

Graphs in NLP Heterogeneous Information Fusion

Vadim Alperovich

LATNA, HSE NN

Nizhny Novgorod, 2020

Motivation

1. ACL 2019 and ACL 2020

There is a growing trend for using network structures

2. Intuition

- It seems natural use in natural language not only syntax and semantics but some external common knowledge
- In many NLP problems entities are connected by a range of relations, not only co-occurrence
- 3. Previous results and existent gaps
 - semi-supervized learning; less amount of labeled training data, when it has access to organized world knowledge

3 / 47

• Knowledge Graphs (KG) + LSTM [20]

Objectives

- Review of graph-based and network representations of natural language
- Research of widespread approaches to transform graph structures to vector representations
- Breakdown of some methods of incorporating graph-based information into embedding-based NLP model

Content

Graph-based Text Representation Graph-based document representation Syntax-based graph Knowledge graphs

Vector Representations of Graph Structures Heuristic Graph Embeddings Knowledge graph embeddings Neural approach

Heterogeneous Information Fusion SynGCN ERNIE

References

Bag-of-Words issues Graph-based Natural Language Representations

- Text is a set of terms (unique tokens) and its frequencies
- Term independence assumption
 BoW model representation doesn't consider the semantic relations between words
- Term frequency weighting

Graph-based document representation Graph-based Natural Language Representations

• Graph construction [1] each document $d \in D$ is represented by a graph G_d

$$G_d = (V_d, E_d)$$

where V_d - the set of nodes represented by terms in d, E_d - the set of edges that capture co-occurrence relationships between terms within a fixed-size sliding window of size ω in d.

Graph-based document representation Graph-based Natural Language Representations

• Idea: Replace term frequency with node centrality [2]

information retrieval is the activity of obtaining information resources relevant to an information need from a collection of information resources

- Deals with the term independence and term frequency weighting assumptions
- Taking into account word dependence, order and distance

Graph-based document representation Graph-based Natural Language Representations

 InfraNodus: Generating Insight Using Text Network Analysis (2019) [3]

Text analysis pipeline:

- 1. Text Normalization
- 2. Stop words removal
- 3. Text-to-Network Conversion
- 4. Extracting Most Influential Keywords Using Betweenness Centrality
- 5. Topic Modelling Using Community Detection
- 6. Summarization
- 7. Discourse Structure and the Measure of Discourse Bias
- 8. Insight Generation using Structural Gaps
- https://infranodus.com/infranodus/ihaveadream

Graph-based document representation Graph-based Natural Language Representations

My implementation for Russian text (steps 1-3)
 Л.Н.Толстой "Война и мир" Встреча Болконского с дубом

Syntax-based graph Graph-based Natural Language Representations

11 / 47

• https://universaldependencies.org/u/dep/all.html

	Nominals	Clauses	Modifier words	Function Words
Core arguments	nsubj obj iobj	csubj ccomp		
Non-core dependents	obl vocative expl dislocated	advel	advmod* discourse	aux cop mark
Nominal dependents	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj cc	fixed flat compound	list parataxis	orphan goeswith reparandum	punct root dep

Syntax-based graph Graph-based Natural Language Representations

- Stanford Dependency [18]
- Universal Stanford Dependencies: A cross-linguistic typology [4]
- The syntactic context helps to capture functional similarity rather than topical similarity of texts
- Syntactic parsers comparison https://spacy.io/usage/facts-figures

SYSTEM	YEAR	LANGUAGE	ACCURACY	SPEED (WPS)
spaCy v2.x	2017	Python / Cython	92.6	n/a 🕲
spaCy v1.x	2015	Python / Cython	91.8	13,963
ClearNLP	2015	Java	91.7	10,271
CoreNLP	2015	Java	89.6	8,602
MATE	2015	Java	92.5	550
Turbo	2015	C++	92.4	349

Syntax-based graph Graph-based Natural Language Representations

- My implementation via StanfordCoreNLP [18]
 - Russian Tagging and Dependency Parsing Models for Stanford CoreNLP Natural Language Toolkit, ITMO University
- Князь Андрей несколько раз оглянулся на этот дуб, проезжая по лесу.

Knowledge graphs

Graph-based Natural Language Representations

- Knowledge graph contains of fact triples
- Fact triples <entity, relation, entity>,
 e.g. <London, is_capital, Britain>, <Turing, born_in , 1912>, etc.

(c) A small fraction of a large knowledge graph.

