20. (Review MT 1 - Chifan) Let E be the subset of all elements in [0,1] which do not contain the digits 3 and 9 in their decimal expansion. Is E Lebesgue measurable? If yes, find its measure.

Let
$$F_n = \left\{ \begin{array}{c} x \mid n^{\text{th}} \text{ digit of decimal expansion} \\ \text{of } x \text{ is not } 3 \text{ or } 9 \end{array} \right\}$$
 and $F_0 = [0, 1]$.

Then $E = \bigcap_{n=0}^{\infty} F_n$ is measurable as it is a countable intersection of

half open intervals. Let $E_n = \bigcap_{k=0}^{n} F_k$.

$$(E_{k} \setminus E_{k+1} \text{ highlighted})$$

Note E_{K+1} is constructed by removing $8^{K-1} \cdot 2$ intervals of length $\frac{1}{10^K}$ from E_K , so $M(E) = \lim_{n \to \infty} M(E_n)$

$$= M(E_0) - \sum_{k=0}^{\infty} 8^k \cdot \frac{2}{10^{k+1}}$$

$$= 1 - \sum_{k=0}^{\infty} \left(\frac{2}{10}\right) \left(\frac{8}{10}\right)^k$$

$$= 1 - \frac{2/10}{1 - 8/10}$$