

Seminar Technische Informatik

Top 10 Algorithms in Data Mining

Stephan Mielke, 22.01.2015

Technische

Universität

Motivation - Der Weltraum unendliche Weiten ...

Abbildung 1: Hubble Ultra Deep Field [1]

Motivation - Einsatz von DM in der Astronomie

- Klassifizierung von Sternen mit *k*-nearest neighbor (*k*-nn)
- Manuelle Klassifizierung unmöglich [2]
- Pro Bild zehntausende Objekte
- Kepler hat z. B. 13.2 Millionen Objekte erkannt
- Benutzung von Klassifizierungsalgorithmen aus DM
- Je Objekt 9 Attribute (8 Isophotenformen, Leuchtkraft)
- Ausgabewert "stellary"

Galaxie:	0.0-0.1
Stern:	0.9-1.0

Name	Erkennung
Random Forest	82,89%
Decision Tree	82, 89% 80, 68% 75.82%
Artificial Neural Network	75.82%
Support Vector Machines	37, 82%

Tabelle 1: Erkennungsraten der Algorithmen Stern/Galaxie [3]

Data Mining - Einleitung [2]

Definition nach Fayyad [4]

Knowledge Discovery in Databases describes the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data

- Idee: Wissen durch Daten
- Einsatz in der Forschung, Vermarktung, Medizin, (Wetter-) Vorhersagen, Betrugsaufklärung usw.

- Anlass: IEEE International Conference on Data Mining
- Datum: Dezember 2006
- Erstellung: Jeder Preisträger eines ACM KDD Innovation Awards oder eines IEEE ICDM Research Contributions Awards nominierte 10 Algorithmen
- Nur Nominierte mit mind. 50 Referenzierungen in Google Scholar
- http://www.cs.uvm.edu/~icdm/algorithms/CandidateList.shtml
- Per Abstimmung finden der Top 10
- Das Paper: "Top 10 Algorithms in Data Mining" [5]

Clustering

- 1. C4.5 und ähnliche
- 2. k-means
- 3. Suport Vector Machines
- 4. Apriori
- 5. EM Algorithm

- 6. PageRank
- 7. AdaBoost
- 8. k-nearest neighbor
- 9. Naive Bayes
- 10. CART

Clustering

- 1. C4.5 und ähnliche
- 2. k-means
- 3. Suport Vector Machines
- 4. Apriori
- 5. EM Algorithm

- 6. PageRank
- 7. AdaBoost
- 8. k-nearest neighbor
- 9. Naive Bayes
- 10. CART

Classification

- 1. C4.5 und ähnliche
- 2. k-means
- 3. Suport Vector Machines
- 4. Apriori
- 5. EM Algorithm

- 6. PageRank
- 7. AdaBoost
- 8. k-nearest neighbor
- 9. Naive Bayes
- **10.** CART

Clustering

- 1. C4.5 und ähnliche
- 2. k-means
- 3. Suport Vector Machines
- 4. Apriori
- 5. EM Algorithm

- 6. PageRank
- 7. AdaBoost
- 8. k-nearest neighbor
- 9. Naive Bayes
- 10. CART

Classification

- 1. C4.5 und ähnliche
- 2. k-means
- 3. Suport Vector Machines
- 4. Apriori
- 5. EM Algorithm

- 6. PageRank
- 7. AdaBoost
- 8. k-nearest neighbor
- 9. Naive Bayes
- **10.** CART

Assoziation

- 1. C4.5 und ähnliche
- 2. k-means
- 3. Suport Vector Machines
- 4. Apriori
- 5. EM Algorithm

- 6. PageRank
- 7. AdaBoost
- 8. k-nearest neighbor
- 9. Naive Bayes
- **10.** CART

Data Mining - Clustering - Einleitung [2]

 Einordnung von Objekten in unbekannten Klassen

 Finden der Funktion die Objekte gruppiert

 Ähnlichkeit von Objekten durch eine Distanzfunktion ermitteln

Abbildung 2: Repräsentierendes Beispiel-Clustering

Data Mining - Clustering - Cluster [6]

- Formen: sehr unterschiedlich
- Flach oder Hierarchisch
- Hard oder Soft-Clustering
- Anzahl von Clustern:
 - Festgelegte Anzahl von k-Clustern
 - Anzahl hängt von der Qualitätsgüte der Cluster ab
- Qualitätsgüte: nicht zu klein oder zu groß
- Keine großen "Lücken" zwischen den Daten
- Clustering durch Heuristiken, sonst zu großer Aufwand

