FORMULE ANALISI MATEMATICA

Trigonometria:

Formule degli archi associati

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\left(\alpha\right); \quad \cos\left(\frac{\pi}{2} - \alpha\right) = \sin\left(\alpha\right)$$

$$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\left(\alpha\right); \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\left(\alpha\right)$$

$$\sin\left(\pi - \alpha\right) = \sin\left(\alpha\right); \quad \cos\left(\pi - \alpha\right) = -\cos\left(\alpha\right)$$

$$\sin\left(\pi + \alpha\right) = -\sin\left(\alpha\right); \quad \cos\left(\pi + \alpha\right) = -\cos\left(\alpha\right)$$

$$\sin\left(\frac{3}{2}\pi - \alpha\right) = -\cos\left(\alpha\right); \quad \cos\left(\frac{3}{2}\pi - \alpha\right) = -\sin\left(\alpha\right)$$

$$\sin\left(\frac{3}{2}\pi + \alpha\right) = -\cos(\alpha); \quad \cos\left(\frac{3}{2}\pi + \alpha\right) = \sin(\alpha)$$

Formule di somma degli angoli

 $\sin(-\alpha) = -\sin(\alpha); \cos(-\alpha) = \cos(\alpha)$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)} \text{ dove } \alpha, \ \beta, \ \alpha + \beta \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$$

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)} \text{ dove } \alpha, \ \beta, \ \alpha - \beta \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$$

Da cui discendono le formule di duplicazione

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)} \quad \text{dove} \quad \alpha \neq \frac{\pi}{4} + k\frac{\pi}{2} \quad \land \quad \alpha \neq \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}$$

$$\sin(3\alpha) = 3\sin(\alpha) - 4\sin^3(\alpha)$$

$$\cos(3\alpha) = 4\cos^3(\alpha) - 3\cos(\alpha)$$

$$\tan(3a) = \frac{3tg(a) - tg^3(a)}{1 - 3tg^2(a)}$$

$$cotg(3a) = \frac{cotg^3(a) - 3cotg(a)}{3cotg^2(a) - 1}$$

Formule parametriche

$$\sin(\alpha) = \frac{2t}{1+t^2}$$
 dove $t = \tan(\frac{\alpha}{2})$ e $\alpha \neq \pi + 2k\pi$

$$\cos(\alpha) = \frac{1-t^2}{1+t^2}$$
 dove $t = \tan(\frac{\alpha}{2})$ e $\alpha \neq \pi + 2k\pi$

$$\tan\left(\alpha\right) = \frac{2t}{1-t^2}$$
 dove $t = \tan\left(\frac{\alpha}{2}\right)$ e $\alpha \neq \frac{\pi}{2} + k\pi \wedge \alpha \neq \pi + 2k\pi$

Formule di bisezione

$$\sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos\left(\alpha\right)}{2}}$$

$$\cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos\left(\alpha\right)}{2}}$$

$$\tan\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos\left(\alpha\right)}{1+\cos\left(\alpha\right)}} \quad \text{dove } \alpha \neq \pi + 2k\pi, \ k \in \mathbb{Z}$$

Formule di Werner

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}[\sin(\alpha - \beta) + \sin(\alpha + \beta)]$$

Formule di prostaferesi

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

Valori agli angoli notevoli delle funzioni trigonometriche

Angolo in gradi	Angolo in radianti	Valore del seno	Valore del coseno	Valore della tangente	Valore della cotangente
0°	0	0	1	0	$\pm\infty$
15°	$\frac{\pi}{12}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$
18°	$\frac{\pi}{10}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{25 - 10\sqrt{5}}}{5}$	$\sqrt{5+2\sqrt{5}}$
22°30'	$\frac{\pi}{8}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\sqrt{2}-1$	$\sqrt{2}+1$
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
36°	$\frac{\pi}{5}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\sqrt{5-2\sqrt{5}}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
54°	$\frac{3}{10}\pi$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$	$\sqrt{5-2\sqrt{5}}$
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
67°30'	$\frac{3}{8}\pi$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\sqrt{2}+1$	$\sqrt{2}-1$
72°	$\frac{2}{5}\pi$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2\sqrt{5}}$	$\frac{\sqrt{25 - 10\sqrt{5}}}{5}$
75°	$\frac{5}{12}\pi$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$

Angolo in gradi	Angolo in radianti	Valore del seno	Valore del coseno	Valore della tangente	Valore della cotangente
72°	$\frac{2}{5}\pi$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2\sqrt{5}}$	$\frac{\sqrt{25 - 10\sqrt{5}}}{5}$
75°	$\frac{5}{12}\pi$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	$\pm\infty$	0
105°	$\frac{7}{12}\pi$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{2}-\sqrt{6}}{4}$	$-2-\sqrt{3}$	$\sqrt{3}-2$
108°	$\frac{3}{5}\pi$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{1-\sqrt{5}}{4}$	$-\sqrt{5+2\sqrt{5}}$	$-\frac{\sqrt{25-10\sqrt{5}}}{5}$
112°30'	$\frac{5}{8}\pi$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$-\frac{\sqrt{2-\sqrt{2}}}{2}$	$-1-\sqrt{2}$	$1-\sqrt{2}$
120°	$\frac{2}{3}\pi$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$
126°	$\frac{7}{10}\pi$	$\frac{\sqrt{5}+1}{4}$	$-\frac{\sqrt{10-2\sqrt{5}}}{4}$	$-\frac{\sqrt{25+10\sqrt{5}}}{5}$	$-\sqrt{5-2\sqrt{5}}$
135°	$\frac{3}{4}\pi$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	-1
144°	$\frac{4}{5}\pi$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$-\frac{\sqrt{5}+1}{4}$	$-\sqrt{5-2\sqrt{5}}$	$-\frac{\sqrt{25+10\sqrt{5}}}{5}$
150°	$\frac{5}{6}\pi$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$
157°30'	$\frac{7}{8}\pi$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$-\frac{\sqrt{2+\sqrt{2}}}{2}$	$1-\sqrt{2}$	$-\sqrt{2}-1$
162°	$\frac{9}{10}\pi$	$\frac{\sqrt{5}-1}{4}$	$-\frac{\sqrt{10+2\sqrt{5}}}{4}$	$-\frac{\sqrt{25-10\sqrt{5}}}{5}$	$-\sqrt{5+2\sqrt{5}}$
165°	$\frac{11}{12}\pi$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	$\sqrt{3}-2$	$-\sqrt{3}-2$
180°	π	0	-1	0	±∞
195°	$\frac{13}{12}\pi$	$\frac{\sqrt{2}-\sqrt{6}}{4}$	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$
198°	$\frac{11}{10}\pi$	$\frac{1-\sqrt{5}}{4}$	$-\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{25 - 10\sqrt{5}}}{5}$	$\sqrt{5+2\sqrt{5}}$
202°30'	$\frac{9}{8}\pi$	$-\frac{\sqrt{2-\sqrt{2}}}{2}$	$-\frac{\sqrt{2+\sqrt{2}}}{2}$	$\sqrt{2}-1$	$\sqrt{2} + 1$
210°	$\frac{7}{6}\pi$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
216°	$\frac{6}{5}\pi$	$-\frac{\sqrt{10-2\sqrt{5}}}{4}$	$-\frac{\sqrt{5}+1}{4}$	$\sqrt{5-2\sqrt{5}}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$
225°	$\frac{5}{4}\pi$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	1

Angolo in gradi	Angolo in radianti	Valore del seno	Valore del coseno	Valore della tangente	Valore della cotangente
225°	$\frac{5}{4}\pi$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	1
234°	$\frac{13}{10}\pi$	$-\frac{\sqrt{5}+1}{4}$	$-\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$	$\sqrt{5-2\sqrt{5}}$
240°	$\frac{4}{3}\pi$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
247°30'	$\frac{11}{8}\pi$	$-\frac{\sqrt{2+\sqrt{2}}}{2}$	$-\frac{\sqrt{2-\sqrt{2}}}{2}$	$\sqrt{2}+1$	$\sqrt{2}-1$
252°	$\frac{7}{5}\pi$	$-\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{1-\sqrt{5}}{4}$	$\sqrt{5+2\sqrt{5}}$	$\frac{\sqrt{25 - 10\sqrt{5}}}{5}$
255°	$\frac{17}{12}\pi$	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{2}-\sqrt{6}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$
270°	$\frac{3}{2}\pi$	-1	0	$\pm\infty$	0
285°	$\frac{19}{12}\pi$	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$-2-\sqrt{3}$	$\sqrt{3}-2$
288°	$\frac{8}{5}\pi$	$-\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$-\sqrt{5+2\sqrt{5}}$	$-\frac{\sqrt{25-10\sqrt{5}}}{5}$
292°30'	$\frac{13}{8}\pi$	$-\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$-1-\sqrt{2}$	$1-\sqrt{2}$
300°	$\frac{5}{3}\pi$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$
306°	$\frac{17}{10}\pi$	$-\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$-\frac{\sqrt{25+10\sqrt{5}}}{5}$	$-\sqrt{5-2\sqrt{5}}$
315°	$\frac{7}{4}\pi$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	-1
324°	$\frac{9}{5}\pi$	$-\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$-\sqrt{5-2\sqrt{5}}$	$-\frac{\sqrt{25+10\sqrt{5}}}{5}$
330°	$\frac{11}{6}\pi$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$
337°30'	$\frac{15}{8}\pi$	$-\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$1-\sqrt{2}$	$-1-\sqrt{2}$
342°	$\frac{19}{10}\pi$	$\frac{1-\sqrt{5}}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$-\frac{\sqrt{25-10\sqrt{5}}}{5}$	$-\sqrt{5+2\sqrt{5}}$
345°	$\frac{23}{12}\pi$	$\frac{\sqrt{2}-\sqrt{6}}{4}$	$\frac{\sqrt{2}+\sqrt{6}}{4}$	$\sqrt{3}-2$	$-2-\sqrt{3}$
360°	2π	0	1	0	$\pm\infty$

