1

GATE 2025 Statistics(ST)

EE25BTECH11022 - sankeerthan

1)	Even though I had planned to go skiing with my friends, I had to	at the last moment because
	of an injury. Select the most appropriate option to complete the above s	entence.
	a) back up	

- b) back of
- c) back on
- d) back out

(GATE ST 2025)

- 2) The President, along with the Council of Ministers, to visit India next week. Select the most appropriate option to complete the above sentence.
 - a) will wish
 - b) wishes
 - c) will wishes
 - d) is wishing

(GATE ST 2025)

- 3) An electricity utility company charges ₹7 per kWh (kilo watt-hour). If a 40-watt desk light is left on for 10 hours each night for 180 days, what would be the cost of energy consumption? If the desk light is on for 2 more hours each night for the 180 days, what would be the percentage-increase in the cost of energy consumption?
 - a) ₹604.8; 10%
 - b) ₹504; 20%
 - c) ₹604.8; 12%
 - d) ₹720; 15%

(GATE ST 2025)

- 4) In the context of the given figure, which one of the following options correctly represents the entries in the blocks labelled (i), (ii), (iii), and (iv), respectively?
 - a) Q, M, 12, and 8
 - b) K, L, 10 and 14
 - c) I, J, 10, and 8
 - d) L, K, 12 and 8

N	U	F	(i)
21	14	9	6
Н	L	(ii)	0
12	(iv)	15	(iii)

Fig. 2.

- 5) A bag contains Violet (V), Yellow (Y), Red (R), and Green (G) balls. On counting them, the following results are obtained:
 - (i) The sum of Yellow balls and twice the number of Violet balls is 50.
 - (ii) The sum of Violet and Green balls is 50.
 - (iii) The sum of Yellow and Red balls is 50.
 - (iv) The sum of Violet and twice the number of Red balls is 50.

Which one of the following Pie charts correctly represents the balls in the bag?

- a)
- b)
- c)
- d)

Fig. 3.

Fig. 4.

Fig. 5.

- 6) "His life was divided between the books, his friends, and long walks. A solitary man, he worked at all hours without much method, and probably courted his fatal illness in this way. To his own name there is not much to show; but such was his liberality that he was continually helping others, and fruits of his erudition are widely scattered, and have gone to increase many a comparative stranger's reputation." (From E.V. Lucas's "A Funeral") Based only on the information provided in the above passage, which one of the following statements is true?
 - a) The solitary man described in the passage is dead.
 - b) Strangers helped create a grand reputation for the solitary man described in the passage.
 - c) The solitary man described in the passage found joy in scattering fruits.
 - d) The solitary man worked in a court where he fell ill.

Fig. 6.

- 7) For the clock shown in the figure, if $O^* = OQSZPRT$, and $X^* = XZPWYOQ$, then which one among the given options is most appropriate for P^* ?
 - a) PUWRTVX
 - b) PRTO QSU
 - c) PTVQSUW
 - d) PSUPRTV

- 8) Consider a five-digit number PQRST that has distinct digits P, Q, R, S, and T, and satisfies the following conditions: P < Q, S > P > T, R < T. If integers 1 through 5 are used to construct such a number, the value of P is:
 - a) 1
 - b) 2
 - c) 3
 - d) 4

(GATE ST 2025)

- 9) A business person buys potatoes of two different varieties P and Q, mixes them in a certain ratio and sells them at ₹192 per kg. The cost of variety P is ₹800 for 5 kg. The cost of variety Q is ₹800 for 4 kg. If the person gets 8% profit, what is the P:Q ratio (by weight)?
 - a) 5:4
 - b) 3:4
 - c) 3:2
 - d) 1:1

Fig. 7.

- 10) Three villages P, Q, and R are located in such a way that the distance PQ = 13 km, QR = 14 km, and RP = 15 km, as shown in the figure. A straight road joins Q and R. It is proposed to connect P to this road QR by constructing another road. What is the minimum possible length (in km) of this connecting road?
 - a) 10.5
 - b) 11.0
 - c) 12.0
 - d) 12.5

- 11) Let $f:[0,\infty)\to[0,\infty)$ be a differentiable function with f(x)>0 for all x>0, and f(0)=0. Further, f satisfies $(f(x))^2 = \int_0^x ((f(t))^2 + f(t)) dt$, x > 0. Then which one of the following options is correct?
 - a) $0 < f(2) \le 1$
 - b) $1 < f(2) \le 2$
 - c) $2 < f(2) \le 3$
 - d) $3 < f(2) \le 4$

(GATE ST 2025)

- 12) Among the following four statements about countability and uncountability of different sets, which is the correct statement?

 - a) The set $U_{n=0} \left(x \in \mathbb{R} : x = \sum_{i=0}^{n} 10^{-i} a_i, \ a_i \in (1,2) \right)$ is uncountable. b) The set $\left(x \in (0,1) : x = \sum_{n=1}^{\infty} a_n / 10^n, \ a_n = 1 \text{ or } 2, \ n \in \mathbb{N} \right)$ is uncountable.
 - c) There exists an uncountable set whose elements are pairwise disjoint open intervals in R.
 - d) The set of all intervals with rational end points is uncountable.

(GATE ST 2025)

- 13) Let $S = ((x, y, z) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\} : z = -(x + y))$. Denote $S^+ = ((p, q, r) \in \mathbb{R}^3 : px + qy + rz = 0 \text{ for all } (x, y, z) \in \mathbb{R}^3$. Then which one of the following options is correct?
 - a) S^+ is not a subspace of \mathbb{R}^3
 - b) $S^+ = \{(0,0,0)\}$
 - c) $\dim(S^+) = 1$
 - d) $\dim(S^+) = 2$

(GATE ST 2025)

- 14) Let X be a random variable having the Poisson distribution with mean $\log_e 2$. Then $\mathbb{E}\left(e^{(\log_e 3X)}\right)$ equals
 - a) 1
 - b) 2
 - c) 3
 - d) 4

(GATE ST 2025)

15) Let (X_1, X_2, X_3) follow the multinomial distribution with the number of trials being 100 and the probability vector $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. Then $\mathbb{E}(X_2|X_3 = 40)$ equals

- a) 25
- b) 15
- c) 30
- d) 45

- 16) Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables with the common probability density function $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty$. Define $Y_n = \frac{1}{n} \sum_{i=1}^n \tan^{-1}(X_i)$ for $n = 1, 2, \ldots$ Then which one of the following options is correct?
 - a) $P(\sum_{i=1}^{n} Y_i/n \to 2 \text{ as } n \to \infty) = 1$
 - b) $P\left(\sum_{i=1}^{n} Y_i/n \to 0 \text{ as } n \to \infty\right) = 1$
 - c) $P(\sum_{i=1}^{n} Y_i \to 0 \text{ as } n \to \infty) = 1$
 - d) $P\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\to\infty \text{ as } n\to\infty\right)=1$

(GATE ST 2025)

- 17) Let $(N(t): t \ge 0)$ be a homogenous Poisson process with the intensity/rate $\lambda = 2$. Let X = N(6) N(1), Y = N(5) N(3), W = N(6) N(5), Z = N(3) N(1). Then which one of the following options is correct?
 - a) Cov(W, Z) = 2
 - b) $Y + Z \sim Poisson (10)$
 - c) Pr(Y = Z) = 1
 - d) Cov(X, Y) = 4

(GATE ST 2025)

- 18) Let T be a complete and sufficient statistic for a family \mathcal{P} of distributions and let U be a sufficient statistic for \mathcal{P} . If $P_f(T > 0) = 1$ for all $f \in \mathcal{P}$, then which one of the following options is NOT necessarily correct?
 - a) T^2 is a complete statistic for \mathcal{P}
 - b) T^2 is a minimal sufficient statistic for \mathcal{P}
 - c) T is a function of U
 - d) U is a function of T

(GATE ST 2025)

- 19) Let X_1, X_2 be a random sample from N(0, 1) distribution, where $\theta \in \mathbb{R}$. Consider testing $H_0: \theta = 0$ against $H_1: \theta \neq 0$. Let $\Phi(X_1, X_2)$ be the likelihood ratio test of size 0.05 for testing H_0 against H_1 . Then which one of the following options is correct?
 - a) (X_1, X_2) is a uniformly most powerful test of size 0.05
 - b) $E_{\theta}(\Phi(X_1, X_2)) \ge 0.05 \ \forall \theta \in \mathbb{R}$
 - c) There exists a uniformly most powerful test of size 0.05
 - d) $E_{\theta=0}(X_1\Phi(X_1,X_2))=0.05$

(GATE ST 2025)

- 20) Let a random variable X follow a distribution with density $f \in (f_0, f_1)$, where $f_0(x) = 1$, $0 \le x \le 1$, 0 otherwise; $f_1(x) = 1$, $1 \le x \le 2$, 0 otherwise. Let ϕ be a most powerful test of level 0.05 for testing $H_0: f = f_0$ against $H_1: f = f_1$ based on X. Then which one of the following options is necessarily correct?
 - a) $E_{f_0}(\phi(x)) = 0.05$
 - b) $E_{f_1}(\phi(x)) = 1$
 - c) $P_f(\phi(x) = 1) = P_f(X > 1), \forall f \in (f_0, f_1)$
 - d) $P_{f_1}(\phi(x) = 1) < 1$

(GATE ST 2025)

21) Let X have pdf $f \in (f_0, f_1)$. Let φ be a most powerful test of level 0.05 for testing $H_0 : f = f_0$ against $H_1 : f = f_1$ based on X. Which one is NOT necessarily correct?

- a) φ is the unique most powerful test of level 0.05 b) $E_{f_1}(\varphi(x)) \ge 0.05$
- c) $E_{f_0}(\varphi(x)) \le 0.05$
- d) For some constant $c \ge 0$, $P_f\left(\frac{f_1(x)}{f_0(x)} > c\right) \le P_f\left(\varphi\left(x\right) = 1\right)$, $\forall f \in (f_0, f_1)$

- 22) Let $(X_n)_{n\geq 1}$ be i.i.d. with cdf F. Let F_n be the empirical cdf. For fixed $x\in\mathbb{R}$:
 - a) $\sqrt{n} (F_n(x) F(x)) \stackrel{P}{\to} 0$
 - b) $n(F_n(x) F(x)) \xrightarrow{d} Z \sim N(0, F(x)(1 F(x)))$
 - c) $\lim_{n\to\infty} n \operatorname{Var}(F_n(x)) = 0$
 - d) $\sqrt{n}(F_n(x) F(x)) \xrightarrow{d} Z \sim N(0, F(x)(1 F(x)))$

(GATE ST 2025)

- 23) Let (X, Y) follow a bivariate normal with E(x) = 3, E(Y) = 4, Var(x) = 25, Var(Y) = 25100, $Cov(X, Y) = 50\rho$. If E(Y|X = 5) = 4.32, then ρ equals
 - a) 0.08
 - b) 0.8
 - c) 0.32
 - d) 0.5

(GATE ST 2025)

- 24) For data (x_i, y_i) , i = 1, ..., n with $\sum x_i > 0$, let $\hat{\beta} = \arg\min_{\beta \in \mathbb{R}} \sum_{i=1}^n (y_i \beta x_i)^2$. Define $v_j = y_j x_j$, $u_j = 2x_j$, and let $\hat{\gamma} = \arg\min_{\gamma \in \mathbb{R}} \sum_{i=1}^n (v_i \gamma u_i)^2$. If $\hat{\beta} = 10$, then $\hat{\gamma} =$
 - a) 4.5
 - b) 5
 - c) 10
 - d) 9

