AUTÓMATAS FINITOS

Lenguajes formales, autómatas y computabilidad

Departamento de Computación, FCEN, UBA

1er cuatrimestre 2025

Autómatas finitos

• La clase pasada vimos alfabetos, cadenas y lenguajes

Autómatas finitos

- La clase pasada vimos alfabetos, cadenas y lenguajes
- Hoy vamos a ver una máquina abstracta que nos permite reconocer lenguajes: los autómatas finitos

Autómatas finitos

- La clase pasada vimos alfabetos, cadenas y lenguajes
- Hoy vamos a ver una máquina abstracta que nos permite reconocer lenguajes: los autómatas finitos
- Estos reconocen exactamente una clase de lenguajes en particular: los lenguajes regulares.

Jerarquía de Chomsky-Schutzenberger

Ejercicio 1b de la práctica 2

Dar un autómata finito que reconozca \mathcal{L}_1 :

$$\mathcal{L}_1 = \{ \omega \mid \omega \in \{0,1\}^* \text{ y } |\omega|_0 \text{ es par } \}$$

Ejercicio 1b de la práctica 2

Dar un autómata finito que reconozca \mathcal{L}_1 :

$$\mathcal{L}_1 = \{ \omega \mid \omega \in \{0, 1\}^* \text{ y } |\omega|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma = \{0, 1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

Ejercicio 1b de la práctica 2

Dar un autómata finito que reconozca \mathcal{L}_1 :

$$\mathcal{L}_1 = \{ \omega \mid \omega \in \{0,1\}^* \text{ y } |\omega|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma = \{0, 1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

- Que pertenecen: 1, 00, 010, 00100010, λ ✓
- Que no pertenecen: 0, 10010, 1110, 101 X

Ejercicio 1b de la práctica 2

Dar un autómata finito que reconozca \mathcal{L}_1 :

$$\mathcal{L}_1 = \{ \omega \mid \omega \in \{0,1\}^* \text{ y } |\omega|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma = \{0,1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

- Que pertenecen: 1, 00, 010, 00100010, λ ✓
- Que **no** pertenecen: 0, 10010, 1110, 101 X

 \mathcal{LL}_1 es regular?

Ejercicio 1b de la práctica 2

Dar un autómata finito que reconozca \mathcal{L}_1 :

$$\mathcal{L}_1 = \{ \omega \mid \omega \in \{0,1\}^* \text{ y } |\omega|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma = \{0, 1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

- Que pertenecen: 1, 00, 010, 00100010, λ ✓
- Que **no** pertenecen: 0, 10010, 1110, 101 X

 \mathcal{LL}_1 es regular? Sí, el autómata \mathcal{L}_1 que reconoce a \mathcal{L}_1 es:

Ejercicio 1b de la práctica 2

Dar un autómata finito que reconozca \mathcal{L}_1 :

$$\mathcal{L}_1 = \{ \omega \mid \omega \in \{0,1\}^* \text{ y } |\omega|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma = \{0,1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

- Que pertenecen: 1, 00, 010, 00100010, λ ✓
- Que **no** pertenecen: 0, 10010, 1110, 101 X

 \mathcal{L}_1 es regular? Sí, el autómata \mathcal{A}_1 que reconoce a \mathcal{L}_1 es:

$$P \xrightarrow{0} I$$

$$P \xrightarrow{0} I \xrightarrow{1} I$$

$$P \xrightarrow{0} I \xrightarrow{1} I \xrightarrow{0} P$$

$$P \xrightarrow{0} I \xrightarrow{1} I \xrightarrow{0} P \checkmark$$

• $010 \in \mathcal{L}_1$:

$$P \xrightarrow{0} I \xrightarrow{1} I \xrightarrow{0} P \checkmark$$

• $010 \in \mathcal{L}_1$:

$$P \xrightarrow{0} I \xrightarrow{1} I \xrightarrow{0} P \checkmark$$

$$P \xrightarrow{1} P$$

• $010 \in \mathcal{L}_1$:

$$P \xrightarrow{0} I \xrightarrow{1} I \xrightarrow{0} P \checkmark$$

$$P \xrightarrow{1} P \xrightarrow{0} I$$

• $010 \in \mathcal{L}_1$:

$$P \xrightarrow{0} I \xrightarrow{1} I \xrightarrow{0} P \checkmark$$

$$P \xrightarrow{1} P \xrightarrow{0} I \xrightarrow{1} I$$

• $010 \in \mathcal{L}_1$:

$$P \xrightarrow{0} I \xrightarrow{1} I \xrightarrow{0} P \checkmark$$

$$P \xrightarrow{1} P \xrightarrow{0} I \xrightarrow{1} I X$$

Definición

Autómata finito

Un AFD es una tupla de la forma

$$A = \langle Q, \Sigma, \delta, q_0, F \rangle,$$

donde:

- Q es un conjunto de estados
- Σ es el alfabeto
- $\delta: Q \times \Sigma \rightarrow Q$ es la función de transición
- q₀ es el estado inicial
- $F \subseteq Q$ es el conjunto de estados finales

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{ \overset{Q}{P}, I \}, \{ \overset{\Sigma}{0}, \overset{\text{inicial}}{1} \}, \overset{F}{\delta}, \overset{P}{P}, \{ \overset{F}{P} \} \rangle$$

y antes dimos una representación pictórica de $\delta: \mathbf{Q} \times \Sigma \to \mathbf{Q}$

