WEEK 9 Amirmohammad Adami

10683910

Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

$$A=10*25*5 \quad T=10 \quad P=100 \text{kpa} \quad \phi = 65\%$$

$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g} \longrightarrow P_g = P_{sat} 10 \, ^{\circ}C = 1.2276 \, kPa$$

$$\phi = \frac{P_v}{P_g} \longrightarrow P_v = \phi \times P_g = 0.65 * 1.2276 = 0.7979 \, kPa$$

$$P_a = P - P_v = 100 \, kPa - 0.80 \, kPa = 99.20 \, kPa$$

$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{0.80}{99.20} = 0.005 \, \frac{Kg_{vapour}}{kg_{dryAir}}$$

$$R_a = 0.287, R_v = 0.4615$$

$$m_a = \frac{99.20 * (10 * 25 * 5)}{0.287 * (273 + 10)} = 1526.70 \, kgof \, dry \, air$$

$$m_v = \frac{0.80 * (10 * 25 * 5)}{0.4615 * (273 + 10)} = 7.66 \, kg$$

$$h_a = 1.005 * T = 1.005 * 10 = 10.05 \, \frac{kJ}{kg_{dryAir}}$$

$$h_v = 2501.3 + 1.82 * 10 = 2519.5 \, \frac{kJ}{kg_{water}}$$

$$h = h_a + \omega h_v = 10.05 + 0.005 * 2519.5 = 22.65 \, \frac{kJ}{kg_{dryAir}}$$

Task 2

A building with a height of 2.5 m and a good construction quality, is located in Piacenza, considering two occupants and one bed room calculate, and a conditioned floor area of 200 m2 wall area is 144 m2, calculate the internal gains, infiltration, and ventilation loads.

Internal gains

$$Q_{ig_{sensible}} = 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$

$$Q_{ig_{latent}} = 20 + 0.22 * A_{cf} + 12 N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²	
Tight	Construction supervised by air-sealing specialist	0.7	
Good	Carefully sealed construction by knowledgeable builder	1.4	
Average	Typical current production housing	2.8	
Leaky	Typical pre-1970 houses	5.6	
Very leaky	Old houses in original condition	10.4	

Good quality ->
$$A_{ul} = 1.4 \frac{cm^2}{m^2}$$

Exposed surface = Wall area +roof area

$$A_{es} = 200 + 144 = 344 m^2$$

 $A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 cm^2$

Table 5 Typical IDF Values, L/(s·cm²)

Н,	Heating Design Temperature, °C				Cooling Design Temperature, °C				
m	-40	-30	-20	-10	0	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074

$$IDF_{heating} = 0.073 \frac{L}{s. cm^2} \qquad IDF_{cooling} = 0.033 \frac{L}{s. cm^2}$$

$$V_{infiltration_{heating}} = A_L \times IDF = 481.6 * 0.073 = 35.16 \frac{L}{S}$$

$$V_{infiltration_{cooling}} = A_L \times IDF = 481.6 * 0.033 = 15.89 \frac{L}{s}$$

$$V_{ventilation}$$

= 0.05 A_{cf} + 3.5 (N_{br} + 1) = .05*200+3.5* 2 = 17 L/S

$$V_{inf-ventilation_{heating}} = 35.16 + 17$$

= $52.16 L/s$

$$V_{inf-ventilation_{cooling}}$$

= 15.89 + 17 = 32.89 L/s
 $C_{sensible}$ = 1.23 , C_{latent} = 3010

$$Q_{inf-ventilation_{cooling_{sensible}}} = C_{sensible} V \Delta T_{Cooling}$$

= 1.23 * 32.89 * (31.1 - 24.3) = 275.09 W

$$\begin{aligned} Q_{inf-ventilation_{cooling}_{latent}} &= C_{latent} V \Delta \omega_{Cooling} \\ &= 3010 * 32.89 * 0.0039 = 386.09W \end{aligned}$$

$$\begin{aligned} Q_{inf-ventilation_{heatingg_{sensible}}} &= C_{sensible} V \Delta T_{heating} \\ &= 1.23 * 52.16 * (20 - 4.1) = 1020.09 \ W \end{aligned}$$