

| Course:          | Introduction to Data Science | CourseCode:  | DS 2001   |
|------------------|------------------------------|--------------|-----------|
| Program:         | BS(DS)                       | Semester:    | Fall 2023 |
| <b>Duration:</b> | 1 Hour                       | Total Marks: | 50        |
| Paper Date:      | 02-10-2023                   | Page(s):     | 6         |
| Section:         | BS (DS) A, B, C              | Section:     | RUC SA    |
| Exam:            | Mid I                        | Roll No:     |           |

Instructions:

Answer in the space provided. You can ask for rough sheets, but they will not be graded or marked. In case of confusion or ambiguity make a reasonable assumption. Questions during exam are not allowed.

## Question#1:

10x4 = 40 Marks

The dataset represents a sample of employee performance evaluation data, containing various attributes related to individual employees within an organization. It includes information such as employee IDs, department affiliations, ages, genders, years of experience, performance ratings, joining dates, and salaries. Each row corresponds to a unique employee, and the dataset provides insights into factors affecting employee performance and compensation.

| Employee_ID | Department  | Age | Gender | Experience (Years) | Rating (1-5) | Joining Date | Salary |
|-------------|-------------|-----|--------|--------------------|--------------|--------------|--------|
| E001        | Sales       | 35  | Male   | 8                  | 4            | 2020-06-15   | 60000  |
| E002        | HR          | 28  | Female | 4                  | 3            | 2021-01-20   | 55000  |
| E003        | Engineering | 42  | Male   | 15                 | 5            | 2019-03-10   | 75000  |
| E004        | Marketing   | 311 | NULL   | 0                  | 4            | 2020-11-05   | 32000  |
| E005        | Sales       | 29  | Male   | 7                  | NULL '       | 2021-09-18   | 58000  |
| E006        | Engineering | 36  | Male   | 10                 | 4            | 2020-04-25   | 70000  |
| E006        | Sales       | 36  | Male   | -8                 | 4            | 20-04-2020   | 70000  |

Answer the following questions:

a) What is the type of each feature?

Employer-ID= String
Department = String
Age = integar
Experience = integar
Rating= integar
Toining Date = String

Salary = Wintegar

FAST School of Computing

Page 1 of 6

| Rall  | Number:  |  |
|-------|----------|--|
| 11011 | reumber. |  |

ROIL

i) Nullvalues: there are two null /missing Values in spingender" column, rowy and (Rating) column, row 5 and myative value in colsion 6 ii) Index error: In last two rows, employee ID has same value "E006" (ast row "20-04-2020" has wrong format or rost of the date Correlation is that they have direct | formed relationship between them. Salary increases highly. But from 4 years Onwards & salary increases at lesser rate comparatively
decan you figure out imbalance distribution in any of the features?

Age: There is 311? value which is an attioutlier and impossible outcome

Experience: -8" in last row, experience
is always positive Salary: There is gap between & values

**FAST School of Computing** 

Page 2 of 6

e) Create a histogram of salaries. Identify the type of distribution.



f) Write a python command to display data types and non-null values for each feature.

df.into()

g) Write python code to group the data by "Gender" and calculate the average age for each gender.

ge-gender = df.groupby("ander")["Age"].n

Page 3 of 6

| Roll | Number: |  |
|------|---------|--|
|      |         |  |

Write a python code to calculate the mean, median, and standard deviation of the "Salary" column.

Smean = df ["Salary"]. mean ()

Smedian = df ["Salary"]. median ()

Lists mode = df ["Salary"]. mode ()

Smode = Lists mode [0]

**FAST School of Computing** 

Page 4 of 6

- a) What are the key challenges in data cleaning, and how do you address them?

  The key challenges in data cleaning are:-
- > Filling massing values.
- > Dropping desired data which is not useful.
- I Replacing the " state missing values with mean, a median etc.
- 3 Detecting outliers.
- > Removing or replacing outliers.

b) Why is it important to identify outliers in a dataset, and what methods can be used for outlier detection?

Jet is important to identify outliers in a dataset.

because data having oulliers in it will not give accurate the results. Data will produce unusual results.

→ Dutlier detection method is following:-  $Q_1 = 0.25 \times N$  : where n is sample number.  $Q_3 = 0.75 \times N$ 

- upper bound = Q3+15 IAR. : IAR= Q3-Q1

> lower bound = Q1-1:5 IQR.

If entries of dataset, are greater than upper bound & lower than lower bound, then the dataset of FAST School of Computing will have outliers in it. Page 5 of 6