Suivi de passagers de bus par apprentissage profond

<u>Claire Labit-Bonis</u> - LAAS-CNRS // ACTIA Automotive - clabitbo@laas.fr
Jérôme Thomas - ACTIA Automotive - jerome.thomas@actia.fr
Frédéric Lerasle - LAAS-CNRS // Université de Toulouse UPS - lerasle@laas.fr
Francisco Madrigal - LAAS-CNRS - jfmadrig@laas.fr

RFIAP - 26 juin 2018

Contexte

Plusieurs systèmes possibles :

- validateurs électroniques de tickets ;
- capteurs dans le plancher ;
- détection individualisée aux portes.

[1] J. He et A. Arora, A regression-based radar-mote system for people counting, PerCom, 2014.

Plusieurs systèmes possibles :

- validateurs électroniques de tickets ;
- capteurs dans le plancher ;
- détection individualisée aux portes.

Parmi la **détection individualisée**, différents capteurs : radar [1], caméra active [2], scanner laser [3], caméra classique.

^[2] M. Rauter, Reliable human detection and tracking in top-view depth images, CVPRW, 2013.

^[3] Z. Chen et al., SVM based people counting method in the corridor scene using single-layer laser scanner, ITSC, 2016.

- [1] J. He et A. Arora, A regression-based radar-mote system for people counting, PerCom, 2014.
- [2] M. Rauter, Reliable human detection and tracking in top-view depth images, CVPRW, 2013.
- [3] Z. Chen et al., SVM based people counting method in the corridor scene using single-layer laser scanner, ITSC, 2016.
- [4] M.K. Kocamaz et al., Vision-based counting of pedestrians and cyclists, WACV, 2016.
- [5] Z. Yu et al., Pedestrian counting based on spatial and temporal analysis, ICIP, 2014.
- [6] B. Benfold et I. Reid, Stable multi-target tracking in real-time surveillance video, CVPR, 2011.

Plusieurs systèmes possibles :

- validateurs électroniques de tickets ;
- capteurs dans le plancher ;
- détection individualisée aux portes.

Parmi la **détection individualisée**, différents capteurs : radar [1], caméra active [2], scanner laser [3], caméra classique.

Parmi les approches **caméra classique**, on trouve :

- des cascades de classifieurs Integral Channel Features [4];
- des opérateurs morphologiques [5] ;
- des histogrammes de gradient orientés [6].

- [1] J. He et A. Arora, A regression-based radar-mote system for people counting, PerCom, 2014.
- [2] M. Rauter, Reliable human detection and tracking in top-view depth images, CVPRW, 2013.
- [3] Z. Chen et al., SVM based people counting method in the corridor scene using single-layer laser scanner, ITSC, 2016.
- [4] M.K. Kocamaz et al., Vision-based counting of pedestrians and cyclists, WACV, 2016.
- [5] Z. Yu et al., Pedestrian counting based on spatial and temporal analysis, ICIP, 2014.
- [6] B. Benfold et I. Reid, Stable multi-target tracking in real-time surveillance video, CVPR, 2011.
- [7] C. Gao et al., People counting based on head detection combining Adaboost and CNN in crowded surveillance environment, Neurocomputing, 2016.

Plusieurs systèmes possibles :

- validateurs électroniques de tickets ;
- capteurs dans le plancher ;
- détection individualisée aux portes.

Parmi la **détection individualisée**, différents capteurs : radar [1], caméra active [2], scanner laser [3], caméra classique.

Parmi les approches caméra classique, on trouve :

- des cascades de classifieurs Integral Channel Features [4] ;
- des opérateurs morphologiques [5] ;
- des histogrammes de gradient orientés [6].

Peu de méthodes par apprentissage profond,

pourtant démonstration de bonnes performances de détection [7].

Verrous

- Variabilité des cibles (tenue vestimentaire, morphologie)
- Encombrement de la scène (heure de pointe)

 Contrainte de traitement à temps différé

FLUX VIDÉO **DÉTECTION PASSAGERS**

COMPTAGE

04

02

SUIVI DES CIBLES

FLUX VIDÉO **DÉTECTION PASSAGERS**

COMPTAGE

02

SUIVI DES CIBLES

04

6/18

01 FLUX VIDÉO **DÉTECTION PASSAGERS**

SUIVI DES CIBLES

04

COMPTAGE

FLUX VIDÉO

01

SUIVI DES CIBLES

COMPTAGE

04

01

FLUX VIDÉO DÉTECTION PASSAGERS

SUIVI DES CIBLES

_

COMPTAGE

04

SUIVI DES CIBLES

FLUX VIDÉO

01

02

DÉTECTION PASSAGERS

04

COMPTAGE

6/18

 $t_0 \rightarrow t_2 = -1$

01

FLUX VIDÉO **DÉTECTION PASSAGERS** **SUIVI DES CIBLES**

COMPTAGE

02

Couplage détecteur-traqueur

Couplage détecteur-traqueur

Couplage détecteur-traqueur DeepSORT [8]

[8] N. Wojke et al., Simple Online and Realtime Tracking with deep association metrics, ICIP, 2017.

Mise en oeuvre

Apprentissages et évaluations présentées

+

Intel Xeon E5-1620 / 3.5 GHz

+

16Go RAM

Perspective embarquée

10x moins puissante que la Titan Xp

Dataset *in situ* en vue zénithale

Exemples

Nom	Images	Traject. \neq	Labels		
$tipad_1$	9,751	45	10,017		
$tipad_2$	15,382	47	15,724		
$tipad_3$	18,427	76	16,773		
$tipad_4$	29,889	96	33,947		
${\rm tipad_5_2}$	20,353	86	66,030		
$tipad_5_4$	11,576	38	14,580		

Table 1 – Détails du dataset TIPAD

A	pprentissage		Validatio	on Test				
TIPAD-1	TIPAD-2	TIPAD-3	TIPAD-4	TIPAD-5-2	TIPAD-5-4			
TIPAD-1	TIPAD-2	TIPAD-3	TIPAD-4	TIPAD-5-2	TIPAD-5-4			
TIPAD-1	TIPAD-2	TIPAD-3	TIPAD-4	TIPAD-5-2	TIPAD-5-4			

Comparaison de 3 détecteurs deep learning...

Comparaison de 3 détecteurs deep learning...

Comparaison de 3 détecteurs deep learning...

...couplés à différents extracteurs de caractéristiques

Evaluations

Evaluation des détecteurs

- Scénario heure de pointe plus difficile
- Mêmes tendances selon les plis

Evaluation des détecteurs

- Résultats stables selon les plis
- SSD (Inception + Mobilenet) et YOLOv2 moins robustes face à l'encombrement
- FRRCNN plus lent, SSD plus rapide, YOLO entre les deux selon le réseau

Evaluation des détecteurs

(a) FrRCNN + ZF

(b) FrRCNN+ResNet50

(c) SSD + Inception

(d) SSD + Mobilenet

(e) YOLOv2

	Détecteur	IDF1	Prcn	\mathbf{Rpl}	\mathbf{GT}	MT	\mathbf{ML}	\mathbf{FP}	FN	IDS	\mathbf{FM}	MOTA	MOTP
4	FRRCNN + ResNet50	86.91	98.14	77.98	38	73.68	7.89	160	2389	22	150	76.30	80.50
5-4	FRRCNN + ZF	77.59	92.22	66.96	38	63.16	13.16	613	3584	22	92	61.11	78.50
	SSD + Inception	82.89	97.79	71.93	38	47.37	18.42	176	3045	19	124	70.13	80.40
li 1	SSD + Mobilenet	83.20	91.27	76.44	38	63.16	13.16	793	2556	15	172	68.99	80.40
Ы	YOLOv2 + Darknet19	85.55	91.49	80.33	38	71.05	7.89	811	2134	19	120	72.68	77.40
	YOLOv3 + Darknet53	88.12	94.25	82.73	38	73.68	5.26	548	1873	19	66	77.51	77.60
	FRRCNN + ResNet50	94.85	97.71	92.16	47	87.23	6.38	339	1232	13	151	89.93	80.00
(7)	FRRCNN + ZF	88.31	93.20	83.90	47	74.47	4.26	962	2532	26	281	77.61	78.00
7	SSD + Inception	89.12	98.44	81.42	47	57.45	10.64	203	2921	29	254	79.95	81.20
Pli	SSD + Mobilenet	90.79	96.89	85.41	47	68.09	6.38	431	2294	19	179	82.55	79.70
щ	YOLOv2 + Darknet19	84.24	94.44	76.03	47	63.83	4.26	704	3769	28	253	71.37	79.00
	YOLOv3 + Darknet53	85.08	94.70	77.24	47	63.83	10.64	680	3578	27	218	72.75	78.00
2)	FRRCNN + ResNet50	88.89	92.35	85.68	86	53.49	16.28	4688	9455	94	558	78.44	80.90
7.5	FRRCNN + ZF	85.41	83.32	87.60	86	67.44	6.98	11577	8188	92	736	69.93	76.20
3	SSD + Inception	81.05	89.04	74.38	86	44.19	19.77	6044	16914	97	835	65.08	78.80
9979	SSD + Mobilenet	81.02	86.72	76.03	86	43.02	19.77	7691	15826	100	955	64.23	77.10
Pli	YOLOv2 + Darknet19	81.59	79.27	84.04	86	61.63	12.79	14514	10535	116	665	61.89	77.00
	YOLOv3 + Darknet53	85.55	86.86	84.27	86	56.98	15.12	8421	10386	110	671	71.35	78.00
	DeepSORT MOT16	62.2	72.1	54.7	759	32.8	18.2	12852	56668	781	2008	61.40	79.10

-	Détecteur	IDF1	Prcn	Rpl	\mathbf{GT}	MT	\mathbf{ML}	FP	FN	IDS	\mathbf{FM}	MOTA	MOTP
4	FRRCNN + ResNet50	86.91	98.14	77.98	38	73.68	7.89	160	2389	22	150	76.30	80.50
2-4	FRRCNN + ZF	77.59	92.22	66.96	38	63.16	13.16	613	3584	22	92	61.11	78.50
1,100,000	SSD + Inception	82.89	97.79	71.93	38	47.37	18.42	176	3045	19	124	70.13	80.40
i 1	SSD + Mobilenet	83.20	91.27	76.44	38	63.16	13.16	793	2556	15	172	68.99	80.40
Pli	YOLOv2 + Darknet19	85.55	91.49	80.33	38	71.05	7.89	811	2134	19	120	72.68	77.40
	YOLOv3 + Darknet53	88.12	94.25	82.73	38	73.68	5.26	548	1873	19	66	77.51	77.60
$\overline{}$	FRRCNN + ResNet50	94.85	97.71	92.16	47	87.23	6.38	339	1232	13	151	89.93	80.00
(2)	FRRCNN + ZF	88.31	93.20	83.90	47	74.47	4.26	962	2532	26	281	77.61	78.00
7	SSD + Inception	89.12	98.44	81.42	47	57.45	10.64	203	2921	29	254	79.95	81.20
Pli	SSD + Mobilenet	90.79	96.89	85.41	47	68.09	6.38	431	2294	19	179	82.55	79.70
щ	YOLOv2 + Darknet19	84.24	94.44	76.03	47	63.83	4.26	704	3769	28	253	71.37	79.00
	YOLOv3 + Darknet53	85.08	94.70	77.24	47	63.83	10.64	680	3578	27	218	72.75	78.00
2)	FRRCNN + ResNet50	88.89	92.35	85.68	86	53.49	16.28	4688	9455	94	558	78.44	80.90
5-5	FRRCNN + ZF	85.41	83.32	87.60	86	67.44	6.98	11577	8188	92	736	69.93	76.20
3	SSD + Inception	81.05	89.04	74.38	86	44.19	19.77	6044	16914	97	835	65.08	78.80
9979	SSD + Mobilenet	81.02	86.72	76.03	86	43.02	19.77	7691	15826	100	955	64.23	77.10
Pli	YOLOv2 + Darknet19	81.59	79.27	84.04	86	61.63	12.79	14514	10535	116	665	61.89	77.00
	YOLOv3 + Darknet53	85.55	86.86	84.27	86	56.98	15.12	8421	10386	110	671	71.35	78.00
22	DeepSORT MOT16	62.2	72.1	54.7	759	32.8	18.2	12852	56668	781	2008	61.40	79.10

