Processamento Paralelo & Multiprocessadores

- Motivação
- Tipos de máquinas paralelas
- Coerência entre caches

TIEPP Danto de Informática 1

ci212 — paralelismo (iii) 2010-2

UMA - Uniform Memory Access

- latência no acesso à memória é a mesma para todos processadores mas pode ser longa
- latências crescem com tamanho do sistema aumentar escala é difícil

IIEPR Danto de Informática

ci212 — paralelismo (iii) 2010-2

UMA - Uniform Memory Access

- Localização dos dados é gerenciada automaticamente
- contenção limita vazão → na rede e na memória
- geralmente usa caches
- usado em pequenos multiprocessadores = MPs simétricos Symmetric MultiProcessors ou SMPs

HEPR Dento de Informática 3

NUMA - Non-Uniform Memory Access

- Latência pequena no acesso à memória local
- ullet latência grande no acesso à memória remota $P \rightarrow M_{\mathrm{loc}} \rightarrow R \rightarrow M_{\mathrm{rem}}$
- vazão para memória local pode ser mais alta que para remota
- contenção na rede e no acesso à memória $P_{loc} \times (N-1)P_{rem}$

HEPR Dento de Informática

ci212 — paralelismo (iii)

2010-2

Multiprocessadores NUMA Non-Uniform Memory Access

- Memória logicamente compartilhada mas fisicamente distribuída
 ▷ um espaço de endereçamento lógico
 ▷ pode ser tratado como memória compartilhada
- desempenho depende fortemente da localização dos dados
- Multicomputadores
 - > cada processador tem espaço de endereçamento privativo

TIEPR Danto de Informática

ci212 — paralelismo (iii)

2010-2

Aglomerados (clusters)

- Nós UMA pequenos num sistema NUMA grande
- híbrido? aglomerado de aglomerados?

rede de interconexão do aglomerado

mem aglom 0 ... mem aglom 7

proc 0 ... proc 7 proc 56 ... proc 63

UMA NUMA

HEPR Dento de Informática 6

Processamento Paralelo & Multiprocessadores

- Motivação
- Tipos de máquinas paralelas
- Coerência entre caches

```
IIEPP Danto de Informática
ci212 — paralelismo (iii) 2010
```

Execução atômica

Dois processadores executam em paralelo:

Quais os valores de "print c" e "print d"?

```
Comandos 'atômicos' em C  a = a + 1; \equiv lw r1,0(r2)  não são  addi r1,r1,1  executados atomicamente  sw r1,0(r2)  pelo processador  a++; a+=1;
```

HEPR Dento de Informática

Sincronização e Atomicidade

- Operações atômicas devem ser serializadas pelos mecanismos de escrita em memória
- Problemas decorrentes de disputas:

ci212 — paralelismo (iii)

```
    ▶ latência sem contenção operações demoradas
    ▶ serialização se há contenção latência + tempo na fila
```

→ dificultam aumentar escala para sistemas maiores

Barramento é um meio de comunicação compartilhado

ightarrow comunicação por **difusão** broadcast

→ comunicação é serializada através do barramento

HEPR Dento de Informática 9

Coerência de caches

Inicialmente, três cópias idênticas de X em C1, C2 e C3

HEPR Danto de Informática

ci212 — paralelismo (iii) 2010-2

Coerência de caches

P1, P2 e P3 carregam X em suas caches;

P1 atualiza sua versão;

C2 e C3 ficam com sua cópia desatualizada.

→ isso ocorre **mesmo** que as caches usem escrita forçada (ou escrita preguiçosa)

Informalmente:

ci212 — paralelismo (iii)

coerência entre caches é um método para garantir que os acessos à memória sejam coerentes, apesar das caches.

IIEDR Dento de Informática 1

Métodos de Coerência para Barramentos (i)

As caches usam escrita preguiçosa
 porque estas minimizam tráfego no barramento

geralmente

típicos

2010-2

- Os blocos nas caches podem estar num destes estados
 NVÁLIDO: conteúdo do bloco não pode ser usado
 - ightarrow VÁLIDO: não está sujo, compartilhado (há ≥ 1 cópia)
 - ⊳ SUJO: única cópia suja
 - ▷ RESERVADO: não-sujo, única cópia (aumenta eficiência)

IIEPR Dento de Informática 11

Métodos de Coerência para Barramentos (ii)

Métodos de Coerência para Barramentos (iii)

- Espionagem (snooping)

 - ▷ etiquetas com duas portas: CPU e barramento
 - ▷ ações de um controlador de cache são visíveis pelos demais CCs
 → difusão no barramento
- O que ocorre nas escritas?

invalidar cópias nas outras caches: protocolos de invalidação atualizar cópias nas outras caches: protocolos de atualização

IIEPR Danto da Informática

<u>ci212</u> — paralelismo (iii) 2010-2

Protocolo de Invalidação

atividade no processador	atividade no barramento	cache C1	cache C2	memória ender X
				0
P1 lê X	falta em X	0		0
P2 lê X	falta em X	0	0	0
P1 faz X=1	invalidação para X	1	_	0
P2 lê X	falta em X *	1	1	1

* P1 responde à falta em C2 e atualiza memória

IIEPR Dento de Informática

Protocolo de Atualização

atividade	atividade	cache	cache	memória
no processador	no barramento	C1	C2	ender X
				0
P1 lê X	falta em X	0		0
P2 lê X	falta em X	0	0	0
P1 faz X=1	broadcast de X=1	1	1	1
P2 lê X	acerto em X	1	1	1

Há mais tráfego no barramento, se P2 não usar X novamente.

TIEPP Danto de Informática 16
ci212 — paralelismo (iii) 2010-2

Protocolo de Invalidação Simplificado

- Caches usam escrita preguiçosa
- Estados
 - ▷ INVÁLIDO: conteúdo do bloco não pode ser usado
 - \triangleright COMPART-ilhado: não está sujo, compartilhado (há > 1 cópia)
- a cada transação no barramento, o controlador de cache:
 - > verifica se bloco está na cache
 - > se estiver na cache, efetua mudança de estado cfe ME (adiante)

TIEPP Dento de Informática

ci212 — paralelismo (iii)

2010

Desempenho de Protocolos para Barramentos

- Tipos de faltas nas caches:
 - ▷ capacidade (mais significativa)

 - > compulsórias
- Faltas por coerência
 - são faltas causadas pelo protocolo de coerência
- Falso compartilhamento

blocos grandes (>32 pals) para amortizar custos de comunicação e etiquetas

pode ocorrer que um bloco inteiro seja compartilhado,

mas palavras individuais não são compartilhadas

→ tráfego adicional desnecessário

IIFPR Dento de Informática 18