전력경제학_전력수요예측 프로젝트_최대·최소부하 발생시간 예측 보고서

1. 사용할 데이터 및 외생변수

INQ_YMD	mintime	maxtime	SEASON	p-temp	p-temp	solar	solar	rain
2021-01-01	11	19	4	-1.4	1	2.55	1	0
2021-01-02	14	19	4	-1.2	1	5.45	3	0
2021-01-03	12	19	4	-1.5	1	7.85	3	0
2021-01-04	11	18	4	-0.9	1	8.38	4	0
2021-01-05	3	18	4	-2.6	1	2.77	1	0
2021-01-06	5	19	4	-3.3	1	5.71	3	1
2021-01-07	3	11	4	-11.2	1	3.14	2	1
2021-01-08	5	11	4	-11.2	1	3.41	2	1
2021-01-09	15	19	4	-9	1	3.75	2	1
2021-01-10	12	19	4	-4.5	1	2.63	1	0
2021-01-11	4	18	4	-2.2	1	1.24	1	1
2021-01-12	4	19	4	-2.7	1	3.74	2	1
2021-01-13	13	19	4	1.1	2	12.05	5	0
2021-01-14	13	20	4	5.9	3	11.67	5	0
2021-01-15	13	19	4	4.8	3	12.33	5	0
2021-01-16	13	19	4	-2.9	1	5.63	3	0
2021-01-17	13	19	4	-4	1	3.56	2	1
2021-01-18	14	19	4	-1.3	1	7.57	3	0
2021-01-19	13	19	4	-1.9	1	13.79	6	0
2021-01-20	13	1	4	1	2	12.79	5	0
2021-01-21	13	19	4	5.3	3	9.89	4	1
2021-01-22	4	18	4	11.4	5	1.68	1	1
2021-01-23	5	19	4	9.2	4	0.76	1	1
2021-01-24	12	19	4	8.4	4	11.27	5	1
2021-01-25	13	19	4	9.4	4	8.71	4	0

-2021.01.01~2022.12.31 기간 데이터사용 (23년 데이터는 제외함.)

-Season: 봄~겨울(1~4), rain: 강수유무(맑은 날:0, 비 오는 날:1)

-P-temp(체감온도)는 하루간 체감온도로 공공데이터에서 누락된 빈 셀은 보간하여 사용하고 Solar(일사량)은 합계 일사량을 사용함. 체감온도와 일사량은 날짜 별 데이터를 구간으로 나누어 이용함. 1~10 구간으로 나누어 데이터 개수가 약 73개 정도로 분배되도록 하였으며 체감온도는 -11.2~36.4, 일사량은 0.06~29.22까지 있기에 최저점부터 1구간으로 시작함.

p-temp	범위	개 수	solar	범위	개 수
10	32.9	73	10	25.5	73
9	30.1	72	9	22.68	73
8	27.4	73	8	19.6	73
7	23.1	73	7	16.49	73
6	14.3	72	6	13.71	73
5	10.9	73	5	11.2	73
4	7.4	73	4	8.16	73
3	3.9	73	3	5.45	73
2	-0.2	74	2	2.84	73
1	-11.2	74	1	0.06	73

2. 최대 최소부하 발생 시간 예측

날짜 별 최대 최소부하 발생 시간 데이터를 계절 별, 외생변수 별로 필터링하고 최대 혹은 최소 부하 발생 시간이 일정한 시간대에 발생하는 지를 표를 통해 확인한다. 계절 별로 다르게 외생변수 필터를 적용하여 시간대가 일정하게 발생하는 필터링 방법을 찾는다.

