}}\mathcal{I}_{n+1}\otimes_{\mathcal{O}_{Z_{0}}}...\otimes_{\mathcal{O}_{Z_{0}}}\mathcal{I}_{n+1}\right)}_{n+1\text{ times}}\right)$$

of *T*-representations. This implies that

$$\underbrace{\left(\mathcal{I}_{n+1} \otimes_{\mathcal{O}_{Z_0}} \mathcal{I}_{n+1} \otimes_{\mathcal{O}_{Z_0}} \dots \otimes_{\mathcal{O}_{Z_0}} \mathcal{I}_{n+1}\right)}_{n+1 \text{ times}} [\lambda] = 0$$

for every $n \ge n_{\lambda}$. Next the multiplication

$$\underbrace{\left(\mathcal{I}_{n+1} \otimes_{\mathcal{O}_{Z_0}} \mathcal{I}_{n+1} \otimes_{\mathcal{O}_{Z_0}} ... \otimes_{\mathcal{O}_{Z_0}} \mathcal{I}_{n+1}\right)}_{n+1 \text{ times}} \longrightarrow \mathcal{A}_{n+1}$$

is an morphism of quasi-coherent T-sheaves with image \mathcal{I}_{n+1}^{n+1} . Thus we derive that $\mathcal{I}_{n+1}^{n+1}[\lambda] = 0$ for $n \ge n_\lambda$. Hence the kernel of $\mathcal{A}_{n+1}[\lambda] \twoheadrightarrow \mathcal{A}_n[\lambda]$ is trivial.

Proof of Theorem. According to Proposition 7.1 and the fact that T is central in \mathbf{M} we derive that $\mathcal{A}_n[\lambda]$ is a quasi-coherent \mathbf{M} -sheaf. For $\lambda \in \mathbf{Irr}(T)$ we define

$$A[\lambda] = A_n[\lambda]$$

where $n \ge n_{\lambda}$ as in Lemma 8.1.2. Note that $\mathcal{A}[\lambda] = 0$ for $\lambda \notin \operatorname{Irr}(\overline{T})$. We set

$$\mathcal{A} = \bigoplus_{\lambda \in \mathbf{Irr}(\overline{T})} \mathcal{A}[\lambda]$$

Clearly $\mathcal{A}[\lambda_0] = \mathcal{A}_0 = \mathcal{O}_{Z_0}$ canonically (where λ_0 is the trivial T-representation), hence \mathcal{A} is a quasi-coherent \mathbf{M} -sheaf on Z_0 . Actually $\mathcal{A} = \lim_{n \in \mathbb{N}} \mathcal{A}_n$ in the category of quasi-coherent \mathbf{M} -sheaves on Z_0 , but this will not be used in argument. We construct the \mathcal{O}_{Z_0} -algebra structure on \mathcal{A} . For this pick $\lambda_1, \lambda_2 \in \mathbf{Irr}(\overline{T})$. Consider the irreducible representations V_{λ_1} and V_{λ_1} in classes λ_1 and λ_2 , respectively. Suppose that $\eta_1, ..., \eta_s$ are finitely many classes in $\mathbf{Irr}(\overline{T})$ such that $V_{\lambda_1} \otimes_k V_{\lambda_2}$ can be completely decomposed onto irreducible representation in these classes. Since the image of the multiplication $\mathcal{A}_n[\lambda_1] \otimes_{\mathcal{O}_{Z_0}} \mathcal{A}_n[\lambda_2] \to \mathcal{A}_n$ on \mathcal{A}_n is also the image of a morphism

$$\mathcal{A}_n[\lambda_1] \otimes_k \mathcal{A}_n[\lambda_2] \longrightarrow \mathcal{A}_n[\lambda_1] \otimes_{\mathcal{O}_{Z_0}} \mathcal{A}_n[\lambda_2] \longrightarrow \mathcal{A}_n$$

we deduce that it is contained in $\bigoplus_{i=1}^{s} A_n[\eta_i]$. By Lemma 8.1.2 all these multiplications for $n \ge \sup\{n_{\lambda_1}, n_{\lambda_2}, n_{\eta_1}, ..., n_{\eta_s}\}$ can be identified. Now we define

