有机化学

白若鹏 重庆大学化学化工学院 理科楼LC220 ruopeng@cqu.edu.cn

有机化学:

它是一个学科,不只是一门课程

教学安排:

有机化学(下): 32课时

章	内容	学时
+-	醛酮	8
十二	羧酸	3
十三	羧酸衍生物	3
十四	碳负离子反应	6
十五	含氮化合物	4
十六	杂环化合物	4
十七	有机合成基础	4

第十一章醛、酮

醛、酮的结构、分类和命名

醛、酮的物理性质

醛、酮的亲核加成反应

α-活泼氢的反应

Wittig (魏悌息) 反应

 α , β -不饱和醛酮的反应

醛、酮的氧化反应

醛、酮的还原反应

醛、酮的制备

概述

11.1 醛、酮的结构、分类和命名

一、醛、酮的结构

C:sp²杂化

羰基: 极性共价键

电负性: O>C

电子云偏向于氧

二、醛、酮的分类

簡单酮 混合酮

三、醛、酮的命名

- 1.普通命名法
 - A.醛——与醇的命名类似

CH₃CHO

乙醛

H₂C=CHCHO 丙烯醛

B.酮——与醚的命名类似

$$_{\text{Ph-C}}^{\text{O}}$$

苯基乙基酮

芳香酮"基"字不可随意省略!

甲基-β-氯乙基酮

2.IUPAC命名法

A.脂肪醛、酮

a)主链:

含羰基在内的最含长碳链 含不饱和键时,选择羰基和不饱和键在 内的最长碳链作为主链

b)编号:

从靠近羰基一端开始编号 标出酮羰基位号

2-甲基丙醛

3-甲基环己酮

1-环己基-2-丙酮

B.芳香醛、酮

芳基作为取代基

邻羟基苯甲醛 水杨醛

4-羟基-3-甲氧苯甲醛 香兰醛 香兰素

C.多元醛、酮

醛、酮羰基同时存在, 以醛为母体

CHO(CH₂)₃CHO CH₃COCH₂CH₂CHO CH₃COCH₂COCH₃

戊二醛

4-氧代戊醛

2, **4**-戊二酮 (乙酰丙酮)

3-乙酰基苯甲醛

OHC-H₂C-CH-CH₂CHO CHO

3-甲酰基戊二醛

11.2 醛、酮的物理性质

一、沸点:

分子量相近化合物的沸点: 醇>醛、酮>烷烃、醚

	b.p.(°C)
CH ₃ CH ₂ CH ₂ CH ₂ OH	118
CH ₃ COCH ₂ CH ₃	80
CH ₃ CH ₂ CH ₂ CHO	76
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	36
CH ₃ CH ₂ OCH ₂ CH ₃	35

醛、酮的沸点低于醇:

不能形成分子间氢键 醛、酮的沸点高于烷烃等: 极性分子,偶极-偶极相互作用

二、溶解度:

低级醛、酮溶于水 HCHO、CH₃CHO、CH₃COCH₃与水互溶 例: 40%HCHO的水溶液——福尔马林 (标本防腐)

$$O$$
 $H-C-H$ + H_2O \longrightarrow $H-C-OH$
 OH

与水形成氢键

$$H_3C$$
 $C=O-H$
 $O-H-O=C$
 CH_3
 CH_3

醛、酮分子量越大,其水溶性越小,能溶于有机溶剂

11.3 醛、酮的亲核加成反应

亲核加成活性: 醛>酮

原因:

A.空间效应:

反应物 (三角形)、过渡态 (四面体) 反应物 → 过渡态,空间拥挤程度增加

酮发生亲核加成反应时,拥挤程度增加得更大

B. 电子效应:

静态:

酮上的烷基是推电子基,使羰基碳上的正电荷密度降低,亲核性减弱

动态:

烷基的推电子作用使过渡态的稳定性下降

1.与HCN反应

制备α-羟基腈 (α-氰醇)

A.反应实例

B.反应机理

若体系中加入少量碱: 反应加速

若体系中加入少量酸: 反应受到抑制

HCN
$$\rightleftharpoons$$
 H⁺ + CN $\stackrel{\circ}{\longrightarrow}$ H₃C $\stackrel{\circ}{\longrightarrow}$ CN $\stackrel{\circ}{\longrightarrow}$ H₃C $\stackrel{\circ}{\longrightarrow}$ CN $\stackrel{\circ}{\longrightarrow}$ H₃C $\stackrel{\circ}{\longrightarrow}$ OH $\stackrel{\circ}{\longrightarrow}$ H₃C $\stackrel{\circ}{\longrightarrow}$ CN+ CN $\stackrel{\circ}{\longrightarrow}$ H₃C $\stackrel{\circ}{\longrightarrow}$ CN+ CN $\stackrel{\circ}{\longrightarrow}$

