Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

A) Course Code : 2129571(020)

B) Course Title : Fire Safety Engineering-III

C) Pre- requisite Course Code and Title:

D) Rationale : Fire safety is an essential requirement for any building or industrial premises today. It has many challenges during construction with respect to complying legal requirements and for the safe execution. Globally, fire risk is a major catastrophe and based on its level suitable techniques are available which is to be taught, and students should aware about it minimizing loses due to fire. On building fire safety, national building code has given guidelines, which covers various classifications of building and their general requirements. This course is based on practical aspect of firefighting and the hurdles coming in during building evacuation at the time of fire emergency. Mainly the focus of NBC part IV is to covers various aspect of fire safety parameters, which can be helpful in planning and designing of building and evacuation routes/ exit. To ensure the fire safety requirements and complying legal requirements or recommendation stated in NBC, learning of audit and inspections are important. Students will learn about various types of building and apply their learning to cope up from fire and other emergencies by suitable control measures.

E) Course Outcomes:

CO-1: To know the effect of temperature on the properties of materials.

CO-2: To know the experimental determination of fire resistance.

CO-3: To learn about various design of fire-resistant walls.

CO-4: To understand the calculation of building fire areas.

CO-5: To understand the reparability of fire damaged structures

F) Scheme of Studies:

Board of Study	Course Code	Course Titles	Scheme of Studies (Hours/Week)		Credits L+T+(P/2)	
			L	P	T	
Civil Engineering	2129571(020)	Fire Safety Engineering-III	2	-	1	3
Civil Engineering	2129561(020)	Fire Safety Engineering-III (Lab)	-	2	-	1

L- Lecture, T- Tutorial, P- Practical,

Legend: Lecture (L) \rightarrow CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others).

Practical (P) \rightarrow LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies).

Tutorial (T) \rightarrow SL: Self Learning.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

(i	Scheme of	Assessment:							
	Board of Study	Course Code	Course Titles	Scheme of Examination					n
			Theory Practical		Theory		ry Practical To		Total
				ESE	CT	TA	ESE	TA	Marks
	Civil Engineering	2129571 (020)	Fire Safety Engineering- III	70	20	30	-	-	120
	Civil Engineering	2129561 (020)	Fire Safety Engineering- III (Lab)	-	-	-	40	60	100

ESE: End Semester Exam, CT: Class Test,

TA: Teachers Assessment

Legend- PRA: Process Assessment, PDA: Product Assessment

Note:

- i) TA in Theory includes Sessional work (SW) and attendance (ATT) with weightage of 70% and 30% of total respectively.
- ii) TA in practical includes performance of PRA, PDA and Viva-Voce with weightage of 50%,40% and 10% respectively.
- iii) 85% attendance is essential in theory and practical classes to appear in Examination.

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

Convert unit of the given physical quantity from one unit system to other.

CO-1: To know the effect of temperature on the properties of materials.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Define different Combustibility of building materials. SO1.2 To Learn the Fire resistance of structural members. SO1.3 To Learn the Fire resistance of buildings.	LI1.1 To test the of non-combustibility of Building Materials. LI1.2 To Study of fire resistant of Building Materials.	PROPERTIES OF MATERIALS 1.1 Effect of temperature on material Concrete, Steel, Masonry and Wood.	SL1.1 Learn about effect of temperature. SL1.2 Learning about Concrete, steel, masonry and wood. SL1.3 Learning about
		1.3 Fire resistance of structural members.1.4 Fire resistance of buildings.1.5 Material Fire Properties.	Combustibility of building materials and structures.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. What is combustible construction materials?
- 2. Explain Fire Resistance Characteristics of Common Building Materials?
- 3. What are the effects of temperature in building Material?

b. Mini Project:

- 1. Collect different types of building materials and analyze its property?
- 2. prepare list of Fire resistance building Materials?

CO-2: To know the experimental determination of fire resistance.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
	LI2.1 To Study of fire fighting		
Approximate method	equipment and accessories.	DETERMINATION OF	the fire resistance of
for calculating the fire		FIRE RESISTANCE	structures.
resistance of	LI2.2 To Study of automatic		
structures. SO2.2 To learn about Fire resistance limits of structures. SO2.3 To know the coefficient of fire resistance and fire duration.	water sprinkler system. LI2.3 To Study of automatic fire detections system.	 2.1 Approximate method for calculating the fire resistance of structures. 2.2 Fire resistance limits of structures. 2.3 Experimental Study and Calculation of Fire Resistance. 2.4 Coefficient of fire resistance. 2.5 Fire Duration. 	SL2.2 Learning about calculating the fire resistance of structures. SL2.3 Learning about determination of fire resistance.

SW-2 Suggested Sessional Work (SW):

a. Assignments

- 1. Explain approximate method for calculating the fire resistance of structures.
- 2. Define following Terms
 - (1) Fire Duration (2) Fire Resistance
- 3. Explain Fire resistance limits of different structures?

b. Mini Project:

1. Prepare the list Fire Resistant Construction of a various Structural Elements

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-3: To learn about various design of fire-resistant walls.

Session Outcomes	Laboratory Instruction (LI)	Class room Instruction	Self Learning
(SOs)		(CI)	(SL)
SO3.1 Explain different Types-building structures. SO3.2 Learning about Fire protection of building structures. SO3.3 Define Steel	LI3.1 To Study of different types of fire proof Walls. LI3.2To study of determination of flash point and fire point of		SL3.1 To learn design of fire-resistant walls. SL3.2 Learning about Roof separations and partitioned fire areas.
structures, Reinforced concrete structures, Plastic structures.		 3.3 Fire protection of building structures: Wooden structures. 3.4 Different types of fireproof walls. 3.5 Fire protection in Steel structures, Reinforced concrete structures, Plastic structures. 	SL3.3 Learning about Fire protection Structures.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. What are 4 examples of a fire barrier?
- 2. What is the difference between fire walls and fire barriers?
- 3. What are the different Types of firestops?

b. Mini Project:

1. Perform and analyze fire properties in diffrent type of structure like Steel structures, Reinforced concrete structures, Plastic structures.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-4: To understand the calculation of building fire areas.

Session Outcomes Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning
SO4.1 To Learn about Fire transmission in building. SO4.2 Calculation of fire areas, subdivision of fire areas in Residential and Public buildings. SO4.3 To Learn about openings for conveyors. LI4.1 To study calculations of fire area in residential building. LI4.2 To study calculations of fire area in residential building. LI4.3 To study the test of combustible and non combustible properties of door buildings.	4.1 Calculation of fire areas, subdivision of fire areas, Industrial, Residential and Public buildings. 4.2 Fire transmission between buildings, and propagation of fire.	SL4.1 building fire areas. Industrial, residential and public buildings. SL4.2 Learning about propagation of fire. SL4.3 Learning about opening for doors – low combustible doors – Noncombustible doors - Spark proof doors/

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. How do you calculate the fire load of an industrial building?
- 2. Explain fire propagation?
- 3. What are the different types of fire doors?

b. Mini Project:

1. To draw and calculation of fire areas in industrial, residential and public buildings.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-5: To understand the reparability of fire damaged structures

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 Design of fire assessment of fire severity.	LI5.1 To study the preparation of post fire damage inspection report.	UNIT-5.0 REPARABILITY OF FIRE DAMAGED STRUCTURES	SL5.1 learn about feasibility of repair.
SO5.2 Define Assessment of damage-concrete, steel, masonry, timber. SO5.3 Explain case study on building reinstatement.	LI5.2 To study and assessment of damage concrete and steel materials. LI5.3 To study the building reinstatement process.	 5.1 Assessment of fire severity. 5.2 Assessment of damage-concrete, steel, masonry, timber. 5.3 Post-Fire Damage Inspection of Concrete Structures. 5.4 Feasibility of repair -Repair techniques Columns, beams, floors, etc. 5.5 A case study on building reinstatement. 	SL5.2 Learning about reparability of fire damaged structures. SL5.3 Learning about case study on building reinstatement.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- 1. How the fire damaged structures can be repaired?
- 2. Explain, Assessment of concrete structures after fire?
- 3. What are the different types of reinstatement?
- 4. Explain a case study on building reinstatement?

b. Mini Project:

1. Prepare Assessment chat of concrete structures after fire?

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

I) Suggested Specification Table (For ESE of Classroom Instruction CI+SW+SL):

Unit	Unit Title		ution	Total	
Number		R	U	A	Marks
I	EFFECT OF TEMPERATURE ON THE PROPERTIES OF MATERIALS	4	6	4	14
II	EXPERIMENTAL DETERMINATION OF FIRE RESISTANCE	4	6	4	14
III	DESIGN OF FIRE RESISTANT WALLS	4	6	4	14
IV	BUILDING FIRE AREAS	4	6	4	14
V	REPARABILITY OF FIRE DAMAGED STRUCTURES	4	6	4	14
	Total	20	30	20	70

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

Legend: R: Remember, U: Understand, A: Apply and above

J) Suggested Specification Table (For ESE of Laboratory Instruction*):

Laboratory Instruction Number	Short Laboratory Experiment Title	Assessment Laboratory V (Marks) Performance		Work		
LI1.1	To study test of non-combustibility of building materials.					
LI1.2	To Study of fire resistant building materials.	20	15	5		
LI1.3	To study test of fire protection in concrete structure.					
LI2.1	To Study of fire fighting equipments and accessories.					
LI2.2	To Study of automatic water sprinkler system.					
LI2.3	To Study of automatic fire detections system.					
LI 3.1	To Study of different types of fire proof walls.	-				
LI3.2	To study the determination of flash point and fire point of hydrocarbons.					
LI3.3	To study the test of fire properties in steel structure.					
LI4.1	To study calculations of fire area in commercial building.					
LI4.2	To study calculations of fire area in residential building.					
LI4.3	To study the test of combustible and non combustible properties in door.					
LI4.4	To study the fire transmission between buildings.					
LI5.1	To prepare post fire damage inspection report.					
LI5.2	To study and assessment of damage concrete and steel materials.					
LI5.3	To study the building reinstatement process.					

^{*} Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals

Legend: PRA: Process Assessment, PDA: Product Assessment

Note: Only one experiment has to performed at the end semester examination of 40 Marks as per assessment scheme.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

(K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Industrial visits
- 4. Industrial Training
- 5. Demonstration
- 6. Others

L) Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition & Year
1	Accident Prevention	Accident Prevention	Accident Prevention	1982
	manual for industrial	manual for	manual for industrial	
	operations" N.S.C.,	industrial	operations" N.S.C.,	
	Chicago, 1982	operations" N.S.C.,	Chicago, 1982	
		Chicago, 1982		
2	"Hand Book of fire	Davis Daniel		
	technology"			
3	"Fire Prevention and			
	firefighting", Loss			
	prevention Association,			
	India.			
4	"Fire Prevention Hand	Derek, James		1986
	Book", Butter Worths			
	and Company, London,			
	1986			
5	Fire fighters hazardous	Fire fighters	Fire fighters hazardous	
	materials reference book	hazardous materials	materials reference	
	Fire Prevention in	reference book Fire	book Fire Prevention in	
	Factories", an Nostrand	Prevention in	Factories", an Nostrand	
	Rein	Factories", an	Rein	
		Nostrand Rein		

(b) Open source software and website address:

- 1. https://www.govinfo.gov/content/pkg/GOVPUB-C13-590dac3d03839ce75bf91b25a9759abb/pdf/GOVPUB-C13-590dac3d03839ce75bf91b25a9759abb.pdf
- 2. https://www.govinfo.gov/content/pkg/GOVPUB-C13-4ffea768ffdae46c47873e9d360804a3/pdf/GOVPUB-C13-4ffea768ffdae46c47873e9d360804a3.pdf
- 3. https://dgfscdhg.gov.in/national-building-code-india-fire-and-life-safety
- 4. https://www.osha.gov/personal-protective-equipment
- 5. https://dgt.gov.in/sites/default/files/Fire%20Tech%20_%20Ind.%20Safety%20Mgmt_CTS%202.0_NSQ F-3.pdf
- 6. https://www.hse.gov.uk/comah/sragtech/techmeasfire.htm
- 7. https://www.hse.gov.uk/construction/safetytopics/generalfire.htm.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

M) Mapping of POs & PSOs with COs:

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)				
Titles	Basic know ledge PO-1	Disci pline know ledge PO-2	Experiments & Practic e PO-3	Engin eering Tools PO-4	The Engin eer& Society PO-5	Enviro nment & Sustai nabilit y PO-6	Ethics PO-7	Indivi dual & Team work PO-8	Comm unicati on PO-9	Life Long learnin g PO-10	PSO-1	PSO-2
CO-1: To know the effect of temperature on the properties of materials.	2	3	2	2	2	0	0	2	0	1	2	1
CO-2: To know the experimental determination of fire resistance.	2	2	3	2	2	0	0	1	0	2	2	1
CO-3: To learn about various design of fire-resistant walls.	2	2	3	2	2	0	0	1	0	2	2	1
CO-4: To understand the calculation of building fire areas.	2	2	3	2	2	0	0	1	0	2	2	2
CO-5: To understand the reparability of fire damaged structures.		2	3	2	2	0	0	1	0	2	2	1

Legend: 1-Low, 2-Medium, 3-High

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

N) Course Curriculum Map:

POs & PSOs No.	COs No.& Title	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO-1,2,3,4,5,8,10	CO-1: To know the effect of	SO1.1	LI1.1	1.1	SL1.1
PSO-1,2	temperature on the properties of	SO1.2	LI1.2	1.2	SL1.2
	materials.	SO1.3	LI1.3	1.3	SL1.3
				1.4	
				1.5	
PO-1,2,3,4,5,8,10	CO-2: To know the experimental	SO2.1	LI2.1	2.1	SL2.1
PSO-1,2	determination of fire resistance.	SO2.2	LI2.2	2.2	SL2.2
		SO2.3	LI2.3	2.3	SL2.3
				2.4	
				2.5	
PO-1,2,3,4,5,8,10	CO-3: To learn about various design	SO3.1	LI3.1	3.1	SL3.1
PSO-1,2	of fire-resistant walls.	SO3.2	LI3.2	3.2	SL3.2
		SO3.3	LI3.3	3.3	SL3.3
				3.4	
				3.5	
PO-1,2,3,4,5,8,10	CO-4: To understand the calculation	SO4.1	LI4.1	4.1	SL4.1
PSO-1,2	of building fire areas.	SO4.2	LI4.2	4.2	SL4.2
		SO4.3	LI4.3	4.3	SL4.3
			LI4.4	4.4	
				4.5	
PO-1,2,3,4,5,8,10	CO-5: To understand the reparability	SO5.1	LI5.1	5.1	SL5.1
PSO-1,2	of fire damaged structures.	SO5.2	LI5.2	5.2	SL5.2
		SO5.3	LI5.3	5.3	SL5.3
			LI5.4		
			LI5.5		

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

A) Course Code : 2129572(020)

B) Course Title : Hazard Identification and Risk Assessment

C) Pre- requisite Course Code and Title:

D) Rationale : Hazard identification is part of the process used to evaluate if any particular situation, item, thing, etc. may have the potential to cause harm. The term often used to describe the full process is risk assessment: Identify hazards and risk factors that have the potential to cause harm (hazard identification) Hazard Identification and Risk Assessment – HIRA in Safety is a process that consists of a number of sequential steps such as hazard identification, likelihood and consequence assessment, risk evaluation based on the existing controls and recommendations to reduce those risks which are not under acceptable limits.

E) Course Outcomes:

CO-1: Student will learn about hazard, risk issues and hazard assessment.

CO-2: Student will understand about computer aided instruments.

CO-3: Student will know about risk analysis quantification.

CO-4: Student will understand consequences analysis of risk assessment.

CO-5: Student will understand credibility of risk assessment techniques management.

F) Scheme of Studies:

Board of Study	Course Code	Course Titles		me of Stu ours/Wee		Credits L+T+(P/2)
			L	P	T	
Civil Engineering	2129572(020)	Hazard Identification and Risk Assessment	2	-	1	3

L- Lecture, T- Tutorial, P- Practical,

Legend: Lecture (L) \rightarrow CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others).

Practical (P) \rightarrow LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies).

Tutorial (T) \rightarrow SL: Self Learning.

G) Scheme of Assessment:

Board of Study	Course Code	Course Titles	Scheme of Examination			n		
			Theory		Practical		Total	
			ESE	CT	TA	ESE	TA	Marks
Civil Engineering	2129572 (020)	Hazard Identification and Risk Assessment	70	20	30	-	-	120

ESE: End Semester Exam, CT: Class Test, TA: Teachers Assessment

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

Legend- PRA: Process Assessment, PDA: Product Assessment

Note:

- i) TA in Theory includes Sessional work (SW) and attendance (ATT) with weightage of 70% and 30% of total respectively.
- ii) TA in practical includes performance of PRA, PDA and Viva-Voce with weightage of 50%,40% and 10% respectively.
- iii) 85% attendance is essential in theory and practical classes to appear in Examination.

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

Convert unit of the given physical quantity from one unit system to other.

CO-1: Student will learn about hazard, risk issues and hazard assessment.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
Session Outcomes (SOs) SO1.1 To know about hazard analysis. SO1.2 To learn about Hazard identification and risk assessment method. SO1.3 To understand HAZOP study.	·	UNIT-1.0 HAZARD, RISK ISSUES AND HAZARD ASSESSMENT 1.1 Introduction, hazard, hazard monitoring-risk issue, group or societal risk, individual risk. 1.2 Voluntary and involuntary risk. 1.3 social benefits Vs technological risk,	Self Learning (SL) SL1.1 Student will learn about Preliminary hazard analysis.
		approaches for establishing risk acceptance levels, Risk estimation. 1.4 Hazard assessment, procedure. 1.5 Hazard analysis methodology- safety audit, checklist analysis what-if analysis, safety review, preliminary hazard analysis (PHA), human error analysis, hazard operability studies (HAZOP), safety warning systems.	

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain Preliminary hazard analysis.
- 2. Define following terms (a) What-if analysis, (b) Safety Audit, (c) HAZOP.
- 3. Explain HIRA in detail.

b. Mini Project:

1. Prepare HIRA using matrix method of your University?

CO-2: Student will understand about computer aided instruments

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class roo	om Instruction (CI)		Self L	earning ((SL)
	Instruction (LI)	UNIT 2.0 INSTRUMENT 2.1 App Equipme 2.2 Thermore Scanning Thermore (TGA), Caloring 2.3 Reactive	COMPUTER TS plications of Advanced ents and Instruments. Calorimetry, Difference Calorimeter (DSC). Gravimetric Analyse Accelerated Rate Letter (ARC). Calorimeter (RC),	d ntial er	SL2.1 learn applicat instrum scientifi industri SL2.2	Student real- tions of ents in valide al fields. Student and how for standard standa	will world these arious and will
their significance in obtaining accurate and reliable results.		(RSST) 2.4 Principl Control Applica 2.5 Explosi Test, Do 2.6 Ignition energy	n System Screening T . es of operations, ling parameters, tions, advantages. ve Testing, Deflagrati etonation Test. Test, Minimum ignit Test, Sensitiveness Test(BA	ion tion est,	process in indus	optimiz stries.	zation

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Write down the difference between Deflagration and Detonation.
- 2. Define following terms (1) TGA (2) DSC
- 3. Explain Reactive Calorimeter (RC) and their advantage.

b. Mini Project: Draw the neat and clean picture of DSC, TGA and ARC

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-3: Student will know about risk analysis quantification

Session Outcomes	Laboratory	Class room Instruction (CI)	Self Learning
(SOs)	Instruction (LI)		(SL)
SO3.1 Explain FTA			YS SL3.1 Student
which is a deductive		QUANTIFICATION	will be able to
method used to analyze		3.1 Fault Tree Analysis and Eve	nt assessing the
the causes of system		Tree Analysis.	severity,
failures. SO3.2 Define fire	3.2 Define fire losion and toxicity ex(FETI), various	3.2 Logic symbols, methodolog minimal cut set ranking	likelihood, and detectability of each failure
1		3.3 fire explosion and toxici index(FETI), various indice	· ,
maices		3.4 Hazard analysis(HAZAN).	
		3.5 Failure Mode and Effe Analysis (FMEA)	et
		3.6 Basic concepts of Reliability.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. What is failure mode effect analysis?
- 2. Explain, HAZAN is a systematic process for identifying and assessing hazards associated with a system or process.
- 3. Explain a) Fire Index b) Explosion Index c) Toxicity Index
- **b. Mini Project:** Prepare a fault tree analysis and event tree analysis of chemical process industry.
- c. Other Activities (Specify): Prepare chart of Difference between FI, EI and TI.

