Vizing's Conjecture and Techniques from Computer Algebra

Susan Margulies
Computational and Applied Math, Rice University

joint work in progress with I.V. Hicks¹

April 17, 2010

¹funded by VIGRE and NSF-CMMI-0926618 and NSF-DMS-0729251

• **Dominating Set:** Given a graph G and an integer k, does there exist a subset of vertices D, with |D| = k, such that every vertex in the graph is in, or adjacent to, a vertex in D?

- **Dominating Set:** Given a graph G and an integer k, does there exist a subset of vertices D, with |D| = k, such that every vertex in the graph is in, or adjacent to, a vertex in D?
- **Definition:** The *domination number* of a graph G is the size of a minimum dominating set, and is denoted by $\gamma(G)$.

- **Dominating Set:** Given a graph G and an integer k, does there exist a subset of vertices D, with |D| = k, such that every vertex in the graph is in, or adjacent to, a vertex in D?
- **Definition:** The *domination number* of a graph G is the size of a minimum dominating set, and is denoted by $\gamma(G)$.
- Turán Graph T(5,3):

- **Dominating Set:** Given a graph G and an integer k, does there exist a subset of vertices D, with |D| = k, such that every vertex in the graph is in, or adjacent to, a vertex in D?
- **Definition:** The *domination number* of a graph G is the size of a minimum dominating set, and is denoted by $\gamma(G)$.
- Turán Graph T(5,3): $\gamma(T(5,3)) = 1$.

Cartesian Product Graph, $G \square H$

• Cartesian Product: Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$V(G) \times V(H)$$

Cartesian Product Graph, $G \square H$

• Cartesian Product: Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$V(G) \times V(H)$$

Given vertices $iu, jv \in V(G \square H)$, there is an edge between iu and jv if i = j and $(u, v) \in E[H]$, or u = v and $(i, j) \in E[G]$.

Cartesian Product Graph, $G \square H$

• Cartesian Product: Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$V(G) \times V(H)$$

Given vertices $iu, jv \in V(G \square H)$, there is an edge between iu and jv if i = j and $(u, v) \in E[H]$, or u = v and $(i, j) \in E[G]$.

Cartesian Product Graph, G□H

• Cartesian Product: Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$V(G) \times V(H)$$

Given vertices $iu, jv \in V(G \square H)$, there is an edge between iu and jv if i = j and $(u, v) \in E[H]$, or u = v and $(i, j) \in E[G]$.

$$\gamma(G)=1, \gamma(H)=1 \text{ and } \gamma(G\square H)=2$$
 .

• **Example:** Consider a triangle and an edge:

$$\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2$$
.

• **Example:** Consider a triangle and an edge:

$$\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2$$
.

• **Example:** Consider a triangle and an edge:

$$\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2$$
.

• Example: Consider a triangle and an edge:

$$\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2$$
.

$$\gamma(G) = 2, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2$$
.

• Example: Consider a triangle and an edge:

$$\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2 \cdot \gamma(G)\gamma(H) < \gamma(G \square H)$$
.

$$\gamma(G) = 2, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2$$
.

• Example: Consider a triangle and an edge:

$$\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2 \cdot \gamma(G)\gamma(H) < \gamma(G \square H)$$
.

$$\gamma(G) = 2, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2 . \ \gamma(G)\gamma(H) = \gamma(G \square H) .$$

Vizing's Conjecture

Vizing's Conjecture (1963)

Given graphs G and H,

$$\gamma(G)\gamma(H) \leq \gamma(G \square H)$$
.

• Vizing proposes his conjecture in 1963.

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).

Dominating Set

Vizing's Conjecture

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing's conjecture holds for graphs that satisfy a special "coloring property".

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing's conjecture holds for graphs that satisfy a special "coloring property".
- In 1991, El-Zahar and Pareek show that Vizing's conjecture holds for cycles.

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing's conjecture holds for graphs that satisfy a special "coloring property".
- In 1991, El-Zahar and Pareek show that Vizing's conjecture holds for cycles.
- In 2000, Clark and Suen show that $\gamma(G)\gamma(H) \leq 2\gamma(G\Box H)$.

