데이터 기반 금융외환시장 조기경보체계 (Early Warning System)

디지털혁신실 혁신기획팀 김태완 과장, 디지털신기술반 이현창 반장

주간현안포럼, 2022.7.18

발표순서

I. 금융위기 발생 메커니즘과 조기경보

Ⅱ. 데이터 기반 조기경보모형

Ⅲ. 향후 과제

검토배경

- 완화적 금융정책으로 주요국 금융불균형(부채·자산가격)이 확대된 가운데 우크라이나 전쟁, 통화정책 정상화 등으로 경제 불확실성 확대
- 조기경보 관련 데이터 분석 기법 발전

I. 금융위기 발생 메커니즘과 조기경보

• 금융위기 발생 메커니즘

• 주요 조기경보체계

• 조기경보모형 개발의 제약 요인

금융위기 발생 메커니즘

- 금융시스템 취약성이 높은 상황에서 실물/금융부문의 충격(트리거) 발생시 디레버리징과 자산가격 급락 악순환(vicious spiral) 등으로 촉발(IMF 2010; 이현창 외 2019; 금안보고서 2021)
 - 금융취약성(금융불균형)은 가계/기업의 부채비율 및 자산가격 상승, 금융기관의 취약한 자금조달구조 등을 의미하며 장기시계에서 순환
 - 트리거는 긴축적 통화정책, 감염병 유행 등 이벤트에 의한 불확실성 확대와 이로 인한 위험회피 행태를 포괄
- 국가, 시기별로 취약부문 및 트리거 이벤트가 상이
 - '70~'80년대 남미, '90년대 아시아 외환위기, '08년 GFC, '11년 유로 재정위기

주요 조기경보체계

- 신호추출(signal extraction approach)모형
 - Kaminsky and Reinhart(1999), Kaminsky(1999)
 - 대표적 비모수 모형으로 표본외 예측력이 높음(국제금융센터, IMF)
- 로짓/프로빗(logit/probit)모형
 - Frankel and Rose (1996), Demirguc-Kunt and Detragiache(1998)
- 머신러닝(machine learning)모형
 - BoE(2020), IMF(2021)
- **IMF EWE**(Early Warning Exercise, 2010)
 - 분야별 전문가의 정성적 리스크 요인 식별, 서베이 등으로 구성
 - 신호추출, 기계학습 기반 VE(Vulnerability Exercise) 포함

계량경제모형과 머신러닝

- 계량경제모형은 변수의 확률분포에 대한 가정하에 변수 간 관계 추정에 초점
 - 변수 간 관계는 통상 선형회귀식으로 표현
 - 데이터를 모두 사용하여 회귀계수를 추정
 - (모형검증) 추정결과가 이론에 부합하는지 여부, R², AIC, BIC 등으로 유효성 판단
- 머신러닝 알고리즘은 확률분포에 대한 가정없이 변수 예측에 초점
- 특정 모형구조(하이퍼파라미터) 하에서 변수 간 관계를 포착하는 패턴(파라미터)을
 알고리즘적으로 탐색
 - 일부 데이터에 대해 패턴을 학습한 다음 나머지 데이터를 이용하여 표본외 예측력 평가
 - (모형검증) 표본외 예측력을 기준으로 모형의 유효성을 판단

신호추출모형

- 금융위기 발생을 선행하는 변수 집합 선정
- 각 변수에 대해 위기 예측력(1/NSR)을 극대화하는 임계치 설정
 - NSR: 노이즈(Type II 오류)/시그널(1- Type I 오류) 비율
- 변수별 예측력(또는 표준편차)을 가중치로 하여
 위기 예측 종합지수 산출
- 조기경보모형, 금융안정평가(금융불안지수) 등에 활용
- 본 연구의 벤치마크 모형으로 활용

* excerpted from Peiwan Wang and Lu Zong(2020)

조기경보모형 개발의 제약 요인

- (상호의존성) 금융위기는 취약성, 트리거 변수 간 상호작용에 의해 발생
 - 신호추출모형, 로짓/프로빗은 여러 변수 간 상호 의존성을 포착하지 못함
 - 동 메커니즘을 고려한 계량경제모형 개발은 아직 이론 연구에 그침
- (데이터 부족) 국가별 금융위기 발생 사례가 적음
 - 과거 위기 발생 사례에 과적합(overfitting)될 가능성이 높음
 - 국가 패널 데이터를 구성할 경우 사용할 수 있는 변수가 제한적

