

Semaines 21-22 Plan

4.2 ONDES

- 4.2.1 Milieu homogène
 - Schéma différences finies explicite 3 niveaux
 - Implémentation des conditions initiales
 - Implémentation des conditions aux limites
 - Modes propres, fréquences propres
- 4.2.2 Stabilité numérique
- □ 4.2.3, 4.2.4 Milieu inhomogène
 - Tsunami
- Des simulations en 'live' seront présentées
- Certaines parties seront présentées au tableau
- Exercice 7 : 4 séances (!) GROS EXO (!)

Semaine 21 - 4.2 Ondes

□ 4.2.1 Milieu homogène 1D

EDP d'Alembert

$$\frac{\partial^2 f}{\partial t^2} = u^2 \frac{\partial^2 f}{\partial x^2}$$

Solution générale

$$f(x,t) = F(x-|u|t) + G(x+|u|t)$$

$$progressive rétrograde$$

 Obtenir une solution unique dans le domaine [x_I, x_r] requiert 2 conditions initiales et 2 conditions aux bords

Ondes – schéma numérique

Schéma différences finies explicite 3 niveaux

$$\frac{\partial^2 f}{\partial t^2} = u^2 \frac{\partial^2 f}{\partial x^2} \qquad \begin{array}{l} \text{Discrétisation } \{(\text{xi,tj})\} \\ \text{Différences finies pour les 2e dérivées:} \end{array}$$

$$f_j'' = \frac{1}{h^2} \left(f_{j-1} - 2f_j + f_{j+1} \right) + \mathcal{O}(h^2) \tag{A.7}$$

$$\underbrace{f(x_i, t_{n+1})}_{(\Delta t)^2} \underbrace{2f(x_i, t_n)}_{(\Delta t)^2} + \underbrace{f(x_i, t_{n-1})}_{(\Delta t)^2} \approx u^2 \underbrace{\underbrace{f(x_{i+1}, t_n)}_{(\Delta t)^2} - \underbrace{2f(x_i, t_n)}_{(\Delta t)^2} + \underbrace{f(x_{i-1}, t_n)}_{(\Delta t)^2}}_{(\Delta t)^2}$$

On résout pour f(x_i,t_{n+1}). On pose: $\beta = u \frac{\Delta u}{\Delta x}$

$$\beta = u \frac{\Delta t}{\Delta x}$$

$$f(x_i, t_{n+1}) \approx 2 \left(1 - \beta^2\right) f(x_i, t_n) + f(x_i, t_{n-1}) + \beta^2 \left[f(x_{i+1}, t_n) + f(x_{i-1}, t_n)\right]$$
(4.43)

Ondes - Conditions initiales

■ Eq. du 2e ordre en temps → 2 conditions initiales requises

$$(1) \quad f(x,0) = f_{init}(x) \text{ donn\'e}$$

- Dans le schéma différences finies: on a besoin de connaître f au temps t=0 et au temps t=-∆t pour initialiser l'algorithme
 - \Box (1) $f_{i,0} = f_{init}(x_i)$

$$(2) \frac{f_{i,0} - f_{i,-1}}{\Delta t} = g_{init}(x_i) \Rightarrow f_{i,-1} = f_{init}(x_i) - g_{init}(x_i) \Delta t$$

4

Ondes – conditions initiales (suite)

Cas (a): système au repos pour t<=0</p>

$$\frac{\partial f}{\partial t}(x,0) = g_{init}(x) = 0 \Longrightarrow f_{i,-1} = f_{init}(x_i)$$

Cas (b): onde progressive

$$f(x,t) = F(\xi) = F(x-|u|t) \Rightarrow \frac{\partial f}{\partial t}(x,0) = g_{init}(x) = -|u|F'$$

$$F' = \frac{\partial f}{\partial x}|_{t=0} = \frac{df_{init}}{dx} \Rightarrow f_{i,-1} = f_{init}(x_i) + |u| \Delta t \frac{df_{init}}{dx}(x_i)$$

$$\approx f_{init}(x_i + |u| \Delta t)$$

Cas (c): onde rétrograde: similaire, mais G(x+|u|t)

. . .