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing's conjecture holds for a large class of graphs ("A-class" graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing's conjecture holds for graphs that satisfy a special "coloring property".
- In 1991, El-Zahar and Pareek show that Vizing's conjecture holds for cycles.
- In 2000, Clark and Suen show that $\gamma(G)\gamma(H) \leq 2\gamma(G\Box H)$.
- In 2003, Sun proves that Vizing's conjecture holds if $\gamma(G) \leq 3$.

An arbitrary graph G in n vertices and a dominating set of size k

Lemma

The following zero-dimensional system of polynomial equations has a solution if and only if there exists a graph G in n vertices that has a dominating set of size k.

$$x_i^2 - x_i = 0$$
, for $i = 1, ..., n$, $e_{ij}^2 - e_{ij} = 0$, for $i, j = 1, ..., n$ with $i < j$, $(1 - x_i) \prod_{\substack{j=1 \ j \neq i}}^n (1 - e_{ij}x_j) = 0$, for $i = 1, ..., n$, $-k + \sum_{i=1}^n x_i = 0$.

An arbitrary graph G in n vertices and an arbitrary dominating set of size k

Let S_n^k denote the set of k-subsets of $\{1, 2, \ldots, n\}$.

An arbitrary graph G in n vertices and an arbitrary dominating set of size k

Let S_n^k denote the set of k-subsets of $\{1, 2, \dots, n\}$.

Lemma

The following zero-dimensional system has a solution if and only if there exists a graph G in n vertices that has a dominating set of size k.

$$e_{ij}^2 - e_{ij} = 0 \;, \quad ext{for } 1 \leq i < j \leq n,$$
 $\prod_{S \in S_n^k} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right) = 0 \;.$

Notation Definitions

Let \mathscr{P}_G be the set of polynomials representing a graph G in n vertices with a dominating set of size k:

$$e_{ij}^2 - e_{ij} = 0 \ , \quad \text{for } 1 \leq i < j \leq n,$$

$$\prod_{S \in S_n^k} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right) = 0 \ .$$

Notation Definitions

Let \mathscr{P}_G be the set of polynomials representing a graph G in n vertices with a dominating set of size k:

$$e_{ij}^2 - e_{ij} = 0$$
 , for $1 \le i < j \le n$, $\prod_{S \in S_n^k} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right) = 0$.

Let \mathscr{P}_H be the set of polynomials representing a graph H in n' vertices with a dominating set of size I:

$$\begin{aligned} {e'}_{ij}^2 - e'_{ij} &= 0 \ , \quad \text{for } 1 \leq i < j \leq n', \\ \prod_{S \in S'_{n'}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e'_{ij}) \right) \right) &= 0 \ . \end{aligned}$$

Notation Definitions (continued)

Let $\mathscr{P}_{G \square H}$ be the set of polynomials representing the cartesian product graph $G \square H$ with a dominating set of size r:

For $i = 1, \ldots, n$ and $j = 1, \ldots, n'$,

$$z_{ij}^2-z_{ij}=0\;,$$

$$(1-z_{ij})\prod_{k=1}^{n}(1-e_{ik}z_{kj})\prod_{k=1}^{n'}(1-e'_{jk}z_{ik})=0$$
,

and

$$-r + \sum_{i=1}^{n} \sum_{j=1}^{n'} z_{ij} = 0$$
,

The ideal I_k^I and variety V_k^I

Lemma

The system of polynomial equations \mathscr{P}_G , \mathscr{P}_H and $\mathscr{P}_{G\square H}$ has a solution if and only if there exist graphs G, H in n, n' vertices respectively with dominating sets of size k, l respectively such that their cartesian product graph $G\square H$ has a dominating set of size r.

Lemma

The system of polynomial equations \mathscr{P}_G , \mathscr{P}_H and $\mathscr{P}_{G\square H}$ has a solution if and only if there exist graphs G, H in n, n' vertices respectively with dominating sets of size k, l respectively such that their cartesian product graph $G\square H$ has a dominating set of size r.

Let
$$I_k^I:=I(n,k,n',I,r=kI-1):=\langle \mathscr{P}_G,\mathscr{P}_H,\mathscr{P}_{G\square H}\rangle$$
 .

