COMP9020 Lecture 6 Session 1, 2018 Graphs and Trees

- Textbook (R & W) Ch. 3, Sec. 3.2; Ch. 6, Sec. 6.1-6.5
- Problem set (week 7)
- A. Aho & J. Ullman. Foundations of Computer Science in C,
 p. 522–526 (Ch. 9, Sec. 9.10)

Graphs

Binary relations on finite sets correspond to directed graphs. Symmetric relations correspond to undirected graphs.

Terminology (the most common; there are many variants):

(Undirected) Graph — pair (V, E) where

V - set of vertices

E – set of edges

Every edge $e \in E$ corresponds uniquely to the set (an unordered pair) $\{x_e, y_e\}$ of vertices $x_e, y_e \in V$.

A *directed* edge is called an *arc*; it corresponds to the ordered pair (x_a, y_a) . A **directed graph** consist of vertices and arcs.

NB

Edges $\{x, y\}$ and arcs (x, y) with x = y are called loops. We will only consider graphs without loops.

Graphs in Computer Science

Examples

- The WWW can be considered a massive graph where the nodes are web pages and arcs are hyperlinks.
- 2 The possible states of a program form a directed graph.
- The map of the earth can be represented as an undirected graph where edges delineate countries.

NB

Applications of graphs in Computer Science are abundant, e.g.

- route planning in navigation systems, robotics
- optimisation, e.g. timetables, utilisation of network structures
- compilers using "graph colouring" to assign registers to program variables

Vertex Degrees

Degree of a vertex

$$\deg(v) = |\{ w \in V : (v, w) \in E \}|$$

i.e., the number of edges attached to the vertex

- Regular graph all degrees are equal
- Degree sequence $D_0, D_1, D_2, \dots, D_k$ of graph G = (V, E), where $D_i = \text{no.}$ of vertices of degree i

Question

What is
$$D_0 + D_1 + ... + D_k$$
?

- $\sum_{v \in V} \deg(v) = 2 \cdot e(G)$; thus the sum of vertex degrees is always even.
- There is an even number of vertices of odd degree (6.1.8)

Paths

• A **path** in a graph (V, E) is a sequence of edges that link up

$$v_0 \xrightarrow{\{v_0,v_1\}} v_1 \xrightarrow{\{v_1,v_2\}} \dots \xrightarrow{\{v_{n-1},v_n\}} v_n$$

where
$$e_i = \{v_{i-1}, v_i\} \in E$$

- length of the path is the number of edges: n
 neither the vertices nor the edges have to be all different
- Subpath of length r: $(e_m, e_{m+1}, \dots, e_{m+r-1})$
- Path of length 0: single vertex v_0
- Connected graph each pair of vertices joined by a path
- Connected component of G a connected subgraph of G that is not contained in a larger connected subgraph of G

- $\boxed{6.1.13(a)}$ Draw a connected, regular graph on four vertices, each of degree 2
- 6.1.13(b) Draw a connected, regular graph on four vertices, each of degree 3
- 6.1.13(c) Draw a connected, regular graph on five vertices, each of degree 3
- 6.1.14(a) Graph with 3 vertices and 3 edges
- 6.1.14(b) Two graphs each with 4 vertices and 4 edges

6.1.13 Connected, regular graphs on four vertices

none (c)

6.1.14 Graphs with 3 vertices and 3 edges must have a *cycle*

(a) the only one

NB

We use the notation

v(G) = |V| for the no. of vertices of graph G = (V, E)

e(G) = |E| for the no. of edges of graph G = (V, E)

- 6.1.20(a) Graph with e(G) = 21 edges has a degree sequence $D_0 = 0, D_1 = 7, D_2 = 3, D_3 = 7, D_4 = ?$
- Find v(G)!
- 6.1.20(b) How would your answer change, if at all, when $D_0 = 6$?

6.1.20(a) Graph with
$$e(G) = 21$$
 edges has a degree sequence $D_0 = 0, D_1 = 7, D_2 = 3, D_3 = 7, D_4 = ?$ Find $v(G)$

$$\sum_{v} \deg(v) = 2|E|; \text{ here }$$

$$7 \cdot 1 + 3 \cdot 2 + 7 \cdot 3 + x \cdot 4 = 2 \cdot 21 \text{ giving } x = 2, \text{ thus }$$

$$v(G) = \sum_{i} D_{i} = 19.$$

6.1.20(b) How would your answer change, if at all, when $D_0 = 6$? No change to D_4 ; v(G) = 25.

Cycles

Recall paths $v_0 \xrightarrow{e_1} v_1 \xrightarrow{e_2} \ \dots \ \xrightarrow{e_n} v_n$

- simple path $e_i \neq e_j$ for all edges of the path $(i \neq j)$
- closed path $v_0 = v_n$
- **cycle** closed path, all other v_i pairwise distinct and $\neq v_0$
- acyclic path $v_i \neq v_j$ for all vertices in the path $(i \neq j)$

NB

- $C = (e_1, ..., e_n)$ is a cycle iff removing any single edge leaves an acyclic path. (Show that the 'any' condition is needed!)
- ② C is a cycle if it has the same number of edges and vertices and no proper subpath has this property.

 (Show that the 'subpath' condition is needed, i.e., there are graphs G that are **not** cycles and $|E_G| = |V_G|$; every such G must contain a cycle!)

Trees

- Acyclic graph graph that doesn't contain any cycle
- Tree connected acyclic graph
- A graph is acyclic iff it is a forest (collection of unconnected trees)

NB

Graph G is a tree

- \Leftrightarrow G is acyclic and $|V_G| = |E_G| + 1$. (Show how this implies that the graph is connected!)
- ⇔ there is exactly one simple path between any two vertices.
- *⇔ G* is connected, but becomes disconnected if any single edge is removed.
- ⇔ G is acyclic, but has a cycle if any single edge on already existing vertices is added.

Exercise (Supplementary)

6.7.3 (Supp) Tree with n vertices, $n \ge 3$.

Always true, false or could be either?

- (a) $e(T) \stackrel{?}{=} n$
- (b) at least one vertex of deg 2
- (c) at least two v_1, v_2 s.t. $deg(v_1) = deg(v_2)$
- (d) exactly one simple path from v_1 to v_2

Exercise (Supplementary)

6.7.3 (Supp) Tree with n vertices, $n \ge 3$.

Always true, false or could be either?

- (a) $e(T) \stackrel{?}{=} n$ False
- (b) at least one vertex of deg 2 Could be either
- (c) at least two v_1, v_2 s.t. $deg(v_1) = deg(v_2)$ True
- (d) exactly one simple path from v_1 to v_2 True (characterises a tree)

NB

A tree with one vertex designated as its root is called a rooted tree. It imposes an ordering on the edges: 'away' from the root — from parent nodes to children. This defines a level number (or: depth) of a node as its distance from the root.

Another very common notion in Computer Science is that of a DAG — a directed, acyclic graph.

Graph Isomorphisms

 $\iota: G \longrightarrow H$ is a graph isomorphism if

- (i) $\iota: V_G \longrightarrow V_H$ is 1–1 and onto (a so-called *bijection*)
- (ii) $(x,y) \in E_G$ iff $(\iota(x),\iota(y)) \in E_H$

Two graphs are called *isomorphic* if there exists (at least one) isomorphism between them.

Example

All nonisomorphic trees on 2, 3, 4 and 5 vertices

200

Graph Isomorphisms

- $\iota: G \longrightarrow H$ is a graph isomorphism if
 - (i) $\iota: V_G \longrightarrow V_H$ is 1–1 and onto (a so-called *bijection*)
- (ii) $(x,y) \in E_G$ iff $(\iota(x),\iota(y)) \in E_H$

Two graphs are called *isomorphic* if there exists (at least one) isomorphism between them.

4) Q (·

Automorphisms and Asymmetric Graphs

An isomorphism from a graph to itself is called *automorphism*. Every graph has at least the trivial automorphism (trivial means: $\iota(v) = v$ for all $v \in V_G$)

Graphs with no non-trivial automorphisms are called *asymmetric*. The smallest non-trivial asymmetric graphs have 6 vertices.

(Can you find another one with 6 nodes? There are seven more.)

Edge Traversal

Definition

- Euler path path containing every edge exactly once
- Euler circuit closed Euler path

Characterisations

- G (connected) has an Euler circuit iff deg(v) is even for all $v \in V$.
- *G* (connected) has an Euler path iff either it has an Euler circuit (above) or it has exactly two vertices of odd degree.

NB

- These characterisations apply to graphs with loops as well
- For directed graphs the condition for existence of an Euler circuit is indeg(v) = outdeg(v) for all v ∈ V

- [6.2.11] Construct a graph with vertex set $\{0,1\} \times \{0,1\} \times \{0,1\}$ and with an edge between vertices if they differ in exactly two coordinates.
- (a) How many components does this graph have?
- (b) How many vertices of each degree?
- (c) Euler circuit?
- 6.2.12 As Ex. 6.2.11 but with an edge between vertices if they differ in two or three coordinates.

6.2.11 This graph consists of all the *face diagonals* of a cube. It has two disjoint components.

No Euler circuit

[6.2.12] (Refer to Ex. 6.2.11 and connect the vertices from different components in pairs)

Must have an Euler circuit (why?)

