The Influence of Reference Group Contributions on a Family's Charitable Giving

Keegan Skeate

University of California, Irvine

April 22, 2016

Economics of Charity

Economics of Charity

Peer Effects

Quick introduction

- Quick introduction
- My economic model

- Quick introduction
- My economic model
- The data / estimation

- Quick introduction
- My economic model
- The data / estimation
- Results and Conclusion

Main Contribution:

I provide evidence that charitable contributions made by a family's reference group have a positive effect on the amount that the family donates.

Non-negligible portion of income:

1

Non-negligible portion of income:

Food $\approx 10\%$,

Data Source: U.S. Bureau of Labor Statistics (2012)

1

Non-negligible portion of income:

Food \approx 10%, Health care \approx 5%,

Data Source: U.S. Bureau of Labor Statistics (2012)

Non-negligible portion of income:

Food \approx 10%, Health care \approx 5%, Entertainment \approx 4%.

Data Source: U.S. Bureau of Labor Statistics (2012)

1

Non-negligible portion of income: Food $\approx 10\%$, Health care $\approx 5\%$, Entertainment $\approx 4\%$.

Data Source: Internal Revenue Service (2000-2012)

Policy implications

• Tax deductions are offered for charitable contributions,

Policy implications

 Tax deductions are offered for charitable contributions, so, arguably it is important to understand why people give to charity.

Policy implications

- Tax deductions are offered for charitable contributions, so, arguably it is important to understand why people give to charity.
- The government provides many of the same goods and services as charities,

Policy implications

- Tax deductions are offered for charitable contributions, so, arguably it is important to understand why people give to charity.
- The government provides many of the same goods and services as charities, so, arguably it is important to understand how much charity will be provided.

- 3
- Relevance to the economics literature
 - Altruism: Feldstein (1975), Abrams and Schmitz (1978), Roberts (1984)

- 3
- Relevance to the economics literature
 - Altruism: Feldstein (1975), Abrams and Schmitz (1978), Roberts (1984)
 - Joy of giving: Andreoni (1990)

- 3
- Relevance to the economics literature
 - Altruism: Feldstein (1975), Abrams and Schmitz (1978), Roberts (1984)
 - Joy of giving: Andreoni (1990)
 - Signal social status: Glazer and Konrad (1996)

- 3
- Relevance to the economics literature
 - Altruism: Feldstein (1975), Abrams and Schmitz (1978), Roberts (1984)
 - Joy of giving: Andreoni (1990)
 - Signal social status: Glazer and Konrad (1996)
 - Interdependent values: Frank (2005)

- 3
- Relevance to the economics literature
 - Altruism: Feldstein (1975), Abrams and Schmitz (1978), Roberts (1984)
 - Joy of giving: Andreoni (1990)
 - Signal social status: Glazer and Konrad (1996)
 - Interdependent values: Frank (2005)
 - Reference Group Theory: Merton (1968), Frank (2005)

Economic Model:

A family i at time t seeks to maximize their utility

$$U_{it} = U(C_{it}, D_{it}, \overline{R}_{it})$$

by choosing consumption C_{it} and donation amount D_{it} , subject to their budget

$$C_{it} + D_{it} = Y_{it} - T_{it}(Y_{it} - D_{it}),$$

where

 Y_{it} is their total family income,

 T_{it} is their tax rate,

 \bar{R}_{it} is the average amount contributed by the family's reference group.

The budget constraint can be written as

I solve the maximization problem for a donation function

$$D_{it}^*(Y_{it}, T_{it}, R_{it}),$$

and assume a functional form

$$D_{it}^* = \alpha + X_{it}\beta + \frac{\lambda}{R_{it}} R_{it} + \mu_{it}, \qquad (1)$$

or

$$D_{it}^* = AX_{it}^{\gamma} \bar{R}_{it}^{\rho} e^{\epsilon_{it}}, \qquad (2)$$

where

 λ is the change in family donations from a \$1 increase in \bar{R}_{it} , ρ is the % change in family donations from a 1% change in \bar{R}_{it} .

The Panel Study of Income Dynamics

Institute for Social Research, University of Michigan

The Panel Study of Income Dynamics
 Institute for Social Research, University of Michigan

 12,956 families surveyed biannually from 2002 to 2012: 48,667 observations.

- The Panel Study of Income Dynamics
 - Institute for Social Research, University of Michigan
 - 12,956 families surveyed biannually from 2002 to 2012: 48,667 observations.
 - Reference group: All families who live and work in the same or neighboring state and same industry as the family.

- The Panel Study of Income Dynamics
 Institute for Social Research, University of Michigan
 - 12,956 families surveyed biannually from 2002 to 2012: 48,667 observations.
 - Reference group: All families who live and work in the same or neighboring state and same industry as the family.
 - Total charity D_{it}: Donations to all religious, medical, cultural, educational, environmental, or any other organizations that provide help to people in need.

- The Panel Study of Income Dynamics
 Institute for Social Research, University of Michigan
 - 12,956 families surveyed biannually from 2002 to 2012: 48,667 observations.
 - Reference group: All families who live and work in the same or neighboring state and same industry as the family.
 - Total charity D_{it}: Donations to all religious, medical, cultural, educational, environmental, or any other organizations that provide help to people in need.
 - Average reference group contribution R_{it}: Average donation made by families in the <u>same industry</u> and the same or neighboring state as the family.

Average Annual Charitable Giving by State

Average Annual Charitable Giving by Industry

Percent of the Sample	that Donates
Overall	55%
By family income:	
Greater than \$250,000	91%
\$100,000 to \$250,000	85%
\$60,000 to \$99,999	69%
\$25,000 to \$59,999	51%
Less than \$25,000	36%

Percent of Donators	that Itemize
Overall	43%
By family income:	
Greater than \$250,000	77%
\$100,000 to \$250,000	69%
\$60,000 to \$99,999	48%
\$25,000 to \$59,999	29%
Less than \$25,000	22%

For family i at time t, their price of giving \$1 is

$$P_{it} = \begin{cases} 1, & \text{if } i \text{ does not itemize deductions,} \\ 1 - f_{it}, & \text{if } i \text{ itemizes and state deductions not allowed,} \\ 1 - (f_{it} + s_{it}), & \text{if } i \text{ itemizes and state deductions allowed,} \end{cases}$$

For family i at time t, their price of giving \$1 is

$$P_{it} = \begin{cases} 1, & \text{if } i \text{ does not itemize deductions,} \\ 1 - f_{it}, & \text{if } i \text{ itemizes and state deductions not allowed,} \\ 1 - \left(f_{it} + s_{it}\right), & \text{if } i \text{ itemizes and state deductions allowed,} \end{cases}$$

where

 f_{it} is their federal income tax rate,

For family i at time t, their price of giving \$1 is

$$P_{it} = \begin{cases} 1, & \text{if } i \text{ does not itemize deductions,} \\ 1 - f_{it}, & \text{if } i \text{ itemizes and state deductions not allowed,} \\ 1 - \left(f_{it} + s_{it}\right), & \text{if } i \text{ itemizes and state deductions allowed,} \end{cases}$$

where

 f_{it} is their federal income tax rate, s_{it} is their state income tax rate.

For family i at time t, their price of giving \$1 is

$$P_{it} = \begin{cases} 1, & \text{if } i \text{ does not itemize deductions,} \\ 1 - f_{it}, & \text{if } i \text{ itemizes and state deductions not allowed,} \\ 1 - \left(f_{it} + s_{it}\right), & \text{if } i \text{ itemizes and state deductions allowed,} \end{cases}$$

where

 f_{it} is their federal income tax rate, s_{it} is their state income tax rate.

"Changes in state tax identify changes in donations from external factors"

Average Price of the First	t Dollar Given
Overall	\$0.93
By family income:	
Greater than \$250,000	\$0.72
\$100,000 to \$250,000	\$0.81
\$60,000 to \$99,999	\$0.90
\$25,000 to \$59,999	\$0.96
Less than \$25,000	\$0.98

1 Em

Empirical models

• Ordinary Least Squares (OLS)

Empirical models

- Ordinary Least Squares (OLS)
- Instrumental Variable (IV)

Empirical models

- Ordinary Least Squares (OLS)
- Instrumental Variable (IV)
 - Instrument: z_{it} = Average state income tax of family i's reference group members who live in neighboring states.

Empirical models

- Ordinary Least Squares (OLS)
- Instrumental Variable (IV)

"Correlated with reference group giving, but not individual giving"

 Instrument: z_{it} = Average state income tax of family i's reference group members who live in neighboring states.

- **1** E
 - Empirical models
 - Ordinary Least Squares (OLS)
 - Instrumental Variable (IV)

"Correlated with reference group giving, but not individual giving"

- Instrument: z_{it} = Average state income tax of family *i*'s reference group members who live in neighboring states.
- 2 Controls

- **1** E
 - Empirical models
 - Ordinary Least Squares (OLS)
 - Instrumental Variable (IV)

"Correlated with reference group giving, but not individual giving"

- Instrument: z_{it} = Average state income tax of family i's reference group members who live in neighboring states.
- 2 Controls
 - Demographic: Age, education, sex, marital status, number of children, religious affiliation, and homeowner status.

- 1
- Empirical models
 - Ordinary Least Squares (OLS)
 - Instrumental Variable (IV)

"Correlated with reference group giving, but not individual giving"

- Instrument: z_{it} = Average state income tax of family i's reference group members who live in neighboring states.
- 2 Controls
 - Demographic: Age, education, sex, marital status, number of children, religious affiliation, and homeowner status.
 - Economic: Total U.S. contributions, family income, and the price of giving.

Model (1) : 		
Dependent Variable	Estimated Coefficient	
Total Charity	(OLS)	
Independent Variable		
Average Reference	0.16**	
•		
Group Contribution	(0.03)	
R^2	0.19	

Notes: Variables in *levels*. Standard errors in parentheses. ** denotes significance at the 5% level.

Model (1) : <i>λ</i>			
Dependent Variable	Estimated	Coefficient	
Total Charity	(OLS)	(IV)	
Independent Variable			
Average Reference	0.16**	1.03**	
Group Contribution	(0.03)	(0.43)	
R^2	0.19	0.11	

Notes: Variables in *levels*. Standard errors in parentheses. ** denotes significance at the 5% level.

Model (1) : λ			
Dependent Variable	Estimated Coefficient		
Total Charity	(OLS)	(IV)	
Independent Variable		"Large difference!"	
		+	
Average Reference	0.16**	1.03**	
Group Contribution	(0.03)	(0.43)	
R^2	0.19	0.11	

Notes: Variables in *levels*. Standard errors in parentheses. ** denotes significance at the 5% level.

Model (2): ρ		
Dependent Variable Total Charity	Estimated Coefficient (OLS)	
Independent Variable		
Average Reference	0.08**	
Group Contribution	(0.02)	
R^2	0.25	
Notes: Variables in <i>natura</i> theses. ** denotes signific	al log. Standard errors in pare ance at the 5% level.	

	- (-)		
Model (2): ρ			
Dependent Variable	Estimated Coefficient		
Total Charity	(OLS)	(IV)	
Independent Variable			
Average Reference	0.08**	1.08**	
Group Contribution	(0.02)	(0.35)	
R^2	0.25	0.13	

Notes: Variables in *natural log*. Standard errors in parentheses. ** denotes significance at the 5% level.

Model (2): ρ			
Dependent Variable	Estimated Coefficient		
Total Charity	(OLS)	(IV)	
Independent Variable	"St	till a large difference!	
Average Reference	0.08**	1.08**	
Group Contribution	(0.02)	(0.35)	
R^2	0.25	0.13	

Notes: Variables in *natural log*. Standard errors in parentheses. ** denotes significance at the 5% level.

Families who care about contributions by their reference group change their giving almost dollar for dollar with the group,

Families who care about contributions by their reference group change their giving almost dollar for dollar with the group, however, not everyone is influenced.

Families who care about contributions by their reference group change their giving almost dollar for dollar with the group, however, not everyone is influenced.

Donations are made for personal benefit.

Families who care about contributions by their reference group change their giving almost dollar for dollar with the group, however, not everyone is influenced.

Donations are made for personal benefit.

Tax deductions for charitable contributions primarily benefit high income families.

Future Work:

Future Work:

- Charity-specific Microdata
- Spatial Econometrics

Future Work:

- Charity-specific Microdata
- Spatial Econometrics
- Reciprocal Altruism

Main Takeaway:

Charitable contributions made by a family's reference group have a positive effect on the amount that the family donates.