- 1. Categorize the following equations by:
 - Order
 - Number of independent variables
 - Linear vs Non-linear. If linear, is it homogeneous or non-homogeneous?
 - (a) $u_{xx} + u_{yy} + u_{zz} = f(y,t)$
 - Second Order
 - 4: x, y, z, t
 - Linear Non-homogeneous
 - (b) $u_{tt} = u_{tx} + t^2 u_x$
 - Second Order
 - 2: x, t
 - $\bullet\,$ Linear, Homogeneous
 - (c) $(u_y)^4 + (u_x)^5 = 7$
 - First Order
 - 2: x, y
 - Non-linear
 - (d) $u_t \sqrt{1 + (u_y)^2} = 0$
 - First Order
 - 2: y, t
 - Non-linear
 - (e) $u_t + (u^2)_x = 0$
 - First order
 - 2: x, t
 - Non-linear
 - (f) $u_t + \frac{\partial^2}{\partial x^2} u^3 \frac{\partial}{\partial y} u^{\frac{5}{2}} = 0$
 - Second Order
 - 3: x, y, t
 - Non-linear
 - (g) $u_t uu_y + 6u_{xx} = 4\cos t$
 - Second Order
 - 3: x, y, t
 - Non-linear
 - (h) $0 = \nabla \cdot \nabla u$ (Where u is dependent on n variables x_1, x_2, \dots, x_n).
 - ?
 - ?
 - . ?
 - (i) $\left(\frac{\partial^4 u}{\partial t \partial x^2 \partial y}\right)^2 = g(x, t)$
 - Fourth order
 - 3: x, y, t
 - Non-linear
 - (j) $u_t = \frac{u_{xx}(u_y)^2 2u_x u_y u_{xy} + u_{yy}(u_x)^2}{(u_y)^2 + (u_x)^2}$
 - Second Order
 - 2: x, y
 - Non-linear
 - (k) $\sqrt{u_x + u_y} = e^{xt}$
 - First Order
 - 3: x, y, t
 - Non-linear
- 2. Derive the heat equation for a 2-D region in the following ways:
 - (a) Do this over a differential square $\Delta x \Delta y$, generalizing the argument from the notes.
 - (b) Do this over any small area by using the divergence theorem.

The Divergence Theorem

• In 3-D: Let \overrightarrow{F} be any vector field, then

$$\int\int\int_{\Omega}\nabla\cdot\overrightarrow{F}dV=\int\int_{R}\overrightarrow{F}\cdot\overrightarrow{n}~\mathrm{d}\mathbf{A}\overrightarrow{f}$$

where Ω is any bounded, simple 3-D region, R is the surface of the 3-D region, and \vec{n} is the unit outward normal.

• In 2-D:

$$\int \int_{R} \nabla \cdot \vec{F} \, da = \oint \vec{F} \cdot \vec{n} \, dS$$
 (1)

Where R is a simple 2-D region, C is the boundary of the region, and \vec{n} is the unit normal.

• In 1-D: The Funtamental Theorem of Calculus

$$\int_{L} \frac{\partial f}{\partial x} \, \mathrm{d}x = f(b) - f(a) \tag{2}$$

note that here we are integrating along a line segment L which is [a, b]