CO-4: Student will understand consequences analysis of risk assessment

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Understand the fundamental principles and concepts of consequence analysis in the context of chemical processes.		Unit-4.0 CONSEQUENCES ANALYSIS 4.1 Logics of consequences analysis- Estimation 4.2 Hazard identification based on the properties of chemicals 4.3 Chemical inventory analysis.	SL4.1 Student will understand the principles of gas/vapor dispersion and its role in consequence
SO4.2 Identify and classify processes within a facility that have the potential for hazardous events. SO4.3 Analyze the heat radiation effects		 4.4 Identification of hazardous processes 4.5 Estimation of source term, Gas or vapour release, liquid release, two phase release. 4.6 Heat radiation effects, BLEVE, Pool fires and Jet fire. 	analysis. SL4.2 Student will be able to understand model and analyze the dispersion of hazardous

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

associated with	4.7 Gas/vapour dispersion	substances	in
different hazardous events such as BLEVE, pool fires, and jet fires.	4.8 Explosion, UVCE and Flash fire, Explosion effects and confined explosion, Toxic effects	various scenarios.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain the Flash Fires, Pool Fire, Jet Fire, UVCE and BLEVEs
- 2. Explain the key principles of consequences analysis in the context of chemical processes.
- 3. Analyze the chemical inventory of a hypothetical facility and identify potential hazards associated with the stored chemicals.
- 4. Discuss the factors influencing gas/vapor dispersion and how dispersion modeling contributes to consequence analysis.
- **b. Mini Project:** Prepare the list of various example BLEVE?
- c. Other Activities (Specify): Prepare the list of various example of Pool Fire and Jet Fire?

CO-5: Student will understand credibility of risk assessment techniques management.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 Understand the significance of past accident analyses in informing hazard and consequence assessments. SO5.2 Examine the Mexico disaster in detail, including its causes and		UNIT-5 CREDIBILITY OF RISK ASSESSMENT TECHNIQUES 5.1 Past accident analysis as information sources for Hazard analysis and consequences analysis of chemical accident. 5.2 Mexico disaster, Flixborough, Bhopal,	SL5.1 To learn about Propose preventive measures based on Flixborough lessons. SL5.2 To learn about Selection and Training-
consequences. SO5.3 Analyze the Flixborough incident and its root causes. SO5.4 Evaluate the applicability of Rijnmond recommendations to nonnuclear installations globally.		nonnuclear installation- Rijnmond report.	2
SO5.5 Analyze the evolving landscape of nuclear reactor safety in the context of technological advancements.		5.5 Reactor safety study of Nuclear power plant.	

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

SW-5 Suggested Sessional Work (SW):

a. Assignment:

- 1. Evaluate the effectiveness of the emergency response and recovery efforts following the Mexico disaster.
- 2. Discuss the importance of utilizing past accident analyses as valuable information sources.
- 3. Analyze the key findings of a reactor safety study for a nuclear power plant, emphasizing advancements in safety measures.
- 4. Examine the Rijnmond report, discussing its key principles for hazard assessment in nonnuclear installations.
- **b. Mini Project:** To study brief about Five Steps of the Risk Management Process
- **c. Other Activities (Specify)**: Prepare the list of technological advancements in process safety since the Feyzin incident.

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

I) Suggested Specification Table (For ESE of Classroom Instruction CI+SW+SL):

Unit	Unit Title	M	Marks Distribution				
Number		R	U	A	Marks		
I	HAZARD, RISK ISSUES AND	4	6	4	14		
	HAZARD ASSESSMENT						
II	COMPUTER AIDI	4	6	4	14		
	INSTRUMENTS						
III	RISK ANALYS	4	6	4	14		
	QUANTIFICATION						
IV	CONSEQUENCES ANALYSIS	4	6	4	14		
V	CREDIBILITY OF RISK	4	6	4	14		
	ASSESSMENT TECHNIQUES						
	Total	20	30	20	70		

Legend: R: Remember, U: Understand, A: Apply and above

J) Suggested Specification Table (For ESE of Laboratory Instruction*): Nil

Laboratory Instruction	Short Laboratory Experiment Title		ssessment oratory V (Marks)	Vork
Number	•		mance	Viva-
		PRA	PDA	Voce
-	-	-	-	-

^{*} Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals.

Legend: PRA: Process Assessment, PDA: Product Assessment

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

Note: Only one experiment has to performed at the end semester examination of 40 Marks as per assessment scheme.

(K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Industrial visits
- 4. Industrial Training
- 5. Demonstration
- 6. Others

L) Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition & Year
1	Loss Prevention in Process Industries, (Vol.I, II and III)	Frank P. Less,	Butterworth-Hein UK	1990
2	Major Hazard control- A practical Manual	ILO	ILO, Geneva	1988
3	Methodologies for Risk and Safety Assessment in Chemical Process Industries		Commonwealth Science Council, UK	-
4	Hazop and Hazom	Trevor A Klett	Institute of Chemical Engineering	1983
5	System analysis and Design for safety	Brown, D.B.	Prentice Hall	1976
6	Guidelines for Hazard Evaluation Procedures,	Centre for Chemical Process safety	Centre for Chemical Process safety, AICHE	1992
7	Quantitative Risk assessment in Chemical Industries, Institute of Chemical Industries	Centre for Chemical process safety	Centre for Chemical process safety	1992

(b) Open source software and website address:

- 1. https://www.osha.gov/
- 2. https://www.csb.gov/
- 3. https://echa.europa.eu/
- 4. https://www.nist.gov/
- 5. https://www.usgs.gov/programs/earthquake-hazards
- 6. https://www.howardcountymd.gov/emergency-management/hazard-information
- 7. https://pages.nist.gov/fds-smv/
- 8. https://jasp-stats.org/

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

N) Mapping of POs & PSOs with COs:

Course Outcomes (COs)	Programme Outcomes (POs)									Programme Specific Outcomes (PSOs)		
Titles	Basic know ledge PO-1	Disci pline know ledge PO-2	Experiments & Practic e PO-3	Engin eering Tools PO-4	The Engin eer& Society PO-5	Enviro nment & Sustain ability PO-6	Ethics PO-7	Indivi dual & Team work PO-8	Comm unicati on PO-9	Life Long learning PO-10	PSO-1	PSO- 2
CO:1 Student will learn about hazard, risk issues and hazard assessment.	2	3	2	2	2	0	0	2	0	1	2	1
CO-2: Student will understand about computer aided instruments.	2	2	3	2	2	0	0	1	0	2	2	1
CO-3: Student will know about risk analysis quantification.	2	2	3	2	2	0	0	1	0	2	2	1
CO-4: Student will understand consequences analysis of risk assessment.	2	2	3	2	2	0	0	1	0	2	2	2
CO-5: Student will understand credibility of risk assessment techniques management.	2	2	3	2	2	0	0	1	0	2	2	1

Legend: 1 - Low, 2 - Medium, 3 - High

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

O) Course Curriculum Map:

POs & PSOs No.	COs No.& Title	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO-1,2,3,4,5,8,10 PSO-1,2	CO:1 Student will learn about hazard, risk issues and hazard assessment.	SO1.1 SO1.2 SO1.3	-	1.1 1.2 1.3 1.4 1.5	SL1.1
PO-1,2,3,4,5,8,10 PSO-1,2	CO-2: Student will understand about computer aided instruments.	SO2.1 SO2.2	-	2.1 2.4 2.2 2.5 2.3 2.6	SL2.1 SL2.2
PO-1,2,3,4,5,8,10 PSO-1,2	CO-3: Student will know about risk analysis quantification.	SO3.1 SO3.2	-	3.1 3.2 3.3 3.4 3.5 3.6	SL3.1
PO-1,2,3,4,5,8,10 PSO-1,2	CO-4: Student will understand consequences analysis of risk assessment.	SO4.1 SO4.2 SO4.3	-	4.1 4.6 4.2 4.7 4.3 4.8 4.4 4.5	SL4.1 SL4.2
PO-1,2,3,4,5,8,10 PSO-1,2	CO-5: Student will understand credibility of risk assessment techniques management.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	-	5.1 5.2 5.3 5.4 5.5	SL5.1 SL5.2 SL5.3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

A) Course Code : 2129573(020)

B) Course Title : Electrical System Safety

C) Pre- requisite Course Code and Title:

large number of appliances that pose electrical hazards. Examples include: power systems supplies, power generation company, pumps, compressors, power transmission, power distributions etc. In addition, some laboratories may need to house equipments that require high voltage / power for operation. All electrical devices need to be maintained and operated following safe practices; in absence of either precautions such equipments may pose serious hazards to an user, which in the worst case may prove fatal. The major hazards associated with electricity are electrical shock and fire. In a flammable atmosphere electrical equipment discharges cause fires and/or explosions. Electrical shocks may have minor to major consequences: a shiver to severe burns, and in the extreme case a cardiac arrest. Electrical system safety provides safety use and precautionary measures from such dangerous equipment.

E) Course Outcomes:

CO-1: Student will know introduction and statutory requirements of electrical safety.

CO-2: Student will understand the electrical hazards and its safety.

CO-3: Student will know various protection systems used in electrical systems.

CO-4: Student will be able to know the selection, installation, operation and maintenance of various electrical system.

CO-5: Student will learn about various electrical hazardous zones and its safety.

F) Scheme of Studies:

Board of Study	Course Code	Course Titles		Scheme of Studies (Hours/Week)		Credits L+T+(P/2)
			L	P	T	
Civil Engineering	2129573(020)	Electrical System Safety	2	-	1	3
Civil Engineering	2129562(020)	Electrical System Safety (Lab)	-	2	-	1

L- Lecture, T- Tutorial, P- Practical,

Legend: Lecture (L) \rightarrow CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others).

Practical (P) \rightarrow LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies).

