Ömer Faruk SERT 040170244

1- Half Adder

RTL Schematic

Technology Schematic

LUT Usage

Resource	Utilization	Available	Utilization %
LUT	2	134600	0.00
Ю	4	400	1.00

Delays

From Port To Delay Max Corner Min Delay Corner Min Process Delay Corner □ X □ C 5.592 SLOW 2.089 FAST □ X □ S 5.650 SLOW 2.129 FAST □ Y □ C 5.420 SLOW 2.018 FAST	'		-		
			Max Process Corner	Min Delay	Min Process Corner
		C 5.592	SLOW	2.089	FAST
		S 5.650	SLOW	2.129	FAST
		C 5.420	SLOW	2.018	FAST
		S 5.479	SLOW	2.062	FAST

Behavioral Simulation Wave Forms

Module Verilog Code

```
`timescale 1ns / 1ps

module HA(
    input X,Y,
    output Cout,S
);
    EXOR exor1(.I1(X),.I2(Y),.O(S));
    AND and2(.I1(X),.I2(Y),.O(Cout));
endmodule
```

Testbench Verilog Code

```
timescale 1ns / 1ps
module Top_module_tb;
    reg [1:0]IN;
    wire [1:0]out;
    HA uut(.X(IN[0]),.Y(IN[1]),.Cout(out[0]),.S(out[1]));
    begin
        IN=2'b00;
        #10
        IN=2'b01;
        #10
        IN=2'b10;
        #10
        IN=2'b11;
        #10
        $finish;
endmodule
```

2-) Full Adder

Hand Drawn Circuit

Verilog Code

Module Code

```
`timescale 1ns / 1ps
module FA(
    input X,Y,Ci,
    output Cout,S
);
    wire [2:0]OX;
    HA ha1(.X(X),.Y(Y),.Cout(OX[0]),.S(OX[1]));
    HA ha2(.X(OX[1]),.Y(Ci),.S(S),.Cout(OX[2]));
    OR or1(.I1(OX[0]),.I2(OX[2]),.O(Cout));
endmodule
```

Testbench Code

```
timescale 1ns / 1ps
module Top_module_tb;
    reg [2:0]IN;
    wire [1:0]out;
    FA uut(.X(IN[0]),.Y(IN[1]),.Ci(IN[2]),.Cout(out[0]),.S(out[1]));
    begin
        IN=3'b000;
        #10
        IN=3'b001;
        #10
        IN=3'b010;
        #10
        IN=3'b011;
        #10
        IN=3'b100;
        #10
        IN=3'b101;
        #10
        IN=3'b110;
        #10
        IN=3'b111;
        #10
        $finish;
endmodule
```

RTL Schematic

Behavioral Simulation Waveform

Technology Schematic

Design Summary

Summary

Resource	Utilization	Available	Utilization %
LUT	3	134600	0.00
Ю	5	400	1.25

Combinational Delays

From Port	To Port	Max Delay	Max Process Corner	Min Delay	Min Process Corner
□ Ci	Cout	4.638	SLOW	1.994	FAST
□ Ci	⟨ S	4.638	SLOW	1.994	FAST
ightharpoons X	Cout	5.101	SLOW	1.994	FAST
ightharpoons X	⟨ S	5.101	SLOW	2.217	FAST
ightharpoons Y	Cout	5.101	SLOW	1.994	FAST
ightharpoons Y	⟨ S	5.101	SLOW	2.217	FAST

3-) Ripple Carry Adder

Verilog Code

Module Code

```
`timescale Ins / 1ps
module RCA(
    input [3:0]X,[3:0]Y,
    input Ci,
    output [3:0]S,
    output Cout
);
    wire Ci;
    wire [2:0]0X;
    FA fa1(.X(X[0]),.Y(Y[0]),.Ci(Ci),.Cout(0X[0]),.S(S[0]));
    FA fa2(.X(X[1]),.Y(Y[1]),.Ci(0X[0]),.Cout(0X[1]),.S(S[1]));
    FA fa3(.X(X[2]),.Y(Y[2]),.Ci(0X[1]),.Cout(0X[2]),.S(S[2]));
    FA fa4(.X(X[3]),.Y(Y[3]),.Ci(0X[2]),.Cout(Cout),.S(S[3]));
endmodule
```

