Tutorat mathématiques : TD4

Université François Rabelais

Département informatique de Blois

Algèbre

Problème 1

Soit E l'ensemble des fonctions numériques continues sur [-1,1] telles que :

$$f(1) - f(-1) = 2f(0)$$

1. Montrer que pour les opérations usuelles, E est un espace vectoriel sur \mathbb{R} .

On sait que l'ensemble $\mathcal{F}([-1,1],\mathbb{R})$ des fonction numériques définies sur [-1,1]

est un espace vectoriel pour les opérations d'addition des fonctions et de multiplication par des réels.

Pour établir que E est un espace vectoriel, il suffit de montrer que c'est un sous-espace vectoriel de $\mathcal{F}([-1,1],\mathbb{R})$.

- E n'est pas vide car la fonction nulle $\theta \in E$.
- Soient f et g deux fonctions de E et $\lambda \in \mathbb{R}$. On a :

$$(f+g)(1) - (f+g)(-1) = f(1) + g(1) - f(-1) - g(-1)$$

$$= f(1) - f(-1) + g(1) - g(-1)$$

$$= 2f(0) + 2g(0)$$

$$= 2(f+g)(0)$$

On en déduit que $(f+g) \in E$.

D'autre part :

$$(\lambda f)(1) - (\lambda f)(-1) + = \lambda(f(1) + -f(-1))$$

= $\lambda(2f(0))$
= $2(\lambda f)(0)$

Ainsi, $\lambda f \in E$. Dès lors $(E, +, \times)$ est un sous-espace vectoriel de $\mathcal{F}([-1, 1], \mathbb{R})$ et donc, un espace vectoriel sur \mathbb{R} pour les lois usuelles sur les fonctions.

2. Montrer que l'ensemble G des fonctions de E, continues, telles que :

$$\int_{-1}^{1} f(t)dt = 0$$

est un sous-espace vectoriel de E.

La fonction nulle sur [-1,1] θ appartient à G.

Par définition, $G \subseteq E$. Soient f et g deux fonctions de G et $\lambda \in \mathbb{R}$. On déduit de la linéarité de l'intégrale que $(f+g) \in G$ et $\lambda f \in G$. C'est donc bien un sous-espace vectoriel de E.

Problème 2

Soit l'espace vectoriel \mathbb{R}^2 , on considère deux vecteurs $\overrightarrow{a}=(2,5), \overrightarrow{b}=(3,1).$

1. Montrer que \overrightarrow{d} et \overrightarrow{b} sont indépendants.

Soit une famille de vecteurs $\{\overrightarrow{u_i}|i\in\{1,..,n\}\}$, ceux-ci sont indépendants si

$$\sum_{i=1}^{n} \lambda_{i} \overrightarrow{u_{i}} = 0 \Rightarrow \forall i \in \{1, ..., n\}, \lambda_{i} = 0$$

Dès lors, on est amené à résoudre : $\alpha(2,5)+\beta(3,1)=0$

$$\begin{cases} 2\alpha + 3\beta &= 0 \\ 5\alpha + \beta &= 0 \end{cases} \Leftrightarrow \begin{cases} 2\alpha - 15\alpha &= 0 \\ \beta &= -5\alpha \end{cases}$$
$$\Leftrightarrow \begin{cases} \alpha &= 0 \\ \beta &= 0 \end{cases}$$

Les vecteurs \overrightarrow{a} et \overrightarrow{b} sont effectivement indépendants.

2. On pose $\overrightarrow{c} = (4,2)$. \overrightarrow{a} , \overrightarrow{b} , et \overrightarrow{c} sont-ils indépendants?

On résout $\alpha(2,5)+\beta(3,1)+\gamma(4,2)=(0,0)$

Soit :
$$\begin{cases} 2\alpha + 3\beta + 4\gamma = 0 \\ 5\alpha + \beta + 2\gamma = 0 \end{cases}$$

C'est un système d'équations homogène et puisque le système comporte moins d'équations que d'inconnues, il y a une infinité de solutions, il y a donc des solutions non nulles et les vecteurs sont dépendants.

3. Pourquoi $(\overrightarrow{a}, \overrightarrow{b})$ forment-ils une base? Donner les coordonnées de \overrightarrow{c} dans la base $(\overrightarrow{a}, \overrightarrow{b})$.

