# Graph Cut - I

#### Anand Mishra

Center for Visual Information Technology IIIT Hyderabad http://researchweb.iiit.ac.in/~anand.mishra/

March 2017

## **Outline**

- Motivation behind Maximum Flow problem
- Maximum Flow Problem
- Max-Flow min-cut Theorem
- Ford Flukerson Algorithm
- Push relabel algorithm

Imagine a oil refinery at Mathura producing oil, and it has a warehouse in Chennai. There are multiple path from the source (Mathura) to destination(Chennai) with each path having some capacity of fluid flow. Such graph are known as flow network.

Imagine a oil refinery at Mathura producing oil and it has a warehouse in Chennai. There are multiple path from the source (Mathura) to destination(Chennai) with each path having some capacity of fluid flow. Such graph are known as flow network.



#### Q: Which problems can be modelled as flow network?

- Liquids following through pipes
- Current through electrical networks
- Information through communication networks
- Vehicles through roads

#### In a flow network

- Each vertex other than source and sink is a conduit junction. They do not store/collect any material.(In context of electrical networks this is the well known rule: Kirchoff's Law)
- Each edge can be though of a conduit for the material with a predefined capacity. For example: 100 gallon liquid per hour through a pipe or 10 amperes current through a wire.

# What Questions can be answered through such flow networks

Q: What is the maximum amount of flow possible in a given flow network?

To answer this let us formally define some terms like:

- Flow network
- Flow
- Max-flow problem

## Flow Networks

A flow network G = (V,E) is a directed graph in which each edge  $(u,v) \in E$  has a non-negative capacity  $c(u,v) \ge 0$ 

In a flow network we distinguish two vertices source(s) and sink(t).



Note: A flow network is always a connected graph thus in any flow network

$$|E| \ge |V| - 1$$



#### Flow

Let G = (V,E) be a flow network with a capacity function c, let s be the source of the network and t be the sink. Then a **flow** in G is defined as a real valued function  $f : V \times V \longrightarrow \mathcal{R}$  that satisfies following three properties:

Capacity constraint:

$$f(u, v) \leq c(u, v); \quad \forall u, v \in V$$

#### Flow

Let G = (V,E) be a flow network with a capacity function c, let s be the source of the network and t be the sink. Then a **flow** in G is defined as a real valued function  $f : V \times V \longrightarrow \mathcal{R}$  that satisfies following three properties:

Capacity constraint:

$$f(u, v) \leq c(u, v); \quad \forall u, v \in V$$

Skew Symmetry:

$$f(u, v) = -f(v, u); \quad \forall u, v \in V$$

Let G = (V,E) be a flow network with a capacity function c, let s be the source of the network and t be the sink. Then a **flow** in G is defined as a real valued function  $f: V \times V \longrightarrow \mathcal{R}$  that satisfies following three properties:

Capacity constraint:

$$f(u, v) \leq c(u, v); \quad \forall u, v \in V$$

Skew Symmetry:

$$f(u, v) = -f(v, u); \quad \forall u, v \in V$$

Flow Conservation:

$$\sum_{u\in V}f(u,v)=0; \quad \forall u\in V-\{s,t\}$$
 or equivalently

$$\sum_{v \in V} f(v, u) = 0; \quad \forall u \in V - \{s, t\}$$



#### **Total Net flow**

- Total positive flow entering a vertex v is defined by:  $\sum_{u \in V, f(u,v) > 0} f(u,v)$
- Similarly, We can define total positive flow leaving a vertex v as:  $\sum_{v \in V, f(v,u) > 0} f(v,u)$
- Total net flow of vertex v is defined as total positive flow leaving vertex v minus total positive flow entering that vertex.

#### **Total Net flow**

- Total positive flow entering a vertex v is defined by:  $\sum_{u \in V, f(u,v) > 0} f(u,v)$
- Similarly, We can define total positive flow leaving a vertex v as:  $\sum_{v \in V, f(v,u)>0} f(v,u)$
- Total net flow of vertex v is defined as total positive flow leaving vertex v minus total positive flow entering that vertex.



Find total net flow of vertex v1



## Maximum flow problem

**Problem:** Given a flow network *G* with source *s* and sink *t* we wish to find a flow of maximum value.

## Residual Network and Residual Capacity

**Residual Network:** Given a flow network G = (V,E) and a flow f the residual network of G induced by flow f is  $G_f = (V, E_f)$  where

$$E_f = \{(u,v) \in V \times V : C_f(u,v) > 0\}$$

**Residual Capacity:** The amount of flow we can push from u to v before exceeding the capacity c(u,v) is the residual capacity of c(u,v).



