

Biochem 3BP3

Sequence Similarity and Searching

Week of Sept 20, 2021

Why Sequence Analysis?

- A. I have obtained a DNA sequence via PCR and Sanger sequencing did I amplify the right sequence?
- B. I have been sequencing a genome and have predicted Open Reading Frames and I want to know what they encode
- C. I want to find my gene of interest in a genome sequence
- D. I want to predict functional domains or motifs for my protein sequence
- E. I want to know which regulatory binding sites are 5' of my gene

There are many methods – we'll focus on three

- Local sequence alignment, e.g. BLAST
- Hidden Markov Models, e.g. Pfam/Hmmer
- Motif detection, e.g. PROSITE & PSSMs

Course Goal – understand how they work and how they differ

- BLAST is one of the workhorses of bioinformatics
- An approximation of the Smith-Waterman algorithm with an emphasis on efficiency and generalization
- Published in 1990
 - DNA sequence databases were coming online and growing in size
 - accessible computational power was a concern so a 'fast' algorithm was an important advance
- By 2000 fast computer chips and affordable parallel computing (i.e. many processors) made highthroughput BLAST very workable
- Today, advances in Next Generation Sequencing are exceeding Moore's Law
 - BLAST is becoming slow again not because of the algorithm but because of the size of databases
 - This is an active time in new algorithm development (e.g. BLAT, DIAMOND)

- A great deal of computer science and mathematics are inside BLAST
 - Scoring matrices
 - Search heuristics
 - Processor and memory usage
 - Database formatting and indexing
 - Data and File formats (INPUT and OUTPUT)

- Key Concepts
 - Searching for <u>local</u> alignment (versus global alignment)
 - Caveats for prediction of function
 - What is your question? "sequence space"
 - BLASTN, BLASTP, BLASTX, TBLASTN, TBLASTX
 - Similarity scoring bitscore versus percent identity
 - Use of substitution matrices
 - Significance and the Expectation value (evalue)

Before BLAST: Smith-Waterman

- dynamic programming alignment algorithms to compare the query against each sequence in the database
- each comparison is an exhaustive comparison of each nucleotide or amino acid against all others
- it won't miss anything, but processing and memory intensive

- novel decrease in the search space
- creates a "word list" from the query sequence with words of a specific length (w)
- local alignments only explored where "words" have complete match to the query
- short word matching is very amenable to computing – fast and lower memory needs

- smaller word sizes provide better resolution but there are more of them so they increase analysis time.
- BLAST defaults (*w*=11 for DNA, *w*=3 for protein) are often sufficient but not always!

How does BLAST determine if there is match?

It uses a cut-off score based on a scoring matrix

conservative = similar physico-chemical properties

- BLOSUM62 matrix (BLOcks SUbstitution Matrix) reflects the relative rate of substitution among all 20 amino acids observed in conserved regions (no more than 62% similarity) of known protein sequences.
- BLOSUM62 is the BLAST default. Since is it based on conserved regions with 62% similarity or less it is among the best for detecting most weak protein similarities.
- Other BLOSUM or PAM matrices exist for detection of less or more divergent proteins.

BLAST use of scoring matrix

Abbreviation	1 letter abbreviation	Amino acid name
Ala	A	Alanine
Arg	R	Arginine
Asn	N	Asparagine
Asp	D	Aspartic acid
Cys	С	Cysteine
Gln	Q	Glutamine
Glu	E	Glutamic acid
Gly	G	Glycine
His	Н	Histidine
lle	I	Isoleucine
Leu	L	Leucine
Lys	K	Lysine
Met	М	Methionine
Phe	F	Phenylalanine
Pro	Р	Proline
Pyl	0	Pyrrolysine
Ser	S	Serine
Sec	U	Selenocysteine
Thr	Т	Threonine
Trp	W	Tryptophan
Tyr	Υ	Tyrosine
Val	V	Valine
Asx	В	Aspartic acid or Asparagine
Glx	Z	Glutamic acid or Glutamine
Xaa	Х	Any amino acid
Xle	J	Leucine or Isoleucine
TERM		termination codon

```
Query
                        NYLENFVOATFN
Query
          NYL YLE LEN ENF NFV FVQ VQA QAT ATF TFN
words
Query
                ENF
                                   Seed
          SSTNYAENTIQSIISTVEPAQR
Subject
                                 Alignment extended as long
Query
          NLYENFVQATFNALTAEKV
                                 as the score doesn't go
          NY ENF+Q+ + + +
Subject
          NYAENTIQSIISTVEPAQR
                                 below the cut-off. Called a
                                 High Scoring Pair (HSP)
```

