In [40]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]: a=pd.read_csv("C:\All Datasets\All_Diets.csv")
a

Extracti	Extraction_day	Fat(g)	Carbs(g)	Protein(g)	Cuisine_type	Recipe_name	Diet_type	
	2022-10-16	3.20	1.29	5.22	american	Bone Broth From 'Nom Nom Paleo'	paleo	0
	2022-10-16	146.14	28.62	181.55	south east asian	Paleo Effect Asian-Glazed Pork Sides, A Sweet	paleo	1
	2022-10-16	96.76	302.59	30.91	american	Paleo Pumpkin Pie	paleo	2
	2022-10-16	59.89	75.78	9.62	mexican	Strawberry Guacamole recipes	paleo	3
	2022-10-16	71.55	54.08	39.84	chinese	Asian Cauliflower Fried "Rice" From 'Nom Nom P	paleo	4
	•••					***		
	2022-10-16	137.15	288.14	85.20	ita l ian	Brown Butter- Sunchoke Soup With Brussels Sprou	dash	7801
	2022-10-16	323.50	123.18	141.98	american	Make-Your- Own-Salad	dash	7802
	2022-10-16	0.00	0.39	0.01	world	Luis Buñuel Dry Martini	dash	7803
	2022-10-16	260.84	239.88	155.38	american	Cornflake Semi-Fried Chicken Tenders	dash	7804
	2022-10-16	0.00	0.83	0.02	american	Emeril's Classic Manhattan	dash	7805

```
In [3]: |a.isnull().sum()
 Out[3]: Diet_type
                                0
          Recipe_name
                                0
                                0
          Cuisine_type
          Protein(g)
                                0
                                0
          Carbs(g)
          Fat(g)
          Extraction_day
                                0
          Extraction_time
                                0
          dtype: int64
 In [5]:
          from sklearn.preprocessing import LabelEncoder
          l=LabelEncoder()
          a["Recipe name"]=1.fit transform(a["Recipe name"])
          a["Cuisine_type"]=1.fit_transform(a["Cuisine_type"])
          a["Diet_type"]=1.fit_transform(a["Diet_type"])
 In [6]: a
 Out[6]:
                 Diet_type Recipe_name Cuisine_type Protein(g) Carbs(g)
                                                                         Fat(g)
                                                                                Extraction_day Extractio
                        3
                                                                   1.29
              0
                                    509
                                                  0
                                                          5.22
                                                                           3.20
                                                                                    2022-10-16
                                                                                                     1
                        3
                                  4558
                                                  17
                                                        181.55
                                                                  28.62 146.14
                                                                                    2022-10-16
              1
                                                                                                     1
              2
                        3
                                  4731
                                                  0
                                                         30.91
                                                                 302.59
                                                                         96.76
                                                                                    2022-10-16
              3
                        3
                                   5965
                                                  13
                                                          9.62
                                                                  75.78
                                                                          59.89
                                                                                    2022-10-16
                                                                                                     1
                        3
                                    194
                                                  5
                                                         39.84
                                                                  54.08
                                                                         71.55
                                                                                    2022-10-16
                                                                                                     1
                                                            ...
           7801
                        0
                                                  9
                                                         85.20
                                                                 288.14 137.15
                                                                                    2022-10-16
                                                                                                     2
                                   577
           7802
                                   3321
                                                  0
                                                        141.98
                                                                 123.18 323.50
                                                                                    2022-10-16
                                                                                                     2
           7803
                                   3295
                                                  18
                                                          0.01
                                                                   0.39
                                                                           0.00
                                                                                    2022-10-16
                                                                                                     2
           7804
                        0
                                   1095
                                                  0
                                                        155.38
                                                                 239.88 260.84
                                                                                                     2
                                                                                    2022-10-16
           7805
                        0
                                   1588
                                                  0
                                                          0.02
                                                                   0.83
                                                                           0.00
                                                                                    2022-10-16
                                                                                                     2
          7806 rows × 8 columns
 In [9]: a["Extraction_day"]=pd.to_datetime(a["Extraction_day"])
          a["By_year"]=a["Extraction_day"].dt.year
          a["By_Day"]=a["Extraction_day"].dt.day
          a["By_month"]=a["Extraction_day"].dt.month
In [11]: | del a["Extraction_day"]
```

In [12]: a

Out[12]:

	Diet_type	Recipe_name	Cuisine_type	Protein(g)	Carbs(g)	Fat(g)	Extraction_time	By_year
0	3	509	0	5.22	1.29	3.20	17:20:09	2022
1	3	4558	17	181.55	28.62	146.14	17:20:09	2022
2	3	4731	0	30.91	302.59	96.76	17:20:09	2022
3	3	5965	13	9.62	75.78	59.89	17:20:09	2022
4	3	194	5	39.84	54.08	71.55	17:20:09	2022
7801	0	577	9	85.20	288.14	137.15	20:40:44	2022
7802	0	3321	0	141.98	123.18	323.50	20:40:44	2022
7803	0	3295	18	0.01	0.01 0.39 0.00 20:40	20:40:44	2022	
7804	0	1095	0	155.38	239.88	260.84	20:40:44	2022
7805	0	1588	0	0.02	0.83	0.00	20:40:44	2022

7806 rows × 10 columns

In [26]: a[["hour","min","sec"]]=a["Extraction_time"].str.split(":",expand=True)

In [28]: del (a["Extraction_time"])

In [29]: a

Out[29]:

	Diet_type	Recipe_name	Cuisine_type	Protein(g)	Carbs(g)	Fat(g)	By_year	By_Day	By_m
0	3	509	0	5.22	1.29	3.20	2022	16	
1	3	4558	17	181.55	28.62	146.14	2022	16	
2	3	4731	0	30.91	302.59	96.76	2022	16	
3	3	5965	13	9.62	75.78	59.89	2022	16	
4	3	194	5	39.84	54.08	71.55	2022	16	
7801	0	577	9	85.20	288.14	137.15	2022	16	
7802	0	3321	0	141.98	123.18	323.50	2022	16	
7803	0	3295	18	0.01	0.39	0.00	2022	16	
7804	0	1095	0	155.38	239.88	260.84	2022	16	
7805	0	1588	0	0.02	0.83	0.00	2022	16	

7806 rows × 12 columns

```
In [31]: a.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7806 entries, 0 to 7805
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Diet_type	7806 non-null	int32
1	Recipe_name	7806 non-null	int64
2	Cuisine_type	7806 non-null	int64
3	Protein(g)	7806 non-null	float64
4	Carbs(g)	7806 non-null	float64
5	Fat(g)	7806 non-null	float64
6	By_year	7806 non-null	int64
7	By_Day	7806 non-null	int64
8	By_month	7806 non-null	int64
9	hour	7806 non-null	object
10	min	7806 non-null	object
11	sec	7806 non-null	object
dtvp	es: float64(3)	. int32(1). int6	4(5), object(3)

dtypes: float64(3), int32(1), int64(5), object(3)

memory usage: 701.4+ KB

```
In [35]: a["hour"]=a["hour"].astype(int)
a["min"]=a["min"].astype(int)
a["sec"]=a["sec"].astype(int)
```

In [36]: a

Out[36]:

	Diet_type	Recipe_name	Cuisine_type	Protein(g)	Carbs(g)	Fat(g)	By_year	By_Day	By_m
0	3	509	0	5.22	1.29	3.20	2022	16	
1	3	4558	17	181.55	28.62	146.14	2022	16	
2	3	4731	0	30.91	302.59	96.76	2022	16	
3	3	5965	13	9.62	75.78	59.89	2022	16	
4	3	194	5	39.84	54.08	71.55	2022	16	
7801	0	577	9	85.20	288.14	137.15	2022	16	
7802	0	3321	0	141.98	123.18	323.50	2022	16	
7803	0	3295	18	0.01	0.39	0.00	2022	16	
7804	0	1095	0	155.38	239.88	260.84	2022	16	
7805	0	1588	0	0.02	0.83	0.00	2022	16	

7806 rows × 12 columns

```
In [37]: a.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 7806 entries, 0 to 7805
         Data columns (total 12 columns):
              Column
                            Non-Null Count Dtype
         ---
              ----
                            -----
                                            ----
              Diet type
                            7806 non-null
          0
                                            int32
              Recipe_name
                            7806 non-null
          1
                                            int64
          2
              Cuisine_type 7806 non-null
                                            int64
          3
              Protein(g)
                            7806 non-null
                                            float64
                            7806 non-null
                                            float64
          4
              Carbs(g)
          5
              Fat(g)
                            7806 non-null
                                            float64
          6
                            7806 non-null
                                            int64
              By_year
          7
                            7806 non-null
                                            int64
              By_Day
          8
              By_month
                            7806 non-null
                                            int64
          9
              hour
                            7806 non-null
                                            int32
          10 min
                            7806 non-null
                                            int32
          11 sec
                            7806 non-null
                                            int32
         dtypes: float64(3), int32(4), int64(5)
         memory usage: 610.0 KB
In [51]: x=a.iloc[:,1:].values
In [52]:
         from sklearn.cluster import KMeans
         km=KMeans(n clusters=5,init="k-means++",random state=20)
         km.fit(x)
Out[52]: KMeans(n clusters=5, random state=20)
```

In [73]: a

Out[73]:

	Diet_type	Recipe_name	Cuisine_type	Protein(g)	Carbs(g)	Fat(g)	By_year	By_Day	By_m
0	3	509	0	5.22	1.29	3.20	2022	16	
1	3	4558	17	181.55	28.62	146.14	2022	16	
2	3	4731	0	30.91	302.59	96.76	2022	16	
3	3	5965	13	9.62	75.78	59.89	2022	16	
4	3	194	5	39.84	54.08	71.55	2022	16	
			•••						
7801	0	577	9	85.20	288.14	137.15	2022	16	
7802	0	3321	0	141.98	123.18	323.50	2022	16	
7803	0	3295	18	0.01	0.39	0.00	2022	16	
7804	0	1095	0	155.38	239.88	260.84	2022	16	
7805	0	1588	0	0.02	0.83	0.00	2022	16	

7806 rows × 13 columns

```
In [77]: x1=a.iloc[:,1:-1].values
y2=a.iloc[:,0].values
```

In [79]: from sklearn.preprocessing import StandardScaler
 s=StandardScaler()
 x2=s.fit_transform(x1)

```
In [80]: | a["Pred Diet Type"].value_counts()
```

```
Out[80]: 3 1810
0 1510
1 1509
4 1496
2 1481
```

Name: Pred Diet Type, dtype: int64

```
In [81]: from imblearn.over_sampling import SMOTE
sm=SMOTE()
x4,y4=sm.fit_resample(x2,y2)
```

- In [83]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x4,y4,random_state=20,test_size=0)
- In [84]: from sklearn.neighbors import KNeighborsClassifier
 from sklearn.ensemble import BaggingClassifier

```
In [94]:
          kn=KNeighborsClassifier(n neighbors=5,metric="minkowski",p=2)
          bg=BaggingClassifier(base estimator=kn,n estimators=5)
          bg.fit(x_train,y_train)
 Out[94]: BaggingClassifier(base_estimator=KNeighborsClassifier(), n_estimators=5)
 In [97]: |p1=bg.predict(x_train)
          p1
 Out[97]: array([3, 0, 2, ..., 0, 0, 2])
 In [99]: | from sklearn.metrics import accuracy_score
          accuracy_score(p1,y_train)*100
 Out[99]: 99.11580148317171
In [101]: from sklearn.metrics import confusion_matrix
          confusion_matrix(p1,y_train)
Out[101]: array([[1398,
                            1,
                                              4],
                      0, 1379,
                                  4,
                                              2],
                                        4,
                           16, 1382,
                                        7,
                      0,
                                              01,
                            0,
                                 10, 1395,
                                              1],
                            5,
                                  0,
                                        2, 1396]], dtype=int64)
In [104]: from sklearn.metrics import classification report
          classification_report(p1,y_train)
Out[104]:
                          precision
                                       recall f1-score
                                                           support\n\n
                                                                                 0
                                                                                          1.
          00
                   0.99
                             1.00
                                       1406\n
                                                         1
                                                                 0.98
                                                                           0.99
                                                                                      0.99
          1389\n
                                    0.99
                                              0.98
                                                         0.99
                                                                   1405\n
                                                                                    3
          0.99
                     0.99
                               0.99
                                         1406\n
                                                           4
                                                                   1.00
                                                                             0.99
                                                                                       0.99
          1406\n\n
                                                           0.99
                                                                     7012\n
                       accuracy
                                                                              macro avg
          0.99
                     0.99
                                         7012\nweighted avg
                                                                   0.99
                                                                             0.99
                                                                                       0.99
                               0.99
          7012\n'
In [110]: from sklearn.model selection import StratifiedKFold
          sk=StratifiedKFold(n splits=5,random state=20,shuffle=True)
          sk.get_n_splits(x_train,y_train)
Out[110]: 5
In [111]: from sklearn.model selection import cross val score
          from sklearn.model selection import cross val predict
          from sklearn.metrics import accuracy_score
In [112]: bg.fit(x_train,y_train)
Out[112]: BaggingClassifier(base_estimator=KNeighborsClassifier(), n_estimators=5)
```

```
In [117]: scores=cross_val_score(bg,x_train,y_train)
    pred=cross_val_predict(bg,x_train,y_train)
    print((scores)*100)
    print(pred)
    ac=accuracy_score(pred,y_train)*100
    print(ac)

[97.50534569 98.43193158 98.28815977 98.07417974 99.14407989]
    [3 0 2 ... 0 0 2]
    98.27438676554479

In []:
```