

Chapter 5 Data Clustering

Assoc. Prof. TRAN MINH QUANG

quangtran@hcmut.edu.vn

http://researchmap.jp/quang

CONTENT

- 1. Overview on clustering
- 2. Partition-based clustering
- 3. Hierarchical clustering
- 4. Density-based clustering
- 5. Modeling-based clustering
- 6. Other clustering methods
- 7. Summary

1. OVERVIEW

Situations

Customer clustering

Clustering relationships from social network

Clustering & outlier detections

1. OVERVIEW

- Clustering: to cluster/group data objects
- Objects in a cluster are similar with each other compared to those from other clusters
 - Obj1, Obj2 in C1; Obj3 in C2 \rightarrow Obj1 is more similar to Obj2 than Obj3.

 Problem on data types of data objects which are being clustered

Data matrix

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

- n objects
- p variables/attributes

 d(i,j) distance between object i and j, calculated based on the type of attributes/variables

<u>Note</u>: d(i,i) = 0; $d(i,j) = d(j,i) \ge 0$; d(i,j) = d(i,k) + d(k,j)

- Vector objects: i and j are presented as vectors x, y
- Similarity between i and j is calculated using cosine measure

$$s(x, y) = \frac{x^T \cdot y}{|x||y|} \quad \text{where} \quad x = \begin{vmatrix} x_1 \\ x_2 \\ \dots \\ x_p \end{vmatrix}; y = \begin{vmatrix} y_1 \\ y_2 \\ \dots \\ y_p \end{vmatrix}$$

Or

$$s(x, y) = (x_1^* y_1 + \dots + x_p^* y_p) / ((x_1^2 + \dots + x_p^2)^{1/2} (y_1^2 + \dots + y_p^2)^{1/2})$$

- Distance calculation: Based on the attribute type
- ✓ Interval-scaled variables/attributes
- ✓ Binary variables/attributes
- ✓ Categorical variables/attributes
- ✓ Ordinal variables/attributes
- ✓ Ratio-scaled variables/attributes
- √ Variables/attributes of mixed types

• Interval-scaled variables/attributes

Mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

Mean

$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + \dots + x_{nf}).$$

Z-score measurement

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Note: use z_{if} instead of x_{if} ; i = 1...n, f = 1...p

Euclidean

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

Minkowski

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

Manhattan

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• Binary variables/attributes

J		Object j			attrs whose values in i is	
		1	0	sum	1 and in j is 1	
	1	a <	b	a+b		
Object i	0	c	d	c+d		
	sum	a+c	b+d	p (= $a + b + c +$	d)	

- Use simple distance (if symmetric):

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

a: count of

- Use Jaccard distance (if asymmetric):

$$d(i,j) = \frac{b+c}{a+b+c}$$

- Binary variables/attributes
 - Ex

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender: symmetric (probability an object gets "M", "F" is similar)
- Other binary attributes: asymmetric

$$\square$$
 Y, P \rightarrow 1, N \rightarrow 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Variables/attributes of mixed types

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- ✓ If x_{if} or x_{jf} is missed then $\delta_{ij}^{(f)} = 0$, else $\delta_{ij}^{(f)} = 1$
- ✓ For d_{ij}^(f)
 - f (variable/attribute) a binary (nominal): $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; $d_{ij}^{(f)} = 1$ in other cases
 - ✓ *f* : interval-scaled (Minkowski, Manhattan, Euclidean)
 - f: ordinal (ordered data, e.g. gold, silver, bronze medals) or ratio-scaled: let $r_{if} = \{1,...,M_f\}$, then use z_{if} instead of x_{if} and use Minkowski, Manhattan, or Euclidean for distance calculation

$$Z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

Clustering process

R. Xu, D. Wunsch II. Survey of Clustering Algorithms. IEEE Transactions on Neural Networks, 16(3), May 2005, pp. 645-678.

- How many clusters should be created?
- How many objects in each clusters?
- A particular object should belong to how many clusters?

How many clusters

2 clusters?

6 clusters?

4 clusters?

- Essential requirements in a clustering method
 - Scalability: work with the change of data size, type,...
 - Ability to process with multiple data types (high dimensionality)
 - Ability to provide clusters with arbitrary shapes
 - Require minimum input parameters/instructions
 - Ability to work with noisy data
 - Ability of incremental clustering and insensitivity to the order of input records
 - Interpretability and usability

Common clustering methods

- Partitioning: partitions are created and evaluated based on some criteria
- Hierarchical: the data set is hierarchically divided (ordering) based on some criteria
- Density-based clustering: based on connectivity and density of data distribution
- Model-based: a hypothesis model (distribution model) of a cluster (a subset of data) is proposed, then parameters are modified to make the model best fit with the data set.

