Processus Stochastiques

Olivier DULCY

Chapitre 1

Théorème de Kolmogorov

 $\mathcal{B}(\mathcal{R}^d)$ désigne la tribu borélienne de \mathcal{R}^d .

1.1 Rappels de probabilités

Définition 1.1.1 Un processus stochastique X est la donnée de l'ensemble défini par $\{X_t; 0 \le t < +\infty\}$, où à t fixé, X_t est une variable aléatoire définie sur (Ω, \mathcal{F}) à valeurs dans $(\mathcal{R}^d, \mathcal{B}(\mathcal{R}^d))$.

 $\mathbf{Remarque}:$ On voit bien que t peut prendre un ensemble \mathbf{infini} de valeurs.

Chapitre 2

Mouvement brownien et calcul différentiel stochastique

2.1 Mouvement brownien

Définition: Soit X un mouvement brownien. On dit que le mouvement est de Markov si $\forall t_1, \ldots, t_n, p(x_{t_n}|x_{t_1}, \ldots, x_{t_n}) = p(x_n|x_{t_{n-1}}).$

Propriété : $p(b|a) \sim \mathcal{N}(m_b + C^T A^{-1}(a - m_a), B - C^T A^{-1}C)$ où $\begin{pmatrix} A & C \\ C^T & B \end{pmatrix}$

Question 1: Montrer que $p(x_{t_n}|x_{t_{n-1}},x_{t_{n-2}}) = p(x_{t_n}|x_{t_{n-1}})$

Remarque : Cela veut dire que $p(u|v,w) = p(u|v) \Leftrightarrow p(u,w|v) = p(u|v)p(w|v)$

Montrons alors que $p(x_{t_n}, x_{t_{n-2}}|x_{t_{n-1}}) = p(x_{t_n}|x_{t_{n-1}})p(x_{t_{n-2}}|x_{t_{n-1}})$

On remplit la matrice de covariance. Pour chaque coefficient, « coeff = inf(indice1, indice2) ». On place les coefficients de manière « intelligente » : on veut la matrice avec les entêtes $X_{t_{n-2}}$ et X_{t_n} . Ce qui donne (écrire $X_{t_{n-2}}X_{t_n}X_{t_{n-1}}$ au dessus de la matrice et sur le côté gauche) :

$$\begin{pmatrix} t_{n-2} & t_{n-2} & t_{n-2} \\ t_{n-2} & t_n & t_{n-1} \\ t_{n-2} & t_{n-1} & t_{n-1} \end{pmatrix}$$

Ainsi, $p(x_{t_n}, x_{t_{n-2}}|x_{t_{n-1}}) \sim \mathcal{N}(0,)$ (à terminer).

2.1.1 Loi de l'arrivée à un point

Considérons un point $a \in \mathcal{R}$ et un mouvement brownien X(t) partant du point 0. Nous allons étudier la loi de la variable aléatoire associant à chaque trajectoire l'instant de son arrivée au point a. Soit τ_a l'instant de la première arrivée au point a de la trajectoire du processus partant du point 0.

Remarque: Il y a symétrie entre les variables aléatoires τ_a et $-\tau_a$. On supposer donc a > 0.

On recherche la fonction de répartition de τ_a . On remarque que $[X(t) > a] \subset [\tau_a \le t]$. En effet, une trajectoire ne peut pas dépasser a sans l'avoir eu atteint.

Or, $\mathbb{P}(X_t > a | \tau_a < t) = \frac{1}{2}$ (par symétrie). Ainsi,

$$\mathbb{P}(\tau_a < t) = 2\mathbb{P}(X_t > a) = 2\int_a^{+\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2t}} du$$

2.1.2 Loi du maximum

On cherche à connaître le comportement du maximum de la trajectoire, dans le cas du mouvement Brownien.

$$M_{[0,t]} = \max_{u \in [0,t]} X_u$$

Ici, on connait la loi de τ_a . Donc,

$$\mathbb{P}(\max_{u \in [0,t]} X_u < b) = \mathbb{P}(\tau_b > t)$$

2.2 Intégrale et différentielle stochastiques

Formule de Itô: Soit $X_t = \varphi(t, \psi_t)$ un processus, où φ est une fonction de classe \mathcal{C}^2 allant de \mathcal{R}^2 dans \mathcal{R} , et ψ_t un mouvement brownien.

On a alors: $dX_t = \left(\frac{\partial}{\partial t}\varphi(t,\psi_t) + \frac{1}{2}\frac{\partial^2}{\partial y^2}\varphi(t,\psi_t)\right)dt + \frac{\partial}{\partial y}\varphi(t,\psi_t)d\psi_t$

Or, on cherche $\int \psi_t d\psi_t = \varphi(t, \psi_t)$, ce qui équivalent à $\frac{\partial \varphi}{\partial t} + \frac{1}{2} \frac{\partial^2 \varphi}{\partial y^2} = 0$ et $\frac{\partial \varphi}{\partial y} = y$.

On trouve $\varphi(t,y) = \frac{1}{2}(y^2 - t)$

Trouver une solution de $dX_t = aX_t dt + bX_t d\psi_t$.

On cherche une solution de la forme $x_t = ce^{at}$. Avec la formule d'Itô, si $X_t = \varphi(t, \psi_t)$, en identifiant les parties dt et d ψ_t , on a :

 $\frac{\partial}{\partial t}\varphi(t,\psi_t) + \frac{1}{2}\frac{\partial^2}{\partial y^2}\varphi(t,\psi_t) = a\varphi(t,\psi_t)$

et

$$\frac{\partial}{\partial y}\varphi(t,\psi_t) = b\varphi(t,\psi_t)$$

On trouve:

$$\varphi(t, \psi_t) = e^{(a - \frac{b^2}{2})t + b\psi_t}$$

Or $m_t = \mathbb{E}[X_t]$

Chapitre 3

Résultats utiles

Théorème: (théorème centrale limite):

Soit X_1, X_2, \ldots une suite de variables aléatoires réelles définies sur le même espace de probabilité, indépendantes et identiquement distribuées suivant la même loi D. Supposons que l'espérance μ et l'écart-type σ de D existent et soient finis avec $\sigma \neq 0$.

Considérons la somme $S_n = \sum_{k=1}^n X_k$. Alors

— l'espérance de S_n est $n\mu$ et

— l'écart-type de S_n est $\sigma\sqrt{n}$

De plus, quand n est « assez grand », la loi normale $\mathcal{N}(n\mu, n\sigma^2)$ est une bonne approximation de la loi de S_n .

On pose:

 $\bar{X_n} = \frac{S_n}{n}$

et

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

La variable Z_n est centrée et réduite.

Le théorème central limite énonce alors que la suite de variables aléatoires $Z_1, \ldots Z_n, \ldots$ converge en loi vers une variable aléatoire Z, définie sur le même espace probabilisé, et de loi normale centrée réduite $\mathcal{N}(0,1)$ lorsque n tend vers l'infini.

Cela signifie que si Φ est la fonction de répartition de $\mathcal{N}(0,1)$, alors pour tout réel z:

$$\lim_{n\to\infty} \mathbb{P}(Z_n \le z) = \Phi(z)$$

ou, de façon équivalente :

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}\leq z\right)=\Phi(z)$$