Agentification de modèles économiques

Bruno BEAUFILS

bruno.beaufils@univ-lille1.fr
http://www.lifl.fr/~beaufils

11 octobre 2013 ⊚⊕§⊚ cc-by-nc-sa

Présentation

Biaisée (informaticien)

- ▶ Intelligence Artificiellemimer les humains
- ▶ Ingénierieconstruire des outils
- Aucune confiance dans le continu
- Aucune confiance dans l'individu moyen/représentation

Incomplète

- Liste des points importants selon moi
- Ébauche d'une approche méthodologique
- Vue très superficielle (pas trop technique)

Introductive

Démarrer la discution

MAGÉCO: Modèles AGents en ÉCOnomie

Économie

Considère l'«homo economicus»

rationnel et omniscient

- Modélise par l'individu moyen/représentatif
- Utilise les mathématiques pour démontrer
- Adopte un point de vue macroscopique

Agents

- Autonomes
- Multiples
 Plusieurs agents qui interagissent
- Utilise les calculs pour argumenter
 - Simulationscomportements vs numérique
 - ► Calculs décentralisésasynchrone

Approche Multi-Agents vs Traditionnelle

discret	VS	continu
hétérogène	VS	homogène
distribué	VS	centralisé
expliquer	VS	prédire
bottom-up	VS	top-down
centré individu	VS	centré population

- Pourquoi agentifier?
- Comment agentifier?

Approche Multi-Agents vs *Traditionnelle*

discret	VS	continu
hétérogène	VS	homogène
distribué	VS	centralisé
expliquer	VS	prédire
bottom-up	VS	top-down
centré individu	VS	centré population

- Pourquoi agentifier?
- Comment agentifier?

1. Observer la situation pour déterminer

- les (catégories) d'agents
- l'environnement

2. Modéliser les agents (les catégories)

- ► connaissances (informations)
- vision (relations avec les autres agents,
- actions possibles, processus de décisions
- paramètres

Implémenter

- choisir un outil
- déléguer?

4. Valider

Vérifier le comportement avec des jeux de paramètres simples

5. Jouer et publier

1. Observer la situation pour déterminer

- les (catégories) d'agents
- l'environnement

2. Modéliser les agents (les catégories)

- connaissances (informations)
- vision (relations avec les autres agents)
- actions possibles, processus de décisions
- paramètres

Implémenter

- choisir un outil
- ▶ déléguer ?

4. Valider

Vérifier le comportement avec des jeux de paramètres simples

5. Jouer et publier

1. Observer la situation pour déterminer

- les (catégories) d'agents
- l'environnement

2. Modéliser les agents (les catégories)

- connaissances (informations)
- vision (relations avec les autres agents)
- actions possibles, processus de décisions
- paramètres

3. Implémenter

- choisir un outil
- déléguer?

4. Valider

Vérifier le comportement avec des jeux de paramètres simples

5. Jouer et publier

1. Observer la situation pour déterminer

- les (catégories) d'agents
- l'environnement

2. Modéliser les agents (les catégories)

- connaissances (informations)
- vision (relations avec les autres agents)
- actions possibles, processus de décisions
- paramètres

3. Implémenter

- choisir un outil
- déléguer?

4. Valider

Vérifier le comportement avec des jeux de paramètres simples

5. Jouer et publier

1. Observer la situation pour déterminer

- les (catégories) d'agents
- l'environnement

2. Modéliser les agents (les catégories)

- connaissances (informations)
- vision (relations avec les autres agents)
- actions possibles, processus de décisions
- paramètres

3. Implémenter

- choisir un outil
- déléguer?

4. Valider

Vérifier le comportement avec des jeux de paramètres simples

5. Jouer et publier

Exemple: marché financier

Modèle générique

Implémentation

Points importants

Modèles agents

- rôles
- interactions
- gestion du temps

Limites de l'informatique

- calculs réels faux (souvent très faux)
- aléatoire inexistant (générateur pseudo aléatoire)

Choix des outils

Développement ad-hoc

L'informatique comme les mathématiques doit s'apprendre avant d'être utilisée

Plateformes adaptées existantes

Netlogo, Repast, Atom, etc.

Penser aux observations

- que doit-on observer? comment?
- outillage intégré, séparé

Liens

SMAC

http://www.lifl.fr/SMAC

► IODA
Interaction-Oriented Design of Agents simulations

http://www.lifl.fr/SMAC/projects/ioda

ATOM ArTificial Open Market

http://atom.univ-lille1.fr

Publication du modèle

UML for ABM par Hughes BERSINI

http://jasss.soc.surrey.ac.uk/15/1/9.html

Crédits

- Cette présentation et son code source sont mises à disposition selon les termes de la Licence Creative Commons Attribution - Pas d'Utilisation Commerciale -Partage dans les Mêmes Conditions 3.0 France @①⑤.
- La présentation au format PDF est disponible à http://bruno.boulgour.com/talks/2013-10-11-mageco
- ► Le code source LaTeX de la présentation est disponible à https://github.com/b3/talks-20131011-mageco
- La dernière modification de ce document a eu lieu le 7 février 2014 à 23h38