Tackling Graphical NLP problems with Graph Recurrent Networks, 2019 [4]

Knowledge graphs

15 / 47

- Graph-based Natural Language Representations
 - Implementation with SpaCy framework
 - https://en.wikipedia.org/wiki/Alan_Turing

*co-reference problem

Vector Representations of Graph Structures

 How to find some effective numerical representation of nodes, communities and whole network... [6]

(a) Input: Karate Graph

(b) Output: Representation

- Given a graph and a starting node, we select a neighbor of it at random, and move to this neighbor; then we select a neighbor of this node at random, and move to it etc.
- The sequence of nodes selected this way is a random walk on a graph.

$$rw_A^{l=5} = [A, B, D, G, B]$$

 $rw_B^{l=5} = [B, C, F, C, B]$

• Capturing some local information of a node

Vector Representations of Graph Structures

- Graph G = (V, E) $rw_v = \{u^1, u^2, \dots, u^N\}$ - random walk on G, where $v \in V, u^i \in \mathcal{N}(v), N(x)$ - a set of neighbours of node x
- Assume that in uⁱ is a token and rw_v for v ∈ V is a set of sentences, e. g. we can use Word2Vec [5]
- Yeah, we have DeepWalk model (Perozzi et al., 2014) [6] [7]

19 / 47

Vector Representations of Graph Structures

DeepWalk [6]

```
Algorithm 1 DEEPWALK(G, w, d, \gamma, t)
Input: graph G(V, E)
    window size w
    embedding size d
    walks per vertex \gamma
    walk length t
Output: matrix of vertex representations \Phi \in \mathbb{R}^{|V| \times d}
 1: Initialization: Sample \Phi from \mathcal{U}^{|V| \times d}
 2: Build a binary Tree T from V
 3: for i = 0 to \gamma do
 4: \mathcal{O} = \text{Shuffle}(V)
 5: for each v_i \in \mathcal{O} do
 6: W_{v_i} = RandomWalk(G, v_i, t)
 7:
          SkipGram(\Phi, \mathcal{W}_{v_i}, w)
       end for
 9: end for
```

Random Walk and Node2vec Vector Representations of Graph Structures

- Node2Vec [8]
- Node2vec is a modification of DeepWalk with the small difference in random walks. It has parameters P and Q.
- Parameter Q defines how probable is that the random walk would discover the undiscovered part of the graph, while parameter P defines how probable is that the random walk would return to the previous node.
- node2vec: Scalable Feature Learning for Networks

Vector Representations of Graph Structures

- A bipartite graph jobs to skills from hh.ru
- 803 jobs, 1262 skills, 6547 pairs
- 'Программист', 'Разработчик', 'Аналитик', 'Data analyst', 'Data Scientist', 'IT-специалист'

```
random_walk(net, 'python')
 Out: ['python',
   'программист-разработчик phyton',
   'ооп'.
   'ведущий web-разработчик',
   'asp.net',
   'full stack разработчик',
   'asp.net',
   'программист с#',
   'css',
   'разработчик vba',
   'html']
```


Vector Representations of Graph Structures

 A bipartite graph jobs to skills from hh.ru with gensim.models.Word2Vec

Vector Representations of Graph Structures

- A bipartite graph jobs to skills from hh.ru
- embeddings.most_similar('c++', topn=5)
 Out:
 [('qt/qml developer', 0.997),
 ('computer vision intern (open model zoo)', 0.993),
 ('инженер-программист', 0.988),
 ('deep learning software engineer', 0.987),
 ('c/c++', 0.986)]

- KG a is a directed graph which relation types have domain-specific semantics
- KGs consist of fact triples, e.g. <head, relation, tail>

(c) A small fraction of a large knowledge graph.

- Idea: an embedding of the head entity + some vector of the relation is close to an embedding of the tail entity
- Translation based embedding model or TransE [9]
- $d(h+r,t) L_1$ or L_2 norm
- $L = \sum_{(h,r,t) \in S} \sum_{(h',r,t') \in S'} [\gamma + d(h+r,t) d(h'+r,t')]_+ \rightarrow min$ where $[x]_+$ denotes the positive part of x, $\gamma > 0$ is a margin hyperparameter

 $S' = \{(h', r, t) : h' \in E\} \cup \{(h, r, t') : t' \in E\}$ - the set of corrupted triples, i.e. triplets with either the head or tail replaced by a random entity *but not at the same time*

• Translation based embedding model or TransE [9]

 Sources: Text analysis: fundamentals and sentiment analysis, and Knowledge Graph Embedding by Flexible Translation, 2016 [10]

• Translation based embedding model or TransE [9]

Algorithm 1 Learning TransE

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
  1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{L}}, \frac{6}{\sqrt{L}}) for each \ell \in L
                       \ell \leftarrow \ell / \|\ell\| for each \ell \in L
                      \mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each entity e \in E
 4: loop
      \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity e \in E
          S_{batch} \leftarrow \text{sample}(S, b) \text{ // sample a minibatch of size } b
          T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
          for (h, \ell, t) \in S_{batch} do
               (h', \ell, t') \leftarrow \text{sample}(S'_{(h, \ell, t)}) \text{ // sample a corrupted triplet}
              T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}
10:
11:
          end for
                                                                      \sum \nabla \left[ \gamma + d(\boldsymbol{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\boldsymbol{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \right]_{+}
12:
           Update embeddings w.r.t.
                                                       ((h,\ell,t),(h',\ell,t')) \in T_{batch}
13: end loop
```


- AmpliGraph: a Library for Representation Learning on Knowledge Graphs, 2019 [12]
- Kaggle international-football-results-from-1872-to-2017

□ date =	▲ home_team		# home_score =	# away_score =	∆ tournament =	▲ city
1872-11-30	Scotland	England	θ	θ	Friendly	Glasgow
1873-03-08	England	Scotland	4	2	Friendly	London
1874-03-07	Scotland	England	2	1	Friendly	Glasgow
1875-03-06	England	Scotland	2	2	Friendly	London
1876-03-04	Scotland	England	3	0	Friendly	Glasgow
1876-03-25	Scotland	Wales	4	θ	Friendly	Glasgow
1877-03-03	England	Scotland	1	3	Friendly	London
1877-03-05	Wales	Scotland	0	2	Friendly	Wrexham
1878-03-02	Scotland	England	7	2	Friendly	Glasgow
1878-03-23	Scotland	Wales	9	0	Friendly	Glasgow
1879-01-18	England	Wales	2	1	Friendly	London

• 392854 triples, 37931 entities, 12 relations, TransE(k = 15, epoch = 200, batch = 100)

Knowledge Graph Embeddings

clusters=3

- Vector Representations of Graph Structures
 - 392854 triples, 37931 entities, 12 relations, TransE(k = 15, epoch = 200, batch = 200)
 - Visualize only "team"entities in 2D and try to cluster it

Vadim Alperovich Graphs in NLP Nizhny Novgorod, 2020 30 / 47

Knowledge Graph Embeddings

- Vector Representations of Graph Structures
 - 392854 triples, 37931 entities, 12 relations, TransE(k = 15, epoch = 200, batch = 200)
 - Visualize only "country"entities in 2D and try to cluster it

clusters=2 clusters=0 clusters=4 clusters=3 clusters=1 clusters=5

- Translation based embedding model or TransE [9]
- Learning Entity and Relation Embeddings for Knowledge Graph Completion or TransR [10]
- Knowledge Graph Embedding by Translating on Hyperplanes or TransH [11]

Figure 4: TransR projecting different aspects of an entity to a relationship space.

Convolutional Neural Networks' big impact [13]

convolution and pooling functions

sparse interaction, multiple layers, translation invariance

- Graph Convolutional Networks (GCN) is a NNs that operate on graphs [14] [15]
- input two matrices: $F_{N \times K}$ feature matrix of nodes, $A_{N \times N}$ adjacency matrix of G
- let G = (V, E), then hidden states (neighborhood aggregation) $\forall v \in V$:

$$h_{\mathbf{v}} = f\left(\frac{1}{|\mathcal{N}(\mathbf{v})|} * \sum_{u \in \mathcal{N}(\mathbf{v})} W x_u + b\right),$$

where W (filter matrix), b (bias) - model parameters x_u - initial feature for a node u, N(v) - set of neighbours for node v and f - non-linear activation function (ReLU)

but h_v capture only 1-hop nodes...

- Idea: Consider k-hop node neighbors
- Multi-hop node similarity [16]

- Red: Target node
- Green: 1-hop neighbors
 - A (i.e., adjacency matrix)
 - Blue: 2-hop neighbors
 - A²
- Purple: 3-hop neighbors
 - A³

Graph Convolutional Networks

- Vector Representations of Graph Structures
 - Graph Convolutional Networks (GCN) is a NNs that operate on graphs [14] [15]
 - Basic neighborhood aggregation, h_v^k capture k-hop nodes information

$$h_{\nu}^{k+1} = f\left(\frac{1}{|\mathcal{N}(\nu)|} * \sum_{u \in \mathcal{N}(\nu)} W^k h_u^k + b^k\right),\,$$

GCN neighborhood aggregation

$$h_{v}^{k+1} = f\left(W_{k} \sum_{u \in \mathcal{N}(v) \cup v} \frac{h_{u}^{k}}{\sqrt{|\mathcal{N}(v)||\mathcal{N}(v)|}}\right)$$

more parameter sharing, down-weights high degree neighbors

37 / 47

• two-layer GCN for semi-supervised node classification [15]

$$Z = f(X,A) = softmax(\hat{A}ReLU(\hat{A}XW^{(0)})W^{(1)}),$$
 where $\hat{A} = \tilde{D}^{\frac{1}{2}}\tilde{A}\tilde{D}^{\frac{1}{2}}$, $\tilde{D}: \tilde{d} = \sum_{j}\tilde{a}_{ij}$, $\tilde{A} = A + I_N$

(a) Graph Convolutional Network

(b) Hidden layer activations

• GCN: example model architecture for SRL task [13]

Standard Deep Learning Architecture for NLP problems (above is for Semantic-Role Labeling (SRL))

Model with GCN as part of the network

GCN weights are trained based on the final objective

SynGCN

Heterogeneous Information Fusion

 Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks or SynGCN [17]

SynGCN (Sentence-level)

40 / 47

- SynGCN [17]
- For a given sentence $s = (w_1, w_2, \dots, w_n)$, extract its dependency parse graph $\mathcal{G}_s = (\mathcal{V}_s, \mathcal{E}_s)$ using Stanford CoreNLP parser [18]
- Similar to CBOW model [5], where the context of a word w_i is $C_{w_i} = \{w_{i+j} : c \le j \le c, j \ne 0\}$ for a window of size c, define the context as its neighbors in \mathcal{G}_s , i.e., $C_{w_i} = \mathcal{N}(w_i)$.
- unlike CBOW, which takes the sum of the context embedding of words in C_{w_i} to predict w_i apply directed GCN on \mathcal{G}_s with context embeddings of words in s as feature input
- Thus, for each word w_i in s, we obtain a representation h_i^{k+1} after k-layers of GCN

$$h_i^{k+1} = f\left(\sum_{j \in \mathcal{N}(i)} g_{l_{ij}}^k \times (W_{l_{ij}}^k h_j^k + b_{l_{ij}}^k)\right),$$

41 / 47

Theorem

SynGCN is a generalization of Continuous-bag-of-words (CBOW) model.

Proof

For a given sentence s, take the neighborhood of each word w_i in $\mathfrak G$ as it sequential context, i.e., w_i is $\mathfrak N_{w_i}=\{w_{i+j}:c\leq j\leq c,j\neq 0\}\ \forall w_i\in s$. Now, if the number of GCN layers are restricted to 1 and the activation function is taken as identity (f(x)=x), then Equation 1 reduces to

$$h_i = \sum_{c \leq j \leq c, j \neq 0} \ g_{l_{ij}} \times (W_{l_{ij}} h_j^k + b_{l_{ij}}),$$

Finally, $Wk_{l_{ij}}$ and $b_{l_{ij}}$ can be fixed to an identity matrix (1) and zero vector (0), edge-wise gating $g_{l_{ij}}$ can be set to 1. This gives

$$h_i = \sum_{c \leq j \leq c, j \neq 0} \mathbf{1} h_j + \mathbf{0} = \sum_{c \leq j \leq c, j \neq 0} h_j \quad \Box$$

Heterogeneous Information Fusion

• SynGCN [17]

Word Similarity			Concept Categorization			Word Analogy				
Method	WS353S	WS353R	SimLex999	RW	AP	Battig	BLESS	ESSLI	SemEval2012	MSR
Word2vec	71.4	52.6	38.0	30.0	63.2	43.3	77.8	63.0	18.9	44.0
GloVe	69.2	53.4	36.7	29.6	58.0	41.3	80.0	59.3	18.7	45.8
Deps	65.7	36.2	39.6	33.0	61.8	41.7	65.9	55.6	22.9	40.3
EXT	69.6	44.9	43.2	18.6	52.6	35.0	65.2	66.7	21.8	18.8
SynGCN	73.2	45.7	45.5	33.7	69.3	45.2	85.2	70.4	23.4	52.8

Table 1: **SynGCN Intrinsic Evaluation:** Performance on word similarity (Spearman correlation), concept categorization (cluster purity), and word analogy (Spearman correlation). Overall, SynGCN outperforms other existing approaches in 9 out of 10 settings. Please refer to Section 9.1 for more details.

https://github.com/malllabiisc/WordGCN

ERNIE

Heterogeneous Information Fusion

Bob Dylan wrote Blowin' in the Wind in 1962, and wrote Chronicles: Volume One in 2004.

- Without knowing Blowin' in the Wind and Chronicles: Volume One are song and book respectively [20]
 - 1. it is difficult to recognize the two occupations of Bob Dylan, i.e. songwriter and writer, on the entity typing task.
 - 2. it is nearly impossible to extract the fine-grained relations, such and composer and author on the relation classification task
 - 3. "UNK wrote UNK in UNK"

Heterogeneous Information Fusion

 ERNIE: Enhanced Language Representation with Informative Entities [20]

 pre-training corpus: 4,500M subwords and 140M entities from English Wikipedia

45 / 47

- ERNIE consists of two stacked modules: [20]
 - the underlying textual encoder (T-Encoder) responsible to capture basic lexical and syntactic information from the input tokens
 - knowledgeable encoder (K-Encoder) responsible to integrate extra token-oriented knowledge information into textual information from the underlying layers

Figure 3: Modifying the input sequence for the specific tasks. To align tokens among different types of input, we use dotted rectangles as placeholder. The colorful rectangles present the specific mark tokens.

• based on state-of-the-art BERT model [21]

• **ERNIE** [20] experimental results:

The experimental results demonstrate that ERNIE has better abilities of both denoising distantly supervised data and fine-tuning on limited data than BERT

Model	Acc.	Macro	Micro
NFGEC (Attentive)	54.53	74.76	71.58
NFGEC (LSTM)	55.60	75.15	71.73
BERT	52.04	75.16	71.63
ERNIE	57.19	76.51	73.39

Model	P	R	Fl
NFGEC (LSTM)	68.80	53.30	60.10
UFET	77.40	60.60	68.00
BERT	76.37	70.96	73.56
ERNIE	78.42	72.90	75.56

Table 2: Results of various models on FIGER (%). Table 3: Results of various models on Open Entity (%).

Model	P	FewRel R	FI	P	TACRED R	F1
CNN	69.51	69.64	69.35	70.30	54.20	61.20
PA-LSTM	-	-		65.70	64.50	65.10
C-GCN	-	-	-	69.90	63.30	66.40
BERT	85.05	85.11	84.89	67.23	64.81	66.00
ERNIE	88.49	88.44	88.32	69.97	66.08	67.97

Table 5: Results of various models on FewRel and TACRED (%).

Model		P	R	F1
BERT	I	85.05	85.11	84.89
ERNIE w/o entities w/o dEA		88.49 85.89 85.85	88.44 85.89 85.75	88.32 85.79 85.62

Table 7: Ablation study on FewRel (%).

References

47 / 47

- https://github.com/VirtualRoyalty/graphs-in-nlp-2020
- 1 Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification
- 2 Graph-based Text Representations: Boosting Text Mining, NLP and Information Retrieval with Graphs
- 3 InfraNodus: Generating Insight Using Text Network Analysi
- 4 Tackling Graphical NLP problems with Graph Recurrent Networks
- 5 Distributed Representations of Words and Phrases and their Compositionality
- 6 DeepWalk: Online Learning of Social Representations
- 7 Efficient Representation Learning Using Random Walks for Dynamic Graphs
- 8 node2vec: Scalable Feature Learning for Networks
- 9 Translating Embeddings for Modeling Multi-relational Data
- 10 Learning entity and relation embeddings for knowledge graph completion
- 11 Knowledge Graph Embedding by Translating on Hyperplanes
- 12 AmpliGraph: a Library for Representation Learning on Knowledge Graphs
- 13 A Tutorial on Graph Neural Networks for Natural Language Processing
- 14 The graph neural network model
- 15 SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
- 16 Standford: Representation Learning on Networks
- 17 Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks
- 18 The Stanford CoreNLP Natural Language Processing Toolkit
- 19 Learning beyond datasets: Knowledge Graph Augmented Neural Networks for Natural language Processing
- 20 ERNIE: Enhanced Language Representation with Informative Entities
- 21 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding