

Vectorial Analysis

Exercise 1:

Let \overrightarrow{F} be a vector field defined by $\overrightarrow{F}(x, y, z) = (2xy, x^2 + 3yz^2, 2y^3z - 4z^3)$.

1) Determine the scalar potential f of \overrightarrow{F} such that f(1, 1, 1) = 0, using two methods.

Let the field \overrightarrow{V} and the surface of the closed cylinder S defined as

$$\overrightarrow{V}(x, y, z) = xz \overrightarrow{i} + yz \overrightarrow{j} + z^2 \overrightarrow{k}.$$

$$S = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 = 1, 0 \le z \le 1\}.$$

2) Calculate the flux of \overrightarrow{V} coming out of S, and find the same result using Ostrogradsky Formula.

Exercise 2:

Let $\overrightarrow{f}(x, y, z) = (y^2 + z^2, -xy, -xz)$ be a vector field defined on $D = \{(x, y, z) \in \mathbb{R}^3 / z > 0\}$.

- 1) Determine a function $\varphi(z)$ such that $\varphi(1) = 1$ and $\overrightarrow{g}(x, y, z) = \varphi(z) \overrightarrow{f}(x, y, z)$ be a rotational field over D.
- 2) Find a vectorial potential for \overrightarrow{g} such that

$$\overrightarrow{G}(x, y, z) = (P(x, y, z), Q(x, y, z), 0).$$

Exercise 3:

Let \overrightarrow{W} be a vectorial field defined by

$$\overrightarrow{W}(x, y, z) = (xy, yz, -z^2).$$

- 1) Compute the divergence of \overrightarrow{W} .
- 2) Using Stokes Theorem, calculate the flux φ of \overrightarrow{W} coming out the paraboloid Γ assosiated with $z=x^2+y^2$ and $0\leq z\leq 1$.
- 3) Verify Stokes Theorem for the fallowing case:

$$\overrightarrow{F}(x,\ y,\ z) = (z,\ y,\ x), \ \text{and} \ S = \{(x,\ y,\ z) \in \mathbb{R}^3\ /\ z = x^2 + y^2,\ 0 < z < 1\}.$$

4) Compute, using the Ostrogradsky formula, the flux of the scalar field $\overrightarrow{F}(x, y, z) = (x^2, y^2, z^2)$ through the closed exterior surface of the unity sphere.

Exercise 4:

Given a vectorial field $\overrightarrow{V}(x, y, z) = (xg(y, z), y^2, z^2)$ with g being a function of class C^{∞} over \mathbb{R}^2 .

- 1) Determine g such that a function U exists and satisfies $\overrightarrow{V}(x, y, z) = \overrightarrow{Curl} \ U(x, y, z)$.
- 2) Find the function U such that $\overrightarrow{V}(x, y, z) = \overrightarrow{Curl} U(x, y, z)$ and U(x, y, z) = (0, P(x, y, z), Q(x, y, z)).
- 3) Using Stokes Theorem, calculate the flux of \overrightarrow{V} passing through the demi-sphere associated with the equations $z \ge 1$ and $x^2 + y^2 + (z 1)^2 = 1$.

Exercise 5:

Let Γ be a parametrized curve given by

$$\begin{cases} x(t) &= \frac{t^2 - 3}{2} \\ y(t) &= \frac{4}{3}t\sqrt{t} \\ z(t) &= 2t + 1 \end{cases} \quad (t \in [0, 1])$$

- 1) Compute the length of Γ .
- 2) Compute $\int_{\Gamma} ds$ where f(x, y, z) = x + yz 2.
- 3) Compute, in the direct sense, $\int_{\Gamma} \vec{f}(x, y, z) ds$ in these cases:
 - 1. $\overrightarrow{f}(x, y, z) = (4xy, 3y^2, 5z)$ and Γ is the arc linking the points (0, 1, 1) and $(1, 1.5, \log 2 + 1)$ of the trajectory of the movement which the vector speed is $\overrightarrow{V}(t) = (e^t, e^{-t}, 1)$ with $t \in [0, b]$ with $b \in \mathbb{R}$ to be determine.
 - 2. $\overrightarrow{f}(x, y, z) = (0, 0, y)$ and $\Gamma = \Sigma_1 \cap \Sigma_2$ where Σ_1 is the cylinder of the axis 0_z of radius R > 0 and Σ_2 is the plan of the equation 3x y + z + 1 = 0.
 - 3. $\overrightarrow{f}(x, y, z) = (2xy x^2, x^2 + y^2)$ and Γ is the closed curve constituted by the 2 arcs of the parabolas $y = x^2$ and $x = y^2$ in the direct sense using 2 methods.
 - 4. $\overrightarrow{f}(x, y, z) = (-e^y, -ye^x, -x^2y)$ and Γ is the part of the paraboloid of the equation $z^2 = x^2 + y^2$ located above the square $[0, 1]^2$
 - 5. Compute $\iint_D (2x-4) dxdy$ where $D=D_1 \setminus D_2$. We give: D_1 is the domain limited by the eclipse of the center (0, 0) and of radius a=6 and b=4. D_2 is the union of the 2 closed discs of the center (2, 2) and (2, -2) and radius 1.