Problem 1

(a) Solved using MATLAB.

Rzyz:
$$\phi = \frac{0.5236}{0.7137}$$
 rad

(relative) $\phi = 1.0472$ rad

 $\psi = 2.3562$ rad

 $\psi = -0.7854$ rad.

(b) Solved using MATLAB

$$0.0600$$
 $PPY: \phi = \frac{0.0600}{0.0600}$
 $\phi = \frac{3.0816}{3.0699}$
 $\phi = \frac{-0.4813}{0.0699}$
 $\phi = \frac{-0.4813}{0.0699}$
 $\phi = \frac{0.6847}{0.06847}$
 $\phi = \frac{0.6847}{0.06847}$
 $\phi = \frac{0.6847}{0.06847}$
 $\phi = \frac{0.6847}{0.06847}$
 $\phi = \frac{0.6847}{0.06847}$

(c) Axis Solved Using MATLAB

Axis - Angle:
$$0 = 2.0310$$
 rad

(aboute) $k = 1.5831$ 0.5834

- 0.0768

80 86

0.8086

*

Solved using MATLAB

	0.4698	6.1107	08758	0.5000	L
H=	-0,8660	0'2500	0.4330	0,0000	4
	-01710	-0,9619	0.2133	0 1000 0	
	0,0000	0.0000	0,0000	(10000	

*	Problem 3
	solved using MATLAB.
	NOTE: The given motrix is NOT a generic
1 1 1	rotation moutrix.
	R = 2 sin 4. sin 0 - 2 sin 0 +1
	R. RT = 1 - 0 - 204000
	-2c4348Θ
	-224.coso -2C45450
2	However, observing closely, we see that if
	0= nTL for n=0,1,2 50=0
	[12300] 23 [7012]
	$(1.1 = (25^2 + 0.0 - 2(0) + 1 = 1)$
1	and R.RT = [1 0 0] = I
	0 1 0
	a hair a mtation
	Hence inthis case, R can be a rotation
	moutrix.

_

* Problem 4 Solved using MATLAB. There is no feasible sol to satisfy the conditions of rotation matrix for the given moutrix. NOTE: If the last clement (133) of the given moutrix was also unknown it could have the followin possible sol's so as to satisfy the conditions of a generic rotation mostrix: 133 = [-1/12, -1, 1] any of these values

satisfies the

conditions of a rotation

mouthix (with given matrix $r_{12} = r_{21} = 0.707 = 1/12$. Problem 5 Solved Using MATLAB. * Problem 6 Proved using MATLAB.