Niveaux d'AI

Methodes de M. Learming

Nouvelle experience

Types of M. Learning

· Example:

error = (y-test) - (y-Pred)

• MAE =
$$\frac{1}{N} \sum |e_i|$$
• MAPE = $\frac{1}{N} \sum \frac{|e_i|}{y-test} \times 100$

- Univariate:

Day Value

Seq-length

X = V1 V2 V3 V4

Data

Day

No. 1 V2 V3

Load

Data

Limear Regression Algorithm

$$y = a + b \propto$$

$$a = \overline{Y} - b \times$$

$$b = \underline{\Sigma}_{x,y,-m} \times \overline{Y}$$

$$\underline{\Sigma}_{x,-m} \times \overline{X}^{2}$$

Artificial Newal Network

Imput - weight - Sum - Punction of adivation - output

Reccurrent Neural Network (RNN)

· Example: IHEC is the best It is an excellent institute.

& Vanishing Problem >>

Long-short Term Hemory (LSTH)

Chestering

K-meams (K-moyemme)

		X_A	Xz
dalaxi =	V_{ij}	1	0
	42	1	1
	¥3	1	-1
	44	-1	1
	Y	-1	-1

K: mumber of clusters

5. the centraid of Puster C.

2/ Assigm Va namdomby

Rules: Update the (C;)

after each assignment

3/ Assign mext vectors based on Euclidean Distance $d = \sqrt{(x_1 - y_1)^2 + \dots + (x_m - y_m)^2}$

Rule 2: Assign namdomly when it's equal

V2: d(V2, 5,) = V(1-1)2+(1-0)2 = 1

d(V, 52) = V(1-0)2+ (1-0)2 = 12

V3 d(V3, 54) = V(1-1) = + (-1-1/2) = 3

d (V3, 52) = V(1-0)2+ (-1-0)2 = 12

 $\frac{1}{4}$ $c(\frac{1}{4},\frac{1}{4}) = \sqrt{(-1-1)^2 + (1-\frac{1}{2})^2} = \sqrt{\frac{17}{4}}$ d (V4, 52) = 1(-1,-1)2+(1-(-1))2 = 18

Vg d(Vg, 54) = 1(-1-1/3)2+(-1-2/3)2 = 141 - d (V5, 5x) = V(-1-1)2+ (-1-(-1))2 = 12

Claroi fication

Naive bayes:

χ_4	Xa	X ₃	Cons		
0	1	1	False		
1	-1	1	False		
0	-1	0	True		
1	1	0	Truc		
1	1	0	False		
, my					

{ Train >

$$P(A/B) = ?$$
(X;) are independent

and of what the state of

$$X_2$$
: $P(1/Tnue) = 1/2$ $P(1/Fabe) = 2/3$
 $P(-1/Tnue) = 1/2$ $P(-1/Fabe) = 1/3$

$$P(X/True) = P(X_1=1/True) \times P(X_2=-1/True) \times P(X_3=0/True)$$

$$= \frac{1}{2} \times \frac{1}{2} \times 1 \times \frac{2}{5} = \frac{P}{P(True)}$$

$$P(x/False) = P(1/False) \times P(-1/False) \times P(0/False)$$

$$= \frac{4}{3} \times \frac{4}{3} \times \frac{4}{3} \times \frac{3}{5} = P$$

$$= \frac{4}{3} \times \frac{4}{3} \times \frac{4}{3} \times \frac{3}{5} = P$$

$$= \frac{4}{3} \times \frac{4}{3} \times \frac{4}{3} \times \frac{3}{5} = P$$

Support Vector Machine (SVM):

Δ: y= g(x) Ep mom linear

· 1st case: Limear Separation number of samples

1/ Imitial (N-1) separater randomly _ A: a,x+b1 Δ. a.x . b. 2/ Compute preusion of each (A:)

> _ A: 100%

3/ P>85% Exclude A3

4/ A VS A M= margin distance = d, +d.

Si My Ma A M, (H2 - D2

. 2 md case: Nom Pinear separation.

Method of Machine Learning

1/ Busines and Data Understanding

Non of clares

. Non of variables and their quality

Non of samples

sy Data Preparation

- 2.1 Data __ a Missed values
- 2.2 Visualization (Onta Amalysis)
- 2.3 __ Mixed ratus
- 2.4 Normalization
- 2.5 Split Data

3/ Machine Learning

4/ Performance Evaluation

Compusion Matrix				
	+			
+	45	1		
-	5	49		

100 vectors of Test: 50(+), 50(-)

Accuracy -	45+49 x40	20% S
U	100	
P(+) = 45	R(+) =	45
50		45+1
P(-) - 49	R(-)	49
50		49+5
F1- sime -	2x RXP	
	R+P	
F1- sme =		

g-mean = VRXP

5/ Deployment