Differentiation

Differentiation of Real Functions

Let $f : R \to R$ be a function and x in R and let h > 0 be given. Then:

The Newton's difference quotient at x for f is given by:

$$\frac{\Delta f(x)}{\Delta (x)} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

Function f is differentiable at x iff the limit:

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$

exists and is a real number. In that case, this limit is the derivative of f at x and denoted as f'(x) or equivalently $\frac{dy}{dx}$ when y = f(x)

Newton's difference quotient is a function of the value h for a given x in R

Example 35 (Derivative)

Recall the function **absolute value** f(x) = |x|. We argue that this function has a derivative at all positive and all negative points x. For example, consider x = -2. If x = -2 h represents any sequence that converges to x = -2, then x = -2 h represents a corresponding

sequence that will consist of negative numbers only, from some point onward. But then Newton's difference quotient will be

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{|x+h| - x}{h} = \lim_{h \to 0} \frac{(-x-h) - (-x)}{h} = -1 \tag{9.3}$$

This reasoning remains valid for any negative number x. A similar analysis shows that this function has derivative 1 at positive x. But what about x = 0? Here we see that it is important for the existence of a derivative that the limit is always the same value, regardless of which sequence for h is chosen:

- Let h converge to 0 from below, for example as a sequence $(-1/n)_{n\geq 0}$. Then the limit $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ computes to -1.
- Let h converge to 0 from above, for example as a sequence $(1/n)_{n\geq 0}$. Then the limit $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ computes to 1.

Therefore, the limit is not consistently the same value and so the function |x| does **not** have a derivative at x = 0.

The derivative, as a real number, is the slope of the tangent of the curve of function f at point x

Properties of Derivatives

Let $f,g:(a,b)\to\mathbb{R}$ be two functions.

- 1. Polynomials have derivatives at all points, given by (9.4).
- 2. If f is differentiable at x, then f is also continuous at x.
- 3. If f is differentiable in (a,b) then $f'(x_0) = 0$ for any point x_0 at which f is maximum or minimum.
- 4. If f and g are differentiable at x, then the product function $f \cdot g$ defined by $(f \cdot g)(x) = f(x) \cdot g(x)$ is also differentiable at x and

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \tag{9.5}$$

5. If g and f are, respectively, differentiable at x and g(x), then the composition function $f \circ g$ defined by $(f \circ g)(x) = f(g(x))$ is also differentiable at x and

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x) \tag{9.6}$$

6. Differentiation $f \mapsto f'$ is a **linear function**: for all f and g that are differentiable at x, and for all g and g in g we have that the function $g \cdot f + g \cdot g$ defined by $(a \cdot f + b \cdot g)(x) = a \cdot f(x) + b \cdot g(x)$ is differentiable at g and

$$(a \cdot f + b \cdot g)'(x) = a \cdot f'(x) + b \cdot g'(x) \tag{9.7}$$

Property 4 = Product Rule

Property 5 = Chain Rule

Property 6 = Linear Mapping

Mean Value Theorem and Taylor's Theorem

Exercise 24

(Rolle's Theorem) If $f : [a,b] \to \mathbb{R}$ is continuous and $f : (a,b) \to \mathbb{R}$ is differentiable with f(a) = f(b), then there exists $c \in (a,b)$ such that f'(c) = 0. (Hint We know that f being continuous in [a,b] must have a minimum and a maximum. Consider the two possible cases: (i) Either the minimum or the maximum occurs in (a,b). (ii) Both of them occur at the end points a and b.)

If $f:[a,b]\to R$ is continuous and $f:(a,b)\to R$ is differentiable, then there exists $c\in(a,b)$ such that:

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Rewrite:

$$f(b) = f(a) + (b-a)f'(c)$$

If $f:(a,b)\to R$ is differentiable at $x_0\in(a,b)$, then the tangent to the graph of f at the point $(x_0,f(x_0))$ is the line $y=f(x_0)+f'(x_0)(x-x_0)$

Thus if x is close to x_0 we expect $f(x) = f(x_0) + f'(x_0)(x - x_0) + E$ where the error E is small

Taylor's theorem formalises the above idea of approximation of a function in the neighbourhood of a point using the derivative and the higher order derivatives of the function at that point, and gives an expression of the error E

Denote the n^{th} derivative of f at a point x, if it exists, by $f^{(n)}(x_0)$

Theorem 33

If f is n times differentiable in (a,b) with $x_0 \in (a,b)$, then for any $x \in (a,b)$ we have:

$$f(x) = f(x_0) + \frac{1}{1!}(x - x_0)f'(x_0) + \frac{1}{2!}(x - x_0)^2 f''(x_0) + \dots + \frac{1}{(n-1)!}(x - x_0)^{n-1} f^{(n-1)}(x_0) + E_n,$$

where $E_n = \frac{1}{n!} (x - x_0)^n f^{(n)}(x^*)$ for some x^* between x and x_0 .

The term

$$\frac{f^{(n+1)}(x^*)}{(n+1)!}(x-x_0)^{n+1}$$

is known as the Lagrange error term

Although x^* exists as we have shown, there is unfortunately no easy way to find that value of x^*

So in practice, the bound $x_0 < x^* < x$ or $x < x^* < x_0$ is used to generate a worst-case error for the Lagrange Error Term

For example, if $x_0 < x^* < x$, we may want to compute:

$$\max_{y \in (x_0, x)} \frac{f^{(n+1)}(y)}{(n+1)!} (x-c)^{n+1}$$

using techniques from mathematical optimisation or real analysis.

L'Hopital's Rule

Suppose $f, g:(a,b) \to R$ have derivatives $f', g':(a,b) \to R$ that are continuous in (a,b)

If f(c) = g(c) = 0 for some $c \in (a, b)$ and $g'(c) \neq 0$, then:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

The rule can be extended to the case when:

$$\lim_{x\to c}|f(x)|=\lim_{x\to c}|g(x)|=\infty$$

by writing

$$\frac{f(x)}{g(x)} = \frac{1/g(x)}{1/f(x)}$$

It can also be extended to the case when $x \to \infty$ by writing

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{y \to 0} \frac{f(1/y)}{g(1/y)}$$

Where we restrict f and g to the non-negative real numbers, $f,g:[0,\infty\:)\to\infty\:)$

Fundamental Theorem of Calculus

If $f:[a,b]\to R$ is continuous and the function $F:[a,b]\to R$ is defined by $F(y)=\int_a^y f(x)dx$ then F is uniformly continuous on [a,b] and F'(x)=f(x) for $x\in(a,b)$

Change of Variable Integration

Let $g:[a,b] \to [c,d]$ be a differentiable function with $g^{'}:[a,b] \to R$ continuous, and let $f:[c,d] \to R$ be a continuous function. Let y=g(x). Then:

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$