Series and series representation

Practical Time Series Analysis
Thistleton and Sadigov

Objectives

- Recall infinite series and their convergence
- Examine geometric series
- Represent rational functions as a geometric series

Sequence and series

• Sequence $\{a_n\}$ is list of numbers in definite order

$$a_1, a_2, a_3, \dots a_n, \dots$$

• If the limit of the sequence exists, i..e,

$$\lim_{n\to\infty} a_n = a$$

then we say the sequence is convergent.

Examples

•
$$a_n = \frac{n}{n+1}$$

•
$$a_n = 3^n$$

•
$$a_n = \sqrt{n}$$

•
$$a_n = \frac{1}{n^2}$$

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots \to 1$$

$$3, 9, 27, \dots, 3^n, \dots$$

$$1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots$$

$$1, \frac{1}{4}, \frac{1}{9}, \dots, \frac{1}{n^2}, \dots \to 0$$

Partial sums

• Partial sums of a sequence $\{a_n\}$ are defined as

$$s_n = a_1 + a_2 + \dots + a_n$$

- $s_1 = a_1$
- $s_2 = a_1 + a_2$
- $s_3 = a_1 + a_2 + a_3$

•

•

•

Series

• If the partial sums $\{s_n\}$ is convergent to a number s, then we say

the infinite series $\sum_{k=1}^{\infty} a_k$ is convergent, and is equal to s.

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n = \lim_{n \to \infty} (a_1 + a_2 + \dots + a_n) = s$$

• Otherwise, we say $\sum_{k=1}^{\infty} a_k$ is divergent.

Some convergent series

$$\bullet \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$$

$$\bullet \ \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

•
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \ln(2)$$

Some divergent series

•
$$\sum_{k=1}^{\infty} 3^k$$

•
$$\sum_{k=1}^{\infty} (2k+1)$$

•
$$\sum_{k=1}^{\infty} \frac{1}{k}$$

Absolute convergence

Series is absolutely convergent if

$$\sum_{k=1}^{\infty} |a_k|$$

is convergent.

• Absolute convergence implies convergence.

Convergence tests

- Integral test
- Comparison test
- Limit comparison test
- Alternating series test
- Ratio test
- Root test

Geometric series

• Geometric sequence

$${ar^{n-1}}_{n=1}^{\infty} = {a, ar, ar^2, ar^3, ...}$$

• Geometric series

$$\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}$$
 if $|r| < 1$.

•
$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$

since $a = \frac{1}{2}$, $r = \frac{1}{2}$.

Series representation

• Series representation for $\frac{1}{1-x}$ where a=1, r=x.

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

if
$$|x| < 1$$
.

Series representation cont.

• Series representation for $\frac{1}{(1-x)(1-\frac{x}{2})}$

$$\frac{1}{(1-x)\left(1-\frac{x}{2}\right)} = \frac{2}{1-x} + \frac{-1}{1-\frac{x}{2}} = \sum_{k=0}^{\infty} \left(2 - \frac{1}{2^k}\right) x^k$$

If
$$|x| < 1$$
 and $\left| \frac{x}{2} \right| < 1$, i.e., if $|x| < 1$.

Complex functions

Assume z is a complex number

$$\frac{a}{1-z} = a + az + az^2 + \dots = \sum_{k=1}^{\infty} az^{k-1}$$

if
$$|z| < 1$$
.

What We've Learned

- The definition of infinite series and their convergence
- Geometric series is convergent if the multiplier has norm less than 1
- How to represent some rational functions as a geometric series

