

Kool Mµ® MAX Powder Cores

Kool M μ^{\circledR} MAX is the next generation of sendust cores from Magnetics $^{\circledR}$, available in permeabilities 26 μ and 60 μ and in sizes 13.5mm OD through 134mm OD. We supercharged our low core loss Kool M μ material with 50% more DC bias for better power handling. Kool M μ MAX reduces copper cost by reducing turns needed to maintain inductance, minimizes temperature rise, and maximizes inductor output. With Kool M μ MAX you can improve inductor efficiency at a fraction of the cost of High Flux.

Material	Alloy Composition	DC Bias	Core Loss	Relative Cost	Saturation Flux Density (Tesla)	Curie Temperature	Operating Temp. Range	60µ µ flat to
XFLUX®	FeSi	Highest	High	Low	1.6	700°C	-55 to 200°C	500 kHz
High Flux	FeNi	Highest	Moderate	High	1.5	500°C	-55 to 200°C	1 MHz
75-Series	FeSiAl	High	Moderate	Low	1.5	700°C	-55 to 200°C	500 kHz
Kool Mµ® MAX	FeSiAl	High	Very Low	Medium	1.0	500°C	-55 to 200°C	900 kHz
MPP	FeNiMo	High	Very Low	Highest	0.8	460°C	-55 to 200°C	2 MHz
Kool Mµ®	FeSiAl	Moderate	Low	Low	1.0	500°C	-55 to 200°C	900 kHz
Iron Powder	Fe	Moderate	Highest	Lowest	1.2 - 1.5	770°C	-30 to 75°C	500 kHz
Ferrite	Ceramic	Low	Lowest	Lowest	0.45	100 - 250°C	Variable	Variable

Core Loss Density

$P=\alpha(B^b)(f^c)$						
a	b	С				
91.616	2.039	1.388				

Permeability vs. DC Bias

% Initial Permeability = $\frac{1}{(a+bH^c)}$							
	а	b	С				
26µ	0.01	6.10E-08	2.19				
60µ	0.01	7.69E-07	2.03				

HEADQUARTERS

110 Delta Drive Pittsburgh, PA 15238

(p) 1.412.696.1333 1.800.245.3984

magnetics@spang.com www.mag-inc.com

MAGNETICS INTERNATIONAL

13/F 1-3 Chatham Road South Tsim Sha Tsui, Kowloon, Hong Kong

(p) +852.3102.9337 +86.139.1147.1417 asiasales@spang.com www.mag-inc.com.cn