C.实用范围 醛、脂肪族的甲基酮、C8以下环酮 D.用途: a) 合成羟基酸

OH CHO HCN
$$O_2N$$
 O_2N O_2N

b)合成α, β-不饱和酸及其衍生物

$$H_3C$$
 $C=O$
 $+HCN$
 H_3C
 $C=CN$
 H_3C
 $H_2SO_4(c)$
 CH_3OH
 CH_3OH
 CH_3

甲基丙烯酸甲酯 (有机玻璃单体)

2.与NaHSO₃反应

过量40% NaHSO₃饱和溶液

A.反应实例

B)实用范围 醛、脂肪族甲基酮、C。以下环酮

- C.应用
- a)鉴定、分离、提纯醛、部分酮
- b)制备α-氰醇,避免使用剧毒HCN

3.与RMgX反应

$$C = O + RMgX = C = OMgX \xrightarrow{\oplus} C = OH + MgX(OH)$$

制备醇

A.反应实例

环己基甲醇

B.反应特点 a)合成醇

增加C₁伯醇

RMgX +
$$\underset{\longrightarrow}{\overset{\oplus}{\longrightarrow}}$$
 RCH₂CH₂OH

增加C₂伯醇

叔醇

1.PhCOMe+EtMgX2.PhCOEt+MeMgX3.MeCOEt+PhMgX

b) 烯醇化反应

空阻较大的酮与烃基中不含β-H的RMgX反应

c)酮被还原

空阻较大的酮与烃基中含β-H的RMgX反应

$$(H_{3}C)_{3}C - C - C - CH_{3} + CH_{3}CH_{2}CH_{2}MgCI \longrightarrow H_{3}C - C - CH_{3} + CH_{3}CH_{2}CH_{2}MgCI \longrightarrow H_{3}C - C - CH_{3} + CH_{3}CH_{2}CH_{2}MgCI \longrightarrow H_{3}C - C - CH_{3} + CH_{3}CH_{2}CH_{2} \longrightarrow H_{3}C - C - C(CH_{3})_{3} + CH_{3}CH_{2}CH_{2} \longrightarrow H_{3}CH_{2}CH_{2}$$

d)Cram规则

羰基与手性中心相连

反应物的构象中体积大的基团与R重叠的原因: Mg与O络合,使羰基的空阻大于R

$$(R)$$

$$CH_2CHOCHCH_2 + C_2H_5MgX$$

$$Ph$$

$$H_3C$$

$$H_3C$$

$$H_3C$$

$$H_3C$$

$$H_4$$

$$H_3C$$

$$H_4$$

$$H_3C$$

$$H_5$$

$$H_3C$$

$$H_4$$

$$H_4$$

$$H_4$$

$$H_4$$

$$H_5$$

$$H_4$$

$$H_4$$

$$H_5$$

$$H_4$$

$$H_4$$

$$H_4$$

$$H_5$$

$$H_4$$

$$H_5$$

$$H_4$$

$$H_4$$

$$H_5$$

$$H_4$$

$$H_5$$

$$H_4$$

$$H_4$$

$$H_4$$

$$H_4$$

$$H_4$$

$$H_4$$

$$H_5$$

$$H_5$$

$$H_5$$

$$H_7$$

$$C_2H_5$$
-CH-CHO + CH_3MgI \longrightarrow H_3O + H_3C $\stackrel{}{Ph}$ H

$$\begin{array}{c} H \\ C_2H_5 \\ CH_3MgI \\ Ph \end{array}$$

4.与金属炔化物反应

$$H_3C$$
 $C=O + HC=CH \xrightarrow{KOH} H_3C \xrightarrow{OH} C=CC=CH$
 CH_3

1乙炔基环戊醇

$$2 \xrightarrow{H} C = O + HC \equiv CH \xrightarrow{CuC \equiv CCu} HOH_2C - C \equiv C - CH_2OH$$

5.与H,O反应

$$CI_3CCHO + H_2O \longrightarrow CI_3CHC-OH$$

三氯乙醛水合物

m.p. 57℃ (镇静剂)

茚三酮(红色)

茚三酮水合物(白色) 鉴定氨基酸、蛋白质(生成紫色物质)

6.与ROH反应

A.反应实例

A.反应实例

B.反应机理

CH₃CHO + CH₃OH
$$\stackrel{\text{$+\text{HCI}}}{\longleftarrow}$$
 H₃C OH CH₃OH H₃C OCH₃ H OCH₃

