

Кто преподает?

Тарасов Юлий <u>@botan razdolb</u>

• Белов Владислав @sick hoof

Где преподает?

Аудитория – 3.28б (левая) Физтех.Цифра

Слайды – Github <u>riscv-technologies-lab/testgen-lectures</u>

Когда преподает?

Каждый понедельник 10:45 – 12:10

Что преподает? (в этом семестре)

- Архитектура и экосистема RISC-V
- Как сделать свой RISC-V
- Как понять что ваш процессор работает (или нет)
- Почему важно готовиться к выпуску процессора и как это сделать

- Функциональный симулятор
- "Hello, world" на RISC-V
- Linux на RISC-V
- Как запустить DOOM на Linux, который запущен на вашем симуляторе

Уровни абстракции

- Абстракции помогают не сойти с ума
- SW (software) компилятор и выше
- HW (hardware) микроархитектура и ниже
- Архитектура интерфейс между SW и HW

Архитектура определяет ...

- Набор команд (как их семантику, так и кодировку)
- Регистры
- Типы данных
- Работу с памятью
- Интерфейсы, ввод/вывод
- Создание прерываний и исключительных состояний и их обработка

Какие архитектуры уже есть

x86 x86-64

Ноутбуки, ПК, сервера

ARM

Мобильные устройства, сервера

MIPS

PSP, сетевые устройства

Эльбрус

ДАННЫЕ УДАЛЕНЫ

Зачем еще одна?

КАК ПОЯВЛЯЮТСЯ СТАНДАРТЫ:

СИТУАЦИЯ:
В МИРЕ
СУЩЕСТВУЕТ
14 СТАНДАРТОВ
КАКОЙ-НИБУДЬ
ТЕХНОЛОГИИ

14?! ЭТО ЖЕ ПРОСТО
СМЕШНО! НАМ НУЖНО
ПРИДУМАТЬ СВОЙ
УНИВЕРСАЛЬНЫЙ
СТАНДАРТ, КОТОРЫЙ
БУДЕТ ЛУЧШЕ ВСЕХ
ОСТАЛЬНЫХ.

ОТЛИЧНАЯ
ИДЕЯ!

ТЕПЕРЬ:

СИТУАЦИЯ:

В МИРЕ

СУЩЕСТВУЕТ

15 СТАНДАРТОВ

КАКОЙ-НИБУДЬ

ТЕХНОЛОГИИ

RISC-V

- Открытая
 - Спецификация в открытом доступе, royalty-free
- Свободная
 - Развитие в рамках комитета
- Модульная и расширяемая
 - Минимальный базовый набор
 - Дополнительная функциональность включается через расширения
 - Возможно включать расширения в различных комбинациях

RISC-V Foundation

- Основан в 2015 индустриальными лидерами и стартапами
- 3900+ членов из 70+ стран
- Продвигает исследования и инновации

成为资本CHENGWEI

magination

Phytium飞腾

Процесс ратификации спецификации RISC-V

Альянс RISC-V

Задачи:

- Создание открытого сообщества разработчиков
- Участие в фундаментальных исследованиях
- Развитие российской экосистемы продуктов

Профильные комитеты:

- Технологический
- Индустриальный
- Юридический
- Академический

Модульность и расширяемость RISC-V

- Базовый набор и стандартные расширения зафиксированы
- Добавление функциональности через расширения, не выпуск новых версий

М	Умножение и деление
С	Сжатые инструкции
F	Single-precision floats
D	Double-precision floats
E	Сокращенное количество регистров
Α	Атомики
Z*	Другие стандартные расширения

Минимализм базовой ISA

Jumps & Calls
JAL
JALR
BEQ
BNE
BLT
BGE
BLTU
BGEU

Loads & Stores
LB
LH
LW
LBU
LHU
SB
SH
SW
LWU
LD
SD

	Arithr	netics	
ADD	ADDI	ADDW	ADDIW
SUB		SUBW	
OR	ORI		
XOR	XORI		
AND	ANDI		
SRL	SRLI	SRLW	SRLIW
SLL	SLLI	SLLW	SLLIW
SRA	SRAI	SRAW	SRAIW
	Data	flow	
SLT	SLTU	SLTI	SLTIU

