Examining the prevalence of positive results and research groups' scientific productivity in a German clinical psychology sample

Louis Schiekiera^{1,2} Helen Niemeyer²

¹ Computational Modelling Lab, Institute for Psychology, Humboldt Universität zu Berlin ² Division of Clinical-Psychological Intervention, Freie Universität Berlin

Deutscher Psychotherapiekongress 2025

08.04.2025 - Flashlight session 6

Positive Results in Psychology

Positive Results

- Findings that fully or partially support a tested hypothesis (Fanelli, 2012)
- Studies find high prevalence of positive results in psychology: 91-97% (Sterling, 1959; Sterling et al., 1995; Open Science Collaboration, 2015; Scheel et al., 2021).

Figure 1. Positive results prevalence and publication bias

(Fanelli, 2012; Scheel et al., 2021; Monsarrat and Vergnes, 2018; Sterne et al., 2005)

Theoretical Model of Publication Bias Incentivation

Figure 2. Theoretical model of publication bias incentivation

(Fanelli, 2010b,a, 2012; van Dalen and Henkens, 2012; Tian et al., 2016)

Research Gap

Figure 3. Potential factors influencing publication bias

Scientific Productivity Defined

 $\mbox{Scientific Productivity} = \frac{\mbox{Number of Quantitative Empirical Publications of Research Group}}{\mbox{Number of Academic Staff in Group}}$

Research Question and Pre-registered Hypothesis

Research Question

Does scientific productivity of research groups influence the prevalence of positive results in clinical psychology publications?

Main Hypothesis (H1)

Research groups with lower scientific productivity would report a lower prevalence of positive results than those with higher scientific productivity.

Secondary Hypothesis (H2)

Higher publication counts of research groups are associated with higher rates of positive results.

Data Collection Framework

Figure 4. Data collection framework

Results

- Overall positive results rate: 89.67%
- No support found for H1: observed difference of -0.67% in positive results rate between Q1 and Q4 was not statistically significant (H1: $\chi^2(1) = 0.00$, p = .500).
- **No support found for H2:** higher group-level publication counts not associated with higher rates of positive results (*OR* = 1.00, *95-% CI* [0.995, 1.017], *p* = 0.356)
- Exploratory Results: No effects of individual paper counts nor differences in abstracts-level positive results rates

Figure 6. Positive results rate by scientific productivity quartile

Key Takeaways

- Excess of positive results in clinical psychology (89.67%)
- No relationship found between research group productivity and positive result rates

Thank you for your attention!

Contact Information

- ✓ louis.schiekiera@hu-berlin.de
- helen.niemeyer@fu-berlin.de

References

- Fanelli, D. (2010a). Do pressures to publish increase scientists' bias? an empirical support from us states data. PloS ONE, 5(4):e10271.
- Fanelli, D. (2010b). "positive" results increase down the hierarchy of the sciences. PLoS ONE. 5(4):e10068.
- Fanelli, D. (2012). Negative results are disappearing from most disciplines and countries. Scientometrics, 90(3):891–904.
- Monsarrat, P. and Vergnes, J.-N. (2018). The intriguing evolution of effect sizes in biomedical research over time: Smaller but more often statistically significant. GigaScience, 7(1):gix121.
- Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349(6251):aac4716.

References ii

- Scheel, A. M., Schijen, M. R., and Lakens, D. (2021). An excess of positive results: Comparing the standard psychology literature with registered reports. *Advances in Methods and Practices in Psychological Science*, 4(2):25152459211007467.
- Schiekiera, L., Diederichs, J., and Niemeyer, H. (2024). Classifying positive results in clinical psychology using natural language processing. *Zeitschrift für Psychologie*.
- Sterling, T. D. (1959). Publication decisions and their possible effects on inferences drawn from tests of significance—or vice versa. *Journal of the American Statistical Association*, 54(285):30–34.
- Sterling, T. D., Rosenbaum, W. L., and Weinkam, J. J. (1995). Publication decisions revisited: The effect of the outcome of statistical tests on the decision to publish and vice versa. *The American Statistician*, 49(1):108–112.
- Sterne, J. A., Becker, B. J., and Egger, M. (2005). The funnel plot. In *Publication bias in meta-analysis: Prevention, assessment and adjustments*, pages 73–98. John Wiley and Sons.

References iii

Tian, M., Su, Y., and Ru, X. (2016). Perish or publish in china: Pressures on young chinese scholars to publish in internationally indexed journals. *Publications*, 4(2):9.

van Dalen, H. P. and Henkens, K. (2012). Intended and unintended consequences of a publish-or-perish culture: A worldwide survey. *Journal of the American Society for Information Science and Technology*, 63(7):1282–1293.