PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-264515

(43)Date of publication of application: 11.10.1996

(51)Int.Cl.

H01L 21/3065 C23F 4/00

H05H 1/46

(21)Application number : 07-120869

(71)Applicant: TOKYO ELECTRON LTD

TOKYO ELECTRON YAMANASHI KK

(22)Date of filing:

20.04.1995

(72)Inventor: IMAFUKU KOSUKE

ENDOU SHIYOUSUKE TAWARA KAZUHIRO

TSUCHIYA HIROSHI
TOMOYASU MASAYUKI
NAITO YUKIO

NAGASEKI KAZUYA NONAKA TATSU HIROSE KEIZO FUKAZAWA YOSHIO

KOSHIISHI AKIRA KOBAYASHI ISAO

(30)Priority

Priority number : 06106044 Prior 06234093

Priority date : 20.04.1994 01.09.1994

06252962 20.09.1994 06252963 20.09.1994 07 29940 25.01.1995 Priority country: JP

JP JP

JP JP

(54) PLASMA TREATMENT DEVICE, PROCESSING DEVICE AND ETCHING DEVICE

(57)Abstract:

PURPOSE: To perform fine working on a subject to be treatment by preventing diffusion of plasma generated between counter electrodes and improving plasma density.

CONSTITUTION: High-frequency from a high-frequency power source 51 is applied on a top electrode 21, and the high-frequency from a high-frequency power source 52 is applied on a susceptor 5. In the vicinity of the circumference of the top electrode 21, an almost cylinder-shaped grounding electrode 27 is provided so as to surround the space between the electrodes. Each high-frequency power source is controlled by a phase controller 57, and high-frequencies with 180° different current phases are applied to the top electrode 21 and the susceptor 5, respectively.

http://www19.ipdl.inpit.go.jp/PA1/result/detail/main/wAAAKraOkfDA408264515P... 2007/04/10

LEGAL STATUS

[Date of request for examination] 18.06.1999
[Date of sending the examiner's decision of 16.01.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3210207
[Date of registration] 13.07.2001
[Number of appeal against examiner's decision 2001-002194

of rejection]

[Date of requesting appeal against examiner's 15.02.2001

decision of rejection]

[Date of extinction of right]

http://www19.ipdl.inpit.go.jp/PA1/result/detail/main/wAAAKraOkfDA408264515P... 2007/04/10

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-264515

(43)公開日 平成8年(1996)10月11日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI	技術表示箇所
H01L 21/306	5		H 0 1 L 21/302	С
C 2 3 F 4/00			C 2 3 F 4/00	Α
H 0 5 H 1/46		9216-2G	H 0 5 H 1/46	M
			H 0 1 L 21/302	F

審査請求 未請求 請求項の数11 FD (全 26 頁)

(21)出願番号	特願平7-120869	(71)出願人	000219967
			東京エレクトロン株式会社
(22)出願日	平成7年(1995)4月20日		東京都港区赤坂5丁目3番6号
		(71)出願人	000109565
(31)優先権主張番号	特願平6-106044		東京エレクトロン山梨株式会社
(32)優先日	平 6 (1994) 4 月20日		山梨県韮崎市藤井町北下条2381番地の1
(33)優先権主張国	日本(JP)	(72)発明者	今福 光祐
(31)優先権主張番号	特願平6-234093		山梨県韮崎市藤井町北下条2381番地の1
(32)優先日	平6 (1994) 9月1日		東京エレクトロン山梨株式会社内
(33)優先権主張国	日本(JP)	(72)発明者	遠藤 昇佐
(31)優先権主張番号	特願平6-252962		山梨県韮崎市藤井町北下条2381番地の1
(32)優先日	平6 (1994) 9月20日		東京エレクトロン山梨株式会社内
(33)優先権主張国	日本 (JP)	(74)代理人	弁理士 金本 哲男 (外1名)
			最終頁に続く
		L	

(54) 【発明の名称】 プラズマ処理装置、処理装置及びエッチング処理装置

(57)【要約】

【目的】 対向電極間に発生させるプラズマの拡散を防 止して、その密度を高くし、被処理体に対する高い微細 加工処理を可能にする。

【構成】 高周波電源51からの高周波を上部電極21 に印加し、高周波電源52の高周波をサセプタ5に印加 させる。上部電極21の周囲近傍に、電極間空間を囲む ようにして略筒状の接地電極27を設ける。位相コント ローラ57によって各高周波電源を制御して、上部電極 21とサセプタ5に、夫々電流位相が180°異なった 髙周波を印加させる。

(2)

特開平8-264515

【特許請求の範囲】

【請求項1】 処理室内に対向して設けられた第1の電極と第2の電極との間に、高周波電力によってプラズマを発生させ、当該処理室内の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ処理装置において、前記処理室内における前記電極間空間近傍周囲に、前記プラズマをこの電極間空間に閉じこめるためのプラズマ閉じこめ手段を設けたことを特徴とする、プラズマ処理装置。

1

【請求項2】 処理室内に対向して設けられた第1の電 10 極と第2の電極との間に、高周波電力によってプラズマを発生させ、当該処理室内の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ処理装置において、

前記第1の電極の外周近傍には略環状の第3の電極を設けると共に、前記第2の電極の外周近傍には略環状の第4の電極を設け、これら第3の電極と第4の電極とをそれぞれ接地させたことを特徴とする、プラズマ処理装置。

【請求項3】 処理室内に対向して設けられた第1の電 20極と第2の電極との間に、高周波電力によってプラズマを発生させ、当該処理室内の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ処理装置において、前記処理室内における前記第1、第2の各電極周囲近傍に、夫々複数の磁石を略環状に配置し、さらに第1の電極側に配された磁石と、第2の電極側に配された磁石とを対向させ、かつ対向する各磁石の磁極を相互に異なったものとしたことを特徴とする、プラズマ処理装置。

【請求項4】 処理室内に対向して設けられた第1の電 30 極と第2の電極との間に、高周波電力によってプラズマを発生させ、当該処理室内の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ処理装置において、処理室内における前記第1、第2の各電極周囲近傍に、夫々複数の磁石を略環状に配置し、さらに第1の電極側に配された磁石と、第2の電極側に配された磁石とを対向させ、かつ対向した各磁石の対向部側の磁極を相互に異なったものとすると共に、隣合う各磁石の対向部側の磁極も相互に異なったものとしたことを特徴とする、プラズマ処理装置。 40

【請求項5】 処理室内に対向して設けられた第1の電極と第2の電極との間に、高周波電力によってプラズマを発生させ、当該処理室内の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ処理装置において、前記第1の電極と第2の電極に印加する各高周波電力の周波数は同一とし、さらにこれら2つの高周波電力の電流位相差を、ほぼ180°に制御する手段を備えたことを特徴とする、プラズマ処理装置。

【請求項6】 減圧自在な処理室内の上下に対向して上 なくとも一部はBNを含む 部電極と下部電極とを有し、これら上下電極間にプラズ 50 る、エッチング処理装置。

マを発生させて下部電極上の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ 処理装置において、

前記上部電極には、相対的高周波電力を印加し、前記下部電極には相対的低周波電力を印加し、さらに前記上部電極と下部電極との間の間隔長を、10~40mmに設定したことを特徴とする、プラズマ処理装置。

【請求項7】 減圧自在な処理室と、この処理室の上部に位置する吐出部とを有し、前記吐出部から処理室内に処理ガスを吐出させ、前記処理室内の被処理体に対して、所定の処理を施す如く構成された処理装置において、

前記被処理体側に向けてテーパ状に開口したガス拡散ガイドを、前記吐出部周縁に設けたことを特徴とする、処理装置。

【請求項8】 減圧自在な処理室と、この処理室の上下に上部電極と下部電極とを対向して有し、上部電極側に設けた吐出部から処理室内に処理ガスを吐出させると共に、前記上部電極と下部電極間にプラズマを発生させ、前記下部電極上の被処理体に対して処理を施す如く構成されたプラズマ処理装置において、

前記被処理体側に向けてテーパ状に開口したガス拡散ガイドを、前記吐出部周縁に設けたことを特徴とする、プラズマ処理装置。

【請求項9】 減圧自在な処理室内に上部電極と下部電極とを対向して有し、処理室内にC、Fを含む処理ガスを導入すると共に、これら電極間にプラズマを発生させ、前記下部電極上の被処理体に対してエッチング処理を施す如く構成されたエッチング処理装置において、

0 前記上部電極の少なくとも一部はSiO₂からなることを特徴とする、エッチング処理装置。

【請求項10】 減圧自在な処理室内に上部電極と下部電極とを対向して有し、処理室内にC、Fを含む処理ガスを導入すると共に、これら電極間にプラズマを発生させ、前記下部電極上の被処理体に対してエッチング処理を施す如く構成されたエッチング処理装置において、

前記下部電極周囲に、被処理体を取り囲むようにフォーカスリングが設置され、このフォーカスリングの少なくとも一部はBNを含む材質からなることを特徴とする、

エッチング処理装置。

【請求項11】 減圧自在な処理室内に上部電極と下部電極とを対向して有し、処理室内にC、Fを含む処理ガスを導入すると共に、これら電極間にプラズマを発生させ、前記下部電極上の被処理体に対してエッチング処理を施す如く構成されたエッチング処理装置において、

前記上部電極の少なくとも一部はSIO2からなり、さらに前記下部電極周囲に、被処理体を取り囲むようにフォーカスリングが設置され、このフォーカスリングの少なくとも一部はBNを含む材質からなることを特徴とする。エッチング処理装置。

(3)

特開平8-264515

3

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、プラズマ処理装置、処理装置及びエッチング処理装置に関するものである。

[0002]

【従来の技術】例えばプラズマ処理装置についていえば、従来から例えば半導体製造プロセスにおいては、半導体ウエハ(以下、「ウエハ」という)などの表面処理を行うためにおいて多く使用されているが、その中でもとりわけ所謂平行平板型のプラズマ処理装置は、均一性 10に優れ、大口径ウエハの処理が可能である等の長所を有し、また装置構成も比較的簡易であるから、数多く使用されている。

【0003】前記従来の一般的な平行平板型のプラズマ処理装置は、処理室内の上下に電極が対向して平行に設けられており、被処理体であるウエハは、例えば下側の電極に載置され、例えばエッチング処理の場合には、この処理室内にエッチングガスを導入すると共に、高周波電力を前記電極に印加して電極間にプラズマを発生させ、エッチングガスの解離によって生じたエッチャント 20イオンによって、前記ウエハをエッチングするように構成されている。かかる場合のエッチングガスは、上部電極におけるウエハとの対向面に設けられた吐出部を構成するガス拡散板の多数の孔からウエハに向けてそのまま吐出されるようになっている。

【0004】ところでプラズマ処理による処理加工は、 半導体デバイスの高集積化に伴ってますます微細な加工 や、処理速度の向上、処理の均一性が要求されている。 そのため電極間に発生させるプラズマの密度も、より高 密度化することが必要となってきている。さらに例えば 30 エッチング処理によってウエハ上のシリコン酸化膜(S 102)にコンタクトホールを形成する場合には、極め て高い選択性が要求される。

【0005】以上の点に関し、例えば特開昭57-159026号「ドライエッチング方法」の公報には、新しいプラズマ発生方法としてマグネトロンを用いたマグネトロン方式のプラズマ処理装置が開示され、また特公昭58-12346「プラズマエッチング装置」の公報においては、通常の電極以外に上下電極中間にグリッド状等の共通アノード電極を採用した構成が開示されている。なお従来のこの種の装置における電極は、一般的に下部電極がアルミニウムで構成され、他方上部電極はカーボンによって構成されている。

[0006]

【発明が解決しようとする課題】しかしながら、前記したマグネトロン方式のプラズマ処理装置では、比較的高真空で高密度のプラズマを得ることができるが、高周波電界の周波数に比べて磁界の変化がかなり遅いので、磁界の変動に伴ってプラズマ状態が変化し、この変化がイオンのエネルギーや方向性に変動を与えるため、素子ダ

メージあるいは加工形状の劣化が起こるおそれがある。 また共通アノード構成では、イオンエネルギーと電流密 度を独立に制御できるメリットはあるが、グリッドを介 してプラズマが拡散してしまい、ウエハに入射するイオ

ン電流密度は低くなり、処理レートが低下してしまったり、あるいは処理が均一化されなくなるおそれがあった。そして高い微細加工に伴って、高周波、高真空度雰囲気となってくると、電極と処理容器内壁とのインピーダンスが低下し、プラズマがより拡散しやすい環境とな

ってくる。

【0007】 叙上のようにプラズマが処理室内で拡散してしまうと、プラズマ密度の低下だけではなく、処理室内壁にメタル・コンタミネーションなどが発生して被処理体であるウエハを汚染してしまう。かかる傾向は、今後益々要求される高微細加工に必要な高減圧度におけるプラズマ処理においてより一層顕著になる。

