Artificial Neural Networks (ANN)

Dr. Partha Pratim Sarangi School of Computer Engineering

What is Neural Network?

- When we say Neural Network in this course, commonly referred to as Artificial Neural Network (ANN).
- ANN is essentially a computational model inspired by the human brain's network of neurons.
- The human brain is a highly complex, nonlinear, and parallel computer (information-processing system). It comprises nearly 100 billion neurons and 100 trillion interconnections.
- ANN is not an exact representation of the human brain; instead, it consists of a limited set of neurons and their interconnections designed to perform a specific task.
- Today artificial neural networks are used in a myriad of real-life tasks due to their ability to solve problems previously considered impossible to solve such as language translation, video and audio synthesis and autonomous vehicle driving.

Neural Network: Definition

- In order to achieve good performance, neural networks employ a massive interconnection of simple computing cells referred to as "neurons" or "processing units."
- •A neural network is a massively parallel distributed processor made up of simple processing units (neurons), which has a natural propensity for acquiring experiential knowledge from its environment through a learning process and making it available for use.

Biological Neural Network

- Neural Networks are composed of
 - Cell bodies (Neurons)
 - Dendrites (Inputs)
 - Axons (Outputs)
 - Synapse (Interconnection)
- A neuron (also known as a nerve cell) is a cell that carries electric impulses. Neurons are the basic units of the nervous system and its most important part in the brain.
- Every neuron is made of a cell body (also called a soma), dendrites, and an axon.
- Neurons are connected to one another. They do not touch each other; instead form tiny gaps fills with chemical fluid called synapse that can carry electrical impulses and pass the electric signal from one neuron to the other neurons.

A Biological Neuron

A Biological Neuron

• Dendrite: Receives signals from other neurons

• Soma: Processes the information

Axon: Transmits the output of this neuron

Synapse: Point of connection to other neurons

ANN vs. BNN

Artificial NN

- Nodes
 - input
 - output
 - node function
- **□**Connections
 - connection strength

Biological NN

- □Cell body
 - signal from other neurons
 - firing frequency
 - firing mechanism
- **□**Synapses
 - synaptic strength

Analogous to BNN and ANN

Biological Neural Network (BNN)	Artificial Neural Network (ANN)
Soma	Node or Neuron
Dendrites	Inputs
Synapse	Weights or Interconnections
Axon	Output

Analogy of ANN with BNN

Artificial Neuron resembles the human brain

- Two aspects make the neuron resembles the brain as follows:
 - 1. Knowledge is acquired by the network from its environment through a learning process.
 - 2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired knowledge.
- The procedure used to perform the learning process is called a learning algorithm, function of which is to modify the synaptic weights of the network in an orderly fashion to obtain a desired model.

What ANNs do?

- Receive Input Signals: ANNs take in input signals from the dataset, which are typically numerical values.
- Determine Signal Strength: The network evaluates the strength of each input signal, often by multiplying each input by a corresponding weight.
- Calculate Linear Combination: The weighted inputs are summed to form a total linear combination.
- Apply Activation Function: The linear combination is then passed through an activation function to introduce non-linearity into the model. This helps the network learn more complex patterns.
- Generate Output: The network generates an output based on the activation function's result.
- Compute Error: The difference between the actual output and the desired output (target value) is calculated. This difference is known as the error.
- Adjust Weights: In response to the error, the network adjusts the weights till error is below the tolerance level.

Benefits of Neural Networks

- 1. Nonlinearity: An artificial neuron can be either linear or nonlinear. However, biological neurons are nonlinear, enabling complex and intelligent decision-making. Consequently, most Artificial Neural Network (ANN) models adopt nonlinearity to emulate these sophisticated biological behaviours.
- 2. Input-Output Mapping: The learning capability of ANN makes them robust for mapping input objects to class labels, especially in supervised learning paradigms.

- 4. Adaptability: ANN have a built-in capability to adapt their weights to changes in the surrounding environment.
- 5. Contextual Information: Neural networks can leverage contextual information to understand data more comprehensively.
- 6. Fault Tolerance: ANN implemented in hardware form, has the potential to be inherently fault tolerant, or capable of robust computation irrespective of damage of some neurons.
- 7. VLSI Implementability: The massively parallel nature of a neural network makes it ponentially fast for the computation of certain task which can be implementable in IC chip.

Single Neuron Functionality

Multiple neurons with multiple outputs in the output layer

M*N weight matrix: Interconnections between output layer and input layer

Number of Columns (N): Number of Input Nodes

Number of Rows (M): Number of Output Nodes

Weight Matrix (MxN)

Multi-layers neural network

McCulloch-Pitts Neuron

• The first computational model of a neuron was proposed by Warren MuCulloch (neuroscientist) and Walter Pitts (logician) in 1943.

McCulloch-Pitts Model

- McCulloch-Pitts (M-P) Model is divided into two parts.
- The first part, g takes an input performs an aggregation and based on the aggregated value the second part, f makes a decision.
- These inputs can either be excitatory or inhibitory.
- Inhibitory inputs are those that have maximum effect on the decision making irrespective of other inputs.
- Excitatory inputs are NOT the ones that will make the neuron fire on their own but they might fire it when combined together.
- Finally, the M-P Neuron fires only when the sum of the inputs is greater than the threshold value (θ) .

$$g(x_1, x_2, x_3, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$
$$y = f(g(\mathbf{x})) = 1 \quad if \quad g(\mathbf{x}) \ge \theta$$
$$= 0 \quad if \quad g(\mathbf{x}) < \theta$$

- We can see that g(x) is just doing a sum of the inputs a simple aggregation.
- Here the function f is called threshold activation (θ). Theta decides the binary out; it is 1 when g(x) greater that equal to θ , otherwise output is θ .
- Note that Boolean output decision is taken based on appropriate input variables.

M-P Neuron: A Concise Representation

• This representation just denotes that, for the boolean inputs x_1 , x_2 and x_3 if the g(x) i.e., sum \geq θ , the neuron will fire otherwise, it won't.

AND Function using M-P Model

• An AND function neuron would only fire when ALL the inputs are ON i.e., $g(x) \ge 3$ here.

OR Function using M-P Model

• An OR function neuron would fire if ANY of the inputs is ON i.e., $g(x) \ge 1$ here.

A Function With An Inhibitory Input

• When, we have an inhibitory input i.e., x_2 so whenever x_2 is 1, the output will be 0. Keeping that in mind, we know that x_1 AND $!x_2$ would output 1 only when x_1 is 1 and x_2 is 0 so it is obvious that the threshold parameter should be 1.

NOT Function using M-P Model

• For a NOT neuron, 1 outputs 0 and 0 outputs 1. So, we take the input as an inhibitory input and set the thresholding parameter to 0.

Can any boolean function be represented using the M-P neuron?

 Ans: M-P neuron is able to conveniently represent the boolean functions which are linearly separable.

Limitations Of M-P Neuron

- What about non-boolean (say, real) inputs?
- Do we always need to hand code the threshold?
- What about functions which are not linearly separable? Say XOR function.
- To overcome the limitations of the M-P neuron, Frank Rosenblatt, an American psychologist, proposed the classical perception model, the mighty artificial neuron, in 1958.
- It is more generalized computational model than the McCulloch-Pitts neuron.