变压器

变压器设计逻辑

在变压器设计时,分为以下几个步骤:

- 1. 根据需求设定相数m、容量 S_N 、频率f、额定电压 $U_{\phi N}$ 、额定电流 $I_{\phi N}$ 等关键系数,设定短路阻抗、空载损耗、效率、温升等允许范围。
- 2. 根据相数、容量、频率,假定选择铁心材料,从而根据材料选择设定最大磁通 B_m 和线负荷 A_s ,进而根据经验公式,可以得铁心高度 l_{ef} 和截面直径D的初步取值。再根据线负荷 A_s 和额定电流 $I_{\phi N}$ 确定线串联匝数W,进而根据材料对应合适的电流密度J,设计线截面形状a,b或d,从而可以算出绕组电阻和粗略估计铁心需要的窗口大小,即铁心中心距 M_0 。根据 l_{ef} 和D,可以确定铁心窗高 H_0 和角轭高 H_Δ 。故铁心形状已经完全确定,进而可以计算出每部分的重量,从而计算空载损耗 P_0 和空载励磁电流 I_o %的有功 I_{o1} %和无功 I_{o2} %分量。计算过程与选择的材料息息相关。
- 3. 目前已经确定了导线形状和并联和串联匝数,于是需要根据此选择一个合适的绕组缠绕方式将 之组织起来。并根据对应的缠绕方式和电压等级选择绝缘方式和气道设计。并计算绕组辐向和 轴向长度厚度。
- 4. 绝缘半径计算,根据铁心的D,绕组的辐向厚度,绕组间的绝缘,计算M0的可行性。
- 5. 短路阻抗计算,需要算漏磁电抗和绕组阻抗。漏磁电抗需先算漏磁面积 $\sum a_r$,再算极距 τ/λ ,平均电抗计算高度 H_k ,计算洛式系数 ρ_1 ,引入电抗修正系数K,从而计算电抗分量 u_x %。而计算电阻分量 u_a %时需要先算电阻损耗+涡流损耗才能算,为负载损耗除以额定容量。
- 6. 负载损耗。由空载损耗,电阻损耗,涡流损耗组合而成。电阻损耗通过直接计算绕组电阻乘过 电流平方即可;涡流损耗需用p77的公式进行计算,也只于绕组和工况相关;空载损耗在前面 铁心设计时已经算过,直接引进即可。总损耗为其三相加。
- 7. 温升计算核心在计算等效散热面积(取决于绕组绕制方式和气道情况)和总热功率(电阻损耗 +涡流损耗)。
- 8. 质量计算在之前铁心计算已经算过。

变压器符号

额定参数 P43

符号	内涵	单位	公式
S_n	额定容量	VA, kVA	4-1 4-2
U_{1l}	一次侧线电压	V	

EVA HUST

符号	内涵	单位	公式
U_{1ln}	一次侧线电压额定值	V	
U_{1p}	一次侧相电压	V	
U_{1pn}	一次侧相电压额定值	V	
U_{2l}	二次侧线电压	V	
U_{2ln}	二次侧线电压额定值	V	
U_{2p}	二次侧相电压	V	
U_{2pn}	二次侧相电压额定值	V	
I_{1l}	一次侧线电流	A	
I_{2l}	二次侧线电流	A	
I_{1p}	一次侧相电流	A	p48
I_{2p}	二次侧相电流	A	

主要尺寸 P47

符号	内涵	单位	公式
S_r	每个铁心柱容量	kVA	4-3 4-6
D	阶梯形铁心柱外接圆直径	m	4-4 4-8
$l_a\ or\ h$	一线圈沿铁心柱方向的高度	m	4-4
f_n	额定频率	Hz	
K_C	铁心柱的铁心几何面积与其直径所限定的圆面积, 截面系数		表A-8
k_{dp}	铁心叠压系数		
B_m	铁心内的磁通密度	Т	
A_s	线负荷,铁心柱上的安匝数	A/m	
W	串联匝数		
$ ho_1$	罗果夫斯基系数,算漏电抗		4-11
x_{k1}	短路电抗	Ω	4-18
u_x	用每相阻抗基值表示的短路阻抗电抗分量	%	p47

铁心 P50

符号	内涵	单位	公式
M_0	铁心中心距	m	
H_0	铁心窗高	m	
H_{Δ}	铁轭高	mm	
A_Z	铁心柱净截面积	m-2	
G_z	心柱重量	kg	p50
G_z	铁轭重量	kg	p50
G_{Δ}	角重	kg	p50
G_{Fe}	铁心总重量	kg	p50

绕组设计 P50

符号	内涵	单位	公式
J	电流密度	A/mm^2	4-10
S_d	线截面积	mm^2	
ΔE	第n位置导体感应的漏磁电动势	V	p53
b_1	裸导线轴向宽度	mm	
a_1	裸导线幅向宽度	mm	
b	包绝缘导线轴向宽度	mm	
a	包绝缘导线幅向宽度	mm	
m_b	轴向并绕根数		
W_C	圆筒式绕组每层匝数		
H_L	绕组轴向高度	mm	p59
B_{H1}	1绕组幅向厚度	mm	
δ	绕组间气道长度	mm	
B_H	总绕组幅向厚度	mm	
M_E	段数		
W_{L1}	每段匝数		

EVA HUST

符号	内涵	单位	公式
N_T	撑条数		
H_{SP}	调节安匝平衡所预留的调节气油道高度		

性能计算 P74

符号	内涵	单位	公式
P_0	空载损耗	W	4-47
k_{P0}	铁耗工艺系数 1.15~1.35		
$ ho_{Fe}$	单位铁损	W/kg	表A-9
$I_o\%$	空载电流占额定电流的百分数		4-48
$I_{o1}\%$	有功空载电流占额定电流的百分数		4-49
$I_{o2}\%$	无功空载电流占额定电流的百分数		4-50
q_c	铁心柱单位励磁容量	VA/kg	表A-9
q_y	铁轭单位励磁容量	VA/kg	表A-9
q_{j}	接缝处单位面积励磁容量	VA/kg	表A-9
C	接缝数目		p75
D_{p1}	一次绕组平均直径		
S_H	一次绕组导线截面积	mm^2	
W_1	一次绕组匝数		
ρ	电阻系数 铜0.02135铝0.0357		
S_L	二次绕组导线截面积	mm^2	
K_{W1}	涡流损耗系数		4-52/4-53
A	单根导线截面积	mm^2	
$ ho_1$	纵向漏磁罗果夫斯基系数,算漏电抗		4-11
a	导线径向尺寸,包绝缘导线幅向宽度	mm	
m	线段径向导体数		
n	线段轴向导体数		
P_k	负载损耗		p77

EVA HUST

符号	内涵	单位	公式
$K_{ heta}$	温升引起的电阻折算系数		
S_{jw1}	外绕组裸露部分面积外表面积	m^2	4-54
S_{jn1}	外绕组非裸露部分面积内表面积	m^2	4-55
R_{j1}	外绕组外半径	mm	
H_{X1}	外绕组电抗计算高度	mm	
r_{j1}	外绕组非裸露部分的半径	mm	
N	沿圆均匀分布的撑条数		
b_t	撑条宽度 15mm	mm	
S_{jp2}	内绕组个表面均为非裸露部分的表面积	m^2	4-56
H_{X2}	内绕组电抗计算高度	mm	
K_a	绕组轴向气道有效散热系数		4-57
δ	轴向气道宽度	mm	
H_X	气道计算高度	mm	
S_{W1}	外绕组有效散热面积		4-58
S_{W2}	内绕组有效散热面积		4-58
q_{j1}	外绕组单位热负荷	W/m ²	4-59
q_{j2}	内绕组单位热负荷	W/m ²	4-60
au	绕组温升计算	°/K	4-61
K, n	经验系数,与工艺及采用材料有关		
q_W	绕组散热面单位热负荷	W/m ²	4-61
P_W	折算到参考温度下的绕组损耗	W	
S_W	绕组的有效散热面积	m^2	