Kubernetes Security

Chen Fei Suneel Gandham Ebhadulla Shaik

What is K85?

- K85 Kubernetes
- Open source container orchestration tool
- Developed by Google by name Brog.
- Helps you manage containerized applications in different application environments

The need for a container orchestration tool

- Trend from Monolith to Microservices
- Increased usages of containers
- Need for managing hundreds of independent microservices
- Managing them self made tools is difficult
- Availability
- Scalability
- Disaster recovery

Kubernetes Basics

POD:
Abstraction over container and Smallest unit of K85

Kubernetes Architecture

Kubernetes Architecture

60% used

Scale as needed

Cluster view

Few Key components

- Services
- Ingress
- ConfigMap
- · Secrets
- Kube Proxy
- Kubelet
- Deployment
- · Volumes

How Secure Kubernetes by default?

- · Misconception: Cloud is always secure.
- It is just that, on cloud different security tools are available which we can leverage.
- K8s main aim is container orchestration and not much focus on security.
- Don't worry... we have tools to secure the infrastructure.

Building a secure image in CI/CD pipeline

Causes for insecure image:

- Code from untrusted registries
- · Vulnerabilities in tools of OS or code libraries

Best Practices:

- Scanning the images in CI/CD pipeline using tools before pushing to registry.
- Scan images regularly that are pushed to registry.

Secure Container and Pods

- Running a container with root user will make attacker's job easy to escalate the privileges.
- Attacker can easily break out from the container and can access the underlying host.

Best Practice: Run container as non-root

Create service user and run the container with that user

```
# create group and user

RUN groupadd -r myapp && useradd -g myapp myapp

# set ownership and permissions

RUN chown -R myapp:myapp /app

# switch to user

USER myapp
```

Don't allow privilege escalation

```
apiVersion: v1
kind: Pod
metadata:
name: my-app
spec:
securityContext:
runAsUser: 1000
apiVersion: v1
kind: Pod
metadata:
name: my-app
spec:
securityContext:
allowPrivilegeEscalation: false
```

Secure Container and Pods

- Avoid running privileged Pods
- Set limits on cluster resources for containers
 - * Resource quota
 - Limit ranges for the resources

Securing communication between Pods

Control how the Pods communicate with each

other using,

NetworkPolicy

Firewalls for pods.


```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
  name: my-app
     name: my-app
  Ingress:
        cldr: 172.17.8.9/16
        - 172.17.1.0/24
          name: my-db
      protocol: TCP
```

Maintaining Namespaces

 Namespaces help in separating the resources, there by limiting the scope in case of attacks.

Securing communication between Pods

Service Mesh

- * mTLS Mutual TLS
- Limits the communication with Network Rules
- Abstracts the rules to a layer of infrastructure and out of individual services

Service Mesh Implementations

- · Istio (native implementation) Kiali dashboard
- Linkered
- Consul Connect(HashiCorp)

Securing etcd & secrets data

- By default secrets and configurations are stored as plain text
- Encoding them is not sufficient.
- Tools:
 - ❖ HashiCorp's Vault
 - Encryption tools from cloud providers
- Safe backup and recovery with K8s native K10.

Securing access to K8s cluster

Don't allow access application by node port.

LoadBalancer is better

Ingress is even better

Securing access to K8s cluster

- Authentication
 - Certificates for authenticating users
 - Client certificates for human users
 - *Service Accounts for non-human users

Securing access to K8s cluster

- Authorization
 - Role Based Access Control (RBAC)
 - Cluster-wide
 - Cluster Role
 - Cluster Role Binding
 - Namespace-scoped
 - * Role
 - Role Binding
 - Give least possible privileges for an user

Role Based Access Control

RoleBinding

► Attach ("Bind") a Role to a User or Group

Monitor and Mitigate Runtime Attacks

- Monitoring communications of Pods
- Using monitoring and logging tools
 - Kiali
 - Prometheus
 - Fluent Bit
 - Grafana

Kiali dashboard

Thank you