MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

Prepared by: Er. Ankit Kharel

Nepal college of information technology

PREDICATE LOGIC

- 1.QUANTFIERS
- 2.TYPES OF QUANTIFIERS
- 3.NEGATING QUANTIFIERS
- **4.TRANSLATION FROM ENGLISH**

LIMITATION OF PROPOSITIONAL LOGIC:

Consider the following:

- p: "All men are mortal"
- q: "Ram is man"
- r: ∴ "Ram is mortal"
- No rule of propositional logic will allow us to conclude the truth of 'r'.
- Therefore, We need more powerful type of logic called First order Logic or PREDICATE LOGIC.
- To understand predicate Logic we need to understand:
 - a) Subject
 - b) Predicates
 - c) Quantifiers
 - d) Domain(Universe of Discourse0

Consider an statement:

Subject: "The subject is what (or whom) the sentence is about"

• Predicate: "Predicate refers to a property that the subject of a statement can have"

Consider an statement:

"X is greater than 3" (x>3)

Subject: Variable "x"

Predicate: Greater than 3

We can denote "x>3" as: P(x)

The statement P(x) becomes a proposition once the value has been assigned to the subject.

Example:

P(5):"5 is greater than 3"(TRUE)

P(2):"2 is greater than 3"(FALSE)

```
Q.I) Let Q(x) denotes the statement: "The word "x" contains the letter 'a' "
What are the Truth value of Q(ankit), Q(Logic), Q(nothing)?
Solution
Q(x): "The word "x" contains the letter 'a'
Q(ankit):""The word "ankit" contains the letter 'a' "
                                                         (TRUE)
Q(Logic):""The word "Logic" contains the letter 'a"
                                                        (FALSE)
Q(nothing):""The word "nothing" contains the letter 'a"
                                                       (FALSE)
Q.2) Let C(x, y) denotes the statement: "x is the capital of y"
What are the truth value of C(Kathmandu, Nepal), C(Texas, America)?
Solution
C(x, y): "x is the capital of y"
C(Kathmandu, Nepal): "Kathmandu is capital of Nepal"
                                                       (TRUE)
C(Texas, America): "Texas is capital of America"
                                                         (FALSE)
```

Consider The Following:

P(x):"x is greater than 10"

Domain: All positive natural numbers.

Can we say the above statement is true for all values of x?

=No, because for x=1,2,3,4,5,6,7,8,9,10 above statement becomes FALSE.

So, We can say above statement as: For some x, P(x) is TRUE. –

Consider The following:

$$Q(x)$$
: "x

Domain : All positive natural numbers.

Can we say that Q(x) is TRUE For all values of x within our domain?

=Yes

So, we can say above statement as: For all x, Q(x) is TRUE.

In **predicate logic**, **predicates** are used alongside **quantifiers** to express the extent to which a **predicate** is true over a range of elements. Using **quantifiers** to create such propositions is called quantification.

"Every cat drinks milk"

Above statement is Equivalent to:

$$X_1$$
 Drinks milk.

 X_2 Drinks milk.

 X_3 Drinks milk.

 X_4 Milk(X_2)

 X_5 Milk(X_3)

The Universal Quantification of P(x) is:

"P(x) for all value of x in the Domain"

$$= \forall_{x} P(x)$$

We can also read $\forall_x P(x)$ as:

"For all P(x)" or "for every x, P(x)"

Example:

Q.I) "All student of BEIT takes course on Discrete Mathematics"

let,

D(x): "x takes course on Discrete Mathematics"

$$=\forall_{x}D(x)$$

Example:

Q.2) "Every men are Mortal"

$$M(x)$$
: "x is mortal"
= $\forall_x M(x)$

Domain(Universe of Discourse)

Q.3) "x+1>x"
let,
$$P(x)$$
: "x+1>x"
 $= \forall_x P(x)$

Domain(Universe of Discourse)

Q.4) Let Q(x) be the statement "x<5". What is the truth value of Quantification, $\forall_x Q(X)$, where domain of discourse is all real numbers.

Solution

Q(x) is not True for every real number.

for instance,

Q(6)="6<5" is FALSE.

Thus, $\forall_{x}Q(x)$ is FALSE.

COUNTER EXAMPLE: An Element for which P(x) is False is called Counter Example of $\forall_x P(x)$.

Q.5) What is the truth value of $\forall_x P(x)$, where P(x) is the statement "X² < 10" and the domain consists of the positive integers not exceeding 4.

Solution: The statement $\forall_x P(x)$ is the same as the conjunction

 $P(1) \wedge P(2) \wedge P(3) \wedge P(4)$, because the domain consists of the integers 1, 2, 3, and 4.

Because P (4), which is the statement "42 < 10," is false, it follows that $\forall_x P(x)$ is false.

2. EXISTENTIAN QUANTIFICATION(3):

"some lion drinks milk"

Above statement is Equivalent to:

$\exists_{x} Milk(X)$

- =There exist an x in the domain such that Milk(X)
- =There is at least one x such that Milk(x)
- =for some x, Milk(x)

2. EXISTENTIAN QUANTIFICATION(=):

Example:

Q.I) "Some people are Bad"

let,

$$B(x)$$
: "x is Bad"
= $\exists_x B(x)$

Q.2) "Some dogs are big" let,

$$D(x)$$
: "x is Big"
= $\exists_x D(x)$

2. EXISTENTIAN QUANTIFICATION(3):

Q.I) Let P (x) denote the statement "x > 3." What is the truth value of the quantification $\exists_x P(x)$, where the domain consists of all real numbers. Solution:

Because "x > 3" is sometimes true—for instance, when x = 4—the existential quantification of P (x), which is $\exists_x P(x)$, is true.

Q.2) What is the truth value of $\exists_x P(x)$, where P(x) is the statement " $x^2 > 10$ " and the universe of discourse consists of the positive integers not exceeding 4? Solution:

Because the domain is $\{1, 2, 3, 4\}$, the proposition $\exists_x P(x)$ is the same as the disjunction $P(1) \lor P(2) \lor P(3) \lor P(4)$. Because P(4), which is the statement "42 > 10," is true, it follows that $\exists_x P(x)$ is true.

Statement	When True?	When False?
∀ _x P(x)	P(x) is true for every x.	There is an x for which P(x) is false
∃ _x P(x)	There is an x for which P(x) is true	P(x) is false for every x.

FREE & BOUND VARIABLES:

- When the variable is assigned a value or it is quantified it is called bound variable. If the variable is not bounded then it is called free variable.
- An occurrence of a variable that is not bound by a quantifier or set equal to a particular value is said to be free.
- Example:
 - **1.**P(x, y) has two free variables x and y.
 - 2.P(2, y) has one bound variable 2 and one free variable y.
 - **3.** \forall x P(x) has a bound variable x.
 - **4.** $\forall x P(x, y)$ has one bound variable x and one free variable y.
- Expression with no free variable is a proposition.
- Expression with at least one free variable is a predicate only.

NEGATING QUANTIFICATIONS:

I. Negating Universal Quantification:

$$\neg [\forall_x P(x)]$$

- a) Negate the Proposition Function $[\neg P(x)]$
- b) Change to Existential Quantification

$$\neg [\forall_x P(x)] = \exists_x \neg [P(x)]$$

2. Negating Existential Quantification:

$$\neg[\exists_x P(x)]$$

- a) Negate the Proposition Function $[\neg P(x)]$
- b) Change to Universal Quantification

$$\neg [\exists_x P(x)] = \forall_x [\neg P(x)]$$

De-Morgan's Law For Quantifiers

Negate The Following:

I. "Every student in BEIT has Taken Data mining" [Domain: All BEIT student]

Solution

let,
$$p(x)$$
: "x has taken Data Mining"
= $\forall_x P(x)$

Negation:

$$= \neg [\forall_x P(x)]$$
$$= \exists_x \neg [P(x)]$$

"There is a student in BEIT who has not taken Data Mining"

"There is a student in class who has long hair" [Domain: All BEIT student]
 Solution

let,
$$p(x)$$
: "x has long hair"
= $\exists_x P(x)$

Negation:

$$= \neg [\exists_x P(x)]$$
$$= \forall_x \neg [P(x)]$$

"All student in the class do not have long hair"

3. What are the negations of the statements:

a)
$$\forall_x (x^2 > x)$$

Solution:

The negation of $\forall_x(x^2 > x)$ is, $\neg \forall_x(x^2 > x)$, which is equivalent to $\exists_x \neg (x^2 > x)$.

This can be rewritten as $\exists_x (x^2 \le x)$.

b)
$$\exists_{x}(x^{2} = 2)$$

Solution:

The negation of $\exists_x(x^2 = 2)$ is, $\neg \exists_x(x^2 = 2)$, which is equivalent to $\forall_x \neg (x^2 = 2)$.

This can be rewritten as $\forall_{x}(x^{2} != 2)$.

I. Express the statement "Every student in BEIT class has studied calculus" using predicates and quantifiers. Solution:

First, we introduce a variable x so that our statement becomes "For every student x in BEIT, x has studied calculus."

Now, let C(x): "x has studied calculus."

