

CM2 : Biomécanique Rappels sur dérivation et intégration

Dorian Verdel

Année universitaire 2020-2021

Contact:

Université Paris-Saclay, CIAMS, 91405 Orsay, France. dorian.verdel@universite-paris-saclay.fr

Introduction

Dérivation :

- Opération mathématiques analysant le taux de variation
- Nécessaire dans absolument tous les domaines scientifiques
- Base de l'analyse du mouvement et de la cinématique

Intégration :

- Opération « inverse » de la dérivation
- Nécessaire dans absolument tous les domaines scientifiques
- Opération nécessaire pour obtenir une trajectoire depuis les équations de Newton

I. Nombre dérivé

Définitions

• Taux d'accroissement :

- Soit f une fonction définie sur un intervalle I et soient 2 réels x_0 et $h \neq 0$ tels que $x_0 \in I$ et $x_0 + h \in I$.
- Le **taux d'accroissement** de la fonction f entre x_0 et $x_0 + h$ est le nombre :

$$T = \frac{f(x_0 + h) - f(x_0)}{h}$$

• Dérivabilité :

- Une fonction réelle f est dérivable en x_0 si et seulement si $\lim_{h\to 0} T = l \in \Re$. On appelle alors l le nombre dérivé de f en x_0 .
- Ce nombre est noté $f'(x_0)$

Interprétation graphique

 Le nombre dérivé est le coefficient directeur de la tangente à la courbe de f

 L'équation de la tangente à la courbe de f en x_0 est :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Applications

Nombres dérivés :

- $f(x) = x^2$, $en x_0 = 0$; 1; 3; 10
- $g(x) = 3x^2 + 5x 8$, $en x_0 = 0$; 1; 3
- $h(x) = ax^3 + bx^2 + cx + d$, en $x_0 \in \Re$

$$x^{2}$$
: 0; 2; 6; 20
 $g(x)$: 5; 11; 23
 $h'(x = x_{0}) = 3ax_{0}^{2} + 2bx_{0} + c$

Tangentes:

- $f(x) = x^2$, $en x_0 = 0$; 1; 3
- $g(x) = 3x^2 + 5x 8$, $en x_0 = 0$; 1
- $h(x) = ax^2 + bx + c$, en x_0

$$T(x,0) = 0$$
; $T(x,1) = 2x - 1$; $T(x,3) = 6x - 9$
 $T(x,0) = 5x - 8$; $T(x,1) = 11(x - 1)$
 $T(x,x_0) = h'(x = x_0)(x - x_0) + h(x_0)$

II. Fonction dérivée

Définition

Fonction dérivée:

- Soit f une fonction définie sur un intervalle I. On dit que f est dérivable si et seulement si $\forall x \in I, f'(x) \ existe$
- La fonction qui à x ∈ I associe le nombre dérivé de f en x s'appelle la fonction dérivée et se note f'
- On la note:

$$f': I \to \Re$$

$$x \to \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Dérivées usuelles

Fonction	Dérivée	Ensemble de dérivabilité
$k \ (k \in \mathbb{R})$	0	\mathbb{R}
\boldsymbol{x}	1	\mathbb{R}
$x^n \ (n \in \mathbb{N})$	nx^{n-1}	\mathbb{R}
$rac{1}{x^n} \; (n \in \mathbb{N})$	$-rac{n}{x^{n+1}}$	$\mathbb{R}-\{0\}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0;+\infty[$

A connaître par cœur !!!

Propriétés basiques

Fonction	Dérivée
u+v	u' + v'
$ku \; (k \in \mathbb{R})$	ku'
$\frac{1}{u}$ (avec $u(x) \neq 0$ sur I)	$-rac{u'}{u^2}$
uv	u'v+uv'
$\dfrac{u}{v}$ (avec $v\left(x ight) eq 0$ sur I)	$rac{u'v-uv'}{v^2}$
\sqrt{u} (avec $u\geqslant 0$ sur I)	$rac{u'}{2\sqrt{u}}$ lorsque $u>0$

A connaître par cœur !!!