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{ \overset{Q}{P}, I \}, \{ \overset{\Sigma}{0}, \overset{\text{inicial}}{1} \}, \overset{F}{\rho}, \{ \overset{P}{P} \} \rangle$$

y antes dimos una representación pictórica de $\delta: Q \times \Sigma \rightarrow Q$

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{ \overset{Q}{P}, I \}, \{ \overset{\Sigma}{0}, \overset{\text{inicial}}{1} \}, \overset{F}{\rho}, \{ \overset{P}{P} \} \rangle$$

y antes dimos una representación pictórica de $\delta: Q \times \Sigma \rightarrow Q$

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{ \overset{Q}{P}, I \}, \{ \overset{\Sigma}{0}, \overset{\text{inicial}}{1} \}, \overset{F}{\rho}, \{ \overset{P}{P} \} \rangle$$

y antes dimos una representación pictórica de $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{ \stackrel{Q}{P}, I \}, \{ \stackrel{\Sigma}{0}, \stackrel{\text{inicial}}{1} \}, \stackrel{F}{\delta}, \stackrel{P}{P} \rangle$$

y antes dimos una representación pictórica de $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{ \overset{Q}{P}, I \}, \{ \overset{\Sigma}{0}, \overset{\text{inicial}}{1} \}, \overset{F}{\rho}, \{ \overset{P}{P} \} \rangle$$

y antes dimos una representación pictórica de $\delta: Q \times \Sigma \rightarrow Q$

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{ \overset{Q}{P}, I \}, \{ \overset{\Sigma}{0}, \overset{\text{inicial}}{1} \}, \overset{F}{\rho}, \{ \overset{P}{P} \} \rangle$$

y antes dimos una representación pictórica de $\delta: Q \times \Sigma \rightarrow Q$

δ	0	1
Р	1	Р
1	P	

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{ \overset{Q}{P}, I \}, \{ \overset{\Sigma}{0}, \overset{\text{inicial}}{1} \}, \overset{F}{\rho}, \{ \overset{P}{P} \} \rangle$$

y antes dimos una representación pictórica de $\delta: Q \times \Sigma \rightarrow Q$

δ	0	1
Р	1	Р
1	P	

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{ \overset{Q}{P}, I \}, \{ \overset{\Sigma}{0}, \overset{\text{inicial}}{1} \}, \overset{F}{\rho}, \{ \overset{P}{P} \} \rangle$$

y antes dimos una representación pictórica de $\delta: Q \times \Sigma \rightarrow Q$

δ	0	1
Р	1	Р
1	P	1

La tupla y los parciales

Para los ejercicios alcanza con el dibujo para especificar δ , no es necesario que escriban la tabla. Pero, en especial en los **parciales**,

La tupla y los parciales

Para los ejercicios alcanza con el dibujo para especificar δ , no es necesario que escriban la tabla. Pero, en especial en los **parciales**,

¡No olviden la tupla!

La tupla y los parciales

Para los ejercicios alcanza con el dibujo para especificar δ , no es necesario que escriban la tabla. Pero, en especial en los **parciales**,

¡No olviden la tupla!

¿Hay otros autómatas?

¿Hay otros autómatas?

¿Hay otros autómatas?

¿Hay otros autómatas?

- ¿Cómo formalizamos que un autómata acepte una cadena?
 - Vamos a definir configuraciones instantáneas, una tupla compuesta por el estado actual y lo que resta de consumir de la cadena. Representan una foto del proceso de reconocimiento de una cadena en un instante dado.

- ¿Cómo formalizamos que un autómata acepte una cadena?
 - Vamos a definir configuraciones instantáneas, una tupla compuesta por el estado actual y lo que resta de consumir de la cadena. Representan una foto del proceso de reconocimiento de una cadena en un instante dado.
 - Luego, el autómata va a *transicionar* entre configuraciones a medida que consume la cadena.

¿Cómo formalizamos que un autómata acepte una cadena?

- Vamos a definir configuraciones instantáneas, una tupla compuesta por el estado actual y lo que resta de consumir de la cadena. Representan una foto del proceso de reconocimiento de una cadena en un instante dado.
- Luego, el autómata va a *transicionar* entre configuraciones a medida que consume la cadena.

Ejemplo: $\alpha = 010$

¿Cómo formalizamos que un autómata acepte una cadena?

- Vamos a definir configuraciones instantáneas, una tupla compuesta por el estado actual y lo que resta de consumir de la cadena. Representan una foto del proceso de reconocimiento de una cadena en un instante dado.
- Luego, el autómata va a transicionar entre configuraciones a medida que consume la cadena.

Ejemplo: $\alpha = 010$

$$(q_p,010) \vdash_{\mathcal{A}_1} (q_i,10) \ \vdash_{\mathcal{A}_1} (q_i,0) \ \vdash_{\mathcal{A}_1} (q_p,\lambda)$$

Formalizando

Dado $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, definimos:

Configuraciones instantáneas

$$(q, \alpha) \in Q \times \Sigma^*$$

donde q es el estado actual y α es lo que resta por consumir de la cadena de entrada.

¿Cómo podemos formalizar la transición entre ellas?

