Chapter24. Shortest Path Problems

Shortest Path Problems

- How can we find the shortest route between two points on a road map?
- Model the problem as a graph problem:
 - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

- Goal: find a shortest path between two vertices (cities)
- Application: Network routing, driving direction,

Shortest Path Problem

Input:

- Directed graph G = (V, E)
- Weight function $w : E \rightarrow \mathbf{R}$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Shortest-path weight from u to v:

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \overset{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

Note: there might be <u>multiple shortest</u> paths from u to v

Variants of Shortest Path

Single-source shortest paths

- G = (V, E) \Rightarrow find a shortest path from a given source vertex **s** to each vertex **v** ∈ **V**

Single-destination shortest paths

- Find a shortest path to a given destination vertex t from each vertex v
- Reversing the direction of each edge ⇒ single-source

Variants of Shortest Paths

Single-pair shortest path

Find a shortest path from u to v for given vertices
 u and v

All-pairs shortest-paths

Find a shortest path from u to v for every pair of vertices u and v

Variants of Shortest Paths

Single-Source Single-Destination (1-1)	Single-Source All-Destination (1-M)
-No good solution that beats 1-M variant -This problem is mapped to the 1-M variant	-Need to be solved (several algorithms)
All-Sources Single-Destination (M-1)	All-Sources All-Destinations (M-M)
	-Need to be solved (several
-Reverse all edges in the graph	algorithms)
-This also is mapped to the (1-M) variant	-We will skip it

Negative-Weight Edges

- Negative-weight edges may form negative-weight cycles
- If such cycles are reachable from the source, then $\delta(s, v)$ is not properly defined!
 - Keep going around the cycle, and get

 $w(s, v) = -\infty$ for all v on the cycle

Negative-Weight Edges

- $s \rightarrow a$: only one path $\delta(s, a) = w(s, a) = 3$
- $s \rightarrow b$: only one path $\delta(s, b) = w(s, a) + w(a, b) = -1$
- $s \rightarrow c$: infinitely many paths $\langle s, c \rangle, \langle s, c, d, c \rangle, \langle s, c, d, c, d, c \rangle$ cycle has positive weight (6 - 3 = 3) $\langle s, c \rangle$ is shortest path with weight $\delta(s, b) = w(s, c) = 5$

Negative-Weight Edges

- $s \rightarrow e$: infinitely many paths:
 - $-\langle s, e \rangle, \langle s, e, f, e \rangle, \langle s, e, f, e, f, e \rangle$
 - cycle $\langle e, f, e \rangle$ has negative weight:

$$3 + (-6) = -3$$

- can find paths from s to e with
 arbitrarily large negative weights
- $-\delta(s, e) = -\infty \Rightarrow$ no shortest path exists between **s** and **e**
- Similarly: $\delta(s, f) = -\infty$, $\delta(s, g) = -\infty$

$$\delta(s, h) = \delta(s, i) = \delta(s, j) = \infty$$

Cycles

- Can shortest paths contain cycles?
- Negative-weight cycles
 - Shortest path is not well defined
- Positive-weight cycles:
 - By removing the cycle, we can get a shorter path
- Zero-weight cycles
 - No reason to use them
 - Can remove them to obtain a path with same weight

Optimal Substructure Theorem

Given:

- A weighted, directed graph G = (V, E) O P_{1i}
- A weight function w: $E \rightarrow R$,
- A shortest path $p = \langle v_1, v_2, \dots, v_k \rangle$ from v_1 to v_k
- A subpath of p: $p_{i,j} = \langle v_i, v_{i+1}, \dots, v_j \rangle$, with $1 \le i \le j \le k$

Then: \mathbf{p}_{ij} is a shortest path from \mathbf{v}_i to \mathbf{v}_j

$$\begin{aligned} \textbf{Proof:} \ p &= v_1 \ \textbf{p}_{1i} \ v_i \ \textbf{p}_{ij} \ v_j \ \textbf{p}_{jk} \ v_k \\ w(p) &= w(p_{1i}) + w(p_{ij}) + w(p_{jk}) \end{aligned}$$

Assume $\exists p_{ij}$ ' from v_i to v_j with $w(p_{ij}') \le w(p_{ij})$

$$\Rightarrow$$
 w(p') = w(p_{1i}) + w(p_{ij}') + w(p_{jk}) < w(p) contradiction!

Triangle Inequality

For all $(\mathbf{u}, \mathbf{v}) \in E$, we have:

$$\delta$$
 (s, v) \leq δ (s, u) + δ (u, v)

- If **u** is on the shortest path to **v**, we have the equality sign

Algorithms

- Bellman-Ford algorithm
 - Negative weights are allowed
 - Negative cycles reachable from the source are not allowed.
- Dijkstra's algorithm
 - Negative weights are not allowed
- Operations common in both algorithms:
 - Initialization
 - Relaxation

Shortest-Paths Notation

For each vertex $v \in V$:

- $\delta(s, v)$: shortest-path weight
- d[v]: shortest-path weight **estimate**
 - Initially, $d[v] = \infty$
 - $-d[v] \rightarrow \delta(s,v)$ as algorithm progresses

- $\pi[v] = \mathbf{predecessor}$ of \mathbf{v} on a shortest path from \mathbf{S}
 - If no predecessor, $\pi[v] = NIL$
 - $-\pi$ induces a tree—shortest-path tree

Initialization

Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

- 1. for each $v \in V$
- 2. do d[v] $\leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$

 All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

Relaxation

- Given weighted graph G = (V, E) with source node $s \in V$ and other node $v \in V$ (v = s), we'll maintain d[v], which is upper bound on (s, v)
- Relaxation of an edge (u, v) is the process of testing whether we can decrease d[v], yielding a tighter upper bound.

Relaxation Step

• Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If
$$d[v] > d[u] + w(u, v)$$

we can improve the shortest path to v

$$\Rightarrow$$
 d[v]=d[u]+w(u,v)

$$\Rightarrow \pi[v] \leftarrow u$$

Bellman-Ford Algorithm

- Single-source shortest path problem
 - Computes $\delta(s, v)$ and $\pi[v]$ for all $v \in V$
- Works with negative-weight edges and detects if there is a negative-weight cycle.
 - Returns TRUE if no negative-weight cycles are reachable from the source s
 - Returns FALSE otherwise ⇒ no solution exists

Bellman-Ford Algorithm (cont'd)

• Idea:

- Each edge is relaxed |V-1| times by making |V-1| passes over the whole edge set.
- To make sure that each edge is relaxed exactly |V-1| times, it puts the edges in an unordered list and goes over the list |V-1| times.

(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Bellman-Ford(G, w, s)

```
1 Initialize-Single-Source (G, s)
 2 for i = 1 to |V| - 1 do
        for each edge (u, v) \in E do
            Relax(u, v, w)
        end
6 end
7 for each edge (u, v) \in E do
        if d[v] > d[u] + w(u, v) then
            \operatorname{return}\ \operatorname{FALSE}\ //\ G has a negative-wt cycle
10
11 end
12 return TRUE // G has no neg-wt cycle reachable frm s
```

Bellman-Ford(G, w, s)

E: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Example

(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Detecting Negative Cycles (perform extra test after V-1 iterations)

- for each edge $(u, v) \in E$
- **do if** d[v] > d[u] + w(u, v)
- then return FALSE
- return TRUE

Look at edge (s, b):

$$d[b] = -1$$

 $d[s] + w(s, b) = -4$

$$\Rightarrow$$
 d[b] > d[s] + w(s, b)

Time Complexity of Bellman-Ford Algorithm

```
1 Initialize-Single-Source(G, s) \longleftarrow \Theta(V)

\begin{cases}
\text{for } i = 1 \text{ to } |V| - 1 \text{ do} \\
\text{soft each edge } (u, v) \in E \text{ do} \\
\text{Relax}(u, v, w)
\end{cases} \longrightarrow O(V)

         end
 6 end
 7 for each edge (u, v) \in E do \longleftarrow
         if d[v] > d[u] + w(u, v) then
           return FALSE // G has a negative-wt cycle
10
11 end
12 return TRUE // G has no neg-wt cycle reachable frm s
```

Running time: O(V+VE+E)=O(VE)

Shortest Path Properties

Upper-bound property

- We always have $d[v] \ge \delta(s, v)$ for all v.
- The estimate never goes up : relaxation only lowers the estimate

Shortest Path Properties

Convergence property

If $s \sim u \rightarrow v$ is a shortest path, and if $d[u] = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $d[v] = \delta(s, v)$ at all times after relaxing (u, v).

