Solution 1:

a) The spam data is a binary classification task where the aim is to classify an email as spam or no-spam.

```
library(mlr3)
library(mlr3learners)
library(mlr3filters)
tsk("spam")
## <TaskClassif:spam> (4601 x 58)
## * Target: type
## * Properties: twoclass
## * Features (57):
    - dbl (57): address, addresses, all, business, capitalAve,
       capitalLong, capitalTotal, charDollar, charExclamation,
       charHash, charRoundbracket, charSemicolon, charSquarebracket,
##
       conference, credit, cs, data, direct, edu, email, font, free,
##
##
       george, hp, hpl, internet, lab, labs, mail, make, meeting,
##
       money, num000, num1999, num3d, num415, num650, num85, num857,
##
       order, original, our, over, parts, people, pm, project, re,
##
       receive, remove, report, table, technology, telnet, will, you,
       your
```

```
b) library(rpart.plot)
## Loading required package: rpart

task_spam <- tsk("spam")

learner <- lrn("classif.rpart")
learner$train(task_spam)

rpart.plot(learner$model, roundint=FALSE)</pre>
```



```
set.seed(42)
subset1 <- sample.int(task_spam$nrow, size = 0.8 * task_spam$nrow)
subset2 <- sample.int(task_spam$nrow, size = 0.8 * task_spam$nrow)
learner$train(task_spam, row_ids = subset1)
rpart.plot(learner$model, roundint=FALSE)</pre>
```


learner\$train(task_spam, row_ids = subset2)
rpart.plot(learner\$model, roundint=FALSE)

Observation: Trees with different sample find different split points and variables, leading to different trees!

```
c) learner <- lrn("classif.ranger", "oob.error" = TRUE)
learner$train(tsk("spam"))

model <- learner$model

model$prediction.error

## [1] 0.04542491</pre>
```

d) Variable importance in general measures the contributions of features to a model. One way of computing the variable importance of the j-th variable is based on permutations of the OOB observations of the j-th variable, which measures the mean deacrease of the predictive accuracy induced by this permutation. To determine the n variables with the biggest influence on the prediction quality, one can choose the n variables with the highest variable importance based on permutations of the OOB, e.g. for n = 5:

```
learner <- lrn("classif.ranger", importance = "permutation", "oob.error" = TRUE)</pre>
filter <- flt("importance", learner = learner)</pre>
filter$calculate(tsk("spam"))
head(as.data.table(filter), 5)
##
              feature
                            score
## 1:
          capitalLong 0.04644338
## 2:
                   hp 0.04125252
## 3: charExclamation 0.03977957
## 4:
               remove 0.03827180
## 5:
           capitalAve 0.03424298
```

Solution 2:

See R code randomForest_l_2.R

Solution 3:

- Proceed as follows, when solving manually:
 - (a) Split x in two groups using the following split points.
 - -(1), (2,7,10,20) (splitpoint 1.5)
 - -(1,2), (7,10,20) (splitpoint 4.5)
 - -(1,2,7), (10,20) (splitpoint 8.5)
 - -(1,2,7,10), (20)(splitpoint 15)
 - (b) For each possible split point compute the sum of squares in both groups.
 - (c) Use as split point the point that splits both groups best w.r.t. minimizing the sum of squares in both groups.

Here, we have only one split variable x. A split point t, leads to the following half-spaces:

$$\mathcal{N}_1(t) = \{(x, y) \in \mathcal{N} : x \le t\} \text{ and } \mathcal{N}_2(t) = \{(x, y) \in \mathcal{N} : x > t\}.$$

Remember the minimization Problem (here only for one split variable x):

$$\min_{t} \left(\min_{c_1} \sum_{(x,y) \in \mathcal{N}_1} (y - c_1)^2 + \min_{c_2} \sum_{(x,y) \in \mathcal{N}_2} (y - c_2)^2 \right).$$

The inner minimization is solved through: $\hat{c}_1 = \bar{y}_1$ and $\hat{c}_2 = \bar{y}_2$

Which results in:

$$\min_{t} \left(\sum_{(x,y)\in\mathcal{N}_{1}} (y - \bar{y}_{1})^{2} + \sum_{(x,y)\in\mathcal{N}_{2}} (y - \bar{y}_{2})^{2} \right).$$

The sum of squares error of the parent is:

$$Impurity_{parent} = MSE_{parent} = \frac{1}{5} \sum_{i=1}^{5} (y_i - 4.7)^2 = 22.56$$

Calculate the risk for each split point:

 $x \le 1.5$

$$\mathcal{R}(1, 1.5) = \frac{1}{5} \text{MSE}_{left} + \frac{4}{5} \text{MSE}_{right} =$$

$$= \frac{1}{5} \cdot \frac{1}{1} (1 - 1)^2 + \frac{4}{5} \cdot \frac{1}{4} ((1 - 5.625)^2 + (0.5 - 5.625)^2 + (10 - 5.625)^2 + (11 - 5.625)^2)$$

$$= 19.1375$$

$$x \le 4.5 \ \mathcal{R}(1, 4.5) = 13.43$$

$$x \le 8.5 \ \mathcal{R}(1, 8.5) = 0.13$$

$$x \le 15 \ \mathcal{R}(1, 15) = 12.64$$

Minimal empirical risk is obtained by choosing the split point 8.5.

Doing the same for the log-transformation gives:

```
x \le 0.3 \ \mathcal{R}(1, 0.3) = 19.14

x \le 1.3 \ \mathcal{R}(1, 1.3) = 13.43

x \le 2.1 \ \mathcal{R}(1, 2.1) = 0.13

x \le 2.6 \ \mathcal{R}(1, 2.6) = 12.64
```

Minimal empirical risk is obtained by choosing the split point 2.1.

