Non-Linear Regression

36-600

The Setting

• Assume that we have n data tuples,

$$\left(x_{i},y_{i},e_{i}
ight) ,$$

- $\circ \; x_i$ is the x-coordinate for datum i
- $\circ y_i$ is the *y*-coordinate for datum i
- \circ e_i is the estimated uncertainty for datum i
- Our goal: to draw a "curve" through the points
 - but wait, isn't that just regression?
 - it is!...it is not necessarily *linear* regression, but it is a (weighted) regression
- Unlike a typical linear regression setting, we have estimated uncertainties here (the e_i 's)
 - o a data point with a smaller uncertainty should have more weight in the fitting process than one with a larger uncertainty
 - *inverse-variance* weighting is often used:

$$w_i = rac{1}{e_i^2}$$

Example

• Here is a dataset that you have been given:

X	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
у	-0.39	0.26	0.70	0.86	1.64	1.41	2.10	1.82	3.16	3.35	3.05	3.59	2.37	2.35	2.77	1.24	1.70	-0.28
e	0.60	0.64	0.53	0.59	0.59	0.57	0.54	0.53	0.56	0.54	0.43	0.77	0.68	0.59	0.42	0.36	0.46	0.55

- Your advisor tells you to "fit a model" to these data, and you dutifully agree
 - (note that for simplicity, we are not splitting the data into training and tests sets)

Global Polynomial Regression

- It is readily apparent that a simple linear regression model is *not* a good representation of the data-generating process in this particular instance
- A first variant on simple linear regression that we can examine is (global) polynomial regression:

$$Y|x=eta_0+eta_1x+\cdots+eta_dx^d+\epsilon$$

Global Polynomial Regression

• Let's try d=3 (while incorporating the provided uncertainties)

Regression Splines

- "Global" models have what can be viewed as an inherent disadvantage: because they are defined for all x, then can be insufficiently flexible
- An example of a "local" model is a spline model
 - \circ the range of values of x is divided into K non-overlapping segments
 - o the boundaries between segments are dubbed knots
 - o as an example, we can express a quadratic polynomial model with one knot as

$$Y_i | x_i = \left\{ egin{array}{ll} eta_{0,1} + eta_{1,1} x_i + eta_{2,1} x_i^2 + \epsilon_i & x_i < c \ eta_{0,2} + eta_{1,2} x_i + eta_{2,2} x_i^2 + \epsilon_i & x_i \geq c \end{array}
ight.$$

- the β_i 's are typically chosen such that the model pieces "match up" at the knots, but that doesn't explicitly need to be the case (e.g., step functions)
- there are various varieties of splines: basis (or B) splines, natural splines, etc.
- $\circ~$ if d is the degree of the polynomial and K-1 is the number of knots, the overall number of estimated quantities is (d+1)+K

Regression Splines

```
library(splines)
# default: cubic spline; K+3 basis functions
s.out <- lm(y~bs(x,knots=c(11)),data=df,
            weights=1/(e^2)
s.pred <- predict(s.out)</pre>
mean((y-s.pred)^2)
## [1] 0.1585325
data.frame("Estimate"=
              summary(s.out)$coefficients[,1])
##
                           Estimate
## (Intercept)
                         -0.1943431
## bs(x, knots = c(11))1 0.9950228
## bs(x, knots = c(11))2 4.5003507
## bs(x, knots = c(11))3 2.6608156
## bs(x, knots = c(11))4 0.2497895
```


Regression Splines: What Do the Coefficients Mean?

- A cubic B-spline model with one knot is built up using K+d=4 separate basis functions
- Take each function, multiply by the coefficient, add in the intercept, and...voila, you have the overall model shape

Regression Splines

```
# don't know where to put knot(s)?
# specify dof instead
s.out <- lm(y~bs(x,df=6),data=df,
            weights=1/(e^2)
s.pred <- predict(s.out)</pre>
mean((y-s.pred)^2)
## [1] 0.1343997
data.frame("Estimate"=
             summary(s.out)$coefficients[,1])
##
                    Estimate
## (Intercept)
                  -0.4304463
## bs(x, df = 6)1 1.4121224
## bs(x, df = 6)2 1.0998492
## bs(x, df = 6)3 4.1123438
## bs(x, df = 6)4 3.0951492
## bs(x, df = 6)5 2.2892663
## bs(x, df = 6)6 0.3834174
```


Smoothing Splines

- A variation on the regression spline model is the *smoothing spline* model
- A smoothing spline model penalizes excessive model wiggliness, which is measured via the second derivative of the model function
- The objective function that we wish to minimize is

$$\sum_{i=1}^n (Y_i - \hat{Y_i})^2 + \lambda \int f''(x)^2 dx$$

- $\circ \; \lambda$ is a tuning parameter: smaller values lead to "wigglier" models
- Note that there is no need to place knots: in theory, they are placed at the coordinates of every datum (although in practice a reduced set is sets)
- When learning a smoothing-spline model, we can
 - \circ choose the effective number of degrees of freedom by setting λ ; or
 - $\circ~$ use cross-validation to determine the optimal value of λ

Smoothing Splines

```
ss.out <- suppressWarnings(
    smooth.spline(df$x,y=df$y,w=1/(df$e^2),cv=TRUE)
)
ss.out$lambda

## [1] 0.002613839

ss.pred <- predict(ss.out)
mean((y-ss.pred$y)^2)

## [1] 0.1721536</pre>
```

• The number of coefficients is large and the values are not easily interpreted

Local Polynomial Regression

- This is the "localized" version of global polynomial regression
 - o at each point, a polynomial is fit, with more weight being given to nearby data points and less to those farther away

Local Polynomial Regression

```
lpr.out <- loess(y~x,data=df,weights=1/(df$e)^2,span=
lpr.pred <- predict(lpr.out)
mean((y-lpr.pred)^2)</pre>
```

[1] 0.1728908

- An important argument is span (default value: 0.75)
 - \circ a larger value span means more neighboring data weigh in on the estimate made at x_o
 - therefore, large span values produce smoother functions

Digression: What About (Cubic) Splines?

• A confusing aspect to using splines is that some functions use them in the context of regression (i.e., they incorporate the idea of randomness) and some use them *deterministically* (i.e., as interpolators that thread functions through every point)

```
# note: uncertainties not taken into account
spl.out <- spline(df$x,df$y)</pre>
```

• If your output looks like this, you have not implemented a regression model!

Generalized Additive Models

- We can extend the models that we have discussed above to multiple regression settings
- The generalized additive model or GAM is

$$Y_i|x_i=eta_0+f_1(x_{1,i})+\cdots+f_p(x_{p,i})$$

- $\circ \; x_{j,i}$ is the value of the $j^{ ext{th}}$ predictor for the $i^{ ext{th}}$ object
- $\circ f_j(\cdot)$ is a function applied to the data in the $j^{\text{th}rm}$ predictor column only...so this could be B-splines, or global polynomials, etc.
- Why would we use GAMs?
 - they provide flexible nonlinear modeling with output that we can (possibly) use to make inferential statements...i.e., GAMs are not black-box models
- Why would we not use GAMs?
 - the "phase space" of model possibilities is *huge*: where do we use B-splines (and where are the knots)? where do we use polynomial regression (and what is the degree)?
- In the end...if model flexibility is needed and inference is not of utmost importance, working with simpler-to-implement nonlinear models like random forest is generally preferable to working with GAMs