SOME PROOFS FOR LYAPUNOV THEORY

We first recall some background. Convergence of real numbers is defined as follows:

Definition 1. A sequence (x_n) of real numbers converges to a real number a if for all $\epsilon > 0$, there is a natural number N such that $|x_n - a| < \epsilon$ for all $n \ge N$.

We need to generalise this to cover sequences in \mathbb{R}^2 rather than \mathbb{R} .

Definition 2. Suppose we have a sequence of points $(x_n, y_n) \in \mathbb{R}^2$, and another point $(a, b) \in \mathbb{R}^2$. We say that the sequence converges to (a, b) if for all $\epsilon > 0$ there exists N such that $\|(x_n, y_n) - (a, b)\| < \epsilon$ for all $n \geq N$.

This can easily be related to convergence in \mathbb{R} :

Lemma 3. Suppose we have a sequence of points $(x_n, y_n) \in \mathbb{R}^2$, and another point $(a, b) \in \mathbb{R}^2$. Then (x_n, y_n) converges to (a, b) if and only if x_n converges to a and y_n converges to b.

Proof. Suppose that $(x_n, y_n) \to (a, b)$. Given $\epsilon > 0$, there exists N such that when $n \geq N$ we have $\|(x_n, y_n) - (a, b)\| < \epsilon$. However, we also have

$$|x_n - a| \le \sqrt{|x_n - a|^2 + |y_n - b|^2} = \|(x_n, y_n) - (a, b)\|,$$

so $|x_n - a| < \epsilon$. This proves that $x_n \to a$, and similarly $y_n \to b$.

Conversely, suppose that $x_n \to a$ and $y_n \to b$. Given $\epsilon > 0$ we can choose L such that $|x_n - a| < \epsilon/\sqrt{2}$ for $n \ge L$, and we can choose M such that $|y_n - b| < \epsilon/\sqrt{2}$ for $n \ge M$. Put $N = \max(L, M)$. For $n \ge N$ we have $|x_n - a| < \epsilon/\sqrt{2}$ and $|y_n - b| < \epsilon/\sqrt{2}$, so

$$||(x_n, y_n) - (a, b)|| = \sqrt{|x_n - a|^2 + |y_n - b|^2} < \sqrt{\epsilon^2/2 + \epsilon^2/2} = \epsilon,$$

as required.

The following result is standard:

Theorem 4 (Bolzano-Weierstrass). Let (x_n) be a sequence of real numbers, and suppose that there is a constant C such that $|x_n| \leq C$ for all n. Then there is a subsequence (x_{n_k}) (with $n_0 < n_1 < n_2 < \cdots$) and a real number a such that $x_{n_k} \to a$.

We will need the two-dimensional version:

Corollary 5. Let (x_n, y_n) be a sequence in \mathbb{R}^2 , and suppose that there is a constant C such that $||(x_n, y_n)|| \le C$ for all n. Then there is a subsequence (x_{n_k}, y_{n_k}) (with $n_0 < n_1 < n_2 < \cdots$) and a point $(a, b) \in \mathbb{R}^2$ such that $(x_{n_k}, y_{n_k}) \to (a, b)$.

Proof. By the original Bolzano-Weierstrass Theorem, we can find a real number a and an increasing sequence of indices p_k such that $x_{p_k} \to a$. Now the sequence y_{p_k} is again bounded by C, so we can find a real number b and an increasing sequence of indices q_j such that $y_{p_{q_j}} \to b$. In other words, if we put $n_j = p_{q_j}$ then $y_{n_j} \to b$. Moreover, the sequence (x_{n_j}) is a subsequence of (x_{m_i}) , and $x_{m_i} \to a$ so $x_{n_j} \to a$. It follows that $(x_{n_j}, y_{n_j}) \to (a, b)$ as required.

Definition 6. Let F be a subset of \mathbb{R}^2 . We say that F is *closed* if whenever (x_n, y_n) is a sequence in F that converges to a point $(a, b) \in \mathbb{R}^2$, we also have $(a, b) \in F$.

Example 7. Consider the sets

$$F_0 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$

$$F_1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}.$$

Then F_0 is closed but F_1 is not. For example, the sequence $(x_n, y_n) = (2^{-n}, 0)$ lies in F_1 and converges to the point (a, b) = (1, 0), which does not lie in F_1 ; so F_1 is not closed. In general, sets defined using = and \leq will usually be closed, but sets defined using < will often not be closed. However, this rule is not always reliable, so you should work from the official definition.