- the seed alignment (w) is then extended based on extension / scoring criteria – defaults are often used
- extension is tolerant of gaps
- by using seed alignments, BLAST solves local alignments within the query/subject pair – not alignment along the entire sequence
- local alignments are called a High Scoring Pair (HSP). The example at the right has three HSPs.

DNA-binding response regulator [Burkholderia cenocepacia]

Sequence ID: ref|WP 050014536.1| Length: 220 Number of Matches: 1

Range 1	: 2 to 2	214 GenPept Graphics	▼ Next Match ▲	Previous Match
Score		Expect Method Identities	Positives	Gaps
184 bi	ts(466) 7e-54 Compositional matrix adjust. 102/218(47%)	140/218(64%)	6/218(2%)
Query	3	KILMIEDDFKIAESTITLLQYHQFEVEWVNNGLDGLAQLAKTKFDL1 +IL++EDD IAE L+ F V+WV +G L L +DL+	LLDLGLPMMDGMQ	62
Sbjct	2	RILLVEDDRMIAEGVRKALRSDGFAVDWVQDGDAALTALGGETYDLI		61
Query	63	VLKQIRQRA-ATDVLIISARDQLQNRVDGLNLGADDYLIKPYEFDEI VL+ +R A PVLI++ARD + +RV GL+ GADDYL+KP++ DEI		121
Sbjct	62	VLRTLRGRGLALPVLIVTARDAVADRVKGLDAGADDYLVKPFDLDEI	GARMRALIRR	118
Query	122	EAQLASQDQLLESGDLVLNVEQHIATFKGQRIDLSNREWAILIPLMT	HPNKIFSKANLED	
Sbjct	119	QAGRSESLIRHGALTLDPAAHQVTLDGAPVALSAREFALLEALL		176
Query	182	KLYDFDSDVTSNTIEVYVHHLRAKLGKDFIRTIRGLGY 219 K+Y + ++ SNT+EVY+H LR KLG D IR +RGLGY		
Sbjct	177	KMYGWGEEIGSNTVEVYIHALRKKLGSDLIRNVRGLGY 214		

 Score
 Expect
 Method
 Identities
 Positives
 Gaps

 184 bits(466)
 7e-54
 Compositional matrix adjust.
 102/218(47%)
 140/218(64%)
 6/218(2%)

$$219 - (2) + 1 gap = 218$$

3rd amino acid is a part of the alignment

DNA-binding response regulator [Burkholderia cenocepacia]

Sequence ID: ref|WP 050014536.1| Length: 220 Number of Matches: 1

conservative = similar physico-chemical properties

DNA-binding response regulator [Burkholderia cenocepacia]

Sequence ID: ref|WP 050014536.1| Length: 220 Number of Matches: 1

DNA-binding response regulator [Burkholderia cenocepacia]

Sequence ID: ref|WP 050014536.1| Length: 220 Number of Matches: 1

Score		Expect	Method			Identitie	es	Positives		Gaps
184 bi	ts(466)	7e-54	Composit	tional ma	trix adjust	. 102/218	8(47%)	140/218(6	4%)	6/218(2%)
Query	3							LLDLGLPMN	_	62
Sbjct	2	+IL++ED RILLVED				G L L GDAALTAL		LLDLGLP	DG+ RDGID	61
Query				_	_			LARIHALLE AR+ AL+E		121
Sbjct								GARMRALIE		118
Query	122		-	-	-	IDLSNREWA		HPNKIFSKA P + SK+		
Sbjct	119	-						RPGAVLSKS		
Query	182				KLGKDFIR		219			
Sbjct	177				KLGSDLIR		214			

Score	Expect	Method	Identities	Positives	Gaps
184 bits(466)	7e-54	Compositional matrix adjust.	102/218(47%)	140/218(64%)	6/218(2%)

Bit score is independent of query sequence length and database size (i.e. normalized) allowing comparison among different searches or databases.

DNA-binding response regulator [Burkholderia cenocepacia]

Sequence ID: ref[WP 050014536.1] Length: 220 Number of Matches: 1

Range 1	: 2 to 2	14 GenPe	pt Graphics					▼ Next Match	▲ Previ	ous Matcl
Score		Expect	Method			Identitie	s	Positives	Gap	s
184 bit	s(466)	7e-54	Compositi	ional ma	trix adjust	. 102/218	3(47%)	140/218(649	6) 6/2	18(2%)
Query		KILMIED +IL++ED		TLLQYHO	F V+WV +			LLDLGLPMMDO	GMQ 62	2
Sbjct	2	RILLVED	DRMIAEGVE	RKALRSDO	GFAVDWVQD			LLDLGLPKRDO	GID 61	L
Query				_	_			LARIHALLRRS	SGV 12	21
Sbjct	62	VLRTLRG	RGLALPVLI	VTARDAV	ADRVKGLD	AGADDYLVK	PFDLDEI	GARMRALIRR-	11	18
Query	122		DQLLESGDI + L+ G I	_	_			HPNKIFSKANI P + SK+ I		31
Sbjct	119	QAGRS	ESLIRHGAL	TLDPAA	QVTLDGAP	VALSAREFA		RPGAVLSKSQI	LEE 17	16
Query			DVTSNTIEV ++ SNT+EV				219			
Sbjct	177	KMYGWGE	EIGSNTVEV	YIHALRE	KLGSDLIR	NVRGLGY	214			

Score	Expect	Method	Identities	Positives	Gaps
184 bits(466)	7e-54	Compositional matrix adjust.	102/218(47%)	140/218(64%)	6/218(2%)

The expectation value (e-value) estimates the likelihood that a given sequence match is purely by chance. The lower the expectation value, the less likely the database match is a result of random chance and therefore the more significant.

E-value is a function of database size – how good is the database's sample of "sequence space" to determine random matches?

A <u>High Scoring Pair (HSP)</u>

DNA-binding response regulator [Burkholderia cenocepacia]

Sequence ID: ref|WP 050014536.1| Length: 220 Number of Matches: 1

Range 1	: 2 to 2	14 GenPe	pt Graphics				V	Next Match	A Pr	revious Match
Score		Expect	Method			Identities	P	ositives	G	aps
184 bit	s(466)	7e-54	Composition	onal matr	ix adjust.	102/218(47%) 1	40/218(649	6) 6	/218(2%)
Query		KILMIED +IL++ED			EVEWVNNG: V+WV +G	_		LDLGLPMMDO	GMQ G+	62
Sbjct	2	RILLVED	DRMIAEGVR	KALRSDGF	AVDWVQDG		ETYDLLL	LDLGLPKRDO	GID	61
Query			RA-ATPVLI R A PVLI					ARIHALLRRS	SGV	121
Sbjct	62	VLRTLRG	RGLALPVLI	VTARDAVA	DRVKGLDA	GADDYLVKP	FDLDELG	ARMRALIRR-		118
Query	122		DQLLESGDL		_			PNKIFSKANI P + SK+ I		181
Sbjct	119	QAGRS	ESLIRHGAL	TLDPAAHQ	VTLDGAPV	ALSAREFAL		PGAVLSKSQI	LEE	176
Query			DVTSNTIEV ++ SNT+EV				19			
Sbjct	177	KMYGWGE	EIGSNTVEV	YIHALRKK	LGSDLIRN	VRGLGY 2	14			

Score	Expect	Method	Identities	Positives	Gaps
184 bits(466)	7e-54	Compositional matrix adjust.	102/218(47%)	140/218(64%)	6/218(2%)

As a database grows, the same search will produce an altered expectation value. Different sized databases will produce different expectation values for the same HSPs.

There is no "best" expectation value but some generalizations are used: e⁻¹⁰ or smaller is worth examining; 0.01 or larger is noise.

BLAST Programs

- BLASTN search a nucleotide database with a nucleotide query to find nucleotide HSPs
- BLASTP search a protein database with a protein query to find protein HSPs
- BLASTX search a protein database with a nucleotide query to find protein HSPs (translate the query in all six reading frames)

BLAST Programs

- BLASTN search a nucleotide database with a nucleotide query to find nucleotide HSPs
- BLASTP search a protein database with a protein query to find protein HSPs
- BLASTX search a protein database with a nucleotide query to find protein HSPs (translate the query in all six reading frames)
- TBLASTN search a nucleotide database with a protein query to find protein HSPs (translate the database in all six reading frames)
- TBLASTX search a nucleotide database with a nucleotide query to find protein HSPs (translate the database & the query in all six reading frames)

BLAST is not Functional Biology

- A local alignment (HSP) found by BLAST may have little to do with protein function
- BLAST knows about nucleotides, amino acids, and gaps but does not understand functional domains; it will not even detect functional domain similarity if it is outside of BLOSUM62 range
- Multi-domain proteins can give mis-leading BLAST results:
 - an ANT(3")-AAC(6') fusion protein will have BLAST hits to three types of proteins:
 - other ANT(3")-AAC(6') proteins
 - ANT(3") proteins
 - AAC(6') proteins
 - If the AAC(6') domain is poorly conserved, the query ANT(3")-AAC(6') fusion protein will only have good HSPs to:
 - ANT(3") proteins

<u>Hidden Markov Models (HMMs)</u>

<u>Hidden Markov Models (HMMs)</u>

- HMMs are not DNA or protein sequences but are models of how specific DNA or protein sequences are known to vary
 - e.g. an HMM for a iron hydrogenase domain
- A "hit" means your query sequence has an adequate fit to that model of variation
- Models are trained using real data, e.g. a sample of hydrogenase sequences
- Markov Models are probabilistic
 - every query has a probability of "fit" to the model
 - the probability is a function of a linear series of 'labeling problems'
- Sequence HMMs focus on states with:
 - Emission probabilities (nucleotide / amino acid)
 - Transition probabilities (another nucleotide / amino acid or a gap)

