MOBCOM-MIdtermF2024

February 2, 2025

Mobile Communication Techniques

Petros Elia, elia@eurecom.fr Midterm Exam November 21st, 2024 Time: 9:00-10:00

Instructions

- Exercises fall in categories of 1-point and 2-point exercises.
- Total of $11 \times 1 + 2 \times 2 = 15$ points.
- NOTE!!! The exam will be evaluated, out of 13 points. Any points you get beyond 13 points, will be offered as extra bonus.
- Each answer should be clearly written, and the solution should be developed in detail.
- Mathematical derivations need to show all steps that lead to the answer.
- Complete as many exercises as you can. Don't spend too much time on an individual question.
- There is NO penalty for incorrect solutions.
- If in certain cases you are unable to provide rigorous mathematical proofs, go ahead and provide intuitive justification of your answers. Partial credit will be given.
- Calculators are not allowed.
- You are allowed your class notes and class book.

Hints - equations - conventions:

- Notation
 - SISO = single-input single-output, MISO = multiple-input single-output, SIMO = single-input multiple- output, MIMO = single-input multiple-output,
 - R represents the rate of communication in bits per channel use (b.p.c.u),
 - $-\rho$ represents the SNR (signal to noise ratio),
 - w will denote additive noise which will be distributed as a circularly symmetric Gaussian random variable $\mathbb{C}\mathcal{N}(0, N_0)$. If N_0 is not specified, then set $N_0 = 1$,
 - h_i will denote independent fading scalar coefficients which will be distributed as circularly symmetric Gaussian random variables $\mathbb{C}\mathcal{N}(0,1)$.

• GOOD LUCK!!

1) (1 point). In a multi-path fading scenario with delay spread $6\mu s$ and L=3 channel taps, what is the operational bandwidth W?

0.0.1 Answer:

Given $\tau_d=6\,\mu s$ and L=3: - Coherence bandwidth: $B_c\approx\frac{1}{\tau_d}=\frac{1}{6\times 10^{-6}}\approx 166.67\,\mathrm{kHz}$. - Operational bandwidth: $W\approx L\cdot B_c=3\cdot 166.67=500\,\mathrm{kHz}$.

$$W = 500 \, \text{kHz}$$

2) (1 point). Imagine a given SNR equal to ρ , and imagine that we are operating over a (quasistatic) Rayleigh fading SISO channel. Can you describe a code that achieves probability of error approximately equal to $P_e \approx \rho^4$, and rate equal to R=2 bpcu.

Solution 1: Repetition Code (256-QAM)

• Modulation: 256-QAM (8 bits/symbol)

• Code: Repetition factor = 4 (diversity order = 4)

• Rate: $R = \frac{8}{4} = 2 \,\text{bpcu}$

• Error Probability: $P_e \approx \rho^{-4}$

• Complexity: High due to 256-QAM

Solution 2: Rotated Code (4-QAM)

• Modulation: 4-QAM (2 bits/symbol)

ullet Code: Rotated constellation across 4 time slots (diversity order = 4)

• Rate: R = 2 bpcu

• Error Probability: $P_e \approx \rho^{-4}$

• Complexity: Lower due to 4-QAM

Comparison

Feature	Solution 1: Repetition Code (256-QAM)	Solution 2: Rotated Code (4-QAM)
Modulation	256-QAM (8 bits/symbol)	4-QAM (2 bits/symbol)
Code Type	Repetition code	Rotated time-diversity code
Diversity Order	4	4
Rate	2 bpcu	2 bpcu

Feature	Solution 1: Repetition Code (256-QAM)	Solution 2: Rotated Code (4-QAM)
Error Probability Complexity	$P_e \approx \rho^{-4}$ Higher decoding complexity	$P_e \approx \rho^{-4}$ Lower decoding complexity

Both solutions achieve **rate** = **2 bpcu** and **diversity order 4**, but the rotated 4-QAM code offers **lower complexity**.