부하 발생 시간의 선정 기준은 필터링 이후의 시간 데이터의 평균과 최빈값을 조사하고 평균의 분산과 최빈값의 분산을 확인하여 데이터의 흩어짐 정도를 확인한다. 특정한 외생변수의 증감에 부하발생 시간이 영향을 받는다면 그 변수를 이용해 필터링한다. 가령, 봄철에 합계 일사량이 높아질수록 최저 부하 발생 시간의 분산이 작아지므로 일사량의 구간에 따른최저 부하 발생 시간을 도출할 수 있다. 또한, 필터링 이후의 데이터 개수와 분산에 따라 부하 발생 시간의 평균값 혹은 최빈값을 적용한다. 필터링 구간에 데이터 개수가 5개 미만이면평균값을 이용하거나 부하 발생 시간을 예측하는데 사용하지 않는다. 분산이 5.0 미만이면평균값, 5.0 이상이면 최빈값을 이용해 부하 발생 시간을 예측한다.

1) Max 시간 예측

								-
mode_var	0.666297		3.94057	2.485318		1.962555		5.009249
avg_var	0.66416		3.938396	2.478966		1.961478		5.008717
mode	21		5	20		19		19
avg	20.36957		5.63587	18.91304		18.55495		18.68889
count	184		184	184		182		180
season	maxtime	season	mintime	maxtime	season	maxtime	season	maxtime
1	19	2	8	17	3	17	4	19
1	20	2	5	20	3	15	4	19
1	20	2	5	18	3	19	4	19
1	19	2	13	19	3	20	4	18
1	20	2	9	20	3	20	4	18
1	20	2	12	20	3	20	4	19
1	20	2	4	19	3	18	4	11
1	20	2	4	20	3	18	4	11
1	20	2	5	19	3	19	4	19
1	20	2	4	18	3	19	4	19
1	20	2	5	20	3	20	4	18
1	20	2	12	20	3	20	4	19
1	21	2	10	21	3	11	4	19
1	21	2	5	20	3	19	4	20
1	20	2	5	14	3	18	4	19
1	21	2		20	3	12	4	19
1	20	2	4	20	3	18	4	19
1	20	2	5	19	3	19	4	19
1	19	2	9	20	3	19	4	19
1	20	2	10		3		4	1
		_						

계절이 봄인 경우 최대부하 발생시간 데이터 개수는 총 184개이다. 모든 데이터의 평균은 20.36시이고, 분산이 0.6이므로 봄철의 최대부하 발생시간은 20.36시로 정한다.

계절이 여름인 경우 데이터 수는 184개다. 최저시간은 평균 5.63시에 발생하고 분산은 3.93이다. 최대 시간은 평균 18.91시에 발생하고 분산은 2.47이다. 따라서 여름철에 최저부하는 5.63시, 최대부하는 18.91시로 한다.

가을인 경우 데이터 수는 182개다. 평균은 18.55시이며 분산은 1.96이므로 평균인 18.55 시로 한다.

겨울의 데이터 개수는 180개이며 평균은 18.7시, 최빈값은 19시이다. 분산이 5.0을 초과 하므로 겨울철 최대부하 발생시간은 최빈값인 19시로 정한다.

계절 별로 최대부하 발생 시간 데이터를 나열한 차트다.

여름철 최소부하 발생시간 데이터를 나열한 차트다.

위 차트에서 x축은 데이터의 개수이고 y축은 시간이다. 따라서 차트의 형태가 위와 같이 직선 형태를 보이는지 확인하여 시간을 선정할 수 있다.

	최소시간	최대시간
봄	$\bigg / \bigg /$	20.37
여름	5.64	18.91
가을	$\bigg / \bigg /$	18.55
겨울	\searrow	19.00

이 과정으로 위와 같은 표를 만들 수 있다.

