# Privacy Final Review

### **Encryption & Decryption**

Plaintext  $x_i$ , ciphertext  $y_i$  and key stream  $s_i$  consist of individual bits



- Encryption and decryption are simple additions modulo 2 (aka XOR)
- Encryption and decryption are the same functions

**Encryption:**  $y_i = e_{si}(x_i) = x_i + s_i \mod 2$ ,  $x_i, y_i, s_i \in \{0,1\}$ 

**Decryption:**  $x_i = e_{si}(y_i) = y_i + s_i \mod 2$ 

### Electronic Code Book Mode (ECB)

- $e_k(x_i)$ : the encryption of a b-bit plaintext block  $x_i$  with key k
- $e_k^{-1}(y_i)$ : the decryption of b-bit ciphertext block  $y_i$  with key k
- Messages which exceed b bits are partitioned into b-bit blocks
- Each Block is encrypted separately



**Encryption**:  $y_i = e_k(x_i), i \ge 1$ **Decryption**:  $x_i = e_k^{-1}(y_i) = e_k^{-1}(e_k(x_i)), i \ge 1$ 

### Extended Euclidean Algorithm (1)

- Extend the Euclidean algorithm to **find modular inverse** of  $r_1 \mod r_0$
- EEA computes s, t, and the gcd :
- Take the relation  $\mathbf{mod} r_0$

$$\gcd(r_0, r_1) = s \cdot r_0 + t \cdot r_1$$

 $s \cdot r_0 + t \cdot r_1 = 1$   $s \cdot 0 + t \cdot r_1 \equiv 1 \mod r_0$   $r_1 \cdot t \equiv 1 \mod r_0$ 

- ightarrow Compare with the definition of modular inverse:  $\iota$  is the inverse of  $r_1$  mod  $r_0$
- Note that  $gcd(r_0, r_1) = 1$  in order for the inverse to exist

### Extended Euclidean Algorithm (2)

#### **Extended Euclidean Algorithm (EEA)**

**Input**: positive integers  $r_0$  and  $r_1$  with  $r_0 > r_1$ 

**Output**:  $gcd(r_0, r_1)$ , as well as s and t such that  $gcd(r_0, r_1) = s \cdot r_0 + t \cdot r_1$ .

#### **Initialization**:

$$s_0 = 1$$
  $t_0 = 0$   
 $s_1 = 0$   $t_1 = 1$   
 $i = 1$ 

#### Algorithm:

```
1 DO

1.1 i = i+1

1.2 r_{i} = r_{i-2} \mod r_{i-1}

1.3 q_{i-1} = (r_{i-2} - r_{i})/r_{i-1}

1.4 s_{i} = s_{i-2} - q_{i-1} \cdot s_{i-1}

1.5 t_{i} = t_{i-2} - q_{i-1} \cdot t_{i-1}

WHILE r_{i} \neq 0 gcd(r_{0}, r_{1}) = gcd(r_{0} \mod r_{1}, r_{1})

\Rightarrow r_{2} = r_{0} \mod r_{1}, r_{0} = q_{1}r_{1} + r_{2}

\Rightarrow r_{1} = r_{1} = q_{1}r_{1} + r_{1}

\Rightarrow r_{1} = r_{1} - q_{1} - q
                                                                                  RETURN
                                                                                                                                                                          \gcd(r_0, r_1) = r_{i-1}
                                                                                                                                                                          s = s_{i-1}
```

 $t = t_{i-1}$ 

#### **Remark of WHILE loop:**

$$gcd(r_{0}, r_{1}) = gcd(r_{0} mod r_{1}, r_{1})$$

$$\rightarrow r_2 = r_0 \mod r_1, r_0 = q_1 r_1 + r_2$$

$$\rightarrow r_{i-2} = q_{i-1}r_{i-1} + r_{i}$$

$$\Rightarrow r_i = r_{i-2} - q_{i-1}r_{i-1} = [s_i]r_0 + [t_i]r_1$$

## Example: EEA

- Calculate the modular Inverse of 12 mod 67:
- From magic table follows
- Hence 28 is the inverse of 12 mod 67.



• Check:  $28 \cdot 12 = 336 \equiv 1 \mod 67$ 

| i | $q_{i-1}$ | $r_i$ | $ s_i $ | $t_i$ |
|---|-----------|-------|---------|-------|
| 2 |           | 7     | 1       | -5    |
| 3 | 1         | 5     | -1      | 6     |
| 4 | 1         | 2     | 2       | -11   |
| 5 | 2         | 1     | -5      | 28    |

### Euler's Phi Function (1)

- New problem, important for public-key systems, e.g., RSA:
   Given the set of the m integers {0, 1, 2, ..., m -1},
   How many numbers in the set are relatively prime to m?
- Answer: Euler's Phi function Φ(m)
- **Example** for the sets {0,1,2,3,4,5} (*m*=6) and {0,1,2,3,4} (*m*=5)

$$\gcd(0,6) = 6$$
  
 $\gcd(1,6) = 1$   $\gcd(2,6) = 2$   
 $\gcd(3,6) = 3$   
 $\gcd(4,6) = 2$   
 $\gcd(5,6) = 1$   $\gcd(4,5) = 1$   $\gcd(4,5) = 1$   $\gcd(4,5) = 1$   $\gcd(4,5) = 1$ 

- ⇒ 1 and 5 relatively prime to m=6, hence  $\Phi(6) = 2$
- Testing one gcd per number in the set is extremely slow for large m.

 $\Phi(5) = 4$ 

### Euler's Phi Function (2)

- If canonical factorization of m known:  $m = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_n^{e_n}$  (where  $p_i$  primes and  $e_i$  positive integers)
- **then** calculate Phi according to the relation:  $\Phi(m) = \prod_{i=1}^{n} (p_i^{e_i} p_i^{e_i-1})$
- Phi especially easy for  $e_i = 1$ , e.g.,  $m = p \cdot q \rightarrow \Phi(m) = (p-1) \cdot (q-1)$
- Example  $m = 899 = 29 \cdot 31$ :  $\Phi(899) = (29-1) \cdot (31-1) = 28 \cdot 30 = 840$
- Note: Finding  $\Phi(m)$  is computationally easy if factorization of m is known (otherwise the calculation of  $\Phi(m)$  becomes computationally infeasible for large numbers)

## *k*-degree Anonymity

Assume that adversary A knows that B has
 327 connections in a social network!
 (background knowledge)

- If the graph is released by removing the identity of the nodes
  - A can find all nodes that have degree 327
  - If there is only one node with degree 327, A can identify this node as being **B**.

### k-degree Anonymity

k-degree anonymity A graph G(V, E) is k-degree anonymous if every node in V has the same degree as k-1 other nodes in V.



Prop 1: If G is k1-degree anonymous, then it is also k2-degree anonymous, for every  $k2 \le k1$ 

[Properties] It prevents the re-identification of individuals by adversaries with *a priori* knowledge of the degree of certain nodes.

## K-Anonymity: Intuition

- The information for each person contained in the released table cannot be distinguished from at least k-1 individuals whose information also appears in the release
  - Example: you try to identify a man in the released table, but the only information you have is his birth date and gender. There are k men in the table with the same birth date and gender.
- Any quasi-identifier present in the released table must appear in at least k records

### K-Anonymity Protection Model

- Private table: T
- Released table: RT
- Attributes:  $A_1, A_2, ..., A_n$
- Quasi-identifier subset: A<sub>i</sub>, ..., A<sub>j</sub>

Let  $RT(A_1,...,A_n)$  be a table,  $QI_{RT} = (A_i,...,A_j)$  be the quasi-identifier associated with RT,  $A_i,...,A_j \subseteq A_1,...,A_n$ , and RT satisfy k-anonymity. Then, each sequence of values in  $RT[A_x]$  appears with at least k occurrences in  $RT[QI_{RT}]$  for x=i,...,j.

## Example of a k-Anonymous Table

| [   | Race  | Rirth | Gender | 7.TP  | Problem      |
|-----|-------|-------|--------|-------|--------------|
| t1  | Black | 1965  | m      | 0214* | short breath |
| t2  | Black | 1965  | m      | 0214* | chest pain   |
| t3  | Black | 1965  | İ      | 0213* | hypertension |
| t4  | Black | 1965  | f      | 0213* | hypertension |
| t5  | Black | 1964  | f      | 0213* | obesity      |
| tб  | Black | 1964  | f      | 0213* | chest pain   |
|     | White | 1964  | m      | 0213* | chest pain   |
| t8  | White | 1964  | m      | 0213* | obesity      |
| t9  | White | 1964  | m      | 0213* | short breath |
| t10 | White | 1967  | m      | 0213* | chest pain   |
| t11 | White | 1967  | m      | 0213* | chest pain   |

Figure 2 Example of k-anonymity, where k=2 and  $Ql=\{Race, Birth, Gender, ZIP\}$ 

## 1-Diversity

| Caucas      | 787XX | Flu      |
|-------------|-------|----------|
| Caucas      | 787XX | Shingles |
| Caucas      | 787XX | Acne     |
| Caucas      | 787XX | Flu      |
| Caucas      | 787XX | Acne     |
| Caucas      | 787XX | Flu      |
| Asian/AfrAm | 78XXX | Flu      |
| Asian/AfrAm | 78XXX | Flu      |
| Asian/AfrAm | 78XXX | Acne     |
| Asian/AfrAm | 78XXX | Shingles |
| Asian/AfrAm | 78XXX | Acne     |
| Asian/AfrAm | 78XXX | Flu      |

