

DEVELOPMENT OF FATIGUE AND CRACK PROPAGATION DESIGN & ANALYSIS METHODOLOGY IN A CORROSIVE ENVIRONMENT FOR TYPICAL MECHANICALLY-FASTENED JOINTS

VOLUME IV — PHASE II TEST AND FRACTOGRAPHIC RESULTS

Q.E. Gordon, S.B. Kirschner and S.D. Manning General Dynamics Corporation P.O. Box 748, Ft. Worth, TX 76101

P.E. Gordon, S.E. General P.O. Box 7. and R.P. Wei Lehigh University Bethlehem, PA 18015

DTIC QUALITY INSPECTED 2

30 AUGUST 1984

FINAL REPORT FOR PERIOD SEPTEMBER 1982 - OCTOBER 1984

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for AVAL AIR SEVELOPMENT CENTER (604)

War**i**ninster, PA

MENT OF THE NAVY

NOTICES

REPORT NUMBERING SYSTEM — The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteenth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

CODE	OFFICE OR DIRECTORATE
00	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
02	Comptroller
10	Directorate Command Projects
20	Systems Directorate
30	Sensors & Avionics Technology Directorate
40	Communication & Navigation Technology Directorate
50	Software Computer Directorate
60	Aircraft & Crew Systems Technology Directorate
. 70	Planning Assessment Resources
80	Engineering Support Group

PRODUCT ENDORSEMENT — The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NADC-83126-60-Vol. IV	SSION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Substite) Development of Fatigue & Crac pagation Design & Analysis Methodology in a rosive Environment for Typical Mechanically- ed Joints - Vol. IV - Phase II Test and Frac graphic Results	Cor- Final Report
7. Author(*) D. E. Gordon, S. B. Kirschner, S. D. Manning and R. P. Wei	8. CONTRACT OR GRANT NUMBER(9) N62269-81-C-0288
9. PERFORMING ORGANIZATION NAME AND ADDRESS General Dynamics P. 0. Box 748 Fort Worth, Texas 76101	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS 62241N WF41400, ZA-61A
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Development Center (NADC) Warminster, PA 18974	12. REPORT DATE August 1984 13. Number of Pages 264
14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controllin	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

- 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
- 18. SUPPLEMENTARY NOTES

The subcontractor/consultant for this report was R. P. Wei, Lehigh University, Bethlehem, PA 19015.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Corrosion fatigue, crack initiation, crack propagation, environment (dry air, 3.5% NaCl), loading (constant amplitude & spectrum), percent bolt load transfer, effect loading frequency, strain controlled tests, preconditioning, long term exposure testing.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report contains the test results and raw fractographic data acquired under Phase II of the corrosion fatigue program for mechanically-fastened joints. The results presented in this Volume (IV) are evaluated in Volume III.

Variables included in the Phase II test program were material (7075-T7651 and Ti-6AI-4V), environment (dry air and 3.5% NaCl), load spectra (F-16 400 Hr. and F-18 300 Hr.), type loading (strain-controlled, constant amplitude,

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

spectrum), stress level (a base-line stress; three alternate stresses), specimen conditioning (none; preconditioned), loading frequency (four loading rates), specimen type (strain controlled, compact tension and dog-bone), and bolt load transfer (0%, 20%, 40%). Most of the results herein are for 7075-T7651 aluminum alloy dog-bone specimens. These results were used to evaluate the corrosion fatigue analysis methodology for crack initiation and crack propagation in Volume III. Ti-6A1-4V alloy results herein are limited to un-notched strain controlled tests. Further titanium research conducted under Phase II, including experimental results and evaluations, is documented in Volume V.

FOREWORD

This program was conducted by General Dynamics, Fort Worth Division (GD/FWD), with Lehigh University (Dr. R. P. Wei) as a subcontractor/consultant. This report (Vol. IV) documents the test and fractographic results obtained by General Dynamics under Phase II of the "Development of Fatigue and Crack Propagation Design and Analysis Methodology in a Corrosive Environment for Typical Mechanically-Fastened Joints" program (NADC Contract N6226-81-C-0268). The program was sponsored by the Naval Air Development Center, Warminster, PA, with Mr. P. Kozel as the project engineer. Dr. S. D. Manning of General Dynamics, Fort Worth Division, was the Program Manager/Principal Investigator and Dr. R. P. Wei of Leigh University was a co-investigator.

Several General Dynamics personnel supported the Phase II test program. D. E. Gordon coordinated the overall testing effort, procured specimens, performed the strain-controlled and the constant amplitude tests, eddy current inspections and fractographic evaluations. S. B. Kirschner coordinated the dog-bone specimen spectrum tests and per-

formed fractographic evaluations and data analyses. Dog-bone specimen spectrum tests and specimen dimensional checks were performed by R. O. Nay. Corrosion fatigue testing support was provided by F. C. Nordquist, J. W. Hagemayer and H. C. Hoffman. Dr. R. P. Wei of Lehigh University also assisted in setting up the test plan and provided valuable technical support.

The following reports (NADC-83126-60-) were also prepared under the Phase II effort:

- o Volume III Phase II Documentation
- o Volume V Corrosion Fatigue Cracking Response of

 Beta Annealed Ti-6Al-4V Alloy in 3.5%

 NaCl Solution

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1
II	CORROSION FATIGUE PROGRAM OVERVIEW	3
III	PHASE II TEST PROGRAM	7
	3.1 Introduction3.2 Phase II Test Objectives3.3 Test Program Philosophy3.4 Test Matrix and Data Set Designation	7 7 9 10
- 4	3.4.1 Coding System for Tests 3.4.2 Materials 3.4.3 Test Specimen Design 3.4.4 Environments 3.4.5 Type Loading 3.4.6 Load Spectra 3.4.7 Loading Frequency 3.4.8 Bolt Load Transfer 3.4.9 Stress Levels	16 22 24 24 25 26 26 27
IV	TESTING DETAILS AND DATA ACQUISITION PROCEDURE	29
	4.1 Introduction4.2 Specimen Preparation for Testing	29 29
	4.2.1 Strain-Controlled 4.2.2 Dog-Bone Specimens 4.2.3 Preconditioning 4.2.4 Fastener Type and Installation	29 30 32 33
	4.3 Environmental Chambers	34
	4.3.1 Strain-Controlled Tests 4.3.2 No-Load Transfer Dog-Bone Tests 4.3.3 Load Transfer Dog-Bone Tests	34 35 38
-	4.4 Strain - Controlled Tests	38
	4.4.1 Experimental Procedures 3 4.4.2 NDI Monitoring for Crack Detection	40 49
	4.5 Dog-Bone Specimen Tests	50
	4.6 Test Spectra	55
	4.7 Fractographic Analysis	59

Section	Page
4.7.1 General Procedure 4.7.2 Crack Initiation Origins	59 62
4.8 Extrapolation of Fractographic Results	65
APPENDICES	
A - Strain-Controlled Test Results for 7075-T7651 Aluminum Alloy	67
B - Strain-Controlled Test Results for Ti-6Al-4V Alloy	85
C - Constant Amplitude Test Results for Dog- Bone Specimens (7075-T7651 Aluminum Alloy)	97
D - Spectrum Fatigue Test Results and Fractographic Data for Task 4 (7075-T7651 Aluminum Alloy)	101
E - Spectrum Fatigue Test Results and Fractographic Data for Task 5 (7075-%7651 Aluminum Alloy)	129
F - Spectrum Fatigue Test Results and Fractographic Data for Task 6 (7075-T7651 Aluminum Alloy	225
REFERENCES	263

LIST OF FIGURES

Figure		Page
1	Strain-Controlled Specimens	12
2	Compact Tension Specimen for Beta-Annealed Ti-6Al-4V Alloy	13
3	Dog-Bone Specimen	14
4	Environmental Chamber and Test Setup for Strain Controlled Tests	36
5	Environmental Chamber Used for No-Load Trans- fer Dog-Bone Tests	37
6	Details of Integral Environmental Chamber In Loading Bar for Bolt Load Transfer Tests	39
7	Elements of Strain-Controlled Experimental Methodology Development	41
8	Setup for Strain Surveys for Strain-Controlled Specimen	44
9	Strain Gage Locations for Strain-Controlled Specimen	45
10	Typical Stress-Strain Hysteresis Loops Recorded on a Moseley Model 7000A x-y Recorder	47
11	Typical Load-Time and Strain-Time Traces Obtained with a Gould Brush 2200 Two-Channel Strip Chart Recorder	48
12	Test Setup for No-Bolt Load Transfer Dog-Bone Specimen Tests	52
13	Test Setup for Bolt Load Transfer Dog-Bone Specimen Tests	53
14	Samples of the Load History for the F-16 400 Hour Spectrum	56
15	Strip Chart Trace of Load History for F-18 300 Hour (Random) Spectrum ("B")	60
16	Strip Chart Trace of Load History for F-18 300 Hour (Block) Spectrum ("C")	60

LIST OF FIGURES

Figure	•	Page
17	Sample Crack Growth Markers Corresponding to 80% + Loads for F-16 400 Hour Spectrum ("A")	63
18	Sample Crack Growth Markers Corresponding to 90% + Loads for F-18 300 Hour Spectrum: (a) Random Spectrum ("B"); (b) Block Spectrum ("C")	64
Al	Typical Stress-Strain Hysteresis Loops During Fatigue Cycling for 7075-T7651 Aluminum	. 68
A2	Axial Strain Versus Axial Load for Strain- Controlled Specimen (7075-T7651 Aluminum)	71
A3	Axial Deformation Versus Axial Load for Strain-Controlled Specimen (7075-T7651 Aluminum)	72
A4	Axial Strain Relationship for Strain-Controlled Specimen (7075-T7651 Aluminum)	73
A5	Axial Deformation Versus Axial Strain for Strain- Controlled Specimens (7075-T7651 Aluminum)	74
A6	Maximum Tensile Load as a Function of Fatigue Cycling (Specimens 42CS, 47CS, and 48CS; 7075-T7651 Aluminum)	75
A7	Maximum Tensile Load as a Function of Fatigue Cycling for Four Different Total Strain Levels	76
A8	Decrease in Maximum Tensile Stress as a Function of Crack Size in Strain-Controlled Specimens (7075-T7651 Aluminum)	78
А9	Total Strain Amplitude Versus Reversals to Crack Initiation for 7076-T7651 Aluminum in Both Dry Air and 3.5% NaCl Environments	82
A10	Total Strain Amplitude Versus Reversals to Crack Initiation for 7075-T7651 Aluminum in a 3.5% NaCl Environment for Different Loading Frequencies	83 s
ві	Stress-Strain Hysteresis Loops During Fatigue Cycling for Beta-Annealed Ti-6Al-4V (25 = 1.06%)	86
B2	Axial Deformation Versus Axial Strain for Strain- Controlled Specimen (Beta-Annealed Ti-6Al-4V)	88

LIST OF FIGURES

Figur	<u>e</u>	Page
В3	Total Strain Amplitude Versus 2N, Reversals to Crack Initiation for Beta-Annealed Ti-6Al-4V in Both Dry Air and 3.5% NaCl Environments	90
B4	Total Strain Amplitude Versus 2N. Reversals to Crack Initiation for Different Loading Frequencies for Beta-Annealed Ti-6Al-4V in Both Dry Air and 3.5% NaCl Environments	91
В5	Change in Plastic Strain Amplitude with Cycling for Beta-Annealed Ti-6Al-4V	93
В6	Plastic Strain Amplitude Versus 2N Reversals to Crack Initiation for Beta-Annealed Ti-6Al-4V in Both Dry Air and 3.5% NaCl Environments	94
В7	Plastic Work per Unit Versus 2N Reversals to Crack Initiation for Beta-Annealed Ti-6Al-4V in Both Dry Air and 3.5% NaCl Environments	95

(THIS PAGE INTENTIONALLY LEFT BLANK)

LIST OF TABLES

Table		Page
1	Test Specimen Matrix for Phase II	11
2	Phase II Test Variables	15
3	Experimental Methodology Development and Evaluation Tests (Task 4)	17
4	Strain-Controlled Tests for Task 5	18
5	Ti-6Al-4V Alloy Crack Growth Tests for Task 5	18
6	Dog-Bone Specimen Tests for Task 5	19
7	Dog-Bone Specimen Tests for Task 6	20
8	Coding System for Describing Tests	21
9	Standard Hole Diameters	31
10	Breakdown of Load Points by 5% Intervals for the F-16 400 Hour Block Spectrum	57
11	Comparisons of F-16 400 Hour and F-18 300 Hour Test Spectra	58
Al	Strain-Survey Results for Strain-Controlled Specimen (7075-T7651 Aluminum)	70
A2	Strain-Controlled Test Results for 7075-T7651 Aluminum in Dry Air and Lab Air Environments	80
A3	Strain-Controlled Test Results for 7075-T7651 Aluminum in 3.5% NaCl Solution	81
Bl	Strain-Controlled Test Results for Beta-Annealed Ti-6Al-4V Alloy in Both Dry Air and 3.5% NaCl Solution Environments	. 89
C1	Constant Amplitude Stress-Controlled Test Results for Preconditioned Dog-Bone Specimens in Both Dry Air and 3.5% NaCl Environments (7075-T7651 Aluminum; R=0.05; Freq. = 6HZ; Open Hole)	98

LIST OF TABLES

Table	·	Page
C2	Constant Amplitude Stress-Controlled Test Results for Dog-Bone Specimens Tested for 20% LT and 40% LT in Both Dry Air and 3.5% NaCl Environments (7075-T7651 Aluminum)	99
Dl	Summary of Dog-Bone Specimen Spectrum Fatigue Test Results for Task 4 (7075-T7651 Aluminum; F-16 400 Hour Spectrum)	102
El	Summary of Dog-Bone Specimen Spectrum Fatigue Test Results for Task 5 (7075-T7651 Aluminum)	130
Fl	Summary of Dog-Bone Specimen Spectrum Fatigue Test Results for Task 6 (7075-T7651 Aluminum)	226

SECTION I

INTRODUCTION

This report documents the test and fractographic results acquired by General Dynamics under Phase II of the corrosion fatigue test program. The test matrix, test setup, test procedures, specimen details, data acquisition methods, etc., are described herein. Raw fractographic results and supporting details are also presented. However, the conclusions and recommendations for the Phase II test program, including the evaluation of the test/fractographic results are presented in Volume III [1].

Most of the test and fractographic results presented herein are for the 7075-T7651 aluminum alloy. Results are also presented for strain-controlled specimens made from Ti-6Al-4V alloy. However, the Ti-6Al-4V alloy test results and evaluations that were conducted by Lehigh University as a part of the basic titanium research effort under Phase II are documented in Volume V [2].

A brief overview of the corrosion fatigue program for mechanically-fastened joints is given in Section II. The

corrosion fatigue (CF) test program for the Phase II effort is described in Section III. In Section IV, testing procedures and data acquisition methods, including fractography, are described. Strain-controlled test results for the 7075-T7651 aluminum alloy and the beta-annealed Ti-6Al-4V alloy are presented in Appendices A and B, respectively. Constant amplitude test results for dog-bone specimens of 7075-T7651 aluminum alloy are presented in Appendix C. Dog-bone specimen spectrum fatigue test results and applicable fractographic data are presented for Tasks 4, 5 and 6 in Appendices D, E and F, respectively.

SECTION II

CORROSION FATIGUE PROGRAM OVERVIEW

The purpose of this section is to review the overall objectives of the corrosion fatigue program for mechanically-fastened joints and to put the results of this Volume (IV) into perspective.

The main objectives of this program were to:

- l. Develop and verify an analytical methodology for predicting the TTCI and crack propagation life of mechanically-fastened joints in a corrosive environment.
- 2. Develop corrosion fatigue test/data-acquisition methods and guidelines for acquiring statistically-valid data needed to implement the analytical methodology.
- 3. Study the effects of various factors on the corrosion fatigue behavior of mechanically-fastened joints.

The Phase I effort, documented in Volumes I and II [3,4], was concerned with three tasks as follows:

- o Task l Methodology and Data State-of-the-Art

 Assessment
- o Task 2 Methodology Development
- o Task 3 Test Plan Development

In Phase I the existing corrosion fatigue analysis methods were reviewed, the effects of various variables (i.e., stress level, R-ratio, loading frequency, environment hold-time, etc.) on TTCI and crack growth were experimentally investigated and evaluated for two different materials (7075-T7651 aluminum alloy and beta-annealed 6Al-4V Ti alloy), and a test plan was developed for the Phase II effort. The most suitable corrosion fatigue analysis methods for predicting the TTCI and crack propagation for mechanically-fastened joints were recommended in Phase I for evaluation in Phase II. Constant amplitude corrosion fatigue data were acquired under the Phase I effort.

The Phase II effort, data acquisition and methodology evaluation, included three tasks:

- o Task 4 Experimental Methodology Development and

 Evaluation
- o Task 5 Acquisition of Data for Prediction of
 Environmentally-Assisted Crack Growth in
 Aircraft Joints
- o Task 6 Prediction Methodology Evaluation and
 Verification

The objectives of the Phase II effort were to: develop and evaluate suitable experimental methods and specimens for acquiring corrosion fatique data for mechanically-fastened joints, (2) acquire corrosion fatigue data needed to implement the predictive methods recommended under Phase I, (3) evaluate the effectiveness of the CF analysis methodology for predicting the fatique life of mechanically-fastened joints under spectrum loading, and (4) evaluate the effects of various factors (e.g., loading frequency, R-ratio, stress level, load transfer, load spectra) on the TTCI and crack propagation in mechanicallyfastened joints.

In Phase I it was found that the corrosion fatigue behavior of the Ti-6Al-4V alloy was very complex [3]. For this reason, the Phase II effort was mainly concerned with the demonstration and evaluation of the corrosion fatigue

methodology for 7075-T7651 aluminum alloy. In Phase II, the Ti-6Al-4V alloy investigations were limited to the development of a better understanding of the corrosion fatigue crack growth mechanisms and the effects of loading frequency were emphasized [2].

This volume (IV) documents the Phase II experimental test program conducted and includes the raw test and fractographic results. Phase II test/fractographic results presented in this Volume (IV) are evaluated in Volume III [1] and the conclusions and recommendations are also presented.

SECTION III

PHASE II TEST PROGRAM

3.1 INTRODUCTION

The purpose of this section is to describe what was tested under Phase II of the corrosion fatigue program for mechanically-fastened joints and to discuss overall test objectives. Detailed test procedures and methods for acquiring the experimental results are discussed in Section IV. A preliminary test plan for the Phase II effort was developed under Phase I and it is described in Volume I [3]. The preliminary test plan was periodically adjusted during the course of the Phase II effort so that future tests could build on the Phase II test results and needs.

3.2 PHASE II TEST OBJECTIVES

The main objectives of the Phase II test program were to:

l. Develop and evaluate suitable experimental methods and specimens for acquiring corrosion fatigue data for mechanically fastened joints (Task 4).

- 2. Acquire statistically-valid corrosion fatigue data needed to implement and "tune" the corrosion fatigue analysis methodology for spectrum loading applications (Task 5).
- 3. Provide statistically-valid experimental data for evaluating the effects of various factors (e.g., loading frequency, R-ratio, stress level, load spectra, and percent bolt load transfer) on the time-to-crack-initiation (TTCI) and time-to-failure (TTF) in fastener holes (Task 5).
- 4. Provide key experimental results for Ti-6Al-4V alloy for developing a better understanding of basic mechanism and the effects of loading frequency on fatigue crack growth (Task 5).
- 5. Provide corrosion fatigue test results for crack initiation and crack growth in fastener holes that can be used to evaluate the accuracy of analytical methodology described in Volume I [3] (Task 6).

3.3 TEST PROGRAM PHILOSOPHY

The corrosion fatigue behavior of mechanically-fastened joints is complex. Therefore, the following philosophy was reflected in the Phase II test program:

- o Minimize the number of test variables to isolate the effects of corrosion fatigue.
- o Use test replications to acquire statistically-valid data.
- o Consider the most fundamental elements of a mechanically-fastened joint (i.e., single hole, straight
 bore, protruding head fastener and fastener load
 transfer).
- o Develop a better understanding of the corrosion fatigue behavior of straight-bore holes with and without: fasteners and load transfer through the fasteners.
- o Due to the complexity of corrosion fatigue, stateof-the-art analytical corrosion fatigue methodology should be developed and verified in progressive steps with increasing structural complexities. Develop

understanding and data for simple joints before considering more complex joints.

- o Build on the test data and understandings from the Phase I effort.
- o Develop and verify the corrosion fatigue analytical methodology for 7075-T7651 aluminum alloy.
- o Develop a better understanding of the corrosion fatigue mechanisms for Ti-6Al-4V alloy [2].

3.4 TEST MATRIX AND DATA SET DESIGNATIONS

This section describes what was tested in Phase II.

Key test variables reflected in the test program and testing rationale are also discussed in this section. However, detailed testing procedures and data acquisition methods are discussed in Section IV.

The Phase II corrosion fatigue program test matrix included 253 test specimens as noted in Table 1. Specimen details are shown in Figs. 1-3. A summary of the test variables used in Phase II is shown in Table 2.

TABLE 1 TEST SPECIMEN MATRIX FOR PHASE II

SPECIMEN		MATERIAL		NO. OF SPECIMEN				
CONFIGURATION	TYPE	MATERI	AL	TASK 4	1	TASK 5	TASK 6	Σ
	s-c	7074-T7	7651	5		45	0	50
(Fig. 1)	5-0	Ti-6Al-	-4V	1		29	0	30
(Fig. 2)	СТ	Ti-6Al-4V		0		9*	0	9*
(Fig. 3)	NLT	7075-T7651		23		90	3	116
(Fig. 3)	LT	7075-T7651		2		3	43	48
			Σ	31		176	4 6	253

NOTES:

Task 4 - Experimental Methodology Development & Evaluation

Task 5 - Acquisition of Data for Prediction of Environmentally-Assisted Crack Growth in Aircraft Joints

Task 6 - Prediction Methodology Evaluation and Verification

S-C - Strain-controlled

CT - Compact Tension

NLT - No Load Transfer (through the fastener)

LT - Load Transfer (through the fastener)

^{*} Results are documented and evaluated in Volume V [2].

Fig. 1 Strain-Controlled Specimen

Fig. 2 Compact Tension Specimen for Beta-Annealed Ti-6Al-4V Alloy

Fig. 3 Dog-Bone Specimen

TABLE 2 PHASE II TEST VARIABLES

MATERIAL	o 7075-T7651 ALUMINUM ALLOY o Ti-6A1-4V ALLOY
ENVIRONMENT	o DRY AIR o 3.5% NaC1 SOLUTION
TYPE LOADING	o STRAIN-CONTROLLED o CONSTANT AMPLITUDE o SPECTRUM
LOAD SPECTRA	o F-16 400 HR. (HI-LO BLOCKS) o F-18 300 HR. (RANDOMIZED) o F-18 300 HR. (HI-LO BLOCKS)
LOADING FREQUENCY AND HOLD TIME	o CONSTANT AMPLITUDE (0.3 Hz TO 20 Hz) o SPECTRUM (FAST, SLOW, X-SLOW) o HOLD TIME (0 s TO 2.33 s)
TEST SPECIMENS	o UN-NOTCHED AXIAL (STRAIN-CONTROL) o COMPACT TENSION o DOG-BONE WITH CENTER HOLE
FASTENER HOLE	o OPEN (W/O BOLT) o WITH BOLT
BOLT HOLE FINISH	o POLISHED
BOLT TYPE	o STEEL PROTRUDING HEAD (CAD-PLATED) (e.g., NAS 6207)
BOLT LOAD TRANSFER	o 0% LT o 20% LT o 40% LT
STRESS LEVEL	o BASELINE STRESS o OTHER
SPECIMEN PRECONDITIONING	o NONE o PRETEST AND PRESOAK IN 3.5% NaCl

Test plans for Tasks 4, 5 and 6 are shown in Tables 3-7. For tracking purposes, tests are defined by I.D. number and by data set. The total number of specimens tested under each data set and other testing details are shown in Tables 3-7.

3.4.1 Coding System for Tests

A coding system was devised to concisely describe the key test variables used in Tables 3-7 and to facilitate test identifications. The coding system used in this report is shown and illustrated in Table 8.

In Tables 3-7 tests are also identified by "data set number" so that test specimens can be grouped and identified by the applicable data set number. This system is used throughout this report.

3.4.2 Materials

Two materials were used for the Phase II testing: 7075-T7651 aluminum alloy and Beta-annealed Ti-6Al-4V. These materials are of particular interest because several Navy aircraft in service include these materials in the airframe and such materials are susceptible to corrosion fatigue. The 7075-T7651 aluminum alloy material was supplied as 0.50-inch plate. The Ti-6Al-4V material was in the form of 0.875-inch thick plate. These materials were

SPECIMENS TESTED . 9 3 SLOW FREQUENCY FAST STRAIN SURVEY TESTS 3.5%NaC1 ENVIRONMENT DRY PC? SPECIMEN DETAILS ş BOLT? Yes Yes Z LT 20 -- 0 DATA SET NO. 7 8 A-28/F/W/B/PC A-28/S/W/B/PC A-30/20/S/W A-30/20/F/W TEST I.D. A-28/F/W/B SC 1A SC 1T A-30/F/D A-30/S/D A-34/S/D A-34/F/W A-34/S/W A-32/S/D A-30/F/W A-32/F/W A-32/S/W T1-6A1-4V MATERIAL 7075-T7651 (R = -1) (STRAIN CONTROLLED) CONSTANT AMPLITUDE F-16 400 HR SPECTRUM TABLE 3 (F1g. 1). SPECIMEN (Fig. 3) 0 0 0

EXPERIMENTAL METHODOLOGY DEVELOPMENT AND EVALUATION TESTS (TASK 4)

TABLE 4 STRAIN-CONTROLLED TESTS FOR TASK 5

LOADING) () () () () () () () () () (TROW T D	DATA SET	1		FREQUENCY	NO. SPECIMENS	
LOADING	MATERIAL	TEST I.D.			3.5% NaC1	FREQUENCI	TESTED	
Constant Amplitude	7075-T7651 7075-T7651	SC/D/A SC/W/A	72 73	х -	– X	VARIABLE VARIABLE	22 23	
(R=-1)	Ti-6A1-4V Ti-6A1-4V	SC/D/T SC/D/T	82 83	х -	- X	VARIABLE VARIABLE	18 11	
<u> </u>							74	

TABLE 5 Ti-6A1-4V ALLOY CRACK GROWTH TESTS FOR TASK 5

CDECTMEN	MATERIAL	ENVIRONMENT		K LEVEL	NO. SPECIMEN	
SPECIMEN	MATERIAL	ENVIRONMENT	LOW	MED	HIGH	TESTED
	Ti-6A1-4V		х	-	_	2
	4	Oxygen (Ref.)	_	X	-	2 ·
			-	66 5	X	2
0			х	_	cas '	1
	#	3.5% NaC1	-	X	_	1
	Ti-6A1-4V		-	_	х	1
						9

Notes: 1. Ref. Volume I [3] for tests in vacuum.

2. Ref. Volume V [2] for testing details and results.

TABLE 6 DOG-BONE SPECIMEN TESTS FOR TASK 5

				DATA	SPECI	SPECIMEN DETAILS	VILS	ENV	ENVIRONMENT		FREQUENCY	P :	NO.
SPECIMEN	SPECTRUM	MATERIAL	TEST I.D.	SET NO.	Z LT	BOLT?	PC?	DRY	3.5% NaC1	FAST	SLOW	XSLOW	SPECIMENS TESTED
	CONSTANT	7075-T7651 7075-T7651	CA/F/D/PC CA/F/W/PC	61 62	0.0	ON	YES	×ı	ı×	××	, ,	1.1	3
	F-16 400 HR. (BLOCK)	7075-17651	A-28/F/D A-28/S/D	127	0-	ON +	Ω -	××	1 1 1	· × ·	1 ×	1 1	44
			A-28/F/W A-28/S/W A-28/4/W	n 4 N			<u>2</u>	1 1 1	× × ×	× 1 1	ı × ı	 	4 6 6
0			A-28/F/D/PC A-28/S/D/PC	9	-		YES	××	1 1	×ι	١×		m m
			A-28/F/W/PC A-28/S/W/PC	8 6		- 9	YES	1 1	××	× 1	ı ×	1 1	6 9 4
0			A-28/F/D/B A-28/F/W/B	10 11		YES	2	× ·	١×	××	1 1	1 1	w 4
_(A-28/S/W/B A-28/F/D/B/PC	12	_	_	NO	' ×	×I	' ×	×	-	2
0	-	7075-T7651	A-28/F/W/B/PC	14	-0	YES	YES	1	×	×	. ,	•	n m
(F18. 3)	F-18 300 HR. (RAMDOM)	7075-17651	B-28/F/D B-28/S/D B-28/F/W B-28/S/W	21 22 23 24	0	ON +	0 0 0 N	××ıı	IIXX	×ı×ı		111	ጠጠቁላ
		7075-17651	B-28/F/D/PC B-28/S/D/PC B-28/F/W/PC B-28/S/W/PC	25 26 27 28		ON.	YES	××II	IIXX	×ı×ı	1 × 1 ×	1 1 1 1	m m 4 4
	F-18 300 HR. (BLOCK)	7075-T7651 7075-T7651	C-28/F/D C-28/F/W	33 34	0	NO NO	NO NO	×ı	١×	××	1 1	1 1	e e
	P-16 400 HR. (BLOCK)		A-28/20/F/W/PC	37	20	YES	YES	1	×	×	1		2
			A-28/20/S/W/PC	38	20	YES	YES	ı	×	ı	×	-1	1
								·					

TABLE 7 DOG-BONE SPECIMEN TESTS FOR TASK 6

NO.	SPECIMENS TESTED	нее	3 2	8 2		m m	4 4	r m m	m m
INCY	SLOW	1 1 1	1 1	1 1	××		1	1 1	1 1
FREQUENCY	FAST	6 Hz		××	1 1	××	××	××	××
ENVIRONMENT	3.5% NaC1	· · ×	ı×	· ×	ı×	1 ×	1 ×	' ×	· ×
ENVI	DRY	××ı	x -	×ı	×ı	× ı	×ı	×ı	×·
DETAILS	PC?	ON	NO	ON -		- Q	ON -	- 02	NO NO
SPECIMEN DETAILS	Z LT	20 20	40	50	20	40	20	07 07	07
DATA	NO.	63 64 65	99	15	17	19 20	30 29	31 32	35
TEST I.D.		CA-23/20/F/D CA-17/20/F/D CA-17/20/F/W	CA-17/40/F/D CA-17/40/F/W	A-28/20/F/D A-28/20/F/W	A-28/20/S/D A-28/20/S/W	A-28/40/F/D A-28/40/F/W	B-28/20/F/D B-28/20/F/W	B-28/40/F/D B-28/40/F/W	C-28/40/F/D C-28/40/F/W
MATERIAL		7075-T7651	7075-T7651	7075-T7651		7075-17651	7075-T7651	7075-17651	7075-T7651 7075-T7651
SPECTRUM		CONSTANT AMPLITUDE		F-16 400 HR. (BLOCK)			F-18 300 HR. (RANDOM)		F-18 300 HR. (BLOCK)
SPECIMEN						H	0	(E 0FA)	

TABLE 8 CODING SYSTEM FOR DESCRIBING TESTS

ITEM	CODE
Type Test or Spectrum	O CA = Constant Amplitude Test O SC = Strain-Controlled Test O A = F-16 400 Hr. (Hi-Lo Block) O B = F-18 300 Hr. (Random) O C = F-18 300 Hr. (Hi-Lo Block)
Stress Level (ksi, gross)	o 28, 30, 32, 34 ksi
% Bolt Load Transfer	o 20 or 40 (Follows stress level if applicable)
Spectrum Loading Frequency	O F = Fast (8000 flt hrs/2 days) O S = Slow (8000 flt hrs/16 days) O
Environment	O D = Dry Air @ R.T. O W = 3.5% NaCl Solution @ R.T.
Bolt in Hole	O B = Bolt in Hole (Noted for 0% LT Tests)
Preconditioning	o PC = Specimen Preconditioned (Pretested and Soaked in 3.5% NaCl Solution

Examples:

from the same plates used for the Phase I testing. Material properties for these materials are presented in Volume I [3].

The 7075-T7651 aluminum alloy was emphasized in the Phase II test program and the test results were used to evaluate the corrosion fatigue methodology under Task 6.

The corrosion fatigue behavior of the Ti-6Al-4V alloy was found to be very complex in the Phase I effort [3]. Therefore, the Phase II experimental effort for this alloy was mainly concerned with developing a better understanding of the corrosion fatigue mechanisms and, in particular, the effects of loading frequency on crack growth. Test results for the strain-controlled specimens are presented in this report and the compact tension test results and evaluations, are presented in Volume V [2].

3.4.3 Test Specimen Design

Three specimen designs were used in the Phase II investigations. The test specimen details are shown in Figs. 1 - 3. Types of tests conducted with these specimens are shown in Table 1.

The hour-glass specimens shown in Fig. 1 is commonly used in strain-controlled experiments, where large strain

amplitudes are required. This specimen geometry is less susceptible to buckling than the commonly used longitudinal specimen. In our experiments, we felt that the NDI detectability of small cracks would be improved by using he hour-glass design specimen at low strain amplitudes also. All strain-controlled tests in both 7075-T7651 aluminum alloy and beta-annealed Ti-6Al-4V were conducted with the particular specimen geometry shown in Fig. 1.

All Ti-6Al-4V crack growth investigations conducted in Phase II were accomplished with the compact tension specimen shown in Fig. 2. This is the identical specimen design that was used for Ti-6Al-4V crack growth investigations in Phase I [3].

All of the constant amplitude and spectrum loaded stress controlled tests were conducted on the dog-bone specimen shown in Fig. 3. The same specimen design was used for both no-load transfer and load-transfer testing. Considerable experience has been obtained on this specimen design from previous investigations [5-7].

To minimize the effects of fastener hole quality (e.g., scratches in the bore) fatigue crack initiation, all fastener holes in the dog-bone test specimen were polished. Also, all steel fasteners were cad-plated to minimize the corrosive effects between dissimilar metals.

Most dog-bone specimens had a nominal hole diameter of 7/16 inch and a few specimen had a hole diameter of 1/2 inch. Specimen dimensions in the test section and hole diameters were measured and results were recorded.

A 7/16 inch diameter fastener hole was typically used so that the same dog-bone specimen design could be used for both no-load transfer tests as well as for 20% and 40% load transfer tests.

3.4.4 Environments

Specimens were tested in both dry air and 3.5% NaCl solution at room temperature. Several specimens tested in Tasks 4 and 5 were preconditioned (pretested and presoaked in 3.5% NaCl). Test chambers used for obtaining these environments plus the preconditioning procedure are discussed in Section IV.

3.4.5 Type Loading

The Phase II tests included three different types of loading: (1) strain-controlled, (2) constant amplitude and (3) spectrum. Strain-controlled tests were performed with un-notched specimens (Fig. 1) to acquire the data needed to implement the strain-life approach for making time-to-

crack-initiation predictions for loaded and unloaded fastener holes. Constant amplitude tests were performed using both compact tension specimens (Fig. 2) and dog-bone specimens (Fig. 3). Spectrum tests were also performed using dog-bone specimens.

3.4.6 Load Spectra

Corrosion fatigue tests were performed using three different load spectra: (1) F-16 400 Hour (Hi-Lo Blocks), (2) F-18 300 Hour (Randomized) and (3) F-18 300 Hour (Hi-Lo Blocks). Details of these test spectra are discussed in Section 4.6.

Dog-bone specimens of 7075-T7651 aluminum alloy were fatigue tested using the F-16 400 hour block spectrum to acquire experimental results for "tuning" corrosion fatigue analysis predictions for the time-to-crack-initiation (TTCI) and time-to-failure (TTF) in fastener holes.

Fatigue tests were also performed under Task 6 using dog-bone specimens and two variations of the F-18 300 hour spectrum. These tests provided results for evaluating the corrosion fatigue analysis predictive methodology for the time-to-crack-initiation and crack propagation for mechanically-fastened joints.

3.4.7 Loading Frequency

performed using different loading Tests were frequencies (ref. Tables 3-7) so that the possible effects exposure frequency and environment time time-to-crack-initiation and crack growth could be assessed for the two alloys considered. Particular emphasis was placed on acquiring dog-bone specimen (7075-T7651) fatigue test results for three different loading frequencies: (1) Fast = flight hours/2 days, (2) slow = 8000 flight hours/16 days and (3) x slow = 8000 flight hours/90 days.

3.4.8 Bolt Load Transfer

Three different load transfers were used: (1) 0% both with and without a fastener in hole, (2) 20% load transfer, and (3) 40% load transfer. The percent bolt load transfer is defined as the percentage of the total input load to the dog-bone specimen (Fig. 3) reacted by the single bolt in the test section. The test setup used to obtain the 20% and 40% load transfers is described in Section 4.5.

All bolts were loaded in double shear to minimize the effects of bending and to focus attention on key variables: environment, load spectra, stress level, loading frequency and % bolt load transfer.

3.4.9 Stress Levels

Dog-bone specimens were fatigue tested at four different stress levels in Task 4, including 34 ksi, 32 ksi, 30 ksi and 28 ksi (gross). Task 4 was mainly concerned with developing and evaluating the experimental and corrosion fatigue data acquisition methods that would be used to conduct the fatigue tests under Task 5. Another objective of Task 4 was to determine a suitable baseline stress level that would be used for the corrosion fatigue tests of Tasks 5 and 6. After testing several dog-bone specimens at different stress levels, we selected a baseline stress of 28 ksi (gross). We selected a stress level that would assure fatigue cracking in a reasonable test and environmental exposure time.

(THIS PAGE INTENTIONALLY LEFT BLANK)

SECTION IV

TESTING DETAILS AND DATA ACQUISITION PROCEDURES

4.1 INTRODUCTION

The purpose of this section is to describe and discuss the essential elements of the Phase II test program (e.g., test specimen preparation test setups test spectra, and testing procedures). Also, the data acquisition procedures are discussed, including eddy current techniques, fractographic analysis methods and data extrapolations. Test results are presented in Appendix A-F.

4.2 SPECIMEN PREPARATION FOR TESTING

4.2.1 Strain - Controlled

Strain-controlled specimens (hour-glass type) shown in Fig. 1 were manufactured for both 7075-T7651 aluminum alloy and beta-annealed Ti-6A1-4V alloy. Specimens for the aluminum alloy and for the titanium alloy were machined from plate stock 0.50 inch and 0.875 inch thick, respectively.

After machining, all specimens were mechanically polished

in the hour-glass area to obtain a surface finish of 8 1 inch r.m.s. or better. All polishing was conducted parallel to the longitudinal axis of the specimen. Specimens were polished to help minimize the effects of manufacturing defects, such as small surface scratches, on the test results. Residual stresses were produced by the surface polishing. However, this result was considered more acceptable than the surface scratches for the test objectives intended.

4.2.2 Dog-Bone Specimen

All dog-bone specimens tested in Phase II were machined from 7075-T7651 aluminum alloy, 0.50 inch thick plate material. Specimen details are shown in Fig. 3.

