이산수학

휴먼지능정보공학전공

부울대수(논리회로)

- 부울대수 기본 개념
- 부울대수 기본 연산과 진리표
- 부울함수 표현과 활용
- 부울함수와 논리회로(논리게이트)

- 부울대수(Boolean Algebra)
 - 0과 1을 입력값으로 갖는 논리계산을 형식화한 것
 - 부울대수는 0과 1로 구성된 집합 B
 - 이항연산자 + (sum), (product)와
 - 단항연산자 ' (complementation)로 구성
 - (B, +, , ' , 0, 1)로 나타냄

- 부울연산
 - 부울변수(Boolean Variable) $f(x_1, x_2, ..., x_n)$
 - 부울값 0 또는 1의 값을 받는 변수
 - x, y, z..
 - 부울연산자
 - 이항연산자: + (sum), (product)
 - 단항연산자: ' (complementation)
 - 부울식 (Boolean Expression)
 - 부울변수와 부울 연산자로 구성
 - 부울함수(Boolean Function)
 - n개의 부울변수와 부울 연산자로 구성되는 식 : n차 부울함수
 - f. Bⁿ → B (단, Bⁿ = B X B X ... X B)
 - f(x, y, w, z) = xy' + yz + w' (4차 부울함수)

- 부울보수(Boolean Complement) A' 또는 \overline{A}
 - 2진 변수의 값을 반전시키는 단항 연산자

$$0' = \overline{0} = 1 \qquad \qquad 1' = \overline{1} = 0$$

$$1' = \overline{1} = 0$$

- 부울합(Boolean Addition) A + B
 - 2진 변수의 값을 더하는 이항 연산자

$$0+0=0$$
 $0+1=1$ $1+0=1$ $1+1=1$

- 부울곱(Boolean Multiplication) $A \cdot B$ 또는AB
 - 2진 변수의 값을 곱하는 이항 연산자

$$0 \cdot 0 = 0$$
 $0 \cdot 1 = 0$ $1 \cdot 0 = 0$ $1 \cdot 1 = 1$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

- 부울연산자 우선순위
 - 부울보수(')→부울곱(·) →부울합(+)

문제

■ x =0, y=1, z=0 일 때 부울식 x + yz '의 값을 구하세요

•
$$x + yz' = 0 + 1 • 0' = 0 + 1 • 1 = 0 + 1 = 1$$

• 부울대수법칙

부울대수법칙	법칙의 이름
$x + x = x$ $x \cdot x = x$	멱등법칙(Idempotent Law)
$x + 0 = x \qquad x \cdot 1 = x$	항등법칙(Ident i ty Law)
$x + 1 = 1 \qquad x \cdot 0 = 0$	유계법칙(Doundedness Law)
$x + y = y + x \qquad xy = yx$	교환법칙(Commutat ion Law)
(x')' = x	이중 보수의 법칙(Double Negat ion Law)
$x + x' = 1 \qquad x \cdot x' = 0$	보수법칙(Contradiction Law)
(x+y) + z = x + (y+z) $(xy)z = x(yz)$	결합법칙(Associat ive Law)
$x \cdot (y+z) = xy + xz$ x + (yz) = (x+y) + (x+z)	분배법칙(Distributive Law)
(x + y)' = x'y' $(xy)' = x' + y'$	드모르간의 법칙(De Morgan'S Law)
$x + xy = x \qquad x(x+y) = x$	흡수법칙
0' = 1 $1' = 0$	1과 0의 법칙

- 결합법칙과 분배법칙
 - 괄호 안의 연산자와 밖의 연산자가 같은 경우 결합법칙 적용
 - 예) (x + y) + z
 - 괄호 안의 연산자와 밖의 연산자가 다른 경우 분배법칙 적용
 - \mathfrak{A}) $x \cdot (y+z)$
- 분배법칙은 일반 대수법칙과 다름
 - 일반 산술연산에서는 $x + yz \neq (x + y)(x + z)$
 - 부울대수법칙에서는 $x + (yz) = (x + y) \cdot (x + z)$

