Lista 4, zadanie 5. Pokaż jak można rozłożyć na dwa czynniki liczbę złożoną n, która w teście Millera–Rabina okazała się złożona, ponieważ dla pewnego a wyliczyliśmy $a^{2^k r} \not\equiv \pm 1, a^{2^{k+1} r} \equiv 1$ modulo n.

Rozwiązanie. Niech $x=a^{2^kr}$; wtedy $x^2=a^{2^{k+1}r}$. Wiemy, że:

$$x \not\equiv \pm 1 \mod n,$$

 $x^2 \equiv 1 \mod n.$

Z pierwszej równości wiemy, że nnie dzieli x+1ani x-1. Przekształcając drugą, otrzymujemy:

$$(x+1)(x-1) \equiv 0 \mod n.$$

Jeśli n nie dzieli żadnego z powyższych, to oba muszą zawierać w swoim rozkładzie czynniki n niebędące 1 ani n. Możemy je znaleźć, wyliczając $\gcd(n,x+1)$ oraz $\gcd(n,x-1)$.