CH₃CHO
$$\stackrel{+}{\longleftarrow}$$
 H₃C- $\stackrel{\bullet}{\longleftarrow}$ H₃C-CH- $\stackrel{\bullet}{\bigcirc}$ HCH₃OH OH

$$\begin{array}{c} -H \\ \hline \end{array} \quad H_3C - CH - OCH_3 \xrightarrow{H} \quad H_3C - CH - OCH_3 \xrightarrow{-H_2O} \\ OH \qquad \qquad OH_2 \qquad \begin{array}{c} -H_2O \\ \hline \end{array}$$

$$H_3C$$
— CH — OCH_3 CH_3OH CH — $OHCH_3$ CH — OCH_3 $OCH_$

C.反应特点

a)反应活性: 醛>酮

CH₃CHO + CH₃OH
$$\stackrel{\mp}{+}$$
HCI $\stackrel{+}{-}$ HCI $\stackrel{-}{-}$ CH₃OH $\stackrel{-}{-}$ HCOCH₃ $\stackrel{-}{-}$ HOCH₃ $\stackrel{-}{-}$ HOCH₃ >90%

$$CH_{3}COCH_{3} + CH_{3}OH \xrightarrow{\mp HCI} H_{3}C OH CH_{3}OH H_{3}C OCH_{3} > 2\%$$

提高产率: 1)特殊装置除水 2)用原甲酸三甲酯

$$CH_3COCH_3 + HC(OCH_3)_3 \longrightarrow H_3C OCH_3$$
 $H_3C OCH_3$

简易除水装置:油水分离器

b)反应活性: 醛>酮 对碱、还原剂、氧化剂稳定

甲基苄基酮缩乙二醇

c)应用 工业产品

聚乙烯醇缩甲醛 维尼纶,不溶于水

有机合成中保护羰基

例1 CH₃CH=CHCHO
$$\longrightarrow$$
 H₃C-C-C-CHO OH OH OH CH₃CH=CHCHO \longrightarrow CH₃CH=CHCHO \longrightarrow CH₃CH=CHCHO \longrightarrow CH₃CH=CHCHO \longrightarrow CH₃CH-CH-HC \longrightarrow CH₃CH-CH-HC \longrightarrow T.M.

例2 BrCH₂CH₂CHO
$$\longrightarrow$$
 CH₃-C-CH₂CH₂CHO \longrightarrow BrCH₂CH₂CHO \longrightarrow BrCH₂CH₂CHO \longrightarrow BrCH₂CH₂CHO \longrightarrow T.M. 2)CH₃CHO

7.与NH₃及其衍生物反应

氨或胺: NH3、NH2R、NHR2

羟氨: NH₂OH

联氨或肼: NH2NHR

反应条件:弱酸性 使羰基质子化,增加羰基碳的正电性 不使氨基质子化,保证氨及其衍生物的亲核性

A.与NH₃反应

$$C=O+NH_3$$
 $H_2C=NH_2$ $H_2C=NH_2$ $H_2C=NH_3$ $H_2C=NH_2$ $H_2C=NH_3$ $H_2C=NH_3$ H_3 H_3 H_3 H_4 H_4 H_5 H_6 H_8 H_8

B.与RNH,反应

$$R^{1} C = O + NH_{2}R^{3} \longrightarrow \begin{bmatrix} R^{1}OH \\ R^{2}C-NHR^{3} \end{bmatrix} \xrightarrow{-H_{2}O} \begin{bmatrix} R^{1} \\ R^{2}C-NR^{3} \end{bmatrix}$$

Schiff base 芳香族亚胺较稳定

应用:保护羰基

C.与R₂NH反应

应用: 活化羰基α-位 α-烷基化、α-酰基化

D.与NH₂OH反应及Beckmann(贝克曼)重排

$$R$$
 C=O + NH₂OH R C=NHOH R C=NOH R C=NOH R C=NOH R C=NOH R CH₃COCH₃ + NH₂OH R CH₃COCH₃ + NH₂OH R CH₃COCH₃ R C=NOH R CH₃COCH₃ R C=NOH R CH₃COCH₃ R C=NOH R CH₃COCH₃ R C=NOH R CH₃COCH₃ R CH₃CO

Beckmann(贝克曼)重排

催化剂: H₂SO₄、多聚磷酸、PCl₅、PhSO₃Cl、SOCl₂

反应机理

$$H_3C-C$$
 H_3
 H_3C-C
 H_3
 H_3C-C
 H_3
 H_3C-C
 H_3
 H_3C-C
 H_3
 H_3C-C
 H_3

$$CH_3\overset{\oplus}{C} = N - CH_3 \xrightarrow{H_2O} CH_3C = N - CH_3 \xrightarrow{-H^+} CH_3C = N - CH_3 \xrightarrow{-H^+} CH_3C = N - CH_3 \xrightarrow{O-H} CH_3 \xrightarrow{O-H} CH_3$$

与羟基处于反式共平面的基团迁移

E:与肼反应

PhCOCH
$$_3$$
 + PhNHNH $_2$ — Pn—C=NNHPh + H $_2$ O 87~91% 苯乙酮苯腙

苯甲醛-2,4-二硝基苯腙

F:与氨基脲反应

$$\bigcirc$$
 O + NH₂NHCONH₂ \longrightarrow NNHCONH₂ + H₂O

环己酮缩氨脲

应用

1)缩氨脲有准确的熔点,可以鉴定醛、酮

2) 分离、提纯醛、酮

$$C=NOH$$
 $C=N-NH_2$
 $C=N-NHCONH_2$

11.5 α-活泼氢的反应

α活泼氢酸性及互变异构 A. α活泼氢的酸性

双亲核试剂

烯醇负离子

CH3COCH3 CH3CHO HC \equiv CH H2C \equiv CH2 CH3CH3 pKa 20 19 25 36 60 CH3COCH3 CH3COCH2COCH3 H3CCO=C=COCH3 H pKa 20 9 6

B.互变异构

机理

酸性条件:

碱性条件:

C.外消旋化反应

在酸性介质中

74

在碱性介质中

$$\begin{array}{c} CH_3 & O \\ Ph - C - CPh + OH - CPh - CPh$$

β-C为手性碳

2. 卤代反应

$$(H)R-C-C-C- + X_2 \xrightarrow{H} (H)R-C-C-C-$$
 $(X=CI, Br, I)$

A.酸催化

$$\begin{array}{c|c} & & & Br \\ \hline & CH_3COOH \\ \hline & Br_2 \\ \hline & COCH_2Br \\ \end{array}$$

反应特点:

- 1) 单卤代
- 2) 通常不加酸,因为起始反应产生酸,可起催化作用——自催化反应
- 3) 卤代活性:

$$-C-CH > -C-CH_2 > -C-CH_3$$

反应机理

X的引入使羰基氧上电子云密度降低,进一步质子化生成烯醇式困难,所以停留在单卤代产物

B.碱催化

$$(CH_3)_2CHCOCH_2CH_3 + Br_2 \xrightarrow{NaOH} (CH_3)_2CHCOCBr_2CH_3 + 2NaBr$$
 $(CH_3)_3CCOCH_3 + Cl_2 \xrightarrow{NaOH} (CH_3)_3COONa + HCCl_3 74\%$
 $COCH_3 \xrightarrow{NaOH} COONa + HCBr_3$

反应特点:

- 1) 多卤化(卤仿反应)
- 2) 卤代活性:

反应机理

$$R-C-CH_2-H+OH-\longrightarrow R-C-CH_2$$

$$R-C-CX_2-H \xrightarrow{O} R-C=CX_2 \xrightarrow{X-X}$$

碘仿反应

$$CH_3COCH_3$$
 — NaOH $CH_3COONa + CHI_3$ 黄色沉淀

应用: 鉴别甲基酮类化合物

如: CH₃CHO、CH₃CH(OH)R...

3.羟醛缩合反应

83

A.醛的羟醛缩合反应

碱催化

CH₃CHO + CH₃CHO
$$\frac{10\% \text{NaOH}}{5^{\circ}\mathbb{C}}$$
, 4~5h CH₃CHCH₂CHO 60% β -羟基丁醛 OH CH₃CH₂CHO + CH₃CH₂CHO $\frac{\text{稀 OH}^{-}}{5^{\circ}\mathbb{C}}$ CH₃CHCHCHO 72% CH₃CH₂CHCHCHO $\frac{\text{CH}_{3}}{5^{\circ}\mathbb{C}}$

α-甲基-β-羟基戊醛

反应机理

CH₃CHO
$$\stackrel{\text{$\notiall}}{\longrightarrow}$$
 CH₂CH₂OH CH₃CHCH₂CHO $\stackrel{\text{$iall}}{\longrightarrow}$ CH₃CHCH₂CHO $\stackrel{\text{$iall}}{\longrightarrow}$ OH CH₃CHCH₂CHO

b)酸催化

反应机理

$$O$$
 $H-H_2C-C-H+H$
 $H-H_2C-C-H$
 $H-H_2C-H$
 $H-H_2C-H$

$$CH_{3}-C-C+C \xrightarrow{H^{+}} CH_{3}-C-C+C \xrightarrow{\Theta} CHO \xrightarrow{H_{2}O}$$

$$CH_3$$
- CH - CH_2 - CHO $\xrightarrow{-H^+}$ CH_3 - C - CH - CHO

B.酮的羟醛缩合反应

CH₃COCH₃ + CH₃COCH₃
$$\xrightarrow{\text{Ba}(OH)_2}$$
 CH₃CCH₂COCH₃ 5% CH₃ $\xrightarrow{\beta}$ - 甲基-β - 羟基-2- 戊酮

提高产率方法:改变反应装置,用索氏提取器,移去产物酸性离子交换树脂催化,使生成的β-羟基酮脱水

索氏提取器(Soxhlet extractor)

$$NaOH,H_2O$$
 85% Na_2CO_3 H_2O $CH_3COCH_2CH_2COCH_3$

CH₃

例:

