PN5190

Rev. 3.2 — 17 November 2021

Product data sheet

1 General description

This document describes the functionality and electrical specification of the high-power NFC-IC PN5190B1, silicon version B1, using firmware or V2.0 or higher.

Additional documents supporting a design-in of the PN5190B1 are available from NXP, this additional design-in information is not part of this document.

The PN5190B1 supports highly innovative and unique features which do not require any host controller interaction. These features include dynamic power control (DPC), adaptive waveform control (AWC), and fully automatic EMD error handling.

The independence of real-time host controller interactions makes this product a good fit for systems which operate a pre-emptive multitasking OS like Linux or Android.

In this document, the term "MIFARE card" refers to a contactless card using an IC out of the MIFARE Classic, MIFARE Plus, MIFARE Ultralight or MIFARE DESFire product family.

NFC frontend

2 Features and benefits

2.1 RF functionality

As a highly integrated high performance full NFC Forum-compliant frontend IC for contactless communication at 13.56 MHz, this NFC frontend IC utilizes an outstanding modulation and demodulation concept completely integrated for relevant 13.56 MHz based contactless communication methods and protocols.
 PN5190B1 supports communication with all products of the MIFARE product-based card family including MIFARE Ultralight, MIFARE Classic 1K/4K, MIFARE DESFire EV1/EV2 and MIFARE Plus cards CRYPTO implemented in hardware for R/W of all NXP MIFARE product-based cards (includes intellectual-property licensing rights for NXP ISO/IEC 14443-A, Innovatron ISO/IEC 14443-B, and NXP MIFARE products). The PN5190B1 frontend IC supports the following RF operating modes:

2.1.1 ISO/IEC14443-A

• Reader/writer mode supporting ISO/IEC 14443-A R/W up to 848 kBit/s

2.1.2 ISO/IEC14443-B

• Reader/writer mode supporting ISO/IEC 14443-B up to 848 kBit/s

2.1.3 FeliCa

Reader/writer mode supporting FeliCa 212 kBit/s and 424 kBit/s (without crypto)

2.1.4 Tag type reading

Supports reading of all NFC tag types (type 1, type 2, type 3, type 4A and type 4B, type 5)

2.1.5 MIFARE card reading

 Reader/writer communication mode for the MIFARE card family including MIFARE Classic

2.1.6 ISO/IEC 15693

- Reader/writer mode supporting ISO/IEC 15693 (ICODE)
- Proprietary data rates based on ISO/IEC15693 with 106 kbit and 212 kbit/s (for NXP NTAG 5 communication)

2.1.7 ISO/IEC 18000-3 Mode 3

• Reader/writer mode supporting ISO/IEC 18000-3 Mode 3

2.1.8 ISO/IEC 18092

ISO/IEC 18092 (NFC-IP1)

NFC frontend

2.1.9 ISO/IEC 21481

• ISO/IEC 21481 (NFC-IP-2)

2.1.10 Peer to peer

- P2P Passive 106 kbit/s TO 424 kbit/s, Initiator and Target
- P2P Active 106 kbit/s TO 424 kbit/s, Initiator and Target
- Proprietary passive communication for type A up to 848 kbit/s
- Functionality according to ISO/IEC 21481 (NFC-IP-2)

2.1.11 Card emulation

 ISO/IEC4443-A card mode from 106 Kbit/s up to 848 Kbit/s (PICC) with active load modulation for increased communication range.

2.2 Host interface

- One host interface based on SPI is implemented:
 - SPI interface with data rates up to 15 Mbit/s with MOSI, MISO, NSS and SCK signals
 - Interrupt request line to inform host controller on events
 - Independent TX and RX buffer for RF data with size of 1024 bytes each

2.3 Integrated DC-DC

• The PN5190B1 implements an integrated DC-DC which can be used to supply the transmitter. Since the supply voltage of the transmitter LDO can be up to 6.0 Volts, this simplifies the design of the power supply.

A single supply concept for the RF system, e.g. with single 3.3 V supply, is possible and allows making use of the maximum RF output power by providing a maximum transmitter supply voltage.

The integrated DC-DC is used by the dynamic power control (DPC) to reduce the maximum power dissipation of the chip.

The usage of the DC-DC is optional.

For applications making use of the low-power card detection, the DC-DC is available. For applications using the ultra low-power card detection (ULPCD), the DC-DC cannot be used.

NFC frontend

3 Applications

- Payment
- Physical access
- eGov

NFC frontend

4 Firmware versions

Firmware versions covered by this data sheet:

Version 2.00:

- This version cannot be replaced by FW versions using smaller version numbers (e.g. replacing FW2.0 by FW1.9 is not possible)
- This FW version is not available on volume production devices, but can be installed by the user

Before using this firmware in Peer to Peer target mode, for better communication stability the EEPROM address 0x292 (default A6E813C**0**) shall be initialized with the value (A6E813C**1** - 0x292:0xC1 0x203: 0x13 0x294:0xE8 0x295:0xA6). This setting has no influence on reader or card emulation modes.

Version 2.01:

- This version is functionally equivalent to Version FW2.0 but offers updated EEPROM Settings compared to FW2.0
- This version cannot be replaced by FW versions using smaller version numbers (e.g. replacing FW2.1 by FW1.9 is not possible)
- This FW version is installed by default on volume production devices of PN5190 B1
- This FW and all upcoming FW versions will use the EEPROM Setting at address 0x292
 = A6E813C1 to configure the Peer to Peer target mode for better communication stability.

4.1 Version 2.02:

Skipped, not available

4.2 Version 2.03:

- This FW version is not available on volume production devices, but can be installed by the user
- The GPIO1 (general-purpose input/output) pin can be enabled to wake up an external DC-DC from power down for the VDDPA supply during LPCD.
- Updated Type-A 106 antenna-specific Protocol register settings for EMVCo to solve few EMVCo Card activation failures during fast card movement within the Field.
- PN5190 FW updated to handle SWITCH_MODE_NORMAL (Abort) scenarios even when Functional CMD and SWITCH_MODE_NORMAL CMD are sent to back to back within 10 micro sec
- Introduced a new DPC_CONFIG register to handle Dynamic Enable/Disable of DPC without depending on the DPC setting from EEPROM User Area.
- Card Mode (SWITCH_MODE_AUTOCOLL Command) support with Ultra Low-Power Standby feature (in Autonomous mode with standby mode) along with the existing Low-Power Standby configuration using EEPROM settings.

NFC frontend

- various updates to increase the configuration flexibility for FeliCa communication:
 - Updated PN5190 FW to indicate Length Error when received FeliCa response is greater than 28 Bytes when RX_MULTIPLE is Enabled
 - Updated PN5190 FW to indicate correct numbers of received bytes when RETRIEVE_RF_DATA is used to retrieve FeliCa response packets received when RX MULTIPLE is Enabled.
 - Updated to fix issue of EXCHANGE_RF_DATA returning with success even before Receiving RF Response on few IC's upon POR.
 - Updated PN5190 FW to clear all pending Interrupt Status bits before performing RF Exchange to fix TX Failure observed when FeliCa response is received around FDT timeout.
 - Added a new feature to extend RX Guard Timer in Integer multiple of 'dwRXIRQ_GuardTime' EEPROM timeout configuration in order to extend RX Guard Timeout beyond 1.048 sec.

NFC frontend

5 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDD _(VBAT)	supply voltage on pin VBAT (analog and digital supply)	VBAT ≥ VDDIO	2.4	-	5.5	V
VDD _(VDDIO)	supply voltage on pin VDDIO	1.8 V supply	1.62	-	1.98	V
	(supply for host interface and GPIO's)	3.3 V supply	2.4	-	3.6	V
l _{pd}	power-down current	VDD _(VDDPA) = VDD _(VDDIO) =VDD _(VDD) 3.0 V; hard power- down state; pin VEN set LOW, T _{amb} = 25 °C, External supply by VDDIO	_	40	105	μΑ
I _{stb}	standby current	T _{amb} = 25 °C	-	45	110	μA
I _{ULPCD}	average ultra-low-power card detection current	T _{amb} = 25 °C, VDD(VDDPA) = VDD(VDDIO) = VDD(VDD) 3.0 V, 330 ms Polling interval, 50 R antenna matching	-	22	-	μА
IDD _(VDDPA)	supply current on pin VDDPA	supplied via VUP_TX (TX_LDO active)	-	-	350	mA
		supplied without DC-DC and TXLDO active	-	-	400	mA
P _(PA)	Transmitter output power	supplied via VUP_TX (TX_LDO active)	-	-	2.0	W
		supplied without DC-DC and TXLDO active	-	-	2.3	W
T _{amb}	ambient operating temperature	in still air with exposed pins soldered on a 4 layer JEDEC PCB,	-40	-	+85	°C
		in still air with exposed pins soldered on a 4 layer JEDEC PCB, TX current = 120 mA @ VDDPA=3.6 V	-40	-	+105	°C
T _{stg}	storage temperature	no supply voltage applied	-55	-	+150	°C
T _{j_max}	maximum junction temperature	-	-	-	+125	°C

NFC frontend

6 Ordering information

Table 2. Ordering information

Type number	Package			
	Name Description		Version	
PN5190B1HN/C121Y	HVQFN40R	Plastic thermal enhanced very thin quad flat package; no leads; 40 terminals + 1 central ground; body 5 x 5 x 1.0 mm; delivered in one reel, MSL=3. Minimum order quantity = 6000 pcs The ending Y in the product name is indicating the packing "reel" Initialized with FW 2.1	SOT2062-1	
PN5190B1HN/C121E	HVQFN40R	Plastic thermal enhanced very thin quad flat package; no leads; 40 terminals + 1 central ground; body 5 x 5 x 1.0 mm; delivered in one tray, bakeable, MSL=3. Minimum order quantity = 490 pcs The ending E in the product name is indicating the packing "single tray" Initialized with FW 2.1	SOT2062-1	
PN5190B1EV/C121Y	VFBGA64	Plastic thin fine-pitch ball grid array package; 64 balls, body 4.5 x 4.5 x 0.9 mm, delivered on reel 13", MSL = 3. Minimum order quantity = 4000 pcs The ending Y in the product name is indicating the packing "reel" Initialized with FW 2.1	SOT1307-2	
PN5190B1EV/C121E	VFBGA64	Plastic thin fine-pitch ball grid array package; 64 balls, body 4.5 x 4.5 x 0.9 mm, delivered in one tray, MSL = 3. Minimum order quantity = 490 pcs The ending E in the product name is indicating the packing "single tray" Initialized with FW 2.1	SOT1307-2	

NFC frontend

7 Block diagram with VFBGA64 connections

NFC frontend

8 Pinning information

8.1 Pin description VFBGA64

Table 3. Pin description VFBGA64

Pin Number	Symbol	Туре	Description PN5190	Description PN76 family (planned pinning of upcoming device)
Host Inte	rface	'	,	
E6	ATX_A	Output	SPI slave data output	UART RX / I ² C SDA / SPI MISO / I ² C SDA
E5	ATX_B	Input	SPI clock input	UART CTS / I ³ C SCL / SPI SCK / I ² C SCL
D6	ATX_C	Input	SPI slave select input	UART RTS / I ³ C Adr Bit 0 / SPI NSS / I ² C Adr Bit 0 / USB D+
D5	ATX_D	Input	SPI slave data input	UART TX / I ³ C Adr Bit 1 / SPI MOSI / I ² C Adr Bit 1 / USB D-
B7	IRQ	Output	Host communication/ event interrupt signal	Host communication / event interrupt signal
F8	XTAL1	Input	Crystal / system clock input	Crystal / system clock input
G8	XTAL2	Output	Clock output (amplifier inverted signal output) for crystal	Clock output (amplifier inverted signal output) for crystal
В3	VEN	Input	Hardware reset, low active (independent from V _{VDDIO})	Hardware reset, low active (independent from V _{VDDIO})
Supply p	ins			
H2	VSS_PA	Supply GND	Transmitter ground	Transmitter ground
G3	VSS_PLL	Supply GND	PLL ground (low noise)	PLL ground (low noise)
A2	VSS_PWR	Supply GND	DC-DC boost ground	DC-DC boost ground

NFC frontend

Table 3. Pin description VFBGA64...continued

Table 3. F	'in description	VFDGA04	continued	
Pin Number	Symbol	Туре	Description PN5190	Description PN76 family (planned pinning of upcoming device)
D3	VSS_REF	Supply GND	PMU ground	PMU ground
B2, E3	VSS_SUB	Supply GND	Substrate ground	Substrate ground
C3	VSS_PMU	Supply GND	PMU ground	PMU ground
F4	VSS_DIG	Supply GND	Digital ground	Digital ground
F3	VSS_NFC	Supply GND	NFC ground	NFC ground
E1	VBAT	Supply	System supply, used to supply the analog and digital blocks, memory and internal voltage references	System supply, used to supply the analog and digital blocks, memory and internal voltage references
A8	VDDIO	Supply	IO pads power supply	IO pads power supply
G1	VDDPA	Supply	Transmitter supply	Transmitter supply
F1	VUP_TX	Supply	Input supply voltage for transmitter LDO	Input supply voltage for transmitter LDO
B1	VDDBOOST	Supply	DC-DC boost supply	DC-DC boost supply
A1	BOOST_LX	Output	Boost inductance loopback, to be connected to boost inductor	Boost inductance loopback, to be connected to boost inductor
A3	VBATPWR	Supply	To be connected to boost inductor and transmitter power supply	To be connected to boost inductor and transmitter power supply
Outputs	for stabilizing o	ар	J	
A4	VDDNV	Output	Non-volatile memory power supply, to be connected to ground via 220 nF blocking cap	Non-volatile memory power supply, to be connected to ground via 220 nF blocking cap
D2	VREF	Output	High quiescent reference voltage, to be connected to ground via 100 nF blocking cap	High quiescent reference voltage, to be connected to ground via 100 nF blocking cap
C1	VDDC	Output	Power supply for Digital Core, to be connected to ground via 220 nF blocking cap	Power supply for Digital Core, to be connected to ground via 220 nF blocking cap
G2	TXVCM	Output	Transmitter voltage common mode, to be connected to ground via 220 nF blocking cap	Transmitter voltage common mode, to be connected to ground via 220 nF blocking cap
F2	TXVCASC	Output	TX decoupling cap, to be connected to VDDPA	TX decoupling cap, to be connected to VDDPA
H6	VMID	Output	Stabilizing capacitor connection output, to be connected to electrical symmetry point of antenna (typically antenna ground) by 100 nF blocking cap	Stabilizing capacitor connection output, to be connected to electrical symmetry point of antenna (typically antenna ground) by 100 nF blocking cap
RF Debu	g signals			
G7	AUX_1	Output	Test bus 1	Test bus 1
F7	AUX_2	Output	Test bus 2	Test bus 2

NFC frontend

Table 3. Pin description VFBGA64...continued

Table 5. I	on description	VFDGA04	.continuea	
Pin Number	Symbol	Туре	Description PN5190	Description PN76 family (planned pinning of upcoming device)
H8	AUX_3 / VTUNE0	Output	Test bus 3 / VTUNE0 (Digital to analog output 0)	Test bus 3 / VTUNE0 (Digital to analog output 0)
Antenna	connections			
H5	RXP	Input	Receiver input "Positive"	Receiver input "Positive"
H4	RXN	Input	Receiver input "Negative"	Receiver input "Negative"
H1	TX1	Output	Antenna driver output 1	Antenna driver output 1
НЗ	TX2	Output	Antenna driver output 2	Antenna driver output 2
Analog/D	igital inputs &	outputs		
H7	VTUNE1	Output	Digital to analog output 1 (not available on HVQFN40)	Digital to analog output 1 (DAC 1)
E8	GPIO0	Input/ Output	General Purpose In/Out 0	General Purpose I/O 0
D8	GPIO1	Input/ Output	General Purpose Output 1	General Purpose I/O 1
E7	GPIO2	Input/ Output	General Purpose Output 2	General Purpose I/O 2
D7	GPIO3	Input/ Output	General Purpose Output 3 If PN5190 is using the ULPCD, GPIO3 cannot be used for any other purpose than aborting the ULPCD.	General Purpose I/O 3 If PN76 is using the ULPCD, GPIO3 cannot be used for any other purpose than aborting the ULPCD.
Security	Feature			
B4	PRD1	Input/ Output	Package removal detection, internally connected to PRD2 (not available on HVQFN40)	Package removal detection, internally connected to PRD2
G4	PRD2	Input/ Output	Package removal detection, internally connected to PRD1 (not available on HVQFN40)	Package removal detection, internally connected to PRD1
Pins con	nected on PN7	6 family onl	у	
A5	PVDD_OUT	Output	PN5190: Do not connect	PVDD LDO output
A6	I2CM_SDA	Input/Out put	Do not connect	I ² C master SDA
A7	DWL_REQ	Input	Do not connect	Download request (optional)
B5	GPIO5	Input/Out put	Do not connect	General Purpose I/O 5
B6	I2CM_SCL	Input	Do not connect	I ² C master SCL
B8	SWDIO	Input/Out put	Do not connect	Single Wire Debug Interface Data
C2	TEST	Input/Out put	Internal test pin. Do not connect	Internal test pin. Do not connect.
C4	ISO_INT_ AUX	Input/Out put	Do not connect	Auxiliary Card Interrupt

NFC frontend

Table 3. Pin description VFBGA64...continued

Pin Number	Symbol	Туре	Description PN5190	Description PN76 family (planned pinning of upcoming device)
C5	GPIO4	Input/Out put	Do not connect	General Purpose I/O 5
C6	HOST_IF_ SEL1	Input	Do not connect	Host interface select 1
C7	HOST_IF_ SEL0	Input	Do not connect	Host interface select 0
C8	SWD_CLK	Input	Do not connect	Single Wire Debug Interface Clock
D1	USB_VBUS	Supply	Do not connect	USB VBUS supply
D4	ISO_IO_AUX	Input/Out put	Do not connect	Auxiliary Card I/O
E2	AD1	Input	Do not connect	Analog/Digital Converter Input 1
E4	ISO_CLK_ AUX	Input	Do not connect	Auxiliary Card Clock
F5	SPIM_MOSI	Input	Do not connect	SPI master MOSI
F6	SPIM_MISO	Output	Do not connect	SPI master MISO
G5	SPIM_SCLK	Input	Do not connect	SPI master clock
G6	SPIM_NSS	Input	Do not connect	SPI master NSS

For good RF performance, all blocking capacitors shall be placed on the same side of the PCB, traces from pin to capacitor shall be as short as possible.

All Supply GND connections shall be connected by low-ohmic connections on the PCB.

PN76 is a planned product, the pin allocation is provided for information only. This product PN76 will assign functionality to n.c. pins of the PN5190.

NFC frontend

8.2 Pin description HVQFN40

Table 4. Pin description HVQFN40

Pin Number	Symbol	Туре	Description PN5190
1	BOOST_LX	Output	Boost inductance loopback, to be connected to boost inductor pin 1
2	VDDBOOST	Supply	Boosted supply voltage output
3	VSS_REF	Supply GND	PMU ground
4	VREF	Output	High quiescent reference voltage, to be connected to ground via 100 nF blocking cap
5	VBAT	Supply	System supply, used to supply the analog and digital blocks, memory and internal voltage references
6	VUP_TX	Supply	Input supply voltage for transmitter LDO
7	TXVCASC	Output	TX decoupling cap, to be connected to VDDPA
8	VSS	Supply GND	Ground
9	VDDPA	Supply	Transmitter supply
10	TXVCM	Output	Transmitter voltage common mode, to be connected to ground via 220 nF blocking cap
11	TX1	Output	Antenna driver output 1
12	VSS_PA	Supply GND	Transmitter ground
13	TX2	Output	Antenna driver output 2
14	RXN	Input	Receiver Input "Negative"
15	RXP	Input	Receiver input "Positive"

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 4. Pin description HVQFN40...continued

Pin Number	Symbol	Туре	Description PN5190	
16	VMID	Output	Stabilizing capacitor connection output, to be connected to electrical symmetry point of antenna (typically antenna ground)	
17	VSS	Supply GND	Ground	
18	XTAL1	Input	Crystal / System clock input	
19	XTAL2	Output	Clock output (amplifier inverted signal output) for crystal	
20	VTUNE1	Output	Digital to analog output 0	
21	AUX_1	Output	Test bus 1	
22	AUX_2	Output	Test bus 2	
23	AUX_3 / VTUNE0	Output	Test bus 3 / VTUNE0 Digital to analog output 1	
24	ATX_A	Input	SPI slave data output	
25	ATX_B	Input	SPI clock input	
26	ATX_C	Output	SPI slave select input	
27	ATX_D	Input	SPI slave data input	
28	IRQ	Output	Host communication/ event Interrupt signal	
29	VDDIO	Supply	IO pads power supply	
30	GPIO3	Output	General Purpose Out 3	
31	GPIO2	Output	General Purpose Out 2	
32	GPIO1	Output	General Purpose Out 1	
33	GPIO0	Output	General Purpose Out 0	
34	n.c.	-	-	
35	VSS	Supply GND	Ground	
36	VDDC	Output	Power supply for Digital Core, to be connected to ground via 220 nF blocking cap	
37	VEN	Input	Hardware reset, low active (independent from V _{PVDD})	
38	VDDNV	Output	Non-volatile memory power supply, to be connected to ground via 220 nF blocking cap	
39	VBATPWR	Supply	To be connected to boost inductor pin 2 and transmitter power supply	
40	VSS_PWR	Supply GND	DC-DC boost ground	

For best performance, all blocking capacitors shall be placed on the same side of the PCB, traces from pin to capacitor shall be as short as possible.

Compared to the BGA package, all ground connections named VSS are connected on the leadframe of the package. Therefore general VSS pins do exist, pins are not distinguished by function like on the BGA package type e.g. VSS_PMU. The exceptions are the pins VSS_PWR, VSS_PA and VSS_REF.

All Supply GND connections shall be connected by low-ohmic connections on the PCB.

NFC frontend

9 Functional description

9.1 Functional overview

The PN5190B1 is an NFC frontend with high transmitter output power. It implements the RF functionality like an antenna driving and receiver circuitry and all the low-level functionality to realize an NFC Forum and EMVCo compliant reader.

Connection to host controller

The PN5190B1 connects to a host microcontroller with a fast SPI interface (15 Mbit/s) for configuration, NFC data exchange and high-level NFC protocol implementation. An optimized TLV-based framing is supported to reduce the command handling overhead on the host controller and to reduce command-response latencies.

Clock supply

The PN5190B1 uses an external 27.12 MHz crystal as clock source for generating the RF field and its internal digital logic. Alternatively, an internal PLL allows using an accurate external clock source of either 24 MHz, 32 MHz and 48 MHz (configured in EEPROM register CLK_INPUT_FREQ, 0012h)). This allows saving the 27.12 MHz crystal in systems which implement one of the mentioned clock frequencies.

Integrated DC-DC

The integrated DC-DC allows a single supply voltage while delivering maximum RF output power. Dependent on the application target either a direct transmitter supply or a transmitter supply by the integrated DC-DC can be chosen. The usage of the integrated DC-DC is the preferred choice for a stable RF performance, even in case of a de-charged battery. Optimized usage of a battery charge can be achieved by directly connecting the transmitters to the supply. The DC-DC is controlled by the Dynamic Power Control 2.0 to keep the power dissipation of the chip minimized in antenna loading cases which require a reduction of the RF output power.

The DC-DC is a step-up converter and is able to deliver an output voltage from approx. 2.8 V up to 6.0 V. The targeted output voltage can be configured by software.

The DC-DC clock is synchronized with the clock of the receiver - this avoids the typical performance reduction by DC-DC noise which can be seen in systems using external DC-DCs.

Transmitter LDO (TX_LDO)

The Transmitter output drivers are supplied by a transmitter LDO which reduces external noise and is used for the DPC functionality to lower the supply voltage of the transmitters. The high granularity of 100 mV for setting the TX_LDO output voltage together with a sophisticated control loop and true current measurement ensures that a DPC regulation is not accidentally treated as received data.

Low-power card detection

The low-power card detection (LPCD) allows saving battery charge during polling for NFC counterparts like cards and mobile phones. In general, the low-power card detection provides a functionality, which allows to power down the reader for a certain amount of time to safe energy. After some time, the reader becomes active again to poll for cards. If no card is detected, the reader can go back to the power down state. During the polling time, a host controller can be set to a power-saving mode. An interrupt request from the

NFC frontend

PN5190B1 allows waking up the host controller in case an antenna detuning by a card or cell phone had been detected.

Two modes for the low-power card detection are available:

- LPCD (software based) which allows maximum detection range. For detecting a card presence, I/Q channel information is used.
- ULPCD (hardware based) which offers maximum current savings. For detecting a card presence, only the amplitude information is used.

Dynamic power control 2.0

The next generation Dynamic Power Control (DPC2.0) with true transmitter current measurement works autonomous without host interaction. Avoiding additional host controller processing load is important for time critical applications like payment. A fast control response time of less than 1 ms allows using optimized antenna matchings.

Adaptive wave shape control

The Adaptive Wave Shape Control (AWC) helps to keep the waveshapes within specification limits, even in case of antenna detuning. This simplifies the time-consuming antenna matching procedure and does not require any matching compromises to be taken.

Receiver signal level control

The receiver signal chain consists of an automatic controller RF input attenuator and a true Baseband Amplifier (BBA). This feature delivers an outstanding communication range with tags, labels, cards and mobile phones.

RF Debugging

Comprehensive and innovative debug features are implemented to support the NFC reader development even for difficult and non-standard compliant cards and mobile phones. An Integrated Chip scope allows performing a non-intrusive debugging of receiver signals without the need of connecting additional wires to the chip. Capturing of chip-internal signals is done by configuring flexible trigger conditions, sampled internal data is stored in RAM memory, transferred by SPI to a host microcontroller and visualized on a PC by the NFC Cockpit development tool. A virtual comfort interface (VCOM) is supported by the NFC cockpit tool, which allows to use the NFC cockpit together with any host microcontroller. Analog debug signals (AUX1, AUX2) are available as well and allow the connection of an Oscilloscope for analog and digital signal debugging.

The receiver signal processing is optimized to cope with noisy environments. This is beneficial, especially in case a TFT display or DC-DCs are part of the NFC system.

Automatic EMD error handling

An automatic EMD handling performed without host interaction relaxes the timing requirements on the Host Controller. Automatic EMD error handling according to ISO/IEC14443 and EMVCo 3.0 is supported. In addition, the EMD error handling is widely configurable, which allows adaptions in case of future possible specification changes.

Automatic antenna tuning

Two analog outputs are available to connect variable capacitors for automatic antenna tuning (AAT). The automatic antenna tuning allows compensating for production tolerances or changing environments like surrounding metal. This is especially beneficial for applications which make use of OEM NFC Modules which are finally used in an unknown environment. The automatic antenna tuning is performed command triggered.

NFC frontend

Firmware update

The PN5190B1 supports a secure update of the implemented firmware. The secure firmware download mode is using a dedicated command set, but a framing which is not different from the standard host interface commands used for NFC operation of the device. In Secure Firmware update mode, the PN5190B1 requires no dedicated physical handling of the SPI interface lines. The firmware download does not require any additional hardware pin to be handled, instead the download mode is activated by a command, followed by a hardware reset. After booting from reset, the PN5190B1 will be in download mode.

Register configuration

Internal registers of the PN5190B1 store volatile configuration data and accessible by the host interface. The internal registers are reset to configurable initial values in case of powerON, hardware-reset and standby.

The configuration for dedicated RF protocols and antenna-dependent configuration is defined in non-volatile memory. This configuration is typically done only once during production, and is performed by a command issued from the host microcontroller.

EEPROM configuration

Non-Volatile EEPROM memory of the PN5190B1 is used to store configuration data that needs to be preserved in case the PN5190B1 is not connected to any supply voltage. The configuration for dedicated RF protocols and antenna-dependent configuration is defined in this non-volatile memory and copied to volatile registers by a host interface command. In addition, other configuration data which needs to be preserved during power supply disconnect is stored in this EEPROM memory as well. Examples for this are configurations for DPC, LPCD and ULPCD configurations.

RF configuration

The PN5190B1 allows a fast RF protocol selection based on the command Load_RF_configuration and pre-defined user configuration data in non-volatile memory (EEPROM).

On the one hand, the configuration of modulation-related parameters can be done (e.f. selection of ISO/IEC14443-A), on the other hand antenna-specific parameters can be configured.

For more information, see [1].

9.2 Endianness

The endianness describes the order of bytes or bits within a binary representation of a value in the memory, which can be a register or EEPROM.

"Array size" defines the number of elements of "type size". Type size can be uint8 (8 bit), uint16 (16 bit) or uint32 (32 bit).

The location of byte sized data (8 bit) with an array size of 2 is as follows:

Value hex: 0x1234

address x: 12 address x+1: 34

The location of word sized data (16 bit) is as follows:

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

NFC frontend

Value hex: 0x1234 address x: 34 address x+1: 12

The location of word sized data (16 bit) in an array size of 2 is as follows:

The placement of the array is large endian, the placement of nibbles of the variable is small endian.

Value hex: 0xAABBCCDD

address x: BB address x+1: AA address x+2: DD address x+3: CC

The location of double word sized data (32 bit) is as follows:

Value hex: 0xAABBCCDD

address x: DD address x+1: CC address x+2: BB address x+3: AA

Data from the EEPROM is read in little endian format - LSB first. This means that the byte at the lower address is read first.

9.3 Initial calibration

The PN5190B1 requires a calibration before the RF field is switched on for the first time with unloaded condition.

"Unloaded" means: Without any additional metal in proximity of the antenna except for the NFC reader components itself.

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

During development of new readers, this calibration shall be done each time the antenna design, antenna matching or EMC filter is modified.

The calibration sequence is the following:

Write EEPROM CfgNovCal (0xC83) - 0x00

Write REGISTER TX NOV CALIBRATE AND STORE VAL (addr: 0x5d) - 0x01

Write EEPROM CfgNovCal (0xC83) – 0x02

9.4 System power states

The PN5190B1 can operate in different power states. The functionality and current consumption is dependent on the actual system power state.

Power states can be changed by the level on the pin VEN and by connecting/ disconnecting the power supply of VBAT. Power state change will also be triggered by certain events - VDDIO Loss, Over-Current detection, Over-Temperature.

In addition, state changes are triggered possible by host commands.

Disconnecting and connecting the power supply on VBAT restarts the PN5190B1 always in Active State after releasing the pin VEN (transition low to high).

A transition of low to high on pin VEN restarts the PN5190B1 always in Active State.

The following power states are supported:

Power state	Description	typical current consumption
Power OFF	The NFC system (supply pin VBAT, RF transmitter) is not supplied by a battery/system PMU. Other domains might be supplied (for example, IO pad interface on pin VDDIO). Device is not functional	-
PMU OFF	The NFC system is disabled by the host via a low signal on pin VEN. No internal clocks of the PN5190B1 are active. Entry to PMU OFF can also be triggered by power loss on VDDIO. Wake-up events to change PMU OFF state: Power reset on pin VBAT, VEN rising edge, RX ULPCD detect, ULP abort signal on PIN3, VDDIO restore.	5 μΑ
ULP standby	The host can set the PN5190B1 into Ultra-low power card detection state (ULP Standby state) via programming of the ULPCD bit (Switch mode command). In the ULP Standby state, the PN5190B1 is able to activate the transmitter and receiver after defined time (expiry of wake-up timer) to detect the card. If a card is not detected, the transmitter and receiver is deactivated and the wake-up timer restarted. Power consumption of ULP Standby mode is much lower than Hard Power Down State and Standby State. Only the wake-up timer is active during ULP Standby state Wake-up events: Power reset on pin VBAT, VEN rising edge, GPIO3 level, Card detected. Variant 1: Configurable wake-up timer allows system to boot into active Variant 2: Configurable wake-up timer allows checking regularly for a card in the field.	Variant 1: 5 μA Variant2: 22 μA

NFC frontend

Power state	Description	typical current consumption
Hard power down	The NFC system is disabled by the Host system via the reset/enable signal on VEN or by detecting an external condition (for example, battery voltage monitor). The power dissipation is reduced to a minimum. No power dissipation or leakage is expected on the different interfaces. Low-power resources are enabled (VDDC_LP, VHV_LP, LQ_REF, LQ-BIAS). LFO clock is available. PCRM is supplied and is running in low-power state. I/Os are supplied by VDDC_HP. Wake-up events: Power reset on pin VBAT, VEN rising edge, RX ULP detect	40 μΑ
Standby	The NFC system can switch after a specific time of inactivity automatically into a low-power mode to minimize power dissipation. The state of external interfaces is maintained properly. PMU operates in low-power state. Wake-up counter clock is available. PCRM is supplied and running in low-power mode. I/Os are supplied by VDDC_LP. PMU FSM in PCRM manages the transition in power state. Wake-up sources: Activity on host IF, SWPM communication, ULPDET, LPDET, wake-up counter, power loss on VDDIO, GPIO, RxPROT, No High Temp on TX and so on.	45 μΑ
Suspend	All power sources are available. LFO and HFO clocks are available. CPU subsystem clock sources are gated, except for the LFO. I/O's are available.	2.5 mA
Active	The PN5190B1 is able to process internal or external events or data. All external power supply sources and the external clock need to be available, and all internal clocks are active.	20 mA (system without RF current)

9.5 Power supply

The device allows to configure different power supply options for the transmitter power amplifier. To make use of them, a combination of external connections and chip internal configurations needs to be done. The following supply options are available:

- Internal VDDPA configuration: The TX power amplifier is supplied by the internal voltage regulator (TX_LDO). In this configuration the DPC, current measurement and overcurrent protection is available. In addition, the TX_LDO is adding an improved rejection of noise on the supply lines.
- Direct VDDPA configuration: This configuration is recommended for applications
 which require highest efficiency, like battery supplied devices. In this configuration, a
 battery can be connected directly to the transmitter supply avoiding the voltage drop of
 approximately 0.3 V caused by the TX_LDO. A clean supply voltage without noise is
 required to achieve a good RF performance.
 - In this configuration the DPC, current measurement and overcurrent protection is not available.

9.5.1 System power supply overview

The PN5190B1 is using three different supplies each for the following functional blocks:

- 1. Supply for the host interface and GPIO's (VDDIO)
- 2. Supply for the analog and digital blocks (VBAT/VBAT PWR)
- 3. Supply of the RF drivers (VDDPA), DC-DC (VBAT PWR) and TX LDO (VUP)

The functionality of the GPIO's, Host Interface and internal analog and digital blocks is independent from the supply of the RF Driver. This allows to configure a dedicated

NFC frontend

transmitter supply configuration at any time. Care shall be taken to switch on the RF field only after the transmitter-related power supply had been configured according to the external physical supply connections (VDDPA, VBAT_PWR, VUP).

The power supply configuration is configured in EEPROM and therefore will not get lost in case of power supply loss or reset of the chip. Typically, this configuration is only performed once during the production of a reader.

RF field shall not be turned on without setting the correct power supply configuration in the EEPROM.

Note: The Voltage on pin VDDIO must always be smaller or equal to the Voltage on pin VBAT.

9.5.2 Connecting blocking capacitors

Some pins are connected to blocking supply capacitors. PCB traces to these capacitors need to be as short as possible, and a low-ohmic grounding of the GND-side of the capacitors is required for optimized RF performance.

9.5.3 Transmitter power supply

The PN5190B1 is configured by EEPROM for the different power supply options.

The following EEPROM Addresses are used to configure the power supply of the transmitter:

DCDC_PWR_CONFIG (0000h) - Enables/disables and configures the DC-DC according to the external supply connections.

TX LDO CONFIG (address 0002h) - Enables/disables and configures the TX LDO.

TX LDO VDDPA HIGH (address 0006h) - initial out voltage when DPC is used.

TX_LDO_VDDPA_LOW (address 0007h) - lowest VDDPA when DPC is used.

TX_LDO_VDDPA_MAX_RDR (address 0008h) - maximum voltage to be set in reader mode used by DPC.

TX_LDO_VDDPA_MAX_CARD (address 0009h) - VDDPA maximum voltage to be set in card mode used by DPC.

NFC frontend

No specific registers are required to configure the pad supply (VDDIO) or the supply for the analog and digital blocks (VUP).

9.5.3.1 TX_LDO transmitter supply

TX_LDO supplied VDDPA configuration: The TX power amplifier is supplied by the internal voltage regulator (TX_LDO).

In this configuration the DPC, current measurement and overcurrent protection is available. In addition, the TX_LDO is adding an improved rejection of noise on the supply lines.

A decoupling cap is required on VDDPA pin.

9.5.3.2 Direct transmitter supply

Direct VDDPA configuration:

TX_LDO must be configured OFF by SW configuration. VUP_TX and VDDPA connected to VBAT/VBATPWR.

NFC frontend

9.5.3.3 DC-DC (boost) supply

9.5.3.4 Configuration example 1: TX_LDO transmitter supply - DC-DC active VBAT is connected to VBATPWR.

NFC frontend

9.5.3.5 Configuration example 2: TX_LDO transmitter supply - DC-DC bypassed

9.5.3.6 Configuration example 3: TX_LDO transmitter supply connected to VBAT - no DC-DC

VBAT is connected to VBATPWR.

NFC frontend

9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC VBAT is connected to VBATPWR.

9.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC

VBAT is connected to VBATPWR.

NFC frontend

NFC frontend

9.5.3.9 Supply voltage range for transmitter supply configuration examples

Table 5. Supply voltage range configuration

Supply	Config1:	Config2:	Config3:	Config4:	Config5:
Зирріу	TX_LDO transmitter supply DC-DC active	TX_LDO transmitter supply DC-DC bypassed	TX_LDO transmitter supply connected to VBAT no DC-DC	TX_LDO supplied independent from VBAT no DC-DC	TX_LDO not used no DC-DC
EEPROM o	onfiguration for DPC ENAB	LED - configured in DF	PC_CONFIG (address	s 0076h)	
DCDC_ PWR_ CONFIG (address 0000h)	- 0xE4(Variable BOOST with Auto Bypass) 0xE2(Fixed BOOST)	0xE4 (Variable BOOST with Auto Bypass)	0x01	0x01	NA
TXLDO_ VDDPA_ HIGH (0x06)	0x0 (1.5 V)	0x0(1.5 V)	0x0(1.5 V)	0x0(1.5 V)	NA
TXLDO_ VDDPA_ MAX_ RDR (0008h)	0x2A(5.7 V)	0x2A(5.7 V)	0x2A(5.7 V)	0x2A(5.7 V)	NA
BOOST_ DEFAULT_ VOLTAGE (000Ah)	0x1D (6 V).	NA	NA	NA	NA
EEPROM o	onfiguration - DPC DISABL	ED - configured in DP0	C_CONFIG (address	0076h)	1
DCDC_ PWR_ CONFIG (address 0000h)	- 0xE4(Variable BOOST with Auto Bypass) 0xE2(Fixed BOOST)	0xE4 (Variable BOOST with Auto Bypass)	0x01	0x01	0x00
TXLDO_ VDDPA_ HIGH (0x06)	0x0 (1.5 V)	0x0(1.5 V)	0x0(1.5 V)	0x0(1.5 V)	0x0(1.5 V)
TXLDO_ VDDPA_ MAX_ RDR (0008h)	NA	NA	NA	NA	NA
BOOST_ DEFAULT_ VOLTAGE (000Ah)	0x1D (6 V).	NA	NA	NA	NA

NFC frontend

Table 6. Supply voltage range

Supply	Config1: TX_LDO transmitter supply DC-DC active	Config2: TX_LDO transmitter supply DC-DC bypassed	Config3: TX_LDO transmitter supply connected to VBAT no DC-DC	Config4: TX_LDO supplied independent from VBAT no DC-DC	
VBAT	2.8 V 4.8 V	2.8 V 4.8 V	2.4 V 5.5 V	2.4 V 5.5 V	2.4 V 5.5 V
VBATPWR	2.8 V 4.8 V	2.8 V 4.8 V	2.4 V 5.5 V	2.4 V 5.5 V	2.4 V 5.5 V
VUP	3.1 V 6.0 V	2.8 V 6.0 V	2.4 V 6.0 V	2.4 V 6.0 V	2.4 V 5.5 V
VDDPA	VUP-0.3V drop of TX_ LDO. max 5.7 V	VBATPWR - 0.5 V voltage drop	internally connected to TX_ LDO	internally connected to TX_ LDO	2.4 V 5.5 V

9.6 Clock generation

The device supports the operation with two clock options, which is configured in EEPROM address CLK INPUT FREQ (0012h).

One option is clocking by a crystal (default), the other a clocking by an external clock input frequency.

It is important to consider additional phase noise introduced e.g. by clock drivers in the design. Phase noise of the external clock has an impact on the RF performance which can be achieved.

9.7 External interfaces

The PN5190B1 requires the connection of a power supply, and a clock source like crystal or external clock and a host microcontroller connected by the SPI interface for operation.

Additional connections of the package require the connection of stabilizing capacitors and ground.

The RF interface connects transmitter and receiver to the EMC filter of a connected antenna matching network. Additional connections are available for the GPIO's (on PN5190B1 only outputs are implemented) and 2x DAC functionality (analog outputs).

The GPIO's implement internal Pull-up/Pull-down resistors. The output of the GPIO's can be configured in the pad configuration PAD CONFIG (0052h).

For more information see [2].

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

NFC frontend

9.8 Transmitter overcurrent and temperature protection ²

The PN5190B1 implements different mechanisms to protect the chip against damage.

On the one hand, an overcurrent protection exists which shuts down the Transmitter Driver in case of a out of spec current. This can be enabled in EEPROM TXLDO_CONFIG (0002h), bit 11: overcurrent enable (0: disable, 1: enable)

On the other hand, an internal temperature sensor allows to monitor the temperature of the chip. This is configured in the EEPROM TEMP_WARNING (0014h). Three temperatures can be configured: 114 °C, 2:125 °C, 3:130 °C. GPIO0 is used to indicate this temperature warning to a connected host.

The actual measured temperature is available in the register TEMP SENSOR (005Bh).

This is a safety feature only. A design shall not functionally rely on this feature since the operating conditions will be violated if the overcurrent detection becomes active.

9.9 Loading a dedicated RF configuration

The PN5190B1 allows an efficient selection of a dedicated RF protocol.

The selection of one RF protocol is done by sending a command to the PN5190B1. This instruction is used to load the RF configuration from EEPROM into registers.

It is possible to configure RF technology, mode (target/initiator) and baud rate.

Configurations can be loaded separately for the receiver (RX configuration) and transmitter (TX configuration).

The Command used for loading a dedicated RF protocol is LOAD_RF_CONFIGURATION (0Dh).

9.10 FeliCa RF functionality

The FeliCa mode is the general reader/writer to card communication scheme according to the FeliCa specification.

The physical parameters are described in the table below:

² Please refer to the Errata sheet if the device is used with FW2.0 or FW2.1.

NFC frontend

Table 7. Communication for FeliCa reader/writer

Communication direction	Signal type	Transfer speed FeliCa	FeliCa higher transfer speeds
		212 kbit/s	424 kbit/s
Reader to card (send data from the PN5190B1 to a card) f_c = 13.56 MHz	reader side modulation	8 % to 30 % ASK	8 % to 30 % ASK
	bit encoding	Manchester encoding	Manchester encoding
	bit rate	f _c /64	f _c /32
Card to reader (PN5190 B1 receives data from a card)	card side modulation	Load modulation,	Load modulation,
	bit encoding	Manchester encoding	Manchester encoding

The PN5190B1 needs to be connected to a host which implements the FeliCa protocol.

Multiple reception cycles (RxMultiple)

For FeliCa timeslot handling in PCD mode, PN5190B1 implements multiple reception cycles. The feature is enabled by setting the control bit RX_MULTIPLE_ENABLE in the register TRANSCEIVE_CONTROL in combination with the transceive state machine.

Unlike for normal operation, the receiver is enabled again after a reception is finished. As there is only one receive buffer available, but several responses are expected, the buffer is split into sub buffers of 32 byte length. Hence, the maximum number of responses which can be handled is limited to 8. As the maximum length defined for a FeliCa response is 20 bytes, the buffer size defined does fulfill the requirements for that use case. The first data frame received is copied onto buffer address 0. The subsequent frames are copied to the buffer address 32 * NumberOfReceivedFrames. The maximum number of data bytes allowed per frame is limited to 28.

All bytes in the buffer between the payload and the status byte are uninitialized and therefore invalid. The firmware on the host shall not use these bytes. The last word of the sub buffer (position 28 to 31) contains a status word. The status word contains the number of received bytes (may vary from the FeliCa length in case of an error), the CLError flag indicating any error in the reception (which is a combination of 3 individual error flags DATA_INTEGRITY_ERROR || PROTOCOL_ERROR || COLLISION_DETECTED) the individual error flags and the LenError flag indicating an incorrect length byte (either length byte is greater than 28 or the number of received bytes is shorter than indicated by the length byte). All unused bits (RFU) are masked to 0.

NFC frontend

There are 4 different cases possible for a reception:

- 1. Correct reception Data integrity is correct (no CRC error), and additionally the number of bytes received is equal to the length byte. Data is written to the buffer. No error set in status byte.
- 2. *Erroneous reception* Data is incorrect (data integrity error CRC wrong) but frame length is correct. Data is written to buffer and the bits CLError and DataError in the status byte are set.
- 3. *Erroneous reception* the length byte received indicates a frame length greater than 28. Data is written to buffer and the bit LenError in status byte is set.
- 4. Erroneous reception the length byte is larger than the number of data bytes, which have been received. Data received is written to buffer and the ProtocolError bit in the status byte is set.

At the end of the reception, additionally the bit field RX_NUM_FRAMES_RECEIVED in the register RX_STATUS_REG is updated to indicate the number of received frames. Upon start of a new EXCHANGE_RF_DATA command, the flag RX_NUM_FRAMES_RECEIVED is cleared.

9.11 Dynamic power control (DPC)

The DPC is used for a special antenna tuning, called "symmetric antenna tuning". For an "asymmetric antenna tuning", the DPC is not required.

However, even for "asymmetric antenna tuning" with high output power needs, it might turn out that the RF field is too strong in close proximity of the antenna to be compliant with ISO/IEC14443 requirements. In this case, the DPC can be used as well to reduce the RF output power dependent on the distance of the card from the reader antenna.

The DPC works very well with a tuning called "symmetric tuning". With symmetric tuning, a detuning of the antenna is causing a reduction of the antenna impedance. This low antenna impedance might lead to a current which is too high for the targeted application. The DPC allows to limit the transmitter current even under antenna detuning conditions.

DPC is useful:

- To achieve NFC Forum and ISO/IEC 14443 compliancy (e.g. NFC Forum Power Transfer Maximum, ISO/IEC 14443 Field Emission Maximum)
- · To improve interoperability

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

NFC frontend

The Dynamic Power Control (DPC 2.0) allows controlling the transmitter driver voltage in 100 mV steps dependent on the actual transmitter current.

A lookup table is used to configure the transmitter output voltage and by this control the RF output power.

Features of the Dynamic power control (DPC 2.0):

- True current measurement provides maximum information for the regulation loop
- The transmitter current can be limited and additionally reduced according to detected transmitter current condition / antenna detuning condition
- DPC works autonomously without host interaction causing no additional processing load on the host
- Fastest response time of 1 ms for regulation
- Used for adaptive waveshape control (AWC)
- Used for adaptive RX sensitivity control (ARC)

The DPC is able to operate in two modes:

- 1. Current limiting mode
- 2. Current limiting + Current reduction mode

The DPC is configured in the EEPROM, this configuration is used after startup. This avoids that the host needs to configure the chip after each reset or power-off.

The following EEPROM registers are most relevant for the DPC configuration:

0xF8: DPC_Config: Enables/Disables the DPC (enable: 0x39, disable: 0x00)

0xF9: DPC_TargetCurrent: Unloaded VDDPA target current in mA, the target current +/- Hysteresis is limiting the current for the DPC.

• The DPC_TargetCurrent is the current which can be measured for the selected antenna impedance and transmitter supply voltage in unloaded condition. This is the current the system is designed to operate at.

0xFB: DPC_Hysteresis: Absolute difference to current target current in mA that triggers a DPC update event.

 The configuration of the hysteresis ensures, that the DPC is not regulating if small changes of the transmitter current occur due to external disturbances. A typical value for the DPC_Hysteresis is e.g. 20 mA.

0x8B: DPC_Lookup_Table: configures the current reduction

The DPC LOOKUP TABLE allows in addition to the limitation of the current, to configure

- an additional current reduction on top of the current limitation, achieved by further lowering the transmitter supply voltage
- a relative change of modulated amplitude level
- and a relative change of falling and raising edge time constant for ASK10% and ASK100% modulations

This lookup table is initialized with 0x00 for devices delivered from the factory. (The customer development board is already initialized with useful data in EEPROM which work well with the antenna of the board).

NFC frontend

The 0x00 entry in the DPC_LOOKUP_TABLE means that no additional function then the current limitation takes place for the DPC.

In order to achieve a limitation of the current even in the case of an antenna impedance that is lowered, the Transmitter supply voltage is reduced accordingly.

This transmitter supply voltage reduction is now used as index for the DPC_LOOKUP_TABLE.

For a specific transmitter supply voltage, it is possible to further reduce the current below the value of DPC_TargetCurrent or to configure parameters for waveshaping and modulation. All these entries are relative values, granularity of the entries dependent on the transmitter supply voltage is 0.1 V, resulting in 42 table entries.

The DPC updates the content of the following register dependent on the antenna load / lookup table configuration:

0x30 - DGRM RSSI

NFC frontend

NFC frontend

9.11.1 DPC algorithm

The DPC algorithm is controlling the transmitter current. It is using the following states:

- 1. Current measurement: Performs VDDPA current measurement
- 2. New VDDPA: Determine new VDDPA configuration based on measured current VDDPA New (for target current of Itarget) = VDDPA Voltage / VDDPA current * Itarget
- 3. Update VDDPA: Perform output power update

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

- 4. Update PCD Shaping: Apply AWC configuration updates for active technology
- 5. Update RX sensitivity parameter only for short duration

Reconfiguration table includes Relative changes of target current and of waveform parameters adaption for all VDDPA voltage configurations. The VDDPA configuration is implicitly defined by the row index. The first row refers to LDO_VDDPA_VOUT_SEL=0 (represents 1V5).

EXAMPLE:

Unloaded configuration After Field ON:

VDDPA max set to 42 (5.7 V) · Target current set to 280 mA

Technology B106: amp_mod=200

Falling edge time constant=rising edge time constant=3

Table 8. DPC_LOOKUP_TABLE element, defining the configuration for one dedicated VDDPA voltage

Function	Bit	Description
ENTRY 0	31:0	This is the entry for 1.5 V.
Target current reduction	31:23	ENTRY 0 -LSB - byte 0 Voltage step between DPC entries = 100 mV. Voltage offset start = 1.5 V bEntry_00 = 1V5 bEntry_42 = 5V7 Bits[7:0] = Target current reduction in mA (unsigned)
AWC amp mod change	23:16	ENTRY 0 - byte 1 Bits[7:0] = Relative change of modulated amplitude level (signed)
AWC edge time constant for ASK100	15:8	ENTRY 0 - byte 2 Bits[3:0] = ASK100, Relative change of falling edge time constant (signed) Bits[7:4] = ASK100, Relative change of rising edge time constant (signed)
AWC falling edge time constant for ASK10	7:0	ENTRY 0 -MSB - byte 4 Bits[3:0] = ASK10, Relative change of falling edge time constant (signed) Bits[7:4] = ASK10, Relative change of rising edge time constant (signed)

Loaded configuration After Field ON:

DPC regulates from unloaded VDDPA configuration 42 to 31. Consequently, new configuration to be applied based on index entry 31.

Target current stays at 280 mA.

Technology B106: amp_mod=205, falling edge time constant=2, rising edge time constant=0

NFC frontend

9.11.2 DPC characteristics

Table 9. Dynamic power control characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Minimum hysteresis configured in EEPROM DPC_HYSTERESIS (address 079h)	Depends on application target current	ApplicationTargetCurrent * 0.0609 + 2 mA	-	-	mA
	Max target current configured in EEPROM DPC_TARGET_CURRENT (077h)	Hysteresis as configured in DPC_HYSTERESIS (address 079h)		-	350- Hysteresis	mA

9.12 Adaptive waveshape control (AWC)

Depending on the level of detected detuning of the antenna, wave shaping related register settings can be automatically updated.

Two different waveshaping mechanisms can be used:

- 1. Firmware based shaping (1,2,3)
- 2. Lookup table based shaping (4,5,6)

The Firmware based shaping allows to correct rise times and overshoot with linear transition shapes.

The lookup table based shaping allows maximum flexibility and enables to configure almost any possible correction.

The shaping related register settings are stored in a lookup table located in EEPROM, and selected dependent on the actual detected detuning condition.

Each lookup table entry allows the configuration not only of a dedicated wave shaping configuration for the corresponding detuning condition. But allows in addition to configure the wave shaping individually dependent on the actual protocol which is active.

Features of the Adaptive Waveshape Control:

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

- · No external components required
- No need to compromise antenna matching to meet waveshape requirements
- · Waveshapes automatically adapted according to detected detuning condition
- RF standards define envelope timing and residual carrier parameters required for compliance and interoperability.

The device supports the design of compliant antennas by allowing to actively shaping the style of edge transition for falling and rising edges. The shaping of modulation edges is achieved by selecting one from three edge transition styles:

- 1. Linear transition between two amplitude levels
- 2. Two linear transition's between amplitude levels and
- 3. Three linear transitions between amplitude levels.

The type of the transition is selected in the EEPROM registers EDGE TYPE (protocol), and can be defined independent for each RF protocol and data rate - for both falling and rising edge.

The EEPROM registers EDGE STYLE (protocol) define the time constant "s" of falling/ rising edge (depends on edge style).

The EEPROM registers EDGE LENGTH (protocol) define the total length of the edge pattern.

The figures below illustrate the edge type for the falling edge.

NFC frontend

The transition patterns are used as implicit pre-distortion to compensate effects of TX loading circuitry (e.g. resonant circuitry parameters) to the emitted RF envelope.

9.13 Adaptive receiver control (ARC)

Depending on the level of detected antenna detuning, receiver-related register settings can be automatically updated. The receiver-related registers which are allowed to be dynamically controlled are:

DGRM_RSSI_REG (30h) -> DGRM_SIGNAL_DETECT_TH_OVR_VAL SIGPRO RM TECH REG (22h) -> RM MF GAIN,

NFC frontend

The adaptive receiver control settings override the default RM_MF_GAIN and DGRM_SIGNAL_DETECT_TH_OVR_VAL settings configured by the command LOAD_RF_CONFIGURATION (0Dh).

The ARC algorithm is called when VDDPA voltage changes after DPC. There are two lookup tables used in ARC algorithm i.e VDDPA lookup and ARC lookup. In case of a VDDPA change, an EEPROM lookup (at current protocol and baud rate) is performed. The receiver-related settings i.e RM_MF_GAIN, DGRM_SIGNAL_DETECT_TH_OVR_VAL and IIR_ENABLE are read from EEPROM lookup table and configured in registers.

VDDPA lookup table:

VDDPA lookup table define maximum five voltage ranges. Number of VDDPA voltage ranges used in ARC algorithm is configured in bArcConfig[2:0]. VDDPA voltage output from DPC algorithm is input to VDDPA lookup. VDDPA lookup returns VDDPA_range_index (i.e 0,1,2,3,4).

Table 10. ARC_VDDPA (0139Eh) EEPROM configuration bit description

Address (hex)	Function	Bit	Description
13D	ARC VDDPA Setting	7:0	Byte[4] = ARC_VDDPA_0: ARC_VDDPA_3 > VDDPA < ARC_VDDPA_4
13C		7:0	Byte[3] = ARC_VDDPA_0: ARC_VDDPA_2 > VDDPA < ARC_VDDPA_3
13B		7:0	Byte[2] = ARC_VDDPA_0: ARC_VDDPA_1 > VDDPA < ARC_VDDPA_2
13A		7:0	Byte[1] = ARC_VDDPA_0: ARC_VDDPA_0 > VDDPA < ARC_VDDPA_1
139		7:0	Byte[0] = ARC_VDDPA_0: 1.5 > VDDPA < ARC_VDDPA_0

ARC lookup table:

VDDPA index and **RF protocol/datarates** are input to ARC lookup. There are five Receiver settings entries for each protocol and data rates. ARC algorithm select one out of five entries (at current protocol and baud rate) based on VDDPA_range_index.

Following table show ARC settings for Type A-106.

Table 11. ARC_RM_A106 (address 013Eh) EEPROM configuration bit description

Address (hex)	Function	Bit	Description
146	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT, Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

PN5190B

NFC frontend

Table 11. ARC_RM_A106 (address 013Eh) EEPROM configuration bit description...continued

Address (hex)	Function	Bit	Description
144	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT, Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
142	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT, Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
140	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT, Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
13E	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: For ISO14443-A: In case ARC is disabled, it requires DPC_ SIGNAL_DETECT_TH_OVR_VAL larger than 0x50 (with MF_GAIN = 2 (default))

Note: For ISO14443-A: In case Bit[15] is configured to 0, it requires DPC_ SIGNAL_DETECT_TH_OVR_VAL larger than 0x50 (with MF_GAIN = 2 (default)) if the ARC is enabled.

NFC frontend

9.14 Timer

The PN5190B1 implements three different types of timers: 2 general-purpose timers (only general-purpose Timer0 is accessible by the user, Timer1 is used by the PN5190B1 as FDT Timer), 1 wake-up timer and 1 low frequency timer.

General-purpose timer

The PN5190B1 implements two 20-bit wide general-purpose timers - Timer0 and Timer1.

Timer0 can be configured by 2 registers each (TIMER0 CONFIG, TIMER0 RELOAD).

Timer 1 is typically used for as FDT and EMD timer configuration. Configuration can be done from the host but the associated IRQ is handled by the firmware of the PN5190B1. The Timer1 events are consumed by the PN5190B1 FW and respective Time-out status is included as part of the command response.