Special
FENCE
ECALL
EBREAK
Upper immediate
LUI
AUIPC

Псевдооперации

```
for (i = 0; i < N; ++i)
    if (a[i] == x)
    return i;
```

```
a5,a0
        ΜV
        li
                a0,0
                 .loop
.latch:
                a0,a0,1
        addiw
.loop:
                a4,0(a5)
        lw
        addi
                a5,a5,4
                a4,a2,.latch
        bne
.exit:
        ret
```

Псевдоинструкция	Базовая инструкция	Смысл
nop	addi x0, x0, 0	Нет операции
li rd, immediate	Различные последовательности	Загрузка константы
mv rd, rs	addi rd, rs, 0	Копирование регистров
not rd, rs	xori rd, rs, -1	Инверсия числа
neg rd, rs	sub rd, x0, rs	Изменение знака числа
seqz rd, rs	sltiu rd, rs, 1	Установить 1, если == 0
snez rd, rs	sltu rd, x0, rs	Установить 1, если != 0
sltz rd, rs	slt rd, rs, x0	Установить 1, если < 0
sgtz rd, rs	slt rd, x0, rs	Установить 1, если > 0
beqz rs, offset	beq rs, x0, offset	Перейти, если == 0
bnez rs, offset	bne rs, x0, offset	Перейти, если != 0
blez rs, offset	bge x0, rs, offset	Перейти, если <= 0
bgez rs, offset	bge rs, x0, offset	Перейти, если >= 0
bltz rs, offset	blt rs, x0, offset	Перейти, если < 0
bgtz rs, offset	blt x0, rs, offset	Перейти, если > 0
bgt rs1, rs2, offset	blt rs2, rs1, offset	Перейти, если >
ble rs1, rs2, offset	bge rs2, rs1, offset	Перейти, если <=
bgtu rs1, rs2, offset	bltu rs2, rs1, offset	Перейти, если >, беззнаковое
bleu rs1, rs2, offset	bgeu rs2, rs1, offset	Перейти, если <=, беззнаковое
j offset	jal x0, offset	Переход по метке
jal offset	jal x1, offset	Переход с сохранением адреса возврата
jr rs	jalr x0, 0(rs)	Переход по значению из регистра
jalr rs	jalr x1, 0(rs)	Переход с сохранением адреса возврата
ret	jalr x0, x1, 0	Возврат из подпрограммы

imm [12]		imm[10:5] rs2 30 29 28 27 26 25 24 23 22 2											rs1			f	unct	3		imm	[4:1]		imm [11]			O	pcod	le			
31	30	29	28	27	26	25	24	23		21	20	19	19 18 17 16 15					13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	1	0	0	1	1	1	0	0	0	1	1

Декодер в твоей голове:

- Первые 6 бит уникальный идентификатор типа инструкции (опкод)
- Каждая инструкция принадлежит какому-то типу
- Знание о типе инструкции даёт всю необходимую информацию для декода инструкции

Формат кодировки

31 30	25 24	1 21	20	19	15 14	12 11	1 8	7	6 0	
funct7		rs2		rs1	func	ct3	rd		opcode	R-type
	imm[11:0])]		rs1	func	ct3	rd		opcode	I-type
										1
imm[11:5]		rs2		rs1	func	ct3	$\operatorname{imm}[e]$	4:0]	opcode	S-type
[10]	F1 0 77									1 -
[imm[12]] $[imm]$	[10:5]	rs2		rs1	func	$ct3 \mid in$	mm[4:1]	imm[11]	opcode	B-type
		. [04.4/	21							1
		imm[31:12	2]				rd		opcode	U-type
[20]	. [40.4	1 .	[4.4]		[40,40]					1
imm[20]	imm[10:1	.] im	m[11]	imn	n[19:12]		rd		opcode	J-type

imm [12]		imm[10:5] rs2									rs1			f	unct	3		imm	[4:1]		imm [11]			O	pcoc	le					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	1	0	0	1	1	1	0	0	0	1	1

31	30	25	24 21	20	19	15	14	12	11 8	7	6 0	
imm[12] in	nm[10:5]	rs2		rs1		funct3	3	imm[4:1]	imm[11]	opcode	B-type

imm [12]		imm[10:5] rs2							rs1						unct	3		imm	[4:1]		imm [11]			O	pcod	le					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	1	0	0	1	1	1	0	0	0	1	1

