CS685: Data Mining Density-Based Clustering Methods

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

> 1st semester, 2020-21 Mon 1030-1200 (online)

Density-Based Clustering Methods

- Partitioning-based and hierarchical clustering methods mostly work on distances
- Hence, they tend to find spherical or convex clusters

Density-Based Clustering Methods

- Partitioning-based and hierarchical clustering methods mostly work on distances
- Hence, they tend to find spherical or convex clusters
- Points in the same cluster tend to have similar neighborhood densities
- Also, outliers are generally in sparse regions
- Density-based clustering methods aim to exploit these properties

Density-Based Clustering Methods

- Partitioning-based and hierarchical clustering methods mostly work on distances
- Hence, they tend to find spherical or convex clusters
- Points in the same cluster tend to have similar neighborhood densities
- Also, outliers are generally in sparse regions
- Density-based clustering methods aim to exploit these properties
- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- Ordering Points to Identify the Clustering Structure (OPTICS)
- Density-based Clustering (DENCLUE)

- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- Density of a point is determined using an ϵ -neighborhood
- Since the radius is fixed, it is simply the number of points

- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- Density of a point is determined using an ϵ -neighborhood
- Since the radius is fixed, it is simply the number of points
- Based on the density, a point can be
 - ullet Core point: If density exceeds a threshold au
 - Border point: If density $< \tau$, but it is in the ϵ -neighborhood of a core point
 - Noise point: If it is neither a core point nor a border point

- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- Density of a point is determined using an ϵ -neighborhood
- Since the radius is fixed, it is simply the number of points
- Based on the density, a point can be
 - ullet Core point: If density exceeds a threshold au
 - Border point: If density $< \tau$, but it is in the ϵ -neighborhood of a core point
 - Noise point: If it is neither a core point nor a border point
- DBSCAN does not use border points directly

- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- Density of a point is determined using an ϵ -neighborhood
- Since the radius is fixed, it is simply the number of points
- Based on the density, a point can be
 - ullet Core point: If density exceeds a threshold au
 - Border point: If density $< \tau$, but it is in the ϵ -neighborhood of a core point
 - Noise point: If it is neither a core point nor a border point
- DBSCAN does not use border points directly
- It also removes all noise points as outliers

- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- Density of a point is determined using an ϵ -neighborhood
- Since the radius is fixed, it is simply the number of points
- Based on the density, a point can be
 - ullet Core point: If density exceeds a threshold au
 - Border point: If density < au, but it is in the ϵ -neighborhood of a core point
 - Noise point: If it is neither a core point nor a border point
- DBSCAN does not use border points directly
- It also removes all noise points as outliers
- Uses notions of density-reachability and density-connectivity

- A point p is directly density-reachable from q if
 - q is a core point
 - p is within the ϵ -neighborhood of q

- A point p is directly density-reachable from q if
 - q is a core point
 - p is within the ϵ -neighborhood of q
- A point p is density-reachable from q if
 - There is a chain of points p_1, \ldots, p_n where $p_1 = q$ and $p_n = p$
 - Each p_{i+1} is directly density-reachable from p_i

- A point p is directly density-reachable from q if
 - q is a core point
 - p is within the ϵ -neighborhood of q
- A point p is density-reachable from q if
 - There is a chain of points p_1, \ldots, p_n where $p_1 = q$ and $p_n = p$
 - Each p_{i+1} is directly density-reachable from p_i
- Density-reachability is not symmetric
- Directly density-reachability is not symmetric either

- A point p is directly density-reachable from q if
 - q is a core point
 - p is within the ϵ -neighborhood of q
- A point p is density-reachable from q if
 - There is a chain of points p_1, \ldots, p_n where $p_1 = q$ and $p_n = p$
 - Each p_{i+1} is directly density-reachable from p_i
- Density-reachability is not symmetric
- Directly density-reachability is not symmetric either
- Two points p_1 and p_2 are density-connected if
 - ullet There is a point q from which both p_1 and p_2 are density-reachable

- A point p is directly density-reachable from q if
 - q is a core point
 - p is within the ϵ -neighborhood of q
- A point p is density-reachable from q if
 - There is a chain of points p_1, \ldots, p_n where $p_1 = q$ and $p_n = p$
 - Each p_{i+1} is directly density-reachable from p_i
- Density-reachability is not symmetric
- Directly density-reachability is not symmetric either
- Two points p_1 and p_2 are density-connected if
 - There is a point q from which both p_1 and p_2 are density-reachable
- Density-connectivity is *symmetric*

- $\bullet \ \, \mathsf{Suppose} \,\, \tau = 3$
- Core points are

- $\bullet \ \, \mathsf{Suppose} \,\, \tau = 3$
- Core points are p, m, o, r but not q, s
- Is *m* directly density-reachable from *p*?

