第四章 二元关系和函数

- 一. 集合的笛卡儿积
- 二. 集合的二元关系
- 三. 关系的性质
- 四. 等价关系

一. 集合的笛卡儿积

1. 有序对 $\langle x, y \rangle$, x和y按照一定次序构成二元组

实例:点的直角坐标(3,-4)

特点: (1) $x \neq y$ 时, $\langle x, y \rangle \neq \langle y, x \rangle$ 元素顺序不能交换

(2)
$$\langle x, y \rangle = \langle u, v \rangle \Leftrightarrow x = u, y = v_{\circ}$$

有序n元组 $(n \ge 3)$,记 $\langle x_1, x_2, \cdots x_n \rangle$ 。

例1 $\langle 2, x+5 \rangle = \langle 3y-4, y \rangle$, 求 x, y.

解 $3y-4=2, x+5=y \Rightarrow y=2, x=-3$

2. 笛卡儿积

定义:集合A和B的笛卡儿积,记作 $A \times B$

$$A \times B = \{ \langle x, y \rangle \mid x \in A \land y \in B \}$$

以A中元素作为第一元素,

B中元素作为第二元素,

构成有序对,

所有这样的有序对构成的集合。

例2
$$A = \{0,1\}, B = \{a,b,c\}$$

求 $A \times B$, $B \times A$, $A \times A$, $A \times \emptyset$, $\emptyset \times B$

解:
$$A \times B = \{\langle 0, a \rangle, \langle 0, b \rangle, \langle 0, c \rangle, \langle 1, a \rangle, \langle 1, b \rangle, \langle 1, c \rangle\}$$

$$B \times A = \{\langle a, 0 \rangle, \langle a, 1 \rangle, \langle b, 0 \rangle, \langle b, 1 \rangle, \langle c, 0 \rangle, \langle c, 1 \rangle\}$$

$$A \times A = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle\}$$

$$A \times \emptyset = \emptyset$$

$$\varnothing \times B = \varnothing$$

例3. 设 $A = \{a,b\}$, 求 $A \times P(A)$ 。

解:
$$P(A) = \{\emptyset, \{a\}, \{b\}, A\}$$

$$A \times P(A) = \{ \langle a, \varnothing \rangle, \langle a, \{a\} \rangle, \langle a, \{b\} \rangle, \langle a, A \rangle, \\ \langle b, \varnothing \rangle, \langle b, \{a\} \rangle, \langle b, \{b\} \rangle, \langle b, A \rangle \}$$

3. 笛卡儿积的性质

- \rightarrow 不适合交换律 $A \times B \neq B \times A$ $(A \neq B, A \neq \emptyset, B \neq \emptyset)$
- ightharpoonup不适合结合律 $(A \times B) \times C \neq A \times (B \times C)$ $(A \neq \emptyset, B \neq \emptyset)$
- \triangleright 若A或B中有一个为空集,则 $A \times B$ 就是空集.

$$A \times \emptyset = \emptyset \times B = \emptyset$$

 \rightarrow 若|A|=m, |B|=n, 则 $|A\times B|=mn$

例4

- (1) 证明 $A=B \land C=D \Rightarrow A \times C=B \times D$
- $(2) A \times C = B \times D$ 是否推出 $A = B \wedge C = D$? 为什么?
 - 解(1)任取<x,y>

$$\langle x,y \rangle \in A \times C \iff x \in A \land y \in C$$

 $\iff x \in B \land y \in D \iff \langle x,y \rangle \in B \times D$

(2) 不一定. 反例如下: $A=\{1\}$, $B=\{2\}$, $C=D=\emptyset$, 则 $A\times C=B\times D$ 但是 $A\neq B$.

4. n 阶 $(n \ge 2)$ 笛卡儿积

$$A_{1} \times A_{2} \times \dots \times A_{n} = \left\{ \left\langle x_{1}, x_{2}, \dots, x_{n} \right\rangle \mid x_{1} \in A_{1} \land x_{2} \in A_{2} \land \dots \land x_{n} \in A_{n} \right\}$$

特别, 当 $A_1 = A_2 = \cdots = A_n = A$ 时, 记为 A^n

如
$$A = \{a,b\}$$

$$A^{2} = \{\langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle b,b \rangle\}$$

$$A^{3} = \{\langle a,a,a \rangle, \langle a,a,b \rangle, \langle a,b,a \rangle, \langle a,b,b \rangle, \langle b,a,a \rangle, \langle b,a,b \rangle, \langle b,b,b \rangle\}$$

二. 二元关系

引例

甲乙丙三人进行乒乓球赛,任意两人赛一场, 共三场,结果为:

乙胜甲,甲胜丙,丙胜乙

记作 {<乙,甲>,<甲,丙>,<丙,乙>}

 $\langle x, y \rangle$: 代表x胜y

表示{甲,乙,丙}三人之间的胜负关系

1. 二元关系的定义

(1) 若集合R 为空集或它的元素都是有序对,则称R为二元关系,简称为关系。

若 $\langle x, y \rangle \in R$,则记作xRy, 否则,记作xRy。

实例: $R=\{<1,2>,<a,b>\}$, R是二元关系, 写为 1R2, aRb

$(2)A \times B$ 的任何子集所定义的二元关系都称作从 A 到 B 的二元关系,

特别, 当A = B 时, 称作A上的二元关系。

例5.
$$A = \{a,b\}$$
, $B = \{0,1,2\}$

$$A \times B = \{ \langle a, 0 \rangle, \langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 0 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle \}$$

设
$$R_1 = \{\langle a, 0 \rangle, \langle b, 0 \rangle, \langle b, 2 \rangle\}$$
 $R_2 = \emptyset$
$$R_3 = A \times B \quad R_4 = \{\langle b, 1 \rangle\} \quad R_5 = \{\langle a, b \rangle\}$$

则 R_1, R_2, R_3, R_4 都是从A到B的关系。

R₅是从A到A的二元关系

2. A上不同关系的数目

若 A 为 n 元集,记 |A|=n

则
$$|A \times A| = n^2$$

 $A \times A$ 的子集共有 2^{n^2} 个

n元集A上不同的关系共有 2^{n^2} 个。

例如 |A|=3,则 A上有=512个不同的二元关系.

3.特殊的关系

对任意集合 A , \emptyset 是 A 上的关系,称为空关系

全域关系
$$E_A = \{\langle x, y \rangle \mid x \in A \land y \in A\} = A \times A$$

恒等关系
$$I_A = \{\langle x, x \rangle \mid x \in A\}$$

例如, $A=\{1,2\}$,则

$$E_A = \{<1,1>,<1,2>,<2,1>,<2,2>\}$$

$$I_A = \{<1,1>,<2,2>\}$$

4.常用关系

(1) 设 $A \subseteq R$, A 上小于等于关系:

$$L_A = \{\langle x, y \rangle | x, y \in A \land x \le y\}$$

(2) 设 $B \subseteq Z^+$, B 上整除关系:

$$D_B = \left\{ \left\langle x, y \right\rangle \middle| x, y \in B \land x \mid y \right\}$$

类似的还可以定义大于等于关系,真包含关系等等.

例6.
$$A = \{2, 3, 6, 8\}$$
, 求 L_A , D_A 。

解:
$$L_A = \{\langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 2, 6 \rangle, \langle 2, 8 \rangle, \langle 3, 3 \rangle, \langle 3, 6 \rangle, \langle 3, 6 \rangle, \langle 3, 8 \rangle, \langle 6, 6 \rangle, \langle 6, 8 \rangle, \langle 8, 8 \rangle\}$$

$$D_{A} = \{\langle 2, 2 \rangle, \langle 2, 6 \rangle, \langle 2, 8 \rangle, \langle 3, 3 \rangle, \langle 3, 6 \rangle, \langle 6, 6 \rangle, \langle 8, 8 \rangle\}$$

三. 关系的性质

(自反,反自反,对称,反对称,传递) $(R 为 A \bot)$

自反性 $\forall x \in A$, 都有 $\langle x, x \rangle \in R$

反自反性 $\forall x \in A$, 都有 $\langle x, x \rangle \notin R$

对称性 若 $\langle x, y \rangle \in R$,则 $\langle y, x \rangle \in R$

反对称性 若 $\langle x, y \rangle \in R$ 且 $x \neq y$,则 $\langle y, x \rangle \notin R$

传递性

若 $\langle x, y \rangle \in R$ 且 $\langle y, z \rangle \in R$,则 $\langle x, z \rangle \in R$

例7. $A = \{1, 2, 3\}$, A 上关系如下所示,判断 R_1, R_2, R_3 各有哪些性质。

$$(1) \quad R_1 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle\}$$

解: R_1 既不是自反又不是反自反,是对称的,不是传递的。

(2)
$$R_2 = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 3 \rangle\}$$

解: R, 是反自反的,反对称的,传递的。

(3)
$$R_3 = \{\langle 1,1 \rangle, \langle 2,2 \rangle, \langle 3,3 \rangle, \langle 1,2 \rangle, \langle 1,3 \rangle, \langle 2,1 \rangle\}$$

解: R_3 是自反的,既不是对称又不是反对称的,不是传递的。

四. 等价关系

1. 等价关系的定义

若A上关系R满足自反,对称,传递,

则称 R 为 A 上的等价关系。若 $\langle x, y \rangle \in R$, 记 $x \sim y$

2. 等价类

(1) 定义:设R是非空集合 A上的等价关系,

对
$$x \in A$$
,记

$$[x]_R = \{ y \mid y \in A \land xRy \}$$

则称 $[x]_R$ 为x 关于R 的等价类,

简称x的等价类,记[x]

实例 设 $A = \{1,2,...,8\}$,如下定义A上的关系R:

$$R = \{ \langle x,y \rangle \mid x,y \in A \land x \equiv y \pmod{3} \}$$

其中 $x \equiv y \pmod{3}$ 叫做 $x = y \notin 3$ 相等,即 $x \notin y \notin 3$ 的余数与 $y \notin y \notin y \notin 3$ 的余数相等.

验证模 3 相等关系 R 为 A上的等价关系, 因为

$$\forall x \in A, \ \mathbf{f}x \equiv x \pmod{3}$$

$$\forall x, y \in A$$
, 若 $x \equiv y \pmod{3}$, 则有 $y \equiv x \pmod{3}$

$$\forall x, y, z \in A, \not\equiv x \equiv y \pmod{3}, y \equiv z \pmod{3},$$

则有 $x \equiv z \pmod{3}$

自反性、对称性、传递性得到验证

$$A = \{1, 2, ..., 8\}$$
上模3等价关系的等价类: