Übungsblatt LA 6

Computational and Data Science FS2025

Lösungen

Mathematik 2

Lernziele:

- Sie kennen die Begriffe orthogonale Matrix, Drehmatrix, Spiegelmatrix und deren wichtigste Eigenschaften.
- > Sie kennen diejenigen der 2x2 Standardmatrizen, die orthogonal sind.
- Sie kennen das Spaltenvektor Konstruktionsverfahren zur Bestimmung von Matrizen und können dieses anwenden.
- Sie können Dreh- und Spiegelmatrizen zur Lösung konkreter Fragestellungen anwenden.

1. Spaltenvektor Konstruktionsverfahren für Matrizen in 2D

Benutzen Sie das Spaltenvektor Konstruktionsverfahren, um die jeweilige Matrix zu bestimmen.

- a) Bestimmen Sie die Matrix S_{xy} , die die Spiegelung an der Geraden $\{(x,y)\in\mathbb{R}^2|x=y\}$ beschreibt. Testen Sie die Wirkung der Matrix an 2 selbst gewählten Vektoren.
- b) Bestimmen Sie die Matrix $R_{\pi/4}$, die die Drehung um den Ursprung um den Winkel $\pi/4$ beschreibt.

a)

Wir wählen als Testvektoren $\vec{v} = \binom{2}{3}$, $\vec{w} = \binom{-1}{2}$. Nun führen wir die Matrixoperationen im xy-Koordinatensystem durch.

Mittels des Spaltenvektor Konstruktionsverfahrens (hierfür nutzen wir die Bilder von \hat{e}_x und \hat{e}_y , die wir aus der Zeichnung ablesen) erhalten wir die Matrix

1

$$\underline{\underline{S_{xy}}} = \begin{bmatrix} S_{xy} \cdot \hat{\mathbf{e}}_x & S_{xy} \cdot \hat{\mathbf{e}}_y \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{e}}_y & \hat{\mathbf{e}}_x \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

$$\underline{\underline{S_{xy} \cdot \mathbf{v}}} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \cdot 2 + 1 \cdot 3 \\ 1 \cdot 2 + 0 \cdot 3 \end{bmatrix} = \underline{\begin{bmatrix} 3 \\ 2 \end{bmatrix}}$$

$$\underline{\underline{S_{xy} \cdot \mathbf{w}}} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \left[\begin{array}{c} -1 \\ 2 \end{array} \right] = \left[\begin{array}{c} 0 \cdot (-1) + 1 \cdot 2 \\ 1 \cdot (-1) + 0 \cdot 2 \end{array} \right] = \left[\begin{array}{c} 2 \\ -1 \end{array} \right]$$

b)

Wir gehen gleich wie in a) vor und benutzen $\sin(\frac{\pi}{4}) = \cos(\frac{\mu}{4}) = \frac{1}{\sqrt{2}}$.

$$\underline{\underline{R_{\pi/4}}} = \begin{bmatrix} R_{\pi/4} \cdot \hat{\mathbf{e}}_x & R_{\pi/4} \cdot \hat{\mathbf{e}}_y \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \\
= \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

2. Drehmatrizen in 2D

Im Folgenden lernen Sie Form und Eigenschaften von Drehmatrizen in 2D kennen.

