

Ayudantía 9 - Cardinalidad

 $19 \ {\rm de\ octubre\ de\ } 2024$ Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

Principio del palomar Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m>n, la función f no puede ser inyectiva. Es decir, necesariamente existirán $x,y \in \mathbb{N}_m$ tales que $x \neq y$, pero f(x) = f(y).

Equinumeroso Sean A y B dos conjuntos cualesquiera. Diremos que A es equinumeroso con B (o que A tiene el mismo tamaño que B) si existe una función biyectiva $f: A \to B$. Lo denotamos como

 $A \approx B$

Video: Les dejamos este video que puede servirles para entender numerabilidad AQUI :)

Meme del día

(the set of all rational numbers) are countable. [c] $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tab$

1. Equinumerosidad

Demuestre que $(0,1) \approx \mathbb{R} \approx \mathcal{P}(\mathbb{N})$, donde $(0,1) \subseteq \mathbb{R}$.

2. Numerabilidad

- 1. Demuestre que si A es numerable y B es numerable, entonces $A \cup B$ es numerable.
- 2. Demuestre que todo subconjunto infinito de un conjunto numerable es numerable.
- 3. Demuestre que la unión de una cantidad numerable de conjuntos finitos o numerables es numerable.

3. Numerabilidad (Hardcore)

El conjunto $\mathbb R$ de los números reales puede ser particionado en dos subconjuntos:

• El primer subconjunto, llamémoslo A, tendrá todos los números reales que son raíz de algún polinomio con coeficientes enteros no todos nulos. En otras palabras,

$$A = \{x \in \mathbb{R} \mid \exists n \in \mathbb{N}, \exists q_0, q_1, \dots, q_n \in \mathbb{Z} \text{ tales que } \sum_{i=0}^n q_i x^i = 0 \land \bigvee_{i=0}^n q_i \neq 0\}$$

■ El segundo subconjunto tendrá todos los números reales que no están en el primer conjunto, esto es, será $\mathbb{R} \setminus A$.

Esta partición de los números reales es conocida y muy famosa. Al conjunto A se le llama números algebraicos, y al conjunto $\mathbb{R} \setminus A$ se le llama números trascendentes.

Demuestre que el conjunto de los números trascendentes no es numerable.

 $^{^{1}}$ Los números algebraicos y trascendentes también están definidos como partición de los complejos (\mathbb{C}). Ambas definiciones son válidas.

1. Equinumerosidad

Demuestre que $(0,1) \approx \mathbb{R} \approx \mathcal{P}(\mathbb{N})$, donde $(0,1) \subseteq \mathbb{R}$.

 $(0,1) \approx \mathbb{R}$:

F: 1 - (0,1)

Como actom (x) es bipección un el recerr: do $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ al comprimirba con $\frac{\pi}{2}$ y desplazanta can $-\frac{\pi}{2}$ es una bipeción en (0,1).

```
2. [0,1) \approx P(N). Sea f:(0,1) \rightarrow P(N) definida por f(x) = \{n \in N \mid bin(x)[n] = =1\}
```

- Iny: Supongamos que
$$f(x) = f(y)$$
, con $x, y \in (0, 1)$
PD: $x = y$. \Rightarrow considerando lo que estar a la elerectica de la gente $\{n \in [N] \mid bin(x)[n] = 1\}$

$$o_{i}$$
 número
$$f(o_{i} \wedge i \text{ número}) = A$$

$$[o_{i} \wedge i \text{ número}] \approx (o_{i} \wedge i)$$

Finalmente, $[0,1) \approx P(N)$. Con alle, per transitividad, $(0,1) \approx P(N)$.

Concluimos que (0,1) x R x P(IN).

2. Numerabilidad

- 1. Demuestre que si A es numerable y B es numerable, entonces $A \cup B$ es numerable.
- 2. Demuestre que todo subconjunto infinito de un conjunto numerable es numerable.
- 3. Demuestre que la unión de una cantidad numerable de conjuntos finitos o numerables es numerable.
- 1. Demuestre que si A es numerable y B es numerable, entonces $A \cup B$ es numerable.

