慶應義塾大学試験問題 物理学 D

2010年1月23日(土) 3 時限(試験時間 50分) 持込み不可. 問題用紙回収不要. 担当者 小原, 神成, 高野、日向

注意:「求めなさい。」と指示している場合には、答案には結果のみならず、それを導いた過程についても記すこと。万一与えられた条件だけでは解けない場合には、適当な量を定義したり、条件を明記した上で解いてよい。ただし、真空の誘電率 ε_0 、透磁率 μ_0 は断りなしに使ってよい。

- 問題 ${\bf A}$ 球コンデンサーを考える。内部の極板は半径 a、外部の極板は半径 b(b>a) の金属球殻であり中心を共通とする。中心からの距離を r とし、a< r< b には誘電率が $\varepsilon(r)=A/r^3$ の誘電体がぎっしり詰まっているとする。ここで A は正の定数である。
 - (1) 内部の極板に電荷 Q, (Q>0) を、外部の極板に -Q を与える。位置 r (a < r < b) での電 東密度の大きさを求めなさい。
 - (2) 位置r(a < r < b) での電界ベクトルの大きさを求めなさい。
 - (3) 極板間の電位差を求め、電気容量を求めなさい。
 - (4) 位置 r(a < r < b) での静電エネルギー密度をrの関数で表し、それを体積積分することで全静電エネルギーを求めなさい。
- 問題 ${\bf B}$ 図のように無限に広い 2 枚の平板極板 ${\bf I}$ ${\bf E}$ ${\bf II}$ が間隔 ℓ あけて平行に配置されている。これらは半径 ${\bf a}$ の導線でつながり、その導線を半径 ${\bf a}$ から半径 ${\bf b}$ の間で、透磁率 ${\bf \mu}$ の (電流を通さない) 磁性体が取り囲んでいる。これらの中心軸からの距離を ${\bf r}$ とする。極板 ${\bf I}$ の電位は ${\bf V}$ $({\bf V}>0)$ であり、極板 ${\bf II}$ の電位は ${\bf 0}$ である。導線の抵抗は ${\bf R}$ である。なお、透磁率 ${\bf \mu}$ は温度によらず一定であるとする。
 - (1) 導線を流れる電流、a < r < bおよびb < rでの磁界の強さおよび磁束密度の大きさを求めなさい。また、どの方向を向いているか記しなさい。
 - (2) ポインティング・ベクトルの大きさをa < r < bおよびb < rで求めなさい。またどの方向を向いているか記しなさい。
 - (3) 外部から磁性体に流れ込む単位時間当たりの全エネルギーを(2) の結果を用いて求めなさい。同様に導線に流れ込む単位時間当たりの全エネルギーを求め、それが何に対応するか述べなさい。

- 問題 C 半径 b の円形の N 巻きコイル 1 と、このコイル 1 の中心軸とソレノイド 2 の中心軸が一致 するようにしてある。このソレノイド 2 は半径が a で、単位長さあたり n_2 巻きであり、半径 a で透磁率 μ の(電流を通さない)磁性体が詰まっている。a < b とする。
 - (1) ソレノイド 2 に電流 I_2 を流した場合、このソレノイド内の磁束密度を求めなさい。
 - (2) これより、ソレノイド 2 と円形コイル 1 との間の相互インダクタンス L_{12} および単位長さ 当たりのソレノイドの自己インダクタンス \mathcal{L}_{22} を求めなさい。 \mathcal{L}_{22} \mathcal{L}_{22} \mathcal{L}_{22} \mathcal{L}_{22} \mathcal{L}_{22} \mathcal{L}_{22} \mathcal{L}_{23} \mathcal{L}_{34} \mathcal{L}_{35} \mathcal
 - (3) ソレノイド2の電流を一定の割合 $dI_2/dt=\beta$ で増していく。このときコイル1に流れる電流を求めなさい。ただし、コイル1の全抵抗をRとする。

- 問題 D 以下の問では、 $a,b,c,d,e,f,g,\beta,\lambda$ は定数とする。また、x,y,z,tは空間座標および時間である。E,Bは電界ベクトルおよび磁束密度とし、真空のマクスウェル方程式にしたがって、各間に答えなさい。
 - (1) E = (ax, 0, bz) である場合、電荷密度 ρ は何か。
 - (2) $\mathbf{B} = (cx, dy, 0)$ とする場合、c, d の間にはどのような関係があるか。
 - (3) E=(ey,fx,0), $B=(0,0,\beta t)$ である場合、 e,f,β の間にはどのような関係があるか。
 - (4) $E = (0,0,\lambda t),$ B = (gy,0,0) である場合、電流密度 i は何か。
- 問題 ${f E}$ 誘電率 ${f \varepsilon}$ で透磁率 ${f \mu}$ の物体中を伝わる平面電磁波の電界が ${f E}=E_0\sin(kz-\omega t)e_x$ であるとす ${f e}$ 。このとき、磁束密度 ${f B}$ はどのようにあらわされるか。こた、 ${f k}$ と ${f \omega}$ の関係を記しなさい。