EE 330 Lecture 39

Digital Circuit Design

- Characterization of CMOS Inverter
- One device sizing strategy

Hierarchical Digital Design Domains:

Multiple Levels of Abstraction

Review from last lecture

Digital Circuit Design

Properties of Logic Families

Characterization of CMOS Inverter

- Static CMOS Logic Gates
 - Ratio Logic
- **Propagation Delay**
 - Simple analytical models
 - FI/OD
 - **Logical Effort**
 - Elmore Delay
- Sizing of Gates
 - The Reference Inverter

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large **Capacitive Loads**
- Power Dissipation in Logic Circuits
- Other Logic Styles
- **Array Logic**
- Ring Oscillators

done

partial

The basic logic gates

It suffices to characterize the inverter of a logic family and then express the performance of other gates in that family in terms of the performance of the inverter.

What characteristics are required and desirable for an inverter to form the basis for a useful logic family?

Review from last lecture What are the logic levels for a given inverter of for a given logic family?

Can we legislate them?

- Some authors choose to define them based upon specific features of inverter
- Analytical expressions may be complicated
- But what if the circuit does not interpret them the same way they are defined !!

Review from last lecture

Ask the inverter how it will interpret logic levels

$$V_H=?$$

$$V_L=?$$

The two-inverter loop

The two-inverter loop

Standard 6-transistor SRAM Cell

Ask the inverter how it will interpret logic levels

Thus, consider the inverter pair

Ask the inverter how it will interpret logic levels

 V_{H} and V_{L} will be on the intersection of the transfer characteristics of the inverter pair (IPTC) and the $V'_{OUT} = V_{IN}$ line

V_H and V_L often termed the "1" and "0" states

Ask the inverter how it will interpret logic levels

When $V'_{OUT}=V_{IN}$, V_{H} and V_{L} are stable operating points, V_{TRIP} is a quasi-stable operating point

Observe: slope of IPTC is greater than 1 at V_{TRIP} and less than 1 at V_H and V_L

 V_{TRIP}

 V_H

Observation

When $V_{OUT}=V_{IN}$ for the inverter, V'_{OUT} is also equal to V_{IN} . Thus the intersection point for $V_{OUT}=V_{IN}$ in the inverter transfer characteristics (ITC) is also an intersection point for $V'_{OUT}=V_{IN}$ in the inverter-pair transfer characteristics (IPTC)

Implication: Inverter characteristics can be used directly to obtain V_{TRIP}

Logic Family Characteristics

What properties of an inverter are necessary for it to be useful for building a two-level logic family?

The inverter-pair transfer characteristics must have three unique intersection points with the $V'_{OUT} = V_{IN}$ line

What are the logic levels for a given inverter of for a given logic family?

The two extreme intersection points of the inverter-pair transfer V_{OUT} characteristics with the $V_{OUT} = V_{IN}$ line

Can we legislate V_H and V_I for a logic family ? No!

What other properties of the inverter are desirable?

Reasonable separation between V_H and V_L (enough separation so that noise does not cause circuit to interpret level incorrectly)

$$V_{\text{TRIP}} \cong \frac{V_{\text{H}} + V_{\text{L}}}{2}$$
 (to provide adequate noise immunity and process insensitivity)

What happens near the quasi-stable operating point?

S₂ closed and X=Y=V_{TRIP}

What happens near the quasi-stable operating point?

 S_2 closed and $X=Y=V_{TRIP}$

If X decreases even very slightly, will move to the X=0, Y=1 state (very fast)

If X increases even very slightly, will move to the X=1, Y=0 state (very fast)

What if the inverter pair had the following transfer characteristics?

What if the inverter pair had the following transfer characteristics?

Multiple levels of logic

Every intersection point with slope <1 is a stable point

Every intersection point with slope >1 is a quasi-stable point

What are the transfer characteristics of the static CMOS inverter pair?

