

() Preliminary Specifications(V) Final Specifications

Module	15.6" (15.55) FHD 16:9 Color TFT-LCD with LED Backlight design
Model Name	B156HTN03.3 (H/W:0A)
Note (🗭)	LED Backlight with driving circuit design

Customer	Date	Appro
		<u>Buff</u>
Checked & Approved by	Date	Prepa
		<u>Bren</u>
Note: This Specification without notice.	is subject to change	1

Approved by	Date			
<u>Buffy Chen</u>	03/10/2014			
Prepared by	Date			
<u>Brenda Lu</u>	03/10/2014			
NBBU Marketing Division / AU Optronics corporation				

Contents

1.	. Handling Precautions	4
2.	. General Description	5
	2.1 General Specification	
	2.2 Optical Characteristics	6
3.	. Functional Block Diagram	11
	. Absolute Maximum Ratings	
	4.1 Absolute Ratings of TFT LCD Module	
	4.2 Absolute Ratings of Environment	
5.	. Electrical characteristics	13
	5.1 TFT LCD Module	
	5.1.1 Power Specification	
	5.1.2 Signal Electrical Characteristics	
	5.2 Backlight Unit	
	5.2.1 LED characteristics	
6.	. Signal Characteristic	16
	6.1 Pixel Format Image	
	6.2 The input data format	
	6.3 Integration Interface and Pin Assignment	
	6.3.1 Connector Description	
	6.3.2 Pin Assignment	
	6.4 Interface Timing	
	6.4.1 Timing Characteristics	
	6.4.2 Timing diagram	
	6.5 Power ON/OFF Sequence	21
7.	. Vibration and Shock Test	22
	7.1 Vibration Test	
	7.2 Shock Test Spec:	
	7.3. Reliability	
8.	. Mechanical Characteristics	23
	8.1 LCM Outline Dimension	
9.	. Shipping and Package	25
	9.1 Shipping Label Format	25
	9.2 Carton package	
	9.3 Handling guide	27
	9.4 Shipping package of palletizing sequence	
10	0. Appendix: EDID description	30

Record of Revision

Ve	Version and Date Page		Old description	New Description	Remark
0.1	2013/11/21	All	Preliminary Edition for Customer		
1.0	2014/03/10	13,30	1. IDD current=606mA	1. IDD current=667mA	
			2. EDID checksum=9A	2. EDID checksum=E	

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electros tic breakdown.

AU OPTRONICS CORPORATION

2. General Description

B156HTN03.3 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 FHD (1920(H) x 1080(V)) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are LVDS interface compatible.

B156HTN03.3 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 $^{\circ}\mathrm{C}$ condition:

Items	Unit	Specifications				
Screen Diagonal	[mm]	15.6" (15.55)				
Active Area	[mm]	344.16 x 193.5	344.16 x 193.59			
Pixels H x V		1920 x 3(RGB) x 1080			
Pixel Pitch	[mm]	0.17925 x 0.17	7925			
Pixel Format		R.G.B. Vertico	al Stripe			
Display Mode		Normally Wh	ite			
White Luminance (ILED=21mA) (Note: ILED is LED current)	[cd/m²]	300 Typ. (5 pc 255 Min. (5 pc	•	,		
Luminance Uniformity		1.25 Max. (5)	points)			
Contrast Ratio		400 :1 Typ				
Response Time	[ms]	8 Typ / 16 Mc	ax.			
Nominal Input Voltage VDD	[Volt]	+3.3 Typ.				
Power Consumption	[Watt]	7.0 Max. (Include Logic and BLU Power)				
Weight	[Grams]	380 Max.				
			Min.	Тур.	Max.	
Physical Size	[mm]	Length	359.0	359.5	360.0	
Without inverter, bracket.	[]	Width	223.3	223.8	224.3	
		Thickness			3.2	
Electrical Interface		2 channel LV	'DS			
Glass Thickness	[mm]	0.4				
Surface Treatment		AG				
Support Color		262K colors (RGB 6-bit)				
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +60				
RoHS Compliance		RoHS Compli	ance			

