Trabajo práctico 5

Filtro de Kalman

1. Introducción

Considere un vehículo aéreo que se desplaza en el espacio definiendo una trayectoria, como la de la Figura 1, tal que la posición en cada instante resulta $\mathbf{p}(t)$, con una velocidad $\mathbf{v}(t)$ y una aceleración $\mathbf{a}(t)$, definidas en un espacio de coordenadas (x, y, z) de acuerdo a:

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

Figura 1: Trayectoria

2. Desarrollo

Se requiere estimar las variables de estado (posición, velocidad y aceleración) que rigen la dinámica del vehículo para distintos parámetros y condiciones mediante un filtro de Kalman. Se asume que el sistema es discretizado con un período de muestreo de $T=1\ s$ y que tanto los ruidos de proceso como de medición son blancos y gaussianos.

Problema 1

- (a) A partir del modelo que surge de las ecuaciones de movimiento relacionadas con $\dot{\mathbf{p}}(t)$, $\dot{\mathbf{v}}(t)$ y $\dot{\mathbf{a}}(t)$, determine las ecuaciones de estado de tiempo continuo y exprese las matrices de estado F y covarianza del ruido del proceso Q. Para ello, parta de la hipótesis que el vector de aceleración $\mathbf{a}(t)$ es constante en el tiempo, es decir que $\dot{\mathbf{a}}(t) = 0$, pero que al hacer esa simplificación se comete un error en el modelo planteado. Debido a esto, asuma que las componentes \dot{a}_x , \dot{a}_y y \dot{a}_z se pueden modelar como un vector de variables aleatorias gaussianas $\sim N(0,\mathbf{q})$ de media cero y covarianza $\mathbf{q} = \text{diag}\{10^{-2}, 8 \times 10^{-3}, 2 \times 10^{-5}\}$.
- (b) Defina la ecuación de estados de tiempo discreto y encuentre las matriz de estados F_d y covarianza de ruido de proceso en tiempo discreto Q_d .

Problema 2

Utilice el archivo "tp5.mat" para extraer las muestras de posición, velocidad y aceleración "reales" (sin ruido), correspondientes al movimiento del vehículo. Defina como vector de estados $\mathbf{x} = [p_x \ p_y \ p_z \ v_x \ v_y \ v_z \ a_x \ a_y \ a_z]^T$.

- (a) Dada la ecuación de observaciones $\mathbf{y}_k = H\mathbf{x}_k + \boldsymbol{\eta}_k$, donde $\boldsymbol{\eta}_k$ es el vector de ruido de mediciones en el instante k, defina para cada uno de los siguientes ítems las matrices H y covarianza del ruido de medición $R = E[\boldsymbol{\eta}_k \boldsymbol{\eta}_k^H]$.
 - Midiendo posición: utilice los datos suministrados para generar mediciones de posición agregando a las coordenadas de posición reales ruido gaussiano aditivo con una varianza $\sigma_p^2 = 2500~m^2$.
 - Midiendo velocidad: utilice los datos suministrados para generar mediciones de velocidad agregando a las velocidades reales ruido aditivo con una varianza $\sigma_v^2 = 25 \ m^2/s^2$.
 - Midiendo aceleración: utilice los datos suministrados para generar mediciones de aceleración agregando a las aceleraciones reales ruido aditivo con una varianza $\sigma_a^2 = 1 \ m^2/s^4$.
- (b) Considerando como estados iniciales $\mathbf{x}_{0/-1} = [10 600 \, 50 \, 0 \, 0 \, 0 \, 0 \, 0]^T$ y matriz de covarianza inicial paara el error de estiamción $P_{0/-1} = \mathrm{diag}\{10^6, \, 10^6, \, 10^6, \, 10^4, \, 10^4, \, 10^4, \, 5, \, 5, \, 5\}$, para los casos propuestos en el ítem anterior, estime las variables de estado mediante Kalman. Grafique los puntos $\mathbf{p} = [p_x, p_y, p_z]^T$ de la trayectoria (real y estimada). También grafique separadamente cada uno de los estados (reales y estimados) en función del tiempo. Nota: para el caso de medición de posición, incluya también estas mediciones en el gráfico de la trayectoria para compararlas con las trayectorias real y estimada.
- (c) Calcule en cada uno de los casos anteriores la autocorrelación de las innovaciones y verifique la validez del algoritmo de Kalman observando si dichas innovaciones son un proceso blanco.
- (d) Determine la observabilidad del sistema para los tipos de medición. Analice los resultados relacionándolos con la cantidad de estados que considere se estimaron correctamente.