Definition 8. Given a point $u \in \mathbb{R}^2$, we define

$$B_{\epsilon}(u) = \{ v \in \mathbb{R}^2 \mid ||u - v|| < \epsilon \}.$$

Definition 9. Let U be a subset of \mathbb{R}^2 . We say that U is *open* if for every $u \in U$ there exists $\epsilon > 0$ such that $B_{\epsilon}(u) \subseteq U$.

Example 10. Consider the sets

$$U_0 = \{(x, y) \in \mathbb{R}^2 \mid x > 0 \text{ and } y > 0\}$$

$$U_1 = \{(x, y) \in \mathbb{R}^2 \mid x > 0 \text{ and } y \ge 0\}$$

$$U_2 = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ and } y \ge 0\}.$$

Then U_0 is open, but U_1 and U_2 are not. Indeed, the point u = (1,0) is an element of U_1 , but for every $\epsilon > 0$ we have a point $v = (1, -\epsilon/2)$ which lies in $B_{\epsilon}(u)$ but not in U_1 , so $B_{\epsilon}(u) \not\subseteq U_1$. This proves that U_1 is not open, and the same example also shows that U_2 is not open. In general, sets defined using \neq and < are usually open, but sets defined using \leq will often not be open. However, this rule is not always reliable, so you should work from the official definition.

Remark 11. Most subsets of \mathbb{R}^2 are neither open nor closed. For example, the set U_1 described above is not open, and also it is not closed.

Proposition 12. Let F and U be two subsets of \mathbb{R}^2 that are complements of each other, so that

$$U = \{ p \in \mathbb{R}^2 \mid p \notin F \}$$
$$F = \{ p \in \mathbb{R}^2 \mid p \notin U \}.$$

Then F is closed if and only if U is open.

Proof. We will prove that F is not closed if and only if U is not open. A little thought will convince you that this is equivalent to the claimed statement.

Suppose that F is not closed. This means that there is a sequence of points $v_n = (x_n, y_n) \in F$ and a point $u = (a, b) \notin F$ such that $v_n \to u$. As $u \notin F$ we instead have $u \in U$. Consider a number $\epsilon > 0$. As $v_n \to u$, there exists N such that $||v_N - u|| < \epsilon$, or in other words $v_N \in B_{\epsilon}(u)$. Now $v_N \in F$, so $v_N \notin U$, so $B_{\epsilon}(u) \not\subseteq U$. As this holds for all $\epsilon > 0$, we see that U is not open.

Conversely, suppose that U is not open. This means that there is a point $u \in U$ such that there is no $\epsilon > 0$ with $B_{\epsilon}(u) \subseteq U$. In particular, $B_{1/n}(u)$ is not contained in U, so we can choose a point $v_n \in B_{1/n}(u)$ such that $v_n \notin U$, or equivalently $v_n \in F$. As $v_n \in B_{1/n}(u)$ we have $||v_n - u|| < 1/n$, and this implies that $v_n \to u$. Now the points v_n form a sequence in F, which converges to the point u, which does not lie in F. This means that F is not closed.

We now consider a differential equation and its solutions. Let f and g be continuously differentiable functions on \mathbb{R}^2 . For any point $(x_0, y_0) \in \mathbb{R}^2$, we would like to consider maps $x, y \colon \mathbb{R} \to \mathbb{R}^2$ such that $x(0) = x_0$ and $y(0) = y_0$ and

$$\dot{x}(t) = f(x(t), y(t))$$
$$\dot{y}(t) = g(x(t), y(t))$$

for all $t \in \mathbb{R}$. Unfortunately, this is not always possible.

Example 13. Consider the equations $\dot{x} = x^2$ and $\dot{y} = 0$ with x = y = 1 at t = 0. There is a solution (x, y) = (1/(1-t), 1), but this becomes undefined at t = 1. There is no solution that is defined and differentiable on all of \mathbb{R} .

However, the above example is essentially the worst thing that can happen, as shown by the following result.

Theorem 14. For any point $(x_0, y_0) \in \mathbb{R}^2$, there is a unique pair of continuously differentiable functions $x, y \colon (\alpha, \beta) \to \mathbb{R}$ such that

- α is either $-\infty$ or a negative real number.
- β is either $+\infty$ or a positive real number.
- $x(0) = x_0$ and $y(0) = y_0$
- For all $t \in (\alpha, \beta)$ we have $\dot{x}(t) = f(x(t), y(t))$ and $\dot{y}(t) = g(x(t), y(t))$.
- Either $\alpha = -\infty$, or α is finite and $||(x(t), y(t))|| \to \infty$ as $t \to \alpha$.
- Either $\beta = +\infty$, or β is finite and $||(x(t), y(t))|| \to \infty$ as $t \to \beta$.

