МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа
по курсу «Фундаментальная
информатика»
І семестр
Задание 4
«Процедуры и функции в качестве параметров»

Группа	М8О-109Б-22
Студент	Любарский И.В.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Введение

Цель: Составить программу на Си с процедурами решения трансцендентных алгебраических уравнений различными численными методами (итераций, Ньютона и половинного деления - дихотомии). Нелинейные уравнения оформить как параметр функции, разрешив относительно неизвестной величины в случае необходимости. Применить каждую процедуру к решению двух уравнений, заданным двумя строками таблицы, начиная с варианта с заданными номером. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию.

Задачи:

- Создать функцию, вычисляющую корень уравнения методом дихотомии.
- Создать функцию, вычисляющую корень уравнения методом итераций.
- Настроить точность вычислений.
- Считать начало и конец отрезков.
- Скомпоновать готовые функции и данные в программу вывода.

2	$\cos x - e^{-\frac{x^2}{2}} + x - 1 = 0$	[1, 2]	дихотомии	1.0804
3	$1 - x + \sin x - \ln(1+x) = 0$	[1, 1.5]	итераций	1.1474

Дополнительная информация

Метод итераций:

Идея метода заключается в замене исходного уравнения F(x) = 0 на x = f(x).

Достаточное условие сходимости метода: |f'(x)| < 1, $x \in [a,b]$. Это условие необходимо проверить перед началом решения задачи, так как функция f(x) может быть выбрана неоднозначно, причем в случае неверного выбора указанной функции метод расходиться.

Начальное приближение корня: $x^{(0)} = (a+b)/2$ (середина исходного отрезка).

Итерационный процесс: $x^{(k+1)} = f(x^{(k)})$.

Условие окончания: $|x^{(k)} - x^{(k-1)}| < \xi$.

Приближенное значение корня: $x \approx x^{(\text{конечное})}$.

Метод дихотомии:

Очевидно, что если на отрезке [a,b] существует корень уравнения, то значения функции на концах отрезка имеют разные знаки: F(a)*F(b) < 0. Метод заключается в делении отрезка пополам и его сужении в два раза на каждом шаге итерационного процесса в зависимости от знака функции в середине отрезка.

Итерационный процесс строиться следующим образом: за начальное приближение принимаются границы исходного отрезка $a^{(0)}=a, b^{(0)}=b$. Далее вычисления проводятся по формулам: $a^{(k+1)}=(a^{(k)}+b^{(k)})/2$, $b^{(k+1)}=b^{(k)}$, если $F(a^{(k)})^*F((a^{(k)}+b^{(k)})/2)>0$; или по формулам: $a^{(k+1)}=a^{(k)}$, $b^{(k+1)}=(a^{(k)}+b^{(k)})/2$, если $F(b^{(k)})^*F((a^{(k)}+b^{(k)})/2)>0$.

Процесс повторяется до тех пор, пока не будет выполнено условие $|a^{(k)}-b^{(k)}|<\xi$.

Приближенное значение корня к моменту окончания итерационного процесса получается следующим образом $x \approx (a^{(\text{конечное})} + b^{(\text{конечное})})/2$.

Практическая часть

Для решения поставленных задач необходимо инициализировать описанные функции:

- Функция варианта 2.
- Функция варианта 3.
- Функция производной.
- Функция проверка на сходимость итерационного метода.
- Функция итерационного метода.
- Функция метода дихотомии.

Также нужно определить начало и конец отрезка и учесть их при написании программы.

Название переменной	Тип переменной	Значение переменной
delta	const double	Переменная машинного нуля
a	long double	Переменная начала отрезка
b	long double	Переменная конца отрезка
Fx2	long double	Переменная аргумента функции варианта 2
Fx3	long double	Переменная аргумента функции варианта 3
Absx	long double	Переменная модуля
Ia	long double	Начала отрезка в методе итераций
Ib	long double	Конец отрезка в методе итераций
Da	long double	Начало отрезка в методе дихотомии
Db	long double	Конец отрезка в методе дихотомии
Nf	int	Номер функции

		производной
Derx	long double	Аргумент функции производной

Для уравнения варианта 3 недействительна проверка на сходимость. В точке $x \approx 1.0656$ значений модуля производной функции становиться больше 1. Следовательно метод итерации неприменим в данном случае.

