

5-1.평행사변형(02)

출제율이 높은 문항을 선별하여 제작한 실력 향상에 도움이 되는 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2022-06-16

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

 $oldsymbol{1}$. 평행사변형 ABCD에서 $\angle A: \angle B=5:4$ 일 때, ∠ C의 크기는?

① 100°

② 105°

③ 110°

(4) 115°

⑤ 120°

 $\mathbf{2}$. 평행사변형 ABCD에 대한 설명으로 옳은 것을 <보기>에서 고른 것은? (단, 점 O는 두 대각선 AC와 BD의 교점)

<보기>

 $\neg. \ \triangle AOB \equiv \triangle AOD$

 \vdash . $\overline{AO} = \overline{BO}$. $\overline{CO} = \overline{DO}$

 \Box . $\overline{AB} = \overline{CD}$, $\overline{AD} = \overline{BC}$ \Box . $\overline{AB}//\overline{CD}$, $\overline{AD}//\overline{BC}$

 \Box . $\angle A = \angle C$, $\angle B = \angle D$

① 7, ∟, ≥

② 7, L, 🗆

③ 7, □, ≥

④ ∟, ⊏, □

⑤ □, ⊇, □

다음은 평행사변형에서 두 대각선은 서로 다른 것을 이등분함을 증명한 것이다. (가) ~ (마)에 들어 갈 기호로 알맞은 것은?

평행사변형 ABCD에서 두 대각선 AC, DB의 교점을 O라고 할 때, $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ 임을 보이자

 $\triangle ABO$ 와 (7) 에서

AB= (나) (평행사변형의 대변) ······ ①

AB// (다) 이므로

∠*ABO*= (라) (엇각)

····· (L)

∠*BAO*= (마) (엇각)

····· (Ē)

⊙, ⊙, ⓒ에서 대응하는 한 변의 길이가 같고, 그 양 끝 각의 크기가 각각 같으므로

 $\triangle ABO \equiv (7)$

따라서 $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ 이다.

① (7}) △*ADO*

② (나) \overline{AD}

③ (다) OA

④ (라) ∠ADO

⑤ (□) ∠*DCO*

4. 평행사변형 ABCD에서 두 대각선의 교점을 O라 고 할 때, x+y의 값은?

(1) 75°

② 80°

(3) 85°

(4) 90°

(5) 95°

5. 평행사변형 ABCD에서 두 대각선의 교점을 O라 하고, $\angle CAD = 60^\circ$, $\angle ACD = 58^\circ$, $\overline{OD} = 6 \, \mathrm{cm}$ 일 때, $\angle x$ 의 크기와 y의 값은? (단, $\angle ABC = \angle x$, $\overline{BD} = y \, \mathrm{cm}$)

- ① $\angle x = 55^{\circ}$, y = 9
- ② $\angle x = 58^{\circ}$, y = 10
- ③ $\angle x = 58^{\circ}$, y = 12
- 4 $\angle x = 60^{\circ}, y = 10$
- ⑤ $\angle x = 62^{\circ}$, y = 12
- **6.** 그림과 같이 평행사변형 ABCD에서 $\angle C$ 의 이동 분선이 \overline{AD} 와 만나는 점을 E, \overline{AB} 의 연장선과 만나는 점을 F라고 한다. 이때, x, y의 값은?

- ① x = 3, y = 35
- ② x = 3, y = 50
- 3 x = 3, y = 55
- (4) x = 4, y = 35
- (5) x = 4, y = 55
- 7. 평행사변형 ABCD에서 $\angle A$ 의 이등분선과 $\angle D$ 의 이등분선이 \overline{BC} 와 만나는 점을 각각 E, F라 하고, 두 각의 이등분선의 교점을 G라고 하자. 이때 \overline{FE} 의 길이는?

- 1 4
- ② 5

3 6

4 8

⑤ 9

8. 그림과 같은 평행사변형 ABCD에서 \overline{AE} , \overline{BF} 는 각각 $\angle A$, $\angle B$ 의 이등분선이다. $\angle BFD = 155\,^{\circ}$ 일 때, $\angle AEC$ 의 크기는?

- ① 105°
- ② 110°
- ③ 115°
- 4 125°
- (5) 130°

9. 다음 그림과 같이 평행사변형 ABCD에서 점 E는 변 AB의 중점이고, 점 D에서 선분 EC에 내린 수선의 발을 F라고 하자. $\angle B = 81\,^\circ$,

- ① 22°
- ② 23°
- ③ 24°
- 4) 25°
- ⑤ 26°
- **10.** 다음 중 $\Box ABCD$ 가 평행사변형인 것은? (단, 점 O는 대각선 AC와 BD의 교점)
 - ① $\angle A = 50^{\circ}$, $\angle B = 130^{\circ}$, $\angle C = 130^{\circ}$
 - ② $\overline{AD} = 4 \text{ cm}$, $\overline{BC} = 4 \text{ cm}$, $\overline{AB}//\overline{DC}$
 - ③ $\overline{AB} = 5 \text{ cm}$, $\overline{BC} = 5 \text{ cm}$, $\overline{CD} = 7 \text{ cm}$, $\overline{DA} = 7 \text{ cm}$
 - $\bigcirc \overline{OA} = 6 \text{ cm}$, $\overline{OB} = 6 \text{ cm}$, $\overline{OC} = 4 \text{ cm}$, $\overline{OD} = 4 \text{ cm}$
 - \bigcirc $\angle ABD = \angle BDC = 40^{\circ}$, $\overline{AB} = 3 \text{ cm}$, $\overline{CD} = 3 \text{ cm}$

11. 평행사변형 ABCD에서 $\angle B$, $\angle D$ 의 이등분선이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 E, F라고 하자. \overline{BC} = $16\,\mathrm{cm}$, \overline{DC} = $11\,\mathrm{cm}$ 일 때, \overline{BF} 의 길이는?

- ① 2 cm
- ② 3cm
- ③ 4 cm
- 4 5 cm
- ⑤ 6 cm

12. $\triangle PBA$, $\triangle QBC$, $\triangle RAC$ 는 $\triangle ABC$ 의 세 변을 각각 한 변으로 하는 정삼각형이다. $\angle ACB = 60^\circ$, $\angle BAC = 80^\circ$ 일 때, 설명으로 옳지 않은 것은?

- (1) $\angle PQR = 140^{\circ}$
- ② $\angle ABC = \angle PBQ$
- \bigcirc $\triangle ABC \equiv \triangle RQC$
- ⑤ □*PARQ*는 평행사변형이다.

13. 평행사변형 ABCD의 내부에 한 점 P를 잡을 때, $\triangle PAB$ 와 $\triangle PCD$ 의 넓이의 합이 $25\,\mathrm{cm}^2$ 이다. $\triangle PBC$ 의 넓이가 $16\,\mathrm{cm}^2$ 일 때, $\triangle PDA$ 의 넓이는?

- \bigcirc 7 cm²
- 2 8 cm^2
- $3 \ 9 \, \text{cm}^2$
- $(4) 10 \text{ cm}^2$
- $(5) 11 \text{ cm}^2$

14. 평행사변형 ABCD에서 $\angle BAE = \angle DAE$ 이다. x 의 값은?

① 3

② 4

3 5

(4) 6

⑤ 7

15. 그림과 같이 평행사변형 ABCD에서 $\angle CAD$ 의 이동분선과 \overline{BC} 의 연장선이 만나는 점을 E라고 하자. $\angle C = 70^\circ$, $\angle ACD = 52^\circ$ 일 때, $\angle E$ 의 크기는?

- ① 26°
- ② 29°
- 34°
- (4) 36°
- (5) 42°

16. 평행사변형 ABCD에서 \overline{DC} 의 중점을 E라 하고, \overline{AE} 의 연장선과 \overline{BC} 의 연장선의 교점을 F라 하자. \overline{AB} = 14, \overline{AD} = 6일 때, \overline{BF} 의 길이는?

- 1) 10
- ② 11
- ③ 12
- 4 13
- (5) 14

17. 다음은 '두 대각선이 서로 다른 것을 이등분하는 사각형은 평행사변형이다.'를 확인하는 과정이다. (가)~(라)에 들어갈 내용을 순서대로 바르게 짝지은 것은?

 $\square ABCD$ 의 두 대각선의 교점을 O라 하자.

 $\angle AOB$ 와 (7) 는 맞꼭지각이므로

 $\angle AOB = \boxed{(7)}$

 $\overline{OA} = \overline{OC}$ 이고 $\overline{OB} = \overline{OD}$ 이므로

 $\triangle OAB \equiv \triangle OCD(((나))$ 합동)

따라서 $\angle OBA = \angle ODC$ 이며 $\angle OBA$ 와 $\angle ODC$ 는

 (Γ) 이므로 $\overline{AB}//\overline{DC}$ 이다.

같은 방식으로 (라) 이고

따라서 $\square ABCD$ 는 평행사변형이다.

	(フト)	(나)	(다)	(라)
(\bigcirc $\angle AOD$	ASA	엇각	$\overline{AD}//\overline{BC}$
(② ∠ <i>COD</i>	ASA	엇각	$\overline{AC}//\overline{BD}$
(\bigcirc \angle COD	SAS	엇각	$\overline{AD}//\overline{BC}$
(④ ∠AOD	SAS	동위각	$\overline{AC}//\overline{BD}$
(⑤ ∠ <i>COD</i>	SAS	맞꼭지각	$\overline{AD}//\overline{BC}$

 $oldsymbol{18}$. 평행사변형 ABCD에서 두 대각선의 교점 O를 지나는 직선과 \overline{AB} , \overline{CD} 의 교점을 각각 P, Q라 하 자. $\square ABCD$ 의 넓이가 64 cm^2 이고, $\triangle APO$ 의 넓이 가 5 cm^2 일 때, $\triangle DOQ$ 의 넓이는?

- \bigcirc 7 cm²
- 2 9 cm^2
- $(3) 11 \text{ cm}^2$
- (4) 13 cm²
- $(5) 15 \text{ cm}^2$

19. 그림의 평행사변형 ABCD에서 $\overline{AB} = 6 \, \mathrm{cm}$ 이고, \overline{AC} + \overline{BD} = 18 cm일 때, $\triangle OCD$ 의 둘레의 길이는? (단. 점 O는 두 대각선 AC와 BD의 교점이다.)

- ① 12 cm
- ② 13 cm
- ③ 14 cm
- (4) 15 cm
- ⑤ 16 cm

20. □ *ABCD*가 평행사변형이 아닌 것은?

정답 및 해설

1) [정답] ①

[해설] 평행사변형의 성질에 의해 두 쌍의 대각의 크기는 각각 같으므로 $\angle A = \angle C$ 평행사변형에서 이웃한 두 각의 크기의 합은 $180\degree$ 이므로 $\angle A + \angle B = 180\degree$ 이고

 $\angle A$: $\angle B$ = 5:4이므로 $\angle A$ = 180° $\times \frac{5}{9}$ = 100° $\therefore \angle C$ = 100°

2) [정답] ⑤

[해설] C. 평행사변형의 두 쌍의 대변의 길이는 각각 같다.

리. 평행사변형의 두 쌍의 대변은 각각 평행하다.미. 평행사변형의 두 쌍의 대각의 크기는 각각 같다.

3) [정답] ⑤

[해설] ① (가) $\triangle CDO$

② (나) \overline{DC}

③ (다) \overline{DC}

④ (라) ∠ CDO

4) [정답] ④

[해설] $\triangle AOD$ 에서

 $\angle DAO = 180\degree - (115\degree + 30\degree) = 35\degree$ $\overline{AD}//\overline{BC}$ 이므로 $\angle x = \angle DAO = 35\degree$ $\angle A + \angle D = 180\degree \circ$ 이므로 $\angle y = 180\degree - (95\degree + 30\degree) = 55\degree$ $\therefore x + y = 35\degree + 55\degree = 90\degree$

5) [정답] ⑤

[해설] BO = DO이므로 $y = 2DO = 2 \times 6 = 12$ $\triangle ACD$ 에서 $\angle ADC = 180\degree - (60\degree + 58\degree) = 62\degree$ $\therefore \angle x = \angle ADC = 62\degree$

