

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/002364

International filing date: 14 February 2005 (14.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/546,170
Filing date: 23 February 2004 (23.02.2004)

Date of receipt at the International Bureau: 11 May 2005 (11.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

EPO - DG 1

11. 04. 2005

(79)

PA 1301051

THE UNITED STATES OF AMERICA**TO ALL TO WHOM THESE PRESENTS SHALL COME:****UNITED STATES DEPARTMENT OF COMMERCE****United States Patent and Trademark Office****March 30, 2005**

**THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE UNDER 35 USC 111.**

APPLICATION NUMBER: 60/546,170**FILING DATE: February 23, 2004**

**By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS**

**M. SIAS
Certifying Officer**

13281 U.S. PTO

Mail Stop Provisional Patent Application

PTO/SB/16 (6-95)

Approved for use through 04/11/98. OMB 0651-0037
Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE**PROVISIONAL APPLICATION COVER SHEET**

This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53 (c).

Docket Number	4411-5	Type a plus sign (+) inside this box →
---------------	--------	--

INVENTOR(S)/APPLICANT(S)

LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)
VIDALINC	Pierre		Chaptuzat, France
			;
			;
			;

TITLE OF THE INVENTION (280 characters)

METHOD AND DEVICES FOR DRY LOADING OF CHROMATOGRAPHY RESINS

22141 U.S.PTO
601546170
022304

CORRESPONDENCE ADDRESS

Direct all correspondence to:

 Customer Number:

23117

Place Customer Number Bar Label Here →

Type Customer Number here

ENCLOSED APPLICATION PARTS (check all that apply)

<input checked="" type="checkbox"/> Specification	Number of Pages	11	<input type="checkbox"/> Applicant claims "small entity" status.
<input checked="" type="checkbox"/> Drawing(s)	Number of Sheets	2	<input type="checkbox"/> "Small entity" statement attached.
			<input checked="" type="checkbox"/> Other (specify) 1 Sheet

METHOD OF PAYMENT (check one)

<input checked="" type="checkbox"/> A check or money order is enclosed to cover the Provisional filing fees (\$160.00)/(\$80.00)	PROVISIONAL FILING FEE AMOUNT (\$)	160.00
<input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any deficiency, or credit any overpayment, in the fee(s) filed, or asserted to be filed, or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our Account No. 14-1140. A duplicate copy of this sheet is attached.		

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

No.

Yes, the name of the U.S. Government agency and the Government contract number are:

Respectfully submitted,
SIGNATURE

DATE

February 23, 2004

TYPED or PRINTED NAME

B. J. Sadoff

REGISTRATION NO.
(if appropriate)

36,663

Additional inventors are being named on separately numbered sheets attached hereto.

PROVISIONAL APPLICATION FILING ONLY

Burden Hour Statement: This form is estimated to take .2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Mail Stop Comments - Patents, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, and to the Office of Information and Regulatory Affairs, Office of Management and Budget (Project 0651-0037), Washington, DC 20503. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop Provisional Patent Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

819786

METHOD AND DEVICES FOR DRY LOADING OF CHROMATOGRAPHY RESINS

BACKGROUND OF THE INVENTION

5 The present invention relates to a chromatography column, a module comprising such a chromatography column and a method for using such a column or module.

10 The use of chromatography columns for the separation of individual compounds that exist in sample solution are well-known. Such columns are usually used for liquid chromatography. To this end, a resin is packed in an enclosure and a carrier liquid flows through the packed resin.

15 To load the resin in a column, one can open the column and pour in it the resin in suspension in a diluted buffer. One can also load the resin in a column via an automatic transfer pumping unit. At present, resins are loaded in columns in liquid phase. For this reason, the resins are usually stored and marketed in a buffer solution
20 in order to avoid bacterial proliferation. After the loading, before the packing procedure, the storage buffer has to be replaced, by an appropriate buffer (phosphate buffer, chloride buffer, etc.).

25 SUMMARY OF THE INVENTION

30 Alternatively, the present invention provides a method for loading a chromatography resin into a chromatography column comprising an enclosure and a first port. The first port puts the enclosure in communication with a tank comprising chromatography resin particles having a size distributed between a minimum size and a maximum size. The chromatography column also comprises a second port. This second port puts the enclosure in communication with a pump. The first port forms a passage having a minimum section which is at least 10 000 times as

large as a particle section corresponding to the maximum size particles.

