

SLURRY HYDROCRACKER PROJECT

Appendix J - Technology Evaluation

PREPARED FOR

Frank Nolte, PEng

Worley Limited

PREPARED BY

Team 15: TR Solutions

Jaryl Schmidt, Student

Jose Te Eng Fo, Student

Naira Correia, Student

Xingming Shan, Student

Yichun Zhang, Student

DATE: April 9th, 2020

Table of Contents

J.1 SUMMARY	J3
J.2 TECHNOLOGY EVALUATION MATRIX	J3
J.3 REFERENCES	.J 4

J.1 SUMMARY

This appendix contains the technology evaluation matrices for the catalyst selection and hydrogen production.

J.2 TECHNOLOGY EVALUATION MATRIX

Table J1. Process catalyst evaluation [1, 2, 3, 4].

Catalyst	Heterogeneous (Low-Activity) Catalyst			Homogeneous (High-Activity) Catalyst		
	Score	Weight Factor	Weighted Ranking	Score	Weight Factor	Weighted Ranking
Amount of Catalyst Required	3	6	18	6	6	36
Catalyst Cost	6	9	54	3	9	27
Rate of Desulfurization	6	6	36	9	6	54
Process Complexity	9	6	54	1	6	6
Total		162			123	

Table J2. Hydrogen production evaluation [5, 6, 7].

Hydrogen Production Technology	Steam Methane Reforming			Partial Ox Hydrocart	idation of H oons	eavy
	Score	Weight Factor	Weighted Ranking	Score	Weight Factor	Weighted Ranking
Hydrogen Purity	9	6	36	9	6	36
Capital Cost	6	3	18	3	3	9
CO ₂ Emissions	6	3	18	6	3	18
Process Efficiency	6	6	36	3	6	18
Total		108			81	

Score:	Weight Factor:
1 - Least Desirable Option	1 - Low Importance
3 - Less Desirable Option	3 - Medium-Low Importance
6 - More Desirable Option	6 - Medium-High Importance
9 - Most Desirable Option	9 - High Importance

J.3 REFERENCES

- [1] Speight, J.G. (2017). "Handbook of petroleum refining", CRC Press, Taylor & Francis Group
- [2] Zhang, S., D. Liu, W. Deng, and G. Que, "A Review of Slurry-Phase Hydrocracking Heavy Oil Technology", Energy Fuels **21**, 3057-3062 (2007).

- [3] Sahu, R., B.J. Song, J.S. Im, Y.P. Jeon, and C.W. Lee, "A review of recent advances in catalytic hydrocracking of heavy residues", J IND ENG CHEM **27**, 12-24 (2015).
- [4] Bellussi, G.; Rispoli, G.; Landoni, A.; Millini, R.; Molinari, D.; Montanari, E.; Moscotti, D.; Pollesel, P. "Hydroconversion of heavy residues in slurry reactors: Developments and perspectives," Journal of Catalysis, 308, pp. 189–200, (2013)
- [5] Kutz, Myer. (2014). "Mechanical Engineers' Handbook, Volume 4 Energy and Power (4th Edition) 29.2.1 Steam Reforming of Natural Gas. John Wiley & Sons"
- [6] Nobandegani, M. S., Birjandi, M. R. S., Darbandi, T., Khalilipour, M. M., Shahraki, F., & Mohebbi-Kalhori, D. (2016). An industrial Steam Methane Reformer optimization using response surface methodology. *Journal of Natural Gas Science and Engineering*, 36, 540–549. doi: 10.1016/j.jngse.2016.10.031
- [7] Topsoe Technologies. (n.d.). *Large-scale Hydrogen Production*. Retrieved from https://www.topsoe.com/sites/default/files/topsoe_large_scale_hydrogen_produc.pdf