- a) Bestimmen Sie die Matrix R_{α} mit Hilfe des Spaltenvektor Konstruktionsverfahrens, die die Drehung um den Ursprung um den Winkel $\alpha \in \mathbb{R}$ beschreibt.
- b) Bestimmen Sie die Matrix $R_{-\alpha}$ mit Hilfe des Spaltenvektor Konstruktionsverfahrens, die die Drehung um den Ursprung um den Winkel $-\alpha \in \mathbb{R}$ (also Drehung im Uhrzeigersinn) beschreibt. Hinweis: Verwenden Sie die Paritätseigenschaften, dass gilt: $\sin(-\alpha) = -\sin \alpha$ und $\cos(-\alpha) = \cos \alpha$.
- c) Welcher Zusammenhang besteht zwischen den Drehmatrizen aus Aufgabe a) und b)? Berechnen Sie die Matrixprodukte $R_{\alpha} \cdot R_{-\alpha}$ und $R_{-\alpha} \cdot R_{\alpha}$.
- d) Berechnen Sie die Matrixprodukte $R_{\alpha} \cdot R_{\beta}$ und $R_{\beta} \cdot R_{\alpha}$ mit $\alpha, \beta \in \mathbb{R}$. Hinweis: Überlegen Sie sich, was passiert, wenn man nacheinander die Drehungen auf denselben Vektor ausführt. Nutzen Sie die Additionstheoreme zur Vereinfachung der Matrizen.
- e) Geben Sie die Drehmatrizen für $\alpha \in \left\{0, \pm \frac{\pi}{6}, \pm \frac{\pi}{4}, \pm \frac{\pi}{3}, \pm \frac{\pi}{2}, \pm \pi\right\}$ explizit an.

In der Zeichnung haben wir die Bilder der Vektoren \hat{e}_x und \hat{e}_y eingezeichnet, die wir durch Anwenden der Matrix R_α erhalten. Somit können wir aus der Zeichnung nun die Vektorkomponenten ablesen und das Spaltenvektor Konstruktionsverfahren zur Bestimmung der Matrix R_α anwenden.

$$\underline{\underline{R_{\alpha}}} = \left[\begin{array}{cc} R_{\alpha} \cdot \hat{\mathbf{e}}_{x} & R_{\alpha} \cdot \hat{\mathbf{e}}_{y} \end{array} \right] = \left[\begin{array}{cc} \cos(\alpha) \\ \sin(\alpha) \end{array} \right] \left[\begin{array}{cc} -\sin(\alpha) \\ \cos(\alpha) \end{array} \right] = \left[\begin{array}{cc} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{array} \right].$$

b'

Wir ersetzen in der Matrix R_{α} den Winkel α durch $-\alpha$ und erhalten

$$\underline{R_{-\alpha}} = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix}.$$

c)

Hintereinanderausführung von Drehung um denselben Winkel α , jedoch in entgegengesetzte Richtung, sollte zur Ausgangssituation führen. D. h., dass R_{α} und R_{α} zueinander inverse Matrizen sein sollten. Dies können wir mittels Matrixmultiplikation nachrechnen:

$$\underline{R_{\alpha} \cdot R_{-\alpha}} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \cdot \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix} \\
= \begin{bmatrix} \cos(\alpha)\cos(\alpha) + (-\sin(\alpha))(-\sin(\alpha)) & \cos(\alpha)\sin(\alpha) - \sin(\alpha)\cos(\alpha) \\ \sin(\alpha)\cos(\alpha) + \cos(\alpha)(-\sin(\alpha)) & \sin(\alpha)\sin(\alpha) + \cos(\alpha)\cos(\alpha) \end{bmatrix} \\
= \begin{bmatrix} \cos^{2}(\alpha) + \sin^{2}(\alpha) & \cos(\alpha)\sin(\alpha) - \sin(\alpha)\cos(\alpha) \\ \sin(\alpha)\cos(\alpha) - \cos(\alpha)\sin(\alpha) & \sin^{2}(\alpha) + \cos^{2}(\alpha) \end{bmatrix} \\
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \underline{1}$$

$$\underline{R_{-\alpha} \cdot R_{\alpha}} = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix} \cdot \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \\
= \begin{bmatrix} \cos(\alpha)\cos(\alpha) + \sin(\alpha)\sin(\alpha) & \cos(\alpha)(-\sin(\alpha)) + \sin(\alpha)\cos(\alpha) \\ (-\sin(\alpha))\cos(\alpha) + \cos(\alpha)\sin(\alpha) & (-\sin(\alpha))(-\sin(\alpha)) + \cos(\alpha)\cos(\alpha) \end{bmatrix} \\
= \begin{bmatrix} \cos^{2}(\alpha) + \sin^{2}(\alpha) & -\cos(\alpha)\sin(\alpha) + \sin(\alpha)\cos(\alpha) \\ -\sin(\alpha)\cos(\alpha) + \cos(\alpha)\sin(\alpha) & \sin^{2}(\alpha) + \cos^{2}(\alpha) \end{bmatrix} \\
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \underline{\mathbb{1}}.$$

