Bezdrátová senzorová síť pro přístupový systém

Bc. Tomáš Hyhlík

Vedoucí: Ing. Bc. Marek Neruda, Ph.D

25.6.2020

Katedra Mikroelektroniky

Úvod

- · Společný projekt ČVUT a firmy IMA s.r.o.
- Zadání
 - Rozšířit přístupový systém o senzorovou síť
 - Přístupový systém firmy IMA, který je na ČVUT
 - Navržené řešení realizovat a otestovat
- Proč se tímto zabývat?
 - Zjednodušení a snížení nákladů na realizaci IoT aplikací

1

Výběr bezdrátové technologie pro senzorovou síť

Hlavní kritéria:

- Nízká cena HW
- Jednoduché připojení koncových zařízení třetích stran (Third party)
- Velký počet dostupných koncových zařízení třetích stran na trhu
- · Jednoduchá implementace sítě
- · Nízká spotřeba energie koncových zařízení

Vybráno: Jednokanálová LoRA

Integrace WSN do infrastruktury přístupového systému

Integrace WSN do infrastruktury přístupového systému

Seznam offline karet - Seznam koncových zařízení WSN Posílání dat příkazem "průchod"

WSN gateway - HW

Blokový diagram navržené gatewaye senzorové sítě, Dragino LoRa Shield [1], RS485 transceiver [2], NUCLEO-L073RZ [3]

WSN gateway - vývoj SW

Rozdělení SW na nezávislé moduly:

- LoRa
- LoRaWAN_packet
- LoRa_sensors
- rs485_protocol
- usb
- eeprom

Doplňkové knihovny:

- buffer_ring
- ByteArray
- LinkedList_ByteArray
- aes (tiny-aes) [4]
- cmac (openpana) [5]

Testování navržené gatewaye

Za běžném provozu v budově FEL, blok A4, 5. patro Po dobu: od 21. září do 31. října 2019

Připojená zařízení v testované síti RS485

- 1 kontrolní panel
- 12 CKP zařízení (páry čteček a dveřních zámků)
- 1 gateway senzorové sítě + 2 senzory

Maximální počet koncových zařízení senzorové sítě

- Vypočítán ze záznamu přenesených dat v síti RS485

RS485 rychlost přenosu dat	Rezerva R			
v ₄₈₅ [bps]	0 %	10 %	20 %	30 %
1200	1	1	1	1
2400	3	3	3	2
4800	7	6	6	5
9600	15	13	12	10
19200	30	27	24	21
38400	60	54	48	42
57600	90	81	72	63
115200	180	162	144	126
230400	360	324	288	252
460800	720	648	576	504
921600	1440	1296	1152	1008

Vylepšení prototypu navržené gatewaye - schéma

Vylepšení prototypu navržené gatewaye - foto

Odborný článek

Nyní v oponentním řízení

Pro časopis:

- · Advances in Electrical and Electronic Engineering
- http://advances.utc.sk/index.php/AEEE
- Indexován v databázi WoS a Scopus.

LORA NODES IN EXISTING ACCESS CONTROL SYSTEM INFRASTRUCTURE: A FEASIBILITY STUDY

Tomas HYHLIK¹², Marek NERUDA¹, Pavel BEZPALEC¹, Lukas VOJTECH¹, Vlastimil RENES²

¹Department of Telecommunication Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague.

Technicka 2, Prague, Czech Republic

²Institut of Microelectronic Applications, IMA s.r.o.,
Na Valentince 1003/1, Prague, Czech Republic

[hvhlito1 | marek.neruda | pavel.bezpalec | lukas.voitech]@fel.cvut.cz, vlastimil.benes@ima.cz

DOI: 10.15598/aeee.v13ix.xxxx

Abstract. The Wireless Sensor Network (WSN) plaus an important role in the Internet of Things (IoT). It is very suitable for intelligent buildings providing a convenient way to collect sensor data and control electronic devices in the building and its surroundings. This paper proposes an extension of the existing access control system with WSN. Design of sensor nodes and gateway connected to the existing RS485 network is performed. The results of a long-term operation measurement in one university floor show the maximum number of sensor nodes simultaneously transmitting data in RS485 network is up to hundreds or thousands in dependence on used RS485 data rate and used reserve of data rate which prevent from malfunction of the access control system. The results prove the WSN can be effectively used in an existing RS485 infrastructure.

plications are typically based on a special kind of wireless technology called Low Power Wide Area Network (LPWAN) [3]. Many LPWAN wireless communication technologies appeared during its evolution with unlicensed ISM band, e.g., LoRa and SigFox and licensed band, e.g., NarrowBand-Internet of Things (NB-IoT) and Long Term Evolution-Machine Type Communication (LTE-M). The LPWAN technologies aim to have range up to 10-15 km in rural areas and 2-5 km in urban areas [4] and can have one of the following topologies: star (centralized), star of stars (decentralized) and mesh (distributed) [5]. Very low power consumption should allow sensor nodes a very long battery life, even greater than 10 years. The low cost of hardware (HW) is achieved by fully integrated transceivers and minimized number of off-chip components [6].

Děkuji za pozornost

Otázky vedoucího

Co znamená pojem orientace komunikace? Str. 11

Nekorektnost. Místo orientace komunikace má být směr posílání dat.

Zhodnotte správnost odhadu max. počtu připo jených koncových zařízení z testování provozu v síti RS 485. Kapitola 5.

Nekorektnost. Nejedná se o odhad, ale o výpočet.

Otázky oponenta

Jak je chráňeno rozhraní RS485 u vyvinuté gatewaye před přepětím

Transil typu SM15T15CA s průrazným napětím 15 V, spojující linky A a B ke GND.

Výpočet koncových zařízení senzorové sítě

$$S_{MAX} = \frac{\frac{\frac{V_{485}}{B}}{\frac{I}{MAX}} - R}{P} \tag{1}$$

kde:

v₄₈₅ rychlost přenosu dat v síti RS485 [bps]

B počet bitů v bytu (pro přepočítání rychlosti přenosu dat na byty) l_{MAX} maximální délka paketu

R rezerva rychlosti přenosu dat [%]

P počet paketů k přenesení dat z koncového zařízení

Naměřená data

Figure 3: Měřená rychlost přenosu dat [bps] v síti RS485 během doby testování

Frekvenční analýza délky paketu

Délka paketu	Počet	
7	2 216 098	
8	619 127	
9	3	
11	58 393	
13	58 620	
16	1	
18	2	
19	26 286	
23	1	
40	3	

References

- Lora Shield. *Dragino* [online]. [cit. 2020-05-14]. Dostupné z: http:
 - //wiki.dragino.com/index.php?title=Lora_Shield
- SparkFun Transceiver Breakout RS-485. Sparkfun [online]. [cit. 2020-05-14]. Dostupné z: https://www.sparkfun.com/products/10124
- NUCLEO-LO73RZ. ST Microelectronics. [online]. [cit. 2020-05-14]. Dostupné z: https://www.st.com/en/evaluation-tools/nucleo-1073rz.html

- Bitdust / tiny-AES128-C: Small portable AES128 in C. Github [online]. [cit. 2020-05-14]. Dostupné z: https://github.com/bitdust/tiny-AES128-C
- OpenPANA / openpana: OpenPANA it'll be soon a full functional free solution which implements the PANA protocol. By now, it's a multithreading implementation, supported by a framework, which allows multiple users to authenticate. *Github* [online]. [cit. 2020-05-14]. Dostupné Z: https://github.com/OpenPANA/openpana