Unsupervised Learning

ECE 449

Unsupervised Learning

- Clustering: group similar things
 - Finding structure in data
 - Applications: group search results or customers, find anomalies
- Feature projections: dimensionality reduction
 - Feature reduction that preserves structure in data
 - Applications: improved learning, visualizing data
- General theme: no labels

Clustering Images

[Goldberger et al.]

Clustering for Segmentation

Unsupervised Learning: Clustering

- (Dis)similarity
- Hierarchical clustering
- K-means (partitioning) and its variants
- Soft clustering (EM for GMM)
- Density based clustering
- Evaluating clusters
- Principle components analysis (PCA)

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - For two different samples
 - Between a sample and a cluster

What could Similar Mean

- With respect to another sample
 - Small distance
 - Euclidean distance (L2), city block (L1)
 - High match
 - Correlation, cosine distance (equivalent to L2)
 - Feature overlap
- With respect to the cluster
 - Close to (all, some, avg) members of the group

Other Clustering Questions

- Will the algorithm converge?
- Will it find the true patterns in the data?
- How many clusters to pick?
- How good are the clusters?

Hierarchical Clustering

- Agglomerative
 - Iteratively group samples
 - Good for different linkages, but expensive
- Divisive clustering
 - Iteratively divide samples (iterative K-means)
 - Better decisions for a small number of clusters
- Both produce a hierarchy –good for when you don't know the # of clusters

Agglomerative Clustering

- Agglomerative clustering
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
- Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Agglomerative Clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Ward's method (min variance, like k-means)
- Different choices create different clustering behaviors

Agglomerative Clustering: Diff Objectives

K-Means

- An iterative clustering algorithm
 - Pick K random points as cluster centers (means), c¹...c^k
 - Alternate:
 - Assign each example xⁱ to the mean c^j that is closest to it
 - Set each mean c^j to the average of its assigned points
 - Stop when no points' assignments change

K-Means

- Data:{x^j| j=1..n}
- An iterative clustering algorithm
 - Pick K random cluster centers, c¹...c^k
 - For t=1..T: [or, stop if assignments don't change]
 - for j = 1.. n: [recompute cluster assignments] $a^j = \arg\min_i \operatorname{dist}(x^j, c^i)$

• for j= 1...k: [recompute cluster centers]
$$c^{j} = \frac{1}{|\{i|a^{i} = j\}|} \sum_{\{i|a^{i} = j\}} x^{i}$$

K-Means as Optimization

Consider the total distance to the means

$$L(\lbrace x^i \rbrace, \lbrace a^i \rbrace, \lbrace c^k \rbrace) = \sum_{i} \operatorname{dist}(x^i, c^{a^i})$$
assignments

- Two stages each iteration:
 - Update assignments: fix means c, change assignments a
 - Update means: fix assignments a, change means c

Phase I: Update Assignments

 For each point, re-assign to closest mean

$$a^i = \arg\min_j \operatorname{dist}(x^i, c^j)$$

• Can only decrease total distance L

$$L(\{x^i\},\{a^i\},\{c^k\}) = \sum_i \operatorname{dist}(x^i,c^{a^i})$$

Phase II: Update Means

Move each mean to the average of its assigned points

$$c^{j} = \frac{1}{|\{i|a^{i} = j\}|} \sum_{\{i|a^{i} = j\}} x^{i}$$

- Also can only decrease total distance
- Fun fact: the point y with minimum squared Euclidean distance to a set of points {x} is their mean

Questions

Optimal solution?

Initialization

- K-means is non-deterministic
 - Requires initial means
 - It does matter what you pick!
- Various schemes for preventing this kind of thing:
 - Multiple random starts
 - Divisive clustering

Examples

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Use some strategy to select the k initial centroids and then select among these initial centroids
 - Select most widely separated
 - K-means++ is a robust way of doing this selection
 - Use hierarchical clustering to determine initial centroids

K-means++

- This approach can be slower than random initialization, but very consistently produces better results in terms of SSE
- To select a set of initial centroids, C, perform the following

Select an initial point at random to be the first centroid For k – 1 steps

For each of the N points, x_i , $1 \le i \le N$, find the minimum squared distance to the currently selected centroids, C_1 , ..., C_j , $1 \le j < k$, i.e., $\min_i d^2(C_j, x_i)$

Randomly select a new centroid by choosing a point with probability proportional to $\frac{\min\limits_{j} d^2(Cj,xi)}{\sum_{i} \min\limits_{j} d^2(Cj,xi)}$

End For

Limitations

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.

Original Points

K-means (3 Clusters)

Original Points

K-means (3 Clusters)

Original Points

K-means (2 Clusters)