Confidence Band and Simultaneous Confidence Inference in SLR

The Simultaneous(as known as the Family or Joint) Confidence Interval Problem

- 1. Simultaneously (joint) estimation of p parameters, in SLR, p = 2 with β_0 and β_1 , with all X values.
 - Provide confidence that the conclusions for both β_0 and β_1 are correct.
- 2. Simultaneously estimation of g mean response \hat{Y}_h with g (usually different) X_h values.
 - Only one mean response value is made at one X_h value, $s^2\{\hat{Y}_h\} = s^2\left[\frac{1}{n} + \frac{(X_h \bar{X})^2}{\Sigma(X_i \bar{X})^2}\right]$
 - The g different mean responses made at different X_h values might not all be correct at the same time, even though all estimates are based on the same fitted regression line, depending on p parameters, e.g., b_0 and b_1 , p=2 in SLR.
- 3. Simultaneously estimation of g single response $\hat{Y}_h\{new\}$ with g (usually different) X_h values
 - Only one single response value is made at one X_h value, $s^2\{pred\} = MSE[1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\Sigma(X_i \bar{X})^2}] = s^2 + s^2\{\hat{Y}_h\}$

The Method

- 1. Simultaneously (joint) estimation of **p** parameters, in SLR, p = 2 with β_1 and β_2 with all X values.
 - a) Bonferroni
 - b) Working-hoteling
- 2. Simultaneously estimation of mean response \hat{Y}_h with g different X_h values.
 - a) Bonferroni
 - b) Working-hoteling
- 3. Simultaneously estimation of single response $\hat{Y}_h\{new\}$ with g different X_h values
 - a) Bonferroni
 - b) Schefft

The Method

- 1. Simultaneously (joint) estimation of p parameters, in SLR, p = 2 with β_1 and β_2 , with all X values.
 - a) Bonferroni
 - b) Working-hoteling

The Individual Confidence Interval

- Consider to estimate β_0 and β_1 respectively
- The two individual intervals are

$$b_0 \pm t(1 - \alpha/2; n - 2)s\{b_0\} = I_0$$

 $b_1 \pm t(1 - \alpha/2; n - 2)s\{b_1\} = I_1$

The event I_0^+ means the I_0 successfully contains the true intercepe, β_0

The event I_1^+ means the I_1 successfully contains the true slope, β_1

$$\Pr(I_0^+) = \Pr(I_1^+) = 1 - \alpha_i$$
, where α_i is used for individual interval

The event I_0^- and I_1^- define the complement events, and

$$\Pr(I_0^-) = \Pr(I_1^-) = \alpha_i$$

For example, $Pr(I_0^+) = Pr(I_1^+) = 0.95$ $Pr(I_0^-) = Pr(I_1^-) = 0.05$

Bonferroni Inequality

When
$$Pr(I_0^+) = Pr(I_1^+) = 0.95$$
, and $Pr(I_0^-) = Pr(I_1^-) = 0.05$

Q: what of the following is true about the probability that both individual intervals are correct, i.e., $= P(I_0^+ and I_1^+)$.

- A) 0.95(0.95)
- B) 1-2(0.05)
- C) 1-2(0.05)+(0.05)(0.05)
- D) $\geq 1 2(0.05)$

The answer is D). Note that A) or C) is true only when the individual estimates are independent.

$$P(I_0^+ \text{ and } I_1^+) = 1 - [P(I_0^-) + P(I_1^-) - P(I_0^- \text{ and } I_1^-)] \ge 1 - (P(I_0^-) + P(I_1^-)) = 1 - 2\alpha_i$$

$$P(I_0^+ \text{ and } I_1^+) \ge 1 - 2\alpha_i$$

$$= 1 - 2(0.05)$$

$$= 1 - 0.1 = 0.9$$

- The α value for the joint confidence interval is at most 0.1, and the joint confidence level is at least 0.9
- = 1 0.1 = 0.9 This feature is called the Bonferroni Inequality.
 - Bonferroni Inequality extends to k groups

$$P(I_1^+ \text{ and } I_2^+ \dots \text{ and } I_k^+) \ge 1 - k(\alpha_i)$$

The Bonferroni Joint Confidence Interval

$$P(I_0^+ \text{ and } I_1^+) \ge 1 - 2\alpha_i = 1 - \alpha, \quad \text{where } \alpha_i = \frac{\alpha}{2}$$

Thus, if we want the joint confidence interval $P(I_0^+ and I_1^+)$ to be at least $1-\alpha$, set the individual alpha value $\alpha_i = \frac{\alpha}{2}$, note that the individual confidence level is now at least $1-\alpha_i = 1-\frac{\alpha}{2}$

For MLR with p paramters, if we want $P(I_0^+ and I_2^+ \dots and I_{p-1}^+)$ to be at least $1-\alpha$, set the individual alpha value $\alpha_i = \frac{\alpha}{p}$ such that the joint confidence level

$$P(I_0^+ \text{ and } I_2^+ \dots \text{ and } I_{p-1}^+) \ge 1 - p(\alpha_i) = 1 - \alpha$$
.

This estimation is a very conservative because it overestimates the actual confidence level.

The Bonferroni Critical Value

The $1-\alpha$ joint confidence interval is done by estimating β_0 and β_1 (p=2) each with the individual confidence level of at least $1-\frac{\alpha}{2}$, or the alpha value, $\alpha_i=\frac{\alpha}{2}$

We can now adjust the individual confidence interval to the Bonferroni Joint Confidence Interval:

$$b_0 \pm t \left(1 - \frac{\alpha_i}{2}, dfE\right) s\{b_0\} = b_0 \pm t \left(1 - \frac{\alpha_i}{2}, dfE\right) s\{b_0\} = b_0 \pm t (1 - \alpha/4, dfE) s\{b_0\}$$

$$b_1 \pm t \left(1 - \frac{\alpha_i}{2}, dfE\right) s\{b_1\} = b_1 \pm t \left(1 - \frac{\alpha_i}{2}, dfE\right) s\{b_1\} = b_1 \pm t (1 - \alpha/4, dfE) s\{b_1\}$$

In general, the Bonferroni Joint Confidence Interval for p parameters consists of p intervals,

$$b_k \pm t \left(1 - \frac{\alpha_i}{2}, dfE\right) s\{b_k\} = b_k \pm t \left(1 - \frac{\frac{\alpha}{p}}{2}, dfE\right) s\{b_k\} = b_k \pm t \left(1 - \alpha/2p, dfE\right) s\{b_k\}, \text{ where } k \text{ ranges from 0 to } p-1.$$

The Bonferroni critical value is defined as

$$B = t(1 - \alpha/2p, dfE), \ or \ t(1 - \frac{\alpha}{4}; n - 2) \ in \ SLR.$$

Example: in the Toluca company case, compute the 90% family confidence interval for (β_0, β_1)

