

| STUDENT ID NO |  |  |  |  |  |  |  |  |  |  |  |
|---------------|--|--|--|--|--|--|--|--|--|--|--|
|               |  |  |  |  |  |  |  |  |  |  |  |

## **MULTIMEDIA UNIVERSITY**

# FINAL EXAMINATION

TRIMESTER 2, 2016/2017

# EET1156 – BASIC ELECTRICAL TECHNOLOGY (ME)

9 MARCH 2017 2:30 PM – 4:30 PM (2 Hours)

#### INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 6 pages including cover page with 5 Questions only.
- 2. Attempt ALL the questions. The distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

### Question 1

a) Determine  $v_a$  of the circuit in Figure Q1(a). Then solve for  $i_s$  and compute the current  $i_x$ .



b) Perform *mesh analysis* to determine the mesh currents  $I_1$ ,  $I_2$  and  $I_3$  of the circuit in Figure Q1(b). [Follow the mesh directions given].



#### Question 2

a) In a parallel plate capacitor with air between 2 plates, the cross section area is  $6 \times 10^{-3}$  m<sup>2</sup> and the separation between the plates is 5mm.

| $6 \times 10^{-3}$ m <sup>2</sup> and the separation between the plates is 5mm.     |           |  |  |  |
|-------------------------------------------------------------------------------------|-----------|--|--|--|
| i. Calculate the capacitance of the capacitor                                       | [2 marks] |  |  |  |
| ii. If this capacitor is connected to 120V supply, what would be                    |           |  |  |  |
| the charge on each plate?                                                           | [2 marks] |  |  |  |
| iii. How would charge on the plate be affected if a 5mm thick mica                  |           |  |  |  |
| sheet of $\varepsilon_r = 6$ is inserted between the plates while the voltage suppl | y         |  |  |  |
| remains connected.                                                                  | [2 marks] |  |  |  |
| iv. What is the flux density in (iii)?                                              | [2 marks] |  |  |  |

b) The coil in Figure Q2 has 150 turns and is wound on a silicon sheet steel with a diameter of 4cm. The mean radius, R is 10cm and the toroidal core has a circular cross section. If this toroidal carries the coil current of 2A and permeability of the core is given of 3×10<sup>-3</sup>. Determine the

| i. cross section area, A.       | [2 marks] |
|---------------------------------|-----------|
| ii. reluctance of the toroidal. | [2 marks] |
| iii. magnetic flux density, B.  | [4 marks] |
| iv. intensity, H and mmf, F.    | [4 marks] |



Figure Q2

#### **Ouestion 3**

a) Figure Q3(a) is a circuit with  $R_I = 8 \Omega$ ,  $C_I = -j2 \Omega$ ,  $L_I = j4 \Omega$ ,  $R_2 = 6 \Omega$ , a current source with  $I = 6 \angle 0^0$  A and a voltage source with  $V = 30 \angle 30^0$  V. The arrow above the current source indicates the current flow orientation. Determine  $I_0$ .



b) Given the current source has  $I = 30 \sin 2t$  A, resistor  $R_1 = 2 \Omega$ , resistor  $R_2 = 4 \Omega$ , inductor  $L_1 = 2$  H, capacitor  $C_1 = 0.2$  F and the DC voltage source has an amplitude  $3V_x$ , determine  $V_1$  and  $V_2$  using nodal analysis. [Hint: use nodal analysis and matrices to solve for the final answer].



na.

 $i_{2}$ 

1

11

## Question 4

a) Figure Q4(a) shows a parallel diode configuration circuit where  $R_I = 600 \Omega$  and E has an amplitude of 20 V. Solve for  $V_0$ ,  $I_1$ ,  $I_{DI}$  and  $I_{D2}$  assuming both diodes,  $D_1$  and  $D_2$ have similar characteristics.



Figure Q4(a)

[6 marks]

b) Figure Q4(b) shows a fixed-bias configuration where  $V_{CC} = +10 \text{ V}$ ,  $R_1 = R_B = 400 \text{ k}\Omega$ ,  $R_2 = R_C = 1.8 \text{ k}\Omega$  and  $C_1 = C_2 = 10 \text{ }\mu\text{F}$ . Assume  $R_3 = R_E = 0 \Omega$  (short circuited),  $C_3$  is a fully discharged capacitor (short circuited) and  $\beta = 60$ . Determine the following:

[3 marks] i.  $I_B$  and  $I_C$ [3 marks] ii.  $V_{CE}$ [3 marks] iii.  $V_B$  and  $V_C$ [2 marks] iv.  $V_{BC}$ [2 marks] v.  $I_{CSAT}$ 



c) Briefly describe the six characteristics of an ideal operational amplifier.

[6 marks]

#### **Question 5**

- a) "I will take an umbrella with me if it is raining or the weather forecast is bad."

  Based on this statement, compute a truth table to fulfil the conditions. [4 marks]
- b) Simplify the logic circuit in Figure Q5 using Boolean logic.

[4 marks]



c) Given the following equation,

 $Y = \overline{ABCD} + \overline{ABCD} +$ 

[7 marks]

End of paper.