Consider first the inverter

$$V_{_{\mathsf{IN}}}$$
 OUT

Transfer characteristics of the static CMOS inverter

Vin is so high that M₁ triode, M₂ cutoff Case 1

$$\begin{split} &I_{_{D1}}=\mu_{_{D}}C_{_{OXn}}\frac{W_{_{1}}}{L_{_{1}}}\bigg(V_{_{IN}}-V_{_{Tn}}-\frac{V_{_{OUT}}}{2}\bigg)V_{_{OUT}}\\ &I_{_{D2}}=0 \end{split}$$

Equating I_{D1} and $-I_{D2}$ we

obtain:
$$0 = \mu_{\scriptscriptstyle n} C_{\scriptscriptstyle OXn} \, \frac{W_{\scriptscriptstyle 1}}{L_{\scriptscriptstyle 1}} \bigg(V_{\scriptscriptstyle IN} - V_{\scriptscriptstyle Tn} - \frac{V_{\scriptscriptstyle OUT}}{2} \bigg) V_{\scriptscriptstyle OUT}$$

It can be shown that setting the first product term to 0 will not verify, thus

$$V_{\text{out}} = 0$$

valid for:

$$V_{_{\mathrm{GS1}}} \geq V_{_{\mathrm{Tn}}}$$

$$V_{DS1} < V_{GS1} - V_{TD}$$
 $V_{GS2} \ge V_{TD}$

$$V_{_{GS2}} \ge V_{_{T_1}}$$

thus, valid for:

$$V_{_{IN}} \ge V_{_{Tn}}$$

$$V_{\text{OUT}} < V_{\text{IN}} - V_{\text{TD}}$$
 $V_{\text{IN}} - V_{\text{DD}} \ge V_{\text{TD}}$

$$V_{_{IN}} - V_{_{DD}} \ge V_{_{Tp}}$$

Graphical Interpretation of these conditions:

$$V_{_{IN}} \geq V_{_{TN}} \qquad V_{_{OUT}} < V_{_{IN}} - V_{_{TN}} \qquad V_{_{IN}} - V_{_{DD}} \geq V_{_{Tp}}$$

Case 1 M_1 triode, M_2 cutoff

$$V_{\text{out}} = 0$$

Case 1 M_1 triode, M_2 cutoff

$$V_{\text{out}} = 0$$

Transfer characteristics of the static CMOS inverter

(Neglect λ effects)

Partial solution:

Regions of Operation for Devices in CMOS inverter

Case 2 M_1 triode, M_2 sat

Transfer characteristics of the static CMOS inverter

(Neglect λ effects)

Case 2 M₁ triode, M₂ sat

$$\begin{split} I_{_{D1}} &= \mu_{_{D}} C_{_{OXn}} \frac{W_{_{1}}}{L_{_{1}}} \bigg(V_{_{IN}} - V_{_{Tn}} - \frac{V_{_{OUT}}}{2} \bigg) V_{_{OUT}} \\ I_{_{D2}} &= -\frac{\mu_{_{p}} C_{_{OXp}}}{2} \frac{W_{_{2}}}{L_{_{2}}} \Big(V_{_{IN}} - V_{_{DD}} - V_{_{Tp}} \Big)^{^{2}} \end{split}$$

Equating I_{D1} and $-I_{D2}$ we obtain:

$$\frac{\mu_{_{p}}C_{_{OXp}}}{2}\frac{W_{_{2}}}{L_{_{2}}}\big(V_{_{IN}}-V_{_{DD}}-V_{_{Tp}}\big)^{^{2}}=\mu_{_{n}}C_{_{OXn}}\frac{W_{_{1}}}{L_{_{1}}}\bigg(V_{_{IN}}-V_{_{Tn}}-\frac{V_{_{OUT}}}{2}\bigg)V_{_{OUT}}$$

valid for:

