Trabajo práctico: Filtrado digital FIR

1) Filtro Moving Average con señales senoidales en MATLAB

a) Genere una señal senoidal con frecuencia fundamental de 100 Hz. Elija una frecuencia de muestreo adecuada.

b) Agregue ruido gaussiano a la señal senoidal tal que la relación señal-ruido entre la señal senoidal y la señal con ruido sea de 15 dB.

```
snr = 15;
signal_n = awgn(signal, snr);

figure(2)
plot(t, signal_n, '-r');
title("Señal senoidal de 100 Hz con ruido gaussiano (SNR = 15 dB)");
xlabel("t[n]: frecuencia de muestreo 10 kHz");
grid on;
```


c) Calcule el valor máximo del orden del filtro (N_max). Determine las frecuencias fs y fco.

$$N_{max} = \text{round}\left(\sqrt{\frac{0.885894^2 \cdot f_s^2}{f_{CO}^2} - 1}\right)$$

```
fco = fN;
N_max = round(sqrt(0.885894^2*fS^2/fco^2 - 1));
disp("Nmax = " + N_max);
```

Nmax = 89

d) Aplique filtrado del tipo moving average a la señal con ruido para un filtro MA con dimensión igual N = N_max. Utilice la función filter.

```
N = N_max;
kernel = ones(1, N) / N;
signal_f = filter(kernel, 1, signal_n);
figure(3)
plot(t, signal_f, '-g');
title("Señal senoidal de 100 Hz filtrada con Moving Average (N = N_{max})");
xlabel("t[n]: frecuencia de muestreo 10 kHz");
grid on;
```


e) Grafique la respuesta en frecuencia y fase del filtro MA. Use la función freqz.

```
freqz(kernel, 1);
```


f) Grefique las señales en el dominio del tiempo sin ruido, con ruido y filtrada, y compare las tres.

```
figure(4)
plot(t, signal, '-b');
grid on;
hold on;

plot(t, signal_n, '-r');

plot(t, signal_f, '-g');
legend("Señal original", "Señal con ruido", "Señal filtrada");
```


g) Grafique la respuesta en frecuencia de las señales original y filtrada y compare. Utilice la función provista my_dft.

```
[f, dft_mag, dft_phase, dft, NFFT] = my_dft([signal; signal_n; signal_f], fS);

figure(5)
subplot(1, 3, 1);
plot(f, mag2db(dft_mag(:,1)), '-b');
legend("Señal original");
grid on;

subplot(1, 3, 2);
plot(f, mag2db(dft_mag(:,2)), '-r');
legend("Señal con ruido");
grid on;

subplot(1, 3, 3);
plot(f, mag2db(dft_mag(:,3)), '-g');
legend("Señal filtrada");
grid on;
```



```
figure(6)
subplot(1, 3, 1);
plot(f, dft_phase(:,1), '-b');
legend("Señal original");
grid on;

subplot(1, 3, 2);
plot(f, dft_phase(:,2), '-r');
legend("Señal con ruido");
grid on;

subplot(1, 3, 3);
plot(f, dft_phase(:,3), '-g');
legend("Señal filtrada");
grid on;
```


h) Repita los puntos d) a g) para N = N_max / 2 y N = N_max * 10

```
N_vect = [round(N_max/2) N_max*10];
kernel1 = ones(1, N_vect(1)) / N_vect(1);
kernel2 = ones(1, N_vect(2)) / N_vect(2);
signal_f1 = filter(kernel1, 1, signal_n);
signal_f2 = filter(kernel2, 1, signal_n);
figure(7)
freqz(kernel1, 1);
title("MA N = " + N_vect(1));
```



```
figure(8)
freqz(kernel2, 1);
title("MA N = " + N_vect(2));
```



```
figure(9)
subplot(length(N_vect), 1, 1);
plot(t, signal, '-b');
grid on;
hold on;
plot(t, signal_n, '-r');
plot(t, signal_f1, '-g');
legend("Señal original", "Señal con ruido", "Señal filtrada");
title("MA N = " + N_vect(1));
subplot(length(N_vect), 1, 2);
plot(t, signal, '-b');
grid on;
hold on;
plot(t, signal_n, '-r');
plot(t, signal_f2, '-g');
legend("Señal original", "Señal con ruido", "Señal filtrada");
title("MA N = " + N_{vect}(2));
```


