PCT

W INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COUPERATION TREATY (PCT)

		The state of the s
(51) International Patent Classification 5: A61K 39/02	A1	(11) International Publication Number: WO 94/21290 (43) International Publication Date: 29 September 1994 (29.09.94)
(21) International Application Number: PCT/US (22) International Filing Date: 15 March 1994 (US, European patent (AT, BE, CH, DE, DK, ES, FR, GB
(30) Priority Data: 038,682 16 March 1993 (16.03.93)	U	Published With international search report.
(71)(72) Applicants and Inventors: BARENKAMP, Ste [US/US]; 16 Villawood Lane, Webster Grove, MG 4954 (US). ST. GEME, Joseph, William, III [US Bershire Drive, St. Louis, MO 63117 (US).	O 6311)
(74) Agent: BERKSTRESSER, Jerry, W.; Shoemaker and Ltd., 2001 Jefferson Davis Highway, 1203 Crys Building 1, P.O. Box 2286, Arlington, VA 222 (US).	tal Plaz	za

(54) Title: HIGH MOLECULAR WEIGHT SURFACE PROTEINS OF NON-TYPEABLE HAEMOPHILUS

(57) Abstract

High molecular weight surface proteins of non-typeable *Haemophilus influenzae* which exhibit immunogenic properties and genes encoding the same are described. Specifically, genes coding for two immunodominant high molecular weight proteins, HMW1 and HMW2, have been cloned, expressed and sequenced, while genes coding for high molecular proteins HMW3 and HMW4 have been cloned, expressed and partially sequenced.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
ΑU	Australia	GE	Georgia	MW	
BB	Barbados	GN	Guinea	NE	Malawi N:
BE	Belgium	GR	Greece	NL NL	Niger
BF	Burkina Faso	ETU	Hungary		Netherlands
BG	Bulgaria	DE.	Ireland	NO NZ	Norway
BJ	Benin	ĪT	Italy		New Zealand
BR	Brazil	JP	Japan	PL	Poland
BY	Belarus	KE	Kenya	PT	Portugal
CA	Canada	KG	Kyrgystan	RO	Romania
CF	Central African Republic	KP		RU	Russian Federation
CG	Congo	R.F	Democratic People's Republic of Korea	SD	Sudan
CH	Switzerland	KR		SE	Sweden
CI	Côte d'Ivoire	KZ	Republic of Korea Kazakhstan	SI	Slovenia
CM	Cameroon	LI		SK	Slovakia
CN	China		Liechtenstein	SN	Senegal
CS	Czechoslovakia	LK	Sri Lanka	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE		LV	Latvia	TJ	Tajikistan
DK	Germany	MC	Monaco	TT	Trinidad and Tobago
ES	Denmark Carrie	MD	Republic of Moldova	UA	Ukraine
_	Spain	MG	Madagascar	US	United States of America
FI	Finland	MIL	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon				

10

15

20

25

30

35

TITLE OF INVENTION

HIGH MOLECULAR WEIGHT SURFACE PROTEINS OF NON-TYPEABLE HAEMOPHILUS

FIELD OF INVENTION

This invention relates to high molecular weight proteins of non-typeable haemophilus.

BACKGROUND TO THE INVENTION

Non-typeable <u>Haemophilus</u> <u>influenzae</u> are non-encapsulated organisms that are defined by their lack of reactivity with antisera against known <u>H. influenzae</u> capsular antigens.

inhabit the upper commonly These organisms frequently humans and are tract of respiratory responsible for infections, such as otitis sinusitis, conjunctivitis, bronchitis and pneumonia. Since these organisms do not have a polysaccharide they are not controlled by the present Haemophilus influenzae type b (Hib) vaccines, which are directed towards Hib bacterial capsular polysaccharides. The non-typeable strains, however, do produce surface antigens that can elicit bactericidal antibodies. Two of the major outer membrane proteins, P2 and P6, have been identified as targets of human serum bactericidal activity. However, it has been shown that the P2 protein sequence is variable, in particular in the non-typeable Haemophilus strains. Thus, a P2-based vaccine would not protect against all strains of the organism.

There have previously been identified by Barenkamp et al (<u>Pediatr. Infect. Dis. J.</u>, 9:333-339, 1990) a group of high-molecular-weight (HMW) proteins that appeared to be major targets of antibodies present in human convalescent sera. Examination of a series of middle ear isolates revealed the presence of one or two such proteins in most strains. However, prior to the present invention, the structures of these proteins were unknown as were pure isolates of such proteins.

10

15

20

25

30

2

SUMMARY OF INVENTION

The inventors, in an effort to further characterize the high molecular weight (HMW) Haemophilus proteins, have cloned, expressed and sequenced the genes coding for two immunodominant HMW proteins (designated HMW1 and HMW2) from a prototype non-typeable <u>Haemophilus</u> strain and have cloned, expressed and almost sequenced the genes coding for two additional immunodominant HMW proteins (designated HMW3 and HMW4) from another non-typeable Haemophilus strain.

In accordance with one aspect of the present invention, therefore, there is provided an isolated and purified gene coding for a high molecular weight protein of a non-typeable Haemophilus strain, particularly a gene coding for protein HMW1, HMW2, HMW3 or HMW4, as well as any variant or fragment of such protein which retains the immunological ability to protect against disease caused by a non-typeable Haemophilus strain. In another aspect, the invention provides a high molecular weight protein of non-typeable Haemophilus influenzae which is encoded by these genes.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a DNA sequence of a gene coding for protein HMW1 (SEQ ID NO: 1);

Figure 2 is a derived amino acid sequence of protein HMW1 (SEQ ID NO: 2);

Figure 3 is a DNA sequence of a gene coding for protein HMW2 (SEQ ID NO: 3);

Figure 4 is a derived amino acid sequence of HMW2 (SEQ ID NO: 4);

Figure 5A shows restriction maps of representative recombinant phages which contained the HMW1 or HMW2 structural genes, the locations of the structural genes being indicated by the shaded bars;

Figure 5B shows the restriction map of the T7 expression vector pT7-7;

10

15

20

25

30

35

Figure 6 contains the DNA sequence of a gene cluster for the <a href="https://mxx.pm.nih.google.com/mxi.google.

Figure 7 contains the DNA sequence of a gene cluster for the <a href="https://mww.mw.edu.org/mw.edu

Figure 8 is a partial DNA sequence of a gene coding for protein HMW3 (SEQ ID NO: 7);

Figure 9 is a partial DNA sequence of a gene coding for protein HMW4 (SEQ ID NO: 8); and

Figure 10 is a comparison table for the derived amino acid sequence for proteins HMW1, HMW2, HMW3 and HMW4.

GENERAL DESCRIPTION OF INVENTION

The DNA sequences of the genes coding for HMW1 and HMW2, shown in Figures 1 and 3 respectively, were shown to be about 80% identical, with the first 1259 base pairs of the genes being identical. The derived amino acid sequences of the two HMW proteins, shown in Figures 2 and 4 respectively, are about 70% identical. Furthermore, the encoded proteins are antigenically related to the filamentous hemagglutinin surface protein of Bordetella pertussis. A monoclonal antibody prepared against filamentous hemagglutinin (FHA) of Bordetella pertussis was found to recognize both of the high molecular weight proteins. This data suggests that the HMW and FHA proteins may serve similar biological functions. The derived amino acid sequences of the HMW1 and HMW2 proteins show sequence similarity to that for the FHA has further been shown that protein. It

10

15

20

25

30

35

antigenically-related proteins are produced by the majority of the non-typeable strains of <u>Haemophilus</u>. Antisera raised against the protein expressed by the HMW1 gene recognizes both the HMW2 protein and the <u>B. pertussis</u> FHA. The present invention includes an isolated and purified high molecular weight protein of non-typeable haemophilus which is antigenically related to the <u>B. pertussis</u> FHA, which may be obtained from

natural sources or produced recombinantly.

A phage genomic library of a known strain of non-typeable <u>Haemophilus</u> was prepared by standard methods and the library was screened for clones expressing high molecular weight proteins, using a high titre antiserum against HMW's. A number of strongly reactive DNA clones were plaque-purified and sub-cloned into a T7 expression plasmid. It was found that they all expressed either one or the other of the two high-molecular-weight proteins designated HMW1 and HMW2, with apparent molecular weights of 125 and 120 kDa, respectively, encoded by open reading frames of 4.6 kb and 4.4 kb, respectively.

Representative clones expressing either HMW1 or HMW2 were further characterized and the genes isolated, purified and sequenced. The DNA sequence of HMW1 is shown in Figure 1 and the corresponding derived amino acid sequence in Figure 2. Similarly, the DNA sequence of HMW2 is shown in Figure 3 and the corresponding derived amino acid sequence in Figure 4. Partial purification of the isolated proteins and N-terminal sequence analysis indicated that the expressed proteins are truncated since their sequence starts at residue number 442 of both full length HMW1 and HMW2 gene products.

10

15

20

25

30

35

reading frames (ORFs), designated \underline{b} and \underline{c} , respectively, (see Figures 6 and 7).

The <u>b</u> ORFs are 1635 bp in length, extending from nucleotides 5114 to 6748 in the case of <u>hmwl</u> and nucleotides 5375 to 7009 in the case of <u>hmw2</u>, with their derived amino acid sequences 99% identical. The derived amino acid sequences demonstrate similarity with the derived amino acid sequences of two genes which encode proteins required for secretion and activation of hemolysins of <u>P. mirabilis</u> and <u>S. marcescens</u>.

The <u>c</u> ORFs are 1950 bp in length, extending from nucleotides 7062 to 9011 in the case of https://mwl.and.nucleotides 7249 to 9198 in the case of https://mwl.and.nucleotides 7249 to 9198 in the case of https://mwl.and.nucleotides 7249 to 9198 in the case of https://mwl.and.nucleotides 7249 to 9198 in the case of <a href="https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mwl.and.nucleotides 7249 to 9198 in the case of <a href="https://mww.mwl.and.nucleotides 7249 to 9198 in the case of <a href="https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mww.mwl.and.nucleotides 7249 to 9198 in the case of https://mwl.and.nucleotides 7249 to 9198 in the case of https://mwl.and.nucleotides 7249 to 9198 in the case of https://mwl.and.nucleotides 7249 to 9198 in the case of <a h

The two high molecular weight proteins have been isolated and purified and shown to be partially protective against otitis media in chinchillas and to function as adhesins. These results indicate the potential for use of such high molecular proteins and structurally-related proteins of other non-typeable strains of Haemophilus influenzae as components in non-typeable Haemophilus influenzae vaccines.

Since the proteins provided herein are cross-reactive antigens and are present in the majority of non-typeable <u>Haemophilus</u> strains, it is evident that these HMW proteins may become integral constituents of a universal <u>Haemophilus</u> vaccine. Indeed, these proteins may be used not only as protective antigens against otitis, sinusitis and bronchitis caused by non-typeable <u>Haemophilus</u> strains, but also may be used as carriers for the protective Hib polysaccharides in a conjugate vaccine against meningitis. The proteins also

10

15

20

25

30

35

may be used as carriers for other antigens, haptens and polysaccharides from other organisms, so as to induce immunity to such antigens, haptens and polysaccharides.

The nucleotide sequences encoding two high molecular weight proteins of a different non-typeable <u>Haemophilus</u> strain (designated HMW3 and HMW4) have been largely elucidated, and are presented in Figures 8 and 9. HMW3 has an apparent molecular weight of 125 kDa while HMW4 has an apparent molecular weight of 123 kDa. These high molecular weight proteins are antigenically related to the HMW1 and HMW2 proteins and to FHA. Sequence analysis of HMW3 is approximately 85% complete and of HMW4 95% complete, with short stretches at the 5'-ends of each gene remaining to be sequenced.

Figure 10 contains a multiple sequence comparison of the derived amino acid sequences for the four high molecular weight proteins identified herein. As may be seen from this comparison, stretches of identical peptide sequence may be found throughout the length of the comparison, with HMW3 more closely resembling HMW1 and HMW4 more closely resembling HMW2. This information is highly suggestive of a considerable sequence homology between high molecular weight proteins from various non-typeable <u>Haemophilus</u> strains.

In addition, mutants of non-typeable <u>H. influenzae</u> strains that are deficient in expression of HMW1 or HMW2 or both have been constructed and examined for their capacity to adhere to cultured human epithelial cells. The hmw1 and hmw2 gene clusters have been expressed in <u>E. coli</u> and have been examined for in vitro adherence. The results of such experimentation demonstrate that both HMW1 and HMW2 mediate attachment and hence are adhesins and that this function is present even in the absence of other <u>H. influenzae</u> surface structures.

With the isolation and purification of the high molecular weight proteins, the inventors are able to

10

15

20

25

30

determine the major protective epitopes by conventional epitope mapping and synthesize peptides corresponding to these determinants to be incorporated in fully synthetic or recombinant vaccines. Accordingly, the invention also comprises a synthetic peptide having an amino acid sequence corresponding to at least one protective epitope of a high molecular weight protein of a non-typeable Haemophilus influenzae. Such peptides are of varying constitute that portions of the molecular-weight proteins, that can be used to induce immunity, either directly or as part of a conjugate, against the relative organisms and thus constitute vaccines for protection against the corresponding diseases.

The present invention also provides any variant or fragment of the proteins that retains the potential immunological ability to protect against disease caused by non-typeable <u>Haemophilus</u> strains. The variants may be constructed by partial deletions or mutations of the genes and expression of the resulting modified genes to give the protein variations.

EXAMPLES

Example 1:

Non-typeable <u>H.influenzae</u> strains 5 and 12 were isolated in pure culture from the middle ear fluid of children with acute otitis media. Chromosomal DNA from strain 12, providing genes encoding proteins HMW1 and HMW2, was prepared by preparing Sau3A partial restriction digests of chromosomal DNA and fractionating on sucrose gradients. Fractions containing DNA fragments in the 9 to 20 kbp range were pooled and a library was prepared by ligation into λ EMBL3 arms. Ligation mixtures were packaged in vitro and plate-amplified in a P2 lysogen of <u>E. coli</u> LE392.

For plasmid subcloning studies, DNA from a representative recombinant phage was subcloned into the

10

15

20

25

30

35

T7 expression plasmid pT7-7, containing the T7 RNA polymerase promoter Φ 10, a ribosome-binding site and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (see Figure 5B).

DNA sequence analysis was performed by the dideoxy method and both strands of the HMW1 gene and a single strand of the HMW2 gene were sequenced.

immunoblot analysis was Western performed identify the recombinant proteins being produced by reactive phage clones. Phage lysates grown in LE392 cells or plaques picked directly from a lawn of LE392 cells on YT plates were solubilized in gel electrophoresis sample buffer prior to electrophoresis. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis was performed on 7.5% 11% polyacrylamide modified Laemmli gels. After transfer of the proteins to nitrocellulose sheets, the sheets were probed sequentially with an E. coli-absorbed human serum sample containing high-titer antibody to the highmolecular-weight proteins and then with phosphatase-conjugated goat anti-human immunoglobulin G (IgG) second antibody. Sera from healthy adults contains high-titer antibody directed against surface-exposed high-molecular-weight proteins of non-typeable <u>influenzae</u>. One such serum sample was used as the screening antiserum after having been extensively absorbed with LE392 cells.

To identify recombinant proteins being produced by $\underline{E.\ coli}$ transformed with recombinant plasmids, the plasmids of interest were used to transform $\underline{E.\ coli}$ BL21 (DE3)/pLyss. The transformed strains were grown to an A_{600} of 0.5 in L broth containing 50 μg of ampicillin per ml. IPTG was then added to 1 mM. One hour later, cells were harvested, and a sonicate of the cells was prepared. The protein concentrations of the samples were determined by the bicinchoninic acid method. Cell sonicates

10

15

20

25

30

35

containing 100 μ g of total protein were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. The nitrocellulose was then probed sequentially with the <u>E. coli</u>-absorbed adult serum sample and then with alkaline phosphatase-conjugated goat antihuman IgG second antibody.

Western immunoblot analysis also was performed to determine whether homologous and heterologous nontypeable H. influenzae strains expressed high-molecularweight proteins antigenically related to the protein encoded by the cloned HMW1 gene (rHMW1). Cell sonicates of bacterial cells were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. Nitrocellulose was probed sequentially with polyclonal rabbit rHMW1 antiserum and then with alkaline phosphatase-conjugated goat anti-rabbit IqG second antibody.

Finally, Western immunoblot analysis was performed to determine whether non-typeable Haemophilus strains expressed proteins antigenically related to the filamentous hemagglutinin protein of Bordetella pertussis. Monoclonal antibody X3C, a murine immunoglobulin G (IgG) antibody which recognizes filamentous hemagglutinin, was used to probe cell sonicates by Western blot. An alkaline phosphataseconjugated goat anti-mouse IgG second antibody was used for detection.

To generate recombinant protein antiserum, <u>E. coli</u> BL21(DE3)/pLysS was transformed with pHMW1-4, and expression of recombinant protein was induced with IPTG, as described above. A cell sonicate of the bacterial cells was prepared and separated into a supernatant and pellet fraction by centrifugation at 10,000 x g for 30 min. The recombinant protein fractionated with the

10

15

20

25

30

35

pellet fraction. A rabbit was subcutaneously immunized on biweekly schedule with 1 mg of protein from the pellet fraction, the first dose given with Freund's complete adjuvant and subsequent doses with Freund's incomplete adjuvant. Following the fourth injection, the rabbit was bled. Prior to use in the Western blot assay, the antiserum was absorbed extensively with sonicates of the host <u>E. coli</u> strain transformed with cloning vector alone.

To assess the sharing of antigenic determinants between HMW1 and filamentous hemagglutinin, enzyme-linked immunosorbent assay (ELISA) plates (Costar, Cambridge, Mass.) were coated with 60 μ l of a 4-ug/ml solution of filamentous hemagglutinin in Dulbecco's buffered saline per well for 2 h at room temperature. Wells were blocked for 1 h with 1% bovine serum albumin in Dulbecco's phosphate-buffered saline prior to addition of serum dilutions. rHMW1 antiserum was serially diluted in 0.1% Brij (Sigma, St. Louis, Mo.) in Dulbecco's phosphate-buffered saline and incubated for 3 h at room temperature. After being washed, the plates were incubated with peroxidase-conjugated goat anti-rabbit lgG antibody (Bio-Rad) for 2 h at room temperature and subsequently developed with 2,2'-azino-bis(3ethylbenzthiazoline-6-sulfonic acid) (Sigma) concentration of 0.54 in mg/ml in 0.1 M sodium citrate buffer, pH 4.2, containing 0.03% H₂O₂. Absorbances were read on an automated ELISA reader.

Recombinant phage expressing HMW1 or HMW2 were recovered as follows. The non-typeable <u>H. influenzae</u> strain 12 genomic library was screened for clones expressing high-molecular-weight proteins with an <u>E. coli</u>-absorbed human serum sample containing a high titer of antibodies directed against the high-molecular-weight proteins.

10

15

20

25

30

35

Numerous strongly reactive clones were identified along with more weakly reactive ones. Twenty strongly reactive clones were plaque-purified and examined by Western blot for expression of recombinant proteins. Each of the strongly reactive clones expressed one of two types of high-molecular-weight proteins, designated HMW1 and HMW2. The major immunoreactive protein bands in the HMW1 and HMW2 lysates migrated with apparent molecular masses of 125 and 120 kDa, respectively. In addition to the major bands, each lysate contained minor protein bands of higher apparent molecular weight. Protein bands seen in the HMW2 lysates at molecular masses of less than 120 kDa were not regularly observed and presumably represent proteolytic degradation products. LE392 infected with the λ EMBL3 cloning vector alone were non-reactive when immunologically screened with the same serum sample. Thus, the observed activity was not due to cross-reactive E. coli proteins or \(\lambda EMBL3-encoded \) pro-Furthermore, the recombinant proteins were not simply binding immunoglobulin nonspecifically, since the proteins were not reactive with the goat anti-human IgG conjugate alone, with normal rabbit sera, or with serum from a number of healthy young infants.

Representative clones expressing either the HMW1 or HMW2 recombinant proteins were characterized further. The restriction maps of the two phage types were different from each other, including the regions encoding the HMW1 and HMW2 structural genes. Figure 5A shows restriction maps of representative recombinant phage which contained the HMW1 or HMW2 structural genes. The locations of the structural genes are indicated by the shaded bars.

HMW1 plasmid subclones were constructed by using the T7 expression plasmid T7-7 (Fig. 5A and B). HMW2 plasmid subclones also were constructed, and the results with

10

15

20

25

30

35

these latter subclones were similar to those observed with the HMW1 constructs.

The approximate location and direction of transcription of the HMW1 structure gene were initially determined by using plasmid pHMW1 (Fig. 5A). plasmid was constructed by inserting the 8.5-kb BamHI-SalI fragment from \(\lambda \text{HMW1} \) into \(\lambda \text{amHI-} \) and \(\lambda \text{salI-cut pT7-7.} \) E. coli transformed with pHMW1 expressed immunoreactive recombinant protein with an apparent molecular mass of 115 kDa, which was strongly inducible with IPTG. This protein was significantly smaller than the 125-kDa major protein expressed by the parent phage, indicating that it either was being expressed as a fusion protein or was truncated at the carboxy terminus.

To more precisely localize the 3' end of the structural gene, additional plasmids were constructed with progressive deletions from the 3' end of the pHMW1 construct. Plasmid pHMW1-1 was constructed by digestion of pHMW1 with PstI, isolation of the resulting 8.8-kb fragment, religation. and Plasmid pHMW1-2 constructed by digestion of pHMW1 with <u>HindIII</u>, isolation of the resulting 7.5-kb fragment, and religation. coli transformed with either plasmid pHMW1-1 or pHMW1-2 also expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa. These results indicated that the 3' end of the structural gene was 5' of the HindIII site.

To more precisely localize the 5' end of the gene, plasmids pHMW1-4 and pHMW1-7 were constructed. Plasmid pHMW1-4 was constructed by cloning the 5.1-kb <u>Bam</u>HI-<u>HindIII</u> fragment from \(\lambda \text{HMW1} \) into a pT7-7-derived plasmid containing the upstream 3.8-kb <u>EcoRI-Bam</u>Hi fragment. <u>E. coli</u> transformed with pHMW1-4 expressed an immunoreactive protein with an apparent molecular mass of approximately 160 kDa. Although protein production was inducible with IPTG, the levels of protein production in these

10

15

20

25

30

35

transformants were substantially lower than those with the pHMW1-2 transformants described above. Plasmid pHMW1-7 was constructed by digesting pHMW1-4 with NdeI and SpeI. The 9.0-kbp fragment generated by this double digestion was isolated, blunt ended, and religated. E. coli transformed with pHMW1-7 also expressed an immunoreactive protein with an apparent molecular mass of 160 kDa, a protein identical in size to that expressed by the pHMW1-4 transformants. The result indicated that the initiation codon for the HMW1 structural gene was 3' of the SpeI site. DNA sequence analysis confirmed this conclusion.

As noted above, the \(\lambda\)HMW1 phage clones expressed a major immunoreactive band of 125 kDa, whereas the HMW1 plasmid clones pHMW1-4 and pHMW1-7, which contained what was believed to be the full-length gene, expressed an immunoreactive protein of approximately 160 kDa. This size discrepancy was disconcerting. One possible explanation was that an additional gene or genes necessary for correct processing of the HMW1 gene product were deleted in the process of subcloning. To address this possibility, plasmid pHMW1-14 was constructed. This construct was generated by digesting pHMW1 with NdeI and and inserting the 7.6-kbp NdeI-MluI fragment Such a construct would contain isolated from pHMW1-4. the full-length HMW1 gene as well as the DNA 3' of the HMW1 gene which was present in the original HMW1 phage. E. coli transformed with this plasmid expressed major immunoreactive proteins with apparent molecular masses of 125 and 160 kDa as well as additional degradation The 125- and 160-kDa bands were identical to products. the major and minor immunoreactive bands detected in the HMW1 phage lysates. Interestingly, the pHMW1-14 construct also expressed significant amounts of protein in the uninduced condition, a situation not observed with the earlier constructs.

10

15

20

25

30

35

The relationship between the 125- and 160-kDa proteins remains somewhat unclear. Sequence analysis, described below, reveals that the HMW1 gene would be predicted to encode a protein of 159 kDa. It is believed that the 160-kDa protein is a precursor form of the mature 125-kDa protein, with the conversion from one protein to the other being dependent on the products of the two downstream genes.

Sequence analysis of the HMW1 gene (Figure revealed a 4,608-bp open reading frame (ORF), beginning with an ATG codon at nucleotide 351 and ending with a TAG stop codon at nucleotide 4959. A putative ribosomebinding site with the sequence AGGAG begins 10 bp upstream of the putative initiation codon. Five other inframe ATG codons are located within 250 bp of the beginning of the ORF, but none of these is preceded by a typical ribosome-binding site. The 5'-flanking region of the ORF contains a series of direct tandem repeats, with the 7-bp sequence ATCTTTC repeated 16 times. tandem repeats stop 100 bp 5' of the putative initiation An 8-bp inverted repeat characteristic of a rhocodon. independent transcriptional terminator is beginning at nucleotide 4983, 25 bp 3' of the presumed translational stop. Multiple termination codons are present in all three reading frames both upstream and downstream of the ORF. The derived amino acid sequence of the protein encoded by the HMW1 gene (Figure 2) has a molecular weight of 159,000, in good agreement with the apparent molecular weights of the proteins expressed by the HMW1-4 and HMW1-7 transformants. The derived amino acid sequence of the amino terminus does not demonstrate the characteristics of a typical signal sequence. BamHI site used in generation of pHMW1 comprises bp 1743 through 1748 of the nucleotide sequence. downstream of the BamHI site would be predicted to encode a protein of 111 kDa, in good agreement with the 115 kDa

10

15

20

25

30

35

estimated for the apparent molecular mass of the pHMW1-encoded fusion protein.

The sequence of the HMW2 gene (Figure 3) consists of a 4,431-bp ORF, beginning with an ATG ccdon at nucleotide 352 and ending with a TAG stop codon at nucleotide 4783. The first 1,259 bp of the ORF of the HMW2 gene are identical to those of the HMW1 gene. Thereafter, the sequences begin to diverge but are 80% identical overall. the exception of a single base addition nucleotide 93 of the HMW2 sequence, the 5'-flanking regions of the HMW1 and HMW2 genes are identical for 310 bp upstream from the respective initiation codons. Thus, the HMW2 gene is preceded by the same set of tandem repeats and the same putative ribosome-binding site which lies 5' of the HMW1 gene. A putative transcriptional terminator identical to that identified 3' of the HMW1 is noted, beginning at nucleotide 4804. discrepancy in the lengths of the two principally accounted for by a 186-bp gap in the HMW2 sequence, beginning at nucleotide position 3839. derived amino acid sequence of the protein encoded by the HMW2 gene (Figure 4) has a molecular weight of 155,000 and is 71% identical with the derived amino acid sequence of the HMW1 gene.

The derived amino acid sequences of both the HMW1 and HMW2 genes (Figures 2 and 4) demonstrated sequence similarity with the derived amino acid sequence of filamentous hemagglutinin of Bordetella pertussis, a surface-associated protein of this organism. The initial and optimized TFASTA scores for the HMW1-filamentous hemagglutinin sequence comparison were 87 and 186, respectively, with a word size of 2. The z score for the comparison was 45.8. The initial and optimized TFASTA scores for the HMW2-filamentous hemagglutinin sequence comparison were 68 and 196, respectively. The z score for the latter comparison was 48.7. The magnitudes of

10

15

20

25

30

35

the initial and optimized TFASTA scores and the z scores suggested that a biologically significant relationship existed between the HMW1 and HMW2 gene products and filamentous hemagglutinin. When the derived amino acid sequences of HMW1, HMW2, and filamentous hemagglutinin genes were aligned and compared, the similarities were most notable at the amino-terminal ends of the three Twelve of the first 22 amino acids in the sequences. predicted peptide sequences were identical. additional, the sequences demonstrated a common fiveamino-acid stretch, Asn-Pro-Asn-Gly-Ile, and several shorter stretches of sequence identity within the first 200 amino acids.

Example 2:

To further explore the HMW1-filamentous hemagglutinin relationship, the ability of antiserum prepared against the HMW1-4 recombinant protein (rHMW1) to recognize purified filamentous hemagglutinin was The rHMW1 antiserum demonstrated ELISA assessed. reactivity with filamentous hemagglutinin in a dosedependent manner. Preimmune rabbit serum had minimal reactivity in this assay. The rHMW1 antiserum also was examined in a Western blot assay and demonstrated weak positive reactivity with purified filamentous hemagglutinin in this system also.

To identify the native <u>Haemophilus</u> protein corresponding to the HMW1 gene product and to determine the extent to which proteins antigenically related to the HMW1 cloned gene product were common among other non-typeable <u>H. influenzae</u> strains, a panel of <u>Haemophilus</u> strains was screened by Western blot with the rHMW1 antiserum. The antiserum recognized both a 125- and a 120-kDa protein band in the homologous strain 12, the putative mature protein products of the HMW1 and HMW2 genes, respectively.

10

15

20

25

30

35

When used to screen heterologous non-typeable <u>H. influenzae</u> strains, rHMW1 antiserum recognized high-molecular-weight proteins in 75% of 125 epidemiologically unrelated strains. In general, the antiserum reacted with one or two protein bands in the 100- to 150-kDa range in each of the heterologous strains in a pattern similar but not identical to that seen in the homologous strain.

Monoclonal antibody X3C is a murine IgG antibody directed against the filamentous hemagglutinin protein of B. pertussis. This antibody can inhibit the binding of B. pertussis cells to Chinese hamster ovary cells and HeLa cells in culture and will inhibit hemagglutination of erythrocytes by purified filamentous hemagglutinin. A Western blot assay was performed in which this monoclonal antibody was screened against the same panel of non-typeable H. influenzae strains discussed above. Monoclonal antibody X3C recognized both the highmolecular-weight proteins in non-typeable H. influenzae strain 12 which were recognized by the recombinantprotein antiserum. In addition, the monoclonal antibody recognized protein bands in a subset of heterologous nontypeable H. influenzae strains which were identical to those recognized by the recombinant-protein antiserum. On occasion, the filamentous hemagglutinin monoclonal antibody appeared to recognize only one of the two bands which had been recognized by the recombinant-protein Overall, monoclonal antibody X3C recognized antiserum. high-molecular-weight protein bands identical to those recognized by the rHMWl antiserum in approximately 35% of our collection of non-typeable H. influenzae strains. Example 3:

Mutants deficient in expression of HMW1, MW2 or both proteins were constructed to examine the role of these proteins in bacterial adherence. The following strategy was employed. pHMW1-14 (see Example 1, Figure 5A) was

10

15

20

25

30

35

digested with BamHI and then ligated to a kanamycin cassette isolated on a 1.3-kb BamHl fragment from pUC4K. The resultant plasmid (pHMW1-17) was linearized by digestion with XbaI and transformed into non-typeable H. influenzae strain 12, followed by selection for kanamycin resistant colonies. Southern analysis of a series of these colonies demonstrated two populations of transformants, one with an insertion in the HMW1 structural gene and the other with an insertion in the HMW2 structural gene. One mutant from each of these classes was selected for further studies.

Mutants deficient in expression of both proteins were recovered using the following protocol. deletion of the 2.1-kb fragment of DNA between two EcoRI sites spanning the 3'-portion of the HMWl structural gene in pHMW-15, the kanamycin cassette from pUC4K was inserted as a 1.3-kb EcoRl fragment. The resulting plasmid (pHMW1-16) was linearized by digestion with XbaI and transformed into strain 12, followed again by selection for kanamycin resistant colonies. analysis of a representative sampling of these colonies demonstrated that in seven of eight cases, insertion into both the HMW1 and HMW2 loci had occurred. One such mutant was selected for further studies.

To confirm the intended phenotypes, the mutant strains were examined by Western blot analysis with a polyclonal antiserum against recombinant HMW1 protein. The parental strain expressed both the 125-kD HMW1 and the 120-kD HMW2 protein. In contrast, the HMW2 mutant failed to express the 120-kD protein, and the HMW1 mutant failed to express the 125-kD protein. The double mutant lacked expression of either protein. On the basis of whole cell lysates, outer membrane profiles, and colony morphology, the wild type strain and the mutants were otherwise identical with one another. Transmission

10

15

20

25

30

35

electron microscopy demonstrated that none of the four strains expressed pili.

The capacity of wild type strain 12 to adhere to Chang epithelial cells was examined. In such assays, bacteria were inoculated into broth and allowed to grow to a density of ~2 x 10^9 cfu/ml. Approximately 2 x 10^7 cfu were inoculated onto epithelial cell monolayers, and plates were gently centrifuged at 165 x g for 5 minutes to facilitate contact between bacteria and the epithelial After incubation for 30 minutes at 37°C in 5% CO2, monolayers were rinsed 5 times with PBS to remove nonadherent organisms and were treated with trypsin-EDTA (0.05% trypsin, 0.5% EDTA) in PBS to release them from the plastic support. Well contents were agitated, and dilutions were plated on solid medium to yield the number of adherent bacteria per monolayer. Percent adherence was calculated by dividing the number of adherent cfu per monolayer by the number of inoculated cfu.

As depicted in Table 1 below (the Tables appear at the end of the descriptive text), this strain adhered quite efficiently, with nearly 90% of the inoculum binding to the monolayer. Adherence by the mutant expressing HMW1 but not HMW2 (HMW2') was also quite efficient and comparable to that by the wild type strain. In contrast, attachment by the strain expressing HMW2 but deficient in expression of HMW1 (HMW1') was decreased about 15-fold relative to the wild type. Adherence by the double mutant (HMW1'/HMW2') was decreased even further, approximately 50-fold compared with the wild type and approximately 3-fold compared with the HMW1 mutant. Considered together, these results suggest that both the HMW1 protein and the, HMW2 protein influence attachment to Chang epithelial cells. Interestingly, optimal adherence to this cell line appears to require HMW1 but not HMW2.

10

15

20

25

20

Example 4:

Using the plasmids pHMW1-16 and pHMW1-17 Example 3) and following a scheme similar to that employed with strain 12 as described in Example 3, three non-typeable Haemophilus strain 5 mutants were isolated, including one with the kanamycin gene inserted into the hmwl-like (designated hmw3) locus, a second with an insertion in the https://mww.energia.com/ insertion in the https://mww.energia.com/ locus, and a third with insertions in both loci. As predicted, Western immunoblot analysis demonstrated that the mutant with insertion of the kanamycin cassette into the hmwllike locus had lost expression of the HMW3 protein, while the mutant with insertion into the hmw2like locus failed to express the HMW4 123-kD protein. The mutant with a double insertion was unable to express either of the high molecular weight proteins.