6) [정답] ③

[해설] $\overline{AD} / \overline{BC}$ 이므로 엇각의 성질에 의해 $\angle DEC = \angle DCE$ 이고 $\triangle DEC = \overline{DE} = \overline{DC}$ 인 이등변삼각형 따라서 $\overline{DE} = \overline{DC} = 6\,cm$ 이고 $\overline{AE} = 3\,cm$ 또, $\angle BCD = 110\,^\circ$ 이고 $\angle DEC = \angle BCE = 55\,^\circ$ 이므로 $y^\circ = 55\,^\circ$ 맞꼭지각의 성질에 의해 $\angle AEF = \angle DEC = 55\,^\circ$ 이고 $\overline{AD} / \overline{BC}$ 에서 동위각의 성질에 의해 $\angle FAE = \angle ABC = 70\,^\circ$

그러므로 $\triangle AFE$ 는 $\overline{AF}=\overline{AE}$ 인 이등변삼각형이 고 $\overline{AE}=3\,cm$ 이므로 x=3

 $\therefore x = 3, y = 55$

7) [정답] ③

[해설] \overline{AD} $\#\overline{BC}$ 이므로 엇각의 성질에 의해 $\angle BEA = \angle EAD$, $\angle CFD = \angle FDA$ 이므로 $\triangle ABE$ 는 $\overline{AB} = \overline{BE} = 8$ 인 이등변삼각형, $\triangle CDF$ 는 $\overline{CF} = \overline{DC} = 8$ 인 이등변삼각형 따라서 $\overline{BC} = \overline{BE} + \overline{FC} - \overline{FE} = 16 - \overline{FE}$ $\therefore \overline{FE} = 6$

8) [정답] ③

[해설] $\overline{AD}//\overline{BC}$ 이므로 $\angle EBF = \angle AFB = 180\,^\circ - 155\,^\circ = 25\,^\circ$ $\angle ABC = 2 \times 25\,^\circ = 50\,^\circ ,$ $\angle BAD = 180\,^\circ - 50\,^\circ = 130\,^\circ$ $\triangle ABE$ 에서 $\angle AEC = \angle EAB + \angle ABE = 65\,^\circ + 50\,^\circ = 115\,^\circ$

9) [정답] ⑤

[해설]

 \overline{AD} 와 \overline{CE} 의 연장선의 교점을 P라 하면 ΔAPE 와 ΔBCE 에서 $\overline{AE} = \overline{BE}$, $\angle AED = \angle BEC$ (맞꼭지각) $\angle PAE = \angle CBE$ (엇각)이므로 $\Delta APE = \Delta BCE(ASA$ 합동) $\therefore \overline{PA} = \overline{BC}$

한편, $\triangle PFD$ 는 직각이고 $\overline{PA} = \overline{DA}$ 이므로 점 A는 $\triangle PFD$ 의 외심이다. $\angle B = \angle D = 81 \degree \text{이므로}$ $\angle ADF = 81 \degree - 17 \degree = 64 \degree$ $\triangle AFD$ 에서 $\overline{AF} = \overline{AD}$ 이므로 $\angle AFD = \angle ADF = 64 \degree$

10) [정답] ⑤

[해설] ⑤ $\angle ABD = \angle BDC$ 이면 $\overline{AB}//\overline{CD}$ 이므로 한 쌍의 대변이 평행하고 그 길이가 같으므로 평행 사변형이다.

 $\therefore \angle AFE = 90^{\circ} - 64^{\circ} = 26^{\circ}$

11) [정답] ④

[해설] 평행사변형의 두 쌍의 대변은 평행하므로 $\angle ADF = \angle CFD$ 이다. 그러므로 $\triangle DFC$ 는 $\overline{DC} = \overline{CF}$ 인 이등변삼각형이다. $\overline{BF} = \overline{BC} - \overline{CF}$ 이므로 5cm이다.

12) [정답] ①

[해설] $\triangle PBQ \equiv \triangle ABC \equiv \triangle RQC$ 이므로 $\angle PQR = \angle PQB + \angle BQC + \angle RQC$ 이다.

 $\angle PQB = \angle ACB = 60$ °, $\angle RQC = \angle ABC = 40$ °이다. 그러므로 $\angle PQR = 160$ °이다.

13) [정답] ③

[해설] $\triangle PAB + \triangle PCD = \triangle PBC + \triangle PDA$ 이므로 $25 = 16 + \triangle PDA$ $\therefore \triangle PDA = 9 \, cm^2$

14) [정답] ⑤

[해설] \overline{AD} $\#\overline{BC}$ 이므로 $\angle BEA = \angle BAE$ 이고 $\triangle ABE$ 는 $\overline{AB} = \overline{BE}$ 인 이등변삼각형 평행사변형의 성질에 의해 $\overline{AB} = \overline{DC} = 7$ $\therefore x = 7$

15) [정답] ②

[해설] $\angle ABC + \angle DCB = 180\degree$ 이므로 $\angle DCB = 180\degree - 70\degree = 110\degree$ 평행사변형의 성질에 의해 $\angle BAD = \angle DCB = 110\degree$ $\angle BAC = \angle DCA = 52\degree (엇각)$ $\angle DAC = 110\degree - 52\degree = 58\degree$ $\overline{AD}//\overline{BE}$ 이므로 $\angle E = \angle DAE = \frac{1}{2} \angle DAC = \frac{1}{2} \times 58\degree = 29\degree$

16) [정답] ③

[해설] 점 E가 \overline{DC} 의 중점이므로 $\overline{DE} = \overline{CE}$ \overline{AD} $\# \overline{BF}$ 이므로 엇각의 성질에 의해 $\angle ADE = \angle FCE$ 맞꼭지각의 성질에 의해 $\angle AED = \angle FEC$ 따라서 $\triangle ADE$ 와 $\triangle FCE$ 에서 $\overline{DE} = \overline{CE}$, $\angle ADE = \angle FCE$, $\angle AED = \angle FEC$ 이 므로 $\triangle ADE \equiv \triangle FCE$ $(\because ASA$ 합동) 따라서 $\overline{AD} = \overline{FC} = 6$ 평행사변형의 성질에 의해 $\overline{BC} = \overline{AD} = 6$ 이므로 $\overline{BF} = 6 + 6 = 12$

17) [정답] ③

[해설] (가) $\angle COD$, (나) SAS, (다) 엇각, (라) $\overline{AD}//\overline{BC}$

18) [정답] ③

[해설] $\triangle APO$ 와 $\triangle CQO$ 에서 $\overline{AO} = \overline{CO}, \ \angle PAO = \angle QCO($ 엇각) $\angle AOP = \angle COQ($ 맞꼭지각)이므로 $\triangle APO \equiv \triangle CQO(ASA$ 합동) $\therefore \triangle CQO = \triangle APO = 5 \text{cm}^2$ $\triangle COD = \frac{1}{4} \Box ABCD = \frac{1}{4} \times 64 = 16 \text{ (cm}^2)$ $\therefore \triangle DOQ = \triangle COD - \triangle CQO = 16 - 5 = 11 \text{ (cm}^2)$

19) [정답] ④

[해설] $\overline{CD} = \overline{AB} = 6 \, cm$ 이다. $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$

이므로 $\overline{OC} + \overline{OD} = \frac{1}{2} \times (\overline{AC} + \overline{BD}) = 9 \, cm$ 이다. 그러므로 $\triangle OCD = 15 \, cm$ 이다.

20) [정답] ⑤

[해설] ① 엇각의 크기가 같으므로 \overline{AD} # \overline{BC} , \overline{AB} # \overline{DC} 이고 $\square ABCD$ 는 두 쌍의 대변이 각각 평행하므로 평행사변형

② 두 대각선이 서로 다른 것을 이등분하므로 평행사변형

③ 엇각의 크기가 같으므로 \overline{AB} $/\!/$ \overline{DC} 이고 $\overline{AB} = \overline{DC}$ $\square ABCD$ 는 한 쌍의 대변이 평행하고 길이가 같으므로 평행사변형

④ 두 쌍의 대변의 길이가 각각 같으므로 평행사 변형