Tutorial (T) \rightarrow SL: Self Learning.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

j)	Scheme of	Assessment:							
	Board of Study	Course Code	Course Titles		Scheme of Examination			n	
				Theory		Praction	cal	Total	
				ESE	CT	TA	ESE	TA	Marks
	Civil Engineering	2129573 (020)	Electrical System Safety	70	20	30	-	-	120
	Civil Engineering	2129562 (020)	Electrical System Safety (Lab)	-	-	-	40	60	100

ESE: End Semester Exam,

CT: Class Test,

TA: Teachers Assessment

Legend- PRA: Process Assessment, PDA: Product Assessment

Note:

- i) TA in Theory includes Sessional work (SW) and attendance (ATT) with weightage of 70% and 30% of total respectively.
- ii) TA in practical includes performance of PRA,PDA and Viva-Voce with weightage of 50%,40% and 10% respectively.
- iii) 85% attendance is essential in theory and practical classes to appear in Examination.

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

Convert unit of the given physical quantity from one unit system to other.

CO-1: Student will know introduction and statutory requirements of electrical safety

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning
	(LI)		(SL)
SO1.1 Define electrostatics	LI1.1 Demonstrate the	UNIT-1.0 INTRODUCTION A	SL1.1 To learn
and electro-magnetism.	CPR for electric shock.	STATUTORY REQUIREMENT	about
		1.1 Introduction –	Demonstrate
SO1.2 Identify and explain		electrostatics, electro	knowledge of
the working principles of	and study the electrical	magnetism.	basic first aid
common electrical	drawing symbols and	1.2 Stored energy, energy	principles in the
equipment.	electrical tools.	radiation and electromagnetic	context of
SO1.3 Discuss key	ciccurcui toois.	interference	electrical
guidelines and		1.3 Working principles of	accidents.
recommendations outlined		electrical equipment	
in the ANSI code for		1.4 Indian electricity act and	SL1.2
ensuring electrical safety.		rules-statutory requirements	
		from electrical inspectorate-	be able to
		1.5 International standards on	identify
		electrical safety	potential
		1.6 First aid-cardio	risks
		pulmonary resuscitation	associated
		(CPR)	with
		1.7 National electrical safety	electrical

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning
		code ANSI.	systems.

SW-1 Suggested Sessional Work (SW):

a. Assignments

- 1. Differentiate between electrostatics and electro-magnetism.
- 2. Explain how the working principles of electrical equipment contribute to safe operation.
- 3. Discuss potential consequences for non-compliance with electrical safety regulations.
- 4. Discuss the concept of stored energy in the context of electrical systems.

b. Mini Project:

1. List three important rules related to electrical safety as per the Indian Electricity Rules.

c. Other Activities (Specify):

1. Outline the basic steps of providing first aid in the event of an electrical injury.

CO-2: Student will understand the electrical hazards and its safety.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
differentiate between primary hazards and secondary hazards associated with electricity. SO2.2 Identify and address hazards associated with ionization, sparks, and arcs, and implement safety measures to prevent ignition energy-related incidents. SO2.3 Classify insulation types and	LI2.2 To study safe work practices to prevent injury and accidents. LI2.3 To study different types of plugs LI2.4 To study wiring of sockets and plugs with color coding and socket. LI2.5 To study and understand the electrical house wiring system.	HAZARDS 2.1 Primary and secondary hazards-Shocks, burnstypes of burn, scalds, falls. 2.2 Human safety in the use of electricity. 2.3 Energy leakage-clearances and insulation-classes of insulation 2.4 voltage classifications-excess energy-current surges-over current and short circuit current-heating effects of current-electromagnetic forces	safety in the use of electricity, emphasizing preventive measures and emergency response.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

SW-2 Suggested Sessional Work (SW):

a. Assignments

- 1. Outline key principles for ensuring human safety in the use of electricity. Highlight preventive measures and emergency response strategies..
- 2. Discuss the significance of energy leakage in electrical systems.
- 3. Explain the role of clearances and insulation in preventing energy leakage incidents.
- 4. Discuss potential consequences for non-compliance with electrical safety regulations.
- 5. Explain the concepts of overcurrent and short circuit currents. How can these issues be effectively managed to prevent hazards?

b. Mini Project:

1. Investigate the sources and causes of static electricity nearby you. Provide detailed measures for controlling static electricity to enhance safety.

c. Other Activities (Specify):

1. Outline the basic steps of providing first aid in the event of an electrical burn injury.

CO-3: Student will know various protection systems used in electrical systems.

Session Outcomes	Laboratory Instruction (LI)	Class room Instruction	Self Learning
(SOs)		(CI)	(SL)
SO3.1 Define the purpose and functioning of fuses, circuit breakers, and overload relays. SO3.2 Explain safe limits for amperage and voltage in electrical systems. SO3.3 Define the concept and importance of no-load protection. SO3.4 Explain ELCB functionality and its role in preventing electric shocks.	LI3.1 To study various types of fuses and its operation. LI3.2 To study various types of circuit breakers used in electrical system. LI3.3 To study difference between earthing and grounding.	Unit-3.0 PROTECTION SYSTEMS 3.1 Fuse, circuit breakers and overload relays. 3.2 Protection against over voltage and under voltage, safe limits of amperage, voltage. 3.3 Safe distance from lines-capacity and protection of conductor. 3.4 Joints-and connections. 3.5 Overload and short circuit protection-no load protection-earth fault protection, Earthing devices. 3.6 Flame Retardant Low Smoke (FRLS) insulation-insulation and continuity test. 3.7 System grounding-equipment grounding-aquipment grounding-sequipment grounding-attended to the same circuit breaker (ELCB)-cable wires maintenance of ground-ground fault circuit interrupter. 3.9 Use of low voltage-electrical guards-personal protective	SL3.1 Understanding the importance of maintaining a safe distance from power lines. SL3.2 learn about Practical application of protection methods in electrical systems.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

Session Outcomes	Laboratory Instruction (LI)	Class room Instruction	Self Learning
		equipment - safety in	
		handling hand held	
		electrical appliances	
		tools and medical	
		equipments.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain the function of fuses, circuit breakers, and overload relays in an electrical system. Provide examples of situations where each is most suitable.
- 2. Define the safe limits of amperage and voltage in electrical systems.
- 3. Explain why it is crucial to maintain a safe distance from power lines? Provide guidelines for determining a safe distance in different scenarios.
- 4. Differentiate between overload and short circuit protection. Provide examples of devices used for each type of protection and their applications.
- 5. Differentiate between system grounding and earthing.
- 6. Discuss the functionality and purpose of ELCBs in preventing electric shocks.

b. Mini Project:

1. Outline the types of PPE suitable for working with electrical appliances and tools. Discuss the importance of safety protocols in preventing accidents.

c. Other Activities (Specify):

1. Provide guidelines for safely handling hand-held electrical devices and tools. Discuss specific safety considerations for medical equipment.

CO-4: Student will be able to know the selection, installation, operation and maintenance of various electrical system.

system.						
Session Outcomes	Laboratory Instruction	Class room Instruction (CI)	Self Learning			
(SOs)	(LI)		(SL)			
SO4.1 Identify safety aspects in the application of equipment.	LI 4.1 To study various safety equipment used in electrical systems.	Unit-4.0 SELECTION, INSTALLATION, OPERATION AND MAINTENANCE	SL4.1 Learn about different types of cables and their			
SO4.2 Analyze the significance of protection and interlock features.	LI4.2 To study the different type of Lock Out and Tag Out (LOTO) for electrical system.	4.1 Introduction and safety in selection, role of environment in selection, safety aspects in application of equipment.	applications.			
SO4.3 Identify common challenges and solutions in implementing		4.2 Protection and interlock features, self diagnostic features and fail safe concepts of equipments.				
lockout/tagout. SO4.4 Discuss the		4.3 Lock Out & Tag Out (LOTO) and work permit system.				
benefits of a proactive maintenance approach in minimizing downtime.		4.4 Discharge rod -safety in the use of portable tools-disease of figure in use of portable hand tools and its safety.				
		4.5 Cabling and cable joints.				
		4.6 Preventive maintenance.				

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. How does the surrounding environment impact the choice of equipment, and what factors should be considered to ensure compatibility??
- 2. Discuss fail-safe concepts and their role in preventing critical failures.
- 3. Discuss its significance in ensuring the safety of personnel during maintenance and operation.
- 4. Discuss safety protocols and best practices in the use of portable tools. Provide recommendations for minimizing risks associated with portable tool usage.
- 5. Highlight the importance of proper cabling in equipment installation. Discuss different types of cables and their applications.
- 6. Explain the purpose and usage of a discharge rod.

b. Mini Project:

1. Provide real-world examples where safety considerations significantly influence the application of specific equipment?

b. Other Activities (Specify):

1. Identify critical components and systems that require preventive maintenance

CO-5: Student will learn about various electrical hazardous zones and its safety

Session Outcomes	Laboratory	Class room Instruction (CI)	Self Learning
(SOs)	Instruction (LI)		(SL)
SO5.1 Define	LI 5.1 To study the	UNIT-5.0 ELECTRICAL	SL5.1 Describe
hazardous zones in the	different types of	HAZARDOUS ZONES	the role of
context of electrical	electrical barrier and	5.1 Classification of hazardous	barriers and
installations.	isolators.	zones	isolators in hazardous
		5.2 Intrinsically safe and	zones.
SO5.2 Differentiate		explosion proof electrical	
between different		apparatus-increase safe	SL5.2
hazardous zone		equipment	Understand the
classifications (Zone 0, Zone 1, Zone 2).		5.3 Selection criteria of different	construction and
0, Zone 1, Zone 2).		zones	certification
		5.4 Temperature classification,	requirements
SO5.3 Define intrinsic		Grouping of gases	for explosion-
safety in the context of		5.5 Use of barriers and isolators	proof electrical
electrical equipment.		5.6 Equipment certifying	devices.
		agencies.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain the importance of classifying hazardous zones in industrial settings.
- 2. Explain the design principles and limitations of intrinsically safe devices.
- 3. Provide guidelines for choosing suitable apparatus based on zone classification.
- 4. Explain the concept of temperature classification in hazardous areas.
- 5. Explore ways to enhance the overall safety of electrical installations in hazardous zones.

b. Mini Project:

1. Prepare the list of electrical equipment certifying agencies and standards.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

I) Suggested Specification Table (For ESE of Classroom Instruction CI+SW+SL):

Unit	Unit Title		Marks Distril	bution	Total
Number		R	U	A	Marks
I	INTRODUCTION AND STATUTO	4	6	4	14
	REQUIREMENTS				
II	ELECTRICAL HAZARDS	4	6	4	14
III	PROTECTION SYSTEMS	4	6	4	14
IV	SELECTION, INSTALLATION,	4	6	4	14
	OPERATION AND MAINTENANCE				
V	ELECTRICAL HAZARDOUS ZONES	4	6	4	14
	Total	20	30	20	70

Legend: R: Remember, U: Understand, A: Apply and above

J. Suggested Specification Table (For ESE of Laboratory Instruction*):

Laboratory Instruction	Short Laboratory Experiment Title		Assessment of aboratory Work (Marks)	
Number		Perfor PRA	mance PDA	Viva- Voce
LI1.1	Demonstrate the CPR for electric shock.	FKA	FDA	VUCE
LI1.2	To understand and study the electrical drawing symbols and electrical tools.	20	15	5
LI2.1	To study the effects of electric shock.			
LI2.2	To study safe work practices to prevent injury and accidents.			
LI2.3	To study different types of plugs.			
LI2.4	To study wiring of sockets and plugs with color coding and socket.			
LI2.5	To study and understand the electrical house wiring system.			
LI3.1	To study various types of fuses and its operation.			
LI3.2	To study various types of circuit breakers used in electrical system.			
LI3.3	To study difference between earthing and grounding.			

