ECAL Seq2Seq Learning

Seq2Seq Model

Input: (Enighlish) "nice to meet you"

Output: (French) "ravi de vous rencontrer"

Encoder: Processing each token in the input-sequence & encoding all the information about the input-seq into a fixed length vector.

Context vector: Encapsulating the whole meaning of the input-seq that can help the decoder make accurate predictions.

Decoder: Reading the context vector and tries to predict the target-seq token by token.

Ref:

https://medium.com/analytics-vidhya/encoder-decoder-seg2seg-models-clearly-explained-c34186fbf49b

Seq2Seq Model

Ref: Encoder Decoder

https://medium.com/analytics-vidhya/encoder-decoder-seq2seq-models-clearly-explained-c34186fbf49b

Seq2Seq Training & Test

The Decoder in Training Phase:

- 1) **Teacher Forcing:** feeding the **true token** (and not the predicted output/token) from the previous time-step as input to the current time-step.
- 2) Without teacher forcing: using its own predictions as the next input

Teacher Forcing

Without Teacher Forcing

Our Seq2Seq Model Type-1

Our Seq2Seq Model Type-2

Training/Test Data Format

Case1 (left):

- 1) We can always observe 3 consecutive actual values and then make predict on the next two values;
- 2) When we predict "T+3 & T+4", we use the actual "T, T+1, T+2";
- 3) When we want to predict "T+5 & T+6", we wait until we obtained the actual "T+3 & T+4".

- 1) The only observed information we have is "T, T+1, T+2";
- 2) In order to make much further prediction, we need to "re-use" our prediction as "fake observation".

Experimental Setting Up

All results in the following slides use the same setting up:

- 1) We use Seq2Seq Model Type-2 (see slide 6 for details);
- 2) We use Case 1 (see slide 7 for details);
- 3) We train our model on 2016 data of 54000 crystal; and we test the trained model on 2017 data, 2018 data of 54000 crystal.

Original Calibration-2016

Original Calibration-2017

Original Calibration-2018

Normalized Calibration-2016

Normalized Calibration-2017

Normalized Calibration-2018

Results Analysis

One potential reason that causes the prediction performance degradation:

1) Data distribution shift

If we normalize the data separately-2016

If we normalize the data separately-2017

If we normalize the data separately-2018

What's Next

- 1) Test the model on more different crystals and years;
- 2) Try Case 2 (see slide 7 for details);
- 3) Add the results of model-type-1 (see slide 6 for details);
- 4)

Training/Test Data Format

Case1 (left):

- 1) We can always observe 3 consecutive actual values and then make predict on the next two values;
- 2) When we predict "T+3 & T+4", we use the actual "T, T+1, T+2";
- 3) When we want to predict "T+5 & T+6", we wait until we obtained the actual "T+3 & T+4".

- 1) The only observed information we have is "T, T+1, T+2";
- 2) In order to make much further prediction, we need to "re-use" our prediction as "fake observation".

Crystal ID=54000, Different Window Size

Mean Absolute Percent Error (MAPE): **the lower, the better.**

$$MAPE = \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times \frac{100}{n}$$

Different Crystals, WS=24, Trained on 2016 (separately)

Mean Absolute Percent Error (MAPE): **the lower, the better.**

$$MAPE = \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times \frac{100}{n}$$

Different Crystals, WS= 24, Trained on 2016 (ID:54000)

Mean Absolute Percent Error (MAPE): **the lower, the better.**

$$MAPE = \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times \frac{100}{n}$$

