ELT-2 Regulated Genes

Rtpw

2/12/2020

```
knitr::opts_chunk$set(echo = TRUE)
```

Next steps

HIGH - perform GO on up and down regulated genes LOW - elt-2 chip or promoter motifs of up and down regulated genes

Done steps

• Do Z score of row normalization, divide by the standard deviation

Improvements

Align RNA seq data to cell genome with more recent annotation.

Libraries

```
library(biomaRt)
library(DESeq2)

## Loading required package: S4Vectors

## Loading required package: stats4

## Loading required package: BiocGenerics

## Loading required package: parallel

##

## Attaching package: 'BiocGenerics'

## The following objects are masked from 'package:parallel':

##

## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

## clusterExport, clusterMap, parApply, parCapply, parLapply,

## parLapplyLB, parRapply, parSapplyLB
```

```
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
       union, unique, unsplit, which, which.max, which.min
##
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
       expand.grid
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Loading required package: DelayedArray
## Loading required package: matrixStats
## Attaching package: 'matrixStats'
## The following objects are masked from 'package:Biobase':
##
##
       anyMissing, rowMedians
## Loading required package: BiocParallel
##
## Attaching package: 'DelayedArray'
## The following objects are masked from 'package:matrixStats':
##
       colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
##
## The following objects are masked from 'package:base':
##
       aperm, apply, rowsum
library(tidyverse)
```

----- tidyverse 1.3.0 --

-- Attaching packages -----

```
## v ggplot2 3.3.0
                                0.3.3
                      v purrr
## v tibble 2.1.3
                      v dplyr
                                0.8.5
## v tidyr
            1.0.2
                      v stringr 1.4.0
## v readr
            1.3.1
                      v forcats 0.5.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::collapse()
                        masks IRanges::collapse()
## x dplyr::combine()
                        masks Biobase::combine(), BiocGenerics::combine()
## x dplyr::count()
                        masks matrixStats::count()
## x dplyr::desc()
                        masks IRanges::desc()
## x tidyr::expand()
                        masks S4Vectors::expand()
## x dplyr::filter()
                        masks stats::filter()
## x dplyr::first()
                        masks S4Vectors::first()
## x dplyr::lag()
                        masks stats::lag()
## x ggplot2::Position() masks BiocGenerics::Position(), base::Position()
## x purrr::reduce()
                        masks GenomicRanges::reduce(), IRanges::reduce()
## x dplyr::rename()
                        masks S4Vectors::rename()
## x dplyr::select()
                        masks biomaRt::select()
## x purrr::simplify()
                        masks DelayedArray::simplify()
                        masks IRanges::slice()
## x dplyr::slice()
library(pheatmap)
library(readxl)
library(matrixStats)
Source required functions.
source("./RWC23_Functions.R")
```

Differentail Expression

Load data

```
RNAcounts <- read.csv("./01_input/Table_S1_Raw_Read_Counts.csv", header=TRUE, row.names = 1)
```

This count file contains more samples than what I want to analyze. Subset the columns to just have wt_sorted_* and elt2D_sorted_*. Also select columns that correspond to ce11 genome assembly, since this is the genome used for the ChIP-seq analysis.

```
cts <- RNAcounts %>% select(wt_sorted_1, wt_sorted_2, wt_sorted_3, wt_sorted_4, elt2D_sorted_1, elt2D_s
head(cts)
```

```
##
                   wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt2D_sorted_1
## WBGene0000001
                           532
                                        462
                                                     458
                                                                  525
                                                                                  546
## WBGene00000002
                           192
                                        165
                                                     185
                                                                  195
                                                                                  169
## WBGene0000003
                           577
                                                                  694
                                        425
                                                     649
                                                                                  371
                                                                 1999
## WBGene0000004
                          2111
                                       1794
                                                    2131
                                                                                 1158
## WBGene0000005
                            11
                                          8
                                                      13
                                                                    6
                                                                                    9
## WBGene00000007
                                         82
                                                                   92
                                                                                   19
                            71
                                                      69
##
                   elt2D sorted 2 elt2D sorted 3 elt2D sorted 4 elt2Delt7D sorted 1
## WBGene0000001
                              919
                                              575
                                                                                    799
                                                              661
## WBGene00000002
                               226
                                              157
                                                              147
                                                                                    291
## WBGene0000003
                                              405
                                                              429
                                                                                   510
                              557
## WBGene0000004
                             1832
                                              1233
                                                             1288
                                                                                   1481
## WBGene0000005
                                                                10
                                                                                      3
                               11
                                                8
```

```
## WBGene0000007
                                                                           36
                                                                                                                                                                                                         22
##
                                             elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
## WBGene0000001
                                                                                     675
## WBGene00000002
                                                                                     271
                                                                                                                                       194
## WBGene0000003
                                                                                     489
                                                                                                                                       425
## WBGene0000004
                                                                                  1304
                                                                                                                                     1347
## WBGene0000005
                                                                                          7
                                                                                                                                             1
## WBGene00000007
                                                                                       22
                                                                                                                                          13
make coldata
coldata <- data.frame(condition = c("wt", "wt", "wt", "wt", "elt2D", "
##
                                                            condition
## wt_sorted_1
## wt_sorted_2
                                                                             wt
## wt_sorted_3
                                                                             wt
## wt_sorted_4
                                                                              wt
## elt2D_sorted_1
                                                                      elt2D
## elt2D_sorted_2
                                                                      elt2D
## elt2D_sorted_3
                                                                      elt2D
## elt2D_sorted_4
                                                                      elt2D
## elt2Delt7D_sorted_1 elt2Delt7D
## elt2Delt7D_sorted_2 elt2Delt7D
## elt2Delt7D_sorted_3 elt2Delt7D
Check that column matrix and coldata match
all(rownames(coldata) == colnames(cts))
## [1] TRUE
Generate DESeqDataSet
dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design = ~ condition)</pre>
# add gene names
moreFeatures <- data.frame(gene_name = RNAcounts$gene_id_val, sequence_id = RNAcounts$sequence_id_list)
mcols(dds) <- DataFrame(mcols(dds), moreFeatures)</pre>
mcols(dds)
## DataFrame with 16708 rows and 2 columns
##
                                             gene_name sequence_id
##
                                               <factor>
                                                                              <factor>
## WBGene0000001
                                                      aap-1 Y110A7A.10
## WBGene00000002
                                                      aat-1
                                                                                F27C8.1
## WBGene0000003
                                                      aat-2
                                                                                F07C3.7
## WBGene0000004
                                                      aat-3
                                                                                F52H2.2
## WBGene0000005
                                                      aat-4
                                                                           T13A10.10
## WBGene00043705
                                                              NA
                                                                                            NA
## WBGene00015013
                                                              NA
                                                                                             NA
## WBGene00008743
                                                              NA
                                                                                             NA
## WBGene00235114
                                                              NA
                                                                                             NA
## WBGene00077643
                                                              NA
                                                                                            NA
```

Tell DESeq which samples are "control" and which are "control" vs "treatment". This sets up the fold change

```
comparison manually rather than letting the alphabetical determination of factor levels.
with this step: logfoldchange(elt2D/wt)
dds$condition <- factor(dds$condition, levels = c("wt", "elt2D", "elt2Delt7D"))</pre>
Perform differential expression analysis
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
res <- results(dds)
# Convert res to dataframe
res.df <- as.data.frame(res)</pre>
# Export the results table
#write.csv(res.df, file = "./02_DESeq2/200218_L1_wt_vs_elt2D_results.csv")
# Print results table information
head(res)
## log2 fold change (MLE): condition elt2Delt7D vs wt
## Wald test p-value: condition elt2Delt7D vs wt
## DataFrame with 6 rows and 6 columns
##
                          baseMean
                                        log2FoldChange
##
                         <numeric>
                                             <numeric>
                                                               <numeric>
## WBGene00000001 591.515264995531 0.374766904987348 0.100832250987597
## WBGene00000002 196.941946891564 0.431645564160724 0.122403401331081
## WBGene00000003 499.031409070873 -0.309270596061639 0.142658833176119
## WBGene00000004 1597.07886131967 -0.542369069007949 0.105519396720516
## WBGene00000005 7.82653928628189 -1.41145497345249 0.629860204886353
## WBGene00000007 41.2854757245755
                                     -2.0673345543798 0.274722012968266
##
                                                   pvalue
                               stat
                                                                           padi
##
                          <numeric>
                                                <numeric>
                                                                      <numeric>
## WBGene00000001 3.71673647386337 0.000201812748989876 0.000660611216589531
## WBGene00000002 3.52641805265847 0.000421221497079934 0.00129548701082756
## WBGene00000003 -2.16790358631232
                                      0.0301660229459714
                                                            0.0605533480446432
## WBGene00000004 -5.13999402824958 2.74747200542808e-07 1.4149353669423e-06
## WBGene00000005 -2.24090196920309 0.0250324256740502 0.0515377102412202
## WBGene00000007 -7.52518712295034 5.26448735432883e-14 5.66900376974855e-13
summary(res)
## out of 16707 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                 : 4609, 28%
```

```
## LFC < 0 (down) : 4404, 26%
## outliers [1] : 16, 0.096%
## low counts [2] : 0, 0%
## (mean count < 0)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
Perform vst and rlog transformation of read counts

vsd <- vst(dds)
rld <- rlog(dds)</pre>
```

Explore Differential Expression

WBGene00001598

See if elt-2 is depleted It is depleted plotCounts(dds, gene = "WBGene00001250")

WBGene00001250

See if pgl-1 is enriched pgl-1 = WBGene00003992 Looks like it is enriched.

plotCounts(dds, gene = "WBGene00003992")

WBGene00003992

see if egl-20 (ligand of W
nt pathway) is expressed Also is depleted $\,$

plotCounts(dds, gene = "WBGene00001188")

WBGene00001188

Make an MA plot for all the data.