$$V_{GS1} \ge V_{Tn}$$

$$V_{\text{GS1}} \geq V_{\text{Tn}} \qquad V_{\text{DS1}} < V_{\text{GS1}} - V_{\text{Tn}} \qquad V_{\text{GS2}} \leq V_{\text{Tp}} \qquad V_{\text{DS2}} \leq V_{\text{GS2}} - V_{\text{T2}}$$

$$V_{GS2} \leq V_{TD}$$

$$V_{DS2} \leq V_{GS2} - V_{T2}$$

thus, valid for:

$$oldsymbol{\mathsf{V}}_{\scriptscriptstyle\mathsf{IN}} \geq oldsymbol{\mathsf{V}}_{\scriptscriptstyle\mathsf{Tn}} \qquad oldsymbol{\mathsf{V}}_{\scriptscriptstyle\mathsf{OUT}} <$$

$$V_{\text{out}} < V_{\text{in}} - V_{\text{tr}}$$

$$V_{_{IN}} - V_{_{DD}} \leq V_{_{TD}}$$

$$V_{_{IN}} \geq V_{_{TN}} \qquad V_{_{OUT}} < V_{_{IN}} - V_{_{TN}} \qquad V_{_{IN}} - V_{_{DD}} \leq V_{_{Tp}} \qquad V_{_{OUT}} - V_{_{DD}} \leq V_{_{IN}} - V_{_{DD}} - V_{_{Tp}}$$

Case 2 M_1 triode, M_2 sat

Case 2 M_1 triode, M_2 sat

Transfer characteristics of the static CMOS inverter

Partial solution:

Case 3 M_1 sat, M_2 sat

Case 3 M_1 sat, M_2 sat

$$\begin{split} I_{_{D1}} &= \frac{\mu_{_{n}}C_{_{OXn}}}{2} \frac{W_{_{1}}}{L} \big(V_{_{IN}} - V_{_{Tn}}\big)^{^{2}} \\ I_{_{D2}} &= \frac{\mu_{_{p}}C_{_{OXp}}}{2} \frac{W_{_{2}}}{L_{_{2}}} \big(V_{_{IN}} - V_{_{DD}} - V_{_{Tp}}\big)^{^{2}} \end{split}$$

Equating I_{D1} and $-I_{D2}$ we obtain:

$$\frac{\mu_{_{p}}C_{_{OXp}}}{2}\frac{W_{_{2}}}{L_{_{2}}}\left(V_{_{IN}}-V_{_{DD}}-V_{_{Tp}}\right)^{2}=\frac{\mu_{_{n}}C_{_{OXn}}}{2}\frac{W_{_{1}}}{L_{_{1}}}\left(V_{_{IN}}-V_{_{Tn}}\right)^{2}$$

Which can be rewritten as:

$$\sqrt{\frac{\mu_{_{D}}C_{_{OXp}}}{2}\frac{W_{_{2}}}{L_{_{2}}}}\big(V_{_{DD}}+V_{_{Tp}}-V_{_{IN}}\big) = \sqrt{\frac{\mu_{_{n}}C_{_{OXn}}}{2}\frac{W_{_{1}}}{L_{_{1}}}}\big(V_{_{IN}}-V_{_{Tn}}\big)$$

Which can be simplified to:

$$V_{_{IN}} = \frac{\left(V_{_{Tn}}\right)\sqrt{\frac{\mu_{_{n}}C_{_{OXn}}}{2}\frac{W_{_{1}}}{L_{_{1}}}} + \left(V_{_{DD}} + V_{_{Tp}}\right)\sqrt{\frac{\mu_{_{p}}C_{_{OXp}}}{2}\frac{W_{_{2}}}{L_{_{2}}}}}{\sqrt{\frac{\mu_{_{n}}C_{_{OXn}}}{2}\frac{W_{_{1}}}{L_{_{1}}}} + \sqrt{\frac{\mu_{_{p}}C_{_{OXp}}}{2}\frac{W_{_{2}}}{L_{_{2}}}}}$$

