## Systeem- en Regeltechniek EE2S21

**Stability + Controllability** 

Lecture 6

Dimitri Jeltsema & Bart De Schutter

February 24, 2015



## **Concepts of stability**

Equilibrium point  $x^* = 0$  is stable if for any  $\varepsilon > 0$ , there exists

 $\delta(\varepsilon) > 0$  such that if  $||x(0)|| < \delta$ , then  $||x(t)|| < \varepsilon$ , for all  $t \ge 0$ .

Otherwise, the equilibrium point is unstable.

Stability means that the system trajectory x(t) can be kept **arbitrarily close** to  $x^* = 0$  by starting **sufficiently close** to it.





## **Concepts of stability**

Equilibrium point **asymptotically stable** if it is stable and if  $\exists \delta_1 > 0$ 

s.t. 
$$||x(0)|| < \delta_1 \Rightarrow \lim_{t \to \infty} x(t) = 0$$
.

Meaning: system eventually converges to eq. point.





Autonomous LTI system:

$$\dot{x}(t) = Ax(t).$$

**Stable** if for any  $t_0$  and  $\delta>0$  there exists a  $\varepsilon>0$ 

s.t.  $||x(t_0)|| < \delta \Rightarrow ||x(t)|| < \varepsilon$  for all  $t \ge t_0$ , with

$$||x(t)|| = \sqrt{x_1^2(t) + x_2^2(t) + \dots + x_n^2(t)}.$$

Recall that solution is given by

$$x(t) = \Phi(t, t_0)x(t_0) = e^{\mathbf{A}\cdot(t-t_0)}x(t_0).$$

 $\Rightarrow$  internal stability depends on the A matrix!

**T**UDelft

4

Characteristic polynomial of A matrix

$$\det(\lambda_i I_n - A) = 0 \iff (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n) = 0.$$

If  $\lambda_i v_i = A v_i$  has n independent  $v_i$ 's, then convert state-space system into modal form via eigenvalue decomposition:  $A = T\Lambda T^{-1}$ .

## **Modal decomposition:**

$$x(t) = \Phi(t, t_0)x(t_0) = e^{A(t-t_0)}x(t_0)$$

$$= Te^{\Lambda(t-t_0)}T^{-1}x(t_0) = \sum_{i=1}^{n} \mu_i e^{\lambda_i(t-t_0)}v_i$$

 $\Rightarrow$  Stability properties depend on **eigenvalues** and **eigenvectors** of the A matrix.

Ŋ

- Eigenvalues with positive real part
  - ⇒ keep growing over time;
- Eigenvalues with negative real part
  - $\Rightarrow$  go to zero over time;
- Eigenvalues with zero real part
  - ⇒ bounded state only if they correspond to a complete set of linearly independent eigenvectors.

How about stability of 
$$\dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} x$$
?

#### Theorem:

LTI state-space system

$$\dot{x}(t) = Ax(t)$$

is **stable** if and only if all the eigenvalues of the matrix A have **nonpositive real part** and to any eigenvalue with a **zero real part** and algebraic multiplicity k there correspond k **linearly independent eigenvectors**, i.e., algebraic multiplicity k geometric multiplicity.

#### Theorem:

Asymptotically stable if and only if all the eigenvalues of the matrix A have negative real part.

<u>G</u>

#### **Exercise**

Consider the LTI system

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} x.$$

Is this system stable?

**TU**Delft

#### **Routh's Criterion**

For asymptotic stability all eigenvalues must be in the open left half plane. This can be done by *explicitly* solving

$$\det(\lambda I - A) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

for the  $\lambda$ 's and checking the *sign* of Re( $\lambda$ ).

Computationally less expensive approach is via Routh's criterion.

Routh's criterion only checks whether the eigenvalues lie in the right or left half plane — not the precise locations.

Ŋ

#### **Routh table:**

For 
$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0$$
, with  $a_n \neq 0$ 

$$a_{n}$$
  $a_{n-2}$   $a_{n-4}$  ...
 $a_{n-1}$   $a_{n-3}$   $a_{n-5}$  ...
 $b_{n-2}$   $b_{n-4}$   $b_{n-6}$  ...
 $c_{n-3}$   $c_{n-5}$   $c_{n-7}$  ...
 $d_{n-4}$   $d_{n-6}$   $d_{n-8}$  ...
 $\vdots$   $\vdots$ 

with  $(\bullet)_{-1} = 0$ , and

$$b_{n-2} = \frac{-1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{vmatrix}, b_{n-4} = \frac{-1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix}, c_{n-3} = \frac{-1}{b_{n-2}} \begin{vmatrix} a_{n-1} & a_{n-3} \\ b_{n-2} & b_{n-4} \end{vmatrix}, \text{ etc.}$$

10

February 24, 2015

#### Routh's criterion:

The roots of the polynomial

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

with  $a_n \neq 0$ , all have a negative real part if and only if the Routh table consists of n+1 rows and all the elements in the first column of the table have the same sign, i.e., all elements of this column are either positive or negative.

Ø

#### **Exercise**

Recall the system

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} x.$$

Is this system stable?

We already found

$$\det(\lambda I - A) = \lambda^{3} + 6\lambda^{2} + 11\lambda + 6 = 0.$$

Fill the Routh table...

**TU**Delft

## **BIBO** stability

Bounded-input bounded-output stability of LTI state-space system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t),$$

with

$$y(t) = Ce^{A(t-t_0)}x(t_0) + \int_{t_0}^t Ce^{A(t-\tau)}Bu(\tau) d\tau + Du(t)$$

related to internal stability as follows:

#### Theorem:

If all eigenvalues of the matrix A have **negative real part**, then the system (A,B,C,D) is **BIBO stable**.

Ŋ

## **BIBO** stability

Consider a SISO system and the convolution integral.

$$y(t) = \int_{-\infty}^{\infty} G(t - \tau)u(\tau) d\tau,$$

with G(t) the impulse response.

**BIBO** stable if the impulse response G(t) satisfies

$$\int_{-\infty}^{\infty} |G(t)| \, dt < \infty.$$

Ŋ

## **Controllability**

LTI state-space system:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t).$$

#### **Definition:**

An LTI state-space system is **controllable** if given any initial state  $x(t_0)$  there exists an input signal u(t) for  $t_0 \le t \le t_f$  such that  $x(t_f) = 0$  for some  $t_f \ge t_0$ .

Ø

## **Example**

February 24, 2015

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Input only influences  $x_1(t)$ , no coupling between  $x_1(t)$  and  $x_2(t)$ Conclusion:  $x_2(t)$  is **not controllable**.

16

**TU**Delft DIAM / DCSC

# How to determine controllability of a general LTI system?



#### **Modal form**

Recall eigenvalue decomposition:  $A = V\Lambda V^{-1}$ 

State transformation *V*:

$$\widetilde{A} = V^{-1}AV;$$
  $\widetilde{B} = V^{-1}B;$   $\widetilde{C} = CV;$   $\widetilde{D} = D.$ 

 $\Rightarrow$  A matrix becomes diagonal:  $\widetilde{A} = V^{-1}AV = \Lambda$ , and

$$V^{-1}\dot{x}(t) = V^{-1}AVV^{-1}x(t) + V^{-1}Bu(t)$$
$$y(t) = CVV^{-1}x(t) + Du(t).$$

Hence, by letting  $\widetilde{x}(t) = V^{-1}x(t)$ , we obtain...

**TU**Delft

## **Modal form**

...SISO system:

$$\dot{\widetilde{x}}(t) = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \widetilde{x}(t) + \begin{bmatrix} \widetilde{B}_{11} \\ \widetilde{B}_{21} \\ \vdots \\ \widetilde{B}_{n1} \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} \widetilde{C}_{11} & \widetilde{C}_{12} & \cdots & \widetilde{C}_{1n} \end{bmatrix} \widetilde{x}(t) + Du(t)$$

Not controllable if for some i:  $\widetilde{B}_{i1}=0$ 

**TU**Delft

## What if modal form does not exist?

What about MIMO?



## **Controllability matrix**

## **Definition:**

Controllability matrix: 
$$C = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$$

#### Theorem:

An LTI system is **controllable** if and only if

$$\operatorname{rank}(\mathcal{C}) = n$$

## **Exercise**

Consider the system

$$\dot{z} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & \sqrt{2g} \\ 0 & 0 & 0 \end{pmatrix} z + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} v.$$

Is the system controllable?

**TU**Delft