Discrete Mathematics Exercise 3

Qiu Yihang, 2020/09/25

1. *a*)

Proof: The truth value table of $p \to (q \to p)$ is as follows.

p	q	$p \to (q \to p)$
T	T	T
T	F	T
F	T	T
F	F	T

For any truth assignment \mathcal{J} , $[p \to (q \to p)]_{\mathcal{J}} = T$. In other words, $p \to (q \to p)$ is a tautology.

QED

b)

Proof: The truth value table of $(p \to q \to r) \to (p \to q) \to (p \to r)$ is as follows.

		4	
p	q	r	$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow (p \rightarrow r)$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	T	T	T
F	T	F	T
F	F	T	T
F	F	F	T

For any truth assignment \mathcal{J} , $[(p \to q \to r) \to (p \to q) \to (p \to r)]_{\mathcal{J}} = T$. In other words, $(p \to q \to r) \to (p \to q) \to (p \to r)$ is a tautology.

QED

c)

Proof: The truth value table of $p \to q \to r \equiv (p \land q) \to r$ is as follows.

	1 1 1					
p	q	r	$p \rightarrow q \rightarrow r$	$(p \land q) \rightarrow r$		
T	T	T	T	T		
T	T	F	F	F		
T	F	T	T	T		
T	F	F	T	T		
F	T	T	T	T		
F	T	F	T	T		
F	F	T	T	T		
F	F	F	T	T		

For any truth assignment \mathcal{J} , $\llbracket p \to q \to r \rrbracket_{\mathcal{J}} = \llbracket (p \land q) \to r \rrbracket_{\mathcal{J}}$. In other words, $p \to q \to r \equiv (p \land q) \to r$.

QED

Proof: The truth table of $(p \to q) \land (p \to r)$ and $p \to (q \land r)$ is as follows.

p	q	r	$(p \to q) \land (p \to r)$	$p \to (q \land r)$
T	T	T	T	T
T	T	F	F	F
T	F	T	F	F
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T

For any assignment \mathcal{J} , $[(p \to q) \land (p \to r)]_{\mathcal{J}} = [p \to (q \land r)]_{\mathcal{J}}$. In other words, $(p \to q) \land (p \to r) \equiv p \to (q \land r)$.

QED

b)

Proof: The truth table of $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ is as follows.

p	q	r	$(p \to r) \land (q \to r)$	$(p \lor q) \to r$
T	T	T	T	T
T	T	F	F	F
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	F	F
F	F	T	T	T
F	F	F	T	T

For any assignment \mathcal{J} , $\llbracket (p \to r) \land (q \to r) \rrbracket_{\mathcal{J}} = \llbracket (p \lor q) \to r \rrbracket_{\mathcal{J}}$. In other words, $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$.

QED

c)

Proof: The truth table of $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ is as follows.

p	q	r	$(p \to q) \lor (p \to r)$	$p \to (q \lor r)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T

For any assignment \mathcal{J} , $[(p \to q) \lor (p \to r)]_{\mathcal{J}} = [p \to (q \lor r)]_{\mathcal{J}}$. In other words, $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$.

QED

3. Proof:

When
$$[\![p]\!]_{\mathcal{J}} = F$$
, $[\![q]\!]_{\mathcal{J}} = T$, $[\![r]\!]_{\mathcal{J}} = F$, $[\![(p \to q) \to r]\!]_{\mathcal{J}} = F$ while $[\![p \to (q \to r)]\!]_{\mathcal{J}} = T$.
So $(p \to q) \to r$ and $p \to (q \to r)$ are not logically equivalent.

QED

4. Proof:

When
$$[\![p]\!]_{\mathcal{J}} = T$$
, $[\![q]\!]_{\mathcal{J}} = F$, $[\![r]\!]_{\mathcal{J}} = F$, $[\![(p \land q) \to r]\!]_{\mathcal{J}} = T$ while $[\![(p \to r) \land (q \to r)]\!]_{\mathcal{J}} = F$. So $(p \land q) \to r$ and $(p \to r) \land (q \to r)$ are not logically equivalent.

QED

5. (a) Solution:

The truth value table of $\phi = p \rightarrow (q \oplus r)$ is as follows.

p	q	r	$p \to (q \oplus r)$	ψ
T	T	T	F	F
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T

We can construct a proposition $\chi = (p \land q \land r) \lor (p \land \neg q \land \neg r)$ in DNF, which is logically equivalent to $\neg \phi$.

