2. Operazioni sui limiti – Limiti fondamentali

Tabelle con operazioni

limf(x)	limg(x)	lim[f(x) + g(x)]	Forma indeterminata
l	l'	l + l'	
l	+∞	+∞	+∞ − ∞
l	-∞	-∞	
+∞	+∞	+∞	
-∞	-∞	-∞	

limf(x)	limg(x)	$lim[f(x)\cdot g(x)]$	Forma indeterminata
l	l'	$l \cdot l'$	
			$0\cdot\infty$
$l \neq 0$	∞	∞	
∞	8	∞	

limf(x)	limg(x)	$lim \frac{f(x)}{g(x)}$	Forme indeterminate
l	$l' \neq 0$	<u>l</u>	
l	∞	l' 0	$\frac{\infty}{\infty}$ e $\frac{0}{0}$
∞	l' ≠ 0	∞	

Per **Forma indeterminata** si intende dire che la sola conoscenza dei limiti delle funzioni f e g non consente di determinare il limite della loro somma, prodotto o quoziente.

Tabella limiti fondamentali

Limite infinito	Limite finito	Limite infinito
all'infinito $(n \in N - \{0\})$	all'infinito $(n \in N - \{0\})$	In un punto $(n \in N - \{0\})$
$\lim_{x \to \bar{+}\infty} x^{2n} = +\infty$	$\lim_{x \to \mp \infty} \frac{1}{x^n} = 0$	$\lim_{x \to 0} \frac{1}{x^{2n}} = +\infty$
$\lim_{x \to +\infty} x^{2n+1} = +\infty$	$\lim_{x \to +\infty} \frac{1}{2n\sqrt{x}} = 0$	$\lim_{x \to 0^+} \frac{1}{x^{2n+1}} = +\infty$
$\lim_{x \to -\infty} x^{2n+1} = -\infty$	$\lim_{x \to \mp \infty} \frac{1}{2n + 1\sqrt{x}} = 0$	$\lim_{x \to 0^{-}} \frac{1}{x^{2n+1}} = -\infty$
$\lim_{x \to +\infty} \sqrt[2n]{x} = +\infty$	$\lim_{x \to -\infty} e^x = 0$	$\lim_{x \to 0^+} log x = -\infty$
$\lim_{x \to +\infty} {}^{2n+1}\sqrt{x} = +\infty$	$\lim_{x \to -\infty} a^x = 0 (a > 1)$	$\lim_{x \to 0^+} \log_a x = -\infty (a > 1)$
$\lim_{x \to -\infty} {}^{2n+1}\sqrt{x} = -\infty$	$\lim_{x \to +\infty} a^x = 0 \ (0 < a < 1)$	$\lim_{x \to 0^+} \log_a x = +\infty \ (0 < a < 1)$
$\lim_{x\to+\infty}e^x=+\infty$	$\lim_{x \to +\infty} arctgx = \frac{\pi}{2}$	$\lim_{x \to \frac{\pi}{2}} tgx = +\infty$
$\lim_{x \to +\infty} log x = +\infty$	$\lim_{x \to -\infty} arctgx = -\frac{\pi}{2}$	$\lim_{x \to \frac{\pi^+}{2}} tgx = -\infty$
$\lim_{x \to +\infty} \log_a x = -\infty \ (0 < a < 1)$	$\lim_{x \to +\infty} tghx = 1$	$\lim_{x \to 0^{-}} ctgx = -\infty$
$\lim_{x \to +\infty} \log_a x = +\infty \qquad (a > 1)$	$\lim_{x \to -\infty} tghx = -1$	$\lim_{x \to 0^+} ctgx = +\infty$
$\lim_{x \to +\infty} \cosh x = +\infty$	$\lim_{x \to +\infty} ctghx = 1$	$\lim_{n \to \infty} ctahx = -\infty$
$\lim_{x \to +\infty} \sinh x = +\infty$	$\lim_{x \to -\infty} ctghx = -1$	$\lim_{x \to 0^{+}} ctghx = +\infty$
$\lim_{x \to -\infty} \sinh x = -\infty$		$x \rightarrow 0^{+}$

Esercizi

(gli esercizi con asterisco sono avviati)

Calcolare i sequenti limiti, tenendo conto delle tabelle sulle operazioni sui limiti e della tabella sui limiti fondamentali:

*1)
$$\lim_{x \to -\infty} (\cos x + x)$$

*2)
$$\lim_{x\to+\infty} \frac{\sin x}{x+2}$$

3)
$$\lim_{x \to +\infty} \frac{senx \cdot cosx}{x^2}$$

4)
$$\lim_{x\to+\infty}(x-\sin x)$$
;

