Why Internetworking?

- To build a "network of networks" or internet
 - operating over multiple, coexisting, different network technologies
 - providing y biguitous competivit through depositions
 - achieving huge economies of scale https://powcoder.com

Why Internetworking?

- To provide universal communication services
 - independent of underlying network technologies
 - providing common interface to user applications
 Assignment Project Exam Help

Why Internetworking?

- To provide distributed applications
 - Any application designed to operate based on Internet communication services immediately operates across the entire Internet Project Exam Help

 - Rapid deployment of new applications
 https://powcoder.com
 Email, WWW, Peer-to-peer
 - Applications And be be a dentity over two text echnology
 - New networks can be introduced below
 - Old network technologies can be retired

Internet Protocol Approach

- IP packets transfer information across Internet Host A IP → router→ router → router → Host B IP
- IP layer in each router determines next hop (router)
 Assignment Project Exam Help

 Network interfaces transfer IP packets across networks

Diverse network technologies

Internet Names & Addresses

Internet Names

- Each host has a unique name
 - Independent of physical location
 - humans
 - Domain Namehttps://powcoder.com/
 Organization under single on destination IP address
 - Organization under single administrative united WeChat po
- **Host Name**
 - Name given to host computer
- **User Name**
 - Name assigned to user

leongarcia@comm.utoronto.ca

Internet Addresses

- Each host has globally unique logical 32 bit IP address
- Facilitate An Engagement Project Separate address for each physical connection to a network

 - IP address has two parts:
 - netid and hostid
 - *netid* unique
 - netid facilitates routing
 - **Dotted Decimal Notation:**

int1.int2.int3.int4

(intj = jth octet)

DNS resolves IP name to IP add

Physical Addresses

- LANs (and other networks) assign physical addresses to the physical attachment to the network
- The network uses its own address to transfer packets of frames to the appropriate destination
- IP address neggsto/pewesqued physical address at each IP network interface
- - Each Ethernet network interface card (NIC) has globally unique Medium Access Control (MAC) or physical address
 - First 24 bits identify NIC manufacturer; second 24 bits are serial number
 - 00:90:27:96:68:07 12 hex numbers

Intel

Encapsulation

TCP Header contains source & destination port numbers

HTTP Request

HTTP Request

IP Header contains Assignment Project Exam Help I

source and destination ttps://powcoder.TCP

IP addresses;

transport protocol type dd WeChat powcoder

Ethernet Header contains source & destination MAC addresses; network protocol type

IP header	TCP header	HTTP Request						

Ethernet	IP	TCP	LITTO De aveces	FCS
header	header	header	HTTP Request	103

Internet Protocol

- Provides best effort, connectionless packet delivery
 - motivated by need to keep routers simple and by adaptibility to failure of network elements

 Assignment Project Exam Help
 packets may be lost, out of order, or even duplicated

 - higher layer protested at with these, if necessary
- RFCs 791, 950, 919, 922, and 2474.
 Add WeChat powcoder
 Internet Control Message Protocol (ICMP), RFC 792
- Internet Group Management Protocol (IGMP), RFC 1112

0	4	8	16	19 2	24 3		
Version	IHL	Type of Service		Total Length			
	Identifi		Flags	Fragr	nent Offset		
Time to	Assignment Protocol Time to Live Protocol			Header Checksum			
		https://pow Source	COC IP Addre	er.com			
Add Westinatibat powscoder							
		Options			Padding		

- Minimum 20 bytes
- Up to 40 bytes in options fields

0	4	8	16	19 2	24	31		
Version	IHL	Type of Service	Total Length					
	Identifi		Flags	Fragi	ment Offset Help			
Time to	Time to Live Protocol Header			Header C	Checksum			
	https://powcoder.com Source IP Address							
Add Wechat powcoder								
		Options			Padding			

Version: current IP version is 4.

Internet header length (IHL): length of the header in 32-bit words.

Type of service (TOS): traditionally priority of packet at each router. Recent Differentiated Services redefines TOS field to include other services besides best effort.

0	4	8	16	19 2	24	31	
Version	IHL	Type of Service	Total Length				
	Identifi	cation	Flags	Frag	ment Offset		
Time to		e Protocol Header Checksum					
		https://pow Source	/COd IP Addr	er.com			
Add WeChat powcoder							
		Options			Padding		

Total length: number of bytes of the IP packet including header and data, maximum length is 65535 bytes.

Identification, **Flags**, **and Fragment Offset**: used for fragmentation and reassembly (More on this shortly).

Fragmentation and Reassembly

- Identification identifies a particular packet
- Flags = (unused, don't fragment/DF, more fragment/MF)
- Fragment offset identifies the location of a fragment within a packet

Example: Fragmenting a Packet

- A packet is to be forwarded to a network with MTU of 576 bytes. The packet has an IP header of 20 bytes and a data part of 1484 bytes. and of each fragment.
- Maximum datastength or fragment = \$56 bytes.

We set maximum data length to 552 bytes to get multiple of 8.

https://powcoder.com

	Total dde w gttCl			Fragment codeffset
Original packet	1504	X	0	0
Fragment 1	572	Х	1	0
Fragment 2	572	Х	1	69
Fragment 3	400	Х	0	138

0	4	8	16 1	19 2	24	31		
Version	IHL	Type of Service	Total Length					
	Identifi	cation	Flags	Fragr	ment Offset			
Time to Lives ignment Project ExamcHelpn								
https://sprowcodes.com								
Add Wechat powcoder								
		Options	1		Padding			

Time to live (TTL): number of hops packet is allowed to traverse in the network.

- Each router along the path to the destination decrements this value by one.
- If the value reaches zero before the packet reaches the destination, the router discards the packet and sends an error message back to the source.

0	4	8	16	19 2	24	31		
Version	IHL	Type of Service	Total Length					
	Identifi		Flags	Fragr	ment Offset			
Time to	Assignment Project Exam Ho Time to Live Protocol Header Chec			-				
	https://powcoder.com Source IP Address							
Add WeChat powcoder								
		Options			Padding			

Protocol: specifies upper-layer protocol that is to receive IP data at the destination. Examples include TCP (protocol = 6), UDP (protocol = 17), and ICMP (protocol = 1).

Header checksum: verifies the integrity of the IP header.

Source IP address and **destination IP address**: contain the addresses of the source and destination hosts.

0	4	8	16	19 2	24	31			
Version	IHL	Type of Service		Total Length					
	Identifi	cation Ignment Pro	Flags	Fragi	ment Offset				
Time t		Protocol	Header Checksum						
	https://powcoder.com Source IP Address								
	Add We Chat powcoder								
		Options			Padding				

Options: Variable length field, allows packet to request special features such as security level, route to be taken by the packet, and timestamp at each router. Detailed descriptions of these options can be found in [RFC 791].

Padding: This field is used to make the header a multiple of 32-bit words.

Example of IP Header

Header Checksum

- IP header uses check bits to detect errors in the header.
- A checksum is calculated for header contents https://powcoder.com
- Checksum recalculated provery router, so algorithm selected for ease of implementation in software

IP Header Processing

- 1. Compute header checksum for correctness and check that fields in header (e.g. version and totals length) to totals length) leng
- 2. Consult routing table to determine next hop
- 3. Change fields that require updating (TTL, header checksum)

Non-Hierarchical Addresses and Routing

- No relationship between addresses & routing proximity
- Routing tables require 16 entries each

Hierarchical Addresses and Routing

- Prefix indicates network where host is attached
- Routing tables require 4 entries each

IP Addressing

- RFC 1166
- Each host on Internet has unique 32 bit IP address
- Each address has two parts: netid and hostid
- netid unique & administered by
 - American Registry of the Protect Extra mb Erst (ARIN)

 - Reseaux IP Europeens (RIPE)

 Asia Pacific Network Information Centre (APNIC)
- Facilitates routingdd WeChat powcoder
- A separate address is required for each physical connection of a host to a network; "multi-homed" hosts
- Dotted-Decimal Notation: int1.int2.int3.int4 where intj = integer value of jth octet IP address of 10000000 10000111 01000100 00000101 is 128.135.68.5 in dotted-decimal notation

Classful Addresses

Class	Α	7 bits	24 bits
	0	netid	hostid

126 networks with up to 16 million hosts
 Assignment Project Exam Help

1.0.0.0 to 127.255.255.255

Class B					
	1	0	netid	hostid	
			Add WeCha	t powcoder	400.0.0.1.