C.交叉羟醛缩合反应

Claisen-Schmidt反应(克莱森-斯密特反应) 不含α-H的反应物(芳香醛、甲醛)与碱混合,将含α-H 的醛酮慢慢滴加至混合物

PhCHO + CH₃CHO
$$\xrightarrow{\text{$\widehat{\text{H}}$ OH}^-}$$
 PhCH=CHCHO + H₂O 90%

肉桂醛, 苄叉基乙醛, β -- 苯基丙烯醛

PhCHO +
$$CH_3COCH_2CH_3$$
 — $RACCOCH_2CH_3$ — $RACCOCH_2CH_3$ — $RACCOCH_2CH_3$ — $RACCOCH_3$ — RA

4.与羟醛缩合相关的反应 A.Perkin(普尔金)反应

ArCHO +
$$(RCH_2CO)_2O$$
 $\xrightarrow{\triangle}$ $\xrightarrow{\triangle}$ ArCH=C—COOH 制备 α , β ⁻不饱和羧酸 PhCHO + $(CH_3CO)_2O$ $\xrightarrow{CH_3COONa}$ $\xrightarrow{H_3O^+}$ PhCH=C—COOH 内 Reverse R

RCH₂COOK(Na)

 H_3O^{\dagger}

CHO +
$$(CH_3CO)_2O$$
 $\xrightarrow{CH_3COONa}$ $\xrightarrow{H_3O}^+$ O CH=CHCOOH

PhCHO +
$$(CH_3CH_2CO)_2O$$
 $\xrightarrow{CH_3CH_2COONa}$ $\xrightarrow{H_3O}$ PhHC=C-COOH CH_3 $\xrightarrow{CH_3COONa}$ $\xrightarrow{CH_3COONa}$ OH

B.Knoevenagel(克脑文格)反应

碱催化下,醛酮与活泼α-H化合物的反应

CHO +
$$CH_2(CN)_2$$
 PhCH₂NH₂ CH= $C(CN)_2$ + H_2O

CN

CN

CN

CN

CN

CH= $COOEt$ + H_2O

PhCHO + CH_3NO_2 NaOH PhCH₂= $CHNO_2$ + H_2O

C.Darzen(达尔森)反应

β-紫罗兰酮

$$R-CO-R'(H)$$
 + $CI-C-COOEt$ EtONa R C COOEt H) R'' (H) R'' R'' 制备 α , β "环氧酸酯 CH3ONa,吡啶,-20°C COOCH3

反应机理

D.Reformatsky(瑞福马斯基)反应

$$R$$
 $C=O$ + BrCHCOOC₂H₅ Zn H_2O R C C CH $COOC_2H_5$ R "

制备: β-羟基酯、β-羟基酸α, β-不饱和羧酸酯、α, β-不饱和羧酸

反应机理

活性: RMgX>BrZnCHRCOOEt BrZnCHRCOOEt不存在

例: 合成

E.Benzoin(安息香)缩合反应

反应机理

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

5.α-烷基化和酰基化

(H)
$$R-C-C-C-+$$
 $R'COX \xrightarrow{id}$ (H) $R-C-C-C-C-C$

其中:

RX=CH₃I、PhCH₂X、XCH₂COOR、RX...... 催化剂: NaNH₂、PhLi、R₂NH......

A.强碱条件

ONA
$$C_{2}H_{5}Br$$
ONA
$$C_{2}H_{5}Br$$
OCCOCH₃

$$C_{1}H_{3}COCI$$
OCCOCH₃

$$CH_{3}CH_{3}I$$

$$CH_{3}CH_{3}I$$

$$CH_{3}I$$

B.二级胺催化

11.6 Wittig(魏悌息)反应

$$R$$
 $C=O$ Ph_3P R'' R''

1、ylide的制备

$$Ph_3\ddot{P}$$
 + $CH_3\ddot{-}I$ $Ph_3P^+-CH_3)I^ Ph_3P^+-CH_2^ Ph_3P=CH_2$ Ph_3P + Ph_3P Ph_3P Ph_3P

2.反应机理

$$\begin{bmatrix} R & C & C & R'' \\ R' & C & C & R'' \\ (H) & O & PPh_3 \end{bmatrix} \xrightarrow{0^{\circ}C} \begin{array}{c} R & C & R'' \\ R' & C & R'' \\ (H) & C & R'' \\ \end{array} + \begin{array}{c} Ph_3P=O \\ R'' & C & R'' \\ \end{array}$$

3.应用: 合成烯烃

PhCHO +
$$Ph_3P=CHPh$$
 C_2H_5ONa C_2H_5ONa C_2H_5OH C_2H_5OH

$$\mathsf{CH_3CH_2CH=C(CH_3)CH_2CH_3}$$

$$\mathsf{CH_3CH_2COCH_3} + \mathsf{Ph_3P=CHCH_2CH_3}$$

$$\mathsf{PhC(CH_3)=CHCH_2Ph} \longrightarrow \mathsf{PhCOCH_3} + \mathsf{Ph_3P=CHCH_2Ph}$$

$$\mathsf{CH_2=CH-CH=CH-COOEt}$$

$$\mathsf{CH_2CH-CHO} + \mathsf{Ph_3P=CH-COOEt}$$

11.6 α,β-不饱和醛酮的反应

1.亲电加成反应

$$CH_3CH=CH-C=O$$
 + Br_2 — $CH_3CHBrCHBr-CHO$ — $CH_3CH=CH-C=O$ + HCI — $CH_3CHCICH_2-CHO$ — 反马加成

$$CH_{3}CH=CH-C=O + H^{+} \longrightarrow CH_{3}CH=CH-CH-OH$$

$$CH_{3}CH=CH-CH-OH \longrightarrow CH_{3}CH-C=CH-OH$$

$$CH_{3}CH-C=CH-OH \longrightarrow CH_{3}CH-C=CH-OH$$

$$CH_{3}CH-CH_{2}-CHO$$

2.亲核加成

1.与HCN、胺、NaHSO₃反应: 1,4-加成

PhHC=CHCOPh
$$\xrightarrow{\text{KCN,CH}_3\text{COOH}}$$
 $\xrightarrow{\text{Ph-C-CH}_2\text{COPh}}$ $\xrightarrow{\text{CN}}$ $\xrightarrow{\text{CH}_3\text{NH}_2}$ $\xrightarrow{\text{CH}_3\text{NH}_2}$ $\xrightarrow{\text{CH}_3\text{NH}_2}$ $\xrightarrow{\text{CH}_3\text{NH}_2}$ $\xrightarrow{\text{PhCHCH}_2\text{COOEt}}$ $\xrightarrow{\text{NHCH}_3}$ $\xrightarrow{\text{NHCH}_3}$ $\xrightarrow{\text{RCH}=C-COR'(H)}$ $\xrightarrow{\text{NaHSO}_4}$ $\xrightarrow{\text{RCHCH}_2\text{COR'}}$ $\xrightarrow{\text{SO}_3\text{Na}}$

2.与金属有机化合物反应 A.与RLi反应:1,2-加成

$$(CH_3)_2C$$
=CHCOCH₃ + PhLi $\longrightarrow H_2O$ $(CH_3)_2C$ =CH-C-Ph
CH₃

PhHC=CHCOPh + PhLi
$$\longrightarrow \frac{H_3O^+}{\longrightarrow}$$
 PhHC=CH—C—Ph

B.与炔钠反应: 1, 2-加成

H₂C=CHCOCH₃
$$\xrightarrow{1)$$
 HC=CNa
2) H₃O + H₂C=CH-C-C=CH
CH₃

C.与R₂CuLi反应: 1, 4-加成

$$(CH_3)_2C = CHCOCH_3 \xrightarrow{(CH_2=CH)_2CuLi} \xrightarrow{H_2O} (CH_3)_2CH - CHCHOCH_3$$

$$CH = CH_2$$

$$H_3C$$

$$O \xrightarrow{(CH_3)_2CuLi} \xrightarrow{H_2O} O$$

D.与RMgX反应

a)醛与RMgX反应: 1,2加成

PhHC=CHCHO +
$$C_2H_5MgBr$$
 $\xrightarrow{1)$ 无水乙醚 PhHC=CH—CH—C $_2H_5$ PhHC=CHCHO + PhMgBr $\xrightarrow{1)$ 无水乙醚 PhHC=CH—CH—Ph $H_3^{\dagger}O$ 100%

b.酮与RMgX反应

|) 羰基与较大基团相连: 1,4-加成

PhHC=CHCOC(CH₃)₃

PhMgBr

$$H_3^{\dagger}O$$

Ph₂CHCH₂COC(CH₃)₃

100%

PhHC=CHCOC(CH₃)₃
 C_2H_5MgBr

Ph—CH—CH₂COC(CH₃)₃
 C_2H_5

100%

||) Cu催化: 1,4-加成

$$\begin{array}{c|c}
& H_3C \\
\hline
O & CH_3MgBr \\
\hline
CuBr & H_2O \\
\hline
\end{array}$$

||) 视空阻而定

PhHC=CHCOCH₃
$$\xrightarrow{1) C_2H_5MgBr}$$
 Ph—CH—CH₂COCH₃ + PhHC=CH—C—C₂H₅ CH₃ 60%

体积: 苯基 > 乙基, 尽量避开4位

PhHC=CHCOPh
$$\stackrel{1)}{\longrightarrow}$$
 Ph₂CHCH₂COPh $\stackrel{+}{\longrightarrow}$ 2) H₃O $\stackrel{+}{\bigcirc}$ 92%

3.Michael(麦克尔)加成与Ribbison(鲁宾逊)增环反应

A.Michael加成

α,β-不饱和羰基化合物+活泼亚甲基类化合物1,4-加成

$$>_{C=C-COR}$$
 $>_{C=C-COEt}$ $>_{C=C-C\equiv N}$

 \bigcirc CH(COOC₂H₅)₂ CNCHCOOC₂H₅ CH₃COCHCOOC₂H₅ CHCHOR(H)CH₂NO₂

CH₂=CHCN + CH₂(COOEt)₂
$$\xrightarrow{\text{NaOEt}}$$
 (EtOOC)₂CHCH₂CH₂CN
EtOH

B.Ribbison增环反应

$$\begin{array}{c} & & \\ & \\ \\ O \\ \end{array}$$

西昆

1. 分类和命名

苯醌 邻苯醌 对苯醌 1,2-苯醌 1,4-苯醌 萘醌 1,2-萘醌 2,6-萘醌 1,4-萘醌 蒽醌 菲醌 9,10-菲醌 9,10-蒽醌

1

2 结构和物理性质

- 醌结构中不存在芳环,有明显的单双键之分。
- 醌类化合物都有颜色

C=C, C=0共轭

n→π*跃迁落于可见光区域

3 化学反应

(1) 碳碳双键的加成反应

(2) 与羟胺的反应

C = O

对亚硝基苯酚

(3) 与金属有机化合物的反应

醌醇易重排为烃基取代的苯二酚

(4)与HX,HCN及胺的反应

苯醌为一氧化剂,还原时生成苯二酚,二 者组成一可逆的电化学氧化一还原体系。

Reduction

11.7 醛、酮的氧化反应

醛易被氧化,酮一般抗氧化

1.弱氧化剂氧化醛

A.Tollens(吐伦)试剂: $Ag(NH_3)_2OH$ 脂肪醛、芳香醛被氧化生成羧酸-鉴别醛、酮

CH₃CH₂CHO
$$\xrightarrow{\text{Ag(NH}_3)_2\text{OH}}$$
 CH₃CH₂COONH₄ + NH₃ + H₂O + Ag

CH₃CH₂COOH

$$H_2C=CHCHO$$
 $\xrightarrow{Ag(NH_3)_2OH}$ $H_2C=CHCOONH_4$ $\xrightarrow{H_3O^+}$ $H_2C=CHCOOH$

B.Fehling(菲林)试剂

CuSO₄.KOOCCH(OH)CH(OH)COONa NaOH

$$CH_3CH_2=CHCHO + Cu^{2+} \xrightarrow{OH^-} CH_3CH_2=CHCOO^- + Cu_2O$$

脂肪醛反应快,被氧化生成羧酸用于鉴别脂肪醛、芳香醛

2.强氧化剂

KMnO₄/H⁺、K₂CrO₇/H⁺、浓HNO₃

n-C₆H₁₃CHO
$$\xrightarrow{\text{KMnO}_4/\text{H}^+}$$
 n-C₆H₁₃COOH 78%

R'CH₂COCH₂R $\xrightarrow{\text{R}^+}$ R'COOH + RCH₂COOH + RCOOH

3.醛的自动氧化与Baeyer-Villiger(拜耶尔-魏立格)反应

A.醛的自动氧化

RCHO +
$$O_2$$
 RCOOH RCHO RCHO RCOOH

反应机理

$$R-C-H+Y$$
 $R-C-H+Y$
 $R-C-$

B.Baeyer-Villiger (拜耶尔-魏立格)反应 CH₃COOOH、PhCOOOH、CF₃COOOH

137

CH₃COOPh

基团的迁移能力: $-C(CH_3)_3 > -CH(CH_3)_2 > -Ph > -CH_2R > -CH_3$ 芳基上含给电子基团的迁移能力强 手性迁移时手性保持不变

PhCOCH₃

67%

11.8 醛、酮的还原反应

1.催化加氢

$$R$$
 $C=O+H_2$ $Mi或Pt或Pd$ H $CHOH$ H (R')

CH₃CH₂CH₂CHO + H₂
$$\xrightarrow{\text{Ni} \triangle}$$
 CH₃CH₂CH₂CH₂OH 100%

$$CH_3CH(CH_3)CH_2COCH_3 + H_2 \xrightarrow{Ni} CH_3CH(CH_3)CH_2CHOHCH_3 96%$$

$$(CH_3)_2CHCH=CHCH_2CHO + H_2 \xrightarrow{Ni} (CH_3)_2CHCH_2CH_2CH_2CH_2OH$$

还原选择性差(双键、叁键、硝基、卤素、氰基被还原)

