(Heine-Borel Theorem) Let (R^n, d) be a Euclidean space with either the Euclidean metric, the taxicab metric, or the sup norm metric. Let E be a subset of R^n . Then E is compact if and only if it is closed and bounded.

(Continuous maps preserve compactness). Let $f: X \to Y$ be a continuous map from one metric space (X, dX) to an- other (Y, dY). Let $K \subseteq X$ be any compact subset of X. Then the image $f(K) := f(x) : x \in K$ of K is also compact.

(Maximum principle). Let (X, d) be a compact metric space, and let $f: X \to R$ be a continuous function. Then f is bounded. Furthermore, f attains its maximum at some point $x_{max} \in X$, and also attains its minimum at some point $x_{min} \in X$.

Continuous functions on compact sets are automatically uniformly continuous.

(Connected spaces). Let (X, d) be a metric space. We say that X is disconnected iff there exist disjoint non-empty open sets V and W in X such that $V \cup W = X$. We say that X is connected iff it is non-empty and not disconnected. (The connectedness of X is equivalent to for any $x, y \in X$ where x < y $[x, y] \subseteq X$) Continuity preserves connectedness.

Let (X,dX) and (Y,dY) be metric spaces, let E be a subset of X, and let $f:X\to Y$ be a function. Let $x_0\in X$ be an adherent point of E and $L\in Y$. Then the following four statements are logically equivalent: (a) $\lim_{x\to x_0;x\in E}f(x)=L$, (b) For every sequence $(x^{(n)})_{n=1}^\infty$ in E which converges to x_0 with respect to the metric dX, the sequence $(f(x^{(n)}))_{n=1}^\infty$ converges to L with respect to the metric dY, (c) For every open set $V\subset Y$ which contains L, there exists an open set $U\subset X$ containing x_0 such that $f(U\cap E)\subseteq V$, (d) If one defines the function $g:E\cup x_0\to Y$ by defining $g(x_0):=L$, and g(x):=f(x) for $x\in E\setminus x_0$, then g is continuous at x_0 . Furthermore, if $x_0\in E$, then $f(x_0)=L$.

(Pointwise convergence). For every x and every $\epsilon > 0$ there exists N > 0 such that dY $(f(n)(x), f(x)) < \epsilon$ for every n > N. We call the function f the pointwise limit of the functions $f^{(n)}$.

(Uniform convergence). For every $\epsilon > 0$ there exists N > 0 such that dY $(f(n)(x), f(x)) < \epsilon$ for every n > N and every x. We call the function f the uniform limit of the functions $f^{(n)}$.

Uniform limits preserve Continuity. We can exchange the order of limits and uniform convergence in complete metric spaces.

(Bounded functions). A function $f: X \to Y$ from one metric space (X, dX) to another (Y, dY) is bounded if f(X) is a bounded set, i.e., there exists a ball $B(Y, dY)(y_0, R)$ in Y such that $f(x) \in B(Y, dY)(y_0, R)$ for all $x \in X$. (Uniform limits preserve boundedness)

(Metric space of bounded functions). $B(X \to Y) := \{f | f : X \to Y \text{ is a bounded function} \}$ with notion of distance $d_{\infty}(f,g) := \sup\{dY(f(x),g(x)) : x \in X\}$ (The space of continuous functions is complete.)

(Sup norm). $||f||_{\infty} = \sup\{|f(x)| : x \in X\}$ (Weierstrauss M-test). $\sum_{n=1}^{\infty} f^{(n)}$ converges uniformly if $\sum_{n=1}^{\infty} ||f^{(n)}||_{\infty}$ converges.

Let [a,b] be an interval, and for each integer $n \geq 1$, let $f(n): [a,b] \to R$ be a Riemann-integrable function. Suppose f(n) converges uniformly on [a,b] to a function $f: [a,b] \to R$. Then f is also Riemann integrable, and $\lim_{n \to \infty} \int_{[a,b]} f^{(n)} = \int_{[a,b]} f$.

If f'_n converges uniformly, and $f_n(x_0)$ converges for some x_0 , then f_n also converges uniformly, and $\frac{d}{dx} \lim_{n \to \infty} f^{(n)}(x) = \lim_{n \to \infty} \frac{d}{dx} f^{(n)}(x)$.

Exchanging the order of series and integration/differentiation uses the same logic as exchanging limits with integration/differentiation.