

formules:
Retative graquency: & Pount graquency: V. f. X lo Measure angle: r. & x 360 . I QR: Q3 . Q1
Measure angle: r- g x 360 - I QR: Q3 - Q, # g classes: K= L3.322 log n L Range: 22 - 26
· class limit: A + one measurement wit / K
Mid point: uppor limit + lower limit /2 coordinates:
· bacchart: (class, 8:) histogram: (6, 8)
- polygon: (2 m, b) les than ogive. A(F: (upper &, F)) genter than ogive. D(F: (lower &, \$\overline{\psi}_i)\$)
central tendencies:
for rean data: \(\mathbb{Z}\): for rean data: \(\mathbb{Z}\): \[\text{furphing:} \(\mathbb{Z}\): \[
Interpritor : Exm &: unighted: Ewize
27 M edism 2: . raw data: 2 n+1/2 (odd), 2012 + 2012+1 (even)
· frequency: \$ \$ /2 (even), \$ \$ +1 /2 (odd)
• destrubution: $\frac{7}{6} + (\frac{\Sigma \xi/2 - (\tilde{+} - \tilde{\xi})}{\tilde{\xi}}) c$

37 Mode 2:	
Now & suguency: data with the higest suguency.	
distubution: 6 + (d.)	
distubution: 6 + (d, d, d)	
dispussion: di+di	
$\frac{q = r(n+1)}{r} \qquad \qquad \int_{-r}^{r} \frac{r(n+1)}{r} dr$	(n+1)
Q, D, P = 2 +5 (2 x)	.00
· lower genec: LF = Q = 1.5 (Q = Q)	
highwe genu: HF= Q+1.5(Q, Q)	
17 Voriance 5°:	
$Maw: \Sigma (22-22)^2$ frequency: ΣE	(24-3
distribution: Sit (22n-72)2	6-1
27 Standard Ferriation 5:	
LIO andura devición o:	
· S = t vac	
· Coefficient of variation: (V= 5 x 100	
7-8we: 7 = 2i-x	
*n S	
	2
	-

	Maple	
	· factorial notation:	· permulation:
	n! = n(n-1)(n-2)	np=n!
	· Combination:	(m-r)!
	$\binom{n}{r} = \frac{n!}{(n-r)!r!}$	(n-1)!
	exactly one of an event:	daplacis princible:
	AAB = (A\B) U (B\A)	P(A) = 1A1 : Ewforce equally like
	· complement:	- difouni :
	P(A) = 1 - P(A)	P(A\B) = P(A) - P(AnB)
	Probability:	De-morganis law:
	P(A) = SP(zwz); YWEX	P(AUB) = P(AAB)
	· additure rule:	P(AAB) = P(AUB)
	P(AUB) = P(A) + P(B) - P(A)	nß)
	P(AUB) = P(A) + P(B), metro	ally exclusive events
	· conditional probability:	mulipluative rule:
	P(AIB) = P(ANB)	P(AAB) = P(B)P(AB)
	P(AIB) = P(ANB) P(B) P(AIB) = P(A) Tradependent	P(A \ B) = P(A) P(BlA)
	. Total probability: Indusendent.	
	SPCZ IPCBIZ)=P(B)	Bayis thronem:
	P(Z1B)	= P(Xi) P(BIXi)
		IP(Zi) P(BIZi)

	namples:
	igular especiment:
an	alysis of pure water with electric
	ount.
Ma	indom esipoiment:
tos	sing a coin three times.
	ute countable space:
	lling a die once. 5 = {1,2,3,4,5,63
in	countable space:
	sosing a number randomly from 12
	ting stones in a well reandomly.
ongi	inte countable operer:
	11. 1 -14
vol	ling a die untitt a six is obtained.
Sol	ling a die untitt a six is obtained.
_vlol	ling a die untitt a six is obtained.
_vlol	ling a die untitt a sise is obtained.
vlol	ling a die untitt a six is obtained.
vlol	ling a die untitt a six is obtained.
_vlol	ling a die untitt a six is obtained.
vlol	ling a die untitt a six is obtained.
vlol	lling a die untitt a six is obtained.
vlol	ling a die untitt a six is obtained.