2.金属氢化物

LiAlH₄ 氢化铝锂

NaBH₄ 硼氢化钠 Al[OCH(CH₃)₂]₃ 异丙醇铝

A.LiAlH₄

PhCH=CHCHO
$$\frac{0.25 \text{ eq LiAlH}_4}{-10 \text{ °C}}$$
 $\xrightarrow{\text{PhCH}=\text{CHCH}_2\text{OH}}$ PhCH=CHCH2OH $\xrightarrow{\text{DH}}$ PhCH=CHCH2OH $\xrightarrow{\text{DH}}$ PhCH2—CH2CH2OH $\xrightarrow{\text{CH}}$ OH $\xrightarrow{\text{CH}}$ 97% 孤立双键、叁键 不受影响

反应机理

空阻不大,以e式产物为主

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

空阻较大,负氧从空阻小的一侧进攻

$B.NaBH_4$

只能还原醛酮、酰卤

C.Meerwein-Poundorf反应

$$AI[OCH(CH_3)_2]_3$$

$$\begin{array}{c} R \\ C = O \end{array} + \left(\begin{array}{c} H_3C - CH - O \\ CH_3 \end{array}\right) A I \\ (H) \end{array} + \begin{array}{c} R \\ R' \\ (H) \end{array} + \begin{array}{c} CH_3COCH_3 \\ R' \\ (H) \end{array}$$

还原活性: LiAlH₄>NaBH₄>Al[OCH(CH₃)₂]₃

3.酮的双分子还原

Na、Mg、Al+酸、醇、水、碱醛被还原成伯醇

$$H_3C$$
 $C=O$ + Mg $\xrightarrow{\sharp}$ $H_3C-C \cdot C \cdot C - CH_3$ \longrightarrow Mg

4.Clemmensen(克莱门森)还原

Zn(Hg)/浓HCl

$$COC_3H_7$$
-n C_4H_9 -n $AICI_3$ 次HCI

5.Wolff-Kishner-黄鸣龙 (乌尔夫-凯惜纳-黄鸣龙)反应

Wolff-Kishner反应: NH₂NH₂、Na(K)、200℃、高压釜 黄鸣龙改进: NH₂NH₂、NaOH(OH)、(OHCH₂CH₂)₂O

R
$$C=O$$
 + NH_2NH_2 \longrightarrow $RCH_2R'(H)$ + N_2 (H)

PhCOCH₂CH₃

NH₂NH₂,NaOH,
$$\triangle$$
PhCH₂CH₂CH₂CH₃
OHCH₂CH₂OCH₂CH₂OH

82%

11.9 Cannizzarro(卡尼查罗)反应

歧化反应

芳醛或不含α-H的脂肪醛、浓碱

HCHO + HCHO
$$\frac{\text{NaOH } 50\%}{\triangle}$$
 CH₃OH + HCOONa

反应机理

Ar—
$$C = O$$
 + OH

Ar— $C = O$ + OH

Ar— $C = OH$

$$\mathbb{C}H_3$$
CHO + HCHO \longrightarrow HOH $_2$ C—C—CHO CH $_2$ OH

三羟甲基乙醛

$$^{\ddot{\chi}OH}$$
 $^{\ddot{}}$ $^{}}$ $^{\ddot{}}$ $^{\ddot{}}$

季戊四醇

11.10 醛酮的制备

A. 醇的氧化

$$RCH_2OH$$
 \longrightarrow $RCHO$ \longrightarrow $RCHO$ \longrightarrow $RCOR'$

B. 烯炔的氧化

$$R_2C=CHR'$$
 $\xrightarrow{O_3}$ Zn $\xrightarrow{R_2C=O}$ + R'CHO H_2O

C. 炔烃与水的反应

RC
$$\equiv$$
CH $H_2O,HgSO_4$ RCOCH₃ H_2SO_4

D. 偕二卤代烷水解

E. 芳烃的傅-克酰基化

F. Gattermann-Koch反应

G. Reimer-Tieman反应

$$OH$$
 + $CHCI_3$ $OH^ OH$

H. 羧酸与RLi反应

1. 羧酸衍生物的还原

RCOCI
$$H_2$$
 RCHO Pd-BaSO₄喹啉S

J. 酰卤与R₂Cd反应

本章要点

- ➤ 亲核加成反应(与HCN、NaHSO₃、RMgX-制备醇及Cram规则、ROH、R₂NH、NH₂OH-Beckmann重排)
- > α-H的卤代(酸性:单卤代;碱性:多卤代—碘仿反应)
- ➤ 羟醛缩合(稀碱催化)及其相关反应 (Perkin、Knoevenogei、Darzen、 Reformatsky、Benzoin)

- > a-烷基化及酰基化反应
- ➤ Witting缩合反应
- ➤ 氧化反应(Tollens、Fehling、Baeyer-Villiger、 强氧化剂)
- ➤ 还原反应(金属氢化物、Clemmensen、 Wolff-Kishner-黄鸣龙)
- ▶ 歧化反应——Cannizzarro
- α,β-不饱和醛、酮的反应(与RLi、RMgX/CuX、 R₂CuLi、Michael加成、Ribbison增环反应)