CS243: Introduction to Algorithmic Game Theory

Social Choice (Dengji ZHAO)

SIST, ShanghaiTech University, China

Recap

Answer Yes/No for the following questions:

- Q1 In a simultaneous move game, given a strategy vector $s \in S$, if for each player i, and each alternate strategy vector $s' \in S$, we have $u_i(s_i, s'_{-i}) \ge u_i(s'_i, s'_{-i})$, then s is a Nash equilibrium?
- Q2 A mechanism is truthful means that reporting valuation function truthfully is a dominant strategy for all players?
- Q3 The second price auction for selling one item is truthful, efficient and individually rational?
- Q4 Following mechanism $(f, p_1, ..., p_n)$ is truthful and efficient?
 - given players' valuation function report profile $(v_1, ..., v_n)$

$$f(v_{1},...,v_{n}) \in argmax_{a \in A} \sum_{i} v_{i}(a)$$

$$p_{i}(v_{1},...,v_{n}) = \sum_{j \neq i} v_{j}(f(v_{-i})) - \sum_{j \neq i} v_{j}(f(v_{1},...,v_{n}))$$

$$\sum_{j \neq i} v_{j}(f(v_{1},...,v_{n})) = \sum_{j \neq i} v_{j}(f(v_{1},...,v_{n}))$$

Social Choice

- In a mechanism design setting, each player i has a valuation function $v_i:A\to\mathbb{R}$
- Now assume that a player does not have a value for each outcome a ∈ A, instead she has a preference ≻_i over all outcomes in A. ≻_i is a linear order on A, e.g.
 a₁ ≻_i a₂ ≻_i a₃
- We want to study the following:
 - How to choose one outcome from A?
 - What is the overall ranking on A by aggregating all players' preferences?

Social Choice

- In a mechanism design setting, each player i has a valuation function $v_i : A \to \mathbb{R}$
- Now assume that a player does not have a value for each outcome a ∈ A, instead she has a preference ≻_i over all outcomes in A. ≻_i is a linear order on A, e.g.
 a₁ ≻_i a₂ ≻_i a₃
- We want to study the following:
 - How to choose one outcome from *A*?
 - What is the overall ranking on A by aggregating all players' preferences?

Social Choice (Voting)

General Social Choice Setting

- A set of n players/voters.
- A set of alternatives A (the candidates).
- Let L be the set of all linear orders on A.
- Each voter i has a preference $\succ_i \in L$, a total order on A (antisymmetric, transitive). $a \succ_i b$ means i prefers a to b.

Definition

- A function $f: L^n \to A$ is called a social choice function.
- A function $F: L^n \to L$ is called a social welfare function.

Voting Methods: Social Choice Functions

Majority vote

 among two candidates, selects the candidate which has a majority vote, that is, more than half of the votes

Plurality

 the candidate that was placed first by the largest number of voters wins

Borda count

• each candidate among the n candidates gets n-i points for every voter who ranked him in place i, and the candidate with most points wins

Majority Vote

- Consider three candidates $\{a, b, c\}$ and three voters $\{1, 2, 3\}$.
- Their preferences are the following:
 - $a \succ_1 b \succ_1 c$
 - $b \succ_2 c \succ_2 a$
 - $c \succ_3 a \succ_3 b$

Question

Selects alternatives which have a majority vote, that is, more than half of the votes: which candidate wins?

Majority Vote

- Consider three candidates $\{a, b, c\}$ and three voters $\{1, 2, 3\}$.
- Their preferences are the following:
 - $a \succ_1 b \succ_1 c$
 - $b \succ_2 c \succ_2 a$
 - $c \succ_3 a \succ_3 b$

Question

Selects alternatives which have a majority vote, that is, more than half of the votes: which candidate wins?

• $a \succ b \succ c \succ a$ (Condorcet's Paradox)

Plurality

- Consider three candidates $\{a, b, c\}$ and three voters $\{1, 2, 3\}$.
- Their preferences are the following:
 - $a \succ_1 b \succ_1 c$
 - $b \succ_2 c \succ_2 a$
 - $c \succ_3 a \succ_3 b$

Question

The candidate that was placed first by the largest number of voters wins: which candidate wins?

Borda Count

- Consider three candidates $\{a, b, c\}$ and three voters $\{1, 2, 3\}$.
- Their preferences are the following:
 - $a \succ_1 b \succ_1 c$
 - $b \succ_2 c \succ_2 a$
 - $c \succ_3 a \succ_3 b$

Question

Each candidate among the n candidates gets n-i points for every voter who ranked him in place i, and the candidate with most points wins: which candidate wins?

Strategic Manipulations

- $a \succ_1 b \succ_1 c$
- $b \succ_2 c \succ_2 a$
- $c \succ_3 a \succ_3 b$

Assume that under tie-breaking, a is preferred to b and b is preferred to c, can a voter manipulate (misreport preference) to change the outcome in his/her favour?

- Plurality: The candidate that was placed first by the largest number of voters wins (a wins).
- Borda count: Each candidate among the n candidates gets n - i points for every voter who ranked him in place i, and the candidate with most points wins (a wins).

Truthful (Incentive Compatible) Social Choice Function

Definition 9.4 A social choice function f can be *strategically manipulated* by voter i if for some $\prec_1, \ldots, \prec_n \in L$ and some $\prec_i' \in L$ we have that $a \prec_i a'$ where $a = f(\prec_1, \ldots, \prec_i, \ldots, \prec_n)$ and $a' = f(\prec_1, \ldots, \prec_i', \ldots, \prec_n)$. That is, voter i that prefers a' to a can ensure that a' gets socially chosen rather than a by strategically misrepresenting his preferences to be \prec_i' rather than \prec_i . f is called *incentive compatible* if it cannot be manipulated.

Truthful (Incentive Compatible) Social Choice Function

Definition 9.4 A social choice function f can be *strategically manipulated* by voter i if for some $\prec_1, \ldots, \prec_n \in L$ and some $\prec_i' \in L$ we have that $a \prec_i a'$ where $a = f(\prec_1, \ldots, \prec_i, \ldots, \prec_n)$ and $a' = f(\prec_1, \ldots, \prec_i', \ldots, \prec_n)$. That is, voter i that prefers a' to a can ensure that a' gets socially chosen rather than a by strategically misrepresenting his preferences to be \prec_i' rather than \prec_i . f is called *incentive compatible* if it cannot be manipulated.

Definition 9.7 Voter i is a *dictator* in social choice function f if for all \prec_1 , ..., $\prec_n \in L$, $\forall b \neq a, a \succ_i b \Rightarrow f(\prec_1, \ldots, \prec_n) = a$. f is called a *dictatorship* if some i is a dictator in it.

Theorem 9.8 (Gibbard–Satterthwaite) *Let* f *be an incentive compatible social choice function onto* A, *where* $|A| \ge 3$, *then* f *is a dictatorship.*

Truthful (Incentive Compatible) Social Choice Function

Definition 9.4 A social choice function f can be *strategically manipulated* by voter i if for some $\prec_1, \ldots, \prec_n \in L$ and some $\prec_i' \in L$ we have that $a \prec_i a'$ where $a = f(\prec_1, \ldots, \prec_i, \ldots, \prec_n)$ and $a' = f(\prec_1, \ldots, \prec_i', \ldots, \prec_n)$. That is, voter i that prefers a' to a can ensure that a' gets socially chosen rather than a by strategically misrepresenting his preferences to be \prec_i' rather than \prec_i . f is called *incentive compatible* if it cannot be manipulated.

Definition 9.7 Voter *i* is a *dictator* in social choice function *f* if for all \prec_1 , ..., $\prec_n \in L$, $\forall b \neq a$, $a \succ_i b \Rightarrow f(\prec_1, \ldots, \prec_n) = a$. *f* is called a *dictatorship* if some *i* is a dictator in it.

Theorem 9.8 (Gibbard–Satterthwaite) Let f be an incentive compatible social choice function onto A, where $|A| \ge 3$, then f is a dictatorship.

Gibbard-Satterthwaite Theorem is an implication of Arrow's Theorem

Arrow's Theorem

Theorem (Arrow's Theorem)

Every social welfare function over a set of more than 2 candidates ($|A| \ge 3$) that satisfies unanimity and independence of irrelevant alternatives is a dictatorship.

- F satisfies unanimity if for every $\succ \in L$, $F(\succ, ..., \succ) = \succ$.
- F satisfies independence of irrelevant alternatives if for every $a, b \in A$, every $\succ_1, \ldots, \succ_n, \succ'_1, \ldots, \succ'_n \in L$, if $\succ = F(\succ_1, \ldots, \succ_n)$ and $\succ' = F(\succ'_1, \ldots, \succ'_n)$, then $a \succ_i b \Leftrightarrow a \succ'_i b$ for all i implies $a \succ b \Leftrightarrow a \succ' b$.
- Voter *i* is a dictator in *F* if for all $\succ_1, \ldots, \succ_n \in L$, $F(\succ_1, \ldots, \succ_n) = \succ_i$. *F* is not a dictatorship if no *i* is a dictator in *F*.

- There is a pivotal voter k for B over A.
- The pivotal voter for B over A is a dictator for B over C.

- There is a pivotal voter k for B over A.
- The pivotal voter for B over A is a dictator for B over C.

- There is a pivotal voter k for B over A.
- The pivotal voter for B over A is a dictator for B over C.
- There can be at most one dictator.

Since voter k is the dictator for B over C, the pivotal voter for B over C must appear among the first k voters. That is, outside of segment two. Likewise, the pivotal voter for C over B must appear among voters k through N. That is, outside of Segment One.

Advanced Reading

Social Choice [AGT Chapter 9.2]