The Query Complexity of Verifying a Causal Graph from Single-Node Interventions

or: How hard is it to learn a causal model?

Chandler Squires

Causal Structure Learning (aka, Causal Discovery)

An inverse problem: given data, find the causal graph

A Canonical Application: Learning Gene Regulatory Networks

the **only**¹ Level 1 property (i.e., at the level of $\mathbb{P}(X_1, X_2, X_3)$) entailed by these graphs is $X_1 \perp \!\!\! \perp X_3 \mid X_2$.

the **only**¹ Level 1 property (i.e., at the level of $\mathbb{P}(X_1, X_2, X_3)$) entailed by these graphs is $X_1 \perp \!\!\! \perp X_3 \mid X_2$.

However, this graph implies that $X_1 \perp \!\!\! \perp X_3$

We call graphs which imply the same set of conditional independences **Markov equivalent.**

We call graphs which imply the same set of conditional independences **Markov equivalent.**

From observational data, we can only identify up to the **Markov equivalence class.**

Two graphs are Markov equivalent if and only if they have the same adjacencies and **v-structures** (patterns of the form $i \rightarrow k \leftarrow j$ with i and j non-adjacent).

We represent the Markov equivalence class by the **essential graph**, which:

- Has the same adjacencies as the members of the Markov equivalence class
- Only has an edge directed if it is directed the same way across the entire Markov equivalence class.

What do we learn from interventions?

Single-node interventions teach us the directions of edges adjacent to the intervened node

Only X_3 is affected

Single-node interventions teach us the directions of edges adjacent to the intervened node

Only X_3 is affected Only X_3 is affected

Single-node interventions teach us the directions of edges adjacent to the intervened node

Only X_3 is affected

Only X_3 is affected

All three variables are affected

Interventional Markov equivalence

Interventional Markov equivalence

Denote the set of interventions as $\mathcal{I} = \{\{3\}\}$

We refer to the set of graphs entailing the same conditional independences and conditional invariances under I as the I-Markov equivalence class.

Interventional Markov equivalence

We represent the *J*-Markov equivalence class using the *J*-essential graph.

Do interventions teach us any other orientations?

Yes: through the application of Meek's orientation rules

From observational data

From observational data Adjacencies from an intervention on X_1

From observational data

Adjacencies from an intervention on X_1

Avoid cycles (Meek rule 2)

From observational data

Adjacencies from an intervention on X_1

Avoid cycles (Meek rule 2)

Avoid new v-structures (Meek rule 1)

From observational data

Adjacencies from an intervention on X_1

Avoid cycles (Meek rule 2)

Avoid new v-structures (Meek rule 1)

Note: There are two other Meek orientation rules; together these four rules are complete.

How many single-node interventions are required to fully orient a DAG?

${\it J}$ -essential graphs decompose nicely

${\mathcal I}$ -essential graphs decompose nicely

${\mathcal I}$ -essential graphs decompose nicely

- The chain components are chordal.
 - i.e., there are no cycles of length ≥ 4 which don't have a chord.

Chain components: undirected connected components

${\mathcal I}$ -essential graphs decompose nicely

- The chain components are chordal.
 - i.e., there are no cycles of length ≥ 4 which don't have a chord.
- The orientations within separate chain components are independent.

Chain components: undirected connected components

Verifying intervention sets

• Given a DAG G, we call a set \mathcal{I} of interventions a **verifying** intervention set (VIS) if the \mathcal{I} -essential graph of G has no undirected edges.

Verifying intervention sets

- Given a DAG G, we call a set \mathcal{I} of interventions a **verifying** intervention set (VIS) if the \mathcal{I} -essential graph of G has no undirected edges.
- We call a set $\mathcal I$ of interventions a **minimal VIS (MVIS)** if it has the minimum cardinality of all VISes.

The essential graph

Special case: trees

Only **one** intervention is required

A general solution

Papers

• [SMG+] Active Structure Learning of Causal DAGs via Directed Clique Trees, Squires, C., Magliacane, S., Greenewald, K., Katz, D., Kocaoglu, M. and Shanmugam, K., 2020.

- A new graph with:
 - Nodes being the **maximal cliques** of the original graph.

- A new graph with:
 - Nodes being the **maximal cliques** of the original graph.
 - Edges forming a tree such that the **running intersection property** holds.

- A new graph with:
 - Nodes being the **maximal cliques** of the original graph.
 - Edges forming a tree such that the running intersection property holds.
- The running intersection property: given two cliques C_1 and C_2 , their intersection $C_1 \cap C_2$ is contained in all cliques along the path from C_1 to C_2 .

- Same vertices and adjacencies as a clique tree.
- Given adjacent cliques C_1 and C_2 , add an arrowhead at C_1 if:
 - for all $v_{12} \in C_1 \cap C_2$ and $v_2 \in C_2 \setminus C_1$, we have $v_{12} \to v_2$

• There can be multiple DCTs for a single graph.

- There can be multiple DCTs for a single graph.
- We can always¹ find a DCT such that each clique has at most one parent (i.e., no colliders).

¹Requires a **contraction operation** that joins cliques connected by bidirected edges.

Residuals in DCTs

• The **residual** of a clique is the clique minus its parents.

Residuals in DCTs

- The **residual** of a clique is the clique minus its parents.
- Orientations in one residual are independent of the orientations in other residuals.

Residuals in DCTs

- The **residual** of a clique is the clique minus its parents.
- Orientations in one residual are independent of the orientations in other residuals.
- Since the residuals are cliques (or other simple structures when we have to contract bidirected edges), we can efficiently compute the MVIS.

What else?

Instance-wise competitive bounds

• The instance-wise competitive ratio (ic-ratio) of an intervention policy on a DAG *G* is the (expected) number of interventions used by the policy, divided by the size of the MVIS.

Instance-wise competitive bounds

- The instance-wise competitive ratio (ic-ratio) of an intervention policy on a DAG *G* is the (expected) number of interventions used by the policy, divided by the size of the MVIS.
- We develop and analyze the DCT-policy, showing that the ic-ratio is logarithmic in the number of cliques for certain types of graphs.

Thanks!