Seminatio T6

Josu Pérez Zarraonandia

Simplificar la signiente mádrica:

$$x^2 - 2xy + y^2 - 2xz + 2yz + 2^2 + \sqrt{6}x = 0$$

1) Esperio ofin no euclideo:

Nuestra cuadrina es:

$$\S\left((\times, Y, \overline{z})\right) = \mathbb{Q}\left((\times, Y, \overline{z})\right) + \mathbb{L}\left((\times, Y, \overline{z})\right) = 0$$

Vomos a simplificar la parte cuadratica. Definimos una forma bilineal g tol que; $M_{BC}(g) = \begin{pmatrix} 1 - 1 - 1 \\ -1 & 1 \end{pmatrix}$ $g((x, y, z), (x, y, z)) = Q((x, y, z)) \Rightarrow M_{BC}(g) = \begin{pmatrix} 1 - 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$

Como es simétrica con coeficientes en R. es diogondirable. La diagonalizarios por el métado de Craus:

La diagonolizamos por el masor

$$\begin{pmatrix}
1 & -1 & -1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 1 & 0
\end{pmatrix}$$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 1 & 0
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$
 $\begin{pmatrix}
1 & -1 & -1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$

$$\begin{pmatrix}
1 & 0 & -1 & | & 1 & 0 & | & 1 & 1 & 0 & | & 1 & 1 & 1 & 0 &$$

(signiente cora)

61

$$C_3'=C_3+C_1$$
 $\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$ de monera que:

$$D = t PAP \rightarrow \begin{pmatrix} 100 \\ 000 \end{pmatrix} = \begin{pmatrix} 100 \\ 120 \\ 101 \end{pmatrix} \begin{pmatrix} 111 \\ -111 \\ -111 \end{pmatrix} \begin{pmatrix} 111 \\ 010 \\ 001 \end{pmatrix}$$

simplificado la emoción, que De esta monera, hemos ahora es:

$$Q((x', y', z')) = (x')^2$$
 con

Asi:

$$\{((x', y', 2')) = (x')^2 + \sqrt{6}(x) = 0 = 0$$

$$\Rightarrow (x')^{2} + \sqrt{6}(x') + \sqrt{6}(y') + \sqrt{6}(2') = 0 \Rightarrow$$

$$\Rightarrow \left(X' + \frac{\sqrt{6}}{2} \right)^{2} + \sqrt{6} (Y') + \sqrt{6} (Z') - \frac{6}{2} = 0$$

Tomonos:

Tomonos:
$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} -\sqrt{6} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = 2$$

$$\begin{cases} x_1 = -\sqrt{6} \\ y_1 = y_1 \\ z_1 = z_1 \end{cases}$$

momera que: De

$$g((x'', y'', 2'')) = (x'')^2 + \sqrt{6}(y'') + \sqrt{6}(z'') - \frac{3}{2} = 0$$

$$L((x'', y'', z''))$$

$$\begin{cases} x''' = x'' \\ y''' = \sqrt{6}(y'') + \sqrt{6}(z'') \end{cases} \iff \begin{cases} x'' = x''' \\ y'' = \frac{y'''}{\sqrt{6}} - 2''' \\ z''' = 2'' \end{cases}$$

$$\Rightarrow \begin{pmatrix} \chi'' \\ \gamma'' \\ 2'' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{6} & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \chi''' \\ \gamma''' \\ 2''' \end{pmatrix}$$

$$\{((x'', y'', 2''')) = (x''')^2 + y''' - \frac{3}{2} = 0$$

Tomomos el último combio:

$$\begin{cases} x''' = x'V \\ y''' = \frac{3}{2} - y'V \end{cases} \iff \begin{pmatrix} x''' \\ y''' \\ 2'''' = 2''V \end{cases} \Rightarrow \begin{pmatrix} x''' \\ y''' \\ 2''' \end{pmatrix} \Rightarrow \begin{pmatrix} x''' \\ y''' \\ 2''' \end{pmatrix}$$