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

LI4.1	To study various safety equipment used in electrical	
	systems.	
LI4.2	To study the different type of Lock Out and Tag Out	
	(LOTO) for electrical system.	
LI5.1	To study the different types of electrical barrier and	
	isolators.	

^{*} Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals

Legend: PRA: Process Assessment, PDA: Product Assessment

(K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Industrial visits
- 4. Industrial Training
- 5. Demonstration
- 6. Others

L) Suggested Learning Resources:

a) Books:

S.No.	Title	Author	Publisher	Edition & Year
1	Accident prevention manual for industrial operations	National Safety Council	N.S.C., Chicago,	1982
2	Electrical Safety a Guide to the Causes and Prevention of Electrical Hazards,	J. Maxwell Adams	IEE Power series-19.	
3	Practical Electrical Safety	D.C. Winburn	Marcal Dekker	
4	Electrical Safety	S.Rao, Prof. H.L. Saluja	Fire Safety Engineering and Safety Management.	
5	Electrical Safety Engineering	Fordham Cooper, W.	Butterworth and Company, London,	1986
6	Electrostatic Hazards in powder handling,	Martin Glov.	Research Studies Pvt. Ltd., England	1988

(b) Open source software and website address:

- 1. https://www.osha.gov/electrical
- 2. https://www.hse.gov.uk/electricity/
- 3. https://www.esfi.org/

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

N) Mapping of POs & PSOs with COs:

Course Outcomes (COs)						ne Outcor POs)	nes				Spe Outc	amme cific omes Os)
Titles	Basic know ledge PO-1	Disci pline know ledge PO-2	Experiments & Practic e PO-3	Engin eering Tools PO-4	The Engin eer& Society PO-5	Enviro nment & Sustain ability PO-6	Ethics PO-7	Indivi dual & Team work PO-8	Comm unicati on PO-9	Life Long learning PO-10	PSO- 1	PSO- 2
CO-1: Student will know introduction and statutory requirements of electrical safety.	2	3	2	2	2	0	0	2	0	1	2	1
CO-2: Student will understand the electrical hazards and its safety.	2	2	3	2	2	0	0	1	0	2	2	1
CO-3: Student will know various protection systems used in electrical systems.	2	2	3	2	2	0	0	1	0	2	2	1
CO-4: Student will be able to know the selection, installation, operation and maintenance of various electrical system.	2	2	3	2	2	0	0	1	0	2	2	2
CO-5: Student will learn about various electrical hazardous zones and its safety.	2	2	3	2	2	0	0	1	0	2	2	1

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

O) Course Curriculum Map:

POs & PSOs No.	COs No.& Title	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO-1,2,3,4,5,8,10	CO-1: Student will know	SO1.1	LI1.1	1.1, 1.6	SL1.1
PSO-1,2	introduction and statutory	SO1.2	LI1.2	1.2, 1.7	SL1.2
	requirements of electrical safety.	SO1.3		1.3	
				1.4	
				1.5	
PO-1,2,3,4,5,8,10	CO-2: Student will understand the	SO2.1	LI2.1	2.1, 2.6	SL2.1
PSO-1,2	electrical hazards and its safety.	SO2.2	LI2.2	2.2, 2.7	
		SO2.3	LI2.3	2.3, 2.8	
			LI2.4	2.4	
			LI2.5	2.5	
PO-1,2,3,4,5,8,10	CO-3: Student will know various	SO3.1	LI3.1	3.1, 3.6	SL3.1
PSO-1,2	protection systems used in	SO3.2	LI3.2	3.2, 3.7	SL3.2
	electrical systems.	SO3.3	LI3.3	3.3, 3.8	
		SO3.4		3.4, 3.9	
				3.5	
PO-1,2,3,4,5,8,10	CO-4: Student will be able to	SO4.1	LI4.1	4.1	SL4.1
PSO-1,2	know the selection, installation,	SO4.2	LI4.2	4.2	SL4.2
	operation and maintenance of	SO4.3		4.3	SL4.3
	various electrical system.			4.4	
				4.5	
PO-1,2,3,4,5,8,10	CO-5: Student will learn about	SO5.1	LI5.1	5.1	SL5.1
PSO-1,2	various electrical hazardous zones	SO5.2		5.2	SL5.2
	and its safety.	SO5.3		5.3	SL5.3
				5.4	
				5.5	

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

A) Course Code : 2129574(020)

B) Course Title : Industrial Environmental and Pollution Control

C) Pre- requisite Course Code

and Title :

D) Rationale : Industrial pollution is caused by significant industries such as power plants, steel mills, sewage treatment facilities, heating plants, and glass casting, among other producing, refining, and manufacturing organizations. Industrial Environmental play the very crucial role for the working employee.

E) Course Outcomes:

- CO-1: Students will be able to attain ability to choose the most suitable technique for air pollution monitoring and control technique for a given application.
- CO-2: Students will be able to describe suitable techniques for water treatments and control technique for water pollution management.
- CO-3: Students will be able to identify the techniques for the disposal and management of urban solid wastes and hazardous wastes.
- CO-4: Students will be able to demonstrate the ability to recognize the tools for environmental management in industries.
- CO-5: Students will be able to demonstrate an ability to recognize the type of health care waste and processes involved in Transport & storage of waste treatment and disposal of health care waste.

F) Scheme of Studies:

Board of Study	Course Code	Course Titles		eme of Stu Hours/Wee		Credits L+T+(P/2)
			L	P	T	
Civil Engineering	2129574 (020)	Industrial Environmental and Pollution Control	2	-	1	3
Civil Engineering	2129563 (020)	Industrial environmental and pollution control (Lab)	-	2	-	1

L- Lecture, T- Tutorial, P- Practical,

Legend: Lecture (L) →CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others).

Practical (P) \rightarrow LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies).

Tutorial (T) \rightarrow SL: Self Learning.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

G)	Schama of	Assessment:
G)	Scheme of	Assessment:

Board of Study	Course Code	Course Titles	Scheme of Examination			n		
			7	Theor	y	Practi	ical	Total
			ESE	CT	TA	ESE	TA	Marks
Civil Engineering	2129574 (020)	Industrial environmental and pollution control	70	20	30	-	-	120
Civil Engineering	2129563 (020)	Industrial environmental and pollution control (Lab)	-	-	-	40	60	100

ESE: End Semester Exam,

CT: Class Test,

TA: Teachers Assessment

Legend- PRA: Process Assessment, PDA: Product Assessment

Note:

- i) TA in Theory includes Sessional work (SW) and attendance (ATT) with weightage of 70% and 30% of total respectively.
- ii) TA in practical includes performance of PRA, PDA and Viva-Voce with weightage of 50%,40% and 10% respectively.
- iii) 85% attendance is essential in theory and practical classes to appear in Examination.

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-1: Students will be able to attain ability to choose the most suitable technique for air pollution monitoring and control technique for a given application.

Laboratory Instruction	Class room Instruction	Self Learning (SL)
(LI)	(CI)	(SL)
LI1.1 To demonstrate Air	UNIT-1.0 AIR POLLUTION	SL1.1 Learn
quality monitoring	1.1 Classification and	about
equipment.	properties of air	automobile
	pollutants.	pollution
LI1.2 To study the	1.2 Pollution sources –	hazards of air
particulate matter monitors	Effects of air pollutants	pollution.
and gas analyzer.	on human beings,	
		SL1.2
		Learning about
gas analyzer.	•	coal
	•	combustion
	_	technology.
safety goggles.		
	· ·	
	,	
	_	
	_	
	LI1.1 To demonstrate Air quality monitoring equipment. LI1.2 To study the particulate matter monitors	LI1.1 To demonstrate Air quality monitoring equipment. LI1.2 To study the particulate matter monitors and gas analyzer. LI1.3 To demonstrate the gas analyzer. LI1.4 To demonstrate the LI1.4 To demonstrate the contact the LI1.5 Concept of clean coal

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain the Classification and properties of air pollutants.
- 2. Explain the of Pollution sources.
- 3. Define Chloro Fluoro Carbon (CFC).
- 4. Write short notes on automobile pollution hazards of air pollution.

b. Mini Project:

- 1. Working process of a Air quality monitoring equipment.
- 2. Design the setup to control automobile pollution hazards of air pollution

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-2: Students will be able to describe suitable techniques for water treatments and control technique for water pollution management.

water pollutants. SO2.2 Evaluate health hazards associated with water pollution. SO2.3 To know the Demonstrate proficiency in water sampling and analysis. hardness, and permanent hardness of water sample by EDTA method. LE2.2 Determine the alkalinity and Acidity of given water sample. LE2.3 Determine the turbidity, pH, Electric conductivity in given POLLUTION 2.1 Classification of water pollutants-health hazards-sampling and analysis of water- treatment method including activat sludge, membra filtration. SL2.2 Learning about advance water water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water pollutants-health hazards-sampling and analysis of water- substitution of water- substitution of water- su	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
LE2.4 Determine the total dissolved and suspended solids in given water sample. LE2.5 Determine the biological oxygen 2.3 Advanced wastewater treatment – effluent quality standards and laws-chemical industries, tannery, textile effluents-common about collection	water pollutants. SO2.2 Evaluate health hazards associated with water pollution. SO2.3 To know the Demonstrate proficiency in water sampling and	hardness, and permanent hardness of water sample by EDTA method. LE2.2 Determine the alkalinity and Acidity of given water sample. LE2.3 Determine the turbidity, pH, Electric conductivity in given water sample. LE2.4 Determine the total dissolved and suspended solids in given water sample. LE2.5 Determine the biological oxygen demand and Chemical oxygen demand in the	POLLUTION 2.1 Classification of water pollutants-health hazards-sampling and analysis of water- 2.2 water treatment - different industrial effluents and their treatment and disposal. 2.3 Advanced wastewater treatment – effluent quality standards and lawschemical industries, tannery, textile effluents-common	about advanced wastewater treatment methods, including activated sludge, membrane filtration. SL2.2 Learning about treatment methods to effectively remove pollutants and meet regulatory requirements for disposal. SL2.3 Learning about collection of water sampling and

SW-2 Suggested Sessional Work (SW):

a. Assignments

- 1. Discuss the classification of water pollutants based on their sources and characteristics and provide examples of each type of water pollutant.
- 2. Explain the health hazards associated with water pollution. Identify at least three waterborne diseases and discuss their causes and symptoms.
- 3. Describe the sampling and analysis techniques used to assess water quality.

b. Mini Project:

- 1. Water Quality Analysis (Conduct a comprehensive water quality analysis of a local water body (such as a river, lake, or pond) to assess its pollution levels)
- 2. Designing a Small-scale Water Treatment System.
- 3. Industrial Effluent Treatment Case Study.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-3: Students will be able to identify the techniques for the disposal and management of urban solid wastes and hazardous wastes.

Session Outcomes	Laboratory Instruction (LI)	Class room Instruction	Self Learning (SL)
(SOs)	. ,	(CI)	
SO3.1 Understand	LI3.1 "Hazardous Waste	UNIT-3.0	SL3.1 knowledge of
hazardous waste	Profiling: Identification and	HAZARDOUS WASTE	the regulatory
management	Characterization".	MANAGEMENT	framework and
practices in India.		3.1Hazardous waste m	policies related to
	LI3.2 Practices for Hazardous	anagement in India-	hazardous waste
SO3.2 Learning	Waste Storage and Labeling:	waste identification,	management in India
about	Safety and Compliance.	characterization and	
characterization,		classification-	SL3.2 Learning about
and classification	LI3.3 Effective Emergency	technological options for	knowledge of various
hazardous waste.	Response and Spill	collection, treatment and	collection methods
	Management Protocols: A	disposal of hazardous	and disposal
SO3.3 Understand	Laboratory Study.	waste.	techniques for solid
technological		3.2 Selection charts for	hazardous waste
options for the		the treatment of different	
collection,		hazardous wastes.	SL3.3 Learning about
treatment, and		3.3 Methods of	the potential hazards
disposal of		collection and disposal	and risks associated
hazardous.		of solid wastes-health	with bio-processes,
nazaraous.		hazards-toxic and	dilution practices, and
		radioactive wastes	adherence to
		incineration and	standards and
		vitrification	restrictions in
		3.4 Hazards due to bio-	hazardous waste
		process-dilution-	management.
		standards and	
		restrictions - recycling	
		and reuse.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain the potential hazards and risks associated with bio-processes, dilution practices, and adherence to standards and restrictions in hazardous waste management.
- 2. Explain the one successful solid waste management practices in India or other countries.
- 3. Classify hazardous wastes based on their physical, chemical, and biological properties.

b. Mini Project:

- 1. Technological Options for Collection, Treatment, and Disposal of Hazardous Wastes.
- 2 Methods of Collection and Disposal of Solid Wastes.
- 3 Health Hazards and Management of Toxic and Radioactive Wastes.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-4: Students will be able to demonstrate the ability to recognize the tools for environmental management in industries.

management in indus			~
Session	Laboratory Instruction	Class room Instruction	Self Learning (SL)
Outcomes (SOs)	(LI)	(CI)	
SO4.1 Introduction	LI4.1 To demonstrate Dust	UNIT-4.0	SL4.1 Types and
of Environmental	monitor: Working principles	ENVIRONMENTAL	operational use of gas
Measurement and	and applications.	MEASUREMENT	analyzer
Control		AND CONTROL	
SO4.2 Identify types	LI4.2 To demonstrate Gas analyzer: Measurement of	4.1 Sampling and analysis – dust monitor.	SL4.2 Learning about particle size analyzer
and operational use	gases and their	4.2 Gas analyzer,	partiere size anaryzer
of modern oxygen	concentrations.	particle size analyzer,	SL4.3 Learning about
breathing apparatus.		pH meter, gas	absorption and
	LI4.3 To study the Gas	chromatograph.	combustion methods.
	chromatograph: Separation	4.3 Atomic absorption	
	and analysis of complex gas	spectrometer.	
	mixture.	Gravitational settling	
		chambers-cyclone.	
	LI4.4 To perform Gas	separators, scrubbers	
	analyzer: Measurement of	electrostatic precipitator	
	gases and their	4.4 Bag filter	
	concentrations.	maintenance, control of	
		gaseous emission by	
		adsorption, absorption	
		and combustion	
		methods, Pollution	
		Control Board laws.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Write the specification, use and maintenance of Gas analyzer.
- 2. Explain various types and operation of Atomic absorption spectrometer apparatus.
- 3. What short notes Pollution Control Board laws.

b. Mini Project:

- 1. Sampling and analysis techniques in Environmental Measurement and Control
- 2. Gas Chromatograph: Separating and Analyzing Volatile Compounds in the Environment
- 3. Sampling and Analysis Techniques in Environmental Measurement and Control

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-5: Students will be able to demonstrate an ability to recognize the type of health care waste and processes involved in Transport & storage of waste treatment and disposal of health care waste.

Session Outcomes	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
(SOs)	(LI)		
SO5.1 Understand	LI 5.1 Water Pollution	UNIT-5 POLLUTION	SL5.1 learn about
the environmental	Control: Biological	CONTROL IN PROCESS	eco-friendly energy
impact of process	Treatment.	INDUSTRIES	sources.
industries. SO5.2 Explain the principles and applications of emission reduction methods. SO5.3 Evaluate the role of eco-friendly	LI5.2 Wastewater pH Adjustment. LI5.3 Noise Pollution Measurement and Control. LI5.4 Solid Waste Management: Recycling.	5.1 Pollution control in process industries like cement, paper, petroleum.5.2 petroleum products textiletanneries.5.3 Thermal power plants dying	SL5.2 Learning about Analyze the policies, regulations, and government initiatives related to pollution control in process industries.
energy sources.	LI5.5Green Technologies and Sustainable Practices.	5.3 Thermal power plants dying and pigment industries ecofriendly energy.	SL5.3 Learning about cost-effective pollution control measures for industries.

a. Assignments:

- 1. Write the notes on Regulatory Framework for Pollution Control in Process Industries: Case Studies and Implications.
- 2. Explain, Integrated Pollution Control Strategies in Process Industries

b. Mini Project:

- 1. Assessment and Implementation of Air Pollution Control Measures in Cement Industry
- 2. Prepare the Treatment and Water Conservation Strategies in Paper Manufacturing.
- 3. Sustainable Practices in Textile and Tannery Industries: Wastewater Treatment and Chemical Management.

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

I) Suggested Specification Table (For ESE of Classroom Instruction CI+SW+SL):

Unit	Unit Title	Marks Distribution			Total
Number		R	U	A	Marks
I	AIR POLLUTION	4	6	4	14
II	WATER POLLUTION	4	6	4	14
III	HAZARDOUS WASTE	4	6	4	14
	MANAGEMENT				
IV	ENVIRONMENTAL	4	6	4	14
	MEASUREMENT AND CONTROL				
V	POLLUTION CONTROL IN	4	6	4	14
	PROCESS INDUSTRIES				
	Total	20	30	20	70

Legend: R: Remember, U: Understand, A: Apply and above

J) Suggested Specification Table (For ESE of Laboratory Instruction*):

Laboratory Instruction	Instruction Short Laboratory Experiment Title		sessment oratory V (Marks)	Vork
Number		Perfor	mance	Viva-
		PRA	PDA	Voce
LI1.1	To demonstrate Air quality monitoring equipment.			
LI1.2	To study the particulate matter monitors and gas analyzer.			
LI1.3	To demonstrate and using method of the safety goggles.			
LI1.4	To demonstrate the safety goggles			
LI2.1	Determine total hardness, and permanent hardness of water sample by EDTA method.			
LI2.2	Determine the alkalinity and Acidity of given water sample.			
LI2.3	Determine the turbidity, pH, Electric conductivity in given water sample.			
LI2.4	Determine the total dissolved and suspended solids in given water sample.	20	15	5
LI2.5	Determine the Biological Oxygen Demand and Chemical Oxygen Demand in the given water sample.			
LI 3.1	Hazardous Waste Profiling: Identification and Characterization.			
LI3.2	Practices for Hazardous Waste Storage and Labeling: Safety and Compliance.			
LI3.3	Effective Emergency Response and Spill Management Protocols: A Laboratory Study.			
LI4.1	To demonstrate Dust monitor: Working principles and applications.			
LI4.2	To demonstrate Gas analyzer: Measurement of gases and their concentrations.			

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

LI4.3	To study the Gas chromatograph: Separation and analysis		
	of complex gas mixture.		
LI4.4	To perform Gas analyzer: Measurement of gases and their concentrations.		
LI 5.1	Water Pollution Control: Biological Treatment.		
LI5.2	Wastewater pH Management.		
LI5.3	Noise Pollution Measurement and Control.		
LI5.4	Solid Waste Management: Recycling.		
LI5.5	Green Technologies and Sustainable Practices.		

^{*} Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals

Legend: PRA: Process Assessment, PDA: Product Assessment

Note: Only one experiment has to performed at the end semester examination of 40 Marks as per assessment scheme.