Ondes – conditions aux limites

- Eq. Diff. 2e ordre en x → 2 conditions aux limites: bord gauche et bord droite
- Cas 1. Bord g. fixe $f(x_L, t) = C$, $\forall t \Rightarrow f_{0,j} = C$, $\forall j$
- Cas 2. Bord g. «libre»

$$\frac{\partial f}{\partial x}(x_L, t) = 0, \forall t \Rightarrow \frac{f_{1,j} - f_{0,j}}{\Delta x} = 0 \Rightarrow f_{0,j} = f_{1,j}, \forall j$$

- Cas 3: périodique; $f_{N+1,j} = f_{0,j}, \forall j$
- Cas 4: excitation sinusoïdale
 - En exercice
- Cas 5. Sortie de l'onde au bord gauche → onde rétrograde au bord gauche

Ondes – conditions aux limites (suite)

 $f(x,t) = G(x+|u|t), \forall x \text{ au voisina ge de } x_L, \forall t$

$$\Rightarrow \frac{\partial f}{\partial t}(x_L, t) = |u|G' = |u|\frac{\partial f}{\partial x}(x_L, t), \forall t$$

$$\Rightarrow \frac{f_{0,j+1} - f_{0,j}}{\Delta t} = |u| \frac{f_{1,j} - f_{0,j}}{\Delta x}, \forall j$$

$$\Rightarrow f_{0,j+1} = f_{0,j} + \frac{|u|\Delta t}{\Delta x} (f_{1,j} - f_{0,j}), \forall j$$

- Sortie de l'onde au bord droite: similaire, imposer une onde purement progressive
- NB: $\forall j \rightarrow$ les conditions aux limites doivent être appliquées à chaque pas de temps

Ondes en milieu inhomogène: u²(x)

Exemple: Vagues en eau peu profondes – Annexe E

$$\frac{\partial^2}{\partial t^2} f - u^2(x) \frac{\partial^2}{\partial x^2} f = 0 \quad (A) \qquad u(x) = \sqrt{gh_0(x)}$$

$$\frac{\partial^2}{\partial t^2} f - \frac{\partial}{\partial x} \left(u^2(x) \frac{\partial}{\partial x} f \right) = 0 \quad (B)$$

Laquelle de ces équations est-elle correcte?

$$\frac{\partial^2}{\partial t^2} f - \frac{\partial^2}{\partial x^2} (u^2(x) f) = 0 \quad (C)$$

Cela fait-il une différence sur la propagation du tsunami?

Ondes en milieu inhomogène: u²(x)

 Les Eqs. (B) et (C) comportent des termes additionnels de 1^e, respectivement 2^e dérivée de u²(x). On utilisera les différences finies centrées pour ces termes:

$$\frac{\mathrm{d}u^2}{\mathrm{d}x} \approx \frac{(u^2_{i+1} - u^2_{i-1})}{2\Delta x}$$

$$\frac{d^{2}u^{2}}{dx^{2}} \approx \frac{(u^{2}_{i+1} - 2u^{2}_{i} + u^{2}_{i-1})}{(\Delta x)^{2}}$$

Photographe : Armando Franca/AP

Exercice 7: ondes, milieu inhomogène, 2 dimensions d'espace

- f(x,y,t), $u^2(x,y)$, $a_{ext}(x,y,t)$
- $\frac{\partial^2 f}{\partial t^2} = \nabla \cdot (u^2 \nabla f) + a_{ext}(x, y, t)$
- Différences finies en y définies de même façon que les différences finies en x
- Schéma explicite à 3 niveaux, (4.43) des Notes de cours à généraliser

Semaine 22 – Plan

•4.2 Ondes

- Schéma explicite 3 niveaux
- Modes propres, fréquences propres, excitation résonante
- Limite de stabilité CFL (4.2.2)
 - analyse de stabilité de Von Neuman
- Vitesse de phase variable (tsunami) (Annexe E)
 - équations en eaux peu profondes
 - numérique: démo (4.2.3)
 - analytique: approximation WKB (4.2.4)

Modes propres, fréquences propres

- Mode propre: mvmt particulier du système homogène (i.e. SANS excitation extérieure) pour lequel TOUS les degrés de liberté oscillent à la même fréquence, appelée fréquence propre.
- De démonstrations seront faites en simulation et au tableau.
- Principe de superposition: la somme algébrique de 2 modes propres est également solution du système homogène.