Formalizando

Dado $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, definimos:

Configuraciones instantáneas

$$(q, \alpha) \in Q \times \Sigma^*$$

donde q es el estado actual y α es lo que resta por consumir de la cadena de entrada.

¿Cómo podemos formalizar la transición entre ellas? Podemos pasar de un estado a otro consumiendo un símbolo solo si δ nos dice que existe tal transición

Relación de transición entre configuraciones

$$(q_i, a.\alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff$$

Formalizando

Dado $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, definimos:

Configuraciones instantáneas

$$(q, \alpha) \in Q \times \Sigma^*$$

donde q es el estado actual y α es lo que resta por consumir de la cadena de entrada.

¿Cómo podemos formalizar la transición entre ellas? Podemos pasar de un estado a otro consumiendo un símbolo solo si δ nos dice que existe tal transición

Relación de transición entre configuraciones

$$(q_i, a.\alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff \delta(q_i, a) = q_j$$

Pertenencia al lenguaje

Con todo lo que vimos, ¿Se les ocurre cómo definir el **lenguaje aceptado** por un autómata?

Pertenencia al lenguaje

Con todo lo que vimos, ¿Se les ocurre cómo definir el **lenguaje aceptado** por un autómata?

Lenguaje aceptado

$$\alpha \in L(A) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_{A}^* (q_f, \lambda)$$

 α pertenece al lenguaje aceptado si partiendo de la configuración inicial (q_0,α) se puede consumir toda la cadena llegando a un estado final. Es decir, llegar a la configuración (q_f,λ) con $q_f\in F$.

Recordatorio

Recordemos que ⊢* quiere decir aplicar ⊢ cero o más veces. ¿Cuando necesitamos aplicarla cero veces?

Pertenencia al lenguaje

Con todo lo que vimos, ¿Se les ocurre cómo definir el **lenguaje aceptado** por un autómata?

Lenguaje aceptado

$$\alpha \in L(A) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_{A}^* (q_f, \lambda)$$

 α pertenece al lenguaje aceptado si partiendo de la configuración inicial (q_0,α) se puede consumir toda la cadena llegando a un estado final. Es decir, llegar a la configuración (q_f,λ) con $q_f\in F$.

Recordatorio

Recordemos que \vdash^* quiere decir aplicar \vdash cero o más veces. ¿Cuando necesitamos aplicarla cero veces? Cuando la entrada es λ .

Seguimientos de cadenas

•
$$(q_p, 010) \vdash_{A_1} (q_i, 10) \vdash_{A_1} (q_i, 0) \vdash_{A_1} (q_p, \lambda) \checkmark$$

•
$$(q_p, 101) \vdash_{A_1} (q_p, 01) \vdash_{A_1} (q_i, 1) \vdash_{A_1} (q_i, \lambda) \ X$$

Enunciado

Cadenas sobre $\Sigma = \{0, 1\}$ que comienzan con 01.

$$\mathcal{L}_{2} = \{01\alpha \mid \alpha \in \{0,1\}^{*}\}$$

¿Qué tenemos que recordar?

Enunciado

Cadenas sobre $\Sigma = \{0, 1\}$ que comienzan con 01.

$$\mathcal{L}_{2} = \{01\alpha \mid \alpha \in \{0,1\}^{*}\}\$$

¿Qué tenemos que recordar? Si vimos un 0 y luego un 1

Enunciado

Cadenas sobre $\Sigma = \{0, 1\}$ que comienzan con 01.

$$\mathcal{L}_{2} = \{01\alpha \mid \alpha \in \{0, 1\}^{*}\}\$$

¿Qué tenemos que recordar? Si vimos un 0 y luego un 1 Proponemos el siguiente autómata A_2 para \mathcal{L}_2 ,

¿Qué problema tiene?

Enunciado

Cadenas sobre $\Sigma = \{0, 1\}$ que comienzan con 01.

$$\mathcal{L}_2 = \{01\alpha \mid \alpha \in \{0,1\}^*\}$$

¿Qué tenemos que recordar? Si vimos un 0 y luego un 1 Proponemos el siguiente autómata A_2 para \mathcal{L}_2 ,

¿Qué problema tiene? ¡La función de transición está incompleta!

δ	0	1
q_0	q_1	?
q_1	?	q_2
q_2	q_2	q_2

Estado trampa

Para que el autómata quede bien definido, vamos a completarlo con un **estado trampa** (o de *error*), al que van todas las transiciones no definidas y cicla sobre sí mismo con todos los símbolos del alfabeto

$$\mathcal{A}_2 = \langle \{q_0, q_1, q_2, q_7\}, \{0, 1\}, \delta, q_0, \{q_2\} \rangle$$

Ejercicio 3

Cadenas sobre $\Sigma = \{0, 1\}$ que terminan con 01.

$$\mathcal{L}_3 = \{ \alpha 01 \mid \alpha \in \{0, 1\}^* \}$$

Ejercicio 3

Cadenas sobre $\Sigma = \{0, 1\}$ que terminan con 01.

$$\mathcal{L}_3 = \{ \alpha 01 \mid \alpha \in \{0, 1\}^* \}$$

 \mathcal{A}_3 :

Significado intuitivo de cada estado:

- q₀: "La cadena no termina en 0 ni en 01"
- q₁: "La cadena termina en 0"
 - q₂: "La cadena termina en 01"