The general-purpose Timer0 and the FTD Timer1 have a max count of 1.048.575.

The register TIMER0_CONFIG, TIMER0_RELOAD configure if either the 13.56 MHz clock of the RF interface is used as Timer input, or if a divided clock frequency is used as input. These registers configure as well the start conditions for the timer.

The following clock frequencies can be selected for the pre-scaler:

000b - 6.78 MHz counter

001b - 3.39 MHz counter

010b - 1.70 MHz counter

011b - 848 kHz counter

100b - 424 kHz counter

101b - 212 kHz counter

110b - 106 kHz counter

111b - 53 kHz counter

Wake-up timer

The PN5190B1 implements one 10-bit wide wake-up timer.

Max count of the wake-up timer is 1023, inout clock is the LFO CLK = 380 kHz. The max timeout is 269 ms.

The wake-up time is configured via the SWITCH_MODE_STANDBY / SWITCH_MODE_LPCD commands. There is no dedicated register available for this timer. The PN5190B1 enters the standby state by the switch mode command SWITCH_MODE_STANDBY/SWITCH_MODE_LPCD. The counter value is part of the command and has to be sent as one configuration parameter. The 2-byte parameter value for the standby counter is indicating the counting time in milliseconds. The value needs to be provided in little-endian format.

Low frequency timer

The wakeup-counter for the ULPCD mode has a width of 12bits.

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

The input clock for this timer is 1 kHz. ULPCD uses the ULP_STANDBY command, and for this the wake-up timer is feed by the 1 kHz clock. Count down value (12 bits counter; ULFO CLK / 4096 = 0.244 Hz i.e. 1 ms per bit).

The max timeout is 4.096 s.

Timer for contactless interface

In addition to the timers above, to guarantee correct protocol timing, a guard period timer is implemented for the RF_EXCHANGE command in reception and transmission mode (TX_WAIT, RX_WAIT counting).

No configuration of this timer is available for the user, setup and counting is managed completely by the hardware. Therefore this timer is not indicated in the timer overview.

9.15 Energy saving card detection

The low-power card detection (LPCD) and ultra-low power card detection (ULPCD) are an energy-saving card polling configuration for the PN5190B1. During LPCD and ULPCD, a host microcontroller can be set into power-saving mode, as no host controller interaction is required.

A low frequency timer is implemented to drive a wake-up counter, which triggers a periodic activation of the antenna drivers to emit a short pulse which allows to detect a detuning of the antenna. In case of a detected antenna detuning, the system is woken up from power-saving mode. It sends an interrupt signal to the connected host microcontroller to wake up the host microcontroller from power-saving mode and to indicate a change of the antenna detuning condition.

There is no trimming for the Low Frequency Timer required.

The SWITCH_MODE instruction allows entering the LPCD or ULPCD mode with a given standby duration value.

NFC frontend

9.15.1 Low-power card detection (LPCD)

The low-power card detection (LPCD) is an energy-saving card polling configuration for the PN5190B1. During LPCD, a host microcontroller can be set into power-saving mode, as no host controller interaction is required. The host microcontroller is woken up from power-saving mode by an IRQ send by the PN5190B1.

The LPCD mode offers highest sensitivity at the cost of slightly higher current consumption compared to the ULPCD mode.

A low frequency oscillator (there is no trimming for the low frequency oscillator required) is implemented to drive a wake-up counter, which triggers a periodic activation of the antenna drivers to emit a short RF pulse. This RF pulse allows to detect a detuning of the antenna by presence of conductive objects in proximity of the antenna (card, cell phone, metal).

In case of a detected antenna detuning, the system wakes up from power-saving mode. It sends an interrupt signal to the connected host microcontroller to wake up the host microcontroller from power-saving mode and to indicate a change of the antenna detuning condition.

A low frequency oscillator (LFO) is implemented to drive a wake-up counter, waking-up PN5190B1 from standby mode. This allows implementation of low-power card detection polling loop at application level.

The host microcontroller can then perform a card polling sequence to verify if the technology of the object causing the antenna detuning is supported by the system.

The SWITCH_MODE instruction allows entering the LPCD mode with a given standby duration value.

NFC frontend

The LPCD mode is entered by the host interface command SWITCH_MODE_LPCD (23h), and terminated by the command SWITCH_MODE_NORMAL (20h). In addition, terminating the LPCD mode is possible by toggling a GPIO, by a reset (VEN) of the PN5190B1 or a signal of the RF Level detector.

Before entering the LPCD mode, ADC_I and ADC_Q reference value needs to be determined. This is done during the so called calibration.

LPCD calibration phase

- a) An initial calibration measurement is performed to set up the RX chain parameters namely HFATT, DCO DAC I CTRL and DCO DAC Q CTRL values.
- b) The next measurement is done using the RX chain parameters that are set up, to arrive at the ADC_I and ADC_Q values which are used as reference values. All following LPCD measurements are done relative to the LPCD calibration measurement.

The LPCD loop itself works in two phases:

First the standby phase is controlled by the wake-up counter (timing defined in the instruction), which defines the duration of the standby of the PN5190B1.

Second phase is the detection-phase. The RF field is switched on for a defined time (EEPROM configuration) and then the ADC_I and ADC_Q values are compared to a reference value.

- If the ADC_I and ADC_Q values exceed the reference value, a LPCD_IRQ is raised
 to the host. The register configurations done by the host to support a dedicated RF
 protocol are not restored after wake-up command. The host has to configure the NFC
 frontend for a dedicated protocol operation to allow a polling for a card.
- If the ADC_I and ADC_Q values do not exceed the thresholds of the reference value, no LPC IRQ is raised and the IC is set to the first phase (standby mode) again.

These two phases are executed in a loop until:

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

- Card / metal is detected (LPCD IRQ is raised).
- Reset occurs, which resets all the system configurations. The LPCD is also terminated in this case.
- NSS on host interface
- RF Level Detected
- GPIO toggle

As functionality from FW2.03 onwards, the GPIO1 (general-purpose input/output) pin can be enabled to wake up an external DC-DC from power down for the VDDPA supply. The GPO1 allows setting to high before the transmitter is switched on. This allows the wake-up of an external DC-DC from power down. The GPO1 can be set to low after the RF field is switched off to set an external DC-DC into power-down mode. The time of toggling the GPO1 in relation to the RF-on and RF-off timings can be configured:

EEPROM field LpcdExtDcdcEnable (0xCE0) is used to enable the use of EXT DC-DC during LPCD.

EEPROM field: LpcdExtDcdcDelayToOn (0xCE1) is used to configure the delay to turn on the DC-DC in 8usecs steps.

EEPROM field: LpcdExtDcdcDelayToOff (0xCE2) is used to configure the delay to turn off the DC-DC in 8usecs steps.

The behavior of the generated field is different dependent on the activation state of the DPC function:

- If the DPC feature is not active, the ISO/IEC14443 type A 106 kbit/s settings are used during the sensing time.
- If the DPC is active, the RF_ON command is executed. The RF field is switched on as soon as the timer configured by the SWITCH_MODE command elapses. The RF field is switched on for a duration as defined for an activated DPC. The timer for the LPCD_FIELD_ON_TIME starts to count as soon as the RF_ON command terminates.

Table 12. Low-Power Card Detection: relevant EEPROM configuration

EEPROM address	Name	Description
0492	LPCD_AVG_SAMPLES	Defines how many samples of the I and Q values are used for the averaging. Used to optimize the system to achieve highest detection sensitivity versus false alarms.
0494	LPCD_RSSI_TARGET	Value to be used as the RSSI target in the calibration phase to arrive at the RX chain parameters. This parameter is used to arrive at an optimal target voltage level at RXP.
0496	LPCD_RSSI_HYST	Value to be used as the RSSI hysteresis in the calibration phase to arrive at the RX chain parameters. This is used to avoid oscillations while arriving at the target voltage level at RXP.
049E	LPCD_THRESHOLD	If the difference between the measured value of I/Q and the reference value for I/Q is greater than the threshold on either channels, then a card is detected.
04B5	LPCD_VDDPA	VDDPA voltage when DC-DC (internal or external) or external power source is used to feed TXLDO

PN5190B1

NFC frontend

Table 12. Low-Power Card Detection: relevant EEPROM configuration...continued

EEPROM address	Name	Description
0013		Interval which is used to check if XTAL is ready (unit is 256/fc, e.g. ~18.8 us). For fastest start up this time, a check is performed at a time slightly higher than the expected startup time of the crystal.

9.15.2 Semi-autonomous mode (LPCD)

LPCD semi-autonomous mode

The LPCD can be invoked by the host in the semi-autonomous mode wherein the ADC_I and ADC_Q values that are measured is returned back to the host.

In this mode, standby is not entered and the difference between the measured and reference values are not checked against the threshold. Nevertheless, the host may check the measured values against a reference and threshold to detect a card and also put the PN5190B1 in standby mode between measurements, using the SWITCH_MODE_STANDBY command.

This mode is especially useful to find optimized settings for the LPCD, since it does not offer no significant current saving.

Table 13. Low-Power Card Detection - semi-autonomous mode: relevant REGISTERS

REGISTER address	Name	Description
0050	LPCD_CALIBRATE_CTRL	Writing to this register triggers the LPCD calibration with the LPCD RSSI_HYSTERESIS and LPCD RSSI_TARGET values. After calibration is completed, calibration status is available in LPCD_CALIBRATE_STATUS. If the calibration is successful, the I/Q channel values can be read from register IQ_CHANNEL_VALS
0051	IQ_CHANNEL_VALS	Actual I/Q channel value
0053	LPCD_CALIBRATE_STATUS	1: if successful - a new calibration clears this value

9.15.3 Ultra low-power card detection (ULPCD)

The ULPCD (ultra low-power card detection) offers highest current saving. In this mode, the only wake-up sources to escape from the card detection loop are either a detected antenna detuning, a signal on GPIO3 or a reset (RESET_N) of the PN5190B1.

Only the wake-up timer is active during ULP Standby state.

The ULPCD comprises 2 phases:

1. Calibration phase

In this phase, an RF field is established and the field strength(RSSI) for the unloaded state of the antenna is measured to be used during the measurement phase and stored in a low-power persistent register.

2. Measurement phase

In the measurement phase, the card detection activity is performed autonomously by the hardware at configurable time intervals. This configuration is passed as a parameter to the SWITCH_MODE_LPCD command. The RSSI value is measured and compared against the reference value measured in the calibration phase. A card

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

is detected to be in the proximity of the reader when the measured RSSI differs from the reference RSSI by more than a configurable threshold.

The host can set the PN5190B1 into ultra-low power card detection state (ULP Standby state) via the instruction SWITCH_MODE_LPCD.

XTAL_CHECK_DELAY (0013h) allows to optimize the startup of the crystal for the LPCD and ULPCD modes.

The following EEPROM configuration is available:

- ULPCD_VOLTAGE_CTRL (address 4C6h)
- ULPCD_RSSI_GUARD_TIME (04C9h)
- ULPCD RSSI SAMPLE CFG (04CAh)
- ULPCD_THRESH_LVL(04CBh)
- ULPCD_GPIO3 (04CCh) Allows to abort the ULPCD based on GPIO input.

9.16 Automatic EMD error handling

The PN5190B1 supports a configurable EMD handling according to the ISO14443 or EMVCo standard. To support further extensions or changes of these standards, the EMD block is configurable.

After being configured, the PN5190B1 restarts both the receiver and a timeout timer automatically without host interaction in case of a detected EMD event.

Features of the Automatic EMD Error Handling:

- · No real-time constraints
- · Less processing load on the host processor
- · Configurable, anticipating future specification changes

In addition to the EMD error handling according to ISO14443 and EMVCo, the PN5190B1 implements special features for FeliCa $^{\rm TM}$ preamble processing.

Registers CLIF_RX_EMD_1_CONFIG(0x47) and CLIF_RX_EMD_0_CONFIG(0x48) hold the configurations for the EMD configurations for ISO/IEC14443, and NFC Forum.

EMVCo EMD configuration is supported in the register EMVCO_EMD_CONTROL (0x3).

9.17 Autocoll (card emulation)

The Autocoll state machine performs the time critical activation for Type-A PICC and for NFC-Forum Active and Passive Target activation (card emulation mode).

The PICC state machine supports three configurations:

- Autocoll mode0: Autocoll mode is left when no RF field is present
- Autocoll mode1: Autocoll mode is left when one technology is activated by an external reader. During RFoff, the chip enters standby mode automatically
- Autocoll mode2: Autocoll mode is left when one technology is activated by an external reader. During RFoff, the chip does not enter standby mode.

At start-up, the Autocoll state machine automatically performs a LOAD_RF_CONFIG with the General Target Mode Settings. When a technology is detected during activation, the Autocoll state machine performs an additional LOAD_RF_CONFIG with the corresponding technology.

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

The card configuration for the activation is stored in EEPROM. If RandomUID is enabled (EEPROM configuration), a random UID is generated after each RF-off.

For all active target modes, the own RF field is automatically switched on after the initiator has switched off its own filed.

9.18 RF-level detection

The PN5190B1 implements an RF level detector (RFLD) and an NFC level detector (NFCLD) which allows to detect the presence of an external RF field.

RF Level Detector:

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

During low-power card detection (LPCD), the RF level detector (RFLD) acts as wake-up source from power-saving mode.

During ultra low-power card detection (ULPCD), a specific ultra low-power RF level detector is used as RF level detector(RFLD). This can be enabled as wake-up source.

The purpose of the RFLD function is to detect any signal at 13.56 MHz in order to wake up the PN5190B1 from power-saving mode.

NFC Level Detector:

The NFC Level detector (NFCLD) is used during full power mode. The NFCLD function is required by NFC Forum to support the "RF collision avoidance".

The sensitivity of the NFCLD sensor can be configured by EEPROM register to meet the NFC Forum requirements.

It can be used as well in card mode to detect an external field.

9.19 Antenna connection

The PN5190B1 allows to connect antennas of different topology and matching to the transmitter.

Standard and recommended tuning of the antenna fitting to most applications is a symmetrical matched antenna connected to TX1, TX2 operating in push-pull operation.

VBAT is connected to VBATPWR.

The PN5190B1 allows to operate the TX1, TX2 in common mode as well, which allows to use a single ended antenna. This configuration saves one EMC filter coil.

Note:

The RSSI Target for SE needs to be calculated as follows and differs from the differential antenna: RSSI Target = Target RX Peak Voltage*1024/ (1.8*2)

Example: For a 1.2 V target: DGRM_RSSI_TARGET = 1.2 * 1024 / (1.8*2) = 341d = 0x155

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

The PN5190B1 allows to connect to antennas, one to each of the available driver outputs. The Figure below shows as well the receiver schematics for the RXN which is applicable for the Push-Push deriver configuration as well.

NFC frontend

Table 14. Antenna register configuration

Register (Address)	Bit	Differential Antenna Push-Pull driver TX1, TX2	Single-Ended Push-Push driver TX1, TX2	Single-Ended TX1 driving	Single-Ended TX2 driving
SS_TX_ CFG (0x15)	TX2_USE_TX1_ CONF	1b	1b	Ob	Has to be updated from host to 0x289 after load protocol
SS_TX1_ RMCFG (0x16)	TX1_CLK_ MODE_TRANS_ RM	111b	111b	111b	001b
SS_TX1_ RMCFG (0x16)	TX1_CLK_ MODE_MOD_RM	111b	111b	111b	001b
SS_TX1_ RMCFG (0x16)	TX1_CLK_ MODE_CW_RM	111b	111b	111b	001b
SS_TX2_ RMCFG (0x17)	TX2_CLK_ MODE_TRANS_ RM	111b	111b	001b	111b
SS_TX2_ RMCFG (0x17)	TX2_CLK_ MODE_MOD_RM	111b	111b	001b	111b
SS_TX2_ RMCFG (0x17)	TX2_CLK_ MODE_CW_RM	111b	111b	001b	111b
DGRM_ RSSI (0x30)	DGRM_RSSI_ TARGET	direct entry	as per calculation for SE (RSSI Target = Target RX Peak Voltage*1024/ (1.8*2))	as per calculation for SE (RSSI Target = Target RX Peak Voltage*1024/ (1.8*2))	as per calculation for SE (RSSI Target = Target RX Peak Voltage*1024/ (1.8*2))
ANA_ RX_CTRL (0x43)	RX_MIXER_SE_ MODE_EN	0	1	1	1
ANACTRL_ TX_ CONFIG (0x44)	TX_INVP_RM	10b	00b	no impact	no impact
ANACTRL_ TX_ CONFIG (0x44)	TX_PWM_ MODE_RM	0b	0b	1b	1b

NFC frontend

Table 15. Antenna EEPROM configuration

EEPROM (Address)	Bit	Differential Antenna Push-Pull driver TX1, TX2	Single-Ended Push-Push driver TX1, TX2	Single-Ended TX1 driving	Single-Ended TX2 driving
TX_SHAPING_ CONFIG (0x17)	0	0	0	1	1
TX_CLK_MODE_1 (0x19)		0x77	0x77	0x77	0x11
TX_CLK_MODE_2 (0x1A)		0x17	0x17	0x17	0x11

Note:

Recommendation is to use all the settings configured in EEPROM. For CLIF_SS_TX_CFG_REG, the value has to be configured in EEPROM for each technology and baud rate so that the value is loaded after every load protocol.

9.20 Antenna tuning with variable capacitors

The PN5190B1 allows the tuning of the connected antenna based on variable capacitors.

Variable capacitors are devices which allow to change their capacity dependent on a supplied control voltage. Typically, these capacitors are used as serial and parallel capacitors in an antenna matching network.

The PN5190B1 allows to measure a detuning of the connected antenna caused e.g. by surrounding metal and correct the actual detuning by applying an appropriate control voltage on 2 analog outputs.

To correct a potential detuning of the connected antenna, a phase measurement needs to be performed. The following sequence is required to read out the phase information:

Step 1: Disable DPC

Step 2: Perform Type A-106 load protocol

Step 3: Set the VDDPA Voltage as V_(Vddpa_AAT)

Step 4: Perform RF ON

Step 5: Read out RXM phase

Step 6: Perform RF OFF

Step 7: Enable DPC

For reading the RXM phase, refer to the related application note. Based on the phase information, a host is able to calculate the DAC output voltages to correct a detuning.

The antenna tuning requires the DPC to be disabled, and is typically not suitable for dynamic tuning e.g. during card communication.

Note:

Since disabling of the DPC requires a modification of the EEPROM is required, care must be taken not to exceed the maximum permitted number of Erase/Write cycles.

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

riguro oz. Antonna connection doing variable cape

9.21 RF debug signals

The following signals are available for debugging purposes:

The test signals are selected by sending a command string to the PN5190B1. The commands CONFIGURE_TESTBUS_DIGITAL (12h) and CONFIGURE_TESTBUS_ANALOG (13h) are used to configure the dedicated signal on an output pin.

If used, ADC-Q needs to be routed always to AUX1, ADC-I needs to be routed always to AUX2

The analog test signals are analog representation of an internal digital value. The internal digital signal is converted by an 8-bit wide DAC to the analog signal.

This overview indicates the signals which are available for debugging purposes (indicated by numbers):

Table 16. DEBUG SIGNALS

Signal		SIGNAL NAME	BITS	Description				
ADC Data I Channel (1)	obs_clif_ tbcontrol_ patchbox0	adc_ data_i_i	9:2	Unfiltered I channel signal upper 7 bit of the 10 bit signed unfiltered I channel signal including sign (bit9)				

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 16. DEBUG SIGNALS ... continued

Signal	REGISTER	SIGNAL NAME	BITS	Description
	obs_clif_ tbcontrol_ patchbox1		9; 6:0	Unfiltered I channel signal lower 7 bit of the 10 bit signed unfiltered I channel signal including sign (bit9)
ADC Data Q Channel (2)	obs_clif_ tbcontrol_ patchbox2	adc_ data_q_i	9:2	Unfiltered Q channel signal upper 7 bit of the 10 bit signed unfiltered Q channel signal including sign (bit9)
	obs_clif_ tbcontrol_ patchbox3		9; 6:0	Unfiltered Q channel signal lower 7 bit of the 10 bit signed unfiltered Q channel signal including sign (bit9)
Preprocessor Out I Channel (3)	obs_clif_sigpro_ rm0	rm_cor_ adc_i_o	14:8	Pre-processed ADC data I channel upper 7bit of 15bit signed pre-processed ADC data I channel, after IIR Filter and down-sampling including sign (bit14) bit 15: RFU
	obs_clif_sigpro_ rm1		7:0	Pre-processed ADC data I channel lower 8bit of 15bit signed pre-processed ADC data I channel, after IIR Filter and down-sampling
Preprocessor Out Q Channel (4)	obs_clif_sigpro_ rm2	rm_cor_ adc_q_o	14:8	Pre-processed ADC data I channel upper 7bit of 15bit signed pre-processed ADC data Q channel, after IIR Filter and down-sampling including sign (bit14) bit 15: RFU
	obs_clif_sigpro_ rm3		7:0	Pre-processed ADC data I channel lower 8bit of 15bit signed pre-processed ADC data Q channel, after IIR Filter and down-sampling
Output MF S0 (5)	obs_clif_sigpro_ rm4	mf_pt_ s0_d	14:8	Delayed matched filter S0 output, after CH combiner upper 7 bit of the 15 bit signed delayed matched filter S0 output, after Channel combiner including sign (bit14) bit 15: RFU (ignore)
	obs_clif_sigpro_ rm5		7:0	Delayed matched filter S0 output, after CH combiner lower 8 bit of the 15 bit signed delayed matched filter S0 output, after Channel combiner
Output MF S1 (6)	obs_clif_sigpro_ rm6	mf_pt_ s1_d	14:8	Delayed matched filter S1 output, after CH combiner upper 7 bit of the 15 bit signed delayed matched filter S1 output, after Channel combiner including sign (bit14) bit 15: RFU (ignore) Remark: S1 is not relevant for type A 106
	obs_clif_sigpro_ rm7		7:0	Delayed matched filter S1 output, after CH combiner lower 8 bit of the 15 bit signed delayed matched filter S1 output, after Channel combiner Remark: S1 is not relevant for type A 106
Output Synchronization Filter (7)	obs_clif_sigpro_ rm8	sync_filt_ out	14:8	Synchronization filter output upper 7 bit of the 15 bit signed synchronization filter output including sign (bit14) bit 15: RFU (ignore)
	obs_clif_sigpro_ rm9		7:0	Synchronization filter output lower 8 bit of the 15 bit signed synchronization filter output
clif_status	transceive_state		7:5	

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 16. DEBUG SIGNALS ... continued

Signal	REGISTER	SIGNAL NAME	BITS	Description
	rx_cl_error		4	
	tx_envelope		3	
	rx_enevelope		2	
	svalid		1	
	sdata		0	
clif_transceive	rx_start_receive		7	
	rx_over_ok		6	
	rx_over_term		5	
	rx_resume		4	
	sgp_msg_busy		3	
	fig_reset_sigpro		2	
	fig_reset_rxdec		1	
	cfg_sw_reset_ sigpro		0	

Table 17. TRIGGER SIGNALS

TRIGGER	REGISTER	SIGNAL NAME	BITS	Description
TX Active	obs_clif_txenc1	tx_active_o	1	high level indicates transmission of data Remark: Falling edge can be used to trigger on end of transmission.
RX Enable	obs_clif_sigpro_ rm15	rx_enable_o	1	high level indicates that the reception is ongoing Remark: can be used to trigger on the start /end of reception
RX collision detected	obs_clif_sigpro_ rm14	rm_scoll_o	1	high-level pulse indicates that the collision is detected during reception

9.22 Secure firmware update

The PN5190B1 supports a secure update of the implemented firmware.

The secure firmware download mode is using dedicated commands, but does not require a dedicated physical handling of the SPI interface lines.

The secure firmware download mode is entered by setting a register in non-volatile memory followed by a trigger of the VEN pin.

The firmware binary file which is used to update the PN5190B1 is protected with an RSA signature and AES encryption.

The key length of the RSA is 2048 bits, the public exponent supports any 32-bit integer value.

A pre-computed Montgomery format of signature is used, and the signature hash computation is based on SHA256 algorithm.

This prevents a download of any other software which is not released by NXP.

PN5190B1

NFC frontend

An anti-tearing function is implemented in order to detect supply voltage removal or memory fault.

During the secure firmware download, the NFC operation is not available, only the command set defined for the secure firmware download is valid.

Updating the PN5190B1 with the default firmware binaries programs the memories for user configuration with default values. Any previous user configuration will be overwritten. The user has to take care to restore the data of these memories after a secure firmware update.

If this is not intended, special firmware versions are available which do not overwrite the configuration. If the standard firmware file is named e.g. FW 2.00, the name of the firmware which does not overwrite existing settings is then FW 2.F0. (The "F" is indicating the non overwrite version)

The PN5190B1 checks if the new major version number is equal or higher than the current one. In case the major version number of the new firmware to be installed is smaller than the already installed version number of the firmware, the secure firmware update is rejected. Downgrading major firmware versions is therefore not possible. Upgrading and therefore increasing major firmware versions is always possible.

In case of any failure or exception during the download (e.g. caused by a communication error or power-off), the PN5190B1 remains in the secure firmware download mode until a full firmware update sequence has been performed successfully.

Features of the automatic secure firmware update:

- · Works without download request pin
- · No special implementation of SPI interface handling
- · Maximum integrity: Only encrypted and signed firmware images download possible
- Updating the firmware overwrites existing all previous EEPROM configurations.

9.23 SPI host interface

The interface of the PN5190B1 to a host microcontroller is based on a SPI interface.

The maximum SPI speed is 15 Mbit/s and fixed to CPOL = 0 and CPHA = 0. Only a half-duplex data transfer is supported. There is no chaining allowed, meaning that the whole instruction has to be sent or the whole receive buffer has to be read out. The whole transmit buffer shall be written at once as well. No NSS assertion is allowed during data transfer.

The SPI host interface is designed to support the typical interface supply voltages of 1.8 V and 3.3 V of CPUs. A dedicated supply input which defines the host interface supply voltage independent from other supplies is available (pin VDDIO).

There is no external pull-up / pull-down resistor required, the SPI pads are automatically configured by the PN5190B1.

Only a voltage of 1.8 V or 3.3 V is supported, but no voltage in the range of 1.95 V to 2.4 $^{\circ}$ V

Note: The Voltage on pin VDDIO must always be smaller or equal to the Voltage on pin VBAT.

Master in slave out (MISO)

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

The MISO line is configured as an output in a slave device. It is used to transfer data from the slave to the master, with the most significant bit sent first. The MISO signal is put into 3-state mode when NSS is high.

Master out slave in (MOSI)

The MOSI line is configured as an input in a slave device. It is used to transfer data from the master to a slave, with the most significant bit sent first.

Serial clock (SCK)

The serial clock is used to synchronize data movement both in and out of the device through its MOSI and MISO lines.

Not slave select (NSS)

The slave select input (NSS) line is used to select a slave device. It shall be set to low before any data transaction starts and must stay low during the transaction.

9.24 Host interface commands

9.24.1 Logical command layer

PN5190B1 has two main modes of operation to communicate with the host controller:

- 1. TLV-command response-based communication
- 2. HDLL-based communication, used when device is triggered to enter the "download mode", to update its firmware.

The description of the transport layer in the next chapters is limited to TLV-based command-response communication.

For more information, see [3].

9.24.1.1 Logical frame definition

A SPI frame starts with the falling edge of NSS and ends with the rising edge of NSS.

SPI is per physical definition full duplex but PN5190B1 uses SPI in a half-duplex mode.

SPI mode is limited to CPOL 0 and CPHA 0 with a max clock speed of 15 MHz.

Every SPI frame is composed of a 1-byte header and n-bytes of body.

9.24.1.2 Logical flow definition

The HOST always sends as a first byte the flow indication byte whether it wants to write or read data from the PN5190B1.

In case of a read request and no data is available, the response contains 0xFF.

The data after the flow indication byte is one or several messages.

For every NSS assertion, the first byte is always a HEADER (flow indication byte), it can be either 0x7F/0xFF with respect to write/read operation.

9.24.1.3 Logical message type definition

A host controller communicates with PN5190B1 using messages which are transported within SPI frames.

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

There are three different message types:

- Command
- Response
- Event

Commands are only sent from host controller to PN5190B1 responses.

Events are only sent from PN5190B1 to host controller.

Allowed sequences and rules:

- · Command is always acknowledged by a response
- Host Controller is not allowed to send another command before receiving a response to a previous command, except in concatenation
- Events may be sent asynchronously at any time (NOT interleaved within a command/ response pair)
- EVENT messages are never combined with the RESPONSE messages within one frame.

9.24.1.4 Logical message format

Type (T) => 1 byte

Bit[7] Message Type

0: COMMAND or RESPONSE message

1: EVENT message

Bit[6:0]: Instruction Code

Length (L) => 2 bytes (large endian format)

Length of the message body

Value (V) => N bytes

Value/data of the TLV (Command Parameters / Response data) based on Length field (Large endian format)

9.24.1.5 Split frame definition

COMMAND message must be sent in one SPI frame RESPONSE and EVENT messages can be read in multiple SPI frames, e.g., to read out the length byte.

RESPONSE and EVENT messages can be read in single SPI frame but delayed by NO-CLOCK in between, e.g., to read out the length byte.

9.24.2 Host interface command list

PN5190B1 command/response list

Table 18. Host interface commands

Command code	PN5180 legacy command	Command
0x00	Yes	WRITE_REGISTER

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 18. Host interface commands...continued

Command code	PN5180 legacy command	Command	
0x01	Yes	WRITE_REGISTER_OR_MASK	
0x02	Yes	WRITE_REGISTER_AND_MASK	
0x03	Yes	WRITE_REGISTER_MULTIPLE	
0x04	Yes	READ_REGISTER	
0x05	Yes	READ_REGISTER_MULTIPLE	
0x06	Yes	WRITE_EEPROM	
0x07	Yes	READ_EEPROM	
0x08	No	TRANSMIT_RF_DATA	
0x09	No	RETRIEVE_RF_DATA	
0x0A	No	EXCHANGE_RF_DATA	
0x0B	Yes	MFC_AUTHENTICATE	
0x0C	Yes	EPC_GEN2_INVENTORY	
0x0D	Yes	LOAD_RF_CONFIGURATION	
0x0E	Yes	UPDATE_RF_CONFIGURATION	
0x0F	Yes	GET_RF_CONFIGURATION	
0x10	Yes	RF_ON	
0x11	Yes	RF_OFF	
0x12	Yes	CONFIGURE_TESTBUS_DIGITAL (not available for engineering samples)	
0x13	Yes	CONFIGURE_TESTBUS_ANALOG (not available for engineering samples)	
0x14	No	CTS_ENABLE	
0x15	No	CTS_CONFIGURE	
0x16	No	CTS_RETRIEVE_LOG	
0x17 - 0x18	-	RFU	
0x19	No	up to FW 2.01: RFU	
		from FW2.03 onwards: RETRIEVE_RF_FELICA_EMD_DATA	
0x1A		RECEIVE_RF_DATA	
0x1B-0x1F		RFU	
0x20	Yes	SWITCH_MODE_NORMAL	
0x21	Yes	SWITCH_MODE_AUTOCOLL	
0x22	Yes	SWITCH_MODE_STANDBY	
0x23	No	SWITCH_MODE_LPCD	
0x24	No	SWITCH_MODE_SUSPEND	
0x25	No	SWITCH_MODE_DOWNLOAD	
0x26	No	GET_DIE_ID	

NFC frontend

Table 18. Host interface commands...continued

Command code	PN5180 legacy command	Command	
0x27	No	GET_VERSION	
0x28 - 0x3F	-	RFU	
0x40	-	RFU	
0x41	No	PRBS_TEST	
0x41 - 0x50	-	RFU	

9.24.3 EVENTS INDICATED BY INTERRUPT

Normal events are indicated over IRQ.

These normal events can be either

- · always enabled Host is always notified
- controlled by Host Host is notified if the respective Event Enable bit is set in the register (EVENT ENABLE).

Low-level interrupts from the peripheral IPs including the CLIF are completely handled within the firmware and host will be notified only of the events listed in the events section.

The Firmware implements two event registers as RAM registers that can be written / Read using WRITE_REGISTER / READ_REGISTER commands.

Two registers do exist to handle the events from a host microcontroller: EVENT_ENABLE and EVENT_STATUS:

- EVENT_ENABLE => register, enables/disables specific event notifications
- EVENT_STATUS => content of this register is part of the event message payload

Events are auto-cleared once the event message is read-out by the host.

Events are asynchronous in nature and are notified to the host if they are enabled within event register.

Following is the list of events available to the host as part of event message:

Table 19. IRQ EVENT LIST

BIT	EVENT	Always enabled	Value/Description
3112	RFU	-	-
11	CTS_EVENT	N	
10	IDLE_EVENT	Υ	
9	LP_CALIBRATION_EVENT	Υ	
8	LPCD_EVENT	Υ	
7	AUTOCOLL_EVENT	Υ	
6	TIMER0_EVENT	N	
5	TX_OVERCURRENT_EVENT	N	

NFC frontend

Table 19. IRQ EVENT LIST ... continued

BIT	EVENT	Always enabled	Value/Description
4	RFON_DET_EVENT	N	
3	RFOFF_DET_EVENT	N	
2	STANDBY_PREV_EVENT	Υ	
1	GENERAL_ERROR_EVENT	Υ	
0	BOOT_EVENT	Υ	

Note that no two events are clubbed except in case of errors. In case of errors during the operation, functional event (e.g. BOOT_EVENT, AUTOCALL_EVENT etc.) and GENERAL_ERROR_EVENT will be set.

9.24.4 EVENTS INDICATED ON GPIO

Temperature events are possible to be indicated by a GPIO to speed up the notification to a host.

The EEPROM register ENABLE_GPIO0_ON_OVERTEMP (0054h) allows enabling the indication of a temperature event on GPIO0.

No other event can be routed to a GPIO.

9.25 Register description

The default setting of a bit within a register is indicated by the "*". Value indicates the allowed range for the bits of a symbol.

9.25.1 Register overview

Table 20. Register Overview

Address (HEX)	Address (decimal)	Name	
0h	0	SYSTEM_CONFIG	
1h	1	EVENT_ENABLE	
2h	2	EVENT_STATUS	
3h	3	EMD_CONTROL	
4h	4	FELICA_EMD_CONTROL	
5h	5	RX_STATUS	
6h	6	RX_STATUS_ERROR	
7h	7	CLIF_STATUS	
8h	8	TRANSCEIVE_CONTROL	
9h	9	TX_SYMBOL01_MOD	
Ah	10	TX_SYMBOL1_DEF	
Bh	11	TX_SYMBOL0_DEF	
Ch	12	TX_SYMBOL23_MOD	

PN5190B1

NFC frontend

Table 20. Register Overview...continued

Address (HEX)	Address (decimal)	Name	
Dh	13	TX_SYMBOL23_DEF	
Eh	14	TX_SYMBOL_CONFIG	
Fh	15	TX_FRAME_CONFIG	
10h	16	TX_DATA_MOD	
11h	17	TX_WAIT	
12h	18	TX_CRC_CONFIG	
13h	19	RFU	
14h	20	RFU	
15h	21	SS_TX_CONFIG	
16h	22	SS_TX1_RMCFG	
17h	23	SS_TX2_RMCFG	
18h	24	RFU	
19h	25	SS_TX_TRANS_CFG	
1A-1C	26-28	RFU	
1D	29	PUBLIC RESERVED	
1E	30	RFU	
1F	31	PUBLIC_RESERVED	
20	32	SIGPRO_RM_PATTERN	
21	33	PUBLIC RESERVED	
22	34	RFU	
23-24	35-36	PUBLIC RESERVED	
25	37	RFU	
26	38	RX_FRAME_LENGTH	
27	39	RX_ERROR_CONFIG	
28	40	RX_CTRL_STATUS	
29	41	PUBLIC RESERVED	
2A	42	SIGPRO_IIR_CONFIG0	
2B-2C	43-44	PUBLIC RESERVED	
2Dh	45	DGRM_BBA	
2E	46	PUBLIC RESERVED	
2Fh	47	RFU	
30h	48	DGRM_RSSI	
31h	49	RX_CRC_CONFIG	
32h	50	RX_WAIT	
33	51	DCOC_CONFIG	
34	52	RFU	

NFC frontend

Table 20. Register Overview...continued

Address (HEX)	Address (decimal)	Name	
35	53	RXM_CTRL	
36	54	ANA_AGC_DCO_CTRL	
37	55	RFU	
38-3A	56-58	PUBLIC RESERVED	
3B	59	SS_TX1_CMCFG	
3C	60	SS_TX2_CMCFG	
3Dh	61	TIMER0_CONFIG	
3Eh	62	TIMER0_RELOAD	
3Fh	63	RFU	
40h	64	RFU	
41	65	ANA_STATUS	
42h	66	RFU	
42	67	ANA_RX_CTRL	
44	68	ANACTRL_TX_CONFIG	
45-46	68-70	RFU	
47h	71	EMD_1_CONFIG	
48h	72	EMD_0_CONFIG	
49-4F	73-79	RFU	
50	80	LPCD_CALIBRATE_CTRL	
51	81	IQ_CHANNEL_VALS	
52	82	PAD_CONFIG	
53	83	CALIBRATE_STATUS	
54	84	TXLDO_VDDPA_CONFIG	
55	85	GENERAL_ERROR_STATUS	
56	86	TXLDO_VOUT_CURR	
57	87	DAC	
58	88	PMU_ANA_SMPS_CTRL_REG	
59	89	RXM_FREQ	
5A	90	RXM_RSSI	
5B	91	TEMP_SENSOR	
5D	93	TX_NOV_CALIBRATE_AND_STORE	
5E	94	DPC_CONFIFG	
80	128	SS_TX1_RTRANS0	
81	129	SS_TX1_RTRANS1	
82	130	SS_TX1_RTRANS2	
83	131	SS_TX1_RTRANS3	

NFC frontend

Table 20. Register Overview...continued

Address (HEX)	Address (decimal)	Name	
84	132	SS_TX1_RTRANS4	
85	133	SS_TX1_RTRANS5	
86	134	SS_TX1_RTRANS6	
87	135	SS_TX1_RTRANS7	
88	136	SS_TX1_RTRANS8	
89	137	SS_TX1_RTRANS9	
8A	138	SS_TX1_RTRANS10	
8B	139	SS_TX1_RTRANS11	
8C	140	SS_TX1_RTRANS12	
8D	141	SS_TX1_RTRANS13	
8E	142	SS_TX1_RTRANS14	
8F	143	SS_TX1_RTRANS15	

9.25.2 SYSTEM_CONFIG (0000h)

Table 21. SYSTEM_CONFIG register (address 0000h) bit description

Bit	Symbol	Access	Value	Description
31:9	RFU	r/w	0*,1	-
8	TX_NOV_CALIBRATION	r/w	0*,1	One time calibration when the host writes a 1 into this register, a one time calibration will be performed. <i>Note:</i> The calibration is resulting a short RF-on. All the power configurations shall the configured before setting this bit.
7	RFU	r/w	0	-
6:5	15693_CHANGE_DATARATE	r/w	0*,1	15693_changedatarate 0 - RFU 1 - Change Data Rate to 53kB/sec 2 - Change Data Rate to 106kB/sec 3 - Change Data Rate to 212kB/sec By default, the basic data rate of 26kB/sec will be loaded, switching to a different higher data rate requires this config register to be updated. All relevant related registers will be updated automatically.
4	RFU	r/w	0*,1	-
3	AUTOCOLL STATE A	r/w	0*,1	0: TypeA Card mode: Autocoll entry with IDLE state of the card 1: TypeA Card mode: Autocoll entry with HALT state of the card
2	SOFT RESET	r/w	0*,1	Performs a soft reset of the system, all registers are set to default values

NFC frontend

Table 21. SYSTEM_CONFIG register (address 0000h) bit description...continued

Bit	Symbol	Access	Value	Description
1	MF CRYPTO ON	r/w		If set to 1 the MIFARE - crypto bit is generated for MIFARE Classic en-/de-cryption
0	RFU	r/w	0*,1	-

Note: For Firmware versions up to V2.02, the SYSTEM_CONFIG register requires to be initialized with value 0x00 upon every Power-On Reset. This initialization is not required for firmware versions V2.03 or higher.

9.25.3 EVENT_ENABLE (0001h)

Table 22. EVENT ENABLE register (address 0001h) bit description

Bit	Symbol	Access	Value	Description
31:8	RFU	r	0*,1	-
11	CTS_EVENT_ENABLE			Enable the corresponding event
10	IDLE_EVENT_ENABLE			Enable the corresponding event
9	LP_CALIBRATION_EVENT_ ENABLE			Enable the corresponding event
8	LPCD_EVENT_ENABLE			Enable the corresponding event
7	AUTOCOLL_EVENT_ENABLE	r/w	0*,1	Enable the corresponding event
6	TIMER0_EVENT_ENABLE	r/w	0*,1	Enable the corresponding event
5	TX_OVERCURRENT_ERROR_ EVENT_ENABLE	r/w	0*,1	Enable the corresponding event
4	RFON_DET_EVENT_ENABLE	r/w	0*,1	Enable the corresponding event
3	RFOFF_DET_EVENT_ENABLE	r/w	0*,1	Enable the corresponding event
2	STANDBY_PREV_EVENT_ENABLE	r/w	0*,1	Enable the corresponding event
1	GENERAL_ERROR_EVENT_ ENABLE	r/w	0*,1	Enable the corresponding event
0	BOOT_EVENT_ENABLE	r/w	0*,1	Enable the corresponding event

9.25.4 EVENT_STATUS (0002h)

Table 23. EVENT_STATUS register (address 0002h) bit description

Bit	Symbol	Access	Value	Description
31:12	RFU	r	0*,1	-
11	CTS_EVENT			Indicated the availability of CTS Event
10	IDLE_EVENT			Indicated the availability of IDLE event.
9	LP_CALIBRATION_EVENT			Indicated the availability of LP Calibration event
8	LPCD_EVENT			Indicated the availability of LPCD event.
7	AUTOCOLL_EVENT	r/w	0*,1	Indicated the availability of Autocoll event
6	TIMER0_EVENT	r/w	0*,1	Indicated the availability of Timer0 event

NFC frontend

Table 23. EVENT_STATUS register (address 0002h) bit description...continued

Bit	Symbol	Access	Value	Description
5	TX_OVERCURRENT_ERROR_ EVENT	r/w	0*,1	Indicated the availability of transmitter over current error. This bit is set, when the current on the TX driver is higher than the defined threshold in the EEPROM. Upon this condition, the field is automatically switched OFF before the notification to the host.
4	RFON_DET_EVENT	r/w	0*,1	Indicated the availability of RF ON detected.
3	RFOFF_DET_EVENT	r/w	0*,1	Indicated the availability of Standby Prevention reason.
2	STANDBY_PREV_EVENT	r/w	0*,1	Indicated the availability of Standby Prevention reason.
1	GENERAL_ERROR_EVENT	r/w	0*,1	Indicated the availability of General Error event.
0	BOOT_EVENT	r/w	0*,1	Indicated the availability of Boot event.

9.25.5 EMD_CONTROL (0003h)

To activate the EMVCo EMD handling of the PN5190B1, the following bits of the register need to be set as follows:

0001b: EMD_ENABLE

1b: EMD_TRANSMISSION_ERROR_ABOVE_NOISE_THRESHOLD_IS_NO_EMD

0001b: EMD_NOISE_BYTES_THRESHOLD

Table 24. EMD_CONTROL register (address 0003h) bit description

Bit	Symbol	Access	Value	Description
31:12	RFU	rw	0*,1	-
11:10	EMD_RM_EMD_SENSITIVITY	rw	0*,1	RM EMD SENSITIVITY value that will be applied to SIGPRO_RM_CONFIG, At layer 4, when EMD is enabled, the value of EMD_RM_SENSITIVITY can be lowered to ensure robust EMD suppression, if during the layer 3 activation, the value of EMD_RM_SENSITIVITY in the protocol area is set to a high value to ensure collision detection and resolution when multiple typeA cards are presented at close distance to the antenna.
9:8	EMD_TRANSMISSION_TIMER_ USED	rw	0*,1	Timer used for RF communication.
7	EMD_MISSING_CRC_IS_ PROTOCOL_ERROR_TYPE_B	rw	0*,1	Missing CRC treated as protocol error in » case of Type B based communication P » case of Type B based communication
6	EMD_MISSING_CRC_IS_ PROTOCOL_ERROR_TYPE_A	rw	0*,1	Missing CRC treated as protocol error in » case of Type A based communication P » case of Type A based communication

NFC frontend

Table 24. EMD_CONTROL register (address 0003h) bit description...continued

Bit	Symbol	Access	Value	Description
5:2	EMD_NOISE_BYTES_THRESHOLD	rw	0*,1	Defines the threshold under which transmission errors are treated as noise. Note: CRC bytes are NOT included/counted!
1	EMD_TRANSMISSION_ERROR_ ABOVE_NOISE_THRESHOLD_IS_ NO_EMD	rw	0*,1	Transmission errors with received byte length >= EMD_NOISE_BYTES_THRESHOLD is never treated as EMD (can be used for versions below EMVCo3.0)
0	EMD_ENABLE	rw	0*,1	EMD handling enabled If this register is enabled by setting EMVCO_ EMD_ENABLE=1, the registers EMD_0_CONFIG and EMD_1_CONFIG is ignored for the EMVCO_ EMD function.

9.25.6 FELICA_EMD_CONTROL (0004h)

Table 25. FELICA_EMD_CONTROL register (address 0004h) bit description

Bit	Symbol	Access	setting for FeliCa EMD handlin		Description
31:24	FELICA_EMD_RC_BYTE_ VALUE	rw	0	0*,1	FeliCa RC byte value that needs to be received does not treat the frame as EMD
23:16	FELICA_EMD_LENGTH_BYTE_ MAX	rw	0	0*,1	Maximum Length byte value that needs to be received does not treat the frame as EMD
15:8	FELICA_EMD_LENGTH_BYTE_ MIN	rw	0	0*,1	Minimum Length byte value that needs to be received does not treat the frame as EMD
7:5	RESERVED	rw	0	0*,1	-
6	FELICA_EMD_LOG_ENABLE	rw	0 or 1	0*1	Log Enable bit to send RX Status during EMD
5	FELICA_EMD_RC_CHECK_ ON_CRC_CORRECT_ENABLE	rw	0 or 1	0*1	RC byte check enabled for FeliCa EMD handling on complete RF Frame when there is no Integrity Error observed
4	FELICA_EMD_INTEGRITY_ ERR_CHECK_ENABLE	rw	1	0*,1	FeliCa EMD handling enabled when integrity error is set
3	FELICA_EMD_PROTOCOL_ ERR_CHECK_ENABLE	rw	1	0*,1	FeliCa EMD handling enabled when protocol error is set
2	FELICA_EMD_RC_CHECK_ ENABLE	rw	0	0*,1	FeliCa RC byte check enabled for FeliCa EMD handling
1	FELICA_EMD_LEN_CHECK_ ENABLE	rw	0	0*,1	FeliCa Length byte check enabled for FeliCa EMD handling
0	FELICA_EMD_ENABLE	rw	1	0*,1	FeliCa EMD handling enabled

Recommended value for FeliCa EMD handling: 00FF0019h

NFC frontend

9.25.7 RX_STATUS (0005h)

Table 26. RX_STATUS register (address 0005h) bit description

Bit	Symbol	Access	Value	Description
31:27	RFU	r	0*,1	-
26:20	RX_COLL_POS	r	0*,1	Status indicating the bit position of the first collision detected in the data bit. The value is valid only when RX_COLLISION_DETECTED==1. The value of the RX_BIT_ALIGN is also taken into account (RX_COLL_POS = physical bit position in the flow + RX_BIT_ALIGN value). Indicates the collision position in the first 8 bytes only. Can be used during the TypeA/ICODE/EPC anti-collision procedure.0x00 - first bit 0x01 - second bit0x7F - 128th bit. The status register is not updated by the collision detected on stop or parity bit.
19:17	RX_NUM_LAST_BITS	r	0*,1	Indicating the number of valid bits in the last byte received. 0: all bits are valid 1: 1 bit is valid 7: - 7 bits are valid This is generally used during ISO/IEC14443 type A anti-collision
16:13	RX_NUM_FRAMES_RECEIVED	r	0*,1	Indicates the number of frames received. The value is updated after every normal frame reception in RX_MULTIPLE mode. The value is valid only if the bit RX_MULTIPLE_ENABLE=='1'.
12:0	RX_NUM_BYTES_RECEIVED	r	0*,1	Number of bytes received on the RF interface. This field is not relevant when RX_MULTIPLE_ ENABLE=='1'.

9.25.8 RX_STATUS_ERROR (0006h)

Table 27. RX STATUS ERROR register (address 0006h) bit description

Bit	Symbol	Access	Value	Description
31:30	RFU	r	0*,1	
29	EMD_DETECTED_IN_RXDEC	r/w	0*,1	The high level indicates that the EMD was detected (in the SigPro or in the RxDecoder or in both) during the reception.
28	EMD_DETECTED_IN_SIGPRO	r/w	0*,1	The high level indicates that the EMD was detected on the Physical layer (in the SigPro) during the reception.
27	EXT_RFOFF_DETECTED	r/w	0*,1	The high level indicates that the received frame length violated the configured minimum limit.
26	RX_FRAME_MAXLEN_VIOL	r/w	0*,1	The high level indicates that the received frame length is less or equal to the expected CRC field length.

PN5190B1

NFC frontend

Table 27. RX_STATUS_ERROR register (address 0006h) bit description...continued

Bit	Symbol	Access	Value	Description
25	RX_FRAME_MINLEN_VIOL	r/w	0*,1	The high level indicates that the last received character in the frame has less than 8 bits.
24	RX_FRAME_LE_CRC	r/w	0*,1	The high level indicates that the last received character in the frame has 8 data bits but the expected parity bit is absent.
23	RX_NOT_FULL_BYTE	r/w	0*,1	The high level indicates that the last received character in the frame has 8 data bits but the expected stop bit is absent.
22	RX_MISSING_PARBIT_ DETECTED	r/w	0*,1	The high level indicates that the collision was detected on the parity bit position.
21	RX_MISSING_STOPBIT_ DETECTED	r/w	0*,1	The high level indicates that the collision was detected on the stop bit position.
20	RX_COLLISION_PARBIT_ DETECTED	r/w	0*,1	The high level indicates that the collision was detected during the frame reception.
19	RX_COLLISION_STOPBIT_ DETECTED	r/w	0*,1	The high level indicates that the frame reception was stopped by SGP_MSG_RXOVER_* message reception.
18	RX_COLLISION_DETECTED	r/w	0*,1	The high level indicates that the collision was detected during the frame reception.
17	RX_STOP_ON_RXOVER	r/w	0*,1	The high level indicates that the frame reception was stopped by SGP_MSG_RXOVER_* message reception.
16	RX_STOP_ON_RFOFF	r/w	0*,1	The high level indicates that the frame reception was interrupted by external RF-field vanishing event.
15	RX_STOP_ON_ERR	r/w	0*,1	The high level indicates that the frame reception was stopped by detected communication error event.
14	RX_STOP_ON_LEN	r/w	0*,1	The high level indicates that the frame reception was normally stopped by byte counter expiration event. Relates to the protocols where the LEN field is used in the frame format (FeliCa RM/CM, FWEC RM/CM).
13	RX_STOP_ON_INVPAR	r/w	0*,1	The high level indicates that the frame reception was normally stopped by the inverted parity detection event. Relates to the TypeA RM 212-848 kbit/s modes. 12 RX_STOP_ON_PATTERN R 0h The high level indicates that the frame reception was normally stopped by EOF pattern detection event. Relates to the TypeB RM/CM, B prime RM/CM modes.
12	RX_STOP_ON_PATTERN	r/w	0*,1	The high level indicates that the frame reception was normally stopped by EOF pattern detection event. Relates to the TypeB RM/CM, B prime RM/CM modes.

NFC frontend

Table 27. RX_STATUS_ERROR register (address 0006h) bit description...continued

Bit	Symbol	Access	Value	Description
11	RX_STOP_ON_ANTICOLL	r/w	0*,1	The high level indicates that the frame reception was normally stopped by collision detected on data bit position. Relates to the bit-oriented frame reception in TypeA RM 106 kbit/s mode during the anti-collision procedure.
10	RX_CRC_ERROR	r/w	0*,1	The high level indicates that the CRC error is detected in the received frame.
9	RX_LEN_ERROR	r/w	0*,1	The high level is set if the received frame is shorter than the length stated in the received frame LEN field OR if the LEN parameter in the received frame violates the configured [RX_FRAME_MINLEN:RX_FRAME_MAX LEN] limits. Can assert only in the mode where the LEN field is used in the frame format (FeliCa RM/CM, FWEC RM/CM).
8	RX_SIGPRO_ERROR	r/w	0*,1	The high level indicates that the communication error/errors were detected during the frame reception on physical layer(in the SigPro).
7	RX_PARITY_ERROR	r/w	0*,1	The high level indicates that the parity error was detected during the frame reception.
6	RX_STOPBIT_ERROR	r/w	0*,1	The high level indicates that the stop bit error ('0' level instead of '1' on the stop bit position) was detected during the frame reception.
5	RX_WRITE_ERROR	r/w	0*,1	The high level indicates that the error acknowledge status was received on the CLIF-system interface during the received frame transmission to the System RAM.
4	RX_BUFFER_OVFL_ERROR	r/w	0*,1	The high level indicates that the data payload length in the received frame exceeds the 28 bytes limit. Relates to the PollReq procedure in the FeliCa RM mode only.
3	RX_LATENCY_ERROR	r/w	0*,1	The high level indicates that the write request flow was corrupted due to traffic congestion on the system interface during the received frame transmission to the System RAM.
2	RX_DATA_INTEGRITY_ERROR	r/w	0*,1	The high level indicates that the data integrity corruption (parity/CRC/etc error) was detected in the received frame.
1	RX_PROTOCOL_ERROR	r/w	0*,1	The high level indicates that the protocol requirements violation (stop bit error, missing parity bit, not full byte received, etc) was detected in the received frame.
0	RX_CL_ERROR	r/w	0*,1	The high level indicates that some protocol/data integrity erorr/errors were detected during the frame reception

NFC frontend

9.25.9 CLIF_STATUS (0007h)

Table 28. CLIF_STATUS register (address 0007h) bit description

Bit	Symbol	Access	Value	Description
31:30	RFU	r	0*,1	-
29	CRC_OK	r	0*,1	This bit indicates the status of the actual CRC calculation. If 1 the CRC is correct. meaning the CRC register has the value 0 or the residue value if inverted CRC is used. Note: This flag should only be evaluated at the end of a communication
28	RX_SC_DETECTED	r	0*,1	Status signal indicating that a subcarrier is detected.
27	RX_SOF_DETECTED	r	0*,1	Status signal indicating that a SOF has been detected.
26	TX_RF_STATUS	r	0*,1	If set to 1 this bit indicates that the drivers are turned on. meaning an RF-Field is created by the device itself.
25	RF_DET_STATUS	r	0*,1	If set to 1 this bit indicates that an external RF-Field is detected by the RF level detectors (after digital filtering)
24	ADC_Q_CLIPPING	r	0*,1	Indicates that the Q-Channel ADC has clipped (value 0 or 63), This bit is reset with Rx-reset (enabling of receiver).
23	ADC_I_CLIPPING	r	0*,1	Indicates that the I-Channel ADC has clipped (value 0 or 63), This bit is reset with Rx-reset (enabling of receiver).
22:12	RFU	r	0*,1	-
11	TX_NO_DATA_ERROR	r	0*,1	This error flag is set to 1. in case a transmission is started but no data is available (register NumBytesToSend == 0).
10:8	RF_ACTIVE_ERROR_CAUSE	r	0*,1	This status flag indicates the cause of an NFC-Active error. Note: These bits are only valid when the RF_ACTIVE_ERROR_IRQ is raised and will be cleared as soon as the bit TX_RF_ENABLE is set to 1.0* No Error. reset value 1 External field was detected on within TIDT timing 2 External field was detected on within TADT timing 3 No external field was detected within TADT timings 4 Peer did switch off RF Field without but no RX event was raised (no data received) 5 - 7 Reserved.
7:6	RFU	r	0*,1	-
5	RX_ENABLE	r	0*,1	This bit indicates if the RxDecoder is enabled. If 1 the RxDecoder was enabled and is now ready for data reception
4	TX_ACTIVE	r	0*,1	This bit indicates activity of the TxEncoder. If 1 a transmission is ongoing otherwise the TxEncoder is in idle state.
3	RX_ACTIVE	r	0*,1	This bit indicates activity of the RxDecoder. If 1 a data reception is ongoing. otherwise the RxDecoder is in idle state.

NFC frontend

Table 28. CLIF_STATUS register (address 0007h) bit description...continued

Bit	Symbol	Access	Value	Description
2:0	RF_EXCHANGE_STATE	r	0*,1	These registers hold the command bits 0* IDLE state 1 WaitTransmit state 2 Transmitting state 3 WaitReceive state
				4 WaitForData state5 Receiving state6 LoopBack state7 reserved

9.25.10 RF_EXCHANGE_CONTROL (0008h)

To meet the ISO14443A FDT with an accuracy of 1 carrier clock cycle, there is support implemented to synchronize the guard time pre-scaler to the modified Miller envelope pulses (end of pulse). For adjustment, there is a 7-bit wide configuration register - TX_BITPHASE - which is allows to adjust the FDT in the range of 0 to 128 carrier clock cycles. As defined in the ISO14443 the adjustment is different, depending on the data bit value of the data stream. For correct bit grid calculation, the pre-scaler must be set to a value corresponding exactly to one etu - for 106 kbit/s this corresponds to 0x7F. Otherwise the FdT will be incorrect.

Table 29. RF_EXCHANGE_CONTROL register (address 0008h) bit description

Bit	Symbol	Access	Value	Description
31:16	RFU	r	0*,1	-
15:8	TX_BITPHASE	r/w	0*,1	Defines the number of 13.56 MHz cycles used for adjustment of TX_WAIT to meet the FDT. This is applicable for CardMode only.
7:3	RFU	r/w	0*,1	-
2	RX_MULTIPLE_ENABLE	r/w	0*,1	If this bit is set to 1. the receiver is reactivated after the end of a reception.
1:0	RFU	r/w	0*,1	-

9.25.11 TX_SYMBOL01_MOD (0009h)

Table 30. TX SYMBOL01 MOD register (address 0009h) bit description

Bit	Symbol	Access	Value	Description
31:24	RFU	rw	0*,1	-
23:16	TX_S01_MODWIDTH	rw	0*,1	Specifies the length of a pulse for sending data of symbol 0/1. The length is given by the number of carrier clocks + 1.
15:9	RFU	rw	0*,1	-
8	TX_S01_MILLER_ENABLE	rw	0*,1	If set to 1. pulse modulation is applied according to modified miller coding.
7:5	TX_S01_INV_ENV	rw	0*,1	If set to 1. the output envelope is inverted.

NFC frontend

Table 30. TX_SYMBOL01_MOD register (address 0009h) bit description...continued

Bit	Symbol	Access	Value	Description
4	TX_S01_ENV_TYPE	rw	0*,1	Specifies the type of envelope used for transmission of data packets. The selected envelope type is applied to the pseudo bit stream. 000b Direct output 001b Manchester code 010b Manchester code with subcarrier 011b BPSK 100b RZ (pulse of half bit length at beginning of second half of bit) 101b RZ (pulse of half bit length at beginning of bit) 110b Manchester tupple 111b RFU.
3	TX_S01_SC_FREQ	rw	0*,1	Specifies the frequency of the subcarrier. 0 424 kHz 1 848 kHz
2:0	TX_S01_BIT_FREQ	rw	0*,1	Specifies the frequency of the bit-stream. 000b -> 1.695 MHz. 001b -> Reserved. 010b -> 26 kHz. 011b -> 53 kHz. 100b -> 106 kHz. 101b -> 212 kHz. 110b -> 424 kHz. 111b -> 848 kHz.

9.25.12 TX_SYMBOL1_DEF (000Ah)

Table 31. TX_SYMBOL1_DEF register (address 000Ah) bit description

Bit	Symbol	Access	Value	Description
31:0	TX_SYMBOL1_DEF	rw	0*,1	Pattern definition for Symbol1

9.25.13 TX_SYMBOL0_DEF (000Bh)

Table 32. TX_SYMBOL0_DEF register (address 000Bh) bit description

	_		,	
Bit	Symbol	Access	Value	Description
31:0	TX_SYMBOL0_DEF	rw	0*,1	Pattern definition for Symbol0

9.25.14 TX_SYMBOL23_MOD (000Ch)

Table 33. TX_SYMBOL23_MOD register (address 000Ch) bit description

Bit	Symbol	Access	Value	Description
31:24	RFU	r	0*,1	-
23:16	TX_S23_MODWIDTH	r/w	0*,1	Specifies the length of a pulse for sending data of symbol 2/3. The length is given by the number of carrier clocks + 1.
15:9	RFU	r/w	0*,1	-
8	TX_S23_MILLER_ENABLE	r/w	0*,1	If set to 1 pulse modulation is applied according to modified miller coding
7	TX_S23_INV_ENV	r/w	0*,1	If set to 1 the output envelope is inverted.

NFC frontend

Table 33. TX_SYMBOL23_MOD register (address 000Ch) bit description...continued

Bit	Symbol	Access	Value	Description
6:4	TX_S23_ENV_TYPE	r/w	0*,1	Specifies the type of envelope used for transmission of data packets. The selected envelope type is applied to the pseudo bit stream. 000b Direct output 001b Manchester code 010b Manchester code with subcarrier 011b BPSK 100b RZ (pulse of half bit length at beginning of second half of bit) 101b RZ (pulse of half bit length at beginning of bit) 110b Manchester tupple 111b RFU
3	TX_S23_SC_FREQ	r/w	0*,1	Specifies the frequency of the subcarrier. 0 424 kHz 1 848 kHz
2:0	TX_S23_BIT_FREQ	r/w	0*,1	Specifies the frequency of the bit-stream. 000b -> 1.695 MHz. 001b -> Reserved. 010b -> 26 kHz. 011b -> 53 kHz. 100b -> 106 kHz. 101b -> 212 kHz. 110b -> 424 kHz. 111b -> 848 kHz.

9.25.15 TX_SYMBOL23_DEF (000Dh)

Table 34. TX SYMBOL23 DEF register (address 000Dh) bit description

Bit	Symbol	Access	Value	Description
31:24	RFU	r	0*,1	-
23:16	TX_SYMBOL3_DEF	r/w	0*,1	Pattern definition for Symbol3
15:8	RFU	r/w	0*,1	-
7:0	TX_SYMBOL2_DEF	r/w	00000h* - FFFFFh	Pattern definition for Symbol2

9.25.16 TX_SYMBOL_CONFIG (000Eh)

Table 35. TX_SYMBOL_CONFIG register (address 000Eh) bit description

Bit	Symbol	Access	Value	Description
31	RFU		0*,1	-
30:27	TX_SYMBOL1_BURST_LEN	r/w	00000h* - FFFFFh	Specifies the number of bits issued for symbol 1 burst. The 3 bits encode a range from 8 to 256 bit length: 0000b 8 bit 0001b 12 bit 0010b 16 bit 0011b 24 bit 0100b 32 bit 0101b 40 bit 0110b 48 bit 0111b 64 bit 1000b 80 bit 1001b 96 bit 1010b 112 bit 1011b 128 bit 1100b 160 bit 1101b 192 bit 1110b 224 bit 1111b 256 bit
26	TX_SYMBOL1_BURST_TYPE	r/w	0*,1	Specifies the type of the burst of Symbol1 (logical zero / logical one)
25	TX_SYMBOL1_BURST_ONLY	r/w	0*,1	If set to 1. Symbol1 consists only of a burst and no symbol pattern
24	TX_SYMBOL1_BURST_ ENABLE	r/w	0*,1	If set to 1. the burst of Symbol0 of the length defined in bit field SYMBOL1_BURST_LEN is enabled
23	RFU	r	0*,1	-

NFC frontend

Table 35. TX_SYMBOL_CONFIG register (address 000Eh) bit description...continued

Bit	Symbol	Access	Value	Description
22:19	TX_SYMBOL0_BURST_LEN	r/w	0*,1	Specifies the number of bits issued for symbol 0 burst. The 3 bits encode a range from 8 to 256 bit length: 0000b 8 bit 0001b 12 bit 0010b 16 bit 0011b 24 bit 0100b 32 bit 0101b 40 bit 0110b 48 bit 0111b 64 bit 1000b 80 bit 1001b 96 bit 1010b 112 bit 1011b 128 bit 1100b 160 bit 1101b 192 bit 1110b 224 bit 1111b 256 bit
18	TX_SYMBOL0_BURST_TYPE	r/w	0*,1	Specifies the type of the burst of Symbol0 (logical zero / logical one)
17	TX_SYMBOL0_BURST_ONLY	r/w	0*,1	If set to 1. Symbol0 consists only of a burst and no symbol pattern
16	TX_SYMBOL0_BURST_ ENABLE	r/w	0*,1	If set to 1. the burst of Symbol0 of the length defined in bit field SYMBOL0_BURST_LEN is enabled
15:13	TX_SYMBOL3_LEN	r/w	0*,1	Specifies the number of valid bits of the symbol definition of Symbol3. The range is from 1 bit (value 0000) to 8 bit (value 111)
12:10	TX_SYMBOL2_LEN	r/w	0*,1	Specifies the number of valid bits of the symbol definition of Symbol2. The range is from 1 bit (value 0000) to 8 bit (value 111)
9:5	TX_SYMBOL1_LEN	r/w	0*,1	Specifies the number of valid bits of the symbol definition of Symbol1. The range is from 1 bit (value 0000) to 31 bits (value 11110)
4:0	TX_SYMBOL0_LEN	r/w	0*,1	Specifies the number of valid bits of the symbol definition of Symbol0. The range is from 1 bit (value 0000) to 31 bits (value 11110)

9.25.17 TX_FRAME_CONFIG (000Fh)

Table 36. TX_FRAME_CONFIG register (address 000Fh) bit description

Bit	Symbol	Access	Value	Description
31:19	RFU	r	0*,1	-
18:16	TX_DATA_CODE_TYPE	r/w	0*,1	Specifies the type of encoding of data to be used 000b No special code 001b 1 out of 4 code [ICODE SLI] 010b 1 out of 256 code [ICODE SLI] 011b Pulse interval encoding (PIE) [ICODE EPC-V2] 100b 2bit tupple code (intended only for test purpose) 101-111b Reserved
15:13	TX_STOPBIT_TYPE	r/w	0*,1	Enables the stop bit (logic 1) and extra guard time (logic 1). The value 0 disables transmission of stop-bits. 000b no stop-bit. no EGT 001b stop-bit. no EGT 010b stop-bit + 1 EGT 011b stop-bit + 2 EGT 100b stop-bit + 3 EGT 101b stop-bit + 4 EGT 110b stop-bit + 5 EGT 111b stop-bit + 6 EGT
12	TX_STARTBIT_ENABLE	r/w	0*,1	If set to 1. a start-bit (logic 0) will be sent
11	TX_MSB_FIRST	r/w	0*,1	If set to 1. data bytes are interpreted MSB first for data transmission
10	TX_PARITY_LAST_INV_ ENABLE	r/w	0*,1	If set to 1. the parity bit of last sent data byte is inverted

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 36. TX_FRAME_CONFIG register (address 000Fh) bit description...continued

Bit	Symbol	Access	Value	Description
9	TX_PARITY_TYPE	r/w	0*,1	Defines the type of the parity bit 0 Even Parity is calculated 1 Odd parity is calculated
8	TX_PARITY_ENABLE	r/w	0*,1	If set to 1. a parity bit is calculated and appended to each byte transmitted. If the Transmission Of Data Is Enabled and TX_NUM_BYTES_2_SEND is zero. then a NO_DATA_ERROR occurs.
7:5	RFU	r	0*,1	-
4	TX_DATA_ENABLE	r/w	0*,1	If set to 1. transmission of data is enabled otherwise only symbols are transmitted.
3:2	TX_STOP_SYMBOL	r/w	0*,1	Defines which pattern symbol is sent as frame stop- symbol 00b No symbol is sent 01b Symbol1 is sent 10b Symbol2 is sent 11b Symbol3 is sent
1:0	TX_START_SYMBOL	r/w	0*,1	Defines which symbol pattern is sent as frame start- symbol 00b No symbol pattern is sent 01b Symbol0 is sent 10b Symbol1 is sent 11b Symbol2 is sent

9.25.18 TX_DATA_MOD (0010h)

Table 37. TX_DATA_MOD register (address 0010h) bit description

Bit	Symbol	Access	Value	Description
31:25	RFU	r	0*,1	-
24	TX_ICODE_DATA_MODWIDTH_ ENABLE	r/w	0*,1	Enables modulation width of icode data. Width of modulation is defined by the TX_DATA_MODWIDTH field. When 1, we should have TX_DATA_ENV_TYPE=0 and TX_DATA_INV_ENV=0
23:16	TX_DATA_MODWIDTH	r/w	0*,1	Specifies the length of a pulse for sending data with miller pulse modulation enabled. The length is given by the number of carrier clocks + 1.
15:9	RFU	r	0*,1	-
8	TX_DATA_MILLER_ENABLE	r/w	0*,1	If set to 1 pulse modulation is applied according to modified miller coding
7	TX_DATA_INV_ENV	r/w	0*,1	If set to 1 the output envelope is inverted
6:4	TX_DATA_ENV_TYPE	r/w	0*,1	Specifies the type of envelope used for transmission of data packets. The selected envelope type is applied to the pseudo bit stream. 000b Direct output 001b Manchester code 010b Manchester code with subcarrier 011b BPSK 100b RZ (pulse of half bit length at beginning of second half of bit) 101b RZ (pulse of half bit length at beginning of bit) 110b Manchester tupple coding 111b RFU
3	TX_DATA_SC_FREQ	r/w	0*,1	Specifies the frequency of the subcarrier. 0 424 kHz 1 848 kHz
2:0	TX_DATA_BIT_FREQ	r/w	0*,1	Specifies the frequency of the bit-stream. 000b -> 1.695 MHz. 001b -> Reserved. 010b -> 26 kHz. 011b -> 53 kHz. 100b -> 106 kHz. 101b -> 212 kHz. 110b -> 424 kHz. 111b -> 848 kHz.

NFC frontend

9.25.19 TX_WAIT (0011h)

To guarantee correct protocol timing a guard period timer is implemented for the RF_EXCHANGE command in reception and transmission mode.

These guard times are not available for Transmit or Receive command.

The guard time TX_WAIT is started after the end of a reception no matter if the frame is correct or erroneous.

It is not started in case the reception is restarted because of an EMD-event or in case the RX MULTIPLE ENABLE bit is set to 1 the TX WAIT.

In case the register flag TX_WAIT_RFON_ENABLE is set to 1 the guard time timer is started when the devices own RF-Field was switched on.

It is possible to disable the guard time tx_wait by setting the register TX_WAIT_VALUE to 00h.

TX_WAIT can be used for 2 different purposes:

- 1. It can be used to prevent start of transmission before a certain period has expired even if FW already finished data processing and set the START_SEND bit. This behavior is mainly intended for reader mode to guaranteed PICC to PCD frame delay time (FDT).
- 2. TX WAIT time can be used to start the transmission at an exactly defined time.

Table 38. TX_CLIF_WAIT register (address 0011h) bit description

Bit	Symbol	Access	Value	Description
31:28	RFU	r	0*,1	-
27:8	TX_WAIT_VALUE	r/w	0*,1	Defines the tx_wait timer reload value. Note: If set to 00000h the tx_wait timer guard time is disabled Note: This bit is set by HW a protocol is detected in automatic mode detection
0	TX_WAIT_PRESCALER	r/w	0*,1	Defines the prescaler reload value for the tx_wait timer. Note: This bit is set by HW a protocol is detected in automatic mode detection

9.25.20 TX_CRC_CONFIG (0012h)

Table 39. TX_CRC_CONFIG (address 0012h) bit description

Bit	Symbol	Access	Value	Description
31:16	TX_CRC_PRESET_VALUE	r/w	0*-FFFFh	Arbitrary preset value for the TX-Encoder CRC calculation.
15:7	RFU	r/w	0	Reserved
6	TX_CRC_BYTE2_ENABLE	r/w	0*,1	If set; the CRC is calculated from the second byte onwards (intended for HID). This option is used in the TX-Encoder.
5:3	TX_CRC_PRESET_SEL	r/w	000-101b	Preset values of the CRC register for the TX-Encoder. For a CRC calculation using 5 bits, only the LSByte is used.
			000b*	0000h, reset value
			001b	6363h

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 39. TX_CRC_CONFIG (address 0012h) bit description...continued

Bit	Symbol	Access	Value	Description
			010b	A671h
			011b	FFFFh
			100b	0012h
			101b	E012h
			110b	RFU
			111b	Use arbitrary preset value TX_CRC_PRESET_ VALUE
2	TX_CRC_TYPE	r/w	0*,1	Controls the type of CRC calculation for the TX- Encoder
			0*	16-bit CRC calculation, reset value
			1	5-bit CRC calculation
1	TX_CRC_INV	r/w	0*,1	Controls the sending of an inverted CRC value by the TX-Encoder
			0*	Not inverted CRC checksum, reset value
			1	Inverted CRC checksum
0	TX_CRC_ENABLE	r/w	0*, 1	If set to one, the TX-Encoder computes and transmits a CRC.

9.25.21 SS_TX_CONFIG (00015h)

Table 40. SS TX CONFIG register (address 0015h) bit description

Bit	Symbol	Access	Value	Description
31:14	RFU	r	0*,1	-
13	TX2_USE_TX1_CONF	r/w	0*,1	When 1, the tx1 configuration is used also for tx2: all SS_TX2_* registers are discarded and configurations from corresponding SS_TX1_* register is used.
12:6	RFU	r/w	0*,1	-
5:3	TX2_CLK_MODE_DEFAULT	r/w	0*,1	TX2 clk mode without field (RM and CM)
2:0	TX1_CLK_MODE_DEFAULT	r/w	0*,1	TX1 clk mode without field (RM and CM)

9.25.22 SS_TX1_RMCFG (00016h)

Table 41. SS_TX1_RMCFG register (address 0016h) bit description

Bit	Symbol	Access	Value	Description
31:25	RFU	r	0*,1	-
24:22	TX1_CLK_MODE_TRANS_RM	r/w	0*,1	TX1 clock mode in RM during transition
21:19	TX1_CLK_MODE_MOD_RM	r/w	0*,1	TX1 clock mode of modulated wave in RM 000: TX1=High-Z 001: TX1=VSS_PA 010 - 110: RFU 111: TX1 clocked normal operation

NFC frontend

Table 41. SS_TX1_RMCFG register (address 0016h) bit description...continued

Bit	Symbol	Access	Value	Description
18:16	TX1_CLK_MODE_CW_RM	r/w	0*,1	TX1 clock mode of modulated wave in RM 000: TX1=High-Z 001: TX1=VSS_PA 010 - 110: RFU 111: TX1 clocked normal operation
15:8	TX1_AMP_MOD_RM	r/w	0*,1	TX1 amplitude of modulated wave in RM (0x00 = 0% modulation, 0xFF: 100% modulation)
7:0	TX1_AMP_CW_RM	r/w	0*,1	TX1 amplitude of unmodulated wave in RM (0x00 = 0% signal, 0xFF: 100% signal)

9.25.23 SS_TX2_RMCFG (00017h)

These settings for TX_2 are only applied, if the bit 13 in TX_CONFIG (TX2_USE_TX1_CONF is set to 0.

Table 42. SS_TX2_RMCFG register (address 0017h) bit description

Bit	Symbol	Access	Value	Description
31:25	RFU	r	0*,1	-
24:22	TX2_CLK_MODE_TRANS_RM	r/w	0*,1	TX2 clock mode in RM during transition
21:19	TX2_CLK_MODE_MOD_RM	r/w	0*,1	TX2 clock mode of modulated wave in RM 000: TX2=High-Z 001: TX2=VSS_PA 010 - 110: RFU 111: TX2 clocked normal operation
18:16	TX2_CLK_MODE_CW_RM	r/w	0*,1	TX2 clock mode of modulated wave in RM 000: TX2=High-Z 001: TX2=VSS_PA 010 - 110: RFU 111: TX2 clocked normal operation
15:8	TX2_AMP_MOD_RM	r/w	0*,1	TX2 amplitude of modulated wave in RM (0x00 = 0% modulation, 0xFF: 100% modulation)
7:0	TX2_AMP_CW_RM	r/w	0*,1	TX2 amplitude of unmodulated wave in RM (0x00 = 0% signal, 0xFF: 100% signal)

9.25.24 SS_TX_TRANS_CFG (00019h)

Table 43. SS_TX_TRANS_CFG register (address 0019h) bit description

Bit	Symbol	Access	Value	Description
31:12	RFU			-
11	TX2_SS_TRANS_RATE			TX2 shaping edge rate: 0: 1/fc, 1: 2/fc. 1/fc should be selected for CM.
10	TX1_SS_TRANS_RATE			TX1 shaping edge rate: 0: 1/fc, 1: 2/fc. 1/fc should be selected for CM
9:5	TX2_SS_TRANS_LENGTH			TX2 shaping edge length: from 0 (disable) to 16. for CM, only 0 or 4 values are valid

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 43. SS_TX_TRANS_CFG register (address 0019h) bit description...continued

Bit	Symbol	Access	Value	Description
4:0	TX1_SS_TRANS_LENGTH			TX1 shaping edge length: from 0 (disable) to 16. for CM, only 0 or 4 values are valid

9.25.25 SIGPRO_RM_PATTERN (0020h)

Table 44. SIGPRO RM PATTERN register (address 0020h) bit description

Bit	Symbol	Access	Value	Description
31:16	RM_SYNC_PATTERN	r/w	0*,1	Sync pattern for FeliCa. LSB transmitted last
15	RM_SYNC_PATTERN_EXT4	r/w	0*,1	Extend FeliCa sync pattern with 16 leading 0s
14	RM_SYNC_PATTERN_EXT2	r/w	0*,1	Extend FeliCa sync pattern with 8 leading 0s
13	RM_RECEIVE_TILL_END	r/w	0*,1	Do not stop the reception before RxDecoder sends a stop command.
12	RFU	r	0*,1	-
11:0	RM_SOF_PATTERN	r/w	0*,1	SOF pattern for Type B. LSB transmitted last or Start Byte pattern for NFC passive.

9.25.26 SIGPRO_RM_TECH (0022h)

Table 45. SIGPRO RM TECH register (address 0022h) bit description

Bit	Symbol	Access	Value	Description	
31:17	RFU	rw	0	-	
16:15	RM_MF_GAIN	rw	0	Defines the gain of the Matched-Filters 00: Minimum Gain, 11: Maximum Gain	
14:0	RFU	rw	0	-	

9.25.27 RX_FRAME_LENGTH (0026h)

Table 46. RX_FRAME_LENGTH register (address 0026h) bit description

Bit	Symbol	Access	Value	Description
31	RFU	r	0*,1	-
30:16	RX_FRAME_MAXLEN	r/w	0*,1	Maximal number of received [DATA + CRC] bits in the frame. The violation of the maximum length limit can be also configured as an Error/EMD condition. If the max length violation is configured as error - the frame reception is stopped in case of maximum length limit exceeding. Otherwise the reception is continued.0x00000 - 1 bit0x7FFF - 32 kbit
15	RFU	r	0*,1	-

NFC frontend

Table 46. RX_FRAME_LENGTH register (address 0026h) bit description...continued

Bit	Symbol	Access	Value	Description
14:0	RX_FRAME_MINLEN	r/w	0*,1	Minimal number of received [DATA + CRC] bits in the frame. The violation of the minimum length limit can be also configured as an Error/EMD condition. The parameter also defines the number of received[DATA + CRC] bits before which any of the EOF patterns or INVPAR stop condition events are ignored.0x0000 - 1 bit0x7FFF - 32 kbit

9.25.28 RX_ERROR_CONFIG (0027h)

Table 47. RX ERROR CONFIG register (address 0027h) bit description

Bit	Symbol	Access	Value	Description
31:0		rw		xxx NFC FORUM-compliant error handling yyy EMVCO-compliant error handling zzz compliant error handling

9.25.29 RX_CTRL_STATUS (0028h)

Table 48. RX CTRL STATUS register (address 0028h) bit description

Bit	Symbol	Access	Value	Description
31:9	RFU	r	dyn	-
8:3	RXCTRL_HF_ ATT_VAL	r	dyn	HF attenuator value
2:0	RFU	r	dyn	-

9.25.30 SIGPRO_IIR_CONFIG0 (0002Ah)

Table 49. SIGPRO_IIR_CONFIG0 register (address 002Ah) bit description

Bit	Symbol	Access	Value	Description
31:1	RFU			-
0	IIR_ENABLE			Enable the IIR filter

9.25.31 DGRM_BBA (002Dh)

Table 50. DGRM_BBA register (address 002Dh) bit description

Bit	Symbol	Access	Value	Description
31:17	RFU	r	0*,1	-
16:14	DGRM_BBA_MIN_VAL	r/w	0*,1	Defines the minimum value of BBA gain: 5: +24dB 4: +18dB 3: +12dB 2: +6dB 1: 0dB 0: -6dB

NFC frontend

Table 50. DGRM_BBA register (address 002Dh) bit description...continued

Bit	Symbol	Access	Value	Description
13:11	DGRM_BBA_MAX_VAL	r/w	0*,1	Defines the maximum value of BBA gain. 5: +24dB 4: +18dB 3: +12dB 2: +6dB 1: 0dB 0: -6dB
10:8	DGRM_BBA_INIT_VAL	r/w	0*,1	Defines initial value of BBA gain. 5: +24dB 4: +18dB 3: +12dB 2: +6dB 1: 0dB 0: -6dB
7:0	RFU	r	0*,1	-

9.25.32 DGRM_RSSI (0030h)

This register is updated dynamically by the firmware if the DPC is enabled.

Table 51. DGRM RSSI register (address 0030h) bit description

Bit	Symbol	Access	Value	Description
31:30	RFU			-
29	DGRM_SIGNAL_DETECT_TH_ OVR	r/w	0*,1	Enables the override of signal detect threshold. Override value is set based on DGRM_SIGNAL_ DETECT_TH_OVR_VAL.
28:23	RFU	r/w	0*,1	-
22:17	DGRM_RSSI_HYST	r/w	0*,1	Hysteresis value for RSSI target
16:7	DGRM_RSSI_TARGET	r/w	0*,1	RSSI target value
6:0	DGRM_SIGNAL_DETECT_TH_ OVR_VAL	r/w	0*,1	Defines the override value for signal detect threshold when DGRM_SIGNAL_DETECT_TH_OVR is set. These bits are modified dynamically by the ARC algorithm based on the DPC voltage.
				Only if the ARC is disabled, the value written during LOAD_RF_CONFIGURATION(0x0D) is retained throughout the RF Field session.

9.25.33 RX_CRC_CONFIG (0031h)

Table 52. RX_CRC_CONFIG register (address 0031h) bit description

Bit	Symbol	Access	Value	Description
31:16	RX_CRC_PRESET_VALUE	r	0*,1	Arbitrary preset value for the Rx-Decoder CRC calculation.
15:8	RFU	r/w	0*,1	-
7	RX_FORCE_CRC_WRITE	r/w	0*,1	If set. the Rx-Decoder will send to the RAM the CRC bits as well.

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 52. RX_CRC_CONFIG register (address 0031h) bit description...continued

Bit	Symbol	Access	Value	Description
6	RX_CRC_ALLOW_BITS	r/w	0*,1	If activated the frame with length =< CRC_length will be always sent to the System RAM as is, without CRC bits removal.
5:3	RX_CRC_PRESET_SEL	r/w	0*,1	Preset value of the CRC register for the Rx-Decoder. For a CRC calculation using 5bits only the LSByte is used. 000b* 0000h reset value. Note that this configuration is set by the Mode detector for FeliCa. 001b 6363h Note that this configuration is set by the Mode detector for ISO14443 type A. 010b A671h 011b FFFFh Note that this configuration is set by the Mode detector for ISO14443 type B. 100b 0012h 101b E012h 110b RFU 111b Use arbitrary preset value RX_CRC_PRESET_VALUE
2	RX_CRC_TYPE	r/w	0*,1	Controls the type of CRC calculation for the Rx- Decoder 0* 16bit CRC calc
1	RX_CRC_INV	r/w	0*,1	Controls the comparison of the CRC checksum for the Rx-Decoder 0*: Not inverted CRC value: 0000h reset value. Note that this bit is cleared by the Mode detector for ISO14443 type A and FeliCa. 1: Inverted CRC value: F0B8h Note that this bit is set by the Mode detector for ISO14443 type B
0	RX_CRC_ENABLE			If set. the Rx-Decoder will check the CRC for correctness. Note that this bit is set by the Mode Detector when ISO14443 type B. or FeliCa (212 kBd or 424 kBd) is detected.

9.25.34 RX_WAIT (0032h)

To guarantee correct protocol timing a guard period timer is implemented for the RF_EXCHANGE command in reception and transmission mode.

These guard times are not available for Transmit or Receive command.

The guard time RX_WAIT is started after the end of a transmission. The guard time RX_WAIT can be disabled by setting the register RX_WAIT_VALUE to 00h meaning the receiver is immediately enabled.

Table 53. RX_WAIT register (address 0032h) bit description

Bit	Symbol	Access	Value	Description
31:28	RFU	r	0*,1	-
27:8	RX_WAIT_VALUE	r/w	0*,1	Defines the rx_wait timer reload value. Note: If set to 00000h the rx_wait guard time is disabled

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 53. RX_WAIT register (address 0032h) bit description...continued

	_ ` `	,	•	
Bit	Symbol	Access	Value	Description
7:0	RX_WAIT_PRESCALER	r/w	0*,1	Defines the prescaler reload value for the rx_wait timer.

9.25.35 DCOC_CONFIG (0033h)

Table 54. DCOC_CONFIG register (address 0033h) bit description

Bit	Symbol	Access	Value	Description
31:22	RFU	rw	0*,1	-
21	DCOC_CAL_DONE_FORCE	rw	0*,1	forces the signal dcoc_cal_done to 1
20:0	RFU	rw	0*,1	-

9.25.36 RXM_CTRL (0035h)

Table 55. RXM_CTRL register (address 0035h) bit description

Bit	Symbol	Access	Value	Description
31:3	RFU			-
2	RXM_FRQ_CHECK_PCRM_ ENABLE	r/w		enable frequency check from PCRM
1	RXM_FRQ_CHECK_CORDIC_ ENABLE	r/w		enable precise frequency check from cordic phase (+/- 1.7 MHz multiples)
0	RXM_ENABLE	r/w		enable the all RxMeasure module

9.25.37 ANA_AGC_DCO_CTRL (0036h)

Table 56. ANA_AGC_DCO_CTRL register (address 0036h) bit description

Bit	Symbol	Access	Value	Description
31:25	RFU	rw	0*,1	-
24	RX_DCO_C_EN	rw	0*,1	Enable signal for the DCO coarse DAC
23:4	RFU	rw	0*,1	-
3	RX_DCO_F_EN	rw	0*,1	enable signal for the DCO fine DAC
2:0	RFU	rw	0*,1	-

9.25.38 SS_TX1_CMCFG (0003Bh)

Table 57. SS_TX1_CMCFG register (address 003Bh) bit description

Bit	Symbol	Access	Reset Value	Description
31:22	RFU	rw	0	-
21:19	TX1_CLK_MODE_MOD_CM	rw	0	TX1 clock mode of modulated wave in CM
18:16	TX1_CLK_MODE_CW_CM	rw	0	TX1 clock mode of unmodulated wave in CM
15:8	TX1_AMP_MOD_CM	rw	0	TX1 clock mode of modulated wave in CM
7:0	TX1_AMP_CW_CM	rw	0xFF	TX1 clock mode of unmodulated wave in CM

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

9.25.39 SS_TX2_CMCFG (0003Ch)

Table 58. SS_TX2_CMCFG register (address 003Ch) bit description

Bit	Symbol	Access	Reset Value	Description
31:22	RFU	rw	0	-
21:19	TX2_CLK_MODE_MOD_CM	rw	0	TX2 clock mode of modulated wave in CM
18:16	TX2_CLK_MODE_CW_CM	rw	0	TX2 clock mode of unmodulated wave in CM
15:8	TX2_AMP_MOD_CM	rw	0	TX2 clock mode of modulated wave in CM
7:0	TX2_AMP_CW_CM	rw	0xFF	TX2 clock mode of unmodulated wave in CM

9.25.40 TIMER0_CONFIG (003Dh)

Table 59. TIMER0_CONFIG register (address 003Dh) bit description

31:9 RFU r 0°,1 -	Bit	Symbol	Access	Value	Description
7 RFU r 0*,1 - 6 T0_ONE_SHOT_MODE r/w 0*,1 When set to 1, the counter value does not reload again until the counter value has reached zero 5:3 T0_PRESCALE_SEL r/w 0*,1 Controls input frequency/period of the timer T0 when the prescaler is activated in T0_MODE_SEL. 000b - 6.78 MHz counter 001b - 3.39 MHz counter 010b - 1.70 MHz counter 010b - 1.20 kHz counter 110b - 108 kHz counter 110b - 10b kHz counter 110b -	31:9	RFU	r	0*,1	-
T0_ONE_SHOT_MODE r/W 0*,1 When set to 1, the counter value does not reload again until the counter value has reached zero 7. Controls input frequency/period of the timer T0 when the prescaler is activated in T0_MODE_SEL. 000b - 6.78 MHz counter 001b - 3.39 MHz counter 010b - 1.70 MHz counter 101b - 212 kHz counter 101b - 212 kHz counter 110b - 106 kHz counter 111b - 53 kHz counter 111b - 53 kHz counter 111b - 54 kHz counter 111b - 55 kHz counter 111b - 75 kHz counter 111b -	8	T0_START_NOW	r/w	0*,1	
again until the counter value has reached zero 7.4 Controls input frequency/period of the timer T0 when the prescaler is activated in T0_MODE_SEL. 8.5 MHz counter	7	RFU	r	0*,1	-
the prescaler is activated in T0_MODE_SEL. 000b - 6.78 MHz counter 001b - 3.39 MHz counter 010b - 1.70 MHz counter 011b - 848 kHz counter 100b - 424 kHz counter 100b - 424 kHz counter 110b - 106 kHz counter 111b - 53 kHz counter 111b - 53 kHz counter 111b - 53 kHz counter 111b - Frescaler is disabled: the timer frequency matches CLIF clock frequency (13.56 MHz). 15 - Prescaler is enabled: the timer operates on the prescaler signal frequency (chosen by T0_PRESCALE_SEL). 1 T0_RELOAD_ENABLE r/w 0*,1 If set to 05 - the timer T0 will stop on expiration. 0* After expiration the timer T0 will stop counting. i.e. remain zero. reset value. 15 - After expiration the timer T0 will reload its preset value and continue counting down.	6	T0_ONE_SHOT_MODE	r/w	0*,1	
0b - Prescaler is disabled: the timer frequency matches CLIF clock frequency (13.56 MHz). 1b - Prescaler is enabled: the timer operates on the prescaler signal frequency (chosen by T0_PRESCALE_SEL). 1 T0_RELOAD_ENABLE 1 r/w 1 o*,1 1 If set to 0 0b - the timer T0 will stop on expiration. 0* After expiration the timer T0 will stop counting. i.e. remain zero. reset value. 1b - After expiration the timer T0 will reload its preset value and continue counting down.	5:3	T0_PRESCALE_SEL	r/w	0*,1	the prescaler is activated in T0_MODE_SEL. 000b - 6.78 MHz counter 001b - 3.39 MHz counter 010b - 1.70 MHz counter 011b - 848 kHz counter 100b - 424 kHz counter 101b - 212 kHz counter 110b - 106 kHz counter
0b - the timer T0 will stop on expiration. 0* After expiration the timer T0 will stop counting. i.e. remain zero. reset value. 1b - After expiration the timer T0 will reload its preset value and continue counting down.	2	T0_MODE_SEL	r/w	0*,1	0b - Prescaler is disabled: the timer frequency matches CLIF clock frequency (13.56 MHz). 1b - Prescaler is enabled: the timer operates on the prescaler signal frequency (chosen by T0_
0 T0_ENABLE r/w 0*,1 Enables the timer T0	1	T0_RELOAD_ENABLE	r/w	0*,1	0b - the timer T0 will stop on expiration. 0* After expiration the timer T0 will stop counting. i.e. remain zero. reset value. 1b - After expiration the timer T0 will reload its preset
	0	T0_ENABLE	r/w	0*,1	Enables the timer T0

NFC frontend

9.25.41 TIMER0_RELOAD (003Eh)

Table 60. TIMER0_RELOAD register (address 003Eh) bit description

Bit	Symbol	Access	Value	Description
31:20	RFU	r	0*,1	-
19:0	T0_RELOAD_VALUE	r/w	0*,1	Reload value of the timer T0.

9.25.42 TIMER1_CONFIG (003Fh)

Timer 1 is typically used for the FDT configuration. Configuration can be done from the host but the associated IRQ is handled by the firmware of the PN5190B1.

Table 61. TIMER1_CONFIG register (address 003Fh) bit description

Bit	Symbol	Access	Value	Description
31	RFU	r	0*,1	-
30	T1_STOP_ON_RX_STARTED	r/w	0*,1	T1_STOP_EVENT: If set. the timer T1 is stopped when a data reception begins (1st bit is received).
29	T1_STOP_ON_TX_STARTED	r/w	0*,1	T1_STOP_EVENT: If set. the timer T1 is stopped when a data transmission begins.
28	T1_STOP_ON_RF_ON_EXT	r/w	0*,1	T1_STOP_EVENT: If set. the timer T1 is stopped when the external RF field is detected.
27	T1_STOP_ON_RF_OFF_EXT	r/w	0*,1	T1_STOP_EVENT: If set. the timer T1 is stopped when the external RF field vanishes.
26	T1_STOP_ON_RF_ON_INT	r/w	0*,1	T1_STOP_EVENT: If set. the timer T1 is stopped when the internal RF field is turned on.
25	T1_STOP_ON_RF_OFF_INT	r/w	0*,1	T1_STOP_EVENT: If set. the timer T1 is stopped when the internal RF field is turned off.
24	T1_STOP_ON_RX_ENDED	r/w	0*,1	T1_STOP_EVENT: If set the timer T1 is stopped when an activity on RX is detected.
23:18	RFU	r	0*,1	-
17	T1_START_ON_RX_STARTED	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started when a data reception begins (1st bit is received).
16	T1_START_ON_RX_ENDED	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started when a data reception ends.
15	T1_START_ON_TX_STARTED	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started when a data transmission begins.
14	T1_START_ON_TX_ENDED	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started when a data transmission ends.
13	T1_START_ON_RF_ON_EXT	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started when the external RF field is detected.
12	T1_START_ON_RF_OFF_EXT	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started when the external RF field is not detected anymore.
11	T1_START_ON_RF_ON_INT	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started when an internal RF field is turned on.

NFC frontend

Table 61. TIMER1_CONFIG register (address 003Fh) bit description ...continued

Bit	Symbol	Access	Value	Description
10	T1_START_ON_RF_OFF_INT	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started when an internal RF field is turned off.
9	T1_START_ON_TX_ FRAMESTEP	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started when an activity on Frame step is detected.
8	T1_START_NOW	r/w	0*,1	T1_START_EVENT: If set. the timer T1 is started immediately.
7	RFU	r	0*,1	-
6	T1_ONE_SHOT_MODE	r/w	0*,1	When set to 1, the counter value does not reload again until the counter value has reached zero
5:3	T1_PRESCALE_SEL	r/w	0*,1	Controls input frequency/period of the timer T0 when the prescaler is activated in T1_MODE_SEL. 000b - 6.78 MHz counter 001b - 3.39 MHz counter 010b - 1.70 MHz counter 011b - 848 kHz counter 100b - 424 kHz counter 101b - 212 kHz counter 111b - 53 kHz counter
2	T1_MODE_SEL	r/w	0*,1	If set. the timer T1 is started the prescaler for the timer T1 is enabled. 0* Prescaler is disabled: the timer frequency matches CLIF clock frequency (13.56 MHz). 1 Prescaler is enabled: the timer operates on the prescaler signal frequency (chosen by T1_ PRESCALE_SEL).
1	T1_RELOAD_ENABLE	r/w	0*,1	If set to 0.the timer T1 will stop on expiration. 0* After expiration the timer T1 will stop counting. i.e. remain zero. reset value. 1 After expiration the timer T1 will reload its preset value and continue counting down.
0	T1_ENABLE	r/w	0*,1	Enables the timer T1

9.25.43 TIMER1_RELOAD (0040h)

Table 62. TIMER1_RELOAD register (address 0040h) bit description

Bit	Symbol	Access	Value	Description
31:20	RFU	r	0*,1	-
19:0	T1_RELOAD_VALUE	r/w	0*,1	Reload value of the timer T1.

9.25.44 ANA_STATUS (0041h)

Table 63. ANA_STATUS register (address 0041h) bit description

	_	0	`	,		
Bit	Symbol			Access	Value	Description
31:21	RFU			rw	0.1	-

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 63. ANA_STATUS register (address 0041h) bit description...continued

Bit	Symbol	Access	Value	Description
20:11	ADC_DATA_I	rw	0.1	RX adc I output for validation purposes
10:1	ADC_DATA_Q	rw	0.1	RX adc Q output for validation purposes
0	PLL_LOCK_STATUS	rw	0.1	PLL lock status indicator

9.25.45 ANA_RX_CTRL (0043h)

Table 64. ANA_RX_CTRL register (address 00434h) bit description

Bit	Symbol	Access	Value	Description
31:7	RFU	rw	0.1	-
6	RX_MIXER_SE_MODE_EN	rw	0.1	enable signal for selecting single ended mode
5:0	RFU	rw	0.1	-

9.25.46 ANACTRL_TX_CONFIG (0044h)

Table 65. ANACTRL_TX_CONFIG register (address 0044h) bit description

Bit	Symbol	Access	Value	Description
31:	RFU	rw	0.1	-
5:4	TX_INVP_RM	rw	0.1	shift driver waves of 180 degrees in RM. Index 0: TX1; index 1: TX2
3:2	RFU	rw	0.1	-
1	TX_PWM_MODE_RM	rw	0.1	PWM scheme for RM: 0: TX1/2 3-levels (If at least either clk_mode_tx1 or clk_mode_tx2 is set on a clocked mode) 1: TX1/2 2-levels with differentiated pulses
0	RFU	rw	0.1	-

9.25.47 EMD_1_CFG (0047h)

This register allows to configure the ISO14443 and NFC-Forum EMD handling.

This register shall not be modified in case EMVCO or FeliCa EMD is activated.

Table 66. EMD 1 CFG register (address 0047h) bit description

	_ · ·		,	•		
Bit	Symbol	Access		Value for ISO/ IEC14443 EMD handling	Value for NFC Forum EMD handling	Description
31:0	EMD_1_Configuration	r/w		0000 FF03h		0000 FF03h EMD ISO 0000 FF04h EMD NFC Forum

9.25.48 EMD_0_CONFIG (0048h)

This register allows to configure the ISO14443 and NFC-Forum EMD handling.

This register shall not be modified in case EMVCO or FeliCa EMD is activated.

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 67. EMD_0_CONFIG register (address 0048h) bit description

		•				
Bit	Symbol	Acces	Value	Value	Value	Description
				for ISO/	for	
				IEC1444	NFC	
				EMD	Forum	
				handling	EMD	
					handlin	
31:0	EMD_0_Configuration			176003 FFh	1F600 3FFh	Default value for ISO14443 and NFC Forum

9.25.49 LPCD_CALIBRATE_CTRL (00050h)

This register is used for LPCD semi autonomous mode. Writing to this register triggers the LPCD calibration with the RSSI_HYSTERESIS and RSSI_TARGET values as given in bits 23:16 and 15:0. After calibration is completed, calibration status is available in LPCD_CALIBRATE_STATUS. If the calibration is successful, the I/Q channel values can be read from register IQ_CHANNEL_VALS (51h).

Table 68. LPCD_CALIBRATE_CTRL register (address 0050h) bit description

Bit	Symbol	Access	Value	Description
31	RFU	r	0*,1	-
30	FREEZE_VALUE	r/w	0*,1	Write RSSI_TARGET and RSSI_HYSTERESIS into LPCD_CALIBRATE_CTRL: 1. FREEZE_VALUE = 0: This calibrates the Semi autonomous LPCD. The calibration status can be checked in bit 31 of CALIBRATE_STATUS register (0x53). 2. FREEZE_VALUE = 1: This writes the RSSI_TARGET and RSSI_HYSTERESIS into the EEPROM LPCD_RSSI_TARGET (0x494) and LPCD_RSSI_HYSTERESIS (0x496).
29:24	RFU	r	0*,1	-
23:16	RSSI_HYSTERESIS	r/w	0*,1	Value to be set in DGRM_RSSI_HYST used for calibration
15:0	RSSI_TARGET	r/w	0*,1	Value to be set in DGRM_RSSI_TARGET used for calibration

9.25.50 IQ_CHANNEL_VALS (00051h)

Table 69. IQ_CHANNEL_VALS register (address 0051h) bit description

	(,	The state of the s
Bit	Symbol	Access	Value	Description
31:16	Q_CHANNEL_VAL	r	-	Q Channel value
15:0	I_CHANNEL_VAL	r	-	I Channel value

9.25.51 PAD_CONFIG (0052h)

Table 70. PAD_CONFIG register (address 0052h) bit description

Bit	Symbol	Access	Value	Description
31:7	RFU	rw		-

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 70. PAD_CONFIG register (address 0052h) bit description...continued

Bit	Symbol	Access	Value	Description
6	AUX3_OUTPUT_VAL	rw		Output value for AUX3 0: Low 1: High
5	AUX2_OUTPUT_VAL	rw		Output value for AUX2 0: Low 1: High
4	AUX1_OUTPUT_VAL	rw		Output value for AUX1 0: Low 1: High
3	GPIO3_OUTPUT_VAL	rw		Output value for GPIO3 0: Low 1: High
2	GPIO2_OUTPUT_VAL	rw		Output value for GPIO2 0: Low 1: High
1	GPIO1_OUTPUT_VAL	rw		Output value for GPIO1 0: Low 1: High
0	GPIO0_OUTPUT_VAL	rw		Output value for GPIO0 0: Low 1: High

On PN5190B1 only output functionality is available on GPIO's.

9.25.52 CALIBRATE_STATUS (00053h)

Table 71. CALIBRATE_STATUS register (address 0053h) bit description

Bit	Symbol	Access	Value	Description
31	LPCD_CALIBRATION_STATUS	r	-	Calibration Status 0 - Calibration Not Done, 1- Calibration Done
30:1	RFU	r	-	-
0	TXNOV_CALIBRATION_STATUS			Calibration Status 0 - Calibration Not Done, 1- Calibration Done

9.25.53 TXLDO_VDDPA_CONFIG (00054h)

If DPC is disabled, the VDDPA supply voltage can be set with this register. These register settings are overruled by the DPC.

This register does allow to read the actual VDDPA supply voltage independent from having the DPC enabled/disabled, this allows to read-out the actual transmitter supply voltage.

NFC frontend

Table 72. TXLDO_VDDPA_CONFIG register (address 0054h) bit description

Bit	Symbol	Access	Value	Description
31:8	RFU	rw		-
7:0	VDDPA CONFIG	rw		TX_LDO output voltage VDDPA_1V50 /* 0x00 */ VDDPA_1V60, /* 0x01 */ VDDPA_1V70, /* 0x02 */ VDDPA_1V80, /* 0x03 */ VDDPA_1V90, /* 0x04 */ VDDPA_2V00, /* 0x05 */ VDDPA_2V10, /* 0x06 */ VDDPA_2V20, /* 0x07 */ VDDPA_2V30, /* 0x08 */ VDDPA_2V40, /* 0x09 */ VDDPA_2V50, /* 0x0A */ VDDPA_2V80, /* 0x0D */ VDDPA_2V70, /* 0x0C */ VDDPA_2V80, /* 0x0D */ VDDPA_2V90, /* 0x0E */ VDDPA_3V20, /* 0x11 */ VDDPA_3V10, /* 0x10 */ VDDPA_3V20, /* 0x11 */ VDDPA_3V30, /* 0x12 */ VDDPA_3V40, /* 0x13 */ VDDPA_3V50, /* 0x14 */ VDDPA_3V80, /* 0x15 */ VDDPA_3V70, /* 0x16 */ VDDPA_4V00, /* 0x15 */ VDDPA_4V10, /* 0x1A */ VDDPA_4V20, /* 0x1B */ VDDPA_4V30, /* 0x1E */ VDDPA_4V40, /* 0x1D */ VDDPA_4V50, /* 0x1E */ VDDPA_4V80, /* 0x21 */ VDDPA_4V90, /* 0x22 */ VDDPA_5V00, /* 0x23 */ VDDPA_5V30, /* 0x24 */ VDDPA_5V40, /* 0x25 */ VDDPA_5V50, /* 0x28 */ VDDPA_5V60, /* 0x29 */ VDDPA_5V70, /* 0x28 */ VDDPA_5V60, /* 0x29 */ VDDPA_5V70, /* 0x28 */ VDDPA_5V60, /* 0x29 */ VDDPA_5V70, /* 0x28 */

9.25.54 GENERAL_ERROR_STATUS (0055h)

Table 73. GENERAL_ERROR_STATUS register (address 0055h) bit description

Bit	Symbol	Access	Value	Description
31:3	RFU	r	0*,1	-
2	TXLDO_ERROR	r	0*,1	TXLDO does not start
1	CLOCK_ERROR	r	0*,1	XTAL or PLL does not start
0	GPADC_ERROR	r	0*,1	GPADC initialization fail

9.25.55 TXLDO_VOUT_CURR (0056h)

Table 74. TXLDO_VOUT_CURR register (address 0056h) bit description

Bit	Symbol	Access	Value	Description
31:24	RFU	r		-
23:8	TXLDO_CURRENT	r		Indicates the TXLDO Current, measured value is indicated in mA (1 bit = 1 mA)

NFC frontend

Table 74. TXLDO_VOUT_CURR register (address 0056h) bit description...continued

Bit	Symbol	Access	Value	Description
7:0	VDDPA_VOUT	r		VDDPA_1V50 /* 0x00 */ VDDPA_1V60, /* 0x01 */ VDDPA_1V70, /* 0x02 */ VDDPA_1V80, /* 0x03 */ VDDPA_1V90, /* 0x04 */ VDDPA_2V00, /* 0x05 */ VDDPA_2V10, /* 0x06 */ VDDPA_2V20, /* 0x07 */ VDDPA_2V30, /* 0x08 */ VDDPA_2V40, /* 0x09 */ VDDPA_2V50, /* 0x0A */ VDDPA_2V80, /* 0x0D */ VDDPA_2V70, /* 0x0C */ VDDPA_2V80, /* 0x0D */ VDDPA_2V90, /* 0x0E */ VDDPA_3V00, /* 0x0F */ VDDPA_3V10, /* 0x10 */ VDDPA_3V20, /* 0x11 */ VDDPA_3V30, /* 0x12 */ VDDPA_3V40, /* 0x13 */ VDDPA_3V50, /* 0x14 */ VDDPA_3V60, /* 0x15 */ VDDPA_3V90, /* 0x18 */ VDDPA_4V00, /* 0x19 */ VDDPA_4V10, /* 0x1A */ VDDPA_4V20, /* 0x1B */ VDDPA_4V30, /* 0x1E */ VDDPA_4V40, /* 0x1D */ VDDPA_4V50, /* 0x1E */ VDDPA_4V80, /* 0x21 */ VDDPA_4V90, /* 0x22 */ VDDPA_5V00, /* 0x23 */ VDDPA_5V10, /* 0x24 */ VDDPA_5V40, /* 0x25 */ VDDPA_5V70, /* 0x28 */ VDDPA_5V60, /* 0x29 */

9.25.56 DAC (00057h)

This register allows to configure the output voltage of VTUNE1, VTUNE2.

Table 75. DAC register (address 0057h) bit description

Bit	Symbol	Access	Value	Description
31:28	RFU			-
27:24	TUNING_DAC_2_RANGE			Reference voltage of the DAC, allows to increase the resolution in case a limited output voltage is required. For max output voltage, 0x000 need to be configured (3.8 V) x000=2V x001=3V x011=3.45V x111=3.8V
23:17	TUNING_DAC_2_VALUE			Output voltage of DAC2 according to 1/128 * <tuning_dac_2_value> * <range in="" v=""></range></tuning_dac_2_value>
16	TUNING_DAC_2_PD			0=DAC Turned off, 1=DAC enabled
15:12	RFU			-

NFC frontend

Table 75. DAC register (address 0057h) bit description...continued

Bit	Symbol	Access	Value	Description
11:8	TUNING_DAC_1_RANGE			Reference voltage of the DAC, allows to increase the resolution in case a limited output voltage is required. For max output voltage, 0x000 need to be configured (3.8 V) x000=2V x001=3V x011=3.45V x111=3.8V
7:1	TUNING_DAC_1_VALUE			Output voltage of DAC1 according to 1/128 * <tuning_dac_1_value> * <range in="" v=""></range></tuning_dac_1_value>
0	TUNING_DAC_1_PD			0=DAC Turned off, 1=DAC enabled

9.25.57 PMU_ANA_SMPS_CTRL_REG (00058h)

Table 76. PMU_ANA_SMPS_CTRL_REG register (address 0058h) bit description

Bit	Symbol	Access	Value	Description
31:30	RFU			-
29:27	SMPS_MAXDT_SEL			SMPS max duty cycle value, valid when SMPS_ MAX_DTC_BYPASS is set
26	SMPS_MAXDT_SEL_BYPASS			SMPS max duty cycle lookup table bypass
25:24	SMPS_GM			SMPS Gm setup
23:22	SMPS_RSENSE			SMPS Rsense setup
21:20	SMPS_SOFT_START			SMPS Soft Start setup
19:17	SMPS_SAWTOOTHGEN			SMPS Sawtooth generator setup
16:14	RFU			-
13:12	SMPS_PROT_UNDERSHOOT_ VTH			SMPS
11:10	SMPS_REG_SPARE_0			SMPS
9:7	SMPS_PID			SMPS PID filter setup
6:1	SMPS_VDDBOOST_VOUT_SEL			SMPS Output voltage selection
0	SMPS_EN			SMPS enable

9.25.58 RXM_FREQ (00059h)

Table 77. RXM_FREQ register (address 0059h) bit description

Bit	Symbol	Access	Value	Description
31	RXM_FREQ_REG_VALID	r	-	CLIF_RXM_FREQ_REG fields are valid
30:25	RFU	r	-	-
24:16	RXM_FREQ	r	-	frequence difference between the last two consecutive measures at 1.7 MHz (multiple of 13.56MHz/4096). Signed. 2-Complement coded
15:9	RFU	r	-	-

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 77. RXM_FREQ register (address 0059h) bit description...continued

Bit	Symbol	Access	Value	Description
0:8	RXM_PHASE	r	_	phase value

9.25.59 RXM_RSSI (0005Ah)

Table 78. RXM RSSI register (address 005Ah) bit description

Bit	Symbol	Access	Reset Value	Description
31	RFU	r	-	-
22	RXM_RSSI_FROZEN	r	-	The RSSI value is not currently updated
21	RXM_FRQ_OK	r	-	The carrier frequency detected is OK.
20	RXM_RSSI_REG_VALID	r	-	CLIF_RXM_RSSI_REG fields are valid
19:14	RXM_HFATT	r	-	HFAtt latched with RSSI
13:0	RXM_RSSI	r	-	RSSI value

9.25.60 TEMP_SENSOR (005Bh)

Table 79. TEMP SENSOR register (address 005Bh) bit description

Bit	Symbol	Access	Value	Description
31:16	-	r	0*,1	RFU
15-0	TEMP_SENSOR_DATA	r	0*,1	Indicates the current temperature of the chip in degree celsius. This is the actual temperature data of the sensor which is used for the overheat protection.
				Maximum temperature readable will be the maximum temperature threshold configured in EEPROM TEMP_WARNING address 0x14.