- MOTP > 77.0 : bonne localisation des trajectoires

-	Détecteur	IDF1	Prcn	Rpl	\mathbf{GT}	MT	\mathbf{ML}	\mathbf{FP}	FN	IDS	\mathbf{FM}	MOTA	MOTP
4	FRRCNN + ResNet50	86.91	98.14	77.98	38	73.68	7.89	160	2389	22	150	76.30	80.50
2-4	FRRCNN + ZF	77.59	92.22	66.96	38	63.16	13.16	613	3584	22	92	61.11	78.50
0.00	SSD + Inception	82.89	97.79	71.93	38	47.37	18.42	176	3045	19	124	70.13	80.40
1 1	SSD + Mobilenet	83.20	91.27	76.44	38	63.16	13.16	793	2556	15	172	68.99	80.40
Pli	YOLOv2 + Darknet19	85.55	91.49	80.33	38	71.05	7.89	811	2134	19	120	72.68	77.40
	YOLOv3 + Darknet53	88.12	94.25	82.73	38	73.68	5.26	548	1873	19	66	77.51	77.60
	FRRCNN + ResNet50	94.85	97.71	92.16	47	87.23	6.38	339	1232	13	151	89.93	80.00
(2)	FRRCNN + ZF	88.31	93.20	83.90	47	74.47	4.26	962	2532	26	281	77.61	78.00
7	SSD + Inception	89.12	98.44	81.42	47	57.45	10.64	203	2921	29	254	79.95	81.20
Pli	SSD + Mobilenet	90.79	96.89	85.41	47	68.09	6.38	431	2294	19	179	82.55	79.70
щ	YOLOv2 + Darknet19	84.24	94.44	76.03	47	63.83	4.26	704	3769	28	253	71.37	79.00
	YOLOv3 + Darknet53	85.08	94.70	77.24	47	63.83	10.64	680	3578	27	218	72.75	78.00
2)	FRRCNN + ResNet50	88.89	92.35	85.68	86	53.49	16.28	4688	9455	94	558	78.44	80.90
5-5	FRRCNN + ZF	85.41	83.32	87.60	86	67.44	6.98	11577	8188	92	736	69.93	76.20
3 (SSD + Inception	81.05	89.04	74.38	86	44.19	19.77	6044	16914	97	835	65.08	78.80
995	SSD + Mobilenet	81.02	86.72	76.03	86	43.02	19.77	7691	15826	100	955	64.23	77.10
Pli	YOLOv2 + Darknet19	81.59	79.27	84.04	86	61.63	12.79	14514	10535	116	665	61.89	77.00
	YOLOv3 + Darknet53	85.55	86.86	84.27	86	56.98	15.12	8421	10386	110	671	71.35	78.00
22	DeepSORT MOT16	62.2	72.1	54.7	759	32.8	18.2	12852	56668	781	2008	61.40	79.10

- MOTP > 77.0 : bonne localisation des trajectoires
- Meilleure gestion des faux positifs que des faux négatifs

	Détecteur	IDF1	Prcn	\mathbf{Rpl}	\mathbf{GT}	MT	\mathbf{ML}	FP	FN	IDS	\mathbf{FM}	MOTA	MOTP
4	FRRCNN + ResNet50	86.91	98.14	77.98	38	73.68	7.89	160	2389	22	150	76.30	80.50
(5-4	FRRCNN + ZF	77.59	92.22	66.96	38	63.16	13.16	613	3584	22	92	61.11	78.50
1	SSD + Inception	82.89	97.79	71.93	38	47.37	18.42	176	3045	19	124	70.13	80.40
	SSD + Mobilenet	83.20	91.27	76.44	38	63.16	13.16	793	2556	15	172	68.99	80.40
Pli	YOLOv2 + Darknet19	85.55	91.49	80.33	38	71.05	7.89	811	2134	19	120	72.68	77.40
	YOLOv3 + Darknet53	88.12	94.25	82.73	38	73.68	5.26	548	1873	19	66	77.51	77.60
$\overline{}$	FRRCNN + ResNet50	94.85	97.71	92.16	47	87.23	6.38	339	1232	13	151	89.93	80.00
$\widehat{5}$	FRRCNN + ZF	88.31	93.20	83.90	47	74.47	4.26	962	2532	26	281	77.61	78.00
4	SSD + Inception	89.12	98.44	81.42	47	57.45	10.64	203	2921	29	254	79.95	81.20
Ξ	SSD + Mobilenet	90.79	96.89	85.41	47	68.09	6.38	431	2294	19	179	82.55	79.70
4	YOLOv2 + Darknet19	84.24	94.44	76.03	47	63.83	4.26	704	3769	28	253	71.37	79.00
	YOLOv3 + Darknet53	85.08	94.70	77.24	47	63.83	10.64	680	3578	27	218	72.75	78.00
5	FRRCNN + ResNet50	88.89	92.35	85.68	86	53.49	16.28	4688	9455	94	558	78.44	80.90
 	FRRCNN + ZF	85.41	83.32	87.60	86	67.44	6.98	11577	8188	92	736	69.93	76.20
က	SSD + Inception	81.05	89.04	74.38	86	44.19	19.77	6044	16914	97	835	65.08	78.80
	SSD + Mobilenet	81.02	86.72	76.03	86	43.02	19.77	7691	15826	100	955	64.23	77.10
7	YOLOv2 + Darknet19	81.59	79.27	84.04	86	61.63	12.79	14514	10535	116	665	61.89	77.00
	YOLOv3 + Darknet53	85.55	86.86	84.27	86	56.98	15.12	8421	10386	110	671	71.35	78.00
	DeepSORT MOT16	62.2	72.1	54.7	759	32.8	18.2	12852	56668	781	2008	61.40	79.10

FRRCNN + Resnet

	YOLO + Darknet53	SSD + Inception	FRRCNN + ZF	SSD + Mobilenet	V010 D I 110
158	117	97	97	95	YOLO + Darknet19

Démonstration

TIPAD-4 - YOLOv3 Darknet53