Such a method allows the use of a dry resin. A dry resin can be carried in sealed bags. Such bags can be
5 sterilized, for instance with gamma rays.

Thus, resins can be conditioned without antibacterial buffer. Consequently, the resin conditioning is easier than with the prior art methods.

With the loading method according to the invention,
10 there is no need to condition the resin in a liquid phase. Thus, the storage volume and weight are lesser than with the prior art methods. The transport and storage costs are also reduced.

Further, the resin volume transferred in a column
15 can be accurately controlled since the only resin can be weighted.

Handling the resin is also easy since the overweight due to the storage buffer is suppressed. Moreover, it is not necessary to put the resin in
20 suspension in the buffer before its transfer in a column.

Buffer volumes required for the packing and the unpacking of the columns are reduced. Once the dry resin has been transferred in a column, it can be dampened directly with the packing buffer, without flushing the
25 storage buffer.

Consequently, further to the easy resin handling, conditioning and weighing, the loading method according to the invention allows to make the packing easier.

Embodiments of the invention may include one or
30 more of the following features. The enclosure has a first port and a second port, and said method comprises pumping a dry chromatography resin from a resin tank into the enclosure through the first port, via a pump connected to a second port. The enclosure, when in use, extends vertically
35 between a bottom and a top, the second port being located

above the first port. A pump is connected to the second port. It pumps the resin through a filter. The vacuum pressure in the enclosure is between -100 kPa and -50 kPa.

Another aspect of the invention provides a method
5 for unloading a chromatography resin mixed with a liquid,
from a chromatography column comprising an enclosure, a
first port, to put the enclosure in communication with a
tank comprising chromatography resin particles having a
size distributed between a minimum size and a maximum size,
10 and a second port, to put the enclosure in communication
with a pump, wherein the first port forms a passage having
a minimum section which is at least 10 000 times as large
as a particle section corresponding to the maximum size
particles.

15 Embodiments of such an unloading method may include
The enclosure has a high port located above a low port, and
this method comprises successively the steps of a) pumping
the liquid from the enclosure through the low port, b)
drying the chromatography resin comprised in the enclosure,
20 and c) pumping the dried resin through the low port. The
vacuum pressure in the enclosure is between -100 kPa and -
50 kPa. The unloading method according to the invention
further comprises between steps b) and c), injecting a gas
through the low port. Step b) of this method comprises
25 injecting a hot gas through the low port in order to
totally dry the resin. Step b) may also comprise injecting
a hot gas through the high port. The hot gas can be steam,
even if steam is not used in 100 % of the unloading cases.

Another aspect of the invention provides a
30 chromatography column comprising an enclosure, a first
port. The first port puts the enclosure in communication
with a tank comprising chromatography resin particles
having a size distributed between a minimum size and a
maximum size (these minimum and maximum can be for example
35 respectively 10 µm and 300 µm, but most common sizes are

comprised between 40 and 80 μm ; of course the pore size of column filters is adapted to the particle size). This chromatography column also comprises a second port. The second port puts the enclosure in communication with a
5 pump. Further, in this chromatography column, the first port forms a passage having a minimum section which is at least 10 000 times as large as a particle section corresponding to the maximum size particles. Of course the particle section corresponds to the maximum section of a
10 particle.

Embodiments of this column may include one or more of the following features. The enclosure, when in use, extends vertically between a bottom and a top, the second port being located above the first port. The first port is
15 provided with an inlet valve having a minimum section which is at least 10 000 times as large as the particle section corresponding to the maximum size particles.

Another aspect of the invention provides a chromatography column comprising
20

- an enclosure,
- a first port provided with an inlet valve, to put the enclosure in communication with a tank comprising chromatography resin particles having a size distributed between a minimum size and a maximum size, and
- 25 - a second port, to put the enclosure in communication with a pump,
wherein the inlet valve comprises a chamber, an inlet duct and a piston,
 - the chamber communicating with the enclosure through a first aperture,
 - the inlet duct communicating with the chamber through a second aperture and being adapted to be connected to the tank, and
 - the piston being movable in the chamber between a closing position, where it closes the first and second

apertures, and an opening position, where it opens the first and second apertures, said piston letting free substantially all the space of the chamber between the first and second apertures.

