5) Combination of thin lenses:

- (1) The image formed by the 1st lens acts as a *real object* for the 2nd lens.
- (2) The image formed by the 1st lens acts as a *virtual object* for the 2nd lens.
- (3) Two lenses in contact \Rightarrow $1/f' = 1/f_1 + 1/f_2$

6) Mirror-Lens Combination:

• Sign convention for mirrors:

	p	q	f, R	M (= -q/p)
+	real object	real image	concave	upright
_	virtual object	virtual image	convex	inverted

• Sign conventions for thin lenses :

	р	q	$R_1 \& R_2$	f
+	real object (front of lens)	real image (back of lens)	C is in back of lens	converging
_	virtual object (back of lens)	virtual image (front of lens)	C is in front of lens	diverging

36.5 Lens aberrations

<u>Aberrations</u>: the departures of actual images from the ideal.

(a) Spherical aberrations [cf. Paraxial rays]

• This results from the focal points of light rays far from the principal axis being different from the focal points of rays passing near the axis

(b) Chromatic aberrations [cf. Dispersion $n(\lambda)$]

- Different wavelengths of light refracted by a lens focus at different points.
- Chromatic aberration can be minimized by the use of a combination of converging and diverging lenses made of different materials.

36.6 Optical instruments

- 1) The eye.
- 2) Simple magnifier: (consists of a single converging lens).

• Angular magnetification *m*:

$$m = \theta / \theta_o$$

⇒ the ratio of the angle an object subtends when seen through a lens to the angle subtended when it's at the 25-cm near point and viewed with the naked eye.

•
$$m = \theta / \theta_o = 25 \text{ cm} / f$$

(simple magnifier)

3) Microscope:

Diagram of a compound microscope, which consists of an *objective lens* and an *eyepiece lens*.

 I_1 : real, inverted image.

 $I_1 = O_2$: real object.

 I_2 : virtual, inverted image.

4) Telescope: (i) Refracting telescope (A combination of lenses).
(ii) Reflecting telescope (A curved mirror and a lens).

Lens arrangement in a refracting telescope, with the object at infinity.

A Newtonian-focus reflecting telescope.

Ch. 37 Interference of light waves

37.1 Interference

- Conditions for interference:
 - 1) The sources must be <u>coherent</u>, *i.e.* constant phase relationship.
 - 2) The sources must be monochromatic, i.e., a single λ .

The light waves from the two slits overlap as they spread out, filling what we expect to be shadowed regions with light and producing interference fringes on a screen placed to the right of the slits.

• Diffraction: the divergence of light from its initial line of travel (more detail in Ch. 38).

37.2 Young's double-slit experiment

Thomas Young's sketch of double-slit experiment. Young presented the results of this experiment to the Royal Society in 1803. \Rightarrow <u>Proof of the wave nature of light!</u>

- (a) Constructive interference occurs at point P when the waves combine.
- (b) Constructive interference also occurs at point Q.
- (c) Destructive interference occurs at R when the two waves combine because the upper wave falls half a wavelength behind the lower wave.