9.25.61 TX_NOV_CALIBRATE_AND_STORE (005Dh)

Table 80. TX NOV CALIBRATE AND STORE register (address 005Dh) bit description

Bit	Symbol	Access	Value	Description		
31:30	RFU	rw	0*,1	-		
0	TX_NOV_CALIBRATE_AND_ STORE_VAL	rw		Calibrates the TX NOV and stores the resulting value in EEPROM		

9.25.62 DPC_CONFIG (005Eh)

Table 81. DPC CONFIG register (address 005Eh) bit description

Bit	Symbol	Access	Value	Description
31	DPC_REG_ACCESS	r/w	0*,1	This bit is used to control the access to the register. 1: access allowed. This bit needs to be SET to enable/disable the functionality of bit 0.
30:1	RFU	r/w	0*,1	-

Product data sheet

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 81. DPC_CONFIG register (address 005Eh) bit description...continued

Bit	Symbol	Access	Value	Description
0	ENABLE_DISABLE_DPC	r/w	0*,1	If set to 1, to Enable DPC. Set to 0 to disable DPC

9.25.63 SS_TX1_RTRTRANS0 (00080h)

Table 82. SS_TX1_RTRTRANS0 register (address 0080h) bit description

				-
Bit	Symbol	Access	Value	Description
31:24	TX1_SS_RTRANS3	rw		TX1 rising transition value 3
23:16	TX1_SS_RTRANS2	rw		TX1 rising transition value 2
15:8	TX1_SS_RTRANS1	rw		TX1 rising transition value 1
7:0	TX1_SS_RTRANS0	rw		TX1 rising transition value 0

9.25.64 SS_TX1_RTRTRANS1 (00081h)

Table 83. SS_TX1_RTRTRANS1 register (address 0081h) bit description

Bit	Symbol	Access	Value	Description
31:24	TX1_SS_RTRANS7	rw		TX1 rising transition value 7
23:16	TX1_SS_RTRANS6	rw		TX1 rising transition value 6
15:8	TX1_SS_RTRANS5	rw		TX1 rising transition value 5
7:0	TX1_SS_RTRANS4	rw		TX1 rising transition value 4

9.25.65 SS_TX1_RTRTRANS2 (00082h)

Table 84. SS_TX1_RTRTRANS2 register (address 0082h) bit description

Bit	Symbol	Access	Value	Description
31:24	TX1_SS_RTRANS11	rw		TX1 rising transition value 11
23:16	TX1_SS_RTRANS10	rw		TX1 rising transition value 10
15:8	TX1_SS_RTRANS9	rw		TX1 rising transition value 9
7:0	TX1_SS_RTRANS8	rw		TX1 rising transition value 8

9.25.66 SS_TX1_RTRTRANS3 (00083h)

Table 85. SS_TX1_RTRTRANS0 register (address 0080h) bit description

Bit	Symbol	Access	Value	Description
31:24	TX1_SS_RTRANS15	rw		TX1 rising transition value 15
23:16	TX1_SS_RTRANS14	rw		TX1 rising transition value 14
15:8	TX1_SS_RTRANS13	rw		TX1 rising transition value 13
7:0	TX1_SS_RTRANS12	rw		TX1 rising transition value 12

NFC frontend

9.25.67 SS_TX2_RTRTRANS0 (00084h)

Table 86. SS_TX2_RTRTRANS0 register (address 00804) bit description

			,	•
Bit	Symbol	Access	Value	Description
31:24	TX2_SS_RTRANS3	rw		TX2 rising transition value 3
23:16	TX2_SS_RTRANS2	rw		TX2 rising transition value 2
15:8	TX2_SS_RTRANS1	rw		TX2 rising transition value 1
7:0	TX2_SS_RTRANS0	rw		TX2 rising transition value 0

9.25.68 SS_TX2_RTRTRANS1 (00085h)

Table 87. SS TX2 RTRTRANS1 register (address 0085h) bit description

Bit	Symbol	Access	Value	Description
31:24	TX2_SS_RTRANS7	rw		TX2 rising transition value 7
23:16	TX2_SS_RTRANS6	rw		TX2 rising transition value 6
15:8	TX2_SS_RTRANS5	rw		TX2 rising transition value 5
7:0	TX2_SS_RTRANS4	rw		TX2 rising transition value 4

9.25.69 SS_TX2_RTRTRANS2 (00086h)

Table 88. SS_TX2_RTRTRANS2 register (address 0086h) bit description

Bit	Symbol	Access	Value	Description
31:24	TX2_SS_RTRANS11	rw		TX2 rising transition value 11
23:16	TX2_SS_RTRANS10	rw		TX2 rising transition value 10
15:8	TX2_SS_RTRANS9	rw		TX2 rising transition value 9
7:0	TX2_SS_RTRANS8	rw		TX2 rising transition value 8

9.25.70 SS_TX2_RTRTRANS3 (00087h)

Table 89. SS_TX2_RTRTRANS3 register (address 0087h) bit description

				•
Bit	Symbol	Access	Value	Description
31:24	TX2_SS_RTRANS15	rw		TX2 rising transition value 15
23:16	TX2_SS_RTRANS14	rw		TX2 rising transition value 14
15:8	TX2_SS_RTRANS13	rw		TX2 rising transition value 13
7:0	TX2_SS_RTRANS12	rw		TX2 rising transition value 12

9.25.71 SS_TX1_FTRTRANS0 (00088h)

Table 90. SS_TX1_FTRTRANS0 register (address 0088h) bit description

Bit	Symbol	Access	Value	Description
31:24	TX1_SS_FTRANS3	rw		TX1 falling transition value 3
23:16	TX1_SS_FTRANS2	rw		TX1 falling transition value 2
15:8	TX1_SS_FTRANS1	rw		TX1 falling transition value 1

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 90. SS_TX1_FTRTRANS0 register (address 0088h) bit description...continued

Bit	Symbol	Access	Value	Description
7:0	TX1_SS_FTRANS0	rw		TX1 falling transition value 0

9.25.72 SS_TX1_FTRTRANS1 (00089h)

Table 91. SS_TX1_FTRTRANS1 register (address 0089h) bit description

Bit	Symbol	Access	Value	Description
31:24	TX1_SS_FTRANS7	rw		TX1 falling transition value 7
23:16	TX1_SS_FTRANS6	rw		TX1 falling transition value 6
15:8	TX1_SS_FTRANS5	rw		TX1 falling transition value 5
7:0	TX1_SS_FTRANS4	rw		TX1 falling transition value 4

9.25.73 SS_TX1_FTRTRANS2 (0008Ah)

Table 92. SS_TX1_FTRTRANS2 register (address 008Ah) bit description

Bit	Symbol	Access	Value	Description
31:24	TX1_SS_FTRANS11	rw		TX1 rising transition value 11
23:16	TX1_SS_FTRANS10	rw		TX1 rising transition value 10
15:8	TX1_SS_FTRANS9	rw		TX1 rising transition value 9
7:0	TX1_SS_FTRANS8	rw		TX1 rising transition value 8

9.25.74 SS_TX1_FTRTRANS3 (0008Bh)

Table 93. SS_TX1_FTRTRANS3 register (address 008Bh) bit description

Bit	Symbol	Access	Value	Description
31:24	TX1_SS_FTRANS15	rw		TX1 rising transition value 15
23:16	TX1_SS_FTRANS14	rw		TX1 rising transition value 14
15:8	TX1_SS_FTRANS13	rw		TX1 rising transition value 13
7:0	TX1_SS_FTRANS12	rw		TX1 rising transition value 12

9.25.75 SS_TX2_FTRTRANS0 (0008Ch)

Table 94. SS_TX2_FTRTRANS0 register (address 008Ch) bit description

Bit	Symbol	Access	Value	Description
31:24	TX2_SS_FTRANS3	rw		TX2 falling transition value 3
23:16	TX2_SS_FTRANS2	rw		TX2 falling transition value 2
15:8	TX2_SS_FTRANS1	rw		TX2 falling transition value 1
7:0	TX2_SS_FTRANS0	rw		TX2 falling transition value 0

NFC frontend

9.25.76 SS_TX2_FTRTRANS1 (0008Dh)

Table 95. SS_TX2_FTRTRANS1 register (address 008Dh) bit description

Bit	Symbol	Access	Value	Description
31:24	TX2_SS_FTRANS7	rw		TX2 falling transition value 7
23:16	TX2_SS_FTRANS6	rw		TX2 falling transition value 6
15:8	TX2_SS_FTRANS5	rw		TX2 falling transition value 5
7:0	TX2_SS_FTRANS4	rw		TX2 falling transition value 4

9.25.77 SS_TX2_FTRTRANS2 (0008Eh)

Table 96. SS TX2 FTRTRANS2 register (address 008Eh) bit description

Bit	Symbol	Access	Value	Description
31:24	TX2_SS_FTRANS11	rw		TX2 falling transition value 11
23:16	TX2_SS_FTRANS10	rw		TX2 falling transition value 10
15:8	TX2_SS_FTRANS9	rw		TX2 falling transition value 9
7:0	TX2_SS_FTRANS8	rw		TX2 falling transition value 8

9.25.78 SS_TX2_FTRTRANS3 (0008Fh)

Table 97. SS_TX2_FTRTRANS3 register (address 008Fh) bit description

Bit	Symbol	Access	Value	Description
31:24	TX2_SS_FTRANS15	rw		TX2 falling transition value 15
23:16	TX2_SS_FTRANS14	rw		TX2 falling transition value 14
15:8	TX2_SS_FTRANS13	rw		TX2 falling transition value 13
7:0	TX2_SS_FTRANS12	rw		TX2 falling transition value 12

9.26 EEPROM configuration description

The settings done in EEPROM are used for basic configuration which does not change frequently. Typically it is performed once during trimming or configuration of a product. The EEPROM has a limited number of erase/write cycles that can be performed. This means, that configurations that change frequently must be performed in standard registers which do not keep their value during reset and power-off.

This section describes the EEPROM configuration of the PN5190B1.

Writing to the EEPROM has to be performed with Read-Modify-Write for all memory addresses which contain RFU bits.

9.26.1 EEPROM configuration overview

Table 98. EEPROM CONFIGURATION REGISTER

Address (HEX)	Name
0	DCDC_PWR_CONFIG

PN5190B1

All information provided in this document is subject to legal disclaimers.

Table 98. EEPROM CONFIGURATION REGISTER...continued

Address (HEX)	Name
1	DCDC_CONFIG
2	TXLDO_CONFIG
6	TXLDO_VDDPA_HIGH
7	TXLDO_VDDPA_LOW
8	TXLDO_VDDPA_MAX_RDR
9	TXLDO_VDDPA_HIGH_MAX_CARD
A	BOOST_DEFAULT_VOLTAGE
10	XTAL_CONFIG
11	XTAL_TIMEOUT
12	CLK_INPUT_FREQ
13	XTAL_CHECK_DELAY
14	TEMP_WARNING
15	RFU
16	ENABLE_GPIO0_ON_OVERTEMP
17	TX_SHAPING_CONFIG
18	TX_INV_RM
19	TX_CLK_MODE_1
1A	TX_CLK_MODE_2
1B	RFU
1C	RFU
1D	RFU
1E	RFU
1F	RFU
20	RFU
21	RFU
22	RESIDUAL_AMP_LEVEL_A106
23	EDGE_TYPE_A106
24	EDGE_STYLE_A106
25	EDGE_LENGTH_A106
26	RESIDUAL_AMP_LEVEL_A212
27	EDGE_TYPE_A212
28	EDGE_STYLE_A212
29	EDGE_LENGTH_A212
2A	RESIDUAL_AMP_LEVEL_A424
2B	EDGE_TYPE_A424
2C	EDGE_STYLE_A424

Table 98. EEPROM CONFIGURATION REGISTER...continued

Address (HEX)	Name
2D	EDGE_LENGTH_A424
2E	RESIDUAL_AMP_LEVEL_A848
2F	EDGE_TYPE_A848
30	EDGE_STYLE_A848
31	EDGE_LENGTH_A848
32	RESIDUAL_AMP_LEVEL_B106
33	EDGE_TYPE_B106
34	EDGE_STYLE_B106
35	EDGE_LENGTH_B106
36	RESIDUAL_AMP_LEVEL_B212
37	EDGE_TYPE_B212
38	EDGE_STYLE_B212
39	EDGE_LENGTH_B212
3A	RESIDUAL_AMP_LEVEL_B424
3B	EDGE_TYPE_B424
3C	EDGE_STYLE_B424
3D	EDGE_LENGTH_B424
3E	RESIDUAL_AMP_LEVEL_B848
3F	EDGE_TYPE_A848
40	EDGE_STYLE_A848
41	EDGE_LENGTH_A848
42	RESIDUAL_AMP_LEVEL_F212
43	EDGE_TYPE_F212
44	EDGE_STYLE_F212
45	EDGE_LENGTH_F212
46	RESIDUAL_AMP_LEVEL_F424
47	EDGE_TYPE_F424
48	EDGE_STYLE_F424
49	EDGE_LENGTH_F424
4A	RESIDUAL_AMP_LEVEL_V100_26
4B	EDGE_TYPE_V100_26
4C	EDGE_STYLE_V100_26
4D	EDGE_LENGTH_V100_26
4E	RESIDUAL_AMP_LEVEL_V100_53
4F	EDGE_TYPE_V100_53
50	EDGE_STYLE_V100_53

Table 98. EEPROM CONFIGURATION REGISTER...continued

Address (HEX)	Name
51	EDGE_LENGTH_V100_53
52	RESIDUAL_AMP_LEVEL_V100_106
53	EDGE_TYPE_V100_106
54	EDGE_STYLE_V100_106
55	EDGE_LENGTH_V100_106
56	RESIDUAL_AMP_LEVEL_V100_212
57	EDGE_TYPE_V100_212
58	EDGE_STYLE_V100_212
59	EDGE_LENGTH_V100_212
5A	RESIDUAL_AMP_LEVEL_V10_26
5B	EDGE_TYPE_V10_26
5C	EDGE_STYLE_V10_26
5D	EDGE_LENGTH_V10_26
5E	RESIDUAL_AMP_LEVEL_V10_53
5F	EDGE_TYPE_V10_53
60	EDGE_STYLE_V10_53
61	EDGE_LENGTH_V10_53
62	RESIDUAL_AMP_LEVEL_V10_106
63	EDGE_TYPE_V10_106
64	EDGE_STYLE_V10_106
65	EDGE_LENGTH_V10_106
66	RESIDUAL_AMP_LEVEL_V10_212
67	EDGE_TYPE_V10_212
68	EDGE_STYLE_V10_212
69	EDGE_LENGTH_V10_212
66	RESIDUAL_AMP_LEVEL_V10_212
67	EDGE_TYPE_V10_212
68	EDGE_STYLE_V10_212
69	EDGE_LENGTH_V10_212
6A	RESIDUAL_AMP_LEVEL_180003m3_tari18p88
6B	EDGE_TYPE_180003m3_tari18p88
6C	EDGE_STYLE_180003m3_tari18p88
6D	EDGE_LENGTH_180003m3_tari18p88
6E	RESIDUAL_AMP_LEVEL_180003m3_tari9p44
6F	EDGE_TYPE_180003m3_tari9p44
70	EDGE_STYLE_180003m3_tari9p44

Table 98. EEPROM CONFIGURATION REGISTER...continued

Address (HEX)	Name
71	EDGE_LENGTH_180003m3_tari9p44
72	RESIDUAL_AMP_LEVEL_B_PRIME_106
73	EDGE_TYPE_B_PRIME_106
74	EDGE_STYLE_B_PRIME_106
75	EDGE_LENGTH_B_PRIME_106
76	DPC_CONFIG
77	DPC_TARGET_CURRENT
79	DPC_HYSTERESIS_LOADING
7A	RFU
7B	RFU
7C	DPC_HYSTERESIS_UNLOADING
7D	DPC_TXLDOVDDPALow
7E	DPC_TXGSN
7F	DPC_RDON_Control
80	DPC_InitialRDOn_RFOn
81	RFU
83	RFU
85	RFU
87	DPC_GUARD_TIME
88	DPC_ENABLE_DURING_FDT
89	DPC_GUARD_TIME_AFTER_RX
8A	RFU
8B	DPC_LOOKUP_TABLE
137	ARC_CONFIG
139	ARC_VDDPA
13E	ARC_RM_A106
148	ARC_RM_A212
152	ARC_RM_A424
15C	ARC_RM_A848
166	ARC_RM_B106
170	ARC_RM_B212
17A	ARC_RM_B424
184	ARC_RM_B848
18E	ARC_RM_F212
198	ARC_RM_F424
1A2	ARC_RM_V6p6

Table 98. EEPROM CONFIGURATION REGISTER...continued

Address (HEX)	Name
1AC	ARC_RM_V26
1B6	ARC_RM_V53
1C0	ARC_RM_V106
1CA	ARC_RM_V212
1D4	ARC_RM_18003m3_SC424_4MAN
1DE	ARC_RM_18003m3_SC848_2MAN
1E8	ARC_RM_18003m3_SC848_4MAN
1F2	ARC_RM_18003m3_SC848_2MAN
1FC	ARC_RM_AI106
206	ARC_RM_AI212
210	ARC_RM_AI424
2B2	RF_DEBOUNCE_TIMEOUT
2B3	SENSE_RES
2B5	NFC_ID1
2B8	SEL_RES
2B9	FELICA_POLL_RES
2CB	RANDOM_UID_ENABLE
2CC	MFC_AUTH_TIMEOUT
2DA	RSSI_TIMER
2DC	RSSI_TIMER_FIRST_PERIOD
2DE	RSSI_CTRL_00_AB
2DF	RSSI_NB_ENTRIES_AB
2E0	RSSI_THRESHOLD_PHASE_TABLE
3A2	TX_PARAM_ENTRY_TABLE
492	LPCD_AVG_SAMPLES
494	LPCD_RSSI_TARGET
496	LPCD_RSSI_HYST
49B	RFU
49E	LPCD_THRESHOLD
4AB	WAIT_RX_SETTLE
4AF	LPCD_VDDPA
4BF	ULPCD_VDDPA_CTRL
4C2	ULPCD_TIMING_CTRL
4C6	ULPCD_VOLTAGE_CTRL
4C7	RFU
4C9	ULPCD_RSSI_GUARD_TIME

Table 98. EEPROM CONFIGURATION REGISTER...continued

Address (HEX)	Name		
4CA	ULPCD_RSSI_SAMPLE_CFG		
4CB	ULPCD_THRESH_LVL		
4CC	ULPCD_GPIO3		
559	TXIRQ_GUARDTIME		
55D	FDT_DEFAULTVAL		
561	RXIRQ_GUARDTIME		
562-6D2	RFU		
6D3	NFCLD_RFLD_Valid		
6D4-ABB	RFU		
ABC	CurrentSensorTrimConfig		
ABD-BD9	RFU		
BDA	CORRECTION_ENTRY_TABLE		
C03	RTRANS_FRTANS_TABLE		
C83	CFG_NOV_CAL		
C84	NOV_CAL_VAL1		
C85	NOV_CAL_VAL2		
C86	NOV_CAL_THRESHOLD		
C87	NOV_CAL_OFFSET1		
C8B	NOV_CAL_OFFSET2		
C8F	VDDPA_DISCHARGE		
C9D	ARC_RM_A106_FDT		
CA8-CC4	RFU		
CC5	Tx_Symbol23_Mod_Reg_BR_53		
CC9	Tx_Data_Mod_Reg_BR_53		
CCD	Tx_Symbol23_Mod_Reg_BR_106		
CD1	Tx_Data_Mod_Reg_BR_106		
CD5	Tx_Symbol23_Mod_Reg_BR_212		
CD9	Tx_Data_Mod_Reg_BR_212		
CDA-CDE	RFU		
CDF	CardModeUltraLowPowerEnabled		
CE0	Up to FW2.01: RFU from FW2.02 onwards: LPCD_EXT_DCDC_ENABLE		
CE1	Up to FW2.01: RFU from FW2.02 onwards: LPCD_EXT_DCDC_DELAY_TO_ON		

NFC frontend

Table 98. EEPROM CONFIGURATION REGISTER...continued

Address (HEX)	Name
CE2	Up to FW2.01: RFU from FW2.02 onwards: LPCD_EXT_DCDC_DELAY_TO_ON
CE3-CE7	DO NOT MODIFY - INTERNAL SETTINGS
CE8	RxGuardTO_Multiple
CE9h-14 00h	DO NOT MODIFY - INTERNAL SETTINGS

9.26.2 DCDC_PWR_CONFIG (0000h)

Table 99. PWR_CONFIG (address 0000h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
0	DC-DC usage in card mode	7	0b: DC-DC is not powered and set to bypass 1b: DC-DC is powered and not bypassed
	DC-DC usage in reader mode	6	0b: DC-DC is not powered and set to bypass 1b: DC-DC is powered and not bypassed
	RFU	5	Do not touch, default value 01b
	VUP input voltage	40	0x00: Not connected or 0 V 0x01: VUP supplied by PN5190B1 itself (pin VUP_TX connected to VBAT/VBATPWR) 0x02: Internal DC-DC with fixed VDDBOOST 0x04: Internal DC-DC with auto by pass and variable boost w.r.t VDDPA (internal DPC controls VDDBOOST): DC-DC goes into pass through mode when the VDDPA goes below 3.3 V. When VDDPA is greater than 3.3 V, the DC-DC is configured to boost voltage in range of 3.3 V to 6 V. 0x05 - 0x09: RFU 0x10: external supply

9.26.3 DCDC_CONFIG (0001h)

Table 100. DCDC_CONFIG (address 0001h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1	DC-DC configuration	7:5	RFU
		4	DC-DC passthrough feature is: 0: Not supported (Vout = 0v or +5v) 1: Supported (Vout = 0v, Vin or +5v)
		3	Use of DC-DC for LPCD (attention: not ULPCD) 1: enabled 0: disabled
		2:0	RFU

NFC frontend

9.26.4 TXLDO_CONFIG (0002h)

Table 101. TXLDO_CONFIG (address 0002h) EEPROM configuration bit description

Address (hex)	Function	Bit	Description
2	TX_LDO Configuration	31:12	RFU
		11	Overcurrent enable (0: disable, 1: enable)
		10	TxLdo current limiter (0: disable, 1: enable)
		9:4	TXLDO output voltage VDDPA_1V50 /* 0x00 */ VDDPA_1V60, /* 0x01 */ VDDPA_1V70, /* 0x02 */ VDDPA_1V80, /* 0x03 */ VDDPA_1V90, /* 0x04 */ VDDPA_2V00, /* 0x05 */ VDDPA_2V10, /* 0x06 */ VDDPA_2V20, /* 0x07 */ VDDPA_2V30, /* 0x08 */ VDDPA_2V40, /* 0x09 */ VDDPA_2V50, /* 0x0A */ VDDPA_2V60, /* 0x0B */ VDDPA_2V70, /* 0x0C */ VDDPA_2V80, /* 0x0D */ VDDPA_2V90, /* 0x0E */ VDDPA_3V10, /* 0x10 */ VDDPA_3V20, /* 0x11 */ VDDPA_3V30, /* 0x12 */ VDDPA_3V40, /* 0x13 */ VDDPA_3V50, /* 0x14 */ VDDPA_3V60, /* 0x15 */ VDDPA_3V70, /* 0x16 */ VDDPA_3V80, /* 0x17 */ VDDPA_3V90, /* 0x18 */ VDDPA_4V00, /* 0x19 */ VDDPA_4V10, /* 0x1A */ VDDPA_4V20, /* 0x1B */ VDDPA_4V30, /* 0x1C */ VDDPA_4V40, /* 0x1D */ VDDPA_4V50, /* 0x1E */ VDDPA_4V60, /* 0x1F */ VDDPA_4V70, /* 0x20 */ VDDPA_4V80, /* 0x21 */ VDDPA_4V90, /* 0x22 */ VDDPA_5V00, /* 0x23 */ VDDPA_5V10, /* 0x24 */ VDDPA_5V20, /* 0x25 */ VDDPA_5V30, /* 0x26 */ VDDPA_5V40, /* 0x27 */ VDDPA_5V50, /* 0x28 */ VDDPA_5V60, /* 0x29 */ VDDPA_5V70, /* 0x2A */
		3:1	RFU
		0	Enable TXLDO 0b: disabled - no voltage output of the TXLDO 1b: enabled - regulated output of the TXLDO according to bits 9:4

NFC frontend

9.26.5 TXLDO_VDDPA_HIGH (0006h)

Table 102. TXLDO_VDDPA_HIGH (address 0006h) EEPROM configuration bit description

Addre: (hex)	Function	Bit	Description	
3	TX_LDO output: initial voltage in case the DPC is used. Applies directly at the beginning	7:0	0x00: 1V50	
	of the RF-field-on before any DPC regulation takes place. (Initial VDDPA Voltage at RF		0x01: 1V60	
	ON)		0x02: 1V70	
			0x03: 1V80	
			0x04: 1V90	
			0x05: 2V00	
			0x06: 2V10	
			0x07: 2V20	
			0x08: 2V30	
			0x09: 2V40	
			0x0A: 2V50	
			0x0B: 2V60	
			0x0C: 2V70	
			0x0D: 2V80	
			0x0E: 2V90	
			0x0F: 3V00	
			0X10: 3V10	
			0x11: 3V20	
			0x12: 3V30	
			0x13: 3V40	
			0x14: 3V50	
			0x15: 3V60	
			0x16: 3V70	
			0x17: 3V80	
			0x18: 3V90	
			0x19: 4V00	
			0x1A: 4V10	
			0x1B: 4V20	
			0x1C: 4V30	
			0x1D: 4V40	
			0x1E: 4V50	
			0x1F: 4V60	
			0x20: 4V70	
			0x21: 4V80	
			0x22: 4V90	
			0x23: 5V00	
			0x24: 5V10	
			0x25: 5V20	
			0x26: 5V30	
			0x27: 5V40	
			0x28: 5V50	
			0x29: 5V60	
			0x2A: 5V70	

NFC frontend

9.26.6 TXLDO_VDDPA_LOW (0007h)

Table 103. TXLDO_VDDPA_LOW (address 0007h) EEPROM configuration bit description

Addre: (hex)	Function	Bit	Description
7	TX_LDO output voltage in case the DPC is disabled and not used.	7:0	0x00: 1V50
			0x01: 1V60
			0x02: 1V70
			0x03: 1V80
			0x04: 1V90
			0x05: 2V00
			0x06: 2V10
			0x07: 2V20
			0x08: 2V30
			0x09: 2V40
			0x0A: 2V50
			0x0B: 2V60
			0x0C: 2V70
			0x0D: 2V80
			0x0E: 2V90
			0x0F: 3V00
			0X10: 3V10
			0x11: 3V20
			0x12: 3V30
			0x13: 3V40
			0x14: 3V50
			0x15: 3V60
			0x16: 3V70
			0x17: 3V80
			0x18: 3V90
			0x19: 4V00
			0x1A: 4V10
			0x1B: 4V20
			0x1C: 4V30
			0x1D: 4V40
			0x1E: 4V50
			0x1F: 4V60
			0x20: 4V70
			0x21: 4V80
			0x22: 4V90
			0x23: 5V00
			0x24: 5V10
			0x25: 5V20
			0x26: 5V30
			0x27: 5V40
			0x28: 5V50
			0x29: 5V60
			0x2A: 5V70

NFC frontend

9.26.7 TXLDO_VDDPA_MAX_RDR (0008h)

Table 104. TXLDO_VDDPA_MAX_RDR (address 0008h) EEPROM configuration bit description

Addre (hex)	s Function	Bit	Description
3	VDDPA maximum output voltage in case the DPC is enabled in reader mode.	7:0	0x00: 1V50
	This is used only when DPC is enabled. This ensures the Maximum Voltage up to which		0x01: 1V60
	VDDPA reached during DPC Regulation.		0x02: 1V70
			0x03: 1V80
			0x04: 1V90
			0x05: 2V00
			0x06: 2V10
			0x07: 2V20
			0x08: 2V30
			0x09: 2V40
			0x0A: 2V50
			0x0B: 2V60
			0x0C: 2V70
			0x0D: 2V80
			0x0E: 2V90
			0x0F: 3V00
			0X10: 3V10
			0x11: 3V20
			0x12: 3V30
			0x13: 3V40
			0x14: 3V50
			0x15: 3V60
			0x16: 3V70
			0x17: 3V80
			0x18: 3V90
			0x19: 4V00
			0x1A: 4V10
			0x1B: 4V20
			0x1C: 4V30
			0x1D: 4V40
			0x1E: 4V50
			0x1F: 4V60
			0x20: 4V70
			0x21: 4V80
			0x22: 4V90
			0x23: 5V00
			0x24: 5V10
			0x25: 5V20
			0x26: 5V30
			0x27: 5V40
			0x28: 5V50
			0x29: 5V60
			0x2A: 5V70

NFC frontend

9.26.8 TXLDO_VDDPA_MAX_CARD (0009h)

Table 105. TXLDO_VDDPA_MAX_CARD (address 0009h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
)	VDDPA maximum output voltage in case the APC is enabled in card mode	7:0	0x00: 1V50
			0x01: 1V60
			0x02: 1V70
			0x03: 1V80
			0x04: 1V90
			0x05: 2V00
			0x06: 2V10
			0x07: 2V20
			0x08: 2V30
			0x09: 2V40
			0x0A: 2V50
			0x0B: 2V60
			0x0C: 2V70
			0x0D: 2V80
			0x0E: 2V90
			0x0F: 3V00
			0X10: 3V10
			0x11: 3V20
			0x12: 3V30
			0x13: 3V40
			0x14: 3V50
			0x15: 3V60
			0x16: 3V70
			0x17: 3V80
			0x18: 3V90
			0x19: 4V00
			0x1A: 4V10
			0x1B: 4V20
			0x1C: 4V30
			0x1D: 4V40
			0x1E: 4V50
			0x1F: 4V60
			0x20: 4V70
			0x21: 4V80
			0x22: 4V90
			0x23: 5V00
			0x24: 5V10
			0x25: 5V20
			0x26: 5V30
			0x27: 5V40
			0x28: 5V50
			0x29: 5V60
			0x2A: 5V70

NFC frontend

9.26.9 BOOST_DEFAULT_VOLTAGE (000Ah)

Table 106. BOOST_DEFAULT_VOLTAGE (address 000Ah) EEPROM configuration bit description

Addres Function hex)	В	t Description
DC-DC configuration This Field is Used only in case of Fixed BOOST. In case of Variable BOOST the value is calculated based on the VDDPA.	d is Used use of OST. In ariable he value ted	0 VDDBOOST output voltage in case of DC-DC with fixed VDDBOOST is enabled (PWR_CONFIG) 0x00: 3.1 V 0x01: 3.2 V 0x02: 3.3 V 0x03: 3.4 V 0x04: 3.5 V 0x06: 3.7 V 0x07: 3.8 V 0x08: 3.9 V 0x08: 4.1 V 0x08: 4.2 V 0x00: 4.1 V 0x00: 4.4 V 0x00: 4.5 V 0x01: 4.8 V 0x11: 4.8 V 0x12: 4.9 V 0x13: 5.0 V 0x16: 5.3 V 0x17: 5.4 V 0x18: 5.5 V 0x18: 5.5 V 0x18: 5.5 V 0x19: 5.6 V 0x10: 6.0 V all other values: RFU

9.26.10 XTAL_CONFIG (0010h)

Table 107. XTAL CONFIG (address 0010h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
10	Configuration for the XTAL startup procedure	7:1	RFU
		0	Crystal recalibration start after wake-up from standby 1: enable 0: disable

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

9.26.11 XTAL_TIMEOUT (0011h)

Table 108. XTAL_TIMEOUT (address 0011h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
11	Configuration for the XTAL startup procedure	7:0	Timeout for XTAL to be ready (in *128us), if the timeout happens, an XTAL error event will be raised. This configuration does not speed up the boot time.

9.26.12 CLK_INPUT_FREQ (0012h)

Table 109. CLK INPUT FREQ (address 0012h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
12	Configuration for the PLL input clock frequency		RFU
		3:0	0010b: 24 MHz 0011b: 32 MHz 0100b: 48 MHz 1000b: XTAL 27.12 MHz All others: RFU

9.26.13 XTAL_CHECK_DELAY (0013h)

Correct Crystal clocking is detected by locking the crystal to the PLL. This allows the system to start quick independent from the crystal startup time. High-quality crystals will start up typically fast and allow by this optimized current consumption, e.g, during ULPCD.

A user needs to find an optimized balance between retry numbers of checking for a proper locking and the interval for checking for a locked PLL.

This allows to configure a timeout value for locking the crystal to the PLL. The timeout value is defined by **Retry_number** x **Interval**. If the timeout is reached, a clock error is raised.

Table 110. XTAL_CHECK_DELAY (address 0013h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
13	Retry_number	7:5	Max Number of retries before a clock error is raised
	Interval	4:0	Interval which is used to check if XTAL is ready (unit is 256/fc, e.g. ~18.8 us). This is the time to try to lock the PLL, a stable crystal clock is required for locking. If the PLL is not locked, a next retry to lock the PLL will be done after this interval.
			This value can be used to optimize the startup time dependent on the crystal characteristics. This is important, e.g., for optimization of the LPCD and ULPCD.

PN5190B1

NFC frontend

9.26.14 TEMP_WARNING (0014h)

Table 111. TEMP_WARNING (address 0014h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
14	CLIF & PMU temperature warning	7:6	PMU high threshold (0: disabled, 1:114degC, 2:125degC, 3:130degC)
		5:4	PMU low threshold (0: disabled, 1:114degC, 2:125degC, 3:130degC)
		3:2	high threshold (0: disabled, 1:114 °C, 2:125 °C, 3:130 °C) -
			in case temp sensor is triggered, transmitter and TX_LDO are shut down, system goes in low-power mode - default is 130 °C. This event is not indicated by an IRQ to the host, instead GPIO0 with configurable high/low polarity is used to indicate this critical event (Register PAD_CONFIG 0x52). To enable this event on GPIO0, the EEPROM configuration ENABLE_GPIO0_ON_OVERTEMP (0016h) must be set.
		1:0	low threshold (0: disabled, 1:114 °C, 2:125 °C, 3:130 °C) - in case temperature sensed is lower than threshold, system wakes up from low-power mode, a temp wake-up event is issued to the host - default is 114 °C. This event is not indicated by an IRQ to the host, instead GPIO0 with configurable high/low polarity is used to indicate this critical event (Register PAD_CONFIG 0x52).
			To enable this event on GPIO0, the EEPROM configuration ENABLE_GPIO0_ON_OVERTEMP (0016h) must be set.

9.26.15 ENABLE_GPIO0_ON_OVERTEMP (0016h)

Table 112. ENABLE_GPIO0_ON_OVERTEMP (address 0016h) EEPROM configuration bit description

Tubic 1	IZ. ENABLE_OI IO		- VERTERN (dddress of fon) EEF Rom configuration bit description
Addres (hex)	Function	Bit	Description
16	RFU	71	-
	Set/Clear GPIO0 during over temperature.	0	If set, the GPIO0 is used to indicate a temperature event. The temperature warning levels are configured in the Register TEMP_WARNING (0014h).

9.26.16 TX_SHAPING_CONFIG (0017h)

Table 113. TX_SHAPING_CONFIG (address 0017h) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
17		7:1	RFU
		0	TX_PWM_MODE_RM: CLIF_ANACTROL_TX_CONFIG_REG<1> defining 3-levels (0) or 2-levels operational mode

9.26.17 TX_INV_RM (0018h)

Table 114. TX INV RM (address 0018h) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
18	Transmitter configuration	7:6	RFU

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 114. TX_INV_RM (address 0018h) EEPROM configuration register bit description...continued

Addres (hex)	Function	Bit	Description
		5	0: TX1 non-inverted output (output zero remains zero) 1: TX1 inverted output (common mode operation, output zero becomes one)
		4	0: TX2 non-inverted output (output zero remains zero) 1: TX2 inverted output (common mode operation, output zero becomes one)
		3:2	RFU
		1	0: TX1 no phase shift, 0° 1: TX1 phase shifted by 180°
		0	0: TX2 no phase shift, 0° 1: TX2 phase shifted by 180°

9.26.18 TX_CLK_MODE_1 (0019h)

Table 115. TX_CLK_MODE_1 (address 0019h) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
19	Transmitter clock configuration	7	RFU
		6:4	CLK_MODE_CW_RM
		3	RFU
		2:0	CLK_MODE_MOD_RM

9.26.19 TX_CLK_MODE_2 (001Ah)

Table 116. TX_CLK_MODE_2 (address 001Ah) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
1A	Transmitter clock configuration	7	RFU
		6:4	CLK_MODE_DEFAULT
		3	RFU
		2:0	CLK_MODE_TRANS_RM

9.26.20 RESIDUAL_AMPL_LEVEL_A106 (0022h)

Table 117. RESIDUAL_AMPL_LEVEL_A106 (address 0022h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration		Residual amplitude level 00: 0% carrier FF: 100% carrier

PN5190B1

NFC frontend

9.26.21 EDGE_TYPE_A106 (0023h)

Table 118. EDGE_TYPE_A106 (address 0023h) EEPROM configuration bit description

Addres hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.22 EDGE_STYLE_A106 (0024h)

Table 119. EDGE_STYLE_A106 (address 0024h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

NFC frontend

9.26.23 EDGE_LENGTH_A106 (0025h)

Table 120. EDGE_LENGTH_A106 (address 0025h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.24 RESIDUAL_AMPL_LEVEL_A212 (0026h)

Table 121. RESIDUAL_AMPL_LEVEL_A212 (address 0026h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration	7:0	Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.25 EDGE_TYPE_A212 (0027h)

Table 122. EDGE_TYPE_A212 (address 0027h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

NFC frontend

Table 122. EDGE_TYPE_A212 (address 0027h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.26 EDGE_STYLE_A212 (0028h)

Table 123. EDGE_STYLE_A212 (address 0028h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.27 EDGE_LENGTH_A212 (0029h)

Table 124. EDGE_LENGTH_A212 (address 0029h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

NFC frontend

9.26.28 RESIDUAL_AMPL_LEVEL_A424 (002Ah)

Table 125. RESIDUAL_AMPL_LEVEL_A424 (address 002Ah) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration		Residual amplitude level 00: 0% carrier FF: 100% carrier

9.26.29 EDGE_TYPE_A424 (002Bh)

Table 126. EDGE TYPE A424 (address 002Bh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.30 EDGE_STYLE_A424 (002Ch)

Table 127. EDGE_STYLE_A424 (address 002Ch) EEPROM configuration bit description

			`	,	•
Addres (hex)	Function	Bit	Description		
24	RFU	7	-		

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 127. EDGE_STYLE_A424 (address 002Ch) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.31 EDGE_LENGTH_A424 (002Dh)

Table 128. EDGE_LENGTH_A424 (address 002Ch) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.32 RESIDUAL_AMPL_LEVEL_A848 (002Eh)

Table 129. RESIDUAL_AMPL_LEVEL_A848 (address 002Eh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration	7:0	Residual amplitude level 00: 0 % carrier FF: 100 % carrier

NFC frontend

9.26.33 EDGE_TYPE_A848 (002Fh)

Table 130. EDGE_TYPE_A848 (address 002Fh) EEPROM configuration bit description

Addres hex)	Function	Bit	Description
3	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.34 EDGE_STYLE_A848 (0030h)

Table 131. EDGE_STYLE_A848 (address 0030h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

NFC frontend

9.26.35 EDGE_LENGTH_A848 (0031h)

Table 132. EDGE_LENGTH_A848 (address 0031h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.36 RESIDUAL_AMPL_LEVEL_B106 (0032h)

Table 133. RESIDUAL_AMPL_LEVEL_B106 (address 0032h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration	7:0	Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.37 EDGE_TYPE_B106 (0033h)

Table 134. EDGE TYPE B106 (address 0033h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

NFC frontend

Table 134. EDGE_TYPE_B106 (address 0033h) EEPROM configuration bit description...continued

Addres Function Bit hex)			Description
		3:0	Definition of edge transition style of rising edge
			Defines style of edge transition:
			Firmware based shaping:
			1: linear transition between two amplitude levels
			2: two linear transitions between amplitude levels
			3: three linear transitions between amplitude levels Others: RFU
			Lookup table based shaping:
			4: lookup table-based transition, no automatic adaptation based on VDDPA
			5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection
			6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection
			others: RFU

9.26.38 EDGE_STYLE_B106 (0034h)

Table 135. EDGE_STYLE_B106 (address 0034h) EEPROM configuration bit description

Addres Function Bit Descrip			scription	
24	RFU	7	-	
	Transmitter 6:4 shaping configuration falling edge		If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)	
	RFU 3 -		-	
shaping Time constant configuration rising If EDGE_TYPE in		2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)	

9.26.39 EDGE_LENGTH_B106 (0035h)

Table 136. EDGE_LENGTH_B106 (address 0035h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description	
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)	
		6:5	RFU	
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)	

PN5190B1

NFC frontend

9.26.40 RESIDUAL_AMPL_LEVEL_B212 (0036h)

Table 137. RESIDUAL_AMPL_LEVEL_B212 (address 0036h) EEPROM configuration bit description

Addres (hex)	es Function Bit Description		Description
22	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.41 EDGE_TYPE_B212 (0037h)

Table 138. EDGE TYPE B212 (address 0037h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.42 EDGE_STYLE_B212 (0038h)

Table 139. EDGE_STYLE_B212 (address 0038h) EEPROM configuration bit description

I GOIO I	Table 100. EDGE_011EE_DZ12 (addition 00001) EEI Rom comigaration bit docomption					
Addres	Function	Bit	Description			
(hex)						
24	RFU	7	-			

PN5190B1

NFC frontend

Table 139. EDGE_STYLE_B212 (address 0038h) EEPROM configuration bit description...continued

Addres (hex)			Description		
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)		
	RFU	3	-		
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)		

9.26.43 EDGE_LENGTH_B212 (0039h)

Table 140. EDGE_LENGTH_B212 (address 0039h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.44 RESIDUAL_AMPL_LEVEL_B424 (003Ah)

Table 141. RESIDUAL_AMPL_LEVEL_B424 (address 003Ah) EEPROM configuration bit description

				`	,	0	•
Addres (hex)	Function	Bit	Description				
22	Transmitter shaping configuration	7:0	Residual amp 00: 0 % carrie FF: 100 % ca	er			

NFC frontend

9.26.45 EDGE_TYPE_B424 (003Bh)

Table 142. EDGE_TYPE_B424 (address 003Bh) EEPROM configuration bit description

Addres hex)	Function	Bit	Description
3	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.46 EDGE_STYLE_B424 (003Ch)

Table 143. EDGE_STYLE_B424 (address 003Ch) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter 6:4 shaping configuration falling edge		If EDGE_TYPE is 1,2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1,2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

NFC frontend

9.26.47 EDGE_LENGTH_B424 (003Dh)

Table 144. EDGE_LENGTH_B424 (address 003Dh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.48 RESIDUAL_AMPL_LEVEL_B848 (003Eh)

Table 145. RESIDUAL_AMPL_LEVEL_B848 (address 003Eh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration	7:0	Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.49 EDGE_TYPE_B848 (003Fh)

Table 146. EDGE TYPE B848 (address 003Fh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

NFC frontend

Table 146. EDGE_TYPE_B848 (address 003Fh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
		3:0	Definition of edge transition style of rising edge
			Defines style of edge transition:
			Firmware based shaping:
			1: linear transition between two amplitude levels
			2: two linear transitions between amplitude levels
			3: three linear transitions between amplitude levels Others: RFU
			Lookup table based shaping:
			4: lookup table-based transition, no automatic adaptation based on VDDPA
			5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection
			6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection
			others: RFU

9.26.50 EDGE_STYLE_B848 (0040h)

Table 147. EDGE_STYLE_B848 (address 0040h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.51 EDGE_LENGTH_B848 (0041h)

Table 148. EDGE_LENGTH_B848 (address 0041h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

NFC frontend

9.26.52 RESIDUAL_AMPL_LEVEL_F212 (0042h)

Table 149. RESIDUAL_AMPL_LEVEL_F212 (address 0042h) EEPROM configuration bit description

		_		1	,		•
Addres (hex)	Function	Bit	Description	ı			
22	Transmitter shaping configuration		Residual am 00: 0 % carri FF: 100 % carri	ier			

9.26.53 EDGE_TYPE_F212 (0043h)

Table 150. EDGE_TYPE_F212 (address 0043h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.54 EDGE_STYLE_F212 (0044h)

Table 151. EDGE_STYLE_F212 (address 0044h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 151. EDGE_STYLE_F212 (address 0044h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.55 EDGE_LENGTH_F212 (0045h)

Table 152. EDGE LENGTH F212 (address 0045h) EEPROM configuration bit description

Addres	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.56 RESIDUAL_AMPL_LEVEL_F424 (0046h)

Table 153. RESIDUAL_AMPL_LEVEL_F424 (address 0046h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration	7:0	Residual amplitude level 00: 0 % carrier FF: 100 % carrier

NFC frontend

9.26.57 EDGE_TYPE_F424 (0047h)

Table 154. EDGE_TYPE_F424 (address 0047h) EEPROM configuration bit description

ddres	Function	Bit	Description
3	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.58 EDGE_STYLE_F424 (0048h)

Table 155. EDGE_STYLE_F424 (address 0048h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

NFC frontend

9.26.59 EDGE_LENGTH_F424 (0049h)

Table 156. EDGE_LENGTH_F424 (address 0049h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.60 RESIDUAL_AMPL_LEVEL_V100_26 (004Ah)

Table 157. RESIDUAL_AMPL_LEVEL_V100_26 (address 004Ah) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration	7:0	Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.61 EDGE_TYPE_V100_26 (004Bh)

Table 158. EDGE TYPE V100 26 (address 004Bh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

NFC frontend

Table 158. EDGE_TYPE_V100_26 (address 004Bh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.62 EDGE_STYLE_V100_26 (004Ch)

Table 159. EDGE_STYLE_V100_26 (address 004Ch) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.63 EDGE_LENGTH_V100_26 (004Dh)

Table 160. EDGE_LENGTH_V100_26 (address 004Dh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

NFC frontend

9.26.64 RESIDUAL_AMPL_LEVEL_V100_53 (004Eh)

Table 161. RESIDUAL_AMPL_LEVEL_V100_53 (address 004Eh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.65 EDGE_TYPE_V100_53 (004Fh)

Table 162. EDGE TYPE V100 53 (address 004Fh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.66 EDGE_STYLE_V100_53 (0050h)

Table 163. EDGE_STYLE_A106 (address 0050h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 163. EDGE_STYLE_A106 (address 0050h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.67 EDGE_LENGTH_V100_53 (0051h)

Table 164. EDGE LENGTH V100 53 (address 0051h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.68 RESIDUAL_AMPL_LEVEL_V100_106 (0052h)

Table 165. RESIDUAL_AMPL_LEVEL_V100_106 (address 0052h) EEPROM configuration bit description

				_	•	 	
Addres (hex)	Function	Bit	Description				
22	Transmitter shaping configuration		Residual amp 00: 0 % carrid FF: 100 % ca	er			

NFC frontend

9.26.69 EDGE_TYPE_V100_106 (0053h)

Table 166. EDGE_TYPE_V100_106 (address 0053h) EEPROM configuration bit description

Addres hex)	Function	Bit	Description
3	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.70 EDGE_STYLE_V100_106 (0054h)

Table 167. EDGE_STYLE_V100_106 (address 0054h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

NFC frontend

9.26.71 EDGE_LENGTH_V100_106 (0055h)

Table 168. EDGE_LENGTH_V100_106 (address 0055h) EEPROM configuration bit description

Addres	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.72 RESIDUAL_AMPL_LEVEL_100_212 (0056h)

Table 169. RESIDUAL_AMPL_LEVEL_100_212 (address 0056h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.73 EDGE_TYPE_V100_212 (0057h)

Table 170. EDGE TYPE V100 212 (address 0057h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

NFC frontend

Table 170. EDGE_TYPE_V100_212 (address 0057h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.74 EDGE_STYLE_V100_212 (0058h)

Table 171. EDGE_STYLE_V100_212 (address 0058h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.75 EDGE_LENGTH_V100_212 (0059h)

Table 172. EDGE_LENGTH_V100_212 (address 0059h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

NFC frontend

9.26.76 RESIDUAL_AMPL_LEVEL_V10_26 (005Ah)

Table 173. RESIDUAL_AMPL_LEVEL_V10_26 (address 005Ah) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.77 EDGE_TYPE_V10_26 (005Bh)

Table 174. EDGE TYPE V10 26 (address 005Bh) EEPROM configuration bit description

Addres hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.78 EDGE_STYLE_V10_26 (005Ch)

Table 175. EDGE_STYLE_V10_26 (address 005Ch) EEPROM configuration bit description

Ad (he	Function	Bit	Description
24	RFU	7	-

PN5190B1

NFC frontend

Table 175. EDGE_STYLE_V10_26 (address 005Ch) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.79 EDGE_LENGTH_V10_26 (005Dh)

Table 176. EDGE_LENGTH_V10_26 (address 005Dh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.80 RESIDUAL_AMPL_LEVEL_V10_53 (005Eh)

Table 177. RESIDUAL_AMPL_LEVEL_V10_53 (address 005Eh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

NFC frontend

9.26.81 EDGE_TYPE_V10_53 (005Fh)

Table 178. EDGE_TYPE_V10_53 (address 005Fh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.82 EDGE_STYLE_V10_53 (0060h)

Table 179. EDGE_STYLE_V10_53 (address 0060h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

NFC frontend

9.26.83 EDGE_LENGTH_V10_53 (0061h)

Table 180. EDGE_LENGTH_V10_53 (address 0061h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.84 RESIDUAL_AMPL_LEVEL_V10_106 (0062h)

Table 181. RESIDUAL_AMPL_LEVEL_V10_106 (address 0062h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.85 EDGE_TYPE_V10_106 (0063h)

Table 182, EDGE TYPE V10 106 (address 0063h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

NFC frontend

Table 182. EDGE_TYPE_V10_106 (address 0063h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.86 EDGE_STYLE_V10_106 (0064h)

Table 183. EDGE_STYLE_V100_212 (address 0064h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.87 EDGE_LENGTH_V10_106 (0065h)

Table 184. EDGE_LENGTH_V10_106 (address 0065h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

NFC frontend

9.26.88 RESIDUAL_AMPL_LEVEL_V10_212 (0066h)

Table 185. RESIDUAL_AMPL_LEVEL_V10_212 (address 0066h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.89 EDGE_TYPE_V10_212 (0067h)

Table 186. EDGE TYPE V10 212 (address 0067h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.90 EDGE_STYLE_V10_212 (0068h)

Table 187. EDGE_STYLE_V10_212 (address 0068h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 187. EDGE_STYLE_V10_212 (address 0068h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.91 EDGE_LENGTH_V10_212 (0069h)

Table 188. EDGE_LENGTH_V100_212 (address 0069h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.92 RESIDUAL_AMPL_LEVEL_180003m3_tari18p88 (006Ah)

${\bf Table~189.~RESIDUAL_AMPL_LEVEL_180003m3_tari18p88~(address~006Ah)~EEPROM~configuration~bit~description}$

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

NFC frontend

9.26.93 EDGE_TYPE_180003m3_tari18p88 (006Bh)

Table 190. EDGE TYPE 180003m3 tari18p88 (address 006Bh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.94 EDGE_STYLE_180003m3_tari18p88 (006Ch)

Table 191. EDGE_STYLE_180003m3_tari18p88 (address 006Ch) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-
	Transmitter shaping configuration falling edge	6:4	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU	3	-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

NFC frontend

9.26.95 EDGE_LENGTH_180003m3_tari18p88 (006Dh)

Table 192. EDGE_LENGTH_180003m3_tari18p88 (address 006Dh) EEPROM configuration bit description

Addres	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.96 RESIDUAL_AMPL_LEVEL_180003m3_tari9p44 (006Eh)

${\bf Table~193.~RESIDUAL_AMPL_LEVEL_180003m3_tari9p44~(address~006Eh)~EEPROM~configuration~bit~description}$

Addres (hex)	Function	Bit	Description
	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.97 EDGE_TYPE_180003m3_tari9p44 (006Fh)

Table 194. EDGE_TYPE_180003m3_tari9p44 (address 006Fh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
23	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

NFC frontend

Table 194. EDGE_TYPE_180003m3_tari9p44 (address 006Fh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU

9.26.98 EDGE_STYLE_180003m3_tari9p44 (0070h)

Table 195. EDGE_STYLE_180003m3_tari9p44 (address 0070h) EEPROM configuration bit description

Addres Function (hex)		Bit	Description		
24	RFU	7	-		
	Transmitter shaping configuration falling edge		If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)		
	RFU	3	-		
Transmitter 2:0 shaping configuration rising edge		2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)		

9.26.99 EDGE_LENGTH_180003m3_tari9p44 (0071h)

Table 196. EDGE_LENGTH_180003m3_tari9p44 (address 0071h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	. ,		Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

NFC frontend

9.26.100 RESIDUAL_AMPL_LEVEL_B_PRIME_106 (0072h)

Table 197. RESIDUAL_AMPL_LEVEL_180003m3_tari18p88 (address 0072h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
22	Transmitter shaping configuration		Residual amplitude level 00: 0 % carrier FF: 100 % carrier

9.26.101 EDGE_TYPE_B_PRIME_106 (0073h)

Table 198. EDGE_TYPE_B_PRIME_106 (address 0073h) EEPROM configuration bit description

ddres nex)	Function	Bit	Description				
3	Transmitter shaping configuration	7:4	Definition of edge transition style of falling edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU				
		3:0	Definition of edge transition style of rising edge Defines style of edge transition: Firmware based shaping: 1: linear transition between two amplitude levels 2: two linear transitions between amplitude levels 3: three linear transitions between amplitude levels Others: RFU Lookup table based shaping: 4: lookup table-based transition, no automatic adaptation based on VDDPA 5: lookup table-based transition, automatic adaptation based on VDDPA including sCorrection 6: lookup table-based transition, automatic adaptation based on VDDPA but no sCorrection others: RFU				

9.26.102 EDGE_STYLE_B_PRIME_106 (0074h)

Table 199. EDGE_STYLE_B_PRIME_106 (address 0074h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
24	RFU	7	-

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Table 199. EDGE_STYLE_B_PRIME_106 (address 0074h) EEPROM configuration bit description...continued

Addres (hex)	Addres Function (hex)		Description
	Transmitter shaping configuration falling edge		If EDGE_TYPE is 1, 2 or 3: Time constant configuration of falling edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of falling edge (0,1,2,3)
	RFU 3		-
	Transmitter shaping configuration rising edge	2:0	If EDGE_TYPE is 1, 2 or 3: Time constant configuration of rising edge (depends on edge style) If EDGE_TYPE is 4,5,6: This number is the lookup table which shall be used of rising edge (0,1,2,3)

9.26.103 EDGE_LENGTH_B_PRIME_106 (0075h)

Table 200. EDGE_LENGTH_B_PRIME_106 (address 0075h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
25	Transmitter shaping configuration	7	Scaling of edge transition by factor 2 of rising/falling edge (refers to both rising and falling edge at the same time) 0=disabled (1 transition state = one carrier cycle) 1=enabled (1 transition state = two carrier cycles)
		6:5	RFU
		4:0	Number of active transition states in rising and falling edge pattern (refers to both rising and falling edge at the same time)

9.26.104 DPC_CONFIG (0076h)

Table 201. DPC_CONFIG (address 0076h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
76	DPC Configuration	7:3	RFU
		2	DPC in Active Target Mode: 0: disabled, 1: enabled
		1	DPC in Active Initiator Mode: 0: disabled, 1: enabled
0 DPC in Reader/ Passive Initia 0: disabled, 1: enabled		0	, ,

NFC frontend

9.26.105 DPC_TARGET_CURRENT (077h)

Table 202. DPC TARGET CURRENT (address 077h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
77	DPC Configuration		VDDPA target current in mA. The target current +/- hysteresis defines the limiting maximum current for the DPC. This configuration shall not exceed 350 mA - hysteresis.

Note: The resulting current that is driven by the transmitter can be further reduced based on the current reduction lookup table entries.

9.26.106 DPC_HYSTERESIS_LOADING (079h)

The hysteresis (DPC_HYSTERESIS_LOADING, DPC_HYSTERESIS_UNLOADING) together with the target current (DPC_TARGET_CURRENT) defines the current limit, at which the DPC automatically decreases or increases the VDDPA.

The VDDPA is automatically reduced, as soon as the current exceeds the DPC_TARGET_CURRENT + DPC_HYSTERESIS_LOADING, and the VDDPA is automatically increased again, as soon as the current is below DPC_TARGET_CURRENT – DPC_HYSTERESIS_UNLOADING.

Table 203. DPC_HYSTERESIS_LOADING (address 079h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
79	DPC Configuration		Absolute difference of measured transmitter current (target current incl. current reduction) in mA that triggers a DPC update event during loading.

Note: If the hysteresis is configured too small, it might cause an oscillation of the transmitted field.

Note: In most application, the default values work well and do not need to be modified.

9.26.107 DPC_HYSTERESIS_UNLOADING (07Ch)

The hysteresis (DPC_HYSTERESIS_LOADING, DPC_HYSTERESIS_UNLOADING) together with the target current (DPC_TARGET_CURRENT) defines the current limit, at which the DPC automatically decreases or increases the VDDPA.

The VDDPA is automatically reduced, as soon as the current exceeds the DPC_TARGET_CURRENT + DPC_HYSTERESIS_LOADING, and the VDDPA is automatically increased again, as soon as the current is below DPC_TARGET_CURRENT – DPC_HYSTERESIS_UNLOADING.

Table 204. DPC HYSTERESIS UNLOADING (address 07Ch) EEPROM configuration bit description

I GOIO E	Table 204. Bi 6_iii o'iii garation bit accomption					
Addres Function Bit		Bit	Description			
(hex)						
7C DPC Configuration 7			Absolute difference of measured transmitter current (target current incl. current reduction) in mA that triggers a DPC update event during unloading.			

Note: If the hysteresis is configured too small, it might cause an oscillation of the transmitted field.

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

Note: In most application, the default values work well and do not need to be modified.

9.26.108 DPC_TXLDOVDDPALow (007Dh)

Table 205. DPC_TXLDOVDDPALow (address 007Dh) EEPROM configuration register bit description

			,		 	•
Addres (hex)	Function	Bit	Description			
7D	DPC Configuration	7:0	VDDPA Low Limit for F	RDON		

9.26.109 DPC_TXGSN (007Eh)

Table 206. DPC_TXGSN (address 007Eh) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
7E	DPC Configuration		for tx1_gsn < 20: resistance = 10 Ohm / (tx1_gsn + 1) for tx1_gsn >= 20: resistance = 0.5 Ohm

9.26.110 DPC_RDON_Control (007Fh)

Table 207. DPC RDON Control (address 007Fh) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description			
7F	DPC Configuration		00: Disabled 01: RdON Control 02-FF: RFU			

9.26.111 DPC_InitialRDOn_RFOn (0080h)

Table 208. DPC_InitialRDOn_RFOn (address 0080h) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
80	DPC Configuration	7:0	Initial GSP TX1/TX2 value during FieldON

9.26.112 DPC_GUARD_TIME (087h)

Table 209. DPC_GUARD_TIME (address 087h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
	DPC guard time configuration	7:0	Guard time before TX and after RX. 1unit = 1us. The DPC regulation is done once before TX and once after RX. The guard time parameter is the time between DPC regulation completion and TX start. The guard time parameter is the time between RX stop and DPC regulation start. The guard time is always enabled for TX

Note: Recommendation is not to modify the default value.

PN5190B1

NFC frontend

9.26.113 DPC_ENABLE_DURING_FDT (088h)

Table 210. DPC_ENABLE_DURING_FDT (address 088h) EEPROM configuration bit description

	Function	Bit	Description
(hex)			
88	DPC Configuration	7	DPC regulation enable during FDT
			0: DPC disabled during FDT (debug purpose only)
			1: DPC enabled during FDT (recommendation)

9.26.114 DPC_GUARD_TIME_AFTER_RX (089h)

Table 211. DPC_GUARD_TIME_AFTER_RX (address 089h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
89	RFU	7:1	-
89	DPC Configuration	0	Enable DPC guard time after RX 0: disable (debug purposes) 1: enable (recommended) The guard time can be configured in register DPC_GUARD_TIME

Note: The guard time is always enabled for TX and cannot be disabled.

9.26.115 DPC_LOOKUP_TABLE (008Bh-0133h)

Table 212. DPC_LOOKUP_TABLE (008Bh-0133h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
	ENTRY 0	31:0	This is the entry for 1.5 V
08B	Target current reduction	31:23	ENTRY 0 -LSB - byte 0 Voltage step between DPC entries = 100 mV. Voltage offset start = 1.5 V bEntry_00 = 1V5 bEntry_42 = 5V7 Bits[7:0] = Target current reduction in mA (unsigned)
08C	AWC amp mod change	23:16	ENTRY 0 - byte 1 Bits[7:0] = Relative change of modulated amplitude level (signed)
08D	AWC edge time constant for ASK100	15:8	ENTRY 0 - byte 2 Bits[3:0] = ASK100, Relative change of falling edge time constant (signed) Bits[7:4] = ASK100, Relative change of rising edge time constant (signed)
08E	AWC falling edge time constant for ASK10	7:0	ENTRY 0 -MSB - byte 4 Bits[3:0] = ASK10, Relative change of falling edge time constant (signed) Bits[7:4] = ASK10, Relative change of rising edge time constant (signed)
08F	ENTRY 1	31:0	This is the entry for 1.6 V
093	ENTRY 2	31:0	This is the entry for 1.7 V
			This is the entry for 5.6 V
0133	ENTRY 42	31:0	This is the entry for 5.7 V

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

9.26.116 ARC_CONFIG (0137h)

Table 213. ARC_CONFIG (address 0137h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
137	ARC Setting configuration	7	ARC algorithm enable 0: Disable 1: Enable
		6:3	RFU
		2:0	Number of entries in ARC table. (value between 0 to 4) 0: one entry 1: two entries 2: three entries 3: four entries 4: five entries

9.26.117 ARC_VDDPA (0139h)

Table 214. ARC_VDDPA (0139Eh) EEPROM configuration bit description

	able 214. ARC_VDDFA (0139EII) EEFROM Configuration bit description				
Addres (hex)	Function	Bit	Description		
13D	VDDPA_4	7:0	Byte[4] = VDDPA range_index 4: if VDDPA voltage between VDDPA_3 to ARC_VDDPA_4		
13C	VDDPA_3	7:0	Byte[3] = VDDPA_range_index 3: if VDDPA voltage between VDDPA_2 to ARC_VDDPA_3 - 0.1		
13B	VDDPA_2	7:0	Byte[2] = VDDPA_range_index 2: if VDDPA voltage between VDDPA_1 to ARC_VDDPA_2 - 0.1		
13A	VDDPA_1	7:0	Byte[1] = VDDPA_range_index 1: if VDDPA voltage between VDDPA_0 to (ARC_VDDPA_1 - 0.1)		
139	VDDPA_0	7:0	Byte[0] = VDDPA_range_index 0: if VDDPA voltage between 1.5 to (VDDPA_0 - 0.1)		

Note: VDDPA setting for Bytes 0...4:

0x00: 1V50 0x01: 1V60 0x02: 1V70 0x03: 1V80 0x04: 1V90 0x05: 2V00 0x06: 2V10 0x07: 2V20 0x08: 2V30 0x09: 2V40

0x0A: 2V50

PN5190B1

All information provided in this document is subject to legal disclaimers.

NFC frontend

```
0x0B: 2V60
0x0C: 2V70
```

0x0D: 2V80

0x0E: 2V90

0x0F: 3V00

0X10: 3V10

0x11: 3V20

0x12: 3V30

0x13: 3V40

0x14: 3V50

0x15: 3V60

0x16: 3V70

0x17: 3V80

0x18: 3V90

0x19: 4V00

0x1A: 4V10

0x1B: 4V20

0x1C: 4V30

0x1D: 4V40

0x1E: 4V50

0x1F: 4V60

0x20: 4V70

0x21: 4V80

0x22: 4V90

0x23: 5V00

0x24: 5V10

0x25: 5V20

0x26: 5V30

0x27: 5V40

0x28: 5V50

0x29: 5V60

0x2A: 5V70

9.26.118 ARC_RM_A106 (013Eh)

This is the setting for type A-106.

PN5190B1

All information provided in this document is subject to legal disclaimers.

Table 215. ARC_RM_A106 (address 013Eh) EEPROM configuration bit description

	Function	Bit	Description
146	RM_RX_ARC_4	15:0	Bit[15] This setting is only taken into account if bit 14 of address 13E is set. 0: ARC settings always apply, bits 09 from the table ARC_RM_A106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A106_FDT are used, else bits 09 of table ARC_RM_A106 are used Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
144	RM_RX_ARC_3	15:0	Bit[15] This setting is only taken into account if bit 14 of address 13E is set. 0: ARC settings always apply, bits 09 from the table ARC_RM_A106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A106_FDT are used, else bits 09 of table ARC_RM_A106 are used Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
142	RM_RX_ARC_2	15:0	Bit[15] This setting is only taken into account if bit 14 of address 13E is set. 0: ARC settings always apply, bits 09 from the table ARC_RM_106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A106_FDT are used, else bits 09 of table ARC_RM_A106 are used Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
140	RM_RX_ARC_1	15:0	Bit[15] This setting is only taken into account if bit 14 of address 13E is set. 0: ARC settings always apply, bits 09 from the table ARC_RM_A106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A106_FDT are used, else bits 09 of table ARC_RM_A106 are used Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 215. ARC_RM_A106 (address 013Eh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
13E	RM_RX_ARC_0	15:0	Bit[15] This setting is only taken into account if bit 14 of address 13E is set. 0: ARC settings always apply, bits 09 from the table ARC_RM_A106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A106_FDT are used, else bits 09 of table ARC_RM_A106 are used Bit [14]: 1: ARC enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

9.26.119 ARC_RM_A212 (0148h)

This is the setting for type A-212.

Table 216. ARC_RM_A212 (address 0148h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
150	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
14E	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 216. ARC_RM_A212 (address 0148h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
14C	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
14A	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
148	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.120 ARC_RM_A424 (0152h)

This is the setting for type A-424.

Table 217. ARC_RM_A424 (address 0152h) EEPROM configuration bit description

Addres	Function	Bit	Description
15A	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A424 are used, else settings will be used from LoadProtocol A424 Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
158	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A424 are used, else settings will be used from LoadProtocol A424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
156	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A424 are used, else settings will be used from LoadProtocol A424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
154	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A424 are used, else settings will be used from LoadProtocol A424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 217. ARC_RM_A424 (address 0152h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
152	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.121 ARC_RM_A848 (015Ch)

This is the setting for type A-848.

Table 218. ARC_RM_A848 (address 015Ch) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
164	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A848 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A848 are used, else settings will be used from LoadProtocol A848 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
162	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A848 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A848 are used, else settings will be used from LoadProtocol A848 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 218. ARC_RM_A848 (address 015Ch) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
160	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A848 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A848 are used, else settings will be used from LoadProtocol A848 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
15E	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A848 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A848 are used, else settings will be used from LoadProtocol A848 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
15C	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.122 ARC_RM_B106 (0166h)

This is the setting for type B-106.

Table 219. ARC_RM_B106 (address 0166h) EEPROM configuration bit description

Addre (hex)	s Function	Bit	Description
16E	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B106 are used, else settings will be used from LoadProtocol B106 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
16C	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B106 are used, else settings will be used from LoadProtocol B106 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
16A	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B106 are used, else settings will be used from LoadProtocol B106 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
168	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B106 are used, else settings will be used from LoadProtocol B106 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 219. ARC_RM_B106 (address 0166h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
166	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.123 ARC_RM_B212 (0170h)

This is the setting for type B-212.

Table 220. ARC_RM_B212 (address 0170h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
178	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B212 are used, else settings will be used from LoadProtocol B212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
176	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B212 are used, else settings will be used from LoadProtocol B212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 220. ARC_RM_B212 (address 0170h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
174	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B212 are used, else settings will be used from LoadProtocol B212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
172	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B212 are used, else settings will be used from LoadProtocol B212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
170	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.124 ARC_RM_B424 (017Ah)

This is the setting for type B-424.

Table 221. ARC_RM_B424 (address 017Ah) EEPROM configuration bit description

Addre (hex)	s Function	Bit	Description
182	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
180	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
17E	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
17C	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 221. ARC_RM_B424 (address 017Ah) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
17A	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.125 ARC_RM_B848 (0184h)

This is the setting for type B-848.

Table 222. ARC_RM_B848 (address 0184h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
18C	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B848 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B848 are used, else settings will be used from LoadProtocol B848 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
18A	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B848 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B848 are used, else settings will be used from LoadProtocol B848 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 222. ARC_RM_B848 (address 0184h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
188	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B848 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B848 are used, else settings will be used from LoadProtocol B848 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
186	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_B848 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_B848 are used, else settings will be used from LoadProtocol B848 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
184	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.126 ARC_RM_F212 (018Eh)

This is the setting for type F-212.

Table 223. ARC_RM_F212 (address 018Eh) EEPROM configuration bit description

Addres	s Function	Bit	Description
196	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_F212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_F212 are used, else settings will be used from LoadProtocol F212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
194	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_F212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_F212 are used, else settings will be used from LoadProtocol F212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
192	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_F212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_F212 are used, else settings will be used from LoadProtocol F212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
190	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_F212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_F212 are used, else settings will be used from LoadProtocol F212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 223. ARC_RM_F212 (address 018Eh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
18E	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.127 ARC_RM_F424 (0198h)

This is the setting for type F-424.

Table 224. ARC_RM_F424 (address 0198h) EEPROM configuration bit description

		•	
Addres (hex)	Function	Bit	Description
1A0	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_F424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_F424 are used, else settings will be used from LoadProtocol F424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
19E	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_F424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_F424 are used, else settings will be used from LoadProtocol F424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 224. ARC_RM_F424 (address 0198h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
19C	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_F424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_F424 are used, else settings will be used from LoadProtocol F424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
19A	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_F424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_F424 are used, else settings will be used from LoadProtocol F424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
198	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.128 ARC_RM_V_6p6 (01A2h)

This is the setting for type A-106.

Table 225. ARC_RM_V_6p6 (address 01A2h) EEPROM configuration bit description

Addres	s Function	Bit	Description
1AA	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V6P6 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V6P6 are used, else settings will be used from LoadProtocol V6P6 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1A8	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V6P6 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V6P6 are used, else settings will be used from LoadProtocol V6P6 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1A6	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V6P6 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V6P6 are used, else settings will be used from LoadProtocol V6P6 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1A4	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V6P6 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V6P6 are used, else settings will be used from LoadProtocol V6P6 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 225. ARC_RM_V_6p6 (address 01A2h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
1A2	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.129 ARC_RM_V_26 (01ACh)

This is the setting for type V 26.

Table 226. ARC_RM_V_26 (address 01ACh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1B4	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V26 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V26 are used, else settings will be used from LoadProtocol V26 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1B2	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V26 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V26 are used, else settings will be used from LoadProtocol V26 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 226. ARC_RM_V_26 (address 01ACh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
1B0	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V26 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V26 are used, else settings will be used from LoadProtocol V26 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1AE	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V26 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V26 are used, else settings will be used from LoadProtocol V26 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1AC	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.130 ARC_RM_V53 (01B6h)

This is the setting for type V53.

Table 227. ARC_RM_V53(address 01B6h) EEPROM configuration bit description

Addre	s Function	Bit	Description
1BE	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V53 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V53 are used, else settings will be used from LoadProtocol V53 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1BC	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V53 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V53 are used, else settings will be used from LoadProtocol V53 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1BA	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V53 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V53 are used, else settings will be used from LoadProtocol V53 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1B8	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V53 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V53 are used, else settings will be used from LoadProtocol V53 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 227. ARC_RM_V53(address 01B6h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
1B6	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.131 ARC_RM_V106 (01C0h)

This is the setting for type V106.

Table 228. ARC_RM_V106(address 01C0h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1C8	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1C6	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 228. ARC_RM_V106(address 01C0h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
1C4	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1C2	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_A212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_A212 are used, else settings will be used from LoadProtocol A212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1C0	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.132 ARC_RM_V212 (01CAh)

This is the setting for type V212.

Table 229. ARC_RM_V212(address 01CAh) EEPROM configuration bit description

Addres	Function	Bit	Description
1D2	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V212 are used, else settings will be used from LoadProtocol V212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1D0	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V212 are used, else settings will be used from LoadProtocol V212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1CE	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V212 are used, else settings will be used from LoadProtocol V212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1CC	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_V212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_V212 are used, else settings will be used from LoadProtocol V212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 229. ARC_RM_V212(address 01CAh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
1CA	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.133 ARC_RM_180003m3_SC424_4Man (01D4h)

This is the setting for type 180003m3_SC424_4Man.

Table 230. ARC_RM_180003m3_SC424_4Man (address 01D4h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1DC	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC424_4MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC424_4MAN are used, else settings will be used from LoadProtocol 180003M3_SC424_4MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1DA	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC424_4MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC424_4MAN are used, else settings will be used from LoadProtocol 180003M3_SC424_4MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 230. ARC_RM_180003m3_SC424_4Man (address 01D4h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
1D8	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC424_4MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC424_4MAN are used, else settings will be used from LoadProtocol 180003M3_SC424_4MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1D6	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC424_4MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC424_4MAN are used, else settings will be used from LoadProtocol 180003M3_SC424_4MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1D4	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.134 ARC_RM_180003m3_SC424_2Man (01DEh)

This is the setting for type 180003m3_SC424_2Man.

NFC frontend

Table 231. ARC_RM_180003m3_SC424_2Man (address 01DEh) EEPROM configuration bit description

	Function	Bit	Description
1E6	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC424_2MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC424_2MAN are used, else settings will be used from LoadProtocol 180003M3_SC424_2MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1E4	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC424_2MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC424_2MAN are used, else settings will be used from LoadProtocol 180003M3_SC424_2MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1E2	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC424_2MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC424_2MAN are used, else settings will be used from LoadProtocol 180003M3_SC424_2MAN Bits[14:9] = RFU Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1E0	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC424_2MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC424_2MAN are used, else settings will be used from LoadProtocol 180003M3_SC424_2MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 231. ARC_RM_180003m3_SC424_2Man (address 01DEh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
1DE	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.135 ARC_RM_180003m3_SC848_4Man (01E8h)

This is the setting for type 180003m3_SC848_4Man.

Table 232. ARC_RM_180003m3_SC848_4Man (address 01E8h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1F0	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC848_4MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC848_4MAN are used, else settings will be used from LoadProtocol 180003M3_SC848_4MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1EE	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC848_4MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC848_4MAN are used, else settings will be used from LoadProtocol 180003M3_SC848_4MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 232. ARC_RM_180003m3_SC848_4Man (address 01E8h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
1EC	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC848_4MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC848_4MAN are used, else settings will be used from LoadProtocol 180003M3_SC848_4MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1EA	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC848_4MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC848_4MAN are used, else settings will be used from LoadProtocol 180003M3_SC848_4MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1E8	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.136 ARC_RM_180003m3_SC848_2Man (01F2h)

This is the setting for type 180003m3_SC848_2Man.

NFC frontend

Table 233. ARC_RM_180003m3_SC848_2Man (address 01F2h) EEPROM configuration bit description

	Function	Bit	C848_2Man (address 01F2h) EEPROM configuration bit description
(hex)	or unction	Біс	Description
1FA	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC848_2MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC848_2MAN are used, else settings will be used from LoadProtocol 180003M3_SC848_2MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1F8	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC848_2MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC848_2MAN are used, else settings will be used from LoadProtocol 180003M3_SC848_2MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1F6	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC848_2MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC848_2MAN are used, else settings will be used from LoadProtocol 180003M3_SC848_2MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1F4	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_180003M3_SC848_2MAN are used 1: ARC settings during FDT, bits 09 of table ARC_RM_180003M3_SC848_2MAN are used, else settings will be used from LoadProtocol 180003M3_SC848_2MAN Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 233. ARC_RM_180003m3_SC848_2Man (address 01F2h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
1F2	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.137 ARC_RM_AI106 (01FCh)

This is the setting for type Al106.

Table 234. ARC_RM_AI106 (address 01FCh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
204	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_AI106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_AI106 are used, else settings will be used from LoadProtocol AI106 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
202	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_AI106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_AI106 are used, else settings will be used from LoadProtocol AI106 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 234. ARC_RM_Al106 (address 01FCh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
200	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_AI106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_AI106 are used, else settings will be used from LoadProtocol AI106 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1FE	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_AI106 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_AI106 are used, else settings will be used from LoadProtocol AI106 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
1FC	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.138 ARC_RM_AI212 (0206h)

This is the setting for type Al212.

NFC frontend

Table 235. ARC_RM_Al212 (0206h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
20E	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_Al212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_Al212 are used, else settings will be used from LoadProtocol Al212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
20C	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_Al212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_Al212 are used, else settings will be used from LoadProtocol Al212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
20A	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_Al212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_Al212 are used, else settings will be used from LoadProtocol Al212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
208	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_Al212 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_Al212 are used, else settings will be used from LoadProtocol Al212 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 235. ARC_RM_Al212 (0206h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
206	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.139 ARC_RM_AI424 (0210h)

This is the setting for type Al424.

Table 236. ARC_RM_Al424 (0210h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
218	RM_RX_ARC_4	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_Al424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_Al424 are used, else settings will be used from LoadProtocol Al424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
216	RM_RX_ARC_3	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_Al424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_Al424 are used, else settings will be used from LoadProtocol Al424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

NFC frontend

Table 236. ARC_RM_AI424 (0210h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
214	RM_RX_ARC_2	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_Al424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_Al424 are used, else settings will be used from LoadProtocol Al424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
212	RM_RX_ARC_1	15:0	Bit[15] 0: ARC settings always apply, bits 09 from the table ARC_RM_Al424 are used 1: ARC settings during FDT, bits 09 of table ARC_RM_Al424 are used, else settings will be used from LoadProtocol Al424 Bits[14:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
210	RM_RX_ARC_0	15:0	Bit[15] 0: ARC settings always apply 1: ARC settings applicable during FDT and DPC change Bit [14]: 1: ARC Enabled for this Tech and Baudrate. 0: ARC disabled for this Tech and Baudrate Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

Note: Bit15 of all RM_RX_ARC_n is recommended to be "0" always.

9.26.140 RF_DEBOUNCE_TIMEOUT (02B2h)

Table 237. RF_DEBOUNCE_TIMEOUT (address 02B2h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
2B2	DEBOUNCE_ TIMEOUT	7:0	Timeout used after the RF detection during the AUTOCOLL to detect if there is a glitch or continuous RF Value is entered in micro seconds, each bit represents 1 micro second

NFC frontend

9.26.141 SENSE_RES (02B3h)

Table 238. SENSE_RES (address 02B3) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
2B3	AUTOCOLL configuration	16:0	ATQA in order byte 0, byte 1
		16:8	Byte1
		7:0	Byte0

9.26.142 NFC_ID1 (02B5h)

Table 239. SIGNAL SCALING CONFIG (address 2B5h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
2B5	AUTOCOLL configuration		If Random UID is disabled (EEPROM address 0x2CB), the content of these addresses is used to generate a Fixed UID. The order is byte 0, Byte 1, Byte 2; Byte3 - which is the first NFCID1 byte - is fixed to 08h, the check byte is calculated automatically
		23:16	Byte2
		15:8	Byte1:
		7:0	Byte0:

9.26.143 SEL_RES (02B8h)

Table 240. SEL_RES (address 2B8h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
_	AUTOCOLL configuration	7:0	Response to Select: SAK

9.26.144 FELICA_POLL_RES (02B9h)

The FeliCa response is configured by 18 bytes.

Table 241. FELICA_POLL_RES (address 02B9) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
-	AUTOCOLL configuration	15:0	FeliCa Polling response (2 bytes (shall be 01h, FEh) + 6 bytes NFCID2 + 8 bytes Pad + 2 bytes system code)
		47:0	NFCID2
		63:0	PAD
		15:0	system code

NFC frontend

9.26.145 RANDOM_UID_ENABLE (02CBh)

Table 242. RANDOM_UID_ENABLE (address 2CBh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
2CB	RFU	7:1	-
	Random UID Enable	0	0: Use UID stored in EEPROM 1: Randomly generate the UID in which the first byte is fixed and the remaining 3 bytes are random A new random number is generated after each RF-OFF to RF-ON.

9.26.146 MFC_AUTH_TIMEOUT (02CCh)

Table 243. MFC AUTH TIMEOUT (address 2CCh) EEPROM configuration bit description

	Function	Bit	Description
(hex)			
2CC	RFU	15:0	Timeout value in micro seconds used for Auth1 and Auth2 stages during MIFARE Classic Authenticate

9.26.147 RSSI_TIMER (02DAh)

Configuration for Card Emulation mode only.

Table 244. RSSI_TIMER (address 2DAh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
2DA	RSSI_TIMER	15:0	Default: 423

9.26.148 RSSI_TIMER_FIRST_PERIOD (02DCh)

Table 245. RSSI_TIMER_FIRST_PERIOD (address 2DCh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
2DC	RSSI	15:0	First period duration after Rffield ON. Unit is 128/fc (106 kHz) if set to 0 it means that feature is not used 0D2 => ~2 ms

9.26.149 RSSI_CTRL_00_AB (02DEh)

Table 246. RSSI_CTRL_00_AB (address 2DEh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
2DE	RSSI	7:6	Bits [6:7] = RFU
		5:0	Bits [0:5] = (APC_ID_REF_AB) ID of APC_TX entry that is equiv to RSSI = 0 (for Type AB)

NFC frontend

9.26.150 RSSI_NB_ENTRIES_AB (02DFh)

Table 247. RSSI_NB_ENTRIES_AB (address 2DFh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
2DF	RSSI	7:5	RFU
		4:0	For Initial RF ON, CEA and CEB Number of entries in RSSI lookup table (it refers to dwRssiEntryAB_01 to dwRssiEntryAB_X);

9.26.151 RSSI_THRESHOLD_PHASE_TABLE (02E0h)

Table 248. RSSI_THRESHOLD_PHASE_TABLE (address 2E0h) EEPROM configuration bit description

Address (hex)	Function	Bit	Description
2E0	wRssiThresholdF_01	15:0	bit[0:12] - RSSI Value bit[13:15] - RFU Note: dwRssiEntryAB_00 = 0 (not in EEPROM) Signed phase compensation with 1/4 degree resolution: 16 bits signed value (using complement of 2)
2E2	ArbPhaseF_01	15:0	wArbPhaseF_xx: Signed phase compensation with 1/4 degree resolution: 16 bits signed value (using complement of 2)
	RssiThresholdF_02	15:0	
	ArbPhaseF_02	15:0	
	RssiThresholdF_03	15:0	
	ArbPhaseF_03	15:0	
	RssiThresholdF_04	15:0	
	ArbPhaseF_04	15:0	
	RssiThresholdF_05	15:0	
	ArbPhaseF_05	15:0	
	RssiThresholdF_06	15:0	
	ArbPhaseF_06	15:0	
	RssiThresholdF_07	15:0	
	ArbPhaseF_07	15:0	
	RssiThresholdF_08	15:0	
	ArbPhaseF_08	15:0	
	RssiThresholdF_09	15:0	
	ArbPhaseF_09	15:0	
	RssiThresholdF_0A	15:0	
	ArbPhaseF_0A	15:0	
	RssiThresholdF_0B	15:0	
	ArbPhaseF_0B	15:0	
	RssiThresholdF_0C	15:0	

NFC frontend

Table 248. RSSI_THRESHOLD_PHASE_TABLE (address 2E0h) EEPROM configuration bit description...continued

Address (hex)	Function	Bit	Description
	ArbPhaseF_0C	15:0	
	RssiThresholdF_0D	15:0	
	ArbPhaseF_0D	15:0	
	RssiThresholdF_0E	15:0	
	ArbPhaseF_0E	15:0	
	RssiThresholdF_0F	15:0	
	ArbPhaseF_0F	15:0	
	RssiThresholdF_10	15:0	
	ArbPhaseF_10	15:0	
	RssiThresholdF_11	15:0	
	ArbPhaseF_11	15:0	
	RssiThresholdF_12	15:0	
	ArbPhaseF_12	15:0	
	RssiThresholdF_13	15:0	
	ArbPhaseF_13	15:0	
	RssiThresholdF_14	15:0	
	ArbPhaseF_14	15:0	
	RssiThresholdF_15	15:0	
	ArbPhaseF_15	15:0	
	RssiThresholdF_16	15:0	
	ArbPhaseF_16	15:0	
	RssiThresholdF_17	15:0	
	ArbPhaseF_17	15:0	
	RssiThresholdF_18	15:0	
	ArbPhaseF_18	15:0	

9.26.152 TX_PARAM_ENTRY_TABLE (03A2h)

Table 249. TX_PARAM_ENTRY_TABLE (address 3A2h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
3A2	TxParamEntry_00_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled
		5:0	ID

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 249. TX_PARAM_ENTRY_TABLE (address 3A2h) EEPROM configuration bit description...continued

Addres Function (hex)		Bit Description		
	bTxParamEntry_00_Tx1	7:6	RFU	
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V	
	bTxParamEntry_00_Tx2	7:0	Scaling factor for TX1 and TX2	
3A5	TxParamEntry_01_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver	
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled	
		5:0	ID	
	bTxParamEntry_01_Tx1	7:6	RFU	
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V	
	bTxParamEntry_01_Tx2	7:0	Scaling factor for TX1 and TX2	
3A8	TxParamEntry_02_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver	
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled	
		5:0	ID	
	bTxParamEntry_02_Tx1	7:6	RFU	
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V	
	bTxParamEntry_02_Tx2	7:0	Scaling factor for TX1 and TX2	
ЗАВ	TxParamEntry_03_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver	
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled	
		5:0	ID	
	bTxParamEntry_03_Tx1	7:6	RFU	
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V	
	bTxParamEntry_03_Tx2	7:0	Scaling factor for TX1 and TX2	
3AE	TxParamEntry_04_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver	
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled	
		5:0	ID	

NFC frontend

Table 249. TX_PARAM_ENTRY_TABLE (address 3A2h) EEPROM configuration bit description...continued

Addres Function (hex)		Bit Description		
	bTxParamEntry_04_Tx1	7:6	RFU	
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V	
	bTxParamEntry_04_Tx2	7:0	Scaling factor for TX1 and TX2	
3B1	TxParamEntry_05_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver	
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled	
		5:0	ID	
	bTxParamEntry_05_Tx1	7:6	RFU	
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V	
	bTxParamEntry_05_Tx2	7:0	Scaling factor for TX1 and TX2	
3B4	TxParamEntry_06_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver	
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled	
		5:0	ID	
	bTxParamEntry_06_Tx1	7:6	RFU	
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V	
	bTxParamEntry_06_Tx2	7:0	Scaling factor for TX1 and TX2	
3B7	TxParamEntry_07_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver	
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled	
		5:0	ID	
	bTxParamEntry_07_Tx1	7:6	RFU	
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V	
	bTxParamEntry_07_Tx2	7:0	Scaling factor for TX1 and TX2	
3ВА	TxParamEntry_08_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver	
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled	
		5:0	ID	

NFC frontend

Table 249. TX_PARAM_ENTRY_TABLE (address 3A2h) EEPROM configuration bit description...continued

Addre (hex)	s Function	Bit	Bit Description		
	bTxParamEntry_08_Tx1	7:6	RFU		
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V		
	bTxParamEntry_08_Tx2	7:0	Scaling factor for TX1 and TX2		
3BD	TxParamEntry_09_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver		
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled		
		5:0	ID		
	bTxParamEntry_09_Tx1	7:6	RFU		
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V		
	bTxParamEntry_09_Tx2	7:0	Scaling factor for TX1 and TX2		
3C1	TxParamEntry_0A_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver		
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled		
		5:0	ID		
	bTxParamEntry_0A_Tx1	7:6	RFU		
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V		
	bTxParamEntry_0A_Tx2	7:0	Scaling factor for TX1 and TX2		
3C3	TxParamEntry_0B_ID	7	bit[7] Driver count (CLIF_TX_CONTROL_REG.TX_ALM_TYPE_SELECT): 0 - Dual driver, 1 - Single driver		
		6	BPSK mode (CLIF_TX_CONTROL_REG.TX_ALM_BPSK_ENABLE): 0 - Disabled, 1 - Enabled		
		5:0	ID		
	bTxParamEntry_0B_Tx1	7:6	RFU		
		5:0	PMU VDDPA setting: VDDPA(v) = (val*10)+1,5 0 = 1.50 V 2Ah = 5.70 V		
	bTxParamEntry_0B_Tx2	7:0	Scaling factor for TX1 and TX2		

9.26.153 LPCD_AVG_SAMPLES (0492h)

Configuration for the Switch mode LPCD

NFC frontend

Table 250. LPCD_AVG_SAMPLES (address 0492h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
492	LPCD setting	7	Defining how many samples of the I and Q values are used for the averaging. Average of samples in power of 2 0->1 sample 1->2 samples 2->4 samples 3->8 samples 4->16 samples 5-> 32 samples

9.26.154 LPCD_RSSI_TARGET (0494h)

Table 251. LPCD_RSSI_TARGET (address 0494h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
494	LPCD setting	7	Value to be set in register DGRM_RSSI_REG_DGRM_RSSI_TARGET Typically the same values from the Type A106 LOAD_RF_CONFIGURATION(0x0D) (DGRM_RSSI register) are used

9.26.155 LPCD_RSSI_HYST (0496h)

Table 252. LPCD_RSSI_HYST (address 0496h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
496	LPCD setting	7	Value to be set in CLIF_DGRM_RSSI_REG_DGRM_RSSI_HYST Typically the same values from the Type A106 LOAD_RF_CONFIGURATION(0x0D) (DGRM_RSSI register) are used

9.26.156 LPCD_CONFIG (0497h)

Table 253. LPCD CONFIG (address 0497h) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
497	RFU	15:6	-
		5	Immediate RF OFF before TXLDO shutdown to save power 0 - Disable 1 - Enable
		4	VDDPA fast discharge 0 - Disable 1 - Enable
		3	TX Drivers 0 - Enable Single driver 1 - Enable both drivers
	Acquisition channels:	2:0	0:1 = RFU 2 = Magnitude 3 = I and Q 4 =M, I and Q 5:7 = RFU

NFC frontend

9.26.157 LPCD_THRESHOLD_COARSE (049Ah)

Table 254. LPCD THRESHOLD COARSE (address 049Ah) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
49A	LPCD Q channel threshold	31:16	ADC LSB granularity of threshold depends on avg_samples_meas value 5: unit 1/32; 4: unit 1/16; 3: unit 1/8; 2: unit 1/4; 1: unit 1/2; 0: unit 1
	LPCD I channel threshold	0:15	ADC LSB granularity of threshold depends on avg_samples_meas value 5: unit 1/32; 4: unit 1/16; 3: unit 1/8; 2: unit 1/4; 1: unit 1/2; 0: unit 1

Note: If the difference between the measured value and the reference is greater than the threshold on either channels, then a card is detected.

9.26.158 WAIT_RX_SETTLE (04ABh)

Table 255. WAIT_RX_SETTLE (address 04ABh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
4AB	LPCD Delay		Delay between Field-On and starting ADC data averaging for the LPCD. Value in us, default 14h = 20us

NFC frontend

9.26.159 LPCD_VDDPA (04AFh)

Table 256. LPCD_VDDPA (address 04AFh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
4AF	VDDDA velte se divisio s I DCD viber DC DC	7:0	TVI DO subsub valta ray
I AF	VDDPA voltage during LPCD when DC-DC (internal or external) or external power source is	7.0	TXLDO output voltage: 0x00: 1V50
	used to feed TXLDO		
	1		0x01: 1V60
			0x02: 1V70
			0x03: 1V80
			0x04: 1V90
			0x05: 2V00
			0x06: 2V10
			0x07: 2V20
			0x08: 2V30
			0x09: 2V40
			0x0A: 2V50
			0x0B: 2V60
			0x0C: 2V70
			0x0D: 2V80
			0x0E: 2V90
			0x0F: 3V00
			0X10: 3V10
			0x11: 3V20
			0x12: 3V30
			0x13: 3V40
			0x14: 3V50
			0x15: 3V60
			0x16: 3V70
			0x17: 3V80
			0x18: 3V90
			0x19: 4V00
			0x1A: 4V10
			0x1B: 4V20
			0x1C: 4V30
			0x1D: 4V40
			0x1E: 4V50
			0x1F: 4V60
			0x20: 4V70
			0x21: 4V80
			0x22: 4V90
			0x23: 5V00
			0x24: 5V10
			0x25: 5V20
			0x26: 5V30
			0x27: 5V40
			0x28: 5V50
			0x29: 5V60
			0x29. 5V60 0x2A: 5V70
			UXZM. 3V/U

NFC frontend

9.26.160 ULPCD_VDDPA_CTRL (04BFh)

Table 257. ULPCD_VDDPA_CTRL (address 4BFh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
(IICX)	RFU	15:9	_
	LDO VDDPA	3-8	TXLDO output voltage during ULPCD polling
	VOUT_SEL	3-0	VDDPA_1V50 /* 0x00 */
	_		VDDPA_1V60, /* 0x01 */
			VDDPA_1V70, /* 0x02 */
			VDDPA 1V80, /* 0x03 */
			VDDPA 1V90, /* 0x04 */
			VDDPA_2V00, /* 0x05 */
			VDDPA_2V10, /* 0x06 */
			VDDPA_2V20, /* 0x07 */
			VDDPA_2V30, /* 0x08 */
			VDDPA_2V40, /* 0x09 */
			VDDPA_2V50, /* 0x0A */
			VDDPA_2V60, /* 0x0B */
			VDDPA_2V70, /* 0x0C */
			VDDPA_2V80, /* 0x0D */
			VDDPA_2V90, /* 0x0E */
			VDDPA_3V00, /* 0x0F */
			VDDPA_3V10, /* 0x10 */ VDDPA_3V20, /* 0x11 */
			VDDPA_3V30, /* 0x11 /
			VDDPA_3V40, /* 0x13 */
			VDDPA_3V50, /* 0x14 */
			VDDPA_3V60, /* 0x15 */
			VDDPA_3V70, /* 0x16 */
			VDDPA_3V80, /* 0x17 */
			VDDPA_3V90, /* 0x18 */
			VDDPA_4V00, /* 0x19 */
			VDDPA_4V10, /* 0x1A */
			VDDPA_4V20, /* 0x1B */
			VDDPA_4V30, /* 0x1C */
			VDDPA_4V40, /* 0x1D */
			VDDPA_4V50, /* 0x1E */
			VDDPA_4V60, /* 0x1F */
			VDDPA_4V70, /* 0x20 */ VDDPA_4V80, /* 0x21 */
			VDDPA_4V80, / 0x21 / VDDPA_4V90, /* 0x22 */
			VDDPA_4V90, / 0x22 / VDDPA_5V00, /* 0x23 */
			VDDPA_5V10, /* 0x24 */
			VDDPA_5V20, /* 0x25 */
			VDDPA_5V30, /* 0x26 */
			VDDPA_5V40, /* 0x27 */
			VDDPA_5V50, /* 0x28 */
			VDDPA_5V60, /* 0x29 */
			VDDPA_5V70, /* 0x2A */

NFC frontend

Table 257. ULPCD_VDDPA_CTRL (address 4BFh) EEPROM configuration bit description...continued

	-	_	· · · · · · · · · · · · · · · · · · ·
Addres (hex)	Function	Bit	Description
4BF	RFU	2:0	-

9.26.161 ULPCD_TIMING_CTRL (04C2h)

Table 258. ULPCD_TIMING_CTRL (address 4C2h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
4C2	RFON_GUARD_ TIME	7:4	RFON guard time: (RFON_GUARD_TIME + 2) * LFO-Freq (380 kHz) Guard time: Time between RF-ON and first sampling of data
	RFU	3:0	-

9.26.162 ULPCD_VOLTAGE_CTRL (04C6h)

Table 259. ULPCD VOLTAGE CTRL (address 4C6h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
4C6	ULPCD configuration	7:5	RFU
		4:2	RFU
		1	TX_SUPPLY by VUP_TX 0: VUP externally supplied (2.8 V to 6.0 V) 1: VUP supplied by PN5190B1 itself (pin VUP_TX connected to VBAT/VBATPWR)
		0	RFU

9.26.163 ULPCD_RSSI_GUARD_TIME (04C9h)

Table 260. ULPCD_RSSI_GUARD_TIME (address 4C9h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
4C9	ULPCD RSSI sampling guard time	15	RFU
		14:0	This is the time between consecutive RSSI samples: Range: 0 - 127 in micro seconds

9.26.164 ULPCD_RSSI_SAMPLE_CFG (04CAh)

Table 261, ULPCD RSSI SAMPLE CFG (address 4CAh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
4CA	ULPCD configuration	7:0	Number of RSSI Samples which are internally averaged: 0: 4 samples, 1: 8 samples 2: 16 samples 3: 32 samples

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

9.26.165 ULPCD_THRESH_LVL(04CBh)

Table 262. ULPCD_THRESH_LVL (address 4CBh) EEPROM configuration bit description

			· · · · · · · · · · · · · · · · · · ·
Addres (hex)	Function	Bit	Description
4CB	ULPCD configuration	8:0	RSSI Threshold level Range 0 - 31 If the difference between the measured RSSI value and the reference (which is derived during calibration) is greater than the threshold, then a card is detected.

9.26.166 ULPCD_GPIO3 (04CCh)

Table 263. ULPCD GPIO3 (address 4CCh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
4CC	RFU	7:1	-
4CC	ULPCD GPIO3 configuration	0	GPIO3 abort polarity configuration. If PN5190B1 is using the ULPCD, GPIO3 cannot be used for any other purpose than aborting the ULPCD. 1: high-level aborts ULPCD 0: low-level aborts ULPCD

9.26.167 TXIRQ_GuardTime (0559h)

Table 264. FELICA_POLL_RES (address 0559) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
559	TXIRQ_ GuardTime	31:0	0 - Disabled 0x1-0xFFFFF (Enabled - 1 unit corresponds to 1 us) Maximum timeout of 1.048 s

9.26.168 FDT_default_val (055Dh)

Table 265. FDT_default_val (address 055D) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
55D	FDT_default_val	31:0	0x00 - Disabled others - enabled (1 unit is 18.86us) Default fixed to 5.5 secs

9.26.169 RXIRQ_GuardTime (0561h)

Table 266. RXIRQ_GuardTime (address 0561h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
55D	RXIRQ_ GuardTime	31:0	0x00 Disabled 0x1-0xFFFFF (Enabled - 1 unit corresponds to 1 us) Maximum timeout of 1.048 s Default value = 0xF4240 (1 s)

NFC frontend

9.26.170 NFCLD_RFLD_Valid (006D3h)

Table 267. NFCLD_RFLD_Valid (address 06D3h) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
6D3	RFU	7:1	-
	RFLD_ CALIBRATE	0	This bit allows to calibrate the RFLD / NFCLD. This calibration is required only once in the lifetime of the chip for increased RFLD / NFCLD accuracy, independent from the value of this bit (0 or 1). Clearing this bit (0) will calibrate the RFLD /RFLD during the next boot-up, precondition for the proper calibration is an unloaded condition and no external field applied. After calibration this bit is set (1) and indicates that the RFLD /RFLD Threshold is a valid data.

9.26.171 CurrentSensorTrimConfig (0ABCh)

Table 268. CurrentSensorTrimConfig (address 0CACh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
ABC	RFU	7:1	-
	Current_Sensor_ Calib_Bypass	0	current sensor calibration offset is used by DPC; Current sensor calibration offset is bypassed by DPC

Note: The default value should only be modified for debug purpose.

9.26.172 CORRECTION_ENTRY_TABLE (0BDAh)

Table 269. CORRECTION_ENTRY_TABLE (address 0BDAh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
0BDA	sCorrection_Entry0	15:0	The correction that is applied when lookup table based shaping with scaling is enabled.
			Range is -128 to +127,
			sCorrection_Entry0 corresponds to correction applied at VDDPA = 1V5,
			Correction_Entry42 corresponds to correction applied at VDDPA = 5V7
			For each entry:
			BYTE 0: Bits[7:0] = define the correction which is applied for ASK100
			BYTE 1: Bits[15:8] = define the correction which is applied for ASK10
BAF	sCorrection_Entry1	15:0	
BB1	sCorrection_Entry2	15:0	
ВВ3	sCorrection_Entry3	15:0	
BB5	sCorrection_Entry4	15:0	
BB7	sCorrection_Entry5	15:0	

NFC frontend

Table 269. CORRECTION_ENTRY_TABLE (address 0BDAh) EEPROM configuration bit description...continued

Addres (hex)	s Function	Bit	Description
BB9	sCorrection_Entry6	15:0	
BBB	sCorrection_Entry7	15:0	
BBD	sCorrection_Entry8	15:0	
BBF	sCorrection_Entry9	15:0	
BC1	sCorrection_Entry10	15:0	
ВС3	sCorrection_Entry11	15:0	
BC5	sCorrection_Entry12	15:0	
ВС7	sCorrection_Entry13	15:0	
BC9	sCorrection_Entry14	15:0	
ВСВ	sCorrection_Entry15	15:0	
BCD	sCorrection_Entry16	15:0	
BCF	sCorrection_Entry17	15:0	
BD1	sCorrection_Entry18	15:0	
BD3	sCorrection_Entry19	15:0	
BD5	sCorrection_Entry20	15:0	
BD7	sCorrection_Entry21	15:0	
BD9	sCorrection_Entry22	15:0	
BDB	sCorrection_Entry23	15:0	
BDD	sCorrection_Entry24	15:0	
BDF	sCorrection_Entry25	15:0	
BE1	sCorrection_Entry26	15:0	
BE3	sCorrection_Entry27	15:0	
BE5	sCorrection_Entry28	15:0	
BE7	sCorrection_Entry29	15:0	
BE9	sCorrection_Entry30	15:0	
BEB	sCorrection_Entry31	15:0	
BED	sCorrection_Entry32	15:0	
BEF	sCorrection_Entry33	15:0	
BF1	sCorrection_Entry34	15:0	
BF3	sCorrection_Entry35	15:0	
BF5	sCorrection_Entry36	15:0	
BF7	sCorrection_Entry37	15:0	
BF9	sCorrection_Entry38	15:0	
BFB	sCorrection_Entry39	15:0	
BFD	sCorrection_Entry40	15:0	
BFF	sCorrection_Entry41	15:0	

NFC frontend

Table 269. CORRECTION_ENTRY_TABLE (address 0BDAh) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description	
C01	sCorrection_Entry42	15:0		

9.26.173 RTRANS_FTRANS_TABLE (0C03h)

Table 270. RTRANS_FTRANS_TABLE (address C03h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
C03	RTRANS0	31:0	These values apply in case EDGE_STYLE = 0 is configured for the rising edge
C07	RTRANS1	31:0	These values apply in case EDGE_STYLE = 0 is configured for the rising edge
C0B	RTRANS2	31:0	These values apply in case EDGE_STYLE = 0 is configured for the rising edge
C0F	RTRANS3	31:0	These values apply in case EDGE_STYLE = 0 is configured for the rising edge
C13	FTRANS0	31:0	These values apply in case EDGE_STYLE = 0 is configured for the falling edge
C17	FTRANS1	31:0	These values apply in case EDGE_STYLE = 0 is configured for the falling edge
C1B	FTRANS2	31:0	These values apply in case EDGE_STYLE = 0 is configured for the falling edge
C1F	FTRANS3	31:0	These values apply in case EDGE_STYLE = 0 is configured for the falling edge
C23	RTRANS0	31:0	These values apply in case EDGE_STYLE = 1 is configured for the rising edge
C27	RTRANS1	31:0	These values apply in case EDGE_STYLE = 1 is configured for the rising edge
C2B	RTRANS2	31:0	These values apply in case EDGE_STYLE = 1 is configured for the rising edge
C2F	RTRANS03	31:0	These values apply in case EDGE_STYLE = 1 is configured for the rising edge
C33	FTRANS0	31:0	These values apply in case EDGE_STYLE = 1 is configured for the falling edge
C37	FTRANS1	31:0	These values apply in case EDGE_STYLE = 1 is configured for the falling edge
СЗВ	FTRANS2	31:0	These values apply in case EDGE_STYLE = 1 is configured for the falling edge
C3F	FTRANS3	31:0	These values apply in case EDGE_STYLE = 1 is configured for the falling edge
C43	RTRANS0	31:0	These values apply in case EDGE_STYLE = 2 is configured for the rising edge
C47	RTRANS1	31:0	These values apply in case EDGE_STYLE = 2 is configured for the rising edge
C4B	RTRANS2	31:0	These values apply in case EDGE_STYLE = 2 is configured for the rising edge
C4F	RTRANS03	31:0	These values apply in case EDGE_STYLE = 2 is configured for the rising edge
C53	FTRANS0	31:0	These values apply in case EDGE_STYLE = 2 is configured for the falling edge
C57	FTRANS1	31:0	These values apply in case EDGE_STYLE = 2 is configured for the falling edge
C5B	FTRANS2	31:0	These values apply in case EDGE_STYLE = 2 is configured for the falling edge
C5F	FTRANS3	31:0	These values apply in case EDGE_STYLE = 2 is configured for the falling edge
C63	RTRANS0	31:0	These values apply in case EDGE_STYLE = 3 is configured for the rising edge
C67	RTRANS1	31:0	These values apply in case EDGE_STYLE = 3 is configured for the rising edge
C6B	RTRANS2	31:0	These values apply in case EDGE_STYLE = 3 is configured for the rising edge
C6F	RTRANS03	31:0	These values apply in case EDGE_STYLE = 3 is configured for the rising edge
C73	FTRANS0	31:0	These values apply in case EDGE_STYLE = 3 is configured for the falling edge
C77	FTRANS1	31:0	These values apply in case EDGE_STYLE = 3 is configured for the falling edge

NFC frontend

Table 270. RTRANS_FTRANS_TABLE (address C03h) EEPROM configuration bit description...continued

Addres (hex)	Function	Bit	Description
С7В	FTRANS2	31:0	These values apply in case EDGE_STYLE = 3 is configured for the falling edge
C7F	FTRANS3	31:0	These values apply in case EDGE_STYLE = 3 is configured for the falling edge

This table applies only, if the transmitter shaping configuration is (EDGE_TYPE_xx) 4, 5, or 6.

Which of the entries RTRANS0..3 (rising transition) / FTRANS0..3 (falling transition) is applied, is defined by the EDGE_STYLE.

9.26.174 CFG_NOV_CAL (0C83h)

TX non-overlap feature - defines the non-overlap time of TX1, TX2.

Table 271. CFG_NOV_CAL (address 0083h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1	RFU	7:2	-
	CALIBRATION_ TYPE	1:0	00 = No calibration performed, needs to be updated to 01 or 10 before the first RF on of the chip is performed 01 = Enable FW calibration after every cold boot 10 = Use calibration value coming from EEPROM NOV_CAL_VAL1, NOV_CAL_VAL2 (D efault) 11 = RFU

9.26.175 NOV_CAL_VAL1 (0C84h)

Table 272. NOV CAL VAL1 (address 0C84h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1	VddpaCalVal1	7	It defines the VDDPA value that FW will use to perform NOV calibration group #1. value = 03h (1.8 V) value = 0Dh (2.8 V) See "TxLdoVddpaHigh" parameter for list of voltage

9.26.176 NOV_CAL_VAL2 (0C85h)

Table 273. NOV_CAL_VAL2 (0C85h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1	VddpaCalVal2	7	It defines the VDDPA value that FW will use to perform NOV calibration group #2. default value = 15h (3.6 V) default value = 24h (5.1 V) See "TxLdoVddpaHigh" parameter for list of voltage

NFC frontend

9.26.177 NOV_CAL_THRESHOLD (0C86h)

Table 274. NOV_CAL_THRESHOLD (address 0C86h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1	CfgThreshold	7	It defines VDDPA threshold that FW will use to select Group #1 or Group #2 NOV offset values. default value = 08h (2.3 V) default value = 16h (3.7 V) See "TxLdoVddpaHigh" parameter for list of voltage

9.26.178 NOV_CAL_OFFSET1 (0C87h)

Table 275. NOV_CAL_OFFSET1 (address 0C87h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1	UserOffsets1	7	It defines user static offsets applied if CFG_NOV_CAL[1:0] = 10b bits[04:00] Group #2 (CfgThreshold to VDDPA max), offset_3l bits[12:08] Group #2 (CfgThreshold to VDDPA max), offset_3l_p2 bits[20:16] Group #2 (CfgThreshold to VDDPA max), offset_2l<0> bits[28:24] Group #2 (CfgThreshold to VDDPA max), offset_2l<1>

9.26.179 NOV_CAL_OFFSET2 (0C8Bh)

Table 276. NOV_CAL_OFFSET1 (address 0C8Bh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
1	UserOffsets2	7	It defines user static offsets applied if CFG_NOV_CAL1:0] = 10b bits[04:00] Group #2 (CfgThreshold to VDDPA max), offset_3l bits[12:08] Group #2 (CfgThreshold to VDDPA max), offset_3l_p2 bits[20:16] Group #2 (CfgThreshold to VDDPA max), offset_2l<0> bits[28:24] Group #2 (CfgThreshold to VDDPA max), offset_2l<1>

9.26.180 VDDPA_DISCHARGE (0C8Fh)

Table 277. VDDPA DISCHARGE (address 0C8Fh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
C8F	RFU	7:1	RFU
	EnableFastVDDP ADischarge	0	1 - Enables fast discharge of VDDPA by setting VDDPA=5.7 and then to 1.5 V, during RF OFF
			0 - Enables fast discharge of VDDPA by setting VDDPA=5.7 and then to 1.5 V, during RF OFF

9.26.181 ARC_RM_A106_FDT (0C9Dh)

This is the setting for type A-106.

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 278. ARC_RM_A106_FDT (address 0C9Dh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
CA5	RM_RX_ARC_ FDT_4	15:0	Bit[15]: RFU Bit [14]: Has to be always "0" Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
CA3	RM_RX_ARC_ FDT_3	15:0	Bit[15]: RFU Bit [14]: Has to be always "0" Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
CA1	RM_RX_ARC_ FDT_2	15:0	Bit[15]: RFU Bit [14]: Has to be always "0" Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
C9F	RM_RX_ARC_ FDT_1	15:0	Bit[15]: RFU Bit [14]: Has to be always "0" Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)
C9D	RM_RX_ARC_ FDT_0	15:0	Bit[15]: RFU Bit [14]: Has to be always "0" Bits[13:10] = RFU Bit [9] = Enable the IIR filter. Bits[8:7] = MF_GAIN (this value will be applied to the SIGPR_RM_TECH register, applies as soon as the ARC is enabled) Bits[6:0] = DPC_ SIGNAL_DETECT_TH_OVR_VAL (this value will be applied to the DGRM_RSSI register, applies as soon as the ARC is enabled)

Note: For ISO14443-A: In case ARC is disabled, it requires DPC_ SIGNAL_DETECT_TH_OVR_VAL larger than 0x50 (with MF_GAIN = 2 (default))

Note: For ISO14443-A: In case Bit[15] is configured to 0, it requires DPC_ SIGNAL_DETECT_TH_OVR_VAL larger than 0x50 (with MF_GAIN = 2 (default)) if the ARC is enabled.

NFC frontend

Note: The IIR settings define an all pass filter with approximately -10 dB gain. This can be used to limit the LMA sensitivity of the RX.

9.26.182 Tx_Symbol23_Mod_Reg_BR_53 (0CC5h)

Table 279. Tx Symbol23 Mod Reg BR 53 (0CC5Eh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
CC5	15693_BR_CFG	31:0	CLIF_TX_SYMBOL23_MOD_REG value loaded for 15693 BR 53 kbit/s

9.26.183 Tx_Data_Mod_Reg_BR_53 (0CC9h)

Table 280. Tx_Data_Mod_Reg_BR_53 (0CC9Eh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
CC9	15693_BR_CFG	31:0	CLIF_TX_Data_MOD_REG value loaded for 15693 BR 53 kbit/s

9.26.184 Tx_Symbol23_Mod_Reg_BR_106 (0CCDh)

Table 281. Tx Symbol23 Mod Reg BR 106 (0CCDEh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
CCD	15693_BR_CFG	31:0	CLIF_TX_Symbol23_MOD_REG value loaded for 15693 BR 106 kbit/s

9.26.185 Tx_Data_Mod_Reg_BR_106 (0CD1h)

Table 282. Tx_Data_Mod_Reg_BR_106 (0CD1Eh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
CD1	15693_BR_CFG	31:0	CLIF_TX_Data_MOD_REG value loaded for 15693 BR 106 kbit/s

9.26.186 Tx_Symbol23_Mod_Reg_BR_212 (0CD5h)

Table 283. Tx Symbol23 Mod Reg BR 212 (0CD5Eh) EEPROM configuration bit description

I GIOTO E	date 200. TX_0ymbol20_mod_Rog_BR_212 (00B0EH) EEF Rom configuration bit dooription				
Addres	Function	Bit	Description		
(hex)					
CD5	15693_BR_CFG	31:0	CLIF_TX_Symbol23_MOD_REG value loaded for 15693 BR 212 kbit/s		

9.26.187 Tx_Data_Mod_Reg_BR_212 (0CD9h)

Table 284. Tx_Data_Mod_Reg_BR_212 (0CD9Eh) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
CD9	15693_BR_CFG	31:0	CLIF_TX_Data_MOD_REG value loaded for 15693 BR 212 kbit/s

NFC frontend

9.26.188 CardModeUltraLowPowerEnabled (0CDFh)

Table 285. CardModeUltraLowPowerEnabled (address 00DFh) EEPROM configuration bit description

Addres	s Function	Bit	DescriptiC
CDF	RFU	7:1	-
	CALIBRATION_ TYPE	0	Enable Ultra Low-Power standby for CardMode.

Note: Note: When bit 0 = 1, Switch Standby instruction with ULP mode cannot be used

9.26.189 LPCD_EXT_DCDC_ENABLE (0CE0h)

Table 286. LPCD EXT DCDC ENABLE (0CE0h) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
CE0	up to FW 2.02: RFU	7:0	-
	from FW 2.03. onwards: GPIO1 configuration for LPCD		Enables the use of GPIO to wake up EXT DC-DC from power saving during LPCD. This function is not available for the ULPCD.

9.26.190 LPCD_EXT_DCDC_DELAY_TO_ON (0CE1h)

Table 287. LPCD EXT DCDC DELAY TO ON (0CE1h) EEPROM configuration register bit description

Addres (hex)	Function	Bit	Description
CE1	up to FW 2.02: RFU	7:0	-
	from FW 2.03. onwards: GPIO1 configuration for LPCD	7:0	The value defines the time between setting GPIO1 until Field is switched on. Time in us * 8 to wait for the Ext DC-DC to be started

9.26.191 LPCD_EXT_DCDC_DELAY_TO_ON (0CE2h)

Table 288. LPCD_EXT_DCDC_DELAY_TO_ON (0CE2h) EEPROM configuration register bit description

	able 200. El OB_EXT_BOBO_BEEXT_TO_ON (OCE211) ELI Nom configuration register ble description				
Addres (hex)	Function	Bit	Description		
CE2	until FW2.02: RFU	7:0	-		
	from FW 2.03. onwards: GPIO1 configuration for LPCD	7:0	Value defines the time between Field Off and clear GPIO1. Time in us * 8 to wait for the Ext DC-DC to be shut down		

PN5190B

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

9.26.192 RxGuardTO_Multiple (0CE8h)

Table 289. RxGuardTO_Multiple (address 00CE8h) EEPROM configuration bit description

Addres (hex)	Function	Bit	Description
0CE8	RxGuardTO_ Multiple	7:0	This field configures the RxGuard Timeout configuration in multiple of Timeout configured using RXIRQ_GuardTime EEPROM Field (Address 0561h). Default value is 1. Indicating RX_TIMEOUT shall be triggered due to expiry of RXIRQ_GUARD first time only.

NFC frontend

10 Limiting values

Table 290. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD(VUP_TX)}	supply voltage on pin VUP_TX	-	-0.3	5.8	V
V _{DD(VBAT)}	supply voltage on pin VBAT	-	-0.3	5.8	V
V _{DD(VDDIO)}	supply voltage on pin VDDIO	on pin VDDIO, power supply for host interface and GPIOs	-0.3	3.8	V
V _{DD(VDDPA)}	supply voltage on pin VDDPA	maximum limiting values for I _{DD(VDDPA)} and T _{j(max)} not violated	-	6.0	V
V _{i(RXP)}	input voltage on pin RXP	-	-0.3	+ 2.0	V
V _{i(RXN)}	input voltage on pin RXN	-	-0.3	+ 2.0	V
V _{ESD}	electrostatic discharge voltage	human body model (HBM) ^[1]	-2000	2000	V
		charge device model (CDM) ^[2]	-500	+500	V
T _{j(max)}	junction temperature	-	-	125	°C
T _{stg}	storage temperature	no supply voltage applied	-55	+150	°C

Stress above one or more of the limiting values may cause permanent damage to the device or limit the lifetime.

Product might not behave according to specification.

^[1] According to ANSI/ESDA/JEDEC JS-001[2] According to ANSI/ESDA/JEDEC JS-002

NFC frontend

11 Characteristics

This chapter describes the electrical characteristics for the usage of the product.

Functionality according to this specification and compliancy to referred standards is guaranteed if the device is operated within the limits.

For further information, refer to the PQP (product qualification package) which summarizes the results of the characterization and qualification performed.

11.1 Thermal characteristics

Table 291. Operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb}	ambient operating temperature	in still air with exposed pins soldered on a 4 layer JEDEC PCB, transmitter output current up to 350 mA	-40	+25	+85	°C
		in still air with exposed pins soldered on a 4 layer JEDEC PCB, TX current = 120 mA @ VDDPA=3.6 V	-40	+25	+105	°C

Table 292. Thermal characteristics HVQFN40 package

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air with exposed pad soldered on a 4 layer JEDEC PCB, package HVQFN40	44.2	K/W
R _{th(j-c)}	thermal resistance from junction to case	-	24.2	K/W

Table 293. Thermal characteristics VFBGA64 package

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air with exposed pad soldered on a 4 layer JEDEC PCB, package VFBGA64	53	K/W
R _{th(j-c)}	thermal resistance from junction to case	-	22	K/W

Table 294. Junction Temperature

Symbol	Parameter	Conditions	Min	Max	Unit
T _{j_max}	maximum junction temperature	-	-	+125	°C

NFC frontend

Table 295. Thermal Shutdown Temperature

Symbol	Parameter	Conditions	Тур	Unit
T _{shutdown}	shutdown of chip due to high temperature detected by temp sensor	-	125	°C

11.2 Static characteristics

Table 296. Supply voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD(VBAT_PWR)}	supply voltage on pin VBAT_PWR	DC-DC disabled	2.4	-	5.5	V
	(DC-DC input pin)	DC-DC enabled	2.8	-	4.8	V
$V_{DD(VUP_TX)}$	supply voltage on pin VUP_TX (TX_LDO input pin)	Remark: If DC-DC is used, its output V _{DD(BOOST)} Min is limited to 3.1 V	2.4	-	6.0	V
V _{DD(VDDPA)}	supply voltage on pin VDDPA (input of the transmitter power amplifier)	-	1.5	-	5.7	V
$V_{DD(VBAT)}$	supply voltage on pin VBAT (analog and digital supply)	VBAT >= VDDIO	2.4	-	5.5	V
V _{DD(VDDIO)}	supply voltage on pin VDDIO (supply for host interface and GPIOs)	typical 1.8 V interface supply voltage	1.62	-	1.98	V
		typical 3.3 V interface supply voltage	2.4	-	3.6	V
V _{I(RXP)}	input voltage on pin RXP	-	-0.5	-	1.8	V
V _{I(RXN)}	input voltage on pin RXN	-	-0.5	-	1.8	V

Note: The voltage on pin VDDIO must always be smaller or equal to the voltage on pin VBAT.