As shown in Table 1 below, wild type strain 5 demonstrated high level adherence, with almost 80% of the inoculum adhering per monolayer. Adherence by the mutant deficient in expression of the HMW2-like protein was also quite high. In contrast, adherence by the mutant unable to express the, HMW1-like protein was reduced about 5fold relative to the wild type, and attachment by the double mutant was diminished even further (approximately 25-fold). Examination of Giemsa-stained samples confirmed these observations (not shown). Thus, the results with strain 5 corroborate the findings with strain 12 and the HMW1 and HMW2 proteins. Example 5:

To confirm an adherence function for the HMW1 and HMW2 proteins and to examine the effect of HMW1 and HMW2 independently of other <u>H. influenzae</u> surface structures, the <u>hmw1</u> and the <u>hmw2</u> gene clusters were introduced into <u>E. coli</u> DH5α, using plasmids pHMW1-14 and pHMW2-21, respectively. As a control, the cloning vector, pT7-7, was also transformed into <u>E. coli</u> DH5α. Western blot

10

15

20

25

30

35

analysis demonstrated that <u>E. coli</u> DH5 α containing the <u>hmwl</u> genes expressed a 125 kDa protein, while the same strain harboring the <u>hmw2</u> genes expressed a 120-kDa protein. <u>E. coli</u> DH5 α containing pT7-7 failed to react with antiserum against recombinant HMW1. Transmission electron microscopy revealed no pili or other surface appendages on any of the <u>E. coli</u> strains.

Adherence by the E. coli strains was quantitated and compared with adherence by wild type non-typeable H. influenzae strain 12. As shown in Table 2 below, adherence by E. coli DH5a containing vector alone was less than 1% of that for strain 12. In contrast, E. coli adherence levels comparable to those for strain 12. Adherence by E. coli DH5 α containing the hmw2 genes was approximately 6-fold lower than attachment by strain 12 but was increased 20-fold over adherence by E. coli DH5a with pT7-7 alone. These results indicate that the HMW1 and HMW2 proteins are capable of independently mediating attachment to Chang conjunctival cells. These results are consistent with the results with the H. influenzae mutants reported in Examples 3 and 4, providing further evidence that, with Chang epithelial cells, HMW1 is a more efficient adhesin than is HMW2.

Experiments with <u>E. coli</u> HB101 harboring pT7-7, pHMW1-14, or pHMW2-21 confirmed the results obtained with the DH5 α derivatives (see Table 2).

Example 6:

HMW1 and HMW2 were isolated and purified from non-typeable H. influenzae (NTHI) strain 12 in the following manner. Non-typeable Haemophilus bacteria from frozen stock culture were streaked onto a chocolate plate and grown overnight at 37°C in an incubator with 5% CO_2 . 50ml starter culture of brain heart infusion (BHI) broth, supplemented with 10 μ g/ml each of hemin and NAD was inoculated with growth on chocolate plate. The starter

10

15

20

25

30

culture was grown until the optical density (0.D. - 600nm) reached 0.6 to 0.8 and then the bacteria in the starter culture was used to inoculate six 500 ml flasks of supplemented BHI using 8 to 10 ml per flask. The bacteria were grown in 500 ml flasks for an additional 5 to 6 hours at which time the 0.D. was 1.5 or greater. Cultures were centrifuged at 10,000 rpm for 10 minutes.

Bacterial pellets were resuspended in a total volume of 250 ml of an extraction solution comprising 0.5 M NaCl. 0.01 M Na, EDTA, 0.01 M Tris 50 phenanthroline, pH 7.5. The cells were not sonicated or otherwise disrupted. The resuspended cells were allowed to sit on ice at 0°C for 60 minutes. The resuspended cells were centrifuged at 10,000 rpm for 10 minutes at 4°C to remove the majority of intact cells and cellular debris. The supernatant was collected and centrifuged at 100,000 kg for 60 minutes at 4°C. The supernatant again was collected and dialyzed overnight at 4°C against 0.01 M sodium phosphate, pH 6.0.

The sample was centrifuged at 10,000 rpm for 10 minutes at 4°C to remove insoluble debris precipitated from solution during dialysis. The supernatant was applied to a 10 ml CM Sepharose column which has been pre-equilibrated with 0.01 M sodium phosphate, pH 6. Following application to this column, the column was washed with 0.01 M sodium phosphate. Proteins were elevated from the column with a 0 - 0.5M KCl gradient in 0.01 M Na phosphate, pH 6 and fractions were collected for gel examination. Coomassie gels of column fractions were carried out to identify those fractions containing high molecular weight proteins. The fractions containing molecular weight proteins were pooled and concentrated to a 1 to 3 ml volume in preparation for application of sample to gel filtration column.

A Sepharose CL-4B gel filtration column was equilibrated with phosphate-buffered saline, pH 7.5. The

10

15

20

25

30

35

concentrated high molecular weight protein sample was applied to the gel filtration column and column fractions were collected. Coomassie gels were performed on the column fractions to identify those containing high molecular weight proteins. The column fractions containing high molecular weight proteins were pooled.

The proteins were tested to determine whether they would protect against experimental otitis media caused by the homologous strain.

Chinchillas received three monthly subcutaneous injections with 40 μ g of an HMW1-HMW2 protein mixture in Freund's adjuvant. One month after the last injection, the animals were challenged by intrabullar inoculation with 300 cfu of NTHI strain 12.

Infection developed in 5 of 5 control animals versus 5 of 10 immunized animals. Among infected animals, geometric mean bacterial counts in middle ear fluid 7 days post-challenge were 7.4×10^6 in control animals verus 1.3×10^5 in immunized animals.

Serum antibody titres following immunization were comparable in uninfected and infected animals. However, infection in immunized animals was uniformly associated with the appearance of bacteria down-regulated in expression of the HMW proteins, suggesting bacterial selection in response to immunologic pressure.

Although this data shows that protection following immunization was not complete, this data suggests the HMW adhesin proteins are potentially important protective antigens which may comprise one component of a multicomponent NTHI vaccine.

These animal challenge tests were repeated in Chinchillas at a lower dose challenge than the 300 cfu employed above. In this instance, complete protection was achieved. In these experiments, groups of five animals were immunized with 20 μ g of the HMW1-HMW2

mixture on days 1, 28, and 42 in the presence of AlPO₄. Blood samples were collected on day 53 to monitor the antibody response. On day 56, the left ear of animals was challenged with about 10 cfu of <u>H. influenzae</u> strain 12. Ear infection was monitored on day 4. Four animals in Group 3 were infected previously by <u>H. influenzae</u> strain 12 and were recovered completely for at least one month before the second challenge. The results are outlined in the following Table A:

10 TABLE A

Protective ability of HMW protein against non-typeable <u>H. influenzae</u> challenge in chinchilla model

15

20

Group	Antigens	Total Animals	Number of Animals Showed Positive Ear Infection			
(#)			Tympano- gram	Otosco- pic Examin- ation	cfu of Bac- teria/ 10 µL	
11	HMW	5	0	0	0	
2	None	5	5	5	850- 3200 (4/5)	
3	Convalescent	4	0	0	0	

25

30

35

Example 7:

A number of synthetic peptides were derived from Antisera then was raised to these peptides. The anti-peptide antisera to peptide HMW1-P5 was shown to recognize HMW1. Peptide HMW1-P5 covers amino acids 1453 1481 of HMW1, has the sequence **VDEVIEAKRILEKVKDLSDEEREALAKLG** (SEO ID NO:9), and represents bases 1498 to 1576 in Figure 10.

This finding demonstrates that the DNA sequence and the derived protein is being interpreted in the correct

25

reading frame and that peptides derived from the sequence can be produced which will be immunogenic.

SUMMARY OF DISCLOSURE

In summary of this disclosure, the present invention provides high molecular weight proteins of non-typeable Haemophilus, genes coding for the same and vaccines incorporating such proteins. Modifications are possible within the scope of this invention.

	ADHERENCE*				
Strain	5 inoculum	relative to wild type†			
Strain 12 derivatives					
wild type	87.7 <u>+</u> 5.9	100.0 ± 6.7			
HMW1-mutant	6.0 <u>+</u> 0.9	6.8 ± 1.0			
HMW2-mutant	89.9 <u>+</u> 10.8	102.5 ± 12.3			
HMW1-/HMW2- mutant	2.0 ± 0.3	2.3 ± 0.3			
Strain 5 derivatives					
wild type	78.7 ± 3.2	100.0 <u>+</u> 4.1			
HMW1-like mutant	15.7 ± 2.6	19.9 <u>+</u> 3.3			
HMW2-like mutant	103.7 ± 14.0	131.7 <u>+</u> 17.8			
double mutant	3.5 ± 0.6	4.4 ± 0.8			

^{*}Numbers represent mean (± standard error of the mean) of measurements in triplicate or quadruplicate from representative experiments.

[†] Adherence values for strain 12 derivatives are relative to strain 12 wild type; values for strain 5 derivatives are relative to strain 5 wild type.

Table 2. Adherence by $E.\ coli$ DH5 α and HB101 harboring hmwl or hmw2 gene clusters.

	Adherence relative to
Strain*	H. influenzae strain 12†
DH5α (pT7-7)	0.7 ± 0.02
DH5α (pHMW1-14)	114.2 ± 15.9
DH5α (pHMW2-21)	14.0 ± 3.7
HB101 (pT7-7)	1.2 ± 0.5
HB101 (pHMW1-14)	93.6 ± 15.8
HB101 (pHMW2-21)	3.6 ± 0.9

^{*} The plasmid pHMW1-14 contains the hmwl gene cluster, while pHMW2-21 contains the hmw2 gene cluster; pT7-7 is the cloning vector used in these constructs.

[†] Numbers represent the mean (± standard error of the mean) of measurements made in triplicate from representative experiments.

SEQUENCE LISTING

(1) GENERAL	INFORMATION:
-------------	--------------

- (i) APPLICANT: BARENKAMP, STEPHEN J ST. GEME III, JOSEPH W
- (ii) TITLE OF INVENTION: HIGH MOLECULAR WEIGHT SURFACE PROTEINS OF NON-TYPEABLE HAEMOPHILUS
- (iii) NUMBER OF SEQUENCES: 8
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Shoemaker and Mattare, Ltd
 - (B) STREET: 2001 Jefferson Davis Hwy., 1203 Crystal Plaza Bldg. 1
 - (C) CITY: Arlington
 - (D) STATE: Virginia

 - (E) COUNTRY: U.S.A. (F) ZIP: 22202-0286
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/038,682
 - (B) FILING DATE: 16-MAR-1993
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: BERKSTRESSER, JERRY W
 - (B) REGISTRATION NUMBER: 22,651
 - (C) REFERENCE/DOCKET NUMBER: 1038-293
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (703) 415-0810
 - (B) TELEFAX: (703) 415-0813
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5116 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACAGC	STTCT	CTTAATACTA	GTACAAACCC	ACAATAAAAT	ATGACAAACA	ACAATTACAA	60
CACCTI	TTTT	GCAGTCTATA	TGCAAATATT	ТТААААААТА	GTATAAATCC	GCCATATAAA	120
						ATCTTTCATC	180
						TTCATCTTTC	240
						GAGCTGAACG	300

AACGCAAATG	ATAAAGTAAT	TTAATTGTTC	AACTAACCTT	AGGAGAAAAT	ATGAACAAGC	360
TATATCGTCT	CAAATTCAGC	AAACGCCTGA	ATGCTTTGGT	TGCTGTGTCT	GAATTGGCAC	420
GGGGTTGTGA	CCATTCCACA	GAAAAAGGCA	GCGAAAAACC	TGCTCGCATG	AAAGTGCGTC	480
ACTTAGCGTT	AAAGCCACTT	TCCGCTATGT	TACTATCTTT	AGGTGTAACA	TCTATTCCAC	540
AATCTGTTTT	AGCAAGCGGC	TTACAAGGAA	TGGATGTAGT	ACACGGCACA	GCCACTATGC	600
AAGTAGATGG	TAATAAAACC	ATTATCCGCA	ACAGTGTTGA	CGATATCATT	AATTGGAAAC	660
AATTTAACAT	CGACCAAAAT	GAAATGGTGC	AGTTTTTACA	AGAAAACAAC	AACTCCGCCG	720
TATTCAACCG	TGTTACATCT	AACCAAATCT	CCCAATTAAA	AGGGATTTTA	GATTCTAACG	780
GACAAGTCTT	TTTAATCAAC	CCAAATGGTA	TCACAATAGG	TAAAGACGCA	ATTATTAACA	840
CTAATGGCTT	TACGGCTTCT	ACGCTAGACA	TTTCTAACGA	AAACATCAAG	GCGCGTAATT	900
TCACCTTCGA	GCAAACCAAA	GATAAAGCGC	TCGCTGAAAT	TGTGAATCAC	GGTTTAATTA	960
CTGTCGGTAA	AGACGGCAGT	GTAAATCTTA	TTGGTGGCAA	AGTGAAAAAC	GAGGGTGTGA	1020
TTAGCGTAAA	TGGTGGCAGC	ATTTCTTTAC	TCGCAGGGCA	AAAAATCACC	ATCAGCGATA	1080
TAATAAACCC	AACCATTACT	TACAGCATTG	CCGCGCCTGA	AAATGAAGCG	GTCAATCTGG	1140
GCGATATTTT	TGCCAAAGGC	GGTAACATTA	ATGTCCGTGC	TGCCACTATT	CGAAACCAAG	1200
GTAAACTTTC	TGCTGATTCT	GTAAGCAAAG	ATAAAAGCGG	CAATATTGTT	CTTTCCGCCA	1260
AAGAGGGTGA	AGCGGAAATT	GGCGGTGTAA	TTTCCGCTCA	AAATCAGCAA	GCTAAAGGCG	1320
GCAAGCTGAT	GATTACAGGC	GATAAAGTCA	CATTAAAAAC	AGGTGCAGTT	ATCGACCTTT	1380
CAGGTAAAGA	AGGGGGAGAA	ACTTACCTTG	GCGGTGACGA	GCGCGGCGAA	GGTAAAAAGG	1440
GCATTCAATT	AGCAAAGAAA	ACCTCTTTAG	AAAAAGGCTC	AACCATCAAT	GTATCAGGCA	1500
AAGAAAAAGG	CGGACGCGCT	ATTGTGTGGG	GCGATATTGC	GTTAATTGAC	GGCAATATTA	1560
ACGCTCAAGG	TAGTGGTGAT	ATCGCTAAAA	CCGGTGGTTT	TGTGGAGACG	TCGGGGCATG	1620
ATTTATTCAT	CAAAGACAAT	GCAATTGTTG	ACGCCAAAGA	GTGGTTGTTA	GACCCGGATA	1680
ATGTATCTAT	TAATGCAGAA	ACAGCAGGAC	GCAGCAATAC	TTCAGAAGAC	GATGAATACA	1740
CGGGATCCGG	GAATAGTGCC	AGCACCCCAA	AACGAAACAA	AGAAAAGACA	ACATTAACAA	1800
ACACAACTCT	TGAGAGTATA	CTAAAAAAAG	GTACCTTTGT	TAACATCACT	GCTAATCAAC	1860
GCATCTATGT	CAATAGCTCC	ATTAATTTAT	CCAATGGCAG	CTTAACTCTT	TGGAGTGAGG	1920
GTCGGAGCGG	TGGCGGCGTT	GAGATTAACA	ACGATATTAC	CACCGGTGAT	GATACCAGAG	1980
GTGCAAACTT	AACAATTTAC	TCAGGCGGCT	GGGTTGATGT	TCATAAAAAT	ATCTCACTCG	2040
GGGCGCAAGG	TAACATAAAC	ATTACAGCTA	AACAAGATAT	CGCCTTTGAG	AAAGGAAGCA	2100
ACCAAGTCAT	TACAGGTCAA	GGGACTATTA	CCTCAGGCAA	TCAAAAAGGT	TTTAGATTTA	2160
ATAATGTCTC	TCTAAACGGC	ACTGGCAGCG	GACTGCAATT	CACCACTAAA	AGAACCAATA	2220
AATACGCTAT	CACAAATAAA	TTTGAAGGGA	CTTTAAATAT	TTCAGGGAAA	GTGAACATCT	2280
CAATGGTTTT	ACCTAAAAAT	GAAAGTGGAT	ATGATAAATT	CAAAGGACGC	ACTTACTGGA	2340

	30			
ATTTAACCTC CTTAAATGTT TCCGAGAGTG	GCGAGTTTA	A CCTCACTAT	T GACTCCAGAG	2400
GAAGCGATAG TGCAGGCACA CTTACCCAGC	CTTATAATT	T AAACGGTAT	A TCATTCAACA	2460
AAGACACTAC CTTTAATGTT GAACGAAATG	CAAGAGTCA	CTTTGACAT	C AAGGCACCAA	2520
TAGGGATAAA TAAGTATTCT AGTTTGAATT	ACGCATCATT	TAATGGAAA	C ATTTCAGTTT	2580
CGGGAGGGG GAGTGTTGAT TTCACACTTC	TCGCCTCATC	CTCTAACGT	C CAAACCCCCG	2640
GTGTAGTTAT AAATTCTAAA TACTTTAATG	TTTCAACAGG	GTCAAGTTT	A AGATTTAAAA	2700
CTTCAGGCTC AACAAAACT GGCTTCTCAA	TAGAGAAAGA	TTTAACTTT	A AATGCCACCG	2760
GAGGCAACAT AACACTTTTG CAAGTTGAAG	GCACCGATGG	AATGATTGGT	r aaaggcattg	2820
TAGCCAAAAA AAACATAACC TTTGAAGGAG	GTAACATCAC	CTTTGGCTC	AGGAAAGCCG	2880
TAACAGAAAT CGAAGGCAAT GTTACTATCA	ATAACAACGC	TAACGTCACT	CTTATCGGTT	2940
CGGATTTTGA CAACCATCAA AAACCTTTAA	СТАТТАААА	AGATGTCATC	ATTAATAGCG	3000
GCAACCTTAC CGCTGGAGGC AATATTGTCA	ATATAGCCGG	AAATCTTACC	GTTGAAAGTA	3060
ACGCTAATTT CAAAGCTATC ACAAATTTCA	CTTTTAATGT	AGGCGGCTTG	TTTGACAACA	3120
AAGGCAATTC AAATATTTCC ATTGCCAAAG	GAGGGGCTCG	CTTTAAAGAC	ATTGATAATT	3180
CCAAGAATTT AAGCATCACC ACCAACTCCA	GCTCCACTTA	CCGCACTATT	ATAAGCGGCA	3240
ATATAACCAA TAAAAACGGT GATTTAAATA	TTACGAACGA	AGGTAGTGAT	ACTGAAATGC	3300
AAATTGGCGG CGATGTCTCG CAAAAAGAAG	GTAATCTCAC	GATTTCTTCT	GACAAAATCA	3360
ATATTACCAA ACAGATAACA ATCAAGGCAG	GTGTTGATGG	GGAGAATTCC	GATTCAGACG	3420
CGACAAACAA TGCCAATCTA ACCATTAAAA	CCAAAGAATT	GAAATTAACG	CAAGACCTAA	3480
ATATTTCAGG TTTCAATAAA GCAGAGATTA	CAGCTAAAGA	TGGTAGTGAT	TTAACTATTG	3540
GTAACACCAA TAGTGCTGAT GGTACTAATG	CCAAAAAAGT	AACCTTTAAC	CAGGTTAAAG	3600
ATTCAAAAAT CTCTGCTGAC GGTCACAAGG	TGACACTACA	CAGCAAAGTG	GAAACATCCG	3660
GTAGTAATAA CAACACTGAA GATAGCAGTG				3720
AAAATGTAAC AGTAAACAAC AATATTACTT (TCACAAAGC	AGTGAGCATC	TCTGCGACAA	3780
GTGGAGAAAT TACCACTAAA ACAGGTACAA C				3840
TAACCGCTCA AACAGGTAGT ATCCTAGGTG G				3900
TTACTGCAAC CGAGGGCGCT CTTGCTGTAA G	CAATATTTC (GGCAACACC	GTTACTGTTA	3960
CTGCAAATAG CGGTGCATTA ACCACTTTGG C				4020
TAACCACTTC AAGTCAATCA GGCGATATCG G				4080
TTAAAGCAAC CGAAAGTTTA ACCACTCAAT C				4140
AGGCTAACGT AACAAGTGCA ACAGGTACAA T				4200
ATGTTACGGC AAACGCTGGC GATTTAACAG T				4260
AAGGAGCTGC AACCTTAACT ACATCATCGG G				4320
TTACTTCAGC CAAGGGTCAG GTAAATCTTT C	AGCTCAGGA I	GGTAGCGTT (GCAGGAAGTA	4380

TTAATGCCGC	CAATGTGACA	CTAAATACTA	CAGGCACTTT	AACTACCGTG	AAGGGTTCAA	4440
ACATTAATGC	AACCAGCGGT	ACCTTGGTTA	TTAACGCAAA	AGACGCTGAG	CTAAATGGCG	4500
CAGCATTGGG	TAACCACACA	GTGGTAAATG	CAACCAACGC	AAATGGCTCC	GGCAGCGTAA	4560
TCGCGACAAC	CTCAAGCAGA	GTGAACATCA	CTGGGGATTT	AATCACAATA	AATGGATTAA	4620
ATATCATTTC	AAAAAACGGT	ATAAACACCG	TACTGTTAAA	AGGCGTTAAA	ATTGATGTGA	4680
AATACATTCA	ACCGGGTATA	GCAAGCGTAG	ATGAAGTAAT	TGAAGCGAAA	CGCATCCTTG	4740
agaaggtaaa	AGATTTATCT	GATGAAGAAA	GAGAAGCGTT	AGCTAAACTT	GGAGTAAGTG	4800
CTGTACGTTT	TATTGAGCCA	AATAATACAA	TTACAGTCGA	TACACAAAAT	GAATTTGCAA	4860
CCAGACCATT	AAGTCGAATA	GTGATTTCTG	AAGGCAGGGC	GTGTTTCTCA	AACAGTGATG	4920
GCGCGACGGT	GTGCGTTAAT	ATCGCTGATA	ACGGGCGGTA	GCGGTCAGTA	ATTGACAAGG	4980
TAGATTTCAT	CCTGCAATGA	AGTCATTTTA	TTTTCGTATT	ATTTACTGTG	TGGGTTAAAG	5040
TTCAGTACGG	GCTTTACCCA	TCTTGTAAAA	AATTACGGAG	AATACAATAA	AGTATTTTTA	5100
ACAGGTTATT	ATTATG					5116

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1536 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Lys Ile Tyr Arg Leu Lys Phe Ser Lys Arg Leu Asn Ala Leu 1 15
Val Ala Val Ser Glu Leu Ala Arg Gly Cys Asp His Ser Thr Glu Lys 25 30

Gly Ser Glu Lys Pro Ala Arg Met Lys Val Arg His Leu Ala Leu Lys 35 40 45

Pro Leu Ser Ala Met Leu Leu Ser Leu Gly Val Thr Ser Ile Pro Gln 50 55 60

Ser Val Leu Ala Ser Gly Leu Gln Gly Met Asp Val Val His Gly Thr 70 75 80

Ala Thr Met Gln Val Asp Gly Asn Lys Thr Ile Ile Arg Asn Ser Val 85 90 95

Asp Ala Ile Ile Asn Trp Lys Gln Phe Asn Ile Asp Gln Asn Glu Met

Val Gln Phe Leu Gln Glu Asn Asn Asn Ser Ala Val Phe Asn Arg Val

Thr Ser Asn Gln Ile Ser Gln Leu Lys Gly Ile Leu Asp Ser Asn Gly
130 135 140

Val Asn Ile Thr Ala Asn Gln Arg Ile Tyr Val Asn Ser Ser Ile Asn Leu Ser Asn Gly Ser Leu Thr Leu Trp Ser Glu Gly Arg Ser Gly Gly 520 Gly Val Glu Ile Asn Asn Asp Ile Thr Thr Gly Asp Asp Thr Arg Gly 535 Ala Asn Leu Thr Ile Tyr Ser Gly Gly Trp Val Asp Val His Lys Asn Ile Ser Leu Gly Ala Gln Gly Asn Ile Asn Ile Thr Ala Lys Gln Asp Ile Ala Phe Glu Lys Gly Ser Asn Gln Val Ile Thr Gly Gln Gly Thr Ile Thr Ser Gly Asn Gln Lys Gly Phe Arg Phe Asn Asn Val Ser Leu Asn Gly Thr Gly Ser Gly Leu Gln Phe Thr Thr Lys Arg Thr Asn Lys Tyr Ala Ile Thr Asn Lys Phe Glu Gly Thr Leu Asn Ile Ser Gly Lys Val Asn Ile Ser Met Val Leu Pro Lys Asn Glu Ser Gly Tyr Asp Lys 650 Phe Lys Gly Arg Thr Tyr Trp Asn Leu Thr Ser Leu Asn Val Ser Glu Ser Gly Glu Phe Asn Leu Thr Ile Asp Ser Arg Gly Ser Asp Ser Ala Gly Thr Leu Thr Gln Pro Tyr Asn Leu Asn Gly Ile Ser Phe Asn Lys 695 Asp Thr Thr Phe Asn Val Glu Arg Asn Ala Arg Val Asn Phe Asp Ile Lys Ala Pro Ile Gly Ile Asn Lys Tyr Ser Ser Leu Asn Tyr Ala Ser Phe Asn Gly Asn Ile Ser Val Ser Gly Gly Gly Ser Val Asp Phe Thr Leu Leu Ala Ser Ser Ser Asn Val Gln Thr Pro Gly Val Val Ile Asn Ser Lys Tyr Phe Asn Val Ser Thr Gly Ser Ser Leu Arg Phe Lys Thr Ser Gly Ser Thr Lys Thr Gly Phe Ser Ile Glu Lys Asp Leu Thr Leu Asn Ala Thr Gly Gly Asn Ile Thr Leu Leu Gln Val Glu Gly Thr Asp Gly Met Ile Gly Lys Gly Ile Val Ala Lys Lys Asn Ile Thr Phe Glu Gly Gly Asn Ile Thr Phe Gly Ser Arg Lys Ala Val Thr Glu Ile Glu 835 840

Gly Ser Ile Leu Gly Gly Ile Glu Ser Ser Ser Gly Ser Val Thr Leu 1170 1175 1180

Thr Thr Ile Asn Ala Thr Thr Gly Asn Val Glu Ile Thr Ala Gln Thr

Thr Ala Thr Glu Gly Ala Leu Ala Val Ser Asn Ile Ser Gly Asn Thr 1185 1190 1195 1200

Val	Thr	Val	Thr	Ala 1209		Ser	Gly	Ala	Leu 121		Thr	Leu	Ala	Gly 1215	
Thr	Ile	Lys	Gly 1220		Glu	Ser	Val	Thr 1225		Ser	Ser	Gln	Ser 1230		Asp
Ile	Gly	Gly 1235	Thr	Ile	Ser	Gly	Gly 1240		Val	Glu	Val	Lys 1249		Thr	Glu
Ser	Leu 1250		Thr	Gln	Ser	Asn 1255		Lys	Ile	Lys	Ala 1260		Thr	Gly	Glu
Ala 1265		Val	Thr	Ser	Ala 1270		Gly	Thr	Ile	Gly 1275		Thr	Ile	Ser	Gly 1280
Asn	Thr	Val	Asn	Val 1285		Ala	Asn	Ala	Gly 1290		Leu	Thr	Val	Gly 1295	
Gly	Ala	Glu	Ile 1300		Ala	Thr	Glu	Gly 1305		Ala	Thr	Leu	Thr 1310		Ser
Ser	Gly	Lys 1315	Leu	Thr	Thr	Glu	Ala 1320		Ser	His	Ile	Thr 1325		Ala	Lys
Gly	Gln 1330		Asn	Leu	Ser	Ala 1335		Asp	Gly	Ser	Val 1340		Gly	Ser	Ile
Asn 1345	Ala	Ala	Asn	Val	Thr 1350		Asn	Thr	Thr	Gly 1355		Leu	Thr	Thr	Val 1360
Lys	Gly	Ser	Asn	Ile 1365		Ala	Thr	Ser	Gly 1370		Leu	Val	Ile	Asn 1375	
Lys	Asp	Ala	Glu 1380		Asn	Gly	Ala	Ala 1385		Gly	Asn	His	Thr 1390		Val
Asn	Ala	Thr 1395	Asn	Ala	Asn	Gly	Ser 1400		Ser	Val	Ile	Ala 1405		Thr	Ser
Ser	Arg 1410		Asn	Ile	Thr	Gly 1415		Leu	Ile	Thr	Ile 1420		Gly	Leu	Asn
lle 1425		Ser	Lys	Asn	Gly 1430		Asn	Thr	Val	Leu 1435		Lys	Gly	Val.	Lys 1440
Ile	Asp	Val	Lys	Tyr 1445		Gln	Pro	Gly	Ile 1450		Ser	Val	Asp	Glu 1455	
Ile	Glu	Ala	Lys 1460		Ile	Leu	Glu	Lys 1465		Lys	Asp	Leu	Ser 1470		Glu
3lu	Arg	Glu 1475	Ala	Leu	Ala	Lys	Leu 1480		Val	Ser	Ala	Val 1485		Phe	Ile
3lu	Pro 1490		Asn	Thr	Ile	Thr 1495		Asp	Thr	Gln	Asn 1500		Phe	Ala	Thr
Arg 1505		Leu	Ser	Arg	Ile 1510		Ile	Ser	Glu	Gly 1515	_	Ala	Cys	Phe	Ser 1520
Asn	Ser	Asp	Gly	Ala 1525		Val	Cys	Val	Asn 1530		Ala	Asp	Asn	Gly 1535	-

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4937 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TAAATATACA AGATAATAAA AATAAATCAA GATTTTTGTG ATGACAAACA ACAATTACAA	60
CACCTTTTTT GCAGTCTATA TGCAAATATT TTAAAAAAAT AGTATAAATC CGCCATATAA	120
AATGGTATAA TCTTTCATCT TTCATCTTTA ATCTTTCATC TTTCATCTTT CATCTTTCAT	180
CTTTCATCTT TCATCTTTCA TCTTTCATCT TTCATCTTTC ATCTTTCATC TTTCATCTTT	240
CACATGAAAT GATGAACCGA GGGAAGGGAG GGAGGGGCAA GAATGAAGAG GGAGCTGAAC	300
GAACGCAAAT GATAAAGTAA TTTAATTGTT CAACTAACCT TAGGAGAAAA TATGAACAAG	360
ATATATCGTC TCAAATTCAG CAAACGCCTG AATGCTTTGG TTGCTGTGTC TGAATTGGCA	420
CGGGGTTGTG ACCATTCCAC AGAAAAAGGC TTCCGCTATG TTACTATCTT TAGGTGTAAC	480
CACTTAGCGT TAAAGCCACT TTCCGCTATG TTACTATCTT TAGGTGTAAC ATCTATTCCA	540
CAATCTGTTT TAGCAAGCGG CTTACAAGGA ATGGATGTAG TACACGGCAC AGCCACTATG	600
CAAGTAGATG GTAATAAAAC CATTATCCGC AACAGTGTTG ACGCTATCAT TAATTGGAAA	660
CAATTTAACA TCGACCAAAA TGAAATGGTG CAGTTTTTAC AAGAAAACAA CAACTCCGCC	720
GTATTCAACC GTGTTACATC TAACCAAATC TCCCAATTAA AAGGGATTTT AGATTCTAAC	780
GGACAAGTCT TTTTAATCAA CCCAAATGGT ATCACAATAG GTAAAGACGC AATTATTAAC	840
ACTAATGGCT TTACGGCTTC TACGCTAGAC ATTTCTAACG AAAACATCAA GGCGCGTAAT	900
TTCACCTTCG AGCAAACCAA AGATAAAGCG CTCGCTGAAA TTGTGAATCA CGGTTTAATT	960
ACTGTCGGTA AAGACGGCAG TGTAAATCTT ATTGGTGGCA AAGTGAAAAA CGAGGGTGTG	1020
ATTAGCGTAA ATGGTGGCAG CATTTCTTTA CTCGCAGGGC AAAAAATCAC CATCAGCGAT	1080
ATAATAAACC CAACCATTAC TTACAGCATT GCCGCGCCTG AAAATGAAGC GGTCAATCTG	1140
GGCGATATTT TTGCCAAAGG CGGTAACATT AATGTCCGTG CTGCCACTAT TCGAAACCAA	1200
GGTAAACTTT CTGCTGATTC TGTAAGCAAA GATAAAAGCG GCAATATTGT TCTTTCCGCC	1260
AAAGAGGGTG AAGCGGAAAT TGGCGGTGTA ATTTCCGCTC AAAATCAGCA AGCTAAAGGC	1320
GGCAAGCTGA TGATTACAGG CGATAAAGTC ACATTAAAAA CAGGTGCAGT TATCGACCTT	1380
TCAGGTAAAG AAGGGGGAGA AACTTACCTT GGCGGTGACG AGCGCGGCGA AGGTAAAAAC	1440
GGCATTCAAT TAGCAAAGAA AACCTCTTTA GAAAAAGGCT CAACCATCAA TGTATCAGGC	1500
AAAGAAAAAG GCGGACGCGC TATTGTGTGG GGCGATATTG CGTTAATTGA CGGCAATATT	1560
AACGCTCAAG GTAGTGGTGA TATCGCTAAA ACCGGTGGTT TTGTGGAGAC ATCGGGGCAT	1620

