

Matrix Calculus

Po-Chen Wu

Media IC and System Lab GIEE, NTU

Outline

- Introduction
- Derivatives in Numerator-Layout Notation
- Derivatives in Denominator-Layout Notation
- Identities

Outline

- Introduction
 - Notation
 - Matrix Operations
- Derivatives in Numerator-Layout Notation
- Derivatives in Denominator-Layout Notation
- Identities

Matrix Calculus

- Matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.
- Two competing notational conventions split the field of matrix calculus into two separate groups.

Numerator-Layout Notation

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_2}{\partial x} \\ \vdots \\ \frac{\partial y_m}{\partial x} \end{bmatrix}, \frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \frac{\partial y}{\partial x_2} \cdots \frac{\partial y}{\partial x_n} \end{bmatrix} \begin{bmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \frac{\partial y_2}{\partial x} \cdots \frac{\partial y_m}{\partial x} \end{bmatrix}, \frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \frac{\partial y_2}{\partial x} \cdots \frac{\partial y_m}{\partial x} \end{bmatrix}, \frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \frac{\partial y_2}{\partial x} \cdots \frac{\partial y_m}{\partial x} \end{bmatrix}$$

Denominator-Layout Notation

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \left[\frac{\partial y_1}{\partial x} \frac{\partial y_2}{\partial x} \cdots \frac{\partial y_m}{\partial x} \right], \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\mathbf{y}}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{bmatrix}$$

Notation

- Matrix: A, X, Y
 - bold capital letter
- Vector: a, x, y (column)
 - boldface lowercase letter
- Scalar: *a*, *x*, *y*
 - lowercase itatilc typeface
- Transpose: A^T , a^T
- Trace: tr(A)

-
$$\operatorname{tr}(\mathbf{A}) = A_{11} + A_{22} + \dots + A_{nn} = \sum_{i=1}^{n} A_{ii}$$

Determinant: det(A)

Properties of Transpose

•
$$(\mathbf{A}^T)^T = \mathbf{A}$$

•
$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

•
$$(\mathbf{A} + \mathbf{B} + \mathbf{C})^T = \mathbf{A}^T + \mathbf{B}^T + \mathbf{C}^T$$

•
$$(r\mathbf{A})^T = r\mathbf{A}^T$$

•
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

•
$$(\mathbf{A}\mathbf{B}\mathbf{C})^T = \mathbf{C}^T \mathbf{B}^T \mathbf{A}^T$$

Trace & Determinant

• If A is a square n-by-n matrix and if $\lambda_1, \dots, \lambda_n$ are the eigenvalues of A, then

$$- \operatorname{tr}(\mathbf{A}) = A_{11} + A_{22} + \dots + A_{nn} = \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} \lambda_i$$

-
$$\det(\mathbf{A}) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} M_{i,j} = \prod_{i=1}^{n} \lambda_i$$

- \rightarrow Minor $M_{i,j}$: the determinant of the $(n-1)\times(n-1)$ -matrix that results from **A** by removing the *i*th row and the *j*th column.
- \triangleright Cofactor $C_{i,j}$: $(-1)^{i+j}M_{i,j}$

> Cofactor matrix:
$$\mathbf{C} = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{bmatrix}$$
 $\mathbf{A}^{-1} = \frac{(\mathbf{C})^T}{\det(\mathbf{A})}$

$$\mathbf{A}^{-1} = \frac{(\mathbf{C})^T}{\det(\mathbf{A})}$$

Hadamard Product

• For two matrices, A, B, of the same dimension, $m \times n$ the Hadamard product, $A \circ B$, is a matrix, of the same dimension as the operands, with elements given by

$$(\mathbf{A} \circ \mathbf{B})_{i,j} = (\mathbf{A})_{i,j} \cdot (\mathbf{B})_{i,j}$$

For example the Hadamard product for a 3×3 matrix **A** with a 3×3 matrix **B** is:

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \circ \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} & A_{12}B_{12} & A_{13}B_{13} \\ A_{21}B_{21} & A_{22}B_{22} & A_{23}B_{23} \\ A_{31}B_{31} & A_{32}B_{32} & A_{33}B_{33} \end{bmatrix}$$

Kronecker Product

• If **A** is an $m \times n$ matrix and **B** is a $p \times q$ matrix, then the Kronecker product $\mathbf{A} \otimes \mathbf{B}$ is the $mp \times nq$ block matrix:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} A_{11}\mathbf{B} & \cdots & A_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ A_{m1}\mathbf{B} & \cdots & A_{mn}\mathbf{B} \end{bmatrix}$$

