

Fingerprint-Based Machine Learning Prediction of Chemical Properties

Presented by

Sukit Kerdsawat 63010987

Ekkaparb Parisupat 63011091

Advisor

Assoc. Prof. Dr. Amata Anantpinijwatna

Table of contents

First Semester

Introduction

Background, Object and Scope

Selection of suitable substances for production processes is a long-standing problem in the petrochemical industry. Development of a model by using machine learning (ML) become more popular because they are faster and more accurate than the traditional methods

Fig 1. Chemical Experiment

Objective

- 1. To study the converting of SMILE structures into molecular fingerprints.
- 2. To model and improve the accurate of prediction model on T_b and P^{sat} of substances from molecular fingerprints using machine learning and techniques.

Scope

- 1. To study T_b and P^{sat} of pure organic compound that contain C, H, O and N atom and Number of C atom is 1-12 atom
- To study morgan fingerprint that one of tool in RDKit Library using Python Programming Language

Introduction Review Previous Work

Table 1. Performance of Each Work on T_h Prediction Model within CH Scope

Error Metric	Previous Work [2]	This Work
MAE	5.86	3.20
MAPE(%)	1.47	0.84
RMSE	7.92	4.70
R^2	0.98	0.99

Fig 2. Comparison T_b Work on CH Scope

Introduction Review Previous Work

The Previous work (Nattasinee and colleagues) [2] use Machine Learning (ML) by convert the representation of molecule from text format (SMILES) into numbers in the following table while This work convert SMILES to "Molecular Fingerprint"

Table 2. Compare Prediction Between Each Work of Similar Structure Substance

SMILES	С	Double	Triple	Branch	Cyclic	Actual T _b	Predict T _b Previous Work ^[2]	Predict T _b This Work
C1CCC=CCC1	7	1	0	0	1	388.15	375.85	387.34
CC1=CCCCC1	7	1	0	0	1	383.45	375.85	377.95
CC1CCC=CC1	7	1	0	0	1	375.85	375.85	370.31

Similar SMILES

Same Features Same Predictions

Result

Fig 3. Best T_b model on CHON Scope

Table 3. Performance on T_b Prediction Model within CHON Scope

Dataset	MAE	MAPE (%)	RMSE	R ²
Train	20.42	4.51	30.38	0.83
Test	26.72	5.94	43.40	0.66

Introduction Result

T_b Model Prediction for CHON Scope

Normal Boiling Point [K] (Actual)

Fig 4. T_h Prediction on CHON Scope Group by Functional Group

The functional group that this T_b prediction model can predict well is that the group that have condition with $R^2 \ge 0.5$ and MAPE $\le 10\%$

Acceptable: Ester, Alkene, Ketone, Alkane, Amine, Alcohol, Alkyne

Unacceptable: Amide, Aldehyde, Aromatic, Carboxylic Acid, Ether

Second Semester

Methodology Data Collection

Table 4. ChEDL Database Collection

Database Source	Datapoint			
Hall, K. R. Vapor Pressure and Antoine Constants for Hydrocarbons, and S, Se, Te, and Halogen Containing Organic Compounds. Springer, 1999.				
Dykyj, J., and K. R. Hall. "Vapor Pressure and Antoine Constants for Oxygen Containing Organic Compounds". 2000.	6,346			
Hall, K. R. Vapor Pressure and Antoine Constants for Nitrogen Containing Organic Compounds. Springer, 2001.				

The Total amount of Substance that be included in CHON is 2,246 datapoints.

Methodology Transform Data

Table 5. Psat Raw data

CAS	Name	Α	В	С	Tmin	Tmax
50-00-0	Methanal	21.37	2204.13	-30.15	190	271
51-66-1	p-Methoxy-acetanilide	20.27	3916.19	-177.10	456	533
51-75-2	N-Methylbis(2-chloroethyl)amine	25.61	6563.29	0	273	333
541-35-5	Butyramide	22.08	4164.35	-109.32	320	398

Use PubChem Database to convert Name of compound to its SMILES

Name	SMILES	Α	В	С	Tmin	Tmax
Butyramide	CCCC(=O)N	22.08	4164.35	-109.32	320	398

Methodology Analysis & Cleansing

Calculate the Vapor Pressure value using the Antoine equation, which is divided into 5 points according to Tmin and Tmax range, which can be shown in the table below.

Note: VP – Vapor Pressure in In(Psat), Psat in Pa, T in K

Methodology Analysis & Cleansing

Data Transform Data Analysis & Cleansing Convert to Fingerprint Split Data Training Test **Model Training** Evaluation Calculate ABC

After get the Vapor Pressure value of all substance, use Boxplot to see distribution of Vapor Pressure so that can we detect abnormal Vapor Pressure

 Table 6. SMILES and Vapor Pressure Data

Table 6. Sivilles	anu vap	oi Pies	Sule D	ala					Q1 (Q3	
SMILES		VP1	VP2	VP3	VP4	VP5		Q1 - 1.5*IQR		Q3 +	1.5*IQR
CCCC(=O)N	I	2.32	3.99	5.40	6.61	7.66	2,246		Median	1	
CC(CO)O		9.89	10.36	10.79	11.19	11.57	datapoint		-1σ 0σ -0.6745σ — 0.6	1σ 2σ 1745σ 2.0	3σ 4σ 698σ
			•	•	•	•	0.35 0.30				
COC1=CC=C(C=C	1)CC=C	4.85	7.15	8.93	10.35	11.52	O 0.25 Po po politica Po 0.00 Politica				
Use	boxplot t	o detect	outliers			Out	liers 0.00	0.35% 24.65	% 50% -iσ 0σ	24.65%	0.35% 3σ 4σ

Figure 5. Boxplot and Normal Distribution

Methodology Analysis & Cleansing

Value	In(P ^{sat})	P ^{sat} (atm)					
Min	2.09	8.1 x 10 ⁻⁵					
Max	15.78	71.58					
Point	1,787						

Methodology Fingerprint Selecting

Fig 6. Heatmap Fingerprint for P^{sat} modeling

Methodology Training

Table 7. Setting of All Learning Algorithms

ML Algorithm	Hyperparameter
DT	max depth = None, min samples leaf = 1, min samples split = 2
RF	max depth = None, max feature = None, n estimators = 200
XGB	max depth = 5, learning rate = None, n estimators = 400
KNN	Algorithm = ball tree, n neighbors = 5, weights = distance

Note: Each ML algorithm use K-Fold with K = 5 and Grid Search

Result Evaluation

Table 8. Error metrics of each algorithm

Method	MAE	MAPE (%)	RMSE	R ²
DT	0.80	15.00	1.38	0.68
KNN	1.76	22.30	2.42	-1.24
RF	0.63	15.90	1.10	0.73
XGB	0.59	13.60	1.06	0.80

Fig 7. Result of each algorithm

Evaluation

The functional group that this $ln(P^{sat})$ prediction model can predict well is that the group that have condition with $R^2 \ge 0.5$ and MAPE $\le 10\%$

Acceptable: Alcohol, Alkane, Alkyne, Alkene, Ketone

Unacceptable: Aromatic, Ester, Carboxylic Acid, Amide, Aldehyde, Amine, Ether

Actual In(P^{sat}) **Fig 8.** P^{sat} Prediction on CHON Scope Group by Functional Group

Result Calculation

Fig 9. Graph Distribution of Antoine Coefficients

Calculate A, B, C for Predicted In(Psat) from the best model

Result Calculation

Table 8. Antoine Coefficients in this work and Antoine

SMILES		Reference	2	(Calculatio	Train Temp	
	Α	В	С	Α	В	С	Range (K)
2,4-Dimethyl-3- pentanol	19.85	2370.74	-127.05	20.35	2615.59	-115.52	320 – 440
2-Butanamine, N-ethyl-	21.24	3083.56	-52.86	18.67	2006.16	-96.46	283-313

Antoine Coefficients that yield similar results to the reference source, even if slightly different, can still be used reliably.

Result Calculation

When comparing temperatures at different range, it is observed that greater temperature differences range lead to more accurate predictions compared to the reference, especially when considering the lowest and highest temperatures from all references for all substances.

Table 9. Antoine Coefficients in this work and Antoine

CRAIL EC		Reference	2	Calculation			
SMILES	Α	В	С	Α	В	С	
2,4-Dimethyl-3- pentanol	19.85	2370.74	-127.05	20.35	2615.59	-115.52	
2-Butanamine, N-ethyl-	21.24	3083.56	-52.86	18.67	2006.16	-96.46	

Note: Temperature Range in Dataset (195 - 574 K)

Conclusion

- 1. Use Morgan Fingerprint to resolve Previous Work Problem "Similar Structures, get same Features"
- 2. Use Morgan Fingerprint to establish Properties Prediction Model (Use for Organic Compound C, H,

```
O and N) : T_b - CHON Scope with MAPE = 5.94% and R^2 = 0.66
```

: $ln(P^{sat})$ - CHON Scope with MAPE = 13.6% and R^2 = 0.80

3. Learn about Machine Learning Algorithm, Cross Validation and Hyperparameter Tuning in each

Algorithm and Neural Network Implementation for Improving Properties Prediction model

Suggestions

- 1. Increasing the number of bits in a molecular fingerprint can help separate substructures, but some cases cannot be separated regardless of bit addition.
- 2. Deep Learning for modeling is more complex than Machine Learning, making it challenging to predict properties.
- 3. While modeling is faster, finding the right model takes time, so planning information preparation is crucial.
- 4. To improve model accuracy, consider creating a model that separates specific boundaries, focusing on specific functional groups.

Q&A