Findmente:
$$\left\{\left(\left(x^{iv},y^{iv},2^{iv}\right)\right)=\left(x^{iv}\right)^{2}-\left(y^{iv}\right)=0\right\} = \left(x^{iv}\right)^{2}=\left(y^{iv}\right)$$

Vermos cuál es el nuevo sistema de referencia, subiendo que para el combio de coordenados es:

$$M_{\beta c}(x) = M_{\beta c}(\tilde{OR}) + P_{\tilde{\beta}} \gamma^{\beta c} M_{\tilde{\beta}}(x)$$

$$\begin{pmatrix}
x \\
y \\
2
\end{pmatrix} = \begin{pmatrix}
4 & 4 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x' \\
y' \\
2'
\end{pmatrix} = \begin{pmatrix}
1 & 4 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x'' \\
y'' \\
y'' \\
y'' \\
0 & 0 & 1
\end{pmatrix}
= \begin{pmatrix}
-\sqrt{k_1} \\
0 \\
0 \\
0 & 0
\end{pmatrix} + \begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & \sqrt{k_1} & 1 \\
0 & \sqrt{k_2} & 1
\end{pmatrix}
= \begin{pmatrix}
-\sqrt{k_1} \\
0 \\
0 \\
0 & 0
\end{pmatrix} + \begin{pmatrix}
1 & \sqrt{k_2} & 0 \\
0 & \sqrt{k_2} & 1 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x'' \\
y'' \\
0 \\
0 & 0
\end{pmatrix}
= \begin{pmatrix}
-\sqrt{k_2} \\
0 \\
0 \\
0 \\
0
\end{pmatrix} + \begin{pmatrix}
1 & -\sqrt{k_2} & 0 \\
0 & \sqrt{k_2} & -1 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x'' \\
y'' \\$$

y el nuevo sistema es:

$$\widetilde{R} = \left(\left(\frac{-3}{2\sqrt{6}}, \frac{3}{2\sqrt{6}}, 0 \right), \left\{ (1,0,0), (-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0), (0,-1,1) \right\}$$

Procedemos ahora a harerla en el espaio ofin enclidea.

2) Espais ofin euclides:

Nuestra cuadrica es:

Procedemos a simplificar la porte ucudrática. Para ella definimos coma forma bilineal y tal que:

 $g((x,y,z),(x,y,z)) = Q((x,y,z)) \Rightarrow M_{3c}(g) = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 2 \\ -1 & 1 & 2 \end{pmatrix}$

Defenimos un endonorfismo h tol que Mpsc(h) = Mpsc(g).

Cono Mpsc(h) es simética, h es autoodjuto. Como

Cono Mpsc(h) es simética, h es autoodjuto. Como

Mpsc(h) es simética respecto a una base ortonormal

Mpsc(h) es simética respecto a una base ortonormal

para el producto escolor estándor, entences sabemos que

pora el producto escolor estándor que diogonaliza la

pora el producto escolor estándor que diogonaliza la

motivis (la diogonal son los valores propios). La

motivis (la diogonal son los valores propios). La

Primero colulomos los volores propios:

