Лекция 3. Кривые второго порядка на плоскости.

Эллипс.

Определение. Эллипсом называется множество точек плоскости, таких что: существуют такие точки F_1 , F_2 , называемые фокусами, что сумма расстояний от произвольной точки M эллипса до F_1 и от M до F_2 есть величина постоянная:

$$|MF_1| + |MF_2| = 2a,$$
 (1)
и $2a > 2c = |F_1F_2|.$

Найдём уравнение эллипса в декартовых координатах. Точку O(0,0) поместим в середину отрезка F_1F_2 , так, что $Ox^{\uparrow\uparrow}OF_1$. Тогда ось Oy определится однозначно. Фокусы будут иметь координаты $F_1(c,0)$, $F_2(-c,0)$.

Пусть M(x, y) – произвольная точка эллипса. Тогда

$$|MF_1| = \sqrt{(x-c)^2 + y^2}$$
, $|MF_2| = \sqrt{(x+c)^2 + y^2}$.

Из (1) имеем

$$\sqrt{(x-c)^2+y^2}=2a-\sqrt{(x+c)^2+y^2}$$
.

Возведем обе части равенства в квадрат и сократим одинаковые слагаемые:

$$x^{2}-2xc+c^{2}+y^{2}=4a^{2}-4a\sqrt{(x+c)^{2}+y^{2}}+x^{2}+2xc+c^{2}+y^{2}.$$

$$4xc=4a^{2}-4a\sqrt{(x+c)^{2}+y^{2}} \iff a\sqrt{(x+c)^{2}+y^{2}}=a^{2}+xc.$$

Еще раз возводим в квадрат, сокращаем и группируем:

$$a^{2}(x^{2} + 2xc + c^{2} + y^{2}) = a^{4} + 2a^{2}xc + x^{2}c^{2},$$

 $x^{2}(a^{2} - c^{2}) + a^{2}y^{2} = a^{2}(a^{2} - c^{2}).$

Согласно определению a < c; поэтому можем обозначить $b^2 = a^2 - c^2$, и разделив на a^2b^2 , окончательно получаем

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ . \tag{2}$$

Мы доказали, что координаты произвольной точки эллипса удовлетворяют уравнению (2). Необходимо еще доказать обратное: если координаты точки M(x, y) удовлетворяют (2), то выполнено (1).

Из (2) выразим $y^2 = b^2(1 - \frac{x^2}{a^2})$ и подставим в выражение для $|MF_1|$, учитывая при этом обозначение $b^2 = a^2 - c^2$:

$$|MF_1| = \sqrt{(x-c)^2 + y^2} = \dots = |a - \frac{cx}{a}|.$$

Аналогично получаем, что $|MF_2| = |a + \frac{cx}{a}|$. Из (2) следует, что $|x| \le a$ (иначе уже первое слагаемое будет больше 1), а по определению, $a < c \implies$ оба выражения под модулем неотрицательны. Поэтому

$$|MF_1| + |MF_2| = a - \frac{cx}{a} + a + \frac{cx}{a} = 2a.$$

Уравнение (2) называется каноническим уравнением эллипса.

Геометрические свойства эллипса.

- **1.** Из (2) следует, что $|x| \le a$, $|y| \le b$. Значит, эллипс целиком содержится в прямоугольнике, определяемыми этим неравенствами.
- **2.** Координатные оси пересекают эллипс в точках $A_1(a, 0), A_2(-a, 0)$ 0), $B_1(0,b)$, $B_2(0,-b)$, которые называются его вершинами. Отрезки A_1A_2 и B_1B_2 называются большим и малым диаметрами эллипса, а вместе – главными диаметрами. Числа а и в называются большой и малой полуосями.
- 3. Координатные оси являются осями симметрии эллипса, а начало координат – центром симметрии.
 - 4. Эллипс получается из окружности

$$\gamma': X^2 + Y^2 = a^2$$
 (**)

в результате равномерного ее сжатия вдоль оси Oy с коэффициентом k = a/b.