Casos de test

$$\mathcal{L}_3 = \{\alpha \mathbf{01} \mid \alpha \in \{\mathbf{0}, \mathbf{1}\}^*\}$$

 \mathcal{A}_3 :

Casos de test

$$\mathcal{L}_3 = \{ \alpha \mathbf{01} \mid \alpha \in \{\mathbf{0}, \mathbf{1}\}^* \}$$

 \mathcal{A}_3 :

- 0, 1, 010, 011, 1111010 X
- 01, 0001, 010101, 1100001 <

Alternativa

El lenguaje \mathcal{L}_3 es muy parecido a \mathcal{L}_2 , pero el autómata se ve más complicado. Nos gustaría que el formalismo nos permita expresar algo como "Puede venir cualquier cadena, siempre y cuando termine con 01", al igual que para \mathcal{L}_2 nos permitía decir "Si arranca por 01 puede seguir cualquier cadena".

Alternativa

El lenguaje \mathcal{L}_3 es muy parecido a \mathcal{L}_2 , pero el autómata se ve más complicado. Nos gustaría que el formalismo nos permita expresar algo como "Puede venir cualquier cadena, siempre y cuando termine con 01", al igual que para \mathcal{L}_2 nos permitía decir "Si arranca por 01 puede seguir cualquier cadena". Proponemos \mathcal{A}'_3 ,

Pero

Alternativa

El lenguaje \mathcal{L}_3 es muy parecido a \mathcal{L}_2 , pero el autómata se ve más complicado. Nos gustaría que el formalismo nos permita expresar algo como "Puede venir cualquier cadena, siempre y cuando termine con 01", al igual que para \mathcal{L}_2 nos permitía decir "Si arranca por 01 puede seguir cualquier cadena". Proponemos \mathcal{A}_3' ,

Pero no cuadra con la definición que vimos antes, $\delta(q_0,0)$ tiene más de una opción: q_0 y q_1 . ¡No es **determinístico**!

Seguimientos

 A_3' :

Para la cadena $\alpha = 101 \in \mathcal{L}_3$ tenemos dos caminos posibles

Seguimientos

*A*₃:

Para la cadena $\alpha = 101 \in \mathcal{L}_3$ tenemos dos caminos posibles

•
$$q_0 \xrightarrow[\mathcal{A}'_3]{} q_0 \xrightarrow[\mathcal{A}'_3]{} q_1 \xrightarrow[\mathcal{A}'_3]{} q_2 \checkmark$$

•
$$q_0 \xrightarrow[\mathcal{A}'_3]{} q_0 \xrightarrow[\mathcal{A}'_3]{} q_0 \xrightarrow[\mathcal{A}'_3]{} q_0 X$$

Alcanza con que *exista al menos un* recorrido desde el inicial a un estado final cuya etiqueta sea la cadena para que pertenezca al lenguaje. **No importa que haya otros que no sean exitosos**.

$AFND-\lambda$

Los autómatas que veníamos viendo hasta ahora eran **determinísticos**, en cada momento tenían una sola acción posible. \mathcal{A}_3' es un autómata finito **no determinístico**, que en cada paso puede tener más de una alternativa para elegir.

$AFND-\lambda$

Los autómatas que veníamos viendo hasta ahora eran **determinísticos**, en cada momento tenían una sola acción posible. \mathcal{A}_3' es un autómata finito **no determinístico**, que en cada paso puede tener más de una alternativa para elegir. Al igual que los AFDs, son una tupla $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ pero cambia la función de transición:

$$\delta: Q \times (\Sigma \cup \lambda) \to \mathcal{P}(Q)$$

- En lugar de un solo estado, devuelve un conjunto
- Además de transiciones por un símbolo de la entrada, podemos transicionar por λ^{-1} sin consumir ningún símbolo

 $^{^{1}}$ No confundir con la cadena λ , es una notación

AFND- λ

Los autómatas que veníamos viendo hasta ahora eran **determinísticos**, en cada momento tenían una sola acción posible. \mathcal{A}_3' es un autómata finito **no determinístico**, que en cada paso puede tener más de una alternativa para elegir. Al igual que los AFDs, son una tupla $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ pero cambia la función de transición:

$$\delta: Q \times (\Sigma \cup \lambda) \rightarrow \mathcal{P}(Q)$$

- En lugar de un solo estado, devuelve un conjunto
- Además de transiciones por un símbolo de la entrada, podemos transicionar por λ^{-1} sin consumir ningún símbolo

Diferencia con bibliografía

Se suele diferenciar entre AFNDs con y sin transiciones λ (a veces llamadas ϵ), pero para nosotros va a ser lo mismo.

¹No confundir con la cadena λ , es una notación

Volviendo al ejercicio

La tupla que describe a \mathcal{A}_3' es

$$\mathcal{A}_3' = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\} \rangle$$

donde δ está dada por la siguiente tabla,

δ	0	1	λ
q_0	$\{q_0, q_1\}$	{ <i>q</i> ₀ }	Ø
q_1	Ø	{ q ₂ }	Ø
q_2	Ø	Ø	Ø

AFNDs no hacen trampa

δ	0	1	λ
q_0	$\{q_0, q_1\}$	$\{q_0\}$	Ø
q_1	Ø	$\{q_{2}\}$	Ø
q_2	Ø	Ø	Ø

Trampas en AFNDs

Observen que en AFNDs no es necesario completar con un estado trampa. La imagen de δ son los conjuntos y asumimos que si una transición no está en el dibujo, va a \emptyset

Relación ⊢ y lenguaje

Las configuraciones instantáneas son las mismas que para AFDs, ¿pero cómo es la relación entre ellas?