- 드 모르간의 법칙 $(x+y)' = x' \cdot y'$
 - 진리표를 이용한 증명

x y	x'	y'	x + 1	y = (x + y)	y' xy
0 0	1	1	0	1	1
0 1	1	0	1	0	0
1 0	0	1	1	0	0
1 1	0	0	1	0	0

• 대수 법칙을 이용한 증명 xy + (x' + y') = 1

문제

■ $f(x,y,z)=x^{'}yz^{'}+xyz^{'}+xy^{'}$ 부울함수 값을 진리표를 이용해 구하세요

	1			2			3
x, y, z	x'	y'	z'	x'yz'	xyz'	xy'	f(x,y,z)
000	1	1	1	0	0	0	0
0 0 1	1	1	0	0	0	0	0
0 1 0	1	0	1	1	0	0	1
0 1 1	1	0	0	0	0	0	0
100	0	1	1	0	0	1	1
101	0	1	0	0	0	1	1
1 1 0	0	0	1	0	1	0	1
111	0	0	0	0	0	0	0

문제

- 부울대수법칙을 이용해 다음 부울식을 최대한 간략히 하세요
- (1) x' y' z' + x' yz' + x' yz + xy' z'

• (1)
$$x'y'z' + x'yz' + x'yz + xy'z' = x'y'z' + xy'z' + x'yz' + x'yz$$
 : 교환법칙

•
$$= y'z'(x'+x) + x'y(z'+z) \qquad \qquad \because \ \, \exists \ \, \exists$$

•
$$= y'z' \cdot 1 + x'y \cdot 1 \qquad \qquad \because \ \, \forall \ \ \ \, \forall \$$

•
$$=y'z'+x'y$$
 $:$ 항등법칙

•
$$= x'y + y'z' \qquad \qquad \because 교환법칙$$

- 부울함수(Boolean Function)
 - n개의 부울변수와 부울 연산자로 구성되는 식 : n차 부울함수

- 리터럴(literal)
 - n차 부울함수를 구성하는 부울변수나 부울변수의 보수
 - (1) f(x,y) = x' + y
 - (2) f(w, x, y, z) = w'x'y'z' + w + xy' + wyz' + xz'
- 최소항(Minterm)
 - n차 부울함수 $f(x_1, x_2, ..., x_n)$ 을 구성하는 논리곱 항들 중 n개의 리터럴 곱으로 구성된 항

문제

- 다음 부울함수들이 가질 수 있는 최소항을 구하라.
- (1) f(x,y,z)

- (1) f(x,y,z) 는 3차 부울함수로 가능한 최소항의 개수는 $8(=2^3)$ 개다.
- 각 최소항에는 x 와 x' 중 하나, y 와 y' 중 하나, z 와 z' 중 하나를 반드시 포함 해야
- 한다.
- $\therefore xyz, xyz', xy'z, xy'z', x'yz, x'yz', x'y'z, x'y'z'$

• 부울함수 최소항

X	y	2변수 최소항
0	0	x'y'
0	1	x'y
1	0	xy'
1	1	xy

X	y	Z	3변수 최소항
0	0	0	x'y'z'
0	0	1	x'y'z
0	1	0	x'yz'
0	1	1	x'yz
1	0	0	xy'z'
1	0	1	xy'z
1	1	0	xyz'
1	1	1	xyz

W	X	y	Z	4변수 최소항
0	0	0	0	w'x'y'z'
0	0	0	1	w'x'y'z
0	0	1	0	w'x'yz'
0	0	1	1	w'x'yz
0	1	0	0	w'xy'z'
0	1	0	1	w'xy'z
0	1	1	0	w'xyz'
0	1	1	1	w'xyz
1	0	0	0	wx'y'z'
1	0	0	1	wx'y'z
1	0	1	0	wx'yz'
1	0	1	1	wx'yz
1	1	0	0	wxy'z'
1	1	0	1	wxy'z
1	1	1	0	wxyz'
1	1	1	1	wxyz

문제

- 다음 3차 부울함수를 보고 최소항을 구별하라.
- f(x,y,z)=xy'+yz'+xyz+x'z'+x'y'z

- 3차 부울함수므로 부울함수를 구성하는 논리곱 항은 각각 세 개의 리터럴을 포함 해야 한다. 주어진 3차 부울함수는 5개의 논리곱 항 xy', yz', xyz, x'z', x'y'z로 구성되어 있다. 3차 부울함수므로 3개의 리터럴로 구성되어 있는 논리곱 항이 최소항이 된다.
- ∴ 최소항은 *xyz* 와 *x'y'z* 다.

- 정규식(DNF : Disjunctive Normal Form)
 - 최소항들의 부울합으로 표현된 부울함수
- 정규식이 아닌 부울함수를 정규식으로 표현하는 방법
 - 각 항에 포함되지 않은 부울변수를 파악한다.
 - 각 항에 포함되지 않은 부울변수에 대해 논리곱에 대한 항등법칙 $x \cdot 1 = x$ 와 논리합에 대한 보수법칙 x + x' = 1을 적용해 각 항에 없는 부울변수를 추가한다.
 - 분배법칙 등을 이용해 식을 풀고, 중복되는 항은 멱등법칙에 의해 제거한다.

문제

- 다음 부울함수 정규식인 것을 찾아라.
- $\bullet (1) f(x,y) = xy + x'y'$

(2) f(x,y) = x + x'y

- (1) f(x,y) = xy + x'y' 는 2차 부울함수고, 이 부울함수를 구성하는 모든 항이 2개의
- 리터럴(literal)로 구성되어 있으므로 정규식(DNF)이다.
- (2) f(x,y) = x + x'y 도 2차 부울함수므로 정규식이 되기 위해서는 모든 항이 2개의
- 리터럴로 구성되어야 한다. 부울함수의 첫 번째 항이 그렇지 않으므로 정규식이
- 아니다.

- f(x, y, z) = x + y'z + x'z' + x'yz을 정규식으로 표현
 - (1) 부울함수를 구성하는 변수 x, y, z 중 각 항에 없는 부울변수가 무엇인지 파악한다.

첫 번째 항인 x = y와 z에 관한 리터럴(y 또는 y', z 또는 z')이 없다. 두 번째 항인 y'z = x에 관한 리터럴(x 또는 x')이 없다. 세 번째 항인 x'z' = y에 관한 리터럴(y 또는 y')이 없다.

(2) 각 항에 포함되지 않은 변수에 대해 논리곱에 대한 항등법칙($x\cdot 1 = x$) 과 논리합에 대한 보수법칙(x+x'=1)을 적용하여 각 항에 없는 부울 변수를 추가한다.

첫 번째 항인 x는 y와 z에 관한 리터럴(y 또는 y', z또는 z')이 없으므로,

 $x = x \cdot 1 \cdot 1 = x(y + y')(z + z')$ 두 번째 항인 y'z는 x에 관한 리터럴(x또는 x')이 없으므로,

 $y'z = y'z \cdot 1 = y'z(x + x')$

세 번째 항인 x'z'는 y에 관한 리터럴(y 또는 y')이 없으므로, $x'z' = x'z' \cdot 1 = x'z'(y + y')$

- f(x,y,z) = x + y'z + x'z' + x'yz= x(y+y')(z+z') + y'z(x+x') + x'z'(y+y') + x'yz
- (3) 분배법칙 등을 이용해 식을 풀고, 중복되는 항은 멱등법칙에 의해 제거한다.

$$f(x,y,z) = x + y'z + x'z' + x'yz$$

= $x(y + y')(z + z') + y'z(x + x') + x'z'(y + y') + x'yz$
= $xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z + x'yz' + x'yz' + x'yz$

$$= xyz + xyz' + xy'z + xy'z' + x'y'z + x'yz' + x'y'z' + x'yz$$

$$\therefore f(x, y, z) = xyz + xyz' + xy'z + xy'z' + x'y'z + x'yz' + x'yz' + x'yz' + x'yz'$$

문제

- 부울함수법칙을 이용해 다음 부울함수를 정규식으로 만들어라.
- (1) f(x,y)=x+y'

• (1) f(x,y) = x + y'는 부울변수 x와 y로 구성된 2차 부울함수로, 첫 번째 항인 x가 최소항이 되기 위해서는 y에 대한 리터 럴이 필요하고, 두 번째 항인 y'가 최소항이 되기 위해서는 x에 대한 리터럴이 필요하다. 그러므로 항등법칙과 보수법칙을 이용해 최소항으로 만든다.

•
$$f(x,y) = x + y' = x \cdot 1 + y' \cdot 1$$
 : 항등법칙

•
$$= xy + xy' + y'x + y'x' \qquad \qquad \because \ \exists \ \exists \ \exists \ \exists$$

•
$$= xy + xy' + xy' + x'y'$$
 : 교환법칙

•
$$= xy + xy' + x'y' \qquad \qquad \because \ \mathsf{q} \in \mathsf{d} \mathsf{d} \mathsf{d}$$

•
$$\therefore f(x,y) = xy + xy' + x'y'$$

- 진리표를 사용하여 정규식으로 만드는 방법
 - n변수 진리표에서 부울함수에 포함된 변수를 포함하는 항은 모두 1로 표기한다.
 - 1이 표기된 항을 논리합으로 묶는다.
 - 예) f(x, y, z) = x + y'z + x'z' + x'yz

x y z	3변수 최소항	f(x,y,z)
0 0	x'y'z'	\bigcirc
0 0 1	x'y'z x'yz' x'yz xy'z' xy'z xy'z xyz'	
,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x'yz xv'z'	
1 0 1	xy^2	1
1 1 1 1	xyz' xyz	1

f(x, y, z) = xyz + xyz' + xy'z + xy'z' + x'y'z + x'yz' + x'y

문제

- 진리표를 이용해 다음 부울함수를 정규식으로 만들어라.
- (1) f(x,y) = x + y'
 - (1) f(x,y) = x + y' 는 2변수 부울함수므로 2변수 진리표가 필요하다. 진리표에서
 - 이 부울함수의 첫 번째 항인 x를 포함하는 항은 xy와 xy'므로 두 항은 1로 표기
 - 한다. 또한 두 번째 항인 y'를 포함하는 항은 xy^{\prime} 와 $x'y^{\prime}$ 므로 두 항을 1로 표기한다.
 - 1로 표기된 항을 모두 논리합으로 묶는다.
 - $\therefore f(x,y) = xy + xy' + x'y'$

х	у	2변수 최소항	f(x,y)
0	0	x'y'	1
0	1	x'y xy'	0
1	0	xy'	1
1	1	xy	1

- 카르노맵을 이용하여 간략화하는 방법은 다음과 같다.
 - n 차 부울 함수에 대응하는 n변수 카르노맵을 선택한다.
 - 부울함수에 있는 항들 각각에 대응하는 카르노맵 셀(cell)에 1을 표시한다.
 - 인접하는 1들을 2^n , 2^{n-1} , 2^{n-2} , ...순으로 묶는다.
 - 묶음에 있는 공통변수들을 찾아 논리합으로 묶는다.

• 카르노맵을 이용하여 간략화하는 방법은 다음과 같다.

x y	y	y '
x	xy	xy'
x '	x'y	x'y'

x yz	yz	y'z	y'z'	yz'
x	xyz	xy'z	xy'z'	xyz'
x '	x'yz	x'y'z	x'y'z'	x'yz'

wx yz	yz	y'z	y'z'	yz'
wx	wxyz	wxy'z	wxy'z'	wxyz'
w'x	w'x'yz	w'x'y'z	w'x'y'z'	w'x'yz'
w'x'	w'x'yz	w'x'y'z	w'x'y'z'	w'x'yz'
wx'	wx'yz	wx'y'z	wx'y'z'	wx'yz'

- 카르노맵 인접
 - 카르노맵에서 1이 상하좌우로 위치한 경우
 - 카르노맵의 가장 첫 번째 행과 마지막 행, 첫 번째 열과 마지막 열

x yz	yz	y'z	y'z'	yz'
x	1			1
x '	1			1

wx yz	yz	y'z	y'z'	yz'
wx	1			1
w'x				
w'x'				
wx'	1			<u>l</u> 1

문제

다음 정규식을 카르노맵을 이용해 간략화하라.

