Prova in itinere di Algebra — 21/11/2018

nome:	cognome:	matricola:	
		gruppo: 1 🗆 2 🗆	CFU:6□ 9□

Inserire tutti i dati richiesti e ripeterli su ogni foglio consegnato. Questo foglio andrà restituito tra quelli con gli esercizi svolti.

Esercizio 1. Scrivere la tavola di verità di $p \iff (p \iff q)$ e decidere se questa è una tautologia.

Esercizio 2. Supposti assegnati i numeri interi $x \in y$, negare la formula

$$x > 1 \land (\forall a \in \mathbb{Z})(y > 3 \Rightarrow a \neq 4).$$

Esercizio 3. Rappresentare con diagrammi di Euler-Venn $A \triangle (B \cup C)$ e $(A \triangle B) \cup (A \triangle C)$, e poi dire se sono vere o false le proposizioni:

- $(i) (\forall A, B, C) (A \triangle (B \cup C) \subseteq (A \triangle B) \cup (A \triangle C));$
- $(ii) \ (\forall A, B, C) \big((A \triangle B) \cup (A \triangle C) \subseteq A \triangle (B \cup C) \big).$

Esercizio 4. Vero o falso? Assumendo $a \neq \emptyset$,

- $(i) \ \{a,a\} = \{a\}; \qquad (ii) \ a \in \{a\}; \qquad (iii) \ \{a\} \in \{a\}; \qquad (iv) \ \{a\} \subseteq \{a\};$
- $(v) \ \forall b(\{a\} \in \{a,b\}); \qquad (vi) \ \forall b(\{a\} \subseteq \{a,b\});$

$$(vii) \ \{\varnothing\} \subseteq \{a, \{\varnothing\}\}; \qquad (viii) \ \{\varnothing\} \in \{a, \{\varnothing\}\}; \qquad (ix) \varnothing \in \{a, \{\varnothing\}\}; \qquad (x) \varnothing \subseteq \{a, \{\varnothing\}\}.$$

Esercizio 5. Posto $A = \{n \in \mathbb{N} \mid n > 6\}$ e $B = \{7, 9\}$, trovare, se possibile, un insieme X tale che $A \cup X = \mathbb{N}$ e $A \cap X = B$.

Esercizio 6. Quando è che, per definizione, una corrispondenza α da un insieme X ad un insieme Y è detta applicazione? E, sempre per definizione, cosa è una operazione (binaria) in un insieme S?

Esercizio 7. Si considerino le due applicazioni $f: X \in \mathcal{P}(\{0,1\}) \longmapsto X \cap \{1\} \in \mathcal{P}(\{1\})$ e $g: X \in \mathcal{P}(\{1\}) \longmapsto \mathbb{Z} \setminus X \in \mathcal{P}(\mathbb{Z})$. Giustificando tutte le risposte,

- (i) si descriva esplicitamente $h = g \circ f$ e si calcoli $h(\{0\})$;
- (ii) di ciascuna tra f, g e h si dica se è iniettiva e se è suriettiva;
- (iii) si calcolino $\overrightarrow{f}(\{\{0\},\{1\}\})$ e $\overleftarrow{h}(S)$, dove S è l'insieme delle parti infinite di \mathbb{Z} .

Esercizio 8. Dare la definizione di elemento *cancellabile a sinistra* in un semigruppo, scrivendo anche la negazione di questa proprietà, e quella di *anello*. Siano \oplus e * le operazioni binarie definite in $\mathbb{Q} \times \mathbb{Q}$ ponendo, per ogni $(a,b),(c,d) \in \mathbb{Q} \times \mathbb{Q}$,

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
 e $(a,b)*(c,d) = (ac,bd/2).$

Dando per noto che queste due operazioni sono associative e commutative, verificare che $(\mathbb{Q} \times \mathbb{Q}, \oplus, *)$ è un anello commutativo unitario. **Giustificare in modo completo tutte le risposte**, anche alle domande che seguono.

- (i) Determinare gli elementi invertibili di $(\mathbb{Q} \times \mathbb{Q}, \oplus, *)$.
- (ii) In $(\mathbb{Q} \times \mathbb{Q}, \oplus, *)$, (0, 1/3) è cancellabile? (3, -1/2) è un divisore dello zero?
- (iii) $\mathbb{Z} \times \mathbb{Z}$ è un sottoanello di $(\mathbb{Q} \times \mathbb{Q}, \oplus, *)$?