A Data Model and Partial Implementation of a Software System: The Technical Academy Case Study

By

Jeff David

Table of Contents

Table	of Figu	res	3
1.0	Summ	nary	4
2.0	Introd	luction	4
3.0	Requi	rement Specification	4
3.1	Enti	ity Relationship Diagram	4
3	.1.1	Assumptions	5
3.2	Rela	ational Diagram	9
3	.2.1	Comments	9
3.3	Dat	a Collection and Populating the Database	. 10
3.4	SQL	. Queries	. 15
3	.4.1	Query 1	. 15
3	.4.2	Query 2	. 15
3	.4.3	Query 3	. 16
3	.4.4	Query 4	. 16
3	.4.5	Query 5	. 17
3.5	Rep	ort	. 19
4.0	Refere	ences	. 20
5.0	Apper	ndix – DDL Script	. 21

Table of Figures

Figure 1: Proposed Entity Relationship Diagram for the Technical Academy	4
Figure 2: Proposed Relational Diagram for the Technical Academy	9

1.0 Summary

This is a documentation for the proposed data model for the Technical Academy case study. The proposed model is shown using an entity relationship diagram, drawn using the oracle data modeler tool. The relational diagram is engineered from the entity relationship diagram and the data definition language script is generated. To test the efficiency of this model, data is collected from the List of Names Dataset (Back4App, 2020) and the University of Wolverhampton website (Wlv.ac.uk, 2018). This data is inserted into each table and five queries that exhibit a join, aggregate function, selection, subquery and sorting of data are tested on it. This document is concluded with a short discussion on data governance rules in a university environment like the Technical Academy.

2.0 Introduction

The education sector is the sector of interest for this case study and the potential client business is a university in Central England called The Technical Academy. The Technical Academy offers several courses and has corresponding schools responsible for these courses. The university boasts of competent lecturers and bright students but lacks a reliable record system to hold information about the courses, modules, students, lecturers, and activities surrounding student assessments and time spent teaching a module. Hence, the university has outsourced the development of a data model and the partial implementation of a software system to help resolve this issue. This report shows the design process of the database and its partial implementation using a set of test data (Nassa and Frommholz, 2021).

3.0 Requirement Specification

3.1 Entity Relationship Diagram

Figure 1: Proposed Entity Relationship Diagram for the Technical Academy

3.1.1 Assumptions

- 1. Firstly, this design considers only one instance of entity, 'School' in relationship to every other entity.
- 2. In the relationship between Lecturer and School entity: Lecturers must work for a particular school but one school cannot employ all the lecturers in the university and a school must be headed by only one lecturer from that same school. Therefore, the school_name and name are made primary keys because they would serve as foreign keys on the lecturer and school table showing the school_name and head_of_school column respectively. Meanwhile, initials and school_abbreviation are primary keys because they are required to be unique.

Lecturer Entity						
Attribute Name	Туре	Size	Primary Key	Mandatory	Constraint	
initials	VARCHAR	4	Yes	Yes (by default)	-	
name	VARCHAR	20	Yes	Yes (by default)	-	
date_of_birth	Date	-	No	Yes	-	
room_number	CHAR	8	No	Yes	-	
telephone_extension	NUMERIC	Precision: 4	No	Yes	-	
teaching_band	NUMERIC	-	No	No	List of Ranges: 50 - 500	

School Entity						
Attribute Name	Туре	Size	Primary Key	Mandatory	Constraint	
school_abbreviation	CHAR	5	Yes	Yes (by default)	-	
school_name	VARCHAR	20	Yes	Yes (by default)	-	

3. In the relationship between School and Course entity: - A school must have courses its responsible for and every course must appear under a school as well. Therefore, the school_name is made a primary key because it would serve as a foreign key on the course table showing the school responsible for the course. Meanwhile, school_abbreviation and course_code are primary keys because they are required to be unique. Also, a domain is set for course_duration; a course length is set to be between 1 and 7.

Course Entity						
Attribute Name	Туре	Size	Primary Key	Mandatory	Constraint	
course_code	CHAR	5	Yes	Yes (by default)	-	
course_name	VARCHAR	30	Yes	Yes (by default)	-	
course_duration	NUMERIC	-	No	No	List of Ranges: 1 - 7	

4. In the relationship between Course and Student entity: - Because it is a many to many (M:N) relationship within a school, a link entity called "Registration" is created with attributes like grade, start_date and end_date. Grade is not mandatory to fill at the point of registration because this information will only be available at the successful completion of a course. Start_date is mandatory to fill because at the point of registration, there will be a course start_date. End_date is not mandatory to fill because at the point of registration, it is not certain when or if the student will successfully complete the course; extenuating circumstances can affect the end_date.

A course maybe registered by several students and therefore, the course_name is made a primary key because it would serve as a foreign key on the registration table showing the course name a student registered on. Meanwhile, course_code is a primary key because it is required to be unique.

A student may register to one of the courses that is operated by a school and the student_number will serve as a foreign key on the registration table identifying the student that registered on the course. The student number is considered enough to identify a student because it is unique.

Student Entity						
Attribute Name	Туре	Size	Primary Key	Mandatory	Constraint	
student_number	CHAR	8	Yes	Yes (by default)	-	
student_name	VARCHAR	20	No	Yes	-	
email	VARCHAR	30	No	Yes	-	
date_of_birth	Date	-	No	Yes	-	

5. In the relationship between Student and Module entity: - Because it is a many to many (M:N) relationship within a school, a link entity called "Enrolment" is created with attributes like period, academic_year and overall_percentage. Period is mandatory to fill because students need to know the exact semester a particular module will be taken at the point of enrolment. Academic_year is mandatory to fill because it is also important for the students to know the academic year a module will be taken. The overall_percentage is not mandatory to fill at the point of enrolment because this information will only be available at the successful completion of a module.

A student may enroll on a module and therefore, the student_number will serve as a foreign key on the enrolment table identifying the student that is enrolled on the module. Again, the student_number is considered enough to identify a student because it is unique.

A module maybe taken by several students and therefore, the module_name is made a primary key because it would serve as a foreign key on the enrolment table showing the module_name the student enrolled on. Meanwhile, module_number is a primary key because it is required to be unique.

Module Entity						
Attribute Name	Туре	Size	Primary Key	Mandatory	Constraint	
module_number	CHAR	6	Yes	Yes (by default)	-	
module_name	VARCHAR	20	Yes	Yes (by default)	-	

6. In the relationship between Lecturer and Module entity: - Lecturers may teach several modules and several modules maybe taught by many lecturers. Also, one lecturer may lead several modules and a module must be led by one lecturer. Therefore, it is a many to many (M:N) relationship within a school and a link entity called "Class" is created with attributes like campus_location, room_number and duration. All the three attributes are not mandatory to fill at the start of a semester or course because the timetable will have to be confirmed by the school's student services department for the campus_location, room_number and duration of the class. Also, a domain, campus_location_value is set for campus location; a class's campus location is either CHELTENHAM, HEREFORD, or WARWICK.

A module maybe taught in several classes and therefore, the module_name will serve as a foreign key on the class table identifying the module to be taught in a class. Again, the module_number is a primary key because it is required to be unique.

A lecturer may teach in several classes and therefore, name will serve as a foreign key on the class table showing the lecturer responsible for a class and the time expected to be spent teach a module in a class. Also, a lecturer may lead several modules and therefore, name will serve as a foreign key on the module table showing the name of the lecturer responsible for leading a module. Meanwhile, initials is a primary key because it is required to be unique.

- 7. In the relationship between School and Module entity: A school must operate several modules and a module must be operated by a school. Therefore, school_name will serve as a foreign key on the module table showing the name of the school responsible for a module. Meanwhile, school_abbreviation is a primary key because it is required to be unique.
- 8. In the relationship between Course and Module entity: Because it is a many to many (M:N) relationship within a school, a link entity called "Course_Module" is created with no_of_credits as its only attribute. No_of_credits is mandatory to fill because this information should be set at the point of provisioning a new course to be operated by a school.

A course must have several modules and therefore, the course_name is made a primary key because it would serve as a foreign key on the course_module table showing the name of the course responsible for a module. Meanwhile, course code is a primary key because it is required to be unique.

A module may appear on several courses and therefore, the module_name will serve as a foreign key on the course_module table identifying the module that appears on a course. The module_number is a primary key because it is required to be unique.

Class Entity							
Attribute Name	Туре	Size	Primary Key	Mandatory	Constraint		
campus_location	VARCHAR	10	No	No	List of Values: CHELTENHAM, HEREFORD, WARWICK		
room_number	CHAR	8	No	No	-		
duration	VARCHAR	10	No	No	-		

Course_Module Entity						
Attribute Name	Туре	Size	Primary Key	Mandatory	Constraint	
no_of_credits	NUMERIC	Precision: 2	No	Yes	-	

Registration Entity						
Attribute Name	Туре	Size	Primary Key	Mandatory	Constraint	
grade	VARCHAR	20	No	No	-	
start_date	Date	-	No	Yes	-	
end_date	Date	-	No	No	-	

Enrolment Entity						
Attribute Name	Туре	Size	Primary Key	Mandatory	Constraint	
period	VARCHAR	9	No	Yes	-	
academic_year	VARCHAR	9	No	Yes	-	
overall_percentage	VARCHAR	4	No	No	-	

3.2 Relational Diagram

Figure 2: Proposed Relational Diagram for the Technical Academy

3.2.1 Comments

- 1. Additional domain, EndDate_chk is added to the Registration table; start_date < end_date.
- 2. The foreign key names are renamed to make meaning on the tables they appear on.
 - a. All the prefixes (name of the entity it related to) are removed from the foreign keys like in Enrolment table; Student_student_number is renamed to student_number.

- b. On the School table, initials is renamed to head_of_school_initials and name is renamed to head_of_school.
- c. On the Module table, Lecturer_initials is renamed to module_leader_initials and Lecturer_name is renamed to module_leader.

3.3 Data Collection and Populating the Database

This report used the List of Names Dataset (Back4App, 2020) to populate the Lecturer and Student tables. The dataset is publicly available and is made up of 250,000 names categorized by gender and letter. While data found on the University of Wolverhampton website (Wlv.ac.uk, 2018) is used to populate the School, Course and Module tables. The University of Wolverhampton is a public university in England. The content of each table is shown below: -

SQL> SELECT * FROM LECTURER;

INIT NAME	SCHOO SCHOOL_NAME	DATE_OF_B ROOM_NUM TELEPH	ONE_EXTENSION TEACHING_BAND
WIJA WILL JAMES	SOENG ENGINEERING	26-MAY-84 HFRD0034	1011 450
SAJO SAMUEL JOHN	SOMAT MATHS	09-SEP-77 HFRD0201	1111 450
GEFR GEORGE FRED	SOMED MEDICINE	16-FEB-70 CTHM0034	1011 450
ELRI ELIANNA RICHARD	SOPHM PHARMACY	24-JUN-75 CTHM0201	1111 450
CAWI CARLEIGH WILLIAM	SOSCI SCIENCES	03-JAN-80 WRWK0034	1011 450
KABE KATHY BERT	SOART ART	27-NOV-78 WRWK0201	1111 450
ALDA ALBERT DAVID	SOENG ENGINEERING	30-APR-88 HFRD0035	1012 150
CAHE CARL HENRY	SOENG ENGINEERING	04-FEB-89 HFRD0036	1013 350
SHWA SHAYNA WALTER		05-MAY-87 HFRD0037	1014 200
LAFE LAUREL FREDERICK	SOENG ENGINEERING	06-JUN-83 HFRD0038	1015 350
ANER ANDREW ERNEST	SOMAT MATHS	30-JUN-88 HFRD0039	1016 150
LELO LEE LOUIS	SOMAT MATHS	04-MAR-89 HFRD0040	1016 150
NERU NEVEAH RUFUS	SOMAT MATHS	07-MAY-77 HFRD0041	1018 400
MATO MAKAILA TOM	SOMAT MATHS	08-MAY-80 HFRD0042	1019 200
BEFR BEN FRANCIS	SOMED MEDICINE	17-FEB-87 CTHM0035	1012 150
MALU MARION LUTHER	SOMED MEDICINE	20-MAR-89 CTHM0036	1013 350
KIJU KIANNA JULIUS	SOMED MEDICINE	05-MAY-89 CTHM0037	1014 200
ROLA RORY LAWRENCE	SOMED MEDICINE	06-JUN-69 CTHM0038	1015 430
DAWA DAN WARREN	SOPHM PHARMACY	30-JUN-88 CTHM0039	1016 150
DAAL DANIEL ALFRED	SOPHM PHARMACY	04-MAR-89 CTHM0040	1017 350
HAHA HADASSAH HARVEY	SOPHM PHARMACY	04-MAR-89 CTHM0041	1018 400
AMJI AMARIS JIM	SOPHM PHARMACY	07-MAY-77 CTHM0042	1019 200
LEED LEO EDWARD	SOSCI SCIENCES	17-FEB-87 WRWK0034	1012 150
WIHO WILLIE HOWARD	SOSCI SCIENCES	20-MAR-89 WRWK0035	1013 350

DAEU DANIA EUGENE	SOSCI SCIENCES	05-MAY-89 WRWK0036	1014	200
JACL JAMIYA CLARENCE	SOSCI SCIENCES	06-JUN-79 WRWK0037	1015	300
CHLE CHESTER LEWIS	SOART ART	30-JUN-88 WRWK0038	1016	150
IRHE IRA HERMAN	SOART ART	04-MAR-89 WRWK0039	1017	350
HACH HAILIE CHARLES	SOART ART	08-MAY-80 WRWK0040	1018	400
EMCL EMELIA CLYDE	SOART ART	07-MAY-77 WRWK0041	1019	200

SQL> SELECT * FROM SCHOOL;

SCHOO SCHOOL_NAME	HEAD HEAD_OF_SCHOOL
SOSCI SCIENCES	CAWI CARLEIGH WILLIAM
SOPHM PHARMACY	ELRI ELIANNA RICHARD
SOMED MEDICINE	GEFR GEORGE FRED
SOART ART	KABE KATHY BERT
SOMAT MATHS	SAJO SAMUEL JOHN
SOENG ENGINEERING	WIJA WILL JAMES

6 rows selected.

SQL> SELECT * FROM COURSE;

COURS COURSE_NAME	COURSE_DURATION SCHOO SCHOOL_NAME
BME11 BENG (HONS) MECH ENG	3 SOENG ENGINEERING
MME21 MENG (HONS) MECH ENG	1 SOENG ENGINEERING
BCS11 BSC(HONS) COMP SCI MCS21 MSC(HONS) COMP SCI	3 SOMAT MATHS 1 SOMAT MATHS
BMS11 BSC(HONS) MED SCI	3 SOMED MEDICINE
MMS21 MSC(HONS) MED SCI	1 SOMED MEDICINE
BPS11 BSC(HONS) PHARM SCI	3 SOPHM PHARMACY
MPS21 MSC(HONS) PHARM SCI	1 SOPHM PHARMACY
BCH11 BSC (HONS) CHEM	3 SOSCI SCIENCES
MCH21 MSC (HONS) CHEM	1 SOSCI SCIENCES
BFA11 BA(HONS) FINE ART	3 SOART ART
MFA21 MA(HONS) FINE ART	1 SOART ART

SQL> SELECT * FROM STUDENT;

STUDENT_	STUDENT_NAME	EMAIL	DATE_OF_B
00000001	ANABEL MICHAEL	A.MICHAEL@TECH.AC.UK	30-APR-02
00000002	ALEX FLOYD	A.FLOYD@TECH.AC.UK	05-MAY-00
0000003	PATRICK ALLEN	P.ALLEN@TECH.AC.UK	05-MAY-00
00000004	EARL JACK	E.JACK@TECH.AC.UK	06-JUN-00
00000005	MILTON OSCAR	M.OSCAR@TECH.AC.UK	30-JUN-01
00000006	ROBERT JACOB	R.JACOB@TECH.AC.UK	04-MAR-99
00000007	ELMER PAUL	E.PAUL@TECH.AC.UK	07-MAY-97
80000000	JOE CHARLIE	J.CHARLIE@TECH.AC.UK	08-MAY-98
00000009	PETER ROY	P.ROY@TECH.AC.UK	17-FEB-97
00000010	GUY HERBERT	G.HERBERT@TECH.AC.UK	20-MAR-95
00000011	HUGH WILLIS	H.WILLIS@TECH.AC.UK	05-MAY-96
00000012	BERNARD JESSIE	B.JESSIE@TECH.AC.UK	06-JUN-99
00000013	EDWIN OLIVER	E.OLIVER@TECH.AC.UK	30-JUN-98
00000014	SIDNEY ISAAC	S.ISAAC@TECH.AC.UK	04-MAR-99
00000015	PHILIP JOSEPH	P.JOSEPH@TECH.AC.UK	08-MAY-94
00000016	CHARLEY EDGAR	C.EDGAR@TECH.AC.UK	07-MAY-94
00000017	RAY LEONARD	R.LEONARD@TECH.AC.UK	30-APR-98
00000018	RALPH CLAUDE	R.CLAUDE@TECH.AC.UK	04-FEB-93
00000019	MARIBEL RAYMOND	M.RAYMOND@TECH.AC.UK	05-MAY-93
00000020	NYASIA JERRY	N.JERRY@TECH.AC.UK	06-JUN-94
00000021	LEIA HORACE	L.HORACE@TECH.AC.UK	30-JUN-97
00000022	ALANNAH ED	A.ED@TECH.AC.UK	04-MAR-96
00000023	GRETCHEN OTTO	G.OTTO@TECH.AC.UK	04-MAY-98
00000024	NAIMA STEPHEN	N.STEPHEN@TECH.AC.UK	07-MAY-93
00000025	LIVIA DAVE	L.DAVE@TECH.AC.UK	17-FEB-91

25 rows selected.

SQL> **SELECT * FROM MODULE**;

MODULE	MODULE	E_NAME]	SCHOO	SCHOOL_NAME	MODU	MODUI	LE_LEADER
4BME11	COMP A	AIDED	DESIGN	SOENG	ENGINEERING	CAHE	CARL	HENRY

5BME12	THERMODYNAMICS	SOENG	ENGINEERING	CAHE	CARL HENRY
6MME21	MACHINES DESIGN	SOENG	ENGINEERING	LAFE	LAUREL FREDERICK
7MME22	SENSORS AND CONTROL	SOENG	ENGINEERING	LAFE	LAUREL FREDERICK
4BCS11	COMPUTATIONAL MATHS	SOMAT	MATHS	LELO	LEE LOUIS
5BCS12	NUMERICAL METHODS	SOMAT	MATHS	LELO	LEE LOUIS
6MCS21	BIG DATA	SOMAT	MATHS	NERU	NEVEAH RUFUS
7MCS22	COMPLEX SYSTEMS	SOMAT	MATHS	NERU	NEVEAH RUFUS
4BMS11	BIO OF DISEASE	SOMED	MEDICINE	MALU	MARION LUTHER
5BMS12	GROWTH AND NUTRITION	SOMED	MEDICINE	MALU	MARION LUTHER
6MMS21	ADVANCED RESEARCH	SOMED	MEDICINE	ROLA	RORY LAWRENCE
7MMS22	MEDICAL EDUCATION	SOMED	MEDICINE	ROLA	RORY LAWRENCE
4BPS11	INTRO TO MICROBIO	SOPHM	PHARMACY	DAAL	DANIEL ALFRED
5BPS12	THERAPEUTIC PHARM	SOPHM	PHARMACY	DAAL	DANIEL ALFRED
6MPS21	BIOCHEM PHARM	SOPHM	PHARMACY	НАНА	HADASSAH HARVEY
7MPS22	HUMAN STRUCTURE	SOPHM	PHARMACY	HAHA	HADASSAH HARVEY
4BCH11	ORGANIC CHEM	SOSCI	SCIENCES	WIHO	WILLIE HOWARD
5BCH12	INORGANIC CHEM	SOSCI	SCIENCES	WIHO	WILLIE HOWARD
6MCH21	ANALYTICAL CHEM	SOSCI	SCIENCES	JACL	JAMIYA CLARENCE
7MCH22	PHYSICAL CHEM	SOSCI	SCIENCES	JACL	JAMIYA CLARENCE
4BFA11	FUNDAMENTAL SKILLS	SOART	ART	IRHE	IRA HERMAN
5BFA12	WORKSHOP	SOART	ART	IRHE	IRA HERMAN
6BFA21	STUDIO CONTEXTS	SOART	ART	HACH	HAILIE CHARLES
7BFA22	CREATIVE APPROACHES	SOART	ART	HACH	HAILIE CHARLES

