```
In [18]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
plt.rc('font', size = 12)

health = pd.read_csv('Healthcare_data_updated.csv', header = 0) #this is the updated file with the more
useable Age_Category

#get basic info on this df
print(health.shape)
print(list(health.columns))

#One column has a comma in the middle of its name so I altered that col name (it was causing problems wh
en I plotted)
health=health.rename(columns = {'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx':'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_
```

(3424, 71)['Unnamed: 0', 'Ptid', 'Persistency_Flag', 'Gender', 'Race', 'Ethnicity', 'Region', 'Age_Category', 'Age _Bucket', 'Ntm_Speciality', 'Ntm_Specialist_Flag', 'Ntm_Speciality_Bucket', 'Gluco_Record_Prior_Ntm', 'G luco Record During Rx', 'Dexa Freg During Rx', 'Dexa During Rx', 'Frag Frac Prior Ntm', 'Frag Frac Durin g Rx', 'Risk Segment Prior Ntm', 'Tscore Bucket Prior Ntm', 'Risk Segment During Rx', 'Tscore Bucket Dur ing_Rx', 'Change_T_Score', 'Change_Risk_Segment', 'Adherent_Flag', 'Idn_Indicator', 'Injectable_Experien ce During Rx', 'Comorb Encounter For Screening For Malignant Neoplasms', 'Comorb Encounter For Immunizat ion', 'Comorb Encntr For General Exam W O Complaint, Susp Or Reprtd Dx', 'Comorb Vitamin D Deficiency', 'Comorb Other Joint Disorder Not Elsewhere Classified', 'Comorb Encntr For Oth Sp Exam W O Complaint Sus pected_Or_Reprtd_Dx', 'Comorb_Long_Term_Current_Drug_Therapy', 'Comorb_Dorsalgia', 'Comorb_Personal_Hist ory_Of_Other_Diseases_And_Conditions', 'Comorb_Other_Disorders_Of_Bone_Density_And_Structure', 'Comorb_D isorders_of_lipoprotein_metabolism_and_other_lipidemias', 'Comorb_Osteoporosis_without_current_pathologi cal_fracture', 'Comorb_Personal_history_of_malignant_neoplasm', 'Comorb_Gastro_esophageal_reflux_disease ', 'Concom Cholesterol And Triglyceride Regulating Preparations', 'Concom Narcotics', 'Concom Systemic C orticosteroids_Plain', 'Concom_Anti_Depressants_And_Mood_Stabilisers', 'Concom_Fluoroquinolones', 'Conco m_Cephalosporins', 'Concom_Macrolides_And_Similar_Types', 'Concom_Broad_Spectrum_Penicillins', 'Concom_A naesthetics_General', 'Concom_Viral_Vaccines', 'Risk_Type_1_Insulin_Dependent_Diabetes', 'Risk_Osteogene sis_Imperfecta', 'Risk_Rheumatoid_Arthritis', 'Risk_Untreated_Chronic_Hyperthyroidism', 'Risk_Untreated_ Chronic_Hypogonadism', 'Risk_Untreated_Early_Menopause', 'Risk_Patient_Parent_Fractured_Their_Hip', 'Risk_Patient_Parent_Parent_Fractured_Their_Hip', 'Risk_Patient_Pare k_Smoking_Tobacco', 'Risk_Chronic_Malnutrition_Or_Malabsorption', 'Risk_Chronic_Liver_Disease', 'Risk_Fa mily History Of Osteoporosis', 'Risk Low Calcium Intake', 'Risk Vitamin D Insufficiency', 'Risk Poor Hea lth_Frailty', 'Risk_Excessive_Thinness', 'Risk_Hysterectomy_Oophorectomy', 'Risk_Estrogen_Deficiency', ' Risk Immobilization', 'Risk Recurring Falls', 'Count Of Risks']

In [19]: #the data is unbalanced between the two possible values for Persistency_Flag - this will be dealt with l ater when applying the ML classification algorithm health['Persistency_Flag'].value_counts()

Out[19]: Non-Persistent 2135 Persistent 1289

Name: Persistency_Flag, dtype: int64

In [20]: #I created bar charts to do a visual check for any possible relationship between a variable (column) and
the target drug persistency variable
#Even if the bar chart indicates a relationship, if the numbers are too skewed it might not be helpful,
so I also printed out value counts for that indep variable

table = pd.crosstab(health.Age_Category, health.Persistency_Flag)
table.div(table.sum(1).astype(float), axis = 0).plot(kind='bar', stacked = True)
plt.title('Stacked bar chart, age category vs. drug persistency')
#age category does not seem a strong predictor for drug persistency
health['Age_Category'].value_counts()

