Feed Forward Neural Networks

Oct. 26. 2016 Guanlin Li

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

Warming Up

Super Marl/O

Warming Up

Show, attend, and tell

Warming Up

Differentiable Neural Computer

Task 1: Single Supporting Fact

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office. Where is Mary? A:office

Task 3: Three Supporting Facts

John picked up the apple.

John went to the office.

John went to the kitchen.

John dropped the apple.

Where was the apple before the kitchen? A:office

Task 5: Three Argument Relations

Mary gave the cake to Fred.
Fred gave the cake to Bill.
Jeff was given the milk by Bill.
Who gave the cake to Fred? A: Mary
Who did Fred give the cake to? A: Bill

Task 7: Counting

Daniel picked up the football.
Daniel dropped the football.
Daniel got the milk.
Daniel took the apple.
How many objects is Daniel holding? A: two

Task 9: Simple Negation

Sandra travelled to the office. Fred is no longer in the office. Is Fred in the office? A:no Is Sandra in the office? A:yes

Task 2: Two Supporting Facts

John is in the playground. John picked up the football. Bob went to the kitchen. Where is the football? A:playground

Task 4: Two Argument Relations

The office is north of the bedroom.

The bedroom is north of the bathroom.

The kitchen is west of the garden.

What is north of the bedroom? A: office

What is the bedroom north of? A: bathroom

Task 6: Yes/No Questions

John moved to the playground. Daniel went to the bathroom. John went back to the hallway. Is John in the playground? A:no Is Daniel in the bathroom? A:yes

Task 8: Lists/Sets

Daniel picks up the football.
Daniel drops the newspaper.
Daniel picks up the milk.
John took the apple.
What is Daniel holding? milk, football

Task 10: Indefinite Knowledge

John is either in the classroom or the playground. Sandra is in the garden. Is John in the classroom? A:maybe Is John in the office? A:no

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

- Remember: a linear binary classifier
- $a = sign(z), z = w^T x$ Vector dot vector
- a is 0 or 1, depends on the value of z

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

Architecture

What does it look like?

Architecture

How does it do computation?

- Input: $x = (x_1, ..., x_D)$
- Input Storage

+ (+,

Architecture

How does it do computation?

Forward Computation:

- pre-activation
- $z_1 = W_1 \cdot x$
- $z_i = W_i \cdot x$
- To vectorize:

•
$$z = Wx$$

Architecture

How does it do computation?

- Forward Computation:
 - activation
- $a_1 = f(z_1) = f(W_1 \cdot x)$
- $a_i = f(W_i \cdot x)$
- To vectorize:
 - f(z) = f(Wx) element-wise
 - $f(\mathbf{z}) = f(W\mathbf{x} + \mathbf{b})$

Architecture

How does it do computation?

- Forward Computation
 - Output
 - $o = f(\mathbf{W}^T \mathbf{a})$

Architecture

- General architecture
- The l-th layer
- Weight matrix from l-1 to l-th layer
- *l*-th layer Pre-activation
- l-th layer activation

Architecture

- General architecture
- Squashing/activation function

A neuron

0

Architecture

Architecture

• Why call it **Feed Forward**?

• Information/Computation W^L

• flow from bottom up

Architecture

- Why call it **Network**?
 - Function composition
 - The concept of
 - Layer & Depth

Bonus: Alternative Graphical Representations of NNs

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

Functionality

- A Universal Function Approximator
 - In English: There is a single hidden layer feedforward network that approximates any measurable function to any desired degree of accuracy on some compact set *K*.
 - In Math: For every function g in M^r , there is a compact subset K of R^r and an $f \in \Sigma^r(\Psi)$ such that for any $\epsilon > 0$ we have $\mu(K) < 1 \epsilon$ and for every $X \in K$ we have $|f(x) g(x)| < \epsilon$, regardless of Ψ, r or μ .
- Idea of the proof
 - A continuous function on a compact set can be approximated by a piecewise constant function.
 - A piecewise constant function can be represented as a neural nets.