On a montré que \overrightarrow{a} et \overrightarrow{b} sont linéairement indépendants, dès lors, l'ensemble $\{\overrightarrow{a}, \overrightarrow{b}\}$ forme une famille libre. Montrons que que $\{\overrightarrow{a}, \overrightarrow{b}\}$ forme une famille génératrice.

Une famille de vecteurs $\{\overrightarrow{u_i}|i\in\{1,..,n\}\}$ est génératrice si et seulement si tout vecteur $\overrightarrow{v}=(\lambda_1,...,\lambda_n)$ de \mathbb{R}^n peut s'écrire comme une combinaison linéaire des vecteurs $\overrightarrow{u_i}$.

Dès lors, on exprime un vecteur \overrightarrow{v} dans la base $(\overrightarrow{a}, \overrightarrow{b})$ tel que : $\forall (\alpha, \beta) \in \mathbb{R}^2, \overrightarrow{v} = (\alpha, \beta), \exists \lambda_1, \lambda_2 \in \mathbb{R} | \overrightarrow{v} = \lambda_1 \overrightarrow{a} + \lambda_2 \overrightarrow{b}$

$$(\alpha, \beta), \exists \lambda_1, \lambda_2 \in \mathbb{R} | v = \lambda_1 \alpha + \lambda_2 \theta$$

$$\operatorname{Soit}: \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \lambda_1 \begin{pmatrix} 2 \\ 5 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} 2\lambda_1 + 3\lambda_2 &= \alpha \\ 5\lambda_1 + \lambda_2 &= \beta \end{cases}$$

$$\Leftrightarrow \begin{cases} 2\lambda_1 + 3(\beta - 5\lambda_1) &= \alpha \\ \lambda_2 &= \beta - 5\lambda_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_1 &= \frac{-\alpha + 3\beta}{13} \\ \lambda_2 &= \beta - 5\left(\frac{-\alpha + 3\beta}{13}\right) \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_1 &= \frac{-\alpha + 3\beta}{13} \\ \lambda_2 &= \frac{5\alpha - 2\beta}{13} \end{cases}$$

 $\{\overrightarrow{a},\overrightarrow{b}\}$ forme une famille génératrice, de plus elle est libre, c'est donc bien une base de \mathbb{R}^2 . On cherche exprime \overrightarrow{c} dans la base $(\overrightarrow{a}, \overrightarrow{b})$. On a $\overrightarrow{c} = \frac{2}{13}\overrightarrow{a} + \frac{16}{13}\overrightarrow{b}$.

Problème 4

Soit $n \in \mathbb{N}^*$. Montrer que la base $\mathcal{B} = (f_0, f_1, ..., f_n)$ où :

$$\forall x \in \mathbb{R}, \begin{cases} f_0(x) &= 1\\ f_1(x) &= x+1\\ f_2(x) &= (x+1)(x+2)\\ &\vdots\\ f_n(x) &= (x+1)(x+2)...(x+n) \end{cases}$$

est une base de l'espace vectoriel de $P \in \mathbb{R}_n[X]$, c'est-à-dire les polynômes de degré inférieur ou égal à n.

La famille $\mathcal{B} = (f_0, f_1, ..., f_n)$ comporte n + 1 éléments et $\dim(\mathbb{R}_n[X]) = n + 1/2$ En conséquence, \mathcal{B} est une base de $\mathbb{R}_n[X]$ si et seulement si \mathcal{B} est une famille libre de $\mathbb{R}_n[X]$. Soit $(\lambda_0, \lambda_1, ..., \lambda_n) \in \mathbb{R}^{n+1}$ tel que $\sum_{k=0}^n \lambda_k f_k = \theta$ (*) avec θ la fonction polynôme nulle.

$$(*) \Leftrightarrow \forall X \in \mathbb{R}, \sum_{k=0}^{n} \lambda_k f_k(X) = 0$$

