Objectives for this week

What else should a computer scientist know about algorithms?

For many, this may be the last course on algorithms and complexity

Next lecture: The limits of computing

- There are things that computers will not be able to do
- The most important are the "NP-complete" problems

This lecture: Heuristics

- When we don't have algorithms with nice time complexity
- The "science of brute force"
- Recent progress, extremely successful

Common intersection: The Satisfiability Problem (SAT)

- Hugely practical "meta-problem"
- Fundamental theoretical importance

Today's lecture

Introduce the Satisfiability Problem (SAT)

- Applications in AI, planning, circuit design, verifiable programs
- Boolean formulas in CNF (conjunctive normal form)

Heuristic search algorithms

- Methods with poor worst case behavior, that often work well.
- Generation of all bitstrings
- Backtracking: Examining no more than necessary

Satisfiability solutions method

- Backtracking
- Unit clause propagation and DPLL

Davis-Putnam-Logeman-Loveland (DPLL) procedure

Transformations that preserve satisfiability

- Change formula φ to a *simpler* formula φ'
- φ is satisfiable iff φ' is satisfiable

Simplifying transformations:

- 1. Unit clause propagation
- 2. Pure literal elimination

Davis-Putnam-Logeman-Loveland (DPLL) procedure

Transformations that preserve satisfiability

- Change formula φ to a *simpler* formula φ'
- φ is satisfiable iff φ' is satisfiable

Unit clause propagation

- Suppose there is a clause consisting of a single literal
- Example: $(x_1) \land (\neg x_1 \lor x_2)$
- We can replace that literal by the necessary truth value

Power of the method: Recursive application

- Suppose there is a clause consisting of a single literal
- Example:

$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (\neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_5)$$
$$\land (\neg x_1 \lor x_2) \land (\neg x_3 \lor \neg x_4) \land (x_4 \lor \neg x_5) \land (x_5)$$

Davis-Putnam-Logeman-Loveland (DPLL) procedure

Transformations that preserve satisfiability

- Change formula φ to a *simpler* formula φ'
- φ is satisfiable iff φ' is satisfiable

Pure-literal elimination

- Suppose a variable appears only negated (or only unnegated).
- It is then safe to assign it *False* (*True*)
- Example:

$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (\neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_5) \\ \land (\neg x_1 \lor x_2) \land (\neg x_3 \lor \neg x_4) \land (x_4 \lor \neg x_5) \land (x_1 \lor x_4 \lor x_5)$$

Example

 $\mathcal{F}: \overline{x_1}, \ x_1\overline{x_2}, \ x_1x_2x_3, \ \overline{x_3}x_4, \ x_1\overline{x_3}x_4$

$$\mathcal{F}: \overline{x_1}$$
, $x_1\overline{x_2}$, $x_1x_2x_3$, $\overline{x_3}x_4$, $x_1\overline{x_3}x_4$

Applying unit-clause propagation

$x_1 \vee x_2 \vee x_3$
$\neg x_1 \lor \neg x_2$
$\neg x_1 \lor \neg x_3$
$\neg x_2 \lor \neg x_3$
$x_4 \vee x_5 \vee x_6$
$\neg x_4 \lor \neg x_5$
$\neg x_4 \lor \neg x_6$
$\neg x_5 \lor \neg x_6$
$x_7 \vee x_8 \vee x_9$
$\neg x_7 \lor \neg x_8$
$\neg x_7 \lor \neg x_9$
$\neg x_8 \lor \neg x_9$
$x_{10} \vee x_{11} \vee x_{12}$
$\neg x_{10} \lor \neg x_{11}$
$\neg x_{10} \lor \neg x_{12}$
$\neg x_{11} \lor \neg x_{12}$
$\neg x_8 \lor \neg x_{11}$

In this example, we consider the variables in the natural order, starting with x_1 .

We start with exploring the case with x_1 true.

Applying unit-clause propagation

When x_1 receives the value T (= true), then x_2 must necessarily receive the value F(= false), because of the clause $\neg x_1 \lor \neg x_2$.

