LOW LATENCY EXECUTION FOR APACHE SPARK

Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout

WHO AMI?

PhD candidate, AMPLab UC Berkeley

Dissertation: System design for large scale machine learning

Apache Spark PMC Member. Contributions to Spark core, MLlib, SparkR

LOW LATENCY: SPARK STREAMING

Apache Spark User List

how to choose right DStream batch interval

< Previous Topic

LOW LATENCY: SPARK STREAMING

Apache Spark User List

how to choose right DStream batch interval

< Previous Topic

Benchmarking Streaming Computation **Engines at Yahoo!**

gihong

(Yahoo Storm Team in alphabetical order) Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Tom Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry Peng and Paul Poulosky.

0 SOF

16 posts

DISCLAIMER: Dec 17th 2015 data-artisans has pointed out to us that we accidentally left on some debugging in the flink. benchmark. So the flink numbers should not be directly compared to the storm and spark numbers. We will rerun and repost the numbers when we have fixed this.

UPDATE: Dec 18, 2015 there was a miscommunication and the code that was checked in was not the exact code we ran with for flink. The real code had the debugging removed. Data-Artisans has looked at the code and confirmed it and the current numbers are good. We will still rerun at some point soon.

Executive Summary - Due to a lack of real-world streaming benchmarks, we developed one to compare Apache Flink, Apache Storm and Apache Spark Streaming, Storm 0.10.0, 0.11.0-SNAPSHOT and Flink 0.10.1 show subsecond latencies at relatively high throughputs with Storm having the lowest 99th percentile latency. Spark streaming 1.5.1 supports high throughputs, but at a relatively higher latency.

LOW LATENCY: SPARK STREAMING

Apache Spark User List

how to choose right DStream batch interval

with for flink. The recurrent numbers are

Executive Summan Flink, Apache Storn

second latencies at streaming 1.5.1 sup

< Previous Topic

parameters and configurations that can be tuned to improve the performance of you application. At a high level, you need to consider two things:

- 1. Reducing the processing time of each batch of data by efficiently using cluster resources.
- 2. Setting the right batch size such that the batches of data can be processed as fast as they are received (that is, data processing keeps up with the data ingestion).

Reducing the Batch Processing Times

There are a number of optimizations that can be done in Spark to minimize the processing time of each batch. These have been discussed in detail in the Tuning Guide. This section highlights some of the most important ones.

LOW LATENCY: EXECUTION

Large Clusters

THIS TALK

Low latency execution engine for iterative workloads

Execution Models

EXECUTION MODELS: BATCH PROCESSING

Centralized task scheduling

Driver: Coordinate shuffles, data sharing

Lineage, Parallel Recovery

EXECUTION MODELS: PARALLEL OPERATORS

SCALING BEHAVIOR

Median-task time breakdown

Cluster: 4 core, r3.xlarge machines

Workload: Sum of 10k numbers per-core

Can we achieve **low latency** with Apache Spark?

DESIGN INSIGHT

Fine-grained execution with coarse-grained scheduling

DRIZZLE

Batch Scheduling Pre-Scheduling Shuffles Distributed Shared Variables Iteration

DAG SCHEDULING

Same DAG structure for many iterations

Can reuse scheduling decisions

BATCH SCHEDULING

Schedule a **batch** of iterations at once

1 stage in each iteration

Fault tolerance, scheduling at batch boundaries

HOW MUCH DOES THIS HELP?

Single Stage Job, 100 iterations - Varying Drizzle batch size

Workload: Sum of 10k numbers per-core

DRIZZLE

Batch Scheduling

Pre-Scheduling Shuffles

Distributed Shared Variables

COORDINATING SHUFFLES: APACHE SPARK

- Task
- Intermediate Data
- ----> Data Message
- Control Message

Driver sends metadata

Tasks pull data

COORDINATING SHUFFLES: PRE-SCHEDULING

- Task
- Pre-scheduled task
- Intermediate Data
- ---> Data Message
- Control Message

Pre-schedule down-stream tasks on executors

Trigger tasks once dependencies are met

PUSH-METADATA, PULL-DATA

◆ Intermediate Data · · · · · > Metadata Message ----> Data Message

Coalesce metadata across cores Transfer during downstream stage

MICRO-BENCHMARK: 2-STAGES

Workload: Sum of 10k numbers per-core

DRIZZLE

Batch Scheduling

Pre-Scheduling Shuffles

Distributed Shared Variables

Iteration

SHARED VARIABLES

Fine-grained updates to shared data

Distributed shared variables

- MPI using MPI_AllReduce
- Bloom, CRDTs
- Parameter servers, key-value stores
- reduce followed by broadcast

DRIZZLE: REPLICATED SHARED VARIABLES

Commutative updates e.g. vector addition

Custom merge strategies

ENABLING ASYNC UPDATES

Asynchronous semantics within a batch

Synchronous semantics enforced at batch boundaries

EVALUATION

Micro-benchmarks

- Single stage
- Multiple stages
- Shared variables

End-to-end experiments

- Streaming benchmarks
- Logistic Regression

Implemented on Apache Spark 1.6.1 Integrations with Spark Streaming, MLlib

USING DRIZZLE API

Internal

```
DAGScheduler.scala

def runJob(
    rdd: RDD[T],
    func: Iterator[T] => U)

def runBatchJob(
    rdds: Seq[RDD[T]],
    funcs: Seq[Iterator[T] => U])
```

USING DRIZZLE

```
Spark Streaming
```

```
StreamingContext.scala
    def this(
        sc: SparkContext,
        batchDuration: Duration)
    def this(
        sc: SparkContext,
        batchDuration: Duration,
        jobsPerBatch: Int)
```

CHOOSING BATCH SIZE

b=1 → Batch processing

b=N → Parallel operators

Higher overhead

Smaller window for fault tolerance

Lower overhead Larger window for fault tolerance

In practice: Largest batch such that overhead is below fixed threshold e.g., For 128 machines, batch of few seconds is enough

EVALUATION

Micro-benchmarks

- Single stage
- Multiple stages
- Shared variables

End-to-end experiments

- Streaming benchmarks
- Logistic Regression

Implemented on Apache Spark 1.6.1 Integrations with Spark Streaming, MLlib

STREAMING BENCHMARK

Event Latency: Difference between window end, processing end

Yahoo Streaming Benchmark: 1M JSON Ad-events / second, 64 machines

MLLIB: LOGISTIC REGRESSION

WORK IN PROGRESS

Automatic batch size tuning

Open source release

Apache Spark JIRA to discuss potential contribution

CONCLUSION

Overheads when using Apache Spark for streaming, ML workloads

Drizzle: Low Latency Execution Engine

- Decouple execution from centralized scheduling
- Milliseconds latency for iterative workloads

Workloads / Questions / Contributions

Shivaram Venkataraman shivaram@cs.berkeley.edu