CONVEX AND CONIC OPTIMIZATION

Homework 6

NILAVA METYA

nilava.metya@rutgers.edu nm8188@princeton.edu

May 2, 2024

Problem 1

- 1. Suppose you had a blackbox that given a 3SAT instance would tell you whether it is satisfiable or not. How can you make polynomially many calls to this blackbox to find a satisfying assignment to any satisfiable instance of 3SAT?
- 2. Suppose you had a blackbox that given a graph G and an integer k would tell you whether G has a stable set of size larger or equal to k. How can you make polynomially many calls to this blackbox to find a maximum stable set of a given graph?

Solution

1. Denote the blackbox by f. So f takes in a formula (in three variables) and outputs 1 if satisfiable, and 0 otherwise.

Let S be a formula in CNF, with variables x_1, \dots, x_n . Treat S as a polynomial in x_i 's. Assume S is satisfiable, i.e., there are values $a_1, \dots, a_n \in \{0,1\}$ such that $S(a_1, \dots, a_n) = 1$. Often we denote $\mathbf{a} = (a_1, \dots, a_n)$. We will make n calls to the blackbox.

Claim 1

For each $i \in [n]$, at least one of $f(x_i \wedge S)$ or $f(\overline{x_i} \wedge S)$ is 1.

Proof. If
$$a_i = 1$$
 then $(x_i \wedge S)(\boldsymbol{a}) = 1 \cdot S(\boldsymbol{a}) = 1$. If $a_i = 0$ then $(\overline{x_i} \wedge S)(\boldsymbol{a}) = 1 \cdot S(\boldsymbol{a}) = 1$.

We find each $f(x_i \wedge S)$ with the blackbox. For each i, if $f(x_i \wedge S) = 1$ then set $a_i = 1$, otherwise set $a_i = 0$. Denote $y_i := \begin{cases} x_i & \text{if } a_i = 1 \\ \overline{x_i} & \text{otherwise} \end{cases}$. a satisfies every $y_i S$ by the above. We'll show that a satisfies S.

$$\left(\bigwedge_{i=1}^{n} (y_i S)\right)(\mathbf{a}) = \left[\left(\bigwedge_{i=1}^{n} y_i\right) \wedge S\right](\mathbf{a}) \qquad [\because \alpha \wedge \alpha = \alpha]$$

$$\implies \prod_{i=1}^{n} (y_i \wedge S)(\mathbf{a}) = \left(\prod_{i=1}^{n} y_i(\mathbf{a})\right) \cdot S(\mathbf{a}) \qquad [\because (\alpha \wedge \beta)(\mathbf{a}) = \alpha(\mathbf{a}) \cdot \beta(\mathbf{a})]$$

$$\implies 1 = \left(\prod_{i=1}^{n} y_i(\mathbf{a})\right) \cdot S(\mathbf{a}) \qquad [\because (y_i S)(a) = 1 \forall i]$$

$$\implies 1 = S(\mathbf{a}) \qquad [\because y_i(\mathbf{a}) = 1 \forall i \text{ by construction}]$$

2.

Problem 2

Consider a family of decision problems indexed by a positive integer k:

RANK-k-SDP

Input: Symmetric $n \times n$ matrices A_1, \dots, A_m with entries in \mathbb{Q} , scalars $b_1, \dots, b_m \in \mathbb{Q}$. **Question**: Is there a real symmetric matrix X that satisfies the constraints

$$Tr(A_iX) = b_i, i \in [m], X \succeq 0, rank(X) = k?$$