

Continuous Random Variables

连续随机变量

PDF 积分得到边缘概率密度或概率值

上帝不仅玩骰子, 他还有时把骰子扔到人类看不见的地方。

Not only does God definitely play dice, but He sometimes confuses us by throwing them where they can't be seen.

—— 史蒂芬·霍金 (Stephen Hawking) | 英国理论物理学家、宇宙学家 | 1942 ~ 2018

- matplotlib.pyplot.contour()绘制平面等高线
- ◀ matplotlib.pyplot.contour3D() 绘制三维等高线
- ◀ matplotlib.pyplot.contourf ()绘制平面填充等高线
- ◀ matplotlib.pyplot.fill between() 区域填充颜色
- ◀ matplotlib.pyplot.plot_wireframe() 绘制三维单色线框图
- matplotlib.pyplot.scatter() 绘制散点图
- ◀ scipy.stats.st.gaussian kde() 高斯 KDE 函数
- ✓ seaborn.scatterplot() 绘制散点图
- ◀ statsmodels.api.nonparametric.KDEUnivariate() 一元核密度估计

6.1 —元连续随机变量

本书第 4 章区分过**离散随机变量** (discrete random variable)、**连续随机变量** (continuous random variable)。如果随机变量 X 的所有可能取值不可以逐个列举出来,而是整个数轴或数轴上某一区间内的任一点,我们就称 X 为连续随机变量。

概率密度函数:积分

本书第 4 章介绍过,离散随机变量对应的数学工具为求和 Σ ,连续随机变量对应积分 \int_{0}^{∞} 对于连续随机变量 X,如果存在非负函数 $f_{X}(x)$ 使得:

$$\Pr(X \in B) = \int_{B} f_{X}(x) dx \tag{1}$$

则称函数 $f_X(x)$ 为 X 的概率密度函数 (probability density function, PDF)。

特别地,如图1所示,当B为区间[a,b]时,随机变量X的概率对应定积分:

$$\Pr(a \le X \le b) = \int_{a}^{b} f_X(x) dx \tag{2}$$

图 1. 定积分常用来计算一元连续随机变量在一定区间对应的概率

此外,本书前文提到过,PMF 和 PDF 的输入都可能是不止一个随机变量,这和多元函数一样。比如,二元连续随机变量 (X,Y) 联合概率密度函数 PDF $f_{X,Y}(x,y)$ 有两个变量,三元连续随机变量 (X_1,X_2,X_3) 的联合概率密度函数 PDF $f_{X_1,X_2,X_3}(x_1,x_2,x_3)$ 有三个变量。

概率密度非负,面积为 1

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

概率密度函数 $f_X(x)$ 必须是非负 $f_X(x) \ge 0$,且满足:

$$\Pr\left(-\infty < X < \infty\right) = \int_{-\infty}^{\infty} f_X(x) dx = 1$$
 (3)

上式常简写为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\int_{x} f_{X}(x) dx = 1 \tag{4}$$

如图 2 所示,从图像上来看, $f_X(x)$ 曲线和整个横轴包围区域的面积为 1,这也是归一化。换句话说,一个函数要想能当做概率密度函数来用先要满足非负、面积为 1 这两个条件。

图 2. fx(x) 和横轴围成图形的面积为 1

单点集合: 概率密度非负, 但是概率为 0

利用数值积分方法, X 的取值范围在 $[a, a + \Delta]$ 对应的概率为:

$$\Pr(a \le X \le a + \Delta) = \int_{a}^{a + \Delta} f_X(x) dx \approx f_X(a) \Delta$$
 (5)

当 $\Delta \to 0$ 时, $\Pr(a \le X \le a + \Delta) \to 0_{\circ}$

也就是说,对于单点集合,X = a的概率为 0:

$$\Pr(X=a) = \int_{a}^{a} f_X(x) dx = 0$$
 (6)

即便概率密度 $f_X(a)$ 大于 0。

区间端点

因此,对于连续随机变量 X,区间端点对概率计算不起任何作用,因此以下四个概率值等价:

$$\Pr(a \le X \le b) = \Pr(a < X \le b) = \Pr(a \le X < b) = \Pr(a < X < b)$$
(7)

这就好比"单丝不成线、独木不成林"。这一点,连续随机变量、离散随机变量完全不同。

概率密度值可以大于1

再次强调 $f_X(x)$ 并不是概率,而是概率密度,因此 $f_X(x)$ 可大于 1。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

比如,图 3 所示在 [0,0.5] 区间上连续均匀分布的概率密度函数 $f_X(x)$ 。很明显, $f_X(x)$ 的最大值 为 2. 但是长方形的面积仍为 1:

$$\Pr(-\infty < X < \infty) = \int_{-\infty}^{0} f_X(x) dx + \int_{0}^{0.5} f_X(x) dx + \int_{0.5}^{\infty} f_X(x) dx$$
$$= 0 + \int_{0}^{0.5} 2 dx + 0$$
$$= 2x \Big|_{0}^{0.5} = 1$$
 (8)

▲ 反复强调,图3中的2不是概率值,而是概率密度。对于一元随机变量,概率密度函数在 一定区间内积分结果才是概率值。概率密度虽然不是概率值,但也量化"可能性"。

图 3. 概率密度函数 fx(x) 可以大于 1

累积分布函数

本书前文介绍,给定一元离散随机变量 X 的概率质量函数 $p_X(x)$,求解其 CDF 时,用的是累 加Σ。

以图 4 (a) 为例,对于一元连续随机变量 X,求累积分布函数 $CDF F_X(x)$ 用的是积分,也就是 求面积:

$$F_X(x) = \Pr(X \le x) = \int_{-\infty}^{x} f_X(t) dt$$
(9)

图 4(a) 中 $f_X(x)$ 图形的面积对应概率值,而图 4(b) 中 $F_X(x)$ 的高度对应概率值。

随机变量 X 在[a, b] 区间对应的概率可以用 CDF $F_X(x)$ 计算:

$$Pr(a \le X \le b) = F_X(b) - F_X(a) \tag{10}$$

再次强调,对于一元连续随机变量,PDF是概率密度,CDF是概率。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 4. 连续均匀分布 PDF 和 CDF

6.2 期望、方差和标准差

期望值

连续随机变量 X 期望定义如下:

$$E(X) = \int_{-\infty}^{\infty} x \cdot \underbrace{f_X(x)}_{\text{Weight}} dx$$
 (11)

上式也相当于加权平均。其中, $f_X(x)$ 相当于是"权重"。显然, $f_X(x)$ 非负,但是 x 取值可正可 负。这也就是说, E(X) 可正可负。

(11) 常简写为:

$$E(X) = \int_{x} x \cdot f_X(x) dx$$
 (12)

权重当然满足
$$\int_{x} f_{X}(x) dx = 1$$
。

连续均匀分布

如图 5 所示,如果随机变量 X 在 [a, b] 上服从连续均匀分布 (continuous uniform distribution), X的概率密度函数为:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b, \\ 0 & \text{for } x < a \text{ or } x > b \end{cases}$$
 (13)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 5. 随机变量 X 在 [a, b] 上为均匀分布

X的期望值为:

$$E(X) = \int_{a}^{b} x \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \frac{x^{2}}{2} \Big|_{a}^{b} = \frac{1}{b-a} \frac{b^{2}-a^{2}}{2} = \frac{a+b}{2}$$
 (14)

随机变量 X 的取值在 [a,b] 变化,对应的概率密度变化用 $f_X(x)$ 刻画。而求得的期望值 E(X) 则 是一个标量,这相当于总结归纳,也是降维。

几何角度来看,如图5所示,计算X的期望值相当于找到一块均质木板的质心在长度方向上 的位置。

制比于第4章的离散随机变量求和运算,积分运算可以看做是"极尽细腻"的求和。

方差

连续随机变量 X 方差的定义为:

$$\operatorname{var}(X) = \operatorname{E}\left[\left(X - \operatorname{E}(X)\right)^{2}\right] = \int_{x} \left(\underbrace{x - \operatorname{E}(X)}_{\text{Deviation}}\right)^{2} \cdot \underbrace{f_{X}(x)}_{\text{Weight}} dx \tag{15}$$

同样,连续随机变量 X 的方差也满足如下计算技巧:

$$\operatorname{var}(X) = \operatorname{E}((X - \operatorname{E}(X))^{2}) = \operatorname{E}(X^{2}) - (\operatorname{E}(X))^{2}$$
(16)

其中,

$$E(X^{2}) = \int_{x} x^{2} \cdot f_{X}(x) dx$$
 (17)

举个例子

对于图 5 所示均匀分布,为了方便计算 X 的方差,计算 X 平方的期望值为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$E(X^{2}) = \int_{a}^{b} x^{2} \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \frac{x^{3}}{3} \Big|_{a}^{b} = \frac{1}{b-a} \frac{b^{3}-a^{3}}{3} = \frac{a^{2}+ab+b^{2}}{3}$$
 (18)

根据 (16), X的方差为:

$$\operatorname{var}(X) = \operatorname{E}((X - \operatorname{E}(X))^{2}) = \operatorname{E}(X^{2}) - (\operatorname{E}(X))^{2}$$

$$= \frac{a^{2} + ab + b^{2}}{3} - \frac{(a + b)^{2}}{4} = \frac{(b - a)^{2}}{12}$$
(19)

数值积分

如图 6 所示,随机变量 X 在 [0, 1] 上为均匀分布。我们可以很容易通过积分得到期望值、方 差。但是,并不是所有的概率密度函数都有解析式;此外,即便概率密度函数有解析式,也不代 表我们能计算得到积分的解析解,比如高斯函数。

如图 7 所示,这就需要用到《数学要素》第 18 章介绍的数值积分 (numerical integration)。当 然,我们还可以用蒙特卡洛模拟 (Monte Carlo simulation) 估算面积,这是本书后续要介绍的内 容。

图 6. 随机变量 X 在 [0, 1] 上为均匀分布

图 7. 数值积分估算期望值

假设同一个试验中,有两个连续随机变量 X 和 Y,非负二元函数 $f_{X,Y}(x,y)$ 为 (X,Y) 的**联合概率** 密度函数 (joint probability density function 或 joint PDF)。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

本章前文介绍,对于一元连续随机变量,积分得到的面积对应概率。而二元随机变量计算概率的工具是二重积分,从图像上来看,二重积分得到的体积对应概率。

如图 8 所示,给定积分区域 $A = \{(x, y) \mid a < x < b, c < y < d\}$,概率 $\Pr((X, Y) \in A)$ 对应的二重积分为:

$$\underbrace{\Pr((X,Y) \in A)}_{\text{Probability}} = \int_{c}^{d} \int_{a}^{b} \underbrace{f_{X,Y}(x,y)}_{\text{Joint PDF}} dx dy \tag{20}$$

图 8. 二元 PDF $f_{X,Y}(x,y)$ 在 $A = \{(x,y) \mid a < x < b, c < y < d\}$ 二重积分

体积为1: 样本空间概率为1

如果积分区域为整个平面,二重积分的结果为1:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underbrace{f_{X,Y}(x,y)}_{\text{Joint PDF}} dx dy = 1$$
 (21)

也就是说,图 $8 + f_{x,y}(x,y)$ 曲面和水平面围成几何形状的体积为 1,代表样本空间的概率为 1。上式本质上也是"穷举法"。

累积概率密度 CDF

二元累积概率函数 CDF $F_{X,Y}(x,y)$ 定义为:

$$\underbrace{F_{X,Y}(x,y)}_{\text{Probability}} = \Pr(X < x, Y < y) = \int_{-\infty}^{y} \int_{-\infty}^{x} \underbrace{f_{X,Y}(s,t)}_{\text{Joint PDF}} ds dt$$
 (22)