16,382 networks with up to 64,000 hosts

128.0.0.0 to 191.255.255.255

Class C				22 bits	8 bits
	1	1	0	netid	hostid

• 2 million networks with up to 254 hosts

192.0.0.0 to 223.255.255

1	1	1	0	multicast address

224.0.0.0 to 239.255.255.255

- Up to 250 million multicast groups at the same Assignment Project Exam Help time
- Permanent group/apddvessles.com

 - All systems in LAN; All routers in LAN; Add WeChat powcoder All OSPF routers on LAN; All designated OSPF routers on a LAN, etc.
- Temporary groups addresses created as needed

Reserved Host IDs (all 0s & 1s)

Internet address used to refer to network has hostid set to all 0s

Broadcast address has hostid set to all 1s

1 1 1 1		1 1	broadcast on local network
netid	1 1 1	1 1 1 1	broadcast on distant network

Private IP Addresses

- Specific ranges of IP addresses set aside for use in private networks (RFC 1918)
- Use restricted to private internets; prouters in public Internet discard packets with these addresses https://powcoder.com
- Range 1: 10A0d0Wetchattp2550255.255
- Range 2: 172.16.0.0 to 172.31.255.255
- Range 3: 192.168.0.0 to 192.168.255.255
- Network Address Translation (NAT) used to convert between private & global IP addresses

Example of IP Addressing

Address with host ID=all 0s refers to the network

Address with host ID=all 1s refers to a broadcast packet

R = routerH = host

Subnet Addressing

- Subnet addressing introduces another hierarchical level
- Transparent to remote networks
 Assignment Project Exam Help
 Simplifies management of multiplicity of LANs
- Masking usedhtufindpsukoederumber

Add WeChat powcoder

Original
address

1 0 Net ID	Host ID
------------	---------

Subnetted address

1 0 Net ID Subnet ID Host

Subnetting Example

- Organization has Class B address (16 host ID bits) with network ID: 150.100.0.0
- Create subnets with up to 100 hosts each
 - 7 bits sufficiergument Propert Exam Help
 - 16-7=9 bits for subnet ID
- Apply subnet hask to produces to find corresponding subnet
 - Example: Find Subnet for 150 PWCP2 1976
 - IP add = 10010110 01100100 00001100 10110000
 - Mask = 11111111 11111111 1111111 10000000
 - AND = 10010110 01100100 00001100 10000000
 - Subnet = 150.100.12.128
 - Subnet address used by routers within organization

Subnet Example

Routing with Subnetworks

- IP layer in hosts and routers maintain a routing table
- Originating host: To send an IP packet, consult routing table.
 - If destination host is in same network, send packet *directly* using appropriate network interface https://powcoder.com
 Otherwise, send packet indirectly; typically, routing table
 - Otherwise, send packet indirectly; typically, routing table indicates a default router hat powcoder
- Router: Examine IP destination address in arriving packet
 - If dest IP address not own, router consults routing table to determine next-hop and associated network interface & forwards packet

Routing Table

- Each row in routing table contains:
 - Destination IP address Assignment Project Exaddresse per next-
 - IP address ofthext/powcoder.commation network ID; hop router
 - Physical address WeChat powtagder
 - Statistics information
 - **Flags**
 - H=1 (0) indicates route is to a host (network)
 - G=1 (0) indicates route is to a router (directly connected destination)

- Routing table search order & action
 - Complete destination hop & G flag
 - send as per next-hop & G
 - Default router entry; send as per next-hop
 - Declare packet undeliverable; send ICMP "host unreachable error" packet to originating host

Example: Host H5 sends packet to host H2

emd0

150.100.15.0

150.100.15.11

Example: Host H5 sends packet to host H2

emd1

emd0

150.100.15.0

150.100.12.0

150.100.15.54

150.100.12.1

Example: Host H5 sends packet to host H2

emd1

G

150.100.12.1

150.100.15.0

IP Address Problems

- In the 1990, two problems became apparent
 - IP addresses were being exhausted
 - IP routing tables were growing very large
- IP Address Exhaustion
- Class A, B, and C address structure inefficient

 Class B too large for most organizations, but future proof
 - Class C too small
 - Rate of class Btalpsahopiopvedex customby 1994
- IP routing table size
 - Growth in numbe A of network in laternet we flested in # of table entries
 - From 1991 to 1995, routing tables doubled in size every 10 months
 - Stress on router processing power and memory allocation
- Short-term solution:
- Classless Interdomain Routing (CIDR), RFC 1518
- New allocation policy (RFC 2050)
- Private IP Addresses set aside for intranets
- Long-term solution: IPv6 with much bigger address space

New Address Allocation Policy

- Class A & B assigned only for clearly demonstrated need
- Consecutive blocks of class C assigned (upsignent Project blocks)
 - All IP addresses in the sange wood have a common prefix, and every address with that prefix is within the range
 - Arbitrary prefix length for network ID improves efficiency

Address Requirement	Address Allocation
t 4 ₽%@m Help	1 Class C
256<,<512 er.com	2 Class C
512<,<1024 owcoder	4 Class C
1024<,<2048	8 Class C
2048<,<4096	16 Class C
4096<,<8192	32 Class C
8192<,<16384	64 Class C

Supernetting

- Summarize a contiguous group of class C addresses using variable-length mask
- Example: A150 158 16 PV 20ct Exam Help
 - IP Address (150.158.16.0) & mask length (20)

 - 10010110 10011110 00010000 00000000 From
 - i.e. 150.158.16.0
 - Up to 10010110 10011110 00011111 00000000
 - i.e. 150.158.31.0

Classless Inter-Domain Routing

- CIDR deals with Routing Table Explosion Problem
 - Networks represented by prefix and mask
 - Pre-CIDR: Network with range of 16 contiguous class C blocks
 - requires 16 registres ment Project Exam Help Post-CIDR: Network with range of 16 contiguous class C blocks requires hentry://powcoder.com
- Solution: Route according to prefix of address, not class
 - Routing table entay has vale and reson network mask
 - Example: 192.32.136.0/21
 - 11000000 00100000 10001000 00000001 min address
 - 11111111 11111---
 - 11000000 00100000 10001--- ----- IP prefix
 - 11000000 00100000 10001111 11111110 max address
 - 11111--- ---- mask
 - 11000000 00100000 10001--- ---- same IP prefix

Longest Prefix Match

- CIDR impacts routing & forwarding
- Routing tables and routing protocols must carry IP
- address and mask
 Assignment Project Exam Help
 Multiple entries may match a given IP destination address https://powcoder.com
- Example: Routing table may contain
 - 205.100.0.0/22 which corresponds to a given supernet
 - 205.100.0.0/20 which results from aggregation of a larger number of destinations into a supernet
 - Packet must be routed using the more specific route, that is, the longest prefix match
- Several fast longest-prefix matching algorithms are available

Address Resolution Protocol

Although IP address identifies a host, the packet is physically delivered by an underlying network (e.g., Ethernet) which uses its own *physical address* (MAC address in Ethernet). How to map an IP address to a physical address?

Assignment Project Exam Help

H1 wants to learn physical address of H3 -> broadcasts an ARP request

ARP request (what is the MAC address of 150.100.76.22?)

Every host receives the request, but only H3 reply with its physical address

ARP response (my MAC address is 08:00:5a:3b:94)

Example of ARP

Internet Control Message Protocol (ICMP)

- RFC 792; Encapsulated in IP packet (protocol type = 1)
- Handles error and control messages
- If router cannot deliver or forward a packet, it sends an ICMP "host unreachable" message to the source
- If router receives packet that should have been sent to another router, it sends an ICMP "redirect" message to the sender; Sended modifiest its routing table
- ICMP "router discovery" messages allow host to learn about routers in its network and to initialize and update its routing tables
- ICMP echo request and reply facilitate diagnostic and used in "ping"

- Best effort datagram service
- Multiplexing enables sharing of IP datagram service
- Simple transmitter & receiver Exam Help
 - Connectionless: no handshaking & no connection state
 - Low header obetpeadpowcoder.com
 - No flow control, no error control, no congestion control Add WeChat powcoder UDP datagrams can be lost of out-of-order
- Applications
 - multimedia (e.g. RTP)
 - network services (e.g. DNS, RIP, SNMP)

UDP Datagram

0 16	6 3	1
Source Port	Destination Port	
UDP Length	UDP Checksum ASSIGNMENT	Pr
I	Data https://p	700

 Source and destination port numbers

roject Examt perts are short-lived

Server ports are well-known

wcoder. Wamnumber is 65,535

UDP length

0-255

Well-known ports

256-1023

Less well-known ports

1024-65536

Client ports

- Add WeChat powcoder mber of bytes in datagram (including header)
 - 8 bytes ≤ length ≤ 65,535
 - UDP Checksum
 - Optionally detects errors in UDP datagram

UDP Multiplexing

- All UDP datagrams arriving to IP address B and destination port number n are delivered to the same process
- Source port number: spotvasele incomultiplexing

TCP

- Reliable byte-stream service
- More complex transmitter & receiver
 - Connection-oriented: full-duplex unicast connection between client & server process egoject Exam Help
 - Connection setup, connection state, connection release
 - Higher header overhead
 - Error control, Add control to Error control
 - Higher delay than UDP
- Most applications use TCP
 - HTTP, SMTP, FTP, TELNET, POP3, ...