$$B = t\left(1 - \frac{\alpha}{4}; n - 2\right) = t(0.975, 23) = 2.069$$

$$b_0 \pm Bs\{b_0\} = 62.366 \pm 2.069 * 26.177 = (8.2, 116.5)$$

$$b_1 \pm Bs\{b_1\} = 3.570 \pm 2.069 * 0.347 = (2.85, 4.29)$$

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.366 26.177 2.382 0.0259 *
size 3.570 0.347 10.290 4.45e-10 ***
```

Residual standard error: 48.82 on 23 degrees of freedom Multiple R-squared: 0.8215, Adjusted R-squared: 0.8138 F-statistic: 105.9 on 1 and 23 DF, p-value: 4.449e-10

• This is essentially setting the two individual confidence level as 95% for both β_0 and β_1 , to ensure the family have at least a 90% confidence level.

Some Example on the Bonferroni Critical Value Notation

$$\alpha = 0.1, \quad g = 2$$

$$B = t \left(1 - \frac{\alpha}{2g}; n - p \right) = t(1 - 0.025; n - p) = t(0.975, n - p)$$

$$\alpha = 0.05, \quad g = 2$$

$$B = t \left(1 - \frac{\alpha}{2g}; n - p \right) = t(1 - 0.0125; n - p) = t(0.9875, n - p)$$

$$\alpha = 0.15, \quad g = 3$$

$$B = t \left(1 - \frac{\alpha}{2g}; n - p \right) = t(1 - 0.025; n - p) = t(0.975, n - p)$$

$$\alpha = 0.1, \quad g = 3$$

$$B = t \left(1 - \frac{\alpha}{2g}; n - p \right) = t(1 - 0.0167; n - p) = t(0.983, n - p)$$

Working-hoteling Joint confidence interval (confidence band)

$$F = (\mathbf{b} - \boldsymbol{\beta}^*)'(\mathbf{X}'\mathbf{X})(\mathbf{b} - \boldsymbol{\beta}^*)/pMSE$$
,

$$F \sim F(p, n-p)$$
.

 $F \leq F_{\alpha}$, Where $F_{\alpha} = F(1-\alpha; p, n-p)$ is the $(1-\alpha)100th$ percentile of the $F-distribution\ (p, n-p)$

$$(b_j - \beta_j)^2 \le pF_{\alpha}MSE = W^2MSE$$
 Where $W^2 = pF_{\alpha}(p, n - p)$

which gives $b_i - Ws(b_i) \leq \beta_i \leq b_i + Ws(b_i)$ where j = 1, 2, ...p

In SLR,
$$p = 2$$
 $W^2 = pF_{\alpha}(p, n - p) = 2F_{\alpha}(2, n - p)$

Figure 1. Exact Versus Conservative Confidence Regions. The plot compares a typical exact confidence ellipse with a conservative confidence rectangle for the case p = 2; that is, the case p = 2; the case p = 2; the case p = 2; that is, the case p = 2; t

Reference: David M. Nickerson, Construction of a conservative confidence region from projections of an exact confidence region in Multiple Linear Regression, The American Statistician, Vol. 48, No.2 (May, 1994)

Working hoteling confidence band on estimating (β_0, β_1)

• Working hoteling method is based on a F distribution: $W^2 = pF_{\alpha}(p, n-p)$

$$\beta_j \pm Ws\{\beta_j\}$$
 In SLR, $j = 0$ or 1, and $W^2 = 2 F(1 - \alpha; 2, n - 2)$,

• In the Toluca case, find the joint 90% confidence interval for the parameters (β_0 , β_1).

$$W = \sqrt{2 F(1 - \alpha; 2, n - 2)} = 2.258$$
 sqrt(2*qf(0.9,2,23))

$$b_0 \pm Ws\{b_0\} = 62.37 \pm W(26.18) = 62.3 \pm 59.11$$
 Coefficients:
$$b_1 \pm Ws\{b_1\} = 3.57 \pm W(0.347) = 3.57 \pm 0.78$$
 Coefficients:
$$(Intercept) \quad 62.366 \quad 26.177 \quad 2.382 \quad 0.0259 *$$
size 3.570 0.347 10.290 4.45e-10 ***

Residual standard error: 48.82 on 23 degrees of freedom Multiple R-squared: 0.8215, Adjusted R-squared: 0.8138 F-statistic: 105.9 on 1 and 23 DF, p-value: 4.449e-10

In this case of n=25, p=2, the Bonferroni procedure is better because the critical value is smaller.

Working hoteling confidence band on estimating (β_0, β_1)

• For $n-p \geq 2$, the Bonferroni procedure is better because $\frac{W}{B} > 1$

• This conclusion holds true when we try to estimate the coefficients, or the linear impacts (β) simultaneously in a linear model.

Figure 2. Working–Hotelling–Scheffè/Bonferroni Versus Degrees of Freedom and Dimension. This compares the ratio of the Working–Hotelling–Scheffè multiplier, W, with the Bonferroni multiplier, W, across values of df = (n - p) for p = 2, 3, 4, 5, 6 at $\alpha = 0.10$.

The method

- 1. Simultaneously (joint) estimation of p parameters, in SLR, p = 2 with β_1 and β_2 with all X values.
 - a) Bonferroni
 - b) Working-hoteling
- 2. Simultaneously estimation of mean response \hat{Y}_h with g different X_h values.
 - a) Bonferroni
 - b) Working-hoteling
- 3. Simultaneously estimation of single response $\hat{Y}_h\{new\}$ with g different X_h values
 - a) Bonferroni
 - b) Scheffe

Bonferroni Joint (or Family) Confidence Interval to predict the mean response, \hat{Y}_h (\hat{Y}_h given X_1 , \hat{Y}_h given X_2 , ..., \hat{Y}_h given X_g)

The Bonferroni procedure is very general. To make joint confidence interval for multiple (g) simultaneous prediction

For each mean response \hat{Y}_h for a given X_h

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{\hat{Y}_h\}$$
 $s^2\{\hat{Y}_h\} = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2}\right]$

Then for the $1-\alpha$ joint CI for g predictions, change the confidence level of each individual CI to be $1-\alpha/g$

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{\hat{Y}_h\}$$

Note: if a sufficiently large number of simultaneous predictions are made, the width of the individual confidence Intervals may become so wide that they are no longer useful.

Toluca Company Example: Bonferroni Joint (or Family) Confidence Interval on Mean Response \widehat{Y}_h

What is the simultaneous estimates for the mean number of work hours for $X_h = 30,65$ and 100 (i.e., g = 3) with family confidence level **0.9** ($\alpha = 0.1$). Suppose $\bar{X} = 70$, SSX = 19800, s = 48.82, n = 25

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{\hat{Y}_h\} X_h = 30,65 \text{ and } 100 \text{ } (\hat{Y}_h = 169.5, 294.4, and } 419.4 \text{ } respectively)$$

- Set the **confidence level** for each of the g individual estimate to be $1 \frac{\alpha}{g} = 1 \frac{0.1}{3} = 96.7\%$
- Then the **confidence level** for the family estimate is at least $1 g * \frac{\alpha}{g} = 1 0.1 = 90\%$

Toluca Company Example: Bonferroni Joint (or Family) Confidence Interval on Mean Response \widehat{Y}_h

What is the simultaneous estimates for the mean number of work hours for $X_h = 30,65$ and 100 (i.e., g = 3) with family confidence level **0.9** ($\alpha = 0.1$). Suppose $\bar{X} = 70$, SSX = 19800, s = 48.82, n = 25

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{\hat{Y}_h\} X_h = 30,65 \text{ and } 100 \text{ } (\hat{Y}_h = 169.5, 294.4, and } 419.4 \text{ } respectively)$$

1.
$$X_h = 30$$
 $s^2\{\hat{Y}_h\} = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2} \right] = 48.82^2 \left[\frac{1}{25} + \frac{(30 - 70)^2}{s^2(n - 1)} \right] = 48.82^2 \left[\frac{1}{25} + \frac{(30 - 70)^2}{19800} \right] = 288.169$ $\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2 \right) s\{\hat{Y}_h\} = 169.5 \pm t \left(1 - \frac{0.1}{6}; 23 \right) \sqrt{288.169} = 169.5 \pm 2.263(16.97) = (131.1, 207.9)$

2.
$$X_h = 65$$
 $\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{\hat{Y}_h\} = 294.4 \pm 2.263 \ (9.92) = (272, 316.8)$

3.
$$X_h = 100$$
 $\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s \{\hat{Y}_h\} = 419.4 \pm 2.263(14.27) = (387.1, 451.7)$

	size <dbl></dbl>	Fit <dbl></dbl>	Lower.Band <dbl></dbl>	Upper.Band <dbl></dbl>
1	30	169.4719	131.0570	207.8868
2	65	294.4290	271.9783	316.8797
3	100	419.3861	387.0774	451.6947

Working-Hoteling Joint Confidence Interval to predict the mean response, \hat{Y}_h (\hat{Y}_h given X_1 , \hat{Y}_h given X_2 , ..., \hat{Y}_h given X_g)

- The WH procedure estimate β_0 and β_1 with a F distribution using the whole scale of X.
- The estimation of true mean $\mu_h = \beta_0 + \beta_1 X_h$ depends on the estimation of β_0 and β_1 and a given constant X_h
- The WH procedure for estimating mean for what ever X_h level is through a conservative estimation of β_0 and β_1
- For SLR, $\hat{Y}_h \pm W s\{\hat{Y}_h\}$ W² = 2F(1 \alpha; 2, n 2)
- For MLR, $\hat{Y}_h \pm W s\{\hat{Y}_h\}$ $W^2 = pF(1-\alpha; p, n-p)$, where p is the number of parameters, not the number of predictions to make, i.e., g.
- Note that for MLR, the $s^2\{\hat{Y}_h\} = s^2\left[\frac{1}{n} + \frac{(X_h \bar{X})^2}{\Sigma(X_i \bar{X})^2}\right]$ formula should be modified.

Toluca Company Example: Working-Hoteling Confidence band on Mean Response \widehat{Y}_h

What is the simultaneous estimates for the mean number of work hours for $X_h = 30,65$ and 100 (i.e., g = 3) with family confidence level **0.9** ($\alpha = 0.1$). Suppose $\overline{X} = 70$, SSX = 19800, s = 48.82, n = 25

$$X_h = 30,65 \ and \ 100,$$

 $\hat{Y}_h = 169.5, 294.4, and 419.4 respectively,$

$$s^{2}\{\hat{Y}_{h}\} = s^{2}\left[\frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\Sigma(X_{i} - \bar{X})^{2}}\right] = 288.169,98.41 \text{ and } 203.63 \text{ respectively,}$$

Wc = 2.258 (for any given X_h)

1.
$$X_h = 30$$
 $\hat{Y}_h \pm W s\{\hat{Y}_h\} = (131,15, 207.79)$

2.
$$X_h = 65$$
 $\hat{Y}_h \pm W s\{\hat{Y}_h\} = (272.04, 316.82)$

3.
$$X_h = 100$$
 $\hat{Y}_h \pm W s{\hat{Y}_h} = (387.16, 465.61)$

Lower.Band «dbl»	Upper.Band <dbl></dbl>
131.1542	207.7897
272.0351	316.8229
387.1591	451.6130

Bonferroni simultaneous CI vs Working hoteling confidence band on estimating mean \widehat{Y}_h

Working hoteling procedure:

$$\hat{Y}_h \pm Ws\{\hat{Y}_h\}$$

where
$$W^2 = p F(1 - \alpha; p, n - p)$$

Bonferroni procedure:

$$\widehat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{\widehat{Y}_h\}$$

Compare the critical value with 90% confidence level, dfE = 23

$$W = 2.258 (for all g)$$

$$W = \sqrt{pF(1 - \alpha, p, n - p)}$$
$$= \sqrt{2F(0.9, 2, 23)} = 2.258$$

B=
$$t\left(1-\frac{\alpha}{2g};n-2\right)=1.714\;(g=1)$$

$$B=t(0.975, 23) = 2.069 (g = 2)$$

$$B=t(0.9833, 23) = 2.263 (g = 3)$$

$$B=t(0.99, 23) = 2.5 \quad (g = 5)$$

$$B=t(0.995, 23) = 2.807 (g = 10)$$

• WH is better than Bonferroni when $g \ge 3$

Bonferroni simultaneous CI vs Working hoteling confidence band on estimating mean \widehat{Y}_h

Comments:

- Both the WH and Bonferroni procedures provide wider bounds to the actual family confidence level.
- For larger families (g), the WH confidence band will be narrower since W stays the same for all g, while B gets larger.
- The levels for the predictor variable (X_h) are sometimes not known in advance. In such case, it is better to use the WH procedure because the family confidence interval encompasses all possible levels of X.
- The estimation is the better when X_h is closer to the mean, since $s_{\{\hat{Y}_h\}}^2 = s^2 \left[\frac{1}{n} + \frac{(X_h \overline{X})^2}{\Sigma (X_i \overline{X})^2} \right]$

Bonferroni simultaneous CI vs Working hoteling confidence band on estimating mean \widehat{Y}_h

```
library(ALSM)
tol.mod<-lm(hour~size, toluca)
ox-data.frame(size=unique(toluca\(^1\)size))
x<-sort(ox\(^1\)size)
x

[1] 20 30 40 50 60 70 80 90 100 110 120

plot(hour ~ size, toluca, main="Confidence Bands Comparison for mean prediction")
abline(lm(tol.mod))
lines(x, cim\(^1\)super.Band, col="green", lwd=2, lty=1)
lines(x, cim\(^1\)super.Band, col="green", lwd=2, lty=1)
lines(x, cim\(^1\)super.Band, col="red", lwd=2, lty=2)
lines(x, cim\(^1\)super.Band, col="red", lwd=2, lty=2)
lines(x, cib\(^1\)super.Band, col="red", lwd=2, lty=3)
lines(x, cib\(^1\)super.Band, col="blue", lwd=2, lty=3)
lines(x, cib\(^1\)super.Band, col="blue", lwd=2, lty=3)
legend(x=20, y=550, legend=c("T, mean, individual", "WH,mean, family", "Bonferroni, mean, family"), lty=c(1,2,3), col=c("green", "red", "blue"),cex=0.8,
bty="n")
```

Confidence Bands Comparison for mean prediction

$$t\left(1 - \frac{\alpha}{2g}; n - 2\right) = 1.714 (g = 1)$$

$$W = 2.258 (for all X_h)$$

$$t\left(1 - \frac{\alpha}{2g}; n - 2\right) = 2.807 (g = 10)$$

The method

- 1. Simultaneously (joint) estimation of p parameters, in SLR, p = 2 with β_1 and β_2 with all X values.
 - a) Bonferroni
 - b) Working-hoteling
- 2. Simultaneously estimation of mean response \hat{Y}_h with g different X_h values.
 - a) Bonferroni
 - b) Working-hoteling
- 3. Simultaneously estimation of single response $\hat{Y}_h\{new\}$ with g different X_h values
 - a) Bonferroni
 - b) Schefft

Bonferroni Joint (or Family) Confidence Interval to predict the g single response, \hat{Y}_h {new} given X_1 , \hat{Y}_h {new} given X_2 ,..., \hat{Y}_h {new} given X_g)

To make joint confidence interval for multiple (g) simultaneous prediction for

For each \widehat{Y}_h

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{pred\} \qquad \qquad s^2\{pred\} = MSE[1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2}] = s^2 + s^2\{\hat{Y}_h\} \text{ in SLR}$$

Then for g prediction with the same X_h

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{pred\}$$

Note: if a sufficiently large number of simultaneous predictions are made, the width of the individual confidence Intervals may become so wide that they are no longer useful.

Toluca Company Example: Bonferroni Joint (or Family) Confidence Interval on g single Response

What is the simultaneous estimates for the single prediction of number of work hours for $X_h = 30,65$ and 100 with family confidence level **0.9** ($\alpha = 0.1$). Suppose $\bar{X} = 70$, SSX = 19800, SSX = 48.82, N = 25

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{pred\} \ X_h = 30,65 \ and \ 100 \ (\hat{Y}_h = 169.5, 294.4, and 419.4 \ respectively)$$

1.
$$X_h = 30$$
 $s^2\{pred\} = s^2 + s^2\{\hat{Y}\} = 48.82^2 + 288.169 = 2671.56$ $\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{pred\} = 169.5 \pm t \left(1 - \frac{0.1}{6}; 23\right) \sqrt{2671.56} = 169.5 \pm 2.263(51.69) = (52.5, 286.5)$
2. $X_h = 65$ $\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{pred\} = 294.4 \pm 2.263(49.82) = (181.6 \ 407.2)$

3.
$$X_h = 100$$
 $\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) s\{pred\} = 419.4 \pm 2.263(50.86) = (304.2, 534.5)$

d<-data.frame(c(30,65,100))
ci.reg(tol.mod, d, type='gn',alpha=0.1)|</pre>

size <dbl></dbl>	Fit <dbl></dbl>	Lower.Band <dbl></dbl>	Upper.Band <dbl></dbl>
30	169.4719	52.46349	286.4804
65	294.4290	181.64910	407.2089
100	419.3861	304.23781	534.5343

Scheffe procedure of Joint (or Family or simultaneous) Confidence Interval to predict the g single responses

$$\begin{split} \hat{Y}_h \pm S \, s\{pred\} \\ S^2 &= gF(1-\alpha;g,n-2) \\ s^2_{\{pred\}} &= s^2_{\{\hat{Y}_h\}} + s^2 = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} + 1 \right] \text{ in SLR.} \end{split}$$

- For SLR, $\hat{Y}_h \pm S s\{pred\}$ $S^2 = gF(1-\alpha; g, n-2)$
- For MLR, $\hat{Y}_h \pm S s\{pred\}$ $S^2 = gF(1-\alpha;g,n-p)$, where p is the number of parameters, and g is the number of predictions to make.
- In the WH procedure for estimating mean where all mean estimations are done through a conservative estimation of the p parameters, e.g. $\mathbb{E}(\hat{Y}_h) = \beta_0 + \beta_1 X_h$, we only need to concern a combined distribution of p variables, e.g, b_0 and b_1
- On the other hand, in the Schefft procedure, the g single responses each has its own distribution. We need to concern the combined distribution of g variables, $Y_1, Y_2, Y_3, ... Y_q$.

Toluca Company Example: Schefft Joint (or Family) Confidence Interval on g single Response \widehat{Y}_h

What is the simultaneous estimates for the single number of work hours for $X_h = 30,65$ and 100 (i.e., g = 3) with family confidence level **0.9** ($\alpha = 0.1$). Suppose $\bar{X} = 70$, SSX = 19800, s = 48.82

$$\hat{Y}_h \pm S \text{ s\{pred\} } X_h = 30,65 \text{ and } 100 \text{ } (\hat{Y}_h = 169.5,294.4, and } 419.4 \text{ respectively})$$

1.
$$X_h = 30$$
 $s^2\{pred\} = s^2 + s^2\{\hat{Y}_h\} = 48.82^2 + 288.169 = 2671.56$ $S^2 = 3F(1 - 0.1; 3, n - 2) = 3(3.028) = 9.084 \Rightarrow S = 3.01$ $\hat{Y}_h \pm S s\{pred\} = 169.5 \pm 3.01(51.69) = (13.68, 325.26)$

2.
$$X_h = 65$$
 $\hat{Y}_h \pm S s\{pred\} = 294.4 \pm 3.01(49.82) = (144.27, 444.59)$

3.
$$X_h = 100$$
 $\hat{Y}_h \pm S s\{pred\} = 419.4 \pm 3.01(50.86) = (266.08, 572.7)$

```
d<-data.frame(c(30,65,100))
ci.reg(tol.mod, d, type='s',alpha=0.1)</pre>
```

- Unfortunately, the ci.reg function in R is wrong when computing this method.
- You can compute by hand or use the self-defined function on the next page.

	size <dbl></dbl>	Fit <dbl></dbl>	Lower.Band <dbl></dbl>	Upper.Band <dbl></dbl>
1	30	169.4719	-2502.216	2841.160
2	65	294.4290	-2187.645	2776.503
3	100	419.3861	-2168.029	3006.801

Family confidence interval, Bonferroni and Scheffe procedure

```
ci.sim <- function(model, newdata, type = c("B", "5"), alpha = 0.05)</pre>
  q <- nrow(newdata)</pre>
 CI <- predict(model, newdata, se.fit = TRUE)</pre>
 M <- ifelse(match.arg(type) == "B",</pre>
          qt(1 - alpha / (2*g), model$df), # B "Bonferroni""
          sqrt( g * qf( 1 - alpha, g, model$df))) # 5 "scheffe""
  spred <- sgrt( CI$residual.scale^2 + (CI$se.fit)^2 )</pre>
  x <- data.frame(
    "x" = newdata,
   "credV" = M.
    "fit" = CI$fit,
    "lower" = CI$fit - M * spred,
    "upper" = CI$fit + M * spred)
  return(x)
toluca<-read.table("U:/data/Toluca.txt", header=FALSE)
colnames(toluca)<-c("size"."hour")
toluca.mod<-lm(hour~size, data=toluca)
new <- data.frame(size= c(30, 65, 100))
ci.sim(toluca.mod, new, type = "B")
ci.sim(toluca.mod, new, type = "5")
```