【0008】また前出従来のガス拡散板では、例えばその周囲に例えば石英のシールドリングや他の部材等があった場合に、エッチングレートの向上に支障をきたしたり、また処理ガスの濃度分布に微妙な影響を与えてエッチング処理の均一性を阻害するおそれがあった。

【0009】ところでエッチング処理ガスとして例えば CHFsを用いた場合、そのままではプラズマによる CHFsの解離が進んで過剰に生成されるフッ素ラジカル (F・)によって、シリコンの下地までがエッチングされ選択比が低下するおそれがあるので、従来は処理ガスに COを添加し、これによってシリコンの下地表面にカーボンリッチのデポ(一種の保護膜)を形成し、前記フッ素ラジカルによって、シリコンの下地が過剰にエッチングされるのを防止して、酸化膜の下地に対する選択比を高める方法を採らざるを得なかったのである。

【0010】本発明はかかる点に鑑みてなされたものであり、前記したようにより高微細なプラズマ処理加工を良好に実施するために、まずその第1の目的は、比較的簡素な平行平板形式の装置構成を採りつつ、プラズマを処理室内に拡散させず、電極間空間内に閉じこめて高いプラズマ密度を実現させると共に、処理室内壁にコンタミネーションを発生させないことにある。また本発明の第2の目的は、処理空間内のプラズマ密度を均一化して、処理にムラを生じさせないことにある。さらに本発明の第3の目的は高い減圧度においても安定したプラズマを維持することにある。そして本発明の第4の目的は、エッチング処理において処理ガスにCOを添加せずとも、例えばシリコンの下地表面にカーボンリッチのデポを形成して、選択比を向上させることができるエッチング処理装置を提供して、前記問題の解決を図ることにある。

[0011]

界の変動に伴ってプラズマ状態が変化し、この変化がイ 【課題を解決するための手段】前記目的を達成するた オンのエネルギーや方向性に変動を与えるため、素子ダ 50 め、請求項1によれば、処理室内に対向して設けられた

第1の電極と第2の電極間に、高周波電力によってプラズマを発生させ、当該処理室内の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ処理装置において、処理室内における前記電極間空間近傍周囲に、前記プラズマをこの電極間空間に閉じこめるためのプラズマ閉じこめ手段を設けたことを特徴とする、プラズマ処理装置が提供される。

【0012】この場合プラズマ閉じこめ手段自体は、電極間空間周囲を囲む絶縁体としたり、さらには複数の透孔を有する絶縁体としてもよい。またこの閉じこめ手段 10 は接地した第3の電極であってもよい。この第3の電極は、電極間空間を囲む略環状の形態を有し、その内周を前記電極間空間に向けて凸に湾曲させてもよく、もちろん複数の透孔を形成したものであってもよい。

【0013】請求項2によれば、処理室内に対向して設けられた第1の電極と第2の電極との間に、高周波電力によってプラズマを発生させ、当該処理室内の被処理体に対して、前記プラズマ努囲気の下で処理を施す如く構成されたプラズマ処理装置において、前記第1の電極の外周近傍には略環状の第3の電極を設けると共に、前記 20第2の電極の外周近傍には略環状の第4の電極を設け、これら第3の電極と第4の電極とをそれぞれ接地させたことを特徴とする、プラズマ処理装置が提供される。

【0014】この場合、前記第1の電極近傍に配置された第3の電極と、第2の電極近傍に配置された第4の電極とを対向させ、かつそれらの各外周縁部が重なるように(平面からみて2つの対向した電極の外周縁部が一致するように)配置すれば、なお好ましい。

【0015】請求項3によれば、高周波電力によってプラズマを発生させ、当該処理室内の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ処理装置において、処理室内における前記第1、第2の各電極周囲近傍に、夫々複数の磁石を略環状に配置し、さらに第1の電極側に配された磁石と、第2の電極側に配された磁石とを対向させ、かつ対向する各磁石の磁極を相互に異なったものとしたことを特徴とする、プラズマ処理装置が提供される。

【0016】また請求項4に記載のプラズマ処理装置は、前記した請求項3のプラズマ処理装置における磁石の配置に関し、第1の電極側に配された磁石と、第2の電極側に配された磁石との対向部分側だけではなく、隣接する磁石相互間の磁極をも相互に異なったものにしたことを特徴とするものである。

【0017】そして磁石を略環状に配置する場合、前記磁石によって発生する被処理体周縁部の磁場強度が、10Gauss以下となるようにすることが好ましい。また以上のように構成された各プラズマ処理装置において、プラズマを発生させる高周波電力を、第1の電極と第2の電極に対して、各々高周波電力を印加するように構成してもよい。

【0018】また請求項5によれば、処理室内に対向して設けられた第1の電極と第2の電極との間に、高周波電力によってプラズマを発生させ、当該処理室内の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ処理装置において、前記第1の電極と第2の電極に印加する各高周波電力の周波数は同一とし、さらにこれら2つの高周波電力の電流位相差を、

ほぼ180°に制御する手段を備えたことを特徴とする、プラズマ処理装置が提供される。

【0019】この場合、電流位相差をほぼ180°に制御する手段は、請求項15に記載したように、各電極に流れる高周波電流の位相を検出して位相信号を出力する検出手段と、これらの位相信号から位相差を検出して出力する手段とを備えた構成としてもよい。そして高周波電流の位相を検出して位相信号を出力する検出手段は、電流トランスであってもよく、また位相信号から位相差を検出して出力する手段は、ヘテロダイン方式に基づいて構成したものとしてもよい。

【0020】さらに以上各プラズマ処理装置において、前記処理室を内部に形成する処理容器を接地すると共に、第1、第2の各電極はこの処理容器とは絶縁し、1つの高周波電源からの高周波電力を前記第1の電極、又は第2の電極のいずれかに切り換え印加自在に構成し、さらに前記第1、第2の電極を接地自在に構成してもよく、この場合、さらに前記切り換えによって第1の電極又は第2の電極のいずれか一の電極を高周波電力の印加側電極とした際、他の電極は同時に接地される如く構成してもよい。

【0021】また以上の各プラズマ処理装置において、高周波電力の出力を周期的に変調するように構成してもよく、かかる場合の出力変調幅は、最小時の出力が、最大時の出力の $1/2\sim1/5$ の範囲となるように設定することがより好ましい結果が得られる。

【0022】請求項6によれば、減圧自在な処理室内の上下に対向して上部電極と下部電極とを有し、これら上下電極間にプラズマを発生させて下部電極上の被処理体に対して、前記プラズマ雰囲気の下で処理を施す如く構成されたプラズマ処理装置において、前記上部電極には、相対的高周波電力を印加し、前記下部電極には相対的低周波電力を印加し、さらに前記上部電極と下部電極との間の間隔(ギャップ)長を、10~40㎜に設定したことを特徴とする、プラズマ処理装置が提供される。

【0023】また前述の請求項1、2、3、4に記載のプラズマ処理装置においても、第1の電極が上部電極、第2の電極が下部電極を構成するようにし、前記上部電極には相対的高周波電力を印加し、前記下部電極には相対的低周波電力を印加し、さらに前記上部電極と下部電極との間の間隔(ギャップ)長を、10~40mに設定してあたい。

0 【0024】なお請求項6において相対的髙周波電力と

は、周波数が $10\sim40\,\mathrm{MHz}$ の電力をいい、また相対的低周波電力とは、周波数が $300\,\mathrm{kHz}\sim3\,\mathrm{MHz}$ のものをいう。また前記請求項 $6\,\mathrm{or}$ ラズマ処理装置における間隔(ギャップ)長は、 $15\sim30\,\mathrm{mm}$ に設定してもよく、発明者らの知見によれば、とりわけ $25\,\mathrm{mm}$ 前後に設定すれば、なお好ましい結果が得られる。

【0025】また上下双方に印加する場合においては、 上部電極の方を、下部電極よりも先に印加される如く構成したり、電力印加の停止に関しては、下部電極の方 を、上部電極よりも先に停止するように構成すればより 10 好ましい結果が得られる。

[0026] ところでこの種のプラズマ処理装置においては、通常マッチング装置と呼ばれる整合器、整合装置などの整合手段が設けられているが、かかる整合手段においては、インピーダンスと位相とを夫々独立して制御するようにすれば、好ましい結果が得られる。

[0027] そして以上の各プラズマ処理装置においては、処理室内圧が5mTorr~100mTorrに設定自在なように構成してもよい。

【0028】請求項7によれば、減圧自在な処理室と、この処理室の上部に位置する吐出部とを有し、前配吐出部から処理室内に処理ガスを吐出させ、前配処理室内の被処理体に対して、所定の処理を施す如く構成された処理装置において、前記被処理体側に向けてテーパ状に開口したガス拡散ガイドを、前記吐出部周縁に設けたことを特徴とする、処理装置が提供される。

【0029】この場合、前記ガス拡散ガイドにおけるテーパ角度、ガス拡散ガイドのテーパ面が水平方向とおりなす角度を、25~35°に設定すれば、なお好ましく、また前記被処理体の周辺部に、前記ガス拡散ガイド 30と逆テーパ形状を有するガス拡散排気ガイドを設けてもよい。なおこのガス拡散排気ガイドのテーパ部分は、前記ガス拡散ガイドのテーパ部分と必ずしも対向する角度を有していなくともよい。即ち必ずしもテーパ部分相互が平行になっていなくともよい。

【0030】請求項8によれば、減圧自在な処理室と、この処理室の上下に上部電極と下部電極とを対向して有し、上部電極側に設けた吐出部から処理室内に処理ガスを吐出させると共に、前記上部電極と下部電極間にプラズマを発生させ、前記下部電極上の被処理体に対して処理を施す如く構成されたプラズマ処理装置において、前記被処理体側に向けてテーパ状に開口したガス拡散ガイドを、前記吐出部周縁に設けたことを特徴とする、プラズマ処理装置が提供される。

[0031] この場合も、前記ガス拡散ガイドにおけるテーパ角度、ガス拡散ガイドのテーパ面が水平方向とおりなす角度を、25~35°に設定すればなお好ましく、また前記被処理体の周辺部に、前記ガス拡散ガイドと逆テーパ形状を有するガス拡散排気ガイドを設けてもよい。なおこのガス拡散排気ガイドのテーパ部分は、前

記ガス拡散ガイドのテーバ部分と必ずしも相互が平行に なっていなくともよい。

【0032】そして前記請求項8に記載のプラズマ処理 装置における下部電極側に、前記ガス拡散ガイドと逆テ ーパ形状を有するガス拡散排気ガイドを設けてもよく、 さらに前記ガス拡散ガイドは、前記上部電極を囲むよう に配置されかつこのガス拡散ガイドは導電性を有して接 地され、さらに前記下部電極側に前記ガス拡散ガイドと 対向する接地電極を設けるようにしてもよい。また前記 ガス拡散ガイドは、前記上部電極を囲むように配置さ れ、かつ前記ガス拡散ガイド及び前記ガス拡散排気ガイ ドはいずれも導電性を有して接地するように構成しても トい

【0033】請求項9によれば、減圧自在な処理室内に上部電極と下部電極とを対向して有し、処理室内にC(カーボン)、F(フッ素)を含む処理ガスを導入すると共にこれら電極間にプラズマを発生させ、前記下部電極上の被処理体に対してエッチング処理を施す如く構成されたエッチング処理装置において、前記上部電極の少なくとも一部はSiO2で構成したことを特徴とするエッチング処理装置が提供される。

【0034】請求項10によれば、減圧自在な処理室内に上部電極と下部電極とを対向して有し、処理室内にC、Fを含む処理ガスを導入すると共にこれら電極間にプラズマを発生させ、前記下部電極上の被処理体に対してエッチング処理を施す如く構成されたエッチング処理装置において、前記下部電極周囲に、被処理体を取り囲むようにフォーカスリングが設置され、このフォーカスリングの少なくとも一部はBN(ポロン・ナイトライド)を含む材質からなることを特徴とする、エッチング処理装置が提供される。

【0035】また請求項3によれば、減圧自在な処理室内に上部電極と下部電極とを対向して有し、処理室内にC、Fを含む処理ガスを導入すると共にこれら電極間にプラズマを発生させ、前記下部電極上の被処理体に対してエッチング処理を施す如く構成されたエッチング処理装置において、前記上部電極の少なくとも一部はSiO」からなり、さらに前記下部電極周囲に、被処理体を取り囲むようにフォーカスリングが設置され、このフォーカスリングはBN(ボロン・ナイトライド)を含む材質からなることを特徴とする、エッチング処理装置が提供される。

【0036】そしてこれらの各エッチング処理装置において使用される処理ガスは、例えば CF_4 、 C_2F_6 、 C_3F_8 、 C_4F_8 、 CHF_3 などによって代表されるフロロカーボン系ガスであってもよい。

[0037]

