

Sep 16, 2020

Cell culture

In 1 collection

Yingchao Xue^{1,2}, Xiping Zhan³, Shisheng Sun⁴, Senthilkumar S. Karuppagounder^{5,6,7}, Shuli Xia^{2,5}, Valina L Dawson^{5,6,7,8,9}, Ted M Dawson^{5,6,7,8,10}, John Laterra^{2,5,8,11}, Jianmin Zhang¹, Mingyao Ying^{2,5}

¹Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molec ular Biology;

²Hugo W. Moser Research Institute at Kennedy Krieger; ³Department of Physiology and Biophysics, Howard University;

⁴College of Life Sciences, Northwest University; ⁵Department of Neurology, Johns Hopkins University School of Medicine;

⁶Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine;

⁷Adrienne Helis Malvin Medical Research Foundation; ⁸Department of Neuroscience, Johns Hopkins University School of Medicine;

⁹Department of Physiology, Johns Hopkins University School of Medicine;

¹⁰Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine;

¹¹Department of Oncology, Johns Hopkins University School of Medicine

1 Works for me

This protocol is published without a DOI.

Neurodegeneration Method Development Community Tech. support email: ndcn-help@chanzuckerberg.com

Anita Broellochs protocols.io

ABSTRACT

This protocol explains the cell culture and characterization of lines ND1014, N1, and ND27760 from Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons.

EXTERNAL LINK

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344911/

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. Xue Y, Zhan X, Sun S, Karuppagounder SS, Xia S, Dawson VL, Dawson TM, Laterra J, Zhang J, Ying M. Stem Cells Transl Med. 2019 Feb;8(2):112-123. doi: 10.1002/sctm.18-0036. Epub 2018 Nov 1. PMID: 30387318

PROTOCOL CITATION

Yingchao Xue, Xiping Zhan, Shisheng Sun, Senthilkumar S. Karuppagounder, Shuli Xia, Valina L Dawson, Ted M Dawson, John Laterra, Jianmin Zhang, Mingyao Ying 2020. Cell culture . protocols.io https://protocols.io/view/cell-culture-9e6h3he

MANUSCRIPT CITATION please remember to cite the following publication along with this protocol

Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. Xue Y, Zhan X, Sun S, Karuppagounder SS, Xia S, Dawson VL, Dawson TM, Laterra J, Zhang J, Ying M. Stem Cells Transl Med. 2019 Feb;8(2):112-123. doi: 10.1002/sctm.18-0036. Epub 2018 Nov 1. PMID: 30387318

EXTERNAL LINK

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344911/

COLLECTIONS (i)

Protocols for Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic

KEYWORDS

Culture, maintenance, ND1014, N1, ND27760, ipsc, SNCA

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Nov 17, 2019

LAST MODIFIED

Sep 16, 2020

OWNERSHIP HISTORY

Nov 17, 2019 Liz Brydon Protocols.io

Sep 16, 2020 Anita Broellochs protocols.io

PROTOCOL INTEGER ID

29886

PARENT PROTOCOLS

Part of collection

Protocols for Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons

MATERIALS

NAME	CATALOG #	VENDOR
ReLeSR™ 100 mL	5872	Stemcell Technologies
mTeSR™1 500 mL Kit	5850	Stemcell Technologies
CytoTune™-iPS 2.0 Sendai Reprogramming Kit	A16517	Thermo Fisher

SAFETY WARNINGS

Please refer to the Safety Data Sheets (SDS) for safety and environmental hazards.

BEFORE STARTING

Obtain approval to work with human stem cells from an appropriate Institutional Review Board.

Cell Culture

Obtain human iPSC lines from Coriell Cell Repositories or through reprogramming patient cells. Step 1 includes a Step case.

Purchase iPSC Reprogram iPSC

step case

Purchase iPSC

Obtain human iPSC lines from Coriell Cell Repositories (derived from normal human skin fibroblasts).

- 2 Characterize pluripotency of iPSCs by immunochemistry for pluripotent cell markers (NANOG, OCT4, TRA-1-60, and SSEA-3) and through embryoid body formation assay.
- 3 Maintain iPSCs as feeder-free cultures in mTESR1 medium in 5% CO₂/95% air condition at § 37 °C and passage using ReLeSR.
- 4 Perform karyotype analysis of G-banded metaphase chromosomes to confirm the chromosomal integrity of iPSCs.