5. Параметрические уравнения эллипса имеют вид:

$$\begin{cases} x = a \cos t, \\ y = b \sin t, t \in \mathbf{R}. \end{cases}$$

Определение. Эксцентриситет ε эллипса, заданного уравнением (1) определяется равенством $\varepsilon = \frac{c}{a}$.

Определение. Директрисы эллипса определяются уравнениями δ_1 : $x = \frac{a^2}{c}$, δ_2 : $x = \frac{a^2}{c}$.

$$\delta_1$$
: $x = \frac{a^2}{c}$, δ_2 : $x = \frac{a^2}{c}$.

Это пара прямых параллельных оси ординат.

Теорема. Для произвольной точки эллипса M отношение расстояний до фокуса и до соответствующей директрисы есть величина постоянная и равная эксцентриситету эллипса:

$$\frac{\rho(M,\delta_i)}{\rho(M,F_i)} = \varepsilon$$
, $i = 1,2$.

Доказательство.

Гипербола. Определение. Гиперболой называется множество точек плоскости, таких, что: существуют точки F_1 , F_2 , называемые фокусами, что модуль разности расстояний от произвольной точки M гиперболы до F_1 и от M до F_2 есть величина постоянная:

$$||MF_1| - |MF_2|| = 2a,$$
 (3)

т.е. независящая от выбора точки $M \in \gamma$, и $2a < 2c = |F_1F_2|$.

Составим уравнение гиперболы в декартовых координатах. Точку O(0,0) поместим в середину отрезка F_1F_2 , так, что $Ox \uparrow \uparrow \overrightarrow{OF_1}$. Тогда ось Oy определится однозначно. Фокусы имеют координаты $F_1(c,0)$, $F_2(-c,0)$.

Пусть M(x, y) – любая точка гиперболы. Тогда

$$|MF_1| = \sqrt{(x-c)^2 + y^2},$$

 $|MF_2| = \sqrt{(x+c)^2 + y^2}.$

Согласно определению (3) имеем $\sqrt{(x-c)^2 + y^2} = \pm 2a + \sqrt{(x+c)^2 + y^2}$.

Совершаем такие же преобразования, что и для эллипса и результате имеем уравнение

$$x^{2}(c^{2}-a^{2})-a^{2}y^{2}=a^{2}(c^{2}-a^{2}).$$

Т.к. a < c то можно обозначить $b^2 = c^2 - a^2$, и получаем

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ . \tag{4}$$

Мы доказали, что координаты произвольной точки гиперболы удовлетворяют (4). Необходимо еще доказать обратное: если координаты точки M(x,y) удовлетворяют (4), то выполнено (3). Из (4) выразим $y^2 = b^2(\frac{x^2}{a^2}-1)$ и подставим в выражение для $|MF_1|$, учитывая при этом обозначение $b^2 = c^2 - a^2$. Точно так же, как и для эллипса получим

$$|MF_1| = \left| a - \frac{cx}{a} \right|, \qquad |MF_2| = \left| a + \frac{cx}{a} \right|. \qquad (**)$$

Из (4) вытекает, что $x^2 = a^2(1 + \frac{y^2}{b^2}) \implies |x| \ge a$, и по определению c > a. Значит, второе слагаемое в формулах (**) по модулю больше первого и при $x \ge a$ получаем

$$|MF_1| = \frac{cx}{a} - a,$$
 $|MF_2| = a + \frac{cx}{a},$

а при $x \le -a$ получаем

$$|MF_1| = a - \frac{cx}{a}$$
, $|MF_2| = -a - \frac{cx}{a}$.

В обоих случаях выполняется (3).

Уравнение (4) называется каноническим уравнением гиперболы.

Геометрические свойства гиперболы.

