Simple Linear Regression

Inference & Prediction

Dr. Maria Tackett

09.09.19

Click for PDF of slides

Announcements

■ Lab 02 due tomorrow at 11:59p

Check in

- Any questions from last class?
- Any questions about the lab?
- Any questions about course logistics?

Today's Agenda

- Assessing model fit
- Model assumptions
- Inference for regression
- Prediction

Packages and Data

```
library(tidyverse)
library(broom)
library(modelr)
library(knitr)
library(fivethirtyeight) #fandango dataset
library(cowplot) #plot_grid() function
```


rottentomatoes.com

Can the ratings from movie critics be used to predict what movies the audience will like?

Critic vs. Audience Ratings

- To answer this question, we will analyze the critic and audience scores from rottentomatoes.com.
 - The data was first used in the article <u>Be Suspicious of Online Movie</u>
 <u>Ratings, Especially Fandango's.</u>
- Variables:
 - **critics**: critics score for the film (0 100)
 - **audience**: Audience score for the film (0 100)

Audience Score vs. Critics Score

The Model

```
model <- lm(audience ~ critics, data = movie_scores)
tidy(model) %>%
  kable(format = "markdown", digits = 3)
```

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

audience =
$$32.316 + 0.519 \times \text{critics}$$

- Slope: For each additional percentage point in the critics score, the audience score is expected to increase by 0.519 percentage points on average.
- **Intercept:** If a movie gets a 0% from the critics, the audience score is expected to be 32.316%.

Assessing Model Fit

R^2

- We can use the coefficient of determination, \mathbb{R}^2 , as one way to measure how well the model fits the data
 - specifically how well it explains variation in Y
- \mathbb{R}^2 is the proportion of variation in Y that is explained by the regression line
 - R^2 values range from 0 to 1
 - Typically report R^2 as a percentage
- Ideally, we'll have R^2 close to 1; however, it is difficult to determine what exactly is a "good" value of R^2 .
 - It depends on the context of the data.

Calculating R^2

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

■ Total Sum of Squares: Total variation in the Y's before fitting the regression line

TSS =
$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = (n-1)s_y^2$$

■ **Residual Sum of Squares (RSS):** Total variation in the *Y*'s around the regression line (sum of squared residuals)

RSS =
$$\sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$$

Rotten Tomatoes Data

glance(model, movie_scores)\$r.squared

[1] 0.6106479

The critics score explains about 61.06% of the variation in audience scores on rottentomatoes.com.

Checking Model Assumptions

Assumptions for Regression

- 1. Linearity: The plot of the mean value for y against x falls on a straight line
- 2. **Constant Variance:** The regression variance is the same for all values of *x*
- 3. **Normality:** For a given x, the distribution of y around its mean is Normal
- 4. Independence: All observations are independent

Checking Assumptions

We can use plots of the residuals to check the assumptions for regression.

- 1. Scatterplot of *y* vs. *x* (linearity).
 - Check this before fitting the regression model.
- 2. Plot of residuals vs. predictor variable (constant variance, linearity)
- 3. Histogram and Normal QQ-Plot of residuals (Normality)

Residuals vs. Predictor

- When all the assumptions are true, the values of the residuals reflect random (chance) error
- We can look at a plot of the residuals vs. the predictor variable
- There should be no distinguishable pattern in the residuals plot, i.e. the residuals should be randomly scattered
- A non-random pattern suggests assumptions might be violated

Plots of Residuals


```
movie_scores <- movie_scores %>%
  mutate(residuals = resid(model))

ggplot(data = movie_scores, mapping = aes(x = critics, y = residual geom_point() +
  geom_hline(yintercept = 0, color = "red")+
  labs(title = "Residuals vs. Critics Score")
```

Residuals vs. Critics Score

Checking Normality

- Examine the distribution of the residuals to determine if the Normality assumption is satisfied
- Plot the residuals in a histogram and a Normal QQ plot to visualize their distribution and assess Normality
- Most inference methods for regression are robust to some departures from Normality