く、また前記被処理体の周辺部に、前記ガス拡散ガイド 【作用】請求項1のように処理室内における前記電極間 と逆テーパ形状を有するガス拡散排気ガイドを設けても 空間近傍周囲に、前記プラズマをこの電極間空間に閉じ よい。なおこのガス拡散排気ガイドのテーパ部分は、前 50 こめるためのプラズマ閉じこめ手段を設ければ、プラズ マが当該電極間空間に留まり、周囲に拡散することはない。従って、処理領域でのプラズマ密度が高くなり、他方処理室内壁にコンタミネーションが発生することもない。また前記プラズマ閉じこめ手段が、電極間空間周囲を囲む絶縁体の場合には、この絶縁体によってプラズマ中のイオンの拡散が直接規制され、前記プラズマ閉じこめ手段が接地した第3の電極の場合には、拡散しようとするイオンはこの第3の電極側に積極的に移動し、いずれにしても結果的にプラズマの拡散は防止される。

【0038】かかるプラズマ拡散の防止という目的のみ 10 を鑑みれば、プラズマ閉じこめ手段の形態は電極間空間を囲み得る例えば筒状のものが好ましいが、電極間空間内に導入したエッチングガスの排気を考慮すると、既述したように複数の透孔を設けることにより、排気を損なうことなくかつ同時にプラズマの拡散を防止することができる。

【0039】また前記のように接地した第3の電極を設けた場合には、積極的にイオンをいわば呼び込むようにしているので、電極間空間を囲む略環状の形態を有し、その内周を前記電極間空間に向けて凸に湾曲させた場合には、ブラズマ側に曝される表面積が大きくなり、大きいパワーによって発生したブラズマに対しても所期の目的を達成することが可能である。

【0040】請求項2に記載したように、略環状の形態を有する接地電極を第1の電極近傍と第2の電極近傍とに失々配置した場合には、それぞれ対向側にある第1の電極と第2の電極の各々からのイオンを各々呼び込んで、それによってプラズマの拡散を防止することが可能である。即ち第3の電極は第2の電極から、第4の電極は第1の電極から相応するイオンを各々呼び込んで、そ30れによってプラズマの拡散を防止することができる。この場合接地されている2つの電極、即ち第3の電極と第4の電極の外周縁部が重なるように配置すれば、より一層プラズマの拡散を防止することが可能となる。

【0041】請求項3によれば、処理室内における前記第1、第2の各電極周囲近傍に、夫々複数の磁石を略環状に配置し、さらに第1の電極側に配された磁石と、第2の電極側に配された磁石とを対向させ、かつ対向する各磁石の磁極を相互に異なったものとしているので、第1、第2の各電極周間の空間周辺部に、局所的な磁場が形成され、これによってプラズマ中の荷電粒子をトラップさせて、プラズマの拡散を防止することが可能になる。

【0042】また請求項4では、前記した磁石の配置に関し、第1の電極側に配された磁石と、第2の電極側に配された磁石との対向部分側だけではなく、隣接する磁石相互間の磁極をも相互に異なったものにしてあるので、磁場による荷電粒子のトラップ体制が密になり、前記請求項3の場合よりもさらに高いプラズマ拡散防止効果が得られる。

【0043】以上のように夫々配置された磁石によって発生する被処理体周縁部の磁場強度を、10Gauss 以下となるように設定した場合には、ウエハなどの被処 理体のプラズマ処理領域におけるプラズマに影響を与え

10

ることなく、所期のプラズマ処理を施すことが可能である。 【0044】そして以上のように構成された各プラズマ

処理装置において第1の電極と第2の電極に対して、各 々高周波電力を印加するように構成すれば、各高周波電 力の電圧を夫々独立可変とすることが容易である。

【0045】請求項5によれば、第1の電極と第2の電極に印加する各高周波電力の電流位相差を、ほぼ180。に制御できるので、処理室内の減圧度や処理室内に導入する処理ガスの種類とは無関係に、効率よく高周波電力をプラズマに投入することができる。従って被処理体近傍のプラズマ密度が増大し、被処理体に入射するイオンの電流密度が増加する。

【0046】この場合、既述したように、電流位相差をほぼ180°に制御する手段を各電極に流れる高周波電流の位相を検出して位相信号を出力する検出手段と、これらの位相信号から位相差を検出して出力する手段とを備えた構成とすれば、かかる制御が円滑に行える。そして高周波電流の位相を検出して位相信号を出力する検出手段を、電流トランスとすれば、装置構成が簡素化される。なおこの場合、伝送線路あるいは整合器での位相のずれの影響を抑えて、正確な検出するという観点からみれば、前記電流トランスは電極になるべく近い所に配置することが好ましい。

【0047】ところで既述したように、処理室を内部に 形成する処理容器を接地すると共に、第1、第2の各電 極はこの処理容器とは絶縁し、1つの高周波電源からの 髙周波電力を前記第1の電極、又は第2の電極のいずれ かに切り換え印加自在に構成し、さらに前配第1、第2 の電極を接地自在に構成すれば、第1の電極に対して印 加する一方で第2の電極を接地するモードと、その逆に 第1の電極の方を接地して第2の電極に高周波電力を印 加するモードとの、2つのプラズマ処理モードが得られ る。従って、1つの処理室において、2つの異なったプ ラズマ処理モードが得られ、例えば第1の電極上に被処 理体を載置させてこの被処理体に対してエッチング処理 を施す場合、前者のモードではDCパイアスを大きくし たエッチング処理を施すことができ、後者のモードでは DCパイアスの小さいエッチング処理を施すことが可能 となる。それゆえ同一処理室内で異なった処理を連続し て行ったり、プロセスのアプリケーションの拡大を図っ たりすることができる。

[0048] この場合、高周波電力の印加側電極を切り 換えた際に、同時に他の電極が切り換え接地されるの で、例えば1つのリレー系の切り換えによって、前記し 50 た2つのモードの切り換えが実施できる。

【0049】また以上の各プラズマ処理装置において高周波電力の出力を周期的に変調するように構成すれば、プラズマ密度の高低を繰り返すことが可能であり、プラズマ中のガス成分の解離コントロールを実施することができ、例えばコンタクトホールのエッチング処理においては、高出力時にエッチングを進行させ、他方低出力時にはホール内のエッチング反応生成物を排出させるプロセスを採ることが可能になる。従ってエッチングレートを高くするとともに、ホール底部とホール入口との大きさの差を小さく抑える垂直異方性にすぐれたエッチングを実施することができる。かかる出力変調において、最小時の出力が、最大時の出力の1/2~1/5の範囲となるように設定すれば、プラズマ状態を維持しつつかつそのようにエッチング反応生成物の排出にとって好ましい状態とすることができる。

【0050】請求項6のように、上部電極と下部電極との間のギャップ長を、10~40mに設定して上下対向の電極に夫々相対的高周波電力、相対的低周波電力を印加してプラズマを発生させれば、後述の実施例において詳述するように、エッチングレート、均一性、並びにプラズマの安定度に関しバランスのとれた処理を実行することが可能である。また前記ギャップ長を15~30mm、とりわけ25mm前後に設定すれば、なお好ましい結果が得られる。

【0051】上部電極と下部電極との双方に印加する場合には、上部電極の方を先に印加し、下部電極の方をそれより遅れて印加させてプラズマを発生させるようにすれば、下部電極上に載置される被処理体に対して過大な電圧がかからず、プラズマを発生させやすく、かつ当該被処理体に対してダメージを与える危険が少ない。またプラズマを消滅させる際にも、先に下部電極側の印加電力を停止させ、次いで遅れて上部電極側の印加電力を停止させるようにすれば、デポが進行せず被処理体に対するダメージを防止することが可能になる。要するにこのような印加、停止順序を採れば、被処理体が載置される下部電極だけに電圧を印加する状態を避けているため、被処理体に対して過大電圧からの保護が図られるのである。なお遅らせるタイミングは、例えば1秒以下に設定すれば所期の効果を得ることができる。

【0052】既述したように、インピーダンスと位相と 40 を夫々独立して制御するように整合手段を構成すれば、外乱に対して影響をうけずらく、かつ負荷変動に対しても整合をとりやすいものとなる。

【0053】そして処理室内圧を $5mTorr\sim100$ mTorrに設定自在に構成することにより、高い真空度下での高微細加工が可能になる。

【0054】請求項7に記載の処理装置によれば、被処 カーボン系ガスを用いれば、基本的に前記請求項 $9\sim1$ 理体側に向けてテーパ状に開口したガス拡散ガイドが、 1 の場合と同様な作用効果が得られ、フッ素ラジカルに 処理室内に処理ガスを吐出させる前記吐出部周縁に設け よる過剰なエッチングを防止して、選択比の高いエッチ てあるので、ガス流通コンダクタンスが低減し、処理ガ 50 ング処理を実施することができる。そして処理室内圧を

12

スがより良好に被処理体に向けて吐出される。従って、それに伴ってより好ましい処理ガスの雰囲気の下で被処理体に対して処理が実施できる。このガス拡散ガイドにおけるテーバ角度は、25~35°に設定すればさらに好ましい結果が得られ、またさらにガス拡散排気ガイドを設けた場合には、前記ガス拡散ガイドと相俟って、一層ガスの流通が円滑となり、好ましい処理結果が得られる。

【0055】請求項8に記載のプラズマ処理装置によれば、被処理体に対してプラズマ雰囲気の下で処理を施す場合に、前記請求項7の作用が得られる。そして前記ガス拡散ガイドが接地電極を構成し、一方下部電極側にこのガス拡散ガイドと対向する接地電極が設けたようにすれば、電極間に発生するプラズマは、これら接地電極間に閉じこめられ、その結果プラズマ密度が向上する。また前記ガス拡散ガイドを前記上部電極を囲むように配置し、かつ前記ガス拡散ガイド及び前記ガス拡散排気ガイドをいずれも導電性を有して接地するように構成すれば、下部電極側のガス拡散排気ガイドが接地電極を構成しているので、プラズマが閉じこめられるだけでなく、処理ガスの流れがより円滑になる。

【0056】請求項9のエッチング処理装置の場合、上 部電極の少なくとも一部が、SiO₂で構成されている ので、C、Fを含む処理ガスを導入してプラズマによっ て解離させた場合、

 $SiO_2 + Cx \cdot Fy \rightarrow XSiF_4 + YCO$

等の反応が起こり、処理室内にCOを添加したのと同じ結果になる。従って、例えばシリコンの下地表面にカーボンリッチのデポを形成することが可能になり、シリコン下地に対する選択比が向上する。

【0057】ところで請求項10におけるフォーカスリング自体は公知であり、ラジカル成分等のイオンを被処理体に対して効率よく入射させる機能を有しているが、請求項10では、このフォーカスリングの少なくとも一部が、BN(ボロン・ナイトライド)を含む材質からなっている。従って、C、Fを含む処理ガスを導入してブラズマによって解離させた場合、過剰なフッ素ラジカル(F・)はBと結合し

 $, 2BN+6F \rightarrow 2BF_3\uparrow+N_2\uparrow$

40 となって、排気されるので、シリコン下地を過剰にエッチングするフッ素ラジカルが減少し、その結果下地に対する選択比が向上する。

【0058】そして請求項11によれば、前記請求項 9、1002つの作用が行われるので、さらに選択比が 向上する。なお処理ガスとしてCF4、C2F6、C3F6、C4F8、C4F8、C4F8などによって代表されるフロロカーボン系ガスを用いれば、基本的に前記請求項 $9\sim1$ 10場合と同様な作用効果が得られ、フッ素ラジカルによる過剰なエッチングを防止して、選択比の高いエッチング処理を実施することができる。そして処理室内圧を

5mTorr~100mTorrに設定することにより、高い真空度下での高微細加工が可能になる。 [0059]

【実施例】以下、本発明の実施例を添付図面に基づき説明すると、図1は第1実施例のエッチング処理装置1の断面を模式的に示しており、このエッチング処理装置1は、電極板が平行に対向した所謂平行平板型エッチング装置として構成されている。

【0060】このエッチング処理装置1は、例えば表面が酸化アルマイト処理されたアルミニウムなどからなる円筒形状に成形された処理容器2を有しており、この処理容器2は接地されている。前記処理容器2内に形成される処理室内の底部にはセラミックなどの絶縁板3を介して、被処理体、例えば半導体ウエハ(以下、「ウエハ」という)Wを載置するための略円柱状のサセプタ支持台4が収容され、さらにこのサセプタ支持台4の上部には、下部電極を構成するサセプタ5が設けられている。

【0061】前記サセプタ支持台4の内部には、冷媒室6が設けられており、この冷媒室6には例えばパーフルオロポリエーテルなどの温度調節用の冷媒が冷媒導入管7を介して導入可能であり、導入された冷媒はこの冷媒室6内を循環し、その間生ずる冷熱は冷媒室6から前記サセプタ5を介して前記ウエハWに対して伝熱され、このウエハWの処理面を所望する温度まで冷却することが可能である。

【0062】前記サセプタ5は、その上面中央部が凸状の円板状に成形され、その上にウエハWと略同形の静電チャック11が設けられている。この静電チャック11は、2枚の高分子ポリイミド・フィルムによって導電層12が挟持された構成を有しており、この導電層12に対して、処理容器2外部に設置されている直流高圧電源13から、例えば1.5kVの直流高電圧を印加することによって、この静電チャック11上面に載置されたウエハWは、クーロンカよってその位置で吸着保持されるようになっている。

【0063】前記サセプタ5の上端周縁部には、静電チャック11上に戦置されたウエハWを囲むように、環状のフォーカスリング15が配置されている。このフォーカスリング15は反応性イオンを引き寄せない絶縁性の 40材質からなり、プラズマによって発生した反応性イオンを、その内側のウエハWにだけ効果的に入射せしめるように構成されている。

【0064】前記サセプタ5の上方には、このサセプタ5と平行に対向して、これより約15~20mm程度離間させた位置に、上部電極21が、絶縁材22を介して、処理容器2の上部に支持されている。この上部電極21は、前記サセプタ5との対向面に、多数の拡散孔23を有する、例えばSiC又はアモルファスカーボンからなる電極板24と、この電極板24を支持する導電性50

材質、例えば表面が酸化アルマイト処理されたアルミニ ウムからなる、電極支持体25とによって構成されてい

14

【0065】そしてこの電極支持体25の外周には、環状の絶縁材26を介して、図2に示したような第3の電極となる接地電極27が設けられている。この接地電極27は、図1に示される如く、その下端部が前出フォーカスリング15の上端部との間にウエハWが通過し得る空隙を保持して設置され、さらにその内周は、図1、図2に示したように、内側に突出した形態を有している。そしてこの接地電極27は、前記サセプタ5と電極板24との間の空間領域を、側部から囲むようにして配されている。

【0066】前記上部電極21における支持板25の中央にはガス導入口28が設けられ、さらにこのガス導入口28には、ガス導入管29が接続されている。このガス導入管29には、ガス供給管30が接続されており、さらにこのガス供給管30は3つに分岐されて、各々パルブ31、32、33、並びにマスフローコントローラ34、35、36を介して、それぞれ対応する処理ガス供給源37、38、39に通じている。本実施例においては、処理ガス供給源37からはCF4ガス、処理ガス供給源38からはC1ガス、処理ガス供給源39からは不活性のパージガスである N_2 ガスが供給されるように設定されている。

【0067】前記処理容器2の下部には排気管41が接続されており、この処理容器2とゲートバルブ42を介して隣接しているロードロック室43の排気管44共々、ターボ分子ポンプなどの真空引き手段45に通じており、所定の減圧雰囲気まで真空引きできるように構成されている。そして前記ロードロック室43内に設けられた搬送アームなどの搬送手段46によって、被処理体であるウエハWは、前記処理容器2とこのロードロック室43との間で搬送されるように構成されている。

【0068】また前記エッチング処理装置1の処理容器2内にプラズマを発生させるための高周波電力は、例えば13.56MHzの高周波を発振させる2台の高周波電源51、52によって供給される。即ち高周波電源51は、整合器53を介して、上部電極21に高周波電力を印加するように構成され、また高周波電力を印加するように構成されている。なおそのように上部電極21、サセプタ5へは、夫々独立した高周波電源によって高周波電力が印加されるようになっているので、これら上部電極21、サセプタ5に印加する電圧は、夫々独立して可変である。

【0069】また前記整合器53と上部電極21との間、並びに前記整合器54とサセプタ5との間には、各々印加される高周波電力の電流の位相信号を検出する位相検出手段55、56が夫々設けられている。そしてこ

れら各位相検出手段55、56によって検出された位相信号は、夫々位相コントローラ57へと入力され、この位相コントローラ57は、この検出された位相信号に基づいて前出各高周波電源51、52に対し、各々位相が180°異なった高周波を発振させるように、夫々制御するように構成されている。

【0070】本実施例にかかるエッチング処理装置1は以上のように構成されており、例えば、このエッチング処理装置1を用いて、シリコン基板を有するウエハW上のシリコン酸化膜(SiO₂)のエッチングを実施する場合について説明すると、まず被処理体であるウエハWは、ゲートバルブ42が開放された後、搬送手段46によってロードロック室43から処理容器2内へと搬入され、静電チャック11上に載置される。そして高圧直流電源13の印加によって前記ウエハWは、この静電チャック11上に吸着保持される。その後搬送手段46がロードロック室43内へ後退したのち、処理容器2内は排気手段45によって真空引きされていく。

【0071】他方パルプ31が開放されて、マスフローコントローラ34によってその流量が調整されつつ、処 20 理ガス供給源37からCF4ガスが、ガス供給管30、ガス導入管29、ガス導入口28を通じて上部電極21 へと導入され、さらに電極板24の拡散孔23を通じて、図1中の矢印に示される如く、前記ウエハWに対して均一に吐出される。

【0072】そして処理容器2内の圧力は例えば1Paに設定、維持された後、高周波電源51、52が作動して、その電流位相が相互に180°異なった高周波電力が夫々上部電極21と、サセプタ5に印加され、これら上部電極21とサセプタ5との間にプラズマが発生し、前記処理容器2内に導入されたCF4ガスを解離させて生じたラジカル成分によって、ウエハWに対して所定のエッチングが施される。

【0073】かかるエッチング処理におけるプラズマは、既述の如く上部電極21とサセプタ5との間に発生するが、前記したように、接地電極27は、前記上部電極21とサセプタ5と間の空間領域を、側部から囲むようにして配されているので、当該空間領域から拡散しようとするイオンは、この接地電極によって引きつけられ、当該空間領域外部、例えば処理容器2内壁へ拡散することはない。従って、前記空間領域、即ちウエハWに対する処理領域内のプラズマ密度は高く維持でき、これによってウエハWに対して高微細加工が可能となっている。

【0074】しかもイオンが処理容器2内壁へと拡散することが抑制されいるので、処理中に、この処理容器2内壁がエッチングされたり、反応生成物が付着するなどして、当該内壁にコンタミネーションが発生することはなく、処理容器2内を汚染することはない。したがって、この点から歩留まりが低下することはない。

16

【0075】そしてプラズマを発生させるために上部電極21とサセプタ5とに夫々印加された高周波電力は、その電流位相が180°異なっているため、処理ガスの種類、滅圧度とは無関係に高周波電力をプラズマに投入することができ、ウエハWに入射するイオン電流密度を増大させることができる。

【0076】すなわち、対向する電極間にかかる高周波 電力の周波数の位相差を変化させた場合、プラズマの状 態は変化する (例えば、特開平2-224239)。例 えば2つの高周波電力の電圧位相がほぼ同相である場 合、プラズマは広がり、密度も低くなって処理速度が低 下する。他方、電圧位相差が180°ずれている場合に は、プラズマ密度は高くなる。しかし、例えば周波数が 380kHzと13.56MHzの場合では、プラズマ 密度が最も高くなる電圧位相差は、異なっている。これ はプラズマのインピーダンスが変化するためと考えられ る。同様に、処理ガスの組成を変化させると、ガスの電 離断面積の特性、あるいは解離の特性差によっても、プ ラズマのインピーダンスが変化し、最適の電圧位相差は 変化してしまう。従って、従来のように電圧位相を制御 して高周波電力を印加する方式では、そのようにプラズ マインピーダンスの変化により、一方の電極から流れ込 んだ電流が、位相差により対向電極に流れ込む電圧関係 になっていない場合、対向電極以外の、例えば処理容器 内壁へと拡散してしまうため、最もプラズマ密度の高い 状態を実現するのは難しかったのである。

【0077】この点、前記のように電流位相を180° 異なったものにして制御することによりプラズマインピーダンスの変化と関係なく、一方の電極、例えば上部電極21から他方の対向電極であるサセプタ5に流れ込もうとしたときには、サセプタ5の位相はその電流を流すことができる関係にあるため、電流は効率よく流れ込み、その結果プラズマはこれら上部電極21とサセプタ5間に閉じこめられてその密度が高くなるものである。

【0078】しかも本実施例では、既述の如く、接地電極27によってもプラズマが閉じこめられる構成であるから、両者が相俟って極めて高いプラズマ密度を実現させることができ、高い微細加工を可能としている。

[0079] なお前記実施例で使用した接地電極27は、内側に凸に成形された形態を有していたが、これに代えて例えば図3に示したように、単なる筒状の接地電極61として、これを絶縁材62を介して、電極支持体25の外周に配置し、接地されている処理容器2とこの接地電極61とを固着する構成としてもよい。

【0080】また対向電極間空間をより閉鎖された空間とするため、さらに接地電極の高さを大きくした筒状の形態としてもよい。なおかかる場合には、当該対向電極間空間内に導入される処理ガスの排気を十分に確保するため、図4に示したように、この接地電極63の周囲 に、複数の透孔64を形成しておくことが好ましい。

【0081】さらにプラズマを対向電極間に閉じこめて 周囲に拡散させない接地電極の他の例としては、例えば 図5に示したような接地電極65、66としてもよい。この接地電極65、66は、同図からわかるように、夫 々略リング形状をなしており、接地電極65は、上部電極21の外周に配置させる(この場合、所謂排気リングの上部にかかる構成を持たせてもよい)。これによって 上部電極21から拡散しようとする荷電粒子は、接地電極66へと寄せられ、サセブタ5から拡散しようとする 10 荷電粒子は接地電極65へと寄せられて、その結果、上部電極21とサセプタ5間に発生したプラズマは、処理容器2の内壁へと拡散することはないものである。

【0082】また図6に示した接地電極67、68は、 前記電極の形態を代えてリング状でかつ内側面が斜面を 形成するように断面を略三角形としたものである。かか る構成の接地電極67、68によれば、例えば上側の接 地電極67は、その内側の斜面部がサセプタ5の方向に 向けられているので、前記図5に示した接地電極65よ りも、より効率よく荷電粒子を引き寄せることができ、 さらにプラズマ拡散防止効果が向上している。

【0083】なお前記図5、図6に示した接地電極は、いずれも上下対向構成としていたが、必ずしもそのように対向する構成としなくても、プラズマ拡散防止効果は得られるものである。

【0084】前記した例では、プラズマ拡散の防止を図る手段として、上部電極21、サセプタ5以外の第3の電極を設けた構成を採ったが、これに代えて例えば図7に示したように、磁石を上部電極21とサセプタ5の近傍周囲に対向配置させてもよい。即ち上部電極21には、電極支持体25の下端部外周に、環状の絶縁部材71を設け、この絶縁部材71の内部に図8に示した略円柱状の永久磁石72を、環状に等間隔で設ける。本実施例では、図7に示したように、下面側、即ちサセプタ5側に全ての永久磁石72のN極が位置するようにし、かつ環状に配置するにあたっての間隔は、図9に示したように、隣合う他の永久磁石とのおりなす中心角 θ が10。となるように、設定してある。

【0085】他方図7に示したように、サセプタ5の上端部外周にも、環状の絶縁部材73を設け、この絶縁部材73の内部に、前記永久磁石72と同形、同一磁力を有する永久磁石74を、前記各永久磁石72と対向するように、同一個数、同一間隔で配設する。そしてこのサセプタ5側に配設されるこれら永久磁石74の磁極は、前記永久磁石72の対向部分の磁極とは異なった磁極、即ちS極を上部電極21側に位置するようにしてある。従って、各永久磁石72、74の磁極の関係は、図10に示したようになっている。

【0086】かかるようにして磁石を配置すれば、上部 電力時にはプラズマ密度を低くして、図15に示したホ 電極21周縁部と、サセプタ5周辺部との間に局所的な 50 ール82内に発生するエッチング反応生成物の排出を促

磁場が発生し、この磁場によって上部電極5とサセプタ5間空間内の荷電粒子が、外部に飛び出すことをトラップすることができ、プラズマを当該電極間空間内に閉じこめることができる。なお磁場の強さは、余りに過大になるとプラズマ自体に偏りを生じさせてプラズマ処理自体に影響を与えるおそれがあるので、被処理体であるウエハW周辺部の磁場強度が10Gauss以下になるように設定することが望ましい。

18

【0087】また前記した局所的な磁場の形態を、さらに好ましいものとするために、図11に示したように、例えば永久磁石72の上端部に、磁性体75を設けて永久磁石72と併用するようにしてもよい。

【0088】さらに図7、10に示した例は、上部電極21側に配設された永久磁石72と、サセプタ5側に配設された永久磁石74とは、上下間では、相互に異なった磁極構成としたものの、隣合う磁石相互間では、同一の磁極構成となっていたが、これに代えて、図12に示したように、隣合う磁石相互間でも、磁極が異なったように配置すれば、なお好ましい作用効果が得られる。即ち、図12に示したように配置することにより、上下対向部分にのみならず、隣合う対向部分にも磁束が生じ、これによって荷電粒子のトラップ体制がより密になる。従って、図10,の場合よりもさらにプラズマ閉じこめ作用が向上する。

