ECS 120 Problem Set 2

Hardy Jones 999397426 Professor Rogaway Spring 2014

Problem 1 (a) start \longrightarrow q_0 $\xrightarrow{a,b}$ q_1 $\xrightarrow{a,b}$ q_2 $\xrightarrow{a,b}$ q_3 $\xrightarrow{a,b}$ $\xrightarrow{a,b}$

- (b) The hint given provides some intuition. We have to realize what happens when we see a new binary digit. Given the current value p:
 - i. If the next digit is 0, then we have 2p.
 - ii. If the next digit is 1, then we have 2p + 1.

We can catalog the effect in a table.

$p \equiv n \pmod{7}$	$2p \equiv n \pmod{7}$	$2p + 1 \equiv n \pmod{7}$
0	0	1
1	2	3
2	4	5
3	6	0
4	1	2
5	3	4
6	5	6

We can then map these directly to states, where 0 is the only accepting state.

(c) We can extend the DFA presented above to ignore ε and leading zeros.

(d) For this, it is easiest to begin enumerating possibilities.

$$\{\varepsilon, 0, 1, 00, 11, 000, 010, 101, 111, 0000, \dots\}$$

What we find is that the string must contain the same starting and ending character.

Problem 2 Since Regular languages are equivalent to DFA's, we work with DFA's.

Given some DFA M(L) we can construct a new DFA $M^{R}(L)$ that accepts L^{R} .

Let
$$L = (Q, \Sigma, \delta, q_0, F)$$
.

For each $q_i \in F$ we construct a new DFA $M_i = (Q, \Sigma, \delta_i, q_i, F_i)$ where

$$\delta_i ::= \forall q_j, q_k \in Q, \forall x \in \Sigma, \delta(q_j, x) = q_k \implies \delta_i(q_k, x) = q_j$$

 $F_i ::= q_0$

Each of these DFA's will accept a reversed string from L. So, if we take the union of all of these DFA's, we have a single DFA which accepts all reversed strings from L, for DFA's are closed under union.