ELT-2 Bound and Reuglated Genes

This section will integrate the L1 stage ELT-2 ChIP data analyzed by David.

Load in data.

```
elt2_peaks <- read_excel("./01_input/200406_peaksForBigBed.xlsx")</pre>
head(elt2_peaks)
## # A tibble: 6 x 13
##
     chrom start
                  end `peak name` WBID mapping cluster `cluster descri~ kweight
##
     <chr> <dbl> <dbl> <chr>
                                   <chr> <chr>
                                                    <dbl> <chr>
                                                                             <dbl>
## 1 chrI
          3691 4222 ELT2peak00~ WBGe~ overla~
                                                     O Not-changing or~
## 2 chrI 11044 11533 ELT2peak00~ WBGe~ overla~
                                                        0 Not-changing or~
                                                                             0
           13560 14890 ELT2peak00~ WBGe~ inside
                                                       0 Not-changing or~
## 3 chrI
                                                                             0
## 4 chrI 15179 15647 ELT2peak00~ WBGe~ inside
                                                        O Not-changing or~
                                                                             0
## 5 chrI 16706 17483 ELT2peak00~ WBGe~ overla~
                                                        3 L3-high
                                                                             0.997
## 6 chrI 26789 27576 ELT2peak00~ WBGe~ downst~
                                                        0 Not-changing or~
## # ... with 4 more variables: LE <dbl>, L1 <dbl>, L3 <dbl>, `peak summit
      agreement` <dbl>
names(elt2_peaks)[names(elt2_peaks)=="WBID"] <- "WBGeneID"</pre>
names(elt2_peaks)
                                "start"
##
    [1] "chrom"
                                                         "end"
   [4] "peak name"
                                "WBGeneID"
                                                         "mapping"
   [7] "cluster"
                                "cluster description"
                                                         "kweight"
##
                                                         "L3"
## [10] "LE"
                                "L1"
## [13] "peak summit agreement"
```

```
# Subset for genes bound in the L1 stage
elt2_L1_peaks <- elt2_peaks %>%
    select(WBGeneID, L1) %>%
    filter(L1 == 1) %>%
    select(WBGeneID) %>% unique()

wTF3.0 <- read.csv("./01_input/TF3-0_namesonly.txt", sep = "\t", header = TRUE) %>% select(WBGeneID)
```

WT and elt-2 (-) Analysis

First focus the analysis only on genes changing between wildtype and elt-2 (-) samples only.

Use the functions in RWC23_Functions.R to subset and row normalize the matrix.

```
## WBGene00000136
                    0.8830630
                                0.7788424
                                             0.9443123
                                                         0.8462292
                                                                        -0.8363313
## WBGene00000214
                                1.2721320
                                             1.2921968
                                                                        -1.2613747
                    1.0059107
                                                         0.6844732
## WBGene00000215
                    1.5264065
                                 1.7582623
                                             1.5177720
                                                         1.4515993
                                                                        -1.8277849
## WBGene00000218
                    0.7968876
                                1.1356586
                                             0.9211414
                                                         0.4544767
                                                                        -0.9668025
## WBGene00000219 -0.7905671 -0.2483230 -0.7344153 -1.0518433
                                                                         0.5740744
##
                  elt2D_sorted_2 elt2D_sorted_3 elt2D_sorted_4
## WBGene0000067
                       0.6291500
                                       0.7166546
                                                      0.6858437
## WBGene00000136
                      -0.9800856
                                      -0.7232705
                                                     -0.9127594
## WBGene00000214
                      -0.9080412
                                      -1.2016349
                                                     -0.8836618
## WBGene00000215
                      -1.6160352
                                      -1.3386745
                                                     -1.4715456
## WBGene00000218
                      -0.7074971
                                      -0.8325836
                                                     -0.8012810
## WBGene00000219
                       0.7993100
                                       0.6411026
                                                      0.8106617
```