For example, the Kronecker product for a 2 × 2 matrix A with a 2 × 3 matrix B is:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} A_{11}B_{11} & A_{11}B_{12} & A_{11}B_{13} & A_{12}B_{11} & A_{12}B_{12} & A_{12}B_{13} \\ A_{11}B_{21} & A_{11}B_{22} & A_{11}B_{23} & A_{12}B_{21} & A_{12}B_{22} & A_{12}B_{23} \\ A_{21}B_{11} & A_{21}B_{12} & A_{21}B_{13} & A_{22}B_{11} & A_{22}B_{12} & A_{22}B_{13} \\ A_{21}B_{21} & A_{21}B_{22} & A_{21}B_{23} & A_{22}B_{21} & A_{22}B_{22} & A_{22}B_{23} \end{bmatrix}$$

Outline

- Introduction
- Derivatives in Numerator-Layout Notation
 - List of Differentiation
 - Derivative Formulas
 - Chain rule
 - The Matrix Differential
- Derivatives in Denominator-Layout Notation
- Identities

Vector-by-Scalar

11

The derivative of $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ x \end{bmatrix}$, by x is written as:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_2}{\partial x} \\ \vdots \\ \frac{\partial y_m}{\partial x} \end{bmatrix}$$

Scalar-by-Vector

• The derivative of y by $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ is written as:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial \mathbf{y}}{\partial x_1} & \frac{\partial \mathbf{y}}{\partial x_2} & \dots & \frac{\partial \mathbf{y}}{\partial x_n} \end{bmatrix}$$

Vector-by-Vector

• The derivative of
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
 with respect to $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

Also known as the Jacobian matrix

Example 1

14

• Given
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, and $y_1 = x_1^2 - 2x_2$, $y_2 = x_3^2 - 4x_2$,

the Jacobian matrix $\frac{\partial y}{\partial x}$ is:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 & -2 & 0 \\ 0 & -4 & 2x_3 \end{bmatrix}$$

Example 2

The transformation from spherical to Cartesian coordinates is defined by

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$

- Let
$$\mathbf{y} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} r \\ \theta \\ \phi \end{bmatrix}$, the Jacobian matrix $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ is:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0 \end{bmatrix}$$

Matrix-by-Scalar

The derivative of a matrix function Y by a scalar x is known as the tangent matrix and is given by

wn as the tangent matrix and is given as the tangent matrix and is given by
$$\frac{\partial \mathbf{Y}}{\partial x} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial Y_{11}}{\partial x} & \frac{\partial Y_{12}}{\partial x} & \dots & \frac{\partial Y_{1n}}{\partial x} \\ \frac{\partial Y_{21}}{\partial x} & \frac{\partial Y_{22}}{\partial x} & \dots & \frac{\partial Y_{2n}}{\partial x} \\ \vdots & \ddots & \vdots \\ \frac{\partial Y_{m1}}{\partial x} & \frac{\partial Y_{m2}}{\partial x} & \dots & \frac{\partial Y_{mn}}{\partial x} \end{bmatrix}$$

Scalar-by-Matrix

The derivative of a scalar y function by a matrix X is known as the gradient matrix and is given by

$$\frac{\partial y}{\partial \mathbf{X}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{21}} & \dots & \frac{\partial y}{\partial X_{m1}} \\ \frac{\partial y}{\partial X_{12}} & \frac{\partial y}{\partial X_{22}} & \dots & \frac{\partial y}{\partial X_{m2}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial X_{1n}} & \frac{\partial y}{\partial X_{2n}} & \dots & \frac{\partial y}{\partial X_{mn}} \end{bmatrix}$$

List of Differentiation

 Result of differentiating various kinds of aggregates with other kinds of aggregates.

	Scalar y		Vector y (size m)		Matrix Y (size $m \times n$)	
	Notation	Туре	Notation	Type	Notation	Туре
Scalar x	$\frac{\partial y}{\partial x}$	scalar	$\frac{\partial \mathbf{y}}{\partial x}$	size-m column vector	$\frac{\partial \mathbf{Y}}{\partial x}$	$m \times n$ matrix
Vector x (size <i>n</i>)	$\frac{\partial y}{\partial \mathbf{x}}$	size- n row vector	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$m \times n$ matrix	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$	_
Matrix X (size $p \times q$)	$\frac{\partial y}{\partial \mathbf{X}}$	$q \times p$ matrix	$\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$	_	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$	_

Derivative Formulas

y	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$
Ax	A
$\mathbf{x}^T \mathbf{A}$	\mathbf{A}^T
$\mathbf{x}^T\mathbf{x}$	$2\mathbf{x}^T$
$\mathbf{x}^T \mathbf{A} \mathbf{x}$	$\mathbf{x}^T \mathbf{A} + \mathbf{x}^T \mathbf{A}^T$

Hint: Derive x

- If you have to differentiate \mathbf{x}^T , transpose the rest.
- If you have two x-terms, differentiate them separately in turn and then sum up the two derivatives.