Testbench Code

```
timescale 1ns / 1ps
module Top module tb;
   reg [3:0]X;
    reg [3:0]Y;
   wire [3:0]S;
   wire Cout;
    wire Ci;
    assign Ci=1'b0;
    RCA uut(.X(X),.Y(Y),.Ci(Ci),.Cout(Cout),.S(S));
    initial
    begin
        X=4'b0000;
        Y=4'b0000;
        #10
        X=4'b0011;
        Y=4'b1011;
        #10
        X=4'b0101;
```

```
Y=4'b1101;
#10
X=4'b1101;
Y=4'b1101;
#10
X=4'b1111;
Y=4'b1111;
#10
$finish;
end
endmodule
```

RTL Schematic

Technology Schematic

Behavioral Simulation Waveform

Summary

Design Summary

Resource	Utilization	Available	Utilization %
LUT	12	134600	0.01
IO	14	400	3.50

Combinational Delay

Q Combinational Delays 1 Max Process From Min Min Process To Port Port Corner Corner Delay 7.989 SLOW 2.603 FAST S[2] → Y[1] √ S[2] 7.968 SLOW 2.583 FAST √□ S[3] 7.875 SLOW 2.607 FAST → Y[1] √ S[3] 7.855 SLOW 2.651 FAST √ S[2] 7.842 SLOW 2.680 FAST √ S[3] 7.728 SLOW 2.648 FAST Cout 7.691 SLOW 2.511 FAST → Y[1] Cout 7.670 SLOW 2.555 FAST → Y[0] √ S[2] 7.647 SLOW 2.770 FAST Cout 7.544 SLOW 2.552 FAST → Y[0] √ S[3] 7.533 SLOW 2.738 FAST √ S[2] 7.397 SLOW 2.882 FAST → Y[0] Cout 7.349 SLOW 2.642 FAST 7.284 SLOW √ S[3] 2.851 FAST √ S[1] 7.273 SLOW 2.427 FAST 7.157 SLOW 2.789 FAST Cout 7.099 SLOW 2.754 FAST → Y[0] 2.511 FAST √ S[1] 7.078 SLOW 2.630 FAST → Y[2] 7.016 SLOW Cout 6.973 SLOW 2.693 FAST → Y[2] Cout 6.831 SLOW 2.534 FAST Ci 6.817 SLOW 2.625 FAST √ S[1] 6.772 SLOW 2.623 FAST √ S[1] 6.752 SLOW 2.603 FAST Cout 6.659 SLOW 2.305 FAST √□ S[0] 6.647 SLOW 2.561 FAST √□ S[3] 6.547 SLOW 2.529 FAST → Y[3] Cout 6.526 SLOW 2.106 FAST → Y[0] √ S[0] 6.452 SLOW 2.507 FAST

	6.413 SLOW	2.470 FAST
	6.300 SLOW	2.448 FAST
	6.235 SLOW	2.409 FAST
□ Ci	5.490 SLOW	2.090 FAST

Worst case for last FA's carry output is 7.691ns.

4-) Ripple Carry Adder with "generate for"

Verilog Code for Module

```
`timescale 1ns / 1ps
module parametric_RCA(X,Y,Ci,S,Cout);
parameter SIZE=4;
input [SIZE-1:0]X;
input [SIZE-1:0]Y;
input Ci;
output [SIZE-1:0]S;
output Cout;
wire OX[SIZE:0];
assign OX[0]=Ci;
genvar i;
generate
    for(i=0;i<SIZE;i=i+1)</pre>
    begin
        FA fai(.X(X[i]),.Y(Y[i]),.Ci(OX[i]),.Cout(OX[i+1]),.S(S[i]));
    assign Cout=OX[SIZE];
endgenerate
endmodule
```