Relación ⊢ y lenguaje

Las configuraciones instantáneas son las mismas que para AFDs, ¿pero cómo es la relación entre ellas? Hay dos casos: consumiendo un símbolo o por λ

Relación de transición entre configuraciones

$$(q_i, a.\alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff q_j \in \delta(q_i, a)$$

 $(q_i, \alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff q_j \in \delta(q_i, \lambda)$

La definición del lenguaje es idéntica

Lenguaje aceptado

$$\alpha \in L(A) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_{A}^* (q_f, \lambda)$$

Seguimientos

 A_3' :

Para la cadena $\alpha = 101 \in L_3$ tenemos dos caminos posibles

Seguimientos

 A_3' :

Para la cadena $\alpha = 101 \in L_3$ tenemos dos caminos posibles

- $(q_0, 101) \vdash_{\mathcal{A}'_3} (q_0, 01) \vdash_{\mathcal{A}'_3} (\mathbf{q}_1, 1) \vdash_{\mathcal{A}'_3} (q_2, \lambda) \checkmark$
- $(q_0, 101) \vdash_{\mathcal{A}_3'} (q_0, 01) \vdash_{\mathcal{A}_3'} (q_0, 1) \vdash_{\mathcal{A}_3'} (q_0, \lambda)$ \checkmark

Por la definición de lenguaje aceptado, alcanza con que *exista* al menos una secuencia de configuraciones que lleve a un estado final consumiendo toda la cadena para que pertenezca al lenguaje. **No importa que otras secuencias no lleven a aceptar**.

Más seguimientos

 \mathcal{A}_3' :

Para la cadena $\beta = 010 \notin \mathcal{L}_3$ tenemos tres caminos posibles

Más seguimientos

$$\mathcal{A}_3'$$
:

Para la cadena $\beta = 010 \notin \mathcal{L}_3$ tenemos tres caminos posibles

•
$$(q_0, 010) \vdash_{\mathcal{A}'_3} (q_0, 10) \vdash_{\mathcal{A}'_3} (q_0, 0) \vdash_{\mathcal{A}'_3} (q_1, \lambda) \times (q_0, 010) \vdash_{\mathcal{A}'_3} (q_0, 10) \vdash_{\mathcal{A}'_3} (q_0, 0) \vdash_{\mathcal{A}'_3} (q_0, \lambda) \times (q_0, 010) \vdash_{\mathcal{A}'_3} (q_0, 0) \vdash_{\mathcal{A}'_3} (q_0, \lambda) \times (q_0, 010) \vdash_{\mathcal{A}'_3} (q_0, 010) \vdash_{\mathcal{$$

Consumen toda la cadena pero no llegan a un estado final

•
$$(q_0,010) \vdash_{\mathcal{A}'_3} (q_1,10) \vdash_{\mathcal{A}'_3} (q_2,0)$$
 X

Llega a un estado final pero no consume toda la cadena

Aclaración sobre lenguaje aceptado

Lenguaje aceptado

$$\alpha \in L(A) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_{A}^* (q_f, \lambda)$$

¡Hay que consumir toda la cadena!

Un autómata finito solo acepta una cadena si puede consumirla toda y terminar en un estado final. No alcanza solo con llegar a un estado final, **tiene que consumir toda la cadena**.

Esto suele generar confusión sobre todo con autómatas no determinísticos.

Ejercicio 4

 $\mathcal{L}_4 = \mathcal{L}_1 \cup \mathcal{L}_3$. Con $\mathcal{L}_1 =$ cadenas con cantidad par de 0s y $\mathcal{L}_3 =$ cadenas que terminan en 01. ¿Qué significa \mathcal{L}_4 ?

Ejercicio 4

 $\mathcal{L}_4=\mathcal{L}_1\cup\mathcal{L}_3$. Con $\mathcal{L}_1=$ cadenas con cantidad par de 0s y $\mathcal{L}_3=$ cadenas que terminan en 01. ¿Qué significa \mathcal{L}_4 ? Cadenas que terminen en 01 **o** tengan cantidad par de 0s.

Pista:

Ejercicio 4

 $\mathcal{L}_4=\mathcal{L}_1\cup\mathcal{L}_3$. Con $\mathcal{L}_1=$ cadenas con cantidad par de 0s y $\mathcal{L}_3=$ cadenas que terminan en 01. ¿Qué significa \mathcal{L}_4 ? Cadenas que terminen en 01 **o** tengan cantidad par de 0s.

Pista: ¿Cómo podemos usar A_1 y A_3' ?

$$\mathcal{A}_4 = \langle \{\textit{I}, \textit{q}_0, \textit{q}_1, \textit{p}_0, \textit{p}_1, \textit{p}_2\}, \{0, 1\}, \delta, \textit{I}, \{\textit{q}_0, \textit{p}_2\} \rangle$$

Ejercicio 5.a

a. Con $\mathcal{L}_2=$ cadenas que comienzan por 01, $\mathcal{L}_2^c=$

Ejercicio 5.a

a. Con $\mathcal{L}_2=$ cadenas que comienzan por 01, $\mathcal{L}_2^c=$ cadenas que no comienzan por 01

Pista:

Ejercicio 5.a

a. Con $\mathcal{L}_2=$ cadenas que comienzan por 01, $\mathcal{L}_2^c=$ cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ?

Ejercicio 5.a

a. Con $\mathcal{L}_2=$ cadenas que comienzan por 01, $\mathcal{L}_2^c=$ cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ?

Convención del trampa implícito

Vamos a tomar el estado trampa como **implícito** cuando un autómata sea determinístico (no haya más de una opción) pero tenga δ indefinida para algunas transiciones.

Ejercicio 5.a

a. Con $\mathcal{L}_2=$ cadenas que comienzan por 01, $\mathcal{L}_2^c=$ cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ?

Ejercicio 5.a

a. Con $\mathcal{L}_2=$ cadenas que comienzan por 01, $\mathcal{L}_2^c=$ cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ?

invertimos los estados finales!

Pero

Ejercicio 5.a

a. Con $\mathcal{L}_2=$ cadenas que comienzan por 01, $\mathcal{L}_2^c=$ cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ?

invertimos los estados finales!

Pero 111 $\notin \mathcal{L}_2$ (no arranca con 01) y, ¡no la reconoce! **El autómata tiene que estar completo**, sino perdemos cadenas.

Ejercicio 5.a

a. \mathcal{L}_2^c = cadenas que no comienzan por 01

Ejercicio 5.b

a. \mathcal{L}_3^c = cadenas que no terminan con 01

Ejercicio 5.b

a. \mathcal{L}_3^c = cadenas que no terminan con 01

Candidato:

Ejercicio 5.b

a. \mathcal{L}_3^c = cadenas que no terminan con 01

Candidato:

¡No funciona! Aceptamos cadenas demás como 01 (en particular en este caso aceptamos Σ^*). Para cada cadena que aceptábamos, había caminos que no aceptaban. Entonces si invertimos los finales, esos caminos pueden pasar a ser de aceptación (excepto que se traben) y aceptamos cadenas que no deberíamos.

El autómata tiene que ser determinístico.

Ejercicio 5.b

b. \mathcal{L}_3^c = cadenas que no terminan con 01

Ejercicio 5.b

b. \mathcal{L}_3^c = cadenas que no terminan con 01

Ejercicio 6

 \mathcal{L}_4^r , con $\mathcal{L}_4=\mathcal{L}_1\cup\mathcal{L}_3$, cadenas que terminan en 01 o tienen cantidad par de 0s

$$\mathcal{A}_4 = \langle \{\textit{I}, \textit{q}_0, \textit{q}_1, \textit{p}_0, \textit{p}_1, \textit{p}_2\}, \{0, 1\}, \delta, \textit{I}, \{\textit{q}_0, \textit{p}_2\} \rangle$$

Solución:

Solución: Ejecutamos el autómata al revés: damos vuelta las flechas e invertimos los finales e iniciales.

¡No podemos tener mas de un estado inicial! Agregamos un estado inicial con transiciones λ

$$\mathcal{A}_{4}^{r} = \langle \{\textit{I}, \textit{J}, \textit{q}_{0}, \textit{q}_{1}, \textit{p}_{0}, \textit{p}_{1}, \textit{p}_{2}\}, \{0, 1\}, \delta, \textit{J}, \{\textit{I}\} \rangle$$

Formalizando reversa

Reversa

Sea $\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ un AFND- λ y $\mathcal{A}^r=\langle Q',\Sigma,\delta^r,q_0',F'\rangle$ tal que:

- $Q' = Q \cup \{q'_0\}$ (nuevo inicial)
- $\delta^r(q_0', \lambda) = F$ (arrancar por los finales)
- $q_2 \in \delta'(q_1, a) \iff q_1 \in \delta(q_2, a)$ (dar vuelta flechas)
- $F' = \{q_0\}$ (terminar en el estado que era inicial)

Luego
$$(L(A))^r = L(A^r)$$

Paso intermedio

Queremos demostrar primero que:

$$(\forall q, p \in Q)((q, \alpha) \vdash_{\mathcal{A}}^{*} (p, \lambda) \iff (p, \alpha') \vdash_{\mathcal{A}'}^{*} (q, \lambda))$$

Paso intermedio

Queremos demostrar primero que:

$$(\forall q, p \in Q)((q, \alpha) \vdash_{\mathcal{A}}^{*} (p, \lambda) \iff (p, \alpha^{r}) \vdash_{\mathcal{A}^{r}}^{*} (q, \lambda))$$

Vamos usar inducción estructural sobre α

Caso base

$$\alpha = \lambda$$
:

Queremos probar que

$$(q,\lambda)\vdash_{\mathcal{A}}^{*}(r,\lambda)\iff(p,\lambda)\vdash_{\mathcal{A}^{r}}^{*}(q,\lambda)$$

Caso base

$$\alpha = \lambda$$
:

Queremos probar que

$$(q,\lambda)\vdash_{\mathcal{A}}^{*}(r,\lambda)\iff(p,\lambda)\vdash_{\mathcal{A}^{r}}^{*}(q,\lambda)$$

Vamos a hacer induccion en la cantidad de transiciones. Es decir

$$(q,\lambda)\vdash_{\mathcal{A}}^{i}(p,\lambda)\iff (p,\lambda)\vdash_{\mathcal{A}^{r}}^{i}(q,\lambda)$$

