DIMENSION FINIE

BASE

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Bases d'un espace vectoriel

Définition 1 Soient E un \mathbb{K} -espace vectoriel, $n \in \mathbb{N}^*$ et $\{x_1, x_2, ..., x_n\}$ une famille de vecteurs de E. On dit que la famille $\{x_1, x_2, ..., x_n\}$ est une **base** de E si c'est une famille libre et génératrice de E.

Théorème 1 (Caractérisation d'une base) Soient E un \mathbb{K} -espace vectoriel, $n \in \mathbb{N}^*$ et $\{x_1, x_2, ..., x_n\}$ une famille de vecteurs de E. $\mathcal{B} = \{x_1, x_2, ..., x_n\}$ est une base de E si et seulement si

$$\forall x \in E, \exists! (\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbb{K}^n : x = \sum_{i=1}^n \lambda_i x_i.$$

Les scalaires $\lambda_i, \ i \in \{1, 2, ..., n\}$ s'appellent **coordonnées** du vecteur x dans la base \mathcal{B} .

2 Existence d'une base

Théorème 2 Tout \mathbb{K} -espace vectoriel E non réduit à $\{0\}$ admet au moins une base.

Théorème 3 (**Théorème de la base incomplète**) Soit E un \mathbb{K} -espace vectoriel admettant une famille génératrice finie. Alors :

- 1. De toute famille génératrice de E, on peut extraire une base de E.
- 2. Toute famille libre de E peut être complétée en une base de E.

3 Exemples

est une base. On l'appelle base canonique de \mathbb{R}^n .

Définition 3 Dans $\mathbb{R}_n[X]$, la famille $(1, X, ..., X^n)$ est une base. On l'appelle base canonique de $\mathbb{R}_n[X]$.