Clause already satisfied:

Literal that is false

Applying unit-clause propagation

When x_1 receives the value T (= true), then x_2 must necessarily receive the value F(= false), because of the clause $\neg x_1 \lor \neg x_2$.

Similarly x_3 , x_4 , x_7 , x_{10} must also be false.

We label the edge from x_1 to the left with the variables that become assigned because of unit clause propagation.


```
\neg x_1 \lor \neg x_4
 \neg x_2 \lor \neg x_5
 \neg x_3 \lor \neg x_6
\neg x_1 \lor \neg x_7
\neg x_2 \lor \neg x_8
\neg x_3 \lor \neg x_9
\neg x_1 \lor \neg x_{10}
 \neg x_2 \lor \neg x_{11}
\neg x_3 \lor \neg x_{12}
\neg x_4 \lor \neg x_7
\neg x_5 \lor \neg x_8
\neg x_6 \lor \neg x_9
\neg x_4 \lor \neg x_{10}
\neg x_5 \lor \neg x_{11}
\neg x_6 \lor \neg x_{12}
\neg x_7 \lor \neg x_{10}
\neg x_9 \lor \neg x_{12}
```


We label the edge from x_1 to the left with the variables that become assigned because of unit clause propagation.

Clause already satisfied: Literal that is false

$x_1 \vee x_2 \vee x_3$
$\neg x_1 \lor \neg x_2$
$\neg x_1 \lor \neg x_3$
$\neg x_2 \lor \neg x_3$
$x_4 \vee x_5 \vee x_6$
$\neg x_4 \lor \neg x_5$
$\neg x_4 \lor \neg x_6$
$\neg x_5 \lor \neg x_6$
$x_7 \vee x_8 \vee x_9$
,
$\neg x_7 \lor \neg x_8$
$\neg x_7 \lor \neg x_9$
$\neg x_8 \lor \neg x_9$
$x_{10} \vee x_{11} \vee x_{12}$
$\neg x_{10} \lor \neg x_{11}$
$\neg x_{10} \lor \neg x_{12}$
$\neg x_{11} \lor \neg x_{12}$
$\neg x_8 \lor \neg x_{11}$

```
\neg x_1 \lor \neg x_4
 \neg x_2 \lor \neg x_8
\neg x_3 \lor \neg x_9
\neg x_1 \lor \neg x_{10}
 \neg x_2 \lor \neg x_{11}
\neg x_3 \lor \neg x_{12}
\neg x_4 \lor \neg x_7
\neg x_5 \lor \neg x_8
\neg x_6 \lor \neg x_9
\neg x_4 \lor \neg x_{10}
\neg x_5 \lor \neg x_{11}
\neg x_6 \lor \neg x_{12}
\neg x_9 \lor \neg x_{12}
```


When x_5 is assigned T (=true), then x_6 must be assigned F (= false), because of the clause $\neg x_5 \lor \neg x_6$.

$x_1 \lor x_2 \lor x_3$ $\neg x_1 \lor \neg x_2$ $\neg x_1 \lor \neg x_3$ $\neg x_2 \lor \neg x_3$ $x_4 \lor x_5 \lor x_6$ $\neg x_4 \lor \neg x_5$ $\neg x_4 \lor \neg x_6$ $\neg x_5 \lor \neg x_6$ $x_7 \lor x_8 \lor x_9$ $\neg x_7 \lor \neg x_9$ $\neg x_8 \lor \neg x_9$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_8 \lor \neg x_9$ $\neg x_8 \lor \neg x_{11}$	
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$x_1 \vee x_2 \vee x_3$
$\neg x_{2} \lor \neg x_{3}$ $x_{4} \lor x_{5} \lor x_{6}$ $\neg x_{4} \lor \neg x_{5}$ $\neg x_{4} \lor \neg x_{6}$ $\neg x_{5} \lor \neg x_{6}$ $x_{7} \lor x_{8} \lor x_{9}$ $\neg x_{7} \lor \neg x_{9}$ $\neg x_{8} \lor \neg x_{9}$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$\neg x_1 \lor \neg x_2$
$x_{4} \lor x_{5} \lor x_{6}$ $\neg x_{4} \lor \neg x_{5}$ $\neg x_{4} \lor \neg x_{6}$ $\neg x_{5} \lor \neg x_{6}$ $x_{7} \lor x_{8} \lor x_{9}$ $\neg x_{7} \lor \neg x_{9}$ $\neg x_{8} \lor \neg x_{9}$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$\neg x_1 \lor \neg x_3$
$\neg x_{4} \lor \neg x_{5}$ $\neg x_{4} \lor \neg x_{6}$ $\neg x_{5} \lor \neg x_{6}$ $x_{7} \lor x_{8} \lor x_{9}$ $\neg x_{7} \lor \neg x_{8}$ $\neg x_{7} \lor \neg x_{9}$ $\neg x_{8} \lor \neg x_{9}$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$\neg x_2 \lor \neg x_3$
$\neg x_{4} \lor \neg x_{6}$ $\neg x_{5} \lor \neg x_{6}$ $x_{7} \lor x_{8} \lor x_{9}$ $\neg x_{7} \lor \neg x_{8}$ $\neg x_{7} \lor \neg x_{9}$ $\neg x_{8} \lor \neg x_{9}$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$x_4 \vee x_5 \vee x_6$
$\neg x_{5} \lor \neg x_{6}$ $x_{7} \lor x_{8} \lor x_{9}$ $\neg x_{7} \lor \neg x_{8}$ $\neg x_{7} \lor \neg x_{9}$ $\neg x_{8} \lor \neg x_{9}$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$\neg x_4 \lor \neg x_5$
$x_7 \lor x_8 \lor x_9$ $\neg x_7 \lor \neg x_8$ $\neg x_7 \lor \neg x_9$ $\neg x_8 \lor \neg x_9$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$\neg x_4 \lor \neg x_6$
$\neg x_{7} \lor \neg x_{8}$ $\neg x_{7} \lor \neg x_{9}$ $\neg x_{8} \lor \neg x_{9}$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$\neg x_5 \lor \neg x_6$
$\neg x_{7} \lor \neg x_{9}$ $\neg x_{8} \lor \neg x_{9}$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$x_7 \vee x_8 \vee x_9$
$\neg x_8 \lor \neg x_9$ $x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$\neg x_7 \lor \neg x_8$
$x_{10} \lor x_{11} \lor x_{12}$ $\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$\neg x_7 \lor \neg x_9$
$\neg x_{10} \lor \neg x_{11}$ $\neg x_{10} \lor \neg x_{12}$ $\neg x_{11} \lor \neg x_{12}$	$\neg x_8 \lor \neg x_9$
$\neg x_{10} \lor \neg x_{12} \\ \neg x_{11} \lor \neg x_{12}$	$x_{10} \vee x_{11} \vee x_{12}$
$\neg x_{11} \lor \neg x_{12}$	$\neg x_{10} \lor \neg x_{11}$
	$\neg x_{10} \lor \neg x_{12}$

```
\neg x_2 \lor \neg x_{11}
\neg x_3 \lor \neg x_{12}
-1 x_5 V
\neg x_6 \lor \neg x_9
\neg x_9 \lor \neg x_{12}
```


When x_5 is assigned T (=true), then x_6 must be assigned F (= false), because of the clause $\neg x_5 \lor \neg x_6$. Same for x_8, x_{11} .

