APM462: Nonlinear Optimization

Tianyu Du

October 9, 2019

${\bf Contents}$

1	\mathbf{Pre}	liminaries	2
	1.1	Mean Value Theorems and Taylor Approximations	2
	1.2	Implicit Function Theorem	
2	Con	nvexity	3
	2.1	Terminologies	3
	2.2	Basic Properties of Convex Functions	3
	2.3	Characteristics of C^1 Convex Functions	4
	2.4	Minimum and Maximum of Convex Functions	5
3	Fini	ite Dimensional Optimization	6
	3.1	Unconstraint Optimization	6
	3.2	Equality Constraints: Lagrangian Multiplier	10
		3.2.1 Tangent Space to a (Hyper) Surface at a Point	10
	3.3	Remark on the Connection Between Constrained and Unconstrained Optimizations	14
	3.4	Inequality Constraints	15

1 Preliminaries

1.1 Mean Value Theorems and Taylor Approximations.

Definition 1.1. Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$, the **gradient** of f at $x \in S$, if exists, is a vector $\nabla f(x) \in \mathbb{R}^n$ characterized by the property

$$\lim_{v \to 0} \frac{f(x+v) - f(x) - \nabla f(x) \cdot v}{||v||} = 0 \tag{1.1}$$

Theorem 1.1 (The First Order of Mean Value Theorem). Let f be a C^1 real-valued function defined on \mathbb{R}^n , then for any $x, v \in \mathbb{R}^n$, there exists some $\theta \in (0, 1)$ such that

$$f(x+v) = f(x) + \nabla f(x+\theta v) \cdot v \tag{1.2}$$

Proof. Let $x, v \in \mathbb{R}^n$, define $g(t) : \mathbb{R} \to \mathbb{R} := f(x+tv)$, which is C^1 . By the mean value theorem on $\mathbb{R}^{\mathbb{R}}$, there exists $\theta \in (0,1)$ such that $g(0+1) = g(0) + g'(\theta)(1-0)$, that is, $f(x+v) = f(x) + g'(\theta)$. Note that $g'(\theta) = \nabla(x + \theta v) \cdot v$, what desired is immediate.

Proposition 1.1 (The First Order Taylor Approximation). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 function, then

$$f(x+v) = f(x) + \nabla f(x) \cdot v + o(||v||) \tag{1.3}$$

that is

$$\lim_{||v|| \to 0} \frac{f(x+v) - f(x) - \nabla f(x) \cdot v}{||v||} = 0 \tag{1.4}$$

Proof. By the mean value theorem, $\exists \theta \in (0,1)$ such that $f(x+v)-f(x)=\nabla f(x+\theta v)\cdot v$. The limit becomes $\lim_{||v||\to 0} \frac{[\nabla f(x+\theta v)-\nabla f(x)]\cdot v}{||v||} = \lim_{||v||\to 0; x+\theta v\to x} \frac{[\nabla f(x+\theta v)-\nabla f(x)]\cdot v}{||v||}$. Since $f\in C^1$, $\lim_{x+\theta v\to x} \nabla f(x+\theta v) = \nabla f(x)$. And $\frac{v}{||v||}$ is a unit vector, and every component of it is bounded, as the result, the limit of inner product vanishes instead of explodes.

Theorem 1.2 (The Second Order Mean Value Theorem). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 function, then for any $x, v \in \mathbb{R}^n$, there exists $\theta \in (0,1)$ satisfying

$$f(x+v) = f(x) + \nabla f(x) \cdot v + \frac{1}{2}v'H_f(x+\theta v) v$$
(1.5)

where H_f is the Hessian matrix of f, may also be written as $\nabla^2 f$.

Proposition 1.2 (The Second Order Taylor Approximation). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 function, and $x, v \in \mathbb{R}^n$, then

$$f(x+v) = f(x) + \nabla f(x) \cdot v + \frac{1}{2}v'H_f(x) \ v + o(||v||^2)$$
(1.6)

that is

$$\lim_{||v|| \to 0} \frac{f(x+v) - f(x) - \nabla f(x) \cdot v - \frac{1}{2}v'H_f(x) \ v}{||v||^2} = 0 \tag{1.7}$$

Proof. By the second mean value theorem, there exists $\theta \in (0,1)$ such that the limit is equivalent to

$$\lim_{||v|| \to 0} \frac{1}{2} \left(\frac{v}{||v||} \right)' \left[H_f(x + \theta v) - H_f(x) \right] \frac{v}{||v||}$$
(1.8)

Since $f \in C^2$, the limit of $[H_f(x + \theta v) - H_f(x)]$ is in fact $\mathbf{0}_{n \times n}$. And every component of unit vector $\frac{v}{||v||}$ is bounded, the quadratic form converges to zero as an immediate result.

It is often noted that the gradient at a particular $x_0 \in dom(f) \subset \mathbb{R}^n$ gives the direction f increases most rapidly. Let $x_0 \in dom(f)$, and v be a <u>unit vector</u> representing a *feasible direction* of change. That is, there exists $\delta > 0$ such that $x_0 + tv \in dom(f) \ \forall t \in [0, \delta)$. Then the rate of change of f along feasible direction v can be written as

$$\frac{d}{dt}\Big|_{t=0} f(x_0 + tv) = \nabla f(x_0) \cdot v = ||\nabla f(x_0)|| \ ||v|| \cos(\theta)$$
(1.9)

where $\theta = \angle(v, \nabla f(x_0))$. And the derivative is maximized when $\theta = 0$, that is, when v and ∇f point the same direction.

1.2 Implicit Function Theorem

Theorem 1.3 (Implicit Function Theorem). Let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ be a C^1 function, let $(a,b) \in \mathbb{R}^n \times \mathbb{R}$ such that f(a,b) = 0. If $\nabla f(a,b) \neq 0$, then $\{(x,y) \in \mathbb{R}^n \times \mathbb{R} : f(x,y) = 0\}$ is locally a graph of a function $g: \mathbb{R}^n \to \mathbb{R}$.

Remark 1.1. $\nabla f(x_0) \perp$ level set of f near x_0 .

2 Convexity

2.1 Terminologies

Definition 2.1. Set $\Omega \subset \mathbb{R}^n$ is **convex** if and only if

$$\forall x_1, x_2 \in \Omega, \ \lambda \in [0, 1], \ \lambda x_1 + (1 - \lambda)x_2 \in \Omega \tag{2.1}$$

Definition 2.2. A function $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ is **convex** if and only if Ω is convex, and

$$\forall x_1, x_2 \in \Omega, \ \lambda \in [0, 1], \ f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \tag{2.2}$$

Definition 2.3. A function $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ is **strictly convex** if and only if Ω is convex and

$$\forall x_1, x_2 \in \Omega, \ \lambda \in (0, 1), \ f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2)$$
 (2.3)

2.2 Basic Properties of Convex Functions

Definition 2.4. A function $f: \Omega \to \mathbb{R}$ is **concave** if and only if -f is **convex**.

Proposition 2.1. (i) If f_1, f_2 are convex on Ω , so is $f_1 + f_2$;

- (ii) If f is convex on Ω , then for any a > 0, af is also convex on Ω ;
- (iii) Any sub-level/lower contour set of a convex function f

$$SL(c) := \{ x \in \mathbb{R}^n : f(x) \le c \}$$

$$(2.4)$$

is convex.

Proof of (iii). Let $c \in \mathbb{R}$, and $x_1, x_2 \in SL(c)$. Let $s \in [0, 1]$. Since $x_1, x_2 \in SL(c)$, and $f(\cdot)$ is convex, $f(sx_1 + (1-s)x_2) \le sf(x_1) + (1-s)f(x_2) \le sc + (1-s)c = c$. Which implies $sx_1 + (1-s)x_2 \in SL(c)$. ■

Example 2.1. $f(x): \mathbb{R}^n \to \mathbb{R} := ||x||$ is convex.

Proof. Note that for any $u, v \in \mathbb{R}^n$, by triangle inequality, $||u - (-v)|| \le ||u - 0|| + ||0 - (-v)|| = ||u|| + ||v||$. Consequently, let $u, v \in \mathbb{R}^n$ and $s \in [0, 1]$, then $||su + (1 - s)v|| \le ||su|| + ||(1 - s)v|| = s||u|| + (1 - s)||v||$. Therefore, $||\cdot||$ is convex. ■

2.3 Characteristics of C^1 Convex Functions

Theorem 2.1 (C^1 criterions for convexity). Let $f \in C^1$, then f is convex on a convex set Ω if and only if

$$\forall x, y \in \Omega, \ f(y) \ge f(x) + \nabla f(x) \cdot (y - x) \tag{2.5}$$

that is, the linear approximation is never an overestimation of value of f.

Proof. (\Longrightarrow) Suppose f is convex on a convex set Ω . Then $f(sy+(1-s)x) \leq sf(y)+(1-s)f(x)$ for every $x,y \in \Omega$ and $s \in [0,1]$, which implies, for every $s \in (0,1]$:

$$\frac{f(sy + (1-s)x) - f(x)}{s} \le f(y) - f(x) \tag{2.6}$$

By taking the limit of $s \to 0$,

$$\lim_{s \to 0} \frac{f(x + s(y - x)) - f(x)}{s} \le f(y) - f(x) \tag{2.7}$$

$$\implies \frac{d}{ds}\Big|_{s=0} f(x + s(y - x)) \le f(y) - f(x) \tag{2.8}$$

$$\implies \nabla f(x) \cdot (y - x) \le f(y) - f(x)$$
 (2.9)

 (\Leftarrow) Let $x_0, x_1 \in \Omega$, let $s \in [0,1]$. Define $x^* := sx_0 + (1-s)x_1$, then

$$f(x_0) > f(x^*) + \nabla f(x^*) \cdot (x_0 - x^*) \tag{2.10}$$

$$\implies f(x_0) \ge f(x^*) + \nabla f(x^*) \cdot [(1-s)(x_0 - x_1)] \tag{2.11}$$

Similarly,

$$f(x_1) \ge f(x^*) + \nabla f(x^*) \cdot (x_1 - x^*) \tag{2.12}$$

$$\implies f(x_1) \ge f(x^*) + \nabla f(x^*) \cdot [s(x_1 - x_0)] \tag{2.13}$$

Therefore, $sf(x_0) + (1 - s)f(x_1) \ge f(x^*)$.

Theorem 2.2 (C^2 criterion for convexity). $f \in C^2$ is a convex function on a convex set $\Omega \subset \mathbb{R}^n$ if and only if $\nabla^2 f(x) \geq 0$ for all $x \in \Omega$.

Remark 2.1. When f is defined on \mathbb{R} , the C^2 criterion becomes $f''(x) \geq 0$.

Proof. (\iff) Suppose $\nabla^2 f(x) \geq 0$ for every $x \in \Omega$, let $x, y \in \Omega$. By the second order MVT,

$$f(y) = f(x) + \nabla f(x) \cdot (y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(x + s(y - x))(y - x) \text{ for some } s \in [0, 1]$$
 (2.14)

$$\implies f(y) \ge f(x) + \nabla f(x) \cdot (y - x) \tag{2.15}$$

So f is convex by the C^1 criterion of convexity.

 (\Longrightarrow) Let $v\in\mathbb{R}^n$. Suppose, for contradiction, that for some $x\in\Omega,\,\nabla^2 f(x)\not\succeq 0$. If such $x\in\partial\Omega$, note that $v^T\nabla^2 f(\cdot)v$ is continuous because $f\in C^2$, then there exists $\varepsilon>0$ such that $\forall x'\in V_\varepsilon(x)\cap\Omega^{int},\,v^T\nabla^2 f(x')v<0$

0. Hence, one may assume with loss of generality that such $x \in \Omega^{int}$. Because $x \in \Omega^{int}$, exists $\varepsilon' > 0$, such that $V_{\varepsilon'}(x) \subseteq \Omega^{int}$. Define $\hat{v} := \frac{v}{\sqrt{\varepsilon'}}$, then for every $s \in [0,1]$, $\hat{v}^T \nabla^2 f(x+s\hat{v})\hat{v} < 0$. Let $y = x+\hat{v}$, by the mean value theorem, $f(y) = f(x) + \nabla f(x) \cdot (y-x) + \frac{1}{2}(y-x)^T \nabla^2 f(x+s(y-x))(y-x)$ for some $s \in [0,1]$. This implies $f(y) < f(x) + \nabla f(x) \cdot (y-x)$, which contradicts the C^1 criterion for convexity.

2.4 Minimum and Maximum of Convex Functions

Theorem 2.3. Let $\Omega \subset \mathbb{R}^n$ be a convex set, and $f:\Omega \to \mathbb{R}$ is a convex function. Let

$$\Gamma := \left\{ x \in \Omega : f(x) = \min_{x \in \Omega} f(x) \right\} \equiv \underset{x \in \Omega}{\operatorname{argmin}} f(x)$$
 (2.16)

If $\Gamma \neq \emptyset$, then

- (i) Γ is convex;
- (ii) any local minimum of f is the global minimum.

Proof (i). Let $x, y \in \Gamma$, $s \in [0, 1]$, then $sx + (1 - s)y \in \Omega$ because Ω is convex. Since f is convex, $f(sx + (1 - s)y) \le sf(x) + (1 - s)f(y) = \min_{x \in \Omega} f(x)$. The inequality must be equality since it would contradicts the fact that $x, y \in \Gamma$. Therefore, $sx + (1 - s)y \in \Gamma$.

Proof (ii). Let $x \in \Omega$ be a local minimizer for f, but assume, for contradiction, it is not a global minimizer. That is, there exists some other y such that f(y) < f(x). Since f is convex,

$$f(x+t(y-x)) = f((1-t)x+ty) \le (1-t)f(x) + tf(y) < f(x)$$
(2.17)

for every $t \in (0,1]$. Therefore, for every $\varepsilon > 0$, there exists $t^* \in (0,1]$ such that $x + t^*(y - x) \in V_{\varepsilon}(x)$ and $f(x + t^*(y - x)) < f(x)$, this contradicts the fact that x is a local minimum.

Theorem 2.4. Let $\Omega \subset \mathbb{R}^n$ be a convex and compact set, and $f:\Omega \to \mathbb{R}$ is a convex function. Then

$$\max_{x \in \Omega} f(x) = \max_{x \in \partial\Omega} f(x) \tag{2.18}$$

Proof. As we assumed, Ω is closed, therefore $\partial\Omega\subseteq\Omega$. Hence, $\max_{x\in\Omega}f\geq\max_{x\in\partial\Omega}f$. Suppose $\max_{x\in\Omega}f>\max_{x\in\partial\Omega}f$, let $x^*:= \operatorname{argmax}_{x\in\Omega}f\in\Omega^{int}$. Then we can construct a straight line through x^* and intersects $\partial\Omega$ at two points, $y_1,y_2\in\partial\Omega$, such that $x^*=sy_1+(1-s)y_2$ for some $s\in(0,1)$. Further, since f is convex, $\max_{x\in\Omega}f(x)=f(x^*)\leq sf(y_1)+(1-s)f(y_2)\leq s\max_{\partial\Omega}f+(1-s)\max_{\partial\Omega}f=\max_{\partial\Omega}f$, which leads to a contradiction. Therefore, $\max_{x\in\Omega}f=\max_{x\in\partial\Omega}f$.

Proposition 2.2. For p, g > 1 and $\frac{1}{p} + \frac{1}{q} = 1$,

$$|ab| \le \frac{1}{p}|a|^p + \frac{1}{g}|b|^g \tag{2.19}$$

Proof.

$$(-\log)|ab| = (-\log)|a| + (-\log)|b| \tag{2.20}$$

$$= \frac{1}{p}(-\log)|a|^p + \frac{1}{q}(-\log)|b|^p$$
 (2.21)

$$(\because (-\log) \text{ is convex}) \ge (-\log) \left(\frac{1}{p} |a|^p + \frac{1}{g} |b|^p\right)$$
(2.22)

And since $(-\log)$ is monotonically decreasing,

$$|ab| \le \frac{1}{p}|a|^p + \frac{1}{q}|b|^p \tag{2.23}$$

Corollary 2.1.

$$|ab| \le \frac{|a|^2 + |b|^2}{2} \tag{2.24}$$

3 Finite Dimensional Optimization

3.1 Unconstraint Optimization

Theorem 3.1 (Extreme Value Theorem). Let $f: \mathbb{R}^n \to \mathbb{R}$ is <u>continuous</u> and $K \subset \mathbb{R}^n$ be a <u>compact</u> set, then the minimization problem $\min_{x \in K} f(x)$ has a solution.

Remark 3.1. $f: \Omega \to \mathbb{R}$ is convex does not imply f is continuous.

Proposition 3.1. A convex function f defined on a convex open set is continuous.

Proof. Let
$$f: \Omega \to \mathbb{R}$$
 be a convex function, where $\Omega \subset \mathbb{R}^n$ is open. TODO

Corollary 3.1. A convex function f defined on an open interval in \mathbb{R} is continuous.

Proof of EVT.. Let $f: K \to \mathbb{R}$ be a continuous function defined on a compact set K.

WLOG, we only prove the existence of min f, since the existence of max can be easily proven by applying the exact same argument on -f. Because K is compact, the continuity of f implies f(K) is compact. By the completeness axiom of \mathbb{R} , $m := \inf_{x \in K} f(x)$ is well-defined. There exists a sequence $(x_i) \subset K$, such that $(f(x_i)) \to m$. Because K is compact, there exists a subsequence (x_i) of (x_i) converges to some limit $x^* \in K$. Because f is continuous, $(f(x_{ik})) \to f(x^*)$, which is a subsequence of the convergent sequence $(f(x_i))$, and they must converge to the same limit. Hence, $f(x^*) = m$, and the infimum is attained at $x^* \in K$.

Theorem 3.2 (Heine–Borel). Let $K \subset \mathbb{R}^n$, then K is compact (every open cover of K has a finite sub-cover) $\iff K$ is closed and bounded.

Proposition 3.2. Let $\{h_i\}$ and $\{g_i\}$ be sets of continuous functions on \mathbb{R}^n , the set of all points in \mathbb{R}^n that satisfy

$$\begin{cases} h_i(x) = 0 \ \forall i \\ g_j(x) \le 0 \ \forall j \end{cases}$$
 (3.1)

is a closed set (intersection of finitely many closed sets). Moreover, if the qualified set is also bounded, then it is compact.