Chain Rule (1/2)

• Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$, and $\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_r \end{bmatrix}$, where \mathbf{z} is a function of \mathbf{y} , which

is in turn a function of x. Then

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_1}{\partial x_2} & \dots & \frac{\partial z_1}{\partial x_n} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} & \dots & \frac{\partial z_2}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_r}{\partial x_1} & \frac{\partial z_r}{\partial x_2} & \dots & \frac{\partial z_r}{\partial x_n} \end{bmatrix}, \quad \text{where } \frac{\partial z_i}{\partial x_j} = \sum_{k=1}^m \frac{\partial z_i}{\partial y_k} \frac{\partial y_k}{\partial x_j} \quad \begin{cases} i = 1, 2, \dots, r \\ j = 1, 2, \dots, n \end{cases}$$

where
$$\frac{\partial z_i}{\partial x_j} = \sum_{k=1}^m \frac{\partial z_i}{\partial y_k} \frac{\partial y_k}{\partial x_j}$$
 $\begin{cases} i = 1, 2, \dots, r \\ j = 1, 2, \dots, r \end{cases}$

Chain Rule (2/2)

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{bmatrix} \sum \frac{\partial z_1}{\partial y_k} \frac{\partial y_k}{\partial x_1} & \sum \frac{\partial z_1}{\partial y_k} \frac{\partial y_k}{\partial x_2} & \sum \frac{\partial z_1}{\partial y_k} \frac{\partial y_k}{\partial x_n} \\ \sum \frac{\partial z_2}{\partial y_k} \frac{\partial y_k}{\partial x_1} & \sum \frac{\partial z_2}{\partial y_k} \frac{\partial y_k}{\partial x_2} & \sum \frac{\partial z_2}{\partial y_k} \frac{\partial y_k}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \sum \frac{\partial z_r}{\partial y_k} \frac{\partial y_k}{\partial x_1} & \sum \frac{\partial z_r}{\partial y_k} \frac{\partial y_k}{\partial x_2} & \cdots & \sum \frac{\partial z_r}{\partial y_k} \frac{\partial y_k}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial z_1}{\partial y_1} & \frac{\partial z_1}{\partial y_2} & \cdots & \frac{\partial z_1}{\partial y_m} \\ \frac{\partial z_2}{\partial y_1} & \frac{\partial z_2}{\partial y_2} & \cdots & \frac{\partial z_2}{\partial y_m} \\ \vdots & \ddots & \vdots & \vdots \\ \frac{\partial z_r}{\partial y_1} & \frac{\partial z_r}{\partial y_2} & \cdots & \frac{\partial z_r}{\partial y_m} \end{bmatrix} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial z_r}{\partial x_n} \\ \vdots & \ddots & \vdots & \vdots \\ \frac{\partial z_m}{\partial y_1} & \frac{\partial z_r}{\partial y_2} & \cdots & \frac{\partial z_r}{\partial y_m} \end{bmatrix} = \frac{\partial \mathbf{z}}{\frac{\partial \mathbf{z}}{\partial y}} \frac{\partial \mathbf{y}}{\partial x}$$

Exercise 1 (Numerator-Layout)

22

• Find \mathbf{w}^* to minimize $E(\mathbf{w})$, where

$$E(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{N} (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$
$$= \frac{1}{N} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y})$$

– Assume $\mathbf{X}^T\mathbf{X}$ is invertible.

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

The Matrix Differential (1/2)

• For a scalar function $f(\mathbf{x})$, where \mathbf{x} is an n-vector, the ordinary differential of multivariate calculus is defined as

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$$

• In harmony with this formula, we define the differential of an $m \times n$ matrix $\mathbf{X} = [X_{ij}]$ to be

$$d\mathbf{X} \stackrel{\text{def}}{=} \begin{bmatrix} dX_{11} & dX_{12} & \dots & dX_{1n} \\ dX_{21} & dX_{22} & \dots & dX_{2n} \\ \vdots & \ddots & \vdots \\ dX_{m1} & dX_{m2} & \dots & dX_{mn} \end{bmatrix}$$

The Matrix Differential (2/2)

This definition complies with the multiplicative and associative rules

$$d(\alpha \mathbf{X}) = \alpha d\mathbf{X}$$
 $d(\mathbf{X} + \mathbf{Y}) = d\mathbf{X} + d\mathbf{Y}$

 If X and Y are product-conforming matrices, it can be verified that the differential of their product is

$$d(XY) = (dX)Y + X(dY)$$

Summary of Numerator-Layout

Three straightforward key points:

1. Ice cream

Derivatives

2. Derive x

Derivative Formulas

3. Chain rule

From left to right

Outline

- Introduction
- Derivatives in Numerator-Layout Notation
- Derivatives in Denominator-Layout Notation
 - List of Differentiation
 - Derivative Formulas
 - Chain Rule
- Identities

List of Differentiation

 The results of operations will be transposed when switching from numerator-layout notation to denominator-layout notation.

	Scalar y		Vector y (size m)		Matrix Y (size $m \times n$)	
	Notation	Type	Notation	Туре	Notation	Туре
Scalar x	$\frac{\partial y}{\partial x}$	scalar	$\frac{\partial \mathbf{y}}{\partial x}$	$\begin{array}{c} \text{size-}m\\ \text{row vector} \end{array}$	$\frac{\partial \mathbf{Y}}{\partial x}$	_
Vector \mathbf{x} (size n)	$\frac{\partial y}{\partial \mathbf{x}}$	size-n column rector	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$n \times m$ matrix	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$	_
Matrix X (size $p \times q$)	$\frac{\partial y}{\partial \mathbf{X}}$	$p \times q$ matrix	$\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$	_	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$	_

Derivative Formulas

y	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$
Ax	\mathbf{A}^T
$\mathbf{x}^T \mathbf{A}$	A
$\mathbf{x}^T\mathbf{x}$	$2\mathbf{x}$
$\mathbf{x}^T \mathbf{A} \mathbf{x}$	$\mathbf{A}\mathbf{x} + \mathbf{A}^T\mathbf{x}$

- Hint: Derive \mathbf{x}^T
 - If you have to differentiate x, transpose the rest.
 - If you have two x-terms, differentiate them separately in turn and then sum up the two derivatives.

Chain Rule

• Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$, and $\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_r \end{bmatrix}$, where \mathbf{z} is a

function of y, which is in turn a function of x. Then

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}}$$

— the chain of matrices builds "toward the left."

Exercise 2 (Denominator-Layout)

30

• Find \mathbf{w}^* to minimize $E(\mathbf{w})$, where

$$E(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{N} (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$
$$= \frac{1}{N} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y})$$

– Assume $\mathbf{X}^T\mathbf{X}$ is invertible.

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Outline

- Introduction
- Derivatives in Numerator-Layout Notation
- Derivatives in Denominator-Layout Notation
- Identities
 - Vector-by-Vector
 - Scalar-by-Vector
 - Vector-by-Scalar
 - Scalar-by-Matrix
 - Matrix-by-Scalar

Vector-by-Vector

• Identities: vector-by-vector $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$

Condition	Expression	Numerator layout	Denominator layout
$a = a(\mathbf{x}),$ $\mathbf{u} = \mathbf{u}(\mathbf{x})$	$\frac{\partial a\mathbf{u}}{\partial \mathbf{x}} =$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u}\frac{\partial a}{\partial \mathbf{x}}$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial a}{\partial \mathbf{x}} \mathbf{u}^T$
u = u(x), $v = v(x)$	$\frac{\partial (\mathbf{u} + \mathbf{v})}{\partial \mathbf{x}} =$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$-\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$
$\mathbf{u} = \mathbf{u}(\mathbf{x})$	$\frac{\partial f(g(u))}{\partial x} =$	$\frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial x}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$