图9所示等高线为某个二元累积概率函数 $F_{X,Y}(x,y)$ 。图9还绘制了两条边缘 CDF 曲线。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 9. CDF 函数曲面 $F_{X,Y}(x,y)$ 平面填充等高线,边缘 CDF

6.⁴ 边缘概率: 二元 PDF 偏积分

图 10 所示为二元概率密度函数 $f_{X,Y}(x,y)$ 曲面和边缘概率曲线的关系。

图 10. 二元联合概率密度函数曲面和边缘概率密度之间的关系

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

边缘概率密度函数 f_X(x)

如图 11 所示,连续随机变量 X 的边缘概率密度函数 $f_X(x)$ 可以通过 $f_{X,Y}(x,y)$ 对 y "偏积分"得到:

$$\underbrace{f_X(x)}_{\text{Marginal}} = \underbrace{\int_{-\infty}^{+\infty} \underbrace{f_{X,Y}(x,y)}_{\text{Joint}} dy}$$
(23)

上式,相当于消去(降维、压扁、折叠)变量 y,这和离散随机变量的"偏求和"类似。

图 11. 联合概率密度 $f_{X,Y}(x,y)$ 对 y"偏积分"得到边缘概率密度 $f_X(x)$

(23) 可以简写为:

$$\underbrace{f_X(x)}_{\text{Marginal}} = \underbrace{\int_{y}^{\text{Eliminate } y}}_{\text{Joint}} dy$$
(24)

⚠ 注意, $f_X(x)$ 还是概率密度函数, 而不是概率。也就是说, $f_{X,Y}(x,y)$ 二重积分得到概率, $f_{X,Y}(x,y)$ "偏积分"得到的还是概率密度函数。

图 12 比较 $f_{X,Y}(x,y=c)$ 和 $f_X(x)$ 曲线。当 y=c 取不同值时,我们可以看到 $f_{X,Y}(x,y)$ 和 $f_X(x)$ 曲线 形状不同。当 y=c 时, $f_{X,Y}(x,y=c)$ 不是一元连续随机变量 PDF;原因就是面积不为 1。但是经过 归一化之后,它们就变成了一元随机变量 PDF。这个归一化的工具就是"贝叶斯定理"。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 12. 比较联合概率密度 $f_{X,Y}(x,y)$ 和边缘概率密度 $f_X(x)$ 曲线

体密度 vs 面密度 vs 线密度

几何上来看,如图 13 所示, $f_{X,Y,Z}(x,y,z)$ 相当于"体密度", $f_{X,Y}(x,y)$ 相当于"面密度", $f_{X}(x)$ 相当于"线密度"。而概率值就相当于质量。

用白话说,体密度就是"铁块"的密度,计算铁块质量时会用到"体积×体密度"。

面密度就是"铁皮"的密度。铁皮厚度太薄,不便测量。计算铁皮质量时,我们用"面积×面密度"。

线密度对应"铁丝"的密度。关心铁丝横截面面积没有意义,实践中铁丝粗细有特定标准、型号。计算铁丝质量时,我们用"长度×线密度"。

图 13. 体密度、面密度、线密度

边缘概率密度函数 f_Y(y)

同理,如图 14 所示,连续随机变量 Y 的边缘分布概率密度函数 $f_Y(y)$ 可以通过 $f_{X,Y}(x,y)$ 对 x "偏积分"得到:

$$\underbrace{f_Y(y)}_{\text{Marginal}} = \underbrace{\int_{-\infty}^{+\infty} \underbrace{f_{X,Y}(x,y)}_{\text{Joint}} dx}$$
(25)

上式相当消去了变量 x。上式也可以简写为:

$$\underbrace{f_Y(y)}_{\text{Marginal}} = \underbrace{\int_{x}^{\text{Eliminate } x}}_{x} \underbrace{f_{X,Y}(x,y)}_{\text{Joint}} dx$$
 (26)

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 $14. f_{X,Y}(x,y)$ 对 x"偏积分"得到边缘分布概率密度函数 $f_Y(y)$

6.5 条件概率:引入贝叶斯定理

条件概率密度函数 fxy(x|y)

设 X 和 Y 为连续随机变量,联合概率密度函数为 $f_{X,Y}(x,y)$ 。利用贝叶斯定理,在给定 Y = y 条件下,且 $f_Y(y) > 0$,X 的条件概率密度函数 $f_{X,Y}(x|y)$ 为:

$$\underbrace{f_{X|Y}(x|y)}_{\text{Conditional}} = \underbrace{\frac{f_{X,Y}(x,y)}{f_{X,Y}(x,y)}}_{\text{Marginal}}$$
(27)

▲ 再次强调,上式中,边缘 fy(y) 也是概率密度。

图 15 中 $f_{X,Y}(x,y=-1)$ 曲线代表 Y=-1 时 (X,Y) 联合概率密度函数。

 $f_{X,Y}(x,y=-1)$ 对 x 在 $(-\infty, +\infty)$ 积分的结果为边缘概率概率密度 $f_Y(y=-1)$ 。也就是说, $f_{X,Y}(x,y=-1)$ 曲线面积为边缘概率密度 $f_Y(y=-1)$ 。

下一步, $f_{X,Y}(x,y=-1)$ 经过 $f_Y(y=-1)$ 缩放得到条件概率曲线 $f_{X|Y}(x|y=-1)$ 。

⚠ 注意, $f_{X|Y}(x|y=-1)$ 和横轴围成图形的面积为 1, 这代表 Y=-1 这个新的样本空间概率为 1。

图 15. 给定 Y = y 条件下且 $f_Y(y) > 0$, X 的条件概率密度函数

图 16 比较 $f_X(x)$ 和 y 取不同值时条件概率密度函数 $f_{X|Y}(x|y)$ 图像。将这些曲线投影到同一个平面,得到图 17。注意,图 17 中所有曲线和横轴围成图形的面积都是 1。

图 16. 比较边缘概率密度 $f_X(x)$ 和条件概率密度 $f_{X|Y}(x|y)$

图 17. 比较边缘概率密度 $f_X(x)$ 和条件概率密度 $f_{X|Y}(x|y)$, 投影在平面上

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

条件概率密度函数 $f_{YIX}(y|x)$

给定 X = x 条件下,且 $f_X(x) > 0$,条件概率密度函数 $f_{Y|X}(y|x)$ 可以通过下式求得:

$$\underbrace{f_{Y|X}(y|x)}_{\text{Conditional}} = \underbrace{\frac{f_{X,Y}(x,y)}{f_{X,Y}(x,y)}}_{\text{Marginal}}$$
(28)

如图 18 所示为,当 X=-1 条件下,联合概率密度函数 $f_{X,Y}(x=-1,y)$ 首先对 y 在 $(-\infty, +\infty)$ 积分的结果为边缘概率密度值 $f_X(x=-1)$ 。下一步, $f_{X,Y}(x=-1,y)$ 经过 $f_X(x=-1)$ 缩放得到条件概率曲线 $f_{Y,X}(y|x=-1)$ 。

图 18. 给定 X = x 条件下且 $f_X(x) > 0$, Y 的条件概率密度函数

图 19 比较 $f_Y(y)$ 和 x 取不同值时条件概率密度函数 $f_{Y|X}(y|x)$ 图像。

图 19. 比较边缘概率密度 $f_{YX}(y)$ 和条件概率密度 $f_{YX}(y|x)$ 图像

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

联合概率、边缘概率、条件概率

根据贝叶斯定理,联合概率、边缘概率、条件概率三者关系为:

$$\underbrace{f_{X,Y}(x,y)}_{\text{Joint}} = \underbrace{f_{X|Y}(x|y)}_{\text{Conditional}} \underbrace{f_{Y}(y)}_{\text{Marginal}} = \underbrace{f_{Y|X}(y|x)}_{\text{Conditional}} \underbrace{f_{X}(x)}_{\text{Marginal}}$$
(29)

在 (23) 基础上,连续随机变量 X 的边缘分布概率密度函数 $f_X(x)$ 可以通过下式获得:

$$\underbrace{f_X(x)}_{\text{Marginal}} = \int_{-\infty}^{+\infty} \underbrace{f_{X,Y}(x,y)}_{\text{Joint}} dy = \int_{-\infty}^{+\infty} \underbrace{f_{X|Y}(x|t)}_{\text{Conditional}} f_Y(t) dt$$
(30)

同理,连续随机变量 Y的边缘分布概率密度函数 $f_Y(y)$ 可以通过下式计算得到:

$$\underbrace{f_Y(y)}_{\text{Marginal}} = \int_{-\infty}^{+\infty} \underbrace{f_{X,Y}(x,y)}_{\text{Joint}} dx = \int_{-\infty}^{+\infty} \underbrace{f_{Y|X}(y|s)}_{\text{Conditional}} \underbrace{f_X(s)}_{\text{Marginal}} ds$$
(31)

6.6 独立性: 比较条件概率和边缘概率

如果连续随机变量 X 和 Y 独立, 下式成立:

$$f_{X|Y}(x|y) = f_X(x) \tag{32}$$

图 20 所示为 X 和 Y 独立,条件概率密度函数 $f_{X|Y}(x|y)$ 和边缘概率密度函数 $f_{X}(x)$ 之间关系。我们发现条件概率 $f_{X|Y}(x|y)$ 的曲线和 Y 的取值无关。条件概率 $f_{X|Y}(x|y)$ 的曲线形状和边缘概率 $f_{X}(x)$ 完全一致。这和图 16 完全不同。

图 20. X 和 Y 独立,条件概率 $f_{X|Y}(x|y)$ 和边缘概率 $f_X(x)$ 之间关系

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

(32) 等价于:

$$f_{Y|X}(y|x) = f_Y(y) \tag{33}$$

图 21 所示为 X 和 Y 独立,条件概率 $f_{Y|X}(y|x)$ 和边缘概率 $f_Y(y)$ 的图像完全一致。

图 21. X 和 Y 独立,条件概率 $f_{Y|X}(y|x)$ 和边缘概率 $f_{Y}(y)$ 之间关系

独立: 联合概率

对于两个连续随机变量 X 和 Y,如果两者独立,则联合概率密度函数 $f_{X,Y}(x,y)$ 为边缘概率密度函数 $f_{X}(x)$ 和 $f_{Y}(y)$ 的乘积:

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
(34)

图 22 所示为连续随机变量 X 和 Y 独立,联合概率 $f_{X,Y}(x,y)$ 曲面。图 23 所示为联合概率 $f_{X,Y}(x,y)$ 平面等高线。

图 22. 连续随机变量 X 和 Y 独立,联合概率密度 $f_{X,Y}(x,y)$ 曲面

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 23. 连续随机变量 X 和 Y 独立,联合概率密度 $f_{X,Y}(x,y)$ 曲面等高线

6.7 以鸢尾花数据为例:不考虑分类标签

本章以下两节还是用鸢尾花数据集花萼长度 (X_1) 、花萼宽度 (X_2) 、分类标签 (Y) 为例,讲解本章前文介绍连续随机变量主要知识点。图 24 所示为不考虑分类时,鸢尾花样本数据花萼长度、花萼宽度散点图。

这两节采用和第5章9、10两节几乎一样的结构,方便大家对照阅读。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载:https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 24. 鸢尾花数据花萼长度、花萼宽度散点图,不考虑分类