$$\mathcal{A}[\lambda_1] \otimes_{\mathcal{O}_{Z_0}} \mathcal{A}[\lambda_2] \to \bigoplus_{i=1}^s \mathcal{A}[\eta_i] \subseteq \mathcal{A}$$

as a morphism induced by the multiplication morphism for any $n \ge \sup\{n_{\lambda_1}, n_{\lambda_2}, n_{\eta_1}, ..., n_{\eta_s}\}$. This gives an \mathcal{O}_{Z_0} -algebra structure on \mathcal{A} (so \mathcal{A} is in fact the limit of $\{\mathcal{A}_n\}_{n\in\mathbb{N}}$ is the category of quasi-coherent **M**-algebras on Z_0). Note that from the description of \mathcal{A} it follows that for every $n \in \mathbb{N}$ we have a surjective morphism $p_n : \mathcal{A} \twoheadrightarrow \mathcal{A}_n$ of algebras. We denote its kernel by \mathcal{J}_n and we put $\mathcal{J} = \mathcal{J}_0$. We have

$$\mathcal{J} = \bigoplus_{\lambda \in \mathbf{Irr}(\overline{T}) \setminus \{\lambda_0\}} \mathcal{A}[\lambda]$$

Recall that we denote by \mathcal{I}_n the kernel of $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_0 = \mathcal{O}_{Z_0}$ for $n \in \mathbb{N}$. Then $\mathcal{I}_n = \mathcal{J}/\mathcal{J}_n$. Fix $m \in \mathbb{N}$ and consider $n \in \mathbb{N}$ such that $n \geq m$. Since \mathcal{Z} is a formal **M**-scheme, the sheaf \mathcal{I}_n^{m+1} is the kernel of the morphism $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_m$. Thus

$$\mathcal{J}_m/\mathcal{J}_n = \mathcal{I}_n^{m+1} = (\mathcal{J}^{m+1} + \mathcal{J}_n)/\mathcal{J}_n$$

Both \mathcal{J}_m and \mathcal{J}^{m+1} are $\mathbf{Irr}(\overline{T})$ -graded by their isotypic \overline{T} -components and for given $\lambda \in \mathbf{Irr}(\overline{T})$ and for $n \geq n_\lambda$ the isotypic component $\mathcal{J}_n[\lambda]$ is zero by Lemma 8.1.2. Hence $\mathcal{J}_m = \mathcal{J}^{m+1}$ for every $m \in \mathbb{N}$. We define

$$Z = \operatorname{Spec}_{Z_0} \mathcal{A}$$

and we denote by $\pi: Z \to Z_0$ the structural morphism. The scheme Z inherits a **M**-action from A. For every $n \in \mathbb{N}$ the zero-set of \mathcal{J}^{n+1} in A is a **M**-scheme isomorphic to $Z_n = \operatorname{Spec}_{Z_0} A_n$. Hence Z is isomorphic to \widehat{Z} and this proves the theorem.

Theorem 8.2. Let **M** be a Kempf monoid and let Z be a locally linear **M**-scheme. Suppose that $\pi: Z \to Z^{\mathbf{M}}$ is the canonical retraction. If the formal **M**-scheme \widehat{Z} is locally noetherian, then $\pi: Z \to Z^{\mathbf{M}}$ is of finite type.

Proof. Since π is affine (Proposition 5.2), we derive that $\mathcal{A} = \pi_* \mathcal{O}_Z$ is a quasi-coherent **M**-algebra on $Z^{\mathbf{M}}$. We denote by \mathcal{J} the ideal of \mathcal{A} that corresponds to the closed immersion $Z^{\mathbf{M}} \hookrightarrow Z$. We know that the formal **M**-scheme

