Limits

- Maxima: f(c) is local maximum if f(c) > f(x) for x near c (note that inequality is non-strict)
- Differentiability: f is differentiable at a if f'(a) exists f is differentiable (in its domain) if f is differentiable at every point in its domain

f is differentiable at point $a \implies f$ is continuous at a (but not the converse)

- Critical Point: c is a critical point if c is an interior point in the domain and either f'(c) = 0 or f'(c) does not exist (A critical point may not be a local extremum)
- Inflection Point: c is an inflection point if concavity changes at c (c is an inflection point $\implies f''(c) = 0$, but the converse is not always true)
- $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$
- $\overset{x\to 0}{\mathbf{L'H\hat{o}pital's}}$ Rule:

$$f(a) = g(a) = 0 \text{ or } \infty \implies \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

use $\ln(\dots)$ for other forms: $\infty - \infty$, 1^{∞} , ∞^{0} , 0^{0}

Differentiation & Integration

• Common derivatives:

$$y \longrightarrow \frac{dy}{dx}$$

$$\sin x \longrightarrow \cos x$$

$$\cos x \longrightarrow -\sin x$$

$$\tan x \longrightarrow \sec^2 x$$

$$\cot x \longrightarrow -\csc^2 x$$

$$\sec x \longrightarrow -\csc x \cot x$$

$$\cos x \longrightarrow -\csc x \cot x$$

$$a^x \longrightarrow a^x \ln a$$

$$\log_a x \longrightarrow \frac{1}{x \ln a}$$

$$\sin^{-1} x \longrightarrow \frac{1}{\sqrt{1-x^2}}$$

$$\cos^{-1} x \longrightarrow -\frac{1}{\sqrt{1-x^2}}$$

$$\tan^{-1} x \longrightarrow \frac{1}{1+x^2}$$

$$\cot^{-1} x \longrightarrow -\frac{1}{1+x^2}$$

$$\sec^{-1} x \longrightarrow \frac{1}{|x|\sqrt{x^2-1}}$$

$$\csc^{-1} x \longrightarrow -\frac{1}{|x|\sqrt{x^2-1}}$$

$$x^x \longrightarrow x^x (\ln x + 1)$$

$$\bullet$$
 Common integrals:

$$y \longrightarrow \int y \, dx$$
$$\sin x \longrightarrow -\cos x + C$$
$$\cos x \longrightarrow \sin x + C$$

 $\cos x \longrightarrow \sin x + C$

 $\tan x \longrightarrow -\ln|\cos x| + C$

$$\begin{vmatrix} \cot x \longrightarrow \ln|\sin x| + C \\ \sec x \longrightarrow \ln|\sec x + \tan x| + C \\ \csc x \longrightarrow -\ln|\csc x + \cot x| + C \end{vmatrix}$$

• Trigonometric formulae: $1 + \cot^2 x = \csc^2 x$

- Power rule: $\frac{d}{dx}x^n = nx^{n-1}$
- Product rule: (fg)'(x) = f'(x)g(x) + f(x)g'(x)
- Quotient rule: $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{\left[g(x)\right]^2}$
- Chain rule: $(f \circ g)'(x) = f'(g(x))g'(x)$
- Parametric differentiation: $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$
- Implicit differentiation: Differentiate both sides of an equation containing x and y, then solve the resulting equation for the $\frac{dy}{dx}$ term.
- Integration by parts: $\int u \, dv = uv \int v \, du$

Try to differentiate in this order (highest to lowest priority): $\ln x$, x^n , e^x , e^{-x} , $\sin x$, $\cos x$

- $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$
- $\bullet \frac{d}{dx} \int_{a}^{g(x)} f(t) dt = f(g(x)) g'(x)$
- Integral with $\sqrt{R^2 x^2}$: Sub $x = R \sin \theta$ or $x = R \cos \theta$
- Integral with $\sqrt{R^2 + x^2}$: Sub $x = R \tan \theta$
- Notable formula:

$$\int \frac{A\cos\theta + B\sin\theta}{\cos\theta + \sin\theta} d\theta$$

$$= \int \frac{\frac{A+B}{2}(\cos\theta + \sin\theta) + \frac{A-B}{2}(\cos\theta - \sin\theta)}{\cos\theta + \sin\theta} d\theta$$

$$= \int \frac{A+B}{2} d\theta + \int \frac{A-B}{2} \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} d\theta$$

$$= \frac{A+B}{2} \theta + \frac{A-B}{2} \ln(\cos\theta + \sin\theta) + C$$

Series

The following is for $\sum a_n$ - a series of numbers.

