Vecteurs et Courbes

Contrôle - correction

Exercice 1

On donne deux points A(3,1) et P(0,2) ainsi qu'un vecteur $\vec{v}(-2,-1)$

- 1. Dessiner la droite \mathcal{D} passant par A et de vecteur directeur \vec{v}
- 2. Trouver un système d'équations paramétriques décrivant \mathcal{D}
- 3. Trouver un vecteur normal à \mathcal{D}
- 4. Trouver une équation cartésienne de \mathcal{D}
- 5. Est-ce que le point M(200, 100) est sur la droite? Sinon se trouve-t-il du même coté que P?

Solution:

1. Dessin de la droite

- 2. Un point N(x, y) de la droite vérifie l'équation vectorielle $N = A + t\vec{v}$, soit $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ -1 \end{pmatrix}$ d'où le système $\begin{cases} x = 3 2t \\ y = 1 t \end{cases}$
- 3. Il suffit de prendre un vecteur orthogonal à \vec{v} , c'est-à-dire un vecteur \vec{n} dont le produit scalaire avec \vec{v} est égal à 0. Par exemple $\vec{n} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \begin{pmatrix} <\vec{n}, \vec{v}> = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \begin{pmatrix} -2 \\ -1 \end{pmatrix} = (-1) \times (-2) + 2 \times (-1) = 0 \end{pmatrix}$
- 4. On peut trouver une équation cartésienne en posant justement qu'un point N(x,y) de la droite vérifie l'équation vectorielle $\langle \overrightarrow{AN}, \overrightarrow{n} \rangle = 0$ $\left(\overrightarrow{AN} \perp \overrightarrow{n}\right)$

Or
$$\overrightarrow{AN} = \begin{pmatrix} x-3 \\ y-1 \end{pmatrix}$$
 donc $\langle \overrightarrow{AN}, \overrightarrow{n} \rangle = \begin{pmatrix} x-3 \\ y-1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = -(x-3) + 2(y-1) = \boxed{-x+2y+1=0}$

5. On remplace dans cette dernière équation x et y par les coordonnées de $M: -200+2\times 100+1=1\neq 0$ donc M n'est pas sur la droite. Pour savoir de quel côté de la droite M se trouve on remarque que $-200+2\times 100+1$ est le produit scalaire $<\overrightarrow{AM}, \overrightarrow{n}>$ et qu'il est positif =1.

Reste à calculer le produit scalaire $\langle \overrightarrow{AP}, \overrightarrow{n} \rangle = \begin{pmatrix} -3 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 5.$

Les deux produits scalaires étant de même signe, les points M et P sont du même côté de la droite.

Exercice 2

Parmi les équations paramétriques suivantes il y en a deux qui représentent la courbe de Bézier ci-contre.

On ne demande pas ici de calculer les équations à partir des données mais plutôt de procéder par élimination, en étudiant les valeurs des fonctions et de leur dérivée en t=0 et t=1.

$$Q_1 = \begin{pmatrix} 3 - 2t - t^2 \\ 2 - 4t + 3t^2 \end{pmatrix} \qquad Q_2 = \begin{pmatrix} 2t(3 - 2t) \\ -3t^2 + 2t + 1 \end{pmatrix}$$

$$Q_3 = \begin{pmatrix} 2(1+t-2t^2) \\ t(4-3t) \end{pmatrix} \qquad Q_4 = \begin{pmatrix} t(4-t) \\ 1-2t+3t^2 \end{pmatrix}$$

$$Q_5 = \begin{pmatrix} 2(1-t^2) \\ t(2t-1) \end{pmatrix} \qquad Q_6 = \begin{pmatrix} t(3-t) \\ 1-3t+2t^2 \end{pmatrix}$$

Solution:			
courbe	t=0	t=1	conclusion
$Q_1(t) =$	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	NON, car la courbe ne passe pas par $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
$Q_2(t) =$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	conviendrait. $Q_2(0) = A$ et $Q_2(1) = C$
l		L	Il faut regarder la dérivée pour avoir les tangentes à la courbe.
$Q_2'(t) = \begin{pmatrix} 6 - 8t \\ -6t + 1 \end{pmatrix}$	$\binom{6}{2}$	$\begin{pmatrix} -2 \\ -4 \end{pmatrix}$	OUI, $\binom{6}{2}$ est colinéaire à \overrightarrow{AB} et $\binom{-2}{-4}$ est colinéaire à \overrightarrow{BC} .
			sens de parcours : $A \to C$
$Q_3(t) =$	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	conviendrait. $Q_3(0) = C$ et $Q_3(1) = A$
$Q_3'(t) = \begin{pmatrix} -4t \\ 4t - 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -4\\3 \end{pmatrix}$	NON, ne convient pas car mauvaise tangente en ${\cal C}$
$Q_4(t) =$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\binom{3}{2}$	NON, la courbe ne passe pas par $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
$Q_5(t) =$	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	conviendrait. $Q_5(0) = C$ et $Q_5(1) = A$
$Q_5'(t) = \begin{pmatrix} 2 - 8t \\ 4 - 6t \end{pmatrix}$	$\begin{pmatrix} 2\\4 \end{pmatrix}$	$\begin{pmatrix} -6 \\ -2 \end{pmatrix}$	OUI, $\binom{2}{4}$ est colinéaire à \overrightarrow{CB} et $\binom{-6}{-2}$ est colinéaire à \overrightarrow{BA} sens de parcours $C \to A$
	(0)	(2)	sens de parcours 0 -7 A
$Q_6(t) =$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	conviendrait. $Q_6(0) = A$ et $Q_6(1) = C$
$Q'6(t) = \begin{pmatrix} 3 - 2t \\ -3 + 4t \end{pmatrix}$	$\begin{pmatrix} 3 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	NON, les tangentes ne correspondent pas.

Exercice 3

On donne la courbe paramétrée Q définie pour $t \in [0,1]$ par

$$\left\{ \begin{array}{ccc} Q: & [0,1] & \longrightarrow & \mathbb{R}^2 \\ & t & \longmapsto & Q(t) = \begin{pmatrix} 1-t^2 \\ 4t(1-t) \end{pmatrix} \right.$$

- 1. Calculer $Q(0), Q(\frac{1}{2})$ et Q(1)
- 2. Calculer Q'(t) puis $Q'(0),Q'(\frac{1}{2})$ et Q'(1)
- 3. A l'aide des résultats précédents, tracer la courbe sur le graphe ci-dessous.(Attention chaque carreau est de longueur $\frac{1}{4}$). Indiquer un vecteur tangent en Q(1).

Solution:

1.
$$Q(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, Q(\frac{1}{2}) = \begin{pmatrix} \frac{3}{4} \\ 1 \end{pmatrix}$$
 et $Q(1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

2.
$$Q'(t) = \begin{pmatrix} -2t \\ 4 - 8t \end{pmatrix}$$
$$Q'(0) = \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \ Q'(\frac{1}{2}) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
$$\text{et } Q'(1) = \begin{pmatrix} -2 \\ -4 \end{pmatrix}$$

3. Un vecteur tangent en Q(1) est donné par un vecteur colinéaire à Q'(1), par exemple $\begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix}$ dessiné en bleu sur le graphique.