CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1 - 13 (canceled).

Claim 14 (currently amended). A control unit, comprising:

a voltage source having an output outputting an output voltage;

a sensor resistor having a value being dependent on its temperature; and

a reference resistor connected in series with said sensor resistor, the output voltage of said voltage source dropping at said sensor resistor and said reference resistor in a connected state, said reference resistor being dimensioned such that a maximum power loss of said sensor resistor is within substantially constant in a required value range of said sensor resistor.

Claim 15 (previously presented). The control unit according to claim 14, wherein said voltage source amplifies an input voltage.

Appl. No. 10/582,449

Reply to Office Action of September 18, 2008

Amdt. Dated January 16, 2009

Claim 16 (previously presented). The control unit according to claim 15,

wherein said voltage source has a limiter for limiting the output voltage.

Claim 17 (previously presented). The control unit according to claim 16,

wherein said limiter is a Zener diode.

Claim 18 (previously presented). The control unit according to claim 14,

wherein said voltage source includes first, second and third transistors with a

common emitter and each having a base and a collector, a base current of said

first transistor being a dependent on a control signal applied to the control unit,

said base of said second transistor connected to said collector of said first

transistor, and said base of said third transistor is connected to said collector of

said second transistor.

Claim 19 (previously presented). The control unit according to claim 18,

wherein said voltage source has a low-pass filter disposed between said first

and second transistors.

Claim 20 (previously presented). The control unit according to claim 19, further

comprising a voltage supply connected to said voltage source;

wherein said low-pass filter includes:

a capacitor connected to said collectors of said first and second

4 of 14

transistors and also to said voltage supply;

a resistor connected both to said collector of said first transistor and also

to said voltage supply;

a further resistor connected both to said collector of said second

transistor and also to said voltage supply.

Claim 21 (previously presented). The control unit according to claim 14,

wherein said reference resistor is connected both to said output of said voltage

source and to said sensor resistor.

Claim 22 (previously presented). The control unit according to claim 14, further

comprising:

a first output, the control unit outputting a variable characterizing a voltage drop

by said sensor resistor and said reference resistor at said first output; and

a second output, the control unit outputting a variable characterizing a potential

between said sensor resistor and said reference resistor at said second output.

Claim 23 (previously presented). The control unit according to claim 22, further

comprising a voltage divider having an input side receiving the voltage drop

5 of 14

over said sensor resistor and said reference resistor, said voltage divider

having an output side connected to said first output.

Claim 24 (previously presented). The control unit according to claim 23, further

comprising a switch, said switch being used to control whether the voltage drop

at said sensor resistor and said reference resistor is applied to said voltage

divider on said input side or a supply voltage of an evaluation unit.

Claim 25 (currently amended). A control device, comprising:

a control unit, including:

a voltage source having an output outputting an output voltage;

a sensor resistor having a value being dependent on its temperature;

a reference resistor connected in series with said sensor resistor, the

output voltage of said voltage source dropping at said sensor resistor

and said reference resistor in a connected state, said reference resistor

being dimensioned such that a maximum power loss of said sensor

resistor is within-substantially constant in a required value range of said

sensor resistor; and

an evaluation unit generating a control signal and connected to said control

6 of 14

Appl. No. 10/582,449 Reply to Office Action of September 18, 2008 Amdt. Dated January 16, 2009

unit.

Claim 26 (previously presented). The control device according to claim 25, wherein said evaluation unit has a regulator, said regulator controlling a regulated variable being a voltage drop over said sensor resistor and said reference resistor and outputting an actuating signal being the control signal.