Note:

- Alamouti Code: Closely related to Solution 2 but typically designed for MIMO (2 transmit antennas).
- 4-Dimensional Lattice Code: Matches Solution 2 with rotation and symbol spreading across multiple time slots. This solution achieves diversity order 4, fitting the requirement perfectly.

Diversity Order Overview

• Definition:

The number of independent signal paths used to combat fading. Error probability decreases as $P_e \approx \rho^{-d}$, where d is the diversity order.

Types of Diversity

- 1. **Time Diversity**: Transmit symbols across different time slots (e.g., repetition coding).
- 2. Frequency Diversity: Transmit across multiple frequencies (e.g., OFDM).
- 3. Space Diversity: Use multiple antennas (e.g., Alamouti code, MIMO).
- 4. Code Diversity: Spread symbol components across independent channels (e.g., rotated lattice codes).

Impact

• Higher diversity order reduces the likelihood of deep fades and improves error performance: $P_e \propto \rho^{-d}$

Examples

- 1. Diversity Order 1: SISO, $P_e \propto \rho^{-1}$.
- 2. Order 2: Alamouti code with 2 antennas, $P_e \propto \rho^{-2}$.
- 3. Order 4: Rotated 4-QAM or repetition with 4 paths, $P_e \propto \rho^{-4}$.

Higher diversity increases resilience against fading.

3) (1 point). How much time diversity will we get with the following SISO (time-diversity) channel model

$$[y_1 \ y_2 \ y_3] = [h_1u_1 \ h_2(u_1 + u_2) \ h_3u_2] + [w_1 \ w_2 \ w_3]$$

where the u_1, u_2, u_3 are independent PAM elements. Justify your answer.

To determine the **time diversity** in the given channel model:

Channel Model $[y_1 \ y_2 \ y_3] = [h_1u_1 \ h_2(u_1 + u_2) \ h_3u_2] + [w_1 \ w_2 \ w_3]$, where u_1, u_2, u_3 are independent PAM symbols, h_1, h_2, h_3 are the channel coefficients, and w_1, w_2, w_3 are noise terms.

Analysis

- 1. Definition of Time Diversity:
 - Time diversity is determined by the number of independently faded channel coefficients (h_1, h_2, h_3) that affect the transmitted symbols.
- 2. Observation of Dependencies:
 - y_1 depends on h_1u_1 .
 - y_2 depends on $h_2(u_1 + u_2)$.
 - y_3 depends on h_3u_2 .
- 3. Diversity Order:
 - u_1 is present in both y_1 and y_2 , thus contributing to diversity through h_1 and h_2 .
 - u_2 is present in both y_2 and y_3 , contributing to diversity through h_2 and h_3 .

Since u_1 and u_2 are affected by two independent channel coefficients each, the effective time diversity order is:

Time Diversity Order = $\min(\text{number of independent fades per symbol}) = \boxed{2}$.

Justification The system achieves a time diversity order of 2 because each transmitted symbol u_1 and u_2 is observed across two independently faded channels $(h_1, h_2 \text{ for } u_1; h_2, h_3 \text{ for } u_2)$. The third symbol u_3 does not contribute additional diversity as it is only affected by h_3 .

4) (1 point). In a SISO case, what is the degrees of freedom (DOF) if we have a time-diversity code (spanning three channel uses) of the form $\mathcal{X} = [u_1 + u_2 \quad u_1 + u_3 \quad u_2 + u_3]$ where the u_1, u_2, u_3, u_4 are independent 16-PAM elements?

Step 1: Code Setup The time-diversity code is:

$$\mathcal{X} = [u_1 + u_2, \quad u_1 + u_3, \quad u_2 + u_3]$$

- u_1, u_2, u_3, u_4 are independent complex numbers from 16-PAM, meaning each has a real and imaginary part.
- Since we are now counting **only the real part**, each complex symbol contributes **1 real degree of freedom**.

