

Eletrônica Digital II

Capítulo I Família de Circuitos Lógicos

Aula B – Família de Circuitos Lógicos

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações

As famílias lógicas utilizadas atualmente em Eletrônica Digital são a TTL (*Transistor-Transistor Logic*) e a CMOS (*Complementrary Metal Oxide Semiconductor*).

Os principais parâmetros que caracterizam as famílias lógicas são:

- Níveis de Tensão e Corrente
- Fan-Out
- Tempo de Atraso de Propagação
- Imunidade ao Ruído

Níveis de Tensão e Corrente

O nível lógico "0" não corresponde, necessariamente, a 0 [V] mas sim a uma faixa de tensão de pequeno valor, abaixo de um valor máximo especificado. Já o nível lógico "1" representa a existência de uma tensão, mas que não necessita ser, necessariamente um valor específico, mas sim uma faixa de tensões entre um valor mínimo e um valor máximo especificados. Os valores de tensão que caracterizam os níveis lógicos "0" e "1" dependem da família lógica utilizada.

Níveis de Tensão e Corrente

A terminologia padrão empregada pelos principais fabricante de circuito integrados é definida a seguir:

- **V**_{IL}(**L**ow-level **I**nput **V**oltage): Valor de tensão máxima que garante o nível lógico "0" na entrada.
- **V**_{OL}(*Low-level Output Voltage*): Valor de tensão máxima que garante o nível lógico "0" na saída.
- V_{IH}(High-level Input Voltage) Valor de tensão mínima que garante o nível lógico "1" na entrada.
- V_{OH}(High-level Output Voltage) Valor de tensão mínima que garante o nível lógico "1" na saída.

Níveis de Tensão e Corrente

Na região compreendida entre V_{IL} (V_{OL}) e V_{IH} (V_{OH}) o nível lógico é indefinido. Para que haja compatibilidade com segurança entre entrada e saída do bloco lógico, devemos ter:

$$V_{\text{OL}} < V_{\text{IL}}$$
 e $V_{\text{OH}} > V_{\text{IH}}$

Imunidade ao Ruído:

Campos elétricos e magnéticos parasitas podem induzir tensões nos fios que fazem as conexões entre blocos lógicos, gerando sinais espúrios indesejáveis chamados **ruído.** O **ruído** pode fazer com que a tensão na entrada de um circuito lógico caia abaixo de \mathbf{V}_{IH} ou aumente além de \mathbf{V}_{IL} .

A **Imunidade ao Ruído** de bloco lógico se refere à capacidade que o mesmo tem de tolerar o ruído sem provocar alterações espúrias no nível lógico de saída.

A **Imunidade ao Ruído** de um bloco lógico pode ser avaliada através da sua **Margem de Ruído.**

Margem de Ruído:

$$\mathbf{V}_{\mathsf{NH}} = \mathbf{V}_{\mathsf{OH}} - \mathbf{V}_{\mathsf{IH}}$$

$$\mathbf{V}_{\mathsf{NL}} = \mathbf{V}_{\mathsf{IL}} - \mathbf{V}_{\mathsf{OL}}$$

Margem de ruído para o estado alto

Margem de ruído para o estado baixo

Margem de Ruído:

CI TTL DM7404					
Parâmetro	Valor	Unidade			
V _{OH}	2,4	V			
V _{OL}	0,4	V			
V _{IH}	2,0	V			
V _{IL}	0,8	V			

$$V_{NH} = V_{OH} - V_{IH} = 2,4 - 2,0 = 0,4 V$$

$$V_{NH} = V_{OH} - V_{IH} = 2.4 - 2.0 = 0.4 V$$

$$V_{NL} = V_{IL} - V_{OL} = 0.8 - 0.4 = 0.4 V$$

Níveis de Corrente

Outro parâmetro importante é a corrente que será consumida ou que deve ser fornecida quando blocos lógicos são conectados entre si.

- I_{IL}(Low-level Input Current): Valor de corrente máxima no terminal de entrada, no sentido bloco para o terminal, quando a ele for aplicado o nível lógico "0".
- I_{OL}(Low-level Output Current): Valor de corrente máxima que a saída do bloco pode receber quando estiver no nível lógico "0".
- I_{IH}(*High-level Input Current*): Valor de corrente máxima consumida pelo terminal de entrada do bloco quando a ele for aplicado o nível lógico "1".
- I_{OH}(High-level Output Current): Valor de corrente máxima que a saída do bloco pode fornecer quando estiver no nível lógico "1".

Fan-Out

Fan-Out (Fator de Acionamento de Carga) é definido como o número máximo de entradas lógicas que uma saída pode acionar com segurança.

O Fan-Out está diretamente relacionado com as correntes máximas de saída e de entrada dos blocos lógicos, podendo ser determinado no nível lógico "0" e no nível lógico "1":

$$\mathsf{Fan} - \mathsf{Out}_{(\mathsf{nivel}\,0)} = \frac{\mathsf{I}_{\mathsf{OL}}}{\mathsf{I}_{\mathsf{IL}}} \qquad \qquad \mathsf{Fan} - \mathsf{Out}_{(\mathsf{nivel}\,1)} = \frac{\mathsf{I}_{\mathsf{OH}}}{\mathsf{I}_{\mathsf{IH}}}$$

Exemplo:

Determinar o Fan-Out para o circuito integrado TTL 7400 cujos parâmetros de correntes máximas são fornecidos na tabela a seguir:

CI TTL DM7404				
Parâmetro	Valor Máximo	Unidade		
I _{OL}	16	mA		
I _{IL}	1,6	mA		
I OH	400	μA		
I _{IH}	40	μA		

$$Fan-Out_{(nivel\,0)} = \frac{I_{OL}}{I_{IL}} = \frac{16}{1,6} = 10$$

$$\textbf{Fan-Out}_{(\textbf{nível}1)} = \frac{\textbf{I}_{\textbf{OH}}}{\textbf{I}_{\textbf{IH}}} = \frac{400}{40} = 10$$

Tempo de Atraso de Propagação:

O tempo de atraso de propagação é definido como sendo o tempo que um bloco lógico leva para mudar de estado, ou seja, é o tempo que um bloco lógico leva para responder.

O tempo de atraso para passar do estado lógico "1" para o estado lógico "0" é denominado \mathbf{t}_{PHL} (High to Low) e do estado lógico "0" para o estado lógico "1" de \mathbf{t}_{PLH} (Low to High).

O Tempo de Atraso de Propagação está diretamente relacionado com a velocidade de trabalho do bloco lógico e será bastante significativo em altas frequências, (chaveamento rápido).

Tempo de Atraso de Propagação:

Inversor

CI TTL DM7404					
Parâmetro Valor Unidade					
t _{PLH (max)}	22	ns			
t _{PHL (mim)}	15	ns			

O Tempo de Atraso de Propagação é medido entre os pontos que representam 50% nas transições de entrada e saída

Exercício

 Uma equipe de desenvolvedores precisam montar um projeto capaz de atuar em uma taxa de transmissão de um feixe STM-4, que corresponde a uma taxa de 622Mbps. É possível trabalhar com um CI onde o Tphl=Tplh = 5ns? Justifique:

Resposta:

Para uma taxa de 622Mbps, o tempo de bit é de 1/622.10^6 = 1,6ns

Desta forma, o tempo que o CI gasta para passar de um estado para o outro é maior que o tempo do próprio bit.

Com isso, não é possível trabalhar com esse Cl.

Exercício

 A partir da forma de onda aplicada à entrada E, determine a forma de onda de saída, sabendo que as portas pertencem à versão TTL Standard, com um tempo de propagação de 10ns.

15_{min}

Potência Dissipada

A quantidade de potência de que um CI necessita é determinada pela corrente lcc (TTL)que ele consome da fonte de alimentação Vcc (TTL), e a potência real é o produto lcc x Vcc. Para muitos CIs, a corrente consumida da fonte varia conforme o estado lógico dos circuitos no chip, sendo representada por lcc_H e lcc_L.

$$Icc_{(méd)} = (Icc_H + Icc_L) / 2$$

Consumo médio de potência P_{D(méd)}

$$P_{D(m\acute{e}d)} = Icc_{(m\acute{e}d)}$$
. Vcc

Características Gerais: Os valores apresentados a seguir foram obtidos em manuais para uma tensão de alimentação de 5 V a 25°C. As especificações da série 74XX garantem o funcionamento com 5% de tolerância numa faixa de temperatura de 0°C a 70°C. Já a série 54XX, a tolerância é de 10% numa faixa de temperatura de -55°C a 125°C.

Os principais parâmetros fornecidos pelos manuais são:

 Alimentação (V_{cc}): Para todos os blocos da família TTL a alimentação é de 5 V. Para a série 74 (5%) pode variar entre os limites 4,75 V a 5,25 V. Já para a série 54 (10% - especificação militar) deve ficar entre os limites de 4,5 V a 5,5 V.

2. Níveis de entrada e saída:

TTL Standard				
Parâmetros	Valores	Unidade		
V _{IH}	0,8	V		
V _{OL}	0,4	V		
V _{IL}	2,0	V		
V _{OH}	2,4	V		
I _{OL}	16	mA		
I _{IL}	1,6	mA		
I OH	400	μΑ		
I _{IH}	40	μΑ		

- 3. Fan-Out: Na versão padrão o Fan-out é igual a 10, como já calculado anteriormente, o que significa que podemos ligar no máximo 10 blocos TTL Standard à saída de outro bloco TTL standard.
- 4. Tempo de atraso de propagação: Varia conforme a versão utilizada, ficando em média em torno de 10 ns.
- 5. Imunidade ao ruído: Para a família TTL a imunidade ao ruído (V_N) é da ordem de 0,4 V.
- Potência dissipada: O consumo médio de potência para a família TTL é da ordem de 10 mW por porta standard.

Versões dos Circuitos TTL:

Versão	Série	t _P	Consumo	Clock	Observação
Standard	54/74	10 ns	10 mW	35 MHz	Comum
Low power	54L/74L	33 ns	1 mW	3 MHz	Baixíssimo Consumo
High speed	54H/74H	6 ns	22 mW	50 MHz	Alta Velocidade
Schottky	54S/74S	3 ns	19 mW	125 MHz	Altíssima Velocidade
Advanced Schottky	54AS/74AS	1,5 ns	8,5 mW	200 MHz	Altíssima Velocidade e Baixo Consumo
Low power Schottky	54LS/74LS	10 ns	2 mW	45 MHz	Baixíssimo Consumo
Advanced Low power Schottky	54ALS/74ALS	4 ns	1 mW	70 MHz	Altíssima Velocidade e Baixíssimo Consumo

Exercícios

Monte uma tabela comparando qualquer CI das séries 74/54 das versões:

Low Power (L) / High Speed (H);

Ex: 74L00 e 74H00 e 74A\$00

Série/Versão	Tensão de Alimentação	Potência Dissipada	Margem de Imunidade ao Ruído	Tempo de Atraso de Propagação	Fan-Out

Bons Estudos

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações

