МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №2

по дисциплине: Теория автоматов и формальных языков тема: «Преобразования КС-грамматик.»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Рязанов Юрий Дмитриевич

Лабораторная работа №2

Преобразования КС-грамматик. Вариант 8

Цель работы: изучить основные эквивалентные преобразования КС-грамматик и научиться применять их для получения КС-грамматик, обладающих заданными свойствами.

Задание:

- 1. $T \rightarrow abETP$
- $2. T \rightarrow aDE$
- $3. T \rightarrow D$
- 4. $D \rightarrow DTAb$
- 5. $D \rightarrow b$
- 6. $E \rightarrow \varepsilon$
- 7. $P \rightarrow BCa$
- 8. $P \rightarrow Cb$
- 9. $C \rightarrow abC$
- 10. $A \rightarrow Bbb$
- 11. $B \rightarrow aECb$
- 12. $B \rightarrow D$
 - 1. Преобразовать исходную грамматику G в грамматику G_1 без лишних символов. **Модификации:** в ходе выполнения лабораторной работы обнаружено, что в грамматике не будет недостижимых символов. Поэтому добавим правило:

13.
$$S \rightarrow ab$$

Найдём в исходной грамматике бесплодные нетерминалы.

Для начала найдём продуктивные нетерминалы.

В множество продуктивных нетерминалов Р включаем нетерминал D (правило 5) нетерминал E (правило 6) и нетерминал S (правило 13). Получаем $= \{D, E, S\}$. Повторяем проверку и включаем нетерминал T (правило 2) и нетерминал B (правило 12). Получаем $P = \{D, E, S, T, B\}$

Повторяем проверку и включаем A (правило 10). Получаем $P = \{D, E, S, T, B, A\}$ Множество P больше увеличить не можем.

Из множества нетерминалов исключаем продуктивные нетерминалы и получаем $\{P,C\}$ - множество бесплодных нетерминалов.

Исключаем правила 1, 7, 8, 9, 11 так как они содержат бесплодные нетерминалы. Получаем грамматику:

- 2. $T \rightarrow aDE$
- 3. $T \rightarrow D$
- 4. $D \rightarrow DTAb$

5.
$$D \rightarrow b$$

6.
$$E \rightarrow \varepsilon$$

10.
$$A \rightarrow Bbb$$

12.
$$B \rightarrow D$$

13.
$$S \rightarrow ab$$

Найдём достижимые символы.

Положим $P = \{T\}$, где T - начальный нетерминал.

Включим в список a, D, E (правило 2). $P = \{T, a, D, E\}$.

Включим в список b, A (правило 4), ε . $P = \{T, a, D, E, \varepsilon, b, A\}$.

Включим в список В (правило 10). $P = \{T, a, D, E, \varepsilon, b, A, B\}$.

Множество Р больше увеличить не можем.

Из множества терминалов и нетерминалов исключаем достижимые терминалы и нетерминалы и получаем $\{S\}$ - множество недостижимых нетерминалов и терминалов.

Исключаем из грамматики правило 13, так как оно содержит недостижимый символ.

Искомая грамматика G_1 :

1.
$$T \rightarrow aDE$$

$$2. T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

2. Преобразовать грамматику G_1 в грамматику G_2 без ε -правил.

Выберем правило 5. Иключаем из правой части каждого правила исходной грамматики всеми возможными способами вхождение нетерминала Е. Полученные правила добавляем в множество правил грамматики.

$$1_1. T \rightarrow aDE$$

1 2.
$$T \rightarrow aD$$

$$2.T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

$$4. D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

Исключаем из списка правил правило 5.

1 1.
$$T \rightarrow aDE$$

$$1_2. T \rightarrow aD$$

2.
$$T \rightarrow D$$

$$3. D \rightarrow DTAb$$

```
4. D \rightarrow b
```

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow D$$

Исключим из правил непродуктивные символы:

1_2.
$$T \rightarrow aD$$

$$2.T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow D$$

В полученной грамматике G_2 нет правил вида $A \to A$, одинаковых правил и ε -правил.

3. Преобразовать грамматику G_1 в грамматику G_3 без цепных правил.

Исключим из грамматики все нецепные правила. Это правила 1, 3, 4, 5, 6.

$$2. T \rightarrow D$$

7.
$$B \rightarrow D$$

Примем множества $M^T=\{T\}$. Включим нетерминал D в множество M^T , так как есть правило 2 $T\to D$. $M^T=\{T,D\}$. Больше в M^T ничего добавить не можем. Исключаем T: $M^T=\{D\}$.

Примем множества $M^B=\{B\}$. Включим нетерминал D в множество M^T , так как есть правило 7 $B\to D$. $M^B=\{B,D\}$. Больше в M^T ничего добавить не можем. Исключаем B: $M^B=\{D\}$.

Исключаем из грамматики G_1 все цепные правила:

1.
$$T \rightarrow aDE$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

Для правила 3 добавим правило 3_1. $T \to DTAb$, так как D принадлежит $M^T = \{D\}$.

Для правила 3 добавим правило 3_2. $B \to DTAb$, так как D принадлежит $M^B = \{D\}$.

Для правила 4 добавим правило 4_1. $T \to b$, так как D принадлежит $M^T = \{D\}$. Для правила 4 добавим правило 4_2. $B \to b$, так как D принадлежит $M^B = \{D\}$.

Искомая грамматика G_3 : 1. $T \to aDE$

3.
$$D \rightarrow DTAb$$

$$3_1. T \rightarrow DTAb$$

$$3_2. B \rightarrow DTAb$$

$$4.D \rightarrow b$$

4 1.
$$T \rightarrow b$$

$$4^{-}2. B \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6. $A \rightarrow Bbb$

Вывод: в ходе лабораторной работы изучили основные эквивалентные преобразования КС-грамматик и научились применять их для получения КС-грамматик, обладающих заданными свойствами.