NIM :(023)

Prodi : D4 Manaiemen Informatika

1. (a) Buatlah gambar kurva lingkaran dengan pusat lingkaran (0,0) dan jari-jari 6, perhitungan berdasarkan dari oktan kuadran pertama dimana x = 0 sampai y = r. Koordinat titik awal dimulai dari (x,r) = (0,6). Untuk mempermudah perhitungan gunakan $P_0 = 1 - r$ (sekali lagi, ini hanya untuk mempermudah perhitungan dalam contoh). dan diwarnai

Penyelesaian:

Perhitungan 1

$$x_0 = \mathbf{0}, y_0 = r = \mathbf{6}, k = 0$$

$$P_0 = 1 - r = 1 - 6 = -5$$

Loop ke-1

 $x_1 = x_0 + 1 = 0 + 1 = 1$ dan y_1 tetap **6**, titik selanjutnya : (1,6)

Dengan algoritma simetris 8 titik, maka diperoleh titik - titik berikut :

Oktan	X	Y	(X , Y)
1	X	у	(1, 6)
2	-X	У	(-1, 6)
3	X	-y	(1, -6)
4	-X	-y	(-1, -6)
5	у	X	(6, 1)
6	-y	X	(-6, 1)
7	у	-X	(6, -1)
8	-y	-X	(-6, -1)

Perhitungan 2

$$x_1 = 1$$
 $y_1 = r = 6$, $k = 1$

$$P_1 = P_0 + 2(x_1) + 1 = -5 + 2(1) + 1 = -2$$

Loop ke-2

$$x_2 = x_1 + 1 = 1 + 1 = 2$$
 dan y_1 tetap **6**, titik selanjutnya : (2,6)

Dengan algoritma simetris 8 titik, maka diperoleh titik – titik berikut :

Oktan	X	Y	(X , Y)
1	X	У	(2, 6)
2	-X	У	(-2, 6)
3	X	-у	(2, -6)
4	-X	-у	(-2, -6)
5	у	X	(6, 2)

NIM :(023)

Prodi : D4 Manaiemen Informatika

6	-у	X	(-6, 2)
7	у	-X	(6, -2)
8	-y	-X	(-6, -2)

Perhitungan 3

$$x_2 = 2, y_2 = r = 6, k = 2$$

$$P_2 = P_1 + 2(x_2) + 1 = -2 + 2(2) + 1 = 3$$

Loop ke-3

$$x_3 = x_2 + 1 = 2 + 1 = 3$$
 karena $P_2 > 3$ maka $y_3 = y_2 - 1 = 6 - 1 = 5$, titik selanjutnya : (3,5)

Dengan algoritma simetris 8 titik, maka diperoleh titik – titik berikut :

Oktan	X	Y	(X, Y)
1	X	У	(3, 5)
2	-X	У	(-3, 5)
3	X	-y	(3, -5)
4	-X	-y	(-3, -5)
5	У	X	(5, 3)
6	-y	X	(-5, 3)
7	У	-X	(5, -3)
8	-y	-X	(-5, -3)

Perhitungan 4

$$x_3 = 3, y_3 = r = 5, k = 3$$

$$P_3 = P_2 + 2(x_3 - y_3) + 1 = 3 + 2(3 - 5) + 1 = \mathbf{0}$$

Loop ke-4

$$x_4 = x_3 + 1 = 3 + 1 = \mathbf{4}$$
 karena $P_3 \ge 0$ maka $y_4 = y_3 - 1 = 5 - 1 = \mathbf{4}$

titik selanjutnya: (4,4)

Dengan algoritma simetris 8 titik, maka diperoleh titik – titik berikut :

Oktan	X	Y	(X, Y)
1	X	у	(4, 4)
2	-X	У	(-4, 4)
3	X	-y	(4, -4)
4	-X	-y	(-4, -4)
5	Y	X	(4, 4)
6	-y	X	(-4, 4)

NIM :(023)

Prodi : D4 Manaiemen Informatika

7	Y	-X	(4, -4)
8	-y	-X	(-4, -4)

Perhitungan 5

$$x_4 = 4, y_4 = r = 4, k = 4$$

$$P_4 = P_3 + 2(x_4 - y_4) + 1 = 0 + 2(4 - 4) + 1 = 1$$

Loop ke-5

$$x_5 = x_4 + 1 = 4 + 1 = \mathbf{5}$$
 karena $P_4 > 0$ maka $y_5 = y_4 - 1 = 5 - 1 = \mathbf{3}$ titik selanjutnya : (5,3)

k	P_k	(X_{k+1}, Y_{k+1})
-	-	(0, 6)
0	-5	(1, 6)
1	-2	(2, 6)
2	3	(3, 5)
3	0	(4, 4)
4	1	(5, 3)

