Metody Numeryczne - sprawozdanie

Metoda Największego Spadku

Laboratorium nr 3

Adam Młyńczak 410702, Informatyka Stosowana

1. Cel zajęć

Na kolejnych – trzecich – zajęciach laboratoryjnych przedstawiony nam został nowy sposób rozwiązywania układów równań liniowych. Nowo przedstawioną metodą była metoda integracyjna znana jako metoda największego spadku. Do poprawnego przeprowadzenia rozwiązania daną metodą potrzebowaliśmy równania z macierzą wstęgową, którą uczyliśmy się tworzyć na ćwiczeniach.

2. Opis problemu

Naszym zadaniem było numeryczne rozwiązanie równania różniczkowego postaci:

$$\frac{d^2y}{dx^2} + (x^2 + 2E)y = 0,$$

w przedziale $x \in (-6, 6)$, gdzie E jest parametrem równania, które zostało ustalone jako E = 5.

3. Teoria

W celu rozwiązania danego równania wprowadzamy siatkę 2N + 1 równoległych węzłów. Węzły tworzymy według wzoru:

$$x_i = -6 + ih,$$

dla i = 0, 1, 2, 3, ..., 2N oraz $h = \frac{6}{N}$. Operator pochodnej danej w pierwszym równaniu możemy zdyskretyzować używając ilorazu różnicowego:

$$\frac{d^2y}{dx^2} = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}.$$

Następnie otrzymujemy równanie postaci:

$$y_{i-1} + \left(2Eh^2 - x_i^2h^2 - 2\right)y_i + y_{i+1} = 0.$$

Przyjmując $y_0=0$ oraz $y_{2N}=0$, możemy zapisać otrzymane równanie jako iloczyn macierzowy $Ay={\bf b}$:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ a_1 & a_2 & a_3 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a_1 & a_2 & a_3 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_1 & a_2 & a_3 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{2N-1} \\ y_{2N} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

dla
$$a_1 = 1$$
, $a_3 = 1$ i $a_2 = 2Eh^2 - x_i^2h^2 - 2$.

3.1. Metoda największego spadku

Aby otrzymany wcześniej układ równań liniowych rozwiązać, należy zaimplementować metodę największego spadku. Przyjmując, że y_k to przybliżenie wektora rozwiązań dla k-tej iteracji, otrzymujemy kroki postaci:

$$y^{k+1} = y^k + \alpha_k r_k$$
$$\alpha_k = \frac{r_k^T r_k}{r_k^T A r_k}$$
$$r_k = b - A y_k$$

4. Opracowanie obliczeń

4.1. Wykresy

5. Podsumowanie

Metody iteracyjne to wydajna grupa algorytmów służąca do numerycznego wyznaczenia rozwiązań układów równań liniowych. Jednym ze sposobów rozwiązań w tym zbiorze jest metoda największego spadku, który zakłada iteracyjne podążanie w kierunku, który jest wyznaczony przez kolejne antygradienty funkcji, która posiada minimum w punkcie będącym rozwiązaniem badanego układu. Metoda ta jest bardzo dobra dla macierzy rzadkich, ponieważ jest potrzebna wtedy mniejsza liczba wykonywania operacji.