The ideal I_k^I and variety V_k^I

Lemma

The system of polynomial equations \mathscr{P}_G , \mathscr{P}_H and $\mathscr{P}_{G\square H}$ has a solution if and only if there exist graphs G, H in n, n' vertices respectively with dominating sets of size k, l respectively such that their cartesian product graph $G\square H$ has a dominating set of size r.

Let
$$I_k^I:=I(n,k,n',I,r=kI-1):=\langle \mathscr{P}_G,\mathscr{P}_H,\mathscr{P}_{G\square H}\rangle$$
. Let $V_k^I:=V(I_k^I)$.

The ideal I_k^I and variety V_k^I

Lemma

The system of polynomial equations \mathscr{P}_G , \mathscr{P}_H and $\mathscr{P}_{G\square H}$ has a solution if and only if there exist graphs G,H in n,n' vertices respectively with dominating sets of size k,l respectively such that their cartesian product graph $G\square H$ has a dominating set of size r.

Let
$$I_k^I := I(n, k, n', I, r = kI - 1) := \langle \mathscr{P}_G, \mathscr{P}_H, \mathscr{P}_{G \square H} \rangle$$
. Let $V_k^I := V(I_k^I)$. Note that $I(V_k^I) = I_k^I$ since the ideal I_k^I is radical.

Theorem 1

Vizing's conjecture is true $\iff V_{k-1}^l \cup V_k^{l-1} = V_k^l$.

Theorem

Vizing's conjecture is true \iff $V'_{k-1} \cup V'_{k-1} = V'_{k}$.

Proof.

Every point in the variety corresponds to a G, H pair.

$\mathsf{Theorem}$

Vizing's conjecture is true \iff $V'_{k-1} \cup V'_{k-1} = V'_{k}$.

Proof.

Every point in the variety corresponds to a G, H pair. Since dominating sets can always be extended, $V_{k-1}^l \cup V_k^{l-1} \subseteq V_k^l$.

$\mathsf{Theorem}$

Vizing's conjecture is true \iff $V_{k-1}^I \cup V_k^{I-1} = V_k^I$.

Proof.

Every point in the variety corresponds to a G, H pair. Since dominating sets can always be extended, $V_{k-1}^l \cup V_k^{l-1} \subseteq V_k^l$. If $V_k^l \subseteq V_{k-1}^l \cup V_k^{l-1}$, then for every G, H pair, either k or l is strictly less than $\gamma(G), \gamma(H)$ respectively.

$\mathsf{Theorem}$

Vizing's conjecture is true \iff $V_{k-1}^{l} \cup V_{k}^{l-1} = V_{k}^{l}$.

Proof.

Every point in the variety corresponds to a G, H pair. Since dominating sets can always be extended, $V_{k-1}^l \cup V_k^{l-1} \subseteq V_k^l$.

If $V_k^I \subseteq V_{k-1}^I \cup V_k^{I-1}$, then for every G, H pair, either k or I is strictly less than $\gamma(G), \gamma(H)$ respectively.

Thus, Vizing's conjecture is true $\iff V_{k-1}^I \cup V_k^{I-1} = V_k^I$.

Intersections and Vizing's Conjecture

Corollary

Vizing's conjecture is true $\iff I_{k-1}^l \cap I_k^{l-1} = I_k^l$.

• **Definition:** Given $I = \langle f_1, \dots, f_s \rangle$ and $J = \langle g_1, \dots, g_t \rangle$, then the *product ideal* $I \cdot J := \langle f_i g_j : 1 \le i \le s, 1 \le j \le t \rangle$.

- **Definition:** Given $I = \langle f_1, \dots, f_s \rangle$ and $J = \langle g_1, \dots, g_t \rangle$, then the *product ideal* $I \cdot J := \langle f_i g_j : 1 \leq i \leq s, 1 \leq j \leq t \rangle$.
- Fact: Given radical ideals $I, J \in \mathbb{K}[x_1, \dots, x_n]$, $\sqrt{I \cdot J} = I \cap J$.

