INTRODUCTION TO GROUP THEORY

CARSON JAMES

Contents

1. Direct Products 2

1. Direct Products

Definition 1.0.1. Let G, H be groups. Define a product $*: (G \times H) \times (G \times H) \to G \times H$ by

$$(x_1, y_1) * (x_2, y_2) = (x_1x_2, y_1y_2)$$

Then $(G \times H, *)$ is called the **direct product of** G **and** H.

Exercise 1.0.2. Let G, H be groups. Then the direct product $G \times H$ is a group.

Proof. Clear.
$$\Box$$

Definition 1.0.3. Let G, H be groups. Define $\pi_G : G \times H \to G$ and $\pi_H : G \times H \to H$ by $\pi_G(x, y) = x$ and $\pi_H(x, y) = y$. Then π_G and π_H are respectively called the **projection** maps onto G and H.

Exercise 1.0.4. Let G, H be groups. Then

- (1) $\pi_G: G \times H \to G$ and $\pi_H: G \times H \to H$ are homomorphisms
- (2) $\ker \pi_G \cong H$ and $\ker \pi_H \cong G$

Proof. Clear.
$$\Box$$

Definition 1.0.5. Let G, H, K be groups, $\phi \in \text{Hom}(G, K)$ and $\psi \in \text{Hom}(H, K)$. We define $\phi \times \psi : G \times H \to K$ by $\phi \times \psi(x, y) = \phi(x)\psi(y)$

Exercise 1.0.6. Let G, H, K be groups, $\phi \in \text{Hom}(G, K)$ and $\psi \in \text{Hom}(H, K)$. Then $\phi \times \psi \in Hom(G \times H, K)$.

Proof. Clear.
$$\Box$$

Exercise 1.0.7. Let G, H, K be groups and $\phi \in \text{Hom}(G \times H, K)$. Then there exist $\phi_G \in \text{Hom}(G, K)$, $\phi_H \in \text{Hom}(H, K)$ such that $\phi_G \times \phi_H = \phi$.

Proof. Define $\iota_G \in \text{Hom}(G, \ker \pi_H)$ and $\iota_H \in \text{Hom}(H, \ker \pi_G)$ as in part (2) of Exercise 1.0.4 Set $\phi_G = \phi \circ \iota_G$ and $\phi_H = \phi \circ \iota_H$. Let $(x, y) \in G \times H$. Then

$$\phi_G \times \phi_H(x, y) = \phi_G(x)\phi_H(y)$$

$$= \phi \circ \iota_G(x)\phi \circ \iota_H(y)$$

$$= \phi(x, e_H)\phi(e_G, y)$$

$$= \phi(x, y)$$

So
$$\phi = \phi_G \times \phi_H$$