

ARJUNA NEET BATCH

Phospholipids


```
Fatty acid
(Sphinophospholipid)
```


Cytosolic side

Spectrin, Ankyrin

- -) peripheral proteins.
- -) found on cytosolic surface of PM.
 - maintenance of shape and fluidity of

Can be monosaccharides or <u>oligosaccharides</u> but never polysaccharide
 branched/ unbranched

Present on noncytosolic side of PM

Carbohydrate

- 1) monosaccharide -> smallest, simplest
- 1) Oligosaccharide -> made of few monosaccharide
- (ii) Polysaccharide -> made of many monosaccharide

a. Danieli and Davson model

- Lipid bilayer is surrounded by hydrated globular proteins on its both surfaces
- Known as P -L-L-P model/ trilamellar model/ sandwich model

0

Models for PM organization continued.....

b. Unit membrane concept model

- Given by Robertson
- States that all membranes of cell are made of unit membranes
- Lipid bilayer id surrounded by extended
 - mucoprotein noncytosolic side
- Membrane with
 - · lipid bilayer unit membrane
 - · lipid monolayer -> half unit membrane
 - · no lipid -> nonunit membrane

Models for PM organization continued.....

c. Fluid mosaic model

- Given by Singer and Nicolson in 1972
- Most valid/ widely accepted model for PM organization
- fluid quasifluid nature of lipid

```
Mosaic → arrangement of proteins

Completision

Lipid→sea
```

proteins-icebergs

PM is protein icebergs in lipid sea

(PM as perfluid mosaic model)

Q. Select the correct statement from the following regarding cell membrane (2012 Pre)

- a. Fluid mosaic model of cell membrane was proposed by Singer and Nicolson
- b. Na+ and K+ ions move across cell membrane by passive transport
- Proteins make up 60 to 70% of the cell membrane
- Lipids are arranged in a bilayer with polar heads towards the inner part

Fig. 8.4 Fluid mosaic model of plasma membrane

Movements of PM lipids and proteins

(A) Movements of PM lipids

noncytosolic inner Cytosolic

Rotational movement lateral movement

outer -> flep inner -> flip

Jongitudinal axis

Movement of PM proteins

Fluidity of PM

- Due to lipids and proteins
- As per fluid mosaic model quasifluid nature of lipid enables lateral movement of proteins within overall bilayer.

• Important for functions like cell division, cell growth, formation of intercellular junction, secretion, endocytosis, repair, dynamic nature of PM, etc

Some important terms

Gradient

Types of conc gradient

Direction of gradient

Some important terms

- Active process
- Passive process
- · nonpolax
- · polar

polar particles can't cross lipid bilager.

i. they require

carrier protein to facilitate their transport.

the channel protein

Transport across PM

One of most important function of PM

1. Simple diffusion

- neutral, lipid soluble (lipophilic), hydrophobic particles are transported
- Lipid mediated transport

2. Facilitated diffusion

- Polar (nonionic like glucose) molecules, ions, hydrophilic (lipophobic) are transported
- Protein mediated transport

Special proteins

Transport proteins (transmembrane proteins)

carrier, channel

- Passive transport (energy is not used)
- Along the conc gradient/ downhill transport
- Many molecules are transported
- Relatively slower than active transport

3. Active transport

- Energy is used
- Few polar (nonionic) molecules, ions are transported
- Against the conc gradient/ uphill transport
- Protein mediated transport carrier protein (pump)

Note:

- Carrier protein both facilitated diffusion, active transport
- Channel protein- facilitated diffusion
- Carrier proteins associated with active transport are called pumps
- Decreasing order of rate of transport

Active transport > Facilitated diffusion > simple diffusion

Osmosis:

- Diffusion of water from its higher conc to lower conc through semipermeable (or selectively permeable) membrane.
- Passive process
- Special diffusion

Bulk transport

Transport of particles in bulk (large)amount

A. Endocytosis

Uptake of particles in bulk by a cell

Solid phase liquid phase

Phagocytosis By phagosome Cell eating pinocytosis by pinosome cell drinking

B. Exocytosis

- release of particles in bulk by a cell
- Also called ephagy/ cell vomiting

