The Relational Model

Today's Lecture

1. The Relational Model & Relational Algebra

2. Relational Algebra Pt. II [Optional: may skip]

1. The Relational Model & Relational Algebra

What you will learn about in this section

1. The Relational Model

2. Relational Algebra: Basic Operators

3. Execution

4. ACTIVITY: From SQL to RA & Back

Motivation

The Relational model is **precise**, **implementable**, and we can operate on it (query/update, etc.)

Database maps internally into this procedural language.

A Little History

- Relational model due to Edgar "Ted" Codd, a mathematician at IBM in 1970
 - A Relational Model of Data for Large Shared <u>Data Banks</u>". <u>Communications of the</u> ACM 13 (6): 377–387

Won Turing award 1981

- IBM didn't want to use relational model (take money from IMS)
 - Apparently used in the moon landing...

The Relational Model: Schemata

Relational Schema:

Students(sid: string, name: string, gpa: float)

Relation name

String, float, int, etc. are the <u>domains</u> of the attributes

Attributes

The Relational Model: Data

An <u>attribute</u> (or <u>column</u>) is a typed data entry present in each tuple in the relation

Student

sid	name	gpa
001	Bob	3.2
002	Joe	2.8
003	Mary	3.8
004	Alice	3.5

The number of attributes is the <u>arity</u> of the relation

The Relational Model: Data

Student

sid	name	gpa
001	Bob	3.2
002	Joe	2.8
003	Mary	3.8
004	Alice	3.5

The number of tuples is the **cardinality** of the relation

A <u>tuple</u> or <u>row</u> (or <u>record</u>) is a single entry in the table having the attributes specified by the schema

The Relational Model: Data

Student

sid	sid name gp	
001	Bob	3.2
002	Joe	2.8
003	Mary	3.8
004	Alice	3.5

Recall: In practice DBMSs relax the set requirement, and use multisets.

A <u>relational instance</u> is a *set* of tuples all conforming to the same *schema*

To Reiterate

• A <u>relational schema</u> describes the data that is contained in a <u>relational instance</u>

```
Let R(f_1:Dom_1,...,f_m:Dom_m) be a <u>relational schema</u> then, an <u>instance</u> of R is a subset of Dom_1 \times Dom_2 \times ... \times Dom_n
```

In this way, a <u>relational schema</u> R is a **total function from attribute names to types**

One More Time

• A <u>relational schema</u> describes the data that is contained in a relational instance

A relation R of arity t is a function: R: $Dom_1 \times ... \times Dom_t \rightarrow \{0,1\}$ I.e. returns whether or not a tuple of matching types is a member of it

Then, the schema is simply the signature of the function

Note here that order matters, attribute name doesn't... We'll (mostly) work with the other model (last slide) in which attribute name matters, order doesn't!

A relational database

• A <u>relational database schema</u> is a set of relational schemata, one for each relation

 A <u>relational database instance</u> is a set of relational instances, one for each relation

Two conventions:

- 1. We call relational database instances as simply *databases*
- 2. We assume all instances are valid, i.e., satisfy the *domain constraints*

Course Management System

Remember the CMS

- Relation DB Schema
 - Students(sid: *string*, name: *string*, gpa: *float*)
 - Courses(cid: *string*, cname: *string*, credits: *int*)
 - Enrolled(sid: string, cid: string, grade: string)

Note that the schemas impose effective domain / type constraints, i.e. Gpa can't be "Apple"

Sid	Name	Gpa
101	Bob	3.2
123	Mary	3.8

Students

Relation Instances

sid	cid	Grade	
123	564	Α	

 cid
 cname
 credits

 564
 564-2
 4

 308
 417
 2

Courses

2nd Part of the Model: Querying

SELECT S.name FROM Students S WHERE S.gpa > 3.5; We don't tell the system *how* or *where* to get the data- **just what we want**, i.e., Querying is <u>declarative</u>

"Find names of all students with GPA > 3.5"

To make this happen, we need to translate the *declarative* query into a series of operators... we'll see this next!

Actually, I showed how to do this translation for a much richer language!

Virtues of the model

• Physical independence (logical too), Declarative

• Simple, elegant clean: Everything is a relation

- Why did it take multiple years?
 - Doubted it could be done *efficiently*.

Relational Algebra

RDBMS Architecture

How does a SQL engine work?

Declarative query (from user)

Translate to relational algebra expresson

Find logically
equivalent- but
more efficient- RA
expression

Execute each operator of the optimized plan!

RDBMS Architecture

How does a SQL engine work?

Relational Algebra allows us to translate declarative (SQL) queries into precise and optimizable expressions!

Relational Algebra (RA)

- Five **basic** operators:
 - 1. Selection: σ
 - 2. Projection: Π
 - 3. Cartesian Product: imes
 - 4. Union: \cup
 - 5. Difference: -
- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ
 - Division

We'll look at these first!

And also at one example of a derived operator (natural join) and a special operator (renaming)

Keep in mind: RA operates on sets!