概率密度估计 \rightarrow 联合概率密度函数 $f_{X1,X2}(x_1,x_2)$

基于高斯**核密度估计** (kernel density estimation, KDE),我们可以得到如图 25 所示联合概率密度 函数 $f_{X1,X2}(x_1,x_2)$ 。暖色系对应较大的概率密度值,也就是说鸢尾花样本分布更为密集。

核密度估计的基本思想是,通过在每个数据点处放置一个核函数(如高斯核函数),以此来估计概率密度函数。这样,在整个数据集上使用核函数后,我们可以获得一条连续的概率密度曲线,该曲线可以用来估计各种统计量,如均值和方差。

再次强调,图 25 仅仅代表 $f_{X1,X2}(x_1,x_2)$ 的一种估计。即便采用相同的 KDE,使用不同的核函数、改变算法参数会导致 $f_{X1,X2}(x_1,x_2)$ 曲面形状变化。本书第 18 章将专门讲解核密度估计方法。

图 25. 联合概率密度函数 $f_{X1,X2}(x_1,x_2)$ 三维等高线和平面等高线,不考虑分类

举个例子, 花萼长度 (X_1) 为 6.5、花萼宽度 (X_2) 为 2.0 时, 联合概率密度估计为:

$$\underbrace{f_{X1,X2} \left(x_1 = 6.5, x_2 = 2.0 \right)}_{\text{Joint PDF}} \approx 0.02097 \tag{35}$$

⚠ 注意,0.02097 这个数值是概率密度,不是概率。也就是说,我们<u>不能</u>说鸢尾花取到花萼长度 (X_1) 为 6.5、花萼宽度 (X_2) 为 2.0 时对应的概率值为 0.02097,即便这个值某种程度上也代表可能性。

由于 $f_{X_1,X_2}(x_1,x_2)$ 有两个随机变量,对它二重积分可以得到概率值。二重积分就相当于"穷举法"。

采用"穷举法",图 25 中 $f_{X1,X2}(x_1,x_2)$ 曲面和整个水平面围成的几何形体体积为 1,即:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\iint_{x_2, x_1} f_{X_1, X_2}(x_1, x_2) dx_1 dx_2 = 1$$
Probability (36)

联合概率密度函数 $f_{X1,X2}(x_1,x_2)$ 的剖面线

 $f_{X_1,X_2}(x_1,x_2)$ 本质上是个二元函数。

《数学要素》第10章介绍过除了等高线,我们还可以使用"剖面线"分析二元函数。

如图 26 所示,当固定 x_1 取值时, $f_{X1,X2}(x_1=c,x_2)$ 代表一条曲线。将一系列类似曲线投影到竖直 平面得到图 26 (b)。图 26 (b),这些直线和整个水平轴围成的面积就是边缘概率 $f_{X1}(x_1=c)$ 。而计算 面积的数学工具就是"偏积分"。

图 26. 固定 x_1 时,概率密度函数 $f_{X_1,X_2}(x_1,x_2)$ 随 x_2 变化

图 27 所示为固定 x_2 时,概率密度函数 $f_{X_1,X_2}(x_1,x_2)$ 随 x_1 变化。图 26 (b) 中直线和整个水平轴围 成的面积对应边缘概率 $f_{X2}(x_2 = c)$ 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站-—_生姜 DrGinger: https://space.bilibili.com/513194466

图 27. 固定 x_2 时,概率密度函数 $f_{x_1,x_2}(x_1,x_2)$ 随 x_1 变化

花萼长度边缘 PDF fx1(x1): 偏积分

图 28 所示为求解花萼长度边缘概率密度函数 $f_{X1}(x_1)$ 的过程:

$$\underbrace{f_{X1}(x_1)}_{\text{Marginal}} = \int_{x_2} \underbrace{f_{X1,X2}(x_1,x_2)}_{\text{Joint}} dx_2$$
(37)

举个例子,当花萼长度 (X_1) 取值为 5.0 时,对应的边缘概率 $f_{X1}(5.0)$ 可以通过如下偏积分得到:

$$f_{X1}(x_1 = 5.0) = \int_{x_2} f_{X1,X2}(x_1 = 5.0, x_2) dx_2$$
 (38)

图 28 中彩色阴影面积对应边缘概率,即 $f_{X1}(x_1)$ 曲线特定一点的高度。再次强调, $f_{X1}(x_1)$ 本身也是概率密度,不是概率值。 $f_{X1}(x_1)$ 再积分可以得到概率。

如图 28 (b) 所示, $f_{XI}(x_I)$ 曲线和整个横轴围成图形的面积为 1。大家可以试着用数值积分计算期望值 $E(X_I)$ 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 28. 偏积分求解边缘概率 $f_{X1}(x_1)$

花萼宽度边缘 PDF fx2(x2): 偏求和

图 29 所示为求解花萼宽度边缘概率密度函数的过程:

$$\underbrace{f_{X2}(x_2)}_{\text{Marginal}} = \int_{x_1} \underbrace{f_{X1,X2}(x_1, x_2)}_{\text{Joint}} dx_1$$
(39)

举个例子,当花萼宽度 (X_2) 取值为 2.0 时,对应的边缘概率密度 f_{X2} (2.0) 可以通过如下偏积分得到:

$$f_{X2}(x_2 = 2.0) = \int_{x_1} f_{X1,X2}(x_1, x_2 = 2.0) dx_1$$
 (40)

图 29. 偏积分求解边缘概率 $f_{X2}(x_2)$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

联合 PDF vs 边缘 PDF

图 30 所示为联合 PDF 和边缘 PDF 之间关系。图中联合概率密度函数 $f_{X1,X2}(x_1,x_2)$ 采用高斯 KDE 估计得到。图 30 中的 $f_{X1,X2}(x_1,x_2)$ 比较精准地捕捉到了鸢尾花样本数据的分布特征。

图 30. 联合 PDF 和边缘 PDF 之间关系

假设独立

如果假设 X_1 和 X_2 独立,联合概率密度 $f_{X_1,X_2}(x_1,x_2)$ 可通过下式计算得到:

$$f_{X1,X2}(x_1,x_2) = f_{X1}(x_1) \cdot f_{X2}(x_2)$$
 (41)

图 31 所示为假设 X_1 和 X_2 独立时 $f_{X_1,X_2}(x_1,x_2)$ 的平面等高线和边缘 PDF 之间关系。

比较鸢尾花样本数据分布和假设 X_1 和 X_2 独立时估算得到的 $f_{X_1,X_2}(x_1,x_2)$ 等高线,很遗憾地发现 图 31 这个联合概率密度函数 ƒx1,x2(x1,x2) 没有合理反映样本数据分布,尽管图 30 和图 31 边缘概率完 全一致。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站-—生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 31. 联合概率,假设 X_1 和 X_2 独立

给定花萼长度,花萼宽度的条件 PDF $f_{X2|X1}(x_2|x_1)$

如图 32 所示,利用贝叶斯定理,条件概率密度 $f_{X2|X1}(x_2|x_1)$ 可以通过下式计算:

$$\underbrace{f_{X2|X1}(x_2|x_1)}_{\text{Conditional}} = \underbrace{\frac{f_{X1,X2}(x_1,x_2)}{f_{X1}(x_1)}}_{\text{Marginal}}$$
(42)

▲ 注意,上式中 $f_{X1}(x_1) > 0$ 。上式分母中的边缘概率 $f_{X1}(x_1)$ 起到归一化作用。

如图 32 (b) 所示, 经过归一化的条件概率曲线围成的面积变为 1, 即:

$$\int_{x_2} \underbrace{f_{X_2|X_1}(x_2 \mid x_1)}_{\text{Conditional}} dx_2 = \int_{x_2} \underbrace{\frac{f_{X_1,X_2}(x_1, x_2)}{f_{X_1}(x_1)}}_{\text{Marginal}} dx_2 = \underbrace{\frac{\int_{x_2} f_{X_1,X_2}(x_1, x_2) dx_2}{f_{X_1}(x_1)}}_{f_{X_1}(x_1)} = \underbrace{\frac{f_{X_1,X_2}(x_1, x_2) dx_2}{f_{X_1}(x_1)}}_{f_{X_1}(x_1)} = 1$$
(43)

将不同位置的条件 PDF $f_{X2|X1}(x_2|x_1)$ 曲线投影到平面得到图 33。图 33 (b) 中每条曲线和横轴围成面积都是 1。请大家仔细比较图 26 和图 33。此外, $f_{X2|X1}(x_2|x_1)$ 本身也是一个二元函数。图 34 所示为 $f_{X2|X1}(x_2|x_1)$ 三维等高线和平面等高线。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 32. 计算条件概率 $f_{X2|X1}(x_2|x_1)$ 原理

图 33. fx2 | x1 (x2 | x1) 曲线投影到平面

图 34. $f_{X2|X1}(x_2|x_1)$ 条件概率密度三维等高线和平面等高线,不考虑分类

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

给定花萼宽度,花萼长度的条件概率密度函数 $f_{X1|X2}(x_1|x_2)$

如图 35 所示,同样利用贝叶斯定理,条件 PDF $f_{X_1|X_2}(x_1|x_2)$ 可以通过下式计算:

$$\underbrace{f_{X1|X2}(x_1|x_2)}_{\text{Conditional}} = \underbrace{\frac{f_{X1,X2}(x_1,x_2)}{f_{X2}(x_2)}}_{\text{Marginal}}$$
(44)

注意,上式中 $f_{X2}(x_2) > 0$ 。

类似前文, (44) 中分母中 $f_{X2}(x_2)$ 同样起到归一化作用。如图 35 (b) 所示,经过归一化 $f_{X1|X2}(x_1|x_2)$ 面积变为 1,即:

$$\int_{x_{1}} \underbrace{f_{X1|X2}(x_{1}|x_{2})}_{\text{Conditional}} dx_{1} = \int_{x_{1}} \underbrace{\frac{f_{X1,X2}(x_{1},x_{2})}{f_{X2}(x_{2})}}_{\text{Marginal}} dx_{1} = \underbrace{\frac{\int_{x_{1}} f_{X1,X2}(x_{1},x_{2}) dx_{1}}{f_{X2}(x_{2})}}_{f_{X2}(x_{2})} = \underbrace{\frac{\int_{x_{1}} f_{X1,X2}(x_{1},x_{2}) dx_{1}}{f_{X2}(x_{2})}}_{f_{X2}(x_{2})} = 1$$
(45)

将不同位置的条件概率密度 $f_{X1|X2}(x_1|x_2)$ 曲线投影到平面得到图 36。图 36 (b) 中每条曲线和横轴围成面积都是 1。也请大家仔细比较图 27 和图 36。

 $f_{X_1|X_2}(x_1|x_2)$ 同样也是一个二元函数,如图 37 所示的 $f_{X_1|X_2}(x_1|x_2)$ 三维等高线和平面等高线。

图 35. 计算条件概率 $f_{X1|X2}(x_1|x_2)$ 原理

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 36. $f_{X1|X2}(x_1|x_2)$ 曲线投影到平面

图 37. $f_{X1|X2}(x_1|x_2)$ 条件概率密度三维等高线和平面等高线,不考虑分类

6.8 以鸢尾花数据为例:考虑分类标签

本节将以鸢尾花标签为条件讨论条件概率。图 38 所示为考虑分类标签的鸢尾花数据散点图。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 38. 鸢尾花数据花萼长度、花萼宽度散点图,考虑分类

给定分类标签 $Y = C_1$ (setosa)

图 39 所示为给定分类标签 $Y = C_1$ (setosa) 条件下,条件概率 $f_{X_1,X_2 \mid Y}(x_1,x_2 \mid y = C_1)$ 平面等高线和条件边缘概率密度曲线。

 $f_{X_1,X_2|Y}(x_1,x_2|y=C_1)$ 曲面和整个水平面围成体积为 1,也就是说:

$$\iint_{x_2} \underbrace{f_{X_1, X_2 \mid Y}\left(x_1, x_2 \mid C_1\right)}_{\text{Conditional PDF}} dx_1 dx_2 = 1$$
Probability
(46)

用 KDE 估算 $f_{X_1,X_2+Y}(x_1,x_2+y=C_1)$ 时,我们仅仅考虑标签为 C_1 的数据。同理,估算条件边缘概率曲线 $f_{X_1+Y}(x_1+y=C_1)$ 、 $f_{X_2+Y}(x_2+y=C_1)$ 时,我们也不考虑其他标签数据。

图 39 中, $f_{X1|Y}(x_1|y=C_1)$ 、 $f_{X2|Y}(x_2|y=C_1)$ 分别和 x_1 、 x_2 围成的面积也是 1,即:

$$\int_{x_1} \underbrace{f_{X_1|Y}(x_1 \mid C_1)}_{\text{Conditional PDF}} dx_1 = 1$$
Probability
$$\int_{x_2} \underbrace{f_{X_2|Y}(x_2 \mid C_1)}_{\text{Conditional PDF}} dx_2 = 1$$
Probability
Probability

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

图 39. 条件概率 $f_{X1,X2\mid Y}(x_1,x_2\mid Y=C_1)$ 平面等高线和条件边缘概率密度曲线,给定分类标签 $Y=C_1$ (setosa)

给定分类标签 $Y = C_2$ (versicolor)

图 40 所示为,给定分类标签 $Y = C_2$ (versicolor),条件概率 $f_{X1,X2 \mid Y}(x_1,x_2 \mid y = C_2)$ 平面等高线和条件边缘概率密度曲线。请大家自行分析这幅图。

图 40. 条件 PDF $f_{X1,X2\mid Y}(x_1,x_2\mid y=C_2)$ 平面等高线和条件边缘概率密度曲线,给定分类标签 $Y=C_2$ (versicolor)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

给定分类标签 $Y = C_3$ (virginica)

图 41 所示为,给定分类标签 $Y = C_3$ (virginica),条件概率 $f_{X1,X2 \mid Y}(x_1, x_2 \mid y = C_3)$ 平面等高线和条 件边缘概率密度曲线。也请大家自行分析这幅图。

图 41. 条件 PDF $f_{X1,X2} \mid y(x_1,x_2 \mid y=C_3)$ 平面等高线和条件边缘概率密度曲线,给定分类标签 $Y=C_3$ (virginica)

全概率定理: 穷举法

如图 42 所示, 利用全概率定理, 三幅条件概率等高线叠加可以得到联合概率密度, 即:

$$f_{X_{1},X_{2}}(x_{1},x_{2}) = f_{X_{1},X_{2}|Y}(x_{1},x_{2}|y = C_{1}) p_{Y}(C_{1}) +$$

$$f_{X_{1},X_{2}|Y}(x_{1},x_{2}|y = C_{2}) p_{Y}(C_{2}) +$$

$$f_{X_{1},X_{2}|Y}(x_{1},x_{2}|y = C_{3}) p_{Y}(C_{3})$$

$$(48)$$

此外, 请大家思考 $f_{X1}(x_1)$ 、 $f_{X1|Y}(x_1|y=C_1)$ 、 $f_{X1|Y}(x_1|y=C_2)$ 、 $f_{X1|Y}(x_1|y=C_3)$ 四者关系。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站-— 生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 42. 利用全概率定理,计算 $f_{X1,X2}(x_1,x_2)$

给定 X_1 和 X_2 , Y 的条件概率: 后验概率

根据贝叶斯定理,当 $f_{X1,X2}(x_1,x_2) > 0$ 时,后验 (posterior) PDF $f_{Y/X1,X2}(C_k \mid x_1,x_2)$ 可以根据下式计算得到:

$$\underbrace{f_{Y|X1,X2}\left(C_{k} \mid x_{1}, x_{2}\right)}_{\text{Posterior}} = \underbrace{\frac{f_{X1,X2,Y}\left(x_{1}, x_{2}, C_{k}\right)}{f_{X1,X2}\left(x_{1}, x_{2}\right)}}_{\text{Evidence}} \tag{49}$$

从分类角度来看,这相当于已知某个样本鸢尾花花萼长度和花萼宽度,该样本对应不同分类的概率。请大家修改代码自行绘制不同的后验概率 PDF 曲面。

→本书第19、20章将从这个角度探讨若何判定鸢尾花分类。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

假设条件独立

如图 43 所示,如果假设条件独立, $f_{X1,X2|Y}(x_1,x_2|y=C_1)$ 可以通过下式计算得到:

$$\underbrace{f_{X1,X2|Y}\left(x_{1},x_{2}\,\middle|\,y=C_{1}\right)}_{\text{Conditional joint}} = \underbrace{f_{X1|Y}\left(x_{1}\,\middle|\,y=C_{1}\right)}_{\text{Conditional marginal}} \cdot \underbrace{f_{X2|Y}\left(x_{2}\,\middle|\,y=C_{1}\right)}_{\text{Conditional marginal}}$$
(50)

同理我们可以计算得到 $f_{X1,X2|Y}(x_1, x_2|y=C_2)$ 、 $f_{X1,X2|Y}(x_1, x_2|y=C_3)$,具体如图 44、图 45 所示。

图 43. 给定 $Y=C_1$, X_1 和 X_2 条件独立,估算条件概率 $f_{X_1,X_2\mid Y}(x_1,x_2\mid y=C_1)$

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 44. 给定 $Y = C_2$, X_1 和 X_2 条件独立,估算条件概率 $f_{X_1,X_2 \mid Y}(x_1,x_2 \mid y = C_2)$

图 45. 给定 $Y = C_3$, X_1 和 X_2 条件独立,估算条件概率 $f_{X_1,X_2 \mid Y}(x_1,x_2 \mid y = C_3)$

如图 46 所示,并利用全概率定理,我们也可以估算 $f_{X1,X2}(x_1,x_2)$:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$f_{X1,X2}(x_{1},x_{2}) = f_{X1,X2|Y}(x_{1},x_{2}|y=C_{1})p_{Y}(C_{1}) +$$

$$f_{X1,X2|Y}(x_{1},x_{2}|y=C_{2})p_{Y}(C_{2}) +$$

$$f_{X1,X2|Y}(x_{1},x_{2}|y=C_{3})p_{Y}(C_{3}) +$$

$$= f_{X1|Y}(x_{1}|y=C_{1})f_{X2|Y}(x_{2}|y=C_{1})p_{Y}(C_{1}) +$$

$$f_{X1|Y}(x_{1}|y=C_{2})f_{X2|Y}(x_{2}|y=C_{2})p_{Y}(C_{2}) +$$

$$f_{X1|Y}(x_{1}|y=C_{3})f_{X2|Y}(x_{2}|y=C_{3})p_{Y}(C_{3}) +$$

$$(51)$$

这是**朴素贝叶斯分类器** (Naive Bayes classifier) 的重要技术细节之一。鸢尾花书《机器学习》一册将讲解朴素贝叶斯分类器。

图 46. 利用全概率定理,估算 $f_{X1,X2}(x_1,x_2)$,假设条件独立

Bk5_Ch06_01.py 绘制本章大部分图像。

为了帮助大家更容易发现离散随机变量、连续随机变量的区别和联系,本章最后特地做了如下表格。请大家逐行对比学习。下一章介绍常见连续随机变量的概率分布。

表 1. 比较离散和连续随机变量

		1
	离散	连续
随机变量	取值可以一一列举出来,有限个或可数 无穷个,比如 {0,1}, {非负整数}	取值不可以——列举出来,比如闭区间[0,1]或{非负实数}
一元随机变量概率质量/密度函数	概率质量函数 PMF, $p_X(x)$	概率密度函数 PDF, $f_X(x)$
	PMF本身就是概率值	PDF 本身为概率密度
	$0 \le p_{X}(x) \le 1$	$0 \le f_X\left(x\right)$
	计算工具: Σ	注意 $f_x(x)$ 可以大于 1
		计算工具: ∫
归一化	$\sum_{x} p_{x}(x) = 1$	$\int_{x} f_{x}(x) dx = 1$
概率质量/密度函数图像	火柴梗图	曲线
计算概率 CDF	求和	积分
	$F_X(x) = \Pr(X \le x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \Pr(X \le x) = \int_{-\infty}^x f_X(t) dt$
期望	$E(X) = \sum_{x} x \cdot p_{X}(x)$	$E(X) = \int_{x} x \cdot f_{X}(x) dx$
方差	$\operatorname{var}(X) = \sum_{x} (x - \operatorname{E}(X))^{2} p_{x}(x)$	$\operatorname{var}(X) = \int_{x} (x - \operatorname{E}(X))^{2} \cdot f_{X}(x) dx$
常见分布	离散均匀分布,伯努利分布,二项分 布,多项分布,泊松分布,几何分布, 超几何分布	连续均匀分布,高斯分布,逻辑分布,学生 <i>t-</i> 分布,对数正态分布,指数分布,卡方分布,Beta 分布
二元随机变量联合概率	概率质量函数 PMF, $p_{X,Y}(x,y)$	概率密度函数 PDF, fx,r(x,y)
归一化	$\sum_{x_1} \sum_{x_2} p_{X_1, X_2} (x_1, x_2) = 1$	$\iint_{x_2 x_1} f_{X_1, X_2}(x_1, x_2) dx_1 dx_2 = 1$
边缘概率	$p_{X,Y}(x,y)$ 偏求和结果为边缘 PMF	f _{x,y} (x,y) 偏积分结果为边缘 PDF
求和法则	$p_X(x) = \sum_{x} p_{X,Y}(x,y)$	$f_X(x) = \int f_{X,Y}(x,y) \mathrm{d} y$
	$p_{Y}(y) = \sum_{x}^{y} p_{X,y}(x,y)$	$f_{Y}(y) = \int_{x}^{y} f_{X,Y}(x,y) dx$
条件概率	$p_{X,Y}(x,y)$	$f_{X,Y}(x,y)$
$p_{Y}(y) > 0, p_{X}(x) > 0$	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{Y X}(y x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$
$f_Y(y) > 0, f_X(x) > 0$	$p_{Y X}(y X) = \frac{p_{X,Y}(x,y)}{p_X(x)}$	$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$
		J

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

条件概率归一化	$\sum_{x} p_{x y}(x y) = 1$ $\sum_{y} p_{y x}(y x) = 1$	$\int_{x} f_{x y}(x y) dx = 1$ $\int_{y} f_{y x}(y x) dx = 1$
随机变量独立	$p_{X Y}(x y) = p_X(x)$ $p_{Y X}(y x) = p_Y(y)$	$f_{X Y}(x y) = f_X(x)$ $f_{Y X}(y x) = f_Y(y)$
随机变量独立条件下,联合概率	$p_{X,Y}(x,y) = p_X(x) p_Y(y)$	$f_{X,Y}(x,y) = f_X(x)f_Y(y)$
随机变量条件独立,条件联合概率	$p_{X_1,X_2 Y}(x_1,x_2 y) = p_{X_1 Y}(x_1 y) \cdot p_{X_2 Y}(x_2 y)$	$f_{X_1,X_2 Y}(x_1,x_2 y) = f_{X_1 Y}(x_1 y) \cdot f_{X_2 Y}(x_2 y)$