A simple DNA HMM

5 species have slightly different DNA binding sites for a regulatory protein

ACA---ATG

TCAACTATC

ACAC--AGC

AGA---ATC

ACCG--ATC

ACA---ATG
TCAACTATC
ACAC--AGC
AGA---ATC
ACCG--ATC

• 334 iron hydrogenases in the seed alignment

D9QTQ6_ACEAZ/525-580	MDVKAKRAEALYQTDKA-NTIRKSHENPQIIKLYEDYL-GE-P-LSSDSHHLLHTSYQER
E3DPJ1_HALPG/515-570	NEKKEKRGSGLSNIDDS-SKIRKSHENPQIIKLYEEFL-GE-P-LGGESHHLLHTKYKAR
E4RJ60_HALHG/516-571	YEKKVKRGVGLSGIDDK-SAVRKSHKNPQVIKLYKEFL-GK-P-LSGESHHLLHTTYKSR
Q0AVN1_SYNWW/44-102	DDYIAKRAAGLYTLDES-MAIRKSHENPEVIQIYQDFLS-P-GKLECVSPKAHHLLHTKYGQ-
D7CNL1_SYNLT/44-102	DDYIAKRAQGLYTLDEK-MTIRKSHENPEIIQLYKDFLS-P-GEVKPMSEKAHHLLHTRYGQ-
L0KCP1 HALHC/517-572	KEIKAKRGQGLYNIDQS-DKIRKSHENPEIKKLYEDFL-GA-P-LSEKAHHLLHTNYQKR
R5AAQ0 9FIRM/470-524	EELYGVRGERLYTLDAE-NPMRFAHENPEVQALYHEYL-GE-P-LGETAHHLLHTDHKA-
F7V3Y0 CLOSS/515-570	KEMAASRAPILYAFDQI-TDLRFSHENPSITKVYSEYL-GE-P-LSEKSHHLLHTDHHAW
R7B2L8_9BACE/516-570	QELAKDRAPILYSLDRS-KNIRFSHENPDVLKMYEEFF-EK-P-NSPVAHKLLHTDHHA-
R5TQ56 9FIRM/517-570	-ELADVRGRNLYKLDKK-NPLRFSHENPSVIKAYEDFF-EK-P-LSHKSHELLHTDHEA-
R6G054 9FIRM/519-572	KEMAEIRSKNLYFLDSQ-NERRFSHENPEVLKTYEEYL-EK-P-LSRMSHKLLHTDHH
F4GHP6 SPHCD/517-571	-ELASTRADVLYGLDKV-DNLRFSHENPSVLKAYESFF-GK-P-LGHKCHELLHTDHHAW
R6K3U5 9FIRM/237-290	-DKVAERCKVLYGLDKV-NNVRFSHENPEVLQCYRDYF-KE-P-LSEKSHELLHTSHTV-
R7BDK2_9FIRM/518-573	VEMAADRAKELYKLDKN-KQIRFSHCNPEIHTIYKEYF-GK-P-LSPVSHHLLHTDHKYR
R6A2A7 9ACTN/541-595	-ELAAERGQVLWGLDAK-ADIRFSHENPGVQACYREFL-GA-P-LSPLAEELLHTDHHAW
R7D1R5 9ACTN/521-575	VELADERAAVLRALDHD-AQIRFSHENPDVAACYRDFL-GE-P-LSELSEKLLHTDHTA-
G4KSU3 OSCVS/517-571	VEMAAERGELLWELDAK-SKIRFSHENPDIKTLYSEYL-KE-P-LGKKSHHLLHTDHAA-
R6GQ90 9FIRM/517-572	VELAEKRGSVLWSIDKA-SPCRFSHENPDVRELYRDYL-KK-P-LSDVSHHLLHTDHQAW
R5D0I3 9FIRM/517-570	TEMAEARGNVLWSIDKK-SPVRFSHENPEVQTLYREYL-RA-P-LSGRSHHLLHTDHE
R6Q6Y7 9FIRM/517-570	QAERRGNHLYFLDDI-ANLRFSHENPAIQALYKNFL-GE-P-LGEKAHHLLHTDHTAW
R6RTM0 9FIRM/518-571	QELAEERGSSLYFLDRD-TEIRFSHDNPDIQNLYEEFF-EK-P-LSHRAHQLLHTEHQ
Q73MB6 TREDE/520-573	GELAVKRGSNLYFIDKN-SKVRYSHENECIKALYNDFF-EK-P-NSHKAHSLLHTDHF
R5J469 9CLOT/520-573	-EMAFERGKNLYFLDEN-ADIRRSHENPDVKALYDNYF-EQ-P-LSHKSHMLLHTDHNK-
D4M4H0 9FIRM/519-573	EELAHTRGANLYFLDKN-AKIRFSHENQDVMKLYNDFL-EK-P-LSHKSHMLLHTDHTK-
R6LI15 9FIRM/519-573	EELARTRGENLYFLDKN-APLRFSHENPDVLRLYRDFF-EK-P-LSHKSHMLLHTDHNA-
F0T2S8 SYNGF/456-511	DTIRTQRSNSLYTLDKN-AKVRNSHENTEITQIYKDYL-HA-P-MSHLAEEILHTEYESR
A5D4I9 PELTS/463-518	DTVREQRLAALYKADASLSKRKSYENEEVAALYRDFL-GH-P-MSELAEELLHTEYHSR
R4KFN4 9FIRM/459-514	DEVRMQRINSLYQADAR-AQRRESHENAEVLALYQNFL-KH-P-MSELAEELLHTKYTDR
F6DPY8 DESRL/455-511	DQVRQARLNSLYTMDAKMYKKRLSHENSEVLQLYKNYL-EQ-P-MSHLAEELLHTEYTDR
_	

Much sequence variation, but some conservation

 HMMER / Pfam has a generalized HMM that can be trained by any protein domain

The HMM is trained using the seed alignment to $^{\prime\prime}$ determine the emission and transition probabilities

HMM	А	С	D	E	F	G	Н	I	K	L	М	N	Р	Q	R
	m->m	m->i	m->d	i->m	i->i	d->m	d->d								
COMPO	2.66299	4.87199	2.91679	2.55591	3.66715	3.29500	2.87691	3.09550	2.45416	2.39490	3.84919	3.01061	3.43251	3.03167	2.71
	2.68618	4.42225	2.77519	2.73123	3.46354	2.40513	3.72494	3.29354	2.67741	2.69355	4.24690	2.90347	2.73739	3.18146	2.89
	0.15412	5.62693	1.97159	0.61958	0.77255	0.00000	*								
1	2.69450	5.20126	1.90404	2.47178	4.68913	3.78335	4.01145	3.75163	2.20418	2.96186	3.33300	2.43140	3.49632	2.59266	3.14
	2.68618	4.42225	2.77519	2.73123	3.46354	2.40513	3.72494	3.29354	2.67741	2.69355	4.24690	2.90347	2.73739	3.18146	2.89
	0.00718	5.47902	5.81517	0.61958	0.77255	0.42007	1.07002								
2	2.91083	4.82906	1.58312	1.73987	5.01707	3.82147	3.64171	4.50313	2.01029	3.15122	4.59410	2.83954	4.25294	3.15745	3.12
	2.68618	4.42225	2.77519	2.73123	3.46354	2.40513	3.72494	3.29354	2.67741	2.69355	4.24690	2.90347	2.73739	3.18146	2.89
	0.00559	5.58603	6.30838	0.61958	0.77255	0.42789	1.05522								
3	2.63456	4.70051	4.84319	2.98389	2.64502	4.37715		1.96988	3.23179	2.30513	3.40557	3.77117	4.64207	4.19062	3.25
	2.68582	4.42236	2.77514	2.73093	3.46365	2.40524		3.29365	2.67744	2.69351	4.24701	2.90358	2.73751	3.18157	2.89
	0.08136	2.57205	6.34224	0.67760	0.70894	0.47041	0.98016								
4	2.54801	4.72728	4.74569	4.15699	3.82991	4.36365		1.93633		1.80176		4.19038	4.73278	4.00802	1.74
	2.68618	4.42225	2.77519	2.73123	3.46354	2.40513		3.29354	2.67741	2.69355	4.24690	2.90347	2.73739	3.18146	2.89
	0.00537	5.62610	6.34845	0.61958	0.77255	0.48306	0.95944								
5	2.11055	5.19463	3.13477	2.25423	4.84332	3.10661		3.85885	1.98083	2.26284		3.22775	4.35588	2.50230	2.73
	2.68618	4.42225	2.77519	2.73123	3.46354	2.40513		3.29354	2.67741	2.69355	4.24690	2.90347	2.73739	3.18146	2.89
	0.00536	5.62693	6.34927	0.61958	0.77255	0.48576	0.95510								
6	2.03322	4.91437	2.94559	2.42989	5.02036	3.66309		3.63439		2.77931		3.20092	4.15513		2.83
	2.68618	4.42225	2.77519	2.73123	3.46354	2.40513		3.29354	2.67741	2.69355	4.24690	2.90347	2.73739	3.18146	2.89
_	0.00536	5.62693	6.34927	0.61958	0.77255	0.48576	0.95510								
7	4.73891	6.64548	5.68057	4.42078	6.41719	5.15128		5.55175	2.29408		5.71680	4.63644	5.41712	2.87234	0.31
	2.68618	4.42225	2.77519	2.73123	3.46354	2.40513		3.29354	2.67741	2.69355	4.24690	2.90347	2.73739	3.18146	2.89
	0.00536	5.62693	6.34927	0.61958	0.77255	0.48576	0.95510								
8	1.62426	4.44842	4.26891	3.69735	3.86164	3.13257	4.52444	2.32789		2.57955	2.66032	3.91731	4.63345	2.24662	2.85
	2.68618	4.42225	2.77519	2.73123	3.46354	2.40513		3.29354	2.67741	2.69355	4.24690	2.90347	2.73739	3.18146	2.89
	0.00536	5.62693	6.34927	0.61958	0.77255	0.48576	0.95510								

- The HMM is trained using the seed alignment to determine the emission and transition probabilities
- Pfam is a collection of many trained HMMs; query sequences are compared to all of Pfam to find the best fitting HMMs

Significant Pfam-A Matches

Show or hide all alignments.

Family	Description	Entry type	Clan	Envelope		Alignment		нмм		нмм	Bit	E-value
				Start	End	Start	End	From	To	length	score	L-value
Fer2_4	2Fe-2S iron-sulfur cluster binding domai	Domain	CL0486	1	75	2	74	5	81	82	45.5	5.3e-12
NADH-G_4Fe-4S_3	NADH-ubiquinone oxidoreductase-G ironsu $\underline{\dots}$	Domain	n/a	81	120	81	120	1	40	40	68.0	3.4e-19
Fer4_7	4Fe-4S dicluster domain	Domain	CL0344	142	200	142	200	1	52	52	31.5	1.8e-07
Fe_hyd_lg_C	Iron only hydrogenase large subunit, C-t $\underline{\dots}$	Domain	n/a	218	493	218	493	1	248	248	286.8	1.3e-85
Fe_hyd_SSU	Iron hydrogenase small subunit	Domain	n/a	498	551	500	551	3	56	56	29.5	5.1e-07
2Fe-2S_thioredx	Thioredoxin-like [2Fe-2S] ferredoxin	Family	CL0172	563	644	569	641	65	141	145	34.8	1.2e-08

How does searching work?

What does Markov mean?

What is Hidden?

ACA---ATG

Markov Chain – next state emission depends only upon current state, i.e. the model is a linear chain

<u>Hidden Markov Models (HMMs)</u>

database

HMMs in Pfam / Hmmer

- The HMMER software uses the probability values to calculate:
 - bit score a log-odds score of the fit of the query to the HMM; the higher the score, the better the alignment
 - expectation value estimates the likelihood that a given match is purely by chance; a function of database size
- Pfam website uses a default expectation value cut-off of 1.0

HMMs in Pfam / Hmmer

Significant Pfam-A Matches

Show or hide all alignments.

