Nachiketa Mishra IIITDM Kancheepuram, Chennai

If V is a finite-dimensional vector space, an ordered basis for V is a finite sequence of vectors which is L.I. and spans V.

If V is a finite-dimensional vector space, an ordered basis for V is a finite sequence of vectors which is L.I. and spans V. Remark: Let $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be an ordered basis for V.

If V is a finite-dimensional vector space, an ordered basis for V is a finite sequence of vectors which is L.I. and spans V. Remark: Let $B = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be an ordered basis for V. Let $\alpha \in V = \operatorname{span} \ \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$.

If V is a finite-dimensional vector space, an ordered basis for V is a finite sequence of vectors which is L.I. and spans V.

Remark : Let $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be an ordered basis for V.

Let
$$\alpha \in V = \text{span } \{\alpha_1, \alpha_2, \dots, \alpha_n\}.$$

$$\implies \alpha = x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n - - - - - (1)$$

The coordinate matrix of the vector α relative to the ordered basis ${\it B}$ is

$$[\alpha]_{\scriptscriptstyle B} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Claim : $[\alpha]_{\mathcal{B}}$ is unique.

Claim : $[\alpha]_B$ is unique.

If not, there exist $y_i \in F$ such that

$$\alpha = y_1 \alpha_1 + y_2 \alpha_2 + \ldots + y_n \alpha_n - - - - - (a)$$

Claim : $[\alpha]_{R}$ is unique.

If not, there exist $y_j \in F$ such that

$$\alpha = y_1\alpha_1 + y_2\alpha_2 + \ldots + y_n\alpha_n - - - - - (a)$$

From (a) and (1),

$$(x_1-y_1)\alpha_1+(x_2-y_2)\alpha_2+\ldots+(x_n-y_n)\alpha_n=0$$

Claim : $[\alpha]_{R}$ is unique.

If not, there exist $y_j \in F$ such that

$$\alpha = y_1\alpha_1 + y_2\alpha_2 + \ldots + y_n\alpha_n - - - - - (a)$$

From (a) and (1),

$$(x_1 - y_1)\alpha_1 + (x_2 - y_2)\alpha_2 + \ldots + (x_n - y_n)\alpha_n = 0$$

Since *B* is L.I., $\implies x_1 - y_1 = x_2 - y_2 = ... = x_n - y_n = 0$.

Claim : $[\alpha]_{\mathcal{B}}$ is unique.

If not, there exist $y_j \in F$ such that

$$\alpha = y_1 \alpha_1 + y_2 \alpha_2 + \ldots + y_n \alpha_n - - - - - (a)$$

From (a) and (1),

$$(x_1 - y_1)\alpha_1 + (x_2 - y_2)\alpha_2 + \ldots + (x_n - y_n)\alpha_n = 0$$

Since
$$B$$
 is L.I., $\Longrightarrow x_1 - y_1 = x_2 - y_2 = \dots = x_n - y_n = 0$. $\Longrightarrow x_1 = y_1, x_2 = y_2, \dots, x_n = y_n$ and thus $[\alpha]_B$ is unique.

Find the coordinate matrix of the vector $\alpha = (1,2,3)$ w.r.t. the ordered basis $B = \{\epsilon_1 = (1,0,0), \epsilon_2 = (0,1,0), \epsilon_3 = (0,0,1)\}$ and $B_1 = \{\alpha_1 = (1,1,1), \alpha_2 = (0,1,1), \alpha_3 = (0,0,1)\}$

Find the coordinate matrix of the vector $\alpha = (1,2,3)$ w.r.t. the ordered basis $B = \{\epsilon_1 = (1,0,0), \epsilon_2 = (0,1,0), \epsilon_3 = (0,0,1)\}$ and $B_1 = \{\alpha_1 = (1,1,1), \alpha_2 = (0,1,1), \alpha_3 = (0,0,1)\}$

Solution: Note that

$$\alpha = (1,2,3) = \epsilon_1 + 2\epsilon_2 + 3\epsilon_3, \quad \alpha = (1,2,3) = \alpha_1 + \alpha_2 + \alpha_3$$

Find the coordinate matrix of the vector $\alpha = (1, 2, 3)$ w.r.t. the ordered basis $B = \{\epsilon_1 = (1, 0, 0), \epsilon_2 = (0, 1, 0), \epsilon_3 = (0, 0, 1)\}$ and $B_1 = \{\alpha_1 = (1, 1, 1), \alpha_2 = (0, 1, 1), \alpha_3 = (0, 0, 1)\}$

Solution: Note that

$$\alpha = (1,2,3) = \epsilon_1 + 2\epsilon_2 + 3\epsilon_3, \quad \alpha = (1,2,3) = \alpha_1 + \alpha_2 + \alpha_3$$

$$[\alpha]_{\mathcal{B}} = \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right]$$

Find the coordinate matrix of the vector $\alpha = (1, 2, 3)$ w.r.t. the ordered basis $B = \{\epsilon_1 = (1, 0, 0), \epsilon_2 = (0, 1, 0), \epsilon_3 = (0, 0, 1)\}$ and $B_1 = \{\alpha_1 = (1, 1, 1), \alpha_2 = (0, 1, 1), \alpha_3 = (0, 0, 1)\}$

Solution: Note that

$$\alpha = (1, 2, 3) = \epsilon_1 + 2\epsilon_2 + 3\epsilon_3, \quad \alpha = (1, 2, 3) = \alpha_1 + \alpha_2 + \alpha_3$$

$$[\alpha]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad [\alpha]_{\mathcal{B}_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Find the coordinate matrix of the vector $\alpha = (1, 2, 3)$ w.r.t. the ordered basis $B = \{\epsilon_1 = (1, 0, 0), \epsilon_2 = (0, 1, 0), \epsilon_3 = (0, 0, 1)\}$ and $B_1 = \{\alpha_1 = (1, 1, 1), \alpha_2 = (0, 1, 1), \alpha_3 = (0, 0, 1)\}$

Solution: Note that

$$\alpha = (1,2,3) = \epsilon_1 + 2\epsilon_2 + 3\epsilon_3, \quad \alpha = (1,2,3) = \alpha_1 + \alpha_2 + \alpha_3$$

$$[\alpha]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad [\alpha]_{\mathcal{B}_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

What is the relation between $[\alpha]_B$ and $[\alpha]_{B_1}$?

Relation between $[\alpha]_{\scriptscriptstyle B}$ and $[\alpha]_{\scriptscriptstyle B_1}$?

$$\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_2 = 0\epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_3 = 0\epsilon_1 + 0\epsilon_2 + \epsilon_3$$

$$\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_2 = 0\epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_3 = 0\epsilon_1 + 0\epsilon_2 + \epsilon_3$$

$$P_1 = \left[\alpha_1\right]_B = \left[\begin{array}{c} 1\\1\\1\end{array}\right],$$

$$\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_2 = 0\epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_3 = 0\epsilon_1 + 0\epsilon_2 + \epsilon_3$$

$$P_1 = [\alpha_1]_B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, P_2 = [\alpha_2]_B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},$$

$$\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_2 = 0\epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_3 = 0\epsilon_1 + 0\epsilon_2 + \epsilon_3$$

$$P_1 = \begin{bmatrix} \alpha_1 \end{bmatrix}_B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ P_2 = \begin{bmatrix} \alpha_2 \end{bmatrix}_B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ P_3 = \begin{bmatrix} \alpha_3 \end{bmatrix}_B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_2 = 0\epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_3 = 0\epsilon_1 + 0\epsilon_2 + \epsilon_3$$

$$P_1 = \begin{bmatrix} \alpha_1 \end{bmatrix}_{\scriptscriptstyle B} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ P_2 = \begin{bmatrix} \alpha_2 \end{bmatrix}_{\scriptscriptstyle B} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ P_3 = \begin{bmatrix} \alpha_3 \end{bmatrix}_{\scriptscriptstyle B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P = [P_1, P_2, P_3] = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Relation between $[\alpha]_{\scriptscriptstyle B}$ and $[\alpha]_{\scriptscriptstyle B_1}$?

$$\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_2 = 0\epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_3 = 0\epsilon_1 + 0\epsilon_2 + \epsilon_3$$

$$P_1 = \begin{bmatrix} \alpha_1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ P_2 = \begin{bmatrix} \alpha_2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ P_3 = \begin{bmatrix} \alpha_3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P = [P_1, P_2, P_3] = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$P[\alpha]_{B_1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} =$$

$$\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_2 = 0\epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_3 = 0\epsilon_1 + 0\epsilon_2 + \epsilon_3$$

$$P_1 = \begin{bmatrix} \alpha_1 \end{bmatrix}_B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ P_2 = \begin{bmatrix} \alpha_2 \end{bmatrix}_B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ P_3 = \begin{bmatrix} \alpha_3 \end{bmatrix}_B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P = [P_1, P_2, P_3] = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$P[\alpha]_{B_1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Relation between $[\alpha]_{\scriptscriptstyle B}$ and $[\alpha]_{\scriptscriptstyle B_1}$?

