Evaluación de estrategias de tratamiento en la calidad de vida a largo plazo: Aplicación de un modelo SAIcLD

PRESENTADO POR: ANAMARÍA GARCÍA

19 DE MAYO DE 2025

Introducción

Contexto

En una ciudad se ha descubierto una infección causada por un virus, de la cual se conocen parcialmente parámetros de comportamiento.

Estudios preliminares han determinado que:

- es imposible eliminar el virus del huésped después de la infección,
- · la persona tiene un periodo asintomático,
- luego un periodo de crisis donde puede fallecer,
- y si sobrevive tiene secuelas vitalicias.

Descripción y tiempo aproximado de los estados posibles del paciente

Estado	Descripción del estado	Tiempo aproximado
S	Susceptible	-
Α	Asintomático	10 días
Ic	Infectado en crisis	2 semanas
L	Sobreviviente con secuelas 10 años	
D	Fallecido	=

Efectos de los tipos de tratamiento sobre calidad de vida y mortalidad

	Disminución calidad de vida (%)		
Tratamiento	En crisis	Después de recuperación	Mortalidad en crisis (%)
Ninguno	35%	10%	15%
1	12%	12%	3%
2	50%	4%	15%

Metodología

Diagramas de transición

Heemod en R

```
matriz_trans <- function(p_muerte_crisis, t_asintomatico, t_crisis, t_secuela) {
    define_transition(
        state_names = state_names,
        0, 1, 0, 0, 0, # S
        0, 1 - (1/t_asintomatico), (1/t_asintomatico), 0, 0, # A
        0, 0, 1 - (1/t_crisis) - p_muerte_crisis, (1/t_crisis), p_muerte_crisis, # Ic
        0, 0, 0, 1 - (1/t_secuela), (1/t_secuela), # L
        0, 0, 0, 0, 1 # D
    )
}</pre>
```

```
# Estrategias
strat_no_tx <- define_strategy(
  transition = mat_trans_no_tx,
  S = state_S
 A = state_A
 Ic = state_Ic,
 L = state_L
 D = state D
strat_t1 <- define_strategy(</pre>
  transition = mat_trans_t1,
  S = state_S,
 A = state_A
 Ic = state_Ic_t1.
 L = state_L_t1,
 D = state_D
strat_t2 <- define_strategy(</pre>
```

Resultados

Calidad de vida según tipos de tratamiento durante 10 años

Calidad de vida según tipos de tratamiento durante las primeras 20 semanas

Diferencia de la calidad de vida según tipos de tratamiento respecto al estado base, durante 10 años

Análisis de sensibilidad (DSA)

Conclusiones

Conclusiones

- 1. Se recomienda el uso del tratamiento 2 si el objetivo es mejorar la calidad de vida acumulada de la población a largo plazo.
- 2. A largo plazo, las dos variables más importantes corresponden al tiempo y a la calidad de vida de las secuelas. El siguiente par de variables más importantes son la mortalidad y el tiempo de crisis infecciosa.
- 3. El tratamiento 1 lleva a una menor calidad de vida acumulada que la estrategia base, sin tratamiento, después de la semana 5.
- 4. A futuro, se propone el uso de un modelo semimarkoviano para tener en cuenta la dinámica del sistema.

¡Gracias!