- Suppose $\tau = 3$
- Core points are p, m, o, r but not q, s
- Is m directly density-reachable from p? Yes
- Is *p* directly density-reachable from *m*?

- Suppose $\tau = 3$
- Core points are p, m, o, r but not q, s
- Is m directly density-reachable from p? Yes
- Is p directly density-reachable from m? Yes
- Is q directly density-reachable from m?

- Suppose $\tau = 3$
- Core points are p, m, o, r but not q, s
- Is m directly density-reachable from p? Yes
- Is *p* directly density-reachable from *m*? Yes
- Is q directly density-reachable from m? Yes
- Is m directly density-reachable from q?

- Suppose $\tau = 3$
- Core points are p, m, o, r but not q, s
- Is m directly density-reachable from p? Yes
- Is *p* directly density-reachable from *m*? Yes
- Is q directly density-reachable from m? Yes
- Is *m* directly density-reachable from *q*? No
- Is q density-reachable from p?

- Suppose $\tau = 3$
- Core points are p, m, o, r but not q, s
- Is m directly density-reachable from p? Yes
- Is *p* directly density-reachable from *m*? Yes
- Is q directly density-reachable from m? Yes
- Is *m* directly density-reachable from *q*? No
- Is q density-reachable from p? Yes
- Is *p* density-reachable from *q*?

- Suppose $\tau = 3$
- Core points are p, m, o, r but not q, s
- Is m directly density-reachable from p? Yes
- Is *p* directly density-reachable from *m*? Yes
- Is q directly density-reachable from m? Yes
- Is *m* directly density-reachable from *q*? No
- Is q density-reachable from p? Yes
- Is p density-reachable from q? No
- Are *s* and *r* density-connected?

- Suppose $\tau = 3$
- Core points are p, m, o, r but not q, s
- Is m directly density-reachable from p? Yes
- Is *p* directly density-reachable from *m*? Yes
- Is q directly density-reachable from m? Yes
- Is m directly density-reachable from q? No
- Is q density-reachable from p? Yes
- Is *p* density-reachable from *q*? No
- Are s and r density-connected? Yes
- Are p and q density-connected?

- Suppose $\tau = 3$
- Core points are p, m, o, r but not q, s
- Is m directly density-reachable from p? Yes
- Is *p* directly density-reachable from *m*? Yes
- Is q directly density-reachable from m? Yes
- Is m directly density-reachable from q? No
- Is q density-reachable from p? Yes
- Is *p* density-reachable from *q*? No
- Are *s* and *r* density-connected? Yes
- Are p and q density-connected? Yes

- A density-based cluster is the closure of density-connected points
- A set of points C is a cluster if
 - For any two points $p, q \in C$, p and q are density-connected
 - There does not exist any pair of points p ∈ C and s ∉ C such that p and s are density-connected

- A density-based cluster is the closure of density-connected points
- A set of points C is a cluster if
 - For any two points $p, q \in C$, p and q are density-connected
 - There does not exist any pair of points $p \in C$ and $s \notin C$ such that p and s are density-connected
- Algorithm
 - Arbitrarily select a point p

- A density-based cluster is the closure of density-connected points
- A set of points C is a cluster if
 - For any two points $p, q \in C$, p and q are density-connected
 - There does not exist any pair of points $p \in C$ and $s \notin C$ such that p and s are density-connected
- Algorithm
 - Arbitrarily select a point p
 - If p has $< \tau$ neighbors, it is marked as noise
 - ullet Otherwise, p and all its ϵ -neighbors are added to the cluster
 - Then, neighbors of these points are checked and so on till the cluster cannot be expanded any more

- A density-based cluster is the closure of density-connected points
- A set of points C is a cluster if
 - For any two points $p, q \in C$, p and q are density-connected
 - There does not exist any pair of points $p \in C$ and $s \notin C$ such that p and s are density-connected
- Algorithm
 - Arbitrarily select a point p
 - If p has $< \tau$ neighbors, it is marked as noise
 - ullet Otherwise, p and all its ϵ -neighbors are added to the cluster
 - Then, neighbors of these points are checked and so on till the cluster cannot be expanded any more
 - The next cluster is started by selecting another non-processed point arbitrarily

- A density-based cluster is the closure of density-connected points
- A set of points C is a cluster if
 - For any two points $p, q \in C$, p and q are density-connected
 - There does not exist any pair of points $p \in C$ and $s \notin C$ such that p and s are density-connected
- Algorithm
 - Arbitrarily select a point p
 - If p has $< \tau$ neighbors, it is marked as noise
 - ullet Otherwise, p and all its ϵ -neighbors are added to the cluster
 - Then, neighbors of these points are checked and so on till the cluster cannot be expanded any more
 - The next cluster is started by selecting another non-processed point arbitrarily
- Time taken is $O(n^2)$
- Can be made $O(n \log n)$ by using efficient range search

- A density-based cluster is the closure of density-connected points
- A set of points C is a cluster if
 - For any two points $p, q \in C$, p and q are density-connected
 - There does not exist any pair of points $p \in C$ and $s \notin C$ such that p and s are density-connected
- Algorithm
 - Arbitrarily select a point p
 - If p has $< \tau$ neighbors, it is marked as noise
 - ullet Otherwise, p and all its ϵ -neighbors are added to the cluster
 - Then, neighbors of these points are checked and so on till the cluster cannot be expanded any more
 - The next cluster is started by selecting another non-processed point arbitrarily
- Time taken is $O(n^2)$
- Can be made $O(n \log n)$ by using efficient range search
- Assumes clusters have similar densities

- A density-based cluster is the closure of density-connected points
- A set of points C is a cluster if
 - For any two points $p, q \in C$, p and q are density-connected
 - There does not exist any pair of points $p \in C$ and $s \notin C$ such that p and s are density-connected
- Algorithm
 - Arbitrarily select a point p
 - If p has $< \tau$ neighbors, it is marked as noise
 - ullet Otherwise, p and all its ϵ -neighbors are added to the cluster
 - Then, neighbors of these points are checked and so on till the cluster cannot be expanded any more
 - The next cluster is started by selecting another non-processed point arbitrarily
- Time taken is $O(n^2)$
- Can be made $O(n \log n)$ by using efficient range search
- Assumes clusters have similar densities
- ullet Depends heavily on the parameters ϵ and au

OPTICS

- Ordering Points To Identify the Clustering Structure (OPTICS)
- More a data ordering algorithm than a clustering method
- ullet Tries to overcome the difficulty of choosing ϵ in DBSCAN
- Produces a cluster ordering of the data
- A linear order that represents the density-based clustering structure of the data

OPTICS

- Ordering Points To Identify the Clustering Structure (OPTICS)
- More a data ordering algorithm than a clustering method
- ullet Tries to overcome the difficulty of choosing ϵ in DBSCAN
- Produces a cluster ordering of the data
- A linear order that represents the density-based clustering structure of the data
- Uses notions of core distance and reachability distance

Core Distance and Reachability Distance

- The core distance of a point p is the *smallest* radius ϵ' such that the ϵ' -neighborhood of p contains τ points, i.e., p becomes a core point
 - If $\epsilon' > \epsilon$, it is considered *undefined*

Core Distance and Reachability Distance

- The core distance of a point p is the *smallest* radius ϵ' such that the ϵ' -neighborhood of p contains τ points, i.e., p becomes a core point
 - If $\epsilon' > \epsilon$, it is considered *undefined*
- The reachability distance of point p to point q is the minimum radius that makes q directly density-reachable from p
- p must become a core point
- It is, therefore, the maximum of core distance of p and distance of p to q
 - If p is not a core point with respect to ϵ , it is considered *undefined*

Reachability Plot

- OPTICS outputs a reachability plot
- For each point in the database, it plots its reachability distance to the nearest core point
- Bumps mark the boundaries of clusters
- Valleys denote the clusters
 - Deeper the valley, denser the cluster

Reachability Plot

- OPTICS outputs a reachability plot
- For each point in the database, it plots its reachability distance to the nearest core point
- Bumps mark the boundaries of clusters
- Valleys denote the clusters
 - Deeper the valley, denser the cluster

- Arbitrarily select a point p
- Find its core distance and set its reachability distance to undefined
- Insert p to a priority list L
- If p is not a core point, select next point from L (or dataset)
- Otherwise, pick q from p's neighborhood
- Update reachability distance of q and insert q in L
- Continue till all points are processed

- Arbitrarily select a point p
- Find its core distance and set its reachability distance to undefined
- Insert p to a priority list L
- If p is not a core point, select next point from L (or dataset)
- Otherwise, pick q from p's neighborhood
- Update reachability distance of q and insert q in L
- Continue till all points are processed
- Can show nested clusters as well

- Arbitrarily select a point p
- Find its core distance and set its reachability distance to undefined
- Insert p to a priority list L
- If p is not a core point, select next point from L (or dataset)
- Otherwise, pick q from p's neighborhood
- Update reachability distance of q and insert q in L
- Continue till all points are processed
- Can show nested clusters as well
- Time complexity is $O(n \log n)$

- Arbitrarily select a point p
- Find its core distance and set its reachability distance to undefined
- Insert p to a priority list L
- If p is not a core point, select next point from L (or dataset)
- Otherwise, pick q from p's neighborhood
- Update reachability distance of q and insert q in L
- Continue till all points are processed
- Can show nested clusters as well
- Time complexity is $O(n \log n)$
- Still uses parameters: au, ϵ

DENCLUE

- DENsity-based CLUstEring (DENCLUE)
- General parameter-free clustering
- Tries to capture natural clusters in the data

DENCLUE

- DENsity-based CLUstEring (DENCLUE)
- General parameter-free clustering
- Tries to capture natural clusters in the data
- Density of a point is modeled as sum of influence functions associated with each data point
- Influence of a data point y on an arbitrary point x in the space is some function $f_{y}(x)$
- Results in an overall density function at every point in the space
- Density at a point x is $\sum_{y \in D} f_y(x)$

DENCLUE

- DENsity-based CLUstEring (DENCLUE)
- General parameter-free clustering
- Tries to capture natural clusters in the data
- Density of a point is modeled as sum of influence functions associated with each data point
- Influence of a data point y on an arbitrary point x in the space is some function $f_y(x)$
- Results in an overall density function at every point in the space
- Density at a point x is $\sum_{y \in D} f_y(x)$
- Local peaks denote cluster centres
- Points are attracted towards the nearest peak

Thresholding

- Uses a minimum density threshold ξ
- If density at a peak is too low, it is noise
- If two peaks are connected with high density points, the corresponding clusters are merged

Thresholding

- Uses a minimum density threshold ξ
- If density at a peak is too low, it is noise
- If two peaks are connected with high density points, the corresponding clusters are merged
- Cluster corresponding to C is discarded
- Clusters A and B remain separated
- Clusters D and E get merged

- Uses kernel density estimation
- Probability density of a point depends on its distance to other points
- Contribution of each point to overall density is measured by a kernel function that acts as the influence function

- Uses kernel density estimation
- Probability density of a point depends on its distance to other points
- Contribution of each point to overall density is measured by a kernel function that acts as the influence function
- For iid points x_1, \ldots, x_n , kernel density approximation is

$$\hat{f}_h(x) = \frac{1}{n.\sigma} \sum_{i=1}^n K\left(\frac{x - x_i}{\sigma}\right)$$

ullet σ is the smoothing factor and K is the kernel function

- Uses kernel density estimation
- Probability density of a point depends on its distance to other points
- Contribution of each point to overall density is measured by a kernel function that acts as the influence function
- For iid points x_1, \ldots, x_n , kernel density approximation is

$$\hat{f}_h(x) = \frac{1}{n.\sigma} \sum_{i=1}^n K\left(\frac{x - x_i}{\sigma}\right)$$

- ullet σ is the smoothing factor and K is the kernel function
- DENCLUE uses a Gaussian kernel

$$K\left(\frac{x-x_i}{\sigma}\right) = \frac{1}{\sqrt{2}\sigma}e^{-\frac{(x-x_i)^2}{2\sigma^2}}$$

- Uses kernel density estimation
- Probability density of a point depends on its distance to other points
- Contribution of each point to overall density is measured by a kernel function that acts as the influence function
- For iid points x_1, \ldots, x_n , kernel density approximation is

$$\hat{f}_h(x) = \frac{1}{n.\sigma} \sum_{i=1}^n K\left(\frac{x - x_i}{\sigma}\right)$$

- ullet σ is the smoothing factor and K is the kernel function
- DENCLUE uses a Gaussian kernel

$$K\left(\frac{x-x_i}{\sigma}\right) = \frac{1}{\sqrt{2}\sigma}e^{-\frac{(x-x_i)^2}{2\sigma^2}}$$

• A point x^* is a local density attractor if it is a local maximum of the estimated density function

- Uses kernel density estimation
- Probability density of a point depends on its distance to other points
- Contribution of each point to overall density is measured by a kernel function that acts as the influence function
- For iid points x_1, \ldots, x_n , kernel density approximation is

$$\hat{f}_h(x) = \frac{1}{n.\sigma} \sum_{i=1}^n K\left(\frac{x - x_i}{\sigma}\right)$$

- ullet σ is the smoothing factor and K is the kernel function
- DENCLUE uses a Gaussian kernel

$$K\left(\frac{x-x_i}{\sigma}\right) = \frac{1}{\sqrt{2}\sigma}e^{-\frac{(x-x_i)^2}{2\sigma^2}}$$

- A point x^* is a local density attractor if it is a local maximum of the estimated density function
- Points are attracted towards local density attractors using hill climbing
- Uses the gradient of the Gaussian kernel

Very robust to noise

- Very robust to noise
- Strong mathematical foundation

- Very robust to noise
- Strong mathematical foundation
- Generalization of several clustering methods

- Very robust to noise
- Strong mathematical foundation
- Generalization of several clustering methods
- Can be very slow

- Very robust to noise
- Strong mathematical foundation
- Generalization of several clustering methods
- Can be very slow
- Density estimated only at actual data points

- Very robust to noise
- Strong mathematical foundation
- Generalization of several clustering methods
- Can be very slow
- Density estimated only at actual data points
- Influence function constrained to a range
- May use grids where each point influences its own cell and the neighboring cells only