One's Complement Method of Subtraction (Integers)

In computers, subtraction operation for binary integer numbers is done by the complement method

```
10110011<sub>2</sub> (minuend)
- 01101101<sub>2</sub> (subtrahend)
```

Computers perform this operation using an inverter logic gate

```
1 1 1 1 (carry)
1 0 1 1 0 0 1 1 (minuend)
+ 1 0 0 1 0 0 1 0 (1's complement of subtrahend)
1 0 1 0 0 0 1 0 1
+ 1 (end around carry from line above)
0 1 0 0 0 1 1 0 (difference)
```

One's Complement Method of Subtraction (Fractional)

In computers, subtraction operation for real binary numbers is also done by the complement method

```
1011.001<sub>2</sub> (minuend)
- 110.10<sub>2</sub> (subtrahend)
```

Very important that the number of digits in the inversion process for the subtrahend match the number of digits in the minuend

```
1\ 1\ 1\ 1\ 1\ 1
- 0\ 1\ 1\ 0\ 1\ 0\ 0 (subtrahend)
1\ 0\ 0\ 1\ 0\ 1\ 1 (1's complement of subtrahend)
```

```
1 11 11 (carry)
1011.001 (minuend)
+ 1001.011 (1's complement of subtrahend)
10100.100
+ 1 (end around carry from line above)
0100.101 (difference)
```

Two's Complement Method of Subtraction (Integers)

Computers use the two's complement to perform the binary subtraction operation for integer numbers

```
01100111_2 (minuend)
01001010<sub>2</sub> (subtrahend)
                             11111111
                           <u>- 0 1 0 0 1 0 1 0 (subtrahend)</u>
                             10110101 (1's complement of subtrahend)
                           + 1 (add 1)
                             1 0 1 1 0 1 1 0 (2's complement)
            111 11 (carry)
              0 1 1 0 0 1 1 1 (minuend)
           + 10110110 (2's complement)
 (ignore carry) \frac{1}{2} 0 0 0 1 1 1 0 1 (difference)
```

Two's Complement Method of Subtraction (Fractional)

Computers use the two's complement to perform the binary subtraction operation for real numbers

```
1010.11_2 (minuend)
 100.1_2 (subtrahend)
                           1111.11
                         - <u>0 1 0 0 . 1 0</u> (subtrahend)
                           1011.01 (1's complement of subtrahend)
                          \underline{\phantom{a}} (add 1)
                           1 0 1 1 . 1 0 (2's complement)
           1 1 1 1 (carry)
              1010.11 (minuend)
         + 1011.10 (2's complement)
```

(ignore carry) $\frac{1}{2}$ 0 1 1 0 . 0 1 (difference)

Nine's Complement Method of Subtraction

```
731<sub>10</sub> (minuend)
- <u>542<sub>10</sub> (</u>subtrahend)
```

Nine's complement subtraction for base 10 numbers is an alternative method

```
9 9 9- 5 4 2 (subtrahend)4 5 7 (9's complement of subtrahend)
```

```
1 (carry)

7 3 1 (minuend)

+ 4 5 7 (9's complement)

1 (11) 8 8

- 10 (subtract value of carry)

1 1 8 8

+ 1 (end around carry from line above)

1 8 9 (difference)
```

Ten's Complement Method of Subtraction

```
835<sub>10</sub> (minuend)
- 676<sub>10</sub> (subtrahend)
```

Ten's complement subtraction for base 10 numbers is an alternative method

```
9 9 9

- 6 7 6 (subtrahend)

3 2 3 (9's complement of subtrahend)

+ 1 (add 1)

3 2 4 (10's complement)
```

Eight's Complement Method of Subtraction

```
\frac{1713_8}{-} (minuend)
\frac{1147_8}{-} (subtrahend)
```

Eight's complement subtraction for base 8 numbers is an alternative method

```
7 7 7 7

- 1 1 4 7 (subtrahend)

6 6 3 0 (7's complement of subtrahend)

+ 1 (add 1)

6 6 3 1 (8's complement)
```

```
1 1 (carry)
1 7 1 3 (minuend)
+ 6 6 3 1 (8's complement)
1 (8) (13) 4 4
- 8 8 (subtract value of carry)
(ignore carry) 1 0 5 4 4 (difference)
```

Sixteen's Complement Method of Subtraction

	Sixteen's complement subtraction for base 16	
<u>- 267₁₆ (subtrahend)</u>	numbers is an alternative	
	method	
FFF		
<u>- 267</u>	(subtrahend)	
13 9 8 = D 9 8	(15's complement of subtrahend)	
<u>+ 1</u>	L_(add 1)	
D 9 9	(16's complement)	
1 1 1	(carry)	
3 C	B (minuend)	
<u>+ D 9</u>	9 (16's complement)	
1 (17) (22)		
<u> </u>	16 (subtract value of carry)	
(ignore carry) $\frac{1}{2}$ 6	4 (difference)	

Dec	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	E
15	F

Summary of Complement Method of Subtraction

1's and 9's complement method for subtraction are very similar

2's, 8's, 10's and 16's complement method of subtraction are very similar

Signed Numbers

In base 10, indicating positive and negative numbers is simple ...(-14...+14)

In binary (base 2), if number is declared as signed bit, then left-most bit (MSB) becomes the sign bit

0 = positive sign

1 = negative sign

In signed representation, MSB is the sign bit In unsigned representation, MSB is part of the magnitude

$$00001110_2 = 14_{10}$$

$$10001110_2 = -14_{10}$$

where 0 or 1 is the sign bit and the rest of the bits are the magnitude

In computers, complement methods are used to represent negative numbers

Signed Number Representation

There are 3 different methods to represent signed numbers Signed magnitude, 1's complement, 2's complement

Signed Magnitude							
Dec Bin							
+0	000						
+1	001						
+2	010						
+3	011						
-0	100						
-1	101						
-2	110						
-3 111							

???

One's Complement								
Dec Bin								
+0	000							
+1	001							
+2	010							
+3	011							
-0	111							
-1	110							
-2 101								
-3 100								

Two's Complement							
Dec Bin							
+0	000						
+1	001						
+2	010						
+3	011						
-1	111						
-2	110						
-3	101						
-4	100						

Assume a 3-bit signed number

2's complement is best representation of (+) and (-) numbers

Signed Number Addition

Assume the following examples use signed 5-bit 2's complement binary numbers to represent negative numbers

Example 1

<u>Base 10</u>	Base 2	
+11	01011 (+11)	0 1 0 1 1 (+11)
<u>- 05</u>	00101 (+5)	+1 1 0 1 1 (-5using 2's complement)
+06	(ignore carry)	1 00110

When the positive number magnitude is larger

MSB	9SB	8SB	7SB	6SB	5SB	4SB	3SB	2SB	LSB	Fractional Base 2	
2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20	2-1	2-2
512	256	128	64	32	16	8	4	2	1	0.5	0.25

Signed Number Addition

Example 2

When the negative number magnitude is larger

Example 3

When both numbers are negative

MSB	9SB	8SB	7SB	6SB	5SB	4SB	3SB	2SB	LSB	Fractional Base 2	
2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20	2-1	2-2
512	256	128	64	32	16	8	4	2	1	0.5	0.25