TATTTATCCA	TTGACAGCAA	TGCAATTGTT	AAAACAAAAG	AGTGGTTGCT	AGACCCTGAT	1680
GATGTAACAA	TTGAAGCCGA	AGACCCCCTT	CGCAATAATA	CCGGTATAAA	TGATGAATTC	1740
CCAACAGGCA	CCGGTGAAGC	AAGCGACCCT	ATAAAAAAA	GCGAACTCAA	AACAACGCTA	1800
ACCAATACAA	CTATTTCAAA	TTATCTGAAA	AACGCCTGGA	CAATGAATAT	AACGGCATCA	1860
AGAAAACTTA	CCGTTAATAG	CTCAATCAAC	ATCGGAAGCA	ACTCCCACTT	AATTCTCCAT	1920
AGTAAAGGTC	AGCGTGGCGG	AGGCGTTCAG	ATTGATGGAG	ATATTACTTC	TAAAGGCGGA	1980
AATTTAACCA	TTTATTCTGG	CGGATGGGTT	GATGTTCATA	AAAATATTAC	GCTTGATCAG	2040
GGTTTTTTAA	ATATTACCGC	CGCTTCCGTA	GCTTTTGAAG	GTGGAAATAA	CAAAGCACGC	2100
GACGCGGCAA	ATGCTAAAAT	TGTCGCCCAG	GGCACTGTAA	CCATTACAGG	AGAGGGAAAA	2160
GATTTCAGGG	CTAACAACGT	ATCTTTAAAC	GGAACGGGTA	AAGGTCTGAA	TATCATTTCA	2220
TCAGTGAATA	ATTTAACCCA	CAATCTTAGT	GGCACAATTA	ACATATCTGG	GAATATAACA	2280
ATTAACCAAA	CTACGAGAAA	GAACACCTCG	TATTGGCAAA	CCAGCCATGA	TTCGCACTGG	2340
AACGTCAGTG	CTCTTAATCT	AGAGACAGGC	GCAAATTTTA	CCTTTATTAA	ATACATTTCA	2400
AGCAATAGCA	AAGGCTTAAC	AACACAGTAT	AGAAGCTCTG	CAGGGGTGAA	TTTTAACGGC	2460
GTAAATGGCA	ACATGTCATT	CAATCTCAAA	GAAGGAGCGA	AAGTTAATTT	CAAATTAAAA	2520
CCAAACGAGA	ACATGAACAC	AAĢCAAACCT	TTACCAATTC	GGTTTTTAGC	CAATATCACA	2580
GCCACTGGTG	GGGGCTCTGT	TTTTTTTGAT	ATATATGCCA	ACCATTCTGG	CAGAGGGGCT	2640
GAGTTAAAAA	TGAGTGAAAT	TAATATCTCT	AACGGCGCTA	ATTTTACCTT	AAATTCCCAT	2700
GTTCGCGGCG	ATGACGCTTT	TAAAATCAAC	AAAGACTTAA	CCATAAATGC	AACCAATTCA	2760
AATTTCAGCC	TCAGACAGAC	GAAAGATGAT	TTTTATGACG	GGTACGCACG	CAATGCCATC	2820
AATTCAACCT	ACAACATATC	CATTCTGGGC	GGTAATGTCA	CCCTTGGTGG	ACAAAACTCA	2880
AGCAGCAGCA	TTACGGGGAA	TATTACTATC	GAGAAAGCAG	CAAATGTTAC	GCTAGAAGCC.	2940
			GATAGAGTTA			3000
GTTAATGGGA	GTTTAAGTTT	AACTGGCGAA	AATGCAGATA	TTAAAGGCAA	TCTCACTATT	3060
TCAGAAAGCG	CCACTTTTAA	AGGAAAGACT	AGAGATACCC	TAAATATCAC	CGGCAATTTT	3120
ACCAATAATG	GCACTGCCGA	ATTAATTAA	ACACAAGGAG	TGGTAAAACT	TGGCAATGTT	3180
ACCAATGATG	GTGATTTAAA	CATTACCACT	CACGCTAAAC	GCAACCAAAG	AAGCATCATC	3240
GGCGGAGATA	TAATCAACAA	AAAAGGAAGC	TTAAATATTA	CAGACAGTAA	TAATGATGCT	3300
GAAATCCAAA	TTGGCGGCAA	TATCTCGCAA	AAAGAAGGCA	ACCTCACGAT	TTCTTCCGAT	3360
			AAAAAGGGTA	•		3420
			ATTAAAACCA			3480
					TAGAGATTTA	3540
			GGTGCCGAAG			3600
AATGTTAAAG	ATTCAAAAAT	CTCTGCTGAC	GGTCACAATG	TGACACTAAA	TAGCAAAGTG	3660

AAAACATCTA GCAGCAATGG CGGACGTGAA AGCAATAGCG ACAACGATAC CG	GCTTAACT 3720
ATTACTGCAA AAAATGTAGA AGTAAACAAA GATATTACTT CTCTCAAAAC AG	TAAATATC 3780
ACCGCGTCGG AAAAGGTTAC CACCACAGCA GGCTCGACCA TTAACGCAAC AA	ATGGCAAA 3840
GCAAGTATTA CAACCAAAAC AGGTGATATC AGCGGTACGA TTTCCGGTAA CA	CGGTAAGT 3900
GTTAGCGCGA CTGGTGATTT AACCACTAAA TCCGGCTCAA AAATTGAAGC GAA	AATCGGGT 3960
GAGGCTAATG TAACAAGTGC AACAGGTACA ATTGGCGGTA CAATTTCCGG TAA	ATACGGTA 4020
AATGTTACGG CAAACGCTGG CGATTTAACA GTTGGGAATG GCGCAGAAAT TAA	
GAAGGAGCTG CAACCTTAAC CGCAACAGGG AATACCTTGA CTACTGAAGC CGC	
ATCACTTCAA CTAAGGGTCA GGTAGACCTC TTGGCTCAGA ATGGTAGCAT CGC	
ATTAATGCTG CTAATGTGAC ATTAAATACT ACAGGCACCT TAACCACCGT GGC	
GATATTAAAG CAACCAGCGG CACCTTGGTT ATTAACGCAA AAGATGCTAA GCT	
GATGCATCAG GTGATAGTAC AGAAGTGAAT GCAGTCAACG CAAGCGGCTC TGG	
ACTGCGGCAA CCTCAAGCAG TGTGAATATC ACTGGGGATT TAAACACAGT AAA	-
AATATCATTT CGAAAGATGG TAGAAACACT GTGCGCTTAA GAGGCAAGGA AAT	
AAATATATCC AGCCAGGTGT AGCAAGTGTA GAAGAAGTAA TTGAAGCGAA ACG	
GAAAAAGTAA AAGATTTATC TGATGAAGAA AGAGAAACAT TAGCTAAACT TGG	
GCTGTACGTT TTGTTGAGCC AAATAATACA ATTACAGTCA ATACACAAAA TGA	
ACCAGACCGT CAAGTCAAGT GATAATTTCT GAAGGTAAGG CGTGTTTCTC AAG	
GGCGCACGAG TATGTACCAA TGTTGCTGAC GATGGACAGC CGTAGTCAGT AAT	
GTAGATTTCA TCCTGCAATG AAGTCATTTT ATTTTCGTAT TATTTACTGT GTGC	
GTTCAGTACG GGCTTTACCC ATCTTGTAAA AAATTACGGA GAATACAATA AAG	TATTTTT 4920
AACAGGTTAT TATTATG	4937

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1477 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Asn Lys Ile Tyr Arg Leu Lys Phe Ser Lys Arg Leu Asn Ala Leu 1 5 10 15

Val Ala Val Ser Glu Leu Ala Arg Gly Cys Asp His Ser Thr Glu Lys 20 25 30

Gly Ser Glu Lys Pro Ala Arg Met Lys Val Arg His Leu Ala Leu Lys 35 40 45

Pro Leu Ser Ala Met Leu Leu Ser Leu Gly Val Thr Ser Ile Pro Gln Ser Val Leu Ala Ser Gly Leu Gln Gly Met Asp Val Val His Gly Thr Ala Thr Met Gln Val Asp Gly Asn Lys Thr Ile Ile Arg Asn Ser Val Asp Ala Ile Ile Asn Trp Lys Gln Phe Asn Ile Asp Gln Asn Glu Met 105 Val Gln Phe Leu Gln Glu Asn Asn Asn Ser Ala Val Phe Asn Arg Val Thr Ser Asn Gln Ile Ser Gln Leu Lys Gly Ile Leu Asp Ser Asn Gly Gln Val Phe Leu Ile Asn Pro Asn Gly Ile Thr Ile Gly Lys Asp Ala 150 Ile Ile Asn Thr Asn Gly Phe Thr Ala Ser Thr Leu Asp Ile Ser Asn Glu Asn Ile Lys Ala Arg Asn Phe Thr Phe Glu Gln Thr Lys Asp Lys Ala Leu Ala Glu Ile Val Asn His Gly Leu Ile Thr Val Gly Lys Asp Gly Ser Val Asn Leu Ile Gly Gly Lys Val Lys Asn Glu Gly Val Ile Ser Val Asn Gly Gly Ser Ile Ser Leu Leu Ala Gly Gln Lys Ile Thr 230 Ile Ser Asp Ile Ile Asn Pro Thr Ile Thr Tyr Ser Ile Ala Ala Pro Glu Asn Glu Ala Val Asn Leu Gly Asp Ile Phe Ala Lys Gly Gly Asn 265 Ile Asn Val Arg Ala Ala Thr Ile Arg Asn Gln Gly Lys Leu Ser Ala Asp Ser Val Ser Lys Asp Lys Ser Gly Asn Ile Val Leu Ser Ala Lys Glu Gly Glu Ala Glu Ile Gly Gly Val Ile Ser Ala Gln Asn Gln Gln 315 Ala Lys Gly Gly Lys Leu Met Ile Thr Gly Asp Lys Val Thr Leu Lys Thr Gly Ala Val Ile Asp Leu Ser Gly Lys Glu Gly Gly Glu Thr Tyr Leu Gly Gly Asp Glu Arg Gly Glu Gly Lys Asn Gly Ile Gln Leu Ala Lys Lys Thr Ser Leu Glu Lys Gly Ser Thr Ile Asn Val Ser Gly Lys Glu Lys Gly Gly Phe Ala Ile Val Trp Gly Asp Ile Ala Leu Ile Asp

Gly Asn Ile Asn Ala Gln Gly Ser Gly Asp Ile Ala Lys Thr Gly Gly Phe Val Glu Thr Ser Gly His Asp Leu Phe Ile Lys Asp Asn Ala Ile 425 Val Asp Ala Lys Glu Trp Leu Leu Asp Phe Asp Asn Val Ser Ile Asn Ala Glu Asp Pro Leu Phe Asn Asn Thr Gly Ile Asn Asp Glu Phe Pro Thr Gly Thr Gly Glu Ala Ser Asp Pro Lys Lys Asn Ser Glu Leu Lys 470 Thr Thr Leu Thr Asn Thr Thr Ile Ser Asn Tyr Leu Lys Asn Ala Trp 485 Thr Met Asn Ile Thr Ala Ser Arg Lys Leu Thr Val Asn Ser Ser Ile 505 Asn Ile Gly Ser Asn Ser His Leu Ile Leu His Ser Lys Gly Gln Arg 520 Gly Gly Gly Val Gln Ile Asp Gly Asp Ile Thr Ser Lys Gly Gly Asn 530 Leu Thr Ile Tyr Ser Gly Gly Trp Val Asp Val His Lys Asn Ile Thr 550 555 Leu Asp Gln Gly Phe Leu Asn Ile Thr Ala Ala Ser Val Ala Phe Glu Gly Gly Asn Asn Lys Ala Arg Asp Ala Ala Asn Ala Lys Ile Val Ala 580 Gln Gly Thr Val Thr Ile Thr Gly Glu Gly Lys Asp Phe Arg Ala Asn 600 Asn Val Ser Leu Asn Gly Thr Gly Lys Gly Leu Asn Ile Ile Ser Ser Val Asn Asn Leu Thr His Asn Leu Ser Gly Thr Ile Asn Ile Ser Gly 630 Asn Ile Thr Ile Asn Gln Thr Thr Arg Lys Asn Thr Ser Tyr Trp Gln Thr Ser His Asp Ser His Trp Asn Val Ser Ala Leu Asn Leu Glu Thr 665 Gly Ala Asn Phe Thr Phe Ile Lys Tyr Ile Ser Ser Asn Ser Lys Gly 680 Leu Thr Thr Gln Tyr Arg Ser Ser Ala Gly Val Asn Phe Asn Gly Val Asn Gly Asn Met Ser Phe Asn Leu Lys Glu Gly Ala Lys Val Asn Phe Lys Leu Lys Pro Asn Glu Asn Met Asn Thr Ser Lys Pro Leu Pro Ile 730 Arg Phe Leu Ala Asn Ile Thr Ala Thr Gly Gly Gly Ser Val Phe Phe 745

Asp Ile Tyr Ala Asn His Ser Gly Arg Gly Ala Glu Leu Lys Met Ser 760 Glu Ile Asn Ile Ser Asn Gly Ala Asn Phe Thr Leu Asn Ser His Val Arg Gly Asp Asp Ala Phe Lys Ile Asn Lys Asp Leu Thr Ile Asn Ala 790 Thr Asn Ser Asn Phe Ser Leu Arg Gln Thr Lys Asp Asp Phe Tyr Asp Gly Tyr Ala Arg Asn Ala Ile Asn Ser Thr Tyr Asn Ile Ser Ile Leu 825 Gly Gly Asn Val Thr Leu Gly Gly Gln Asn Ser Ser Ser Ile Thr Gly Asn Ile Thr Ile Glu Lys Ala Ala Asn Val Thr Leu Glu Ala Asn Asn Ala Pro Asn Gln Gln Asn Ile Arg Asp Arg Val Ile Lys Leu Gly Ser Leu Leu Val Asn Gly Ser Leu Ser Leu Thr Gly Glu Asn Ala Asp 890 Ile Lys Gly Asn Leu Thr Ile Ser Glu Ser Ala Thr Phe Lys Gly Lys 905 Thr Arg Asp Thr Leu Asn Ile Thr Gly Asn Phe Thr Asn Asn Gly Thr Ala Glu Ile Asn Ile Thr Gln Gly Val Val Lys Leu Gly Asn Val Thr 935 Asn Asp Gly Asp Leu Asn Ile Thr Thr His Ala Lys Arg Asn Gln Arg Ser Ile Ile Gly Gly Asp Ile Ile Asn Lys Lys Gly Ser Leu Asn Ile 970 Thr Asp Ser Asn Asn Asp Ala Glu Ile Gln Ile Gly Gly Asn Ile Ser Gln Lys Glu Gly Asn Leu Thr Ile Ser Ser Asp Lys Ile Asn Ile Thr 1000 Lys Gln Ile Thr Ile Lys Lys Gly Ile Asp Gly Glu Asp Ser Ser Ser 1015 Asp Ala Thr Ser Asn Ala Asn Leu Thr Ile Lys Thr Lys Glu Leu Lys 1030 1035 Leu Thr Glu Asp Leu Ser Ile Ser Gly Phe Asn Lys Ala Glu Ile Thr 1045 1050 Ala Lys Asp Gly Arg Asp Leu Thr Ile Gly Asn Ser Asn Asp Gly Asn 1065 Ser Gly Ala Glu Ala Lys Thr Val Thr Phe Asn Asn Val Lys Asp Ser 1080 Lys Ile Ser Ala Asp Gly His Asn Val Thr Leu Asn Ser Lys Val Lys 1090 1095

Thr Ser Ser Ser Asn Gly Gly Arg Glu Ser Asn Ser Asp Asn Asp Thr 1110 1115 1120 Gly Leu Thr Ile Thr Ala Lys Asn Val Glu Val Asn Lys Asp Ile Thr 1125 1130 Ser Leu Lys Thr Val Asn Ile Thr Ala Ser Glu Lys Val Thr Thr 1145 Ala Gly Ser Thr Ile Asn Ala Thr Asn Gly Lys Ala Ser Ile Thr Thr 1160 Lys Thr Gly Asp Ile Ser Gly Thr Ile Ser Gly Asn Thr Val Ser Val 1170 1175 1180 Ser Ala Thr Val Asp Leu Thr Thr Lys Ser Gly Ser Lys Ile Glu Ala 1190 1195 Lys Ser Gly Glu Ala Asn Val Thr Ser Ala Thr Gly Thr Ile Gly Gly 1205 1210 Thr Ile Ser Gly Asn Thr Val Asn Val Thr Ala Asn Ala Gly Asp Leu 1225 Thr Val Gly Asn Gly Ala Glu Ile Asn Ala Thr Glu Gly Ala Ala Thr 1240 Leu Thr Ala Thr Gly Asn Thr Leu Thr Thr Glu Ala Gly Ser Ser Ile 1255 Thr Ser Thr Lys Gly Gln Val Asp Leu Leu Ala Gln Asn Gly Ser Ile 1270 1275 Ala Gly Ser Ile Asn Ala Ala Asn Val Thr Leu Asn Thr Thr Gly Thr 1290 Leu Thr Thr Val Ala Gly Ser Asp Ile Lys Ala Thr Ser Gly Thr Leu 1300 1305 Val Ile Asn Ala Lys Asp Ala Lys Leu Asn Gly Asp Ala Ser Gly Asp 1315 1320 Ser Thr Glu Val Asn Ala Val Asn Ala Ser Gly Ser Gly Ser Val Thr Ala Ala Thr Ser Ser Ser Val Asn Ile Thr Gly Asp Leu Asn Thr Val 1350 1355 Asn Gly Leu Asn Ile Ile Ser Lys Asp Gly Arg Asn Thr Val Arg Leu 1365 1370 Arg Gly Lys Glu Ile Glu Val Lys Tyr Ile Gln Pro Gly Val Ala Ser Val Glu Glu Val Ile Glu Ala Lys Arg Val Leu Glu Lys Val Lys Asp 1400 Leu Ser Asp Glu Glu Arg Glu Thr Leu Ala Lys Leu Gly Val Ser Ala Val Arg Phe Val Glu Pro Asn Asn Thr Ile Thr Val Asn Thr Gln Asn 1430 1435 Glu Phe Thr Thr Arg Pro Ser Ser Gln Val Ile Ile Ser Glu Gly Lys 1445 1450

Ala Cys Phe Ser Ser Gly Asn Gly Ala Arg Val Cys Thr Asn Val Ala 1460 1465 1470

Asp Asp Gly Gln Pro 1475

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9171 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ACAGCGTTCT	CTTAATACTA	GTACAAACCC	ACAATAAAAT	ATGACAAACA	ACAATTACAA	60
CACCTTTTTT	GCAGTCTATA	TGCAAATATT	ATAAAAATT	GTATAAATCC	GCCATATAAA	120
ATGGTATAAT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	180
TTTCATCTTT	CATCTTTCAT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	240
ACATGAAATG	ATGAACCGAG	GGAAGGGAGG	GAGGGGCAAG	AATGAAGAGG	GAGCTGAACG	300
AACGCAAATG	ATAAAGTAAT	TTAATTGTTC	AACTAACCTT	AGGAGAAAAT	ATGAACAAGA	360
TATATCGTCT	CAAATTCAGC	AAACGCCTGA	ATGCTTTGGT	TGCTGTGTCT	GAATTGGCAC	420
GGGGTTGTGA	CCATTCCACA	GAAAAAGGCA	GCGAAAAACC	TGCTCGCATG	AAAGTGCGTC	480
ACTTAGCGTT	AAAGCCACTT	TCCGCTATGT	TACTATCTTT	AGGTGTAACA	TCTATTCCAC	540
AATCTGTTTT	AGCAAGCGGC	TTACAAGGAA	TGGATGTAGT	ACACGGCACA	GCCACTATGC	600
AAGTAGATGG	TAATAAAACC	ATTATCCGCA	ACAGTGTTGA	CGCTATCATT	AATTGGAAAC	660
AATTTAACAT	CGACCAAAAT	GAAATGGTGC	AGTTTTTACA	AGAAAACAAC	AACTCCGCCG	720
TATTCAACCG	TGTTACATCT	AACCAAATCT	CCCAATTAAA	AGGGATTTTA	GATTCTAACG	780
GACAAGTCTT	TTTAATCAAC	CCAAATGGTA	TCACAATAGG	TAAAGACGCA	ATTATTAACA	840
CTAATGGCTT	TACGGCTTCT	ACGCTAGACA	TTTCTAACGA	AAACATCAAG	GCGCGTAATT	900
TCACCTTCGA	GCAAACCAAA	GATAAAGCGC	TCGCTGAAAT	TGTGAATCAC	GGTTTAATTA	960
CTGTCGGTAA	AGACGGCAGT	GTAAATCTTA	TTGGTGGCAA	AGTGAAAAAC	GAGGGTGTGA	1020
TTAGCGTAAA	TGGTGGCAGC	ATTTCTTTAC	TCGCAGGGCA	AAAAATCACC	ATCAGCGATA	1080
TAATAAACCC	AACCATTACT	TACAGCATTG	CCGCGCCTGA	AAATGAAGCG	GTCAATCTGG	1140
GCGATATTTT	TGCCAAAGGC	GGTAACATTA	ATGTCCGTGC	TGCCACTATT	CGAAACCAAG	1200
CTTTCCGCCA	AAGAGGGTGA	AGCGGAAATT	GGCGGTGTAA	TTTCCGCTCA	AAATCAGCAA	1260
GCTAAAGGCG	GCAAGCTGAT	GATTACAGGC	GATAAAGTCA	CATTAAAAAC	AGGTGCAGTT	1320
ATCGACCTTT	CAGGTAAAGA	AGGGGGAGAA	ACTTACCTTG	GCGGTGACGA	GCGCGGCGAA	1380
GGTAAAAACG	GCATTCAATT	AGCAAAGAAA	ACCTCTTTAG	AAAAAGGCTC	AACCATCAAT	1440

GTATCAGGCA AAGAAAAAGG CGGACGCGCT ATTGTGTGGG GCGATATTGC GTTAATTGAC	1500
GGCAATATTA ACGCTCAAGG TAGTGGTGAT ATCGCTAAAA CCGGTGGTTT TGTGGAGACG	1560
TCGGGGCATG ATTTATTCAT CAAAGACAAT GCAATTGTTG ACGCCAAAGA GTGGTTGTTA	1620
GACCCGGATA ATGTATCTAT TAATCCAGAA ACAGCAGGAC GCAGCAATAC TTCAGAAGAC	1680
GATGAATACA CGGGATCCGG GAATAGTGCC AGCACCCCAA AACGAAACAA AGAAAAGACA	1740
ACATTAACAA ACACAACTCT TGAGAGTATA CTAAAAAAAG GTACCTTTGT TAACATCACT	1800
GCTAATCAAC GCATCTATGT CAATAGCTCC ATTAATTTAT CCAATGGCAG CTTAACTCTT	1860
TGGAGTGAGG GTCGGAGCGG TGGCGGCGTT GAGATTAACA ACGATATTAC CACCGGTGAT	1920
GATACCAGAG GTGCAAACTT AACAATTTAC TCAGGCGGCT GGGTTGATGT TCATAAAAAT	1980
ATCTCACTCG GGGCGCAAGG TAACATAAAC ATTACAGCTA AACAAGATAT CGCCTTTGAG	2040
AAAGGAAGCA ACCAAGTCAT TACAGGTCAA GGGACTATTA CCTCAGGCAA TCAAAAAGGT	2100
TTTAGATTTA ATAATGTCTC TCTAAACGGC ACTGGCAGCG GACTGCAATT CACCACTAAA	2160
AGAACCAATA AATACGCTAT CACAAATAAA TTTGAAGGGA CTTTAAATAT TTCAGGGAAA	2220
GTGAACATCT CAATGGTTTT ACCTAAAAAT GAAAGTGGAT ATGATAAATT CAAAGGACGC	2280
ACTTACTGGA ATTTAACCTC GAAAGTGGAT ATGATAAATT CAAAGGACGC CCTCACTATT	2340
GACTCCAGAG GAAGCGATAG TGCAGGCACA CTTACCCAGC CTTATAATTT AAACGGTATA	2400
TCATTCAACA AAGACACTAC CTTTAATGTT GAACGAAATG CAAGAGTCAA CTTTGACATC	2460
AAGGCACCAA TAGGGATAAA TAAGTATTCT AGTTTGAATT ACGCATCATT TAATGGAAAC	2520
ATTTCAGTTT CGGGAGGGG GAGTGTTGAT TTCACACTTC TCGCCTCATC CTCTAACGTC	2580
CAAACCCCCG GTGTAGTTAT AAATTCTAAA TACTTTAATG TTTCAACAGG GTCAAGTTTA	2640
AGATTTAAAA CTTCAGGCTC AACAAAAACT GGCTTCTCAA TAGAGAAAGA TTTAACTTTA	2700
AATGCCACCG GAGGCAACAT AACACTTTTG CAAGTTGAAG GCACCGATGG AATGATTGGT	2760
AAAGGCATTG TAGCCAAAAA AAACATAACC TTTGAAGGAG GTAAGATGAG GTTTGGCTCC	2820
AGGAAAGCCG TAACAGAAAT CGAAGGCAAT GTTACTATCA ATAACAACGC TAACGTCACT	2880
CTTATCGGTT CGGATTTTGA CAACCATCAA AAACCTTTAA CTATTAAAAA AGATGTCATC	2940
ATTAATAGCG GCAACCTTAC CGCTGGAGGC AATATTGTCA ATATAGCCGG AAATCTTACC	3000
GTTGAAAGTA ACGCTAATTT CAAAGCTATC ACAAATTTCA CTTTTAATGT AGGCGGCTTG	3060
TTTGACAACA AAGGCAATTC AAATATTTCC ATTGCCAAAG GAGGGGCTCG CTTTAAAGAC	3120
ATTGATAATT CCAAGAATTT AAGCATCACC ACCAACTCCA GCTCCACTTA CCGCACTATT	3180
ATAAGCGGCA ATATAACCAA TAAAAACGGT GATTTAAATA TTACGAACGA AGGTAGTGAT	3240
ACTGAAATGC AAATTGGCGG CGATGTCTCG CAAAAAGAAG GTAATCTCAC GATTTCTTCT	3300
GACAAAATCA ATATTACCAA ACAGATAACA ATCAAGGCAG GTGTTGATGG GGAGAATTCC	3360
GATTCAGACG CGACAAACAA TGCCAATCTA ACCATTAAAA CCAAAGAATT GAAATTAACG	3420
CAAGACCTAA ATATTTCAGG TTTCAATAAA GCAGAGATTA CAGCTAAAGA TGGTAGTGAT	3480

TTAACTATTG	GTAACACCAA	TAGTGCTGAT	GGTACTAATG	CCAAAAAAGT	AACCTTTAAC	3540
CAGGTTAAAG	ATTCAAAAAT	CTCTGCTGAC	GGTCACAAGG	TGACACTACA	CAGCAAAGTG	3600
GANACATCCG	GTAGTAATAA	CAACACTGAA	GATAGCAGTG	ACAATAATGC	CGGCTTAACT	3660
ATCGATGCAA	AAAATGTAAC	AGTAAACAAC	AATATTACTT	CTCACAAAGC	AGTGAGCATC	3720
TCTGCGACAA	GTGGAGAAAT	TACCACTAAA	ACAGGTACAA	CCATTAACGC	AACCACTGGT	3780
AACGTGGAGA	TAACCGCTCA	AACAGGTAGT	ATCCTAGGTG	GAATTGAGTC	CAGCTCTGGC	3840
TCTGTAACAC	TTACTGCAAC	CGAGGGCGCT	CTTGCTGTAA	GCAATATTTC	GGGCAACACC	3900
GTTACTGTTA	CTGCAAATAG	CGGTGCATTA	ACCACTTTGG	CAGGCTCTAC	AATTAAAGGA	3960
ACCGAGAGTG	TAACCACTTC	AAGTCAATCA	GGCGATATCG	GCGGTACGAT	TTCTGGTGGC	4020
ACAGTAGAGG	TTAAAGCAAC	CGAAAGTTTA	ACCACTCAAT	CCAATTCAAA	AATTAAAGCA	4080
ACAACAGGCG	AGGCTAACGT	AACAAGTGCA	ACAGGTACAA	TTGGTGGTAC	GATTTCCGGT	4140
AATACGGTAA	ATGTTACGGC	AAACGCTGGC	GATTTAACAG	TTGGGAATGG	CGCAGAAATT	4200
AATGCGACAG	AAGGAGCTGC	AACCTTAACT	ACATCATCGG	GCAAATTAAC	TACCGAAGCT	4260
AGTTCACACA	TTACTTCAGC	CAAGGGTCAG	GTAAATCTTT	CAGCTCAGGA	TGGTAGCGTT	4320
GCAGGAAGTA	TTAATGCCGC	CAATGTGACA	CTAAATACTA	CAGGCACTTT	AACTACCGTG	4380
AAGGGTTCAA	ACATTAATGC	AACCAGCGGT	ACCTTGGTTA	TTAACGCAAA	AGACGCTGAG	4440
CTAAATGGCG	CAGCATTGGG	TAACCACACA	GTGGTAAATG	CAACCAACGC	AAATGGCTCC	4500
GGCAGCGTAA	TCGCGACAAC	CTCAAGCAGA	GTGAACATCA	CTGGGGATTT	AATCACAATA	4560
AATGGATTAA	ATATCATTTC	AAAAAACGGT	ATAAACACCG	TACTGTTAAA	AGGCGTTAAA	4620
ATTGATGTGA	AATACATTCA	ACCGGGTATA	GCAAGCGTAG	ATGAAGTAAT	TGAAGCGAAA	4680
CGCATCCTTG	AGAAGGTAAA	AGATTTATCT	GATGAAGAAA	GAGAAGCGTT	AGCTAAACTT	4740
GGCGTAAGTG	CTGTACGTTT	TATTGAGCCA	AATAATACAA	TTACAGTCGA	TACACAAAAT	4800
GAATTTGCAA	CCAGACCATT	AAGTCGAATA	GTGATTTCTG	AAGGCAGGGC	GTGTTTCTCA	4860
AACAGTGATG	GCGCGACGGT	GTGCGTTAAT	ATCGCTGATA	ACGGGCGGTA	GCGGTCAGTA	4920
ATTGACAAGG	TAGATTTCAT	CCTGCAATGA	AGTCATTTTA	TTTTCGTATT	ATTTACTGTG	4980
TGGGTTAAAG	TTCAGTACGG	GCTTTACCCA	TCTTGTAAAA	AATTACGGAG	AATACAATAA	5040
AGTATTTTTA	ACAGGTTATT	ATTATGAAAA	ATATAAAAAG	CAGATTAAAA	CTCAGTGCAA	5100
TATCAGTATT	GCTTGGCCTG	GCTTCTTCAT	CATTGTATGC	AGAAGAAGCG	TTTTTAGTAA	5160
AAGGCTTTCA	GTTATCTGGT	GCACTTGAAA	CTTTAAGTGA	AGACGCCCAA	CTGTCTGTAG	5220
CAAAATCTTT	ATCTAAATAC	CAAGGCTCGC	AAACTTTAAC	AAACCTAAAA	ACAGCACAGC	5280
TTGAATTACA	GGCTGTGCTA	GATAAGATTG	AGCCAAATAA	GTTTGATGTG	ATATTGCCAC	5340
AACAAACCAT	TACGGATGGC	AATATTATGT	TTGAGCTAGT	CTCGAAATCA	GCCGCAGAAA	5400
GCCAAGTTTT	TTATAAGGCG	AGCCAGGGTT	ATAGTGAAGA	AAATATCGCT	CGTAGCCTGC	5460
CATCTTTGAA	ACAAGGAAAA	GTGTATGAAG	ATGGTCGTCA	GTGGTTCGAT	TTGCGTGAAT	5520

TCAATATGGC AAAAGAAAAT CCACTTAAAG TCACTCGCGT GCATTACGAG TTAAACCCT	A 5580
AAAACAAAAC CTCTGATTTG GTAGTTGCAG GTTTTTCGCC TTTTGGCAAA ACGCGTAGC	T 5640
TTGTTTCCTA TGATAATTTC GGCGCAAGGG AGTTTAACTA TCAACGTGTA AGTCTAGGT	r 5700
TTGTAAATGC CAATTTGACC GGACATGATG ATGTATTAAA TCTAAACGCA TTGACCAATG	3 5760
TAAAAGCACC ATCAAAATCT TATGCGGTAG GCATAGGATA TACTTATCCG TTTTATGAT	A 5820
AACACCAATC CTTAAGTCTT TATACCAGCA TGAGTTATGC TGATTCTAAT GATATCGAC	5 5880
GCTTACCAAG TGCGATTAAT CGTAAATTAT CAAAAGGTCA ATCTATCTCT GCGAATCTG	A 5940
AATGGAGTTA TTATCTCCCG ACATTTAACC TTGGAATGGA AGACCAGTTT AAAATTAAT	6000
TAGGCTACAA CTACCGCCAT ATTAATCAAA CATCCGAGTT AAACACCCTG GGTGCAACGA	6060
AGAAAAATT TGCAGTATCA GGCGTAAGTG CAGGCATTGA TGGACATATC CAATTTACCO	6120
CTAAAACAAT CTTTAATATT GATTTAACTC ATCATTATTA CGCGAGTAAA TTACCAGGCT	6180
CTTTTGGAAT GGAGCGCATT GGCGAAACAT TTAATCGCAG CTATCACATT AGCACAGCCA	6240
GTTTAGGGTT GAGTCAAGAG TTTGCTCAAG GTTGGCATTT TAGCAGTCAA TTATCGGGTC	6300
AGTTTACTCT ACAAGATATA AGTAGCATAG ATTTATTCTC TGTAACAGGT ACTTATGGCG	6360
TCAGAGGCTT TAAATACGGC GGTGCAAGTG GTGAGCGCGG TCTTGTATGG CGTAATGAAT	6420
TAAGTATGCC AAAATACACC CGCTTTCAAA TCAGCCCTTA TGCGTTTTAT GATGCAGGTC	6480
AGTTCCGTTA TAATAGCGAA AATGCTAAAA CTTACGGCGA AGATATGCAC ACGGTATCCT	6540
CTGCGGGTTT AGGCATTAAA ACCTCTCCTA CACAAAACTT AAGCTTAGAT GCTTTTGTTG	6600
CTCGTCGCTT TGCAAATGCC AATAGTGACA ATTTGAATGG CAACAAAAAA CGCACAAGCT	6660
CACCTACAAC CTTCTGGGGT AGATTAACAT TCAGTTTCTA ACCCTGAAAT TTAATCAACT	6720
GGTAAGCGTT CCGCCTACCA GTTTATAACT ATATGCTTTA CCCGCCAATT TACAGTCTAT	6780
ACGCAACCCT GTTTTCATCC TTATATATCA AACAAACTAA GCAAACCAAG CAAACCAAGC	6840
AAACCAAGCA AACCAAGCAA ACCAAGCAAA CCAAGCAAAC CAAGCAAACC AAGCAAACCA	6900
AGCAAACCAA GCAAACCAAG CAAACCAAGC AAACCAAGCA ATGCTAAAAA ACAATTTATA	6960
TGATAAACTA AAACATACTC CATACCATGG CAATACAAGG GATTTAATAA TATGACAAAA	7020
GAAAATTTAC AAAGTGTTCC ACAAAATACG ACCGCTTCAC TTGTAGAATC AAACAACGAC	7080
CAAACTTCCC TGCAAATACT TAAACAACCA CCCAAACCCA ACCTATTACG CCTGGAACAA	7140
CATGTCGCCA AAAAAGATTA TGAGCTTGCT TGCCGCGAAT TAATGGCGAT TTTGGAAAAA	7200
ATGGACGCTA ATTTTGGAGG CGTTCACGAT ATTGAATTTG ACGCACCTGC TCAGCTGGCA	7260
TATCTACCCG AAAAACTACT AATTCATTTT GCCACTCGTC TCGCTAATGC AATTACAACA	7320
CTCTTTTCCG ACCCCGAATT GGCAATTTCC GAAGAAGGGG CATTAAAGAT GATTAGCCTG	7380
CAACGCTGGT TGACGCTGAT TTTTGCCTCT TCCCCCTACG TTAACGCAGA CCATATTCTC	7440
AATAAATATA ATATCAACCC AGATTCCGAA GGTGGCTTTC ATTTAGCAAC AGACAACTCT	7500
TCTATTGCTA AATTCTGTAT TTTTTACTTA CCCGAATCCA ATGTCAATAT GAGTTTAGAT	7560