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Luminance ILED=21mA			5 points average	255	300	-	cd/m²	1, 4, 5
		Θ _R ΘL	Horizontal (Right) CR = 10 (Left)	40 40	45 45	-	degree	
Viewing Angle		Ψн Ψι	Vertical (Upper) CR = 10 (Lower)	10 30	15 35	-		4, 9
Luminance Unifo	ormity	δ_{5P}	5 Points	-	-	1.25		1, 3, 4
Luminance Unifo	ormity	δ _{13P}	13 Points	-	-	1.53		2, 3, 4
Contrast Ratio		CR		300	400	-		4, 6
Cross talk		%				4		4, 7
Response Time	Response Time		Rising + Falling	-	8	16	msec	4, 8
	Red	Rx		0.590	0.620	0.650		
	Red	Ry		0.320	0.350	0.380		
	Green	Gx		0.290	0.320	0.350		
Color / Chromaticity	Orceri	Gy		0.570	0.600	0.630		
Coodinates	DL	Bx	CIE 1931	0.120	0.150	0.180		4
	Blue	Ву		0.090	0.120	0.150		
	NA//I= * I.	Wx		0.283	0.313	0.343		
	White	Wy		0.299	0.329	0.359		
NTSC		%			60			

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance.

2		Maximum Brightness of five points
δ w5	=	Minimum Brightness of five points
2		Maximum Brightness of thirteen points
δ w13	=	Minimum Brightness of thirteen points

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points, $Y_L = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$ L (x) is corresponding to the luminance of the point X at Figure in Note (1).

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 7: Definition of Cross Talk (CT)

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 9: Definition of view angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 15.6 inches wide Color TFT/LCD 40 Pin.

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	8	95	[%RH]	Note 4
Storage Temperature	TST	-20	+60	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25° C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	-	-	2.0	[Watt]	Note 1/2
IDD	IDD Current	-	-	667	[mA]	Note 1/2
IRush	Inrush Current	-	-	2000	[mA]	Note 3
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV]	

Note 1: Maximum Measurement Condition: Black Pattern, XP Desktop Pattern

Note 2: Typical Measurement Condition: Mosaic Pattern, XP Desktop Pattern

Note 3: Measure Condition

Vin rising time

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
V _{TH}	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
V _{TL}	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
V _{ID}	Differential Input Voltage	100	600	[mV]
V _{CM}	Differential Input Common Mode Voltage	1.125	1.375	[V]

Note: LVDS Signal Waveform

| VID |

5.2 Backlight Unit

5.2.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power	PLED	-	-	5.0	[Watt]	(Ta=25°C), Note 1
Consumption						Vin =12V
LED Life-Time	N/A	15,000	-	-	Hour	(Ta=25 $^{\circ}$ C), Note 2
						I _F =21 mA

Note 1: Calculator value for reference PLED = VF (Normal Distribution) * IF (Normal Distribution) / Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

5.2.2 Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	6.0	12.0	21.0	[Volt]	
LED Enable Input High Level	VLED_EN	2.5	-	5.5	[Volt]	
LED Enable Input Low Level	VLLD_LIV	-	-	0.5	[Volt]	
PWM Logic Input High Level	VPWM EN	2.5	-	5.5	[Volt]	Define as Connector
PWM Logic Input Low Level		-	-	0.5	[Volt]	Interface (Ta=25°C)
PWM Input Frequency	FPWM	200	1K	10K	Hz	
PWM Duty Ratio	Duty	5		100	%	

Note 1: Recommend system pull up/down resistor no bigger than 10kohm

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1			1920
1st Line	R G B R C	€ B - · · · · · F	R G B	R G B
			•	
	, ,		1	
1080th Line	R G B R C	B - · · · · · · · · · · · · · · · · · ·	R G B	R G B

AU OPTRONICS CORPORATION

6.2 The input data format

Signal Name	Description	
R5	Red Data 5 (MSB)	Red-pixel Data
R4	Red Data 4	Each red pixel's brightness data consists of these 6 bits pixel data.
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
	Red-pixel Data	
G5	Green Data 5 (MSB)	Green-pixel Data
G4	Green Data 4	Each green pixel's brightness data consists of these 6 bits pixel
G3	Green Data 3	data.
G2	Green Data 2	
G1	Green Data 1	
G0	Green Data 0 (LSB)	
	Cra an initial Data	
D.C.	Green-pixel Data	Division in the LD and as
B5 B4	Blue Data 5 (MSB) Blue Data 4	Blue-pixel Data
B3	Blue Data 3	Each blue pixel's brightness data consists of these 6 bits pixel data.
B2	Blue Data 2	
B1	Blue Data 1	
BO	Blue Data 0 (LSB)	
	BIOC Baid o (ESB)	
	Blue-pixel Data	
RxCLKIN	Data Clock	The signal is used to strobe the pixel data and DE signals. All pixel
		data shall be valid at the falling edge when the DE signal is high
DE	Display Timing	This signal is strobed at the falling edge of
		RxCLKIN. When the signal is high, the pixel data shall be valid to
		be displayed.
VS	Vertical Sync	The signal is synchronized to RxCLKIN .
HS	Horizontal Sync	The signal is synchronized to RxCLKIN .

Note: Output signals from any system shall be low or High-impedance state when VDD is off.

6.3 Integration Interface and Pin Assignment

6.3.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector			
Manufacturer	IPEX or compatible			
Type / Part Number	IPEX 20455-040E-12 or compatible			
Mating Housing/Part Number	IPEX 20453-040T-11 or compatible			

6.3.2 Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device

PIN#	Signal Name	Description
1	NC	No Connection (Reserve)
2	VDD	Power Supply +3.3V
3	VDD	Power Supply +3.3V
4	VEDID	EDID +3.3V Power
5	BIST	Panel Self Test
6	CLK_EDID	EDID Clock Input
7	DAT_EDID	EDID Data Input
8	RxOIN0-	-LVDS Differential Data INPUT(Odd R0-R5,G0)
9	RxOIN0+	+LVDS Differential Data INPUT(Odd R0-R5,G0)
10	VSS	Ground
11	RxOIN1-	-LVDS Differential Data INPUT(Odd G1-G5,B0-B1)
12	RxOIN1+	+LVDS Differential Data INPUT(Odd G1-G5,B0-B1)
13	VSS	Ground
14	RxOIN2-	-LVD\$ Differential Data INPUT(Odd B2-B5,HS,VS,DE)
15	RxOIN2+	+LVDS Differential Data INPUT(Odd B2-B5,HS,VS,DE)
16	VSS	Ground
17	RxOCKIN-	-LVD\$ Odd Differential Clock INPUT
18	RxOCKIN+	+LVDS Odd Differential Clock INPUT
19	CM_EN	CM_EN
20	RxEIN0-	-LVDS Differential Data INPUT(Even R0-R5,G0)
21	RxEIN0-	+LVDS Differential Data INPUT(Even R0-R5,G0)
22	VSS	Ground
23	RxEIN1-	-LVDS Differential Data INPUT(Even G1-G5,B0-B1)

24	RxEIN1+	+LVDS Differential Data INPUT(Even G1-G5,B0-B1)
24	VSS	Ground
25	V 33	Ground
26	RxEIN2-	-LVDS Differential Data INPUT(Even B2-B5,HS,VS,DE)
27	RxEIN2+	+LVDS Differential Data INPUT(Even B2-B5,HS,VS,DE)
28	VSS	Ground
29	RxECKIN-	-LVDS Even Differential Clock INPUT
30	RxECKIN+	+LVDS Even Differential Clock INPUT
31	VLED_GND	LED Ground
32	VLED_GND	LED Ground
33	VLED_GND	LED Ground
34	NC	No Connection
35	S_PWMIN	System PWM Logic Input level
36	LED_EN	LED enable input level
37	DCR_EN	DCR_EN
38	VLED	LED Power Supply
39	VLED	LED Power Supply
40	VLED	LED Power Supply

Note1: Input signals shall be low or High-impedance state when VDD is off.

AU OPTRONICS CORPORATION

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1920x1080 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min. Typ.		Max.	Unit
Frame	e Rate	-	40 60 -			Hz
Clock fre	equency	1/ T _{Clock}	66.6	72	80	MHz
	Period	T _V	1100	1130	1080+A	
Vertical	Active	T VD	1080			T Line
Section	Blanking	T∨B	20	50	Α	
	Period	T _H	1010	1050	960+B	
Horizontal	Active	T HD	960			T Clock
Section	Blanking	T HB	50	90	В	

Note 1: The above is as optimized setting

Note 2: DE mode only

Note 3 : The maximum clock frequency = (960+B)*(1080+A)*60 < 80MHz

6.4.2 Timing diagram

AU OPTRONICS CORPORATION

6.5 Power ON/OFF Sequence

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Note 1: If T3<200ms, the display garbage may occur. (T3>200ms is recommended)

Note 2: If T1 or T12<0.5ms, the inrush current may cause the damage of fuse. If T1 or T12<0.5ms, the inrush current I2t is under typical melt of fuse Spec, there is no mentioned problem.