- Convergence: A sequence $\{a_n\}$ is convergent if for some fixed $L \in \mathbb{R}$, we have $\lim a_n = L$ Otherwise, the sequence is divergent
- Partial sum of geometric series: $s_n = a \frac{1-r^n}{1-r}$, s_n converges $\iff |r| < 1$
- Ratio test for convergence of series:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho, \ \{s_n\} = \left\{ \sum_{i=1}^n a_i \right\} \begin{cases} \text{converges} & \text{if } \rho < 1 \\ \text{diverges} & \text{if } \rho > 1 \\ \text{unknown} & \text{if } \rho = 1 \end{cases}$$

- Radius of convergence: No concept of "radius". Series either converges if $\rho < 1$ or diverges when $\rho > 1$.
- **p-series**: $\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \text{converges} & \text{if } p > 1 \\ \text{diverges} & \text{if } 0 \le p < 1 \\ \text{no conclusion} & \text{if } p = 1 \end{cases}$

The following is for $\sum f_n(x)$ - a series of functions.

- Power series about x = a: $f(x) = \sum_{n=0}^{\infty} c_n (x a)^n$
- Radius of convergence: The "allowed range" of value for x such that $\rho < 1$ — may be 0, some real no. h, or ∞ For e.g., $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n}{n+1} |x| \longrightarrow x \text{ as } n \longrightarrow \infty$, so it converges when |x| < 1 and diverges otherwise.
- Differentiation & integration of power series:

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$$

radius of convergence R is unchanged by differentiation

$$\int f(x)dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} + C$$

radius of convergence is unchanged by integration

- Taylor series: $f(x) = \sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$
- Maclaurin series: Taylor series with a = 0
- Common Maclaurin series:

• Common Maclaurin series:
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \cdots$$

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} = 1 - x^2 + x^4 - x^6 + \cdots$$

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} = 1 + 2x + 3x^2 + 4x^3 + \cdots$$

$$\frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1)x^{n-2} = \frac{1}{2} (2 + 6x + 12x^2 + \cdots)$$

$$\frac{1}{(1+x)^2} = \sum_{n=0}^{\infty} (-1)^n (n+1)x^n = 1 - 2x + 3x^2 - 4x^3 + \cdots$$

$$\frac{\text{for } -\infty < x < +\infty}{\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• Deriving more Maclaurin/Taylor series: Substitution:

$$f(x) = \sum g(x) \implies f(h(x)) = \sum g(h(x))$$

Multiplication: $f(x) = \sum g(x) \implies h(x)f(x) = \sum g(x)$

 $h(x) \sum g(x) = \sum h(x)g(x)$

Differentiation: $f(x) = \sum g(x) \implies f'(x) = \sum g'(x)$

$$f(x) = \sum g(x) \implies \int_0^x f(x)dx = \int_0^x \sum g(x)dx$$

... and other usual operations on functions

Example: Find Taylor series of $\frac{1}{2x+1}$ at x=-2 (Note: this means finding Taylor series (x-a) where a=-2). One way is to **hardcore** differentiate $\frac{1}{2r+1}$ and calculate

$$\sum_{n=0}^{\infty} \frac{f^{(k)}(-2)}{k!} (x - (-2))^k$$
. Better soln: write $\frac{1}{2x+1}$ as

$$q \frac{1}{1 - p(x+2)}$$
 and apply $\frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 \cdots$

