

CREDIT CARD CHURN

ISSS621 Data Science for Business G1 - Group 6

Table Of Contents

Exploratory Data Analysis

K-means Clustering

What is the credit card business?

Credit card business for banks is a lucrative and important revenue stream. Banks earn money by interest, fees and merchant fees

Declining Credit Card Application Rates

Credit card application has been decreasing overtime. In 2020, credit card application rate fell by ~10%, and rejection rates increased by ~10%

Figure 1: US credit card application rates [www.ft.com]

Credit Card Promotions

Issuers offer increasingly attractive credit card promotions. They are key marketing strategy for banks and credit card issuers which include sign-up bonuses, introductory high interest rates or cash rewards.

Credit Card Churn

Credit card churn is a strategy used by many savvy customers to take advantage of credit card rewards programs. Customer strategically time their application and cancellations to earn rewards

Business Problem?

Cost of obtaining a customer is higher than revenue generated from customer leading to lost of profits

Project Scope

To identify customer groups that are most likely to churn based on demographic and financial data

Identify who is most likely to churn

Implement measures to reduce probability of churning

Reduce operating cost and increase profits

Data Science Translation

Exploratory Data Analysis

To clean data and understand the dataset we are dealing with

Predictive Modelling

To predict which group this customer will belongs to, and whether they are most likely to churn or not

Clustering

To identify customer groups, segmentation and churn ratio within each group using customer data

Solutioning

To propose solutions to target high churn group

Exploratory data analysis

Consumer credit card portfolio

DEMOGRAPHICS

SPENDING BEHAVIOUR RELATIONSHIP
WITH CREDIT CARD
PROVIDER

Source:

DATASET

Consumer credit card portfolio

Source:

Consumer credit card portfolio

DEMOGRAPHICS

SPENDING BEHAVIOUR RELATIONSHIP
WITH CREDIT CARD
PROVIDER

Source:

DATASET

Consumer credit card portfolio

TRANSACTION COUNT
TRANSACTION AMOUNT
MONTHS INACTIVE
CARD UTILIZATION RATIO

Source:

Consumer credit card portfolio

DEMOGRAPHICS

SPENDING BEHAVIOUR RELATIONSHIP
WITH CREDIT CARD
PROVIDER

Source:

Consumer credit card portfolio

RELATIONSHIP WITH CREDIT CARD PROVIDER MONTHS ON BOOK

NUMBER OF CONTACTS IN LAST 12 MONTHS

TOTAL RELATIONSHIPS COUNT

CREDIT LIMIT

Source:

Exploratory Data Analysis

Churn vs Non-Churn

 16.1% of customer population have attrited

Exploratory Data Analysis – Multivariate

High Correlation

- Credit limit and average Open to buy ratio
- Total Transaction Count and Total Transaction Amount

Exploratory Data Analysis - Demographics

Exploratory data analysis

Gender

- Higher proportion of customers are Female
- Higher number of Females who have churned

Exploratory Data Analysis - Demographics

Exploratory data analysis

Customer Age

- Majority of customers
 between ages 35 55
- Higher proportion of churn in age groups 35-55

Exploratory data analysis

Utilization Ratio

High churn at low utilization ratio

Months inactive

- High churn at 3 months
- Period of promotion

Existing

Exploratory data analysis

Transaction Amount

- Higher churn at lower end of transaction amounts from 0k to 3k
- Low churn at high transaction amounts

Transaction Count

• Higher churn with peak at transaction count of 40-45

Exploratory data analysis

Transaction Count vs Amount

- Positive correlation
- 3 distinct segments
- Low count, low amount
- Moderate count, moderate amount
- High count, high amount

Total Revolving Balance

- Higher churn at low revolving balance
- Relatively high churn at high revolving balance

Exploratory Data Analysis – Relationship

Exploratory data analysis

Contacts Count

 Churn concentrated with customers who between 2 & 4 contacts

Clustering

Clustering

- Key characteristics of high/low churn customers were identified in Exploratory Data Analysis
- Clustering was utilized to identify customer groups with sets of these characteristics