Backward shift operator

Practical Time Series Analysis
Thistleton and Sadigov

Objectives

• Define and utilize backward shift operator

Definition

- *X*₁, *X*₂, *X*₃, ...
- Backward shift operator is defined as

$$BX_t = X_{t-1}$$

- $B^2X_t = BBX_t = BX_{t-1} = X_{t-2}$
- $\bullet \ B^k X_t = X_{t-k}$

Example – Random Walk

$$X_t = X_{t-1} + Z_t$$

$$X_t = BX_t + Z_t$$

$$(1-B)X_t = Z_t$$

$$\phi(B)X_t = Z_t$$

$$\phi(B) = 1 - B$$

Example – MA(2) process

$$X_t = Z_t + 0.2Z_{t-1} + 0.04Z_{t-2}$$

$$X_t = Z_t + 0.2BZ_t + 0.04B^2Z_t$$

$$X_t = (1 + 0.2B + 0.04B^2) Z_t$$

$$X_t = \beta(B)Z_t$$

$$\beta(B) = 1 + 0.2B + 0.04B^2$$

Example – AR(2) process

$$X_t = 0.2X_{t-1} + 0.3X_{t-2} + Z_t$$

$$X_t = 0.2BX_t + 0.3B^2X_t + Z_t$$

$$(1 - 0.2B - 0.3B^2) X_t = Z_t$$

$$\phi(B)X_t = Z_t$$

$$\phi(B) = 1 - 0.2B - 0.3B^2$$

MA(q) process (with a drift)

$$X_t = \mu + \beta_0 Z_t + \beta_1 Z_{t-1} + \dots + \beta_q Z_{t-q}$$

Then,

$$X_t = \mu + \beta_0 Z_t + \beta_1 B^1 Z_t + \dots + \beta_q B^q Z_t,$$

$$X_t - \mu = \beta(B)Z_t,$$

$$\beta(B) = \beta_0 + \beta_1 B + \dots + \beta_q B^q.$$

AR(p) process

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + Z_t$$

Then,

$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \dots - \phi_p X_{t-p} = Z_t$$

$$X_t - \phi_1 B X_t - \phi_2 B^2 X_t - \dots - \phi_p B^p X_t = Z_t$$

$$\phi(B)X_t=Z_t,$$

Where

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p.$$

What We've Learned

• The definition of the Backward shift operator

 How to utilize backward shift operator to write MA(q) and AR(p) processes

Introduction to Invertibility

Practical Time Series Analysis
Thistleton and Sadigov

Objectives

Learn invertibility of a stochastic process

Two MA(1) models

• Model 1

$$X_t = Z_t + 2Z_{t-1}$$

Model 2

$$X_t = Z_t + \frac{1}{2} Z_{t-1}$$

Theoretical Auto Covariance Function of Model 1

$$\gamma(k) = Cov [X_{t+k}, X_t] = Cov [Z_{t+k} + 2Z_{t+k-1}, Z_t + 2Z_{t-1}]$$

If k > 1, then t + k - 1 > t, so all Z's are uncorrelated, thus $\gamma(k) = 0$.

If k = 0, then

$$\gamma(0) = Cov [Z_t + 2Z_{t-1}, Z_t + 2Z_{t-1}] =$$

$$Cov[Z_t, Z_t] + 4Cov[Z_{t-1}, Z_{t-1}] = \sigma_Z^2 + 4\sigma_Z^2 = 5\sigma_Z^2.$$

If k = 1, then

$$\gamma(1) = Cov [Z_{t+1} + 2Z_t, Z_t + 2Z_{t-1}] = Cov [2Z_t, Z_t]$$

= $2\sigma_Z^2$

If k < 0, then

$$\gamma(k) = \gamma(-k)$$

Auto Covariance Function and ACF of Model 1

$$\gamma(k) = \begin{cases} 0, & k > 1 \\ 2\sigma_Z^2, & k = 1 \\ 5\sigma_Z^2, & k = 0 \\ \gamma(-k), & k < 0 \end{cases}$$

Then, since
$$\rho(k) = \frac{\gamma(k)}{\gamma(0)}$$
,

$$\rho(k) = \begin{cases} 0, & k > 1 \\ \frac{2}{5}, & k = 1 \\ 1, & k = 0 \\ \rho(-k), & k < 0 \end{cases}$$