Modes et fréquences propres – Solution générale

$$\frac{\partial^2 f}{\partial t^2} = u^2 \frac{\partial^2 f}{\partial x^2}$$

 $f = u^2 \frac{\partial^2 f}{\partial x^2}$ Séparation des variables f(x,t) = A(x)B(t)

$$A(x)\frac{d^2}{dt^2}(t) = u^2 \frac{d^2}{dx^2}$$

$$A(x)\frac{d^{2}B}{dt^{2}}(t) = u^{2}\frac{d^{2}A}{dx^{2}}(x)B(t) \qquad \frac{1}{B}\frac{d^{2}B}{dt^{2}}(t) = u^{2}\frac{1}{A}\frac{d^{2}A}{dx^{2}}(x)$$

$$fot(t) = fct(x) = const = C$$

$$\frac{d^2}{dt^2}B(t) = CB(t)$$

$$B(t) = \hat{B}e^{-i\omega t}$$

$$\Rightarrow -\omega^2 \hat{B} e^{-i\omega t} = C \hat{B} e^{-i\omega t} \Rightarrow C = -\omega^2$$

$$\frac{d^2}{dx^2}A(x) = \frac{-\omega^2}{u^2}A(x)$$

 $\frac{d^{2}}{dx^{2}}A(x) = \frac{-\omega^{2}}{u^{2}}A(x)$ A(x) est fonction propre de l'opérateur $\frac{d^{2}}{dx^{2}}$ de valeur propre $-\omega^{2}/u^{2}$

$$A(x) = \hat{A}e^{ikx}$$

$$A(x) = \hat{A}e^{ikx} \implies -k^2\hat{A}e^{ikx} = -(\omega^2/u^2)\hat{A}e^{ikx}$$

Modes et fréquences propres – Solution générale

$$k^2 = \frac{\omega^2}{u^2}$$

Relation de dispersion 2 solutions possibles: $k = \pm \frac{\omega}{}$

$$k = \pm \frac{\omega}{u}$$

et la solution générale s'écrit comme superposition linéaire de ces 2 solutions

$$f(x,t) = \hat{A}_1 \exp[i(kx - \omega t)] + \hat{A}_2 \exp[i(-kx - \omega t)]$$

On peut aussi l'écrire comme:

$$f(x,t) = \hat{A}_1 \exp\left[ik\left(x - \frac{\omega}{k}t\right)\right] + \hat{A}_2 \exp\left[-ik\left(x + \frac{\omega}{k}t\right)\right]$$

$$u = \frac{\omega}{k}$$

$$F(x - ut) \text{ progressive } G(x + ut) \text{ rétrograde}$$

Vitesse de phase

stationnaire

Modes et fréquences propres – conditions aux bords

Dans cet exemple, on prend des conditions aux bord fixes à gauche et à droite. (Pour l'Exercice 7: fixe à gauche, libre à droite)

$$(1) f(0,t) = 0, \forall t$$
$$(2) f(L,t) = 0, \forall t$$

On insère (1) dans la solution générale:

$$\Rightarrow (\hat{A}_1 + \hat{A}_2) \exp[-i\omega t] = 0, \forall t \Rightarrow \hat{A}_1 = -\hat{A}_2 \equiv \hat{A}$$

$$\Rightarrow f(x,t) = \hat{A}e^{-i\omega t} \left(e^{ikx} - e^{-ikx} \right) = \hat{A}e^{-i\omega t} 2i\sin(kx)$$