Data Mining - Clustering - Distanzfunktion [2]

- Menge von Objekten $O = \{o_1, o_2, \dots, o_n\}$
- Jedes Objekt x hat x_i Attribute
- Generell müssen (1)–(3) gelten, für eine Metrik außerdem (4):

$$dist(o_1, o_2) = d \in R^{n \geqslant 0} \tag{1}$$

$$dist(o_1, o_2) = 0 \text{ genau dann wenn } o_1 = o_2$$
 (2)

$$dist(o_1, o_2) = dist(o_2, o_1) \text{ (Symmetrie)}$$
(3)

$$dist(o_1, o_3) \leq dist(o_1, o_2) + dist(o_2, o_3)$$
 (4)

Attributarten und jeweilige beispielhafte Distanzfunktionen:

Nummerisch: dist
$$(x, y) = \sqrt{(x_1 - y_1)^2 + ... + (x_n - y_n)^2}$$

Kategorisch: dist $(x, y) = \sum_{i=1}^{n} \delta(x_i, y_i), \quad \delta(x_i, y_i) = \begin{cases} 0, x_i = y_i \\ 1, x_i \neq y_i \end{cases}$

Data Mining - Clustering - Beispiel [2]

- Clustering von Web-Sessions zur Bestimmung von Benutzergruppen
- Datenquelle: Logfile eines Webservers
- Eintrag: IP, User-ID, Timestamp, URL, ...
- Einträge werden nach Session gruppiert, welche durch Zeitfenster gebildet werden
- Session: IP, User-ID, Liste von URLs
- URLs werden geclustert, z. B.: Distanzfunktion für endliche Mengen
- Wissen:
 - Benutzergruppen/Benutzerprofile für Marketingstrategien
 - URLs sind durch Interessen verbunden, Optimierung für Zugriffsgewohnheiten
- Ein Sozialmedia-Button kann auch die nötigen Informationen liefern

- Hartes Flaches Clustering
- Bekannte Anzahl von k Clustern
- Daten als Vektoren
- Idee: Minimiert den Abstand vom Clusterschwerpunkt zu den Daten
- Cluster ist definiert als:
 - $A = \{d_1, \ldots, d_m\}$, A ist ein Cluster und d_i Element
 - $\mu(A) = \frac{1}{m} \sum_{i=1}^{m} d_i$ ist Schwerpunkt
- Qualität: gut für minimales RSS(...)

Cluster: RSS
$$(A) = \sum_{i=1}^{m} \|d_i - \mu(A)\|^2$$

Gesamt: RSS
$$(A_1, ..., A_k) = \sum_{i=1}^k \text{RSS}(A_j)$$

Der *k*-means Algorithmus (Lloyd's Algorithmus):

- 1. Selektiere zufällig *k* Schwerpunkte als Startwert
- 2. Erstelle k leere Cluster
- 3. Weise jedem Cluster einen Schwerpunkt zu
- Weise jedem Datenvektor den Cluster mit dem n\u00e4chstem Schwerpunkt zu
- 5. Berechne den Schwerpunkt jedes Clusters neu
- 6. Teste, ob die Qualität des Clusterings ausreicht, sonst gehe zu 2.

Abbildung 3: Ersten 3 Phasen, k = 2

Abbildung 4: Phase 4, Zuordnung nur beispielhaft

Abbildung 5: Phase 5, Schwerpunkte sind nur beispielhaft

Abbildung 6: Phase 6 und noch mal von Phase 2 an

Data Mining - Classification - Einleitung [2]

- Einordnung von Objekten in bekannten Klassen
- Trainingsdaten für Klassen
 ⇒ Klassen bekannt
- Finden der Funktion die Objekte möglichst genau zuordnet
- Teilaufgaben:
 - Zuordnung zu einer Klasse
 - Generierung von Wissen

Abbildung 7: Repräsentierende Beispiel-Classifiication

Data Mining - Classification - Training [2]

- Menge von Objekten $O = \{o_1, o_2, \dots, o_n\}$
- Klasse $c_i \in C = \{c_1, c_2, ..., c_n\}$ für jedes Objekt ist bekannt
- Jedes Objekt hat A_i Klassifizierung-Attribute
- Attributarten:
 - Kategorische Attribute
 - Nummerische Attribute
 - Genauso wie beim Clustering

Data Mining - Classification - Beispiel [2]

Trainingsdaten:

ID	Alter	Autotyp	Risikoklasse
1	23	Familie	Hoch
2	17	Sport	Hoch
3	43	Sport Sport	Hoch
4	68	Familie	Niedrig
5	32	LKW	Niedrig

Tabelle 2: Beispiele aus Knowledge Discovery in Databases: Techniken und Anwendungen [2]

Data Mining - Classification - Beispiel [2]

Trainingsdaten:

ID	Alter	Autotyp	Risikoklasse
1	23	Familie	Hoch
2	17	Sport	Hoch
3	43	Sport Sport	Hoch
4	68	Familie	Niedrig
5	32	LKW	Niedrig

Tabelle 2: Beispiele aus Knowledge Discovery in Databases: Techniken und Anwendungen [2]

Das gesuchte Wissen

Data Mining - Classification - Gesuchte Wissen [2]

Formen: • Entscheidungsbaum

Funktion

Vektor im Koordinatensystem

Anwendung: Immer dann, wenn die Klassen bekannt sind

Unterscheidung von Stern/Galaxie

Sterne Einordnen

Zuordnung von Risikogruppen

Medizinforschung

...

Annahmen: • Nur zwei Klassen

Jedes Objekt ist ein Vektor im

Koordinatensystem

Ziel: Hyperplane¹ die den Raum teilt

Training: • Hyperplane mit maximalem Abstand zu allen

Trainingsvektoren

Hyperplane-Begrenzungsobjekte sind

Supportvektoren

Differenzfunktion: $\delta(o_1, o_2)$ ist ähnlich zum Clustering

¹Hyperebene

Abbildung 8: Gesucht: die richtige Hyperplane

Abbildung 9: Gefunden: die richtige Hyperplane

Abbildung 10: Einordnung: mit der richtige Hyperplane

Abbildung 11: Training: ungünstige Daten

Data Mining - Assoziation - Einleitung [2]

Jedem bekannt?

Kunden, die diesen Artikel gekauft haben, kauften auch...

Data Mining - Assoziation - Einleitung [2]

Jedem bekannt?

Kunden, die diesen Artikel gekauft haben, kauften auch...

Gesucht: Beziehungen (Regeln: $A \Rightarrow B$) zwischen Objekten

Benötigt: Transaktionsdatenbank (Einkauf-History)

T_i	Itemset (X_i)	Support:	{Kaffee, Milch}
1	Brot, Kaffee, Milch, Kuchen		= 3/6 = 50%
2	Kaffee, Milch, Kuchen	Support:	{Kaffee, Kuchen, Milch}
3	Brot, Butter, Kaffee, Milch		$=2/3\approx33\%$
4	Milch, Kuchen	Support:	•
5	Brot, Kuchen	Support.	{Kaffee, Milch} \Rightarrow {Kuchen} = 2/3 \approx 33%
6	Brot		$\equiv 2/3 \approx 33\%$
'		Konfidenz:	$\{Kaffee, Milch\} \Rightarrow \{Kuchen\}$

Tabelle 3: Transaktionsdatenbank [2]

Technische

 $= 33\%/50\% \approx 66\%$

Data Mining - Assoziation - Grundbegriffe [2]

Items: $I = \{i_1, \dots, i_m\}$, ein Itemset $X \subseteq I$

Transaktionsset: $D = \{T_1, \ldots, T_n\}$, für T_i gilt: $T_i \subseteq I$

Support der Menge: $\delta(X, D)$: Anteil (%) aller T_i für die gilt $X \subseteq T_i$

Assoziationsregel: $R_i = X \Rightarrow Y$ es gilt: $X, Y \subseteq I$ und $X \cap Y = \emptyset$

Support der Regel: $\delta(R_i, D) = \delta(X \cup Y, D)$: Anteil (%)

Konfidenz der Regel: $\phi(R_i, D) = \delta(Y, \{T_i \mid \forall T_i \in D \land X \subseteq T_i\})$

Idee: Finden von Regeln, die einen Support und

Konfidenz von einer gewissen Schwelle

besitzen

Big Data - Einleitung [8] [9]

- Himmelskartografie-Projekt Sloan Digital Sky Survey² startete 2000
- Sammelte in der ersten Wochen mehr Daten als die gesamte Astronomie davor
- Bis 2010 ca. 140 TB Daten gesammelt (ca. 35% Abdeckung)
 Sterne 260 562 744 und Galaxien 208 478 448 [7]
- 2019 geplanter Nachfolger Large Synoptic Survey Telescope³
- ⇒ Erzeugt alle 5 Tage 140 TB an Daten!

