Proposition 11.19. If $\dim(E)$ is finite, then we have

$$\operatorname{Ker}(f^{\top\top}) = \operatorname{eval}_E(\operatorname{Ker}(f)).$$

Proof. Indeed, if E is finite-dimensional, the map $\operatorname{eval}_E : E \to E^{**}$ is an isomorphism, so every $\varphi \in E^{**}$ is of the form $\varphi = \operatorname{eval}_E(u)$ for some $u \in E$, the map $\operatorname{eval}_F : F \to F^{**}$ is injective, and we have

$$f^{\top\top}(\varphi) = 0 \quad \text{iff} \quad f^{\top\top}(\text{eval}_E(u)) = 0$$
$$\text{iff} \quad \text{eval}_F(f(u)) = 0$$
$$\text{iff} \quad f(u) = 0$$
$$\text{iff} \quad u \in \text{Ker}(f)$$
$$\text{iff} \quad \varphi \in \text{eval}_E(\text{Ker}(f)),$$

which proves that $\operatorname{Ker}(f^{\top\top}) = \operatorname{eval}_E(\operatorname{Ker}(f))$.

Remarks: If dim(E) is finite, following an argument of Dan Guralnik, the fact that $rk(f) = rk(f^{\top})$ can be proven using Proposition 11.19.

Proof. We know from Proposition 11.11 applied to $f^{\top} \colon F^* \to E^*$ that

$$\operatorname{Ker}(f^{\top\top}) = (\operatorname{Im} f^{\top})^{0},$$

and we showed in Proposition 11.19 that

$$\operatorname{Ker}(f^{\top\top}) = \operatorname{eval}_E(\operatorname{Ker}(f)).$$

It follows (since $eval_E$ is an isomorphism) that

$$\dim((\operatorname{Im} f^{\top})^{0}) = \dim(\operatorname{Ker} (f^{\top \top})) = \dim(\operatorname{Ker} (f)) = \dim(E) - \dim(\operatorname{Im} f),$$

and since

$$\dim(\operatorname{Im} f^{\top}) + \dim((\operatorname{Im} f^{\top})^{0}) = \dim(E),$$

we get

$$\dim(\operatorname{Im} f^{\top}) = \dim(\operatorname{Im} f). \qquad \Box$$

As indicated by Dan Guralnik, if $\dim(E)$ is finite, the above result can be used to prove the following result.

Proposition 11.20. If $\dim(E)$ is finite, then for any linear map $f: E \to F$, we have

$$\operatorname{Im} f^{\top} = (\operatorname{Ker}(f))^{0}.$$