Secureworks

Decoding NOAA Weather Satellite Signals

Eric Escobar - W6WD

What are we doing?

Quick outline:

- What is NOAA?
- What Satellites are in orbit?
- What do these satellites transmit?
- When are these satellites overhead?
- How can we receive the transmitted signals?
- Capturing data with only a web browser.
- How do we decode the data?

What is NOAA?

NOAA - National Oceanic and Atmospheric Administration

- "The NOAA Satellite and Information Service provides timely access to global environmental data from satellites and other sources to monitor and understand our dynamic Earth. We manage the Nation's operational environmental satellites and deliver data and information services such as Earth system monitoring and official assessments of the environment." – NOAA.gov
- 4 Polar-Orbiting Satellites
 - NOAA -15
 - NOAA-18
 - NOAA-19
 - NOAA-20 <- Doesn't transmit what we need

What do they transmit?

Lots of features, we'll only focus on one!

- Automatic Picture Transmission (APT) Developed in the 1960's
- Broadcasts include:
 - Telemetry
 - Data synchronization
 - Images (horizontal scan lines)
- 2 lines / second (4160 baud)
- 4 kilometers / pixel (8 bit images)

Mobile Applications & Websites

- iOS GoSatWatch \$10
- Android Heavens-Above
- Web Browser Heavens-above.com

Mobile Applications & Websites

Mobile Applications & Websites

Mobile Applications & Websites

Satellite	Date	te Start Highest point		End	Downlink Frequencies (MHz)	
			Altitude	Azimuth		
UNISAT 6	02 Aug	19:00:04	210	95° (E)	19:06:39	437.425
BEESAT 2	02 Aug	19:00:41	28°	247° (WSW)	19:07:20	435.950
FALCONSAT 3	02 Aug	19:03:00	55°	167° (SSE)	19:09:57	435.103
ITUPSAT 1	02 Aug	19:08:16	20°	95° (E)	19:15:23	437.325
RS-44	02 Aug	19:13:45	23°	69° (ENE)	19:26:52	435.640
NOAA 19	02 Aug	19:15:02	79°	256° (WSW)	19:25:58	137.1000
NOAA 15	02 Aug	19:22:51	69°	74° (ENE)	19:33:22	137.6200
DELFI C3	02 Aug	19:23:26	27°	72° (ENE)	19:29:59	145.870
TIGRISAT	02 Aug	19:23:51	35°	98° (E)	19:31:42	435.000
NUDT-PHONESAT	02 Aug	19:26:50	22°	264° (W)	19:32:28	437.300
HuskySat-1	02 Aug	19:26:52	12°	339° (NNW)	19:29:55	
AO-27	02 Aug	19:49:50	28°	263° (W)	19:58:41	436.795
BEESAT	02 Aug	19:59:31	75°	103° (ESE)	20:09:04	436.000
METEOR M2	02 Aug	20:11:13	37°	262° (W)	20:21:07	137.100 / 137.900
Max Valier Satellite	02 Aug	20:11:57	210	71° (ENE)	20:17:26	145.860
STRAND 1	02 Aug	20:24:03	490	288° (WNW)	20:33:49	437.568

Mobile Applications & Websites

Capturing APT Data:

- Commercial hardware
 - Software Defined Radio (SDR) Requires an antenna
 - \$30 R820T2 on Amazon
 - Baofeng radio Requires an antenna
 - \$26 Baofeng UV-5R on Amazon
- From the internet
 - WebSDR.org

Interfacing with your radio / SDR

- Baofeng
 - Antenna coaxial cable (SO-239) to SMA-Female (Baofeng)
 - 2.5mm to 3.5mm audio cable (to computer / phone)
- RTL-SDR
 - Antenna coaxial cable (SO-239) to SMA-Male (SDR)

Building or buying an antenna:

- Purchasing antennas
 - Works well, but pricey. (\$250)
 - https://www.antennas.us/store/p/404-UC-1374-531-4-dBic-VHF-APT-Weather-Satellite-Antenna-WXSAT.html
- Building your own
 - May not be tuned perfectly.
 - Time to build!

Building antenna:

- H-Dipoles are easiest to build
- Materials:
 - Two metal rods (~3mm diameter) x 53.4cm long
 - Coaxial cable (match either your SDR or Baofeng)
 - Soldering iron
 - Scrap mounting material

Building a horizontal dipole antenna:

- Take some scrap mounting material
- Cut your aluminum rods
- Secure the rods to your material
- Doesn't have to look pretty

Building a horizontal dipole antenna:

- Strip your coaxial cable
- Solder your coaxial cable to the rods
- Make sure the ends do not touch!
- Let's check the tuning....

How do we capture data? Building a horizontal dipole antenna:

- (1 / 1.97) Standing wave ratio
 - Not terrible for \$15

No antenna? No Sweat!

WebSDR.org

- A WebSDR is a Software-Defined Radio receiver connected to the internet, allowing many listeners to listen and tune it simultaneously. SDR technology makes it possible that all listeners tune independently, and thus listen to different signals; this is in contrast to the many classical receivers that are already available via the internet.
 - WebSDR.org
- Free to use
- Receivers available all around the world.
- A quick word on wavelength & frequency
 - $3x10^8$ (m/s) / $137x10^6$ (cycles/s) = ~2.18 meters

$$\lambda = \frac{v}{f}$$

No antenna? No Sweat!

- A quick word on wavelength & frequency
 - v = speed of light 3x10⁸ (meters /second)
 - f = frequency in Hertz (cycles / second)
 - λ = wavelength (meters)
- Sample calculation
 - $3x10^8$ (m/s) / $137x10^6$ (cycles/s) = ~2.18 meters

Using WebSDR.org

Using WebSDR.org

Using WebSDR.org

Using Audacity

Decoding the audio

- WXtoImg
 - Software is outdated but still maintained as a beta
 - https://wxtoimgrestored.xyz/downloads/ (Use the beta version)
- NOAA-APT
 - Supported and updated
 - Has less features than WXtoImg
 - https://noaa-apt.mbernardi.com.ar/

Decoding the audio with WXtoImg

Now what?