Scalar-by-Vector

33

• Identities: scalar-by-vector $\frac{\partial y}{\partial x}$

Condition	Expression	Numerator layout	Denominator layout
$u = u(\mathbf{x})$	$\frac{\partial f(g(u))}{\partial \mathbf{x}} =$	J	$\overline{\partial u} \overline{\partial \mathbf{x}}$
$u = \mathbf{u}(\mathbf{x}),$ $\mathbf{v} = \mathbf{v}(\mathbf{x})$	$\frac{\partial \mathbf{u}^T \mathbf{v}}{\partial \mathbf{x}} =$	$\mathbf{u}^T \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}\mathbf{u}$
$A \neq A(x),$ u = u(x), v = v(x)	$\frac{\partial \mathbf{u}^T \mathbf{A} \mathbf{v}}{\partial \mathbf{x}} =$	$\mathbf{u}^T \mathbf{A} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^T \mathbf{A}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{A}^T \mathbf{u}$
$a \neq a(x),$ u = u(x)	$\frac{\partial \mathbf{a}^T \mathbf{u}}{\partial \mathbf{x}} =$	$\mathbf{a}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\mathbf{a}$

Vector-by-Scalar

• Identities: vector-by-scalar $\frac{\partial \mathbf{y}}{\partial x}$

Condition	Expression	Numerator layout	Denominator layout
$\mathbf{u} = \mathbf{u}(x),$ $\mathbf{v} = \mathbf{v}(x)$	$\frac{\partial (\mathbf{u} + \mathbf{v})}{\partial x} =$	$\frac{\partial \mathbf{u}}{\partial x} +$	
$\mathbf{u} = \mathbf{u}(x),$ $\mathbf{v} = \mathbf{v}(x)$	$\frac{\partial (\mathbf{u} \times \mathbf{v})}{\partial x} =$	$\mathbf{u} \times \frac{\partial \mathbf{v}}{\partial x} +$	$-\frac{\partial \mathbf{u}}{\partial x} \times \mathbf{v}$
$\mathbf{u} = \mathbf{u}(x)$	$\frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial x} =$	$\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial x}$	$\frac{\partial \mathbf{u}}{\partial x} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$

Scalar-by-Matrix

• Identities: scalar-by-matrix $\frac{\partial y}{\partial x}$

Condition	Expression	Numerator layout	Denominator layout
$u = u(\mathbf{X}),$ $v = v(\mathbf{X})$	$\frac{\partial (u+v)}{\partial \mathbf{X}} =$	$\frac{\partial u}{\partial \mathbf{X}}$ +	$-\frac{\partial v}{\partial \mathbf{X}}$
$u = u(\mathbf{X}),$ $v = v(\mathbf{X})$	$\frac{\partial uv}{\partial \mathbf{X}}$	$u\frac{\partial v}{\partial \mathbf{X}} +$	$-v\frac{\partial u}{\partial \mathbf{X}}$
$u = u(\mathbf{X})$	$\frac{\partial f(g(u))}{\partial \mathbf{X}} =$	$\frac{\partial f(g)}{\partial g} \frac{\partial g}{\partial g}$	$\frac{g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{X}}$

Matrix-by-Scalar

• Identities: scalar-by-matrix $\frac{\partial \mathbf{Y}}{\partial x}$

Condition	Expression	Numerator layout
$\mathbf{U} = \mathbf{U}(x),$ $\mathbf{V} = \mathbf{V}(x)$	$\frac{\partial (\mathbf{U} + \mathbf{V})}{\partial x} =$	$\frac{\partial \mathbf{U}}{\partial x} + \frac{\partial \mathbf{V}}{\partial x}$
$\mathbf{U} = \mathbf{U}(x),$ $\mathbf{V} = \mathbf{V}(x)$	$\frac{\partial (\mathbf{U}\mathbf{V})}{\partial x} =$	$\mathbf{U}\frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{U}}{\partial x}\mathbf{V}$
$\mathbf{U} = \mathbf{U}(x),$ $\mathbf{V} = \mathbf{V}(x)$	$\frac{\partial (\mathbf{U} \circ \mathbf{V})}{\partial x} =$	$\mathbf{U} \circ \frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{U}}{\partial x} \circ \mathbf{V}$
$\mathbf{U} = \mathbf{U}(x),$ $\mathbf{V} = \mathbf{V}(x)$	$\frac{\partial (\mathbf{U} \otimes \mathbf{V})}{\partial x} =$	$\mathbf{U} \otimes \frac{\partial \mathbf{V}}{\partial x} + \frac{\partial \mathbf{U}}{\partial x} \otimes \mathbf{V}$

Reference

- Matrix calculus, Wiki
 http://en.wikipedia.org/wiki/Matrix_calculus
- The Matrix Cookbook
 http://www.imm.dtu.dk/pubdb/views/edoc_downlo
 ad.php/3274/pdf/imm3274.pdf