#No evident information from this independent variable (it sheds little or no light on persistency based

Out[20]: 3

3 1438

2 1086

1 733

on the bar chart)

0 167

Name: Age_Category, dtype: int64

Stacked bar chart, age category vs. drug persistency

In [21]: table = pd.crosstab(health.Risk_Excessive_Thinness, health.Persistency_Flag) table.div(table.sum(1).astype(float), axis = 0).plot(kind='bar', stacked = True) plt.title('Stacked bar chart, excessive thinness vs. drug persistency') health['Risk_Excessive_Thinness'].value_counts() #excessive thinness seems a slightly better predictor but the numbers are skewed (so not so helpful)

Out[21]: N 3357 Y 67

Name: Risk_Excessive_Thinness, dtype: int64

Stacked bar chart, excessive thinness vs. drug persistency


```
In [15]: table = pd.crosstab(health.Gluco_Record_During_Rx, health.Persistency_Flag)
    table.div(table.sum(1).astype(float), axis = 0).plot(kind='bar', stacked = True)
    plt.title('Stacked bar chart, Gluco_Record_During_Rx vs. drug persistency')
    health['Gluco_Record_During_Rx'].value_counts()
```

Out[15]: N 2522 Y 902

Name: Gluco_Record_During_Rx, dtype: int64

Stacked bar chart, Gluco_Record_During_Rx vs. drug persistency


```
In [11]: table = pd.crosstab(health.Ntm_Specialist_Flag, health.Persistency_Flag)
    table.div(table.sum(1).astype(float), axis = 0).plot(kind='bar', stacked = True)
    plt.title('Stacked bar chart, NTM specialist flag vs. drug persistency')
    health['Ntm_Specialist_Flag'].value_counts()
```

Out[11]: Others 2013 Specialist 1411

Name: Ntm_Specialist_Flag, dtype: int64

Stacked bar chart, NTM specialist flag vs. drug persistency


```
In [12]: #Now to check all the variables:
    #first create list for demographic variables
#then create lists for clinical variables

#including age_category and not the other, age_bucket
    list1 = health.columns[3:8]
    list2 = health.columns[9:12]
    demographic = list1.to_list() + list2.to_list() #the produced list1, list2 were series so I converted to
    list format

#I similarly created three clinical lists
    list3 = health.columns[12:26]
    clinical1 = list3.to_list()
    list4 = health.columns[26:50]
    clinical2 = list4.to_list()
    list5 = health.columns[50:71]
    clinical3 = list5.to_list()
```

```
In [22]: #using a loop, look at all the independent demographic variables against the dependent variable drug per
sistency
for item in demographic:
    table = pd.crosstab(health[item], health.Persistency_Flag)
    table.div(table.sum(1).astype(float), axis = 0).plot(kind='bar', stacked = True)
    plt.title('Stacked bar chart,'+ item + ' vs. drug persistency')
    print(health[item].value_counts())
    print('----')
```

Female 3230 Male 194 Name: Gender, dtype: int64	
Caucasian 3148 Other/Unknown 97 African American 95 Asian 84 Name: Race, dtype: int64	
Not Hispanic 3235 Hispanic 98 Unknown 91 Name: Ethnicity, dtype: int64	
Midwest 1383 South 1247 West 502 Northeast 232 Other/Unknown 60 Name: Region, dtype: int64	
3 1438 2 1086 1 733 0 167 Name: Age_Category, dtype: int64	
GENERAL PRACTITIONER RHEUMATOLOGY ENDOCRINOLOGY Unknown ONCOLOGY OBSTETRICS AND GYNECOLOGY UROLOGY ORTHOPEDIC SURGERY CARDIOLOGY PATHOLOGY HEMATOLOGY & ONCOLOGY OTOLARYNGOLOGY	1535 604 458 310 225 90 33 30 22 16 14