Family	Description	Entry type	Clan	Envelope		Alignment		нмм		нмм	Bit	E-value
				Start	End	Start	End	From	To	length	score	L-value
Fer2_4	2Fe-2S iron-sulfur cluster binding domai	Domain	CL0486	1	75	2	74	5	81	82	45.5	5.3e-12
NADH-G_4Fe-4S_3	NADH-ubiquinone oxidoreductase-G ironsu $\underline{\dots}$	Domain	n/a	81	120	81	120	1	40	40	68.0	3.4e-19
Fer4_7	4Fe-4S dicluster domain	Domain	CL0344	142	200	142	200	1	52	52	31.5	1.8e-07
Fe_hyd_lg_C	Iron only hydrogenase large subunit, C-t $\underline{\dots}$	Domain	n/a	218	493	218	493	1	248	248	286.8	1.3e-85
Fe_hyd_SSU	Iron hydrogenase small subunit	Domain	n/a	498	551	500	551	3	56	56	29.5	5.1e-07
2Fe-2S_thioredx	Thioredoxin-like [2Fe-2S] ferredoxin	Family	CL0172	563	644	569	641	65	141	145	34.8	1.2e-08

- Pfam HMMs are curated by functional biologists and model functional domains; Pfam HMMs are thus one of the most powerful tools available for prediction of protein function
- Caveat correlations among residues cannot be modeled by HMMs as Markov Chains cannot 'remember' earlier states; secondary structure not workable in HMMs

What about finding short sequences?

- Short sequences or motifs by definition have less information
 - Often too short for BLAST (below word size or extension rules)
 - Not enough information to build an HMM
 - Easily match random sequences expectation values break down
 - Statistical confidence and avoidance of false discovery difficult for reasons listed above – experimental validation often required
- Two common bioinformatics questions
 - Detection of amino acid motifs, e.g. PROSITE database
 - Detection of DNA binding sites, e.g. JASPAR database
- Two common methods
 - Pattern matching
 - Position-specific scoring matrix (PSSM)

What about finding short sequences?

- Pattern matching, e.g. C-x-H-x-[LIVMFY]-C-xx-C-[LIVMYA]
 - Not statistical the pattern exists in the subject or not
 - Frequently important for analysis of proteins (e.g. PROSITE)
 - Computers are very good at pattern matching fast!
 - Universal language for pattern matching Regular Expressions (RegEx)
 - Almost exclusively a command-line tool
- Position-specific scoring matrix (PSSM)
 - A pattern with variation based on observation
 - Also important for analysis of proteins (e.g. PROSITE)
 - Particularly important for analysis of DNA binding sites (e.g. JASPAR database)
 - Commonly generated from ChIP-Seq results
 - Meme/Mast software suite and other suites at the command line
 - Statistical in nature, but very high false discovery rate!

This Week...

WEEK 3 (SEPTEMBER 20 and 22) - SEQUENCE SIMILARITY & SEARCHING

LIVE Class update on Wednesday,

Recorded Content

- Lecture #2 Sequencing Similarity & Searching,
- Dr. Joanna Wilson The Shark <u>CYPome</u>, <u>https://web.microsoftstream.com/video/a876db13-6d45-4ac0-86c5-5c0ef83496e6</u>
- Overview & Demo of Laboratory #2 Protein Annotation & Gene Finding, https://web.microsoftstream.com/video/b0eb4084-0452-479e-a33b-556abd9809bc

Tutorial

- LIVE session with Teaching Assistants
- Tutorial content can be found at GitHub, answers due on A2L
 - o Monday,
 - o Wednesday,

Flash Updates

- BLAST. Provide a review of the purpose of BLAST algorithms for database searching and how to perform them online. Specifically, outline the difference between BLASTN, BLASTP, BLASTX, TBLASTN, and TBLASTX. See Lobo 2008. Basic Local Alignment Search Tool (BLAST). Nature Education 1: 215 [http://www.nature.com/scitable/topicpage/basic-local-alignment-search-toolblast-29096]
- Pfam. Provide a review of the Pfam resource, with an emphasis on the variety of tools and data it offers. See Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432 [PMID 30357350] and Nucleic Acids Res. 2018 Jul 2;46(W1):W200-W204 [PMID 29905871].
- PROSITE. Provide a review of the PROSITE resource, with an emphasis on the variety of tools and data it offers. See Nucleic Acids Res. 2013 41(Database issue):D344-7 [PMID 23161676].