ESERCIZI 3° TUTORATO

1. Sia
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + z \\ y + z \end{pmatrix}$.

- Dimostrare che sia lineare.
- Determinare una base di ker(f) e stabilire se f è iniettiva.
- 2. Siano $V := \mathbb{R}^4, W := \mathbb{R}^3$.
 - Verificare che i vettori

$$v_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, v_2 := \begin{pmatrix} 1 \\ 3 \\ 5 \\ 0 \end{pmatrix} |, v_3 := \begin{pmatrix} 3 \\ 2 \\ -1 \\ 1 \end{pmatrix}, v_4 := \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

1

formano una base B di V .

Siano

$$w_1 := \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, w_2 := \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, w_3 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Verificare che $C := (w_1, w_2, w_3)$ è una base di W

 \bullet Esiste un'unica applicazione lineare f
: V \to W tale che

$$f(v_1) := w_1 + w_3, f(v_2) := -w_1 + w_2, f(v_3) := w_3, f(v_4) := 3w_1 + 2w_2 - w_3.$$

Determinare la matrice associata a tale applicazione lineare (rispetto alle basi sopra descritte!).

3. Sia
$$f: \mathbb{R}^4 \to \mathbb{R}^4$$
, $f\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} -x+z \\ -y+t \\ x-z \\ y-t \end{pmatrix}$. Determinare una base e la dimensione di $ker(f)$ e $Im(f)$.

4. Sia
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ x+y \\ z \end{pmatrix}$.

- (a) Scrivere la matrice associata a f rispetto alla base canonica.
- (b) Determinare Ker(f) e Im(f).
- (c) Mostrare che l'insieme

$$B = \{b_1 := \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, b_2 := \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} b_3 := \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \}$$

e una base di \mathbb{R}^3

(d) Scrivere la matrice associata a f rispetto alla base canonica nel dominio e alla base B nel codominio

5. Sia $V = \langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \rangle = \mathbb{R}^3$ e $W = \langle 1, x, x^2, x^3, x^4 \rangle$ (spazio dei polinomi di \mathbb{R} di grado minore o uguale a 4).

Sia
$$f: V \to W$$
, $f: \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a + bx + (a+b)x^2 + (a+2c)x^3 + (a+2b-3c)x^4$, un' applicazione lineare.

Calcolare la matrice associata (nelle basi indicate).

2