Notation	Meaning
0	The object being monitored.
M	The map of locations.
I = [1T]	Time interval.
Δ	Time between two consecutive time points.
r_j, \mathcal{R}	Generic reader, set of all the readers.
R	Generic set of readers $(R \subseteq \mathcal{R})$.
R_t	Set of readers that detected o at time t .
$D = R_1, \ldots, R_T$	Detection-sequence (d-sequence) over <i>I</i> .
L_j, \mathcal{L}	Generic location, set of all the locations.
c, c_j	Generic cells composing the grid over M .
Cells(L)	The cells intersecting location L .
Cells(R)	The cells covered by the readers in R .
$d_{\min}(c_i,c_j)$	Minimum distance between cells c_i and c_j .
$v_{ m max}$	Maximum speed of object o.
p_t	Posterior PDF over \mathcal{L} for time t .
p_1,\ldots,p_T	Probabilistic trajectory (p-trajectory).
C(t)	Possible positions for o at time t
$p_t(c)$	Posterior probability that o is at c at time t .
$p_t(L)$	Posterior probability that o is at L at time t .
$p_t^{\mathrm{fw}}(c)$	Contribution to $p_t(c)$ resulting from the for-
	ward phase (forward probability).
$p_t^{\mathrm{bw}}(c)$	Contribution to $p_t(c)$ resulting from the
, ,	backward phase (backward probability).
$h(R_t c)$	Probability that an object at cell c is detected
` '	by the readers in R_t (likelihood).
$p^{\text{mov}}(v \ge x)$	Probability that o 's speed is at least x .

г