Intuitive examples

Original Points

Hierarchical

- Evaluation methods
 - External validation: evaluate the clustering results based on pre-defined/given structures of clusters
 - Internal validation: evaluation based on proximity matrix calculated from given dataset
 - Relative validation: Based on the comparison with other approaches/methods
 - → Criteria to evaluated and select clustering methods
 - Compactness: objects in a cluster should be close with each other
 - Separation: Clusters should be far apart

- External validation
 - Measure: Rand statistic, Jaccard coefficient, Folkes and Mallows index, ...
- Iinternal validation
 - Measure: Silhouette index, Dunn's index, ...
- Relative validation: compare different approaches on effectiveness and efficiency

o external validation measures – contingency matrix

	Measure	Notation	Definition	Range
1	Entropy	\overline{E}	$-\sum_{i} p_{i} \left(\sum_{j} \frac{p_{ij}}{p_{i}} \log \frac{p_{ij}}{p_{i}}\right)$	$[0, \log K']$
2	Purity	P	$\sum_{i} p_{i}(\max_{j} \frac{p_{ij}^{p_{i}}}{n_{i}})$	(0,1]
3	F-measure	F	$\sum_{j} p_{j} \max_{i} \left[\frac{2^{p_{ij}}}{p_{i}} \frac{p_{ij}}{p_{j}} / (\frac{p_{ij}}{p_{i}} + \frac{p_{ij}}{p_{j}}) \right]$	(0,1]
4	Variation of Information	VI	$-\sum_{i} p_{i} \log p_{i} - \sum_{j} p_{j} \log p_{j} - 2\sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{p_{i} p_{j}}$	$[0, 2\log\max(K, K')]$
5	Mutual Information	MI	$\sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{p_{ij}p_{ij}}$	$(0, \log K']$
6	Rand statistic	R	$\begin{bmatrix} \binom{n}{2} - \sum_{i} \binom{n_{i,i}}{2} - \sum_{j} \binom{n_{i,j}}{2} + 2\sum_{i,j} \binom{n_{i,j}}{2} \end{bmatrix} / \binom{n}{2}$	(0,1]
7	Jaccard coefficient	J	$ \frac{\left[\binom{n}{2} - \sum_{i} \binom{n_{i,i}}{2} - \sum_{j} \binom{n_{i,j}}{2} + 2\sum_{ij} \binom{n_{ij}}{2}\right] / \binom{n}{2}}{\sum_{ij} \binom{n_{ij}}{2} / \left[\sum_{i} \binom{n_{ii}}{2} + \sum_{j} \binom{n_{i,j}}{2} - \sum_{ij} \binom{n_{ij}}{2}\right] }$	[0,1]
8	Fowlkes and Mallows index	FM	$\sum_{ij} \binom{n_{ij}}{2} / \sqrt{\sum_{i} \binom{n_{i\cdot}}{2} \sum_{j} \binom{n_{\cdot j}}{2}}$	[0,1]
9	Hubert Γ statistic I	Γ	$\frac{\binom{n}{2}\sum_{ij}\binom{n_{ij}}{2}-\sum_{i}\binom{n_{i}}{2}\sum_{j}\binom{n_{i}j}{2}}{\sqrt{\sum_{i}\binom{n_{i}}{2}\sum_{j}\binom{n_{i}j}{2}[\binom{n}{2}-\sum_{i}\binom{n_{i}}{2}][\binom{n}{2}-\sum_{j}\binom{n_{i}j}{2}]}}$	(-1,1]
10	Hubert Γ statistic II	Γ'		[0,1]
11	Minkowski score	MS	$\sqrt{\sum_{i} \binom{n_{i}}{2} + \sum_{j} \binom{n_{\cdot j}}{2} - 2\sum_{ij} \binom{n_{ij}}{2}} / \sqrt{\sum_{j} \binom{n_{\cdot j}}{2}}$	$[0, +\infty)$
12	classification error	ε	$1 - \frac{1}{n} \max_{\sigma} \sum_{j} n_{\sigma(j),j}$	[0,1)
13	van Dongen criterion	VD	$(2n - \sum_{i} \max_{j} n_{ij} - \sum_{j} \max_{i} n_{ij})/2n$	[0, 1)
14	micro-average precision	MAP	$\sum_{i} p_i(\max_j \frac{p_{ij}}{p_i})$	(0,1]
15	Goodman-Kruskal coefficient	GK	$\sum_{i} p_i (1 - \max_{j} \frac{p_{ij}}{p_i})$	[0,1)
16	Mirkin metric	M	$\sum_{i} n_{i.}^{2} + \sum_{j} n_{.j}^{2} - 2 \sum_{i} \sum_{j} n_{ij}^{2}$	$[0,2\binom{n}{2})$

Note: $p_{ij} = n_{ij}/n$, $p_i = n_{i\cdot}/n$, $p_j = n_{\cdot j}/n$.

