

Evolog - Actions and Modularization in Lazy-Grounding Answer Set Programming

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Michael Langowski, BSc.

Matrikelnummer 01426581

an der Fakultät für Informatik
der Technischen Universität Wien
Betreuung: Prof. Dr. Thomas Eiter Mitwirkung: Dr. Antonius Weinzierl

Wien, 1. Juli 2022		
VVIOII, 1. Gail 2022	Michael Langowski	Thomas Eiter

Evolog - Actions and Modularization in Lazy-Grounding Answer Set Programming

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Michael Langowski, BSc.

Registration Number 01426581

to the Facul	ty of Informatics
at the TU W	lien lien
Advisor:	Prof. Dr. Thomas Eiter
Assistance:	Dr. Antonius Weinzierl

Vienna, 1 st July, 2022		
•	Michael Langowski	Thomas Eiter

Erklärung zur Verfassung der Arbeit

Michael Langowski, BSc.	
Hiermit erkläre ich, dass ich diese Arbeit selbständig ver deten Quellen und Hilfsmittel vollständig angegeben ha Arbeit – einschließlich Tabellen, Karten und Abbildung dem Internet im Wortlaut oder dem Sinn nach entnom Angabe der Quelle als Entlehnung kenntlich gemacht ha	abe und dass ich die Stellen der gen –, die anderen Werken oder amen sind, auf jeden Fall unter
Wien, 1. Juli 2022	Michael Langowski

Danksagung

Ihr Text hier.

Acknowledgements

Enter your text here.

Kurzfassung

Ihr Text hier.

Abstract

Enter your text here.

Contents

Κι	urzfassung	xi
Al	ostract	xiii
Co	ontents	xv
1	Introduction	1
2	Preliminaries 2.1 Answer Set Programming	3 3
3	The Evolog Language 3.1 Actions in Evolog	5
Li	st of Figures	9
Li	st of Tables	11
Li	st of Algorithms	13
Bi	bliography	15

HAPTER 1

Introduction

Intro here

Preliminaries

2.1 Answer Set Programming

When speaking of answer set programming, we nowadays mostly refer to the language specified by the ASP-Core2 standard [CFG⁺20]. It uses the stable model semantics by Gelfond and Lifschitz [GL88] as a formal basis and enhances it with support for advanced concepts such as disjunctive programs, aggregate literals and weak constraints. This chapter describes the input language supported by the Alpha solver, which will serve as the basis on which we will define the Evolog language.

abbreviations!

2.1.1 Syntax

Definition 2.1.1 (Integer numeral). An *integer numeral* in the context of an ASP program is a string matching the regular expression:

$$(-)$$
? $[0-9]$ +

The set of all valid integer numerals is denoted as *INT*.

Definition 2.1.2 (Identifier). An *identifier* in the context of an ASP program is a string matching the regular expression:

$$[a-z][a-zA-Z0-9]$$

The set of all valid identifiers is denoted as *ID*.

Definition 2.1.3 (Variable Name). A *variable name* in the context of an ASP program is a string matching the regular expression:

$$[A-Z][a-zA-Z0-9]$$

The set of all valid variable names is denoted as VAR.

Definition 2.1.4 (Term). A *term* is inductively defined as follows:

- Any constant $c \in (INT \cup ID)$ is a term.
- Any variable $v \in VAR$ is a term.
- Given terms t_1, t_2 , any artihmetic expression $t_1 \oplus t_2$ with $\oplus \in \{+, -, *, /, **\}$ is a term.
- Given terms t_1, t_2 , any interval expression $t_1 \dots t_2$ is a term.
- For function symbol $f \in ID$ and argument terms t_1, \ldots, t_n , the functional expression $f(t_1, \ldots, t_n)$ is a term.

Definition 2.1.5 (Subterms). Given a term t, the set of *subterms* of t, st(t), is defined as follows:

- If t is a constant or variable, $st(t) = \{t\}$.
- If t is an arithmetic expression $t_1 \oplus t_2$, $st(t) = st(t_1) \cup st(t_2)$.
- If t is an interval expression $t_1 \dots t_2$, $st(t) = st(t_1) \cup st(t_2)$.
- If t is a functional expression with argument terms $t_1, \ldots, t_n, st(t) = st(t_1) \cup \ldots \cup st(t_n)$.

