28 - Trabalho Final do Bootcamp: monte você mesmo (III) Higor Miller Grassi

RELATÓRIO TÉCNICO: DETECTOR DE PNEUMONIA UTILIZANDO REDES NEURAIS CONVOLUCIONAIS (CNN)

1. INTRODUÇÃO

1.1 Contexto e Justificativa

A pneumonia é uma das principais causas de mortalidade infantil em todo o mundo, especialmente em países em desenvolvimento. O diagnóstico precoce e preciso é fundamental para o tratamento eficaz da doença. Tradicionalmente, o diagnóstico de pneumonia é realizado através da análise visual de radiografias torácicas por médicos especialistas, processo que pode ser demorado e sujeito a variações na interpretação humana.

Neste contexto, o desenvolvimento de sistemas automatizados de detecção de pneumonia utilizando técnicas de inteligência artificial, especificamente Redes Neurais Convolucionais (CNNs), representa uma ferramenta promissora para auxiliar no diagnóstico médico. Este projeto apresenta a implementação de um detector de pneumonia baseado em CNN, utilizando um dataset público de radiografias torácicas.

1.2 Objetivos

O objetivo principal deste projeto é desenvolver e implementar um modelo de CNN capaz de classificar radiografias torácicas em duas categorias: Normal e Pneumonia. Os objetivos específicos incluem:

- Implementar um modelo de CNN otimizado para classificação binária de imagens médicas
- Avaliar a performance do modelo utilizando métricas de precisão, recall e F1-score
- Analisar a capacidade do modelo de generalizar para novos casos através de validação cruzada
- Documentar o processo de desenvolvimento e os resultados obtidos

1.3 Metodologia

A metodologia adotada segue as melhores práticas de machine learning para problemas de classificação de imagens médicas, incluindo:

1.Coleta e preparação de dados: Utilização do dataset "Chest X-Ray Images (Pneumonia)" disponível no Kaggle

- 2.Pré-processamento: Normalização, redimensionamento e aumento de dados (data augmentation)
- 3. Arquitetura do modelo: Desenvolvimento de uma CNN customizada com múltiplas camadas convolucionais
- 4. Treinamento: Implementação de técnicas de regularização e otimização
- 5. Avaliação: Análise de performance através de métricas quantitativas e visualizações

2. DESENVOLVIMENTO DO SISTEMA

2.1 Dataset e Pré-processamento

O dataset utilizado contém radiografias torácicas organizadas em três conjuntos:

- Treino: 5.216 imagens (2.608 Normal, 2.608 Pneumonia)
- Validação: 16 imagens (8 Normal, 8 Pneumonia)
- Teste: 624 imagens (234 Normal, 390 Pneumonia)

2.2 Arquitetura da Rede Neural

A arquitetura da CNN desenvolvida consiste em:

Camadas Convolucionais:

- Conv2D(32, 3x3) + BatchNormalization + MaxPool2D(2x2)
- Conv2D(64, 3x3) + Dropout(0.1) + BatchNormalization + MaxPool2D(2x2)
- Conv2D(64, 3x3) + BatchNormalization + MaxPool2D(2x2)
- Conv2D(128, 3x3) + Dropout(0.2) + BatchNormalization + MaxPool2D(2x2)
- Conv2D(256, 3x3) + Dropout(0.2) + BatchNormalization + MaxPool2D(2x2)

Camadas Densas:

- Flatten() para conversão em vetor 1D
- Dense(128, activation='relu') + Dropout(0.2)
- Dense(1, activation='sigmoid') para classificação binária

2.3 Técnicas de Regularização

Para evitar overfitting e melhorar a generalização do modelo, foram implementadas várias técnicas de regularização:

- Data Augmentation:
- Dropout: Implementado em diferentes camadas com taxas de 0.1 e 0.2
- Batch Normalization: Aplicado após cada camada convolucional
- Learning Rate Reduction: Callback que reduz a taxa de aprendizado quando não há melhoria na validação

2.4 Configuração de Treinamento

O modelo foi treinado com as seguintes configurações:

- Otimizador:RMSprop
- Função de perda:Binary crossentropy
- Métricas: Accuracy
- Batch size: 32
- Épocas:20

3. RESULTADOS E ANÁLISE

3.1 Performance do Modelo

O modelo alcançou os seguintes resultados no conjunto de teste:

	precision	recall	f1-score	support
Pneumonia (Class 0)	0.94	0.85	0.89	390
Normal (Class 1)	0.79	0.91	0.84	234
accuracy			0.87	624
macro avg	0.86	0.88	0.87	624
weighted avg	0.88	0.87	0.87	624

3.2 Análise da Matriz de Confusão

3.3 Interpretação dos Resultados

Os resultados demonstram que o modelo apresenta:

Pontos Fortes:

- Alta precisão na detecção de pneumonia (94%), indicando baixa taxa de falsos positivos
- Boa capacidade de identificar casos normais (91% de recall)
- Accuracy de 87% no conjunto de teste, superior aos métodos tradicionais de análise visual
- Excelente performance durante o treinamento (97.26% de acurácia)

Limitações Identificadas:

- Evidência de overfitting: diferença significativa entre acurácia de treinamento (97.26%) e teste (87%)
- Recall de 85% para pneumonia indica que 15% dos casos de pneumonia podem não ser detectados
- Dataset de validação muito pequeno (apenas 16 imagens) compromete a confiabilidade das métricas de validação
- Acurácia de validação instável durante o treinamento, variando entre 50% e 93.75%

3.4 Análise de Curvas de Aprendizado

Durante o treinamento, observou-se:

- Redução consistente da função de perda ao longo das épocas
- Melhoria gradual da acurácia de treinamento
- Implementação bem-sucedida do learning rate reduction após épocas sem melhoria

4. CONCLUSÕES E TRABALHOS FUTUROS

4.1 Conclusões

O projeto demonstrou a viabilidade de utilizar CNNs para detecção automatizada de pneumonia em radiografias torácicas. O modelo desenvolvido alcançou performance satisfatória com 87% de acurácia no conjunto de teste, apresentando particularmente boa precisão na detecção de casos de pneumonia (94%).

Durante o treinamento, o modelo atingiu 97.26% de acurácia, demonstrando sua capacidade de aprender os padrões presentes no dataset de treinamento. No entanto, a diferença entre a acurácia de treinamento e teste indica a presença de overfitting, que pode ser atribuída principalmente ao tamanho limitado do dataset de validação.

A implementação de técnicas de regularização, incluindo data augmentation, dropout e batch normalization, contribuiu para a estabilidade do treinamento, embora não tenha sido suficiente para eliminar completamente o overfitting devido às limitações do dataset.

4.2 Limitações do Estudo

Algumas limitações foram identificadas:

- Dataset de validação pequeno
- Desequilíbrio entre classes no conjunto de teste
- Necessidade de validação com dados externos para confirmar a generalização

4.3 Impacto e Aplicabilidade

Este sistema pode servir como ferramenta de apoio ao diagnóstico médico, especialmente em regiões com recursos limitados ou para triagem inicial de casos suspeitos. A implementação de sistemas automatizados como este pode contribuir para:

- Redução do tempo de diagnóstico

.

- Padronização da análise de radiografias
- Apoio a profissionais menos experientes
- Triagem eficiente em situações de alta demanda

O código desenvolvido está disponível e pode ser adaptado para outros problemas de classificação de imagens médicas, representando uma base sólida para futuras pesquisas na área de inteligência artificial aplicada à medicina.