Selecting Clustering Method

Clustering Algorithm	Advantages	Disadvantages
K-Means Clustering	Efficiency and ease of useWell-suited for large datasets	 Need to specify number of clusters Sensitive to where centroids are initialised
Hierarchical Clustering	 Able to visualise using dendrograms Easy to interpret results and identify meaningful clusters in dendrograms 	Computationally expensiveNot well suited for large datasets
Density-Based Clustering	Able to handle clusters of arbitrary shapes	 Not suitable for datasets with varying densities or for datasets with clusters of similar densities. Choice of distance threshold and minimum number of points required to form a cluster can have a significant impact on the results

Process to segment customers

K-means Clustering

- Data Preparation e.g. standardize numerical variables
- Run the k-means clustering from 1 to 9

Elbow Method

 Leverage Elbow Method to find out the optimal number of clusters for customer segmentation

Find percentage churn

- Percentage churn is defined as number of churners / number of customers in the group
- Groups with percentage churn rates will be targeted for solutioning

Findings from Elbow Method

- A technique to find optimal number of clusters in a dataset by plotting
 SSE against the number of clusters
- Optimal number of clusters is identified by finding the point of maximum curvature in a plot of SSE versus the number of clusters.

Feature Importance

- Feature importance used to evaluate variables using f-test
- tr_Contacts_Count_12mon and tr_Total_Revolving_Bal have low importance as their scores are negligible, and are removed

Defining Churn Rates

$$Percentage\ Churn_i = \frac{(Total\ number\ of\ churners)_i}{(Total\ number\ of\ customers)_i}$$

Overall Percentage Churn = 0.16

High churn rate = Percentage Churn of cluster > Overall Percentage Churn

Low churn rate = Percentage Churn of cluster < Overall Percentage Churn

Customer groups identified after K-means

Cluster No.	Total	Churners	Percentage Churn	
0	1386	250	0.18 High	
1	3385	1093	Churn 0.32	
2	4326	215	0.050	
3	1030	69	0.067 Low Churn	

Predictive Modelling

Predictive Modelling

- Predictive Modelling is being carried out to predict existing customers' belonging to the identified clusters
- To be able to use targeted strategies on predicted clusters' customers

Selected Predictive Model

Predictive Model	Advantages	Disadvantages
Logistic Regression	 Easy to interpret and explain the model Can handle binary or multi-class classification problems Computationally efficient 	 Assumes linear relationships between dependent and independent variables May not work well for complex datasets with non-linear relationships Limited ability to capture interactions between variables
Random Forest	 Can handle high-dimensional and complex datasets Low risk of overfitting (the use of multiple decision trees) Non-parametric model, ability to capture complex relationships and interactions 	 Computationally expensive for large datasets Difficult to interpret and explain the model compared to single decision tree
Support Vector Machine	 Effective in high-dimensional spaces Good at capturing non-linear relationships and interactions Low risk of overfitting 	 Computationally expensive for large datasets Prone to overfitting with noisy datasets Difficult to interpret and explain the model

"Confusion Matrix"

	0	1	2	3
0	805	22	0	3
1	75	1046	14	12
2	0	3	311	4
3	1	2	0	234

Actual Cluster

.

Model Evaluation

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

$$Recall = \frac{TP}{TP + FN}$$

Specificity =
$$\frac{TN}{FP+TN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$F1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

	Cluster 0	Cluster 1	Cluster 2	Cluster 3
Accuracy	0.960	0.949	0.992	0.991
AUC	0.949	0.953	0.977	0.962
Specificity	0.985	0.931	0.997	0.999
Precision	0.970	0.912	0.978	0.987
Recall	0.914	0.975	0.957	0.925
F1-Score	0.941	0.942	0.967	0.955

Feature Analysis within Clusters

Cluster number	Percentage Churn
0	0.18
1	0.32
2	0.050
3	0.067

Cluster 0

- Average Utilisation Ratio >= 0.5
- Female
- Credit Limit < \$3,000
- Low Relation Count (3-4)

Cluster 2

- Credit Limit > \$7,000
- Average Utilisation Ratio < 0.2
- Male
- Income Category \$80k \$120k

Cluster 1

- Average Utilisation Ratio < 0.2
- Equally distributed between 2 genders
- Income Category < \$40,000

Cluster 3

- Transaction Count > 70
- Relationship Count < 3
- Average Utilisation Ratio < 0.2
- Credit Limit > \$7,000
- Male

Proposed Solutions

3 Step Process to Reduce Churn

Banks and credit card issuers strategy to reduce churn rates

Customer Profiling

To retain customer with higher churn rates, or acquire more customers most likely not to churn, we analysed their characteristics within each groups, and tailor a solution specifically to target these groups

high churn

Group 0: Female with high churn rate

High churn

rate

Female dominant

Low credit limit

73% of this high churn group comprise of females

Credit limit is below \$3k

Low relationship count with issuer

Have relatively lower relationship (3-4) with issuer (i.e other accounts, investments, insurance or other products with the same issuer)

Group 0: Retention strategy

Retention Strategy

Targeted marketing

Marketing strategy should be tailored for the female gender

2 Increase credit limit

To encourage spending, offer flexibility to increase credit limit

Increase relations

Market other banking products to entrench customer into the issuer's ecosystem

Group 1: Not gender specific

High churn rate

This group could either be male or female

Spends less than \$500 dollars per month on the credit card

Low utilisation rate

Has low utilization rates with lower than 50 transactions per month

Relatively lower income

Earning less than \$40k per year

As this group have lower income, provide greater value by lowering annual fees

To increase transaction rates, provide additional incentive to spend, such as increasing transaction count (i.e higher miles per dollar, vouchers, higher cashback)

Group 1 retention strategy

As this group could either be male or female, targeted marketing strategy should be gender neutral

Group 2: Male with low churn rate

Low churn rate

Male dominant

%

High income

83% of this low churn group comprise of males

Has >\$80k annual income

Low existing relations with issuer

This group has 3-4 existing relations with the issuer

Group 2: Acquisition strategy

As an issuer you know...

Existing customer data as they have established links with the issuer from other products sold

Bank issuers should identify this profile from existing database and apply targeted marketing to acquire them

Offer referral / sign up bonus to attract new customers in the same network as the target customer profile

Examples of gender marketing

Women's credit card

Advertisements targeting men

Closed Loop Solution

- 1 Update customer groups for existing customers
 - Rerun the prediction model to observe if any customers have switched groups after implementation of recommendations

- 2 Compare 'before and after' data for existing customers
 - Collect spending data, before and after implementation of recommendations
 - Should be regularly monitored, and adjust incentives when necessary

Future Work

- 1 Improving the clustering model
 - Explore other clustering models such as Neural Networks, Agglomerative Clustering, Gaussian Mixture Models that are able to handle categorical data
- 2 Improving the predictive model
 - Reducing the number of variables sampled at each split
 - Rank features based on importance before forwarding to the machine learning model

Future Work

- 3 Using a larger dataset
 - Low attrition count presented in dataset 16%
 - Customer transaction history and communication preference
 - That contains geolocation data (e.g. residential location, work location)
 - That contains demographic data (e.g. employment information)

THANK YOU

ANNEXES

1 Conversion of confusion matrix

Converting to One-vs-All Matrix (Cluster 0)

Specificity0.958Precision0.970Recall0.914F1-Score0.941

Converting to One-vs-All Matrix (Cluster 1)

Specificity0.931Precision0.912Recall0.975F1-Score0.942

Converting to One-vs-All Matrix (Cluster 2)

Specificity0.997Precision0.978Recall0.957F1-Score0.967

Converting to One-vs-All Matrix (Cluster 3)

Specificity0.999Precision0.987Recall0.925F1-Score0.955