Replace the WBGeneIDs in the row name with gene names.

```
elt2bound_rowNormGeneNameMatrix <- id2name(elt2bound_rownormMatrix)
head(elt2bound_rowNormGeneNameMatrix)</pre>
```

```
wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt2D_sorted_1
                                 -0.5976849
                                             -0.7991346
## act-5 -0.6349486
                      -0.7162717
                                                               0.7163916
           0.8830630
                       0.7788424
## amt-4
                                   0.9443123
                                                0.8462292
                                                              -0.8363313
## asp-1
           1.0059107
                       1.2721320
                                   1.2921968
                                                0.6844732
                                                              -1.2613747
## asp-2
           1.5264065
                       1.7582623
                                   1.5177720
                                                1.4515993
                                                              -1.8277849
## asp-5
           0.7968876
                       1.1356586
                                   0.9211414
                                                0.4544767
                                                              -0.9668025
## asp-6
          -0.7905671
                      -0.2483230
                                  -0.7344153
                                              -1.0518433
                                                               0.5740744
##
         elt2D_sorted_2 elt2D_sorted_3 elt2D_sorted_4
```

```
## act-5
              0.6291500
                              0.7166546
                                              0.6858437
\#\# amt-4
             -0.9800856
                             -0.7232705
                                             -0.9127594
             -0.9080412
                                             -0.8836618
## asp-1
                             -1.2016349
## asp-2
             -1.6160352
                             -1.3386745
                                             -1.4715456
## asp-5
             -0.7074971
                             -0.8325836
                                             -0.8012810
              0.7993100
                              0.6411026
                                              0.8106617
## asp-6
```

Now plot a heatmap of ELT-2 regulated genes.

myPheatmap(elt2bound_rowNormGeneNameMatrix, "ELT-2 Bound Differentially Expressed Genes\nRow Means Norm

ELT-2 Bound Differentially Expressed Genes Row Means Normalized Variance Cutoff = 0.5

Do a similar analysis for TFs only.

```
elt2_bound_TF_matrix <- matrix_select(count_matrix = elt2_bound_matrix, gene_subset_vector = wTF3.0$WBG
elt2_bound_TF_rowNorm_matrix <- row_normalize_matrix_cutoff(
    count_matrix = elt2_bound_TF_matrix,
    variance_cutoff = 0.1
)
elt2_bound_TF_rowNorm_matrix <- id2name(elt2_bound_TF_rowNorm_matrix)

mysmallPheatmap(elt2_bound_TF_rowNorm_matrix, "ELT-2 Bound Differentially Expressed TFs\nRow Means Norm</pre>
```

ELT-2 Bound Differentially Expressed TFs Row Means Normalized Variance Cutoff = 0.1

Do it for transcription factors.

ELT-2 Bound Differentially Expressed TFs Row Z Score Normalized Variance Cutoff = 0.1

Do Z Score normalization for all genes.

ELT-2 Bound Differentially Expressed Genes Row Z Score Variance Cutoff = 0.5

Use pairwise differential expression as regulated gene filter

Load in data.

```
up_in_wt_v_elt2 <- read_excel("01_input/Table_S4_Pairwise_Diff_Expression.xlsx",
    sheet = "1_up_in_wt_v_elt2", col_names = FALSE)
## New names:
## * `` -> ...1
down_in_wt_v_elt2 <- read_excel("01_input/Table_S4_Pairwise_Diff_Expression.xlsx",</pre>
    sheet = "2_down_in_wt_v_elt2", col_names = FALSE)
## New names:
## * `` -> ...1
up_in_wt_v_elt7 <- read_excel("01_input/Table_S4_Pairwise_Diff_Expression.xlsx",
    sheet = "3_up_in_wt_v_elt7", col_names = FALSE)
## New names:
## * `` -> ...1
up_in_wt_v_elt7elt2 <- read_excel("01_input/Table_S4_Pairwise_Diff_Expression.xlsx",
    sheet = "5_up_in_wt_v_elt7elt2", col_names = FALSE)
## New names:
## * `` -> ...1
```

```
down_in_wt_v_elt7elt2 <- read_excel("01_input/Table_S4_Pairwise_Diff_Expression.xlsx",</pre>
    sheet = "6_down_in_wt_v_elt7elt2", col_names = FALSE)
## New names:
## * `` -> ...1
up_in_elt2_v_elt7elt2 <- read_excel("01_input/Table_S4_Pairwise_Diff_Expression.xlsx",
    sheet = "7_up_in_elt2_v_elt7elt2", col_names = FALSE)
## New names:
## * `` -> ...1
down_in_elt2_v_elt7elt2 <- read_excel("01_input/Table_S4_Pairwise_Diff_Expression.xlsx",</pre>
    sheet = "8_down_in_elt2_v_elt7elt2", col_names = FALSE)
## New names:
## * `` -> ...1
colnames(up in wt v elt2) <- c("WBGeneID")</pre>
colnames(down_in_wt_v_elt2) <- c("WBGeneID")</pre>
colnames(up_in_wt_v_elt7) <- c("WBGeneID")</pre>
colnames(up_in_wt_v_elt7elt2) <- c("WBGeneID")</pre>
colnames(down_in_wt_v_elt7elt2) <- c("WBGeneID")</pre>
colnames(up_in_elt2_v_elt7elt2) <- c("WBGeneID")</pre>
colnames(down_in_elt2_v_elt7elt2) <- c("WBGeneID")</pre>
Make a union of these lists with unique WBGeneIDs.
union_elt2elt7_DE <- data.frame(WBGeneID = c(up_in_wt_v_elt2$WBGeneID,
                         down_in_wt_v_elt2$WBGeneID,
                         up_in_wt_v_elt7$WBGeneID,
                         up_in_wt_v_elt7elt2$WBGeneID,
                         down_in_wt_v_elt7elt2$WBGeneID,
                         up_in_elt2_v_elt7elt2$WBGeneID,
                         down_in_elt2_v_elt7elt2$WBGeneID
                         )) %>% unique()
Subset count matrix for presence in union of all pairwise comparisons.
all_pairwise_subset <- matrix_select(wt_elt2_counts, union_elt2elt7_DE$WBGeneID)
row_normalize_matrix <- function(count_matrix){</pre>
 namevarRowNormalized <- count_matrix - rowMeans(count_matrix)</pre>
 return(namevarRowNormalized)
}
all_pairwise_subset_rownorm <- row_normalize_matrix(all_pairwise_subset)</pre>
myPheatmap(all_pairwise_subset_rownorm,
           title = "Genes Significantly Differentially Expressed In All
           Pairwise Comparisons
           Row Means Normalized",
           rowspace = 4)
```

