Algoritmos de Regressão

Ricardo Prudêncio

Regressão

- Associar exemplos a valores numéricos
 - E.g., previsão de índices da bolsa de valores, predição de custo de desenvolvimento de software,...
 - Similar à classificação, porém atributo alvo é numérico

Regressão

Regressão Linear

 Atributo alvo predito como uma combinação linear dos preditores

$$y = \beta + \sum_{i=1}^{p} \alpha_i x_i$$
Intercepto Coeficientes das variáveis

$$\hat{\beta}, \hat{\alpha} = arq \min \frac{1}{N} \sum_{i=1}^{N} (y_i - (\beta + \alpha x_i))^2$$

Método OLS – Ordinary Least Square – para estimativa dos parâmetros

Cuidado: ruído e outliers podem afetar muito o modelo

Uso de métodos robustos

- Ridge Regression
- Lasso Regression

Árvores de Regressão

 Similar às árvores de decisão usadas para classificação

 Critério de separação para atributo-alvo numérico

 Predição nas folhas é feita através da média ou de um modelo local

Árvores de Regressão

Árvores de Regressão - Construção

- Árvore de decisão construída de forma recursiva da raiz para as folhas (top-down)
 - A cada nó, é escolhido um teste que separe melhor os exemplos de classes diferentes
 - Maximização de critério de separação
 - Nós terminais são criados ao atingir um critério de parada
 - Ex.: a variância do atributo alvo no nó é baixa

Árvores de Regressão - Construção

- AD(Exemplos:D; Atributos:A; Alvo:C)
 - Crie nó_raiz
 - SE Critério_de_Parada
 ENTÃO Crie nó terminal associado a um modelo local
 - SENÃO Encontre atributo aj cujo teste de decisão diminua a variação do atributo alvo para os exemplos que atingem o nó
 - PARA CADA valor v do teste nova sub-árvore

- Sub_arvore = $AD(D[a_j = v], A - \{a_j\}, C)$

adicione

Árvores de Decisão – Critérios de Separação

- Erro Quadrado Médio
 - Erro obtido pelo regressor simples (média)

$$Err(D) = \frac{1}{|D|} \sum_{i \in D} (y_i - \overline{y}_D)^2$$

$$\overline{y}_D = \frac{1}{|D|} \sum_{i \in D} y_i$$

Árvores de Decisão – Critérios de Separação

Diminuição do Erro Quadrado Médio

$$\Delta Err(D, a) = Err(D) - Err(D, a)$$

$$Err(D,a) = \sum_{v_i} \frac{\left|D_{[a=v_i]}\right|}{\left|D\right|} * Err(D_{[a=v_i]})$$

EQM no nó filho

Cholestoral

270 exemplos Média = 249.65 Err = 2661.57

Sex = 0

- 87 exemplos
- Média Chol. = 264.74
- Err = 4356.23

Sex = 1

- 183 exemplos
- Média Chol. = 242.48
- Err = 1696.23

$$Err(D) - Err(D,sex) = 2661.57 - (87/270*4356.23 + 183/270*1696.23)$$

= 108.22

Cholestoral

270 exemplos Média = 249.65 Err = 2661.57

Sugar = 0

- 230 exemplos
- Média Chol. = 249.11
- Err = 2672.99

Sugar = 1

- 40 exemplos
- Média Chol. = 252.77
- Err = 2584.47

$$Err(D) - Err(D,sex) = 2661.57 - (230/270* 2672.99 + 40/270* 2584.47)$$

= 1.68

Árvores de Decisão – Nós Terminais

- Modelo local para predição
 - Regressor simples (média)
 - Predição = média do atributo alvo dos exemplos de treinamento que atingem o nó terminal
 - Regressão linear simples
 - Aprendido com os exemplos de treinamento que atingem o nó terminal

Algoritmo k-NN para Regressão

 Algoritmo pode ser usado para estimar valores de funções contínuas

$$\int_{A}^{A} f(x_q) \leftarrow \frac{\sum_{i=1}^{k} f(x_i)}{k}$$

 Predição é a média simples dos valores alvo armazenados nas instâncias recuperadas

Algoritmo k-NN para Regressão

Regressão com Ponderação pela Distância

$$f(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

 Predição é a média ponderada dos valores alvo armazenados nas instâncias recuperadas

Modelos de Redes Neurais

 Modelo matemático de um neurônio por Warren McCulloch e Walter Pitts (1943)

$$y = 1$$
 se $\sum_{i} w_{i} * x_{i} > \theta$
 $y = 0$ caso contrário

Modelos de Redes Neurais

Modelo de neurônio contínuo

$$y = f(w * x - \theta)$$

f: função de ativação

Exemplo:

$$f(x) = \frac{1}{1 + e^{-x}}$$

MultiLayer Perceptron (MLP)

MultiLayer Perceptron (MLP)

- Algoritmo Backpropagation
 - Aprendizado dos pesos das redes MLP
 - Minimização do erro quadrado da rede

$$Err(D) = \frac{1}{|D|} \sum_{i \in D} (y_i - f(x_i))^2$$
Saída da rede

Algoritmo Backpropagation

- Método do gradiente descendente
 - Ajuste iterativo dos pesos na direção em que a função de erro tem sua maior variação

MultiLayer Perceptron (MLP)

- Dificuldades
 - Definição da arquitetura da rede
 - Número de neurônios intermediários
 - Funções de ativação
 - Algoritmo de backpropagation
 - Definição da taxa de aprendizagem
 - Mínimos locais da função de erro

Support Vector Machines

 Também realizam mapeamento do espaço de entradas

 Mapeamento realizado através de funções de kernel

 Aprendizado de SVMs usa métodos de otimização mais eficazes

Support Vector Machines

Fonte: http://proj.ncku.edu.tw/research/articles/e/20081205/3.html

SVM (Kernels)

- Função de Kernel
 - Exemplos

$$K(x_i, x_j) = (x_i x_j + 1)^p$$
 Kernel polinomial (parâmetro p)

$$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}$$
 — Kernel RBF (parâmetro gamma)

Support Vector Machines

Vantagens

- Definição da arquitetura é feita pelo próprio processo de aprendizado
- Bons resultados empíricos

Desvantagens

- Definição adequada da função de kernel
- Custo computacional

Material de Estudo

- T. Mitchell, Machine Learning, 1997.
- I. Witten, E. Frank. Data Mining Practical Machine Learning Tools and Techniques with Java Implementations. 2000.
- Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.
- A. Smola. A Tutorial on Support Vector Regression. 2004.