SQL> SELECT * FROM REGISTRATION;

STUDENT_ COURS COURSE_NAME	GRADE	START_DAT END_DATE
0000001 BME11 BENG(HONS) MECH ENG		30-SEP-21
0000003 MME21 MENG(HONS) MECH ENG		30-SEP-21
00000004 BCS11 BSC(HONS) COMP SCI		30-SEP-21
00000005 MCS21 MSC(HONS) COMP SCI		30-SEP-21
00000006 MCH21 MSC(HONS) CHEM		30-SEP-21
00000002 MPS21 MSC(HONS) PHARM SCI		30-SEP-21
0000007 BME11 BENG(HONS) MECH ENG		30-SEP-21
00000008 BME11 BENG(HONS) MECH ENG		30-SEP-21
00000009 MME21 MENG(HONS) MECH ENG		30-SEP-21

SQL> SELECT * FROM ENROLMENT;

STUDENT_ MODUL	E MODULE_NAME	PERIOD	ACADEMIC_	OVER
00000001 4BME1	1 COMP AIDED DESIGN	SEM 1	2021/2022	66%
00000002 6MPS2	1 BIOCHEM PHARM	SEM 1	2021/2022	70%
00000003 7MME2	2 SENSORS AND CONTROL	SEM 2	2021/2022	
00000004 5BCS1	2 NUMERICAL METHODS	SEM 2	2021/2022	
00000005 6MCS2	1 BIG DATA	SEM 1	2021/2022	
00000006 6MCH2	1 ANALYTICAL CHEM	SEM 1	2021/2022	

6 rows selected.

SQL> SELECT * FROM COURSE_MODULE;

COURS	COURSE_NAME	MODULE	MODULE_NAME	NO_OF_CREDITS
BME11	BENG (HONS) MECH ENG	4BME11	COMP AIDED DESIGN	20
MME21	MENG (HONS) MECH ENG	6MME21	MACHINES DESIGN	20
BCS11	BSC(HONS) COMP SCI	5BCS12	NUMERICAL METHODS	20
MCS21	MSC(HONS) COMP SCI	6MCS21	BIG DATA	20
BMS11	BSC(HONS) MED SCI	5BMS12	GROWTH AND NUTRITION	20
MMS21	MSC(HONS) MED SCI	7MMS22	MEDICAL EDUCATION	20

6 rows selected.

SQL> SELECT * FROM CLASS;

MODULE_NAME	CAMPUS_LOC	ROOM_NUM	LECT	LECTURER_NAME	DURATION
4BME11 COMP AIDED DESIGN	HEREFORD	HFRD1101	ALDA	ALBERT DAVID	30
6MMS21 ADVANCED RESEARCH	CHELTENHAM	CTHM1101	BEFR	BEN FRANCIS	40
5BCS12 NUMERICAL METHODS	HEREFORD	HFRD1120	ANER	ANDREW ERNEST	50
7MPS22 HUMAN STRUCTURE	CHELTENHAM	CTHM1120	DAWA	DAN WARREN	50

6MCH21 ANALYTICAL CHEM WARWICK WRWK1101 LEED LEO EDWARD 45
7BFA22 CREATIVE APPROACHES WARWICK WRWK1120 CHLE CHESTER LEWIS 30

6 rows selected.

SQL> SPOOL OFF;

3.4 SQL Queries

3.4.1 Query 1

SQL> SELECT INITIALS, NAME, CAMPUS LOCATION, DURATION

- 2 FROM LECTURER L, CLASS C
- 3 WHERE L.INITIALS = C.LECTURER INITIALS AND CAMPUS LOCATION <> 'HEREFORD';

Output:

INIT	NAME	CAMPUS_LOC	DURATION
BEFR	BEN FRANCIS	CHELTENHAM	40
CHLE	CHESTER LEWIS	WARWICK	30
DAWA	DAN WARREN	CHELTENHAM	50
LEED	LEO EDWARD	WARWICK	45

3.4.2 Query 2

SQL> SELECT COUNT (STUDENT NUMBER)

