

Single Crystal Nickel Based Superalloys for High Temperature Applications

- Microstructure, Properties, Anisotropy -

Uwe Glatzel

Metals and Alloys

University Bayreuth

University Bayreuth

2

Uwe Glatzel, Metals and Alloys

Content

- motivation: history, application field
- processing
- · microstructure, misfit
- anisotropic properties (modulos, creep behavior)
- dislocations, stress induced diffusion
- Outlook (alloys with reduced density, platinum based superalloys)

TU-Berlin (SFB 339)

Uni Jena

Superalloys for Extreme Demands

Single crystal nickel based superalloys as material for first rotating blades after the

combustion chamber in aircraft flight engines.

gas temp.: 1500°C

material: 1100°C

20.000 rpm

 \Rightarrow const. stress of about 100 MPa ($\approx 1 \text{ car/cm}^2$)

owe Glatzel, Metals and Alloys

Omversity Dayreum

Big, Single Crystal Blade

Blade for stationary gas turbine for power production

Coefficient of Efficiency

regular fuel car engine: 23%

diesel car engine: 27%

aircraft turbine: 30-35%

stationary gasturbine: 40%

gas and steam generation: 54%

gas + steam + long distance heating: 87%

$$\eta_{\text{theor.}}^{\text{max}} = \frac{T_{\text{in}} - T_{\text{out}}}{T_{\text{in}}}$$

increase of T_{in} increases coefficient of efficiency

University Bayreuth

(

Uwe Glatzel, Metals and Alloys

Increase in Temperature due to Improved Construction and Material etallisch

Why nickel based superalloys? Anomalous flow stress behavior of the intermetallic phase Ni₃Al:

History

≈ 1980: Inconel 738 (polycrystalline) => 738 LC (single crystal) 50-60vol.% γ' phase, 3wt.% W, 0% Re SRR 99, CMSX-6 (first generation)

60-70% γ', 9% W, 0% Re

≈ 1990: CMSX-4 (second generation)

> 70 % γ', 6% W, 3% Re

≈ 1995: CMSX-10 (third generation) > 70 % γ', 6% W, 6% Re

Costly and time intensive heat treatment:

3-stage homogenization, controlled rapid cooling 2-stage aging

Content

- motivation: history, application field
- processing <===
- microstructure, misfit
- anisotropic properties (modulos, creep behavior)
- dislocations, stress induced diffusion
- Outlook (alloys with reduced density, platinum based superalloys)

University Bayreuth

10

Uwe Glatzel, Metals and Alloys

Heat Treatment

example: CMSX-4 standard heat treatment

homogenization:

1 h @ 1280°C, 2 h @ 1290°C, 6 h @ 1300°C cooling rate 150-400°C/min.

aging

6 h @ 1140°C für 6 h, 870°C für 16 h

if possible, combined with coating treatment

University Bayreuth

12

Uwe Glatzel, Metals and Alloys

Content

- motivation: history, application field
- processing
- microstructure, misfit
- anisotropic properties (modulos, creep behavior)
- dislocations, stress induced diffusion
- Outlook (alloys with reduced density, platinum based superalloys)

Microstructure

two-phase, single crystal:

face-centred-cubic matrix (nickel solid solution)

 $Ni_3Al => fcc$, but superlattice ordering, L1₂ or γ' Phase

dislocation free

University Bayreuth

14

Uwe Glatzel, Metals and Alloys

Ni₃Al ⇔ nickel solid solution

nickel atoms in face centre

aluminium atoms on cube corners

$$d_{Ni,Al} = 358,0 \text{ pm}$$

$$d_{Ni_3Al} = 358,0 \text{ pm}$$
 $d_{nickel \text{ solid sol.}} = 358,7 \text{ pm}$

in nickel solid solution → statistical distribution of atoms

15

Optimal Precipitation Hardening

- round particles (better than needle-shaped)
- high volume fraction <a>
- finely dispersed 🗸
- small particles ()
- hard precipitates, soft matrix

in text books no information given on optimum misfit

500 nm

Uwe Glatzel, Metals and Alloys

University Bayreuth

Constrained ↔ Unconstrained Misfit

Small difference in lattice parameter, $\Delta d/d \approx -(1-3)\cdot 10^{-3}$ resulting in a <u>coherent</u> interface and internal stresses:

isotropic misfit

$$\sigma = E \frac{\Delta d}{d} \approx 100 - 300 \text{ MPa}$$

misfit dependent of planes taken for Bragg reflection

Two-Phase but 100% Coherent => Internal Stresses

Uwe Glatzel, Metals and Alloys

Stress Distribution

two views of 1/8 of the γ' cube with surrounding matrix

Stress Distribution Schematical

University Bayreuth

20

Uwe Glatzel, Metals and Alloys

"Macrostructure"

dendrite spacing ≈ 1/4 mm

single crystal, but no hypomogeneous distribution of tungsten and rhenium

⇒ therefore local variation of misfit

Variation of Misfit due to Dendritic Segregation

- negative misfit in dendrite
- close to zero in interdendritic region

Völkl, Glatzel, Feller-Kniepmeier; Acta mat. 46 (1998) 4395

University Bayreuth

22

Uwe Glatzel, Metals and Alloys

Local Stress Variation

interdendritic region

Content

- motivation: history, application field
- processing
- microstructure, misfit
- anisotropic properties (modulos, creep behavior)
- dislocations, stress induced diffusion
- Outlook (alloys with reduced density, platinum based superalloys)

