Table 1: Evaluation Results of Neighbourhood-based QoS Prediction Approaches

						,						
						MA	E					
Annuagah			Respons	se Time					Throu	ghput		
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
UMEAN [15]	0.8763	0.8750	0.8751	0.8747	0.8747	0.8745	53.8757	53.8347	53.8155	53.8008	53.8037	53.7990
IMEAN [15]	0.7017	0.6879	0.6833	0.6809	0.6795	0.6785	27.2885	26.8596	26.7156	26.6410	26.5933	26.5713
UPCC [15]	0.6359	0.5547	0.5148	0.4863	0.4670	0.4539	27.2180	22.6122	20.4715	19.2612	18.2583	17.4624
IPCC [15]	0.6344	0.5940	0.5099	0.4560	0.4328	0.4156	27.0185	26.1948	25.5579	23.9729	22.5754	21.5654
UIPCC [15]	0.6253	0.5815	0.5012	0.4498	0.4274	0.4110	26.7568	22.3700	20.2190	18.9276	17.8910	17.0797
ADF [12]	0.6094	0.5443	0.4974	0.4636	0.4429	0.4276	24.9961	21.5013	18.5685	16.6536	15.5644	14.8244
NRCF [10]	0.5532	0.4905	0.4511	0.4261	0.4151	0.4059	23.3275	18.8571	16.0284	14.3444	13.4289	12.8267

						RMS	SE					
Approach			Respon	se Time					Throu	ghput		
	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
UMEAN [15]	1.8529	1.8555	1.8552	1.8554	1.8551	1.8553	110.3693	110.3802	110.3817	110.3822	110.3741	110.3927
IMEAN [15]	1.5673	1.5425	1.5327	1.5280	1.5251	1.5238	66.1012	64.8083	64.3864	64.1772	64.0426	63.9630
UPCC [15]	1.3797	1.3110	1.2597	1.2198	1.1909	1.1712	61.0180	54.5530	51.0145	48.8585	47.1670	45.8735
IPCC [15]	1.3987	1.3435	1.2611	1.2071	1.1757	1.1519	63.0017	60.3981	57.7614	54.8811	52.6665	51.0218
UIPCC [15]	1.3879	1.3302	1.2498	1.1968	1.1657	1.1422	60.7985	54.4563	50.7043	48.2950	46.4539	45.0599
ADF [12]	1.3613	1.2924	1.2325	1.1898	1.1617	1.1398	60.7939	54.2893	48.8074	45.2008	43.1359	41.7186
NRCF [10]	1.4547	1.3678	1.3050	1.2581	1.2250	1.1975	59.9498	52.9977	48.1072	44.5142	42.2524	40.7493

						NMA	ΑE					
Approach			Respon	se Time					Throu	ghput		
	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
UMEAN [15]	0.9664	0.9635	0.9635	0.9629	0.9630	0.9628	1.1338	1.1321	1.1314	1.1310	1.1311	1.1308
IMEAN [15]	0.7738	0.7575	0.7524	0.7496	0.7481	0.7470	0.5743	0.5648	0.5617	0.5601	0.5591	0.5585
UPCC [15]	0.7013	0.6108	0.5668	0.5353	0.5141	0.4997	0.5728	0.4755	0.4304	0.4049	0.3838	0.3670
IPCC [15]	0.6996	0.6540	0.5614	0.5019	0.4764	0.4576	0.5686	0.5509	0.5373	0.5040	0.4746	0.4533
UIPCC [15]	0.6896	0.6404	0.5519	0.4952	0.4705	0.4525	0.5631	0.4704	0.4251	0.3979	0.3761	0.3590
ADF [12]	0.6720	0.5993	0.5477	0.5103	0.4876	0.4707	0.5260	0.4522	0.3904	0.3501	0.3272	0.3116
NRCF [10]	0.6101	0.5401	0.4967	0.4691	0.4570	0.4468	0.4909	0.3966	0.3370	0.3016	0.2823	0.2696

						MR	E					
Approach			Respons						Throu	ghput		
	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
UMEAN [15]	1.3058	1.3091	1.3151	1.3145	1.3172	1.3174	2.2995	2.3121	2.3148	2.3152	2.3175	2.3163
IMEAN [15]	0.6677	0.6970	0.7086	0.7145	0.7185	0.7210	0.5297	0.5333	0.5349	0.5356	0.5360	0.5365
UPCC [15]	0.6594	0.5216	0.4830	0.4569	0.4394	0.4235	0.6668	0.5099	0.4306	0.3891	0.3576	0.3347
IPCC [15]	0.6160	0.5890	0.4616	0.3537	0.3163	0.2935	0.5945	0.5921	0.5860	0.5372	0.4935	0.4642
UIPCC [15]	0.5967	0.5618	0.4460	0.3539	0.3205	0.3002	0.6527	0.5074	0.4291	0.3828	0.3494	0.3259
ADF [12]	0.6146	0.5136	0.4529	0.4143	0.3940	0.3774	0.5797	0.4883	0.3913	0.3248	0.2896	0.2675
NRCF [10]	0.4033	0.3382	0.2789	0.2530	0.2514	0.2517	0.4266	0.3274	0.2532	0.2141	0.1968	0.1856

