

(V) Preliminary Specifications
() Final Specifications

Module	10.1" WSVGA Color TFT-LCD with Touch Panel design		
Model Name	B101AW02 V3		
Note (🗭)	LED Backlight with driving circuit design		

Customer	Date	Approved by	Date
	Date	Howard Lee	09/22/2009
Checked & Approved by		Prepared by	
		Stefan Chen	09/22/2009
Note: This Specification is subjective without notice.	ct to change	NBBU Marketir AU Optronics	

Contents

1.	Handling Precautions	4
2.	General Description	5
	2.1 General Specification	5
	2.2 Optical Characteristics	6
3.	Functional Block Diagram	13
	4. Absolute Maximum Ratings	14
	4.1 Absolute Rating of TFT LCD Module	14
	4.3 Absolute Ratings of Environment	14
5 .	Electrical characteristics	15
	5.1 TFT LCD Module	15
	5.3 Backlight Unit	18
6.	Signal Characteristic	19
	6.1 Pixel Format Image	19
	6.2 The input data format	20
	6.3 Signal Description/Pin Assignment	21
	6.5 Interface Timing	26
	6.6 Power Sequence	28
	6.6.1 Panel Power Sequence	28
7.	Connector Description	29
	7.1 TFT LCD Module	
8.	LED Driving Specification	30
	8.1 Connector Description	30
	8.2 Pin Assignment	30
9.	Vibration and Shock Test	31
	9.1 Vibration Test	31
	9.2 Shock Test Spec:	
11	L. Mechanical Characteristics	33
	11.1 LCM Outline Dimension	33
11	L. Shipping and Package	35
	11.1 Shipping Label Format	35
	11.2 Carton package	36
	11.3 Shipping package of palletizing sequence	
12	2. Appendix: EDID description	37

Record of Revision

Version and Date	Page	Page Old description New Description		Remark
0.1 2009/06/30	All	First Edition for Customer		
0.2 2009/09/22	6	Power: TBD weight: 230g	Power: 2.9W max Weight: 245g	
	7	Rising time: TBD Falling time: TBD	Rising time: 5 Falling time: 11	
	33, 34		Drawing update	
	35	TBD	Shipping and carton label update	
	36	TBD	Packing Drawing update	
	37	TBD	EDID update	

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 10) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 11) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 12) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostic breakdown.

2. General Description

B101AW02 V3 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, LED backlight system and a touch sensor. The screen format is intended to support the 1024(H) x 600(V) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are LVDS interface compatible.

B101AW02 V3 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 °C condition:

Items	Unit	Specifications			
Screen Diagonal	[mm]	255.54(W")			
Active Area	[mm]	222.72(H) X	125.28(V)		
Pixels H x V		1024x3(RGB	3) x 600		
Pixel Pitch	[mm]	0.2175 (H) x	0.2088 (V)		
Pixel Arrangement		R.G.B. Vertic	cal Stripe		
Display Mode		Normally Wh	ite		
White Luminance Note: ILED is LED current	[cd/m ²]	170 typ (Note1)			
Luminance Uniformity (5P)		1.25 max			
Contrast Ratio		300 typ			
Response Time	[ms]	16 typ			
Nominal Input Voltage VDD	[Volt]	+3.3 typ.			
Power Consumption (typ)	[Watt]	2.9 max			
Weight	[Grams]	245 max.			
Physical Size	[mm]	L W		Т	
(w/ bracket & PCBA)		Max	243.5	147.0	5.2
		Typical	243.0	146.5	
		Min	242.5	146.0	-
Electrical Interface		1 channel LVDS			
Support Color		262K colors	262K colors (RGB 6-bit)		

document version 0.2 5 of 39

Touch Sensor type		Projected Capacitive Multi-touch Panel
Touch Input Method		Multi-Finger or Finger
Surface Treatment		Glass
Temperature Range Operating Storage (Non-Operating) RoHS Compliance	[°C] [°C]	0 to +50 -20 to +65 RoHS Compliance

2.2 Optical Characteristics The optical characteristics are measured under stable conditions at 25° C (Room Temperature) :

Item	Unit	Conditions	Min.	Тур.	Max.	Note
White Luminance	[cd/m ²]	5 point		170	-	1,3
Viewing Angle	[degree]	Horizontal (Right)	-	45	-	3,8
	[degree]	CR = 10 (Left)	-	45	-	
	[degree]	Vertical (Upper)	-	15	-	
	[degree]	CR = 10 (Lower)	-	35	-	
Luminance Uniformity		5 Points	-	-	1.25	1,4,5
Luminance Uniformity		13 Points	-	-	1.6	2,4,5
CR: Contrast Ratio			200	300	-	5,7
Cross talk	%				4	4,6
Response Time	[msec]	Rising	-	5		4,7
	[msec]	Falling	-	11		
	[msec]	Rising + Falling	-	16		
		Red x	0.560	0.590	0.620	4,8
		Red y	0.312	0.342	0.370	
Chromaticity of color		Green x	0.304	0.334	0.364	
Coordinates		Green y	0.559	0.589	0.619	
(CIE 1931)		Blue x	0.131	0.161	0.191	
		Blue y	0.101	0.131	0.161	
		White x	0.283	0.313	0.343	
		White y	0.299	0.329	0.359	

Note 1:5 points position (Ref: Active area)

Note 2. 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

2	Maximum Brightness of five points
δ _{W5} =	Minimum Brightness of five points
2	Maximum Brightness of thirteen points
$\delta_{W13} =$	Minimum Brightness of thirteen points

document version 0.2 7 of 39

AU OPTRONICS CORPORATION

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Center of the screen

Note 5: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)= $\frac{\text{Brightness on the 'White'' state}}{\text{Brightness on the "Black" state}}$

Note 6: Definition of Cross Talk (CT)

document version 0.2 8 of 39

AU OPTRONICS CORPORATION

 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B= Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 7: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

document version 0.2 9 of 39

AU OPTRONICS CORPORATION

Note 8. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 170° horizontal and 170° vertical range (off-normal viewing angles). The 170° viewing angle range is broken down as follows; 90°(0) horizontal left and right and 90°(Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

document version 0.2 10 of 39

2.3 HID Report Descriptor

We follow Microsoft HID spec to provide 2 fingers multi-touch. The report descriptor can be listed in the following.

0x05, 0x0d,	//	USAGE_PAGE (Digitizers)
0x09, 0x04,	//	USAGE (Touch Screen)
0xa1, 0x01,	//	COLLECTION (Application)
0x85, REPORTID_MTOUCH,	//	REPORT_ID (Touch)
0x09, 0x22,	//	USAGE (Finger)
0xa1, 0x02,	//	COLLECTION (Logical)
0x09, 0x42,	//	USAGE (Tip Switch)
0x15, 0x00,	//	LOGICAL_MINIMUM (0)
0x25, 0x01,	//	LOGICAL_MAXIMUM (1)
0x75, 0x01,	//	REPORT_SIZE (1)
0x95, 0x01,	//	REPORT_COUNT (1)
0x81, 0x02,	//	INPUT (Data, Var, Abs)
0x09, 0x32,	//	USAGE (In Range)
0x81, 0x02,	//	INPUT (Data, Var, Abs)
0x95, 0x06,	//	REPORT_COUNT (6)
0x81, 0x03,	//	INPUT (Cnst,Ary,Abs)
0x75, 0x08,	//	REPORT_SIZE (8)
0x09, 0x51,	//	USAGE (Temp Identifier)
0x95, 0x01,	//	REPORT_COUNT (1)
0x81, 0x02,	//	INPUT (Data, Var, Abs)
0x05, 0x01,	//	USAGE_PAGE (Generic Desk
0x26, 0xff, 0x0f,	//	LOGICAL_MAXIMUM (4095)
0x75, 0x10,	//	REPORT_SIZE (16)
0x55, 0x0e,	//	UNIT_EXPONENT (-2)
0x65, 0x33,	//	UNIT (Inch,EngLinear)
0x09, 0x30,	//	USAGE (X)
0x35, 0x00,	//	PHYSICAL_MINIMUM (0)
0x46, 0xb5, 0x04,	//	PHYSICAL_MAXIMUM (1205)
0x81, 0x02,	//	INPUT (Data, Var, Abs)
0x46, 0x8a, 0x03,	//	PHYSICAL_MAXIMUM (906)
0x09, 0x31,	//	USAGE (Y)
0x81, 0x02,	//	INPUT (Data, Var, Abs)
0xc0,	//	END_COLLECTION
0xa1, 0x02,	//	COLLECTION (Logical)
0x05, 0x0d,	//	USAGE_PAGE (Digitizers)
0x09, 0x42,	//	USAGE (Tip Switch)

document version 0.2 11 of 39

		AU OF TROMICS CORE ORATI
0x15, 0x00,	//	LOGICAL_MINIMUM (0)
0x25, 0x01,	//	LOGICAL_MAXIMUM (1)
0x75, 0x01,	//	REPORT_SIZE (1)
0x95, 0x01,	//	REPORT_COUNT (1)
0x81, 0x02,	//	INPUT (Data,Var,Abs)
0x09, 0x32,	//	USAGE (In Range)
0x81, 0x02,	//	INPUT (Data,Var,Abs)
0x95, 0x06,	//	REPORT_COUNT (6)
0x81, 0x03,	//	INPUT (Cnst,Ary,Abs)
0x75, 0x08,	//	REPORT_SIZE (8)
0x09, 0x51,	//	USAGE (Temp Identifier)
0x95, 0x01,	//	REPORT_COUNT (1)
0x81, 0x02,	//	INPUT (Data,Var,Abs)
0x05, 0x01,	//	USAGE_PAGE (Generic Desk
0x26, 0xff, 0x0f,	//	LOGICAL_MAXIMUM (4095)
0x75, 0x10,	//	REPORT_SIZE (16)
0x55, 0x0e,	//	UNIT_EXPONENT (-2)
0x65, 0x33,	//	UNIT (Inch,EngLinear)
0x09, 0x30,	//	USAGE (X)
0x35, 0x00,	//	PHYSICAL_MINIMUM (0)
0x46, 0xb5, 0x04,	//	PHYSICAL_MAXIMUM (1205)
0x81, 0x02,	//	INPUT (Data,Var,Abs)
0x46, 0x8a, 0x03,	//	PHYSICAL_MAXIMUM (906)
0x09, 0x31,	//	USAGE (Y)
0x81, 0x02,	//	INPUT (Data,Var,Abs)
0xc0,	//	END_COLLECTION
0x05, 0x0d,	//	USAGE_PAGE (Digitizers)
0x09, 0x54,	//	USAGE (Actual count)
0x95, 0x01,	//	REPORT_COUNT (1)
0x75, 0x08,	//	REPORT_SIZE (8)
0x81, 0x02,	//	INPUT (Data,Var,Abs)
0x85, REPORTID_MAX_0	COUNT,	// REPORT_ID (Feature)
0x09, 0x55,	//	USAGE(Maximum Count)
0x25, 0x02,	//	LOGICAL_MAXIMUM (2)
0xb1, 0x02,	//	FEATURE (Data, Var, Abs)
0xc0,	//	END_COLLECTION

AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 10.1 inches wide Color TFT/LCD 40 Pin (One ch/connector Module.

document version 0.2 13 of 39

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Rating of TFT LCD Module

- <u></u>						
	Item	Symbol	Min	Max	Unit	Conditions
	Logic/LCD Drive	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Rating of Touch Sensor

Item	Symbol	Min	Max	Unit	Conditions
Touch Sensor Power Voltage	VDD	-0.3	+6.0	[Volt]	

4.3 Absolute Ratings of Environment

Item	Symbol	Symbol Min		Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	10	90	[%RH]	Note 4
Storage Temperature	TST	-20	+60	[°C]	Note 4
Storage Humidity	HST	10	90	[%RH]	Note 4

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

document version 0.2 14 of 39

AU OPTRONICS CORPORATION

Operating Range

Storage Range

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

Symble	Parameter	Min	Тур	Max	Unit	Note
VDD	Logic/LCD Drive	3.0	3.3	3.6	[Volt]	
	Voltage					
PDD	VDD Power			0.7	[Watt	Note 1/2
IDD	IDD Current		167		[mA]	Note 1/2
IRush	Inrush Current			1500	[mA]	Note 3
VDDrp	Allowable	-	_	100	[mV]	
	Logic/LCD Drive				р-р	
	Ripple Voltage					

Note 1: Maximum Measurement Condition: Black Pattern

Note 2: Typical Measurement Condition: Mosaic Pattern

Note 3: Measure Condition

document version 0.2 15 of 39

Vin rising time

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

It is recommended to refer the specifications of SN75LVDS82DGG (Texas Instruments) in detail.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
Vth	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
Vtl	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
Vcm	Differential Input Common Mode Voltage	1.125	1.375	[V]

Note: LVDS Signal Waveform

document version 0.4 17 of 39

5.2 Touch Sensor

		S	pecifications		NI 4	
Items	Symbol	Min.	Тур	Max.	Unit	Note
Touch Panel Power Supply	VDD	4.5	5.0	5.5	V	
Touch Panel Power Supply current	VDDi		32		mA	

5.3 Backlight Unit

Parameter	Symbol	Min	Тур	Max	Units	Condition
LED Forward Voltage	V _F	2.95	3.0	3.4	[Volt]	(Ta=25°ℂ)
LED Forward Current	I _F		20	-	[mA]	(Ta=25°ℂ)
LED Power consumption	P _{LED}		1.6		[Watt]	(Ta=25°C) Note 1
LED Life-Time	N/A	10,000	1	-	Hour	(Ta=25°C) I _F =20 mA Note 2
Output PWM frequency	F _{PWM}	-	200	1K	Hz	
Duty ratio		15		100	%	

Note 1: Calculator value for reference IFxVF =P

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

Note 3: This panel will support lower duty ration at PWM conditional frequency. The PWM frequency constrain between 100 Hz to 300 Hz and a same typical 200Hz. The duty ration will support from 5% to 100

document version 0.4 18 of 39

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		1									10	024	
1st Line	R	G		R	G	В		R	G	В	R	G	В
		•					ı					,	
		•					•		•			•	
							•						
		•			•		•						
		'			'		1		'			'	
					:				:			:	
					·		· ·					·	
600 th Line	R	G	В	R	G	В		R	G	В	R	G	В

6.2 The input data format

RxCLKIN	
RxIN0	G0 R5 R4 R3 R2 R1 R0
RxIN1	B1 B0 G5 G4 G3 G2 G1
RxIN2	DE VS HS B5 B4 B3 B2

Signal Nama	Description	
Signal Name	Description	Dod nivel Date
R5	Red Data 5 (MSB)	Red-pixel Data
R4	Red Data 4	Each red pixel's brightness data consists of
R3	Red Data 3	these 6 bits pixel data.
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
	Red-pixel Data	
G5	Green Data 5 (MSB)	Green-pixel Data
G4	Green Data 4	Each green pixel's brightness data consists of
G3	Green Data 3	these 6 bits pixel data.
G2	Green Data 2	
G1	Green Data 1	
G0	Green Data 0 (LSB)	
	, ,	
	Green-pixel Data	
B5	Blue Data 5 (MSB)	Blue-pixel Data
B4	Blue Data 4	Each blue pixel's brightness data consists of
B3	Blue Data 3	these 6 bits pixel data.
B2	Blue Data 2	·
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
	Blue-pixel Data	
RxCLKIN	Data Clock	The typical frequency is 54.2MHZ. The signal is
		used to strobe the pixel data and DE signals. All
		pixel data shall be valid at the falling edge when
		the DE signal is high.
DE	Display Timing	This signal is strobed at the falling edge of
		RxCLKIN. When the signal is high, the pixel
		data shall be valid to be displayed.
VS	Vertical Sync	The signal is synchronized to RxCLKIN.
HS	Horizontal Sync	The signal is synchronized to RxCLKIN.
	1	The digital to dynamic medical to two Ethier

Note: Output signals from any system shall be low or High-impedance state when VDD is off.

