Systèmes à base de règles en logique des propositions

Sémantique logique

ML Mugnier

Rappels de logique des propositions

Soit *K* un ensemble de formules

Interprétation: application {symboles de K} \rightarrow {vrai,faux}

« monde complètement connu »

Modèle de K: interprétation qui rend K vraie (ou : « qui satisfait K ») c'est-à-dire qui rend vraie chaque formule de K

K

- 1. $A \rightarrow C$
- 2. A V ¬B
- 3. ¬C → B

 2^3 interprétations de {A,B,C}, dont 3 sont des modèles de K

Une formule f est conséquence logique de K si tout modèle de K est un modèle de f

On note ceci $K \models f$

 $K \models C, K \not\models A, K \not\models \neg A, K \not\models B, K \not\models \neg B$

Exemple: un tigre ou une princesse?

[Exemple modifié!]

tigre_i: il y a un tigre dans la cellule i

a_i: ce que dit l'affiche i

princesse; : il y a une princesse dans la cellule i

- Dans chacune des 2 cellules il y a soit un tigre soit une princesse
- Sur la 1ère cellule, l'affiche dit :
 - « Il y a un tigre dans cette cellule et une princesse dans l'autre »
- Sur la 2^{ème} cellule, l'affiche dit :
 - « Il y a une princesse »
- Le roi ajoute : « L'une des affiche dit la vérité, l'autre ment ».

Symboles = { tigre1, princesse1, tigre2, princesse2, a1, a2 }

F1 : tigre1 ↔ ¬princesse1

F2 : tigre2 ↔ ¬princesse2

F3 : a1 ↔ tigre1 ∧ princesse2

F4 : a2 ↔ princesse1 V princesse2

F5 : (a1 ∧ ¬a2) V (a2 ∧ ¬a1)

K = {F1, ..., F5}

Que peut-on conclure de K?

Il y a 1 seul modèle de K

On a : $K \models princesse1$ et $K \models \neg princesse2$

Règles positives : que calcule exactement le chaînage avant ?

$$K = \{A, B\}$$

$$BF^* = \{A,B,C,D\}$$

- 1. $A \rightarrow C$
- 2. $B \wedge C \rightarrow D$
- 3. $E \rightarrow F$

Quels sont les modèles de K?

3 modèles (selon les valeurs de E et F)

K décrit un monde partiellement connu

Un modèle de K correspond à un monde complètement connu « qui étend » celui décrit par K

Si on suppose que les connaissances de *K* sont **vraies**, BF* contient les symboles qui sont **forcément vrais**

BF* contient tous les symboles qui sont vrais dans tous les modèles de K

BF* peut aussi être vue comme un modèle de K

BF =
$$\{A, B\}$$

1. $A \rightarrow C$
2. $B \land C \rightarrow D$
3. $E \rightarrow F$

À BF* on peut associer une **interprétation I** qui rend vrai les symboles de BF* et faux les autres **Cette interprétation est-elle un modèle de K**?

- I est bien un modèle de BF car BF ⊆ BF*
- I est bien un modèle de BR :

en effet, si I n'est pas un modèle d'une règle R : H → C, c'est que I rend H vrai mais C faux ;

puisque H ⊆ BF*, R serait donc applicable mais non appliquée

Ceci contredit le fait que BF* est la base de faits saturée

BF* peut aussi être vue comme un modèle de K (suite)

À BF* on peut associer une **interprétation I** qui rend vrai les symboles de BF* et faux les autres **On obtient un modèle de K**

De plus, ce modèle est **minimal** (on dit aussi : c'est un plus petit modèle), au sens où ce n'est plus un modèle si on passe un symbole de vrai à faux

BF = {A, B}

1.
$$A \rightarrow C$$
2. $B \land C \rightarrow D$
3. $E \rightarrow F$

Quel rapport avec la conséquence logique ?

K BF =
$$\{A, B\}$$

- 1. $A \rightarrow C$
- 2. $B \wedge C \rightarrow D$
- 3. $E \rightarrow F$

$$BF^* = \{A,B,C,D\}$$

On veut savoir ce qui « découle » de K

$$K \models S$$
: « S est conséquence logique de K » tout modèle de K est un modèle de S

Trois cas possibles:

- Si *K* **⊨** *S*, S est vrai
- Si $K \models \neg S$, S est faux
- Sinon ($K \not\models S$ et $K \not\models \neg S$), la valeur de S est inconnue

 $K \models \neg S$ est-ce possible ??

Propriété (que l'on va montrer) :

Pour tout symbole S, K ⊨ S si et seulement si S ∈ BF*

Adéquation du chaînage avant (avec des règles positives)

Pour tout symbole S, $si S \in BF^*$ alors $K \models S$

Autrement dit : $K = BF^*$

<u>Idée</u>: à chaque étape d'application de règle, on applique le modus ponens:
 à partir de H et de (H → C) on conclut C »

Preuve : par récurrence sur le nombre d'applications de règles produisant BF*

On note $\mathbf{BF_i}$ la base de faits obtenue après i applications de règles. On montre que pour tout i ≥ 0 , on a la propriété : $\mathbf{K} \models \mathbf{BF_i}$

- Pour i = 0 : $BF_0 = BF$, donc $K \models BF_0$
- Supposons que la propriété soit vraie pour i ≤ n
 BF_{n+1} = BF_n U {C} où C est produit par une règle R: H → C

Puisque $H \subseteq BF_n$, on a $K \models H$ par hypothèse de récurrence De plus $K \models R$. On a donc $K \models H$, $H \rightarrow C$. Donc $K \models C$

Complétude du chaînage avant (avec des règles positives)

Pour tout symbole S, **si** $K \models S$ **alors** $S \in BF^*$

Preuve : Supposons que K ⊨ S c'est-à-dire que **tout** modèle de K est un modèle de S

Prenons I le modèle de K qui correspond à BF* : pour tout symbole A, I(A) = vrai ssi A ∈ BF*

Puisque I est un modèle de K et que $K \models S$, on a I(S) = vrai

Or, par définition de I, $I(S) = vrai ssi S \in BF^*$.

Donc S ∈ BF*

Si on a des littéraux et pas seulement des atomes

K BF =
$$\{A, \neg B\}$$

- 1. $A \land \neg C \rightarrow D$
- 2. $\neg B \rightarrow \neg C$
- 3. $\neg D \rightarrow E$

$$BF^* = \{A, \neg B, \neg C, D\}$$

Remarque : K peut être **insatisfiable** (ou : inconsistante) :

BF =
$$\{A,B\}$$

BR = $\{B \rightarrow \neg A ; C \rightarrow D\}$
BF* = $\{A,B,\neg A\}$

Puisque K n'a aucun modèle, tout est conséquence de K

De K (satisfiable), peut-on inférer la valeur de vérité d'un symbole S ?

- Si $K \models S$, S est vrai
- Si K $\models \neg S$, S est faux
- Sinon, la valeur de S est inconnue

Propriété qu'on voudrait (pour K satisfiable) :

pour tout littéral S, K ⊨ S ssi S ∈ BF*

Si on a des littéraux et pas seulement des atomes

Propriété qu'on voudrait (pour K satisfiable) :

FAUX

pour tout littéral S, K ⊨ S ssi S ∈ BF*

K BF = {A, ¬B}
1. A
$$\wedge$$
 C \rightarrow D
2. A \wedge ¬C \rightarrow D

Le chainage avant n'est pas complet

K a 2 modèles Dans ces 2 modèles, D est vrai Donc K ⊨ D et pourtant D ∉ BF*

Adéquation et complétude

Un mécanisme de chaînage avant / arrière est

 adéquat (ou correct) : s'il ne produit que des conséquences de K
 Pour tout littéral A,
 si A ∈ BF* alors K ⊨ A (pour le chaînage avant)
 si A est prouvé alors K ⊨ A (pour le chaînage arrière)

 complet : s'il produit toutes les conséquences de K
 Pour tout littéral A,
 si K ⊨ A alors A ∈ BF* (pour le chaînage avant)
 si K ⊨ A alors A est prouvé (pour le chaînage arrière)

Résultats d'adéquation et complétude

- BF = {atomes} et BR = {règles conjonctives **positives**} : adéquation **et** complétude
- BR = {règles conjonctives (pas forcément positives)} : adéquation mais pas complétude
 - même si (BF,BR) satisfiable
 - même si BF ne contient que des atomes

$$BF = \{A\}$$

- 1. $A \wedge C \rightarrow D$
- 2. A $\wedge \neg C \rightarrow D$

Complexité du raisonnement en logique des propositions

Problème « inférence d'un atome » :

Données : une formule \mathcal{F} , un atome (symbole) A

Question: a-t-on $\mathcal{F} \models A$?

- Si \mathcal{F} est une formule propositionnelle quelconque, ou une conjonction de clauses (CNF), ce problème est co-NP-complet ($\mathcal{F} \nvDash A$ est NP-complet)
- Si \mathcal{T} est une base de connaissances avec des règles conjonctives positives : le problème devient polynomial (et même linéaire en la taille de \mathcal{T}) puisque le chaînage avant (ou arrière) est adéquat et complet
- Si $\mathcal F$ est une base de connaissances avec des règles conjonctives (avec littéraux) : le problème est aussi difficile que si $\mathcal F$ était une CNF car toute CNF peut être vue comme une base de connaissances (BF, BR) où BF est éventuellement vide

Donc ...

Puisque le chaînage avant est incomplet pour les règles avec négation

n'est-il donc utilisable que sur des règles positives ?

Cela dépend de quelle négation on parle!

Ceci est lié à deux façons de voir les connaissances représentées :

- Hypothèse du monde ouvert
- Hypothèse du monde clos

Deux visions de la connaissance représentée

Hypothèse du monde clos (Closed World Assumption)

On suppose qu'on a une connaissance complète de la réalité représentée

Exemple : liste des formations offertes par l'université

=> si une formation est absente cette liste, c'est qu'elle n'est pas offerte par l'université

Hypothèse du monde ouvert (Open World Assumption)

On suppose qu'on a une connaissance incomplète de la réalité représentée

Exemple : liste des témoins d'un accident

- ⇒ si quelqu'un n'est pas dans cette liste, ça ne veut pas forcément dire qu'il n'a pas été témoin
- ⇒ pour affirmer que ce n'est pas un témoin, il faut le prouver

Hypothèse du monde ouvert

La base de connaissances décrit une réalité qu'on ne connait que partiellement

Si une information ne « découle » pas de la base de connaissance, ça ne veut pas dire qu'elle est fausse : elle est inconnue

Ceci correspond à la conséquence logique classique : on considère tous les mondes possibles compatibles avec la base de connaissances, c'est-à-dire tous ses modèles

$$BF = \{A, \neg B\} \text{ et } BR = \{B \rightarrow C\}$$

$$K \models A, K \models \neg B$$
 et on ne sait rien sur C

BF = {A} et BR = {
$$B \rightarrow C$$
; $\neg B \rightarrow C$ }

$$K \models A, K \models C$$
 et on ne sait rien sur B

Hypothèse du monde clos

La base de connaissances décrit une réalité complètement connue

Une information est considérée comme fausse si rien n'indique (on ne peut pas prouver) qu'elle est vraie

$$BF = \{A, \neg B\} \text{ et } BR = \{B \rightarrow C\}$$

Poser ¬B dans BF n'a pas de sens ici

$$\mathsf{BF} = \{\mathsf{A}\} \qquad \text{et } \mathsf{BR} = \{\mathsf{B} \to \mathsf{C}\}$$

A est vrai, B et C sont faux (car rien n'indique qu'ils sont vrais)

$$\mathsf{BF} = \{\mathsf{A}\} \; \mathsf{et} \; \mathsf{BR} = \{\; \mathsf{B} \to \mathsf{C}; \; \neg \mathsf{B} \to \mathsf{C}\}$$

A est vrai, rien n'indique que B est vrai donc B est faux, donc C est vrai

Par la suite, not désignera la négation du monde clos, ou négation par l'échec, par défaut

¬A est vrai si on a une preuve de ¬A

not A est vrai si on n'a pas de preuve de A