#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

seaborn 막대 그래프

가장 기본이 되는 막대 그래프 함수인 barplot() 의 세부 사용법 확인

#01. 데이터 준비

1. 패키치 참조

```
from matplotlib import pyplot as plt
from pandas import read_excel, concat
import seaborn as sb
```

2. 데이터 가져오기

```
성적표df = read_excel('https://data.hossam.kr/D01/grade.xlsx', index_col=
성적표df
```

	학년	성별	국어	영어	수학	과학
이름						
철수	1	남자	98	77	88	64
영희	2	여자	88	120	62	72

06_seaborn_막대그래프.ipynb

seaborn 막대 그래프

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

	학년	성별	국어	영어	수학	과학
이름						
민철	1	남자	92	70	83	79
수현	3	여자	63	60	31	71
호영	4	남자	75	50	90	88
혜민	4	여자	80	88	91	72
용식	2	남자	82	88	79	90
나영	1	여자	90	92	81	95
석영	4	남자	91	90	89	80

3. 데이터 전처리

```
df = 성적표df.astype({"학년": "category", "성별": "category"})
df.dtypes
```

```
학년 category
성별 category
국어 int64
영어 int64
수학 int64
과학 int64
dtype: object
```

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

4. 그래프 전역 설정

```
plt.rcParams["font.family"] = 'Malgun Gothic'
#plt.rcParams["font.family"] = 'AppleGothic'
plt.rcParams["font.size"] = 12
plt.rcParams["figure.figsize"] = (7, 4)
plt.rcParams["axes.unicode_minus"] = False
```

#02. 막대 그래프 그리기

1. 기본 사용 방법

barplot() 함수는 기본적으로 집계가 완료된 데이터를 시각화 한다.

x 축에 지정된 항목이 중복되지 않는다면 각 집단별 집계결과를 표시한다.

```
sb.barplot(data=df, x=df.index, y='국어')
plt.show()
plt.close()
```

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

2. 평균 막대 그래프

x 축에 지정된 데이터에 중복된 값이 있다면 y 축은 평균값을 표시한다.

그래프에 표시되는 막대는 95% 신뢰구간을 의미한다.

신뢰구간을 변경하고자 하는 경우 errorbar=('ci', 70) 형식으로 파라미터 설정한다.

errorbar=sd 라고 설정할 경우 신뢰구간이 아니라 표준편차를 표현할 수 있다.

```
sb.barplot(data=df, x='학년', y='국어')
#plt.xticks([1, 2, 3, 4], ['1학년', '2학년', '3학년', '4학년'])
plt.xticks([0, 1, 2, 3], ['1학년', '2학년', '3학년', '4학년'])
```

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

3. 다른 지표 적용하기

barplot() 함수에 estimator 파라미터를 적용하면 다른 지표를 표시할 수 있다.

합계

```
sb.barplot(data=df, x='학년', y='국어', estimator='sum')
plt.show()
plt.close()
```

seaborn 막대 그래프

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

최대값

```
sb.barplot(data=df, x='성별', y='국어', estimator='max')
plt.show()
plt.close()
```

seaborn 막대 그래프

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

최소값

```
sb.barplot(data=df, x='성별', y='국어', estimator='min')
plt.show()
plt.close()
```

seaborn 막대 그래프

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

중앙값

데이터를 순서대로 나열한 후 가운데 위치한 값

```
sb.barplot(data=df, x='학년', y='국어', estimator='median')
plt.show()
plt.close()
```

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

#03. 범주에 따른 구분

hue 파라미터의 적용

```
sb.barplot(data=df, x='학년', y='국어', hue='성별', estimator='median')
plt.show()
plt.close()
```

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

범주 위치 옮기기

```
sb.barplot(data=df, x='학년', y='국어', hue='성별', estimator='median')
plt.legend(bbox_to_anchor=(1,1))
plt.show()
plt.close()
```

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

범주 적용을 위한 데이터 재배치

	점수	과목
이름		
철수	98	국어
영희	88	국어

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

	점수	과목
이름		
민철	92	국어
수현	63	국어
호영	75	국어
혜민	80	국어
용식	82	국어
나영	90	국어
석영	91	국어

df2 = df.filter(['영어']).rename(columns={'영어': '점수'})	
df2['과목'] = '영어'	
df2	

	점수	과목
이름		
철수	77	영어
영희	120	영어
민철	70	영어
수현	60	영어
호영	50	영어

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

	점수	과목
이름		
혜민	88	영어
용식	88	영어
나영	92	영어
석영	90	영어

df3 = concat([df1, df2])
df3

	점수	과목
이름		
철수	98	국어
영희	88	국어
민철	92	국어
수현	63	국어
호영	75	국어
혜민	80	국어
용식	82	국어
나영	90	국어

seaborn 막대 그래프

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

	점수	과목
이름		
석영	91	국어
철수	77	영어
영희	120	영어
민철	70	영어
수현	60	영어
호영	50	영어
혜민	88	영어
용식	88	영어
나영	92	영어
석영	90	영어

```
sb.barplot(data=df3, x=df3.index, y='점수', hue='과목')
plt.show()
plt.close()
```

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

#04. 수평 막대 그래프

x 축과 y 축을 바꿔 설정하고 orient='h' 파라미터를 추가한다.

```
sb.barplot(data=df, x='국어', y='학년', hue='성별', orient='h')
plt.show()
plt.close()
```

seaborn 막대 그래프

#01. 데이터 준비

- 1. 패키치 참조
- 2. 데이터 가져오기
- 3. 데이터 전처리
- 4. 그래프 전역 설정

#02. 막대 그래프 그리기

- 1. 기본 사용 방법
- 2. 평균 막대 그래프
- 3. 다른 지표 적용하기

합계

최대값

최소값

중앙값

#03. 범주에 따른 구분

hue 파라미터의 적용

범주 위치 옮기기

범주 적용을 위한 데이터 재배치

#04. 수평 막대 그래프