Step 2: Apply the Formula The formula is:

$$DOF = \min\left(\frac{\# \text{ of real symbols}}{T}, n_t\right)$$

- # of real symbols: There are 3 complex symbols, each contributing 1 real part. So, the number of real symbols is 3.
- T: Number of channel uses = 3
- n_t : Number of transmit antennas = 1 (SISO)

Calculate:

DOF =
$$\min(\frac{3}{3}, 1) = \min(1, 1) = 1$$

Step 3: Adjust DOF for Real Parts Only Since we are counting only the **real parts**, the effective real DOF per channel use is:

Real DOF per channel use $=\frac{1}{2}$ (since each complex DOF is split between real and imaginary parts)

Final Answer: The **real degrees of freedom (DOF)** per channel use in this time-diversity SISO code is:

$$\frac{1}{2}$$
 real DOF per channel use

5) (1 point). For the case of time diversity in the SISO (quasi-static) fading channel, what is the advantage and the disadvantage of the repetition code, compared to uncoded transmission.

• Advantage: Repetition code improves reliability by providing diversity gain, reducing the error probability in fading channels.

• **Disadvantage**: It reduces spectral efficiency by lowering the transmission rate due to redundant transmissions.

6) (1 point). In a SISO case, what is the DOF and the rate (in bpcu), of the following time-diversity code (three channel uses) that takes the form $\mathcal{X} = [u_1 + u_4 \quad u_2 \quad u_1 + u_2 + u_3]$ where the u_1, u_2, u_3, u_4 are independent 64-QAM elements?

To analyze the $\mathbf{Degrees}$ of $\mathbf{Freedom}$ (\mathbf{DOF}) and \mathbf{rate} for the given time-diversity code:

Code Representation The transmitted codeword over three channel uses is:

$$X = \begin{bmatrix} u_1 + u_4 & u_2 & u_1 + u_2 + u_3 \end{bmatrix},$$

where u_1, u_2, u_3, u_4 are independent symbols from a 64-QAM constellation.

1. Degrees of Freedom (DOF):

- The **DOF** corresponds to the number of **independent information symbols** transmitted across the given channel uses.
- Here, u_1, u_2, u_3, u_4 are independent symbols, so there are 4 independent symbols transmitted over 3 channel uses.

$$DOF = \frac{Number of Independent Symbols}{Number of Channel Uses} = \left\lfloor \frac{4}{3} \right\rfloor.$$

2. Rate (in bpcu):

• Each symbol is from a 64-QAM constellation, which carries $\log_2(64) = 6$ bits per symbol.

5

• Since 4 symbols are transmitted over 3 channel uses, the rate R is:

$$R = \frac{\text{Total Bits Transmitted}}{\text{Number of Channel Uses}} = \frac{4}{3} \cdot 6 = \boxed{8 \, \text{bpcu}}$$

When applying:

• n_t : Number of transmit antennas = 1 (SISO)

DOF = min
$$\left(\frac{\text{Number of Independent Symbols}}{\text{Number of Channel Uses}}, n_t\right) = \min\left(\frac{4}{3}, 1\right)$$
 the answer is $\boxed{1}$

7) (1 point). Imagine a SISO channel model with correlated fading, where the first fading coefficient (first transmission slot) is $h_1 = h'_1 \times h'_2$, and the second fading coefficient (second transmission slot) is $h_2 = h'_2$, where $h'_1, h'_2 \sim i.i.d$ $\mathbb{C}\mathcal{N}(0,1)$. What is the maximum diversity we can achieve here?

Maximum Diversity:

- Fading coefficients: $h_1 = h'_1 \cdot h'_2$ and $h_2 = h'_2$.
- Independent components: h'_1 and h'_2 ($\mathbb{C}\mathcal{N}(0,1)$, i.i.d.).
- Diversity order = Number of independent fading coefficients = $\boxed{2}$.

