Dendritic computations

Spyridon Chavlis, Michalis Pagkalos, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH)

Neurons are (also) characterized by their dendritic tree

Neuron Types:

- Classification based on Excitatory or Inhibitory neurotransmission.
- 2. Classification using gene expression
- 3. Classification using spiking activity
- 4. Classification by anatomical features

Inhibitory neurons are (also) characterized by their dendritic tree

Jiang et al., Science 2015

Why model the details?

- 1. Suggest possible computational (functional) role for the modeled system (predictions).
- 2. Interpretation of **experimental** results Gain insights into key biophysical parameters.
- 3. Inspire implementations in other fields.

Where can you find the details?

Find Neuronal Morphologies in NeuroMorpho

http://neuromorpho.org/

• Find neuron's electrophysiological properties

http://neuroelectro.org/

Allen Institute

http://portal.brain-map.org/

Blue Brain Portal

https://portal.bluebrain.epfl.ch/

Find models in ModelDB

https://senselab.med.yale.edu/modeldb/

 Choose your channels using IonChannelGenealogy

https://icg.neurotheory.ox.ac.uk/

• Find Access to HPC (mostly for Parallel simulations) in...

https://www.nsgportal.org/overview.html

Cable theory

Cable theory is concerned with *how inputs propagate* to the soma or the axon initial segment, *how these inputs interact* with one another, and how the placement of an input on a dendritic tree affects its *functional importance* to the neuron.

Modeling dendrites: Compartmental Modeling

Compartmental model

$$\frac{CdV}{dt} = g_l(E_l - V) + g_{Na}(E_{Na} - V) + g_K(E_K - V) + 2 * \frac{V_{i+1} - V_i}{R_{ai+1} + R_a} + 2 * \frac{V_{i-1} - V_i}{R_{ai-1} + R_a} + I_{inj}$$

What can dendrites do?

The NEURON simulation environment

NEURON is a simulation environment for models of individual neurons and networks of neurons that are closely linked to *experimental data*.

Documentation:

https://www.neuron.yale.edu/neuron/static/new doc/
index.html

Neuron with Python

from neuron import h, gui

The main features of NEURON

Graphical User Interface (GUI)

- Two programming languages:
- 1. NMODL

Ion channel mechanisms (Hodgkin-Huxley-like kinetics, calcium-dependent kinetics, synaptic properties and others).

2. All other operations in NEURON are performed using scripts written in HOC.

The main features of NEURON

- Defining the anatomical and biophysical properties of models of neurons and neuronal networks,
- Controlling simulations etc.,

```
e.g.
```

```
soma=h.Section(name='soma')
soma.diam=10 #μm
soma.L=3.18 #μm
```

Distributed (or Density) Mechanisms in hoc

• Properties that are distributed over the cell surface (e.g. membrane capacitance, active and passive ionic conductances) or throughout the cytoplasm (e.g. buffers).

```
    e.g.
    soma=h.Section(name='soma')
    soma.diam=10 #μm
    soma.L=3.18 #μm
    soma.cm=1 #membrane capacitance, μF/cm²
    soma.Ra=100 #axial resistance, ohm cm
    soma.insert('hh') #HH channels
```

Point Processes in hoc

Synapse or electrode for passing current (current clamp or voltage clamp) is represented by a **point** source of current which is associated with a localized conductance.

Syntax:

varname = h.Classname(section_name(x))

varname.attribute = value

Point Processes in hoc

Example 1 Current clamp

```
ic = h.IClamp(soma(0.5))
ic.del = 100 #ms
ic.dur = 200 #ms
ic.amp = 0.1 #nA
```

Example 2 Synapse

```
syn = h.ExpSyn(soma(0.5))
syn.e = 0 #mV
syn.tau=10 #ms
```

Example 3 NetStim

```
ns = h.NetStim(0.5)
ns.start = 100 #ms
ns.number = 2
ns.interval = 10 #ms
```

Example 4 NetCon

```
nc = h.NetCon(source,target, [threshold, delay,
weight])
```

Cable theory

 Connecting compartments child.connect(parent, [0 or 1]) e.g.

dend0.connect(soma(0),0)

Cable theory is concerned with *how inputs propagate* to the soma or the axon initial segment, *how these inputs interact* with one another, and how the placement of an input on a dendritic tree affects its *functional importance* to the neuron.

How inputs propagate / interact

Colab notebook – part 1

How inputs interact: Segregation

Colab notebook – part 2

Active mechanisms

- Passive ion channels -- no change in permeability due to external factors
- Active ion channels -- permeability is dependent upon factors such as:
 - Membrane potential (e.g., voltage-dependent)
 - Ionic concentrations (e.g., calcium-dependent)
 - Ligands (e.g., neurotransmitters)

Neuroscience, 2nd edition

Are active mechanisms found in dendrites?

Voltage-gated ion channels are prevalent in neuronal dendrites

How do they contribute to active processing?

Migliore & Shepherd 2002

Modelling active conductances in NEURON

- Custom ion channel models are made in separate files with the extension ".mod"
- They need to be compiled before the code is run (nrnivmodl / mknrndll)
- They must be inserted to each compartment separately (with separate parameters)

The NEURON block:

SUFFIX: the name of the mechanism

USEION / NONSPECIFIC_CURRENT statement: specifies which ionic species the model uses

RANGE variables: can be accessed from hoc / python code (e.g., gbar)

Functional roles of active mechanisms

What active processes occur in dendrites?

What functional roles do they have?

Stuart, Spruston, Nature Reviews, 2015

Functional roles of active mechanisms

How inputs interact: Active Integration

Colab notebook – part 3

How inputs interact: Spatial Summation

Tran-Van-Minh et al. Front. Cell. Neuroscience, 2015

Which is the best strategy for maximum depolarization – scatter inputs to many dendrites or cluster them into one?

How inputs interact: Spatial Summation

Jia et al. Nature 2010 Takahashi et al. Science 2012

Spatial Summation & Feature Binding problem

Tran-Van-Minh et al. Front. Cell. Neuroscience, 2015

Spatial Summation & Storage Capacity

A nonlinear cell can distinguish between wiring configurations

		Linear Cell	Nonlinear Cell
		$a_{L}(\mathbf{x})$	$a_N(x)$
Wiring Configurations	(1) De la companya (1) De la com	$4x_1 + 3x_2 + 2x_3$	$b(2x_1 + x_2) + b(2x_1 + x_2) + b(x_2 + 2x_3)$
	(2) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	$4x_1 + 3x_2 + 2x_3$	$b(2x_1 + x_3) + b(x_1 + 2x_2) + b(x_1 + x_2 + x_3)$
	Total number of distinct i/o functions	110	220

- m branches, where each branch contains k excitatory synaptic contacts.
- Each synapse is driven by one of d input lines.

Spatial Summation & Storage Capacity

How inputs interact: Temporal summation

Colab notebook – part 4

Focusing on the cortex: The pyramidal neuron

Focusing on the cortex: The pyramidal neuron

Human brain project

Stuart, Spruston, Nature Reviews, 2015

Functional importance: Coincidence detection

Colab notebook – part 5

Functional importance: Perceptual threshold

Functional importance: Coincidence detection

What can dendrites do?

And why do I care how neurons do it?

Neuron Perspective

Engineering a Less Artificial Intelligence

Fabian H. Sinz, 1,2,7,* Xaq Pitkow, 6,7,8 Jacob Reimer, 6,7 Matthias Bethge, 2,3,4,5,7 and Andreas S. Tolias 6,7,8,*

¹Institute Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Germany

²Bernstein Center for Computational Neuroscience, University of Tübingen, Germany

³Centre for Integrative Neuroscience, University of Tübingen, Germany

⁴Institute for Theoretical Physics, University of Tübingen, Germany

⁵Max Planck Institute for Biological Cybernetics, Tübingen, Germany

⁶Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA

⁷Center for Neuroscience and Artificial Intelligence, BCM, Houston, TX, USA

⁸Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

*Correspondence: fabian.sinz@uni-tuebingen.de (F.H.S.), astolias@bcm.edu (A.S.T.) https://doi.org/10.1016/j.neuron.2019.08.034

nature neuroscience FOCUS | PERSPECTIVE https://doi.org/10.1038/s41593-019-0520-2

A deep learning framework for neuroscience

Blake A. Richards^{1,2,3,4,42*}, Timothy P. Lillicrap^{5,6,42}, Philippe Beaudoin⁷, Yoshua Bengio^{1,4,8}, Rafal Bogacz⁹, Amelia Christensen¹⁰, Claudia Clopath¹¹, Rui Ponte Costa^{12,13}, Archy de Berker⁷, Surya Ganguli^{14,15}, Colleen J. Gillon^{16,17}, Danijar Hafner^{15,18,19}, Adam Kepecs²⁰, Nikolaus Kriegeskorte^{21,22}, Peter Latham²³, Grace W. Lindsay^{22,24}, Kenneth D. Miller^{22,24,25}, Richard Naud^{26,27}, Christopher C. Pack³, Panayiota Poirazi²⁸, Pieter Roelfsema²⁹, João Sacramento³⁰, Andrew Saxe³¹, Benjamin Scellier^{1,8}, Anna C. Schapiro³², Walter Senn¹³, Greg Wayne⁵, Daniel Yamins^{33,34,35}, Friedemann Zenke^{36,37}, Joel Zylberberg^{4,38,39}, Denis Therien^{57,42} and Konrad P. Kording^{4,40,41,42}

Dendritic cortical microcircuits approximate the backpropagation algorithm.

Sacramento et al. NIPS 2018

Sinz et al. Neuron 2019

Thank you!