Perhitungan dihentikan karena X > Y

NIM :(023)

Prodi : D4 Manaiemen Informatika

1. (b) Buatlah gambar kurva lingkaran dengan pusat lingkaran (2,5) dan jari-jari 6, perhitungan berdasarkan dari oktan kuadran pertama dimana x = 0 sampai y = r. Koordinat titik awal dimulai dari (x,r) = (0,6). Untuk mempermudah perhitungan gunakan $P_0 = 1 - r$ (sekali lagi, ini hanya untuk mempermudah perhitungan dalam contoh), dan diwarnai

Perhitungan 1

$$k = 0$$
, $x_0 = 0$, $y_0 = r = 6$, $P_0 = 1 - r = 1 - 6 = -5$

Karena $P_0 < 0$, maka :

$$x_1 = x_0 + 1 = 0 + 1 = 1$$
 dan $y_1 = y_0 = 6$, jadi titik selanjutnya: (1,6)

$$P_1 = P_0 + 2x_1 + 1 = -5 + 2(1) + 1 = -2$$

Dengan algoritma simetris 8 titik, maka diperoleh titik – titik berikut :

$$(1,6), (-1,6), (1,-6), (-1,-6), (6,1), (-6,1), (6,-1), (-6,-1)$$

Gerakan Setiap posisi pixel [x, y] pada garis lingkaran dengan titik pusat (2,5) diperoleh titik – titik berikut :

$$(3,11)$$
, $(-3,11)$, $(3,-11)$, $(-3,-11)$, $(3,11)$, $(-3,11)$, $(3,-11)$, $(-3,-11)$

Perhitungan 2

$$k = 1$$
, $x_1 = 1$, $y_1 = r = 6$, $P_1 = -2$

Karena $P_1 < 0$, maka :

$$x_2 = x_1 + 1 = 1 + 1 = 2 \text{ dan } y_2 = y_1 = 6, \text{ jadi titik selanjutnya} : (2,6)$$

$$P_2 = P_1 + 2x_2 + 1 = -2 + 2(2) + 1 = 3$$

Dengan algoritma simetris 8 titik, maka diperoleh titik – titik berikut :

$$(2,6), (-2,6), (2,-6), (-2,-6), (6,2), (-6,2), (6,-2), (-6,-2)$$

Gerakan Setiap posisi pixel [x, y] pada garis lingkaran dengan titik pusat (2,5) diperoleh titik – titik berikut :

$$(4,11), (-4,11), (4,-11), (-4,-11), (11,4), (-11,4), (11,-4), (-11,-4)$$

Perhitungan 3

$$k = 2$$
, $x_2 = 2$, $y_2 = r = 6$, $P_2 = 3$

Karena $P_2 > 0$, maka :

$$x_3 = x_2 + 1 = 2 + 1 = 3$$
 dan $y_3 = y_2 - 1 = 6 - 1 = 5$, jadi titik selanjutnya: (3,5)

$$P_3 = P_2 + 2x_3 + 1 - 2y_3 = 3 + 2(3) + 1 - 2(5) = \mathbf{0}$$

Dengan algoritma simetris 8 titik, maka diperoleh titik – titik berikut :0

Gerakan Setiap posisi pixel [x, y] pada garis lingkaran dengan titik pusat (2,5) diperoleh titik – titik berikut :

$$(2,5), (-2,5), (2,-5), (-2,-5), (2,5), (-2,5), (2,-5), (-2,-5)$$

NIM :(023)

Prodi : D4 Manaiemen Informatika

Perhitungan 4

$$k = 3$$
, $x_3 = 3$, $y_3 = r = 6$, $P_3 = 0$

Karena $P_3 \ge 0$, maka :

$$x_4 = x_3 + 1 = 3 + 1 = 4$$
 dan $y_4 = y_3 - 1 = 5 - 1 = 4$, jadi titik selanjutnya : (4,4)

$$P_4 = P_3 + 2x_4 + 1 - 2y_4 = 0 + 2(4) + 1 - 2(4) = 1$$

Dengan algoritma simetris 8 titik, maka diperoleh titik – titik berikut :

$$(4,5), (-4,5), (4,-5), (-4,-5), (5,4), (-5,4), (5,-4), (-5,-4)$$

Gerakan Setiap posisi pixel [x, y] pada garis lingkaran dengan titik pusat (2,5) diperoleh titik – titik berikut :

$$(6,10), (-6,10), (6,-10), (-6,-10), (10,6), (-10,6), (10,-6), (-10,-6)$$

Perhitungan 5

$$k = 4$$
, $x_4 = 4$, $y_4 = r = 6$, $P_4 = 0$

Karena $P_4 > 0$, maka :

$$x_5 = x_4 + 1 = 4 + 1 = 5$$
 dan $y_5 = y_4 - 1 = 4 - 1 = 3$, jadi titik selanjutnya: (5,3)

$$P_5 = P_4 + 2x_5 + 1 - 2y_5 = 1 + 2(5) + 1 - 2(3) = 6$$

Perhitungan dihentikan karena X > Y

NIM :(023)

Prodi : D4 Manaiemen Informatika

2. Diketahui : polygon = {(2,1), (3,6), (5,4), (8,8), (10,4), (12,2), (2,1)}, lakukan *Area Filling* menggunakan

a) algoritma Scan Line Polygon

Sisi – sisi pembentuk polygon

 $\max_{min, m} \min_{m} min, m$

$$AB = (2,1), (3,6)$$

$$BC = (3,6), (5,4)$$

BC
$$\bigcirc$$
 (6,3,1)

$$CD = (5,4), (8,8)$$

CD
$$\bigcirc$$
 (8,5,-3)

$$DE=(8,8),(10,4)$$

EF=(10,4),(12,2)

$$-2$$
 EF $(4,10, 1)$

FA=(12,2),(2,1)

FA **(**2,2,

NIM :(023)

Prodi : D4 Manaiemen Informatika

Tempatkan masukan ke dalam GET bedasarkan y_{min}

NIM :(023)

Prodi : D4 Manaiemen Informatika

Pewarnaan dilakukan diantara titik potong $(x_{kiri} - x_{kanan}) = (2-2)$ hasilnya adalah

Pewarnaan dilakukan diantara titik potong $(x_{kiri} - x_{kanan}) = (2 - 10)$ hasilnya adalah

NIM :(023)

Prodi : D4 Manaiemen Informatika

Pewarnaan dilakukan diantara titik potong $(x_{kiri} - x_{kanan}) = (2 - 9)$ hasilnya adalah

Pewarnaan dilakukan diantara titik potong $(x_{kiri} - x_{kanan}) = (3 - 8)$ hasilnya adalah

NIM :(023)

Prodi : D4 Manaiemen Informatika

Pewarnaan dilakukan diantara titik potong $(x_{kiri} - x_{kanan}) = (2 - 8)$ hasilnya adalah

Nama: Taufik Nurrahman (019)

Prodi : D4 Manajemen Informatika

Pewarnaan dilakukan diantara titik potong $(x_{kiri}-x_{kanan})=(3-8)$ hasilnya adalah

Pewarnaan dilakukan diantara titik potong $(x_{kiri} - x_{kanan}) = (7 - 7)$ hasilnya adalah

Nama: Taufik Nurrahman (019)

Prodi : D4 Manajemen Informatika

Pewarnaan dilakukan diantara titik potong $(x_{kiri} - x_{kanan}) = (6 - 8)$ hasilnya adalah

b) algoritma Boundary Fill.

titik-titik sebagai pembentuk polygon = $\{(2,1), (3,6), (5,4), (8,8), (10,4), (12,2), (2,1)\}$, Bila poligon tersebut digambar, diperoleh gambar berikut :

Misalkan titik awal pencarian adalah (8,4). Tandai titik (8,4) dengan warna tertentu, misalnya warna hijau. Lihat 4-tetangganya, yaitu titik (8,3), (7,4), (9,4), (8,5).

Ke-4 tetangga tersebut bukan garis batas poligon, sehingga 4-titik tersebut diwarnai hijau.

Nama : Taufik Nurrahman (019)

Prodi : D4 Manajemen Informatika

Titik yang telah diproses: (8,4)

Titik yang belum diproses: (8,3), (7,4), (9,4), (8,5)

Ambil titik (8,3).

Titik yang telah diproses: (8,3), (8,4)

Titik yang belum diproses : (7,4), (9,4), (8,5)

4-tetangga titik tersebut adalah (8,2), (7,3), (9,3), (8,4). Terlihat bahwa titik (8,2), (7,3), dan (9,3), bukan garis batas poligon, sehingga diwarnai dengan warna hijau. Titik (8,4) sudah diwarnai.

Titik yang telah diproses: (8,3), (8,4)

Titik yang belum diproses: (7,4), (9,4), (8,5), (8,2), (7,3), (9,3)

Ambil titik (7,4). 4-tetangga titik tersebut adalah (6,4), (7,5), (6,3), (8,4). Titik (6,4) dan (7,5) bukan garis batas poligon, sehingga diwarnai dengan warna hijau. (6,3) dan (8,4) Titik sudah diwarnai.

Nama : Taufik Nurrahman (019)

Prodi : D4 Manajemen Informatika

Proses diulang sehingga seluruh bagian dalam poligon diwarnai dengan warna Hijau