GCGTTATGGG	CAGGGAATCA	ACAACTTTGT	GCTTCATTGT	GTTTTGCGTT	GCAGTCTTCA	7620
CGTTTTATTG	GTACTGCATC	TGCGTTTCAT	AAAAGAGCGG	TGGTTTTACA	GTGGTTTCCT	7680
AAAAAACTCG	CCGAAATTGC	TAATTTAGAT	GAATTGCCTG	CAAATATCCT	TCATGATGTA	7740
TATATGCACT	GCAGTTATGA	TTTAGCAAAA	AACAAGCACG	ATGTTAAGCG	TCCATTAAAC	7800
GAACTTGTCC	GCAAGCATAT	CCTCACGCAA	GGATGGCAAG	ACCGCTACCT	TTACACCTTA	7860
GGTAAAAAGG	ACGGCAAACC	TGTGATGATG	GTACTGCTTG	AACATTTTAA	TTCGGGACAT	7920
TCGATTTATC	GCACGCATTC	AACTTCAATG	ATTGCTGCTC	GAGAAAAATT	CTATTTAGTC	7980
GGCTTAGGCC	ATGAGGGCGT	TGATAACATA	GGTCGAGAAG	TGTTTGACGA	GTTCTTTGAA	8040
ATCAGTAGCA	ATAATATAAT	GGAGAGACTG	TTTTTTATCC	GTAAACAGTG	CGAAACTTTC	8100
CAACCCGCAG	TGTTCTATAT	GCCAAGCATT	GGCATGGATA	TTACCACGAT	TTTTGTGAGC	8160
AACACTCGGC	TTGCCCCTAT	TCAAGCTGTA	GCCTTGGGTC	ATCCTGCCAC	TACGCATTCT	8220
GAATTTATTG	ATTATGTCAT	CGTAGAAGAT	GATTATGTGG	GCAGTGAAGA	TTGTTTTAGC	8280
GAAACCCTTT	TACGCTTACC	CAAAGATGCC	CTACCTTATG	TACCATCTGC	ACTCGCCCCA	8340
CAAAAAGTGG	ATTATGTACT	CAGGGAAAAC	CCTGAAGTAG	TCAATATCGG	TATTGCCGCT	8400
ACCACAATGA	AATTAAACCC	TGAATTTTTG	CTAACATTGC	AAGAAATCAG	AGATAAAGCT	8460
aaagtcaaaa	TACATTTTCA	TTTCGCACTT	GGACAATCAA	CAGGCTTGAC	ACACCCTTAT	8520
GTCAAATGGT	TTATCGAAAG	CTATTTAGGT	GACGATGCCA	CTGCACATCC	CCACGCACCT	8580
TATCACGATT	ATCTGGCAAT	ATTGCGTGAT	TGCGATATGC	TACTAAATCC	GTTTCCTTTC	8640
GGTAATACTA	ACGGCATAAT	TGATATGGTT	ACATTAGGTT	TAGTTGGTGT	ATGCAAAACG	8700
GGGGATGAAG	TACATGAACA	TATTGATGAA	GGTCTGTTTA	AACGCTTAGG	ACTACCAGAA	8760
TGGCTGATAG	CCGACACACG	AGAAACATAT	ATTGAATGTG	CTTTGCGTCT	AGCAGAAAAC	8820
CATCAAGAAC	GCCTTGAACT	CCGTCGTTAC	ATCATAGAAA	ACAACGGCTT	ACAAAAGCTT	8880
TTTACAGGCG	ACCCTCGTCC	ATTGGGCAAA	ATACTGCTTA	AGAAAACAAA	TGAATGGAAG	8940
CGGAAGCACT	TGAGTAAAAA	ATAACGGTTT	TTTAAAGTAA	AAGTGCGGTT	AATTTTCAAA	9000
GCGTTTTAAA	AACCTCTCAA	AAATCAACCG	CACTTTTATC	TTTATAACGC	TCCCGCGCGC	9060
TGACAGTTTA	TCTCTTTCTT	AAAATACCCA	TAAAATTGTG	GCAATAGTTG	GGTAATCAAA	9120
TTCAATTGTT	GATACGGCAA	ACTAAAGACG	GCGCGTTCTT	CGGCAGTCAT	С	9171

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9323 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

CGTTAATTGA	CGGCAATATT	AACGCTCAAG	GTAGTGGTGA	TATCGCTAAA	ACCGGTGGTT	2040
TTGTGGAGAC	ATCGGGGCAT	TATTTATCCA	TTGACAGCAA	TGCAATTGTT	AAAACAAAAG	2100
AGTGGTTGCT	AGACCCTGAT	GATGTAACAA	TTGAAGCCGA	AGACCCCCTT	CGCAATAATA	2160
CCGGTATAAA	TGATGAATTC	CCAACAGGCA	CCGGTGAAGC	AAGCGACCCT	АТААААААА	2220
GCGAACTCAA	AACAACGCTA	ACCAATACAA	CTATTTCAAA	TTATCTGAAA	AACGCCTGGA	2280
CAATGAATAT	AACGGCATCA	AGAAAACTTA	CCGTTAATAG	CTCAATCAAC	ATCGGAAGCA	2340
ACTCCCACTT	AATTCTCCAT	AGTAAAGGTC	AGCGTGGCGG	AGGCGTTCAG	ATTGATGGAG	2400
ATATTACTTC	TAAAGGCGGA	AATTTAACCA	TTTATTCTGG	CGGATGGGTT	GATGTTCATA	2460
AAAATATTAC	GCTTGATCAG	GGTTTTTTAA	ATATTACCGC	CGCTTCCGTA	GCTTTTGAAG	2520
GTGGAAATAA	CAAAGCACGC	GACGCGGCAA	ATGCTAAAAT	TGTCGCCCAG	GGCACTGTAA	2580
CCATTACAGG	AGAGGGAAAA	GATTTCAGGG	CTAACAACGT	ATCTTTAAAC	GGAACGGGTA	2640
AAGGTCTGAA	TATCATTTCA	TCAGTGAATA	ATTTAACCCA	CAATCTTAGT	GGCACAATTA	2700
ACATATCTGG	GAATATAACA	ATTAACCAAA	CTACGAGAAA	GAACACCTCG	TATTGGCAAA	2760
CCAGCCATGA	TTCGCACTGG	AACGTCAGTG	CTCTTAATCT	AGAGACAGGC	GCAAATTTTA	2820
CCTTTATTAA	ATACATTTCA	AGCAATAGCA	AAGGCTTAAC	AACACAGTAT	AGAAGCTCTG	2880
CAGGGGTGAA	TTTTAACGGC	GTAAATGGCA	ACATGTCATT	CAATCTCAAA	GAAGGAGCGA	2940
AAGTTAATTT	CAAATTAAAA	CCAAACGAGA	ACATGAACAC	AAGCAAACCT	TTACCAATTC	3000
GGTTTTTAGC	CAATATCACA	GCCACTGGTG	GGGGCTCTGT	TTTTTTTGAT	ATATATGCCA	3060
ACCATTCTGG	CAGAGGGGCT	GAGTTAAAAA	TGAGTGAAAT	TAATATCTCT	AACGGCGCTA	3120
ATTTTACCTT	AAATTCCCAT	GTTCGCGGCG	ATGACGCTTT	TAAAATCAAC	AAAGACTTAA	3180
CCATAAATGC	AACCAATTCA	AATTTCAGCC	TCAGACAGAC	GAAAGATGAT	TTTTATGACG	3240
GGTACGCACG	CAATGCCATC	AATTCAACCT	ACAACATATC	CATTCTGGGC	GGTAATGTCA	3300
CCCTTGGTGG	ACAAAACTCA	AGCAGCAGCA	TTACGGGGAA	TATTACTATC	GAGAAAGCAG	3360
CAAATGTTAC	GCTAGAAGCC	AATAACGCCC	CTAATCAGCA	AAACATAAGG	GATAGAGTTA	3420
TAAAACTTGG	CAGCTTGCTC	GTTAATGGGA	GTTTAAGTTT	AACTGGCGAA	AATGCAGATA	3480
TTAAAGGCAA	TCTCACTATT	TCAGAAAGCG	CCACTTTTAA	AGGAAAGACT	AGAGATACCC	3540
TAAATATCAC	CGGCAATTTT	ACCAATAATG	GCACTGCCGA	AATTAATATA	ACACAAGGAG	3600
TGGTAAAACT	TGGCAATGTT	ACCAATGATG	GTGATTTAAA	CATTACCACT	CACGCTAAAC	3660
GCAACCAAAG	AAGCATCATC	GGCGGAGATA	TAATCAACAA	AAAAGGAAGC	TTAAATATTA	3720
CAGACAGTAA	TAATGATGCT	GAAATCCAAA	TTGGCGGCAA	TATCTCGCAA	AAAGAAGGCA	3780
ACCTCACGAT	TTCTTCCGAT	AAAATTAATA	TCACCAAACA	GATAACAATC	AAAAAGGGTA	3840
TTGATGGAGA	GGACTCTAGT	TCAGATGCGA	CAAGTAATGC	CAACCTAACT	ATTAAAACCA	3900
AAGAATTGAA	ATTGACAGAA	GACCTAAGTA	TTTCAGGTTT	CAATAAAGCA	GAGATTACAG	3960
CCAAAGATGG	TAGAGATTTA	ACTATTGGCA	ACAGTAATGA	CGGTAACAGC	GGTGCCGAAG	4020
				•		

CCAAAACAG	T AACTTTTAA	C AATGTTAAA	G ATTCAAAAA	T CTCTGCTGA	C GGTCACAATG	4080
TGACACTAA	A TAGCAAAGT	G AAAACATCT	A GCAGCAATG	g cggacgtga	A AGCAATAGCG	4140
ACAACGATA	.C CGGCTTAAC	T ATTACTGCA	A AAAATGTAG	A AGTAAACAA	A GATATTACTT	4200
CTCTCAAAA	C AGTAAATAT	C ACCGCGTCG	G AAAAGGTTA	C CACCACAGC	A GGCTCGACCA	4260
TTAACGCAA	C AAATGGCAA	A GCAAGTATT	A CAACCAAAA	C AGGTGATAT	C AGCGGTACGA	4320
TTTCCGGTA	A CACGGTAAG	T GTTAGCGCG	A CTGGTGATT	r aaccactaa	A TCCGGCTCAA	4380
AAATTGAAG	C GAAATCGGG	T GAGGCTAAT	G TAACAAGTG	C AACAGGTAC	A ATTGGCGGTA	4440
CAATTTCCG	G TAATACGGT	A AATGTTACGO	G CAAACGCTG	GCGATTTAAC	A GTTGGGAATG	4500
GCGCAGAAA'	T TAATGCGAC	A GAAGGAGCTO	G CAACCTTAA	CGCAACAGG	AATACCTTGA	4560
CTACTGAAG	CGGTTCTAG	C ATCACTTCA	A CTAAGGGTC	GGTAGACCT	TTGGCTCAGA	4620
ATGGTAGCA:	r cgcaggaag	C ATTAATGCTG	CTAATGTGAC	ATTAAATACT	ACAGGCACCT	4680
TAACCACCG	r ggcaggctco	GATATTAAAG	CAACCAGCGG	CACCTTGGTT	ATTAACGCAA	4740
AAGATGCTA	A GCTAAATGG:	GATGCATCAG	GTGATAGTAC	AGAAGTGAAT	GCAGTCAACG	4800
ACTGGGGATT	TGGTAGTGT	ACTGCGGCAA	CCTCAAGCAG	TGTGAATATC	CACTGGGGATT	4860
TAAACACAGI	AAATGGGTT	AATATCATTI	CGAAAGATGG	TAGAAACACT	GTGCGCTTAA	4920
GAGGCAAGG	AATTGAGGTG	AAATATATCC	AGCCAGGTGT	AGCAAGTGTA	GAAGAAGTAA	4980
TTGAAGCGAA	ACGCGTCCTT	GAAAAAGTAA	AAGATTTATC	TGATGAAGAA	AGAGAAACAT	5040
TAGCTAAACT	TGGTGTAAGT	GCTGTACGTT	TTGTTGAGCC	AAATAATACA	ATTACAGTCA	5100
ATACACAAAA	TGAATTTACA	ACCAGACCGT	CAAGTCAAGT	GATAATTTCT	GAAGGTAAGG	5160
CGTGTTTCTC	AAGTGGTAAT	GGCGCACGAG	TATGTACCAA	TGTTGCTGAC	GATGGACAGC	5220
CGTAGTCAGT	AATTGACAAG	GTAGATTTCA	TCCTGCAATG	AAGTCATTTT	ATTTTCGTAT	5280
TATTTACTGT	GTGGGTTAAA	GTTCAGTACG	GGCTTTACCC	ATCTTGTAAA	AAATTACGGA	5340
GAATACAATA	AAGTATTTT	AACAGGTTAT	TATTATGAAA	AATATAAAA	GCAGATTAAA	5400
ACTCAGTGCA	ATATCAGTAT	TGCTTGGCCT	GGCTTCTTCA	TCATTGTATG	CAGAAGAAGC	5460
GTTTTTAGTA	AAAGGCTTTC	AGTTATCTGG	TGCACTTGAA	ACTTTAAGTG	AAGACGCCCA	5520
ACTGTCTGTA	GCAAAATCTT	TATCTAAATA	CCAAGGCTCG	CAAACTTTAA	CAAACCTAAA	5580
AACAGCACAG	CTTGAATTAC	AGGCTGTGCT	AGATAAGATT	GAGCCAAATA	AATTTGATGT	5640
GATATTGCCG	CAACAAACCA	TTACGGATGG	CAATATCATG	TTTGAGCTAG	TCTCGAAATC	5700
AGCCGCAGAA	AGCCAAGTTT	TTTATAAGGC	GAGCCAGGGT	TATAGTGAAG	AAAATATCGC	5760
TCGTAGCCTG	CCATCTTTGA	AACAAGGAAA	AGTGTATGAA	GATGGTCGTC	AGTGGTTCGA	5820
TTTGCGTGAA	TTTAATATGG	CAAAAGAAAA	CCCGCTTAAG	GTTACCCGTG	TACATTACGA	5880
ACTAAACCCT	AAAAACAAAA	CCTCTAATTT	GATAATTGCG	GGCTTCTCGC	CTTTTGGTAA	5940
AACGCGTAGC	TTTATTTCTT	ATGATAATTT	CGGCGCGAGA	GAGTTTAACT	ACCAACGTGT	6000
AAGCTTGGGT	TTTGTTAATG	CCAATTTAAC	TGGTCATGAT	GATGTGTTAA	TTATACCAGT	6060

		•					
ATGAGT	FATG	CTGATTCTAA	TGATATCGAC	GGCTTACCAA	GTGCGATTAA	TCGTAAATTA	6120
TCAAAA	GTC	AATCTATCTC	TGCGAATCTG	AAATGGAGTT	ATTATCTCCC	AACATTTAAC	6180
CTTGGC	ATGG	AAGACCAATT	TAAAATTAAT	TTAGGCTACA	ACTACCGCCA	TATTAATCAA	6240
ACCTCCC	CGT	TAAATCGCTT	GGGTGAAACG	AAGAAAAAT	TTGCAGTATC	AGGCGTAAGT	6300
GCAGGC	ATTG	ATGGACATAT	CCAATTTACC	CCTAAAACAA	TCTTTAATAT	TGATTTAACT	6360
CATCATI	TTAT	ACGCGAGTAA	ATTACCAGGC	TCTTTTGGAA	TGGAGCGCAT	TGGCGAAACA	6420
TTTAATC	GCA	GCTATCACAT	TAGCACAGCC	AGTTTAGGGT	TGAGTCAAGA	GTTTGCTCAA	6480
GGTTGGC	TTA	TTAGCAGTCA	ATTATCAGGT	CAATTTACTC	TACAAGATAT	TAGCAGTATA	6540
GATTTAT	TCT	CTGTAACAGG	TACTTATGGC	GTCAGAGGCT	TTAAATACGG	CGGTGCAAGT	6600
GGTGAGC	CGCG	GTCTTGTATG	GCGTAATGAA	TTAAGTATGC	CAAAATACAC	CCGCTTCCAA	6660
ATCAGCO	CTT	ATGCGTTTTA	TGATGCAGGT	CAGTTCCGTT	ATAATAGCGA	AAATGCTAAA	6720
ACTTACO	GCG	AAGATATGCA	CACGGTATCC	TCTGCGGGTT	TAGGCATTAA	AACCTCTCCT	6780
ACACAAA	ACT	TAAGCCTAGA	TGCTTTTGTT	GCTCGTCGCT	TTGCAAATGC	CAATAGTGAC	6840
AATTTGA	ATG	GCAACAAAAA	ACGCACAAGC	TCACCTACAA	CCTTCTGGGG	GAGATTAACA	6900
TTCAGTI	TCT	AACCCTGAAA	TTTAATCAAC	TGGTAAGCGT	TCCGCCTACC	AGTTTATAAC	6960
TATATGO	TTT	ACCCGCCAAT	TTACAGTCTA	TAGGCAACCC	TGTTTTTACC	CTTATATATC	7020
AAATAAA	CAA	GCTAAGCTGA	GCTAAGCAAA	CCAAGCAAAC	TCAAGCAAGC	CAAGTAATAC	7080
TAAAAA	ACA	ATTTATATGA	TAAACTAAAG	TATACTCCAT	GCCATGGCGA	TACAAGGGAT	7140
TTAATAA	TAT	GACAAAAGAA	AATTTGCAAA	ACGCTCCTCA	AGATGCGACC	GCTTTACTTG	7200
CGGAATT	'AAG	CAACAATCAA	ACTCCCCTGC	GAATATTTAA	ACAACCACGC	AAGCCCAGCC	7260
TATTACG	CTT	GGAACAACAT	ATCGCAAAAA	AAGATTATGA	GTTTGCTTGT	CGTGAATTAA	7320
TGGTGAT	TCT	GGAAAAAATG	GACGCTAATT	TTGGAGGCGT	TCACGATATT	GAATTTGACG	7380
CACCCGC	TCA	GCTGGCATAT	CTACCCGAAA	AATTACTAAT	TTATTTTGCC	ACTCGTCTCG	7440
CTAATGC	TAA	TACAACACTC	TTTTCCGACC	CCGAATTGGC	AATTTCTGAA	GAAGGGGCGT	7500
TAAAGAT	GAT	TAGCCTGCAA	CGCTGGTTGA	CGCTGATTTT	TGCCTCTTCC	CCCTACGTTA	7560
ACGCAGA	CCA	TATTCTCAAT	ATATATAA	TCAACCCAGA	TTCCGAAGGT	GGCTTTCATT	7620
TAGCAAC	AGA	CAACTCTTCT	ATTGCTAAAT	TCTGTATTTT	TTACTTACCC	GAATCCAATG	7680
TCAATAT	GAG	TTTAGATGCG	TTATGGGCAG	GGAATCAACA	ACTTTGTGCT	TCATTGTGTT	7740
TTGCGTT	GCA	GTCTTCACGT	TTTATTGGTA	CCGCATCTGC	GTTTCATAAA	AGAGCGGTGG	7800
TTTTACA	GTG	GTTTCCTAAA	AAACTCGCCG	AAATTGCTAA	TTTAGATGAA	TTGCCTGCAA	7860
ATATCCT	TCA	TGATGTATAT	ATGCACTGCA	GTTATGATTT	AGCAAAAAAC	AAGCACGATG	7920
TTAAGCG	TCC	ATTAAACGAA	CTTGTCCGCA	AGCATATCCT	CACGCAAGGA	TGGCAAGACC	7980
GCTACCT	TTA	CACCTTAGGT	AAAAAGGACG	GCAAACCTGT	GATGATGGTA	CTGCTTGAAC	8040
ATTTTAA	TTC	GGGACATTCG	ATTTATCGTA	CACATTCAAC	TTCAATGATT	GCTGCTCGAG	8100
					-		

AAAAATTCTA TTTAGTCGG	C TTAGGCCAT	G AGGGCGTTG	A TAAAATAGG	T CGAGAAGTGT	8160
TTGACGAGTT CTTTGAAAT	C AGTAGCAATA	A ATATAATGG	A GAGACTGTT	T TTTATCCGTA	8220
AACAGTGCGA AACTTTCCA	A CCCGCAGTG	TCTATATGC	C AAGCATTGG	C ATGGATATTA	8280
CCACGATTTT TGTGAGCAA	C ACTCGGCTTC	CCCCTATTC	A AGCTGTAGC	CTGGGTCATC	8340
CTGCCACTAC GCATTCTGA	A TTTATTGATT	ATGTCATCGT	AGAAGATGA	TATGTGGGCA	8400
GTGAAGATTG TTTCAGCGA	A ACCCTTTTAC	GCTTACCCA	AGATGCCCT	CCTTATGTAC	8460
CTTCTGCACT CGCCCCACA	A AAAGTGGATI	ATGTACTCAG	GGAAAACCCI	GAAGTAGTCA	8520
ATATCGGTAT TGCCGCTAC	C ACAATGAAAT	' TAAACCCTGA	ATTTTTGCTA	ACATTGCAAG	8580
AAATCAGAGA TAAAGCTAA	A GTCAAAATAC	ATTTTCATTT	CGCACTTGGA	CAATCAACAG	8640
GCTTGACACA CCCTTATGT	AAATGGTTTA	TCGAAAGCTA	TTTAGGTGAC	GATGCCACTG	8700
CACATCCCCA CGCACCTTAT	CACGATTATC	TGGCAATATT	GCGTGATTGC	GATATGCTAC	8760
TAAATCCGTT TCCTTTCGGT	AATACTAACG	GCATAATTGA	TATGGTTACA	TTAGGTTTAG	8820
TTGGTGTATG CAAAACGGGG	GATGAAGTAC	ATGAACATAT	TGATGAAGGT	CTGTTTAAAC	8880
GCTTAGGACT ACCAGAATGG	CTGATAGCCG	ACACACGAGA	AACATATATT	GAATGTGCTT	8940
TGCGTCTAGC AGAAAACCAT	' CAAGAACGCC	TTGAACTCCG	TCGTTACATC	ATAGAAAACA	9000
ACGGCTTACA AAAGCTTTTT	ACAGGCGACC	CTCGTCCATT	GGGCAAAATA	CTGCTTAAGA	9060
AAACAAATGA ATGGAAGCGG	AAGCACTTGA	GTAAAAAATA	ACGGTTTTTT	AAAGTAAAAG	9120
TGCGGTTAAT TTTCAAAGCG	TTTTAAAAAC	CTCTCAAAAA	TCAACCGCAC	TTTTATCTTT	9180
ATAACGATCC CGCACGCTGA	CAGTTTATCA	GCCTCCCGCC	ATAAAACTCC	GCCTTTCATG	9240
GCGGAGATTT TAGCCAAAAC	TGGCAGAAAT	TAAAGGCTAA	AATCACCAAA	TTGCACCACA	9300
AAATCACCAA TACCCACAAA	AAA				9323
(5)					

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4287 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

G3.003.3.000						
GATCAATCTG	GGCGATATTT	TTGCCAAAGG	TGGTAACATT	AATGTCCGCG	CTGCCACTAT	60
TCGCAATAAA	GGTAAACTTT	CTGCCGACTC	TGTAAGCAAA	GATAAAAGTG	GTAACATTGT	120
TCTCTCTGCC	AAAGAAGGTG	AAGCGGAAAT	TGGCGGTGTA	ATTTCCGCTC	AAAATCAGCA	180
AGCCAAAGGT	GGTAAGTTGA	TGATTACAGG	CGATAAAGTT	ACATTGAAAA	CGGGTGCACT	240
TATCGACCTT	TCGGGTAAAG	AAGGGGGAGA	AACTTATCTT	GGCGGTGACG	AGCGTGGCGA	300
AGGTAAAAAC	GGCATTCAAT	TAGCAAAGAA	AACCACTTTA	GAAAAAGGCT	CAACAATTAA	360

,	
TGATTTAACT ATTGGCAATG CTAGCGGTGG TAATGCTGAT GCTAAAAAAG TGACTTTTGA	2460
CAAGGTTAAA GATTCAAAAA TCTCGACTGA CGGTCACAAT GTAACACTAA ATAGCGAAGT	2520
GAAAACGTCT AATGGTAGTA GCAATGCTGG TAATGATAAC AGCACCGGTT TAACCATTTC	2580
CGCAAAAGAT GTAACGGTAA ACAATAACGT TACCTCCCAC AAGACAATAA ATATCTCTGC	2640
CGCAGCAGGA AATGTAACAA CCAAAGAAGG CACAACTATC AATGCAACCA CAGGCAGCGT	2700
GGAAGTAACT GCTCAAAATG GTACAATTAA AGGCAACATT ACCTCGCAAA ATGTAACAGT	2760
GACAGCAACA GAAAATCTTG TTACCACAGA GAATGCTGTC ATTAATGCAA CCAGCGGCAC	2820
AGTAAACATT AGTACAAAAA CAGGGGATAT TAAAGGTGGA ATTGAATCAA CTTCCGGTAA	2880
TGTAAATATT ACAGCGAGCG GCAATACACT TAAGGTAAGT AATATCACTG GTCAAGATGT	2940
AACAGTAACA GCGGATGCAG GAGCCTTGAC AACTACAGCA GGCTCAACCA TTAGTGCGAC	3000
AACAGGCAAT GCAAATATTA CAACCAAAAC AGGTGATATC AACGGTAAAG TTGAATCCAG	3060
CTCCGGCTCT GTAACACTTG TTGCAACTGG AGCAACTCTT GCTGTAGGTA ATATTTCAGG	3120
TAACACTGTT ACTATTACTG CGGATAGCGG TAAATTAACC TCCACAGTAG GTTCTACAAT	3180
TAATGGGACT AATAGTGTAA CCACCTCAAG CCAATCAGGC GATATTGAAG GTACAATTTC	3240
TGGTAATACA GTAAATGTTA CAGCAAGCAC TGGTGATTTA ACTATTGGAA ATAGTGCAAA	3300
AGTTGAAGCG AAAAATGGAG CTGCAACCTT AACTGCTGAA TCAGGCAAAT TAACCACCCA	3360
AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACT CTTACAGCCA AGGATAGCAG	3420
TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGCA CTTTAACTAC	3480
TACAGGGGAT TCAAAGATTA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC	3540
CAAATTAGAT GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAACTA ACGCAAGTGG	3600
CTCTGGTAAC GTGACTGCGA AAACCTCAAG CAGCGTGAAT ATCACCGGGG ATTTAAACAC	3660
AATAAATGGG TTAAATATCA TTTCGGAAAA TGGTAGAAAC ACTGTGCGCT TAAGAGGCAA	3720
GGAAATTGAT GTGAAATATA TCCAACCAGG TGTAGCAAGC GTAGAAGAGG TAATTGAAGC	3780
GAAACGCGTC CTTGAGAAGG TAAAAGATTT ATCTGATGAA GAAAGAGAAA CACTAGCCAA	3840
ACTTGGTGTA AGTGCTGTAC GTTTCGTTGA GCCAAATAAT GCCATTACGG TTAATACACA	3900
AAACGAGTTT ACAACCAAAC CATCAAGTCA AGTGACAATT TCTGAAGGTA AGGCGTGTTT	3960
CTCAAGTGGT AATGGCGCAC GAGTATGTAC CAATGTTGCT GACGATGGAC AGCAGTAGTC	4020
AGTAATTGAC AAGGTAGATT TCATCCTGCA ATGAAGTCAT TTTATTTTCG TATTATTTAC	4080
TGTGTGGGTT AAAGTTCAGT ACGGGCTTTA CCCACCTTGT AAAAAATTAC GAAAAATACA	4140
ATAAAGTATT TTTAACAGGT TATTATTATG AAAAACATAA AAAGCAGATT AAAACTCAGT	4200
GCAATATCAA TATTGCTTGG CTTGGCTTCT TCATCGACGT ATGCAGAAGA AGCGTTTTTA	4260
GTAAAAGGCT TTCAGTTATC TGGCGCG	4287

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4702 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGGAATGAGC	GTCGTACACG	GTACAGCAAC	CATGCAAGTA	GACGGCAATA	AAACCACTAT	60
CCGTAATAGC	ATCAATGCTA	TCATCAATTG	GAAACAATTT	AACATTGACC	AAAATGAAAT	120
GGAGCAGTTT	TTACAAGAAA	GCAGCAACTC	TGCCGTTTTC	AACCGTGTTA	CATCTGACCA	180
AATCTCCCAA	TTAAAAGGGA	TTTTAGATTC	TAACGGACAA	GTCTTTTTAA	TCAACCCAAA	240
TGGTATCACA	ATAGGTAAAG	ACGCAATTAT	TAACACTAAT	GGCTTTACTG	CTTCTACGCT	300
AGACATTTCT	AACGAAAACA	TCAAGGCGCG	TAATTTCACC	CTTGAGCAAA	CCAAGGATAA	360
AGCACTCGCT	GAAATCGTGA	ATCACGGTTT	AATTACCGTT	GGTAAAGACG	GTAGCGTAAA	420
CCTTATTGGT	GGCAAAGTGA	AAAACGAGGG	CGTGATTAGC	GTAAATGGCG	GTAGTATTTC	480
TTTACTTGCA	GGGCAAAAA	TCACCATCAG	CGATATAATA	AATCCAACCA	TCACTTACAG	540
CATTGCTGCA	CCTGAAAACG	AAGCGATCAA	TCTGGGCGAT	ATTTTTGCCA	AAGGTGGTAA	600
CATTAATGTC	CGCGCTGCCA	CTATTCGCAA	TAAAGGTAAA	CTTTCTGCCG	ACTCTGTAAG	660
CAAAGATAAA	AGTGGTAACA	TTGTTCTCTC	TGCCAAAGAA	GGTGAAGCGG	AAATTGGCGG	720
TGTAATTTCC	GCTCAAAATC	AGCAAGCCAA	AGGTGGTAAG	TTGATGATTA	CAGGTGATAA	780
AGTCACATTA	AAAACAGGTG	CAGTTATCGA	CCTTTCAGGT	AAAGAAGGGG	GAGAGACTTA	840
TCTTGGCGGT	GATGAGCGTG	GCGAAGGTAA	AAATGGTATT	CAATTAGCGA	AGAAAACCTC	900
TTTAGAAAAA	GGCTCGACAA	TTAATGTATC	AGGCAAAGAA	AAAGGCGGGC	GCGCTATTGT	960
ATGGGGCGAT	ATTGCATTAA	TTAATGGTAA	CATTAATGCT	CAAGGTAGCG	ATATTGCTAA	1020
AACTGGCGGC	TTTGTGGAAA	CATCAGGACA	TGACTTATCC	ATTGGTGATG	ATGTGATTGT	1080
TGACGCTAAA	GAGTGGTTAT	TAGACCCAGA	TGATGTGTCC	ATTGAAACTC	TTACATCTGG	1140
ACGCAATAAT	ACCGGCGAAA	ACCAAGGATA	TACAACAGGA	GATGGGACTA	AAGAGTCACC	1200
TAAAGGTAAT	AGTATTTCTA	AACCTACATT	AACAAACTCA	ACTCTTGAGC	AAATCCTAAG	1260
AAGAGGTTCT	TATGTTAATA	TCACTGCTAA	TAATAGAATT	TATGTTAATA	GCTCCATCAA	1320
CTTATCTAAT	GGCAGTTTAA	CACTTCACAC	TAAACGAGAT	GGAGTTAAAA	TTAACGGTGA	1380
TATTACCTCA	AACGAAAATG	GTAATTTAAC	CATTAAAGCA	GGCTCTTGGG	TTGATGTTCA	1440
TAAAAACATC	ACGCTTGGTA	CGGGTTTTTT	CAATATTGTC	GCTGGGGATT	CTGTAGCTTT	1500
TGAGAGAGAG	GGCGATAAAG	CACGTAACGC	AACAGATGCT	CAAATTACCG	CACAAGGGAC	1560
GATAACCGTC	AATAAAGATG	ATAAACAATT	TAGATTCAAT	AATGTATCTA	TTAACGGGAC	1620

			36			
GGGCAAGGGT	TTAAAGTTT	A TTGCAAATC	A AAATAATTT	C ACTCATAAA	T TTGATGGCGA	1680
AATTAACATA	TCTGGAATA	G TAACAATTA	A CCAAACCAC	G AAAAAAGAT	G TTAAATACTG	1740
GAATGCATCA	AAAGACTCT	r actggaatg	T TTCTTCTCT	T ACTTTGAAT	A CGGTGCAAAA	1800
ATTTACCTTT	ATAAAATTC	TTGATAGCG	G CTCAAATTC	C CAAGATTTG	A GGTCATCACG	1860
TAGAAGTTTT	GCAGGCGTAC	ATTTTAACG	G CATCGGAGG	C AAAACAAAC	T TCAACATCGG	1920
AGCTAACGCA	AAAGCCTTAT	TTAAATTAA	A ACCAAACGC	C GCTACAGAC	CAAAAAAAGA	1980
ATTACCTATT	ACTTTTAACG	CCAACATTA	C AGCTACCGG	r aacagtgata	A GCTCTGTGAT	2040
GTTTGACATA (CACGCCAATC	TTACCTCTAC	AGCTGCCGG	ATAAACATGO	ATTCAATTAA	2100
CATTACCGGC (GGCTTGACT	TTTCCATAAC	ATCCCATAAT	CGCAATAGT?	ATGCTTTTGA	2160
AATCAAAAAA (ACTTAACTA	TAAATGCAAC	TGGCTCGAAT	TTTAGTCTTA	AGCAAACGAA	2220
AGATTCTTTT 7	TATAATGAAT	ACAGCAAACA	CGCCATTAAC	CTCAAGTCATA	ATCTAACCAT	2280
TCTTGGCGGC Z	ATGTCACTC	TAGGTGGGGA	AAATTCAAGC	AGTAGCATTA	CGGGCAATAT	2340
CAATATCACC A	ATAAAGCAA	ATGTTACATT	' ACAAGCTGAC	ACCAGCAACA	GCAACACAGG	2400
CTTGAAGAAA A	GAACTCTAA	CTCTTGGCAA	TATATCTGTT	' GAGGGGAATT	TAAGCCTAAC	2460
TGGTGCAAAT G	CAAACATTG	TCGGCAATCT	TTCTATTGCA	GAAGATTCCA	CATTTAAAGG	2520
AGAAGCCAGT G	ACAACCTAA	ACATCACCGG	CACCTTTACC	AACAACGGTA	CCGCCAACAT	2580
TAATATAAAA C	AAGGAGTGG	TAAAACTCCA	AGGCGATATT	ATCAATAAAG	GTGGTTTAAA	2640
TATCACTACT A	ACGCCTCAG	GCACTCAAAA	AACCATTATT	AACGGAAATA	TAACTAACGA	2700
AAAAGGCGAC T	TAAACATCA	AGAATATTAA	AGCCGACGCC	GAAATCCAAA	TTGGCGGCAA	2760
TATCTCACAA A	AAGAAGGCA	ATCTCACAAT	TTCTTCTGAT	AAAGTAAATA	TTACCAATCA	2820
GATAACAATC A	AAGCAGGCG	TTGAAGGGGG	GCGTTCTGAT	TCAAGTGAGG	CAGAAAATGC	2880
TAACCTAACT A	TTCAAACCA	aagagttaaa	ATTGGCAGGA	GACCTAAATA	TTTCAGGCTT	2940
TAATAAAGCA G	AAATTACAG	CTAAAAATGG	CAGTGATTTA	ACTATTGGCA	ATGCTAGCGG	3000
TGGTAATGCT G	ATGCTAAAA	AAGTGACTTT	TGACAAGGTT	AAAGATTCAA	AAATCTCGAC	3060
TGACGGTCAC A	ATGTAACAC	TAAATAGCGA	AGTGAAAACG	TCTAATGGTA	GTAGCAATGC	3120
TGGTAATGAT A	ACAGCACCG	GTTTAACCAT	TTCCGCAAAA	GATGTAACGG	TAAACAATAA	3180
CGTTACCTCC C	CAAGACAA	TAAATATCTC	TGCCGCAGCA	GGAAATGTAA	CAACCAAAGA	3240
AGGCACAACT AT	CAATGCAA	CCACAGGCAG	CGTGGAAGTA	ACTGCTCAAA	ATGGTACAAT	3300
TAAAGGCAAC AT	TACCTCGC	AAAATGTAAC	AGTGACAGCA	ACAGAAAATC	TTGTTACCAC	3360
AGAGAATGCT GI	CATTAATG	CAACCAGCGG	CACAGTAAAC	ATTAGTACAA	AAACAGGGGA	3420
TATTAAAGGT GG						3480
ACTTAAGGTA AG						3540
GACAACTACA GC						3600
AACAGGTGAT AT	CAACGGTA 2	AAGTTGAATC	CAGCTCCGGC	TCTGTAACAC	TTGTTGCAAC	3660

TGGAGCAACT	CTTGCTGTAG	GTAATATTTC	AGGTAACACT	GTTACTATTA	CTGCGGATAG	3720
CGGTAAATTA	ACCTCCACAG	TAGGTTCTAC	AATTAATGGG	ACTAATAGTG	TAACCACCTC	3780
AAGCCAATCA	GGCGATATTG	AAGGTACAAT	TTCTGGTAAT	ACAGTAAATG	TTACAGCAAG	3840
CACTGGTGAT	TTAACTATTG	GAAATAGTGC	AAAAGTTGAA	GCGAAAAATG	GAGCTGCAAC	3900
CTTAACTGCT	GAATCAGGCA	AATTAACCAC	CCAAACAGGC	TCTAGCATTA	CCTCAAGCAA	3960
TGGTCAGACA	ACTCTTACAG	CCAAGGATAG	CAGTATCGCA	GGAAACATTA	ATGCTGCTAA	4020
TGTGACGTTA	AATACCACAG	GCACTTTAAC	TACTACAGGG	GATTCAAAGA	TTAACGCAAC	4080
CAGTGGTACC	TTAACAATCA	ATGCAAAAGA	TGCCAAATTA	GATGGTGCTG	CATCAGGTGA	4140
CCGCACAGTA	GTAAATGCAA	CTAACGCAAG	TGGCTCTGGT	AACGTGACTG	CGAAAACCTC	4200
AAGCAGCGTG	AATATCACCG	GGGATTTAAA	CACAATAAAT	GGGTTAAATA	TCATTTCGGA	4260
AAATGGTAGA	AACACTGTGC	GCTTAAGAGG	CAAGGAAATT	GATGTGAAAT	ATATCCAACC	4320
AGGTGTAGCA	AGCGTAGAAG	AGGTAATTGA	AGCGAAACGC	GTCCTTGAGA	AGGTAAAAGA	4380
TTTATCTGAT	GAAGAAAGAG	AAACACTAGC	CAAACTTGGT	GTAAGTGCTG	TACGTTTCGT	4440
TGAGCCAAAT	AATGCCATTA	CGGTTAATAC	ACAAAACGAG	TTTACAACCA	AACCATCAAG	4500
TCAAGTGACA	ATTTCTGAAG	GTAAGGCGTG	TTTCTCAAGT	GGTAATGGCG	CACGAGTATG	4560
TACCAATGTT	GCTGACGATG	GACAGCAGTA	GTCAGTAATT	GACAAGGTAG	ATTTCATCCT	4620
GCAATGAAGT	CATTTTATTT	TCGTATTATT	TACTGTGTGG	GTTAAAGTTC	AGTACGGGCT	4680
TTACCCACCT	TGTAAAAAAT	TA				4702

CLAIMS

What we claim is:

- Haemophilus influenzae, including otitis media, sinusitis and bronchitis, comprising an effective amount of a high molecular weight protein of non-typeable Haemophilus influenzae which is protein HMW1, HMW2, HMW3 or HMW4 or a variant or fragment of said protein retaining immunological properties thereof or a synthetic peptide having an amino acid sequence corresponding to that of said protein, and a physiological carrier therefor.
- 2. The vaccine of claim 1 wherein said protein is HMW1 encoded by the DNA sequence shown in Figure 1 (SEQ ID NO:1), having the derived amino acid sequence of Figure 2 (SEQ ID NO:2) and having an apparent molecular weight of 125 kDa.
- 3. The vaccine of claim 1 wherein said protein is HMW2 encoding by the DNA sequence shown in Figure 3 (SEQ ID NO:3), having the derived amino acid sequence of Figure 4 (SEQ ID NO:4) and having an apparent molecular weight of 120 kDa.