5)
$$\lim_{x \to -\infty} \frac{1 + \sin(x)}{1 - x^2}$$

6)
$$\lim_{x \to +\infty} \frac{\cos^2 x}{\sqrt{x}+2}$$

7)
$$\lim_{x \to +\infty} \left(x^2 - 3\sin\frac{1}{x} \right)$$
 *8) $\lim_{x \to \pm \infty} e^{\frac{x+1}{x}}$

*8)
$$\lim_{x \to +\infty} e^{\frac{x+1}{x}}$$

*9)
$$\lim_{x\to 0^+} e^{\frac{x+1}{x}}$$

*10)
$$\lim_{x\to 0^{-}} e^{\frac{x+1}{x}}$$

$$11)\lim_{x\to-\infty}\log\frac{1-x}{x^2}$$

12)
$$\lim_{x \to +\infty} \log \sqrt{\frac{1}{x}}$$

$$13)\lim_{x\to 0^+}\log\sqrt{\frac{1}{x}}$$

14)
$$\lim_{x\to\infty}\frac{\sin(x)}{x}$$

$$15)\lim_{x\to 0^+} \left(\frac{1}{x^3} - \log x\right)$$

16)
$$\lim_{x\to 0} e^{-\frac{1}{x^2}}$$

17)
$$\lim_{x \to \infty} e^{-\frac{1}{x^2}}$$

18)
$$\lim_{x \to +\infty} \frac{1}{1 - e^x}$$

19)
$$\lim_{x \to -\infty} \frac{1}{1 - e^x}$$

*20)
$$\lim_{x\to 0^+} \frac{1}{1-e^x}$$

*21)
$$\lim_{x\to 0^-} \frac{1}{1-e^x}$$

$$22)\lim_{x\to+\infty}(x^3+\log_2 x)$$

23)
$$\lim_{x \to 1} (x^2 + \log_2 |x - 1|)$$
 24) $\lim_{x \to 1^+} -x^3 \log(x - 1)$

24)
$$\lim_{x \to 1^+} -x^3 \log(x-1)$$

$$25)\lim_{x\to+\infty} \left(\frac{2}{3}\right)^{4+x^3}$$

$$26)\lim_{x\to+\infty}\left(\left(\frac{1}{3}\right)^{-x^3}+\frac{1}{x}\right)$$

27)
$$\lim_{x \to -\infty} \left(\left(\frac{1}{2} \right)^x + x^4 \right)$$

28)
$$\lim_{x\to+\infty} e^{-x} \sin x$$

29)
$$\lim_{x \to -\infty} 2^{\frac{x}{2}} \cdot \cos(2x - 1)$$
 30) $\lim_{x \to -\infty} \frac{e^{x} - 3}{2^{x} + 1}$

30)
$$\lim_{x \to \infty} \frac{e^{x}-3}{2^{x}+1}$$

31)
$$\lim_{x\to 0^+} \frac{3+2^x}{\log^2 x}$$

32)
$$\lim_{x \to -\infty} e^{x^3 - 1}$$

33)
$$\lim_{x\to+\infty} e^{arctgx}$$

34)
$$\lim_{x \to -\infty} (x^2 - arctgx)$$

35)
$$\lim_{x \to -\infty} \left(\sqrt[3]{x} - \sqrt[3]{1-x} \right)$$
 *36) $\lim_{x \to +\infty} \arcsin \frac{x+1}{x}$

*36)
$$\lim_{x\to+\infty} \arcsin\frac{x+1}{x}$$

37)
$$\lim_{x\to 0^+} \left(arctg \frac{1}{x} - arccosx \right)$$

$$39) \lim_{x \to +\infty} e^{\frac{1}{x}} \cdot \log\left(1 + \frac{1}{x}\right)$$

41)
$$\lim_{x \to -\infty} 4^{\sqrt[3]{x^3+1}}$$

*43)
$$\lim_{x\to 0^{\pm}} \frac{|x-1|}{\sqrt{x+1}-\sqrt{1-x}}$$

$$45)\lim_{x\to+\infty}\frac{e^{-2x}-1}{x}$$

*47)
$$\lim_{x\to\infty} e^{x^2} \sin x$$

49)
$$\lim_{x \to \frac{\pi^+}{2}} e^{tgx-1}$$

51)
$$\lim_{x \to +\infty} \frac{arctgx}{e^{-x}}$$

$$38)\lim_{x\to+\infty}(logx-e^{-x+1})$$

$$40)\lim_{x\to-\infty}e^{\frac{1}{x}}\cdot\log|x|$$

42)
$$\lim_{x\to 0^+} \frac{\cos\sqrt{x}}{3\sqrt{x^2+x}}$$

44)
$$\lim_{x \to +\infty} \frac{\log x}{e^{-x}}$$

*46)
$$\lim_{x\to\infty} x^2 \sin x$$

48)
$$\lim_{x \to -\infty} \left(2^{arctgx} + \frac{1}{x^2}\right)$$

50)
$$\lim_{x\to 4^{-}} 2^{\frac{1}{x-4}}$$

52)
$$\lim_{x \to -\infty} \frac{arctgx}{e^{\frac{1}{x}}}$$

Limiti del tipo $[f(x)]^{g(x)}$

Limiti del tipo

$$\lim_{x\to x_0} [f(x)]^{g(x)}$$

possono essere calcolati tenendo conto che si può scrivere

$$[f(x)]^{g(x)} = e^{\log[f(x)]^{g(x)}} = e^{g(x)\log[f(x)]}$$

quindi risulta

$$\lim_{x\to x_0} [f(x)]^{g(x)} = e^{\lim_{x\to x_0} g(x)\log[f(x)]}$$

Le situazioni che si possono presentare sono indicate nella seguente tabella:

f(x) > 0 $limf(x)$	limg(x)	$lim f(x)^{g(x)}$	Forme indeterminate
<i>l</i> > 0	l'	$l^{l'}$	00
+∞	l' > 0	+∞	∞^0
+∞	l' < 0	0	1∞
0 < l < 1	+∞	0	
l > 1	+∞	+∞	
0 < l < 1	-∞	+∞	
l > 1	-∞	0	
+∞	+∞	+∞	
+∞	-∞	0	
0	+∞	0	
0	- ∞	+∞	

Esercizi

*53)
$$\lim_{x \to 0^+} \left(x + \frac{1}{3} \right)^{\frac{1}{x}}$$

*54)
$$\lim_{x\to 0^{-}} \left(x+\frac{1}{3}\right)^{\frac{1}{x}}$$

*55)
$$\lim_{x \to +\infty} (x^4 - 2x)^{\sqrt{x}}$$

*56)
$$\lim_{x \to 0^+} \sin\left(\frac{\pi}{3} - x\right)^{\frac{1}{2^x - 1}}$$

*57)
$$\lim_{x\to 0^{-}} \sin\left(\frac{\pi}{3} - x\right)^{\frac{1}{2^{x}-1}}$$

*58)
$$\lim_{x \to +\infty} (x^2 + \cos x)^{\log x}$$

*59)
$$\lim_{x\to 0^+} (arctgx)^{\frac{1}{x^2}}$$

*60)
$$\lim_{x\to 0^+} (arctgx)^{-\frac{1}{x^2}}$$

*61)
$$\lim_{x \to 3^{-}} \left(\frac{1}{3-x}\right)^{2-x}$$

*62)
$$\lim_{x \to \frac{1}{2}} (arccosx)^{e^{\frac{1}{2x-1}}}$$

*63)
$$\lim_{x \to \frac{\sqrt{2}}{2}^+} (arcsinx)^{\log(x - \frac{\sqrt{2}}{2})}$$

*64)
$$\lim_{x \to +\infty} \left(\sqrt{\frac{2x+1}{x-1}} \right)^{(x^3+\sin x)}$$

65)
$$\lim_{x \to -\infty} \left(\sqrt{\frac{2x+1}{x-1}} \right)^{\left(x^3 + \sin x\right)}$$

*66)
$$\lim_{x\to 0^+} (\sin x)^{\log x}$$

Soluzioni

*1. S. $-\infty$; (la funzione cosx è limitata in $\mathbb R$ essendo $|cosx| \le 1$, mentre l'addendo x tende $a-\infty$, perciò la somma (cosx+x) tende $a-\infty$);

