Regularization And Gradient Descent

Learning Objectives

After completing this lecture, you will be able to:-

- Describe the function and purpose of regularization
- Apply L1, L2, and a combination of both regularizations to a Linear Regression problem
- Optimize hyperparameters using validation sets
- Use Feature Selection to simplify models
- Describe the gradient descent optimizer
- Use stochastic gradient descent and mini-batch gradient descent to speed up the gradient descent optimizer

Regularization

Regularization

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} ((\beta_0 + \beta_1 x_{obs}^i) - y_{obs}^i)^2$$

Ridge Regression

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} ((\beta_0 + \beta_1 x_{obs}^i) - y_{obs}^i)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Ridge Regression

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} ((\beta_0 + \beta_1 x_{obs}^i) - y_{obs}^i)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

- Penalty shrinks magnitude of all coefficients
- Larger coefficients strongly penalized because of the squaring
- λ controls how strongly we want to regularize

Ridge Regression

Effect of ridge regression on parameters

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^i \right) - y_{obs}^i \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$
UEMH3163/UECS2053/UECS2153 Artificial Intelligence $j_{\overline{Sl}1de}$ 7/33

Lasso Regression (L1)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} ((\beta_0 + \beta_1 x_{obs}^i) - y_{obs}^i)^2 + \lambda \sum_{j=1}^{k} |\beta_j|$$

- Penalty selectively shrinks some coefficients
- Can be used for feature selection
- Slower to converge than Ridge Regression

Lasso Regression (L1)

Effect of lasso regression on parameters

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^i \right) - y_{obs}^i \right)^2 + \lambda \sum_{j=1}^{k} |\beta_j|$$
UEMH3163/UECS2053/UECS2153 Artificial Intelligence $j_{\overline{Sl}}$ 1 de 9/33

Elastic Net Regularization

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^i \right) - y_{obs}^i \right)^2 + \lambda_1 \sum_{j=1}^{k} |\beta_j| + \lambda_2 \sum_{j=1}^{k} \beta_j^2$$

- Compromise of both Ridge and Lasso regression
- Requires tuning of additional parameter that distributes regularization penalty between L1 and L2

Elastic Net Regularization

Optimizing Hyperparameters

- Regularization coefficients $(\lambda_1 \text{ and } \lambda_2)$ are empirically determined
- Need values that generalize, never use test data for tuning of the training process

Why not use cross-validation with test data?

Optimizing Hyperparameters

- Regularization coefficients $(\lambda_1 \text{ and } \lambda_2)$ are empirically determined
- Need values that generalize, never use test data for tuning of the training process
- Create additional split to tune hyperparameters – validation set

Tune λ with Cross Validation

Ridge Regression Syntax

Import the class containing the regression method

```
from sklearn.linear_model import Ridge
```

Create an instance of the class

```
RR = Ridge(alpha=1.0)
```

Fit the instance on the data and then predict the expected value

```
RR = RR.fit(x_train, y_train)
y_predict = RR.predict(x_test)
```

 The RidgeCV class will perform cross validation on a set of values for alpha

Lasso Regression Syntax

Import the class containing the regression method

```
from sklearn.linear_model import Lasso
```

Create an instance of the class

```
LR = Lasso(alpha=1.0)
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(x_train, y_train)
y_predict = LR.predict(x_test)
```

 The LassoCV class will perform cross validation on a set of values for alpha

ElasticNet Regression Syntax

Import the class containing the regression method

```
from sklearn.linear_model import ElasticNet
```

Create an instance of the class

```
EN = ElasticNet(alpha=1.0, l1_ratio=0.5)
```

Fit the instance on the data and then predict the expected value

```
EN = EN.fit(x_train, y_train)
y_predict = EN.predict(x_test)
```

 The ElasticNetCV class will perform cross validation on a set of values for alpha

Feature Selection

- Regularization performs feature selection by shrinking the contribution of features
- For L1-regularization, this is accomplished by driving some coefficients to zero
- Feature selection can also be performed by removing features

Feature Selection

Why is this important?