After machining, a straight-bore center hole was drilled using the modified Winslow spacematic drill. This automatic drill unit maintains rotation during retraction to minimize surface scratches caused by the drilling operation.

Fastener holes were drilled per General Dynamics fastener installation standard M198 [8]. Standard hole diameters for the dog-bone specimens are shown in Table 9.

After drilling, the center hole in each specimen was mechanically polished using a split mandrel and metallographic polishing paper to obtain better than an 8 μ inch r.m.s.

TABLE 9 STANDARD HOLE DIAMETERS

Nominal Hole Dia. (Inch)	Hole Diameter (Inch)		
	Min	Max	
1/4	0.2500	0.2540	
7/16	0.4375	0.4425	
1/2	0.5000	0.5050	

Ref. General Dynamics Standard M198 [8].

surface finish. The purpose of the polishing was to minimize the effects of fastener hole quality on the fatigue test results. Also, we wanted to obtain test results that would be compatible as close as possible with the smooth un-notched strain-controlled data acquired.

After polishing the center hole of each specimen, the hole diameter, width and thickness of each specimen in the test section were measured. Results are recorded on the fractographic data sheets for each specimen in Appendices D-F.

4.2.3 Preconditioning

Selected dog-bone specimens from Tasks 4 and 5 were preconditioned as follows:

- 1. One block of the F-16 400 hour block spectrum was applied to the test specimen in lab air at a maximum spectrum stress of 28 ksi (i.e., peak load in spectrum produces 28 ksi stress on gross section of test specimen).
- 2. The specimen was then soaked in a 3.5% NaCl solution at room temperature for 72 hours.
- 3. Specimens were then cleaned and dried using the procedure described in AGARD report 695 [9].

4. If the preconditioned specimens were not fatigue tested immediately, they were stored at room temperatue in a plastic bag with desiccant until tested.

Specimen preconditioning was considered to complement the AGARD program effort [9] and to further evaluate the effects and of preconditioning on the time-to-crack-initiation and crack growth in fastener holes.

4.2.4 Fastener Type and Installation

Dog-bone specimens were fatigue tested with or without fasteners installed in the center hole. All fasteners used were cad-plated steel with a protruding head. NAS-6207 (7/16" and NAS-6208 (1/2" dia.) bolts were used where The standard minimum and maximum fastener applicable. diameter after cad-plating are 0.4360"/0.4370" 0.4985"/0.4995" for the NAS-6207 and NAS 6208 respectively.

Some dog-bone specimens were tested with a NAS bolt and mating nut installed in the center hole with no-load transferred through the bolt (i.e., 0% LT). In this case a steel washer was used under the nut and the nut was installed "finger-tight".

4.3 ENVIRONMENTAL CHAMBERS

Two different environments were considered in the Phase II testing: dry air and 3.5% NaCl solution both at room temperature. Three basic environmental chamber designs were used to simulate the environment for the strain-controlled tests, for the no-load transfer dog-bone specimen tests and for the load transfer dog-bone tests. The environmental chamber designs used and the environment simulation procedures for the Phase II test program are described and discussed in the following subsections.

The salt water solution for the Phase II tests was prepared by dissolving reagent grade NaCl in triply-distilled water. The average solution pH was about 6.5 over the duration of each test. All Phase II salt water tests were performed in a constant immersion environment with periodic changing of the 3.5% NaCl solution to keep the solution fresh.

4.3.1 Strain-Controlled Tests

The environmental chamber for both dry air and 3.5% NaCl solution consisted of tygon tubing with an inside and outside diameter of 1/2 inch and 3/4 inch, respectively. A short piece of tubing, less than 2.00" in length, was first slipped over the strain-controlled specimen (Fig. 1) in the test section. The tubing was short enough to prevent any interference with the extensometer device. The tubing was

sealed at both ends with polysulfide sealant after mounting. The mounted environmenal chamber is shown in Fig. 4. For the dry air tests, desiccant was poured into the container before sealing the top. In the 3.5% NaCl solution experiments the salt water solution was added at an opening near the top of the chamber after the container had been sealed.

4.3.2 No-Load Transfer Dog-Bone Tests

Details of the environmental chamber used for the no-load transfer tests are shown in Fig. 5. This type of chamber was successfully used in the Phase I test program [3]. A chamber was mounted to each side of the dog-bone specimen over the center hole of the test section. The two chambers were clamped together to seal them against the specimen. The environmental chamber system described above was used for both constant amplitude and spectrum fatigue tests in Phase II.

The hole in the chamber allowed access for eddy current detection probes during testing to monitor fatigue crack initiation. A cork was placed in the hole when the chamber was in use. Environmental chambers were also used for dry air environemnt tests by placing desiccant crystals in the chamber.

Fig. 4 Environmental Chamber and Test Setup for Strain-Controlled Tests

Plexiglass chamber

Fig. 5 Environmental Chamber Used for NO - Load Transfer Dog-Bone Tests

4.3.3 Load Transfer Dog-Bone Tests

The environmental chamber was an integral part of the loading bars used to transmit the ram loading directly to the bolt in the dog-bone specimen. Two loading bars, with the test specimen in the middle, were bolted together with a single 7/16" diameter steel bolt (clad plated) with a washer under the nut. An environmental chamber was formed in each loading bar by a counterbore (1.50" diameter and 0.10" deep) on the side facing the test specimen. A sealing groove with a rubber "0" ring surrounded the counterbore to seal the environmental chamber. A small torque was applied to the nut -- just enough to seal the environmental chambers against the surface of the test specimen. The loading bar assembly and details of the chamber are shown in Fig. 6.

Desiccant crystals were placed in the chambers to simulate a dry air environment. A 3.5% NaCl solution was added to the environmental chambers to simulate a salt water environment. Provisions were made in the chamber for draining the solution and for adding a fresh solution without disassembling the two loading bars.

4.4 STRAIN-CONTROLLED TESTS

Strain-controlled experimental procedures were developed in three stages: (1) calibrate strain-controlled specimen and ram loading, (2) evaluate environmental simulation methods, and (3) verify the time-to-crack-initiation (TTCI) acquisition method. Elements of the experimental methodology development

Fig. 6 Details of Integral Environmental Chamber Used In Loading Bar for Bolt Load Transfer Tests

are described in Fig. 7.

Experimental procedures were developed and verified for acquiring strain-controlled fatigue crack initiation data in dry air and in a 3.5% NaCl solution. Strain-controlled tests were conducted on fifty 7075-T7651 aluminum specimens and thirty beta-annealed Ti-6Al-4V alloy specimens as part of Tasks 4 and 5 (see Tables 1, 3 & 4). The experimental procedures used to acquire the crack initiation data are described in this section.

A total of 30 strain-controlled experiments were conducted on the beta-annealed Ti-6Al-4V alloy. Since the same experimental procedures developed for the aluminum alloy worked equally well for the titanium alloy, only one titanium specimen was needed for Task 4 (ref. Tables 1, 3 and 4). This specimen was used to conduct a strain survey. Crack initiation data was obtained for 29 test specimens.

4.4.1 Experimental Procedures

Total strain-controlled fatigue tests were performed on a closed loop hydraulic MTS machine (MTS Model 810.13, 22 kip capacity) controlled by fully reversed (R' = $\epsilon_{\rm min}/\epsilon_{\rm max}$ = -1) sinusoidal strain amplitude waves. This system was used in conjunction with a 406.11 controller, 436.11 Control unit, Model 436.11 FG functional generator, 6 GPM hydraulic supply

Fig.7 Elements of Strain-Controlled Experimental Methodology Development

and a digital indicator Model 430.41. Hydraulically operated grips (Model 641.92) were used. These grips are self-aligning to relieve possible bending stresses in the test specimens.

The aligning grips assured that the test machine axis was coincident with the specimen axis. For test specimens with strain gages, alignment was checked by observing the strain gage readings after the specimen was installed under zero applied load. Only very small strains were observed after installation in the test machine.

Normally, diametrical strain measurements are made on the hour-glass specimen. However, since many of the tests were conducted in a 3.5% NaCl environment, a two-inch gage length extensometer was mounted outside of the environmental chamber (Fig. 4). Extensometer voltage output (axial deformation) was measured as a function of axial strain in the reduced section of the specimen. These measurements were made by correlating extensometer voltage readings to strain gage readings for strain gages mounted axially in the minimum area section of the test coupon. Calibration curves based on these measurements are presented in Appendix A.

Strain surveys and strain-controlled specimen calibration tests were conducted to experimentally determine the relationship between ram load, axial strain and axial deformation (over 2.00" gage length). The test setup is shown

in Fig. 8. Four axial strain gages and an extensometer were mounted on the calibration specimen as shown in Fig. 9.

The instrumented specimen shown in Fig. 8 was statically loaded in tension and compression using a selected range of loads. Strain and extensometer measurements were taken at selected load levels. Typical results are presented in Appendix A for the 7075-T7651 aluminum alloy.

Calibration curves for 7075-T7651 aluminum alloy and Ti-6Al-4V alloy, respectively, were used to select extensometer voltages to obtain a specified strain value in the Task 5 experiments. The shape of the calibration curves were similar for both beta-annealed Ti-6Al-4V and 7075-T7651 aluminum alloys.

The environmental chamber used and simulation procedures for both dry air and 3.5% NaCl solution are described in Section 4.3.1.

In our experiments, most specimens were tested at a maximum total strain amplitude greater than .7% and at a test frequency of .5 Hz. This frequency was low enough to plot stress-strain hysteresis loops using the x-y recorder. For the long-life fatigue specimens, the frequency was increased to 2 Hz and 5 Hz to allow a large number of cycles to be accumulated in a reasonable period of time. During these

Setup for Strain Surveys Using Strain-Controlled Specimen

Fig. 9 Strain Gage Locations for Strain-Controlled Specimen

tests, test frequencies were lowered to .5 Hz at fixed intervals to make x-y plots. A few specimens were tested at several different frequencies corresponding to one strain amplitude value to investigate the effect of frequency on fatigue crack initiation.

During the constant strain tests, individual stress-strain hysteresis loops were recorded on a Moseley Model 7000A x-y recorder. All recordings were made at frequencies less than 1 Hz. An example fo the type of traces obtained are shown in Fig. 10. After recording the first few cycles, traces were obtained at periodic intervals, until testing ceased.

From the slopes of the stress-strain hysteresis loops, the elastic strain amplitude, $\Delta \epsilon_{p/2}$, and plastic strain amplitude, $\Delta \epsilon_{p/2}$, could be determined. This technique is also illustrated in Fig. 10.

The area enclosed by the hysteresis loops was measured using a polar planimeter. Using this technique, areas could be measured to the nearest 0.01 square inch.

Continuous load-time and strain-time records were obtained with a Gould Brush 2200 two-channel strip chart recorder. Typical traces are shown in Fig. 11.

Typical Stress-Strain Hysteresis Loops Recorded on a Moseley Model 7000A x-y Recorder Fig. 10

Typical Load-Time and Strain-Time Traces Obtained with a Gould Brush 2200 Two-Channel Strip Chart Recorder Fig. 11

4.4.2 NDI Monitoring for Crack Detection

Early monitoring of experimental methodology specimens accomplished with eddy current techniques. techniques, used in fastener hole inspections, are described in Volume I [3]. For surface inspection, an eddy current pencil probe (NDT Product Engineering, MP-20 micro-probe) was used to inspect for early fatigue cracks in the reduced section of the specimen. Since scanning had to be performed manually instead of automatically, there was some loss of sensitivity. This monitoring was compared to crack detection as observed from the decrease in maximum tensile load with The decrease in the maximum tensile load, due to load shedding, was found to be more sensitive than eddy current techniques for determining macroscopic initiation. Therefore, the load shedding technique was used to determine the TTCI for Tests under Task 5 (Ref. Table 4) for both 7075-T7651 aluminum alloy and beta-annealed Ti-6Al-4V.

In the 7075-T7651 aluminum alloy material, after the first few cycles, the maximum tensile stress remained relatively constant until a fatigue crack was initiated. A calibration curve was established between the decrease in maximum tensile stress and crack depth. After tensile load decreases of different percentages were observed during fatigue testing, specimens were then overloaded in tension to failure. Fatigue crack sizes were then measured. The results are

presented in Appendices A and B. Cycles to crack initiation for test specimens in Task 5 were defined in terms of cycles completed before a 2% drop in maximum tensile stress occurred.

Cyclic softening occurred in the beta-annealed Ti-6Al-4V alloy at higher strain amplitudes. Both the maximum tensile stress and compressive stress decreased as a function of cycling. The percentage decrease in maximum compressive stress was used to measure cyclic softening occurring and thus allowing the effects of "load shedding" and cyclic softening to be separated in the measurements of maximum tensile stress. The onset of a 0.010 inch deep fatigue crack was defind as the number of cycles when the maximum tensile stress showed a 2% greater decrease than the maximum compressive stress.

4.5 DOG-BONE SPECIMEN TESTS

Dog-bone specimens with a center hole were tested in three basic configurations: (1) open hole, (2) bolt in hole but no bolt load transfer and (3) load transferred directly through the bolt to the specimen. All dog-bone specimens tested in Phase II had the same basic specimen design shown in Fig. 3. Details of the dog-bone fatigue tests performed, including test setup, experimental procedures, etc., are described below.

All spectrum fatique and constant amplitude

stress-controlled tests were performed on servo-controlled hydraulically-actuated load frames. The test setup used for the no bolt load transfer tests is shown in Fig. 12. This setup was used for both constant amplitude and spectrum fatigue tests. Details of the environmental chamber are described in Section 4.3.2.

Specimens for the spectrum fatigue tests were run continuously until failure or to a specified time.

Occasional stops were made for testing adjustments, measurements or equipment maintenance/repair.

The test setup for the bolt load transfer tests is shown in Fig. 13. A loading bar with an integral environmental chamber was used to transfer the ram load to the bolt in the center hole of the dog-bone test specimens. Two independent but synchronized rams were used to load the test specimen. One ram applied load directly through the lug and of the specimen while the other ram applied loads directly to the loading bar as shown in Fig. 13. The environmental chamber used is described in Section 4.3.3.

The percentage of load transfer (LT) through the bolt is defined as a percentage of the total applied ram load to the specimen lug end. We used two different percentages of LT for the load transfer tests, i.e., 20% LT and 40% LT.

Fig. 12 Test Setup for No-Bolt Load Transfer Dog-Bone Specimen Tests

Fig. 13 Test Setup for Bolt Load Transfer Dog-Bone Specimen Tests

A special hardware interface was used for all dog-bone tests to continuously monitor each load frame and to assure proper load control. This system provided a permanent record of test events.

Eddy current measurements were periodically made in the center hole of the test specimen for all constant amplitude Spot check measurements were also made during the spectrum fatigue tests to determine the time to initiate a crack size of 0.01" in the fastener hole. The eddy current probe was inserted directly into the fastener hole without disassemblying the environmental chamber. For the no-load transfer tests the cork in the hole at the side of the environmental chamber was removed to permit eddy current measurements to be made. In the case of the bolt load transfer tests, the bolt through loading bar the ennvironmental chamber removed to make eddy current was measurments.

The eddy current technique, described in Volume I [3] provided backup information on the TTCI for the spectrum fatigue tests. This technique was used to complement the fractography - particularly for those tests when the 3.5% NaCl environment might affect the fatigue markings on the fracture surface.

4.6 TEST SPECTRA

Three test spectra were considered in the Phase II testing of 7075-T7651 aluminum alloy dog-bone specimens: (1) F-16 400 hour (hi-lo block), (2) F-18 300 hour (random) and (3) F-18 300 hour (hi-lo block).

The F-16 400 hour (hi-lo block) spectrum used for the Phase II testing is a wing-root bending spectrum. This preliminary development spectrum has been used extensively at the General Dynamics, Fort Worth Division for F-16 development tests and other structural research programs [5-7]. We selected this spectrum for use in the Phase II effort because this spectrum marks well fractographically and we have considerable experience in reading the fractographic data. The F-16 400 hour (hi-lo block) spectrum is referred to herein as spectrum "A".

Samples of the load history for the F-16 400 hour spectrum are shown in Fig. 14. A breakdown of the load history by load points for the F-16 400 hour and F-18 300 hour test spectra are compared in Table 11.

The F-18 300 hour spectrum, supplied by the Naval Air

Development Center (Warminster, PA) for this program, is a

modified wing spectrum. This spectrum was modified for Phase II

testing purposes as follows. The maximum compressive load in

Samples of the Load History for the F-16 400 Hr. Spectrum

Table 10 Breakdown of Load Points by 5% Intervals for the F-16 400 Hr Block Spectrum

Range in Percent		Spectrum Johns II 400 Hr. F-16 765747 LP Total	
		(8000 Flt Hrs)	
Min	Max	Load Pts. in Range	
-30.1	-35.0	60	
-25.1	-30.0	0	
-20.1	-25.0	60	
-15.1	-20.0	80	
-10.1	-15.0	200	
-5.1	-10.0	440	
-0.1	-5.0	. 3684	
O at	rero o	10187	
0.1	5.0	2880	
5.1	10.0	59360	
10.1	15.0	312566	
15.1	20.0	920	
20.1	25.0	3780	
25.1°	30.0	81300	
30.1	35.0	100222	
35.1	40.0	39024	
40.1	45.0	66050	
45.1	50.0	16526	
50.1	55.0	35585	
55.1	60.0	18770	
60.1	65.0	1700	
65.1	70.0	8980	
70.1	75.0	1950	
75.1	80.0	551	
80.1	85.0	640	
85.1	90.0	· 0	
90.1	95.0	208	
95.1	100.0	24	

TABLE 11 COMPARISONS OF F-16 400 HOUR AND F-18 300 HOUR TEST SPECTRA

Spectrum	No. Flt.	Service	No. Load Points for		
I.D.	Hrs. Per	Life	Block	Flt Hrs	Service Life
	Block	(Flt Hrs)			·
F-16 400 Hr	400	8000	38287	95.718	765747
F-18 300 Hr	300	6000	3137	10.457	62740

Note: The maximum gross stress on test specimen cross section scaled to maximum load in each spectra.

the spectrum was limited to the same percentage of the maximum tension load as that for the F-16 400 hour spectrum (i.e., 35% of maximum tension load). This modification of the F-18 300 hour spectrum was made so that the dog-bone specimens could be fatigue tested in load frames without special lateral support required.

Two variations of the F-18 300 hour spectrum were considered: (1) loads randomized for each 300 hour block and (2) loads ordered in the same sequence for each 300 hour block (hi-lo). The first spectrum variation is referred to herein as the "F-18 300 hour (randomized)" spectrum or spectrum "B" and the second variation is referred to as the "F-18 300 hour (Hi-lo block)" spectrum or spectrum "C". The hi-lo block version of the F-18 300 hour spectrum was formatted the same way as the F-16 400 hour (hi-lo block) spectrum.

Strip chart printouts of the load history for spectrum B and C are shown in Fig. 15 and 16, respectively.

4.7 FRACTOGRAPHIC ANALYSIS

4.7.1 General Procedure

Dog-bone fatigue specimens were prepared for fractographic evaluation as follows. Unbroken specimens were first broken open to display the fracture surface. All

Fig. 15 Strip Chart Trace of Load History for F-18 300 Hour (Random) Spectrum ("B")

Fig. 16 Strip Chart Trace of Load History for F-18 300 Hour (Block) Spectrum ("C")

fracture surfaces were then cleaned to prepare the specimens for fractographic analysis. All shear lips were ground off without damaging the fracture surface. Specimens were then cleaned ultrasonically in acetone. A cellulose-acetate tape was softened using acetone and then pressed firmly against the fracture surface to remove surface dirt or residue. This cleaning process was repeated several times for best results.

After thoroughly cleaning the fracture surface, the fracture specimen was then mounted onto the microscope stage using a piece of clay to hold it in place. A fractographic evaluation was performed then for the largest fatigue crack in each fastener hole. The final size of the fatigue crack on each size of the fastener hole was measured and results were recorded on the fratographic data sheets (e.g., ref. Appendices D-F).

Fractographic evaluation were made using an Χ, Y micrometer stage bench with а stereo microscope magnifications of 15X to 120X. The number of load points at specimen failure were translated into the bench marks at failure using the applicable load spectra. Fractographic measurements were then taken at the end of each block back to a minimum crack size of 0.010", where possible. cases, fractographic measurements could not be traced to the desired minimum crack size due to poor surface markings for

the smaller crack sizes. The fractography provided the means for defining the time-to-crack-initiation (TTCF) for $a_0 = 0.01$ " in the fastener holes.

Crack size versus time measurements and other pertinent details were recorded on the fractographic data sheets. This includes, in most cases, a photograph of the fracture surface, specimen dimensions, crack origins, peculiarities, number of load points at failure, etc.

Sample fractographic surfaces are shown in Fig. 17 with crack growth markers corresponding to loads ≥ 80% of the maximum load in the F-16 400 hour spectrum ("A"). Similarly, sample fractographic surfaces with crack growth markers corresponding to loads ≥90% of the maximum spectrum load are shown in Figs. 18(a) and 18(b) for the F-18 300 hour (random) spectrum ("B") and the F-18 300 hour (block) spectrum ("C"), respectively.

4.7.2 Crack Initiation Origins

Following fatigue testing, each failed specimen was carefully examined to determine, if possible, the primary origin of failure. Many specimens had multiple crack origins making failure analysis difficult.

Fig. 17 Sample Crack Growth Markers Corresponding to 80% + Loads for F-16 400 Hours Spectrum ("A")

Fig. 18 Sample Crack Growth Markers Corresponding to 90% + Loads for F-18 300 Hour Spectrum:

(a) Random Spectrum ("B"); (b) Block Spectrum ("C")

Fatigue crack origins were cataloged as follows: B = bore of hole, C = corner of hole, S = surface away from hole and I = internal flaw. Results are presented in Appendices D-F.

4.8 EXTRAPOLATION OF FRACTOGRAPHIC RESULTS

In some cases, the fractography could not be reliably read down to the selected reference crack size for time-to-crack-initiation (i.e, $a_0 = 0.010$ ") for the dog-bone specimens. In such cases, the fractographic results were extrapolated to estimate the time-to-crack initiation (TTCI).

Three different extrapolation methods were considered to estimate the TTCI for $a_0 = 0.01$ ": (1) linear extrapolation, (2) least squares fit of power law and (3) least squares fit of exponential function. Extrapolations were estimated for each of the three methods and the results were compared for consistency.

Linear extrapolations were based on the two smallest consecutive crack sizes that could be fractographically read. Extrapolations based on the assumed power law and exponential functions were determined using a least squares fit form of

Eqs. 1 and 2 to the three smallest consecutive crack sizes shown on the fractographic data sheet, respectively.

$$a(t) = At^{B} \tag{1}$$

$$a(t) = \hat{a}(0) \exp(Qt) \tag{2}$$

In Eqs. 1 and 2, a(t) is the crack size at any time t; A, B, a(0) and Q are empirical constants. The applicable constants were determined using the least square fit form of Eqs. 1 and 2 given by Eqs. 3 and 4, respectively.

$$\underbrace{\ln a(t)}_{Y} = \underbrace{\ln a}_{b} + \underbrace{B}_{m} \underbrace{\ln t}_{X}$$
(3)

$$\underbrace{\ln a(t)}_{Y} = \underbrace{\ln \hat{a}(0)}_{b'} + \underbrace{Qt}_{mX} \tag{4}$$

A P P E N D I X A STRAIN-CONTROLLED TEST RESULTS FOR 7075-T7651 ALUMINUM ALLOY

A.1 INTRODUCTION

Raw test results for Tasks 4 and 5 are presented in this Appendix. These results are evaluated and discussed in Volume III [1].

A.2 TASK 4 TEST RESULTS

Task 4 was concerned with the development of experimental methodology for requiring strain-controlled data for dry air and 3.5% Nacl environments. The strain-controlled data is needed to implement the strain life approach for making time-to-crack-initiation (TTCI) predictions for mechanically-fastened joints. Details of the strain life approach are discussed in Volumes I [3] and III [1]. Results from the Task 4 effort are presented herein.

A.2.1 Stress Strain Hysteresis

Typical behavior of the stress-stain hysteresis plots are shown in Fig. Al. A slight drop in the maximum tensile and compressive stresses occurred during the first few cycles followed by stable behavior after approximately 25 cycles.

Cycling Fatigue Stress-Strain Hysteresis Loops During Fig. Al

A.2.2 Strain Survey

Strain surveys were performed to experimentally quantify the relationship between ram load, axial strain and axial deformation (over 2.00" gage length). Four axial strain gages and an extensometer were mounted on the calibration specimen as shown in Figs. 9 and 10.

Strain survey results are presented in Table Al. Axial load versus axial strain results are plotted in Fig. A2. In Fig. A3 the axial load versus axial deformation is plotted. The relationship between strain at the neck-down area and the constant diameter area is shown in Fig. A4. The axial load versus axial strain relationship obtained is plotted in Fig. A5.

A.2.3 Specimen Calibration and Load Shedding Results

Plots for the maximum tensile load versus number of cycles and the maximum tensile stress versus number of cycles are shown in Figs. A6 and A7, respectively. Results are shown in Fig. A6 for three specimens immersed in 3.5% NaCl solution. In Fig. A7, results are plotted for specimens have total strain amplitudes ranging from $\Delta\epsilon_{\rm T/2} = 0.65\%$ to $\Delta\epsilon_{\rm T/2} = 1.70\%$. In general, very little change in compressive or tensile loads was observed until a

Table Al Strain Survey Results for Strain-Controlled Specimen

	P/A1	Extenso					Ave.	S,	Ave.
Load	A1	Volts**	In	ε1	<u>ε2</u>	ε3	ε ₁₋₃	€4	$\varepsilon_{1-3}/\varepsilon_{4}$
					-10^{3}	in/in -			
0	0		on on	0	0	0	0	0	0
80	1567	-	-	.147	.154	.146	.149	044	3.386
120	2351	.06	.0003	.218	.228	.215	,220	.065	3.385
200	3918	.10	.0005	.369	.389	370	.376	.110	3.418
300	5877	.15	.00075	.551	.582	.555	.563	.164	3.433
500	9795	.23	.00115	.920	.966	.920	.935	.273	3.425
700	13713	. 32	.0016	1.294	1.364	1.302	1.320	.388	3.402
1000	19591	.45	.00225	1.845	1.942	1.854	1.880	.552	3.406
1200	23509	.54	.0027	2.221	2.338	2.230	2.263	.663	3,413
1400	27427	.63	.00315	2.594	2.726	2.599	2.639	.773	3.414
1600	31345	.72	.0036	2.977	3.129	2.987	3.031	.885	3.425
1800	35263	. 82	.0041	3.360	3.527	3.370	3.415	.996	3.429
2000	39181	.91	.00455	3.746	3.931	3.756	3.811		-
0	0	_	•	_	GID	_			
1000	19591	.46	.0023	1.900	1.995	1.897	1.931	.574	3.364
2000	39181	.92	.0046	3.803	3.987	3.821	3.870	1.131	3.422
2200	43099	1.02	.0051	4.190	4.386	4.200	4.259	1.236	3.446
2400	47018	1.11	.00555	4.582	4.791	4.598	4_657	1.348	3.455
2600	50936	1.21	.00605	5.016	5.234	5.056	5.102	7.466	3.480
2800	54854	1.30	.0065	5.513	5.684	5.608	5.602	1.572	3.564
3000	58772	1.40	.0070	6.115	6.194	6.330*	6.213	1.694	3.668
3100	60731	1.46	.0073	6:560	6.514	6.909	6.661	1.745	3.817
3200	62690	1.80	.0090	12.089	11.532	12.205	11.942	1.819	6.565
	0	. 28	.0014	5.633	4.752	5.719	5.368	.042	i27.80

Notes: * Creep Observed

Extensometer Readings: 20 Volts = 0.10"

** ± 0.02 Volts

 $A_1 = 0.785(0.255)^2 = 0.05104 \text{ in.}^2$

Fig. A2 Axial Strain Versus Axial Load For Strain-Controlled Specimen (7075-T7651)

Fig. A3 Axial Deformation Versus Axial Load For Strain-Controlled Specimen (7075-T7651)

Fig. A4 Axial Strain Relationships For Strain-Controlled Specimen (7075-T7651)

Fig. A5 Axial Deformation Versus Axial/Strain for Strain-Controlled Specimens (7075-T7651 Aluminum)

Maximum Tensile Load as a Function of Fatigue Cycling (Specimens 47CS, 42CS, and 48CS; 7075-T7651 Aluminum) Fig. A6

76

fatigue crack had initiated. Compressive and tensile loads were relatively stable for both low and high strain amplitude specimens until crack initiation occurred (Fig. A7). Once a fatigue crack had formed, the tensile load dropped rapidly while the compressive load stayed relatively constant. The fatigue crack allows a crack opening displacement to meet the required strain limit with a smaller tensile load. In compression, larger loads were required to strain the material to the required value. Little difference was observed in the behavior of specimens tested at different total strain levels.

A calibration curve was established between the decrease in maximum tensile stress and crack depth. After tensile stress decreases of different percentages were observed, specimens were loaded to failure. Fatigue crack sizes were then measured. The results of these tests are shown in Fig. A8. Cycles to crack initiation for test coupons in Task 5 were defined in terms of cycles completed before a 2% drop in maximum tensile stress occurred. From Fig. A8, a 2% decrease corresponds to a 0.010 inch fatigue crack. This is the same crack size used to define the number of cycles to initiate a crack depth of 0.010", Ni, for the stress-controlled tests of Phase I [3].

A.3 TASK 5 TEST RESULTS

Using the experimental procedures developed and evaluated under Task 4, the required strain-controlled data for Task 5 was

Fig. A8 Decrease in Maximum Tensile Stress as a Function of Crack Size in Strain-Controlled Specimens (7075-T7651 Aluminum)

obtained. The experimental data acquired under Task 5 provided the information needed to make time-to-crack-initiation predictions for mechanically-fastened joints under Task 6. Results presented herein are evaluated in Volume III [1].

Strain-controlled results for Task 5 are shown in Tables A2 and A3 for dry air/lab air and for 3.5% NaCl environments, respectively. Results are presented for: strain amplitude (total, elastic and plastic), area under the hysteresis loop, load frequency, and 2Ni cycles to initiate a crack depth of 0.010 inch.

A plot of cyclic strain versus initiation life in 7075-T7651 aluminum is shown in Fig. A9 for dry air and a 3.5% NaCl environment.

The possible effect of test frequency on crack initation in a 3.5% NaCl environment was examined. Most of these studies were conducted at lower strain amplitudes where the test coupons were exposed to a salt water environment longer. Four frequencies were used: .1 Hz, .5 Hz, 2.0 Hz, and 5.0 Hz. Test results are shown in Fig. AlO and results are evaluated in Volume III [1].

Table A2 Strain-Controlled Test Results for 7075-T7651 Aluminum in Dry Air and Lab Air Environments

	Environment al	Cond Lion	Air	VAIR	Atr								-	-				, ,	•		-	b Air			VAIr	. L
	Enviro	Suon	Dry	Dry																		Lab				
	ZN1	1575168	183,200	57,660	55,400	23,600	18.800	14.000	13,600	280	2 620	1 760	1 800		076	890	860	700	680	420	420	300	200	220	110	
	Freq.	7	2	2	2	8	5.	2	2	6						?	Ţ	5	.5	, 5	.5	٠.	٠.	٠,	5.	
Area under Hysteresis Loop																										
Area u Hystere	(In ²)		8	8		•		1	-	.25	57	1.45	2.30	79 8	200	7.24	4.04	6.69	5.20	9.80	8.82	10.90	16.88	18.78	24.63	
	Total Plastic																									
:	Total			9		1	,	-	1	900	010	030	.050	10%	600		711	178	180	227	. 233	395	513	596	810	
,	Elastic Amp(2)																									
•	Total Strain		7/2	.420	.420	965	.510	.530	.520	.594	.658	680	069.	786	608	700	000	807	.860	1.003	-907	955	1.117	1.164	1.210	
	rain																									
70401	Amp (2)	37	,	75	75	50	3	.53	. 52	09	79.	.71	.74	. 89	06.	06	00	120	1.04	1.28	1.14	1,35	1.63	1.70	2.02	
	Specimen No.	40CS	1206	203	2002	39CS	29CS	3108	20CS	705	37cs	4308	17CS	2105	46CS	5105	2800	2001	1303	IBCS	BCS	825	24CS	1908	52CS	

Table A3 Strain-Controlled Test Results for 7075-T7651 Aluminum in 3.5% NaCl Solution

	ental	5																							
	Environmental Condition		-		-	•	•	•	•	•	-	-	•	•	• .	•	•	•	•	•	•	•	•		
	2N _(cycles)	213,000	109.060	81,120	66.700	49.260	43,680	33,660	38.100	22,080	16.740	9.740	9.160	7.020	3.820	2,280	1,380	850	079	580	480	300	140	88	
	Freq. (Hz)	5	5	5	2	2	2	2	2	3,	2	2	5.	5	5,	2	5,	۲,	, 1	٤٠	3,	3	3	3	
under	Plastic Hysteregis Loop																				-		~	~	
Area under	Hystere (Ir		•	1	•		1	1	Î	1	1	'	. 05	. 12	. 22	. 52	1.15	2.72	4.12	3,61	5.93	9.82	16.98	24.58	
																			•		-				
	Total	-	-	8	-	-	_	_	1	3	1	ı	.001	.003	.007	.015	.029	068	105	104	162	300	490	800	
	Elastic Amp (%)																								
	Total Strain	,270	. 290	310	330	,370	380	370	430	.430	.450	.520	.519	,527	. 583	.635	.631	797	. 795	786	818	950	1.136	1,220	
	Strain (2)																								
	Total Strain	.27	, 29	.31	.33	.37	. 38	.37	.43	.43	. 45	, 52	, 52	.53	. 59	.65	99.	98	.90	. 89	98	1.25	1.63	2.02	
	Specimen No.	4908	48CS	42CS	38CS	4705	34CS	30CS	1105	1505	35cs	22CS	32CS	33CS	9CS	16CS	44CS	36CS	45CS	23CS	14CS	1008	26CS	4105	

82

(THIS PAGE INTENTIONALLY LEFT BLANK)

APPENDIX B

STRAIN-CONTROLLED TEST RESULTS FOR BETA-ANNEALED TI-6AL-4V ALLOY

B.1 INTRODUCTION

Raw test results for Tasks 4 and 5 are presented in this Appendix. These results are evaluated and discussed in Volume III [1].

B.2 TASK 4 TEST RESULTS

Typical stress-strain hysteresis plots are shown in Figure Bl. Monotonic and cyclic stress-strain properties for this material and basic material properties are given in Volume I [3].

Both the maximum tensile and compressive stresses decreased with cycling with the largest decrease during the first few cycles (Fig. Bl). The decrease in the maximum tensile and compressive stresses with cycling was accompanied by an increase in the width of the hysteresis stress-strain plots (increase in plastic strain increment) and also the area enclosed by the hystersis loop (increase in plastic work).

The strain-controlled specimens (Fig. 1) for this material were calibrated using the same procedure developed for the 7075-T7651 aluminum alloy. Extensometer voltage output (axial

Fig. Bl Stress-Strain Hysteresis Loops During Fatigue Cycling for Beta-Annealed $Ti-6Al-4V~(\Delta\epsilon/2~=~1.06\$)$

deformation) was measured as a function of axial strain in the reduced section of the specimen. These measurements were made by correlating extensometer voltage readings to strain gage readings for strain gages mounted axially in the minimum area sectin of the test specimen. A calibration curve based on these measurements is shown in Figure B2. This calibration curve was used to select extensometer voltages to obtain a specified strain value for the Task 5 experiments.

B.3 TASK 5 TEST RESULTS

Strain-controlled results for Task 5 are presented in Table Bl for lab air, dry air and 3.5% NaCl solution environments. The $2N_{\hat{1}}$ reversals are for a crack depth of 0.010 inch. $N_{\hat{1}}$ was defined as the number of cycles in which a 2% decrease was observed in the maximum tensile stress compared to the maximum compressive stress.

The total strain amplitude versus $2N_i$ reversals to crack initiation ($a_0 = 0.010$ inch) is plotted in Figure B3 for lab air, dry air and 3.5% NaCl environments.

The effect of test frequency on crack initiation in both dry air and 3.5% NaCl environment were examined. Results are plotted in Fig. B4.

The change in the plastic strain amplitude versus $2N_{\dot{1}}$ reversals to initiate a crack depth of 0.010 inch was

Table B1 Strain-Controlled Test Results for

Beta-Annealed Ti-6A1-4V Alloy in Both

Dry Air and in 3.5% NaCl Solution Environments

Specimen No.	Total Strain Amp. (%)	Freq.	2N; * (Reversals)	Environmental Condition
		(Hz) 5 5 5 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	(Reversals) 197,400 >500,000 31,840 >200,000 58,000 32,440 14,000 16,320 11,530 13,460 3,800 5,520 2,500 4,040 1,100 800 340 460	Condition Dry Air 3.5% NaCl 3.5% NaCl Dry Air Dry Air Dry Air Dry Air 3.5% NaCl 3.5% NaCl Dry Air 3.5% NaCl Dry Air Dry Air Dry Air 3.5% NaCl Dry Air 3.5% NaCl Lab Air Dry Air
63CS 81CS 64CS 80CS 65CS 89CS 86CS 87CS 88CS 90CS	1.36 1.36 1.50 1.50 1.74 .62 .62 .62	.5 .1 .05 .05 .1 .3 .5 .5 2.0	430 210 210 140 110 96 13,140 10,840 7,800 13,000 19,480	3.5% NaCl Lab Air 3.5% NaCl Dry Air 3.5% NaCl Dry Air Dry Air Dry Air Dry Air Dry Air

^{*} For crack depth = 0.010"

Dry Air and 3.5% NaCl Environments

90

Fig. B4 Total Strain Amplitude Versus $2N_1$ Reversals to Crack Initiation for Different Loading Frequencies for Beta-Annealed Ti-6Al-4V in Both Dry Air and 3.5% NaCl Environments

investigated. Results are plotted in Figs. B5 and B6.

A plot of the plastic work per unit cycle versus $2N_{\dot{1}}$ reversals to initiation (a $_{0}$ = 0.010 inch) for this alloy is shown in Figure B7. The area of the hysteresis stress-strain curve was measured from the loop in which the plastic strain amplitude was maximum.

Fig. B5 Change in Plastic Strain Amplitude with Cycling for Beta-Annealed Ti-6Al-4V

Fig. B6 Plastic Strain Amplitude Versus 2Ni Reversals to Crack Initiation for Beta-Annealed Ti-6Al-4V in Both Dry Air and 3.5% NaCl Environment

Fig. B7 Plastic Work Per Unit Cycle Versus

2Ni Reversals to Crack Initiation for

Beta-Annealed Ti-6Al-4V in Both Dry Air
and 3.5% NaCl Environments

r

(THIS PAGE INTENTIONALLY LEFT BLANK)

APPENDIX C

CONSTANT AMPLITUDE TEST RESULTS FOR DOG-BONE SPECIMENS (7075-T7651 ALUMINUM ALLOY

C.1 TASK 5 TEST RESULTS

Constant amplitude test results for preconditioned dog-bone specimens (open hole; Fig. 3) are presented in Table Cl for both dry air and 3.5% NaCl environments. These stress-controlled tests were conducted under Task 5 (Ref. Table 6) for selected stress ranges ($\Delta\sigma$). The number of cycles to initiate a crack size of 0.010 inch , N, and the number of cycles to failure, N_f, are shown in Table Cl.

C.2 TASK 6 TEST RESULTS

Twelve stress - controlled tests were performed under Task 6 (Ref. Table 6) for two different percentages of bolt load transfer (i.e., 20% and 40%). Tests were performed in dry air and in a 3.5% NaCl solution environment. Results are presented in Table C2.

Table Cl Constant Amplitude Stress-Controlled Test Results for Preconditioned Dog-Bone Specimens in Both Dry Air and 3.5% NaCl Environments (7075-T7651 Aluminum; R=0.05; Freq. - 6HZ; Open Hole)

SPECIMEN NO.	∆o (ksi)	N _e (cycles)	N (cycles)	ENVIRONMENT
200	16.5	92,827	70,000	Dry Air .
204	15.0	85,720	52,000	Dry Air
202	14.0	99,389	70,000	Dry Air
199	14.0	38,202	25,000	3.5% NaCl
203	13.0	44,409	26,000	3.5% NaCl
205	12.0	167,539	95,000	3.5% NaCl
206	12.0	80,887	40,000	3.5% NaCl

Specimens Tested for 20% LT and 40% LT in Both Dry Air and 3.5% Constant Amplitude Stress-Controlled Test Results for Dog-Bone NaCl Environments (7075-T7651 Aluminum) Table C2

ENVIRONMENT	SPECIMEN	DATA SET NO.	۵۵- ۱-(KSI)	PERCENT LOAD TRANSFER	NUMBER OF CYCLES TO INITIATION (a _O =0.010") N _i	NUMBER OF CYCLES TO FAILURE Nf
Dry Air	401	63	23	20	17,000	22,623
	400 402 403	64	11		49,000 48,000 35,000	61,958 · 58,715 40,000
	407	99		40	41,000 25,000	53,059 32,881
3.5% NaC1	404 405 406	65	17	20 "	41,000 41,000 20,000	44,766 44,951 22,000
	410 412 413	67		40 = =	12,000 18,000 13,000	14,515 21,888 15,100

(THIS PAGE INTENTIONALLY LEFT BLANK)

APPENDIX D

SPECTRUM FATIGUE TEST RESULTS AND FRACTOGRAPHIC DATA FOR TASK 4 (7075-T7651 ALUMINUM ALLOY)

Spectrum fatigue test results for the dog-bone specimens (Fig. 3) tested under Task 4 are summarized in Table D1. Fractographic data sheets are also presented in this appendix.

The maximum positve load in spectrum "A" (F-16 400 hour block spectrum), 100% load level, was scaled to a test load that would produce the desired gross stress on the specimen cross section. All other loads, positive and negative, were "scaled" to the 100% load level.

Fatigue loading frequencies for spectrum "A" were selected such that the spectrum loads corresponding to 8000 equivalent flight hours could be applied to the respective test specimen in a selected number of days (24 hours a day continuous testing). Three loading frequencies were considered in task 4: (1) F = fast (8000 flight hours/2 days), (2) S = slow (8000 flight hours/16 days) and (3) M = medium (8000 flight hours/8 days).

Table Dl Summary of Dog-Bone Specimen Spectrum Fatigue Test Results for Task 4 (7075-T7651 Aluminum; F-16 400 Hour Spectrum)

		TOWL	TIF		.70	Š	9	8	38	,	. 57	.23	.11	5	1 .	.13	ı	94.	1	90.	.37	£	3 3	5 :	10.	,	1	ı	ı	o's	0, 05	.62
	The Property	_			1983	7007	1016	60.67	(69/	ı	4165	7435	7835	5892		7097	1	3611	,	2215	2006	1946	2311	7000	+9C7	ı	1	1	1	8707	0587	6300
	ብብተ	Ē	(r)		0,999	8408	7606	000/	12432	13680	9096	9635	8835	12035	3736	3635	000/	8/99	6407	2348	3206	5235	6348	7.835	0267	6670	2946	(a)	39120	11864	11600	16800
	TTCI	(FLT. HRS.)	(g)		4657	4207	\$147(a)	(8) / 177		(e)	7447	2200	1000(c)	6143	£ £ 7	(6)	2000	7000	(e)	133(d)	1200	3289	4037	1576	(3)	9 ((e)	(e)	(e)	6916	6750(d)	10500
שויט דידיס	CRACK	ORIGIN	(£)		χ.												-	-	ပ	æ,						-		ν	S	pc	, pc	: #A
	GROSS	AREA	(IN ²)	, 602	, 2444	. 5976	,6120	6050	0509	0000		.6047	. 6050	.6075	,6042	1,09	7809		0043	. 6036	, 6055	.6053	9909.	.6056	.6114	7019	.0.00	0700	9909.	6909°	. 6067	.6088
SPECIMEN DETAILS	HOLE	DIA	(IN.)	250	2062.	7077	.4415	.4452	6699	7777	7000	9784	,4426	.4452	.4450	.4455	7027	707	0004	.4460	.4457	.4475	.4465	.4470	4392	8077	2000	.4340	.4415	.4415	,4420	.4440
SPECIME		THICK	(IN.)	3000	00000	.2990	3060	.3010	3010	3010	0106	0.000	0105	.3020	.3000	.3015	3020	3005	5005	.3000	0706.	.3010	.3015	.3010	,3045	3040	301	.301	505.	.3025	.3030	.3030
		WIDTH	(IN.)	1 9980	2000	1.9985	2.00	2.0100	2.0100	2.0115	20000	0.000	7.0T00	2.0115	2.0140	2,0135	2,0145	2 0110	2 0110	0210.2	CTT0.7	2.0110	2.0120	2.0120	2.0080	2,0090	2 000	2002		2.0065	2.0090	2.0095
		TEST	DATE	3-3-83		2-77-63	3-24-83	6-6-83	6-10-83	5-12-83	5-16-83	5 10 03	7-13-03	5-31-83	5-6-83	6-7-83	6-8-83	6-6-83	5-6-83	2-0-0	מיים בי	2-10-83	5-11-83	5-11-83	6-21-83	6-29-83	10-14-83	10-6 92	10 10 00	12-13-83	12-14-83	1-9-84
	DATA.	SET	NO.	67	7	7	45	47	47	77	77	77	f o	9 :	45	67	64	67	٤7	? ~	? `	5 ,	9 :	9,	25	20	25		; :	2	25	53
		TEST I.D.	(9)	A-34/S/W	4-34/8/n	4/6/46-w	A-32/F/W	A-30/F/D	A-30/F/D	A-32/S/D	A-32/S/D	A-32/S/D	A-30/6/D	2/2/2/4	A-34/F/W	A-30/F/W	A-30/F/W	A-30/F/W	A-34/S/W	A-34/S/W	A_37/6/11	M/C/76-W	M-32/3/W	A-32/M/W	A-30/20/F/W	A-30/20/S/W	A-28/F/W/B/PC	A-28/F/W/R	04/4/11/3/66 8	DA/Q/M/C/07-W	A-28/F/W/B/PC	A-28/S/W/B/PC
	, de la constant de l	SPECIMEN	NO.	41	7		ĵ :	47	48(a)	64	20	51	52(a)	25.5	۲ :	54	55	26	57	28	20	\$ 6	3 5	70 ;	3 5	65	111(a)	121(a)	130	7575	143(a)	144

NADC-83126-60-VOL. IV

Notes for Table D1

- (a) Testing anomaly
- (b) Ref. Table 8 for description code
- (c) Linear extrapolation from two smallest consecutive crack sizes from fractographic data sheet
- (d) Extrapolation based on power law (Eqs. 1 and 3)
- (e) Fractography not read for this specimen for various reasons (e.g., testing anomaly, not 28 ksi baseline stress surface crack away from hole).
- (f) Fatigue crack origins: B = bore of hole, C = corner of hole and S = surface crack away from hole.
- (g) Time to initiate crack depth of 0.010" in fastener hole (determined from fractographic results).
- (h) Time-to-failure
- (i) Time spent in crack growth

											• •																												
FRACTOGRAPHIC DATA	CRACK LENGTH IN.									-											l	. 5245 *	5112	. 0735	. 0305	. 0205	.0125	.0055											smaller flaw
FRAC	FLIGHT H	15600	15200	14800	14400	1 3600	1,5200	12800	12000	11600	11200	10800	10400	10000	0096	9200	8800	8400	8000	000	007).	20.20	0049	0009	5600	5200	4800	0044	0004	3600	5200	2800	2400	2000	1600	1200	800	1 [†] 00	15 for
	BLK #	36	200	25	25	W.	22	77.	i k	29	28	- 27	97	Cy	77	57	77	7	22	18.		3	او	2	±	2	2		2	7	Ω		اء	7	7		2		* data
PEST DATA	41 (Open)	Lter (71,5717	Code (t) call said			E DIAM . 2502 A . 5994 in 2	j	LLIFE = 16 days (> 10w)	Squad		Sold of the same o		RS LORGER Flame 550"	2		Mary Control of the C						これがようながらなった。												の場合は、「ころう」という。		SX SAMEN SX	~		
FATIGUE TES	SPECIMEN NUMBER:	SPECTRIM: 400h FILE	, A	TEST DATE: 5-3-83		W .9980" TH . 5000 HOLE	MAX STRESS 34 V. EDEO	TO COMPANY	ENVIR. CONDS. 3.5% Nac		CYCLES TO FAILURE 639230		TTCI 4657 FLIGHT HOURS																										

FRACTOGRAPHIC DATA	CRACK LENGTH IN.						3					.268	. 195	.139	. 102	<i>a)</i> o .	.0625	020	022	610	910.	210.	800,	.0045	.0025	3100.					
FRAC	FLIGHT HRS.	15600	14800	1,4000	13200	12400	12000	11200	10800	10000	0096	8408	8400	8000	7600	(200	0009	0009	2600	5200	4800	0044	0004	3600	2400	2800	2400	2000	0001	1200	000
	BLK #	33	37	35	23	31	05 05 05	28	27	25	72,	20.12	21	50	6-1-		-	15	1.E	13	12	= (2	6		1	مام	1	+	4	y-
FATIGUE TEST DATA	(Open)	•	//	IAM . 4404"A . 5976 IN	11 - 3211	- 1	PREPS.		e la pes											1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の											
7	42	ব		4 1.9985* TH.2990" HOLE D	÷		Dry Air	CHINE OF STINE	7	rtci 4207. Flight hours	i																				

~	ľ
_	
-	ľ
-	
AT	
	i
\Box	ı
	ļ
	į
	ł
₽	
TEST	
~4	
œ	
_	
=	
•	
F-3	
দ্র	
5	
_	
5	
9	
_	
- 1	
-	
FATI	
-	
۲÷.	
1	į

FRACTOGRAPHIC DAMA	CRACK LENGTH IN.													.4010	1695	.1270	0620'	0470	1.0110									
FRAC	# FLIGHT HRS.	1 5600	14800	14400	1,3600	12800	12000	11500	10800	10000	0096	9200		6 7606.4	7200	6800	0079	2600	5200	4800	0007	3600	5200	27,00	2000	1600	1200	- CCX
	BLK 40	2,7	村		1112 TH		\perp	282		25	77	22	ارا الم	19016	18	2	و لا	上》	计个	7-	2		o v			7	7	\ _
FATIGUE TEST DATA	SPECIMEN NUMBER: 45 (Open)	SPECTRUM: 400 hr (A)	TEST DATE: 3-24-83 //	"" " " " " " " " " " " " " " " " " " "	LAR A	MAX STRESS 32 KS, FREG. 1 LIFE = (Fast) 2days	ENVIR. CONDS. 3.5% Nacl PREPS. (16h	7	7 ICI CCO N TILE	11C1 3/47 FLIGHT HOURS	Smaller Flam: 30."		Larger Flow . 401"															では、100mmので

FATIGUE TEST DATA		FRAC	FRACTOGRAPHIC DATA
SPECIMEN NUMBER: 47 (Open Hole)	BLK # F	LIGHT HRS.	BLK # FLIGHT HRS. CRACK LENGTH IN
SPECTRIM: ACCL. (A)	3,00	15600	
		15200	
TEST DATE: 6-06-83 //	37	14800	
	36	14400	
W C C THE COLOR DIAM AND COLOR DIAM	35	14000	
" 41500 " 1 15010 " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34	13600	
	33	1,5200	
MAY SIKESS JO FREQ. 1 LIFE = L days (Fast) A	31.08	12432	.350
	51	12400	,3368
ENVIR. CONDS. DEV	ς, 2	12000	. 2357
	29	11600	, 1778
CYCLES TO FAILURE 119ヘファロ % 11FF ± 1だベ	78 82	11200	. 1367
	72	10800	.1065
TTCI 4777 FLIGHT HOIDS	97	10400	9180
CYOON THOUSAND	Ω	10000	6790.
Sexion Plans 1000	477	0096	.0556
		9200	.0463
/ arast F/2 - 44. / "	77	8800	.0387
	7	8400	.0332
	2	CCCX	7000

DATA
TEST
TGUE
FAT

FRACTOGRAPHIC DATA	BLK # FLIGHT HRS. CRACK LENGTH IN.					31 12400 30 12000 29 11600	28 11200 27 10800	H		22 9200 22 8800	21 8400 20 8000	18 7200 1	17 6800	-	1 5000	12 4800	10 4000		9 5400	5 2000	4 1600	3 1200 2 800	100
FATIGUE TEST DATA	SPECIMEN NUMBER: 48 (Open Hole)	SPECTRUM: 400 br (A)	TEST DATE: 6-10-83 //	W 2.010" TH .3010"HOLE DIAM .4422"A ,6050,5	LIFE = 2 day	PREPS. DODE	CYCLES TO FAILURE 1309458.1d pts % LIFE = 171	TTCI FLIGHT HOURS	Small Flan		Larger Flow =										the still that the still t		

FRACTOGRAPHIC DATA	CRACK LENGTH IN.									. 3240	. 2305	.1520	.1095	.0775	.0550	.0460	.0350	.0275	.0220	.0165	.0115	0800	.0040										1
LOIGEN Flow FRAC	FLIGHT H	15600	14800	14400	13600	12800	12000	11200	10400	9606.4		9200	8800	8400	2000	0097	002)	9890	00/19	0009	2600	2500	4800	4400	2007	\$200	2800	2400	2000	1600	1200	800	1
Ser)	BLK #	200	257	35	1/2	32;		286	92	910.62	77	53	77	77	3	2 6	0		0	7	1 1 1 1	2	7	- -	c	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	L	9	2	4		2	
FATIGUE TEST DATA	SPECIMEN NUMBER: 49 (Open Hole)	SPECTRUM: 400 hr. (A)	TEST DATE: 5/12/83 //	TH ZOLO "DOIE DIAM AAOC".	" 4730 A . 6055m"	MAX STRESS 32 KSL FREQ. 1 LIFE = 16 days (Slow)	ENVIR. CONDS. Dry Air PREPS. none	7 1d p	THE THE BITCHE IN THE		Larger Flaw																		Smiller Flance 20.	007	1 2 2 2 1	100 - 100 -	

FRACTOGRAPHIC DATA	CRACK LENGTH IN.										.348	.223		. 137	601:	,087	,073	,060	,045	1,007	,034	1020	,024	610.	810'	9/0'	JI.	000	7,7,7,7			
FRAC	BLK # FLIGHT HRS.	39 15600 38 15200		35 14000		31 12400		28 11200	<u> </u>	25 10000		25 9200	22 8800 3.	1			18 7200	17 6800	16 6400	-	7600	1, ROO				9 5200 9 2800	1	5 2000	1600	3 1200	2 .800	1 1 400
FATIGUE TEST DATA	SPECIMEN NUMBER: 50 (Open hole)	SPECTRUM: 400 hr (A)	TEST DATE: 5-16-83 //	W 2,009" TH ,3010" HOLE DIAM ,4426" A .6047"	/[MAY SIKESS 22 KSI FKEU. I LIFE = 16 days (Slow)	ENVIR. CONDS. Dry PREPS. none.	CYCLES TO FAILURE 9222.57 1d pts % LIFE = 120		TICI ALOO FLIGHT HOURS		Sm2/L. 1/2331	3		Karger Flaw = ,348'																	

								<u> </u>				L					_		+					,	7				• •	_	- -t	_	-1
FRACTOGRAPHIC DATA	CRACK LENGTH IN.											1	,3520	0961	. 1515	.1215	00000	.0795	0650	.0565	04.00	0250	0450	0870	6	0220	0185	0210	10150	-		1	
FRAC	FLIGHT HRS.	15600	14800	14000	1,3600	1,5200		12000					8800			7600	7200	6800	9400	0009	2600	2200	0001	0007	3,600	3200	2800	2400	2000	1600	1200	800	400
	BLK #	6.7 82.0	27	325	77	3	315	2000	288	31,	25	24	22.022	12	50	61	-18	17	16	15	=	7	7	-0-	6	8		9	2	~	~	7	-
FATIGUE TEST DATA	SPECIMEN NUMBER: 51 (Open Hole)	SPECTRUM: 400 hr (A)	TEST DATE: 5-19-83 //	" " " " " " " " " " " " " " " " " " " "	W 2,0100 TH ,3010 HOLE DIAM .4426" A .6050111		MAX STRESS JEKST FRED. I LIFE = 16 days (>10w)	ENVIR. CONDS. Dry AIP PREPS	CYCLES TO FAILURE 845690 14 pts "LIFE = 110	7, 3 - 1	TTCI 1000 FLIGHT HOURS			Largee 10w: 35%	7 750	Smaller law																	

FRACTOGRAPHIC DATA RS. [CRACK LENGTH IN.]			VEOV	.1678	.0960	9970.	0.518	0320	.0207	.0140	600							
# FLIGHT H	16000 15600 15200 14800		52 15200 52 12800 51 12400 50.09 120.55		10800		9200 8800		7600	6800	0009	-	4800	4000	3200 3800	2400	1600	800
e) BLK		5/10% 34	(Wals)	528	7 87	25	22	202	6 4		4 10	7-1-		000	19		1-1m	
SPECIMEN NUMBER: 52 (ODER)	SPECTRUM: 400 hr (A) TEST DATE: 5-31-83 //	W. 2.0115" TH . 3020 HOLE DIAM . 4452" A . 6075	LIFE = 16 days	1991 ld pl			* ES											

FRACTOGRAPHIC DATA RS. [CRACK LENGTH IN.]										1		٠																	٠		. 492	. 388	. 284	.211	521.	670.	. 034	. 021	600.
H		1,5600	12500	00771	17,000	13600	13200	12800	12400	12000	11600	11200	10800	10400	10000	0096	9200	8800	8400	8000	0097	7200	0089	0049	0009	2600	5200	4800	0044	1 000†	3235.2	5200	2800	2400	2000	1600	1200	.800	100 ^t
BLK #	0 [†] 7	29	000	36	35	34	33	32	3	8	- 53	82	- 22	56	25	72	. 23	22	21	50	19	18	12	16	15	17	1.5	12		2	83	Ω	,	9	5	†	~	2	-
SPECIMEN NUMBER: 53 (Open HAL)		SPECTRUM: 400 hr (A		TEST DATE: 5-6-63 //	•	W Z.0140 TH .3000 HOLE DIAM . 4450 A . 6042	•	MAX STRESS 34 KS. FREQ. 1 LIFE = 2 days (Fast		ENVIR. CONDS. 3.5% Nacl PREPS.		CYCLES TO FAILURE 3096 58 14 48 % 1 TER = 4		י י י י י י י י י י י י י י י י י י י	_CCT_	Smaller Flame 200" (Million Adryce Flaw)	•		101951 (10W > . 472"			J. Company of the com														X			

FRACTOGRAPHIC DATA	CRACK LENGTH IN.		TASK 4	NO FRACTOGRAPHIC	Journa of Land	KEADINGS					::																												•
FRAC	FLIGHT HRS.	1 5000	15200		14400	14000	1,2600	1,5200	2,000	12000	11600	11200	10800	10400	10000	9600	9200	8800	8400	8000	0097.	007).	9800	0049	0009	5600	5200	4800	0044	4000	2000	2500	21.00	2000	1600	1200	800	400	•
	BLK #	242	× ×	7	2	2	7.7	7	*	- 6	200	28	27	56	25	77	2	77	7	2	2	ρ		16	5	7	~	15		2 k		ok	1	ماه	1	; v	10	-	
FATIGUE TEST DATA	SPECIMEN NUMBER: 54 (Open Hole)		SPECTRUM: 400 Dr (A)	TEST DATE: 6-7-83 //			(10) 00, A CCTT. IMIU MINI CIOCI " COLCIA"	?	MAX SIKESS JOKS, FREQ. 1 LIFE = 2 days (Fast)		ENVIK. CUNDS. J.D /0 NAC PREPS. DODE		CICLES TO FAILURE (28068 19 pts % LIFE = 95		TIOT LIGHT HOURS	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	O Mallek I law															N							2×

FRACTOGRAPHIC DATA	CRACK LENGTH IN.																, 3332	1872-	.1102.	0410	.0232	.0144-	.0135	ର ୧୯୮୦	-P9001					
FRAC	FLIGHT HRS.	15600	14800	00071	1,2800	12400 12000	11600	10800	10000	0096	9200	8800	8000	0092	007).	\downarrow	9700	6000	1,000 1,300	7,800	4,400	4000	3600	5200	2,000	2000	1600	1200	800	200
	BLK #	6,62	1	200	32	20	628	27	25	24	53	25	20	61	=	악	9	1	1	12	=	2	6		1	9	77	~	2	-]
FATIGUE TEST DATA	SPECIMEN NUMBER: 55 (Open Hole)	SPECTRUM: 400 hr (A)	TEST DATE: 6-8-83 //	W 2.0 145 TH . 3020 HOLE DIAM . 4504 A . 6084	IFE = 2	3.5 % NACE PREPS		CICLES IO FAILUNE 637243 1d pts % LIFE = 83	TTCI 3067 FLIGHT HOURS	Small Flant 215"	0.75. 10%	Larger 17/2 1252"											\ \frac{1}{2} \text{\$\frac{1}{2}\$} \							×V

							NA	DC-	831	26-	-60	-VO	L.	IV							
FRACTOGRAPHIC DATA	CRACK LENGTH IN.	TASK 4	NO FRACTOGRAPHIC	- READINGS		1		,													
FRA	FLIGHT HRS	1 5600	. 1. 1.	1,5600	1,5200	12000	11200	10400	0096	8800	8400	2600	7200	0049	5600	5200	0077	4000	3600	2800	2007
	BLK #	573	357	200	222	, R. R	28	187	177	22	200	19	12	16	上		7	10	6		
FATIGUE TEST DATA	SPECIMEN NUMBER: 56 (Open Hole)	SPECTRUM: 400 br (A)	TEST DATE: 6-6-83 //	W 2,0110" TH. 3005 HOLE DIAM . 4500'A . 6043,72	MAX STRESS 30 KS1 FREQ 1 LIFE = 2 days (Fast)	ENVIR. CONDS. 3.5 % Nacl PREPS. Done	CYCLES TO FAILURE 613235 1d ots % LIFE = 80	TTCI FLIGHT HOURS	11. 11		Larger Flaw.							9			

												•						_			-	•	_	-													4	
FRACTOGRAPHIC DATA	CRACK LENGTH IN.																															.3345	. 1920	.1300	0890.	.0320	.0265	
FRA	# FLIGHT HRS.	16000	15600	1,800	14400	14000	13600	1,5200	12/00	12000	11600	11200	10800	10000	0096	9200	8800	8400	8000	7600	7200	9899	0049	0009	2600	2200	4800	0007	4000 2000 2000	2200	2800	2348	2000	1600	1200	800	1,000	
	BLK 1	01	5,2	2	*	35	75	22	3,1	, (S	53	28	ik	25	772	23	22	17	. 20	<u>-</u>	- 18		9	5	=	2	7	-	26	k		5.07	5	†	~	2		
FATIGUE TEST DATA	SPECTMEN NIMBER.		SPECTRUM: 400 hr (A)		TEST DATE: 5-6-83 //	4	W K.0120 TH . 3000 HOLE DIAM . 4460' A . 6036, 1.	1	MAN SIKESS 34 KSL FREQ. I LIFE = 16 days (Slow)	AF 12 12 12 IN THE	LIVERY CONDS. J. J / D NOCI PREPS.	4. 9, 1755	d prs. %	TTCI /33 FLIGHT HOURS	1	Smaller Haw = ,334		LOPAL F/2013 . 446																くの・				X.8x

FRACTOGRAPHIC DATA	CRACK LENGTH IN.																				K18	.395	.182	7.90.	ACC.	010		
FRACT	# FLIGHT HRS.	38 15200		56 14400	34 1,5600	32 12800		28 11200	+	10000	-	22 8800		7,000	1	-		13 5200	12 4800	10 4400	9		7 2800	2400	1600		2 800	
FATIGUE TEST DATA	SPECIMEN NUMBER: 58 (Cpen Hole) BI	DESCRIENCE: TOONE (A)	TEST DATE: 5-6-83 //		W 2.0115" TH.3010 HOLE DIAM, 4457 A, 6055 170	MAX STRESS 34 KS. FREQ. 1 LIFE = 16 days (Slow)	J.576 Nacl PREPS.	CYCLES TO FAILURE 306908 Mats % LIFE = 40.1		TTCI /200 FLIGHT HOURS											F B		Education of the Control of the Cont	XS Payer 2X	MO!		2.66×	-

									NA	<i>T</i> D(J-8	31	20	-0	U-\	, OT		ΤΛ												
FRACTOGRAPHIC DATA	CRACK LENGTH IN.							1												.4550	.2575	0800	0220	.0140	. 0090	.0045				
FRAC	FLIGHT HRS.	15600	14800	14000	1,3600	12800	12400	12000	11200	10800	10000	0096	9200	87,00	8000	2600	0027	0079	0009	52,35.2	2500	4000	4000	3600	5200	2800	2000	1600	1200	800 400
	BLK #	3.5	37	35	77	32	31	292	28	14	25	72	25	35	20	6	0 -	19	15	13.058		7-1-	10	6	8		20	4	7	7
FATIGUE TEST DATA	SPECIMEN NUMBER: 59 (Open Hole)	SPECTRUM: 400 hr (A)	TEST DATE: 5/16/83 //	"""""""""""""""""""""""""""""""""""""""	W 4.0110 TH . 2010 HOLE DIAM . 4475 A . 6053 102	MAX STRESS 32 KS, FREQ. 1 LIFE = 16 ABMS (CL.)	Sona	ENVIR. CONDS. 3.5% Nacl PREPS.	CYCLES TO FAILURE SOILO 14 OF % LIFE # CK		TTCI 3289 FLIGHT HOURS	Sm. 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	110116H 10W = 1432	Laract Flass - ARK"										THE STATE OF THE S						Z. 66X

FRACTOGRAPHIC DATA	CRACK LENGTH IN.									•													.531	. 201	.084	.052	.0315	.020	600.	.0035								
FRACT	FLIGHT HRS.	1 5600	15200	14800	4400	13600	1,5200	12800	12400	15000	11200	10800	10400	10000	0096	9200	8800	8400	8000	009)	002)	0000	6348	9000	5600	5200	4800	4400	4000	2600	2800	2000	2000	1600	1200	800	00 [†] 7	•
	BLK #	39	38	37	2,5	X	33	32	2	2,5	28	27	92	25	77	2	77	7	3 5	-k	0	- 1	Jac.	_	7	-	7		2 K	7	o	1		-		2	-	
FATIGUE TEST DATA	SPECIMEN NUMBER: 60 (Open)	SPECTRIM: 400 bt (A)	7	TEST DATE: 5-11-83 //	;	W Z.0120 TH.3015 HOLE DIAM .4465 A ,6066 , n.		MAX STRESS 32 KS FREQ. 1 LIFE = 16 days (5 pm)		ENVIR. CONDS. 3.5 % NaCl PREPS.		CICLES TO FALLUKE 607715 Id pls. % LIFE = 79.4	Constitution of the Consti	TICT YOU FLIGHT HOURS	Smaller Flaw - Angir		Carlor Man Azis			8																	Smaller KX	2.57×

FRACTOGRAPHIC DATA	CRACK LENGTH IN.																										.527	.4805	.2455	.1120	.0320	.0240	.0140	.0095	.0050					•
FRAC	HRS.	16000	12500	14800	14400	14000	2000	12800	12400	12000	11600	11200	10800	10400	10000	0096	9200	8800	8400	8000	0097	7200	6800	0049	0009	2600	0	4800	4400	0004	2600	5200	2800	2400	2000	1600	1200	800	400	
	BLK	3	*	2	200	3	北	Jr.	3	8	- 29	28	- 27	92	25	54	23	22	7	2	<u>-</u>		-	9	15	7	F 12:02	2	=	2k	7		1	ام	7	7	7	7		
FATIGUE TEST DATA	SPECIMEN NUMBER: 61 (Open)		SPECTRUM: 400 hr. (A)	TEST DATE: 5-11-83		W 2.0120 TH .3010' HOLE DIAM .4/7/'A		MAX STRESS 32 KS; FREO 1 LIFF = DA		ENVIR. CONDS. 3 5.9 N.C. PREPS	1	CYCLES TO FAILURE 467 ROA 11 1. % ITER +6.	De LIFE 6	THE 2.451 FITCH HOUSE	1	Smallow Plan = 80% 1 200			へのプログー インジ・シスプー 一部できます																	XO			ない。	X.9.X

(Fast) BLK # FLIG (CDC) 440 # FLIG 20 11 22 11 12 12 12 12 12 12 12 12 12 12	 -
FE ± 84 27 10000 TE ± 84 5200 TE ± 8000 TE ±	
E = 6114 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	400
(Gas Le La	1
SPECIMEN NUMBER: 64 (Load Transf. SPECIMEN NUMBER: 6-21-83 // TEST DATE: 6-21-83 // W 2.co80' TH.3045' HOLE DIAM 4392' A. GII MAX STRESS 30 KS1 FREQ. 1 LIFE = 2 days (Family Conds. 3.5% Nacl PREPS. Done CYCLES TO FAILURE 646914 Id pts % LIFE = FTCI FLIGHT HOURS Smoller Flaw =	7 Z

-
DAT
<
S
M
TEST
O
FATIGUE
G,

									IAM	<i></i>	-02	1.4	0-1	50-	~ V (سدر	•	ΤΛ												
FRACTOGRAPHIC DATA	CRACK LENGTH IN.	TASK 4	FRACTOGRAPHY NOT	READ			1																							
	# FLIGHT HRS.	1,5600	T	14400	13600	12800	12000	11200	10800	10000	0096	9200	8400	8000	7600	7200	0000	59.00	5600	5200	4800	4400	3600	5200	2800	2400	5007	0001	002	200.
	BLK			3 2 2	47	John John		782	22/2	32	77	225	12	50	19		1	o A	 - -	-	2	- <u>c</u>	6	b		ام	4	士	70	J.
FATIGUE TEST DATA	SPECIMEN NUMBER: 65 (20% LOAD TRANSFER)	SPECTRUM: 4CChr(A)	TEST DATE: 6-29-83 //		W 2,0090 IH .3040 HOLE DIAM, 4408 A . 610702	MAX STRESS 30 KS, FRED 1 LIFE = 16 days (Slow)	ENVIR. CONDS. 3,5% Nocl PREPS. none	CYCLES TO FAILIIRE 57.91/11/12 1/2 % 11EE + 7/	- TIT % STO 121 1917 0 - TITE	TTCI FLIGHT HOURS	Sm. 11. Fr. 11.		harger Flaw -																	> 1

1500 1600 1200 1200 1400

*Static Failure after 9 lives (Pmax= 30,600 lbs)
Tight fitting bott.

DATA
PEST 1
GUE
FATI

								N	ADC	-8	31	26	-6	7-0	VO1	.,	IV	•								
FRACTOGRAPHTC nama	HRS. CRACK LENGTH IN.	TASK 4		E	KEADINGS		1																			
FRAC	# FLIGHT H					12400	12000		1			9200	+		7600	7,500	0079	0009	5600	2200 1,800	7,700		3600	5200	2800	7400
	BLK		T	200	11	35		180	192 -	5	N/A	100	7	8	5		19		===	1	E	2			1	٥
FATLGUE TEST DATA	SPECIMEN NUMBER: [1] (Bolt-In)	SPECTRUM: FIG-4CONF(A)	TEST DATE: 10-14-83 //	W 2.002" TH .361" HOLE DIAM 4395"A (2021	MAX STRESS 70 KZ FDFO 1 TTEP 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Life - Cabys (Fast)	ENVIR. CONDS. 3,5% Nacl PREPS. DIE-CODG.	CYCLES TO FAILURE 6891723 1d pts % LIFF*	1	TOTAL FLIGHT HOURS							And the state of t	43								

124

### 1500 1000	FIGUE TEST DAT	*	RIK # PITCH #	FRACTOGRAPHIC DAT
STRUM: E16-400 hr. ST 14500 ST 1600	SPECIMEN NUMBER: 121 (Bolt		# FL	T HKS. CRACK LENGTH IN.
STRESS 26 KS1 FREQ. 1 LIFE = 2 days (Fast) 35 14000 NO STRESS 26 KS1 FREQ. 1 LIFE = 2 days (Fast) 35 12400 NO STRESS 26 KS1 FREQ. 1 LIFE = 2 days (Fast) 35 12400 NO STRESS 26 KS1 FREQ. 1 LIFE = 469 2 12000 NO STRESS 26 KS1 FREQ. 1 LIFE = 469 2 16000 NO STRESS 26 KS1 FREQ. 1 LIFE = 469 2 16000 NO STRESS 26 KS1 FREQ. 1 LIFE = 469 2 16000 NO STRESS 26 KS1 FREQ. 1 LIFE = 469 2 16000 NO STRESS 26 KS1 FREQ. 1 LIFE = 469 2 16000 NO STRESS 26 KS1 FREQ. 1 LIFE = 469 2 16000 NO STRESS 26 KS1 FREQ. 1 LIFE = 4600 NO STRESS 26 KS1 FREQ. 1 LIFE = 4600 NO STRESS 26 KS1 FREQ. 1 LIFE = 4600 NO STRESS 26 KS1 FREQ. 1 LIFE = 4600 NO STRESS 26 KS1 FREQ. 1 LIFE = 4600 NO STRESS 26 KS1 FREQ. 1 LIFE = 4600 NO STRESS 26 KS1 FREQ. 1 LIFE = 4600 NO STRESS 26 KS1 FREQ. 1 LIFE = 4600 NO STRESS 26 KS1 FREQ. 1 LIFE = 4600 NO STRESS 26 KS1 FREQ. 1 LIFE = 2 days (Face Flaw. 1 LIFE = 2 days	SPECTRUM: E16-400 hr			90
STRESS 28 KSL FREG. 1 LIFE = Z days (Fast) 31 14000 STRESS 28 KSL FREG. 1 LIFE = Z days (Fast) 31 1200 R. CONDS. 3.5 72 Nacl. PREPS. NO 29 11600 ES TO FAILURE 3 140699 14 pts % LIFE = 4699 26 11600 FLIGHT HOURS 2000 20 11600 Smaller Flaw 2000 10 10 10 10 10 10 10 10 10 10 10 10	TEST DATE: 10-06-83 //			ON
STRESS 28 KS1 FREQ. 1 LIFE = 2 days (Fast) 32 12 12 12 12 12 12 12 12 12 12 12 12 12		A . 6066 nz	35 140	+
8. CONDS. 3.5.72 Nacl. PREPS. NO 29 11 ES TO FAILURE 3.406.99 ld pls. "LIFE = 46.9 27 10 26 10 27 10 28 11 28 11 28 10 29 11 28 10 29 12 28 10 2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	53 152	00
8. CONDS. 3.5 72 Nacl PREPS. NO 20 11 ES TO FAILURE 3 140699 14 pts % LIFE = 4699 27 10 ES TO FAILURE 5 140699 14 pts % LIFE = 4699 27 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 27 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 27 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 27 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 469 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 469 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 469 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 469 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 469 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 17 10 ES TO FAILURE 5 14069 14 pts % LIFE = 4699 14 pts % LIF	= 711T		31 124	000
ES TO FAILURE 3 140 699 14 pts % LIFE = 409 27 10 26 10 10 10 10 10 10 10 10 10 10 10 10 10	3.5% Nacl	NO		90
ELICHT HOURS Smaller Flaw = .434 Langee Flaw = .434 Langee Flaw = .434 Langee Flaw = .434 Surface Flaw = .434 Surface Flaw = .434	N OF		H	000
FLIGHT HOURS Smaller Flaw = .439 Langee Plaw = .439 Langee Plaw = .439 Langee Plaw = .439 Langee Plaw = .439 Surface Flaw			+	000
				00
100 100				000
20	Smaller 1/34 = . 434"		+	
26	I am Phina			00
2	0//			00
N 0567440-000504400-	3	7		00
N -024701-0085074401-	-		1	00
N			+	
N				
N				00
S			13 52	00
N			12 48	00
0082024m21	-			000
N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				00
		V		000
1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-			
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			-	000
4 2 2 -				00
			-	00
2			3 12	00
	•			00
	* Surface Flaw	The state of the s	4	00

FRACTOGRAPHIC DATA	CRACK LENGTH IN.								6/5	.379	.295	.213	. 156	.124	150.	.079	-1	.051	.034	2010:	0810:	0000															
FRAC	FLIGHT HRS.	1 5600	15200	14800	17,000	13600	1,5200				11200		_			\downarrow	1	00400	8000	1300	7,800	0000	6000	2000	5200	LROO	7770	0004	3600	5200	2800	2400	2000	1600	1200	000,7	224
,	BLK #	39	38	73	35	34	22	12	29.66	53	87	1	97	S.			75	100	20		130	- 2	15		1	12	E	10	6	æ		و	7	+	1	7 -	
FATIGUE TEST DATA	SPECIMEN NUMBER: 129 Bolt	SPECTRUM: 400 hr F-16		TEST DATE: 12-13-83 //		W 6.0065 TH . 3025 HOLE DIAM . 4415 A . 606910	MAX STRESS 28 KSI FREC. 1 LIFE = 16 ABM (CI)		ENVIR. CONDS. 3.5% NaclPREPS. Pr F		CYCLES TO FAILURE 11 35 746 14 n.f. 2 LIFF = 1483		TTCI 69/6 FLIGHT HOURS		CO TOTAL LIBERT	•	Smaller Flaw = .086"(B)												S								2×

Colt - In 10 10 10 10 10 10 10 1	TIG	# 71 TE	FRAC	PHIC DAT	
A. COC. 7 In 1900 A. COC. 7 In 1900 A. COC. 7 In 1900 B. C. 25 14000 B. C. 29 15000 B. C. 29 15000 B. C. 29 1500 B. C. 29 1500 B. C. 29 1500 B. C. 29 1500 B. C. 2000 B. 2000 B. C. 2000	SPECIMEN NUMBER: 14.3 (Holt-In)	1	E S	CKACK LENGTH IN.	
A·CoC7 _{In} : \$\frac{37}{34}\$ \q	SPECTRUM: FIG-400hr (A)*	25	15600		
14,000 14,000 1,	// KB- // / - 23	37	14800		
A. COC. Tin. 34 15600 S/Fast Firzso 31 12400 P. C. 28 12800 P. C. 29 12600 P. C. 20 12600		36	14400		
17 17 17 17 17 17 17 17		35	1,4000		
PREPS. P. C., 29 12400 PREPS. P. C., 29 12400 PREPS. P. C., 29 11600 PREPS. P. C., 2245 PS. D. C., 4240 PREPS. P. C., 29 11600 PREPS. P. C., 4240 PREPS. P. C., 4000 PREPS. P. C., 4000 PREPS. P. C., 4240		**	2200		
PREPS. P. C. 20 12000		32	12800		
## PREPS P. C. 20 12000		31	12400		
4 Pts % LIFE = 1455 27 11600 7 12440 27 10800 12445 28 11200 7 2445 27 10800 12445 28 10000 10645 29 200 10765 21 8800 106440 22 8800 106440 22 8800 106440 23 8000 10640 24 8000 10651 25 8000 10651 26 8000 10651 27 2800 28 2000 10 4000 28 2000 10 4000 28 2000 10 4000 28 2000 10 4000 28 2000 10 4000 28 2000 10 4000 28 2000 10 4000 28 2000 10 4000 28 2000 10 4000 28 2000 10 4000 28 2000 10 4000 28 8000 10 4000 28 8000 10 4000 28 8000 10 4000 28 8000 10 4000 30 10 10 10 10 10 10 10 10 10 10 10 10 10		30	12000		
## 1200		29		. 4240	
22 10800 12245 24 10000 12245 25 10000 10665 27 10000 10665 28 8800 00765 28 8800 00765 29 8800 00765 20 8000 00765 20 8000 00765 21 8400 00765 21 8400 00765 22 8800 00765 23 8000 00765 24 8000 00765 25 8000 00765 26 8000 00765 27 2800 00765 28 8000 0076	LA LA % TYPE	28	11200		
25 10000 113.60 24 2600 107.65 25 8800 00.07.65 27 8800 00.05.20 28 8000 00.05.20 29 8000 00.05.20 19 7600 00.05.40 17 7600 00.05.40 18 7200 00.05.40 19 7600 00.05.40 10 4,000 00.05.40 10 4,000 00.05.40 11 4,000 00.05.40 12 6,000 00.05.40 12 6,000 00.05.40 13 7,000 00.05.40 14,000 00.05.40 15 6,000 00.05.40 16 6,000 00.05.40 17 7,000 00.05.40 18 7,200 00.05.40 19 7,000 00.05.40 10 4,000	ICI DIS " TILE	27	10800	.2245	M
25 10000 12.6.5. 24 9600 10.6.4.5 25 9200 0.076.5 28 8800 0.076.5 20 8000 0.02.4.0 20 8000 0.02.4.0 21 8800 0.02.4.0 21 8800 0.02.4.0 21 4800 0.02.6.9 22 8800 0.02.6.9 22 8800 0.02.6.9 23 12.00 24 16.00 25 2600 0.02.6.9 25 2600 0.02.6.9 2600 0.02.6.0 27 2800 0.02.6.9 2600 0.02.6.0 27 2800 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2500 0.02.6.0 28 2600 0.02.		26	10400	1645	יענג
24 9600 106.45 22 8800 0.076.5 23 8800 0.076.5 24 9600 0.076.5 25 8800 0.076.5 26 8800 0.076.5 27 6800 0.076.5 2800 0.076.5 2800 0.076.5 2800 0.076.5 2800 0.076.5 2800 0.076.5 2 8800 0.076.5 2 8800 0.076.5 2 8800 0.076.5 2 8800 0.076.5 2 8800 0.076.5 2 8800 0.076.5 2 8800 0.076.5 3 1200 0.076.5 3 1200 0.076.5 3 1200 0.076.5 3 1200 0.076.5		25	10000	.1380	_ _
22 8800 10765 21 8400 10520 20 8600 10520 19 7600 105210 11 6000 105210 12 4800 105210 13 5200 1053 14 1600 1060 2 2400 1060 2 2400 1060 2 2400 1060 2 2400 1060 3 2500 1060 4 1 1600 1060 5 2400 1060 6 2400 1060 7 2800 1060 8 2200 1060 9 3600 1060 10 4400 1060 10 4400 10 4400 10 4400 10 4400 10 4400		24	0096	06.5	0.
22 8800 i.O522C 20 8000 i.O522C 20 8000 i.O221C 18 7200 i.O221C 16 6400 i.O221C 17 5600 i.O221C 18 7200 i.O221C 19 5600 i.O205 11 4400 i.O205 2 2000 i.O205 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		25	9200	,0765)
20 8400 .0520 20 8000 .0420 19 7600 .0340 16 6400 .02103 17 5600 18 5200 10 4000 1 2800 6 2400 6 2400 7 2800 8 5200 8 5200 1 1600 1 1600 1 1 1600	Larger Flow - Axt.	22	8800	0640	20
20 8000 : C240 19 7600 : C340 10 6800 : C340 11 6800 : C105 12 4800 : C105 13 5200 : C105 14 5600 : C105 15 6000 : C105 17 2200 : C105 18 5200 : C105 19 4000 : C105 10 4000 : C240 11 4400 : C105 12 1200 : C105 13 5200 : C105 14 1600 : C105 15 2800 : C105 16 2800 : C105 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		21	8400	,0520	~ 0
2. 19 75000340 16 6400010.5 16 6400010.5 17 5500010.5 18 5200010.5 10 4000010.5 11 4400010.5 12 1200010.5 12 1200010.5 13 5500010.5 14 1600010.5 2 2800010.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		20	8000	. 042.0	-0
776/ 18 7200 .07210 16 6400 .0105 17 5600 .0105 18 5200 .0105 19 4000 .0105 10 4000 .0105 11 4400 .0105 12 4800 .0105 13 5200 .0105 14 1600 .0105 15 2400 .0105 16 2400 .0105 17 2800 .0105 18 2200 .0105 19 2600 .0105 10 4000 .0105 10 4000 .0105 11 4400 .0105 12 2400 .0105 13 1200 .0105	Smaller I BWE, 325	2	7600	.0340	٠٧٠
17 6800 10105 16 6400 10105 17 5600 18 5200 10 4000 10 5200 10 5200 10 5200 10 600 10 600 10 700 10 700	0 TC/	2	7200	0120'	بدر
15 6400 14 5600 17 5200 10 4,000 9 5600 9 5600 9 5600 9 5600 9 5600 1 600 1 600			6800	,0105	•
15 6000 14 5600 12 4800 10 4,000 9 5,200 9 5,600 9 5,200 6 24,00 6 24,00 6 24,00 6 24,00 7 2,800 6 2,400 7 2,000 7 2		9	0079		Τ,
2		15	0009		V
20 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		14	2600		
2 - 0 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		15	5200		
2 X X X X X X X X X X X X X X X X X X X		12	4800		
2 X		=	4400		
2 x x x x x x x x x x x x x x x x x x x		0	0004		
20 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6	3600		
20 4 + 20 - 2 X		8	5200		
20		F	2800		
2		6	2400		
2×		5	2000		
2X		47	1600		
2×		3	1200		
XX		7	800		
	Š.	-	004		

FRACTOGRAPHÍC DATA	CRACK LENGTH IN.	30/	. 138	.093	. 066	.053	23.6	.029	.025	02/	015	. 0/3	600.		-		·										·							
FRA	# FLIGHT HRS.	1 5600	15200	14800	17,000	13600	13200	12800	12400	11600	11200	10800	10400	10000	0096	3500	8800	8000	2009	7200	6800	0049	0009	2600	2200	4800	4400	4000	2000	SROO	21.00	2002	1600)
	BLK #	365	38	人 个	3,50	松	33	32	7	38	28	22	_		_/_	. J.	272	20	61	18	12	16	5	=	7	<u>y</u>		2 k				h	1-3	
FATIGUE TEST DATA	SPECIMEN NUMBER: 144 (Bolt-In)	SPECTRUM: F16-4 CO hr (A)		TEST DATE: 1-07-54		W 2.0095" TH .3030 HOLE DIAM .4440" A. 6088 Int		MAX STRESS ZB KS1 FREQ. 1 LIFE = 16 days (Slow)	_	COMPS.	CYCLES TO FAILURE 1/2 0 C 14 212 % 1 TEP + 212	יז ומ לבל מו כי	Ü		C. 18 Flance (B)																			

APPENDIX E

SPECTRUM FATIGUE TEST RESULTS AND FRACTOGRAPHIC DATA FOR TASK 5 (7075-T7651 ALUMINUM ALLOY)

Spectrum fatigue test results for the dog-bone specimens (Fig. 3) tested under Task 5 are summarized in Table El. Fractographic data sheets are also presented in this appendix.

The maximum positive load in each load spectra, including overloads, was considered to be the 100% load level. The maximum positive test load for each spectra was selected to produce the desired gross stress on the specimen cross section. All other loads positive and negative in each respective test spectra were "scaled" to the 100% load level. As a result, "overloads" in the F-18 300 hour spectrum were treated as 100% load levels rather than a percentage greater than the 100% load level.

Fatigue loading frequencies for all spectrum tests, including the F-18 300 hour spectrum, were based on the test rates set for the F-16 400 hour spectrum tests. Loading rates were selected to complete 8000 equivalent flight hours of the F-16 400 hour spectrum in a selected number of days (24 hours a day continuous testing). Three basic loading frequencies were considered: (1) F = fast (8000 flight hours/2 days), (2) S = slow (8000 flight hours/16 days) and (3) = extra slow (8000 flight hours/90 days). Accordingly, test machine frequency multipliers (FM) were set for the three basic frequencies: Fast (FM = 250), slow (FM = 40) and extra slow (FM = 1). The frequency multipliers can only be translated into actual frequency measurements for constant amplitude loading.

Summary of Dog-Bone Specimen Spectrum Fatigue Test Results for Task 5 (7075-T7651 Aluminum) Table El

		TTCI	TTF	79	741	67.	.51	.21	.52	.57	,75	09.	.51	95°	.75	.79	.78	99.	89.	.83	99.	.70	.51	.54	.63	.34	.40	.51	.33	.26	. 24	,26
	TTP-TTCI	(FLT. HRS.)	9	8000	9435	6163	7304	9009	7964	5999	5549	6958	3315	5335	8477	2165	2270	4228	8035	2520	11206	6079	8876	11030	2232	3213	16435	2738	13356	8006	5206	3095
	TTF	(FLT. HRS.)	(P)	22000	16035	12035	14835	9092	16435	13999	21949	17558	6749	12035	33677	10228	10430	12406	24835	15074	32806	21635	18276	24279	2009	4835	27235	5550	20007	10806	9089	4192
	TTCI	(FLT. HRS.)	(c)	14000	0099	5872	7531(f)	1600	8471	8000	16400	10600	3434	0029	25200	8063(f)	8160(f)	8178(f)	16800	12554(f)	21600	15226(f)	9400	13249(f)	3775	1622	10800	2812	6651	2800	1600	1097
PATIGUE	CRACK	ORIGIN	(<u>P</u>)	82	æ	ø	ပ	၁	ø	*	•	æ	4	ပ	æ	æ	på.	æ	€	6	æ	ပ	æ	#	22)	ပ	ပ	æ	42	æ	æ	æ
	GROSS	AREA	(1N ²)	.6071	.6040	.6083	,6137	\$609°	,5824	,6087	.6092	.6110	6009°	9,09.	6909.	.6046	,5767	.6045	.6052	,6020	,6108	6119.	8,003	.6047	. 5999	.6039	.6077	. 5993	.6118	,6067	6083	. 6074
SPECIMEN DETAILS	HOLE	DIA	(IN.)	.4412	.4434	.4380	.4427	.4455	0555	.4395	,4395	.4435	,4395	.4395	.4395	.4440	.4430	.4443	.4410	.440	(3)	(?)	3	.4435	.4380	.4370	,4395	.4380	.4395	.4395	,4395	.4395
SPECIME		THICK	(IN.)	.3010	3005	.3025	.3050	.3040	.2915	.3045	.3030	.3045	.3025	.3020	.3030	.3020	.2880	3010	.3025	.3010	3045	.3040	.303	.301	.2990	.3010	. 3025	. 2990	.3040	.3030	.3035	. 3030
4		WIDTH	(IN.)	2.0170	2.0100	2.0110	2.012	2.005	1.9980	1.9990	2.0105	2.0065	2.0095	2.0120	2,0030	2,002	2,0025	2.0085	2.0005	2.000	5.006	2.013	2.006	2.009	2.0065	2.0065	2,0090	2.0045	2.0125	2,0025	2,0045	2.0045
		TEST	DATE	5-31-83	6-5-83	6-22-83	7-1-83	7-13-83	7-21-83	7-5-83	8-1-83	8-11-83	8-11-83	8-18-83	8-22-83	9-17-83	9-20-83	9-20-83	10-6-83	11-8-83	11-3-83	11-3-83	11-3-83	12-5-83	8-23-83	8-16-83	8-11-83	8-54-83	8-24-83	8-24-83	8-25-83	8-26-83
	DATA	SET	NO.	1	-	6	4	4	7	<u>ش</u>	6	-	4	e	7	S	S	S	7	4	-	4	4	7	37	∞	9	37	9	9	∞	æ
		TEST 1.D.	(a)	A-28/F/D	A-28/F/D	A-28/F/W	A-28/S/W	A-28/S/W	A-28/S/D	A-28/F/W	A-28/F/W	A-28/F/D	A-28/S/W	A-28/F/W	A-28/S/D	A-28/4/W	A-28/4/W	A-28/4/W	A-28/S/D	A-28/S/W	A-28/F/D	A-28/S/W	A-28/S/W	A-28/S/D	A-28/20/F/W/PC	A-28/F/W/PC	A-28/F/D/PC	A-28/20/F/W/PC	A-28/F/D/PC	A-28/F/D/PC	A-28/F/W/PC	A-28/F/W/PC
		SPECIMEN	.0N	45	95	62	67	n	72	9/	77	79	8	82	83	. 84	85	98	87	88	68	06	16	92	101	102	103	104(h)	105	106	107	108

Summary of Dog-Bone Specimen Spectrum Patigue Test Results for Task 5 (7075-T7651 Aluminum) (Continued) Table E1

		•			SPECIMEN DETAILS	DETAILS		PATIGUE				
-		DATA				370H	CROSS	CRACK	TTCI	LLB	TTP-TTCI	
SPECIMEN	TEST 1.D.	SET	TEST	WIDTH	THICK	AId	AREA	ORICIN	(FLT. HRS.)	(FLT. HRS.)	(FLT. HRS.)	TTCI
NO.	(a)	NO.	DATE	(IN.)	(IN.)	(INI)	(1N2)	(a	(e)	(p)	(e)	TTF
109 A-2	A-28/S/D/PC	7	8-26-83	2.0055	.3030	.4395	9/09.	ပ	28000	43596	15596	.64
110 A-2	A-28/S/D/PC	. ~	8-30-83	2.012	.3045	,4395	9719.	a	18400	31325	12925	.59
	A-28/F/W/B/PC	14	33	2.003	.303	.4415	6909	æ	3120	9635	6515	.32
113 A-2	A-28/S/W/PC	σ,	_	2.002	.3045	.4400	9609.	€	875	2806	1631	.31
_	-28/F/W/B/PC	14	10-31-83	2.004	.3015	.4390	.6042	ø	2323(f)	10000	7677	.23
< —	-28/S/W/PC	9	9-12-83	2.0110	.3035	.4395	.6103	æ	0777	7245	2805	.61
<u> </u>	-28/F/W/B/PC	14	10-31-83	2.0095	.3015	.4395	.6059	ပ	6757	10835	6286	.42
_	28/S/D/PC	_	12-9-83	2.0090	.3010	(3)	.6047	ø	23600	32000	8400	7.
-	A-28/F/W/B	11		1.9983	.304	.4415	.6075	89	3200	16006	12806	.20
_	A-28/F/W/B	11		2.0090	.3040	.4410	.6107	60	13868	18902	5034	.73
_	-28/F/W/B ·	=	10-25-83	2.0080	.3015	.4435	.6054	4 9	11600	16806	5206	69.
_	28/F/W/B	11	10-28-83	2.0030	.303	.4405	6909.	ပ	1115	10358	4581	. 56
_	-28/F/D/B	9	11-28-83	2.009	.304	.4435	6609°	æ	23600	36035	12435	.65
_	1-28/P/D/B	9		2.00	.3005	.4415	.6010	4	14800	24748	8766	09.
_	A-28/F/D/B	10	11-29-83	2,0030	.3045	.4430	6609	æ	35600	42835	7235	.83
_	-28/S/W/B	12	_	2.0035	.3045	.4420	.6100	ပ	8359(f)	14007	5648	. 59
_	A-28/S/W/B	12	7	2,003	.3035	.4485	•	ပ	9300(8)	20435	11135	94.
<u> </u>	-28/P/D/B/PC	2	12-1-83	2.002	.3035	3	-	•	3857(9)	17440	13583	.22
_	1-28/P/D/B/PC	2	12-5-83	2,0115	. 3010	.4415	.6055	æ3	9200	22000	12800	.42
_	A-28/P/D/B/PC	13	12-7-83	2,0035	.3010	.4415	.6031	40	12400	24400	12000	.51
	B-28/F/W	23	2-1-84	2.0240	.3030	0955	.6133	ø\$	13002(f)	16646	3644	٤.
	B-28/F/W	23	2-1-84	2.0030	.3038	.4470	.6085	6 3	6077	12152	3075	.75
	B-28/F/W	23	2-2-84	2.001	. 3030	.4450	.6063	a a (8267	11737	3470	9. 3
_	B-28/F/W	53	7-2-84	2.003	. 302	.4415	. 6049	20,	17323(1)	21452	4129	≅.
	B-28/F/W/PC	23	2-1-84	2.0	. 3025	.4400	.6050	æ	7310(f)	10716	3406	89.
	B-28/F/W/PC	27	2-1-84	2,0045	.3010	.4405	.6034	4	5548(f)	8163	2615	89°
	B-28/F/W/PC	27	_	2.003	.3045	.4410	6609	6 3	3141(f)	5916	2775	S
30/ 8-2	B-28/F/W/PC	77	7-7-84	2.002	.302	.4435	9,09.	: مد ا	(1) (1)	9558	3397	79.
	20/11/10/10	3 2	50-7-7	0,000,0	0067.	CIM.		۰ ،	115.0%	2,007		1 0.
313 B-2	B-20/F/U/FC	3,5	70-6-6	2.0030	0,00	6644	7410.	a a	71/0/17	116910	6760	9. 7
	8-28/P/D	; ;	2-5-2	2000	0960	56.77	7665	3 60	15752(f)	20853	51015	7
	8-28/P/D	21	2-6-84	2.0035	3010	4405	.6031	22	22608(f)	26595	3987	.85
_	B-28/F/D	21	2-6-84	2,0015	. 2990	,4435	. 5985	A	10824(f)	25053	14229	.43
318 B-2	B-28/S/W	54	2-6-84	2.0010	.3020	,4415	,6043	æ	12038	14676	2638	.82
319 B-2	B-28/S/W	77	2-7-84	2,0010	.3050	,4435	,6103	æ	6517	10707	4190	19:
320 B-2	B-28/S/W	54	2-7-84	1,9985	.3020	,4425	,6035	es	8447	91611	3469	۲.
	B-28/S/W	54	2-7-84	1.9995	.2980	,4435	, 5959	4	7140	9975	2835	.72
	B-28/S/W/PC	28	2-3-84	2.0045	.3030	.4405	709 .	ø	9209	8358	2282	.73
_	B-28/S/W/PC	58	2-24-84	2.0000	.3020	.4415	0,009	20	6097(f)	9453	3356	79 .
324 B-2	8-28/S/W/PC	28	2-20-84	2,0000	. 3035	.4425	0,090	&	21172	24969	3147	83

Summary of Dog-Bone Specimen Spectrum Patigue Test Results for Task 5 (7075-T7651 Aluminum) (Continued) Table El

					SPECIMEN	SPECIMEN DETAILS		PATIGUE	·			
		DATA				HOLE	GROSS	CRACK	TTCI	TTF	TTF-TTCI	
SPECIMEN	TEST I.D.	SET	TEST	WIDTH	THICK	VIQ	AREA	ORIGIN	(FLT, HRS.)	(FLT, HRS.)	(FLT. HRS.)	TTCI
NO.	(a)	⊊	DATE	(IN.)	(IN.)	(IN.)	(1N ²)	(<u>a</u>)	(e)	Ð	(e)	TTF
325	B-28/S/W/PC	28	2-14-84	2,0010	3015	5677	22.09	æ	1970763	6 701	3070	ţ
326	B-28/S/D	22	2-13-84	2,0010	3010	.4425	6023	3 65	20163	77716	6647	9.
327	B-28/S/D	22	2-13-84	2,0015	3010	,4415	.6025	, <u>s</u>	21824	24516	2692	60.
328	B-28/S/D	22	2-13-84	2,0000	, 3025	.4415	.6050	3	19800	22446	2646	; æ
329	B-28/S/D/PC	26	2-21-84	2.0005	3015	.4465	.6032	æ	12797(f)	16116	3319	5 6
330	B-28/S/D/PC	26	2-17-84	1.9990	. 2950	.4470	.5897	£	15650	18753	3103	83
331	B-28/S/D/PC	56	2-14-84	1.9990	. 2990	.4430	7765.	ø	12175(f)	15693	3518	.78
336	A-28/S/W/PC	6	3-1-84	2.0040	,3010	.4415	.6032	~	851	3200	2349	.27
337	A-28/S/W/PC	6	3-9-84	2.001	3005	.4415	.6013	æ	4456	5792	1336	. 77
338	A-28/20/S/W/PC	38	3-15-84	1.9990	. 2950	,4425	. 5897	3	2000	3959	6561	
515	C-28/F/D	33	5-10-84	1.9955	.3050	.5030	9809.	a	27709	20100	191.66	
516	C-28/F/D	33	5-16-84	2.0050	.2955	.5065	. 5924	m	10789	31596	20802	3 8
517	C-28/F/D	33	5-16-84	1.9935	.2970	.5050	.5920	- 44	40500(9)	91679	26607	. .
518	C-28/F/W	34	5-17-84	1,9955	.2960	. 5030	. 5906	Ü	15300	20,000	0015	70.
519	C-28/F/W	34	5-18-84	2.0020	. 2945	. 5030	.5895	ن	4500	19500	15000	2.5
520	C-28/F/W	34	5-18-84	2.0045	.3010	.5050	.6033) 🙉	11100	19200	8100	67.
				T							2010	٥,

Ref. Table 8 for description code, Notes: (a)

Patigue crack origins: B = bore of hole, C = curner of hole and S = surface crack away from hole. 3

Time to initiate crack depth of 0.010" in fastener hole (determined from fractographic results).

Time-to-Failure (TTF)

Time spent in crack growth.

power law (Eqs. 1 £ 3) Extrapolation based on 9999**9**

Linear extrapolation.

Testing anomaly

Diameter measurement not recorded.

					**					TA.			-						·	_		 +	-+	_+	-+-			-	 	 		- -	-	٦.
FRACTOGRAPHIC DATA	CRACK LENGTH IN.				·				1 1												.3510	0261.	1505	. 1245	٦.	- 200	<u>ÇC 30'</u>	0445	0410	.0.355	3050,	.0265	,02.35	.0205
FRAC	FLIGHT HRS.	31600	20800	00t05	20000	29200	28800	SOTON SOUND	00912	27200	7,1,00	00072	25600	25,200	24800	2400	22,600	23200	2,800	00 [†] 22	22006	21600	21200	20000	00000	0000	0006	1,8800	18400	00081	17600	17200	16800	16400
	BLK #	627	20	92	2	12	72		69	89	16	35	49	63	62	900	500	58	57	56	F 55+	54	55	52	2			7 V	46	45	44	43	42	41
FATIGUE TEST DATA	SPECIMEN NUMBER: 45 (Open)	SPECTRUM: 400 by (A)		TEST DATE: 3-31-03 //	" 12 > / V / CIV WIN BIN " Y Z "	W C.U.I.O. 19 JOIO HOLE DIANT : 4-112 A JOU INT	MAX STRESS 28 KSI FREG 1 LIFE = 2days (Fast)		ENVIR. CONDS. Dry PREPS.	ソイク # dd11 % > † 7 と 0 V / V 0	#	TTCI 14 OCO FLIGHT HOURS			Larger Flow-, 351" 8	·	2 1 F1 249 "N TO S	Smaller I law.			ar h										は、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、	2.5×	•	

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.	500	2410.	13	OHO.	0000																												
	# FLIGHT H	1 5600	15200	14800	00071	1 3600	1,5200	12800	12000	11600	11200	0000	10000	0096	9200	8800	00 [†] 8	0000	7200	6800	6400	0009	2600	2200 1,800	7,700	4000	3600	5200	7800	2400	2000	1600	000	004
		339	38	37	ľ	34	33	77	- 07	29	28	1 16	253	77	. 23	25	700	30	18	13	16	-15	#	24	E	10	6	ω		ام	7	+	1	J
FATIGUE TEST DATA	SPECIMEN NUMBER: 45 (Open hole)	1001	SPECTRUM: TOO DE LA	TEST DATE: 5-31-83 //	21	W 2.0170" TH ,3010 HOLE DIAM ,4412" A .60711,72	•	MAX STRESS ZO KSI FREG. 1 LIFE = Zdays (Fast)	ļ	ENVIR. CONDS. LIFY PREPS. DODE	CYCLES TO FAILINGE - 10 CACAS ALL % 1 TER - 2 CYCLES TO FAILINGE - 2 CACAS ALL MAN TO FAILINGE -		TTCI 14,000 FLIGHT HOURS																					

7	7	Λ
_	J	-3

FRACTOGRAPHIC DATA	CRACK LENGTH IN.		.2450	.2125	0621	. 1465	0000°	,0825	.0690	.0580	.0455	.0405	0360.	.0325	,0265	,0250	,0225	,0195	0810,	.0155	0610,	0110	0600'									•					
FR	# FLIGHT HRS	00951	1,2200	14800	1,000	1 3600	13200	12800	12400	12000	11200	10800	10400	10000	0096	9200	8800	8400	8000	7600	7200	0089	0049	. 0009	2600	2200	0024	4400	3600	3200	2800	2400	2000	1600	1200	800	400
	BLK		2	*	200	水	33	32	2	2/2	28	27.	56	25	77	53	25	2	∂	6	18	1.7	16	15	*	?	<u>'</u>	-	26	, bo	-	9	2	4	7	7	
FATIGUE TEST DATA	SPECIMEN NUMBER: 46 (open hole)	SPECTRUM: 400 br (A)		TEST DATE: 6-5-83 //		W 2.0100" TH. 3005 HOLE DIAM . 4434"A . 6040		MAX STRESS 28 KS FREG 1 LIFE = 2 days (Fast)		ENVIR. CONDS. DEV PREPS. DODE		CYCLES TO FAILURE 1534866 Hots "LIFE & C.OO		TICI 6600 FLIGHT HOURS				Karger Flau. 461		C. 081 weld * ollews										Y Control of the cont					150	くつず	

FRACTOGRAPHIC DATA	CRACK LENGTH IN.									., 5515	05/7/	021	0890	6805	0570'	.0640	.0565	,0515	0410	10.310	.0250	.0205	.0145	0110	0080			·										
FRAC	# FLIGHT HRS.	15600	15200	14800	1,000	1 3600	13200	12800	12400	1,500	11200	10800	10400	10000	0096	9200	8800	8400	8000	One)	007)	6800	9400	0009	5600	5200	4800	4400	4000	2000	2000	2000	20,00	1600	1200	800	004	,
•	- 1	39	38	2	355	本	33	32	ᆚ		282	27	56	25	77	22	22	ų į	2	76			وا	\Box	=	~	2		2 k	7		1) lr	1-7	<u> </u>	10	-	
FATIGUE TEST DATA	SPECIMEN NUMBER: 62 (Open hole)	SPECTRUM: 400 br (A)		TEST DATE: 6-22-83 //		W 2,0110" TH . 5025 HOLE DIAM . 4380" A . 6083,11		MAX STRESS 28 KS1 FREQ 1 LIFE = 2 days (Fast)		ENVIR. CONDS. 3.5 % Na Cl. PREPS. hone		CYCLES TO FAILURE 115 1992 14 pts % LIFE = 150		TICL 2012 FLIGHT HOURS			Larger Flaws . 3515%			Small = 1/2,15,282",																	7 7 67	X97:X

SPECIMEN NUMBER:		BLK #		FRACTOGRAPHIC DATA RS. CRACK LENGTH IN
2hc (A)	<u> </u>	36,88	16000 15600 15200	
TEST DATE: 7-1-83 //	II.	2	14800	.5320
]	35	14400	25560
W 6,0120" TH . 5050 HOLE DIAM .4427" A .6137	7012510	77	1 3600	1930
•		25	1,5200	.1540
MAX STRESS ZOKSI FREC. 1 LIFE = 16 days	le days (Slow)	77.	12800	0611
FNVTR CONDS 3.5-% 4/0.00	1_	; 	12000	0420
rnero.	none	29	11600	, 0540
, 11 - 1 - 9,	L 1.	28	11200	. 0460
CICLES 10 FAILUNE 1417775 10, PTS. 6 LIFE	185	27	10800	.0375
7631 ET TOIT HOURS	L	2	10400	
227 FLIGHT HOURS		22	10000	1
		#	9600	.0200
Karacr Haws 5320°C		55	9200	,0175
		775	8800	0910
See 1/2 //21/ 1 04" B		- 3	0400	* 5510.
r		200	8000	
		74.	0000	
		ρ.	007).	
			9089	
		٥	6400	
		15	0009	
		14	5600	
		15	5200	
		12	4800	
		11	0044	1
		10	0004	
		6	3600	
		8	5200	
		7	2800	
		9	2400	
		5	2000	
		4	1600	
		7	1200	
	13.23.20.00.00.00.00.00.00.00.00.00.00.00.00.	•	000	

FRACTOGRAPHIC DATA	CRACK LENGTH IN.									1								. 4915	3300	, 2025	.1350	0660.	5270.	0590	. 0485	.0425	.0345	.0290	2	.0215	ozio	200	010		
FRA	FLI	1 5000	15200	14800	14400	1 3600	15200	12800	12400	11600	11200	10800	10000	0096	9200	8800	8000	2600	7200	0089	0049	0009	5600	5200	4800	0044	4000	2000	2500	2000	2000	1600	1200	800	400
	BLK #	3,0	12 m	37	3%	222	33	32	7	562	28 28	77	32	72	36	25	202	61	18	17	16	15	7	7	y :	-	2 k			1	oh		1	2	-
FATIGUE TEST DATA	SPECIMEN NUMBER: (OPEN hole)	•		TEST DATE: 7-15-83 //		W 2,005" TH. 3040" HOLE DIAM . 4455 A . 6095 Int		MAX STRESS ZBKS1 FREG 1 LIFE = 16 days (Slow)	\$	THE CONDS. 3,3 % MACK. PREPS. DODE	CYCLES TO FAILURE 728068 14 CH % 1.1FF = QE		TTCI 600 FLIGHT HOURS	Sm3//2 F/24 = 158 0			Larger Flaw = 4915" C													7					X, 5,3,X

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	. 3670	,3200	0007	51.12	CO91:	.1265	,0985	080.	.0620	,0,510	0435	.03.63	0550	<u>0</u> 2.70.	05777	0070	0210	,0140	0210	.0095										·										1 .4520	
FRAC	HRS.	16000	15500	1,000	17.100	0007	7,4000	2000	2500	2000	2000	0007.	11 200	1 7 8 7 7	00001	0000	0000	2000	3500	8800	8400	8000	7600	7200	0089	0049	0009	2600	5200	4800	0044	4000	3600	5200	2800	2400	2000	1600	1200	800	CH 16 400	
	- 1	3	**	3	外	72	1	华	*	1		26	200			350	水	#		7	7	ଥ	5	8	-12	16	15	14	13	12		2	6	Ω		٥	4	7	7	2	41.0	
FATIGUE TEST DATA	SPECIMEN NUMBER: (Open)	* * * * * * * * * * * * * * * * * * * *	SPECTRUM: 400 br (A)		TEST DATE: (-71-85)	•	W 19980" TH. 2015, HOLE DIAM 4440" A 5824			MAN SINESS COKS FREN I LIFE = 10 days (Slow)	ſ	ENVIR. CONDS. /) L. PREPS.		CVCLES TO FAILURE 「「アンハスト ア・ト % LIFE・クヘハ		TTCI 8471 FLIGHT HOIRS				Jarger Flaw : 4520"8		a. I.	Unaller (185:150 o																			ZX.

H
•
DA
•
_
$\overline{}$
_
_
-
_
-
20
U 2
F-7
_
-
TEST
- 1
- 1
- 1
- 1
ы
ы
- 1
UE
ы
UE
GUE

														1_				4											 			 -	-
FRACTOGRAPHIC DATA	CRACK LENGTH IN.				.5825	4520	. 2130	. 1535	.0620	.0445	.0335	5220	.0225	.0185	.0150	.0135	5110	0010.	.0085														
FRAC	# FLIGHT HRS.			14400	3600			12400				1			1	8800	1	-	-	_	-	+		5600 7800	5200	4800	1	4000	1	2000	1	1600	1 200
	BLK	6,50		25/2	工作	Ш			<u>- 23</u>	28	7	Sic.	Ok	7	OF.	7	y C	Į.	<u>*</u>	2			7	=}	7	7	1	2 p		ľ	ľ		
FATIGUE TEST DATA	SPECIMEN NUMBER: 76 (open hole)	SPECTRUM: 400br (A)	TEST DATE: 7-5-83 //		W 1.9990" TH ,3045 HOLE DIAM . 4395" A . 6087 1.2		MAX STRESS 28 KSI FREG. 1 LIFE = 2 dovs (Fast)	FNVTR CONDS 3 59 1/2 M	1	CYCLES TO FAILURE 134 ACK 77 12 TFF = 174	, C. S.	TTCI CO FILCHT HOURS	-		Fr. 5875'B	Larger 11000 0	M 0, 270 11 7/3 2	010 0,														57	

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	1 1								: 1														0203	0000	. 1405	0160,	.0665	.0595	0350	0.300	,0245	5020	0000	0100	000		
FRAC	FLIGHT HRS.		1,5600	1,4800	14400	14000	1,5600	12800	12400	12000	11600	00211	00701	10000	0096	9200	8800	8400	8000	0097	6,800	0079	221	7 21 040	12	20800	20400	20,000	19600	14 2000	18800	17,400	1,000	10977	11871	16400		-
	BLK #	017	7 %	37	36	35	***	32	31	9	- 29	96	722	25	24	53	22	12	20	2/0	2		•		3	52	5	දු	49	40	4	140	1	**	42	141		
FATIGUE TEST DATA	SPECIMEN NUMBER:		SPECTRUM: 400 hr (A)	TEST DAME: SILLONS			" 4:0100 " 1:000 " 1:000 " 1:000 " 1:000 " " 1:000 " 1	MAX STRESS JO 12 FRED 1 LIFT = 7 J - 1 - 1		ENVIR CONDS 327 Noc parps	1	CYCLES TO FAILURE 2 (COO) 16 14 045 % LIFE = 774		TTCI 6400 FLIGHT HOURS				Carol Fars Carolina Comments	18050 B 18050 B	A Fails . 300" B																	2.7 X 2×	

				,																·											
FRACTOGRAPHIC DATA	CRACK LENGTH IN.	.1200	וש	6/9/2	0840	.0375	0150,	,0265	. 5610,	5910'	0510	0000																			25,75
FRAC	FLIGHT HRS.	1 5600	15200	1,100	14000	1 3600	1,3200	1 2800	12000	11600	11200	00001	10000	0096	9200	8800	8000	0097	7200	0077	0009	2600	5200	4800	4400	4000	2600	2800	2400	2000	17,560
	BLK #	39	28	*	35	34	23	25	; Q	53	28	12/4	252	77	3	375	202	19	18	12	13	7	2	12		2	7		Jo	_	F 43,9
FATIGUE TEST DATA	SPECIMEN NUMBER: 79 (Open)		The section is a section of the sect	TEST DATE: 8-11-83 //		W 2.0065" TH . 3045 HOLE DIAM .4435" A .6110 ID		MAX STRESS 28 KSI FREG. 1 LIFE = 2 days (Fast)		ENVIR. CONDS.	CIC = 11TF 2 1 A LL	, C14 1	TICI IO 600 FLIGHT HOURS				Larger Flow - CAIN'S			Smalled ribw . +30" b							5				

										NA	DC	- 8	31	.26	5-6	0-	- V (OL.	• ;	IV	•										
FRACTOGRAPHIC DATA	CRACK LENGTH IN.																		,6145	,2785	,1445	1 .0820	0500	. 0330	.0230	.0165	1 .0120	0200			
FRAC	FLIGHT HRS.	15600	14800	14400	13600	1,5200	12400	12000	0000	10800	10400	10000	9600	9200	8800	ROOD	7600	7200		. 0049	0009	5600	5200	4800	4400	0007	3600	5200	2800	2000	2000
	BLK #	65%	32	36	34	255	31	200	200	27	56	25	77	524	210	2	6	18	16.674	16	15	7	2	12	=		5	»	上	ام	2
FATIGUE TEST DATA	SPECIMEN NUMBER: 81 (ODCn)	SPECTRUM: 400 hr (A)	TEST DATE: 8-17-83 //		W 2,0095" TH 3025 HOLE DIAM 4395" A , 6079, D.		HEN SINESS CO KEN THEE = 10 days (DO)	ENVIR. CONDS. 3.5% Nacl PREPS. —		CYCLES TO FAILURE 646077 1d pts % LIFE = 84	700	11C1 3+34 FLIGHT HOURS				1251 Flaw = 16145 B		<- 1/2 F/aw=.175 B													
	SPECIME	SPECTRU	TEST DA		W 2,009	MAV CTBE	MAN SINES	ENVIR. CC		CYCLES TO	1000	1101				(2.7	1	V	//// /////////////////////////////////												

5
DAT
TEST
E
_
田
5
FATIGUE
FA
. "

FRACTOGRAPHIC DATA	CRACK LENGTH IN.						.32.45		.1705	.1120	.6870	,0640	.04.80	10365	10285	,02.20	0910.	.0125	5010.	.0085												
FRA	BLK # FLIGHT HRS.		58 15200	36 14500	33 3200	32 12800		28 1.1200	1	26 10400	00001		9200	. 22 8800	8400	50 8000		0027. 81		16 6400	-	14 5600	5200	4000	0007	0092 6	8 5200	7 2800	6 2400	4 1600	3 1200	2 800
FATIGUE TEST DATA	SPECIMEN NUMBER: 82 (Open)	SPECTRUM: 400 br (A)	į	TEST DATE: 8-18-83 //		MAX STRESS 28 KSI FREQ. 1 LIFE = 2 days (Fast)	ENVIR. CONDS. 3.5% Nacl PREPS.	CYCLES TO FAITIRE 1151901 14 CLC % 1785 + 150	ICINES " FILLE	TTCI 6760 FITCHT HOURS	1				12507 Flow - 10145,0			JE 8 //c8 / 100 - 100		776							S					

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	.0945	.0645	64	.0440	0350		. 0220	,0200	0.70	05.10.	3510,	.0125	.0115	0110	0010'												.4030	.2295	1830	
FRA	BLK # FLIGHT HRS.	00912	78 3/200	00802	10 20 ± 00 × 00 × 00 × 00 × 00 × 00 × 00	74 - 120000 120000	73 23200	72 28800	78400	+	68 27200		+	+	+	25,200	24800	+		57 2800	-	+	21500	+	50 %000	8 9200	001/8)	84.194 35,677,6	33	82 32,800	136
FATIGUE TEST DATA	SPECIMEN NUMBER: 83 (Open Hole)	SPECTRUM: 400 br (A)	1	TEST DATE: 8-22-83 //		W 2.0030" TH. 3030" HOLE DIAM , 4395 A , 6069 , 12		MAX STRESS ZOKEL FREG. 1 LIFE = 16 days = Slow	(-	THEFS. MODE.	CYCLES TO FAILURE 300 3 500 LA LA CA CYCLES	न प्राप्त थ ट्याते हा	TTCI 2.5 200 FLIGHT HOIRS	*				Larger Flaw = . 4030 B	Smiller Flaws , 350" B L												ZX L

FRACTOGRAPHIC DATA	CRACK LENGTH IN.											, 5490		.1305	T.0720	0410	0210																		
FRAC	FLIGHT HRS.	1 5000	14800	14400	00951	13200	12800	12400	11600	11200	10800	10240	10000	2600	9200	0000	8000	2600	7200	6800	0079	0009	5600	2200	0034	4400	3600	2200	2800	2400	2000	1600	1200	800	2004
	BLK #	0,00	37	36	272	3	32	7	2/2	28	27.	25,51	Û	7	000		20	19	8	-12	9	-12	=	2	ų,	=	20	k		9	2	17	7	2	-
TA	(open hole)	•		,	AM .4440" A .6046	1	F J months		PREPS.	001 + 9111 9 1									いた。これには、これには、これには、これには、これには、これには、これには、これには、																>5
FATIGUE TEST DATA	SPECIMEN NUMBER: 84	SPECTRUM: F16-400hr (A)	TEST DAME: 0-10-6%		W 2.002" TH . 3020 HOLE DIAM	-	MAX STRESS ZE KSL FREQ. 1 LIFE	-	ENVIR. CONDS. 3,5% Nacl	CACA STATEMENT OF	THE THE TOTAL STATES	The SALES TOTAL					Karger Flaw = . 5496" B	•	Smaller Flaw: 225'B																

FATIGUE TEST DATA	•		FRA	FRACTOGRAPHIC DATA
SPECIMEN NUMBER: 85 (open hole)	BLK	# FLI	GHT HRS.	CRACK LENGTH IN.
	316		0000	
SPECTRUM: F16-400hr (A)	7	1	2600 5200	
		1	1,800	
TEST DATE: 9-20-85 //	小		70077	
	35		7,000	
W 2.0025" TH. 2880" HOLE DIAM. 4430" A .5767.	1 34		3600	
			5200	
MAX STRESS 28 Ks, FREQ 1 LIFE = 3 months	25		2800	
	2	1	2400	
ENVIR. CONDS. 3.5% NaCl PREPS	YV 		1600	
6	28		1200	
CYCLES TO FALLURE 998361 14 pts % LIFE = 10		-	0800	
	7		0070	.4335
TICI 3/60 FLIGHT HOURS			10000	,2045
	2	+	0096	. 1125
	2	5	9200	T.0615
	2	-	8800	0315
	7		8400	1.0155
Larger Flow - , 4335" B	2		8000	
	1	7	0007	
C. 11 Flans, 325"B	1 v	ΩE	0027	
	L	-	0000	
	o r	+	0003	
	}	$\frac{1}{1}$	5000	
	<u>-</u>	+	7000 1200	
	<u> </u>	\ \ \	1,800	
	Ŀ		1,1,00	
	2		0007	
	L	6	3600	
	L	8	3200	
	1 T		2800	
	L		2400	
	L	2	2000	
	<u></u>	77	1600	
		2	1200	
		7.	800	
>0			400	
\{				

FATIGUE TEST DATA

4	f
	ŀ
~	I
DATA	
	l
터	I
TEST	I
딸	l
F	l
	I
	I
\Rightarrow	Ì
GUE	I
FATIC	l
	ĺ
K	ĺ
[Earl	۱

										TA	٠	,C - (· · ·			- V	4-	(·				 +	- -+	 +	 1	-+	-+	
FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.							:							.3915	0162'	. 2265	.1880	. 1530	. 12.95	1,090	0160	1,0780	1.0005	.0580	10505	.0445	1 .0420	0.38C	,0.3.30	.0290	.0250	1
FRA	FLI GHT	31,200	30,800	20400	20000	29200	28800	78400	00912	27200	26,800	26400	25600	25200	24800	24400	24000	23600	23200	22800	22400	22000	21600	21200	20800	00 [†] 02	2000	00961	1 19200	16800	19400	16000	
	BLK #	222	1.77	9)	上 上	2	12	1,6	69	68	67	38	64	63	£ 62	9	9	59	58	52	56	55	54	55	52	21	20	49	48	47	46	45	Ĺ
FATIGUE TEST DATA	SPECIMEN NUMBER: 87 (Open hole)	SPECTRUM: FIG- 400 hr (A)		Test pare: 10-00-02	U O COCK TH SCOS HOTE DIAM AAIO' A COES	" 4:0002 "":022 """ """ "" " " " " " " " " " " " " "	MAX STRESS 28 VE FRED 1 LIFE = 1(2 days 56.)		ENVIR. CONDS. Dry	+ date 9 :) : C	CYCLES TO FAILURE 2377183 14 pts. 4 LIFE = 310	TTCT 1/ SOC FLIGHT HOURS					Larger 18W = .3715 B	Small o Flans 475" B	7									S					更是是1000 · 是是更是的的人的情况,是一个人的人的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的

100

4
TA
-
A
2
TEST
団
UE
9
I
A
6 -1

_	
~	
ے	
_	
-	
_	
\frown	
_	
_ !	
м	
ഗ	
- 3	
- :	
- (
-1	ľ
-	ı
	ı
_	ı
	ľ
_	ı
	i
_	ľ
	B
- 1	ı
PATIGUE TEST DATA	ı
•	ľ

FATIGUE TEST	DATA	•	FRAC	FRACTOGRAPHIC DATA	
SPECIMEN NUMBER: 89	(open hole)	BLK #	FLIGHT HRS.	CRACK LENGTH IN.	
SPECTRUM: FIG-400 hr (A)		62	21600	.2595	
		8	3/200	,2250	
TEST DATE: 11-03-83	//		30800	. 1975	
		0 1	00400	02.2	
W 2.006" TH .3045" HOLE DIA	AM — A (2108)	十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	20000	.149.5	
		1	29200	7,750	
MAX STRESS 28 Kei FREG 1 LI	IFE = 2 days fact	12	28800	02.60	
		17	78400	0.765	
ENVIR. CONDS. Dry AIR	PREPS.	0,0	26000	OilaO	
		69	27600	0510	
CYCLES TO FATTIRE XIA C.O.	ALL 9 TIER ALAIN	68	27200	.0440	
	7777	0.0	26,800	0400	
amon mioria - , , , , tom		3	26400	,0350	
TICE CI 600 FLIGHT HOURS		65	26000	0315	
		19	25600	.0285	
,		6	25.200	,0250	
larger Flaws 4705" B		29	24800	,0230	
6011 mm / 100		9	24400	.0205	
		90	24000	.0185	
		59	23600	.0165	
Smaller +1aws. 250 B		58	23200	.0150	
	イン・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・	52	22800	.0135	
		56	22400	,0125	
•••		55	22000	ollo,	
		1 54	21600	0010	
		55	21500		
		54	2000		
~		15	20400		
		20	20000		
•	んできる。	43	00961		
		448	00761		
		14	16800		
		940	0048		
		7	nonal		

•
DAT
_
TEST
-
93
回
回
ច
回
GUE
GUE
GUE
GUE
回

																	•							 								, —	
FRACTOGRAPHIC DATA	CRACK LENGTH IN.	0680	0400	.0415	0950,	0330	.0220	0240		0610	0710	0510	0810	2010	6000											·				3613	2915	. 2230	01911
FRAC	# FLIGHT HRS.				14000	1,5600	1 2800		1.5		11200		0000	+	-	<u> </u> -	0048		,					5 5200	7 4800	-		2500	7000	1	17600	3 11200	2 16800
	BLK	24	35	36	5	7	7,	3	, P.	67	N K	ジー	งัก		2	22	2	8		18	12	16	15				9	1	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		L	
	•			1		310,	,	3			ar	3	1	74	l'ans		** ***	riser.	V				1 4 4					Ŋ					
FATIGUE TEST DATA	SPECIMEN NUMBER: 91	SPECTRUM: F16-400hr(A)	// 'CD- YO !!	TEST DATE: 11-0.3 0.3	;	W 2.006" TH, 303" HOLE DIAM A. 6078 in.		MAX STRESS ZBKS, FREG. 1 LIFE = 16 days (Slew)		ENVIR. CUNDS. 2.5% NACL FREES.	A TAIL 16 TO	7777	Sallyli miot in 1777 tona	ITCI 400 FLIGHT HUUKS	C. 11 Flau = 375" R	The second secon		Largek 1 183 . 011 0															

ITC DATA	LENGTH IN.		Olec	0150										256	440	840	465	011	765	505	300	270	900 ·	150	0 <u>6</u> 30	25.30	0460
FRACTOGRAPHIC DATA	# FLIGHT HRS. CRACK		15,200	-	50000 + 20000	28800	26000	H	27200	H		+	25,500	60,6 24,24,	236			1	-	21600	21200	20800	1		00961	,	
¥ĭ	(open hole) BLK		(C) -1-		44.35" A .6047 In	[((() Slays ()	THE PORT OF THE PO		% LIFE = 303 60	B	0				5		75		52	2	5	52	\$	20	7		
FATIGUE TEST DATA	SPECIMEN NUMBER: 92	SPECTRUM: FIG - 400 hr		TEST DATE: 14-05-83	W 2.009" TH .301" HOLE DIAM .44.35" A .6047	MAX STRESS 28 KSL FREG. 1 LIFE	FINATE COMPS	ı	CYCLES TO FAILURE 2324003		TICE /2 C#7 FLIGHT HOURS			Larger May = . Jass &		Smaller Flaws , 230 C	•	 -									

X

FLI
East) 32 12800 31 12400 30 12000
24 9600 24 9600 25 9200 22 8800 21 8400
20 8000 19 7200 17 6800 15 6400
7772
5 772 10 4000 9 5600 8 5200 7 2800

FRACTOGRAPHIC DATA	CRACK LENGTH IN.									**																4515	3777		0.500	0.0370	,0240	710.	,0095			
FRACT	FLIGHT HRS.	15600	1 5200	14800	17,000	13600	1 5200	12800	2400	11600	11200	10800	10400	10000	0096	3500	8800	8000	009%	7200	0089	0049	0009	5600	k	000,	4400	2600	5200	2800	5400	2000	1600	1200	900	1
	BLK #	39	38	7,7	35	777	55	32	7	262	28	27.	56	25	77	Q.	77.	50	61	18	17	16	15	*	7	ייים	- -	o	8	7	9	5	7	7	2	•
FATIGUE TEST DATA	SPECIMEN NUMBER: 102 (ODED)	SPECTRIM: ACCE, (A)		TEST DATE: 8-16-83 //		W 2,0065 TH. 3010" HOLE DIAM . 4370"A . 60-30		MAX STRESS 28 KSI FREG. 1 LIFE = 2 days (Fast)		ENVIR. CONDS. 3.5% NaCl PREPS. 17	6	CICLES IN FAILURE 462815 14 pts % LIFE = 60		TICI 6 2 FLIGHT HOURS	Smiller Halle 174" R	している。という		Latger Flaw . 4515" B											2							

¥
×
AT.
P
TEST
GUE
FATT (
드

															1	IAI	کار	-0	Э.
FRACTOGRAPHIC DATA	CRACK LENGTH IN.													.4385	.3520	.3045	.2780	, 2,555	. 7285
FRAC	BLK # FLIGHT HRS. CRACK LENGTH IN	16000	1 5600	38 15200	57 14800	36 14400	35 14000	34 13600	55 1 3200	52 12800	51 12400	30)00	69 600	62,088 27200	67 20800	00192 99	6.5 2,000	64 25600	63 25200
	SPECIMEN NUMBER:		SPECTRUM: 400 by (A)	•	TEST DATE: O-17-Q2 /		71 / //// With divil 1/1 11 1/2/2/ / 11	" 4,0090 11, 3025 HOLE DIAM :4345 A . 66 ((In-		MAX STRESS ZOKSI FREG. 1 LIFE = 2 days (Fast)		ENVIR. CONDS. Dr. PREPS D.		TO A CHARACT WITH WALLES AND A CONTRACT WAS SHOWN	Obc - TITE & STORE COOPED TO DES & PILE - 240		TICT TO BOO FLIGHT HOURS	1. How , 200. R	

FAT	FATIGUE TEST DATA		FRA	FRACTOGRAPHIC DATA
SPECIMEN NUMBER:	103 (continued.)	BLK #	IRS.	CRACK LENGTH IN.
SPECTRUM:		239 38	15600	0230
TEST DATE:	//	73	14800	0120,
		26	14400	1810.
W	HOLE DIAM A	27	1 3600	9
		33	1,3200	0144
MAX STRESS	FREÇ 1 LIFE =	35	12800	Ď
		76	12000	7
ENVIR. CONDS.	PREPS.	62	11600	4110,
CVCTES TO EATTIBE	-	Ц	11200	12
CICLES IO FAILUNE	J B GATT 9	닜	10800	0010.
		56	10400	
TOTT	FLIGHT HOURS	52	10000	
		254	0096	
		700	9200	
		75	8800	
-		20	8000	
		6	0092	
		18	7200	
		12	6800	
		16	0049	
		15	0009	
		14	0096	
		2	5200	
		7-1	4000	
		0	0007	
		6	3600	
		8	5200	
			2800	
		م م	2400	
		7-7	1600	
		<u></u>	1200	
		2	800	
	. ,		004	
				•

DATA	
TEST	
FATIGUE TES	
FA	

		FRAC	FRACTOGRAPHIC DATA
	BLK #	FLIGHT HRS.	BLK # FLIGHT HRS. CRACK LENGTH IN.
SPECIMEN NUMBER:	0 [†]	16000	
	39	15600	
SPECTRUM: 100 DT (A)	280	15200	
	37	14800	
TEST DATE: B-Z4-B2 //	36	14400	
	35	14000	
W 2.0045" TH, 2990" HOLE DIAM .4360" A .5993 in.	34	13600	
	33	1 5200	
MAY STREES JOYCI FRED 1 LIFE = 7 Jans / Fret	32	12800	
יייי ביייי ביייי ביייי ביייי בייייי בייייי בייייי	31	12400	
*	30	12000	
ENVIK. CUNDS. J.S. TO NACL! FREES. PC	- 29	11600	
	28	11200	,
CYCLES TO FAILURE 551209 Id pts % LIFE = 67	27.	10800	
	56	10400	
TTCI 2012 FLIGHT HOURS	25	10000	
	754	0096	
Smaller 1134 = 1413 0	*	0026	

13.87

* may have had combination: water/desicent

DAT	
TEST	
园	
FATI GI	

		11				,																												L	1		
FRACTOGRAPHIC DATA	CRACK LENGTH IN.	1465	1240	767	020	7880	0765	0990	,0555	.0470		0305	0200	,0255	10230	,0200	,0185	0910.	0510	,0135	.0125	0115	,0105	G600.					,4695	.4010	,3490	13105	,2490	,2460	0617:	.72.30	592
FRA	FLIGHT H	16000	15200	14800	17400	14000	13600	1,5200	12800	2000	11600	11200	10800	10400	10000	9600	9200	0000	8000	0000	0000	(200	9800	9700	0000	7000	4,800	4400	6 2000 6	79600	79.500	0000/	004/87	000.37	7,7000	00277	16800
	BLK #	300	100 mg	37	36	35	7,	22	77.		262	28	. 27	56	2	77	200	376	υ C			0 5		باه	1	‡ -	127	=	प्र	49	949	14/	40	7	***	1	44
FALLGUE TEST DATA	SPECIMEN NUMBER:	SPECTRUM. 400 L. (A)		TEST DATE: 8-24-A3 //		W 2.0125" TH 2000"HOTE DIAM A20.1"	TURING TO THE THE TOTAL TO THE TOTAL TO THE TOTAL THE TO	- 6	""" TIME TO KEN THERE - CHAYS (FAST)	FNVTR CONDS T. T.	FINATUS CONDS: DEN PREPS. PC	CYCLES TO FAILIRE 1914997 11 -15 % 11EF + 2014	A	TTCI 6657 FLIGHT HOURS	1	Smaller How = 130° B		1 2 Per F (4) - 1/9 C" B	0 0/01																		

FRACTOGRAPHTC DATA	CRACK LENGTH IN.								:		.5120	.3780	. 3330	.2990	.2625	.2265	.1925	. 1625	0161	, 10,35	0920.	0290	0445	04 to 1	0200	,0225	.0185	.0155	,0135	ପଦୀତ:				
· ·	# FLIGHT H	40 16000 29 15600	+	36 14400	34 1 3600	53 1,5200	32 12800	30 12000	29 11600	28 11200	21.016 10.806			+	22 9200 8800	$\frac{1}{1}$	20 8000	1	1	1.9	+		+	13 5200	12 4800				8 5200	1	2000	1, 1600	800	1 400
FATIGUE TEST DATA	SPECIMEN NUMBER: 106 (Open)	Jr (A)	TEST DATE: 0-74-03 //		W 2,0025" TH . 3030" HOLE DIAM . 4395" A . 6067, DE		MAX STRESS ZBKSL FREG. 1 LIFE = 2 days (Fast)	ENVIR. CONDS. DES. DES.		CYCLES TO FAILURE 1034374 Hote % LIFF = 135	, , , , , , , , , , , , , , , , , , ,	TTCI 286 FLIGHT HOIRS		Imallee 118W= . 050 e,8		LAFOLK Flam & Kining	9 07/6									5								

~
DATA
⋖
Ω
TEST
ΩŽ
Œ
E
FATIGUE
\supset
G
L
4
Ŀ

				<u></u>																		<i>-</i>				,			
FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.															***************************************	.5670	. 2990	.2020	.1320	,0835		03760	0260	.0210	0810.	0110	0210	00107
FRA	FLIGHT H	15600	14800	14400	1 3600	1,5200	12400	11600	11200	10800	10400	0096	9200	8800	8000		6 6806	6400	0000	5600	5200	4.000	40%	3600	3.200	2800	2 400	2000	, 0.00
	BLK #	200	33	35	, 34	322	31	252	28	-22	25.6	24	23	776	102		12.01	9/	100	ý.	5	*	01	6	00	1	9	\\ \frac{1}{4}	
	j			l	83 in	(+3.5	1		0	CO CO						ゝ	U							N	1			27	
FATIGUE TEST DATA	SPECIMEN NUMBER: IOT (Open)	SPECTRUM: 400 hr (A)	TEST DATE: 8-25-83 //	" " " " " " " " " " " " " " " " " " "	" 4.0045 IN 2035 HOLE DIAM .4395 A . 6083	MAX STRESS $\frac{28}{6}$ KSI FREG. 1 LIFE = $\frac{24}{6}$ ($\frac{6}{6}$ C)	-	ENVIR. CUNDE. 2.5 TO NACI PREPS. PC	CYCLES TO FAILURE GE1499 14 St. 2 11RF = 0	्राते हा	TTCI /600 FLIGHT HOURS	Smalles Flowe ore"B		Carried Flanks Com	36/8														

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.						-										, 66CC	.2720	,1130	.0540	し、いついつ
FRAC	BLK # FLIGHT HRS.	29 1 5600	37 14800	35 14000	35 1 5200 32 1 2800	31 12400		27 10800	26 10400		21 8400	7600	91 6400	7 500	12 4800		10.48 4:92		2500	21,000	- C111
FATIGUE TEST DATA	SPECIMEN NUMBER: 108 (ODED) B	SPECTRUM: 400 hr (A)	TEST DATE: 8-26-83 //	W 2.0045" TH .3030"HOLE DIAM ,4395" A .6074	MAX STRESS 28 KS, FREQ. 1 LIFE = 2 ABUS (Fact)	Jonath I	FAEFS: FC	CYCLES TO FAILURE 401239 1d pts % LIFE = 52	TTCI /097 FLIGHT HOURS		Larger Flaw = ,660°B					Ц					

CTOGRAPHIC DATA	CRACK LENGTH IN.	. 44.5	266	26.5	,2305	.2055	181	, 163	149	.136	- 12/5	301.	.095	. 0885	.082	570.	. 0695	T90'	590'	059	950'	1051	.0465	640.	.0415	BEO.	,036	,034	1 650,		0.30					.023		
		43596	41 800	42400	42000	41 600	41 200	40 8 00	40400	40000	20 4 20	38 800	38 400	38 000	37600	572.00	26800	36400	36000	25600	3520	34 800	34400	34000	13600	33 2 00	328 00	324 00	32000	31600	31200]			1	292.00	}	
	BLK #	10899	1001	106	105	104	103	102	101	7007	100	44	96	95	46	43	92	16	90	89	88	18	98	85	84	\mathcal{B}	8%	S	B	49	22	1	. }.	j	1	73	1	
DATA	(Open Hole)				//		4.4395 A 6076 In-	•	LIFE = 16 days (Slow)		PREPS. D.C.	_	d pts % LIFE = 545																							GREAT AND		
FATIGUE TEST I	SPECIMEN NUMBER: (09	1	SPECTRUM: 400 hrs (A)	A C . / C . C . C . C . C . C . C . C . C	TENT DAILE: CO-CO CO		2,0055 TH. 5050 HOLE DIAM 4395 A		AX STRESS 28 KC, FREG. 1 LI		NVIR. CONDS. Dry		YCLES TO FAILURE 4/72937		TCI 28000 FLIGHT HOURS		Smaller Maw 5.300'C	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Larger Flow = , 443°C									-				ŧ					

																								1		_								 -(·	{·
FRACTOGRAPHIC DATA	CRACK LENGTH IN.		.570	. 3030	210	061.	. 168	47	671	660	980'	,075	990) 60/	,051		0.37	.033	.031	,027	.0255	.0240	0215	020	.0175	,0165	٦.	0410.	4	0210	┥・	0010				
FRAC	HRS.	31600	31235	20800	30000	2000	29200	28800 70104	20000	00912	27200	26,800	26400	26,000	25,500	24800	24400	24000	23600	23200	22800	22400	22000	21600	21200	2000	20400	0000	9600	7200	0000		17600	17200	00891	00491
	BLK #		130.00		75	17	26	3/2	i,R	69	68	6	35	6	0,0	62	19	90	67	58	52	56	55	54	55	54	5		42	25	小	, L	777	43	42	41
FATIGUE TEST DATA	SPECIMEN NUMBER: 110 (Open Hole)	SPECTRUM: 400 hr (A)		TEST DATE: 8-30-83 //		" 4395 A -6126 IN . 3045 HOLE DIAM . 4395 A -6126 INT		in sines - LOKS FREN, 1 LIFE = 16 days (Slow)			CYCLES TO FAILURE JORDINI JAC 7 11EF = 200	ומי היצור אי הדונה	TTCI /8 400 FLIGHT HOURS		Smaller Maw = 445" B		LORICE Flaw = 570° B		と										り ・ ・ ・ 							2×

.2240 .1435 .1030

-
DAT!
A
D
TEST
Ñ
뷀
GUE
2
9
Η
S
FATT

SDECTMEN NIMBER. 112 (T. 14-T.)	BLK #	FLIGHT HRS	BLK # FLIGHT HRS (CRACK LENGTH IN)
1	07	16000	• WI WITH THE
SPECTRUM: FIG-400hr (A)	39	1 5600	
	38	1 5200	
TEST DATE: 10-28-83 //	37	14800	
	56	14400	
TO CCA" THE TACA" HOTE DIAM ANIC" A CAC	35	14000	
1000 A CIPTIMIN 41011 COC. 111 COO.	34	1 3600	
	33	1,5200	
MAX STRESS ZOKSI FREG. 1 LIFE = Z days (Fast)	32	12800	
	31	12400	
ENVIR. CONDS. 3.5% Nacl PREPS. D.C.	30	12000	
	- 29	11600	
CYCLES TO FAILIRE GOOD A	28	11200	
	- 27	10800	
TALL TOTAL UNITES	56	10400	
TICE STOP FLIGHT HOURS	22	10000	

FRACTOGRAPHIC DATA	H	1 5600	15200	14800	14400	14000	13600	1,3200	12800	12400	12000	11600	11200	10800
FATIGUE TEST DATA	SPECIMEN NUMBER: 1 3 (Open Hall) BLK	L./A)	STATISTICS TO STATE OF THE STAT	TEST DATE: 9-2-83 //		11 0 000 " mil 2 01" "norm nam 11 " , , , , , , , , , , , , , , , , ,	" 4.0020 11.3045 HOLE DIAM .4400 A . 6096111 34		MAX STRESS ZBKS FREG. 1 LIFE = Z Weeks (Slow) 32		ENVIR. CONDS. 3 5% No. 1 PREPS PC 30		لــ	STATES OF THE STATES OF THE STATES ST

+	-	-	+-	-	1-	+-	1 -	1	+	t	t	1		_		1-	1-	1	_	1		t-	Г
																		.6145	.1640	.0695	.0260	.0165	7000
2000	9600	9200	8800	8400	8000	2600	7200	9089	0049	0009	2600	5200	4800	1 0044	0004	3600	5200	2806	2400	2000	1600	1200	OOR
1	77	23	- 22	21	50	161	18	12	16	15	14	15	12	-	10	6	8	7016	9	5	4	3	م
								7				_						S	į.			1726/	
						24 9600 25 9200 22 8800 21 8400 20 8000													24 9600 25 8800 21 8400 20 8000 19 7600 17 6800 16 6400 16 6400 17 6000 18 5200 9 3600 9 3600 9 3600	24 9500 25 8800 20 8000 20 8000 19 7600 17 6800 16 6400 17 5600 1 7 6000 1 7 6000 1 7 6000 1 8 5200 2 806 2 7016 2806	24 9500 25 8800 20 8000 18 7500 16 6400 15 6000 17 5600 18 7500 19 7500 10 4,000 9 5500 9 5500 5 2000 5 2000	24 9500 22 8800 21 8400 20 8000 18 7200 16 6400 17 6800 17 6800 18 7200 19 7600 10 4000 9 3600 9 3600 9 3600 1 4400 9 3600 1 1 4000 9 3600 1 1 600	24 9600 22 8800 21 8400 20 8000 19 7600 17 6800 17 6800 17 6800 18 7200 17 6000 1 4400 1 4400 1 4400 1 5 5200 1 600 1 600 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FLIGHT HOURS

875

- 1	
-	
- :	
-	
_	i
\triangle	ı
_	ı
1	
e .	
=-1	
m	
331	
8	
\mathbf{z}	ı
انظ	
5	ı
1	
回	
回	
BUE	
9	
9	
9	
TIGI	
9	
TIGI	
TIGI	
TIGI	
TIGI	

1/4 (Bolt-In) Huk # Fill Hiff His, CRACK LENGTH 1/4 (Bolt-In) 1/4 (Bol	FATIGUE TEST DATA		1	PHIC DAT
1 1 1 1 1 1 1 1 1 1	SPECIMEN NUMBER: [14 (Bolt-In)		FLI	CRACK LENGTH IN.
14800 1440	F16-400 hr (A)	38	1,5600	
International 1	11 -31-83 //	22	14800	
17FE = 2 days (Fast) 32 12800 1200	TH. 3015" HOLE DIAM. 4390' A. 6042 102	35	14000	
PREPS. T.C. 29 12400 120000 120000 120000 120000 120000 120000 120000 120000 1200000 1200000 12000) - 1 C = ####	55	1,5200	
PREPS. To.c. 20 12000	LIFE - LADYS (31	12400	
28 11200 27 10800 2 27 10800 2 28 10000 2 28 8800 2 28 8800 2 28 8800 2 20 8000 2 21 8400 2 20 8000 2 21 8400 2 20 8000 2 21 8400 2 20 8000 2 2 8000 2 3 1200 2 3 1200		S 57	12000	2
25 10000	6	28	11200	
25 9200 27 9200 28 8800 20 8000 20	and pes 6 LIFE		10800	
22 9200		25	10000	.5180
22 8800	F KAN "B	57	0096	. 3530
20 88000 20 8000008 19 760005 17 680005 18 720003 19 140003 10 140003 10 140002 11 140002 12 280001 12 280001 13 220003 14 160003 15 280001 16 6 240001 17 280003 18 220003 19 160003	0 000 = Moll	22	9200	-
20 8000 19 7500 18 7200 17 6800 17 6800 18 7200 19 7600 10 4000 10 4000 10 4000 10 4000 11 1600 12 2800 13 2200 14 1600 15 2800 16 2400 17 2800 18 2200 19 2600 10 4000 10 4000 10 4000 11 1600 12 2800		77.	8800	. 1640
18		- V	8000	1185
18		61	2600	10000 00000
17		18	7200	0550
16 6400 .C24 15 6000 .C3 17 5200 .C3 18 5200 .C3 10 4000 .C3 11 4400 .C3 10 4000 .C3 10 10 4000 .C3 10 10 10 10 10 10 10 10 10 10 10 10 10 1		12	6800	
5 6000		16	0049	.0410
14 2600 O2 O2 O2 O2 O2 O2 O2		15	0009	5950'
12 4800 022 11 4400 021 10 4000 021 9 3500 T 021 8 5200 T 021 6 2400 C 021 5 2000 T 021 6 2400 T 021 5 2000 T 021 6 2400 T 021 7 2800 T 021 6 2400 T 021 7 2800 T 021		7	2600	.0315
11 4400		7	2200	141
10 4000 COIG		7 -	4000	M
9 \$600 8 \$200 7 2800 6 2400 5 2000 4 1600 3 1200 2 800		02	0007	000
8 5200 7 2800	N	6	3600	0110, 1
2800 Y OI 2400 2000 1600 1200 800		8	5200	0150
7 1 2 5 6		7	2800	1.0125
		9	2400	
		7	2007	
		7	1600	
		1	008	
		J	007	

FRACTOGRAPHIC DATA	CRACK LENGTH IN.																	,3955	.1325	.0795	0150.	0350	.0210	.0145	.0095										
FRACT	FLIGHT HRS. C	1,5600	15200	14400	13600	1 5200	12800	12000	11600	11200	00701	10000	0096	9200	8800	8000	0092	7245	0089	0049	0009	5600	5200	4800	1 0044	1 000	3600	5200	2800	2400	2000	1600	1,200	800	400
	BLK #	29	338	36	777	33	32	30,	- 59	28	78	25	54	23	25	700	6	18.112	12	16	15	14	13	12	11	0	6	8		٥	7	47	3	7	
FATIGUE TEST DATA	SPECIMEN NUMBER: 115 (Open Hole)	SPECTRUM: 400 br (A)		, , , , , , , , , , , , , , , , , , ,	W 2.0110" TH .3035" HOLE DIAM .4395" A .6103 IR		MAX STRESS ZB FREG 1 LIFE = 2 WEEKS (Slow)	ENVIR CONDS 3 5 7 N. C. PREPS DC	1787 67 6:0	CYCLES TO FAILURE 693464 Wate % LIFE # 91		TTCI 4440 FLIGHT HOURS	Small a Hand = 11.10	の一大で、「ロー」という。		Larger 1/2W = . 5955 B			2					776				5							

DAT	
TEST	
IGUE	
FAT	

FRACTOGRAPHIC DATA	S. CRACK LENGTH IN.							1		~ / / / /	.7600	.3625	.2820	12155	0091.	OII.	0320	,0485	.0400	0310	.0245	.02.10	00/0	,0145	- O120	.0085					
E	# FLIGHT HRS.			14400	1,3600	13200	12400		11600	1	$\frac{1}{1}$						_	7600	-	_		_		2500	4800	_	0004		+	2400	1600
	BLK			36	山。山		とを	2	62	N A SE	1	(A)	77		22	<u>ال</u> م	2	=	81		16	1.5	<u>*</u>	1	72/10		2	<u> </u>	I		
FATIGUE TEST DATA	SPECIMEN NUMBER: [16 (BOIL-In)	SPECTRUM: FIG-400 hr (A)	TEST DATE: 10-31-83 //		W 2.0095" TH .3015" HOLE DIAM .4395"A .6059	NAV CTDEC OR OF THE THE THE TABLE OF THE TAB		ENVIR. CONDS. 3.5% N.C. PREPS D.	.	CYCLES TO FAILURE 103712314 pts % LIFE = 12		TTCI 4549 FLIGHT HOURS	Smallen Flam: Ach' R			(zreck Flow = .5660°C				7											

DATA	
- :	
_	
• :	
-	
_	
\sim	
_	
_	
_	
u	
TEST	
21	
_	
_	
_	
F+7	
5	
2	
30	
9	
8	
IGU	
TGUE	
TI 60	
ATIGU	
ATIGU	
ATIGU	
FATIGU	

FATIGUE TEST DATA		FRA	FRACTOGRAPHIC DATA
SPECIMEN NUMBER: 117	BLK	# FLIGHT HRS.	CRACK LENGTH IN.
Specifical Electronia	,0	3,600	. 435
	138	3/200	.288
TEST DATE: 12-9-83 //		30800	.230
		20100	561,
W % CAAA A MITT DIAM WALL THE TANK A MAINTENANT	4	00000	. 164
.	¥	20000	. 35
MAX STRESS 28 KSI FRED. 1 LIFE = 16 days - Slower	12/21	28800	.107
	ורי	78400	.018
ENVIR. CONDS. Dry Arr PREPS. PC	_	28000	680
[300	27500	97.0
CYCLES TO FAILURE 3062988 % LIFE = 400	6	26800	090
	3	26,400	7.40
TTCI 23,600 FLIGHT HOURS	65	76,000	040
1 2 mor Flans 1576. B	19	25600	,034
1207ge 1007 : 200 10 10 10 10 10 10 10 10 10 10 10 10 1	6	25.200	.027
STOLET FINE . 425"0	29	24800	220'
	ō	24400	.0185
	9	24000	,0135
	Sq.	73600	010.
ノノの語言と	58	23200	
	57	22800	
	56	22400	
	55	22000	
	54	21600	
	52	21200	
	52	20000	
	<u></u>	20400	
	200	70000	
	49	00961	
	<u>8</u>	0026	
	14	18300	
	9	0040	
	4	0003	

4
4
0
rest
B
9
1-4
E
~
Œ,

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	,5490	.4065		,2355	.1850	1515	.1250	,1020	08.30	5690.	0650	5850'	,0486	.0430	, 0389	0340			-		,022	.020					0.555						0010.								
FRA	FLIGHT HRS.	16008	15600	7500	0004	14400	14000	00001	1,5200	12800	00421	0007	000	0021	00001	10400	10000	0096	9200	8800	8400	8000	0097	7200	0089	0049	0009	2600	5200	4800	14400	000 †	3600	5200	2800	2400	5007	1600	1200	800	400	
	<u>m</u>		2/2	3	*	2	7	7	35		7	2/2	200	0 5	1	9	52	24	. 23	22	121	ଥ	19	18	17	16	15	Ë	13	12	=	0	6	8		ام	4	7	7	2	-	
FATIGUE TEST DATA	SPECIMEN NUMBER:		SPECTRUM: 400 hr (A)		TEST DATE: 10-18-85 //		U - CORAT THE NAME DIAM AAIS A A THE	TUE 1001 A CIPT. 1914 MAN FOCT IN COLET.	•	MAX STRESS ZELESI FREG. 1 LIFE = Zdays - Fast (FM-250)	;	ENVIR. CONDS. 3.5% Naci PREPS. Done		CYCLES TO FAILURE 15321/ 14 Cts % 1.1FF = 700	, car	, , ,	TIOT 2200 FLIGHT HOURS	1 5/2 - 1 5/2 B	Larger 1108 - 347 0		Smaller 1/0W= 213 B																				2×	

SPECIMEN NUMBER: 123 (Bolt-In)	#	FRA FLIGHT HRS.	FRACTOGRAPHIC DATA HRS. CRACK LENGTH IN.
SPECTRUM: 400 hr (A)	38,3	15600	3610,
TEST DATE: 10-21-83 //	73	14800	.0140
	2,50	17,000	,0120
L'ANT / Y "Y PY WYIN AIDH, Y Y Y Y Hu " Y D Y Y O H		0054	5010.
-	14	1 3200	0600
MAX STRESS 28 25 FREC 1 LIFE = 2 43 (Fact)	32	12800	
	31	12400	
FINATE COMPS Z Z Z NI L PREPS Z	1	12000	
1	- 29	11600	
CYCLES TO FATILIBE - 1800 AU 11 11 % - 11 11 12 236	28	11200	
e de pro	- 26	10700	
TTCI 13 868 FLIGHT HOURS	25	10000	
	24	0096	
	23	9200	
	22	8800	
4	21	0048	
てきない。このは、このは、このは、	20	8000	
	19	0094	
Smaller Flaws. 250"3	18	7200	
	17	0089	
	16	0049	
	15	0009	
	14	2600	
	13	5200	
	12	4800	
	-	4400	
9	10	000 †	

X

					٠,																						 -				
FRACTOGRAPHIC DATA	CRACK LENGTH IN.		0440	.0400	0315	0270	5210'	,0145	.0000																						
FRAC	# FLIGHT HRS.	15600	14800	14400	13600	1,5200	12800	12000	11600	11200	0000	10000	0096	9200	8800	8400	0000	0000	6800	0079	0009	5600	2500	4800	4000	2600	5200	2800	2000	1600	-
	BLK #	676	37	36 35	X	33	35	-k	53	28	ik ik	252	54	53	25	7	36	242	12/2	16	15	77	<u> </u>	7	9	6	_Σ	上	ام	7	-
FATIGUE TEST DATA	SPECIMEN NUMBER: 124 (Bolt-ID)	SPECTRUM: El6-4cohr(A)	TEST DATE: 10-01-93		W 2.008" TH. 3015" HOLE DIAM .4435" A .6054 Inc	,	MAX STRESS 28 KS1 FREQ. 1 LIFE = 2 clays (Fast France)		rates: NO	CYCLES TO FAILURE 160807 14 54 % 11FF = 210	2 577 101	TTCI 11 600 FLIGHT HOURS					Karacr 1/am - 4/60 0		Sealled Flow = 150 B						5						

FATIGUE TEST DATA		FRA	FRACTOGRAPHIC DATA
SPECIMEN NUMBER: 125 (Bolt-In)	BLK #	FLIGHT HRS.	CRACK LENGTH IN.
, ,	36%	1 5600	
SPECTRUM: FIG-400hr (A)	38	15200	
TEST DATE: 10-28-83 //	77	14800	
	٥,	00441	
	22	14000	
14.2003 IN . 2003 HOLE DIAM . 4405 A . 6069117	7,	0000	
	22	1 2500	
(AX STRESS 2.8 KS) FREQ. 1 LIFE = Z days (Fast) -	75	12000	
	7	12400	
INVIR. CONDS. 3.5 % Nacl PREPS. No	200	11600	t
	28	11200	
SYCLES TO FAILURE 991497 Hats. % LIFE = 129	27.	10800	
	26	10400	
rtci 5727 flight hours	25.89		. 6545
	24	0096	.3355
	23	9200	,2275
	22	8800	.1535
くるが、このう、このかの	21	8400	.0930
	20	8000	050,
Same Marie Marie	19	2600	.0405
•	18	7200	.0345
	12	6800	.0245
	16	0049	. O180
724	15	0009	.0130
	14	5600	.0075
	-5	5200	
	77	4800	
		0044	
	2	4000	
	6	3600	
	ρ	5200	
	4	2800	
	٥	2400	
	4	5007	
	4	1600	
	4	1200	
	7	000	
- XX	-	400	

FATIGUE TEST DATA

	_	•	FRACTOGRAPHIC DATA
SPECIMEN NUMBER: 126 (Bott-In)	BLK #	FLIGHT HRS.	CRACI
SPECTRUM: FIG-400 br (A)	62	3,500	0545
	(B)	3/200	040
TEST DATE: 11-28-83 //		30800	.046
	9	30400	,041
W 2.009" TH . 304" HOLE DIAM AA35" A 6000	12	30000	.0375
- TOOLA COLL TIME TO TOOLA A 10077 IDE	14	27600	,034
	2	00762	,031
" A SINCE OF SI FREN, I LIFE = CARYS (FAST)	75	28800	.029
		78400	
ENVIK. CONDS. 1) CV AIR PREPS. NO	2	78900	: #
	69	00912	
CYCLES TO FAILURE 3449030 11349 11FF 1450	89	27200	
OCH - 4377 WCM BY - 420	62	26,800	
TTCI 23 600 FLIGHT HOURS	3	26,400	
	6	26000	,015
	19	25600	
	6	25.200	-
	79	24800	
(aracr Flaw = 270° 2	9	24400	
	9	24000	5010.
	57	23600	0010'
C//2 Fams, 250'B L	58	23200	
July 18 Sept Allen	57	22800	
	56	00tZ	
	55	22000	
	54	21600	
	55	21200	
	52	20800	
	_		

0

36,0,35

-
L
4
DAT.
ST
TEST
_
GUE
FATI GU

FATIGUE TEST DATA		FRA	FRACTOGRAPHIC DATA
SPECIMEN NUMBER: 127 (Bolt-In)	BLK #	FLIGHT HRS.	CRACK LENGTH IN
SPECTRUM: FIG-4CODE (A)	62	31600	
// X. 0 - 01 11 CONT BOOM	-77	30800	
lest unie:	9)	30400	
THE PLANT AND A COLUMN AND A COLUMN AND COLU	2	00000	
W 4:00 11, 3003 nous biri, 4413 A:6010 Int	2	29200	
MAX STRESS 28 24 FREG. 1 LIFE = 24 245 (Fact)	72	28800	
	;;	28400	
ENVIR. CONDS. DE AIR PREPS. None	900	7600	1
	68	27200	
CYCLES TO FAILURE 236BEGS 14 145 % LIFE = 504	29	26,800	
	3	26400	
TICL 14 OOO FLIGHT HOURS	6	26,000	
	107	25500	
	62	24800	
	61.8	24748	764.
1019c1 1031 4110	90	24000	,231
	59	23600	83
Smalled May = . 470 0	58	23200	. 153
	57	22800	1245
	56	22400	160'
	55	22000	.082
	54	21600	0,0
	3	21500	5000
	52	2000	-0.54-
	3	20400	.049
	250	00000	.0445
	43	00961	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	8	19200	. O365
	4	18800	.033
	96	18400	020
	45	0000	.027
	Y	()	1

17200 16800 16400

*

1,600

FATIGUE TEST DATA		FRAC	FRACTOGRAPHIC DATA
SPECIMEN NUMBER: 127 (cont.)	BLK	# FLIGHT HRS.	CRACK LENGTH IN.
SPECTRUM:	36	1 5600	10140
1717		1 5200	
TEST DATE:	***	14800	0010,
W HOTE DIAM	22	14000	5900'
	7,7	1,5600	
MAX STRESS FREQ. 1 LIFE =	32	12800	
	31	12400	
ENVIR. CONDS.	3/2	11600	:
CYCLES TO FAILURE ** LIFE **	80 F	11200	
	1	0000	
TTCI FLIGHT HOURS	25	10000	
	77	0096	
	23	9200	
	7	8800	
	y C	8400	
-	g k	2000	
	74	0,000	
		(200	
		0079	
	15	0009	
	E	5600	
	-	5200	
	2	4800	
		0044	
		4000	
	7	2600	
	ok L	2200 2800	
	1	21,000	
	- Ի	2000	
	1	1,000	
	<u></u>	1200	
	1	800	
	y	000.	
		400	

											3	NA	DC	- 8	331	.2	6-1	60.	-V(OL.	•	I.	V									•		 }-		- 1 ·
FRACTOGRAPHIC DATA	CRACK LENGTH IN.		1484	3/5	. 243	./79	148	124	260.	670.	.066	.053	.042	.033	027	.023	020	0/35	0/0		,															
FRAC	FLIGHT HRS.		42,835	42,400	42000	41600	4/200	40 400	40 000	39600	39200	38800	4	0000	37600	41.00	36 4.00	36,000	35600	: ·	1 . a.j.			***							••••					
	BLK #	,00	10%	907	705	107	50%	12	00/	66	98	16	92	20	74	3	41	06	83	8	.7	9	: 5	4	7	7	-		7		9	5	#	7	7	-
FATIGUE TEST DATA	SPECIMEN NUMBER: $/28$ (Boll-In)	SPECTRUM: F16-400hg(A)	TEST DATE: 11-29-83 11		W 2,0030 TH . 3045" HOTE DIAM 1124" 1 1 100	"212000 A . 6077 IN 12 DIMI : 4420 A . 6077 IN	MAX STRESS 28 K, FRED 1 1 TET 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ĺ	ENVIR. CONDS. DNV PREPS ALL		CYCLES TO FAILURE 4/1011/ 14 pls 2 1TFF = 532	" " " " " " " " " " " " " " " " " " "	TTCI 35 600 FITCHT HOIRS	1		LARGER FLAW = 448 (8)				The state of the s	SMALLER FLAW = . 4// (B)							n								2×

									 -	A A									_+			+	 t	+	,	+	,					-+	-	- r		
FRACTOGRAPHIC DATA	CRACK LENGTH IN.			7478	3006	.2115	1,490	6080	.0720	.0565	.0480	0350	0240																							
FRAC	FLIGHT HRS.	15600	14800	1400	13600	1 5200	12800	12000	11600	11200	0800	10000	0096	9200	8800	0048	2000	0097	002/	6800	0049	0009	5600	5200	4800	0044	0004	3600	5200	7800	2400	5000	1600	1200	800	400
	BLK #	339	72	35	34	33	32	; &	53	28	1,6	25	24	1.25	22	21	2	240	0		16	2	14	-5	2		2	6	8		و	7	7	~	7	P
FATIGUE TEST DATA	SPECIMEN NUMBER: 131 (Bolt-In)	SPECTRUM: FILO -400 hr (A)	TEST DATE: 12-14-83 //		W 2,0035 TH. 3045 HOLE DIAM 4420"A . 6100 Int		MAX STRESS ZB KSI FREG. 1 LIFE = 16 days (Slow)	CATAL IN DEGREE IN	ENVIR. CUNDS. 2.2 /0 NACI FREFS.INC	CYCLES TO FAILINE 124 OCOL14 AK 2 LIFE = 17K		TTCI 8359 FLIGHT HOURS				Larger 1800 = ,416 C		SmolleR / Jaw . 400 B																		×××

-	
E	
=	
DA	
_	
- 1	
_	
TEST	
94	
G	
=	
=	
- 1	
_ 1	
f-71	
띧	
9	
8	
60	
_	
FATT	
- 7	
4	ı
-1	ı
124	į

																												_				
FRACTOGRAPHIC DATA	CRACK LENGTH IN.								• • • • • • • • • • • • • • • • • • • •																512	.373	. 276	189	. 153	.121	.098	.086
FRAC	FLIGHT HRS.	31600	3/200	20400	20002	29600	28800	28400	77600	27200	26,800	26,400	26000	25600	23500	00017	24000	22600	73200	22800	00tZ	22000	21600	20000	204.35	20000	00961	00261	16800	004/81	18000	00921
	BLK #	62	92,	92	25	177	22		200	68	29	3	6	107	36	70	09	49	58	57	56	55	54	52	L	20	49	48	14.	46	47	44
FATIGUE TEST DATA	SPECIMEN NUMBER: 132 (Belt-In)	SPECTRUM: FIG-400 br (A)		TEST DATE: 12-10-03 //		" 4:000 III : 20.75 HOLE DIMI, 44105 A . 6079 ID	MAX STRESS 28 KS1 FREG 1 LIFE = (L, A 2, Le (SL, 1))		ENVIR. CONDS. 5.5% Nacl PREPS. No	rut + %,	CICLES 10 FAILUNG 1436024 19 pts. LIFE - 255	THE 9300 ETTERT HOIDS				Larace Flan = .512"C		CA 11.1 F/2.12 0377.0	CIDALK LOS							n						

FRACTOGRAPHIC DATA	# FLIGHT HRS. CRACK LENGTH IN.	1,5600	15200	14800	14400	14000	13600	1,5200 1.026	12800	12400	12000	11800	11200	1,000	10400	2000	0006	9200	8800	8400	8000		7200 1	0089	00/19	0009	1 2600 1	5200 (t 4800 · i	0044	4000	3600		2400	2000	1600		.800	1 004
	BLK	39	38	73	2	52	77		27	7			200	1	SK.	水	ずら	3	7	7	2	6	8	12	16	1.5	41	13	12		0	6	ρ	او	7	7	7	7	
FATIGUE TEST DATA	132 (Cont)			//			HOLE DIAM A		FREC. 1 LIFE =		PREPS.		F HILE	1	FLIGHT HOURS																								
·	SPECIMEN NUMBER:	SPECTRUM		TEST DATE:		1.1			MAX STRESS		ENVIR. CONDS.	!	CYCLES TO FAILURE	•	TTCI 9300 FL)											-		•											-

FRACTOGRAPHIC DATA	BLK # FLIGHT HRS. CRACK LENGTH IN.	1,5600	38 15200 .2410	14800	12000 - 18.00			12400	12000			_	00401	25 10000 , CARS	0096			10092 1 61		 5210' 0009 51	14 2600	13 5200	12 4800	11 4400	10 4000 1.0105		7 2800	2400	5 2000	1,000
FATIGUE TEST DATA	SPECIMEN NUMBER: 140 (Bolt-In)		SFECTION: TO THE TOTAL (A)	TEST DATE: 12-1-83 //	NV LOW THE TAKE THE NAME OF A CASE OF THE	חדשדת	(1-2) $(2-1)$ $(3-1)$ $(3-1)$ $(3-1)$	חזרת	ENIVER COND. T. A.	TIME COMPANIE THE STATE OF THE	•	CYCLES TO FAILURE 1672744 ADES 6 LIFE = 418		TICI 3857 FLIGHT HOURS			Karger Maw S850 D	S-11. Fam=. 500 R												

K

090

093

356

324

2004 1009 1008

Apts " LIFE =

2106431

CYCLES TO FAILURE

ENVIR. CONDS.

PREPS.

MAX STRESS 28 KS1 FREQ. 1 LIFE = 2 days

.239 267

191

392

0.52

FATIGUE TEST DATA

AMAR OTHER DAMA	BLK # FLIGHT H	6.	8	9	6055 22000 48A	
VIVA TOTA TOTAL	SPECIMEN NUMBER: 141 (Fxit-Th	SPECTRUM: FIG-400 hr (A)	TEST DATE: 12-05-83 //		W 2,0115" TH .3010"HOLE DIAM .4415" A . 6055.2	

00	184	081	}	1600	I	1400	9	2	æ	4	0	9	7	ì	76
	45	45		40	1	35	34	33	32	31	30	.23	28	1	23
		- 17-			×	16-15	Acres	e sec			2000	e line	E es	170	
į													3		

045 037 033 025

022

019

O O

%

TTCI 9200 /FLIGHT HOURS

Smaller Flaw -. 175

FRACTOGRAPHIC DATA	CRACK LENGTH IN.														2127		3460	1	. 2765	.2465	,2260	.2065	1755	1.545	1350	0211.	1025	0690	.0765					.0365	0360
FRAC	FLIGHT HRS.	31600	30800	30400	00962	29200 28800	28400	28000	27,200	26,800	26400	26,000	25600	74800	24100	24000	23600	73200	22800	00t22	22000	- 51 6 00	21200	20800	20400	00000	00961	00761	1,800	0048	0003	17600	17200	16800	0049
	BLK #	27		376	7	22	12	200	89	67	3	3	107	200		90	1.59	58	57	56	55	54	55	52	7	200	45	\$ 1	14.	25	42	44	43	42	4
FATIGUE TEST DATA	SPECIMEN NUMBER: 142 (Bott-In)	SPECTRUM: FILE - 4 COOPE (A)	TEST DATE: 12-07-83 //	•	W 2.0035" TH .3010" HOLE DIAM , 4415" A .6031 In	MAX STRESS JR Je , FREG 1 LIFE = 7 Je / (F. L)	-	ENVIR. CONDS. Dry Air PREPS. D.C.		CICLED TO FAILUNG COOKING OF A LIKE = 505	THE 10 Acc BITCH HOURS	TICL 12 4 OC FLIENT HOURS				Karger Flaw - 4715 B		Smaller Flaw = .250"B																	ZX

FAI	FATIGUE TEST DATA			FRA	FRACTOGRAPHIC DATA
SPECIMEN NUMBER:	142 (cont.)		BLK #	FLIGHT HRS.	CRACK LENGTH IN.
SPECTRUM:			11	15600	
TEST DATE:	//			14800	
11			35	14400	5210.
M.I.	HOLE DIAM	A	34	1,5600	
MAX STRESS	FREC 1 LIFE =		32	12800	
		***	31	12400	0010.
ENVIR. CONDS.	PREPS.		25	12000	* * * * * * * * * * * * * * * * * * *
CYCLES TO FAILURE	6	1.TFR 4	28	11200	
	8/	7777	7,7	10800	
TTCI FLIG	FLIGHT HOURS		983	10000	
			54	0096	
			55	9200	
		•	275	8800	
			202	8000	
			19	7600	
			18	7200	
			12	0089	
			16	0049	
			2	0009	
			<u> </u>	2000	
•				7200	
			E	0017	
			0	7000	
-			6	3600	
			8	5200	
				2800	
			ام	2400	
			1	2000	
			*h	1200	
			2	.800	
			_	004	

FRACTOGRAPHIC DATA	RACK LENGTH IN.			544	.382	.2875	184	. 160	, 121	.089	.072	190	OAC	C.345 +
FRAC	BLK # FLIGHT HRS. CRACK LENGTH IN	0	7	55.49 16646	55 16500	16200	2 15900	4 156cc	15 300	0 15080 I	19 14 700	-8 144CO	7 14100	1300
FATIGUE TEST DATA	SPECIMEN NUMBER: 500 Open Hole	SPECTRUM: F-18 300 hr	TEST DATE: 2-1-84 //		W 2.0240" TH ZOZO" HOIT DIAM 2460", 123	יים ביים אים מחודי וייים ביים מואסייים או אים ביים	,	THE STREET COKSL FREIL (35¢ (FM= 250)		ENVIR. CONDS. 3,5%, Nacl PREPS.		CYCLES TO FAILURE 174 A. C. 11 A. WITTER	יייייייייייייייייייייייייייייייייייייי	

LARGER FLAW = .544

SMALLER FLAW= , 305

FRACTOGRAPHIC DATA	# FLIGHT HRS. CRACK LENGTH IN.	.372"	192 00	-00 1890	00 . 1255	100	500, 064	-00 OO	00	000	000	がながり					•	
VIVA ICAT COSTUT	SPECIMEN NUMBER: 301 OP-0 HAL BLK # FLIGHT	40	SPECTROM: F-18 SOOHr	38	TEST DATE: $\angle -1 - 24$		W 2.0030" TH 3038" HOIE DIAM 440", 1, 00 -	201 he aregoon a ALLE		THE STREET TO KST FREST. (256 (FM= 250) 32 96		ENVIR. CONDS. 3.5.7 N Z i preps	ı	CYCLES TO FATLING 10700 (1) 11 0 0 1 TELL 18	7 1 1 1 1 1 1 1 1 1	TTCI 0.77 TITUTE UNIDE	TOTAL TOTAL BOOKS	

SMALLER FLAW= , 301" B

LARGER FLAW = . 438" B

											•	NA	\DC	: - 8	31	.26	-6	50-	-V	OL	•	IV									
FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.	. 4690	.3750	270	07.1.	.1225	.0865	.000	.040	.024	40.	,005																			
FRAC	BLK # FLIGHT HRS.	39.12 11737	1/4	36 10800	0	34 10200	96,00	9300	30 4000	9	64	0018	9		3	2		0		20	, , ,	25	4	2	2		0	6	Ø	· ·	2
	圖	1	4	N.W.		1		<u> </u> "	<u> " </u>	ــــــــــــــــــــــــــــــــــــــ	18/1/20	71	1	<u> </u>	.[]_]		_[1	<u>ー</u>		<u> </u>	L	<u> </u>		_1	N N	l	_i_	 	ل
FALLGOE TEST DATA	SPECIMEN NUMBER: 302 Open Hole	SPECTRUM: F/8-300 hr (B)	TEST DATE: 2-7-84		W 2.001" TH .3030" HOLE DIAM 4450" & 1212		MAX STRESS 28 KS/ FREC. F2st (FM=250)		ENVIR. CONDS. 3.5% Nacl PREPS. None		CYCLES TO FAILURE 122725 14 pts		TTCI 8267 FLIGHT HOURS			Lynger FLAW = . 4070 (B)				SMALLER FIAW = 1175" (A)											東部を構造を必然

DAT	
PEST	
JUE .	
ATI (
[H	

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.					2 437	096.	2007	0 .156	130	112			, 048	7.04	028	1.017												
	BLK # FLIGHT 1	8		5.	4	71,51,2145	7 2/20	69 2070	68 20400	67 20100	65 198 00	64 1920	00681 69	180	33	60 BOOC	27 17700	6	9	5	†	1,5	. 5	 0	6	8	2	9	7-
FATIGUE TEST DATA	SPECIMEN NUMBER: 303 Open hole	SPECTRUM: FID SOODY	TEST DATE: 2-2-84- //	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	" 4.000 11 .202 HOLE DIAM :4415 A . 600/9102	MAX STRESS 26 KSI FREQ FAST (FM=250)		ENVIR. CONDS. 5.5 % Nacl PREPS.	CYCIES TO FAITINE 22 A 2 C LALL WITTE	Side	TTCI 17 323 FLIGHT HOURS		I ARGER ELAW = A2.7" P.					SMALLER FLAW = 256 B											

ATA	
T D	
TES	
GUE	
FATI	

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.			2 .4195	00 .2925	10 1805	07.51.	1025 100 1025	W 10530	0640.	T 0150 - 70	0.7.20	- CCIO													•		
	pen hole BLK # FLIGHT	6			IAM .44Cc." A .6050 inc 34 /02	33 99	FM=250) 32 9	`	INEED: 46 29 8	% LIFE #		200	+		2	0			9	2	th the second se	5:	2	0	Ω		9	一種できる場合
FATIGUE TEST DATA	SPECIMEN NUMBER: 304 O	SPECTRUM: FIB 300hr	TEST DATE: 2-1-84 //	. 4	W 2.0" TH . 3025 HOLE DIAM . 440	•	MAX STRESS 28 KSI FREG. FAST (F.	EMITTE CONTR. S. 197 11.	1	CYCLES TO FAILURE 1/2055 Wats	1	TTCI 73/0 FLIGHT HOURS		ABGEB ELAW = 人口に、兄			_	JUNICLER FLAW = , 2522 D										

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.	711	303	184	660'	0.72	1035	.072								•			•								-		
FRAC	FLIGHT HRS.	8/16/3	Bilod	1800	7200	6600	4300	5700				·		4.				(12 Hg/2)		÷							94		*
	BLK #	1226	72	2.5	24	22	7	20	8	-\-		_+	7	7	- c	9	8	6.	9	 7	7	v	a	6	α	2	9	4	#
FATIGUE TEST DATA	SPECIMEN NUMBER: 305 OPEN HOLE	SPECTRUM: FIB 300hr (B)	TEST DATE: 2-1-84 //	1	W 2,0045" TH. 3016" HOLE DIAM 4405" A .60.34 ID.	MAX STRESS OGDS: FRED FOR (FM= 250)	1 200 /	ENVIR. CONDS. 3,5% Nacl PREPS. PC	CYCLES TO FATTIRE GLACIA	acres of the	TTCI 5548 FLIGHT HOURS			LARGER FLAW - JUNO D			7	SMALLER FLAW = , 353 B											

_
8
6
-
-
\Box
_
_
_
-
t/O
(-1
G)
•
- 1
1
r-1
ш
旦
B
Œ
BUE
GUE
GUE
IGUE
lI GUE
TIGU
ATIGU
TIGU

FRACTOGRAPHIC DATA	FLIGHT H	5700 3060	54.00. 2385	2700	4500 .0950	4200 .0735	3600 1.055	3300 1,0140				·							ついて生た									***				
	BLK #	6	2			1 2	727	- 253 11	o	8			\ <u></u>	+	2	0	6	8		٥	\ 	7	삼	7	- c	b	F	6	7	†	2	- ×
FATIGUE TEST DATA	SPECIMEN NUMBER: 306 Open hole	SPECTRUM: FIG 300 hr	1	TEST DATE: 2-2-84 //	W 2.663" TH . 2645" HOIR DIAM 2010" 1 . 200	" E:500 III : 2013 HOLE DIMI HILD A . 60079 In	MAX STRESS 28 KS1 FREG.	MAD	ENVIR. CONDS. 3.5% Nacl PREPS. DC	CYCLES TO FATTIRE CACAL CACAL STREET	क टाक व	TTCI 3/4/ FLIGHT HOIRS			LARGER FLAW = .4010" B			SMALES THE TANKS	700							2						XX

4
E
⋖
DATA
TEST
S
Θ
H
Θ
=
GUE
Ы
FATI
FA
لىعا

FRACTOGRAPHIC DATA	FLIGHT HRS. CRACK LENGTH IN.					422	310	230	148	,1085	.0655	-0475	0230F		151101													
FRAC	FLIGHT H					9557.B	9300	9000	8400	8100	7,800	1200	69.00	6600	6.300			- 7			* .						0 4 in	
	BLK #	,00		ەنز	7	31.86		30	28	27	177 142 142	27.	23	22	7	00	100	6.	9	: ?	7	34	0	6	8	_	و	7
FATIGUE TEST DATA	SPECIMEN NUMBER: 307 Open Hole	SPECTRUM: FIB 300hr(B)	TEST DATE: 2-2-64 //	" " " " " " " " " " " " " " " " " " "	7019809, A CCPP, "MIU 2001 200, "1 2096107	MAX STRESS 28 ESI FREG.	(FH=250)	ENVIR. CONDS. 5,5 % Nacl PREPS. DC	CYCLES TO FAILURE 99943 (4 A. C. TIER - 11 TER -	रात र	TTCI 6/6/ FLIGHT HOURS		LARGER EL AW = ACC A LA CONTRACTOR LA CONTRA				1	SMALLER FLAW = . 274 D										

TA	
DA	
TEST	
GUE	
FATI	

		11	-		+			+	1				_	1	7	7	_	-1	1				-		-1		П		-			<u> </u>		_	•
FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN					.378	.335	1267	161.	527:	.155	./33	119	901:	,096		.077	.064	,051	.044	1034	,028	.024	1020	.015	100%									
FRAC	FLIGHT		4); \$			15693	15600	15,500	14700	14400	14/00	13800	13500	1220	10/2/20	Mari	14.500	12000	117100	114:00	11-100	108 00	105 00	10 200	9 900	9600						*			
	BLK #	68		ەبز		52.31	25	30	49	48	41	40	4	#	25	3/4	7	2	200	38	32	36	35	34	35	32		0	6	8	,	9	4	#	*
FATIGUE TEST DATA	SPECIMEN NUMBER: 312 Open Hole	SPECTRUM: F18-300hr	TEST DATE: 2-2-84 //		W 2.0040 TH . 2900 HOLE DIAM . 44/5 A . 584/102	J STABLES OF THE STABLE STABLES AVE	Tast (FM=260)	ENVIR CONDS. De la page de la condition de la		CYCLES TO FAILURE 164162 14 pts 2 LIFF #		TTCI 9650 FLIGHT HOIRS			LARGER FLAW = . 378 "(B)						June Ler FLAW I ・メッソ (の)								5						

~
E
~
2
E
က
6-7
TES
5
_
==
0
Ξ
5
٧
Œ

		- -	†	 			+-	 1	1	· 1				· ·		- 1	-	-1	<u> -</u>	-	-	7	-1	1		-1	1	7		-1		7		_
FRACTOGRAPHIC DATA	CRACK LENGTH IN.	340	1280	,235	1204	1,50	137	.122	801:	1097	0.79	.073	090	. 0.52	+ 460.	1039	.033.	1030																
FRAC	# FLIGHT HRS.	14 700	14.400	190	13 8/0	13.200	00.6 7	12,000	1,300	14,000	11400	00111	10800	10500	102.00	0066	7600	9300				(÷	÷									••••	
	BLK #	49	48	7	450	47	43	45	*	\$ \%	38	37	3.6	35	3	33	35	7	8	7	p		٥	5	4		2		0	6	Ω		٥	_ 2
FATIGUE TEST DATA	SPECIMEN NUMBER: 313 Open Hole	SPECTRIM: FIR- 300 AP.		TEST DATE: 2-3-84 //		W 2.0030" TH .3070" HOLE DIAM . 4455" A . 6/49 102		MAX STRESS 28 KS/ FREG. (FW-250)	f	ENVIR. CONDS. DRY PREPS. PC		CICLES 10 FAILURE 155 972 10 015 % LIFE -	ì	IICI //76 FLIGHT HOURS		IABGED ELAW = A/I' (R)				7		SMALLER FLAW = . 292 (B)							S					

	DAL
	1021
6	2
いったりい	7743

FRACTOGRAPHIC DATA	FLIGHT HRS. CRACK LENGTH IN.	14.	37.5	12.	,268	.237	.212	861	188	162	136	125	1/14	530"	,083	020	.058	,047	1040	.033	,034	,020	.016	110.	,0065										
	BLK # FLIGHT	3931 11453	1/4	37 111:00	20 10800	122 10,500	1	35 2700	21 22/2	40 4200	- 29 8 700	28 8 400	-21 8/00	25 7800	22 7500	2: 72.00	22 6 900	24 6600	1	20 6000	13 5700	10 5400	11 5-400	1.6 4800	12 4500	4	 5) k	, x	, c	2	77	3	2	
WIND TOTAL TOTAL	SPECIMEN NUMBER: 314 Open Hole			TEST DATE: 2-3-84 //		W 2.0065" TH . 3030" HOLE DIAM . 4435" A 6070		MAX STRESS 28 Ks, FRED. (First FM: 27.)	}	ENVIR. CONDS. Day pages		CYCLES TO FAILURE 120172 1/12/4 % 11FF = -	The state of the s	TTCI 4733 FLIGHT HOIRS	1		LARGER FLAW = $420''(8)$					SMALLED 5 AM 140'(R) A													××

		,				•																											
FRACTOGRAPHIC DATA	CRACK LENGTH IN.	.354	1299	1263	.202	187	./39	.122	.105	.088	.073	.045	7 250	021	,0125																		
FRA	FLIGHT H	20.853	20.400	1980	19500	18 400	18600	18300	000 81	11,100	00/1/	16800	16500	16200	15900	\$.					- · · · · · · · · · · · · · · · · · · ·			1.								-	
	BLK #	269	800	99	652	63	29	6	36	200	32	35	55	-2°	53	7	-	5	7	٥	1	ام	Ÿ	7	2	y.	-	>k	7	٥	1	٥	<u>۔</u>
ST DATA	Open Hole			,	TH . 2960" HOLE DIAM . 4435" A . 5924 , 12		Fast (FM=250)		PREPS. NO		44 1d pts % LIFE =				(8)				\(\frac{1}{2}\)	- X	2							9					
FATIGUE TEST	SPECIMEN NUMBER: 315	SPECTRUM: FIB-30ghr	TEST DATE: 2-6-84		W 2.00/5" TH . 2960 "HOLE	AAV STORES A	THE STRESS LOKS/ FREQ.	FNVTR CONTR	Conso	CYCLES TO EATHER	tho PIZ TURNE TO STATE THE	TTCI /5/52 FLIGHT HOIRS			LARGER FLAW = , 4/6 " (8					SMALLER FLAW = 032" / R													

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	472	1961	173	120	.0686	,035 1																					
FRAC	BLK # FLIGHT HRS.	88 26 400	87 26100	875 25 500 84 25 500	82 24 600	81 24300	79 23.700	78	76	72	3	2	0	6.	8	9	5.	†	5	7	0	6	8	2	7	2	2	
FATIGUE TEST DATA	SPECIMEN NUMBER: 316 Open Hole BI	SPECTRUM: FIB- 300hr	TEST DATE: 2-6-84 //	W 2.0035" TH . 30/0" HOLE DIAM . 4405" A . 6031,00	(52¢ (FMS 760)		ENVIR. CONDSPREPS	CYCLES TO FAILURE 278098 14065 % LIFE =		AZ BOOK FLIGHT HOURS		LARGER FLAW = . 7/0 CO			SMAILED 5 27/ //8/													7 × ×

-
E
A
S
ωı
- 1
뗴
3
$\overline{-}$
حا
الع

FRACTOGRAPHIC DATA	RACK LENGTH IN.					.430	,359	.295	,265	22	,207	761.	. 187	167	.152	40.	601	760	.081	.073	,065	. 650	. 053	1046	046	, 044	247		OSO.	100	1020				
FRACT	# FLIGHT HRS. CRACK					1 2.5053	84900	24600	24300	23700	23400	23/00	22800	22,500	2/25.00	31600	21300	21000	24.700	264.00	20/00	17800	19500	17200	18 400	00081	16 300	10000	007.77	MAN	7007 27				
	BLK 7	6	Σk	10		83.5		200	Ce	6-	18			7	*	125	7	0/2	63	2		9	3	**	cr s	y s	9	90		2		F	=	2	
FATIGUE TEST DATA	SPECIMEN NUMBER: 317 Open hole	SPECTROM: FIR 300hr		TEST DATE: Z-6-24	11 00 " " " 12	THE DISTRICT OF THE DISTRICT A STABSING	MAX STREES 1 20 Dags 20 A STREES WAN	rast	FNVTR CONDS D. F.M.= 250	rkers.	CYCLES TO FAILURE 7/19/14 14 24 % 11FF #	1317 W COO 151 1587 158-5	TTCI 10824 FLIGHT HOIRS			LARGER FLAW = . 430 B				•	'LAM" , 324 B							S							*X

-	
-	
\sim	
_ 1	
-	
TES	
Ġ	
-	
-	
1	
1	
6-3	
ω	
Œ	
Œ	
UE	
NE	
GUE	
9	
9	
9	
9	
TIGU	

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.	. 554	3/5	. 239	154	080	1036	,00%																				
	BLK # FLIGHT	18.92 14676	47 14100	76 13800	44 135.00	43 129 00	42 12600	40 12000		8		210	+	2	2			6.	9	. 5	47	:5	2	0	6	8	 9	5
FATIGUE TEST DATA	SPECIMEN NUMBER: 318 Open Hole	SPECTRUM: FIB-300hr	mesam name. 7-7-80		W 2.0010" TH .3020 HOLE DIAM . 44/5 A . 6043 mc)	MAX STRESS 28 KS/ FREG. Slow (Freg. Multiplier = 40)	,	V	CYCLES TO FAITIIRE 15 ZAI C 11 LE 2 11FF 2	725	TTCI /20,38 FLIGHT HOURS					7	SMALLER FLAW = . /2/"(B)										

•
- "
-
-
\sim
1
-
CO:
F-(
- 1
Ty 71
-
~,
271
\smile
1
-1
<i>~</i> .1
_
_
≪1
- "1
العا

											NA	MC	-8	31	.26) — (50.	- √	OL	•	I,	V													
FRACTOGRAPHIC DATA	FLIGHT HRS. CRACK LENGTH IN.			, 4830	.3465	1925	.1620	1395	.0885	.0720	,0585	.0455	1920.		,0125	,0045	-																		
FRAC	FLIGHT HRS.			10.707	10,500	9900	9600	7300	8700	8400	00/8	7,500	7200	0060	009-0	6300				2									-						
	BLK #	26	86	35.69		\perp	35	30	672	28	1/4	25	77	25	122	2	06		Se.	1	210	1	+	4	<u>-</u>	0	6	8		ام	1	<u></u>	1	y-	
FATIGUE TEST DATA	SPECIMEN NUMBER: 319 Open Hole	SPECTRUM: FIB - 300 hr	TEST DATE: 2-7-84 //		W 2.0010" TH . 3050" HOLE DIAM 4445" A . 6103 ,72		MAX STRESS 28 KSL FREG. Slow (FM=40)	ENVIR. CONDS. 3 5 2 N(2/1) PREPS.	1	CYCLES TO FAILURE 111973 14 ots "LIFE		TTCI 6517 FLIGHT HOURS		LARGER FIAW = ARA("(R))				~	SMALLER FLAW = . 2875" (B)																XX

-
•
. (
_
-
S
•
- 1
F-71
-
-
==
COL
_
-
- 7
_
r1

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	362	205	158	186	.072	.055	,044	028	4	.00.65																				
FRAC	FLIGHT HRS.	1/200	11.100	10800	10200	00.66	9600	43.00	2000	0 100	6 700			c													*		,		
		39 XX	26	200	34	33	36	7	000	100	1	9	5	 77	-	0	2/2	0	Jo	5	7	2	7	- -	6	F	9	2	4	7	7
⋖ 1	Open Hole				.4425" A .6035 112		Slow (FM= 40)		PREPS. No	774	6 % LIFE =						を変数が														XX
FATIGUE TEST DATA	320	SPECTRUM: F18-300 hr	2-7-84 //		W 1.9985 TH .3020' HOLE DIAM .44	, or	MAN SIKESS KOKSI FREG.		3.5% Nacl PR	•	124602, 1dp		HOUKS	LARGER FLAW = $(.48 7")(B)$	•			SMALLER FI AW = 182" (B)	(2) 00												-

DATA
TEST
ATI GUE
딢

FRACTOGRAPHIC DATA	CRACK LENGTH IN.			4 5554	.,295	.123	0180.	,053	,020	,0165	110,	902																	
FRACI	# FLIGHT HRS.			5 9975	0066	9300	8700	8400	7800	7500	1200					3L y					-								
	BLK A	02	1	37.25	10.4 10.4	15	290	28	25	25	45		-	96	8	2	او	7	#	'n		0	6	上	- Ի	7	П	7	
FATIGUE TEST DATA	SPECIMEN NUMBER: 321 Open Hole	SPECTRUM: F18-300 he	TEST DATE: 2-7-84 //	W 1.9995" TH . 2980 "HOLE DIAM . 4435" A . 5959,729	MAX STRESS 2F 1/2 FREC	1 901	ENVIR. CONDS. 3.5% Nacl PREPS. No	CYCLES TO FAILURE 104322 14 pts " LIFE = -	TOTAL STREET OF THE STREET	1101 //40 FLIGHT HOURS		LANGER FLAW = 4555 b				SMALLER FLAW = . 3935 B													2×

A	
D	
H	
S	
IE	
6 '	
_ 1	
_ 1	
Œ	
Œ	
Œ	
Œ	֡
Œ	

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.			.219	. 1.53	.122	,084	290	024	.01.35	600.																												
FRAC	# FLIGHT HRS.	63-63	X 258	8,000	000).	7500	7200	0069	0099	6300	6000			٠								t in	7. 7.	:															
		10,00		11/1	۶ د د	77	24	23	22	21	2.0	8	2	9	. 5	+	?	7	-	0	6.	8	6.	٥	5	-	1	2	L	0	6	8	_	9	5	7	<u> </u>	2	
FATT GUE TEST DATA	SPECIMEN NUMBER: 322 Open Hale	SPECTRUM: F18-300hr		TEST DATE: 3-3-84 //		11 0 0000 THE DIST WORD DISSE AND AND COLUMN	" A. UOTS IN ,0030 HOLE DIAM .4405 A . 6074 12		MAX STRESS 28 KS/ FREC. Slow (FW=A)	140	ENVIR. CONDS. 3.5% 1/3/1 PREPS.	CVCIFS TO FATTING A 25 CV / / / / / / / / / A TITLE A TOTAL PATTING CVCIFS TO A TOTAL PATTING CVCIFS A TOTAL PATTI	0 13 73 19 WS 16 LIFE		TICI 60/6 FLIGHT HOURS			LANGER FLAW = . JSB" B					SMALLER FLAW = 3495'B															A CONTRACTOR OF THE PARTY OF TH	1,72X

FRACTOGRAPHIC DATA	CRACK LENGTH IN.					4756	37/15	2860	1965	1635	./005	.080	1001	0235																			
FRAC	FLIGHT H					9453	9300	90.00	8400	8100	2890	1500	1000	6 600				- 12.		·								. *4					
	BLK #	0		٥٠٠	1,	31.51	31	30	28	27	26	4	23	22	7	5 k	1	6.	٥	2	†7	2	V	-	>k	2	1	ام	7	-	1	y -	
FATIGUE TEST DATA	SPECIMEN NUMBER: 333(b) Open Hale	SPECTRUM: F18-300hr	TEST DATE: 2-24-84 //	20000 TU 200 "MOTE TO " 144. "	" C. COCO III . 30.80 HOLE DIAM , 44/5 A , 60.40 1/2	MAX STRESS 28KSI FREG Slow (FM= 40) F		ENVIR. CONDS. 6.5 16 NaC/ PREPS. PC	CYCLES TO FAILURE 98837 14 245	7 7	TTCI 6097 FLIGHT HOURS			LONGER FLAW 7/25 (C/				SMALLER FLAW= , 2835" (8)														2X	