ACF

ACF of Model 2

$$\rho(1) = \frac{\gamma(1)}{\gamma(0)} = \frac{Cov\left[Z_{t+1} + \frac{1}{2}Z_t, Z_t + \frac{1}{2}Z_{t-1}\right]}{Cov[Z_t + \frac{1}{2}Z_{t-1}, Z_t + \frac{1}{2}Z_{t-1}]} = \frac{\frac{1}{2}}{1 + \frac{1}{4}} = \frac{2}{5}.$$

Thus we obtain the same ACF:

$$\rho(k) = \begin{cases} 0, & k > 1 \\ \frac{2}{5}, & k = 1 \\ 1, & k = 0 \\ \rho(-k), & k < 0 \end{cases}$$

ACFs are same!

ACF of Model 1 and Model 2

Inverting through backward substitution

MA(1) process

$$X_t = Z_t + \beta Z_{t-1},$$

$$Z_{t} = X_{t} - \beta Z_{t-1} = X_{t} - \beta (X_{t-1} - \beta Z_{t-2}) = X_{t} - \beta X_{t-1} + \beta^{2} Z_{t-2}$$

In this manner,

$$Z_t = X_t - \beta X_{t-1} + \beta^2 X_{t-2} - \beta^3 X_{t-3} + \cdots$$

i.e.,

$$X_t = Z_t + \beta X_{t-1} - \beta^2 X_{t-2} + \beta^3 X_{t-3} - \cdots$$

We 'inverted' MA(1) process to AR(∞).

Inverting using Backward shift operator

$$X_t = \beta(B)Z_t$$

where

$$\beta(B) = 1 + \beta B$$

Then, we find Z_t by inverting the polynomial operator $\beta(B)$:

$$\beta(B)^{-1}X_t = Z_t$$

Inverse of $\beta(B)$

$$\beta(B)^{-1} = \frac{1}{1 + \beta B} = 1 - \beta B + \beta^2 B^2 - \beta^3 B^3 + \cdots$$

Here we expand the inverse of the polynomial operator as a 'rational function where βB is a complex number'.

Thus we obtain,

$$\beta(B)^{-1}X_t = 1 - \beta X_{t-1} + \beta^2 X_{t-2} - \beta^3 X_{t-3} + \cdots$$

$$Z_t = \sum_{n=0}^{\infty} (-\beta)^n X_{t-n}$$

In order to make sure that the sum on the right is convergent (in the mean-square sense), we need $|\beta| < 1$.

There is an optional reading titled "Mean-square convergence" where we explain this result.

Invertibility - Definition

Definition:

 $\{X_t\}$ is a stochastic process.

 $\{Z_t\}$ is innovations, i.e., random disturbances or white noise.

 $\{X_t\}$ is called <u>invertible</u>, if $Z_t = \sum_{k=0}^{\infty} \pi_k X_{t-k}$ where $\sum_{k=0}^{\infty} |\pi_k|$ is convergent.

Model 1 vs Model 2

• Model 1 is **not invertible** since

$$\sum_{k=0}^{\infty} |\pi_k| = \sum_{k=0}^{\infty} 2^k, \quad Divergent$$

Model 2 is <u>invertible</u> since

$$\sum_{k=0}^{\infty} |\pi_k| = \sum_{k=0}^{\infty} \frac{1}{2^k}, \qquad Geometric Series, \qquad Convergent$$

Model choice

• For 'invertibility' to hold, we choose Model 2, since $\left|\frac{1}{2}\right| < 1$.

• This way, ACF uniquely determines the MA process.

What We've Learned

Definition of invertibility of a stochastic process

Invertibility condition guarantees unique MA process corresponding to observed ACF

Invertibility and stationarity conditions

Practical Time Series Analysis
Thistleton and Sadigov

Objectives

Articulate invertibility condition for MA(q) processes

Discover stationarity condition for AR(p) processes

Relate MA and AR processes through duality

MA(q) process

$$X_t = \beta_0 Z_t + \beta_1 Z_{t-1} + \cdots + \beta_q Z_{t-q}$$

Using Backward shift operator,

$$X_t = (\beta_0 + \beta_1 B + \dots + \beta_q B^q) Z_t = \beta(B) Z_t$$

We obtain innovations Z_t in terms of present and past values of X_t ,

$$Z_t = \beta(B)^{-1} X_t = (\alpha_0 + \alpha_1 B + \alpha_2 B^2 + \cdots) X_t$$

For this to hold, "complex roots of the polynomial $\beta(B)$ must lie outside of the unit circle where B is regarded as complex variable".

Invertibility condition for MA(q)

MA(q) process is invertible if the roots of the polynomial

$$\beta(B) = \beta_0 + \beta_1 B + \dots + \beta_q B^q$$

all lie outside the unit circle, where we regard B as a complex variable (not an operator).

(Proof is done using mean-square convergence, see optional reading)

EX: MA(1) process

$$\bullet \ X_t = Z_t + \beta Z_{t-1}$$

•
$$\beta(B) = 1 + \beta B$$

- In this case only one (real) root $B=-\frac{1}{\beta}$
- $\bullet \left| -\frac{1}{\beta} \right| > 1 \implies |\beta| < 1.$
- Then, $Z_t = \sum_{k=0}^{\infty} (-\beta)^k B^k X_t = \sum_{k=0}^{\infty} (-\beta)^k X_{t-k}$

Example – MA(2) process

$$X_t = Z_t + \frac{5}{6}Z_{t-1} + \frac{1}{6}Z_{t-2}$$

Then,

$$X_t = \beta(B)Z_t$$

Where

$$\beta(B) = 1 + \frac{5}{6}B + \frac{1}{6}B^2$$

Example cont.

$$1 + \frac{5}{6}z + \frac{1}{6}z^2 = 0$$

$$z_1 = 2$$
, $z_2 = 3$

Example cont.

$$\beta(B)^{-1} = \frac{1}{1 + \frac{5}{6}B + \frac{1}{6}B^2} = \frac{3}{1 + \frac{1}{2}B} - \frac{2}{1 + \frac{1}{3}B}$$

$$\beta(B)^{-1} = \sum_{k=0}^{\infty} \left[3\left(-\frac{1}{2}\right)^k - 2\left(-\frac{1}{3}\right)^k \right] B^k$$

$$Z_{t} = \sum_{k=0}^{\infty} \left[3\left(-\frac{1}{2}\right)^{k} - 2\left(-\frac{1}{3}\right)^{k} \right] B^{k} X_{t}$$

$$Z_{t} = \sum_{k=1}^{\infty} \pi_{k} B^{k} X_{t} = \sum_{k=1}^{\infty} \pi_{k} X_{t-k}$$

Where

$$\pi_k = 3\left(-\frac{1}{2}\right)^k - 2\left(-\frac{1}{3}\right)^k$$

MA(2) process $\Longrightarrow AR(\infty)$ process

Stationarity condition for AR(p)

AR(p) process

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + Z_t$$

is (weakly) stationary if the roots of the polynomial

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p.$$

all lie outside the unit circle, where we regard B as a complex variable (not an operator).

AR(1) process

$$X_t = \phi_1 X_{t-1} + Z_t \implies (1 - \phi_1 B) X_t = Z_t$$

$$\phi(B) = 1 - \phi_1 B$$

$$\phi(z) = 1 - \phi_1 z = 0 \implies z = \frac{1}{\phi_1}$$

$$|z| = \left| \frac{1}{\phi_1} \right| > 1 \Rightarrow |\phi_1| < 1$$

Thus, when $|\phi_1| < 1$, the AR(1) process is stationary.

$$X_{t} = \frac{1}{1 - \phi_{1}B} Z_{t} = (1 + \phi_{1}B + \phi_{1}B^{2} - \cdots)Z_{t}$$
$$= \sum_{k=0}^{\infty} \phi_{1}^{k} Z_{t-k}$$

Another look at ϕ_1

Take Variance from both side,

$$Var[X_t] = Var\left[\sum_{k=0}^{\infty} \phi_1^k Z_{t-k}\right] = \sum_{k=0}^{\infty} \phi_1^{2k} \sigma_Z^2 = \sigma_Z^2 \sum_{k=0}^{\infty} \phi_1^{2k}$$

which is a convergent geometric series if $\left|\phi_1^2\right|<1$, i.e.,

$$|\phi_1| < 1.$$

AR(p) process \Longrightarrow $MA(\infty)$ process

Duality between AR and MA processes

Under invertibility condition of MA(q),

$$MA(q) \Longrightarrow AR(\infty)$$

Under stationarity condition of AR(p)

$$AR(p) \Longrightarrow MA(\infty)$$

What We've Learned

- Invertibility condition for MA(q) processes
- Stationarity condition for AR(p) processes
- Duality MA and AR processes

Mean Square Convergence Practical Time Series Analysis

Thistleton and Sadigov

Objectives

• Learn mean-square convergence

 Formulate necessary and sufficient condition for invertibility of MA(1) process

Mean-square convergence

Let

$$X_1, X_2, X_3, \dots$$

be a sequence of random variables (i.e. a stochastic process).

We say X_n converge to a random variable X in the mean-square sense

if

$$E[(X_n - X)^2] \rightarrow 0 \text{ as } n \rightarrow \infty$$

MA(1) model

We inverted MA(1) model

$$X_t = Z_t + \beta Z_{t-1}$$

as

$$Z_t = \sum_{k=0}^{\infty} (-\beta)^k X_{t-k}$$

Infinite sum above is convergent in mean-square sense under some condition on β .

Auto covariance function

$$\gamma(k) = \begin{cases} 0, & k > 1\\ \beta \sigma_Z^2, & k = 1\\ (1 + \beta^2) \sigma_Z^2, & k = 0\\ \gamma(-k), & k < 0 \end{cases}$$

Series convergence

Lets find $\beta's$ that partial sum

$$\sum_{k=0}^{n} (-\beta)^k X_{t-k}$$

converges to Z_t in mean-square sense.

$$E\left[\left(\sum_{k=0}^{n}(-\beta)^{k}X_{t-k}-Z_{t}\right)^{2}\right]=E\left[\left(\sum_{k=0}^{n}(-\beta)^{k}X_{t-k}\right)^{2}\right]-2E\left[\sum_{k=0}^{n}(-\beta)^{k}X_{t-k}Z_{t}\right]+E[Z_{t}^{2}]$$

$$=E\left[\sum_{k=0}^{n}\beta^{2k}X_{t-k}^{2}\right]+2E\left[\sum_{k=0}^{n-1}(-\beta)^{2k+1}X_{t-k}X_{t-k+1}\right]-2E[X_{t}Z_{t}]+\sigma_{Z}^{2}$$

$$=\sum_{k=0}^{n}\beta^{2k}E[X_{t-k}^{2}]-2\sum_{k=0}^{n}\beta^{2k+1}E[X_{t-k}X_{t-k+1}]-2E[Z_{t}^{2}]$$

To get

$$E\left[\left(\sum_{k=0}^{n}(-\beta)^{k}X_{t-k}\right.\right.$$

i.e.,

$$\left|-\frac{1}{\beta}\right| > 1$$

i.e., zero of the polynomial

$$\beta(B) = 1 + \beta B$$

Lies outside of the unit circle.

What We've Learned

Definition of the mean square convergence

 Necessary and sufficient condition for invertibility of MA(1) process

Difference equations

Practical Time Series Analysis
Thistleton and Sadigov

Objectives

• Recall and solve difference equations

Difference equation

• General term of a sequence is given, ex: $a_n = 2n + 1$. So,

• General term not given, but a relation is given, ex:

$$a_n = 5a_{n-1} - 6a_{n-2}$$

• This is a difference equation (recursive relation)

How to solve difference equations?

We look for a solution in the format

$$a_n = \lambda^n$$

For the previous problem,

$$\lambda^n = 5\lambda^{n-1} - 6\lambda^{n-2}$$

We simplify

$$\lambda^2 - 5\lambda + 6 = 0$$

• Auxiliary equation or characteristic equation.

•
$$\lambda = 2, \lambda = 3$$

•
$$a_n = c_1 2^n + c_2 3^n$$

• With some initial conditions, say $a_0 = 3$, $a_1 = 8$.

We get

$$\begin{cases} c_1 + c_2 = 3 \\ 2c_1 + 3c_2 = 8 \end{cases}$$

Thus,

$$c_1 = 1, c_2 = 2.$$

Solution

$$a_n = 2^n + 2 \cdot 3^n$$

Is the solution of 2nd order difference equation

$$a_n = 5a_{n-1} - 6a_{n-2}$$

k-th order difference equation

$$a_n = \beta_1 a_{n-1} + \beta_2 a_{n-2} + \dots + \beta_k a_{n-k}$$

Its characteristic equation

$$\lambda^k - \beta_1 \lambda^{k-1} - \dots - \beta_{k-1} \lambda - \beta_k = 0$$

Then we look for the solutions of the characteristic equation. Say, all k solutions are distinct real numbers, $\lambda_1, \lambda_2, \dots, \lambda_k$, then

$$a_n = c_1 \lambda_1^n + c_2 \lambda_2^n + \dots + c_n \lambda_k^n$$

Coefficients $c_i's$ are determined using initial values.

Example - Fibonacci sequence

Fibonacci sequence is defined as follows:

i.e., every term starting from the 3rd term is addition of the previous two terms.

Question: What is the general term, a_n , of the Fibonacci sequence?

Formulation

We are looking for a sequence $\{a_n\}_{n=0}^{\infty}$, such that

$$a_n = a_{n-1} + a_{n-2}$$

where $a_0 = 1$, $a_1 = 1$.

Characteristic equation becomes

$$\lambda^2 - \lambda - 1 = 0$$

Then
$$\lambda_1 = \frac{1-\sqrt{5}}{2}$$
 and $\lambda_2 = \frac{1+\sqrt{5}}{2}$.

Thus

$$a_n = c_1 \left(\frac{1 - \sqrt{5}}{2}\right)^n + c_2 \left(\frac{1 + \sqrt{5}}{2}\right)^n$$

Use initial data

$$\begin{cases} c_1 + c_2 = 1 \\ c_1 \left(\frac{1 - \sqrt{5}}{2} \right) + c_2 \left(\frac{1 + \sqrt{5}}{2} \right) = 1 \end{cases}$$

General term of Fibonacci sequence

We obtain

$$c_1 = \frac{5 - \sqrt{5}}{10} = -\frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)$$

$$c_2 = \frac{5 + \sqrt{5}}{10} = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$a_n = -\frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} + \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n+1}$$

Relation to differential equations

k —th order linear ordinary equation

$$y^{(k)} = \beta_1 y^{(k-1)} + \dots + \beta_{k-1} y + \beta_k$$

Solution format $y = e^{\lambda t}$ gives characteristic equation

$$\lambda^k - \beta_1 \lambda^{k-1} - \dots - \beta_{k-1} \lambda - \beta_k = 0$$

Then we solve the characteristic equation.

What We've Learned

 Definition of difference equations and how to solve them

Yule-Walker Equations

Practical Time Series Analysis
Thistleton and Sadigov

Objectives

• Introduce Yule – Walker equations

Obtain ACF of AR processes using Yule – Walker equations

Procedure

- We assume stationarity in advance (a priori assumption)
- Take product of the AR model with X_{n-k}
- Take expectation of both sides
- Use the definition of covariance, and divide by $\gamma(0) = \sigma_X^2$
- Get difference equation for $\rho(k)$, ACF of the process
- This set of equations is called Yule-Walker equations
- Solve the difference equation

Example

We have an AR(2) process
$$X_t = \frac{1}{3} X_{t-1} + \frac{1}{2} X_{t-2} + Z_t \dots (*)$$

Polynomial

$$\phi(B) = 1 - \frac{1}{3}B - \frac{1}{2}B^2$$

has real roots $\frac{-2 \pm \sqrt{76}}{2}$ both of which has magnitude greater than 1, so roots are outside of the unit circle in \mathbb{R}^2 . Thus, this AR(2) process is a stationary process.