• Caso base, *i* = 1:

• Caso base, *i* = 1:

$$\begin{array}{l} (q,\lambda) \vdash^{1}_{\mathcal{A}} (p,\lambda) \\ \stackrel{\mathsf{def} \vdash}{\Longrightarrow} \ p \in \delta(q,\lambda) \\ \stackrel{\mathsf{def} \ \delta^{r}}{\Longleftrightarrow} \ q \in \delta^{r}(p,\lambda) \\ \stackrel{\mathsf{def} \vdash}{\longleftrightarrow} \ (p,\lambda) \vdash^{1}_{\mathcal{A}^{r}} (q,\lambda) \end{array}$$

 Paso inductivo. Vale para n, queremos ver que vale para n + 1 :

 Paso inductivo. Vale para n, queremos ver que vale para n + 1 :

$$\begin{array}{l} (q,\lambda) \vdash^{n+1}_{\mathcal{A}} (p,\lambda) \\ \stackrel{\text{def}}{\iff} \exists s \mid (q,\lambda) \vdash^{1}_{\mathcal{A}} (s,\lambda) \land (s,\lambda) \vdash^{n}_{\mathcal{A}} (p,\lambda) \\ \stackrel{\text{def}}{\iff} \exists s \mid s \in \delta(q,\lambda) \land (s,\lambda) \vdash^{n}_{\mathcal{A}} (p,\lambda) \\ \stackrel{\text{def}}{\iff} \exists s \mid q \in \delta^{r}(s,\lambda) \land (s,\lambda) \vdash^{n}_{\mathcal{A}} (p,\lambda) \\ \stackrel{\text{HI}}{\iff} \exists s \mid q \in \delta^{r}(s,\lambda) \land (p,\lambda) \vdash^{n}_{\mathcal{A}^{r}} (s,\lambda) \\ \stackrel{\text{def}}{\iff} \exists s \mid (s,\lambda) \vdash^{1}_{\mathcal{A}^{r}} (q,\lambda) \land (p,\lambda) \vdash^{n}_{\mathcal{A}^{r}} (s,\lambda) \\ \stackrel{\text{reordenando}}{\iff} \exists s \mid (p,\lambda) \vdash^{n}_{\mathcal{A}^{r}} (s,\lambda) \land (s,\lambda) \vdash^{1}_{\mathcal{A}^{r}} (q,\lambda) \\ \stackrel{\text{def}}{\iff} (p,\lambda) \vdash^{n+1}_{\mathcal{A}^{r}} (q,\lambda) \end{array}$$

Demostramos así entonces que $(q,\lambda) \vdash^{i}_{\mathcal{A}} (p,\lambda) \iff (p,\lambda) \vdash^{i}_{\mathcal{A}^{r}} (q,\lambda).$ y en particular que $(q,\lambda) \vdash^{*}_{\mathcal{A}} (p,\lambda) \iff (p,\lambda) \vdash^{*}_{\mathcal{A}^{r}} (q,\lambda).$ Con esto queda probado el caso base.

Paso inductivo

Vale para ω

Queremos probar que vale para $\alpha = a\omega (\alpha^r = \omega^r a)$:

$$(q, a\omega) \vdash_{\mathcal{A}}^{*} (p, \lambda) \iff (p, \omega^{r}a) \vdash_{\mathcal{A}^{r}}^{*} (q, \lambda)$$

Paso inductivo:

$$\begin{array}{l} (q,a\omega) \vdash_{\mathcal{A}}^{*}(p,\lambda) \\ \stackrel{\mathsf{def}}{\iff} \exists s \mid (q,a\omega) \vdash_{\mathcal{A}} (s,\omega) \land (s,\omega) \vdash_{\mathcal{A}}^{*}(p,\lambda) \\ \stackrel{\mathsf{def}}{\iff} \exists s \mid s \in \delta(q,a) \land (s,\omega) \vdash_{\mathcal{A}}^{*}(p,\lambda) \\ \stackrel{\mathsf{def}}{\iff} \exists s \mid q \in \delta^{r}(s,a) \land (s,\omega) \vdash_{\mathcal{A}}^{*}(p,\lambda) \\ \stackrel{\mathsf{HI}}{\iff} \exists s \mid q \in \delta^{r}(s,a) \land (p,\omega^{r}) \vdash_{\mathcal{A}^{r}}^{*}(s,\lambda) \\ \stackrel{\mathsf{reorden}}{\iff} \exists s \mid (p,\omega^{r}) \vdash_{\mathcal{A}^{r}}^{*}(s,\lambda) \land q \in \delta^{r}(s,a) \\ \stackrel{\mathsf{def}}{\iff} \exists s \mid (p,\omega^{r}) \vdash_{\mathcal{A}^{r}}^{*}(s,\lambda) \land (s,a) \vdash_{\mathcal{A}^{r}}^{*}(q,\lambda) \\ \stackrel{\omega^{r} : a \land \lambda \cdot a}{\iff} \exists s \mid (p,\omega^{r}a) \vdash_{\mathcal{A}^{r}}^{*}(s,a) \land (s,a) \vdash_{\mathcal{A}^{r}}^{*}(q,\lambda) \\ \stackrel{\mathsf{def}}{\iff} (p,\omega^{r}a) \vdash_{\mathcal{A}^{r}}^{*}(q,\lambda) \\ \stackrel{\mathsf{def}}{\iff} (p,\omega^{r}a) \vdash_{\mathcal{A}^{r}}^{*}(q,\lambda) \end{array}$$