- Reducing the number of features is another way to prevent overfitting (similar to regularization)
- For some models, fewer features can improve fitting time and/or results
- Identifying most critical features can improve model interpretability

Recursive Feature Elimination Syntax

Import the class containing the feature selection method

```
from sklearn.feature_selection import RFE
```

Create an instance of the class

```
rfeMod = RFE(est, n_features_to_select=5)
```

Fit the instance on the data and then predict the expected value

```
rfeMod = rfeMod.fit(x_train, y_train)
y_predict = rfeMod.predict(x_test)
```

The RFECV class will perform feature elimination using cross validation

Start with a cost function $J(\beta)$

Gradually move towards the minimum

- Two-parameter case (β_0, β_1)
- Surface is more complicated than curve, meaning finding the minimum is also more complicated
- How to do this without knowing what the function $J(\beta_0,\beta_1)$ looks like?

- Compute the gradient $\nabla J(\beta_0, \beta_1)$ which points in the direction of the biggest increase
- The negative $-\nabla J(\beta_0,\beta_1)$ points to the biggest decrease at that point
- The gradient vector's coordinates consist of the partial derivative of the parameters $\nabla J(\beta_0, \dots, \beta_n) = \left\langle \frac{\delta J}{\delta \beta_0}, \dots, \frac{\delta J}{\delta \beta_n} \right\rangle$

$$=\left\langle \frac{\delta J}{\delta \beta_0}, \dots, \frac{\delta J}{\delta \beta_n} \right\rangle$$

Use the gradient
 \(\nabla \) and the cost function to calculate the next point from the current

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} ((\beta_0 + \beta_1 x_{obs}^i) - y_{obs}^i)^2$$

• The learning rate α is a tunable parameter that determines step size

 Each point can be iteratively calculated from the previous one

$$\omega_2 = \omega_1 - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} ((\beta_0 + \beta_1 x_{obs}^i) - y_{obs}^i)^2$$

$$\omega_3 = \omega_2 - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^i \right) - y_{obs}^i \right)^2$$

Stochastic Gradient Descent

 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \sum_{i=1}^m ((\beta_0 + \beta_1 x_{obs}^i) - y_{obs}^i)^2$$

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \left(\left(\beta_0 + \beta_1 x_{obs}^0 \right) - y_{obs}^0 \right)^2$$

Stochastic Gradient Descent

 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \left(\left(\beta_0 + \beta_1 x_{obs}^0 \right) - y_{obs}^0 \right)^2$$

$$\cdots$$

$$\omega_n = \omega_{n-1} - \alpha \nabla \frac{1}{2} \left(\left(\beta_0 + \beta_1 x_{obs}^0 \right) - y_{obs}^0 \right)^2$$

 Path is a less direct due to noise in single data point -"stochastic"

Mini Batch Gradient Descent

 Perform an update for every n training examples

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \sum_{i=1}^{n} ((\beta_0 + \beta_1 x_{obs}^0) - y_{obs}^0)^2$$

- Best of both worlds:
 - Reduced memory relative to "vanilla" gradient descent
 - Less noisy than stochastic gradient descent

Mini Batch Gradient Descent

- Mini batch implementation typically used for neural nets
- Batch sizes range from 50–256 points
- Trade off between batch size and learning rate ()
- Tailor learning rate schedule: gradually reduce learning rate during a given epoch

Stochastic Gradient Descent Regression Syntax

Import the class containing the regression model

```
from sklearn.linear_model import SGDRegressor
```

Create an instance of the class

Fit the instance on the data and then transform the data

```
SGDreg = SGDRreg.fit(x_train, y_train)
y_pred = SGDreg.predict(x_test)
```

 Other loss methods exist e.g. epsilon_insensitive, huber

Stochastic Gradient Descent Regression Syntax

Import the class containing the regression model

```
from sklearn.linear_model import SGDRegressor
```

Create an instance of the class

Fit the instance on the data and then transform the data

```
SGDreg = SGDRreg.partial_fit(x_train, y_train)
y_pred = SGDreg.predict(x_test)
```


Stochastic Gradient Descent Classification Syntax

Import the class containing the regression model

```
from sklearn.linear_model import SGDClassifier
```

Create an instance of the class

Fit the instance on the data and then transform the data

```
SGDclass = SGDRclass.fit(x_train, y_train)
y_pred = SGDclass.predict(x_test)
```

Other loss methods exist e.g. hinge, squared_hinge

Stochastic Gradient Descent Classification Syntax

Import the class containing the regression model

```
from sklearn.linear_model import SGDClassifier
```

Create an instance of the class

Fit the instance on the data and then transform the data

```
SGDclass = SGDRclass.partial_fit(x_train, y_train)
y_pred = SGDclass.predict(x_test)
```


End of Lecture

Many thanks to Intel
Software for providing a
variety of resources for
this lecture series