	distrition of a random variable:
•	V-122)
-	X(2c) = & w. z elt, +x tlR
	distribution function:
-	$f_{x}(x) = P(x_{\perp}x)$
5	6. 0 ≤ F(2c) ≤ 1
	$\lim_{x \to -\infty} F(x) = 0, \lim_{x \to \infty} F(x) = 1$ $\lim_{x \to -\infty} P(a \perp x \perp b) = F(b) - F(a)$
	probability mass guntion of a disoute variable
-	1. P(X = x) > 0
-	ZP(x=x)=1
	distribution function of a d. v. V:
-	$F_{x}(x) = \Sigma P(x \leq x)$
•	man of a dispute random variable:
	$A = E(X) = \sum_{x} \chi_{x} P(X = \chi_{x})$
5	MEE(X) = Six; P(X=x;) When and standard duration:
	$\sigma^2 = E(X^2) - A^2$
-	0 = 1 0 1
-	6 = N 6

probabili	ity dusity function for a c.v.v:	
	f(x) = f(x)dx	
i. f. 12		
	(x (b) = o) = (xx) d x = 1	-
***	- Control of the Cont	
	(= 2c) = 0 Since its continuous	
distributi	ion function:	
<u> </u>	$F_{x}(x) = -\omega f(x) dx$	
	a continuous random cariable:	
× 1	x f(x) dx	<u> </u>
_ «	and standard demention:	
0° = 1	x2f(x)dx-h2	
o= T	<u> </u>	ă ă
dounation	es:	
defix:	$\frac{1}{2} = \frac{f'(x)}{e^{f(x)}} = \frac{d}{dx} = \frac{uv = uv + v}{dx}$	LI
dn	du uiv-uvi de	
,	dx V V2	
5		
		-

-	Special Distributions:
	i. Discate:
	Binomial: X~B(m,p)
	P(x) = (x)p"(1-p)"-K
	1=np 02=npq 0=1/02
•	Geometric: XnG(p)
	$\frac{P(x)-pq^{\kappa-1}}{x}$
	Poissons: X~Po()
	1= x 62= x 6= x 62
•	Unicorem: X~ DU(K)
	La Continuous:
	Exponential: X=Ep(1)
	$\frac{\pi}{2}(2c) = \lambda e$
	$\frac{1}{x}(x) = 1 - e$
	Normal: \\ (\frac{\tangle}{\sigma}\) = \frac{1}{2} \(\frac{\tangle}{\sigma}\)
	8 (2c) = 5 \(\frac{1}{2}\times \)
	10 andwed: 22 20,11
	V2x -10

Hoofs:		
	nar(x) is espoussed as E()	$(x^{2}) - (E(x))^{2}$:
E[(X-1	$= (x)^{2} $ $= (x)^{2}$ $= (x)^{2}$ $= (x)^{2}$ $= (x)^{2}$	x) + (E(x)) 7
+ E(x2)	-2E(X)E(X) 1(E(X))2	
+ E(x2)	-(E(x)) } Stunies formula	
	J	
グ	Σ, λ ^κ e-λ = 1:	
٠- ١ ١ ١	^ .	
° K	3 + [1 + x x x] Tax	ylais enpursion
- oasu	on laylors expansion w	$e have \sum_{0} \frac{A}{K1} = e$
ins, e	5 x = e e = e = 1	
	•	
Example) :	
	random variable: number	
Continu	ous random variable: lige	e espectancy of a
Binomi	al Dust. number of co	out guesses in
True 03	c salse quiz.	
Poisson	Dist: number of care	dweing reich
Noxmal	Dist. " IQ measures.	
	Dist : lie length of a	

P-10 1-8/2 TO 11/2

	2nd test the statistic:
	7 - P-Po 0/Nn 7 - P-Po 0/Po(1-P)/n
	0/Nn VP6(1-P0)/n
	3rd vilual rugion or P-value:
	i. otilual region:
	a) H: 12 16
	Z _{1-K} -Z _{1-K} O
	e) H: 1/2 / 2
	2 - X - X - X - X - X - X - X - X - X -
	il. p-value:
30	a) H: M > G P(Z > Z)
	b) H.: MLG P(Z1-171)
	C) H: 1/2 2P(Z>1Z)
	4th dupion:
	in the while it all is the cotical region
	or a is quater than or equal to the P-value.
	or & is arrange man or equipment

al all		
chople	r gens	

Pearson coordation congre	rept:
至は二年1(コニラ)	r= "Σχίζι - Σχί·Σζι
では、一定、・という・ラー	Nn Zn: - (Ex;) n Zy: - (Z5;)
imple linear rugression	line of a population:
Y = a +	bx + E
× 1	Y= a+ b x+ E
	b slope
y-intera	, X
The estimated regress	ion line of a sample:
~ · · · · · · · · · · · · · · · · · · ·	a, bx
. Z(2:-2)(5:-5)	b = n Iziyi - Izi · Zyi
Σ(x;-x)2	$n \sum x_i^2 - (\sum x_i)^2$
- û - ī ĥ -	$\hat{\alpha} = \Sigma y_i \Sigma x_i - \Sigma x_i \Sigma x_i$ nenation:
some detirer	nualiani
officen & and	123 = 1 SCE / SC tat
= 55 PL / 55 Tot	r2 = 1 _ SSE / SS tot
dal sum of squared de	wations (total ver): 55 tol = 50
Samo squaled recovers	ion exclose (esp. var): SSR = 5!
Sum of Equared excor	(rusiduals (unexp. vox):SSE=5(4
55 = 55P	
tol	