Què és el sistema binari?

La representació de la informació en informàtica es basa en el sistema binari, que utilitza dos símbols, generalment representats com a 0 i 1, per codificar dades i realitzar operacions.

Aquest sistema proporciona una base sòlida i eficient per a la representació, el processament i la transmissió de dades, a més de facilitar el desenvolupament i l'optimització de dispositius i sistemes.

Els commutadors (ON/OFF) són una part fonamental dels circuits electrònics i contribueixen al funcionament i la lògica dels ordinadors.

En els nivells més baixos dels càlculs i del funcionament dels ordinadors, les operacions es realitzen mitjançant senyals elèctrics. Aquests senyals elèctrics són interpretats per l'ordinador com a «encès» si passa corrent o «apagat» en cas contrari.

La unitat bàsica d'informació en el sistema binari és el bit. El bit pot representar dos estats: encès (1) i apagat (0).

Què és el sistema decimal?

Els humans pensem i treballem generalment en base 10, deu números per representar tots els valors numèrics.

Aquest sistema està basat en potències de 10.

Exemple de representació decimal i equivalència com a suma de potències de 10:

$$254_{10} = 2 \cdot 10^2 + 5 \cdot 10^1 + 4 \cdot 10^0$$

	SISTEM	MA EN B	ASE 10		
DM	UM	С	D	U]
10000	1000	100	10	1	
			П	10° = 1	Unitat
			5	$10^1 = 10$	Decena
			> 10 ²	= 10 ×10	Centena
		> 1	$0^3 = 10$	× 10 × 10	Unitat de Millar
	\Rightarrow	104 =	10 × 10 ×	× 10 × 10	Decena de Millar

Decimal	Binari
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001

Com pots veure, per indicar el sistema de numeració anotem la base en petit al costat del número.

Representació en el sistema binari

	2 ⁵	2 ⁴	2^3	2 ²	2 ¹	2 ⁰
	2*2*2*2*2	2*2*2*2	2*2*2	2*2	2	1
Nombre de valors diferents que permet representar	32	16	8	4	2	1
Rang representable en notació binària	0-11111	0-1111	0-111	0-11	0-1	0

25	22	21	20	37		DECIMAL
8	4	2	1			
			0	=	0 * 1	0
			1	=	1 * 1	1
		1	0	=	1*2+0*1	2
		1	1	=	1*2+1*1	3
	1	0	0	=	1*4+0*2+0*1	4
	1	0	1	=	1*4+0*2+1*1	5
	1	1	0	=	1*4+1*2+0*1	6
	1	1	1	=	1*4+1*2+1*1	7
1	0	0	0	=	1 * 8 + 0 * 4 + 0 * 2 + 0 * 1	8

Conversió de binari a decimal

Només cal multiplicar aquells valors que estiguin a 1 pel valor de la potència de 2 a la qual pertanyen. I fer el sumatori final.

Taula de potències de 2 fins el 10:

210	2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
1024	512	256	128	64	32	16	8	4	2	1

Conversió de decimal a binari

Podem fer-ho utilitzant dos mètodes diferents

• 1r Mètode

Dividir el número decimal entre 2 tantes vegades com sigui possible. Aleshores recuperar els valors dels residus i el darrer quocient en ordre invers. Com que és una divisió per 2, el residu només podrà ser 0 o 1.

• 2n Mètode

Restar la potència de 2 més gran possible, fins a arribar a 0.

	27	26	2 ⁵	2 ³	22	21	20
	64	32	16	8	4	2	1
25			1				
25 - 16 = 9				1			34
9 - 8 = 1							1
0.5							

ACTIVITATS

- 1) Quants bits binaris necessites per guardar 18 valors diferents? Justifica la resposta.
- 2) És correcte el següent valor: 12₂? Justifica la resposta.
- 3) Quin és el resultat de les següents operacions. Justifica la resposta.
 - a) $1001_2 + 1_2$
 - b) $1001_2 1_2$
 - c) $1001_2 10_2$
- 4) És el mateix 10_{10} i 10_2 ? Justifica la resposta.
- 5) Fes les següents conversions de binari a decimal i viceversa. Indica'n totes les operacions.
 - a) $10101_2 \rightarrow decimal$
 - b) $110110_2 \rightarrow decimal$
 - c) $1001110_2 \rightarrow decimal$
 - d) $37_{10} \rightarrow binari$
 - e) $82_{10} \rightarrow binari$
 - f) $14_{10} \rightarrow binari$

BIBLIOGRAFIA I WEBGRAFIA

 $\label{lectronics} $$ `MatElectronics". $$ $ $ https://www.watelectronics.com/decimal-numbering-system-and-binary-numbering-system-conversions/$

«CUEMATH». https://www.cuemath.com/numbers/binary-number-system/

Autor: Xavier Baubés Parramon Aquest document es llicència sota Creative Commons versió 4.0. Es permet compartir i adaptar el material però reconeixent-ne l'autor original.