 RDBMSs use multisets, however in relational algebra formalism we will consider <u>sets!</u>

- Also: we will consider the *named perspective*, where every attribute must have a <u>unique name</u>
 - \rightarrow attribute order does not matter...

Now on to the basic RA operators...

1. Selection (σ)

- Returns all tuples which satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\sigma_{\text{name} = \text{"Smith"}}$ (Employee)
- The condition c can be =, <, ≤, >,
 ≥, <>

Students(sid,sname,gpa)

SQL:

SELECT *
FROM Students
WHERE gpa > 3.5;

RA:

$$\sigma_{gpa > 3.5}$$
 (Students)

Another example:

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

 $\sigma_{\text{Salary} > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

2. Projection (Π)

- Eliminates columns, then removes duplicates
- Notation: $\Pi_{A1,...,An}(R)$
- Example: project social-security number and names:
 - $\Pi_{SSN, Name}$ (Employee)
 - Output schema: Answer(SSN, Name)

Students(sid,sname,gpa)

SQL:

SELECT DISTINCT

sname, gpa

FROM Students;

RA:

 $\Pi_{\text{sname,gpa}}$ (Students)

Another example:

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

 $\Pi_{\text{Name,Salary}}$ (Employee)

Name	Salary
John	200000
John	600000

Note that RA Operators are Compositional!

Students(sid,sname,gpa)

SELECT DISTINCT

sname, gpa FROM Students WHERE gpa > 3.5;

 $\Pi_{\text{sname,gpa}} (\sigma_{\text{gpa} > 3.5} (\text{Students}))$

 $\sigma_{gpa > 3.5}(\Pi_{sname,gpa} (Students))$

How do we represent this query in RA?

Are these logically equivalent?

3. Cross-Product (×)

- Each tuple in R1 with each tuple in R2
- Notation: R1 × R2
- Example:
 - Employee × Dependents
- Rare in practice; mainly used to express joins

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

SELECT *

FROM Students, People;

RA:

 $Students \times People$

Another example:

People

ssn	pname	address
1234545	John	216 Rosse
5423341	Bob	217 Rosse

sid	sname	gpa
001	John	3.4
002	Bob	1.3

$Students \times People$

ssn	pname	address	sid	sname	gpa
1234545	John	216 Rosse	001	John	3.4
5423341	Bob	217 Rosse	001	John	3.4
1234545	John	216 Rosse	002	Bob	1.3
5423341	Bob	216 Rosse	002	Bob	1.3

Renaming (ρ)

- Changes the schema, not the instance
- A 'special' operator- neither basic nor derived
- Notation: $\rho_{B1,...,Bn}$ (R)
- Note: this is shorthand for the proper form (since names, not order matters!):
 - $\rho_{A1\rightarrow B1,...,An\rightarrow Bn}$ (R)

Students(sid,sname,gpa)

SQL:

SELECT

sid AS studId, sname AS name, gpa AS gradePtAvg FROM Students;

RA:

 $\rho_{\text{studId, name, gradePtAvg}}$ (Students)

We care about this operator *because* we are working in a *named perspective*

Another example:

Students

sid	sname	gpa
001	John	3.4
002	Bob	1.3

 ρ $_{\text{studId, name, gradePtAvg}}$ (Students)

Students

studId	name	gradePtAvg	
001	John	3.4	
002	Bob	1.3	

Natural Join (⋈)

- Notation: $R_1 \bowtie R_2$
- Joins R₁ and R₂ on equality of all shared attributes
 - If R_1 has attribute set A, and R_2 has attribute set B, and they share attributes AB = C, can also be written: R_1 R_2
- Our first example of a *derived* RA operator:
 - Meaning: $R_1 R_2 = \prod_{A \cup B} (\sigma_{C=D}(R_1) \times R_2)$
 - Where:
 - The rename renames the shared attributes in one of the relations
 - The selection $\sigma_{\text{C=D}}$ checks equality of the shared attributes
 - The projection $\Pi_{\text{A U B}}$ eliminates the duplicate common attributes

Students(sid,name,gpa)
People(ssn,name,address)

SQL:

SELECT DISTINCT

sid, S.name, gpa, ssn, address

FROM

Students S, People P

WHERE S.name = P.name;

RA:

 $Students \bowtie People$

Another example:

Students S

sid	S.name	gpa
001	John	3.4
002	Bob	1.3

People P

ssn	P.name	address
1234545	John	216 Rosse
5423341	Bob	217 Rosse

$Students \bowtie People$

M

sid	S.name	gpa	ssn	address
001	John	3.4	1234545	216 Rosse
002	Bob	1.3	5423341	216 Rosse

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S?

• Given R(A, B, C), S(D, E), what is R \bowtie S?

• Given R(A, B), S(A, B), what is $R \bowtie S$?

Example: Converting SFW Query -> RA

Students(sid,sname,gpa)
People(ssn,sname,address)

SELECT DISTINCT

gpa,
address
FROM Students S,
 People P
WHERE gpa > 3.5 AND
sname = pname;

How do we represent this query in RA?

