For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Many applications use a mix of several languages in their construction and use. Programs were mostly entered using punched cards or paper tape. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Normally the first step in debugging is to attempt to reproduce the problem. Code-breaking algorithms have also existed for centuries. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Ideally, the programming language best suited for the task at hand will be selected. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" – a series of pasteboard cards with holes punched in them. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Scripting and breakpointing is also part of this process. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment.