Chapitre 10 — Vecteurs II — Exercices

Exercice 1: (*)

Par lecture graphique, déterminer les coordonnées dans la base (i, j) des vecteurs \vec{u} , \vec{v} et \vec{w} ci-dessous.

1)
$$\vec{u}$$
 $\begin{pmatrix} \cdots \\ \cdots \end{pmatrix}$ 2) \vec{v} $\begin{pmatrix} \cdots \\ \cdots \end{pmatrix}$ 3) \vec{w} $\begin{pmatrix} \cdots \\ \cdots \end{pmatrix}$

2)
$$\vec{v}$$
 (....)

3)
$$\vec{w}$$
 (....)

Exercice 2: (*) Soient les points $A(x_A; y_A)$ et $B(x_B; y_B)$. Dans chaque cas, déterminer les coordonnées du vecteur \overrightarrow{AB} .

1)
$$A(2;3)$$
 et $B(5;7)$: $\overrightarrow{AB}\begin{pmatrix} \cdots \\ \cdots \end{pmatrix}$

2)
$$A(-1;4)$$
 et $B(3;1)$: \overrightarrow{AB} $\left(\begin{array}{c} \cdots \\ \cdots \end{array} \right)$

1)
$$A(2;3)$$
 et $B(5;7)$: \overrightarrow{AB} $\left(\begin{array}{c} \cdots \\ \cdots \end{array}\right)$ **2)** $A(-1;4)$ et $B(3;1)$: \overrightarrow{AB} $\left(\begin{array}{c} \cdots \\ \cdots \end{array}\right)$ **3)** $A(-4;-9)$ et $B(3;-8)$: \overrightarrow{AB} $\left(\begin{array}{c} \cdots \\ \cdots \end{array}\right)$

Exercice 3: (*)

On considère les vecteurs $\vec{u} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 4 \\ -4 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$.

Représenter ces vecteurs en choisissant comme origine réspectivement les points A(1; 2), B(-1; 5) et C(0; 1).

- **Exercice 4:** (*) Soient les points E(3;6), H(-5;8) et K(-1;7).
 - 1. Montrer que les vecteurs \overrightarrow{EK} et \overrightarrow{KH} sont égaux.
 - 2. Que peut-on en déduire?
- **Exercice 5:** (**) Soient les points A(2;5), B(-1;3), C(4;-1) et D(7;1).
 - 1. Montrer que le quadrilatère ABCD est un parallélogramme.
 - 2. Calculer les coordonnées du point G tel que ABGC soit un parallélogramme.
- **Exercice 6:** (**) Soient les points A(-4;2), B(1;2), C(-1;6), D(0;-1) et E(5;-1) dans le repère orthonormé O(3;1,3).
 - 1. (a) Montrer que le quadrilatère ABED est un parallélogramme.
 - (b) Calculer les longueurs AB et EB. Que peut-on en déduire?
 - 2. Calculer les coordonnées du point G tel que ABCG soit un parallélogramme.
 - 3. Le parallélogramme ABCG est-il un losange? Justifier.
- **Exercice 7:** (**) Soient les points A(1;2), B(3;-2) et les vecteurs $\vec{u} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.
 - 1. Calculer les coordonnées du vecteur $\vec{u} + \vec{v}$.
 - 2. Calculer les coordonnées des points E et F tels que $\overrightarrow{AE} = \overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{BF} = \overrightarrow{u} + \overrightarrow{v}$.

- **Exercice 8:** (**) Soient les points A(-3;2), B(-1;3), C(1;1) et D(9;-1). Les points M et N sont définis par $\begin{cases} \overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{CD} \\ \overrightarrow{BN} = \overrightarrow{BA} + \overrightarrow{BC} \end{cases} .$
 - 1. Calculer les coordonnées des points M et N.
 - 2. Montrer que le quadrilatère ANDM est un parallélogramme.
- **Exercice 9:** (**) Soient les points A(2;-1), B(3;7), C(-5;1) et K(11;13).
 - 1. Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{BC} , puis celles du vecteur $-\overrightarrow{AB} + 2\overrightarrow{BC}$.
 - 2. Calculer les coordonnées du point L défini par $\overrightarrow{BL} = -\overrightarrow{AB} + 2\overrightarrow{BC}$.
 - 3. Montrer que le quadrilatère CKAL est un parallélogramme.
- **Exercice 10:** (*) Dans chaque cas, déterminer si les vecteurs \vec{u} et \vec{v} sont colinéaires.

1)
$$\vec{u} \begin{pmatrix} 24 \\ 6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 8 \\ 2 \end{pmatrix}$

2)
$$\overrightarrow{u} \begin{pmatrix} 20 \\ -10 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} -15 \\ 5 \end{pmatrix}$

Exercice 11: (**) Dans chaque cas, déterminer la valeur du réel k tel que les vecteurs \vec{u} et \vec{v} soient colinéaires.

1)
$$\vec{u} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} k \\ 2 \end{pmatrix}$

2)
$$\overrightarrow{u} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 6 \\ 3k \end{pmatrix}$

- **Exercice 12:** (**) Dans chaque cas, déterminer si les droites (AB) et (CD) sont parallèles.
 - 1. A(1;1), B(3;11), C(0;-1) et D(-1;-7)
 - 2. A(3;10), B(0;-5), C(1;-20) et D(10;25)
- **Exercice 13:** (**) Dans chaque cas, dire si les points A, B et C sont alignés ou non.
 - 1. A(1;3), B(-1;2) et C(2;3)
 - 2. $A(\sqrt{2};3)$, B(0;1) et $C(2\sqrt{2};5)$
- **Exercice 14:** (**)

On considère les points A(1;3), B(9;-1), C(4;-3) dans un repère $\left(O;\overrightarrow{\imath},\overrightarrow{\jmath}\right)$.

- 1. Calculer les coordonnées du milieu D du segment [AB] et celles du milieu E du segment [DB].
- 2. Calculer les coordonnées du point S défini par $\overrightarrow{AS} = \frac{2}{3}\overrightarrow{AC}.$
- 3. Les droites (EC) et (DS) sont-elles parallèles? Justifier.
- **Exercice 15:** Compléter ce script en Python permettant de déterminer si deux vecteurs sont colinéaires.

def vecteurs_colineaires(u, v):
if u[.....] * v[.....] == u[.....] * v[.....]:
 return True
else:
 return False