7. Vibration and Shock Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

Frequency: 10 - 500Hz Random

Sweep: 30 Minutes each Axis (X, Y, Z)

7.2 Shock Test Spec:

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

Pulse: X.Y.Z. one time for each side

7.3. Reliability

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40°C, 90%RH, 300h	
High Temperature Operation	Ta= 50°C, Dry, 300h	
Low Temperature Operation	Ta= 0°C , 300h	
High Temperature Storage	Ta= 60°C, 35%RH, 300h	
Low Temperature Storage	Ta= -20°C, 50%RH, 300h	
Thermal Shock Test	Ta=-20°C to 60°C, Duration at 30 min, 100 cycles	
ESD	Contact: ±8 KV Air: ±15 KV	Note 1

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

AU OPTRONICS CORPORATION

8. Mechanical Characteristics

8.1 LCM Outline Dimension

B156HTN03.3 Document Version : 1.0

B156HTN03.3 Document Version : 1.0

- 9. Shipping and Package
- 9.1 Shipping Label Format

CT: CECJL 01XXXXXXX

Manufactured MM/WW Model No: B156HTN03.3 All Optronics

MADE IN CHINA (\$01)

H/W: 0A F/W:1

C N US (E204356

9.2 Carton package

AU OPTRONICS CORPORATION

9.3 Handling guide

This is a thin and slime LCD model, and please be cautious when pulling it out of package or assembling it onto platform. Careless handlings, e.g. twist, bending, pressing, or collision, will result malfunction of LCD models.

(1) Handling method notice

Do not lift and hold the panel with single hand at right or left side from tray.

Lift and hold the panel up with both hands from tray.

(2) On the table notice

Do not press edge of panel to avoid glass broken.

Do not press the surface of the panel to avoid the glass broken or polarizer scratch.

Do not put anything or tool on the panel to avoid the glass broken or polarizer scratch.

(3) Cable assembly notice

Do not insert the connector with single hand and touching the PCBA.

Insert the connector by pushing right and left edge.

9.4 Shipping package of palletizing sequence

10. Appendix: EDID description

Address	FUNCTION	Value	Value	Value	Note
HEX		HEX	BIN	DEC	
00	Header	00	00000000	0	
01		FF	11111111	255	
02		FF	11111111	255	
03		FF	11111111	255	
04		FF	11111111	255	
05		FF	11111111	255	
06		FF	111111111	255	
07		00	00000000	0	
08	EISA Manuf. Code LSB	06	00000110	6	
09	Compressed ASCII	AF	10101111	175	
0A	Product Code	ED	11101101	237	
0B	hex, LSB first	33	00110011	51	
0C	32-bit ser #	00	00000000	0	
0D		00	00000000	0	
0E		00	00000000	0	
0F		00	00000000	0	
10	Week of manufacture	00	00000000	0	
11	Year of manufacture	16	00010110	22	
12	EDID Structure Ver.	01	00000001	1	
13	EDID revision #	04	00000100	4	
14	Video input def. (digital I/P, non-TMDS, CRGB)	90	10010000	144	
15	Max H image size (rounded to cm)	22	00100010	34	
16	Max V image size (rounded to cm)	13	00010011	19	
17	Display Gamma (=(gamma*100)-100)	78	01111000	120	
18	Feature support (no DPMS, Active OFF, RGB, tmg Blk#1)	02	00000010	2	
19	Red/green low bits (Lower 2:2:2:2 bits)	D1	11010001	209	
1 A	Blue/white low bits (Lower 2:2:2:2 bits)	15	00010101	21	
1B	Red x (Upper 8 bits)	9E	10011110	158	
1C	Red y/ highER 8 bits	59	01011001	89	
1D	Green x	53	01010011	83	
1E	Green y	9B	10011011	155	
1F	Blue x	27	00100111	39	
20	Blue y	1E	00011110	30	
21	White x	50	01010000	80	
22	White y	54	01010100	84	
23	Established timing 1	00	00000000	0	
24	Established timing 2	00	00000000	0	_
25	Established timing 3	00	00000000	0	
26	Standard timing #1	01	00000001	1	
27		01	00000001	1	
28	Standard timing #2	01	00000001	1	
29		01	00000001	1	
2A	Standard timing #3	01	00000001	1	
2B		01	00000001	1	

2C	Standard timing #4	01	00000001	1	
2D		01	00000001	1	
2E	Standard timing #5	01	00000001	1	
2F		01	00000001	1	
30	Standard timing #6	01	00000001	1	
31		01	00000001	1	
32	Standard timing #7	01	00000001	1	
33	-	01	00000001	1	
34	Standard timing #8	01	00000001	1	
35		01	00000001	1	
36	Pixel Clock/10000 LSB	14	00010100	20	
37	Pixel Clock/10000 USB	37	00110111	55	
38	Horz active Lower 8bits	80	10000000	128	
39	Horz blanking Lower 8bits	B4	10110100	180	
3A	HorzAct:HorzBlnk Upper 4:4 bits	70	01110000	112	
3B	Vertical Active Lower 8bits	38	00111000	56	
3C	Vertical Blanking Lower 8bits	20	00100000	32	
3D	Vert Act : Vertical Blanking (upper 4:4 bit)	40	01000000	64	
3E	HorzSync. Offset	30	00110000	48	
3F	HorzSync.Width	64	01100100	100	
40	VertSync.Offset : VertSync.Width	31	00110001	49	
41	Horz‖ Sync Offset/Width Upper 2bits	00	00000000	0	
42	Horizontal Image Size Lower 8bits	58	01011000	88	
43	Vertical Image Size Lower 8bits	C1	11000001	193	
44	Horizontal & Vertical Image Size (upper 4:4 bits)	10	00010000	16	
45	Horizontal Border (zero for internal LCD)	00	00000000	0	
46	Vertical Border (zero for internal LCD)	00	00000000	0	
47	Signal (non-intr, norm, no stero, sep sync, neg pol)	18	00011000	24	
48	Pixel Clock/10,000 (LSB)	B8	10111000	184	
49	Pixel Clock/10,000 (MSB)	24	00100100	36	40Hz frame rate
4A	Horizontal Addressable Pixels, lower 8 bits	80	10000000	128	
4B	Horizontal Blanking Pixels, lower 8 bits	B4	10110100	180	
4C	H Pixels, upper nibble : H Blanking, upper nibble	70	01110000	112	
4D	Vertical Addressable Lines, lower 8 bits	38	00111000	56	
4E	Vertical Blanking Lines, lower 8 bits	20	00100000	32	
4F	V lines, upper nibble : V blanking, upper nibble	40	01000000	64	
50	Horizontal Front Porch, lower 8 bits	30	00110000	48	
51	Horizontal Sync Pulse, lower 8 bits	64	01100100	100	
52	V Front Porch, lower nibble : V Sync Pulse, lower nibble	31	00110001	49	
53	VFP, 2 bits: VSP 2 bits: HFP 2 bits: HFP 2 bits	00	00000000	0	
54	Horizontal Image Size in mm, lower 8 bits	58	01011000	88	
55	Vertical Image Size in mm, lower 8 bits	C1	11000001	193	
56	H Image Size, upper nibble : V Image Size, upper nibble	10	00010000	16	
57	Horizontal Border	00	00000000	0	
58	Vertical Border	00	00000000	0	
59	Bit Encode Sync Information	18	00011000	24	\/P20
5A	DC	00	00000000	0	nVDPS

	Ad of Thomics Conf Charlon	İ]		
5B	HTOTAL	00	00000000	0	Reserved 00
5C	НА	00	00000000	0	
5D	HBL	00	00000000	0	
5E	HFP	00	00000000	0	
5F	HFPe	00	00000000	0	
60	НВР	00	00000000	0	
61	нв	00	00000000	0	
62	HSO	00	00000000	0	
63	HS	00	00000000	0	
64	VTOTAL	00	00000000	0	
65	VA	00	00000000	0	
66	VBL	00	00000000	0	
67	VFP	00	00000000	0	
68	VBP	00	00000000	0	
69	VB	00	00000000	0	
6A	VSO	00	00000000	0	
6B	vs	00	00000000	0	
6C	Detail Timing Description #4	00	00000000	0	
6D	Flag	00	00000000	0	
6E	Reserved	00	00000000	0	
6F	For Brightness Table and Power Consumption	02	00000010	2	
70	Flag	00	00000000	0	Header
71	PWM % [7:0] @ Step 0	0C	00001100	12	
72	PWM % [7:0] @ Step 5	33	00110011	51	
73	PWM % [7:0] @ Step 10	FF	11111111	255	
74	Nits [7:0] @ Step 0	0E	00001110	14	
75	Nits [7:0] @ Step 5	3C	00111100	60	
76	Nits [7:0] @ Step 10	96	10010110	150	Brightness Table
77	Panel Electronics Power @ 32x32 Chess Pattern =	1B	00011011	27	
78	Backlight Power @ 60 nits =	0D	00001101	13	
79	Backlight Power @ Step 10 =	1C	00011100	28	
7A	Nits @ 100% PWM Duty =	96	10010110	150	Power Consumption
7B	Flag	20	00100000	32	
7C	Flag	20	00100000	32	
7D	Flag	20	00100000	32	
7E	Extension Flag	00	00000000	0	
7F	Checksum	E	00001110	14	