Note:

- If h'_2 is bad everything is bad
- 8) (1 point). Describe the steps of converting a binary vector detection problem over a time diversity fading channel, into a scalar detection problem. Imagine that you are sending BPSK symbols using a repetition code, and consider $\mathbb{C}\mathcal{N}(0, N_0)$ noise.

Steps to Convert to Real Scalar Detection

1. Received signal model:

$$y_i = h_i x + n_i, \quad n_i \sim \mathbb{C}\mathcal{N}(0, N_0)$$

- 2. Combine the signals using maximum ratio combining (MRC): $y_{\text{combined}} = \sum_{i=1}^{T} h_i^* y_i = \sum_{i=1}^{T} |h_i|^2 x + \sum_{i=1}^{T} h_i^* n_i$
- 3. Take the real part: $\tilde{y} = \text{Re}(y_{\text{combined}}) = \tilde{h}x + \tilde{n}, \quad \tilde{n} \sim \mathcal{N}(0, N_0 \tilde{h})$
- 4. Decision rule: $\hat{x} = \begin{cases} +1, & \text{if } \tilde{y} > 0 \\ -1, & \text{if } \tilde{y} < 0 \end{cases}$

This reduces the vector detection problem to real scalar detection.

9) (1 point). Consider a deep-space communications scenario, where the received SNR is equal to 20dB. If you assume low rate communications, what do you expect the probability of error to be?

Step 1: Common Error Probability Expressions In certain cases, especially for large SNR in low-rate communication systems, error probability takes the form of:

6

$$P_e \approx e^{-\gamma \cdot \text{SNR}}$$

Here: $-\gamma$ depends on the modulation scheme and coding structure. - This approximation is typical for systems with diversity, strong coding, or under certain approximations (e.g., union bounds for coded error probabilities).

Step 2: When Does e^{-SNR} Apply?

1. Coded Systems:

For strong error-correcting codes, the probability of error often decreases exponentially with SNR:

 $P_e \approx e^{-\text{coding gain} \cdot \text{SNR}}$

2. Uncoded BPSK in AWGN:

The bit error probability for uncoded BPSK in AWGN is: $P_b = Q\left(\sqrt{2 \cdot \text{SNR}}\right)$

For large SNR, using
$$Q(x) \approx \frac{1}{\sqrt{2\pi}x} e^{-\frac{x^2}{2}}$$
: $P_b \approx \frac{1}{\sqrt{2\pi} \cdot \sqrt{2 \cdot \text{SNR}}} e^{-\text{SNR}}$

Step 3: Deep-Space Scenario In deep-space communications with low-rate transmission, coding and interleaving are critical for reliability. In such scenarios, error probability can behave as: $P_e \approx e^{-\text{SNR}}$

This results from: 1. Effective coding gain, which leads to rapid error decay. 2. Low-rate transmissions (few bits per channel use), allowing strong robustness against noise.

Step 4: Application Given SNR = 20 dB (or SNR = 100 in linear scale), if:

- SNR in Linear Scale: Convert 20 dB to linear scale: $SNR_{linear} = 10^{\frac{SNR_{dB}}{10}} = 10^{\frac{20}{10}} = 100$
- The **probability of error** is extremely small: $P_e \approx e^{-\text{SNR}} = e^{-100} \approx 3.72 \times 10^{-44}$

This is consistent with the extremely low error probabilities observed in such scenarios.

Final Summary:

- In deep-space communication with low-rate coding, the error probability often follows an **exponential decay** form: $P_e \approx e^{-\text{SNR}}$
- For SNR = 20 dB (100 linear), $P_e \approx e^{-100}$, giving an extremely small error probability, which aligns with robust, low-error communications in space missions.
- In deep-space communication with high SNR and low rate, errors are nearly negligible.

10) (1 point). What is the approximate coherence time T_c in a typical urban wireless network if you are driving approximately 20 kilometers per hour?