5 Embodiments of this column may include one or more of the following features. The enclosure, when in use, extends vertically between a bottom and a top, the second port being located above the first port. The valve defines the passage between a pipe adapted to be connected to the
10 duct and the enclosure, said passage having a minimum section which corresponds to the section of one of the first and second apertures. The minimum section of the passage is at least 10 000 times as large as the particle section corresponding to the maximum size particles. The
15 piston has an end surface a tapered shape, said end surface having portion which is flush with the internal surface of the enclosure, when in closing position.

Another aspect of the invention provides a chromatography column comprising an enclosure, a first port, to put the enclosure in communication with a tank comprising chromatography resin particles having a size distributed between a minimum size and a maximum size, and a second port, to put the enclosure in communication with a pump, wherein the first port forms a passage having a
20 minimum section corresponding to at least a minimum internal diameter of 20 mm.
25

Another aspect of the invention provides a module for loading chromatography resin into a chromatography column. Such a module comprises a chromatography column according to the invention and the pump connected to the
30 second port of the chromatography column, through a pipe.

In an embodiment of this module, it may include a tank for chromatography resin, this tank being connected to the first port.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows an embodiment of a module of the present invention.

5 Figure 2 is a vertical section of the chromatography column of the module shown in figure 1.

Figures 3a and 3b are schematic vertical sections of an example of a valve for the column shown on figures 1 and 2, respectively in an opening position and a closing 10 position.

Figure 4 is a schematic diagram of a module embodiment according to the invention.

Figure 5 is a schematic diagram of another module embodiment according to the invention.

15

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 shows a first embodiment of the invention. According to this embodiment, the invention comprises a 20 module 1 for loading a dry chromatography resin into a chromatography column. This module 1 comprises a chromatography column 3, a pump 5 and a resin tank 7.

The pump 5 is for instance a pump referenced C21 04-200, marketed by PIAB USA, Inc. Such a pump can be 25 controlled in order to have a vacuum in the chromatography column comprised about -75kPa, with a flow rate of 2.5 m³/mn. This pump is supplied with silicone sealings and filters in accordance with FDA requirements. The filters are for instance Gore™ Sinbran™ filters recommended for 30 powders with particle size at least equal to 0.5 µm (depending on the powder properties). Gore™ Sinbran™ filters can be sterilized for 30 mn at 121°C.

As shown in Figure 2, the chromatography column 3 comprises an enclosure 9 extending along a vertical axis Z 35 between a bottom 11 and a top 13. The column 3 can be a

column of the type marketed by Bio-Rad Laboratories Inc. by the EasyPack™ and GelTec™ trademarks (of Verdot Industrie).

The enclosure 9 consists of a first cylinder and a second cylinder, each having a longitudinal axis corresponding to the vertical axis Z. The first cylinder defines a separation chamber 15. The second cylinder defines a cleaning chamber 17. The second cylinder has a larger diameter than the first cylinder. The bottom edge of the separation chamber 15 is attached to the top edge of the cleaning chamber 17 by means of an annular plate 19. A bottom base plate 21 is attached to the bottom edge of the cleaning chamber 17. A top base plate 23 is attached to the top edge of the separation chamber 15.

A packing piston 25 moves in the separation chamber 15. The packing piston 25 comprises a distributor plate 27 and a frit 29 adapted to retain the resin in the separation chamber 15. For example, the frit 29 is pressed stainless steel or polypropylene with a 20 µm porosity. The combination of the distributor plate 27 and frit 29 ensures optimal uniform plug flow at all flow rates.

A bottom unpacking piston 31 is displaceable between an opened position, in which the separation chamber 15 opens into the cleaning chamber 17 to allow emptying the separation chamber 15 (as shown in Figure 2), and a closed position in which the separation chamber 15 is isolated from the cleaning chamber 17 (not shown).

The enclosure 9 is provided with at least three ports 33, 35, 37 :

- a first port 33 allows connection to the separation chamber 15 through the annular plate 19;
- a second port, or high port, 35 allows connection to the separation chamber 15 through the packing piston 25; and
- a low port 37 allows connection to the cleaning

chamber 17 through the bottom base plate 21.

Another port 34 symmetrical to the first port relatively to the vertical axis Z is possibly provided. This other port 34 allows connection to the separation 5 chamber 15 through the annular plate 19 too.

The first port 33 is provided with an inlet valve 39. The inlet valve 39 allows putting the enclosure in communication with the tank 7.

10 The other port 34, when existing, is provided with an outlet valve similar to the inlet valve 39.

The second port is connected to the pump 5 through a pipe 40 (see Figure 1).

The low port 37 can also be connected to a pump (not shown in Figures 1 and 2).