$$\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_2 = 0\epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_3 = 0\epsilon_1 + 0\epsilon_2 + \epsilon_3$$

$$P_1 = \begin{bmatrix} \alpha_1 \end{bmatrix}_B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ P_2 = \begin{bmatrix} \alpha_2 \end{bmatrix}_B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ P_3 = \begin{bmatrix} \alpha_3 \end{bmatrix}_B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P = [P_1, P_2, P_3] = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$P[\alpha]_{B_1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = [\alpha]_B$$

$$\alpha_1 = \epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_2 = 0\epsilon_1 + \epsilon_2 + \epsilon_3, \quad \alpha_3 = 0\epsilon_1 + 0\epsilon_2 + \epsilon_3$$

$$P_1 = \begin{bmatrix} \alpha_1 \end{bmatrix}_B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ P_2 = \begin{bmatrix} \alpha_2 \end{bmatrix}_B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ P_3 = \begin{bmatrix} \alpha_3 \end{bmatrix}_B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P = [P_1, P_2, P_3] = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$P[\alpha]_{B_1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = [\alpha]_B$$

Verify that the matrix P is invertible and $[\alpha]_{B_1} = P^{-1}[\alpha]_B$?

Let $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $B_1 = \{\beta_1, \beta_2, \dots, \beta_n\}$ be two ordered bases of a finite-dimensional vector space V.

Let $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $B_1 = \{\beta_1, \beta_2, \dots, \beta_n\}$ be two ordered bases of a finite-dimensional vector space V.Let $\alpha \in V$.

Let $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $B_1 = \{\beta_1, \beta_2, \dots, \beta_n\}$ be two ordered bases of a finite-dimensional vector space V.Let $\alpha \in V$.

$$[\alpha]_{\mathcal{B}} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}, \quad [\alpha]_{\mathcal{B}_1} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

Let $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $B_1 = \{\beta_1, \beta_2, \dots, \beta_n\}$ be two ordered bases of a finite-dimensional vector space V.Let $\alpha \in V$.

$$[\alpha]_{\mathcal{B}} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}, \quad [\alpha]_{\mathcal{B}_1} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

where

$$\alpha = \sum_{i=1}^{n} x_i \alpha_i$$
 , $\alpha = \sum_{j=1}^{n} y_j \beta_j$

Since $\beta_j \in V = \text{span } \{\alpha_1, \alpha_2, \dots, \alpha_n\}$, there exists unique scalars P_{ij} , $1 \leq i \leq n$ such that

$$\beta_j = \sum_{i=1}^n P_{ij}\alpha_i \quad , 1 \le j \le n$$

where
$$[\beta_j]_{\scriptscriptstyle B}=P_j=\left[egin{array}{c} P_{1j} \ P_{2j} \ \dots \ P_{nj} \end{array}
ight]$$

$$\alpha = \sum_{j=1}^{n} y_j \beta_j$$

$$\alpha = \sum_{j=1}^{n} y_{j} \beta_{j}$$
$$= \sum_{j=1}^{n} y_{j} \left(\sum_{i=1}^{n} P_{ij} \alpha_{i} \right)$$

$$\alpha = \sum_{j=1}^{n} y_{j} \beta_{j}$$

$$= \sum_{j=1}^{n} y_{j} \left(\sum_{i=1}^{n} P_{ij} \alpha_{i} \right)$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} P_{ij} y_{j} \right) \alpha_{i}$$

$$\alpha = \sum_{j=1}^{n} y_{j} \beta_{j}$$

$$= \sum_{j=1}^{n} y_{j} \left(\sum_{i=1}^{n} P_{ij} \alpha_{i} \right)$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} P_{ij} y_{j} \right) \alpha_{i}$$

We have,
$$\alpha = \sum_{i=1}^{n} x_i \alpha_i$$

$$\alpha = \sum_{j=1}^{n} y_{j} \beta_{j}$$

$$= \sum_{j=1}^{n} y_{j} \left(\sum_{i=1}^{n} P_{ij} \alpha_{i} \right)$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} P_{ij} y_{j} \right) \alpha_{i}$$

We have, $\alpha = \sum_{i=1}^n x_i \alpha_i \Longrightarrow x_i = \sum_{j=1}^n P_{ij} y_j$, $1 \le i \le n$ (Thanks to unique coordinate matrix of α w.r.t. a basis B.)

$$x_i = \sum_{j=1}^n P_{ij} y_j \ , 1 \le i \le n$$

$$x_{i} = \sum_{j=1}^{n} P_{ij}y_{j}, 1 \leq i \leq n$$

$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ P_{21} & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots & \dots \\ P_{n1} & P_{n2} & \dots & P_{nn} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{n} \end{bmatrix}$$

$$x_{i} = \sum_{j=1}^{n} P_{ij}y_{j} , 1 \leq i \leq n$$

$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ P_{21} & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots & \dots \\ P_{n1} & P_{n2} & \dots & P_{nn} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{n} \end{bmatrix}$$

$$\Rightarrow X = PX' - - - - - (1)$$
where $X = [\alpha]_{B}, X' = [\alpha]_{B_{1}}$ and $P = [P_{1}, P_{2}, \dots, P_{n}].$

8

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{n} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{n} y_j \beta_j$

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{n} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{n} y_j \beta_j$
Claim (1): $X = 0 \iff X' = 0$

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{m} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{m} y_j \beta_j$
Claim (1): $X = 0 \Longleftrightarrow X' = 0$
Proof: $X = 0 \Longleftrightarrow x_1 = x_2 = \ldots = x_n = 0$
 $\Longleftrightarrow \alpha = 0$, (B is a L.I. set)

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{m} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{m} y_j \beta_j$
Claim (1): $X = 0 \iff X' = 0$
Proof : $X = 0 \iff x_1 = x_2 = \dots = x_n = 0$
 $\iff \alpha = 0$, (B is a L.I. set)
 $\iff y_1 = y_2 = \dots = y_n = 0$, (B_1 is a L.I. set).

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{n} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{n} y_j \beta_j$
Claim (1): $X = 0 \iff X' = 0$
Proof: $X = 0 \iff x_1 = x_2 = \dots = x_n = 0$
 $\iff \alpha = 0$, (B is a L.I. set)
 $\iff y_1 = y_2 = \dots = y_n = 0$, (B_1 is a L.I. set).
 $\iff X' = 0$

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{n} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{n} y_j \beta_j$
Claim (1): $X = 0 \iff X' = 0$
Proof: $X = 0 \iff x_1 = x_2 = \dots = x_n = 0$
 $\iff \alpha = 0$, (B is a L.I. set)
 $\iff y_1 = y_2 = \dots = y_n = 0$, (B_1 is a L.I. set).
 $\iff X' = 0$
Claim (2): P is an invertible matrix.

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{n} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{n} y_j \beta_j$
Claim (1): $X = 0 \iff X' = 0$
Proof: $X = 0 \iff x_1 = x_2 = \dots = x_n = 0$
 $\iff \alpha = 0, (B \text{ is a L.l. set})$
 $\iff y_1 = y_2 = \dots = y_n = 0, (B_1 \text{ is a L.l. set}).$
 $\iff X' = 0$
Claim (2): P is an invertible matrix.
Proof: $PX' = 0$

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{n} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{n} y_j \beta_j$
Claim (1): $X = 0 \iff X' = 0$
Proof : $X = 0 \iff x_1 = x_2 = \dots = x_n = 0$
 $X = 0$, $X = 0$
 $X = 0$, $X = 0$
 $X = 0$, $X = 0$
 $X = 0$
Claim (2) : $X = 0$
 $X = 0$
Proof : $X = 0$
 $X = 0$

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{n} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{n} y_j \beta_j$
Claim (1): $X = 0 \iff X' = 0$
Proof: $X = 0 \iff x_1 = x_2 = \dots = x_n = 0$
 $\iff \alpha = 0, (B \text{ is a L.l. set})$
 $\iff y_1 = y_2 = \dots = y_n = 0, (B_1 \text{ is a L.l. set}).$
 $\iff X' = 0$
Claim (2): P is an invertible matrix.
Proof: $PX' = 0 \implies X = 0 \implies X' = 0 (By Claim (1))$

Note that
$$X = PX' - -(1)$$
, $\alpha = \sum_{i=1}^{n} x_i \alpha_i$, and $\alpha = \sum_{j=1}^{n} y_j \beta_j$
Claim (1): $X = 0 \Longleftrightarrow X' = 0$
Proof: $X = 0 \Longleftrightarrow x_1 = x_2 = \ldots = x_n = 0$
 $\Longleftrightarrow \alpha = 0$, (B is a L.I. set)
 $\Longleftrightarrow y_1 = y_2 = \ldots = y_n = 0$, (B_1 is a L.I. set).
 $\Longleftrightarrow X' = 0$
Claim (2): P is an invertible matrix.
Proof: $PX' = 0 \Longrightarrow X = 0 \Longrightarrow X' = 0$ (By Claim (1))
Hence the homogeneous system $PX' = 0$ has only trivial solution $X' = 0$ and thus P is invertible.

Let V be a n-dimensional vector space over the field F and let $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $B_1 = \{\beta_1, \beta_2, \dots, \beta_n\}$ be two ordered bases of V.

Let V be a n-dimensional vector space over the field F and let $B = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ and $B_1 = \{\beta_1, \beta_2, \ldots, \beta_n\}$ be two ordered bases of V. Then there is a unique, necessarily invertible, $n \times n$ matrix P with entries in F such that (i) $[\alpha]_B = P[\alpha]_{B_1}$ and (ii) $[\alpha]_{B_1} = P^{-1}[\alpha]_B$ for every $\alpha \in V$.

Let V be a n-dimensional vector space over the field F and let $B = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ and $B_1 = \{\beta_1, \beta_2, \ldots, \beta_n\}$ be two ordered bases of V. Then there is a unique, necessarily invertible, $n \times n$ matrix P with entries in F such that (i) $[\alpha]_B = P[\alpha]_{B_1}$ and (ii) $[\alpha]_{B_1} = P^{-1}[\alpha]_B$ for every $\alpha \in V$. The columns of P are given by $P_j = [\beta_j]_B$, $j = 1, 2, \ldots, n$.

Let V be a n-dimensional vector space over the field F and let $B = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ and $B_1 = \{\beta_1, \beta_2, \ldots, \beta_n\}$ be two ordered bases of V. Then there is a unique, necessarily invertible, $n \times n$ matrix P with entries in F such that (i) $[\alpha]_B = P[\alpha]_{B_1}$ and (ii) $[\alpha]_{B_1} = P^{-1}[\alpha]_B$ for every $\alpha \in V$. The columns of P are given by $P_j = [\beta_j]_B$, $j = 1, 2, \ldots, n$. Proof: (See the previous slides.)

Theorem 8 (Assignment)

Note: For a given ordered basis B and an invertible matrix P, it is possible to contruct another ordered basis B_1 of a finite-dimensional vector space V.

An example (Theorem 8)

Find an ordered basis for R^4 . Let $B = \{\alpha_1 = (0, 1, 1, 1), \alpha_2 = (1, 0, 1, 1), \alpha_3 = (1, 1, 0, 1), \alpha_4 = (1, 1, 1, 0)\}$ be an ordered basis for R^4 and let P be an invertible matrix, where

$$P = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 \end{bmatrix}$$

Solution

$$[\beta_1]_B = P_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, [\beta_2]_B = P_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, [\beta_3]_B = P_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 4 \end{bmatrix},$$

$$[\beta_4]_B = P_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

Solution

$$[\beta_1]_B = P_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, [\beta_2]_B = P_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, [\beta_3]_B = P_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 4 \end{bmatrix},$$

$$[\beta_4]_B = P_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

$$\beta_1 = 1\alpha_1 + 1\alpha_2 + 0\alpha_3 + 0\alpha_4 = (1, 1, 2, 2)$$
$$\beta_2 = 0\alpha_1 + 0\alpha_2 + 1\alpha_3 + 1\alpha_4 = (2, 2, 1, 1)$$

solution contd.

$$\beta_3 = 1\alpha_1 + 0\alpha_2 + 0\alpha_3 + 4\alpha_4 = (4, 5, 5, 1)$$

$$\beta_4 = 0\alpha_1 + 0\alpha_2 + 0\alpha_3 + 2\alpha_4 = (2, 2, 2, 0)$$

Let $A \in F^{m \times n}$, let $\{R_1, R_2, \dots, R_m\}$ be the rows of A and let $\{C_1, C_2, \dots, C_n\}$ be columns of A.

```
Let A \in F^{m \times n}, let \{R_1, R_2, \ldots, R_m\} be the rows of A and let \{C_1, C_2, \ldots, C_n\} be columns of A.
Row space of A = \operatorname{span} \{R_1, R_2, \ldots, R_m\}
Column space of A = \operatorname{span} \{C_1, C_2, \ldots, C_n\}
```

```
Let A \in F^{m \times n}, let \{R_1, R_2, \dots, R_m\} be the rows of A and let \{C_1, C_2, \dots, C_n\} be columns of A.
Row space of A = \text{span } \{R_1, R_2, \dots, R_m\}
Column space of A = \text{span } \{C_1, C_2, \dots, C_n\}
Row rank of A = \text{dim (row space of } A)
```

```
Let A \in F^{m \times n}, let \{R_1, R_2, \ldots, R_m\} be the rows of A and let \{C_1, C_2, \ldots, C_n\} be columns of A.
Row space of A = \operatorname{span} \{R_1, R_2, \ldots, R_m\}
Column space of A = \operatorname{span} \{C_1, C_2, \ldots, C_n\}
Row rank of A = \operatorname{dim} (row space of A)
Column rank of A = \operatorname{dim} (column space of A)
```

```
Let A \in F^{m \times n}, let \{R_1, R_2, \ldots, R_m\} be the rows of A and let \{C_1, C_2, \ldots, C_n\} be columns of A.
Row space of A = \operatorname{span} \{R_1, R_2, \ldots, R_m\}
Column space of A = \operatorname{span} \{C_1, C_2, \ldots, C_n\}
Row rank of A = \operatorname{dim} (row space of A)
Column rank of A = \operatorname{dim} (column space of A)
```

Let $A, B \in F^{m \times n}$ be two row-equivalent matrices.

Let $A, B \in F^{m \times n}$ be two row-equivalent matrices. Then there exists an invertible $n \times n$ matrix P such that B = PA.

Let $A, B \in F^{m \times n}$ be two row-equivalent matrices. Then there exists an invertible $n \times n$ matrix P such that B = PA. So every row of B is a linear combination rows of A.

Let $A, B \in F^{m \times n}$ be two row-equivalent matrices. Then there exists an invertible $n \times n$ matrix P such that B = PA. So every row of B is a linear combination rows of A.

 \Longrightarrow row space of $B \subseteq$ row space of A - - - (1)

Let $A, B \in F^{m \times n}$ be two row-equivalent matrices. Then there exists an invertible $n \times n$ matrix P such that B = PA. So every row of B is a linear combination rows of A.

$$\Longrightarrow$$
 row space of $B\subseteq$ row space of $A---(1)$ $A=P^{-1}B$

Let $A, B \in F^{m \times n}$ be two row-equivalent matrices. Then there exists an invertible $n \times n$ matrix P such that B = PA. So every row of B is a linear combination rows of A.

$$\Longrightarrow$$
 row space of $B\subseteq$ row space of $A---(1)$ $A=P^{-1}B$

So every row of A is a linear combination of rows of B.

Let $A, B \in F^{m \times n}$ be two row-equivalent matrices. Then there exists an invertible $n \times n$ matrix P such that B = PA. So every row of B is a linear combination rows of A.

$$\Longrightarrow$$
 row space of $B\subseteq$ row space of $A---(1)$ $A=P^{-1}B$

So every row of A is a linear combination of rows of B.

$$\implies$$
 row space of $A \subseteq$ row space of $B - - - (2)$

Let $A, B \in F^{m \times n}$ be two row-equivalent matrices. Then there exists an invertible $n \times n$ matrix P such that B = PA. So every row of B is a linear combination rows of A.

$$\implies$$
 row space of $B \subseteq$ row space of $A - - - (1)$
 $A = P^{-1}B$

So every row of A is a linear combination of rows of B.

 \implies row space of $A \subseteq$ row space of B - - - (2)

From (1) and (2), row space of A = row space of B

Basis of a row-reduced echelon matrix

Let $R \in F^{m \times n}$ be row-reduced echelon matrix.

Basis of a row-reduced echelon matrix

Let $R \in F^{m \times n}$ be row-reduced echelon matrix. Then non-zero rows of R forms a basis of row space of R.(Assignment)

Basis of a row-reduced echelon matrix

Let $R \in F^{m \times n}$ be row-reduced echelon matrix. Then non-zero rows of R forms a basis of row space of R.(Assignment)

Row rank of R = No. of non-zero rows of R