- **Definition:** Given $I = \langle f_1, \dots, f_s \rangle$ and $J = \langle g_1, \dots, g_t \rangle$, then the *product ideal* $I \cdot J := \langle f_i g_j : 1 \leq i \leq s, 1 \leq j \leq t \rangle$.
- Fact: Given radical ideals $I, J \in \mathbb{K}[x_1, \dots, x_n], \sqrt{I \cdot J} = I \cap J$.

Lemma

Let I, J be ideals in $\mathbb{K}[x_1, \ldots, x_n]$ such that $I = \langle f_1, \ldots, f_s \rangle$ and $J = \langle g_1, \ldots, g_t \rangle$. Furthermore, let $\{f_1, \ldots, f_n\} = \{g_1, \ldots, g_n\}$ be square-free univariate polynomials such that $f_i = g_i$ is univariate in x_i .

- **Definition:** Given $I = \langle f_1, \dots, f_s \rangle$ and $J = \langle g_1, \dots, g_t \rangle$, then the *product ideal* $I \cdot J := \langle f_i g_j : 1 \leq i \leq s, 1 \leq j \leq t \rangle$.
- Fact: Given radical ideals $I, J \in \mathbb{K}[x_1, \dots, x_n], \sqrt{I \cdot J} = I \cap J$.

Lemma

Let I,J be ideals in $\mathbb{K}[x_1,\ldots,x_n]$ such that $I=\langle f_1,\ldots,f_s\rangle$ and $J=\langle g_1,\ldots,g_t\rangle$. Furthermore, let $\{f_1,\ldots,f_n\}=\{g_1,\ldots,g_n\}$ be square-free univariate polynomials such that $f_i=g_i$ is univariate in x_i . Then, $\sqrt{I\cdot J}=\langle f_ig_j:1\leq i\leq s,1\leq j\leq t\rangle+\langle f_i:1\leq i\leq n\rangle$.

Corollary

Vizing's conjecture is true
$$\iff$$

$$I_{k-1}^{l} \cdot I_{k}^{l-1} + \langle e_{i}^{2} - e_{i}, e_{j}^{\prime 2} - e_{j}^{\prime}, z_{ij}^{2} - z_{ij} \rangle = I_{k}^{l}.$$

Corollary

Vizing's conjecture is true
$$\iff$$

$$I_{k-1}^{l} \cdot I_{k}^{l-1} + \langle e_{i}^{2} - e_{i}, e_{j}^{\prime 2} - e_{j}^{\prime}, z_{ij}^{2} - z_{ij} \rangle = I_{k}^{l}.$$

Let

$$P_{G_{k-1}} := \prod_{S \in S_n^{k-1}} \left(\sum_{i
otin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right) \, ,$$

$$P_{H_{l-1}} := \prod_{S \in \mathcal{S}_{n'}^{l-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e'_{ij}) \right) \right).$$

Corollary

Vizing's conjecture is true
$$\iff$$

$$I_{k-1}^{l} \cdot I_{k}^{l-1} + \langle e_{i}^{2} - e_{i}, e_{j}^{\prime 2} - e_{j}^{\prime}, z_{ij}^{2} - z_{ij} \rangle = I_{k}^{l}.$$

Let

$$egin{aligned} P_{G_{k-1}} &:= \prod_{S \in S_n^{k-1}} \left(\sum_{i
otin S} \left(\prod_{j \in S} (1 - e_{ij}) \right)
ight), \ P_{H_{l-1}} &:= \prod_{S \in S_{n'}^{l-1}} \left(\sum_{i
otin S} \left(\prod_{j \in S} (1 - e'_{ij}) \right)
ight). \end{aligned}$$

Since
$$V'_{k-1} \cup V'_{k-1} \subseteq V'_{k}$$
, this implies $I'_{k} \subseteq I'_{k-1} \cap I'^{l-1}_{k}$.

