Рубежный контроль №1

Студент: Кривцов Н.А. **Группа:** ИУ5-22М **Вариант:** 7 **Задачи:** 7, 27

Доп. требование: гистограмма

Импорт библиотек

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Загрузка и просмотр датасета

Датасет содержит данные о качестве питьевой воды в 3276 водоемах мира. Для анализа качества используются 9 числовых показателей, таких как pH, жесткость и концентрация различных вредных веществ.

```
In [2]:
```

```
data = pd.read_csv('/content/drive/MyDrive/MMO/water_potability.csv')
```

In [3]:

```
data.shape
```

Out[3]:

(3276, 10)

In [4]:

```
data.head()
```

Out[4]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013	56.329076	4.500656	0
2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637	66.420093	3.055934	0
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0
4										

1. Задача 7

Для набора данных провести устранение пропусков для одного (произвольного) числового признака с использованием метода заполнения медианой.

```
In [5]:
```

```
[(i, data[i].isnull().sum()) for i in data.columns]

Out[5]:
[('ph', 491),
    ('Hardness', 0),
    ('Solids', 0),
    ('Chloramines', 0),
    ('Sulfate', 781),
    ('Conductivity', 0),
    ('Organic_carbon', 0),
    ('Trihalomethanes', 162),
    ('Turbidity', 0),
    ('Potability', 0)]
```

Признак Trihalomethanes содержит наименьшее количество пропусков, именно их и следует устранить.

In [6]:

```
col = data['Trihalomethanes']
print("Пропусков: {}".format(col.isnull().sum()))
```

Пропусков: 162

In [7]:

```
sns.histplot(x=col)
```

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f797b5a80d0>

In [8]:

```
new_col = col.fillna(col.median())
```

In [9]:

```
print("Пропусков: {}".format(new_col.isnull().sum()))
```

Пропусков: 0

In [10]:

```
sns.histplot(x=new_col)
```

Out[10]:

2. Задача 27

Для набора данных для одного (произвольного) числового признака провести обнаружение и замену (найденными верхними и нижними границами) выбросов на основе 5% и 95% квантилей.

Т.к. метод замены выбросов на основе 5% и 95% квантилей применим только для признаков с распределением, подобным нормальному, построим distplot для всех признаков датасета и выберем признак с подходящим распределением.

In [18]:

```
new data = data.dropna(axis=1)
n_{cols} = 3
fig, axes = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(12, 9))
for i, column in enumerate(new data.iloc[:,:-1]):
  sns.histplot(new data[column], ax=axes[i//n cols, i%n cols])
  250
                                 250
                                                                200
  200
                                 200
```


Все признаки соответствуют распределениям, подобным нормальному (возможное исключение - Solids с вытянутым правым хвостом). Замена выбросов будет проведена для признака Turbidity.

In [32]:

```
col = data['Turbidity']

# верхняя и нижняя границы
lower_bound = col.quantile(0.05)
upper_bound = col.quantile(0.95)

print(lower_bound, upper_bound)
```

2.6842792341297113 5.2209245250355805

In [33]:

```
new_col = np.where(col > upper_bound, upper_bound, np.where(col < lower_bound, lower_bound, col))</pre>
```

In [34]:

```
sns.histplot(new_col, bins=40)
```

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f795fd65bd0>