Colculomos los subesposios fundamentoles y tomomos vectores ortogonoles de ellos: V(3) = {veR3: Av = 3v} => $=) \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x \\ 3y \\ 3z \end{pmatrix} \Rightarrow \begin{pmatrix} x - y - 2 = 3x \\ -x + y + 2 = 3y \\ -x + y + 2 = 3z \end{pmatrix}$ $\begin{cases}
-2x - y - 2 = 0 \\
-x - 2y + 2 = 0
\end{cases}$ $\begin{cases}
-2x - y - 2 = 0 \\
-x - 2y + 2 = 0
\end{cases}$ $\xrightarrow{E_3' = E_3 + E_2}$ $\begin{cases}
-2x - y - 2 = 0 \\
-x - 2y + 2 = 0
\end{cases}$ $\Rightarrow \begin{cases} 2x + y + 2 = 0 \\ 2 = x + 2y \end{cases} \Rightarrow \begin{cases} 3x + 3y = 0 \\ 2 = x + 2y \end{cases} \Rightarrow \begin{cases} x = -y \\ 2 = y \end{cases}$ $\Rightarrow V(3) = \{(-2, 2, 2) | 2 \in \mathbb{R}^2\} = \langle (1, -1, -1) \rangle$ Tomorros $V_1 = (1, -1, -1)$ (dim(V(3)) = 1)V(0) = {VER3: AV = 0} => $= \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{pmatrix} x - y - 2 & = 0 \\ -x + y + 2 & = 0 \\ x + y + 2 & = 0 \end{pmatrix}$ $\Rightarrow V(0) = \{(2+\mu, 2, \mu)|2, \mu \in \mathbb{R}\} =$ = < (1,1,0),(1,0,1)> Tomones $V_2 = (2, 1, 0)$ $\left(V_2 \in V(0) \mid V_1 \in V(3) \Rightarrow V_2 \perp V_1\right)$

66

Scanned by CamScanner

Tomomos $V_3 \in V(6) \cap \langle V_2 \rangle^{\perp}$ con $\langle V_2 \rangle^{\perp} = \{ V \in \mathbb{R}^3 : V_2 \cdot V = 0 \}$

$$=) (1,1,0) \cdot (x,y,z) = 0 \Rightarrow x+y=0 \Rightarrow x=-y$$

$$\begin{cases} 1) & \times = -Y \\ 2) & \times = Y+2 \end{cases} \Rightarrow 2y+2=0 \Rightarrow 2=-2y$$

$$= \frac{(2)}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{(2)}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{(2)}{\sqrt{2}} = \frac{(2)}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{(2)}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{(2)}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{(2)}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1$$

Por construcción: V₁·V₂ = V₁·V₃ = V₂·V₃ = 0.

Normalizamos para que V, V, = V2·V2 = V3·V3 = 1

$$W_1 = V_1 \cdot \frac{1}{\sqrt{3}}$$
; $W_2 = V_2 \cdot \frac{1}{\sqrt{2}}$; $W_3 = V_3 \cdot \frac{1}{\sqrt{6}}$

Asi, la base { w2, w2, w3 } es ottonormal, de

monera que:
$$D = tPAP = P^{-1}AP$$

$$D = V_{3} \times V_{5} \times V_{6}$$

$$V_{7} \times V_{7} \times V_{7}$$

$$\begin{pmatrix} 300 \\ 000 \\ 000 \end{pmatrix} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ -1/3 & 1/3 & 1/3 \\ -1/3 & 0 & 2/3 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ -1/3 & 1/3 & -1/3 & 1/3 \\ -1/3 & 0 & 2/3 & 1/3 \end{pmatrix}$$

Asi, tomondo:

Asi, Compandor.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1/53 & 51 & 56 \\ -1/53 & 51 & -1/56 \\ -1/53 & 0 & 1/56 \end{pmatrix} \begin{pmatrix} x^1 \\ y^1 \\ z^1 \end{pmatrix} \Rightarrow \begin{cases} x = \frac{1}{15}x^1 + \frac{1}{15}y^1 + \frac{1}{15}z^1 \\ y = -\frac{1}{15}x^1 + \frac{1}{15}y^1 - \frac{1}{15}z^1 \\ z = -\frac{1}{15}x^1 + 0 + \frac{1}{15}z^1 \end{cases}$$

