SSN College of Engineering, Kalavakkam - 603110

Department of Electronics and Communication Engineering

Degree and Programme		B.E (Computer Science and Engineering)				
Semester and Section:		VI Semester / A & B Section				
Subject Code and Subject:		IT6502 - Digital Signal Processing				
Periods / Week:	4	No. of Credits:	4			
	•	•	Date: 26.12.2016			

Course Objectives:

- To briefly review signals and systems
- To learn discrete Fourier transform and its properties
- To know the characteristics of IIR and FIR filters learn the design of infinite and finite impulse response filters for filtering undesired signals
- To understand Finite word length effects

Course Outcomes:

On successful completion of this course, the student will be able to

- CO1: Understand signals, systems and basics of digital signal processing.
- CO2: Understand and apply DFT and FFT for the analysis of digital signals & systems.
- CO3: Design and realize Butterworth and Chebyshev IIR filters using impulse invariant and bilinear transformation techniques.
- CO4: Design and realize FIR filters using window techniques and frequency sampling method.
- CO5: Characterize finite Word length effect on digital filters.

Syllabus

UNIT I SIGNALS AND SYSTEMS

9

Basic elements of DSP – concepts of frequency in Analog and Digital Signals – sampling theorem – Discrete – time signals, systems – Analysis of discrete time LTI systems – Z transform – Convolution (linear and circular) – Correlation. (CO1)

UNIT II FREQUENCY TRANSFORMATIONS

9

Introduction to DFT – Properties of DFT – Circular convolution - Filtering methods based on DFT – FFT Algorithms Decimation – in – time Algorithms, Decimation – in – frequency Algorithms –Use of FFT in Linear Filtering – DCT – Use and applications of DCT. (CO2)

UNIT III IIR FILTER DESIGN

9

Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives– (HPF, BPF, BRF) filter design using frequency translation (CO3)

UNIT IV FIR FILTER DESIGN

9

Structures of FIR – Linear phase FIR filter – Filter design using windowing techniques (Rectangular window, Hamming window, Hanning Window), Frequency sampling techniques (CO4)

UNIT V FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS 9
Binary fixed point and floating point number representations – Comparison – Quantization noise – truncation and rounding – quantization noise power – input quantization error – coefficient quantization error – limit cycle oscillations – dead band – overflow error – signal scaling. (CO5)

Total= 45 Periods

Lesson Plan

- Content delivery methods:
 1. Lecture interspersed with discussion (chalk and board)
 - 2. Presentation slides (PPT)

Assessment methods:

Continuous Assessment Internal Model Assessment

SI. No.	Course Content	СО	Knowledge level	Proposed Period & Number of Hours to be handled	Actual Period & Number of Hours handled					
	Unit I									
1	Introduction to Signals & Systems/ DSP	CO1	U	2						
2	Basic elements of DSP – concepts of frequency in Analog and Digital Signals, Sampling Theorem	CO1	U	1						
3	Discrete – time signals, systems	CO1	U	3						
4	Analysis of discrete time LTI systems – Z transform	CO1	U	4						
5	Convolution (linear and circular)	CO1	U & Ap	1						
6	Correlation	CO1	U & Ap	1						
7	Problems Solving	CO1	U & Ap	3						
		Unit	: II							
1	Introduction to DFT	CO2	U	1						
2	Properties of DFT	CO2	U	2						
3	Filtering methods based on DFT	CO2	U, Ap	2						
4	Decimation – in – time Algorithms,	CO2	U, Ap	2						
5	Decimation – in – frequency Algorithms	CO2	U & Ap	2						
6	Use of FFT in Linear Filtering	CO2	U & Ap	2						
7	DCT & Applications	CO2	U	2						
8	Problems Solving	CO2	U & Ap	3						
Unit III										
1	Structures of IIR	CO3	U	2						
2	Analog filter design – Discrete time IIR filter from analog filter	CO3	U, Ap	3						

3	IIR filter design by Impulse Invariance	CO3	U, Ap	2				
4	Bilinear transformation, Approximation of derivatives	CO3	U & Ap	3				
5	(HPF, BPF, BRF) filter design using frequency translation	CO3	U & Ap	2				
6	Problem Solving	CO3	U & Ap	3				
	Unit IV							
1	Structures of FIR	CO4	U	1				
2	Linear phase FIR filter	CO4	U	2				
3	Filter design using windowing techniques	CO4	U & Ap	4				
4	Frequency sampling techniques	CO4	U	3				
5	Problem Solving	CO4	U & Ap	3				
		Unit	V					
1	Binary fixed point and floating point number representations	CO5	U	2				
2	Quantization noise, truncation and rounding	CO5	U & Ap	2				
3	Quantization noise power – input quantization error – coefficient quantization error	CO5	U	2				
4	Limit cycle oscillations – dead band	CO5	U, Ap	1				
5	Overflow error – signal scaling.	CO5	U, Ap	2				

Mapping of Course Outcomes with Program Outcomes

Course Outcomes / Program Outcomes													
Course Outcome:		Program Outcomes											
		а	b	С	d	е	f	g	h	i	j	k	I
CO1: Understand signals, systems and basics of digital signal processing.		-	1	-	2	-	-	-	-	-	-	1	-
CO2:	Understand and apply DFT and FFT for the analysis of digital signals & systems.	-	-	1	2	-	-	1	-	-	-	1	-
CO3:	Design and realize Butterworth and Chebyshev IIR filters using impulse invariant and bilinear transformation techniques.	-	1	2	3	-	1	-	-	-	-	1	-
CO4:	Design and realize FIR filters using window techniques and frequency sampling method.	_	1	2	3	-	1	-	-	-	-	1	-
CO5:	Characterize finite Word length effect on digital filters	2	1	-	-	-	-	-	-	-	-	1	-

Program Outcomes:

- a) Engineering knowledge: Our graduates will have the knowledge of mathematics, logic, probability and statistics, computer science and engineering, and the skill to apply them in the fields of computer software and hardware.
- b) Problem analysis: Our graduates will have the knowledge and skill to identify, formulate, and solve hardware and software problems using sound computer science principles.
- c) Experimentation: Our graduates will have the skill to design and conduct experiments, organize, analyze, and interpret data.
- d) Design and development: Our graduates will have the skill to design and construct hardware and software systems, components, or processes as per needs and specifications.
- e) Team work: Our graduates will have the interpersonal and communication skills to function as team players on multidisciplinary teams.
- f) Modern tools usage: Our graduates will be able to use the techniques, skills, and modern hardware and software tools necessary for computer engineering practice.
- g) Social and environmental responsibility: Our graduates will demonstrate knowledge related to social, ethical, legal, economical, health and safety, sustainability and environmental dimensions.
- h) Communication skills: Our graduates will be able to effectively communicate technical information in speech, presentation, and in writing.
- i) Contemporariness: Our graduates will have knowledge of contemporary issues in the practice of their profession.
- j) Self-learning: Our graduates will develop confidence for self learning and ability for life-long learning.
- k) Competitive exam preparedness: Our graduates will participate and succeed in competitive examinations such as GATE, IES, GRE.
- I) Leadership: Our graduates are trained to enhance their managerial skills, leadership quality and entrepreneurial spirit.

3: Strongly agree	2: Agree	1: Weakly ag	ree	- : Do not agree		
Prepared By				Approved By		
(I.Nelson)	(ISO Cod	ordinator)		(Dr. S. Radha, HOD / ECE)		