Многочлены, генерирующие простые числа

Определение. Счастливыми числами Эйлера называются простые числа p, такие что квадратный трёхчлен $f(x)=x^2+x+p$ принимает простые значения при всех целых x от 0 до p-2 включительно.

- 1. Сформулируйте эквивалентное определение СЧЭ для квадратного трёхчлена $g(x) = x^2 x + p$.
- **2.** Предположим, что существует такое натуральное число $n\leqslant p-2$, что f(n) составное. Будем считать n наименьшим среди таких чисел. Пусть q наименьший простой делитель числа f(n).
 - (a) Докажите, что f(q-1-n) = f(n-q) кратно q.
 - **(б)** Докажите, что f(q-1-n) составное.
 - **(в)** Докажите, что $q \ge 2n + 1$.
 - (г) Докажите, что если f(x) принимает простые значения при всех целых x от 0 до $[\sqrt{p/3}]$, то p СЧЭ.

С помощью предыдущей задачи достаточно легко убедиться, что числа 2,3,5,11,17,41 являются СЧЭ. Гораздо более сложным является утверждение, что других СЧЭ нет.

- **3.** Докажите, что многочлен $x^2 79x + 1601$ принимает простые значения при всех $x = 0, 1, \dots, 79$.
- **4.** Рассмотрим многочлен $P(x) = x^2 + 1$. Докажите, что существует бесконечно много натуральных чисел n, таких что наибольший простой делитель P(n) больше (a) 2n (б) $2n + \sqrt{2n}$.
- **5.** Пусть P(x) многочлен с целыми коэффициентами степени n и отличный от константы.
 - (a) Докажите, что если существует бесконечно много натуральных чисел k, что P(k) простое, то у P(x) старший коэффициент больше нуля, он неприводим над \mathbb{Z} , а также НОД чисел $P(1), P(2), \ldots$ равен 1. (Подумайте на досуге, верно ли обратное:)
 - (б) Обозначим за S множество всех простых делителей чисел P(k) для всех натуральных k. Докажите, что S бесконечное множество.
 - (в) Докажите, что если некоторое простое число m>n делит P(k) при всех натуральных числах k, то оно также делит все коэффициенты P(x).