Verilog Code for 4-bit Testbench

```
timescale 1ns / 1ps
module Top_module_tb;
   reg [3:0]X;
   reg [3:0]Y;
   wire [3:0]S;
   wire Cout;
   wire Ci;
   assign Ci=1'b0;
    parametric_RCA uut(.X(X),.Y(Y),.Ci(Ci),.Cout(Cout),.S(S));
    initial
    begin
       X=4'b0000;
       Y=4'b0001;
       #10
       X=4'b0011;
       Y=4'b1011;
       #10
        X=4'b0101;
       Y=4'b1101;
        #10
        X=4'b1101;
        Y=4'b1101;
        #10
        X=4'b1111;
        Y=4'b1111;
        #10
        $finish;
endmodule
```

RTL Schematic for 4-bit Adder

Simulation Wave Form for 4-bit Adder

Technology Schematic for 4-bit adder

Design Summary for 4-bit Adder

There is no difference between regular 4-bit adder and generate for loop 4-bit adder except naming of modules. Same for the technology schematic.

RTL Schematic for 8-bit Adder

Simulation Wave Form for 8-bit Adder

Verilog Code for Testbench 8-bit Adder

```
timescale 1ns / 1ps
module Top_module_tb;
   reg [7:0]X;
   reg [7:0]Y;
   wire [7:0]S;
   wire Cout;
   wire Ci;
   assign Ci=1'b0;
   parametric_RCA uut(.X(X),.Y(Y),.Ci(Ci),.Cout(Cout),.S(S));
    initial
    begin
       X=8'b00000100;
       Y=8'b00011000;
        X=8'b00110000;
        Y=8'b10111100;
        X=8'b01010101;
        Y=8'b11010110;
        #10
        X=8'b11010001;
```

```
Y=8'b11011000;

#10

X=8'b11110010;

Y=8'b11111011;

#10

$finish;

end

endmodule
```

Technology Schematic for 8-bit Adder

5-) CLA

Verilog Code

Module Code

```
timescale 1ns / 1ps
module CLA(
    input [3:0]X,
   input [3:0]Y,
    input c0,
   output cout,
   output [3:0]S
);
wire [3:1]C;
wire [3:0]g;
wire [3:0]p;
assign S[0]=X[0]^Y[0]^c0;
assign g[0]=X[0]&Y[0];
assign p[0]=X[0]|Y[0];
assign C[1]=(p[0]&c0)|g[0];
assign S[1]=X[1]^Y[1]^C[1];
assign g[1]=X[1]&Y[1];
assign p[1]=X[1]|Y[1];
assign C[2]=(p[1]&C[1])|g[1];
assign S[2]=X[2]^Y[2]^C[2];
assign g[2]=X[2]&Y[2];
assign p[2]=X[2]|Y[2];
assign C[3]=(p[2]&C[2])|g[2];
assign S[3]=X[3]^Y[3]^C[3];
assign g[3]=X[3]&Y[3];
assign p[3]=X[3]|Y[3];
assign cout=(p[3]&C[3])|g[3];
endmodule
```

Testbench Code

```
timescale 1ns / 1ps
module Top_module_tb;
   reg [3:0]X;
   reg [3:0]Y;
   wire [3:0]S;
   wire Cout;
   wire Ci;
   assign Ci=1'b0;
   CLA uut(.X(X),.Y(Y),.c0(Ci),.cout(Cout),.S(S));
    initial
    begin
       X=4'b0000;
       Y=4'b0001;
        #10
       X=4'b0011;
       Y=4'b1011;
       #10
       X=4'b0101;
       Y=4'b1101;
        #10
        X=4'b1101;
       Y=4'b1101;
        #10
        X=4'b1111;
        Y=4'b1111;
        #10
        $finish;
endmodule
```

RTL Schematic

Technology Schematic

Simulation Wave Form

Design Summary

Combinational Delays

From Port	To Port	M ^ 1	Max Process Corner	Min Delay	Min Process Corner	
		5.357	SLOW	2.072	FAST	
▶ Y[3]	cout	5.359	SLOW	2.071	FAST	
		5.361	SLOW	2.074	FAST	
		5.361	SLOW	2.072	FAST	
	cout	5.910	SLOW	2.321	FAST	
→ Y[0]	cout	5.940	SLOW	2.317	FAST	
	\blacksquare cout	5.942	SLOW	2.316	FAST	
	cout	5.944	SLOW	2.319	FAST	
	\blacksquare cout	5.944	SLOW	2.317	FAST	
	≪ S[0]	6.221	SLOW	2.143	FAST	
→ Y[0]	≪ S[0]	6.221	SLOW	2.143	FAST	
	≪ S[0]	6.221	SLOW	2.143	FAST	
	≪ S[1]	6.236	SLOW	2.158	FAST	
	√ S[1]	6.236	SLOW	2.158	FAST	
→ Y[0]	√ S[1]	6.236	SLOW	2.158	FAST	
	√ S[1]	6.236	SLOW	2.158	FAST	
	√ S[1]	6.236	SLOW	2.158	FAST	
	⊘ S[3]	6.252	SLOW	2.173	FAST	
	⋖ S[3]	6.252	SLOW	2.173	FAST	
	⊘ S[3]	6.252	SLOW	2.173	FAST	
▶ Y[3]	≪ S[3]	6.252	SLOW	2.173	FAST	
	√ S[2]	6.254	SLOW	2.175	FAST	
	⊘ S[2]	6.254	SLOW	2.175	FAST	
	⋖ S[3]	6.835	SLOW	2.418	FAST	
	⊘ S[2]	6.837	SLOW	2.420	FAST	
→ Y[0]	⋖ S[3]	6.865	SLOW	2.414	FAST	
	⋖ S[3]	6.867	SLOW	2.413	FAST	
→ Y[0]	√ S[2]	6.867	SLOW	2.416	FAST	

≪ S[3]	6.869	SLOW	2.416	FAST
⊘ S[3]	6.869	SLOW	2.414	FAST
√ S[2]	6.869	SLOW	2.415	FAST
√ S[2]	6.871	SLOW	2.418	FAST
≪ S[2]	6.871	SLOW	2.416	FAST

Fastest parts of circuit are carry-out parts

6-) Adder Subtractor

Verilog Code

Module Verilog Code

```
timescale 1ns / 1ps
module ASV(
    input [3:0]X,
    input [3:0]Y,
    input Ci,
    output V,
    output [3:0]S,
    output Cout
wire [4:0]C;
wire [3:0]B;
assign C[0]=Ci;
genvar i;
generate
    for(i=0;i<4;i=i+1)</pre>
    begin
        EXOR exori(.I1(Y[i]),.I2(Ci),.O(B[i]));
        FA fai(.X(B[i]),.Y(X[i]),.Ci(C[i]),.S(S[i]),.Cout(C[i+1]));
endgenerate
EXOR exorv(.I1(C[3]),.I2(C[4]),.O(V));
assign Cout=C[4];
endmodule
```

Testbench Verilog Code

```
timescale 1ns / 1ps
module Top_module_tb;
    reg [3:0]X;
    reg [3:0]Y;
    wire [3:0]S;
    wire Cout;
   reg Ci;
    wire C3;
    wire C4;
    wire V;
    ASV uut(.X(X),.Y(Y),.Ci(Ci),.V(V),.Cout(Cout),.S(S),.C3(C3),.C4(C4));
    initial
    begin
        Ci=1'b0;
        X=4'b0001;
        Y=4'b0010;
        #10
        X=4'b0001;
        Y=4'b0011;
        #10
        X=4'b0001;
        Y=4'b1111;
        #10
        Ci=1'b1;
        X=4'b0111;
        Y=4'b1000;
        #10
        X=4'b1110;
        Y=4'b1101;
        #10
        X=4'b1100;
        Y=4'b1100;
        #10
        X=4'b1101;
        Y=4'b0010;
        #10
        X=4'b1100;
        Y=4'b0101;
        #10
```

```
$finish;
end
endmodule
```

