作业要认真看

第一章: 仔细阅读 ppt, 要掌握基本概念

重点: 计算题目

■ 例3:在一个程序中,如果浮点操作FP的比例为25%,FP的CPI为4,其他指令的CPI为1.33。浮点开平方根操作FPSQR比例为2%,FPSQR的CPI为20。如有两种方案,分别把FPSQR操作的CPI和所有FP操作的CPI均减至2,试利用CPU性能公式分析这两种方案的优劣

第二章: 仔细阅读 ppt, 要掌握基本概念

重点: 指令格式设计- Huffman 编码

Huffman编码操作码

指令序号	出现的概率	Huffman 编码法	操作码长度
I ₁	0.45	0	1 位
I ₂	0.30	1 0	2 位
I ₃	0.15	1 1 0	3 位
I ₄	0.05	1 1 1 0	4 位
I ₅	0.03	1 1 1 1 0	5 位
16	0.01	1 1 1 1 1 0	6 位
I ₇	0.01	1 1 1 1 1 1	6 位

OpenMP 多线程并行编程,实验内容,例题

(上机题目)编写完整 OpenMP 程序,要求在程序中指定用 4 个线程执行,初始化数组 A[] 和数组 B[],其中数组 A 和 B 各有 10240 个元素,实现:A=A+B 当数组 A 和 B 的下标是偶数时,最后输出数组 A。指出至少一种针对本程序性能优化的方法。

//参考答案:

#include iostream

#include<stdio.h>

#include<Windows.h>

#include < omp. h >

#include<time.h>

#include <stdlib.h>

using namespace std;

```
void OMPfun(int *A, int *B, int size) {
    int i;
    omp_set_num_threads(4);
#pragma omp parallel for
    for (i=0; i \le i = i+2) {
         int temp=A[i]+B[i];
        A[i]=temp;
    }
int main() {
    int size=10240;
    int *A=new int [size];
    int *B=new int [size];
    srand((unsigned int )(time(0)));
    for (int i=0; i \le i \le i + +) {
         A[i]=rand()%10000;
        B[i] = rand() \%10000;
    OMPfun(A, B, size);
    for (int i=0; i < size; ++i) {
         cout<<A[i]<<endl;</pre>
    }
    delete A;
    delete B;
    return 0;
```

采用 sse 进行向量化,使用动态调度,或者静态分组,减少调度次数等

第三章 存储系统 仔细阅读 ppt,要掌握基本概念 重点:指令格式设计-Huffman 编码 替换算法及其实现

3.2 替换算法及其实现

替换算法:

主存(实存)所有页面已经全部被占用而又出现页面失效时,按照哪种算法(规则)来替换主存中某页。

注意: 考虑替换算法时首先要明确所采用的相联映像方式。

采用什么替换算法:

有利于提高存储体系的性能?

提高命中率? 易于实现?

Cache 的原理与性能评估

3.4.6 Cache-主存层次性能分析

- •块的大小、组的大小及Cache容量增大都会提高命中率
- 但Cache在调块时,CPU空等,这时希望块 较小

Cache系统的加速比与命中率的关系:

假设Cache的访问周期是T.

主存的访问周期是7,,,

Cache系统的等效访问周期是T

则Cache系统的加速比 S_p 为

$$S_{p} = \frac{T_{m}}{T} = \frac{T_{m}}{H T_{c} + (1 - H) T_{m}} = f \left(H, \frac{T_{m}}{T_{c}}\right)$$

■ 提高加速比的最好途径是提高命中率

第四章 流水线 仔细阅读 ppt, 要掌握基本概念

流水线的性能分析

1.3 流水线的性能分析

主要指标: 吞吐率、加速比和效率

1.吞吐率(Though Put)

• 流水线吞吐率的最基本公式: $TP = \frac{n}{T}$

其中: n为任务数, Tk为完成n个任务所用的时间。

· 各段执行时间相等,输入连续任务情况下,完成n个任 务需要的总时间为:

 $T_k = (k+n-1)\Delta t$

其中: k 为流水线的段数, Δt为时钟周期。

最大吞吐率为: $TP_{\max} = \lim_{n \to \infty} \frac{n}{(k+n-1)\Delta t} = \frac{1}{\Delta t}$

设每个功能段延迟时间相等,都是 Δt_0 ,则 $_{\mathrm{T}=20} imes \Delta t_0$, $_{\mathrm{n}=7}$ 。

- 冲突问题
 - ■前面产生了冲突的例子
 - ■流水线设计中要解决的重要问题之一
- 实际流水中常见的三种相关使得流水线出现冲突(第3节继续讨论)
 - <mark>资源相关</mark>是指当指令在重叠执行过程中,不同指 令争用同一功能部件产生资源冲突时产生的
 - 数据相关是指令在流水线中重叠执行时,当后继 指令需要用到前面的指令产生的结果时发生的
 - 控制相关是当流水线遇到转移指令引起的。据统计,转移指令约占总指令的四分之一左右,比起数据相关,它会使流水线丧失更多的功能

数据检测、控制相关问题与解决方案

2.2 无冲突调度

- 由E.S.Davidson及其学生于1971年提出
- **例**:一条4功能段的非线性流水线,每个功能段的延迟时间都相等,它的预约表如下:
 - (1) 写出流水线的禁止向量和初始冲突向量。
 - (2) 画出调度流水线的状态图。
 - (3) 求最小启动循环和最小平均启动距离。
 - (4) 求平均启动距离最小的恒定循环。

	功能度	1	2	3	4	5	6	7
	S ₁	X				s .		Х
ı	S ₂		Х				Х	
	S ₃			Х		Х		
	S ₄				Х			

解: (1)禁止向量: 预约表中每一行任意两个"×"之间距离的集合。本例中为(2,4,6)

(2)冲突向量: C=(C_m...C_i...C₂C₁)

其中: m是禁止向量中的最大值。

如果i在禁止向量中,则 $C_i=1$,否则 $C_i=0$ 。

本例中 C=(101010)

(3)构造状态图 初始时S=C

S逻辑右移2、4、6位时,不作任何处理,

逻辑右移1、3、5和大于等于7时:

S右移1位之后: 010101 V 101010=111111,

S右移3位之后: 000101∨101010=101111,

S右移5位之后: 000001 \/ 101010=101011,

>当移出的位为t,表示用这些启动距离向流水线输入任务会发生功能 段的冲突,因此在状态图中不做任何处理

≥当移出的位为0,表示用这个启动距离向流水线输入任务不发生功能 段的冲突,这时做"按位或"产生新的冲突向量

»初始向量经过7次或大于7次逻辑右移后再与原来的初始冲突向量进 行"按位或"运算,结果必然还是原来的初始冲突向量本身

(1) 禁止向量F=(6,4,2); 冲突向量C=(101010)

超标量处理机

1	2	3	4	5	6	
IF	ID	EX	WR			时钟周
	IF	ID	EX	WR		
	TE STORY	IF	ID	EX	WR	
指令						
*	发射外	理机的排	省令流 力	《线时空	图	
1	2	3	4	5	6	
IF	ID	EX	WR		STATERA	·时钟周
**						
IF	ID	EX	WR			
	ID ID	EX EX	W R			
IF				WR		
IF	ID	EX	WR	W R W R		
IF	ID IF	EX ID	W R E X			
IF	ID IF IF	EX ID ID	W R E X E X	WR	WR	
IF	ID IF IF	ID ID	W R E X E X	W R W R		-

性能函数

6.2 超标量超流水线处理机性能

• 指令級并行度为(m,n)的超标量超流水线处理机,连续 执行N条指令所需要的时间为; $T(m,n) = (k + \frac{N-m}{m \cdot n})\Delta t$ • 超标量超流水线处理机相对于单流水线标量处理机的加速比为; $S(m,n) = \frac{S(1,1)}{S(m,n)} = \frac{(k + N - 1)\Delta}{(k + \frac{N-m}{m})\Delta} = \frac{mn(k + N - 1)}{mn(k + N - m)}$ • 在理想情况下,超标量超流水线处理机加速比的最大值为; $S(m,n)_{MAX} = m n$

第五章 并行处理,仔细阅读 ppt,要掌握基本概念

流水线的性能分析

互联网络

互连网络的表示方法

为了在输入结点与输出结点之间建立对应关系, 互连网络有三种表示方法:

(1)互连函数表示法:

如:
$$f(x_{n-1}...x_1x_0) = x_0x_{n-2}...x_1x_{n-1}$$

(2)图形表示法 0 1 5 1 E E E N-1 N-1

(3)输入输出对应表示法

输入: 01234567 输出: 10325476

5.3.2 单级互连函数

- 交换互连函数(立方体单级网络)
- ·全混选单级函数 (Shuffle)
- ・蝶式函数 (Butterfly)
- 反位序函数 (Bit Reversal)
- 移数函数(PM2I单级网络)

解: (12)10 = (1100)2

- (1) Cube3, (2) PM2+3, (3) PM2-0,
- (4) Shuffle, (5) Butterfly, (6) Reversal

1100最高位取反得0100, 4号处理机

(12 + 8) MOD 16 = 4,

4号处理机

12 - 1 = 11,

11号处理机

1100循环左移1位得到1001, 9号处理机 1100的最高最低位交换0101, 5号处理机

1100的位序反过来为0011, 3号处理机

多级互联网络

5.3.6 多级互连网络

控制:级控制(开关为1时交换功能,否则为直通)

多个 Cache 一致性问题

多Cache一致性 详细版

多个Cache一致性问题 (多处理机系统、多核系统、DSM)

第六章,第七章:仔细阅读ppt,要掌握基本概念

预祝大家生活和学习一切顺利!!!