						t E						
Approach			Respon	se Time					Throu	ghput		
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
UMEAN [15]	9.2343	9.2335	9.2480	9.2459	9.2566	9.2554	17.8638	17.8177	17.8127	17.7967	17.7929	17.7830
IMEAN [15]	4.3077	4.2745	4.2668	4.2625	4.2601	4.2576	3.1772	3.0898	3.0501	3.0272	3.0136	3.0050
UPCC [15]	5.5978	4.1200	3.6251	3.3176	3.1152	2.9503	8.3154	7.7074	7.4214	7.1987	6.7925	6.3599
IPCC [15]	4.4292	4.1514	3.2360	2.5782	2.3050	2.0965	4.7127	4.9762	5.5102	5.2150	4.7597	4.4117
UIPCC [15]	4.5003	4.1258	3.2564	2.6307	2.3674	2.1710	8.0135	7.5149	7.3230	7.1106	6.7261	6.3274
ADF [12]	4.7865	3.7758	3.2212	2.8909	2.7128	2.5864	4.6144	4.1495	3.8572	3.7294	3.5844	3.4497
NRCF [10]	2.5381	2.0027	1.7365	1.6232	1.6536	1.6769	2.6504	2.0731	1.7598	1.5716	1.4706	1.4015

Name		Table	2: Eva	luation	Result			ed QoS l	Prediction	on Appr	oaches				
Approach		I			m·		MAE	П		(TD)					
PMF 8, 16 0.5690 0.4867 0.4522 0.4311 0.4177 0.4086 19.0823 15.9936 14.6698 13.0236 13.4048 13.1173	Approach	E 07	1.007			0.507	2007	E 07	1.007			0.507	2007		
NMF 1, 14 14 0.5456 0.4783 0.4466 0.4272 0.4144 0.4055 18.8833 15.5489 14.2457 13.5776 13.1026 12.7937 14.9078 14.1317 13.7331 15.0004 15.7927 14.9078 14.1317 13.7331 13.0004 12.7937 14.9078 14.1317 13.7331 15.0004 15.7927 14.9078 14.1317 13.7331 15.0004 13.0005 15.2585 17.8525 17.8525 17.8525 17.8525 17.8525 17.8525 17.8525 17.8525 17.8525 17.8525 13.0004 13.0003 13.2026 12.8584 12.6341 12.0004 13.0004 13.0003 18.8722 15.1540 13.8093 13.2026 12.8584 12.6341 12.0004 13.0004 13.0004 14.7024 14.7024 13.8093 13.2026 12.8584 12.6341 12.0004 14.0004	DME [0 16]														
Biased-MF 3, 10 0.5958 0.5130 0.4783 0.47874 0.4399 0.4288 21.8355 17.8525 15.9327 14.9078 14.1317 13.7331 13.7331 15.2581 15.0000 14.1316 15.2580 15.0000 15.2583 10.4776 0.4010 0.4148 0.4038 0.3945 22.5253 19.9348 18.4965 17.5144 16.7963 16.2580 16.2580 16.2580 16.2580 16.2580 14.1316 13.5178 13.0998 12.8551 15.0000 14.1316 13.5178 13.0998 12.8551 15.0000 14.1316 13.5178 13.0998 12.8551 15.0000 14.1316 13.5178 13.0998 12.8551 15.0000 14.1316 13.5178 13.0998 12.8551 15.0000 14.1316 13.5178 13.0998 12.8551 15.0000 14.1316 13.5178 13.0998 15.9871 14.1316 13.5178 13.0000 15.5981 15.0000 15.5981 15.0000 15.5981 15.0000 15.5981 15.0000 15.5981 15.0000 15.5981 15.0000 13.5000 15.5981 15.0000 13.5000 15.5981 15.0000 15.5981 15.0000 13.5000 13.5000 13.5000 15.5981 15.0000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 15.5981 15.5981 13.5000 13.5000 13.5000 13.5000 15.5981 15.5981 13.5000 13.5000 13.5000 15.5981 15.5981 13.5000 13.5000 13.5000 13.5000 15.5981 13.5000 13.5000 13.5000 13.5000 15.5981 13.5000 13.		l I													
CloudPred [14]															
EMF [5] 0.5573	Claud Dand [14]														
NIMF 16 0.5542															
Response Response Time Tim															
Response Time	(-)					1									
No. 100		1		Respon	se Time		UVISE			Throu	ghput				
PMF 8, 16	Approach	5%	10%			25%	30%	5%	10%			25%	30%		
Biased-MF 3, 10	PMF [8, 16]	1.5371	1.3164	1.2206		1.1392	1.1205	57.8830	48.0713	44.0125	41.7137	40.3004	39.4392		
CloudPred [14]	NMF [4, 14]	1.4726	1.2833	1.2018	1.1604	1.1353	1.1193	57.5021	47.7830	43.8441	41.7270	40.3765	39.4957		
EMF 5	Biased-MF [3, 10]	1.3833	1.2622	1.2096	1.1786	1.1568	1.1425	56.8648	48.2394	44.3041	42.1485	40.6480	39.7155		
NIMF 16	CloudPred [14]	1.3281	1.2238	1.1689	1.1365	1.1140	1.0986	55.3939	50.3517	47.6415	45.6791	44.1835	43.0918		
Name	EMF [5]	1.4857	1.2893	1.2033	1.1582	1.1305	1.1116	58.8343	48.3694	44.0889	41.6515	40.2107	39.2927		
PMF R	NIMF [16]	1.4791	1.2950	1.2082	1.1592	1.1295	1.1097	56.1480	46.9792	43.2501	41.2408	39.9317	39.0943		
Response	LN-LFM [10]	1.3055	1.2278	1.1815	1.1549	1.1385	1.1273	52.4372	46.9689	44.9432	44.1694	43.6825	43.4871		
Approach 5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30% 25% 20% 25% 30% 25% 25% 30% 25% 2							MAE								
No. 10% 10% 20% 20% 25% 30% 50% 10% 15% 20% 25% 30% 30% 30% 3084 0.2927 0.2818 0.2757	A		Response Time Throughput												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%		
Biased-MF [3, 10]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NMF [4, 14]	0.6017	0.5266			0.4562	0.4465	0.3974	0.3270	0.2995	0.2854	0.2754			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
MRE State															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LN-LFM [10]	0.6174	0.5507	0.5188	0.4986	0.4865	0.4796	0.4299	0.3725	0.3532	0.3442	0.3399	0.3360		
Approach 5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30% 25%							MRE								
NF Sym 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30% 25%	Approach	F07	1.007			0.507	0.007	F07	1007			0504	0004		
NMF [4, 14]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21, 21 11 [10]	0.55.0	0.000.	0.1000	0.1120			0.1000	0.1110	0.0002	0.0000	0.0100	0.0011		
Approach 5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30% PMF [8, 16] 1.8162 2.1960 2.1914 2.1316 2.0762 2.0337 1.4547 1.4247 1.3833 1.3585 1.3244 1.3147 NMF [4, 14] 2.0066 2.3021 2.2963 2.2404 2.1865 2.1315 1.4693 1.3342 1.2627 1.2303 1.1843 1.1573 Biased-MF [3, 10] 4.8683 3.5361 3.0439 2.7945 2.5626 2.4306 4.6908 3.2163 2.6142 2.3355 2.1041 2.0033 CloudPred [14] 3.8729 3.2464 2.8188 2.5919 2.4458 2.3514 6.5436 5.8759 5.3486 4.9433 4.6368 4.4104 EMF [5] 2.6127 2.5441 2.3474 2.2196 2.1266 2.0444 2.4646 1.7207 1.5575 1.4695 1.4209 1.3960 NIMF [16] 2.2789		I		Respon	se Time	Γ	NPRE			Throu	ghput				
PMF [8, 16] 1.8162 2.1960 2.1914 2.1316 2.0762 2.0337 1.4547 1.4247 1.3833 1.3585 1.3244 1.3147 NMF [4, 14] 2.0066 2.3021 2.2963 2.2404 2.1865 2.1315 1.4693 1.3342 1.2627 1.2303 1.1843 1.1573 Biased-MF [3, 10] 4.8683 3.5361 3.0439 2.7945 2.5626 2.4306 4.6908 3.2163 2.6142 2.3355 2.1041 2.0033 CloudPred [14] 3.8729 3.2464 2.8188 2.5919 2.4458 2.3514 6.5436 5.8759 5.3486 4.9433 4.6368 4.4104 EMF [5] 2.6127 2.5441 2.3474 2.2196 2.1266 2.0444 2.4646 1.7207 1.5575 1.4695 1.4209 1.3960 NIMF [16] 2.2789 2.4370 2.3098 2.1698 2.0800 2.0205 1.6421 1.3019 1.2019 1.1757 1.1818 1.1832	Approach	5%	10%			25%	30%	5%	10%			25%	30%		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PMF [8, 16]	1.8162	2.1960	2.1914		2.0762	2.0337	1.4547	1.4247	1.3833	1.3585	1.3244	1.3147		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.2963			2.1315								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.8729								5.3486		4.6368			
NIMF [16] 2.2789 2.4370 2.3098 2.1698 2.0800 2.0205 1.6421 1.3019 1.2019 1.1757 1.1818 1.1832															
		2.2789		2.3098	2.1698		2.0205	1.6421			1.1757				
	LN-LFM [10]	3.7801		2.9785	2.7995	2.6957	2.6775	4.6086	4.0354	3.8556	3.7543	3.7375	3.6324		

Table 3: Evaluation Results of Location-aware QoS Prediction Approaches

						MAE						
A mmmaa ala			Respon	se Time					Throu	ghput		
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
RegionKNN [1]	0.5883	0.5477	0.5258	0.5158	0.5148	0.5091	25.6324	24.8380	24.5841	24.0361	23.6822	23.7984
LACF [11]	0.6374	0.5659	0.5159	0.4827	0.4614	0.4453	23.1685	19.6257	17.7949	16.6669	15.8503	15.2358
LBR [5]	0.5499	0.4802	0.4491	0.4300	0.4186	0.4103	18.3187	15.4272	14.2711	13.6512	13.2115	12.9824
HMF [6]	0.5595	0.4815	0.4490	0.4296	0.4165	0.4072	19.1320	15.7187	14.3719	13.6319	13.1127	12.7767
LoRec [2]	0.6479	0.5557	0.5018	0.4659	0.4415	0.4437	27.7773	24.7118	23.1466	21.7440	20.7727	20.5338