To estimate the **coherence time** T_c in a typical urban wireless network, we use the following formula: $T_c \approx \frac{1}{f_d}$, where f_d is the **Doppler spread** given by $f_d = \frac{v}{\lambda} = \frac{v \cdot f_c}{c}$.

1. Given Parameters:

- Speed: $v=20\,\mathrm{km/h}=\frac{20\times1000}{3600}=5.56\,\mathrm{m/s},$ Carrier frequency: $f_c=2\,\mathrm{GHz}=2\times10^9\,\mathrm{Hz}$ (assumed typical urban value),

• Speed of light: $c = 3 \times 10^8 \,\mathrm{m/s}$.

2. Doppler Spread: $f_d = \frac{v \cdot f_c}{c} = \frac{5.56 \cdot 2 \times 10^9}{3 \times 10^8} = 37.1 \,\text{Hz}.$

3. Coherence Time: $T_c \approx \frac{1}{f_d} = \frac{1}{37.1} \approx 0.027 \text{ seconds} = 27 \text{ ms.}$

The approximate coherence time is: $\boxed{27\,\mathrm{ms}}$.

11) (1 point). Consider communication over a SISO fading channel with a delay spread of $T_d = 3\mu s$ and a signal bandwidth of W = 1 MHz. - Write all the received signals, if we only send x[0] and then we stop transmitting.

To analyze this scenario, we need to consider the SISO fading channel with a delay spread $T_d = 3 \,\mu s$ and a signal bandwidth $W = 1 \,\text{MHz}$. The delay spread indicates the multipath environment, meaning the transmitted signal will arrive at the receiver through multiple delayed and scaled copies.

1. Transmitted Signal:

• Only x[0] is transmitted, then the transmission stops. Thus: $x[n] = \begin{cases} x[0], & \text{if } n = 0, \\ 0, & \text{if } n \neq 0. \end{cases}$

2. Received Signal: The received signal is the convolution of the transmitted signal x[n] with the channel impulse response h(t): y[n] = h[n] * x[n].

- The **channel impulse response** h(t) is a sum of L multipath components: $h(t) = \sum_{l=0}^{L-1} h_l \delta(t-\tau_l)$, where:
 - h_l : Fading coefficient for the l-th path $(h_l \sim \mathcal{CN}(0,1))$,
 - $-\tau_l$: Delay of the *l*-th path $(0 \le \tau_l \le T_d)$.

• With $T_d = 3 \,\mu s$, the maximum delay is $3 \,\mu s$, corresponding to $L \approx W \cdot T_d = 1 \,\text{MHz} \cdot 3 \,\mu s = \boxed{3}$ significant paths.

3. Writing the Received Signals: For x[0] transmitted: - The received signal y[n] consists of L delayed copies of x[0], weighted by the fading coefficients h_l : $y[0] = h_0x[0]$, $y[1] = h_1x[0]$, $y[2] = h_2x[0]$. - For n > 2, no further contributions occur, as $\tau_l \leq T_d$.

Thus:
$$y[n] = \begin{cases} h_0x[0], & n = 0, \\ h_1x[0], & n = 1, \\ h_2x[0], & n = 2, \\ 0, & n > 2. \end{cases}$$

Final Answer: The received signals are: $y[0] = h_0x[0]$, $y[1] = h_1x[0]$, $y[2] = h_2x[0]$, y[n] = 0 for n > 2.