Alcune formule di trigonometria

$$\sin(\arccos(\alpha)) = \sqrt{1 - \alpha^2} = \cos(\arcsin(\alpha))$$

$$\arccos(\alpha) + \arcsin(\alpha) = \frac{\pi}{2} \qquad \arctan(\alpha) + \arctan(\frac{1}{\alpha}) = \frac{\pi}{2}$$

$$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin\left(x + \sin^{-1}\left(\frac{b}{\sqrt{a^2 + b^2}}\right)\right) \qquad (solose \ a > 0)$$

Funzioni iperboliche

$$\sinh(x) = \frac{e^x - e^{-x}}{2} \quad ; \quad \cosh(x) = \frac{e^x + e^{-x}}{2} \quad ; \quad \tanh(x) = \frac{\sinh(x)}{\cosh(x)} \quad ; \quad \coth(x) = \frac{\cosh(x)}{\sinh(x)}$$

$$\operatorname{sech}(x) = \frac{1}{\cosh(x)} \quad ; \quad \operatorname{csch}(x) = \frac{1}{\sinh(x)} \quad ; \quad \operatorname{settsinh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$

$$\operatorname{settcosh}(x) = \ln\left(x + \sqrt{x^2 - 1}\right) \quad ; \quad \operatorname{settanh}(x) = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right) \quad ; \quad \operatorname{settcoth}(x) = \frac{1}{2}\ln\left(\frac{x + 1}{x - 1}\right)$$

$$\operatorname{settsech}(x) = \ln\left(\frac{1 + \sqrt{1 - x^2}}{x}\right) \quad ; \quad \operatorname{settcosech}(x) = \ln\left(\frac{1 \pm \sqrt{1 + x^2}}{x}\right)$$

Limiti notevoli:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \qquad ; \qquad \lim_{f(x) \to 0} \frac{\ln(1+f(x))}{f(x)} = 1$$

$$\lim_{x\to 0}\frac{\log_a(1+x)}{x}=\frac{1}{\ln(a)}\qquad;\qquad \lim_{f(x)\to 0}\frac{\log_a(1+f(x))}{f(x)}=\frac{1}{\ln(a)}$$
 con $a>0,\ a\neq 1$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \qquad ; \qquad \lim_{f(x) \to 0} \frac{e^{f(x)} - 1}{f(x)} = 1$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a) \qquad ; \qquad \lim_{f(x) \to 0} \frac{a^{f(x)} - 1}{f(x)} = \ln(a)$$

$$\cos a > 0$$

$$\lim_{x\to\pm\infty}\left(1+\frac{1}{x}\right)^x=e \qquad ; \qquad \lim_{f(x)\to\pm\infty}\left(1+\frac{1}{f(x)}\right)^{f(x)}=e$$

$$\lim_{x \to 0} \frac{(1+x)^c - 1}{x} = c \qquad ; \qquad \lim_{f(x) \to 0} \frac{(1+f(x))^c - 1}{f(x)} = c$$