A term is called *ground* if it is variable-free, i.e. none of its subterms is a variable.

Definition 2.1.6 (Atom). Given a predicate symbol $p \in ID$ and argument terms t_1, \ldots, t_n , the expression

$$p(t_1,\ldots,t_n)$$

is called an *atom*. An atom is ground if all of its argument terms are ground. A ground atom with predicate p is called an *instance* of p.

Definition 2.1.7 (Literal). A literal in ASP is an atom a or ("default"-)negated atom not a.

Definition 2.1.8 (Rule, Program). A rule is an expression of form

$$a_H \leftarrow b_1, \ldots, b_n$$
.

where the rule head a_H is an atom and the rule body b_1, \ldots, b_n is a set of literals. An ASP program is a set of rules

Maybe add initions for straints and rules?

The Evolog Language

The Evolog language extends (non-disjunctive) ASP as defined in the ASP-Core2 standard [CFG $^+20$] with facilities to communicate with and influence the "outside world" (e.g. read and write files, capture user input, etc.) as well as program modularization and reusability features, namely *actions* and *modules*.

3.1 Actions in Evolog

Actions allow for an ASP program to encode operations with side-effects while maintaining fully declarative semantics. Actions are modelled in a functional style loosely based on the concept of monads as used in Haskell . Intuitively, to maintain declarative semantics, actions need to behave as pure functions, meaning the result of executing an action (i.e. evaluating the respective function) must be reproducible for each input value across all executions. On first glance, this seems to contradict the nature of IO operations, which inherently depend on some state, e.g. the result of evaluating a function getFileHandle(f) for a file f will be different depending on whether f exists, is readable, etc. However, at any given point in time - in other words, in a given state of the world - the operation will have exactly one result (i.e. a file handle or an error will be returned). A possible solution to making state-dependent operations behave as functions is therefore to make the state of the world at the time of evaluation part of the function's input. A function f(x) is then turned into f'(s,x) where s represents a specific world state. The rest of this section deals with formalizing this notion of actions.

es. Give 3.1.1 Syntax

Definition 3.1.1 (Action Rule, Action Program). An action rule R is of form

$$a_H : @t_{act} = act_{res} \leftarrow l_1, \dots, l_n.$$

where

cite something here!

etive ASPin detail in maires. Give d definition standard elements ref-

non-

d here!

- a_H is an atom called head atom,
- t_{act} is a functional term called action term,
- act_{res} is a term called (action-)result term
- and l_1, \ldots, l_n are literals constituting the body of R.

An action program P is a set of (classic ASP-)rules and action rules.

3.1.2 Semantics

To properly define the semantics of an action program according to the intuition outlined at the start of this section, we first need to formalize our view of the "outside world" which action rules interact with. We call the world in which we execute a program a frame - formally, action programs are always evaluated with respect to a given frame. The behavior of actions is specified in terms of action functions. The semantics (i.e. interpretations) of action functions in a program are defined by the respective frame.

Action Rule Expansion

To get from the practical-minded action syntax from Definition 3.1.1 to the formal representation of an action as a function of some state and an input, we use the helper construct of an action rule's expansion to bridge the gap. Intuitively, the expansion of an action rule is a syntactic transformation that results in a more verbose version of the original rule called application rule and a second rule only dependent on the application rule called projection rule. A (ground) application rule's head atom uniquely identifies the ground instance of the rule that derived it. As one such atom corresponds to one action executed, we call a ground instance of an application rule head in an answer set an action witness.

Definition 3.1.2 (Action Rule Expansion). Given a non-ground action rule R with head atom a_H , action term $f_{act}(i_1, \ldots, i_n)$ and body B consisting of literals l_1, \ldots, l_m , the expansion of R is a pair of rules consisting of an application rule R_{app} and projection rule R_{proj} . R_{app} is defined as

$$a_{res}(f_{act}, S, I, f_{act}(S, I)) \leftarrow l_1, \dots, l_n.$$

where S and I and function terms called *state*- and *input*-terms, respectively. An action rule's state term has the function symbol *state* and terms $fn(l_1), \ldots, fn(l_m)$, with the expression fn(l) for a literal l denoting a function term representing l. The (function-)term representation of a literal $p(t_1, \ldots, t_n)$ with predicate symbol p and terms t_1, \ldots, t_n uses p as function symbol. For a negated literal $not \ p(t_1, \ldots, t_n)$, the representing function term is $not(p(t_1, \ldots, p_n))$. The action input term is a "wrapped" version of all arguments of the action term, i.e. for action term $f_{act}(t_1, \ldots, t_n)$, the corresponding input term is

define (classic ASP) grounding and substitutions in preliminaries $input(t_1, ..., t_n)$. The term $f_{act}(S, I)$ is called action application term. The projection rule R_{proj} is defined as

$$a_H \leftarrow a_{res}(f_{act}, S, I, v_{res}).$$

where a_H is the head atom of the initial action rule R and the (sole) body atom is the action witness derived by R_{app} , with the application term $f_{act}(S, I)$ replaced by a variable v_{res} called action result variable.

Looking at the head of an action application rule of format $a_{res}(f_{act}, S, I, t_{app})$ with action f_{act} , state term S, input term I and application term t_{app} , the intuitive reading of this atom is "The result of action function f_{act} applied to state S and input I is t_{app} ", i.e. the action application term t_{app} is not a regular (uninterpreted) function term as in regular ASP, but an actual function call which is resolved using an interpretation function provided by a frame during grounding.

Grounding of Action Rules

Grounding, in the context of answer set programming, generally refers to the conversion of a program with variables into a semantically equivalent, variable-free, version. Action application terms as introduced in Definition 3.1.2 can be intuitively read as variables, in the sense that they represent the result of applying the respective action function. Consequently, all action application terms are replaced with the respective (ground) result terms defined in the *frame* with respect to which the program is grounded.

Definition 3.1.3 (Frame). Given an action program P containing action application terms $A = \{a_1, \ldots, a_n\}$, a frame F is an interpretation function such that, for each application term $f_{act}(S, I) \in A$ where $S \in H_U(P)^*$ and $I \in H_U(P)^*$, $F(f_{act}) : H_U(P)^* \times H_U(P)^* \mapsto H_U(P)$.

Example 3.1.1 demonstrates the expansion of an action rule as well as a compatible example frame for the respective action.

Example 3.1.1 (Expansion and Frame). Consider following Evolog Program P which contains an action rule with action a:

$$p(a). \ q(b). \ r(c).$$

 $h(X,R): @a(X,Z) = R \leftarrow p(X), q(Y), r(Z).$

The expansion of R is:

$$a_{res}(a, state(p(X), q(Y), r(Z)), input(X, Z), a(state(p(X), q(Y), r(Z)), input(X, Z))) \leftarrow p(X), q(Y), r(Z).$$

$$h(X, R) \leftarrow a_{res}(a, state(p(X), q(Y), r(Z)), input(X, Z), R).$$

Furthermore, consider following frame F:

$$F(a) = \{a(state(p(a), q(b), r(c)), input(a, c))) \mapsto success(a, c)\}$$

which assigns the result success(a, c) to the action application term (i.e. function call a(state(p(a), q(b), r(c)), input(a, c))).

Then, the ground program P_{grnd} after action rule expansion is

$$p(a). \ q(b). \ r(c).$$

$$a_{res}(a, state(p(a), q(b), r(c)), input(a, c), success(a, c)) \leftarrow p(a). \ q(b). \ r(c).$$

$$h(a, success(a, c)) \leftarrow a_{res}(a, state(p(a), q(b), r(c)), input(a, c), success(a, c)).$$

according to which semantics? reference LFP here The sole model of P with respect to frame F is

$$M = \{p(a), q(b), r(c), a_{res}(a, state(p(a), q(b), r(c)), input(a, c), success(a, c)) \\ h(a, success(a, c))\}$$

List of Figures

List of Tables

List of Algorithms

Bibliography

- [CFG+20] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kaminski, Thomas Krennwallner, Nicola Leone, Marco Maratea, Francesco Ricca, and Torsten Schaub. Asp-core-2 input language format. Theory and Practice of Logic Programming, 20(2):294–309, 2020.
- [GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In *International Conference on Logic Programming/Symposium on Logic Programming*, volume 88, pages 1070–1080, 1988.