Domain: BEIT $= \forall_{\mathbf{x}} \mathbf{C}(\mathbf{x})$

DOMAIN: BEIT students

Domain: All people

Our statement becomes:

"For every person x, if person x is a student in BEIT, then x has studied calculus."

Now, let S(x): "x is a student in BEIT."

C(x): "x has studied calculus"

 $=\forall_{\mathbf{x}}[\mathbf{S}(\mathbf{x}) \rightarrow \mathbf{C}(\mathbf{x})]$

Domain: All people

Our statement becomes:

"For every person x, if person x is a student in BEIT, then x has studied calculus."

Now, let S(x): "x is a student in BEIT."

C(x): "x has studied calculus"

$$= \forall_{\mathbf{x}} [\mathbf{S}(\mathbf{x}) \to \mathbf{C}(\mathbf{x})]$$

Q(x, Calculus): "Student x has studied Calculus"

$$= \forall_x [S(x) \rightarrow Q(x, Calculus)]$$

[Caution! Our statement cannot be expressed as $\forall_x [S(x) \land C(x)]$ because this statement says that all people are students in this class and have studied calculus!]

2. Express the statement "Some student in this class has visited Jhapa" using predicates and quantifiers. Solution:

First, we introduce a variable x so that our statement becomes "There is a student x in this class that has visited Jhapa"

Now, let p(x):"x has visited Jhapa"

Domain: BEIT

 $= \exists xp(x)$

Domain: All people

Our statement becomes:

DOMAIN: BEIT students

"There is a person x, if person x is in this class, then x has studied calculus."

Now, let S(x): "x is a student in BEIT."

p(x): "x has visited Jhapa"

 $= \exists_x [S(x) \land p(x)]$

Caution! Our statement cannot be expressed as $\exists_x(S(x) \to M(x))$, which is true when there is someone not in the class because, in that case, for such a person $x, S(x) \to M(x)$ becomes either $F \to T$ or $F \to F$, both of which are true.

3. Express the statement "Every Student in this class has visited Jhapa or Kathmandu" using predicates and quantifiers.

Solution:

```
Now, let k(x): "x has visited Kathmandu"
J(x): "x has visited Jhapa"
Domain: BEIT
= \forall_x [k(x) \forall j(x)]
```

Domain: All people

Our statement becomes:

```
"for all person x, if person x is in this class, then x has visited Jhapa or Kathmandu."

Now, let S(x): "x is a student in BEIT."

k(x): "x has visited Kathmandu"

J(x): "x has visited Jhapa"

V_{x}[S(x) \rightarrow (k(x) \lor j(x))]
```

Consider these statement:

- No professor are ignorant
- All ignorant people are vain
- Some professor are ignorant

Let , P(x): x is a Professor , I(x): x is ignorant ,V(x): x is vain

Express above statement using quantifiers where domain consist of all people

- a) No professor are ignorant $\forall_x[p(x) \rightarrow \neg q(x)]$
- b) All ignorant people are vain $\forall_x[q(x)\rightarrow r(x)]$
- c) Some professor are ignorant $\exists_{x}[p(x) \land q(x)]$

- Q. Let P (x) be the statement "x can speak Russian"
 - Q(x) be the statement "x knows the computer language C++."

Express each of these sentences in terms of P(x), Q(x), quantifiers, and logical connectives. The domain for quantifiers consists of all students at your school.

- a) There is a student at your school who can speak Russian and who knows C++. $=\exists_x (P(x) \land Q(x))$.
- a) There is a student at your school who can speak Russian but who doesn't know C++. $= \exists_{x} (P(x) \land \neg Q(x))$
- a) Every student at your school either can speak Russian or knows C++. $= \forall_{x} (P(x) \lor Q(x))$
- a) No student at your school can speak Russian or knows C++. $= \forall_{x} [\neg P(x) ^{\neg} Q(x)]$

I. No one is sleeping.

Negation of above: There is some who is sleeping

$$=\exists_x[Person(x) \land sleeping(x)]$$

Now, negate the predicate:

$$= \exists_x [Person(x) \land sleeping(x)]$$

2. Not everyone is sleeping.

Negation of above: Everyone is sleeping.

$$= \forall_x [Person(x) \rightarrow Sleeping(x)]$$

Now, negate the predicate:

$$= \neg \forall_x [Person(x) \rightarrow Sleeping(x)]$$

3. No one in this class is wearing glass and a cap.

Negation of above statement: There is some one in this class who is wearing glass and a cap.

$$=\exists_x[Glass(x) \land Cap(x)]$$

Now, negate the predicate:

$$= \neg \exists_x [Glass(x) \land Cap(x)]$$