En donnant à la variable successivement les valeurs

$$-1, -2, ..., -k, ... - (n+1)$$

On obtient:
$$X = -1 \Rightarrow \sum_{k=0}^{n} \lambda_k f_k(-1) = \lambda_0 = 0$$

$$X = -2 \Rightarrow \sum_{k=0}^{n} \lambda_k f_k(-1) = \lambda_0 - \lambda_1 = -\lambda_1 = 0$$

$$\vdots$$

$$X = -(n+1) \Rightarrow \sum_{k=0}^{n} \lambda_k f_k(-(n+1)) = (-1)^n n! \lambda_n = 0 \Rightarrow \lambda_n = 0$$
 On a obtenu:
$$(\lambda_0, \lambda_1, ..., \lambda_n) = (0, 0, ..., 0) \text{ ce qui montre que } \mathcal{B} \text{ est}$$

obtenu : $(\lambda_0, \lambda_1, ..., \lambda_n) = (0, 0, ..., 0)$ ce qui montre que \mathcal{B} est bien une base $\mathbb{R}_n[X]$

Problème 4

Dans l'espace vectoriel \mathcal{F} des applications de $\mathbb{R} \to \mathbb{R}$ muni des opérations usuelles. On note E l'ensemble des éléments de $f \in E$ tel que :

$$f^{(3)} - 6f'' + 12f' - 8f = \theta$$

où θ désigne la fonction constante nulle et f', f'' et $f^{(3)}$ les fonctions dérivées respectivement première, seconde et troisième de f.

1. Montrer que E est un sous-espace vectoriel de \mathcal{F} .

Soient f et g, deux éléments de E. La fonction f+g est trois fois dérivable et par la linéarité

de la dérivation, on a :
$$(f+g)^{(3)} - 6(f+g)'' + 12(f+g)' - 8(f+g) = f^{(3)} - 6f'' + 12f' - 8f + g^{(3)} - 6g'' + 12g' - 8$$

$$= \theta + \theta$$

$$= \theta$$
 On a bien $(f+g) \in E$. Soit $f \in E$ et $\lambda \in \mathbb{R}$, on a de même :
$$(\lambda f)^{(3)} - 6(\lambda f)'' + 12(\lambda f)' - 8(\lambda f) = \lambda (f^{(3)} - 6f'' + 12f' - 8f)$$

$$= \lambda \theta$$

$$= \theta$$

$$(\lambda f)^{(3)} - 6(\lambda f)'' + 12(\lambda f)' - 8(\lambda f) = \lambda (f^{(3)} - 6f'' + 12f' - 8f)$$

$$= \lambda \theta$$

$$= \theta$$

Donc $\lambda f \in E$, et donc E est un sous-espace vectoriel de \mathcal{F} .

2. Vérifier que la fonction ϕ définie sur \mathbb{R} par $\phi(x) = e^{2x}$ est un élément de E.

La fonction ϕ est de classe C^{∞} donc trois fois dérivable, et ses dérivées successives vérifient :

$$\phi'(x) = 2\phi(x) = 2e^{2x}$$

$$\phi''(x) = 2^2 \phi(x) = 4e^{2x}$$

$$\phi^{(3)}(x) = 2^3 \phi(x) = 8e^{2x}$$

$$\phi'(x) = 2\phi(x) = 2e^{2x}$$

$$\phi''(x) = 2^2\phi(x) = 4e^{2x}$$

$$\phi^{(3)}(x) = 2^3\phi(x) = 8e^{2x}$$
Et ainsi, on voit que :
$$e^{2x}(8 - 24 + 24 - 8) = 0$$

3. À toute fonction de \mathcal{F} , on associe la fonction g définie par $g(x) = f(x)e^{-2x}$.

Montrer que $f \in E$ si et seulement si g est trois fois dérivable et vérifie $g^{(3)} = \theta$.

Si $f \in E$ alors f est de classe C^n sur \mathbb{R} avec $n \geq 3$. et donc g est aussi de classe C^n sur \mathbb{R} .

$$g'(x) = -2f(x)e^{-2x} + f'(x)e^{-2x} = e^{-2x}(f'(x) - 2f(x))$$

$$g''(x) = e^{-2x}(f''(x) - 4f'(x) + 4f(x))$$

$$a^{(3)}(x) = e^{-2x}(f^{(3)}(x) - 6f''(x) + 12f'(x) - 8f(x)) = 0$$

Les dérivées successives de g valent : $g'(x) = -2f(x)e^{-2x} + f'(x)e^{-2x} = e^{-2x}(f'(x) - 2f(x))$ $g''(x) = e^{-2x}(f''(x) - 4f'(x) + 4f(x))$ $g^{(3)}(x) = e^{-2x}(f^{(3)}(x) - 6f''(x) + 12f'(x) - 8f(x)) = 0$ Le calcul précédent montre que $g^{(3)} = f^{(3)} - 6f'' + 12f' - 8f = \theta$

- On en déduit alors que $f \in E \Leftrightarrow q^{(3)} = \theta$.
- 4. En déduire la forme générale des éléments de E, une base de E et sa dimension.

Soient $f \in E$ et la fonction g associée. On a montré que $g^{(3)} = \theta$. Dès lors, on en déduit que g est telle que $\exists (a,b,c) \in \mathbb{R}^3, \forall x \in \mathbb{R}, g(x) = ax^2 + bx + c$.

En conséquences,

$$\forall x \in \mathbb{R}, f(x) = (ax^2 + bx + c)e^{2x}$$

Notons ψ et χ les fonctions sur \mathbb{R} définies telles que $\psi = x^2 e^{2x}$ et $\chi(x) = x e^{2x}$. On a alors

$$f = a\psi + b\chi + c\phi$$

La famille $\mathcal{B} = (\psi, \chi, \phi)$ est une famille génératrice de E.

Montrons que c'est une famille libre.

En calculant f(0), f(-1) et f(1). On déduit un système qui conduit à a = b = c = 0. Ainsi \mathcal{B} est une base de E et E est un sous-espace vectoriel de \mathcal{F} de dimension 3.

Problème 5

On dit que deux sous-espaces vectoriels E_1 et E_2 d'un espace vectoriel E sont supplémentaires, que l'on note $E_1 \oplus E_2 = E$, c'est à dire :

$$E_1 \oplus E_2 = E \Leftrightarrow (E_1 \cap E_2 = \{0_E\} \text{ et } \dim(E_1) + \dim(E_2) = \dim(E))$$

On définit les deux matrices
$$V = \left\{ \begin{pmatrix} a & a+b \\ a-b & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$
, et $W = \left\{ \begin{pmatrix} 2c & c-d \\ d & 2d \end{pmatrix} \middle| c, d \in \mathbb{R} \right\}$. Montrer que V et W sont deux sous-espaces vectoriels supplémentaires de $\mathcal{M}_2(\mathbb{R})$.

Pour établir que V et W sont deux sous-espaces vectoriels supplémentaires de $\mathcal{M}_2(\mathbb{R})$, il suffit de montrer que V et W sont en somme directe, et que $\dim(V) + \dim(W) = \dim(\mathcal{M}_2(\mathbb{R}))$, c'est-à-dire que $V \cap W = \{\mathcal{O}_2\}$ et que $\dim(V) + \dim(W) = 4$

Soient

$$A=\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right), \quad B=\left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array}\right), \quad C=\left(\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right), \quad D=\left(\begin{array}{cc} 0 & -1 \\ 1 & 2 \end{array}\right)$$

On constate que les matrices V s'écrivent sous la forme M=aA+bB, et celles de W sous la forme N=cC+dD.

En conséquences V = Vect(A, B) et W = Vect(C, D).

Montrons maintenant que (A, B) et (C, D) sont des familles libres.

$$aA + bB = \mathcal{O}_2 \Leftrightarrow \begin{pmatrix} a & a+b \\ a-b & b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{cases} a & =0 \\ b & =0 \end{cases}$$

De même,

$$cC + dD = \mathcal{O}_2 \Leftrightarrow \begin{pmatrix} 2c & c - d \\ d & 2d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{cases} c &= 0 \\ d &= 0 \end{cases}$$

On en déduit que (A, B) et (C, D) sont des familles libres, et ainsi que $\dim(V) = 2$ et $\dim(W) = 2$. En conséquences $\dim(V) + \dim(W) = 4$.

- Déterminons $V\cap W$

$$\begin{split} M \in V \cap W \Leftrightarrow \exists (a,b,c,d) \in \mathbb{R}^4 | M = \begin{pmatrix} a & a+b \\ a-b & b \end{pmatrix} = \begin{pmatrix} 2c & c-d \\ d & 2d \end{pmatrix} \\ \Leftrightarrow \begin{cases} a & = 2c \\ c-d & = a+b \\ a-b & = d \\ b & = 2d \end{cases} \\ \Leftrightarrow \begin{cases} a & = 2c \\ 2a & = c \\ 2b & = c-2d \\ b & = 2d \end{cases} \\ \Leftrightarrow \begin{cases} a & = 0 \\ b & = 0 \\ c & = 0 \\ d & = 0 \end{cases} \end{split}$$

On a bien $M = \mathcal{O}_2$.

Il résulte alors que V et W sont bien deux sous-espaces vectoriels supplémentaires de $\mathcal{M}_2(\mathbb{R})$.

Problème 6

Soit $\mathbb{R}[X]$ l'espace des polynômes muni des opérations usuelles.

Montrer que pour tout polynôme P du second degré et pour tout réel non nul m, la famille $\mathcal{F}_m=(P,Q,R)$ où

$$\forall X \in \mathbb{R}$$
 , $Q(X) = P(X+m)$, et $R(X) = P(X-m)$

est une famille libre de $\mathbb{R}[X]$.

• Soit P le polynôme défini tel que : $\forall X \in \mathbb{R}, \forall (a,b,c) \in \mathbb{R}^* \times \mathbb{R} \times \mathbb{R}, P(X) = aX^2 + bX + c$ et $\lambda, \mu, \nu \in \mathbb{R} | \lambda P + \mu Q + \nu R = \theta$. où θ est le polynôme nul.

$$\forall X \in \mathbb{R}, \lambda P(X) + \mu Q(X) + \nu R(X) = \theta(X) \quad (*)$$

$$(*) \Leftrightarrow \lambda(aX^{2} + bX + c) + \mu(a(X + m)^{2} + b(X + m) + c) + \nu(a(X - m)^{2} + b(X - m) + c) = 0$$

$$\Leftrightarrow aX^{2}(\lambda + \mu + \nu) + (b(\lambda + \mu + \nu) + 2m(\mu - \lambda))X + c(\lambda + \mu + \nu) + m^{2}(\mu + \nu) + mb(\mu - \nu) = 0$$

$$\Leftrightarrow \begin{cases} a(\lambda + \mu + \nu) &= 0 \\ b(\lambda + \mu + \nu) + 2m(\mu - \nu) &= 0 \\ c(\lambda + \mu + \nu) + m^{2}(\mu + \nu) + mb(\mu - \nu) &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda + \mu + \nu &= 0 \\ 2m(\mu - \nu) &= 0 \\ m^{2}(\mu + \nu) + mb(\mu - \nu) &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda &= 0 \\ \mu &= 0 \\ \nu &= 0 \end{cases}$$

On en déduit que (P, Q, R) est une famille libre de $\mathbb{R}[X]$.

Problème 7

Soit $\mathcal{M}_3(\mathbb{R})$, l'espace vectoriel des matrices carrées réelles de dimension 3, et

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right)$$

On note E l'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec A.

1. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

L'ensemble E est non vide car il contient au moins I_3 et \mathcal{O}_3 .

Soient M et N deux matrices E, on a :

$$A(M+N) = AM + AN$$
$$= AN + AM$$
$$= A(N+M)$$

Donc $(M + N) \in E$. C'est à dire que E est stable pour l'addition.

Pour tout réel λ et toute matrice $M \in E$, les propriétés usuelles du produit donnent :

$$A(\lambda M) = \lambda AM$$
$$= \lambda MA$$
$$= (\lambda M)A$$

Ce qui montre que $\lambda M \in E$.

E est donc, pour les opérations usuelles, un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

2. Déterminer une base E.

Soit $M=\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$, une matrice quelconque de $\mathcal{M}_3(\mathbb{R})$. On a $M\in E\Leftrightarrow MA=AM$ (*)

En réduisant (*) à un système linéaire, on déduit que (*) $\Leftrightarrow \begin{cases} a=e=i \\ d=g=h=0 \end{cases}$. b=f

On en déduit que M s'écrit sous la forme :

On en déduit que
$$M$$
 s'écrit sous la forme :
$$\begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Notons
$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

On a alors M qui est une combinaison linéaire de I_3, J et K

Ainsi, (I_3, J, K) est une famille génératrice de E, montrons qu'elle est libre.

$$\forall (\lambda, \mu\nu) \in \mathbb{R}^3, \lambda I_3 + \mu J + \nu K = \mathcal{O}_3 \Leftrightarrow \begin{cases} \lambda = 0 \\ \mu = 0. \\ \nu = 0 \end{cases}$$

On en conclut que (I_3, J, K) forme bien une base de E et que $\dim(E) = 3$.