Name and Surname: IPEK SEN	EEEN 322 Spring 2019 QUIZ #1
ID:	26.03.2019 (Section 02)

Suppose you perform DSC-SC modulation and the modulated signal is $\varphi_{DSC-SC}(t) = e^{-2t}\cos(2\times 10^8\pi t)u(t)$.

- a) Give the mathematical expression of the message signal m(t). (20p)
- b) Give the value of the carrier frequency in Hz. (10p)
- c) Sketch $\varphi_{DSC-SC}(t)$. (20p)
- d) Can we use an envelope or rectifier detector circuit for demodulation here (for the specific message signal of this question)? Why? Give a brief and neat explanation. (20p)
- e) Write the mathematical expression of the spectrum $\Phi_{DSB-SC}(\omega)$ (30p) (You may find the attached reference sheets useful)

a)
$$m(+) = e^{-2+}u(+)$$

a)
$$m(+) = e^{-\alpha} u(+)$$

b) $\omega_c = 2 \times 10^8 \pi = 27 f_c =) f_c = 10^8 Hz = 100 MHz$

- d) tes we can, because m(+) >0 ++, hence, the envelope of Posc-se (+) is m(+) itself.
- e) fore-se (+) = n(+) 6 = we+ > \$\Pi_{\text{Dig-sc}}(\omega) = \frac{1}{2} [M(\omega - \omega_e) + M(\omega + \omega_e)] Note that $m(t) = e^{-2t} u(t) \xrightarrow{\mathcal{F}} M(w) = \frac{1}{2 + iw}$ (see the attacked table)

$$\frac{1}{2} \left[\frac{1}{2 + j(\omega - 2 \times 10^8 \pi)} + \frac{1}{2 + j(\omega + 2 \times 10^8 \pi)} \right] = \frac{2 + j\omega}{(2 + j\omega)^2 + 4 \times 10^6 \pi^2}$$