TRƯỜNG ĐẠI HỌC SỬ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH

Khoa Điện – Điện Tử

Báo Cáo: Khảo Sát đặc tuyến BJT B562

Nhóm 03

Họ và tên: Nguyễn Duy Huân – 2390703

Họ và tên: Lê Trung Tín – 2390707

Họ và tên: Đặng Đình Gia Bảo – 2390701

Giảng Viên: TS. Nguyễn Thị Lưỡng

Hồ Chí Minh – 4/2024

Mục Lục

Báo Ca	áo: Khảo Sát đặc tuyến BJT B562	1
1.	Sơ đồ mạch không có tụ	4
2.	Khảo sát đặc tuyến B562 trong trường hợp không có tụ	5
3.	Khảo sát các thông số	6
4.	Sơ đồ mạch khuếch đại tín hiệu dùng B562	7
5.	Khảo sát Vin và Vout với trường không có tụ	8
6.	Khảo sát thông số đo	10
7.	Đáp ứng tần số	11
8.	Sơ đồ mạch trường hợp có tụ 10uF	12
9.	Khảo sát Vin và Vout với trường hợp có tụ 10uF	13
10.	Khảo sát thông số đo	15
11.	Khảo sát đáp ứng tần số	16
12.	Sơ đồ mạch phân cực hồi tiếp dùng B562	17
13.	Khảo sát giá trị thực nghiệm	18

Hình 1. 1: Sơ đồ nguyên lý mạch BJT trong trường hợp không có tụ	4
Hình 2. 1: Đặt tuyến của BJT B562	5
Hình 4. 1: Sơ đồ nguyên lý mạch khuyết đại tín hiệu dùng BJT B562	7
Hình 5. 1: Điện áp đầu vào Vin	8
Hình 5. 2: Điện áp ngõ ra Vout	
Hình 7. 1: Khảo sát đáp ứng tần số	11
Hình 8. 1: Sơ đồ nguyên lý mạch khuyết địa tín với đầu ra gắn tụ lọc	12
Hình 9. 1: Dạng sóng đầu vào Vin	13
Hình 9. 2: Dạng sóng ngõ ra Vout	14
Hình 11. 1Khảo sát đáp ứng tần số	16
Hình 12. 1: Sơ đồ mạch phân cực hồi tiếp	17

Sơ đồ mạch không có tụ

Hình 1. 1: Sơ đồ nguyên lý mạch BJT trong trường hợp không có tụ

1. Khảo sát đặc tuyến B562 trong trường hợp không có tụ

Hình 2. 1: Đặt tuyến của BJT B562

2. Khảo sát các thông số

STT	Trường hợp	Ib	Ic	beta
1	V2 = -5V	-4.387uA	-560 uA	130
2	V2 = -8V	-7.3 uA	-903 uA	123.69

3. Sơ đồ mạch khuếch đại tín hiệu dùng B562

Hình 4. 1: Sơ đồ nguyên lý mạch khuyết đại tín hiệu dùng BJT B562

Hình 4.1 biểu thị sơ đồ mạch khuyết đại tín hiệu sử dụng BJT b562. Với ngõ ra được kết nối với kênh B của oscilloscope và ngõ vào kết nối tại kênh A.

4. Khảo sát Vin và Vout với trường không có tụ

• Điện áp đầu vào Vin

Hình 5. 1: Điện áp đầu vào Vin

Hình 5.1 biểu thị dạng sóng đo được trên ngõ vào Vin với biên độ 1 peak khoảnh 141mV.

• Điện áp đầu ra Vout

Hình 5. 2: Điện áp ngõ ra Vout

Hình 5.2 biểu thị điện áp ngõ ra Vout sau khi khuyết đại với biên độ 1 peak sóng đo được là khoảng 594mV.

5. Khảo sát thông số đo

	Av	Flow	Fhigh
Giá trị	4.4	-	-
tính toán			
Giá trị đo	4.2	500mHz	28Mhz
Sai số	0.2	-	-

6. Đáp ứng tần số

Hình 7. 1: Khảo sát đáp ứng tần số

Hình 7.1 biểu thị dải tần số hoạt động ổn định của BJT B562 trong khoảng tử $500 \mathrm{mHz}$ tới $28 \mathrm{MHz}$.

7. Sơ đồ mạch trường hợp có tụ 10uF

Hình 8. 1: Sơ đồ nguyên lý mạch khuyết địa tín với đầu ra gắn tụ lọc

Hình 8.1 biểu thị sơ đồ mạch khuyết đại tín hiệu sử dụng BJT b562 có tụ lọc. Với ngõ ra được kết nối với kênh B của oscilloscope và ngõ vào kết nối tại kênh A.

8. Khảo sát Vin và Vout với trường hợp có tụ 10uF

• Dạng sóng đầu vào Vin

Hình 9. 1: Dạng sóng đầu vào Vin

Hình 9.1 biểu thị dạng sóng đo được trên ngõ vào Vin với biên độ 1 peak khoảnh 141mV.

Dạng sóng đầu ra Vout

Hình 9. 2: Dạng sóng ngõ ra Vout

Hình 9.2 biểu thị điện áp ngõ ra Vout sau khi khuyết đại với biên độ 1 peak sóng đo được là khoảng 545mV.

9. Khảo sát thông số đo

	Av	Flow	Fhigh
Giá trị	-	-	-
tính toán			
Giá trị đo	26.9	64Hz	10Mhz
Sai số	-	-	-

10. Khảo sát đáp ứng tần số

Hình 11. 1Khảo sát đáp ứng tần số

Hình 11.1 biểu thị dải tần số hoạt động ổn định của BJT B562 trong khoảng tử $64\mathrm{Hz}$ tới $10\mathrm{MHz}$.

11. Sơ đồ mạch phân cực hồi tiếp dùng B562

Hình 12. 1: Sơ đồ mạch phân cực hồi tiếp

Hình 12.1 biểu thị sơ đồ nguyên lý của mạch phân cực hồi tiếp.

12. Khảo sát giá trị thực nghiệm

TT	Thiết bị đo	Tín hiệu	Kết quả	Tình trạng BJT
1	Đồng hồ đo	Đo điện áp Vce	-7.621	Kích dẫn
2	Đồng hồ đo	Đo dòng Ic	1.691mA	

TT		Veb	Ve	Vec	Ib	Ic	Hệ số
1	Giá trị	0,7 V	11,528 V	8,19 V	-3.75uA	-0.97 mA	253.33
	tính						
	toán						
2	Giá trị	0,602 V	11,72 V	7. 621	-4.2 uA	-1,12mA	260
	đo						
3	Sai số	0,098 V	0,192 V	0,569 V	0.45 uA	0,15 mA	6.6