• Code example:

```
x = c(1,2,7,10,20)
y = c(1,1,0.5,10,11)
calculate_mse <- function (y) mean((y - mean(y))^2)</pre>
calculate_total_mse <- function (yleft, yright) {</pre>
  num_left <- length(yleft)</pre>
  num_right <- length(yright)</pre>
  w_mse_left <- num_left / (num_left + num_right) * calculate_mse(yleft)</pre>
  w_mse_right <- num_right / (num_left + num_right) * calculate_mse(yright)</pre>
  return(w_mse_left + w_mse_right)
split <- function(x, y) {</pre>
  # try out all unique points as potential split points and ...
  unique_sorted_x <- sort(unique(x))</pre>
  split_points <- unique_sorted_x[1:(length(unique_sorted_x) - 1)] +</pre>
    0.5 * diff(unique_sorted_x)
  node_mses <- lapply(split_points, function(i) {</pre>
    y_{\text{left}} \leftarrow y[x \leftarrow i]
    y_right \leftarrow y[x > i]
    # ... compute SS in both groups
    mse_split <- calculate_total_mse(y_left, y_right)</pre>
    print(sprintf("Split at %.1f: empirical Risk = %.2f", i, mse_split))
    return(mse_split)
  })
  # select the split point yielding the maximum impurity reduction
  best <- which.min(node_mses)</pre>
  split_points[best]
X
## [1] 1 2 7 10 20
split(x, y) # the 3rd observation is the best split point
## [1] "Split at 1.5: empirical Risk = 19.14"
## [1] "Split at 4.5: empirical Risk = 13.43"
## [1] "Split at 8.5: empirical Risk = 0.13"
## [1] "Split at 15.0: empirical Risk = 12.64"
## [1] 8.5
log(x)
```

```
## [1] 0.0000000 0.6931472 1.9459101 2.3025851 2.9957323

split(log(x), y) # also here, the 3rd observation is the best split point

## [1] "Split at 0.3: empirical Risk = 19.14"

## [1] "Split at 1.3: empirical Risk = 13.43"

## [1] "Split at 2.1: empirical Risk = 0.13"

## [1] "Split at 2.6: empirical Risk = 12.64"

## [1] 2.124248
```

Solution 4:

According to the lecture for a target y with target space $\mathcal{Y} = \{1, \dots, g\}$ the target class proportion $\pi_k^{(\mathcal{N})}$ of class $k \in \mathcal{Y}$ in a node can be computed, s.t.

$$\pi_k^{(\mathcal{N})} = \frac{1}{|\mathcal{N}|} \sum_{(x^{(i)}, y^{(i)}) \in \mathcal{N}} [y^{(i)} = k].$$

Now for any $n \in \mathbb{N}$ let $Y^{(1)}, \dots, Y^{(n)}, \hat{Y}^{(1)}, \dots, \hat{Y}^{(n)}$ be i.i.d. random variables, where $Y^{(i)}$ and $\hat{Y}^{(i)}$ are categorically distributed with

$$\mathbb{P}(Y^{(i)} = k | \mathcal{N}) = \mathbb{P}(\hat{Y}^{(i)} = k | \mathcal{N}) = \pi_k^{(\mathcal{N})} \quad \forall i \in \{1, \dots, n\}, \quad k \in \mathcal{Y}.$$

The random variables $Y^{(1)}, \ldots, Y^{(n)}$ represent data distributed like the training data¹ of size n and the random variables $\hat{Y}^{(1)}, \ldots, \hat{Y}^{(n)}$ the corresponding estimators using the randomizing rule. With these we can define the misclassification rate $\text{err}_{\mathcal{N}}$ of node \mathcal{N} for data distributed like the training data, s.t

$$\operatorname{err}_{\mathcal{N}} = \frac{1}{n} \sum_{i=1}^{n} [Y^{(i)} \neq \hat{Y}^{(i)}].$$

We're interested in the expected misclassification rate $err_{\mathcal{N}}$ of node \mathcal{N} for data distributed like the training data, i.e.,

$$\begin{split} \mathbb{E}_{Y^{(1)},\dots,Y^{(n)},\hat{Y}^{(1)},\dots,\hat{Y}^{(n)}} \left(\text{err}_{\mathcal{N}} \right) &= \mathbb{E}_{Y^{(1)},\dots,Y^{(n)},\hat{Y}^{(1)},\dots,\hat{Y}^{(n)}} \left(\frac{1}{n} \sum_{i=1}^{n} [Y^{(i)} \neq \hat{Y}^{(i)}] \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Y^{(i)},\hat{Y}^{(i)}} \left([Y^{(i)} \neq \hat{Y}^{(i)}] \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Y^{(i)}} \left(\mathbb{E}_{\hat{Y}^{(i)}} \left([Y^{(i)} \neq \hat{Y}^{(i)}] \right) \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Y^{(i)}} \left(\sum_{k \in \mathcal{Y} \setminus \{Y^{(i)}\}} \pi_k^{(\mathcal{N})} \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Y^{(i)}} \left(1 - \pi_{Y^{(i)}}^{(\mathcal{N})} \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{g} (1 - \pi_k^{(\mathcal{N})}) \pi_k^{(\mathcal{N})} \\ &= \frac{n}{n} \sum_{k=1}^{g} (1 - \pi_k^{(\mathcal{N})}) \pi_k^{(\mathcal{N})} \\ &= 1 - \sum_{i=1}^{g} \left(\pi_k^{(\mathcal{N})} \right)^2. \end{split}$$

This is exactly the Gini-Index which CART uses for splitting the tree.

 $^{^{1}}$ under the independence assumption