- Taylor polynomial:
 - n^{th} order Taylor polynomial: $P_n(x) := \text{terms until (and)}$ including) x^n , use for approximation remainder of order $n: R_n(x) := \text{remaining terms}$ error := absolute value of remaining terms = $|R_n(x)|$
- Taylor's Theorem: $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$ where $x \le c \le a$ (when $x \le a$) or $a \le c \le x$ (when $a \le x$) This provides an upper bound for the error term

Partial Differentiation

- Partial derivative wrt x denoted by $f_x(a,b)$ or $\left. \frac{\partial f}{\partial x} \right|_{(a,b)}$
- $f_{xy} = (f_x)_y = \frac{\partial^2 f}{\partial y \partial x}$ $f_{xy}(a,b) = f_{yx}(a,b)$ (if f_x , f_y , f_{xy} , f_{yx} are continuous in the neighbourhood around (a,b)

- To check if f(x,y) has partial derivatives of all orders, check if $f_{xy} = f_{yx}$
- Chain rule: For z = f(x, y) and x = x(t), y = y(t):

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

For z = f(x, y) and x = x(s, t), y = y(s, t), w = w(s, t):

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial w} \frac{\partial w}{\partial s}$$

• Directional derivative $D_u f$ measures change δf when f moves a small distance δt in direction of vector u. For unit vector $u = u_1 \mathbf{i} + u_2 \mathbf{j}$:

$$D_u f(a,b) = f_x(a,b)u_1 + f_y(a,b)u_2$$

 $\Delta f(\text{actual change}) \approx \delta f = D_u f(a, b) \cdot \delta t$

Convert u if not a unit vector! $u' = \frac{1}{\sqrt{u_1^2 + u_2^2}} (u_1 \mathbf{i} + u_2 \mathbf{j})$

• Gradient vector essentially $D_u f$ without direction: $\nabla f(a,b) = f_x(a,b)\mathbf{i} + f_y(a,b)\mathbf{j} \text{ or } \nabla f(a,b) \cdot u = D_u f(a,b)$

$$D_u f(a, b) = ||\nabla f(a, b)|| \cos \theta$$

Direction of $\nabla f(a,b)$ is steepest, maximum value of $D_u f(x,y)$ is $\|\nabla f(x,y)\| = \sqrt{f_x(a,b)^2 + f_y(a,b)^2}$

- Maxima: f(a,b) is local maximum if $f(a,b) > f(x_1,y_1)$ \forall points (x_1, y_1) near (a, b) (note >)
- Critical point: (a,b) is a critical point if $(f_x(a,b)=0)$ and $f_u(a,b)=0$) or $(f_x(a,b))$ or $f_u(a,b)$ does not exist). Not all critical pts are min/max points
- Discriminant: $D = f_{xx}(a,b)f_{yy}(a,b) (f_{xy}(a,b))^2$ If D > 0 and $f_{xx}(a, b) > 0$ then (a, b) is a local minimum If D > 0 and $f_{xx}(a, b) < 0$ then (a, b) is a local maximum If D < 0 then (a, b) is a saddle point If D=0 then no conclusion can be drawn

For finding max/min, f_{yy} may be used in place of f_{xx}

Ordinary Differential Equations

• Definition: $\sum_{i=1}^{n} a_i(x)y^{(i)}(x) = F(x)$ where $a_i(x)$ and F(x) are functions of x and $y^{(i)}(x)$ is the i^{th} derivative of y w.r.t. x