6.3 Signal Description/Pin Assignment

Pin	Signal	Description
1	GND	Ground
2	AVDD	PowerSupply,3.3V(typical)
3	AVDD	PowerSupply,3.3V(typical)
4	DVDD	DDC 3.3Vpower
5	AGING	No Connection (Reserve for AUO)
6	SCL	DDCClock
7	SDA	DDCData
8	Rin0-	-LVDSdifferential data input(R0-R5,G0)
9	Rin0+	+LVDSdifferential data input(R0-R5,G0)
10	GND	Ground
11	Rin1-	-LVDSdifferential data input(G1-G5,B0-B1)
12	Rin1+	+LVDSdifferential data input(G1-G5,B0-B1)
13	GND	Ground
14	Rin2-	-LVDSdifferential data input(B2-B5,HS,VS,DE)
15	Rin2+	+LVDSdifferential data input(B2-B5,HS,VS,DE)
16	GND	Ground
17	CIkIN-	-LVDSdifferential clock input
18	CIkIN+	+LVDSdifferential clock input
19	GND	Ground
20	LVDS_EN	LVDS Enable
21	NC	No Connection (Reserve)
22	GND	Ground
23	NC	No Connection (Reserve)
24	NC	No Connection (Reserve)
25	GND	Ground-Shield
26	NC	No Connection (Reserve)
27	NC	No Connection (Reserve)
28	GND	Ground-Shield
29	NC	No Connection (Reserve)
30	NC	No Connection (Reserve)
31	VLED_GND	LED Ground
32	VLED_GND	LED Ground
33	VLED_GND	LED Ground
34	NC	No Connection (Reserve)

35	PWM	System PWM Signal Input
36	LED_EN	LED enable pin(+3.3 V Input)
37	NC	No Connection (Reserve)
38	VLED	LED Power Supply 5V
39	VLED	LED Power Supply 5V
40	VLED	LED Power Supply 5V

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

Note1.

AU OPTRONICS CORPORATION

Note2: Input signals shall be low or High-impedance state when VDD is off. internal circuit of LVDS inputs are as following.

The module uses a 100ohm resistor between positive and negative data lines of each receiver input

document version 0.4 25 of 39

6.4 Touch Sensor Signal Description/Pin Assignment **6pin USB connector**

No.	Pin Name	I/O	Description	Remarks
1	VBUS	PI	USB Bus Power Input (5V)	
2	D-	I/O	D- signal	
3	D+	I/O	D+ signal	
4	GND	G	Power Ground	
5	GND	G	Power Ground	
6	NC	-	No connection	

Note 1: I: Digital signal input, O: Digital signal output, G: GND, PI: Power input

6.5 Interface Timing

6.5.1 Timing Characteristics

Basically, interface timings should match the 1024 x 600 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame Rate		-		60		Hz
Clock from	equency	1/ T _{Clock}		49.5		MHz
	Period	T _V		614		
Vertical Section	Active	T _{VD}		600		T_Line
	Blanking	T _{VB}		38		
Horizontal	Period	T _H		1344		
	Active	T _{HD}		1024		T_{Clock}
Section	Blanking	T _{HB}		320		

Note: DE mode only

AU OPTRONICS CORPORATION

6.5.2 Timing diagram

document version 0.4 28 of 39

AU OPTRONICS CORPORATION

6.6 Power Sequence

6.6.1 Panel Power Sequence

VDD power and LED on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

,		11			
Parameter	Min. Typ.		Max.	Unit	
T1	0.5	1	10	ms	
T2	10	ı	ı	ms	
Т3	30	40	90	ms	
T4	200	-	-	ms	
T5	10	-	-	ms	
T6	0	-	-	ms	

Parameter	Min.	Тур.	Max.	Unit		
T7	110	ı	-	ms		
T8	0 16 80		ms			
T9	>0 (must exceed 0)		ms			
T10	1	10	30	ms		
T11	1000	0		ms		

document version 0.4 29 of 39

7. Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	For Signal Connector
Manufacturer	IPEX or compatible
Type / Part Number	IPEX 20455-040E-12
Mating Housing/Part Number	IPEX 20453-040T-11

8. LED Driving Specification

8.1 Connector Description

It is a intergrative interface and comibe into LVDS connector. The type and mating refer to section 7.

