- 1. По 100 наблюдениям храбрый Василий под самый Хэллоуин оценил модель $\hat{y}_i = 3.4 5.6x_i + 2.7z_i$. Стандартная ошибка коэффициента при x_i равна 1.1.
 - а) Постройте 95% доверительный интервал для β_x .
 - б) Проверьте гипотезу H_0 : $\beta_x = -4$ на уровне значимости 5%.
- 2. Рассмотрим векторы: x = (2, 0, 1), z = (1, 0, 1) и y = (1, 2, 3).
 - а) Найдите матрицу-шляпницу, проецирующую любой вектор на линейную оболочку векторов x и z.
 - б) Найдите коэффициенты в регрессии y на x и z без константы.
 - в) Найдите ESS, RSS и TSS. Верно ли, что TSS = ESS + RSS в этой модели?
 - г) Найдите $\widehat{\mathbb{V}\mathrm{ar}}(\hat{\beta})$.
- 3. В рамках классической регрессионной модели $y=X\beta+u$, где $\mathbb{E}(u)=0$, $\mathbb{V}\mathrm{ar}(u)=\sigma^2\cdot I$, вектор $\hat{\beta}$ оценивается с помощью МНК. Обозначим $\hat{y}=X\hat{\beta},\,\hat{u}=y-\hat{y}.$
 - Найдите $\mathbb{E}(\hat{y})$, $\mathbb{E}(\hat{u})$, $\mathbb{V}\mathrm{ar}(\hat{y})$, $\mathbb{C}\mathrm{ov}(\hat{y},\hat{\beta})$.
- 4. Рассмотрим модель парной регрессии $y = \beta_1 \cdot \mathbb{1} + \beta_2 x + u$.
 - а) Нарисуйте векторы x, 1, y, \hat{y} , $\bar{y} \cdot 1$.
 - б) Укажите все прямые углы на рисунке.
 - в) Отметьте угол, квадрат косинуса которого равен R^2 .
 - г) Закончите фразу так, чтобы она была корректной
 - і. Вектор $y \bar{y} \cdot \mathbb{1}$ это проекция вектора y на ...
 - іі. Вектор $\hat{\beta}_2(x-\bar{x}\cdot\mathbb{1})$ это проекция вектора y на ...
- 5. Компоненты вектора $z=(z_1,z_2,z_3)$ независимы и имеют экспоненциальное распределение с $\lambda=1$.

Найдите совместную функцию плотности вектора $y = (z_1 z_2 z_3, z_1 z_2, z_1)$.

- 6. Верны ли следующие утверждения:
 - а) Сумма двух независимых гамма-распределений с одинаковым λ имеет гамма-распределение;
 - б) Если помножить π на гамма-распределение получится гамма-распределение;
 - в) Сумма двух независимых бета-распределений имеет бета-распределение;
 - τ) Если помножить π на бета-распределение получится бета-распределение;
- 7. Компоненты вектор вектора $z=(z_1,z_2,z_3)$ независимы и имеют нормальное распределение $z_i \sim \mathcal{N}(i;1)$.

Настойчивый исследователь Василий проецирует вектор z на плоскость $z_1+2z_2+3z_3=0$ и получает вектор w. Определим r=z-(1,2,3).

- а) Какое распределение имеет величина $|w|^2$?
- б) Какое распределение имеет $|z w (1, 2, 3)|^2$?
- в) Какое распределение имеет $2 \cdot |z-w-(1,2,3)|^2/|w|^2$?

- 8. Регрессионная модель имеет вид $y_i=\beta_1+\beta_x x_i+\beta_z z_i+\beta_w w_i+u_i$. Исследователь Феофан оценил эту модель по 20 наблюдениям и оказалось, что $R^2=0.9$. Феофан хочет проверить гипотезу H_0 о том, что $\beta_x=\beta_z$ и одновременно $\beta_z+\beta_w=0$. Предпосылки теоремы Гаусса-Маркова на ошибки u_i выполнены, кроме того, u_i нормально распределены.
 - а) Какую вспомогательную регрессию достаточно оценить Феофану для проверки H_0 ?
 - б) Во вспомогательной регрессии оказалось, что $R^2=0.6$. Отвергается ли H_0 на 5%-ом уровне значимости?
 - в) На сколько процентов изменилась несмещённая оценка дисперсии случайной ошибки при переходе ко вспомогательной регрессии?