

Compressed SCAN

Renesas Design Viet Nam Co., Ltd. Design Engineer Division Logic Implementation Technology Group

2009/09/30

OUTLINE

Why Compressed Scan What is Compressed Scan Where Compressed Scan in design flow How to implement Compressed Scan When apply Compressed Scan

Why Compressed Scan (1)

Problems with NORMAL SCAN test

Test data problem:

Chip size: increase

Chip function: increase

→ increasing test pattern volume, test time

Tester's memory problem:

Big patterns → using more expensive ATE

Pattern volume exceeds the memory size in ATE

→ Increasing test cost, chip cost

Renesas Design Viet Nam Co., Ltd.

Why Compressed Scan (2)

Effective solution

Compression scan approach is required for 'high test quality' and 'low test cost' ATE Pattern Pattern Particular Par volume Limit "at-speed" **Pattern Reduction** "stuck-at" "at-speed" "stuck-at"

What is Compressed Scan (1)

It is a method used to reduce the pattern volume when running ATPG for normal scan designs by adding additional logics inside those designs.

What is Compressed Scan (2)

Where Compressed Scan in design flow

How to implement Compressed Scan (1)

TestKompress (Mentor)

- Ensure the same fault coverage as the normal ATPG
- Enable pattern generation for stuck-at, transition, and path delay faults
- Automatically insert SCAN + Compression/Expansion circuit IP
 - Decompressor : Ring Generator (LFSR) + phase shifter (EXOR)
 - Compactor : EXOR-Tree (with Indefinite and aliasing block function)
 - Circuit overhead : about 17Gate per an internal chain
- Realize about 1/100 of pattern compressibility

LFSR : linear feedback shift register

How to implement Compressed Scan (1)

DFTMAX (Synopsys)

- Ensure the same fault coverage as the normal ATPG
- Enable pattern generation for stuck-at, transition, and path delay faults
- Automatically insert SCAN + Compression/Expansion circuit IP
 - Decompressor : multi fan-in MUX control (Illinois scan method)
 - Compactor: EXOR-Tree (with Indefinite and aliasing block function)
 - Circuit overhead : about 13Gate per an internal chain
- Realize about 1/60 of pattern compressibility

Input-side compactor principle

When apply Compressed Scan

Tool	FastScan TetraMAX	DFTMAX	TestKompress	singen
Methodology	Scan	Compression Scan	Compression Scan	LBIST
Design Size	<1M Gate	<2M Gate	<20M Gate	20M Gates<
Design Constraint	Easy (MUX-Scan)	Easy (MUX-Scan)	Easy (MUX-Scan)	Hard
Area Overhead	Scan	Scan + Adaptive Scan (0.1%-0.5%)	Scan + EDT (0.3%-1.0%)	Scan + LBIST + TP (2.0%)
Compression ratio	1	10x-60x	10x-260x	100x-1000x
Low Pin Test	Not available	Not available	Available	Available
At-Speed Test	Single clock domain	Single clock domain	Multiple clock domain (<3clock domain)	Multiple clock domain

Renesas Design Viet Nam Co., Ltd.

 $\ensuremath{\mathbb{C}}$ 2006. Renesas Technology Corp. All rights reserved