University Bayreuth

24

Uwe Glatzel, Metals and Alloys

Elastic Anisotropy together with Misfit:

- Explanation for cuboidal γ' precipitates, with $\{100\}$ phase boundary planes
- thereby very high volume fractions achievable

Temperature Dependence of Elastic Constants

Important: anisotropy stays on the same high level of ≈ 2.8

Siebörger, Knake, Glatzel; Mat. Sci. Eng. A298 (2001) 26

University Bayreuth

26

Uwe Glatzel, Metals and Alloys

Creep Deformation

High Temperature Deformation up to 1400°C

temperature and load are kept constant

University Bayreuth

28

Uwe Glatzel, Metals and Alloys

Orientation Dependence at 850°C

Orientation Dependence at 980°C

anisotropy has less influence at higher temperatures

University Bayreuth

30

Uwe Glatzel, Metals and Alloys

Changes in Morphology 980°C, 350 MPa, 28 h

rafts with planes normal to the external [001] load axis

bars with long axis parallel to <100>

[001] crystal orientation:

- fastest growing direction +
- elastic soft +
- leads to {001} phase boundaries of the cuboidal γ' particles +
- direction of best creep properties +

University Bayreuth

32

Uwe Glatzel, Metals and Alloys

Content

- motivation: history, application field
- processing
- microstructure, misfit
- anisotropic properties (modulos, creep behavior)
- dislocations, stress induced diffusion
- Outlook (alloys with reduced density, platinum based superalloys)

FEM calculation of stress distribution (pure elastic)

No external load

→ high compression stresses in matrix channels parallel to the phase boundaries

compression tension

σ With an external load (500 MPa)

→ high stress levels in horizontal channels; low stress levels in vertical channels

pure elastic at time t = 0

University Bayreuth

34

[100]

[001]

[010]

Uwe Glatzel, Metals and Alloys

FEM calculations of stress distribution after creep (plastic deformation)

horizontaler channel: High density of edge dislocations with additional half plane within γ' phase

vertical channel: network of LH- and RHscrew dislocations. 1/3 density

TEM Dislocation Structure: M

cross section, $\varepsilon = 2.1 \%$ external load normal to view plane

look onto horizontal matrix channels, vertical channels edge-on.

longitudinal section $\varepsilon = 1\%$

University Bayreuth

load axis

Uwe Glatzel, Metals and Alloys

Stress Induced Diffusion (EDX-TEM)

Large atoms diffuse from vertical to horizontal channel.

 $c_{\text{tungsten}}^{\text{horizontal channel}} = 1.2 \cdot c_{\text{tungsten}}^{\text{vertical channel}}$

 $\sigma_{ext.} \approx 500 \text{ MPa}$

Schmidt and Feller-Kniepmeier, 1993 (SRR99, 760°C)

Summary: changes occuring durig creep

additionally: compostion variation dendrite – interdendritic region and morphology changes

Content

- motivation: history, application field
- processing
- microstructure, misfit
- anisotropic properties (modulos, creep behavior)
- dislocations, stress induced diffusion
- Outlook (alloys with reduced density, platinum based superalloys)

Outlook

- International patent (Glatzel, Mack, Wöllmer, Wortmann): Reduce W and Re content → reduced density, improved phase stability, larger temperature window for solution heat treatment, cheaper → LEK 94. Within GP 7000 engine for Airbus A 380.
- DFG-Project "Platinbasissuperlegierungen": Pt-Al-Cr-Ni (+ Ta, + Ti) alloys can copy successful system of nickel based superalloys (coherent L1₂ ordered, cuboidal γ' particles with high volume fraction embedded in fcc-matrix)

University Bayreuth

40

Uwe Glatzel, Metals and Alloys

LEK 94

Microstructure Platinum Based Superalloy

Pt₇₇Al₁₄Cr₆Ni₆

12h @1500°C + 120h @1000°C

CMSX-4. same magnification

Hüller et al., Met.Mat.Trans. A, 36A (2005), 681

University Bayreuth

Uwe Glatzel, Metals and Alloys

Misfit Platinum Based Superalloys

42

Creep Properties Platinum Based Superalloys

Juni 2005 Bayreuth