$$Z^{\mathbf{M}} = \operatorname{Spec}_{Z^{\mathbf{M}}} \mathcal{A}/\mathcal{J} \longleftrightarrow \dots \longleftrightarrow \operatorname{Spec}_{Z^{\mathbf{M}}} \mathcal{A}/\mathcal{J}^{n+1} \longleftrightarrow \operatorname{Spec}_{Z^{\mathbf{M}}} \mathcal{A}/\mathcal{J}^{n+2} \longleftrightarrow \dots$$

is locally noetherian. Hence $\mathcal{J}/\mathcal{J}^{n+1}$ is $\mathcal{A}/\mathcal{J}^{n+1}$ -module of finite type. Thus $\{\mathcal{J}^i/\mathcal{J}^{i+1}\}_{1\leq i\leq n}$ are finite type \mathcal{A}/\mathcal{J} -modules. The series

$$0 \subseteq \mathcal{J}^n/\mathcal{J}^{n+1} \subseteq ... \subseteq \mathcal{J}/\mathcal{J}^{n+1} \subseteq \mathcal{A}/\mathcal{J}^{n+1}$$

has subquotients that are of finite type over $\mathcal{O}_{Z^{\mathbf{M}}} = \mathcal{A}/\mathcal{J}$. This implies that $\mathcal{A}/\mathcal{J}^{n+1}$ is a coherent $\mathcal{O}_{Z^{\mathbf{M}}}$ -algebra for every $n \in \mathbb{N}$. The claim that π is of finite type is local on $Z^{\mathbf{M}}$, hence we may assume that $Z^{\mathbf{M}}$ is quasi-compact. This reduces the question to the noetherian $Z^{\mathbf{M}}$. The sheaf $\mathcal{J}/\mathcal{J}^2 \subseteq \mathcal{A}/\mathcal{J}^2$ is coherent over $\mathcal{O}_{Z^{\mathbf{M}}}$. Since $Z^{\mathbf{M}}$ is noetherian, there exists coherent $\mathcal{O}_{Z^{\mathbf{M}}}$ -subsheaf $\mathcal{M} \subseteq \mathcal{J}$ such that the morphism $\mathcal{M} \twoheadrightarrow \mathcal{J}/\mathcal{J}^2$ is surjective. Fix an algebraically closed extension K of K and denote

$$\mathcal{A}_K = K \otimes_k \mathcal{A}, \mathcal{J}_K = K \otimes_k \mathcal{J}, \mathcal{M}_K = K \otimes_k \mathcal{M}$$

Since **M** is a Kempf monoid and by (3) Theorem 6.6 there exists a closed immersion $\mathbb{A}^1_K \to \mathbf{M}_K$ of monoid *K*-schemes that preserve zero. This implies that we have \mathbb{N} -grading $\mathcal{A}_K = \bigoplus_{i \geq 0} \mathcal{A}_K[i]$ that gives rise to the action of \mathbb{A}^1_K . Moreover, by Propostion 5.2 we deduce that

$$\operatorname{Spec} K \times_k Z^{\mathbf{M}} = \left(\operatorname{Spec} K \times_k Z\right)^{\mathbf{M}_K} = \left(\operatorname{Spec} K \times_k Z\right)^{\mathbb{A}_K^1}$$

as K-schemes. This shows that $\mathcal{J}_K = K \otimes_k \mathcal{J} = \bigoplus_{i \geq 1} \mathcal{A}_K[i]$ is an ideal with positive grading. We have surjection $\mathcal{M}_K \twoheadrightarrow \mathcal{J}_K/\mathcal{J}_K^2$. By graded version of Nakayama's lemma, the ideal \mathcal{J}_K is generated by \mathcal{M}_K . Then by induction on degrees we deduce that \mathcal{A}_K is generated by \mathcal{M}_K as a $K \otimes_k \mathcal{O}_{Z^M}$ -algebra. Thus $1_{\operatorname{Spec} K} \times_k \pi$ is of finite type and by faitfully flat descent also π is of finite type.

Theorem 8.3. Let M be a Kempf monoid with group of unit G and let Z be a locally linear M-scheme. Suppose that $\pi: Z \to Z^M$ is the canonical retraction. If Z is locally noetherian, then the comparison functor

$$\mathfrak{Coh}_{\mathbf{G}}(Z) \to \mathfrak{Coh}_{\mathbf{G}}(\widehat{Z})$$

is an equivalence of monoidal categories.

Setup. Since \mathbf{M} is a Kempf torus, there exists a central closed torus T in \mathbf{G} such that the scheme-theoretic closure \overline{T} of T in \mathbf{M} contains the zero. As above we note that π is affine (Proposition 5.2) and we pick a quasi-coherent \mathbf{M} -algebra $\mathcal{A} = \pi_* \mathcal{O}_Z$ on $Z^{\mathbf{M}}$. We denote by \mathcal{J} the ideal of \mathcal{A} that corresponds to the closed immersion $Z^{\mathbf{M}} \to Z$. Then $\mathcal{O}_{Z^{\mathbf{M}}} = \mathcal{A}/\mathcal{J}$ and since π is a retraction, we derive that $\mathcal{A} = \mathcal{O}_{Z^{\mathbf{M}}} \oplus \mathcal{J}$. Next \widehat{Z} is locally noetherian (this follows from the fact that Z is locally noetherian). Hence an object of $\mathfrak{Coh}_{\mathbf{G}}(\widehat{Z})$ corresponds to a sequence of surjections

$$\dots \longrightarrow \mathcal{M}_{n+1} \longrightarrow \mathcal{M}_n \longrightarrow \dots \longrightarrow \mathcal{M}_1 \longrightarrow \mathcal{M}_0$$

of coherent G-modules on $Z^{\mathbf{M}}$ such that the following assertions hold.

- (1) For each $n \in \mathbb{N}$ sheaf \mathcal{M}_n is a module over $\mathcal{A}/\mathcal{J}^{n+1}$.
- (2) For each $n \in \mathbb{N}$ the kernel of the surjection $\mathcal{M}_{n+1} \twoheadrightarrow \mathcal{M}_n$ is $\mathcal{J}^{n+1}\mathcal{M}_{n+1}$.

We fix an algebraically closed field K containing k. By (3) of Theorem 6.6 there exists a closed immersion Spec $K \times_k \mathbb{G}_m \hookrightarrow T_K$ of group K-schemes that induces zero preserving closed immersion $\mathbb{A}^1_K \hookrightarrow \overline{T}_K$ of monoid K-schemes. By Proposition 5.2 we have

$$\operatorname{Spec} K \times_k Z^{\mathbf{M}} = \left(\operatorname{Spec} K \times_k Z\right)^{\mathbf{M}_K} = \left(\operatorname{Spec} K \times_k Z\right)^{\mathbb{A}_K^1}$$

This implies that

$$A_K = K \otimes_k A = \bigoplus_{i \geq 0} A_K[i], \ \mathcal{J}_K = K \otimes_k \mathcal{J} = \bigoplus_{i \geq 1} A_K[i]$$

where gradation is induced by the action of \mathbb{A}^1_K . For every $n \in \mathbb{N}$ the action of Spec $K \times_k \mathbb{G}_m$ on $K \otimes_k \mathcal{M}_n$ induced by the closed immersion Spec $K \times_k \mathbb{G}_m \hookrightarrow \overline{T}_K \hookrightarrow \mathbf{M}_K$ of group K-schemes gives rise to a gradation

$$K \otimes_k \mathcal{M}_n = \bigoplus_{i \in \mathbb{Z}} (K \otimes_k \mathcal{M}_n)[i]$$

Lemma 8.3.1. *The following assertions hold.*

- **(1)** There exists $i_0 \in \mathbb{Z}$ such that for every $n \in \mathbb{N}$ we have $(K \otimes_k \mathcal{M}_n)[i] = 0$ for $i < i_0$.
- **(2)** For every $i \in \mathbb{Z}$ there exists $n_i \in \mathbb{N}$ such that for all $n \ge n_i$ the surjection $(K \otimes_k \mathcal{M}_{n+1})[i] \twoheadrightarrow (K \otimes_k \mathcal{M}_n)[i]$ is an isomorphisms.
- (3) For every λ in Irr(T) there exists $n_{\lambda} \in \mathbb{N}$ such that for all $n \geq n_{\lambda}$ the surjection $\mathcal{M}_{n+1}[\lambda] \twoheadrightarrow \mathcal{M}_n[\lambda]$ is an isomorphisms.

Proof of the lemma. Fix $n \in \mathbb{N}$ and consider the decomposition $K \otimes_k \mathcal{M}_n = \bigoplus_{i \in \mathbb{Z}} (K \otimes_k \mathcal{M}_n)[i]$. Since $K \otimes_k \mathcal{M}_n$ is a coherent $K \otimes_k \mathcal{O}_{Z^M}$ -module and the decomposition consists of modules over $K \otimes_k \mathcal{O}_{Z^M}$, we derive that there are only finitely many $i \in \mathbb{Z}$ such that $(K \otimes_k \mathcal{M}_n)[i] \neq 0$. Hence we may write $K \otimes_k \mathcal{M}_n = \bigoplus_{i \geq i_n} (K \otimes_k \mathcal{M}_n)[i]$ for some $i_n \in \mathbb{Z}$ such that $(K \otimes_k \mathcal{M}_n)[i_n] \neq 0$. Moreover, we know that the kernel of the surjection

$$K \otimes_k \mathcal{M}_{n+1} = \bigoplus_{i \geq i_{n+1}} \left(K \otimes_k \mathcal{M}_{n+1} \right) \left[i \right] \twoheadrightarrow \bigoplus_{i \geq i_n} \left(K \otimes_k \mathcal{M}_n \right) \left[i \right] = K \otimes_k \mathcal{M}_n$$

is $\mathcal{J}_{K}^{n+1}(K \otimes_{k} \mathcal{M}_{n+1})$ and hence is contained in $\bigoplus_{i \geq (i_{n+1}+n+1)} (K \otimes_{k} \mathcal{M}_{n+1})[i]$ This implies that $(K \otimes_{k} \mathcal{M}_{n})[i] = (K \otimes_{k} \mathcal{M}_{n+1})[i]$ for $i_{n+1} \leq i \leq i_{n+1}+n$. In particular, we have $(K \otimes_{k} \mathcal{M}_{n})[i_{n+1}] = (K \otimes_{k} \mathcal{M}_{n+1})[i_{n+1}] \neq 0$ and thus $i_{n+1} \geq i_{n}$. This shows that $i_{n} \geq i_{0}$ for every $n \in \mathbb{N}$ and (1) is proved. Now the surjection

$$K \otimes_k \mathcal{M}_{n+1} = \bigoplus_{i \geq i_0} \left(K \otimes_k \mathcal{M}_{n+1} \right) \left[i \right] \twoheadrightarrow \bigoplus_{i \geq i_0} \left(K \otimes_k \mathcal{M}_n \right) \left[i \right] = K \otimes_k \mathcal{M}_n$$

induces an isomorphism for i-th graded component, where $i_0 \le i \le i_0 + n$. Hence for fixed $i \in \mathbb{Z}$ there exists $n_i \in \mathbb{N}$ such that for all $n \ge n_i$ the surjection $(K \otimes_k \mathcal{M}_{n+1})[i] \twoheadrightarrow (K \otimes_k \mathcal{M}_n)[i]$ is an isomorphism. Thus we proved (2). Fix now λ in Irr(T) and let V_λ be an irreducible representation in class λ . There exists finite subset $B_\lambda \subseteq \mathbb{Z}$ such that for $(K \otimes_k V_\lambda)[i] \ne 0$ if $i \in B_\lambda$. Now define $n_\lambda = \sup_{i \in B_\lambda} n_i$ the surjection $K \otimes_k \mathcal{M}_{n+1} \twoheadrightarrow K \otimes_k \mathcal{M}_n$ induces an isomorphism $(K \otimes_k \mathcal{M}_{n+1})[i] \cong (K \otimes_k \mathcal{M}_n)[i]$ for every i in B_λ . Thus for $n \ge n_\lambda$ the surjection $\mathcal{M}_{n+1} \twoheadrightarrow \mathcal{M}_n$ induces an isomorphism $\mathcal{M}_{n+1}[\lambda] \cong \mathcal{M}_n[\lambda]$. This completes the proof of (3).

