Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety: notation

This document is written to reorganize the notations in Tomasz Przezdziecki's master thesis: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%2oThesis_Tomasz%2oPrzezdziecki.pdf

We changed some notation for the convenience of writing.

Task.

- 1. dimension vector
- 2. Weyl gp
- 3. alg group & Lie algebra
- 4. typical variety
- 5. (equivariant) stratifications
- 6 tangent space, Euler class
- 7. basis of Hecke alg

We may use two examples for the convenience of presentation. Readers can easily distinguish them by the dim vectors.

1 dimension vector

$$|d| = 5$$

$$d = (3,2)$$

$$\underline{d} = \begin{pmatrix} \frac{3}{2}, \frac{2}{3} \\ \frac{2}{3}, \frac{1}{3} \\ \frac{$$

2. Weyl group

Set element special element others
$$|W_{1d1} = S_{5}$$

$$|W_{1d} = S_{5}$$

$$|W_{1d} = S_{5} \times S_{1}$$

$$|W_{1d} = S_{3} \times S_{1}$$

$$|W_{1d} = S_{3} \times S_{1}$$

$$|W_{1d} = S_{3} \times S_{2} \setminus S_{5}$$

$$|W_{1d} = S_{3} \times S_{2} \setminus S_{3}$$

$$|W_{1d} = S_{3} \times S_{3} \setminus S_{3}$$

$$|W_{1d} = S_{3} \times S_{3}$$

$$0 \longrightarrow W_{d} \longrightarrow W_{|d|} \longrightarrow W_{|d|} W_{d} \longrightarrow 0 \qquad w = XX$$

$$u = XX$$

$$u = XX$$

$$w = XX$$

Another example:
$$d = (1,2)$$
 $a \longrightarrow b$ $\langle v_1 \rangle \longrightarrow \langle v_2, v_3 \rangle$

3. alg group & Lie algebra

Ex. Show that

We can generalize the unipotent part.

Their Lie algebras are collected here.

$$h_{oo} = h_{odmax to}$$

$$\begin{aligned} \text{Repd}(Q) := \prod_{e \in Q_1} \text{Hom}\left(V_{s(e)}, V_{t(e)}\right) &= \begin{pmatrix} * & * & * \\ * & * & * \end{pmatrix} \subseteq \underset{e \in Q_1}{\text{yld}} \\ V_{\text{obs}} &= \int_{\mathbb{R}^d} f \in \underset{\mathcal{N}_4}{\text{Repd}}(Q) \mid f \cdot F_{\text{obs}, i} \subseteq F_{\text{obs}, i} \right] &= \underset{\mathcal{N}_4}{\text{yld}} \pi_{\underline{d}}^{-1}(F_{\text{obs}}) \\ &= \underset{\mathcal{N}_4}{\text{yl}} \underbrace{V_{\text{obs}}}_{\text{vl}} \underbrace{V_{\text{obs}}}_{\text{vl}} \underbrace{V_{\text{obs}}}_{\text{vl}} \underbrace{V_{\text{obs}}}_{\text{vl}} \underbrace{V_{\text{obs}}}_{\text{vl}} \underbrace{V_{\text{obs}}}_{\text{vl}} \underbrace{V_{\text{obs}}}_{\text{vl}} \underbrace{V_{\text{obs}}}_{\text{obs}} \underbrace{V_{\text{obs}}$$

4 typical variety

Id corres to

$$F_{\infty} := \infty(F_{Id}) = F_{\{V_{\infty(1)}, V_{\infty(2)}, \dots, V_{\infty(1d)}\}}$$
$$= F_{\{V_{\infty}, V_{\infty}, V_{\infty}, V_{\infty}, V_{\infty}, V_{\infty}\}}$$

The action on Flag is not the same as in http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomas sz%20Przezdziecki.pdf

Fidi + II Fd Two = Fd with different base pt. Base pt makes difference!

$$F_{Id1} \times F_{Id1}$$
 $F_{Id,Id}$ $F_{u,u'}$ $F_{u,u'}$ $F_{u,v} \times F_{u'}$ $F_{u,v} \times F_{u,v}$ F

 $F_{\omega,\omega'}:=(F_{\omega},F_{\omega'})$

 $\mu_{\underline{d}}^{-1}(M) \cong Flag_{\underline{d}}(M) \subseteq \mathcal{F}_{\underline{d}}$ is the Springer fiber.

$$Z_{\underline{a},\underline{a}'} \stackrel{C}{\underset{M_{\underline{a},\underline{a}'}}{\underbrace{C \ Repa(Q) \times F_{\underline{a}} \times F_{\underline{a}'}}}} \xrightarrow{\pi_{\underline{a},\underline{a}'}} \xrightarrow{\pi_{\underline{a},\underline{a}'}}$$
 $Repa(Q) \qquad F_{\underline{a}} \times F_{\underline{a}'}$

5. (equivariant) stratifications. In the following tables,

 $uw' = \widetilde{w}'\widetilde{u}$.

