Endomorphismes cycliques

Soit E un espace vectoriel sur \mathbb{R} .

On note $\mbox{ Id }$ l'application identique de $\mbox{ }E$.

Pour tout endomorphisme f de E, on note $f^0 = \operatorname{Id}$, et pour tout entier naturel k, $f^{k+1} = f^k \circ f$.

Soit $p \in \mathbb{N}^*$. On dit qu'un endomorphisme f de E est cyclique d'ordre p s'il existe un élément \vec{a} de E vérifiant les trois conditions suivantes :

- $f^p(\vec{a}) = \vec{a}$
- la famille $(\vec{a}, f(\vec{a}), ..., f^{p-1}(\vec{a}))$ est génératrice de E
- la famille $(\vec{a}, f(\vec{a}), ..., f^{p-1}(\vec{a}))$ est constituée d'éléments deux à deux distincts.

La famille $(\vec{a}, f(\vec{a}), ..., f^{p-1}(\vec{a}))$ est alors appelée cycle de E.

Partie I – Exemples

- 1. Dans cette question $E = \mathbb{R}^2$. On considère $f : \mathbb{R}^2 \to \mathbb{R}^2$ l'application définie par $f : (x,y) \mapsto (-y,x)$.
- 1.a Montrer que f est en endomorphisme de \mathbb{R}^2 .
- 1.b En considérant $\vec{a} = (1,0)$, observer que f est cyclique d'ordre p, l'entier p étant à préciser.
- 2. Dans cette question $E = \text{Vect}(\sin, \cos)$ désigne le sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ engendré par les fonctions sin et cos.
- 2.a Déterminer la dimension de E.
- $\text{2.b} \quad \text{Soit } p \in \mathbb{N} \left\{0,1,2\right\} \text{. Pour } f \in E \text{ , on note } \tau_p(f) \text{ l'application définie par } \tau_p(f) : x \mapsto f(x + \frac{2\pi}{p}) \text{ .}$ Montrer que $\tau_p(f) \in E$.
- 2.c Montrer que $\tau_n: f \mapsto \tau_n(f)$ est un endomorphisme de E.
- 2.d On pose $f=\sin$. Exprimer, pour $k\in\mathbb{N}$, $\tau_p^k(f)$.

 Observer que, pour $k,\ell\in\mathbb{N}$ on a $\tau_p^k(f)=\tau_p^\ell(f)\Rightarrow k=\ell$ [p].
- 2.e Montrer que τ_p est cyclique d'ordre p.

Partie II – Etude générale

Dans cette partie E désigne un $\mathbb R$ -espace vectoriel de dimension $n \in \mathbb N^*$. On considère f un endomorphisme de E cyclique d'ordre p. Soit $(\vec a, f(\vec a), ..., f^{p-1}(\vec a))$ un cycle de f.

- 1. Montrer $p \ge n$.
- 2.a Observer que, pour tout $k \in \mathbb{N}$, $f^p(f^k(\vec{a})) = f^k(\vec{a})$.
- 2.b En déduire que $f^p = \text{Id}$. L'endomorphisme f est-il bijectif?
- 2.c Par quel argument rapide pourrait-on justifier que $\ker(f \operatorname{Id})$ et $\ker(\operatorname{Id} + f + ... + f^{p-1})$ sont des sousespaces vectoriels de E? Etablir qu'ils sont supplémentaires.
- 3. On note m le plus grand des entiers naturels k tels que la famille $(\vec{a}, f(\vec{a}), ..., f^{k-1}(\vec{a}))$ soit libre.
- 3.a Montrer que $f^m(\vec{a})$ est combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), ..., f^{m-1}(\vec{a})$.

- 3.b Montrer, par récurrence, que pour tout entier naturel k, supérieur ou égal à m, le vecteur $f^k(\vec{a})$ est combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), ..., f^{m-1}(\vec{a})$.
- 3.c En déduire que m=n et que la famille $(\vec{a}, f(\vec{a}), ..., f^{n-1}(\vec{a}))$ est une base de E.
- 4. Soit g un endomorphisme commutant avec f i.e. tel que $g \circ f = f \circ g$. On note $\alpha_0, \alpha_1, ..., \alpha_{n-1}$ les n nombres réels tels que : $g(\vec{a}) = \alpha_0.\vec{a} + \alpha_1.f(\vec{a}) + ... + \alpha_{n-1}f^{n-1}(\vec{a})$. On considère h l'endomorphisme de E défini par $h = \alpha_0.\operatorname{Id} + \alpha_1.f + ... + \alpha_{n-1}.f^{n-1}$.
- 4.a Montrer que f et h commutent.
- 4.b Montrer que $\forall k \in \mathbb{N}, g(f^k(\vec{a})) = h(f^k(\vec{a}))$.
- 4.c En déduire que g = h.
- 4.d Quels sont les endomorphismes de E commutant avec f?