Genes Significantly Differentially Expressed In All Pairwise Comparisons Row Means Normalized

Hard to see anything useful with this.

Do the same thing but use Z score. Maybe there will be more detail.

```
all_pairwise_subset_Zscore <- row_zscore_matrix(all_pairwise_subset)</pre>
# remove columns with NA
all_pairwise_subset_Zscore <- all_pairwise_subset_Zscore[complete.cases(all_pairwise_subset_Zscore), ]</pre>
unique(is.na(all_pairwise_subset_Zscore))
##
                  wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt2D_sorted_1
## WBGene0000007
                                     FALSE
                                                 FALSE
                                                              FALSE
                                                                             FALSE
##
                  elt2D_sorted_2 elt2D_sorted_3 elt2D_sorted_4
## WBGene0000007
                           FALSE
                                           FALSE
                                                          FALSE
myPheatmap(all_pairwise_subset_Zscore,
           title = "Genes with Significant DE In All Pairwise Comparisons
           Row Z Score Normalized",
           rowspace = 3)
```

Genes with Significant DE In All Pairwise Comparisons Row Z Score Normalized

Clusters are a little more obvious.

Add annotation to side of heatmap that indicates binding of ELT-2 in L1 stage.

```
my_row_anno <- data.frame(elt2_L1_bound = ifelse(test = rownames(all_pairwise_subset_Zscore) %in% elt2_
rownames(my_row_anno) <- rownames(all_pairwise_subset_Zscore)</pre>
ann_colors = list(
  elt2_L1_bound = c(bound = "green", not.bound = "black")
pheatmap(all_pairwise_subset_Zscore,
         annotation_row = my_row_anno,
         annotation_colors = ann_colors,
           cluster_cols = FALSE,
           cluster_rows = TRUE,
           show_rownames = FALSE,
           border_color = NA,
           cutree_rows = 3,
         main = "Genes with Significant DE In All Pairwise Comparisons
           Row Z Score Normalized",
         width = 6,
         height = 6)#,
```

Genes with Significant DE In All Pairwise Comparisons Row Z Score Normalized

#file = "./03_plots/200406_All_DE_Genes_Elt2_Elt7_rowZscore_Bound_Annotation.pdf")

Add 0 or 1 binding value to matrix and use to separate bound and unbound in clustered heatmap.

Doesn't seem to change clustering.

Now subset the plot for ELT-2 binding in the L1 stage.

Differential Expression of ELT-2 Bound Genes Subset: Differentially expressed in all pairwise comparisons Z Score Normalized

Now subset for genes that are transcription factors.

WT, elt-2 (-) and elt-2(-); elt-7(-) Analysis

```
wt_elt2_elt7double_counts <-assay(rld)</pre>
elt2_bound_matrix <- matrix_select(wt_elt2_elt7double_counts, elt2_L1_peaks$WBGeneID)
elt2bound_rownormMatrix <- row_normalize_matrix_cutoff(</pre>
  count_matrix = elt2_bound_matrix,
  variance_cutoff = 0.5
head(elt2bound_rownormMatrix)
##
                  wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt2D_sorted_1
## WBGene0000136
                    1.5086891
                                 1.4044684
                                             1.5699383
                                                          1.4718552
                                                                        -0.2107053
## WBGene00000172
                    0.5423177
                                 0.6035933
                                             0.2775824
                                                          0.4495869
                                                                         0.7846391
## WBGene00000214
                    1.6529634
                                             1.9392496
                                                          1.3315259
                                 1.9191847
                                                                        -0.6143219
## WBGene00000215
                    2.0334889
                                 2.2653447
                                             2.0248544
                                                          1.9586817
                                                                        -1.3207025
## WBGene00000216
                                 0.8648009
                                             0.6114388
                                                          0.3241784
                                                                         0.8255890
                    0.5644287
## WBGene00000218
                    1.4878912
                                 1.8266621
                                             1.6121449
                                                          1.1454803
                                                                        -0.2757989
##
                  elt2D_sorted_2 elt2D_sorted_3 elt2D_sorted_4 elt2Delt7D_sorted_1
## WBGene0000136
                     -0.35445954
                                     -0.09764439
                                                     -0.2871333
                                                                           -1.715373
## WBGene0000172
                                                                           -1.670421
                      0.94729559
                                      0.66884185
                                                      0.9323174
                                     -0.55458218
                                                                           -2.040986
## WBGene00000214
                     -0.26098841
                                                     -0.2366091
## WBGene00000215
                     -1.10895281
                                     -0.83159209
                                                     -0.9644632
                                                                           -1.457021
```

```
## WBGene00000216
                      1.00299393
                                     1.00647003
                                                     0.9358731
                                                                          -2.182086
## WBGene00000218
                     -0.01649353
                                    -0.14157996
                                                    -0.1102774
                                                                          -2.054410
##
                  elt2Delt7D sorted 2 elt2Delt7D sorted 3
## WBGene0000136
                            -1.643827
                                                -1.645808
## WBGene0000172
                            -1.818126
                                                -1.717628
## WBGene00000214
                            -1.818103
                                                -1.317332
## WBGene00000215
                            -1.417654
                                                -1.181984
## WBGene00000216
                            -1.992389
                                                -1.961298
## WBGene00000218
                            -1.845645
                                                -1.627973
```

Replace the WBGeneIDs in the row name with gene names.

```
elt2bound_rowNormGeneNameMatrix <- id2name(elt2bound_rownormMatrix)</pre>
```

head(elt2bound rowNormGeneNameMatrix)

```
wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt2D_sorted_1
##
                      1.4044684
                                 1.5699383
                                              1.4718552
                                                             -0.2107053
## amt-4
          1.5086891
## aqp-4
          0.5423177
                      0.6035933 0.2775824
                                              0.4495869
                                                              0.7846391
## asp-1
                      1.9191847
          1.6529634
                                  1.9392496
                                              1.3315259
                                                             -0.6143219
## asp-2
          2.0334889
                      2.2653447
                                  2.0248544
                                             1.9586817
                                                             -1.3207025
## asp-3
          0.5644287
                      0.8648009 0.6114388
                                              0.3241784
                                                              0.8255890
          1.4878912
                      1.8266621
                                  1.6121449
                                              1.1454803
                                                             -0.2757989
## asp-5
##
         elt2D_sorted_2 elt2D_sorted_3 elt2D_sorted_4 elt2Delt7D_sorted_1
## amt-4
           -0.35445954
                          -0.09764439
                                          -0.2871333
                                                               -1.715373
            0.94729559
                           0.66884185
                                           0.9323174
                                                                -1.670421
## aqp-4
## asp-1
            -0.26098841
                           -0.55458218
                                           -0.2366091
                                                                -2.040986
           -1.10895281
                          -0.83159209
                                          -0.9644632
                                                                -1.457021
## asp-2
## asp-3
            1.00299393
                           1.00647003
                                           0.9358731
                                                                -2.182086
            -0.01649353
                          -0.14157996
                                                                -2.054410
## asp-5
                                          -0.1102774
##
         elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
\#\# amt-4
                  -1.643827
                                      -1.645808
## aqp-4
                  -1.818126
                                      -1.717628
## asp-1
                                      -1.317332
                  -1.818103
## asp-2
                  -1.417654
                                      -1.181984
## asp-3
                  -1.992389
                                      -1.961298
                  -1.845645
                                      -1.627973
## asp-5
```

Now plot a heatmap of ELT-2 regulated genes.

myPheatmap(elt2bound_rowNormGeneNameMatrix, "ELT-2 Bound Differentially Expressed Genes\nRow Means Norm

ELT-2 Bound Differentially Expressed Genes Row Means Normalized Variance Cutoff = 0.5

Do a similar analysis for TFs only.

```
elt2_bound_TF_matrix <- matrix_select(count_matrix = elt2_bound_matrix, gene_subset_vector = wTF3.0$WBG
elt2_bound_TF_rowNorm_matrix <- row_normalize_matrix_cutoff(
    count_matrix = elt2_bound_TF_matrix,
    variance_cutoff = 0.1
)
elt2_bound_TF_rowNorm_matrix <- id2name(elt2_bound_TF_rowNorm_matrix)

mysmallPheatmap(elt2_bound_TF_rowNorm_matrix, "ELT-2 Bound Differentially Expressed TFs\nRow Means Norm</pre>
```

ELT-2 Bound Differentially Expressed TFs Row Means Normalized Variance Cutoff = 0.1

Do it for transcription factors.

ELT-2 Bound Differentially Expressed TFs Row Z Score Normalized Variance Cutoff = 0.1

Do Z Score normalization for all genes.

ELT-2 Bound Differentially Expressed Genes Row Z Score Variance Cutoff = 0.5

Use pairwise differential expression as regulated gene filter

Data was loaded in the elt-2 (-) section above.

Subset count matrix for presence in union of all pairwise comparisons.

Genes Significantly Differentially Expressed In All Pairwise Comparisons Row Means Normalized

Hard to see anything useful with this.

Do the same thing but use Z score. Maybe there will be more detail.

```
all_pairwise_subset_Zscore <- row_zscore_matrix(all_pairwise_subset)</pre>
# remove columns with NA
all_pairwise_subset_Zscore <- all_pairwise_subset_Zscore[complete.cases(all_pairwise_subset_Zscore), ]</pre>
unique(is.na(all_pairwise_subset_Zscore))
##
                  wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt2D_sorted_1
## WBGene0000007
                                     FALSE
                                                 FALSE
                                                             FALSE
##
                  elt2D_sorted_2 elt2D_sorted_3 elt2D_sorted_4 elt2Delt7D_sorted_1
## WBGene0000007
                                           FALSE
                                                          FALSE
                                                                               FALSE
                           FALSE
                  elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
## WBGene0000007
                                                     FALSE
myPheatmap(all_pairwise_subset_Zscore,
           title = "Genes with Significant DE In All Pairwise Comparisons
           Row Z Score Normalized",
           rowspace = 1)
```

Genes with Significant DE In All Pairwise Comparisons Row Z Score Normalized

Clusters are a little more obvious.

Add annotation to side of heatmap that indicates binding of ELT-2 in L1 stage.

```
my_row_anno <- data.frame(elt2_L1_bound = ifelse(test = rownames(all_pairwise_subset_Zscore) %in% elt2_
rownames(my_row_anno) <- rownames(all_pairwise_subset_Zscore)</pre>
ann_colors = list(
  elt2_L1_bound = c(bound = "green", not.bound = "black")
pheatmap(all_pairwise_subset_Zscore,
         annotation_row = my_row_anno,
         annotation_colors = ann_colors,
           cluster_cols = FALSE,
           cluster_rows = TRUE,
           show_rownames = FALSE,
           border_color = NA,
           cutree_rows = 3,
         main = "Genes with Significant DE In All Pairwise Comparisons
           Row Z Score Normalized",
         width = 6,
         height = 6)#,
```

Genes with Significant DE In All Pairwise Comparisons Row Z Score Normalized

#file = "./03_plots/200406_All_DE_Genes_Elt2_Elt7_rowZscore_Bound_Annotation.pdf")

Add 0 or 1 binding value to matrix and use to separate bound and unbound in clustered heatmap.

Doesn't seem to change clustering.

Now subset the plot for ELT-2 binding in the L1 stage.

Differential Expression of ELT-2 Bound Genes Subset: Differentially expressed in all pairwise comparisons Z Score Normalized

Now subset for genes that are transcription factors.

Differential Expression of ELT-2 bound Transcription Factors Subset of Significant DE In All Pairwise Comparisons Row Z Score Normalization

Add intestine expressed annotation to rows. From the project RWC19 aka TF_TEAM.

Load in data.

```
spencerLEgenes <- read.table("/Users/rtpw/Documents/12_GITHUB_REPO/TF_Team/02_Data/6_Spencer_et_al_2010
colnames(spencerLEgenes) <- str_c("spencer_LE_", colnames(spencerLEgenes))</pre>
spencer_LE_subset <- spencer_LE_adj_P_Val,
spencerL2genes <- read.table("/Users/rtpw/Documents/12_GITHUB_REPO/TF_Team/02_Data/6_Spencer_et_al_2010
colnames(spencerL2genes) <- str_c("spencer_L2_", colnames(spencerL2genes))</pre>
spencer_L2_subset <- spencer_L2_genes %>% select(spencer_L2_ID, spencer_L2_AveExpr, spencer_L2_adj_P_Val,
Add an annotation column for late embryo and larval stage 2 intestine expression.
bound_expressed_annotation <- cbind(my_row_anno,</pre>
                                   LE.Intestine = ifelse(test = rownames(all_pairwise_subset_Zscore) %
                                   L2.Intestine = ifelse(test = rownames(all_pairwise_subset_Zscore) %
bound_expressed_annotation %>% head()
                 elt2_L1_bound LE.Intestine L2.Intestine
##
## WBGene00000007
                     not.bound
                                   depleted
                                                enriched
## WBGene00000008
                                   depleted
                                                depleted
                         bound
## WBGene00000009
                     not.bound
                                   depleted
                                                depleted
## WBGene0000013
                                   depleted
                                                depleted
                     not.bound
## WBGene0000016
                                   depleted
                                                depleted
                     not.bound
## WBGene0000017
                                   depleted
                     not.bound
                                                depleted
bound_expressed_ann_colors <- list(</pre>
```

elt2_L1_bound = c(bound = "green", not.bound = "black"),

Genes with Significant DE In All Pairwise Comparisons Row Z Score Normalized

#file = "./03_plots/200409_All_DE_Genes_Elt2_Elt7_rowZscore_Bound_Expressed_Annotation.pdf")

