Introduction to Probability and Statistics Course ID:MA2203

Lecture-4

Course Teacher: Dr. Manas Ranjan Tripathy

Department of Mathematics National Institute of Techonology, Rourkela

- Random Variable: A random variable X is finite and single valued function from the sample space S to \mathcal{R} , such that the inverse images under X of all Borel sets in \mathcal{R} are events. That is $X^{-1}(B) = \{w : X(w) \in B\}$ event for all $B \in \mathcal{B}$. Class of Borel sets is the collection of open or closed intervals in \mathcal{R} , which is closed under countable union, countable intersection and complementation. In order to verify that a real valued function on S is a random variable, it is not necessary to check for all Borel sets. It is sufficient to verify the condition for any class of subsets of \mathcal{R} . Here we take the class of semi-closed intervals $(-\infty, x]$ $x \in \mathcal{R}$. Note that, for any real a the probability P(X = a) with which X assumes a is defined. and for any interval I, the probability $P(X \in I)$ is defined.
- We can see that, the semi-closed interval

$$(-\infty,x]=\bigcap_{n=1}^{\infty}(-\infty,x+\frac{1}{n}).$$

• Examples (i): Suppose we toss a coin once. Here $S = \{H, T\}$. Let us define a function $X : \to \mathcal{R}$, such that X is the number of heads turns up. To verify that it is a random variable, observe that X(T) = 0, X(H) = 1. Take a subset of \mathcal{R} as $(-\infty, x]$, $x \in \mathcal{R}$.

$$X^{-1}(-\infty, x] = \emptyset, \text{ if } x < 0,$$

= $\{T\}, \text{ if } 0 \le x < 1,$
= $\{T, H\}, \text{ if } x \ge 1.$

In all the cases $X^{-1}(-\infty, x]$ is an event. Hence X is a random variable.

• (ii): Suppose we throw a die once. $S = \{1, 2, 3, 4, 5, 6\}$. Define X as the number shows up when we throw. That is X(1) = 1, X(2) = 2, X(3) = 3, X(4) = 4, X(5) = 5, X(6) = 6. To check whether X is a random variable, observe that,

$$X^{-1}(-\infty, x] = \emptyset, \text{ if } x < 1,$$

$$= \{1\}, \text{ if } 1 \le x < 2,$$

$$= \{1, 2\}, \text{ if } 2 \le x < 3$$

$$= \{1, 2, 3\} \text{ if } 3 \le x < 4$$

$$= \{1, 2, 3, 4\} \text{ if } 4 \le x < 5$$

$$= \{1, 2, 3, 4, 5\} \text{ if } 5 \le x < 6$$

$$= \{1, 2, 3, 4, 5, 6\}, \text{ if } x \ge 6.$$

In all the cases $X^{-1}(-\infty, x]$ is an event. Hence X is a random variable.

• In general, we can say that the random variable is the quantity that we observe in a random experiment. The number of heads, the number shows up in throwing a die, the number of deaths by cancer, the number of accidents in a city, amount of rain fall, hardness of steel, etc. Introduction to Probability and Statistics

- Distribution Function or Cumulative Distribution Function (CDF): A function F(x) which is defined in $(-\infty, \infty)$ such that it is monotonically non-decreasing, right continuous and $F(-\infty) = 0$, $F(\infty) = 1$. The CDF of a random variable X is defined as $F(x) = P(X \le x)$, we read it as the probability that the random variable X will not exceed X. Here $X \in \mathcal{R}$.
 - (i) The probability that the random variable X will be in the interval $a < X \le b$ is computed as $P(a < X \le b) = F(b) F(a)$. The interval $(-\infty, b]$ is the disjoint union of $(-\infty, a]$ and (a, b]. Hence $F(b) = P(X \le a) + P(a < X \le b)$.
- Types of random variables: (i) Discrete type, (ii) Continuous type.
- Discrete Type RV: A random variable X is said to be discrete if X assumes only finitely or countable number of values, say x_1, x_2, \ldots , called the possible values of X with probabilities $p_1 = P(X = x_1)$, $p_2 = P(X = x_2)$, ... whereas $P(X \in I) = 0$ for any interval I that does not contain any x_i . Here $p_i > 0$ and $\sum_i p_i = \sum_i P(X = x_i) = 1$ and these p_i s are known as the probability mass function (pmf) of X. The CDF of a discrete type random variable X is obtained as

$$F(x) = \sum_{x_i < x} P(X = x_i).$$

Moreover $P(a < X \le b) = \sum_{a < x \le b} P(X = x)$, $P(a < X < b) = \sum_{a < x < b} P(X = x)$.

Introduction to Probability and Statistics

- **Examples of Discrete Type RV**: (i) If we toss a coin once, then $S = \{H, T\}$. Let X be the number of tails. Then $X(H) = 0 = x_1$, $X(T) = 1 = x_2$. Further $p_1 = P(X(H) = 0)$, $p_2 = P(X(T) = 1)$ is the probability mass function of X. Here we have two points. Also we have $p_1 + p_2 = 1$. If the coin is fair we can take $p_1 = p_2 = 1/2$. (ii) Tossing of a die, X is the number that shows up. (iii) Suppose we toss two coins simultaneously, X is the sum of head and tail. (iv) Suppose we throw two fair die simultaneously, X be the sum of two numbers that shows up.
- Continuous Type RV: A random variable X and its distribution are called continuous if if its distribution function F(x) can be obtained by an integral,

$$F(x)=\int_{-\infty}^{x}f(v)dv,$$

here f(x) > 0 and is known as the probability density function (pdf) of X, and

$$\int_{-\infty}^{\infty} f(x) dx = 1.$$

Now differentiating this F(x) at the point of continuity, we have

$$F'(x) = f(x)$$
.

• Moreover, we have $P(a < X < b) = P(a \le X \le b) = P(a \le X \le b)$ $P(a \le X \le b) = \int_a^b f(x) dx$. • Examples of Continuous Type RV: (i) Let X have the density function $f(x) = 0.75(1 - x^2)$, if $-1 \le x \le 1$ and zero otherwise. Find the distribution function. Find the probabilities $P(-\frac{1}{2} \le X \le \frac{1}{2})$, $P(\frac{1}{4} \le X \le 2)$.

Ans: To obtain the CDF, F(x) we have

$$F(x) = 0, if x \le -1,$$

$$= \int_{-\infty}^{x} 0.75(1 - v^{2}) dv$$

$$= 0.5 + 0.75x - 0.25x^{3}, if -1 < x \le 1$$

$$= 1, if x > 1.$$

Now
$$P(-\frac{1}{2} \le X \le \frac{1}{2}) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) dx = 0.6875$$
. $P(\frac{1}{4} \le X \le 2) = \int_{\frac{1}{4}}^{2} f(x) dx = 0.3164$.

 Some More Examples of Continuous Type RV: (i) The probability density function of a random variable X is

$$f(x) = \begin{cases} \frac{\sin x}{2}, & \text{if } 0 \le x \le \pi \\ 0, & \text{elsewhere.} \end{cases}$$

Check that it is a probability density function and find its cumulative distribution function. Further find $P(1/2 < X < \pi)$ and $P(X > \pi/2)$.

• (ii) Let X be a random variable having probability density function

$$f(x) = \begin{cases} \frac{x}{6} + k, & \text{if } 0 \le x \le 3 \\ 0, & \text{elsewhere.} \end{cases}$$

Finf the value of k, and obtain the cumulative distribution function F(x). Further find (a) P(1 < X < 2) (b) P(X > 1.8) (c) P(3/2 < X < 3).

(iii) A continuous random variable have the probability density function

$$f(x) = \begin{cases} ke^{-kx}, & \text{if } x > 0 \\ 0, & \text{elsewhere.} \end{cases}$$

Find the value of k and the cumulative distribution function. Further obtain the probabilities (a) P(X > 1/2) (b) P(1 < X < 2) and (c) P(X < 10).

 Some More Examples of Discrete Type RV: (i) Let X be a discrete type random variable having probability mass function given by

/ 1				<u> </u>				
X	0	1	2	3	4	5	6	7
P(X=x)	0	k	2 <i>k</i>	2k	3 <i>k</i>	k ²	$2k^2$	$7k^{2} + k$

Find the value of k and the cumulative distribution function of X. Further find (a) P(0 < X < 1.5) (b) $P(X \ge 5)$ (c) $P(1.9 \le X < 6)$ (d) P(X < 8)

- (ii) Suppose we toss pair of dice simultaneously. Let X denotes the minimum of two numbers that appear. Show that X is a random variable and find its cumulative distribution function F(x). Do the same problem if X denotes the maximum of two numbers.
- (iii) Let X be the sum of two numbers that appear when two dice are thrown simultaneously. Show that X is random variable and also obtain its cumulative distribution function.
- (iv) Suppose we toss 3 coins simultaneously. Let X denotes the sum
 of the number of heads. Find the cumulative distribution function if
 X is a random variable.