UNIVERSITY NAME (IN BLOCK CAPITALS)

Исследование алгоритмов

by

Козловский Никита

A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy

in the Faculty Name Department or School Name

Оглавление

1	Вве	едение
2	Алі	горитм решения
	2.1	Алгоритм
	2.2	Блок-схема
	2.3	Комментарии к алгоритму
	2.4	Вводимые модификации
		2.4.1 Генерация нескольких начальных перестановок
		2.4.2 Выбор лучшей перестановки
	2.5	Итеративный алгоритм
3	Про	ограммная реализация и вычислительный эксперемент
	3.1	Описание
	3.2	Эксперимент

Глава 1

Введение

Одной из фундаментальных задач комбинаторной оптимизации является задача о назначениях (ЗОН). В своей классической постановке эта задача звучит так:

Имеется некоторое число работ и некоторое число исполнителей. Любой исполнитель может быть назначен на выполнение любой (но только одной) работы, но с неодинаковыми затратами. Нужно распределить работы так, чтобы выполнить работы с минимальными затратами.

Так как в данной форме рассматривается 2 множества — работников X и работ Y, затраты могут быть выражены ввиде $(c_i j) \in A$, где A матрица из $Matr_{n \times n}$ и такая задача называется двухиндекской.

В 1955 Куном был опубликовано решение этой задачи [link] в виде Венгерского алгоритма. В 1957 Манкрес определил, что алгорим является строго полиномианльным, а Карп улучшил его, добившись временной сложности $O(n^3)$

Естественно обобщить эту задачу, рассмотрев многоиндексную задачу о назначениях. Однако, уже для трехиндексной ЗОН было показано [кем?], что она принадлежит к классу нп-полных, т.е. не может быть решена за полиномиальное время.

Соответсвенно возникает проблема выбора достаточно хорошего решения. Само собой, эта задача, как и любая задача дискретной оптимизации, может быть решена полным перебором. Однако, слишком большая (экспоненциальная?) временная сложность для такого метода не позволяет использовать его в реальной жизни. Однако, имеет место улучшенная версия этого алгоритма — метод ветвей и границ. В худшем случае он сводится к полному перебору, но чаще требует гораздо меньшего числа операций [для получения приближенного решения — а не точный ли он?].

Contents 2

Б'ольшую практическую ценность представляют т.н. эвристические алгоритмы. Они за приемлимое время позволяют получить приближенное решение. Цель данной работы состоит в изучении одного из таких методов, для корого Гимади в [] было показано, что решения, полученные с помощью такого алгоритма сходятся при $n \to \inf$. Для достижения этих целей необходимо решить следующие задачи:

- Изучение математической модели 3-АЗОН
- Изучить метод, предложенный Гимади
- Программно реализовать этот метод
- И провести его анализ

Глава 2

Алгоритм решения

- 2.1 Алгоритм
- 2.2 Блок-схема
- 2.3 Комментарии к алгоритму
- 2.4 Вводимые модификации
- 2.4.1 Генерация нескольких начальных перестановок
- 2.4.2 Выбор лучшей перестановки
- 2.5 Итеративный алгоритм

Глава 3

Программная реализация и вычислительный эксперемент

- 3.1 Описание
- 3.2 Эксперимент