Proof of the theorem. For fixed λ in Irr(T) we define $\mathcal{M}[\lambda] = \mathcal{M}_n[\lambda]$ for any $n \ge n_\lambda$, where $n_\lambda \in \mathbb{N}$ is as in (3) of Lemma 8.3.1 (in particular, $\mathcal{M}[\lambda]$ does not depend on $n \ge n_\lambda$). Next we define

$$\mathcal{M} = \bigoplus_{\lambda \in \mathbf{Irr}} \mathcal{M}[\lambda]$$

Since by Proposition 7.1 for every $n \in \mathbb{N}$ and $\lambda \in \mathbf{Irr}(T)$ sheaf $\mathcal{M}_n[\lambda]$ admits structure of a G-sheaf. Therefore, \mathcal{M} is a quasi-coherent G-sheaf of \mathcal{O}_{ZM} -modules. We now show that \mathcal{M} admits a canonical structure of \mathcal{A} -module. For this pick λ_1 and λ_2 in $\mathbf{Irr}(T)$. Consider the irreducible representations V_{λ_1} and V_{λ_1} in classes λ_1 and λ_2 , respectively. Suppose that $\eta_1,...,\eta_s$ are finitely many classes in $\mathbf{Irr}(T)$ such that $V_{\lambda_1} \otimes_k V_{\lambda_2}$ can be completely decomposed into irreducible representations contained in classes $\eta_1,...,\eta_s$. Since the image of the multiplication $\mathcal{A}[\lambda_1] \otimes_{\mathcal{O}_{ZM}} \mathcal{M}_n[\lambda_2] \to \mathcal{M}_n$ is also the image of a morphism

$$\mathcal{A}[\lambda_1] \otimes_k \mathcal{M}_n[\lambda_2] \longrightarrow \mathcal{A}[\lambda_1] \otimes_{\mathcal{O}_{\mathbf{ZM}}} \mathcal{M}_n[\lambda_2] \longrightarrow \mathcal{M}_n$$

we deduce that it is contained in $\bigoplus_{i=1}^{s} \mathcal{M}_{n}[\eta_{i}]$. By (3) of Lemma 8.3.1 all these multiplications for $n \geq \sup\{n_{\lambda_{1}}, n_{\lambda_{2}}, n_{\eta_{1}}, ..., n_{\eta_{s}}\}$ can be identified. Now we define

$$\mathcal{A}[\lambda_1] \otimes_{\mathcal{O}_{\mathbf{ZM}}} \mathcal{M}[\lambda_2] \to \bigoplus_{i=1}^s \mathcal{M}[\eta_i] \subseteq \mathcal{M}$$

as a morphism induced by the multiplication morphism for any $n \ge \sup\{n_{\lambda_1}, n_{\lambda_2}, n_{\eta_1}, ..., n_{\eta_8}\}$. This gives an \mathcal{A} -module structure on \mathcal{M} . Next we prove that \mathcal{M} is \mathcal{A} -module of finite type. Denote $K \otimes_k \mathcal{M}$ by \mathcal{M}_K . Note that the combination of (2) and (3) of Lemma 8.3.1 show that

$$\mathcal{M}_K[i] = (K \otimes_k \mathcal{M}_n)[i]$$

for $n \ge n_i$. Hence by (1) of Lemma 8.3.1 we have

$$\bigoplus_{\lambda \in \mathbf{Irr}(T)} \mathcal{M}[\lambda]_K = \mathcal{M}_K = \bigoplus_{i \geq i_0} \mathcal{M}_K[i]$$

Since each \mathcal{M}_n is a coherent $\mathcal{O}_{Z^{\mathbf{M}}}$ -module, we derive that $\mathcal{M}_K[i]$ is a coherent $K \otimes_k \mathcal{O}_{Z^{\mathbf{M}}}$ -module for every $i \in \mathbb{Z}$. Now we may pick $\lambda_1, ..., \lambda_r$ in $\mathbf{Irr}(T)$ such that we have a surjection

$$\bigoplus_{j=1}^{r} \mathcal{M}[\lambda_j]_K \twoheadrightarrow \bigoplus_{i_0 \le i \le 1} \mathcal{M}_K[i]$$

induced by the projection $\mathcal{M}_K = \bigoplus_{i \geq i_0} \mathcal{M}_K[i] \twoheadrightarrow \bigoplus_{i_0 \leq i \leq 1} \mathcal{M}_K[i]$. Let

$$\mathcal{G} = \bigoplus_{j=1}^r \mathcal{M}[\lambda_j]$$

be a $\mathcal{O}_{Z^{\mathbf{M}}}$ -submodule of \mathcal{M} . Clearly each $\mathcal{M}[\lambda]$ is a coherent $\mathcal{O}_{Z^{\mathbf{M}}}$ -module. Hence \mathcal{G} is a coherent $\mathcal{O}_{Z^{\mathbf{M}}}$ -module. Since $\mathcal{J}_K = \bigoplus_{i \geq 1} \mathcal{A}_K[i]$, we derive that

$$\mathcal{M}_K = \sum_{j \geq 1} \mathcal{J}_K^j \cdot \mathcal{G}_K$$

and hence \mathcal{G}_K generates \mathcal{M}_K as an \mathcal{A}_K -module. By faithfully flat descent we deduce that \mathcal{G} generates \mathcal{M} as an \mathcal{A} -module. Since \mathcal{G} is a coherent $\mathcal{O}_{Z^{\mathbf{M}}}$ -module, we derive that \mathcal{M} is \mathcal{A} -module of finite type. Moreover, by construction of \mathcal{M} we have $\mathcal{M}/\mathcal{J}^{n+1}\mathcal{M} = \mathcal{M}_n$ for every $n \in \mathbb{N}$.

All these facts imply that \mathcal{M} corresponds to a coherent **G**-sheaf on Z such that its image under the comparison functor $\mathfrak{Coh}_{\mathbf{G}}(Z) \to \mathfrak{Coh}_{\mathbf{G}}(\widehat{Z})$ is a coherent **G**-sheaf on \widehat{Z} with **G**-structure described by $\{\mathcal{M}_n\}_{n\in\mathbb{N}}$. Hence the comparison functor is essentially surjective. We now prove that it is full and faithful. For this let

...
$$\longrightarrow$$
 $\mathcal{N}_{n+1} \longrightarrow \mathcal{N}_n \longrightarrow ... \longrightarrow \mathcal{N}_1 \longrightarrow \mathcal{N}_0$

represents some other object of $\mathfrak{Coh}_{\mathbf{G}}(\widehat{Z})$. As for $\{\mathcal{M}_n\}_{n\in\mathbb{N}}$ we can construct finite type \mathcal{A} -module \mathcal{N} with \mathbf{G} -linearization such that $\mathcal{N}/\mathcal{J}^{n+1}\mathcal{N}=\mathcal{N}_n$ for every $n\in\mathbb{N}$. Pick a morphism $f:\mathcal{M}\to\mathcal{N}$ of \mathcal{A} -modules with \mathbf{G} -linearization. For every λ in $\mathbf{Irr}(T)$ morphism $f[\lambda]:\mathcal{M}[\lambda]\to\mathcal{N}[\lambda]$ is equal (by virtue of constructions of \mathcal{N} and \mathcal{M}) to a morphism $\left(1_{\mathcal{A}/\mathcal{J}^{n+1}}\otimes_{\mathcal{A}}f\right)[\lambda]$ for sufficiently large $n\in\mathbb{N}$. This implies that the comparison functor is full and faithful. \square

REFERENCES

[Lang, 2005] Lang, S. (2005). *Algebra*. Graduate Texts in Mathematics. Springer New York. [Mac Lane, 1998] Mac Lane, S. (1998). *Categories for the working mathematician*, volume 5 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition.