1 Lezione del 04-03-25

Avevamo ricavato la formula per la **risposta libera** di un sistema. Introduciamo quindi la parte di soluzione legata alla **risposta forzata** del sistema, cioè quella legata al termine Bu nell'equazione differenziale:

$$x' = Ax + Bu$$

da cui:

$$x(t) = x_l + x_v = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau) d\tau$$

dove la risposta libera è data dal primo termine:

$$x_l = e^{At} x_0$$

e la risposta forzata è data dall'integrale di convoluzione:

$$x_v = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$

1.1 Caratterizzazione delle variabili di stato

Vediamo nel dettaglio come si ricavano le variabili di stato x'. Riprendiamo la forma generale del sistema a variabili di stato. In sostanza avremo una forma differenziale implicita per l'ingresso e l'uscita:

$$F(y(t),...,y^{(n)}(t),u(t),...,u^{(p)}(t),t) = 0$$

da cui possiamo ricavare la derivata di grado massimo dell'uscita:

$$y^{(n)}(t) = \hat{F}(y(t), ..., y^{n-1}(t), u(t), ..., u^p(t), t)$$

Facciamo alcune considerazioni sulla forma di queste equazioni. Possiamo prendere la forma generale della F, che assumiamo rappresentare un vincolo differenziale che lega in forma implicita ingresso e uscita:

$$F(t) = \sum_{i=0}^{n} \alpha_i y^{(i)}(t) + \sum_{j=1}^{p} \beta_i u^{(j)}(t), \quad F(t) = 0$$

l'equazione della $y^{(n)}(t)$ sarà allora:

$$y^{(n)}(t) = \frac{1}{\alpha_n} \left(\sum_{i=0}^{n-1} -\alpha_i y^{(i)}(t) + \sum_{j=0}^{p} -\beta_i u^{(j)}(t) \right)$$

Possiamo porre:

$$\begin{cases} \alpha_i' = \frac{\alpha_i}{\alpha_n} \\ \beta_i' = -\frac{\beta_i}{\alpha_n} \end{cases}$$

in modo da riscrivere la derivata di grado massimo nella forma più compatta:

$$y^{(n)}(t) = \sum_{i=0}^{n-1} -\alpha_i' y^{(i)}(t) + \sum_{j=0}^{p} \beta_i' u^{(j)}(t)$$

Per questo motivo, da qui in poi assumeremo $\alpha_i \leftarrow \alpha_i'$ e $\beta_i \leftarrow \beta_i'$.

Quello che volevamo fare era quindi ricondurci alla forma in variabili di stato:

$$\begin{cases} x' = Ax + Bu \\ y = Cx + Du \end{cases}$$

a cui siamo abituati.

Il passaggio era quindi quello di riportarci a:

$$x'(t) = \begin{pmatrix} x'_1(t) \\ \dots \\ x'_n(t) \end{pmatrix} = \begin{pmatrix} f_1(t) \\ \dots \\ f_n(t) \end{pmatrix}$$

e date x e f lineari dire:

$$x'(t) = Ax + Bu$$

Patiamo dal vettore di stato:

$$x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} y \\ \dots \\ y^{(n-1)} \end{pmatrix}$$

A questo punto la derivata di x sarà, assunto p=0 (quindi non ci sono derivate dell'ingresso):

$$x' = \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix} = \begin{pmatrix} x_2 \\ \dots \\ x_n \\ y^{(n)}(t) \end{pmatrix} = \begin{pmatrix} x_2 \\ \dots \\ x_n \\ \hat{F}\left((y, \dots, y^{(n-1)}), u, t\right) \end{pmatrix} = \overline{f}(x, u, t)$$

che nel caso lineare si riconduce a:

$$\begin{cases} x' = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ \hline -\alpha_0 & \dots & \dots & \dots & -\alpha_{n-1} \end{pmatrix} x + \begin{pmatrix} 0 \\ \dots \\ 0 \\ \beta_0 \end{pmatrix} u, \quad p = 0 \\ y = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix} x + \begin{pmatrix} 0 \end{pmatrix} u$$

Notiamo che questo processo non è dissimile a quello adottato ad esempio nello studio dei sistemi meccanici, dove le derivate successive della posizione facevano da variabili di stato (solitamente posizione e velocità), una di queste variabili faceva da valore di uscita (solitamente la posizione), e la derivata della variabile di stato di ordine più alto (solitamente l'accelerazione) era l'unica derivata della variabile di stato che introduceva nuove informazioni nel sistema.

1.2 Dipendenza dalle derivate della variabile di ingresso

Abbiamo posto finora p=0, quindi nessuna derivata della variabili di ingresso. Vediamo il caso in cui includiamo tali derivate.

1.2.1 Caso p < n

Vediamo innanzitutto il caso in cui il termine di grado massimo delle variabili di stato dipende dalle derivate della variabile di ingresso, cioè 0 . Avevamo l'equazione differenziale:

$$y^{(n)}(t) = \sum_{i=0}^{n-1} -\alpha_i y^{(i)}(t) + \sum_{j=0}^{p} \beta_j u^{(j)}(t)$$

In questo caso la situazione si complica, e ci conviene sfruttare il **principio di so-vrapposizione**. Definiamo l'equazione ausiliaria in *z*:

$$z^{(n)}(t) = \sum_{i=0}^{n-1} -\alpha_i z^{(i)}(t) + u(t)$$

che rappresenta la risposta del sistema al solo ingresso u(t) (senza derivate superiori). Vediamo che questa è la forma che siamo stati abituati a risolvere finora.

Per il principio di sovrapposizione, varrà allora che:

$$y(t) = \sum_{j=0}^{p} \beta_j z^{(j)}(t)$$

da cui il sistema finale:

$$\begin{cases} x' = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ \hline -\alpha_0 & \dots & \dots & \dots & -\alpha_{n-1} \end{pmatrix} x + \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \end{pmatrix} u$$

$$y = \begin{pmatrix} \beta_0 & \dots & \beta_p & 0 & \dots & 0 \end{pmatrix} x + \begin{pmatrix} 0 \end{pmatrix} u$$

1.2.2 Caso $\mathbf{p} = \mathbf{n}$

Vediamo quindi il caso p = n. Qui avremo l'equazione differenziale:

$$y^{(n)}(t) = \sum_{i=0}^{n-1} -\alpha_i y^{(i)}(t) + \sum_{j=0}^{n} \beta_j u^{(j)}(t)$$

e la dimensione di C non sarà abbastanza da contenere tutti i termini β_i . Potremo allora definire la stessa equazione ausiliaria di prima:

$$z^{(n)}(t) = \sum_{i=0}^{n-1} -\alpha_i z^{(i)}(t) + u(t)$$

e sostituire, dopo aver preventivamente separato l'*n*-esimo termine:

$$y(t) = \sum_{i=1}^{n} \beta_{i-1} x_i + \beta^n z^{(n)} = \sum_{i=1}^{n} \beta_{i-1} x_i + \beta_n \sum_{i=1}^{n} -\alpha_{i-1} z^{(i)}(t) + \beta_n u(t)$$

da cui:

$$\begin{cases} x' = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ \hline -\alpha_0 & \dots & \dots & \dots & -\alpha_{n-1} \end{pmatrix} x + \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \end{pmatrix} u \\ y = (\beta_0 - \beta_n \alpha_0 & \dots & \beta_{n-1} - \beta_n \alpha_{n-1}) x + (\beta_n) u \end{cases}$$

1.3 Rappresentazioni equivalenti

Vediamo che la scelta di variabili di stato non è unica. Potremmo infatti avere:

$$\begin{cases} x' = Ax + Bu \\ y = Cx + Du \end{cases}$$

e definire una matrice $T \in \mathbb{R}^{n \times n}$ invertibile detta matrice del cambio di base tale che:

$$\hat{x} = Tx \implies \begin{cases} \hat{x}' = \hat{A}\hat{x} + \hat{B}u \\ \hat{y} = \hat{C}\hat{x} + \hat{D}u \end{cases}$$

Ricaviamo le matrici \hat{A} , \hat{B} , \hat{C} e \hat{D} come:

$$\hat{A} = TAT^{-1}, \quad \hat{B} = TB, \quad \hat{C} = CT^{-1}, \quad \hat{D} = D$$

visto che:

$$\begin{cases} Tx = TAT^{-1}Tx + TBu \\ y = CT^{-1}Tx + Du \end{cases}$$

per cancellazione di $T^{-1}T$.