d) Die Hintereinanderausführung der Matrizen R_{α} und R_{β} sollte aus geometrischer Sicht bedeuten, dass zuerst eine Drehung um α und anschliessend eine Drehung um β (bzw. umgekehrt) ausgeführt wird \rightarrow insgesamt also um den Winkel $\alpha+\beta$. Dies bedeutet, dass gelten sollte: $R_{\alpha} \cdot R_{\beta} = R_{\beta} \cdot R_{\alpha} = R_{\alpha+\beta}$.

$$\begin{split} &\frac{R_{\alpha}\cdot R_{\beta}}{\sin(\alpha)} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \cdot \begin{bmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\alpha)\cos(\beta) + (-\sin(\alpha))\sin(\beta) & \cos(\alpha)(-\sin(\beta)) + (-\sin(\alpha))\cos(\beta) \\ \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) & \sin(\alpha)(-\sin(\beta)) + \cos(\alpha)\cos(\beta) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) & -\cos(\alpha)\sin(\beta) - \sin(\alpha)\cos(\beta) \\ \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) & \cos(\alpha)\cos(\beta) - \sin(\alpha)\cos(\beta) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} = \frac{R_{\alpha + \beta}}{8} \\ \frac{R_{\beta}\cdot R_{\alpha}}{\sin(\beta)\cos(\beta)} &= \begin{bmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta)\cos(\beta) \end{bmatrix} \cdot \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha)\cos(\beta) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\beta)\cos(\alpha) + (-\sin(\beta))\sin(\alpha) & \cos(\beta)(-\sin(\alpha)) + (-\sin(\beta))\cos(\alpha) \\ \sin(\beta)\cos(\alpha) + \cos(\beta)\sin(\alpha) & \sin(\beta)(-\sin(\alpha)) + \cos(\beta)\cos(\alpha) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\beta)\cos(\alpha) - \sin(\beta)\sin(\alpha) & \cos(\beta)(-\sin(\alpha)) + (\cos(\beta)\cos(\alpha) \\ \sin(\beta)\cos(\alpha) + \cos(\beta)\sin(\alpha) & \cos(\beta)\cos(\alpha) - \sin(\beta)\cos(\alpha) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\beta)\cos(\alpha) - \sin(\beta)\sin(\alpha) & -\cos(\beta)\sin(\alpha) - \sin(\beta)\cos(\alpha) \\ \sin(\beta)\cos(\alpha) + \cos(\beta)\sin(\alpha) & \cos(\beta)\cos(\alpha) - \sin(\beta)\sin(\alpha) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\beta + \alpha) & -\sin(\beta + \alpha) \\ \sin(\beta + \alpha) & \cos(\beta + \alpha) \end{bmatrix} = R_{\beta + \alpha} = R_{\alpha + \beta} = \underline{R_{\alpha} \cdot R_{\beta}}. \end{split}$$

$$\mathbf{e}$$

$$\underline{R_{\pm\pi/4}} = \begin{bmatrix} \cos(\pm\pi/4) & -\sin(\pm\pi/4) \\ \sin(\pm\pi/4) & \cos(\pm\pi/4) \end{bmatrix} = \begin{bmatrix} \cos(\pi/4) & \mp\sin(\pi/4) \\ \pm\sin(\pi/4) & \cos(\pi/4) \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \mp\frac{1}{\sqrt{2}} \\ \pm\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \\
= \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & \mp1 \\ \pm1 & 1 \end{bmatrix}.$$

$$\underline{R_{\pm\pi/3}} = \begin{bmatrix} \cos(\pm\pi/3) & -\sin(\pm\pi/3) \\ \sin(\pm\pi/3) & \cos(\pm\pi/3) \end{bmatrix} = \begin{bmatrix} \cos(\pi/3) & \mp\sin(\pi/3) \\ \pm\sin(\pi/3) & \cos(\pi/3) \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \mp\frac{\sqrt{3}}{2} \\ \pm\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \\
= \frac{1}{2} \cdot \begin{bmatrix} 1 & \mp\sqrt{3} \\ \pm\sqrt{3} & 1 \end{bmatrix}.$$

$$\underline{R_{\pm\pi/2}} = \begin{bmatrix} \cos(\pm\pi/2) & -\sin(\pm\pi/2) \\ \sin(\pm\pi/2) & \cos(\pm\pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\pi/2) & \mp\sin(\pi/2) \\ \pm\sin(\pi/2) & \cos(\pi/2) \end{bmatrix} = \begin{bmatrix} 0 & \mp1 \\ \pm1 & 0 \end{bmatrix} \\
= \pm \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \pm \$.$$

$$\underline{R_{\pm\pi}} = \begin{bmatrix} \cos(\pm\pi) & -\sin(\pm\pi) \\ \sin(\pm\pi) & \cos(\pm\pi) \end{bmatrix} = \begin{bmatrix} \cos(\pi) & \mp\sin(\pi) \\ \pm\sin(\pi) & \cos(\pi) \end{bmatrix} = \begin{bmatrix} -1 & \mp0 \\ \pm0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \\
= -1 = P.$$

3. Aussagen über Drehmatrizen in 2D

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Jede Drehmatrix in 2D hat eine Inverse.	X	
b) Jede Drehmatrix in 2D ist schiefsymmetrisch.		Х
c) Jede Drehmatrix in 2D ist orthogonal.	Х	
d) Für $n \in \mathbb{N}$, $\alpha \in \mathbb{R}$ gilt: $R^n(\alpha) = R(n \cdot \alpha)$.	Х	
e) Für alle $\alpha, \beta \in \mathbb{R}$ gilt: $R(\beta) \cdot R(\alpha) = R(\alpha) \cdot R(\beta)$, d. h. die	Х	
Drehmatrizen kommutieren.		
f) Die Matrix P (der Punktspiegelung) ist eine Drehmatrix.	X	

4. Polygone in 2D

Berechnen Sie die Eckpunkte des jeweiligen Polygons.

- a) Ein Quadrat, dessen Diagonale die Verbindungsstrecke zwischen den Punkten A = (-1;3) und C = (1;-1) ist.
- b) Ein gleichseitiges Dreieck mit Mittelpunkt M am Ursprung und einer Ecke bei A = (0;3).

Der Diagonalen-Vektor ist

$$\mathbf{u} := \mathbf{C} - \mathbf{A} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}.$$

1. Möglichkeit:

Wir berechnen die Vektoren \vec{a} (Verbindung von Punkt A und B) und \vec{d} (Verbindung von Punkt A und D). Hierfür verkürzen wir den Vektor \vec{u} um $\sqrt{2}$ und drehen anschliessend um $\pi/4$ bzw. $-\pi/4$. Hierfür nutzen wir die folgenden beiden Matrizen

$$Z\left(1/\sqrt{2}\right) = \frac{1}{\sqrt{2}} \cdot \mathbb{1}$$

$$R(+\pi/4) = \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$R(-\pi/4) = R^{T}(+\pi/4) = \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Es ergibt sich

$$\mathbf{d} = Z\left(1/\sqrt{2}\right) \cdot R(+\pi/4) \cdot \mathbf{u} = \frac{1}{\sqrt{2}} \cdot \mathbb{1} \cdot \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

$$= \frac{1}{2} \cdot \begin{bmatrix} 1 \cdot 2 + (-1) \cdot (-4) \\ 1 \cdot 2 + 1 \cdot (-4) \end{bmatrix} = \frac{1}{2} \cdot \begin{bmatrix} 6 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

$$\mathbf{a} = Z\left(1/\sqrt{2}\right) \cdot R(-\pi/4) \cdot \mathbf{u} = \frac{1}{\sqrt{2}} \cdot \mathbb{1} \cdot \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

$$= \frac{1}{2} \cdot \begin{bmatrix} 1 \cdot 2 + 1 \cdot (-4) \\ (-1) \cdot 2 + 1 \cdot (-4) \end{bmatrix} = \frac{1}{2} \cdot \begin{bmatrix} -2 \\ -6 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}.$$

Für die Ortsvektoren der beiden Eckpunkte erhalten wir

$$\mathbf{B} = \mathbf{A} + \mathbf{a} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

$$\mathbf{D} = \mathbf{A} + \mathbf{d} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

2. Möglichkeit:

Wir berechnen die Hälfte der zweiten Diagonale. Hierfür verkürzen wir den Vektor \vec{u} um den Faktor 2 und drehen um $\pi/2$. Wir verwenden die folgenden beiden Matrizen

$$Z(1/2) = \frac{1}{2} \cdot \mathbb{1}$$
 bzw. $R(+\pi/2) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

Anwenden auf \vec{u} ergibt die Hälfte der anderen Diagonale

$$\mathbf{v} = Z(1/2) \cdot R(+\pi/2) \cdot \mathbf{u} = \frac{1}{2} \cdot \mathbb{1} \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -4 \end{bmatrix} = \frac{1}{2} \cdot \begin{bmatrix} 0 \cdot 2 + (-1) \cdot (-4) \\ 1 \cdot 2 + 0 \cdot (-4) \end{bmatrix}$$

$$=\frac{1}{2}\cdot\left[\begin{array}{c}4\\2\end{array}\right]=\left[\begin{array}{c}2\\1\end{array}\right].$$

Nun können wir den Mittelpunkt des Quadrats bestimmen:

$$\mathbf{M} = \mathbf{A} + \frac{1}{2} \cdot \mathbf{u} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \frac{1}{2} \cdot \begin{bmatrix} 2 \\ -4 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Für die Ortsvektoren der beiden Punkte erhalten wir

$$\mathbf{B} = \mathbf{M} - \mathbf{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

$$\mathbf{D} = \mathbf{M} + \mathbf{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

b)

Der Vektor vom Mittelpunkt zu Punkt A ergibt sich zu

$$\mathbf{u} := \mathbf{A} - \mathbf{M} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

Um die Punkte B und C zu bestimmen, drehen wir \vec{u} um $2\pi/3$ und spiegeln anschliessend an der y-Achse. Die Drehmatrix ergibt sich zu

$$R(2\pi/3) = \begin{bmatrix} \cos(2\pi/3) & -\sin(2\pi/3) \\ \sin(2\pi/3) & \cos(2\pi/3) \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} = \frac{1}{2} \cdot \begin{bmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$$

$$\mathbf{v} = R(2\pi/3) \cdot \mathbf{u} = \frac{1}{2} \cdot \begin{bmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \frac{1}{2} \cdot \begin{bmatrix} (-1) \cdot 0 + (-\sqrt{3}) \cdot 3 \\ \sqrt{3} \cdot 0 + (-1) \cdot 3 \end{bmatrix}$$

$$= \frac{3}{2} \cdot \begin{bmatrix} -\sqrt{3} \\ -1 \end{bmatrix}$$

$$\mathbf{w} = S_y \cdot \mathbf{v} = \frac{3}{2} \cdot \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -\sqrt{3} \\ -1 \end{bmatrix} = \frac{3}{2} \cdot \begin{bmatrix} (-1) \cdot (-\sqrt{3}) + 0 \cdot (-1) \\ 0 \cdot (-\sqrt{3}) + 1 \cdot (-1) \end{bmatrix}$$

$$= \frac{3}{2} \cdot \begin{bmatrix} \sqrt{3} \\ -1 \end{bmatrix}$$

Für die beiden anderen Eckpunkte ergibt sich somit

$$\mathbf{B} = \mathbf{M} + \mathbf{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \frac{3}{2} \cdot \begin{bmatrix} -\sqrt{3} \\ -1 \end{bmatrix} = \frac{3}{2} \cdot \begin{bmatrix} -\sqrt{3} \\ -1 \end{bmatrix}$$
$$\mathbf{C} = \mathbf{M} + \mathbf{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \frac{3}{2} \cdot \begin{bmatrix} \sqrt{3} \\ -1 \end{bmatrix} = \frac{3}{2} \cdot \begin{bmatrix} \sqrt{3} \\ -1 \end{bmatrix}.$$

5. Aussagen über eine Drehmatrix in 2D

Gegeben sei die Drehmatrix

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) A ist schiefsymmetrisch.		Χ
b) Es gilt: $A^{100} = \mathbb{E}$.		Χ
c) Es gilt: $A^6 = R(-\frac{\pi}{2})$.	Χ	
d) Es gibt ein $n \in \mathbb{N}$ so dass gilt: $A^n = P$.	Х	
e) Die inverse Matrix A^{-1} von A ist A^{T} .	Χ	
f) Es gilt: $A = \frac{1}{\sqrt{2}} \cdot \mathbb{E} + \frac{1}{\sqrt{2}} \cdot R(\frac{\pi}{2})$.	Х	

6. Gleichschenkliges Dreieck in 2D

Gegeben sei ein gleichschenkliges Dreieck mit den Eckpunkten B = (2;1/4) und C = (2;4), das die Gerade G, die durch den Ursprung und den Punkt C verläuft, als Symmetrieachse hat.

- a) Bestimmen Sie die Ecke A des Dreiecks durch Drehung der Seite a.
- b) Bestimmen Sie die Ecke A durch Spiegelung an der Symmetrieachse, also der Geraden G.

Gemäss Skizze gilt

$$\tan(\eta) = \frac{2}{4} = \frac{1}{2} \,.$$

Daraus folgt

$$\cos(\eta) = \frac{1}{\sqrt{1 + \tan^2(\eta)}} = \frac{1}{\sqrt{1 + \left(\frac{1}{2}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{4}}} = \frac{1}{\sqrt{\frac{5}{4}}} = \frac{1}{\frac{\sqrt{5}}{\sqrt{4}}} = \frac{\sqrt{4}}{\sqrt{5}} = \frac{2}{\sqrt{5}}$$

$$\sin(\eta) = \tan(\eta) \cdot \cos(\eta) = \frac{1}{2} \cdot \frac{2}{\sqrt{5}} = \frac{1}{\sqrt{5}}.$$

a)

Wir bestimmen die Ecke A durch Drehung des Seitenvektors

$$\mathbf{a} = \mathbf{B} - \mathbf{C} = \begin{bmatrix} 2 \\ 1/4 \end{bmatrix} - \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 2-2 \\ 0.25-4 \end{bmatrix} = \begin{bmatrix} 0 \\ -3.75 \end{bmatrix}$$

Die hierfür benötigte Drehmatrix $R(-2\eta)$ ist

$$R(-\eta) = R^{T}(\eta) = \begin{bmatrix} \cos(\eta) & \sin(\eta) \\ -\sin(\eta) & \cos(\eta) \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

$$R(-2\eta) = R^{2}(-\eta) = \left(\frac{1}{\sqrt{5}}\right)^{2} \cdot \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}^{2} = \frac{1}{5} \cdot \begin{bmatrix} 2 \cdot 2 + 1 \cdot (-1) & 2 \cdot 1 + 1 \cdot 2 \\ (-1) \cdot 2 + 2 \cdot (-1) & (-1) \cdot 1 + 2 \cdot 2 \end{bmatrix}$$

$$= \frac{1}{5} \cdot \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix}.$$

