Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3217	К работе допущен
Студент Бессонов Борис Александрович	Работа выполнена
Преподаватель Тимофеева Эльвира Олеговна	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.03

- 1. Цель работы.
 - 1) Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
 - 2) Исследование зависимости ускорения тележки от приложенной силы и массы тележки.
- 2. Задачи, решаемые при выполнении работы.
- 1. Измерение скоростей тележек до и после соударения.
- 2. Измерение скорости тележки при ее разгоне под действием по-

стоянной силы.

3. Исследование потерьи мпульса имеханической энергии при упру-

гом и неупругом соударении двух тележек.

4. Исследование зависимости ускорения тележки от приложенной

силы и массы тележки. Проверка второго закона Ньютона.

3. Объект исследования.

Упругое и неупругое центральное соударение 2х металлических тележек.

4. Метод экспериментального исследования.

С помощью специальной установки измерить скорости тележек до и после соударения. Далее по полученным результатам исследовать зависимости.

5. Рабочие формулы и исходные данные.

При абсолютно упругом соударении.

$$\begin{cases} m_{1}\overrightarrow{v_{10}} = m_{1}\overrightarrow{v_{1}} + m_{2}\overrightarrow{v_{2}} \\ \frac{m_{1}v_{10}^{2}}{2} = \frac{m_{1}v_{1}^{2}}{2} + \frac{m_{2}v_{2}^{2}}{2} \end{cases}, \begin{cases} m_{1}v_{10} = m_{1}v_{1x} + m_{2}v_{2x} \\ \frac{m_{1}v_{10}^{2}}{2} = \frac{m_{1}v_{1x}^{2}}{2} + \frac{m_{2}v_{2x}^{2}}{2} \end{cases} \end{cases} \begin{cases} m_{1}(v_{10} - v_{1x}) = m_{2}v_{2x} \\ m_{1}(v_{10} - v_{1x}) = m_{2}v_{2x} \end{cases}$$

$$\begin{cases} m_{1}(v_{10} - v_{1x}) = m_{2}v_{2x} \\ v_{10} + v_{1x} = v_{2x} \end{cases}$$

$$\begin{cases} v_{1x} = \frac{(m_{1} - m_{2})v_{10}}{m_{1} + m_{2}} \\ v_{1x} = \frac{2m_{1}v_{10}v_{10}}{m_{1} + m_{2}} \end{cases} .$$

При абсолютно неупругом соударении.

$$\begin{cases} m_1\overrightarrow{v_{10}} = (m_1 + m_2)\overrightarrow{v} \\ \frac{m_1v_{10}^2}{2} = \frac{(m_1 + m_2)v^2}{2} + W_{\text{HOT}} \end{cases}$$

$$v = \frac{m_1v_10}{m_1 + m_2}.$$

$$W_{\text{HOT}} = \frac{m_1m_2v_{10}^2}{2(m_1 + m_2)}.$$

$$\frac{W_{\text{HOT}}}{\frac{m_1v_{10}^2}{2}} = \frac{m_2}{m_1 + m_2}.$$

$$M\overrightarrow{a_1} = M\overrightarrow{g} + \overrightarrow{N} + \overrightarrow{T_1} + \overrightarrow{F_{\text{Tp}}};$$

$$m\overrightarrow{a_2} = m\overrightarrow{g} + \overrightarrow{T_2}.$$

$$\begin{cases} OY: N = Mg \\ OX: Ma = T - F_{\text{TD}} \end{cases};$$

6. Измерительные приборы.

№ n/n	Наименование	Предел измерений	Цена деления	Класс точности	Погрешность прибора
1	Линейка на рельсе	1.3 м	1 см/дел	-	0,5 см
2	ПКЦ-3 в режиме измерения скорости	9.99 м/с	0.01 м/с	-	0.01 м/с
3	Лабораторные весы	250 г	1 г	-	0,1 г
4					

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 3. Общий вид экспериментальной установки

Общий вид экспериментальной установки для первой части работы изображен на Рис. 3. В состав установки входят:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Левые оптические ворота: x1 = 0.15 Правые оптические ворота: x2 = 0.8

Таблица 1

N опыта	т₁, г	т2, г	v_{10x} , M/C	v_{1x} , M/C	v_{2x} , M/C
1			0,41	0	0,34
2	49	48	0,43	0	0,36
3			0,42	0	0,36