) ATA
ST
ET
ri GU
FA

												•					•														
FRACTOGRAPHIC DATA	FLIGHT HRS. CRACK LENGTH IN.				,4255	3345	1490	1120	.0590	,0510	.0390		,023	,0065														-			
FRAC	FLIGHT HRS.				24.969	24600	24 300	240'00	23400	23100	22800	22000	21900	21600				1								**		·		-	
	BLK #		,	ەرز	83.23	52	S	28	28	2	3,00	77	3	22	0		1	فا	5	4	~	7	- -		1	9	2	-	7	7	-
A I	Open Hole			746.2	1725 A .60% 104	(FM=40)		PREPS. DC	, ,							く ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・														A	% XX
FATIGUE TEST DATA	SPECIMEN NUMBER: 324	3PECTRUM: F18-300 hr (8)	EST DATE: 2-20-84 //		ALCONO IN . 3035 HOLE DIAM	MAX STRESS 28 KSI FREG. 56W		ENVIR. CONDS. 3.5% Nacl	STORES TO FAILURE 2/1/00 1/2		TTCI 2/772 FLIGHT HOURS			LANGER FLAW = , 4255 (B)			SMALLER PLAW = . 3750" (B)														

⋖
P
TEST
E
5
II
FA

FRACTOGRAPHIC DAMA	CRACK LENGTH IN.						7.57	,4335	.242	.172	1945	,0605 T	1036	10165																
PRAC	# FLIGHT HRS.						. 8701	180	7500	72.00	6600	6 300	6000	2700					. ,											
•	BLK				m	-	8 2 2		4	孙	32	7	200	4	6	9	 ?	#	Sh.	1	0	6	80	上	ام	4=	1	100	_	
-	Open Hole			4425'A.6033112	(FM=40)	PREPS. DC	pts .							7							5								2×	
FATIGUE TEST DATA	325	soo he	14-84 11.	15 HOLE DIAM	FREG. Slow		82219 10	FLIGHT HOURS			.4555'(6)				. 287"(8).	•														-
집	SPECIMEN NUMBER:	SPECTRUM: F18-300 hr	TEST DATE: 2-14-84	W 3.0010 TH ,3015 HOLE DIAM	MAX STRESS ZOKSI FREG	ENVIR. CONDS. 3.5% NAC.	CYCLES TO FAILURE 82219	TTCI 5368 FLI		A DOOR	LANGER FLAW = , 4335 '(i i	SMALLER FLAW=														-	

											L	w		, .	, .		•	•	,	•		•	- '											
FRACTOGRAPHIC DATA	CRACK LENGTH IN.			,349	.271	681:	152	103	.054	.029	910.	600.																						}
FRAC	# FLIGHT HRS.			22716	22,500	22200	21400	21300	21000	20700	20400	10100	-			·						- T	:										***	
	BLK #			75.77	7	<u>+</u>	h	-	0	<u>م</u>	ρk		 -	7	+	1	7	-	> k	4			ام	7	7	3	2	-	0	6	Ø	7	9	_
FATIGUE TEST DATA	SPECIMEN NUMBER: 326 Open Hole	SPECTRUM: F18-300hr	TEST DATE: 3-13-84 //		V 2.00/0" TH .30/0" HOLE DIAM 1425" A 1672		MAX STRESS 28 KSI FREC. S/ou) (FM=A)		ENVIR. CONDS. DRV PREPS. No		CYCLES TO FAILURE 237,534 1/2 pts TRE		TTCI 20143 FITCHT HOMES	CAUCH LIGHT CALL		LARGER FLAW = .349"B					SMALLER ED AW JOHN	2 477 · · · · · · · · · · · · · · · · · ·							8					

4
-
•
\sim 1
_
- 1
a .t
-
- 1
rat
24
1-11
= 1
~ ·1
6 9
LE !
1
$\overline{}$
~
\mathbf{c}
-1
1
SCI
_ "!
Γ υ . Ι
—
•

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.							.406	337	,230	.165	.134	.073	.046		,0/20	.005																			
FRAC	FLIGHT HRS.						111/10	47.516	24000	25700	23400	23100	22 8 00	22500	27.000	21 700	21,600			·		(:													
	BLK #	20	8	7	or.	1-1	60170	7100	0	6 -	8			7	+	~ . ^	V	K	0	2	0 ()		0 4	7	+	4	J	-0	6	_	9	7	47	2	2	
DATA				//		IAM , 4415 A . 6025		(CM - 40)		races. No	· starl	1.								イ								S								2×
FATIGUE TEST DA	SPECIMEN NUMBER: 327	1	SPECIFIUM: FIRESOODE	ATE: 2-13-84	2	W 2.00/5 TH , 30/0 HOLE DIAM	MAY CTRESC 00 12 TO NOT STATE OF NOTION OF NOT		Owns De.		CYCLES TO FAILURE 256 351		TTCI 2/834 FLIGHT HOIRS	TY THOUSE		LARGER FLAW = 406 "B					SMALLER FI AW = 744" B															-
	SPECIMI		SPECIF	PEST DATE:	5	N 3.00/2	MAY STRE	7412	FWVIR CONDS		CYCLES T		TTCI			LAF	1				SM/S	J														-

_
~
4
DA
-
_ 1
-
S
5
TEST
-
_
(L)
GU
9
اب
ATI (
- 1
FA
• 1

		ТТ			_	Т		_	-				_		7	T	-1-	T	7-					-	_		-		П	7	7	-	1	7
FRACTOGRAPHIC DATA	CRACK LENGTH IN			. 41.2	,379	1317	. 235	181	.085	.046	,028	010	***************************************																					
FRAC	# FLIGHT HRS.		**	22446	22,200	00.612	21600	2000	20700	20400	20100	198.00							5.	1 1 4 4 5 1	:	·							 ****					
	BLK #	0,20	2	14.82	74	7	7	- k	9	. 8		ام		+	1	1-	.0	6	8	, 2	و	5	7	2	7		6	8		1	-	1	y -	-
FATIGUE TEST DATA	SPECIMEN NUMBER: 328 Open Hole	SPECTRUM: F18-300 hr	PEST DATE: 2-13-84 //		W 4.0000 IH . 3028 HOLE DIAM . 4415 A . 6050	ì	A SIKESS ZBKSI FREQ. Shul (FM=40)		THE CONDS.	SYCLES TO FAILURE 724701 14 of	1	TICI 19 800 FLIGHT HOIRS			LARGER FLAW = , 463" B			く ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		SMALLER FLAW = . 265 F						SO CONTRACTOR OF THE PROPERTY							X C	

DAT.
TEST
GUE
FATI

																		h									,			
FRACTOGRAPHIC DATA	FLIGHT HRS. CRACK LENGTH IN.			4176	. 2915	661.	.142	114	.0545	.0340	,020																			
FRAC	FLIGHT HRS.		<i>y</i> :	7/19/	15900	15300	14700	14100	13800	12500	12900	12600					÷													
	BLK #			53.72	55	51	49	849	45	水	44	42	- c	b	8	, 2	او	۲	7	4	y.	- c	b	, b	-	٥	2	4	72	-
	Open Hale			55" A . 6032 In2	(FM=40)	30	3. VC	pks :				1761										7							X	\}
DATA	- 1		- 1	2		9	3	1	8- 4 -		. a 194			is no	de Care					1910										
FATIGUE TEST DA	SPECIMEN NUMBER: 329	SPECTRUM: F18-300hr(b)	2-21-84 11	W 2.0005" TH . 2015" HOLE DIAM . 4465" A . 6032 In2	MAX STRESS 28 KSI FREQ S/0W			CYCLES TO FAILURE 168 520 1dp	TTGI 12,797 FLIGHT HOURS		ARGER EI AW = A A A A A A A A A A A A A A A A A	11.43.10)			161.76.			-												

-
E
V
0
Ę
TE
Œ
5
II
4
떠

														-							•								 						
FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.							.3715	.320	,264	.225	.,707	14/	.055	035	.024	510	600'																	
FRA	FLIGHT HRS.	,		2:				18,753	18000	18300	137.00	17400	17/20	16,800	16 500	16 200	15900	15600	15,000	14 100		,												1	,
	BLK #	00		ķ.	9	5	4	15/0	200	ē	207	2,4		36	3.5		me! 55	55	000	727	0 (7	7	7	7	-	o k	ok L		1	1	1	1-	
FATTGUE TEST DATA	SPECIMEN NUMBER: 330		SPECTRUM: FIX-300 hr (b)	mpsm name. 7 - 17 84 //		LOOP 1 " ALL MIN TINH" DAPO HT " APPRO 1 W	1285. A 0147. DIAL DIAL DIAL 7410 A	3	1 04=MJ) MON LUEN TOON (LM=40)	L	ENVIR. CUNDS. UN		CICLES TO FAILURE 196084 14 DES		1101 /3 650 FLIGHT HOURS		LARGER FIAW = 27/5"(B)				SMALLER FLAW 355"(B)	•						V							*

					•										_		, ,			-	 		1	-1	-1	-†	-	_	1-	+	1			\neg	-	-	7
FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.						43.56		.3170	,250	. 2085	1625	1305	1605	0440	.0280	10180	.0120							_												
FRAC	FLIGHT HRS.						15693	15600	15300	15,000	14/00	44.00	14800	13500	13200	12900	12600	12300			م د	1 m 12 m 4 2 m	:								•	24.		•			
	*)))		7	٥	1-1-1	5231	55	2	50	- 82	% % 6 7 8	**	45	No.	43	B	N	1	- 6	8	. 2	9	2	7	2	y -	-0	6		_	9	2	7	7	2	
FATIGUE TEST DATA	34	\-\'\	10 pt (8)	2-14-84 11		0 HOLE DIAM 4430" A . 5977"	,	FREC. 5/04 (FM = 40)		PREPS. DC		164101 1d pts		FLIGHT HOURS		(A) / (A)	(C C C C C C C C C C C C C C C C C C C				•	.3050" (8)							S								2×
FAT	SPECIMEN NUMBER:		SPECTRUM: F18-300 hr (6)	TEST DATE:		W 1, 9990 " TH . 2990 HOLE D		MAX STRESS 28 KS1 FREG.		ENVIR. CONDS.		CYCLES TO FAILURE		TTCI 12175 FLIGH			LANGER FLAW			-		SMALLER FLAW= ,															-

-	J
~	Į
~	1
DATA	Ì
_	ł
_	١
H	1
īn	ł
ř.i	1
5	1
TEST	1
FATIGUE	
Ξ	
چي	
O	
ū	
5	
⋖	
œ۰	
_	

FRACTOGRAPHIC DATA	CRACK LENGTH IN.						1																		. 440	. 154	650'	1028	1034	2773	700
FRAC	FLIGHT HRS.	15600	14800	1,000	1,5200	12800	12000	11600	10800	10400	00001	9200	8800	8400	8000	009/	2003) F 8000	0079	0009	5600	5200	4000	0007	3600	5200	2800	2400	1,000	0001	800 800	400
	BLK #	338	The state of the s	22	77	32	, Q.	29	27.	92	200	23	22	21	2 2	1	12	10	15	7	2	y -	0	6	8		٤	1	+	1	
FATIGUE TEST DATA	SPECIMEN NUMBER: 336 Open Hole.	SPECTRUM: E16-400 hr (A)	TEST DATE: 3-1-84 //	W 2.0040" TH . 3010" HOLE DIAM 4015" A 6020"		MAX STRESS ZBKS/ FREG. 1 LIFE = 16 days (Slow =)	ENVIR. CONDS. 3.5% Nacl PREPS. De 40/		CYCLES TO FAILURE 306 908 14 pts % LIFE = 40	Saion and La / y & Total			Larger Flow = , 440"B	•	C-1/2 F/Ws 288" B	, ,															

FATIGUE TEST DATA	337 Open Hole BLK # FLI	017	7/6-400hr (A)	00		25	AM. 44/5" A. 60/3" 34	1 33 1	1 LIFE = 16 12 10 (CL)	Charles Color	2 5.9. N. // poppe 20	2.0 10 10 to 10 29 29	// / mare 18 // //	10 pts 16 LIFE = 16 27		FLIGHT HOURS	23 9200	Flame 15115 (12) 22	Karger 1000 : 3000 (21 8400	160 Flow = 081" (B)		 47	. 2600	13 5200 1.1380	· / · · · · · · · · · · · · · · · · · ·		7888 NOSS 8	0,	2800	2800	2800 2400 5 2400 5 2000	2800 6 2400 5 2000 6 1600	2800 ; 6 2400 ; 6 5 2000 ; 6 4 1600 ; 7	2800 5 2400 5 2000 4 1600 3 1200 2 800	2 2800 5 2400 6 2400 7 2800 7 1500 800 1 400	7 2800 7 2800 6 2400 7 2800 7 2800 7 2800 7 1200 7 1200
FATIGUE	SPECIMEN NUMBER:		SPECTRUM: F16-400A		TEST DATE: 3-7-84	•	W 3.00/0" TH .3005 "HOLE DI		MAX STRESS 2015/ FREG.		FIVTE COMPS 250	- C.O	A HALLITAN ON SULLONS	CICHES 10 FAILUNE 327285	// //	IICI 4426 FLIGHT H	ながった。				ン			l de la constant de l		N			で、このではなり、学習を行うないのでした。							

FRACTOGRAPHIC DA	. CRACK LENGTH													•														.544	.192	.082	.041	,022	1010	,006	
FRAC	FLIGHT H	15600	14800	00771	1,3600	1 3200	12800	12400	11600	11200	10800	10400	10000	9600	9200	8800	8400	8000	7600	7200	0089	0079	0009	2600	5200	7,800	4400	3959	3600	5200	7800	2400	2000	1600	1200
	BLK #	25	37	36	74	33	32	26	- 29	28	-27	9 7	25	77	3	77	7	≈	19	18	17	16	-5	77	2	77	_1	69.8	2	∞		ام	_	-	7
FATIGUE TEST DATA	SPECIMEN NUMBER: 338 30%LT	SPECTRUM: F16- 400 hr(A)	TEST DATE: 3-15-84 //		1 4.9970" TH . 2950 HOLE DIAM . 4425"A . 5897	. 7	IAX STRESS 28KS/ FREQ. 1 LIFE = 16days (S/ou)	// /V	MY IN. COMBS. 2,3 10 //24 FREFS. DC	1 1 % of 1	010 100 14 00 % LIFE =	יייררד מיייריד דיייי	0000			(3200 Flaw) - 544" B			U	JEO/168 / 108 - 10 / 7															

DAT	
TEST	
GUE	
FATI	

																															 				- 4 ·
FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.		198	.346	.298	.277	,252	233	. 208		108	770		.045		,030		610'	[.0135		080													· · · · · · · · · · · · · · · · · · ·
FRAC	FLIGHT		50100	48800	48500	4.200	47600	47300	47000	75.	72000	42000	. ,	39000		36000		33000		30,000	1	27000	÷												
	BLK #	0	167	166	16.7	16/2/	29/	19/	09/	1	2007	140		130		120	1	100		100		2	7	7	2	7	-	2	ok	1	1	1	1	1	
FATIGUE TEST DATA	SPECIMEN NUMBER: 515 Open Hole	SPECTRUM: F18 BLOCK	EST DATE: 5-10-84 //		W 1. 9955" TH .3050 HOLE DIAM . 50.30" A . 60.81"		MAX STRESS 28 KSI FRED. FOST (FM= 251)	200	ENVIR. CONDS. Dry PREPS. No	İ	CICLES TO FAILURE 523879 14. pts.	The second secon	TOT A CONTRICTURE HOOKS		LARGER FLAW = 388"(B)					SMALLER FLAW - 240"(B)	1 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													Company Compan	7 ×

TA	
⋖	
\Box	
TEST	
Θ	
l GU	
FA	

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.				.408"	308	. 270	.245	.224	.20	172	777	.085		,049	700	7521	.021		.017		110'		,0065								
FRACT	# FLIGHT HRS. C				2/376	27.200	00/00	20000	20300	00000	24400		26400		23400	20,000	X	17400		14400	r.	11400	+	8400					. ** 4 / J. *			
	BLK #	6	2		1027	5014'	100	ルンパン	450 / 10%	007	90	1	88	11	7	100	上	35	1	48	トート	120 120	\\	28	The state of the s		6	8 8	9	4		7×
DATA	Open Ho.	•		//			1	•	(FM=050		PREPS. 16		la pts																			
FATIGUE TEST D	(BER: 5/6	SPECTRUM: FIRE BLOCK		5-16-84		W 2.0050" TH, 2955" HOLE DIAM .5025" A			DESI FREU 1850	<	Ury		130.34 T	TTCI 10 789 FITCHT HOURS	CHOCK THOUSE	1 1 1 1 1	LARGER FLAW = . 408 (B)				2000/01/01	STATER FLAW = 12/8 (B)										
	SPECIMEN NUMBER:	SPECTRUM: F	1	TEST DATE:		1 2.0050" II		C SSECTION AT	TOTAL STREET LANGE		E. LIK. CONDS.	TIVE OF SELVA	CICLES IO FAILURE	10 789	7017		LARGER F				SMAI	יייייייייייייייייייייייייייייייייייייי										

FATIGUE TEST DATA

											I	IAN	C	-8	31	.2	6-	60) –'	VO	L	•	ΙŅ	•									
FRACTOGRAPHIC DATA	CRACK LENGTH IN.			.648	.390	. 329	,29/	1265	,2,34	. 22/	.208	861'	189		.174	1.58	.147	, 135	.126			,079		,050		1032		1023 T		9/0		1012	
FRAC	# FLIGHT HRS.		9: 8.	31 64,916	64500	64200	03400	63300	63000	62700	62400	62100	00000		6/200	00/2/0	00400	00000	00300	\$ \$00000	4	57,000	+	54000		51000	\dashv	48000		2 45000		2 42000	
	BLK			63/63	7.77	3/5	2/2	12	0%0	188	8	1201	90	1	407	404	200	127	707	2002		190		1,80	\ \f	770	1	160	1	150	<u>]</u>	747	
FATIGUE TEST DATA	SPECIMEN NUMBER: 517 Open Hak	PECTRUM: FIB BLOCK	"EST DATE: 5-16-84 //		"1.9935" TH . 2970"HOLE DIAM 5150" A 5911"	٦.	MAX STRESS 28 KSI FRED Fact (FM 25c)	1007	ENVIR. CONDS. LLY PREPS. 1/	1	CYCLES TO FAILURE 678804 14 ptc		TICI 40500 FLIGHT HOIRS			LARGER FLAW = , 648'(B)	で変え				SMALLER EN AM - AN - AB	くとこれに											

FRACTOGRAPHIC DATA	BLK # FLIGHT HRS. CRACK LENGTH IN.		20/00 32/	1980 256	1950	14260		61 18.30 ,055	70	0, 00/1/	14/	. 16800	16500	16200 .0.	15 900 .01	,	15 15,300 1010	0	0	2	7	.5		6	Q	9	2	h	
FATIGUE TEST DATA	SPECIMEN NUMBER: 518 Open Hale	SPECTRUM: FIB BLOCK	TEST DATE: 5-17-84 //		W / 9855 TH . 2960 "HOLE DIAM SARA" A -611		MAX STRESS 28 KSI FRED FACT (FM = 2 Kg.	300	ENVIR. CONDS. 3.5 7 Nac/ PREPS. No		CYCLES TO FAILURE 2/13317 1d pts.		121 /2 000 FLIGHT HOURS		LARGER FLAW = . 354 / (A)				SMALLER FI AW . JAN (A)					V					

FATIGUE TEST DATA

										N.	ADC	J-{	83	12	. 6 -	-6	U-	VO	L	•	ΤΛ	•								
FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.			.627	.541	.452	31.8	.332	294	257	199	. 175	. (5)	. 134	8/1/-	106	. 09.5	780.		.035		,013		010.						
FRAC	FLIGHT		9:	19500	19200	18,200	18300	18,000	174/10	17 100	16800	16500	16200	00691	15600	15 300	15000	14 700		12000		9000	_	4500						• • • •
	BLK #			62	64	200	ē	90	36	57	56	55	15	3	25		را ا	44	1	40	1	8	1	1/2	1		2	ok	1	٥
FATIGUE TEST DATA	SPECIMEN NUMBER: 519 Open Hole	SPECTRUM: F18 BLOCK	PEST DATE: 5-18-84 //	7 20020" TH . 2945 HOIE DIAM 5040" A 5930"		MAX STRESS 28 KSI FREG. FAT (FM= 250)		ENVIR. CONDS. 3.5% Nacl PREPS. No	CYCIES TO EXITINE	CICLES 10 FAILURE & 03 705 19 DES.	TTCI AGAA BITOUT HOME			LARGER FLAW = 627"(C)				7	SMALLER FIRM / (8)											

-
DAT
_
-
_
-
ES
- 3
E 2
_
_
TEST
Θ
-
-
3
==
GUE
$\overline{}$
FATI
2
A
≪.
_ ~1
Cz.

(THIS PAGE INTENTIONALLY LEFT BLANK)

APPENDIX F

SPECTRUM FATIGUE TEST RESULTS AND FRACTOGRAPHIC DATA FOR TASK 6 (7075-T7651 ALUMINUM ALLOY

Spectrum fatigue test results for the dog-bone specimens (Fig. 3) tested under Task 6 are summarized in Table Fl. Fractographic data sheets are also presented in this appendix.

The maximum positive load in each load spectra, including overloads, was considered to be the 100% load level. The maximum positive test load for each spectra was selected to produce the desired gross stress on the specimen cross section. All other loads positive and negative in each respective test spectra were "scaled" to the 100% load level. As a result, "overloads" in the F-18 300 hour spectrum were treated as 100% load levels rather than a percentage greater than the 100% load level.

Fatigue loading frequencies for all spectrum tests, including the F-18 300 hour spectrum, were based on the test rates set for the F-16 400 hour spectrum tests. Loading rates were selected to complete 8000 equivalent flight hours of the F-16 400 hour spectrum in a selected number of days (24 hours a day continuous testing). Three basic loading frequencies were considered: (1) F = fast (8000 flight hours/2 days), (2) S = slow (8000 flight hours/16 days) and (3) = extra slow (8000 flight hours/90 days). Accordingly, test machine frequency multipliers (FM) were set for the three basic frequencies: Fast (FM = 250), slow (FM = 40) and extra slow (FM = 1). The frequency multipliers can only be translated into actual frequency measurements for constant amplitude loading.

Table Fl Summary of Dog-Bone Specimen Fatigue Test Results for Task 6 (7075-T7651 Aluminum)

		TTCI	TTF	.38	. 59	.29	. 52	.57	64.	12.	009.	.65	.67	.81	.74	• 56	.79	.72	.79	.85	.85	.81	.74	.72	.65	.43	.53	.62	,54	.61	.71	.31	64°	.53	.51	.48	e.
	TTR-PRICT	(FLT. HRS.)	(e)	5504	3092	3945	3403	10700	9200	1616	11200	3935	3937	3922	3152	5015	2942	2546	2059	2853	3714	3652	2283	3228	2709	13099	14006	13788	5158	3251	2814	21009	17100	18922	0099	7200	8945
	TTF	(FLT. HRS.)	(p)	8904	7600	2607	7068	24800	18000	20000	28000	11163	12037	21037	91611	11358	14253	9258	9858	19653	25236	19716	8916	11446	7836	24835	30006	36006	11206	8400	9635	30600	33300	40200	13500	13800	9900
	Trci	(FLT. HRS.)	(c)	3400	4508	1662	3665	14100	8800	10203	16800	7228	8100	17115	8764	6343	11311(f)	6712	7799(£)	16800	21522	16064	6633	8218	5127	11736	16000	22218	6048	5149	6821	9591(£)	16200	21278	0069	0099	955(g)
FATIGUE	CRACK	ORIGIN	(P)	6	æ	æ	æ	æ	æ	æ	æ	ø	£	æ	ø	ø		æ	æ	æ	æ	22	ø	ø	ø	m	#	@	æ	æ	æ	æ	æ	æ	£	pe s	2
	CROSS	AREA	(IN ²)	.5950	.6201	.6323	6609°	.6217	9919.	0809	8909.	. 6063	° 6031	.6037	.6039	°9050	.6062	.6040	°9603	.6138	.6039	0.009	.6043	. 6063	0909°	. 6048	. 6049	909.	.6033	6909°	. 6005	6039	.6033	9,009°	. 5990	. 5999	, 109.
DETAILS	HOLE	DIA	(IN.)	7777	- (y)	.4450	.447	.4455	944°	.4405	.4410	.4405	.4415	.4435	.4435	.4465	.4415	.4430	.4435	.4455	09%5°	.4445	,4435	.4440	,4435	.4450	.4450	0555	°4450	,4455	.4455	.4455	.4470	.4465	.5030	.5030	. 5045
SPECIMEN		THICK	(IN)	.2975	.3079	.3040	.3040	.3040	.3030	.3025	.3035	.3030	.3010	.3020	.3020	.3010	.3030	.3020	.3015	.3065	.3020	.3035	.3020	.3030	.3030	.3020	.3020	.3030	.3015	.3030	.3000	.3015	.3015	.3020	.2995	3005	conc.
		WIDTH	(NI)	2.0	2.0139	2.0800	2.0065	2.0450	2.0350	2.010	1.9995	2.0010	2.0035	1.9990	1.9995	2.0000	2.0005	2.0000	2.0020	2.0025	1.9995	2.0000	2.0010	2,0010	2.0000	2.0025	2.0030	2.0015	2.0010	2.0030	2.0015	2.0030	2.0010	2.0020	2.0000	1.9965	2.0025
		TEST	DATE	6-30-83	7-6-83	7-11-83	7-11-83	7-20-83	7-21-83	8-1-83	8-6-83	2-6-84	2-7-84	2-8-84	2-9-84	2-17-84	2-20-84	2-21-84	2-23-84	5-2-84	5-3-84	5-3-84	5-7-84	5-7-84	2-9-84	4-16-84	4-11-84	4-23-84	4-23-84	4-25-84	4-27-84	5-10-84	5-10-84	5-14-84	5-14-84	5-16-84	9-11-0
	DATA	SET	NO.	16	16	81	18	17	15	15	12	9	30	30	30	29	29	29	29	31	31	31	32	32	35	51	19	19	. 20	20	20	35	35	35	36	36	20
		TEST I.D.	(a)	A-28/20/F/W	A-28/20/F/W	A-28/20/S/W	A-28/20/S/W	A-28/20/S/D	A-28/20/F/D	A-28/20/F/D	A-28/20/F/D	B-28/20/F/D	B-28/20/F/D	B-28/20/F/D	B-28/20/F/D	B-28/20/F/W	B-28/20/F/W	B-28/20/F/W	B-28/20/F/W	B-28/40/F/D	B-28/40/F/D	B-28/40/8/D	B-28/40/F/W	B-28/40/F/W	B-28/40/F/W	A-28/40/F/D	A-28/40/F/D	A-28/40/F/D	A-28/40/F/W	A-28/40/F/W	A-28/40/F/W	C-28/40/F/D	C-28/40/F/D	C-28/40/F/D	C-28/1/W	C-28/F/W	C=207:7 H
		SPECIMEN	NO.	99	89	69	02	73	74	75	80	308	309	310	311	332	333	334	335	200	501	205	503	204	505	506	207	508	509	510	511	521	522	523	524	525	250

NADC-83126-60-VOL. IV

Notes For Table F1

- (a) Ref. Table 8 for description code
- (b) Fatigue Crack Origins: B = bore of hole, C = Corner
 of hole and S = surface crack away from hole
- (c) Time to initiate crack depth of 0.010" in fastener hole (determined from fractographic results)
- (d) Time-to-failure
- (e) Time spent in crack growth
- (f) Extrapolation based on power law (Eqs. 1 and 3)
- (g) Linear extrapolation from two smallest consecutive crack sizes from fractographic data sheet
- (h) Diameter measurement not recorded

FRACTOGRAPHIC DATA	FLIGHT HRS. CRACK LENGTH IN.	15600	14800	11,000	1,5200 1,2800	12400 12000	11600	10800	10000		8800	8400 .3790	•	1	7200 1.1275	y	ď	q	5600 1 0320	2500	4000		-	5200 5200	2800	2002	1600	1200	300	1 004
	BLK # F	39	3,2	222	32	30	29	2 27	25	12/2	22 - 22	-21	50	24	18		16	2	4-	7	7-1-	10	6	8	2	o L	-	~	2	
FATIGUE TEST DATA	SPECIMEN NUMBER: 66 (Load Trans)	SPECTRUM: 400 hr (A)	TEST DATE: 6-30-83 //	W 2.0" TH. 2975 HOLE DIAM . 4444" A . 5956,17	28 KSI FREG. 1 LIFE = 2 days (6)	Saada 1)	J.S /a Mac / Inters.	CYCLES TO FAILURE 852414 14pts % LIFE = 111.3	TTCI 3400 FLIGHT HOURS	149" B		Larger / law = 5470 5																		2.61×

FRACTOGRAPHIC DATA	CRACK LENGTH IN.												4510	.2365	08/1'	.0630	.0360	,0240	017.5	7584							
FRAC	BLK # FLIGHT HRS.		37 14800		53 1,5200	1	50 12000 29 11600		+		24 9600	20 8000	-		17 6800			14 2600	12 2200 1.800		10 4000	8 3200	7 2800	6 2400		2 1200	-
FATIGUE TEST DATA	SPECIMEN NUMBER: 68 (20% LT)	SPECTRUM: 400hr (A)	TEST DATE: 7-6-83 //	W 2.0139" TH . 3079" HOLE DIAM A 6.201 102		MAX STRESS LOKEL FREQ. I LIFE = 2 days (Fast)	ENVIR. CONDS. 3.5 % Nacl PREPS. hone	CYCLES TO FAILURE 727457 14 045. % LIFE = 95.0		Trci 4508 Flight Hours	Smaller Flaw = 4038 B	Larger F/2W= . 4510"0							77.21	1			8				2.6×

FRACTOGRAPHIC DATA	CRACK LENGTH IN.																			.4155	.22.30	.1545	.1265	.1025	.0840	.0635	.0490	17:	0000			
FRACT	# FLIGHT HRS. C	00251	14800	14000	1,5600	12800	12400	11600	11200	00800	10000	0096	9200	8800	8000	1 0092	7200	9899]	2/2608	5200	4800	4400	1,0004	3600	5200	2800	2000	1600	1200	800	400
	BLK 7	6,8%	P.	200	**	72	31	26	Ш	**	250	77	Û	75	20	6	8		٥	70.17	7	15		2	9	ok	1	- Fr	-	~	2	-
ST DATA	9 (202 LT)	,		DIAM 446" A 124	. -	LIFE = 16 days (Slow)		acl PREPS. none	5 ld of 2 % LIFE = 70.08								されてきたが			9001					0							2.63×
FATIGUE TEST	SPECIMEN NUMBER:	SPECTRUM: 400 hr (A)	TEST DATE: 7-11-83	7 T		MAX STRESS 20 KSi FREQ. 1		ENVIR. CONDS. 35% No	CYCLES TO FAILURE 536655		TTCI /662 FLIGHT HOURS	Smaller Flaux, 152" B		Larger Flaws. 4155"B								• •										

																								- ,-		, ,						-1 ·
FRACTOGRAPHIC DATA	CRACK LENGTH IN.																	.2785	1155	,0640	0150	,0280	,0230	A 2	-							
FRAC	FLIGHT HRS.	15600	14800	1,4000	13600	15200	12400	12000	11200	10800	10000	0096	8800	8400	8000	0097	Xall	0079	0009	5600	5200	4800	0007	3600	3200	2800	2400	2000	1600	1200	008	1
	BLK #	2,8%	12	3/2	74	255	3/5	2,00	28	7,7	350	772	22	21	50	2	5	- 0	15	†; -	-2	2	= =	6	6	7	9	2	<u>+</u>	7	7	-
ST DATA	(20% LT)	,			DIAM .447" A .6099 in	- -	LIFE = 16 days (Slow)	PREPS. DOD	-	ביישוריי כול הו						67 (1)	: -						1211								ファーク	7.8×
FATIGUE TEST	SPECIMEN NUMBER: 70	SPECTRUM: 400 hr. (A)	TEST DATE: 7-11-83		W 2.0065" TH . 3040 HOLE DI	the Character of Contamp was	MAA SIKESS CO KS, FREU. I LIFE	ENVIR. CONDS. 35 % Nacl	CVCI ES TO EATHING		TTCI 3665 FLIGHT HOURS	Su. 112 - 121 - 280" B	Smaller 1 law		Larger Flaw: . 1415 B								•									

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	4-4.	00.00		,0095									O TO V	OGOL:	2845	2605	,2135	0871.	,1530	1300	1095	0060	0670.	0500	0.000 0.000	7	.0405	0360'	.0325	0300	0260	,024c	- 0000
FRAC	BLK # FLIGHT HRS.	39 15600	37 14800	36 14400	35 14000	33 13200		20 12400			26 10000			23 9200	4	00 % 00 %	-	_		56 20400		54 2,600	55 2,500	20000	000000 OF		48 9200	47 18800	46 (8400	~ - 	44 11600		42 16800	41 (6400
FATIGUE TEST DATA	SPECIMEN NUMBER: T3 (20% LT)	SPECTRUM: 400 hr (A)	TEST DATE: 7-70-83 //	m , m	W 2.0450" TH . 3040 HOLE DIAM . 4455" A . 62/7"		MAX STRESS ZB FREQ 1 LIFE = 16 days (Slow)		ENVIR. CONDS. 1) F.Y . PREPS	CYCLES TO FAILURE 23747(9) 14 ch % 11FF = 310		TTCI 4 DO FLIGHT HOURS	S 11. France 2007 B	Charles 1105 . 300 C		Larger Flaw = ,4850"B										0								X

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	. 1150	.0950	_ 1	05.90	0560	0.445	.0395		2660	,0255	.0225	0610.	0710.	.0150	0120		,0080														, 3320	.2470	.2025	0691.	
FRAC	# FLIGHT HRS.	59 15600	_	37 14800		25 1 4000	33 13200	32 12800	31 12400	1				1	24 9600	23 9200	2/22 8800	-	-	-	18 7200	1.7 6800	-	14 5600	15 5200	0024 21	1000	0095	7 2800	6 2400	45 18 000	44 11600	43 11200	42 6800	41 16400	
FATIGUE TEST DATA	SPECIMEN NUMBER: 74 (20% LT)		SPECTRUM: 400 PT V	TEST DATE: 7-21-83 //		TO SALL THE SALL HOTE DIAM SALL A CICE TO		MAY STREET SOLVE FRED 1 LIFE = 7 Jans (Fig. 4)		ENVIR. CONDS. Drv PREPS. Done		CYCLES TO FAILURE 1723550 14 pts % LIFE = 225		TTCI 9800 FLIGHT HOURS	V VI VISILIA N. W.	Smaller 1/a4 . 36% 0			Karga 1 184																7077	X.48×

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	.0740	0650	0750	.0460	0400	0320	,0315	2020	1.0200	0910'	0610,											·	3900	.3320	.2770	12.370	,2040	1750	.1520	, (285	, 1100	,0955	
FRAC	# FLIGHT HRS.	1 5600	1		35 14000	1	22 1 2500		1	29 11600	11200	1	00001	+	-		_	7200	-	-	-	12 4800		<u>. ८८</u> ४०	4.9 6.00	-8 19200	1.7 8800	9400	5 (B000	14 (1600	17200	2	41 16400	
FATIGUE TEST DATA	SPECIMEN NUMBER: 75 (2076LT) B	SPECTRUM: 400 be (A)		// Ca-1-0 :sign rest		-41.0000 A COFF: TAIL TION CLOCK OLOID	Ţ	1 LIFE - LABYS (FAST)	OCT-W1	There's	- 030 ± aa11 %	1007 " " CID NI	TTCI /0,203 FLIGHT HOURS		Smaller Flaw . 330 B	(2000) Flam: 390"B																	_	XZ

FRACTOGRAPHIC DATA	CRACK LENGTH IN.						0292	.2260	1855	1580	1300	0660	080	. 0685	,0605	.0545	.0485	,04.50	.0405	.0365	0340	oigo.	$\check{\lambda}'$	0260	1/2	0170	050		. C 35	,0125	0115	0010
FRAC	# FLIGHT HRS.	15600	14800	1,000	1,5200 1,2800			7,7200	16 800	76 400	2 g600	2,5200	24800	24400	24000	2,4600	2,4200	28800	28400	24000	2,000	2 P500	00.100	00000	CACOO	\$200	B ROO	18400	18000	11600	17200	00/7
	BLK 7	200		300 m	32	7		88	6	3	ें वं	63	. 62	4	3	3	0	3.	နှ	9	4	a h		S	64	78		46	45	44	45	*
FATIGUE TEST DATA	BO (2076 LT)	, (A)	.5 //	W 1.9995" TH .3035" HOLE DIAM .4410" A .6068"	1 LIFE = 2 days (Fast	K .	PREPS.	T 3311 % / 1 TEC T	Id DES " FIFE	DURS														り ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・								36
TIGUE		400 hr (A)	8-9-83	535"н	MAX STRESS 28 KS1 FREQ	' ! ;	ENVIK. CONDS. JCY	CYCLES TO FATLIBE 2/84 7/1/	700	TTCI 16 800 FLIGHT HOURS		Smaller 1184 510" B		Larger Flaw = .388 + B	•			•														

FRACTOGRAPHIC DATA	CRACK LENGTH IN.		.483	44	0000	,234	. 193	153	020	27.0	. 064	.047	,020	, O16,																					
FRAC	# FLIGHT HRS.		111629	100,00	10500	10200	9400	9450	42.60	8700	8400	8,100	7,690	1500						1 2 p.									•	•					
		101	13/2	30	35	7,74	25	3/4	30	- 29	78	17) (S	3	**	22	_	7		1	ام	7	*	<u> </u>	<u>'</u>	0	6	8		9	7	7	7	7	
	1 Trans (20%) BLK					5. A books ar	1)	L SASC	1 1	.63	% LIFE =	1	l							1							る。								2X
FATIGUE TEST DATA	308 Load	FIB 300hr(B)	7		th March aron A	C nous DIAM 444C	. Odac	·	Saada		16727 14 nts		FLIGHT HOURS		£	483" D			225" B																
FAT	SPECIMEN NUMBER:	SPECTRUM: FIB	TEST DAME: OLLLAA		5 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2	01001	MAX STRESS 78 VAL TREE	1202	ENVIR. CONDS.		CYCLES TO FAILURE 116727	,	TTCI 7228 FLIGH			LANGER FLAW = ,483" D	•		SMALLER BAW-			•									•				

-	1
DATA	1
_	1
_	1
_	ı
-	1
	1
$\boldsymbol{\overline{}}$	1
,-	ı
	1
	ı
TEST	ı
-	ı
• .	1
20	ı
~.	1
2.3	٩
4	ı
_	ı
-	1
•	1
	1
	1
P.9	۱
ய	ı
_	
_	
_	
-	
·	
_	
_	
_	
_	
~	
⋖	
FATIGUE	

											NA	MDC	3 -1	83	12	6-	-6	0-	V	ΟL	•	I,	7	_			 	.	•				
FRACTOGRAPHIC DATA	CRACK LENGTH IN.				4075		. 291	.210	1495	870	,052	.0405	.0325	.027	.0225	810,	410.	010.															
FRAC	FLIGHT HRS.		\$.		12037	12000	00 211	1400	0000	10500	10200	. 9900	0096	9300	9000	8,200	8400	8100	-	AND THE STREET										* 250			
	BLK #	0	7	ori	40.12	940	250	200	36	いいの	34	33	32	12	QC.	57	78	27		Ø		٥	5	7	2	?	0	6	Ω	7	9	7	
FATIGUE TEST DATA	SPECIMEN NUMBER: 509 20% Load Trans	SPECTRUM: F18-300hr (8)	TEST DATE: 2-7-84 //		W 2.0035 TH. 3010 HOLE DIAM 4415 A. 60311114		MAY SINESS LO KSL FREN. FAST (FM=250)		ENVIR. CUNDS. DRY PREPS.		CICLES IO FAILUNE 143062 Id pts / LIFE =		TICE DIOO FLIGHT HOURS		LARGER FLAW = ACTC'/B)	で ここの・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		Trea		\2'=\1'\0'\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イ							9					

FRACTOGRAPHIC DATA	SHT HRS. CRACK LENGTH IN.	700 .2870	400 ,224	100	1490	2000	200 1025	400	600 .0675	300 .0535	ä	100 .028	4.00	100 ,0095									7. · · ·										. *4:.*				
	BLK # FLIGHT	69 . 2	60 20	6/- 60	60 36	7/	67 - 19	164	十	6 6	60	- 59	28 1/	- 5/- //			+/	7		0	6	8	6.	0	5	†7	1.5	. 5	-	0	6	8	 9	5	44	3	
	20217					135" V 1 430	133 " · 603/111"		Fast (FM= 250	,	PREPS.	237	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	į								く - 1								0						
FATIGUE TEST DATA	310	FIR. 300hr (8)		2-8-84 //		HOTE DIAM			FREC		DRY P		1	7	ET TCHT HOIDS	CHIL HOOKS	,	.4195"(8)	•				.380 (6)			,											
FA.	SPECIMEN NUMBER:	SPECTRUM: FIR-		TEST DATE: 2-8		Dev / A " Zerr Mair niam Arsk" r / cool W	0777		MAX STRESS 28 KK/ FREG.		ENVIR. CONDS.		CYCLES TO FAILURE 7.19972		TTL // // ETT			LARGER FLAW = .4195" (B)	1				SMALLER FLAW=	1		•									-		

TEST DAT
6-7
ω
Θ
Θ
Œ
UE
UE
UE
GUE
GUE
GUE
GUE
IGUE
IGUE
TGUE
II GUE
TIGUE
TIGUE
TIGUE
ATIGUE
ATIGUE
ATIGUE
FATIGUE

											•																								- • •	
FRACTOGRAPHIC DATA	RACK LENGTH IN.	, 498	1,274	16.5	1025	870.	.057	.039	.029	.0215	.0155	.0085																								
FRACT	FLIGHT H	9/6 //	11211	11.000	10800	10500	10 2.00	0066	0000	4300	2002	0000									7 :: \$10		·							24				-	1	
		30.65	38	37	36	2	34	35	36	5	000	42		- -	7		2	0 _	24	۵		9	 	4	5	2	>k	7	1	اء	4	#	4	\ <u></u>	-	
FATIGUE TEST DATA	SPECIMEN NUMBER: 311 20% LT	7		TEST DATE: 2-9-84 //		77 / 3/8/ WITH TINE " 40/8 " TH " 70/90/ W	1. 16.62 " DIMI. 77.32 A. 10037 INT.		Tast (FM = 250)		LINVIA. CUINDS. NAY PREPS. NO TICL	•	CYCLES TO FAILURE 124602 Hots "LIFE -	, , , , , , , , , , , , , , , , , , ,	IICI 8/64 FLIGHT HOURS	LARGER FLAW = AAA" (A)				SMALLED 5 47.7.78)															2 ×	

⋖
E
⋖
DATA
TEST
ŭ
=
5
FATIGUE
≪.
Œ

FRACTOGRAPHIC DATA	CRACK LENGTH IN.						. 4630	,332	.2505	18/8		, 1250	52/1/.	. 1030	680	10.803	6901	600.	0.00	,023	9/0.	,009								
FRAC	# FLIGHT HRS.		*				86 11358	11100	108 00		9 900	9.600	9300	2000	0000	7.2	7800	75	7200	0000	6600	6300								
	BLK			opit=	m.	- bk		-32	W.	次	3	32	2	2/2 0/0	100	200	26	25	74	n n	7	4) 	1	10	7	<u></u>	7~		
	20% 47			AM . 4465" A . 6020"	(FM=250)	PREPS. No	, ofe	100	***			C. S.									-044		S						×V	
FATIGUE TEST DATA	332	300hr (8)	11-84 11	10 HOLE DIAM .	70		118764	1	ICHT HOURS		46200181	(a) acal.			1 2 7 1	,3025" (8)				•										
<u>خا</u>	SPECIMEN NUMBER:	SPECTRUM: F18-300hr (8	TEST DATE: 2-17-84	W 2.0000 " TH . 3010 " HOLE DI	MAX STRESS 28 KS1 FREG.	ENVIR. CONDS. 3.5% NACQ	CYCLES TO FAILURE		TICI 6343 FLIGHT HOURS		LARGER FLAW = 4630 "/ R	f				SMALLER FLAW= , 3025" (B)		·									:		-	

-
انے
S 11
~ 1
\Box I
~;
- 1
7
0.21
r-71
اے
5
I
G)
=1
====
=1
CJ!
1
~ 3
C 41
-1
~1
r- I

FRACTOGRAPHIC DATA	BLK # FLIGHT HRS. CRACK LENGTH IN.	151 14063 207	14100 . 268	5 14500 184	4 13200 ,094	3 129.00 .074	12300 046	9 12000 - 326	8 1/400 1,011		6	4	2 9	2 6			9	. 5	† · · · · · · · · · · · · · · · · · · ·	5	7	6	8	.*• 9	2
FATIGUE TEST DATA	SPECIMEN NUMBER: 333 20% LT BI	SPECTRUM: F18-300 hr (B)	TEST DATE: 3-20-84 //		W 2.0005" TH . 3030 "HOLE DIAM .4415" A . 6062"	STRESS 28 VS. FRED Fact (EM = 250)	700,	ENVIR. CONDS. 3.5% Na CL PREPS. No	CYCLES TO FATLINE 1497 24 / 1.2.	151600 10	TICI //3// FLIGHT HOURS		A ARGEB EL MA EL MA LA ARGEB	LONGEN FLAM - 38/ 0		SMALLER FLAW = . 355" 8						V			

DAT	
TEST	
GUE	
FATI	

FATIGUE TEST DATA		FRAC	FRACTOGRAPHIC DATA
SPECIMEN NUMBER: 234	BLK #	FLIGHT HRS.	# FLIGHT HRS. CRACK LENGTH IN.
SPECTRUM: F18-300hr (B)	1		
LEST DATE: & - LI-OT //			
	. 5		
M 0.0000 IH . 3020 HOLE DIAM . 4430 A . 6	.6040		
AAY CTREE O O O O O O O O O O O O O O O O O O			
	U	0360	7
	20:05	46.20	75.65
LINIAN: COMUS. 2.7 NACE PREFS. NO	29	8700	2500
CYCLES TO EATTIBE 0/00 L	78	40	1510
la prs	27.	8100	1385
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26	2800	.1050
ICI 67.5 FLIGHT HOURS	25	7500	150.
	124	7200	, 0335
	12/ 12/	6900	,0150
LANGER LEAN - 4375 (B)	22	6000	10070
	7 4		-
SMALIFP DAW 2005 (A)	0		
からくなりない	1	2,7	
	-		
	L		
	k		
	1		
	F		
	7	,	
	r		
s All to All the Control of the Cont	2		
**	_		

~
- 'I
터
4 1
2
\Box
-
- 1
_ 4
1
COL
TEST
C_71
-
1
1
1 + 11
_
09
09
09
09
09
09
09
09
09

TA 20 2 LT BLK # FLIGHT H 20 2 LT BLK # FLIGHT H 8	FRACTOGRAPHIC DATA	RACK LENGTH IN.				,429	1367	153	1900	1/0;																	
202 LT 4435' A. 6436' (FM = 250) (4 pts.	FRACT	BLK # FLIGHT HRS. CRACK LENGTH	6.8		Š	78	31 4800		28 8400	26 7800	2	5	6.	8		0	7	<u> </u>		0	6	8	0	7	3	2	
	VI.	77				7 (7 0		PREPS. NO	14 pts .												n						7×
		SPECIMEN NUMBER: 335	SPECTRUM: F18-300hr (8)	TEST DATE: 2-23-84 //	W 3.0020 ' TH .3015" HOLE DIAM		1	ENVIR. CONDS. 3.5% NACE	CYCLES TO FAILURE 103079	7799 FITCHT HOURS		GER FLAW = . 447 O		# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CLER FLAW = . +11 O									••			

_
-
DAI
$\boldsymbol{\Box}$
_
_
in
~4
G.
_
_
Ξ.
'
60
\rightarrow
-
\mathbf{c}
-
-
FATIGUE TEST
r_ `
-
-

FRACTOGRAPHIC DATA	CRACK LENGTH IN.			.373	1855	.1185	.0.395	.020																
FRAC	BLK # FLIGHT HRS.	6.	,	62 19653	62 189 00	60 18300	58 17400	55 168.00	+*	2-	0	780	6.	9	7	 7	-0	6	8	9	2	3	2	
≪1	40% 17			4455 A .6138"	(FM= 250)	PREPS. No	1d pts :	1									8							7 XX
FATIGUE TEST DATA	SPECIMEN NUMBER: 500	SPECTRUM: E18-300 hr (B)	TEST DATE: 5-2-84 //	W 2.0025 TH .3065" HOLE DIAM .	MAX STRESS 28KS1 FREG. Fast	ENVIR. CONDS. Dry	CYCLES TO FAILURE 205496	TTCI /6,860 FLIGHT HOURS		LANGER FLAW = , 3/3 ' B			SWINCLER FLAW = . 347" B											

FRACTOGRAPHIC DATA	CRACK LENGTH IN.					,4425	,384	1887	.1915	.134	. 098	. 6685	,055	,0365	,022	5910	2800
FRAC	BLK # FLIGHT HRS. CRACK LENGTH IN	, 0	8	6.	9	54.12 25236	84 25,200	83 249.00	82 24600	81 24300	80 24000	79 23700	78 23400	77. 23100	76 22800	75 22500	7.4 212.00
FATIGUE TEST DATA	SPECIMEN NIMBER: 501 409, 17		SPECTRUM: F18-300hr(B)	TEST DATE: 5-3-84 //		7 475 " TY 177 " HOTE BY WALL VILL " 1 7290 / 1.	1: 11/2 111 . JOZO 110LE DIATI . 7460 A 6037	,	ASSIRESS ZOKSI FREG. (ASC (FM= 250)		ENVIR. CONDS.		CYCLES TO FATTIBE 1/2889 1/ 1	•		TE ALICHI HOURS	

LARGER FLAW = . 4425 " B SMALLER FLAW = ,4065

-00
≪ı
티
-
=1
\Box
-
_ 1
TEST
701
741
뗴
51
ŀ
e_21
ωį
5 1
==1
OI
<u> </u>
I
Z
1
لعا

																	_			-		-+	-+-	-1-	-1-	+-	1	_	1-	_			\vdash
FRACTOGRAPHIC DATA	CRACK LENGTH IN.			.420	,324	.282	,233	198	1/2/3	0685	,050	,033	.028	.0225	,014	,005																	
FRACT	FLIGHT HRS.			91461	19500	19200	18900	18 600	18 300	17700	17400	17100	00.891	16500	162.00	15900																. ***;*	
	BLK #	080	.7	65.72	62	É	63	200		265	58	. 23	36	55	200	23	7	- c	b	*	100	1	2	1	+	1		0	6	80		9	r
		 	-	T.	- 	40		_						ا مهيد مايوس	13					ン) - 15	يكبد	e de la companya de		en pagaré	A POLICE OF	عاوت	S		V2000	. 51		ige Section
	40% 17		٠		***	445 A . 60 (0 us	′	LM=450,	•	None	7.														ent _a		(a (a)						
	0				11/1	3	j	٦ ۲		PS.	7	7.8.																					
FATIGUE TEST DATA	502 40	SPECTRUM: E18-300hr (B)	5.3.84	7, 4	147 A A A WAY THE ALAN A A A A A A A A A A A A A A A A A	JUNE DIAM : 4445 A	7	MEN SINESS EDESI FREN (FM	-	UN PREPS.	7 11 11110	CICLES 10 FAILUNE XOCIOS 19 PIS.	amon miorita // // 1911	HI HOURS		LARGER FLAW = Anta	720 0				SMALLER FI AW - 0 / 2" &	メン3 B											

FATIGUE TEST DATA

				at sufation	The second	attraction.		•							N	AD	C
FRACTOGRAPHIC DATA	CRACK LENGTH IN.	. 439.5	36.75		1	140	0955	0456	7010	.479	1777						
FRAC	BLK # FLIGHT HRS. CRACK LENGTH IN	_	29 8700	28 8400	21 8100	26 7801	22 7500	24 7200	(23 6900	22 6600		0	6	8	- 2		.5
	SPECIMEN NUMBER: 503 40% LT		SPECTRUM: F18-300 hr (B)		rest date: 5-7-84 //		W 7 000" TH 400" HOTE BIAN 'AA2'"	A:0043 111 . 1435 A . 60431112		MAN STRESS 28 KSI FREG. F35C (FM=250)		ENVIR. CONDS. 3.5% Nor! PREPS 1/2	l	CYCLES TO FAILURE 9222 / 12 L	(0000)	TTCI // 23 FITCHT HOIDS	

SMALLER FLAW= ,2565"B

LARGER FLAW = .4395" B

- 3
—
- 1
-
\sim
_
- 1
_ (
-
101
₩ 21
- 51
1241
57 }
e 1
1
r_91
ωį.
\supseteq
밁
밁
3
3
116
116
TIGU
ATI GU
ATIGU
ATIGU
FATIGU
FATIGU

FRACTOGRAPHIC DATA	HRS. CRACK LENGTH IN.	. 503	.41/	,296	, 233	1415	.103	. 080	.058	160	4/01	, 0075																						
FRAC	# FLIGHT HRS.	5/1446	1/40	11,00	10500	102.00	0066	2600	9.300	8700	84.00	8 100																	*44.					•
	BLK #	38.15		3	3%	34	ich Ch	777	30	29	28	77	ىرم	1	1	2	-	ok	4	عاد	L	4	?	7	-	ok	~	1		, 1	1	70	-	
,		ų,	Щ	- -		 -					12/21	Ī	1	<u></u>	. * /					く	- -													
	40221	·			•	A.6063		LM-450		. No	,															\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							>	\
_						440			DED		Š	À																						
FATIGUE TEST DATA	504	SPECTRUM: F18-300 br (8)	1	TEST DATE: 5-7-84 //		N 4.0010 14 .3030 HOLE DIAM .4440 A .6063	MAX STRESS 2 CANSI FRED GILL	1836	ENVIR. CONDS. 3 47 1/1 PREPS	1	C:CLES TO FAILURE 119183 14 or		FLIGHT HOURS		2 10 10	,303 %				SMALLER FLAW : 349 B														

FATIGUE TEST DATA

SPECIMEN NUM: SPECTRUM: E TEST DATE: 2.0000 TH X STRESS 21 WIR. CONDS. CLES TO FAIL CLES TO FAIL CLES TO FAIL	FRACTOGRAPHIC DATA	SPECIMEN NUMBER: 505 40% LT BLK # FLIGHT HRS. CRACK LENGTH IN.	SPECTRUM: F18-300 h-(B)	DATE: 5-9-84 11 6 26/2 7836414	W 2,0000" TH. 3030" HOLE DIAM . 4435" A 1,01, 2 25 754 . 232	23 6900	/a C/ PREPS	14 ots 5700	5/27 FLIGHT HOURS		LARGER FLAW = ,4/2 B
---	--------------------	--	-------------------------	--------------------------------	--	---------	-------------	-------------	-------------------	--	----------------------

SMALLER FLAW = , 33/" B

										1	NAC)C-	-83	31:	26-	-6() —	VO	L,		ĽΫ									
TRAC STUCKES AND STATE	CRACK LENGTH IN.	0110.				444.	13/4/	2000	,2257	.1952		1,0%	11170	7880	8060'	1070.	,0631	10575	10502	0480	10444	104/4	10383	1000	,0323	1000	10271		.0332	1,00
AGG	F	11600	10800	10400		24800	24400	24000	23600	2200	2400	22000	21,600	21200	20000	00000	0020	9200	16800	16400	0000	17600	17200	00891	0079	16000	1,5600	15200	14800	0077
	BLK		52	56		62	19	9	74	200	56	55	54	52	25	200		16	47	46	45	44	43	42	4	0,1	39	38	×	<u>_</u>
FATIGUE TEST DATA	SPECIMEN NUMBER: 506 40% LT	SPECTRUM: <i>F16 (400 hr)(A)</i>	TEST DATE: 4-16-84 //	W 2 2026 "TH 322" "ONE PT " 20 F."	" 1000 HOLE DIAM 1450 A . 609859"	MAX STRESS 28KS/ FREC 1 LIFE = 2days Fact Ex-		ENVIR. CONDS. Dry PREPS. None.		CICLES TO FAILURE 2377/84 Hots "LIFE = 3/1		1101 1/33 FLIGHT HOURS		LARGER FLAW = 3741(B)					PMALLER FLAW = . 325 (B)											

•
_
_
_
•
a
$\overline{}$
_
_
-
20
S
P-7
ш
티
•
-
ю.
-
w
_
0.0
_
F * 7
$\overline{}$
-
_
-
-
F
띡
_

FRACTOGRAPHIC DATA	CRACK L	.0000		. 446	13387	. 277	4661.	1/6/1/2	1,205	,1032	0160.	,0807	0640	.0595	.0545	.05//	1940.	.0436	.0404	,0380.	10233	10	1981	10266	,0294	.0328	10206	10189	12101	1 0158
FRA	# FLIGHT HRS.		\prod	30000	00962	28800	28400	+	$\ \cdot\ $		+	26,000			+	+	+	+	2000	+	21600		20800	20400	20000	-	27500	2002	20400	0003
•	BLK	**************************************	n	THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SE	***	72		56	8	- 63	8	00	63	95	9		74	200	7	75	54	55	52	3	9k	3	**	1	?	7
	1/4/	1		8	, 1 55 ,	6 FIV-28			215	2/2		, e l			e e			7	ali di	المُحْدِد ال		مداد أداعه	i en for More	atony.		Ŝ	5. at . 4	-		-
	2 67				1001	Fast		Yeac	4	1													The state of the s					Y		
FATIGUE TEST DATA	SPECIMEN NUMBER: 507 40%	SPECTRUM: F16 (400 hr)(A)	TEST DATE: 4-17-84 //	W 2.0030 TH3000 HOIE DIAM AS 50 ".	A COLL DIMIL DIMIL OF ACT	MAX STRESS 28 481 FREQ 1 LIFE = 2 days		ENVIR. CONDS. LAY PREPS.	CYCLES TO FAILURE 7673179 11-14 11EE	00/0/0/00	TTCI /6 000 FLIGHT HOURS		I ABGED ET AUT - 11/2)	(A) 9*4.		,		SMALLER FI AW = . 375 (B)												

FRACTOGRAPHIC DATA	CRACK LENGTH IN.	. 3189	. 2249	.1631	1447	1282	1022	10930	.0776	8590.	.0647	10.584	,0537	,0495	10.456	1150'	.0370	75501	.0310	.0282	.026.5	.0250	
FRAC	BLK # FLIGHT HRS. CRACK LENGTH	35,600	17 34.8.00	34 400	33 600	83 334.00			78 31200	77 30,800	16 50400	75 30000	74 29600	25.00	75 6800	78400	-	1	-	67 26800	\dashv		JUL 25.00
FATIGUE TEST DATA	SPECIMEN NUMBER: 508 402, LT	SPECTRUM: FIG- 400 hr (A)	TEST DATE: 4-23-84 //		W 2,0015" TH . 3030 HOLE DIAM . 4440 "A. 606553"	NAX STRESS OF WEBER 1. 1 THE WAY STRESS AND	012=11-12501 5/000	ENVIR. CONDS. Dry PREPS. None		CYCLES TO FAILURE 3446483 14 pts. LIFE = 450		TTCI 22 2/0 FLIGHT HOURS			LANGER FLAW - 440 CO					SMALLER FLAW = , 360 (6)			

DATA	
TEST	
FATIGUE	

FRACTOGRAPHIC DATA	CRACK LENGTH IN.		1387	. 2287	.1516	.1090	10825	10587	.0469	.0377	,0285	10221	07.70	186/0	10101	7,00,																						
FRAC	FLIGHT HRS.		11200	10800	10400	10000	. 0096	9200	8800	8400	8000	0097	7200	9800	6400	2000		.d.	٠				7 T	7														
	BLK #	9	28	27	58 28	25	24	23	22	21	20	2	2		5			2		0	7	Ω		و	2	4	~	2	- <	>	2	٥	٥	7	-	7	7	-
,	1		7	. (3	, z	<i>ار</i>	17-250				40	7761	1							7	} .							V)	•						
DATA	40% 47			/		darn's			= ddays, tast f	•	PREPS. Nonc		10/s % LIFE = /																									**
FATIGUE TEST DA	509	400hr (A)		4-23-84		15 HOLE DIAM		יייי ייייי	FREG. L LIFE	1 11 00 4	5.5% NoCl	1	1072656 1		FLIGHT HOURS		187 * (B)					18C.(B)	(C) COV.		•													-
드니	SPECIMEN NUMBER:	SPECTRUM: FIG - 400 hr (A)		TEST DATE:	,	W 2.0011 "TH . 3015" HOLE DIAM	7777	WAY CTUBECC JOHN	THE STRESS & O XS/ PREC. I LIFE		ENVIR. CONDS.		CYCLES TO FAILURE 1072656	,	TTCI 6048 FLI			LANGER FLAW =		•		SMALLED TO THE CALL	SINDELER FLAW															

FRACTOGRAPHIC DATA	BLK # FLIGHT HRS. CRACK LENGTH IN	6.		5	16069sy" 4	IFE = 2 days Fact EM=2 50	F 21 8400 , 480	120 8000 ,2770	19 7600 .1542	7200	1 2 6800	16 6400 0043 1 31	
FATIGUE TEST DATA	SPECIMEN NUMBER: 510 40% LT	SPECTRUM: F16- 400 hr (A)	TEST DATE: 4-25-84 //		" d. 0030' IH , 3030 HOLE DIAM , 4455 A, 606955	1AX STRESS 2845, FREC. 1 LIFE = 20avs		ENVIR. CONDS. 3.5% Nov PREPS.		CYCLES TO FATTIRE SALLING ALTER 1 175	1	mort 6110 microm	

S

SMALLER FLAW = . 250" (B)

LARGER FLAW = . 480 "(c)

														. –
FRACTOGRAPHIC DATA	BLK # FLIGHT HRS. CRACK LENGTH IN.				450	2789	. 1587	,0790	.0317	.0214	,0136	8600.		
FRAC	FLIGHT HRS.				0096	9200	8800	8400	8000	0097	7200	0089		
	BLK #	60		باه	772	52	25	7	2	6	- 8	-2	ام	اح
FATIGUE TEST DATA	SPECIMEN NUMBER: 511 402 LT	SPECTRUM: FIG - 400hr (A)	TEST DATE: 4-27-84 //		W 2.0015" TH . 2000 HOLE DIAM . 4455"A . 6005'59"	A 1 C C C C C C C C C C C C C C C C C C	THEY STRESS and MS/ FREE I LIFE = Ldays 1356 FM-250		ENVIR. CONDS. 3.5 % Nac/ PREPS. No.		CYCLES TO FAILURE 922257 1/24 " 1 TFF = 10 mg	ľ	THEI CASI ETTENT HOME	TOTAL PLUCIAL MOUNS

SMALLER FLAW= ,/25 "(B)

LARGER FLAW = , 450 '(B)

FATIGUE TEST DATA

SPECIMEN NUMBER: 521 40% LT	BLK #	FLIGHT H	FRACTOGRAPHIC DATA HRS. CRACK LENGTH IN.
LOCK	200		
5-10-84 11			
W 2.0030" TH . 3015 HOLE DIAM . 4455" A . 6039"	منع		
MAX STRESS 28 KSI FREG FIST (FM = 250)	2002	30600	.397
ENVIR. CONDS. Dry PREPS. 1/2	100	30500	.340
319975 11.4	98	29400	. 270
011 110 1d pcs	16	29100	,237
TTCI 848/ FLIGHT HOURS	200	28500	. 217
LARGER FLAW = $377''(I)$	835	35500	801.
	75	22500	. 064
	521	19500	1.040
SMALLER FLAW = .367" (B)	5.5	1/2/2/	725
	1	00001	, 0.33
	45	13,500	v 6/0'
	F		
	<u>.</u>		
	- c		
	o		
	Ł		
		• • • •	
	7		
	7		
	7		
X	7		
-	_		

_
- 1
_
듸
5
K
\sim
_
_ 1
6-1
ES
TES
LE II
-
TEST
w
-
UE
\supset
-
1
- 1
H
- 1
4 1
-
- 1

	-		· 	11	 	-11		1		T		\neg			7	Т	T	_	Г	-	_			-	П	7	7	T
FRACTOGRAPHIC DATA	FLIGHT HRS. CRACK LENGTH IN					,525	.382	305	. 284	1 6 10 2	.150		,076	1	1040	1	1044	110	0/0									
FRAC	FLIGHT HRS.); ;			33000	32,400	32/00	3/800		28500		25500		22,500		17300	11, 500	16200								. •	
	BLK #	060	7	4	70	77	109	107	105	1	35	1	85	1 1	73	1	3 1	5.5	54			-	0	6	Ω	1	ام	1
	47			,6033"	(FM-250)	<i>'</i>		•					·.4				7		4/17				7	Ę:	N			
	40%			470" 1	(FI	PREPS.		<u>ots</u>																				
FATIGUE TEST DATA	522	3LOCK	5-10-84 11	S' HOLE DIAM .4	FREG. Fast	. Dry P		348207 14	GHT HOURS		(8)" (B)					361"(8)												
E .	SPECIMEN NUMBER:	SPECTRUM: FIB-BLOCK	TEST DATE: 5-	W 2.00/0" TH .3015 TOLE DIAM .4470" A .6033	MAK STRESS 28 KSI FREG.	ENVIR. CONDS.		CYCLES TO FAILURE	TTCI /6, 200 FLIGHT HOURS		LARGER FIAW =					SMALLER FI AW				٠								

FRACTOGRAPHIC DATA	BLK # FLIGHT HRS. CRACK LENGTH IN.	<u>ğ.</u>		7	133 39700 :439	131 39300 371	130 37000 :306	120 36000 ,171	10 33000 .096	100 30000 ,059	90 27000	80 24000 ,021	70 01:00	1		†		0	6	8	01	4
FATIGUE TEST DATA	SPECIMEN NUMBER: 533 40% LT	SPECTROM: FIB BLOCK	TEST DATE: 5-14-84 //	W 2.0020' TH. 3020' HOLE DIAM, 4465" A . 6046"	MAX STRESS VOYS: FBEO CALL		ENVIR. CONDS. Dry PREPS. 16	CICLES TO FAILURE 420359 1d pts	TTCI 2/2/8 FLIGHT HOIRS	/30%-	$L^{ARGER} FLAW = .737(B)$		770	SMALLER FLAW = . 333 " (8)					V			

-
_ 1
- 4
-
_
_
\triangle
1
~ .
_
- 1
ES
U J1
F-71
-
~ ;
回
LEJI
,
_
当
OI
_
The same of
E
_
- 1
4
_

					,	_		,				_			_		 1			_	_	_	7	_		-1	-1	-	_	-	7	-		7	7	1	٦	-	\top	_
FRACTOGRAPHIC DATA	CRACK LENGTH IN.					.425	.36.	274	,215	581.	551	./39	5//:	960.	180'	1201	,055	,048	.043	.039	,032	,027	. 023	,020	810.	.015	1013	0/0'												
FRAC	FLIGHT HRS.			3. 0		13500	13200	12900	12600	12,300	12000	1170	11 400	001 //	10800	10500	10200	9 900	9 600	9300	9 000	8700	640	8.100	2800	7500	1.200	0069												
	BLK #	6	8		٥	42	44	43	42	4	40	39	38	37	36	3.5	124	33	35	18	30 06	62	28	27	36	25	77	25	7		0	6	ρ	4	و	7	7	7	2	_
N.	(OPEN HOLE)						AM . 20.20 A . 5770	,	(FM=250)		PREPS	217		prs.	•								がには、人									9								interest of the formal of the second
FATT GUE TEST DATA	SPECIMEN NUMBER: 524		SPECTRUM: FIR BLOCK	TEST DATE: 5-14-84 //		2014 min 2000 1 min 4 2 2 2 0	W A. 0000 TH. A 775 HOLE DIAM	,	MAX STRESS 28 KS1 FREG. F354		FIVIR CONDS 355 10	1001/0/05:0		CYCLES TO FAILURE 14/165 14	()	TTCI 6700 FLIGHT HOURS		(A) (A) (B)	LARGER FLAW = .740 CO					SMALLER FLAW = . 293" (B)																

DATA	
D	
TEST	
	l
ME	
FATIG	
FA	l

FRACTOGRAPHIC DATA RS. CRACK LENGTH IN. 265 265 265 276 265 276 276 276	
FLI GHT HRS. 13 800 13 800 13 800 13 800 1400 1700 1700 1700 1700 1700 1700 17	
Flow by the bound will will will and I I I I I	V-4W
SPECIMEN NUMBER: 525 (OPEN MOLE) SPECTRUM: FIB.BLOCK(B) TEST DATE: 5-16-84 // M. 1.976.5' TH.3005' HOLE DIAN .5430' A .5999" MAK STRESS 2B.KS, FREG. 5354 (F.M = 250) ENVIR. CONDS. 3.52 N/acl preps. No CYCLES TO FAILURE 44302 M pts TTCI 6600 FLIGHT HOURS LARGER FLAW = .376'(B) SMALLER FLAW = .267'(B) SMALLER FLAW = .267'(B)	

-	
_	
ے	
5	
-	
DATA	
$\boldsymbol{\Box}$	
_	
-	
V4	
F-7	
-	
TEST	١
-	
	ı
ш	ı
	l
-	
GUE	ı
_	Į
	ľ
• 1	l
•	ľ
- "	
FATT	١

														.		1	.	4 4		+نـــ		1	+		 	— 1			-	_
FRACTOGRAPHIC DATA	. CRACK LENGTH IN.				. 575	,405	.326	249	228	. 205	761.	181	/5/	142	138	. 133		1 360'		.040	,	1018 1								
FRAC	FLIGHT HRS				9 900	9600	4300	8700	8400	8,00	7800	1500	0000	6600	6300	0001	-	4500	-	3000	}	1500			,					
	BLK #	8	2	4	35	32	170	29	28	23	45	200	25	22	121	02	1	15	1	9	!	5	?	~	0	6	2	1	٥	ر
FATIGUE TEST DATA	(OPEN HOLE)			.6017*	A C	FM= 250)	//	No									7								S Division S					
	526 (OPEN	K(B')	1/ +	W 3.0025" TH .3005" HOLE DIAM .5045" A		Fast		3.3 10 Nac/ PREPS.	4-11 1638	1000	Salon	nonvo	(8/4/14)	6 5				422 11 (0)	58:(0)			,				S. Carlot				
FATIG	SPECIMEN NUMBER:	SPECTRUM: FIB BLOCK (B')	TEST DATE: 5-17-84	2025" TH ,3005"		MAX STRESS ZBKS, FREC.	076	ENVIR. CONDS. G.J.	CYCLES TO FAITHRE 10350		saion morta 936		ļ	LARGER FLAW = . 3/5 (C)					SMALLER FLAW = .7											
	O	ပ္	턴	0		7	•	ž	į.	i		,		- 1				•												

(THIS PAGE INTENTIONALLY LEFT BLANK)

NADC-83126-60-VOL. IV

REFERENCES

- S. D. Manning, R. P. Wei, D. E. Gordon and S. B. Kirschner, "Development of Fatigue and Crack Propagation Design and Analysis Methodology in a Corrosive Environment for Typical Mechanically-Fastened Joints; Volume III Phase II Documentation", Naval Air Development Center, Report No. NADC-83126-60-Vol. III, October 1984.
- 2. Song Chiou and R. P. Wei, "Corrosion Fatigue Cracking Response of Beta-Annealed Ti-6Al-4V Alloy in 3.5% NaCl Solution", Naval Air Development Center, Report No. NADC-83126-60-Vol. V, June 1984
- 3. Y. H. Kim, R. P. Wei, D. E. Gordon, S. M. Speaker and S. D. Manning, "Development of Fatigue and Crack Propagation Design and Analysis Methodology in a Corrosive Environment for Typical Mechanically-Fastened Joints; Volume I Phase I Documentation", Naval Air Development Center, Report No. NADC-83126-60-Vol. I", March 1983.
- 4. Y. H. Kim, S. M. Speaker and S. D. Manning, "Development of Fatigue and Crack Propagation Design and Analysis Methodology in a Corrosive Environment for Typical Mechanically-Fastened Joints; Volume II State-of-the-Art Assessment," Naval Air Development Center, Report No. NADC-83126-60-Vol. II," March 1983.
- P. J. Noronha et al, "Fastener Hole Quality," Vol. I & II, Air Force Flight Dynamics Lab., AFFDL-TR-78-209, WPAFB, 1978.
- S. D. Manning, J. N. Yang, S. M. Speaker,
 D. E. Gordon and M. Shinozuka, "Durability Methods Development, Volume VII - Phase II Documentation," Air Force Flight Dynamics Lab., AFFDL-TR-79-3118, Jan. 1984.
- S. M. Speaker et al, "Durability Methods Development, Volume VIII Test and Fractography Data", Air Force Flight Dynamics Lab., AFFDL-TR-79-3118, Nov. 1982.
- General Dynamics, Fort Worth Division, Standard M198, "Fastener Installation, Pins, Bolt and Blind Fasteners - Flush and Protruding Heads," July 1975.

NADC-83126-60-VOL. IV

 R. J. H. Wanhill and J. J. DeLuccia, "An AGARD-Coordinated Corrosion Fatigue Cooperative Testing Programme," AGARD Report No. 695, February 1982.

DISTRIBUTION LIST

Government Activities

NAVY

	No. of Copies
NAVAIRSYSCOM (AIR-OOD4), 2 for retention, 3 for AIR-311B,	
2 for AIR-530, AIR-5302, AIR-53021, AIR-530215	10
(3 for Code 8131)	3
NAVAIRTESTCEN, Patuxent River, MD 20670	
(Attn: Dr. J. Hoeg)NAVAIRENGCEN, Lakehurst, NJ 08733	1
(Attn: Mr. F. Sinatra, Neil Goodis)	2
NAVAIREWURKFAC, NAS, Alameda, CA 94501	1
NAVAIREWORKFAC, MCAS, Cherry Point, NC 28533	1
NAVAIREWORKFAC, NAS, Jacksonville, FL 32212	1
NAVAIREWORKFAC, NAS, Norfolk, VA 23511 (Attn: Mr. Stokley)	ī
NAVAIREWORKFAC, NAS, North Island. San Diego. CA 92135	ī
NAVAIREWORKFAC, NAS, Pensacola, FL 32508.	ī
Naval Weapons Center, China Lake, Ca 93555	ī
NAVAVLOGCEN, Patuxent River. MD 20670	1
NAVPGSCHL, Monterey, CA 95940	1
NAVSEASYSS 1, Crystal Mall 4, Rm. 109, 1 m 20360	•
(Attn: Mr. Vanderveldt)	1
NAVSHIPANDCEN, Bethesda, MD 20034	1
NAVSHIPANDCEN, Annapolis, MD 21402.	1
NOL, White Oak, MD 20910	1 1
NRL, Washington; DC 20375 (Attn: Mr. 7, Crock	1
NSWC, White Oak, MD 20910.	1
DNR, Arlington, VA 22217 (Attn: Dr. Y. Regapeta 6 474)	1

DISTRIBUTION LIST REPORT NO. NADC-83126-60 AIRTASK NO. UF41400

AIRTASK NO. UF41400		
NON-GOVERNMENT ACTIVITIES	No. of	
ALCOA, ALCOA Labs, ALCOA Center, PA 15069	<u>Copies</u>	
(Attn: Mr. J. G. Kaufman)	1	
Batelle Columbus Labs, 505 King Avenue, Columbus, OH 43201 (Attn: Dr. B. Leis)	. 1	
Boeing Commercial Airplane Co., P. O. Box 3707, Seattle, WA 98124	· •	
(Attn: Mr. T. Porter)	1	
Douglas Aircraft Co., 3855 Lakewood Blvd., Long Beach, CA 90846	1	•
(Attn: Mr. Luce , Mail Code 7-21)	1	
Fairchild Industries, Hagerstown, MD 21740 (Attn: Tech Library)	ī	
General Dynamics, Convair Division, San Diego, CA 92138		k:
(Attn: Mr. G. Kruse)	1	
General Dynamics Corporation, P. O. Box 748, Ft. Worth, TX 76101	1	
(Attn: Dr. S. Manning)	•	•
L.I., NY 11714 (Attn: Dr. H. Arman)		
(Attn: Dr. B. Leftheris)	1	
(Attn: Dr. H. Eidenoff)Lehigh University, Bethlehem, PA 18015	1	
(Attn: Prof. G. C. Sih)	1 .	
(Attn: Prof. R. P. Wei)	ī	
Lockheed-California Co., 2555 N. Hollywood Way, Burbank, CA 91520	•	
(Attn: Mr. E. K. Walker)Lockheed Georgia Co., Marietta, GA 30063 (Attn: Mr. T. Adams)	<u>i</u> 1	-
McDonnell Douglas Corporation, St. Louis, MO 63166	•	
(Attn: Mr. L. Impellizeri)	1	
(Attn: Dr. R. Pinkert)	1	
Northrop Corporation, One Northrop Ave., Hawthorne, CA 90250 (ATTN: Mr. Alan Liu)	1	
(Attn: Dr. M. Ratwani)	i	
Rockwell International, Columbus, OH 43216		
(Attn: Mr. F. Kaufman)	1	
Rockwell International, Los Angeles, CA 90009 (Attn: Mr. J. Chang)	1.	
(Attn: Mr. J. Chang)	-	
Thousand Oaks, CA 91360 (Attn: Dr. F. Morris)	1	
Rohr Corporation, Riverside, CA 92503 (Attn: Dr. F. Riel)	1	
Sikorsky Aircraft, Stratford, CT 06622	. 1	
Dayton, OH 45469 (Attn: Dr. J. Gallagher)	1	
University of Illinois, College of Engineering, Urbana, IL 61801		I.
(Attn: Dept. of Mechanics and Industrial Eng., Profs. J. D.	2	*
Morrow, D. F. Socie)	2	
(Attn: Dr. C. Dumisnil)	1	
(Atta: Mt (Grav)	1	
Applied Mechanics, 111 Torne Bldg. D2, Phila. PA 1910		L
University of Pendsylvania, Dept. of Mechanical Engineering and Applied Mechanics, 111 Tours Bldg. D2, Phila. PA 1910 (Attn: Dp. Burgers)	I I	
X		
	·	4