RTL Schematic

Behavioral Simulation Wave Form

Technology Schematic

Design Summary

Combinational Delays

From Port	To 1 Port	Max Delay	Max Process Corner	Min Delay	Min Process Corner	
	ℂ C3	7.105	SLOW	2.322	FAST	
▶ X[0]	 	6.986	SLOW	2.357	FAST	
▶ X[1]	 C3	7.011	SLOW	2.120	FAST	
▶ X[2]	 C3	6.403	SLOW	2.126	FAST	
▶ Y[0]	□ C3	7.592	SLOW	2.733	FAST	
▶ Y[1]	□ C3	7.620	SLOW	2.499	FAST	
▶ Y[2]	□ C3	6.996	SLOW	2.465	FAST	
Ci	□ C4	7.702	SLOW	2.442	FAST	
▶ X[0]	□ C4	7.583	SLOW	2.601	FAST	
	□ C4	7.608	SLOW	2.365	FAST	
▶ X[2]	□ C4	7.000	SLOW	2.370	FAST	
▶ X[3]		6.395	SLOW	2.118	FAST	
▶ Y[0]		8.189	SLOW	2.977	FAST	
→ Y[1]		8.217	SLOW	2.743	FAST	
▶ Y[2]		7.593	SLOW	2.709	FAST	
▶ Y[3]		7.010	SLOW	2.506	FAST	
		8.619	SLOW	2.543	FAST	
→ X[0]		8.501	SLOW	2.703	FAST	
→ X[1]		8.526	SLOW	2.466	FAST	
→ X[2]		7.918	SLOW	2.472	FAST	
▶ X[3]		7.313	SLOW	2.219	FAST	
▶ Y[0]		9.107	SLOW	3.079	FAST	
▶ Y[1]		9.135	SLOW	2.845	FAST	
▶ Y[2]		8.511	SLOW	2.810	FAST	
▶ Y[3]		7.927	SLOW	2.608	FAST	
	√ S[0]	7.414	SLOW	2.154	FAST	
▶ X[0]	≪ S[0]	7.319	SLOW	2.430	FAST	
▶ Y[0]	√ S[0]	7.925	SLOW	2.687	FAST	
	√ S[1]	8.002	SLOW	2.403	FAST	

From Port	To 1 Port	Max Delay	Max Process Corner	Min Delay	Min Process Corner
	√ S[1]	7.907	SLOW	2.438	FAST
	√ S[1]	7.299	SLOW	2.432	FAST
→ Y[0]	√ S[1]	8.513	SLOW	2.682	FAST
→ Y[1]	√ S[1]	7.907	SLOW	2.691	FAST
	√ S[2]	8.596	SLOW	2.649	FAST
	√ S[2]	8.478	SLOW	2.694	FAST
	√ S[2]	8.503	SLOW	2.457	FAST
	√ S[2]	7.321	SLOW	2.454	FAST
→ Y[0]	√ S[2]	9.084	SLOW	3.070	FAST
→ Y[1]	√ S[2]	9.112	SLOW	2.704	FAST
→ Y[2]	√ S[2]	7.914	SLOW	2.702	FAST
	⊘ S[3]	8.618	SLOW	2.649	FAST
	⊘ S[3]	8.500	SLOW	2.702	FAST
	√ S[3]	8.525	SLOW	2.465	FAST
	⊘ S[3]	7.916	SLOW	2.470	FAST
	⊘ S[3]	7.311	SLOW	2.444	FAST
→ Y[0]	⊘ S[3]	9.106	SLOW	3.078	FAST
→ Y[1]	⊘ S[3]	9.134	SLOW	2.844	FAST
→ Y[2]	⊘ S[3]	8.509	SLOW	2.809	FAST
→ Y[3]	√ S[3]	7.926	SLOW	2.714	FAST
	⊘ ∨	9.211	SLOW	2.656	FAST
	⊘ ∨	9.092	SLOW	2.690	FAST
	✓ V	9.117	SLOW	2.453	FAST
	⊘ ∨	8.509	SLOW	2.459	FAST
	✓ V	7.904	SLOW	2.461	FAST
→ Y[0]	⊘ ∨	9.698	SLOW	3.066	FAST
→ Y[1]	✓ V	9.726	SLOW	2.832	FAST
→ Y[2]	⊘ ∨	9.102	SLOW	2.798	FAST
▶ Y[3]	⊘ V	8.518	SLOW	2.850	FAST

Worst delay is from Y[1] to V and it is 9.726ns