Example cont.

Note that if $E(X_t) = \mu$, then

$$E(X_t) = \frac{1}{3}E(X_{t-1}) + \frac{1}{2}E(X_{t-2}) + E(Z_t)$$

$$\mu = \frac{1}{3}\mu + \frac{1}{2}\mu$$

$$\mu = 0$$

Multiply both side of (*) with X_{t-k} , and take expectation

$$E(X_{t-k}X_t) = \frac{1}{3}E(X_{t-k}X_{t-1}) + \frac{1}{2}E(X_{t-k}X_{t-2}) + E(X_{t-k}Z_t)$$

Example cont.

Since $\mu = 0$, and assume $E(X_{t-k}Z_t) = 0$,

$$\gamma(-k) = \frac{1}{3}\gamma(-k+1) + \frac{1}{2}\gamma(-k+2)$$

Since $\gamma(k) = \gamma(-k)$ for any k,

$$\gamma(k) = \frac{1}{3}\gamma(k-1) + \frac{1}{2}\gamma(k-2)$$

Divide by $\gamma(0) = \sigma_X^2$

$$\rho(k) = \frac{1}{3}\rho(k-1) + \frac{1}{2}\rho(k-2)$$

This set of equations is called Yule-Walker equations.

Solve the difference equation

We look for a solution in the format of $\rho(k) = \lambda^k$.

$$\lambda^2 - \frac{1}{3}\lambda - \frac{1}{2} = 0$$

Roots are
$$\lambda_1 = \frac{2+\sqrt{76}}{12}$$
 and $\lambda_2 = \frac{2-\sqrt{76}}{12}$, thus

$$\rho(k) = c_1 \left(\frac{2 + \sqrt{76}}{12}\right)^k + c_2 \left(\frac{2 - \sqrt{76}}{12}\right)^k$$

Finding c_1, c_2

Use constraints to obtain coefficients

$$\rho(0) = 1 \Rightarrow c_1 + c_2 = 1$$

And for k = p - 1 = 2 - 1 = 1,

$$\rho(k) = \rho(-k)$$

Thus,

$$\rho(1) = \frac{1}{3}\rho(0) + \frac{1}{2}\rho(-1) \Rightarrow \rho(1) = \frac{2}{3} \Rightarrow c_1\left(\frac{2+\sqrt{76}}{12}\right) + c_2\left(\frac{2-\sqrt{76}}{12}\right) = \frac{2}{3}$$

Solve the system for c_1 , c_2

$$\begin{cases} c_1 + c_2 = 1 \\ c_1 \left(\frac{2 + \sqrt{76}}{12} \right) + c_2 \left(\frac{2 - \sqrt{76}}{12} \right) = \frac{2}{3} \end{cases}$$

Then,

$$c_1 = \frac{4 + \sqrt{6}}{8}$$
 and $c_2 = \frac{4 - \sqrt{6}}{8}$

ACF of the AR(2) model

For any $k \geq 0$,

$$\rho(k) = \frac{4 + \sqrt{6}}{8} \left(\frac{2 + \sqrt{76}}{12}\right)^k + \frac{4 - \sqrt{6}}{8} \left(\frac{2 - \sqrt{76}}{12}\right)^k$$

And

$$\rho(k) = \rho(-k)$$

Simulation

ACF of a simulation of the AR(2) model

rho(k) plot

What We've Learned

 Yule- Walker equations is set of difference equations governing ACF of the underlying AR process

 How to find the ACF of an AR process using Yule-Walker equations