depth estimation & Classification on RGBD images

Yihui He*, Metehan Ozten

yihuihe@foxmail.com, m_ozten@umail.ucsb.edu

*CS 2nd year exchange student from Xi'an Jiaotong University, China

May 23, 2016

Related work and motivation

overview

our project: depth estimation & Classification on RGBD images

implement previous work

Go further

(2) Build a RGBD CIFAR10 based on indoor depth knowledge

(3) Compare RGBD and RGB label = f(RGBD) label = f(RGB)

first part: implement previous work

infer depth from RGB image

Infer depth from RGB image: Loss defination

At training time, we combine two objective function¹

- I regress to groud truth depth image(Kinect, PrimeSense) $\Sigma_p(y_p \hat{y}_p)^2$, p stands for pixel.
- 2 Similarity between superpixels. $R_{pq} = \sum_{k=1}^{K} \beta_k S_{pq}^{(k)}$ β is trainable weight. S is similarity function.

¹Fayao Liu, Chunhua Shen, and Guosheng Lin. "Deep convolutional neural fields for depth estimation from a single image". In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2015, pp. 5162–5170.

Infer depth from RGB image: Architecture

Infer depth from RGB image: Supervised part

using traditional CNN.

Compare performance with original paper

	Error			Accuracy		
Method	(lower is better)			(higher is better)		
	rel	log10	rms	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^{3}$
Our implementation	0.252	0.103	0.860	0.544	0.861	0.943
Original paper	0.230	0.095	0.824	0.614	0.883	0.971

(**Bold** is better.)

second part: go further

Classification on RGBD images

build RGBD CIFAR dataset

32x32x3

400x400x3

Through our trained depth estimation model

400×400×1

32x32x4

infer depth and transfer learning

architecture

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

R vs G vs B vs D: training time

R vs G vs B vs D: testing time

RGBD vs RGB: training time

RGBD vs RGB: tges time

our contribution

- reproduce previous work on depth estimation
- 2 create the first RGBD CIFAR10 dataset
- 3 prove that depth channel has a better feature representation
- 4 show that training on RGBD images can somehow improve accuracy

questions?²

²code, references, report and slides can be access here: https://github.com/yihui-he/Depth-estimation-with-neural-network → ⟨ ₱ →