演習問題

問 1

確率計算の基本則 (離散確率変数版)

すべて足すと1

$$\sum_{x \in D(X)} P_X(x) = 1 \tag{1}$$

周辺化

$$P_X(x) = \sum_{y \in D(Y)} P_{XY}(x, y) \tag{2}$$

条件付確率 (チェイン則)

$$P_{XY}(x,y) = P_{Y|X}(y|x)P_X(x)$$
(3)

ベイズ則

$$P_{X|Y}(x|y) = \frac{P_X(x)P_{Y|X}(y|x)}{P_Y(y)}$$
(4)

確率変数 $X, Y(\mathcal{X} = \mathcal{Y} = \{0,1\})$ は次の同時分布を持つ。

$$P_{XY}(0,0) = 1/8 (5)$$

$$P_{XY}(0,1) = 3/8 (6)$$

$$P_{XY}(1,0) = 2/8 (7)$$

$$P_{XY}(1,1) = 2/8 (8)$$

次の問に答えよ。

- (a) $P_X(0), P_X(1)$ を求めよ。
- (b) $P_Y(0), P_Y(1)$ を求めよ。
- (c) $P_{Y|X}(0|0), P_{Y|X}(1|0)$ を求めよ。
- (d) チェイン則に基づいてベイズ則を導け。

問2

n 個の確率変数 X_1,X_2,\ldots,X_n について考える。この確率変数の組に対応 する同時分布 $P_{X_1\cdots X_n}(x_1,x_2,\ldots,x_n)$ が任意の $(x_1,x_2,\ldots,x_n)\in D(x_1)$ ×

 $\cdots \times D(x_n)$ について

$$P_{X_1 \cdots X_n}(x_1, x_2, \dots, x_n) = P_{X_1}(x_1) P_{X_2}(x_2) \cdots \times P_{X_n}(x_n)$$
 (9)

が成り立つならば、組 $\{X_1,\ldots,X_n\}$ は独立である、という。言い換えると

同時分布が各変数の周辺分布の積として因子分解できる ⇔ 独立

である。次の同時分布 $P_{XY}(x,y)$ を持つ 2 つの確率変数 X,Y が独立であることを示せ。

$P_{XY}(x,y)$		
$y \backslash x$	0	1
0	0.03	0.27
1	0.07	0.63