

#### **B2B32DATA – Datové sítě**

3. cvičení – strukturovaná kabeláž

## Opakování

- Datové sítě jsou tvořeny spojnicemi (přenosová media) a uzly (síťové prvky).
- Topologie způsob propojení jednotlivých uzlů.
- Přenosové médium prostředí, ve kterém se šíří elektromagnetická vlna nesoucí informaci.

# Rozdělení přenosových médií



#### Přenosová média

- Metalická vedení
  - symetrické páry (<del>NE kroucené dvoulinky NE!!!</del>)
    - telefonní páry, vnitřní rozvody budov
    - UTP, STP, FTP
  - nesymetrické páry
    - koaxiální kabely CATV, tenký Ethernet
  - silová vedení
    - současné využití i pro sdělovací účely PLC
- Optická vedení
  - optické vlákno
    - skleněná jednovidová vlákna, mnohovidová vlákna
    - plastová
  - optické směrové spoje

- Radiové prostředí
  - radioreléové směrové spoje
  - distribuční a přístupové systémy
    - FWA Fixed Wireless Access
  - mobilní sítě, družicové systémy

- Elektromagnetická vlna
  - kmitočet f,
  - vlnová délka λ
  - $c = 3 \times 10^8 \text{ m/s}$

# Strukturované kabelové rozvody

#### Strukturované kabelové rozvody (SKR)

- Neschůdnost situace co technologie/systém -> to vlastní datová síť (infrastruktura).
- Standardizované řešení univerzálního fyzického přenosového prostředí:
  - Systém kabelů, přenosových médií a jejich propojení v rámci jedné či více budov. Typicky kancelářské prostory, bytové domy.
- Pro přenos informace v různé formě:
  - Digitální, analogové.
- Pro více aplikací:
  - Nyní i v budoucnosti.

## Standardizační instituce (1/2)

#### **EIA**: Electronic Industries Alliance

- Národní průmyslová organizace výrobců elektronických zařízení, normalizace zejména na úrovni fyzické.
- Dnes ECIA (Electronic Components Industry Association, <a href="www.ecianow.org">www.ecianow.org</a>).

#### **TIA**: Telecommunications Industries Association (<u>www.tiaonline.orq</u>)

- Obchodní společnost reprezentující 900 společností v oblasti komunikačních technologií.
- V EIA/ECIA reprezentuje obor telekomunikací (normy EIA/TIA rozhraní, kabeláže).

#### Pro oblast telekomunikací:

**ANSI**: American National Standards Institute (<u>www.ansi.org</u>)

- Národní organizační instituce USA.
- Dobrovolné normy, koordinace jejich vývoje, zastupuje USA v ISO a IEC.
- Pro síťovou oblast normy spodních vrstev OSI.

#### **ETSI**: European Telecommunication Standards Institute (<u>www.etsi.org</u>)

Normy pro oblast telekomunikací.

## Standardizační instituce (2/2)

#### **ITU**: International Telecommunications Union (<u>www.itu.int</u>)

- Základní normalizační orgán pro oblast telekomunikací.
- Založena v Paříži 1865 (CCITT), reorganizace 1993.
- Tři sektory:
  - ITU-R: Radiokomunikační sektor.
  - ITU-T: Telekomunikační normalizační sektor.
  - ITU-D: Sektor rozvoje telekomunikací.

# **IEEE**: Institute of Electrical and Electronics Engineers (<a href="www.ieee.org">www.ieee.org</a>, standards.ieee.org)

- Mezinárodní společnost profesionálů vyvíjejících normy pro elektrotechniku.
- Mj. normy pro LAN (IEEE 802) či Wi-Fi, WiMAX.

#### **Důležité standardy SKR**

TIA/EIA 568 A (zastaralý, 1995)

TIA/EIA 568 D (2016) základní standard – definuje parametry kabelů, výkonnostní kritéria

TIA/EIA 569 B (2012)

telekomunikační prostory a řešení pokládky

TIA/EIA 606 B (2012)

správa a administrace SKR

TIA/EIA 607 B (2011) uzemnění, stínění, řešení souběhových silových rozvodů

#### **ANSI/EIA/TIA-568**

#### Účel

- obecná komunikační infrastruktura pro přenos datových a hlasových služeb nezávislá na konkrétním typu a výrobci zařízení
- poskytuje směr ve vývoji a návrhu telekomunikačních zařízení a kabelážních systémů pro použití v komerčních aplikacích
- plánování a instalaci SKR v komerčních budovách s cílem podpory nejrozličnějších aplikací, jak teď, tak v budoucnosti
- výkonnostní a technická kritéria pro různé typy kabelů a propojovacího hardwaru

#### Zaměření

- specifikace jsou určené pro telekomunikační infrastrukturu s kancelářským zaměřením, ne pro datové rozvody obytných domů apod.
- specifikují kabelážní systémy o kterých se předpokládá doba života min. 10 let
- specifikace oslovují:
  - používané typy medií
  - propojovací hardware
  - kritéria výkonnosti kabeláže
  - fyzickou topologii kabeláže
  - délky kabelů v různých úrovních sítě
  - zásady při instalaci
  - uživatelské rozhraní k síti
  - kritéria kvality a testování fyzické přenosové cesty

## Pojmy SKR (1/3)

- rozvaděč areálu budov CD (Campus Distributor),
- páteřní rozvody v areálu budov,
- hlavní rozvaděč budovy BD (Building Distributor),
- páteřní kabelové rozvody v budově, někdy nazývané také jako vertikální kabelové rozvody (Vertical Cabling),
- rozvaděč podlaží či patra budovy FD (Floor Distributor),
- horizontální kabelové rozvody v rámci jednoho podlaží budovy (Horizontal Cabling),
- konsolidační propojovací bod CP (Consolidation Point),
- konsolidační propojovací kabel,
- prostá uživatelská datová zásuvka TO (Telecommunication Outlet)



#### Pojmy SKR (2/3)

- Páteřní kabeláž (backbone):
  - vnější kabely mezi budovami
  - kabely vnitřních rozvodů v budově
    - s konektory (Patchcords)
    - bez konektorů (Jumpers)
  - hvězdicová topologie
  - hlavní rozvaděč budovy
    - (MCC Main Cross-connect)
  - mezilehlý rozvaděč
    - (ICC IntermediateCrossconnect)

#### Horizontální kabeláž:

- kabely vnitřních rozvodů v budově
- hvězdicová topologie
- horizontální rozvaděč
  - (HCC Horizontal Cross-connect)
- přechodový rozvaděč
  - (TP Transition Point)
- konsolidační bod
- horizontální kabel
- telekomunikační zásuvka-konektor
  - (TO Telco Outlet)

### Pojmy SKR (3/3)

#### Technické prostory:

- Technický prostor oblasti vstupu kabeláže do budovy EF (Entrance Facility),
- technické prostory telekomunikačních zařízení ER (Equipment Rooms),
- technické prostory pasivních kabelových rozvaděčů TC (Telecommunication Closets).

#### Pracovní prostor uživatele WA (Work Area):

- víceuživatelský ukončovací zásuvkový stavebnicový systém (multi–user TO assembly),
- prostá uživatelská datová zásuvka TO (Telecommunication Outlet).

## Vymezení prvků SKR



## Horizontální systém kabeláže

- topologie pokládky kabelů horizontální kabeláže má být hvězdicová,
- každá zásuvka je napojená prostřednictvím horizontálního kabelu k horizontálnímu rozvaděči HCC, který je umístěn v telekomunikační místnosti TC.



#### Pracovní oblast



- je to oblast nebo místo, kde zásuvka tvoří rozhraní mezi konkrétním zařízením uživatele a vlastní kabeláží,
- normálně se předpokládá, že nebudou přípojné kabely delší než 3 m (max. však 6 m)

## Komponenty pro realizaci SKR

#### Fyzický kanál a klasifikace kabelového rozvodu do tříd

#### Proč fyzický kanál?

- přenosové parametry lze měřit pro každou komponentu SKR zvlášť,
- přenosové parametry však definuje nejhorší prvek zapojený v sérii,
- podstatné je tedy, jak "vidí" dané spojení v SKR koncová zařízení.

#### Fyzický kanál:

- Parametry fyzického kanálu jsou dělícím kritériem SKR.
- V daném kabelovém subsystému se určují parametry fyzického kanálu z pohledu koncových aktivních zařízení.
- Parametry zahrnují vždy všechny úseky pevně instalovaných kabelů, propojovacích kabelů v rozvaděčích, konektorů, přípojných kabelů uživatele, atd.

# Měření parametrů fyzického kanálu lze provést na více úrovních kabelového rozvodu, jmenovitě:

- mezi areálovými rozvaděči,
- mezi BD a FD rozvaděči,
- mezi FD a telekomunikační zásuvkou,
- na sekvenci spojení dané předchozími možnostmi.

## Typy fyzických kanálů

| kategorie | pásmo, rychlost                   |
|-----------|-----------------------------------|
| CAT 1     | analog. telefon                   |
| CAT 2     | digit. telefon 1 Mbit/s           |
| CAT 3     | 16 MHz, 4 Mbit/s                  |
| CAT 4     | 20 MHz, 16 Mbit/s                 |
| CAT 5     | 100 MHz, 100 Mbit/s               |
| CAT 5e    | 100 MHz, 1Gbit/s (CAT 5 enhanced) |
| CAT 6     | 250 MHz, 10 Gbit/s                |
| CAT 7     | 600 MHz, 10 Gbit/s                |
| CAT 8     | 1,6-2 GHz, 40 Gbit/s              |

#### Telekomunikační zásuvky pro SKR



- Zástrčka s 8 kontakty podle IEC 603-7.
- Přiřazení kontaktů a párů podle T568A.
- Možné také přiřazení podle T568B (většinou se v praxi používá).
- Min. 750 rozpojení a spojení.







# Modulární zásuvky













#### Zapojení na konektoru RJ-45



# Zapojení na konektoru RJ-45 (8P8C = 8 position 8 contact)







#### **Konektory pro SKR**

• Standardizované konektory typu RJ (Registered Jack) – RJ45.



#### Konektory typu RJ

- Celá řada těchto konektorů, mají 10, 8, 6, 4 kontaktů.
- Nejčastěji nazývané a používané RJ11 (6 kontaktů), RJ22 (4 kontakty), RJ45 (8 kontaktů).

| RJ-XX    | Wiring              | Туре                                      | Pin positions |  |  |
|----------|---------------------|-------------------------------------------|---------------|--|--|
| RJ-ICX   | Single tie trunk    | Type I or II E&M interface                | 8             |  |  |
| RJ-IDC   | Single-line, 4-wire | T/R, T1/R1                                | 6             |  |  |
| RJ-11C/W | Two-line, two-wire  | T/R                                       | 6             |  |  |
| RJ-14C/W | Two-line, two-wire  | T/R, T(MR)/R(MR), T(OPS)(/R(OPS)          | 6             |  |  |
| RJ-14X   | Two-line            | T/R, T2/R2 with sliding cover             | 6             |  |  |
| RJ-15C   | Single-line         | T/R, weatherproof                         | 3             |  |  |
| RJ-17C   | Single-line         | T/R, used in hospital critical care areas | 6             |  |  |

#### Typy kabelů

- Žíla:
  - Lanko (licna) lepší mechanické, horší přenosové vlastnosti.
  - Drát horší mechanické, lepší přenosové vlastnosti.
- Stínění:
  - U (Unshielded) nestíněné.
  - S (Screened Shielded ) stíněné opletením.
  - F (Foil Shielded) stíněné folií.



# Rychlosti v Ethernetu – celkový přehled

| The Evolution of Ethernet Standards to Meet Higher Speeds |           |                       |           |                                   |  |  |  |
|-----------------------------------------------------------|-----------|-----------------------|-----------|-----------------------------------|--|--|--|
| Date                                                      | IEEE Std. | Name                  | Data Rate | Type of Cabling                   |  |  |  |
| 1990                                                      | 802.3i    | 10BASE-T              | 10 Mb/s   | Category 3 cabling                |  |  |  |
| 1995                                                      | 802.3u    | 100BASE-TX            | 100 Mb/s* | Category 5 cabling                |  |  |  |
| 1998                                                      | 802.3z    | 1000BASE-SX           | 1 Gb/s    | Multimode fiber                   |  |  |  |
|                                                           | 802.3z    | 1000BASE-LX/EX        |           | Single mode fiber                 |  |  |  |
| 1999                                                      | 802.3ab   | 1000BASE-T            | 1 Gb/s*   | Category 5e or higher Category    |  |  |  |
| 2003                                                      | 802.3ae   | 10GBASE-SR            | 10 Gb/s   | Laser-Optimized MMF               |  |  |  |
|                                                           | 802.3ae   | 10GBASE-LR/ER         |           | Single mode fiber                 |  |  |  |
| 2006                                                      | 802.3an   | 10GBASE-T             | 10 Gb/s*  | Category 6A cabling               |  |  |  |
| 2015                                                      | 802.3bq   | 40GBASE-T             | 40 Gb/s*  | Category 8 (Class I & II) Cabling |  |  |  |
| 2010                                                      | 802.3ba   | 40GBASE-SR4/LR4       | 40 Gb/s   | Laser-Optimized MMF or SMF        |  |  |  |
|                                                           | 802.3ba   | 100GBASE-SR10/LR4/ER4 | 100 Gb/s  | Laser-Optimized MMF or SMF        |  |  |  |
| 2015                                                      | 802.3bm   | 100GBASE-SR4          | 100 Gb/s  | Laser-Optimized MMF               |  |  |  |
| 2016                                                      | SG        | Under development     | 400 Gb/s  | Laser-Optimized MMF or SMF        |  |  |  |
| Note: *with auto negotiation 28                           |           |                       |           |                                   |  |  |  |

## Přenos napájecího napětí PoE – Power Over Ethernet

#### **Vybrané vlastnosti**

- Napětí 44–57 V.
- Maximální proud 550 mA.
- Typický proud 10–350 mA.



## PoE: příklady zapojení konektoru RJ45

| Pins at switch | T568A color         | T568B color         | 10/100 mode B,<br>DC on spares |      | 10/100 mode A,<br>mixed DC & data |      | 1000 (1 gigabit) mode B,<br>DC & bi-data |      | 1000 (1 gigabit) mode A,<br>DC & bi-data |      |
|----------------|---------------------|---------------------|--------------------------------|------|-----------------------------------|------|------------------------------------------|------|------------------------------------------|------|
| Pin 1          | White/green stripe  | White/orange stripe | Rx +                           |      | Rx +                              | DC+  | TxRx A +                                 |      | TxRx A +                                 | DC + |
| Pin 2          | Green solid         | Orange solid        | Rx -                           |      | Rx -                              | DC+  | TxRx A -                                 |      | TxRx A -                                 | DC + |
| Pin 3          | White/orange stripe | White/green stripe  | Tx +                           |      | Tx +                              | DC - | TxRx B +                                 |      | TxRx B +                                 | DC - |
| Pin 4          | Blue solid          | Blue solid          |                                | DC + | Unused                            |      | TxRx C+                                  | DC + | TxRx C +                                 |      |
| Pin 5          | White/blue stripe   | White/blue stripe   |                                | DC + | Unused                            |      | TxRx C -                                 | DC + | TxRx C -                                 |      |
| Pin 6          | Orange solid        | Green solid         | Tx -                           |      | Tx -                              | DC - | TxRx B -                                 |      | TxRx B -                                 | DC - |
| Pin 7          | White/brown stripe  | White/brown stripe  |                                | DC - | Unused                            |      | TxRx D +                                 | DC - | TxRx D +                                 |      |
| Pin 8          | Brown solid         | Brown solid         |                                | DC - | Unused                            |      | TxRx D -                                 | DC - | TxRx D -                                 |      |

#### Měření parametrů horizontální kabeláže



# Přehled měřených přenosových parametrů fyzického kanálu pro met. kabely

- Útlum odrazu
  - jen pro třídy C a vyšší měření se provádí dle normy ČSN EN 50346
- Vložný útlum
  - měření s provádí dle normy ČSN EN 50346
- Útlum přeslechu na blízkém konci (NEXT)
  - měření se musí provést na obou koncích fyzického kanálu
- Odstup od celkových přeslechů na blízkém konci (PSNEXT)
  - měří se jen pro třídy D a vyšší
- Odstup signálu od přeslechu NEXT (ACR)
  - měří se na obou koncích kanálu
- Odstup signálu od celkových přeslechů NEXT (PSACR)
  - jen pro třídy D a vyšší měří se na obou koncích
- Odstup od přeslechu na vzdáleném konci (ELFEXT)
  - jen pro třídy D a vyšší
- Odstup od celkových přeslechů na vzdáleném konci
  - (PSELFEXT) jen pro třídy D a vyšší
- Hodnota odporu smyčky
- Nesymetrie odporů
  - obou vodičů smyčky pro všechny třídy nesmí překročit 3%
- Stejnosměrný napájecí proud
  - podle normy ČSN EN 50173-1 z roku 2002 má být schopen jeden pár dodávat koncovému zařízení dle potřeby minimálně 0,175 A, platné pro třídy D a vyšší
- Minimální stejnosměrné napětí
  - které musí libovolné vodiče mezi sebou podporovat je 72V
- **Zpoždění průchodu signálu** (Propagation Delay)
- Rozdíl zpoždění průchodu signálu (Propagation Delay Skew)
- Útlum nesymetrie na blízkém konci (LCL)
- a další.....