## CS 463: Status Report

## Eric Henderson, Nick Kamper, Laura Moss, James Savage 1 February 2013

Eric Henderson and James Savage have been working on algorithms for finding points of interest, and have working code for both a Kirsch Operator algorithm and Minimum Direction of Variance algorithm. We are currently using the variance method as our primary POI algorithm, however tweaks were made to its process. Instead of finding just points, our algorithm attempts to maximize a threshold on a minimized directional variance matrix of an image, while keeping at least a certain number of POI pixels. This result is a binary matrix which we then transform into a list of bounding boxes for regions of interest to them be matched.



Fig 1. Results of minimum directions of variance algorithm, with raw points marked in blue, and regions of interest represented as red rectangles.

Nick Kamper and Laura Moss worked on a spiral algorithm for point matching, given points of interest, however they are having trouble getting optimal results on an image pair, because it often returns corresponding points that are too close to the original, as shown in Table 1, where all matches are found around 1–2 pixels from their source. If the points are the same, that would mean that the distance of the object away from the camera is infinite or very far away. Hopefully we can try to investigate how to reduce the number of inappropriate matches, perhaps by altering our spiral iteration.

| Matches in A |     |     |     | Matches in B |   |     |     |     |
|--------------|-----|-----|-----|--------------|---|-----|-----|-----|
| 78           | 350 | 78  | 350 | 6            | 6 | 350 | 67  | 351 |
| 79           | 263 | 81  | 261 | 6            | 6 | 263 | 63  | 264 |
| 82           | 311 | 83  | 311 | 6            | 9 | 311 | 70  | 313 |
| 84           | 373 | 85  | 374 | 7            | 1 | 373 | 69  | 375 |
| 89           | 241 | 87  | 239 | 7            | 6 | 241 | 76  | 241 |
| 104          | 347 | 107 | 344 | 7            | 9 | 326 | 77  | 327 |
| 173          | 200 | 174 | 201 | 9            | 2 | 347 | 93  | 347 |
| 206          | 267 | 206 | 267 | 21           | 2 | 352 | 216 | 349 |
| 224          | 352 | 225 | 352 | 33           | 6 | 294 | 335 | 294 |
| 293          | 332 | 294 | 332 | 33           | 7 | 281 | 338 | 279 |
| 297          | 347 | 296 | 352 | 34           | 4 | 313 | 346 | 313 |
| 340          | 298 | 340 | 298 | 34           | 8 | 307 | 348 | 307 |
| 347          | 294 | 347 | 294 |              |   |     |     |     |
| 355          | 313 | 355 | 313 |              |   |     |     |     |
| 360          | 307 | 361 | 308 |              |   |     |     |     |

Table 1. Interesting points from image A and their "corresponding" matches in image B. (Source Row, Source Column, Match Row, Match Column), with a  $\sigma = 0.1$  (for the gaussian filter), minimum pixel count of 20, and threshold of 5.