- 25) Let $I = \int_0^1 \int_0^1 y^2 \cos(\pi (1 + xy)) dx dy$. The value of I is _____ (integer). (GATE ST 2025) 26) Let $P = \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix}$, $Q = P^3 2P^2 4P + 13I_2$. Then $\det(Q) =$ _____ (integer). (GATE ST 2025)
- 27) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x_1, x_2, x_3) = (3x_1 + 5x_2 + x_3, x_3, 2x_1 + 2x_3)$. The rank of T is (GATE ST 2025)
- 28) Let X have cdf F with $\lim_{h\to 0^-} F(3+h) = \frac{1}{4}$, and $F(3) = \frac{3}{4}$. Then 16 Pr(X=3) =_____ (integer). (GATE ST 2025)
- 29) Let $X \sim Bin(2, \frac{2}{3})$. Then $18E(X^2) = _____$ (integer). (GATE ST 2025)
- 30) Let $X \in \mathbb{R}^{10} \sim N(0, I_{10})$. Define $Y = \log \sqrt{X^T X}$. Let $M_Y(t)$ be its mgf. Then $M_Y(2) = \log \sqrt{X^T X}$. (GATE ST 2025) (integer).
- 31) If (W(t)) is standard Brownian motion, then $E((W(2) + W(3))^2) = (integer)$.
- 32) A sample of size 5 from $Bin(1,\theta)$ with $\theta \in (0, 0.7]$ gives observations 0, 1, 1, 1, 0. The MLE of θ is (GATE ST 2025)
- 33) Let $X_1, \ldots, X_5 \sim N(0, \theta)$ i.i.d. Then the Cramér–Rao lower bound $c(\theta)$ for unbiased estimators of θ has $\inf_{\theta} c(\theta) =$ (integer). (GATE ST 2025)
- 34) Sample data (1,3),(2,4),(7,8). The Spearman rank correlation is (two decimal places). (GATE ST 2025)
- 35) In regression $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + \epsilon_i$, i = 1, ..., 25, with $\epsilon_i \sim N(0, \sigma^2)$, suppose (two decimals). $R^2 = 0.5$. Then adjusted- $R^2 =$ (GATE ST 2025)
- 36) Let $F = (f : [a, b] \to \mathbb{R} \mid f \text{ continuous} \text{ on } [a, b], f' \text{ exists on } (a, b))$. Which is correct?

- a) There exists non-constant $f \in F$ with $|f(x) f(y)| \le |x y|^2$, $\forall x, y \in [a, b]$
- b) If $f \in F$ and $x_0 \in (a, b)$, there exist distinct x_1, x_2 with $\frac{f(x_1) f(x_2)}{x_1 x_2} = f'(x_0)$ c) If $f'(x) \ge 0$ and f' vanishes only at two points, then f is strictly increasing
- d) If $f'(x_1) < c < f'(x_2)$ for some $x_1 < x_2$, then there may NOT exist $x_0 \in (x_1, x_2)$ with $f'(x_0) = c$ (GATE ST 2025)
- 37) Over $U = ((X, Y) : x + y \le 2)$, minimize $f(X, Y) = (x 1)^4 + (y 2)^4$. The minimum is
 - a) 1/16
 - b) 7
 - c) 17/81
 - d) 1/8

- 38) Let $P = (a_{ij})_{10 \times 10}$ with $a_{ij} = \frac{1}{10}$ if $i \neq j$, and $a_{ii} = \frac{9}{10}$. Then rank (P) =
 - a) 10
 - b) 9
 - c) 1
 - d) 8

(GATE ST 2025)

- 39) Let *X* with cdf F(x) = 0, x < 0, $\alpha (1 + 2x^2), 0 < x < 1,$
 - $1, x \ge 1$. If median of X is $\frac{1}{2}$, then $\alpha =$
 - a) 2/13
 - b) 1
 - c) 1/4
 - d) 1/6

- 40) If X has lognormal pdf: $f(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp\left(-\frac{(\ln x \mu)^2}{2\sigma^2}\right)$, x > 0, with $\mu \in \mathbb{R}$, $\sigma > 0$. If $\ln\left(E\left(X^2\right)\right) = 4$, then $Var(\ln X) =$
 - a) 2
 - b) 4
 - c) 16
 - d) 64

- (GATE ST 2025) 41) Let *X* and *Y* be discrete random variables with joint probability mass function $p_{X,Y}(m,n) = \frac{\lambda^n e^{-\lambda}}{2^n m! (n-m))!}$, $0, \dots, n, n = 0, 1, 2, \dots$ where λ is a fixed positive real number. Then which one of the following options is correct?
 - a) The marginal distribution of X is Poisson with mean λ
 - b) The marginal distribution of Y is Poisson with mean 2λ
 - c) The conditional distribution of X given Y = 3 is Bin $(3, \frac{1}{2})$
 - d) $E(Y|X=2) = \frac{\lambda}{2}$

- 42) Let $X_1, \ldots, X_n, n \ge 2$, be a random sample from a $N(-\theta, \theta)$ distribution, where $\theta > 0$ is an unknown parameter. Then which one of the following options is correct?

 - a) $\sum_{i=1}^{n} X_i$ is a minimal sufficient statistic b) $\sum_{i=1}^{n} X_i^2$ is a minimal sufficient statistic
 - c) $\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}, \frac{1}{n-1}\sum_{j=1}^{n}\left(X_{j}-\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)^{2}\right)$ is a complete statistic
 - d) $-\frac{1}{n}\sum_{i=1}^{n}X_{i}$ is a uniformly minimum variance unbiased estimator of θ

- 43) Let X_1, X_2 be a random sample from a distribution with density $f_{\theta}(x) = \frac{1}{\theta} e^{-x/\theta}, x > 0$ 0, otherwise, where $\theta > 0$ is unknown. For testing $H_0: \theta \le 1$ vs $H_1: \theta > 1$, consider the test $\phi(X_1, X_2) = 1, X_1 > 1$
 - 0, otherwise. Then which one of the following tests has the same power function as ϕ ?

 - a) $\phi_1(X_1, X_2) = \frac{X_1 + X_2 1}{X_1 + X_2}$, if $X_1 + X_2 > 1$, 0 otherwise b) $\phi_2(X_1, X_2) = \frac{2X_1 + 2X_2 1}{2(X_1 + X_2)}$, if $X_1 + X_2 > 1$, 0 otherwise c) $\phi_3(X_1, X_2) = \frac{3X_1 + 3X_2 1}{3(X_1 + X_2)}$, if $X_1 + X_2 > 1$, 0 otherwise d) $\phi_4(X_1, X_2) = \frac{4X_1 + 4X_2 1}{4(X_1 + X_2)}$, if $X_1 + X_2 > 1$, 0 otherwise

(GATE ST 2025)

- 44) Let X, Y_1, Y_2 be independent random variables such that X has pdf $f(x) = 2e^{-2x}, x \ge 0$, 0, otherwise, and Y_1, Y_2 are i.i.d. with pdf $g(x) = e^{-x}, x \ge 0$,
 - 0, otherwise. For i = 1, 2, let R_i denote the rank of Y_i among X, Y_1, Y_2 . Then $E(R_1 + R_2)$ equals
 - a) 13/3
 - b) 22/5
 - c) 21/5
 - d) 9/2

(GATE ST 2025)

- 45) Let X_1, \ldots, X_5 be i.i.d. random vectors following the bivariate normal distribution with zero mean vector and identity covariance matrix. Define the 5×2 matrix $X = (X_1, \dots, X_5)^T$. Further, let $W = (X_1, \dots, X_5)^T$. $(W_{ij}) = X^T X$, and $Z = W_{11} + 4W_{12} + 4W_{22}$. Then Var (Z) equals
 - a) 150
 - b) 200
 - c) 250
 - d) 300

(GATE ST 2025)

- 46) Consider the simple linear regression model $y_i = \alpha + \beta x_i + \epsilon_i$, i = 1, 2, ..., 24, where $\alpha, \beta \in \mathbb{R}$ are unknown, and ϵ_i are i.i.d. $N(0, \sigma^2)$ with $\sigma > 0$. Suppose the following summary statistics are obtained: $S_{xx} = \sum_{i=1}^{24} (x_i - \bar{x})^2 = 22.82$, $S_{yy} = \sum_{i=1}^{24} (y_i - \bar{y})^2 = 43.62$, $S_{xy} = \sum_{i=1}^{24} (x_i - \bar{x})(y_i - \bar{y}) = 15.48$, where $\bar{x} = \frac{1}{24} \sum_{i=1}^{24} x_i$, $\bar{y} = \frac{1}{24} \sum_{i=1}^{24} y_i$. For testing $H_0: \beta = 0$ against $H_1: \beta \neq 0$, the value of the F-test statistic (with distribution $F_{1,22}$) equals (rounded off to two decimals):
 - a) 2.54
 - b) 2.98
 - c) 3.17
 - d) 6.98

(GATE ST 2025)

- 47) Let $(x_n)_{n\geq 1}$ be defined as $x_n=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}-2\left(\sqrt{n}-1\right)$. Which of the following options is/are correct?
 - a) The sequence $(x_n)_{n\geq 1}$ is unbounded
 - b) The sequence $(x_n)_{n\geq 1}$ is monotonically decreasing
 - c) The sequence $(x_n)_{n\geq 1}$ is bounded but does not converge
 - d) The sequence $(x_n)_{n\geq 1}$ converges

- 48) Let $O = \{P : P \text{ is a } 3 \times 3 \text{ real matrix with } P^T P = I_3, \det(P) = 1\}$. Which of the following options is/are correct?
 - a) There exists $P \in O$ with $\lambda = \frac{1}{2}$ as an eigenvalue
 - b) There exists $P \in O$ with $\lambda = \bar{2}$ as an eigenvalue

- c) If λ is the only real eigenvalue of $P \in \mathcal{O}$, then $\lambda = 1$
- d) There exists $P \in O$ with $\lambda = -1$ as an eigenvalue

- 49) Let X_1, X_2, X_3 be independent standard normal random variables, and define $Y_1 = X_1 X_2$, $Y_2 =$ $X_1 + X_2 - 2X_3$, $Y_3 = X_1 + X_2 + X_3$. Which of the following options is/are correct?
 - a) Y_1, Y_2, Y_3 are independent

 - a) Y_1, Y_2, Y_3 are fluct b) $Y_1^2 + Y_2^2 + Y_3^2 \sim \chi_3^2$ c) $\frac{2Y_3}{\sqrt{3Y_1^2 + Y_2^2}} \sim t_2$ d) $\frac{3Y_1^2 + 2Y_3^2}{2Y_2^2} \sim F_{1,1}$

(GATE ST 2025)

- 50) Let $(x_n)_{n\geq 1}$ be independent random variables with $X_n \stackrel{\text{a.s.}}{\longrightarrow} 0$ as $n \to \infty$. Which of the following options is/are necessarily correct?
 - a) $E(X_n^3) \to 0$ as $n \to \infty$

 - b) $X_n^7 \xrightarrow{P} 0$ as $n \to \infty$ c) For any $\epsilon > 0$, $\sum_{n=1}^{\infty} \Pr(|X_n| \ge \epsilon) < \infty$ d) $X_n^2 + X_n + 5 \xrightarrow{\text{a.s.}} 5$ as $n \to \infty$

(GATE ST 2025)

- 51) Consider a Markov chain $\{X_n : n = 1, 2, ...\}$ with state space $S = \{1, 2, 3\}$ and transition probability matrix $P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/3 & 0 & 2/3 \\ 2/5 & 3/5 & 0 \end{pmatrix}$. Define $\pi = \left(\frac{18}{67}, \frac{24}{67}, \frac{25}{67}\right)$. Which of the following options is/are correct?
 - a) π is a stationary distribution of P
 - b) π^T is an eigenvector of P^T
 - c) $Pr(X_3 = 1 | X_1 = 1) = \frac{11}{30}$
 - d) At least one state is transient

(GATE ST 2025)

- 52) Let X_1, \ldots, X_n be a random sample from Uniform $\left(-\frac{\theta}{2}, \frac{\theta}{2}\right)$, where $\theta > 0$. Which of the following options is/are correct?
 - a) $2 \max \{X_1, \dots, X_n\}$ is the maximum likelihood estimator of θ
 - b) $(\min)\{X_1,\ldots,X_n\}$, $\max\{X_1,\ldots,X_n\}$) is a sufficient statistic

 - c) $(\min\{X_1, ..., X_n\}, \max\{X_1, ..., X_n\})$ is a complete statistic d) $\frac{2(n+1)}{n} \max\{|X_1|, ..., |X_n|\}$ is a UMVUE of θ

53) Let $X = (X_1, X_2, X_3)^T$ have a $N_3(0, \Sigma)$ distribution with $\Sigma = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. Let $\alpha^T = (2, 0, -1)$ and $\beta^T = (1, 1, 1)$. Which of the following statement $\beta^T = (1, 1, 1)$.

 $\beta^T = (1, 1, 1)$. Which of the following statements is/are correct?

- a) $E\left(\operatorname{trace}\left(XX^{T}\alpha\alpha^{T}\right)\right) = 20$
- b) Var $\left(\operatorname{trace}\left(X\alpha^{T}\right)\right) = 20$
- c) $E\left(\operatorname{trace}\left(XX^{T}\right)\right) = 17$
- d) $Cov(\alpha^T X, \beta^T X) = 3$

(GATE ST 2025)

54) For $Y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, $\beta \in \mathbb{R}^p$, consider the regression model $Y = X\beta + \epsilon$, where $\epsilon \sim N_n(0, I_n)$. For

 $\lambda > 0$, define $\hat{\beta}_n = (X^T X + \lambda I_p)^{-1} X^T Y$. Which of the following options is/are correct?

- a) $\hat{\beta}_n$ is an unbiased estimator of β
- b) $(X^TX + \lambda I_p)$ is positive definite
- c) $\hat{\beta}_n$ has a multivariate normal distribution
- d) $\operatorname{Var}(\hat{\beta}_n) = (X^T X + \lambda I_p)^{-1}$

(GATE ST 2025)

- 55) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as $f(x, y) = x^2y^2 + 8x 4y$. The number of saddle points of f is
- Q.56 Let $P = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 & 1 \\ -1 & -1 & 0 & 1 & 1 \\ -1 & -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & -1 & 0 \end{bmatrix}$. If $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$ are eigenvalues of P, then $\prod_{i=1}^5 \lambda_i =$ _______

- 56) Let $P = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$. Then trace $(P^5 + Q^4) =$ _____ (answer in integer). (GATE ST
- 57) The moment generating functions of three independent random variables X, Y, Z are given by $M_X(t) = \frac{1}{9}(2 + e^t)^2$, $M_Y(t) = e^{(e^t 1)}$, $M_Z(t) = e^{2(e^t 1)}$, $t \in \mathbb{R}$. Then $10 \Pr(X > Y + Z) =$ (rounded off to two decimal places). (GATE ST 2025)
- 58) The service times (in minutes) at two petrol pumps P_1 and P_2 follow distributions with pdfs $f_1(x) =$ $\lambda e^{-\lambda x}$, x > 0, $f_2(x) = \lambda^2 x e^{-\lambda x}$, x > 0, where $\lambda > 0$. For service, a customer chooses P_1 or P_2 randomly with equal probability. Suppose the probability that the service time exceeds one minute is $2e^{-2}$. Then $\lambda =$ (answer in integer). (GATE ST 2025)
- 59) Let $(x_n)_{n\geq 1}$ be independent random variables with $\Pr(X_n=-\frac{1}{2^n})=\Pr(X_n=\frac{1}{2^n})=\frac{1}{2}, n\in\mathbb{N}$. Suppose $\sum_{i=1}^{n} X_i \xrightarrow{d} U$ as $n \to \infty$. Then $6 \Pr\left(U \le \frac{2}{3}\right) =$ _____ (answer in integer). (GATE ST 2025) 60) Let X_1, \ldots, X_7 be a random sample from a population with pdf $f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}$, x > 0, where
- $\lambda > 0$ is unknown. Let $\hat{\lambda}$ be the MLE of λ , and $E(\hat{\lambda} \lambda) = \alpha \lambda$ be the bias, with α a constant. Then (answer in integer). (GATE ST 2025)
- 61) Let $\overline{X_1, X_2}$ be a random sample from a population with pdf $f_{\theta}(x) = e^{x-\theta}, -\infty < x \le \theta$, 0, otherwise, where $\theta \in \mathbb{R}$. Consider testing $H_0: \theta \geq 0$ against $H_1: \theta < 0$ at level $\alpha = 0.09$. Let $\beta(\theta)$ be the power function of a UMP test. Then $\beta(\log 0.36) = (\text{rounded off to two decimal})$ (GATE ST 2025) places).
- 62) Let $X \sim \text{Bin}(3,\theta), \ \theta \in (0,1)$. For testing $H_0: \frac{1}{4} \leq \theta \leq \frac{3}{4}$ against $H_1: \theta < \frac{1}{4}$ or $\theta > \frac{3}{4}$, consider $\phi(x) = 1, x \in \{0, 3\},\$ (GATE ST 2025) $0, x \in \{1, 2\}$. The size of ϕ is (rounded off to two decimal places).
- 63) Let $(X_1, X_2, X_3)^T \sim N_3 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.4 & 0 \\ 0.4 & 1 & 0.6 \\ 0 & 0.6 & 1 \end{pmatrix}$. Then the partial correlation coefficient between X_1 and X_2 given X_3 is _____ (rounded off to two decimal places). (GATE ST 2025)
- 64) Let $(X, Y)^T$ follow a bivariate normal distribution with E(x) = 2, E(Y) = 3, Var(x) = 16, Var(Y) = 25, Cov(X, Y) = 14. Then $2\pi \left(Pr(X > 2, Y > 3) - \frac{1}{4} \right)$ equals _____ (rounded off to two decimal places). (GATE ST 2025)