						RMSE						
Annuagh			Respon	se Time					Throu	ghput		
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
RegionKNN [1]	1.5426	1.5129	1.5129	1.5214	1.5202	1.5193	67.8678	67.5510	67.3137	66.1760	65.4074	65.5971
LACF [11]	1.4436	1.3420	1.2759	1.2298	1.1964	1.1720	58.9666	53.1050	49.7659	47.6247	46.0144	44.7729
LBR [5]	1.4741	1.2858	1.2036	1.1610	1.1371	1.1214	56.0215	47.0197	43.3639	41.3552	40.0663	39.2269
HMF [6]	1.5248	1.3105	1.2162	1.1661	1.1365	1.1178	58.7088	48.3461	44.0537	41.6678	40.1066	39.0613
LoRec [2]	1.3957	1.3087	1.2467	1.2040	1.1668	1.1504	62.5533	58.4275	56.1037	54.0139	52.2326	52.0747

						NMAE						
A mmmaa ala			Respon	se Time					Throu	ghput		
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
RegionKNN [1]	0.6488	0.6031	0.5790	0.5678	0.5668	0.5605	0.5394	0.5223	0.5169	0.5053	0.4979	0.5002
LACF [11]	0.7029	0.6232	0.5680	0.5313	0.5080	0.4903	0.4876	0.4127	0.3741	0.3504	0.3332	0.3202
LBR [5]	0.6064	0.5287	0.4945	0.4733	0.4609	0.4517	0.3855	0.3244	0.3000	0.2870	0.2777	0.2729
HMF [6]	0.6170	0.5302	0.4944	0.4729	0.4586	0.4483	0.4026	0.3306	0.3022	0.2866	0.2757	0.2685
LoRec [2]	0.7145	0.6119	0.5525	0.5129	0.4861	0.4885	0.5845	0.5197	0.4866	0.4571	0.4367	0.4316

						MRE						
Annanah			Respon	se Time					Throu	ghput		
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
RegionKNN [1]	0.4889	0.3956	0.3385	0.3176	0.3092	0.3019	0.4929	0.4497	0.4413	0.4194	0.4049	0.4123
LACF [11]	0.5529	0.4849	0.4265	0.3879	0.3669	0.3520	0.5134	0.4193	0.3681	0.3357	0.3134	0.2972
LBR [5]	0.4821	0.4191	0.3943	0.3776	0.3695	0.3640	0.2965	0.2582	0.2428	0.2350	0.2278	0.2259
HMF [6]	0.4922	0.4116	0.3907	0.3782	0.3686	0.3614	0.3075	0.2592	0.2416	0.2323	0.2248	0.2202
LoRec [2]	0.6702	0.5273	0.4521	0.3998	0.3615	0.3717	0.6633	0.5445	0.4804	0.4238	0.4004	0.4008

						NPRE						
Annnooch			Respon	se Time					Throu	ghput		
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
RegionKNN [1]	2.9639	2.0452	1.5207	1.3125	1.2801	1.2033	3.4269	2.2582	2.1699	2.1450	2.1515	2.0403
LACF [11]	4.0485	3.3672	2.9025	2.6044	2.4324	2.2977	3.8434	3.2668	2.9680	2.7140	2.4993	2.3275
LBR [5]	2.0633	2.2241	2.1699	2.0943	2.0560	2.0225	1.3947	1.3562	1.3267	1.3162	1.2960	1.2945
HMF [6]	1.7817	2.1605	2.1796	2.1391	2.0871	2.0401	1.3952	1.3439	1.3108	1.2888	1.2617	1.2513
LoRec [2]	5.2303	3.8175	3.1082	2.6867	2.4068	2.4460	6.7456	5.4886	4.7837	4.0684	3.6106	3.2309

Table 4: Evaluation Results of Time-aware QoS Prediction Approaches

						MAE						
Approach			Respon	se Time						ghput		
	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%
UMEAN [15]	1.4201	1.4449	1.4529	1.4555	1.4565	1.4569	15.2671	15.2288	15.2199	15.2132	15.2100	15.2075
IMEAN [15]	1.2389	1.2024	1.1883	1.1809	1.1764	1.1734	8.3861	8.0263	7.8969	7.8286	7.7875	7.7578
UPCC [15]	1.0636	0.9783	0.9218	0.8811	0.8504	0.8268	10.3878	9.4950	8.9188	8.4699	8.1349	7.8855
IPCC [15]	1.0896	1.0100	1.0021	1.0033	0.9907	0.9606	10.0606	9.6574	9.4841	8.9271	8.3542	7.9722
UIPCC [15]	1.0434	0.9612	0.9122	0.8790	0.8514	0.8266	9.9087	9.3048	8.9362	8.3875	7.8750	7.5165
PMF [8, 16]	1.0148	0.9336	0.8951	0.8667	0.8448	0.8271	6.5710	5.9808	5.8312	5.6997	5.5512	5.3862
TF [7, 14]	0.8263	0.7759	0.7458	0.7430	0.7341	0.7338	4.2696	4.1635	4.1781	4.1086	4.1989	4.1090
WSPred [14]	0.7925	0.7684	0.7563	0.7653	0.7512	0.7638	4.1786	4.0656	4.0481	4.0869	4.0570	4.0550
CLUS [9]	0.9194	0.8858	0.8557	0.8296	0.8082	0.7926	5.6281	4.7686	4.1980	3.8712	3.6444	3.4931
NTF [13]	0.7509	0.7405	0.7376	0.7356	0.7346	0.7328	4.2134	4.0925	4.0513	4.0270	4.0072	3.9990
AMF [19]	0.7604	0.7288	0.7125	0.7034	0.6979	0.6936	5.8095	5.5427	5.4985	5.4356	5.3587	5.2974

