Spracovanie obrazových meteorologických dát pomocou hlbokého učenia

Vypracoval: Filip Pavlove

Vedúci: RNDr. Andrej Lúčny, PhD.

Dáta

Kamerové snímky (full hd)

- Snímky sú vytvárané v ôsmich smeroch
- Chceme predpovedať dohľadnosť
 - numerická hodnota v metroch
- Tri mesiace anotovaných dát (zatiaľ)
 - o 1624 (časov) x 8 (smerov) anotácií

Definícia problému

- Predpoved dohľadnosti
 - pre jeden smer "315"
- Klasifikácia
 - Tri triedy
 - \bullet 0 = BAD (0 5 000) m.
 - \blacksquare 1 = MEDIUM (5 000 15 000) m.
 - 2 = GOOD (15 000 a viac) m.
- Regresia
 - o predpoveď dohľadosti v metroch

Tradičné strojové učenie vs Hlboké učenie

Extrakcia príznakov

- Hodina zhotovenia fotky
- Zredukované histogramy HSV farebného modelu pomocou PCA. Pre H (Hue) aj S (Saturation) aj V (Value).
- Variácia snímky po aplikovaní Sobel a Laplacian filtru

Original 10000

Sobel X 10000

Laplacian 10000

Sobel Y 10000

Validácia

Rozdelenie datasetu v pomere 80:20 (tréning:testing) a 80:20 (tréning:validácia).

Klasifikácia

- Percentuálna úspešnosť klasifikátoru
- Confusion Matrix

Regresia

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
predicted value actual value test set

Modely

Regresia

Predpoveď dohľadnosti v metroch

- KNN
 - Metrika: Manhattan
 - o susedia k: 2
- MLP
 - jedna skrytá vrstva
 - 225 neurónov
 - aktivačná funkcia
 - skrytá vrstva: tanh
 - výstupná vrstva: ReLu
 - o optimizer: Adam
 - o loss function: MSE

KNN regresia

MLP regresia

Modely

Klasifikácia

Predpoved dohľadnosti do 3 tried

KNN

o Metrika: Euclidean

o susedia k: 5

SVM

Kernel RBF (Radial Basis Function)

Vyhodnotenie

Výsledky na testovacej množine

• **Regresia** (MAE)

o Predpoved dohľadnosti v metroch

■ KNN: 2146.02

■ MLP: 2557.61

Klasifikácia

Predpoved dohladnosti do 3 tried

■ KNN: 78 %

■ SVM: 83 %

KNN

	predicted				
		0	1	2	
truth	0	78	13	5	
	1	17	69	27	
	2	2	25	170	

0 = BAD (0 - 5000) m

1 = MEDIUM (5 000 - 15 000) m.

SVM

	predicted				
truth		0	1	2	
	0	80	12	4	
	1	9	83	27	
	2	0	21	176	

2 = GOOD (15 000 - a viac) m.

Done / To do

Done

- Použitie tradičného strojového učenia.
- Naštudované technológie pre hlboké učenie
 - PyTorch na MNIST datasete
- Naštudované články
 - Akmaljon Palvanov and Young Im Cho. Visnet: Deep convolutional neural networks for forecasting atmospheric visibility
 - o Ryo Onishi and Daisuke Sugiyama. Deep convolutional neural network for cloud coverage estimation from snapshot camera images

To do

- Zväčšiť dataset.
- Zovšeobecniť pre všetky smery.
- Rekonštrukcia hlbokej siete z článku.
 - o Akmaljon Palvanov and Young Im Cho. Visnet: Deep convolutional neural networks for forecasting atmospheric visibility
- Vyskúšať inú konvolučnú hlbokú sieť.

Ďakujem za pozornosť