График производной функции

Алгоритм выполнения:

- 1. Считывание начала и конца отрезка для метода итераций.
- 2. Определение сходимости функции для итерационного метода.
- 3. Вычисление корня функции методом итераций.
- 4. Считывание начала и конца отрезка для метода дихотомии.
- 5. Вычисление корня функции методом дихотомии.
- 6. Вывод корней уравнений и их значения в данных точках.

Исходный код

```
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <float.h>
long double Function2(long double x); //Возвращает значение функции 2
long double Function3(long double x); //Возвращает значение функции 3
long double derivative(int Nf, long double x); //Возвращает значение производной функции 2 или 3
long double LDabs(long double x); //Модуль для типа long double
int verify_iteration(); //Проверка на сходимость итерационного метода
long double iteration(long double a, long double b); //Решение итерационным методом
long double dihotomia(long double a, long double b); //Решение методом дихотомии
const double delta = 1.0e-15; //"Бесконечно малая" величина для машинного нуля
int main() {
        long double a, b;
        printf("Enter a b for iteration: ");
        scanf_s("%lf%lf", &a, &b);
        if (verify iteration()) {
                printf("%lf\n", iteration(a, b));
        else { printf("Function3 is not converge\n"); }
        printf("Enter a b for dihotomia: ");
        scanf_s("%lf%lf", &a, &b);
```

```
printf("Function2 x is equal: %lf\nltself equal: %lf\n", dihotomia(a, b), Function2(dihotomia(1,2)));
                     return 0;
}
long double Function2(long double Fx2) { return cos(Fx2) - pow(exp(1), -pow(Fx2, 2) / 2) + Fx2 - 1; }
long double Function3(long double Fx3) { return 1 - Fx3 + sin(Fx3) - log(1 + Fx3); }
long double derivative(int Nf, long double x) {
                     if (Nf == 2) { return (Function2(x + delta) - Function2(x)) / delta; }
                     if (Nf == 3) { return (Function3(x + delta) - Function3(x)) / delta; }
}
long double LDabs(long double Absx) {
                     if (Absx < 0) { return -Absx; }
                     return Absx;
}
int verify_iteration() {
                     for (long double i = 1; i \le 1.5; i + 1
                     return 1;
}
long double iteration(long double la, long double lb) {
                     long double x = (la + lb) / 2;
                     long double temp = Function3(x);
                     while (LDabs(temp - x) >= delta) {
                                          x = temp;
                                          temp = Function3(x);
                     }
                     return x;
}
long double dihotomia(long double Da, long double Db) {
                     while (1) {
                                          if (Function2(Da) * Function2((Da + Db) / 2) > 0) { Da = (Da + Db) / 2; }
                                           else { Db = (Da + Db) / 2; }
                                           if (Db - Da < delta) { return (Da + Db) / 2; }
                     }
}
```

Входные данные: числа a, b начала и конца отрезка соответственно для каждого уравнения.

Выходные данные: корень уравнения и значения функции в данной точке

Протокол исполнения программы Тест I

Ввод: 1 1.5 1 2

Вывод:

Enter a b for iteration: 1 1.5 Function3 is not converge Enter a b for dihotomia: 1 2

Function2 x is equal: 1.089443

Itself equal: 0.000000

Заключение

Были написаны функции проверки использования определенных методов решения уравнений, определены и инициализированы сами функции различных методов поиска корня уравнения.

Данная работа полезна в увеличении познаний о способах решений уравнений и методах их программной реализации.

Источники

- Метод итерации https://ru.wikipedia.org/wiki/Метод итерации
- Дихотомия https://ru.wikipedia.org/wiki/Дихотомия