Proof. For every equality constraint h_i , it can be represented as the conjunction of two inequality constraint, namely $h_i^{\alpha}(x) := -h_i(x) \leq 0 \land h_i^{\beta}(x) := h_i(x) \leq 0$. Then the constraint collection is equivalent to

$$\begin{cases} h_i^{\alpha}(x) \le 0 \ \forall i \\ h_i^{\beta}(x) \le 0 \ \forall i \\ g_j(x) \le 0 \ \forall j \end{cases}$$

$$(3.2)$$

The subset of \mathbb{R}^n qualified by each individual constraint is closed by the property of continuous functions (i.e. the continuous function's pre-image of closed set is closed). And the intersection of arbitrarily many closed sets is closed.

Example 3.1. The set $\{(x,y) \in \mathbb{R}^2 : x^2 - y^2 - 1 = 0\}$ is closed and bounded, therefore it is compact.

Remark 3.2. Computer algorithms for solving minimization problems try to construct a sequence of (x_i) such that $f(x_i)$ decreases to min f rapidly.

The optimization problems investigated in this section can be formulated as

$$\min_{x \in \Omega} f(x) \tag{3.3}$$

where $\Omega \subset \mathbb{R}^n$. Typically, for simplicity, Ω are often \mathbb{R}^n , an open subset of \mathbb{R}^n , or the closure of some open subset of \mathbb{R}^n .

Everything above minimization discussed in this section is applicable to maximization as well using the proposition below.

Proposition 3.3. When $\Omega = \mathbb{R}^n$, the unconstrained minimization has the following properties

- (i) $\operatorname{argmax} f = \operatorname{argmin}(-f)$;
- (ii) $\max f = -\min(-f)$

Proof. Omitted.

Definition 3.1. A function $f: \Omega \to \mathbb{R}$ has **local minimum** at $x_0 \in \Omega$ if

$$\exists \varepsilon > 0 \text{ s.t. } \forall x \in V_{\varepsilon}(x_0) \cap \Omega \ f(x_0) \le f(x)$$
 (3.4)

f attains strictly local minimum at x_0 if

$$\exists \varepsilon > 0 \ s.t. \ \forall x \in V_{\varepsilon}(x_0) \cap \Omega \setminus \{x_0\} \ f(x_0) < f(x)$$

$$\tag{3.5}$$

f attains global minimum at x_0 if

$$\forall x \in \Omega \ f(x_0) \le f(x) \tag{3.6}$$

f attains **strict global minimum** at x_0 if

$$\forall x \in \Omega \backslash \{x_0\} \ f(x_0) < f(x) \tag{3.7}$$

Note that strict global minimum is always unique.

Theorem 3.3 (Necessary Condition for Local Minimum). Let $C^1 \ni f: \Omega \to \mathbb{R}$, let $x_0 \in \Omega$ be a local minimum of f, then for every feasible direction v at x_0 ,

$$\nabla f(x_0) \cdot v \ge 0 \tag{3.8}$$

Definition 3.2. For $x_0 \in \Omega \subset \mathbb{R}^n$, $v \in \mathbb{R}^n$ is a feasible directionat x_0 if

$$\exists \overline{s} > 0 \ s.t. \ \forall s \in [0, \overline{s}], x_0 + sv \in \Omega$$
 (3.9)

Proof of Necessary Condition. Let $x_0 \in \Omega$ be a local minimum, and let v be a Define auxiliary function g(s) := f(x + sv). And since g attains minimum at s = 0, there exists some $\overline{s} > 0$ such that

$$g(s) - g(0) \ge 0 \ \forall s \in [0, \overline{s}] \tag{3.10}$$

Therefore

$$g'(0) := \lim_{s \to 0} \frac{g(s) - g(0)}{s - 0} \ge 0 \tag{3.11}$$

The alternative form of derivative can be derived using chain rule as

$$g'(0) = \nabla f(x+sv) \cdot v \mid_{s=0} = \nabla f(x) \cdot v \tag{3.12}$$

By combing the two identities above, $\nabla f(x) \cdot v \geq 0$.

Alternative Proof of Necessary Condition (not that rigorous). The prove is almost immediate, if there exists a feasible direction v^* such that $\nabla f(x_0) \cdot v^* < 0$, for every $\varepsilon > 0$, one can construct $x' := x^* + sv^*$ with sufficiently small s so that $x' \in V_{\varepsilon}(x^*) \cap \Omega$ and $f(x') < f(x^*)$.

Corollary 3.2. When Ω is open, then x_0 is a local minimum $\implies \nabla f(x_0) = 0$.

Proof. Since Ω is open, any sufficiently small $v \neq 0$ such that both v and -v are feasible directions at x_0 , applying the necessary condition on both v and -v provides the equality.

Example 3.2. Minimize $f(x,y) = x^2 - xy + y^2 - 3y$ over $\Omega = \mathbb{R}^2$.

Example 3.3. Minimize $f(x,y) = x^2 - x + y + xy$ over $\Omega = \max\{(x,y) \in \mathbb{R}^2 : x,y \ge 0\}$.

Theorem 3.4 (Second Order Necessary Condition for Local Minimum). Let $C^2 \ni f : \Omega \to \mathbb{R}$, let $x_0 \in \Omega$ be a local minimum of f, then for every non-zero feasible direction v at x_0 ,

- (i) $\nabla f(x_0) \cdot v > 0$:
- (ii) $\nabla f(x_0) \cdot v = 0 \implies v^T \nabla^2 f(x_0) v \ge 0.$

Proof. Let x_0 be a local minimum and v be a feasible direction at Ω , and $s \in (0, \overline{s}]$. The first statement is the immediate result of the first order necessary condition. Now suppose $\nabla f(x_0) = 0$, by the Taylor's theorem,

$$0 \le f(x_0 + sv) - f(x_0) = s\nabla f(x_0) \cdot v + \frac{s^2}{2}v^T \nabla^2 f(x_0)v + o(s^2)$$
(3.13)

$$= \frac{s^2}{2} v^T \nabla^2 f(x_0) v + o(s^2)$$
 (3.14)

Since $s^2 > 0$, divide both sides by s^2 and take limit,

$$\lim_{s \to 0} \frac{f(x_0 + sv) - f(x_0)}{s^2} = \lim_{s \to 0} \left\{ \frac{1}{2} v^T \nabla^2 f(x_0) v + \frac{o(s^2)}{s^2} \right\}$$
(3.15)

$$= \frac{1}{2}v^T \nabla^2 f(x_0)v + \lim_{s \to 0} \frac{o(s^2)}{s^2}$$
 (3.16)

$$= \frac{1}{2}v^T \nabla^2 f(x_0)v \ge 0 \tag{3.17}$$

Example 3.4. $f(x,y) = x^2 - xy + y^2 - 3y : \Omega = \mathbb{R}^2 \to \mathbb{R}$. Then at $(x_0, y_0) = (1, 2)$,

$$\nabla f(x_0, y_0) = (2x_0 - y, -x_0 + 2y_0 - 3) = (0, 0)$$
(3.18)

$$\nabla^2 f(x_0, y_0) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \geq 0 \tag{3.19}$$

Definition 3.3. Let $A \in \mathbb{R}^{n \times n}$, A is

- (i) **Positive definite** $(A \succ 0)$ if $x^T A x > 0 \ \forall x \neq 0$, if and only if all eigenvalues $\lambda_i > 0$;
- (ii) Positive Semi-definite $(A \geq 0)$ if $x^T A x \geq \forall x \in \mathbb{R}^n$, if and only if all eigenvalues $\lambda_i \geq 0$.

Theorem 3.5 (Sylvester's Criterion). Let $A \in \mathbb{R}^{n \times n}$ be a Hermitian matrix (i.e. $A = \overline{A^T}$), then

- 1. $A \succ 0 \iff$ all leading principal minors have positive determinants;
- 2. $A \geq 0 \iff$ all leading principal minors have non-negative determinants.

Theorem 3.6 (Second Order Sufficient Condition for Interior Local Minima). Let $C^2 \ni f : \Omega \to \mathbb{R}$, for some $x_0 \in \Omega$, if

- (i) $\nabla f(x_0) = 0$,
- (ii) (and) $\nabla^2 f(x_0) \geq 0$,

then x_0 is a strictly local minimizer.

Lemma 3.1. Suppose $\nabla^2 f(x_0)$ is positive definite, then

$$\exists a > 0 \text{ s.t. } v^T \nabla^2 f(x_0) v \ge a||v||^2 \quad \forall v$$
 (3.20)

Proof of the Lemma. Recall that a squared matrix Q is called **orthogonal** when every column and row of it is an orthogonal unit vector. So that for every orthogonal matrix Q, $Q^TQ = I$, which implies $Q^T = Q^{-1}$. Further, note that

$$||Qv||^2 = (Qv)^T (Qv) = v^T Q^T Qv = ||v||^2$$
(3.21)

$$\implies ||Qv|| = ||v|| \ \forall v \in \mathbb{R}^n \tag{3.22}$$

Let $v \in \mathbb{R}^n$, consider the eigenvector decomposition of $\nabla^2 f(x_0)$, let w satisfy v = Qw:

$$Q^{T} \nabla^{2} f(x_{0}) Q = \operatorname{diag}(\lambda_{1}, \cdots, \lambda_{n})$$
(3.23)

$$\implies v^T \nabla^2 f(x_0) v = (Qw)^T \nabla^2 f(x_0) (Qw) \tag{3.24}$$

$$= w^T Q^T \nabla^2 f(x_0) Q w \tag{3.25}$$

$$= w^T \operatorname{diag}(\lambda_1, \cdots, \lambda_n) w \tag{3.26}$$

$$= \lambda_1 w_1^2 + \dots + \lambda_n w_n^2 \tag{3.27}$$

Let $a := \min\{\lambda_1, \dots, \lambda_n\},\$

$$\dots \ge a||w||^2 = a||Q^Tv||^2 = a||v||^2 \tag{3.28}$$

9

Proof of the Theorem. Let $x \in \Omega$, suppose $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \geq 0$. By the second order Taylor approximation,

$$f(x_0 + v) - f(x_0) = \nabla f(x_0)^T v + \frac{1}{2} v^T \nabla^2 f(x_0) v + o(||v||^2)$$
(3.29)

$$= \frac{1}{2}v^T \nabla^2 f(x_0)v + o(||v||^2)$$
(3.30)

$$\geq \frac{a}{2}||v||^2 + o(||v||^2)$$
 for some $a > 0$ (3.31)

$$= ||v||^2 \left(\frac{a}{2} + \frac{o(||v||^2)}{||v||}\right) \tag{3.32}$$

$$> 0$$
 for sufficiently small v (3.33)

Therefore, $f(x_0) < f(x) \ \forall x \in V_{\varepsilon}(x_0)$.

3.2 Equality Constraints: Lagrangian Multiplier

3.2.1 Tangent Space to a (Hyper) Surface at a Point

Definition 3.4. A surface $\mathcal{M} \subset \mathbb{R}^n$ is defined as

$$\mathcal{M} := \{ x \in \mathbb{R}^n : h_i(x) = 0 \ \forall i \}$$
(3.34)

where h_i are all C^1 functions.

Definition 3.5. A differentiable curve on a surface \mathcal{M} is a C^1 function mapping from $(-\varepsilon, \varepsilon)$ to \mathcal{M} . Remark: in previous calculus courses, differentiable curves are often referred to as parameterizations.

Let x(s) be a differentiable curve on \mathcal{M} passes through $x_0 \in \mathcal{M}$, WLOG, $x(0) = x_0$. Then vector

$$v := \frac{d}{ds} \Big|_{s=0} x(s) \tag{3.35}$$

touches \mathcal{M} tangentially.

Definition 3.6. Any vector v generated by some differentiable curve on \mathcal{M} and takes above form is a tangent vector on \mathcal{M} through x_0 .

Definition 3.7. The set of all tangent vectors is defined to be the **tangent space** to \mathcal{M} at x_0 :

$$T_{x_0}\mathcal{M} := \left\{ v \in \mathbb{R}^n : v := \frac{d}{ds} \Big|_{s=0} x(s) \text{ for some } x(\cdot) \in \mathcal{M}^{(-\varepsilon,\varepsilon)} \text{ s.t. } x(0) = x_0 \right\}$$
(3.36)

Example 3.5. Define

$$\mathcal{M} := \left\{ x \in \mathbb{R}^2 : ||x||_2 = 1 \right\} \tag{3.37}$$

By defining C^1 functions $g(x) := ||x||_2^2 - 1$, \mathcal{M} is a surface. The tangent space of \mathcal{M} at x_0 is

$$T_{x_0}\mathcal{M} = \{ v \in \mathbb{R}^n : \langle v, x_0 \rangle = 0 \}$$
(3.38)

Definition 3.8. Let \mathcal{M} be a surface defined using C^1 functions, a point $x_0 \in \mathcal{M}$ is a **regular point** of the

constraints if

$$\{\nabla h_1(x_0), \cdots, \nabla h_k(x_0)\}\tag{3.39}$$

are linearly independent.

Notation 3.1. Define

$$T_{x_0} := \{ x \in \mathbb{R}^n : \langle x_0, \nabla h_i(x_0) \rangle \ \forall i \in [k] \}$$

$$(3.40)$$

Example 3.6 (Counter example). Define

$$\mathcal{M} := \{ (x, y) \in \mathbb{R}^2 : h(x, y) = xy = 0 \}$$
(3.41)

Then it is easy to verify that (0,0) is not a regular point. And

$$T_{0,0} = \{(x,y) \in \mathbb{R}^2 : (x,y) \cdot (0,0) = 0\} = \mathbb{R}^2$$
(3.42)

$$\neq T_{0.0}\mathcal{M} = \{(x, y) \in \mathbb{R}^2 : x = 0 \lor y = 0\}$$
(3.43)

Theorem 3.7. Suppose x_0 is a regular point of $\mathcal{M} := \{h_i(x) = 0, i = 1, \dots, k\}$, then $T_{x_0} = T_{x_0}\mathcal{M}$.

Proof. Show $T_{x_0}\mathcal{M} \subset T_{x_0}$.

Suppose x_0 is a regular point of \mathcal{M} . Let $v \in T_{x_0}\mathcal{M}$, then there exists some differentiable curve $x(\cdot): V_{\varepsilon}(0) \to \mathcal{M}$ such that $x(0) = x_0$, such that

$$v = \frac{d}{ds} \bigg|_{s=0} x(s) \tag{3.44}$$

Note that $h_i(x(s)) = 0$ is constant for every $i \in [k]$, therefore

$$\frac{d}{ds}\Big|_{s=0} h_i(x(s)) \tag{3.45}$$

By the chain rule,

$$\nabla h_i(x_0) \cdot v = 0 \ \forall i \tag{3.46}$$

Therefore $v \in T_{x_0}$.

Show $T_{x_0} \subset T_{x_0} \mathcal{M}$.

- (i) x_0 is regular $\implies T_{x_0}\mathcal{M}$ is a vector space;
- (ii) $T_{x_0} = \text{span}\{\nabla h_1(x_0), \cdots, \nabla h_k(x_0)\}^{\perp}$.

Show $T_{x_0} \subset \operatorname{span}\{\nabla h_1(x_0), \cdots, \nabla h_k(x_0)\}^{\perp}$:

Let $v \in T_{x_0}$, then $v \perp \nabla h_i(x_0)$ for every i. Therefore v is orthogonal to every linear combination of $\nabla h_i(x_0)$, and therefore orthogonal to the span.

Show span $\{\nabla h_1(x_0), \cdots, \nabla h_k(x_0)\}^{\perp} \subset T_{x_0}$:

Let v in the perp of the span, then v is orthogonal to every basis of the span, so $v \in T_{x_0}$.

Lemma 3.2. Let $f, h_1, \dots, h_k \in C^1$ defined on <u>open</u> subset $\Omega \subset \mathbb{R}^n$. Define $\mathcal{M} := \{x \in \mathbb{R}^n : h_i(x) = 0 \ \forall i\}$. Suppose $x_0 \in \mathcal{M}$ is a local minimum of f on \mathcal{M} , then

$$\nabla f(x_0) \perp T_{x_0} \mathcal{M} \tag{3.47}$$

Proof. WLOG $\Omega = \mathbb{R}^n$, take $v \in T_{x_0}\mathcal{M}$. Then there exists some differentiable curve x on \mathcal{M} satisfying v = x'(0). Because x_0 is a local minimum of f on Ω , s = 0 is a local minimum of f(x(s)), moreover, it is an interior minimum. By chain rule and the necessary condition of local minimum,

$$Df(x(0)) = \nabla f(x(0)) \cdot x'(0) = 0 \tag{3.48}$$

$$\implies \nabla f(x_0) \cdot v = 0 \tag{3.49}$$

Therefore $\nabla f(x_0) \perp T_{x_0} \mathcal{M}$.

Theorem 3.8 (Lagrange Multipliers: First Order Necessary Condition). Let $f, h_1, \dots, h_k \in C^1$ defined on open subset $\Omega \subset \mathbb{R}^n$. Let x_0 be a regular point of the constraint set $\mathcal{M} := \bigcap_{i=1}^k h_i^{-1}(0)$. Suppose x_0 is a local minimum of \mathcal{M} , then there exists $\lambda_1, \dots, \lambda_k \in \mathbb{R}$ such that

$$\nabla f(x_0) + \sum_{i=1}^k \lambda_i \nabla h_i(x_0) = 0 \tag{3.50}$$

Remark: if we define Lagrangian $\mathcal{L}(x,\lambda_i) := f(x) + \sum_{i=1}^k h_i(x)$, then the theorem says the local minimum is a critical point of \mathcal{L} .

Proof. Because x_0 is a regular point, then by previous lemma, $\nabla f(x_0) \perp T_{x_0} \mathcal{M}$. Moreover,

$$T_{x_0}\mathcal{M} = T_{x_0} = (\operatorname{span}\{\nabla h_1(x_0), \cdots, \nabla h_k(x_0)\})^{\perp}$$
 (3.51)

Also, because x_0 is a local minimum,

$$\nabla f(x_0) \perp T_{x_0} \mathcal{M} \tag{3.52}$$

Therefore, $\nabla f(x_0) \in (T_{x_0}\mathcal{M})^{\perp} = (\operatorname{span}\{\nabla h_1(x_0), \cdots, \nabla h_k(x_0)\})^{\perp \perp} = \operatorname{span}\{\nabla h_1(x_0), \cdots, \nabla h_k(x_0)\}$, where the last equality holds in finite dimensional cases. Hence, it is obvious that we can write $\nabla f(x_0)$ as a linear combination of $\{\nabla h_i(x_0)\}$.