- 2 FROM REGISTRATION
- 3 WHERE COURSE_NAME = 'BENG(HONS) MECH ENG';

Output:

COUNT (STUDENT_NUMBER)

.3

3.4.3 Query 3

SQL> SELECT INITIALS, NAME, ROOM NUMBER, TEACHING BAND

- 2 FROM LECTURER
- 3 WHERE TEACHING BAND >= 300;

Output:

INIT	NAME		TEACHING_BAND
WIJA	WILL JAMES		450
	SAMUEL JOHN	HFRD0201	450
GEFR	GEORGE FRED	CTHM0034	450
ELRI	ELIANNA RICHARD	CTHM0201	450
CAWI	CARLEIGH WILLIAM	WRWK0034	450
KABE	KATHY BERT	WRWK0201	450
CAHE	CARL HENRY	HFRD0036	350
LAFE	LAUREL FREDERICK	HFRD0038	350
NERU	NEVEAH RUFUS	HFRD0041	400
MALU	MARION LUTHER	CTHM0036	350
ROLA	RORY LAWRENCE	CTHM0038	430
DAAL	DANIEL ALFRED	CTHM0040	350
HAHA	HADASSAH HARVEY	CTHM0041	400
WIHO	WILLIE HOWARD	WRWK0035	350
JACL	JAMIYA CLARENCE	WRWK0037	300
IRHE	IRA HERMAN	WRWK0039	350
HACH	HAILIE CHARLES	WRWK0040	400

¹⁷ rows selected.

3.4.4 Query 4

SQL> SELECT INITIALS, NAME, SCHOOL_ABBREVIATION, ROOM_NUMBER, TEACHING_BAND

- 2 FROM LECTURER
- 3 WHERE SCHOOL_ABBREVIATION = 'SOPHM' OR SCHOOL_ABBREVIATION = 'SOMED' AND TEACHING_BAND >= '300'
- 4 ORDER BY TEACHING BAND DESC;

Output:

INIT	NAME	SCHOO	ROOM_NUM	TEACHING_BAND
GEFR	GEORGE FRED	SOMED	CTHM0034	450
ELRI	ELIANNA RICHARD	SOPHM	CTHM0201	450
ROLA	RORY LAWRENCE	SOMED	CTHM0038	430
HAHA	HADASSAH HARVEY	SOPHM	CTHM0041	400
DAAL	DANIEL ALFRED	SOPHM	CTHM0040	350
MALU	MARION LUTHER	SOMED	CTHM0036	350
AMJI	AMARIS JIM	SOPHM	CTHM0042	200
DAWA	DAN WARREN	SOPHM	CTHM0039	150

8 rows selected.

3.4.5 Query 5

SQL> SELECT INITIALS, NAME

- 2 FROM LECTURER
- 3 WHERE INITIALS NOT IN (SELECT LECTURER_INITIALS FROM CLASS);

Output:

HACH HAILIE CHARLES

JACL JAMIYA CLARENCE

LAFE LAUREL FREDERICK

EMCL EMELIA CLYDE

KABE KATHY BERT

CAWI CARLEIGH WILLIAM

NERU NEVEAH RUFUS

ROLA RORY LAWRENCE

SHWA SHAYNA WALTER

IRHE IRA HERMAN

24 rows selected.

SQL> SPOOL OFF;

3.5 Report

Data governance is the process of exercising control and authority over managing data. The purpose of managing data is to inflate its quality while decreasing the burden and threat that comes with it (Abraham, Schneider and vom Brocke, 2019). According to Fattah and Setyadi, (2021), universities should examine their data governance systems on a regular basis to keep up with innovation and changes in their environment, as well as adapt to new technology. A set of mechanisms, such as structures, procedures, and relational mechanisms, may be used to implement a data governance framework.

The considerable growth of digital applications, software, and innovations means that education policy and practice will become more dataficated and digitalized (Landri, 2021). The majority of data oversight in universities are supported by a specified group of members in the form of a committee, council, or working group. The Information Technology departments, as well as Institutional Research, are the second and third biggest groups of staff who support and manage data governance activities (Jim and Chang, 2018). Data governance is an essential component that allows universities to correctly report on their operations, make smart choices, and preserve data for the long term. Some of the issues that arise frequently in universities that do not value data governance are: (1) inconsistencies and mistrust as a result of data silos (2) organizational inadequacies caused by a lack of the flow of information (3) Concerns with compliance and liabilities as a result of factual errors in documentation and a lack of information security protocols (Huron, 2021).

4.0 References

Abraham, R., Schneider, J. and vom Brocke, J. (2019). Data governance: A conceptual framework, structured review, and research agenda. *International Journal of Information Management*, 49, pp.424–438.

Back4App (2020). List of Names Dataset | Database Hub. [online] Back4App TM . Available at: https://www.back4app.com/database/back4app/list-of-names-dataset [Accessed 5 Dec. 2021].

Fattah, A. and Setyadi, R. (2021). Determinants Effectiveness Information Technology Governance in Higher Education Institution (HEI) using partial least squares structural equation modeling approach (PLS-SEM). *Journal of Physics: Conference Series*, 1807(1), p.012007.

