Attorney Docket No.: DC-05505

WHAT IS CLAIMED IS:

- 1 1. A system for managing projector bulb life, the system comprising: 2 a luminance sensor disposed to sense the luminance of the projector bulb; 3 a luminance controller interfaced with the luminance sensor and a power 4 driver of the projector bulb, the luminance controller operable to 5 reduce the power driver output to limit projector bulb luminance at or 6 below a setpoint level associated with a desired projector bulb life if the maximum luminance of the projector bulb is greater than a 7 8 predetermined brightness.
- 1 2. The system of Claim 1 wherein the luminance controller is further 2 operable increase power driver output to maintain projector bulb luminance 3 substantially at the setpoint level if the sensed luminance falls to a predetermined 4 brightness.
- 1 3. The system of Claim 1 further comprising a switch disposed between 2 the power driver and the luminance controller, the switch operable to selectively 3 disable the projector bulb luminance controller interface with the power driver.
- 1 4. The system of Claim 1 wherein the projector bulb comprises an ultra 2 high pressure mercury vapor bulb.
- 1 5. The system of Claim 1 wherein the projector bulb comprises a xenon 2 halogen bulb.
- 1 6. The system of Claim 1 wherein the luminance sensor comprises an infrared sensor associated with an infrared filter of the projector.
- 7. The system of Claim 1 wherein the luminance sensor comprises a visible light senor aligned to sense light leakage from a mirror of the projector.

1	8. A method for managing projector onto me, the method comprising.
2	sensing the luminance of the projector bulb;
3	determining that the sensed luminance exceeds a luminance threshold
4	associated with a desired projector bulb life; and
5	reducing the power applied to the projector bulb to reduce the luminance of
6	the projector bulb to at or below the luminance threshold associated
7	with the desired projector life.
1	9. The method of Claim 8 further comprising:
2	determining that the sensed luminance falls below a luminance threshold
3	associated with a minimum desired available luminance at a maximum
4	brightness setting; and
5	increasing the power applied to the projector bulb to increase the luminance of
6	the projector bulb to the luminance threshold of the minimum desired
7	luminance for the maximum brightness setting.
1	10. The method of Claim 9 wherein the luminance threshold associated
2	with a desired projector bulb life and the luminance threshold associated with
3	minimum desired available luminance are substantially equal when the projector is set
4	at maximum brightness.
1	11. The method of Claim 8 further comprising engaging a switch to
2	override the reducing of the power applied to the projector bulb so that the luminance
3	exceeds the threshold.
1	12. The method of Claim 8 further comprising:
2	passing the light from the projector bulb through an infrared filter;
3	wherein sensing the luminance further comprises sensing the infrared light at
4	the infrared filter.

1	13. The method of Claim 8 further comprising.
2	passing the light from the projector bulb through a first aperture to a
3	colmunator for illuminating an image;
4	passing the light from the projector bulb through a second aperture to a
5	luminance sensor for sensing the luminance.
1	14. The method of Claim 8 wherein the bulb provides light for a digital
2	mirror device projector having a color wheel, and wherein sensing the luminance
3	further comprises sensing luminance at the color wheel.
1	15. The method of Claim 8 wherein the bulb provides light for a digital
2	mirror device projector having a mirror for projecting an image, and wherein sensing
3	the luminance further comprises sensing luminance of light leakage at the mirror.
1	
1	16. A projector for display of information, the projector comprising:
2	an image operable to display the information;
3	a bulb operable to provide light to illuminate the image;
4	a power driver interfaced with the bulb and operable to provide selectable
5	variable power to illuminate the image with selectable variable
6	luminance;
7	a luminance sensor disposed to sense the luminance of the bulb; and
8	a luminance feedback controller interface with the power driver and the
9	luminance sensor, the luminance feedback controller operable to
10	control power applied by the power driver according to the luminance
11	sensed by the luminance sensor to achieve a predetermined bulb
12	parameter.
1	17. The projector of Claim 17 wherein the luminance feedback controller
·2	achieves a desired bulb life by limiting power applied by the power driver to restrict
3	luminance sensed by the luminance sensor at or below a predetermined setpoint.

- 1 18. The projector of Claim 17 wherein the luminance feedback controller 2 achieves a desired maximum available luminance from the bulb by increasing power 3 applied by the power driver to increase luminance sensed by the luminance sensor at
- 4 or above a predetermined setpoint when the selected luminance exceeds a
- 5 predetermined level.
- 1 19. The projector of Claim 17 further comprising a switch interfaced with
- 2 the luminance feedback controller and operable to disengage control by the luminance
- 3 feedback controller of the power driver.
- 1 20. The projector of Claim 17 wherein the image comprises output of a
- 2 digital mirror device.