

Solar Power CSP Key Note

Björn Laumert KTH Energy Department – Heat and Power Division

Solar Basics

During passage through Earth's atmosphere, partial flux is scattered or absorbed

Even on a clear day, up to 30% of the incoming radiation is absorbed

The peak flux at the Earth's surface is approx. 1kW/m²

Largest losses result from absorption and reflection

Solar Basics: Radiation Components

Beneath Earth's atmosphere, Solar flux is divided into two components: Beam and Diffuse radiation, which sum is known as the Global Irradiation

Beam radiation intensity is strongly dependent on the orientation of the surface which intercepts it

Solar Thermal Systems

Solar Thermal System: A process that harnesses solar radiation as a power source through the conversion of the incident solar flux into useful heat

Classified in two types depending on the level of temperature at which the heat is to be delivered:

Non-Concentrating

Harnesses the Incoming Flux Directly
Low Temperature (<120°C)

Concentrating

Concentrates the Incoming Flux Higher Temperatures (120 – 3000°C)

Solar thermal systems in which:

Solar radiation is <u>concentrated</u> to create a <u>high-temperature heat</u> source, which can then be used to drive <u>conventional power generation</u> cycles

Introduction – Working Principle

Mirror directed normal to solar irradiation

Light is reflected (concentrated) to a focal spot

Light in focal spot is captured in receiver

Light is absorbet in medium and transformed into heat

Heat is used to drive heat to power conversion process

Conversion process is Stirling, Rankine or Bryton cycle

Remember: The Concentration Ratio

Concentration increases density of the radiant energy flux, allowing more power to be absorbed for a given surface area and thus a more effective receiver operation at higher temperatures

Geometric CR:

$$CR_g = \frac{A_a}{A_r}$$

Optical CR:

$$CR_o = \frac{\frac{1}{A_r} \int I_r \delta A_r}{I_{b,a}}$$

$$CR_o = \eta_{opt} CR_g$$
Collector Optical Efficiency

Receiver Efficiency

$$Q_{rad} = \sigma A \varepsilon F_{re} (T^4 rec - T^4 env)$$

 $\eta_{tot} = \eta_{ref} \eta_{rad} \eta_{conv} \eta_{cond}$

2.13 Radiation energy balance on a diffusely emitting and reflecting surface.

Remember: The Concentration Ratio

Concentration increases density of the radiant energy flux, allowing more power to be absorbed for a given surface area and thus a more effective receiver operation at higher temperatures

The CR varies depending on the technology and is an indicator of the system efficiency. The CR is connected to reachable temperatures and thus to identifying suitable power cycles.

Main Technologies for CSP

Solar Energy → High Temperature Heat

	Fresnel	Tower	Dish	Trough
Maturity	Early commercial projects going online	Proven (First large projects)	Demonstration Projects	Proven (most mature)
Tracking	No tracking	2 axes tracking	2 axes tracking	1 axis tracking
Receiver	Linear – Fixed	Point - Fixed	Point - Movable	Linear - Movable
Storage	Available, not proven	Commercially Available	Probable – not yet available	Commercially Available

A simple schematics with energy conversion in a CSP plant:

Market Situation

By May 2014, there were close to **4GW**_e of installed capacity

Image source: CSPToday. Data does not consider government plans or announcements.

Market Situation

By May 2014, there were close to **4GW**_e of installed capacity

Image Source: CSPToday. Data does not consider government plans or announcements.

Challenges for CSP

2014: 4 GW ------ 2050: + 1000 GW ?

A number of *future challenges* can be identified for solar thermal power technologies which must be addressed

- Increasing economic competitiveness
- Reducing/Eliminating water consumption
- Increasing availability/dispatchability of CSP Plants
- Improving flexibility (cycling), safety and O&M requirements

In short: The VALUE of CSP needs to be increased

VALUES of a CSP Plant

The **main value** of a CSP plant is providing electricity at a competitive price.

Value is **NOT** only linked to the notion of money, can also be:

- \triangleright Reduction in emissions (CO₂, NO_x, O₃, etc.)
- Water savings (especially in arid areas)
- Energy independence (reduced fuel usage)

Design Objectives

The design of energy system usually involves *conflicting objectives*

- > Economics: low investment cost, low operating cost
- > Thermodynamic: high efficiency, low exergy destruction
- > Environmental: low pollutant emissions, low CO2 emissions
- > Political: low energy dependence

It is extremely rare that all the objectives can be met simultaneously, so *trade-offs* must be considered

Performance Indicators

In order to objectively compare different the performance of different power generation systems performance indicators need to be defined

- > Thermodynamic: conversion efficiency, net electrical output
- Economics: net present value, levelized cost of electricity, internal rate of return
- Environmental: specific CO₂ emission, solar share

For concentrating solar power plants an specific design parameter is introduced

Solar multiple

Predictions of Cost Reduction

Though promising, solar power is **not yet economically competitive** with conventional power generation technologies

- Actual cost reductions were much less than initially predicted!!
- Revised cost predictions made in 2004 at the DLR (Germany)

Image Source: US National Renewable Energy Laboratory, 1991

Economics of CSP

On a cost basis, CSP is and will be *more costly* than other technologies

Image source: IEA Energy Technologies, 2014

Economics of CSP

For achieving cost reduction *improvements* are needed

Image source: IEA Energy Technologies, 2014

CSP vs PV

Dispatchability is the key advantage of solar thermal power systems

Two types of power generation systems can be distinguished

Dispatchable: able to supply power on demand

hydro (with dam), solar thermal, geothermal

Non-dispatchable: no control over power output

hydro (run-of river), wind, PV, wave

Non-dispatchable sources complicate operation of the electricity grid Production = Consumption (at every moment)

When fluctuations occurs in PV or wind, must respond instantly

CSP vs PV

Replacing conventional power plants will non-dispatchable renewables does not provide the desired level of emissions reductions

How can we make CSP plants more competitive/increase their value?

- By means of hybridization with other fossil fuel based power plants.
- Integrating Thermal Energy Storage (TES) systems

Typical CSP Locations

High potential areas for solar thermal power deployment are concentrated in desert areas:

Clear skies and high direct normal irradiation

Water consumption will *limit the number* of sites for deployment

Water Consumption

Solar thermal power plants based on conventional steam-cycle technology consume water for a number of purposes

- > Evaporative cooling of the vacuum condenser
- Steam-drum blowdown (both continuous and intermittent)

Mirror washing

Water consumption will *limit the number* of sites for deployment

Design Parameters

Op. Strategy

Cost Functions

Techno-economic Decision Making

Providing the argument for R&D and market effort of new technologies

Performance Indicators Dynamic Simulation and techno-economic Performance Indicators Costs: LCOE

Location

and techno-economic calculations

rech: Efficiencies

Solar Laboratory

Unique facility (only 3 other Universities have comparable facility world wide)

96 kW Sun simulator with concentrated flux density of 8 MW/m2 on target

Providing a stable high temperature heat source for:

- a. Investigating thermochemical processes and solar reactors
- b. Testing advanced high temperature materials

Providing an experiment platform for R&D of high temperature solar receivers

Providing a possibility for experimental investigation of thermodynamic cycles for high concentration CSP power generation

Utilization as power source for solar driven processes in polygeneration lab

HPT KTH 26

Dish Stirling Receiver Design

Justification

Dish-Stirling technology has provided demonstrated solar-to-electricity efficiencies around 30% but a significant drop in the overall price has to be achieved

Objective

Design a 13 kW cost-competitive Dish-Stirling with the specifications:

- Sun-to-heat collection efficiency of 80%
- Operating temperature of 850 °C
- Component lifetime of at least 15,000 equivalent operational hours

Methodology

- System modeling
- Lab and full scale measurements and testing

Solar GT Receiver Development

High-temperature solar receiver design and experimental verification for micro gas-turbine based solar dish systems as part of OMSoP

High-flux solar simulator design and implementation of a test bed for solar receiver tests

