ProjectDevelopmentPhase ModelPerformanceTest

Date	17thNovember2022	
TeamID	PNT2022TMID20255	
ProjectName	Project–	
	Detecting Parkinson's Disease using Machine Learni	
	ng	
MaximumMarks	10Marks	

ModelPerformanceTesting:

Project teams hall fill the following information in model performance testing template.

S. No.	Parameter	Values	Screenshot
1.	Metrics	Classification Model:Confusion Matrix, F1 Score,AccuracyScore&Classific ationReport	The Section and Continues of the Cont
2.	TunetheModel	Data mining - XGBoostClassifier	- 385 Classification - Sigenified Modifie Learning [10] Hebright - State-Interpretation - State of S

1) Metrics Parameter screenshot

▼ XGBClassification - Supervised Machine Learning

→ Assessing the model using metrics

```
[32] y_predict = Model_XG.predict(x_test)
print(accuracy_score(y_test,y_predict)*100)

98.30508474576271
```

Hence by reducing the overfitting using XGBoost Classifier, we are getting accuracy_score of 98.30% for the model

▼ Confusion metrics

2)TunethemodelParameterscreenshot

```
y_predict = Model_XG.predict(x_test)
print(accuracy_score(y_test,y_predict)*100)
        98.30508474576271
   Hence by reducing the overfitting using XGBoost Classifier, we are getting accuracy_score of 98.30% for the model
▼ Confusion metrics
[33] from sklearn.metrics import confusion_matrix
       ypre = Classification_model.predict(x_test)
        ypre = (ypre>0.5)
        confusion_matrix(y_test,ypre)
   _ array([[18, 6], [ 6, 29]])
▼ F1 score
(34] from sklearn.metrics import f1_score
        Variation_score = f1_score(y_test, Model_XG.predict(x_test), average='binary')
print(Variation_score/0.01)
        98.59154929577464
▼ Classification report
(35) from sklearn import metrics
        from sklearn.metrics import classification_report
       print("\n Classification report for Model %s:\n%s\n" % (Model_XG, metrics.classification_report(y_test, y_pred)))
        Classification report for Model XGBClassifier(): precision recall f1-score support
```