$x_1 \vee x_2 \vee x_3$
$\neg x_1 \lor \neg x_2$
$\neg x_1 \lor \neg x_3$
$\neg x_2 \lor \neg x_3$
$x_4 \vee x_5 \vee x_6$
$\neg x_4 \lor \neg x_5$
$\neg x_4 \lor \neg x_6$
$\neg x_5 \lor \neg x_6$
$x_7 \vee x_8 \vee x_9$
$\neg x_7 \lor \neg x_8$
$\neg x_7 \lor \neg x_9$
$\neg x_8 \lor \neg x_9$
$x_{10} \vee x_{11} \vee x_{12}$
$\neg x_{10} \lor \neg x_{11}$
$\neg x_{10} \lor \neg x_{12}$
$\neg x_{11} \lor \neg x_{12}$
$\neg x_8 \lor \neg x_{11}$

```
\neg x_1 \lor \neg x_4
 \neg x_2 \lor \neg x_5
 \neg x_3 \lor \neg x_6
 \neg x_2 \lor \neg x_8
\neg x_3 \lor \neg x_9
\neg x_1 \lor \neg x_{10}
 \neg x_2 \lor \neg x_{11}
\neg x_3 \lor \neg x_{12}
\neg x_4 \lor \neg x_7
\neg x_5 \lor \neg x_8
\neg x_6 \lor \neg x_9
\neg x_4 \lor \neg x_{10}
\neg x_5 \lor \neg x_{11}
\neg x_6 \lor \neg x_{12}
\neg x_7 \lor \neg x_{10}
\neg x_9 \lor \neg x_{12}
```


When x_5 is assigned T (=true), then x_6 must be assigned F (= false), because of the clause $\neg x_5 \lor \neg x_6$.

Same for x_8 , x_{11} .

Then, x_9 , x_{12} must become T (because of $x_7 \lor x_8 \lor x_9$ and $x_{10} \lor x_{11} \lor x_{12}$).

$x_1 \vee x_2 \vee x_3$	$\neg x_1 \lor \neg x_4$
$\neg x_1 \lor \neg x_2$	$\neg x_2 \lor \neg x_5$
$\neg x_1 \lor \neg x_3$	$\neg x_3 \lor \neg x_6$
$\neg x_2 \lor \neg x_3$	
	$\neg x_1 \lor \neg x_7$
$x_4 \vee x_5 \vee x_6$	$\neg x_2 \lor \neg x_8$
$\neg x_4 \lor \neg x_5$	$\neg x_3 \lor \neg x_9$
$\neg x_4 \lor \neg x_6$	$\neg x_1 \lor \neg x_{10}$
$\neg x_5 \lor \neg x_6$	$\neg x_2 \lor \neg x_{11}$
$x_7 \vee x_8 \vee x_9$	$\neg x_3 \lor \neg x_{12}$
$\neg x_7 \lor \neg x_8$	$\neg x_4 \lor \neg x_7$
$\neg x_7 \lor \neg x_9$	$\neg x_5 \lor \neg x_8$
$\neg x_8 \lor \neg x_9$	$\neg x_6 \lor \neg x_9$
$x_{10} \vee x_{11} \vee x_{12}$	$\neg x_4 \lor \neg x_{10}$
$\neg x_{10} \lor \neg x_{11}$	$\neg x_5 \lor \neg x_{11}$
$\neg x_{10} \lor \neg x_{12}$	$\neg x_6 \lor \neg x_{12}$
$\neg x_{11} \lor \neg x_{12}$	$\neg x_7 \lor \neg x_{10}$
$\neg x_8 \lor \neg x_{11}$	$\neg x_9 \lor \neg x_{12}$

When x_5 is assigned T (=true), then x_6 must be assigned F (= false), because of the clause $\neg x_5 \lor \neg x_6$.

Same for x_8 , x_{11} .

Then, x_9 , x_{12} must become T (because of $x_7 \lor x_8 \lor x_9$ and $x_{10} \lor x_{11} \lor x_{12}$).

That causes conflict in the clause $\neg x_9 \lor \neg x_{12}$.

Hence, this branch is a dead-end, and shown as red X.