Special Graphs

- Complete graph K_n n vertices, all pairwise connected, $\frac{n(n-1)}{2}$ edges.
- Complete bipartite graph K_{m,n}
 Has m + n vertices, partitioned into two (disjoint) sets, one of n, the other of m vertices.
 All vertices from different parts are connected; vertices from the same part are disconnected. No. of edges is m · n.
- Complete k-partite graph $K_{m_1,...,m_k}$ Has $m_1+...+m_k$ vertices, partitioned into k disjoint sets, respectively of $m_1,m_2,...$ vertices. No. of edges is $\sum_{i< j} m_i m_j = \frac{1}{2} \sum_{i\neq j} m_i m_j$
 - ullet These graphs generalise the complete graphs $\mathcal{K}_n=\mathcal{K}_{\underbrace{1,\ldots,1}}$

 $\boxed{6.2.14}$ Which complete graphs K_n have an Euler circuit? When do bipartite, 3-partite complete graphs have an Euler circuit?

 K_n has an Euler circuit for n odd $K_{m,n}$ — when both m and n are even $K_{p,q,r}$ — when p+q,p+r,q+r are all even, ie. when p,q,r are all even or all odd

Example $K_5:$ $K_{3,3}:$

6.2.14 Which complete graphs K_n have an Euler circuit? When do bipartite, 3-partite complete graphs have an Euler circuit?

 K_n has an Euler circuit for n odd $K_{m,n}$ — when both m and n are even $K_{p,q,r}$ — when p+q,p+r,q+r are all even, ie. when p,q,r are all even or all odd

Vertex Traversal

Definition

- Hamiltonian path visits every vertex of graph exactly once
- Hamiltonian circuit visits every vertex exactly once except the last one, which duplicates the first

NB

Finding such a circuit, or proving it does not exist, is a difficult problem — the worst case is NP-complete.

Examples (when the circuit exists)

- All five regular polyhedra (verify!)
- *n*-cube; Hamiltonian circuit = *Gray code*
- K_m for all m; $K_{m,n}$ iff m = n
- Knight's tour on a chessboard (incl. rectangular boards)

Examples when a Hamiltonian circuit does not exist are much harder to construct.

Also, given such a graph it is nontrivial to verify that indeed there is no such a circuit: there is nothing obvious to specify that could assure us about this property.

In contrast, if a circuit is given, it is immediate to verify that it is a Hamiltonian circuit.

These situations demonstrate the often enormous discrepancy in difficulty of 'proving' versus (simply) 'checking'.

6.5.5(a) How many Hamiltonian circuits does $K_{n,n}$ have?

Let $V = V_1 \cup V_2$

- ullet start at any vertex in V_1
- ullet go to any vertex in V_2
- ullet go to any *new* vertex in V_1
-

There are n! ways to order each part and two ways to choose the 'first' part, implying $c = 2(n!)^2$ circuits.

6.5.5(a) How many Hamiltonian circuits does $K_{n,n}$ have? Let $V = V_1 \stackrel{.}{\cup} V_2$

- ullet start at any vertex in V_1
- go to any vertex in V_2
- ullet go to any *new* vertex in V_1
-

There are n! ways to order each part and two ways to choose the 'first' part, implying $c = 2(n!)^2$ circuits.

Colouring

Informally: assigning a "colour" to each vertex (e.g. a node in an electric or transportation network) so that the vertices connected by an edge have different colours.

Formally: A mapping $c: V \longrightarrow [1..n]$ such that for every $e = (v, w) \in E$ $c(v) \neq c(w)$

The minimum n sufficient to effect such a mapping is called the **chromatic number** of a graph G = (E, V) and is denoted $\chi(G)$.

NB

This notion is extremely important in operations research, esp. in scheduling.

There is a dual notion of 'edge colouring' — two edges that share a vertex need to have different colours. Curiously enough, it is much less useful in practice.

Properties of the Chromatic Number

- $\chi(K_n) = n$
- If G has n vertices and $\chi(G) = n$ then $G = K_n$

Proof.

Suppose that G is 'missing' the edge (v, w), as compared with K_n . Colour all vertices, except w, using n-1 colours. Then assign to w the same colour as that of v.

- If $\chi(G) = 1$ then G is totally disconnected: it has 0 edges.
- If $\chi(G) = 2$ then G is bipartite.
- For any tree $\chi(T) = 2$.
- For any cycle C_n its chromatic number depends on the parity of n for n even $\chi(C_n) = 2$, while for n odd $\chi(C_n) = 3$.

Cliques

Graph (V', E') subgraph of $(V, E) - V' \subseteq V$ and $E' \subseteq E$.

