Cascading Behavior in Networks

Lesley Van der Wee

Goal

Modelling the spread of the word!

Overview

- Introduction
- Basic idea
- The limit of cascades
- Extension
- Advanced
 - Cascade capacity
 - Bilingual option (co-presentation)
- Conclusion
- Q&A

Introduction

Introduction

Networks visualized as graphs

(e.g. social networks)

Diffusion in a network

- New behavior
- Adopt if certain amount of neighbors do

Simple Game

- Possible behaviors: A and B
- Players: 2 nodes (*v* and *w*)

Simple game

Link between v and w=> motive to adopt same behavior

- Both adopt A: payoff = a > 0
- Both adopt B: payoff = b > 0
- Opposite behaviors: payoff = 0

- Each node
 - plays the game with each neighbor
 - Payoff = sum of payoffs of each link
- Consider node *v*
 - Some neighbors adopt A
 - Some neighbors adopt B
 - => what should v do to maximize its payoff?

Example

Example

What should v do to maximize its payoff?

A node v should adopt A if at least a certain fraction of its neighbors follow A.

d = # neighbors

p: fraction of neighbors which adopt A

$$(0 \le p \le 1)$$

Decision rule

A is the better choice if

$$pda \ge (1 - p)db$$

$$<=> p \ge \frac{b}{a+b} = q$$

q: threshold for which a node should adopt A

Terminology

The nodes that adopt the behavior A first are called the "initial adopters".

Remark

Assumption:

If a node has adopted behavior A, it will never switch back to B.

Definition

A *cascade* of adoptions of *A* is a chain reaction of switches from *B* to *A*.

2 possibilities

- Every node switches to A (complete cascade)
- Or, the cascade runs, but stops after a while

Cascading behavior

some examples...

Question

What causes the spread of A to stop?

Intuitive answer

- Network structure
- Choice of initial adopters
- Values of a and b

Question (revisited)
What causes the spread of A to stop?

Technical answer

Dense clusters

Definitions

- A *cluster* of density *p* is a set of nodes such that each node in the set has at least a *p* fraction of its neighbors in the set.
- A dense cluster, in a network with threshold q, is a cluster of density greater than 1 q.

Example

- Density p = 2/3
- Suppose threshold q = 3/5=> both clusters are dense

Claim

The initial adopters of A (with threshold q) will not cause a complete cascade

if and only if

the network contains a cluster of density greater than 1 - q.

Part 1

Dense clusters are obstacles to cascades.

Explanation

Suppose *v* is the first node in the cluster that adopts behavior *A*.

Explanation

Since *v* is the first, all neighbors of *v* using *A* are located *outside* the cluster.

Density is greater than 1 - q, hence less than qd neighbors are outside the cluster.

Contradiction!

=> v could never have adopted A

Part 2

Dense clusters are the *only* obstacles to cascades.

The limit of cascades

Explanation

The limit of cascades

Explanation

- Let S be the set of nodes still using B.
- For every node w in S:
 - w doesn't want to switch to A
 - => less than qd neighbors are using A
 - => more than (1-q)d neighbors are using B
 - => fraction of neighbors in S is greater than (1-q)
 - => S is a dense cluster

Extension of the model

Extension

v and w value behaviors A and B differently a_v vs a_w and b_v vs b_w

=> adopt behavior w.r.t. *personal* threshold

Extension

Example

Extension

Example

Advanced material

Definition

The cascade capacity of a network is the maximum threshold for which a "small" set of initial adopters (i.e. a finite set) will cause a complete cascade.

Example 1

cascade capacity = 1/2

Example 2

cascade capacity = 3/8

Claim

There is no network for which the cascade capacity is bigger than 1/2.

Advanced - Bilingual option

Co-presentation...

Conclusion

- Model to simulate/predict/visualize the spread of a new behavior
- Real-life applications
 - Telephone and fax machines
 - New/compatible technologies
 - Youtube video vs political ideas
 - Limit on communication by government

Q&A

Thanks for your attention!

References

Networks, Crowds, and Markets: Reasoning about a Highly Connected World (ch.19), David Easley and Jon Kleinberg, Cambridge University Press, 2010

