Лекция 1: Интеграруемые по Риману функции

(1.1) Интеграл Римана

Die ompezza [a;b] paccuompun ero pagonezue P_{ij} m.e. radop moren $\{x_i\}_{i=0}^n$ ompezha (bee $x_i \in [a, b]$) m. r.

 $\alpha = x_0 < x_1 < \dots < x_{i-1} < x_i < \dots < x_n = 6$

Ompeznu $[x_{i-1},x_i]$, i=1,...,n, regulavorce empeznamu pazdienus Pих дмног обозначим через $\Delta x_i := x_i - x_{i-1}$, а $\lambda(P) := \max_{1 \le i \le n} \Delta x_i$ oygen nagroats rapanempon payonerus P.

Hatop moren $\{=\hat{t},\hat{t}_i\}_{i=1}^n$, m.r. $\hat{s}_i \in [x_{i-1},x_i]$ gue i=1,...,n, magolé m

набором отмечених точек розбивния Р.

Syer $f: [a; b] \to \mathbb{R}, \quad (P, \xi)$ - napa us paybueuus u eno nasopa отичения точек погода сумма

 $\mathcal{O}(f;P;\xi):=\sum_{i=1}^{n}f(\xi_i)\Delta x_i$

Happboe mae unemerpainoù equenoù que ugun f, coorbererby rougen naple (P).

Onpagenence 11: Yueso A & R naznbaence usemerparous Purvavia apprenque of на отредне [0;6] тогда и такко тогда, Rosga que VETO 7870 rance, uno que beautro pagénerais P empegra [a:6] c rapametrom > (P) < S и всеньго кабора з отмеченик тогой этого разбиения выполняетая

$$\left| G(f,P,\S) - A \right| < \varepsilon.$$

В случае впполнешия условия из определения 1.1 буден писач, что $A = \lim_{\lambda(P) \to 0} 6(f, P, \S).$

 $\lambda(P) = 0$ Universal previouse of na [a,b] oboquaraetae $\int_{a}^{b} f(z) dz$. Universe evo, ма мотем записать, что

 $\int_{\alpha} f(x) dx = \lim_{\lambda(0) \to 0} \sum_{i=1}^{n} f(\xi_{i})_{\Delta} x_{i}$

Будец говорий, то функция интегрируена (по Риману) на [a:6], сем $\int f(x)dx$ существует. Пространство всех таких функций будем D боднагай сергу R[a:6]

Prince 1.1: Pyor f = C na [a; 6]. Toega fék[a; 6], m. K. que beaux P u } $\delta(f,P,\xi) = \sum_{i=1}^{n} \int \Delta x_i = \mathcal{L}(b-a) \xrightarrow{\lambda(p) \neq 0} \mathcal{L}(b-a), \quad m.e. \quad \int \int dx = \mathcal{L}(b-a)$ Теорема 1.1 (критерий Коши)

$$f \in R[a, b] \iff \forall E > 0 \exists S > 0, m.t. \ \forall P', P'' c naparuthau $\lambda(P') < S \cup \lambda(P') < S \cup \lambda(P') < S \cup A(P') < S \cup A($$$

Теорена 1.2 (необосодиное условие интегрируело сти) $f \in \mathcal{R}[a; b] \Rightarrow f \in \mathcal{B}[a; b]$

Dowajaren cibo: Nyur fà B[a,b], Thoega que mosoro paysuemes P orpaya [a;b] reacting citch orpheson $[x_i:,x_i]$, m.x. f à $B[x_i:,x_i]$. One excus grapuo menuro paysuemes P in passopol ormezernax toren \S^1 is \S^1 , page saronyuses torse to the ux \S^1 is \S^1 . Now to the ux S is S in S in

$$| f(f, P, \xi') - f(f, P, \xi'')| = |f(f, P, \xi'')| ΔΣ;$$

πισπικο εξειατό ενωι γιοςμο δοκομαί ζα ετέπ βοστήα ξ_i . Γλεχθατελείε,

τη πρωτοφιά Κοιμι \Rightarrow των $f \notin R[a; b]$

Разбиения \widehat{P} отрезка [a;b] надможения продолжения разбиения P, если \widehat{P} получено добавления к P конегного числа точек. Если $P = \{x_i\}_{i=0}^n$, то точки проделжения \widehat{P} удобио кумерьбах звумя

$$\widetilde{\beta} = \left\{x_{ij}\right\}_{j=m,z}, \qquad x_{i-j} = x_{i0} < \dots < x_{in_i} = x_i.$$

Tеоргиа 1.3 (достатогное условие интегрируемости) Sуеть $f \in B[a;b]$ Sиогда $f \in R[a;b]$ если $\forall \varepsilon > 0$ $\exists S > 0$, m.z. дия любого разбиения P отредел [a,b] с raparempon $\lambda(P) < S$ выполняется $\sum_{i=1}^{n} \omega(f; [x_{i-1}, x_i]) \Delta x_i < \ell,$

age $\omega(f; [x_{i-1}; x_{i}]) = \sup_{x_i \in [x_{i-1}, x_i]} |f(x') - f(x'')| - \text{ constance population } f$ in ampes ne $[x_{i-1}; x_i]$.

