Sprawozdanie – laboratorium nr 6

Poszukiwanie zer wielomianów metodą iterowanego dzielenia (metoda Newtona)

Kinga Pyrek, 18.04.2020

1. Wstęp teoretyczny

Jedną z metod służących do wyznaczania pierwiastków równań nieliniowych jest *metoda stycznych(Newtona, Newtona–Raphsona)*, która jest modyfikacją metody *Regula Falsi*. Wykorzystuje ona fałszywe założenie lokalnej liniowości funkcji(stąd nazwa "Falsi"), zakładamy ponadto:

- w przedziale <a, b> funkcja ma tylko jeden pojedynczy pierwiastek,
- ightharpoonup f(a)f(b) < 0,
- ightharpoonup funkcja f jest klasy C^2
- pierwsza i druga pochodna nie zmieniają znaku w przedziale <a, b>.

Schemat postępowania:

przez punkty A i B prowadzimy prostą o równaniu:

$$y - f(a) = \frac{f(b) - f(a)}{b - a}(x - a),$$

 \triangleright za pierwsze przybliżenie szukanego pierwiastka przyjmujemy punkt x_1 , w którym prosta przecina oś oX:

$$x_1 = a - \frac{f(a)}{f(b) - f(a)}(b - a),$$

- ightharpoonup jeśli jest spełniony warunek $f(x_1)=0$, to przerywamy obliczenia,
- ightharpoonup jeśli natomiast $f(x_1) \neq 0$, to sprawdzamy na końcu, którego z dwóch przedziałów ($< A, x_1 >, < x_1, B >$) wartości funkcji mają różne znaki, przez te punkty zostanie przeprowadzona prosta.

Obliczenia przerywa się jeśli kolejno dwa przybliżenia różnią się o więcej niż założona wartość. Wadą tej metody jest wolna zbieżność, gdzie rząd metody jest określany parametrem p=1.

Metoda stycznych (Newtona, Newtona–Raphsona) służy do iteracyjnego znajdowania miejsc zerowych zadanego wielomianu. W metodzie tej prowadzimy styczną do wykresu w danym punkcie y=f(x), punkt w którym przecina ona oś oX jest pierwszym przybliżeniem pierwiastka równania.

Następnie w punkcie pierwszego przybliżenia prowadzimy styczną naszej funkcji, punkt w którym przecina ona oś oX jest drugim przybliżeniem pierwiastka itd. Iteracje przerywamy, kiedy zostanie osiągnięta zbieżność- kolejne przybliżenia będą niewiele się od siebie różniły.

Kolejne przybliżenia wyznaczamy rekurencyjnie:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}.$$

Zbieżność tej metody jest większa niż metody Regula Falsi- rząd metody p = $\frac{1}{2}(1+\sqrt{5}) \approx 1.618$. Dodatkowo przyjmujemy, że $|f(x_k)|$ mają tworzyć ciąg malejących wartości. Jeżeli w kolejnej iteracji $|f(x_k)|$ rośnie przerywamy obliczenia i ponownie wyznaczamy punkty startowe zawężając przedział izolacji.

2. Zadanie do wykonania

2.1. Opis problemu

Naszym zadaniem jest znalezienie zer wielomianu:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0.$$
 (1)

Dzieląc wielomian przez $(x - x_i)$ otrzymamy:

$$f(x) = (x - x_i)(b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_0) + R_i.$$
 (2)

Następnie rekurencyjnie wyznaczmy współczynniki nowego wielomianu

$$b_n = 0 (3)$$

$$b_n = 0 \label{eq:bk} b_k = a_{k+1} + x_j b_{k+1}, gdzie \ k = n-1, n-2, \dots, 0 \eqno(3)$$

$$R_i = a_0 + x_i b_0. ag{5}$$

Dzieląc wielomian po raz kolejny otrzymamy:

$$f(x) = (x - x_i)^2 (c_{n-2}x^{n-2} + c_{n-3}x^{n-3} + \dots + c_0) + R_i'(x - x_i) + R_i.$$

Współczynniki c_n i R_j^\prime liczymy w ten sam sposób jak b_n , R_j ze wzorów przedstawionych wyżej((3)-(5)).

Zera wielomianu wyznaczamy iteracyjnie wg wzoru:

$$x_{j+1} = x_j - \frac{R_j}{R_i'},$$

gdzie x_{j+1} jest kolejnym, dokładniejszym przybliżeniem zera wielomianu, a R_j , R_j' wyliczamy ze wzoru (5).

W naszym zadaniu rozwiązujemy problem dla wielomianu

$$f(x) = x^5 + 14x^4 + 33x^3 - 92x^2 - 196x + 240.$$

Za punkt początkowy przyjmujemy $x_0=0$, za maksymalną iterację $IT_{MAX}=30$, poszukiwania dokładniejszego przybliżenia przerywamy kiedy $|x_1-x_0|<10^{-7}$.

2.2. Wyniki

Otrzymaliśmy pięć miejsc zerowych naszego wielomianu. W tabelach poniżej przedstawiono kolejne przybliżenia poszczególnych miejsc zerowych oraz wartości R_i , R_i' w kolejnych iteracjach.

Oznaczenia:

- L to numer miejsca zerowego,
- > it to numer iteracji,
- $\triangleright x_{it}$ to przybliżenie miejsca zerowego w danej iteracji
- $ightharpoonup R_j$ to reszta z dzielenia wielomianu w danej iteracji,
- $ightharpoonup R_j'$ to reszta z powtórnego dzielenia wielomianu w danej iteracji.

L	it	x_{it}	R_{j}	R'_j
1	1	1.224490	240.0	-196.000000
1	2	0.952919	-43.1289	-158.813037
1	3	0.999111	10.5714	-228.859896
1	4	1.000000	0.195695	-220.179375
1	5	1.000000	7.96468e-05	-220.000073
1	6	1.000000	1.32729e-11	-220.000000

Tabela 1: Dane dla miejsca zerowego x=1.

Tabela 2: Dane dla miejsca zerowego x=-4.

L	it	x_{it}	R_j	R'_j
2	1	-5.454545	-240	-44.000000
2	2	-4.463518	-120.975	122.070624
2	3	-4.108252	-24.2755	68.330402
2	4	-4.009574	-4.31754	43.753920
2	5	-4.000090	-0.347977	36.689078
2	6	-4.000000	-0.00323665	36.006473
2	7	-4.000000	-2.90891e-07	36.000001

Tabela 3:Dane dla miejsca zerowego x=2.

L	it	x_{it}	R_j	R'_j
3	1	15.000000	-60	4.000000
3	2	9.202180	5850	1009.000018
3	3	5.537523	1687.53	460.488347
3	4	3.383159	469.259	217.818009
3	5	2.335342	118.159	112.766776
3	6	2.027700	22.07	71.739008
3	7	2.000215	1.67505	60.944092
3	8	2.000000	0.0128842	60.007301
3	9	2.000000	7.83733e-07	60.000000

Tabela 4: Dane dla miejsca zerowego x=-3.

L	it	x_{it}	R_j	R'_j
4	1	-2.307692	30	13.000000
4	2	-2.942837	5.32544	8.384615
4	3	-2.999541	0.403409	7.114326
4	4	-3.000000	0.00321531	7.000919
4	5	-3.000000	2.10929e-07	7.000000

Tabela 5: Dane dla miejsca zerowego x=-10.

L	it	x_{it}	R_{j}	R_j'
5	1	-10.000000	10	1.000000
5	2	-10.000000	0	1.000000

3. Wnioski

Metoda Newtona pozwoliła nam obliczyć miejsca zerowe wielomianu.

Otrzymaliśmy wyniki poprawne z rozwiązaniem analitycznym. Dzięki warunkowi zbieżności unikamy niepotrzebnych iteracji, widzimy że największa liczbą iteracji było 9 (tabela 3), a więc żadna z iteracji nie przekroczyła IT_{MAX} i zbieżność jest uzyskiwana szybko. Po obliczeniu każdego pierwiastka zmniejszamy stopień wielomianu o 1, co także zmniejsza ilość iteracji.

Źródła:

1. Wstęp teoretyczny na podstawie wykładu dr hab. Inż. Tomasza Chwieja pt. "Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów."