BANA Assignment 1

Team Members:

Aaron Liu

Pranav Belmannu

Maithilee Nagesh Kulkarni

Gautam Mohan Babu

In this project we are cleaning, analysing and visualizing the data on causes of death over the years from 1999 to 2016 in the United States of America. The data has been cleaned to accomodate 50 states and the causes of deaths along with their statistical data. This data was further analysed using python.

1.) Import important packages like pandas and numpy

In [16]: import pandas as pd import matplotlib.pyplot as plt

2.) Store your directory and file names in a variable for code reusability

In [17]: location='C://Downloads//'
file1='NCHS_-_Leading_Causes_of_Death__United_States.csv'
file2='nst-est2018-01.xlsx'

3.) Reading the file into data frames

In [18]: df1=pd.read_csv(location+file1) df2=pd.read_excel(location+file2,header=**None**)

4.) Exploring and viewing the data

In [19]: df1.head()

Out[19]:	Year	113 Cause Name	Cause Name	State	Deaths	Age-adjusted Death Rate
0	2012	Nephritis, nephrotic syndrome and nephrosis $(\ensuremath{N}\xspace)$	Kidney disease	Vermont	21	2.6
1	2016	Nephritis, nephrotic syndrome and nephrosis $(N\dots$	Kidney disease	Vermont	30	3.7
2	2013	Nephritis, nephrotic syndrome and nephrosis $(N\dots$	Kidney disease	Vermont	30	3.8
3	2000	Intentional self-harm (suicide) (*U03,X60-X84,	Suicide	District of Columbia	23	3.8
4	2014	Nephritis, nephrotic syndrome and nephrosis $(N\dots$	Kidney disease	Arizona	325	4.1

In [20]: df2.head()

Out[20]:	0	1	2	3	4	5	6	7	8	9	10	
0	table with row headers in column A and column 	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1	Table 1. Annual Estimates of the Resident Popu	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2	Geographic Area	2010-04- 01 00:00:00	NaN	Population Estimate (as of July 1)	NaN							
3	NaN	Census	Estimates Base	2010	2011.0	2012.0	2013.0	2014.0	2015.0	2016.0	2017.0	2
4	United States	308745538	308758105	309326085	311580009.0	313874218.0	316057727.0	318386421.0	320742673.0	323071342.0	325147121.0	327167
In [21]: df	1.info()											Þ
<class 'pandas.core.frame.dataframe'=""> RangeIndex: 10296 entries, 0 to 10295 Data columns (total 6 columns): # Column Non-Null Count Dtype</class>												
3 State 4 Deaths		0296 non-n 10296 non-	null int64	fl +C 4								

5 Age-adjusted Death Rate 10296 non-null float64

dtypes: float64(1), int64(2), object(3)

memory usage: 482.8+ KB

In [22]: df2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 67 entries, 0 to 66 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ----- ------

0 0 65 non-null object 59 non-null object 1 1 2 2 58 non-null object 3 3 59 non-null object 58 non-null float64 4 4 5 5 58 non-null float64 6 6 58 non-null float64 58 non-null float64 58 non-null float64 7 7 8 8 58 non-null float64 9 9 10 10 58 non-null float64 58 non-null float64 dtypes: float64(8), object(4) memory usage: 6.4+ KB

Question 1 Sub Question 1

Are Americans facing increasing, decreasing, or steady likelihood of death?

In [23]: df1.head() # Group by the year and sum all the deaths for each year df1_likelihood=df1.groupby('Year')['Deaths'].agg('sum') df1_likelihood

```
2001
               8631566
       2002
               8724520
       2003
               8720806
       2004
               8523496
       2005
               8675996
       2006
               8561880
       2007
               8540026
        2008
               8689930
       2009
               8551328
       2010
               8641568
               8769558
       2012
               8839734
       2013
               9014608
       2014
               9129652
               9451294
       2015
               9556734
       Name: Deaths, dtype: int64
In [24]: # Plot the data
       plt.figure()
       plt.ylabel("Deaths per Year")
       plt.xlim(1998,2016)
       plt.xlabel("Year")
       plt.title("Likleihood of Death from 1999 to 2016")
       plt.plot(df1_likelihood.index,df1_likelihood.values)
               Likleihood of Death from 1999 to 2006
   9.4
  9.2
Deaths per Year
   8.8
   8.6
```