Ⅱ. 데이터 기반 조기경보

- 개발 방향
- 데이터
 - 금융불안(위기) 식별
 - 학습데이터 구축
- 모형 학습
- 분석 결과
- 실시간 조기경보

개발 방향

- 복합금융불안지수(CFSI)를 정의하여 시장불안·위기 기간 식별
 - 금융위기와 시장불안 시기를 함께 활용함으로써 데이터 부족 문제를 완화
- 머신러닝 알고리즘을 이용하여 데이터에 내재한 정보를 효율적으로 활용
 - 변수 간 비선형, 상호의존적 관계 포착
 - 시기별 취약성(신용, 자산가격, 외채 등) 및 트리거(VIX, 환율, 금리 등) 식별
- 표본외 예측력을 기준으로 조기경보모형의 실효성을 평가
 - 동일한 방식으로 기존 조기경보모형(신호추출, 로짓/프로빗)과 머신러닝 알고리즘을 학습하여 모형별 표본외 예측력(ROC-AUC)을 평가

복합금융불안지수(Complex Financial Stress Index)

- 복합금융불안지수(CFSI) = 은행부문압력지수 + 채권·증권부문압력지수 + 외환부문압력지수
 - 각 구성 변수는 표준화하여 합산하였으며, Cardarelli, Elekdag, and Lall (2009)가 제시한 복합금융불안지수와구성이 유사하나 국내 사정에 맞게 변경
- **은행부문압력지수 =** 은행업 KOSPI 지수 변동성 (GARCH) + CD스프레드 (CD 수익률 - 통안증권 수익률)
- 채권·증권부문압력지수 = KOSPI 지수 변동성 (GARCH)
 - KOSPI 지수 년간 수익률
 - 기간프리미엄 (국채3년물 통안증권1년물)
 - + 회사채 스프레드 (회사채AA 국채3년)
- 외환부문압력지수 = USD/KRW 환율 변동성 (GARCH)

개발 방향 - 데이터 흐름

Label(y)					
	0 (안정)				
	0 (안정)				
	1 (경보)				
	1 (경보)				
	y <u> </u>				

예측변수(X)							
0.62	0.09	0.94	0.94	0.68	0.19		
0.54	0.86	0.41	0.17	0.54	0.20		
0.50	0.54	0.40	0.64	0.84	0.23		
0.16	0.97	0.55	0.66	0.35	0.09		

예측력 (y, \hat{y}) \Leftrightarrow $\hat{y} = f(X; \theta)$

$$\hat{y} = f(X; \theta)$$

데이터

• 트리거

- (글로벌) VIX, 경제정책불확실성지수(EPU), 미국 기간프리미엄
- (국내) 경제정책불확실성지수(EPU), 원/달러 환율 변동성, 신용프리미엄, 기간프리미엄, 국가신용 스프레드, CD 스프레드, CP 스프레드, KOSPI 수익률 및 변동성(GARCH, CMAX), KOSPI 은행부문 변동성

• 취약성

 가계신용/GDP, 기업신용/GDP, 가계 및 기업 총부채원리금상환비율(DSR), 주가순자산비율(PBR), 주택매매가격지수(KB), 은행 레버리지, 예대율, 단기외채비율, 외환보유액/단기외채 등

데이터 - 트리거

- 우리나라 경제는 '98년 외환위기 이후 네 차례('01, '03, '98, '20) GDP 성장률 급락을 경험
- 성장률 급락에 선행하여 VIX, 환율 변동성, 신용 스프레드 등 시장 불안을 나타내는 변수들이 빠르게 상승

데이터 - 취약성

- 또한, 각 성장률 급락 및 시장 불안 확대 시기를 전후하여 가계/기업 부채, 은행 레버리지, 단기외채 비율이 큰 폭의 변동을 나타냄
- 한편, '11년은 유로 재정위기로 VIX가 상승하였으나 주요 취약성 변수는 낮은 수준을 보임

데이터 - 금융불안(위기) 식별

- 은행, 채권, 외환 등 부문별 압력지수를 종합한 복합금융불안지수(CFSI)를 이용하여 금융불안 기간(CFSI > 1 std)을 식별
- 불안기간은 앞서 설명한 GDP 성장률 급락 시기와 일치하며 IMF, GFC 시기에 가장 높은 수준을 보임

