Physics 231B Homework #2

Nathan Solomon

April 23, 2024

Problem 0.1. Artin Chapter 6 Problem 4.2, page 188.

- (a) List all subgroups of the dihedral group D_4 , and decide which ones are normal.
- (b) List all the proper subgroups N of the dihedral group D_{15} , and identify the quotient groups D_{15}/N .
- (c) List the subgroups of D_6 that do not contain x^3 .
- (a) Using the notation from Artin,

$$D_4 = \langle x, y | x^4 = y^2 = xyxy = e \rangle.$$

Since this group has order 8, by Lagrange's theorem, every subgroup must have order 1, 2, 4, or 8. Knowing that, we can methodically list all subgroups. The trivial group $\{e\}$ and the entire group D_4 are both normal subgroups of D_4 , so we only need to think about the proper subgroups, which have 2 or 8 elements.

If a subgroup of D_4 has 2 elements, it must be generated by one element of order two; therefore it must be either $\{e, x^2\}$ or $\{e, y\}$. $\{e, x^2\}$ is normal, but $\{e, y\}$ is not, because $x^{-1}yx = yx^2 \notin \{e, y\}$.

If a subgroup of D_4 has 4 elements, it is isomorphic to either C_4 or K_4 . If it is isomorphic to C_4 , it is generated by an element of order 4, so it must be $\{e, x, x^2, x^3\}$, which is normal in D_4 . If the subgroup is isomorphic to K_4 , it is generated by the only two elements in D_4 which have order 2, so it is $\{e, x^2, y, x^2y\}$, which is also normal in D_4

- (b) Since D_{15} has order 30, every proper subgroup of it must have order 2, 3, 5, 6, 10, or 15. From here, we can guess all of those subgroups:
 - $-\langle y\rangle$
 - $-\langle x^5\rangle$
 - $-\langle x^3 \rangle$
 - $-\langle y, x^5 \rangle$
 - $-\langle y, x^3 \rangle$
 - $-\langle x^3, x^5\rangle = \langle x\rangle$

To find out the quotient by each of those subgroups, consider some homomorphism from D_{15} to N which takes an element y, x^5 , or x^3 to e iff that element is in N. Then the image of that homomorphism is the quotient group, and is generated by the intersection of N with $\{y, x^5, x^3\}$.

$$-D_{15}/\langle y\rangle = \langle x\rangle \cong C_{15}$$

$$-D_{15}/\langle x^5\rangle = \langle y, x^3\rangle \cong D_5$$

$$-D_{15}/\langle x^3 \rangle = \langle y, x^5 \rangle \cong D_3$$

$$-D_{15}/\langle y, x^5 \rangle = \langle x^3 \rangle \cong C_5$$

$$-D_{15}/\langle y, x^3 \rangle = \langle x^5 \rangle \cong C_3$$

$$-D_{15}/\langle x \rangle = \langle y \rangle \cong C_2$$

• (c) Since D_6 is generated by y, x^3 , and x^2 , the subgroups of D_6 which do not contain x^3 are

$$- \{e\}$$

$$- \langle y \rangle = \{e, y\} \cong C_2$$

$$- \langle x^2 \rangle = \{e, x^2, x^4\} \cong C_3$$

$$- \langle y, x^2 \rangle = \{e, x^2, x^4, y, yx^2, yx^4\} \cong D_3$$

Problem 0.2. Artin Chapter 6 Problem 4.3, page 188.

- (a) Compute the left cosets of the subgroup $H = \{1, x^5\}$ in the dihedral group D_{10} .
- (b) Prove that H is normal and that D_{10}/H is isomorphic to D_5 .
- (c) Is D_{10} isomorphic to $D_5 \times H$?
- (a) By Lagrange's theorem, there are 10 left cosets of H. Those are $\{1, x^5\}$, $\{x, x^6\}$, $\{x^2, x^7\}$, $\{x^3, x^8\}$, $\{x^4, x^9\}$, $\{y, yx^5\}$, $\{yx, yx^6\}$, $\{yx^2, yx^7\}$, $\{yx^3, yx^8\}$, and $\{yx^4, yx^9\}$.
- (b) $x^{-1}Hx = \left\{x^{-1}1x, x^{-1}x^5x\right\} = H$ $y^{-1}Hy = \left\{yy, yx^5y\right\} = H$

Since H is closed under conjugation by x and by y, and since $D_{10} = \langle x, y \rangle$, $H \subseteq D_{10}$.