Camo A y B son numerables, existen listers LA, LB infinitor en lag que to de elemento de A y B respectivamento están listados.

 $L_{A} = a_{1}, a_{2}, a_{3}, \dots$ $+ s; \quad \text{un elemento } pa \quad \text{habita}$ $L_{B} = b_{1}, b_{2}, b_{3}, \dots$ $+ s; \quad \text{un elemento } pa \quad \text{habita}$ $+ a_{1}, b_{2}, b_{3}, \dots$ $+ a_{1}, b_{2}, a_{3}, \dots$ $+ a_{1}, b_{2}, a_{3}, \dots$ $+ a_{1}, a_{2}, a_{3}, \dots$

Como existe una lista infinita donde todo elumento de AUB aparece una vez, AUB es numeroble.

2. Demuestre que todo subconjunto infinito de un conjunto numerable es numerable.

Sea A numerable y S C A. Como A es numerable, existe L_A en la que aparece todo el en ento de A una vez.

Recorremes Ly, si a; & S, untonces le agragames a Ls. Si no lo ignorames. Ls es va lista numerada que tiene a todo elemento de Sur vez: SXIN.

3. Demuestre que la unión de una cantidad numerable de conjuntos finitos o numerables es numerable.

Sea A un conjunto con una caratidad numerable de elementos. Sea toda X E H un subconjunto con una caratidad numerable de elementos.

U × ≈ N.

Existe $L_A = X_1, X_2, X_3, \dots$ Para cada X_1 , existe $L_{X_1} = x_1, x_2, x_3, \dots$

 $= \begin{bmatrix} \chi_{11} & \chi_{21} & \chi_{31} & \ddots & \ddots & \ddots \\ \chi_{12} & \chi_{22} & \chi_{31} & \ddots & \ddots & \ddots \\ \chi_{13} & \chi_{13} &$

1 2 1 1, 3, 2, 4, 5

3. Numerabilidad (Hardcore)

El conjunto \mathbb{R} de los números reales puede ser particionado en dos subconjuntos:

■ El primer subconjunto, llamémoslo A, tendrá todos los números reales que son raíz de algún polinomio con coeficientes enteros no todos nulos. En otras palabras,

$$A = \{x \in \mathbb{R} \mid \exists n \in \mathbb{N}, \exists q_0, q_1, \dots, q_n \in \mathbb{Z} \text{ tales que } \sum_{i=0}^n q_i x^i = 0 \land \bigvee_{i=0}^n q_i \neq 0\}$$

■ El segundo subconjunto tendrá todos los números reales que no están en el primer conjunto, esto es, será $\mathbb{R} \setminus A$.

Esta partición de los números reales es conocida y muy famosa. Al conjunto A se le llama números algebraicos, y al conjunto $\mathbb{R} \setminus A$ se le llama números trascendentes.

Demuestre que el conjunto de los números trascendentes no es numerable.

$$A \cup (\hat{IR} \setminus A) = IR$$

Observaciones:

- la union de una cantidad numerable de conjuntos Finitas es numerable.

PD:
$$P = \{ \sum_{i=0}^{n} q_i x^i \mid n \in \mathbb{N}, q_i \in \mathbb{Z} \} \approx \mathbb{N}.$$

$$P' \subseteq P$$
 tq $0 \notin P'$.

1.
$$f: \mathbb{N} \to P$$
 Jefinida par $f(q) = (q)$
 $f(p) = f(q) \to (p) = (q) \to p = q$

z. g: P -> N

 $g(q_1,q_2,...,q_n) = bin(q_1) + bin(q_2) + ... + bin(q_n) + g(-8,17,-1) = 91 bin(8) + g(bin(17) + g(17)) + bin(1)$

g(X) = 9d, q, 9d2q29d3 ... 9dn qn

g(x) =g(y)

Pan. P'CPP'an.

A = N.

RVA = N. PURLA = N = R ×

Concluince que RIAZIN.