데이터 - 학습 데이터 구축

- 전체 기간을 정상기간과 경보기간 (불안기간과 그에 앞선 6개월)으로 나누고 각각 0, 1로 라벨링
 - 불안기간중 CFSI가 정점을 지난 기간은
 학습 데이터에서 제외하여 모형 강건성
 검증
 - 경보기간 전후 3개월은 같은 group으로 지정하여 모형검증(표본외 예측) 수행
 - 각 예측변수의 공표시차를 고려하여 학습데이터 구성(<별첨 2> 참고)

모형 학습 - 트리(decision tree) 기반 머신러닝

- 변수 간 비선형, 상호의존적 관계 포착에 특화
 - 부트스트래핑, 앙상블 기법 등을 통해 예측력 개선
 - RF(Random Forest), EXT(EXtreme Random Tree) 등
 - ㅇ 빠른 학습속도
 - 모형 예측력은 AUC로 평가
- 설명가능한 인공지능(XAI, explainable AI)
 - 변수 간 관계가 회귀모형에서와 같이 하나의 계수로 표현되지 않으므로 shapley 등 기법 활용
 - 위기 발생 확률을 높인 취약성, 트리거 파악

모형 학습 - 검증

- 교차검증(cross-validation) 방법론을 이용하여 표본외 예측력 점검
- 전체 데이터를 K개의 블록으로 나누어 K-1개 블록에 대해서만 학습하고 나머지 1개의 블록에 대해 예측하는 과정을 K번 반복하여 각 모형의 표본외 예측력을 평가

분석결과

- 트리 기반 머신러닝(EXT, RF)알고리즘의 예측력이 가장 높고, 신호추출모형이 그다음
 - 그 외 모형들의 예측력(AUC)은 크게 낮음
 - FPR 수준에 관계없이 EXT의 TPR이 가장 높음

	LR	Lasso	SE	SVM	NN	RF	EXT
mean	0.702	0.680	0.843	0.611	0.706	0.877	0.902
std	0.004	0.003	0.005	0.004	0.023	0.003	0.005

ROC-AUC

- 라벨이 Negative, Positive로 주어지고 예측모형은 0과 1
 사이의 값을 가질 때 모형 예측력은 두가지 방식으로 평가
- [1] 임계값(t)을 설정하여 예측값이 t보다 크면 P, 작으면 N을 예측한 것으로 하여 Precision, Recall, F1 등 계산
 - Precision = #TP / (#TP + #FP), Recall = #TP / (#TP + #FN), F1 = 2 * Precision * Recall / (Precision + Recall)
 - 임계값 수준에 따라 모형 예측력에 대한 평가가 달라짐
- [2] 모형의 TPR-FPR 곡선(ROC) 아래 면적(AUC)을 계산하는 것으로 1에 가까울수록 예측력이 우수
 - TPR(= #TP / (#TP + #FN)), FPR(= #FP / (#FP + #TN))
 - o AUC=1이면 임계값에 관계없이 TPR=1, FPR=0

분석결과 - 시기별 예측값

- 1997년 이후 기간에 대해 높은 표본외 예측력을 보임
- 금융불안 기간에 선행하여 조기경보예측값이 지속적으로 상승

분석결과 - 요인분해(EXtreme Random Tree)

- 금융불안 시기별로 주요 트리거 및 취약성 변수가 달라짐
- 취약부문으로는 단기외채, 기업부채, 트리거로는 VIX, CD스프레드 등이 식별됨

실시간 조기경보

- 2008년 이후 실시간 조기경보*를 수행한 결과도 높은 예측력을 보임
 - * walk-forward validation(금융불안 블록 기준)
 - EXT, 신호추출모형의 AUC는 각각 0.86, 0.81
- 2022년들어 조기경보값이 높아지고 있으나 과거 금융위기에 비해서는 낮은 수준

Ⅲ. 향후 과제

- 본 연구는 머신러닝 알고리즘을 이용하여 금융위기 발생 메커니즘을 고려한
 조기경보모형을 개발
 - 벤치마크 모형(신호추출모형) 대비 개선된 표본외 예측력
 - 모형의 예측력과 강건성을 제고하기 위해 추가적인 예측변수, 모형설정 검토
- 금융불안 발생가능성에 대한 종합적(정성적, 정량적) 판단이 가능한 데이터 기반(evidence-based) 조기경보체계 구축
 - IMF EWE는 실물경제 이해도가 높은 IMF와 금융시장 이해도가 높은 FSB가 리스크 요인을 식별하는 것에서 시작
 - 분야별 전문가 논의를 통해 EWS 입력 데이터를 점검, 보완하고, EWS 예측결과 모니터링을 통해 개선 사항을 도출

참고문헌

- 김명직, "복합금융위기에 대한 조기경보", 경제연구 제32권 제1호, 2011, 27~52
- 나성오·이현창·남명훈, "금융·실물 연계를 고려한 금융불균형 수준 평가", BOK이슈노트 2020-2호
- 송길성·김홍렬·이은경·김규식, "금융취약성지수(FVI) 신규 편제 결과 및 시사점, 금융안정보고서 2021.6월
- IMF, "How to Assess Country Risk: The Vulnerability Exercise Approach Using Machine Learning," IMF Technical Notes and Manuals (Washington), 21/03, 2021
- K. Bluwstein et al., "Credit Growth, the Yield Curve and Financial Crisis Prediction: Evidence from a Machine Learning Approach.", Bank of England Staff Working Paper No. 848, 2020
- IMF, "The IMF-FSB Early Warning Exercise: Design and Methodological Toolkit," IMF Policy Paper (Washington), 2010
- Balakrishnan, R., S. Danninger, S. Elekdag, and I. Tytell, "The Transmission of Financial Stress from Advanced to Emerging Economies", IMF Working Paper No. 133, 2009.
- Graciela L. Kaminsky, "Currency and Banking Crises: The Early Warnings of Distress" IMF Working Papers No. 178, 1999

기존 연구 대비 특징

!						
	주요 연구	모형	데이터 범위	데이터 주기	모형검증(표본외 예측)	금융불안 식별
	Kaminsky (1999)	신호추출	20개국	월	Δ	외환압력지수(외환위기), 주요 변수 변화율(금융위기)
	김명직 (2011)	신호추출	우리나라	월	Δ	복합금융불안지수
	박원암 (1999, 2011)	신호추출	우리나라	월	Δ	주요 변수 변화율(외환위기)
	Frankel and Rose (1996)	프로빗	100여 개국	연	Χ	주요 변수 변화율(외환위기)
	Demirgiiy-Kunt and Detragiache (1998)	로짓	29개국	연	Χ	주요 변수 변화율(금융위기)
	Bluwstein et al. (2020)	머신러닝	17개국	연	0	Jordà, Schularick and Schularick (2019) (금융위기)
	IMF Vulnerability Exercise (2021)	머신러닝	158개국	연	0	섹터별 지표 및 기준
	김태완·이현창 (2022)	머신러닝	우리나라	월	0	복합금융불안지수

예측변수 공표시차

- 조기경보모형 학습 및 표본외 예측에 사용된 변수는 공표시차를 고려하여 각 시점에서 이용가능한 범위까지만 사용
- 예를 들어, 2022년 1월말 현재
 6개월내 금융불안 발생 가능성을 평가할 경우, 공표시차가 0, 1, 2인 변수는 각각 2022년 1월, 2021년 12월, 2021년 11월 데이터를 사용

예측변수	주기	이용가능범위*	공표시차(월)
VIX	D	2022-06	0
KRW/USD 환율 변동성	D	2022-06	0
KOSPI 지수 변동성 (CMAX)	D	2022-06	0
CP 스프레드	D	2022-06	0
CD 스프레드	D	2022-06	0
기간 프리미엄	D	2022-06	0
국가신용 스프레드	D	2022-06	0
GDP성장률	Q	2022-03	3
외환보유액/단기외채	Q	2022-03	3
은행 레버리지	Q	2022-03	3
은행 예대율	M	2022-05	1
미국 수익율 곡선	D	2022-06	0
KOSPI 은행부문 변동성 (GARCH)	D	2022-06	0
KB 주택매매가격지수	M	2022-06	1
가계부채/GDP	Q	2022-03	3
비금융부문부채/GDP	Q	2022-03	3
세계 경제불확실성지수	М	2022-05	2

*2022.07.06일 기준

감사합니다