This is a very important theorem, which we have implicitly been using throughout the course, but we will not prove it. A proof can be found in the recommended book by Teschl.

Assumption 15. For simplicity, we will consider only systems for which α is always $-\infty$ and β is always $+\infty$, so the solutions are defined for all $t \in \mathbb{R}$.

Definition 16. We put $\phi(t,(x_0,y_0)) = (x(t),y(t))$, where x(t) and y(t) give the unique solution as discussed above.

Theorem 17. The function ϕ is continuously differentiable as a map from \mathbb{R}^3 to \mathbb{R}^2 .

Again, a proof can be found in the book by Teschl.

Assumption 18. From now on, we make the following additional assumptions:

- (a) R is an open subset of \mathbb{R}^2 .
- (b) e = (a, b) is a point in R where f(e) = g(e) = 0.
- (c) V is a continuously differentiable function on R.
- (d) V(e) = 0, and V(u) > 0 for all other points $u \in R$. (In other words, V is positive definite.)
- (e) The function $W = V_x f + V_y g$ satisfies W(e) = 0, and W(u) < 0 for all other points $u \in R$. (In other words, W is negative definite.)

This means that V is a strong Lyapunov function for R and e.

Remark 19. Suppose we have a solution u(t) = (x(t), y(t)) to our equations. We then have

$$\frac{d}{dt}V(x(t), y(t)) = V_x(x(t), y(t))\dot{x}(t) + V_y(x(t), y(t))\dot{y}(t)
= V_x(x(t), y(t))f(x(t), y(t)) + V_y(x(t), y(t))g(x(t), y(t))
= W(x(t), y(t)) \le 0,$$

so V(x(t), y(t)) is a weakly decreasing function of t. However, this is only valid as long as the curve u(t) = (x(t), y(t)) stays inside R. Suppose that $t_0 < t_1 < t_2$ and $u(t_0), u(t_2) \in R$ but $u(t_1) \notin R$. Then the above argument is not valid when $t = t_1$, because $V(u(t_1))$ and $W(u(t_1))$ are undefined, so we cannot conclude that $u(t_2) \le u(t_0)$.

Definition 20. The point e is asymptotically stable if for all $\epsilon > 0$ there exists $\epsilon' > 0$ such that whenever $||u - e|| < \epsilon'$, we have $||\phi(t, u) - e|| < \epsilon$ for all $t \ge 0$, and also $\phi(t, u) \to e$ as $t \to \infty$.

We will show that whenever there is a Lyapunov function as described above, the point e is automatically asymptotically stable.

Definition 21. We choose a number $\epsilon_0 > 0$ such that $B_{\epsilon_0}(e) \subseteq R$. (This is always possible, because R is assumed to be an open set containing e.) When $0 < \epsilon < \epsilon_0$, we put

$$U_{\epsilon} = B_{\epsilon}(e) = \{ u \in \mathbb{R}^2 \mid ||u - e|| < \epsilon \}$$
$$\overline{U}_{\epsilon} = \{ u \in \mathbb{R}^2 \mid ||u - e|| \le \epsilon \},$$

so U_{ϵ} is open, \overline{U}_{ϵ} is closed, and $e \in U_{\epsilon} \subseteq \overline{U}_{\epsilon} \subseteq R$.

Definition 22. Given $\delta > 0$, we put $S_{\delta}^* = \{u \in R \mid V(u) \leq \delta\}$. This contains e, and it may split up into several different components. Suppose we have two points $u, v \in S_{\delta}^*$. We say that they are connected in S_{δ}^* if there is a continuous map $\gamma \colon [0,1] \to S_{\delta}^*$ with $\gamma(0) = u$ and $\gamma(1) = v$. We put

$$S_{\delta} = \{ u \in S_{\delta}^* \mid u \text{ is connected to } e \text{ in } S_{\delta}^* \}.$$

Note that $e \in S_{\delta} \subseteq S_{\delta}^* \subseteq R$.

Example 23. We will show later that for each $\delta > 0$ there exists $\epsilon > 0$ such that $U_{\epsilon} \subseteq S_{\delta}^*$. Every point $u \in U_{\epsilon}$ can be connected to e by the path $\gamma(t) = u + t(e - u)$, which goes in a straight line from u to e. This path stays inside U_{ϵ} , and $U_{\epsilon} \subseteq S_{\delta}^*$, so γ stays inside S_{δ}^* . This shows that u actually lies in S_{δ} , not just S_{δ}^* . We conclude that $U_{\epsilon} \subseteq S_{\delta}$.

