

FINAL PROJECT DOCUMENTATION

Cardiovascular Disease Risk Prediction

Table of Contents

1. Project Overview	2
2. Data Preparation and Cleaning	3
3. Exploratory Data Analysis (EDA)	4
4. Feature Engineering	5
5. Model Development	6
6. Deployment	7
7. Key Insights and Conclusions	8

1. Project Overview

Objective: Develop a predictive model to assess cardiovascular disease (CVD) risk using clinical, demographic, and lifestyle data. The project encompasses data analysis, feature engineering, model training, and deployment of a Streamlit application for real-time risk prediction.

Dataset:

• **Source**: Processed dataset (cardio_data_processed.csv) with 68,205 records and 14+ features.

Key Variables:

- o Demographics: Age, gender, height, weight.
- o Clinical Metrics: Blood pressure (ap_hi, ap_lo), cholesterol, glucose.
- o Lifestyle: Smoking, alcohol consumption, physical activity.
- o Target: cardio (binary indicator of CVD).

Tools: Python (pandas, NumPy, scikit-learn, XGBoost), Streamlit, Matplotlib, Seaborn.

2. Data Preparation and Cleaning

Steps:

1. Data Loading:

- Imported tab-separated data from cleaned_data.csv.
- o Ensured column consistency (e.g., split merged fields).

2. Outlier Handling:

- o **Height**: Replaced values <120 cm or >210 cm with median (~165 cm).
- Weight: Dropped non-convertible entries; replaced values <30 kg or >300 kg with median (~75 kg).
- o **Blood Pressure**: Removed records with ap_hi <50 or ap_hi < ap_lo.

3. Data Type Conversion:

 Numerical features cast to int/float; categorical variables (e.g., smoke, alcohol) converted to category.

4. Feature Extraction:

- Derived age_years (converted from days).
- Calculated pulse_pressure (ap_hi ap_lo).

3. Exploratory Data Analysis (EDA)

Key Analyses:

1. Univariate Analysis:

 Numerical Features: Skewness and outliers observed in age_years, bmi, and blood pressure.

o Categorical Features:

- Most individuals were non-smokers (70%), physically active (65%), and had normal cholesterol/glucose levels.
- Class imbalance: 53% male, 47% female.

2. Correlation Analysis:

- o **Strong Positive Correlations**: Systolic vs. diastolic blood pressure (r >0.7).
- Moderate Correlations: BMI with weight (r = 0.8), cardio with age, blood pressure, and cholesterol.

3. Multivariate Analysis:

- Higher CVD prevalence in hypertensive, obese, and older individuals.
- Lifestyle factors (smoking, alcohol, inactivity) showed weaker correlations but contributed to risk accumulation.

4. Feature Engineering

Engineered Features:

1. BMI Categories:

- o Binned into *Underweight*, *Normal*, *Overweight*, *Obese* (BMI ≥30).
- Enabled non-linear risk assessment (e.g., obese individuals had 2x higher CVD risk).

2. Lifestyle Score:

- o Composite score (0–3) summing smoking, alcohol use, and inactivity.
- o Higher scores correlated with elevated CVD risk.

3. Blood Pressure Categories:

- Classified into Normal, Elevated, *Hypertension Stage 1/2*.
- o Hypertensive categories had 50% higher CVD incidence.

Impact: Improved model interpretability and predictive power by capturing non-linear relationships and clinical thresholds.

5. Model Development

Model	Test Accuracy	Precision	Recall	F1-Score	Overfitting Risk
XGBoost	73.67%	0.74	0.74	0.74	Low
Random Forest	73.44%	0.74	0.73	0.73	Mild
Logistic Regression	72.68%	0.73	0.73	0.72	Low
SVM	72.62%	0.73	0.73	0.72	Low
KNN	70.35%	0.70	0.70	0.70	High

Key Insights:

- **Top Features**: Blood pressure, BMI, cholesterol, glucose, and age dominated predictions.
- **Excluded Features**: Demographics (gender) and lifestyle factors (smoking, alcohol) had lower importance.
- Class Imbalance: Models favored predicting "No CVD" (higher recall for Class 0).

Best Model (XGBoost):

- **Hyperparameters**: n_estimators=200, max_depth=3, learning_rate=0.1.
- Confusion Matrix:
 - o True Positives: 72% (CVD cases correctly identified).
 - o **False Negatives**: 14% (high-risk individuals missed).

6. Deployment

Streamlit Application:

1. Interface:

- Predict Risk Tab: Users input demographics, health metrics, and lifestyle factors.
- o Dashboard Tab: Interactive visualizations (univariate, bivariate, multivariate).

2. Prediction Workflow:

- o Real-time calculation of BMI and pulse pressure.
- o Preprocessing, feature selection, and XGBoost prediction.
- o Output: "High Risk" or "Low Risk" with probability.

3. Technical Setup:

- o Caching for efficient model/data loading.
- o Error handling for user inputs.

7. Key Insights and Conclusions

1. Risk Factors:

- o **Clinical**: Age, hypertension, high cholesterol, obesity.
- o Lifestyle: Physical inactivity, smoking, alcohol use (cumulative effect).

2. Model Limitations:

- Moderate accuracy (73.67%) due to class imbalance and complex interactions.
- o Limited generalizability to underrepresented demographics.

3. Future Work:

- o Collect more data on lifestyle factors.
- Experiment with deep learning architectures.

Impact: The deployed application enables individuals to assess CVD risk proactively, emphasizing preventive care.