Huron (2021). Data Governance For Higher Education: How to Turn Institutional Data Into a Competitive Advantage. [online] Available at: https://www.huronconsultinggroup.com/-/media/Resource-Media-Content/Education/Data-Governance-Higher-Education-Huron-Report.ashx [Accessed 11 Dec. 2021].

Jim, C.K. and Chang, H. (2018). The current state of data governance in higher education. *Proceedings of the Association for Information Science and Technology*, 55(1), pp.198–206.

Landri, P. (2021). To resist, or to align? The enactment of data-based school governance in Italy. *Educational Assessment, Evaluation and Accountability*, 33(3), pp.563–580.

Nassa, S. and Frommholz, I. (2021). *7CI006 Portfolio 2021-2022*. [online] canvas.wlv.ac.uk. Available at: https://canvas.wlv.ac.uk/courses/30704/files/4141668.

Wlv.ac.uk. (2018). *University of Wolverhampton - University of Wolverhampton*. [online] Available at: https://www.wlv.ac.uk/ [Accessed 5 Dec. 2021].

```
5.0 Appendix – DDL Script
-- Generated by Oracle SQL Developer Data Modeler 21.2.0.183.1957
-- at: 2021-12-06 06:52:32 GMT
-- site: Oracle Database 21c
-- type: Oracle Database 21c
-- predefined type, no DDL - MDSYS.SDO GEOMETRY
-- predefined type, no DDL - XMLTYPE
CREATE TABLE class (
   module_number CHAR(6) NOT NULL, module_name VARCHAR2(20) NOT NULL,
   lecturer initials VARCHAR2(4) NOT NULL,
    lecturer_name VARCHAR2(20) NOT NULL, duration VARCHAR2(10)
);
ALTER TABLE class
    ADD CONSTRAINT campus location value CHECK ( campus location IN ( '',
'CHELTENHAM', 'HEREFORD', 'WARWICK' ) );
ALTER TABLE class
    ADD CONSTRAINT class pk PRIMARY KEY ( lecturer initials,
                                            lecturer name,
                                            module number,
                                            module name );
CREATE TABLE course (
   course_code CHAR(5) NOT NULL,
course_name VARCHAR2(30) NOT NULL,
course_duration NUMBER,
    school abbreviation CHAR(5) NOT NULL,
    school name VARCHAR2(20) NOT NULL
);
ALTER TABLE course
   ADD CONSTRAINT course_duration_range CHECK ( course_duration BETWEEN 1 AND 7
);
ALTER TABLE course ADD CONSTRAINT course pk PRIMARY KEY ( course code,
                                                             course name );
CREATE TABLE course module (
    course_code CHAR(5) NOT NULL,
    course name VARCHAR2(30) NOT NULL,
    module number CHAR(6) NOT NULL,
    module name VARCHAR2(20) NOT NULL,
    no of credits NUMBER(2) NOT NULL
```

```
);
ALTER TABLE course module
    ADD CONSTRAINT course module pk PRIMARY KEY ( module number,
                                                         module name,
                                                          course code,
                                                          course name );
CREATE TABLE enrolment (
    student_number CHAR(8) NOT NULL,
module_number CHAR(6) NOT NULL,
module_name VARCHAR2(20) NOT NULL,
period VARCHAR2(9) NOT NULL,
    academic year VARCHAR2(9) NOT NULL,
    overall percentage VARCHAR2(4)
);
ALTER TABLE enrolment
    ADD CONSTRAINT enrolment pk PRIMARY KEY ( student number,
                                                     module number,
                                                     module name );
CREATE TABLE lecturer (
    initials VARCHAR2(4) NOT NULL, name VARCHAR2(20) NOT NULL,
    school abbreviation CHAR(5) NOT NULL,
    school_name VARCHAR2(20) NOT NULL, date_of_birth DATE NOT NULL, room_number CHAR(8) NOT NULL,
    telephone extension NUMBER(4) NOT NULL,
    teaching band NUMBER
);
ALTER TABLE lecturer
    ADD CONSTRAINT teaching band range CHECK ( teaching band BETWEEN 50 AND 500
);
ALTER TABLE lecturer ADD CONSTRAINT lecturer pk PRIMARY KEY ( initials,
                                                                       name );
CREATE TABLE module (
    module_name
                            CHAR (6) NOT NULL,
                             VARCHAR2 (20) NOT NULL,
    school_abbreviation CHAR(5) NOT NULL, school_name VARCHAR2(20) NOT NULL,
    module leader initials VARCHAR2(4) NOT NULL,
    module leader VARCHAR2(20) NOT NULL
);
ALTER TABLE module ADD CONSTRAINT module pk PRIMARY KEY ( module number,
                                                                  module name );
CREATE TABLE registration (
    student number CHAR(8) NOT NULL,
```

```
course_code CHAR(5) NOT NULL,
course_name VARCHAR2(30) NOT NULL,
grade VARCHAR2(20),
start_date DATE NOT NULL,
end_date DATE
);
ALTER TABLE registration ADD CONSTRAINT enddate chk CHECK ( start date < end date
ALTER TABLE registration
    ADD CONSTRAINT registration pk PRIMARY KEY ( course code,
                                                     course name,
                                                      student number );
CREATE TABLE school (
   school_abbreviation CHAR(5) NOT NULL, school name VARCHAR2(20) NOT NULL,
    head of school initials VARCHAR2(4) NOT NULL,
    head of school VARCHAR2(20) NOT NULL
);
CREATE UNIQUE INDEX school idx ON
    school (
        head of school initials
    ASC,
        head of school
    ASC );