Logical Equivalece of RA Plans

- Given relations R(A,B) and S(B,C):
 - Here, projection & selection commute:

•
$$\sigma_{A=5}(\Pi_A(R)) = \Pi_A(\sigma_{A=5}(R))$$

What about here?

•
$$\sigma_{A=5}(\Pi_B(R)) ? = \Pi_B(\sigma_{A=5}(R))$$

We'll look at this in more depth later in the lecture...

RDBMS Architecture

How does a SQL engine work?

We saw how we can transform declarative SQL queries into precise, compositional RA plans

RDBMS Architecture

How does a SQL engine work?

We'll look at how to then optimize these plans later in this lecture

RDBMS Architecture

How is the RA "plan" executed?

We already know how to execute all the basic operators!

RA Plan Execution

- Natural Join / Join:
 - We use memory & IO cost considerations to pick the correct algorithm to execute a join with (BNLJ, SMJ, HJ...)!
- Selection:
 - We use indexes to aid selection
 - Can always fall back on scan / binary search as well
- Projection:
 - The main operation here is finding *distinct* values of the project tuples; we can do this with e.g. **hashing** or **sorting**

We will get to know about how to execute all the basic operators (maybe) later!

Activity-16-1.ipynb

2. Adv. Relational Algebra

What you will learn about in this section

1. Set Operations in RA

2. Fancier RA

3. Extensions & Limitations

Relational Algebra (RA)

- Five **basic** operators:
 - 1. Selection: σ
 - 2. Projection: Π
 - 3. Cartesian Product: ×
 - 4. Union: ∪
 - 5. Difference: -

We'll look at these

- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ
 - Division

And also at some of these derived operators

1. Union (\cup) and 2. Difference (-)

- R1 ∪ R2
- Example:
 - ActiveEmployees ∪ RetiredEmployees
- R1 R2
- Example:
 - AllEmployees -- RetiredEmployees

What about Intersection (\cap) ?

- It is a derived operator
- $R1 \cap R2 = R1 (R1 R2)$
- Also expressed as a join!
- Example

Fancier RA

Theta Join (\bowtie_{θ})

- A join that involves a predicate
- R1 \bowtie_{θ} R2 = σ_{θ} (R1 × R2)
- Here θ can be any condition

Note that natural join is a theta join + a projection.

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

SELECT *

FROM

Students, People

WHERE θ ;

RA: Students \bowtie_{θ} People

- A theta join where θ is an equality
- R1 $\bowtie_{A=B}$ R2 = $\sigma_{A=B}$ (R1 \times R2)
- Example:
 - Employee ⋈ _{SSN=SSN} Dependents

Most common join in practice!

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

SELECT *

FROM

Students S, People P

WHERE sname = pname;

RA:

$$S \bowtie_{sname=pname} P$$

Semijoin (⋉)

- $R \bowtie S = \prod_{A1,...An} (R \bowtie S)$
- Where A_1 , ..., A_n are the attributes in R
- Example:
 - Employee × Dependents

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

SELECT DISTINCT

sid,sname,gpa

FROM

Students, People

WHERE

sname = pname;

RA:

 $Students \ltimes People$

Semijoins in Distributed Databases

• Semijoins are often used to compute natural joins in distributed databases

Send less data to reduce network bandwidth!

Employee \bowtie _{ssn=ssn} (σ _{age>71} (Dependents))

RA Expressions Can Get Complex!

Multisets

Recall that SQL uses Multisets

Multiset X

Tuple	
(1, a)	
(1, a)	
(1, b)	
(2, c)	
(2, c)	
(2, c)	
(1, d)	
(1, d)	

Equivalent Representations of a <u>Multiset</u> $\lambda(X)$ = "Count of tuple in X" (Items not listed have implicit count 0)

Multiset X

Tuple	
(1, a)	2
(1, b)	1
(2, c)	3
(1, d)	2

Note: In a set all counts are {0,1}.

Generalizing Set Operations to Multiset Operations

Multiset X

Tuple	
(1, a)	2
(1, b)	0
(2, c)	3
(1, d)	0

Multiset Y

Multiset Z

Tuple	
(1, a)	2
(1, b)	0
(2, c)	2
(1, d)	0

$$\lambda(Z) = min(\lambda(X), \lambda(Y))$$

For sets, this is intersection

Generalizing Set Operations to Multiset Operations

Multiset X

Tuple	
(1, a)	2
(1, b)	0
(2, c)	3
(1, d)	0

Multiset Y

Multiset Z

Tuple	
(1, a)	7
(1, b)	1
(2, c)	5
(1, d)	2

$$\lambda(Z) = \lambda(X) + \lambda(Y)$$

For sets, this is **union**

Operations on Multisets

All RA operations need to be defined carefully on bags

- $\sigma_{\rm C}(R)$: preserve the number of occurrences
- $\Pi_A(R)$: no duplicate elimination
- Cross-product, join: no duplicate elimination

This is important- relational engines work on multisets, not sets!

RA has Limitations!

• Cannot compute "transitive closure"

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

- Find all direct and indirect relatives of Fred
- Cannot express in RA !!!
 - Need to write C program, use a graph engine, or modern SQL...