

Software Development Project

Basic Navigation Test Analysis

Wei-Chan Hsu, Torsten Jandt, Ramesh Kumar, Danning Wang May 21, 2017

Basic Navigation Tasks

Scenario Environment

- Walls, service areas, places, arena objects
- Wall markers and floor markers
- Obstacles

Basic Navigation Tasks

Tasks

- Task Specification
 - Place
 - Orientation
 - Pause duration
- Purpose
 - Move to the places orderly
 - Finally leave the arena through the gate
- Requirement
 - Orient itself according to the orientation
 - Cover a place marker
 - Pause for the time in seconds

Perception

- Reading and processing sensor data
- Challenges
 - Sensor error
 - Sensor calibration
 - Sensor fusion
 - Interpreting markers

Mapping

- Building the map of environment
- Challenges
 - Measurement noise
 - Dynamic environment
 - High dimension
 - Barrier tape

Localization

- Calculate current position in the map
- Challenges
 - Dynamic environment
 - Motion errors
 - Similar surroundings

Path planning

- Determine a sequence of actions from start to goal position.
- Given: Map, start pose, goal pose, robot geometry
- Map: representation, update
- Types: Grid-based, Graph-based, Field-based
- Search algorithms
- Challenges: Accessibility problem, computational complexity, uncertainties, dynamic environment

Motion control

- Subtasks: Path execution and acting
- Move robot from point to point or follows a trajectory
- Input: Path commands, output: motor commands to wheels
- Odometry feedback
- Requirements: Kinematic model
- Robot kinematics influences the maneuverability and controllability.
- Challenges: System modeling complexity, system errors

KUKA youBot

The youBot is a mobile manipulator designed for education and research purposes. It comes with fully open interfaces and API.

- Omnidirectional, four-wheeled
- 5-DOF manipulator with a two-finger gripper
- On-board PC with CPU, 2GB memory, 32GB SSD drive
- Sensors: vision sensors, rangefinders

Robot Operating System (ROS)

- The Robot Operating System (ROS) is a set of software libraries and tools that help you build robot applications.
- Node: A process that uses ROS to communicate with other nodes.

- Topic: Mechanism to send messages from a node to one or more nodes.
- Topic follows a publisher-subscriber design pattern.

continue...

- Service: Mechanism for a node to send a request to another node and receive a response in return.
- Service follows a request-response design pattern.

- ROS supports two programming languages:
 - C++
 - Python

Software Modules

Complexity

System

- High complexity, but easy to maintain
- Split into several modules

Modules

- Represent ROS nodes
- Easy replaceable

Interfaces

- Specified by topic names and message types
- Modules subscribe to topics as needed

Workplan

- 1. Getting to know the youBot
- 2. Investigate state of the art
 - What is already implemented by ROS
 - What can be used
 - What needs to be implemented
- 3. Create modules
- 4. Integrate modules
- 5. Test system
- 6. Extend solution
 - Barrier tape detection