An Introduction to Reverse Engineering

Jake Vossen

2019-03-19

Colorado School of Mines - oresec

Introduction

What is Software Reverse Engineering?

- IEEE defines it as "he process of analyzing a subject system
 to identify the system's components and their
 interrelationships and to create representations of the system
 in another form or at a higher level of abstraction"
- Generally is taking a piece of compiled software and analyzing it, revealing information about the source code
- Often used in security research, but also have implication in game emulation and other areas of proprietary software
- Also used to analyze malware to create figure out how to get around ransomware and other attacks

Why Ghidra?

	Target OS: Linux		
IDAPROCL	IDA Pro Computer License [Linux]	1879 USD	
IDAPROFL	IDA Pro Floating License [Linux]	2819 USD	
IDASTACL	IDA Starter Computer License [Linux]	979 USD	
IDASTAFL	IDA Starter Floating License [Linux]	1469 USD	
HEXARM64FL	ARM64 Decompiler Floating License [Linux]	3944 USD	
HEXARM64L	ARM64 Decompiler Fixed License [Linux]	2629 USD	
HEXARMFL	ARM32 Decompiler Floating License [Linux]	3944 USD	
HEXARML	ARM32 Decompiler Fixed License [Linux]	2629 USD	
HEXPPCFL	PPC Decompiler Floating License [Linux]	3944 USD	
HEXPPCL	PPC Decompiler Fixed License [Linux]	2629 USD	
HEXX64FL	x64 Decompiler Floating License [Linux]		
HEXX64L	x64 Decompiler Fixed License [Linux]		
HEXX86FL	x86 Decompiler Floating License [Linux]		
HEXX86L	x86 Decompiler Fixed License [Linux]		
UPDHEXARM64FL	FL ARM64 Decompiler Floating Support Renewal [Linux]		
UPDHEXARM64L	ARM64 Decompiler Fixed Support Renewal [Linux]	879 USD	
UPDHEXARMFL	ARM32 Decompiler Floating Support Renewal [Linux]	1319 USD	
UPDHEXARML	ARM32 Decompiler Fixed Support Renewal [Linux]	879 USD	
UPDHEXPPCFL	PPC Decompiler Floating Support Renewal [Linux]		
UPDHEXPPCL	PPC Decompiler Support Renewal [Linux]		
LIPDHEXX64FI	x64 Decompiler Floating Support Renewal [Linux]	1319 USD	

And if that wasn't enough...

		Shipping	
COURIER	Courier Shipping		75 USD

And Ghidra...

- Free and open source Apache 2.0 Licensed or Public Domain (choice of contributor)
 https://github.com/NationalSecurityAgency/ghidra
- Has a lot better support for people working on teams then IDA
- Security professionals are saying it rivals the functionality of IDA

Readable Mathematics

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $\mathsf{E}[X_i] = \mu$ and $\mathsf{Var}[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.

6