(51)

62

Int. Cl.:

C 01 b, 25/32

°C 05 b, 9/00

A 23 k

BUNDESREPUBLIK DEUTSCHLAND

PATENTAMT DEUTS CHES

Deutsche Kl.:

12 i, 25/32

16 a, 9/00 53 g, 4/04

1925 180 Offenlegungsschrift $\overline{\mathbb{O}}$

21

Aktenzeichen:

P 19 25 180.0

2

Annieldetag:

17. Mai 1969

43)

Offenlegungstag: 26. November 1970

Ausstellungspriorität:

Unionspriorität

Datum:

Land:

(31)

Aktenzeichen:

54

Bezeichnung:

Verfahren zur Herstellung von Magnesiumalkaliphosphat-Gips-

Mischverbindungen und deren Verwendung

61

Zusatz zu:

62

Ausscheidung aus:

Anmelder:

Müller, Dr. Dipl.-Chem. Frank, 8091 Evenhausen

Vertreter:

12

Als Ersinder benannt:

Erfinder ist der Anmelder

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. 1 S. 960):

BED! AVAILABLE COPY

11.70--009 848/1736

6/90

BNSDOCID: <DE___ 1925160A1_I, >

Dr. Frank Müller

8091 Evenhausen bei Wasserburg am Inn

Verfahren zur Merstellung von Magnesiumalkaliphosphat-Gips-Mischverbindungen und deren Verwendung.

Magnesiumkaliumphosphat wurde als Düngemittel beschrieben (1), das wegen seiner Wasserunlöslich it Vorteile gegenüber konventionellen K-Düngemitteln hat: das K ist pflanzenverfügbar, wird aber im Boden nicht ausgewaschen. Magnesiumkaliumphosphat ist ein Falium-Vorrats-dünger, der als weitere Bestandteile nur den Pflanzenwuchs fördernde Stoffe, nämlich Mg und P, enthält. Ein größer Nachteil besteht darin, daß die Verbindung für ein Düngemittel relativ tener ist und deshalb nur für Spezialkulturen in Frage kommt. MgKPO₁, H₂O wird nämlich hergestellt, indem MgSO₁ oder MgCl₂ mit einem großen Überschuß an K₂MPO₁ umgesetzt wird (2), gder indem MgO mit FOH und H₂PO₂ zu MgKPO₁, H₂O reagiert.

Das Verfahren würde sich wesentlich verbilligen, wenn es gelänge, anstelle des teuren KOH K₂SO₄ einzusetzen. Das ist möglich, wenn man die SO₄ -Ionen durch Ca -Ionen abfängt, wobei der entstelende Gips zwar das Düngemittel MgKPO₄. H₂O verdünnt, wertmäßig aber nicht verschlechtert, weil auch Ca und S Pflanzennührstoffe sind. Weiterhin ergibt sich der Vorteil, daß MgKPO₄. H₂S - CaSO₄ - Mischverbindungen, die nach dem weiter unten beschriebenen Verfahren hergestellt sind, eine bessere Zersetzbarkeit in Masser aufweisen, als MgIPO₄. H₂O oder mechanische MgKPO₄. H₂O - CaSO₄ - Gemische, sodaß mit diesem Verfahren die Wasserlöslichkeit des Depotdüngers nach Mussch eingestellt werden kann.

Das bisher Gesagte läßt sich vollkommen auf MgNalO₄,1,5 H₂O übertragen. Die Verbindung ist ein wertvoller Na-Depotdünger, wohei die große Bedeutung, die Na für die Pflanzenernährung hat, erst in den letzten Jahren deutlich erkannt wird. Auch bei dieser Verbindung ist neben der H₂PO₄ das NaOH der kostenbestimmende Fakter. Beim MgNalO₄,1,5 H₂O erhäht sich ehenfalls die Wasserlöslichkeit, wenn eine Mischverbindung sit Gips gebildet wird.

009848/1736

Die Reaktionen zur Herstellung der Verbindungen verlaufen prinzipiell nach folgenden Gleichungen:

5) $MgAPO_{1}$, $H_{2}O + 1.5$ CaSO₁

Superphosphat
$$(0.5 \text{ Ca}(\text{H}_2\text{PO}_{\frac{1}{4}})_2.\text{H}_2\text{O} + \text{CaSO}_{\frac{1}{4}}.2 \text{ H}_2\text{O}) + 0.5 \text{ A}_2\text{SO}_{\frac{1}{4}} + \text{HgO} = \text{MgAPO}_{\text{A}}.\text{H}_2\text{O} + 1.5 \text{ C}$$

Die Herstellung der . hindungen wird in nachstehenden Beispielen beschrieben, wob., wenn die Reaktion zu MgKPO, H₂O + x CaSO, dargestellt wird, die Methode genause für MgNaPO, H₂O + x CaSO, gilt und umgekehrt.

Beispiel 1: $MgNaPO_{\underline{L}}$, $H_{\underline{Q}}0 + 0.5$ $CaBO_{\underline{L}}$

61,5 g Dolomit gebranat (entspricht 28 g CaO und 19,8 g MgO) wurden mit 71 g Na₂SO₄ in 235 ml Wasser eine Stunde bei 80°C gerührt. Anschließend kamen 20,5 g MgO hinzu und nach einer weiteren Stunde 115 g M₂PO₄ S5 Sig. Nach Zugabe der M₂PO₄ entstand ein knetbarer Brei, der p_H-Wert lag bei 6. Nach 30 Minuten nahm der Brei eine krümelige Konsistenz an. Das Restwasser wurde im Trockenschrank bei 140°C entfernt. Das Reaktionsprodukt - Ausbeute 225 g - hat folgende Analyse:

	borechnet	*	gefunden
Ng	10,7		11,1
Na ·	10,0		10,3
P	13,6		13,5
Ca	8,8	•	9,5
H ₀ 0	7.9		6,1

217 g des Produktes wurden nach 'en Procknen gewahlen und eine Siunde in 1 Liter Wasser bei 80°C gerührt, anschließend abgesaugt und erneut bei 1'10° getrocknet. Die Ausbeute betrug 181 g = 83 %. Der Na-Gehalt

009848/1736

BAD ORIGINAL

BES! AVAILABLE COPY

lag hei 7,8 %, d.h. 24 % des Natriums waren wasserlöslich.

 $MgKPO_{\underline{A}} \cdot H_{\underline{D}}O + 0.5$ CaSO_{\underline{A}} worde in derselben Weise hergestellt. Ansatz: 87 g $MgSO_{\underline{A}}$ in 500 ml $MgO_{\underline{A}}$ dazu

61,5 g Dolomit gebraunt und

20,5 g Hg0

anschließend

115 g 14PO₄ 85 %ig

Ausbente: 247 g

Analyse:	bereeimet	r)	gefunden
Mg	9,9		9,7
K	16,0		16,8
P	12,7		
Ca	8,2		9,3
n ₂ o	7,3	•	5,4

236 g des getrockneten Produktes wurden gemahlen und eine Stunde in 1 Liter Wasser bei 80° gerührt. Nach den Absauge: und Trocknen lag die Ausbeute bei 205 g (87 %). Der K-Gehalt betrug 13,8 %, d.h. 18 % des Kaliums waren wasserlöslich.

Beispiel 2: New O. H.O + CaSO,

182 g Leonit (NgSO₄.2,5 N₂O + K₂SO₄) 93 Sig wurden in 500 ml N₂O gelöst und mit 59,3 g Dolomit gebrannt (NgO + CaO) 81 Sig 6 Stunden bei 80° gerührt (A). Gleichzeitig wurden in einer Porzellanschale 31 g CaO 90 Sig mit 115 g N₂PO₄ 85 Sig in 250 ml N₂O 6 Stunden bei 80° digeriert (B). Nach dieser Zeit wurde die Suspension A zur Suspension B in die Porzellanschale gegeben. Es entstand ein gut Knetbarer Brei, der p_H Wert lag bei 4. Nach 2 Stunden war der p_H euf 6 gestiegen und der Brei wurde krümelig. Nach dem Trocknen bei 140° verblieben 322 g Produkt mit folgender Analyse:

	berechnet	K	gefun ^a en	
Иg	7.8		ខ ,3	
K .	12,5		11,9	
P	9,9		9,6	
Ca	12,8	•	13,5	
H ₀ O	5,8		4,6	

320 g des Produktes wurden gewahlen und mit 1,2 1 "asser eine Stunde bei 80° gerührt. Ench dem Absaugen und Trocknen betrog die Ausbente 290 g (91 %). Der K-gehalt lag bei 10,5 %.

009848/1736

Das MgNaPO, H20 +CuSO, wurde in derselben Weise hergestellt.

Ansatz: 200 g Astrakanit (Na2SO, + MgSO, 7H20) 92 %ig

59,5 g Dolomit gebrannt 81 %ig

31,1 g Ca0 90 %ig

115 g 11₃PO₄ 85 %ig

Ausbeute: 306 g.

