SESA3029 Aerothermodynamics

Lecture 1.2: Basic aerodynamics

Dimensionless numbers

- Mach number $M = \frac{U}{a}$
 - Ratio of velocity to speed of sound
- Reynolds number $Re = \frac{\rho UL}{\mu}$
 - Ratio of the order of magnitude of inertia to viscous terms in the governing equations
- Knudsen number $Kn = \frac{\lambda}{L}$
 - Ratio of mean free path to flow scale
 - $-\lambda = 8 \times 10^{-8}$ m for air at STP
 - (Kn<0.01 continuum flow, Kn>1 free molecule flow)

Example

- A380 in cruise at 10km
 - Mean chord= 10.4 m
 - Mach 0.85
 - U=300 m/s ρ =0.414 kg/m³ μ =1.45×10⁻⁵ Nsm⁻²

Re =
$$\frac{\rho UL}{\mu}$$
 = $\frac{0.414 \times 300 \times 10.4}{1.45 \times 10^{-5}}$ = 8.9×10^{7}

Vorticity definition

$$\mathbf{\omega} = \nabla \times \mathbf{u} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix} = \frac{1}{r} \begin{vmatrix} \mathbf{e}_r & r\mathbf{e}_\theta & \mathbf{e}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ v_r & rv_\theta & v_z \end{vmatrix}$$
Curl operator

Cartesian

Cylindrical polar

Can write out components using rules of determinants

The boundary layer

(low-speed flow over an airfoil with a laminar separation bubble)

Contours of vorticity show rotational flow region; Re=50,000 in this example

From Van Dyke 'An Album of Fluid Motion'

Potential flow

If a flow is irrotational (ω =curl **u**=0) we can always write $\mathbf{u} = \nabla \phi$

with velocity components
$$u = \frac{\partial \phi}{\partial x}$$
 $v = \frac{\partial \phi}{\partial y}$

where ϕ is a scalar known as the velocity potential - this works because of the vector identity $\nabla \times (\nabla \phi) = 0$

Circulation:
$$\Gamma = - \oint_{\text{closed circuit}} \mathbf{u}.d\mathbf{s} = - \iint_{\text{surface}} \mathbf{\omega}.d\mathbf{S}$$

Circular cylinder with circulation (Kutta-Joukowski theorem):

$$L = \rho U_{\infty} \Gamma$$

Aerodynamic forces

Force and moment coefficients

 Wing-based (L=lift, D=drag, M=pitching moment, S=wing planform area)

$$C_{L} = \frac{L}{\frac{1}{2}\rho_{\infty}U_{\infty}^{2}S}$$
 $C_{D} = \frac{D}{\frac{1}{2}\rho_{\infty}U_{\infty}^{2}S}$ $C_{M} = \frac{M}{\frac{1}{2}\rho_{\infty}U_{\infty}^{2}Sc}$

Section-based (c=chord)

$$C_{L} = \frac{L}{\frac{1}{2}\rho_{\infty}U_{\infty}^{2}c}$$
 $C_{D} = \frac{D}{\frac{1}{2}\rho_{\infty}U_{\infty}^{2}c}$ $C_{M} = \frac{M}{\frac{1}{2}\rho_{\infty}U_{\infty}^{2}c^{2}}$

 Forces and moments come from the integrated effects of pressure and surface shear stress

Airfoil performance (Re=3x10⁶ XFOIL results)

Moments, centre of pressure (cp) and aerodynamic centre (ac)

We can represent forces and moments about any point e.g. leading edge (LE)

About any x $M_x = M_{LE} + xL$

let
$$\overline{x} = x / c$$

$$C_{M,x} = C_{M,LE} + \overline{x}C_{L} \qquad \overline{x}_{cp} = -\frac{C_{M,LE}}{C}$$

$$\overline{x}_{cp} = -\frac{C_{M,LE}}{C_{I}}$$

(point where lift acts with no moment)

$$\frac{\mathrm{d}C_{M,x}}{\mathrm{d}C_{L}} = \frac{\mathrm{d}C_{M,LE}}{\mathrm{d}C_{L}} + \overline{x} \qquad \qquad \overline{x}_{ac} = -\frac{\mathrm{d}C_{M,LE}}{\mathrm{d}C_{L}}$$

$$\overline{x}_{ac} = -\frac{\mathrm{d}C_{M,LE}}{\mathrm{d}C}$$

(point where C_M is independent of C_L)

Results from thin aerofoil theory

- Incompressible inviscid flow around a 2D thin aerofoil
- Kutta condition (zero loading at trailing edge)
- Kutta-Joukowski theorem $L=\rho U_{\infty}\Gamma$

$$\frac{\mathrm{d}C_L}{\mathrm{d}\alpha} = 2\pi \qquad \overline{x}_{ac} = \frac{1}{4}$$