Out[23]:Year 1999

2000

8594450

8611090

The above plot shows that the number of deaths per year has been fluctuating but gradually increased from 2009 to 2016. This confirms that Americans are facing increasing likelihood of deaths post 2010

Further Questions that can be asked:

2002

2000

- 1. Is the likelyhood ratio remained same accross states?
- 2. Are there are specific causes that caused gradual increase in deaths?

2008

2010

2012

2014

3. What causes have been prominent in the increase of deaths from 1999?

Question 1 Sub Question 2

What are top 4 leading causes of death?

```
In [10]: #### Get the Years column sorted
       df1_sorted_by_year = df1.sort_values(by=['Year'])
       df1_sorted_by_year # 10296 rows
       # ### Get all the unique causes: 11 Unique Causes (936 each)
       df1_sorted_by_year.iloc[0:, 1].value_counts()
                                                        936
       All Causes
       Alzheimer's disease (G30)
                                                              936
       Chronic lower respiratory diseases (J40-J47)
                                                                    936
       Nephritis, nephrotic syndrome and nephrosis (N00-N07,N17-N19,N25-N27)
       Malignant neoplasms (C00-C97)
                                                                 936
       Accidents (unintentional injuries) (V01-X59,Y85-Y86)
                                                                       936
       Diabetes mellitus (E10-E14)
                                                              936
       Cerebrovascular diseases (I60-I69)
                                                                 936
       Influenza and pneumonia (J09-J18)
                                                                  936
       Intentional self-harm (suicide) (*U03,X60-X84,Y87.0)
                                                                      936
       Diseases of heart (I00-I09,I11,I13,I20-I51)
                                                                  936
       Name: 113 Cause Name, dtype: int64
       ## Display only these three columns
       df1_causes_and_death = df1_sorted_by_year[['113 Cause Name', 'Cause Name', 'Deaths']]
```

```
# df1_causes_and_death
      ### The Below was used to help understand one type of cause of death
      ## Find the unique count of the causes
      # df1_causes_and_death.iloc[0:, 1].value_counts()
      ## Get the deaths for a specific cause name
      # clrd_deaths = df1_causes_and_death[df1_causes_and_death.iloc[0:,1].isin(['CLRD'])]
      # clrd deaths
      ## Get the cumulative count: 4869452 Deaths by CLRD
      # clrd_deaths.iloc[0:,2].agg('sum')
      ## Use pivot table to help aggregate all the causes and summing their deaths
      total_deaths_per_causes = pd.pivot_table(df1_causes_and_death,
                            values='Deaths',
                            index=['Cause Name'],
                            #columns=['113 Cause Name'],
                            aggfunc=np.sum)
      #total_deaths_per_causes
      ## Sort the pivot table in descending order
      deaths_descending = total_deaths_per_causes.sort_values(by=['Deaths'], ascending=False)
      # deaths descending
      ## Display the top 4
      top 4 deaths = deaths descending.iloc[1:5]
      top_4_deaths.values
      ## Alternative Method to getting the 4 leading causes of death
      cause_of_death = df1_causes_and_death.groupby('Cause Name')
      sum_cause_of_death = cause_of_death['Deaths'].agg('sum')
      top 4_deaths = sum_cause_of_death.sort_values(ascending=False).iloc[1:5]
      top_4_deaths
Out[10]:Cause Name
      Heart disease 23150366
      Cancer
                  20489072
      Stroke
                  5160280
      CLRD
                   4869452
      Name: Deaths, dtype: int64
```

The above table shows that the top four leading causes of deaths for Americans are Heart Diseases, cancer, Stroke and CLRD.