Normal QQ-Plot

Gaussian Distribution

Normal Q-Q Plot


```
ggplot(data = movie_scores, mapping = aes(x = residuals)) +
  geom_histogram() +
  labs(title = "Distribution of Residuals")
```

Distribution of Residuals


```
ggplot(data = movie_scores, mapping = aes(sample = residuals)) +
   stat_qq() +
   stat_qq_line() +
   labs(title = "Normal QQ Plot of Residuals")
```


Checking Independence

- Often, we can conclude that the independence assumption is sufficiently met based on a description of the data and how it was collected.
- Two common violations of the independence assumption:
 - Serial Effect: If the data were collected over time, the residuals should be plotted in time order to determine if there is serial correlation
 - Cluster Effect: You can plot the residuals vs. a group identifier or use different markers (colors/shapes) in the residual plot to determine if there is a cluster effect.

Example: Birth rate vs. Per Capita Income

- A <u>2011 study by Pew Research</u> looked at the economy's effect on birthrate in the United States.
- We will look at data for Virginia and Washington D.C. years 2000 -2009
- Birth rate: Births per 100,000 women ages 15-44
- Per Capita Income: average income per person

Birthrate vs. Per Capita Income

```
pew_model <- lm(birthrate ~ percapitaincome, data = pew_data)
tidy(pew_model) %>%
  kable(format = "markdown", digits = 3)
```

term	estimate	std.error	statistic	p.value
(Intercept)	-18.218	15.33	-1.188	0.25
percapitaincome	0.002	0.00	5.125	0.00

$$Rate = -18.2 + 0.002 \times Per Capita Income$$

Residuals vs. Explanatory Variable

```
pew_data <- pew_data %>%
  mutate(residuals = resid(pew_model))
```


Residuals: Cluster Effect

Residuals: Serial Effect

Inference for β_1

Questions of interest

In our example, we will treat the data as a random sample of movies from rottentomatoes.com

Questions of interest

- What is a plausible range of values of the true population slope for critics? (confidence interval)
- Is there truly a linear relationship between the critic and audience scores?
 - We estimated $\hat{\beta}_1=0.519$, but is there sufficient evidence to conclude that the true population slope β is different from 0? (hypothesis test)

What is a plausible range of values of the true population slope for critics?

General form of the CI

■ Let **SE** be the standard error of the statistic used to estimate the parameter of interest, then the general form of the confidence interval is

Estimate
$$\pm$$
 (critical value) \times SE

- Note: The critical value is determined by the distribution of the estimate (statistic) and the confidence level
- For the regression slope:
 - ullet \hat{eta}_1 is the statistic used to estimate the parameter, eta_1
 - We will write the confidence interval as

$$\hat{\beta}_1 \pm t^* SE(\hat{\beta}_1)$$

Confidence interval for β_1

■ The confidence interval for the regression slope is

$$\hat{\beta}_1 \pm \mathbf{t}^* \mathbf{SE}(\hat{\beta}_1)$$

- t^* is the critical value associated with the confidence level.
 - It is calculated from a t distribution with n-2 degrees of freedom
- $SE(\hat{\beta}_1)$ is the standard error for the slope

$$SE(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}} = \hat{\sigma}\sqrt{\frac{1}{(n-1)s_X^2}}$$

What is $\hat{\sigma}$?

- Recall, the residual is the difference between the observed response the predicted response (the estimated mean)
 - The residual for the ith observation, (x_i, y_i) , is

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

- The **Residual Standard Error** is the estimate of variation about the regression line
 - Also known as the Root Mean Square Error (RMSE)

$$\hat{\sigma} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} e_i^2}$$

Why *t*?

$$\hat{\beta}_1 \sim N\left(\beta_1, \sigma\sqrt{\frac{1}{(n-1)s_X^2}}\right)$$

- We don't know σ , so we use the estimate $\hat{\sigma}$ in our calculations. Therefore, we use the t distribution when we calculate the confidence interval (and conduct hypothesis tests) to account for the extra variability that's been introduced
- The critical value t^* is calculated from the t(n-2) distribution the t distribution with n-2 degrees of freedom.

