TD 1. Équations trigonométriques supplémentaires : réponses.

 \triangle L'ensemble des solutions peut parfois s'écrire sous une forme différente sans que ce soit faux.

1°)
$$\cos^2 x = \frac{3}{4}$$
:
$$\left\{ \frac{\pi}{6} + 2k\pi, -\frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi, -\frac{5\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}.$$

$$\mathbf{2}^{\circ}) \sin(2x) + \sin(x) = 0:$$

$$\left\{ \frac{2k\pi}{3}, \pi + 2k\pi / k \in \mathbb{Z} \right\}.$$

3°)
$$2\cos^2(2x) - 3\cos(2x) = -1:$$
 $\left\{k\pi, -\frac{\pi}{6} + k\pi, \frac{\pi}{6} + k\pi / k \in \mathbb{Z}\right\}.$

4°)
$$\sin(2x) + \sin\left(\frac{\pi}{3} + 3x\right) = 0$$
:
$$\left\{ -\frac{\pi}{15} + \frac{2k\pi}{5}, \frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}.$$

5°)
$$\cos(3x) + \sin(x) = 0$$
: $\left\{ \frac{\pi}{4} + k\pi, -\frac{\pi}{8} + k\frac{\pi}{2} / k \in \mathbb{Z} \right\}.$

6°)
$$3\tan(x) = 2\cos(x)$$
: $\left\{\frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi / k \in \mathbb{Z}\right\}.$

7°)
$$2\cos(4x) + \sin(x) = \sqrt{3}\cos(x)$$
:
$$\left\{\frac{\pi}{18} + \frac{2k\pi}{3}, -\frac{\pi}{30} + \frac{2k\pi}{5} / k \in \mathbb{Z}\right\}.$$

8°)
$$2\sin(x) + \sin(3x) = 0$$
: $\{k\pi / k \in \mathbb{Z}\}.$

TD 1. Équations trigonométriques supplémentaires : éléments de correction.

⚠ L'ensemble des solutions peut parfois s'écrire sous une forme différente sans que ce soit faux.

1°)
$$\cos^2 x = \frac{3}{4}$$
:

Définie sur \mathbb{R} .

Équivalente à :
$$\cos x = \frac{\sqrt{3}}{2}$$
 ou $\cos x = -\frac{\sqrt{3}}{2}$.

Réponse :
$$\left\{ \frac{\pi}{6} + 2k\pi, -\frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi, -\frac{5\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$
.

$$2^{\circ}$$
) $\sin(2x) + \sin(x) = 0$:

Définie sur \mathbb{R} .

On peut factoriser... On peut diviser par $\sqrt{2}$ pour reconnaître une formule d'addition... ou encore : équivalente à : $\sin(2x) = \sin(-x)$, facile à traiter avec le cours!

Réponse :
$$\left\{\frac{2k\pi}{3}, \pi + 2k\pi \ / \ k \in \mathbb{Z}\right\}$$
.

$$3^{\circ}$$
) $2\cos^2(2x) - 3\cos(2x) = -1$:

Définie sur \mathbb{R} .

On peut poser $X = \cos(2x)$ et faire apparaître une équation du second degré...

Réponse :
$$\left\{k\pi, -\frac{\pi}{6} + k\pi, \frac{\pi}{6} + k\pi \ / \ k \in \mathbb{Z}\right\}$$
.

4°)
$$\sin(2x) + \sin\left(\frac{\pi}{3} + 3x\right) = 0$$
:

Définie sur ℝ

On peut factoriser... On peut diviser par $\sqrt{2}$ pour reconnaître une formule d'addition... ou encore : équivalente à : $\sin(2x) = \sin\left(-\frac{\pi}{3} - 3x\right)$, facile à traiter avec le cours!

Réponse :
$$\left\{ -\frac{\pi}{15} + \frac{2k\pi}{5}, \frac{2\pi}{3} + 2k\pi \ / \ k \in \mathbb{Z} \right\}$$
.

$$5^{\circ}$$
) $\cos(3x) + \sin(x) = 0$:

Définie sur \mathbb{R} .

On peut diviser par $\sqrt{2}$ pour reconnaître une formule d'addition... ou encore, passer $\sin(x)$ de l'autre côté, écrire $-\sin(x)$ comme un cosinus à l'aide des formules avec du $\frac{\pi}{2}$...

Réponse :
$$\left\{\frac{\pi}{4} + k\pi, -\frac{\pi}{8} + k\frac{\pi}{2} / k \in \mathbb{Z}\right\}$$
.

6°)
$$3\tan(x) = 2\cos(x)$$
:

Définie sur
$$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi\ /\ k\in\mathbb{Z}\}.$$

Remplacer tan par son expression avec sin et cos; multiplier l'équation par $\cos(x)$. Ensuite, on peut remplacer le cosinus au carré par une expression avec sinus, cela permet de se ramener à un trinôme du second degré en $\sin(x)$ (poser un X).

Réponse :
$$\left\{ \frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$
.

7°) $2\cos(4x) + \sin(x) = \sqrt{3}\cos(x)$:

Définie sur \mathbb{R} .

On peut passer $\sin(x)$ dans le membre de droite et tout diviser par 2... Repérer une formule d'addition avec cos pour se ramener à la situation de cours $\cos(X) = \cos(Y)$.

$$\text{Réponse}: \bigg\{\frac{\pi}{18} + \frac{2k\pi}{3}, -\frac{\pi}{30} + \frac{2k\pi}{5} \ / \ k \in \mathbb{Z}\bigg\}.$$

8°) $2\sin(x) + \sin(3x) = 0$:

Définie sur \mathbb{R} .

Remplacer 3x par 2x + x et utiliser la formule d'addition. Utiliser ensuite la formule pour $\sin(2x)$: cela permet de mettre $\sin(x)$ en facteur. Remplacer le $\cos(2x)$ par une formule bien choisie afin de simplifier beaucoup ce qu'il y a dans la parenthèse...

Réponse : $\{k\pi \mid k \in \mathbb{Z}\}.$