Sensitive attributes must be "diverse" within each quasi-identifier equivalence class

### L-Diversity

- T\*: the Anonymized Table
- q\*: the generalized value of q in the published table T\*
- s: a possible value of the sensitive attribute
- n(q\*,s'): number of tuples with sensitive attribute s' and non-sensitive attribute q\*
- q\*-block: the set of tuples in T\* whose non-sensitive attribute values generalize to q\*

### L-Diversity

• Lack diversity: lack of diversity in the sensitive attribute manifests itself as follows:

$$\forall s' \neq s, \quad n_{(q^*,s')} \ll n_{(q^*,s)}$$

### L-Diversity

- Then, L-Diversity Principle can be defined as:
  - A q\*-block is L-diverse if contains at least L "well-represented" values for the sensitive attribute S.
  - A table is L-diverse if every q\*-block is L-diverse.

### An example

|    | 1        | Von-Sen   | Sensitive   |                 |
|----|----------|-----------|-------------|-----------------|
|    | Zip Code | Age       | Nationality | Condition       |
| 1  | 130**    | < 30      | *           | Heart Disease   |
| 2  | 130**    | < 30      | *           | Heart Disease   |
| 3  | 130**    | < 30      | *           | Viral Infection |
| 4  | 130**    | < 30      | *           | Viral Infection |
| 5  | 1485*    | $\geq 40$ | *           | Cancer          |
| 6  | 1485*    | $\geq 40$ | *           | Heart Disease   |
| 7  | 1485*    | $\geq 40$ | *           | Viral Infection |
| 8  | 1485*    | $\geq 40$ | *           | Viral Infection |
| 9  | 130**    | 3*        | *           | Cancer          |
| 10 | 130**    | 3*        | *           | Cancer          |
| 11 | 130**    | 3*        | *           | Cancer          |
| 12 | 130**    | 3*        | *           | Cancer          |

|    | l l      | Von-Sen   | Sensitive   |                 |
|----|----------|-----------|-------------|-----------------|
|    | Zip Code | Age       | Nationality | Condition       |
| 1  | 1305*    | $\leq 40$ | *           | Heart Disease   |
| 4  | 1305*    | $\leq 40$ | *           | Viral Infection |
| 9  | 1305*    | $\leq 40$ | *           | Cancer          |
| 10 | 1305*    | $\leq 40$ | *           | Cancer          |
| 5  | 1485*    | > 40      | *           | Cancer          |
| 6  | 1485*    | > 40      | *           | Heart Disease   |
| 7  | 1485*    | > 40      | *           | Viral Infection |
| 8  | 1485*    | > 40      | *           | Viral Infection |
| 2  | 1306*    | $\leq 40$ | *           | Heart Disease   |
| 3  | 1306*    | $\leq 40$ | *           | Viral Infection |
| 11 | 1306*    | $\leq 40$ | *           | Cancer          |
| 12 | 1306*    | $\leq 40$ | *           | Cancer          |

4-anonymous table

3 diverse table

- Using a 3-diverse table, we no longer are able to tell if Bob (a 31 year old American from zip code 13053) has cancer.
- We also cannot tell if Umeko(a 21 year old Japanese from zip code 13068) has a viral infection or cancer.

#### Probabilistic inference attacks over 1-Diversity

• Each equivalence class has at least I well-represented sensitive values



- Doesn't prevent probabilistic inference attacks
  - Infer: the patient has HIV with large possibility

### t-Closeness overview

- Privacy is measured by the information gain of an observer.
- We assume:
  - B0: Alice believes that Bob has the virus because he has been acting sick.
  - B1: Alice gets a summary report of the table and learns that only 1% of the population has the virus. This distribution is Q, the distribution of the sensitive attribute in the whole table. She believes that Bob is in that one percent.
  - B2: Alice takes a look at the table, and finds that Bob is in equivalence class 3 because he is 32 and lives in zip code 47623. She learns P, the distribution of the sensitive attribute values in this class. Based on P she decides that it is actually quite likely that Bob has the virus.

#### t-Closeness overview

- l-diversity limits the gain between B0 (belief before any knowledge of the table) and B2 (belief after examining the table and the relevant equivalence class) by requiring that P (distribution in the equivalence class) has diversity.
- Q (global distribution in the table) should be treated as public information.
- If the change from B0 to B1 is large, means that the Q contains lots of new information. But we can't control people's access to Q, so we shouldn't worry about it.
- Therefore should focusing on limiting the gain between B1 and B2. We can do so by limiting the difference between P and Q. The closer P and Q are, the closer B1 and B2 are.

### t-Closeness definition

- An equivalence class is said to have **t-closeness** 
  - if the distance between the distribution of a sensitive attribute (P) in this class and the distribution of the attribute in the whole table(Q) is no more than a threshold t.
  - A table is said to have t-closeness if all equivalence classes have t-closeness.

### t-Closeness

| Caucas      | 787XX | Flu      |
|-------------|-------|----------|
| Caucas      | 787XX | Shingles |
| Caucas      | 787XX | Acne     |
| Caucas      | 787XX | Flu      |
| Caucas      | 787XX | Acne     |
| Caucas      | 787XX | Flu      |
| Asian/AfrAm | 78XXX | Flu      |
| Asian/AfrAm | 78XXX | Flu      |
| Asian/AfrAm | 78XXX | Acne     |
| Asian/AfrAm | 78XXX | Shingles |
| Asian/AfrAm | 78XXX | Acne     |
| Asian/AfrAm | 78XXX | Flu      |

Distribution of sensitive attributes within each quasi-identifier group should be "close" to their distribution in the entire original database

### Distance measurement

- Now that we've confirmed that limiting the difference between *P* and *Q* is the key to privacy, we need a way to measure the distance.
  - m: the number of sensitive values in an equivalence class
  - $P=(p_1,p_2,...,p_m), Q=(q_1,q_2,...,q_m)$
- Here are some naive measurements:
  - Method 1: variational distance

$$\mathsf{D}[\mathbf{P},\mathbf{Q}] = \sum_{i=1}^m rac{1}{2} |p_i - q_i|.$$

### Distance measurement

#### Example

|   | ZIP Code | Age | Salary | Disease        |
|---|----------|-----|--------|----------------|
| 1 | 47677    | 29  | 3K     | gastric ulcer  |
| 2 | 47602    | 22  | 4K     | gastritis      |
| 3 | 47678    | 27  | 5K     | stomach cancer |
| 4 | 47905    | 43  | 6K     | gastritis      |
| 5 | 47909    | 52  | 11K    | flu            |
| 6 | 47906    | 47  | 8K     | bronchitis     |
| 7 | 47605    | 30  | 7K     | bronchitis     |
| 8 | 47673    | 36  | 9K     | pneumonia      |
| 9 | 47607    | 32  | 10K    | stomach cancer |

Table 3. Original Salary/Disease Table

|   | ZIP Code | Age  | Salary | Disease        |
|---|----------|------|--------|----------------|
| 1 | 476**    | 2*   | 3K     | gastric ulcer  |
| 2 | 476**    | 2*   | 4K     | gastritis      |
| 3 | 476**    | 2*   | 5K     | stomach cancer |
| 4 | 4790*    | ≥ 40 | 6K     | gastritis      |
| 5 | 4790*    | ≥ 40 | 11K    | flu            |
| 6 | 4790*    | ≥ 40 | 8K     | bronchitis     |
| 7 | 476**    | 3*   | 7K     | bronchitis     |
| 8 | 476**    | 3*   | 9K     | pneumonia      |
| 9 | 476**    | 3*   | 10K    | stomach cancer |

Table 4. A 3-diverse version of Table 3

- Overall distribution of the Income attribute:

$$Q = \{3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k\}$$

- The first equivalence class in Table 4 has distribution:

$$P1 = \{3k, 4k, 5k\}$$

- The second equivalence class has distribution:

$$P2 = \{6k, 8k, 11k\}$$

$$D(P1,Q)=0.5*(|1/3-1/9|+|1/3-1/9|+|1/3-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|0-1/9|+|$$

We have D(P1,Q) = D(P2,Q)

### Distance measurement

- Here are some naive measurements:
  - Method 2: Kullback-Leibler (KL) distance

$$\mathsf{D}[\mathbf{P}, \mathbf{Q}] = \sum_{i=1}^m p_i \log rac{p_i}{q_i} = H(\mathbf{P}) - H(\mathbf{P}, \mathbf{Q})$$

• H(P) is the entropy of P

$$H(\mathbf{P}) = \sum_{i=1}^{m} p_i \log p_i$$

• H (P, Q) is the cross-entropy of P and Q

$$H(\mathbf{P}, \mathbf{Q}) = \sum_{i=1}^{m} p_i \log q_i$$

0

D1

D2

D3

0.1

0.2

0.9

1

0.9

8.0

0.1

#### Definition

#### Differential Privacy

• A mechanism  $\mathcal{A}$  satisfies  $(\varepsilon, \delta)$ -differential privacy if for any neighboring databases D, D' differing in only one tuple and any output  $S \in O(\mathcal{A})$  which represents the possible output set of  $\mathcal{A}$ ,

$$\Pr[\mathcal{A}(D) \in S] \le e^{\varepsilon} \times \Pr[\mathcal{A}(D') \in S] + \delta.$$

• If  $\delta = 0$ ,  $\mathcal{A}$  satisfies  $\varepsilon$ -differential privacy

We mainly focus on  $\varepsilon$ -differential privacy, as most studies do ...

#### Global sensitivity

• For any query function  $f: D \to R^d$ , where D is a dataset and  $R^d$  is a d-dimension real-valued vector, the global sensitivity of f is defined as

$$\Delta f = \max_{D, D'} ||f(D) - f(D')||_1$$

where D and D' denote neighboring databases—differing in only one tuple and  $||\cdot||_1$  denotes  $I_1$  norm.

 $|l_1 \text{ norm: } ||v||_1 = \sum_{1 \le i \le d} |v_i|$ 

#### Tips

- The global sensitivity means the maximal change of query result when changing a tuple (extreme case).
- The global sensitivity is only related to query function, and has nothing to do with database itself.

| Name   | Salary |
|--------|--------|
| Hunter | 50000  |
| Alice  | 50000  |
| Bob    | 20000  |
| Eric   | 100000 |
| _      |        |

60000

Frank

| Name  | Salary |
|-------|--------|
| Pedro | 80000  |
| Alice | 50000  |
| Mata  | 10000  |
| Eric  | 100000 |
| Frank | 60000  |
|       |        |

• Example: Count function:  $\Delta f = 1$ 

| Name   | Flu    |             | Name   | Flu    |             | Name   | Flu    |
|--------|--------|-------------|--------|--------|-------------|--------|--------|
| Hunter | 1      |             | Hunter | 1      |             | Hunter | 1      |
| Alice  | 0      | Neighboring | Alice  | 0      | Neighboring | Alice  | 0      |
| Eric   | 0      |             | Bob    | 1      |             | Bob    | 0      |
| Frank  | 1      |             | Eric   | 0      |             | Eric   | 0      |
|        |        |             | Frank  | 1      |             | Frank  | 1      |
| Count  | z(1)=2 |             | Coun   | t(1)=3 |             | Coun   | t(1)=2 |

• Example: Histogram Query  $\Delta f = 2$ 

| Name                                                                | Flu      |             | Name   | Flu      |             | Name   | Flu       |
|---------------------------------------------------------------------|----------|-------------|--------|----------|-------------|--------|-----------|
| Hunter                                                              | 1        |             | Hunter | 1        |             | Hunter | 1         |
| Alice                                                               | 0        | Neighboring | Alice  | 0        | Neighboring | Alice  | 0         |
| Eric                                                                | 0        |             | Bob    | 1        |             | Bob    | 0         |
| Frank                                                               | 1        |             | Eric   | 0        |             | Eric   | 0         |
|                                                                     |          |             | Frank  | 1        |             | Frank  | 1         |
| 4                                                                   |          |             | 4      |          |             | 4      |           |
| 2                                                                   |          |             | 2      |          |             | 2 —    |           |
|                                                                     | Flu      |             |        | Flu      |             |        | Flu       |
| ■0                                                                  | <b>1</b> |             |        | 1        |             |        | 1         |
| Hist =                                                              | < 2, 2 > |             | Hist = | < 2, 3 > |             | Hist = | < 3, 2 >  |
|                                                                     |          |             |        |          |             |        |           |
| $   < 2, 2 > - < 2, 3 >   _1 = 1$ $   < 2, 3 > - < 3, 2 >   _1 = 2$ |          |             |        |          |             |        | $ _1 = 2$ |

- Example: Median
  - Suppose extreme case D:(0,0,0,n,n)
  - A neighboring database D': (0, 0, n, n, n)
  - Med(D) = 0
  - Med(D') = n
  - $\Delta f = n$  (the maximal possible element)

- Local sensitivity
  - For any query function  $f: D \to R^d$ , the local sensitivity of f is defined as

$$LS_f(D) = \max_{D'} ||f(D) - f(D')||_1$$

where D and D' denote neighboring databases differing in only one tuple and  $||\cdot||_1$  denotes  $I_1$  norm.

Local sensitivity

Bounded neighboring is considered

- *f* : Compute the maximal salary difference
- Valid salary: [10000, 100000]

| Salary |                                  |
|--------|----------------------------------|
| 50000  |                                  |
| 50000  |                                  |
| 20000  |                                  |
| 10000  |                                  |
| 60000— | <b>→</b> 100000                  |
|        | 50000<br>50000<br>20000<br>10000 |

| Name  | Salary  |                |
|-------|---------|----------------|
| Pedro | 80000   |                |
| Alice | 50000   |                |
| Mata  | 70000   |                |
| Eric  | 15000 — | <b>→</b> 50000 |
| Frank | 60000   |                |

$$LS_f(D_1) = 90000 - 50000$$
  
= 40000

$$LS_f(D_2) = 65000 - 30000$$
$$= 35000$$

| Name  | Salary |       |
|-------|--------|-------|
| Pedro | 80000  |       |
| Alice | 60000  |       |
| Mata  | 75000  |       |
| Eric  | 100000 |       |
| Frank | 60000  | 10000 |

$$LS_f(D_3) = 90000 - 40000$$
$$= 50000$$

f(D)



- Example
  - Median:
    - Suppose  $D: (x_1, x_2, ..., x_{n-1}, x_n), n$  is odd
    - $Med(D) = x_m, m = (n+1)/2$
    - $LS_f(D) = \max(x_m x_{m-1}, x_{m+1} x_m)$

 $LS_f(D)$  is usually much smaller than  $\Delta f$  which is the maximal possible element

$$x_1$$
  $x_{m+t}$   $x_{m-1}$   $x_m$   $x_{m+t}$   $x_n$ 

- Smooth Sensitivity
  - Motivation
    - Avoid to employ global sensitivity
    - Databases with smaller local sensitivity could be calibrated with smaller noise
    - Add instance-specified noise while differential privacy is preserved at the same time

- Smooth Sensitivity
  - Requirement
    - The difference of smooth sensitivity for neighboring databases should be bounded
    - No smaller than local sensitivity
    - No larger than global sensitivity

#### Smooth Bound

- For  $\beta > 0$ , a smooth function  $S: D \to R^+$  is a  $\beta$  -smooth upper bound on the local sensitivity of f if it satisfies the following requirements:
  - $S(D) \ge LS_f(D)$
  - $S(D) \le e^{\beta} LS_f(D)$

A function S that is an upper bound on  $LS_f$  at all points and such that  $\ln(S(\cdot))$  has low sensitivity

Smooth Bound



Note that the constant function  $S(x) = \Delta f$  meets the requirements with  $\beta = 0$ .

- Smooth sensitivity
  - For any query function  $f: D \to R^d$ , the smooth sensitivity of f is defined as

$$S_{f,\beta}^*(D) = \max_{D'} (LS_f(D') \cdot e^{-\beta d(D,D')})$$

where  $d(D,D^\prime)$  denotes the Hamming distance between neighboring databases D and  $D^\prime$  .

- Property of Smooth Sensitivity
  - $S_{f,\beta}^*$  is a  $\beta$ -smooth upper bound on  $LS_f$ . In addition,  $S_{f,\beta}^*(D) \leq S(D)$  for all database D for every  $\beta$ -smooth upper bound S on  $LS_f$ .
  - Key Points
    - $S_{f,\beta}^*(D) \ge LS_f(D)$
    - $S_{f,\beta}^*(D) \le e^{\beta} L S_f(D)$
    - $S_{f,\beta}^*$  is the smallest  $\beta$ -smooth upper bound on  $LS_f$

- Smooth Sensitivity Brings Differential Privacy
  - 1-Dimensional Case
    - Let  $f: D \to \mathbb{R}$  be any real-valued function and let  $S: \mathbb{D} \to \mathbb{R}$  be a  $\beta$ -smooth upper bound on the local sensitivity of f then
      - If  $\beta \leq \frac{\varepsilon}{2(\gamma+1)}$  and  $\gamma > 1$ , the algorithm  $x \mapsto f(x) + \frac{2(\gamma+1)S(x)}{\varepsilon} \eta$ , where  $\eta$  is sampled from distribution with density  $h(z) \propto \frac{1}{1+|z|^{\gamma}}$ , is  $\varepsilon$ -differentially private

Added noise —

 $\alpha$  and  $\beta$  are parameters of the noise distribution

- Smooth Sensitivity Brings Differential Privacy
  - 1-Dimensional Case
    - Let  $f: D \to \mathbb{R}$  be any real-valued function and let  $S: \mathbb{D} \to \mathbb{R}$  be a  $\beta$ -smooth upper bound on the local sensitivity of f then
      - If  $\beta \leq \frac{\varepsilon}{2\ln(\frac{2}{\delta})}$  and  $\delta \in (0,1)$ , the algorithm  $x \mapsto f(x) + \frac{2S(x)}{\varepsilon} \eta$ , where  $\eta \sim Lap(1)$   $(\varepsilon, \delta)$ -differentially private



 $\alpha$  and  $\beta$  are parameters of the noise distribution

$$S_{f,\beta}^*(D) = \max_{D'} (LS_f(D') \cdot e^{-\beta d(D,D')})$$

- Example of Calculating Smooth Sensitivity
  - Median:
    - Suppose  $D: (x_1, x_2, ..., x_{n-1}, x_n), n$  is an odd
    - $Med(D) = x_{m} m = (n+1)/2$
    - $LS_f(D) = \max(x_m x_{m-1}, x_{m+1} x_m)$
    - Let k denotes up to k tuples changed
  - The smooth sensitivity of the median is

$$S_{f_{med,\varepsilon}}^*(D) = \max_{k=0,\dots,n} (e^{-k\beta} \cdot \max_{t=0,\dots,k+1} \max(x_{m+t} - x_{m+t-k-1}, x_{m+t+1} - x_{m+t}))$$
 It can be computed in  $O(n^2)$ 

$$S_{f,\beta}^*(D) = \max_{D'} (LS_f(D') \cdot e^{-\beta d(D,D')})$$

- An Idea of Computing  $S_{f,\beta}^*(D)$ 
  - Suppose we change up to k tuples

$$A^{(k)}(D) = \max_{D' \in \mathbb{D}: d(D,D') \le k} LS_f(D')$$

• Smooth sensitivity could be expressed using  $A^k(D)$ 

$$S_{f,\beta}^{*}(D) = \max_{k=0,...,n} e^{-k\beta} (\max_{D' \in \mathbb{D}: d(D,D') \le k} LS_{f}(D'))$$

$$= \max_{k=0,...,n} e^{-k\beta} A^{k}(D)$$

- Computing  $S_{f_{med,\varepsilon}}^*(D)$ 
  - For f = Median

Median
$$A^{(k)}(D) = \max_{D' \in \mathbb{D}: d(D,D') \le k} LS_f(D')$$

$$= \max_{t=0,\dots,k} \max(x_{m+t} - x_{m+t-k-1}, x_{m+t+1} - x_{m+t})$$



- Computing  $S_{f_{med,\varepsilon}}^*(D)$ 
  - For f = Median

$$A^{(k)}(D) = \max_{D' \in \mathbb{D}: d(D,D') \le k} LS_f(D')$$

Data range: [0, 10],  $Med(D) = x_5 = 5$ 

$$D = (1,2,3,4,5,6,7,8,9)$$

|            | $x_1$           | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $x_8$ | $x_9$ |      |
|------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| What is th | 1               | 2     | 2     | 1     | 5     | 6     | 7     | Q     | ٥     | D to |
| מוא(ח חי   | $j \geq \kappa$ | /     | 3     | 4     | 3     | U     | ,     | O     | 9     |      |

- To Compute the Maximum  $LS_f(D')$ 
  - Solution to get maximum candidates
    - Let t = 0, ..., k
    - Change t tuples to 10, starting from  $x_5$  to the right
    - Change k t tuples to 0, starting from  $x_4$  to the left
  - Change 0 tuple

•  $\max_{D' \in \mathbb{D}: d(D,D') \le k} LS_f(D') = LS_f(D) = \max\{x_5 - x_4, x_6 - x_5\}$ 

Change 1 tuple

• Case 1: k = 1, t = 0

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $x_8$ | <i>x</i> <sub>9</sub> |
|-------|-------|-------|-------|-------|-------|-------|-------|-----------------------|
| 1     | 2     | 3     | 0     | 5     | 6     | 7     | 8     | 9                     |

| _ | $x_4$ | $x_1$ | $x_2$ | $x_3$ | $x_5$ | $x_6$ | $x_7$ | $x_8$ | $x_9$ |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|   | 0     | 1     | 2     | 3     | 5     | 6     | 7     | 8     | 9     |

- $LS_f(D') = \max\{x_5 x_3, x_6 x_5\}$ 
  - Case 2: k = 1, t = 1

|            | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | <i>x</i> <sub>7</sub> | $x_8$ | $x_9$ | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_6$ | $x_7$ | $x_8$ | $x_9$ | $x_5$ |
|------------|-------|-------|-------|-------|-------|-------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| • <i>I</i> | 1     | 2     | 3     | 4     | 10    | 6     | 7                     | 8     | 9     | 1     | 2     | 3     | 4     | 6     | 7     | 8     | 9     | 10    |

$$S_{f_{med,\varepsilon}}^*(D) = \max_{k=0,\dots,n} (e^{-k\beta} \cdot \max_{t=0,\dots,k+1} \max(x_{m+t} - x_{m+t-k-1}, x_{m+t+1} - x_{m+t}))$$

# Sensitivity Change 2 tuple

• Case 1: k = 2, t = 0

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $x_8$ | $x_9$ |    | $x_4$ | $x_3$ | $x_1$ | $x_2$ | $x_5$ | $x_6$ | $x_7$ | <i>x</i> <sub>8</sub> | <i>x</i> <sub>9</sub> |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|-------|-------|-------|-------|-------|-------|-------|-----------------------|-----------------------|
| 1     | 2     | 0     | 0     | 5     | 6     | 7     | 8     | 9     | 5} | 0     | 0     | 1     | 2     | 5     | 6     | 7     | 8                     | 9                     |

• Case 2: k = 2, t = 1

| 1 | 2 | 3 | 0   | 10   | 6   | 7    | 8 | 9 | 6 | 0 | 1 | 2 | 3 |
|---|---|---|-----|------|-----|------|---|---|---|---|---|---|---|
|   |   | _ | Cas | C J. | r - | 4. L |   |   |   |   |   |   |   |

| $x_4$ | $x_1$ | $x_2$ | $x_3$ | $x_6$ | $x_7$ | $x_8$ | <i>X</i> 9 | $x_5$ |
|-------|-------|-------|-------|-------|-------|-------|------------|-------|
| 0     | 1     | 2     | 3     | 6     | 7     | 8     | 9          | 10    |

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | <i>x</i> <sub>5</sub> | $x_6$ | $x_7$ | <i>x</i> <sub>8</sub> | <i>x</i> <sub>9</sub> | 7} |
|-------|-------|-------|-------|-----------------------|-------|-------|-----------------------|-----------------------|----|
| 1     | 2     | 3     | 4     | 10                    | 10    | 7     | 8                     | 9                     |    |

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | <i>x</i> <sub>7</sub> | $x_8$ | <i>x</i> <sub>9</sub> | $x_5$ | $x_6$ |
|-------|-------|-------|-------|-----------------------|-------|-----------------------|-------|-------|
| 1     | 2     | 3     | 4     | 7                     | 8     | 9                     | 10    | 10    |

$$S_{f_{med,\varepsilon}}^*(D) = \max_{k=0,\dots,n} (e^{-k\beta} \cdot \max_{t=0,\dots,k+1} \max(x_{m+t} - x_{m+t-k-1}, x_{m+t+1} - x_{m+t}))$$

- Mechanism
  - Definition of Laplace Mechanism
    - Given any function  $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$ , the **Laplace Mechanism** is defined as:  $\mathcal{M}(D, f(.), \varepsilon) = f(D) + (Y_1, ..., Y_k)$

where  $Y_i$  is independent and identically distributed random variables drawn from  $Lap(\Delta f/\epsilon)$ .

Laplace Mechanism works for real valued functions

- Mechanism
  - $Lap(\Delta f/\varepsilon)$ : noise in Laplace Mechanism
    - Larger  $\Delta f$  brings larger noise
    - Smaller  $\varepsilon$  brings larger noise



#### Question:

Which Laplace Distribution brings the smallest noise?

$$Lap(x) = \frac{1}{2b} \exp(-\frac{|x|}{b})$$
$$b = \Delta f/\varepsilon$$

- Example
  - Among 10000 family names, which is the most common?
    - Utilization of histogram queries
    - Set  $\varepsilon = 1$
    - To count the number of each family name, add independent noise  $Y_i \sim Lap(1)$  ( $\Delta f = 1, \varepsilon = 1$ )
      - $Pr[|Y_i| < ?] \ge 95\%$
      - Is it a small error for large population, say 300000 persons
    - Report the family name with the largest count

- Example
  - $\Delta f = 1$ ,  $\varepsilon = 1$ , k = 10000, set  $\delta = 0.05$
  - Recall the property of Laplace Distribution

$$\Pr[||f(D) - y||_{\infty} \ge \ln(\frac{k}{\delta}) \times (\frac{\Delta f}{\varepsilon})] \le \delta$$

- $\Pr[||f(D) y||_{\infty} \ge \ln(\frac{k}{\delta}) \times (\frac{\Delta f}{\varepsilon})] \le \delta$  We can get  $\Pr[Y_i \ge \ln(\frac{10000}{0.05}) \times \frac{1}{1}] \le 0.05$ , that is  $\Pr[Y_i < \ln(\frac{10000}{0.05})] \ge 95\%$
- $\ln\left(\frac{10000}{0.05}\right) \approx 12.2$

It is a small error for large population, say 300000 persons

### Location Privacy

- Existing Notions of Privacy
  - Expected Distance Error
    - A natural way to quantify the accuracy by which an adversary can guess the real location



Three locations and their prior probability

Location Preserving Mechanism

Mechanism design: Maximizing the expected distance error

Adversary's guessing strategy

#### Expected Distance Error:

At 
$$a: 0.8 \times 0 + 0.1 \times 12 + 0.1 \times 10 = 2.2$$

At 
$$b: 0.1 \times 12 + 0.6 \times 0 + 0.3 \times 6 = 3$$

At 
$$c: 0.2 \times 10 + 0.3 \times 6 + 0.5 \times 0 = 3.8$$

Overall:  $0.2 \times 2.2 + 0.3 \times 3 + 0.5 \times 3.8 = 3.24$ 

### Location Privacy

- Existing Notions of Privacy
  - Expected Distance Error
    - Inaccuracy estimation of adversary's side information leads to poorly designed mechanism