- If $d[v] > \delta(s, v) \Rightarrow$ after relaxation: d[v] = d[u] + w(u, v) d[v] = 5 + 2 = 7
- Otherwise, the value remains unchanged, because it must have been the shortest path value

Shortest Path Properties

Path relaxation property

Let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from $s = v_0$ to v_k . If we relax, in order, $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, even intermixed with other relaxations, then $d[v_k] = \delta(s, v_k)$.

$$\int_{0}^{\sqrt{2}} \frac{d[v_{2}]}{\sqrt{2}} = \delta(s, v_{2})$$

Correctness of Belman-Ford Algorithm

- **Theorem:** Show that $d[v] = \delta(s, v)$, for every v, after |V-1| passes.
 - Case 1: G does not contain negative cycles which are reachable from s
 - Assume that the shortest path from s to v is $p = \langle v_0, v_1, \dots, v_k \rangle, \text{ where } s = v_0 \text{ and } v = v_k, k \leq |V-1|$
 - Use mathematical induction on the number of passes i to show that:

$$d[v_i] = \delta(s, v_i), i=0,1,...,k$$

Correctness of Belman-Ford Algorithm

Base Case: i=0 $d[v_0]=\delta(s, v_0)=\delta(s, s)=0$

Inductive Hypothesis: $d[v_{i-1}] = \delta(s, v_{i-1})$

Inductive Step: $d[v_i] = \delta(s, v_i)$

After relaxing
$$(v_{i-1}, v_i)$$
:

$$d[v_i] \le d[v_{i-1}] + w = \delta(s, v_{i-1}) + w = \delta(s, v_i)$$

From the upper bound property: $d[v_i] \ge \delta(s, v_i)$

Therefore, $d[v_i] = \delta(s, v_i)$

Correctness of Belman-Ford Algorithm

• <u>Case 2</u>: G contains a negative cycle which is reachable from s

Proof by

Contradiction:

suppose the algorithm

returns a solution

After relaxing (v_{i-1}, v_i) : $(v_i) \le (v_{i-1}) + w(v_{i-1}, v_i)$

or
$$\sum_{i=1}^{k}$$
 d $[v_i] \le \sum_{i=1}^{k}$ d $[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$

or
$$\sum_{i=1}^{k} w(v_{i-1}, v_i) \ge 0$$
 $(\sum_{i=1}^{k} d [v_i] = \sum_{i=1}^{k} d [v_{i-1}])$

Contradiction!

Dijkstra's Algorithm

- Greedy algorithm
- Faster than Bellman-Ford
- Requires all edge weights to be nonnegative
- Maintains set S of vertices whose final shortest path weights from s have been determined
- Uses min-priority queue to repeatedly make greedy choice

Dijkstra's Algorithm

- Single-source shortest path problem:
 - No negative-weight edges: w(u, v) > 0, $\forall (u, v) \in E$
- Each edge is relaxed only once!
- Maintains two sets of vertices:

Dijkstra's Algorithm (cont.)

- Vertices in V S reside in a min-priority queue
 - Keys in Q are estimates of shortest-path weights d[u]
- Repeatedly select a vertex $u \in V S$, with the minimum shortest-path estimate d[u]
- Relax all edges leaving u

Steps

- 1) Extract a vertex u from Q
- 2) Insert u to S
- 3) Relax all edges leaving u
- 4) Update *Q*

Dijkstra(G, w, s)

```
1 Initialize-Single-Source(G, s)
S = \emptyset
Q = V
4 while Q \neq \emptyset do
      u = \text{Extract-Min}(Q)
5
    S = S \cup \{u\}
6
      for each v \in Adj[u] do
          Relax(u, v, w)
8
      end
9
10 end
```

Dijkstra (G, w, s)

$$S = < > Q = < s,t,x,z,y >$$

Example (cont.)

$$S = \langle s, y \rangle Q = \langle z, t, x \rangle$$

$$S = \langle s, y, z \rangle Q = \langle t, x \rangle$$

Example (cont.)

$$S = \langle s, y, z, t \rangle Q = \langle x \rangle$$

$$S=Q=<>$$

Dijkstra(G, w, s)

```
1 Initialize-Single-Source(G, s) \leftarrow
S = \emptyset
                  \leftarrow O(V) build min-heap
Q = V
4 while Q \neq \emptyset do \leftarrow Executed O(V) times
      u = \text{Extract-Min}(Q) \leftarrow O(\log V)
    S = S \cup \{u\}
6
   for each v \in Adj[u] do
        RELAX(u, v, w)
      end
9
10 end
```

Running time: O(VlogV + ElogV) = O(ElogV)