(K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Industrial visits
- 4. Industrial Training
- 5. Demonstration
- 6. Others

L) Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition & Year
1.	Environmental pollution	CS Rao,	Wiley Eastern Limited,	1992
	engineering		NewDelhi	
2.	Pollution control in	S.P.Mahajan	Tata McGraw Hill	1993.
	process industries		Publishing Company,	
			New Delhi,	
3.	Air pollution equipment",	Varma and Braner,	Springer Publishers,	1996

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

(b) Open source software and website address:

Environmental Protection Agency: https://www.epa.gov/air-pollution-transportation Hazardous Waste Management: https://www.unep.org/resources/hazardous-waste-management United States Geological Survey (USGS): Water Pollution: https://www.usgs.gov/mission-areas/water-resources/science/water-pollution Indian Ministry of Environment, Forest and Climate Change: Pollution-control-boards Ministry of Environment, Forest and Climate Change: Pollution Control in Industries: http://envfor.nic.in/pollution-control-boards.

M) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipment	Broad Specifications/description	Relevant Experiment
		Specifications, description	Number
1	Electronic balance,	scale range of 0.001g to 500g. pan size 100	All experiments
		mm; response time 3-5 sec.; power requirement 90- 250 V, 10 watt.	
2	Particle Counter	Laser-based, handheld or stationary.	LI1.1
		Measurement Range: PM1.0, PM2.5, PM10, and particle count. Accuracy: Typically within ±10%.	
4	Gas Analyzers	Electrochemical or non-dispersive infrared	LI1.2
		(NDIR) sensors for specific gases. Common	
		Gases to Measure: CO2, CO, O3, SO2, NO2, VOCs:, Measurement Range:	
		NO2, VOCs:, Measurement Range: Depends on the specific gas being	
		measured. Accuracy: Typically within ±5%.	
5	Weather Station	Multi-sensor station, Parameters:	LI1.3
		Temperature (range: -40°C to 70°C),	
		Humidity (range: 0-100%), Atmospheric	
		Pressure (range: 800-1100 hPa).	T T 1 1
6	Protective Gear	N95 masks, safety goggles, gloves.	LI1.1
7	pH meter	Working range 0-14; resolution 0.1/0.01	LI2.3
		pH;	
8	Conductometer	temperature compensation 0-1000 C Range 0-199.9ms; resolution	LI2.3
O	Conductometer	0.1ms/0.01ms/0.001ms/0.1µs/0.01µs;	1.12.3
		accuracy	
		$\pm 0.5\% \pm 2$ digits	
9	Nephelometer	Auto-ranging from 20-200 NTU,+/- 2% of	LI2.3
		reading plus 0.1 NTU, power 220 Volts +/-	
		10% AC 50 Hz.	
10	TDS Meter	TDS typically measured in parts per million	LI2.4
		(ppm) or milligrams per liter (mg/L), An	
		accuracy of $\pm 2\%$ or better is common for quality TDS meters resolution of 1 ppm or	
		lower.	
11	Gas Chromatograph-Mass	High sensitivity and resolution, Wide range	LI4.2
	Spectrometer (GC-MS)	of detectable compounds	_

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

12	Liquid Chromatograph-Mass Spectrometer (LC-MS)	Suitable for liquid samples, High sensitivity and selectivity	LI4.3
13	UV-Vis Spectrophotometers	UV Range: Typically 190 to 400 nanometers (nm), Vis Range: Typically 400 to 800 nm	LI4.4
14	Dissolved Oxygen (DO) Meter, Chemical Oxygen Demand (COD) Analyzer, Automated BOD Analyzers	Typically measures BOD and COD values ranging from 0 to 1,000 mg/L or higher. Measures dissolved oxygen concentration in water, typically ranging from 0 to 20 mg/L or higher.	LI5.1
15	Sound Level Meter (SLM)	Common ranges include 30 dB to 130 dB or wider.	LI5.3

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

N) Mapping of POs & PSOs with COs:

				P	rogramn	ne Outco	mes				Progr	ramm
Course		(POs)								e Specific		
Outcomes						•					Outc	omes
(COs)												Os)
Titles	Basic know ledge PO-1	Disci pline know ledge PO-2	Experiments& Practic e PO-3	Engin eering Tools PO-4	The Engin eer& Society PO-5	Enviro nment & Sustain ability PO-6	Ethics PO-7	Indivi dual & Team work PO-8	Comm unicati on PO-9	Life Long learning PO-10	PSO-	PSO- 2
CO-1: Students will be able to attain ability to choose the most suitable technique for air pollution monitoring and control technique for a given application.	2	3	2	2	2	0	0	2	0	1	2	1
CO-2: Students will be able to describe suitable techniques for water treatments and control technique for water pollution management.	2	2	3	2	2	0	0	1	0	2	2	1
CO-3: Students will be able to identify the techniques for the disposal and management of urban solid wastes and hazardous wastes.	2	2	3	2	2	0	0	1	0	2	2	1
CO-4: Students will be able to demonstrate the ability to recognize the tools for environmental management in industries.	2	2	3	2	2	0	0	1	0	2	2	1
CO-5: CO-5: Students will be able to demonstrate an ability to recognize the type of health care waste and processes involved in Transport & storage of waste treatment and disposal of health care waste.	2	2	3	2	2	0	0	1	0	2	2	2

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

O) Course Curriculum Map:

POs & PSOs No.	COs No.& Title	SOs No.	Laboratory	Classroom	Self Learning
			Instruction (LI)	Instruction (CI)	(SL)
PO-1,2,3,4,5,8,10 PSO-1,2	CO-1: Students will be able to attain ability to choose the most suitable technique for air pollution monitoring and control technique for a given	SO1.1 SO1.2 SO1.3	LI1.1 LI1.2 LI1.3	1.1 1.2 1.3	SL1.1 SL1.2
PO-1,2,3,4,5,8,10 PSO-1,2	application. CO-2: Students will be able to describe suitable techniques for water treatments and control technique for water pollution management.	SO2.1 SO2.2 SO2.3	LI1.4 LI2.1, 2.4 LI2.2, 2.5 LI2.3	2.1 2.2 2.3	SL2.1 SL2.2 SL2.3
PO-1,2,3,4,5,8,10 PSO-1,2	CO-3: Students will be able to identify the techniques for the disposal and management of urban solid wastes and hazardous wastes.	SO3.1 SO3.2 SO3.3	LI3.1 LI3.2 LI3.3	3.1 3.2 3.3 3.4	SL3.1 SL3.2 SL3.3
PO-1,2,3,4,5,8,10 PSO-1,2	CO-4: Students will be able to demonstrate the ability to recognize the tools for environmental management in industries.	SO4.1 SO4.2	LI4.1 LI4.2 LI4.3 LI4.4	4.1 4.2 4.3 4.4	SL4.1 SL4.2 SL4.3
PO-1,2,3,4,5,8,10 PSO-1,2	CO-5: CO-5: Students will be able to demonstrate an ability to recognize the type of health care waste and processes involved in Transport & storage of waste treatment and disposal of health care waste.	SO5.1 SO5.2 SO5.3	LI5.1 LI5.2 LI5.3 LI5.4 LI5.5	5.1 5.2 5.3	SL5.1 SL5.2 SL5.3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

A) Course Code : 2129575(020)

B) Course Title : Disaster Management and Emergency Planning

C) Pre- requisite Course Code

and Title :

D) Rationale : Disaster management and emergency planning are crucial components of ensuring public safety and minimizing the impact of natural or manmade disasters. These processes involve a comprehensive set of measures and strategies designed to prepare, respond to, and recover from emergencies effectively.

E) Course Outcomes:

- CO-1: Student will able to evaluate the principles and practices of disaster risk reduction and management.
- CO-2: Student will able to know the basic role of public, national/international organizations in disaster management.
- CO-3: Student will able to prevention, mitigation preparedness, and response and recovery process in disaster management.
- CO-4: Students will able to understand distinguish between the different approaches needed to manage pre-during and post disaster periods.
- CO-5: Student will able to apply the knowledge in conducting independent DM study including data search and analysis from disaster case study.

F) Scheme of Studies:

Board of Study	Course Code	Course Titles		me of Stu ours/Wee		Credits L+T+(P/2)
			L	P	T	
Civil Engineering	2129575 (020)	Disaster Management and Emergency Planning	2	-	1	3

L- Lecture, T- Tutorial,

P- Practical,

Legend: Lecture (L) →CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others).

Practical (P) \rightarrow LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies).

Tutorial (T) \rightarrow SL: Self Learning.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

G)	Scheme	of	Assessment:
----	--------	----	--------------------

Board of Study	Course Code	Course Titles	Scheme of Examination					
			7	Theor	y	Practi	ical	Total
			ESE	CT	TA	ESE	TA	Marks
Civil Engineering	2129575 (020)	Disaster Management and Emergency Planning	70	20	30	-	-	120

ESE: End Semester Exam,

CT: Class Test,

TA: Teachers Assessment

Legend- PRA: Process Assessment, PDA: Product Assessment

Note:

- i) TA in Theory includes Sessional work (SW) and attendance (ATT) with weightage of 70% and 30% of total respectively.
- ii) TA in practical includes performance of PRA,PDA and Viva-Voce with weightage of 50%,40% and 10% respectively.
- iii) 85% attendance is essential in theory and practical classes to appear in Examination.

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1: Student will able to evaluate the principles and practices of disaster risk reduction and management.

Session Outcomes	Laboratory	Class room Instruction (CI)	Self Learning
(SOs)	Instruction (LI)		(SL)
			a
SO1.1 Awareness of		UNIT-1.0 PHILOSOPHY OF	SL1.1 Learn
the complexity of		DISASTER MANAGEMENT	about Forest
disasters		1.1 Introduction to Disaster	related
SO1.2 Awareness of		mitigation-Hydrological.	disasters.
the complexity of disasters control measures		1.2 Coastal and Marine Disasters- Atmospheric disasters-Geological, meteorological phenomena.	SL1.2 Exploration of different
SO1.3 Awareness of the complexity of disasters.		1.3 Mass Movement and Land Disasters-Forest related disasters- Wind and water related disasters.	philosophical approaches.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

Session Outcomes	Laboratory		Class room Instruction (CI)	Self Learning
(SOs)	Instruction (LI)			(SL)
		1.4	disasters deforestation-Use of space technology for control of geological disasters-Master thesis.	

SW-1 Suggested Sessional Work (SW)

a. Assignments:

- 1. Explain the philosophical underpinnings of disaster management and its implications for mitigating various types of disasters.
- 2. Explain the ethical considerations, community engagement, and proactive approaches necessary for effective disaster mitigation.
- 3. Define Chloro Fluoro Carbon(CFC).

c. Mini Project:

- 1. Introduction to Disaster Mitigation and Assessing the Role of Climate Change in intensifying Extreme Weather Events: Implications for Disaster.
- 2. Design the setup to control Forest-Related Disasters.
- 3. Design the setup to use Space Technology for Control of Geological Disasters Forest-Related Disasters.