This result can be extended to approximating a function in R^D

Functionality

- Output of a FFNN is used for prediction
 - Both regression and classification can be tackled
 - Carefully designed Output Units

Regression

Classification

Functionality

- The way to Neural Networks
- Linear in weights and features
- Draw
 decision
 boundary in
 original
 feature space

 $f(x) = w^T x$ Linear Model (LM)

- Linear in weights but nonlinear in features
- A designed new feature space for original features to be mapped to
- Fixed mapping functions designed by heuristics

- Both nonlinear in features and weights
- Learnable mapping from original feature space to new
- But nonlinearity gives nonconvexity

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

Design

 Cost/Objective function -Supervised

- The output layer
- The squashing function
- The width and depth

Design – Cost Function

- Cost(lost)/objective function Supervised (x, y)
 - Cost function proposes an optimization problem
 - It is designed according to our prior knowledge, some universal principle, e.g. Diversity/Error, Maximum Likelihood, Maximum Posterior etc
 - Different models tend to have different objectives

However, at least two ways of thinking of designing an machine learning model

Un-probabilistic

- Regression: e.g. polynomial regression
 - y = polynomial(x, w)
- Classification: e.g. linear discriminant
 - $y_i = w_i^T \boldsymbol{\phi}(\boldsymbol{x})$, *i* indexes class
 - Decision rule: which y_i is the largest

Probabilistic

- Regression & Classification
 - Instead of $f: x \to y$ directly
 - Model $y|x \sim \Pr(y|x)$
- Neural nets can approach both of them
- Probabilistic takes over mostly

Principles

Design – Cost Function

- Cost function
 - "Most modern neural networks are trained using maximum likelihood, equivalently described as cross-entropy between the training data and the model distribution. This cost function is given by: $J(\theta) = -E_{x,y \sim \hat{P}_{data}} log P_{model}(y|x)$ "
- ullet This means our model is designed to describe the conditional probability of regressed value/class label given $oldsymbol{x}$

$$\mathcal{L}(y, a^{L}; W) = -E_{x, y \sim \hat{P}_{data}} log P_{model}(y | x)$$

Design – Output Layer

Design consideration

- The functional form of f
- The unit number

Design philosophy

- Task specification
 - Regression or classification
 - The class number

Design – Output Layer

Output layer is tightly bound with the form of cost function

Design – Squashing Function

Sigmoid/Hyperbolic Tagent

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$$

1

0

• ReLU

New Concept: The problem of saturation.

(x, y)

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

Optimization Problem

- Our cost function
 - $\mathcal{L}(y, a^L; \mathbf{W})$ where a^L is function of a^{L-1} , and a^L is function of a^{L-1} ,...
- Gradient-based Learning
 - The parameters of our model: $oldsymbol{W}$
 - We should compute the gradient of the cost with respect to (w.r.t.) ${\it W}$
 - W is stratified/layer-by-layer, W^l is the l-th layer weight matrix
 - Generally we should derive: $\partial \mathcal{L}/\partial W_{ij}^l$
 - Then, we can come to Gradient Descent to learn a suitable $oldsymbol{W}$

Question: HOW?

(x, y)

Gradient Computation

- Our target: to compute $\partial \mathcal{L}(\mathbf{W})/\partial W_{ij}^l$ in analytic forms or a procedural way.
- Mathematically speaking, $\mathcal{L}: \mathbb{R}^{|W|} \to \mathbb{R}$ is a composite function, the composition could be seen as:
 - Layer-by-layer, or
 - Neuron-after-neuron
- Composite function: is the composite of some elementary functions, such as:
 - $\sin(x)$, x^p , e^x , $\log_a x$, etc.

Gradient Computation

• So let us review a basic gradient derivation of a concrete composite function.

So how we program it?

(x, y)

0

Gradient Computation

$$\bullet \ g_0 = f(x) = e^{\sin(x^2)}$$

We want to compute the specific value of the derivative given x_0

L

 W^L

 W^l

$$x_0 \qquad \frac{\partial f}{\partial x}\Big|_{x=x_0} = e^{g_{1x_0}} \cdot \cos(g_{2x_0}) \cdot 2x_0$$

- This is called Computational Graph!
- And this procedure is called **Backpropagation**.

 $\mathcal{L}(\mathbf{y}, \mathbf{a}^{L}; \mathbf{W})$ $a^{L} = f(\mathbf{z}^{L})$ $a^{l} = f(\mathbf{z}^{l-1})$

The Philosophy!

(x, y)

Computational Graph

- A Computational Graph is a way to depict function composition.
 - Node: specify elementary computation on in-edges
 - Alternative Node: store partial derivative along path
 - Directed Edge: specify computation flows and compositions.

• "we use each node in the graph to indicate a variable. The variable may be a scalar, matrix, tensor [...] we also need to introduce the idea of an operation. An operation is a simple function of one or more variables. [...] If a variable y is computed by applying an operation to a variable x, then we draw a directed edge from x to y."--- from Deep Learning book.

Computational Graph

- A Computational Graph is a way to depict function composition.
 - Node: specify elementary computation on in-edges
 - Alternative Node: store partial derivative along path
 - Directed Edge: specify computation flows and compositions.

Compute: $\frac{\partial g_3}{\partial y}$?

Computational Graph

- A Computational Graph is a way to depict function composition.
 - Node: specify elementary computation on in-edges
 - Alternative Node: store partial derivative along path
 - Directed Edge: specify computation flows and compositions.

Compute:
$$\frac{\partial g_3}{\partial y}$$
?

$$\frac{\partial g_3}{\partial y} = \frac{\partial g_3}{\partial g_1} \cdot \frac{\partial g_1}{\partial y} +$$

Computational Graph

- A Computational Graph is a way to depict function composition.
 - Node: specify elementary computation on in-edges
 - Alternative Node: store partial derivative along path
 - Directed Edge: specify computation flows and compositions.

Computational Graph

$$g_3 = f(g_1, g_2)$$

$$g_1 = p(x, y) \qquad g_2 = q(x, y)$$

$$\frac{\partial g_3}{\partial y} = \frac{\partial g_3}{\partial g_1} \cdot \frac{\partial g_1}{\partial y} + \frac{\partial g_3}{\partial g_2} \cdot \frac{\partial g_2}{\partial y}$$

$$\mathcal{L} = \mathcal{L}oss(\boldsymbol{a}^{L})$$

$$\boldsymbol{a}^{L} = f^{L}(\boldsymbol{z}^{L})$$

$$\boldsymbol{z}^{L} = W^{L}\boldsymbol{a}^{L-1}$$

$$\boldsymbol{a}_{2}^{L-1} = f^{L-1}(\boldsymbol{z}_{2}^{L-1})$$

$$\boldsymbol{z}_{2}^{L-1} = W_{2}^{L-1}\boldsymbol{a}^{L-2}$$

$$\begin{split} &\frac{\partial \mathcal{L}}{\partial W_{2j}^{L-1}} \\ &= \sum_{i} \frac{\partial \mathcal{L}}{\partial a_{i}^{L}} \cdot \frac{\partial a_{i}^{L}}{\partial z_{i}^{L}} \cdot \frac{\partial a_{i}^{L}}{\partial z_{i}^{L}} \cdot \frac{\partial z_{i}^{L}}{\partial a_{2}^{L-1}} \cdot \frac{\partial a_{2}^{L-1}}{\partial z_{2}^{L-1}} \cdot \frac{\partial a_{2}^{L-1}}{\partial W_{j}^{L-1}} \end{split}$$

Partial Derivative Chain Rule

What if we encounter:

The Partial Derivative Chain Rule:

If $p \in P$, where P is a set of paths from W_{ij}^l to the loss node \mathcal{L} , then

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^l} = \sum_{p \in P} \prod_{e=(v_2 \to v_1) \in p} \frac{\partial v_1}{\partial v_2}$$

However, this still proposes a problem:

 Computation grows exponentially while the linear growth of layer number.

