J-DSP-C Editor

J-DSP-CONTROL: A CONTROL SYSTEMS SIMULATION ENVIRONMENT

Modeling, Identification, and Control, MIC'2003
February 10-13, 2003
Innsbruck, Austria

J-DSP-C

T. Thrasyvoulou, K. Tsakalis and A. Spanias

J-DSP concept by Andreas Spanias
Multidisciplinary Initiative on Distance Learning (MIDL)
Telecommunication Research Center (TRC)
Arizona State University

Sponsored by NSF-CCLI

J-DSP-C basics

- J-DSP-C is an on-line, object-oriented graphical control systems editor written as a Java applet
- Quick and easy simulation of feedback control systems
- Graphical or numerical results
- Simple and user-friendly interface

J-DSP-C Supports:

- Arbitrary interconnection topology
 - Including feedback systems
- Signal generators and various arithmetic operations
- Basic control systems building blocks
- State-space or transfer function models
- Plotting and visualization blocks

J-DSP-C Environment

5

Simulating Systems

 Each block represents a system

 Simulation models are built by connecting blocks together

Editing Blocks

- Each block can be edited through a dialog window
 - Edit block parameters values
- Display of results

Typical block dialog box (State Space model)

State space system representation

Feedback systems

Manual start of simulation

Recursive and iterative computation of the system response

Discrete-time approx.

Arbitrary connection topology

- Rotate and flip blocks
- Modify connections
- Square, round and triangle blocks (as commonly used in feedback systems literature)

Control Systems

- Feedback systems
- Dynamical systems
 - > Transfer Functions
 - > State Space Models
 - Multiple inputs/outputs
- Bode plots and time responses

Step response

Signal generators

- Various types of signals
 - Pulses
 - > Sinusoids
 - Random
 - > ... etc

MIDL LAB

Dynamical Systems

Transfer functions

$$H(s) = \frac{\sum_{i=0}^{n} b_i s^i}{\sum_{i=0}^{n} a_i s^i}$$

State space

$$\dot{\underline{x}} = A\underline{x} + Bu$$
$$y = C\underline{x} + Du$$

State Space Model	
State Space	ı
Name: 3b	
Select number of states,inputs and outputs:	
States 1 Inputs 1 V Outputs 1	
Press 2 pns below to enter A,B,C,D and x0	
Load Matrix A 4 Matrix B Load Matrix C Load Matrix D	
6 7oad Initial Conditions	l
Select differentiation method Backward Euler	ľ
OK Apply Clear All Cancel Help	1
Java Applet Window	l

Arithmetic operations

- Various types of math functions
 - ➢ Gain
 - Summation nodes
 - Logarithms
 - Exponentials
 - Multipliers

Plot and visualization

- Plotting blocks
 - Plot
 Zoom-in, dB plots
 - Bode plotMagnitude and phase response

Sample Simulation (1)

$$H(s) = \frac{s^2 + 4s + 5}{s^3 + 6s^2 + 3s + 10}$$

Sample Simulation (2)

General J-DSP-C evaluation Evaluations derived out of a sample of 27 students taking EEE480 ASU Control systems class, Fall 2002

	Excellent	Just Fine	Bad
How would you rate the J-DSP-C concept?	89%	0%	11%
The graphical interface of J-DSP-C is intuitive and user friendly	59%	26%	15%
Should the J-DSP-C be established as a full-fledged tool?	70%	15%	15%
Establishing and connecting blocks is easy	81%	11%	8%

MIDL LAB

pecific ab evaluation Evaluations derived out of a sample of 27 students taking EEE480 ASU Control systems class, Fall 2002

Questions asked after completion of a J-DSP based lab related to simple system concepts

- Q1: Your understanding of the time constant on the step and frequency response of a system has now improved
- Q2:The effect of the damping ratio or the step response is now clearer

MIDL LAB

Q3: The simulations allowed you to better comprehend the overall parameters affecting the system overshoot

Future work

- Matrix manipulations
- Least squares approx.
- Adaptive systems
- Multivariable
- Grouping of several blocks to create a composite one

Summary

- J-DSP-C simulates control systems in a straightforward manner
- J-DSP-C maintains a classical textbook appearance
- J-DSP-C runs in any computer through a web browser
- J-DSP-C can be used to integrate interactive examples into classroom web content

Other J-DSP Extensions:

- Basic DSP systems
- Speech analysis-synthesis
- Image processing
- Communications systems
- Time frequency representations