- *2. S. 0; (la funzione sinx a numeratore è limitata in \mathbb{R} essendo $|sinx| \le 1$, mentre il denominatore x+2 tende $a+\infty$, perciò Il rapporto tende a 0);
- **3. S.** 0; **4.S.** $+\infty$; **5.S.** 0; **6. S.** 0; **7.S.** $+\infty$
- *8 S. e (Si ha $\lim_{x\to +\infty}e^{\frac{x+1}{x}}=e^{\lim_{x\to \pm \infty}\left(1+\frac{1}{x}\right)}=e$);
- *9. S. $+\infty$ (Si ha $\lim_{x\to 0^+} e^{\frac{x+1}{x}} = e^{\lim_{x\to 0^+} \left(1 + \frac{1}{x}\right)} = +\infty$);
- *10. S. 0 (Si ha $\lim_{x\to 0^-} e^{\frac{x+1}{x}} = e^{\lim_{x\to 0^-} \left(1+\frac{1}{x}\right)} = 0$);
- **11. S.** $-\infty$; **12. S.** $-\infty$; **13. S.** $+\infty$; **14. S.** 0; **15. S.** $+\infty$;
- **16. S.** 0 ; **17. S.** 1; **18. S.** 0 ; **19. S.** 1 ;
- *20 S. $-\infty$ (per $x \to 0^+$, $1 e^x$ è negativo e infinitesimo, perciò $\lim_{x \to 0^+} \frac{1}{1 e^x} = -\infty$);
- *21 S. $+\infty$ (per $x \to 0^-$, $1 e^x$ è positivo e infinitesimo, perciò $\lim_{x \to 0^-} \frac{1}{1 e^x} = +\infty$);
- **22.** S. $+\infty$; **23.** S. $-\infty$; **24.** S. $+\infty$; **25.** S. 0 ; **26.** S. $+\infty$;
- **27.S.** $+\infty$; **28.S.** 0; **29.S.** 0; **30.S.** -3; **31.S.** 0;
- **32.** S. 0 ; **33.** S. $e^{\frac{\pi}{2}}$; **34.** S. $+\infty$; **35.** S. $-\infty$;
- *36. S. $\frac{\pi}{2}$; (si può scrivere $\frac{x+1}{x} = 1 + \frac{1}{x}$, $\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right) = 1...$);
- **37.S.** 0; **38.S.** $+\infty$; **39.S.** 0; **40.S.** $+\infty$; **41.S.** 0; **42.S.** $+\infty$;
- * **43.S.** $\pm \infty$; (razionalizzando risulta $\frac{|x-1|}{\sqrt{x+1}-\sqrt{1-x}} = \frac{[x-1](\sqrt{x+1}+\sqrt{1-x})}{(\sqrt{x+1}-\sqrt{1-x})(\sqrt{x+1}+\sqrt{1-x})} = \frac{[x-1](\sqrt{x+1}+\sqrt{1-x})}{(\sqrt{x+1}+\sqrt{1-x})}$

$$=\frac{[x-1](\sqrt{x+1}+\sqrt{1-x})}{2x}=...);$$

- **44.S.** +∞ ; **45.S.** 0;
- * **46.S.** non esiste; (infatti $\lim_{x\to\infty} x^2 = +\infty$, mentre $-1 \le sinx \le 1$, pertanto la funzione $x^2 sinx$ oscilla tra valori positivi sempre più grandi e valori negativi in valore assoluto sempre più grandi , quindi il limite non esiste);
- * **47.S.** non esiste; (vedi es. 46);

48. S.
$$2^{-\frac{\pi}{2}}$$
; **49. S.** 0; **50. S.** 0; **51.S.** $+\infty$; **52. S.** $-\frac{\pi}{2}$.

Limiti del tipo $[f(x)]^{g(x)}$

* **53. S.** 0 ; (si può anche scrivere $\left(x+\frac{1}{3}\right)^{\frac{1}{x}}=e^{\log\left(x+\frac{1}{3}\right)^{\frac{1}{x}}}=e^{\frac{1}{x}\log\left(x+\frac{1}{3}\right)}$, poiché $\lim_{x\to 0}\log\left(x+\frac{1}{3}\right)=\log\frac{1}{3}<0\quad\Rightarrow\lim_{x\to 0^+}\frac{1}{x}\log\left(x+\frac{1}{3}\right)=-\infty\text{, quindi}$ $\lim_{x\to 0^+}\left(x+\frac{1}{3}\right)^{\frac{1}{x}}=e^{\lim_{x\to 0^+}\frac{1}{x}\log\left(x+\frac{1}{3}\right)}=0\text{ ; si può anche notare che il limite si presenta nella forma }\left(\frac{1}{3}\right)^{+\infty}\text{e dalla tabella ... });$

- *54. S. $+\infty$; (dall'esercizio 53, $\lim_{x\to 0^-}\frac{1}{x}log\left(x+\frac{1}{3}\right)=+\infty$...; si può anche notare che il limite si presenta nella forma $\left(\frac{1}{3}\right)^{-\infty}$ quindi dalla tabella si deduce...);
- *55. S. + ∞ ; (si ha $\lim_{x \to +\infty} (x^4 2x) = \lim_{x \to +\infty} x^4 \left(1 \frac{2}{x^3}\right) = +\infty$...);
- * **56.S.** 0; (si ha $\lim_{x \to 0} \sin \left(\frac{\pi}{3} x \right) = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} < 1$, se $x > 0 \Rightarrow 2^x 1 > 0$ $\Rightarrow \lim_{x \to 0^+} \frac{1}{2^x 1} = +\infty ...);$
- *57.S. $+\infty$; (tenendo conto dell'esercizio precedente se $x<0\Rightarrow 2^x-1<0$ $\Rightarrow \lim_{x\to 0^-}\frac{1}{2^x-1}=-\infty$...);
- *58. S. $+\infty$; (si può scrivere $\lim_{x\to +\infty} (x^2 + cosx)^{logx} = e^{\lim_{x\to +\infty} (x^2 + cosx)^{logx}} = e^{\lim_{x\to +\infty} logx(x^2 + cosx)}$ tenendo conto che $-1 \le cosx \le 1$, $\lim_{x\to +\infty} (x^2 + cosx) = +\infty$...;

notiamo che il limite è della forma $+\infty^{+\infty}$ pertanto dalla tabella risulta...);

* **59.S.** 0; $(\lim_{x\to 0^+} arctgx = 0^+, \lim_{x\to 0^+} log(arctgx) = -\infty, \lim_{x\to 0} \frac{1}{x^2} = +\infty$, pertanto $\lim_{x\to 0^+} (arctgx)^{\frac{1}{x^2}} = e^{\lim_{x\to 0^+} log(arctgx)^{\frac{1}{x^2}}} = e^{\lim_{x\to 0^+} \frac{1}{x^2} log(arctgx)} \dots$; osserviamo

anche che il limite è della forma $0^{+\infty}$ quindi dala tabella risulta...);

- *60. S. $+\infty$; (tenendo conto dell'esercizio 59 ,da $\lim_{x\to 0} -\frac{1}{x^2} = -\infty$ );
- * **61. S.** 0; $(\lim_{x\to 3^-}\frac{1}{3-x}=+\infty, \lim_{x\to 3^-}\left(\frac{1}{3-x}\right)^{2-x}=e^{\lim_{x\to 3^-}(2-x)log\left(\frac{1}{3-x}\right)}...);$
- *62. S. 1; $(\lim_{x \to \frac{1}{2}} (arccosx)^{e^{\frac{1}{2x-1}}} = e^{\lim_{x \to \frac{1}{2}} e^{\frac{1}{2x-1}} \log(arccosx)}$ 1, si ha

$$\lim_{x \to \frac{1}{2}} \arccos x = \frac{\pi}{3}, \lim_{x \to \frac{1}{2}} e^{\frac{1}{2x-1}} = 0 ...);$$

* **63.S.**
$$+\infty$$
; $(\lim_{x \to \frac{\sqrt{2}}{2}^+} (arcsinx)^{\log\left(x - \frac{\sqrt{2}}{2}\right)} = e^{x \to \frac{\sqrt{2}}{2}^+} \log\left(x - \frac{\sqrt{2}}{2}\right) * \log(arcsinx)$, si ha

$$\lim_{x\to\frac{\sqrt{2}}{2}^+}log\left(x-\frac{\sqrt{2}}{2}\right)=-\infty\;,\; \lim_{x\to\frac{\sqrt{2}}{2}} arcsinx=\frac{\pi}{4}\;,\; \lim_{x\to\frac{\sqrt{2}}{2}} log(arcsinx)=log\frac{\pi}{4}<0...);$$

*64.S.
$$+\infty$$
; (si può scrivere $\frac{2x+1}{x-1} = \frac{2(x-1)+3}{x-1} = 2 + \frac{3}{x-1} \Rightarrow$

$$\lim_{x \to +\infty} \left(\sqrt{\frac{2x+1}{x-1}} \right) = \lim_{x \to +\infty} \sqrt{2 + \frac{3}{x-1}} = \sqrt{2} ...);$$

65.S. 0;

*66. S.
$$+\infty$$
; $(\lim_{x\to 0^+} \sin x = 0^+ \Rightarrow \lim_{x\to 0^+} \log(\sin x) = -\infty$,

 $\lim_{x\to 0^+} (sinx)^{logx} = e^{\lim_{x\to 0^+} logx*log(sinx)} = \cdots \dots ; \text{si può anche osservare che il limite è}$

della forma $0^{-\infty}$...);