Remote Attestation

Building trust in things you can't see

N. Asokan Andrew Paverd asokan@acm.org andrew.paverd@ieee.org

Acknowledgements

(including co-authors of the presenters on papers cited in this tutorial)

Tigist Abera

Ferdinand Brasser

Lucas Davi

Ghada Dessouky

Jan-Erik Ekberg

Kari Kostiainen

Ahmad Ibrahim

Patrick Koeberl

Pekka Laitinen

Thomas Nyman

Ahmad-Reza Sadeghi

Matthias Schunter

Sandeep Tamrakar

Gene Tsudik

Christian Wachsmann

Shaza Zeitouni

Outline

- Remote Attestation in Principle
 - What is remote attestation?
 - What technologies have been proposed?
- Break
- Remote Attestation in Practice
 - What technologies are being used?
 - What challenges remain?

Motivating Example

Motivating Example: IoT

The following message is received:

```
{
    "name": temperature,
    "value": 23.5,
    "units": Celsius,
    "timestamp": 1430905326.2
}
```

What does it mean?

Network adversary: read, modify, falsify communication

Motivating Example: IoT

The following message is received over an authenticated, integrity-protected communication channel:

What does it mean?

Network adversary: read, modify, falsify communication

✓ authenticated, integrity-protected communication

Malware: extract secrets, change state, modify behaviour

Physical adversary: has physical access to device

IoT Malware

https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

IoT malware and ransomware attacks on the incline: Intel Security

Intel Security has released a five-year retrospective report on industry threats, finding people have become dependent on devices at the cost to their security and privacy, allowing malware and ransomware attacks to rapidly grow.

http://www.zdnet.com/article/iot-malware-and-ransomware-attacks-on-the-incline-intel-security/

Network adversary: read, modify, falsify communication ✓ authenticated, integrity-protected communication

Malware: extract secrets, change state, modify behaviour

Physical adversary: has physical access to device

Remote Attestation in Principle

Remote Attestation in Principle

Verifier ascertains current state and/or behaviour of prover.

Attestation Requirements

1. Authenticity

representation of the real state of the system

Attestation Requirements

1. Authenticity

representation of the real state of the system

2. "Freshness"

- representation of the current state

Verifier

Prover

Evidence

Trusted Platform Module (TPM)

Authenticated Boot

- Measure and record booted components ("state")
- State can be:
 - bound to stored secrets sealing
 - reported to external verifier remote attestation

Authenticated boot

TPM Measurement Process

Platform Configuration Registers (PCRs) store aggregated platform "state" measurement

- Requires a root of trust for measurement (RTM)
- A given state reached ONLY via correct extension sequence
 - "PCR extension rule"

TPM Attestation Protocol

Goal: Check whether the prover is in a trustworthy state

Drawbacks of TPM Attestation

- Needs additional hardware and software
- Not suitable for "anaemic" provers
- Covers only the initial loading of software
- Deals with only one prover and one verifier
- Database of acceptable measurements does not scale

Software-Based Attestation

Software-Based Attestation

- Assumes no hardware features to support attestation
 - No secrets on prover (e.g. no AIK)

Software-Based Attestation

- Pioneer system
 - compute time-optimal checksum of verifier

Authenticity?

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. <u>Pioneer: Verifying integrity and guaranteeing execution of code on legacy platforms</u>. SOSP '05

Software-Based Attestation: Summary

Limitations of timing side channels

- verifier must know exact hardware configuration
- difficult to prove time-optimality
- assumes "adversarial silence" during attestation
- limited to "one-hop" networks
 - requires authenticated channel (e.g. physical connection)

Hybrid Attestation

Hybrid Attestation

Minimal trust anchors: small changes to hardware

Hybrid Attestation: SMART

Minimal trust anchors: small changes to hardware

Read-only Verification code, secure key storage and atomicity of execution of Verification code

K. El Defrawy, A. Francillon, D. Perito, and G. Tsudik. <u>SMART: Secure and Minimal Architecture for</u> (<u>Establishing a Dynamic</u>) Root of <u>Trust</u>. NDSS '12

Hybrid Attestation: TrustLite & TyTAN

- Execution-Aware Memory Protection Unit (EA-MPU)
 - Access control based on memory request target and origin

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. <u>TrustLite: A Security Architecture for Tiny</u> <u>Embedded Devices</u>. EuroSys '14

Hybrid Attestation: Summary

- Advantages of hybrid approaches
 - Can be used across a network / over an untrusted channel
 - Verifier need not know prover's exact hardware configuration

Drawbacks

- Needs additional hardware support
- But minimal MCU trust anchors available commercially
 - TrustZone-M (ARM v9), ...

Scalability of Attestation

Scalability of Attestation

- Attestation protocols usually assume a single prover
 - but IoT scenarios may involve groups of (many) provers

Scalability of Attestation

- Device swarms
 - dynamic topology: nodes move within swarm
 - dynamic membership: nodes join and leave the swarm

Scalability of Attestation: SEDA

SEDA: Scalable Embedded Device Attestation

- More efficient than attesting each node individually
- Can use any type of measurement process

N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter, G. Tsudik, C. Wachsmann. SEDA: Scalable Embedded Device Attestation. CCS '15

Scalability: DARPA, SANA, LISA-s

DARPA: Device Attestation Resilient to Physical Attacks

Absence detection to detect physical attacks

SANA: Secure & Scalable Aggregate Network Attestation

Optimistic Aggregate Signature (OAS) scheme

LISA-s: Lightweight Swarm Attestation schemes

Quality of Swarm Attestation (QoSA): binary; count; list; full

A. Ibrahim, A-R. Sadeghi, G. Tsudik, S. Zeitouni. <u>DARPA: Device Attestation Resilient to Physical Attacks</u>. ACM WiSec '16

M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A-R. Sadeghi, M. Schunter. <u>SANA: Secure and Scalable Aggregate Network Attestation</u>. CCS '16

X. Carpent, K. El Defrawy, N. Rattanavipanon, G. Tsudik. Llghtweight Swarm Attestation: a Tale of Two LISA-s. ASIACCS '17

Scalability of Attestation: Summary

- Different types of schemes proposed to:
 - improve security (e.g. physical attack resilience) or
 - improve performance (e.g. optimistic aggregation) or
 - improve in functionality (e.g. QoSA)
- What are the real-world application requirements?

Run-Time Attestation

Why Run-Time Attestation?

- Traditional attestation measures binaries at load time
- Cannot capture run-time attacks
 - return-oriented programming
 - control data attacks

Run-Time Attacks

Control Flow Integrity (CFI)

Run-Time Attacks Without Violating CFI

Control-Flow Attestation (C-FLAT)

C-FLAT: High-Level Idea

Cumulative Hash Value: H_j=H(H_i,N),
 where H_i previous hash result and N is the current node

Handling Loops

- Different loop paths/iterations → many valid hash values
 - Our approach: treat loops as separate sub-graphs

H_x different for each loop iteration

Proof-of-Concept Implementation

- Bare-metal prototype on Raspberry Pi 2
 - Single-purpose program instrumented using binary-rewriting
 - Runtime Monitor written in ARM assembler
 - Measurement Engine isolated in TrustZone-A Secure World


```
cfa_quote: 7c 16 d6 51 20 a2 a0 c7 90 f5 ef 04 0c 2e ba bc
loop[000]: 78 22 5b 62 92 41 ca 02 7b ff 29 57 c6 6f 9b a2
path[000]: 2f a5 8c dc 1b 35 41 29 ab dd 35 5c f2 69 08 37 (1)
loop[001]: d6 90 9e a0 8c ae 90 84 9e 66 09 f8 a6 7b 52 04
path[000]: 92 fb d1 e8 90 cb 02 e5 6c f2 65 8c 86 72 0e d3 (2)
```

....

loop[006]: 05 e3 92 40 95 ef 7b 46 13 7d 6e 8b 05 be bf 41 path[000]: 67 c6 5e d4 18 13 02 bc 4a 5d 60 a0 16 85 f4 ed (9) path[001]: 78 19 af 09 0f d5 64 f4 39 b4 7a 0d 97 57 77 8c (2)

Source: https://github.com/control-flow-attestation/c-flat/blob/master/samples/syringe/syringe-auth.txt

Proof-of-Concept Implementation

Source code at https://github.com/control-flow-attestation/c-flat

LO-FAT

- Low-Overhead Control Flow Attestation in Hardware
 - Same security guarantees as C-FLAT
 - No performance overhead
 - No need for software instrumentation
- Utilizes existing IP building blocks
 - Branch filter used for detecting repeated paths
 - Hash engine for compressing attestation evidence
- Proof-of-concept implementation of main components
 - Targeting RISC-V SoC ("Pulpino")

Run-Time Attestation: Summary

- How can we scale control flow attestation?
 - Better ways to encode/aggregate measurements?
 - Faster/simpler purpose-built hash functions?
 - Attestation of properties rather than measurements?
 - From attestation to checking compliance with a (dynamic) policy?

Property-Based Attestation

Property-Based Attestation

Attest properties of interest instead of program binaries

scalability of maintaining acceptable measurements

Use a trusted third party to convert from binary evidence to properties

Mid-Point Review: Attestation in Principle

- TPM attestation
- Software-based attestation
 - Pioneer
- Hybrid attestation
 - SMART
 - TrustLite & TyTAN

- Scalable attestation
 - SEDA
 - SANA & LISAs
- Control-Flow Attestation
 - C-FLAT
 - LO-FAT
- Property-based attestation

Which of these are:

1. "Paperware"

2. Testable

3. Deployed

Short Break

On Roots of Trust ...

A well-known scientist (some say it was **Bertrand** Russell) once gave a public lecture on astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got up and said: "What you have told us is rubbish. The world is really a flat plate supported on the back of a giant tortoise." The scientist gave a superior smile before replying, "What is the tortoise standing on?" "You're very clever, young man, very clever," said the old lady. "But it's tortoises all the way down!"

- Stephen Hawking, in A Brief History of Time

Remote Attestation in Practice

TPM Attestation

- Where are TPMs used?
- Where is TPM attestation used?
- Main challenge: verifier database scalability
 - Very large number of software packages
 - Frequently changing due to updates
 - Therefore: very hard to maintain whitelists
- Other challenges?

Property-Based Attestation in MirrorLink

- MirrorLink allows use of smartphone services in vehicles
- Car head-unit must enforce driver distraction regulations

Content Attestation in MirrorLink

- Head unit only allows some types of content while driving
 - Needs to know what content it is asked to render
- Content Attestation
 - Defined using TPM structures (part of MirrorLink standard)
 - Initially implemented using On-board Credentials (an early TEE)

3. Enforce driver distraction regulations

Privacy in Attestation

Privacy in TPM Attestation

PK Public keySK Private key

(Recall) Prover provides TPM-signed quotes to verifiers

See also Intel Pentium III Processor Serial Number controversy (1999)

Privacy in TPM Attestation

- Solution: use different attestation key pairs
 - Endorsement Key (EK)
 - One EK per TPM
 - Certified by manufacturer

Used to prove this is a real TPM

- Attestation Identity Key (AIK)
 - (Virtually) unlimited number of AIKs
 - Certified by a Privacy CA or through Direct Anonymous Attestation (DAA)

Used during attestation

Privacy Certificate Authority (PCA)

Privacy Certificate Authority (PCA)

Direct Anonymous Attestation

- Mechanism of certifying AIKs without a trusted third party
- Based on group signature schemes
 - Secure in random oracle model with strong RSA and decisional Diffie-Hellman assumptions
 - Prover controls linkability between signatures
 - Revocation of anonymity intentionally not possible
- Rogue TPMs can be excluded only if private key is known

Direct Anonymous Attestation

DAA_join: Protocol between TPM and DAA issuer (e.g. manufacturer)

through which TPM obtains a DAA key.

DAA_sign: TPM signs an AIK using its DAA key.

DAA_verify: Protocol through which TPM proves to a verifier that it has

a valid DAA signature on AIK (without revealing DAA key).

Privacy in TPM Attestation

 (Recall) Prover provides TPM-signed quotes along with the full list of executed software to verifiers

Concern 1: Infer private information from installed apps

Possibility for profiling/discrimination

Concern 2: Track users through "software fingerprints"

Negates use of DAA or Privacy CA

Attestation in Trusted Execution Environments (TEEs)

Intel Software Guard Extensions (SGX)

Objective

 Protect a small amount of code and data against all other software (including the OS)

Mechanism

Processor-enforced isolated execution environment: enclave

Enclave features

- Secure storage (sealing)
- Secure provisioning (remote attestation)

Intel Software Guard Extensions (SGX)

- Enclave runs in user process
- Enclave memory encrypted before leaving CPU boundary
- Ensures confidentiality and integrity of enclave data

Trusted
Untrusted

SGX Remote Attestation

- Verifier database scalability
 - Only enclave code and configuration are attested
- Privacy
 - Limited amount of code attested
 - Enhanced Privacy ID (EPID)

Enhanced Privacy ID (EPID)

A DAA scheme with enhanced revocation capabilities

- Same privacy guarantees as DAA
 - Also assumes random oracle model with strong RSA and decisional Diffie-Hellman assumptions
- Improved revocation capabilities
 - Revocation possible even if private key not publically known

SGX Local Attestation

SGX Remote Attestation

Kinibi on ARM TrustZone

Kinibi on ARM TrustZone

Trusted Rich Execution **Execution Environment Environment** Client Trusted **Application** Application Rich OS Kinibi OS ARM TrustZone hardware extensions

- Single hardware-enforced TrustZone TEE per platform
- Kinibi trusted OS:
 - manages trusted applications
 - isolates them from each other

Trusted Untrusted

Remote Attestation in Kinibi

Common use case: Key Attestation

Key Attestation

How to attest that a key is protected by hardware?

- Must also prevent linkability between keys
- TPM_CertifyKey command
 - Non-migratable TPM key certified using AIK
 - Subject Key Attestation Evidence (SKAE) extension X.509 cert.
 - Now <u>supported by Windows Server</u> (Feb 2017)
- Using normal SGX attestation
 - Verifier checks that enclave generated key securely

Android Keystore Attestation

- Available from <u>Android 7.0</u> (API level 24) onwards
 - But currently few devices with hardware-backed attestation
- Keystore produces an attestation certificate for key pair
 - Standard X.509, signed by on-device attestation key
- On-device attestation keys
 - Injected into device during manufacture
 - Signed by device manufacturer or Google
 - Injected in batches: "minimum 10,000 devices per key"

Summary: Attestation in Practice

- TPM-based Attestation
- MirrorLink Data Attestation Protocol
- Privacy in Attestation
- Attestation in TEEs
 - SGX
 - TrustZone
- Key Attestation

Open Challenges

Open Challenges

Physical adversary

Traditional attestation based on

Open Challenges

Attestation Servers?

Open Challenges

Conclusions

- Increasing need for remote attestation
- · Various schemes proposed, developed, deployed
- Building deployable attestation schemes is challenging