$x_1 \vee x_2 \vee x_3$
$\neg x_1 \lor \neg x_2$
$\neg x_1 \lor \neg x_3$
$\neg x_2 \lor \neg x_3$
$x_4 \vee x_5 \vee x_6$
$\neg x_4 \lor \neg x_5$
$\neg x_4 \lor \neg x_6$
$\neg x_5 \lor \neg x_6$
$x_7 \vee x_8 \vee x_9$
, ,
$\neg x_7 \lor \neg x_8$
$\neg x_7 \lor \neg x_9$
$\neg x_8 \lor \neg x_9$
$x_{10} \vee x_{11} \vee x_{12}$
$\neg x_{10} \lor \neg x_{11}$
$\neg x_{10} \lor \neg x_{12}$
$\neg x_{11} \lor \neg x_{12}$
$\neg x_8 \lor \neg x_{11}$

```
\neg x_1 \lor \neg x_4
 \neg x_2 \lor \neg x_8
\neg x_3 \lor \neg x_9
\neg x_1 \lor \neg x_{10}
 \neg x_2 \lor \neg x_{11}
\neg x_3 \lor \neg x_{12}
\neg x_4 \lor \neg x_7
\neg x_5 \lor \neg x_8
\neg x_6 \lor \neg x_9
\neg x_4 \lor \neg x_{10}
\neg x_5 \lor \neg x_{11}
\neg x_6 \lor \neg x_{12}
\neg x_9 \lor \neg x_{12}
```


When x_5 is assigned F (=false), then x_6 must be assigned T (= true), because of the clause $x_4 \lor x_5 \lor x_6$.

$x_1 \vee x_2 \vee x_3$
$\neg x_1 \lor \neg x_2$
$\neg x_1 \lor \neg x_3$
$\neg x_2 \lor \neg x_3$
$x_4 \vee x_5 \vee x_6$
$\neg x_4 \lor \neg x_5$
$\neg x_4 \lor \neg x_6$
$\neg x_5 \lor \neg x_6$
$x_7 \vee x_8 \vee x_9$
11 1 18 1 19
$\neg x_7 \lor \neg x_8$
, , ,
$\neg x_7 \lor \neg x_9$
$\neg x_8 \lor \neg x_9$
$x_{10} \vee x_{11} \vee x_{12}$
$\neg x_{10} \lor \neg x_{11}$
$\neg x_{10} \lor \neg x_{12}$
$\neg x_{11} \lor \neg x_{12}$
$\neg x_8 \lor \neg x_{11}$
170

```
\neg x_5 \lor \neg x_8
\neg x_9 \lor \neg x_{12}
```


When x_5 is assigned F (=false), then x_6 must be assigned T (= true), because of the clause $x_4 \lor x_5 \lor x_6$.

Unit-clauses formed mean that that x_9 , x_{12} must be F.

$x_1 \vee x_2 \vee x_3$
$\neg x_1 \lor \neg x_2$
$\neg x_1 \lor \neg x_3$
$\neg x_2 \lor \neg x_3$
$x_4 \vee x_5 \vee x_6$
$\neg x_4 \lor \neg x_5$
$\neg x_4 \lor \neg x_6$
$\neg x_5 \lor \neg x_6$
$x_7 \vee x_8 \vee x_9$
$\neg x_7 \lor \neg x_8$
$\neg x_7 \lor \neg x_9$
$\neg x_8 \lor \neg x_9$
$x_{10} \vee x_{11} \vee x_{12}$
$\neg x_{10} \lor \neg x_{11}$
$\neg x_{10} \lor \neg x_{12}$
$\neg x_{11} \lor \neg x_{12}$
1
$\neg x_8 \lor \neg x_{11}$

```
\neg x_0 \lor \neg x_{12}
```


When x_5 is assigned F (=false), then x_6 must be assigned T (= true), because of the clause $x_4 \lor x_5 \lor x_6$.

Unit-clauses formed mean that that x_9 , x_{12} must be F. Further unit-clause propagation give that x_8 , x_{11} must be T.