Plotting this for variation purposes

```
In [11]: # Plot the data
```

```
plt.figure()
plt.ylabel("Total Deaths")
plt.xlabel("Cause Names")
plt.ylim(4000000,30000000)
plt.title("Top 4 Leading Cause of Deaths")
plt.bar(top_4_deaths.index, top_4_deaths.values, width=0.4, color=['orange', 'magenta', 'yellow', 'green'])
plt.show()
```


Question 1 Sub Question 3

Do individual states show the same four leading causes of death??

```
In [12]: df1.head()

##Picking up data only for deaths,states and cause name

df1_deaths_states_all=df1.loc[:,['Deaths','State','Cause Name']]

###Sort the data with death
```

```
df1_deaths_states_all=df1_deaths_states_all.sort_values(by=['State','Cause Name'],ascending=False)
df1_deaths_states_all=df1_deaths_states_all['State']!='United States']
df1_deaths_states_all=df1_deaths_states_all[df1_deaths_states_all['Cause Name']!='All causes']
df1_deaths_states_all=df1_deaths_states_all.groupby(['State','Cause Name'],as_index=False)['Deaths'].agg(sum)
pd.set_option('display.max_rows', 530)
df1_deaths_states_all
df1_deaths_states_all = df1_deaths_states_all.sort_values(by=['State','Deaths'],ascending=False)
count = 4
curr_count = 0
state_dic = {}
for index, row in df1_deaths_states_all.iterrows():
  #print(row['State'], row['Cause Name'])
  if row['State'] in state_dic:
    if curr_count < count:</pre>
       state_dic[row['State']].append(row['Cause Name'])
       curr_count += 1
    else:
       continue
    state_dic[row['State']] = []
    curr count = 0
state_dic
state df = pd.DataFrame(state dic)
state df[state df.isin(['Heart disease', 'Cancer', 'Stroke', 'CLRD'])]
```

Out[12]:	Wyoming	Wisconsin	West Virginia	Washington	Virginia	Vermont	Utah	Texas	Tennessee	South Dakota	 Florida	District of Columbia	Delaware	Connecticut
0	Cancer	Cancer	Cancer	Heart disease	Cancer	Heart disease	Cancer	Cancer	Cancer	Cancer	 Cancer	Cancer	Cancer	Cancer
1	CLRD	Stroke	CLRD	Stroke	Stroke	CLRD	NaN	Stroke	Stroke	Stroke	 CLRD	Stroke	CLRD	Stroke
2	NaN	NaN	NaN	CLRD	CLRD	NaN	Stroke	NaN	CLRD	CLRD	 Stroke	NaN	Stroke	CLRD
3	Stroke	CLRD	Stroke	NaN	NaN	Stroke	CLRD	CLRD	NaN	NaN	 NaN	NaN	NaN	NaN

4 rows × 51 columns

Out[13]:

As we can see from above table, All states have any three out of four leading causes of death in each state.

Further Questions can be asked are: what are individual four causes of death for each state? what position is the left out leading cause of death in each state?

Question 1 Sub Question 4

Are there year-by-year changes in the four leading causes of death nationwide?

```
In [13]: df1.head()

df1_yearly_leading_causes=df1.loc[:,['Year','Cause Name','Deaths']]

df1_yearly_leading_causes=df1.groupby(['Cause Name','Year'],as_index=False)['Deaths'].agg(sum)

df1_yearly_leading_causes=pd.DataFrame(df1_yearly_leading_causes)

df1_yearly_leading_causes=df1_yearly_leading_causes[df1_yearly_leading_causes['Cause Name'].isin(top_4_deaths.index)]

df1_yearly_leading_causes
```

	Cause Name	Year	Deaths
36	CLRD	1999	248362
37	CLRD	2000	244018
38	CLRD	2001	246026
39	CLRD	2002	249632
40	CLRD	2003	252764
41	CLRD	2004	243974
42	CLRD	2005	261866
43	CLRD	2006	249166
44	CLRD	2007	255848
45	CLRD	2008	282180
46	CLRD	2009	274706
47	CLRD	2010	276160
48	CLRD	2011	285886
49	CLRD	2012	286978
50	CLRD	2013	298410
51	CLRD	2014	294202

