Parte III: Lenguajes y Autómatas

1 de noviembre de 2019

Repaso

Alfabeto Conjunto finito no vacío, habitualmente usamos Σ para referirnos a alfabetos.

Cadena (fijado el alfabeto) Secuencia finita de símbolos de Σ .

Lenguaje un subconjunto de Σ^* .

Lenguaje Regular puede ser reconocido por un AFD, o un AFN o un AFN- ϵ .

1

Hablemos de lenguajes

Puesto que un lenguaje es un subconjunto de Σ^* podemos hablar de:

$$\begin{array}{ll} \mathrm{vac\'{io}} & \emptyset \\ & \mathrm{total} & \Sigma^* \\ & \mathrm{complemento} & \bar{L} = \Sigma^* \setminus L \\ & \mathrm{intersecci\'{o}n} & L \cap L' = \{\alpha \mid \alpha \in L \ \mathrm{y} \ \alpha \in L'\} \\ & \mathrm{uni\'{o}n} & L \cup L' = \{\alpha \mid \alpha \in L \ \mathrm{o} \ \alpha \in L'\} \\ & \mathrm{concatenaci\'{o}n} & LL' = \{\alpha\beta \mid \alpha \in L \ \mathrm{y} \ \beta \in L'\} \\ & \mathrm{potencias} & L^n = \begin{cases} \{\epsilon\} & \sin n = 0 \\ LL^k & \sin n = k+1 \end{cases} \\ & \mathrm{clausura} & L^* = \bigcup_{n \in \mathbb{N}} L^n \end{array}$$

2

Expresiones regulares

Las expresiones regulares son una forma más algebraica de definir lenguajes regulares. Fijado un alfabeto Σ las definimos inductivamente:

vacío $\emptyset \in ER_{\Sigma}$.

 ${\it \acute{e}psilon} \qquad \qquad \epsilon \in ER_{\Sigma}.$

símbolo Si $x \in \Sigma$, entonces $\mathbf{x} \in ER_{\Sigma}$.

unión Si $A, B \in ER_{\Sigma}$, entonces $A + B \in ER_{\Sigma}$.

concatenación Si $A, B \in ER_{\Sigma}$, entonces $AB \in ER_{\Sigma}$.

clausura Si $A \in ER_{\Sigma}$, entonces $A^* \in ER_{\Sigma}$.

Lenguaje de una expresión regular

Como ER_{Σ} fue definido inductivamente, podemos definir sus lenguajes por recursión:

vacío
$$L(\emptyset) = \emptyset$$
.

$$\text{\'epsilon} \qquad \qquad L(\epsilon) = \{\epsilon\}.$$

símbolo
$$L(\mathbf{x}) = \{x\}.$$

unión
$$L(A+B)=L(A)\cup L(B).$$

concatenación
$$L(AB) = L(A) \cup L(B)$$
.

clausura
$$L(A^*) = (L(A))^*$$
.

$L_{()} = \{ \alpha \in \{ (,) \}^* \mid$	existe n , $\alpha = (n)^n$	} no es regular.

Por qué hay lenguajes no regulares

- $\,\blacksquare\,$ Supongamos que $L_{()}$ es regular, entonces existe un AFD A que lo reconoce.
- A tiene una cantidad finita de estados, digamos m.
- Consideremos la palabra $\binom{m+1}{m+1}$: al leer el prefijo de 0s, visitamos uno de los estados más de una vez, digamos q_i .
- Es decir hay un ciclo

- ullet El autómata no puede distinguir entre (j+k+l) y (j+2k+l).
- Por lo tanto, debe aceptar $(j+2k+l)^{j+k+l}$

Lema de bombeo (Pumping Lemma)

Teorema

Si L es un lenguaje regular, entonces existe una constante $n\in\mathbb{N}$ tal que para toda cadena $\alpha\in L$ con $|\alpha|\geqslant n$ existen palabras β,γ,δ tales que $\alpha=\beta\gamma\delta$

- $\quad \quad \gamma \neq \epsilon$
- $|\beta\gamma| \leqslant n$
- para toda $k\geqslant 0$, la cadena $\beta\gamma^k\delta\in L$.

Uso del pumping lemma

Los cuantificadores son importantes

- Asumimos que L es regular.
- Como es regular, existe n (no lo puedo elegir).
- Para toda palabra $\alpha \in L$ (la elijo en función de L y n),
- existen β_1, γ, β_2 tales que $\alpha = \beta_1 \gamma \beta_2$ y $|\beta_1 \gamma| \leq n$, $|\gamma| > 0$ (no puedo elegir a β_1, γ, β_2).
- para todo $k \ge 0$ (puedo elegir k en función de todo lo anterior), se da que $\beta_1 \gamma^k \beta_2 \in L$.

Resumen

Elijo una palabra que sé que pertenece L (usar n). Considero TODAS las formas de partir la palabra de acuerdo a las hipótesis, trabajo para concluir que hay una palabra que está en L pero que, por la definición del mismo, NO puede estar.

7

Uso del pumping lemma (sin contradicción)

El pumping lemma es útil para demostrar que ciertos lenguajes no son regulares, pero también lo podemos usar positivamente sin llegar a ninguna contradicción.

Por ejemplo, al aplicar el pumping lemma sobre:

- $L_1 = \emptyset$
- $L_2 = \{00, 11\}$
- $L_3 = \{01^l 0^k 1\}$

no podemos llegar a contradicción alguna porque:

- en L_1 no hay palabra para elegir;
- en L_2 no hay palabra para elegir si $n \neq 2$
- en L_2 el adversario podrá "partir" adecuadamente cualquier palabra α que elijamos.