

NEURAL NETWORKS

Why

Definition

A neural network is a sequence of functions from with several properties. First, the codomain and domain of two subsequence functions in the sequence match. Second, each function is a composition of a function wit We associate a neural network with a predictor which is the composition of the functions in the sequence.

Notation

Let $g^1: \mathbb{R}^d \to \mathbb{R}^k$, $g^2: \mathbb{R}^k \to \mathbb{R}^k$, $g^3: \mathbb{R}^k \to \mathbb{R}^m$. Then (g^1, g^2, g^3) is a neural network. Notice that the codomain of g^1 (\mathbb{R}^k

Activation functions

An activation function $h: \mathbf{R} \to \mathbf{R}$ is nonlinear.