52	Cause Name	Year 2015	Peaths 310082	
53	CLRD	2016	309192	
54	Cancer	1999	1099676	
55	Cancer	2000	1106182	
56	Cancer	2001	1107536	
57	Cancer	2002	1114542	
58	Cancer	2003	1113804	
59	Cancer	2004	1107776	
60	Cancer	2005	1118624	
61 62	Cancer Cancer	2006	1119776 1125750	
63	Cancer	2007		
64	Cancer	2009	1135256	
65	Cancer	2010		
66	Cancer	2011	1153382	
67	Cancer	2012	1165246	
68	Cancer	2013	1169762	
69	Cancer	2014	1183400	
70	Cancer	2015	1191860	
71	Cancer	2016	1196076	
90	Heart disease	1999	1450384	
91	Heart disease	2000	1421520	
92	Heart disease	2001	1400284	
93	Heart disease	2002	1393894	
94	Heart disease	2003	1370178	
95	Heart disease	2004	1304972	
96	Heart disease	2005	1304182	
97	Heart disease	2006	1263272	
98	Heart disease	2007	1232134	
99	Heart disease	2008	1233656	
100	Heart disease	2009	1198826	
101	Heart disease	2010	1195378	
102	Heart disease	2011	1193154	
103	Heart disease	2012	1199422	
104	Heart disease	2013	1222210	
105	Heart disease	2014	1228696	
106	Heart disease	2015	1267684	
107	Heart disease		1270520	
144	Stroke			
145	Stroke		335322	
146 147	Stroke Stroke			
147	Stroke			
149	Stroke	2003	300148	
	2.101.0	_551	200710	

150	Cause Starke	2/02/25	Deaths
151	Stroke	2006	274238
152	Stroke	2007	271904
153	Stroke	2008	268296
154	Stroke	2009	257684
155	Stroke	2010	258952
156	Stroke	2011	257864
157	Stroke	2012	257092
158	Stroke	2013	257956
159	Stroke	2014	266206
160	Stroke	2015	280646
161	Stroke	2016	284284

```
In [14]: plt.figure()
    plt.ylabel("Deaths")
    plt.xlim(1998,2016)
    plt.xlabel("Year")
    plt.title("Year wise trend of leading four causes of death")
    plt.plot(df1_yearly_leading_causes[df1_yearly_leading_causes['Cause Name']=='Stroke']['Year'],df1_yearly_leading_causes[df1_yearly_leading_causes[th1_yearly_leading_causes]th.plot(df1_yearly_leading_causes[df1_yearly_leading_causes]th.plot(df1_yearly_leading_causes[df1_yearly_leading_causes]th.plot(df1_yearly_leading_causes[df1_yearly_leading_causes]th.plot(df1_yearly_leading_causes[df1_yearly_leading_causes[th2_yearly_leading_causes]th.plot(df1_yearly_leading_causes[df1_yearly_leading_causes[th2_yearly_leading_causes]th.plot(df1_yearly_leading_causes[df1_yearly_leading_causes[th2_yearly_leading_causes]th.plot(df1_yearly_leading_causes[df1_yearly_leading_causes[th2_yearly_leading_causes]th.plot(df1_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes]th.plot(df1_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes]th.plot(df1_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes]th.plot(df1_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes]th.plot(df1_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes]th.plot(df1_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_causes[th2_yearly_leading_ca
```


Here there are few observations to make:- 1.Cancer and CLRD are steadily increasing over the years 2.Both Heart diseases and strokes have come down slightly over the years

Questions can be asked are:- 1.Is the increase same accross all states? 2.Are there other causes that have increased the death count over the years? 3.Are there other causes that have decreased the death count over the years?

Q2. Normalization of population or standardization data involves following procedures

- 1.) Drop first two cells for data cleaning purposes
- 2.) pick headers and add it back appropriately
- 3.) Remove census and estimates which cannot be used in further analysis
- 4.) drop NA values which would disrupt the operations
- 5.) bring all the datatypes into int because population cannot be in fractions

```
In [15]: ## Pull the column title "Geographic Area"
| label = df2.iloc[2,0]

## Pull the remainder row containing the header
| headers = df2.iloc[3:4]

## Pull the values within the rows
| headers.values

## Create new column header array
| newColumnHeaders = []

## Add the first value to it
| newColumnHeaders.append(label)
```

```
## Add the remainder values to it
for x in headers.values[0]:
  if isinstance(x, float):
     if np.isnan(x):
       continue
     newColumnHeaders.append(int(x))
     continue
  newColumnHeaders.append(x)
newColumnHeaders
## Make the clean data frame with the values from United States to Puerto Rico
cleanDF = pd.DataFrame(df2.iloc[4:-5])
## Assign the new column headers
cleanDF.columns = newColumnHeaders
## Get rid of row number 60 as it was just an empty row
cleanDF = cleanDF.dropna()
cleanDF=cleanDF.drop(['Census','Estimates Base'],axis=1)
cleanDF.set_index('Geographic Area')
cleanDF.transpose()
cleanDF
state_col = cleanDF.iloc[0:,0]
#state_col['Geographic Area'].apply(lambda x: x[0].upper() + x[1:])
df_state = pd.DataFrame(state_col)
cleanDF = cleanDF.iloc[0:, 1:].astype(int)
df_state.merge(cleanDF, left_index=True, right_index=True)
```

Out[15]:	Geographic Area	2010	2011	2012	2013	2014	2015	2016	2017	2018
4	United States	309326085	311580009	313874218	316057727	318386421	320742673	323071342	325147121	327167434
5	Northeast	55380645	55600532	55776729	55907823	56015864	56047587	56058789	56072676	56111079
6	Midwest	66974749	67152631	67336937	67564135	67752238	67869139	67996917	68156035	68308744
7	South	114867066	116039399	117271075	118393244	119657737	121037542	122401186	123598424	124753948
8	West	72103625	72787447	73489477	74192525	74960582	75788405	76614450	77319986	77993663
9	.Alabama	4785448	4798834	4815564	4830460	4842481	4853160	4864745	4875120	4887871
10	.Alaska	713906	722038	730399	737045	736307	737547	741504	739786	737438
11	.Arizona	6407774	6473497	6556629	6634999	6733840	6833596	6945452	7048876	7171646
12	.Arkansas	2921978	2940407	2952109	2959549	2967726	2978407	2990410	3002997	3013825
13	.California	37320903	37641823	37960782	38280824	38625139	38953142	39209127	39399349	39557045
14	.Colorado	5048281	5121771	5193721	5270482	5351218	5452107	5540921	5615902	5695564
15	.Connecticut	3579125	3588023	3594395	3594915	3594783	3587509	3578674	3573880	3572665
16	.Delaware	899595	907316	915188	923638	932596	941413	949216	957078	967171
17	.District of Columbia	605085	619602	634725	650431	662513	675254	686575	695691	702455
18	.Florida	18845785	19093352	19326230	19563166	19860330	20224249	20629982	20976812	21299325
19	.Georgia	9711810	9801578	9901496	9973326	10069001	10181111	10304763	10413055	10519475
20	.Hawaii	1363963	1379252	1394905	1408453	1414862	1422484	1428105	1424203	1420491
21	.ldaho	1570773	1583828	1595441	1611530	1631479	1651523	1682930	1718904	1754208
22	.Illinois	12840762	12867291	12884119	12898269	12888962	12864342	12826895	12786196	12741080
23	.Indiana	6490436	6516045	6537640	6568367	6593533	6608296	6633344	6660082	6691878
24	.lowa	3050767	3066054	3076097	3093078	3109504	3121460	3131785	3143637	3156145
25	.Kansas	2858213	2869035	2885361	2893510	2900896	2909502	2911263	2910689	2911505
26	.Kentucky	4348200	4369488	4386381	4404817	4414483	4425999	4438229	4453874	4468402
27	.Louisiana	4544532	4575184	4600814	4624577	4644204	4664851	4678215	4670818	4659978
28	.Maine	1327632	1328150	1327691	1328196	1330760	1328484	1331370	1335063	1338404
29	.Maryland	5788642	5838991	5887072	5923704	5958165	5986717	6004692	6024891	6042718
30	.Massachusetts	6566431	6613149	6663158	6713944	6763652	6795891	6826022	6863246	6902149
31	.Michigan	9877535	9881521	9896930	9913349	9930589	9932573	9951890	9976447	9995915
32	.Minnesota	5310843	5345668	5376550	5413693	5451522	5482503	5523409	5568155	5611179
33	.Mississippi	2970536	2978470	2983767	2988797	2990623	2988693	2988298	2989663	2986530
34	.Missouri	5995976	6009641	6024081	6040658	6056293	6071745	6087203	6108612	6126452
35	.Montana	990722	997221	1003754	1013564	1021891	1030503	1040863	1053090	1062305
36	.Nebraska	1829536	1840538	1853323	1865414	1879522	1891507	1905924	1917575	1929268
37	.Nevada	2702464	2712799	2744566	2776972	2819012	2868666	2919772	2972405	3034392
38	.New Hampshire	1316777	1319815	1323962	1326408	1333223	1336294	1342373	1349767	1356458
39	.New Jersey	8799624	8827783	8845483	8858362	8866780	8870869	8874516	8888543	8908520

