

Consider the reactions of the CNO bi-cycle. First, tabulate the relevant electron screening factors, nuclear cross-sections ($\langle \sigma v \rangle$) and characteristic species lifetimes. Then use these data to compute and plot how the (log) abundances of the CNO isotopes change with (log) time for a star with a central density of 100 g-cm^{-3} and a central temperature of 30 million degrees.

Non-Resonant Reactions

Reaction	$S(E = 0)$ (keV-barns)	$\frac{dS}{dE}$ (barns)
$^{12}\text{C}(p, \gamma)^{13}\text{N}$	1.40	4.26×10^{-3}
$^{13}\text{C}(p, \gamma)^{14}\text{N}$	5.50	1.34×10^{-2}
$^{14}\text{N}(p, \gamma)^{15}\text{O}$	2.75	...
$^{15}\text{N}(p, {}^4\text{He})^{12}\text{C}$	5.34×10^4	8.22×10^2
$^{15}\text{N}(p, \gamma)^{16}\text{O}$	2.74×10^1	1.86×10^{-1}
$^{16}\text{O}(p, \gamma)^{17}\text{F}$	1.03×10^1	-2.81×10^{-2}

Resonant Reaction

Reaction	E_r (keV)	$(\omega\gamma)_r$ (MeV)
$^{17}\text{O}(p, {}^4\text{He})^{14}\text{N}$	65	4.74×10^{-14}

Beta-decays

Reaction	τ (seconds)
$^{13}\text{N}(\beta^+, \nu)^{13}\text{C}$	870
$^{15}\text{O}(\beta^+, \nu)^{15}\text{N}$	178
$^{17}\text{F}(\beta^+, \nu)^{17}\text{O}$	95

Ratio of $^{15}\text{N}(p, \gamma)^{16}\text{O}$ to $^{15}\text{N}(p, {}^4\text{He})^{12}\text{C} = 4 \times 10^{-4}$.

Initial Stellar Mass Fractions

$\text{H} = 0.75$	$\text{He} = 0.23$	$^{12}\text{C} = 3.91 \times 10^{-3}$	$^{14}\text{N} = 1.25 \times 10^{-3}$	$^{16}\text{O} = 1.48 \times 10^{-2}$
		$^{13}\text{C} = 4.75 \times 10^{-5}$	$^{15}\text{N} = 4.94 \times 10^{-6}$	$^{17}\text{O} = 5.91 \times 10^{-6}$

All other abundances are zero.