

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Lineare Algebra I

Winter-Semester 2020/2021

Übungsblatt 11

01.02.21

Aufgabe 1 (Bestimmung der Determinante)

(10 Punkte)

Bestimmen Sie die Determinante der Matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & -2 \\ 1 & 0 & 0 & -2 & -1 \\ -3 & 0 & 4 & 4 & -3 \\ 2 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 4 & 3 \end{pmatrix}.$$

Ist diese Matrix invertierbar?

Aufgabe 2 (Werte für Determinanten)

(10 Punkte)

Es seien V,W endlichdimensionale \mathbb{K} -Vektorräume der Dimension n>0 und $\varphi\colon V\to W$ eine lineare Abbildung.

- a) Beweisen Sie: Für jede geordnete Basis B von V und jede geordnete Basis C von W gilt: φ ist ein genau dann ein Isomorphismus von Vektorräumen wenn $\det(M_{C,B}(\varphi)) \neq 0$ gilt.
- b) Angenommen, φ ist ein Isomorphismus. Beweisen Sie, dass man für jeden Wert $\lambda \in \mathbb{K} \setminus \{0\}$ geordnete Basen B und C finden kann, sodass $\det(M_{C,B}(\varphi)) = \lambda$ gilt.
- c) Beweisen Sie, dass $\det(\lambda A) = \lambda^n \det(A)$ für alle $\lambda \in \mathbb{K}, A \in \mathbb{K}^{n \times n}$ gilt.

Aufgabe 3 (Schiefsymmetrische Matrizen)

(10 Punkte)

Es sei \mathbb{K} ein Körper mit $1 \neq -1$. Wir nennen

$$\tilde{S}_n = \left\{ A \in \mathbb{K}^{n \times n} \,\middle|\, A^{\top} = -A \right\}$$

den Raum der schiefsymmetrischen $n \times n$ -Matrizen.

- a) Beweisen Sie: \tilde{S}_n ist ein Untervektorraum von $\mathbb{K}^{n \times n}$.
- b) Beweisen Sie: $\mathbb{K}^{n \times n} = \tilde{S}_n \oplus S_n$ ist eine direkte Summe, wobei S_n den Raum der symmetrischen Matrizen (Siehe Blatt 8) bezeichnet.
- c) Bestimmen Sie die Dimension von \tilde{S}_n .
- d) Beweisen Sie: Falls *n* ungerade ist, ist jede schiefsymmetrische Matrix nicht invertierbar. *Hinweis:* Was ist die Determinante einer solchen Matrix?
- e) Geben Sie für $\mathbb{K} = \mathbb{R}$ ein Beispiel für eine Matrix $A \in \tilde{S}_4$ an, die invertierbar ist.

Aufgabe 4 (Der Raum der alternierenden Abbildungen)

(10 Punkte)

Es sei $\mathbb K$ ein Körper und V ein endlich-dimensionaler $\mathbb K$ -Vektorraum. Wir betrachten die Menge

$$Alt^n(V, \mathbb{K}) := \{ \omega \colon V^n \to \mathbb{K} \mid \omega \text{ ist alternierend} \}.$$

- a) Beweisen Sie: Die Menge $Alt^n(V,\mathbb{K})$ ist ein Untervektorraum von \mathbb{K}^{V^n} .
- b) Beweisen Sie: Ist $n > \dim(V)$, dann $Alt^n(V, \mathbb{K}) = \{0\}$.
- c) Bestimmen Sie die Dimension von $Alt^n(V, \mathbb{K})$ im Fall n = 1.
- d) Bestimmen Sie die Dimension von $Alt^n(V, \mathbb{K})$ im Fall $n = \dim(V)$. Hinweis: Satz 5.3.12 könnte hilfreich sein.

Weitere Ankündigungen

Evaluation der Vorlesung, Übung und Tutorien

Sie können bis zum 12.02.2021 um 23:00 an der Evaluation der Vorlesung, Übung und Tutorien teilnehmen. Die Umfrage dauert etwa 10 Minuten und enthält Fragen zur Qualität der Veranstaltungen sowie die Möglichkeit, anonym Feedback und Kritik abzugeben.

- Evaluation der Vorlesung: https://onlineumfrage.kit.edu/evasys/online.php?p=G6FZ9
- Evaluation der Übung und Tutorien: https://onlineumfrage.kit.edu/evasys/online.php?p=VA7NJ

Wir bitten um eine möglichst zahlreiche Teilnahme, sodass wir und Ihre Tutoren repräsentative Ergebnisse erhalten.

Fakultätslehrpreise

Einmal pro Jahr und Fakultät vergibt das KIT einen Fakultätslehrpreis für herausragende Lehre. Auf Bitte des Studiendekans weisen wir darauf hin, dass Sie – als Studierende – Kandidaten für diesen Preis nominieren können.

Weitere Informationen über die Fakultätslehrpreise finden Sie auf der Seite

http://www.math.kit.edu/fakmath/seite/fakultaetslehrpreis_2022/de

Vorschläge können bis zum 31.10.2021 an den Studiendekan gerichtet werden.

Abgabe bis Montag, den 08.02.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.