Theorem 3.9 (Second Order Necessary Condition). Let $f, h_i \in C^2$, if x_0 is a local minimum on previously defined surface \mathcal{M} , then there exists Lagrangian multipliers $\{\lambda_i\}$ such that

- (i) $\nabla f(x_0) + \sum_{i=1}^k \lambda_i \nabla h_i(x_0) = 0 \ (\nabla_x \mathcal{L} = 0);$
- (ii) And $\nabla^2 f(x_0) + \sum_{i=1}^k \lambda_i \nabla^2 h_i(x_0) \geq 0$ on $T_{x_0} \mathcal{M}$ $(\nabla_x^2 \mathcal{L} \geq 0)$.

Remark: whenever x_0 is a local minimum, it must be a critical point of \mathcal{L} , and \mathcal{L} is positive semidefinite on the tangent space at x_0 .

Proof. The first result is exactly the same as the first order condition proven above.

To show the second result, let $x(s) \in \mathcal{M}$ be an arbitrary differentiable curve on \mathcal{M} such that $x(0) = x_0$. Then,

$$\frac{d}{ds}f(x(s)) = \nabla f(x(s)) \cdot x'(s) \tag{3.53}$$

$$\frac{d^2}{ds^2}f(x(s)) = x'(s)^T \nabla^2 f(x(s))x'(s) + \nabla f(x(s))x''(s)$$
(3.54)

By the second order Taylor theorem, for every s such that $x(s) \in \mathcal{M}$,

$$f(x(s)) - f(x_0) = s\nabla f(x_0) \cdot x'(0) + \frac{s^2}{2} \left[x'(0)^T \nabla^2 f(x(0)) x'(s) + \nabla f(x(0)) x''(0) \right] + o(s^2)$$
(3.55)

Note that by definition, x'(0) is in the tangent space at x_0 . Also, we've shown previously that $\nabla f(x_0)$ is orthogonal to the tangent space at x_0 , therefore,

$$f(x(s)) - f(x_0) = \frac{s^2}{2} \left[x'(0)^T \nabla^2 f(x(0)) x'(s) + \nabla f(x(0)) x''(0) \right] + o(s^2)$$
(3.56)

Also, by the definition of \mathcal{M} , all constraints hold with equality:

$$f(x_0) = f(x_0) + \sum_{i=1}^{k} \lambda_i h_i(x_0)$$
(3.57)

where λ_i 's are from the first result. Hence,

$$f(x(s)) - f(x_0) = \frac{s^2}{2} \left[x'(0)^T \left(\nabla^2 f(x_0) + \sum_{i=1}^k \lambda_i \nabla^2 h_i(x_0) \right) x'(0) + \left(\nabla f(x_0) + \sum_{i=1}^k \lambda_i \nabla h_i(x_0) \right) x''(0) \right] + o(s^2)$$
(3.58)

$$= \frac{s^2}{2}x'(0)^T \left(\nabla^2 f(x_0) + \sum_{i=1}^k \lambda_i \nabla^2 h_i(x_0)\right) x'(0) + o(s^2)$$
(3.59)

And above expression is greater or equal to zero because x_0 is a local minimum,

$$\frac{s^2}{2}x'(0)^T \left(\nabla^2 f(x_0) + \sum_{i=1}^k \lambda_i \nabla^2 h_i(x_0)\right) x'(0) + o(s^2) \ge 0$$
(3.60)

$$\implies x'(0)^T \left(\nabla^2 f(x_0) + \sum_{i=1}^k \lambda_i \nabla^2 h_i(x_0) \right) x'(0) + \frac{o(s^2)}{s^2} \ge 0$$
 (3.61)

$$\stackrel{s\to 0}{\Longrightarrow} x'(0)^T \left(\nabla^2 f(x_0) + \sum_{i=1}^k \lambda_i \nabla^2 h_i(x_0) \right) x'(0) \ge 0$$
 (3.62)

Where x'(0) is a vector in the tangent space at x_0 by definition. Moreover, the curve x(s) was chosen arbitrarily, so the argument works for every curve and therefore every tangent vector, and what's desired is shown.

Example 3.7.

$$\min f(x, y) = x^2 - y^2 \tag{3.63}$$

$$s.t. \ h(x,y) = y = 0 \tag{3.64}$$

First order condition suggests $(x_0, y_0) = (0, 0)$ Note that the tangent space at (x_0, y_0) is span $\{\nabla h_i\}^{\perp}$:

$$T_{x_0}\mathcal{M} = \{(u,0) : u \in \mathbb{R}\}\tag{3.65}$$

and

$$\nabla_x^2 \mathcal{L} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \tag{3.66}$$

is obviously positive semidefinite (actually positive definition) on the tangent space.

Theorem 3.10 (Second Order Sufficient Conditions). Let $f, h_i \in C^2$ on open $\Omega \subset \mathbb{R}^n$, and $x_0 \in \mathcal{M}$ is a

regular point, if there exists $\lambda_i \in \mathbb{R}$ such that

- (i) $\nabla_x \mathcal{L}(x_0, \lambda_i) = 0$;
- (ii) $\nabla_x^2 \mathcal{L}(x_0, \lambda_i) \succ 0$ on $T_{x_0} \mathcal{M}$,

then x_0 is a *strict* local minimum.