Доказательство: Пусть Р - разбиемие отразка [a; в] и Р - его продолжения Pascenompien $\left| \sigma(f, \widehat{P}, \widehat{\xi}) - \sigma(f, P, \widehat{\xi}) \right| = \left| \sum_{i=1}^{n} \sum_{j=1}^{n_i} f(\widehat{\xi}_{ij}) \Delta x_{ij} - \sum_{i=1}^{n} f(\widehat{\xi}_{i}) \Delta x_{i} \right| =$

$$=\left|\sum_{i=4}^{n}\sum_{j=4}^{n_i}f(\xi_{ij})_{\Delta}x_{ij}-\sum_{i=4}^{n}\sum_{j=4}^{n_i}f(\xi_{i})_{\Delta}x_{ij}\right|=\left|\sum_{i=4}^{n}\sum_{j=4}^{n_i}\left(f(\xi_{ij})-f(\xi_{ij})\right)_{\Delta}x_{ij}\right|\leq$$

 $\leq \sum_{i=1}^{n} \sum_{j=1}^{n_i} \left| f(\xi_i) - f(\xi_i) \right| \Delta x_{ij} \leq \sum_{j=1}^{n} \sum_{j=1}^{n_i} \omega(f_j[x_{i-1}, x_i]) \Delta x_{ij} = \sum_{i=1}^{n} \omega(f_i[x_{i-1}, x_i]) \Delta x_{ij}$

Uz namero haccyngenus enegyen zno 4870 FS70, n.z дия мобого розбиения Р отрезка [a; в] с параметром х(Р) < 8 мобого его продолжения Р, а наборы Е, 3 отмегения точен этих разбициий borno yesemas

$$|6(f; \widetilde{P}, \widetilde{\xi}) - 6(f; P; \widetilde{\xi})| < \widetilde{\xi}$$

Заметии, это для разбиений P'и P'' объединение $\widetilde{P}=P'\cup P''$ будет продолжением как P', так и P'. Воэтому для $\forall \ E>O\ \exists\ S>O\ m. \varepsilon.$ для $\forall\ P',\ P''$ с $\lambda(P')< S$ и для моборх наборов ξ',ξ'' отметенник точен дтих разбичний будет справодиво:

$$\begin{aligned} & \left| \mathcal{C}(f, P', \xi') - \mathcal{C}(f, P'', \xi'') \right| = \left| \left(\mathcal{C}(f, \widehat{P}, \widetilde{\xi}) - \mathcal{C}(f, P', \xi') \right) + \left(\mathcal{C}(f, P', \xi') - \mathcal{C}(f, \widehat{P}, \widetilde{\xi}) \right) \right| \leq \\ & \leq \left| \left| \mathcal{C}(f, \widehat{P}, \widetilde{\xi}) - \mathcal{C}(f, P', \xi') \right| + \left| \left| \mathcal{C}(f, P', \xi') - \mathcal{C}(f, \widehat{P}, \widetilde{\xi}) \right| < \frac{\sigma}{2} + \frac{\sigma}{2} = \varepsilon. \end{aligned}$$

Tio ppu mapuro Kour 300 brezen, feR[9]

Chegarbue 1:
$$\{f \in C[a; \ell] \Rightarrow f \in R[a, \ell].$$

Доказательство: Если $f \in C[a;b]$, то по теорене Кантора f равномерно непрерывна на [a;b] Гоэтому $\forall \varepsilon > 0 \ \exists \ \delta > 0 \ \forall \ x', x'' \in [a; b] \colon \ |x' - x''| < \delta \ \Rightarrow \ |f(x') - f(x'')| < \frac{\varepsilon}{2(b-a)}.$

JHAZUS GLE BORNOTO PAGUENUR P OMPEGRE [a; b]
$$c \lambda(P) < \delta$$
 NUMBU
$$\sum_{i=1}^{n} \omega(f; [x_{i-i}, x_i]) \Delta x_i \leq \sum_{i=1}^{n} \frac{\varepsilon}{l(b-a)} \Delta x_i = \frac{\varepsilon}{2(b-a)} \sum_{i=1}^{n} \Delta x_i = \frac{\varepsilon}{2(b-a)} (b-a) = \frac{\varepsilon}{2} < \varepsilon.$$

ly meopeur 1.3 energyem, ruo f ER[a; 6]

Creg erbue 2: $\{f \in B[a,b] \text{ in } f \text{ invert koncernor there payonly mark payonly mark payonly in [a,b]}$

Cregature 3: $\{f \text{ моно монна на } [a;b] \Rightarrow f \in \mathcal{R}[a;b]$

Dokazarensaiso: Janemun, emo b eny monoronnocere $\omega(f; [a;b]) = [f(b) - f(a)]$ Если в постоянна, то очевизно (пример! 1) она интегрируема на [а; в]. Даме в донаgamentette буден егитать, что f непостанна. 511029a f(b)-f(a)=0, и мп non nomen bordparts S = E/|f(b)-f(a)|. One paymenus $P \in \lambda(P) < S$ $\sum_{i=1}^{n}\omega\left(f;\left[x_{i-1},x_{i}^{*}\right]\right)\Delta x_{i}<\delta\sum_{i=1}^{n}\omega\left(f;\left[x_{i-1},x_{i}^{*}\right]\right)=\delta\sum_{i=1}^{n}\left|f(x_{i})-f(x_{i-1})\right|=\left|\int_{\text{constrained}}^{b}\left(f(x_{i})-f(x_{i-1})\right)\right|=\left|\int_{\text{constrained}}^{b}\left(f(x_{i})-f(x_{i-1})\right)\right|=\left|\int_{\text{constrained}}^{b}\left(f(x_{i})-f(x_{i-1})\right)\right|$

 $= \delta \left| \sum_{i=1}^{\infty} \left(f(x_i) - f(x_{i+1}) \right) \right| = \delta \left| f(b) - f(a) \right| = E.$ ly meopeur 1.3 energem, and f ER[a, 6]

Пример 1. 2: Монотонная на отрежа функция мотет имя бысконетное

Пример 7. 2: очено подрова. Например, $f(z) = \begin{cases} 1 - \frac{1}{2^{n-1}}, & 1 - \frac{1}{2^{n}}, \le x < 1 - \frac{1}{2^{n}}, & n \in \mathbb{N} \\ 1, & x = 1. \end{cases}$

