فصل ۲

قضیهی مُرلی

۱.۲ جلسهی چهاردهم

در فصل قبل و در جلسات آموختال، با یادگیری پیشنیازهای نظریهی مدلی، ورزیدگی لازم را برای برای ورود به بحث اصلی کسب کردهایم. از این نقطهی درس به بعد با یادگیری مقدمات پیشرفته تری به سمت بیان و اثبات قضیهی مُرلی پیش خواهیم رفت. نخست، به طور خلاصه به تبیین ابزار ترکیباتی مورد نظر خود، یعنی قضیهی رمزی می پردازیم.

عموماً در نظریهی مدل، از قضیهی رمزی ' و یا از تعمیمی از آن، به نام قضیهی اردوش ـ رادو ۲ برای یافتن دنبالههای بازنشناختنی استفاده می شود. دنبالههای بازنشناختنی، که در جلسات بعد مفصلاً بدانها خواهیم پرداخت، دنبالههایی هستند که هر تعداد از اعضایشان، بسته به ترتیب قرارگیریشان در دنباله، از منظرِ تئوری مورد نظر، همارزش هستند. برای یافتن این چنین دنبالهای، عناصر یک دنبالهی دلخواه را، بسته به همارزش بودنشان نسبت به فرمولها، «رنگ آمیزی» می کنیم و با استفاده از لم رمزی، زیرمجموعهای «تکرنگ» از این دنباله استخراج می کنیم.

[\]Ramsev

^rErdös - Rado

۱.۱.۲ لم رمزی

برای مجموعه ی دلخواهِ X و عدد طبیعی k تعریف میکنیم:

$$[X]^k = \{Y \subseteq X : |Y| = k\}.$$

برای هر عددِ طبیعیِ ۱۰ $n \geq n$ هر تابع

$$f: [X]^k \to n = \{ \cdot, 1, \dots, n-1 \}$$

را یک رنگ آمیزی از زیرمجموعههای k عضوی مجموعه X توسط n رنگ می خوانیم. مجموعه ی $Y\subseteq X$ را برای رنگ آمیزی f همگن (یا تکرنگ) می خوانیم هرگاه همه ی زیرمجموعههای X عضوی آن، تحت X را برای رنگ یکسان داشته باشند؛ به بیان دیگر، هرگاه X شرگاه X اشد. پس اگر X مجموعهای تکرنگ برای رنگ آمیزی X باشد، عدد X با شده عدد X با شده عدد X با شده عدد X با موجود است که برای هر X با X با X با داریم X با X با شده عدد را باشد، عدد X با موجود است که برای هر X با X با X با می داریم داریم و باشد، عدد را باشد، عدد با باشد و باشد

قضیه ۱۴۷ (رمزی): فرض کنید مجموعه ی نامتناهی X و اعداد و $k,n\geq 1$ داده شده باشند. برای هر رنگ آمیزی $f:[X]^k\to N$ موجود است.

قضیهی بالا، صورت نامتناهی لم رمزی است. عموماً در ترکیبیات، نخست صورت متناهی این لم را ثابت میکنند و از آن صورت نامتناهیش را نتیجه میگیرند، اما طرزفکر نظریهی مدلی، ما را بر آن میدارد که همواره برای یافتن رابطه میان متناهی و نامتناهی از قضیهی فشردگی استفاده کنیم. یادآوری ۱۴۸: حکم قضیهی بالا در نمادگذاری زیر خلاصه می شود:

$$\aleph$$
. $\rightarrow (\aleph$.) $_k^n$

پیش از اثبات قضیه به بیان چند مصداق آشنا از آن می پردازیم.

مثال ۱۴۹: در حالت k=1 قضیهی رمزی همان اصل خانهی کبوتری است: اگر نامتناهی عنصر در متناهی جایگاه قرار گرفته باشند،حداقل در یک جایگاه، نامتناهی عنصر جای گرفته است.

مثال ۱۵۰: فرض کنید (V,R) گرافی نامتناهی باشد. روی $[V]^{\Upsilon}$ یک رنگ آمیزی به صورت زیر تعریف کنید:

$$f(\lbrace x, y \rbrace) = \begin{cases} V & V \models R(x, y) \\ \cdot & V \models \neg R(x, y). \end{cases}$$

بنا به قضیهی رمزی، یا زیرگرافی نامتناهی از گراف V موجود است که همهی رأسهای آن دوبه دو به هم متصلند (زیرگراف کامل)، و یا زیرگرافی نامتناهی موجود است که هیچ یالی میان رأسهای آن وجود ندارد.

مثال ۱۵۱: با استفاده از قضیه ی رمزی ثابت کنید که هرگاه (X, \leq) یک مجموعه ی مرتبِ خطی نامتناهی باشد، آنگاه X یا شامل یک دنباله ی صعودی نامتناهی و یا شامل یک دنباله ی نزولی نامتناهی است.

در ادامه، قضیهی رمزی را با استقراء روی k ثابت کردهایم.

اثبات قضیهی رمزی. اگر ۱ k=1 آنگاه قضیهی رمزی همان اصل لانهی کبوتری است. فرض کنیم حکم قضیهی برای k برقرار باشد؛ یعنی برای هر k داشته باشیم:

$$\aleph$$
. $\rightarrow (\aleph$.)ⁿ_k.

میخواهیم درستی آن را برای k+1 تحقیق کنیم. فرض کنیم که X مجموعهای نامتناهی باشد و f یک رنگ آمیزی از زیرمجموعههای k+1 عضوی آن با n رنگ. بدون کاسته شدن از کلیت، مجموعه x+1 می از زیرمجموعههای $x_1 < x_2 < \dots$ فرض می کنیم. در ادامه دو دنباله ی $x_1 < x_2 < \dots$ از عناصر $x_1 < x_2 < \dots$ از اعضای $x_1 < x_2 < \dots$ خواهیم ساخت و مجموعه ی مورد نظر را از میان عناصر دنباله ی اول استخراج می کنیم. قرار می دهیم $x_1 < x_2 < \dots$

رنگآمیزی $f_1(Z)=f(Z\cup\{x_1\})$ را با ضابطه ی $f_1:[X-\{x_1\}]^k\to n$ در نظر رنگآمیزی $f_1:[X-\{x_1\}]^k\to n$ را بنا به فرض استقراء، این رنگآمیزی دارای یک مجموعه ی همگن به نام Y_1 است. قرار می دهیم Y_1 و Y_2 را رنگ مشترک همه ی زیر مجموعه های Y_3 عضوی Y_4 فرض می کنیم. به همین ترتیب روی زیر مجموعه های Y_3 عضوی Y_4 رنگ آمیزی $Y_1-\{y_1\}$ رنگ آمیزی $Y_1-\{y_2\}$ رنگ روی روی در مجموعه های Y_3 مجموعه ی همگن آن و Y_4 رنگ مشترک زیر مجموعه های Y_4 مجموعه ی همگن آن و Y_4 رنگ مشترک زیر مجموعه های عضوی Y_4 باشند. نیز قرار می دهیم Y_4 سات Y_4 و را داده به عناصر

$$y_1 < y_7 < \dots$$

مىرسىم. نيز داريم

 $Y_1 \subset Y_7 \subset \dots$

 n_{T} قرار دهید $Y'=\{y_1,\ldots\}$ هر زیرمجموعه ی $X'=\{y_1,\ldots\}$ عضوی از Y' اگر شامل y_i باشد، به رنگ x_i . از آنجا که تعداد رنگها متناهی است، یکی از رنگها بی نهایت بار تکرار می شود و مجموعه ی y_i های متناظر این رنگ، همان مجموعه ی مطلوب ماست.

قضیه ۱۵۲ (رمزی متناهی): برای اعداد طبیعیِ دلخواهِ n,m,k عددی طبیعی چون r(n,m,k) موجود است، به طوری که

$$r(n,m,k) \to (m)_n^k$$
;

یعنی بدان گونه که اگر X مجموعهای با اندازه ی حداقل r(n,m,k) باشد و f یک رنگ آمیزی از زیرمجموعههای k عضوی آن با استفاده از n رنگ، آنگاه زیرمجموعهای از k با اندازه ی حداقل k یافت می شود که همه ی زیرمجموعههای k عضوی آن همرنگ هستند.

اثبات. به برهان خلف، گیریم اعداد m,n,k چنان موجود باشند که مجموعهای با هیچاندازه ی m متناهی یافت نشود که اگر زیرمجوعههای k عضوی آن را n رنگ کنیم زیرمجموعهای همگن و k عضوی پیدا شود. زبان k و تئوری k را در آن با عضوی پیدا شود. زبان k و تئوری k را در آن با اصول زیر در نظر بگیرید:

$$\forall x_1,\ldots,x_k \quad R_i(x_1,\ldots,x_k)
ightarrow \bigwedge_{l \neq k \in \{1,\ldots,k\}} x_l \neq x_t \quad i \in \{1,\ldots,n\}$$
 $\forall x_1,\ldots,x_k \quad R_i(x_1,\ldots,x_k)
ightarrow R_i(x_{\sigma(1)},\ldots,x_{\sigma(k)}) \quad \sigma \in \mathcal{C}(k), i \in \{1,\ldots,n\}$
 $\forall x_1,\ldots,x_k \quad \left(\bigwedge x_l \neq x_t
ightarrow \bigvee_{i=1}^n R_i(x_1,\ldots,x_k)\right)$
 $\forall x_1,\ldots,x_k \quad \neg \left(R_i(x_1,\ldots,x_k) \land R_j(x_1,\ldots,x_k)\right) \quad i \neq j.$

بنابراین اگر $M \models T$ آنگاه هر k عنصر از آن توسط رابطه های R_1, \ldots, R_n در کلاس یک رنگ قرار می گیرند (عناصر هم رنگ را در یک کلاس قرار داده ایم). جمله های زیر را در نظر بگیرید:

$$\psi_m := \neg \left[\exists Y \mid |Y| \ge m \quad \land \quad \bigvee_i (\forall y_1, \dots, y_k \in Y \quad R_i(y_1, \dots, y_k)) \right].$$

جمله ی ψ_m می گوید که هیچ مجموعه ی هم گنی از اندازه ی حداقل m وجود ندارد. بنا به فرض، و بنا به فشردگی، تئوری $T \cup \{\psi_m\}_{m \in \omega}$ دارای مدل است. مدل داشتن این تئوری، معادل وجود

یک رنگ آمیزی از زیرمجموعههای k عضوی یک مجموعهی نامتناهی است که هیچ زیرمجموعهی \square

قضیه ی رمزی متناهی از حساب پئانو اثبات شدنی است؛ لیکن صورتی پیشرفته تر از آن ۴ هست که بنا به قضیه ای از پاریس و هرینگتون ۴ با آنکه در اعداد طبیعی درست است، از حساب پئانو قابل اثبات نیست. این صورت در واقع اولین مثال عینی برای ناتمامیت بوده است.

^{*}Paris, Harrington

در این صورت روی مجموعهی همگن ِ Y قید ِ $|Y|>\min Y$ گذاشته می شود.