Data Modelling and Databases

Fabian Bösiger

Contents

Relational Model

Database Schema

A set of relation schemas.

Relation Schema

A name and a set of fields/attributes.

For a relation $R(f_1: D_1, \ldots, f_n: D_n)$, an Instance I_R is a set of tuples $I_R \subseteq D_1 \times \cdots \times D_n$.

Fields/Attributes

A name and a domain (e.g. Integer, String).

Relational Algebra

Relational algebra is an imperative way of obtaining the data. It is step-by-step instructions on how to obtain the result.

Basic Operators

- Union: \cup
- Difference: –
- Selection: σ
- Projection: Π
- Cartesion Product: \times
- Renaming: ρ

Joins

Natural Join $R_1(A,B)$ \bowtie $R_2(B,C) = \prod_{A,B,C} (\sigma_{R_1.B=R_2.B}(R_1 \times R_2))$

If R_1 and R_2 have no shared attributes, $R_1 \bowtie R_2 = R_1 \times R_2$.

If R_1 and R_2 share all attributes, $R_1 \bowtie R_2 = R_1 \cap R_2$.

Theta Join $R_1 \bowtie_{\theta} R_2 = \sigma_{\theta}(R_1 \times R_2)$

Equi-Join $R_1 \bowtie_{A=B} R_2 = \sigma_{A=B}(R_1 \times R_2)$

Semi-Join $R_1(A_1,\ldots,A_n)\ltimes_C R_2(B_1,\ldots,B_m)=\Pi_{A_1,\ldots,A_n}(R_1\bowtie R_2)$

Relational Division $R \div S = T$, where T is the largest relation such that $S \times T \subseteq R$.

$$R \div S = \prod_{R=S} R - \prod_{R=S} ((\prod_{R=S} R) \times S - R)$$

Relational Calculus

Relational Calculus queries data in a declarative way. It tells the system what we want instead of how to get it.

Example: Get all students who take the database course.

```
\begin{split} &\Pi_{\mathsf{PersNr}}\sigma_{\mathsf{Title}="\mathsf{Database"}}((\mathsf{Student} \bowtie \mathsf{Attends}) \bowtie \mathsf{Lecture}) \\ &\mathsf{Is} \ \mathsf{equivalent} \ \mathsf{to} : \\ &\{p: \exists n, s. \mathsf{Student}(p,n,s) \land \exists l, t, c, r(\mathsf{Attends}(p,l) \land \mathsf{Lecture}(l,t,c,r) \land t = "\mathsf{Database"})\} \end{split}
```

Safety We say a relational calculus query Q is safe, if Q(I) is finite for all instances I. An unsafe example would be $\{x \mid \neg R(x)\}$. The safety problem is undecidable.

\mathbf{SQL}

Create Table

Integrity Constraints

Recursion

Functional Dependencies

Normal Form

Entity Relationship Model

Entity Relationship to Relational Model

Database System Overview

Transactions and ACID

Isolation and Locking

Every transaction starts with BEGIN and ends with either COMMIT or ABORT. If COMMIT, all changes are saved, if ABORT, all changes are undone.

Serializability Classes

Serializable Schedules that lead to the same answer as some serial schedules.

Conflict Serializable We can translate a schedule into a serial shedule with a sequence of nonconflicting swaps of adjacent actions.

Types of Conflicts:

- Read-Write Conflict
- Write-Read Conflict
- Write-Write Conflict

Locking

Two-Phase Locking Growing Phase:

- Each transaction requests the locks that it needs
- Locks cannot be released in this phase

Shrinking Phase:

- The transaction is only allowed to release locks that it previously required
- The transaction cannot acquire new locks

Cascading Abort

Serial Transactions are serial.

		10, 3	10
Read(A, t)			
t := t + 100			
Write(A, t)		110,	10
Read(B, t)			
t := t + 100			
Write(B, t)		110,	110
	Read(A, s)		
	s := s * 2		
	Write(A, s)	220,	110
	Read(B, s)		
	s := s * 2		
	Write(B, s)	220,	220

Recovery

Recoverability Classes

Recoverable If T_i reads from T_j and commits, then $c_j < c_i$.

Avoids Cascading Aborts If T_i reads X from T_j , then $c_j < r_i[X]$.

Strict If T_i reads from or overwrites X written by T_j , then $(c_j < r_i[X] \land c_j < w_i[X]) \lor (a_j < r_i[X] \land a_j < w_i[X])$.