Paso inductivo:

$$\begin{array}{l} (q,a\omega) \vdash_{\mathcal{A}}^{*}(p,\lambda) \\ \stackrel{\mathsf{def}}{\iff} \exists s \mid (q,a\omega) \vdash_{\mathcal{A}}(s,\omega) \land (s,\omega) \vdash_{\mathcal{A}}^{*}(p,\lambda) \\ \stackrel{\mathsf{def}}{\iff} \exists s \mid s \in \delta(q,a) \land (s,\omega) \vdash_{\mathcal{A}}^{*}(p,\lambda) \\ \stackrel{\mathsf{def}}{\iff} \exists s \mid q \in \delta^{r}(s,a) \land (s,\omega) \vdash_{\mathcal{A}}^{*}(p,\lambda) \\ \stackrel{\mathsf{HI}}{\iff} \exists s \mid q \in \delta^{r}(s,a) \land (p,\omega^{r}) \vdash_{\mathcal{A}^{r}}^{*}(s,\lambda) \\ \stackrel{\mathsf{reordenando}}{\iff} \exists s \mid (p,\omega^{r}) \vdash_{\mathcal{A}^{r}}^{*}(s,\lambda) \land q \in \delta^{r}(s,a) \\ \stackrel{\mathsf{def}}{\iff} \exists s \mid (p,\omega^{r}) \vdash_{\mathcal{A}^{r}}^{*}(s,\lambda) \land (s,a) \vdash_{\mathcal{A}^{r}}^{*}(q,\lambda) \\ \stackrel{\omega^{r} : a \land \lambda \cdot a}{\iff} \exists s \mid (p,\omega^{r}a) \vdash_{\mathcal{A}^{r}}^{*}(s,a) \land (s,a) \vdash_{\mathcal{A}^{r}}^{*}(q,\lambda) \\ \stackrel{\mathsf{def}}{\iff} (p,\omega^{r}a) \vdash_{\mathcal{A}^{r}}^{*}(q,\lambda) \end{array}$$

Entonces $(\forall q, p \in Q)((q, \alpha) \vdash^*_{A} (p, \lambda) \iff (p, \alpha') \vdash^*_{A'} (q, \lambda))$

44/48

Recordemos

Queriamos demostrar que $(L(A))^r = L(A^r)$

Recordemos

Queriamos demostrar que $(L(A))^r = L(A^r)$

$$(L(\mathcal{A}))^r = L(A^r)$$

$$\overset{\text{aplicamos reverso}}{\Longleftrightarrow} ((L(\mathcal{A}))^r)^r = (L(A^r))^r$$

$$\overset{(\mathcal{L}^r)^r = \mathcal{L}}{\Longleftrightarrow} L(\mathcal{A}) = (L(A^r))^r$$

$$\iff (w \in L(\mathcal{A}) \iff w \in (L(\mathcal{A}^r))^r)$$

Entonces

$$\begin{aligned} & w \in L(\mathcal{A}) \\ & \stackrel{\textit{def}}{\Longrightarrow} \exists q_f \in F \mid (q_0, w) \vdash_{\mathcal{A}}^* (q_f, \lambda) \\ & \stackrel{\mathsf{propiedad}}{\Longrightarrow} \exists q_f \in F \mid (q_f, w^r) \vdash_{\mathcal{A}^r}^* (q_0, \lambda) \\ & \stackrel{\delta^r(q_0', \lambda) = F}{\Longrightarrow} \exists q_f \in F \mid (q_0', w^r) \vdash_{\mathcal{A}^r} (q_f, w^r) \land (q_f, w^r) \vdash_{\mathcal{A}^r}^* (q_0, \lambda) \\ & \stackrel{\mathsf{def}}{\Longrightarrow} w^r \in L(\mathcal{A}^r) \\ & \stackrel{\mathsf{def}}{\Longrightarrow} w \in (L(\mathcal{A}^r))^r \end{aligned}$$

Operaciones en general

Unión

Dados A_1 y A_2 AFs, para obtener $L(A_1) \cup L(A_2)$ agregar un nuevo estado inicial con transiciones λ a los iniciales de A_1 y A_2 .

Complemento

Dado un AF**D** completo, invertir los finales: $F' = F \setminus Q$

Reversa

Dado un AFND- λ , obtener $\mathcal{A}' = \langle \mathcal{Q}', \Sigma, \delta', \mathcal{q}'_0, \mathcal{F}' \rangle$ tal que:

- $Q' = Q \cup \{q'_0\}$ (nuevo inicial)
- $\delta'(q'_0, \lambda) = F$ (arrancar por los finales)
- $q_2 \in \delta'(q_1, a) \iff q_1 \in \delta(q_2, a)$ (dar vuelta flechas)
- $F' = \{q_0\}$ (terminar en el estado que era inicial)

Conclusiones

Vimos,

- AFDs, AFNDs y sus definiciones formales
- La importancia de que cada estado tenga un propósito claro
- Problemas que son más sencillos de resolver con AFNDs
- Algunos autómatas para operaciones entre lenguajes: Unión, complemento, reversa (más en la práctica)

Ya pueden hacer toda la práctica 2