Definition

A **clique** in G is a *complete* subgraph of G. A clique of k nodes is called k-clique.

The size of the largest clique is called the *clique number* of the graph and denoted $\kappa(G)$.

Theorem

$$\chi(G) \geq \kappa(G)$$
.

Proof.

Every vertex of a clique requires a different colour, hence there must be at least $\kappa(G)$ colours.

However, this is the only restriction. For any given k there are graphs with $\kappa(G) = k$, while $\chi(G)$ can be arbitrarily large.

NB

This fact (and such graphs) are important in the analysis of parallel computation algorithms.

- $\kappa(K_n) = n$, $\kappa(K_{m,n}) = 2$, $\kappa(K_{m_1,...,m_r}) = r$.
- If $\kappa(G) = 1$ then G is totally disconnected.
- For a tree $\kappa(T) = 2$.
- For a cycle C_n $\kappa(C_3) = 3$, $\kappa(C_4) = \kappa(C_5) = \ldots = 2$

The difference between $\kappa(G)$ and $\chi(G)$ is apparent with just $\kappa(G) = 2$ — this does not imply that G is bipartite. For example, the cycle C_n for any odd n has $\chi(C_n) = 3$.

9.10.1 (Aho & Ullman)

 $\chi(G)$? $\kappa(G)$? A largest clique?

9.10.1 (Aho & Ullman)

$$\chi(G_1) = \kappa(G_1) = 3; \quad \chi(G_2) = \kappa(G_2) = 2; \quad \chi(G_3) = \kappa(G_3) = 3$$

9.10.3 (Aho & Ullman) Let G = (V, E) be an undirected graph. What inequalities must hold between

- the maximal deg(v) for $v \in V$
- $\chi(G)$
- κ(G)

 $\max_{v \in V} deg(v) + 1 \ge \chi(G) \ge \kappa(G)$

9.10.3 (Aho & Ullman) Let G = (V, E) be an undirected graph. What inequalities must hold between

- the maximal deg(v) for $v \in V$
- $\chi(G)$
- κ(G)

$$\max_{v \in V} deg(v) + 1 \ge \chi(G) \ge \kappa(G)$$

Planar Graphs

Definition

A graph is **planar** if it can be **embedded** in a plane without its edges intersecting.

Theorem

If the graph is planar it can be embedded in a plane (without self-intersections) so that all its edges are straight lines.

NB

This notion and its related algorithms are extremely important to VLSI and visualising data.

Two minimal nonplanar graphs

9.10.2 (Aho & Ullman)

Is (the undirected version of) this graph planar? Yes

9.10.2 (Aho & Ullman)

Is (the undirected version of) this graph planar? Yes

Theorem

If graph G contains, as a subgraph, a nonplanar graph, then G itself is nonplanar.

For a graph, edge subdivision means to introduce some new vertices, all of degree 2, by placing them on existing edges.

We call such a derived graph a *subdivision* of the original one.

Theorem

If a graph is nonplanar then it must contain a subdivision of K_5 or $K_{3,3}$.

Theorem

 K_n for $n \geq 5$ is nonplanar.

Proof.

It contains K_5 : choose any five vertices in K_n and consider the subgraph they define.

Theorem

 $K_{m,n}$ is nonplanar when $m \geq 3$ and $n \geq 3$.

Proof.

They contain $K_{3,3}$ — choose any three vertices in each of two vertex parts and consider the subgraph they define.

Question

Are all $K_{m,1}$ planar?

Answer

Yes, they are trees of two levels — the root and m leaves.

Question

Are all $K_{m,1}$ planar?

Answer

Yes, they are trees of two levels — the root and m leaves.

Question

Are all $K_{m,2}$ planar?

Answer

Yes; they can be represented by "glueing" together two such trees at the leaves.

Sketching $K_{m,2}$:

Also, among the k-partite graphs, planar are $K_{2,2,2}$ and $K_{1,1,m}$. The latter can be depicted by drawing one extra edge in $K_{2,m}$, connecting the top and bottom vertices.

NB

Finding a 'basic' nonplanar obstruction is not always simple

It contains a subdivision of both $K_{3,3}$ and K_5 while it does not directly contain either of them.

Summary

- Graphs, trees, vertex degree, connected graphs, connected components, paths, cycles
- Graph isomorphisms, automorphisms
- Special graphs: complete K_n , complete bi-, k-partite $K_{m_1,...,m_k}$
- Traversals
 - Euler paths and circuits (edge traversal)
 - Hamiltonian paths and circuits (vertex traversal)
- Graph properties: chromatic number $\chi(G)$, clique number $\kappa(G)$, planarity

