

Predictive Analytics and Modelling of Data

CMSE11428 (2020-2021)

Dr Xuefei Lu

The University of Edinburgh Business School

Knowledge

Unsupervised learning
Clustering
Supervised learning
Regression
Classification

Practice

Data pre-processing

Feature selection

Result visualization

Case Studies

Exercises Hands-on projects Python Report

Undertaking a literature review: key principles

- Independent thinking and critical analysis
- Search engines and reliable sources:
 - Wikipedia, especially where provided with adequate referencing
 - Stackoverflow, mathoverflow, math.stackexchange/stats.stackexchange
 - Course notes from universities
 - Implementation note of big software packages (for example, scikit-learn, R, pandas, Weka, and so on).
- Academic and subject-specific sources
 - Google Scholar, Scopus, JSTOR, and DBLP
 - How many works and citations do the authors have.
 - Is it a journal or conference? → impact factor.
 - For conferences, http://portal.core.edu.au/conf-ranks/
 - For journal: journal home page or http://portal.core.edu.au/jnl-ranks/

Undertaking a literature review: Practice

It might be worthwhile to keep track of the following things in a paper:

- What variables are used in the model?
- How is the pollution measured? What scale is used?
- What dataset is used?
- What other techniques are benchmarked?
- What are the key takeaways?

Try to find 5 academic papers to help determining visitor counts for Edinburgh Castle and filling in the following table:

Source	Application	Technique	Area
Acme Torism Journal	Visitor return rate	Linear regression	Tourism

Python and Predictive Modelling

Play with Python;)

Python and Predictive Modelling

- Programming languages: Java, C(++), SQL, SAS, Python, R, Scala, MATLAB, ...
- Python & R are both supported by <u>Jupyter (JUlia PYThon R) notebooks</u>
 '*.ipynb'
- Python modules (library/packages):
 - NumPy: https://numpy.org/doc/stable/
 - pandas: https://pandas.pydata.org/
 - scikit-learn: https://scikit-learn.org/stable/
- Python Programming with Dr Pawel Orzechowski rechowski

- Study the following file for some basic concepts of python 1-the_essentials_of_python_reading.ipynb (Optional)
- If you are confident about your programing skill, try directly the exercises in 2 - exercises_on_the_basics_of_python_activity1.ipynb
- You may open the files via Notable
 https://noteable.edina.ac.uk/login
 Or Jupyter Notebook installed on your computer

- Study the following file 3 - numpy_pandas_and_scikit_learn_reading.ipynb (Optional)
- Try the following exercise4 trying_out_numpy_pandas_and_scikit_learn_activity2.ipynb

Share your experiences on discussion board

- What did you like about the exercises?
- Were there any hard parts?
- Was there anything you could not work out yourself?
- Did you need a lot of external help?

Application: Predicting visitor count

Imagine that you are **the marketing director of Edinburgh Castle**, you are tasked with analysing the visitor behaviour for marketing purposes.

- Now let's discuss how to proceed:
 - What to predict exactly?
 - What information can be helpful?
 - How to interpret the outcome?
 - How can we use it for marketing purpose?
 - • •

Application: Predicting visitor count

- Assumptions predict the future based on the past
- Data availability you cannot build a model without data
- Modeling technique- big/small dataset
- Result reliability/interpretation
- ...

