PROBLEM 1

A.
$$P \Rightarrow \neg Q$$
, $Q \Rightarrow \neg P$

$$P \Rightarrow \neg Q$$

Р	Q	P => Q
Т	T	F
Т	F	T
F	T	T
F	F	Т

$$Q \Rightarrow \neg P$$

Р	Q	Q => P
Т	Т	F
Т	F	Т
F	Т	T
F	F	Т

B. $P \Leftrightarrow \neg Q$, $((P \land \neg Q) \lor (\neg P \land Q))$

$$P \Leftrightarrow \neg Q$$

Р	Q	$P \Leftrightarrow \neg Q$
Т	T	F
T	F	Т
F	T	T
F	F	F

$$((P \land \neg Q) \lor (\neg P \land Q))$$

Р	Q	P ∧ ¬Q	¬P∧Q	((P ∧ ¬Q) ∨ (¬P ∧ Q))
Т	T	F	F	F
Т	F	T	F	Т
F	Т	F	T	Т
F	F	F	F	F

PROBLEM 2: Prove using truth table with all possible worlds.

A. $(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$ is neither

Smoke	Fire	Smoke ⇒ Fire	¬Smoke ⇒ ¬Fire	$(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

B. $(Smoke \Rightarrow Fire) \Rightarrow ((Smoke \lor Heat) \Rightarrow Fire)$ is neither

Smoke	Fire	Heat	Smoke ⇒ Fire	Smoke V Heat	(Smoke V Heat) ⇒ Fire	(Smoke ⇒ Fire) ⇒
						((Smoke V Heat) ⇒ Fire)
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	F	Т	F	Т
Т	F	F	F	Т	F	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	Т
F	F	Т	T	T	F	F
F	F	F	T	F	T	T

C. ((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire)) is valid

Smoke	Fire	Heat	Smoke	((Smoke ∧	Smoke	Heat	((Smoke ⇒ Fire)	((Smoke Λ Heat) ⇒ Fire) ⇔
			∧ Heat	Heat) ⇒ Fire)	⇒ Fire	⇒ Fire	V (Heat ⇒ Fire))	((Smoke ⇒ Fire) V (Heat ⇒ Fire))
Т	Т	Т	T	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	T	Т	Т
Т	F	Т	T	F	F	F	F	Т
Т	F	F	F	Т	F	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	Т	Т	Т
F	F	Т	F	Т	Т	F	Т	Т
F	F	F	F	Т	Т	Т	Т	Т

Note: A and B are satisfiable, meaning they were true in some models.

PROBLEM 3

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

Variable Names:

Mythical = Mythical

Mortal = Mortal

Mammal = Mammal

Horned = Horned

Magical = Magical

- a.
- 1. Mythical => ¬Mortal
- 2. ¬Mythical => Mortal ∧ Mammal
- 3. ¬Mortal V Mammal => Horned
- 4. Horned => Magical
- b.
- 1. Mythical V Mortal
- 2. Mythical V (Mortal A Mammal)

(Mythical V Mortal) A (Mythical V Mammal)

Mythical V Mortal, Mythical V Mammal

3. ¬(¬Mortal V Mammal) V Horned

(Mortal Λ ¬Mammal) V Horned

(Mortal V Horned) Λ (¬Mammal V Horned)

Mortal V Horned, ¬Mammal V Horned

4. ¬Horned V Magical

C.

Mythical

- 1. Mythical V Mortal
- 2. Mythical V Mortal
- 3. Mythical V Mammal
- 4. Mortal V Horned
- 5. ¬Mammal V Horned
- 6. ¬Horned V Magical
- 7. Mythical
- 8. Mortal; 2, 7
- 9. Mammal; 3, 7
- 10. Horned; 5, 9
- 11. Magical; 6, 10

We cannot prove that the unicorn is mythical since there is no contradiction when we use resolution.

Magical

- 1. Mythical V Mortal
- 2. Mythical V Mortal
- 3. Mythical V Mammal
- 4. Mortal V Horned
- 5. ¬Mammal V Horned
- 6. ¬Horned V Magical
- 7. Magical
- 8. ¬Horned; 6, 7
- 9. Mortal; 4, 8
- 10. ¬Mammal; 5, 8
- 11. Mythical; 1, 9
- 12. Mythical; 3, 10
- 13. Contradiction; 11, 12

Since we find a contradiction, we prove that the unicorn must be magical.

Horned

- 1. Mythical V Mortal
- 2. Mythical V Mortal
- 3. Mythical V Mammal
- 4. Mortal V Horned
- 5. ¬Mammal V Horned
- 6. ¬Horned V Magical
- 7. Horned
- 8. Mortal; 4, 7
- 9. ¬Mammal; 5, 7
- 10. Mythical; 1, 8
- 11. Mythical; 3, 9
- 12. Contradiction; 10, 11

Since we find a contradiction, we prove that the unicorn must be horned.