Es ergibt sich für den Seitenvektor

$$\mathbf{b} = R(-2\eta) \cdot \mathbf{a} = \frac{1}{5} \cdot \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -3.75 \end{bmatrix} = \frac{1}{5} \cdot \begin{bmatrix} 3 \cdot 0 + 4 \cdot (-3.75) \\ (-4) \cdot 0 + 3 \cdot (-3.75) \end{bmatrix}$$
$$= \frac{1}{5} \cdot \begin{bmatrix} -15 \\ -11.25 \end{bmatrix} = \begin{bmatrix} -3 \\ -2.25 \end{bmatrix}$$

Und somit der Eckpunkt A zu

$$\mathbf{A} = \mathbf{C} + \mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} + \begin{bmatrix} -3 \\ -2.25 \end{bmatrix} = \begin{bmatrix} 2-3 \\ 4-2.25 \end{bmatrix} = \begin{bmatrix} -1 \\ 1.75 \end{bmatrix}$$

b)

Die Spiegelmatrix S erhalten wir durch die Überlegung, dass die Bilder der Einheitsvektoren auch wieder senkrecht zueinander sein müssen und wenden dann das Spaltenvektor Konstruktionsverfahren an.

$$S \cdot \hat{\mathbf{e}}_y = \begin{bmatrix} \sin(2\eta) \\ \cos(2\eta) \end{bmatrix} = \begin{bmatrix} 2\sin(\eta)\cos(\eta) \\ \cos^2(\eta) - \sin^2(\eta) \end{bmatrix} = \begin{bmatrix} 2 \cdot \frac{1}{\sqrt{5}} \cdot \frac{2}{\sqrt{5}} \\ \left(\frac{2}{\sqrt{5}}\right)^2 - \left(\frac{1}{\sqrt{5}}\right)^2 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\ \frac{4}{5} - \frac{1}{5} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{4}{5} \\ \frac{3}{5} \end{bmatrix} = \frac{1}{5} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix}.$$

$$S \cdot \hat{\mathbf{e}}_x = R(\pi/2) \cdot S \cdot \hat{\mathbf{e}}_y = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \frac{1}{5} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \frac{1}{5} \cdot \begin{bmatrix} 0 \cdot 4 + (-1) \cdot 3 \\ 1 \cdot 4 + 0 \cdot 3 \end{bmatrix}$$
$$= \frac{1}{5} \cdot \begin{bmatrix} -3 \\ 4 \end{bmatrix}.$$

$$S = \left[\begin{array}{cc} S \cdot \hat{\mathbf{e}}_x & S \cdot \hat{\mathbf{e}}_y \end{array} \right] = \left[\begin{array}{cc} \frac{1}{5} \cdot \left[\begin{array}{c} -3 \\ 4 \end{array} \right] & \frac{1}{5} \cdot \left[\begin{array}{c} 4 \\ 3 \end{array} \right] \end{array} \right] = \frac{1}{5} \cdot \left[\begin{array}{cc} -3 & 4 \\ 4 & 3 \end{array} \right]$$

Der Ortsvektor von A ergibt sich folglich zu

$$\mathbf{A} = S \cdot \mathbf{B} = \frac{1}{5} \cdot \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0.25 \end{bmatrix} = \frac{1}{5} \cdot \begin{bmatrix} (-3) \cdot 2 + 4 \cdot 0.25 \\ 4 \cdot 2 + 3 \cdot 0.25 \end{bmatrix} = \frac{1}{5} \cdot \begin{bmatrix} -5 \\ 8.75 \end{bmatrix}$$
$$= \begin{bmatrix} -1 \\ 1.75 \end{bmatrix}.$$

7. Orthogonale Standardmatrizen in 2D

Ermitteln Sie, welche der Standardmatrizen \mathbb{E} , P, Z₃, P_x, P_y, S_x, S_y, R(π /2), R($-\pi$ /2) und R(π /4) orthogonal sind.

Wir stellen fest, welche der Matrizen 1, P, Z_3 , P_x , P_y , S_x , S_y , $R(\pi/2)$, $R(-\pi/2)$ und $R(\pi/4)$ orthogonal sind. Es gilt

$$\mathbb{1}^{-1} = \mathbb{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{und} \quad \mathbb{1}^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbb{1},$$

somit folgt $\mathbb{1}^{-1} = \mathbb{1}^T$, das heisst, die *Matrix* $\mathbb{1}$ ist *orthogonal*. Es gilt

$$P^{-1} = P = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 und $P^{T} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}^{T} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = P$,

somit folgt $P^{-1} = P^T$, das heisst, die Matrix P ist orthogonal. Es gilt

$$Z_3^{-1} = Z_{1/3} = \frac{1}{3} \cdot \mathbb{1} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \quad \text{und} \quad Z_3^T = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}^T = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = 3 \cdot \mathbb{1} = Z_3,$$

somit folgt $Z_3^{-1} \neq Z_3^T$, das heisst, die $Matrix\ Z_3$ ist nicht orthogonal. Die $Matrizen\ P_x$ und P_y beschreiben die $Projektionen\ senkrecht$ auf die x-Achse bzw. auf die y-Achse und demnach $lineare\ Abbildungen$, welche weder injektiv noch surjektiv sind. Folglich existieren für P_x bzw. P_y keine $inversen\ Matrizen$, womit Orthogonalität für P_x und P_y zum Vornherein ausgeschlossen werden kann. Es gilt

$$S_x^{-1} = S_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 und $S_x^T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = S_x$,

somit folgt $S_x^{-1} = S_x^T$, das heisst, die Matrix S_x ist orthogonal. Es gilt

$$S_y^{-1} = S_y = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{und} \quad S_y^T = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^T = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = S_y,$$

somit folgt $S_y^{-1} = S_y^T$, das heisst, die Matrix S_y ist orthogonal. Es gilt

$$R^{-1}(\pi/2) = R(-\pi/2) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$R^{T}(\pi/2) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{T} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = R(-\pi/2),$$

somit folgt $R^{-1}(\pi/2) = R^T(\pi/2)$, das heisst, die Matrix $R(\pi/2)$ ist orthogonal. Es gilt

$$R^{-1}(-\pi/2) = R(\pi/2) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$R^{T}(-\pi/2) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^{T} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = R(\pi/2),$$

somit folgt $R^{-1}(-\pi/2) = R^T(-\pi/2)$, das heisst, die Matrix $R(-\pi/2)$ ist orthogonal. Es gilt

$$R^{-1}(\pi/4) = R(-\pi/4) = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$R^{T}(\pi/4) = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix},$$

somit folgt $R^{-1}(\pi/4) = R^T(\pi/4)$, das heisst, die *Matrix* $R(\pi/4)$ ist *orthogonal*. Von allen *Matrizen*, welche wir in dieser Teilaufgabe untersucht haben, sind also diejenigen in der *Menge*

$$\left\{\mathbb{1}, P, S_x, S_y, R(\pi/2), R(-\pi/2), R(\pi/4)\right\}$$

orthogonal. Bemerkenswerterweise sind das genau die Spiegelungen und Drehungen!

8. Aussagen über zwei Matrizen in 3D

Gegeben seien die Matrizen

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}.$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) B ist symmetrisch.	X	
b) A ist eine Spiegelmatrix.		Х
c) A ist singulär.		Х
d) Die Matrizen A und $C = B/3$ sind orthogonal.	Х	
e) Es gilt: $2 \cdot (A + A^T) + B = \mathbb{E}$.	Х	
f) Es gilt: $A^{30} = B \cdot B^T$.		X

9. Aussagen über eine Drehmatrix in 2D

Gegeben sei die Drehmatrix

$$A = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) A ist symmetrisch.		X
b) Es gilt: $A^{12} = A^{63}$.	X	
c) Es gilt: $A^7 = R(\frac{\pi}{3})$.		Χ
d) Es gibt ein $n \in \mathbb{N}$ so dass gilt: $A^n = \mathbb{i}$.		Х
e) Es gilt: $A^{-1} = -A$.		X
f) Es gilt: $A = -\mathbb{E} + \sqrt{3} \cdot R(\frac{\pi}{2})$.		Х