³Teleskop mit 8,4m Spiegel am El-Peñón-Gipfel des Cerro Pachón, Chile

²Teleskop mit 2,5m Spiegel am Apache Point Observatory, New Mexico

Big Data - Einleitung [8] [9]

- "Datenberge" wachsen immer weiter an
 - Geschätzt 2007 an die 300 Exabyte⁴ Daten
 - Geschätzt 2013 an die 1200 Exabyte Daten⁵
- Verarbeitung riesiger Datenmengen zur Gewinnung von Wahrscheinlichkeiten zu genaueren Vorhersagen
 - Dass eine E-Mail Spam ist
 - Dass "dei" bei der Autokorrektur "die" heißt
 - Ob eine Bewegung eines Menschen eine Gefahr für selbstlenkende Fahrzeuge ist
- Die Erkenntnis ist nicht das Warum sondern das Was
- "Was wir an Genauigkeit auf der Mikroebene verlieren, gewinnen wir an Erkenntnis auf der Makroebene." [8]

⁵in CDs: 5 Stapel zum Mond

⁴1 Exabyte = 1 000 000 TB

Big Data - HACE Theorem [9]

Big Data starts with large-volume, **H**eterogeneous, **A**utonomous sources with distributed and decentralized control, and seeks to explore Complex and Evolving relationships among data.

Huge Heterogeneous Viele unterschiedliche Repräsentatio-

Data: nen der "Datenhaufen"

Autonomous Sources: Wahllose Generierung von Daten ohne

zentrale Steuerung

Complex and Evolving Verflechtung der Daten untereinander wird immer komplexer und nimmt zu Relationships:

Big Data - Herausforderungen für DM [9]

- Skalierung und Verarbeitung der Daten nach dem HACE Theorem
- Komplexität und Verarbeitungsdauer der Algorithmen

Fazit

- Data Mining zeigt Zusammenhänge in Datenbeständen und erzeugt Wissen
- Vielfach genutzt in der Forschung, Entwicklung und im Alltag
- Jeder kommt mindestens einmal am Tag mit DM in Kontakt Stichwort: Google, Spamfilter, Versicherungen, . . .
- Big Data verändert unser Verständnis von Wissensgewinnung, da die Schwierigkeit nicht mehr bei der Datengewinnung liegt
- Verdrängt das "Bauchgefühl" und stützt sich auf Fakten Stichwort: Analyse von "Datenbergen"
- "Was wir an Genauigkeit auf der Mikroebene verlieren, gewinnen wir an Erkenntnis auf der Makroebene." [8]
- Eine Gefahr ist der gläserne Mensch

Diskussion

Gibt es Fragen?

Danke

Vielen Dank für Ihre Aufmerksamkeit und Ihr Interesse.

Literatur I

- [1] S. B. S. NASA, ESA and the HUDF Team. (2004) Hubble ultra deep field. [Online]. Available: http://imgsrc.hubblesite.org/hu/db/images/hs-2004-07-a-pdf.pdf
- [2] M. Ester and J. Sander, Knowledge discovery in databases: Techniken und Anwendungen. Springer Heidelberg, 2000, vol. 2, no. 4.
- [3] P. J. O'Keefe, M. G. Gowanlock, S. M. McConnell, and D. R. Patton, "Star-galaxy classification using data mining techniques with considerations for unbalanced datasets," in *Astronomical Data Analysis Software and Systems XVIII*, vol. 411, 2009, p. 318.

Literatur II

- [4] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "From data mining to knowledge discovery in databases," *AI magazine*, vol. 17, no. 3, p. 37, 1996.
- [5] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip et al., "Top 10 algorithms in data mining," *Knowledge and Information Systems*, vol. 14, no. 1, pp. 1–37, 2008.
- [6] W.-T. Balke, "Data warehousing and data mining techniques," University Lecture, 2014.
- [7] SDSS-III. (2014, Nov.) The Scope of DR8. [Online]. Available: http://www.sdss3.org/dr8/scope.php

Literatur III

- [8] V. Mayer-Schönberger and K. Cukier, *Big Data*. Computer Press, 2014.
- [9] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, "Data mining with big data," Knowledge and Data Engineering, IEEE Transactions on, vol. 26, no. 1, pp. 97–107, 2014.