Analyse:	berechnet	(5	gefunden
Mg	8,2		7,8
Na	7,8		9,0
P	10,5		10,1
Ca	13,5		14,2
H ₂ 0	6,1		5,2

300 g des Produkts wurden eine Stunde bei 80° in 1,2 1 Wasser gerührt. Nach dem Absaugen und Trocknen betrug die Ausbeute 250 g (S4 ,5). Der Na-Gehalt lag bei 5,1 %.

Beispiel 3: NgKPO_L · N₂O + 1.5 CaSO_L
263 g handelsübliches Superphosphat (Ca(N₂PO_L)₂·N₂O + 2 CaSO_L · 2N₂O)
in 350 ml Wasser wurden 6 Stunden mit 55 g K₂SO_L bei 80°C gerührt.

Danach wurdne 31 g MgO 87 %ig zugefügt. Vor der MgO-Zugabe lag der P_H
Wert bei 2, nachher bei 4. Es entstand ein gut knetbarer Brei. Nach 40
Minuten war der P_H-Wert auf 6 gestiegen und die Masse wurde steif und krümelig, solaß sie sieh nur mehr sehwer kneten ließ. Nach dem Trockenen bei 140°C betrug die Ausbeute 316 g.

Analyse:	berchnet	*	gefunden
Mg	6,4		5,7
K	10,3		8,4
P	8,1		7,6
Ca	15,8		16,6
H ₂ 0	4,7		3,7

308 g worden eine Stunde bei 80° in 1,2 1 Wasser gerührt. Nach dem Absaugen und Trocknen betrug die Ausbeute 285 g (93 %). Der K-Gehalt lag bei 7,2 %.

Der MgNaPO₄. N₂0 + 1,5 CaSO₄ - Ansatz wurde analog durchgeführt. Anstelle von 54,8 g K₂SO₄ wurden 47,3 g Na₂SO₄ eingesetzt. Is murden 306 g Produkt mit folgender Analyse erhalten:

009848/1736

	berechnet	%	gefunden
lig	6,7		5,8
Na	6,3		5,3
P	8,5		7,7
Ca	16,5		16,3
H ₂ 0	4,9		3,5

292 g wurden eine Stunde bei 80°C mit 1 Liter Wasser gerührt. Nach dem Absaugen und Trocknen lag die Ausbeute bei 254 g (87 %). Der Na-Gehalt war auf 3,9 % gefallen.

Die in den Beispielen 1 - 3 beschriebenen Reaktionen können großtechnisch kontinuierloih durchgeführt werden. Die Apparatur, die in beiliegender Zeichnung beschrieben wird, ist für alle 3 Reaktionen dieselbe, Bei Reaktion 1 (MgAPO4.1100 + 0.5 CaSO4) wird in Armaischhehälter 1 in einer wässerigen Lösung von Natrium- oder Kaliumaulfat gebrannter Bolomit aus Silo B gerührt. Im Rührbehälter 2 wird MgO aus Silo C mit H_PO, aus Tank D vermischt. Die Konzentration der Phosphorsäure kann von 25 - 50 % schwanken. Je konzentrierter die Säure ist, desto mehr Wassor wird zum Lösen des Alkalisulfates genommen. Behälter 1 und 2 speisen ständig die Reaktionsschneise 3, in der die Hauptreaktion Stattfindet. Von Schnecke 3 wird das Gut in den Drehtrocknor 4 gefördert. Hier findet beim Trocknen die Nachreaktion statt. Von 4 geht das Produkt entweder in eine Mihle 5 oder, wenn es als Granulat anfallen soll, was durch eine Zusatzeinrichtung der Reaktionsschnecke möglich ist, auf ein Schüttelsieb 6. Das Endprodukt läuft aus der Müble 5 oder vom Sieb 6 in einen Vorratssilo 7. Das Überund Unterkorn von Sieb 6 wird über den Zwischenbehülter 8 wider der Reaktionsschnecke 3 zugeführt.

Bei Reaktion 2 (MgAPO, H₂O + CaSO_k) wird in 1 gebranater Bolomit aus B mit Schönit oder Astrakanit aus A wagesetzt, während in 2 CaO aus C mit H₂PO_k aus D reagiert.

Bei Reaktion 3 (MgAPO, H20 + 1,5 CaSO,) wird in 1 Superphosphat aus B mit Natrius- oder Kaliumsulfat umgesetzt; in 2 mischt man gleichzeitig MgO aus C mit se viel Wasser, daß ein gerade noch rührbarer Brei entsteht. Im weiteren verliuft das Verfahren hier und bei Sealtion 2 wie oben beschrieben.

lie Mischwerbindengen las en etch als Düngemittel verwenden, die im Moden erst lasgeme aufgeschlossen verden. Das Na- bzw. E- Ten ist, wie aus nach-folgender Tabelle hervorgebt, besser wasserlüslich, als in den entsprechen-adasts/17.)6

den CaSO, -freien Verbindungen.