Session info

Document session info.

```
sessionInfo()
```

```
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Sierra 10.12.5
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## BLAS:
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] parallel stats4
                                     graphics grDevices utils
                                                                    datasets
                           stats
## [8] methods
                 base
##
## other attached packages:
## [1] readxl_1.3.1
                                    pheatmap_1.0.12
## [3] forcats 0.5.0
                                     stringr 1.4.0
                                    purrr_0.3.3
## [5] dplyr_0.8.5
## [7] readr 1.3.1
                                    tidyr 1.0.2
## [9] tibble_2.1.3
                                     ggplot2_3.3.0
## [11] tidyverse_1.3.0
                                    DESeq2_1.26.0
## [13] SummarizedExperiment_1.16.1 DelayedArray_0.12.2
## [15] BiocParallel 1.20.1
                                    matrixStats 0.56.0
## [17] Biobase 2.46.0
                                    GenomicRanges_1.38.0
## [19] GenomeInfoDb_1.22.0
                                    IRanges 2.20.2
## [21] S4Vectors_0.24.3
                                    BiocGenerics_0.32.0
## [23] biomaRt_2.42.0
##
## loaded via a namespace (and not attached):
## [1] colorspace_1.4-1
                               htmlTable_1.13.3
                                                       XVector_0.26.0
## [4] base64enc_0.1-3
                               fs_1.3.2
                                                       rstudioapi_0.11
## [7] farver_2.0.3
                               bit64_0.9-7
                                                       fansi_0.4.1
## [10] AnnotationDbi_1.48.0
                               lubridate_1.7.4
                                                       xm12_1.2.5
                               geneplotter_1.64.0
## [13] splines 3.6.3
                                                       knitr 1.28
## [16] Formula_1.2-3
                               jsonlite_1.6.1
                                                       broom_0.5.5
## [19] annotate 1.64.0
                               cluster 2.1.0
                                                       dbplyr 1.4.2
## [22] png_0.1-7
                               compiler_3.6.3
                                                       httr_1.4.1
                               assertthat_0.2.1
                                                       Matrix_1.2-18
## [25] backports_1.1.5
## [28] cli_2.0.2
                               acepack_1.4.1
                                                       htmltools_0.4.0
## [31] prettyunits_1.1.1
                               tools 3.6.3
                                                       gtable 0.3.0
## [34] glue_1.3.2
                               GenomeInfoDbData_1.2.2 rappdirs_0.3.1
## [37] Rcpp_1.0.4
                               cellranger_1.1.0
                                                       vctrs_0.2.4
## [40] nlme_3.1-145
                               xfun_0.12
                                                       rvest_0.3.5
## [43] lifecycle_0.2.0
                               XML_3.99-0.3
                                                       zlibbioc_1.32.0
## [46] scales_1.1.0
                               hms_0.5.3
                                                       RColorBrewer_1.1-2
## [49] yaml_2.2.1
                               curl_4.3
                                                       memoise_1.1.0
## [52] gridExtra_2.3
                               rpart_4.1-15
                                                       latticeExtra_0.6-29
## [55] stringi_1.4.6
                               RSQLite_2.2.0
                                                       genefilter_1.68.0
## [58] checkmate_2.0.0
                               rlang_0.4.5
                                                       pkgconfig_2.0.3
## [61] bitops_1.0-6
                               evaluate_0.14
                                                       lattice_0.20-40
## [64] htmlwidgets_1.5.1
                               bit_1.1-15.2
                                                       tidyselect_1.0.0
## [67] magrittr_1.5
                               R6_2.4.1
                                                       generics_0.0.2
## [70] Hmisc 4.3-1
                               DBI_1.1.0
                                                       withr_2.1.2
```

##	[73]	pillar_1.4.3	haven_2.2.0	foreign_0.8-76
##	[76]	survival_3.1-11	RCurl_1.98-1.1	nnet_7.3-13
##	[79]	modelr_0.1.6	crayon_1.3.4	utf8_1.1.4
##	[82]	BiocFileCache_1.10.2	rmarkdown_2.1	jpeg_0.1-8.1
##	[85]	progress_1.2.2	locfit_1.5-9.1	grid_3.6.3
##	[88]	data.table_1.12.8	blob_1.2.1	reprex_0.3.0
##	[91]	digest_0.6.25	xtable_1.8-4	openssl_1.4.1
##	[94]	munsell 0.5.0	asknass 1.1	