Table 297. Current consumption in active mode

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD(VBAT)}	system supply		-	-	20	mA
I _{DD(VDDIO)}		This current depends on the output current of peripherals. At no time, the sum of the maximum output currents shall exceed I _{DD(VDDIO)} max	-	-	30	mA
I _{DD(BOOST_IN)}	DC-DC boost supply	average input current	-	-	1.0	Α
		peak input current (short peak)	-	-	1.7	А
I _{DD(VUP_TX)}	input supply for transmitter LDO	-	-	-	350	mA
I _{DD(VDDPA)}	RF power amplifier (transmitter) current	supplied via VUP_TX (TX_LDO active)	-	-	350	mA

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 297. Current consumption in active mode...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		supplied without DC- DC and without TXLDO active	-	-	400	mA

Table 298. Current consumption during power-saving modes

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OFF Plus Mode (VDDIO+VBAT)	sum of supply current on pin VDDIO and VBAT in OFF Plus mode	25 °C ambient operating temperature	-	5	-	μA
I _{OFF Plus} ULFO Mode (VDDIO+VBAT)	sum of supply current on pin VDDIO and VBAT in OFF Plus mode, ULFO active (ULPCD during RF-OFF)	25 °C ambient operating temperature	-	5	-	μА
I _{hard power down} (VDDIO+VBAT)	sum of supply current on pin VDDIO and VBAT in hard power-down mode	25 °C ambient operating temperature	-	40	105	μΑ
I _{standby} (VDDIO +VBAT)	sum of supply current on pin VDDIO and VBAT in standby mode	25 °C ambient operating temperature	-	45	110	μΑ
I _{suspend} (VBAT)	supply current on pin VBAT in suspend mode	25 °C ambient operating temperature	-	2.5	-	mA
I _{ULPCD (VDDIO} +VBAT)	sum of supply current on pin VDDIO and VBAT in ULPCD (Ultra Low-Power Card Detection) mode	25 °C ambient operating temperature, VBAT supply voltage 3.3 V, antenna matching 50 R, 3.3 V antenna supply voltage, 3x RF- on per second	-	22	-	μА
I _{LPCD} (VDDIO+VBAT)	sum of supply current on pin VDDIO and VBAT in LPCD (Enhanced Low-Power Card Detection with highest sensitivity) mode, without DC- DC used	25 °C ambient operating temperature, VBAT supply voltage 3.3 V, antenna matching 50 R, 3.3 V antenna supply voltage, 3x RF- on per second	-	240	-	μΑ

Table 299. Overcurrent detection function [1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$I_{DD(VUP_TX)}$	current of overcurrent detection becoming active	-	450	550	650	mA

^[1] Please refer to the Errata sheet if the device is used with smaller or equal than FW2.1.

This is a safety feature only. A design shall not functionally rely on this feature since the operating conditions will be violated if the overcurrent detection becomes active.

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 300. VEN pin

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage	V _{DD(VDDIO)} <= V _{DD(VBAT)}	0.7 * V _{DD(VDDIO)}	-	V _{DD(VDDIO)}	V
V_{IL}	LOW-level input voltage		0	-	0.3 * V _{DD(VDDIO)}	V
I _{IH}	HIGH-level input current	$V_I = V_{DD(VBAT)}$	-	-	1	μA
I _{IL}	LOW-level input current	V _I = 0 V	-1	-	-	μA
C _i	input capacitance		-	5	-	pF
t _(ULPCD_abort)	VEN time required to abort ULPCD		5	-	-	ms

Table 301. GPIO (GPIO 0, GPIO 1, GPIO 2, GPIO 3, GPIO4, GPIO5) pins

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage	V _{DD(VDDIO)} <= V _{DD(VBAT)} ; 1.62 <= VDDIO <= 1.98 or 2.4 <= VDDIO <= 3.6	0.65x VDDIO	-	VDDIO+0.5	V
V _{IL}	LOW-level input voltage	V _{DD(VDDIO)} <= V _{DD(VBAT)} ; 1.62 <= VDDIO <= 1.98 or 2.4 <= VDDIO <= 3.6	- 0.5	-	0.35 × VDDIO	V
V _{OH}	HIGH-level output voltage	$V_{DD(VDDIO)} = 3.3 \text{ V}$	VDDIO - 0.4	-	VDDIO	V
V _{OH}	LOW-level output voltage	$V_{DD(VDDIO)} = 3.3 \text{ V}$	0	-	0.4	V
I _{OH}	HIGH-level output current	$V_{DD(VDDIO)} = 3.3 \text{ V}$	-	-	3	mA
I _{OL}	LOW-level output current	V _{DD(VDDIO)} = 3.3 V	-	-	3	mA
R _{PU}	Weak pullup resistor	-	40	50	62	kΩ
R _{PD}	Weak pull-down resistor	-	40	50	62	kΩ

Table 302. CLK1, CLK2 pins

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{i(p-p)}	peak-to-peak input voltage	-	0.4	-	1.65	V
I _{IH}	HIGH-level input current	VI= 1.65 V, no power saving, active mode	-	-	5	μΑ
I _{IL}	LOW-level input current	VI = 0 V, no power saving, active mode	-	-	1	μΑ
δ	duty cycle	-	35	-	65	%
C _{i(CLK1)}	input capacitance on pin CLK1	VDD = 1.8 V, VDC = 0.65 V, VAC = 0.9 V (p-p)	-	1	-	pF

NFC frontend

Table 302. CLK1, CLK2 pins ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{i(CLK2)}	input capacitance on pin CLK2	VDD = 1.8 V, VDC = 0.65 V, VAC = 0.9 V (p-p)	-	1	-	pF

Table 303. IRQ pin

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	I _{OH} < 3 mA	V _{DD(VDDIO)} -0.4	-	$V_{DD(VDDIO)}$	V
V _{OL}	LOW-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
I _{OH}	HIGH-level output current		-	-	3	mA
I _{OL}	LOW-level output current		-	-	3	mA
C _L	load capacitance		-	-	10	pF
t _f	fall time	C _L = 12 pF max	1	-	3	ns
t _r	rise time	C _L = 12 pF max	1	-	3	ns
R _{pd}	pull-down resistance		40	-	62	kΩ

Table 304. SCLK, MOSI, NSS pins

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage 0.65 x V _{DD(VD}		0.65 x V _{DD(VDDIO)}	-	V _{DD(VDDIO)}	V
V _{IL}	LOW-level input voltage		- 0.5	-	0.35 x V _{DD(VDDIO)}	V
I _{IH}	HIGH-level input current	$V_I = V_{VDDIO}$	-	-	1	μA
I _{IL}	LOW-level input current	V _I = 0 V	-	-	1	μA
C _i	input capacitance		-	5	-	pF

Table 305. MISO pin

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	I _{OH} < 3 mA	V _{DD(VDDIO)} -0.4	-	V _{DD(VDDIO)}	V
V _{OL}	LOW-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
I _{OH}	HIGH-level output current		-	-	3	mA
I _{OL}	LOW-level output current		-	-	3	mA
C _L	load capacitance		-	-	10	pF
t _f	fall time	C _L = 12 pF max	1	-	3	ns
$\overline{t_r}$	rise time	C _L = 12 pF max	1	-	3	ns

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Table 306. RXp, RXn pins

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{i(dyn)}	dynamic input voltage		-	-	1.8	V
Ci	input capacitance		-	1	-	pF
Z _i	input impedance from RXN, RXP pins to VMID	Reader, card and P2P modes	-	-	15	kΩ

Table 307. TX1, TX2 pins

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	V _{DD(VDDPA)} =5.0 V; with internal VDDPA LDO	-	V _{DD(VDDPA)} -150 mV	V _{DD(VDDPA)}	V
V _{OL}	LOW-level output voltage	V _{DD(VDDPA)} =5.0 V;with internal VDDPA LDO	0	200	-	mV

Table 308. AUX1, AUX2, AUX3 pins (Debug output)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{AUX_OH}	HIGH-level output voltage	pin used as debug signal output	VDDIO -0.4	-	VDDIO	V
V _{AUX_OL}	LOW-level output voltage	pin used as debug signal output	0	-	0.4	mV
I _{AUX_OH}	HIGH-level output current	$V_{DD(VDDIO)} = 3.3 V$	-	-	3.0	mA
I _{AUX_OL}	LOW-level output current	V _{DD(VDDIO)} = 3.3 V	-	-	3.0	mA
C _{O_LOAD}	output capacitance load of pin		-	5	10	pF

Table 309. DAC_1, DAC_2 output pins (Tuning DAC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{O_max}	HIGH-level maximum output voltage	connected to a variable capacitor (varicap)	-	V _{DD(VDDIO)}	3.65	V
V _{O_min}	LOW-level minimum output voltage	connected to a variable capacitor (varicap)	- 0.3	0	200	mV
	DAC resolution		-	-	8	bits
C _{O_LOAD}	output capacitance load of pin		0	-	4	nF

11.3 Timing characteristics

NFC frontend

After VEN reset and tswcmd is lapsed, SWITCH_MODE_NORMAL command shall be issued to enter normal mode of operation. Recommended value of tswcmd = 500us.

Table 310. Power supply connection timing

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{rise_vbat}	VBAT supply ramp	VEN = Low	0	-	2.75	V/us
t _{vbat_vddio}	time between ramping up VBAT and ramping VDDIO	vddio condition: VBAT>2.4 V, VDDIO supply (External), hpd_ off_sel = x	0	500	1000	ms
t _{vbat_ven}	time between ramping VBAT and VEN	vddio condition: VBAT>2.4 V, VDDIO supply (External), hpd_ off_sel = x	0	500.5	1001	ms
t _{boot}	start-up time ^[1]	vddio condition: VBAT>2.4 V, VDDIO supply (External), hpd_ off_sel = x	3.2	3.27	dependent on configuration of XTAL_CHECK_DELAY (0013h) in EEPROM. This configuration can be used to optimize the boot time for crystals which allow a fast settling. This allows to optimize the average current consumption during ULPCD and LPCD. default EEPROM configuration: 3.4	ms

^{[1] (}PN5190B1 ready to receive commands on the host interface). For ULPCD and LPCD, the PN5190B1 indicates the ability to receive commands from a host by raising an IDLE IRQ.

NFC frontend

Table 311. Pulse length

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _(VEN)	on Pin VEN, pulse width to reset the chip or exit from ULPCD / Hard Power Down State	-	5	-	-	ms
t _(wake-up)	on pin GPIOx, pulse width to wake up	-	1	-	-	μs
t _{VEN(GPIO)}	time from VEN high to GPIO's available for use	-	100	-	-	ms

Table 312. DAC1, DAC2 conversion timing (Tuning DAC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{conversion}	Conversion speed of 8-bit DAC1, DAC2	1 LSB rising falling, (depends on capacitive load) RF cut resistance: 100 kOhm (max), Cin: 8 nF (max)	-	-	0.15	ms
		Full signal rising from 0.0 V to 3 V, (depends on capacitive load) RF cut resistance: 100 kOhm (max), Cin: 8 nF (max)	-	-	0.15	ms
		falling from 3 V to 300 mV, (depends on capacitive load) RF cut resistance: 100 kOhm (max), Cin: 8 nF (max)	-	-	2	ms

Table 313. SPI interface

Table 010. Of Finterlace							
Symbol	Parameter	Min	Тур	Max	Unit		
t _{SCKL}	SCK LOW time	25	-	-	ns		
t _{SCKH}	SCK HIGH time	25	-	-	ns		
t _{h(SCKH-D)}	SCK HIGH to data input hold time	12.5	-	-	ns		
t _{su(D-SCKH)}	data input to SCK HIGH set-up time	12.5	-	-	ns		
t _{h(SCKL-Q)}	SCK LOW to data output hold time	-	-	25	ns		

NFC frontend

Table 313. SPI interface...continued

Symbol	Parameter	Min	Тур	Max	Unit
t _(SCKL-NSSH)	SCK LOW to NSS HIGH time	0	-	-	ns
t _{NSSH}	NSS HIGH time	25	_	-	ns

Table 314. RF ON command timing following a previous RF OFF

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{(RF_OFF-} RF_ON)	RF_ON command timing	guard time between command sends for RF_OFF and command send for RF_ON, capacitors on transmitter need to be fully de- charged before RF_ON command is sent	5.1	5.6	-	ms

11.4 Clock input

Table 315. Crystal requirements for ISO/IEC14443 compliant operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{xtal}	crystal frequency	ISO/IEC compliancy	-	27.12	-	MHz
delta f _{xtal}	crystal frequency accuracy	for full RF operating range	-40	-	+40	ppm
ESR	equivalent series resistance	-	10	30	100	Ω
C _L	load capacitance	-	6	8	10	pF
t _{startup}	crystal startup time	-	-	-	1	ms
P _{xtal}	crystal power dissipation	-	-	-	100	μW

Table 316. Frequency requirements for a direct clock input (no crystal)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{clk}	clock frequency	ISO/IEC	-	24	-	MHz
		compliancy	-	32	-	

NFC frontend

Table 316. Frequency requirements for a direct clock input (no crystal) ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
			-	48	-	
delta f _{clk}	clock frequency accuracy	for full RF operating range	-40	-	+40	ppm
Ψn	phase noise	input phase noise floor at 100 kHz offset	-	- 150	-145	dBc/Hz
ϕ_{n}	phase noise	input phase noise floor at 1 MHz offset	-	- 152	-149	dBc/Hz
Vi	Input voltage boundary	sinus signal	0	-	1.8	V
$V_{i(p-p)}$	peak-to-peak Input voltage	sinus signal	0.4	-	1.8	V
V _{i(clk)}	clock input voltage	square signal	0	-	1.8 +/-10%	V

11.5 EEPROM characteristics

Table 317. EEPROM characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _{endu(W)}	write endurance	at ambient temperature T _a = +25 °C	100	-	-	K cycles
t _{ret}	retention time	at ambient temperature T _a =+25 °C	25	-	-	years

NFC frontend

12 Package outline

12.1 VFBGA64 package

Table 318. Package outline VFBGA64 (SOT1307-2)

NFC frontend

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

 $\sqrt{3.}$ PIN A1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM C.

DATUM C, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

6. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

© NXP B.V. ALL RIGHTS RESERVED

DATE: 10 DEC 2018

MECHANICAL OUTLINE STANDARD: DRAWING NUMBER: REVISION:
PRINT VERSION NOT TO SCALE NON JEDEC 98ASA01148D A

Figure 36. Package outline note VFBGA64 (SOT1307-2)

NFC frontend

12.2 HVQFN40 package

NFC frontend

H-FC-PLGA-40 I/O 5 X 5 X 0.8 PKG, 0.4 PITCH

S0T2062-1

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

4. DIMENSION APPLIES TO ALL LEADS.

© NXP B.V. ALL RIGHTS RESERVED DATE: 01 JUL 2020 STANDARD: DRAWING NUMBER:

REVISION: MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE NON JEDEC 98ASA01615D ΧO

Figure 38. Package outline detail HVQFN40, SOT2062-1

NFC frontend

13 Package marking

13.1 Package marking drawing VFBGA64

Line A: 5 characters; "PN5190D" (FW2.0) or "5190E" (FW2.1)

Line B: 5 characters; contains the DB ID and AS ID

Line C: 8 characters; stDYYWW(X) - contains information assembly center, date code and maturity level ("X" = engineering samples, " " = released product)

13.2 Package marking drawing HVQFN40

Line A: 5 characters; "PN5190D" (FW2.0) or "5190E" (FW2.1)

Line B1: 5 characters: contains the DB ID

Line B2: 7 characters; contains the DB ID (continued) and AS ID (2 digits)

Line C: 7 characters; stDYYWW(X) - contains information assembly center, date code and maturity level ("X" = engineering samples, "Y" = customer qualification samples, " = released product)

NFC frontend

14 Reflow soldering footprint VFBGA64

Figure 42. Reflow soldering footprint part2 for VFBGA64 (SOT1307-2)

Figure 43. Reflow soldering footprint part3 for VFBGA64 (SOT1307-2)

NFC frontend

15 Reflow soldering footprint HVQFN40

PN5190B1

NFC frontend

16 Surface mount reflow soldering

For information on surface mount, reflow soldering and component handling please refer to the related application note.

This application note provides guidelines for the board mounting and handling of NXP Semiconductor packages:

https://www.nxp.com/docs/en/application-note/AN10365.pdf

NFC frontend

17 Handling information

Moisture Sensitivity Level (MSL) evaluation has been performed according to SNW-FQ-225B rev.04/07/07 (JEDEC J-STD-020C).

An MSL corresponds to a certain out-of-bag time (or floor life). If semiconductor packages are removed from their sealed dry-bags and not soldered within their out-of-bag time, they must be baked prior to reflow soldering, in order to remove any moisture that might have soaked into the package.

For MSL3:

168h out-of-pack floor life at maximum ambient temperature, conditions < 30 $^{\circ}\text{C}$ / 60 % RH.

For MSL2:

1 year out-of-pack floor life at maximum ambient temperature, conditions < 30 °C° / 60 % RH.

For MSL1:

• No out-of-pack floor live spec. required. Conditions: <30 °C° / 85 % RH.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

NFC frontend

18 Appendix: EEPROM LOAD RF CONFIGURATION FW2.00

```
Firmware 2.0
<?xml version="1.0" encoding="utf-8"?>
<EEPROM>
 <Region RegionName="USER_PMU" RegionAccess="RW" RegionType="DATA">
  </Region>
 </Region>
```

```
<Parameter Name="RmArc180003m3_SC848_2Man" Offset="0x1F2" Value="0x0014001F003F004F404F" />
<Parameter Name="RmArc_AI_106" offset="0x1FC" Value="0x000A000A000A00A00A" />
<Parameter Name="RmArc_AI_212" offset="0x206" Value="0x000A000A000A00A00A00A" />
<Parameter Name="RmArc_AI_424" offset="0x210" Value="0x000A000A000A00A00A00A" />
     </Region>
     | Region RegionName="MFC_CFG" RegionAccess="RW" RegionType="DATA" |
| CParameter Name="MFCAULTHIMEOUT" Offset="0x2CC" Value="0x0500" |>
| CParameter Name="ResiTimer" Offset="0x2CC" Value="0x0500" |>
| CParameter Name="ResiTimer" Offset="0x2DC" Value="0x03130" |>
| CParameter Name="ResiTimer" Offset="0x2DC" Value="0x09" |>
| CParameter Name="ResiTimer) Offset="0x2DC" Value="0x09" |>
| CParameter Name="ResiTimer) Offset="0x2DC" Value="0x000" |>
| CParameter Name="ResiThresholds 01" Offset="0x2DC" Value="0x000" |>
| CParameter Name="ResiThresholds 01" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 01" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 01" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 05" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 07" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 07"
```

```
<Parameter Name="ArbPhaseF_0B" Offset="0x36C" Value="0x0000" />
<Parameter Name="RssiThresholdF_0C" Offset="0x36E" Value="0x96F9" />
<Parameter Name="ArbPhaseF_0C" Offset="0x370" Value="0x0000" />
<Parameter Name="RssiThresholdF_0D" Offset="0x372" Value="0x96F9" />
<Parameter Name="RssiThresholdF_0D" Offset="0x374" Value="0x96F9" />
<Parameter Name="RssiThresholdF_0E" Offset="0x378" Value="0x96F9" />
<Parameter Name="RssiThresholdF_0E" Offset="0x378" Value="0x96F9" />
<Parameter Name="RssiThresholdF_0F" Offset="0x378" Value="0x0000" />
<Parameter Name="RssiThresholdF_10" Offset="0x378" Value="0x0000" />
<Parameter Name="RssiThresholdF_10" Offset="0x378" Value="0x96F9" />
<Parameter Name="RssiThresholdF_11" Offset="0x378" Value="0x96F9" />
<Parameter Name="RssiThresholdF_11" Offset="0x388" Value="0x96F9" />
<Parameter Name="RssiThresholdF_12" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_12" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_13" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_13" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_14" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_14" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_14" Offset="0x398" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x398" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x399" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x399" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x399" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x398" Value="0x96F9" />
<Parameter Name="RssiThresholdF_16" Offset="0x398
CParameter Name—"RabThases 17" Offset="0x350" value="0x95" / Parameter Name—"RabThases 17" Offset="0x350" value="0x9679" / CParameter Name—"RasIThreshold 18" Offset="0x350" value="0x9679" / CParameter Name—"RasIThreshold 18" Offset="0x350" value="0x9679" / CParameter Name—"RasIThreshold 18" Offset="0x350" value="0x40" /> CParameter Name—"RasIThreshold 19" Offset="0x350" value="0x40" /> CParameter Name—"RasIThry 00 ID" Offset="0x350" value="0x64" /> CParameter Name—"RasIThry 00 ID" Offset="0x350" value="0x
```

NFC frontend

```
<Region RegionName="ULPCD_SETTINGS" RegionAccess="RW" RegionType="DATA">
    <Parameter Name="rssi_nsp" Offset="0x4C9" Value="0x10" />
    <Parameter Name="rssi_no samples" Offset="0x4CA" Value="0x00" />
    <Parameter Name="thresh_Iv1" Offset="0x4CB" Value="0x0C" />
    <Parameter Name="polarity" Offset="0x4CC" Value="0x00" />
</Region>
<Region RegionName="TX SHAPING PROPRIETARY CORR" RegionAccess="RW" RegionType="DATA">
```

NFC frontend

```
<Region RegionName="TX_SHAPING_PROPRIETARY 2" RegionAccess="RW" RegionType="DATA">
    <Parameter Name="RTRANS0" Offset="0xC23" Value="0xF0EAE3DA" />
    <Parameter Name="RTRANS1" offset="0xC27" Value="0xF8F9F6F4" />
    <Parameter Name="RTRANS2" offset="0xC28" Value="0xF8F9FF0FC" />
    <Parameter Name="RTRANS3" offset="0xC28" Value="0xF8FFFFFF8" />
    <Parameter Name="FTRANS0" offset="0xC37" Value="0xF8FFFFFF7" />
    <Parameter Name="FTRANS1" offset="0xC37" Value="0xF6F8F9F8" />
    <Parameter Name="FTRANS2" offset="0xC38" Value="0xF4F6F9F8" />
    <Parameter Name="FTRANS3" offset="0xC38" Value="0xF4F6F9F8" />
    <Parameter Name="FTRANS3" offset="0xC37" Value="0xDAE3EAF0" />
    <Parameter Name="FTRANS3" offset="0xC37" Value="0xDAE3EAF0" />
    <Parameter Name="FTRANS3" offset="0xC37" Value="0xDAE3EAF0" />
    </Parameter Name="FTRANS3" offset="0xC37" Value="0xDAE3EAF0" />

</Region>
</Region>
```

NFC frontend

```
</Region>
 </Protocol>
</Protocol>
</Protocol ProtocolName="TX ISO14443A 212" ProtocolIndex="0x01" ProtocolOffset="0xA1">
</Protocol ProtocolName="TX ISO1443A 212" ProtocolIndex="0x01" ProtocolOffset="0xA1">
</Protocol ProtocolName="CLIF SS TX1 CMCFG" RegisterLogicalAddress="0x38" RegisterValue="0x000900FF"></Position Register RegisterName="CLIF SS TX2 CMCFG" RegisterLogicalAddress="0x30" RegisterValue="0x00000000"></Position Register RegisterName="CLIF TX UNDERSHOOT CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x00000000"></Position Register RegisterName="CLIF TX OVERSHOOT CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x00000000"></Position Register RegisterName="CLIF TX OVERSHOOT CONFIG" RegisterLogicalAddress="0x08" RegisterValue="0x00000001"></Position Register RegisterName="CLIF TX SYMBOL23 MOD" RegisterLogicalAddress="0x08" RegisterValue="0x00002289"></Position RegisterName="CLIF TX SYMBOL23 DEF" RegisterLogicalAddress="0x08" RegisterValue="0x00000000"></Position RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x08" RegisterValue="0x00000000"></Position RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x08" RegisterValue="0x00000000"></Position RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x10" RegisterValue="0x000110105"></Position RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x10" RegisterValue="0x00110105"></Position RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x10" RegisterValue="0x00110105"></Position RegisterName="0x00000000"></Position RegisterName="0x00000000"></Positi
       </Protocol>
       </Protocol>
       </Protocol>

Protocol ProtocolName="TX IS014443B 212" ProtocolIndex="0x05" ProtocolOffset="0x155">
            vitocol ProtocolName="TX Felica 212" ProtocolIndex="0x08" ProtocolOffset="0x1DC">
<Register RegisterName="CLIF_SS_TX1_CMCFG" RegisterLogicalAddress="0x3B" RegisterValue="0x000900FF"></Register>
```

NFC frontend

```
</Protocol>
</Protocol>
</Protocol>
</Protocol>
</Protocol>
</Protocol>
</Protocol>
```

PN5190B1

Product data sheet

NFC frontend

```
<Register RegisterName="CLIF_TX_OVERSHOOT_CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_TRANSCEIVE_CONTROL" RegisterLogicalAddress="0x08" RegisterValue="0x00007402"></Register>
<Register RegisterName="CLIF_STX_SYMEDL23_MOD" RegisterLogicalAddress="0x15" RegisterValue="0x000002889"></Register>
<Register RegisterName="CLIF_TX_SYMEDL23_MOD" RegisterLogicalAddress="0x00" RegisterValue="0x00000001"></Register>
<Register RegisterName="CLIF_TX_SYMEDL23_DEF" RegisterLogicalAddress="0x00" RegisterValue="0x00000001"></Register>
<Register RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x00000003F"></Register>

 </Protocol>
</Protocol>
</Protocol>
</Protocol ProtocolName="TX NFC-AT-106 106" ProtocolIndex="0x19" ProtocolOffset="0x3F8">
</Register RegisterName="CLIF SS TX1 CMCFG" RegisterLogicalAddress="0x3B" RegisterValue="0x000900FF"></Register>
</Register RegisterName="CLIF SS TX2 CMCFG" RegisterLogicalAddress="0x3C" RegisterValue="0x0000700FF"></Register>
</Register RegisterName="CLIF TX UNDERSHOOT CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x000000000"></Register>
</Register RegisterName="CLIF TX OVERSHOOT CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x00000000"></Register>
</Register RegisterName="CLIF TX OVERSHOOT CONFIG" RegisterLogicalAddress="0x04" RegisterValue="0x00000001"></Register>
</Register RegisterName="CLIF TX TX OVERSHOOT RegisterLogicalAddress="0x08" RegisterValue="0x00003D41"></Register>
</Register RegisterName="CLIF TX SYMBOL23 MOD" RegisterLogicalAddress="0x0C" RegisterValue="0x000220104"></Register>
</Register RegisterName="CLIF TX SYMBOL23 DEF" RegisterLogicalAddress="0x0D" RegisterValue="0x00000000"></Register>
</Register RegisterName="CLIF TX SYMBOL23 DEF" RegisterLogicalAddress="0x0D" RegisterValue="0x00000000"></Register>
</Register RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x0D" RegisterValue="0x000220104"></Register>
</Register RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x0D" RegisterValue="0x002201
 <Protocol ProtocolName="TX NFC-AT-212 212" ProtocolIndex="0x1A" ProtocolOffset="0x425">
<Protocol ProtocolName="RX IS014443A 106" ProtocolIndex="0x80" ProtocolOffset="0x506">
```

NFC frontend

```
<Register RegisterName="CLIF_SIGPRO_IIR_CONFIGO" RegisterLogicalAddress="0x2A" RegisterValue="0x0088080"></Register>
<Register RegisterName="CLIF_DGRM_DAC_FILTER" RegisterLogicalAddress="0x2B" RegisterValue="0x00889238"></Register>
<Register RegisterName="CLIF_DGRM_CONFIG" RegisterLogicalAddress="0x2C" RegisterValue="0x00863400"></Register>
<Register RegisterName="CLIF_DGRM_BBA" RegisterLogicalAddress="0x2D" RegisterValue="0x0DF024A4"></Register>
<Register RegisterName="CLIF_DGRM_DCO" RegisterLogicalAddress="0x2E" RegisterValue="0x0DF7C1F0"></Register>
<Register RegisterName="CLIF_DGRM_BTAT" RegisterLogicalAddress="0x2F" RegisterValue="0x7B75FFFF"></Register>
<Register RegisterName="CLIF_DGRM_RSSI" RegisterLogicalAddress="0x3D" RegisterValue="0x7B75FFFF"></Register>
<Register RegisterName="CLIF_SIGPRO_RM_TECH" RegisterLogicalAddress="0x3D" RegisterValue="0x4A8B60A7"></Register>
<Register RegisterName="CLIF_SIGPRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x1FE00001"></Register>
<Register RegisterName="CLIF_SIGPRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x1FE00001"></Register>
```

NFC frontend

```
rotocol>
rotocol>
rotocol>
rotocolName="RX Felica 212" ProtocolIndex="0x88" ProtocolOffset="0x8C6">

Register RegisterName="CLIF_ANA RX CTRL" RegisterLogicalAddress="0x43" RegisterValue="0x0000E407"></Register>

Register RegisterName="CLIF_DCOC_CONFIG" RegisterLogicalAddress="0x33" RegisterValue="0x000000F4"></Register>

Register RegisterName="CLIF_RXM_CTRL" RegisterLogicalAddress="0x35" RegisterValue="0x0004893E"></Register>

Register RegisterName="CLIF_GCM_CONFIGE" RegisterLogicalAddress="0x35" RegisterValue="0x00004893E"></Register>

Register RegisterName="CLIF_GCM_CONFIGE" RegisterLogicalAddress="0x36" RegisterValue="0x0000760"></Register>

Register RegisterName="CLIF_GCM_CONFIGE" RegisterLogicalAddress="0x36" RegisterValue="0x00000339"></Register>

Register RegisterName="CLIF_ANA AGC DCO CTRL" RegisterLogicalAddress="0x36" RegisterValue="0x01000008"></Register>

Register RegisterName="CLIF_SIGPRO_RM_CONFIGE" RegisterLogicalAddress="0x16" RegisterValue="0x10780203"></Register>

Register RegisterName="CLIF_SIGPRO_RM_ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x00000055"></Register>

RegisterName="CLIF_SIGPRO_RM_ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x0000055"></Register>

RegisterName="CLIF_SIGPRO_RM_ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x0000055"></Register>

RegisterName="CL
```

NFC frontend

```
</Protocol>
 </Protocol>
      cotocol protocolName="RX ISO15693 53" ProtocolIndex="0x8C" ProtocolOffset="0xAA6">

<Register RegisterName="CLIF_ANA_RX_CTRL" RegisterLogicalAddress="0x43" RegisterValue="0x0000E407"></Register>

<Register RegisterName="CLIF_DCOC_CONFIG" RegisterLogicalAddress="0x33" RegisterValue="0x00000D4"></Register>

<Register RegisterName="CLIF_RXM_CTRL" RegisterLogicalAddress="0x35" RegisterValue="0x0044893E"></Register>

<Register RegisterName="CLIF_GCM_CONFIG2" RegisterLogicalAddress="0x38" RegisterValue="0x00024820"></Register>

<Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x38" RegisterValue="0x0000FC0"></Register>

<Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x38" RegisterValue="0x00009FC0"></Register>

<Register RegisterName="CLIF_GCM_CONFIG0" RegisterLogicalAddress="0x38" RegisterValue="0x00003939"></Register>
```

NFC frontend

```
<Register RegisterName="CLIF ANA AGC DCO CTRL" RegisterLogicalAddress="0x36" RegisterValue="0x01000008"></Register>
<Register RegisterName="CLIF SIGPRO RM CONFIG" RegisterLogicalAddress="0x1F" RegisterValue="0x000A0200"></Register>
<Register RegisterName="CLIF SIGPRO RM ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x000A0200"></Register>
<Register RegisterName="CLIF SIGPRO CONFIG" RegisterLogicalAddress="0x21" RegisterValue="0x000801507D"></Register>
<Register RegisterName="CLIF SIGPRO NOISE CONFIGI" RegisterLogicalAddress="0x23" RegisterValue="0x0000815"></Register>
<Register RegisterName="CLIF SIGPRO NOISE CONFIGI" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF XX ERROR CONFIG" RegisterLogicalAddress="0x27" RegisterValue="0x000000000"></Register>
<Register RegisterName="CLIF XX ERROR CONFIG" RegisterLogicalAddress="0x24" RegisterValue="0x0000000000"></Register>
<Register RegisterName="CLIF SIGPRO IIR CONFIGI" RegisterLogicalAddress="0x28" RegisterValue="0x00000000000"></Register>
<Register RegisterName="CLIF SIGPRO IIR CONFIGI" RegisterLogicalAddress="0x28" RegisterValue="0x000085CC"></Register>
<Register RegisterName="CLIF DGRM_DAC FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x000885CC"></Register>
<Register RegisterName="CLIF DGRM_DAC FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x000889238"></Register>
<Register RegisterName="CLIF DGRM_DAC FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x000889238"></Register>
<Register RegisterName="CLIF DGRM_DAC FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x00063400"></Register>
<Register RegisterName="CLIF DGRM_DAC FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x0007701F0"></Register>
<Register RegisterName="CLIF DGRM_DCO" RegisterLogicalAddress="0x28" RegisterValue="0x0067701F0"></Register>
<Register RegisterName="CLIF DGRM_DCO" RegisterLogicalAddress="0x28" RegisterValue="0x0067701F0"></Register>
<Register RegisterName="CLIF DGRM_DCO" RegisterLogicalAddress="0x28" R
</Protocol>
</Protocol>
   </Protocol>
```

NFC frontend

```
</Protocol>
<Protocol ProtocolName="RX ISO14443A-PICC 212" ProtocolIndex="0x94" ProtocolOffset="0xE66">
```

```
<Register RegisterName="CLIF_ANA_RX_CTRL" RegisterLogicalAddress="0x43" RegisterValue="0x0700E437"></Register>
<Register RegisterName="CLIF_CXC_CONFIG" RegisterLogicalAddress="0x33" RegisterValue="0x00000037"></Register>
<Register RegisterName="CLIF_CXC_CONFIG2" RegisterLogicalAddress="0x35" RegisterValue="0x00040935"></Register>
<Register RegisterName="CLIF_CCM_CONFIG2" RegisterLogicalAddress="0x38" RegisterValue="0x000A24820"></Register>
<Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x39" RegisterValue="0x0000379"></Register>
<Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x39" RegisterValue="0x00000379"></Register>
<Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x36" RegisterValue="0x000000000"></Register>
<Register RegisterName="CLIF_SIGF0 RM_CONFIG1" RegisterLogicalAddress="0x18" RegisterValue="0x000000000"></Register>
<Register RegisterName="CLIF_SIGF0 RM_CONFIG1" RegisterLogicalAddress="0x18" RegisterValue="0x000000000"></Register>
<Register RegisterName="CLIF_SIGF0 RM_ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x000000000"></Register>
<Register RegisterName="CLIF_SIGF0 NOISE_CONFIG1" RegisterLogicalAddress="0x21" RegisterValue="0x000000000"></Register>
<Register RegisterName="CLIF_SIGF0 NOISE_CONFIG1" RegisterLogicalAddress="0x21" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGF0 NOISE_CONFIG1" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGF0 NOISE_CONFIG1" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGF0 IIR_CONFIG1" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGF0 IIR_CONFIG1" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGF0 IIR_CONFIG1" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DGM DGN DGN RegisterDogicalAddress="0x26" RegisterValue
```

NFC frontend

```
<Register RegisterName="CLIF_SIGPRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x20100000"></Register>
```

```
Amgister RegisterName="CLIF DGRM BATT" RegisterIndicalAddress="0x2" RegisterValue="0x00000000">/Register>
Genister RegisterName="CLIF SIGFNO_MM_TECH" NegisterIndicates="0x2" RegisterValue="0x00000000">/Register>
Genister RegisterName="CLIF SIGFNO_MM_TECH" RegisterIndicates="0x2" RegisterValue="0x000000000">/Register>
Genister RegisterName="CLIF SIGFNO_MM_TECH" RegisterIndicalAddress="0x3" RegisterValue="0x07000000000">/Register>
Genister RegisterName="CLIF SIGFNO_MM_TECH" RegisterIndicalAddress="0x3" RegisterValue="0x07000000000">/Register RegisterIndicaterName="CLIF CMC_OUNTION" RegisterIndicatAddress="0x3" RegisterValue="0x0700000000">/Register RegisterIndicaterName="CLIF CMC_OUNTION" RegisterIndicatAddress="0x3" RegisterValue="0x070000000">/Register RegisterIndicaterName="CLIF CMC_OUNTION" RegisterIndicatAddress="0x3" RegisterValue="0x070000000">/Register RegisterIndicaterName="CLIF CMC_OUNTION" RegisterIndicatAddress="0x3" RegisterValue="0x070000000">/Register RegisterIndicaterName="CLIF CMC_OUNTION" RegisterIndicatAddress="0x3" RegisterValue="0x0700000000">/Register RegisterIndicaterName="CLIF SIGFNO_RMC_OUNTION" RegisterIndicatAddress="0x1" RegisterValue="0x070000000">/Register RegisterName="CLIF SIGFNO_RMC_OUNTION" RegisterIndicatAddress="0x1" RegisterValue="0x070000000">/Register RegisterName="CLIF SIGFNO_RMC_OUNTION" RegisterIndicatAddress="0x1" RegisterValue="0x070000000">/Register RegisterName="CLIF REGISTOR_COUNTION" RegisterIndicatAddress="0x1" RegisterValue="0x070000000">/Register RegisterName="CLIF REGISTOR_COUNTION" RegisterIndicatAddress="0x2" RegisterValue="0x070000000">/Register RegisterName="CLIF REGISTOR_COUNTION" RegisterIndicatAddress="0x2" RegisterValue="0x070000000">/Register RegisterName="CLIF REGISTOR_COUNTION" RegisterIndicatAddress="0x2" RegisterValue="0x070000000">/Register RegisterName="CLIF REGISTOR_COUNTION" RegisterIndicatAddress="0x2" RegisterValue="0x
```

NFC frontend

19 Appendix: EEPROM LOAD RF CONFIGURATION FW2.01

```
Firmware 2.1
<?xml version="1.0" encoding="utf-8"?>
   <Parameter Name="TxLdoVodpaHigh" Offset="0x02" Value="0x00" />
<Parameter Name="TxLdoVddpaHigh" Offset="0x06" Value="0x00" />
<Parameter Name="TxLdoVddpaLow" Offset="0x07" Value="0x00" />
<Parameter Name="TxLdoVddpaMaxRdr" Offset="0x08" Value="0x2A" />
<Parameter Name="TxLdoVddpaMaxCard" Offset="0x09" Value="0x2A" />
<Parameter Name="BoostDefaultVoltage" Offset="0x08" Value="0x1D" />

   </Region>
   <Parameter Name="EnableGpioOonOverTemp" Offset="0x16" Value="0x01" />
```

```
<Parameter Name="EdgeStyleConfiguration_V10_53" Offset="0x60" Value="0x23" />
<Parameter Name="EdgeLength_V10_53" Offset="0x61" Value="0x10" />
<Parameter Name="ResidualAmplitudeLevel_V10_1016" Offset="0x62" Value="0x00" />
<Parameter Name="EdgeType_V10_106" Offset="0x63" Value="0x22" />
<Parameter Name="EdgeStyleConfiguration_V10_106" Offset="0x64" Value="0x23" />
<Parameter Name="EdgeStyleConfiguration_V10_106" Offset="0x64" Value="0x23" />
<Parameter Name="ResidualAmplitudeLevel_V10_212" Offset="0x66" Value="0x00" />
<Parameter Name="ResidualAmplitudeLevel_V10_212" Offset="0x66" Value="0x00" />
<Parameter Name="EdgeType_V10_212" Offset="0x67" Value="0x22" />
<Parameter Name="EdgeStyleConfiguration_V10_212" Offset="0x68" Value="0x23" />
<Parameter Name="ResidualAmplitudeLevel_N0003m3_taril8p88" Offset="0x6A" Value="0x00" />
<Parameter Name="EdgeType_180003m3_taril8p88" Offset="0x68" Value="0x22" />
<Parameter Name="EdgeStyleConfiguration_180003m3_taril8p88" Offset="0x6C" Value="0x66" />
<Parameter Name="ResidualAmplitudeLevel_180003m3_taril8p88" Offset="0x6E" Value="0x00" />
<Parameter Name="ResidualAmplitudeLevel_180003m3_taril9p44" Offset="0x6E" Value="0x00" />
<Parameter Name="ResidualAmplitudeLevel_180003m3_taril9p44" Offset="0x6E" Value="0x00" />
<Parameter Name="ResidualAmplitudeLevel_180003m3_taril9p44" Offset="0x70" Value="0x00" />
<Parameter Name="EdgeType_180003m3_taril9p44" Offset="0x70" Value="0x66" />
<Parameter Name="EdgeStyleConfiguration_180003m3_taril9p44" Offset="0x70" Value="0x66" />
<Parameter Name="ResidualAmplitudeLevel_B prime106" Offset="0x73" Value="0x72" Value="0x67" />
<Parameter Name="ResidualAmplitudeLevel_B prime106" Offset="0x72" Value="0x67" />
<Parameter Name="ResideStyleConfiguration_B prime106" Offset="0x72" Value="0x67" />
<Parameter Name="ResideStyleConfiguration_B prime106" Offset="0x72" Value="0x67" />
<Parameter Name="EdgeLength_B prime106" Offset="0x73" Value="0x10" />
<Parameter Name="EdgeStyleConfiguration_B prime106" Offset="0x74" Value="0x67" />
<Parameter Na
```

NFC frontend

```
<Parameter Name="RmArc180003m3_SC848_4Man" Offset="0x1E8" Value="0x0114011F011F001F401F" />
<Parameter Name="RmArc180003m3_SC848_2Man" Offset="0x1F2" Value="0x0014001F003F004F404F" />
<Parameter Name="RmArc_AI_106"_Offset="0x1FC" Value="0x000A000A000A00A00A" />
<Parameter Name="RmArc_AI_212" Offset="0x206" Value="0x000A000A000A00A00A" />
<Parameter Name="RmArc_AI_424" Offset="0x210" Value="0x000A000A000A000A00A00A" />
 </Region>
</Region>
```

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

```
<Parameter Name="RssiThresholdF_0E" Offset="0x376" Value="0x96F9" />
<Parameter Name="ArbPhaseF_0E" Offset="0x378" Value="0x0000" />
<Parameter Name="RssiThresholdF_0F" Offset="0x378" Value="0x96F9" />
<Parameter Name="RssiThresholdF_10" Offset="0x376" Value="0x0000" />
<Parameter Name="RssiThresholdF_10" Offset="0x376" Value="0x0000" />
<Parameter Name="RssiThresholdF_11" Offset="0x380" Value="0x0000" />
<Parameter Name="RssiThresholdF_11" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_11" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_12" Offset="0x386" Value="0x96F9" />
<Parameter Name="RssiThresholdF_12" Offset="0x386" Value="0x96F9" />
<Parameter Name="RssiThresholdF_13" Offset="0x388" Value="0x96F9" />
<Parameter Name="RssiThresholdF_13" Offset="0x386" Value="0x96F9" />
<Parameter Name="RssiThresholdF_14" Offset="0x386" Value="0x9000" />
<Parameter Name="RssiThresholdF_15" Offset="0x390" Value="0x0000" />
<Parameter Name="RssiThresholdF_15" Offset="0x390" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x390" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x396" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x396" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x396" Value="0x96F9" />
<Parameter Name="RssiThresholdF_16" Offset="0x396" Value="0x96F9" />
<Parameter Name="RssiThresholdF_16" Offset="0x396" Value="0x96F9" />
<Parameter Name="RssiThresholdF_17" Offset="0x396" Value="0x96F9" />
<Parameter Name="RssiThresholdF_18" Offset="0x396" Value="0x9000" />
<Parameter Name="RssiThresholdF_18" Offset="0x396" Value="0x96F9" />
<Parameter Name="RssiThresholdF_18" Offset="0x396" Value="0x9000" />
<Parameter Name="RssiThresholdF_18" Offset="0x396" Value="0x9000" />
<Parameter Name="RssiThresholdF_18" Offset="
```

NFC frontend

```
</Region>
<Region RegionName="TX_SHAPING_PROPRIETARY_CORR" RegionAccess="RW" RegionType="DATA">
  <Parameter Name="Correction_Entry0" Offset="0xBAD" Value="0x0000" />
<Parameter Name="Correction_Entry1" Offset="0xBAF" Value="0x0000" />
<Parameter Name="Correction_Entry1" Offset="0xBAF" Value="0x0000" />
<Parameter Name="Correction_Entry2" Offset="0xBB1" Value="0x0000" />
```

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

```
Parameter Name="Correction_Entry3" Offset="0xBB3" Value="0x0000" />
Parameter Name="Correction_Entry6" Offset="0xBB5" Value="0x0000" />
Parameter Name="Correction_Entry6" Offset="0xBB9" Value="0x0000" />
Parameter Name="Correction_Entry6" Offset="0xBB9" Value="0x0000" />
Parameter Name="Correction_Entry7" Offset="0xBBB" Value="0x0000" />
Parameter Name="Correction_Entry9" Offset="0xBBB" Value="0x0000" />
Parameter Name="Correction_Entry10" Offset="0xBBB" Value="0x0000" />
Parameter Name="Correction_Entry10" Offset="0xBC1" Value="0x0000" />
Parameter Name="Correction_Entry11" Offset="0xBC3" Value="0x0000" />
Parameter Name="Correction_Entry12" Offset="0xBC5" Value="0x0000" /
Parameter Name="Correction_Entry12" Offset="0xBC5" Value="0x0000" /
Parameter Name="Correction_Entry14" Offset="0xBC5" Value="0x0000" /
Parameter Name="Correction_Entry15" Offset="0xBC6" Value="0x0000" /
Parameter Name="Correction_Entry15" Offset="0xBC6" Value="0x0000" /
Parameter Name="Correction_Entry17" Offset="0xBC6" Value="0x0000" /
Parameter Name="Correction_Entry17" Offset="0xBC6" Value="0x0000" /
Parameter Name="Correction_Entry17" Offset="0xBC6" Value="0x0000" /
Parameter Name="Correction_Entry19" Offset="0xBD6" Value="0x0000" /
Parameter Name="Correction_Entry20" Offset="0xBD7" Value="0x0000" /
Parameter Name="Correction_Entry20" Offset="0xBD7" Value="0x0000" /
Parameter Name="Correction_Entry20" Offset="0xBD7" Value="0x0000" 
 </Region>
</Region>
 <Parameter Name="RTRANSZ" Offset="UXCZ5" value="UXFEFFFFFE"
<Parameter Name="FTRANS3" Offset="0xC2F" value="0xFFFFFFFF"
<Parameter Name="FTRANS0" Offset="0xC33" Value="0xFEFFFFFF"
<Parameter Name="FTRANS1" Offset="0xC37" Value="0xFCFDFDFE"
<Parameter Name="FTRANS2" Offset="0xC38" Value="0xF4F6F9FA"</pre>
                Parameter Name="FTRANS3" Offset="0xC3F" Value="0xDAE3EAF0"
 </Region>
</Region>
</Region>
```

NFC frontend

```
</Region>
 </Protocol>
            </Protocol>
</Protocol>
</Protocol ProtocolName="TX IS014443A 212" ProtocolIndex="0x01" ProtocolOffset="0xA1">
</Protocol ProtocolName="TX IS014443A 212" ProtocolIndex="0x01" ProtocolOffset="0xA1">
</Protocol ProtocolName="CLIF SS TX1 CMCFG" RegisterLogicalAddress="0x38" RegisterValue="0x000900FF"></Register>
</Protocol Register RegisterName="CLIF SS TX2 CMCFG" RegisterLogicalAddress="0x32" RegisterValue="0x0000000FF"></Position RegisterValue="0x00000000FF"></Position RegisterValue="0x000000000"></Position Register RegisterName="CLIF TX OVERSHOOT CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x00000000"></Position Register RegisterName="CLIF TX OVERSHOOT CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x00000000"></Position Register RegisterName="CLIF TX SYMBOL23 MOD" RegisterLogicalAddress="0x00" RegisterValue="0x000002289"></Position RegisterValue="0x000000000"></Position RegisterValue="0x000000000"></Position RegisterValue="0x000000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x000101015"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x000000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x000000000"></Position RegisterValue="0x000000000"></Position RegisterValue="0x000000000"></Position RegisterValue="0x000000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000"></Position RegisterValue="0x00000000">
Register RegisterValue="0x00000000">
Register RegisterValue="0x00000000">
Register RegisterValue="0x000000000">
Register RegisterValue="0x000000000000">
Regist
             <Protocol ProtocolName="TX ISO14443A 424" ProtocolIndex="0x02" ProtocolOffset="0x0E">
                        Protocol ProtocolName="TX ISO14443A 848" ProtocolIndex="0x03" ProtocolOffset="0xFB">
             </Protocol>
</Protocol ProtocolName="TX ISO14443B 106" ProtocolIndex="0x04" ProtocolOffset="0x128">
</Protocol ProtocolName="TX ISO14443B 106" ProtocolIndex="0x04" ProtocolOffset="0x128">
</Protocol ProtocolName="CLIF SS TX1 CMCFG" RegisterLogicalAddress="0x38" RegisterValue="0x000900FF"></ProtocolFice Register RegisterName="CLIF SS TX2 CMCFG" RegisterLogicalAddress="0x38" RegisterValue="0x00000000"></ProtocolFice Register RegisterName="CLIF TX UNDERSHOOT CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x00000000"></ProtocolFice Register RegisterName="CLIF TX OVERSHOOT CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x00000000"></ProtocolFice Register RegisterName="CLIF TX SYMEOLS MoD" RegisterLogicalAddress="0x08" RegisterValue="0x00000001"></ProtocolFice RegisterName="CLIF TX SYMEOLS MoD" RegisterLogicalAddress="0x06" RegisterValue="0x00003107"></ProtocolFice RegisterName="CLIF TX SYMEOLS MoD" RegisterLogicalAddress="0x06" RegisterValue="0x00000000"></ProtocolFice RegisterName="CLIF TX SYMEOLS MoD" RegisterLogicalAddress="0x16" RegisterValue="0x00000000"></ProtocolFice RegisterName="CLIF TX SYMEOLS MoD" RegisterLogicalAddress="0x16" RegisterValue="0x00000000"></ProtocolFice RegisterName="CLIF TX SYMEOLS MoD" RegisterLogicalAddress="0x16" RegisterValue="0x00000000"></Pol>

<
```

NFC frontend

```
<Register RegisterName="CLIF_SS_TX_CFG" RegisterLogicalAddress="0x15" RegisterValue="0x00002289"></Register>
<Register RegisterName="CLIF_TX_SYMBOL23_MOD" RegisterLogicalAddress="0x0C" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_TX_SYMBOL23_DEF" RegisterLogicalAddress="0x0D" RegisterValue="0x0000000000"></Register>
<Register RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x000000015"></Register>
</Protocol>
    </Protocol>
    </Protocol>
</Protocol>
</Protocol>
</Protocol>
</Protocol>
<Protocol ProtocolName="TX IS014443A-PICC 848" ProtocolIndex="0x16" ProtocolOffset="0x371">
     tocol ProtocolName="TX ISO14443A-PICC 848" ProtocolIndex="0x16" ProtocolOffset="0x371">

- Register RegisterName="CLIF_SS_TX1_CMCFG" RegisterLogicalAddress="0x38" RegisterValue="0x000700FF"></Register>

- Register RegisterName="CLIF_SS_TX2_CMCFG" RegisterLogicalAddress="0x3C" RegisterValue="0x000700FF"></Register>

- Register RegisterName="CLIF_TX_UNDERSHOOT_CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x00000000"></Register>

- Register RegisterName="CLIF_TX_OVERSHOOT_CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x000000000"></Register>

- Register RegisterName="CLIF_TRANSCEIVE_CONTROL" RegisterLogicalAddress="0x08" RegisterValue="0x00007402"></Register>

- Register RegisterName="CLIF_TRANSCEIVE_CONTROL" RegisterLogicalAddress="0x08" RegisterValue="0x00007402"></Register>

- Register RegisterName="CLIF_TX_SYMBOL23_MOD" RegisterLogicalAddress="0x08" RegisterValue="0x000000228"></Register>

- Register RegisterName="CLIF_TX_SYMBOL23_MOD" RegisterLogicalAddress="0x08" RegisterValue="0x00000027"></Register>
```

NFC frontend

```
<Register RegisterName="CLIF_TX_SYMBOL23 DEF" RegisterLogicalAddress="0x00" RegisterValue="0x00000001"></Register>
<Register RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x0000003F"></Register>
</Protocol>
</Protocol>
</Protocol>
```

NFC frontend

```
<Register RegisterName="CLIF_DGRM_DCO" RegisterLogicalAddress="0x2E" RegisterValue="0xC0F7C1F0"></Register>
<Register RegisterName="CLIF_DGRM_HF_ATT" RegisterLogicalAddress="0x2F" RegisterValue="0x7B75FFFF"></Register>
<Register RegisterName="CLIF_DGRM_RSSI" RegisterLogicalAddress="0x30" RegisterValue="0x393F51AA"></Register>
<Register RegisterName="CLIF_SIGFRO_RM_TECH" RegisterLogicalAddress="0x22" RegisterValue="0x4A8B60A7"></Register>
<Register RegisterName="CLIF_SIGFRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x1FE00001"></Register>
```

NFC frontend

```
<Register RegisterName="CLIF_DGRM_DAC_FILTER" RegisterLogicalAddress="0x2B" RegisterValue="0x00889238"></Register>
<Register RegisterName="CLIF_DGRM_CONFIG" RegisterLogicalAddress="0x2C" RegisterValue="0x00D23400"></Register>
<Register RegisterName="CLIF_DGRM_BDA" RegisterLogicalAddress="0x2D" RegisterValue="0xED4C64A4"></Register>
<Register RegisterName="CLIF_DGRM_DDO" RegisterLogicalAddress="0x2E" RegisterValue="0xED4C64A4"></Register>
<Register RegisterName="CLIF_DGRM_HF_ATT" RegisterLogicalAddress="0x2E" RegisterValue="0x2A8FFFFF"></Register>
<Register RegisterName="CLIF_DGRM_RSSI" RegisterLogicalAddress="0x30" RegisterValue="0x393F518A"></Register>
<Register RegisterName="CLIF_SIGFRO_RM_TECH" RegisterLogicalAddress="0x22" RegisterValue="0x393F518A"></Register>
<Register RegisterName="CLIF_SIGFRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x1FE00001"></Register>
<Register RegisterName="CLIF_SIGFRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x1FE00001"></Register>

             </Protocol>
               consister RegisterName="CLIF_orderNo_W_CONFIG" RegisterLogicalAddress="0x43" RegisterValue="0x0000E407">
// Register RegisterName="CLIF_ANA_RX_CTRL" RegisterLogicalAddress="0x43" RegisterValue="0x0000E407">
// Register RegisterName="CLIF_CCOC_CONFIG" RegisterLogicalAddress="0x43" RegisterValue="0x0000E407">
// Register RegisterName="CLIF_EXM_CTRL" RegisterLogicalAddress="0x33" RegisterValue="0x000000F4">
// Register RegisterName="CLIF_GCM_CONFIG2" RegisterLogicalAddress="0x35" RegisterValue="0x000024820">
// Register RegisterName="CLIF_GCM_CONFIG2" RegisterLogicalAddress="0x38" RegisterValue="0x00000F0">
// Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x38" RegisterValue="0x00000F0">
// Register RegisterName="CLIF_GCM_CONFIG0" RegisterLogicalAddress="0x38" RegisterValue="0x000009393">
// Register RegisterName="CLIF_ANA_AGC_DCO_CTRL" RegisterLogicalAddress="0x36" RegisterValue="0x0000008">
// Register RegisterName="CLIF_SIGFNO_RM_CONFIG" RegisterLogicalAddress="0x16" RegisterValue="0x10780203">
// Register RegisterName="CLIF_SIGFNO_RM_CONFIG" RegisterLogicalAddress="0x21" RegisterValue="0x00000005">
// Register RegisterName="CLIF_SIGFNO_CONFIG" RegisterLogicalAddress="0x21" RegisterValue="0x000000005">
// Register RegisterName="CLIF_SIGFNO_NOISE_CONFIG1" RegisterLogicalAddress="0x22" RegisterValue="0x000000000">
// Register RegisterName="CLIF_SIGFNO_NOISE_CONFIG2" RegisterLogicalAddress="0x24" RegisterValue="0x000000000">
// Register RegisterName="CLIF_SIGFNO_NOISE_CONFIG2" RegisterLogicalAddress="0x24" RegisterValue="0x000000000">
// Register RegisterName="CLIF_SIGFNO_NOISE_CONFIG2" RegisterLogicalAddress="0x24" RegisterValue="0x000000000">
// Register RegisterName="CLIF_SIGFNO_NOISE_CONFIG2" RegisterLogicalAddress="0x27" RegisterValue="0x0000000000000">
// Register RegisterName="CLIF_SIGFNO_NOISE_CONFIG2" RegisterLogicalAddress="0x27" RegisterValue="0x0000000000000000000000000000000000
</Protocol>
```

NFC frontend

```
</Protocol>
</Protocol>
</Protocol>
```

NFC frontend

```
</Protocol>
</Protocol>
</Protocol>
</Protocol>
```

NFC frontend

```
<Register RegisterName="CLIF_SIGPRO_RM_CONFIG" RegisterLogicalAddress="0x1F" RegisterValue="0x000A0200"></Register>
<Register RegisterName="CLIF_SIGPRO_RM_ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x00815077D"></Register>
<Register RegisterName="CLIF_SIGPRO_CONFIG" RegisterLogicalAddress="0x1D" RegisterValue="0x400800BC"></Register>
<Register RegisterName="CLIF_SIGPRO_NOISE_CONFIG1" RegisterLogicalAddress="0x23" RegisterValue="0x00082155"></Register>
<Register RegisterName="CLIF_SIGPRO_NOISE_CONFIG2" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_RX_END_0_CONFIG2" RegisterLogicalAddress="0x27" RegisterValue="0x000017FF"></Register>
<Register RegisterName="CLIF_SIGPRO_TIR_CONFIG1" RegisterLogicalAddress="0x28" RegisterValue="0x00280200"></Register>
<Register RegisterName="CLIF_SIGPRO_TIR_CONFIG1" RegisterLogicalAddress="0x28" RegisterValue="0x00280200"></Register>
<Register RegisterName="CLIF_SIGPRO_TIR_CONFIG1" RegisterLogicalAddress="0x28" RegisterValue="0x000A85CC"></Register>
<Register RegisterName="CLIF_SIGPRO_TIR_CONFIG0" RegisterLogicalAddress="0x28" RegisterValue="0x000A85CC"></Register>
<Register RegisterName="CLIF_DIGN_DAC_FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x000A85CC"></Register>
<Register RegisterName="CLIF_DIGN_DAC_FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x00A4C64A4"></Register>
<Register RegisterName="CLIF_DIGN_BBA" RegisterLogicalAddress="0x28" RegisterValue="0x00FIC1F0"></Register>
<Register RegisterName="CLIF_DIGN_BBA" RegisterLogicalAddress="0x28" RegisterValue="0x00FIC1F0"
</Protocol>
</Protocol>
```

NFC frontend

```
<Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x39" RegisterValue="0x4000003F"></Register>
<Register RegisterName="CLIF_GCM_CONFIG0" RegisterLogicalAddress="0x38" RegisterValue="0x00033979"></Register>
<Register RegisterName="CLIF_SIGFNO_RM_CONFIG0" RegisterLogicalAddress="0x36" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_RM_CONFIG0" RegisterLogicalAddress="0x16" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_RM_ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_CONFIG0" RegisterLogicalAddress="0x21" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_NOISE_CONFIG1" RegisterLogicalAddress="0x23" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGPNO_NOISE_CONFIG1" RegisterLogicalAddress="0x23" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_RX_ENDO_NOISE_CONFIG1" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_RX_ENDO_NOISE_CONFIG1" RegisterLogicalAddress="0x27" RegisterValue="0x00003FFF"></Register>
<Register RegisterName="CLIF_RX_ENDO_CONFIG1" RegisterLogicalAddress="0x27" RegisterValue="0x0000300000"></Register>
<Register RegisterName="CLIF_SIGPRO_IIR_CONFIG1" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGPRO_IIR_CONFIG1" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DORM_DAC_FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DORM_DAC_FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DORM_BBA" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DORM_BBA" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DORM_BBA" RegisterLogicalAddress="0x28" Reg
 vitocol ProtocolName="RX NFC-PT-424 424" ProtocolIndex="0x98" ProtocolOffset="0x1046">
<Register RegisterName="CLIF_ANA_RX_CTRL" RegisterLogicalAddress="0x43" RegisterValue="0x0700E437"></Register>
```

```
<Register RegisterName="CLIF_DCOC_CONFIG" RegisterLogicalAddress="0x33" RegisterValue="0x00100032"></Register>
<Register RegisterName="CLIF_RXM_CTRL" RegisterLogicalAddress="0x35" RegisterValue="0x0004c935"></Register>
<Register RegisterName="CLIF_GCM_CONFIGI" RegisterLogicalAddress="0x38" RegisterValue="0x00024820"></Register>
<Register RegisterName="CLIF_GCM_CONFIGI" RegisterLogicalAddress="0x38" RegisterValue="0x00024820"></Register>
<Register RegisterName="CLIF_GCM_CONFIGI" RegisterLogicalAddress="0x38" RegisterValue="0x00049379"></Register>
<Register RegisterName="CLIF_GCM_CONFIGI" RegisterLogicalAddress="0x36" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGPRO_RM_CONFIG" RegisterLogicalAddress="0x36" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGPRO_RM_ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGPRO_NOISE_CONFIGI" RegisterLogicalAddress="0x21" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGPRO_NOISE_CONFIGI" RegisterLogicalAddress="0x21" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_RX_ERROR_CONFIGI" RegisterLogicalAddress="0x21" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_RX_ERROR_CONFIGI" RegisterLogicalAddress="0x22" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_RX_ERROR_CONFIGI" RegisterLogicalAddress="0x22" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGPRO_IRR_CONFIGI" RegisterLogicalAddress="0x22" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGPRO_IRR_CONFIGI" RegisterLogicalAddress="0x22" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DRM_DCONFIG" RegisterLogicalAddress="0x22" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DRM_DCONFIG" RegisterLogicalAddress="0x22" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DRM_DCONFIG" RegisterLogicalAddress="0x22" RegisterValue="0x00000000"
```

NFC frontend

20 Appendix: EEPROM LOAD RF CONFIGURATION FW2.03

```
Firmware 2.3
<?xml version="1.0" encoding="UTF-8"?>
<EEPROM>
 <Region RegionName="USER_PMU" RegionAccess="RW" RegionType="DATA">
  </Region>
 </Region>
```

NFC frontend

```
<Parameter Name="RmArc180003m3_SC848_2Man" Offset="0x1F2" Value="0x0014001F003F004F404F" />
<Parameter Name="RmArc_AI_106" offset="0x1FC" Value="0x000A000A000A00A00A" />
<Parameter Name="RmArc_AI_212" offset="0x206" Value="0x000A000A000A00A00A00A" />
<Parameter Name="RmArc_AI_424" offset="0x210" Value="0x000A000A000A00A00A00A" />
     </Region>
     | Region RegionName="MFC_CFG" RegionAccess="RW" RegionType="DATA" |
| CParameter Name="MFCAULTHIMEOUT" Offset="0x2CC" Value="0x0500" |>
| CParameter Name="ResiTimer" Offset="0x2CC" Value="0x0500" |>
| CParameter Name="ResiTimer" Offset="0x2DC" Value="0x03130" |>
| CParameter Name="ResiTimer" Offset="0x2DC" Value="0x09" |>
| CParameter Name="ResiTimer) Offset="0x2DC" Value="0x09" |>
| CParameter Name="ResiTimer) Offset="0x2DC" Value="0x000" |>
| CParameter Name="ResiThresholds 01" Offset="0x2DC" Value="0x000" |>
| CParameter Name="ResiThresholds 01" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 01" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 01" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 05" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 07" Offset="0x2DC" Value="0x0000" |>
| CParameter Name="ResiThresholds 07"
```

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

```
<Parameter Name="ArbPhaseF_0B" Offset="0x36C" Value="0x0000" />
<Parameter Name="RssiThresholdF_0C" Offset="0x36E" Value="0x96F9" />
<Parameter Name="ArbPhaseF_0C" Offset="0x370" Value="0x0000" />
<Parameter Name="RssiThresholdF_0D" Offset="0x372" Value="0x96F9" />
<Parameter Name="RssiThresholdF_0D" Offset="0x374" Value="0x96F9" />
<Parameter Name="RssiThresholdF_0E" Offset="0x378" Value="0x96F9" />
<Parameter Name="RssiThresholdF_0E" Offset="0x378" Value="0x96F9" />
<Parameter Name="RssiThresholdF_0F" Offset="0x378" Value="0x0000" />
<Parameter Name="RssiThresholdF_10" Offset="0x378" Value="0x0000" />
<Parameter Name="RssiThresholdF_10" Offset="0x378" Value="0x96F9" />
<Parameter Name="RssiThresholdF_11" Offset="0x378" Value="0x96F9" />
<Parameter Name="RssiThresholdF_11" Offset="0x388" Value="0x96F9" />
<Parameter Name="RssiThresholdF_12" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_12" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_13" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_13" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_14" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_14" Offset="0x388" Value="0x0000" />
<Parameter Name="RssiThresholdF_14" Offset="0x398" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x398" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x399" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x399" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x399" Value="0x0000" />
<Parameter Name="RssiThresholdF_16" Offset="0x398" Value="0x96F9" />
<Parameter Name="RssiThresholdF_16" Offset="0x398
CParameter Name—"Rabilities not of face—"0x338" value—"0x49" / Parameter Name—"Rabilities not face—"0x338" value—"0x96" / Parameter Name—"Rabilities not face—"0x336" value—"0x96" / Parameter Name—"Rabilities not face—"0x336" value—"0x96" / Parameter Name—"Rabilities not face—"0x336" value—"0x40" / Parameter Name—"Rabilities not face—"0x336" value—"0x44" / Parameter Name—"Rabilities not face—
```

NFC frontend

```
<Region RegionName="ULPCD_CONFIG" RegionAccess="RW" RegionType="DATA">
    <Parameter Name="Vddpa_Ctrl" Offset="0x4BF" Value="0x0206" />
    <Parameter Name="Timing_Ctrl" Offset="0x4C2" Value="0x6A" />
    <Parameter Name="Voltage_Ctrl" Offset="0x4C6" Value="0x6A" />
<Region RegionName="ULPCD_SETTINGS" RegionAccess="RW" RegionType="DATA">
    <Parameter Name="rssi_nsp" Offset="0x4C9" Value="0x10" />
    <Parameter Name="rssi_no_samples" Offset="0x4CA" Value="0x00" />
    <Parameter Name="thresh_lvl" Offset="0x4CB" Value="0x00" />
    <Parameter Name="polarity" Offset="0x4CC" Value="0x01" />
</Region>
</Region>
</Region>
```

N5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

```
</Region>
</Region>
</Region>
</Region>
<Region RegionName="TX_DRIVER_NOV" RegionAccess="RW" RegionType="DATA">
    <Parameter Name="CfgNovCal" Offset="0xC83" Value="0x42" />
    <Parameter Name="VddpaCalVall" Offset="0xC84" Value="0x03" />
    <Parameter Name="VddpaCalVall" Offset="0xC85" Value="0x15" />
    <Parameter Name="CfgThreshold" Offset="0xC86" Value="0x08" />
```

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

```
<Parameter Name="UserOffsets1" Offset="0xC87" Value="0x8A0A0C00" />
<Parameter Name="UserOffsets2" Offset="0xC8B" Value="0x09080D03" />
</Region>
</Region>
</Protocol>
</Protocol>
<Protocol ProtocolName="TX ISO14443A 424" ProtocolIndex="0x02" ProtocolOffset="0xCE">
```

NFC frontend

```
<Register RegisterName="CLIF_TRANSCEIVE_CONTROL" RegisterLogicalAddress="0x08" RegisterValue="0x00000001"></Register>
<Register RegisterName="CLIF_TSS_TX_CFG" RegisterLogicalAddress="0x15" RegisterValue="0x00002289"></Register>
<Register RegisterName="CLIF_TX_SYMBOL23 MOD" RegisterLogicalAddress="0x00" RegisterValue="0x000030107"></Register>
<Register RegisterName="CLIF_TX_SYMBOL23 DEF" RegisterLogicalAddress="0x00" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x000000084"></Register>

</Protocol>
                         </Protocol>
                         rotocol>
rotocol>
rotocol>
rotocolName="TX IS015693 ASK100" ProtocolIndex="0x0A" ProtocolOffset="0x236">

Register RegisterName="CLIF SS TX1 CMCFG" RegisterLogicalAddress="0x3B" RegisterValue="0x000900FF"></Register>

Register RegisterName="CLIF SS TX2 CMCFG" RegisterLogicalAddress="0x3C" RegisterValue="0x000900FF"></Register>

Register RegisterName="CLIF TX UNDERSHOOT CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x00000000"></Register>

Register RegisterName="CLIF TX UNDERSHOOT CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x00000000"></Register>

Register RegisterName="CLIF TX UNDERSHOOT CONFIG" RegisterLogicalAddress="0x18" RegisterValue="0x00000000"></Register>

Register RegisterName="CLIF TX SYMSCEIVE CONTROL" RegisterLogicalAddress="0x08" RegisterValue="0x00000001"></Register>

Register RegisterName="CLIF TX SYMBOL23 MOD" RegisterLogicalAddress="0x00" RegisterValue="0x00000004"></Register>

Register RegisterName="CLIF TX SYMBOL23 DEF" RegisterLogicalAddress="0x0D" RegisterValue="0x00000004"></Register>

Register RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x0D" RegisterValue="0x00000004"></Register>

Registe
                           cotool>
"cotool>
"cotool>
"cotool>
"cotool>
"cotool>
"cotool>
"cotool>
"cotoolProtocolName="TX IS015693 ASK10" ProtocolIndex="0x0B" ProtocolOffset="0x263">

"Register RegisterName="CLIF SS TX1 CMCFG" RegisterLogicalAddress="0x3B" RegisterValue="0x000900FF"></Register>

"Register RegisterName="CLIF SS TX2 CMCFG" RegisterLogicalAddress="0x3" RegisterValue="0x000900FF"></Register>

"Register RegisterName="CLIF TX UNDERSHOOT CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x00000000"></Register>

"Register RegisterName="CLIF TX UNDERSHOOT CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x00000000"></Register>

"Register RegisterName="CLIF TX GUNTROL" RegisterLogicalAddress="0x08" RegisterValue="0x000000001"></Register>

"Register RegisterName="CLIF TX STACEIVE CONTROL" RegisterLogicalAddress="0x08" RegisterValue="0x00000289"></Register>

"Register RegisterName="CLIF TX SYMBOL23 MOD" RegisterLogicalAddress="0x00" RegisterValue="0x00000004"></Register>

"Register RegisterName="CLIF TX SYMBOL23 DEF" RegisterLogicalAddress="0x00" RegisterValue="0x00000004"></Register>

"Register RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x00" RegisterValue="0x00000004"></Register>

"Register RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x00" RegisterValue="0x00000004"></Register>

"Register RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x00" RegisterValue="0x000000004"></Register>

"Register RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x00" RegisterValue="0x00000004"></Register>

"Register RegisterName="CLIF TX DATA MOD" RegisterName="0x00000004"></RegisterName="0x00000004"></RegisterName="0x00000004"></RegisterName="0x00000004"></RegisterName="0x000
      </Protocol>
                           cotocol>
cotocol ProtocolName="TX ISO180003m3 TARI=18.88us" ProtocolIndex="0x0F" ProtocolOffset="0x290">

CRegister RegisterName="CLIF SS TX1 CMCFG" RegisterLogicalAddress="0x3B" RegisterValue="0x000900FF"></Register>

CRegister RegisterName="CLIF SS_TX2 CMCFG" RegisterLogicalAddress="0x3C" RegisterValue="0x000F00FF"></Register>

CREGISTER RegisterName="CLIF TX_UNDERSHOOT_CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x000000000"></Register>

CREGISTER RegisterName="CLIF TX_UNDERSHOOT_CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x00000000"></Register>

CREGISTER RegisterName="CLIF TX_OVERSHOOT_CONFIG" RegisterLogicalAddress="0x08" RegisterValue="0x00000001"></Register>

CREGISTER RegisterName="CLIF_TX_ANSCEIVE_CONTROL" RegisterLogicalAddress="0x08" RegisterValue="0x000002289"></Register>

CREGISTER RegisterName="CLIF_TX_SYMBOL23_MOD" RegisterLogicalAddress="0x08" RegisterValue="0x00000004"></Register>

CREGISTER RegisterName="CLIF_TX_SYMBOL23_DEF" RegisterLogicalAddress="0x08" RegisterValue="0x00000004"></Register>

CREGISTER RegisterName="CLIF_TX_SYMBOL23_DEF" RegisterLogicalAddress="0x08" RegisterValue="0x00000004"></Register>

CREGISTER RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x08" RegisterValue="0x00000004"></Register>

CREGISTER RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x08" RegisterValue="0x00000004"></Register>

CREGISTER RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x00000004"></Register>

CREGISTER RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x000000043"></Register>

CREGISTER RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x000000043"></Register>

CREGISTER RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x000000043"></Register>

CREGISTER RegisterName="CLIF_TX_DATA_MOD" RegisterValue="0x00000004"></Register>

CREGISTER RegisterName="CLIF_TX_DATA_MOD" RegisterValue="0x000000043"></RegisterValue="0x000000043"></Register>

CREGISTER Re
      </Protocol>
```

NFC frontend

```
<Register RegisterName="CLIF_TX_SYMBOL23_MOD" RegisterLogicalAddress="0x0C" RegisterValue="0x00000004"></Register>
<Register RegisterName="CLIF_TX_SYMBOL23_DEF" RegisterLogicalAddress="0x0D" RegisterValue="0x00020084"></Register>
<Register RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x000000043"></Register>
 </Protocol>
          </Protocol>
 </Protocol>
</Protocol>
 <Protocol ProtocolName="TX NFC-PT-212 212" ProtocolIndex="0x17" ProtocolOffset="0x39E">
          </Protocol>
</Protocol>
</Protocol ProtocolName="TX NFC-PT-424 424" ProtocolIndex="0x18" ProtocolOffset="0x3CB">
</Protocol ProtocolName="TX NFC-PT-424 424" ProtocolIndex="0x18" ProtocolOffset="0x3CB">
</Protocol ProtocolName="CLIF SS TX1 CMCFG" RegisterLogicalAddress="0x3E" RegisterValue="0x000700FF"></Pagister>
</Protocol ProtocolName="CLIF SS TX1 CMCFG" RegisterLogicalAddress="0x3E" RegisterValue="0x000700FF"></Pagister>
</Protocol Register RegisterName="CLIF TX UNDERSHOOT CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x00000000"></Pagister>
</Protocol Register RegisterName="CLIF TX OVERSHOOT CONFIG" RegisterLogicalAddress="0x14" RegisterValue="0x00000000"></Pagister>
</Protocol Register RegisterName="CLIF TX SYMBOL23 MOD" RegisterLogicalAddress="0x0E" RegisterValue="0x00002289"></Pagister>
</Protocol Register RegisterName="CLIF TX SYMBOL23 DEF" RegisterLogicalAddress="0x0E" RegisterValue="0x00000000"></Pagister>
</Protocol Register RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x0E" RegisterValue="0x00000000"></Pagister RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x0E" RegisterValue="0x00000000"></Pagister RegisterName="CLIF TX DATA MOD" RegisterLogicalAddress="0x0E" RegisterValue="0x00000000"></Pagister Register RegisterName="CLIF TX DATA MOD" Register RegisterName="0x0E" Register RegisterName="0x0E
 </Protocol>
 <Protocol ProtocolName="TX NFC-AT-106 106" ProtocolIndex="0x19" ProtocolOffset="0x3F8">
          rotocol>
rotocolProtocolName="TX NFC-AT-424 424" ProtocolIndex="0x1B" ProtocolOffset="0x452">

*Register RegisterName="CLIF_SS_TX1_CMCFG" RegisterLogicalAddress="0x3B" RegisterValue="0x000900FF"></Register>

*Register RegisterName="CLIF_SS_TX2_CMCFG" RegisterLogicalAddress="0x3G" RegisterValue="0x000900FF"></Register>

*Register RegisterName="CLIF_TX_UNDERSHOOT_CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x00000000"></Register>

*Register RegisterName="CLIF_TX_UNDERSHOOT_CONFIG" RegisterLogicalAddress="0x13" RegisterValue="0x00000000"></Register>

*Register RegisterName="CLIF_TX_OVERSHOOT_CONFIG" RegisterLogicalAddress="0x18" RegisterValue="0x00000000"></Register>

*Register RegisterName="CLIF_TX_SYMEOL23_MOD" RegisterLogicalAddress="0x16" RegisterValue="0x00000000"></Register>

*Register RegisterName="CLIF_TX_SYMEOL23_MOD" RegisterLogicalAddress="0x0C" RegisterValue="0x00000000"></Register>

*Register RegisterName="CLIF_TX_SYMEOL23_DEF" RegisterLogicalAddress="0x0C" RegisterValue="0x00000000"></Register>

*Register RegisterName="CLIF_TX_SYMEOL23_DEF" RegisterLogicalAddress="0x0C" RegisterValue="0x00000000"></Register>

*Register RegisterName="CLIF_TX_SYMEOL23_DEF" RegisterLogicalAddress="0x0C" RegisterValue="0x00000000"></Register>

*Register RegisterName="CLIF_TX_SYMEOL23_DEF" RegisterLogicalAddress="0x0C" RegisterValue="0x00000000"></Register>
 <Protocol
```

```
<Register RegisterName="CLIF_TX_DATA_MOD" RegisterLogicalAddress="0x10" RegisterValue="0x00000016"></Register>

<
 <Protocol ProtocolName="RX ISO14443A 106" ProtocolIndex="0x80" ProtocolOffset="0x506">
```

NFC frontend

```
<Register RegisterName="CLIF_SIGPRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x1FE00001"></Register>

<
```

NFC frontend

```
<Register RegisterName="CLIF_DGRM_HF_ATT" RegisterLogicalAddress="0x2F" RegisterValue="0x2A8FFFFF"></Register>
<Register RegisterName="CLIF_DGRM_RSSI" RegisterLogicalAddress="0x33" RegisterValue="0x393F518A"></Register>
<Register RegisterName="CLIF_SIGFRO_RM_TECH" RegisterLogicalAddress="0x22" RegisterValue="0x9404650"></Register>
<Register RegisterName="CLIF_SIGFRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x1FE00001"></Register>
  </Protocol>
   </Protocol>
```

NFC frontend

```
<Register RegisterName="CLIF_DGRM_CONFIG" RegisterLogicalAddress="0x2C" RegisterValue="0x00E63400"></Register>
<Register RegisterName="CLIF_DGRM_BBA" RegisterLogicalAddress="0x2D" RegisterValue="0xED4C64A4"></Register>
<Register RegisterName="CLIF_DGRM_DCO" RegisterLogicalAddress="0x2E" RegisterValue="0xC0F7C1F0"></Register>
<Register RegisterName="CLIF_DGRM_FF_ATT" RegisterLogicalAddress="0x2E" RegisterValue="0x6A8FFFFF"></Register>
<Register RegisterName="CLIF_DGRM_RSSI" RegisterLogicalAddress="0x2E" RegisterValue="0x393F518A"></Register>
<Register RegisterName="CLIF_SIGFO_CM_TECH" RegisterLogicalAddress="0x22" RegisterValue="0x393F518A"></Register>
<Register RegisterName="CLIF_SIGFO_CM_TECH" RegisterLogicalAddress="0x22" RegisterValue="0xD8D666FFF"></Register>
<Register RegisterName="CLIF_SIGFO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x1FE00001"></Register>

     </Protocol>
</Protocol>
</Protocol>
</Protocol>
```

NFC frontend

```
<Register RegisterName="CLIF_SIGPRO_IIR_CONFIG1" RegisterLogicalAddress="0x29" RegisterValue="0x0D81830E"></Register>
<Register RegisterName="CLIF_SIGPRO_IIR_CONFIG0" RegisterLogicalAddress="0x2A" RegisterValue="0x000A85CC"></Register>
<Register RegisterName="CLIF_DGRM_DAC_FILTER" RegisterLogicalAddress="0x2B" RegisterValue="0x00889238"></Register>
<Register RegisterName="CLIF_DGRM_CONFIG" RegisterLogicalAddress="0x2C" RegisterValue="0x00E63400"></Register>
<Register RegisterName="CLIF_DGRM_DBA" RegisterLogicalAddress="0x2D" RegisterValue="0xA04C64A4"></Register>
<Register RegisterName="CLIF_DGRM_DCO" RegisterLogicalAddress="0x2E" RegisterValue="0x0F7C1F0"></Register>
<Register RegisterName="CLIF_DGRM_DCO" RegisterLogicalAddress="0x2E" RegisterValue="0x0F7C1F0"></Register>
<Register RegisterName="CLIF_DGRM_HF_ATT" RegisterLogicalAddress="0x2F" RegisterValue="0x36A8FFFFF"></Register>
<Register RegisterName="CLIF_DGRM_RSSI" RegisterLogicalAddress="0x30" RegisterValue="0x3987518a"></Register>
<Register RegisterName="CLIF_SIGPRO_CM_CONFIG" RegisterLogicalAddress="0x27" RegisterValue="0x422C689F"></Register>
<Register RegisterName="CLIF_SIGPRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x422C689F"></Register>
<Register RegisterName="CLIF_SIGPRO_CM_CONFIG" RegisterLogicalAddress="0x37" RegisterValue="0x422C689F"></Register>

</Protocol>
</Protocol>
</Protocol>
```

NFC frontend

```
</Protocol>
     <p
rotocol>
tocol ProtocolName="RX ISO14443A-PICC 848" ProtocolIndex="0x96" ProtocolOffset="0xF56">

*Register RegisterName="CLIF ANA RX CTRL" RegisterLogicalAddress="0x43" RegisterValue="0x0700E437"></Register>

*Register RegisterName="CLIF DCOC CONFIG" RegisterLogicalAddress="0x33" RegisterValue="0x07000032"></Register>

*Register RegisterName="CLIF_RXM_CTRL" RegisterLogicalAddress="0x35" RegisterValue="0x00040935"></Register>

*Register RegisterName="CLIF_GCM_CONFIG2" RegisterLogicalAddress="0x38" RegisterValue="0x000424820"></Register>

*Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x38" RegisterValue="0x0000437"></Register>

*Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x38" RegisterValue="0x0000037"></Register>

*Register RegisterName="CLIF_GCM_CONFIG0" RegisterLogicalAddress="0x36" RegisterValue="0x000000000"></Register>

*Register RegisterName="CLIF_ANA_AGC_DCO_CTRL" RegisterLogicalAddress="0x36" RegisterValue="0x000000000"></Register>

*Register RegisterName="CLIF_SIGFRO_RM_CONFIG" RegisterLogicalAddress="0x1F" RegisterValue="0x000000000"></Register>
```

PN5190B1

Product data sheet

NFC frontend

```
<Register RegisterName="CLIF SIGPRO RM ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x00000000">

<Register RegisterName="CLIF SIGPRO CONFIG" RegisterLogicalAddress="0x10" RegisterValue="0x00000000">

<Register RegisterName="CLIF SIGPRO NOISE CONFIGU" RegisterLogicalAddress="0x22" RegisterValue="0x00000000">

<Register RegisterName="CLIF SIGPRO NOISE CONFIGU" RegisterLogicalAddress="0x24" RegisterValue="0x00000000">

<Register RegisterName="CLIF RA ENDO CONFIG" RegisterLogicalAddress="0x24" RegisterValue="0x00000000">

<Register RegisterName="CLIF RA ENDO CONFIG" RegisterLogicalAddress="0x24" RegisterValue="0x00000000">

<Register RegisterName="CLIF GORD IN CONFIGU" RegisterLogicalAddress="0x22" RegisterValue="0x00000000">

<Register RegisterName="CLIF DORM ONE FILTER" RegisterLogicalAddress="0x22" RegisterValue="0x00000000">

<Register RegisterName="CLIF DORM CONFIGU" RegisterLogicalAddress="0x22" RegisterValue="0x00000000">

<Register RegisterName="CLIF DORM DOR" RegisterLogicalAddress="0x22" RegisterValue="0x00000000">

<Register RegisterName="CLIF DORM DOR" RegisterLogicalAddress="0x22" RegisterValue="0x00000000">

<Register RegisterName="CLIF DORM NEAT THE RegisterLogicalAddress="0x22" RegisterValue="0x00000000">

<
cotocol>
stocol ProtocolName="RX NFC-AT-212 212" ProtocolIndex="0x9A" ProtocolOffset="0x1136">

<Register RegisterName="CLIF_ANA_RX_CTRL" RegisterLogicalAddress="0x43" RegisterValue="0x0700E437"></Register>

<Register RegisterName="CLIF_DCOC CONFIG" RegisterLogicalAddress="0x33" RegisterValue="0x00100032"></Register>

<Register RegisterName="CLIF_RXM_CTRL" RegisterLogicalAddress="0x35" RegisterValue="0x0004C935"></Register>

<Register RegisterName="CLIF_GCM_CONFIG2" RegisterLogicalAddress="0x38" RegisterValue="0x00A24820"></Register>

<Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x38" RegisterValue="0x4000003F"></Register>

<Register RegisterName="CLIF_GCM_CONFIG1" RegisterLogicalAddress="0x39" RegisterValue="0x4000003F"></Register>
```

PN5190B1

NFC frontend

```
<Register RegisterName="CLIF_GCM_CONFIGO" RegisterLogicalAddress="0x3A" RegisterValue="0x00A93979"></Register>
<Register RegisterName="CLIF_ANA_AGC_DCO_CTRL" RegisterLogicalAddress="0x36" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_RM_CONFIG" RegisterLogicalAddress="0x1F" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_RM_ENABLES" RegisterLogicalAddress="0x21" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_CONFIG" RegisterLogicalAddress="0x21" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_NOISE_CONFIG1" RegisterLogicalAddress="0x23" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_NOISE_CONFIG2" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_RX_ENGD_CONFIG2" RegisterLogicalAddress="0x24" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_RX_ENGD_CONFIG2" RegisterLogicalAddress="0x27" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_ITR_CONFIG1" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_SIGFNO_ITR_CONFIG1" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DGRM_CONFIG0" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DGRM_CONFIG0" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DGRM_CONFIG0" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DGRM_DAC_FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DGRM_DAC_FILTER" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DGRM_BAR" RegisterLogicalAddress="0x28" RegisterValue="0x00000000"></Register>
<Register RegisterName="CLIF_DGRM_BAR" RegisterLogicalAddress="0x28" RegisterValue="0x0
                             </Protocol>
                                            </Protocol>
</Region>
```

PN5190B1

NFC frontend

21 Abbreviations

Table 319. Abbreviations

Acronym	Description
ADC	analog-to-digital converter
AGC	automatic gain control
ARC	adaptive receiver control
AWC	adaptive waveshape control
CLIF	contactless interface
DAC	digital-to-analog converter
DC-DC	switch-mode voltage regulator which uses an inductor to store and transfer energy to the output, used for a power supply voltage conversion. PN5190B1 integrates a step-up/boost converter
DPC	dynamic power control
EMD	electromagnetic disturbance
GPIO	general-purpose input output
HPD	hard power down
LDO	low dropout regulator
LPCD	low-power card detection
MISO	SPI interface Master In Slave Out
MOSI	SPI interface Master Out Slave In
NSS	SPI interface active-low slave-select signal
OS	operating system
PCB	printed-circuit board
PCD	power card detection
PICC	proximity inductive coupling card
RF	radio frequency
RSSI	receiver signal strength indicator
SCK	SPI interface serial clock
SCL	I ² C interface serial clock
SPI	serial peripheral interface
TFT	display technology: thin-film transistor-display
TX	transmit
UID	Unique identifier of a card, used during anti-collision sequence to select one out of multiple cards.
ULPCD	ultra low-power card detection

NFC frontend

22 References

- [1] Application note AN12551 PN5190 Design-in document, not yet published
- [2] Application note AN12549 PN5190 Antenna design guide, https://www.nxp.com/docs/en/application-note/AN12549.pdf
- [3] Product data sheet addendum AD PN5190 Instruction layer, https://www.nxp.com/docs/en/data-sheet/PN5190 add.pdf

NFC frontend

23 Revision history

Table 320. Revision history

Document ID	Release date	Data sheet status	Supersedes		
PN5190B1 v. 3.2	20211117	Product data sheet	PN5190B1 v. 3.1		
Modifications:	 <u>Section 9.8</u>: TEMP_WARNING address corrected to 14h <u>Section 9.26.4</u>: TXLDO_CONFIG description updated with Overcurrent enable and TxLdo current limiter <u>Section 9.25.4</u>: EVENT_STATUS and <u>Section 9.25.3</u> EVENT_ENABLE register: TEMP_ERROR_EVENT corrected to / replaced by TX_OVERCURRENT_ERROR_EVENT (bit 5) <u>Section 9.5.3.9</u>: Power configuration corrected 				
PN5190B1 v. 3.1	20210907	Product data sheet	PN5190B1 v. 3.0		
Modifications:	 Description for FW2.3 added General update and clarifications added Description for SE antenna configurations added 				
PN5190B1 v. 3.0	20210421	Product data sheet	PN5190B1 v. 1.0		
Modifications:	 General update Data sheet status changed to "Product data sheet"				
PN5190B1 v. 1.0	20210322	Objective data sheet	-		
Modifications:	First official re	eleased version			

NFC frontend

24 Legal information

24.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

24.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

24.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

NFC frontend

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

24.4 Licenses

Purchase of NXP ICs with ISO/IEC 14443 type B functionality

RATP/Innovatron Technology This NXP Semiconductors IC is ISO/IEC 14443 Type B software enabled and is licensed under Innovatron's Contactless Card patents license for ISO/IEC 14443 B.

The license includes the right to use the IC in systems and/or end-user equipment.

Purchase of NXP ICs with NFC technology — Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards. Purchase of NXP Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those products with other products, whether hardware or software.

24.5 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

DESFire — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

ICODE and I-CODE — are trademarks of NXP B.V.

12C-bus — logo is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MIFARE Classic — is a trademark of NXP B.V. MIFARE Plus — is a trademark of NXP B.V.

MIFARE Ultralight — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

NFC frontend

Tables

Tab. 1.	Quick reference data		Tab. 36.	TX_FRAME_CONFIG register (address	
Tab. 2.	Ordering information			000Fh) bit description	77
Tab. 3.	Pin description VFBGA64		Tab. 37.	TX_DATA_MOD register (address 0010h)	
Tab. 4.	Pin description HVQFN40	. 14		bit description	78
Tab. 5.	Supply voltage range configuration	. 28	Tab. 38.	TX_CLIF_WAIT register (address 0011h)	
Tab. 6.	Supply voltage range	. 29		bit description	79
Tab. 7.	Communication for FeliCa reader/writer	.31	Tab. 39.	TX_CRC_CONFIG (address 0012h) bit	
Tab. 8.	DPC_LOOKUP_TABLE element, defining			description	79
	the configuration for one dedicated VDDPA		Tab. 40.	SS_TX_CONFIG register (address 0015h)	
	voltage	. 37		bit description	80
Tab. 9.	Dynamic power control characteristics		Tab. 41.	SS_TX1_RMCFG register (address 0016h)	
Tab. 10.	ARC_VDDPA (0139Eh) EEPROM			bit description	. 80
	configuration bit description	41	Tab. 42.	SS_TX2_RMCFG register (address 0017h)	
Tab. 11.	ARC_RM_A106 (address 013Eh)	• •	145. 12.	bit description	81
IUD. II.	EEPROM configuration bit description	<i>1</i> 1	Tab. 43.	SS_TX_TRANS_CFG register (address	0 1
Tab. 12.	Low-Power Card Detection: relevant	1	14b. 1 5.	0019h) bit description	Ω1
1ab. 12.	EEPROM configuration	17	Tab. 44.		01
Tob 12		. 41	1ab. 44.	SIGPRO_RM_PATTERN register (address	02
Tab. 13.	Low-Power Card Detection - semi-	10	Tob 45	0020h) bit description	02
T-L 11	autonomous mode: relevant REGISTERS		Tab. 45.	SIGPRO_RM_TECH register (address	00
Tab. 14.	Antenna register configuration		T 1 40	0022h) bit description	82
Tab. 15.	Antenna EEPROM configuration		Tab. 46.	RX_FRAME_LENGTH register (address	
Tab. 16.	DEBUG SIGNALS			0026h) bit description	82
Tab. 17.	TRIGGER SIGNALS		Tab. 47.	RX_ERROR_CONFIG register (address	
Tab. 18.	Host interface commands			0027h) bit description	83
Tab. 19.	IRQ EVENT LIST		Tab. 48.	RX_CTRL_STATUS register (address	
Tab. 20.	Register Overview	.63		0028h) bit description	83
Tab. 21.	SYSTEM_CONFIG register (address		Tab. 49.	SIGPRO_IIR_CONFIG0 register (address	
	0000h) bit description	.66		002Ah) bit description	83
Tab. 22.	EVENT_ENABLE register (address 0001h)		Tab. 50.	DGRM_BBA register (address 002Dh) bit	
	bit description	. 67		description	83
Tab. 23.	EVENT_STATUS register (address 0002h)		Tab. 51.	DGRM_RSSI register (address 0030h) bit	
	bit description	. 67		description	84
Tab. 24.	EMD_CONTROL register (address 0003h)		Tab. 52.	RX_CRC_CONFIG register (address	
	bit description	. 68		0031h) bit description	84
Tab. 25.	FELICA_EMD_CONTROL register		Tab. 53.	RX_WAIT register (address 0032h) bit	
	(address 0004h) bit description	69		description	. 85
Tab. 26.	RX_STATUS register (address 0005h) bit	.00	Tab. 54.	DCOC_CONFIG register (address 0033h)	00
100. 20.	description	70	145. 01.	bit description	86
Tab. 27.	RX_STATUS_ERROR register (address		Tab. 55.	RXM_CTRL register (address 0035h) bit	00
1ab. 21.	0006h) bit description	70	1ab. 55.	description	86
Tab. 28.	CLIF_STATUS register (address 0007h) bit	.70	Tab. 56.	ANA_AGC_DCO_CTRL register (address	00
1ab. 20.		73	1ab. 50.	0036h) bit description	96
Tab 20	description	. 73	Tob 57		00
Tab. 29.	RF_EXCHANGE_CONTROL register	7.1	Tab. 57.	SS_TX1_CMCFG register (address 003Bh)	0.0
T 1 00	(address 0008h) bit description	. / 4	T 1 50	bit description	80
Tab. 30.	TX_SYMBOL01_MOD register (address	- 4	Tab. 58.	SS_TX2_CMCFG register (address 003Ch)	
	0009h) bit description	.74		bit description	87
Tab. 31.	TX_SYMBOL1_DEF register (address		Tab. 59.	TIMER0_CONFIG register (address	
	000Ah) bit description	.75		003Dh) bit description	87
Tab. 32.	TX_SYMBOL0_DEF register (address		Tab. 60.	TIMER0_RELOAD register (address	
	000Bh) bit description	.75		003Eh) bit description	88
Tab. 33.	TX_SYMBOL23_MOD register (address		Tab. 61.	TIMER1_CONFIG register (address	
	000Ch) bit description	. 75		003Fh) bit description	88
Tab. 34.	TX_SYMBOL23_DEF register (address		Tab. 62.	TIMER1_RELOAD register (address	
	000Dh) bit description	. 76		0040h) bit description	89
Tab. 35.	TX_SYMBOL_CONFIG register (address		Tab. 63.	ANA_STATUS register (address 0041h) bit	
	000Eh) bit description	76		description	89
	, , , , , , , , , , , , , , , , , , , ,			,	

PN5190B1

Tab. 64.	ANA_RX_CTRL register (address 00434h)		Tab. 93.	SS_TX1_FTRTRANS3 register (address
	bit description	90		008Bh) bit description99
Tab. 65.	ANACTRL_TX_CONFIG register (address		Tab. 94.	SS_TX2_FTRTRANS0 register (address
	0044h) bit description	90		008Ch) bit description99
Tab. 66.	EMD_1_CFG register (address 0047h) bit		Tab. 95.	SS_TX2_FTRTRANS1 register (address
	description	90		008Dh) bit description100
Tab. 67.	EMD_0_CONFIG register (address 0048h)		Tab. 96.	SS_TX2_FTRTRANS2 register (address
	bit description	91		008Eh) bit description100
Tab. 68.	LPCD_CALIBRATE_CTRL register		Tab. 97.	SS_TX2_FTRTRANS3 register (address
	(address 0050h) bit description	91		008Fh) bit description100
Tab. 69.	IQ_CHANNEL_VALS register (address		Tab. 98.	EEPROM CONFIGURATION REGISTER 100
	0051h) bit description	91	Tab. 99.	PWR CONFIG (address 0000h) EEPROM
Tab. 70.	PAD_CONFIG register (address 0052h) bit			configuration bit description107
	description	91	Tab. 100.	DCDC_CONFIG (address 0001h)
Tab. 71.	CALIBRATE_STATUS register (address			EEPROM configuration bit description 107
	0053h) bit description	92	Tab. 101.	TXLDO_CONFIG (address 0002h)
Tab. 72.	TXLDO_VDDPA_CONFIG register			EEPROM configuration bit description 108
	(address 0054h) bit description	93	Tab. 102.	TXLDO VDDPA HIGH (address 0006h)
Tab. 73.	GENERAL_ERROR_STATUS register			EEPROM configuration bit description 109
	(address 0055h) bit description	93	Tab. 103.	TXLDO VDDPA LOW (address 0007h)
Tab. 74.	TXLDO_VOUT_CURR register (address			EEPROM configuration bit description 110
	0056h) bit description	93	Tab. 104.	TXLDO_VDDPA_MAX_RDR (address
Tab. 75.	DAC register (address 0057h) bit			0008h) EEPROM configuration bit
	description	94		description111
Tab. 76.	PMU_ANA_SMPS_CTRL_REG register		Tab. 105.	TXLDO_VDDPA_MAX_CARD (address
	(address 0058h) bit description	95		0009h) EEPROM configuration bit
Tab. 77.	RXM_FREQ register (address 0059h) bit			description112
	description	95	Tab. 106.	BOOST_DEFAULT_VOLTAGE (address
Tab. 78.	RXM_RSSI register (address 005Ah) bit			000Ah) EEPROM configuration bit
	description	96		description113
Tab. 79.	TEMP_SENSOR register (address 005Bh)		Tab. 107.	XTAL_CONFIG (address 0010h) EEPROM
	bit description	96		configuration bit description113
Tab. 80.	TX_NOV_CALIBRATE_AND_STORE		Tab. 108.	XTAL_TIMEOUT (address 0011h)
	register (address 005Dh) bit description	96		EEPROM configuration bit description 114
Tab. 81.	DPC_CONFIG register (address 005Eh) bit		Tab. 109.	CLK_INPUT_FREQ (address 0012h)
	description	96		EEPROM configuration bit description 114
Tab. 82.	SS_TX1_RTRTRANS0 register (address		Tab. 110.	XTAL_CHECK_DELAY (address 0013h)
	0080h) bit description	97		EEPROM configuration bit description 114
Tab. 83.	SS_TX1_RTRTRANS1 register (address		Tab. 111.	TEMP_WARNING (address 0014h)
	0081h) bit description	97		EEPROM configuration bit description 115
Tab. 84.	SS_TX1_RTRTRANS2 register (address		Tab. 112.	ENABLE_GPIO0_ON_OVERTEMP
	0082h) bit description	97		(address 0016h) EEPROM configuration bit
Tab. 85.	SS_TX1_RTRTRANS0 register (address			description
	0080h) bit description	97	Tab. 113.	TX_SHAPING_CONFIG (address 0017h)
Tab. 86.	SS_TX2_RTRTRANS0 register (address			EEPROM configuration register bit
	00804) bit description	98		description
Tab. 87.	SS_TX2_RTRTRANS1 register (address		lab. 114.	TX_INV_RM (address 0018h) EEPROM
	0085h) bit description	98		configuration register bit description115
Tab. 88.	SS_TX2_RTRTRANS2 register (address	0.0	lab. 115.	TX_CLK_MODE_1 (address 0019h)
T-1- 00	0086h) bit description	98		EEPROM configuration register bit
Tab. 89.	SS_TX2_RTRTRANS3 register (address	00	T-1- 440	description
Tab 00	0087h) bit description	98	1ab. 116.	TX_CLK_MODE_2 (address 001Ah)
Tab. 90.	SS_TX1_FTRTRANS0 register (address	0.0		EEPROM configuration register bit
Tab 04	0088h) bit description	98	Tob 447	description
Tab. 91.	SS_TX1_FTRTRANS1 register (address	00	1ab. 117.	RESIDUAL_AMPL_LEVEL_A106 (address
Tah 02	0089h) bit descriptionSS_TX1_FTRTRANS2 register (address	ฮฮ		0022h) EEPROM configuration bit description116
Tab. 92.	008Ah) bit description	00	Tab 119	EDGE_TYPE_A106 (address 0023h)
	ooonij bit description	ອອ	1au. 110.	EEPROM configuration bit description 117
				LET IVOIN CORINGULATION DIL DESCRIPTION 117

		EDGE_STYLE_A106 (address 0024h) EEPROM configuration bit description 117 EDGE LENGTH A106 (address 0025h)	Tab. 145.	RESIDUAL_AMPL_LEVEL_B848 (address 003Eh) EEPROM configuration bit description	128
		EEPROM configuration bit description 118 RESIDUAL_AMPL_LEVEL_A212 (address	Tab. 146.	EDGE_TYPE_B848 (address 003Fh) EEPROM configuration bit description	
		0026h) EEPROM configuration bit description118	Tab. 147.	EDGE_STYLE_B848 (address 0040h) EEPROM configuration bit description	
Tab.	122.	EDGE_TYPE_A212 (address 0027h) EEPROM configuration bit description 118	Tab. 148.	EDGE_LENGTH_B848 (address 0041h) EEPROM configuration bit description	
Tab.	123.	EDGE_STYLE_A212 (address 0028h) EEPROM configuration bit description 119	Tab. 149.	RESIDUAL_AMPL_LEVEL_F212 (address 0042h) EEPROM configuration bit	
Tab.	124.	EDGE_LENGTH_A212 (address 0029h) EEPROM configuration bit description 119	Tab. 150.	description EDGE_TYPE_F212 (address 0043h)	. 130
Tab.	125.	RESIDUAL_AMPL_LEVEL_A424 (address 002Ah) EEPROM configuration bit	Tab. 151.	EEPROM configuration bit description EDGE_STYLE_F212 (address 0044h)	
Tab.	126.	description	Tab. 152.	EEPROM configuration bit description EDGE_LENGTH_F212 (address 0045h)	
Tab.	127.	EEPROM configuration bit description 120 EDGE_STYLE_A424 (address 002Ch) EEPROM configuration bit description 120	Tab. 153.	EEPROM configuration bit description RESIDUAL_AMPL_LEVEL_F424 (address 0046h) EEPROM configuration bit	. 131
Tab.	128.	EDGE_LENGTH_A424 (address 002Ch) EEPROM configuration bit description 121	Tah 154	description EDGE_TYPE_F424 (address 0047h)	. 131
Tab.	129.	RESIDUAL_AMPL_LEVEL_A848 (address 002Eh) EEPROM configuration bit		EEPROM configuration bit description EDGE_STYLE_F424 (address 0048h)	. 132
Tab.	130.	description		EEPROM configuration bit description EDGE_LENGTH_F424 (address 0049h)	. 132
		EEPROM configuration bit description 122 EDGE_STYLE_A848 (address 0030h)		EEPROM configuration bit description RESIDUAL_AMPL_LEVEL_V100_26	. 133
		EEPROM configuration bit description 122 EDGE_LENGTH_A848 (address 0031h)		(address 004Ah) EEPROM configuration bit description	. 133
		EEPROM configuration bit description 123 RESIDUAL_AMPL_LEVEL_B106 (address	Tab. 158.	EDGE_TYPE_V100_26 (address 004Bh) EEPROM configuration bit description	
		0032h) EEPROM configuration bit description123	Tab. 159.	EDGE_STYLE_V100_26 (address 004Ch) EEPROM configuration bit description	. 134
		EDGE_TYPE_B106 (address 0033h) EEPROM configuration bit description 123	Tab. 160.	EDGE_LENGTH_V100_26 (address 004Dh) EEPROM configuration bit	124
		EDGE_STYLE_B106 (address 0034h) EEPROM configuration bit description 124 EDGE_LENGTH_B106 (address 0035h)	Tab. 161.	description	. 134
		EEPROM configuration bit description 124 RESIDUAL_AMPL_LEVEL_B212 (address	Tab 162	bit description	. 135
iub.	101.	0036h) EEPROM configuration bit description		EEPROM configuration bit description EDGE STYLE A106 (address 0050h)	. 135
Tab.	138.	EDGE_TYPE_B212 (address 0037h) EEPROM configuration bit description 125		EEPROM configuration bit description EDGE_LENGTH_V100_53 (address	. 135
Tab.	139.	EDGE_STYLE_B212 (address 0038h) EEPROM configuration bit description 125		0051h) EEPROM configuration bit description	. 136
Tab.	140.	EDGE_LENGTH_B212 (address 0039h) EEPROM configuration bit description 126	Tab. 165.	RESIDUAL_AMPL_LEVEL_V100_106 (address 0052h) EEPROM configuration bit	
Tab.	141.	RESIDUAL_AMPL_LEVEL_B424 (address 003Ah) EEPROM configuration bit	Tab. 166.	description	
Tab.	142.	description	Tab. 167.	EEPROM configuration bit description EDGE_STYLE_V100_106 (address 0054h) EEPROM configuration bit description	
Tab.	143.	EDGE_STYLE_B424 (address 003Ch) EEPROM configuration bit description 127	Tab. 168.	EDGE_LENGTH_V100_106 (address 0055h) EEPROM configuration bit	07
Tab.	144.	EDGE_LENGTH_B424 (address 003Dh) EEPROM configuration bit description 128		description	. 138

Tab.	169.	RESIDUAL_AMPL_LEVEL_100_212		Tab. 192.	EDGE_LENGTH_180003m3_tari18p88	
		(address 0056h) EEPROM configuration bit			(address 006Dh) EEPROM configuration	
		description	138		bit description	. 148
Tab.	170.	EDGE_TYPE_V100_212 (address 0057h)		Tab. 193.	RESIDUAL_AMPL_LEVEL_180003m3_	
		EEPROM configuration bit description	138		tari9p44 (address 006Eh) EEPROM	
Tab.	171.	EDGE_STYLE_V100_212 (address 0058h)			configuration bit description	148
		EEPROM configuration bit description	139	Tab. 194.	EDGE_TYPE_180003m3_tari9p44	
Tab.	172.	EDGE_LENGTH_V100_212 (address			(address 006Fh) EEPROM configuration bit	
		0059h) EEPROM configuration bit			description	. 148
		description	139	Tab. 195.	EDGE_STYLE_180003m3_tari9p44	
Tab.	173.	RESIDUAL_AMPL_LEVEL_V10_26			(address 0070h) EEPROM configuration bit	
		(address 005Ah) EEPROM configuration			description	. 149
		bit description	140	Tab. 196.	EDGE_LENGTH_180003m3_tari9p44	
Tab.	174.	EDGE_TYPE_V10_26 (address 005Bh)			(address 0071h) EEPROM configuration bit	
		EEPROM configuration bit description	140		description	. 149
Tab.	175.	EDGE_STYLE_V10_26 (address 005Ch)		Tab. 197.	RESIDUAL_AMPL_LEVEL_180003m3_	
		EEPROM configuration bit description	140		tari18p88 (address 0072h) EEPROM	
Tab.	176.	EDGE_LENGTH_V10_26 (address 005Dh)			configuration bit description	150
		EEPROM configuration bit description	141	Tab. 198.	EDGE_TYPE_B_PRIME_106 (address	
Tab.	177.	RESIDUAL_AMPL_LEVEL_V10_53			0073h) EEPROM configuration bit	
		(address 005Eh) EEPROM configuration			description	. 150
		bit description	141	Tab. 199.	EDGE_STYLE_B_PRIME_106 (address	
Tab.	178.	EDGE_TYPE_V10_53 (address 005Fh)			0074h) EEPROM configuration bit	
		EEPROM configuration bit description	142		description	. 150
Tab.	179.	EDGE STYLE V10 53 (address 0060h)		Tab. 200.	EDGE_LENGTH_B_PRIME_106 (address	
		EEPROM configuration bit description	142		0075h) EEPROM configuration bit	
Tab.	180.	EDGE_LENGTH_V10_53 (address 0061h)			description	. 151
		EEPROM configuration bit description	143	Tab. 201.	DPC_CONFIG (address 0076h) EEPROM	
Tab.	181.	RESIDUAL AMPL LEVEL V10 106			configuration bit description	151
		(address 0062h) EEPROM configuration bit		Tab. 202.	DPC_TARGET_CURRENT (address 077h)	
		description	143		EEPROM configuration bit description	. 152
Tab.	182.	EDGE_TYPE_V10_106 (address 0063h)		Tab. 203.	DPC_HYSTERESIS_LOADING (address	
		EEPROM configuration bit description	143		079h) EEPROM configuration bit	
Tab	183	EDGE_STYLE_V100_212 (address 0064h)			description	152
		EEPROM configuration bit description	144	Tab. 204.	DPC_HYSTERESIS_UNLOADING	
Tab.	184.	EDGE_LENGTH_V10_106 (address			(address 07Ch) EEPROM configuration bit	
		0065h) EEPROM configuration bit			description	. 152
		description	144	Tab. 205.	DPC_TXLDOVDDPALow (address 007Dh)	
Tab.	185.	RESIDUAL_AMPL_LEVEL_V10_212			EEPROM configuration register bit	
		(address 0066h) EEPROM configuration bit			description	. 153
		description	145	Tab. 206.	DPC_TXGSN (address 007Eh) EEPROM	
Tab.	186.	EDGE_TYPE_V10_212 (address 0067h)			configuration register bit description	.153
		EEPROM configuration bit description	145		DPC_RDON_Control (address 007Fh)	
Tab.	187.	EDGE_STYLE_V10_212 (address 0068h)			EEPROM configuration register bit	
		EEPROM configuration bit description	145		description	. 153
Tab.	188.	EDGE_LENGTH_V100_212 (address		Tab. 208.	DPC_InitialRDOn_RFOn (address 0080h)	
		0069h) EEPROM configuration bit			EEPROM configuration register bit	
		description	146		description	. 153
Tab.	189.	RESIDUAL AMPL LEVEL 180003m3		Tab. 209.	DPC GUARD TIME (address 087h)	
		tari18p88 (address 006Ah) EEPROM			EEPROM configuration bit description	. 153
		configuration bit description	.146	Tab. 210.	DPC_ENABLE_DURING_FDT (address	
Tab.	190.	EDGE_TYPE_180003m3_tari18p88			088h) EEPROM configuration bit	
		(address 006Bh) EEPROM configuration			description	. 154
		bit description	147	Tab. 211	DPC GUARD TIME AFTER RX (address	
Tab.	191.	EDGE STYLE 180003m3 tari18p88	-		089h) EEPROM configuration bit	
		(address 006Ch) EEPROM configuration			description	. 154
		bit description	147	Tab. 212	DPC_LOOKUP_TABLE (008Bh-0133h)	
					EEPROM configuration bit description	. 154
					- J	٠.

