LC 2: Liaisons faibles

Niveau: L1

Biblio: - Tout-en-un Chimie PCSI, Fosset (chap 6)

- L'indispensable en liaisons chimiques, Dumas (fiche 18)
- Chemical principles, Atkins (chap 5) (+ physical chem)
- Techniques expérimentales en chimie, A-S Bernard (fiche 20)
- 40 expériences illustrées en chimie géné et orga, Martinand-Lurin, Gruber
- Analyse chimique, Rouessac (chap 5)
- Biochimie, Voet et Biochimie, Berg et Stryer
- http://www.pcsi1.bginette.com/Chim/Polys/3-liaisonfaible-2015.pdf

Intro:

Liaisons faibles : interactions de faible énergie (1 à 50 kJ/mol) qui s'exercent à courte distance entre atomes ou molécules qui n'impliquent pas d'échange d'électrons.

I) Les liaisons faibles (à voir si on sépare cette partie en I) Liaisons de VdW et II) L. H)

A) Liaisons de Van der Waals

cf L'indisp p. 80-82; Atkins p. 172-178

- → Interactions de Keesom, Debye et London (déf, formule énergie, OdG, exemple de molécules)
- → Tableau récap des énergie des différentes interactions de VdW selon molécules (cf l'indisp p. 82)
- → (Rq: répulsion: Potentiel de Lennard-Jones (Physical-Chem p. 642 + Fosset p. 373))
- → Influence sur la température d'ébullition (ex : dichlorobenzen para ou ortho cf Atkins p. 174-175)
- → Graphe Téb différentes molécules (cf Atkins p. 178; l'indisp p. 83; Fosset p. 376)

Tr : Mais avec les seules liaisons de VdW, on ne peut pas expliquer que la température de l'eau (par exemple) soit si élevée ! C'est dû aux liaisons H.

B) <u>Liaisons Hydrogènes</u>

(cf Fosset p. 374-380; l'indispensable p. 83; Atkins p. 178)

- → Modélisation des liaisons H (définition, exemple, représentation, caractéristiques, OdG)
- → Influence sur la température d'ébullition : l. H inter ou intra moléculaire (ex : différence de Teb pour eau et H₂S ; acide maléique et fumarique Fosset p. 377)
- → Autres influences de la liaisons H (cf Fosset p. 378-380 : propriétés de l'eau, organisation spatiale (ADN), spectro)

II) L'importance des liaisons faibles

A) Solvant, solubilité, miscibilité

(cf http://www.pcsi1.bginette.com/Chim/Polys/3-liaisonfaible-2015.pdf;

- → Solvatation d'espèces non ioniques
- → Miscibilité ou non de 2 solvants
- → Utilisation pour l'extraction liquide-liquide

B) Pour les chromatographies

(cf A-S Bernard fiche 20 ; Gruber p. 249 et 289 ; Rouessac p. 100-106 ; pigments d'épinard : Daumarie p.159)

- → Se focaliser sur un type de chromato, je pense que la CCM est la plus intéressante
- → Etude de la phase stationnaire
- → Etude de l'éluant
- → Etude des interactions possibles des molécules migrants
 - C) <u>Pour la structure des protéines</u> (si il y a le temps)
- → Structures secondaire, tertiaire et quaternaire des protéines (cf Voet chap 7 et Stryer chap I.3)