Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Методи наукових досліджень Лабораторна робота №6

«Проведення трьохфакторного експерименту при використанні рівняння регресії з квадратичними членами»

Виконала: студентка групи IB-93 Стефанович I. В. Варіант: 23 Перевірив: Регіда П.Г **Мета:** провести трьохфакторний експеримент і отримати адекватну модель – рівняння регресії, використовуючи рототабельний композиційний план.

Завдання до лабораторної роботи:

- 1. Ознайомитися з теоретичними відомостями.
- 2. Вибрати з таблиці варіантів і записати в протокол інтервали значень x1, x2, x3. Обчислити і записати значення, відповідні кодованим значенням факторів +1; -1; +; -; 0 для 1, 2, 3.
- 3. Значення функції відгуку знайти за допомогою підстановки в формулу: yi = f(x1, x2, x3) + random(10)-5, де f(x1, x2, x3) вибирається по номеру в списку в журналі викладача.
- 4. Провести експерименти і аналізуючи значення статистичних перевірок, отримати адекватну модель рівняння регресії. При розрахунках використовувати натуральні значення факторів.
- 5. Зробити висновки по виконаній роботі.

Лістинг програми:

from math import fabs
from random import randrange
import numpy as np
from numpy.linalg import solve
from scipy.stats import f, t
from prettytable import PrettyTable

```
class Lab6:

def __init__(self, n, m):

x1min = -5

x1max = 15

x2min = -25

x2max = 10

x3min = 15

x3max = 45

x01 = (x1max + x1min) / 2
x02 = (x2max + x2min) / 2
```

```
x03 = (x3max + x3min) / 2
             deltax1 = x1max - x01
             deltax2 = x2max - x02
             deltax3 = x3max - x03
             xn = [[-1, -1, -1, +1, +1, +1, -1, +1, +1, +1],
                        [-1, -1, +1, +1, -1, -1, +1, +1, +1, +1]
                        [-1, +1, -1, -1, +1, +1, +1, +1, +1]
                        [-1, +1, +1, -1, -1, +1, -1, +1, +1, +1]
                       [+1, -1, -1, -1, -1, +1, +1, +1, +1, +1]
                        [+1, -1, +1, -1, +1, -1, -1, +1, +1, +1]
                       [+1, +1, -1, +1, -1, -1, -1, +1, +1, +1],
                        [+1, +1, +1, +1, +1, +1, +1, +1, +1, +1]
                        [-1.73, 0, 0, 0, 0, 0, 0, 2.9929, 0, 0]
                        [+1.73, 0, 0, 0, 0, 0, 0, 2.9929, 0, 0]
                        [0, -1.73, 0, 0, 0, 0, 0, 0, 2.9929, 0],
                        [0, +1.73, 0, 0, 0, 0, 0, 0, 2.9929, 0],
                        [0, 0, -1.73, 0, 0, 0, 0, 0, 0, 2.9929],
                        [0, 0, +1.73, 0, 0, 0, 0, 0, 0, 2.9929],
                        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
                x1 = [x1min, x1min, x1min, x1min, x1max, x1max, x1max, x1max, -1.73]
* deltax1 + x01, 1.73 * deltax1 + x01, x01,
                        x01,
                        x01, x01, x01]
                x^2 = [x^2 min, x^2 min, x^2 max, x^2 max, x^2 min, x^2 min, x^2 max, x^2
x02, -1.73 * deltax2 + x02,
                        1.73 * deltax2 + x02
                        x02, x02, x02]
                x3 = [x3min, x3max, x3min, x3max, x3min, x3max, x3min, x3max, x03,
x03, x03, x03, -1.73 * deltax3 + <math>x03,
                        1.73 * deltax3 + x03, x03
             x1x2 = [0] * 15
             x1x3 = [0] * 15
             x2x3 = [0] * 15
             x1x2x3 = [0] * 15
```

```
x1kv = [0] * 15
    x2kv = [0] * 15
    x3kv = [0] * 15
    for i in range(15):
       x1x2[i] = x1[i] * x2[i]
       x1x3[i] = x1[i] * x3[i]
       x2x3[i] = x2[i] * x3[i]
       x1x2x3[i] = x1[i] * x2[i] * x3[i]
       x1kv[i] = x1[i] ** 2
       x2kv[i] = x2[i] ** 2
       x3kv[i] = x3[i] ** 2
        list for a = Lab6.round matrix(list(zip(x1, x2, x3, x1x2, x1x3, x2x3,
x1x2x3, x1kv, x2kv, x3kv)))
    planning matrix with naturalized coeffs x = PrettyTable()
     planning_matrix_with_naturalized_coeffs_x.title = 'Матриця планування
з натуралізованими коефіцієнтами Х'
        planning matrix with naturalized coeffs x.field names = ['X1', 'X2',
'X3', 'X1X2', 'X1X3', 'X2X3', 'X1X2X3',
                                       'X1X1', 'X2X2', 'X3X3']
    planning matrix with naturalized coeffs x.add rows(list for a)
    print(planning matrix with naturalized coeffs x)
    Y = Lab6.round matrix(
           [[Lab6.func(list for a[j][0], list for a[j][1], list for a[j][2]) for i in
range(m)] for j in range(15)])
    planning matrix y = PrettyTable()
    planning_matrix_y.title = 'Матриця планування Y'
    planning matrix y.field names = ['Y1', 'Y2', 'Y3']
    planning matrix y.add rows(Y)
    print(planning matrix y)
    Y average = []
    for i in range(len(Y)):
```

```
Y average.append(np.mean(Y[i], axis=0))
     print("Середні значення відгуку за рядками:")
     for i in range(15):
       print("{:.3f}".format(Y average[i]), end=" ")
     dispersions = []
     for i in range(len(Y)):
       a = 0
       for k in Y[i]:
          a += (k - np.mean(Y[i], axis=0)) ** 2
       dispersions.append(a / len(Y[i]))
     def find known(num):
       a = 0
       for j in range(15):
          a += Y \text{ average[j] * list for a[j][num - 1] / 15}
       return a
     def a(first, second):
       a = 0
       for j in range(15):
          a += list\_for\_a[j][first - 1] * list\_for\_a[j][second - 1] / 15
       return a
my = sum(Y average) / 15
     mx = []
     for i in range(10):
       number lst = []
       for j in range(15):
          number lst.append(list for a[j][i])
       mx.append(sum(number lst) / len(number lst))
     det1 = [
          [1, mx[0], mx[1], mx[2], mx[3], mx[4], mx[5], mx[6], mx[7], mx[8],
mx[9]],
```

```
[mx[0], a(1, 1), a(1, 2), a(1, 3), a(1, 4), a(1, 5), a(1, 6), a(1, 7), a(1, 8),
a(1, 9), a(1, 10)],
         [mx[1], a(2, 1), a(2, 2), a(2, 3), a(2, 4), a(2, 5), a(2, 6), a(2, 7), a(2, 8),
a(2, 9), a(2, 10)],
         [mx[2], a(3, 1), a(3, 2), a(3, 3), a(3, 4), a(3, 5), a(3, 6), a(3, 7), a(3, 8),
a(3, 9), a(3, 10)],
         [mx[3], a(4, 1), a(4, 2), a(4, 3), a(4, 4), a(4, 5), a(4, 6), a(4, 7), a(4, 8),
a(4, 9), a(4, 10)],
         [mx[4], a(5, 1), a(5, 2), a(5, 3), a(5, 4), a(5, 5), a(5, 6), a(5, 7), a(5, 8),
a(5, 9), a(5, 10)],
         [mx[5], a(6, 1), a(6, 2), a(6, 3), a(6, 4), a(6, 5), a(6, 6), a(6, 7), a(6, 8),
a(6, 9), a(6, 10)],
         [mx[6], a(7, 1), a(7, 2), a(7, 3), a(7, 4), a(7, 5), a(7, 6), a(7, 7), a(7, 8),
a(7, 9), a(7, 10)],
         [mx[7], a(8, 1), a(8, 2), a(8, 3), a(8, 4), a(8, 5), a(8, 6), a(8, 7), a(8, 8),
a(8, 9), a(8, 10)],
         [mx[8], a(9, 1), a(9, 2), a(9, 3), a(9, 4), a(9, 5), a(9, 6), a(9, 7), a(9, 8),
a(9, 9), a(9, 10)],
         [mx[9], a(10, 1), a(10, 2), a(10, 3), a(10, 4), a(10, 5), a(10, 6), a(10, 7),
a(10, 8), a(10, 9),
        a(10, 10)
               det2 = [my, find known(1), find known(2), find known(3),
find known(4), find_known(5), find_known(6),
          find known(7),
          find known(8), find known(9), find known(10)]
     beta = solve(det1, det2)
     print("\nОтримане рівняння регресії:")
      print("\{:.3f\} + \{:.3f\} * X1 + \{:.3f\} * X2 + \{:.3f\} * X3 + \{:.3f\} * X1X2 +
\{:.3f\} * X1X3 + \{:.3f\} * X2X3"
             "+ {:.3f} * X1X2X3 + {:.3f} * X11^2 + {:.3f} * X22^2 + {:.3f} *
X33^2 = \hat{v}''
              .format(beta[0], beta[1], beta[2], beta[3], beta[4], beta[5], beta[6],
beta[7], beta[8], beta[9],
              beta[10]))
     y i = [0] * 15
```

```
print("Експериментальні значення:")
     for k in range(15):
         y i[k] = beta[0] + beta[1] * list for a[k][0] + beta[2] * list for a[k][1]
+ beta[3] * list for a[k][2] + 
                beta[4] * list for a[k][3] + beta[5] * list for a[k][4] + beta[6] *
list for a[k][5] + beta[7] * \setminus
                       list for a[k][6] + beta[8] * list for <math>a[k][7] + beta[9] *
list for a[k][8] + beta[10] * \
             list for a[k][9]
     for i in range(15):
       print("{:.3f}".format(y i[i]), end=" ")
     print("\n\nПеревірка за критерієм Кохрена")
     Gp = max(dispersions) / sum(dispersions)
     Gt = 0.3346
     print("Gp =", Gp)
     if Gp < Gt:
       print("Дисперсія однорідна")
     else:
       print("Дисперсія неоднорідна")
     print("\nПеревірка значущості коефіцієнтів за критерієм Стьюдента")
     sb = sum(dispersions) / len(dispersions)
     sbs = (sb / (15 * m)) ** 0.5
     F3 = (m - 1) * n
     coefs1 = []
     coefs2 = []
     d = 11
     res = [0] * 11
     for j in range(11):
       t pract = 0
       for i in range(15):
          if j == 0:
            t pract += Y \text{ average}[i] / 15
          else:
            t pract += Y average[i] * xn[i][j - 1]
```

```
res[j] = beta[j]
       if fabs(t pract / sbs) < t.ppf(q=0.975, df=F3):
          coefs2.append(beta[i])
          res[i] = 0
          d = 1
       else:
          coefs1.append(beta[j])
     print("Значущі коефіцієнти регресії:", [round(i, 3) for i in coefs1])
     print("Hезначущі коефіцієнти регресії:", [round(i, 3) for i in coefs2])
     y st = []
     for i in range(15):
          y st.append(res[0] + res[1] * x1[i] + res[2] * x2[i] + res[3] * x3[i] +
res[4] * x1x2[i] + res[5] *
               x1x3[i] + res[6] * x2x3[i] + res[7] * x1x2x3[i] + res[8]
*x1kv[i] + res[9] *
               x2kv[i] + res[10] * x3kv[i]
     print("Значення з отриманими коефіцієнтами:")
     for i in range(15):
       print("{:.3f}".format(y st[i]), end=" ")
     print("\n\nПеревірка адекватності за критерієм Фішера")
     Sad = m * sum([(y st[i] - Y average[i]) ** 2 for i in range(15)]) / (n - d)
     Fp = Sad / sb
     F4 = n - d
     print("Fp =", Fp)
     if Fp < f.ppf(q=0.95, dfn=F4, dfd=F3):
       print("Рівняння регресії адекватне")
     else:
       print("Рівняння регресії неадекватне")
  @staticmethod
  def round matrix(matrix, n to round=3):
     for i in range(len(matrix)):
```

```
for j in range(len(matrix[i])):
    matrix[i][j] = round(matrix[i][j], n_to_round)
    return matrix

# f(x1,x2,3) =
5,0+4,7*x1+3,6*x2+6,4*x3+6,8*x1*x1+0,3*x2*x2+5,3*x3*x3+3,2*x1*x2+0,
9*x1*x3+2,7*x2*x3+0,1*x1*x2*x3
# Функція відгуку = f(x1, x2, x3) + random(10) - 5
@staticmethod
def func(x1, x2, x3):
    return 5.0 + 4.7 * x1 + 3.6 * x2 + 6.4 * x3 + 6.8 * x1 * x1 + 0.3 * x2 * x2
+ 5.3 * x3 * x3 + 3.2 * x1 * x2 + \
    0.9 * x1 * x3 + 2.7 * x2 * x3 + 0.1 * x1 * x2 * x3 + randrange(0, 10) - 5
```

