- 1. Use the Trapezoidal Rule with n = 5 to estimate the value of $\int_1^2 \frac{1}{x} dx$ (give your answer to 4 decimals).
- 2. Evaluate the following limits.
 - (a) $\lim_{x \to 0^+} x^{\sin x}$
 - (b) $\lim_{x \to \frac{\pi}{2}} \left(x \frac{\pi}{2} \right) \cdot \tan(3x)$
 - (c) $\lim_{\theta \to 0} (\cot \theta \csc \theta)$
- 3. Find y' for the following. Do not simplify your answer.
 - (a) $y = x^2 (\arcsin 2x)^4$
 - (b) $y = \sec^{-1}(4x+1) + \sin(\ln x^2)$
 - (c) $y = \arctan \sqrt{5x 6} + 4^x$
 - (d) $y = \frac{\log_5 \sin x}{e^{\cos x}}$
- 4. If two resistors with resistance R_1 and R_2 are connected in parallel, as in the figure, then the total resistance R, measured in ohms (Ω) , is given by $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. If R_1 and R_2 are increasing at rates of 0.40 Ω/s and 0.10 Ω/s , respectively, how fast is R changing when $R_1 = 50 \Omega$ and $R_2 = 70 \Omega$.

- 5. A poster is to have an area of $200 cm^2$ with 2 cm margins at the bottom and sides and 4 cm margin at the top. What dimensions will give the largest printed area?
- 6. Given $f(x) = 2\sqrt{x} x$ $f'(x) = \frac{-\sqrt{x} + 1}{\sqrt{x}}$ $f''(x) = -\frac{\sqrt{x}}{2x^2}$ Find (if any):
 - (a) The x and y intercept(s).
 - (b) The vertical and horizontal asymptotes.
 - (c) The critical numbers.
 - (d) The inflection points.
 - (e) Local (relative) extrema.

- (f) Intervals of upward or downward concavity.
- (g) Intervals on which f is increasing or decreasing.
- (h) Sketch the graph of f.
- 7. Find the values of c such that the area of the region bounded by the parabolas

$$y_1 = x^2 - c^2$$
 and $y_2 = -x^2 + c^2$ is 576.

Hint: $\int_{-c}^{c} f(x) \ dx = 2 \int_{0}^{c} f(x) \ dx$

8. Let \mathcal{R} be the region bounded by $y = 2x^2 - \frac{1}{2}x^3$, and y = 0. Set up, but **do not evaluate** the integral for the volume obtained by rotating the region \mathcal{R} about the following:

- (a) the y-axis
- (b) the line y = -1

- 9. Solve the following differential equation for y. $\sin 2x \ dx + y \sin x \ dy = \frac{1}{\csc x} \ dx \qquad \text{with initial condition f(0)=2.}$
- 10. Integrate the following integrals.

(a)
$$\int \frac{6x^3 + 4x^2 - 90x - 64}{x^2 - 16} dx$$

(b)
$$\int \frac{x}{\sqrt{x^2 - 4x}} \, dx$$

(c)
$$\int \arctan \theta \ d\theta$$

(d)
$$\int \tan^7 \theta \sec^4 \theta \ d\theta$$

(e)
$$\int \cot^3 \theta \sin^2 \theta \ d\theta$$

(f)
$$\int \cos\theta \cos^3(\sin\theta) \ d\theta$$

(g)
$$\int \frac{e^x(e^x+4)}{e^x-2} dx$$

- 11. Solve the following first order linear differential equation for y. $y' + y \tan x = -\sin x$ with initial condition f(0)=5.
- 12. Find the first few non-zero terms of the Fourier series for the function

$$f(x) = \begin{cases} 1, & \text{if } -\pi \le x < 0 \\ x, & \text{if } 0 \le x < \pi \end{cases}$$

Hint: find $a_0, a_1, a_2, a_3, \ldots, b_1, b_2, \ldots$ and write the function expansion.

Answers

- 1. 0.6956
- 2. (a) 1
 - (b) $-\frac{1}{3}$

3. (a)
$$y' = 2x(\arcsin 2x)^4 + 4x^2(\arcsin 2x)^3 \cdot \frac{2}{\sqrt{1-4x^2}}$$

(b)
$$y' = \frac{4}{(4x+1)\sqrt{(4x+1)^2-1}} + \cos(\ln x^2) \cdot \frac{2}{x}$$

(c)
$$y' = \frac{1}{5(x-1)} \cdot \frac{5}{2\sqrt{5x-6}} + 4^x \ln 4$$

(c)
$$y' = \frac{1}{5(x-1)} \cdot \frac{5}{2\sqrt{5x-6}} + 4^x \ln 4$$

(d) $y' = \frac{e^{\cos x} \cdot \frac{\cos x}{\sin x \cdot \ln 5} - \log_5 \sin x \cdot e^{\cos x} \cdot - \sin x}{(e^{\cos x})^2}$

- 4. $0.15 \Omega/s$
- 5. 11.54cm by 17.32cm
- 6. (a) x-int = 4 and y-int = 0
 - (b) V.A. None; H.A. None
 - (c) x = 1
 - (d) None
 - (e) Local Max. at x = 1
 - (f) C.U. Nil. C.D. $(0,\infty)$

(g) Inc.
$$[0,1[; Dec.]1,\infty[$$

7.
$$c = 6$$

8. (a)
$$V = 2\pi \int_0^4 x \left(2x^2 - \frac{1}{2}x^3\right) dx$$

(b) $V = \pi \int_0^4 \left(\left(2x^2 - \frac{1}{2}x^3\right)^2 - 1\right) dx$

9.
$$y = \sqrt{-4\sin x + 2x + 4}$$

10. (a)
$$3x^2 + 4x + 3\ln|x^2 - 16| + c$$

(b)
$$\sqrt{x^2 - 4x} + 2 \ln \left| \frac{x - 2 + \sqrt{x^2 - 4x}}{2} \right| + c$$

(c)
$$\theta \cdot \arctan \theta - \frac{1}{2} \ln |1 + \theta^2| + c$$

(d)
$$\frac{1}{10} \tan^{10} \theta + \frac{1}{8} \tan^8 \theta + c$$

(e)
$$\ln|\sin\theta| - \frac{1}{2}\sin^2\theta + c$$

(f)
$$\sin(\sin\theta) - \frac{1}{3}\sin^3(\sin\theta) + c$$

(g)
$$e^x + 6 \ln |e^x - 2| + c$$

11.
$$y = -\ln|\sec x| \cdot \cos x + 5\cos x$$

12.
$$f(x) = \frac{2+\pi}{4} - \frac{2}{\pi}\cos x - \frac{2}{9\pi}\cos 3x - \dots + \left(\frac{\pi-2}{\pi}\right)\sin x - \frac{1}{2}\sin 2x$$