Y

$$f((x', y', z')) = 3(x')^{2} + \sqrt{6}(x) =$$

$$= 3(x')^{2} + \sqrt{2}(x') + \sqrt{3}(y') + (z') = 0$$

$$\Rightarrow 3(x')^{2} + \frac{\sqrt{3}}{3}(x') + \sqrt{3}(y') + (2') = 0 \Rightarrow$$

$$=) 3((x') + \frac{1}{3\sqrt{2}})^{2} + \sqrt{3}(y') + (z') - \frac{1}{6} = 0$$

Tomonos:

$$\begin{pmatrix} x' \\ y' \\ 2' \end{pmatrix} = \begin{pmatrix} -\frac{1}{3}\sqrt{2} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} x'' \\ y'' \\ 2'' \end{pmatrix} \implies$$

Ahora queremos simplificor la pote lined con una P ortegoral ortogonal tal que $\begin{pmatrix} x''' \\ z''' \end{pmatrix} = P \begin{pmatrix} x''' \\ z''' \end{pmatrix}$. Usoremos que P ortegoral es P'' = tP y Si Wi es la i-esima columna de P, entorces P wi P i e P forma una base ortonormal para entorces P wi P i e P forma una base ortonormal P forma P formal P forma P formal P for

68.

$$\begin{cases} x''' = x'' \\ y''' = x(\sqrt{3}y'' + 2'') \\ 2''' = ax'' + by'' + c2'' \end{cases} \Rightarrow \begin{pmatrix} x''' \\ y''' \\ 2''' \end{pmatrix} = \int_{-1}^{-1} \cdot \begin{pmatrix} x'' \\ y'' \\ 2''' \end{pmatrix}$$

$$t \rho = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 13 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \rho = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$W_1 \cdot W_1 = 1$$
, se ample $W_1 \cdot W_2 = 0$, se ample $W_1 \cdot W_2 = 0$

$$w_1 \cdot w_2 = 0$$
 => $\alpha = 0$
 $w_1 \cdot w_3 = 0$ => $\alpha = 0$
 $w_2 \cdot w_2 = 1$ => $3\alpha^2 + \alpha^2 = 1$ => $\alpha = \frac{1}{2}$ => $\alpha = \frac{1}{2}$

$$W_2 \cdot W_2 = 1$$
 \Rightarrow $(\sqrt{3}b + C) = 0 \Rightarrow C = -\sqrt{3}b$
 $W_2 \cdot W_3 = 0 \Rightarrow (\sqrt{3}b + C) = 0 \Rightarrow C = -\sqrt{3}b$

$$W_2 \cdot W_3 = 0$$
 =) $((13b + 0)^2 + 3b^2 = 1$ =) $b^2 + 3b^2 = 1$ =) $b = \pm \frac{1}{2}$
 $W_3 \cdot W_3 = 1$ =) $b^2 + 0^2 = 1$ =) $b^2 + 3b^2 = 1$ =) $b = \pm \frac{1}{2}$

tomomos
$$b = \frac{1}{2} \implies c = -\frac{\sqrt{3}}{2}$$

Asi obtenemos:

Así obtenemos:
$$\begin{pmatrix} x'' \\ y'' \\ z''' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{3} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\sqrt{3} \frac{1}{2} \end{pmatrix} \begin{pmatrix} x''' \\ y''' \\ z''' \end{pmatrix} \quad \text{con} \quad P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{3} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\sqrt{3} \frac{1}{2} \end{pmatrix}$$

$$\begin{cases} ((x'', y'', 2''')) = 3(x''')^2 + \sqrt{(y''')} - \frac{1}{6} = 0 \end{cases} = 3$$

$$\Rightarrow \frac{3}{2}(x''')^2 + (y''') - \frac{1}{12} = 0$$

$$\begin{cases}
x^{11} = x^{1V} \\
y^{11} = \frac{1}{12} - y^{1V} = y^{1V} \\
y^{11} = \frac{1}{12} - y^{1V} = y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V} = y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{11} \\
y^{11} = \frac{1}{12} - y^{1V}
\end{cases} = \begin{cases}
x^{$$