Principal Components Regression

PCR Outline

- 1. PCA on design matrix
- 2. Use subset of principal components as regressors
 - Regression assumptions (residuals normally distributed and constant variance, observations are independent of each other, etc...)

RECALL

- PCA transforms original predictor variables to a set of linearly uncorrelated variables (principal components)
- Use a subset to preserve as much variance as possible while reducing dimensions of dataset

Mathematical process

SVD on centered design matrix

$$\overline{X} = X - \overline{X}$$

$$\overline{X} = U\Sigma V^{T}$$

Principal Components

$$Z_{k\times r} = \overline{X}_{k\times p} V_{p\times r}$$

Regression

$$y = Z\beta_z + \varepsilon$$
$$\beta_z = (Z'Z)^{-1} Z'y$$

Derive β_x

$$\hat{y} = Z\beta_Z = (\bar{X}V)\beta_Z = \bar{X}(V\beta_Z) = \bar{X}\beta_X$$

$$\iff \beta_X = V\beta_Z$$
(optional)

UCI Superconductivity dataset

- Elements dataset:
 - Degree of each element in conductors
 - Response:
 - Critical Temperature (Kelvin)
- Features dataset (design matrix):
 - Predictors:
 - Features of conductor materials

Response: $y_{21,263 \times 1}$

Design Matrix: $X_{21,263 \times 81}$

Some Features

Atomic Mass

First Ionization Energy

Atomic Radius

Density

Electron Affinity

Fusion Heat

Thermal Conductivity

Valence

PROCESS

Very large, high multicollinearity dataset

	VIF	features
0	79.644423	number_of_elements
1	414.277383	mean_atomic_mass
2	818.370293	wtd_mean_atomic_mass
3	444.203673	gmean_atomic_mass
4	879.861538	wtd_gmean_atomic_mass
76	307.311308	wtd_entropy_Valence
77	56.759455	range_Valence
78	26.150907	wtd_range_Valence
79	96.823865	std_Valence
80	51.827597	wtd_std_Valence

81 rows × 2 columns

- 1. Standardize design matrix
- 2. PCA on design matrix
- 3. Subset principal components (30)

$$Z_{21,263 \times 30}$$

Proportion of total variance explained by the *k*th principal component:

Eigenvalues = λ

$$\frac{\lambda_k}{\sum \lambda_i}$$

R² (CV): 0.6647201253415023

75

50

100

Observed

125

150

0

175

What about subsetting certain elements?

R2: 0.684 R2 CV: 0.665 MSE: 370.615

MSE CV: 393.386

Intercept: 34.42121913535249

Coefficients: [-4.0043751 -1.98810954 2.40200866 -1.25055204 2.56626636 3.42724176

25

11.53167589 4.61912283 -0.10150983 1.47960276 -0.32030094 -3.50477045]

150 -

100

50 -

Predicted value

Oxygen

With oxygen content used as categorical variable

R2: 0.686

R2 CV: 0.656

MSE: 368.548

MSE CV: 403.463

Discussion

- Cross-validation measures were not great
 - Residual analysis needed, transformations needed, influential points, etc...

PCR advantages

- Reduces multicollinearity
- Excellent for data visualization

PCR disadvantages

- Mathematically complex to build models
- Difficult to interpret
- Categorical variables

Questions

Multicollinearity reduced by subsetting?

OR

• by the fact that principal components are linearly uncorrelated?

Found multiple conflicting sources on this

Thank you for your attention!

URL References:

Relevant Paper:

https://www.sciencedirect.com/science/article/pii/S0927025618304877?via%3Dihub

Other sources used:

https://plotly.com/r/3d-scatter-plots/

https://www.rpubs.com/bpiccolo/pcaplots

https://nirpyresearch.com/pcr-vs-ridge-regression-nir-data-python/

https://www.nature.com/articles/31656

https://www.globalspec.com/learnmore/materials chemicals adhesives/electrical optical specialty materials/superconductors superconducting materials

https://rpubs.com/esobolewska/pcr-step-by-step

https://en.wikipedia.org/wiki/Principal component regression

https://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1166&context=jmasm

http://siret.ms.mff.cuni.cz/sites/default/files/doc/david.hoksza/lectures/vis/04-pca.pdf