15 As shown in Figure 3a, the inlet valve 39 comprises a chamber 41, an inlet duct 43 and a piston 45. The chamber 41 communicates with the separation chamber 15 through a first aperture 47 in the annular plate 19. The inlet duct 45 communicates with the chamber 41 through a second aperture 49. The inlet duct 45 is adapted to be connected to the tank 7 through a flexible pipe 51 (see Figure 1). The piston 45 is movable in the chamber 41 between an opening position and a closing position. In the opening 20 position, the piston 45 opens the first 47 and second apertures 49 (Figure 3a). In the closing position the piston 45 closes the first 47 and second 49 apertures 25 (Figure 3b). In the opening position, approximately all the space of the chamber 41 comprised between the first 47 and second 49 apertures, forms a free passage.

30 This passage allows dry chromatography resins to flow from the tank 7 to the separation chamber 15. If a resin comprises particles the size of which is distributed between a minimum size and a maximum size, the minimum section of this passage is calibrated relatively to the 35 maximum size of the particles so as to allow a dry resin to

flow through the same without any problem. For example, the minimum section of the passage is at least 10 000 times as large as the particle section of the maximum size particles. This minimum section corresponds to the section of at least one the first 47 and second 49 apertures. For instance, this minimum section corresponds to a 20 mm internal diameter.

The piston 45 has an end surface 53 with a tapered shape in order together to allow a tight seal with the first aperture 47 and to make the flow through the valve 39 easier. Said end surface 53 is flush with the internal surface of the annular plate 19, when the piston 45 is its closing position, in order to make the column cleaning easier.

15 An embodiment example of the loading method according to the invention is described below.

According to this embodiment, a dry resin of a type 60 Silica Gel™ (a trademark of Merck KGaA.) marketed with the reference 107734 by Merck KGaA was loaded into a 180 mm diameter GelTec™ column with a height of 600 mm. This resin has a pore size distribution of 5-20 μ m and a mean particle size of 63 to 200 μ m. It is contained in a 20 l tank 7.

As shown in figure 4, the tank 7 is connected to the first port 33. The sucking of the pump 5 is connected to the second port 35. The vacuum system of the pump 5 goes back to the tank 7. The low port 37 is closed. An inflatable seal that serves as seal between the packing piston and the inner surface of the separation chamber 15 25 is inflated to 6 bars.

At a depression of -75 kPa in the separation chamber 15, with an inlet valve 39 of 20 mm internal diameter, the flow rate is equal to 500 Kgs of resin per hour, without any problem. The resin bed starts to build 35 itself very constantly. The accumulation of dry resin in

front of the inlet valve 39 does not disturb the flow at all. After 2 mn of sucking, the all bed of the 180 mm diameter column is full of dry resin. The pump 5 is then stopped and the resin does settle down very evenly. The 5 packing process can be proceeded.

For columns of larger diameter the two ports 33, 34 can be used, one to suck in the resin and the other one to suck out the air or the two of them to suck in the resin, while the air is sucked out by the second port 35.

10 An embodiment example of the unloading method according to the invention is described below, with reference to Figure 5.

The resin is mixed with a liquid through a separation process, and then according to this embodiment, 15 the liquid is first pumped through the low port 37.

The packing piston 25 is raised. The resin is then dried injecting hot air through the low port 37. The hot air naturally rises and carries condensates.

When the resin is dry, air can be injected through 20 the first port 33 in order to make the dried resin cake collapsed.

After that, the dry resin is sucked out through the first port 33 while air is possibly injected through the low port 37 in order to create a small fluidisation above 25 the bottom unpacking piston 31.

After a complete unloading of the resin, the bottom unpacking piston 31 is lowered (dotted line) and the packing piston seal is deflated. The column can be cleaned in a conventional way before being used again.

30 As a variant, the internal diameter of the inlet valve can be of 30mm. This allows to rise the flow rate to values of about 600 to 100 Kgs per hour.

The resin can also be unloaded in a conventional way as a resin mixed with a liquid, through the low port 35 37.

Alternatively, the dry or dampened resin can be unloaded removing the bottom unpacking piston 31 and the bottom base plate 21.

Abstract

A module for dry loading and unloading of a chromatography resin, a chromatography column and a method for using such a module. The column comprises an inlet valve adapted to load chromatography resin particles and an outlet port for pumping the air from de column. The outlet port is located above the inlet valve.

1/2

