Semaine 9 - Intégration de fonctions continues

Valentin De Bortoli
email: valentin.debortoli@gmail.com

1 Une convergence de norme

Soit [a,b] un intervalle de \mathbb{R} . Soit $f \in \mathcal{C}([a,b],\mathbb{R}_+)$. Soit $M = \sup_{x \in [a,b]} |f(t)|$.

1 Montrer que $\lim_{n \to +\infty} \left(\int_a^b f(t)^n dt \right)^{\frac{1}{n}} = M.$

Indication : on pourra penser à démontrer que pour tout $\epsilon \in \mathbb{R}_+^*$, il existe $[\alpha, \beta] \subset [a, b]$ tel que $\forall x \in [\alpha, \beta], \ f(x) \ge M - \epsilon$.

2 Inégalité et intégrale

Soit [a,b] un intervalle de \mathbb{R} . Soit $f \in \mathcal{C}^1([a,b])$ telle que f(a) = 0.

1 Montrer que $\int_a^b |f(t)|^2 dt \le \frac{(b-a)^2}{2} \int_a^b |f'(t)|^2 dt$.

3 Module et cas d'égalité

Soit [a, b] un intervalle de \mathbb{R} . Soit $f \in \mathcal{C}([a, b], \mathbb{C})$.

 $\textbf{1} \quad \text{On suppose que } |\int_a^b f(t) \mathrm{d}t| = \int_a^b |f(t)| \mathrm{d}t. \text{ Montrer que } \forall t \in [a,b], \ f(t) = |f(t)| e^{i\alpha} \text{ avec } \alpha \in \mathbb{R}.$

4 Inégalité de Young

Soit [a,b] un intervalle de \mathbb{R}_+ . Soit $f \in \mathcal{C}^1(\mathbb{R}_+)$, strictement croissante telle que f(0) = 0.

- 1 Soit $x \in \mathbb{R}_+$. Montrer que $\int_0^x f(t)dt + \int_0^{f(x)} f^{-1}(t)dt = xf(x)$.
- **2** En déduire que $\int_0^a f(t)dt + \int_0^b f^{-1}(t)dt \ge ab$ avec égalité si et seulement si b = f(a).

5 Suite et intégrale (1)

Soit $n \in \mathbb{N}$. On définit $J_n = \int_0^{\frac{\pi}{4}} \tan(x)^n dx$.

1 Donner une formule liant J_{n+2} et J_n . On commencera par calculer $J_{n+2} + J_n$.

1

2 Après avoir calculé J_0 et J_1 exprimer J_n en fonction de la parité de n.

6 Suite et intégrale (2)

Soit $n \in \mathbb{N}$. On définit $K_n = \int_0^{\frac{\pi}{4}} \frac{1}{\cos(x)^n} dx$.

- 1 Calculer K_0 et K_1 .
- **2** Donner une formule liant K_{n+2} et K_n . On pourra intégrer par partie K_{n+2} .

7 Suite et intégrale (3)

Soit $n \in \mathbb{N}$. On définit $L_n = \int_1^e \ln(x)^n dx$.

1 Donner une formule liant L_{n+1} et L_n .

8 Condition suffisante et point fixe

Soit $f \in \mathcal{C}([0,1],[0,1])$ telle que $\int_0^1 f(t) = \frac{1}{2}$.

1 Montrer que f admet un point fixe.

9 Inégalité et maximum

Soit [a, b] un intervalle de \mathbb{R} . Soit $f \in \mathcal{C}([a, b])$.

- 1 Montrer que $\forall c \in]a, b[, \frac{1}{b-a} \int_a^b f(t) dt \le \max\left(\frac{1}{c-a} \int_a^c f(t) dt, \frac{1}{b-c} \int_c^b f(t) dt\right).$
- 2 Donner une interprétation géométrique.

10 Annulation et intégration (1)

Soit $f \in \mathcal{C}([0, \pi], \mathbb{R})$.

- 1 On suppose que $\int_0^{\pi} f(t) \sin(t) dt = 0$. Montrer que f s'annule au moins une fois sur $]0, \pi[$. On note a un élément de $]0, \pi[$ tel que f(a) = 0.
 - **2** On suppose que $\int_0^\pi f(t)\sin(t)\mathrm{d}t = \int_0^\pi f(t)\cos(t)\mathrm{d}t = 0$. Montrer que f s'annule au moins deux fois sur $]0,\pi[$.

Indication : Que peut-on dire de $\int_0^\pi f(t) \sin(t-a) dt$?

11 Annulation et intégration (2)

Soit [a, b] un intervalle de \mathbb{R} . Soit $f \in \mathcal{C}([a, b], \mathbb{R})$. Soit $n \in \mathbb{N}$.

1 On suppose que $\forall k \in [0, n]$, $\int_a^b f(t)t^k dt = 0$. Montrer que f s'annule au moins n+1 fois.

Indication : On raisonnera par l'absurde et on posera $P(x) = \prod_{i=1}^{n_0} (x - x_i)$ avec $(x_i)_{i \in [\![1, n_0]\!]}$ les points d'annulation de f en lesquels f change de signe.

Remarque : on pourrait même aller plus loin et montrer que f change de signe n+1 fois. On montre en utilisant le théorème d'approximation de Weierstrass (que vous verrez l'année prochaine) que si $\forall k \in \mathbb{N}, \ \int_a^b f(t)t^k = 0$ alors f = 0.

12 Formule de la moyenne

Soit [a,b] un intervalle de \mathbb{R} . Soit $f \in \mathcal{C}([a,b])$. Soit $g \in \mathcal{C}([a,b])$ positive.

- 1 Montrer qu'il existe $c \in [a,b]$ tel que $\int_a^b f(t)g(t)\mathrm{d}t = f(c)\int_a^b g(t)\mathrm{d}t.$
- **2** Soit I définie sur \mathbb{R}_+^* par $I(x) = \int_{\sqrt{x}}^{\sqrt{2x}} \ln(t^2) \sin(\frac{1}{t}) dt$. Montrer que $\lim_{x \to 0} I(x) = 0$.