PEDIATRICS PHYSICAL MEDICINE AND REHABILITATION PULMONARY MEDICINE SURGERY AND SURGICAL SPECIALTIES PSYCHIATRY AND NEUROLOGY ORTHOPEDICS NEPHROLOGY GERIATRIC MEDICINE VASCULAR SURGERY TRANSPLANT SURGERY GASTROENTEROLOGY HOSPICE AND PALLIATIVE MEDICINE PLASTIC SURGERY CLINICAL NURSE SPECIALIST PAIN MEDICINE EMERGENCY MEDICINE OBSTETRICS & OBSTETRICS & GYNECOLOGY & OBSTETRICS & GYNECOLOGY HOSPITAL MEDICINE OPHTHALMOLOGY PODIATRY NEUROLOGY NUCLEAR MEDICINE RADIOLOGY OCCUPATIONAL MEDICINE Name: Ntm_Speciality, dtype: int64	13 11 8 8 4 3 2 2 2 2 2 1 1 1 1 1 1 1 1
Others 2013 Specialist 1411 Name: Ntm_Specialist_Flag, dtype: int64	
OB/GYN/Others/PCP/Unknown 2104 Endo/Onc/Uro 716 Rheum 604 Name: Ntm_Speciality_Bucket, dtype: int64	

Stacked bar chart, Age_Category vs. drug persistency

Stacked bar chart, Ntm_Specialist_Flag vs. drug persistency


```
In [23]: #look at the first list of clinical variables against the dependent variable drug persistency
for item in clinical1:
    table = pd.crosstab(health[item], health.Persistency_Flag)
    table.div(table.sum(1).astype(float), axis = 0).plot(kind='bar', stacked = True)
    plt.title('Stacked bar chart,'+ item + ' vs. drug persistency')
    print(health[item].value_counts())
    print('---')
```

```
Ν
     2619
      805
Name: Gluco_Record_Prior_Ntm, dtype: int64
Ν
     2522
Υ
      902
Name: Gluco_Record_During_Rx, dtype: int64
        2488
0
         114
         107
          93
          71
8
          68
55
10
          52
12
          46
          38
32
14
          30
24
11
1
          24
          19
15
13
20
          14
14
16
18
          13
10
22
26
          10
9
7
24
15
17
30
21
28
           5
3
36
19
32
34
           3
3
2
42
25
```

```
39
          2
58
          2
52
          2
48
88
          2
38
          1
81
40
146
45
37
35
33
29
27
23
118
44
110
108
72
68
69
54
50
66
Name: Dexa_Freq_During_Rx, dtype: int64
Ν
     2488
      936
Name: Dexa_During_Rx, dtype: int64
Ν
     2872
      552
Name: Frag_Frac_Prior_Ntm, dtype: int64
     3007
N
      417
Name: Frag_Frac_During_Rx, dtype: int64
VLR_LR
          1931
```

```
HR_VHR
          1493
Name: Risk_Segment_Prior_Ntm, dtype: int64
>-2.5
          1951
          1473
<=-2.5
Name: Tscore_Bucket_Prior_Ntm, dtype: int64
Unknown
           1497
HR_VHR
            965
VLR_LR
            962
Name: Risk_Segment_During_Rx, dtype: int64
Unknown
           1497
<=-2.5
           1017
>-2.5
            910
Name: Tscore_Bucket_During_Rx, dtype: int64
No change
             1660
Unknown
             1497
Worsened
              173
Improved
               94
Name: Change_T_Score, dtype: int64
Unknown
             2229
             1052
No change
Worsened
              121
Improved
               22
Name: Change_Risk_Segment, dtype: int64
___
Adherent
                3251
Non-Adherent
                 173
Name: Adherent_Flag, dtype: int64
Υ
     2557
Ν
      867
Name: Idn_Indicator, dtype: int64
```