	RMSE														
Approach			Respon	se Time			Throughput								
Approach	5% 10% 15% 20%				25%	30%	5%	10%	15%	20%	25%	30%			
UMEAN [15]	2.7445	2.8293	2.8559	2.8658	2.8694	2.8709	54.0243	53.9425	53.9018	53.9128	53.8885	53.8843			
IMEAN [15]	2.4799	2.3860	2.3522	2.3350	2.3244	2.3170	43.9928	42.4968	42.0004	41.7880	41.6370	41.5441			
UPCC [15]	2.1126	1.9830	1.9240	1.8817	1.8474	1.8189	43.2208	40.6727	38.8015	37.2579	35.9572	34.9025			
IPCC [15]	2.2091	2.0629	2.0341	2.0268	2.0111	1.9718	45.2908	43.0893	42.4437	41.1497	39.5365	38.0906			
UIPCC [15]	2.0943	1.9750	1.9204	1.8801	1.8443	1.8118	43.8901	41.5245	40.1929	38.6693	37.0395	35.5733			
PMF [8, 16]	2.4969	2.2441	2.0951	1.9961	1.9271	1.8773	40.2913	36.0049	33.8467	32.4925	31.3060	30.3206			
TF [7, 14]	1.8686	1.7826	1.7413	1.7323	1.7211	1.7204	23.9737	22.7832	22.1284	21.8622	21.9740	21.5785			
WSPred [14]	1.8168	1.7878	1.7737	1.7864	1.7708	1.7921	23.6117	22.3649	22.0314	22.1614	21.9440	21.8858			
CLUS [9]	2.2225	2.2625	2.2494	2.2168	2.1782	2.1434	34.5488	31.0865	28.2595	26.5021	25.2313	24.2964			
NTF [13]	1.7423	1.7296	1.7259	1.7240	1.7223	1.7211	24.2157	23.0433	22.2431	21.9975	21.7521	21.6851			
AMF [19]	2.0554	2.0026	1.9780	1.9687	1.9660	1.9630	42.0305	41.1129	43.2850	43.8825	43.8244	43.2458			

	NMAE														
Approach			Respon	se Time			Throughput								
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%			
UMEAN [15]	0.9956	0.9921	0.9912	0.9906	0.9903	0.9902	1.3431	1.3405	1.3400	1.3394	1.3392	1.3392			
IMEAN [15]	0.8689	0.8260	0.8111	0.8041	0.8003	0.7980	0.7368	0.7056	0.6944	0.6884	0.6848	0.6823			
UPCC [15]	0.7457	0.6718	0.6291	0.5998	0.5784	0.5622	0.9126	0.8350	0.7849	0.7457	0.7164	0.6947			
IPCC [15]	0.7641	0.6939	0.6841	0.6831	0.6739	0.6532	0.8841	0.8489	0.8337	0.7851	0.7353	0.7022			
UIPCC [15]	0.7315	0.6601	0.6225	0.5984	0.5791	0.5620	0.8706	0.8180	0.7858	0.7379	0.6933	0.6621			
PMF [8, 16]	0.7117	0.6414	0.6110	0.5903	0.5748	0.5626	0.5783	0.5268	0.5139	0.5024	0.4894	0.4750			
TF [7, 14]	0.5794	0.5330	0.5090	0.5059	0.4994	0.4990	0.3760	0.3670	0.3683	0.3623	0.3701	0.3624			
WSPred [14]	0.5557	0.5280	0.5165	0.5215	0.5113	0.5198	0.3676	0.3580	0.3566	0.3600	0.3575	0.3574			
CLUS [9]	0.6447	0.6088	0.5845	0.5653	0.5500	0.5392	0.4948	0.4194	0.3695	0.3408	0.3212	0.3080			
NTF [13]	0.5264	0.5087	0.5035	0.5010	0.4998	0.4984	0.3712	0.3609	0.3574	0.3552	0.3535	0.3528			
AMF [19]	0.5771	0.5512	0.5383	0.5313	0.5270	0.5237	0.5125	0.4885	0.4845	0.4789	0.4723	0.4668			