Lab6(15, 3)

Результати роботи програми:

matrix[i] = list(matrix[i])

											+
	Матриця планування з натуралізованими коефіцієнтами X										
	X1	X2	+ X3	X1X2	+ X1X3	+ X2X3	X1X2X3	X1X1	X2X2	+ X3X3	ŀ
	-5	+ l -25	+ l 15	+ 125	+ l -75	+ l -375	 l 1875	 l 25	+ l 625	+ l 225	+
	- 5	-25	45	125	-225	-1125	5625	25	625	2025	İ
	- 5	10	15	- 50	-75	150	-750	25	100	225	
	- 5	10	45	- 50	-225	450	-2250	25	100	2025	
	15	-25	15	-375	225	-375	-5625	225	625	225	
	15	-25	45	-375	675	-1125	-16875	225	625	2025	
	15	10	15	150	225	150	2250	225	100	225	
	15	10	45	150	675	450	6750	225	100	2025	
	-12.3	-7.5	30.0	92.25	-369.0	-225.0	2767.5	151.29	56.25	900.0	
	22.3	-7.5	30.0	-167.25	669.0	-225.0	-5017.5	497.29	56.25	900.0	
	5.0	-37.775	30.0	-188.875	150.0	-1133.25	-5666.25	25.0	1426.951	900.0	
	5.0	22.775	30.0	113.875	150.0	683.25	3416.25	25.0	518.701	900.0	
	5.0	-7.5	4.05	-37.5	20.25	-30.375	-151.875	25.0	56.25	16.403	
	5.0	-7.5	55.95	-37.5	279.75	-419.625	-2098.125	25.0	56.25	3130.403	
	5.0	-7.5	30.0	-37.5	150.0	-225.0	-1125.0	25.0	56.25	900.0	
	h										

++										
Матриця планування Y										
Y1	Y2	Y3								
1042.0 8996.0 1606.5 11865.5 414.0 7409.0 4269.5 15664.5 5556.187 7400.907	1047.0 8991.0 1612.5 11860.5 419.0 7405.0 4270.5 15668.5 5557.187 7404.907 1353.795	1043.0 8994.0 1608.5 11869.5 417.0 7405.0 4268.5 15665.5 5558.187 7396.907 1358.795								
8082.9	8080.9	8078.9								
102.253 15924.563 4447.375	98.253 15925.563 4440.375	105.253 15930.563 4448.375								
++										

Середні значення відгуку за рядками:

1044.000 8993.667 1609.167 11865.167 416.667 7406.333 4269.500 15666.167 5557.187 7400.907 1355.462 8080.900 101.920 15926.896 4445.375 Отримане рівняння регресії:

 $5.121 + 4.669 * X1 + 3.651 * X2 + 6.381 * X3 + 3.196 * X1X2 + 0.901 * X1X3 + 2.697 * X2X3 + 0.100 * X1X2X3 + 6.796 * X11^2 + 0.298 * X22^2 + 5.300 * X33^2 = <math>\hat{y}$

Експериментальні значення:

1043.085 8992.489 1608.339 11864.076 417.493 7406.896 4270.413 15666.817 5559.376 7399.071 1355.739 8080.976 101.792 15927.377 4445.372

Перевірка за критерієм Кохрена Gp = 0.15521628498727738

Дисперсія однорідна

Перевірка значущості коефіцієнтів за критерієм Стьюдента

Значущі коефіцієнти регресії: [5.121, 4.669, 3.651, 6.381, 3.196, 0.901, 2.697, 0.1, 6.796, 0.298, 5.3]

Незначущі коефіцієнти регресії: []

Значення з отриманими коефіцієнтами:

 $1043.085\ 8992.489\ 1608.339\ 11864.076\ 417.493\ 7406.896\ 4270.413\ 15666.817\ 5559.376\ 7399.071\ 1355.739\ 8080.976\ 101.790\ 15927.375\ 4445.372$

Перевірка адекватності за критерієм Фішера

Fp = 1.912388777778919

Рівняння регресії адекватне

Висновки: лабораторній В даній роботі проведено трьохфакторний рівняння експеримент отримано адекватну регресії, та модель Кінцевої використовуючи рототабельний композиційний план. мети досягнуто.