Project 2 FYS4150

Kjetil Karlsen and Vilde Mari Reinertsen

September 29, 2017

Abstract

Abstract
Intro
V Teori
K Metode Algorigmer: Jacobi, rhomax, unittests valg av epsilon ("0")
Resultat 1b (2 tab): N, lambda jacboi, N, lambda arma kommentar: lambda svarer til energi ... 1e (tab) omega, lambda, E tid tab: time (N, Jacobi v armadillo, Similarity transforms (iterations))

Diskusjon Konklusjon Program:

Kjetil: Armadillo tid, konvergenshastighet (1b),

plot: tid v N (armadillo, jacobi) - for 1b similiraty transforms v N

Table 0.1: This is a table listing the computing time for each algorithm. The LU algorithm was only possible to do up till n = 1e4 and the entry of 0 s means that this algorithm did not compute anything for the given value of n

ω_r	$E_0 \text{ (eV)}$	$E_1 \text{ (eV)}$	$E_2 \text{ (eV)}$
0.01	2.86223	3.77149	4.63048
0.5	177.648	685.031	1534.29
1	687.75	2725.43	6125.19
5	17010.9	68018.2	153034

Contents

1	Introduction	2
2	Theory	2
3	Method	2
4	Result	2
5	Discussion	2
6	Conclusion	2

Introduction 1

Theory 2

$$\mathbf{w}_i = \mathbf{U}\mathbf{v}_i \tag{1}$$

$$\mathbf{w}_{i}^{T}\mathbf{w}_{j} = (\mathbf{U}\mathbf{v}_{i})^{T}\mathbf{U}\mathbf{v}_{j}$$

$$= \mathbf{v}_{i}^{T}\mathbf{U}^{T}\mathbf{U}\mathbf{v}_{j}$$

$$(3)$$

$$= \mathbf{v}_i^T \mathbf{U}^T \mathbf{U} \mathbf{v}_j \tag{3}$$

$$= \mathbf{v}_i^T \mathbf{v}_j = \delta_{ij} \tag{4}$$

Å

- Method 3
- Result 4
- 5 Discussion
- Conclusion 6

References