

Multi-attention Recurrent Network for Human Communication Comprehension

Amir Zadeh, Paul Pu Liang, Soujanya Poria, Prateek Vij, Erik Cambria, Louis-Philippe Morency

Presenter: Paul Pu Liang

Progress of Artificial Intelligence

Multimedia Content

Intelligent Personal Assistants

Robots and Virtual Agents

Multimodal Communicative Behaviors

Language

- > Lexicon
 - Words
- > Syntax
 - Part-of-speech
 - Dependencies
- > Pragmatics
 - Discourse acts

Acoustic

- > Prosody
 - Intonation
 - Voice quality
- Vocal expressions
 - Laughter, moans

Visual

- > Gestures
 - Head gestures
 - Eye gestures
 - Arm gestures
- > Body language
 - Body posture
 - Proxemics
- > Eye contact
 - Head gaze
 - Eye gaze
- > Facial expressions
 - FACS action units
 - Smile, frowning

Sentiment

- Positive
- Negative

Emotion

- > Anger
- Disgust
- > Fear
- > Happiness
- > Sadness
- > Surprise

Personality

- Confidence
- Persuasion
- Passion

Intra-modal

Challenge 1: Intra-modal dynamics

Language Technologies Institute

Challenge 1: Intra-modal dynamics

a) Multiple co-occurring interactions

- a) Multiple co-occurring interactions
- b) Different weighted combinations

- a) Multiple co-occurring interactions
- b) Different weighted combinations
- c) Multiple prediction targets

Modeling intra-modal dynamics

Set of Long-short Term Memories

1 Modeling intra-modal dynamics

Set of Long-short Term Memories

2 Modeling cross-modal dynamics

Set of Long-short Term **Hybrid** Memories + Single-attention Block

1 Modeling intra-modal dynamics

Set of Long-short Term Memories

2 Modeling cross-modal dynamics

Set of Long-short Term **Hybrid** Memories + Single-attention Block

Modeling multiple cross-modal dynamics

Set of Long-short Term **Hybrid** Memories + **Multi-attention** Block

Challenge 1: Intra-modal Dynamics

How do we capture cross-modal dynamics continuously across time?

Challenge 2: Long-short Term Hybrid Memory

Challenge 2: Multi-attention Block

Experiments

Language

> Glove word embeddings

Visual

- Facet features
 - FACS action units
 - Emotions

Acoustic

- > COVAREP features
 - MFCCs
 - Pitch tracking

Alignment

- Word level
- > **P2FA**

Sentiment

- Positive
- Negative

Emotion

- > Anger
- Disgust
- > Fear
- Happiness
- Sadness
- Surprise

Personality

- Confidence
- Persuasion
- Passion

Baseline Models

- 1. Non-temporal Models
 - SVM-MD, RF
- 2. Early Fusion
 - HMM, EF-LSTM, EF-HCRF, C-MKL, SAL-CNN
- 3. Late Fusion
 - DF, TFN, BC-LSTM
- 4. Multi-view Learning
 - MV-HMMs, MV-HCRFs, MV-LSTM

State-of-the-art Results

CMU-MOSI Sentiment Analysis

State-of-the-art Results

Multi-attention Block is Important

Multiple Attentions are Important

CMU-MOSI Sentiment Analysis

YouTube Sentiment Analysis

76.6

76.4

75.8

75.6

Attentions *show diversity* and are sensitive to different cross-modal dynamics

1 Modeling intra-modal dynamics

2 Modeling cross-modal dynamics

Modeling multiple cross-modal dynamics

The End!

Code: https://github.com/A2Zadeh/MARN

Email: pliang@cs.cmu.edu

The End!

Code: https://github.com/A2Zadeh/MARN

Email: pliang@cs.cmu.edu

Workshop @ ACL 2018

First Workshop on Computational Modeling of

Human Multimodal Language

multicomp.cs.cmu.edu/acl2018multimodalchallenge/