CO-2: Student will able to know the basic role of public, national/international organizations in disaster management.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1Understanding		UNIT 2.0	SL2.1 Learning
Technological Disasters.		TECHNOLOGICAL	about concept of
_		DISASTERS	crisis management
		2.1 Case studies of	groups.
SO2.2 Learn about		Technology disasters with	
emergency response and		statistical details Emergencies	CIOO I :
control measures		and control measures-APELL-	SL2.2 Learning
implemented.		Onsite and Offsite	about Officerstand
		amarganaias Crisis	now these
SO2.3 To know the		management groups-	technologies aid in
differentiate between onsite		Emergency centers and their	decision-making,
and offsite emergencies that		functions throughout the	resource amocation,
<u> </u>		country-Softwares on	and
can occur during		emergency controls-	communication.
technological disasters.			
		Monitoring devices for	
		detection of gases in the	
		atmosphere-Right to know act	

SW-2 Suggested Sessional Work (SW):

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

a. Assignments

- 1. Discuss about technological disaster, such as the Chernobyl nuclear accident.
- 2. Explain the plan for emergency response and control during technological disasters, such as monitoring devices or software systems.

b. Mini Project:

1. Explain the "Technological Disasters: Analysis and Emergency Response Measures".

CO-3: Student will able to prevention, mitigation preparedness, response and recovery process in disaster management.

Session Outcomes	Laboratory	Class room Instruction (CI)	Self Learning (SL)
(SOs)	Instruction (LI)		
SO3.1 Understand		UNIT-3.0 INTRODUCTION TO SUSTAINABLE	SL3.1 knowledge of
Bio Diversity.		DEVELOPMENT	the causes of pollution-Global
SO3.2 Learning about pollution-		3.1 Bio Diversity-Atmospheric pollution-Global warming and	warming and Ozone.
Global warming		Ozone Depletion-ODS banking and phasing out-Sea	SL3.2 Learning about
and Ozone Depletion.		level rise-El Nino and climate changes.	knowledge of various causes of
SO3.3 Understand		3.2 Eco friendly products-	Environmental Impact Assessment in human life.
technological options for the Eco friendly products.		philosophy-Environmental Policies-Environmental Impact Assessment-case studies-Life	ine.
		cycle.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain the Bio Diversity.
- 2. Explain the Global warming and Ozone Depletion.
- 3. Explain the Environmental Policies-Environmental Impact Assessment.

b. Mini Project:

- 1. Make a model for climate changes
- 2. Methods of reduction of global warming and Ozone Depletion.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

CO-4: Student will able to prevention, mitigation preparedness, response and recovery process in disaster management.

Session	Laboratory	Class room Instruction (CI)	Self Learning (SL)
Outcomes (SOs)	Instruction (LI)		
SO4.1 Introduction		UNIT-4.0 OFFSHORE AND	SL4.1 Learning about
of Marine pollution		ONSHORE DRILLING	Control of fires cases
and control Toxic,			in Marine pollution.
hazardous. SO4.2 Identify causes of nuclear		4.1 Control of fires-Case studies- Marine pollution and control Toxic, hazardous & Nuclear wastes-state of India's.	SL4.2 Learning about Nuclear wastes.
wastes in Global		4.2 Nuclear wastes in Global	SL4.3 Learning about
environmental		environmental issues carcinogens-	disasters.
issues.		complex emergencies Earthquake.	
		4.3 Earthquake disasters-the nature-extreme event analysis the immune system-proof and limits.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Write the nots on control Toxic, hazardous & Nuclear wastes-state of India's.
- 2. Explain various causes of earthquake disasters-the nature-extreme event analysis

b. Mini Project:

- 1. Explain the techniques to reduce the Marine pollution.
- 2. Nuclear wastes.

CO-5: Student will able to apply the knowledge in conducting independent DM study including data search and analysis from disaster case study.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 Understand the Population and community ecology. SO5.2 Explain the Risk assessment process.		UNIT-5.0 ENVIRONMENTAL EDUCATION 5.1 Population and community ecology-Natural resources conservation-Environmental protection and law-Research methodology and systems analysis	SL5.1 learn about ecology. SL5.2 Learning about assessment for different disaster
SO5.3 Evaluate the role of stock taking and vulnerability analysis in stock		5.2 Natural resources conservation- Policy initiatives and future prospects-Risk assessment process, assessment for different disaster	SL5.3 Learning about destructive capacity.

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

taking	and	types-Assessment data use,	
vulnerability		destructive capacity-risk adjustment-	
analysis.		choice-loss acceptance-disaster aid-	
		public liability insurance-stock	
		taking and vulnerability analysis-	
		stock taking and vulnerability	
		analysis profile of the country-	
		national policies-objectives and	
		standards-physical event	
		modification-preparedness,	
		forecasting and warning, land use	
		planning.	

a. Assignments:

- 1. Write the notes on Risk assessment process,.
- 2. Explain, stock taking and vulnerability analysis profile of the country.

b. Mini Project:

1. Environmental Education: Promoting Awareness and Action for Sustainable Living"

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

I) Suggested Specification Table (For ESE of Classroom Instruction CI+SW+SL):

Unit	Unit Title	M	Total		
Number		R	U	A	Marks
I	PHILOSOPHY OF DISASTER	4	6	4	14
	MANAGEMENT				
II	TECHNOLOGICAL DISASTERS	4	6	4	14
III	INTRODUCTION TO	4	6	4	14
	SUSTAINABLE DEVELOPMENT				
IV	OFFSHORE AND ONSHORE	4	6	4	14
	DRILLING				
V	ENVIRONMENTAL EDUCATION	4	6	4	14
	Total	20	30	20	70

Legend: R: Remember, U: Understand, A: Apply and above

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

J) Suggested Specification Table (For ESE of Laboratory Instruction*): Nil

Laboratory Instruction	Short Laboratory Experiment Title	Assessment of Laboratory Work (Marks)			
Number		Performance		Viva-	
		PRA	PDA	Voce	
-	-	-	-	-	

^{*} Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals

Legend: PRA: Process Assessment, PDA: Product Assessment

Note: Only one experiment has to performed at the end semester examination of 40 Marks as per assessment scheme.

(K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Industrial visits
- 4. Industrial Training
- 5. Demonstration
- 6. Others

L) Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition & Year
1.	Environmental pollution	CS Rao,	Wiley Eastern Limited,	1992
	engineering		NewDelhi	
2.	Pollution control in	S.P.Mahajan	Tata McGraw Hill	1993.
	process industries		Publishing Company,	
			New Delhi,	
3.	Air pollution equipment"	Varma and Braner,	Springer Publishers,	1996

(b) Open source software and website address:

- 1. Environmental Protection Agency: https://www.epa.gov/air-pollution-transportation
- 2. Hazardous Waste Management: https://www.unep.org/resources/hazardous-waste-management

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

- 3. United States Geological Survey (USGS): Water Pollution: https://www.usgs.gov/mission-areas/water-resources/science/water-pollution
- 4. Indian Ministry of Environment, Forest and Climate Change: Pollution Control in Industries: http://envfor.nic.in/pollution-control-boards
- 5. Ministry of Environment, Forest and Climate Change: Pollution Control in Industries: http://envfor.nic.in/pollution-control-boards

M) List of Major Laboratory Equipment and Tools: Nil

S. No.	Name of Equipment	Broad	Relevant
		Specifications/description	Experiment
			Number
-	-	-	-

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

N) Mapping of POs & PSOs with COs:

Course Outcomes (COs)					_	me Outcom POs)	ies				Spe Outc	camme cific comes (Os)
Titles	Basic know ledge PO-1	Disci pline know ledge PO-2	Experi ments& Practice PO-3	Engin eering Tools PO-4	The Engin eer& Society PO-5	Environ ment & Sustaina bility PO-6	Ethics PO-7	Indivi dual & Team work PO-8	Commu nication PO-9	Life Long learning PO-10	PSO-	PSO- 2
CO-1: Student will able to evaluate the principles and practices of disaster risk reduction and management.	2	3	2	2	2	0	0	2	0	1	2	1
CO-2: Student will able to know the basic role of public, national/international organizations in disaster management.	2	2	3	2	2	0	0	1	0	2	2	1
CO-3: Student will able to prevention, mitigation preparedness, and response and recovery process in disaster management.	2	2	3	2	2	0	0	1	0	2	2	1
CO-4: Students will able to understand distinguish between the different approaches needed to manage pre-during and post disaster periods.	2	2	3	2	2	0	0	1	0	2	2	2
CO-5: Student will able to apply the knowledge in conducting independent DM study including data search and analysis from disaster case study.	2	2	3	2	2	0	0	1	0	2	2	1

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Industrial Safety & Fire Safety Engineering

Semester -V

O) Course Curriculum Map:

POs & PSOs No.	COs No.& Title	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO-1,2,3,4,5,8,10	CO-1: Student will able to evaluate	SO1.1	-	1.1	SL1.1
PSO-1,2	the principles and practices of disaster	SO1.2		1.2	SL1.2
	risk reduction and management.	SO1.3		1.3	
				1.4	
PO-1,2,3,4,5,8,10	CO-2: Student will able to know the	SO2.1	-	2.1	SL2.1
PSO-1,2	basic role of public,	SO2.2			SL2.2
	national/international organizations	SO2.3			
	in disaster management.				
PO-1,2,3,4,5,8,10	CO-3: Student will able to	SO3.1	-	3.1	SL3.1
PSO-1,2	prevention, mitigation preparedness,	SO3.2		3.2	SL3.2
	and response and recovery process in	SO3.3			
	disaster management.				
PO-1,2,3,4,5,8,10	CO-4: Students will able to	SO4.1	-	4.1	SL4.1
PSO-1,2	understand distinguish between the	SO4.2		4.2	SL4.2
	different approaches needed to			4.3	SL4.3
	manage pre-during and post disaster				
	periods.				
PO-1,2,3,4,5,8,10	CO-5: Student will able to apply the	SO5.1	-	5.1	SL5.1
PSO-1,2	knowledge in conducting independent	SO5.2		5.2	SL5.2
	DM study including data search	SO5.3			SL5.3
	and analysis from disaster case study.				

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning.