Optimization. Tabu search

Maciej Komosinski

Institute of Computing Science Poznan University of Technology www.cs.put.poznan.pl/mkomosinski

Local search algorithm
 Inability to get out of local optima!

- Local search algorithm
 Inability to get out of local optima!
- Acceptance of non-improving moves

- Local search algorithm
 Inability to get out of local optima!
- Acceptance of non-improving moves Cycles!

- Local search algorithm
 Inability to get out of local optima!
- Acceptance of non-improving moves Cycles!
- "Tabu" list

- Local search algorithm
 Inability to get out of local optima!
- Acceptance of non-improving moves Cycles!
- "Tabu" list Too many banned moves!

- Local search algorithm
 Inability to get out of local optima!
- Acceptance of non-improving moves Cycles!
- "Tabu" list Too many banned moves!
- Aspiration criteria accepting banned but attractive moves

- Local search algorithm
 Inability to get out of local optima!
- Acceptance of non-improving moves Cycles!
- "Tabu" list Too many banned moves!
- Aspiration criteria accepting banned but attractive moves
 Tabu search algorithm

- Local search algorithm
 Inability to get out of local optima!
- Acceptance of non-improving moves Cycles!
- "Tabu" list Too many banned moves!
- Aspiration criteria accepting banned but attractive moves
 Tabu search algorithm
- Time-consuming evaluation of the entire neighborhood in each iteration?

- Local search algorithm
 Inability to get out of local optima!
- Acceptance of non-improving moves Cycles!
- "Tabu" list Too many banned moves!
- Aspiration criteria accepting banned but attractive moves
 Tabu search algorithm
- Time-consuming evaluation of the entire neighborhood in each iteration?
 - "Candidates" a subset of the neighborhood $V \subset N$

- Local search algorithm
 Inability to get out of local optima!
- Acceptance of non-improving moves Cycles!
- "Tabu" list Too many banned moves!
- Aspiration criteria accepting banned but attractive moves
 Tabu search algorithm
- Time-consuming evaluation of the entire neighborhood in each iteration?
 - "Candidates" a subset of the neighborhood $V \subset N$

• the main idea – using memory

• the main idea – using memory

• the main idea – using memory

• remembering solutions or moves (changes)

An example of storing tabu moves (0)

Tabu list structure:

Inside: "tabu tenure" (the number of iterations until deactivation).

An example of storing tabu moves (0)

Tabu list structure:

Inside: "tabu tenure" (the number of iterations until deactivation).

Iteration 0 (starting point, maximization task)

2 5 7 3 4	6 1
-----------	-----

mo	ove	Δ
5	4	6
7	4	4
3	6	2
2	3	0
4	1	-1

An example of storing tabu moves (1, 2)

Iteration 1

2	4	7	3	5	6	1

mo	ove	Δ
3	1	2
2	3	1
3	6	-1
7	1	-2
6	1	-4

An example of storing tabu moves (1, 2)

Iteration 1

2	4	7	3	5	6	1

Current solution – value=16

	2	3	4	5	6	7
1						
	2					
		3				
			4	3		
				5		
					6	

mo	ove	Δ
3	1	2
2	3	1
3	6	-1
7	1	-2
6	1	-4

Iteration 2

2 4 7 1 5 6 3			2	4	7	1	5	6	3
---------------	--	--	---	---	---	---	---	---	---

	mo	ove	Δ
Т	1	3	-2
	2	4	-4
	7	6	-6
Т	4	5	-7
	5	3	-9

An example of storing tabu moves (3, 4)

Iteration 3

4 2 7 1 5 6 3

An example of storing tabu moves (3, 4)

Iteration 3

4 2 7 1	5 6 3
---------	-------

An example of storing tabu moves (3, 4)

Iteration 3

4 2 7 1 5 6 3

Current solution – value=14

	mo	ove	∽ ∆
Т	4	5	- 6
	5	3	2
	7	1	0
	1	3	-3
	2	6	-6

Iteration 4

5 2 7 1 4 6 3

	2	3	4	5	6	7
1		1				
	2		2			
		3				
			4	3		
				5		
					6	

m	ove	Δ
7	1	0
4	3	-3
6	3	-5
5	4	-6
2	6	-8

Recency-based memory vs. frequency-based memory

The frequency of individual moves can be additionally used to disperse the search in the space of possible solutions (i.e., diversification). For example, moves can get a penalty proportional to their frequency if they don't improve the value of the solution.

Diversification is only useful under certain conditions (e.g., when there are no improvements).

Iteration 26. $\Delta' = \Delta$ -frequency_penalty

5 2 7 1 4 6 3

		•		<i>y</i> ,		,	
	1	2	3	4	5	6	7
1	•			3			
2		•					1
3	3		•				
4	2	5		•	2		
5		4		4	•		
6					1	•	
7	2			3			•
		•					

	mo	ove	Δ	Δ'	
Т	1	4	3	3	
	2	4	-1	-6	
	3	7	-3	-3	
	1	6	-5	-5	
	6	5	-6	-7	
	6	-		-7	

```
procedure TABU_SEARCH
begin
    INITIALIZE(xstart, xbest, T)
    x := xstart
    repeat
        GENERATE(V \subset N(x))
        SELECT(x') //best f in V + aspiration
        UPDATE_TABU_LIST(T)
        if f(x') \le f(xbest) then xbest := x'
        x := x'
    until STOPPING_CONDITION
end
```

Determinism

The algorithm is deterministic.

• TS author: "a bad strategic choice is better than a good random choice" (because it is under control, so one can evaluate the strategy and draw conclusions)

New: a list of "candidates" – the V set

- what for: to avoid the need for generating and evaluating the entire neighborhood in each iteration
- a good move, if not applied in the current iteration, will still be good in the next few iterations (?)

New: a list of "candidates" – the V set

- what for: to avoid the need for generating and evaluating the entire neighborhood in each iteration
- a good move, if not applied in the current iteration, will still be good in the next few iterations (?)
- which subset V ⊂ N of the set of neighbors N should constitute the subset of candidates?
 - candidates = good neighbors
 - we need to choose the moves that are beneficial... for the current solution and for future ones.

Construction of the list of candidates. The idea of strategy 1: "Aspiration plus"

- searching the neighborhood until a neighbor is found better by a certain threshold value ("aspiration plus")
- the number of candidates increases until the threshold value is reached
- $Min \le number of visited neighbors \le Max$
- aspiration level may vary during the search (may depend on the search history)
- the strategy returns 1 or more best neighbors found
- as many as 3 parameters...
- details: [?]

Construction of the list of candidates. The idea of strategy 2: "Elite candidate list"

- to build the list, check all or most of the moves and select the best k of them (k is a parameter)
- in subsequent iterations, the currently best move from the list is applied until the quality of the move drops below a given threshold, or a certain number of iterations is reached
- can be adaptive
- details: [?]

Aspiration criteria

- goal: to decide when tabu restrictions can be overridden
- basic aspiration criterion (by optimization objective, global, shown in the example in the beginning of this presentation): remove the tabu constraint when the move yields a solution better than the best solution found so far

aspiration by default

if all moves are tabu and they are not allowed by other criteria,
 then the move that is the least tabu is selected

aspiration by optimization objective

- global the move x → x' that is tabu is accepted if cost(x') < best_cost
- regional (the solution space is divided into regions R) the move that is tabu is accepted if $cost(x') < best_cost(R)$. R is the region where x' is located.

Unification of optimization algorithms

Intensification and diversification (exploitation and exploration)

Unification of optimization algorithms

Intensification and diversification (exploitation and exploration)

- Discussion: is higher intensification than LS possible?
- EA? RW? RS with forced diversification?
- Can both properties be simultaneously improved? 2D?
- What happens to exploitation and exploration when "the fundamental premise of optimization" fades away?

Intensification and diversification in Tabu Search

Intensification and diversification in Tabu Search

- intensification (exploitation)
 - in areas with good solutions
 - coming back to the best solution found so far
 - short term memory shortening the tabu list
 - long term memory
 - each solution or move is a collection of components
 - remembering the components of good moves or solutions during optimization
 - during the intensification period, moves or solutions incorporate the good components
 - long-term memory enables "learning"
- diversification (exploration)
 - for rarely visited areas
 - penalizing frequent moves escaping from the area
- these mechanisms can be perceived as a way of modifying the objective function: f' = f + Int + Div

References I

Fred Glover, Manuel Laguna, Panos Pardalos, D.-Z. Du, and R. L. Graham.

Tabu search: effective strategies for hard problems in analytics and computational science.

Handbook of Combinatorial Optimization, 2nd ed, vol. XXI, pages 3261–3362, 2013.

doi:10.1007/978-1-4419-7997-1_17.