

Voltage Variable RF Attenuator

1MHz to 3000MHz

GENERAL DESCRIPTION

The IDTF2255 is a low insertion loss $\underline{\mathbf{V}}$ oltage $\underline{\mathbf{V}}$ ariable RF $\underline{\mathbf{A}}$ ttenuator (VVA) designed for a multitude of wireless and other RF applications. This device covers a broad frequency range from 1MHz to 3000MHz. In addition to providing low insertion loss, the IDTF2255 provides excellent linearity performance over its entire voltage control and attenuation range.

The F2255 uses a single positive supply voltage of 3.15V to 5.25V. Other features include the V_{MODE} pin allowing either positive or negative voltage control slope vs attenuation and multi-directional operation meaning the RF input can be applied to either RF1 or RF2 pins. Control voltage ranges from 0V to 3.6V using either positive or negative control voltage slope.

COMPETITIVE ADVANTAGE

IDTF2255 provides extremely low insertion loss and superb IP3, IP2, Return Loss and Slope Linearity across the control range. Comparing to competitive VVAs this device is better as follows:

✓ Operation down to 1MHz

✓ Insertion Loss @ 500MHz: 1.1dB

✓ Maximum Attenuation Slope: 33dB/Volt

✓ Minimum Output IP3: 35dBm

✓ Minimum Input IP2: 74dBm

✓ High Operating Temperature: +105°C

APPLICATIONS

- Base Station 2G, 3G, 4G,
- Portable Wireless
- Repeaters and E911 systems
- Digital Pre-Distortion
- Point to Point Infrastructure
- Public Safety Infrastructure
- Satellite Receivers and Modems
- WIMAX Receivers and Transmitters
- Military Radios covering HF, VHF, UHF
- RFID handheld and portable readers
- Cable Infrastructure
- Wireless LAN
- Test / ATE Equipment

FEATURES

- Low Insertion Loss: 1.1dB @ 500MHz
- Typical / Min IIP3: 60dBm / 46dBm
- Typical / Min IIP2: 98dBm / 74dBm
- 33dB Attenuation Range
- Bi-directional RF ports
- +36dBm Input P1dB compression
- V_{MODE} pin allows either positive or negative control response
- Linear-in-dB attenuation characteristic
- Supply voltage: 3.15V to 5.25V
- V_{CTRL} range: 0V to 3.6V using 5V supply
- +105°C max operating temperature
- 3x3, 16-pin QFN package

DEVICE BLOCK DIAGRAM

ORDERING INFORMATION

PART# MATRIX

Part#	RF Freq Range (MHz)	Insertion Loss (dB)	IIP3 (dBm)	Pinout Compatibility
F2250	50 - 6000	1.4 (at 2GHz)	+65	RFMD
F2255	1 - 3000	1.1 (at 500MHz)	+60	
F2258	50 - 6000	1.4 (at 2GHz)	+65	Hittite

Voltage Variable RF Attenuator

1MHz to 3000MHz

ABSOLUTE MAXIMUM RATINGS

Parameter / Condition	Symbol	Min	Max	Units
V _{DD} to GND	V_{DD}	-0.3	5.5	V
V _{MODE} to GND	V_{MODE}	-0.3	Minimum (V _{DD} , 3.9)	V
V_{CTRL} to GND $V_{DD} = 0V$ to 5.25V	V_{CTRL}	-0.3	Minimum (V _{DD} , 4.0)	V
RF1, RF2 to GND	V_{RF}	-0.3	0.3	V
RF1 or RF2 Input Power applied for 24 hours maximum (V _{DD} applied @ 2GHz and Tc=+85°C)	P _{MAX24}		30	dBm
RF1 or RF2 Continuous Operating Power	P _{MAX_OP}		See Figure 1	dBm
Maximum Junction Temperature	T_{JMAX}		+150	°C
Storage Temperature Range	T_{ST}	-65	+150	°C
Lead Temperature (soldering, 10s)	T_LEAD		+260	°C
ESD Voltage- HBM (Per ESD STM5.1-2007)	V_{ESDHBM}		Class 2	
ESD Voltage – CDM (Per ESD STM5.3.1-2009)	V_{ESDCDM}		Class C3	

FIGURE 1: MAXIMUM OPERATING RF INPUT POWERS VS. RF FREQUENCY

Stresses above those listed above may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL AND MOISTURE CHARACTERISTICS

Θ _{JA} (Junction – Ambient)	80.6°C/W
Θ _{IC} (Junction – Case) The Case is defined as the exposed paddle	5.1°C/W
Moisture Sensitivity Rating (Per J-STD-020)	MSL 1

Voltage Variable RF Attenuator

1MHz to 3000MHz

IDTF2255 OPERATING CONDITIONS

Parameter	Symbol	Condition	Min	Тур	Max	Units
Operating Freq Range	F _{RF}		1		3000	MHz
Supply Voltage	V_{DD}		3.15		5.25	V
	V	$V_{DD} > 3.9V$	1.17		3.6 ²	
V _{MODE} Logic	V_{IH}	$V_{DD} = 3.15 \text{ to } 3.9V$	1.17		V _{DD} -0.3V	V
	V_{IL}		0		0.63	
V Pango	V	$V_{DD} = 3.9V \text{ to } 5.25V$	0		3.6	V
V _{CTRL} Range	V_{CTRL}	$V_{DD} = 3.15V \text{ to } 3.9V$	0		V _{DD} -0.3	V
Supply Current	I_{DD}		0.80 ¹	1.15	1.50	mA
Logic Current	I_{MODE}		-1.0		24	μΑ
I _{CTRL} Current	$ m I_{CTRL}$		-1.0		10	μΑ
RF Operating Power ³	P _{MAXCW}				See Figure 1	dBm
RF1 Port Impedance	Z_{RF1}			50		0
RF2 Port Impedance	Z _{RF2}			50		Ω
Operating Temperature Range	T _{CASE}	Exposed Paddle Temperature	-40		+105	°C

Operating Conditions Notes:

- 1 Items in min/max columns in **bold italics** are Guaranteed by Test.
- 2 Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.
- 3 Refer to the Maximum **Operating** RF Input Power vs. RF Frequency curves in Figure 1.

Voltage Variable RF Attenuator

1MHz to 3000MHz

IDTF2255 SPECIFICATIONS

Refer to EVKit / Applications Circuit, $V_{DD} = +3.3V$, $T_{C} = +25^{\circ}C$, signals applied to RF1 input, $F_{RF} = 500$ MHz, minimum attenuation, $P_{IN} = 0$ dBm for small signal parameters, +20dBm for single tone linearity tests, +20dBm per tone for two tone tests, two tone delta frequency = 80MHz, PCB board traces and connector losses are de-embedded unless otherwise noted. Refer to Typical Operating Curves for performance over entire frequency band.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Insertion Loss, IL	A_{MIN}	Minimum Attenuation		1.1	1.7 ¹	dB
Maximum attenuation	A _{MAX}		33	34.6		dB
Insertion Phase Δ	Φ_{\DeltaMAX}	At 36dB attenuation relative to Insertion Loss		27		deg
Insertion Fliase Δ	$\Phi_{\Delta MID}$	At 18dB attenuation relative to Insertion Loss		8		
Input 1dB Compression ³	P1dB			36		dBm
		20MHz		23		
Minimum RF1 Return Loss	S11	500MHz		22		4B
over control voltage range	311	2000MHz		23		dB
		3000MHz		30		
		20MHz		23		
Minimum RF2 Return Loss	S22	500MHz		22		dB
over control voltage range		2000MHz		23		
		3000MHz		24		
Input IP3	IIP3			60		
Input IP3 over Attenuation	IIP3 _{ATTEN}	All attenuation settings	44 ²	46		dBm
Minimum Output IP3	OIP3 _{MIN}	Maximum attenuation		35		
Input IP2	IIP2	PIN + IM2 _{dBC} , IM2 term is F1+F2		98		dBm
Minimum Input IP2	IIP2 _{MIN}	All attenuation settings		74		dBm
Input IH2	HD2	PIN + H2 _{dBc}		82		dBm
Input IH3	HD3	$PIN + (H3_{dBc}/2)$		49		dBm
Settling Time	T _{SETTL0.1dB}	Any 1dB step in the 0dB to 33dB control range 50% V_{CTRL} to RF settled to within \pm 0.1dB		15		μSec

Specification Notes:

- 1 Items in min/max columns in **bold italics** are Guaranteed by Test
- 2 Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.
- 3 The input 1dB compression point is a linearity figure of merit. Refer to Absolute Maximum Ratings section along with Figure 1 for the maximum RF input power vs. RF frequency.