We can construct a proposition $\psi = \neg \chi = (\neg p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor r)$ in CNF, which is logically equivalent to ϕ . From the truth value table of ϕ and ψ , it's obvious to see that $\phi \equiv \psi$.

Thus, $\psi = (\neg p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor r)$ is a feasible solution.

(b) Solution:

$$\begin{split} \phi &= p \to (q \oplus r) \\ &\Longrightarrow \Big((q \oplus r) \longleftrightarrow p_1 \Big) \land \Big(\Big(p \to p_1 \Big) \leftrightarrow p_2 \Big) \land p_2 \end{split}$$

We can list the truth value table of $(q \oplus r) \leftrightarrow p_1$ and $(p \to p_1) \leftrightarrow p_2$ as follows:

q	r	p_1	$(q \oplus r) \longleftrightarrow p_1$	p	p_1	p_2	$(p \to p_1) \leftrightarrow p_2$
T	T	T	F	T	T	T	T
T	T	F	T	T	T	F	F
T	F	T	T	T	F	T	F
T	F	F	F	T	F	F	T
F	T	T	T	F	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	T
F	F	F	T	F	F	F	F

Then we can build disjunctive clauses that are logically equivalent to $(q \oplus r) \leftrightarrow p_1$ and $(p \to p_1) \leftrightarrow p_2$ respectively:

$$(q \oplus r) \longleftrightarrow p_1 \equiv (\neg q \lor \neg r \lor \neg p_1) \land (\neg q \lor r \lor p_1) \land (q \lor \neg r \lor p_1) \land (q \lor r \lor \neg p_1),$$

$$(p \to p_1) \leftrightarrow p_2 \equiv (\neg p \lor \neg p_1 \lor p_2) \land (\neg p \lor p_1 \lor \neg p_2) \land (p \lor \neg p_1 \lor p_2) \land (p \lor p_1 \lor p_2).$$

Thus, we can construct a proposition

$$\begin{split} \psi &= \left(\neg q \vee \neg r \vee \neg p_1 \right) \wedge \left(\neg q \vee r \vee p_1 \right) \wedge \left(q \vee \neg r \vee p_1 \right) \wedge \left(q \vee r \vee \neg p_1 \right) \wedge \\ & \left(\neg p \vee \neg p_1 \vee p_2 \right) \wedge \left(\neg p \vee p_1 \vee \neg p_2 \right) \wedge \left(p \vee \neg p_1 \vee p_2 \right) \wedge \left(p \vee p_1 \vee p_2 \right) \wedge p_2 \end{split} ,$$

which is in CNF such that ϕ is satisfiable if and only if ψ is satisfiable.

6. a)

Proof: The truth value table of $\phi \downarrow \phi$ and $\neg \phi$ is as follows.

φ	$\phi \downarrow \phi$	$\neg \phi$
T	F	F
F	T	T

For any truth assignment \mathcal{J} , $\llbracket \phi \downarrow \phi \rrbracket_{\mathcal{J}} = \llbracket \neg \phi \rrbracket_{\mathcal{J}}$. In other words, $\phi \downarrow \phi \equiv \neg \phi$.

QED

b)

Proof: The truth value table of $(\phi \downarrow \psi) \downarrow (\psi \downarrow \phi)$ and $\phi \land \psi$ is as follows.

φ	ψ	$(\phi\downarrow\psi)\downarrow(\psi\downarrow\phi)$	φΛψ
T	T	T	T
T	F	F	F
F	T	F	F
F	F	F	F

For any truth assignment \mathcal{J} , $[\![(\phi \downarrow \psi) \downarrow (\psi \downarrow \phi)]\!]_{\mathcal{J}} = [\![\phi \land \psi]\!]_{\mathcal{J}}$.

In other words, $(\phi \downarrow \psi) \downarrow (\psi \downarrow \phi) \equiv \phi \land \psi$.

QED

c)

Proof:

It's a theorem that $\{\neg, \Lambda\}$ is functionally complete.

According to \boldsymbol{a}) and \boldsymbol{b}), we can replace $\neg \phi$ with $\phi \downarrow \phi$ and replace $\phi \land \psi$ with $(\phi \downarrow \psi) \downarrow (\psi \downarrow \phi)$.

Thus, for any set of propositional variables Σ and any f, which is a mapping from Σ 's truth assignments to truth values, there exists a compound proposition ϕ that involves only " \downarrow " such that $\llbracket \phi \rrbracket_{\mathcal{J}} = f(\mathcal{J})$ for every \mathcal{J} .

In other words, $\{\downarrow\}$ is functionally complete.

QED

7. a)

Since we want ϕ to be **True**, we need every disjunctive clause in ϕ to be **True**.

In other words, we need

$$\begin{split} & \begin{bmatrix} \begin{bmatrix} \neg p_1 \lor p_2 \end{bmatrix}_{\mathcal{J}_1} = \textbf{\textit{T}} & \textbf{\textit{Q}}, \ \begin{bmatrix} \neg p_1 \lor p_3 \lor p_5 \end{bmatrix}_{\mathcal{J}_1} = \textbf{\textit{T}} & \textbf{\textit{Q}}, \ \begin{bmatrix} \neg p_2 \lor p_4 \end{bmatrix}_{\mathcal{J}_1} = \textbf{\textit{T}}, & \textbf{\textit{Q}} \\ & \begin{bmatrix} \neg p_3 \lor \neg p_4 \end{bmatrix}_{\mathcal{J}_1} = \textbf{\textit{T}} & \textbf{\textit{Q}}, \ \begin{bmatrix} p_1 \lor p_5 \lor \neg p_2 \end{bmatrix}_{\mathcal{J}_1} = \textbf{\textit{T}} & \textbf{\textit{G}}, \ \begin{bmatrix} p_2 \lor p_3 \end{bmatrix}_{\mathcal{J}_1} = \textbf{\textit{T}} & \textbf{\textit{G}}, \\ & \begin{bmatrix} p_2 \lor \neg p_3 \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}} & \textbf{\textit{T}}, & \textbf{\textit{Q}}, \ \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}} & \textbf{\textit{T}}, & \textbf{$$

Under the truth assignment \mathcal{J}_1 , 457 is already satisfied.

Since $\llbracket \neg p_1 \rrbracket_{\mathcal{J}_1} = F$, we know from ① that we need $p_2 \mapsto T$. From ② we know $p_5 \mapsto T$.

Therefore, from 4 we know that we need $p_4 \mapsto T$. Similarly, we could figure out that $p_6 \mapsto T$.

Thus,
$$Unit \text{Pro}(\mathcal{J}_1) = [p_1 \mapsto T, p_2 \mapsto T, p_3 \mapsto F, p_4 \mapsto T, p_5 \mapsto T, p_6 \mapsto T].$$

b)

Solution: Given that $\mathcal{J}_2 = [p_3 \mapsto \mathbf{F}].$ Let $(\neg p_1 \lor p_2) \land (\neg p_1 \lor p_3 \lor p_5) \land (\neg p_2 \lor p_4) \land (\neg p_3 \lor \neg p_4) \land (p_1 \lor p_5 \lor \neg p_2) \land (p_2 \lor p_3) \land (p_2 \lor \neg p_3) \land (p_6 \lor \neg p_5)$ to be ϕ .

Since we want ϕ to be *True*, we need every disjunctive clause in ϕ to be *True*. In other words, we need

$$\begin{split} & \begin{bmatrix} \begin{bmatrix} \neg p_1 \lor p_2 \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}} & \textbf{\textit{Q}}, \ \begin{bmatrix} \neg p_1 \lor p_3 \lor p_5 \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}} & \textbf{\textit{Q}}, \ \begin{bmatrix} \neg p_2 \lor p_4 \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}}, & \textbf{\textit{Q}} \\ & \begin{bmatrix} \neg p_3 \lor \neg p_4 \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}} & \textbf{\textit{Q}}, \ \begin{bmatrix} p_1 \lor p_5 \lor \neg p_2 \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}} & \textbf{\textit{G}}, \ \begin{bmatrix} p_2 \lor p_3 \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}} & \textbf{\textit{G}}, \\ & \begin{bmatrix} p_2 \lor \neg p_3 \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}} & \textbf{\textit{T}}, \ \begin{bmatrix} p_6 \lor \neg p_5 \end{bmatrix}_{\mathcal{J}_2} = \textbf{\textit{T}} & \textbf{\textit{Q}}, \end{split}$$

Under the truth assignment \mathcal{J}_2 , 40 is already satisfied.

Since $\llbracket p_3 \rrbracket_{\mathcal{J}_2} = \mathbf{F}$, from **6** we know that we need $p_2 \mapsto \mathbf{T}$. Then $\llbracket \neg p_2 \rrbracket_{\mathcal{J}_2} = \mathbf{F}$, we know that we need $p_4 \mapsto \mathbf{T}$.

Thus, $UnitPro(\mathcal{J}_2) = [p_2 \mapsto T, p_3 \mapsto F, p_4 \mapsto T].$