2) Min 시간 예측

가) 봄의 최저부하 발생 시간 예측

① 봄철 체감온도 구간 별로 필터링한 최저부하 발생시간

avg_var	0.74359	6.09236	9.52698	9.54286	5.77936	10.1166	5.2	0
avg	12.8333	12.3929	10.9714	11	11.0938	10.3514	7.4	
count	12	28	35	34	32	37	5	1
p-temp	2	3	4	5	6	7	8	9
spring	mintime							
	12	5	5	13	11	4	4	10
	13	16	14	13	13	12	5	
	11	13	13	9	12	10	10	
	13	13	14	13	12	13	8	
	13	13	13	13	13	4	10	
	13	13	5	13	13	12		
	13	13	15	10	12	12		
	12	4	11	4	11	10		
	15	13	13	11	13	4		
	13	13	10	4	13	12		
	13	12	13	13	12	12		
	13	14	9	13	12	11		
		13	13	12	13	13		
		13	12	14	5	4		
		13	12	12	10	13		
		13	10	4	4	13		
		15	12	13	12	10		

② 봄철 합계 일사량 구간 별로 필터링한 최저부하 발생시간

mode_var	7.10744	13.6529	21.5822	10	10.2449	6.02083	1.3	1.39918	1.13143	1.60108
avg_var	7.05455		19.8905	10	10.0549	5.9697	1.3	1.37143	1.11261	1.59841
mode	7.03435	15.1504	19.0903	11	10.0549	12	13	1.57 143	13	1.53041
avg	5.8	-	9.21429	11	11.3077	11.1818	13	12	12.1765	11.6857
count	10		14		13	11.1010	19	34	34	35
solar	1	2	3		5	6	7	8	9	10
	mintime	mintime	mintime	mintime		mintime		mintime	mintime	mintime
opining	5	9	13		14	12		11	13	12
	5	4	16	13	13	14		13	13	13
	5		13		13	13		13	13	13
	4	4	4	12	11	11	13	13	13	12
	9	4	13		14	10		14	13	13
	5		5		13	4	10	12	13	13
	13		4		13	12		13	12	11
	4		4		13	12		12	12	13
	4		15		14	10		13	12	12
	4	13	9		4	13		12	12	12
			13		12	12		13	10	13
			4		8		13	12	13	12
			12		5		15	10	13	12
			4				13	10	10	12
							15	12	12	11
							13	13	10	13
							13	13	10	13
							13	13	13	10
							13	13	12	8
								13	13	11

위의 두가지 필터링 방법 중 더 나은 것을 선별한다. 체감온도로 필터링한 데이터는 체감온도가 1과 10구간일 때는 데이터가 없다. 일사량으로 필터링한 표를 보면 일사량 구간이 7 이상일 때 분산이 1.0 대로 최저부하가 일정한 시간에 발생하는 특징을 알 수 있다. 따라서 최저부하 발생시간은 일사량의 영향을 많이 받으므로 일사량 필터링 방법을 채택한다.

일사량 구간이 1~6구간일 때는 분산이 6~14 사이로 나오므로 최빈값을 사용한다. 구간이 7~10구간일 때는 분산이 1~2 사이이므로 평균값을 사용한다.

그런데, 일사량이 3구간일 때는 분산이 약 20으로 꽤 큰 수치를 보인다. 따라서 이 경우는 필터링을 한 번 더 적용하여 조금 더 정밀한 시간대를 얻어낸다.

③ 봄철 일사량이 3구간일 때 체감온도/강수유무 필터링

mode		13		4		mode		
avg_var	5.75	11.4	13.5	0	0	avg_var	20.9762	13.7778
avg	13.25	10.5	8.5	4	5	avg	10.8333	8
p-temp	3	4	5	7	8	rain	0	1
spring	mintime	mintime	mintime	mintime	mintime	spring	mintime	mintime
	15	13	13	4	5		13	13
	9	13	4	4			16	5
	16	4		4			4	4
	13	12					13	4
							15	9
							4	13
								4
								12

왼쪽은 봄철 일사량이 3구간일 때 체감온도 구간별로 필터링한 표이며 오른쪽은 봄철 일사량 3구간에서 강수 유무에 따라 필터링한 표다. 이 경우 강수유무에 따른 필터링은 분산이 크므로 체감온도로 필터링을 적용했다. 체감온도가 3구간일때는 평균값인 13.25시, 4구간일 때는 최빈값인 13시, 7구간에서는 4시에 발생할 것으로 예상했다. 데이터가 없는 다른 구간에서는 앞서 봄철 일사량 3구간일 때의 최빈값인 4시로 정한다.

봄		봄/일사링	∮ 3구간
사량	최저시간	체감온도	최저시간
1	5	1	4
2	4	2	4
3	>	3	13.25
4	11	4	13
5	13	5	4
6	12	6	4
7	13	7	4
8	12	8	4
9	12.17647	9	4
10	11.68571	10	4

위 과정으로 다음과 같은 표를 도출할 수 있다.

나) 가을철 최저부하 발생 시간 예측

① 가을철 체감온도 필터링 적용

mode_var	0	0	16.89941	6.859467	8.23813	13.97501	7.148789	2.920898	6.765432	6.765432
avg_var	0	0	16.22436	6.778462	8.152402	13.57012	7.044118	2.919355	6.718954	6.71913
mode	4	4	12	13	13	4	4	5	5	
avg	4	4	8.916667	11.52	11.19444	8.125	5.375	5.225806	5.941176	
count	nt 1 1		12	25	36	40	16	31	17	
p-temp	1	2	3	4	5	6	7	8	9	10
autumn	mintime	mintime	mintime	mintime	mintime	mintime	mintime	mintime	mintime	mintime
	4	4	12	11	4	5	5	5	5	
			4	5	11	9	4	4	5	
			4	13	4	9	4	4	4	
			13	13	13	4	4	5	5	
			13	4	13	4	4	4	5	
			3	13	12	5	4	4	8	
			13	13	12	4	4	4	4	
			12	12	13	4	5	5	10	10
			4	13	13	4	5	4	14	1-
			12	12	12	13	4	10	4	
			12	13	12	12	12	5	4	
			5	12	13	11	13	5	4	

② 가을철 일사량 필터링 적용

avg_var	2.081028	4.290441	14.74242	14.99851	10.52473	14.48853	10.98913	6.2	0.166667
avg	4.772727	5.0625	8.090909	9.37931	11.19355	9.157895	7.521739	7.666667	4.666667
count	22	16	11	29	31	38	23	9	3
solar	1	2	3	4	5	6	7	8	9
autumn	mintime								
	4	4	5	5	5	5	4	4	4
	4	4	5	5	4	8	5	10	5
	5	5	4	13	11	14	4	10	5
	5	4	12	4	13	5	5	9	
	4	4	11	11	13	11	9	4	
	4	5	4	13	13	4	4	9	
	4	4	4	4	4	4	4	10	
	5	6	5	10	13	4	4	4	
	4	4	13	13	12	4	4	9	
	3	5	12	12	13	4	11		
	4	5	14	12	13	4	12		
	5 4		5	13	12	9			
	5	5		5	13	13	5		

③ 가을철 강수유무 필터링 적용

avg_var	13.94726	8.446115
avg	9.31746	5.785714
count	126	56
rain	0	1
autumn	mintime	mintime
	5	4
	4	5
	4	4
	5	4
	8	5
	4	5
	10	5
	10	4
	9	4
	4	5

위 세가지 방법(체감온도/일사량/강수유무)에 따라 가을철 최저부하 발생시간 데이터를 분류했을 때, 최저부하 발생시간은 강수 유무에 따른 영향을 크게 받는 것으로확인했다. 강수 유무로 데이터를 분류했을 때 분산은 8~13 정도이며 데이터 개수도충분하기에 외생변수를 하나 더 적용하여 더욱 정밀한 시간을 도출했다.

④ 가을철 강수유무 및 체감온도 구간에 따른 필터링 적용

mode		12	13	13	13	4	5	4			4		11	4		5	5	
avg_var	0	9.50								0.00	10.33	10.67	12.20	6.23	0.17	0.22	9.11	8.46
avg	4	11.00	11.68		9.37				9.00					5.54	4.33		6.14	
rain	0		0	0	0		0	0	0	1	1	1	1	1	1	1	1	1
p-temp	1	3	4	5	6	7	8	9	10	2	3	4	5	6	7	8	9	10
autumn	mintime																	
	4	12	11	4	5	4	4	5	9	4	4	5	4	5	5	5	5	4
		13	13	13	9	4	10	4			4	13	11	4	4	4	5	5
		3	4	13	9	4	5	5			13	13	13	4	4	4	14	
		13	13	12	4	4	11	8			4		11	11		5	4	
		12	13	12	4	4	4	4			5		4	5		4	5	
		12	12	13	4	5	5	10						12		4	5	
		12	13	13	13	5	5	4						5		5	5	
			12	12			5	4						4		4		
			13	12	13	12	10	5						5		5		
			12		4	13	5	9						4		5		
			12				5							4		5		
			12		9		5							5		4		
			10		9		4							4		5		
			13				5									5		
			12	12	13											5		

⑤ 가을철 강수유무 및 일사량 구간에 따른 필터링 적용

avg_var	0.17	0.17	16.75	10.94	6.69	13.99	10.75	6.20	0.17	2.09	5.14	5.40	13.24	7.17	14.95	0.00
avg	3.50	5.33	9.00	10.53	11.68	9.21	7.86	7.67	4.67	4.90	5.00	6.50	7.20	6.67	8.75	4.00
rain	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
solar	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7
autumn	mintime															
	3	6	4	13	4	5	5	4	4	4	4	5	5	5	14	4
	4	5	12	4	13	8	4	10	5	4	4	5	5	11	4	4
		5	4	11	13	5	5	10	5	5	5	11	13	4	5	
			4	10	13	11	9	9		5	4	5	13		12	
			13	13	13	4	4	4		4	4		5			
			12	12	13	4	4	9		4	5		5			
			14	12	12	4	4	10		4	4		5			
				5	13	4	4	4		5	4		13			
				4	13	4	11	9		4	5		4			
				4	13	12	12			4	4		4			

앞서 ③에서 비가 오지 않는 경우의 차트를 보면 네 구간으로 생각할 수 있다. 가을철 강수 유무에 따라 분류한 데이터에서 체감온도 혹은 일사량을 반영한 두 가지 경우에서, 체감온도를 반영했을 때가 일사량을 반영했을 때보다 맑은 날의 시간을 비교적 일정하게 도출한다.

그렇기에, 마찬가지로 분산이 5 이하인 구간은 평균시간을, 5 이상인 구간은 최빈값으로 시간을 정했다. 또한 구간별로 데이터 개수가 5개 미만인 경우에는 최빈값을 이용해 구했다. 가령, 가을철 비가 오는 경우의 최저부하 발생시간의 최빈값은 5시 이므로 체감온도가 1,2,4,7,10 구간에서는 5시로 한다. 비가 오지 않는 날의 경우는 체감온도가 1~5구간에서의 최빈값이 13시, 7~10구간에서는 5이므로 1,2 구간에서는 13시, 10구간에서는 5시로 한다.

다음은 가을철 맑은 날 체감온도가 1~5구간일 때 최저부하 발생시간 차트다.

다음은 가을철 맑은 날 체감온도가 7~10구간일 때 최저부하 발생시간 차트다.

가을/비X		가을/비0	
체감온도	최저시간	체감온도	최저시간
1	13	1	5
2	13	2	5
3	12	3	4
4	13	4	5
5	13	5	11
6	13	6	4
7	4	7	5
8	5	8	4.65
9	5.8	9	5
10	5	10	5

위 과정으로 가을철 최저부하 시간을 다음과 같이 예측할 수 있다.

다) 겨울철 최저부하 발생 시간 예측

① 겨울철 체감온도 구간 별 최저부하 발생시간 예측

mode	13.00	13.00	13.00	14.00		
mode_var	18.63	15.37	16.51	14.07		
avg_var	18.49	15.27	16.30	13.28	10.67	0.00
avg	9.78	10.59	10.24	10.67	8.00	13.00
count	73.00	59.00	33.00	12.00	2.00	1.00
p-temp	1	2	3	4	5	6
winter	mintime	mintime	mintime	mintime	mintime	mintime
	11	13	13	5	4	13
	14	13	13	12	12	
	12	13	13	13		
	11	14	4	14		
	3	13	4	14		
	5	12		13		
	3	14	13	11		
	5	13		11		
	15	4	13	4		
	12	12	9	13		
	4	4	5	14		
	4	13	4	4		
	13	12				
	13	13				
	14	13	14			

② 겨울철 일사량 구간 별 최저부하 발생시간 예측

mode_var	12.14	18.61	8.00	0.49	0.33	0.14	0.12	
avg_var	12.06	18.22	7.97	0.49	0.33	0.14	0.12	
mode	4.00	4.00	13.00	13.00	13.00	13.00	13.00	13.00
avg	5.79	7.92	12.03	12.90	13.00	13.00	13.17	13.00
count	38.00	38.00	38.00	29.00	17.00	13.00	6.00	1.00
solar	1	2	3	4	5	6	7	8
winter	mintime							
	11	3	14	11	13	13	13	13
	3	5	12	13	13	13	13	
	12	15	5	13	13	13	14	
	4	4	13	14	13	13	13	
	4	13	14	14	12	14	13	
	5	4	10	14	12	13	13	
	4	12	13	11	13	12		
	4	4	5	13	13	13		
	4	4	9	13	13	13		
	4	5	11	13	14	13		
	14	4	13	13	12	13		
	4	13	13	13		13		
	4	12	12	12	13	13		
	4	4	13	13	13			

다음은 일사량이 1~2구간일 때 최저부하 발생시간이다.

다음은 일사량이 3~7구간일 때 최저부하 발생시간이다.

위 표와 차트를 봤을 때, 겨울철에는 체감온도보다 일사량의 영향을 받는 것으로 확인할 수 있다. 합계 일사량의 구간이 높아질수록 최저부하 발생시간의 분산이 0점대로 감소한다. 따라서 겨울철에는 일사량이 1~3구간에서 분산은 5를 초과하므로 최빈값을 적용하고, 4~7구간에서는 평균값을 적용했다. 데이터가 없는 8~10구간은 4~7구간의 평균값인 13시를 적용했다.

겨울	
일사량	최저시간
1	4
2	4
3	13
4	12.9
5	13
6	13
7	13.17
8	13
9	13
10	13

따라서 겨울철 최저부하 발생시간 표는 다음과 같이 만들 수 있다.

결과.

	최소시간	최대시간
봄	$\bigg / \bigg /$	20.37
여름	5.64	18.91
가을	>>	18.55
겨울	\searrow	19.00

봄		봄/일사링	∮ 3구간	가을/비X		가을/비0	
일사량	최저시간	체감온도	최저시간	체감온도	최저시간	체감온도	최저시간
1	5	1	4	1	13	1	5
2	4	2	4	2	13	2	5
3	\searrow	3	13.25	3	12	3	4
4	11	4	13	4	13	4	5
5	13	5	4	5	13	5	11
6	12	6	4	6	13	6	4
7	13	7	4	7	4	7	5
8	12	8	4	8	5	8	4.65
9	12.18	9	4	9	5.8	9	5
10	11.69	10	4	10	5	10	5

겨울	
일사량	최저시간
1	4
2	4
3	13
4	12.9
5	13
6	13
7	13.17
8	13
9	13
10	13