Esercizi

Algebra e Geometria Corso di Laurea in Informatica 11 Maggio 2016

Esercizio 1. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare tale che $f(\mathbf{e_1} + \mathbf{e_2}) = \mathbf{e_1} + k\mathbf{e_2} + \mathbf{e_3}$, $f(\mathbf{e_2} + \mathbf{e_3}) = k^2\mathbf{e_1} + k\mathbf{e_2} + \mathbf{e_3}$, $f(\mathbf{e_3}) = k^2\mathbf{e_1} + \mathbf{e_3}$, con $k \in \mathbb{R}$.

- a) Scrivere la matrice A_k associata a f rispetto alla base canonica di \mathbb{R}^3 in dominio e codominio e stabilire per quali valori di k è invertibile.
- b) Stabilire per quali valori di k il vettore (1, k, -k) appartiene a Im f.
- c) Stabilire per quali valori di k la matrice A_k ha 0 come autovalore.
- d) Stabilire per quali valori di k il vettore $\mathbf{e_1} 2\mathbf{e_3}$ è un autovettore di f.
- e) Stabilire per quali valori di k l'endomorfismo f è diagonalizzabile.
- f) Scrivere una matrice diagonale D simile ad A_k .
- g) Sia k = 1/2. Esiste una matrice $B \in M_3(\mathbb{R})$ con lo stesso polinomio caratteristico di $A_{1/2}$ che non sia simile ad $A_{1/2}$?

Esercizio 2. Sia $k \in \mathbb{R}$ e sia $f_k : \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da $f_k(x, y, z) = (x + y + kz, kx + y + z, x + y + kz).$

- a) Scrivere la matrice A_k associata a f_k rispetto alla base canonica di \mathbb{R}^3 .
- b) Determinare la dimensione di Ker f_k e Im f_k al variare di k.
- c) Stabilire per quali valori di k, se esistono, l'applicazione f_k è invertibile.
- d) Stabilire per quali valori di k l'applicazione f_k è diagonalizzabile.
- e) Scelto uno dei valori di k trovati in d), determinare tutte le matrici diagonali simili a A_k e una base di \mathbb{R}^3 formata da autovettori.
- f) Sia k = 0. Dopo aver verificato che $\mathcal{B} = \{(2,0,2), (0,3,0), (1,2,3)\}$ e $\mathcal{D} = \{(2,-2,1), (2,0,2), (0,0,1)\}$ sono basi di \mathbb{R}^3 , scrivere la matrice associata a f_0 rispetto alle basi \mathcal{B} in dominio e \mathcal{D} in codominio.

Esercizio 3. Determinare le soluzioni intere delle congruenze:

$$42x \equiv_{91} 4; \qquad 13x \equiv_{42} 4.$$