J. Wu and et al. Adapting the Right Measures for K-means Clustering. KDD'09, Paris, France, July 2009.

Evaluating the clustering results

Partition C

Partition P

	C_1	C_2	 $C_{K'}$	Ω
P_1	n_{11}	n_{12}	 $n_{1K'}$	n_1 .
P_2	n_{21}	n_{22}	 $n_{2K'}$	n_2 .
P_K	n_{K1}	n_{K2}	 $n_{KK'}$	n_K .
\sum	$n_{\cdot 1}$	$n_{\cdot 2}$	 $n_{\cdot K'}$	n

Contingency matrix

- Partition P: clustering result from n objects
- Partition C: actual clusters of n objects
- $n_{ij} = |P_i \cap C_j|$: number of object in P_i extracted from C_j

Evaluating the clustering results

I	C_1	C_2	C_3	М
P_1	3	4	12	19
P_2	8	3	12	23
P_3	12	12	0	24
Σ	23	19	24	66

II	C_1	C_2	C_3	Σ
P_1	0	7	12	19
P_2	11	0	12	23
P_3	12	12	0	24
Σ	23	19	24	66

Examine the results from 2 methods, namely I and II

- Partition P: clustering results from n (=66) objects
- Partition C: actual clusters of n (=66) objects
- $n_{ij} = |P_i \cap C_j|$: number of object in P_i extracted from C_j

- Evaluating the clustering results
 - Entropy (smaller is better)

$$Entropy(I) = -\sum_{i} p_{i} \left(\sum_{j} \frac{p_{ij}}{p_{i}} \log \frac{p_{ij}}{p_{i}} \right)$$

$$= -\sum_{i} \frac{n_{i}}{n} \left(\sum_{j} \frac{n_{ij}}{n_{i}} \log \frac{n_{ij}}{n_{i}} \right)$$

$$= -\frac{19}{66} \left(\frac{3}{19} \log \frac{3}{19} + \frac{4}{19} \log \frac{4}{19} + \frac{12}{19} \log \frac{12}{19} \right)$$

$$-\frac{23}{66} \left(\frac{8}{23} \log \frac{8}{23} + \frac{3}{23} \log \frac{3}{23} + \frac{12}{23} \log \frac{12}{23} \right)$$

$$-\frac{24}{66} \left(\frac{12}{24} \log \frac{12}{24} + \frac{12}{24} \log \frac{12}{24} + \frac{0}{24} \log \frac{0}{24} \right)$$

$$= ???$$

$$Entropy(II) = -\sum_{i} p_{i} \left(\sum_{j} \frac{p_{ij}}{p_{i}} \log \frac{p_{ij}}{p_{i}}\right)$$

$$= -\sum_{i} \frac{n_{i}}{n} \left(\sum_{j} \frac{n_{ij}}{n_{i}} \log \frac{n_{ij}}{n_{i}}\right)$$

$$= -\frac{19}{66} \left(\frac{0}{19} \log \frac{0}{19} + \frac{7}{19} \log \frac{7}{19} + \frac{12}{19} \log \frac{12}{19}\right)$$

$$-\frac{23}{66} \left(\frac{11}{23} \log \frac{11}{23} + \frac{0}{23} \log \frac{0}{23} + \frac{12}{23} \log \frac{12}{23}\right)$$

$$-\frac{24}{66} \left(\frac{12}{24} \log \frac{12}{24} + \frac{12}{24} \log \frac{12}{24} + \frac{0}{24} \log \frac{0}{24}\right)$$

$$= ????$$

→ What method (I or II) is better?

2. PARTITION-BASED: K-MEANS

Algorithm: *k*-means. The *k*-means algorithm for partitioning, where each cluster's center is represented by the mean value of the objects in the cluster.

Input:

- \blacksquare *k*: the number of clusters,
- \blacksquare *D*: a data set containing *n* objects.

Output: A set of k clusters.

Method:

- (1) arbitrarily choose k objects from D as the initial cluster centers;
- (2) repeat
- (3) (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster;
- update the cluster means, i.e., calculate the mean value of the objects for each cluster;
- (5) until no change;

2. PARTITION-BASED CLUSTERING

Clustering of a set of objects based on the k-means method. (The mean of each cluster is marked by a "+".)

2. PARTITION-BASED CLUSTERING

 \circ Quality of cluster C_i is measured by

$$s_i = \sum_{x \in C_i} dist(x, r_i)^2$$

• Quality of the clustering method (k clusters)

$$S = \sum_{i=1}^{k} S_i$$

• Note: $dist(x, r_i)$: the distance from object x in C_i to the centroid of r_i the cluster

=> smaller or larger is better?

- K-means' characteristics
 - Local optimization problem
 - A cluster is characterized by its center (i.e. the "mean" object)
 - ✓ How is the good value for k?
 - Complexity: O(nkt), where n is the dataset size, k is the number of clusters, t is the number of iterations (k << n, t << n)
 - Affected by noise, outliers
 - Not appropriate for clustering nonconvex clusters of those with different sizes
 - ✓ Results: hyperspherial shape clusters
 - ✓ Relatively uniform sizes

2. PARTITION-BASED CLUSTERING

Note: refer to other partitionbased methods such as PAM(kmedoids) method

Sub-optimal Clustering

- Hierarchical clustering: group objects into clusters based on hierarchy
 - Agglomerative: bottom-up
 - Divisive: top-down
- → Don't need number of clusters (i.e., k in K-Means)
- → Need a stop condition when building the tree
- → Can't turn back at each agglomeration/division step

- An agglomerative hierarchical clustering method:
 AGNES (Agglomerative NESting) → bottom-up
- A divisive hierarchical clustering method: DIANA (Divisive ANAlysis) → top-down

- AGNES (Agglomerative NESting)
 - Initiation: each object = cluster (n clusters)
 - Merge objects based on some criteria
 - Single-linkage approach: Based on the shortest distance between two objects in the two clusters C1, C2
 - Complete-linkage: Based on the longest distance between two objects in the two clusters C1, C2
 - Merging is iterated until all objects are in the same cluster

Single-linkage

Complete-linkage

Agglomeration criteria: single-linkage and complete-linkage

The process of hierarchical clustering is presented by

 \circ Measuring the distance between 2 clusters C_i and C_j

Minimum distance: $d_{min}(C_i, C_j) = min_{p \in C_i, p' \in C_j} |p - p'|$

Maximum distance: $d_{max}(C_i, C_j) = max_{p \in C_i, p' \in C_j} |p - p'|$

Mean distance: $d_{mean}(C_i, C_j) = |m_i - m_j|$

Average distance : $d_{avg}(C_i, C_j) = \frac{1}{n_i n_j} \sum_{\boldsymbol{p} \in C_i} \sum_{\boldsymbol{p}' \in C_j} |\boldsymbol{p} - \boldsymbol{p}'|$

p, p': objects in the two clusters

|p-p'|: distance between p and p'

m_i, m_i: the "mean" objects of C_i, C_i

n_i, n_i: number of objects in C_i, C_i

3. HIERARCHICAL CLUSTERING

- Some hierarchical clustering algorithms
 - BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
 - ROCK (Robust Clustering using linKs): applied to categorical/discrete attributes
 - Chameleon: using a dynamic model to identify the similarity between pair of clusters

3. HIERARCHICAL CLUSTERING

- Issues in hierarchical clustering methods
 - Need to appropriately identify the agglomeration/division point
 - Scalability: each decision on agglomeration/division must evaluate many objects
 - → We can integrate hierarchical clustering with other methods to improve the performance, scalability,...
 - → Ex., multiple-phase clustering (a kind of divide and conquer method)

- Each cluster is a dense region of objects
- Objects in the sparse regions are outliers
- The size and shape of clusters are diverse
- Some well-known algorithms
 - DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
 - OPTICS (Ordering Points To Identify the Clustering Structure)
 - DENCLUE (DENsity-based CLUstEring): based on distribution functions

Concepts

- ε: neighborhood radius of an object
- ε -neighborhood: Number of objects in the neighborhood region (defined by ε)
- Core object: is an object that satisfies (MinPts is given) ε -neighborhood $\geq MinPts$
- **Directly density-reachable**: q directly density-reachable from p if q in p's ε -neighborhood and p is a core object.

p: core object (MinPts = 3)

q: is not a core object

p: directly density-reachable from q? X

q: directly density-reachable from $p? \checkmark$

40

- Density-reachable:
 - Given a data set D, ε and MinPts
 - q density-reachable from p if \exists a chain of objects p_1 , ..., $p_n \in D$, where $p_1 = p$ and $p_n = q$ so that p_{i+1} directly density-reachable from p_i (in accordance with ε , MinPts, $1 \le i \le n$).
 - Note:
 - Transitive closure of the "directly density-reachable"
 - Asymmetric

- Density-connected:
 - Given D, ε , and MinPts
 - $p, q \in \mathbf{D}$
 - q density-connected with p if $\exists o \in D$ so that q and p are density-reachable from o.
 - Symmetric

Density reachability and density connectivity in density-based clustering

- Density based cluster: a set of objects connected with each other based on density. It consists of core objects border objects
- Noises/outliers are those do not belong to a any cluster

DBSCAN

- Input: D, ε , MinPts
- Output: density-based clusters (and noises/outliers)
- Algorithm
 - 1. Identify ε -neighborhood for each $p \in D$
 - 2. If p is a core object -> create a cluster for p
 - 3. From any core object *p*, find all *density-reachable* objects (or clusters) and put them to *p*'s cluster
 - 3.1. Density-reachable clusters can be merged
 - 3.2. Stop when there is no object can be put into clusters

MinPts = 4

DBSCAN characteristics

- Clusters' sizes and shapes are diverse
 - No consumption about the object distribution
 - Don't need initial *k* (number of clusters)
 - Initialization doesn't affect the result
 - \circ Need to defined the "density", i.e., arepsilon and MinPts
- It can help to identify noise and outliers effectively
- Complexity: $O(nlogn) \rightarrow O(n^2)$

- Optimize the fit between data and some math models
 - Assumption: Data is generated based on some probability distribution models
- Methods
 - Statistical approaches: Extension of the k-means: Expectation-Maximization (EM)
 - Machine learning approaches: conceptual clustering
 - ANN based approaches: Self-Organizing Feature Map (SOM)

5. MODEL-BASED CLUSTERING

Each cluster can be represented by a probability distribution, centered at a mean, and with a standard deviation. Here, we have two clusters, corresponding to the Gaussian distributions $g(m_1, \sigma_1)$ and $g(m_2, \sigma_2)$, respectively, where the dashed circles represent the first standard deviation of the distributions.

- Assume that data is generated based on some Gaussian models
- Each Gaussian model is parameterized by $\Theta(\mu_i, \Sigma_i)$
 - Center: μ_i
 - Variance: Σ_i (ignore)
- Find the cluster (in k ones) where x_i belongs

Combine simple models into a complex model:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 Component Mixing coefficient

$$\forall k : \pi_k \geqslant 0$$

$$\sum_{k=1}^K \pi_k = 1$$

 z_{ii} : if x_i belongs to j-th cluster

• Probability that x is x_i $p(x = x_i)$

$$p(x = x_i) = \sum_{\mu_j} p(x = x_i, \mu = \mu_j) = \sum_{\mu_j} p(\mu = \mu_j) p(x = x_i \mid \mu = \mu_j)$$
$$= \sum_{\mu_j} p(\mu = \mu_j) \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x_i - \mu_j\|_2}{2\sigma^2}\right)$$

Log-likelihood of data

$$\sum_{i} \log p(x = x_i) = \sum_{i} \log \left[\sum_{\mu_j} p(\mu = \mu_j) \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x_i - \mu_j\|_2}{2\sigma^2}\right) \right]$$

Find algorithm to Maximize Log-likelihood

5. MODEL-BASED CLUSTERING

- Expectation-Maximization (EM) algorithm
 - Is an iterative algorithm to find the *Maximum Likelihood (ML)* workable even there is missing data
 - EM consists of 2 steps:
 - Expectation step: the (missing) data are estimated given the observed data and current estimates of model parameters
 - Maximization step: The likelihood function is maximized under the assumption that the (missing) data are known

5. MODEL-BASED CLUSTERING

E-Step

$E[z_{ij}] = p(\mu = \mu_j | x = x_i)$ $=\frac{p(x=x_i \mid \mu=\mu_j)p(\mu=\mu_j)}{k}$ $\sum p(x = x_i \mid \mu = \mu_n) p(\mu = \mu_j)$ $e^{-\frac{1}{2\sigma^2}(x_i-\mu_j)^2}p(\mu=\mu_j)$ $\sum_{i=1}^{k} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu_{n})^{2}} p(\mu = \mu_{n})$

M-Step

$$\mu_{j} \leftarrow \frac{1}{\sum_{i=1}^{m} E[z_{ij}]} \sum_{i=1}^{m} E[z_{ij}] x_{i}$$

$$p(\mu = \mu_j) \leftarrow \frac{1}{m} \sum_{i=1}^m E[z_{ij}]$$

- Summarize the EM:
 - Input: **D** (**n** object), **K** clusters
 - Output: Optimal parameter Θ (μ_i , Σ_i) describing the model
 - Algorithm:
 - 1. Initiation
 - 1.1. Randomly select **K** objects as K clusters' centers
 - 1.2. Estimate the initial values for $\Theta(\mu_i, \Sigma_i)$ (if needed)
 - 2. Iterate the process of modifying $\Theta(\mu_i, \Sigma_i)$ (i.e., clusters):
 - 2.1. **E-step**: assign x_i to C_k with the probability $P(x_i \in C_k)$, where k=1..K
 - 2.2. **M-step**: Estimate $\Theta (\mu_i, \Sigma_i)$
 - 2.3. Stop when given condition/criteria is reached (e.g. ML)

After 2nd step

After 1st step

After 3rd step

After 4th step

After 6th step

After 5th step

After 20th step

6. OTHER CLUSTERING METHODS

- Hard clustering
 - Each object belongs to only 1 cluster
 - Degree of membership (DoM):
 each object to each cluster is 0 or
 1
 - Boundary: between clusters is clear
- Fuzzy clustering
 - An object can be belong to more than one cluster with the DoM from 0 to 1
 - Boundary: is vague/fuzzy

7. SUMMARY

- Clustering: to group objects into cluster based on their similarity
- Measuring similarity is based on data types
- Common approaches: partition-based, hierarchy, density-based, model-based, ...

7. SUMMARY

Cluster algorithm	Complexity	Capability of tackling high dimensional data
K-means	O(NKd) (time) O(N+K) (space)	No
Fuzzy c- means	Near O(N)	No
Hierarchical clustering*	$O(N^2)$ (time) $O(N^2)$ (space)	No
CLARA	$O(K(40+K)^2+K(N-K))^+$ (time)	No
CLARANS	Quadratic in total performance	No
BIRCH	O(N) (time)	No
DBSCAN	$O(N \log N)$ (time)	No
CURE	$O(N_{sample}^2 \log N_{sample})$ (time) $O(N_{sample})$ (space)	Yes
WaveCluster	O(N) (time)	No
DENCLUE	$O(N \log N)$ (time)	Yes
FC	O(N) (time)	Yes
CLIQUE	Linear with the number of objects, Quadratic with the number of dimensions	Yes
OptiGrid	Between $O(Nd)$ and $O(Nd \log N)$	Yes
ORCLUS	$O(K_0^3 + K_0Nd + K_0^2d^3)$ (time) $O(K_0d^2)$ (space)	Yes

R. Xu, D. Wunsch II. Survey of Clustering Algorithms. IEEE Transactions on Neural Networks, 16(3), May 20 pp. 645-678.

Dr. Tran Minh Quang -

REFERENCE

- [1] Jiawei Han, Micheline Kamber, and Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann Publishers, 2012.
- [2] David Hand, Heikki Mannila, Padhraic Smyth, "Principles of Data Mining", MIT Press, 2001.
- [3] David L. Olson, Dursun Delen, "Advanced Data Mining Techniques", Springer-Verlag, 2008.
- [4] Graham J. Williams, Simeon J. Simoff, "Data Mining: Theory, Methodology, Techniques, and Applications", Springer-Verlag, 2006.
- [5] ZhaoHui Tang, Jamie MacLennan, "Data Mining with SQL Server 2005", Wiley Publishing, 2005.
- [6] Oracle, "Data Mining Concepts", B28129-01, 2008.
- [7] Oracle, "Data Mining Application Developer's Guide", B28131-01, 2008.
- [8] Ian H.Witten, Eibe Frank, "Data mining: practical machine learning tools and techniques", 2nd Edition, Elsevier Inc, 2005.
- [9] Florent Messeglia, Pascal Poncelet & Maguelonne Teisseire, "Successes and new directions in data mining", IGI Global, 2008.
- [10] Oded Maimon, Lior Rokach, "Data Mining and Knowledge Discovery Handbook", 2nd Edition, Springer Science + Business Media, LLC 2005, 2010.

59

Q&A

quangtran@hcmut.edu.vn