V_{IN} V_{OUT}

This is a vertical line

Transfer characteristics of the static CMOS inverter

(Neglect λ effects)

Case 3 M_1 sat, M_2 sat

$$V_{_{IN}} = \frac{\left(V_{_{Tn}}\right)\sqrt{\frac{\mu_{_{n}}C_{_{OXn}}}{2}\frac{W_{_{_{1}}}}{L_{_{_{1}}}}} + \left(V_{_{DD}} + V_{_{Tp}}\right)\sqrt{\frac{\mu_{_{p}}C_{_{OXp}}}{2}\frac{W_{_{_{2}}}}{L_{_{_{2}}}}}}{\sqrt{\frac{\mu_{_{n}}C_{_{OXn}}}{2}\frac{W_{_{_{1}}}}{L_{_{_{1}}}}} + \sqrt{\frac{\mu_{_{p}}C_{_{OXp}}}{2}\frac{W_{_{_{2}}}}{L_{_{_{2}}}}}}$$

Since $C_{ox_n} \cong C_{ox_p} = C_{ox}$ this can be simplified to:

$$V_{_{IN}} = \frac{\left(V_{_{Tn}}\right)\sqrt{\frac{W_{_{1}}}{L_{_{1}}}} + \left(V_{_{DD}} + V_{_{Tp}}\right)\sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}}} \frac{W_{_{2}}}{L_{_{2}}}}{\sqrt{\frac{W_{_{1}}}{L_{_{1}}}} + \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}} \frac{W_{_{2}}}{L_{_{2}}}}}$$

valid for:

$$V_{_{GS1}} \ge V_{_{Tn}}$$

$$V_{GS1} \ge V_{Tn}$$
 $V_{DS1} \ge V_{GS1} - V_{Tn}$ $V_{GS2} \le V_{Tn}$ $V_{DS2} \le V_{GS2} - V_{T2}$

$$V_{_{GS2}} \leq V_{_{Tp}}$$

$$V_{DS2} \leq V_{GS2} - V_{T2}$$

thus, valid for:

$$V_{in} \geq V_{To}$$

$$V_{_{OUT}} \geq V_{_{IN}} - V_{_{Tr}}$$

$$V_{_{IN}} - V_{_{DD}} \leq V_{_{TD}}$$

$$\mathsf{V}_{_{\mathsf{IN}}} \geq \mathsf{V}_{_{\mathsf{TN}}} \qquad \mathsf{V}_{_{\mathsf{OUT}}} \geq \ \mathsf{V}_{_{\mathsf{IN}}} - \mathsf{V}_{_{\mathsf{TN}}} \qquad \qquad \mathsf{V}_{_{\mathsf{IN}}} - \mathsf{V}_{_{\mathsf{DD}}} \leq \mathsf{V}_{_{\mathsf{TP}}} \qquad \ \mathsf{V}_{_{\mathsf{OUT}}} \text{-} \mathsf{V}_{_{\mathsf{DD}}} \leq \mathsf{V}_{_{\mathsf{IN}}} \text{-} \mathsf{V}_{_{\mathsf{DD}}} \text{-} \mathsf{V}_{_{\mathsf{TP}}}$$

Case 3 M_1 sat, M_2 sat

Case 3 M_1 sat, M_2 sat

Partial solution:

Case 4 M_1 sat, M_2 triode

Transfer characteristics of the static CMOS inverter

(Neglect λ effects)

Case 4 M₁ sat, M₂ triode

$$I_{D1} = \frac{\mu_{n}C_{OXn}}{2} \frac{W_{1}}{L_{1}} (V_{IN} - V_{Tn})^{2}$$

$$I_{D2} = -\mu_{p}C_{OXp} \frac{W_{2}}{L_{2}} (V_{IN} - V_{DD} - V_{Tp} - \frac{V_{OUT} - V_{DD}}{2}) \bullet (V_{OUT} - V_{DD})$$
Equating I_{D1} and $-I_{D2}$ we obtain:

Equating I_{D1} and $-I_{D2}$ we obtain:

$$\frac{\mu_{n}C_{oxn}}{2}\frac{W_{1}}{L_{1}}(V_{IN}-V_{Tn})^{2} = \mu_{p}C_{oxp}\frac{W_{2}}{L_{2}}\left(V_{IN}-V_{DD}-V_{Tp}-\frac{V_{OUT}-V_{DD}}{2}\right) \bullet (V_{OUT}-V_{DD})$$

valid for:

$$V_{\text{GS1}} \geq V_{\text{Tn}}$$
 $V_{\text{DS1}} \geq V_{\text{GS1}} - V_{\text{Tn}}$ $V_{\text{GS2}} \leq V_{\text{Tp}}$ $V_{\text{DS2}} > V_{\text{GS2}} - V_{\text{T2}}$

thus, valid for:

$$V_{_{IN}} \geq V_{_{TN}} \qquad V_{_{OUT}} \geq \ V_{_{IN}} - V_{_{TN}} \qquad V_{_{IN}} - V_{_{DD}} \leq V_{_{Tp}} \qquad V_{_{OUT}} - V_{_{DD}} > V_{_{IN}} - V_{_{DD}} - V_{_{Tp}}$$

Case 4 M_1 sat, M_2 triode

Case 4 M_1 sat, M_2 triode

Partial solution:

Case 4 M_1 cutoff, M_2 triode

Transfer characteristics of the static CMOS inverter

(Neglect λ effects)

M₁ cutoff, M₂ triode Case 5

$$I_{D1} = 0$$

$$I_{\text{\tiny D2}} = -\mu_{\text{\tiny p}} C_{\text{\tiny OXP}} \frac{W_{\text{\tiny 2}}}{L_{\text{\tiny 2}}} \left(V_{\text{\tiny IN}} - V_{\text{\tiny DD}} - V_{\text{\tiny TP}} - \frac{V_{\text{\tiny OUT}} - V_{\text{\tiny DD}}}{2} \right) \bullet \left(V_{\text{\tiny OUT}} - V_{\text{\tiny DD}} \right)$$

Equating I_{D1} and $-I_{D2}$ we obtain:

$$\mu_{\scriptscriptstyle p} C_{\scriptscriptstyle OXP} \, \frac{W_{\scriptscriptstyle 2}}{L_{\scriptscriptstyle 2}} \! \bigg(V_{\scriptscriptstyle IN} - V_{\scriptscriptstyle DD} - V_{\scriptscriptstyle TP} - \frac{V_{\scriptscriptstyle OUT} \text{-} V_{\scriptscriptstyle DD}}{2} \bigg) \bullet \big(V_{\scriptscriptstyle OUT} \text{-} V_{\scriptscriptstyle DD} \big) = 0$$

valid for:

$$V_{GS1} < V_{Tn}$$

$$V_{_{GS2}} \leq V_{_{Tp}}$$

$$V_{\text{GS2}} \leq V_{\text{Tp}}$$
 $V_{\text{DS2}} > V_{\text{GS2}} - V_{\text{T2}}$

thus, valid for:

$$V_{_{\text{IN}}} < V_{_{\text{Tn}}}$$

$$V_{_{IN}} - V_{_{DD}} \leq V_{_{Tp}}$$

$$V_{_{IN}} - V_{_{DD}} \le V_{_{Tp}}$$
 $V_{_{OUT}} - V_{_{DD}} > V_{_{IN}} - V_{_{DD}} - V_{_{Tp}}$

Case 5 M_1 cutoff, M_2 triode

Case 5 M_1 cutoff, M_2 triode

Transfer characteristics of the static CMOS inverter

(Neglect λ effects)

Transfer characteristics of the static CMOS inverter

(Neglect λ effects)

From Case 3 analysis:

$$V_{_{IN}} = \frac{\left(V_{_{Tn}}\right) + \left(V_{_{DD}} + V_{_{Tp}}\right) \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}}} \frac{W_{_{2}}}{W_{_{1}}} \frac{L_{_{1}}}{L_{_{2}}}}{1 + \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}} \frac{W_{_{2}}}{W_{_{1}}} \frac{L_{_{1}}}{L_{_{2}}}}}$$

Inverter Transfer Characteristics of Inverter Pair

What are V_H and V_L ?

Find the points on the inverter pair transfer characteristics where V_{OUT} '= V_{IN} and the slope is less than 1

Inverter Transfer Characteristics of Inverter Pair for THIS Logic Family

 $V_H = V_{DD}$ and $V_L = 0$

∳Vouτ

Note this is independent of device sizing for THIS logic family !!

Sizing of the Basic CMOS Inverter

The characteristic that device sizes do not need to be used to establish V_H and V_L logic levels is a major advantage of this type of logic

How should M_1 and M_2 be sized?

How many degrees of freedom are there in the design of the inverter?

How should M₁ and M₂ be sized?

How many degrees of freedom are there in the design of the inverter?

$$\{ W_1, W_2, L_1, L_2 \}$$

4 degrees of freedom

But in basic device model and in \underline{most} performance metrics, W_1/L_1 and W_2/L_2 appear as ratios

$$\{ W_1/L_1, W_2/L_2 \}$$

effectively 2 degrees of freedom

How should M₁ and M₂ be sized?

$$\{ W_1, W_2, L_1, L_2 \}$$

4 degrees of freedom

Usually pick L₁=L₂=L_{min}

 $\{W_1, W_2\}$ effectively 2 degrees of freedom

How are W₁ and W₂ chosen?

Depends upon what performance parameters are most important for a given application!

How should M₁ and M₂ be sized?

pick
$$L_1=L_2=L_{min}$$

One popular sizing strategy:

- 1. Pick $W_1=W_{MIN}$ to minimize area of M_1
- 2. Pick W_2 to set trip-point at $V_{DD}/2$

Observe Case 3 provides expression for V_{TRIP}

Thus, at the trip point,

$$V_{\text{OUT}} = V_{\text{IN}} = V_{\text{TRIP}} = \frac{\left(V_{\text{Tn}}\right) + \left(V_{\text{DD}} + V_{\text{Tp}}\right) \sqrt{\frac{\mu_{\text{p}}}{\mu_{\text{n}}} \frac{W_{\text{2}}}{W_{\text{1}}}}}{1 + \sqrt{\frac{\mu_{\text{p}}}{\mu_{\text{n}}} \frac{W_{\text{2}}}{W_{\text{1}}}}}$$

$$= \frac{V_{\text{DD}}}{2} , \quad \text{if } \frac{W_{\text{2}}}{W} = \frac{\mu_{\text{n}}}{u}$$

Other sizing strategies will be discussed later!

Extension of Basic CMOS Inverter to Multiple-Input Gates

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table

Performs as a 2-input NOR Gate

Can be easily extended to an n-input NOR Gate

 $V_H = V_{DD}$ and $V_L = 0$ (inherited from inverter analysis)

Extension of Basic CMOS Inverter to Multiple-Input Gates

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

Truth Table

Performs as a 2-input NAND Gate

Can be easily extended to an n-input NAND Gate

 $V_H = V_{DD}$ and $V_L = 0$ (inherited from inverter analysis)

Static CMOS Logic Family

Observe PUN is p-channel, PDN is n-channel $V_H=V_{DD}$ and $V_I=0$ (inherited from inverter analysis)

Static CMOS Logic Family

n-channel PDN and p-channel PUN $V_H=V_{DD}$, $V_L=0V$ (same as for inverter!)

End of Lecture 39