WHAT IS CLAIMED IS:

- 1. A method of inhibiting cell death in a mammal, wherein the method comprises administering to a mammal an effective amount of a composition comprising a cell protection factor covalently linked to a bone targeting agent via a linkage that is cleaved under physiological conditions, whereby the cell protection factor is released from the bone targeting agent *in vivo* to inhibit cell death.
- 2. The method of claim 1, wherein the cell protection factor is a temporary p53 inhibitor.
- 3. The method of claim 2, wherein the cell protection factor is a compound of Formula I:

wherein m is 0 or 1, n is an integer from 1 to 4,

 R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5- to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties, and

 R^3 is selected from the group consisting of a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, and a phenyl group, wherein the alkyl group, the alkoxy group, or the phenyl group is optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties, and optionally forms a C_3 - C_6 cycloalkyl when R^3 is connected to the carbon alpha to the thiazole ring.

4. The method of claim 3, wherein m is 0, n is 2, and R³ is a one-carbon alkyl such that the three-carbon chain forms a cyclopropyl group, whereby the cell protection factor is a compound of Formula X:

$$\mathbb{R}^1$$
 \mathbb{R}^2
 \mathbb{R}^1
 \mathbb{R}^2

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5- to 8-membered ring optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties.

- 5. The method of claim 3, wherein R^1 and R^2 are taken together to form a 5- or 6-membered aliphatic carbocyclic ring optionally substituted with one or more C_1 - C_6 alkyl groups.
- 6. The method of claim 2, wherein the cell protection factor is a compound of Formula IV:

$$R^1$$
 R^2
 R^3
 R^3

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5- to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties, and

R³ is selected from the group consisting of a C₁-C₆ alkyl group, a C₁-C₆ alkoxy group, and a phenyl group, wherein the alkyl group, the alkoxy group, or the phenyl group is optionally substituted with one or more straight or branched C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C₁-C₆ alkylamino, and/or C₄-C₁₄ aromatic or heteroaromatic moieties.

7. The method of claim 6, wherein R^1 and R^2 are taken together to form a 5- or 6-membered aliphatic carbocyclic ring optionally substituted with one or more C_1 - C_6 alkyl groups.

8. The method of claim 5, wherein the cell protection factor is a compound of Formula II:

wherein R^3 is selected from the group consisting of a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, and a phenyl group, wherein the alkyl group, the alkoxy group, or the phenyl group is optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic groups.

9. The method of claim 8, wherein the cell protection factor is a compound of Formula III:

wherein R⁹, R¹⁰, and R¹¹ are each independently a hydro, methyl, fluoro, chloro, bromo, nitro, amino, methoxy, or phenyl moiety.

- 10. The method of claim 9, wherein the cell protection factor is 2-[2-imino-4,5,6,7-tetrahydro-1,3-benzothiazol-3(2H)-yl]-1-(4-methylphenyl)-1-ethanone or 2-[2-imino-4,5,6,7-tetrahydro-1,3-benzothiazol-3(2H)-yl]-1-(biphenyl)-1-ethanone.
- 11. The method of claim 1, wherein the inhibited cell death is bone marrow cell death.
- 12. The method of claim 11, wherein the cell death is caused by exposure to at least one chemical or radiation.

- 13. The method of claim 6, wherein the inhibited cell death is bone marrow cell death.
- 14. The method of claim 13, wherein the cell death is caused by exposure to at least one chemical or radiation.
- 15. The method of claim 9, wherein the inhibited cell death is bone marrow cell death.
- 16. The method of claim 15, wherein the cell death is caused by exposure to at least one chemical or radiation.
 - 17. The method of claim 1, wherein the mammal comprises at least one tumor.
- 18. The method of claim 17, wherein the mammal comprises at least one p53⁺ tumor.
 - 19. The method of claim 6, wherein the mammal comprises at least one tumor.
- 20. The method of claim 19, wherein the mammal comprises at least one p53⁺ tumor.
 - 21. The method of claim 9, wherein the mammal comprises at least one tumor.
- 22. The method of claim 21, wherein the mammal comprises at least one p53⁺ tumor.
- 23. The method of claim 1, wherein the bone targeting agent is selected from the group consisting of a bisphosphonate, a hydroxybisphosphonate, a phosphonate, a phosphonate, an aminomethylenephosphonic acid, and an acidic peptide.
- 24. The method of claim 3, wherein the bone targeting agent is selected from the group consisting of a bisphosphonate, a hydroxybisphosphonate, a phosphonate, a phosphonate, an aminomethylenephosphonic acid, and an acidic peptide.

- 25. The method of claim 6, wherein the bone targeting agent is selected from the group consisting of a bisphosphonate, a hydroxybisphosphonate, a phosphonate, a phosphonate, an aminomethylenephosphonic acid, and an acidic peptide.
- 26. The method of claim 9, wherein the bone targeting agent is selected from the group consisting of a bisphosphonate, a hydroxybisphosphonate, a phosphonate, a phosphonate, an aminomethylenephosphonic acid, and an acidic peptide.
 - 27. The method of claim 1, wherein the linker is an acid-cleavable linker.
 - 28. The method of claim 3, wherein the linker is an acid-cleavable linker.
 - 29. The method of claim 6, wherein the linker is an acid-cleavable linker.
 - 30. The method of claim 9, wherein the linker is an acid-cleavable linker.
- 31. The method of claim 27, wherein the linker is an enol ether, ketal, imine, oxime, hydrazone, semicarbazone, acylimide, or methylene radical.
- 32. The method of claim 28, wherein the linker is an enol ether, ketal, imine, oxime, hydrazone, semicarbazone, acylimide, or methylene radical.
- 33. The method of claim 29, wherein the linker is an enol ether, ketal, imine, oxime, hydrazone, semicarbazone, acylimide, or methylene radical.
- 34. The method of claim 30, wherein the linker is an enol ether, ketal, imine, oxime, hydrazone, semicarbazone, acylimide, or methylene radical.
- 35. The method of claim 1, wherein the linker is a hydrolytically cleavable linker.
 - 36. The method of claim 1, wherein the linker is cleaved enzymatically.
 - 37. The method of claim 1, wherein the mammal is a human.

38. A compound of Formula V:

$$R^1$$
 NR^4
 X
 R^3
 (V)

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5- to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties,

R³ is selected from the group consisting of a C₁-C₆ alkyl group, a C₁-C₆ alkoxy group, and a phenyl group, wherein the alkyl group, the alkoxy group, or the phenyl group is optionally substituted with one or more straight or branched C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C₁-C₆ alkylamino, and/or C₄-C₁₄ aromatic or heteroaromatic moieties.

 R^4 is hydrogen or an C_1 - C_6 acyl group when X is Q, or R^4 is Q when X is a carbonyl or protected carbonyl, and

X is Q, a carbonyl, or a protected carbonyl,

wherein Q is an organic moiety that contains a nucleophilic or electrophilic reacting group and is cleavable under physiological conditions, thereby releasing a temporary p53 inhibitor.

- 39. The compound of claim 38, wherein Q is an organic moiety that is cleavable under acidic physiological conditions.
- 40. The compound of claim 38, wherein Q is an organic moiety that is hydrolytically cleavable under physiological conditions.
- The compound of claim 38, wherein Q is an enol ether, ketal, imine, oxime, hydrazone, semicarbazone, acylimide, or methylene radical.
- 42. The compound of claim 38, wherein Q is an organic moiety that is enzymatically cleavable.

- 43. The compound of claim 38, wherein Q is A-J, wherein A is an organic moiety that is cleavable under physiological conditions, and J is a bone targeting agent.
 - 44. A compound of Formula VI:

$$R^1$$
 N
 Z
 (VI)
 R^2

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5- to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties,

R³ is selected from the group consisting of a C₁-C₆ alkyl group, a C₁-C₆ alkoxy group, and a phenyl group, wherein the alkyl group, the alkoxy group, or the phenyl group is optionally substituted with one or more straight or branched C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C₁-C₆ alkylamino, and/or C₄-C₁₄ aromatic or heteroaromatic moieties, and

Y and Z taken together complete a 5-member imidazole ring of Formula VII or Formula VIII,

(VII)
$$Q$$
 (VIII) $-\frac{1}{2}-N$ R^3

wherein X is selected from the group consisting of a chloride, a bromide, a fluoride, an iodide, an acetate, a formate, a phosphate, a sulfate, and other pharmaceutically acceptable anions, and Q is an organic moiety that contains a nucleophilic or electrophilic reacting group and is cleavable under physiological conditions.

45. The compound of claim 44, wherein Q is an organic moiety that is cleavable under acidic physiological conditions.

- 46. The compound of claim 44, wherein Q is an organic moiety that is hydrolytically cleavable under physiological conditions.
- 47. The compound of claim 44, wherein Q is an enol ether, ketal, imine, oxime, hydrazone, semicarbazone, acylimide, or methylene radical.
- 48. The compound of claim 44, wherein Q is an organic moiety that is enzymatically cleavable.
- 49. The compound of claim 44, wherein Q is A-J, wherein A is an organic moiety that is cleavable under physiological conditions, and J is a bone targeting agent.
 - 50. A compound of Formula V:

$$R^1$$
 NR^4
 R^3
 R^3

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5-to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties,

R³ is selected from the group consisting of a C₁-C₆ alkyl group, a C₁-C₆ alkoxy group, and a phenyl group, wherein the alkyl group, the alkoxy group, or the phenyl group is optionally substituted with one or more straight or branched C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C₁-C₆ alkylamino, and/or C₄-C₁₄ aromatic or heteroaromatic moieties.

X is A-J, a carbonyl, or a protected carbonyl, and

 R^4 is hydrogen or an C_1 - C_6 acyl group when X is A-J or R^4 is A-J when X is a carbonyl or protected carbonyl,

wherein A is an organic moiety that is cleavable under physiological conditions, and J is a bone targeting agent.

51. The compound of claim 50, wherein A is an organic moiety that is cleavable under acidic physiological conditions.

- 52. The compound of claim 50, wherein A is an organic moiety that is hydrolytically cleavable under physiological conditions.
- 53. The compound of claim 50, wherein A is an organic moiety that is enzymatically cleavable.
- 54. The compound of claim 50, wherein the bone targeting agent is selected from the group consisting of a bisphosphonate, a hydroxybisphosphonate, a phosphonate, a phosphonate, an aminomethylenephosphonic acid, and an acidic peptide.

55. A compound of Formula VI:

$$R^1$$
 N
 Z
 (VI)
 R^2

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5- to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties, and Y and Z taken together complete a 5-member imidazole ring of Formula VII or Formula VIII,

(VII)
$$A - J$$
 (VIII) $-\xi - N \longrightarrow R^3$

wherein R³ is selected from the group consisting of a C₁-C₆ alkyl group, a C₁-C₆ alkoxy group, and a phenyl group, wherein the alkyl group, the alkoxy group, or the phenyl group is optionally substituted with one or more straight or branched C₁-C₆ alkyls, C₁-C₆ alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C₁-C₆ alkylamino, and/or C₄-C₁₄ aromatic or heteroaromatic moieties, X⁻ is selected from the group consisting of a chloride, a bromide, a

fluoride, an iodide, an acetate, a formate, a phosphate, a sulfate, and other pharmaceutically acceptable anions, and

A is an organic moiety that is cleavable under physiological conditions, and J is a bone targeting agent.

- 56. The compound of claim 55, wherein A is an organic moiety that is cleavable under acidic physiological conditions.
- 57. The compound of claim 55, wherein A is an organic moiety that is hydrolytically cleavable under physiological conditions.
- 58. The compound of claim 55, wherein A is an organic moiety that is enzymatically cleavable.
- 59. The compound of claim 55, wherein the bone targeting agent is selected from the group consisting of a bisphosphonate, a hydroxybisphosphonate, a phosphonate, a phosphonate, an aminomethylenephosphonic acid, and an acidic peptide.

60. A compound of Formula IX:

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5- to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties,

wherein Q is an organic moiety that contains a nucleophilic or electrophilic reacting group and is cleavable under physiological conditions.

61. The compound of claim 60, wherein Q is an organic moiety that is cleavable under acidic physiological conditions.

- 62. The compound of claim 60, wherein Q is an organic moiety that is hydrolytically cleavable under physiological conditions.
- 63. The compound of claim 60, wherein Q is an organic moiety that is enzymatically cleavable.
- 64. The compound of claim 60, wherein Q is A-J, wherein A is an organic moiety that is cleavable under physiological conditions and J is a bone targeting agent.
 - 65. The compound of claim 44, wherein Q in Formula VIII is -CH₂O-.
 - 66. The compound of claim 65, wherein the compound is Formula XI:

$$R^1$$
 R^2
 N^+
 $X^ R^{10}$
 R^9
 R^{10}

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5-to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties, X^- is selected from the group consisting of a chloride, a bromide, a fluoride, an iodide, an acetate, a formate, a phosphate, a sulfate, and other pharmaceutically acceptable anions, and

R⁹, R¹⁰, and R¹¹ are each independently a hydro, methyl, fluoro, chloro, bromo, nitro, amino, methoxy, or phenyl moiety.

67. The compound of claim 66, wherein the compound is Formula XII:

(XIII)
$$R^{10}$$
 R^{9}

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5-to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties, and

R⁹, R¹⁰, and R¹¹ are each independently a hydro, methyl, fluoro, chloro, bromo, nitro, amino, methoxy, or phenyl moiety.

- 68. The compound of claim 55, wherein A of Formula VIII is -CH₂O- and J is a bone targeting agent.
 - 69. The compound of claim 68, wherein the compound is Formula XI:

$$R^1$$
 R^2
 R^1
 R^2
 R^1
 R^1
 R^1
 R^9
 R^{10}

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5-to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or

C₄-C₁₄ aromatic or heteroaromatic moieties, X⁻ is selected from the group consisting of a chloride, a bromide, a fluoride, an iodide, an acetate, a formate, a phosphate, a sulfate, and other pharmaceutically acceptable anions, and

R⁹, R¹⁰, and R¹¹ are each independently a hydro, methyl, fluoro, chloro, bromo, nitro, amino, methoxy, or phenyl moiety.

70. The compound of claim 69, wherein the compound is Formula XII:

(XII)
$$R^{10}$$
 R^{9}

wherein R^1 and R^2 are taken together to form an aliphatic or aromatic carbocyclic 5-to 8-membered ring, optionally substituted with one or more straight or branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, fluoro, chloro, bromo, nitro, amino, C_1 - C_6 alkylamino, and/or C_4 - C_{14} aromatic or heteroaromatic moieties, and

R⁹, R¹⁰, and R¹¹ are each independently a hydro, methyl, fluoro, chloro, bromo, nitro, amino, methoxy, or phenyl moiety.

- 71. The compound of claim 38, wherein X is a carbonyl and R⁴ is Q or A, wherein Q is an acid cleavable group, and wherein A selected from the group consisting of 4-aminophthalic acid, succinic acid, 4-aminophenylacetic acid, and 4-aminobenzoic acid.
- 72. The compound of claim 43, where the bone targeting agent is selected from a group consisting of alendronate, pamidronate, 4-aminobutylphosphonic acid, N,N,N,N-tetrakis-(phosphonomethyl)-ethylenediamine, 1-hydroxyethane-1,1-diphosphonic acid, phytic acid, N,N,N,N-tetrakis(methylphosphono)-1,5,8,12-tetraazacyclotetradecane, N,N-bis(methylphosphono)-4-amino-benzoic acid, nitrilotri(methylphosphonic acid), aspartyl hexapeptide, and glutamyl hexapeptide.
- 73. The compound of claim 50, where the bone targeting agent is selected from a group consisting of alendronate, pamidronate, 4-aminobutylphosphonic acid, N,N,N,N-

tetrakis-(phosphonomethyl)-ethylenediamine, 1-hydroxyethane-1,1-diphosphonic acid, phytic acid, N,N,N,N-tetrakis(methylphosphono)-1,5,8,12-tetraazacyclotetradecane, N,N-bis(methylphosphono)-4-amino-benzoic acid, nitrilotri(methylphosphonic acid), aspartyl hexapeptide, and glutamyl hexapeptide.

74. The compound of claim 55, where the bone targeting agent is selected from a group consisting of alendronate, pamidronate, 4-aminobutylphosphonic acid, N,N,N,N-tetrakis-(phosphonomethyl)-ethylenediamine, 1-hydroxyethane-1,1-diphosphonic acid, phytic acid, N,N,N,N-tetrakis(methylphosphono)-1,5,8,12-tetraazacyclotetradecane, N,N-bis(methylphosphono)-4-amino-benzoic acid, nitrilotri(methylphosphonic acid), aspartyl hexapeptide, and glutamyl hexapeptide.