If you label the coset $\{y,yx^5\}$ as y' and $\{x,x^6\}$ as x', then we can observe that $\langle x',y'\rangle$ has 10 elements, and that $x'^5=y'^2=x'y'x'y'=H$, so $D_{10}/H\cong D_5$.

• (c) Yes, because D_{10} is generated by x^2 , x^5 , and y. Since x^5 commutes with both x^2 and y, we can say

$$D_{10} = \langle x^2, x^5, y \rangle \cong \langle x^2, y \rangle \times \langle x^5 \rangle = D_5 \times H.$$

Problem 0.3. Artin Chapter 6 Problem 5.1, page 188. Let ℓ_1 and ℓ_2 be lines through the origin in \mathbb{R}^2 that intersect in an angle π/n , and let r_i be the reflection about ℓ_i . Prove that r_1 and r_2 generate a dihedral group D_n .

Let $q = r_1 r_2$. Since q is the product of 2 reflections, it must be a rotation, but we want to know by how much. By considering a point (other than the origin) on ℓ_1 , we can see that q is a rotation about the origin by $2\pi/n$. Therefore q has order n, so r_1 and q together generate all 2n elements of D_n .

Problem 0.4. Artin Chapter 6 Problem 5.10, page 189. Let f and g be rotations of the plane about distinct points, with arbitrary nonzero angles of rotation θ and ϕ . Prove that the group generated by f and g contains a translation.

There is a homomorphism from the group of rotation and reflections of the plane to U(1), defined by mapping translations to 1 and mapping a rotation by an angle x to e^{ix} . The kernel of this map is the group of translations of the plane. Using the definition of a homomorphism, $f^{-1}g^{-1}fg$ is in that kernel of that map, since it gets mapped to $\exp(i\cdot(-\theta-\phi+\theta+\phi))=1$. In other words, the total angle of rotation is zero.

This means that to prove $f^{-1}g^{-1}fg$ is a translation, we just need to show that it is not the identity map. f and g do not commute because if x is the fixed point of f, then gfx = gx, and since $gx \neq x$, $fgx \neq gx$. Since $gf \neq fg$, $f^{-1}g^{-1}fg$ is a non-identity element of the group of translations of the plane.

Problem 0.5. Artin Chapter 6 Problem 7.7, page 191. Let $G = GL_n(\mathbb{R})$ operate on the set $V = \mathbb{R}^n$ by left multiplication.

- (a) Describe the decomposition of V into orbits for this operation.
- (b) What is the stabilizer of e_1 ?
- (a) There are only two orbits: one contains the zero vector, and the other contains everything else. That's because every matrix maps the zero vector to itself, and for any nonzero vectors $x, y \in V$, there is an invertible matrix which maps x to y.
- (b) The stabilizer of e_1 is the set of matrices A such that $Ae_1 = e_1$. That is true iff the top left entry of A is 1 and every other entry in the leftmost column of A is 0.

Problem 0.6. Artin Chapter 6 Problem 9.1, page 191. Use the counting formula to determine the orders of the groups of rotational symmetries of a cube and of a tetrahedron.

For both the cube and the tetrahedron, consider a point x in the center of a face. In the case of a cube, the stabilizer of x has order 4, because the face it's on can be rotated 4 ways, and the orbit of x has 6 distinct points (because there are 6 faces, and a rotation could map x to the center of any face. By the counting formula, the group of rotational symmetries of a cube has order $4 \cdot 6 = 24$.

Similarly, if x is in the center of a face of a tetrahedron, then its orbit has 4 points (the centers of each face), and the stabilizer of x has order 3 (there are 3 rotational symmetries of the face which x lies on). Therefore the group of rotational symmetries of a tetrahedron has order $3 \cdot 4 = 12$.