Tab. 213.	ARC_CONFIG (address 0137h) EEPROM	Ta		SIGNAL_SCALING_CONFIG (address	
	configuration bit description15	55		2B5h) EEPROM configuration bit	
Tab. 214.	ARC_VDDPA (0139Eh) EEPROM			description	190
	configuration bit description15	55 Ta		SEL_RES (address 2B8h) EEPROM	
Tab. 215.	ARC_RM_A106 (address 013Eh)			configuration bit description	.190
	EEPROM configuration bit description 15	57 Ta		FELICA_POLL_RES (address 02B9)	
Tab. 216.	ARC_RM_A212 (address 0148h) EEPROM			EEPROM configuration bit description	190
	configuration bit description15	i8 Ta		RANDOM_UID_ENABLE (address 2CBh)	
Tab. 217.	ARC_RM_A424 (address 0152h) EEPROM			EEPROM configuration bit description	191
	configuration bit description16	60 Ta	ab. 243.	MFC_AUTH_TIMEOUT (address 2CCh)	
Tab. 218.	ARC_RM_A848 (address 015Ch)			EEPROM configuration bit description	191
	EEPROM configuration bit description 16	i1 Ta		RSSI_TIMER (address 2DAh) EEPROM	
Tab. 219.	ARC_RM_B106 (address 0166h) EEPROM			configuration bit description	.191
	configuration bit description16	3 Ta	ab. 245.	RSSI_TIMER_FIRST_PERIOD (address	
Tab. 220.	ARC_RM_B212 (address 0170h) EEPROM			2DCh) EEPROM configuration bit	
	configuration bit description16	64		description	191
Tab. 221.	ARC_RM_B424 (address 017Ah)	Ta	ab. 246.	RSSI_CTRL_00_AB (address 2DEh)	
	EEPROM configuration bit description 16	6		EEPROM configuration bit description	191
Tab. 222.	ARC_RM_B848 (address 0184h) EEPROM			RSSI_NB_ENTRIES_AB (address 2DFh)	
	configuration bit description16			EEPROM configuration bit description	192
Tab. 223.	ARC RM F212 (address 018Eh)			RSSI_THRESHOLD_PHASE_TABLE	
	EEPROM configuration bit description 16			(address 2E0h) EEPROM configuration bit	
Tab. 224.	ARC_RM_F424 (address 0198h) EEPROM			description	192
	configuration bit description17	'0 Ta		TX_PARAM_ENTRY_TABLE (address	
Tab. 225.	ARC_RM_V_6p6 (address 01A2h)			3A2h) EEPROM configuration bit	
	EEPROM configuration bit description 17	2		description	193
Tab 226	ARC_RM_V_26 (address 01ACh)			LPCD_AVG_SAMPLES (address 0492h)	
145. 220.	EEPROM configuration bit description 17			EEPROM configuration bit description	197
Tah 227	ARC_RM_V53(address 01B6h) EEPROM			LPCD_RSSI_TARGET (address 0494h)	
IGD. ZZI.	configuration bit description17			EEPROM configuration bit description	197
Tab. 228.	ARC_RM_V106(address 01C0h) EEPROM			LPCD_RSSI_HYST (address 0496h)	
	configuration bit description17			EEPROM configuration bit description	197
Tab. 229.	ARC_RM_V212(address 01CAh) EEPROM			LPCD_CONFIG (address 0497h) EEPROM	
	configuration bit description17			configuration register bit description	197
Tab. 230.	ARC_RM_180003m3_SC424_4Man			LPCD_THRESHOLD_COARSE (address	
	(address 01D4h) EEPROM configuration			049Ah) EEPROM configuration bit	
	bit description17	'9		description	198
Tab. 231.	ARC_RM_180003m3_SC424_2Man			WAIT RX SETTLE (address 04ABh)	
	(address 01DEh) EEPROM configuration			EEPROM configuration bit description	198
	bit description18	31 Ta		LPCD_VDDPA (address 04AFh) EEPROM	
Tab. 232.	ARC_RM_180003m3_SC848_4Man			configuration bit description	.199
	(address 01E8h) EEPROM configuration	Ta		ULPCD_VDDPA_CTRL (address 4BFh)	
	bit description18			EEPROM configuration bit description	200
Tab. 233.	ARC RM 180003m3 SC848 2Man			ULPCD_TIMING_CTRL (address 4C2h)	
	(address 01F2h) EEPROM configuration bit			EEPROM configuration bit description	201
	description18	34 Ta		ULPCD_VOLTAGE_CTRL (address 4C6h)	
Tab. 234.	ARC RM Al106 (address 01FCh)			EEPROM configuration bit description	201
	EEPROM configuration bit description 18	5 Ta		ULPCD_RSSI_GUARD_TIME (address	
Tab. 235.	ARC_RM_Al212 (0206h) EEPROM			4C9h) EEPROM configuration bit	
	configuration bit description18	37		description	201
Tab. 236.	ARC RM Al424 (0210h) EEPROM			ULPCD_RSSI_SAMPLE_CFG (address	
	configuration bit description18			4CAh) EEPROM configuration bit	
Tab. 237.	RF_DEBOUNCE_TIMEOUT (address	_		description	201
	02B2h) EEPROM configuration bit	T:		ULPCD_THRESH_LVL (address 4CBh)	
	description			EEPROM configuration bit description	202
Tab. 238	SENSE_RES (address 02B3) EEPROM			ULPCD_GPIO3 (address 4CCh) EEPROM	_5_
00.	configuration bit description19			configuration bit description	.202
	G			FELICA_POLL_RES (address 0559)	
				EEPROM configuration bit description	202

Tab. 265.	FDT_default_val (address 055D) EEPROM configuration bit description202	Tab. 286.	LPCD_EXT_DCDC_ENABLE (0CE0h) EEPROM configuration register bit	
Tah 266	RXIRQ_GuardTime (address 0561h)		description	210
1ab. 200.	EEPROM configuration bit description 202	Tab 287	LPCD_EXT_DCDC_DELAY_TO_ON	210
Tab 267	NFCLD_RFLD_Valid (address 06D3h)	1ab. 207.	(0CE1h) EEPROM configuration register bit	
1ab. 201.	EEPROM configuration register bit		description	
		Tab 200	LPCD_EXT_DCDC_DELAY_TO_ON	210
Tob 260	description	1ab. 200.		
1ab. 200.	CurrentSensorTrimConfig (address		(0CE2h) EEPROM configuration register bit	
	0CACh) EEPROM configuration bit	T 1 000	description	210
T	description	lab. 289.	RxGuardTO_Multiple (address 00CE8h)	044
lab. 269.	CORRECTION_ENTRY_TABLE (address		EEPROM configuration bit description	
	0BDAh) EEPROM configuration bit		Limiting values	
	description		Operating conditions	
Tab. 270.	RTRANS_FTRANS_TABLE (address		Thermal characteristics HVQFN40 package	
	C03h) EEPROM configuration bit		Thermal characteristics VFBGA64 package	
	description205	Tab. 294.	Junction Temperature	213
Tab. 271.	CFG_NOV_CAL (address 0083h)	Tab. 295.	Thermal Shutdown Temperature	214
	EEPROM configuration bit description 206	Tab. 296.	Supply voltage	214
Tab. 272.	NOV_CAL_VAL1 (address 0C84h)	Tab. 297.	Current consumption in active mode	214
	EEPROM configuration bit description 206	Tab. 298.	Current consumption during power-saving	
Tab. 273.	NOV_CAL_VAL2 (0C85h) EEPROM		modes	215
	configuration bit description206	Tab. 299.	Overcurrent detection function	215
Tab. 274.	NOV CAL THRESHOLD (address 0C86h)		VEN pin	
	EEPROM configuration bit description 207		GPIO (GPIO_0, GPIO_1, GPIO_2, GPIO_	
Tab. 275.	NOV_CAL_OFFSET1 (address 0C87h)		3, GPIO4, GPIO5) pins	216
	EEPROM configuration bit description 207	Tab 302	CLK1, CLK2 pins	
Tab 276	NOV_CAL_OFFSET1 (address 0C8Bh)		IRQ pin	
145. 27 0.	EEPROM configuration bit description 207		SCLK, MOSI, NSS pins	
Tah 277	VDDPA DISCHARGE (address 0C8Fh)		MISO pin	
10D. 211.	EEPROM configuration bit description 207		RXp, RXn pins	
Tah 278	ARC_RM_A106_FDT (address 0C9Dh)		TX1, TX2 pins	
1ab. 210.	EEPROM configuration bit description 208		AUX1, AUX2, AUX3 pins (Debug output)	
Tab 270	Tx_Symbol23_Mod_Reg_BR_53		DAC_1, DAC_2 output pins (Tuning DAC)	
1ab. 219.	(0CC5Eh) EEPROM configuration bit		Power supply connection timing	
	description209		Pulse length	
Tab 200				220
1ab. 200.	Tx_Data_Mod_Reg_BR_53 (0CC9Eh)	1ab. 312.	DAC1, DAC2 conversion timing (Tuning	220
T-b 204	EEPROM configuration bit description 209	T-6 040	DAC)	
1ab. 201.	Tx_Symbol23_Mod_Reg_BR_106		SPI interface	220
	(0CCDEh) EEPROM configuration bit	1ab. 314.	RF_ON command timing following a	004
T-1- 000	description	T-1- 045	previous RF_OFF	221
1ab. 282.	Tx_Data_Mod_Reg_BR_106 (0CD1Eh)	1ab. 315.	Crystal requirements for ISO/IEC14443	004
	EEPROM configuration bit description 209		compliant operation	221
lab. 283.	Tx_Symbol23_Mod_Reg_BR_212	lab. 316.	Frequency requirements for a direct clock	
	(0CD5Eh) EEPROM configuration bit		input (no crystal)	
	description		EEPROM characteristics	
ıab. 284.	Tx_Data_Mod_Reg_BR_212 (0CD9Eh)		Package outline VFBGA64 (SOT1307-2)	
	EEPROM configuration bit description 209		Abbreviations	
Tab. 285.	CardModeUltraLowPowerEnabled (address	Tab. 320.	Revision history	294
	00DFh) EEPROM configuration bit			
	description210			

NFC frontend

Figures

Fig. 1.	Block diagram (external connections: DC-	Fig. 26.	LPCD configuration and card detection	
	DC mode)9		loop	45
Fig. 2.	Pin configuration for VFBGA6410	Fig. 27.	LPCD configuration	
Fig. 3.	Pin configuration for HVQFN40	Fig. 28.	Autocall state machine	
	(SOT2062-1)14	Fig. 29.	Push-Pull driver configuration	51
Fig. 4.	Endianness examples19	Fig. 30.	Push-Push driver configuration	52
Fig. 5.	Blocking capacitors22	Fig. 31.	Two antennas connected to TX1, TX2 each	52
Fig. 6.	Transmitter supply23	Fig. 32.	Antenna connection using variable	
Fig. 7.	Direct transmitter supply24		capacitors	
Fig. 8.	Transmitter supply by DC-DC24	Fig. 33.	Receiver block diagram	55
Fig. 9.	DC-DC active25	Fig. 34.	Startup timing	219
Fig. 10.	DC-DC bypassed (in DCDC_PWR_	Fig. 35.	Package outline VFBGA64 (SOT1307-2)	223
	CONFIG)25	Fig. 36.	Package outline note VFBGA64	
Fig. 11.	No DC-DC used26		(SOT1307-2)	224
Fig. 12.	No DC-DC used26	Fig. 37.	Package outline HVQFN40, SOT2062-1	225
Fig. 13.	No DC-DC used - no TX_LDO27	Fig. 38.	Package outline detail HVQFN40,	
Fig. 14.	Clocking by crystal29		SOT2062-1	226
Fig. 15.	FeliCa read/write communication diagram 30	Fig. 39.	Marking VFBGA64 Package	227
Fig. 16.	RxMultiple data format32	Fig. 40.	Marking HVQFN40 package SOT2062-1	227
Fig. 17.	System overview: DPC, AWC and ARC34	Fig. 41.	Reflow soldering footprint part1 for	
Fig. 18.	System overview: DPC, AWC and ARC35		VFBGA64 (SOT1307-2)	228
Fig. 19.	System overview: DPC, AWC and ARC35	Fig. 42.	Reflow soldering footprint part2 for	
Fig. 20.	System overview: DPC, AWC and ARC36		VFBGA64 (SOT1307-2)	229
Fig. 21.	Waveshaping transitions (example falling	Fig. 43.	Reflow soldering footprint part3 for	
	edge)38		VFBGA64 (SOT1307-2)	230
Fig. 22.	One linear transition (example falling edge) 39	Fig. 44.	Soldering and footprint representative	
Fig. 23.	Two linear transitions (example falling		illustration for VFBGA64 (SOT1307-2)	231
	edge)40	Fig. 45.		232
Fig. 24.	Three linear transitions (example falling	Fig. 46.	Package outline HVQFN40, SOT2062-1	233
•	edge)40	Fig. 47.	Package outline HVQFN40, SOT2062-1	234
Fig. 25.	Timer overview44	Fig. 48.	Package outline HVQFN40, SOT2062-1	

NFC frontend

Contents

2	1	General description		9.10	FeliCa RF functionality	
2.1.1 ISO/IEC14443-B	2					
2.1.3 FeliCa						
2.1.4 Tag bye reading	2.1.1			9.11.2		
2.1.4 Tag type reading	2.1.2	ISO/IEC14443-B	2	9.12		
2.1.6 ISO/IEC 16993 2.2 9.15. Low-power card detection (LPCD) 4.5	2.1.3			9.13	Adaptive receiver control (ARC)	40
2.16 ISO/IEC 158093 2 9.15.1 Low-power card detection (LPCD) 4.8	2.1.4	Tag type reading	2	9.14	Timer	43
2.1.6 ISO/IEC 158093 2 9.15.1 Low-power card detection (LPCD) 4.8	2.1.5	MIFARE card reading	2	9.15	Energy saving card detection	44
2.1.8 ISO/IEC 188992 2 9,15.3 Ultra low-power card detection (ULPCD) 44 2.1.10 ISO/IEC 21481 3 9,16 Automatic EMD error handling 49 2.1.11 Card emulation 3 9,18 RF-level detection 55 2.2 Lost interface 3 9,19 Antenna connection 55 2.3 Integrated DC-DC 3 9,20 Antenna connection 55 2.3 Integrated DC-DC 3 9,20 RF debug signals 55 4 Firmware versions 5 9,22 Secure firmware update 55 4.1 Version 2.02: 9,23 SPI host interface 58 4.2 Version 2.03: 5 9,24 Logical form definition 55 5.0 Quick reference data 7 7 9,24.1 Logical form definition 55 7.1 Block diagram with VFBGA64 connections 9 9,24.1 Logical form definition 55 8.1 Pin description HVQFN40 14	2.1.6			9.15.1	Low-power card detection (LPCD)	45
2.1.9 ISO/IEC 21481 3 9.16 Automatic EMD error handling	2.1.7	ISO/IEC 18000-3 Mode 3	2	9.15.2	Semi-autonomous mode (LPCD)	48
2.1.9 ISO/IEC 21481 3 9.16 Automatic EMD error handling	2.1.8	ISO/IEC 18092	2	9.15.3	Ultra low-power card detection (ULPCD)	48
2.1.10 Peer to peer 3 9.17 Autocoll (card emulation) .4 2.1.11 Card emulation .3 9.18 RF-level detection .5 2.2 Host interface .3 9.19 Antenna connection .51 3.3 Applications .4 9.21 RF debug signals .55 4.1 Version 2.02: .9.23 SPI host interface .55 4.2 Version 2.03: .5 9.24 Host interface commands .55 4.2 Version 2.03: .5 9.24 Host interface commands .55 4.2 Version 2.03: .5 9.24 Logical formac definition .55 4.2 Version 2.03: .5 9.24 Logical formac definition .55 6. Ordering information .8 9.24.1.1 Logical formac definition .55 8.1 Pin description VFBGA64 10 9.24.1.4 Logical message format .60 8.2 Pin description VFBGA64 10 9.24.1.5 <	2.1.9	ISO/IEC 21481	3	9.16		
2.1.11 Card emulation 3 9.18 RF-level detection 55 2.2 Host interface 3 9.19 Antenna connection 55 2.3 Integrated DC-DC 3 9.20 Antenna tuning with variable capacitors 54 4 Firmware versions 5 9.22 Secure firmware update 57 4.1 Version 2.02: 9.23 SPI host interface 55 4.2 Version 2.03: 5 9.24 Host interface commands 56 6 Ordering information 8 9.24.1.1 Logical frame definition 58 8 Pinn description WVFBGA64 connections 9.24.1.2 Logical frame definition 58 8.1 Pin description VFBGA64 10 9.24.1.3 Logical message type definition 58 8.2 Pin description VFBGA64 10 9.24.1.4 Logical message type definition 56 8.2 Pin description VFBGA64 10 9.24.1.4 Logical message format 60 8.1 Pin description VFBGA64	2.1.10	Peer to peer	3	9.17		
2.2 Host interface	2.1.11			9.18		
2.3 Integrated DC-DC .3 9.20 Antenna tuning with variable capacitors 54 4 Firmware versions .5 9.22 Secure firmware update .55 4.1 Version 2.02: 9.23 SPI host interface .58 4.2 Version 2.03: .5 9.24 Host interface commands .58 5.5 Quick reference data .7 9.24.1 Logical command layer .59 6. Ordering information 8 9.24.1.1 Logical from definition .58 7. Block diagram with VFBGA64 connections 9 9.24.1.2 Logical flow definition .58 8.1 Pin description VFBGA64 10 9.24.1.3 Logical message type definition .58 8.2 Pin description WQFN40 .14 9.24.1.5 Split frame definition .60 8.2 Pin description HVQFN40 .14 9.24.1.4 Host interface command list .60 9.5 Functional description .16 9.24.2 Host interface command list .60	2.2			9.19		
3 Applications 4 9.21 RF debug signals 55 4 Firmware versions 5 9.22 Secure firmware update 57 4.1 Version 2.03: 5 9.24 Host interface 55 5 Quick reference data 7 9.24 Host interface commands 55 6 Ordering information 8 9.24.1.1 Logical command layer 55 8 Plinning information 10 9.24.1.2 Logical frame definition 55 8.1 Pin description VFBGA64 10 9.24.1.3 Logical message type definition 55 8.2 Pin description HVGFN40 14 9.24.1.5 Logical message format 60 9.9 Functional description 16 9.24.2 Logical frame definition 60 9.1 Functional overview 16 9.24.1.3 Logical message format 60 9.2 Potal description 16 9.24.2 EVENTS INDICATED BY INTERRUPT 60 9.2 Endianness 18 9.24.4 EVENTS INDICATED BY INTERRUPT 62 9.5 Power supply 9.25 Register de	2.3			9.20		
4 Firmware versions 5 9.22 Secure firmware update 57 4.1 Version 2.02: 9.23 SPI host interface 58 4.2 Version 2.03: 5 9.24 Host interface commands 55 6 Ordering information 8 9.24.1.1 Logical from definition 55 7 Block diagram with VFBGA64 connections .9 9.24.1.2 Logical flow definition 55 8 Pinn description VFBGA64 10 9.24.1.2 Logical message type definition 56 8.1 Pin description VFBGA64 10 9.24.1.4 Logical message type definition 56 8.2 Pin description VFBGA64 10 9.24.1.2 Logical message type definition 66 8.2 Pin description VFBGA64 10 9.24.1.2 Logical flow definition 60 8.2 Pin description VFBGA64 10 9.24.1.2 Host interface command list 60 9.1 Functional overview 16 9.24.2 Host interface command list 60					•	
4.1 Version 2.02: 9.23 SPI host interface 55	4	Firmware versions	5			
Version 2 03:			•		SPI host interface	58
56 Quick reference data 7 9.24.1.1 Logical command layer 55 6 Ordering information 8 9.24.1.2 Logical frame definition 55 7 Block diagram with VFBGA64 connections 9 9.24.1.2 Logical message type definition 55 8 Pinning information 10 9.24.1.3 Logical message type definition 56 8.2 Pin description VFBGA64 10 9.24.1.4 Logical message format 60 8.2 Pin description HVQFN40 14 9.24.1.5 Logical message format 60 9 Functional description 16 9.24.2 Host interface command list 60 9.1 Functional overview 16 9.24.2 Host interface command list 60 9.2 Endianness 18 9.24.4 EVENTS INDICATED ON GPIO 63 9.3 Initial calibration 19 9.25 Register description 63 9.4 System power states 20 9.25.1 Register overview 63 9.5.1 System power supply 21 9.25.2 SYSTEM_CONFIG (00001h) 67			5			
66 Ordering information 8 9.24.1.1 Logical frame definition 55 8 Pinning information 10 9.24.1.2 Logical flow definition 55 8.1 Pin description VFBGA64 10 9.24.1.4 Logical message type definition 56 8.1 Pin description VFBGA64 10 9.24.1.5 Split frame definition 60 9.2 Punctional description 16 9.24.1.5 Split frame definition 60 9.1 Functional description 16 9.24.2 Host interface command list 60 9.1 Functional overview 16 9.24.3 EVENTS INDICATED BY INTERRUPT 62 9.2 Endianness 18 9.24.4 EVENTS INDICATED BY INTERRUPT 62 9.2 Endianness 18 9.24.4 EVENTS INDICATED BY INTERRUPT 62 9.2 Endianness 18 9.24.4 EVENTS INDICATED BY INTERRUPT 62 9.2 Endianness 18 9.24.4 EVENTS INDICATED BY INTERRUPT 62						
7 Block diagram with VFBGA64 connections .9 9.24.1.2 Logical flow definition 55 8.1 Pinning information 10 9.24.1.3 Logical message type definition 59 8.2 Pin description HVGPA40 14 9.24.1.5 Split frame definition 60 9.9 Functional description .16 9.24.1.2 Host interface command list 60 9.1 Functional overview .16 9.24.3 EVENTS INDICATED BY INTERRUPT 62 9.2 Endianness .18 9.24.4 EVENTS INDICATED DY INTERRUPT 62 9.2 Endianness .18 9.24.4 EVENTS INDICATED DY INTERRUPT 63 9.3 Initial calibration .19 9.25 Register description 63 9.4 System power states .20 9.25.1 Register description 63 9.5 Power supply .21 9.25.2 SYSTEM_CONFIG (0000h) 66 9.5.1 System power states .20 9.25.3 EVENT_STATUS (0002h) 67						
8 Pinning information .10 9.24.1.3 Logical message type definition 55 8.1 Pin description VFBGA64 10 9.24.1.4 Logical message format 60 8.2 Pin description HVQFN40 14 9.24.1.5 Split frame definition 60 9 Functional description 16 9.24.2 Host interface command list 60 9.1 Functional overview 16 9.24.3 EVENTS INDICATED BY INTERRUPT 62 9.2 Enclainness 18 9.24.4 EVENTS INDICATED BY INTERRUPT 62 9.3 Initial calibration 19 9.25 Register description 63 9.4 System power states 20 9.25.1 Register description 63 9.5 Power supply 21 9.25.3 Register description 63 9.5 Power supply 21 9.25.3 Register description 63 9.5 Power supply 22 9.25.4 EVENT_STATUS (0000h) 67 9.5.1 System p						
8.1 Pin description VFBGA64 .10 9.24.1.4 Logical message format .60 8.2 Pin description HVQFN40 .14 9.24.1.5 Split frame definition .60 9 Functional description .16 9.24.2 Host interface command list .60 9.1 Functional overview .16 9.24.3 EVENTS INDICATED BY INTERRUPT .62 9.2 Endianness .18 9.24.4 EVENTS INDICATED ON GPIO .63 9.3 Initial calibration .19 9.25 Register description .63 9.4 System power states .20 9.25.1 Register overview .63 9.5 Power supply .21 9.25.2 SYSTEM CONFIG (0000h) .66 9.5.1 System power supply overview .21 9.25.3 EVENT STATUS (0005h) .67 9.5.1 System power supply overview .21 9.25.4 EVENT STATUS (0005h) .67 9.5.3 Transmitter supply overview .21 9.25.5 EVENT STATUS (0005h) .67						
Pin description HVQFN40						
9 Functional description .16 9.24.2 Host interface command list .60 9.1 Functional overview 16 9.24.3 EVENTS INDICATED BY INTERRUPT .62 9.2 Endianness 18 9.24.4 EVENTS INDICATED ON GPIO .63 9.3 Initial calibration 19 9.25 Register description .63 9.4 System power states 20 9.25.1 Register overview .63 9.5 Power supply overview 21 9.25.2 SYSTEM_CONFIG (0000h) .66 9.5.1 System power supply overview 21 9.25.3 EVENT_ENABLE (0001h) .67 9.5.2 Connecting blocking capacitors 22 9.25.4 EVENT_STATUS (0002h) .67 9.5.3 Transmitter power supply 22 9.25.5 EMD_CONTROL (0003h) .68 9.5.3.1 TX_LDO transmitter supply 23 9.25.7 RX_STATUS (0007h) .69 9.5.3.2 Direct transmitter supply 24 9.25.8 RX_STATUS (0007h) .70	_					
9.1 Functional overview 16 9.24.3 EVENTS INDICATED BY INTERRUPT 62 9.2 Endianness 18 9.24.4 EVENTS INDICATED ON GPIO 63 9.3 Initial calibration 19 9.25 Register description 63 9.4 System power states 20 9.25.1 Register overview 63 9.5 Power supply 21 9.25.2 SYSTEM_CONFIG (0000h) 66 9.5.1 System power supply overview 21 9.25.3 EVENT_STATUS (000ch) 67 9.5.2 Connecting blocking capacitors 22 9.25.4 EVENT_STATUS (000ch) 67 9.5.3 Transmitter power supply 22 9.25.5 EWD CONTROL (0003h) 68 9.5.3.1 TX_LDO transmitter supply 23 9.25.6 FELICA_EMD_CONTROL (0004h) 69 9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.4 Configuration example 1: TX_LDO 9.25.8 RX_STATUS (0005h) 70 9.5.3.5	-			-		
9.2 Endianness 18 9.24.4 EVENTS INDICATED ON GPIO 63 9.3 Initial calibration 19 9.25 Register description 63 9.4 System power states 20 9.25.1 Register description 63 9.5 Power supply 21 9.25.2 SYSTEM_CONFIG (0000h) 66 9.5.1 System power supply overview 21 9.25.3 EVENT_ENABLE (0001h) 67 9.5.2 Connecting blocking capacitors 22 9.25.4 EVENT_STATUS (0002h) 67 9.5.3 Transmitter power supply 22 9.25.5 EMD_CONTROL (0003h) 68 9.5.3.1 TX_LDO transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 RX_STATUS (0007h) 70 9.5.3.5 Configuration example 2: TX_LDO 9.25.1 RF_EXCHANGE_CONTROL (0008h) 74 9.5.3.6 Co						
9.3 Initial calibration 19 9.25 Register description 63 9.4 System power states 20 9.25.1 Register overview 63 9.5 Power supply 21 9.25.2 SYSTEM_CONFIG (0000h) 66 9.5.1 System power supply overview 21 9.25.2 SYSTEM_CONFIG (0000h) 67 9.5.2 Connecting blocking capacitors 22 9.25.4 EVENT_STATUS (0002h) 67 9.5.3 Transmitter supply 22 9.25.5 EMD_CONTROL (0003h) 68 9.5.3.1 TX_LDO transmitter supply 23 9.25.6 FELICA_EMD_CONTROL (0004h) 69 9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.3 DC-DC (boost) supply 24 9.25.8 RX_STATUS (0006h) 70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) 73 transmitter supply - DC-DC active 24 9.25.1 TX_SYMBOL0 (0006h) 74 9.5.3.6 Conf						
9.4 System power states 20 9.25.1 Register overview 63 9.5 Power supply 21 9.25.2 SYSTEM_CONFIG (0000h) 66 9.5.1 System power supply overview 21 9.25.3 EVENT_ENABLE (0001h) 67 9.5.2 Connecting blocking capacitors 22 9.25.4 EVENT_STATUS (0002h) .67 9.5.3 Transmitter power supply 22 9.25.5 EMD_CONTROL (0003h) .68 9.5.3.1 TX_LDO transmitter supply 23 9.25.6 FELICA_EMD_CONTROL (0004h) .69 9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) .70 9.5.3.3 DC-DC (boost) supply 24 9.25.8 RX_STATUS_ERROR (0006h) .70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) .73 transmitter supply - DC-DC active 24 9.25.1 TX_SYMBOL0 (0006h) .74 9.5.3.5 Configuration example 3: TX_LDO 9.25.11 TX_SYMBOL0 (0006h) .75 9.5.3.6						
9.5 Power supply 21 9.25.2 SYSTEM_CONFIG (0000h) 66 9.5.1 System power supply overview 21 9.25.3 EVENT_ENABLE (0001h) 67 9.5.2 Connecting blocking capacitors 22 9.25.4 EVENT_STATUS (0002h) 67 9.5.3 Transmitter power supply 22 9.25.5 EMD_CONTROL (0003h) 68 9.5.3.1 TX_LDO transmitter supply 23 9.25.6 FELICA_EMD_CONTROL (0004h) 69 9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.3 DC-DC (boost) supply 24 9.25.8 RX_STATUS ERROR (0006h) 70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) 73 transmitter supply - DC-DC active 24 9.25.1 RF_EXCHANGE_CONTROL (0008h) 74 9.5.3.5 Configuration example 3: TX_LDO 9.25.11 TX_SYMBOL1_DEF (0008h) 74 9.5.3.6 Configuration example 3: TX_LDO 9.25.13 TX_SYMBOL2_MOD (000Ch) 75 9.5.3.						
9.5.1 System power supply overview 21 9.25.3 EVENT_ENABLE (0001h) 67 9.5.2 Connecting blocking capacitors 22 9.25.4 EVENT_STATUS (0002h) 67 9.5.3 Transmitter power supply 22 9.25.5 EMD_CONTROL (0003h) 68 9.5.3.1 TX_LDO transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.3 DC-DC (boost) supply 24 9.25.8 RX_STATUS_ERROR (0006h) 70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) 73 transmitter supply - DC-DC active 24 9.25.10 RF_EXCHANGE_CONTROL (0008h) 74 9.5.3.5 Configuration example 2: TX_LDO 9.25.11 TX_SYMBOL01_MOD (0009h) 74 9.5.3.6 Configuration example 3: TX_LDO 9.25.13 TX_SYMBOL0_DEF (0008h) 75 9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 25 9.25.15 TX_SYMBOL_CONFIG (000Eh)<						
9.5.2 Connecting blocking capacitors 22 9.25.4 EVENT_STATUS (0002h) .67 9.5.3 Transmitter power supply 22 9.25.5 EMD_CONTROL (0003h) .68 9.5.3.1 TX_LDO transmitter supply 23 9.25.6 FELICA_EMD_CONTROL (0004h) .69 9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) .70 9.5.3.3 DC-DC (boost) supply 24 9.25.8 RX_STATUS_ERROR (0006h) .70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) .73 9.5.3.5 Configuration example 2: TX_LDO 9.25.11 TX_SYMBOL01_MOD (0009h) .74 9.5.3.6 Configuration example 3: TX_LDO 9.25.11 TX_SYMBOL1_DEF (000Ah) .75 9.5.3.6 Configuration example 3: TX_LDO 9.25.13 TX_SYMBOL2_MOD (000Ch) .75 9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 25 9.25.15 TX_SYMBOL2_DOFIG (000Eh) .76 9.5.3.9 Supply voltage range for transmitter supply configuration examples 26						
9.5.3 Transmitter power supply 22 9.25.5 EMD_CONTROL (0003h) 68 9.5.3.1 TX_LDO transmitter supply 23 9.25.6 FELICA_EMD_CONTROL (0004h) 69 9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.3 DC-DC (boost) supply 24 9.25.8 RX_STATUS (0005h) 70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) 70 y.5.3.5 Configuration example 2: TX_LDO 9.25.11 RF_EXCHANGE_CONTROL (0008h) 74 y.5.3.6 Configuration example 2: TX_LDO 9.25.11 TX_SYMBOL01_MOD (0009h) 74 y.5.3.6 Configuration example 3: TX_LDO 9.25.12 TX_SYMBOL0_DEF (000Ah) 75 y.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 25 9.25.14 TX_SYMBOL_DEF (000Dh) 76 y.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC 26 9.25.16 TX_SYMBOL_CONFIG (000Fh) 77 y.5.3.9 Supply voltage range for transmitter supply configuration examples						
9.5.3.1 TX_LDO transmitter supply 23 9.25.6 FELICA_EMD_CONTROL (0004h) 69 9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.3 DC-DC (boost) supply 24 9.25.8 RX_STATUS_ERROR (0006h) 70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) 73 transmitter supply - DC-DC active 24 9.25.10 RF_EXCHANGE_CONTROL (0008h) 74 9.5.3.5 Configuration example 2: TX_LDO 9.25.11 TX_SYMBOL01_MOD (0009h) 74 transmitter supply - DC-DC bypassed 25 9.25.12 TX_SYMBOL1_DEF (000Ah) 75 9.5.3.6 Configuration example 3: TX_LDO 9.25.13 TX_SYMBOL0_DEF (000Bh) 75 transmitter supply connected to VBAT - no 9.25.14 TX_SYMBOL23_MOD (000Ch) 75 9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 26 9.25.17 TX_SYMBOL23_DEF (000Dh) 76 9.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC 26 9.25.19 TX_WAIT (0011h) 79 9.5.3.9 Supply voltage range for transmitter s						
9.5.3.2 Direct transmitter supply 23 9.25.7 RX_STATUS (0005h) 70 9.5.3.3 DC-DC (boost) supply 24 9.25.8 RX_STATUS_ERROR (0006h) 70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) 73 transmitter supply - DC-DC active 24 9.25.10 RF_EXCHANGE_CONTROL (0008h) 74 9.5.3.5 Configuration example 2: TX_LDO 9.25.11 TX_SYMBOL01_MOD (0009h) 74 transmitter supply - DC-DC bypassed 25 9.25.12 TX_SYMBOL1_DEF (000Ah) 75 9.5.3.6 Configuration example 3: TX_LDO 9.25.13 TX_SYMBOL_DEF (000Bh) 75 transmitter supply connected to VBAT - no 9.25.14 TX_SYMBOL_3_MOD (000Ch) 75 9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 26 9.25.15 TX_SYMBOL_CONFIG (000Eh) 76 9.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC 26 9.25.18 TX_DATA_MOD (0010h) 78 9.5.3.9 Supply voltage range for transmitter supply configuration examples 28 9.25.20						
9.5.3.3 DC-DC (boost) supply 24 9.25.8 RX_STATUS_ERROR (0006h) 70 9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) 73 transmitter supply - DC-DC active 24 9.25.10 RF_EXCHANGE_CONTROL (0008h) 74 9.5.3.5 Configuration example 2: TX_LDO 9.25.11 TX_SYMBOL01_MOD (0009h) 74 transmitter supply - DC-DC bypassed 25 9.25.12 TX_SYMBOL1_DEF (000Ah) 75 9.5.3.6 Configuration example 3: TX_LDO 9.25.13 TX_SYMBOL0_DEF (000Bh) 75 transmitter supply connected to VBAT - no 9.25.14 TX_SYMBOL23_MOD (000Ch) 75 9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 26 9.25.16 TX_SYMBOL_CONFIG (000Eh) 76 9.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC 26 9.25.17 TX_FRAME_CONFIG (000Fh) 77 9.5.3.9 Supply voltage range for transmitter supply configuration examples 28 9.25.19 TX_WAIT (0011h) 79 9.6 Clock generation 29 9.25.21 SS_TX_CONFIG (00015h) 80 9.7 External i						
9.5.3.4 Configuration example 1: TX_LDO 9.25.9 CLIF_STATUS (0007h) 73 transmitter supply - DC-DC active 24 9.25.10 RF_EXCHANGE_CONTROL (0008h) 74 9.5.3.5 Configuration example 2: TX_LDO 9.25.11 TX_SYMBOL01_MOD (0009h) 74 transmitter supply - DC-DC bypassed 25 9.25.12 TX_SYMBOL1_DEF (000Ah) 75 9.5.3.6 Configuration example 3: TX_LDO 9.25.13 TX_SYMBOL2_DEF (000Bh) 75 transmitter supply connected to VBAT - no 9.25.14 TX_SYMBOL23_MOD (000Ch) 75 p.5.3.7 Configuration example 4: TX_LDO supplied 9.25.16 TX_SYMBOL_CONFIG (000Eh) 76 9.5.3.8 Configuration example 5: TX_LDO not used 9.25.17 TX_FRAME_CONFIG (000Fh) 77 9.5.3.9 Supply voltage range for transmitter supply configuration examples 26 9.25.19 TX_WAIT (0011h) 79 9.5.3.9 Supply voltage range for transmitter supply configuration examples 28 9.25.21 SS_TX_CONFIG (00015h) 80 9.6 Clock generation 29 9.25.22 SS_TX_RMCFG (00016h) 80 9.7 External interfaces 29						
transmitter supply - DC-DC active			24			
9.5.3.5 Configuration example 2: TX_LDO 9.25.11 TX_SYMBOL01_MOD (0009h) 74 transmitter supply - DC-DC bypassed 25 9.25.12 TX_SYMBOL1_DEF (000Ah) 75 9.5.3.6 Configuration example 3: TX_LDO 9.25.13 TX_SYMBOL0_DEF (000Bh) 75 transmitter supply connected to VBAT - no 9.25.14 TX_SYMBOL23_MOD (000Ch) 75 DC-DC 25 9.25.15 TX_SYMBOL23_DEF (000Dh) 76 9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 26 9.25.16 TX_SYMBOL_CONFIG (000Eh) 76 9.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC 26 9.25.18 TX_DATA_MOD (0010h) 78 9.5.3.9 Supply voltage range for transmitter supply configuration examples 26 9.25.19 TX_WAIT (0011h) 79 9.5.3.9 Supply voltage range for transmitter supply configuration examples 28 9.25.21 SS_TX_CONFIG (00015h) 80 9.6 Clock generation 29 9.25.22 SS_TX_TRANS_CFG (00016h) 80 9.7 External interfaces 29 9.25.23 SS_TX_TRANS_CFG (00019h) 81 9.8	9.5.3.4		0.4			
transmitter supply - DC-DC bypassed	0 - 0 -		24			
9.5.3.6 Configuration example 3: TX_LDO 9.25.13 TX_SYMBOL0_DEF (000Bh) 75 transmitter supply connected to VBAT - no 9.25.14 TX_SYMBOL23_MOD (000Ch) 75 DC-DC 25 9.25.15 TX_SYMBOL23_DEF (000Dh) 76 9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 26 9.25.16 TX_SYMBOL_CONFIG (000Eh) 76 9.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC 9.25.17 TX_FRAME_CONFIG (000Fh) 77 9.5.3.9 Supply voltage range for transmitter supply configuration examples 26 9.25.19 TX_WAIT (0011h) 79 9.6 Clock generation 29 9.25.20 TX_CRC_CONFIG (00015h) 80 9.7 External interfaces 29 9.25.23 SS_TX1_RMCFG (00017h) 81 9.8 Transmitter overcurrent and temperature protection 30 9.25.25 SIGPRO_RM_PATTERN (0020h) 82	9.5.3.5		0.5			
transmitter supply connected to VBAT - no DC-DC	0 5 0 0		25			
DC-DC 25 9.25.15 TX_SYMBOL23_DEF (000Dh) 76 9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 9.25.16 TX_SYMBOL_CONFIG (000Eh) 76 9.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC 9.25.18 TX_DATA_MOD (0010h) 78 9.5.3.9 Supply voltage range for transmitter supply configuration examples 26 9.25.19 TX_WAIT (0011h) 79 9.6 Clock generation 28 9.25.21 SS_TX_CONFIG (00015h) 80 9.7 External interfaces 29 9.25.23 SS_TX2_RMCFG (00017h) 81 9.8 Transmitter overcurrent and temperature protection 30 9.25.25 SIGPRO_RM_PATTERN (0020h) 82	9.5.3.6					
9.5.3.7 Configuration example 4: TX_LDO supplied independent from VBAT - no DC-DC 9.25.16 TX_SYMBOL_CONFIG (000Eh) 76 9.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC 9.25.18 TX_DATA_MOD (0010h) 78 9.5.3.9 Supply voltage range for transmitter supply configuration examples 26 9.25.19 TX_WAIT (0011h) 79 9.6 Clock generation 29 9.25.21 SS_TX_CONFIG (00015h) 80 9.7 External interfaces 29 9.25.23 SS_TX2_RMCFG (00017h) 81 9.8 Transmitter overcurrent and temperature protection 30 9.25.25 SIGPRO_RM_PATTERN (0020h) 82						
independent from VBAT - no DC-DC			25			
9.5.3.8 Configuration example 5: TX_LDO not used - no DC-DC 9.25.18 TX_DATA_MOD (0010h) 78 9.5.3.9 Supply voltage range for transmitter supply configuration examples 9.25.20 TX_CRC_CONFIG (0012h) 79 9.6 Clock generation 29 9.25.21 SS_TX_CONFIG (00015h) 80 9.7 External interfaces 29 9.25.23 SS_TX2_RMCFG (00017h) 81 9.8 Transmitter overcurrent and temperature protection 30 9.25.25 SIGPRO_RM_PATTERN (0020h) 82	9.5.3.7					
- no DC-DC			26			
9.5.3.9 Supply voltage range for transmitter supply configuration examples 9.25.20 TX_CRC_CONFIG (0012h) 79 9.6 Clock generation 29 9.25.22 SS_TX_CONFIG (00015h) 80 9.7 External interfaces 29 9.25.23 SS_TX2_RMCFG (00017h) 81 9.8 Transmitter overcurrent and temperature protection 30 9.25.25 SIGPRO_RM_PATTERN (0020h) 82	9.5.3.8	. =				
configuration examples 28 9.25.21 SS_TX_CONFIG (00015h) 80 9.6 Clock generation 29 9.25.22 SS_TX1_RMCFG (00016h) 80 9.7 External interfaces 29 9.25.23 SS_TX2_RMCFG (00017h) 81 9.8 Transmitter overcurrent and temperature protection 30 9.25.24 SS_TX_TRANS_CFG (00019h) 81 81 9.25.25 SIGPRO_RM_PATTERN (0020h) 82			26			
9.6 Clock generation 29 9.25.22 SS_TX1_RMCFG (00016h) 80 9.7 External interfaces 29 9.25.23 SS_TX2_RMCFG (00017h) 81 9.8 Transmitter overcurrent and temperature protection 9.25.24 SS_TX_TRANS_CFG (00019h) 81 9.25.25 SIGPRO_RM_PATTERN (0020h) 82	9.5.3.9					
9.7 External interfaces 29 9.25.23 SS_TX2_RMCFG (00017h) 81 9.8 Transmitter overcurrent and temperature protection 9.25.24 SS_TX_TRANS_CFG (00019h) 81 9.25.25 SIGPRO_RM_PATTERN (0020h) 82						
9.8 Transmitter overcurrent and temperature 9.25.24 SS_TX_TRANS_CFG (00019h)	9.6					
protection	9.7		29			
	9.8	•				
9.9 Loading a dedicated RF configuration30 9.25.26 SIGPRO_RM_TECH (0022h)82						
	9.9	Loading a dedicated RF configuration	30	9.25.26	SIGPRO_RM_TECH (0022h)	82

PN5190B1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

9.25.27	RX_FRAME_LENGTH (0026h)		9.26.6	TXLDO_VDDPA_LOW (0007h)	
9.25.28	RX_ERROR_CONFIG (0027h)		9.26.7	TXLDO_VDDPA_MAX_RDR (0008h)	
9.25.29	RX_CTRL_STATUS (0028h)		9.26.8	TXLDO_VDDPA_MAX_CARD (0009h)	
9.25.30	SIGPRO_IIR_CONFIG0 (0002Ah)		9.26.9	BOOST_DEFAULT_VOLTAGE (000Ah)	
9.25.31	DGRM_BBA (002Dh)		9.26.10	XTAL_CONFIG (0010h)	113
9.25.32	DGRM_RSSI (0030h)	84	9.26.11	XTAL_TIMEOUT (0011h)	.114
9.25.33	RX_CRC_CONFIG (0031h)	84	9.26.12	CLK_INPUT_FREQ (0012h)	.114
9.25.34	RX_WAIT (0032h)	85	9.26.13	XTAL_CHECK_DELAY (0013h)	.114
9.25.35	DCOC_CONFIG (0033h)	86	9.26.14	TEMP_WARNING (0014h)	. 115
9.25.36	RXM_CTRL (0035h)	86	9.26.15	ENABLE_GPIO0_ON_OVERTEMP	
9.25.37	ANA_AGC_DCO_CTRL (0036h)	86		(0016h)	115
9.25.38	SS_TX1_CMCFG (0003Bh)	86	9.26.16	TX_SHAPING_CONFIG (0017h)	.115
9.25.39	SS_TX2_CMCFG (0003Ch)	87	9.26.17	TX_INV_RM (0018h)	
9.25.40	TIMER0_CONFIG (003Dh)	87	9.26.18	TX_CLK_MODE_1 (0019h)	. 116
9.25.41	TIMERO_RELOAD (003Eh)		9.26.19	TX_CLK_MODE_2 (001Ah)	116
9.25.42	TIMER1_CONFIG (003Fh)		9.26.20	RESIDUAL_AMPL_LEVEL_A106 (0022h)	. 116
9.25.43	TIMER1_RELOAD (0040h)	89	9.26.21	EDGE TYPE A106 (0023h)	117
9.25.44	ANA_STATUS (0041h)		9.26.22	EDGE STYLE A106 (0024h)	117
9.25.45	ANA RX CTRL (0043h)		9.26.23	EDGE LENGTH A106 (0025h)	. 118
9.25.46	ANACTRL_TX_CONFIG (0044h)	90	9.26.24	RESIDUAL AMPL LEVEL A212 (0026h)	. 118
9.25.47	EMD_1_CFG (0047h)		9.26.25	EDGE_TYPE_A212 (0027h)	118
9.25.48	EMD 0 CONFIG (0048h)		9.26.26	EDGE_STYLE_A212 (0028h)	
9.25.49	LPCD_CALIBRATE_CTRL (00050h)		9.26.27	EDGE LENGTH A212 (0029h)	
9.25.50	IQ CHANNEL VALS (00051h)		9.26.28	RESIDUAL_AMPL_LEVEL_A424 (002Ah)	
9.25.51	PAD_CONFIG (0052h)		9.26.29	EDGE_TYPE_A424 (002Bh)	
9.25.52	CALIBRATE STATUS (00053h)		9.26.30	EDGE STYLE A424 (002Ch)	
9.25.53	TXLDO VDDPA CONFIG (00054h)	92	9.26.31	EDGE LENGTH A424 (002Dh)	
9.25.54	GENERAL_ERROR_STATUS (0055h)		9.26.32	RESIDUAL AMPL LEVEL A848 (002Eh)	
9.25.55	TXLDO_VOUT_CURR (0056h)		9.26.33	EDGE_TYPE_A848 (002Fh)	
9.25.56	DAC (00057h)		9.26.34	EDGE_STYLE_A848 (0030h)	
9.25.57	PMU_ANA_SMPS_CTRL_REG (00058h)		9.26.35	EDGE_LENGTH_A848 (0031h)	
9.25.58	RXM_FREQ (00059h)		9.26.36	RESIDUAL AMPL LEVEL B106 (0032h)	
9.25.59	RXM_RSSI (0005Ah)		9.26.37	EDGE_TYPE_B106 (0033h)	
9.25.60	TEMP_SENSOR (005Bh)		9.26.38	EDGE STYLE B106 (0034h)	
9.25.61	TX_NOV_CALIBRATE_AND_STORE		9.26.39	EDGE_LENGTH_B106 (0035h)	
	(005Dh)	96	9.26.40	RESIDUAL_AMPL_LEVEL_B212 (0036h)	
9.25.62	DPC CONFIG (005Eh)		9.26.41	EDGE TYPE B212 (0037h)	
9.25.63	SS_TX1_RTRTRANS0 (00080h)		9.26.42	EDGE_STYLE_B212 (0038h)	
9.25.64	SS_TX1_RTRTRANS1 (00081h)		9.26.43	EDGE_LENGTH_B212 (0039h)	
9.25.65	SS_TX1_RTRTRANS2 (00082h)		9.26.44	RESIDUAL_AMPL_LEVEL_B424 (003Ah)	
9.25.66	SS_TX1_RTRTRANS3 (00083h)		9.26.45	EDGE_TYPE_B424 (003Bh)	
9.25.67	SS_TX2_RTRTRANS0 (00084h)		9.26.46	EDGE_STYLE_B424 (003Ch)	
9.25.68	SS_TX2_RTRTRANS1 (00085h)	98	9.26.47	EDGE_LENGTH_B424 (003Dh)	
9.25.69	SS_TX2_RTRTRANS2 (00086h)		9.26.48	RESIDUAL AMPL LEVEL B848 (003Eh)	
9.25.70	SS_TX2_RTRTRANS3 (00087h)		9.26.49	EDGE_TYPE_B848 (003Fh)	
9.25.71	SS_TX1_FTRTRANS0 (00088h)		9.26.50	EDGE_STYLE_B848 (0040h)	129
9.25.72	SS_TX1_FTRTRANS1 (00089h)		9.26.51	EDGE_LENGTH_B848 (0041h)	
9.25.73	SS_TX1_FTRTRANS2 (0008Ah)		9.26.52	RESIDUAL_AMPL_LEVEL_F212 (0042h)	130
9.25.74	SS_TX1_FTRTRANS3 (0008Bh)		9.26.53	EDGE_TYPE_F212 (0043h)	
9.25.75	SS TX2 FTRTRANS0 (0008Ch)		9.26.54	EDGE_STYLE_F212 (0044h)	
9.25.76	SS_TX2_FTRTRANS1 (0008Dh)		9.26.55	EDGE LENGTH F212 (0045h)	
9.25.77	SS TX2 FTRTRANS2 (0008Eh)		9.26.56	RESIDUAL_AMPL_LEVEL_F424 (0046h)	
9.25.78	SS_TX2_FTRTRANS3 (0008Fh)		9.26.57	EDGE_TYPE_F424 (0047h)	
9.26	EEPROM configuration description		9.26.58	EDGE STYLE F424 (0048h)	
9.26.1	EEPROM configuration overview		9.26.59	EDGE LENGTH F424 (0049h)	
9.26.2	DCDC_PWR_CONFIG (0000h)		9.26.60	RESIDUAL_AMPL_LEVEL_V100_26	
9.26.3	DCDC_CONFIG (0001h)			(004Ah)	. 133
9.26.4	TXLDO CONFIG (0002h)		9.26.61	EDGE TYPE V100 26 (004Bh)	
9.26.5	TXLDO VDDPA HIGH (0006h)		9.26.62	EDGE_STYLE_V100_26 (004Ch)	
-	(******,	-		,	•

9.26.63	EDGE_LENGTH_V100_26 (004Dh)	. 134	9.26.107	DPC_HYSTERESIS_UNLOADING (07Ch)	. 152
9.26.64	RESIDUAL_AMPL_LEVEL_V100_53			DPC_TXLDOVDDPALow (007Dh)	
	(004Eh)			DPC_TXGSN (007Eh)	
9.26.65	EDGE_TYPE_V100_53 (004Fh)			DPC_RDON_Control (007Fh)	
9.26.66	EDGE_STYLE_V100_53 (0050h)			DPC_InitialRDOn_RFOn (0080h)	
9.26.67	EDGE_LENGTH_V100_53 (0051h)	. 136		DPC_GUARD_TIME (087h)	
9.26.68	RESIDUAL_AMPL_LEVEL_V100_106			DPC_ENABLE_DURING_FDT (088h)	
	(0052h)	136		DPC_GUARD_TIME_AFTER_RX (089h)	
9.26.69	EDGE_TYPE_V100_106 (0053h)			DPC_LOOKUP_TABLE (008Bh-0133h)	
9.26.70	EDGE_STYLE_V100_106 (0054h)			ARC_CONFIG (0137h)	
9.26.71	EDGE_LENGTH_V100_106 (0055h)	138		ARC_VDDPA (0139h)	
9.26.72	RESIDUAL_AMPL_LEVEL_100_212	400		ARC_RM_A106 (013Eh)	
0.00.70	(0056h)		9.26.119	ARC_RM_A212 (0148h)	158
9.26.73	EDGE_TYPE_V100_212 (0057h)			ARC_RM_A424 (0152h)	
9.26.74	EDGE_STYLE_V100_212 (0058h)			ARC_RM_A848 (015Ch) ARC_RM_B106 (0166h)	
9.26.75 9.26.76	EDGE_LENGTH_V100_212 (0059h)	139		ARC_RM_B212 (0170h)	
9.20.70	RESIDUAL_AMPL_LEVEL_V10_26 (005Ah)	140		ARC_RM_B424 (0174h)	
9.26.77	EDGE TYPE V10 26 (005Bh)	. 140 140	0.26.124	ARC_RM_B848 (0184h)	. 100 167
9.26.78	EDGE STYLE V10 26 (005Ch)			ARC_RM_F212 (018Eh)	
9.26.79	EDGE_LENGTH_V10_26 (005Dh)		0 26 127	ARC_RM_F424 (0198h)	100 170
9.26.80	RESIDUAL_AMPL_LEVEL_V10_53	. 171		ARC_RM_V_6p6 (01A2h)	
3.20.00	(005Eh)	141		ARC_RM_V_26 (01ACh)	
9.26.81	EDGE_TYPE_V10_53 (005Fh)	142	9 26 130	ARC_RM_V53 (01B6h)	174
9.26.82	EDGE STYLE V10 53 (0060h)			ARC_RM_V106 (01C0h)	
9.26.83	EDGE_LENGTH_V10_53 (0061h)			ARC_RM_V212 (01CAh)	
9.26.84	RESIDUAL_AMPL_LEVEL_V10_106			ARC_RM_180003m3_SC424_4Man	
0.20.0	(0062h)	143	0.2000	(01D4h)	. 179
9.26.85	EDGE TYPE V10 106 (0063h)	.143	9.26.134	ARC_RM_180003m3_SC424_2Man	0
9.26.86	EDGE STYLE V10 106 (0064h)			(01DEh)	180
9.26.87	EDGE_LENGTH_V10_106 (0065h)		9.26.135	ARC_RM_180003m3_SC848_4Man	
9.26.88	RESIDUAL_AMPL_LEVEL_V10_212			(01E8h)	. 182
	(0066h)	145	9.26.136	ÀRC_RM_180003m3_SC848_2Man	
9.26.89	EDGE TYPE V10 212 (0067h)	145		(01F2h)	. 183
9.26.90	EDGE_STYLE_V10_212 (0068h)	145	9.26.137	ÀRC_RM_AI106 (01FCh)	. 185
9.26.91	EDGE_LENGTH_V10_212 (0069h)	. 146	9.26.138	ARC_RM_AI212 (0206h)	186
9.26.92	RESIDUAL_AMPL_LEVEL_180003m3_		9.26.139	ARC_RM_AI424 (0210h)	188
	tari18p88 (006Ah)	. 146	9.26.140	RF_DEBOUNCE_TIMEOUT (02B2h)	189
9.26.93	EDGE_TYPE_180003m3_tari18p88		9.26.141	SENSE_RES (02B3h)	. 190
	(006Bh)	. 147		NFC_ID1 (02B5h)	
9.26.94	EDGE_STYLE_180003m3_tari18p88			SEL_RES (02B8h)	
	(006Ch)	. 147		FELICA_POLL_RES (02B9h)	
9.26.95	EDGE_LENGTH_180003m3_tari18p88		9.26.145	RANDOM_UID_ENABLE (02CBh)	. 191
	(006Dh)	. 148	9.26.146	MFC_AUTH_TIMEOUT (02CCh)	191
9.26.96	RESIDUAL_AMPL_LEVEL_180003m3_		9.26.147	RSSI_TIMER (02DAh)	191
	tari9p44 (006Eh)		9.26.148	RSSI_TIMER_FIRST_PERIOD (02DCh)	191
9.26.97	EDGE_TYPE_180003m3_tari9p44 (006Fh).	. 148		RSSI_CTRL_00_AB (02DEh)	
9.26.98	EDGE_STYLE_180003m3_tari9p44	4.40		RSSI_NB_ENTRIES_AB (02DFh)	. 192
0 00 00	(0070h)	149	9.26.151	RSSI_THRESHOLD_PHASE_TABLE	400
9.26.99	EDGE_LENGTH_180003m3_tari9p44	440	0.00.450	(02E0h)	. 192
0.00.400	(0071h)	149		TX_PARAM_ENTRY_TABLE (03A2h)	
9.26.100	RESIDUAL_AMPL_LEVEL_B_PRIME_106	450		LPCD_AVG_SAMPLES (0492h)	
0.26.404	(0072h) EDGE_TYPE_B_PRIME_106 (0073h)	150		LPCD_RSSI_TARGET (0494h)	
			9.20.100	LPCD_RSSI_HYST (0496h)	. 197 207
	EDGE_STYLE_B_PRIME_106 (0074h)		9.20.100 0.26.457	LPCD_CONFIG (0497h) LPCD_THRESHOLD_COARSE (049Ah)	19/ 100
a.20.103	EDGE_LENGTH_B_PRIME_106 (0075h) DPC_CONFIG (0076h)	. 101 151			
	DPC_CONFIG (0076h) DPC TARGET CURRENT (077h)			WAIT_RX_SETTLE (04ABh) LPCD_VDDPA (04AFh)	
	DPC_HYSTERESIS_LOADING (079h)			ULPCD VDDPA CTRL (04BFh)	
უ.∠∪. 100	DEO_ILLO LEKEOIO_FOADING (01.8U)	. 102	9.20.100	OLFOD_VDDFA_CTKL (U4DFII)	. ∠00

NFC frontend

9.26.161	ULPCD_TIMING_CTRL (04C2h)	.201
9.26.162	ULPCD_VOLTAGE_CTRL (04C6h)	. 201
9.26.163	ULPCD_RSSI_GUARD_TIME (04C9h)	
9.26.164	ULPCD_RSSI_SAMPLE_CFG (04CAh)	
9.26.165	ULPCD_THRESH_LVL(04CBh)	
9.26.166	ULPCD_GPIO3 (04CCh)	202
9.26.167	TXIRQ_GuardTime (0559h)	202
9.26.168	FDT_default_val (055Dh)	
9.26.169	RXIRQ_GuardTime (0561h)	
9.26.170	NFCLD_RFLD_Valid (006D3h)	203
9.26.171	CurrentSensorTrimConfig (0ABCh)	
9.26.172	CORRECTION_ENTRY_TABLE (0BDAh)	203
9.26.173	RTRANS_FTRANS_TABLE (0C03h)	205
9.26.174	CFG_NOV_CAL (0C83h)	206
9.26.175	NOV_CAL_VAL1 (0C84h)	206
9.26.176	NOV_CAL_VAL2 (0C85h)	206
9.26.177	NOV_CAL_VAL2 (0C85h) NOV_CAL_THRESHOLD (0C86h)	207
9.26.178	NOV_CAL_OFFSET1 (0C87h)	207
9.26.179	NOV_CAL_OFFSET2 (0C8Bh)	
9.26.180	VDDPA_DISCHARGE (0C8Fh)	
9.26.181	ARC_RM_A106_FDT (0C9Dh)	
9.26.182	Tx_Symbol23_Mod_Reg_BR_53 (0CC5h)	
9.26.183	Tx_Data_Mod_Reg_BR_53 (0CC9h)	
9.26.184	Tx_Symbol23_Mod_Reg_BR_106 (0CCDh)	
9.26.185	Tx_Data_Mod_Reg_BR_106 (0CD1h)	
9.26.186	Tx_Symbol23_Mod_Reg_BR_212 (0CD5h).	200
9.26.187	Tx_Data_Mod_Reg_BR_212 (0CD9h)	
9.26.188	CardModeUltraLowPowerEnabled (0CDFh) .	
9.26.189	LPCD_EXT_DCDC_ENABLE (0CE0h)	
9.26.199	LPCD_EXT_DCDC_DELAY_TO_ON	210
3.20.130	(0CE1h)	210
9.26.191	LPCD_EXT_DCDC_DELAY_TO_ON	210
9.20.191	(0CE2h)	210
0.26.102	RxGuardTO_Multiple (0CE8h)	211
9.26.192 10 L i	imiting values	
	haracteristics	
11.1	Thermal characteristics	
11.2	Static characteristics	
11.2	Timing characteristics	
11.3	Clock input	
11. 4 11.5	EEPROM characteristics	
12 F 12.1	•	
	VFBGA64 package	
12.2 13 P	HVQFN40 package	
13 P	ackage marking Package marking drawing VFBGA64	221
13.2	Package marking drawing HVQFN40	
	eflow soldering footprint VFBGA64	
	eflow soldering footprint HVQFN40	
	urface mount reflow soldering	
	andling information	. 231
	ppendix: EEPROM LOAD_RF_	220
	ONFIGURATION FW2.00ppendix: EEPROM LOAD_RF_	∠3ŏ
	PRINTED TO SERVICE OF THE PROPERTY OF THE PROP	256
G	UNFIGURATION FVVZ.UT	

20	Appendix: EEPROM LOAD_RF_	
	CONFIGURATION FW2.03	274
21	Abbreviations	292
22	References	293
23	Revision history	294
24	Legal information	295

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.