## Augmenting path

Given a flow network G=(V,E) and a flow f an augmenting path p is a simple from s to t in the residual network.

**Residual capacity of path:** is the minimum residual capacity along the path.



## Augmenting path

Given a flow network G=(V,E) and a flow f an augmenting path p is a simple from s to t in the residual network.

**Residual capacity of path:** is the minimum residual capacity along the path.



Residual capacity of path: 5

## Augmenting path

Given a flow network G=(V,E) and a flow f an augmenting path p is a simple from s to t in the residual network.

**Residual capacity of path:** is the minimum residual capacity along the path.



Residual capacity of path: 2

A cut C(S, T) of flow network G = (V,E) is a partition of set of vertices V into two sets disjoint sets S and T.

Capacity of a cut is the capacity of edges going from vertices belonging to S to vertices belonging to set T.



A cut C(S, T) of flow network G = (V,E) is a partition of set of vertices V into two sets disjoint sets S and T.

Capacity of a cut is the capacity of edges going from vertices belonging to S to vertices belonging to set T.



Capacity of this cut = 10



A cut C(S, T) of flow network G = (V,E) is a partition of set of vertices V into two sets disjoint sets S and T.

Capacity of a cut is the capacity of edges going from vertices belonging to S to vertices belonging to set T.



A cut C(S, T) of flow network G = (V,E) is a partition of set of vertices V into two sets disjoint sets S and T.

Capacity of a cut is the capacity of edges going from vertices belonging to S to vertices belonging to set T.



Capacity of this cut = 9



## Max flow - min cut theorem

If f is a flow in flow network G = (V, E) with sources s and sink t, then the following conditions are equivalent:

- of is a max flow in G
- ② The residual network  $G_f$  contains no augmenting path
- There exist a cut C(S, T) with capacity f.



Find an augmenting path p and augment flow f against p





Find an augmenting path p and augment flow f against p







Find an augmenting path p and augment flow f against p





No more augmenting path exists





While finding augmenting path one has to traverse O(|E|) each time. Thus if  $max - flow = |f^*|$  then at worst case the complexity of the algorithm based on Ford-Flukerson:  $O(|f^*||E|)$ 

While finding augmenting path one has to traverse O(|E|) each time. Thus if  $max - flow = |f^*|$  then at worst case the complexity of the algorithm based on Ford-Flukerson:  $O(|f^*||E|)$ 

How worst this complexity can be?

## Consider following example:



#### Consider following example:



# Efficient Ford-Flukerson Method: Edmonds-Karp Algorithm

Edmonds-Karp Algorithm finds the augmenting path with a breadth first search. and has a complexity of  $O(|V||E|^2)$ 

# Push Relabel algorithms

- The intuition behind push relabel algorithms is the analogy of flow graph and pipes carrying fluids.
- Each edge corresponds to pipe and each vertex corresponds pipe junctions
- Each vertex(except source and sink) has an arbitrary large reservoir to accommodate excess flow e. Height of each vertex (except source and sink) h is zero initially and increases with the progress of algorithm.
- The height of source and sink are fixed to |V| and 0 respectively.
- Flow can be pushed only downhill.



## Push Relabel algorithm

#### The algorithm works as follows

- Push as much fluid possible from source (towards sink)
- Increase the height of receiver vertex.
- Continue Pushing fluids downhill and increasing height of receiver vertex until excess flow of all vertex become zero.
- If at any stage excess fluid can not be pushed downhill relabel the vertex (increase its height) so that excess fluid can be pushed.





#### Intialization:

- 1. h = |v| for source
- 2. h = 0 for other nodes
- 3. e = 0 for nodes except source and sink



- 1. Push as much as possible from source to all adjacent nodes
- 2. Change the height of the adjacent nodes to source



1. Push as much as possible from every node until e = 0 for all nodes



1. Push as much as possible from every node until e = 0 for all nodes



- Push as much as possible from every node until e = 0 for all nodes
- 2. Relable the node if required



- 1. Push as much as possible from every node until e = 0 for all nodes
- 2. Relable the node if required "V2 is relabled"



- 1. Push as much as possible from every node until e = 0 for all nodes
- 2. Relable the node if required "V2 is relabled"



1. Now e = 0 for all nodes Thus we can stop the algorithm





# Push Relabel algorithm: Analysis

Each of the basic operation Relabels, saturating pushes and bounded separately. Complexity of push relabel algorithm is  $O(|V|^2|E|)$  Most efficient implementation of max flow are push relabel methods.

## References

 Cormen et al, Introductions to algorithms, PHI: 2nd Edition, Chapter -26