- (2) f(x,y,z)=xyz+x'yz+xy'z+x'yz'+xyz
 - 2) f(x,y,z) = xyz + x'yz + xy'z + x'yz'
 - ① 3변수 카르노맵을 사용한다.
 - ② 부울함수에 포함된 항들을 카르노맵에 1로 표기한다.
 - 인접한 항들을 찾기 위해 2^3 (=8)개의 1이 인접해 있는지확인한다. 개의 1로 묶을주 없으므로 2^2 (=4) 개의 1이 인접해 있는지 확인하고 인접하는 1 |리 묶는다.
 - xyz 에 대한 1은 x'yz를 묶기 위해 중복되어 묶인다.
 - ④ 각 묶음에 공통으로 있는 변수를 찾아 본리합으로 묶는다.
 - 묶음 (a)의 공통변수 : *y*
 - 묶음 (b)의 공통변수 : xz
 - f(x,y,z)=xz+y

x yz	yz	y'z	y'z'	yz'
x	1	1		1
x '	1	(b)		1

- NOT 게이트
 - 하나의 입력을 받아 논리부정 연산 후 하나의 출력을 낸다.

입력	출력
X	F
0	1
1	0

- AND 게이트
 - 두 개의 입력을 받아 논리곱 연산 후 하나의 출력을 낸다.

입력		출력
X	Y	F
0	0	0
0	1	0
1	0	0
1	1	1

- OR 게이트
 - 두 개의 입력을 받아 논리합 연산 후 하나의 출력을 낸다.

입력		출력
X	Y	F
0	0	0
0	1	1
1	0	1
1	1	1

- NAND 게이트
 - AND 게이트와 NOT 게이트를 결합한 논리소자로, 두 개의 입력을 받아 논리곱 연산 후 논리부정한 결과를 출력

입력		출력
X	Y	F
0	0	1
0	1	1
1	0	1
1	1	0

- NOR 게이트
 - OR 게이트와 NOT 게이트를 결합한 논리소자로, 두 개의 입력을 받아 논리합 연산 후 논리부정한 결과를 출력

입력		출력
X	Y	F
0	0	1
0	1	0
1	0	0
1	1	0

- XOR 게이트
 - eXclusive OR 연산자 ⊕에 대한 논리소자
 - 두 입력이 같은 값이 입력되면 0, 다른 값이 입력되면 1이 출력된다.

입	력		출력
λ	(Y	F
	0	0	0
	0	1	1
	1	0	1
	1	1	0

$$X \oplus Y = X'Y + XY'$$

- XNOR 게이트
 - XOR 게이트와 NOT 게이트를 결합한 논리소자
 - 두 개의 입력을 받아 XOR 연산 후 논리부정한 결과를 출력 $X \odot Y = (X \oplus Y)' = (X'Y + XY')'$

$$= XX' + XY + X'Y' + YY'$$
 ∵분배법칙

$$= XY + X'Y'$$

··항등법칙

입력		출력	
X	Y	F	
0	0	1	
0	1	0 0	
1	0	0	
1	1	1	

문제

- 부울함수 f(x,y,z)=x'y'+y'z+xz'에 대해 다음을 답하라.
- (1) 주어진 부울함수를 논리회로로 나타내라.
- (2) 주어진 부울함수의 정규식을 구하여라
- (3) 주어진 부울함수의 정규식을 카르노맵으로 간략화하고 그 결과를 논리회로로 나타내라
 - (1)f(x,y,z) = x'y' + y'z + xz'를 논리회로로 나타내면 다음과 같다.
 - (2)f(x,y,z) = x'y' + y'z + xz'를 정규식으로 나타내면 다음과 같다. f(x,y,z) = xy'z + xy'z' + xyz' + x'y'z + x'y'z'
 - $(3)f(x,y,z)=x^{'}y^{'}+y^{'}z+xz'$ 를 간략히 하면 다음과 같다. $\therefore f(x,y,z)=xz'+y'$

x yz	yz	y'z	y'z'	yz'
x		1	1	1
<i>x</i> ′		1	1	

맺음말

- 부울대수 기본 개념
- 부울대수 기본 연산과 진리표
- 부울함수 표현과 활용
- 부울함수와 논리회로(논리게이트)