Linear Algebra II Quiz 3

Zachary Meyner

1. Assume A is an $m \times n$ matrix and $CA = I_n$ the $n \times n$ identity matrix. Show that the equation Ax = 0 has only the trivial solution. Explain why the matrix A can not have more columns than rows.

Proof. Let A be an $m \times n$ matrix s.t. $CA = I_n$ where I_n is the $n \times n$ identity matrix. Consider the equation Ax = 0

$$Ax = 0$$
 $CAx = C0$
 $(CA)x = C0$
 $I_nx = 0$
 $x = 0$
(Associative Property)

Thus Ax = 0 can only have the trivial solution.

If A had more columns than rows then the columns of A would be be linearly dependent, thus Ax = 0 would have a nontrivial solution.

2. Assume A is an $m \times n$ matrix nad $AD = I_m$ the $m \times m$ identity matrix. Show that for any $b \in \mathbb{R}^m$, the equation Ax = b has a solution. Try explaining why the matrix A can not have more rows than columns.

Proof. Let A be an $m \times n$ matrix s.t. $AD = I_m$ where I_m is the $m \times m$ identity matrix. Consider A(Db) with $b \in \mathbb{R}^m$ then

$$A(Db) = (AD)b$$
 (Associative Property)
= $I_m b$
= b

Thus x = Db is a solution Ax = b.

Since Ax = b has a sultion $\forall b \in \mathbb{R}^m$ A has a pivot in every row. Since each column has to have a pivot there cannot be more rows than columns.

3. Assume A is an $m \times n$ matrix and there exists $n \times m$ matrices C and D such that $CA = I_n$ and $AD = I_m$. Prove that m = n and C = D.

Proof. Let the matrices A being $m \times n$, and C, D being $n \times m$ s.t. $CA = I_n$ and $AD = I_m$. Then by problem 1 since $CA = I_n$ we know that $m \ge n$ and by problem 2 since $AD = I_m$ we know that $n \ge m$. Thus m = n. Consider the product CAD, then

$$CAD = (CA)D$$
 (Associative Property)
= I_nD
= D

But we can also do this as

$$CAD = C(AD)$$
 (Associative Property)
= CI_m
= C

 $\therefore C = D.$