40	Geographic Area	²⁰⁶⁴⁵⁸⁸ 2010	2080395 2011	2087549 2012	²⁰⁹²⁷⁹² 2013	209 <u>0342</u> 2014	2090211 2015	2092789 2016	²⁰⁹³³⁹⁵	²⁰⁹⁵⁴²⁸
41	.New York	19400080	19498514	19574549	19628043	19656330	19661411	19641589	19590719	19542209
42	.North Carolina	9574293	9656754	9749123	9843599	9933944	10033079	10156679	10270800	10383620
43	.North Dakota	674710	685136	701116	721999	737382	754022	754353	755176	760077
44	.Ohio	11539327	11543463	11548369	11576576	11602973	11617850	11635003	11664129	11689442
45	.Oklahoma	3759632	3787821	3818600	3853205	3878367	3909831	3926769	3932640	3943079
46	.Oregon	3837532	3871728	3899118	3922908	3964106	4016918	4091404	4146592	4190713
47	.Pennsylvania	12711158	12744583	12766827	12776621	12789101	12785759	12783538	12790447	12807060
48	.Rhode Island	1053938	1053536	1054601	1055122	1056017	1056173	1057063	1056486	1057315
49	.South Carolina	4635656	4671422	4717112	4764153	4823793	4892253	4958235	5021219	5084127
50	.South Dakota	816165	823484	833496	842270	849088	853933	862890	873286	882235
51	.Tennessee	6355301	6397410	6451281	6493432	6540826	6590808	6645011	6708794	6770010
52	.Texas	25242679	25646227	26089620	26489464	26977142	27486814	27937492	28322717	28701845
53	.Utah	2775334	2814216	2853467	2897927	2937399	2982497	3042613	3103118	3161105
54	.Vermont	625880	626979	626063	626212	625218	625197	623644	624525	626299
55	.Virginia	8023680	8100469	8185229	8253053	8312076	8362907	8410946	8465207	8517685
56	.Washington	6742902	6821655	6892876	6962906	7052439	7163543	7294680	7425432	7535591
57	.West Virginia	1854214	1856074	1856764	1853873	1849467	1841996	1830929	1817048	1805832
58	.Wisconsin	5690479	5704755	5719855	5736952	5751974	5761406	5772958	5792051	5813568
59	.Wyoming	564483	567224	576270	582123	582548	585668	584290	578934	577737
61	Puerto Rico	3721525	3678732	3634488	3593077	3534874	3473166	3406495	3325001	3195153