Example 24. Suppose that $u \in S^*_{\delta} \subset R$, and that $v = \phi(t, u)$ for some t > 0. Suppose also that $\phi(s, u) \in R$ for all s with $0 \le s \le t$. In other words, there is a flow line running from u to v, and it stays in R. By Remark 19, we have $V(v) \le V(u) \le \delta$, so $v \in S^*_{\delta}$.

Now suppose that u is in S_{δ} , so there is a path γ from e to u in S_{δ}^* . The flow line gives a path from u to v in S_{δ}^* , and we can join these two paths together to get a path from e to v in S_{δ}^* . This shows that v actually lies in S_{δ} .

Proposition 25. For all $\delta > 0$, there exists ϵ with $0 < \epsilon < \epsilon_0$ such that $U_{\epsilon} \subseteq S_{\delta}^*$.

Proof. We will suppose that there is no such ϵ , and deduce a contradiction.

Let n_0 be a large integer, big enough that $1/n_0 < \epsilon_0$. By assumption, for $n \ge n_0$ we have $U_{1/n} \not\subseteq S_\delta^*$. We can therefore choose $u_n \in U_{1/n} \subseteq R$ with $u_n \not\in S_\delta^*$. As $u_n \not\in S_\delta^*$, we must have $V(u_n) > \delta$. However, as $u_n \in U_{1/n}$ we have ||u - e|| < 1/n, so $u_n \to e$. As V is continuous on R, it follows that $V(u_n) \to V(e) = 0$. As $V(u_n) > \delta$ for all n, this is impossible. We therefore have a contradiction, so the Proposition must be true after all.

Corollary 26. For all $\delta > 0$, there exists ϵ with $0 < \epsilon < \epsilon_0$ such that $U_{\epsilon} \subseteq S_{\delta}$.

Proof. This follows from the Proposition by Example 23.

Proposition 27. For all ϵ with $0 < \epsilon < \epsilon_0$, there exists $\delta > 0$ such that $S_{\delta} \subseteq U_{\epsilon}$.

Proof. We will suppose that there is no such δ , and deduce a contradiction.

By assumption, for all n>0, the set $S_{1/n}$ is not contained in U_{ϵ} . We can therefore choose a point $u_n\in S_{1/n}$ such that $u_n\not\in U_{\epsilon}$. As $u_n\not\in U_{\epsilon}$, we have $\|u-e\|\geq \epsilon$. As $u_n\in S_{\delta}$, we can choose a continuous map $\gamma\colon [0,1]\to S_{\delta}^*$ with $\gamma(0)=e$ and $\gamma(1)=u_n$. Now $\|\gamma(t)-e\|$ is a continuous function of t that is 0 when t=0, and is greater than or equal to ϵ when t=1. By the Intermediate Value Theorem, there exists $t_0\in [0,1]$ with $\|\gamma(t_0)-e\|=\epsilon$. We put $v_n=\gamma(t_0)$, so $\|v_n-e\|=\epsilon$. Moreover, the path γ joins e to v_n in S_{δ}^* , so $v_n\in S_{\delta}$. Because $\|v_n-e\|=\epsilon$, we have $\|v_n\|\leq \|e\|+\epsilon$ for all n, so the sequence (v_n) is bounded. Thus, the Bolzano-Weierstrass theorem says that we can find a subsequence (v_{n_k}) and a point $w\in \mathbb{R}^2$ such that $v_{n_k}\to w$. It follows that $\|v_{n_k}-e\|\to \|w-e\|$, but $\|v_{n_k}-e\|=\epsilon$, so $\|w-e\|=\epsilon$. In particular, we have $\|w-e\|<\epsilon_0$, so $w\in U_{\epsilon_0}\subseteq R$. As V is continuous on R, it follows that $V(v_{n_k})\to V(w)$. However, $v_n\in S_{1/n}$, so $0\leq V(v_n)\leq 1/n$, so $V(v_n)\to 0$. This means that $w\in R$ with V(w)=0, but V is positive definite, so w must be equal to e. This means that $v_{n_k}\to e$, but that is impossible because $\|v_{n_k}-e\|=\epsilon>0$ for all k.

Thus, the Proposition must be true after all.

Proposition 28. Suppose that $0 < \epsilon < \epsilon_0$, and that $S_{\delta} \subseteq U_{\epsilon}$. Then any flow line that starts in S_{δ} stays in S_{δ} for all t.

