Directed graph check

reads every element of the n x n adjacency matrix = n^2

If the graph is undirected, it checks every pair (i, j) without exiting early = n^2

Time $O(n^2)$ Reading input (n^2) + Checking symmetry (n^2) => sequential => $O(n^2)$

Space O(n²) Storing the adjacency matrix of size n x n

GraphPaths

Maximum recursion depth = 7 (since we only explore paths of length 7).

The graph is stored as an adjacency list, with up to O(e) edges.

Time $O(n^7)$ DFS explores all simple paths of length 7 edges.

Space O(n + e) Graph adjacency list (O(n + e)) + DFS stack (O(1))

Circular Graph Stream

Adds n nodes \rightarrow O(n).

For each node, two edges are added (left and right) \Rightarrow 2n edges total \Rightarrow O(n).

N names, n integers, n nodes, 2n edges

Time O(n) Add n nodes and 2n edges

Space O(n) Store n vertices, offsets, graph data