Homework 5

Problem 1. Prove that, every edge of a r-regular graph lies on an even number of Hamilton cycles, as long as r is an odd number.

Solution. Almost the same for 3-regular grapsh.

Problem 2. Given a sequence (d_1, d_2, \dots, d_n) of positive integers (where $n \ge 1$):

- (i) There exists a tree with score (d_1, d_2, \dots, d_n) .
- (ii) $\sum_{i=1}^{n} d_i = 2n 2$.

Prove that (i) and (ii) are equivalent.

Solution.

- 1. $(i) \Rightarrow (ii)$ is obvious.
- 2. To prove $(ii) \Rightarrow (i)$:

By induction on the number n.

For n=1,2 the implication holds trivially, so let n>2. Suppose the implication holds for any n-1 long positive sequence (d_1,d_2,\ldots,d_{n-1}) with $\sum_{i=1}^{n-1} d_i = 2(n-1)-2$.

For the induction step, consider an length n positive sequence $\ell = (d_1, d_2, \dots, d_n)$ with $\sum_{i=1}^{n} d_i = 2n - 2$:

Since the sum of the d_i is smaller than 2n, there exists an i with $d_i = 1$. w.l.o.g. we assume $d_1 = 1$. With a similar argument we can also conclude that there must exist some index j such that $d_j \ge 2$. We take $k = \min\{j \mid d_j \ge 2\}$.

Now the sequence $\ell = (d_1, d_2, \dots, d_k, \dots, d_n) = (1, d_2, \dots, d_k - 1 + 1, \dots, d_n)$, we can derive a new sequence $\ell' = (d_2, \dots, d_k - 1, \dots, d_n)$. Obviously ℓ' is a n - 1 length sequence (all positive) with the summation to be 2n - 2 - 1 - 1 = 2(n - 1) - 2. Then according to the induction hypothesis, there exists a tree \mathcal{T}' which corresponds to ℓ' .

Then $\mathcal{T} = (V(\mathcal{T}') \cup \{v_1\}, E(\mathcal{T}') \cup \{v_1, v_k\})$ is the tree which witnesses the validity of the sequence ℓ .

BE CAREFUL: Why is the following 'proof' of the implication (ii) \Rightarrow (i) insufficient (or, rather, makes no sense)? We proceed by induction on n. The base case n=1 is easy to check, so let us assume that the implication holds for some $n \geq 1$. We want to prove it for n+1. If $D=(d_1,d_2,...,d_n)$ is a sequence of positive integers with $\sum_{i=1}^n d_i = 2n-2$, then we already know that there exists a tree T on n vertices with D as a score. Add another vertex v to T and connect it to any vertex of T by an edge, obtaining a tree T' on n+1 vertices. Let D' be the score of T'. We know that the number of vertices increased by 1, and the sum of degrees of vertices increased by 2 (the new vertex has degree 1 and the degree of one old vertex increased by 1). Hence the sequence D' satisfies condition (ii) and it is a score of a tree, namely of T'. This finishes the inductive step.

Problem 3. Let N_k denote the number of spanning trees of K_n in which the vertex n has degree k, k = 1, 2, ..., n - 1 (recall that we assume $V(K_n) = \{1, 2, ..., n\}$).

- *i)* Prove that $(n-1-k)N_k = k(n-1)N_{k+1}$.
- *ii)* Using i), derive $N_k = \binom{n-2}{k-1}(n-1)^{n-1-k}$.
- iii) Prove Cayley's formula from ii).

Solution.

- i) Both sides of the equality count the number of pairs spanning trees (T, T^*) , where $deg_T(n) = k$, $deg_{T^*}(n) = k + 1$, and T^* arises from T by the following operation: pick an edge $\{i, j\} \in E(T)$ with $i \neq n \neq j$, delete it, and add either the edge $\{i, n\}$ or the edge $\{j, n\}$, depending on which of these edges connects the two components of $T \{i, j\}$.
 - From one T we can get n-1-k different T^* : the number of different edges in T which are not connected to n at the beginning;
 - And one T^* can be obtained from k(n-1) different T: pick any vertex $v \in \{1, 2, ..., n-1\}$. If one deletes all edges incident to n in a spanning tree from N_{k+1} , neighbours of n (denoted by $\ell_1, \ell_2, ..., \ell_{k+1}$) will lie in exactly k+1 different components. Suppose v lies in the last component, namely C_{k+1} . Add an edge between v and some ith leaf ℓ_i ($i \in \{1, 2, ..., k\}$) of n and remove the original edge (n, ℓ_i) simultaneously, one will get a different T. In all, there are n-1 ways to pick v and k ways to pick ℓ_i .

ii)

iii) $\sum_k N_k$ happens to be the expansion of $((n-1)+1)^{n-2}$ according to the binomial theorem.