

André C. P. L. F. de Carvalho Monitor: Valéria Carvalho

Métodos baseados em distância

- Consideram proximidade entre dados
 - Considera que dados similares tendem a estar em uma mesma região no espaço de entrada
- Aprendizado preguiçoso
 - Só olha os dados de treinamento quando precisa classificar novo objeto
- Exemplos:
 - Algoritmo k-vizinhos mais próximos
 - Raciocínio Baseado em Casos

27/09/2012

André de Carvalho - ICMC/USP

Similaridade x Dissimilaridade

- Similaridade
 - Mede o quanto dois objetos são parecidos • Quanto mais parecidos, maior o valor
- Geralmente valor ∈ [0, 1]
- Dissimilaridade
 - Mede o quanto dois objetos são diferentes
 - Quanto mais diferentes, maior o valor
 - Geralmente valor ∈ [0, X]
- Medida de proximidade pode ser usada nos

André de Carvalho - ICMC/USP

Distância Euclidiana

- Pode medir dissimilaridade de objetos com mais de um atributo
 - Para atributos com escalas de valores diferentes, pode ser necessário normalizar

$$dist = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$$

André de Carvalho - ICMC/USP

Distância de Minkowski

Generalização da distância Euclidiana

$$dist = (\sum_{k=1}^{m} |p_k - q_k|^r)^{\frac{1}{r}}$$

- Valor de r leva a diferentes distâncias
 - 1 (L₁): Distância bloco cidade (Manhattan)
 - Hamming (valores binários)
 - 2 (L₂): Distância Euclidiana
 - ∞ (L_∞): Distância suprema

André de Carvalho - ICMC/USP

Distância quadrada

- Simplificação da distância
 - Menor complexidade
 - Menor exatidão

$$dist = MAX(|p_{\nu} - q_{\nu}|)$$

André de Carvalho - ICMC/USP

Exercício

- Calcular a distância entre os exemplos abaixo usando as distâncias
 - Manhattan
 - Eucilidiana
 - Quadrada

Ex1 = (3, 1, 10, 2)

Ex2 = (2, 5, 3, 2)

27/09/2012

André de Carvalho - ICMC/USP

Exercício

- Encontrar a distância entre os exemplos abaixo utilizando a distância Manhattan
 - 110000, 111001, 000111, 001011, 100111, 101001

27/09/2012

André de Carvalho - ICMC/USP

Medidas de distâncias

- Têm, em geral, têm as propriedades:
 - Seja d(p, q) a distância (dissimilaridade) entre dois objetos p e q
 - $d(p, q) \ge 0 \ \forall p \in q \in d(p, q) = 0$ see p = q (definida positiva)
 - $d(p, q) = d(q, p) \forall p \in q$ (simetria)
 - $d(p, r) \le d(p, q) + d(q, r) \forall p, q \in r$ (designaldade triangular)
- Medidas que satisfazem essas propriedades são denominadas métricas

André de Carvalho - ICMC/USP

13

Medidas de similaridade

- Também têm propriedades bem definidas:
 - Seja s(p, q) a similaridade entre dois objetos p e q
 - s(p, q) = 1 (similaridade máxima) apenas se p = q
 - $s(p, q) = s(q, p) \forall p \in q$ (simetria)

André de Carvalho - ICMC/USP

14

16

Dissimilaridade entre valores

- Sejam a e b dois valores de um atributo
 - Nominal $d(a,b) = \begin{cases} 1, \text{ se } a \neq b \\ 0, \text{ se } a = b \end{cases}$
 - Ordinal $d(a,b) = \frac{|a-b|}{n-1}$
 - Intervalar ou racional d(a,b) = |a-b|

s = -d ou s = 1/(1+d)

27/09/2012

André de Carvalho - ICMC/USP

Exercício

- Qual a distância entre os exemplos da tabela abaixo
- Usar distâncias
 - Euclidiana
 - Bloco cidade
 - Máxima

	Escolaridade			Classe
SP	Médio	180	3000	Α
RJ	Superior	174	7000	В
RJ	Superior	100	2000	Α

27/09/2012 André de Carvalho - ICMC/USP

4

Similaridade entre vetores binários

- Frequentemente, objetos p e q têm apenas valores binários
- Similaridades podem ser computadas usando:
 - M_{01} = número de atributos em que p = 0 e q = 1
 - M₁₀ = número de atributos em que p = 1 e q = 0
 - M₀₀ = número de atributos em que p = 0 e q = 0
 - M₁₁ = número de atributos em que p = 1 e q = 1

André de Carvalho - ICMC/USP

17

Similaridade entre vetores binários

Coeficiente de Casamento Simples

$$\begin{array}{lll} \text{CCS} = & \text{num. de coinc.} \ / \ \text{num. de atributos} \\ & = & \left(\ \text{M}_{11} + \ \text{M}_{00} \right) \ / \ \left(\ \text{M}_{01} + \ \text{M}_{10} + \ \text{M}_{11} + \ \text{M}_{00} \right) \end{array}$$

Coeficiente Jaccard

J = num. coinc. 11 / num. Pelo menos.um \neq 0 = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

André de Carvalho - ICMC/USP

18

Exercício

- Calcular disssimilaridade entre p e q usando coeficientes:
 - Casamento Simples
 - Jaccard

 $\begin{array}{ll} p & = 1\,0\,0\,1\,1\,0\,1\,0\,1\,1\,1\,0\\ q & = 0\,1\,0\,0\,1\,1\,0\,0\,1\,0\,1\,1 \end{array}$

André de Carvalho - ICMC/USP

Similaridade cosseno

- Muito usado para dados de textos
 - Grande número de atributos
 - Esparsos
- Sejam p e q vetores representando documentos
 - $-\cos(p, q) = (p q) / ||p|| ||q||$
 - •: vector produto interno entre vetores
 - || p ||: é o tamanho (norma) do vetor p

André de Carvalho - ICMC/USP

-

22

Classificação

- Medidas de distância podem ser usadas para classificação de novos dados
 - Classificadores mais simples
 - K-NN
 - Dissimilaridade entre valores
 - Desempenho depende da medida de distância utilizada

27/09/2012

André de Carvalho - ICMC/USP

1-vizinho mais próximo

- Algoritmos *lazy* (preguiçoso)
 - Olha apenas os dados de treinamento quando precisa classificar novo objeto
 - Não constroem um modelo explicitamente
 - Diferente de classificadores eager, como SVMs e DTs
 - Baseados em informações locais
 - ADs, RNs e SVMs são baseados em informações globais

27/09/2012

André de Carvalho - ICMC/USP

1-vizinho mais próximo

Classe saudável
Classe doente

Exame 1

27/09/2012

André de Carvalho - ICMC/USP

23

Quantos vizinhos?

- K muito grande
 - Vizinhos podem ser muito diferentes
 - Predição tendenciosa para classe majoritária
 - Custo computacional mais elevado
- K muito pequeno
 - Não usa informação suficiente
 - Previsão pode ser instável
 - Ruído

27/09/201

André de Carvalho - ICMC/USP