Problema 3

Suponiendo que se mide la posición afectada por ruido blanco gaussiano con una varianza $\sigma_p^2 = 2500 \ m^2$ y la covarianza inicial del error en los estados $P_{0/-1}$. Para cada una de las condiciones iniciales indicadas a continuación, grafique la trayectoria $\mathbf{p} = [p_x, p_y, p_z]^T$ y observe la convergencia de la trayectoria estimada. Analice las diferencias observadas y relaciónelas con la confianza que esperamos al asignar una determinada condición inicial de los estados y la varianza inicial de los mismos.

- (a) Para las posiciones, estados iniciales cercanos al real con una varianza inicial pequeña.
 - $\mathbf{x}_{0/-1} = [-15 \ 10 \ 960 \ 0 \ 0 \ 0 \ 0 \ 0]^T$
 - $P_{0/-1} = \mathrm{diag}([10\ 10\ 10\ 10^4\ 10^4\ 10^4\ 5\ 5\ 5])$

- (b) Para las posiciones, estados iniciales lejanos al real con varianza inicial pequeña.
 - $\mathbf{x}_{0/-1} = [10 600 \ 50 \ 0 \ 0 \ 0 \ 0 \ 0]^T$
 - $P_{0/-1} = \text{diag}([10\ 10\ 10\ 10^4\ 10^4\ 10^4\ 5\ 5\ 5])$
- (c) Para las posiciones, estados iniciales lejanos al real con varianza inicial alta.
 - $\mathbf{x}_{0/-1} = [10 600 \ 50 \ 0 \ 0 \ 0 \ 0 \ 0]^T$
 - $P_{0/-1} = \operatorname{diag}([10^6 \ 10^6 \ 10^6 \ 10^4 \ 10^4 \ 10^4 \ 5 \ 5])$

Problema 4

Se toman mediciones de la posición afectadas por ruido gaussiano aditivo con una varianza $\sigma_p^2 = 2500 \ m^2$, asumiendo condiciones iniciales $\mathbf{x}_{0/-1} = [10 \ -600 \ 50 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^t \ y$ $P_{0/-1} = \mathrm{diag}([10^6 \ 10^6 \ 10^4 \ 10^4 \ 10^4 \ 5 \ 5])$. Estime el filtrado de los estados $\mathbf{p} = [p_x, p_y, p_z]^T$ suponiendo que se miden las posiciones con ruido blanco y matriz de covarianza R, pero que sin embargo el algoritmo utiliza una covarianza R' equivocada, en lugar R. Grafique la trayectoria (real, estimada y medida) y la autocorrelación de las innovaciones, para los siguientes dos casos:

- (a) Utilizando una matriz de covarianza de medición mayor que la real: $R' = 10^3 R$.
- (b) Utilizando una matriz de covarianza de medición menor que la real: $R' = 10^{-3}R$.

Analice los resultados de cada caso y justifique las diferencias observadas teniendo en cuenta el comportamiento del algoritmo al asumir una covarianza mucho mayor o mucho menor que la real.

3. Conclusiones

Como conclusiones, elabore un resumen breve y conciso comentando características que considere relevantes del método propuesto en este trabajo y los resultados obtenidos, así como dificultades encontradas y cómo fueron abordadas.

4. Referencias

- [1] Jay Farrell, Aided Navigation GPS with High Rate Sensors, 2008 by The McGraw-Hill Companies.
- [2] G. Welch. Measurement Sample Time Optimization for Human Motion Tracking/Capture Systems.
 - [3] Thomas Kailath, Ali H. Sayed, Babak Hassibi Linear Estimation, (2000).

5. Normas y material entregable

- El trabajo se debe entregar en formato PAPER, inlcuyendo los resultados y justificaciones solicitados en cada ítem. En el campus estará disponible una plantilla (tanto para LaTex como para docx). El archivo debe ser en PDF, con nombre PS_TP5_NOMBRE_APELLIDO.pdf
- Se sugiere que el manuscrito sea conciso y cumpla específicamente los puntos solicitados (no deben incluirse desarrollos teóricos que no hayan sido pedidos explícitamente).
- Junto al PDF debe incluirse el código de matlab dentro de un archivo ZIP y luego entregarlo por correo electrónico.