Applications

• Démonstrations trois premières dérivées usuelles

Fonctions composées:

•
$$f(x) = 6x^2$$

•
$$g(x) = 3x^2 + 5x - 8$$

•
$$h(x) = ax^2 + bx + c$$

•
$$f_1(x) = \frac{2x^2 - 8x + 5}{3x + 2}$$

•
$$f_2(x) = (6x + 8)^3$$

•
$$f_3(x) = \frac{2x^3 - 6x + 4\sqrt{x}}{2x - \sqrt{x}}, \ x > 0$$

Applications – Dérivée usuelle 1

• Première dérivée usuelle : Soit $f(x) = k, k \in \Re$ alors f'(x) = 0

• Démonstration:

- Soit f une fonction qui à x associe $k, k \in \Re$
- Sa dérivée est définie par : $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- Ce qui donne : $f'(x) = \lim_{h \to 0} \frac{k-k}{h} = 0$

Applications – Dérivée usuelle 2

• Première dérivée usuelle : Soit $f(x) = kx, k \in \Re$ alors f'(x) = k

• Démonstration:

- Soit f une fonction qui à x associe $kx, k \in \Re$
- Sa dérivée est définie par : $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- Ce qui donne : $f'(x) = \lim_{h \to 0} \left(\frac{k(x+h) kx}{h} \right)$
- D'où on tire : f'(x) = k

Applications – Dérivée usuelle 3

• Première dérivée usuelle : Soit $f(x) = x^n$, $n \in \Re$ alors

$$f'(x) = nx^{n-1}$$

- Démonstration:
 - Soit f une fonction qui à x associe x^n , $n \in \Re$
 - Sa dérivée est définie par : $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$
 - Ce qui donne : $f'(x) = \lim_{h \to 0} \left(\frac{(x+h)^n x^n}{h} \right)$
 - D'où on tire : $f'(x) = \lim_{h \to 0} \left(\frac{x^n + nx^{n-1}h + a_1x^{n-2}h^2 + \dots + a_{n-2}xh^{n-1} + h^n x^n}{h} \right) = nx^{n-1}$

Applications - Fonctions composées

• Démonstrations trois premières dérivées usuelles

• Fonctions composées:

•
$$f(x) = 6x^2$$

•
$$g(x) = 3x^2 + 5x - 8$$

•
$$h(x) = ax^2 + bx + c$$

•
$$f_1(x) = \frac{2x^2 - 8x + 5}{3x + 2}$$

•
$$f_2(x) = (6x + 8)^3$$

•
$$f_3(x) = \frac{2x^3 - 6x + 4\sqrt{x}}{2x - \sqrt{x}}, \ x > 0$$

$$f'(x) = 12x$$
$$g'(x) = 6x + 5$$
$$h'(x) = 2ax + b$$

$$f_1'(x) = \frac{6x^2 + 8x - 31}{(3x+2)^2}$$

$$f_2' = 18(6x + 8)^2$$

$$f_3'(x) = \frac{8x^3 - 5x^{5/2} - \sqrt{x}}{(2x - \sqrt{x})^2}$$

III. Bases d'intégration

Définitions

- Intégrale :
 - Opération « inverse » de la dérivée
 - L'intégrale d'une fonction f sur un intervalle [a, b] se note:

$$I = \int_{a}^{b} f(x) dx$$

• Représentation graphique :

Intégration numérique

• Représentation graphique :

Primitives usuelles

Fonction	Primitives	Domaine
$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1} + C, \ C \in \mathbb{R}$	\mathbb{R}
$\frac{1}{x^n}$, $n \in \mathbb{N} \setminus \{0, 1\}$	$-\frac{1}{(n-1)x^{n-1}}+C,\ C\in\mathbb{R}$	$]-\infty,0[$ ou $]0,+\infty[$
$\frac{1}{x}$	$\ln(x) + C, C \in \mathbb{R}$]0,+∞[
$x^n, n \in \mathbb{Z} \setminus \{-1\}$	$\frac{x^{n+1}}{n+1} + C, \ C \in \mathbb{R}$	

A connaître par cœur !!!

Applications: Calculer les primitives en 0 (C = 0):

- $f(x) = 3x^2 5x$
- $g(x) = k, k \in \Re$

Questions?

