

WELCOME TO GA

Please write your name on your whiteboard tent and introduce yourself to your new classmates

Wi-fi: GA-Guest

pw: yellowpencil

Gus Ostow

TODAY'S SCHEDULE

- Logistics
 - Meet the team
 - Class resources
- What is Data Science?
- Python Review

INSTRUCTIONAL TEAM

Gus Ostow

Lead Instructor augustustostow@gmail.com

INSTRUCTIONAL TEAM

Stewart Knox

Instructional Assistant

Stewart.knox@gmail.com

STUDENT SERVICES

Matt Jones

Slack: @studentservicessf

Things he can do for you:

- Access to tools
- Feedback about the course
- Enrollment and finances
- Graduation certificates
- GA facilities
- Extra-curricular events
- Discounts for other courses

COURSE DETAILS

- Lead Instructor
 - Me :)
- Instructional Assistant
 - Stewart
- Class Schedule
 - January 16 March 22
 - Tuesdays and Thursdays
 - 6:30 PM 9:30 PM

COURSE TOOLS

- Slack
 - https://dat-sf-42.slack.com/
- Github
 - https://github.com/gastudents/DS-SF-42/
- Exit Tickets
 - https://tinyurl.com/ds-sf-42

SLACK

- All course communications with each other and instructors will happen here.
- Great for sharing code snippets during class
- Please don't make me write an email. Please.

GITHUB

- "Dropbox for code" (loosely)
- How you will receive all class materials
- Backup (and show off) your work
- Learn how real teams collaborate in production

Git is important

EXIT TICKETS

At General Assembly we are data scientists; we need data on how we're doing

- Give us valuable information:
 - Your engagement
 - Your opinion on the success of the lesson
 - Remaining questions
 - Suggestions

CLASSROOM CULTURE

- We should all agree to:
 - Set ambitious learning goals
 - Pursue a ~Growth Mindset~
 - Collaborate and connect
 - Be radically transparent

What would you like to add?

MY INSTRUCTIONAL GOALS

- Find a brisk, but manageable pace
- Facilitate an informal, open learning environment
- Make myself very available
- Feedback is a two-way street
 - To give it you early and often (and by request over Slack)
 - To take feedback well, myself. Everybody needs a ~Growth Mindset~!

CONTENT PHILOSOPHY

- Offer a variety of resources, to be accessible to diverse learning styles
- Balance theory with applications
- Maintain a high level of rigor, despite our timeconstraints
- The deep learning happens during work on projects

YOUR KEYS TO SUCCESS

- Lots of effort
- Outside study and preparation
- Keep track of your goals, and progress toward them
- Work together on reviews and projects
- When you get frustrated take a walk outside
- Stewart

HOW TO USE STEWART

- During lecture:
 - If you have a question that nobody else will benefit from:
 - Slack him. Even though we are in the same room.
 - Move to where he is sitting if necessary
- During independent practice:
 - However you would normally communicate with a human
- Office Hours:
 - Slack: Monday 6-7PM At GA: Tuesday 5:30-6:30PM (directly before class)

A TYPICAL CLASS

- Pre-readings found on the Github wiki
- Class objectives (also on wiki)
- Previous class review

- Lecture and theory
- Guided-practice
- Misc activities
- Independent practice

- Class review
- Exit ticket
- Additional resources

QUESTIONS?

WHAT IS DATA SCIENCE?

DATA SCIENCE IS EVERYWHERE

WHAT IS DATA SCIENCE?

DATA SCIENTISTS MAKE DATA USEFUL

- Key skills:
 - Software engineering and scripting
 - Python, R, Java, C
 - Statistics and experimental design
 - Predictive modeling
 - (Big) data engineering
 - SQL, Spark, MapReduce
 - Business acumen and communication

EXAMPLE #1: CHURN PREDICTION

Problem:

- Churn is a ubiquitous problem for companies with reoccurring revenue business models
- Risk of cancelling a subscription severely limits customer lifetime value

Goal:

• Identify customers who are likely to cancel telecomm subscriptions

Data:

• Telco Customer Churn Dataset: customers who left, services subscribed to, account information, demographics

Impact:

• Interventions can be made to retain customers at a high-risk of churn, which are considerably cheaper than acquiring a new customer.

Source: https://blog.insightdatascience.com/deep-learning-for-disaster-recovery-45c8cd174d7a

EXAMPLE #2: DETECTING FLOODED ROADS

Problem:

- After natural disasters, flooded roads are deadly to motorists.
- Two-thirds of of U.S. deaths in flash floods occurred in vehicles.

Goal:

• Automatically mark flooded roads on an interactive map

Data:

• Pre-flood Mapbox satellite and streetmap tiles from Boston, NYC, Atlantic City, Miami, and New Orleans

Impact:

• Information on road anomalies could be instantly available after natural disasters

Source: https://blog.insightdatascience.com/deep-learning-for-disaster-recovery-45c8cd174d7a

MORE COMMON QUESTIONS ASKED IN DS

REGRESSION

- What will fourth quarter sales be?
- How many retweets will this post get?
- How much is this house worth?
- What should the steering angle be based on self-driving car video frames?

CLASSIFICATION

- Will this person default on their loan?
- What is in this image?
- Will this person click on the advertisement?
- Is the person in the fMRI viewing a happy, or scary video clip?

UNSUPERVISED

- Which Netflix subscribers like the same kind of movies?
- Which topics consistently appear in patent proposals
- What are the different types of coffee drinkers?
- How can you visualize the similarity between car models in a 2-d space?

OUR CURRICULUM

What is Data Science?	Git, command line	Python review	Pandas
Exploratory Data Analysis, Visualization	Databases	k-Nearest Neighbors	Linear Regression
Regularization	Logistic Regression	Advanced sklearn	Applied ML
Unsupervised Learning: Clustering, PCA	Decision Trees	Ensembles	Natural Language Processing

QUESTIONS?

CLASS #1

LET'S GET OUR HANDS DIRTY

OUR STACK

- We write out Python code in Jupyter notebooks
- We access and manage our
 Jupyter notebooks with Git and
 Github
- We interact with Git using the command line, a text-based interface (e.g. terminal on Mac)

FOR THE REST OF CLASS

Practice command line

Learn how to access course materials on Github

Practice Python in a Jupyter notebook

KEY OBJECTIVE(S)	AGENDA		
Insert learning/exercise objectives	Time	1. Insert key steps	

DELIVERABLE RESOURCES Insert deliverable/outcome List resources required / used

INSERT COMPANY NAME

SUMMARY

Insert context and background including relevant data/evidence

KEY CHALLENGE / QUESTION

Insert problem or challenge faced and key case questions

QUESTIONS?

DISCUSSIONTIME