PSYC 259: Principles of Data Science

Week 6: Exploratory Data Analysis

Announcements

1. Remainder of the quarter

Mar 3	Olivia	Exploratory Data Analysis [Workflow Critique Presentations Group #3]	Data visualization Layers Exploratory data analysis	Integrating Skills HW due Fri Mar 7
Mar 10	Stephen	Data Sharing and Reproducibility	Quarto formats	Rmarkdown HW due Fri Mar 14
Mar 17	Tabea	Visualization	Chartjunk-Tufte 1990; 2001; 2006 Graphics for communication	Final Project due Wed Mar 18

2. A note on course and instructor evaluations

Instructor & Course Evaluations

- Although course evaluations open today, please do not fill them out until next week
- Tuppett (Psych Dept Chair) will be emailing with further instructions on how to do so, given the circumstances of this course
- Stephen will give you time in class next week (3/10) to fill them out

Plan for Today

- 1. Lecture
 - Confirmatory + exploratory data analysis
 - Tools for data checking
 - ggplot2 basics
- 2. Tutorial (exploratory data analysis)
- 3. BREAK
- 4. Workflow presentations (group #3)

Exploratory Data Analysis

CDA vs. EDA

- Goals of Confirmatory Data Analysis
 - Hypothesis testing, probabilistic modeling, inference
- Goals of Exploratory Data Analysis (Tukey)
 - Understanding the patterns in the data
 - Generating hypotheses (to be tested in other datasets)
 - Checking your assumptions about data quality
 - "To find the unexpected, to avoid being fooled, and to develop rich descriptions" (Behrens & Yu, 2003)

Why do we need EDA? (Behrens & Yu, 2003)

- Summarization = a loss of information
 - If you first look at summarized data (across trials, across participants, etc.), you may miss important patterns that exist at the raw data level
- Statistics lie, so you need graphics
 - Correlations without looking at the scatterplot
 - Means without examining outliers/distribution
 - Statistical tests without examining *n*

Anscombe's quartet

Where does wrangling stop and EDA begin?

- Data need to be minimally read in, appropriately labelled, and tidied to check and visualize
- EDA can reveal errors or redundancies that require new data wrangling steps

- filter with logical statements

```
> ds %>% filter(class != class rel)
# A tibble: 34 x 305
   time class class_prop class_rel class_prop_rel x_sum y_sum
                                                 z sum corr xy corr xz
           <dbl> <fct>
                                                            <db1>
1 105. held 0.662 sit
                         0.602 197. 374. -157.
                                                      -0.0875 0.610
                         0.502 216. 31.6
2 414. held 0.657 supine
                                                  7.50 - 0.618 - 0.718
3 508. supi...
           0.896 prone
                          0.522 - 160. 245. 148.
                                                      -0.771 0.803
           0.647 prone
                             0.771 - 183. 284. 85.7 0.433 - 0.0730
4 509. supi...
                             0.502 - 81.0 249. 440. -0.701 -0.139
            0.657 prone
5 <u>1</u>065. sit
```

- fct_count to check factor frequencies

- summaries (with the right statistics/groupings)

- summaries (with the right statistics/groupings)

```
# A tibble: 240 x 4
   participant block condition trial num
   <chr>
               <chr> <chr>
                                     <db1>
1 6191
                      near
2 6191
                     near
3 6191
                     near
4 6191
                     near
5 6191
                     near
6 6191
                     near
7 6191
                     near
8 6191
                     near
9 6191
                      near
10 6191
                                        10
                      near
# ... with 230 more rows
```

```
> ds %>% group by(participant, block) %>% summarize(trials 20 = n())
`summarise()` regrouping output by 'participant' (override with `.groups` argument)
# A tibble: 12 x 3
# Groups: participant [2]
   participant block trials 20
   <chr>
               <chr>
                         <int>
 1 6191
                            20
 2 6191
                            20
 3 6191
                            20
 4 6191
                            20
 5 6191
                            20
 6 6191
                            20
                            20
 7 6192
```

Automation

- EDA means taking a detailed approach to look at data on different levels (participant/condition/wave/etc.)
- Running multiple filters/checks, plotting multiple figures, etc. can get overwhelming without automation

New tools for EDA - Visualizations

- DataExplorer package
 - Brute force, first glance methods
 - plot_histogram() of every continuous variable
 - plot_bar() counts of every categorical variable
- VisDat package
 - vis_miss() to plot missing values
 - vis_expect() to plot conditionals

New tools for EDA - Visualizations

- ggplot2 package (part of tidyverse)
 - Create any type of graph
 - Today we'll talk about making quicker plots for eda using geom_histogram, geom_point, geom_boxplot, and a few others
 - Week 8, Tabea will talk about making publication-ready plots to communicate effects

Anatomy of a ggplot call

```
The ggplot() The data parameter function

ggplot(data = , aes(x = , y = )) +

geom_line()

The geometric object we want to draw
(i.e., the geom)
```

- define the dataset we are using (long format)
- define the mapping of variables to aesthestics
- Add (+) geoms, graphical elements like histograms, lines, points, bars, boxplots, and many others
- Optional arguments to change the overall look

Each type of geom has different aesthetics that can be mapped

c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

f + geom_boxplot(), x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

e + geom_point(), x, y, alpha, color, fill, shape, size, stroke

h + geom_bin2d(binwidth = c(0.25, 500)) x, y, alpha, color, fill, linetype, size, weight

What aes values are required for each geom?

 Check the help page to see required mappings in bold

Aesthetics

geom point() understands the following aesthetics (required aesthetics are in bold):

- x
- y
- alpha
- colour
- fill
- group
- shape
- size
- stroke

Adding elements to graphs

- ggplot() + geom_X() +....
- Add (+) other modifications to the plot
 - xlim(lower_bound, upper_bound) or ylim
 - hline(yintercept = X) or vline
 - xlab("x label")
 - titles, custom scales, other geoms
- Make sure that plus is on the previous line, lines that start with + will throw an error

Tutorial: Exploratory data analysis