4	0,42	0	0,36
5	0,42	0	0,35

Таблица 2

N опыта	т₁, г	т2, г	<i>v</i> _{10<i>x</i>} , м/с	<i>v</i> ₁ <i>x</i> , м/с	v_{2x} , M/C	
1			0,42	-0,09	0,24	
2			0,42	-0,10	0,23	
3	49	98	0,42	-0,09	0,24	
4			0,42	-0,09	0,23	
5				0,42	-0,08	0,22

Таблица 3

N опыта	т1, г	т2, г	v₁0, м/с	<i>v</i> , м/с
1			0,42	0,16
2			0,42	0,17
3	52	51	0,41	0,17
4			0,42	0,17
5			0,41	0,16

Таблица 4

N опыта	т1, г	т2, г	v₁0, м/с	υ, м /c
1			0,41	0
2			0,42	0
3	52	101	0,41	0
4			0,41	0
5			0,42	0

Левые оптические ворота: x1 = 0.15 Правые оптические ворота: x2 = 0.8

Таблица 5. Разгоняемое тело – тележка. $M_1 = 0,49$

N опыта	Состав гирьки	т, г	<i>v</i> ₁ , м/c	v ₂ , м/с
1	подвеска	1	0,28	0,68
2	подвеска + одна шайба	2	0,34	0,84
3	подвеска + две шайбы	3	0,40	0,96
4	подвеска + три шайбы	4	0,44	1,06
5	подвеска + четыре шайбы	5	0,49	1,11
6	подвеска + пять шайб	6	0,52	1,25
7	подвеска + шесть шайб	7	0,55	1,33

Таблица 6. Разгоняемое тело – тележка. $M_2 = 97$

N опыта	Состав гирьки	т, г	υ ₁ , м/с	v ₂ , м/с
1	подвеска	1	0,17	0,47
2	подвеска + одна шайба	2	0,21	0,57
3	подвеска + две шайбы	3	0,26	0,67
4	подвеска + три шайбы	4	0,27	0,69
5	подвеска + четыре шайбы	5	0,28	0,71
6	подвеска + пять шайб	6	0,30	0,72
7	подвеска + шесть шайб	7	0,34	0,81

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 7

N опыта	р 10х, мН * с	р 1х, мН * с	р 2х, мН * с	δ_p	δω
1	20,09	0	16,32	-0,19	-0,33
2	21,07	0	17,28	-0,19	-0,31
3	20,58	0	17,28	-0,16	-0,28
4	20,58	0	17,28	-0,16	-0,28
5	20,58	0	16,80	-0,18	-0,32

$$\bar{\delta}_p = -0.1744; \ \bar{\delta}_W = -0.3$$

Доверительные интервалы для $\bar{\delta_p}$: \pm 0,02

Доверительные интервалы для $\bar{\delta}_W$: \pm 0,03

Таблица 8

N опыта	р 10х, мН * с	р 1х, мН * с	р 2х, мН * с	δ_p	δ w
1	20,58	-4,41	23,52	-0,07	-0,3
2	20,58	-4,9	22,54	-0,14	-0,34
3	20,58	-4,41	23,52	-0,07	-0,3
4	20,58	-4,41	22,54	-0,12	-0,35
5	20,58	-3,92	21,56	-0,14	-0,41

$$\bar{\delta}_{p} = -0.1095; \ \bar{\delta}_{W} = -0.34$$

Доверительные интервалы для $\bar{\delta_p}$: \pm 0,1

Доверительные интервалы для $\bar{\delta}_W$: $\pm~0.08$

Таблица 9.

N опыта	р 10, мН * с	р , мН * с	δ_p	$oldsymbol{\delta_W^{(3)}}$	$oldsymbol{\delta}_{oldsymbol{W}}^{^{(\mathrm{T})}}$
1	21,84	16,48	-0,25	-0,71	
2	21,84	17,51	-0,2	-0,67	
3	21,32	17,51	-0,18	-0,66	-0,5
4	21,84	17,51	-0,2	-0,68	
5	21,32	16,48	-0,23	-0,69	

$$\delta_W^{(3)}$$
 (cp) = -0,68 \pm 0,1

$$\delta_{W}^{(T)}$$
 (cp) = -0,49

Таблица 10.

N опыта	р 10, мН * с	р , мН * с	δ_p	$oldsymbol{\delta_W^{(3)}}$	$oldsymbol{\delta_{W}^{^{(\mathrm{T})}}}$
1	21,32	0	-1	-1	
2	21,84	0	-1	-1	
3	21,32	0	-1	-1	-0,66
4	21,32	0	-1	-1	
5	21,84	0	-1	-1	

$$\delta_W^{(3)}$$
 (cp) = -1

$$\delta_{W}^{(T)}$$
 (cp) = -0,66

Таблица 11.

N опыта	т , г	а , м/с ²	Т, мН	
1	1	0,29	9,52	
2	2	0,45	18,73	
3	3	0,58	27,7	
4	4	0,71	36,42	
5	5	0,76	45,28	
6	6	0,99	52,96	
7	7	1,13	60,84	

Таблица 12

N опыта	т , г	а , м/с²	Т, мН
1	1	0,15	9,67
2	2	0,22	19,2
3	3	0,29	28,58
4	4	0,31	38,04
5	5	0,33	47,46
6	6	0,33	56,94
7	7	0,42	65,83

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

	Pasoma 2 (1.03)
80	, Sw , gre madrues 61 7
The same of	A
8 F	$= \sum_{i=1}^{N} S_{i} / N \approx \frac{-0.87}{5} \approx 0.17$
di	$v = \frac{N}{N} \frac{\delta w_i}{N} = -\frac{1,52}{5} \approx -0,3$
	Macca M., respectitioens s.M. nemogou naure chaggearns
	T = Ma + Ftp
. /	ez pyza:
	Z ili = 4,93
	= 1 0=1 W = 2 C = 2
	$\bar{a} = \frac{7}{7} \cdot 4,93 \approx 0,7$ $\bar{T} = \frac{1}{2} \cdot 251,46 \approx 35,92$
	$\sum (a_i - \bar{a})(\bar{1}_i - \bar{1})$ 32, 12 62.87
	$b = \frac{\sum (a_i - \bar{a})(T_i - \bar{T})}{\sum (a_i - \bar{a})^2} \approx \frac{32, 12}{0, 51} \approx 62, 87$
	$\geq (u_i - \alpha)$
	~= F-bā ≈ 35,92-62,87-0,7 ≈ +500, -8,4
2	

$b = \frac{\sum (a_i - \bar{a})(T_i - T)}{\sum (\lambda_i - \bar{a})^2} \approx 222,51$
$\sum di^2 = 242,98$
$D = \sum (Q_i - \bar{\alpha})^2 = 0,04$ $S_b^2 = \frac{1}{D} \cdot \frac{\sum J_b^2}{D-2} = 1081,79 \Rightarrow S_b = 32,89$
$S_{\alpha}^{2} = \left(\frac{1}{n} + \frac{\bar{x}^{2}}{D}\right) = \frac{2}{n-2} = 66,52 \Rightarrow S_{\alpha} = 16,31$ $\Delta \alpha = 2. S_{\alpha} = 65,78$
$\Delta b = 25_b = 16,31$ $M_1 = 222,51 \pm 65,78 \qquad F_{TP} = -26,88 \pm 16,31$
$T = 222,51 \alpha - 26,88$ $T = 0 \Rightarrow \alpha = 0,12$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

Среднее значение изменения импульса и энергии для 2х одинаковых тележек при упругом соударении:

$$\bar{\delta}_p = -0.17 \pm 0.02; \ \bar{\delta}_W = -0.3 \pm 0.03$$

Среднее значение изменения импульса и энергии для 2х тележек одна из которых тяжелее другой при упругом соударении:

$$\bar{\delta}_{p} = -0.11 \pm 0.1; \ \bar{\delta}_{W} = -0.34 \pm 0.08$$

Среднее значение изменения импульса и энергии для 2х одинаковых тележек при неупругом соударении:

$$\delta_W^{(3)}$$
 (cp) = -0,68 \pm 0,1

$$\delta_{W}^{(T)}$$
 (cp) = -0,49

Среднее значение изменения импульса и энергии для 2х тележек одна из которых тяжелее другой при неупругом соударении:

$$\delta_W^{(3)}$$
 (cp) = -1

$$\delta_{W}^{(T)}$$
 (cp) = -0,66

Масса тележки как коэффициент наклона экспериментальной зависимости:

$$M_1 = 62,86 \pm 4,04$$

$$F_{Tp} = -8.4 \pm 4.87$$

$$M_2 = 222,51 \pm 65,76$$

$$F_{Tp} = 26,88 \pm 16,31$$

13. Выводы и анализ результатов работы.

При выполнении данной лабораторной работы были проведены измерения скорости двух тележек при соударении, а далее по полученным результатам были рассчитаны импульс и энергия тел до и после удара. Методом наименьших квадратов была рассчитана теоретическая масса тележки по данным силы натяжения нити и ускорению, а также доверительные результаты.

Также было выявлена закономерность, что при увеличении массы тележки и не изменении силы, действующей на нее, ускорение и скорость тележки уменьшается.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).