MRE														
Annuagah			Respon	se Time			Throughput							
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%		
UMEAN [15]	1.8397	1.8505	1.8547	1.8559	1.8569	1.8580	3.9551	4.0523	4.0865	4.1033	4.1139	4.1212		
IMEAN [15]	0.8826	1.0021	1.1090	1.1721	1.2123	1.2407	0.5662	0.5563	0.5549	0.5544	0.5543	0.5542		
UPCC [15]	0.8920	0.7928	0.7084	0.6544	0.6182	0.5925	1.8669	1.6490	1.5204	1.4142	1.3296	1.2613		
IPCC [15]	0.7695	0.7845	0.7954	0.7873	0.7651	0.7399	0.7761	0.7855	0.7704	0.7127	0.6583	0.6258		
UIPCC [15]	0.8822	0.7742	0.6930	0.6459	0.6139	0.5883	1.4997	1.4344	1.3730	1.2621	1.1609	1.0970		
PMF [8, 16]	0.5987	0.5586	0.5640	0.5661	0.5661	0.5646	0.5083	0.4617	0.4527	0.4420	0.4310	0.4194		
TF [7, 14]	0.5561	0.5166	0.5011	0.5085	0.5031	0.5023	0.3396	0.3362	0.3411	0.3356	0.3509	0.3379		
WSPred [14]	0.5224	0.5073	0.4929	0.5066	0.4864	0.5020	0.3188	0.3172	0.3177	0.3272	0.3210	0.3217		
CLUS [9]	0.4391	0.3292	0.2752	0.2456	0.2301	0.2221	0.4015	0.2987	0.2409	0.2111	0.1948	0.1848		
NTF [13]	0.4918	0.4785	0.4768	0.4744	0.4716	0.4681	0.3278	0.3203	0.3213	0.3185	0.3182	0.3180		
AMF [19]	0.3429	0.3096	0.2923	0.2807	0.2726	0.2667	0.3914	0.3551	0.3326	0.3178	0.3079	0.3007		

NPRE														
Approach			Respon	se Time			Throughput							
	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%		
UMEAN [15]	11.4755	11.4484	11.4436	11.4362	11.4324	11.4327	27.9692	27.9576	27.9318	27.9059	27.8980	27.8968		
IMEAN [15]	7.4207	7.4003	7.3733	7.3572	7.3466	7.3413	6.7739	6.8851	6.9254	6.9454	6.9585	6.9692		
UPCC [15]	8.0327	7.2598	6.4785	5.8735	5.4423	5.1345	17.9732	17.3091	17.0590	16.8895	16.8247	16.8329		
IPCC [15]	6.4997	6.0802	6.2072	6.4654	6.4501	6.1467	10.9426	11.4543	11.3848	10.4444	9.4234	8.8083		
UIPCC [15]	7.6255	6.9048	6.3017	5.8920	5.5653	5.2678	15.0420	15.0629	14.9362	14.2859	13.6236	13.2575		
PMF [8, 16]	2.4800	3.1464	3.4131	3.5144	3.5519	3.5530	1.6496	2.1302	2.3445	2.4244	2.4434	2.4354		
TF [7, 14]	3.7143	3.3970	3.1640	3.1715	3.1027	3.0971	2.4907	2.5882	2.6310	2.6453	2.7091	2.6751		
WSPred [14]	3.4195	3.1171	2.9515	3.0454	2.8489	2.9783	2.3020	2.4759	2.5290	2.5713	2.5890	2.6001		
CLUS [9]	3.7684	2.9131	2.3956	2.0874	1.9023	1.7986	2.9901	2.3225	1.9294	1.6990	1.5685	1.4880		
NTF [13]	3.3308	3.2532	3.2334	3.2033	3.2047	3.1773	2.3779	2.4355	2.4495	2.4454	2.4709	2.4982		
AMF [19]	1.1030	0.9728	0.9272	0.8994	0.8799	0.8667	1.5757	1.3506	1.1833	1.0622	0.9934	0.9607		

NDCG@1														
Approach			Respon	se Time			Throughput							
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%		
UMEAN [15]	0.7635	0.8428	0.8861	0.9129	0.9310	0.9445	0.8681	0.9283	0.9517	0.9642	0.9725	0.9787		
IMEAN [15]	0.7192	0.8196	0.8806	0.9097	0.9316	0.9450	0.8467	0.9100	0.9413	0.9570	0.9674	0.9747		
UPCC [15]	0.7048	0.8123	0.8733	0.9053	0.9294	0.9434	0.8467	0.9120	0.9413	0.9571	0.9663	0.9739		
IPCC [15]	0.7167	0.8181	0.8785	0.9076	0.9289	0.9437	0.8448	0.9115	0.9434	0.9589	0.9696	0.9768		
UIPCC [15]	0.7184	0.8181	0.8786	0.9078	0.9290	0.9437	0.8475	0.9124	0.9434	0.9581	0.9682	0.9755		
PMF [8, 16]	0.7640	0.8429	0.8842	0.9081	0.9240	0.9360	0.8758	0.9289	0.9468	0.9560	0.9618	0.9685		
GreedyRank [18]	0.6078	0.6583	0.6973	0.7226	0.7537	0.7736	0.7779	0.8053	0.8288	0.8449	0.8636	0.8773		
CloudRank [17]	0.6116	0.6702	0.7171	0.7540	0.7953	0.8210	0.7799	0.8138	0.8443	0.8677	0.8908	0.9066		

NDCG@5															
Approach		Response Time							Throughput						
	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%			
UMEAN [15]	0.6279	0.7536	0.8100	0.8454	0.8718	0.8924	0.7329	0.8478	0.8955	0.9221	0.9396	0.9519			
IMEAN [15]	0.6849	0.7604	0.8139	0.8486	0.8754	0.8951	0.8095	0.8582	0.8908	0.9141	0.9324	0.9456			
UPCC [15]	0.6774	0.7549	0.8075	0.8423	0.8714	0.8911	0.8142	0.8643	0.8953	0.9166	0.9321	0.9441			
IPCC [15]	0.6830	0.7613	0.8156	0.8484	0.8741	0.8938	0.8126	0.8628	0.8948	0.9185	0.9367	0.9495			
UIPCC [15]	0.6836	0.7618	0.8160	0.8486	0.8745	0.8942	0.8144	0.8650	0.8971	0.9193	0.9352	0.9471			
PMF [8, 16]	0.6679	0.7619	0.8111	0.8439	0.8688	0.8885	0.8129	0.8785	0.9079	0.9259	0.9390	0.9492			
GreedyRank [18]	0.6182	0.6499	0.6777	0.7023	0.7270	0.7469	0.7691	0.7934	0.8097	0.8241	0.8419	0.8584			
CloudRank [17]	0.6239	0.6657	0.7037	0.7407	0.7770	0.8056	0.7726	0.8041	0.8271	0.8482	0.8707	0.8869			

NDCG@10													
Approach			Respons	se Time			Throughput						
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%	
UMEAN [15]	0.5385	0.6931	0.7741	0.8197	0.8496	0.8718	0.6349	0.7789	0.8453	0.8841	0.9098	0.9280	
IMEAN [15]	0.6892	0.7504	0.7963	0.8287	0.8551	0.8754	0.7943	0.8347	0.8631	0.8854	0.9053	0.9220	
UPCC [15]	0.6847	0.7507	0.7959	0.8277	0.8538	0.8732	0.8017	0.8452	0.8756	0.8978	0.9146	0.9277	
IPCC [15]	0.6889	0.7549	0.8032	0.8337	0.8575	0.8763	0.7988	0.8411	0.8695	0.8939	0.9139	0.9296	
UIPCC [15]	0.6896	0.7560	0.8039	0.8342	0.8578	0.8768	0.8018	0.8461	0.8770	0.9000	0.9177	0.9311	
PMF [8, 16]	0.6705	0.7527	0.7960	0.8264	0.8506	0.8708	0.7976	0.8615	0.8916	0.9111	0.9261	0.9374	
GreedyRank [18]	0.6361	0.6636	0.6867	0.7083	0.7281	0.7463	0.7629	0.7860	0.8034	0.8182	0.8346	0.8510	
CloudRank [17]	0.6425	0.6800	0.7136	0.7461	0.7756	0.8016	0.7672	0.7976	0.8212	0.8415	0.8614	0.8780	

NDCG@20													
Annagah			Respon	se Time			Throughput						
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%	
UMEAN [15]	0.4446	0.5961	0.6944	0.7634	0.8133	0.8484	0.5136	0.6760	0.7636	0.8181	0.8561	0.8840	
IMEAN [15]	0.7091	0.7577	0.7943	0.8220	0.8447	0.8640	0.7839	0.8172	0.8410	0.8602	0.8764	0.8911	
UPCC [15]	0.7086	0.7633	0.8022	0.8306	0.8541	0.8719	0.7951	0.8342	0.8622	0.8837	0.9009	0.9146	
IPCC [15]	0.7108	0.7673	0.8110	0.8387	0.8593	0.8761	0.7897	0.8243	0.8494	0.8725	0.8932	0.9100	
UIPCČ [15]	0.7118	0.7682	0.8118	0.8395	0.8601	0.8767	0.7950	0.8346	0.8632	0.8851	0.9028	0.9172	
PMF [8, 16]	0.6931	0.7688	0.8080	0.8339	0.8544	0.8712	0.7908	0.8522	0.8815	0.9011	0.9156	0.9275	
GreedyRank [18]	0.6701	0.6930	0.7121	0.7288	0.7461	0.7619	0.7619	0.7840	0.8009	0.8161	0.8315	0.8480	
CloudRank [17]	0.6771	0.7092	0.7370	0.7623	0.7872	0.8093	0.7670	0.7966	0.8189	0.8381	0.8555	0.8717	

NDCG@50															
Annagah		Response Time							Throughput						
Approach	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%			
UMEAN [15]	0.3294	0.4573	0.5481	0.6176	0.6750	0.7233	0.3653	0.5115	0.6107	0.6837	0.7401	0.7844			
IMEAN [15]	0.7489	0.7853	0.8125	0.8329	0.8505	0.8656	0.7877	0.8158	0.8341	0.8492	0.8627	0.8746			
UPCC [15]	0.7498	0.7915	0.8228	0.8467	0.8665	0.8823	0.8035	0.8416	0.8660	0.8848	0.9004	0.9130			
IPCC [15]	0.7508	0.7949	0.8328	0.8578	0.8753	0.8893	0.7937	0.8233	0.8445	0.8663	0.8855	0.9015			
UIPCĆ [15]	0.7517	0.7958	0.8333	0.8583	0.8759	0.8901	0.8032	0.8414	0.8663	0.8857	0.9017	0.9147			
PMF [8, 16]	0.7312	0.7958	0.8310	0.8555	0.8740	0.8890	0.7988	0.8579	0.8864	0.9049	0.9183	0.9284			
GreedyRank [18]	0.7222	0.7403	0.7545	0.7681	0.7824	0.7955	0.7735	0.7964	0.8120	0.8295	0.8474	0.8628			
CloudRank [17]	0.7298	0.7569	0.7783	0.7978	0.8173	0.8346	0.7796	0.8096	0.8298	0.8494	0.8673	0.8817			

NDCG@100													
Approach			Respon	se Time			Throughput						
	5%	10%	15%	20%	25%	30%	5%	10%	15%	20%	25%	30%	
UMEAN [15]	0.2668	0.3823	0.4648	0.5308	0.5873	0.6362	0.2857	0.4089	0.4993	0.5716	0.6328	0.6850	
IMEAN [15]	0.7566	0.7907	0.8152	0.8342	0.8505	0.8646	0.8119	0.8351	0.8505	0.8636	0.8752	0.8857	
UPCC [15]	0.7550	0.7918	0.8192	0.8409	0.8596	0.8751	0.8317	0.8677	0.8893	0.9046	0.9169	0.9269	
IPCC [15]	0.7569	0.7940	0.8240	0.8466	0.8641	0.8789	0.8193	0.8444	0.8648	0.8852	0.9017	0.9147	
UIPCC [15]	0.7578	0.7949	0.8247	0.8473	0.8648	0.8797	0.8313	0.8674	0.8895	0.9055	0.9182	0.9284	
PMF [8, 16]	0.7409	0.7944	0.8253	0.8485	0.8666	0.8816	0.8265	0.8799	0.9055	0.9216	0.9328	0.9411	
GreedyRank [18]	0.7327	0.7497	0.7631	0.7785	0.7947	0.8099	0.8017	0.8232	0.8379	0.8567	0.8752	0.8889	
CloudRank [17]	0.7413	0.7677	0.7886	0.8085	0.8276	0.8446	0.8078	0.8355	0.8540	0.8740	0.8922	0.9053	

2. REFERENCES

- X. Chen, X. Liu, Z. Huang, and H. Sun. Regionknn: A scalable hybrid collaborative filtering algorithm for personalized web service recommendation. In Proceedings of the IEEE International Conference on Web Services (ICWS), pages 9–16, 2010.
- [2] X. Chen, Z. Zheng, Q. Yu, and M. R. Lyu. Web service recommendation via exploiting location and qos information. *IEEE Trans. Parallel Distrib. Syst.*, 25(7):1913–1924, 2014.
- [3] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 426–434, 2008.
- [4] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In *Proceedings of* the Annual Conference on Neural Information Processing Systems (NIPS), pages 556–562, 2000.
- [5] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu. An extended matrix factorization approach for qos prediction in service selection. In *Proceedings of the* 9th International Conference on Services Computing (SCC), pages 162–169, 2012.
- [6] Z. Z. J. X. Pinjia He, Jieming Zhu and M. R. Lyu. Location-based hierarchical matrix factorization for web service recommendation. In *Proceedings of the IEEE International Conference on Web Services* (ICWS), 2014.
- [7] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. In Proceedings of the 3rd International Conference on Web Search and Web Data Mining (WSDM), pages 81–90, 2010.
- [8] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Proceedings of the 21st Annual Conference on Neural Information Processing Systems (NIPS), 2007.
- [9] M. Silic, G. Delac, and S. Srbljic. Prediction of atomic web services reliability based on k-means clustering. In Proceedings of Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 70–80, 2013.

- [10] H. Sun, Z. Zheng, J. Chen, and M. R. Lyu. Personalized web service recommendation via normal recovery collaborative filtering. *IEEE T. Services* Computing, 6(4):573–579, 2013.
- [11] M. Tang, Y. Jiang, J. Liu, and X. F. Liu. Location-aware collaborative filtering for qos-based service recommendation. In Proceedings of the 19th IEEE International Conference on Web Services (ICWS), pages 202–209, 2012.
- [12] J. Wu, L. Chen, Y. Feng, Z. Zheng, M. Zhou, and Z. Wu. Predicting quality of service for selection by neighborhood-based collaborative filtering. *IEEE T. Systems, Man, and Cybernetics: Systems*, 43(2):428–439, 2013.
- [13] W. Zhang, H. Sun, X. Liu, and X. Guo. Temporal qos-aware web service recommendation via non-negative tensor factorization. In Proceedings of the 23rd International World Wide Web Conference (WWW), pages 585–596, 2014.
- [14] Y. Zhang, Z. Zheng, and M. R. Lyu. Exploring latent features for memory-based qos prediction in cloud computing. In *Proceedings of the 30th IEEE* Symposium on Reliable Distributed Systems (SRDS), pages 1–10, 2011.
- [15] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Qos-aware web service recommendation by collaborative filtering. *IEEE T. Services Computing*, 4(2):140–152, 2011.
- [16] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Collaborative web service qos prediction via neighborhood integrated matrix factorization. *IEEE T. Services Computing*, 6(3):289–299, 2013.
- [17] Z. Zheng, X. Wu, Y. Zhang, M. R. Lyu, and J. Wang. Qos ranking prediction for cloud services. *IEEE Trans. Parallel Distrib. Syst.*, 24(6):1213–1222, 2013.
- [18] Z. Zheng, Y. Zhang, and M. R. Lyu. Cloudrank: A qos-driven component ranking framework for cloud computing. In Proceedings of the 29th IEEE Symposium on Reliable Distributed Systems (SRDS), pages 184–193, 2010.
- [19] J. Zhu, P. He, Z. Zheng, and M. R. Lyu. Towards online, accurate, and scalable qos prediction for runtime service adaptation. In *Proceedings of the 34th IEEE International Conference on Distributed Computing Systems (ICDCS)*, pages 318–327, 2014.