

Trabajo Final de Grado

Diseño e implementación de un clasificador de tipos de movimientos humanos mediante sensores inerciales

Autor: Javier López Iniesta Díaz del Campo.

Tutor: Manuel Gil Martín.

15 de Junio de 2021

Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros de Telecomunicación Grado en Tecnologías y Servicios de la Telecomunicación

- 1. Introducción
- 2. Descripción de las bases de datos
- 3. Procesamiento de la señal
- 4. Análisis por tipos de movimientos
- 5. Deep Learning
- 6. Experimentos
- 7. Conclusiones y líneas futuras de trabajo

- 1. Introducción
- 2. Descripción de las bases de dato
- 3. Procesamiento de la señal
- 4. Análisis por tipos de movimientos
- 5. Deep Learning
- 6. Experimentos
- 7. Conclusiones y líneas futuras de trabajo

Introducción

Deep Learning

- ▶ Human Activity Recognition (HAR).
- ► Controlar, analizar y modelar el movimiento humano.
- ▶ Datos recogidos a partir de diferentes sensores.

▶ Desarrollar un módulo inicial para clasificar tipos de movimiento humano.

- Características de los tipos de movimiento en función de la energía.
- Técnicas de procesamiento de señales.
- Redes neuronales con el propósito de extraer características de las señales y clasificar el tipo de actividad.
- Módulo clasificador de tipos de movimientos

Objetivos '

▶ Desarrollar un módulo inicial para clasificar tipos de movimiento humano.

- Características de los tipos de movimiento en función de la energía.
- Técnicas de procesamiento de señales.
- Redes neuronales con el propósito de extraer características de las señales y clasificar el tipo de actividad.
- Módulo clasificador de tipos de movimientos

▶ Desarrollar un módulo inicial para clasificar tipos de movimiento humano.

- Características de los tipos de movimiento en función de la energía.
- Técnicas de procesamiento de señales.
- Redes neuronales con el propósito de extraer características de las señales y clasificar el tipo de actividad.
- Módulo clasificador de tipos de movimientos

▶ Desarrollar un módulo inicial para clasificar tipos de movimiento humano.

- Características de los tipos de movimiento en función de la energía.
- Técnicas de procesamiento de señales.
- Redes neuronales con el propósito de extraer características de las señales y clasificar el tipo de actividad.
- Módulo clasificador de tipos de movimientos

▶ Desarrollar un módulo inicial para clasificar tipos de movimiento humano.

- Características de los tipos de movimiento en función de la energía.
- Técnicas de procesamiento de señales.
- Redes neuronales con el propósito de extraer características de las señales y clasificar el tipo de actividad.
- Módulo clasificador de tipos de movimientos

Módulo completo del clasificador de movimientos

- 1. Introducción
- 2. Descripción de las bases de datos
- 3. Procesamiento de la señal
- 4. Análisis por tipos de movimientos
- 5. Deep Learning
- Experimentos
- 7. Conclusiones y líneas futuras de trabajo

Recolección de datos

- 3 IMUs y un monitor de frecuencia cardiaca.
- Frecuencia de muestreo: 100 Hz.
- 9 sujetos.
- 10 horas de datos.

Ubicación sensores:

Protocolo de 12 actividades:

- Tumbado.
- Sentado.
- De pie.
- Caminar.
- Correr.
- Ciclismo.
- Marcha nórdica.
- Subir escaleras.
- Bajar escaleras.
- Pasar la aspiradora.
- Planchar.
- Saltar a la comba.

OPPORTUNITY

- 72 sensores integrados en el entorno, objetos y cuerpo.
- Frecuencia de muestreo: 32 Hz.
- 4 sujetos.
- Actividades grabadas en un entorno que simulaba un estudio con cocina y salida al exterior.
- Se realizaban 20 repeticiones de una secuencia de actividades predefinidas.
- 25 horas de datos.

- 1. Introducción
- 2. Descripción de las bases de datos
- 3. Procesamiento de la señal
- 4. Análisis por tipos de movimientos
- 5. Deep Learning
- 6. Experimentos
- 7. Conclusiones y líneas futuras de trabajo

Transformación y preprocesado

- ► Acondicionamiento de la señal.
- ► Segmentación de las muestras en ventanas.
- ▶ Interpolación en OPPORTUNITY.

Técnicas de procesamiento de señales:

- Datos sin preprocesamiento (Raw).
- Módulo de la FFT.

Transformación y preprocesado

- ► Acondicionamiento de la señal.
- ► Segmentación de las muestras en ventanas.
- ▶ Interpolación en OPPORTUNITY.

Técnicas de procesamiento de señales:

- Datos sin preprocesamiento (Raw).
- Módulo de la FFT.

Raw

► Sin ninguna transformación a las señales originales.

Módulo de la FFT

- lacktriangle Actividades humanas ightarrow Energía en bajas frecuencias
- ▶ Periodicidad en movimientos repetitivos.

- 1. Introducción
- 2. Descripción de las bases de datos
- 3. Procesamiento de la señal
- 4. Análisis por tipos de movimientos
- 5. Deep Learning
- 6. Experimentos
- 7. Conclusiones y líneas futuras de trabajo

Análisis por tipo de movimiento

Tipología de movimientos de actividad física:

- ▶ Movimientos.
 - → Movimientos repetitivos.
 - → Movimientos no repetitivos (gestos).
- ▶ Posturas.

Módulo de la energía por ventana

- ► Energía de todas las actividades.
- ▶ Con ventanas de las señales sin preprocesamiento (Raw).
- ▶ 3 coordenadas (x, y, z) de los acelerómetros.

$$|E| = \frac{1}{F} \sum_{i=1}^{F} \left| \sqrt{(x_i - \overline{x})^2 + (y_i - \overline{y})^2 + (z_i - \overline{z})^2} \right|^2$$

Histogramas y umbral de energía

- ▶ Análisis estadístico de la energía por ventana de cada sensor.
- ► Histogramas.
- ▶ Umbral de energía.

- 1. Introducción
- 2. Descripción de las bases de datos
- 3. Procesamiento de la señal
- 4. Análisis por tipos de movimientos
- 5. Deep Learning
- 6. Experimentos
- 7. Conclusiones y líneas futuras de trabajo

Deep Learning

- ► Redes neuronales convolucionales (CNN).
- ▶ Optimización de la red neuronal.

- 1. Introducción
- 2. Descripción de las bases de datos
- 3. Procesamiento de la señal
- 4. Análisis por tipos de movimientos
- 5. Deep Learning
- 6. Experimentos
- 7. Conclusiones y líneas futuras de trabajo

Métricas de evaluación

- ▶ LOSO (Leave One Subject Out) con "n-fold cross-validation".
- ▶ Resultados de validación → Optimización de la red neuronal.
- ► Resultados de test → Resultados finales.

	Sujeto 1	Sujeto 2	Sujeto 3	Sujeto 4	
Iteración 1	Test	Validación	Entrenamiento	Entrenamiento	
Iteración 2	Entrenamiento	Test	Validación	Entrenamiento	
Iteración 3	Entrenamiento	Entrenamiento	Test	Validación	
Iteración 4	Validación	Entrenamiento	Entrenamiento	Test	

Experimentos en PAMAP2

▶ Módulo clasificador entre movimientos repetitivos y posturas.

Sensores utilizados: Acelerómetros y giróscopos de la muñeca, pecho y tobillo				
Datos de entrada	Tasa de test (%)	Tasa de validación (%)		
FFT	96,02 ± 0,13	96,32 ± 0,12		
Raw	94,40 ± 0,16	95,14 ± 0,14		
Energía	92,08 ± 0,19	91,54 ± 0,18		

Sistema de clasificación de actividades finales (I)

▶ Tasa de test: $87,83 \pm 0,23\%$.

▶ Tasa de validación: $87,96 \pm 0,21\%$.

Matriz de confusión de test del sistema de HAR con todas las actividades

► Evitar esta confusión por tipologías.