Voltage Variable RF Attenuator

1MHz to 3000MHz

TYPICAL OPERATING CURVES

Unless otherwise noted, the following conditions apply:

- $V_{DD} = +3.3V \text{ or } +5.0V$
- $T_C = +25^{\circ}C$
- $V_{MODE} = 0V$
- RF trace and connector losses are de-embedded for S-parameters
- Pin = 0dBm for all small signal tests
- Pin = +20dBm for single tone linearity tests (RF1 port driven)
- Pin = +20dBm/tone for two tone linearity tests (RF1 port driven)
- Two tone frequency spacing = 80MHz

Voltage Variable RF Attenuator

1MHz to 3000MHz

TYPICAL OPERATING CONDITIONS [S2P Broadband Performance] (-1-)

Voltage Variable RF Attenuator

1MHz to 3000MHz

Typical Operating Curves [S2P vs. V_{CTRL}] (-2-)

Voltage Variable RF Attenuator

1MHz to 3000MHz

Typical Operating Conditions [S2P vs. V_{CTRL} & Temperature] (-3-)

Attenuation Response vs. V_{CTRL}

Attenuation Slope vs. V_{CTRL}

RF1 Return Loss vs. V_{CTRL}

RF2 Return Loss vs. V_{CTRL}

Insertion Phase Δ vs. V_{CTRL}

Insertion Phase Slope vs. V_{CTRL}

Voltage Variable RF Attenuator

1MHz to 3000MHz

Typical Operating Conditions [S2P vs. Attenuation & Temperature] (-4-)

RF1 Return Loss vs. Attenuation

RF1 Return Loss vs. Attenuation

RF2 Return Loss vs. Attenuation

RF2 Return Loss vs. Attenuation

Insertion Phase \triangle vs. Attenuation

Insertion Phase \triangle vs. Attenuation

Voltage Variable RF Attenuator

1MHz to 3000MHz

Typical Operating Conditions [S2P vs. Frequency] (-5-)

Min. & Max. Attenuation vs. Frequency

Min. & Max. Attenuation Slope vs. Frequency

Worst-Case RF1 Return Loss vs. Frequency

Worst-Case RF2 Return Loss vs. Frequency

Max. Insertion Phase ∆ vs. Frequency

Gain Compression vs. Frequency

Voltage Variable RF Attenuator

1MHz to 3000MHz

TYPICAL OPERATING CONDITIONS [S2P @ Low Frequency, Group Delay] (-6-)

Min. & Max. Attenuation vs. Low Frequency

Low-Frequency Attenuation vs. V_{CTRL}

Low-Frequency RF1 Return Loss vs. V_{CTRL}

Low-Frequency RF2 Return Loss vs. V_{CTRL}

Group Delay vs. Frequency

Voltage Variable RF Attenuator

1MHz to 3000MHz

Typical Operating Conditions 500MHz, V_{DD} =3.3V [IP3, IP2, IH2, IH3 vs. V_{CTRL} , V_{MODE}] (-7-)

Voltage Variable RF Attenuator

1MHz to 3000MHz

TYPICAL OPERATING CONDITIONS 500MHz, V_{DD}=3.3V [IP3, IP2, IH2, IH3 vs. V_{CTRL}, RF1/RF2 DRIVEN] (-8-)

Voltage Variable RF Attenuator

1MHz to 3000MHz

TYPICAL OPERATING CONDITIONS 500MHz, V_{DD}=3.3V [IP3, IP2, IH2, IH3 vs. ATTENUATION] (-9-)

Input IP3 vs. Attenuation

Output IP3 vs. Attenuation

Input IP2 vs. Attenuation

Output IP2 vs. Attenuation

2nd Harm Input Intercept Point vs. Attenuation

3rd Harm Input Intercept Point vs. Attenuation

Voltage Variable RF Attenuator

1MHz to 3000MHz

Typical Operating Conditions 500MHz, V_{DD}=3.3V [IP3, IP2, IH2, IH3 vs. V_{CTRL}, RF1/RF2 Driven] (-10-)

Input IP3 vs. Attenuation

Output IP3 vs. Attenuation

Input IP2 vs. Attenuation

Output IP2 vs. Attenuation

2nd Harm Input Intercept Point vs. Attenuation

3rd Harm Input Intercept Point vs. Attenuation

Voltage Variable RF Attenuator

1MHz to 3000MHz

PACKAGE DRAWING (3x3 16 PIN)

Voltage Variable RF Attenuator

1MHz to 3000MHz

PINOUT & BLOCK DIAGRAM

Voltage Variable RF Attenuator

1MHz to 3000MHz

PIN DESCRIPTION

Pin	Name	Function
1, 7, 12	GND	Ground these pins as close to the device as possible.
2, 4, 9, 11, 13	NC	No internal connection. IDT recommends connecting these pins to GND.
3	RF1	RF Port 1. Matched to 50 ohms. Must use an external AC coupling capacitor as close to the device as possible. For low frequency operation increase the capacitor value to result in a low reactance at the frequency of interest.
5, 6, 8	RTN	Attenuator Ground Return. Each of these pins require a capacitor to GND to provide an RF return path. Placed as close to the device as possible.
10	RF2	RF Port 2. Matched to 50 ohms. Must use an external AC coupling capacitor as close to the device as possible. For low frequency operation increase the capacitor value to result in a low reactance at the frequency of interest.
14	V_{CTRL}	Attenuator control voltage. Apply a voltage in the range as specified in the Operating Conditions Table. See application section for details about V _{CTRL} .
15	V_{DD}	Power supply input. Bypass to GND with capacitors close as possible to pin.
16	V_{MODE}	Attenuator slope control. Set to logic LOW to enable negative attenuation slope. Set to logic HIGH to enable positive attenuation slope.
	— EP	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to achieve the specified RF performance.

Voltage Variable RF Attenuator

1MHz to 3000MHz

APPLICATIONS INFORMATION

Default Start-up

 V_{MODE} must be tied to either GND or Logic High. If the V_{CTRL} pin is left floating, the part will power up in the minimum attenuation state when $V_{MODE} = GND$, or the maximum attenuation state when $V_{MODE} = High$.

V_{CTRL}

The V_{CTRI} pin is used to control the attenuation of the F2255. With V_{MODE} set to a logic low (high), this places the device in a negative (positive) slope mode where increasing (decreasing) the V_{CTRL} voltage produces an increasing (a decreasing) attenuation from min attenuation (max attenuation) to max attenuation (min attenuation) respectively. See the Operating Conditions Table for the allowed control voltage range and its dependence on V_{DD} . The V_{CTRI} pin has an on-chip pullup ESD diode so V_{DD} should be applied before V_{CTRI} is applied. If this sequencing is not possible, then resistor R2 should be set for $1k\Omega$ to limit the current into the V_{CTRI} pin.

V_{MODE}

The V_{MODE} pin is used to set the attenuation vs. V_{CTRI} slope. With V_{MODE} set to logic low (high) this will set the attenuation slope to be negative (positive). A negative (positive) slope is defined as increasing (decreasing) attenuation with increasing (decreasing) V_{CTRI} voltage. The EVKIT provides an on-board jumper to manually set the V_{MODE} . Install a jumper on header J2 from V_{MODE} (pin2) to GND (pin3) to set the device for a negative slope. For a positive slope install the J2 jumper from V_{MODE} (pin2) to VHI (pin1). For proper operation one of the above noted jumper positions must be selected.

RF1 and RF2 Ports

The F2255 is a bi-directional device thus allowing RF1 or RF2 to be used as the RF input. As displayed in the Typical Operating Conditions curves, RF1 shows enhanced linearity when used as the RF input. V_{DD} must be applied prior to the application of RF power to ensure reliability. DC blocking capacitors are required on the RF pins and should be set to a value that results in a low reactance over the frequency range of interest.

Power Supplies

The supply pin should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than 1V/20uS. In addition, all control pins should remain at 0V (+/-0.3V) while the supply voltage ramps or while it returns to zero.

Voltage Variable RF Attenuator

1MHz to 3000MHz

Control Pin Interface

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of control pins 14 and 16 is recommended as shown below.

Voltage Variable RF Attenuator

1MHz to 3000MHz

EVKIT / **APPLICATIONS CIRCUIT**

Voltage Variable RF Attenuator

1MHz to 3000MHz

EVKIT PICTURE / LAYOUT (TOP VIEW)

Voltage Variable RF Attenuator

1MHz to 3000MHz

EVKIT PICTURE / LAYOUT (BOTTOM VIEW)

Voltage Variable RF Attenuator

1MHz to 3000MHz

EVKIT BOM

Part Reference	QTY	DESCRIPTION	Mfr. Part #	Mfr.
C1, C4, C5	3	10nF ±5%, 50V, X7R Ceramic Capacitors (0603)	GRM188R71H103J	Murata
C2, C3, C6	3	1000pF ±5%, 50V, C0G Ceramic Capacitors (0402)	GRM1555C1H102J	Murata
C7, C8, C9, C10, C11	5	100nF ±10%, 16V, X7R Ceramic Capacitors (0402)	GRM155R71C104K	Murata
R1, R2, R5	3	0Ω Resistors (0402)	ERJ-2GE0R00X	Panasonic
R3, R4	2	100kΩ ±1%, 1/10W, Resistors (0402)	ERJ-2RKF1003X	Panasonic
J1, J3, J4, J5	4	Edge Launch SMA (0.375 inch pitch ground tabs)	142-0701-851	Emerson Johnson
J2	1	CONN HEADER VERT SGL 3 X 1 POS GOLD	961103-6404-AR	3M
U1	1	Voltage Variable Attenuator	F2255NLGK	IDT
	1	Printed Circuit Board	F2255 REV 1	IDT

TOP MARKINGS

