MAT 125A HW 2

Hardy Jones 999397426 Professor Slivken Spring 2015

4.4 4 Proof. Assume f is continuous on [a, b] and for all $x \in [a, b]$, f(x) > 0.

So we have [a, b] is compact, then we know that f is compact on [a, b], since f is continuous on [a, b].

By the extreme value theorem, f has a minimum and maximum value. So there is some $x_0 \in [a, b]$ such that for all $x \in [a, b]$, $f(x_0) \leq f(x)$.

Now, since we know for all $x \in [a, b], f(x) > 0$,

we have $f(x_0) \le f(x) \implies \frac{1}{f(x)} \le \frac{1}{f(x_0)}$.

Then for all $x \in [a, b], \frac{1}{f(x)}$ is bounded by $\frac{1}{f(x_0)}$.

- 6 (a) Let $f(x) = \frac{1}{x}$. This function is continuous on (0,1). If we take the sequence $(x_n) = \frac{1}{n}$, then (x_n) is Cauchy. But $f(x_n) = \frac{1}{\frac{1}{n}} = n$, and this sequence is unbounded. So it is not Cauchy.
 - (b)
 - (c)
 - (d) Let $f(x) = -\left(x \frac{1}{2}\right)^2$.

Then f has a maximum at the root of the polynomial, but no minimum value.

8 (a) We want to show if there exists some b > 0 such that f is uniformly continuous on $[b, \infty)$, then f is uniformly continuous on $[0, \infty)$.

Proof. Given $f:[0,\infty)\to\mathbb{R}$ is continuous at every point in $[0,\infty)$.

Assume that f is not uniformly continuous on $[0, \infty)$, then we want to show that for any b > 0 f is not uniformly continuous on $[b, \infty)$.

We can rephrase the first part as:

There exists some $\epsilon_0 > 0$ such that for all $\delta_0 > 0$, $|x - y| < \delta_0$ and $|f(x) - f(y)| \ge \epsilon_0$.

And the second part as for any b > 0, there exists some $\epsilon_1 > 0$ such that for all $\delta_1 > 0$, $|x - y| < \delta_1$ and $|f(x) - f(y)| \ge \epsilon_1$.

If we choose $\epsilon_0 = \epsilon_1$, then for any $\delta_1 > 0$ there exists some $0 < \delta_0 < \delta_1$,

where $|x - y| < \delta_0$ and $|f(x) - f(y)| \ge \epsilon_0$. Then we have that f is not uniformly continuous, as we desired.

Thus, by contraposition:

Given $f:[0,\infty)\to\mathbb{R}$ is continuous at every point in $[0,\infty)$, if there exists some b>0 such that f is uniformly continuous on $[b,\infty)$, then f is uniformly continuous on $[0,\infty)$.

(b) *Proof.* From part (a), we need an interval $[b, \infty)$ with f continuous at every point.

If we choose b=1, then for any $\epsilon>0$ we can choose $\delta=\epsilon$.

We also know that $\sqrt{x} + \sqrt{y} \ge 1 + 1 = 2$

Now,

$$|x - y| < \epsilon$$

$$|\sqrt{x} - \sqrt{y}||\sqrt{x} + \sqrt{y}| < \epsilon$$

$$|\sqrt{x} - \sqrt{y}| < \frac{\epsilon}{|\sqrt{x} + \sqrt{y}|}$$

$$|\sqrt{x} - \sqrt{y}| \le \frac{\epsilon}{2}$$

$$|\sqrt{x} - \sqrt{y}| < \epsilon$$

So f is uniformly continuous on $[1, \infty)$.

From part (a), we conclude that f is uniformly continuous on $[0, \infty)$.

Thus, $f(x) = \sqrt{x}$ uniformly continuous on $[0, \infty)$.

9 (a) *Proof.* Assume $f: A \to \mathbb{R}$ is Lipschitz. Then there exists some M > 0 such that for all $x, y \in A$,

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le M$$

•

For any $\epsilon > 0$, choose $\delta = \frac{\epsilon}{M}$. Then, when $|x - y| < \delta$,

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le M$$

$$\frac{|f(x) - f(y)|}{|x - y|} \le M$$

$$|f(x) - f(y)| \le |x - y| M$$

$$|f(x) - f(y)| < \frac{\epsilon}{M} M$$

$$|f(x) - f(y)| < \epsilon$$

So, f is uniformly continuous .

Thus, if $f: A \to \mathbb{R}$ is Lipschitz, then f is uniformly continuous.

(b) No, not all uniformly continuous functions are Lipschitz.

Let $f(x) = \sqrt{x}$ on $[0, \infty)$, then we know this is uniformly continuous by a problem above.

But if y = 0 then

$$\left| \frac{\sqrt{x} - \sqrt{0}}{x - 0} \right| = \left| \frac{\sqrt{x}}{x} \right| = \frac{\sqrt{x}}{x}$$

and this grows unbounded when $x \to 0$.

So f is not Lipschitz.

13 (a) Proof. Assume $f: A \to \mathbb{R}$ is uniformly continuous, and $(x_n) \subseteq A$ is Cauchy. Then we have, for all $\epsilon > 0$ there exists some $\delta > 0$ such that, if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$.

And also, for all $\epsilon > 0$ there exists some $N \in \mathbb{N}$ such that, for all $m, n \ge N, |x_m - x_n| < \epsilon$.

So, given some $\epsilon > 0$, choose $\delta = \epsilon$.

Since (x_n) is Cauchy, there exists $N_0 \in \mathbb{N}$ such that, for all $m, n \geq N, |x_m - x_n| < \delta$.

And since we know f is uniformly continuous, we have $|f(x_m) - f(x_n)| < \epsilon$. So $f(x_n)$ is also Cauchy.

- (b) *Proof.* We need to prove both directions.
 - $\bullet \ (\Longrightarrow)$
 - (⇐=)

Since g is continuous and [a, b] is compact, g is uniformly continuous on [a, b].

And Since $(a, b) \subseteq [a, b]$, g is uniformly continuous on (a, b).

4.5 1 *Proof.* The closed interval [a, b] = E is connected.

Given Theorem 4.5.2, f(E) is also connected.

If we have some L between f(a) and f(b), then $L \in f(E)$. And if $L \in f(E)$ there must be some $c \in E$ such that f(c) = L.

This is the Intermediate Value Theorem.

2 (a) False.

Let $f(x) = \frac{1}{x}$.

Then on the bounded open interval (0,1), the range of f is $(0,\infty)$, which is unbounded.

(b) False.

Let $f(x) = x^2$.

Then on the bounded open interval (-1,1), the range of f is [0,1), which is a not an open set.

(c) True.

Let f be continuous on a bounded closed interval A. Then this interval is compact, and so f(A) is also compact.

And since f(A) is compact, f(A) is an interval.

7 *Proof.* Assume f is continuous on [0,1]. We can construct a function g(x) = x which is also continuous with the same domain and range.

g is continuous if we take $\epsilon = \delta$ for any $\epsilon > 0$, then $|x - y| < \delta = \epsilon$.

Then we can construct another continuous function, h(x) = f(x) - g(x).

Now h(x) has domain [0,1] and range [-1,1].

Where at x = 0, h(0) = f(0) - g(0) = f(0) so $h(0) \in [0, 1]$. And at x = 1, h(1) = f(1) - g(1) = f(1) - 1 so $h(1) \in [-1, 0]$.

So by the Intermediate Value Theorem, there must exist some $c \in [0, 1]$ such that $h(c) = 0 = f(c) - g(c) \implies f(c) = g(c) \implies f(c) = c$.