Quantitative Methods for Portfolio Optimizations and Trading Strategies

Team Members

Ming-Hung Chen Mchen37@ncsu.edu

Xinqian Li xli253@ncsu.edu

Kavya Regulagedda kregula@ncsu.edu

Kexuan Zhou kzhou9@ncsu.edu

Outline

Component Selection

Data Extraction

Data Exploration and Analysis Optimization of Portfolio

Markowitz Portfolio Theory

Lagrange Method Variance Estimation

Static Model

Dynamic Model

Performance Evaluation

Performance Metrics

Comparison of Portfolios

Component Selection

- Stocks with good fundamentals
- Stocks in different industries
- Stocks with low correlation

Data Exploration

- Derived from BridgeWater, extract 13 components
- Exclude large Funds i.e. IVV: iShares S&P500, IEMG
- Use 2018-01-01 to 2022-12-31 as in-sample period to calculate weights
- Use 2023-01-01 to 2023-11-22 as out-of-sample period to test performance
- Benchmark: S&P500 and BridgeWater holdings

Component Selection

- PG: Procter & Gamble
- JNJ: Johnson and Johnson
- PEP: Pepsi
- KO: Coca-Cola inc.
- MCD: McDonalds Corp.
- META: Meta
- CVS: CVS Health Corporation

- COST: Costco
- WMT: Walmart
- SBUX: Starbucks
- GOOGL: Google
- V: Visa inc.
- ABT: Abbott Laboratories

Coefficient Matrix Heatmap

Assets

6

Tangency Portfolio Capital Market Line

- Minimize Nonsystematic-Risk under given expected return
- Eliminate Nonsystematic-Risk by Diversification
- Optimal risk-return balance

Tangency weight calculation

$$\max_{\mathbf{t}} \ rac{\mathbf{t}' \mu - r_f}{(\mathbf{t}' \Sigma \mathbf{t})^{rac{1}{2}}} = rac{\mu_{p,t} - r_f}{\sigma_{p,t}} ext{ s.t. } \mathbf{t}' \mathbf{1} = 1$$

Mathematical approach used to solve this optimization problem

t: Tangency portfolio weight rf: risk-free rate

 Σ : Components covariance μ : Components expected return

Estimation of expected return & covariance

$$\mathbf{t} = rac{\Sigma^{-1}(\mu - r_f \cdot \mathbf{1})}{\mathbf{1}' \Sigma^{-1}(\mu - r_f \cdot \mathbf{1})}$$

 Σ : Components covariance μ : Components expected return

- Static model: Assume expected returns and variance are static
- Calculate covariance matrix and expected return using historical returns

Static Model Return

Imperfection of Static model

- Variance and return are not static but dynamic
- Motivation to use dynamic model to capture this pattern

GARCH Model - Introduction

Generalized **Auto Regressive** Conditional Heteroskedasticity

GARCH Model - Introduction

A complete GARCH model is divided into three components:

○a mean model, e.g., a constant mean or an ARX;

Oa volatility process, e.g., a GARCH or an EGARCH process;

- Oa distribution for the standardized residuals, e.g., Normal
 - distribution, t-distribution

GARCH

The simplist GARCH model would be like this:

$$egin{aligned} r_t &= \mu + \epsilon_t \ \epsilon_t &= \sigma_t e_t \ \sigma_t^2 &= \omega + lpha \epsilon_{t-1}^2 + eta \sigma_{t-1}^2 \ e_t &\sim N(0,1) \end{aligned}$$

- ω (omega): It represents the constant term, which is the unconditional variance of the return series.
- α (alpha): It measures the persistence of volatility.
- β (beta): It measures the speed of mean reversion of volatility.

GJR-GARCH

GLR-GARCG Includes one lag of an asymmetric shock:

$$egin{aligned} r_t &= \mu + \epsilon_t \ \epsilon_t &= \sigma_t e_t \ \sigma_t^2 &= \omega + lpha \epsilon_{t-1}^2 + \gamma \epsilon_{t-1}^2 I_{[\epsilon_{t-1} < 0]} + eta \sigma_{t-1}^2 \ e_t &\sim N(0,1) \end{aligned}$$

- ω (omega): It represents the constant term, which is the unconditional variance of the return series.
- α (alpha): It measures the persistence of volatility.
- β (beta): It measures the speed of mean reversion of volatility.
- γ (gamma): It captures the asymmetric effect.

GARCH vs. GJR-GARCH

GARCH

Assumes symmetry in the impact of shocks

GJR-GARCH

Leverage effect (asymmetric shocks)

Allows for positive and negative impacts

Components weights

- Use Beta to estimate expected return
- Use historical data to fit GARCH and GJR-GARCH model
- Use fitted model to predict future variance of components
- Estimated covariance matrix and estimated returns
- Weights are recalculated every two weeks

Components weights

Static & Dynamic Model Return

Performance Metric

	GARCH Adjusted	GJR-GARCH Adjusted	Static Portfolio	BridgeWater	S&P500
Return	13.46%	15.23%	4.99%	10.84%	18.67%
Volatility	0.095	0.093	0.176	0.086	0.114
Sharpe Ratio	1.205	1.416	0.169	1.024	1.46
Information Ratio	0.275	0.470	-0.331	X	X

Future Work

- Add Trading Costs and Slippage
- Add conditional number for detection
- Add subjective views to adjust expected return and
 - covariance matrix
- Implement Black-Litterman model

Thank You

Q&A