- 1. Exemple
- 2. Exemple
- 3. Exemple
- 4. Algèbre relationnelle
 - 1. Opération de base
 - 2. <u>Sélection</u> σ (sigma)
 - 1. Exemple:
 - 3. Projection Π
 - 1. ON NE PEUT PLUS INVERSER Π et σ
 - 4. Produit cartésien ×
 - 5. <u>Jointure naturelle</u>

```
UNIQUE
                      PRIMARY KEY
unicité
                      unicité
                 =
NULL possible
                 !=
                      pas de NULL
(unicité que sur
les valeur
non NULL)
-----
autant de UNIOUE
                       1 seul par table
                !=
qu'on veux
```

- CHECK : contrainte sur une ligne Après déclaration CHECK (cond) ne concerne que l'attribut déclaré
- [CONTRAINT nom]: CHECK (condition) Sur un ou plusieurs attributs

0.1. Exemple

```
val int CHECK(val >= 2 AND val <= 5),
cat text NOT NULL CHECK(cat IN ('preniere', 'seconde'));</pre>
```

```
CHECK (x + y < 15)
```

DEFAULT: n'est pas une contrainte, donne une valeur par defaut (pour INSERT)

0.1. Exemple

```
date_resa date DEFAULT curent_date,
val int DEFAULT NULL
```

0.1. Exemple

```
CREATE TABLE A(
   id SERIAL PRIMARY KEY,
   val int NOT NULL DEFAULT 3,
   x text NOT NULL
   )

INSERT INTO A(x) VALUES('ab') => (1,3,'ab')
INSERT INTO A(val, x) VALUES(4, 'a') => (2,4,'a')
```

Concerption des base de données relationnelles vuibert jacky akoka, Isabelle comyn_wattiau NE PAS REGARDER LA MODELISATION

Algèbre relationnelle

```
• relation = table
```

- On note $R(a_1,...,a_n)$ table R qui a comme attribut $(a_1,...,a_n)$
- n-uplet = tuple = ligne de base

1. Opération de base

2. Sélection σ (sigma)

```
P: condition sur une ligne \sigma_P(R) \Longleftrightarrow \text{ SELECT * FROM R WHERE P; }
```

A	В	
1	x	
1	у	
2	X	
3	Z	
3	t	

$$\sigma_{\mathrm{B}=x\mathrm{OUB}=z}(\mathrm{R}) =$$

A	В
1	X
2	X
3	Z

```
Produit(*id_produit, desc_prod, prix)
Magasin(*id_mag, nom_mag, adresse)
Stock(*(id_prod#, id_mag#), quantité)
```

2.1. Exemple:

les produits à moins de 50 € $\sigma_{\text{prix} \leq 50}(\text{Produit})$

3. Projection II

• c_1, \dots, c_n nom d'attributs

```
\prod (c_1, \cdots, c_n) \iff \texttt{SELECT} \ \texttt{c\_1}, \ldots, \ \texttt{c\_n} \ \texttt{FROM} \ \texttt{R}
```

Les meuble(description, prix) de >= 100

$$\textstyle \prod_{descprod,prix} (\sigma_{prix \geq 100}(Produit)) = \sigma_{prix \geq 100}(\prod_{descprod,prix}(Produit)) \Longleftrightarrow$$

```
SELECT desc_prod, prix
FROM produit
WHERE prix >= 100;
```

Les chaises de prix >= 20 (id_prod, prix)

 $\prod_{idprod,prix} (\sigma_{prix \geq 100 and descprod = 'chaise'}(Produit))$

ON NE PEUT PLUS INVERSER Π et σ

4. Produit cartésien ×

 $R \times S \iff SELECT * FROM R,S$

5. Jointure naturelle

```
R \bowtie S \iff SELECT * FROM R NATURAL JOIN S
```

On suppose
$$R(a_1, \dots, a_n, b_1, \dots, b_p) S(b_1, \dots, b_p, c_1, \dots, c_m)$$

Les a_i, b_i, c_i sont tous differents (nom d'attributs)

$$\mathbf{R}\bowtie\mathbf{S}=\mathbf{T}(a_1,\cdots,a_n,b_1,\cdots,b_p,c_1,\cdots,c_m)$$
 et contient toute les lignes $(x_1,\cdots,x_n,y_1,\cdots,y_p,z_1,\cdots,z_m)$ tel que: $(x_1,\cdots,x_n,y_1,\cdots,y_p)\in\mathbf{R}$ $(y_1,\cdots,y_p,z_1,\cdots,z_m)\in\mathbf{S}$

A	В	C
1	X	x
2	X	y
3	X	Z
3	у	у

В	C	D
X	y	a
X	y	b
y	Z	a
y	X	С

 $R\bowtie S$

A	В	C	D
1	X	y	a
1	X	y	b
3	X	y	a
3	X	y	b
3	X	X	С

Les chaises en strock en quantité >= 4 dans un magasin et les magasin correspondant (id_prod, prix, id_mag)

 $A = Produit \bowtie Stock$

 $\prod_{id_prod, prix, id_mag} (\sigma_{desc_prod = chaiseANDquantite \Longrightarrow 4)}(A)$

Autre solution

$$\mathbf{B} = \sigma_{descprod='chaise'}(Produit) \; \mathbf{C} = \sigma_{quantit \geq 4}(Stock)$$

 $\prod_{idprod,prix,idmag} (B \bowtie C)$