8.2 Pin Assignment

31	VLED_GND	LED Ground
32	VLED_GND	LED Ground
33	VLED_GND	LED Ground
34	NC	No Connection (Reserve)
35	PWM	System PWM Signal Input
36	LED_EN	LED enable pin(+3.3V Input)
37	NC	No Connection (Reserve)
38	VLED	LED Power Supply 5V
39	VLED	LED Power Supply 5V
40	VLED	LED Power Supply 5V

9. Vibration and Shock Test

9.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

Frequency: 10-500Hz Random

Sweep: 30 Minutes each Axis (X, Y, Z)

9.2 Shock Test Spec:

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2ms

Pulse: X, Y, Z one time for each side

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40°C, 90%RH, 300h	
High Temperature Operation	Ta= 50°C, Dry, 300h	
Low Temperature Operation	Ta= 0°C, 300h	
High Temperature Storage	Ta= 60°C, 35%RH, 300h	
Low Temperature Storage	Ta= -20°C, 50%RH, 250h	
Thermal Shock Test	Ta=-20°C to 60°C, Duration at 30 min, 100 cycles	
ESD	Contact: ±8 KV Air: ± 15 KV	Note 1

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost . Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

AU OPTRONICS CORPORATION

11. Mechanical Characteristics

11.1 LCM Outline Dimension

document version 0.4 34 of 39

AU OPTRONICS CORPORATION

SCALE 3.000

document version 0.4 35 of 39

AU OPTRONICS CORPORATION

11. Shipping and Package

11.1 Shipping Label Format

Manufactured YY/WW
Model No: B101AW02 V.3
AU Optronics
MADE IN CHINA (S01)

H/W: 0A F/W:1

c **N** us **E204356**

RoHS

11.2 Carton Label Format

AU Optronics

QTY: 50

RoHS

MODEL NO: B101AW02 V3

PART NO: 97.10B07.3XX

15

CUSTOMER NO:

CARTON NO:

Made in China

ZM100-0652300205

document version 0.4 36 of 39

11.2 Carton package

11.3 Shipping package of palletizing sequence

12. Appendix: EDID description

Address	FUNCTION	Value	Value	Value	Note
HEX		HEX	BIN	DEC	
00	Header	00	00000000	0	
01		FF	11111111	255	
02		FF	11111111	255	
03		FF	11111111	255	
04		FF	11111111	255	
05		FF	11111111	255	
06		FF	11111111	255	
07		00	00000000	0	
08	EISA Manuf. Code LSB	06	00000110	6	
09	Compressed ASCII	AF	10101111	175	
OA	Product Code	D2	11010010	210	
0B	hex, LSB first	23	00100011	35	
OC.	32-bit ser#	00	00000000	0	
0D		00	00000000	0	
0E		00	00000000	0	
OF		00	00000000	0	
10	Week of manufacture	00	00000000	0	
11	Year of manufacture	13	00010011	19	
12	EDID Structure Ver.	01	00000001	1	
13	EDID revision #	04	00000100	4	
14	Video input def. (digital I/P, non-TMDS, CRGB)	90	10010000	144	
15	Max H image size (rounded to cm)	16	00010110	22	
16	Max V image size (rounded to cm)	0D	00001101	13	
17	Display Gamma (=(gamma*100)-100)	78	01111000	120	
18	ture support (no DPMS, Active OFF, RGB, tmg Bl	02	00000010	2	
19	Red/green low bits (Lower 2:2:2:2 bits)	28	00101011	43	
1A	Blue/white low bits (Lower 2:2:2:2 bits)	69	01101001	105	
1B	Red x (Upper 8 bits)	97	10010111	151	
1C	Red y/ highER 8 bits	57	01010111	87	
1D	Green x	55	01010101	85	
1E	Green y	96	10010110	150	
1F	Blue x	29	00101001	41	
20	Blue y	21	00100001	33	
21	White x	4F	01001111	79	
22	White y	54	01010100	84	
23	Established timing 1	00	00000000	0	
24	Established timing 2	00	00000000	0	
25	Established timing 3	00	00000000	0	
26	Standard timing #1	01	00000001	1	
27		01	00000001	1	
28	Standard timing #2	01	00000001	1	
29		01	00000001	1	
2 A	Standard timing #3	01	00000001	1	1
2B		01	00000001	1	1
2C	Standard timing #4	01	00000001	1	1
2D		01	00000001	1	1
2E	Standard timing #5	01	00000001	1	
2F		01	00000001	1	1
30	Standard timing #6	01	00000001	1	
31		01	00000001	1	1
32	Standard timing #7	01	00000001	1	
33		01	00000001	1	1
34	Standard timing #8	01	00000001	1	
35		01	00000001	1	

36	Pixel Clock/10000 LSB	B0	10110000	176	
37	Pixel Clock/10000 USB	13	00010011	19	
38	Horz active Lower 8bits	00	00000000	0	
39	Horz blanking Lower 8bits	40	01000000	64	
3A	HorzAct:HorzBlnk Upper 4:4 bits	41	01000001	65	
3B	Vertical Active Lower 8bits	58	01011000	88	
3C	Vertical Blanking Lower 8bits	19	00011001	25	
3D	Vert Act : Vertical Blanking (upper 4:4 bit)	20	00100000	32	
3E	HorzSync. Offset	18	00011000	24	
3F	HorzSync.Width	88	10001000	136	
40	VertSync.Offset : VertSync.Width	31	00110001	49	
41	Horz‖ Sync Offset/Width Upper 2bits	00	00000000	0	
42	Horizontal Image Size Lower 8bits	DF	11011111	223	
43	Vertical Image Size Lower 8bits	7D	01111101	125	
44	Horizontal & Vertical Image Size (upper 4:4 bits)	00	00000000	0	
45	Horizontal Border (zero for internal LCD)	00	00000000	0	
46	Vertical Border (zero for internal LCD)	00	00000000	0	
47	Signal (non-intr, norm, no stero, sep sync, neg pol)	18	00011000	24	
48	Detailed timing/monitor	00	00000000	0	
49	descriptor #2	00	00000000	0	
4A		00	00000000	0	
4B		0F	00001111	15	
4C		00	00000000	0	
4D		00	00000000	0	
4E		00	00000000	0	
4F		00	00000000	0	
50		00	00000000	0	
51		00	00000000	0	
52		00	00000000	0	
53		00	00000000	0	
54		00	00000000	0	
55		00	00000000	0	
56		00	00000000	0	
57		00	00000000	0	
58		00	00000000	0	
59		20	00100000	32	
5A	Detailed timing/monitor	00	00000000	0	

5B	descriptor #3	00	00000000	0	
5C	·	00	00000000	0	
5D		FE	11111110	254	
5E		00	00000000	0	
5F	Manufacture	41	01000001	65	А
60	Manufacture	55	01010101	85	υ
61	Manufacture	4F	01001111	79	0
62		0A	00001010	10	
63		20	00100000	32	
64		20	00100000	32	
65		20	00100000	32	
66		20	00100000	32	
67		20	00100000	32	
68		20	00100000	32	
69		20	00100000	32	
6A		20	00100000	32	
6B		20	00100000	32	
6C	Detailed timing/monitor	00	00000000	0	
6D	descriptor #4	00	00000000	0	
6E		00	00000000	0	
6F		FE	111111110	254	
70		00	00000000	0	
71	Manufacture P/N	42	01000010	66	В
72	Manufacture P/N	31	00110001	49	1
73	Manufacture P/N	30	00110000	48	0
74	Manufacture P/N	31	00110001	49	1
75	Manufacture P/N	41	01000001	65	А
76	Manufacture P/N	57	01010111	87	W
77	Manufacture P/N	30	00110000	48	0
78	Manufacture P/N	32	00110010	50	2
79	Manufacture P/N	20	00100000	32	
7A	Manufacture P/N	56	01010110	86	٧
7B	Manufacture P/N	33	00110011	51	3
7C		20	00100000	32	
7D		0A	00001010	10	
7E	Extension Flag	00	00000000	0	
7F	Checksum	B8	10111000	184	