Métodos de Autenticação

Leonardo Araújo

UFSJ

Introdução

- Autenticação é o processo de verificar a identidade de um usuário ou sistema.
- Os métodos são projetados para garantir acesso seguro aos recursos.
- Geralmente são categorizados em três fatores:
 - 1 Algo que você sabe;
 - 2 Algo que você tem;
 - 3 Algo que você é.

Fatores Tradicionais de Autenticação

Algo que Você Sabe

- Exemplos:
 - Senhas
 - Frases-senha
 - PINs
- Vantagens:
 - Simples de implementar
 - Fácil de usar
- Desvantagens:
 - Podem ser adivinhados ou roubados

Senhas

- Curtas e tipicamente compostas por:
 - Letras, números e caracteres especiais.
- Exemplos:
 - P@sswOrd
 - **12345678**
- Vantagens:
 - Fáceis de lembrar para contas simples.
- Desvantagens:
 - Senhas fracas são facilmente adivinhadas ou quebradas.
 - Usuários frequentemente as reutilizam em várias contas.

Frases-Senha

- Combinações de palavras mais longas, em formato de frases:
 - Exemplo: CorrectHorseBatteryStaple
- Vantagens:
 - Mais difíceis de quebrar devido ao comprimento e complexidade.
 - Mais fáceis de lembrar em comparação com senhas complexas.
- Desvantagens:
 - Usuários podem usar frases previsíveis.
 - A entrada mais longa pode ser inconveniente em alguns contextos.

Segurança da senha

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Figura 1: https://xkcd.com/936/

https://beta.xkpasswd.net/

Algo que Você Tem

- Exemplos:
 - Tokens de segurança
 - Smartcards
- Vantagens:
 - Mais difíceis de replicar
 - Podem ser físicos ou digitais
- Desvantagens:
 - Itens perdidos ou roubados comprometem a segurança

Algo que Você É

- Exemplos:
 - Impressões digitais
 - Reconhecimento facial
- Vantagens:
 - Único para cada indivíduo
 - Difícil de falsificar
- Desvantagens:
 - Questões de privacidade
 - Alto custo de configuração

Métodos Emergentes e Complementares

Onde Você Está

- Baseado em geolocalização ou rede.
- Exemplo: Restringir acesso por IP ou localização GPS.

Algo que Você Faz

- Padrões comportamentais.
- Exemplo: Dinâmica de digitação ou gestos em telas sensíveis ao toque.

Acesso Baseado em Tempo

- Acesso restrito a horários específicos.
- Exemplo: Acesso durante o horário comercial.

Armazenamento Seguro de Dados de Autenticação

- Dados de autenticação, especialmente **senhas/frases-senha**, não devem ser armazenados em texto puro.
- Mecanismos adequados de armazenamento reduzem o impacto de vazamentos de dados.
- Conceitos-chave:
 - Salting
 - Hashing
 - Cofres de Segredos

Salting

- O que é um salt?
 - Uma string aleatória adicionada aos dados de autenticação antes do hashing.
- Propósito:
 - Impedir que atacantes usem tabelas pré-computadas (ex.: rainbow tables).

■ Exemplo:

- Senha: password123
- Salt: aeEcax2Usjdp09S2vn
- Entrada com Salt: aeEcax2Usjdp09S2vnpassword123

■ Importante:

- Cada usuário deve ter um salt único.
- Armazene os salts junto com o hash.

Hashing

- O que é hashing?
 - Uma transformação unidirecional de dados em um valor de comprimento fixo.

■ Algoritmos comuns:

- Modernos: bcrypt, Argon2, PBKDF2
- Evitar: MD5, SHA1 (considerados fracos para senhas).

■ Considerações-chave:

- Use hashing adaptativo (aumenta o custo computacional com a evolução do hardware).
- Combine com salting para segurança robusta.

■ Exemplo de Fluxo:

- Entrada: aeEcax2Usjdp09S2vnpassword123
- Saída Hasheada: d1f56e8e8d...

Cofres de Segredos

■ Propósito:

Armazenamento seguro para dados sensíveis, como salts, chaves de API ou chaves de criptografia.

■ Características:

- Controle de acesso e auditoria.
- Criptografia dos dados armazenados.

■ Ferramentas populares:

- HashiCorp Vault
- AWS Secrets Manager
- Azure Key Vault

■ Uso na Autenticação:

- Proteger chaves mestras usadas para criptografia/descriptografia.
- Armazenar credenciais críticas de forma segura.

Melhores Práticas Importantes

- Nunca reutilize salts:
 - Cada credencial requer um salt único.
- Escolha algoritmos de hashing fortes:
 - Use métodos reconhecidos pela indústria com contagens de iteração suficientes.
- 3 Limite o acesso ao cofre:
 - Restringir acesso com base em funções e manter logs de auditoria.
- 4 Rotacione segredos regularmente:
 - Minimize a exposição em caso de vazamentos.
- 5 Criptografe hashes armazenados:
 - Adicione uma camada extra de segurança, especialmente para ambientes sensíveis.

Armadilhas Comuns a Evitar

- Armazenar senhas em texto puro ou hashes sem salt.
- Usar salts previsíveis ou codificados no código.
- Ignorar ataques com aceleração de hardware (ex.: GPUs).
- Falhar em proteger o próprio cofre.
- Não atualizar algoritmos de hashing ao longo do tempo.

Exemplo de Implementação Prática

■ Cadastro de Usuário:

- 1 Gere um salt único para o usuário.
- 2 Combine a senha com o salt e faça o hash.
- 3 Armazene o hash e o salt no banco de dados.

■ Login de Usuário:

- 1 Recupere o salt e o hash armazenados.
- 2 Combine a senha fornecida pelo usuário com o salt.
- 3 Faça o hash e compare com o hash armazenado.

Autenticação Delegada (OAuth/OpenID Connect)

- O que é Autenticação Delegada?
 - Usuários se autenticam por meio de um terceiro confiável, como Google, Facebook, Apple ou Microsoft.
 - Comumente implementada por protocolos como **OAuth** ou **OpenID Connect**.

■ Como Funciona:

- 1 O usuário escolhe fazer login com um terceiro.
- O terceiro autentica o usuário e envia um token de acesso ou token de identificação para o aplicativo.
- 3 O aplicativo verifica o token para conceder acesso.

Autenticação Delegada (OAuth/OpenID Connect)

■ Vantagens:

- Não é necessário gerenciar senhas ou dados sensíveis de autenticação.
- Conveniente para usuários (reduz a necessidade de múltiplas contas).
- Provedores confiáveis oferecem medidas de segurança robustas.

Desvantagens:

- Dependência da disponibilidade e segurança do terceiro.
- Possíveis preocupações com privacidade devido ao compartilhamento de dados.
- Requer integração com APIs de terceiros.

■ Exemplos:

- "Fazer login com Google"
- "Entrar com Apple"

Conclusão

- Autenticação multifator melhora a segurança combinando métodos.
- Tecnologias emergentes continuam aprimorando a autenticação.
- Equilibrar usabilidade e segurança é fundamental.
- Armazenamento seguro protege dados de autenticação contra exposição.
- Salting e hashing tornam senhas resistentes a ataques comuns.
- Cofres de segredos garantem que dados sensíveis sejam armazenados e acessados com segurança.
- Atualizações regulares e auditorias fortalecem a segurança geral.