Proof. Consider a flow line u(t) = (x(t), y(t)) such that $u(0) \in S_{\delta}$. Put

$$t_0 = \sup\{t \mid u([0,t]) \subseteq S_\delta\}.$$

We want to prove that $t_0 = \infty$. We will suppose that $t_0 < \infty$, and deduce a contradiction. For $0 \le t < t_0$ we have $u(t) \in S_\delta \subseteq U_\epsilon$, so $||u(t) - e|| < \epsilon$. It follows that $||u(t_0) - e|| \le \epsilon < \epsilon_0$. By continuity, there exists $t_1 > t_0$ such that $||u(t) - e|| < \epsilon_0$ for $0 \le t \le t_1$. This means that the flow line stays within $U_{\epsilon_0} \subseteq R$ from t = 0 to $t = t_1$. Thus, Remark 19 tells us that $V(u(t)) \le V(u(0)) \le \delta$ for $0 \le t \le t_1$, so these points u(t)

all lie in S_{δ}^* . Moreover, all these points are connected together in S_{δ}^* by the flow line, so they lie in S_{δ} by Example 24. Thus, $u([0,t_1]) \subseteq S_{\delta}$. This is a contradiction, because $t_1 > t_0$, and t_0 was defined to be the supremum of all numbers t such that $u([0,t]) \subseteq S_{\delta}$.

We must therefore have $t_0 = \infty$ after all, which means that $u(t) \in S_{\delta}$ for all $t \geq 0$.

Theorem 29. The point e is asymptotically stable.

Proof. Suppose given $\epsilon > 0$. Put $\epsilon_1 = \min(\epsilon_0/2, \epsilon)$, so $0 < \epsilon_1 < \epsilon_0$. Proposition 27 says that we can choose δ such that $S_\delta \subseteq U_{\epsilon_1}$. Corollary 26 says that we can choose ϵ_2 such that $U_{\epsilon_2} \subseteq S_\delta$. Consider a flow line u that starts at $u(0) \in U_{\epsilon_2} \subseteq S_\delta$. By Proposition 28, we have $u(t) \in S_\delta \subseteq U_{\epsilon_1} \subseteq B_\epsilon(e) \subseteq R$ for all $t \ge 0$. In other words, the flow line is completely contained in R, so the function V(u(t)) is defined for all t and is weakly decreasing by Remark 19. Any nonnegative, weakly decreasing function converges to a limit, so V(u(t)) converges to some number V_0 as $t \to \infty$. As $0 \le V(u(t)) \le \delta$ for $t \ge 0$, we also have $0 \le V_0 \le \delta$.

Next, as $u(t) \in U_{\epsilon_1}$ we have $||u(t)|| \le ||e|| + \epsilon_1$ for all $t \ge 0$. This means that the sequence (u(n)) is bounded, so by the Bolzano-Weierstrass theorem there is a subsequence $(u(n_k))$ that converges to some point $v \in \mathbb{R}^2$. Here $||u(n_k) - e|| < \epsilon_1$ for all k, so $||v - e|| \le \epsilon_1 < \epsilon_0$, so $v \in R$. As V is continuous on R we have $V(u(n_k)) \to V(v)$, but also $V(u(t)) \to V_0$, so $V(v) = V_0$. In particular, this means that $v \in S_\delta$.

Next, consider $\phi(s, v)$ for some s > 0. These points lie on a flow line starting at the point $v \in S_{\delta}$ when s = 0, so they are still in S_{δ} by Proposition 28. Note also that $\phi(s, u(t)) = u(s + t)$, so

$$\phi(s,v) = \lim_{k \to \infty} \phi(s,u(n_k)) = \lim_{k \to \infty} u(s+n_k),$$

so

$$V(\phi(s,v)) = \lim_{k \to \infty} V(u(s+n_k)),$$

but $V(u(t)) \to V_0$, so $V(\phi(s,v)) = V_0$, which is independent of s. This means that $W(\phi(s,v)) = \frac{d}{ds}V(\phi(s,v)) = 0$, but W is negative definite, so $\phi(s,v) = e$. In particular, we can take s = 0, and we get v = e, so $V_0 = V(v) = V(e) = 0$. This means that $V(u(t)) \to 0$ as $t \to \infty$.

Finally, suppose we have another small number $\epsilon' > 0$. By Proposition 27, there exists $\delta' > 0$ such that $S_{\delta'} \subseteq U_{\epsilon'}$. As $V(u(t)) \to 0$, we can find T such that $V(u(t)) < \delta'$ for $t \ge T$. This means that when $t \ge T$ we have $u(t) \in S_{\delta'} \subseteq U_{\epsilon'}$, so $||u(t) - e|| < \epsilon'$. This proves that $u(t) \to e$, as required. Thus, e is asymptotically stable.