	Matri	z de	confusió	n del	sistema	a de H	AR con	todas	las act	ividad	es - P	AMAP2
Tumbado -	7193	23	271	0	0	1	0	7	0	99	107	0
Sentado -	14	5471	1359	4	0	24	25	9	5	98	394	5
De pie -	0	563	6422	1	0	13	2	27	8	38	516	8
Caminar -	0	0	230	9121	0	0	37	27	39	24	65	8
Correr -	12	20	126	26	3608	4	1	14	35	18	41	16
Ciclismo -	0	15	70	0	1	6198	2	0	92	95	110	2
Marcha nórdica -	0	72	80	446	3	4	6781	4	7	31	91	6
Sub. escaleras -	2	26	327	128	12	0	0	3833	188	21	136	16
Baj. escaleras -	1	49	330	162	19	44	11	237	2837	83	170	258
Pasar la aspiradora -	32	24	163	2	0	9	9	37	42	6301	396	0
Planchar -	0	93	357	0	0	4	1	1	0	271	8814	7
Saltar a la comba -	0	37	60	72	0	0	5	1	58	3	52	1677
	Tuntado	Sentado	Degle	Carrifrat	Carrer	Ciclismo	Marcha nordica	Sub-escaleras	Ball escaleras	nasar la aspiradora	Plantial	Saltaf a la comba

Sistema de clasificación de actividades finales (II)

Subsistema	Tasa de test (%)
Modulo clasificador de tipos de movimientos	$96,02 \pm 0,13$
Sistema de HAR con las act. de mov. rep	$92,41 \pm 0,22$
Sistema de HAR con las act. de posturas	$90,38 \pm 0,38$
Tasa final tras optimizar:	$88, 16 \pm 0, 38$

Sistema de clasificación de actividades finales (III)

Estrategia	Tasa de test (%)	
Clasificando las 12	$87,83 \pm 0,23$	
actividades directamente		
Utilizar módulo clasificador		
de tipos de movimientos	$88,16 \pm 0,38$	
combinado con sistemas de HAR		

Experimentos en OPPORTUNITY (I)

Sensores utilizados: Acelerómetros y giróscopos de la mano, espalda y pie				
Datos de entrada	Tasa de test (%)	Tasa de validación (%)		
FFT	73,81 ± 0,30	74,56 ± 0,30		
Raw	$63,\!67\pm0,\!33$	$64,09 \pm 0,33$		
Energía	69,19 ± 0,32	69,87 ± 0,32		

Experimentos en OPPORTUNITY (II)

Sistema	Tasa de test (%)
A	93,35 \pm 0,17
В	$91,59 \pm 0,37$
С	$79,81 \pm 0,33$
Tasa final tras optimizar:	$77,47\pm0,46$

Experimentos en OPPORTUNITY (III)

Estrategia	Tasa de test (%)	
Módulo clasificador de	73,81 ± 0,30	
cuatro tipos de movimientos		
Módulo clasificador	$77,47 \pm 0,46$	
realizado en dos pasos	11,41 ± 0,40	

- 1. Introducción
- 2. Descripción de las bases de datos
- 3. Procesamiento de la señal
- 4. Análisis por tipos de movimientos
- 5. Deep Learning
- 6. Experimentos
- 7. Conclusiones y líneas futuras de trabajo

Conclusiones

- Mejor técnica para clasificar tipos de movimientos: Módulo de la FFT.
- En PAMAP2 módulo clasificador de tipos de movimientos con tasa de test del 96,02 \pm 0,13 %.
- Tasas similares en PAMAP2 utilizando el módulo clasificador con respecto a clasificar las actividades finales directamente.
- \bullet En OPPORTUNITY utilizando un módulo clasificador en 2 pasos \to Mejora del 3, 66 %

Líneas futuras de trabajo

- Longitud de la ventana como parámetro de optimización.
- Replantear la tipología de movimiento.
- Utilizar más sensores de diferentes localizaciones
- Aumentar el número de sujetos y bases de datos utilizadas.

¡Muchas gracias por su atención!

¿Alguna pregunta?

Javier López Iniesta Díaz del Campo javier.lopeziniesta.diazdelcampo@alumnos.upm.es