Proof. Recall that $\nabla^2 f(x_0) + \sum \lambda_i \nabla^2 h_i(x_0)$ positive definite on $T_{x_0} \mathcal{M}$ implies there exists a > 0 (a is taken to be equal to the least eigenvalue of $\nabla^2_x \mathcal{L}$) such that

$$v^{T}[\nabla^{2} f(x_{0}) + \sum \lambda_{i} \nabla^{2} h_{i}(x_{0})] v \ge a||v||^{2} \quad \forall v \in T_{x_{0}} \mathcal{M}$$

$$(3.67)$$

Let $x(s) \in \mathcal{M}$ be a curve such that $x(0) = x_0$ and v = x'(0). WLOG, ||x'(0)|| = 1. By the second order Taylor expansion,

$$f(x(s)) - f(x(0)) = s \frac{d}{ds} \Big|_{s=0} f(x(s)) + \frac{s^2}{2} \frac{d^2}{ds^2} \Big|_{s=0} f(x(s)) + o(s^2)$$

$$= s \frac{d}{ds} \Big|_{s=0} \left[f(x(s)) + \sum \lambda_i h_i(x(s)) \right] + \frac{s^2}{2} \frac{d^2}{ds^2} \Big|_{s=0} \left[f(x(s)) + \sum \lambda_i h_i(x(s)) \right] + o(s^2)$$

$$(3.68)$$

$$= s\nabla_x \mathcal{L}(x_0, \lambda_i) \cdot x'(0) + \frac{s^2}{2} \left[x'(0)^T \nabla_x^2 \mathcal{L}(x_0, \lambda_i) x'(0) + \nabla_x \mathcal{L}(x_0, \lambda_i) x''(0) \right] + o(s^2) \quad (3.70)$$

$$= \frac{s^2}{2} x'(0)^T \nabla_x^2 \mathcal{L}(x_0, \lambda_i) x'(0) + o(s^2)$$
(3.71)

$$\geq \frac{s^2}{2}a||x'(0)||^2 + o(s^2)$$
 where $a > 0$ (3.72)

$$= s^2 \left(\frac{a}{2} + \frac{o(s^2)}{s^2} \right) \tag{3.73}$$

$$\stackrel{s\to 0}{>} 0 \tag{3.74}$$

Therefore, for sufficiently small s, f(x(s)) - f(x(0)) > 0. And this is true for every curve x on \mathcal{M} . So x(0) is a strict local minimum.

3.3 Remark on the Connection Between Constrained and Unconstrained Optimizations

Example 3.8. Consider

$$\min f(x, y, z) \tag{3.75}$$

$$s.t.g(x, y, z) = z - h(x, y) = 0 (3.76)$$

where \mathcal{M} is the graph of h. Using Lagrangian multiplier provides necessary condition: $\nabla f + \lambda \nabla g = 0$,

$$\begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} + \lambda \begin{pmatrix} -h_x \\ -h_y \\ 1 \end{pmatrix} = 0 \tag{3.77}$$

Convert the constrained optimization into an unconstrained optimization as

$$\min_{(x,y)\in\mathbb{R}^2} F(x,y) = f(x,y,h(x,y)) \tag{3.78}$$

The necessary condition for unconstrained optimization is

$$\nabla F(x,y) = \begin{pmatrix} f_x + f_z h_x \\ f_y + f_z h_y \end{pmatrix}$$
 (3.79)

$$= \begin{pmatrix} f_x \\ f_y \end{pmatrix} - f_z \begin{pmatrix} -h_x \\ -h_y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (3.80)

Define $\lambda := -f_z$.

$$\nabla F(x,y) = \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} + \lambda \begin{pmatrix} -h_x \\ -h_y \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (3.81)

3.4 Inequality Constraints

Definition 3.9. Let x_0 satisfy the set of constraints

$$h_i(x) = 0 \quad i \in \{1, \dots, k\}$$
 (3.82)

$$g_j(x) \le 0 \quad j \in \{1, \cdots, \ell\} \tag{3.83}$$

we say that the constraint g_i is active at x_0 if $g_i(x_0) = 0$, and is inactive at x_0 if $g_i(x_0) < 0$.

Definition 3.10. Split the collection of inequality constraints into active and inactive constraints, let $\Theta(x_0)$ denote the collection of active indices, that's:

$$g_j(x_0) = 0 \ \forall j \in \Theta(x_0) \tag{3.84}$$

$$g_i(x_0) < 0 \ \forall j \notin \Theta(x_0) \tag{3.85}$$

Then x_0 is said to be a **regular point** of the constraint if

$$\{\nabla h_i(x_0) \ \forall i \in \{1, \cdots, k\}; \underbrace{\nabla g_j(x_0) \ \forall j \in \Theta(x_0)}_{\text{Active Constraints}}\}$$
(3.86)

is linearly independent.

Theorem 3.11 (The First Order Necessary Condition for Local Minimum: Kuhn-Tucker Conditions). Let Ω be an open subset of \mathbb{R}^n with constraints h_i and g_i to be C^1 on Ω . Suppose $x_0 \in \Omega$ is a regular point with respect to constraints, further suppose x_0 is a local minimum, then there exists some $\lambda_i \in \mathbb{R}$ and $\mu_j \in \mathbb{R}_+$ such that

(i)
$$\nabla f(x_0) + \sum_{i=1}^k \lambda_i \nabla h_i(x_0) + \sum_{i=1}^\ell \mu_i \nabla g_i(x_0) = 0;$$

(ii) $\mu_j g_j(x_0) = 0$ (Complementary slackness).

Remark: by complementary slackness, all μ_i corresponding to inactive inequality constraints are zero.

Proof. Let x_0 be a local minimum for f satisfying constraints, equivalently, it is a local minimum for equality constraints and active inequality constraints.

By the first order necessary condition for local minimum with equality constraints, there exists $\lambda_i, \mu_i \in \mathbb{R}$

such that

$$\nabla f(x_0) + \sum_{i=1}^k \lambda_i \nabla h_i(x_0) + \sum_{j \in \Theta(x_0)} \mu_j \nabla g_j(x_0) = 0$$
 (3.87)

Then by setting $\mu_j=0$ for all $j\notin\Theta(x_0)$ one have

$$\nabla f(x_0) + \sum_{i=1}^k \lambda_i \nabla h_i(x_0) + \sum_{j=1}^\ell \mu_j \nabla g_j(x_0) = 0$$
 (3.88)

By construction, the complementary slackness is satisfied. At this stage, we have construct $\lambda_i \in \mathbb{R}$ and $\mu_j \in \mathbb{R}$ satisfying both conditions, we still need to argue that $\mu_j \geq 0$ for every j.