

Algoritmos e Estruturas de Dados II

Prof. Laura Assis

Trabalho 2 - Backtracking para resolução do Sudokus Centro Federal de Educação Tecnológica Celso Suckow da Fonseca

Contextualização:

Você trabalha na Ximguiling Entertainment Games, uma importante empresa multinacional da área de jogos eletrônicos. O presidente da Ximguiling, com a intenção de motivar e avaliar seus funcionários lançou um desafio na empresa, um concurso de algoritmos para resolver probleminhas de Sudoku. Segundo ele, o funcionário que conseguir desenvolver o algoritmo mais rápido, ou seja, aquele que obtém a solução de um Sudoku em menor tempo, terá um aumento salarial de 300% e se tornará o vice-presidente da empresa.

A palavra Sudoku significa "número sozinho" em japonês, o que mostra exatamente o objetivo do jogo. O Sudoku existe desde a década de 1970, mas começou a ganhar popularidade no final de 2004 quando começou a ser publicado diariamente na sessão de *puzzles* do jornal *The Times*. Entre abril e maio de 2005 o *puzzle* começou a ganhar um espaço na publicação de outros jornais britânicos e, poucos meses depois, ganhou popularidade mundial.

O objetivo do Sudoku é preencher todos os espaços em branco do quadrado maior, que está dividido em nove grids, com os números de 1 a 9. Os algarismos não podem se repetir na mesma coluna, linha ou grid.

A figura a seguir mostra um exemplo de Sudoku e sua solução.

Instância

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Solução

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	ო	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6		5
3	4	5	2	8	6	1	7	9

Objetivo:

Este trabalho tem por objetivo, exercitar os conceitos relacionados aos paradigmas de projeto de algoritmos, mais especificamente o Backtracking para solução de problemas de sudoku.

Para esse trabalho, elabore uma estratégica, usando backtracking, para solucionar problemas de Sudoku.

Para o runcodes você deve imprimir somente a saída. Para apresentação imprima tanto a entrada quanto a saída (solução) do sudoku.

Para o exemplo da figura acima, o arquivo de entrada seria como apresentado abaixo: onde o 0 (zero) representa uma casa vazia.

Exemplo de entrada	Exemplo de saída
530070000	
600195348	5 3 4 6 7 8 9 1 2
098000067	[672]195[348]
800060003	198342567
400803001	
700020006	859 761 423
060000284	426 853 791
000419005	713 924 856
000080079	
	9 6 1 5 3 7 2 8 4
	287 419 635
	345 286 179

Entrega:

O que deve ser entregue?

- 1. Um arquivo com o **código** do sistema em linguagem C (pelo run codes).
- 2. Um arquivo em pdf com o **relatório** que deve conter *i*) a contextualização do problema, *ii*) o método de solução, como é a proposta de solução desenvolvida, *iii*) estruturas de dados que foram utilizadas, *iv*) fluxograma do algoritmo, *v*) pseudo-código com descrição das principais rotinas, *vi*) resultados, e *vii*) conclusão.
- 3. Para os testes realizados (resultados) mostre a contagem das operações e o tempo total em milisegundos gasto para executar. Apresente 2 gráficos um "número de operações \times instância" e o outro "tempo de execução \times instância".
- 4. Uma apresentação do trabalho de aproximadamente 10 a 15 min será realizada em laboratório.

<u>Dica!</u> Comece a fazer o trabalho logo, enquanto o problema está fresco na memória e o prazo para terminá-lo está tão longe quanto jamais poderá estar!