Linux Latency Breakdown

Oliver Yang (http://oliveryang.net) 08/01/2015

- Latency Analysis Requirements
- Current Tools
- Future Work

- Latency Analysis Requirements
- Current Tools
- Future Work

138430

Performance Trade-off

- Latency VS. Throughput
 - Throughput could be improved by increase latency
 - eg: how many packets in one interrupts
 - eg: queue depth in IO stack
 - Signs of real latency problems
 - Latency is bad, CPU is overloaded
 - On-CPU analysis
 - » High CPU run time in application code?
 - » rung waiting?
 - » Overhead of context switch?
 - Latency is bad, CPU has low utilization at same time
 - Off-CPU analysis
 - » Block time issue?
 - » Sleep time issue?

Latency analysis challenges

- How to avoid trial-and-error overheads
 - Latency root cause could be various
- The latency is related to system call
 - eg. Async calls, complicated path needs expert
- Need dynamic trace with fine granularity
 - eg. Small issues could be hidden by global trace
- Bug reproduce cost is high
 - eg. Not reproducible by micro-benchmark

Task State Transitions

- Basic concepts
 - 1, 3, 4 involuntary context switch
 - 2 voluntary context switch
 - 5 load balance

Application Time Distribution

RUN TIME = ON CPU TIME + ON RUNQ TIME + SLEEP TIME

On CPU Time Distributions

On Run Queue Time Distribution

Sleep Time Distribution

- Latency Analysis Requirements
- Current Tools
- Future Work

Scheduler Statistic Interfaces

- System wide
 - /proc/schedstat
 - /proc/sched_debug
- Per Process
 - /proc/<pid>/schedstat
 - /proc/<pid>/sched (CFS only)
- Per Thread
 - /proc/<pid>/task/<tid>/schedstat
 - /proc/<pid>/task/<tid>/sched (CFS only)

Scheduler Statistic Use Cases

- UC1 A FS Job or c API time distribution
 - App perf bug triage: On CPU/On Runq/Sleep time
- UC2 App global time distribution
 - Identify perf optimization room
- UC3 Tail latency SLA caused by scheduling latency
 - Watchdog timeout requirement
 - HA timeout requirement
 - OS perf monitoring timeout requirement
- UC4 Kernel scheduling characterization
 - eg. SCHED_RR side effects or regressions

The getrusage with RUSAGE_THREAD

- Interfaces:
 - Perf thread user and kernel time
 - Per thread voluntary and involuntary context switch
 - Use Cases
 - Perf bug triage by per thread resource usage data
 - Kernel or user problem?
 - SLEEP or RUN queue time problem?

LatencyTOP

- Interface
 - System wide /proc/latency_stats
 - Per thread /proc/<pid>/task/<tid>/latency
- Use Cases
 - Per DDFS job or c API sleep time top reasons
 - Perf bug triage
 - Identify DDFS perf optimization room

Kernel lock contention

- Interface
 - System wide /proc/lock_stat
 - Per thread perf lock
 - Stopper issue
 - Couldn't be used on production mode
- Use Cases
 - Per thread or C API kernel hot lock
 - Perf bug triage
 - Identify kernel hot lock

- Latency Analysis Requirements
- Current Tools
- Future Work

Kernel Statistics

- C APIs for per thread histogram
- User space system wide monitor tool
- Kernel scheduling perf profiling report
 - Scheduling latency analysis
 - Load balance analysis

Q&A

Questions and Comments?