Reliable Byte-Stream Service

- Stream Data Transfer
 - transfers a contiguous stream of bytes across the network, with no indication of boundaries
 - groups bytes into segments. Project Exam Help transmits segments as convenient (Push function defined)
- https://powcoder.com Reliability
 - error control mechanism to deal with IP transfer impairments Add WeChat powcoder

Flow Control

- Buffer limitations & speed mismatch can result in loss of data that arrives at destinationsignment Project Exam Help
- Receiver controls/pate at which sender transmits to prevent buffer overflow Add WeChat powcoder

Congestion Control

- Available bandwidth to destination varies with activity of other users
- Transmitter dynamically adjusts transmission rate according to network congestion as indicated by RTT (round tripter executor.com
- Elastic utilization of network bandwidth

TCP Multiplexing

- A TCP connection is specified by a 4-tuple
 - (source IP address, source port, destination IP address, destination port)
- TCP allows multiplexing of phyltiple connections between end systems to support multiple applications simultaneously
- Arriving segment https://pawcordingctomonnection 4-tuple

TCP Segment Format

0	4	4	10	16	2	24	31	
Source port			Destination port					
	Sequence number							
	Assignment Project Exam Help							
	Header length Reserved https://powcoder.com/Window size							
Checksum Add WeChat powcoder pointer								
Options			Padding					
	Data							

• Each TCP segment has header of 20 or more bytes + 0 or more bytes of data

Port Numbers

- A socket identifies a Byte count connection endpoint Project First by the ip segment
 - IP address + port
- 32 bits long A connection speci
- Well-known ports
 - 20 FTP
 - Telnet 23
 - DNS 53
 - 80

• $0 \le SN \le 2^{32}$ -1 by a socket pairdd WeChat powrader quence number selected during

connection setup

Sequence Number

Acknowledgement Number

Header length

- 4 bits
- SN of next bytenment Project Length Length
- Acknowledges that a powcoder comprior bytes in stream eChatep Minimum header length have been received is 20 bytes correctly

 Maximum header.
- Valid if ACK flag is set
- Maximum header length is 60 bytes

Reserved

6 bits

Control

6 bits

Assign to the As

• Urgent message end = SN + **urgent** https://ppn/egoder.com

Add WeChat powcoder

- PSH: override TCP buffering
- RST: reset connection
 - Upon receipt of RST, connection is terminated and application layer notified
- SYN: establish connection
- FIN: close connection

Window Size

16 bits to advertise
 Internet checksum window sizesignment Project Pethod Help

TCP Checksum

- Used for flow control
- Sender will accept
 bytes with SN Aroth WeChat powcoder
 ACK to ACK + window
- Maximum window size is 65535 bytes

Options

- Variable length
- NOP (No Apegation)t Project Fixen (MSS) option option is used to pad TCP header to the little of 32 bits
- Time stamp option is used for round trip measurements

Options

- Maximum Segment
- specifies largest odsegment a receiver Add WeChat powcoder wants to receive
 - Window Scale option increases TCP window from 16 to 32 bits

Initial Sequence Number

- Select initial sequence numbers (ISN) to protect against segments from prior connections (that may circulate in the network and arrive at a much later time)
- Select ISM to avoid the section of of prior connections, https://powcoder.com

 • Use local clock to select ISN sequence number
- Time for clock Add Which the Participation of the Property o greater than the maximum lifetime of a segment (MSL); Typically MSL=120 seconds
- High bandwidth connections pose a problem
- 32bit SN wraps around after $2^{32} = 4.29 \times 10^9$ bytes = 34.3x109 bits have been sent
 - At 1 Gbps, sequence number wraparound in 34.3 seconds.

TCP Connection Establishment

- "Three-way Handshake"
- ISN's protect against segments

If host always uses the same ISN

Maximum Segment Size

- Maximum Segment Size
 - largest block of data that TCP sends to other end
- Each end campantounice its MS buring connection establishment.com
- Default is 576 bytes including 20 bytes for IP header and 20 bytes for TCP header
- Ethernet implies MSS of 1460 bytes
- IEEE 802.3 implies 1452

Near End: Connection Request

Far End: Ack and Request

Near End: Ack

TCP Window Flow Control

Delay-BW Product & Advertised Window Size

- Suppose RTT=100 ms, R=2.4 Gbps
 - # bits in pipe = 3 Mbytes
- If single Acipprocessise types then required advertised window size is
 - RTT x Bit rate = 3 Mbytes
 Add WeChat powcoder
 Normal maximum window size is 65535 bytes
- Solution: Window Scale Option
 - Window size up to $65535 \times 2^{14} = 1$ Gbyte allowed
 - Requested in SYN segment

TCP Connection Closing

"Graceful Close"

TCP Congestion Control

- Advertised window size is used to ensure that receiver's buffer will not overflow
- However, buffers at intermediate routers between source and destination may overflow Assignment Project Exam Help

- Congestion occurs when total arrival rate from all packet flows exceeds R over a sustained period of time
- Buffers at multiplexer will fill and packets will be lost