Meccanicamente, questo non significa altro che possiamo prendere diversi sistemi riferimento per velocità e posizione e conservare comunque l'informazione del sistema.

1.4 Autovalori e modi

Avevamo dalla formula di Lagrange che per la risposta libera, cioè la soluzione di $x'_l = Ax_l$, è:

$$x_l(t) = e^{A(t/t_0)} x_l(t_0)$$

posta una condizione iniziale a $t = t_0$.

Esistono 2 casi:

- A diagonalizzabile;
- A non diagonalizzabile.

Vediamo questi casi nel dettaglio.

1.4.1 A diagonalizzabile

Potremo ricavare una matrice di cambio di base T tale che A risulti diagonale, cioè:

$$A = T^{-1}A_DT$$
, $A_D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$

con A_D detta **matrice degli autovettori**, dove le entrate delle diagonali sono gli autovalori A.

In questo caso possiamo riscrivere lo stato sfruttando la serie di Taylor:

$$\hat{x}_l(t) = e^{A_D t} \hat{x}_{l0} = \sum_{k=0}^{\infty} \frac{(A_D t)^k}{k!} \hat{x}_{l0}$$

dove la forma diagonale di A_D ci permette di calcolare velocemente A_D^k :

$$A_D^k = \begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n^k \end{pmatrix}$$

da cui:

$$\hat{x}_{l}(t) = \operatorname{diag}\left\{\sum_{k=0}^{\infty} \frac{(\lambda_{1}t)^{k}}{k!}, ..., \sum_{k=0}^{\infty} \frac{(\lambda_{n}t)^{k}}{k!}\right\} \hat{x}_{l0} = \operatorname{diag}\left\{e^{\lambda_{1}t}, ..., e^{\lambda_{n}t}\right\} \hat{x}_{l0}$$

riportandoci nelle coordinate originali avremo:

$$x_l(t) = T^{-1}\hat{x}(t) = T^{-1}\mathrm{diag}\left\{e^{\lambda_1 t}, ..., e^{\lambda_n t}\right\}\hat{x_{l0}} = T^{-1}\mathrm{diag}\left\{e^{\lambda_1 t}, ..., e^{\lambda_n t}\right\}Tx_l(t_0)$$

Chiamiamo gli e^{λ_i} modi del sistema. La funzioni di uscita in assenza di derivate dell'ingresso sarà quindi data da una combinazione lineare dei *modi propri* del sistema:

$$y_l(t) = CT^{-1}\operatorname{diag}\left\{e^{\lambda_1 t}, ..., e^{\lambda_n t}\right\} Tx_l(t_0)$$

Notiamo che, come avevamo già osservato, sarà vero che $\lambda = \sigma + i\omega \in \mathbb{C}$, e quindi:

$$e^{\lambda t} = e^{\sigma t} \cos(\omega t + \phi)$$

dalla formula di Eulero.

Notiamo che i modi di un sistema rappresentano vari "comportamenti" naturali del sistema, che possono essere esponenziali, oscillatori o una loro combinazione sulla base del autovalore corrispondente λ_i .

Il comportamento complessivo del sistema sarà quindi dato da una qualche combinazione lineare di questi modi.

1.4.2 A non diagonalizzabile

Nel caso A non sia diagonalizzabile si può comunque trasformare nella cosiddetta forma di **Jordan**. Questa avrà una struttura quasi diagonale, con entrate di valore 1 immediatamente sopra la diagonale.

In questo caso i modi assumeranno la forma:

$$t^{\eta-1}e^{\lambda_i}t$$

dove $t^{\eta-1}$ sarà un'intero compreso tra 1 e la massima dimensione dei *miniblocchi di Jordan* associati all'autovalore.