1. Вся гипербола содержится в области, определяемой неравенствами

$$|x| \ge a$$
, $|x| > \frac{a}{b}|y|$

- **2.** Ось Ox пересекает гиперболу в точках $A_1(a, 0)$, $A_2(-a, 0)$, которые называются вершинами гиперболы. Числа a и b называются полуосями гиперболы действительной и мнимой.
- **3.** Координатные оси являются осями симметрии гиперболы, а начало координат центром симметрии.
- **4.** Прямые l_1 : $y = \frac{b}{a} x$ и l_2 : $y = -\frac{b}{a} x$ называются *асимптотами* гиперболы. Асимптоты можно задать одним уравнением $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$.
 - 5. Параметрические уравнения гиперболы

$$\begin{cases} x = \pm a \operatorname{ch} t, \\ y = b \operatorname{sh} t, t \in \mathbf{R}. \end{cases} \quad \text{или} \quad \begin{cases} x = a(t+1/t), \\ y = b(t-1/t), t \in \mathbf{R} \setminus \{0\}. \end{cases}$$

Определение. Эксцентриситет ε гиперболы, заданной уравнением (4) определяется равенством $\varepsilon = \frac{c}{a}$.

Определение. Директрисы гиперболы определяются уравнениями

$$\delta_1: x = \frac{a^2}{c}, \quad \delta_2: x = \frac{a^2}{c}.$$

Это пара прямых параллельных оси ординат.

Теорема. Для произвольной точки гиперболы M отношение расстояний до фокуса F_i и до соответствующей директрисы δ_i есть величина постоянная и равная эксцентриситету эллипса:

$$\frac{\rho(M,\delta_i)}{\rho(M,F_i)} = \varepsilon$$
, $i = 1,2$.

Доказательство.

Парабола.

Определение. Параболой называется геометрическое место точек равноудалённых от заданной прямой (директрисы параболы) и от заданной точки (фокуса параболы), не лежащей на директрисе.

Если фокус поместить в точку F(p/2, 0), а директрису задать уравнением x=-p/2, то уравнение параболы примет вид

$$y^2 = 2px. (5)$$

Очевидно, что параметр p в уравнении (5) равен расстоянию от фокуса параболы до её директрисы.

Уравнение (5) называется каноническим уравнением параболы.

Геометрические свойства параболы.

- **1.** Точки параболы принадлежат полуплоскости $x \ge 0$.
- **2.** Ось Ox является осью симметрии параболы.
- **3.** Координатные оси пересекают параболу в точке O, которая называется *вершиной параболы*.

Оптические свойства эллипса и параболы.

Теорема. Луч света, исходящий из одного фокуса эллипса, после отражения от эллипса, проходит через второй его фокус.

Доказательство.

Теорема. Луч, исходящий из фокуса параболы, отразившись от параболы, движется параллельно ее оси. Наоборот, луч, приходящий параллельно оси параболы, отразившись проходит через фокус параболы

Доказательство..

Классификация кривых второго порядка.

Определение. Кривой второго порядка называется геометрическое место точек, координаты которых удовлетворяют уравнению

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{1}x + 2a_{2}y + c = 0,$$
 (6)

в котором хотя бы один из коэффициентов a_{11} , a_{12} , a_{22} отличен от нуля. **Теорема**. Для любой кривой Γ второго порядка существует такое движение декартовой системы координат, в результате которого уравнение кривой Γ совпадает с одним из таковых в следующей таблице :

Эллипс	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Мнимый эллипс	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$
Гипербола	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
Пара пересекающихся прямых	$a^2x^2 - b^2y^2 = 0$

Точка	$a^2x^2 + b^2y^2 = 0$
Парабола	$y^2 = 2px$,
Пара параллельных прямых $x^2 = a^2$	
Пара мнимых параллельных	
прямых	$x^2 = -a^2$
Пара совпадающих пря	$x^2 = 0$

Доказательство.

Примеры.