Stacked bar chart, Gluco_Record_During_Rx vs. drug persistency

Stacked bar chart, Dexa_During_Rx vs. drug persistency

Stacked bar chart,Frag_Frac_During_Rx vs. drug persistency

Stacked bar chart, Tscore_Bucket_Prior_Ntm vs. drug persistency

Stacked bar chart, Tscore_Bucket_During_Rx vs. drug persistency

Stacked bar chart, Change_Risk_Segment vs. drug persistency

Stacked bar chart,Idn_Indicator vs. drug persistency


```
In [24]: #look at indep vars in second clinical group in same manner

for item in clinical2:
    table = pd.crosstab(health[item], health.Persistency_Flag)
    table.div(table.sum(1).astype(float), axis = 0).plot(kind='bar', stacked = True)
    plt.title('Stacked bar chart,'+ item + ' vs. drug persistency')
    print(health[item].value_counts())
    print('---')
```

```
3056
Υ
      368
Name: Injectable_Experience_During_Rx, dtype: int64
Ν
     1891
     1533
Name: Comorb_Encounter_For_Screening_For_Malignant_Neoplasms, dtype: int64
Ν
     1911
     1513
Name: Comorb Encounter For Immunization, dtype: int64
Ν
     2072
     1352
Υ
Name: Comorb_Encntr_For_General_Exam_W_O_Complaint_Susp_Or_Reprtd_Dx, dtype: int64
Ν
     2331
     1093
Name: Comorb_Vitamin_D_Deficiency, dtype: int64
     2425
Ν
      999
Name: Comorb_Other_Joint_Disorder_Not_Elsewhere_Classified, dtype: int64
     2633
Ν
      791
Name: Comorb_Encntr_For_Oth_Sp_Exam_W_O_Complaint_Suspected_Or_Reprtd_Dx, dtype: int64
     2607
Ν
      817
Name: Comorb_Long_Term_Current_Drug_Therapy, dtype: int64
Ν
     2645
      779
Name: Comorb_Dorsalgia, dtype: int64
     2747
Ν
      677
Name: Comorb_Personal_History_Of_Other_Diseases_And_Conditions, dtype: int64
```

```
2906
Ν
Υ
      518
Name: Comorb_Other_Disorders_Of_Bone_Density_And_Structure, dtype: int64
Υ
     1765
     1659
N
Name: Comorb_Disorders_of_lipoprotein_metabolism_and_other_lipidemias, dtype: int64
     2507
Ν
      917
Name: Comorb_Osteoporosis_without_current_pathological_fracture, dtype: int64
     2775
Ν
      649
Name: Comorb_Personal_history_of_malignant_neoplasm, dtype: int64
     2794
N
      630
Name: Comorb_Gastro_esophageal_reflux_disease, dtype: int64
     2242
Ν
     1182
Name: Concom_Cholesterol_And_Triglyceride_Regulating_Preparations, dtype: int64
     2191
Ν
     1233
Name: Concom_Narcotics, dtype: int64
     2451
Ν
      973
Name: Concom_Systemic_Corticosteroids_Plain, dtype: int64
Ν
     2465
      959
Name: Concom_Anti_Depressants_And_Mood_Stabilisers, dtype: int64
     2787
N
      637
Name: Concom_Fluoroquinolones, dtype: int64
     2821
Ν
```

31 of 58

```
Υ
      603
Name: Concom_Cephalosporins, dtype: int64
Ν
     2853
      571
Name: Concom_Macrolides_And_Similar_Types, dtype: int64
Ν
     2985
      439
Name: Concom_Broad_Spectrum_Penicillins, dtype: int64
     2927
Ν
      497
Name: Concom_Anaesthetics_General, dtype: int64
```

Stacked bar chart, Injectable_Experience_During_Rx vs. drug persistency

Stacked bar chart, Comorb_Encounter_For_Screening_For_Malignant_Neoplasms vs. drug persistency

Stacked bar chart, Comorb_Encounter_For_Immunization vs. drug persistency

Stacked bar chart, Comorb_Vitamin_D_Deficiency vs. drug persistency

Stacked bar chart, Comorb_Encntr_For_Oth_Sp_Exam_W_O_Complaint_Suspected_Or_Reprtd_Dx vs. drug persistency

Comorb_Encntr_For_Oth_Sp_Exam_W_O_Complaint_Suspected_Or_Reprtd_Dx

Stacked bar chart, Comorb_Long_Term_Current_Drug_Therapy vs. drug persistency

Stacked bar chart, Comorb_Dorsalgia vs. drug persistency

Stacked bar chart, Comorb_Personal_History_Of_Other_Diseases_And_Conditions vs. drug persistency

Stacked bar chart, Comorb Other Disorders Of Bone Density And Structure vs. drug persistency

Stacked bar chart, Comorb_Disorders_of_lipoprotein_metabolism_and_other_lipidemias vs. drug persistency

Stacked bar chart, Comorb_Osteoporosis_without_current_pathological_fracture vs. drug persistency

Comorb_Osteoporosis_without_current_pathological_fracture

Stacked bar chart, Comorb_Gastro_esophageal_reflux_disease vs. drug persistency

Stacked bar chart, Concom_Cholesterol_And_Triglyceride_Regulating_Preparations vs. drug persistency

Stacked bar chart, Concom_Narcotics vs. drug persistency

Stacked bar chart, Concom_Anti_Depressants_And_Mood_Stabilisers vs. drug persistency

Stacked bar chart, Concom_Cephalosporins vs. drug persistency

Stacked bar chart, Concom_Broad_Spectrum_Penicillins vs. drug persistency

Stacked bar chart, Concom_Anaesthetics_General vs. drug persistency


```
In [26]: #do the same for the third clinical group

for item in clinical3:
    table = pd.crosstab(health[item], health.Persistency_Flag)
    table.div(table.sum(1).astype(float), axis = 0).plot(kind='bar', stacked = True)
    plt.title('Stacked bar chart,'+ item + ' vs. drug persistency')
    print(health[item].value_counts())
    print('---')
```

```
3071
N
      353
Name: Concom_Viral_Vaccines, dtype: int64
Ν
     3285
Υ
      139
Name: Risk_Type_1_Insulin_Dependent_Diabetes, dtype: int64
Ν
     3421
Name: Risk_Osteogenesis_Imperfecta, dtype: int64
Ν
     3294
Υ
      130
Name: Risk_Rheumatoid_Arthritis, dtype: int64
     3422
Ν
Name: Risk_Untreated_Chronic_Hyperthyroidism, dtype: int64
     3297
Ν
      127
Name: Risk_Untreated_Chronic_Hypogonadism, dtype: int64
Ν
     3412
Name: Risk_Untreated_Early_Menopause, dtype: int64
N
     3168
      256
Name: Risk_Patient_Parent_Fractured_Their_Hip, dtype: int64
     2780
Ν
      644
Name: Risk_Smoking_Tobacco, dtype: int64
     2954
N
      470
Name: Risk_Chronic_Malnutrition_Or_Malabsorption, dtype: int64
```

```
3406
Ν
Υ
       18
Name: Risk_Chronic_Liver_Disease, dtype: int64
Ν
     3066
      358
Name: Risk_Family_History_Of_Osteoporosis, dtype: int64
     3382
Ν
       42
Name: Risk_Low_Calcium_Intake, dtype: int64
     1788
Ν
     1636
Name: Risk_Vitamin_D_Insufficiency, dtype: int64
     3232
Ν
      192
Name: Risk_Poor_Health_Frailty, dtype: int64
     3357
Ν
       67
Name: Risk_Excessive_Thinness, dtype: int64
N
     3370
       54
Name: Risk_Hysterectomy_Oophorectomy, dtype: int64
     3413
Ν
       11
Name: Risk_Estrogen_Deficiency, dtype: int64
     3410
Ν
Name: Risk_Immobilization, dtype: int64
Ν
     3355
       69
Name: Risk_Recurring_Falls, dtype: int64
1
     1242
```

```
0 970
2 781
3 317
4 91
5 15
6 6
7 2
```

Name: Count_Of_Risks, dtype: int64

Stacked bar chart, Concom_Viral_Vaccines vs. drug persistency

Stacked bar chart, Risk_Type_1_Insulin_Dependent_Diabetes vs. drug persistency

Stacked bar chart, Risk_Osteogenesis_Imperfecta vs. drug persistency

Stacked bar chart, Risk_Untreated_Chronic_Hyperthyroidism vs. drug persistency

Stacked bar chart, Risk_Untreated_Chronic_Hypogonadism vs. drug persistency

Stacked bar chart, Risk_Untreated_Early_Menopause vs. drug persistency

Stacked bar chart, Risk_Patient_Parent_Fractured_Their_Hip vs. drug persistency

Stacked bar chart, Risk_Smoking_Tobacco vs. drug persistency

Stacked bar chart, Risk_Chronic_Malnutrition_Or_Malabsorption vs. drug persistency

Stacked bar chart, Risk_Chronic_Liver_Disease vs. drug persistency

Stacked bar chart, Risk_Family_History_Of_Osteoporosis vs. drug persistency

Stacked bar chart, Risk_Low_Calcium_Intake vs. drug persistency

Stacked bar chart, Risk_Poor_Health_Frailty vs. drug persistency

Stacked bar chart, Risk_Hysterectomy_Oophorectomy vs. drug persistency

Stacked bar chart, Risk_Immobilization vs. drug persistency

Stacked bar chart, Count_Of_Risks vs. drug persistency

In []: