ME 333: Final Project Stephanie Chang 2979722

28.4.1 #7: Decision, Decisions

Answers for problems 1-6

1. SPI channel used: SPI4

2. ADC input used: ADC1 (AN0)

3. H-bridge peripherals: LATD and OC1

4. Timer used for 200 Hz ISR: Timer 4
Timer used for 5 kHz ISR: Timer 2
(Timer 3 used to control PWM output for 5 kHz ISR)

NU32 pins used: B8, B14, F4, F5

NU32 pin used: B0

NU32 pins: D6 (Motor direction)

D0 (PWM)

Priority level for 200 Hz ISR: 5 Priority level for 5 kHz ISR: 4

5. Annotated Figure 27.7.

6. Proposed layout of the circuit boards to the NU32.

28.4.7 #7: Current Sensor Wiring and Calibration

Answers for problems 2-6

2.
$$R_{motor} = 12.1 \, \Omega$$

 $I_{max} = 2(6.471 \, V)/12.1 \, \Omega = 1.07 \, A$

3.
$$V_{max} = (1.07 \text{ A})(15 \text{ m}\Omega)/1000 = 0.016V$$

4.
$$G_{desired} = (1.65 \text{ V})/(0.016 \text{ V}) = 102.84$$

 $R_1 = 0.989 \text{ k}\Omega$
 $R_2 = 0.996 \text{ M}\Omega$
 $G = 101.71$

5.
$$R = 666 Ω$$

 $C = 1 μF$

$$fc = 1/(2\pi RC) = 238.97 Hz$$

6. Circuit Calibration Table

R0 (Ω)	Expected I (mA)	Measured I (mA)	Sensor (V)	ADC (counts)
10 (to RS+)	600	339.7	2.42	239
20 (to RS+)	300	220.1	2.04	366
40 (to RS+)	150	127.3	1.83	435
Open Circuit	0	0	1.60	507
40 (to RS-)	-150	-128.2	1.35	579
20 (to RS-)	-300	-226.6	1.08	649
10 (to RS-)	-600	-343.7	0.64	779

28.4.8: ADC for the Current Sensor

6. (Bonus work) Plotting ADC counts vs. measured current from the Circuit Calibration table above

ADC Counts vs. Measured Current (mA)

ME 333: Final Project Stephanie Chang 2979722

The best fit line equation shown is used in convert_adc() to extrapolate an estimated value for measured current in milliamps from empirically read ADC counts.

28.4.9: PWM and H-Bridge

7. (Bonus work) nScope duty cycle verifications, 80% PWM, direction pin = 3.35V

-40% PWM, direction pin = - 0.05 mV

8. Circuit diagram of all connections to H-bridge, NU32, motor, and current sensor PCB.

28.4.10: PI Current Control and ITEST Mode

5. Best ITEST Plot

Kp = **45.0 mV/mA** Ki = **1.75 mV/mA**

28.4.12: Trajectory Tracking

5. Best plot for step and cubic trajectories with attached load (inertia bar)

Best plot for step trajectory

Current gains (mV/mA): Kp = 45, Ki = 1.75Position gains (mA/deg): Kp = -2.8, Ki = -0.007, Kd = -100

Best plot for cubic trajectory:

Current gains (mV/mA): Position gains (mA/deg):

