Лекция 07 от 17.09.2016 Функциональные последовательности и ряды

Поточечная и равномерная сходимость

Начиная с этой лекции, будем говорить о функциональных последовательностях и рядах.

Пусть X — произвольное множество точек, а $\{f(x)\}_n^{\infty}$ — последовательность функций, определённых на X или на его подмножествах.

Определение 1. Будем говорить, что $f_n(x)$ сходится поточечно κ f(x), если

$$\forall x \in X \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \ \forall n > N \ |f_n(x) - f(x)| < \varepsilon$$

Обозначение: $f_n(x) \xrightarrow[n \to \infty]{X} f(x)$

Почему такое определение не совсем удобно для нас? Сходимость в каждой точке может быть своя, произвольная, хотелось бы, чтобы свойства функций f_n и f были похожи. Вот, например,

Пример 1. Если $f_n(x) = x^n$, X = [0; 1], тогда

$$f_n(x) \xrightarrow[n \to \infty]{[0;1]} \begin{cases} 0, x < 1 \\ 1, x = 1 \end{cases}$$

То есть бывает так, что все функции последовательности непрерывны на отрезке и стремятся к разрвной функции.

Для устранения этого недостатка введём другое определение сходимости функциональной последовательности.

Определение 2. Будем говорить, что последовательность функций $\{f_n(x)\}_{n=1}^{\infty}$ сходится κ f(x) равномерно на множестве X, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \ \forall n > N \ \forall x \in X \ |f_n(x) - f(x)| < \varepsilon$$

Обозначение 1. $f_n(x) \stackrel{X}{\underset{n\to\infty}{\Longrightarrow}} f(x)$

Из определений сразу очевидно следует утверждение

Утверждение 1. Если
$$f_n(x) \stackrel{X}{\underset{n\to\infty}{\Longrightarrow}} f(x)$$
, то $f_n(x) \stackrel{X}{\underset{n\to\infty}{\longrightarrow}} f(x)$.

А что если нам даны последовательность $f_n(x)$, функция f(x) и множество X, как нам понять, сходится ли $f_n(x)$ к f(x)? Существует мощный способ. Обозначим $r_n(x) = \sup_{x \in X} |f_n(x) - f(x)|$.

Утверждение 2.
$$f_n(x) \stackrel{X}{\underset{n\to\infty}{\Longrightarrow}} f(x) \Leftrightarrow r_n \to 0$$

Доказательство.

Необходимость. Зафиксируем произвольное $\varepsilon > 0$, положим $\varepsilon_1 = \varepsilon/2$. Тогда

$$\exists N \in \mathbb{N} \colon \forall n > N \ \forall x \in X \ |f_n(x) - f(x)| < \varepsilon_1$$

$$\Rightarrow r_n = \sup_{x \in X} |f_n(x) - f(x)| \leqslant \varepsilon_1 < \varepsilon$$

To есть $r_n \to 0$ при $n \to \infty$.

Достаточность.

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \ \forall n > N \ r_n < \varepsilon \Rightarrow \forall x \in X \ |f_n(x) - f(x)| < \varepsilon$$

Часто это утверждение называют **супремум-критерием**. Для приведённого выше примера $f_n(x) = x^n$

Утверждение 3.

1.
$$x^n \xrightarrow[n \to \infty]{[0;1]} 0$$

2.
$$x^n \stackrel{[0;1]}{\not\rightrightarrows} 0$$

Доказательство.
$$r_n = \sup_{x \in (0:1)} |x^n - 1| = 1 \not\to 0$$

Есть ещё одна подобного рода последовательность.

$$f_n(x) = \frac{1}{0!} + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

Понятно, что в любой точке значение $\lim_{n\to\infty} f_n(x) = e^x$, то есть $f_n(x) \xrightarrow[n\to\infty]{\mathbb{R}} e^x$, но $f_n(x) \xrightarrow[n\to\infty]{\mathbb{R}} e^x$.

Однако, как легко понять, $f_n(x) \overset{(-C;C)}{\underset{n \to \infty}{\not=}} e^x$ для всякого C > 0. Эта последовательность ещё всплывёт в нашем курсе.

Утверждение 4. Если $f_n(x) \overset{X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$ и $g_n(x) \overset{X}{\underset{n \to \infty}{\Longrightarrow}} g(x)$, $\alpha \in \mathbb{R}$, то

1.
$$f_n(x) + g_n(x) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} f(x) + g(x)$$

2.
$$\alpha f_n(x) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} \alpha f(x)$$

Доказательство. Докажем пункт 1, второй доказывается аналогичною. Зафиксируем произвольное $\varepsilon > 0$, положим $\varepsilon_1 = \varepsilon/2$. Тогда

$$\exists N_1 \in \mathbb{N} : \ \forall x \in X \ |f_n(x) - f(x)| < \varepsilon_1$$

 $\exists N_2 \in \mathbb{N} : \ \forall x \in X \ |g_n(x) - g(x)| < \varepsilon_1$

Положим $N = \max\{N_1, N_2\}$. Тогда

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| < \varepsilon_1 + \varepsilon_1 = \varepsilon_1$$

Получили требуемое.