Corollary

Vizing's conjecture is true
$$\iff$$

$$I_{k-1}^{l} \cdot I_{k}^{l-1} + \langle e_{i}^{2} - e_{i}, e_{j}^{\prime 2} - e_{j}^{\prime}, z_{ij}^{2} - z_{ij} \rangle = I_{k}^{l}.$$

Let

$$egin{aligned} P_{G_{k-1}} &:= \prod_{S \in S_n^{k-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right), \ P_{H_{l-1}} &:= \prod_{S \in S_{n'}^{l-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e'_{ij}) \right) \right). \end{aligned}$$

Since
$$V'_{k-1} \cup V'^{l-1} \subseteq V'_k$$
, this implies $I'_k \subseteq I'_{k-1} \cap I'^{l-1}_k$.

Proving $I'_k \subseteq I'_{k-1} \cap I'^{l-1}_k$ is equivalent to proving

Corollary

Vizing's conjecture is true
$$\iff$$

$$I_{k-1}^{l} \cdot I_{k}^{l-1} + \langle e_{i}^{2} - e_{i}, e_{j}^{\prime 2} - e_{j}^{\prime}, z_{ij}^{2} - z_{ij} \rangle = I_{k}^{l}.$$

Let

$$egin{aligned} P_{G_{k-1}} &:= \prod_{S \in S_n^{k-1}} \left(\sum_{i
otin S} \left(\prod_{j \in S} (1 - e_{ij}) \right)
ight), \ P_{H_{l-1}} &:= \prod_{S \in S_{n'}^{l-1}} \left(\sum_{i
otin S} \left(\prod_{j \in S} (1 - e'_{ij}) \right)
ight). \end{aligned}$$

Since
$$V'_{k-1} \cup V'_{k-1} \subseteq V'_{k}$$
, this implies $I'_{k} \subseteq I'_{k-1} \cap I'^{l-1}_{k}$.

Proving $I_k^I \subseteq I_{k-1}^I \cap I_k^{I-1}$ is equivalent to proving $P_{G_{k-1}} \cdot P_{H_{l-1}} \in I_k^I$.

Let

$$\mathscr{P}'_{G\square H}:=\mathscr{P}_{G\square H}\setminus\Big\{-(kl-l)+\sum_{i=1}^n\sum_{j=1}^{n'}z_{ij}\Big\}$$

Let

$$\mathscr{P}'_{G\square H}:=\mathscr{P}_{G\square H}\setminus\Big\{-(kl-l)+\sum_{i=1}^n\sum_{j=1}^{n'}z_{ij}\Big\}$$

Conjecture via Experimental Observation

The following set of polynomials (described by cases 1 through 6) is a graph-theoretic interpretation of the unique, reduced Gröbner basis of $\mathscr{P}'_{\mathsf{G}\square H}$.

Every polynomial in the Gröbner basis has the following form:

$$(x_{i_1}-1)(x_{i_d}-1)\cdots(x_{i_D}-1)$$
,

where
$$D := (n-1) + (n'-1) + 1 := n + n' - 1$$
.

Every polynomial in the Gröbner basis has the following form:

$$(x_{i_1}-1)(x_{i_d}-1)\cdots(x_{i_D}-1)$$
,

where
$$D := (n-1) + (n'-1) + 1 := n + n' - 1$$
.

In the $\mathscr{P}'_{tri\Box tri}$ example, the degree equals five.

Notation: Let \mathscr{G} represent the set of G-levels in $G \square H$. Given a level $I \in \mathscr{G}$, let

$$p(I) := \prod_{i \in V(I)} (x_i - 1) .$$

Notation: Let \mathscr{G} represent the set of G-levels in $G \square H$. Given a level $I \in \mathscr{G}$, let

$$p(I) := \prod_{i \in V(I)} (x_i - 1) .$$

Example: Consider the *a*-level in tri□tri. Then,

$$p(a) := (z_{1a} - 1)(z_{2a} - 1)(z_{3a} - 1)$$
.

Case 1: There are $|G| \cdot |H|$ polynomials of the form:

$$p(g) \cdot \prod_{\substack{l \in \mathscr{G}: \\ l \neq g}} (x[l_i] - 1)$$
, for each $i \in V(G)$ and each level $g \in \mathscr{G}$.

Case 1: There are $|G| \cdot |H|$ polynomials of the form:

$$p(g) \cdot \prod_{\substack{l \in \mathscr{G}: \\ l \neq g}} (x[l_i] - 1)$$
, for each $i \in V(G)$ and each level $g \in \mathscr{G}$.

