Circuitos Sequenciais Síncronos

"Clocked Synchronous Sequential Circuits"

- "State machines" Máquinas de Estados
- Usam-se, tipicamente "flip-flops" tipo "edge-triggered"
- Todos os flip-flops partilham o mesmo sinal de relógio, logo as mudanças de estado produzem-se simultaneamente

Estrutura Máquina de Estados (Mealy)

Estrutura Máquina de Estados (Moore)

Notação, Equações Características

- Q* significa estado seguinte de Q
- "Excitação" é a entrada que determina o estado seguinte.
- Equação Característica especifica o estado seguinte em função da sua excitação.
- Latch S-R:

$$Q* = S + R' \cdot Q$$

Flip-flop tipo D "Edge-triggered":

$$Q* = D$$

Análise de Máquinas de Estados

- Partindo de um diagrama lógico.
- 1. Determinar a função do próximo estado e a função das saídas.
- 2a. Construir Tabela de Estados
 - Para cada combinação estado/entrada, determinar o valor de excitação.
 - Usando as equações características, determinar os estados seguintes correspondentes (trivial com f-f's D).
- 2b. Construir Tabela de Saída
 - Para cada combinação estado/entrada, determinar o valor de saída
- 3. (Opcional) Desenhar diagrama de estados

Exemplo de Máquina de Estados

Equações de Excitação

Equações de Transição

Equações de Excitação

$$D0 = Q0 \cdot EN' + Q0' \cdot EN$$

$$D1 = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$$

Equações Características

$$Q0* = D0$$

 $Q1* = D1$

 Substituição das equações de excitação nas equações características.

$$Q0* = Q0 \cdot EN' + Q0' \cdot EN$$

$$Q1* = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$$

Tabelas de Estado e Transição

$$Q0* = Q0 \cdot EN' + Q0' \cdot EN$$

$$Q1* = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$$

MAX = Q1 · Q0 · EN (equação de saída)

(equações de transição)

	EN				
Q1 Q0	О	1			
00	00	01			
01	01	10			
10	10	11			
11	11	00			
	Q1*	Q1* Q0*			

 EN

 S
 O
 1

 A
 A, 0
 B, 0

 B
 B, 0
 C, 0

 C
 C, 0
 D, 0

 D
 D, 0
 A, 1

 S*, MAX

tabela transição tabela estado tabela estado/saída

Diagrama de Estados

- Estados representados por círculos
- Transições indicadas por setas (+info saídas)

Máquina de Estados Modificada

Máquina tipo Moore

Máquina de Estados Modificada

	E	N	
s	О	1	MAXS
Α	Α	В	0
В	В	С	0
С	С	D	0
D	D	Α	1
	S	*	

Diagrama Temporal Máquina de Estados

• *Não* descreve completamente o comportamento da máquina de estados.

Projecto e Síntese de Máquina de Estados

Projecto – parte criativa, como escrever um programa

Síntese – "partir pedra", tal como um compilador

 Exemplo: Projectar uma fechadura com segredo com 2 entradas, X1 e X2. A abertura da mesma ocorre quando a sequência X1, X2, X2 ocorrer (uma entrada por ciclo de relógio).

Exemplo:

Estado			X1 2	X2		
Significado	Nome	00	01	10	11	Abrir
Início	Α	Α	Α	В	Α	0
Tem X1	В	Α	С	Α	Α	0
Tem X1,X2	С	Α	D	Α	Α	0
Tem X1,X2,X	(2 D	Α	Α	В	Α	1

 Ambiguidades de especificação são resolvidas na tabela de estados.

Atribuição de Estados - State assignement

- Minimização do número de estados (pode não ser relevante quando se usam ferramentas).
- Necessidade de atribuir combinações de variáveis de estado a estados
 - Menor número de variáveis para n estados é 「log₂ n]
 - Usar mais do que o número mínimo pode ser vantajoso em determinadas situações.
- Exemplo -- 4 estados, 2 variáveis de estado (Q1,Q2):

A ==> 00

B ==> 01

C ==> 10

D ==> 11

Tabela de Transição

Estado			X1 .	X2			
Significado	Q1Q2	00	01	10	11	Abrir	
Início	00	00	00	01	00	0	
Tem X1	01	00	10	00	00	0	
Tem X1,X2	10	00	11	00	00	0	
Tem X1,X2,	〈2 11	00	00	01	00	1	
	Q1* Q2*						

Equações de Transição; circuito

- Tabela Transição especifica cada variável de estado (Q1*,Q2*) como uma função lógica combinacional de Q1, Q2, X1, X2.
 - Decidir quanto à implementação de cada variável, soma de produtos, etc.
- Construir circuito.

Outro Exemplo

- Projectar máquina de estados com entradas A e B e saída
 Z que toma o valor "1" se:
 - A tiver o mesmo valor nos 2 pulsos de clk anteriores, ou
 - B for "1" desde a última vez que o evento acima referido tenha ocorrido

			A B				
Meaning	S	00	01	11	10		
Initial state	INIT	A0	A0	A1	A1		
Got a 0 on A	A0	OK0	OK0	A1	A1		
Gota 1 on A	A1	A0	A0	OK1	OK1		
Two equal, A=0 last	OK0	OK0	OK0	OK1	A1		
Two equal, A=1 last	OK1	A0	OK0	OK1	OK1		
			S*				

Sistemas Digitais

Atribuição de estados

	Assignment						
State Name	Simplest Q1–Q3	Decomposed Q1–Q3	One-hot Q1–Q5	Almost One-hot Q1–Q4			
INIT	000	000	00001	0000			
AO	001	100	00010	0001			
A1	010	101	00100	0010			
OKo	011	110	01000	0100			
OK1	100	111	10000	1000			

Por exemplo, Q1 pode ser usado como um indicador de Init', Q2 e Q3 distinguem todos os outros estados.

Tabela de Transição / Saída (decomposed assignment)

		A B						
s	00	01	11	10	Z			
INIT	Α0	A 0	Α1	Α1	0			
A0	OKo	OK0	Α1	Α1	0			
Α1	Α0	A 0	OK1	OK1	0			
OKo	OKo	OKo	OK1	Α1	1			
OK1	Α0	OKo	OK1	OK1	1			
		S*						

		A B					
Q1 Q2 Q3	00	01	11	10	Z		
000	100	100	101	101	0		
100	110	110	101	101	0		
101	100	100	111	111	0		
110	110	110	111	101	1		
111	100	110	111	111	1		
		Q1 * Q2 * Q3 *					

- Simples substituição textual
- Com flip-flops D, tabela de excitação é idêntica à tabela de transição.

Obtenção equações de excitação

$$D1 = Q1 + Q2' \cdot Q3'$$

$$D2 = Q1 \cdot Q3' \cdot A' + Q1 \cdot Q3 \cdot A + Q1 \cdot Q2 \cdot B$$

$$D3 = Q1 \cdot A + Q2' \cdot Q3' \cdot A$$

Sistemas Digitais