 $F_{\infty} \in \widetilde{Rep}_{d}(\mathcal{Q})$ means (p_{0}, F_{∞}) ; $(F_{\infty}, F_{\infty'}) \in \mathbb{Z}_{d}$ means $(p_{0}, F_{\infty}, F_{\infty'})$. $V \subseteq G \times G$ acts on $V \in \mathcal{F}$ in a twisted way

e.g. $(g_1,g_2)F_{\infty},\infty'=F_{g_1\infty},g_1\otimes g_2\omega^{-1}\omega'$

stratification type Stabilizer Variety base point		B-orbit B×B-orbit		B×G -orbit	G×B-orbit	Remark			
\mathcal{B}	$\mathcal{B} \times \mathcal{B}$ Ω_{9}		Ω19,9 [°]	$\operatorname{pr}_{i}^{-1}(\Omega_{g})$	$\Omega_{ extsf{g}'}$				
Fg	(Fa, Fagi)	BAgBg-1	(BngBg") ×(BngBg")		<u> αΒα-1 × (βΛάΒά-1)</u>				
Fidi	Fidi × Fidi	V.	V), 60, 10°	pr;"(V5)	1/2.				
F,	(Fo, Fo)	BIN ABN	(By 180) × (By 180)	(IB _{IdI} ∩IB∞) × IB∞'	1Boo × (1Bbol 1 1Bbo)				
Fu	$F_u \times F_u$	Ωw	ΩLω,ω,	$Pr_{i,u}^{-1}(\Omega_{\omega}^{u})$	$\Omega^{u,u'}$				
For	(Fwu, Fwwi)	BunBw	$(B_{d} \cap B_{\omega}) \times (B_{d} \cap B_{\omega})$	$(B_{\alpha} \cap B_{\omega}) \times B_{\omega'}$	Bu × (Bd \Bu)				
Fa	$F_d \times F_d$	Ω_{ω}^{v}	$\Omega_{\alpha,\underline{\alpha},\alpha}$	pr:, ~ (\(\Omega \cdot \)	$\mathcal{O}_{\alpha}^{\omega'} = \Omega_{\alpha, \alpha \alpha'}^{\omega'}$				
F	(Fo, Fo)	BunBw	(Bd VBm) ×(Bq VBm)	$(B_{\alpha} \cap B_{\omega}) \times B_{\widehat{\alpha}'}$	Bw × (Bd∩Bor)	compatability			
Fwu	(Fun. Far 20)								
The following may not be single orbit, but derived from the above definition.									
Fa	$F_d \times F_d$		O)\$\omega, \omega'	pr. (O),	O	preimage of			
F	(F, F, F,				L. Ola,	Fd×Fd -> Fldi×Fldi			
Repata)	≤ ^{₫,₫,}	Ω° u	Ωw,w'	pr.,u·(Ωw)	$\widetilde{\Omega}_{\kappa,\kappa'}^{\omega'}$	preimage of			
Fuu	(Fwu Fww)				~	Zdd -> Fd x Fd'			
Repu(Q)	Z_d				∅ .,	preimage of			
[-,	(Fo, Fo,)				$\widetilde{\Omega}^{u,\widetilde{u}u'}_{\widetilde{\omega}'}$	$Z_d \rightarrow F_d \times F_d$			
Repu(Q)	Z_d	O _{to}	<i>O)</i> ₁₀₀ , 40'	pr. (((()) ()	To.	preimage of			
اردا	(F =)				LI Mu,	7 -> FIXE			

The following tables may help you to understand the notations.

Bid Fw	M.E.	v_{Id}	v_t	\vartheta_s	vo _{ts}	Vst	3 V _{sts}
1	9 Id	VI _{Id,Id}	1) _{IJ.t}	VII.s	V _{Ids}	U _{Iol,st}	V _{Id,sts}
1	_ک ڑ	$V_{t,t}$	19 _{t,Id}	کار _{ط با} ده	V _t ,s	V _{t,sts}	3 V _{t,st}
1	g s	Vs,s	Vs,st	VIs, Id	Us,sts	$\mathcal{V}_{s,t}$	3 V _{s.ts}
1	y ts	4 V _{ts,st}	3 V) _{ts,s}	U _{ts,sts}	Uts, Id	4 Vts.ts	3 V _{ts,t}
1	y st	U _{st,ts}	\frac{\frac{1}{5}}{5t,5ts}	J _{st,t}	U _{st.st}	Vst. Id	V/ _{st,s}
3	sts	Usts.sts	V sts, ts	VI _{sts,st}	Usts,t	Usus,s	3 Vsts.Id

shape Bux Bu · ()	B _d ·F _{w′}	Fid		Fs		\mathcal{F}_{it}	
	5	\mathcal{O}_{Id}	_ O+	Os	$-\mathcal{O}_{ts}$	Ost	Osts
a a	$\mathcal{O}_{\mathrm{zd}}$	Id, Id	$\Omega_{ m Id.Id}$	Id,s [Id,Id]	Uld's —	Id, st \(\O_{\text{Id.Id}}\)	$\Omega^{\mathrm{Id.st}}_{\mathrm{Id}}$
Fid	\mathcal{O}_{t}	Ω ^{Id,Id}	Id.Id At.Id	Ω ^{Ids}	DI t.Id	Ω ^{Id,st}	DId.st
T _s	·Q	S, Id SI _{Id.Id}	$\Omega^{\mathrm{Id.t}}_{\mathrm{Id.t}}$	Urd'iq	$U_{1^{\eta,t}}^{z,z}$	S.st SL _{Id.Id}	Ω _{I°l} τ
r _s	O _{ts}	Ω t.t	S, Id Det.Id	Ū, ^{4,4} ∞,°2	1 + Id	Ωs,st Ωt,t	s.st Mt.Id
4	\mathcal{O}_{ts}	St, Id	U ^{st.IJ}	st.s \$\int_{\text{Id.Id}}\$	∪ _{I',} -	Ω ^{st.st}	U ^{st.st}
Fst	\mathcal{O}_{sts}	Wst'iq	St.Id 12t.Id	Ųt.s	Det.Id	Ω t,t	St.st Mt.Id

b. tangent space, Euler class.