Example: For g = a-level and i = 1, then

$$(z_{1a}-1)(z_{2a}-1)(z_{3a}-1)(z_{1b}-1)(z_{1c}-1)$$

Notation: Let $e \in E[H]$. In $G \square H$, the lexicographic order defined for the Gröbner basis also defines a direction on the edges in $G \square H$.

Notation: Let $e \in E[H]$. In $G \square H$, the lexicographic order defined for the Gröbner basis also defines a direction on the edges in $G \square H$. In particular, let h(e) define the G-level that where the edge originates (according to the lexicographic order), and let t(e) denote the G-level where the edge terminates.

Notation: Let $e \in E[H]$. In $G \square H$, the lexicographic order defined for the Gröbner basis also defines a direction on the edges in $G \square H$. In particular, let h(e) define the G-level that where the edge originates (according to the lexicographic order), and let t(e) denote the G-level where the edge terminates.

Example: Consider the edge e'_{ac} and the c-level in tri \square tri. Then,

$$p(h(e)) := (z_{1a} - 1)(z_{2a} - 1)(z_{3a} - 1) ,$$

$$p(t(e)) := (z_{1c} - 1)(z_{2c} - 1)(z_{3c} - 1) .$$

Case 2: There are $2||H|| \cdot |G| + 2||G|| \cdot |H|$ polynomials of the following form:

$$(x_e-1)p(h(e))\prod_{\substack{g\in \mathscr{G}:\ g
eq g[t(e)]\ \text{and }g
eq g[h(e)]}} (g_i-1)\ , \qquad ext{for each } e\in E(H) ext{ and each } i\in V(G)$$

$$(x_e-1)p(t(e))\prod_{\substack{g\in\mathscr{G}:\ g
eq\mathscr{G}[t(e)]\ \text{and }g
eq\mathscr{G}[h(e)]}} (g_i-1)\ , \qquad ext{for each } e\in E(H) ext{ and each } i\in V(G)$$

Case 2: There are $2||H|| \cdot |G| + 2||G|| \cdot |H|$ polynomials of the following form:

$$(x_e-1)p(h(e))\prod_{\substack{g\in\mathscr{G}:\ g
eq\mathscr{G}[t(e)]\ \text{and }g
eq\mathscr{G}[h(e)]}} (g_i-1)\ , \qquad ext{for each } e\in E(H) ext{ and each } i\in V(G)$$

$$(x_e-1)p(t(e))\prod_{\substack{g\in\mathscr{G}\colon g
eq\mathscr{G}[t(e)]\ ext{and }g
eq\mathscr{G}[h(e)]}}(g_i-1)\;,\qquad ext{for each }e\in E(H) ext{ and each }i\in V(G)$$

Example: For $e = e'_{ac}$ and i = 1, then

$$(e'_{ac}-1)(z_{1a}-1)(z_{2a}-1)(z_{3a}-1)(z_{1b}-1)$$
,
 $(e'_{ac}-1)(z_{1c}-1)(z_{2c}-1)(z_{3c}-1)(z_{1b}-1)$.

• Represented Vizing's conjecture as a computational problem.

- Represented Vizing's conjecture as a computational problem.
 - Can we use symmetry to speed up the computations?

- Represented Vizing's conjecture as a computational problem.
 - Can we use symmetry to speed up the computations?
- Conjectured a graph-theoretic interpretation of the Gröbner basis of $\mathscr{P}'_{G\square H}$ (presented only cases 1 and 2).

- Represented Vizing's conjecture as a computational problem.
 - Can we use symmetry to speed up the computations?
- Conjectured a graph-theoretic interpretation of the Gröbner basis of $\mathscr{P}'_{G\square H}$ (presented only cases 1 and 2).
 - Code it up and check it!

- Represented Vizing's conjecture as a computational problem.
 - Can we use symmetry to speed up the computations?
- Conjectured a graph-theoretic interpretation of the Gröbner basis of $\mathscr{P}'_{G\square H}$ (presented only cases 1 and 2).
 - Code it up and check it!

Thank you for your kind attention! Questions, comments, thoughts and suggestions are most welcome.