12) (2 points). What is the optimal diversity order over a 2×1 MISO channel $h=[h_1\ h_2], h_i\sim i.i.d\ \mathbb{CN}(0,1)$? - In the same channel as above (again with no time diversity), consider a space time

8

code whose matrices take the form

$$\begin{bmatrix} x_0 & x_1 \\ x_1 & x_0 \end{bmatrix}$$

where the x_i are drawn independently from a QAM constellation. Will this code achieve optimal diversity order? (argue why or why not) - What is the diversity order achieved by the Alamouti code, over this 2×1 MISO channel? (again, you can just argue in words)

- 1. Optimal Diversity Order in a 2×1 MISO Channel In a 2×1 MISO channel, the diversity order is equal to the number of independent fading paths, which corresponds to the number of transmit antennas $(N_t = 2)$ when there is 1 receive antenna. Thus, the optimal diversity order is: $\boxed{2}$.
- 2. Diversity Order of the Given Space-Time Code The given code matrix is: $\mathbf{X} = \begin{bmatrix} x_0 & x_1 \\ x_1 & x_0 \end{bmatrix}$, where x_0 and x_1 are independent QAM symbols.

Key Analysis:

- Rank Criterion: For a space-time code to achieve full diversity, the difference between any two distinct code matrices X_1 and X_2 must result in a matrix of full rank.
- two distinct code matrices \mathbf{X}_1 and \mathbf{X}_2 must result in a matrix of full rank. • For this code: $\Delta \mathbf{X} = \mathbf{X}_1 - \mathbf{X}_2 = \begin{bmatrix} x_{01} - x_{02} & x_{11} - x_{12} \\ x_{11} - x_{12} & x_{01} - x_{02} \end{bmatrix}$.
 - The rows of ΔX are linearly dependent because the two rows are identical. This means ΔX is **not full rank**.

Conclusion:

This code does **not achieve the optimal diversity order**, as it does not satisfy the rank criterion for full diversity.

3. Diversity Order of the Alamouti Code The Alamouti code for a 2×1 MISO channel is: $\mathbf{X}_{\text{Alamouti}} = \begin{bmatrix} x_0 & -x_1^* \\ x_1 & x_0^* \end{bmatrix}$.

Key Features:

- The Alamouti code satisfies the **rank criterion**, ensuring that $\Delta \mathbf{X} = \mathbf{X}_1 \mathbf{X}_2$ is always full rank for distinct codewords \mathbf{X}_1 and \mathbf{X}_2 .
- Each transmitted symbol experiences the full diversity of the channel, as it leverages both transmit antennas.

Conclusion:

The Alamouti code achieves the **optimal diversity order of 2** over the 2×1 MISO channel.

Final Answers:

- 1. Optimal diversity order in 2×1 MISO: $\boxed{2}$.
- 2. Given space-time code: **Does not achieve optimal diversity order** due to lack of full-rank property.

9

- 3. Alamouti code: Achieves optimal diversity order of $\boxed{2}$.
- 13) (EXTRA CREDIT: 2 points). Consider a setting where the transmit antenna array has length of 50 cm, the received antenna array has size 20cm, the transmission frequency is 1000 MHz, the signal bandwidth is 1 MHz, the channel coherence time is $T_c = 21$ ms, and the coding duration is $T_{coding} = 7$ ms. How much diversity can you get, in total?

Explanation for selecting Space Diversity

- 1. Only Space Diversity is usable:
 - Time diversity: Not applicable since $T_{coding} = 7 \text{ ms}$ is much shorter than $T_c = 21 \text{ ms}$, so the channel does not change significantly.
 - Frequency diversity: Not effective as the bandwidth (1 MHz) is within the coherence bandwidth.
- 2. Calculate Space Diversity:
 - Wavelength: $\lambda = 0.3 \,\mathrm{m}$ (at 1000 MHz)
 - Antenna Spacing: $d = \frac{\dot{\lambda}}{2} = 0.15 \,\mathrm{m}$
 - Transmit Array:

$$n_t = \frac{50\,\mathrm{cm}}{15\,\mathrm{cm}} \approx 4$$

• Receive Array:

$$n_r = \frac{20\,\mathrm{cm}}{15\,\mathrm{cm}} \approx 3$$

3. Total Space Diversity: Space diversity = $n_t \times n_r = 4 \times 3 = 12$

Final Answer: diversity = 12