Recitation Note

TA: Kailong Wang

Chapter 1: Set Theory, Probability, and Single Experiment

1. From Set Theory to Probability (of the single experiment)

(a)

Set Theory	Probability
Element	Outcome
Subset	Event
Universal Set	Sample Space

- (b) $\mathbb{P}(Outcome)$ =the possibility that the outcome appears in the sample space. Outcomes are always **Mutually Exclusive**.
- (c) $\mathbb{P}(Event)$ =Event constitutes by different combinations of outcomes, including *null set* and the whole sample space.
- (d) Apparently, $\mathbb{P}(\emptyset) = 0$ since there is no element in *null set*, and $\mathbb{P}(\text{Sample Space}) = 1$
- 2. Probability Properties
 - (a) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
 - (b) Mutually Exclusive: $\mathbb{P}(A \cap B) = 0$ so that $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$
 - (c) Collectively Exhaustive: $\mathbb{P}(A \cup B) = 1$
 - (d) Partitions: $\mathbb{P}(\bigcup_{i=1}^{N} A_i) = \sum_{i=1}^{N} \mathbb{P}(A_i) = 1$
- 3. Conditional Probability
 - (a) $\mathbb{P}(\mathbf{A}|\mathbf{B}) = \frac{\mathbb{P}(\mathbf{A}\mathbf{B})}{\mathbb{P}(\mathbf{B})}$
 - (b) If A_i are Mutually Exclusive: $\mathbb{P}(\mathbf{A}|\mathbf{B}) = \sum_{i=1}^n \mathbb{P}(\mathbf{A_i}|\mathbf{B})$
 - (c) If B_i are Partitions of A: $\mathbb{P}(\mathbf{A}) = \sum_{i=1}^m \mathbb{P}(\mathbf{A} \cap \mathbf{B_i}) = \sum_{i=1}^m \mathbb{P}(\mathbf{A}|\mathbf{B_i})\mathbb{P}(\mathbf{B_i})$ Law of Total Number
- 4. Baye's Theorem: $\mathbb{P}(\mathbf{A}|\mathbf{B}) = \frac{\mathbb{P}(\mathbf{B}|\mathbf{A})\mathbb{P}(\mathbf{A})}{\mathbb{P}(\mathbf{B})}$
- 5. Independent: $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ so that $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A)\mathbb{P}(B)$

Chapter 2: Sequential Experiments

- 1. Tree Diagrams
- 2. Counting Methods
 - (a) Multiplication: $n \times k_1 \times k_2 \times \dots$
 - (b) Sampling without Replacement
 - i. Permutation: $\frac{n!}{(n-k)!}$
 - ii. Combination: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- iii. Combination is Permutation without order. Combination is also called n choose k.
- (c) Sampling with Replacement: n^k
- (d) Multiple Combination: $\binom{n}{k_1,k_2,...,k_m}=\frac{n!}{k_1!k_2!...k_m!}$ where $n=\sum_{i=1}^m k_i$
- (e) Multiple Permutation?
- 3. Independent Trails
 - (a) Theorem 2.8: The Probability of n_0 failures and n_1 successes in $n = n_0 + n_1$ Independent Trails with success rate p is

$$\mathbb{P}(n_0, n_1) = \binom{n}{n_1} (1-p)^{n_0} p^{n_1} = \binom{n}{n_0} (1-p)^{n_0} p^{n_1}$$

- (b) Theorem 2.9: $n = n_0 + n_1 + \ldots$ and success rates are p_0, p_1, \ldots
- 4. Reliability Analysis
 - (a) Components in series
 - (b) Components in parallel

Chapter 3: View Graphs

- 1. Discrete Random Variables: Assign numerical value to outcomes
- 2. Probability Mass Function: $\sum_{x \in X} \mathbb{P}_X(x) = 1$