

Final Project Pitch

W. Chen, Y. Dong, Z. Xie

Background

- Path tracing can produce photo-realistic global illuminated images. However, current ray tracing performance is limited by hardware. Therefore, denoising, which reconstructs the rendering output only with few samples, becomes a popular topic in both industry and academia.
- Two major research areas for denoising are
 - Machine Learning
 - Hybrid Rendering
- Our project will try to implement denoising methods in both categories and compare the results.

Sample Denoising Network Architecture

Sample Spatiotemporal Filtering Pipeline

- Scheid et al. Spatiotemporal Variance-Guided Filtering

- Mara et al. An efficient denoising algorithm for global illumination

Denoising the Cornell Box

Proposed Timeline

- Milestone 1
 - Write framework code
 - Attempt offline denoising methods
 - Adapt existing denoiser (Intel Open Image Denoise) to the projects
- Milestone 2
 - Generate image data from path tracer
 - Build and train denoising neural network
- Milestone 3
 - Achieve real-time denoising for static scenes
- Final Presentation
 - Different environment
 - Optimization

Reference

- Alain Galvan's Blog: https://alain.xyz/blog/raytracing-denoising
- Spatiotemporal Variance Guided Filtering:

https://research.nvidia.com/sites/default/files/pubs/2017-07_Spatiotemporal-Variance-Guided-Filtering%3A//svgf_preprint.pdf