 $con c \in \mathbb{R}$

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1 \qquad ; \qquad \lim_{f(x)\to 0}\frac{\sin(f(x))}{f(x)}=1$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2} \qquad ; \qquad \lim_{f(x) \to 0} \frac{1 - \cos(f(x))}{(f(x))^2} = \frac{1}{2}$$

$$\lim_{x\to 0}\frac{\tan(x)}{x}=1 \qquad ; \qquad \lim_{f(x)\to 0}\frac{\tan(f(x))}{f(x)}=1$$

$$\lim_{x\to 0} \frac{\arcsin(x)}{x} = 1 \qquad ; \qquad \lim_{f(x)\to 0} \frac{\arcsin(f(x))}{f(x)} = 1$$

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = 1 \qquad ; \qquad \lim_{f(x) \to 0} \frac{\arctan(f(x))}{f(x)} = 1$$

$$\lim_{x \to 0} \frac{\sinh(x)}{x} = 1 \qquad ; \qquad \lim_{f(x) \to 0} \frac{\sinh(f(x))}{f(x)} = 1$$

$$\lim_{x \to 0} \frac{\cosh(x) - 1}{x^2} = \frac{1}{2} \qquad ; \qquad \lim_{f(x) \to 0} \frac{\cosh(f(x)) - 1}{(f(x))^2} = \frac{1}{2}$$

$$\lim_{x\to 0}\frac{\tanh(x)}{x}=1 \qquad ; \qquad \lim_{f(x)\to 0}\frac{\tanh(f(x))}{f(x)}=1$$

$$\lim_{x \to 1^{-}} \frac{\arccos(x)}{\left(\frac{\sqrt{1-x}}{\sqrt{2}}\right)} = 1$$

Derivate delle funzioni elementari

f(x) = costante	$f'(x) = 0 \\ \label{eq:f'}$ Dimostrazione derivata di una costante
f(x) = x	$f^{\prime}(x)=1$ Dimostrazione derivata di x
$f(x) = x^s, \ s \in \mathbb{R}$	$f'(x) = sx^{s-1} \label{eq:f'}$ Dimostrazione derivata di una potenza
$f(x) = a^x$	$f'(x) = a^x \ln{(a)} \label{eq:f'}$ Dimostrazione derivata dell'esponenziale
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = \log_a(x)$	$f'(x) = \frac{1}{x \ln{(a)}}$ Dimostrazione derivata del logaritmo

	1
$f(x) = \ln\left(x\right)$	$f'(x) = \frac{1}{x}$
f(x) = x	$f'(x) = \frac{ x }{x}$ Dimostrazione derivata valore assoluto
$f(x) = \sin\left(x\right)$	$f'(x) = \cos{(x)}$ Dimostrazione derivata del seno
$f(x) = \cos(x)$	$f'(x) = -\sin{(x)}$ Dimostrazione derivata del coseno
$f(x) = \tan(x)$ [non è elementare]	$f'(x) = \frac{1}{\cos^2{(x)}}$ Dimostrazione derivata della tangente
$f(x) = \cot(x)$ [non è elementare]	$f'(x) = -\frac{1}{\sin^2{(x)}}$ Dimostrazione derivata della cotangente
$f(x) = \arcsin(x)$	$f'(x) = \frac{1}{\sqrt{1-x^2}}$ Dimostrazione derivata dell'arcoseno

$f(x) = \arccos(x)$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$ Dimostrazione analoga alla precedente
$f(x) = \arctan(x)$	$f'(x) = \frac{1}{1+x^2} \label{eq:f'}$ Dimostrazione derivata dell'arcotangente
$f(x) = \operatorname{arccot}(x)$	$f'(x) = -\frac{1}{1+x^2} \label{eq:f'}$ Dimostrazione analoga alla precedente
$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$	$f'(x) = \cosh(x)$ Dimostrazione: semplici conti
$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$	$f'(x) = \sinh(x)$ Idem come sopra

Sviluppi di Taylor-McLaurin notevoli

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \dots + \frac{x^n}{n!} + o(x^n) \ \forall x \in \mathbb{R} \quad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \forall x \in \mathbb{R}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} + \dots + \frac{(-1)^{n+1}}{n} x^n + o(x^n) \quad \text{per } |x| < 1$$

$$\ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n} \text{ per } |x| < 1$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^3 + \dots + {\alpha \choose n}x^n + o(x^n)$$
$$= \sum_{n=0}^{\infty} {\alpha \choose n}x^n \quad \text{per } |x| < 1$$

$$\binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!}$$

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \forall x \in \mathbb{R}$$

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \frac{x^8}{40320} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$$

$$cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \quad \forall x \in \mathbb{R}$$

$$\tan(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + o(x^6)$$
 per $|x| < \frac{\pi}{2}$

$$\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \frac{5}{112}x^7 + \frac{35}{1152}x^9 + o(x^9)$$
 per $|x| < 1$

$$\arccos(x) = \frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3}{40}x^5 - \frac{5}{112}x^7 - \frac{35}{1152}x^9 + o(x^9)$$
 per $|x| < 1$

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} + o(x^9) \text{ per } |x| < 1$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad \forall |x| < 1$$

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} \quad \forall |x| < 1$$

Integrali delle funzioni elementari

Integrali indefiniti fondamentali

$$\int f'(x)dx = f(x) + c$$

$$\int \!\! a \, dx = ax + c$$

$$\int\!\! x^n dx = rac{x^{n+1}}{n+1} + c$$
 , con $n
eq -1$

$$\int \frac{1}{x} dx = \log |x| + c$$

$$\int \!\! \sin x dx = \, -\cos x + c$$

$$\int \!\! \cos x dx = \sin x + c$$

$$\int (1+\tan^2 x)dx = \int \frac{1}{\cos^2 x}dx = \tan x + c$$

$$\int (1+\cot^2 x)dx = \int \frac{1}{\sin^2 x}dx = -\cot x + c$$

$$\int \sinh x dx = \cosh x + c$$

$$\int \!\! \cosh x dx = \sinh x + c$$

$$\int \!\! e^x dx = e^x + c$$

$$\int \!\! e^{kx} dx = \frac{e^{kx}}{k} + c$$

$$\int \!\! a^x dx = \frac{a^x}{\log_a a} + c$$

Integrali notevoli

$$\int \frac{1}{\sin x} dx = \log \left| \frac{\tan x}{2} \right| + c$$

$$\int \frac{1}{\cos x} dx = \log \left| \frac{\tan x}{2} + \frac{\pi}{4} \right| + c$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \begin{cases} arc\sin x + c \\ -arc\cos x + c \end{cases}$$

$$\int \frac{-1}{\sqrt{1-x^2}} dx = \begin{cases} arc\cos x + c \\ -arc\sin x + c \end{cases}$$

$$\int \frac{1}{1+x^2} dx = arc \tan x + c$$

$$\int\!\!\frac{1}{1-x^2}dx = \frac{1}{2}\!\log\!\left|\frac{1+x}{1-x}\right| + c$$

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \log \left| x + \sqrt{x^2 - 1} \right| + c$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = \begin{cases} arc \sinh x + c \\ \log(x + \sqrt{1+x^2}) + c \end{cases}$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \log \left| x + \sqrt{x^2 \pm a^2} \right| + c$$

$$\int\!\!\sqrt{\left(x^2\pm a^2
ight)}dx = rac{x}{2}\sqrt{x^2\pm a^2}\pmrac{a^2}{2}\mathrm{log}\Big(x+\sqrt{x^2\pm a^2}\Big) + c$$

$$\int\!\!\sqrt{\left(a^2-x^2
ight)}dx=rac{1}{2}\left(a^2arc\sinrac{x}{a}+x\sqrt{a^2-x^2}
ight)+c$$

$$\int \sin^2 x dx = \frac{1}{2}(x - \sin x \cos x) + c$$

$$\int \!\! \cos^2 x dx = \frac{1}{2}(x+\sin x\cos x) + c$$

$$\int \frac{1}{\cosh^2 x} dx = \int (1 - \tanh^2 x) dx + c = \tanh x + c$$

Integrali indefiniti riconducibili a quelli immediati

$$\int f^{n}(x) \cdot f'(x) dx = \frac{f^{n+1}(x)}{n+1} + c$$

$$\int e^{f(x)} \cdot f'(x) dx = e^{f(x)} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \log|f(x)| + c$$

$$\int a^{f(x)} \cdot f'(x) dx = \frac{a^{f(x)}}{\log_{e} a} + c$$

$$\int f'(x) \cdot \cos f(x) dx = \sin f(x) + c$$

$$\int \frac{f'(x)}{\sqrt{1 - f^{2}(x)}} dx = \begin{cases} arc \sin f(x) + c \\ -arc \cos f(x) + c \end{cases}$$

$$\int \frac{f'(x)}{1 + f^{2}(x)} dx = arc \tan f(x) + c$$

$$\int \frac{dx}{Ax^2 + B} = \frac{arctg\left(\sqrt{\frac{A}{B}}x\right)}{\sqrt{AB}} + c$$

Formule di integrazione ricorsiva

$$\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx$$

$$\int x^n \ln(x) dx = \frac{x^{n+1} ((n+1) \ln(x) - 1)}{(n+1)^2} + c$$

$$\int \sin^{n}(x)dx = -\frac{\cos(x)\sin^{n-1}(x)}{n} + \frac{n-1}{n} \int \sin^{n-2}(x)dx$$

$$\int \cos^n(x)dx = \frac{\sin(x)\cos^{n-1}(x)}{n} + \frac{n-1}{n}\int \cos^{n-2}(x)dx$$

$$\int \sin^n(x) \cos^m(x) dx = \begin{cases} -\frac{\sin^{n-1}(x) \cos^{m+1}(x)}{m+n} + \frac{n-1}{m+n} \int \sin^{n-2}(x) \cos^m(x) dx \\ \\ \frac{\sin^{n+1}(x) \cos^{m-1}(x)}{m+n} + \frac{m-1}{m+n} \int \sin^n(x) \cos^{m-2}(x) dx \end{cases}$$

$$\int \frac{dx}{(1+x^2)^{n+1}} = \frac{x}{2n(1+x^2)^n} + \frac{2n-1}{2n} \int \frac{dx}{(1+x^2)^n}$$

Criteri di convergenza serie:

consideriamo S:
$$\sum_{n=1}^{+\infty} a_n$$

S convergente => $\lim_{n\to+\infty} a_n = 0$

(se questo non è vero S non converge!)

Se $\exists m$ t.c. $\forall n \geq m$ $a_n \geq 0$ (o $a_n \leq 0$) allora S non è indeterminata!

$$\sum_{n=1}^{+\infty} x^n = \frac{1}{1-x} \qquad (se-1 < x < 1) \qquad (div.se \ x \ge 1) \ (ind.se \ x \le -1)$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^p} \qquad (conv. se \ p > 1) \qquad (div.se \ p \le 1)$$

Confronto: se $\exists m \quad t. c. \quad \forall n \geq m \quad b_n \geq a_n \geq 0$

$$\sum_{n=1}^{+\infty} b_n \ conv. \qquad => \qquad \sum_{n=1}^{+\infty} a_n \quad conv.$$

$$\sum_{n=1}^{+\infty} a_n \ div. \qquad => \qquad \sum_{n=1}^{+\infty} b_n \quad div.$$

Infinitesimi: sia $l = \lim_{n \to +\infty} n^p a_n$ e $\exists m \ t.c. \ \forall n \ge m \ a_n \ge 0$

$$l \neq +\infty, p > 1 => \sum_{n=1}^{+\infty} a_n \quad conv.$$

$$l \neq 0, p \leq 1 = \sum_{n=1}^{+\infty} a_n = +\infty$$

Rapporto: sia $l = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n}$ e $\exists m \ t.c. \ \forall n \ge m \ a_n > 0$

$$l < 1 => \sum_{n=1}^{+\infty} a_n \quad conv.$$

$$l > 1 \qquad => \qquad \sum_{n=1}^{+\infty} a_n = +\infty$$

Radice:
$$\sin l = \lim_{n \to +\infty} \sqrt[n]{a_n}$$
 e $\exists m \ t.c. \ \forall n \ge m \ a_n \ge 0$

se l < 1 allora la serie converge

se l > 1 allora la serie diverge

Leibniz: sia $0 = \lim_{n \to +\infty} a_n$ e $\exists m \ t.c. \ \forall n \ge m \ a_n \ge a_{n+1} \ge 0$

allora
$$\sum_{n=1}^{+\infty} (-1)^n a_n$$
 converge

Integrale: $\sin f(x)$ continua e decrescente in $[1; +\infty)$

allora
$$\sum_{n=1}^{+\infty} f(n)$$
 converge se e solo se $\int_{1}^{+\infty} f(x)dx$ converge

Confronto asintotico: Sia $a_n>0$, $b_n>0$ t.c. $\exists \lim_{n\to +\infty}\frac{a_n}{b_n}=l$ allora

$$0 \le l < +\infty$$
 $e \sum_{n=1}^{+\infty} b_n$ converge $==> \sum_{n=1}^{+\infty} a_n$ converge $0 < l \le +\infty$ $e \sum_{n=1}^{+\infty} b_n$ diverge $==> \sum_{n=1}^{+\infty} a_n$ diverge

Disuguaglianza di Bernoulli:

$$\forall n \in \mathbb{N}_0, \forall x \ge -1 \qquad (1+x)^n \ge 1 + nx$$