Movies data: Critical value

```
qt(0.975, 144)
```

[1] 1.976575

Calculating the 95% CI for β_1

n	var.x	sigma	beta1	crit.val
146	910.156	12.538	0.519	1.977

Write the equation for the 95% confidence interval for β_1 , the coefficient (slope) of critics.

Interpretation

```
model %>%
  tidy(conf.int=TRUE) %>%
  kable(format = "markdown", digits = 3)
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	32.316	2.343	13.795	0	27.685	36.946
critics	0.519	0.035	15.028	0	0.450	0.587

Interpret the 95% confidence interval for β_1 , the coefficient (slope) of critics.

Is there truly a linear relationship between the critic and audience scores?

Recall: Outline of Hypothesis Test

- 1. State the hypotheses
- 2. Calculate the test statistic
- 3. Calculate the p-value
- 4. State the conclusion in the context of the problem

1. State the hypotheses

- We are often interested in testing whether there is a significant linear relationship between the explanatory and response variable
- If there is no linear relationship between the two variables, the population regression slope, β_1 , would equal 0
- We can test the hypotheses:

$$H_0: \beta_1 = 0$$

$$H_a:\beta_1\neq 0$$

■ This is the test conducted by the lm() function in R

2. Calculate the test statistic

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

Test Statistic:

test statistic =
$$\frac{\text{Estimate} - \text{Hypothesized}}{SE}$$

$$=\frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}$$

3. Calculate the p-value

p-value is calculated from a t distribution with n-2 degrees of freedom

p-value =
$$P(t \ge |\text{test statistic}|)$$

Write the general interpretation of the p-value for tests of β_1 .

4. State the conclusion

Magnitude of p-value	Interpretation	
p-value < 0.01	strong evidence against H_{0}	
0.01 < p-value < 0.05	moderate evidence against H_0	
0.05 < p-value < 0.1	weak evidence against $H_{ m 0}$	
p-value > 0.1	effectively no evidence against H_0	

Note: These are general guidelines. The strength of evidence depends on the context of the problem.

Movie data: Hypothesis test for β_1

```
model %>%
  tidy() %>%
  kable(format = "markdown", digits = 3)
```

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

- a. State the hypotheses in (1) words and (2) statistical notation.
- b. What is the meaning of the test statistic in the context of the problem?
- c. What is the meaning of the p-value in the context of the problem?
- d. State the conclusion in context of the problem.

Predictions

Predictions for New Observations

• We can use the regression model to predict for a response at x_0

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

■ Because the regression models produces the mean response for a given value of x_0 , it will produce the same estimate whether we want to predict the mean response at x_0 or an individual response at x_0

Movies Data

What is the predicted audience score **for a movie** that has a critic score of 60%?

What is the predicted average audience score for the subset of movies that have a critic score of 60%?

Predictions for New Observations

- There is uncertainty in our predictions, so we need to calculate an a standard error (SE) to capture the uncertainty
- The SE is different depending on whether you are predicting an average value or an individual value
- SE is larger when predicting for an individual value than for an average value

Standard errors for predictions

Predicting the mean response

$$SE(\hat{\mu}) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

Predicting an individual response

$$SE(\hat{y}) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

Movie data: Predicting the mean response

We wish to predict the **mean** audience score for the subset of movies with a critics score of 60%.

```
x0 <- data.frame(critics = c(60))
predict.lm(model, x0, interval = "confidence", conf.level = 0.95)</pre>
```

Interpret the interval in the context of the data.

Movies data: Predicting an individual response

We wish to predict the **mean** audience score for the subset of movies with a critics score of 60%.

```
x0 <- data.frame(critics = c(60))
predict.lm(model, x0, interval = "prediction", conf.level = 0.95)</pre>
```

Interpret the interval in the context of the data.

