생존 분석과 EM알고리즘

2019.07.31.

박은 령

eunlyeong0530@gmail.com

9.0 Intro

• 생존자료(Survival data)

: 각 개인이 관심 결과변수(사망 또는 질병의 재발 등)에 도달할 때까지 걸린 시간과 관련된 자료를 의미.

• Random variable: 기간(time), 사건발생(event)

ex) 특정 질병으로의 사망 ⇒ time: 질병발생일 ~ 사망일 / event: 사망여부 폐암 수술 후 특정 질병 발생 ⇒ time: 폐암수술일 ~ 질병발생일 / event: 질병발생여부

- 주요 특성
 - ① 환자가 종료점에 도달할 때까지 걸린 시간(length of time)
 - ② 중도절단(censored): 환자가 실제 종료점에 도달한 시점을 모르는 경우
 - * event가 발생하지 않으면, censored.

time: censored time 이용 (study end time, f/u loss time…)

9.1 Life tables and Hazard rates

- 생명표(life table): 일정한 간격마다 구간생존율을 구하는 방법. 각 개인별로 종료점에 도달하는 시간은 알 수 없지만 일정구간 내에 종료점이 발생한 일정구간 내(ex. 1year) 종료점이 발생한 N수는 알 수 있는 경우에 사용. → 일반적으로 Kaplan-Meier Estimate 사용
- ✓ 생존확률(Survival Probability): 기준시점 이후의 모든 시점에 대해 각 환자가 종료점에 도달하지 않을 수 있는 누적 확률, S(t)

$$P(t) = \frac{t \text{ 시점의 생존자 수}}{t \text{ 시점의 대상자수}}$$

$$S(t) = 1 - F(t) = \Pr(T > t) = S(t - 1) \times P(t)$$

$$\begin{array}{ccc}
t & S(t) \\
1 & S(1) = P(T > 1) \\
2 & S(2) = P(T > 2) \\
3 & S(3) = P(T > 3) \\
\vdots & \vdots & \vdots \\
& \cdot & \cdot & \cdot
\end{array}$$

Theoretical
$$S(t)$$
:
$$S(t) = \prod_{i \neq i < t} n_i$$

$$S(0) = 1$$

$$S(t) = S(\infty) = 0$$

Table 9.1 Insurance company life table; at each age, n = number of policy holders, y = number of deaths, $\hat{h} = hazard$ rate y/n, $\hat{S} = survival$ probability estimate (9.6).

Age	n	у	ĥ	Ŝ	Age	n	у	\hat{h}	Ŝ
30	116	0	.000	1.000	60	231	1	.004	.889
31	44	0	.000	1.000	61	245	5	.020	.871
32	95	0	.000	1.000	62	196	5	.026	.849
33	97	0	.000	1.000	63	180	4	.022	.830
34	120	0	.000	1.000	64	170	2	.012	.820
35	71	1	.014	.986	65	114	0	.000	.820
36	125	0	.000	.986	66	185	5	.027	.798
37	122	0	.000	.986	67	127	2	.016	.785
38	82	0	.000	.986	68	127	5	.039	.755
39	113	0	.000	.986	69	158	2	.013	.745
40	79	0	.000	.986	70	100	3	.030	.723
41	90	0	.000	.986	71	155	4	.026	.704
42	154	0	.000	.986	72	92	1	.011	.696
43	103	0	.000	.986	73	90	1	.011	.689
44	144	0	.000	.986	74	110	2	.018	.676
45	192	2	.010	.976	75	122	5	.041	.648
46	153	1	.007	.969	76	138	8	.058	.611
47	179	1	.006	.964	77	46	0	.000	.611
48	210	0	.000	.964	78	75	4	.053	.578
49	259	2	.008	.956	79	69	6	.087	.528
50	225	2	.009	.948	80	95	4	.042	.506
51	346	1	.003	.945	81	124	6	.048	.481
52	370	2	.005	.940	82	67	7	.104	.431
53	568	4	.007	.933	83	112	12	.107	.385
54	1081	8	.007	.927	84	113	8	.071	.358
55	1042	2	.002	.925	85	116	12	.103	.321
56	1094	10	.009	.916	86	124	17	.137	.277
57	597	4	.007	.910	87	110	21	.191	.224
58	359	1	.003	.908	88	63	9	.143	.192
59	312	5	.016	.893	89	79	10	.127	.168

9.2 Censored Data and the Kaplan-Meier Estimate

- Data from a randomized clinical trial run by the Northern California Oncology Group comparing two treatments for head and neck cancer:
 - Chemotherapy (Arm A)
 - Chemotherapy + Radiation (Arm B)
- Survival time in days
- Kaplan-Meier (Nonparametric Survival Function Estimation)
 - : 사건이 발생하는 시점마다 구간생존율을 구하여 이들의 누적으로 누적생존율을 추정하는 방식.

Table 9.2 Censored survival times in days, from two arms of the NCOG study of head/neck cancer.

Arm_A: Chemotherapy										
7	34	42	63	64	74+	83	84	91		
108	112	129	133	133	139	140	140	146		
149	154	157	160	160	165	173	176	185+		
218	225	241	248	273	277	279+	297	319+		
405	417	420	440	523	523+	583	594	1101		
1116+	1146	1226+	1349+	1412+	1417					

	Arm.B. Chemotherapy+Radiation									
37	84	92	94	110	112	119	127	130		
133	140	146	155	159	169+	173	179	194		
195	209	249	281	319	339	432	469	519		
528+	547+	613+	633	725	759+	817	1092+	1245+		
1331+	1557	1642+	1771+	1776	1897+	2023+	2146+	2297+		

+ Lost to f/u

9.2 Censored Data and the Kaplan–Meier Estimate

Ex. WHAS Study

Table 2.1 Survival Times and Vital Status (Censor=1 for deaths)
for Five Subjects from the WHAS Study

Subject	Time	Censor
i	6	1
. 2	44	1
3	21	0
4	14	1
5	62	1

Table 2.2 Estimated Survival Function Computed from the Survival Times for the Four Subjects from the WHAS100 Study and One Hypothetical Subject Shown in Table 2.1

SHOWER IN LADIC MIX		
Interval	Conditional probability	$\hat{S}(t)$
0 ≤ t < 6	1.0	1.0
$6 \le t < 14$	$1.0 \times (4/5) = 0.8$	0.8
$14 \le t < 21$	$1.0 \times (4/5) \times (3/4) = 0.6$	0.6
21 ≤ t < 44	$1.0 \times (4/5) \times (3/4) \times (3/3) = 0.6$	0.6
$44 \le t < 62$	$1.0 \times (4/5) \times (3/4) \times (3/3) \times (1/2) = 0.3$	0.3
t ≥ 62	$1.0 \times (4/5) \times (3/4) \times (3/3) \times (1/2) \times (0/1) = 0$	0.0

Reference: David W. Hosmer and Stanley Lemeshow. 2008. Applied Survival Analysis: Regression Modeling of Time to Event Data (2nd ed.). John Wiley & Sons, Inc., New York, NY, USA.

$$\hat{S}_{(j)} = \prod_{k \le j} \left(\frac{n-k}{n-k+1} \right)^{d_{(k)}}$$

$$\operatorname{sd}\left(\hat{S}_{(j)}\right) = \hat{S}_{(j)} \left[\sum_{k \leq j} \frac{y_k}{n_k (n_k - y_k)} \right]^{1/2} : \text{ Greenwood formula}$$

9.2 Censored Data and the Kaplan–Meier Estimate

Parametric approach 는 곡선의 정확도를 크게 향상시킨다

$$y_k \stackrel{\text{ind}}{\sim} \text{Bi}(n_k, h_k),$$
 (9.19)

and that the logits $\lambda_k = \log\{h_k/(1-h_k)\}$ satisfy some sort of regression equation

$$\lambda = X\alpha$$
.

- The parametric hazard-rate estimates were instead based on a cubic-linear spline.
- The logistic regression maximum likelihood estimate $\hat{\alpha}$ produced hazard rate curves.

$$\hat{h}_k = 1 / \left(1 + e^{-x_k' \hat{\alpha}} \right)$$

Figure 9.2 Parametric hazard rate estimates for the NCOG study. Arm_A, black curve, has about 2.5 times higher hazard than Arm_B for all times more than a year after treatment. Standard errors shown at 15 and 30 months.

9.3 The Log-Rank Test

- Provides overall comparison of KM curves.
- Uses observed versus expected counts over categories of outcomes, where categories are defined by ordered failure times for entire set of data.
- 즉, 집단간 생존시간에 유의한 차이가 없다는 귀무가설을 검정하기 위한 비모수적인 검정
- 한 요인에 대해 생존곡선 상의 모든 시점에서 발생하는 사건들을 서로 비교하는 방법
- 단, 두개 이상의 서로 독립적인 관심요인들이 종료점이 발생할 때까지의 시간에 어떠한 영향을 미치는지 비교하고자 할 때는 사용할 수 없음 \rightarrow 9.4 비례위험모형 사용

 H_0 : There is no overall difference between the two survival curves.

 H_1 : Not H_0

Log-rank statistic =
$$\frac{(O_2 - E_2)^2}{\text{Var}(O_2 - E_2)} \sim \chi^2$$
 with 1 df under H_0

where $O_2 - E_2$ = summed observed minus expected score for group 2,

$$Var(O_i - E_i) = \sum_j \frac{n_{1j} n_{2j} (m_{1j} + m_{2j}) (n_{1j} + n_{2j} - m_{1j} - m_{2j})}{(n_{1j} + n_{2j})^2 (n_{1j} + n_{2j} - 1)}, \ i = 1, 2$$

9.4 The Proportional Hazards Model

• **콕스의 비례위험모형**: hazard에 대해 설명변수들(요인들)의 독립적 인 효과를 검정. Semi-parametric Model

 $(:h_0(t):$ unspecified function)

 Similar to logistic regression, but Cox regression assesses relationship between survival time and covariates.

$$h(t, \mathbf{X}) = h_0(t) e^{\sum_{i=1}^{p} \beta_i X_i}$$

where $\mathbf{X} = (X_1, X_2, \dots, X_p)$ explanatory/predictor variables

Table 9.6 Pediatric cancer data, first 20 of 1620 children. Sex 1 = male, 2 = female; race 1 = white, 2 = nonwhite; age in years; entry = calendar date of entry in days since July 1, 2001; far = home distance from treatment center in miles; t = survival time in days; d = 1 if death observed, 0 if not.

sex	race	age	entry	far	t	d
1	1	2.50	710	108	325	0
2	1	10.00	1866	38	1451	0
2	2	18.17	2531	100	221	0
2	1	3.92	2210	100	2158	0
1	1	11.83	875	78	760	0
2	1	11.17	1419	0	168	0
2	1	5.17	1264	28	2976	0
2	1	10.58	670	120	1833	0
1	1	1.17	1518	73	131	0
2	1	6.83	2101	104	2405	0
1	1	13.92	1239	0	969	0
1	1	5.17	518	117	1894	0
1	1	2.50	1849	99	193	1
1	1	.83	2758	38	1756	0
2	1	15.50	2004	12	682	0
1	1	17.83	986	65	1835	0
2	1	3.25	1443	58	2993	0
1	1	10.75	2807	42	1616	0
1	2	18.08	1229	23	1302	0
2	2	5.83	2727	23	174	1

9.4 The Proportional Hazards Model

$$\widehat{HR} = \frac{\hat{h}(t, \mathbf{X}^*)}{\hat{h}(t, \mathbf{X})} = \frac{\hat{h}_0(t) e^{\sum_{i=1}^p \hat{\beta}_i X_i^*}}{\hat{h}_0(t) e^{\sum_{i=1}^p \hat{\beta}_i X_i}} = e^{\sum_{i=1}^p \hat{\beta}_i (X_i^* - X_i)}$$

where $\mathbf{X}^* = (X_1^*, X_2^*, \dots, X_p^*)$ and $\mathbf{X} = (X_1, X_2, \dots, X_p)$ denote the set of X's for two individuals

- 해석
- Age is a mildly significant factor, with older children doing better (i.e., the estimated regression coefficient is negative).
- However, the dramatic effects are date of entry and far.
 Individuals who entered the study later survived longer –
 Perhaps the treatment protocol was being improved while children living farther away from the treatment center did worse.

Table 9.7 Proportional hazards analysis of pediatric cancer data (age, entry and far standardized). Age significantly negative, older children doing better; entry very significantly negative, showing hazard rate declining with calendar date of entry; far very significantly positive, indicating worse results for children living farther away from the treatment center. Last two columns show limits of approximate 95% confidence intervals for $\exp(\beta)$.

	β	sd	z-value	<i>p</i> -value	$\exp(\beta)$	Lower	Upper
sex	023	.160	142	.887	.98	.71	1.34
race	.282	.169	1.669	.095	1.33	.95	1.85
age	235	.088	-2.664	.008	.79	.67	.94
entry	460	.079	-5.855	.000	.63	.54	.74
far	.296	.072	4.117	.000	1.34	1.17	1.55

9.4 The Proportional Hazards Model

참고1) 비례위험가정(proportional hazard assumption)

• 콕스의 비례위험가정은 전체 연구기간 동안 상대위험이 일정하게 유지된다는 가정 (=비교하고자 하는 집단들 간의 위험 (hazard)은 서로 일정하게 비례(proportional)한다는 가정)이 필요

$$\frac{h(t, \mathbf{X}^*)}{h(t, \mathbf{X})} = \theta$$

- 그림을 이용하는 방법: 로그-로그 그림[x축: log(시간), y축: log(log(생존확률))]에서 선들이 대략적으로 평행한지 확인. 이때, 교차하게 되면 비례위험 가정을 위배.
- 모형에 공변량과 log(시간)의 상호작용 항을 포함시켜 분석한 후, 이 항이 유의하지 않는지를 확인.
- 쉔펠드 잔차에 기초한 전반적인 카이제곱 검정(global chi-squared test based on Schoenfeld residuals)
- 위 가정을 위배하는 경우, 위험함수의 형태에 대해 특정한 확률분포를 가정하는 모형들인 지수모형(exponential model), 웨이블 모형(Weibull model) 또는 곰페르츠 모형(Gompertz model) 등을 사용할 수 있다.

참고2) 경쟁위험(competing risk model)

• 서로 다른 여러 개의 결과변수가 관심모수일때, 이 중 일부가 발생함으로 인해 다른 결과변수들이 발생하지 않는 경우

9.5 Missing Data and the EM Algorithm

- Imputation of missing data
 - 단일대체: 명백한 모형을 근거로 한 대체방법
 - ✔ 다변량 정규분포를 가정 : 평균대체 , 회귀대체 , 확률적 회귀 대체
 - ✓ 여러가지 분포를 가정 : 순차회귀 다중대체
 - ✓ 함축적인 모형을 근거로 한 대체방법: 핫덱대체, 콜드덱대체
 - 다중대체 (Multiple imputation)
 - EM 대체
- EM 알고리즘(Expectation—Maximization algorithm)
 - : 우도함수를 최대화 시키는 모수를 찾는 방법,
 - 즉, MLE를 찾는 방법 중 하나.

Figure 9.3 Forty points from a bivariate normal distribution, the last 20 with x_2 missing (circled).