$x_1 \vee x_2 \vee x_3$
$\neg x_1 \lor \neg x_2$
$\neg x_1 \lor \neg x_3$
$\neg x_2 \lor \neg x_3$
$x_4 \vee x_5 \vee x_6$
$\neg x_4 \lor \neg x_5$
$\neg x_4 \lor \neg x_6$
$\neg x_5 \lor \neg x_6$
$x_7 \vee x_8 \vee x_9$
$\neg x_7 \lor \neg x_8$
$\neg x_7 \lor \neg x_9$
$\neg x_8 \lor \neg x_9$
$x_{10} \vee x_{11} \vee x_{12}$
$\neg x_{10} \lor \neg x_{11}$
$\neg x_{10} \lor \neg x_{12}$
$\neg x_{11} \lor \neg x_{12}$
$\neg x_8 \lor \neg x_{11}$

When x_5 is assigned F (=false), then x_6 must be assigned T (= true), because of the clause $x_4 \lor x_5 \lor x_6$.

Unit-clauses formed mean that that x_9 , x_{12} must be F.

Further unit-clause propagation give that x_8 , x_{11} must be T. That causes conflict in the clause $\neg x_8 \lor \neg x_{11}$.

Hence, this branch is a dead-end, and shown as red X.

API: Solvers

public class	Solvers	
	<pre>public Solvers()</pre>	New instance
boolean	naiveSatisfiability()	Naive solver, returning satisfiability
boolean	bbSatisfiability()	Backtracking solver, returning satisfiability
boolean	<pre>dpSatisfiability()</pre>	DPLL solver, returning satisfiability
Asgmt	satAsgmt()	Return the satisfying assignment
int	nStates()	Return the number of solver states
Asgmt	unitLits(Formula F, Asgmt asg)	Perform unit clause propagation
Int	nextVariable(Formula F, Asgmt asg)	Find the next variable to branch on
String	toString()	string representation
String		string representation

API: Boolean formula

public class	Fmla	
	public Fmla(In in)	Read formula from file
Iterable <clause></clause>	clauses()	Return all the clauses
int	<pre>nClauses();</pre>	Return number of clauses
void	addClause(Clause)	Adding clauses
boolean	isSatisfied(Assignment a)	Does the partial assignment satisfy the formula?
boolean	isValuated(Assignment a)	Does the partial assignment result in a valued formula?
String	toString()	string representation

Library method:

public static Formula RandomCNF(int n, int m, int k)

Generate random k-CNF formula with n variables and m clauses

Formula class implementation

```
public class Formula
{
  private final int n;  // # of variables
  private Bag<Clauses> clauses;
}
```

Formula I/O

```
public Formula(In in) {
  int n = in.readInt(), m = in.readInt();
  this.n = n; this.m = m;
  clauses = new Bag<Clauses>();
  in.readLine();
  for (int i = 0; i < m; i++) {
    String[] tokens = in.readLine().split(",");
    Clause newClause = new Clause();
    for (String lit : tokens) {
     int var = Math.abs(Integer.parseInt(lit));
     boolean sign = (lit.charAt(0) != '-');
     newClause.addLiteral(var,sign);
   clauses.add(newClause);
}
```

```
\begin{array}{c|c}
\mathbf{f1.txt} \\
2 \\
1 \\
0,-1
\end{array}
```


$$(x_0 \lor \neg x_1) \land (x_0 \lor x_1)$$

$$\land (\neg x_0 \lor x_1) \land (\neg x_0 \lor \neg x_1)$$

API: Assignment

public class	Assignment	
	<pre>public Assignment()</pre>	Constructor
Iterable <integer></integer>	vars()	Return all the variables
int	size()	Return no. of literals
boolean	isSet(int var)	Is the variable assigned?
boolean	getValue(int var)	Return the value of the variable
void	setValue(int var)	Set the value of the variable
void	unset(int var)	Remove the value for variable
void	<pre>joinAsgmts(Assignment asg2)</pre>	Combine the two assignments
void	removeAsgmts(Assignment a)	Symmetric difference of asgmts
String	toString()	string representation

```
public boolean dpSatisfiability(Formula F, Asgmt asg) {
   nStates++;
  Asgmt unitVars = F.unitLits(asg);
   if (F.isValuated(asg)) {
      boolean result = F.isSatisfied(asg);
      if (!result) asg.unset(unitVars);
      return result;
   int v = chooseVariable(asg);
   asg.add(v, true);
   if (dpSatisfiability(asg)) return true;
   asg.add(v, false);
   if (dpSatisfiability(asg)) return true;
   asg.removeAsgt(asg,unitVars);
   asg.remove(v);
   return false;
}
```


