证明: 由定义显然有 $A/B \subset R/B$ 。

由于 $B \in A/B$, 所以 A/B 非空。

对任意 $\bar{x}, \bar{y} \in A/B$,有 $x, y \in A$,从而 $x - y \in A$, $\bar{x} - \bar{y} = \overline{x - y} \in A/B$ ($\bar{x} - \bar{y} = \overline{x - y}$ 是 因为 $-y \in \overline{-y}$,从而 $0 \in \bar{y} + \overline{-y}$, $\bar{y} + \overline{-y} = \bar{0}$ 。这就是说 $\overline{-y} = -\bar{y}$,从而 $\bar{x} - \bar{y} = \bar{x} + \overline{-y} = \overline{x + (-y)} = \overline{x - y}$)。

对任意 $\bar{x} \in A/B$, $\bar{y} \in R/B$,有 $x \in A, y \in R$,从而有 $xy \in A$ 和 $yx \in A$ 。因此有 $\bar{x} \cdot \bar{y} = \overline{xy} \in A/B$, $\bar{y} \cdot \bar{x} = \overline{yx} \in A/B$ 。

这就证明了 A/B 是 R/B 的理想。

 $f \in \varphi: R/B \to R/A, \ \forall x+B \in R/B, \ \diamondsuit \varphi(x+B) = x+A.$

首先证明 φ 是函数。对任意 $x,y \in R/B$,

$$x + B = y + B$$

$$\iff$$
 $-x+y \in B$ (教材定理 17.25(4))

$$\implies -x + y \in A$$
 $(B \subseteq A)$

$$\iff$$
 $x + A = y + A$ (教材定理 17.25(4))

$$\iff \varphi(x+B) = \varphi(y+B) \tag{φ 定义}$$

这就证明了 φ 是函数。

对任意 $x + A \in R/A$,有 $x + B \in R/B$, $\varphi(x + B) = x + A$,从而 φ 是满射。

由除环运算定义可知, φ 是同态,且为满同态。

由教材定理 17.25(4) 知, $\varphi(x+B)=x+A=A$ 当且仅当 $x\in A$ 。从而 $\ker \varphi=\{x+B\mid x\in A\}=A/B$ 。由环同态基本定理知, $R/B\Big/(A/B)\cong R/A$ 。

18.32

证明:对任意 $x \in R_1$,

$$x \in \varphi^{-1}(\varphi(S))$$

$$\iff \exists y (y \in \varphi(S) \land \varphi(x) = y) \tag{\varphi^{-1} 定义}$$

$$\iff \exists y \exists z (z \in S \land y = \varphi(z) \land \varphi(x) = y) \tag{\varphi(S) 定义}$$

$$\Longrightarrow \exists z (z \in S \land \varphi(x) = \varphi(z)) \tag{等量代换}$$

$$\iff \exists z (z \in S \land x + \ker \varphi = z + \ker \varphi)$$
 (教材定理 17.36(2))

$$\iff \exists z (z \in S \land x \in z + \ker \varphi)$$
 (教材定理 17.25(4))

$$\Longrightarrow x \in S + \ker \varphi \tag{S + ker } \varphi$$

$$\iff x \in \ker \varphi + S$$
 ($\ker \varphi \to \mathbb{E}$)

这就证明了 $x \in \varphi^{-1}(\varphi(S)) \subseteq \ker \varphi + S$.

反之,对任意 $x \in R_1$,

 $x \in \ker \varphi + S$

$$\iff \exists y \exists s (y \in \ker \varphi \land s \in S \land x = y + s) \tag{ker } \varphi + S \not\equiv \emptyset)$$

$$\Longrightarrow \exists y \exists s (y \in \ker \varphi \land s \in S \land \varphi(x) = \varphi(y) + \varphi(s)) \tag{\varphi 是同态}$$

$$\Rightarrow \exists y \exists s (y \in \ker \varphi \land s \in S \land \varphi(x) = \varphi(s))$$
 $(y \in \ker \varphi)$

$$\Longrightarrow \exists s(s \in S \land \varphi(x) = \varphi(s)) \tag{∃消去}$$

$$\Longrightarrow \varphi(x) \in \varphi(S)$$
 $(\varphi(S) \not \boxtimes X)$

$$\iff x \in \varphi^{-1}(\varphi(S)) \tag{} \varphi^{-1} \stackrel{?}{\boxtimes} \chi)$$