$\mathrm{CO}450$ - Combinatorial Optimization

Contents

1	Intr	roduction	2
	1.1	Overview of the Course	2
	1.2	Review of LP theory	2
		1.2.1 Duality	2

1 Introduction

1.1 Overview of the Course

Combinatorial optimization leverages tools from: combinatorics, linear programming theory and algorithms to *efficiently* solve optimization problems on discrete structures (e.g. graphs)

The course will covering the following topics:

- Spanning frees
- Max flow, Min cut
- Matroids and matroid optimization
- Matchings and related problems
- Approximation algorithms

1.2 Review of LP theory

A linear program (LP) is an optimization problem of the form:

$$\max_{s.t.} c^{\mathsf{T}} x
s.t. Ax \le b
 x \ge 0$$
(1.1)

where $x \in \mathbb{R}^n$, $A \in M_{m \times n}(\mathbb{R})$, and the objective function and constraints are linear. We must also require that:

- There are a finite number of variables and constraints
- The inequalities are non-strict

Any LP has 3 possible outcomes:

- 1. The LP is infeasible
- 2. The LP is <u>unbounded</u>, i.e. We can achieve feasible solutions of arbitrarily "good" objective value. (For Equation (1.1), this means that $\forall v \in \mathbb{R}$ there exists a feasible solution x s.t $c^{\mathsf{T}}x > v$)
- 3. The LP has an optimal solution. (For Equation (1.1), this means there is a feasible solution x^* such that $c^{\mathsf{T}}x^* \geq c^{\mathsf{T}}x \; \forall$ feasible solutions x)

Theorem 1.1: Fundamental Theorem of Linear Programming

There are only these 3 possible outcomes

1.2.1 Duality