Further improvements

Variable selection rule

- Can add heuristics to select the next variable to branch on
 - Random; Most frequent in unsatisfied clauses

Conflict-driven learning

- Learn (and remember) new clauses that can be added
- Means failures are discovered earlier

Solvable special cases

- 2-SAT : SAT where each clause has (at most) 2 literals
- · Solvable in linear time

Other modern improvements

- Efficient implementation of the unit-clause rule
- · Formula preprocessing

Boolean Schur Triples Problem

Mathematical problem (related to Ramsey theory):

• Does there exists a red/blue coloring of the numbers 1 to n, such that there is no monochromatic solution of a + b = c with $a < b < c \le n$.

$$(x_{1} \lor x_{2} \lor x_{3}) \land (\overline{x}_{1} \lor \overline{x}_{2} \lor \overline{x}_{3}) \land (x_{1} \lor x_{3} \lor x_{4}) \land (\overline{x}_{1} \lor \overline{x}_{3} \lor \overline{x}_{4}) \land \\ (x_{1} \lor x_{4} \lor x_{5}) \land (\overline{x}_{1} \lor \overline{x}_{4} \lor \overline{x}_{5}) \land (x_{2} \lor x_{3} \lor x_{5}) \land (\overline{x}_{2} \lor \overline{x}_{3} \lor \overline{x}_{5}) \land \\ (x_{1} \lor x_{5} \lor x_{6}) \land (\overline{x}_{1} \lor \overline{x}_{5} \lor \overline{x}_{6}) \land (x_{2} \lor x_{4} \lor x_{6}) \land (\overline{x}_{2} \lor x_{4} \lor \overline{x}_{6}) \land \\ (x_{1} \lor x_{6} \lor x_{7}) \land (\overline{x}_{1} \lor \overline{x}_{6} \lor \overline{x}_{7}) \land (x_{2} \lor x_{5} \lor x_{7}) \land (\overline{x}_{2} \lor \overline{x}_{5} \lor \overline{x}_{7}) \land \\ (x_{3} \lor x_{4} \lor x_{7}) \land (\overline{x}_{3} \lor \overline{x}_{4} \lor \overline{x}_{7}) \land (x_{1} \lor x_{7} \lor x_{8}) \land (\overline{x}_{1} \lor \overline{x}_{7} \lor \overline{x}_{8}) \land \\ (x_{2} \lor x_{6} \lor x_{8}) \land (\overline{x}_{2} \lor \overline{x}_{6} \lor \overline{x}_{8}) \land (x_{3} \lor x_{5} \lor x_{8}) \land (\overline{x}_{3} \lor \overline{x}_{5} \lor \overline{x}_{8}) \land \\ (x_{1} \lor x_{8} \lor x_{9}) \land (\overline{x}_{1} \lor \overline{x}_{8} \lor \overline{x}_{9}) \land (x_{2} \lor x_{7} \lor x_{9}) \land (\overline{x}_{2} \lor \overline{x}_{7} \lor \overline{x}_{9}) \land \\ (x_{3} \lor x_{6} \lor x_{9}) \land (\overline{x}_{3} \lor \overline{x}_{6} \lor \overline{x}_{9}) \land (x_{4} \lor x_{5} \lor x_{9}) \land (\overline{x}_{4} \lor \overline{x}_{5} \lor \overline{x}_{9}) \land \\ (x_{3} \lor x_{6} \lor x_{9}) \land (\overline{x}_{3} \lor \overline{x}_{6} \lor \overline{x}_{9}) \land (x_{4} \lor x_{5} \lor x_{9}) \land (\overline{x}_{4} \lor \overline{x}_{5} \lor \overline{x}_{9})$$

sch.txt

Source:

 Heule, Kullman, "The science of brute force", Communications of the ACM, Aug 2017.

Boolean Schur Triples Problem

Boolean Schur Triples Problem

 $(x_{1} \lor x_{2} \lor x_{3}) \land (\overline{x}_{1} \lor \overline{x}_{2} \lor \overline{x}_{3}) \land (x_{1} \lor x_{3} \lor x_{4}) \land (\overline{x}_{1} \lor \overline{x}_{3} \lor \overline{x}_{4}) \land \\ (x_{1} \lor x_{4} \lor x_{5}) \land (\overline{x}_{1} \lor \overline{x}_{4} \lor \overline{x}_{5}) \land (x_{2} \lor x_{3} \lor x_{5}) \land (\overline{x}_{2} \lor \overline{x}_{3} \lor \overline{x}_{5}) \land \\ (x_{1} \lor x_{5} \lor x_{6}) \land (\overline{x}_{1} \lor \overline{x}_{5} \lor \overline{x}_{6}) \land (x_{2} \lor x_{4} \lor x_{6}) \land (\overline{x}_{2} \lor x_{4} \lor \overline{x}_{6}) \land \\ (x_{1} \lor x_{6} \lor x_{7}) \land (\overline{x}_{1} \lor \overline{x}_{6} \lor \overline{x}_{7}) \land (x_{2} \lor x_{5} \lor x_{7}) \land (\overline{x}_{2} \lor \overline{x}_{5} \lor \overline{x}_{7}) \land \\ (x_{3} \lor x_{4} \lor x_{7}) \land (\overline{x}_{3} \lor \overline{x}_{4} \lor \overline{x}_{7}) \land (x_{1} \lor x_{7} \lor x_{8}) \land (\overline{x}_{1} \lor \overline{x}_{7} \lor \overline{x}_{8}) \land \\ (x_{2} \lor x_{6} \lor x_{8}) \land (\overline{x}_{2} \lor \overline{x}_{6} \lor \overline{x}_{8}) \land (x_{3} \lor x_{5} \lor x_{8}) \land (\overline{x}_{3} \lor \overline{x}_{5} \lor \overline{x}_{8}) \land \\ (x_{1} \lor x_{8} \lor x_{9}) \land (\overline{x}_{1} \lor \overline{x}_{8} \lor \overline{x}_{9}) \land (x_{2} \lor x_{7} \lor x_{9}) \land (\overline{x}_{2} \lor \overline{x}_{7} \lor \overline{x}_{9}) \land \\ (x_{3} \lor x_{6} \lor x_{9}) \land (\overline{x}_{3} \lor \overline{x}_{6} \lor \overline{x}_{9}) \land (x_{4} \lor x_{5} \lor x_{9}) \land (\overline{x}_{4} \lor \overline{x}_{5} \lor \overline{x}_{9})$

2-Satisfiability

2-Satisfiability problem Satisfiability when all clauses have at most 2 literals.

Example

$$(a \lor \neg b) \land (\neg a \lor b) \land (\neg a \lor \neg b) \land (a \lor \neg c)$$

Equivalent implications

$$\neg a \Rightarrow \neg b$$
 $a \Rightarrow b$ $a \Rightarrow \neg b$ $\neg a \Rightarrow \neg c$
 $b \Rightarrow a$ $\neg b \Rightarrow \neg a$ $b \Rightarrow \neg a$ $c \Rightarrow a$

Implication graph

Condensation graph

2-Satisfiability: DFS-based algorithm (Aspvall, Plath, Tarjan)

Algorithm

- Form condensation graph H, by shrinking each strong component to a single node
- Process the strong components of the condensation graph in reverse topological order
 - Set all the literals in the component to be true, if possible; otherwise, false

References

Attributions

- Joao Marques-Silva, Southampton
 - "Practical applications of Boolean Satisfiability", talk at WODES'08
- Ari K. Jónsson, rektor
 - Presentation, "Practical Planning I"
- Federico Pecora, Örebro University
 - Lecture in Advanced AI, DT4019
- David Dill, Stanford
 - Lecture 2: Practical SAT solving, CS 357