1/68

PROTEIN HIGH MOLECULAR WEIGHT FIG. 1A. DNA SEQUENCE OF I (HMW1)

TTAAAAATA ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA ACATGCCCTG GAGCTGAACG TCATCTTTCA CATCTTTCAT AGGAGAAAAT ATGAACAAGC TATATCGTCT CAAATTCAGC AAACGCCTGA ATGCTTTGGT GAAAAAGGCA TTACAAGGAA TGGATGTAGT ACACGGCACA GCCACTATGC AAAGCCACTT TCCGCTATGT TACTATCTTT AGGTGTAACA TCTATTCCAC AATCTGTTTT CGATATCATT AGAAAACAAC AACTCCGCCG TATTCAACCG TGTTACATCT AACCAAATCT AGTTTTTACA TCATCTTTCA TCTTTCATCT TTCATCTTTC GCAGTCTATA TGCAAATATT AATGAAGAGG CCATTCCACA AACTAACCTT CTTTCATCTT TTTCATCTTT TGCTCGCATG AAAGTGCGTC ACTTAGCGTT ATTATCCGCA ACAGTGTTGA GAAATGGTGC GGAAGGGAGG GAGGGGCAAG TTAATTGTTC ATGGTATAAT TGCTGTGTCT GAATTGGCAC GGGGTTGTGA AATTGGAAAC AATTTAACAT CGACCAAAAT TTCATCTTTC ATCTTTCATC GCCATATAAA CACCTTTTTT ATAAAGTAAT AAGTAGATGG TAATAAAACC ACAATTACAA TCTTTCATCT CTTTCATCTT GTATAAATCC ATGAACCGAG AACGCAAATG GCGAAAAACC AGCAAGCGGC 51 101 151 201 251 501 301 351 401 451 551 601 651 701

						2	/68	3							
TTTAATCAAC										いかしていることの	GATABABETCA	なんじんじじじじせる	はなっているののでは、	GTATCAGGCA	GTTAATTGAC
CCCAATTAAA AGGGATTTTA GATTCTAACG GACAAGTCTT	TCACAATAGG TAAAGACGCA ATTATTAACA	TTTCTAACGA AAACATCAAG	TCGCTGAAAT				GTCAATCTGG	ATGTCCGTGC TGCCACTATT	ATAAAAGCGG		GATTACAGGC	CAGGTAAAGA		AACCATCAAT	GCGATATTGC
GATTCTAACG	TAAAGACGCA		GCAAACCAAA GATAAAGCGC	AGACGGCAGT	TTAGCGTAAA	ATCAGCGATA		ATGTCCGTGC	GTAAGCAAAG	AGCGGAAATT	GCAAGCTGAT	ATCGACCTTT		AAAAAGGCTC	ATTGTGTGGG
AGGGATTTTA	TCACAATAGG			GGTTTAATTA CTGTCGGTAA AGACGGCAGT	AGTGAAAAC GAGGGTGTGA	TCGCAGGCA AAAAATCACC	CCGCGCCTGA	GGTAACATTA	TGCTGATTCT	AAGAGGGTGA	GCTAAAGGCG GCAAGCTGAT	CATTAAAAAC AGGTGCAGTT	GCGGTGACGA	ACCTCTTTAG AAAAAGGCTC AACCATCAAT	AAGAAAAAGG CGGACGCGCT ATTGTGTGGG GCGATATTGC GTTAATTGA
CCCAATTAAA	CCAAATGGTA	TACGGCTTCT	TCACCTTCGA	GGTTTAATTA	AGTGAAAAAC	TCGCAGGGCA	TACAGCATTG	TGCCAAAGGC	GTAAACTTTC	CTTTCCGCCA	AAATCAGCAA	CATTAAAAAC	ACTTACCTTG	AGCAAAGAAA	AAGAAAAAGG
751	801	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	451	.501

GGCAATATTA ACGCTCAAGG TAGTGGTGAT TGTGGAGACG TCGGGGCATG ATTTATTCAT ACGCCAAAGA GTGGTTGTTA GACCCGGATA
GGCAATATTA TGTGGAGACG ACGCCAAAGA ACAGCAGCGCC GAATAGTGCC GCTAATCAAC CTTAACTTTA CTTAACTTTA ACGATATTTA TCAGGCGGCT TCAGGCGGCT TCAGGCGCT TCAGGCGCT CTTAAATTTA CACCACTAAA

2351					
1	ITSTEATIO		ICCGAGAGIG GCGAGTTTAA CCTCACTATT GACTCCAGAG	CCTCACTATT	GACTCCAGAG
2401	GAAGCGATAG		CTTACCCAGC	CTTATAATTT	CTTATAATTT AAACGGTAA
2451	TCATTCAACA	AAGACACTAC	CTTTAATGTT		
2501	CTTTGACATC	AAGGCACCAA			ACTUTE A THE
2551	ACGCATCATT		TAATGGAAAC ATTTCAGTTT		GACTOTTO
2601	TTCACACTTC		TCGCCTCATC CTCTAACGTC	CAAACCCCCG	GTGTACTANA
2651	AAATTCTAAA	TACTTTAATG	TTTCAACAGG	GTCAAGTTTA	GTCAAGTTTA AGATTTA
2701	CTTCAGGCTC	AACAAAAACT	GGCTTCTCAA	TAGAGAAAGA	4/ ************************************
2751	AATGCCACCG	GAGGCAACAT	AACACTTTTG	AACACTTTTG CAAGTTGAAG GCACCAACC	8 2000000000000000000000000000000000000
801	AATGATTGGT	AAAGGCATTG	TAGCCAAAAA	TAGCCAAAA AAACATAACC	
851	GTAACATCAC	CTTTGGCTCC	CTTTGGCTCC AGGAAAGCCG TAACAGAAAM	TAACACACAT	
106	GTTACTATCA	ATAACAACGC	ATAACAACGC TAACGTCACT		CGAAGGCAAT
951	CAACCATCAA	AAACCTTTAA	CTD THOMPS AND		CGGA'I'I'I'I'GA
0.01			WWW.	AGATGTCATC	ATTAATAGCG
٦ ٥ ٥	GCAACCT"I'AC	CGCTGGAGGC	AATATTGTCA	ATATAGCCGG	AAATCTTACC
051	GTTGAAAGTA	ACGCTAATTT	CAAAGCTATC	ACAAATTTCA	СТТТТААТСТ
101	AGGCGGCTTG	TTTGACAACA	AAGGCAATTC AAATATTTCC	AAATATTTCC	ATTGCCAAAG
151	GAGGGGCTCG	CTTTAAAGAC	CTTTAAAGAC ATTGATAATT CCAAGAATTT AAGCATCACC	ССААВААТТТ	AAGCATCACC

FIG. 1E

						5/	68								
ATATAACCAA	ACTGAAATGC	GATTTCTTCT	GTGTTGATGG	ACCATTAAAA	TTTCAATAAA	GTAACACCAA	CAGGTTAAAG	CAGCAAAGTG	ACAATAATGC	AATATTACTT	TACCACTAAA	TAACCGCTCA	TCTGTAACAC	GGGCAACACC	CAGGCTCTAC
CCGCACTATT ATAAGCGGCA ATATAACCAA	AGGTAGTGAT	GTAATCTCAC	ATATTACCAA ACAGATAACA ATCAAGGCAG	TGCCAATCTA	ATATTTCAGG	TTAACTATTG	AACCTTTAAC	TGACACTACA	GATAGCAGTG	AGTAAACAAC	TCTGCGACAA GTGGAGAAAT	AACGTGGAGA	CAGCTCTGGC	CTTGCTGTAA GCAATATTTC GGGCAACACC	CTGCAAATAG CGGTGCATTA ACCACTTTGG
CCGCACTATT	TTACGAACGA	CAAAAAGAAG	ACAGATAACA	GATTCAGACG CGACAAACAA	CAAGACCTAA	TGGTAGTGAT	CCAAAAAAGT	CTCTGCTGAC GGTCACAAGG	GTAGTAATAA CAACACTGAA GATAGCAGTG	AAAATGTAAC	TCTGCGACAA	CCATTAACGC AACCACTGGT AACGTGGAGA	GAATTGAGTC	CTTGCTGTAA	CGGTGCATTA
ACCAACTCCA GCTCCACTTA	GATTTAAATA	CGATGTCTCG	ATATTACCAA	GATTCAGACG	GAAATTAACG	CAGCTAAAGA	GGTACTAATG	CTCTGCTGAC	GTAGTAATAA	ATCGATGCAA	AGTGAGCATC	CCATTAACGC	ATCCTAGGTG	CGAGGGCGCT	CTGCAAATAG
ACCAACTCCA	TAAAAACGGT	AAATTGGCGG	GACAAAATCA	GGAGAATTCC	CCAAAGAATT	GCAGAGATTA	TAGTGCTGAT	ATTCAAAAT	GAAACATCCG	CGGCTTAACT	CTCACAAAGC	ACAGGTACAA	AACAGGTAGT	TTACTGCAAC	GTTACTGTTA
3201	3251	3301	3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901	3951

AATTAAAGGA ACCGAGAGTG TAACCACTTC AAGTCAATCA GGCGATATCG

							6/	68								
DOTATION COCAMINATOR	TTAAAGCAAC CGAAAGTTTA	AGGCTAACGT	4 A T D D D D D D D D D D D D D D D D D D				CAATGTGACA	AAGGGTTCAA ACATTAATGC 0					のつつなってないこと	ALAIDDOODA A A A A A A A A A A A A A A A A A	GGAGTAAGTC	TACACAAAAT
	TTAAAGCAAC	ACAACAGGCG	GATTTCCGGT	TTGGGAATGG	ACATCATCGG	CAAGGGTCAG	TTAATGCCGC	AACTACCGTG AAGGGTTCAA	AGACGCTGAG	CAACCAACC	GTGAACATCA	АААААСССТ	AATACATTCA			
	TTCTGGTGGC ACAGTAGAGG	CCAATTCAAA AATTAAAGCA ACAACAGGCG	TTGGTGGTAC		AACCTTAACT	TTACTTCAGC	GCAGGAAGTA	AACTACCGTG	TTAACGCAAA	GTGGTAAATG			ATTGATGTGA	TGAAGCGAAA CGCATCCTTG	GAGAAGCGTT	
			GTGCA ACAGGTACAA	AAACGCTGGC	AATGCGACAG AAGGAGCTGC AACCTTAACT	AGTTCACACA	TGGTAGCGTT	CAGGCACTTT	ACCTTGGTTA	TAACCACACA	TCGCGACAAC	AATGGATTAA	TACTGTTAAA AGGCGTTAAA	ATGAAGTAAT	GATGAAGAAA GAGAAGCGTT	TATTGAGCCA AATAATACAA
	GCGGTACGAT	ACCACTCAAT	AACAAGTGCA	ATGTTACGGC	AATGCGACAG	TACCGAAGCT	CAGCTCAGGA	CTAAATACTA	AACCAGCGGT	CAGCATTGGG	GGCAGCGTAA	AATCACAATA	TACTGTTAAA	GCAAGCGTAG	AGATTTATCT	CTGTACGTTT
	4051	4101	4151	4201	4251	4301	4351	4401	4451	4501	4551	4601	4651	4701	4751	4801

7/68

FIG. 1G

			ATTATG	ACAGGTTATT ATTATG	5101
AGTATTTTA	GCTTTACCCA TCTTGTAAAA AATTACGGAG AATACAATAA AGTATTTTA	AATTACGGAG	TCTTGTAAAA	GCTTTACCCA	5051
TTCAGTACGG	AGTCATTTTA TTTTCGTATT ATTTACTGTG TGGGTTAAAG TTCAGTACGG	ATTTACTGTG	TTTTCGTATT	AGTCATTTTA	5001
CCTGCAATGA	ACGGGCGGTA GCGGTCAGTA ATTGACAAGG TAGATTTCAT CCTGCAATGA	ATTGACAAGG	GCGGTCAGTA	ACGGGCGGTA	4951
ATCGCTGATA	GTGTTTCTCA AACAGTGATG GCGCGACGGT GTGCGTTAAT ATCGCTGATA	GCGCGACGGT	AACAGTGATG	GTGTTTCTCA	4901
AAGGCAGGGC	GAATITIGCAA CCAGACCATT AAGTCGAATA GTGATTITCTG AAGGCAGGGC	AAGTCGAATA	CCAGACCATT	GAATTTGCAA	4851

FIG.2A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN

MNKIYRLKFS KRLNALVAVS ELARGCDHST EKGSEKPARM KVRHLALKPL

8/68 DSNGQVFLIN DKALAEIVNH IIRNSVDAII IDLSGKEGGE RNQGKLSADS VSKDKSGNIV ISDIINPTIT IVWGDIALID AIVDAKEWLL DFDNVSINAE LKKGTFVNIT KGSNQVITGQ GTITSGNQKG FEGTLNISGK VNISMVLPKN DTRGANLTIY ISVSGGGSVD LTQPYNLNGI ISLLAGOKIT LQGMDVVHGT ATMQVDGNKT NQISQLKGIL ARNFTFEQTK GKNGIQLAKK TSLEKGSTIN VSGKEKGGRA DKVTLKTGAV TLTNTTLESI EINNDITTGD DSRGSDSAGT SLNYASFNGN NSAVFNRVTS TLDISNENIK EGVISVNGGS GNINVRAATI GGVISAQNQQ AKGGKLMITG SGHDLFIKDN INLSNGSLTL WSEGRSGGGV ITAKQDIAFE STPKRNKEKT RTNKYAITNK SESGEFNLTI KAPIGINKYS SIPQSVLASG EMVQFLQENN IINTNGFTAS VNLIGGKVKN VNLGDIFAKG IAKTGGFVET DEYTGSGNSA ISLGAQGNIN TGSGLQFTTK TYWNLTSLNV ERNARVNFDI SAMLLSLGVT PNGITIGKDA GLITVGKDGS NWKQFNIDQN YSIAAPENEA TAGRSNTSED LSAKEGEAEI TYLGGDERGE GNINAQGSGD FRFNNVSLNG ANQRIYVNSS SGGWVDVHKN ESGYDKFKGR SFNKDTTFNV 51 101 151 201 251 301 351 401 451 501 551 601 651 701

FIG. 2B

	NNTITVDTQN	GVSAVRFIEP IADNGR	KILEKVKDLS DEEREALAKL GVSAVR VISEGRACFS NSDGATVCVN IADNGR	KILEKVKDLS VISEGRACFS	ASVDEV1EAK EFATRPLSRI	1451
	IDVKYIQPGI	INTVLLKGVK	NGTNIISKNG	VNITGDLITI	GSVIATTSSR	
	VVNATNANGS	LNGAALGNHT	TLVINAKDAE	KGSNINATSG	LNTTGTLTTV	
	AGSINAANVT	SSHITSAKGQ VNLSAQDGSV	SSHITSAKGQ	TSSGKLTTEA	NATEGAATLT	
	DLTVGNGAEI	NTVNVTANAG	TGTIGGTISG	TTGEANVTSA	TTQSNSKIKA	1251
	TVEVKATESL	GDIGGTISGG	TESVTTSSQS	TTLAGSTIKG	VTVTANSGAL	1201
	LAVSNISGNT	SVTLTATEGA	ILGGIESSSG	NVEITAQTGS	TGTTINATTG	1151
/68	SATSGEITTK	NITSHKAVSI	IDAKNVTVNN	DSSDNNAGLT	ETSGSNNNTE	1101
9,	GHKVTLHSKV	QVKDSKISAD GHKVTLHSKV	GTNAKKVTFN	LTIGNTNSAD	AEITAKDGSD	1051
	QDLNISGFNK	TIKTKELKLT	DSDATNNANL	IKAGVDGENS	DKINITKQIT	1001
	QKEGNLTISS	TEMQIGGDVS	ISGNITNKNG DLNITNEGSD	ISGNITNKNG	TNSSSTYRTI	951
	IDNSKNLSIT	IAKGGARFKD	FDNKGNSNIS	TNFTFNVGGL	VESNANFKAI	901
	NIVNIAGNLT	INSGNLTAGG	KPLTIKKDVI	LIGSDFDNHQ	VTINNNANVT	851
	RKAVTEIEGN	FEGGNITFGS	QVEGTDGMIG KGIVAKKNIT	QVEGTDGMIG	NATGGNITLL	801
	GFSIEKDLTL	RFKTSGSTKT	OTPGVVINSK YFNVSTGSSL	QTPGVVINSK	FTLLASSSNV	751

FIG. 3A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN II (HMW2)

TAAATATACA AGATAATAAA AATAAATCAA GATTTTTGTG ATGACAAACA

10 68 GGAGGGCCAA GAATGAAGAG GGAGCTGAAC TTTAATTGTT CAACTAACCT TAGGAGAAAA TTAAAAAAT TTCATCTTTA TITCATCIII CATCIIICAI CIITCAICII ICAICIIICA ATCTTTCATC TTTCATCTTT CACATGAAAT ATATATCGTC TCAAATTCAG CAAACGCCTG AATGCTTTGG TTGCTGTGTC TGAATTGGCA CGGGGTTGTG ACCATTCCAC AGAAAAGGC TTACTATCTT TAGGTGTAAC CACTTAGCGT TAAAGCCACT AGCCACTATG ACGCTATCAT CAATCTGTTT TAACCAAATC GCAGTCTATA TGCAAATATT TCTTTCATCT TTACTATCTT TAGGTGTAAC ATCTATTCCA GTAATAAAAC CATTATCCGC AACAGTGTTG TACACGGCAC CAATTTAACA TCGACCAAAA TGAAATGGTG AAGAAAACAA CAACTCCGCC GTATTCAACC GTGTTACATC AGTATAAATC CGCCATATAA AATGGTATAA TAGCAAGCGG CTTACAAGGA ATGGATGTAG TTCATCTTTC GATGAACCGA GGGAAGGGAG ACAATTACAA CACCTTTTTT GATAAAGTAA ATCTTTCATC TCTTTCATCT GAACGCAAAT TATGAACAAG TTCCGCTATG TTCCGCTATG CAAGTAGATG TAATTGGAAA 51 101 151 201 251 301 351 401 451 501 551 601 651 701

FIG. 3B

AICACAATAG GTAAAGACGC AATTATTAAC ACTAATGGCT TACGCTAGAC ATTTCTAACG AAAACATCAA GGCGCGTAAT	CATCAA GGCGCGTAAT		TTCACCTTCG AGCAAACCAA AGATAAAGCG CTCGCTGAAA TTGTGAATCA	TGTAAATCTT ATTGGTGGCA	ATGGTGGCAG CATTTCTTTA	ATAATAAACC CAACCATTAC	GGTCAATCTG GGCGATATTT $^{\circ}_{\mathfrak{D}}$	CTGCCACTAT TCGAAACCAA	AAAGCG GCAATATTGT	TGGCGGTGTA ATTTCCGCTC	TGATTACAGG CGATAAAGTC	TCAGGTAAAG AAGGGGGAGA	GGCGGTGACG AGCGCGCGA AGGTAAAAAC GGCATTCAAT	CATCAA TGTATCAGGC	TATTGTGG GGCGATATTG CGTTAATTGA
	THE COCHOUNTS		AGATAAAGCG CTCG	ACTGTCGGTA AAGACGGCAG TGTA	ATTAGCGTAA	CTCGCAGGGC AAAAATCAC CATCAGCGAT ATAA	AAAATGAAGC GGTC	AATGTCCGTG CTGC	TGTAAGCAAA GATAAAAGCG	AAGCGGAAAT TGGC	AGCTAAAGGC GGCAAGCTGA TGAT	TATCGACCTT	AGCGCGCGA AGGT	AACCTCTTTA GAAAAAGGCT CAACCATCAA	TATTGTGTGG GGCG
AICACAAIAG		TACGCTAGAC	AGCAAACCAA	ACTGTCGGTA	CGAGGGTGTG	AAAAAATCAC	GCCGCGCCTG	CGGTAACATT	CTGCTGATTC	AAAGAGGGTG	AGCTAAAGGC	CAGGTGCAGT	GGCGGTGACG	AACCTCTTTA	AAAGAAAAAG GCGGACGCGC
	1991661	TTACGGCTTC	TTCACCTTCG	CGGTTTAATT	AAGTGAAAAA	CTCGCAGGGC	TTACAGCATT	TTGCCAAAGG	GGTAAACTTT	TCTTTCCGCC	AAAATCAGCA	ACATTAAAAA	AACTTACCTT	TAGCAAAGAA	AAAGAAAAG
0	TOS	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501

E	1 199 19. ATTTTT		#0000# #000#	ないののである。	מוספסע ש		6 でない止止さ		ע מידידידים	שטוווו	2000 AT AT	ののなっとい		בסביבי	CAGTG)
יניטלא אמי	AA TGCA	מבטבי פעו	מפטט טב	AA AACAI	A CAATG	AC ATOGO	GG AGGCC	CA TTTA	г М. С.С.Т.Т.	CAPAD SE	AA CCATT	AC GGAAC	CA CAATC	AA CTACG	G AACGT	
タサンむつけるけ	TTGACAGO	GATCTAAC	TGATGAAT	GCGAACTC	AACGCCTGG	CTCAATCA	AGCGTGGC	AATTTAAC	GCTTGATC	GTGGAAAT	GGCACTGT	ATCTTTAAAC GGAACGGGTA		ATTAACCAA	TTCGCACTC	
GTAGTGGTGA	TATTTATCCA TTGACAGCAA TGCAATTGTT	AGTGGTTGCT AGACCCTGAT GATGTAACAA	CGCAATAATA CCGGTATAAA TGATGAATTC CCAACCCA	AAAAAAATA	TATCTGAAA	CCGTTAATAG	AGTAAAGGTC	TAAAGGCGGA AATTTAACCA TTTATTCTGG	AAAATATTAC	GCTTTTGAAG	TGTCGCCCAG GGCACTGTAA CCATTACAGG	CTAACAACGT	TCAGTGAATA	GAATATAACA	CCAGCCATGA	
CGGCAATATT AACGCTCAAG GTAGTGGTGA TATCGCTAAA ACGCTCAAG	ATCGGGGCAT			CCGGTGAAGC AAGCGACCCT AAAAAAATA GCGAACTCAA AACAACCTA	ACCAATACAA CTATTTCAAATTATCTGAAA AACGCCTGGA CAATGAATAT	AACGGCATCA AGAAAACTTA CCGTTAATAG CTCAATCAAC ATCGGAAGCA	AATTCTCCAT AGTAAAGGTC AGCGTGGCGG AGGCGTTCAC		GATGTTCATA AAAATATTAC GCTTGATCAG GGTTTTAA	ATATTACCGC CGCTTCCGTA GCTTTTGAAG GTGGAAATAA CAAAGCAACA	GACGCGCAA ATGCTAAAAT	AGAGGGAAAA GATTTCAGGG	TATCATTTCA	ACATATCTGG GAATATAACA ATTAACCAAA CTACGAGAAA	TATTGGCAAA CCAGCCATGA TTCGCACTGG AACGTCAGTG	() () () () () ()
CGGCAATATT	TTGTGGAGAC	AAAACAAAAG	AGACCCCCTT	CCGGTGAAGC	ACCAATACAA	AACGGCATCA	ACTCCCACTT	ATTGATGGAG	CGGATGGGTT	ATATTACCGC	GACGCGGCAA	AGAGGGAAAA	AAGGTCTGAA	GGCACAATTA	GAACACCTCG	
1551	1601	1651	1701	1751	1801	1851	1901	1951	2001	2051	2101	2151	2201	2251	2301	2351

FIG.3D

						13	/6	8							
CAGGGGTGAA	GAAGGAGCGA	AAGCAAACCT	GGGGCTCTGT	GAGTTAAAAA	AAATTCCCAT	CCATAAATGC	TTTTATGACG	CATTCTGGGC	TTACGGGGAA	AATAACGCCC	CAGCTTGCTC	TTAAAGGCAA	AGAGATACCC	AATTAATATA	GTGATTTAAA
AGCAATAGCA AAGGCTTAAC AACACAGTAT AGAAGCTCTG CAGGGGTGAA	CAATCTCAAA GAAGGAGCGA	ACATGAACAC AAGCAAACCT	CAATATCACA GCCACTGGTG	ATATATGCCA ACCATTCTGG CAGAGGGGCT GAGTTAAAAA	ATTTTACCTT	TAAAATCAAC AAAGACTTAA	GAAAGATGAT	ACAACATATC	AGCAGCAGCA	GCTAGAAGCC AATAACGCCC	TAAAACTTGG	AACTGGCGAA AATGCAGATA	CCACTTTTAA AGGAAAGACT	GCACTGCCGA	TGGTAAAACT TGGCAATGTT ACCAATGATG GTGATTTAAA
AACACAGTAT	GTAAATGGCA ACATGTCATT	CAAATTAAAA CCAAACGAGA	CAATATCACA	ACCATTCTGG	AACGGCGCTA	TAAAATCAAC	TCAGACAGAC	CAATGCCATC AATTCAACCT	CCCTTGGTGG ACAAACTCA AGCAGCAGCA	CAAATGTTAC	GATAGAGTTA	AACTGGCGAA	CCACTTTTAA	ACCAATAATG	TGGCAATGTT
AAGGCTTAAC	GTAAATGGCA	CAAATTAAAA	GGTTTTTAGC	ATATATGCCA	TAATATCTCT	ATGACGCTTT	AATTTCAGCC	CAATGCCATC	CCCTTGGTGG	GAGAAAGCAG	AAACATAAGG	GTTTAAGTTT	TCAGAAAGCG	CGGCAATTTT	TGGTAAAACT
AGCAATAGCA	TTTTAACGGC	AAGTTAATTT	TTACCAATTC	TTTTTTGAT	TGAGTGAAAT	GITCGCGGCG	AACCAATTCA	GGTACGCACG	GGTAATGTCA	TATTACTATC	CTAATCAGCA	GTTAATGGGA	TCTCACTATT	TAAATATCAC	ACACAAGGAG
2401	2451	2501	2551	2601	2651	2701	2751	2801	2851	2901	2951	3001	3051	3101	3151

FIG. 3E

								14/	68							
	CI CACUCIARAC GCARCAAG AAGCATCATC GGCGGAGATA	TAATGATGCT	ACCTCACGAT	AAAAAGGEA	はこのないであること	THECACTER	TAGAGATTTA ACTATTCCC				AGTABACAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			AAATTGAAGO	ATTGGCGGTA
	AAGCATCATC	TTAAATATTA CAGACAGTAA	TATCTCGCAA AAAGAAGGCA	TCACCAAACA GATAACAATC AAAAAGGGTA	TCAGATGCGA CAAGTAATGC CAACCTAAACT	GACCTAAGTA	TAGAGATITIA	GGTGCCGAAG CCAAAACAGT	CTCTGCTGAC GGTCACAATG	GCAGCAATGG CGGACGTGAA AGCAATAA	ATTACTGCAA AAAATGTAGA AGTAAAAAAAAAAAAAAA	CTCTCAAAAC AGTAAATATC ACCGCGTCGG AAAAGGTTAAC	TTAACGCAAC AAATGGCAAA GCAAGHAHAA	TTTCCGGTAA CACGGTAAGT		GAGGCTAATG TAACAAGTGC AACAGGTACA ATTGGCGGTA
() () () () () () () () () ()	GCAACCAAAG			TCACCAAACA	TCAGATGCGA	ATTGACAGAA	CCAAAGATGG	GGTGCCGAAG	CTCTGCTGAC	GCAGCAATGG	ATTACTGCAA	AGTAAATATC	TTAACGCAAC	AGCGGTACGA	AACCACTAAA	TAACAAGTGC
\(\frac{1}{2}\)	CACGCIAPAC	TAATICAACAA AAAAGGAAGC	TTGGCGGCAA	TTCTTCCGAT AAAATTAATA	TTGATGGAGA GGACTCTAGT	ATTAAAACCA AAGAATTGAA ATTGACAGAA GACCTAAGTA	CAATAAAGCA GAGATTACAG	ACAGTAATGA CGGTAACAGC	ATTCAAAAAT	TAGCAAAGTG AAAACATCTA	ACAACGATAC CGGCTTAACT	CTCTCAAAAC	CACCACAGCA GGCTCGACCA		CTGGTGATTT	GAGGCTAATG
CATTACCACT		TAATCAACAA	GAAATCCAAA	TTCTTCCGAT	TTGATGGAGA	ATTAAAACCA	CAATAAAGCA	ACAGTAATGA	AATGTTAAAG	TAGCAAAGTG	ACAACGATAC	GATATTACTT	CACCACAGCA	CAACCAAAAC AGGTGATATC	GTTAGCGCGA	GAAATCGGGT
3201	2251	TC7C	3301	3351	3401	3451	3501	3551	8601	651	101	751	801	851	901	951

FIG. 3F

TATTTACTGT	ATTTTCGTAT	AAGTCATTTT	TCCTGCAATG	GTAGATTTCA	4801
AATTGACAAG	CGTAGTCAGT	GATGGACAGC	TGTTGCTGAC	TATGTACCAA	4751
GGCGCACGAG	AAGTGGTAAT	CGTGTTTCTC	GAAGGTAAGG	GATAATTTCT	4701
CAAGTCAAGT	ACCAGACCGT	TGAATTTACA	ATACACAAAA	ATTACAGTCA	4651
AAATAATACA	TTGTTGAGCC	GCTGTACGTT	TGGTGTAAGT	TAGCTAAACT	4601
AGAGAAACAT	TGATGAAGAA	AAGATTTATC	GAAAAAGTAA	ACGCGTCCTT	4551
TTGAAGCGAA	GAAGAAGTAA	AGCAAGTGTA	AGCCAGGTGT	AAATATATCC	4501
AATTGAGGTG	GAGGCAAGGA	GTGCGCTTAA	TAGAAACACT	CGAAAGATGG	4451
AATATCATTT	AAATGGGTTA	TAAACACAGT	ACTGGGGATT	TGTGAATATC	4401
CCTCAAGCAG	ACTGCGGCAA	TGGTAGTGTG	CAAGCGGCTC	GCAGTCAACG	4351
AGAAGTGAAT	GTGATAGTAC	GATGCATCAG	GCTAAATGGT	AAGATGCTAA	4301
ATTAACGCAA	CACCTTGGTT	CAACCAGCGG	GATATTAAAG	GGCAGGCTCG	4251
TAACCACCGT	ACAGGCACCT	ATTAAATACT	CTAATGTGAC	ATTAATGCTG	4201
CGCAGGAAGC	ATGGTAGCAT	TTGGCTCAGA	GGTAGACCTC	CTAAGGGTCA	4151
ATCACTTCAA	CGGTTCTAGC	CTACTGAAGC	AATACCTTGA	CGCAACAGGG	4101
CAACCTTAAC	GAAGGAGCTG	TAATGCGACA	GCGCAGAAAT	GTTGGGAATG	4051
CGATTTAACA	CAAACGCTGG	AATGTTACGG	TAATACGGTA	CAATTTCCGG	4001

15/68

16/68

FIG. 3G.

