Math 3607: Exam 2 (Written)

Due: 11:59PM, Friday, March 5, 2021

1 Least Squares for Periodic Data

[25 points]

The graph below represents arterial blood pressure collected at 8 ms intervals (over one heart beat) from an infant patient:

Denote the data points by (t_i, y_i) for i = 1, ..., m. The data can be fit using a low-degree polynomial of the form

$$f(t) = c_1 + c_2 t + \dots + c_n t^{n-1}, \quad n < m.$$
(1)

In the most general terms, the fitting function takes the form

$$f(t) = c_1 f_1(t) + \dots + c_n f_n(t),$$
 (2)

where f_1, \ldots, f_n are known functions while c_1, \ldots, c_n are to be determined to optimize the fit to the data. This optimization can be formulated as an $m \times n$ LLS problem of minimizing the 2-norm of the residual $\|\mathbf{y} - A\mathbf{c}\|_2$, where $A_{i,j} = f_j(t_i)$.

(a) Download the data file pressuredata.mat and load them into MATLAB using

load pressuredata

This creates two vectors t and y containing time and blood pressure data, respectively. Use them to regenerate the plot above.

- (b) Fit the data to a straight line, $f(t) = c_1 + c_2 t$. Solve for the coefficients using backslash. Superimpose the graph of the fitting line on your graph from the previous step, and compute the 2-norm of the residual $\|\mathbf{y} A\mathbf{c}\|_2$, where $A_{i,j} = t_i^{j-1}$ is a *Vandermonde*-type matrix.
- (c) Repeat part (b) for a quadratic and a cubic polynomial. The residual norm will get smaller in each case, but there is still a room for improvement.

(d) Exploiting the fact that the data come from a periodic phenomenon (heart beats), adapt (2) to a periodic fitting function

$$f(t) = c_1 + c_2 \cos \frac{2\pi t}{T} + c_3 \sin \frac{2\pi t}{T} + c_4 \cos \frac{4\pi t}{T} + c_5 \sin \frac{4\pi t}{T}, \quad \text{where } T = t_m - t_1.$$
 (3)

As in the previous parts, solve for the coefficients using backslash, superimpose the graph of f(t) to the plot of data points, and compute the residual norm. Comment on your observation.

Template.

Recall that

$$\|A\|_p = \max_{\|\mathbf{x}\|_p = 1} \|A\mathbf{x}\|_p \,, \quad p \in [1, \infty].$$

In this problem, we generate three-dimensional visualization of this definition.

(a) Complete the following program which, given $p \in [1, \infty]$ and $A \in \mathbb{R}^{3\times 3}$, approximates $||A||_p$ and plots the unit sphere in the *p*-norm and its image under A.

```
function norm_A = visMatrixNorms3D(A, p)
    %% Basic checks
    if size(A,1)~=3 || size(A,2)~=3
        error('A must be a 3-by-3 matrix.')
    elseif p < 1
        error('p must be >= 1.')
    end
    %% Step 1: Initialization
    nr_th = 41; nr_ph = 31;
    th = linspace(0, 2*pi, nr_th);
    ph = linspace(0, pi, nr_ph);
    [T, P] = meshgrid(th, ph);
    x1 = cos(T) \cdot *sin(P);
    x2 = sin(T) . *sin(P);
    x3 = \cos(P);
    X = [x1(:), x2(:), x3(:)]';
    %% Step 2: [FILL IN] Normalize columns of X into unit vectors
    %% Step 3: [FILL IN] Form Y = A \star X and then calculate norms of columns of Y
    %% Step 4: [FILL IN] Calculate p-norm of A (approximate)
    %% Step 5: [FILL IN] Generate surface plots
end
```

(The function must be written at the very end of your Live Script.)

The following steps are carried out by the program.

• Step 1: Create 3-vectors

$$\mathbf{x}_k = \begin{bmatrix} \cos \theta_i \sin \phi_j \\ \sin \theta_i \sin \phi_j \\ \cos \phi_j \end{bmatrix}, \quad \text{for } 1 \le i \le 41, \ 1 \le j \le 31$$
 (4)

using 41 evenly distributed θ_i in $[0, 2\pi]$ and 31 evenly distributed ϕ_j in $[0, \pi]$. Note the use of meshgrid, which is useful for surface plots later.

- Step 2: Normalize \mathbf{x}_k into a unit vector in *p*-norm by $\mathbf{x}_k \to \mathbf{x}_k / \|\mathbf{x}_k\|_p$.
- Step 3: For each k, let $\mathbf{y}_k = A\mathbf{x}_k$. Calculate and store $\|\mathbf{y}_k\|_p$.
- Step 4: Approximate $||A||_p$ based on the norms $||\mathbf{y}_k||_p$ calculated in the previous step.
- **Step 5:** Generate surface plots of the unit sphere in the *p*-norm and its image under *A*. Use surf function; see Lecture 8. Use subplot to put two graphs side by side.
- (b) Run the program with $p=1,\frac{3}{2},2,4,$ all with the same matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \cos(\pi/12) & -\sin(\pi/12) \\ 0 & \sin(\pi/12) & \cos(\pi/12) \end{bmatrix}.$$
 (5)

(Depending on how you write the code, you may need to use clf or hold off in between function calls.)

x: Unit sphere in 2-norm Ax: Image of unit sphere under A

Figure 1: Example output.

3 Extra Credit [5 points]

Do LM 7.2-13. (This was an optional problem assigned for Homework 5.) The figures below are all generated with level=6.

Figure 2: Koch curves around a *negatively* oriented triangle. Generated by letting the angles be 0, -120, and -240.

Figure 3: Koch curves around a *positively* oriented triangle. Generated by letting the angles be 0,120, and 240.

Figure 4: Koch curves around a hexagon. Generated by letting the angles be $0,60,\ldots,300.$