31	30	$25\ 24$	21	20	19	15	14	12	11 8	7	6 0	
imm[12]	imm[10:5	5]	rs2		rs1		funct3	3	imm[4:1]	imm[11]	opcode	B-type

31	30	$25\ 24$	21	20	19	15	14	12	11 8	7	6 0	
imm[12]	imm[10:	5]	rs2		rs1		funct	3	imm[4:1]	imm[11]	opcode	B-type

imm [12]		i	mm[10:5]		rs2				rs1				funct3			I immi/i·11 I				imm [11]	Oncode								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	1	0	0	1	1	1	0	0	0	1	1

Обсуждение:

- Знаете ли вы ещё какие-нибудь кодировки?
- Подумайте о плюсах и минусов такого формата кодировки
- Как бы вы написали программу, которая декодировала бы инструкции RISC-V ISA?

bge x0, x10, -248

ABI и calling convention

Name	Alias
x0	zero
x1	ra
x2	sp
x3	gp
x4	tp
x5-x7	t0-t2
x8-x9	s0-s1
x10-x15, <mark>x16,x17</mark>	a0-a5, <mark>a6,a7</mark>
x18-x27	s2-s11
x28-x31	t3-t6

FP Name	FP Alias
f0-f7	ft0-ft7
f8-f9	fs0-fs1
f10-f17	fa0-fa7
f18-f27	fs2-fs11
f28-f31	ft8-ft11

Красных регистров нет в RV32E

Обсуждение

Оказавшись компилятором, чтобы вы сказали?

- Для RV32I?
- Для RV32IF?
- Для RV32ID?

```
int fto_int(float f) {
  return f;
}
```

Гладко было на бумаге...

Не компилируется, потому что нет fp регистров ... но это можно заставить скомпилироваться: godbolt.org

Доступные RISC-V ABI: ilp32 ilp32d ilp32e ilp32f lp64 lp64d lp64f

LP64 – long и pointer = 64, int = 32

LP64d – то же и поддержаны double

ILP32, ILP32d – integer, long и pointer = 32

А с каким ABI собрана libc, с которой вы линкуетесь? :-) А с какими расширениями собрана libc, с которой вы линкуетесь?

To be continued ...

На следующем занятии прикоснемся к экосистеме RISC-V:

- Научимся пользоваться кросс-компилятором (и узнаем почему он кросс)
- Научимся запускать RISC-V программы без RISC-V
- Запустим программу на настоящем RISC-V

Подготовка к следующему занятию

- Toolchain для кросс-платформенной разработки состоит из большого числа инструментов
- Их совместная настройка может требовать заметных усилий
- Для решения подобной проблемы была создана технологии контейнеризации приложений
- На наших занятиях мы рекомендуем использовать docker с настроенными инструментами и окружением

Пару слов про docker

Docker – система упаковывания приложения вместе с окружением в «контейнер», а также управления такими контейнерами.

GameBoy:

- Просто вставь картридж и играй
- Хочешь поделиться с другом игрой просто передай картридж

Docker позволяет передавать контейнер, в котором приложение будет сразу работать

Пару слов про docker

Окружение приложения:

- Бинарные зависимости (библиотеки, другие приложения)
- Структура файловой системы
- Конфигурация системы
- Переменные окружения

Задание к следующему занятию

- Настроить docker и скачать образ контейнера с Syntacore Development Toolkit (SC-DT) по инструкциям:
 - Docker инструкция
 - SC-DT <u>инструкция</u>

Или

• Самостоятельно нативно установить SC-DT с <u>официального сайта</u>

Список литературы

- The RISC-V Instruction Set Manual Volume I Unprivileged Architecture Version 20240411 // Chapter 2. RV32I Base Integer Instruction Set, Version 2.1
- Лекция на неофициальном открытии лаборатории RISC-V технологий в МФТИ, февраль 2024: https://youtu.be/xY Ne9ZznJ4
- Hennessy J. L., Patterson D. A. Computer architecture: a quantitative approach. Morgan kaufmann, 2017.
- Инструменты программирования для открытой архитектуры RISC V. Константин Владимиров, конференция True Tech, 2024: https://youtu.be/qoNjayusCX4
- Расширяемая архитектура RISC-V и Syntacore SW Tools. Константин Владимиров, конференция «Салют, OS DevConf!», 2024: https://youtu.be/1zLxxxLc0xl

Канал курса в telegram

