Maggiorauti, minoranti, INF, SUP, MAX, MIN

Def. Sia A = R un sottoinsieur non vuoto.

- Si dice che un numero M∈ R è un MAGGIORANTE di A se
 a ≤ M ∀ a ∈ À (M sta a dx di A)
- si dice che un numero m E R è un MINORANTE di A se m < a Ya E A (m sta a sx di A)

Def. L'insieure ASIR si dice

ANALISI

- · limitato superionnente se existe almeno un maggiorante
- o " cuferionnente " " " minorante
- · <u>Dimitats</u> se esiste almens un maggiorante e almens un minorante
- Oss. I maggioranti non sono obbligati ad esistere. Quando esistere non sono unici (se Hè un maggiorante di A, allora anche M+1 6 M+2024 sono maggioranti di A).
 Iden per i minoranti
- Esempi (2) A = { x \in \mathbb{R} ! x > 0}

 Nou ha nessur maggiorante (nou esiste nessur

 reale H che è più grande di tertti i positivi)

 Turrece tertti i reali m < 0 sono minoranti di A

 Quindi A è limitato inferiormente ma mon

 superiormente.
 - (2) A = { x ∈ R : x ≥0}
 Stesso discorso di sopra. Ju particolare, lutti gli
 m ≤0 Souo univeranti.

Intuitivamente: i maggioranti, quando esistoro, sono le
barriere dell'alto per A, i minoranti quelle
dal basso.
Dep. (Massius) Sia A S R un sollo insième non vuolo.
51 dice che MER & il massimo di A, e si scrive
$M = u \propto \Delta$
Se la
(1) a < M Va & A (cioè Mè un maggiorante)
(i) MEA (M sta iu A)
Def. (minimo) Sia $m = min A se$
CI) WEA YAER
(ii) me A (m sta in A)
Oss. Massimo e minimo non sono obbligati ad esistere, ma
quaudo esistono sono mici.
Occhio: marsimo e minimo possono non esistere anche
se A è limitato
Esempi (1) A = { x ∈ R: 2 < x ≤ 4 }
(2) B = { x ∈ R: x < 2 }
③ C = { x ∈ R: x ≥ 42}
-> L'insieme A à Dimitato cufériormente e superiormente
(un maggiorante è 25, un minorante è -7)
Max A = 4 will A NON ESISTE
-> L'insieure B à limitato super, ma non infériormente
Max B e min B man esistano
-> L'avrieure C è limitabo aufer, mes non superionnemente
Max C non esiste unin C = 42

- Def. (Estremo superiore) Sia ASR un sottoinsieme non vuoto · Se A vou à limitato superionneule si pour per definizione sup $A = +\infty$ · Se A à limitato superioremente, allora si pour per defin. sup A = minimo dei maggioranti di A Def. (Aualogamente) Sia A come sopra · Se A uou à Dimitato rufer., s'i pour per defin. iuf A = - 00 ■ Se À à Dimitato inferiormente, allora si pour per defin. iug A = massimo dei minoranti di A Esempi Siano A.B.C come sopra -> I maggioranti di A sono tutti i numeri 2 4 M > 4, quiudi sup A = 4 I univoranti di A sono tutti i unueri un < 2, quindi ing A = massimo dei minoranti = 2 → I maggioranti di B sono terti gli M≥2 quiudi sup B = minimo dei maggioranti = 2 Juvere cuf B = -00 perché usu esistous minoranti -> sup C = +00 e inf C = min C = 42 per gei skosi motivi.
- Teorema Se A S IR è uou vuoto, allora sup A e vuf A esistous per forza (e sous unici, eventualmente ± ∞)

Div. vel caso del sup Voglio divostrare de sup esiste, · Se uou esistous maggioranti, allora sup X = 100 per defin. · Supponiano quindi che esistano dei maggioranti, e chiamiamo B l'insieure dei maggioranti di A. Allora A sta a sx di B (squi elemento di A è più piccolo di ogni maggiorante) l'arrioura di confinuntà ci dice che esiste alueur un c e IR tale che → a < c da e A (cioè c è un maggiorante, quiudi ceB) -> C < b Y b < B (c è più picedo di tutti i maggioranti) Quindi C = min B che per définisione è il sup di A. Esercizio Ripetere la dimostravione nel caso dell'inf. Oss. Questo è un punto en cui IR si distingue da Q <u>Esempio</u> Consideriamo A = { q ∈ Q : q > 0 e q² < 2} B = { q & Q : q > 0 e q2 > 2 } 51 pohebbe dimostrare du • A è a sivistra di B (se a>o e b>o, allora a² < b² ∈ > a < b) · se ci fosse un c E Q in merzo, que sto done bbe verificane c² = 2 (bisognerable dimostrare du se c²<2, allora esiste q>c t.c. q2 < 2, e se c2>2 allora esiste q < e $cou q^2 > 2)$ · non esiste CEQ tale du c2=2 Fate que se verifiche, vieue fuoi che in @ gli insiemi A e Busu aumettous un separatore c e Q.