[0089]ところで、既述したように今日では半導体デバイスの高集積化に伴って、その製造プロセスにおいても、より微細な加工が要求されている。例えばエッチング処理によってコンタクトホールを形成する場合にも、ホール径が0.3 μm、ホール深さが1~2 μmとなるような微細加工が必要とされている。しかしながら従来の平行平板型プラズマ装置においては、常に一定出力の高周波電力を印加するようにしているため、そのようにホール径が小さくなると、図13に示したように、エッチング反応生成物 Zが排出されづらくなり、ホール81底部や底部近傍に堆積して、エッチングガスとの入れ替えがスムーズに行われなくなり、その結果図13に示したように、ホール81の形状が逆円錐台形となったり、エッチングレートが低下して、高集積化に対応した微細加工ができないという問題が生じていた。

【0090】かかる問題に対処するために、例えば前記プラズマ処理装置1における高周波電源51、52の出力を制御して、例えば図14のグラフに示したように、10msの周期毎に、出力の大小を繰り返すようにして上部電極21、サセプタ5に印加するようにしてもよい。図14では、最大時の出力が1000w、最小時の出力がその1/5の200wとなるように制御している。このように制御することにより、大きい電力時にはプラズマ密度を高くしてエッチングを進行させ、小さい電力時にはプラズマ密度を低くして、図15に示したホール82内に発生するエッチング反応生成物の排出を促

進させて、エッチングガスとの入れ替えを円滑にし、同 図に示したようにホール82の入口と底部の径が同一の ホールを形成させることができる。なお前記したパワー の最大、最小、並びにその周期は、目的とするホールの 大きさ、材質、処理ガス等の種類に応じて、適宜選択す ればよい。

【0091】 叙上のエッチング処理装置1は、プラズマ を発生させる高周波電源を2つ使用して、上部電極21 とサセプタ5に髙周波を印加するように構成していた が、切換によっていずれか一方の電極を常に接地し、他 10 の電極にのみ印加することが自在なように構成しておけ ば、1つの装置構成によって2つの異なったモードのエ ッチング処理を実施することが可能になる。

【0092】また1つの高周波電源を用いてかかる切換 を行うことも可能である。図16に示した例は、1つの 高周波電源91を用いてそのような2つの異なったモー ドのエッチング処理を実施可能なエッチング処理装置9 2を示しており、減圧自在な接地された処理容器93内 には、上下に対向して、上部電極94と下部電極95が 設けられている。そしてこの処理容器93の上部には、 第1真空リレー96がシールドボックス97内に納めら、 れており、上部電極94の前記高周波電源91又は処理 容器93との接続切換を担っている。またマッチングポ ックス98内には、第2真空リレー99が納められてお り、下部電極95の高周波電源91又は接地側への切換 と、前記第1真空リレー96に通ずる髙周波電源91の 経路のON-OFFの切換を担っている。

【0093】かかる構成を有するエッチング処理装置9 2によれば、図16の状態ではDCパイアスの大きいR IE (リアクティブイオンエッチング) モードとなって 30 おり、上部電極94が接地され、下部電極95に高周波 電源91からの高周波電力が印加されて、電極間に存在 するウエハなどの被処理体に対して、高真空領域での微 細加工、及び垂直形状に制御性の高いエッチング処理を 実施することが可能である。

【0094】そして前記第1真空リレー96、第2真空 リレー99を夫々切り替えて図17のDCパイアスの小 さいPE(プラズマエッチング)モードにすれば、下部 電極95が接地され、上部電極94に高周波電源91か らの高周波電力が印加されて、電極間に存在するウエハ などの被処理体に対して損傷が少なく、寸法制御の高い エッチング処理を実施することができる。従って、第1 真空リレー96、第2真空リレー99の切換だけで、同 一の被処理体に対して2つの異なったエッチング処理 を、同一処理室内で連続して実施することが可能であ り、プロセスのアプリケーションの拡大が図れる。

【0095】さらに他の実施例について説明すると、図 18は、上下対向電極に周波数の異なった髙周波電力を 印加する構成を有する第2実施例のエッチング処理装置 101の断面を模式的に示しており、このエッチング処 50 ずる排気管128が接続されており、この処理室102

20

理装置101における処理室102は、気密に閉塞自在 な酸化アルマイト処理されたアルミニウムなどからなる 円筒形状に成形された処理容器103内に形成され、当 該処理容器103自体は接地されている。前記処理容器 103内に形成される処理室102内の底部にはセラミ ックなどの絶縁板104を介して、被処理体、例えば半 導体ウエハ (以下、「ウエハ」という) Wを載置するた めの略円柱状のサセプタ支持台105が収容され、さら にこのサセプタ支持台105の上部には、下部電極を構 成するサセプタ106が設けられている。

【0096】前記サセプタ支持台105の内部には、冷 媒室107が設けられており、この冷媒室107には、 既述のエッチング処理装置1と同様、温度調節用の冷媒 が冷媒導入管を介して導入可能であり、導入された冷媒 はこの冷媒室107内を循環し、その間生ずる冷熱は冷 媒室107から前記サセプタ106を介して前記ウエハ Wに対して伝熱され、このウエハWの処理面を所望する 温度まで冷却することが可能である。またさらに前記サ セプタ106と冷媒室107との間には、例えばセラミ ックヒータなどの加熱手段108が設けられており、前 記冷媒室107の冷熱とこの加熱手段108とにより、 ウエハWは所定の温度に設定、維持することが可能であ

【0097】また前記サセプタ106には、静電チャッ ク111が設けら、処理容器103外部に設置されてい る直流高圧電源112からの直流高電圧の印加によっ て、ウエハWは、静電チャック1111上面に吸着保持さ れる。また前記サセプタ106の上端周縁部には、絶縁 材113を介して環状のフォーカスリング113が配置 され、さらにこのフォーカスリング113の外周には、 さらに環状の接地電極115が設けられている。

【0098】前記サセプタ106の上方には、サセプタ 106と平行に対向して、ギャップ長約25㎜で、上部 電極121が、絶縁支持材122を介して、処理容器1 03の上部に支持されている。この上部電極121は、 既述のエッチング処理装置1における上部電極21と同 様、サセプタ106との対向面に、多数の拡散孔123 を有している。そしてこの絶縁支持材122の外周に は、さらに上部電極121を取り囲むようにして、環状 の接地電極124が設けられている。そしてこの接地電 極124と前記接地電極115の各外周縁部は、図19 に示したように、上下方向に重なるように設置されてい

【0099】前記上部電極121の中央にはガス導入口 125が設けられ、マスフローコントローラ126を介 して、処理ガス供給源127からのエッチングガス、例 えばCF4ガスが、前記拡散孔123を通じて処理室1 02内に供給自在である。他方、処理容器103の下部 には、真空ポンプなどの真空引き手段(図示せず)に通 (12)

21 内を、5mTorr~100mTorr内の任意の減圧 度にまで真空引きすることが可能である。

【0100】次にこのエッチング処理装置101におけ る下部電極となるサセプタ106と上部電極121に対 する高周波電力の印加構成について説明する。まずサセ プタ106に対しては、例えば周波数が800kHzの 相対的低周波を出力する相対的低周波電源131の電力 が整合器132を介して印加される。この整合器132 は、図18に示したように、誘導コイル133と可変容 量133とが直列に接続されており、さらに一端部が接 10 地された可変容量134の他端部が並列に接続されてい る。かかる構成により、前記誘導コイル133と可変容 量133とで相対的低周波電源131からの電力のイン ピーダンスを個別に制御し、また可変容量134でその 位相を個別に制御して、マッチングをとることが可能で ある。一方上部電極121に対しては、整合器141を 介して、周波数が例えば27MHzの相対的高周波電力 を出力する相対的高周波電源142からの高周波が印加 される構成となっている。

【0101】第2実施例にかかるエッチング処理装置1 2001の主要部は以上のように構成されており、例えばシリコンのウエハWの酸化膜に対してエッチング処理する場合の作用等について説明すると、処理室102内に処理ガス供給源127からのCF4ガスが供給され、処理室102の圧力が、例えば10mTorrに設定、維持された後、まず上部電極121に対して相対的高周波が印加される。ついでこれより1秒以下のタイミングをもって、サセプタ106に対して相対的低周波が印加される。ついでこれより1秒以下のタイミングをもって、サセプタ106に対して相対的低周波が印加され、上 30 部電極121とサセプタ106間にプラズマが発生する。そのようにサセプタ106間を遅らせて印加させることにより、過大な電圧によってウエハWがダメージを受けるおそれはない。

【0102】そして発生したプラズマによって解離した CF4ガスのラジカル成分によってウエハW表面のシリコン酸化膜(SIO2)がエッチングされていく。この場合、まず上部電極121の周囲に位置する接地電極124と、サセプタ106の周囲に位置する接地電極115とによって、発生したプラズマは閉じこめられ、その拡散が防止されて高い密度が維持される。

【0103】第2実施例の場合、特に図19に示したように、接地電極124と前記接地電極115の各外周縁部は、上下方向に重なるように設置されているので、プラズマを閉じこめる効果がきわめて大きくなっている。即ち図20に示したように、例えば接地電極124の方が外周に位置して、その外周縁部が上下方向に重なっていないと、プラズマがある程度拡散してしまうが、本実施例のように外周縁部が上下方向に重なっていると、プラズマが知知に世報する会地がなく、きわめて真い変度

が確保できるのである。従って、この点からみて、まず

【0104】ところで発明者らによれば、上部電極121とサセプタ106との間のギャップ長と、エッチングレート、エッチングレートの均一度(ウエハW上におけるエッチングレートの分布)並びにプラズマの安定度(プラズマの立ち上げ、維持、拡散からみた安定度)との間には、図21の関係があることが確認されている。

微細なエッチング処理が可能となっている。

【0105】即ちギャップ長が長いほど、エッチングレート(E/R)と均一度(U)が低下するが、反面プラズマの安定度(S)は向上するのである。歩留まりが高くかつ微細なエッチング処理を実現するには、これら3つの要素がバランスよく確保されている必要があるが、発明者らが得た結果によれば、図21のグラフに示したように、ギャップ長が25㎜辺りでこれら3つの要素が最もバランスよく得られることがわかった。

【0106】この点第2実施例では、既述の如く上部電極121とサセプタ106とのギャップ長は、25mに設定してあるので、ウエハWに対して歩留まりの高い微細なエッチング処理を実現することが可能になっている。なお所望のエッチング処理は、多種多様であるから、かならずしもこの25mに設定する必要はなく、図21のグラフからわかるように、ギャップ長が15m~35mの範囲でもバランスがよいエッチング処理が10m~40mの間でも比較的バランスのよいエッチング処理が実現できる。

【0107】ところで従来からこの種の高周波を用いたプラズマ処理装置においては、高周波のマッチングを取るため、高周波電源と印加される電極、例えば下部電極との間には、図22に示したような整合器151が設けられている。従来の整合器151は、下部電極152と高周波電源153との間に可変コイル154、155を直列に配し、さらにこれら可変コイル154、155の間に、接地される容量156が接続された構成を有していた。これによって幅広い範囲の調整(マッチング)を可能としていたが、反面、インピーダンスと位相とを独立して制御できず、また例えば上部電極からの周波数の影響を受けやすいという問題も有していた。

【0108】この点、第2実施例にかかるエッチング処理装置101では、既述の如く、誘導コイル133と可変容量133とが直列に接続されており、さらに一端部が接地された可変容量134の他端部が並列に接続されて相対的低周波電源131からの電力のインピーダンスと位相とを独立して制御することが可能であるから、調整が容易でかつ、上部電極121からの相対的高周波の影響を受け難くなっている。従って、発生したプラズマがきわめて安定し、この点からも所期のエッチング処理を実現することが可能である。

施例のように外周縁部が上下方向に重なっていると、プ 【0109】なお第2実施例にかかるエッチング処理装ラズマが外部に拡散する余地がなく、きわめて高い密度 50 置101では、上部電極121、及びサセプタ106は

いずれも固定式であり、従って、これら電極間のギャップも25mmに固定されていたが、前記した図21の特性に鑑み、ギャップ長を可変とする構成にしてもよい。例えば図23に示したように、適宜の調節機構161によって、サセプタ106'を上下動自在なように構成すれば、上部電極121とサセプタ106'間のギャップ長dは、任意に変化させることが可能になる。

【0110】次に本発明の第3実施例を添付図面に基づき説明すると、図24は本第3実施例にかかるエッチング処理装置201の断面を模式的に示しており、このエ 10ッチング処理装置201における処理室202は、気密に閉塞自在な酸化アルマイト処理されたアルミニウムなどからなる円筒形状に成形された処理容器203内に形成され、当該処理容器203自体は接地されている。前記処理室202内の底部にはセラミックなどの絶縁支持板204を介して、被処理体、例えば半導体ウエハ(以下、「ウエハ」という)Wを載置するための略円柱状のサセプタ205が収容され、このサセプタ205が下部電極を構成している。

【0112】また前記サセプタ205には、静電チャック211が設けられ、処理容器203外部に設置されている直流高圧電源212からの直流高電圧の印加によって、ウエハWは、静電チャック211上面に吸着保持される。また前記サセプタ205の上端周縁部には、静電チャック211上に保持されたウエハWを囲むように、SiO2からなる環状のフォーカスリング213が配置 40されている。このフォーカスリング213は、図示される如く内側から外側に向けて下降傾斜するテーパがつけられている。

【0113】前記サセプタ205の上方には、このサセプタ205と平行に対向して、ギャップ長約25mmで、れる上部電極221が、絶縁材222を介して、処理容器203の上部に支持されている。この上部電極221は中空構造であり、またサセプタ205との対向面に、多数の拡散孔223を有し吐出部も兼ねている。そしてこの上部電極221の前記サセプタ205との対向面の周囲 50 る。

24

には、環状のガス拡散ガイド224が設けられている。このガス拡散ガイド224はSiO2からなり、上部電極221の周囲を取り囲むようにして支持されており、前記サセプタ205側に向けてテーバ状に開口している。そして第3実施例においては、そのテーパ角度、即ち図25に示したように、テーパ部224aが上部電極221のサセプタ205との対向面とおりなす角度(水平方向とのなす角度) θ が、30°に設定してある。

【0114】前記上部電極221の中央にはガス導入口225が設けられ、バルブ226を介して処理ガス供給源と接続されている。本実施例においては、バルブ227、マスフローコントローラ228を介して、処理ガス供給源292からCF、ガスが、バルブ230、マスフローコントローラ231を介して、処理ガス供給源232からは、CHF。ガスが、それぞれ前配拡散孔223を通じて処理室202内に供給自在となっている。

【0115】処理室202内におけるサセプタ205の下部周囲には、真空ポンプなどの真空引き手段241に通ずる排気管242、243等が接続されており、この処理室202内を、 $5mTorr\sim100mTorr内$ の任意の減圧度にまで真空引きすることが可能である。

【0116】次にこのエッチング処理装置201の高周 波電力印加系について説明すると、まず下部電極となる前記サセプタ205に対しては、例えば周波数が800kHzの相対的低周波を出力する相対的低周波電源251からの電力が、整合器252を介して印加される。一方上部電極221に対しては、整合器253を介して、周波数が例えば27MHzの相対的高周波電力を出力する相対的高周波電源254からの高周波が印加される構成となっている。

【0117】また前記処理容器203の側部には、ゲートバルブ261を介してロードロック室262が隣接している。そしてこのロードロック室262内には、被処理体であるウエハWを処理容器203内の処理室202との間で搬送する搬送アームなどの搬送手段263が設けられている。

【0118】第3実施例のエッチング処理装置201の主要部は以上のように構成されており、例えばシリコンのウエハWの酸化膜に対してエッチング処理する場合の作用等について説明すると、まずゲートバルブ261が開放された後、搬送手段263によってウエハWがロードロック室262から処理室202内へと搬入され、サセプタ205の静電チャック211上に載置された後、搬送手段263が待避し、ゲートバルブ261が閉鎖される。次いで処理室202内が真空引き手段241によって減圧されていき、所定の減圧度になった後、処理ガス供給源232からはCF₁ガスが供給され、処理ガス供給源232からはCHF₃ガスが供給され、処理第202の圧力が、例えば10mTorrに設定、維持される。

【0119】そして上部電極221に対して相対的高周波電源254から周波数が27MHzの相対的高周波が印加され、またサセプタ205に対して相対的低周波電源251から周波数が800kHzの相対的低周波が印加されると、上部電極221とサセプタ205との間にプラズマが発生し、この発生したプラズマによって処理室202内の前記処理ガスが解離し、その際に生ずるフッ素ラジカルによってウエハW表面のシリコン酸化膜(SiO2)がエッチングされていくのである。

【0120】次に前記エッチング処理装置201を用い 10 て実際に、64ンチのシリコンのウエハW表面の酸化膜 (SiO_2)をエッチングした際の結果について説明する。まず処理室202内の圧力は、既述の如く10mT orrに設定した。そして CF_4 ガスと CHF_5 ガスの流量比は、25/75sccmとした。温度については、処理室202内底部を 20° C、同上部を 30° C、側部を 40° Cに設定した。そして上部電極221に対しては2000W、サセプタ205に対して800Wの電力を夫々印加した。

【0121】かかる条件の下でウエハWに対してエッチ 20 ングした結果、図26のグラフに示したような結果が得られた。図26のグラフは、ウエハWの中心から直径方向(X方向、Y方向)に外方にずらせた位置でのエッチングレートを示しているが、同グラフからわかるように、中心から50 mm離れた位置でも、エッチングレートは、X方向、Y方向とも、夫々4000オングストローム/minを越えており、測定点平均でも、4072オングストローム/minを確保できた。またエッチングレートの均一性(U)に関しては、U(%)=(ERmax-ERmin)/2・ERave×100で表してみると、30 U=6.3(%)であった。但し、ERmaxは、ウエハW上の最大エッチングレート、ERminはウエハW上の最小エッチングレート、ERaveは平均エッチングレートである。

【0122】前記結果を従来と比較するために、第3実施例のエッチング処理装置201から、他の構成はそのままにしてガス拡散ガイド224のみを取り去った構成のエッチング処理装置を用い、前記各種条件と全く同一条件の下で、ウエハWに対してエッチング行い、その結果を図27のグラフに示した。この図26のグラフと図27のグラフとを比較すれば、まず本実施例の方が従来よりも、エッチングレートが向上しており、ウエハW全般に渡って約1000オングストローム/minもエッチングレートが高くなっていることが確認できる。ちなみに図26における測定点平均でのエッチングレートは3142オングストローム/minであり、実際上、本実施例の方が平均でも約1000オングストローム/minエッチングレートが高くなっている。

【0.123】次に均一性についても一見してわかるよう なり、その結果、さらにエッジに、2600グラフの方が図2700グラフよりもグラフ 500 向上を図ることが可能である。

26

の傾斜が緩やかであり、均一性に関しても前記実施例の方が優れていることが確認できる。実際、前記従来のエッチング処理装置によるエッチングにおける前記均一性(U)の定義で得られる均一性(U)は、12.3%であった。既述したように本実施例のそれは6.3%であったから、この点からも本実施例によって均一性が向上したことが確認できる。またX方向、Y方向にずれた位置でのエッチングレートの差についても、本実施例の方が従来よりも差がなくなっており、ウエハW全般において均一性が向上していることがわかる。さらにガス拡散ガイド224を設けただけで、前記したエッチングレート、均一処理性の改善がみられるので、既存の装置に対しても簡単な装置改変だけで本発明を実施することが可能になっている。

【0124】なお前記第3実施例にかかるエッチング処 理装置201は、上部電極221と下部電極となるサセ プタ205に異なった周波数の高周波電力を印加する構 成であったが、本発明は他の印加方式のエッチング処理 装置に対してももちろん適用可能である。例えば図28 に示したように、処理容器271及びサセプタ272が 接地され、上部電極273に対して高周波、例えば1 3. 56 MHzを印加する、いわゆるプラズマ・エッチ ング (PE) 方式のエッチング処理装置274、図29 に示したように、上部電極281及び処理容器282が 接地され、サセプタ283に対して前記高周波電力が印 加されるリアクティブ・イオン・エッチング (RIE) 方式のエッチング処理装置284、さらには図30に示 したように、処理容器291だけは接地し、上部電極2 92、下部電極293に対して、単一の高周波電源29 4からの同一周波数の電力を、変圧器295を介して位 相を180° ずらせて交互に印加するいわゆるパワース プリット方式のエッチング処理装置296に対しても、 夫々処理ガス供給源Gから各処理容器271、282、 291内に処理ガスを吐出する吐出部を有する各上部電 極273、281、292の周囲に、テーパ状の環状の ガス拡散ガイドHを設ければ、エッチングレート及び均 一性を向上させることが可能である。

【0125】さらに前記第3実施例にかかるエッチング処理装置201においては、下部電極となるサセプタ205の周縁部にフォーカスリング213を設置した構成であったが、これに代えて例えば図31に示したように、ガス拡散排気ガイド301を設けてもよい。このガス拡散排気ガイド301は、全体が環状形態を有し、その上面、即ち上部電極221側に、外方部へと傾斜降下するテーパ部301aを有する構成である。かかる構成のガス拡散排気ガイド301を用いれば、排気側のガスコンダクタンスが低減し、前記ガス拡散ガイド224と相俟って、処理室202内でのガスの流通が一層円滑になり、その結果、さらにエッチングレート及び均一性の向上を図ることが可能である。

【0126】なお図31におけるガス拡散排気ガイド301のテーパ部301aは、前記ガス拡散ガイド224のテーパ部224aと平行になるようにそのテーパ角度が設定されているが、必ずしもそのように平行になるようにテーパ角度を設定する必要はない。またこのガス拡散排気ガイド301は、前出フォーカスリング213と併用してもよい。その場合には、ガス拡散排気ガイドをフォーカスリングの外周に接地すればよい。またフォーカスリングと一体化した形状としてもよい。

【0127】前記したようなガス拡散排気ガイド301 10 は、もちろん前記第3実施例にかかるエッチング処理装置201に限らず、図28に示したプラズマ・エッチング(PE)方式のエッチング処理装置274、図29に示したリアクティブ・イオン・エッチング(RIE)方式のエッチング処理装置284、さらには図30に示したパワースプリット方式のエッチング処理装置296に対しても、もちろん適用可能である。

【0128】ところで今日デバイスの高集積化に伴って、エッチング処理についてもより微細なエッチング処理、例えば穴径が 0.3μ mのコンタクトホールを形成 20する処理が必要となってきている。これを実現するためには、プラズマ密度をより高密度化する必要があるが、本発明によれば、前記したようなエッチングレート、均一化の向上を図りつつ容易にこれを実現することが可能である。

【0129】即ち前配第3実施例におけるエッチング処 理装置201におけるガス拡散ガイド224を導電性の 材質で構成すると共に、上部電極221と絶縁してこれ を接地させる。そして図31に示した、ガス拡散排気ガ イド301についても、導電性の材質で構成してサセプ 30 タ205と絶縁してこれを接地させる。かかる構成によ れば、上部電極221とサセプタ205との間に発生し たプラズマがこれらガス拡散ガイド224とガス拡散排 気ガイド301との間で閉じこめられ、その拡散が防止 される。従って、その分プラズマ密度は向上し、より微 細なエッチング処理が可能になるのである。なおこのよ うなプラズマ閉じこめ構成も、前出各プラズマ・エッチ ング (PE) 方式のエッチング処理装置274、リアク ティブ・イオン・エッチング (RIE) 方式のエッチン グ処理装置284、パワースプリット方式のエッチング 処理装置296に対しても、もちろん適用可能である。 また前記エッチング処理装置201は上下電極に夫々高 周波を印加する構成であったが、上下いずれかに印加す る構成のエッチング処理装置としてもよい。

【0130】次に本発明の第4実施例を添付図面に基づき説明すると、図32は第4実施例のエッチング処理装置401の断面を模式的に示しており、このエッチング処理装置401における処理室402は、気密に閉塞自在な酸化アルマイト処理されたアルミニウムなどからなる円筒形状に成形された処理容器403内に形成され、

当該処理容器403自体は接地されている。前記処理室402内の底部にはセラミックなどの絶縁支持板404を介して、被処理体、例えば半導体ウエハ(以下、「ウエハ」という)Wを載置するための略円柱状のサセプタ405が収容され、このサセプタ405が下部電極を構成している。

【0131】前記サセプタ405の内部には、環状の冷媒室406が設けられており、この冷媒室406には、温度調節用の冷媒が冷媒導入管407を介して導入され、冷媒室406内を循環して冷媒排出管408から排出される。そしてその間生ずる冷熱は冷媒室406から前記サセプタ405を介して前記ウエハWに対して伝熱され、このウエハWの処理面を所望する温度まで冷却することが可能である。またさらに前記サセプタ405には、例えばセラミックヒータなどの加熱手段409が設けられており、処理容器403外部に設置されている電源410からの給電によって、サセプタ405を所望の温度に加熱するように構成されている。従って、前記冷媒室406の冷熱とこの加熱手段409とにより、ウエハWは所定の温度に設定、維持することが可能である。

【0132】また前記サセプタ405には、静電チャック411が設けら、処理容器403外部に設置されている直流高圧電源412からの直流高電圧の印加によって、ウエハWは、静電チャック411上面に吸着保持される。また前記サセプタ405の上端周縁部には、静電チャック411上に保持されたウエハWを囲むように、絶縁材からなる環状のフォーカスリング413が配置されている。

【0134】前記上部電極421の中央にはガス導入口424が設けられ、バルブ425、マスフローコントローラ426を介して、処理ガス供給源427からのエッチングガス、例えばCF、ガスが、前記拡散孔423を通じて処理室402内に供給自在である。

【0135】処理容器 403の下部には、真空ポンプなどの真空引き手段 428に通ずる排気管 429が接続されており、この処理室 402内を、5mTorr \sim 100mTorr内の任意の減圧度にまで真空引きすることが可能である。

【0136】次にこのエッチング処理装置401の髙周波電力印加系について説明すると、まず下部電極となる前記サセプタ405に対しては、例えば周波数が800kHzの相対的低周波電源43

(16)

1からの電力が、整合器432を介して印加される。一方上部電極421に対しては、整合器434を介して、 周波数が例えば27、12MHzの相対的高周波電力を 出力する相対的高周波電源433からの高周波が印加さ れる構成となっている。

29

【0137】前記処理容器403の側部には、ゲートバルブ441を介してロードロック室442が隣接している。このロードロック室442内には、被処理体であるウエハWを処理容器403内の処理室402との間で搬送する搬送アームなどの搬送手段443が設けられてい 10 る。

【0138】第4実施例にかかるエッチング処理装置401の主要部は以上のように構成されており、例えばシリコンのウエハWの酸化膜に対してエッチング処理する場合の作用等について説明すると、まずゲートバルブ441が開放された後、搬送手段443によってウエハWが処理室402内に搬入され、静電チャック411上に載置された後、搬送手段443が待避し、ゲートバルブ441が閉鎖される。次いで処理室402内が排気手段428によって減圧されていき、所定の減圧度になった20後、処理ガス供給源427からCF4ガスが供給され、処理室402の圧力が、例えば10mTorrに設定、維持される。

【0139】そして上部電極421に対して相対的高周波電源433から周波数が27.12MHzの相対的高周波が印加され、またこれより僅かに遅れて(1秒以下のタイミング遅れ)をもって、サセプタ405に対して相対的低周波電源431から周波数が800kHzの相対的低周波が印加され、上部電極421とサセプタ405との間にプラズマが発生する。そのようにサセプタ405側を遅らせて印加させることにより、過大な電圧によってウエハWがダメージを受けることを防止できる。

【0140】そして発生したプラズマによって処理室402内のCF4ガスが解離し、その際に生ずるフッ素ラジカルによってウエハW表面のシリコン酸化膜(SiOz)がエッチングされていくのであるが、この場合、上部電極421はSiOzからなっているので、処理室402内では、

 $SiO_2 + CF_4 \rightarrow SiF_4 + CO$

等の反応が起こり、エッチングガスであるCF・ガスに 40 COを添加したのと同様の雰囲気が得られる。従って、ウエハW表面のSIO2のエッチングが進行して、シリコン下地が露出しても、当該シリコン下地表面には、前記COによってカーポンリッチのデポが生成されるので、フッ素ラジカルによるシリコン下地のエッチングが防止される。従って、選択比が向上するのである。

【0141】なお前記第4実施例では、サセプタ405 の上面においてウエハWを取り囲むようにフォーカスリング413が設置されているので、前記エッチング処理 中、フッ素ラジカルは効率よくウエハWに入射し、ウエ 50

ハW表面のシリコン酸化膜(SiO_2)のエッチングレートは高くなっているが、このフォーカスリング413の材質にBN(ポロン・ナイトライド)を用いれば、前記COによる選択比の向上作用とはNの作用によって、選択比を向上させることが可能である。

30

【0142】即ち、フッ素ラジカル(F*)はBNのうちのBと結合しやすく、その結果、

 $2BN+6F \rightarrow 2BF_3\uparrow+N_2\uparrow$

という反応が起こり、過剰なフッ素ラジカルは、排気管429を通じて処理室402から排気されるので、選択比低下の原因となる過剰なフッ素ラジカルは減少し、その結果シリコン下地に対する選択比が向上する。なおBNは、絶縁性を有しているので、この種のフォーカスリングの材質として用いるにあたり、何ら支障はないものである。

【0143】ところでエッチング処理装置に限らず、プラズマ雰囲気で被処理体に対して適宜の処理を実施する場合、処理容器の内壁に汚染の原因となる各種のデポが付着することが従来から指摘されている。この点に鑑み、従来から処理容器403自体を加熱し、前記したようなデポの付着を抑制することが行われているが、従来は、処理容器403の外壁に直接加熱手段を設けて、処理容器403を加熱するようにしていた。

【0144】しかしながら、そのように処理容器403 自体をその外側から直接加熱すると、内壁に伝導で熱を 伝えるため、輻射その他による熱損失が大きく(即ち熱 伝達効率が悪く)、所定の内壁温度を実現するために は、きわめて高い温度にまで処理容器403を加熱する 必要があり、メンテナンス性も悪く、問題であった。

【0145】かかる場合の対策として、例えば図33に示したような加熱部材451を、処理容器403の内壁に沿って設けることが提案できる。この加熱部材451は、前記円筒形の処理容器403の内壁よりもやや小さい外径を有する略環状形状を有しており、その材質は、例えば石英やセラミックスからなっている。そしてこの加熱部材451の内部には、例えば抵抗発熱体やセラミックヒータなどの加熱体452が、埋設されており、これら加熱体452が加熱部材451から露出することはない。従って前記したような、例えば10mTorrのような高真空度においても使用可能となっている。そして前記加熱体452は、適宜の電源453によって発熱し、この加熱部材51を40°C~200°Cの範囲の任意の温度にまで加熱、維持することが可能になっている。

【0146】かかる構成になる加熱部材451は、図32中の破線で示したエリアPに設置することにより、処理容器403内壁を加熱することができるが、従来の外壁を直接加熱する場合に比べて熱伝達効率が良好であり、またメンテナンスも容易になる。

【0147】なお加熱部材451の設置にあたっては、

(17)

処理容器403の天井部に吊下させたり、サセプタ405上に設置するなど種々の方法を採ることができるが、ウエハWの搬送に支障がないようにするため、サセプタ405自体を上下動自在に構成したり、あるいは加熱部材451自体を上下動自在に構成したりしてもよい。またこの加熱部材451自体は、前記した本発明の第4実施例のようなエッチング処理装置401に限らず、他のプラズマ処理装置、例えばCVD装置、スパッタリング装置に対しても適用可能である。

31

【0148】なお前記実施例においては、下部電極とな 10 るサセプタ405に対しては、相対的低周波を出力する相対的低周波電源431から、例えば800kHzの電力が印加され、他方、上部電極421に対しては、相対的高周波電源433から、例えば27.12MHzの高周波が印加されるように構成されていたが、このように上下の電極に異なった周波数の高周波を印加する場合、図35に示したように、ハイパスフィルタ461やローパスフィルタ462を設けるようにしてもよい。なお図35において、図32と同一の符号で引用される部材は、第4実施例と同一の部材構成を示している。 20

【0149】即ち相対的低周波電源431からサセプタ405への印加経路には、800kHzの電力の侵入を阻止し、27.12MHzの高周波を通過させるハイパスフィルタ461の一端部を並列に接続し、その他端部は接地させる。一方、相対的高周波電源433から上部電極421に対して印加する印加経路には、27.12MHzの電力の侵入を阻止し、800kHzの相対的低周波の電力を通過させるローパスフィルタ462の一端部を並列に接続し、その他端部は接地させる。

【0150】このように構成することにより、相対的低 30 周波電源431からの800kHzの電力は、サセプタ $405 \rightarrow$ 上部電極 $421 \rightarrow$ ローパスフィルタ $462 \rightarrow$ 投入され、一方相対的高周波電源433からの27.1 2 \dot{M} Hzの高周波電力は、上部電極 $421 \rightarrow$ サセプタ4 $05 \rightarrow$ ハイパスフィルタ $461 \rightarrow$ と投入される。従って、これら2つの異なった周波数の電力の相互干渉は防止されて各整合器432、434によるマッチングがとりやすく、パワーロスも少なくなって、上部電極421 とサセプタ405との間に効率のよい電力投入が実現できる。

【0151】なお前記したように、サセプタ405には例えば800kHzの電力を印加し、一方上部電極421には27.12MHzの高周波を印加して、27.12MHzの高周波で生起させたプラズマ中のイオンを、800kHzの方の相対的低周波でその入射速度をコントロールしているが、この場合、そのようにエッチングするイオンをコントロールする際の周波数、即ちサセプタ405に印加する相対的低周波の周波数を決定するには、次の点に留意する必要がある。

【0152】即ち、上部電極421側に印加する相対的 50 壁部には、図38にも示すように、ウエハWを搬入、搬

高周波の周波数と近い周波数をサセプタ405に印加すると、両周波数が近いため、ハイパスフィルタ461やローパスフィルタ462の機能が発揮しづらくなり、その結果、マッチングが適切にとれなかったり、パワーロスが生ずるおそれがある。他方、上部電極421側に印加する相対的高周波の周波数よりもかなり低い周波数、

32

加する相対的高周波の周波数よりもかなり低い周波数、例えば10kHzという極端に低い相対的低周波の周波数をサセプタ405に印加すると、エネルギー幅が大きくなり、高いエネルギーをもったイオンの数が多くなる。その結果、ウエハにダメージが生ずるおそれが出て

きて好ましくない。
【0153】従って、以上の点を鑑みると、サセプタ405に印加する相対的低周波の周波数は、上部電極421側の周波数よりも比較的離れた周波数であって、かつ

極端に低くならないように選択する必要がある。

【0154】この点に関し、発明者は、サセプタ405 への印加経路におけるVpp(プラズマ電圧とウエハW上 のVppとの関係を周波数ごとに求め、さらにウエハW上 のVppとウエハW上のVdc(自己パイアス電圧)との関 係を周波数ごとに求め、これらの特性と、各周波数にお けるイオンのエネルギー幅をも考慮した結果、前記エッ チング処理装置401の上部電極421に27.12M Hzの高周波を印加する場合、装置のインピーダンス等 も勘案すると、図36に示したように、サセプタ405 には800kHzの周波数の電力を供給することが好適 であることを見いだした。これによれば、800kHz の相対的低周波電力は、ウエハにダメージが生じにく く、かつマッチングのとりやすい周波数となっている。 したがって、ハイパスフィルタ461及びローパスフィ ルタ462を使用すると共に、上部電極421には2 7. 12MHz、サセプタ405には800kHzの周 波数電力を印加すると、パワーロスがなくかつダメージ のないエッチングをウエハWに対して実施することが可 能になっている。

【0155】次に本発明の実施例にかかるエッチング処理装置に、エッチング処理容器の劣化を防止することができるとともに、金属による半導体ウエハ(以下、「ウエハ」という)等の汚染を確実に防止することができるようにカーボンを適用する技術思想を図37及び図38に基づいて説明する。

【0156】円筒状のエッチング処理容器501は、材質例えば表面にアルマイト処理を施したアルミニウムからなる有底円筒状のエッチング処理容器下部501aの上部開口を気密に閉塞する如く配置され、同様な材質から円板状に形成されたエッチング処理容器上部501bとから構成されている。なお、これらの当接部には、内部を気密に保持するためのOリング502が適宜配設されている。

【0157】前記エッチング処理容器下部501aの側 磨部には、図38にも示すように、ウエハWを搬入、搬 (18)

特開平8-264515

33

出するための開口503、504が対向する如く両側に形成されており、これらの各開口503、504の各外側には、それぞれ対応するゲートバルブ505、506を介して、対応するロードロック室507、508が配設されている。これらのロードロック室507、508内には、それぞれウエハWを搬入、搬出するための搬送機構511が配設されており(一方のみ図示する)、通常、一方のロードロック室、例えばロードロック室507が搬入専用、他方のロードロック室508が搬出専用とされる。なお図中、509、510は、各ロードロック室507、508と外部とを遮断、開放するためのゲートバルブである。

【0158】前記エッチング処理容器501内には、材質が例えばセラミックスからなる絶縁性の支持部材512に支持される如く、材質が例えば表面にアルマイト処理を施したアルミニウムからなり、円板状に形成されたサセプタ、即ち下部電極513が配設されている。この下部電極513は、マッチング回路514を介して高周波電源515に接続されており、下部電極513内には、冷却のための冷媒循環経路516が配設されている。また前記下部電極513の上面は、ウエハWを例えば静電チャック(図示せず)等により吸着保持可能な如く平面状に形成されている。

【0159】一方、エッチング処理容器上部501bの上記下部電極513に対向する部位は上部電極521を構成している。この上部電極521には、図示しないガス供給源から導出されたガス供給配管522が接続されており、このガス供給配管522から供給された所定のエッチングガスは、上部電極521内に形成されたガス拡散用の空隙523内で、多数の透孔を形成されたガス拡散板によって拡散され、上部電極521の下側面に形成された多数の透孔524から、下部電極513上に載置されたウエハWに向けて均一に供給されるよう構成されている。

【0160】前記エッチング処理容器501の下部には、排気ボンプ531に接続された排気配管532が接続されており、下部電極513の周囲には、下部電極513の周囲から均一な排気が行われるよう、図38にも示すように多数の透孔が形成されたバッフル板533が水平に配設されている。

【0161】前記パッフル板533は、カーボンから構成されており、前記排気配管532は、エッチング処理容器501から所定距離、例えば数十センチ~1メートル程度、その内部がカーボンのコーティング被膜532aにより被覆されている。また、上部電極521の下側面は、カーボン製の板525によって覆われており、上部電極521の透孔524内は、カーボンのコーティング被膜524aによって被覆されている。さらに、エッチング処理容器501内には、その内側壁面を覆う如く、カーボン製の円筒534が配設されている。

【0162】前記カーボン製の円筒534には、前出2つの開口503、504に応じてそれぞれ開口部535が形成されており、これらの開口部535を開閉自在に 覆う如く、それぞれカーボン製のシャッタ板536が配 設されている。これらのシャッタ板536は、図38に 示すように、エッチング処理容器501内壁面と略同様 な曲率を有する円弧状の板体からなり、これらのシャッタ板536は、シャフト537を介してエッチング処理容器501の外部に設けられたエアシリンダ538に接 続されており、このエアシリンダ538の伸縮動作によって上下動するよう構成されている。また、エッチング 処理容器501における前記シャフト537の貫通部に は、こられの部材の間の気密を維持するための機構として、例えば蛇腹機構(図示せず)が設けられている。

【0163】前記各カーボン製部材、すなわち、バッフル板533、板525、円筒534、シャッタ板536は、厚さ例えば1~20mに設定されている。

【0164】このように構成されたエッチング処理装置では、予め排気ポンプ531を作動させてエッチング処理容器501内を所定の真空度に設定しておく。そして、どちらか一方のロードロック室、例えばロードロック室507のゲートバルブ509を開け、搬送機構511によって被処理体であるウエハWをロードロック室507内に搬入し、この後ゲートバルブ509を閉じてこのロードロック室507内を所定の真空度に設定し、しかる後、ゲートバルブ505を開けるとともにシャッタ板536を開口503の前から移動させて、搬送機構511により下部電極513上に前記ウエハWを載置する。

【0165】次に、搬送機構511をエッチング処理容器501内から退避させ、ゲートバルブ505を閉じるとともにシャッタ板536を開口535の前に位置させ、この状態で、ガス供給配管522から所定のエッチングガス、例えばCl2+BCl3を供給し、これとともに、高周波電源515から例えば13.56MHzの高周波電力を供給してエッチングガスをプラズマ化し、いわゆるリアクティブイオンエッチングにより、前記ウエハWに対してエッチング処理を施す。

【0166】この時エッチング処理容器501内のプラズマに曝される部位は、ウエハWの表面を除いて、全てカーボンとなっている。このため、例えば、開口503のゲートバルブ505や上部電極521の透孔524内等の腐食が防止されるので、アルミニウム等によって被処理体である前記ウエハWが汚染されることを防止することができる。また、カーボン製の板525、円筒534、シャッタ板536等は、エッチングされて消耗するが、比較的安価に製造可能なこれらの部材を交換することによって対処することができ、エッチング処理容器下部501a、エッチング処理容器上部501b等の劣化を防止することができる。

【0167】さらに、アルミニウムのエッチングを行う場合、板525、円筒534、シャッタ板536等からエッチングされたカーボンの作用により、ウエハWの選択比の向上を図ることができる。すなわち、上部にマスクとしてのフォトレジストが形成された非エッチング部分の側壁部にカーボンのボリマーからなる側壁保護膜が形成され易くなり、側壁部のいわゆるアンダーカットが抑制され、選択比の向上を図ることができる。

【0168】しかも前記シャッタ板536が、エッチング処理容器501内壁面と略同様な曲率を有する円弧状 10の板体から構成されているので、エッチング処理容器501内に生起されたプラズマが、エッチング処理容器501の内壁面に沿って均一、かつ、均等なプラズマ密度になり、ウエハWの処理が均一化され、歩留まりが向上する。

【0169】なお前記した各実施例は、いずれも被処理体が半導体ウエハの場合について説明したが、それに限らず本発明は、例えばLCD基板を処理対象とする装置構成とすることも可能である。

[0170]

【発明の効果】請求項1~4に記載のプラズマ処理装置によれば、処理室内における前記電極間空間から、プラズマが周囲に拡散することを防止することができ、処理領域でのプラズマ密度が高くなり、他方処理室内壁にコンタミネーションが発生することもない。特に請求項2のように第1の電極と第2の電極の周囲にそれぞれ接地電極を設置した場合には、プラズマの閉じこめ効果が大きい。

【0171】また処理室内における前記第1、第2の各電極周囲近傍に、夫々複数の磁石を略環状に配置してプ 30ラズマ拡散の防止を図る場合、請求項4のように、対向部分側だけではなく隣接する磁石相互間の磁極をも相互に異なったものとすることによって、プラズマ拡散防止効果をさらに向上させることができる。

【0172】そして請求項5のように、第1の電極と第2の電極に印加する各高周波電力の電流位相差を、ほぼ180°に制御するようにすれば、処理室内の減圧度や処理室内に導入する処理ガスの種類とは無関係に、効率よく高周波電力をプラズマに投入して、被処理体近傍のプラズマ密度を増大させることができる。

【0173】請求項6のように上部電極と下部電極との間のギャップ長を設定すれば、例えばエッチング処理において、エッチングレート、均一性、並びにプラズマの安定度に関しバランスのとれた処理を実行することが可能である。

【0174】請求項7に記載の処理装置によれば、ガス流通コンダクタンスが低減し、処理ガスがより円滑に被処理体に向けて吐出され、濃度分布を均一化するので、処理の高速化、均一化を図ることが可能である。

【0175】請求項8に記載のプラズマ処理装置によれ 50 に印加する構成を有する第2実施例のエッチング処理装

ば、被処理体に対してプラズマ雰囲気の下で処理を施す場合に、前記した請求項7の効果が得られ、例えばエッチング処理の場合には、エッチングレートの向上、エッチングの均一化を図ることができる。しかも既存の装置

36

に対しても、簡単な装置改変だけで本発明を実施することが可能になっている。 【0176】請求項9によれば、処理ガスにCOを添加

しなくとも、下地表面にカーボンリッチの保護膜を形成することができるので、その結果下地に対する選択比の高いエッチング処理が可能になる。請求項10では、過剰なフッ素ラジカルを減少させて、結果的に下地に対する選択比の高いエッチング処理が可能になる。請求項11では、さらに選択比の高いエッチング処理を実施することが可能になる。

【図面の簡単な説明】

【図1】本発明の第1実施例にかかるエッチング処理装置の断面説明図である。

【図2】図1のエッチング処理装置に使用した接地電極の一部破断斜視図である。

20 【図3】他の構造を有する接地電極を使用した処理容器 の断面説明図である。

【図4】透孔を有する接地電極の斜視図である。

【図 5 】対向型の接地電極を使用した処理容器の断面説明図である。

【図6】内側に斜面部を有する対向型の接地電極を使用 した処理容器の断面説明図である。

【図7】プラズマ拡散防止手段として永久磁石を用いた場合の上部電極、サセプタ近傍の要部拡大断面図である。

70 【図8】図7における永久磁石の斜視図である。

【図9】図7の永久磁石の配置の様子を示す絶縁部材の 底面図である。

【図10】図7の永久磁石の磁極配置の様子を示す説明 図である。

【図11】図7の永久磁石に磁性体を取り付けた様子を 示す断面説明図である。

【図12】永久磁石の他の磁極配置の様子を示す説明図である。

【図13】従来技術にかかるエッチングによって形成されたコンタクトホールの断面説明図である。

【図14】他の実施例において印加する高周波電力の出力変調の様子を示すグラフである。

【図15】本発明の実施例によって形成されたコンタクトホールの断面説明図である。

【図16】RIEモードにある本発明の他の実施例の説 田図である

【図17】PEモードにある本発明の他の実施例の説明 図である。

【図18】周波数の異なった髙周波電力を上下対向電極 に印加する機成を有する第2実施例のエッチング処理装

特開平8-264515

37

置の説明図である。

【図19】図18のエッチング処理装置の要部説明図で ある。

【図20】上部電極側の接地電極と下部電極側の接地電極の各外周縁部が重なっていない状態を示す説明図である。

【図21】上下対向電極間のギャップ長と、エッチング レート、均一度、プラズマ安定度との関係を示すグラフ である。

【図22】従来の整合器の構成を示す説明図である。

【図23】上下対向電極間のギャップ長を可変構成とした他の実施例の説明図である。

【図24】第3実施例にかかるエッチング処理装置の断面説明図である。

【図25】図24のエッチング処理装置におけるガス拡 散ガイドの要部拡大説明図である。

【図26】図24のエッチング処理装置を用いてシリコンウエハの酸化膜のエッチングを行ったときの、ウエハの径方向にずれた位置とエッチングレートとの関係を示すグラフである。

【図27】ガス拡散ガイドを持たない従来のエッチング 処理装置を用いてシリコンウエハの酸化膜のエッチング を行ったときの、ウエハの径方向にずれた位置とエッチ ングレートとの関係を示すグラフである。

【図28】プラズマ・エッチング(PE)方式のエッチング処理装置の上部電極周囲にガス拡散ガイドを設けた 実施例の断面説明図である。

【図29】リアクティブ・イオン・エッチング (RIE) 方式のエッチング処理装置の上部電極周囲にガス拡散ガイドを設けた実施例の断面説明図である。

【図30】パワースプリット方式のエッチング処理装置 の上部電極周囲にガス拡散ガイドを設けた実施例の断面 説明図である。

【図31】図24のエッチング処理装置におけるサセプタ上のフォーカスリングに代えてガス拡散排気ガイドを設置した様子を示す断面説明図である。

38

【図32】本発明の第4実施例のエッチング処理装置の断面説明図である。

【図33】図32のエッチング処理装置に適用可能な加熱部材の概観を示す斜視図である。

【図34】図33の加熱部材の断面説明図である。

【図35】図32のエッチング処理装置にハイパスフィルタ及びローパスフィルタを用いた例を示す断面説明図である。

【図36】相対的低周波電力の周波数ごとの、ウエハへ の入射イオンエネルギーと入射イオンの個数との関係を 示すグラフである。

【図37】本発明の実施例に適用可能な処理容器劣化防止技術を説明するためのエッチング処理装置の断面説明図である。

【図38】図37のエッチング処理装置の平面からみた 20 断面説明図である。

【符号の説明】

1 エッチング処理装置

2 処理容器

5 サセプタ

15 フォーカスリング

21 上部電極

27 接地電極

51、52 髙周波電源

55、56 位相検出手段

30 57 位相コントローラ

W ウエハ

| 図2 | 図3 | 図3 | 図8 | 図 | 27: 接地電信 | 25 24 | 21: 上部電信 | 25 24 | 21: 上部電信 | 25 24 | 2

-155-

(24)

特開平8-264515

(25)

特開平8-264515

【図35】

【図37】

フロントページの続き

(32)優先日 平6 (1994) 9月20日

(33)優先権主張国

日本 (JP)

(31)優先権主張番号 特願平7-29940

(32)優先日

平7 (1995) 1 月25日

(33)優先権主張国

日本(JP)

(72)発明者 田原 一弘

山梨県韮崎市藤井町北下条2381番地の1

東京エレクトロン山梨株式会社内

(72)発明者 土屋 浩

山梨県韮崎市藤井町北下条2381番地の1

東京エレクトロン山梨株式会社内

(72)発明者 友安 昌幸

山梨県韮崎市藤井町北下条2381番地の1

東京エレクトロン山梨株式会社内

(72)発明者 内藤 幸男

山梨県韮崎市藤井町北下条2381番地の1

東京エレクトロン山梨株式会社内

(72)発明者 永関 一也

山梨県韮崎市藤井町北下条2381番地の1 東京エレクトロン山梨株式会社内

(72) 発明者 野中 龍

山梨県韮崎市藤井町北下条2381番地の1

東京エレクトロン山梨株式会社内

(72)発明者 広瀬 圭三

山梨県韮崎市藤井町北下条2381番地の1

東京エレクトロン山梨株式会社内

(72)発明者 深澤 義男

山梨県韮崎市藤井町北下条2381番地の1

東京エレクトロン山梨株式会社内

(72)発明者 奥石 公

山梨県韮崎市藤井町北下条2381番地の1

東京エレクトロン山梨株式会社内

(72)発明者 小林 功

山梨県韮崎市藤井町北下条2381番地の1

東京エレクトロン山梨株式会社内