CREATING NEW TRANSFORMERS FOR SCIKIT-LEARN

- You are going to create a new transformer for scikit-learn, similar to the SimpleImputerQuartile() developed in the theory slides.
- Create a matrix X with a few instances with some nan values in it. Create also a response variable vector y. You can put any values in both X and y.
- Following the structure explained for *SimpleImputerQuartile*, define a new transformer that replaces a nan value at location X[i,j] by a random value sampled from a normal distribution with mean m_j and standard deviation s_j . You can use the numpy.random.normal for sampling random values from a gaussian distribution. Check the numpy.random.normal documentation.
- Show that it works for your data matrix (executing the .fit and the .transform methods).
- Show that it works in a pipeline with knn (executing the .fit and the .predict methods of the pipeline).
- To hand in:
 - The code and a report showing that your program works
 - Or, a jupyter notebook with comments.

<u>ATTRIBUTE NAMES (more info at https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest/data)</u>

Variable	Description	Units
apcp_sfc	3-Hour accumulated precipitation at the surface	kg m-2
dlwrf_sfc	Downward long-wave radiative flux average at the surface	W m-2
dswrf_sfc	Downward short-wave radiative flux average at the surface	W m-2
pres_msl	Air pressure at mean sea level	Pa
pwat_eatm	Precipitable Water over the entire depth of the atmosphere	kg m-2
spfh_2m	Specific Humidity at 2 m above ground	kg kg-1
tcdc_eatm	Total cloud cover over the entire depth of the atmosphere	%
tcolc_eatm	Total column-integrated condensate over the entire atmos.	kg m-2
tmax_2m	Maximum Temperature over the past 3 hours at 2 m above the ground	К
tmin_2m	Mininmum Temperature over the past 3 hours at 2 m above the ground	К
tmp_2m	Current temperature at 2 m above the ground	К
tmp_sfc	Temperature of the surface	К
ulwrf_sfc	Upward long-wave radiation at the surface	W m-2
ulwrf_tatm	Upward long-wave radiation at the top of the atmosphere	W m-2
uswrf_sfc	Upward short-wave radiation at the surface	W m-2