On substitue dans la la condition au bord (2):

$$\Rightarrow \sin(kL) = 0 \Rightarrow k_n = \frac{n\pi}{L} n \in \mathbb{N}^*$$

Via la relation de dispersion:

$$\omega_n = \frac{n\pi}{L}u$$

Fréquence propre

Modes et fréquences propres – superposition

La **fonction propre** correspondant à cette fréquence propre ω_n est:

$$f_n(x,t) = \hat{A}_n \sin(k_n x) \exp(-i\omega_n t)$$

$$\hat{A}_n = |\hat{A}_n| e^{i\varphi_n} \in \mathbb{C}$$
 Dépendance spatiale Dépendance temporelle de la fonction propre de la fonction propre:

oscillation à la fréquece ω_n

L'équation d'onde étant linéaire, toute superposition linéaire de solutions est aussi une solution. Ainsi, la solution générale (mais satisfaisant les conditions aux bords) peut s'écrire comme superposition de modes propres:

$$f(x,t) = \sum_{n=1}^{\infty} \hat{A}_n \sin(k_n x) \exp(-i\omega_n t)$$

Les coefficients (complexes) A_n sont déterminés par les **conditions initiales**

Superposition de modes propres – conditions initiales

Dans cet exemple, on prend des conditions aux initiales au repos.
 (Pour l'Exercice 7, partie 7.2 (c): aussi)

$$\begin{cases} f(x,0) = f_{init}(x) \\ \frac{\partial f}{\partial t}(x,0) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{n=1}^{\infty} |\hat{A}_n| \cos(\varphi_n) \sin(k_n x) = f_{init}(x) \\ \sum_{n=1}^{\infty} -|\hat{A}_n| \sin(k_n x) \omega_n \sin(\varphi_n) = 0 \end{cases}$$

De la 2^e éq, satisfaite pour tout x, on tire : $\sin(\varphi_n) = 0 \Rightarrow \cos(\varphi_n) = \pm 1 \equiv \sigma_n$

Et donc, on peut écrire la 1e Eq:
$$\sum_{n=1}^{\infty} \sigma_n \mid \hat{A}_n \mid \sin(k_n x) = f_{init}(x)$$

Les $\sigma_n |A_n|$ sont donc les coefficients de la série de Fourier de f_{init}

Démonstrations (simulations «live»)

- www.falstad.com
 - Math and Physics aplets
 - loadedstring
- Recherche de modes propres et fréquences propres par excitation résonante

Ondes - excitation

Recherche de modes propres

$$\omega = 4 \frac{\pi u}{x_r - x_l}$$

$$\omega = 3.6 \frac{\pi u}{x_r - x_l}$$

Ondes – instabilité numérique

 4.2.2 Stabilité du schéma différences finies explicite 3 niveaux pour l'équation d'ondes

Condition de stabilité CFL

$$0 \le \beta^2 \le 1$$

$$\beta = u \frac{\Delta t}{\Delta x}$$

Ondes – instabilité numérique (suite)

- Le mode instable est une oscillation dans l'espace (avec 2 pts de maillage x_i par longueur d'onde) et le temps (2 pts de maillage t_j par période) dont l'amplitude croît exponentiellement
- On fera la démonstration au tableau du critère de stablilité CFL: analyse de Von Neumann. Voir aussi les Notes de Cours, section 4.2.2.

