EXERCISES FOR FOUNDATIONS OF DATA SCIENCE

Prof. Dan Olteanu, Dr. Ahmet Kara, Dr. Nils Vortmeier, Haozhe Zhang Dast Data · (Systems+Theory

FALL 2020/2021

SHEET 5

06.11.2020

- The solutions will be discussed on Friday 20.11.2020, 14:00-15:45 on Zoom.
- Videos with solutions will be posted on OLAT after the exercise session.

Exercise 5.1 [Logistic Regression]

(a) Recall the expression

$$NLL(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) = -\sum_{i=1}^{N} (y_i \log \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i) + (1 - y_i) \log (1 - \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i))),$$

where $\sigma(z) = \frac{1}{1+e^{-z}}$, for the negative log-likelihood of observing the class labels **y** given the input **X** and the parameters **w** of a logistic regression model.

We write μ_i for the expression $\sigma(\mathbf{w}^\mathsf{T}\mathbf{x}_i)$. Verify the equations

$$\nabla_{\mathbf{w}} \text{NLL}(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) = \sum_{i=1}^{N} \mathbf{x}_{i} (\mu_{i} - y_{i}) = \mathbf{X}^{\mathsf{T}} (\boldsymbol{\mu} - \mathbf{y})$$
$$\mathbf{H} = \mathbf{X}^{\mathsf{T}} \mathbf{S} \mathbf{X}$$

for the gradient $\nabla_{\mathbf{w}} \text{NLL}(\mathbf{y} \mid \mathbf{X}, \mathbf{w})$ and the Hessian **H** given in the lecture, where **S** is the diagonal matrix with $S_{ii} = \mu_i (1 - \mu_i)$.

For this, recall from Exercise Sheet 1 that the derivative $\sigma'(z)$ of $\sigma(z)$ is given by $\sigma'(z) = \sigma(z)(1 - \sigma(z))$.

Also show that the Hessian is positive semi-definite.

(b) Suppose we are given the following dataset \mathcal{D} of 6 observations over features x_1 and x_2 with class label y.

x_1	x_2	y
8	2	1
5	5	1
7	7	1
9	8	0
3	8	0
4	5	0

Use Newton's method to estimate the parameters \mathbf{w} of a logistic regression model for this data. For this, start with $\mathbf{w}_0 = [0, 0, 0]^\mathsf{T}$.

If you use Python or some other programming language: plot the data and the decision boundary in a two-dimensional coordinate system after every iteration. After how many iteration does the computation converge?

Hint: You should need less than 10 iterations.

(c) The dataset \mathcal{D} from part (b) is not linearly separable, but the following slightly modified dataset is:

x_1	$ x_2 $	y
8	2	1
5	5	1
7	7	1
7	8	0
3	8	0
4	5	0

What happens if you use Newton's method on this dataset? How could the occurring problem be circumvented?

Hint: Suppose a logistic regression model with parameters \mathbf{w} can correctly classify all observations of our dataset. What can you say for the parameter vector $\delta \mathbf{w}$, for an arbitrary $\delta > 1$?

(d) We obtain the optimal parameters \mathbf{w} of a logistic regression model by minimizing the negative log-likelihood NLL($\mathbf{y} \mid \mathbf{X}, \mathbf{w}$). We could in principle also obtain the parameters of a linear classification model by minimizing the mean squared error

$$MSE(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (\sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i) - y_i)^2.$$

Discuss whether this is a good idea.

Exercise 5.2 [Logistic Regression vs. Naïve Bayes]

Logistic Regression is a discriminative model, and Naïve Bayes is a generative model. However, they are closely related. More precisely: if we fix some assumptions of a Naïve Bayes classifier, then the resulting model is equivalent to a logistic regression model.

The aim of this exercise is to prove this for a special case. Assume that our data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ is binary, so, $\mathbf{x}_i \in \{0, 1\}^D$ for some D, and $y_i \in \{0, 1\}$, for all i. Further, assume that $p(y = 1) = \pi$ and that $p(x_i = 1 \mid y = j) = \theta_{i,j}$, for some values $\pi, \theta_{i,j} \in [0, 1]$.

Show that the Naïve Bayes conditional distribution

$$p_{\text{NB}}(y=1 \mid \mathbf{x}, \pi, \boldsymbol{\theta}) = \frac{p(y=1 \mid \pi)p(\mathbf{x} \mid y=1, \boldsymbol{\theta})}{\sum_{i=0}^{1} p(y=i \mid \pi)p(\mathbf{x} \mid y=i, \boldsymbol{\theta})}$$

can be translated into a Logistic Regression conditional distribution of the form

$$p_{LR}(y = 1 \mid \mathbf{x}, \mathbf{w}, w_0) = \sigma(w_0 + \mathbf{w}^\mathsf{T} \mathbf{x}).$$

Hint: Start by dividing both numerator and denominator by the numerator. How can you introduce an exponential function?

Exercise 5.3 [Support Vector Machines I]

(a) Let us look at support vector machines (without kernels) and assume that the data is linearly separable. In order to maximize the margin, a more natural formulation would be the following: Fix $||\mathbf{w}||_2 = 1$, so the distance of \mathbf{x} from the hyperplane defined by (\mathbf{w}, w_0) is exactly $|\mathbf{x} \cdot \mathbf{w} + w_0|$. Then, we can define the optimization problem:

maximize
$$\alpha$$

subject to $y_i(\mathbf{x}_i \cdot \mathbf{w} + w_0) \ge \alpha$ for $i = 1, ..., N$
 $||\mathbf{w}||_2 = 1$

Unfortunately, the condition $||\mathbf{w}||_2 = 1$ implies that the set of admissible \mathbf{w} do not form a convex set. Argue that relaxing the constraint to be $||\mathbf{w}||_2 \le 1$ does not change the optimal solution of the above program. Then show that this formulation is equivalent to the one we considered in the lectures:

minimize
$$\frac{1}{2}||\mathbf{w}||^2$$

subject to $y_i(\mathbf{x}_i \cdot \mathbf{w} + w_0) \ge 1$ for $i = 1, ..., N$

So, show that an optimal solution for one optimization problem can be used to obtain an optimal solution for the other one.

- (b) Suppose we use the SVM formulation for separable data, and that the data indeed is linearly separable. Recall that in this case, support vectors are those points \mathbf{x}_i in the dataset for which $y_i(\mathbf{w}^* \cdot \mathbf{x}_i + w_0^*) = 1$, where \mathbf{w}^*, w_0^* is the max-margin hyperplane. If your dataset consists of N points in a D-dimensional space, what is the maximum number of support vectors possible? What is the minimum number?
- (c) Suppose you use the primal SVM formulation for the non-separable case, i.e., with slack variables ζ_i , but your data is actually linearly separable. Do you always recover the "true" max-margin separating hyperplane?
- (d) Given a training set $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$, prove that in the primal SVM formulation the sum of slacks $\sum_{1 \leq i \leq N} \zeta_i$ of an optimal solution in the non-separable case gives an upper bound on the number of misclassified training examples.

Exercise 5.4 [Support Vector Machines II]

Suppose we are given the following dataset \mathcal{D} of observations with feature x and class label y.

- 11		
x	y	
-3	1	
-2	1	
-1	-1	
0	-1	
1	-1	
3	1	

(a) Is the dataset linearly separable (in the current feature space)?

- (b) Consider the map $\phi(x) = [x, x^2]^\mathsf{T}$. Is the dataset linearly separable in the feature space induced by ϕ ? If so, give the hyperplane with maximum margin that separates the dataset, and compute the margin.
- (c) Which decision boundary for the original one-dimensional feature space does your solution for Part (b) imply?

Exercise 5.5 [Kernels]

(a) Which of the following are Mercer kernels?

(i)
$$f(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^\mathsf{T} \mathbf{x}_2)^2 + (1 - \mathbf{x}_1^\mathsf{T} \mathbf{x}_2)^2$$

(ii)
$$f(\mathbf{x}_1, \mathbf{x}_2) = (1 - \mathbf{x}_1^\mathsf{T} \mathbf{x}_2)^2$$

(b) We recall the nearest-neighbour classifier as presented in Sheet 2. In its (maybe) easiest form, a nearest-neighbour classifier assigns a new input vector \mathbf{x} to the same class as that of the nearest input vector \mathbf{x}_n from the training set, where the distance is defined by the Euclidean metric $||\mathbf{x} - \mathbf{x}_n||^2$.

By expressing this rule in terms of scalar products and then making use of kernel substitution, formulate the nearest-neighbour classifier for a general nonlinear kernel.

(c) Consider the two-dimensional dataset with a binary class label that is given by the following plot.

Propose a map ϕ such that the dataset becomes linearly separable in the feature space induced by that map. Give the corresponding kernel function.