- Separable equations: Separate and integrate both sides
- Exponential decay: $\frac{dx}{dt} = kx \implies x(t) = x(0)e^{kt}$ x(0) is the initial val., $k = -\frac{\ln 2}{\tau}$ where τ is the half-life
- Exponential cooling/heating: $\frac{dx}{dt} = k(x - x_0) \implies x(t) - x_0 = (x(0) - x_0) e^{kt}$ x(0) is the initial value, x_0 is the target value
- Hyperbolic functions: $sinh(x) = \frac{e^x e^{-x}}{2}$ $\cosh(x) = \frac{e^x + e^{-x}}{2}$ $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
- Linear 1st order ODEs: $\frac{dy}{dx} + P(x)y = Q(x)$ $\implies ye^{\int P(x)dx} = \int Q(x)e^{\int P(x)dx}dx$
- Bernoulli equation: $\frac{dy}{dx} + P(x)y = Q(x)y^n$ $\implies \frac{dz}{dx} + (1-n)P(x)z = (1-n)Q(x)$ where $z = y^{1-n}$... which is a linear 1st order ODE

Homogeneous linear 2nd order ODEs

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0$$

- Superposition principle: If y_1 and y_2 are linearly **independent** solns then $c_1y_1 + c_2y_2$ is also a solution.
- **Dimension**: The solution space has dimension 2, so finding 2 linearly independent solutions is sufficient to obtain the general solution
- Guessing: Obtain 2 lin. indep. solutions by guessing
- Constant p(x) and q(x):

Let
$$\frac{d^2y}{dx^2} + A\frac{dy}{dx} + By = 0$$
, then solutions have form $y = e^{\lambda x}$ for some value λ

By substitution, $\lambda^2 + A\lambda + B = 0$, solve for $\lambda = \lambda_1, \lambda_2$ Two distinct real roots: $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$ Two repeated (real) roots: $y = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$ Two distinct complex roots: If λ_1 or $\lambda_2 = a + b\sqrt{-1}$ then $y = e^{ax} (c_1 \cos bx + c_2 \sin bx)$

Given λ_1, λ_2 we can recover $A = -(\lambda_1 + \lambda_2), B = \lambda_1 \lambda_2$

Mathematical Modelling

• Malthusian growth model:

B := per capita birth rate (constant, +ve)

D := per capita death rate (constant, +ve)

$$\frac{dN}{dt} = (B - D)N \implies N(t) = N(0)e^{(B-D)t}$$

$$B > D \implies \text{population explosion}$$

 $B = D \implies \text{stable}$

 $B < D \implies \text{extinction}$

• Logistic growth model:

B := per capita birth rate (constant)

sN := per capita death rate (linear to population)

$$\frac{dN}{dt} = (B - sN)N \implies$$

$$N(t) = \frac{B}{s + (\frac{B}{N(0)} - s)e^{-Bt}} = \frac{\frac{B}{s}}{1 + (\frac{B}{s} \cdot \frac{1}{N(0)} - 1)e^{-Bt}}$$

$$B - sN(t) > 0 \quad \forall t \implies \frac{B}{s} > N(t)$$

⇒ smaller than sustainable population

$$B - sN(t) = 0 \quad \forall t \implies \frac{B}{s} = N(t)$$

⇒ sustainable population (equilibrium)

$$B - sN(t) < 0 \quad \forall t \implies \frac{B}{s} < N(t)$$

⇒ larger than sustainable population

Population always tends to $\left| \frac{B}{s} \right|$ — "carrying capacity"

• Harvesting growth model:

B := per capita birth rate (constant)

sN := per capita death rate (linear to population)

$$\frac{dN}{dt} = (B - sN)N - E = BN - sN^2 - E$$

E := harvest rate $\frac{dN}{dt} = (B - sN)N - E = BN - sN^2 - E$ Solve $-sN^2 + BN - E = 0$ for equilibrium solutions $\implies \beta_1 < \beta_2 < \frac{B}{s}, \ \beta_1 + \beta_2 = \frac{B}{s} \text{ and } \beta_1\beta_2 = \frac{E}{s}$ $B^2 - 4sE > 0 \implies \frac{B^2}{4s} > E \implies \text{ two equilibriums}$

 β_2 is stable but not β_1 $B^2 - 4sE = 0 \implies \frac{B^2}{4s} = E \implies$ one equilibrium

 $\implies \beta = \frac{B}{2s}$ $B^2 - 4sE < 0 \implies \frac{B^2}{4s} < E \implies \text{no equilibrium}$