Can we use a method to reduce computation cost?

- Divide and conquer?
- Dynamic programming?

Backpropagation

• Let us consider the value of $\frac{\partial \mathcal{L}}{\partial z_i^l} (\frac{\partial \mathcal{L}}{\partial z^l})$

• Recall we are targeting on computing $\frac{\partial \mathcal{L}}{\partial W_{ij}^l}$,

• which could be written as $\frac{\partial \mathcal{L}}{\partial \mathbf{z}_i^l} \cdot \frac{\partial z_i^l}{\partial w_{ij}^l}$

• Suppose when we compute the l-th layer, we have $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{l+1}}$, which is a D^{l+1} dimensional vector

 let us see whether computing can be recursive.

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{z}_{i}^{l}} = \left(\sum_{j=1}^{D^{l+1}} \frac{\partial \mathcal{L}}{\partial \boldsymbol{z}_{j}^{l+1}} \cdot \frac{\partial \boldsymbol{z}_{j}^{l+1}}{\partial \boldsymbol{a}_{i}^{l}} \right) \frac{d\boldsymbol{a}_{i}^{l}}{d\boldsymbol{z}_{i}^{l}}$$

Backpropagation

- Let us consider the value of $\frac{\partial \mathcal{L}}{\partial z_i^l} \left(\frac{\partial \mathcal{L}}{\partial z^l} \right)$
- Recall we are targeting on computing $\frac{\partial \mathcal{L}}{\partial w_{ii}^l}$,
 - which could be written as $\frac{\partial \mathcal{L}}{\partial z_i^l} \cdot \frac{\partial z_i^l}{\partial w_{ij}^l}$
- Suppose when we compute the l-th layer, we have $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{l+1}}$, which is a D^{l+1} dimensional vector
 - let us see whether computing can be recursive.
- This eases the computation of $\frac{\partial \mathcal{L}}{\partial z^l}$ by:

•
$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^l} = (\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{l+1}} \cdot W^{l+1}) \odot \operatorname{diag}(\nabla_{\mathbf{z}^l} \mathbf{a}^l)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{z}_{i}^{l}} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{z}^{l+1}} \cdot W_{\cdot i}^{l+1} \frac{d\boldsymbol{a}_{i}^{l}}{d\boldsymbol{z}_{i}^{l}}$$

Backpropagation

Algorithm: The Backpropagation

Input: A symbolic representation of a the function described by the network, Weights W^l for each layer ##Forward Computation##

If given the input x

Set
$$z^0 = x$$

For
$$l = 1$$
 to L

Compute
$$z^l = W^l z^{l-1}$$
, $a^l = f(z^l)$

End For

##Backward Computation ##

For
$$l = L$$
 to 1

If
$$l = L$$

Compute $\eth^L = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^L}$ and store in each unit of layer L

Else

Compute
$$\check{\partial}^{l} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{l}} = (\check{\partial}^{l+1} \cdot W^{l+1^{T}}) \odot diag(\nabla_{\mathbf{z}^{l}} \mathbf{a}^{l})$$
And compute $\frac{\partial \mathcal{L}}{\partial \mathcal{L}} = \check{\partial}^{l} \cdot \mathbf{a}^{l}$

And compute
$$\frac{\partial \mathcal{L}}{\partial W_{i,i}^l} = \eth_i^l \cdot \boldsymbol{a}_j^l$$

End For

Matrix Form

- Theorem:
 - For a vector function $f: \mathbb{R}^{V^l} \to \mathbb{R}^{V^{l+1}}$, that is $a^{l+1} = f(a^l)$, we have the Jacobian matrix of f w.r.t. a^l , as:

$$\bullet \ Jacob\left(\frac{\partial a^{l+1}}{\partial a^{l}}\right) = \begin{bmatrix} \frac{\partial a_{1}^{l+1}}{\partial a_{1}^{l}} & \cdots & \frac{\partial a_{1}^{l+1}}{\partial a_{V^{l}}^{l}} \\ \vdots & \ddots & \vdots \\ \frac{\partial a_{V^{l+1}}^{l+1}}{\partial a_{1}^{l}} & \cdots & \frac{\partial a_{V^{l+1}}^{l+1}}{\partial a_{V^{l}}^{l}} \end{bmatrix}$$

- If vector function $f^{l+1}: \mathbb{R}^{V^l} \to \mathbb{R}^{V^{l+1}}$, that is $a^{l+1} = f(a^l)$; and we also have $f^{l+2}: \mathbb{R}^{V^{l+1}} \to \mathbb{R}^{V^{l+2}}$, that is $a^{l+2} = f(a^{l+1})$, the Jacobian matrix of f^{l+2} w.r.t. a^l is:
 - $Jacob\left(\frac{\partial a^{l+2}}{\partial a^{l+1}}\right) \cdot Jacob\left(\frac{\partial a^{l+1}}{\partial a^{l}}\right)$

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

Regularization

What and Why?

- Regularization: is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error.
 - E.g. Weight decay. $-logp(y|x,W) + ||W||_2$
- The concept of capacity!

(x, y)

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

Regularization

Dropout

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

Regularization

Early Stopping

• Intuition: U-shape curve

- The idea of early stopping is very simple and heuristic.
 - We split our dataset into training and validation set.
 - While doing gradient descent on training set, we keep an eye on the validation set error.
 - We choose to have a patience: how many times the validation set error start to rise instead of steadily falling down.
 - Each time of validation set error rising we store parameters value at that time.
 - We stop while reach our patience.

(x, y)

Outline

- Warming Up
- Building Blocks of A Neural Network
 - Architecture
 - Functionality
 - Design
- Back Propagation: A Nice Explanation
 - Matrix Form, Computational Graph
- Regularization
 - Early stop
 - Dropout
- Optimization Tips
- Distilling the Book

Optimization Tips

Stochastic Gradient Descent

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k **Require:** Initial parameter $\boldsymbol{\theta}$

While stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, ..., x^{(N)}\}$ with corresponding $y^{(i)}$ s Compute gradient estimate:

$$\widehat{\boldsymbol{g}} \leftarrow + \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} \mathcal{L}(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

Apply update:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$$

End While

- Why stochastic? Not on the whole batch? Why call it gradient estimate?
 - Computation tradeoff
- We could prove that with Large Number Theory
 - The expected value of gradient from stochastic minibatch sample equals the averaged real gradient over the whole batch

Optimization Tips

Stochastic Gradient Descent

- In every optimization algorithm the hyperparameters are under our consideration of selection.
- The minibatch size:

ch of m example t estimate:

• And the learning rate:

: Learning rate ϵ_k : Initial parameter $oldsymbol{ heta}$

Optimization Tips

Adaptive Learning Rate

Bonus!

Zoo of Neural Networks

Nothing here.

$$E = u_1 * u_2$$

$$u_1 = x + y$$

$$u_2 = x - y$$

$$\frac{\partial E}{\partial x} = \frac{\partial E}{\partial u_1} \frac{\partial u_1}{\partial x} + \frac{\partial E}{\partial u_2} \frac{\partial u_2}{\partial x}$$

$$E = f(g_1, ..., g_m)$$

$$g_i = f_i(x, y)$$

$$\frac{\partial E}{\partial x} = \sum_i \frac{\partial E}{\partial g_i} \frac{\partial g_i}{\partial x}$$