Die Löslichkeit wurde bestimmt, indem etwa 2 g Produkt in 100 ml H₂0 3, 24, 48, z.T. 96 und 192 Stunden geschüttelt wurden. Danach wurde filtriert, der Pilterrückstand getrocknet und das noch im Peststoff befindliche Na bzw. K bestimmt.

Stunden geschüttelt	0	3	24	48	96	192
MgNaPO ₄ .1,5 H ₂ 0 1)						
% Ma	13,6	11,1	8,92	8,84	8,72	9,42
% von 0	100	81,7	65,6	65,0	64,3	69,3
MgNaPO, II, 0+0,5 CaSO,		٠				
Na Na	10,0	6,7	1 _{1 0} 0	3,7	5,5	4,0
% won 0	3. 2. 2. 2	67,0	40,0	37,0	35,0	40,0
MgNaPO4 II O+CaSO4						
% Na		4,7	3.0	2,4	energy.	1,8
% von 0	100	60,0	39,1	. 31,0		23,3
$MgNaPO_{4}$, 1,5 $H_{2}O+CaSO_{4}$					•	
≸ Na	7.8		7,24	5,85		6,61
≸ von 0	100		92,8	75,0		54,8
MgNaPO4.H20+1,5 CaSO4		•	<u>#</u>			
% Na	6,3	3,9			~~~	
% von 0	100	62,0		(1) (1) (1)		ep er To
$MgNaP0_{4}.1.5 \Pi_{2}0^{2}$						
% Na	13,6	· Quantité d'a	11,2	12,1	12,4	13,2
≯ von 0	100		82,6	8,38	91,4	97,0
MgKP04.H201)						
≸ K	22,1	18,5	12,3	11,7		11,5
> von 0	100	83,8	55.7	53,0		52,2
MgKP0, 11,0+0,5 CaS0,	•					
× K	13,3	11,9	6,4	4,5		3,35
. % von 0	100	89,6	48,3	33,9		25,2
MgKPO, II 0 + CaSO,						
% K	11,9	8,3	4,7	2,5		2,5
ا ×۰۰ ا ا ۱۰۰ ا ا	160	69,8	39,2	21,1	• *************************************	21.1
MUKPOL, ILJO + CASOL				•		
# R	11,9	-	9,0	7,8	***	6,5
≸ von U	100	-	75,7	65, 6	den Mingen	54, 6
			8/173	8		
	•		PAI	n ORIGIN	AL	

Stunden geschütkelt	, 0	3	24	48	96	192
Mg1070, . IL_0+1,5 CaSO,			•			
≸ K	8,4	7,2	3,8	3,1	-	2.9
% von 0	100	85,8	45,1	37,3		34,6
MgKPU4.II202)						
% K	22,1		17,3	18,5	18,9	13,9
% von 0	100	glippin.	78,1	83,7	85,6	85,6

Die Verbindungen wurden aus MgO, Na- bzw. KOH und H_3PO, in einer Breirealtion bergestellt.

Wie aus der Tabelle ersichtlich, hat man es in der Hand, die Wasserlüslichkeit der Alkali-Ionen zu steuern, und zwar 1. durch die Art der Herstellung
und 2. durch Einbau von Gips. Gleichzeitig wird die eingangs erwähnte Verbinding der Produkte erreicht, sodaß Na- bzw. K- Depotdünger gefertigt werden
kinnen, deren Preise durchaus mit denen heute auf dem Markt befindleihen
P205-Düngemitteln konkurrieren können.

Eine weitere interessante Einsatzwöglichkeit für die MgNalO4-Mischwerbindungen mit Gips sind die Mineralfutter. Die beute auf dem Markt befindlichen Produkte haben für Rinder folgende Ralmenzusammensetzungen:

% Ca Na Mg P
$$10.1 - 13.9 \quad 8.5 - 10.0 \quad 1.8 - 3.3 \quad 13.0 - 14.5 \quad \text{bei } 30.\% \quad P_2 O_5 \quad \text{und}$$

$$7.5 - 10.4 \quad 7.5 - 11.2 \quad 4.0 - 13.5 \quad 8.0 \quad \text{bei } 18 \% \quad P_2 O_5$$

Als Vergleich sei die Zusammensetzung zweier hier beschriebener Verbindungen angeführt:

Ca Na Mg P

MgNaFO, H₂O + 0,5 CaSO, 8,5 - 9,5 9,3 - 10,3 10,5 - 11,2 13,2 - 13,6

MgNaFO, N₂O + CaSO, 13,0 -14,5 7,0 - 9,0 7,6 - 8,4 9,8 - 10,8

Die Verhindungen allein sind Mineralfutter, die spezifisch gegen Weidetetenie einsetzbar sind. Aus der Vielzahl der Möglichkeiten acien zwei Mischnerabeispiele gegeben:

009848/1736

AND THE STATE

Die Verbindungen wurden aus MgSO₄, NaOH bzw. KOH und H_PO₄ in Wasser gefällt.

Mechanischen Gemisch der gefüllten Produkte 2) mit CaSO4.

*	Bestandteil	*	Ca	Na	Mg	P	P ₂ 0 ₅
50	$MgNaPO_{4} \cdot H_{2}O + 0.5 CaSO_{4}$			•			
38	Na ₂ HPO ₄ .2 H ₂ O						
10	CaCO ₃	•					
1	Vitamine						ı
1	Spurenlemente			., <u></u>			
100			8,8	15,2	5,3	13,4	3 0
80	MgNaPO, H20 + CaSO4						
13	NaCl						
5	Melasse		•				•
1	Vitamine					•	•
1	Spurenelemente				•		
100			10,9	11,4	6,4	8,0	18

009848/1736

Ansprüche.

- 1) Verfahren zur Herstellung von Magnesiumnatriumphosphat-Calciumsulfatund von Magnesiumkaliumphosphat-Calciumsulfat-Mischwerbindungen,
 dadurch gekennzeichnet, daß Calciumionen zum Abfangen der Sulfationen
 verwendet werden und dadurch die billigeren Alkalisulfate anstelle
 der Nydroxyde eingesetzt werden können.
- 2) Verfahren nach Anspruch i dadurch gekennzeichnet, daß nach Gleichung (0,5 CaO + 0,5 MgO) + 0,5 MgO + A₂SO₄ + H₃IO₄ = MgAPO₄, H₂O + 0,5 CaSO₄ hergestellt wird (A = K oder Na). (0,5 CaO + 0,5 MgO) kann ein Gemisch der beiden Oxyde, oder gebrannter Dolomit sein.
- 3) Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß nich Gleichung (0,5 CaO + 0,5 MgO) + 0,5 CaO + (0,5 (MgSO₄ · x H₂O + A₂SO₄)) + H₃PO₄ = MgAPO₄ · H₂O + CaSO₄ hergestellt wird, wohei die bergmännisch gewonnenen Mischkristalle Kalimagmesia (Schönit oder Leonit) und Astrakanit verwendet werden können, aber auch molare Mischungen von Magnesiumsulfat und Kalium- bzw. Natriumsulfat.
- 4) Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß anstelle von CaO und H₂PO₄ Superphosphat verwendet wird, sodaß nach Gleichung (0,5 Ca(H₂PO₄)₂,H₂O + CaSO₄,2 H₂O) + 0,5 A₂SO₄ + MgO = MgAPO₄,H₂O + 1,5 CaSO₄ hergestellt wird.
- 5) Verfahren nach Anspruch 1 4 dadurch gekennzeichnet, daß die Reaktion kontinuierlich in einem Schneckenreaktor oder Granulator in der Breiphase durchgeführt wird.
- 6) Verwendung der nach den Ansprüchen 1 5 hergestellten Magnesiumalkaliphosphat-Calciumsulfat-Mischverbindungen als Düngemittel allein oder
 im Gemisch mit anderen als Düngemittel bekannten Stoffen, wie Ammonnitrat, Ammonsulfat, Harnstoff, Kaliumsulfat, KXXX Kaliumchlorid etc.
- 7) Verwendung der nach den Ansprüchen i 5 hergestellten Magnesiumalkaliphosphat-Calciumsulfat-Mischverbindungen als Mineralfutter allein oder
 im Gemisch mit anderen, als Mineralfutterzusätze bekannten, Stoffen,
 wie Natriumchlorid, Natriumphosphat, Calciumphosphat, Kalk, Melasse,
 Kleie, Spurenkelemente, Vitamine etc.

BEST AVAILABLE COPY

009848/1736

Literaturverzeichniss

- 1) W.R. Grace & Co., Holl. Pat. 6405548, 19. 5. 1964
- 2) II. Bassett und W. L. Bedwell, J.chem.Soc. (London) 1935, 865

009848/1735

BAD ORIGINAL

BES! MYNIMINUE COPY

009848/1736