МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Кафедра фотоники (государственный университет) Кафедра твердотельной электроники

Инжекционные полупроводниковые лазеры

Лабораторная работа по курсу «Фотоника»

Выполнил:

Александр Нехаев

Оглавление

Цели работы	2
Ход работы	
Мощностные характеристики для лазера и светодиодов	
Спектральные характеристики	
Вывол	12

Цели работы

- 1. Ознакомление с основными принципами работы лазерных светодиодов.
- 2. Снятие зависимости мощности излучения светодиодов и лазера от мощности накачки.
- 3. Получение спектральных характеристик светодиодов и определение максимумов этих характеристик.

Ход работы

Мощностные характеристики для лазера и светодиодов

Экспериментальные данные для лазера и двух светодиодов (зависимость тока от мощности накачки для синего светодиода снять не удалось). В данной части работы измерялись зависимости мощности излучения в условных единицах от мощности накачки лазера и светодиодов.

Таблица 1. Результаты эксперимента для лазера

V накачки, BV	I накачки,	Мощность накачки,	Мощность,
V накачки, D V	мА	мВт	y. e.
2.19	12.9	28.251	20
2.2	13.3	29.26	40
2.21	13.7	30.277	60
2.22	14.1	31.302	80
2.22	14.4	31.968	100
2.23	14.9	33.227	120
2.24	15.1	33.824	140
2.26	15.6	35.256	160

Таблица 2. Результаты эксперимента для красного светодиода

V voroven D	I накачки,	Мощность накачки,	Мощность,
V накачки, В	мА	мВт	y. e.
4.53	19.2	86.976	5
4.35	14	60.9	4
4.14	9.7	40.158	3
3.89	6.9	26.841	2
3.54	4.1	14.514	1

Таблица 3. Результаты эксперимента для зеленого светодиода

V noronen D	I накачки,	Мощность накачки,	Мощность,
V накачки, В	мА	мВт	y. e.
3.45	48.7	168.015	5
3.22	31.4	101.108	4
3.09	21.8	67.362	3
2.97	12.6	37.422	2
2.89	7.6	21.964	1

Мощность накачки рассчитывалась по формуле

$$P_{\text{Hak}} = IU \tag{1}$$

 $P_{\rm HaK} = IU \eqno(1)$ По данным приведенным в таблицах (Таблица 1, Таблица 2, Таблица 3) построим ваттваттные характеристики (зависимость мощности генерации от мощности накачки).

Рисунок 1. Зависимость мощности генерации от мощности накачки для лазера

Таблица 4. Параметры аппроксимации зависимости мощности генерации от генерации от мощности накачки для лазера

	Estimate	Standard Error	t-Statistic	P-Value
1	-561.011	17.6801	-31.7312	6.51E-08
X	20.55566	0.556877	36.91237	2.64E-08

Рисунок 2. Зависимость мощности генерации от мощности накачки для красного светодиода

Таблица 5. Параметры аппроксимации зависимости мощности генерации от генерации от мощности накачки для красного светодиода

	Estimate	Standard Error	t-Statistic	P-Value
1	0.506827	0.276519	1.832881	0.164198
X	0.054344	0.00526	10.33124	0.001934

Рисунок 3. Зависимость мощности генерации от мощности накачки для зеленого светодиода

Таблица 6. Параметры аппроксимации зависимости мощности генерации от генерации от мощности накачки для зеленого светодиода

	Estimate	Standard Error	t-Statistic	P-Value
1	0.917949	0.377296	2.432972	0.093082
X	0.026297	0.003983	6.602832	0.007072

Спектральные характеристики

Провели измерения спектральной характеристики для лазера при 3-х различных мощностях, для красного светодиода при 4-х различных мощностях, для зеленого светодиода при 2-х различных мощностях и для синего светодиода. Результаты измерений представлены в таблицах (Таблица 7, Таблица 8, Таблица 9, Таблица 10, Таблица 11, Таблица 12, Таблица 13, Таблица 14, Таблица 15).

Таблица 7. Спектральная характеристика для лазера при мощности 61.75 мВт

Длина волны,	Мощность,
HM	y. e.
651	3.8
651.4	4.7
651.6	5.9
651.8	13
652	22.7
655	15.2

655.2	4.9
655.4	4.1
656	3.7

Таблица 8. Спектральная характеристика для лазера при мощности 18.8 мВт

Длина волны,	Мощность,
HM	y. e.
651	423
651.4	427
651.6	429
651.8	430
652	432
652.2	433
652.4	434
652.6	435
653.4	436
654	436
654.2	434
654.8	431
655	429
655.2	427
655.6	424
656	420

Таблица 9. Спектральная характеристика для лазера при мощности 47.5 мВт

Длина волны,	Мощность,
HM	y. e.
651	3.6
651.2	4
651.4	5
651.6	6.2
651.8	8.2
652	22.6
655	22.6
655.2	5.4
655.4	3.7
655.6	3.3
655.8	3.1
656	2.9

Таблица 10. Спектральная характеристика для красного светодиода при мощности 45.51 мВт

Длина волны, нм	Мощность, у. е.
550	352

560	560 355	
570	367	
580	400	
590	486	
600	695	
610	1094	
620	1885	
630	830	
640	404	
650	359	
660	353	
628	986	
626	1220	
624	1504	
622	1778	
618	1793	
616	1616	
614	1427	
612	1251	
608	982	
636	488	
634	574	
632	690	
604	824	

Таблица 11. Спектральная характеристика для красного светодиода при мощности 14.7 мВт

Длина волны, нм	Мощность,	
	y. e.	
550	352	
560	353	
570	357	
580	369	
590	402	
600	485	
610	674	
620	880	
630	477	
640	362	
650	353	
660	352	
628	529	
626	581	
624	648	
622	755	
618	943	
616	913	

614	833
612	752
608	617
636	378
634	394
632	425
604	533

Таблица 12. Спектральная характеристика для красного светодиода при мощности 67.5 мВт

П	Мощность,	
Длина волны, нм	y. e.	
550	352	
560	352	
570	353	
580	358	
590	370	
600	400	
610	475	
620	535	
630	390	
640	355	
650	353	
660	353	
628	413	
626	432 451	
624		
622	486	
618	567	
616	565	
614	536	
612	504	
608	452	
636	359	
634	363	
632	372	
604	419	

Таблица 13. Спектральная характеристика для зеленого светодиода при мощности 156.178 мВт

	Мощность,	
Длина волны, нм	y. e.	
450	383	
460	442	
470	610	
480	960	
490	1586	

500	2330	
510	2870	
520	2680	
530	1960	
540	1290	
550	550 873	
560	624	
570	492	
580	580 422	
590	388	

Таблица 14. Спектральная характеристика для зеленого светодиода при мощности 31.937 мВт

Длина волны, нм	Мощность,	
длина волны, ни	y. e.	
450	355	
460	361	
470	378	
480	419	
490	524	
500	719 987 1111 952 705	
510		
520		
530		
540		
550	550 540	
560	448	
570	400	
580	375	
590 364		

Таблица 15. Спектральная характеристика для синего светодиода при мощности 17.388 мВт

Длина волны,	Мощность,		
HM	y. e.		
420	365		
430	430		
440	757		
450	2110		
460	5350		
470	4480		
480	2180		
490	1070		
500	629		
510	456		
520	392		

530	369	
455	3690	
474	3340	
465	5660	
468	5030	
466	5520	
458	4730	
459	5070	
464	5810	
462	5760	
453	2980	

По полученным значениям построим зависимости мощности в условных единицах от длины волны.

Рисунок 4. Спектральная характеристика для лазера при разных мощностях

Рисунок 5. Спектральная характеристика для красного светодиода при разных мощностях

Рисунок 6. Спектральная характеристика для зеленого светодиода при различных мощностях

Рисунок 7. Спектральная характеристика для синего светодиода при различных мошностях

Из графиков определены центральные линии волн относительно полуширины пиков. Полученные данные приведены в таблице ниже.

Как видно, для зеленого диода спектр сдвигается влево при росте мощности. Это связано с тем, что при увеличении тока растет температура диода, а значит уменьшается ширина запрещенной зоны и падает длина волны.

Таблица 16. Длины волн аппроксимированных пиков

Р, мВт	61.75	18.80	47.50	
Лазер, пик (нм)	653.41	653.34	653.49	
Лазер, разброс (нм)	0.87	11.19	0.77	
Р, мВт	45.51	14.70	5.19	67.49
Красный, пик (нм)	618.64	616.74	616.29	619.93
Красный, разброс (нм)	9.53	8.87	8.66	10.07
Р, мВт	156.20	31.90		
Зеленый, пик (нм)	512.90	519.80		
Зеленый, разброс (нм)	23.02	20.70		
Р, мВт	17.39			
Синий, пик (нм)	464.04			
Синий, разброс (нм)	11.47			

Выводы

Ватт-ваттные характеристики

1. В ходе работы получили линейный участок ватт-ваттной характеристики инжекционного полупроводникового лазера выше порога генерации. По графику можно оценить пороговую мощность накачки: P = 27.3 мВт.

2. По наклону графиков можно так же оценить отношение КПД лазера к КПД светодиодов. Из полученных значений следует, что КПД лазера превосходит КПД красного светодиода примерно в 370 раз, в то время как для зеленого – в 770 раз.

Спектральные характеристики

- 1. Для лазера получена узкая интенсивная спектральная линия относительно светодиодов.
- 2. При увеличении мощности накачки лазера генерируемая спектральная линия сужается.
- 3. При увеличении мощности накачки происходит уширение линий красного и зеленого светодиодов.