ALTER TABLE school ADD CONSTRAINT school pk PRIMARY KEY ( school abbreviation,
                                                               school name );
CREATE TABLE student (
    student number CHAR(8) NOT NULL,
    student name VARCHAR2(20) NOT NULL,
            VARCHAR2(30) NOT NULL,
    date of birth DATE NOT NULL
);
ALTER TABLE student ADD CONSTRAINT student pk PRIMARY KEY ( student number );
ALTER TABLE class
    ADD CONSTRAINT class lecturer fk FOREIGN KEY ( lecturer initials,
                                                        lecturer name )
        REFERENCES lecturer (initials,
                                name);
ALTER TABLE class
    ADD CONSTRAINT class module fk FOREIGN KEY ( module number,
                                                     module name )
        REFERENCES module ( module number,
                              module name );
ALTER TABLE course module
```

```
ADD CONSTRAINT course module course fk FOREIGN KEY ( course code,
                                                        course name )
        REFERENCES course ( course code,
                           course name );
ALTER TABLE course module
    ADD CONSTRAINT course module module fk FOREIGN KEY ( module number,
                                                         module name )
        REFERENCES module ( module number,
                            module name );
ALTER TABLE course
    ADD CONSTRAINT course school fk FOREIGN KEY ( school abbreviation,
                                                  school name )
        REFERENCES school ( school abbreviation,
                            school name );
ALTER TABLE enrolment
    ADD CONSTRAINT enrolment module fk FOREIGN KEY ( module number,
                                                     module name )
        REFERENCES module ( module number,
                            module name );
ALTER TABLE enrolment
    ADD CONSTRAINT enrolment student fk FOREIGN KEY ( student number )
        REFERENCES student ( student number );
ALTER TABLE lecturer
    ADD CONSTRAINT lecturer school fk FOREIGN KEY ( school abbreviation,
                                                    school name )
        REFERENCES school ( school abbreviation,
                            school name );
ALTER TABLE module
    ADD CONSTRAINT module lecturer fk FOREIGN KEY ( module leader initials,
                                                    module leader )
        REFERENCES lecturer (initials,
                              name );
ALTER TABLE module
    ADD CONSTRAINT module school fk FOREIGN KEY ( school abbreviation,
                                                  school name )
        REFERENCES school ( school abbreviation,
                            school name );
ALTER TABLE registration
    ADD CONSTRAINT registration course fk FOREIGN KEY ( course code,
                                                        course name )
        REFERENCES course ( course code,
                            course name );
ALTER TABLE registration
    ADD CONSTRAINT registration student fk FOREIGN KEY ( student number )
        REFERENCES student ( student number );
```

```
ALTER TABLE school

ADD CONSTRAINT school_lecturer_fk FOREIGN KEY ( head_of_school_initials, head_of_school )

REFERENCES lecturer ( initials, name );
```

```
-- Oracle SQL Developer Data Modeler Summary Report:
                                             9
-- CREATE TABLE
-- CREATE INDEX
                                             1
-- ALTER TABLE
                                            26
-- CREATE VIEW
                                             0
-- ALTER VIEW
                                             0
-- CREATE PACKAGE
-- CREATE PACKAGE BODY
-- CREATE PROCEDURE
-- CREATE FUNCTION
-- CREATE TRIGGER
-- ALTER TRIGGER
-- CREATE COLLECTION TYPE
                                             0
-- CREATE STRUCTURED TYPE
                                             0
-- CREATE STRUCTURED TYPE BODY
-- CREATE CLUSTER
-- CREATE CONTEXT
                                             0
-- CREATE DATABASE
                                             0
-- CREATE DIMENSION
-- CREATE DIRECTORY
-- CREATE DISK GROUP
                                             0
-- CREATE ROLE
-- CREATE ROLLBACK SEGMENT
-- CREATE SEQUENCE
                                             0
-- CREATE MATERIALIZED VIEW
-- CREATE MATERIALIZED VIEW LOG
-- CREATE SYNONYM
                                             0
-- CREATE TABLESPACE
                                             0
-- CREATE USER
                                             0
-- DROP TABLESPACE
                                             0
-- DROP DATABASE
                                             0
                                             0
-- REDACTION POLICY
-- ORDS DROP SCHEMA
                                             0
-- ORDS ENABLE SCHEMA
                                             0
-- ORDS ENABLE OBJECT
                                             0
                                             0
-- ERRORS
-- WARNINGS
                                             0
```