Rappel: Ondes – instabilité numérique

 4.2.2 Stabilité du schéma différences finies explicite 3 niveaux pour l'équation d'ondes

Condition de stabilité CFL

$$0 \le \beta^2 \le 1$$

$$\beta = u \frac{\Delta t}{\Delta x}$$

23

Ondes – instabilité numérique

- Le mode instable est une oscillation dans l'espace (avec 2 pts de maillage x_i par longueur d'onde) et le temps (2 pts de maillage t_j par période) dont l'amplitude croît exponentiellement
- On fera la démonstration au tableau du critère de stablilité CFL: analyse de Von Neumann – voir aussi section 4.2.2

Ondes, schéma explicite 3 niveaux - stabilité

$$\beta = u \frac{\Delta t}{\Delta x}$$

$$(4.43) \approx 2(1-\beta^2)f(x_i,t_n) - f(x_i,t_{n-1}) + \beta^2(f(x_{i+1},t_n)) + f(x_{i-1},t_n)$$

Ansatz: on cherche une solution de (4.43) de type ondulatoire, avec la possibilité d'avoir une amplitude exponentielle dans le temps

$$f(x_i, t_n) = \hat{f} \exp\{i(kx_i - \omega t_n)\}, \hat{f} \in \mathbb{C}, k \in \mathbb{R}, \quad \omega \in \mathbb{C} \quad (4.26)$$

On définit le «gain» G: $f(x_i, t_{n+1}) = Gf(x_i, t_n)$, $G = e^{-i\omega\Delta t}$

Condition de stabilité: $|G| \le 1, \forall k, \forall \omega$

Ondes, schéma explicite 3 niveaux stabilité

Si
$$\beta^2 \le 1$$
, $|G|^2 = 1 \Longrightarrow$ stable

$$\beta = u \frac{\Delta t}{\Delta x}$$

Si
$$\beta^2 > 1$$
, alors, pour sin² $\theta = 1$, $G < -1 \Rightarrow$ instable

$$\theta = k \Delta x / 2 \qquad \sin^2 \theta = 1 \Rightarrow \frac{k \Delta x}{2} = \frac{\pi}{2}$$

$$k = 2\pi / \lambda \Rightarrow \qquad \lambda = 2\Delta x$$

2 points de maillage par longueur d'onde, c'est bien ce que l'on a observé sur les simulations instables!

Ondes en eaux "peu profondes" et tsunamis

Equations

Solution analytique approximative: méthode WKB (Wentzel, Kramers, Brillouin)

Simulations numériques et comparaison

Equations en eaux peu profondes

Voir Annexe E des Notes de Cours

$$\rho_0 \frac{d\vec{v}}{dt} = -\nabla P + \rho_0 \vec{g} \quad \text{(E.3)}$$

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{v}) = 0 \qquad (E.4) \quad 1D: \quad -\frac{\partial (v_x h)}{\partial x} = \frac{\partial h}{\partial t}$$

Hypothèses:

- fluide parfait, incompressible
- 1D
- Eaux peu profondes: $h_0 \ll \lambda$
- Petites perturbations → linéarisation

$$h(x,t) = h_0(x) + \delta h(x,t)$$
$$\vec{v}(x,t) = 0 + \delta \vec{v}(x,t)$$

$$\left| \frac{dv_{y}}{dt} \right| << g$$

Profondeur variable $h_0(x)$ $u(x) = \sqrt{gh_0(x)}$ Vitesse de propagation variable u(x)

$$\frac{\partial^2}{\partial t^2} \delta h - u^2(x) \frac{\partial^2}{\partial x^2} (\delta h) = 0 \quad (A)$$

$$\frac{\partial^2}{\partial t^2} \delta h - \frac{\partial}{\partial x} \left(u^2(x) \frac{\partial}{\partial x} \delta h \right) = 0 \text{ (B)}$$

$$\frac{\partial^2}{\partial t^2} \delta h - \frac{\partial^2}{\partial x^2} (u^2(x) \delta h) = 0 \quad (C)$$

Laquelle de ces équations est-elle correcte?

Cela fait-il une différence sur la propagation du tsunami?

Méthode WKB

- Wentzel, Kramers, Brillouin
- Solution analytique avec des approximations basées sur des hypothèses
- Au cœur de la méthode: séparation des échelles de variation
- Solution sinusoïdale dont l'amplitude est « lentement » variable (dans l'espace)

$$\delta h(x,t) = e^{-i\omega t} A(x) e^{iS(x)}$$

$$\delta \hat{h}(x)$$