CDSF04, CDSF05, CDSF06

Recap

DS Academy

_	_	
T		
4		

<u>Files</u>

pd.read_csv(), pd.read_json(), pd.read_pickle(), ...

DB's and DW's

pd.read_sql(), pd.read_gbq(), ...

Python Objects

pd.DataFrame.from_dict(), pd.DataFrame.from_records()

Indexing

Integer, Range, Slice

df[start:end:step], df.iloc[], df.loc[]

List

df[[1,2,4,5]], s.reindex([1,2,3])

Boolean Array

df[(df['col_a']=='foo') & df['col_b']=='bar')]

Transform

Groupby

df.groupby('col').sum(), .apply(), .agg(), .transform(), ...

Pivot, Stack, Unstack

df.pivot(), df.stack(), df.unstack()

Merge

Merge

df1.merge(df2, left_on='pk', right_on='fk', how='left')

Join

df1.join(df2, how='inner')

Concat

pd.concat([df1, df2, df3])

pandas.pydata.org/pandas-docs/stable/user_quide

Table Of Contents

What's New in 0.25.0

Installation

Getting started

User Guide

- IO tools (text, CSV, HDF5, ...)
- Indexing and selecting data
- Multilndex / advanced indexing
- Merge, join, and concatenate
- Reshaping and pivot tables
- Working with text data
- Working with missing data
- Categorical data
- Nullable integer data type
- Visualization
- Computational tools
- Group By: split-apply-combine
- Time series / date functionality
- Time deltas
- Styling
- Options and settings
- Enhancing performance
- Sparse data structures
- Frequently Asked Questions (FAQ)
- Cookbook

Pandas ecosystem

API reference

Development

Release Notes

Agenda

- What is probability?
- Multiplication rule
- Independence
- Addition rule
- Mutually Exclusive
- PDF and CDF
- Mean, Median and Mode
- Standard error
- Variance
- The law of large numbers
- The Central Limit Theorem

What is Probability?

The frequency theory was originally designed to solve gambling problems

ELANO

LIKELIHOOD

0 1

ELANO

MANDALAY BAY

P(event) =

OCCURRENCES EVENT

ALL POSSIBLE OUTCOMES

PELANO

MANDALAY BAY

P(throw=6) =

P(throw not 6) =

56

= 1 - P(throw = 6)

The chance that **both** two things will happen

The chance that the **first** thing will happen

The chance the **second** will happen

*

Two things are **independent** if the chances for the second, given the first are the <u>same</u>, no matter how the first one turns out. Otherwise, the two things are **dependent**.

WITH REPLACEMENT

INDEPENDENT

WITHOUT REPLACEMENT

DEPENDENT

INDEPENDENDT

DEPENDENT

The chance that **both** two things will happen

The chance that the **first** thing will happen

The chance the **second** will happen

What is P(BBB)?

WITH REPLACEMENT

INDEPENDENT

30/55 * 30/55 * 30/55

WITHOUT REPLACEMENT

DEPENDENT

30/55 * 29/54 * 28/53

30 BLUES **25** RED

What is P(BRR)?

WITH REPLACEMENT

WITHOUT REPLACEMENT

INDEPENDENT

DEPENDENT

30/55 * 25/55 * 25/55

30/55 * 25/54 * 24/53

30 BLUES **25** RED

Two things are mutually exclusive if the occurrence of one prevents the occurrence of the other.

MUTUALLY EXCLUSIVE

$$P(A \text{ or } B) = P(A) + P(B)$$

NOT MUTUALLY EXCLUSIVE

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

P(Aces or Kings) =

$$4/52 + 4/52 = 8/52$$

$$4/52 + 13/52 - 1/52 = 16/52$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \mid B) = \frac{P(A \mid B)}{P(B)}$$

$$P(B \mid A) = \frac{P(A \mid B)}{P(A)}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A) P(B | A) = P(A \cap B)$$

Conditional Probability and Bayes Theorem

99

+

•

NON USERS

99.5%

 $P(User \mid +) = P(+|User)P(User)$ P(+)

0.5%

P(+) = P(+|User)P(User) + P(+|NotUser)P(NotUser)

$$P(+) = .99*.005 + .01*.995$$

$$P(+) = 0.0149$$

_

99

1

1

99

Example Bayes Theorem - Drug Testing

99.5%

$$P(User \mid +) = P(+|User)P(User)$$

$$P(+)$$

0.5%

$$P(User | +) = \frac{.99 * .005}{0.0149}$$

NON

USERS

99

1

1

99

99.5%

$$P(User \mid +) = P(+|User)P(User)$$

$$P(+)$$

0.5%

$$P(User | +) = \sim$$

33.2%

Summary

Event	Probability		
Α	$P(A) \in [0,1]$		
not A	$P(A^{\complement}) = 1 - P(A)$		
A or B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive		
A and B	$P(A \cap B) = P(A B)P(B) = P(B A)P(A)$ $P(A \cap B) = P(A)P(B)$ if A and B are independent		
A given B	$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B A)P(A)}{P(B)}$		

Imagine we measured the height of a lot of people.

PDF and Distributions

PDF and Distributions

PDF and Distributions

By measuring more people and using smaller bins, we get a more accurate and more precise estimate of how heights are distributed.

It is a function!

Distributions

PDF and Descriptive Parameters

STANDARD DEVIATION

$$\sigma = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

VARIANCE

$$\sigma^2 = \frac{\sum (\chi - \mu)^2}{N}$$

$$SE = \frac{\sigma}{\sqrt{n}}$$
 Standard deviation Number of samples

The Law of Large Numbers

for k = 0, 1, 2, ..., n, where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Bootstrapping

Stat Quest

THANK YOU

GABRIEL MAGALHÃES

Data Scientist

gabriel.magalhaes@totvs.com.br

f totvs.com

in company/totvs

O @totvs

in fluig.com