GTGGGTTAAA GTTCAGTACG GGCTTTACCC ATCTTGTAAA AAATTACGGA GAATACAATA AAGTATTTTT AACAGGTTAT TATTATG 4851 4901

BNSDOCID: <WO___9421290A1_I_>

MOLECULAR WEIGHT HIGH OF FIG. 4A. AMINO ACID SEQUENCE PROTEIN 2

/68 17 VSKDKSGNIV DFDNVSINAE KGGNLTIYSG VAQGTVTITG KVRHLALKPL DSNGQVFLIN DKALAEIVNH IDLSGKEGGE SLNGTGKGLN IISSVNNLTH NLSGTINISG NITINQTTRK TOYRSSAGVN IIRNSVDAII ISDIINPTIT IVWGDIALID YLKNAWTMNI NITATGGGSV EKGSEKPARM DKVTLKTGAV TTLTNTISN ARNFTFEOTK RNQGKLSADS TSLEKGSTIN VSGKEKGGRA AIVDAKEWLL GVQIDGDITS KARDAANAKI YISSNSKGLT SKPLPIRFLA NQISQLKGIL ISLLAGOKIT ATMQVDGNKT ELARGCDHST NSAVFNRVTS TLDISNENIK GGVISAQNQQ AKGGKLMITG SCHDLFIKDN SDPKKNSELK ILHSKGQRGG ASVAFEGGNN ETGANFTFIK LQGMDVVHGT EGVISVNGGS VNLGDIFAKG GNINVRAATI KLKPNENMNT IINTNGFTAS KRLNALVAVS SIPQSVLASG EMVQFLQENN VNLIGGKVKN GKNGIQLAKK DEFPTGTGEA LDQGFLNITA SHWINSALINL SINIGSNSHL NLKEGAKVNF IAKTGGFVET MNKIYRLKFS NWKQFNIDQN GLITVGKDGS YSIAAPENEA LSAKEGEAEI PNGITIGKDA TYLGGDERGE DPLRNNTGIN GWVDVHKNIT EGKDFRANNV SAMLLSLGVT GNINAQGSGD TASRKLTVNS NTSYWOTSHD FNGVNGNMSF 451 101 151 201 251 301 351 401 501 551 601 651 701

						18	/68	ı						
KTNKDI.TINA	MULTERINIO					SADGHMATTA			NATEGRAPHE	1,NTPGT1,TPT/7		A SUTENITOR	EFTTRESCI	> X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
NISNGANFTL NSHVRGDDAF KINKDI,TINA	ILGGNVTLGG		INITOGVVKI		DSSSDATSNA NLTIKTKELK	TFNNVKDSKI	GLTITAKNVE VNKDITSLKT	TVSVSATVDL		AGSINAANVT I,NTTGTI,TTV	EVNAVNASGS	IEVKYTOPGV ASVFFVTFA	NOLILAMION	i.
NISNGANFTL	KDDFYDGYAR NAINSTYNIS		GKTRDTLNIT GNFTNNGTAE	KGSLNITDSN		GNSGAEAKTV	GLTITAKNVE	GDISGTISGN	NTVNVTANAG	VDLLAQNGSI				VADDGQP
RGAELKMSEI			GKTRDTLNIT		ITIKKGIDGE	RDLTIGNSND	GRESNSDNDT	NGKASITTKT	TGTIGGTISG NTVNVTANAG	GSSITSTKGQ VDLLAQNGSI	TLVINAKDAK LNGDASGDST	NGLNIISKDG	DEERETLAKL	SGNGARVCTN
FFDIYANHSG	TNSNFSLRQT	ITIEKAANVT	LTISESATFK	ITTHAKRNQR	SSDKINITKO	NKAEITAKDG	SKVKTSSSNG	TTAGSTINAT	KSGEANVTSA	ATGNTLTTEA	AGSDIKATSG	VNITGDLNTV NG	RVLEKVKDLS	IISEGKACFS
751	801	851	901	951	001	051	101	151	201	251	301	351	401	151

FIG.5A.

F16.5B.

shaded boxes indicate the locations of the structural genes. In the recombinant phage, transcription proceeds from left to right for the HMW1 gene and from right to left for the HMW2 gene. The methods used for construction of the plasmids shown are (A) Partial restriction maps of representative HMW1 and HMW2 recombinant phage and of HMW1 plasmid subclones. The described in the text. (B) Restriction map of the T7 expression vector pT7-7. This vector contains the T7 RNA polymerase promoter 女10, a ribosome - binding site (rbs), and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (37).

FIG. 6A

	ACAGCGI'I'CI'	CTTAATACTA	ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA	ACAATAAAAT	ATGACAAACA	
ACA	ACAATTACAA	CACCTTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAATA	
GTA'	TAAATCC	GTATAAATCC GCCATATAAA ATGGTATAAT	ATGGTATAAT	CTTTCATCTT	TCATCTTTCA	
$ ext{TCT}$	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	TTTCATCTTT	CATCTTTCAT	
CTT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	ACATGAAATG	
ATG	ATGAACCGAG	GGAAGGGAGG	GAGGGCCAAG	AATGAAGAGG GAGCTGAACG	GAGCTGAACG	
AAC	AACGCAAATG	ATAAAGTAAT	TTAATTGTTC	TTAATTGTTC AACTAACCTT	AGGAGAAAAT —	21/
ATG	ATGAACAAGA	TATATCGTCT	CAAATTCAGC	AAACGCCTGA	ATGCTTTGGT	68
TGC	TGCTGTGTCT	GAATTGGCAC	GGGGTTGTGA	CCATTCCACA GAAAAAGGCA	GAAAAAGGCA	
၅၁၅	GCGAAAAACC	TGCTCGCATG	TGCTCGCATG AAAGTGCGTC	ACTTAGCGTT	AAAGCCACTT	
TCC	TCCGCTATGT	TACTATCTTT	AGGTGTAACA	TCTATTCCAC	AATCTGTTTT	
AGC	AGCAAGCGGC	TTACAAGGAA	TGGATGTAGT	ACACGGCACA GCCACTATGC	GCCACTATGC	
AAG	AAGTAGATGG	TAATAAAACC	TAATAAAACC ATTATCCGCA ACAGTGTTGA	ACAGTGTTGA	CGCTATCATT	
AAI	AATTGGAAAC	AATTTAACAT	CGACCAAAAT	CGACCAAAAT GAAATGGTGC AGTTTTTACA	AGTTTTACA	
AGA	AGAAAACAAC	AACTCCGCCG	TATTCAACCG	TGTTACATCT	AACCAAATCT	
CCC	CCCAATTAAA	AGGGATTTTA	AGGGATTTTA GATTCTAACG GACAAGTCTT	GACAAGTCTT	TTTAATCAAC	

FIG. 6B

							22/	68							
СТААТССТ	はいるなまないないが						2	のいっというというというというというというというというというというというというというと	40H04445	ACCCCCACA	GCATTCAATT	GTATCACCO	GTTAATTGAC	CCGGTGGTT	GCAATTGTTG
CCAAATGGTA TCACAATAGG TAAAGACGCA ATTATTAACA CTAATGGCTT	TTTCTAACGA AAACATCAAG GCGCGTAAATT	TCGCTGAAAT			TAATAAACCC AACCATTACT	GTCAATCTGG GCGATATTTTTTTTTTTTTTTTTTTTTTT	TGCCACTATT	GGCGGTGTAA	AAATCAGCAA GCTAAAGGCG GCAAGCTGAT GATTACAGGC	CAGGTAAAGA AGGGGGACAA	GCGCGCGAA GGTAAAACG GCATTCAATT	AACCATCAAT			TCGGGGCATG ATTTATTCAT CAAAGACAAT GCAATTGTTG
TAAAGACGCA	TTTCTAACGA	GATAAAGCGC	AGACGGCAGT	TTAGCGTAAA	ATCAGCGATA	AAATGAAGCG	ATGTCCGTGC	AGCGGAAATT	GCAAGCTGAT	ATCGACCTTT	GCGCGGCGAA	ACCTCTTTAG AAAAAGGCTC AACCATCAAT	ATTGTGTGGG	TAGTGGTGAT	ATTTATTCAT
. TCACAATAGG	ACGCTAGACA	TCACCTTCGA GCAAACCAAA GATAAAGCGC	GGTTTAATTA CTGTCGGTAA	AGTGAAAAC GAGGGTGTGA	TCGCAGGGCA AAAAATCACC ATCAGCGATA	TACAGCATTG CCGCCCTGA AAATGAAGCG	TGCCAAAGGC GGTAACATTA	AAGAGGGTGA	GCTAAAGGCG	CATTAAAAAC AGGTGCAGTT	GCGGTGACGA	ACCTCTTTAG	CGGACGCGCT	ACGCTCAAGG	TCGGGGCATG
CCAAATGGTA	TACGGCTTCT	TCACCTTCGA	GGTTTAATTA	AGTGAAAAAC	TCGCAGGGCA	TACAGCATTG	TGCCAAAGGC	CTTTCCGCCA	AAATCAGCAA	CATTAAAAAC	ACTTACCTTG	AGCAAAGAAA	AAGAAAAAGG	GGCAATATTA	TGTGGAGACG
801	851	901	951	1001	1051	1101	1151	1251	1301	1351	1401	1451	1501	1551	1601

23 / 68

FIG. 6C

CAAGAGTCAA	GAACGAAATG	CTTTAATGTT	AAGACACTAC	TCATTCAACA	2451
AAACGGTATA	CTTATAATTT	CTTACCCAGC	TGCAGGCACA	GAAGCGATAG	2401
GACTCCAGAG	CCTCACTATT	CAAAGGACGC	ATGATAAATT	GAAAGTGGAT	2351
ATTTAACCTC	ACTTACTGGA	CAAAGGACGC	ATGATAAATT	GAAAGTGGAT	2301
ACCTAAAAAT	CAATGGTTTT	GTGAACATCT	TTCAGGGAAA	CTTTAAATAT	2251
TTTGAAGGGA	CACAAATAAA	AATACGCTAT	AGAACCAATA	CACCACTAAA	2201
GACTGCAATT	ACTGGCAGCG	TCTAAACGGC	ATAATGTCTC	ТТТАСАТТТА	2151
TCAAAAAGGT	CCTCAGGCAA	GGGACTATTA	TACAGGTCAA	ACCAAGTCAT	2101
AAAGGAAGCA	CGCCTTTGAG	AACAAGATAT	ATTACAGCTA	TAACATAAAC	2051
GGGCGCAAGG	ATCTCACTCG	TCATAAAAAT	GGGTTGATGT	TCAGGCGGCT	2001
AACAATTTAC	GTGCAAACTT	GATACCAGAG	CACCGGTGAT	ACGATATTAC	1951
GAGATTAACA	TGGCGGCGTT	GTCGGAGCGG	TGGAGTGAGG	CTTAACTCTT	1901
CCAATGGCAG	ATTAATTTAT	CAATAGCTCC	GCATCTATGT	GCTAATCAAC	1851
TAACATCACT	GTACCTTTGT	CTAAAAAAAG	TGAGAGTATA	ACACAACTCT	1801
ACATTAACAA	AGAAAAGACA	AACGAAACAA	AGCACCCCAA	GAATAGTGCC	1751
CGGGATCCGG	GATGAATACA	TTCAGAAGAC	GCAGCAATAC	ACAGCAGGAC	1701
TAATGCAGAA	ATGTATCTAT	GACCCGGATA	GTGGTTGTTA	ACGCCAAAGA	1651

,						24	/68	}							
AGTTTGAATT	CGGGAGGGG GAGTGTTGAT	GTGTAGTTAT	AGATTTAAAA	TTTAACTTTA	GCACCGATGG	TTTGAAGGAG	CGAAGGCAAT 9	CGGATTTTGA	ATTAATAGCG	AAATCTTACC	CTTTTAATGT	ATTGCCAAAG	AAGCATCACC	ATATAACCAA	ACTGAAATGC
AAGGCACCAA TAGGGATAAA TAAGTATTCT AGTTTGAATT	CGGGAGGGGG	CAAACCCCCCG	GTCAAGTTTA	GGCTTCTCAA TAGAGAAGA	CAAGTTGAAG	TAGCCAAAAA AAACATAACC			CTATTAAAA AGATGTCATC	GCAACCTTAC CGCTGGAGGC AATATTGTCA ATATAGCCGG AAATCTTACC	ACAAATTTCA	AAGGCAATTC AAATATTTCC ATTGCCAAAG	CCAAGAATTT	ATAAGCGGCA	TTACGAACGA AGGTAGTGAT ACTGAAATGC
TAGGGATAAA	ATTTCAGTTT	CTCTAACGTC	TTTCAACAGG		AACACTTTTG	TAGCCAAAAA	GTTTGGCTCC AGGAAAGCCG TAACAGAAAT	TAACGICACT	CTATTAAAAA	AATATTGTCA	CAAAGCTATC	AAGGCAATTC		CCGCACTATT	TTACGAACGA
AAGGCACCAA		TCGCCTCATC	TACTTTAATG	AACAAAAACT	GAGGCAACAT	AATGATTGGT AAAGGCATTG	GTTTGGCTCC	GTTACTATCA ATAACAACGC	CAACCATCAA AAACCTTTAA	CGCTGGAGGC	GTTGAAAGTA ACGCTAATTT	TTTGACAACA	CTTTAAAGAC	GCTCCACTTA	GATTTAAATA
CTTTGACATC	ACGCATCATT	TTCACACTTC	AAATTCTAAA	CTTCAGGCTC	AATGCCACCG	AATGATTGGT	GTAAGATGAG	GTTACTATCA	CAACCATCAA	GCAACCTTAC	GTTGAAAGTA	AGGCGGCTTG	GAGGGGCTCG	ACCAACTCCA GCTCCACTTA	TAAAAACGGT GATTTAAATA
2501	2551	2601	2651	2701	2751	2801	2851	2901	2951	3001	3051	3101	3151	3201	3251

3301	AAATTGGCGG	CGATGTCTCG	AAATTGGCGG CGATGTCTCG CAAAAAGAAG GTAATCTCAC GATTTCTTCT	GTAATCTCAC	GATTTCTTCT	
3351	GACAAAATCA		ATATTACCAA ACAGATAACA ATCAAGGCAG	ATCAAGGCAG	GTGTTGATGG	
3401	GGAGAATTCC	GATTCAGACG	GGAGAATTCC GATTCAGACG CGACAAACAA TGCCAATCTA	TGCCAATCTA	ACCATTAAAA	
3451	CCAAAGAATT	GAAATTAACG	CAAGACCTAA	ATATTTCAGG	TTTCAATAAA	
3501	GCAGAGATTA	GCAGAGATTA CAGCTAAAGA	TGGTAGTGAT	TTAACTATTG	GTAACACCAA	
3551	TAGTGCTGAT	TAGTGCTGAT GGTACTAATG	CCAAAAAAGT	AACCTTTAAC	CAGGTTAAAG	
3601	ATTCAAAAAT	CTCTGCTGAC	GGTCACAAGG	TGACACTACA	CAGCAAAGTG U	25
3651	GAAACATCCG	GTAGTAATAA	GAAACATCCG GTAGTAATAA CAACACTGAA GATAGCAGTG	GATAGCAGTG	ACAATAATGC 00	<i> </i> 68
3701	CGGCTTAACT	ATCGATGCAA	ATCGATGCAA AAAATGTAAC AGTAAACAAC	AGTAAACAAC	AATATTACTT	
3751	CTCACAAAGC	CTCACAAAGC AGTGAGCATC	TCTGCGACAA	GTGGAGAAAT	TACCACTAAA	
3801	ACAGGTACAA	ACAGGTACAA CCATTAACGC AACCACTGGT	AACCACTGGT	AACGTGGAGA	TAACCGCTCA	
3851	AACAGGTAGT	ATCCTAGGTG	ATCCTAGGTG GAATTGAGTC	CAGCTCTGGC	TCTGTAACAC	
3901	TTACTGCAAC	CGAGGGCGCT	CTTGCTGTAA	GCAATATTTC	GGGCAACACC	
3951	GTTACTGTTA	CTGCAAATAG	CGGTGCATTA	ACCACTTTGG	CAGGCTCTAC	
4001	AATTAAAGGA	ACCGAGAGTG	TAACCACTTC	TAACCACTTC AAGTCAATCA GGCGATATCG	GGCGATATCG	
4051	GCGGTACGAT	TTCTGGTGGC		TTAAAGCAAC	CGAAAGTTTA	

FIG. 6F.

4101

ACCACTCAAT CCAATTCAAA AATTAAAGCA ACAACAGGCG AGGCTAACGT

4951	ACGGGCGGTA	GCGGTCAGTA	ATTGACAAGG	ATTGACAAGG TAGATTTCAT CCTGCAATGA	CCTGCAATGA
5001	AGTCATTTTA	TTTTCGTATT	ATTTACTGTG	TGGGTTAAAG	TTCAGTACGG
5051	GCTTTACCCA	TCTTGTAAAA	TCTTGTAAAA AATTACGGAG	AATACAATAA	AGTATTTTA
5101	ACAGGTTATT	ATTATGAAAA	ATATAAAAAG	CAGATTAAAA	CTCAGTGCAA
5151	TATCAGTATT	GCTTGGCCTG	GCTTCTTCAT	CATTGTATGC	AGAAGAAGCG
5201	TTTTAGTAA	TTTTTAGTAA AAGGCTTTCA	GTTATCTGGT	GCACTTGAAA	CTTTAAGTGA
5251	AGACGCCCAA	CTGTCTGTAG	CAAAATCTTT	ATCTAAATAC	CAAGGCTCGC N
5301	AAACTTTAAC	AAACCTAAAA	ACAGCACAGC	TTGAATTACA	GGCTGTGCTA 0
5351	GATAAGATTG	GATAAGATTG AGCCAAATAA	GTTTGATGTG	ATATTGCCAC AACAAACCAT	AACAAACCAT
5401	TACGGATGGC	AATATTATGT	TTGAGCTAGT	CTCGAAATCA	GCCGCAGAAA
5451	GCCAAGTTTT	TTATAAGGCG	AGCCAGGGTT	ATAGTGAAGA AAATATCGCT	AAATATCGCT
5501	CGTAGCCTGC	CATCTTTGAA	CATCTTTGAA ACAAGGAAAA GTGTATGAAG		ATGGTCGTCA
5551	GTGGTTCGAT	TTGCGTGAAT	TCAATATGGC	AAAAGAAAAT	CCACTTAAAG
5601	TCACTCGCGT	GCATTACGAG	TTAAACCCTA	TTAAACCCTA AAAACAAAAC	CTCTGATTTG
5651	GTAGTTGCAG	GTTTTTCGCC	TTTTGGCAAA	TTTTGGCAAA ACGCGTAGCT	TTGTTTCCTA
5701	TGATAATTTC	GGCGCAAGGG	AGTTTAACTA	TCAACGTGTA	AGTCTAGGTT

9

5751

							20	lee								
TCTAAACGCA	GCATAGGATA	TATACCAGCA	TGCGATTAAT	AATGGAGTTA	AAAATTAATT	AAACACCCTG		GATTTAACTC ®	GGAGCGCATT	GTTTAGGGTT	TTATCGGGTC	TGTAACAGGT	GTGAGCGCGG	CGCTTTCAAA	TAATAGCGAA	CTGCGGGTTT
ATGTATTAAA TCTAAACGCA	TATGCGGTAG	CTTAAGTCTT		GCGAATCTGA	AGACCAGTTT	ATTAATCAAA CATCCGAGTT AAACACCCTG	TGCAGTATCA GGCGTAAGTG	CTTTAATATT	CTTTTGGAAT	AGCACAGCCA	TAGCAGTCAA		GGTGCAAGTG	AAAATACACC	AGTTCCGTTA	
ATGC CAATTTGACC GGACATGATG	ATCAAAATCT	TTTTATGATA AACACCAATC	TGATTCTAAT GATATCGACG	ATCTATCTCT	TTGGAATGGA	ATTAATCAAA	TGCAGTATCA	CTAAAACAAT	TTACCAGGCT	CTATCACATT	GTTGGCATTT	AGTAGCATAG	TAAATACGGC	TAAGTATGCC	GATGCAGGTC	AGATATGCAC
CAATTTGACC	TAAAAGCACC	TTTTATGATA		CAAAAGGTCA	ACATTTAACC	CTACCGCCAT	GGTGCAACGA AGAAAAATT	TGGACATATC CAATTTACCC CTAAAACAAT	ATCATTATTA CGCGAGTAAA	TTAATCGCAG	TTTGCTCAAG	ACAAGATATA	TCAGAGGCTT	CGTAATGAAT	TGCGTTTTAT	CTTACGGCGA
TTGTAAATGC	TTGACCAATG	TACTTATCCG	TGAGTTATGC	CGTAAATTAT	TTATCTCCCG	TAGGCTACAA	GGTGCAACGA	TGGACATATC	ATCATTATTA	GGCGAAACAT	GAGTCAAGAG	AGTTTACTCT	ACTTATGGCG	TCTTGTATGG	TCAGCCCTTA	AATGCTAAAA
5751	5801	5851	5901	5951	6001	6051	6101	6151	5201	5251	5301	5351	5401	5451	5501	5551

FIG. 6I

				•		29	/68	3							
GCTTTTGTTG	CAACAAAAAA	TCAGTTTCTA	GTTTATAACT	GTTTTCATCC	AAACCAAGCA	AAGCAAACCA	CAAACCAAGC AAACCAAGCA ATGCTAAAAA 🕏	CAATACAAGG	ACAAAATACG	TGCAAATACT	CATGTCGCCA	TTTGGAAAAA	ACGCACCTGC	GCCACTCGTC	GGCAATTTCC
AAGCTTAGAT	ATTTGAATGG	AGATTAACAT	CCGCCTACCA	ACGCAACCCT	CAAACCAAGC	CAAGCAAACC	AAACCAAGCA	CATACCATGG	AAAGTGTTCC	CAAACTTCCC	CCTGGAACAA	TAATGGCGAT	ATTGAATTTG	AATTCATTT	ACCCCGAATT
ACCTCTCCTA CACAAAACTT	TGCAAATGCC AATAGTGACA	CTTCTGGGGT	GGTAAGCGTT	TACAGTCTAT	GCAAACCAAG		CAAACCAAGC	AAACATACTC	TATGACAAAA GAAAATTTAC AAAGTGTTCC	AAACAACGAC	ACCTATTACG	TGCCGCGAAT	CGTTCACGAT	AAAAACTACT	CICTTTTCCG
	TGCAAATGCC	CACCTACAAC	TTAATCAACT	CCCGCCAATT	AACAAACTAA	AACCAAGCAA ACCAAGCAAA	GCAAACCAAG	TGATAAACTA	TATGACAAAA	TTGTAGAATC	CCCAAACCCA	TGAGCTTGCT	ATTTTGGAGG	TATCTACCCG AAAAACTACT	AATTACAACA
AGGCATTAAA	CTCGTCGCTT	CGCACAAGCT	ACCCTGAAAT	ATATGCTTTA	TTATATATCA	AACCAAGCAA	AGCAAACCAA	ACAATTTATA	GATTTAATAA	ACCGCTTCAC	TAAACAACCA	AAAAAGATTA	ATGGACGCTA	TCAGCTGGCA	TCGCTAATGC
6601	6651	6701	6751	6801	6851	6901	6951	7001	7051	7101	7151	7201	7251	7301	7351

FIG. 6J

						3	0/6	8							
TGACGCTGAT					TGCGTTTCAT	CCGAAATTGC W	TATATGCACT 0	TCCATTAAAC	ACCGCTACT	GTACTGCTTG	AACTTCAATG	ATGAGGGCGT	ATCACTACCA	CGAAACTTTC	TTACCACGAT
GATTAGCCTG CAACGCTGGT	CCATATTCTC	ATTTAGGAAC	CCCGAATCCA	CAGGGAATCA ACAACTTTGT	GTACTGCATC	GTGGTTTCCT AAAAACTCG	TCATGATGTA	ATGTTAAGCG	GGATGGCAAG ACCGCTACT	TGTGATGATG	GCACGCATTC	GGCTTAGGCC ATGAGGGCGT	GTTCTTTGAA	GTAAACAGTG	GCCAAGCATT GGCATGGATA TTACCACGAT
	TTAACGCAGA	GGTGGCTTTC	TTTTTACTTA	CAGGGAATCA	CGTTTTATTG	GTGGTTTCCT	CAAATATCCT	AACAAGCACG		ACGGCAAACC	TCGATTTATC	CTATTTAGTC	TGTTTGACGA	TTTTTTATCC	GCCAAGCATT
GAAGAAGGGG CATTAAAGAT	TCCCCCTACG	AGATTCCGAA	AATTCTGTAT	GCGTTATGGG	GCAGTCTTCA	TGGTTTTACA	GAATTGCCTG	TTTAGCAAAA AACAAGCACG	GCAAGCATAT	GGTAAAAAGG	TTCGGGACAT	GAGAAAAATT	GGTCGAGAAG	GGAGAGACTG	
GAAGAAGGGG	TTTTGCCTCT	ATATCAACCC	TCTATTGCTA	GAGTTTAGAT	GTTTTGCGTT	AAAAGAGCGG	TAATTTAGAT	GCAGTTATGA	GAACTTGTCC	TTACACCTTA	AACATTTTAA	ATTGCTGCTC GAGAAAATT	TGATAACATA GGTCGAGAAG	ATAATATAAT GGAGAGACTG	CAACCCGCAG TGTTCTATAT
7401	7451	7501	7551	7601	7651	7701	7751	7801	7851	7901	7951	8001	8051	8101	8151

FIG. 6K

						3	31/6	8								
GCCTTGGGTC	CGTAGAAGAT	TACGCTTACC	CAAAAAGTGG	TATTGCCGCT	AAGAAATCAG	GGACAATCAA	CTATTTAGGT 7	ATCTGGCAAT	GGTAATACTA	ATGCAAAACG	AACGCTTAGG	ATTGAATGTG	CCGTCGTTAC	ACCCTCGTCC	CGGAAGCACT	AATTTTCAAA
TCAAGCTGTA	ATTATGTCAT	GAAACCCTTT	ACTCGCCCCA	TCAATATCGG	CTAACATTGC AAGAAATCAG	TACATTTTCA TTTCGCACTT	TTATCGAAAG	TATCACGATT	GTTTCCTTTC	TAGTTGGTGT	GGTCTGTTTA	AGAAACATAT	GCCTTGAACT	TTTACAGGCG	TGAATGGAAG	TTTAAAGTAA AAGTGCGGTT
TTTTGTGAGC AACACTCGGC TTGCCCCTAT TCAAGCTGTA GCCTTGGGTC	GAATTTATTG	TTGTTTAGC	TACCATCTGC	CCTGAAGTAG	TGAATTTTTG	TACATTTTCA	GTCAAATGGT	CCACGCACCT	TACTAAATCC	ACATTAGGTT	TATTGATGAA	CCGACACACG	CATCAAGAAC	ACAAAAGCTT	ATTGGGCAAA ATACTGCTTA AGAAAACAAA	TTTAAAGTAA
AACACTCGGC	TACGCALTCT	GCAGTGAAGA	CTACCTTATG	CAGGGAAAAC	ACCACAATGA AATTAAACCC	AAAGTCAAAA	ACACCCTTAT	CTGCACATCC	TGCGATATGC	TGATATGGTT	TACATGAACA	TGGCTGATAG	AGCAGAAAAC	ATCATAGAAA ACAACGGCTT	ATACTGCTTA	TGAGTAAAA ATAACGGTTT
TTTTGTGAGC	ATCCTGCCAC	GATTATGTGG	CAAAGATGCC	ATTATGTACT	ACCACAATGA	AGATAAAGCT	CAGGCTTGAC	GACGATGCCA	ATTGCGTGAT	ACGCCATAAT	GGGGATGAAG	ACTACCAGAA	CTTTGCGTCT	ATCATAGAAA	ATTGGGCAAA	TGAGTAAAAA
8201	8251	8301	8351	8401	8451	8501	8551	8601	8651	8701	8751	8801	8851	8901	8951	9001

32 /68

FIG. 6L

TTTATAACGC	TAAAATTGTG	ACTAAAGACG	
AAA AACCTCTCAA AAATCAACCG CACTTTTATC TTTATAACGC	GC TGACAGTTTA TCTCTTTCTT AAAATACCCA TAAAATTGTG	TG GGTAATCAAA TTCAATTGTT GATACGGCAA ACTAAAGACG	
AAATCAACCG	TCTCTTTCTT	TTCAATTGTT	C
AACCTCTCAA	TGACAGTTTA	GGTAATCAAA	GCGCGTTCTT CGGCAGTCAT C
GCGTTTTAAA	TCCGGGGGG	GCAATAGTTG	GCGCGTTCTT
9051	9101	9151	9201

FIG. 7A

\leftarrow	CGCCACTICA	CGCCACTTCA ATTTTGGATT	GTTGAAATTC	AACTAACCAA AAAGTGCGGT	AAAGTGCGGT	
51	TAAAATCTGT	TAAAATCTGT GGAGAAAATA	GGTTGTAGTG	AAGAACGAGG	TAATTGTTCA	
01	AAAGGATAAA	AAAGGATAAA GCTCTCTTAA	TTGGGCATTG	GTTGGCGTTT	CTTTTTCGGT	
51	TAATAGTAAA	TTATATTCTG	GACGACTATG	CAATCCACCA	ACAACTTTAC	
01	CGTTGGTTTT	AAGCGTTAAT	GTAAGTTCTT	GCTCTTCTTG	GCGAATACGT	
51	AATCCCATTT	TTTGTTTAGC	AAGAAAATGA	TCGGGATAAT	CATAATAGGT	
01	GTTGCCCAAA	AATAAATTTT	GATGTTCTAA	AATCATAAAT	TTTGCAAGAT &	<i>33 </i>
51	ATTGTGGCAA	TTCAATACCT	ATTTGTGGCG	AAATCGCCAA	TTTTAATTCA	68
01	ATTTCTTGTA	GCATAATATT	TCCCACTCAA	ATCAACTGGT	TAAATATACA	
51	AGATAATAAA	AGATAATAAA AATAAATCAA	GATTTTTGTG	ATGACAAACA	ACAATTACAA	
01	CACCTTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAAAT	AGTATAAATC	
51	CGCCATATAA	AATGGTATAA	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	
01	TTTCATCTTT	CATCTTTCAT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	
51	TTCATCTTTC	ATCTTTCATC	TTTCATCTTT	CACATGAAAT	GATGAACCGA	
01	GGGAAGGGAG	AG GGAGGGCAA	GAATGAAGAG GGAGCTGAAC GAACGCAAAT	GGAGCTGAAC	GAACGCAAAT	
51	GATAAAGTAA	TTTAATTGTT	CAACTAACCT	TAGGAGAAAA	TATGAACAAG	

FIG. 7B

801

ATATATCGTC TCAAATTCAG CAAACGCCTG AATGCTTTGG TTGCTGTGTC

					3	4/6	88							
AGCGAAAAAC	TTCCGCTATG		AAGAAAGAA	TAATTGGAAA	AAGAAAACAA	TCCCAATTAA	CCCAAATGGT	いからいっている。	THUNCATT	сестесться СССТТТААТТ	AAGTGAAAA	CTCGCAGGG	TTACAGCATT	TTGCCAAAGG
AGAAAAAGGC	TAAAGCCACT	CAATCTGTTT	CAGTTTTAC AAGAAAACAA	ACGCTATCAT	CAGTTTTTAC	TAACCAAATC	TTTTAATCAA CCCAAATGGT	ACTAATGGCT	GGCGCGTAAT	TTGTGAATCA	ATTGGTGGCA AAGTGAAAA	CATTTCTTTA	CAACCATTAC	GGCGATATTT
ACCATTCCAC	CACTTAGCGT	TAGGTGTAAC ATCTATTCCA	TCGACCAAAA TGAAATGGTG	AACAGTGTTG	TGAAATGGTG	GTGTTACATC	GGACAAGTCT	AATTATTAAC	ATTTCTAACG AAAACATCAA GGCGCGTAAT	CTCGCTGAAA	TGTAAATCTT	ATGGTGGCAG	ATAATAAACC CAACCATTAC	GGTCAATCTG
TGAATTGGCA CGGGGTTGTG ACCATTCCAC AGAAAAAGGC AGCGAAAAAC	GAAAGTGCGT			GTAATAAAAC CATTATCCGC AACAGTGTTG	TCGACCAAAA	CAACTCCGCC GTATTCAACC GTGTTACATC	AGATTCTAAC GGACAAGTCT	ATCACAATAG GTAAAGACGC AATTATTAAC	ATTTCTAACG	AGCAAACCAA AGATAAAGCG CTCGCTGAAA	AAGACGGCAG	ATTAGCGTAA ATGGTGGCAG	CATCAGCGAT	GCCGCCCTG AAAATGAAGC GGTCAATCTG GGCGATATTT
TGAATTGGCA	CTGCTCGCAT	ТТАСТАТСТТ	CAATTTAACA	GTAATAAAAC	CAATTTAACA	CAACTCCGCC	AAGGGATTTT	ATCACAATAG	TACGCTAGAC	AGCAAACCAA	ACTGTCGGTA	CGAGGGTGTG	AAAAAATCAC	GCCGCGCCTG
851	901	951	1001	1051	.101	.151	201	251	301	351	401	451	501	551

ATATTACTTC TAAAGGCGGA AATTTAACCA TTTATTCTGG CGGATGGGTT

2401

FIG.7C

						3	5/6	68							
GGTAAACTTT	TCTTTCCGCC	AAAATCAGCA	ACATTAAAAA	AACTTACCTT	TAGCAAAGAA	AAAGAAAAAG	CGGCAATATT	TTGTGGAGAC	AAAACAAAAG	AGACCCCCTT	CCGGTGAAGC	ACCAATACAA	AACGGCATCA	ACTCCCACTT	ATTGATGGAG
CTGCCACTAT TCGAAACCAA GGTAAACTTT	GCAATATTGT	ATTTCCGCTC	TGATTACAGG CGATAAAGTC	AAGGGGGAGA	AGGTAAAAAC GGCATTCAAT	TGTATCAGGC	CGTTAATTGA	TATCGCTAAA ACCGGTGGTT	TGCAATTGTT	TTGAAGCCGA	CCAACAGGCA	AACAACGCTA	CAATGAATAT	ATCGGAAGCA ACTCCCACTT	AGTAAAGGTC AGCGTGGCGG AGGCGTTCAG
	GATAAAAGCG	TGGCGGTGTA	TGATTACAGG	TCAGGTAAAG	AGGTAAAAAC	CAACCATCAA	GGCGATATTG	TATCGCTAAA	TTGACAGCAA	GATGTAACAA	TGATGAATTC	GCGAACTCAA AACAACGCTA	AACGCCTGGA	CTCAATCAAC	AGCGTGGCGG
AATGTCCGTG	TGTAAGCAAA	AAGCGGAAAT	GGCAAGCTGA	TATCGACCTT	AGCGCGGCGA	AACCTCTTTA GAAAAAGGCT	TATTGTGTGG	GTAGTGGTGA	TATTTATCCA	AGACCCTGAT	CCGGTATAAA	AAAAAAATA	TTATCTGAAA	CCGTTAATAG	AGTAAAGGTC
CGGTAACATT	CTGCTGATTC	AAAGAGGGTG	AGCTAAAGGC	CAGGTGCAGT	GGCGGTGACG	AACCTCTTTA	GCGGACGCGC	AACGCTCAAG	ATCGGGGCAT	AGTGGTTGCT	CGCAATAATA	AAGCGACCCT	CTATTTCAAA	AGAAAACTTA	AATTCTCCAT
1601	1651	1701	1751	1801	1851	1901	1951	2001	2051	2101	2151	2201	2251	2301	2351

FIG. 7D

ည္ဌ	4A	₹¥	*	ľA	ξ.	36 j	/68 5	ပ္ပ	E.	ָטַ י	Ţ	Ę	<u></u> <u></u>	Ą.	ပ္
ATATTACC	GACGCGGC	AGAGGGAA	AAGGTCTGAA		GAACACCT	CTCTTAATC	AGCAATAGCA ®	TTTTAACGGC	AAGTTAATT	TTACCAATTC	TTTTTTGAT	TGAGTGAAAT	GTTCGCGGCG	AACCAATTC	GGTACGCAC
GGITITIAA	CAAAGCACGC GACGCGGCAA	CCATTACAGG AGAGGGAAAA	ATCTTTAAAC GGAACGGGTA	CAATCTTAGT	CTACGAGAAA GAACACCTCG	TTCGCACTGG AACGTCAGTG	ATACATTTCA	CAGGGGTGAA	CAATCTCAAA GAAGGAGCGA AAGTTAATTT	AAGCAAACCT	GGGCTCTGT	GAGTTAAAAA	AAATTCCCAT	CCATAAATGC AACCAATTCA	TTTTATGACG GGTACGCACG
SHISTICH ARRAIMING GOILGAICAG GGILITINA ATATTACCGC	GTGGAAATAA	GGCACTGTAA	ATCTTTAAAC	ATTTAACCCA	ATTAACCAAA	TTCGCACTGG	CCTTTATTAA	AGAAGCTCTG	CAATCTCAAA	CAAATTAAAA CCAAACGAGA ACATGAACAC AAGCAAACCT	GCCACTGGTG	CAGAGGGCT GAGTTAAAAA	ATTTTACCTT	AAAGACTTAA	GAAAGATGAT
אין דע דעעעע	CGCTTCCGTA GCTTTTGAAG GTGGAAATAA	TGTCGCCCAG	CTAACAACGT	TCAGTGAATA	GAATATAACA	TATTGGCAAA CCAGCCATGA	AGAGACAGGC GCAAATTTTA	AAGGCTTAAC AACACAGTAT	GTAAATGGCA ACATGTCATT	CCAAACGAGA	CAATATCACA	ACCATTCTGG	AACGGCGCTA	TAAAATCAAC AAAGACTTAA	TCAGACAGAC GAAAGATGAT
U1177 1 7 7 1170	CGCTTCCGTA	ATGCTAAAAT	GATTTCAGGG	TATCATTTCA	ACATATCTGG	TATTGGCAAA	AGAGACAGGC	AAGGCTTAAC	GTAAATGGCA	CAAATTAAAA	GGTTTTTAGC	ATATATGCCA	TAATATCTCT	ATGACGCTTT	AATTTCAGCC
1 H J	2501	2551	2601	2651	2701	2751	2801	2851	2901	2951	3001	3051	3101	3151	3201

FIG.7E

3251

CAATGCCATC AATTCAACCT ACAACATATC CATTCTGGGC GGTAATGTCA

		a	c .	•	3	7/6	88	ı	-		_			
TATTACTATC	CTAATCAGCA	GTTAATGGGA	TCTCACTATT	TAAATATCAC	ACACAAGGAG	CATTACCACT	TAATCAACAA	GAAATCCAAA	TTCTTCCGAT	TTGATGGAGA	ATTAAAACCA	CAATAAAGCA	ACAGTAATGA	AATGTTAAAG
TTACGGGGAA	AATAACGCCC	CAGCTTGCTC	TTAAAGGCAA	AGAGATACCC	GCACTGCCGA AATTAATATA ACACAAGGAG	GTGATTTAAA	GGCGGAGATA	TAATGATGCT	ACCTCACGAT	AAAAAGGGTA	CAACCTAACT	TTTCAGGTTT	ACTATTGGCA	AACTTTTAAC
CCCTTGGTGG ACAAAACTCA AGCAGCAGCA TTACGGGGAA TATTACTATC	GAGAAAGCAG CAAATGTTAC GCTAGAAGCC AATAACGCCC	AAACATAAGG GATAGAGTTA TAAAACTTGG CAGCTTGCTC	AATGCAGATA	TCAGAAAGCG CCACTTTTAA AGGAAAGACT AGAGATACCC TAAATATCAC	GCACTGCCGA	TGGCAATGTT ACCAATGATG GTGATTTAAA CATTACCACT	AAGCATCATC	TTAAATATTA CAGACAGTAA TAATGATGCT GAAATCCAAA	TATCTCGCAA AAAGAAGGCA ACCTCACGAT	TCACCAAACA GATAACAATC AAAAAGGGTA	TCAGATGCGA CAAGTAATGC CAACCTAACT	GACCTAAGTA	GAGATTACAG CCAAAGATGG TAGAGATTTA ACTATTGGCA ACAGTAATGA	CGGTAACAGC GGTGCCGAAG CCAAAACAGT AACTTTTAAC AATGTTAAAG
ACAAAACTCA	CAAATGTTAC	GATAGAGTTA	GTTTAAGTTT AACTGGCGAA AATGCAGATA	CCACTTTTAA			CACGCTAAAC GCAACCAAAG AAGCATCATC	TTAAATATTA	TATCTCGCAA		TCAGATGCGA	AAGAATTGAA ATTGACAGAA GACCTAAGTA	CCAAAGATGG	GGTGCCGAAG
CCCTTGGTGG	GAGAAAGCAG	AAACATAAGG	GTTTAAGTTT	TCAGAAAGCG	CGGCAATTTT	TGGTAAAACT	CACGCTAAAC	AAAAGGAAGC	TTGGCGGCAA	AAAATTAATA	GGACTCTAGT	AAGAATTGAA	GAGATTACAG	CGGTAACAGC
3301	3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901	3951	4001

FIG. 7F

							3 8/	68								
TAGCAAAGTG	AGCAATAGCG ACAACGATAC	GATATTACTT	CACCACAGCA	CAACCAAAAC	GTTAGCGCGA		CAATTTCCGG		CGCAACAGGG	CTAAGGGTCA	ATTAATGCTG	GGCAGGCTCG	AAGATGCTAA	GCAGTCAACG	TGTGAATATC	CGAAAGATGG
ATTCAAAAAT CTCTGCTGAC GGTCACAATG TGACACTAAA TAGCAAAGTG	AGCAATAGCG	AAAATGTAGA AGTAAACAAA GATATTACTT	ACCGCGTCGG AAAAGGTTAC CACCACAGCA	TTAACGCAAC AAATGGCAAA GCAAGTATTA	TTTCCGGTAA CACGGTAAGT	TCCGGCTCAA AAATTGAAGC	AACAGGTACA ATTGGCGGTA	CAAACGCTGG CGATTTAACA GTTGGGAATG	TAATGCGACA GAAGGAGCTG CAACCTTAAC CGCAACAGGG	ATCACTTCAA	CGCAGGAAGC	TAACCACCGT	ATTAACGCAA AAGATGCTAA	GATGCATCAG GTGATAGTAC AGAAGTGAAT GCAGTCAACG	CCTCAAGCAG	
GGTCACAATG	CGGACGTGAA	AAAATGTAGA		AAATGGCAAA					GAAGGAGCTG	CTACTGAAGC CGGTTCTAGC	ATGGTAGCAT	ACAGGCACCT	CACCTTGGTT	GTGATAGTAC	TGGTAGTGTG ACTGCGGCAA CCTCAAGCAG	TAAACACAGT AAATGGGTTA AATATCATTT
CTCTGCTGAC	GCAGCAATGG	ATTACTGCAA	AGTAAATATC	TTAACGCAAC	AGGTGATATC AGCGGTACGA	AACCACTAAA	TAACAAGTGC	AATGTTACGG	TAATGCGACA	CTACTGAAGC	TTGGCTCAGA	ATTAAATACT	CAACCAGCGG	GATGCATCAG	TGGTAGTGTG	TAAACACAGT
ATTCAAAAAT	AAAACATCTA	CGGCTTAACT	CTCTCAAAAC	GGCTCGACCA	AGGTGATATC	CTGGTGATTT	GAGGCTAATG	TAATACGGTA	GCGCAGAAAT	AATACCTTGA	GGTAGACCTC	CTAATGTGAC	GATATTAAAG	GCTAAATGGT	ACTGGGGATT	ACTGGGGATT
4051	4101	4151	4201	4251	4301	4351	4401	4451	4501	4551	4601	4651	4701	4751	4801	4851

FIG. 7G

	TCATTGTATG TGCACTTGAA TATCTAAATA CTTGAATTAC GATATTGCCG	TGCTTGGCCT GGCTTCTTCA TCATTGTATG AAAGGCTTTC AGTTATCTGG TGCACTTGAA ACTGTCTGTA GCAAAATCTT TATCTAAATA CAAACCTAAA AACAGCACAG CTTGAATTAC GAGCCAAATA AATTTGATGT GATATTGCCG CAATATCATG TTTGAGCTAG TCTCGAAATC	ACTCAGTGCA ATATCAGTAT TGCTTGGCCT GGCTTCTTCA CAGAAGAAGC GTTTTTAGTA AAAGGCTTTC AGTTATCTGG ACTTTAAGTG AAGACGCCCA ACTGTCTGTA GCAAAATCTT CCAAGGCTCG CAAACTTTAA CAAACCTAAA AACAGCACAG AGGCTGTGCT AGATAAGATT GAGCCAAATA AATTTGATGT CAACAAACCA TTACGGATGG CAATATCATG TTTGAGCTAG	ACTCAGTGCA ATATCAGTAT CAGAAGAAGC GTTTTTAGTA ACTTTAAGTG AAGACGCCCA CCAAGGCTCG CAAACTTTAA AGGCTGTGCT AGATAAGATT CAACAAACCA TTACGGATGG	ACTCAGTGCA CAGAAGAAGC ACTTTAAGTG CCAAGGCTCG AGGCTGTGCT	5401 5451 5501 5551 5601
	TCATTGTATG	GGCTTCTTCA	TGCTTGGCCT	ATATCAGTAT)1
	GCAGATTAAA	TATTATGAAA AATATAAAAA GCAGATTAAA	TATTATGAAA	AAGTATTTT AACAGGTTAT	AAGTATTTT	5351
}	GAATACAATA	ATCTTGTAAA AAATTACGGA	ATCTTGTAAA	GTTCAGTACG GGCTTTACCC	GTTCAGTACG	5301
/ 68	GTGGGTTAAA 0	TATTTACTGT	ATTTTCGTAT	TCCTGCAATG AAGTCATTTT	TCCTGCAATG	5251
39	GTAGATTTCA 😡	AATTGACAAG	CGTAGTCAGT	TGTTGCTGAC GATGGACAGC	TGTTGCTGAC	5201
	TATGTACCAA	GGCGCACGAG	AAGTGGTAAT	CGTGTTTCTC	GAAGGTAAGG	5151
	GATAATTTCT	CAAGTCAAGT	TGAATTTACA ACCAGACCGT	TGAATTTACA	ATACACAAAA	5101
	ATTACAGTCA	TTGTTGAGCC AAATAATACA	TTGTTGAGCC	GCTGTACGTT	TGGTGTAAGT	5051
	TAGCTAAACT	AGAGAAACAT	TGATGAAGAA	AAGATTTATC	GAAAAAGTAA	5001
	ACGCGTCCTT	TTGAAGCGAA ACGCGTCCTT	AGCAAGTGTA GAAGAAGTAA	AGCAAGTGTA	AGCCAGGTGT	4951
	AAATATATCC	GIGCGCTIAA GAGGCAAGGA AATIGAGGIG AAATATATCC	GAGGCAAGGA		TAGAAACACT	4901

FIG. 7H

5701	AGCCGCAGAA	AGCCGCAGAA AGCCAAGTTT		TTTATAAGGC GAGCCAGGGT	TATAGTGAAG	
5751	AAAATATCGC	TCGTAGCCTG		AACAAGGAAA		
5801	GATGGTCGTC	AGTGGTTCGA	TTTGCGTGAA		TTTAATAGG CAAAAGAAAA	
5851	CCCGCTTAAG	GTTACCCGTG	TACATTACGA	ACTAAACCCT	AAAACAAAA	
5901	CCTCTAATTT	GATAATTGCG	GGCTTCTCGC	CTTTTGGTAA		
5951	TTTATTTCTT	ATGATAATTT	CGGCGCGAGA	GAGTTTAACT		
6001	AAGCTTGGGT	TTTGTTAATG	CCAATTTAAC	TGGTCATGAT GATGTGTTAA	GATGTGTTAA	
6151	TTATACCAGT	ATGAGTTATG	CTGATTCTAA		GGCTTACCAA O	401
6201	GTGCGATTAA	TCGTAAATTA	TCAAAAGGTC	AATCTATCTC		ادع
6251	AAATGGAGTT	ATTATCTCCC	ATTATCTCCC AACATTTAAC	CTTGGCATGG		
6301	TAAATTAAT	TTAGGCTACA	ACTACCGCCA	TATTAATCAA ACCTCCGCGT	ACCTCCGCGT	
6351	TAAATCGCTT	GGGTGAAACG	AAGAAAAAT	TTGCAGTATC AGGCGTAAGT	AGGCGTAAGT	
6401	GCAGGCATTG	ATGGACATAT	CCAATTTACC	CCAATTTACC CCTAAAACAA TCTTTAATAT	TCTTTAATAT	
6451	TGATTTAACT	CATCATTATT	ACGCGAGTAA	ATTACCAGGC	TCTTTTGGAA	
6501	TGGAGCGCAT	TGGCGAAACA	TTTAATCGCA	GCTATCACAT	TAGCACAGCC	
6551	AGTTTAGGGT	TGAGTCAAGA	GTTTGCTCAA GGTTGGCATT	GGTTGGCATT	TTAGCAGTCA	
6601	ATTATCAGGT	CAATTTACTC	TACAAGATAT	TACAAGATAT TAGCAGTATA GATTTATTCT	GATTTATTCT	

FIG.7I

6651	CTGTAACAGG	TACTTATGGC	TACTTATGGC GTCAGAGGCT	TTAAATACGG CGGTGCAAGT	CGGTGCAAGT	
6701	GGTGAGCGCG	GTCTTGTATG	GCGTAATGAA	TTAAGTATGC	CAAAATACAC	
6751	CCGCTTCCAA	ATCAGCCCTT	ATGCGTTTTA	TGATGCAGGT	CAGTTCCGTT	
6801	ATAATAGCGA	AAATGCTAAA	ACTTACGGCG	AAGATATGCA	CACGGTATCC	
6851	TCTGCGGGTT	TAGGCATTAA	AACCTCTCCT	ACACAAAACT	TAAGCCTAGA	
6901	TGCTTTTGTT	GCTCGTCGCT	TTGCAAATGC	TTGCAAATGC CAATAGTGAC	AATTTGAATG	
6951	GCAACAAAAA	ACGCACAAGC	TCACCTACAA	CCTTCTGGGG	GAGATTAACA &	
7001	TTCAGTTTCT	AACCCTGAAA	TTTAATCAAC	TGGTAAGCGT	TCCGCCTACC @	
7051	AGTTTATAAC	TATATGCTTT	ACCCGCCAAT	TTACAGTCTA	TAGGCAACCC	
7101	TGTTTTTACC	CTTATATATC	AAATAAACAA	GCTAAGCTGA	GCTAAGCAAA	
7151	CCAAGCAAAC	TCAAGCAAGC	TCAAGCAAGC CAAGTAATAC	TAAAAAAACA	ATTTATATGA	
7201	TAAACTAAAG	TATACTCCAT	TATACTCCAT GCCATGGCGA	TACAAGGGAT	TTAATAATAT	
7251	GACAAAAGAA	AATTTGCAAA	ACGCTCCTCA	AGATGCGACC	GCTTTACTTG	
7301	CGGAATTAAG	CAACAATCAA	CAACAATCAA ACTCCCCTGC	GAATATTTAA ACAACCACGC	ACAACCACGC	
7351	AAGCCCAGCC	TATTACGCTT	GGAACAACAT	ATCGCAAAAA AAGATTATGA	AAGATTATGA	
7401	GTTTGCTTGT	CGTGAATTAA	CGTGAATTAA TGGTGATTCT GGAAAAAATG GACGCTAATT	GGAAAAATG	GACGCTAATT	

FIG. 7J

								12	16	Q							
•	GAATTTGACG CACCCGCTCA GCTGGCATAT		CIRAIGCAAT					TTTAGATGCG &	TTGCGTTGCA 0			CTTATATORE	LITABLALLO				TAAAATAGGT
	CACCGCTCA				L.I.I.I.I.J.			TCAATATGAG	TCATTGTGTT	GTTTCATAAA		ATGCACTGCA	ATTAAACGAA	GCTACCTTTA	CTGCTTGAAC	TTCAATGATT	TTAGGCCATG AGGGCGTTGA TAAAATAGGT
								GAATCCAATG	GGAATCAACA ACTTTGTGCT	CCGCATCTGC	AAACTCGCCG	TGATGTATAT	TTAAGCGTCC	TGGCAAGACC	GATGATGGTA		TTAGGCCATG
	TCACGATATT	AATTACTAAT	TTTTCCGACC				ついては出土して山山			TTTATTGGTA	GTTTCCTAAA	ATATCCTTCA	AAGCACGATG	CACGCAAGGA	GCAAACCTGT	ATTTATCGTA	TTTAGTCGGC
	TTGGAGGCGT	CTACCCGAAA	TACAACACTC	TAAAGATGAT	CCCTACGTTA	TTCCGAAGGT	ТСТGТA TTTT		1"I'ATGGGCAG	GTCTTCACGT	TTTTACAGTG	TTGCCTGCAA	AGCAAAAAC AAGCACGATG	AGCATATCCT	AAAAAGGACG	GGGACATTCG	AAAAATTCTA
	7451	7501	7551	7601	7651	7701	7751	1001	T08/	7851	7901	7951	8001	8051	8101	8151	8201

FIG. 7K

ATAGAAAACA	TCGTTACATC	TTGAACTCCG	CAAGAACGCC	AGAAAACCAT	9051
TGCGTCTAGC	GAATGTGCTT	AACATATATT	ACACACGAGA	CTGATAGCCG	9001
ACCAGAATGG	GCTTAGGACT	CTGTTTAAAC	TGATGAAGGT	ATGAACATAT	8951
GATGAAGTAC	CAAAACGGGG	TTGGTGTATG	TTAGGTTTAG	TATGGTTACA	8901
GCATAATTGA	AATACTAACG	TCCTTTCGGT	TAAATCCGTT	GATATGCTAC	8851
GCGTGATTGC	TGGCAATATT	CACGATTATC	CGCACCTTAT	CACATCCCCA	8801
GATGCCACTG	TTTAGGTGAC	TCGAAAGCTA	AAATGGTTTA	CCCTTATGTC	8751
GCTTGACACA	CAATCAACAG	CGCACTTGGA	ATTTCATTT	GTCAAAATAC	8701
TAAAGCTAAA	AAATCAGAGA	ACATTGCAAG	ATTTTGCTA	TAAACCCTGA	8651
ACAATGAAAT	TGCCGCTACC	ATATCGGTAT	GAAGTAGTCA	GGAAAACCCT	8601
ATGTACTCAG	AAAGTGGATT	CGCCCCACAA	CTTCTGCACT	CCTTATGTAC	8551
AGATGCCCTA	GCTTACCCAA	ACCCTTTTAC	TTTCAGCGAA	GTGAAGATTG	8501
TATGTGGGCA	AGAAGATGAT	ATGTCATCGT	TTTATTGATT	GCATTCTGAA	8451
CTGCCACTAC	CTGGGTCATC	AGCTGTAGCC	CCCCTATTCA	ACTCGGCTTG	8401
TGTGAGCAAC	CCACGATTTT	ATGGATATTA	AAGCATTGGC	TCTATATGCC	8351
CCCGCAGTGT	AACTTTCCAA	AACAGTGCGA	TTTATCCGTA	GAGACTGTTT	8301
ATATAATGGA	AGTAGCAATA	CTTTGAAATC	TTGACGAGTT	CGAGAAGTGT	8251

43 / 68

44/68

FIG. 7L

		מממ	AAATCACCAA TACCCACAAA AAA	AAATCACCAA	9401
TTGCACCACA	TAGCCAAAAC TGGCAGAAAT TAAAGGCTAA AATCACCAAA TTGCACCACA	TAAAGGCTAA	TGGCAGAAAT	TAGCCAAAAC	935I
GCGGAGATTT	GCC.111.CA'1'G	771744444			
	CAGITIATCA GCCTCCCGCC ATAAAACTCC CCCTTTAAAAACTCC CAGTTTAAAAACTCC ATAAAAACTCC CAGTTTAAAAAACTCC CAGTTTAAAAAACTCC CAGTTTAAAAAAAAAA	ATAAAAATA	GCCTCCCGCC	CAGTTTATCA	9301
CGCACGCTGA	CTCTCAAAAA TCAACCGCAC TTTTATCTTT ATAACGATCC CGCACGCTGA	TTTTATCTTT	TCAACCGCAC	CTCTCAAAAA	9251
'I'I'I'I'AAAAAC	1 I LAAAGUG	1901 19001		,	0
	ACGGTTTTTT AAAGTAAAAG TGCGGTTTAAAT TTTTAAAAA TGCAATTTTTTTTTT	サイプいいしょう	AAAGTAAAAG	ACGGTTTTTT	9201
GTAAAAATA	CIGCITIAAGA AAACAAATGA ATGGAAGCGG AAGCACTTGA GTAAAAAAAA	ATGGAAGCGG	AAACAAATGA	CTGCT"IAAGA	TCT6
GGGCAAAATA	TOTAL TENDENTIEL ACAGGCGACC CTCGTCCATT GGGCAAATA	ACAGGCGACC			7
				ACATITION ACATIT	TOTA

FIG. 8A

TGGTAACATT AATGTCCGCG	CTGCCGACTC TGTAAGCAAA	AAAGAAGGTG AAGCGGAAAT	AGCCAAAGGT GGTAAGTTGA	CGGGTGCAGT TATCGACCTT	TCGGGTAAAG AAGGGGGAGA AACTTATCTT GGCGGTGACG AGCGTGGCGA	AACCACTTTA GAAAAAGGCT	GIGGGCGCGC TATIGIAIGG O	CGTTAATTGA CGGCAATATT AATGCCCAAG GTAAAGATAT	GGGGCATTAC TTATCCATTG	GGCTACTAGA CCCAGAGAAT	GTCGAGCTGG GTGCCGATAG	GACCCTAAAA AAAAATAACA	TTTCAAATCT TCTGAAAAGT	AAACTTACCG TTAATAGCTC	TATCAGTATA GAAAGAGGCT CCCACTTAAT TCTCCACAGT GAAGGTCAGG	
TTGCCAAAGG TGGTAACATT	GGTAAACTTT CTG	TCTCTCTGCC AAAGAAGGTG	AAAATCAGCA AGC	ACATTGAAAA CGGGTGCAGT	ACTTATCTT GGC	TAGCAAAGAA AAC	AAAGAAAAAG GTG	GCAATATT AAT	TGGAGACGTC GGG		CGCTTCTCGC GTC	TGATAAAAGT GAC	AATACAACCA TTT	CAAGGAGA AAA	CACTTAAT TCT	
	TCGCAATAAA GC	GTAACATTGT TC	ATTTCCGCTC A	CGATAAAGTT AC	AAGGGGGAGA AA		TGTGTCAGGT AA	CGTTAATTGA CG		AATTGTTAAA ACAAAAGAAT	AAGCTCCTTC CG	TCGGCAGAGG TG	AACACTAACC AA	TGAACATAAC GGCAAGGAGA AAACTTACCG	GAAAGAGGCT CC	
GATCAATCTG GGCGATATTT	CTGCCACTAT	GATAAAAGTG	TGGCGGTGTA	TGATTACAGG	TCGGGTAAAG	AGGTAAAAAC GGCATTCAAT	CAACAATTAA	GGCGATATTG	CGCTAAAACT GGTGGTTTTG	ATGATAACGC	GTGACTATTG 1	GAATTCCCAC	CCTCCTTGAC 7	GCCCACGTGG	TATCAGTATA (
7	51	101	151	201	251	301	351	101	151	501	551	501	551	701	751	

	GTTCATAAAA ATATTACGCT	AGAT ATCGCCTTCG		GTCT CTCTAAACAG				AAAT GTTACCTCGG ®	CTCAACAGGT						-	
TTACTTCTGA AGGCGGAAAT		AGAAGO			CAGAGAGGAC	ACGGAACGTT	AAAGTC	CACTTT	CAGGAA	ATAACATTTA	CTTTAGCATC	CATTATTTAA	AAACTT	ATCTCA	AAGGTT	GCCACC
GATAAAGATA	ATGGGTTGAT	TTTTTAAACA TCACAACTAA AGAAGGAGAT	TGGACGGAAC AACCTAACCA	CTTTAGATTT	TTACTGACAG	AACAAATTTG	GAAAGCACCC AAAGTCAGCT	GGAACGTAAC CACTTTAAAT	ATTGACAGCA CAGGAAGTGG		CAACAGCTAA	GCTAACTACG	CGTTAATTTC AAACTTAACG	TAATTATAAA ATCTCAAAAC	CTCAAGGCTG AAGGTTCAAC	AAACTTAAAC
TGTTCAGATT	ATTCTGGCGG	TTTTAAACA		ATAGTAACGG	CCTTGGCGGA AAGCTGAGCT	TAATATCTCA	ATATCTCAAT	CGCACCTACT	TAACCTCTCC	GCAATGCAGA	GCACAAGGCT	TAAGAGTAAC	GGGGGGGTAG	CAACATACAA ACCCCTGGCG	AACTTTAAAT	TTTTCAATAG AAAATGATTT
GCGGTCAAGG TGTTCAGATT GATAAAGATA	TTAACCATTT	TGGTAGCGGC	AAGACAAGTC	ACCTCAGGTA	CCTTGGCGGA	GAACTAAGGG	GGAACTGTAG	AGACAAAGGA	GTAGTAAATT	CCAAGCATAC	TTTTAATATC	TAATGCCCTT	TCAGTCTCAG	CAACATACAA	CAGGAGGGTC AACTTTAAAT	TTTTCAATAG
801	851	901	951	1001	.051	.101	151	201	251	301	351	401	451	501	551	601

ູ ເກ

GCTAAAAAAG	TAATGCTGAT	CTAGCGGTGG	ATTGGCAATG	TGATTTAACT	2401
AAATGGCAG	ATTACAGCTA	TAAAGCAGAA	CAGGCTTTAA	CTAAATATTT	2351
GGCAGGAGAC	AGTTAAAATT	CAAACCAAAG	CCTAACTATT	AAAATGCTAA	2301
AGTGAGGCAG	TTCTGATTCA	AAGGGGGGCG	GCAGGCGTTG	AACAATCAAA	2251
CCAATCAGAT	GTAAATATTA	TTCTGATAAA	TCACAATTTC	GAAGGCAATC	2201
CTCACAAAAA	GCGCCAATAT	ATCCAAATTG	CGACGCTGAA	ATAAAAAAG	2151
AATATTATTG	AGGTGATTTG	CCAACAAATC	GGCAATATAT	CATTATAAAA	2101
CTTACCGCAC	TCTGATACCA	TACCACCAAC	GCTTAAATAT	AACACCAGTA	2051
AGATATCAAT	CTAAATTTAA	AGAGGAGGGG	TTCCATTGCC	CTTCAAACAT	2001
AACAATGGCG	CTCATTTGAC	ATGTAGCCGG	TACACTTTTA	TATAACAAAT	1951
ACCTTCAAGC	AAAGGCGCTA	TACTGTTTCA	CCGGAAATCT	ATCAATATAG	1901
CGGCTCCA'LT	TTACCACTGC	AATGGCAACC	TGTTATTAAT	TAGCAGGAAA	1851
CCTTTAAATA	AAACAAATCG	ATTTTGCCGA	CGTGGTGCGA	CGCTACTCTT	1801
AAAACACTAA	ACCATCAATA	AGGCAATGTT	CAGAAATCAA	AAAGCCACAA	1751
CGGCTCTCAA	ATATCACCTT	AAAGGGGGTA	CATAACTTT	CCAAAAAAA	1701
GGTGTCGCAG	CGTCAACAAA	CCGATTCACG	GTCGAGGGTA	AATCAGACAA	1651

47/68

FIG.8D

AT	5) A	ַ קל	ָלָּבָּ יַל	. A	ر 1	48	/68) 4	: ב	ָרָ לָּרָ בּרָ		א כי) 6	£ 5	4 A
CGGTCACA	GCAATGCT	GTAACGGTAA		CAGGGAGG	ACCTCGCAAA	GAATGCTG	CAGGGGAT	ACAGCGAG	AACAGTAA	THAGTGTGAC		AGCAACHC			TGGTAATACA	ATAGTGCAA
TCTCGACTGA	GAAAACGTCT AATGGTAGTA GCAATGCTGG	TAACCATTTC CGCAAAAGAT	ATATCTCTGC CGCAGCAGGA	AATGCAACCA CAGGCAGCGT	GTACAATTAA AGGCAACATT	TTACCACAGA	AGTACAAAAA	TGTAAATATT ACAGCGAGCG M	GTCAAGATGT AACAGTAACA	GGCTCAACCA	AGGTGATATC	TTGCAACTGG AGCAACTT	ACTATTACTG	TAATGGGACT	GTACAATTTC	ACTATTGGAA
TGACTITIGA CAAGGITAAA GATICAAAAA ICTCGACIGA CGGICACAAI	GAAAACGTCT	TAACCATTTC	ACAATAACGT TACCTCCCAC AAGACAATAA	CACAACTATC		GACAGCAACA GAAAATCTTG TTACCACAGA GAATGCTGTC	AGTAAACATT	CTTCCGGTAA	AATATCACTG	GCGGATGCAG GAGCCTTGAC AACTACAGCA GGCTCAACCA	CAACCAAAAC	GTAACACTTG	TAACACTGTT	GTTCTACAAT		
CAAGGTTAAA	ATAGCGAAGT	TAATGATAAC AGCACCGGTT	TACCTCCCAC	AATGTAACAA CCAAAGAAGG	GGAAGTAACT GCTCAAAATG		ATTAATGCAA CCAGCGGCAC AGTAAACATT	TAAAGGTGGA ATTGAATCAA	TAAGGTAAGT	GAGCCTTGAC	AACAGGCAAT GCAAATATTA CAACCAAAAC	CICCGGCICI	ATATTTCAGG	TCCACAGTAG	CCAATCAGGC GATATTGAAG	GTAAATGTTA CAGCAAGCAC
TGACTTTTGA	GTAACACTAA	TAATGATAAC	ACAATAACGT	AATGTAACAA	GGAAGTAACT	ATGTAACAGT	ATTAATGCAA	TAAAGGTGGA	GCAATACACT	GCGGATGCAG	AACAGGCAAT	TTGAATCCAG	GCTGTAGGTA	TAAATTAACC	CCACCTCAAG	GTAAATGTTA
7451	2501	2551	2601	2651	2701	2751	2801	2851	2901	2951	3001	3051	3101	3151	3201	3251

FIG.8E

AGTTGAAGCG		AAAAATGGAG CTGCAACCTT AACTGCTGAA	AACTGCTGAA	_	
		AACAGGCTCT AGCATTACCT CAAGCAATGG	CAAGCAATGG	TCAGACAACT	
CTTACAGCCA	AGGATAGCAG	TATCGCAGGA	AACATTAATG	CTGCTAATGT	
GACGTTAAAT	ACCACAGGCA	CTTTAACTAC	TACAGGGGAT	TCAAAGATTA	
ACGCAACCAG		TGGTACCTTA ACAATCAATG	CAAAAGATGC	CAAATTAGAT	
GGTGCTGCAT	CAGGTGACCG	CACAGTAGTA	AATGCAACTA	ACGCAAGTGG	
CTCTGGTAAC		GTGACTGCGA AAACCTCAAG CAGCGTGAAT	CAGCGTGAAT	ATCACCGGGG	49
ATTTAAACAC	AATAAATGGG	TTAAATATCA	TTTCGGAAAA	TGGTAGAAAC	/68
ACTGTGCGCT	TAAGAGGCAA	GGAAATTGAT	GTGAAATATA	TCCAACCAGG	
TGTAGCAAGC	GTAGAAGAGG	TAATTGAAGC GAAACGCGTC	GAAACGCGTC	CTTGAGAAGG	
TAAAAGATTT	ATCTGATGAA	GAAAGAGAAA	CACTAGCCAA	ACTTGGTGTA	
AGTGCTGTAC	GTTTCGTTGA	GCCAAATAAT	GCCATTACGG	TTAATACACA	
AAACGAGTTT		ACAACCAAAC CATCAAGTCA AGTGACAATT	AGTGACAATT	TCTGAAGGTA	
AGGCGTGTTT	CTCAAGTGGT	AATGGCGCAC	GAGTATGTAC	CAATGTTGCT	
GACGATGGAC		AGCAGTAGTC AGTAATTGAC AAGGTAGATT	AAGGTAGATT	TCATCCTGCA	
ATGAAGTCAT		TTTATTTTCG TATTATTTAC TGTGGGTT	TGTGTGGGTT	AAAGTTCAGT	

