Random Walks

Tom Eichlersmith

.....

Background

Method

Questions

Random Walks on Simple Two-Dimensional Manifolds

Tom Eichlersmith

Hamline University

teichlersmith01@hamline.edu

April 19, 2018

Introduction

Random Walks

Tom Eichlersmith

Introduction

Background

Viethod

- Random
- Walk
- Simple
- ► Two-Dimensional
- Manifolds

Regular Surfaces

Figure: By Leonid_2 - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=8643414

Random Walks

Tom Eichlersmith

Introduction

Background

Method

esults

Geodesic Equations

Random Walks

Tom Eichlersmith

Introduction

Background

Method

Results

- 1. Extend definition of line to other surfaces
- 2. Assume a path is a geodesic contained in a coordinate patch
- 3. Derive geodesic equations for coordinate functions of path

Geodesic Equations

Random Walks

Tom Eichlersmith

Introduction

Background

Vlethod

$$u'' + \frac{\mu_{uu} \cdot \mu_{u}}{\mu_{u} \cdot \mu_{u}} (u')^{2} + \frac{\mu_{vv} \cdot \mu_{u}}{\mu_{u} \cdot \mu_{u}} (v')^{2} + 2 \frac{\mu_{uv} \cdot \mu_{u}}{\mu_{u} \cdot \mu_{u}} u'v' = 0$$

$$v'' + \frac{\mu_{uu} \cdot \mu_{v}}{\mu_{v} \cdot \mu_{v}} (u')^{2} + \frac{\mu_{vv} \cdot \mu_{v}}{\mu_{v} \cdot \mu_{v}} (v')^{2} + 2 \frac{\mu_{uv} \cdot \mu_{v}}{\mu_{v} \cdot \mu_{v}} u'v' = 0$$

 $\frac{d^2x^i}{dt^2} + \sum_{j,k \in \{1,2\}} \Gamma^i_{jk} \frac{dx^j}{dt} \frac{dx^k}{dt} = 0$

Random Walks

Tom Eichlersmith

Background

Runge-Kutta 4th Order Method (RK4)

$$\frac{dy}{dt} = F(y) \quad y_0 = y(0)$$

Numerically solve up to t = h with N iterations.

$$\delta \leftarrow h/N$$

$$y \leftarrow y_0$$

$$loop \ N \ times:$$

$$k_1 \leftarrow F(y)$$

$$k_2 \leftarrow F(y + (\delta/2)k_1)$$

$$k_3 \leftarrow F(y + (\delta/2)k_2)$$

$$k_4 \leftarrow F(y + \delta k_3)$$

$$y \leftarrow y + (\delta/6)(k_1 + 2k_2 + 2k_3 + k_4)$$

Stepping Method

Define

$$p = rac{du}{dt}$$
 and $q = rac{dv}{dt}$

Then the geodesic equations become

$$\begin{aligned}
\frac{du}{dt} &= p \\
\frac{dv}{dt} &= q \\
\frac{dp}{dt} &= -\Gamma_{uu}^{u} p^{2} - 2\Gamma_{uv}^{u} pq - \Gamma_{vv}^{u} q^{2} \\
\frac{dq}{dt} &= -\Gamma_{uu}^{v} p^{2} - 2\Gamma_{uv}^{v} pq - \Gamma_{vv}^{v} q^{2}
\end{aligned}$$

Random Walks

Tom Eichlersmith

....

Background

Method

Coordinate Wrapping

Random Walks

Tom Eichlersmith

Introductio

.

Method

Courto

Optimizations

Random Walks
Tom Eichlersmith

....

Backgroui

Method

- Collection of every step point
- Number of steps in RK4
- Simplifications due to symmetry
 - ▶ Plane with radius representation
 - Sphere with polar angle representation
- Method of "compressing" the data

Plane

Random Walks

Tom Eichlersmith

Introductio

Backgroun

Method Results

Plane

Random Walks

Tom Eichlersmith

Introduction

Backgroup

Method

Results

Sphere

Random Walks

Tom Eichlersmith

Introduction

Rackgroung

Method

Results

Sphere

Random Walks

Tom Eichlersmith

Introduction

Background

Results

Torus

Random Walks

Tom Eichlersmith

Introduction

Packaroun

Method

Results

Torus

Random Walks

Tom Eichlersmith

Introduction

Backgrour

Method

Random Walks

Tom Eichlersmith

IIIIIOductio

Background

Vlethod

Questions