SWS3001: CD LeongHW (梁汉槐)

School of Computing

Community Discovery Algorithms (An Overview)

Leong Hon Wai (梁汉槐)
School of Computing and USP
National University of Singapore
Email, FB: leonghw@comp.nus.edu.sg

Get an overview of algorithmic community discovery

(Mining Communities) Page 1

For more details, go to Santo Fortunato, "Community detection in Graphs", Physics Reports, 486 (2010), 75-174.

(Mining Communities) Page 2

- Traditional Algorithhms
- Divisive Algorithms
- Modularity-based Methods
- Spectral Algorithms
- Dynamic Algorithms
- Methods for Overlapping Communities
- •

- Traditional Algorithhms
- Divisive Algorithms
- Modularity-based Methods
- Spectral Algorithms
 - Min-Cut Partitioning
 - Graph Laplacian
- Dynamic Algorithms...

- Traditional Algorithhms
 - Graph Partitioning

- Hierarchical Clustering (Single-Linkage Clustering)
 - Partitional Clustering
 - Spectral Clustering
 - Divisive Algorithms

Community Structure (informal defn)

"groups of vertices with dense intra-group connections, and sparse inter-group connections."

```
Within-group (intra-group): Very "similar" (Similar = distance between them is small)
```

Between-groups (inter-group): Very "dissimilar" (Dissimilar = distance between them is BIG)

From Question T2-D1 (2017)

T2-D1: [Simple Community Detection]

In this tutorial question, we will explore a simple community detection problem formulation, that can be surprisingly solved using one of the algorithms covered in the lecture.

You are given n data points and a function d to compute the distance between a pair of data points.

Your goal is to group the **similar** data points into k communities. It also means that the communities should be **dissimilar** with each other. Assume that the number of communities k is known.

We have to define the dissimilarity between cluster so that, for instance in the example above, the communities in A must be scored "better" than the communities in B.

From Question T2-D1 (2017)

One way to define the dissimilarity between the communities is as follows. The data points x and y is called **separated** if they are grouped into two different communities. The **min-distance** between two communities is the closest distance between two separated points in them (illustrated below).

The **spacing** of k communities is the smallest min-distance between all clusters, or equivalently, the distance between the closest pair of separated points. So, the goal is now to find the k communities such that the spacing is maximized. In the example above, the spacing in community A is much larger than the spacing in community B. This problem is known as **single-linked clustering**.

- (a) Give a formulation of the spacing above.(The objective function is then to maximize the spacing).
- (b) Give an algorithm that can find the communities with the largest spacing. Hint: Modify an MST algorithm.

From Question T2-D1 (2017)

One way to define the dissimilarity between the communities is as follows. The data points x and y is called **separated** if they are grouped into two different communities. The **min-distance** between two communities is the closest distance between two separated points in them (illustrated below).

Kruskal's MST Algorithm produces
Single Linkage Clustering

The **spacing** of k communities is the smallest min-distance between all clusters, or equivalently, the distance between the closest pair of separated points. So, the goal is now to find the k communities such that the spacing is maximized. In the example above, the spacing in community A is much larger than the spacing in community B. This problem is known as **single-linked clustering**.

- (a) Give a formulation of the spacing above.(The objective function is then to maximize the spacing).
- (b) Give an algorithm that can find the communities with the largest spacing. Hint: Modify an MST algorithm.

- Traditional Algorithms
- Divisive Algorithms

- Girvan and Newman Algorithm
 - Other methods
- Modularity-based Methods
- Spectral Algorithms
- Dynamic Algorithms

Divisive Methods

Newman, Girvan. 2002

Prototypical example: Edge Betweenness

- ▶ betweenness $(e_{i,j})$ = number of times $e_{i,j}$ appears in all shortest paths
- ▶ High betweenness edges are more "central"

ightharpoonup Expensive, $\mathcal{O}\left(N^3\right)$

- Methods based on Statistical Inference
- Methods for Overlapping Communities
- Clique Percolation Method
 - Multi-Resolution Methods & Cluster Hierarchy

LETTERS

Uncovering the overlapping community structure of complex networks in nature and society

Gergely Palla^{1,2}, Imre Derényi², Illés Farkas¹ & Tamás Vicsek^{1,2}

- Traditional Algorithhms
- Divisive Algorithms
- Modularity-based Methods
- Dynamic Algorithms

→ Random Walk, MCL

MCL (van Dongen, 2000)

Repeated inflation and expansion separates the network into multiple dense regions

Dongen, PhD Thesis, CWI, Netherlands, 2000

Some additional references...

Santo Fortunato, "Community Detection in Graphs", Physics Reports, 486 (2010), 75-174.

Lei Tang, Huan Liu, "Community Detection and Mining in Social Media", Morgan and Claypool Publishing, 2010. http://dmml.asu.edu/cdm/

http://www.cscs.umich.edu/~crshalizi/notebooks/community-discovery.html

Thank you.

Q&A

Contact: Hon Wai <u>Leong</u> (梁汉槐)

FB, email: leonghw@comp.nus.edu.sg http://www.comp.nus.edu.sg/~leonghw/

(Mining Communities) Page 24