

To Analyse and Predict the Rise of Energy Consumption and Predict Additional Energy Generation, in Future for NTPC, Ltd

Biswaroop Nath

A project report for Winter Internship Dec 2022-Jan 2023 at NTPC

Energy Analysis Requirement

Electricity being used as a commodity in houses have helped people make use of it in innovative ways. It has made the lives of people easy. Hence an analysis of energy is always important.

Here NTPC has provided a major role of power production in India since 1975.

Power Generation Requirement Analysis for NTPC

NTPC always has been considered above average in terms of power production in India. It accounts for 25% approximately of India's total power generation. This study will give a comprehensive analysis of how much more power generation does NTPC requires to keep up this performance in the future as the demand for power supply rises due to various factors which have also been analyzed here.

Contents

1.	Energy Analysis Requirement	1
2.	Power Generation Requirement Analysis for NTPC	·1
3.	Data Analysis	3
4.	Basic Statistical Information	5
5.	Co-relation Analysis	9
6.	Further Plots for analysis	-10
7.	Comparison of Different Models for prediction	-12
8.	Prediction plot for each factors using Linear Regression	13
9.	Summary of predictions	-15
10.	Projection of NTPC's Requirements	-16
11.	Recommendations	-20
12.	Conclusion	-20
13.	Bibliography	-20

Data Analysis (Exploratory Data Analysis)

To predict the rise in demand of energy in India we should take a look and analyze various possible factors, that might be responsible. For this we need to track India's history on multiple areas, and find and correlate if they are responsible for rise in energy demand.

To make this study simple, I have collected data from the year 1971 to 2014, with factors:

- <u>Population Growth:</u> Might be responsible for increase in demand, because more the people the more the energy requirements.
- <u>Electricity Access (in percentage of population)</u>: Electrical access is increasing over the years as our country is developing, hence it might be good factor to calculate and analyze.
- per Capita Electricity consumption(pCEC in KWH): Will denote how much energy per person uses on an average.
- *GDP*: Denotes the general development of our country.

These factors might be responsible for the rise in demand of power in India so let us analyze them.

Here is the quick look at the data.

Note: All the data-sets that have been utilized are taken from https://data.worldbank.org/country/IN and https://ourworldindata.org

Year	Energy Consumption(T Wh)	Population Growth	GDP	Per-Capita Power Consumption	Electricity Access
1971	794.3863	2.257900247	67350988021	97.77271821	28.9
1972	835.8586	2.301189197	71463193831	100.3050738	29.9
1973	853.3237	2.327407855	85515269585	100.6321541	30.9

1974	903.9876	2.331906417	99525899116	103.9926579	31.9
1975	972.0112	2.321760467	98472796457	114.5589276	32.9
1976	1019.4541	2.304663743	1.03x10 ¹¹	124.1236916	33.9
1977	1078.32	2.291299608	1.21x10 ¹¹	126.256734	34.9
1978	1120.9728	2.286780592	1.37x10 ¹¹	135.9176407	35.9
1979	1182.959	2.29489353	1.53x10 ¹¹	135.7417737	36.9
1980	1218.599	2.309521943	1.86x10 ¹¹	141.7077015	37.9
1981	1349.2845	2.323758727	1.93x10 ¹¹	151.8790588	38.9
1982	1336.0491	2.328678839	2.01x10 ¹¹	158.0999117	39.9
1983	1405.0502	2.320388368	2.18x10 ¹¹	165.687486	40.9
1984	1500.9186	2.295805502	2.12x10 ¹¹	183.3018723	41.9
1985	1584.2627	2.259853172	2.33x10 ¹¹	193.5348535	42.9
1986	1695.5906	2.220963311	2.49x10 ¹¹	207.976493	43.9
1987	1802.8536	2.183882902	2.79x10 ¹¹	220.220743	44.9
1988	1962.3015	2.146759799	2.97x10 ¹¹	240.0256187	45.9
1989	2143.4136	2.110865104	2.96x10 ¹¹	257.0397371	46.9
1990	2300.7012	2.076089204	3.21x10 ¹¹	272.0634834	47.9
1991	2427.663	2.039728736	2.70x10 ¹¹	290.8995799	48.9
1992	2552.7722	2.003178624	2.88x10 ¹¹	304.4318305	49.9
1993	2616.248	1.970634987	2.79x10 ¹¹	320.5507448	50.9
1994	2757.1213	1.943243922	3.27x10 ¹¹	341.2313623	49.81130981
1995	2963.118	1.918940659	3.60x10 ¹¹	358.7622129	51.40877533
1996	3081.6313	1.895219577	3.93x10 ¹¹	359.8162707	53.00352097
1997	3252.01	1.869172003	4.16x10 ¹¹	375.4850529	54.59486389
1998	3449.4966	1.839658764	4.21x10 ¹¹	385.8639858	56.18213272
1999	3549.4888	1.805559737	4.59x10 ¹¹	392.039693	60.1
2000	3728.5144	1.76812551	4.68x10 ¹¹	393.6462478	58.72147369
2001	3743.8525	1.72876857	4.85x10 ¹¹	393.8101981	55.79999924
2002	3865.7512	1.689561661	5.15x10 ¹¹	410.6447839	62.29999924
2003	4004.0781	1.651491269	6.08x10 ¹¹	430.4831633	64.04748535
2004	4347.582	1.615308295	7.09x10 ¹¹	451.6115461	64.40000153
2005	4603.6104	1.579709143	8.20x10 ¹¹	468.025754	67.5798111
2006	4849.72	1.545696439	9.40x10 ¹¹	509.2140548	67.90000153
2007	5263.1113	1.509221986	1.22x10 ¹²	541.7383952	71.11986542
2008	5570.697	1.464889915	1.20x10 ¹²	561.2475814	72.89938354
2009	6003.236	1.410582714	1.34x10 ¹²	598.4982419	75
2010	6269.459	1.350338314	1.68x10 ¹²	640.3946068	76.30000305
2011	6650.7104	1.288512962	1.82x10 ¹²	696.8426815	67.59999847
2012	7048.088	1.231484894	1.83x10 ¹²	723.2369166	79.90000153
2013	7294.344	1.182904215	1.86x10 ¹²	764.2011341	81.99932861
2014	7799.773	1.145673402	2.04x10 ¹²	804.5163493	83.87249756

Table 1: For data analysis on various factors.

Basic Statistical Information

Let us calculate some basic fundamental statistical information about our dataset.

Attrib -ute	Year	Energy Consumption(T Wh)	Population Growth	GDP	Per-Capita Power Consumptio n	Electricity Access
count	44	44	44	4.40x10 ¹	44	44
mean	1992.5	3062.553964	1.925954	5.54x10 ¹¹	335.182516	52.096374
std	12.845233	2002.485011	0.374892	5.59x10 ¹¹	198.598853	15.472843
min	1971	794.3863	1.145673	6.74x10 ¹⁰	97.772718	28.9
25%	1981.75	1345.97565	1.642446	1.99x10 ¹¹	156.544698	39.65
50%	1992.5	2584.5101	1.986907	3.09x10 ¹¹	312.491288	49.855655
75%	2003.25	4089.954075	2.292198	6.33x10 ¹¹	435.765259	64.135614
max	2014	7799.773	2.331906	2.04x10 ¹²	804.516349	83.872498

Table 2: Statistical information. EC(energy consumption)

As we can clearly see the data values are too high for some data sets and the scaling also varies, hence it is wiser to use *min-max normalization* to normalize the data so that certain factors with larger values are automatically not considered as important variables, hence making the data analysis much fair and accurate.

There is also another benefit of Min-Max Normalization, the data gets evenly distributed, without loosing the nature of the curve of the attribute.

Let us look at the plot of each attribute to understand and visualize the general trend of it.

Absolute Power Consumption

Fig.1:Plot for Absolute power consumption (in BU)

We can see it has an increasing trend over the years.

Per-Capita Energy Consumption

Fig.2.Plot for Per-Capita Energy Consumption

Per capita-energy consumption is also increasing in nature , as expected.

Electricity-Access

Fig.3.Plot for Electricity Access

Electricity access has some dips in graphs but there is a general increasing trend.

• Population Growth

Fig.4.Plot for Population Growth

Clearly, India's population growth has been declining since after the 1980's.

• GDP

Fig.5.Plot for GDP

Clearly, the GDP is also have a steep increasing trend.

Co-relation Analysis

For us to understand if the factors are correlated with Energy consumption, and if they would be a good for predicting future demand of energy, we analyze, if the factors are interdependent or not. This can be done by two ways:

Cosine Similarity

Cosine Similarity	Absolute Energy consumption	Inference
Electricity Access	0.98	Highly Related
Population Growth	0.40	Less Related
GDP	0.97	Highly Related
pCEC	0.99	Highly Related

Table 3: Cosine Similarity on various factors.

Pearson's Co-relation Co-efficient

Pearson's correlation coefficient	Absolute Energy consumption	Inference
Electricity Access	0.979	Positively Co-related
Population Growth	-0.992	Negatively Co-related
GDP	0.960	Positively Co-related
pCEC	0.997	Positively Co-related

Table 4: Pearson's Corelation Coefficient on various factors.

Conclusions

After this correlation analysis, we can confidently conclude that GDP, Electrical Access, Per Capita Energy Consumption are highly related.

Further Plots for analysis

• Boxplot

Fig.6.BoxPlot

This analysis shows us that there aren't any significant outliers in our attributes.

Normalized Distplot

Fig.7.Normalized DistPlot

Since we have normalized the data before-hand, the data is evenly distributed.

Heatmap/Cor-relation Matrix

Fig.8.Correlation Matrix

This is the correlation matrix showing correlations between all the attributes. We can clearly infer that population growth is negatively correlated.

Comparison of Different Models for prediction

We have to select which model to train on using our dataset. Now there are multiple models available, I have trained them on some of the most popular models on our dataset and have split the data into train and test samples to compare, which ever-one having the least error, we will select that model for final predictions.

Model	MAE(Mean Absolute Error)
Linear Regression	222.25
Decision Tree	928.76
Random Forest	1181.54
Extra Trees Regressor	1068.71
Extreme Gradient Boosting	955.35

Table 5: Comparison of various Models.

Conclusion: The least MAE is from Linear Regression only so we will use linear regression model.

Prediction plot for each factors using Linear Regression

Since Linear Regression is the model we picked from our analysis, we train it to predict and provide us general trend over the upcoming years.

Fig.9.Prediction plot for population growth.

As expected the population growth is declining.

Fig.10.Prediction plot for Electricity Access.

Also, electricity access is increasing.

Fig.11.Prediction plot for pCEC.

We can clearly infer per capita energy consumption is increasing as well.

Fig.12.Prediction plot for GDP.

The GDP attribute is also increasing.

Summary of predictions

In	Year	pG	GDP	pCEC	EA
0	2022	1.096489	1.652768x10 ¹²	775.880197	87.09768
1	2023	1.068371	1.690019x10 ¹²	790.819101	88.284165
2	2024	1.040254	1.727271x10 ¹²	805.758005	89.470649
3	2025	1.012136	1.764522x10 ¹²	820.69691	90.657134
4	2026	0.984019	1.801774x10 ¹²	835.635814	91.843619
5	2027	0.955902	1.839025x10 ¹²	850.574719	93.030104
6	2028	0.927784	1.876277x10 ¹²	865.513623	94.216589
7	2029	0.899667	1.913528x10 ¹²	880.452527	95.403074
8	2030	0.871549	1.950780x10 ¹²	895.391432	96.589559

Table 6: Prediction: Values for various factors.

 $In(Index), pG(population\ growth), pCEC(per-capita-energy-consumption), EA(electricity\ access)$

This is just the predicted values for the upcoming years for each factors, now we will input it to our model (after normalizing them) to predict energy demand in future.

Projection of NTPC's Requirements

NTPC annually contributes approximately 25% of total power generated in India. To maintain a similar performance in the future the following projection has been performed to estimate how much capacity of total energy is needed to be produced by NTPC in the upcoming years.

As of 2022-2023, NTPC has generated 300 BU of electricity, we will take this as a base line in our model for predicting future additional energy requirements.

The below graph denotes the current performance of NTPC compared to India as a whole.

Fig.13.Comparison of NTPC performance with all of India.

Note: The data has been taken from https://www.ntpc.co.in/en/power-generation/performance-statistics

We use our linear regression model to predict the energy demand.

• Energy demand prediction in future

After inputting our predicted values (normalized) for various attributes, we get the below table as the predicted future demand.

Year	Energy Consumption(TWh)
2023	1395.790586
2024	2310.234446
2025	3224.678306
2026	4139.122165
2027	5053.566025
2028	5968.009885
2029	6882.453744
2030	7796.897604

Table 7: Prediction::Future energy demand.

Let us visualize it.

Fig.14.Plot for future energy demand.

Prediction of NTPC's share

To maintain the current performance, NTPC needs their share of energy production as tabulated below. Since NTPC closely contributes to 1/4th of India's power requirements, we simply find 25% of all India's energy demand to find NTPC's share.

Year	Energy to Produce(BU)
2023	348.947647
2024	577.558612
2025	806.169576
2026	1034.780541
2027	1263.391506
2028	1492.002471
2029	1720.613436
2030	1949.224401

Table 8: Prediction for NTPC's future energy share.

Again let us visualize this in form of a graph.

Fig.15.Plot for NTPC's future energy share.

Additional future production

Let us calculate how much further they need to produce in future to keep up their performance.

Note: The additional production of energy has been calculated by considering the fact that NTPC can currently produce 300 BU annually.

Year	Additional Energy to Produce(BU)
2023	49
2024	278
2025	506
2026	735
2027	963
2028	1192
2029	1421
2030	1649

Table 9: Prediction for NTPC's additional future energy production.

The visualization of the above table.

Fig.16.Plot for NTPC's additional future energy production.

Recommendations

To maintain NTPC's current performance, NTPC should consider producing *atleast* 1600 BU more by the end of 2030 (in comparison to current production) to keep up with its current standards, considering several factors that will further lead to increase in demand of power in future.

Conclusion

India is a developing country with 2nd largest population in the world and with the 5th largest GDP(currently 2022), has huge demand of power for industrialization and development of the country. Hence, NTPC should strive to provide as much production of power possible for the development of our mother land, India.

Bibliography

- 1. https://ourworldindata.org
- 2. https://www.ntpc.co.in/en/power-generation/performance-statistics
- 3. https://data.worldbank.org/country/IN
- 4. https://medium.com/analytics-vidhya/understanding-the-linear-regression-808c1f6941c0
- 5. https://www.geeksforgeeks.org/pearson-correlation-coefficient/
- 6. https://www.geeksforgeeks.org/cosine-similarity/
- 7. https://www.geeksforgeeks.org/data-normalization-in-data-mining/