Утверждение 5. Если $f_n(x) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} f(x)$ и g(x) ограничена на множестве X, то $f_n(x)g(x) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} f(x)g(x)$

Доказательство. $\exists C>0\colon \ \forall x\in X\ |g(x)|< C.$ Зафиксируем произвольное $\varepsilon>0$, положим $\varepsilon_1=\varepsilon/C$. Найдём такое $N\in \mathbb{N}$, что $\forall n>N, \ \forall x\in X\ |f_n(x)-f(x)|<\varepsilon_1$. Тогда $\forall n>N\colon \forall x\in X\ |f_n(x)g(x)-f(x)g(x)|< C\varepsilon_1=\varepsilon$.

Замечание 1. Если $f_n(x) \overset{X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$, $g_n(x) \overset{X}{\underset{n \to \infty}{\Longrightarrow}} g(x)$ и f(x), g(x) ограничены на множестве X, то $f_n(x)g_n(x) \overset{X}{\underset{n \to \infty}{\Longrightarrow}} f(x)g(x)$.

Замечание 2. Если $f_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$ и f(x) отделена от нуля (т.е. существует такое $\alpha > 0$,

что для любого элемента множества $X |f(x)| \geqslant \alpha$), то $\frac{1}{f_n(x)} \underset{n \to \infty}{\overset{X}{\Longrightarrow}} \frac{1}{f(x)}$.

Доказательство этих фактов остаётся в качестве управжнения. **Указание**. Рассмотреть $\frac{1}{f_n} - \frac{1}{f} = (f - f_n) \frac{1}{f_n \cdot f}$.

Геометрический смысл равномерной сходимости

Несложно понять, что если $f_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$, то для всякого $\varepsilon > 0$, начиная с какого-то $N \in \mathbb{N}$ для всех n > N все графики функций $f_n(x)$ окажется в ε -коридоре функции f(x).

Критерий Коши равномерной сходимости

Теорема 1 (Критерий Коши равномерной сходимости). *Следующие условия эквивалентны:*

- 1. $f_n(x) \stackrel{X}{\Longrightarrow} ????$ (равномерно сходится куда-то)
- 2. $\{f_n(x)\}_{n=1}^{\infty}$ удовлетворяет условию Коши равномерной сходимости на X:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \ \forall n,m > N \ \forall x \in X \ |f_n(x) - f_m(x)| < \varepsilon$$

Доказательство. 1 \Leftarrow 2. Заметим, что для всякого $x \in X$ числовая последовательность $\{f_n(x)\}_{n=1}^{\infty}$ является фундаментальной. Тогда $\forall x \in X \exists \lim_{n \to \infty} f_n(x) = f(x)$. Зафиксируем произвольное $\varepsilon > 0$, $\varepsilon_1 = \varepsilon/2$. Найдём такое $N \in \mathbb{N}$, что

$$\forall n, m > N \ \forall x \in X \ |f_n(x) - f_m(x)| < \varepsilon_1$$

Зафиксировав n перейдём к пределу при $m \to \infty$, получим $|f_n(x) - f(x)| \leqslant \varepsilon_1 < \varepsilon$. Получили требуемое.

$$\mathbf{1} \Rightarrow \mathbf{2}$$
. Пусть $f_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$.

Зафиксируем произвольное $\varepsilon>0$, положим $\varepsilon_1=\varepsilon/2$. Найдём такое $N\in\mathbb{N}\ \forall n>N\ \forall x\in X$ верно $|f_n(x)-f(x)|<\varepsilon_1$. Тогда $\forall n,m>N\ \forall x\in X$ выполнено

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \varepsilon_1 + \varepsilon_1 = \varepsilon$$

Функциональные ряды

Перейдём к рассмотрению функциональных рядов. Тут все определения и теоремы переносятся с обычных рядов с заменой числовых последовательностей на функциональные.

Определение 3. Будем говорить, что ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно κ S(x) на множестве X, если последовательность его частичных сумм $S_n(x) = f_1(x) + f_2(x) + \ldots + f_n(x)$ сходится равномерно κ S(x) на множестве X.

Отсюда же можно сформулировать ряд утверждений, которые по сути мы уже доказали.

Утверждение 6. Пусть $\sum_{n=1}^{\infty} f_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} S_1(x)$, $\sum_{n=1}^{\infty} g_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} S_2(x)$. Тогда их почленная сумма $\sum_{n=1}^{\infty} (f_n(x) + g_n(x)) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} S_1(x) + S_2(x)$

Утверждение 7. Если $\sum_{n=1}^{\infty} f_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} S(x), \ \alpha \in \mathbb{R}, \ mo$

$$\sum_{n=1}^{\infty} \alpha f_n(x) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} \alpha S(x)$$

Утверждение 8. Если $\sum\limits_{n=1}^{\infty}f_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} S(x), \ a \ g(x)$ ограничена на $X, \ mo$

$$\sum_{n=1}^{\infty} g(x) f_n(x) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} g(x) S(x)$$

Ну и конечно, мы не обойдёмся без критерия Коши.

Утверждение 9 (Критерий Коши равномерной сходимости функционального ряда). *Следующие утверждения эквивалентны.*

- 1. $\sum_{n=1}^{\infty} f_n(x) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} ????$ (опять же, сходится куда-то).
- 2. Выполняется условие Коши

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \colon \; \forall m > N, \, \forall p \in \mathbb{N}, \, \forall x \in X \; \left| \sum_{n=m+1}^{m+p} f_n(x) \right| < \varepsilon$$

Отсюда же нахаляву получаем утверждение.

Утверждение 10 (Необходимое условие равномерной сходимости функционального ряда).

$$Ecnu \sum_{n=1}^{\infty} f_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}}, mo \ f_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} 0$$