

Self-Terminating Write of Multi-Level Cell ReRAM for Efficient Neuromorphic Computing

Zongwu Wang (Speaker)

Zhezhi He*, Rui Yang, Shiquan Fan, Jie Lin, Fangxin Liu, Yueyang Jia, Chenxi Yuan, Qidong Tang and Li Jiang*

Shanghai Jiao Tong University

2022年4月4日

Self-Terminating Write Scheme Overview

Challenges In ReRAM-based PIM

- ReRAM has intrinsic write variation
- > Read disturb induces resistance drifting
- Write-verify scheme is relative slow

Write variation (CDF vs resistance)

- Measurement and simulation results comparison
- C2C variation exists in programming
- ➤ Set and Reset have significant write variation (8% and 23%, respectively)

Read disturb (conductance vs. #read times)

- ReRAM suffers from read induced drifting
- In-Memory computing equivalents to read
- Reliability test shows 6.6% and 45.6% drifting

Proposed Solution

- Heavily peripherals reuse achieves precise selfterminating scheme(2-bit)
- Pick appropriate programming range according to circuit design
- Compare to Write-verify scheme, Reduce the latency and energy by 4.7x and 2x, respectively

Self-Terminating Write Scheme Design

A: ReRAM Array

B: TIA module

C: SAR-ADC

D: Verdict module

Existing ReRAM-based PIM system

ReRAM MLC STW Schematic

Proposed Self-Terminating Write Scheme

- ➤ Heavily reuse the peripherals in ReRAM-based PIM system (3 + 1 modules)
- > Implementing both Set and Reset termination with circuit sharing (3 modes)
- Ultra-compact design contributes to low cost and fast feedback (high precision)

Self-Terminating Write Transition Waveform

SET Duration RESET Duration Vsrc Rrram Vref Vsen Vgating write (A) lwrite t₂ 400.0n lwrite cut-off Time (s) 200.0n 600.0n **Iwrite cut-off**

Inference Mode Transition

Programming Waveform

MODE	EN_n	VBL	Vsrc	COND	Vsen	Vout-	Vgating
Inference	Н	Vread	GND	-	-	-	L
Set_term	L	Vset	GND	7	7	7	7
Rst_term	L	GND	VDD	>	7	7	7

Self-Terminating Write Transition Waveform

SET Terminating Transition

MODE	EN_n	VBL	Vsrc	COND	Vsen	Vout-	Vgating
Inference	Н	Vread	GND	-	-	-	L
Set_term	L	Vset	GND	7	7	\(\sqrt{\gamma}\)	7
Rst_term	L	GND	VDD	¥	7	¥	7

Programming Waveform

Self-Terminating Write Transition Waveform

RESET Terminating Transition

MODE EN n **VBL** COND Vsrc Vsen Vout-Vgating Н **GND** Inference **Vread** Set_term **Vset GND** 7 Rst term **GND VDD**

Programming Waveform

Conclusion

No difference between set & reset

Self-Terminating Write Scheme Evaluation

	Structure	Area	Terminate	Precision
This work	2Amp+5T+NOR	Medium	both	2 bits
JSSC-2013 [10]	2Amp+R+30T +DelayUnit+others	Large	both	1 bit
ISSCC-2014 [24]	4T	Small	set	1 bit
IEDM-2017 [6]	RESET: Amp+4SW+6T SET: 5T	Medium	both	1 bit
ISSCC-2021 [25]	2Amp+R+5T+3INV +AND+Delay Unit	Large	set	1 bit

Comparison with previous works (area, programming polarity and precision):

- Reduces area overhead by peripherals reuse
- Supports both Set and Reset termination
- Achieves 2-bit MLC self-terminating

10⁴ trials MC simulation with range selection algorithm

the proposed STW scheme achieves 2-bit precision

Latency comparison between different schemes

STW scheme shows 4.7x speedup (conservative)

Self-Terminating Write Scheme Evaluation

Impact of Read disturb on inference accuracy:

- Accuracy loss with the continuous inference after the network deployed
- MLC can reduce the storage/computation cost, but it is more vulnerable to read disturb

Proportion of delay on different networks

- Ratio of refresh latency is low on compact networks
- From the perspective of deployment cost, programming delay is an important factor

Refresh Frequency and Accuracy Balancing:

The lower the refresh frequency, the lower the proportion of refresh delay, but the lower the accuracy

Conclusion

- 1. An auto-calibrate Framework
 - ☐ Provides an easy-use and confident ReRAM compact model
- 2. A valid self-terminated programming scheme for MLC
 - Heavily reuses the original peripheral
 - □ Compact design achieves low cost and high precision
 - Reduce the latency and energy by 4.7x and 2x, respectively
- 3. Cross-layer simulation (device/circuit/system) to validate the design

Thanks for Listening

饮水思源爱国荣校