50/68

FIG. 8F

TA CCCACCTTGT AAAAATTAC GAAAAATACA ATAAAGTATT	ST TATTATTATG AAAAACATAA AAAGCAGATT AAAACTCAGT	SCAATATCAA TATTGCTTGG CTTGGCTTCT TCATCGACGT ATGCAGAAGA	
GAAAAATACA	AAAGCAGATT	TCATCGACGT	TGGCGCG
AAAAAATTAC	AAAAACATAA	CTTGGCTTCT	TTCAGTTATC
CCCACCTTGT	TATTATTATG	TATTGCTTGG	TA GTAAAAGGCT TTCAGTTATC TGGCGCG
ACGGGCTTTA	TTTAACAGGT	GCAATATCAA	AGCGTTTTTA
4101	4151	4201	4251

FIG.9A

					4	51/6	86								
GACGGCAATA	GAAACAATTT	GCAGCAACTC	TTAAAAGGGA	TGGTATCACA	CTTCTACGCT	CTTGAGCAAA ~	AATTACCGTT (AAAACGAGGG	GGGCAAAAAA	CATTGCTGCA	AAGGTGGTAA	CTTTCTGCCG	TGCCAAAGAA	AGCAAGCCAA	AAAACAGGTG
GTCGTACACG GTACAGCAAC CATGCAAGTA GACGGCAATA	TCATCAATTG GAAACAATTT	TTACAAGAAA GCAGCAACTC	AATCTCCCAA	TCAACCCAAA	TAACACTAAT GGCTTTACTG	TAATTTCACC	ATCACGGTTT	GGCAAAGTGA AAAACGAGGG	TTTACTTGCA	TCACTTACAG	ATTTTTGCCA AAGGTGGTAA	TAAAGGTAAA	TTGTTCTCTC	TGTAATTTCC GCTCAAAATC AGCAAGCCAA	CAGGTGATAA AGTCACATTA AAAACAGGTG
GTACAGCAAC	GTCAATGCTA	GGAGCAGTTT	CATCTGACCA	GTCTTTTTAA	TAACACTAAT	TCAAGGCGCG	GAAATCGTGA	CCTTATTGGT	GTAAATGGCG GTAGTATTTC	AATCCAACCA	AAGCGATCAA TCTGGGCGAT	CGCGCTGCCA CTATTCGCAA	AGTGGTAACA	TGTAATTTCC	CAGGTGATAA
GTCGTACACG	CCGTAATAGC	AAAATGAAAT	AACCGTGTTA	TAACGGACAA	ACGCAATTAT	AACGAAAACA	AGCACTCGCT	GTAGCGTAAA	GTAAATGGCG	CGATATAATA	AAGCGATCAA	CGCGCTGCCA	CAAAGATAAA	AAATTGGCGG	TTGATGATTA
GGGAATGAGC	AAACCACTAT	AACATTGACC	TGCCGTTTTC	TTTAGATTC	ATAGGTAAAG	AGACATTTCT	CCAAGGATAA	GGTAAAGACG	CGTGATTAGC	TCACCATCAG	CCTGAAAACG	CATTAATGTC	ACTCTGTAAG	GGTGAAGCGG	AGGTGGTAAG
⊣	51	101	151	201	251	301	351	401	451	501	551	601	651	701	751

FIG. 9B

	CAATTAGCGA AGAAAACCTC	AAAGGCGGGC	CATTAATGCT	CATCAGGACA		ACGCAATAAT	GATGGGACTA AAGAGTCACC	ACTCTTGAGC ®	TAATAGAATT	CACTTCACAC	AACGAAAATG	TAAAAACATC	CTGTAGCTTT	CAAATTACCG	TAGATTCAAT	TTGCAAATCA
CAGTTATCGA CCTTTCAGGT AAAGAAGGG GAGAGAAAAAAAAAA	CAATTAGCGA			TTTGTGGAAA	TGACGCTAAA	TTACATCTGG ACGCAATAAT	GATGGGACTA	AACAAACTCA ACTCTTGAGC	TCACTGCTAA	GGCAGTTTAA	TATTACCTCA	TTGATGTTCA	GCTGGGGATT	AACAGATGCT	ATAAACAATT	
AAAGAAGGG	GCGAAGGTAA AAATGGTATT	TTAATGTATC	ATTGCATTAA	ATATTGCTAA AACTGGCGGC	ATGTGATTGT	ATTGAAACTC	TACAACAGGA	AACCTACATT	TATGTTAATA	CTTATCTAAT	TTAACGGTGA	CATTAAAGCA GGCTCTTGGG	GAATATTGTC	CACGTAACGC	AATAAAGATG	GGGCAAGGGT
CCTTTCAGGT	GCGAAGGTAA		ATGGGGCGAT		ATTGGTGATG	TGATGTGTCC	ACCAAGGATA	AGTATTTCTA	AAATCCTAAG AAGAGGTTCT	TATGTTAATA GCTCCATCAA	GGAGTTAAAA		ACGCTTGGTA CGGGTTTTTT	GGCGATAAAG	GATAACCGTC	TTAACGGGAC
CAGTTATCGA	GATGAGCGTG	TTTAGAAAAA	GCGCTATTGT	CAAGGTAGCG	TGACTTATCC	TAGACCCAGA	ACCGGCGAAA	TAAAGGTAAT	AAATCCTAAG	TATGTTAATA	TAAACGAGAT	GTAATTTAAC	ACGCTTGGTA	TGAGAGAGA GGCGATAAAG	CACAAGGGAC	AATGTATCTA
801	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501	1551	1601

FIG.9C

	GCAACACAGG GAGGGGAATT	ACCAGCAACA TATATCTGTT	ACAAGCTGAC CTCTTGGCAA	ATGTTACATT AGAACTCTAA	AATAAAGCAA CTTGAAGAAA
	CAATATCACC	CGGGCAATAT	AGTAGCATTA	AAATTCAAGC	TAGGTGGGGA
	AATGTCACTC	TCTTGGCGGC	ATCTAACCAT	TCAAGTCATA	CGCCATTAAC
	ACAGCAAACA	TATAATGAAT	AGCAAACGAA AGATTCTTTT	AGCAAACGAA	TTTAGTCTTA
	TGGCTCGAAT	TAAATGCAAC	GACTTAACTA	AATCAAAAAA	ATGCTTTTGA
	CGCAATAGTA	ATCCCATAAT	TTTCCATAAC	GGGCTTGACT	CATTACCGGC
	ATTCAATTAA	ATAAACATGG	AGCTGCCGGC	TTACCTCTAG	CACGCCAATC
/68	GTTTGACATA	GCTCTGTGAT	AACAGTGATA	AGCTACCGGT	CCAACATTAC
53	ACTTTTAACG	ATTACCTATT	GCTACAGACC CAAAAAAAAA	GCTACAGACC	ACCAAACGCC
	TTAAATTAAA	AAAGCCTTAT	AGCTAACGCA	TCAACATCGG	AAAACAAACT
	CATCGGAGGC	ATTTTAACGG	GCAGGCGTAC	TAGAAGTTTT	GGTCATCACG
	CAAGATTTGA	CTCAAATTCC	TTGATAGCGG	ATAAAATTCG	ATTTACCTTT
	CGGTGCAAAA	ACTTTGAATA	TICTICTCT	ACTGGAATGT	AAAGACTCTT
	GAATGCATCA	TTAAATACTG	CCAAACCACG AAAAAAGATG	CCAAACCACG	TAACAATTAA
	TCTGGAATAG	TTGATGGCGA AATTAACATA		ACTCATAAAT	AAATAATTTC

FIG.9D

						5	54/6	68								
TTCTATTGCA	GACAACCTAA ACATCACCGG	CAAGGAGTGG	TATCACTACT	TAACTAACGA	GAAATCCAAA	TTCTTCTGAT	TTACCAATCA GATAACAATC AAAGCAGGCG TTGAAGGGGGG	ATTCAAACCA	TAATAAAGCA	ATGCTAGCGG	TGACAAGGTT AAAGATTCAA	AGTGAAAACG	GTTTAACCAT	CACAAGACAA	AGGCACAACT	ATGGTACAAT
TAAGCCTAAC TGGTGCAAAT GCAAACATTG TCGGCAATCT TTCTATTGCA		CACCTTTACC AACAAGGTA CCGCCAACAT TAATATAAAA CAAGGAGTGG	TAAAACTCCA AGGCGATATT ATCAATAAAG GTGGTTTAAA TATCACTACT	AACGCCTCAG GCACTCAAAA AACCATTATT AACGGAAATA	TTAAACATCA AGAATATTAA AGCCGACGCC GAAATCCAAA	TATCTCACAA AAAGAAGGCA ATCTCACAAT	AAAGCAGGCG	TCAAGTGAGG CAGAAAATGC TAACCTAACT ATTCAAACCA	TTTCAGGCTT	ACTATTGGCA	TGACAAGGTT	TGACGGTCAC AATGTAACAC TAAATAGCGA AGTGAAAACG	GTAGCAATGC TGGTAATGAT AACAGCACCG GTTTAACCAT	TAAACAATAA CGTTACCTCC CACAAGACAA	TAAATATCTC TGCCGCAGCA GGAAATGTAA CAACCAAAGA AGGCACAACT	CGTGGAAGTA ACTGCTCAAA ATGGTACAAT
GCAAACATTG	CATTTAAAGG AGAAGCCAGT	CCGCCAACAT	ATCAATAAAG	AACCATTATT	AGAATATTAA	AAAGAAGGCA	GATAACAATC	CAGAAAATGC	GACCTAAATA	CAGTGATTTA	AAGTGACTTT	AATGTAACAC	TGGTAATGAT	TAAACAATAA	GGAAATGTAA	CGTGGAAGTA
TGGTGCAAAT		AACAACGGTA	AGGCGATATT	GCACTCAAAA		TATCTCACAA	TTACCAATCA		AAGAGTTAAA ATTGGCAGGA GACCTAAATA	CTAAAAATGG CAGTGATTTA	GATGCTAAAA AAGTGACTTT	TGACGGTCAC		TTCCGCAAAA GATGTAACGG	TGCCGCAGCA	ATCAATGCAA CCACAGGCAG
TAAGCCTAAC	GAAGATTCCA	CACCTTTACC	TAAAACTCCA	AACGCCTCAG	AAAAGGCGAC	TTGGCGGCAA	AAAGTAAATA	GCGTTCTGAT	AAGAGTTAAA	GAAATTACAG	TGGTAATGCT	AAATCTCGAC	TCTAATGGTA	TTCCGCAAAA	TAAATATCTC	ATCAATGCAA
 2451	2501	2551	2601	2651	2701	2751	2801	2851	2901	2951	1001	1051	101	151	201	251

FIG. 9E

						55	5/6	3							
ACAGAAAATC	CACAGTAAAC	CAACTTCCGG	AGTAATATCA	GACAACTACA	TTACAACCAA	TCTGTAACAC	AGGTAACACT O	TAGGTTCTAC	GGCGATATTG	CACTGGTGAT	GAGCTGCAAC	TCTAGCATTA	CAGTATCGCA	GCACTTTAAC	TTAACAATCA
ATTACCTCGC AAAATGTAAC AGTGACAGCA ACAGAAATC	GTCATTAATG CAACCAGCGG	GGAATTGAAT	GCGGCAATAC ACTTAAGGTA	CAGGAGCCTT	AATGCAAATA	ATCAACGGTA AAGTTGAATC CAGCTCCGGC	GTAATATTTC	ACCTCCACAG	TAACCACCTC AAGCCAATCA	TTACAGCAAG	AAAAGTTGAA GCGAAAAATG	CCAAACAGGC	CCAAGGATAG	TGTGACGTTA AATACCACAG GCACTTTAAC	TTAACGCAAC CAGTGGTACC
AAAATGTAAC		TATTAAAGGT	GCGGCAATAC	ACAGCGGATG	GACAACAGGC	AAGTTGAATC	CTTGCTGTAG	CGGTAAATTA	TAACCACCTC	ACAGTAAATG	AAAAGTTGAA	GAATCAGGCA AATTAACCAC CCAAACAGGC	ACTCTTACAG		TTAACGCAAC
	TTGTTACCAC AGAGAATGCT	AAACAGGGGA	ATTACAGCGA	TGTAACAGTA	CCATTAGTGC	ATCAACGGTA	TGGAGCAACT	CTGCGGATAG	ACTAATAGTG	TTCTGGTAAT	GAAATAGTGC	GAATCAGGCA	TGGTCAGACA	ATGCTGCTAA	GATTCAAAGA
TAAAGGCAAC	TTGTTACCAC	ATTAGTACAA	TAATGTAAAT	CTGGTCAAGA	GCAGGCTCAA	AACAGGTGAT	TTGTTGCAAC	GTTACTATTA	AATTAATGGG	AAGGTACAAT	TTAACTATTG	CTTAACTGCT	CCTCAAGCAA	GGAAACATTA	TACTACAGGG
3301	3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901	3951	4001	4051

FIG. 9F

4101	ATGCAAAAGA T	TGCCAAATTA	GATGGTGCTG	CATCAGGTGA CCGCACAGTA	CCGCACAGTA
4151	GTAAATGCAA	CTAACGCAAG		TGGCTCTGGT AACGTGACTG CGAAAACCTC	CGAAAACCTC
4201	AAGCAGCGTG	AATATCACCG		GGGATTTAAA CACAATAAAT GGGTTAAATA	GGGTTAAATA
4251	TCATTTCGGA		AAATGGTAGA AACACTGTGC GCTTAAGAGG CAAGGAAATT	GCTTAAGAGG	CAAGGAAATT
4301	GATGTGAAAT	ATATCCAACC	TATCCAACC AGGTGTAGCA	AGCGTAGAAG AGGTAATTGA	AGGTAATTGA
4351	AGCGAAACGC	GTCCTTGAGA	TCCTTGAGA AGGTAAAAGA	TTTATCTGAT	GAAGAAAGAG
4401	AAACACTAGC	CAAACTTGGT	CAAACTTGGT GTAAGTGCTG	TACGTTTCGT	
1451	AATGCCATTA	CGGTTAATAC	CGGTTAATAC ACAAAACGAG TTTACAACCA AACCATGAAG	TTTACAACCA	AACCATCAAG 00
1501	TCAAGTGACA	ATTTCTGAAG	ATTTCTGAAG GTAAGGCGTG	TTTCTCAAGT	GGTAATGGCG
1551	CACGAGTATG	TACCAATGTT	GCTGACGATG	GCTGACGATG GACAGCAGTA GTCAGTAATT	GTCAGTAATT
1601	GACAAGGTAG	ATTTCATCCT	GCAATGAAGT	CATTTTATT	TCGTATTATT
1651	TACTGTGTG GTTAAAGTTC	GTTAAAGTTC	AGTACGGGCT	TTACCCACCT	ТСТАААААТ
1701	TA				

DERIVED AMINO ACID SEQUENCE FIG. 10A. COMPARISON OF

					57/	68							
20	•	•	EKGSEKPARM KVRHLALKPL	KVRHLALKPL		100	•	TIRNSVNALI	TIRNSVNAII	TIRNSVNAII	150	•	DSNGQVFLIN
	•	•	EKGSEKPARM	EKGSEKPARM			•	ATMQVDGNKT	ATMQVDGNKT	ATMQVDGNKT		•	DQISQLKGIL
	•	•	ELARGCDHST	ELARGCDHST			•	GMSVVHGT	LQGMSVVHGT	LQGMSVVHGT		•	NSAVFNRVTS
	•	•	KRLNALVAVS	KRLNALVAVS			•	•	SIPQSVLASG	SIPQSVLASG		•	EMEQFLQESS
\leftarrow			MNKIYRLKFS	MNKIYRLKFS		51	•	•	SAMLLSLGVT	SAMLLSLGVT	101		NWKQFNIDQN
	Hmw3com	Hmw4com	Hmw1com	Hmw2com			Hmw3com	Hmw4com	Hmw1com	Hmw2com		Hmw3com	Hmw4com

300

INLGDIFAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV

251

Hmw3com

FIG. 10B

					5	8/6E	3					
DSNGQVFLIN	DSNGQVFLIN	200		DKALAEIVNH	DKALAEIVNH	DKALAEIVNH		250	•	ISDIINPTIT	ISDIINPTIT	ISDIINPTIT
NWKQFNIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL	NQISQLKGIL		•	ARNFTLEQTK	IINTNGFTAS TLDISNENIK ARNFTLEQTK	TLDISNENIK ARNFTLEQTK			•	ISLLAGOKIT	ISLLAGOKIT	GLITVGKDGS VNLIGGKVKN EGVISVNGGS ISLLAGQKIT
NSAVFNRVTS	NSAVFNRVTS		•	TLDISNENIK	TLDISNENIK				•	EGVISVNGGS	GLITVGKDGS VNLIGGKVKN EGVISVNGGS	EGVISVNGGS
EMVQFLQENN	EMVQFLQENN		•	IINTNGFTAS		IINTNGFTAS			•	GLITVGKDGS VNLIGGKVKN	VNLIGGKVKN	VNLIGGKVKN
NWKQFNIDQN	NWKQFNIDQN	151	•	PNGITIGKDA	PNGITIGKDA	PNGITIGKDA	100	T07	•	GLITVGKDGS	GLITVGKDGS	GLITVGKDGS
Hmw1com	Hmw2com		Hmw3com	Hmw4com	Hmw1com	Hmw2com			Hmw3com	Hmw4com	Hmw1com	Hmw2com

FIG. 10C

YSIAAPENEA INLGDIFAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV VSKDKSGNIV VSKDKSGNIV RNKGKLSADS RNKGKLSADS GNINVRAATI GNINVRAATI VNLGDIFAKG VNLGDIFAKG YSIAAPENEA YSIAAPENEA Hmw4com Hmw1com Hmw2com

59/68 350 LSAKEGEAEI GGVISAQNQQ AKGGKLMITG DKVTLKTGAV IDLSGKEGGE IDLSGKEGGE IDLSGKEGGE IDLSGKEGGE DKVTLKTGAV DKVTLKTGAV DKVTLKTGAV GGVISAQNQQ AKGGKLMITG GGVISAQNQQ AKGGKLMITG GGVISAQNQQ AKGGKLMITG LSAKEGEAEI LSAKEGEAEI LSAKEGEAEI 301 Hmw3com Hmw1com Hmw2com Hmw4com

400 IVWGDIALID IVWGDIALID IVWGDIALID IVWGDIALID TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA VSGKEKGGRA VSGKEKGGRA VSGKEKGGRA TTLEKGSTIN TTLEKGSTIN TTLEKGSTIN GKNGIQLAKK GKNGIQLAKK GKNGIQLAKK TYLGGDERGE TYLGGDERGE TYLGGDERGE 351 Hmw3com Hmw4com Hmw1com Hmw2com

· · · SKGGNLT

FIG. 10D.

401

450 GNINAQGK.D IAKTGGFVET SGHYLSIDDN AIVKTKEWLL DPENVTIEAP SGHDLSIGDD VIVDAKEWLL DPDDVSIETL SGHDLFIKDN AIVDAKEWLL DPDNVTINAE SGHYLSIESN AIVKTKEWLL DPDDVTIEAE GNINAQGS.D IAKTGGFVET GNINAQGSGD IAKTGGFVET GNINAQGSGD IAKTGGFVET Hmw3com Hmw4com Hmw1com Hmw2com

451

/68 60 SASRVELGAD RNSHSAEVIK VTLKKNNTSL TTLTNTTISN LLKSAHVVNI ILRRGSYVNI ILKKGTFVNI YLKNAWTMNI ESPKGNSISK PTLTNSTLEQ STPKRNKE.K TTLTNTTLES SDPKKNSELK TTLTNTTISN QGYTTGDGTK DEYTGSGNSA DEFPTGTGEA TSGRNNTGEN DPLRNNTGIN TAGRSNTSED Hmw3com Hmw4com Hmw1com Hmw2com

550 501

.E...GGNLT NE...NGNLT GDDTRGANLT SINLSNGS.L TLHTK...RD GVKINGDITS GVEINNDITT ILHSKGQRGG GVQIDGDIT. SISIERGSHL ILHSEGQGGQ GVQIDKDITS TLWSEGRSGG SINL. SNGSL SINGSNGSHL TARKLTVNS TASRKLTVNS TANNRIYVNS TANQRIYVNS Hmw3com Hmw4com Hmw1com Hmw2com

FIG. 10E.

	1				009
Hmw3com	IYSGGWVDVH	KNITLGS.GF	IYSGGWVDVH KNITLGS.GF LNITTKEGDI AFEDKSGR	AFEDKSGR	NNLTITAQ
Hmw4com	IKAGSWVDVH	KNITLGT.GF	IKAGSWVDVH KNITLGT.GF LNIVAGDS.V AFEREGDKAR NATDAQITAQ	AFEREGDKAR	NATDAQITAQ
Hmw1com	IYSGGWVDVH	KNISLGAQGN	IYSGGWVDVH KNISLGAQGN INITAKQD.I AFEKGSNQVITGQ	AFEKGSNQV.	OSLI
Hmw2com	IXSGGWVDVH	KNITLD. QGF	IYSGGWVDVH KNITLD.QGF LNITA.AS.V AFEGGNNKAR DANNLTITAQ	AFEGGNNKAR	DANNLTITAQ

C GNISNKFDGT	.NFTHKFDGE	: YAITNKFEGT	T THUIL COM
SREDRGRRTK	NON	KRTNK	CYNIN
SLGGKLSFTD	GTGKGLKFIA	GTGSGLQFTT	CTTN TENTE
GFRFNNVSLN	QFRFINNVSIN	GFRFNNVSLN	DFRANNVSI,N
GTITSG.NSN	GTITVNKDDK	GTIT. SGNQK	GTVTITGEGK DFRANNVSI'N GTGKGI'NIIS SVAN
Hmw3com	Hmw4com	Hmw1com	Hmw2com
	•	GTITSG	GTITSG. GTITVNK

61/68

	651				700
Hmw3com	LNISGTVDIS	LNISGTVDIS MKAPKVSWFY RD.KGRTYWN VTTLNVTSGS KFNLSIDSTG	RD.KGRTYWN	VTTLNVTSGS	KFNLSIDSTG
Hmw4com	INISGIVTIN	INISGIVTIN QTTKKDVKYW NA.SKDSYWN VSSLTLNTVQ KFTF.IKFVD	NA. SKDSYWN	VSSLTLNTVQ	KFTF.IKFVD
Hmw1com	LNISGKVNIS	LNISGKVNIS MVLPKNESGY DKFKGRTYWN LTSLNVSESG RFNLTIDSRG	DKFKGRTYWN	LTSLNVSESG	EFNI, TTDSRC

FIG. 10F.

INISGNITIN QTTRKNTSYW QTSHD.SHWN VSALNLETGA NFTF.IKYIS Hmw2com

62/68 750 SGSTG...PS IRNA..ELNG ITFN....KA TFNIAQGSTA NFSIKASIMP LRSSRRSFAG VHFNGIGGKT NFNIGANAKA LFKLKPNAAT SFNLKEGAKV NFKLKPNENM TFNVERNARV NFDIKAPIGI ISFN...KDT SNSKGLTTQY RSSAGVNFNG V..N...GNM · · · · PYNLNG SGSNS...QD SDSAGTLTQ. 701 Hmw3com Hmw4com Hmw1com Hmw2com

800 751

GGSVNFKLN ASSSNIQTPG VIIKSQNFNV SDSSVMFDIH A...NLTSRA AGINMDSINI GGSVDFTLL ASSSNVQTPG VVINSKYFNV GGSVFFDIY ANHS...GRG AELKMSEINI DPKKELPIT. FNANITATGN FNEDISVSG. FNGNISVSG. FLANITATG. FKSNANYAL. NKYSSLNYAS NTSKPLPI.R Hmw4com Hmw3com Hmw1com Hmw2com

850 801

ENDLALNATG GNITIRQVEG T. DSRVNKG SFYNEYSKHA SNFSLKQTKD HNRNSNAFEI KKDLTINATG SGGSTLNLKA EGSTETAFSI TGGLDFSITS Hmw3com Hmw4com

FIG. 10G

T. DGMIGKG DFYDGYARNA EKDLTLNATG GNITLLQVEG SNFSLROTKD NKDLTINATN SGSTKTGFSI HVRGDDAFKI STGSSLRFKT SNGANFTLNS Hmw1com Hmw2com

63/68 900 ITNKANVTLQ ADTSNSNTGL GSDFDNHQ.. ANNAPNQQNI INKNTNATLR GANFAEN.. INNNANVTLI IEKAANVTLE VAAKKNITFK GGNITFGSQK ATTEIKGNVT INSSHNLTIL GGNVTLGGEN SSSSITGNIN AVTEIEGNVT GGNVTLGGQN SSSSITGNIT GGNITFGSRK IVAKKNITFE INSTYNISIL 851 Hmw3com Hmw4com Hmw1com Hmw2com

950 TNYTFNVAGS ASDNLNITGT TNFTFNVGGL ISESATFKGK TRDTLNITGN INSGNLTAGG NIVNIAGNLT VESNANFKAI INNGNLTTAG SIINIAGNLT VSKGANLQAI IAEDSTFKGE SVEGNLSLTG ANANIVGNLS LVNGSLSLTG ENADIKGNLT KSPLNIAGNV RDRVIKLGSL KPLTIKKDVI KKRTLTLGNI 901 Hmw3com Hmw4com Hmw1com Hmw2com

951

FIG. 10H.

IIKGNISNKS IINGNITNEK IISGNITNKN IIGGDIINNK TTNSDTTYRT TTHAKRNQRS TTNASGTOKT TTNSSSTYRT FDNNGASNIS IARGGAKFK. DINNTSSLNI FTNNGTANIN IKQGVVKLQG DINNKGGLNI DIDNSKNLSI NVTNDGDLNI IAKGGARFK. ITQGVVKLG. FINNGTAEIN FDNKGNSNIS Hmw3com Hmw4com Hmw1com Hmw2com

64/68 1050 SDKVNITNQI TIKAGVEGGR TIKAGVEGGR TIKKGIDGED TIKAGVDGEN SDKINITKQI SDKVNITNQI SDKINITKQI SQKEGNLTIS SQKEGNLTIS SQKEGNLTIS SOKEGNLTIS GDLNIIDKKS DAEIQIGGNI GDLNIKNIKA DAEIQIGGNI DTEMQIGGDI GSLNITDSNN DAEIQIGGNI GDLNITNEGS 1001 Hmw3com Hmw4com Hmw1com Hmw2com

DLTIGNASGG DLTIGNASGG KAEITAKDGS DLTIGNTNSA TEDLSISGFN KAEITAKDGR DLTIGNSNDG SDSSEAENAN LTIQTKELKL AGDLNISGFN KAEITAKNGS KAEITAKNGS LTIQTKELKL AGDLNISGFN TQDLNISGFN LTIKTKELKL LTIKTKELKL SDSSEAENAN SDSDATNNAN SSSDATSNAN 1051 Hmw3com Hmw1com Hmw4com Hmw2com

FIG. 10I

	1101				1150
Hmw3com	NADAKKVT	FDKVKDSKIS	FDKVKDSKIS TDGHNVTLNS EVKTSNGS SNAGNDNSTG	EVKTSNGS	SNAGNDNSTG
Hmw4com	NADAKKVT	FDKVKDSKIS	FDKVKDSKIS TDGHNVTLNS EVKTSNGS SNAGNDNSTG	EVKTSNGS	SNAGNDNSTG
Hmw1com	D.GTNAKKVT	FNQVKDSKIS	FNQVKDSKIS ADGHKVTLHS KVETSGSNNN TEDSSDNNAG	KVETSGSNNN	TEDSSDNNAG
Hmw2com	NSGAEAKKVT	FNNVKDSKIS	FNNVKDSKIS ADGHNVTLNS KVKTSSSNGG RESNSDNDTG	KVKTSSSNGG	RESNSDNDTG

5/6	8		
TGSVEVTAQN	TGSVEVTAQN	TGNVEIT	NGKASIT
TKEGTTINAT	TKEGTTINAT	TKTGTTINAT	NKDVTSLKTV NITA.SEKVT TTAGSTINAT NGKASIT
NISAAAGNVT	NISAAAGNVT	SISATSGEIT	NITA. SEKVT
NNNVTSHKTI	NNNVTSHKTI	NNNITSHKAV	NKDVTSLKTV
LTISAKDVTV	LTISAKDVTV	LTIDAKNVTV	LTITAKNVEV
Hmw3com	Hmw4com	Hmw1com	Hmw2com
	LTISAKDVTV NNNVTSHKTI NISAAAGNVT TKEGTTINAT TGSVE	LTISAKDVTV LTISAKDVTV	LTISAKDVTV NNNVTSHKTI NISAAAGNVT TKEGTTINAT TGSVEV LTISAKDVTV NNNVTSHKTI NISAAAGNVT TKEGTTINAT TGSVEV LTIDAKNVTV NNNITSHKAV SISATSGEIT TKTGTTINAT TGNVE

1250 GTIKGNITSQ NVTVTATENL VTTENAVINA TSGTVNISTK TGDIKGGIES TGDIKGGIESAQ TGDIKGGIES TSGTVNISTK VTTENAVINA GTIKGNITSQ NVTVTATENL Hmw3com Hmw4com Hmw1com

FIG. 10,

						66	/68	3						
T	1300	TSAPPCNANT	ISATTGNANT	IKG. TRSVIT			1350	ADSGKLTSTV	ADSGKI,TSTV	ATEST, TTOSN	ATVDLTTKSG	1400	NSAKVEAKNG	NSAKVEAKNG
TK		GQDVTVTADA GALTTTAGST	GQDVTVTADA GALTTTAGST	GALTTLAGST				NISGNTVTIT	NISGNTVTIT		TISGNTVSVS		TASTGDLTIG	TASTGDLTIG
•								VATGATLAVG	VATGATLAVG	_ອ	9		GTISGNTVNV	GTISGNTVNV
:		GNTLKVSNIT	GNTLKVSNIT	EGALAVSNIS	:			VESSSGSVTL	VESSSGSVTL	•	•		TTSSQSGDIE	TTSSQSGDIE
•	1251	TSGNVNITAS	TSGNVNITAS	SSGSVTLTAT	:		1301	TTKTGDINGK	TTKTGDINGK	SSQSGDIG	GDIS	1351	GSTINGTNSV	GSTINGTNSV
Hmw2com		Hmw3com	Hmw4com	Hmw1com	Hmw2com			Hmw3com	Hmw4com	Hmw1com	Hmw2com		Hmw3com	Hmw4com

Æ,

FIG. 10K.

SKIKATTGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEINATEG NGAEINATEG GTISGNTVNV TANAGDLTVG SKIEAKSGEA NVTSATGTIG Hmw1com Hmw2com

67/68 1450 SSNGQTTLTA KDSSIAGNIN AANVTLNTTG AANVTLNTTG SAKGQVNLSA QDSSVAGSIN AANVTLNTTG STKGQVDLLA QNSSIAGNIN AANVTLNTTG SSNGQTTLTA KDSSIAGNIN LTTEASSHIT LTTEAGSSIT AATLTAESGK LTTQTGSSIT LTTQTGSSIT AATLTAESGK AATLTTSSGK AATLTATGNT 1401 Hmw4com Hmw1com Hmw2com Hmw3com

1500 TLTTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNAT NASGSGNVTA NATSGTLTIN AKDAELNGAA LGNHTVVNAT NANGSGSVIA NASGSGNVTA SGDSTEVNAV NASGSGSVTA NATSGTLTIN AKDAKLDGAA SGDRTVVNAT AKDAKLNGDA KATSGTLTIN TLTTTGDSKI TLTTVKGSNI TLTTVAGSDI 1451 Hmw3com Hmw4com Hmw1com Hmw2com

1501

1550

FIG. 10L.

IQPGVASVEE IQPGVASVEE IQPGVASVEE IQPGIASVDE ISENGRNTVR LRGKEIDVKY LRGKEIDVKY ISKNGINTVL LKGVKIDVKY ISKDGRNTVR LRGKEIEVKY ISENGRNTVR DLNTINGLNI ATSSSVNITG DLNTVNGLNI DLNTINGLNI DLITINGLNI KTSSSVNITG TTSSRVNITG KTSSSVNITG Hmw3com Hmw1com Hmw2com Hmw4com

68/68 VIEAKRVLEK VKDLSDEERE TLAKLGVSAV RFVEPNNAIT VNTQNEFTTK TLAKLGVSAV RFVEPNNAIT VNTQNEFTTK VDTQNEFATR VNTQNEFTTR VIEAKRILEK VKDLSDEERE ALAKLGVSAV RFIEPNNTIT TLAKLGVSAV RFVEPNNTIT VKDLSDEERE VIEAKRVLEK VKDLSDEERE VIEAKRVLEK 1551 Hmw3com Hmw4com Hmw1com Hmw2com

1632 õ PSSQVTISEG KACFSSGNGA RVCTNVADDG QQ PSSQVTISEG KACFSSGNGA RVCTNVADDG RVCTNVADDG TVCVNIADNG PSSQVIISEG KACFSSGNGA PLSRIVISEG RACFSNSDGA 1601 Hmw3com Hmw4com Hmw1com Hmw2com

INTERNATIONAL SEARCH REPORT

In ational application No. PCT/US94/02550

	SSIFICATION OF SUBJECT TER						
	:A61K 39/02 :424/92	-					
	to International Patent Classification (IPC) or to both	national classification and IPC					
B. FIELDS SEARCHED							
Minimum documentation searched (classification system followed by classification symbols)							
U.S. : 424/92; 435/851							
Documentat	tion searched other than minimum documentation to th	ne extent that such documents are included	in the fields searched				
1	lata base consulted during the international search (ng, APS, Biosis, Embase, Scisearch, Chem Abs		, search terms used)				
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.				
Υ	Pediatric Infectious Disease Journal 05 May 1990, Barenkamp et al Bactericidal Activity Following influenzae Acute Otitis Media", 337.	, "Development of Serum Nontypable Haemophilus	1-3				
Pediatric Research, Volume 29, No. 4 part 2, issued 1991, Barenkamp S. J., "DNA Sequence Analysis of Genes for Nontypable Haemophilus influenza High Molecular Weight Outer Membrane Proteins which are Targets of Bactericidal Antibody", see page 167A, column 1, abstract no. 985.							
Fueth	er documents are listed in the continuation of Box C						
"A" doc	cial categories of cited documents: nument defining the general state of the art which is not considered be part of particular relevance	"T" later document published after the inte date and not in conflict with the applica principle or theory underlying the inve	tion but cited to understand the				
"E" carlier document published on or after the international filing date "X" document of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an inventive							
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document is taken alone document is taken alone "Y"							
me	Considered to involve an inventive step when the document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combined with one or more other such documents, such combined with one or more other such documents, such combined with one or more other such documents, such combined with one or more other such documents, such combined with one or more other such documents.						
the	rument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent					
Date of the	actual completion of the international search	JUN 02 1994	reh report				
Commission Box PCT Washington	nailing address of the ISA/US ner of Patents and Trademarks	Authorized officer JULIE KRSEK-STAPLES	Warden for				
Facsimile No Form PCT/IS	o. (703) 305-3230 SA/210 (second sheet)(July 1992)*	Telephone No. (703) 308-0196	U				
4/16	(veedid biret)(#UIJ 1776)#						

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTIO)