Solutions to sample midterm questions

1. To show that f is uniformly continuous, choose $\epsilon > 0$. Since $f_n \to f$ uniformly, there exists an N such that n > N implies that

$$|f_n(x) - f(x)| < \frac{\epsilon}{3} \tag{1}$$

for all $x \in (a, b)$. Now consider f_{N+1} : since this is uniformly continuous, there exists a $\delta > 0$ such that if $x, y \in (a, b)$ and $|x - y| < \delta$, then

$$|f_{N+1}(x) - f_{N+1}(y)| < \frac{\epsilon}{3}. \tag{2}$$

Now, for any $x, y \in (a, b)$ with $|x - y| < \delta$,

$$|f(x) - f(y)| \le |f(x) - f_{N+1}(x)| + |f_{N+1}(x) - f_{N+1}(y)| + |f_{N+1}(y) - f(y)|$$

 $< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$

and hence f is uniformly continuous.

2. (a) For f_1 ,

$$\beta = \limsup_{n \to \infty} |n^{-2}|^{1/n}$$
$$= \limsup_{n \to \infty} \frac{1}{n^{2/n}} = 1$$

Hence the radius of convergence is R = 1.

For f_2 , since some terms are zero, the radius of convergence can be evaluated by computing the limit of the non-zero terms:

$$\beta = \limsup_{k \to \infty} |a_n|^{1/n}$$

$$= \lim_{k \to \infty} |a_{2k}|^{1/2k}$$

$$= \lim_{k \to \infty} |2^{-k}|^{1/2k}$$

$$= \lim_{k \to \infty} 2^{-1/2}$$

$$= \frac{1}{\sqrt{2}}.$$

Hence $R = \sqrt{2}$.

(b) Define $x = y/(1+y^2)$. Then $f_3(y) = f_1(x)$. If $|y| \le 1$, then $|y| < 1+y^2$, and hence |x| < 1. If |y| > 1, then $|y| < y^2$ and so $|y| < 1+y^2$, so |x| < 1 also. Hence for all $y \in \mathbb{R}$, |x| < 1, and since $f_1(x)$ converges for x in this range, $f_3(y)$ must converge also.

This question can also be answered using the Weierstraß M-test, by showing that the nth term in the series is bounded by $1/n^2$, and $\sum |1/n^2|$ converges.

3. To show that $f_n(x_n)$ converges to f(x), consider any $\epsilon > 0$. Since the f_n are continuous and converge uniformly to f, then f must be continuous also. Furthermore, since the interval is closed the limit point x must be within [a,b]. Hence, since f is continuous at x, then $f(x_n) \to f(x)$ and hence there exists $N_1 \in \mathbb{N}$ such that $n > N_1$ implies

$$|f(x_n) - f(x)| < \frac{\epsilon}{2}. (3)$$

In addition, since f_n converges uniformly to f, then there exists an $N_2 \in \mathbb{N}$ such that $n > N_2$ implies

$$|f_n(y) - f(y)| < \frac{\epsilon}{2} \tag{4}$$

for all $y \in [a, b]$. Hence if $N = \max\{N_1, N_2\}$, then

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$
 (5)

Therefore $\lim_{n\to\infty} f_n(x_n) = f(x)$.

- 4. (a) Note that $1/\sqrt{n^2-1} > 1/n$ for all $n \ge 2$. Since $\sum_n 1/n$ diverges, we can conclude that $\sum_{n=2}^{\infty} 1/\sqrt{n^2-1}$ diverges by the comparison test. The terms $1/\sqrt{n^2-1}$ form a decreasing sequence and $\lim_{n\to\infty} 1/\sqrt{n^2-1} = 0$. Hence $\sum_{n=2}^{\infty} (-1)^n/\sqrt{n^2-1}$ converges by the alternating series test.
 - (b) Putting x = 1/5 into the sum gives

$$\sum_{n=2}^{\infty} \frac{5^n 5^{-n}}{\sqrt{n^2 - 1}} = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n^2 - 1}}.$$
 (6)

Since this diverges by part (a) the radius of convergence R must satisfy $R \le 1/5$. Putting x = -1/5 into the sum gives

$$\sum_{n=2}^{\infty} \frac{5^n (-5)^{-n}}{\sqrt{n^2 - 1}} = \sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n^2 - 1}}.$$
 (7)

Since this converges by part (a), then $R \ge 1/5$. Hence R = 1/5.

5. Consider the function g(x) = f(x) - f(x+1). Then

$$g(0) = f(0) - f(1) \tag{8}$$

and

$$g(1) = f(1) - f(2) = f(1) - f(0) = -g(0).$$
(9)

If g(0) = 0, then f(0) = f(1) and setting (x,y) = (0,1) satisfies f(x) = f(y) as required. Otherwise $g(0) \neq 0$, in which case g(0) and g(1) have opposite sign. Applying the intermediate value theorom to the range [0,1] shows that there exists a $c \in (0,1)$ such that g(c) = f(c) - f(c+1) = 0. Setting (x,y) = (c,c+1) satisfies f(x) = f(y) as required.

6. Choose $\epsilon > 0$. Since $f_n \to f$ uniformly on S, there exists an N such that n > N implies that

$$|f_n(x) - f(x)| < \frac{\epsilon}{2} \tag{10}$$

for all $x \in S$. Consider an arbitrary m > N and n > N. Then, using the triangle inequality

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (11)

and hence (f_n) is uniformly Cauchy.

7. (a) If f_n converges uniformly to f, then there exists an N such that n > N implies that

$$|f_n(x) - f(x)| < 1 \tag{12}$$

for all $x \in S$. By using the triangle inequality,

$$|f(x)| < |f_{N+1}(x)| + 1. (13)$$

Since f_{N+1} is bounded, $|f_{N+1}(x)| < M$ for all x and for some $M \ge 0$, and thus |f(x)| < M+1 for all x. Hence f is bounded.

(b) Consider the set S = (0, 1] and the functions

$$f_n(x) = \begin{cases} n & \text{if } x \le 1/n \\ 1/x & \text{if } x > 1/n \end{cases}$$
 (14)

These functions converge pointwise to f(x) = 1/x. To prove this, consider a fixed $x \in S$. For all n > 1/x, $f_n(x) = f(x)$ and therefore becomes a constant sequence. Hence $f_n \to f$ pointwise.

Each f_n satisfies $|f_n(x)| < n+1$ for all x, and is therefore bounded. But the function f is not bounded.