

WEBENCH® Design Report

VinMin = 5.0V VinMax = 12.0V Vout = 5.0V lout = 1.0A Device = TPS55165QPWPRQ1 Topology = Buck_Boost Created = 2018-10-31 17:30:54.315 BOM Cost = \$3.47 BOM Count = 10 Total Pd = 0.56W

Design: 2 TPS55165QPWPRQ1 TPS55165QPWPRQ1 5V-12V to 5.00V @ 1A

Design Alerts

Component Selection Information

The TPS55165-Q1 is qualified for Automotive applications. All passives and other components selected in this design may not be qualified for Automotive applications. The user is required to verify that all components in the design meet the qualification and safety requirements for their specific application. Please note that for the device TPS55165-Q1 to start up the minimum input voltage has to be 5.3V.

Electrical BOM

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cbst1	Kemet	C0603C104Z3VACTU Series= Y5V	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
Cbst2	MuRata	GRM155R71A104KA01D Series= X7R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
Cin	TDK	C2012X5R1V226M125AC Series= X5R	Cap= 22.0 uF ESR= 2.05 mOhm VDC= 35.0 V IRMS= 4.5559 A	1	\$0.38	■ 0805 7 mm²
Cinx	Taiyo Yuden	GMK212BJ474KG-T Series= X5R	Cap= 470.0 nF ESR= 1.0 mOhm VDC= 35.0 V IRMS= 0.0 A	1	\$0.04	0805 7 mm ²
Co_sense	TDK	C2012X7R1H104K085AA Series= X7R	Cap= 100.0 nF ESR= 26.19 mOhm VDC= 50.0 V IRMS= 1.29514 A	1	\$0.02	■ 0805 7 mm²
Cout	TDK	C2012X5R1V226M125AC Series= X5R	Cap= 22.0 uF ESR= 2.05 mOhm VDC= 35.0 V IRMS= 4.5559 A	1	\$0.38	0805 7 mm ²
Cvreg	MuRata	GRM155R61A475MEAAD Series= X5R	Cap= 4.7 uF ESR= 1.0 mOhm VDC= 10.0 V IRMS= 0.0 A	1	\$0.04	0402_065 3 mm ²
L1	Coilcraft	XAL5030-472MEB	L= 4.7 μH DCR= 36.0 mOhm	1	\$0.63	XAL5030 54 mm ²
Rpg	Panasonic	ERJ-6ENF1003V Series= ERJ-6E	Res= 100.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²

Name Manufacturer Part Number		Properties	Qty	Price	Footprint		
J1	Texas Ins	struments	TPS55165QPWPRQ1	Switcher	1	\$1.95	PWP0020P_N 71 m
		L lpp			Vout	р- р	
575				0.0225			
25							
00				0.0200			
75				0.0175			
50				S0.0150			
25 200 75				S			
25				₾ 0.0125			
50				(2) 0.0150 d 0.0125 n 0.0100			
25				0.0075			
00				0.0075			
75				0.0050			
50				0.0025			
25				" <u> </u>			
0.1	0.2 0.3	0.4 0.5 Output C = 5.0V - Vin= 8.5\		0.0000 0.1 0.2	0.3 0.4 Outpo Vin= 5.0V Vin=		nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	0.1 0.2	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	0.1 0.2	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5 90.0 87.5	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5 90.0 87.5	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5 90.0 87.5	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5 90.0 87.5	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5 90.0 87.5	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5 90.0 87.5 885.0 80.0 90.0 87.5 90.0	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5 90.0 87.5 90.0 87.5 985.0 985.0 985.0 986.0	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C = 5.0 V Vin= 8.5 \	urrent (A) /Vin=12.0V	92.5 90.0 87.5 885.0 80.0 90.0 87.5 90.0	Outpo Vin=5.0VVin=	ut Curre 8.5V—Vin	nt (A)
0.1		Output C	current (A) / - Vin=12.0V cle	92.5 90.0 87.5 90.0 87.5 985.0 985.0 985.0 986.0	Outpu	es.5v—Vin	nt (A)
0.1		Output C	ourrent (A) /Vin=12.0V cle	92.5 90.0 87.5 85.0 385.0 382.5 380.0 380.0 380.0 77.5 75.0 72.5 70.0	Output/in=5.0V Vin= Effici	ency iency .5 0.6	nt (A) 1=12.0V
0.1	0.2 0.3	Output C	o.6 0.7 0.8 0.9 1.0 irrent (A)	92.5 90.0 87.5 85.0 85.0 80.0 10.0	Outpu	ency iency 5 0.6 t Curren	nt (A) 1=12.0V 0.7 0.8 0.9 1t (A)
0.1	0.2 0.3	Output C	o.6 0.7 0.8 0.9 1.0 irrent (A)	92.5 90.0 87.5 85.0 85.0 80.0 10.0	Output/in=5.0V Vin= Effici	ency iency 5 0.6 t Curren	nt (A) 1=12.0V 0.7 0.8 0.9 1t (A)
0.1	0.2 0.3	Output C	o.6 0.7 0.8 0.9 1.0 irrent (A)	92.5 90.0 87.5 85.0 85.0 80.0 10.0	Outpu	ency iency .5 0.6 t Curren :8.5V—Vin	nt (A) 1=12.0V 0.7 0.8 0.9 1t (A)
0.1	0.2 0.3	Output C =5.0V = Vin=8.5V Duty Cyc 0.4 0.5 Output Cu =5.0V = Vin=8.5V	o.6 0.7 0.8 0.9 1.0 irrent (A)	92.5 90.0 87.5 85.0 0.8 85.0 0.8 85.0 0.8 82.5 0.9 80.0 0.1 0.2 0	Outpu /in= 5.0V Vin= Effici 0.3 0.4 0 Outpu /in= 5.0V Vin=	ency iency .5 0.6 t Curren :8.5V—Vin	nt (A) 1=12.0V 0.7 0.8 0.9 1t (A)
0.1	0.2 0.3	Output C =5.0V = Vin=8.5V Duty Cyc 0.4 0.5 Output Cu =5.0V = Vin=8.5V	o.6 0.7 0.8 0.9 1.0 irrent (A)	92.5 90.0 87.5 85.0 85.0 80.0 10.0	Outpu /in= 5.0V Vin= Effici 0.3 0.4 0 Outpu /in= 5.0V Vin=	ency iency .5 0.6 t Curren :8.5V—Vin	nt (A) 1=12.0V 0.7 0.8 0.9 1t (A)

0.6

Output Current (A) -Vin=5.0V -Vin=8.5V -Vin=12.0V

55.0

52.5

(C) 52.5 50.0 47.5 1 45.0 42.5

40.0

37.5

35.0

32.5

0.1

0.2

0.9

1.0

0.4 0.5 0.6 0.7 Output Current (A)

-Vin=5.0V -Vin=8.5V -Vin=12.0V

0.9

1.0

0.00035 0.00030 0.00025 0.00020

0.00015

0.00010

0.00005

0.00000

0.1

0.2

1.0

0.9

Operating Values

0.1

0.2

0.3

0.6

Output Current (A)

Vin=5.0V -Vin=8.5V -Vin=12.0V

8.0

0.9

1.0

0.0075 0.0050 0.0025 0.0000

Ope	rating values			
#	Name	Value	Category	Description
1.	Cin IRMS	12.814 mA	Capacitor	Input capacitor RMS ripple current
2.	Cin Pd	336.59 nW	Capacitor	Input capacitor power dissipation
3.	Cout IRMS	313.23 mA	Capacitor	Output capacitor RMS ripple current
4.	Cout Pd	201.13 μW	Capacitor	Output capacitor power dissipation
5.	IC lpk	1.145 A	IC	Peak switch current in IC
6.	IC Pd	518.76 mW	IC	IC power dissipation
7.	IC Tj	48.364 degC	IC	IC junction temperature
8.	ICThetaJA	35.4 degC/W	IC	IC junction-to-ambient thermal resistance
9.	lin Avg	1.113 A	IC	Average input current
10.	L lpp	44.388 mA	Inductor	Peak-to-peak inductor ripple current
11.	L Pd	45.351 mW	Inductor	Inductor power dissipation
12.	Cin Pd	336.59 nW	Power	Input capacitor power dissipation
13.	Cout Pd	201.13 μW	Power	Output capacitor power dissipation
14.	IC Pd	518.76 mW	Power	IC power dissipation
15.	L Pd	45.351 mW	Power	Inductor power dissipation
16.	Total Pd	564.352 mW	Power	Total Power Dissipation
17.	BOM Count	10	System	Total Design BOM count
			Information	
18.	Duty Cycle	8.426 %	System	Duty cycle
	, ,		Information	
19.	Efficiency	89.858 %	System	Steady state efficiency
	·		Information	·
20.	FootPrint	170.0 mm ²	System	Total Foot Print Area of BOM components
			Information	
21.	Frequency	2.0 MHz	System	Switching frequency
			Information	
22.	lout	1.0 A	System	lout operating point
			Information	, ,
23.	Mode	BOOST PWM CCM	System	PWM/PFM Mode
			Information	
24.	Pout	5.0 W	System	Total output power
			Information	

#	Name	Value	Category	Description
25.	Total BOM	\$3.47	System Information	Total BOM Cost
26.	Vin	5.0 V	System Information	Vin operating point
27.	Vout p-p	4.256 mV	System Information	Peak-to-peak output ripple voltage

Design Inputs

Name	Value	Description
lout	1.0	Maximum Output Current
VinMax	12.0	Maximum input voltage
VinMin	5.0	Minimum input voltage
Vout	5.0	Output Voltage
base_pn	TPS55165-Q1	Base Product Number
source	DC	Input Source Type
Та	30.0	Ambient temperature

WEBENCH® Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board

If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 5.0V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

Design Assistance

- 1. The TPS55165-Q1 is qualified for Automotive applications. All passives and other components selected in this design may not be qualified for Automotive applications. The user is required to verify that all components in the design meet the qualification and safety requirements for their specific application.
- 2. Master key: C505E65D9D345902[v1]
- 3. TPS55165-Q1 Product Folder: http://www.ti.com/product/TPS55165%2DQ1: contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.