Bistable motif: full signalling cycle (simplified)

Finding the condition of multistationarity

We consider the following reactions:

```
\begin{split} &K+S\leftrightharpoons KS\to K+S_p\\ &K_p+S\leftrightharpoons K_p\;S\to K_p+S_p\\ &P+S_p\leftrightharpoons PS_p\to P+S\\ &K\leftrightharpoons K_p\\ &KS\leftrightharpoons K_p\;S \end{split}
```

Note: the following system is also bistable, we study this simplied one to avoid the complexity of too many parameters

```
\begin{split} & \text{K} + \overset{\bullet}{S} \overset{\rightarrow}{\rightarrow} \text{KS} \overset{\rightarrow}{\rightarrow} \text{K} + \text{S}_p \\ & \text{K}_p + \text{S} \overset{\rightarrow}{\rightarrow} \text{K}_p \text{ S} \overset{\rightarrow}{\rightarrow} \text{K}_p + \text{S}_p \\ & \text{P} + \text{S}_p \overset{\rightarrow}{\rightarrow} \text{PS}_p \overset{\rightarrow}{\rightarrow} \text{P} + \text{S} \\ & \text{K} \overset{\rightarrow}{\rightarrow} \text{K}_p \\ & \text{KS} \leftarrow \text{K}_p \text{ S} \end{split}
```

The species of the system are:

```
\{S, S_p, K, K_p, KS, K_pS, P, PS_p\}
```

In total, there are 13 reations and 10 species.

We firstly construct the ordinary differential equations based on mass-action kinetics. Then compute the determinant of Jacobian, using the solution at critical point (steady state) to calculate the determinant. The (necessary) condition for multistationarity is to make determinant equal to zero (non-zero determinant implys injectivity).

```
A = Table[0, {8}, {8}];

A[[1]][[1]] = -1; A[[1]][[3]] = -1; A[[1]][[5]] = 1;

A[[2]][[2]] = 1; A[[2]][[3]] = 1; A[[2]][[5]] = -1;

A[[3]][[1]] = -1; A[[3]][[4]] = -1; A[[3]][[6]] = 1;

A[[4]][[2]] = 1; A[[4]][[4]] = 1; A[[4]][[6]] = -1;

A[[5]][[2]] = -1; A[[5]][[7]] = -1; A[[5]][[8]] = 1;

A[[6]][[1]] = 1; A[[6]][[7]] = 1; A[[6]][[8]] = -1;

A[[7]][[3]] = -1; A[[7]][[4]] = 1;

A[[8]][[5]] = 1; A[[8]][[6]] = -1;

stoiM = Transpose[A]

{{-1, 0, -1, 0, 0, 1, 0, 0}, {0, 1, 0, 1, -1, 0, 0, 0}, {1, -1, 0, 0, 0, 0, 0, 1}, {0, 0, 1, -1, 0, 0, 0, 0, -1, 1, 0, 0}, {1, -1, 0, 0, 0, 0, 1, -1, 0, 0}}

ks = {k<sub>1</sub> × x<sub>3</sub> × x<sub>1</sub>, k<sub>2</sub> × x<sub>5</sub>, k<sub>3</sub> × x<sub>4</sub> * x<sub>1</sub>, k<sub>4</sub> × x<sub>6</sub>, k<sub>5</sub> × x<sub>7</sub> × x<sub>2</sub>, k<sub>6</sub> × x<sub>8</sub>, k<sub>7</sub> * x<sub>3</sub>, k<sub>8</sub> * x<sub>6</sub>}

{k<sub>1</sub> x<sub>1</sub> x<sub>3</sub>, k<sub>2</sub> x<sub>5</sub>, k<sub>3</sub> x<sub>1</sub> x<sub>4</sub>, k<sub>4</sub> x<sub>6</sub>, k<sub>5</sub> x<sub>2</sub> x<sub>7</sub>, k<sub>6</sub> x<sub>8</sub>, k<sub>7</sub> x<sub>3</sub>, k<sub>8</sub> x<sub>6</sub>}
```

```
ssEqns = stoiM.ks
 \{-k_1 x_1 x_3 - k_3 x_1 x_4 + k_6 x_8, k_2 x_5 + k_4 x_6 - k_5 x_2 x_7,
     -k_7 x_3 - k_1 x_1 x_3 + k_2 x_5, k_7 x_3 - k_3 x_1 x_4 + k_4 x_6, k_1 x_1 x_3 - k_2 x_5 + k_8 x_6,
     k_3 x_1 x_4 - k_4 x_6 - k_8 x_6, -k_5 x_2 x_7 + k_6 x_8, k_5 x_2 x_7 - k_6 x_8
mC = RowReduce[NullSpace[A]]
\{\{1, 1, 0, 0, 1, 1, 0, 1\}, \{0, 0, 1, 1, 1, 1, 0, 0\}, \{0, 0, 0, 0, 0, 0, 1, 1\}\}
cons = \{x_1 + x_2 + x_5 + x_6 + x_8 - T_1, x_3 + x_4 + x_5 + x_6 - T_2, x_7 + x_8 - T_3\};
subsEqns = {ssEqns[[2]], ssEqns[[4]], ssEqns[[5]],
            ssEqns[[6]], ssEqns[[8]], cons[[1]], cons[[2]], cons[[3]]}
\{\,k_2\;x_5\,+\,k_4\;x_6\,-\,k_5\;x_2\;x_7\,,\;k_7\;x_3\,-\,k_3\;x_1\;x_4\,+\,k_4\;x_6\,,\;k_1\;x_1\;x_3\,-\,k_2\;x_5\,+\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_8\;x_6\,,\;k_3\;x_1\;x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_4\;x_6\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_4\,-\,k_3\;x_1\,x_1\,x_1\,-\,k_3\;x_1\,x_1\,-\,k_3\;x_1\,x_1\,x_1\,-\,k_3\;x_1\,x_1\,x_1\,-\,k_3\;x_1\,x_1\,x_1\,-\,k_3\;x_1\,x_1\,x_1\,-\,k_3\;x_1\,x_1\,x_1\,-\,k_3\;x_1\,x_1\,x_1\,-\,k_3\;x_1\,x_1\,x_1\,-\,
    k_5\;x_2\;x_7\;-\;k_6\;x_8\;,\;\;-\;T_1\;+\;x_1\;+\;x_2\;+\;x_5\;+\;x_6\;+\;x_8\;,\;\;-\;T_2\;+\;x_3\;+\;x_4\;+\;x_5\;+\;x_6\;,\;\;-\;T_3\;+\;x_7\;+\;x_8\;\}
sol1 = Solve[{ssEqns[[8]], cons[[3]]} = 0, {x_7, x_8}]
\Big\{ \Big\{ x_7 \rightarrow \frac{k_6 \; T_3}{k_6 + k_5 \; x_2} \text{, } \; x_8 \rightarrow \frac{k_5 \; T_3 \; x_2}{k_6 + k_5 \; x_2} \Big\} \Big\}
so12 =
    Solve[{ssEqns[[4]], ssEqns[[5]], ssEqns[[6]], cons[[2]]} = 0, {x_3, x_4, x_5, x_6}]
                                                                                                                                                          k_2 k_3 k_8 T_2 x_1
                                  k_2 k_4 k_7 + k_2 k_7 k_8 + k_2 k_3 k_7 x_1 + k_2 k_3 k_8 x_1 + k_3 k_7 k_8 x_1 + k_1 k_3 k_8 x_1^2
                                                                                                                                                 k_2 \ k_7 \ \left(\, k_4 \, + \, k_8 \, \right) \ T_2
                                  k_2 \ k_4 \ k_7 \ + k_2 \ k_7 \ k_8 \ + k_2 \ k_3 \ k_7 \ x_1 \ + k_2 \ k_3 \ k_8 \ x_1 \ + k_3 \ k_7 \ k_8 \ x_1 \ + k_1 \ k_3 \ k_8 \ x_1^2
                                                                                                                            k_3 T_2 (k_7 k_8 x_1 + k_1 k_8 x_1^2)
                                   k_2 \ k_4 \ k_7 + k_2 \ k_7 \ k_8 + k_2 \ k_3 \ k_7 \ x_1 + k_2 \ k_3 \ k_8 \ x_1 + k_3 \ k_7 \ k_8 \ x_1 + k_1 \ k_3 \ k_8 \ x_1^2
                                                                                                                            k_2\ k_3\ k_7\ T_2\ x_1
                                  \left. \begin{array}{c} \\ \\ k_2 \ k_4 \ k_7 + k_2 \ k_7 \ k_8 + k_2 \ k_3 \ k_7 \ x_1 + k_2 \ k_3 \ k_8 \ x_1 + k_3 \ k_7 \ k_8 \ x_1 + k_1 \ k_3 \ k_8 \ x_1^2 \end{array} \right\} \right\}
sol3 = x_2 /. Solve[{ssEqns[[2]]} = 0, {x_2}]
 \Big\{\,\frac{k_2\;x_5\;+\;k_4\;x_6}{k_5\;x_7}\Big\}
sol4 = Solve[{x_2 = sol3[[1]]} /. Join[sol1[[1]], sol2[[1]]], {x_2}]
\Big\{ \left\{ \, x_2 \, \rightarrow \, \left( \frac{k_2 \; k_3 \; k_4 \; k_7 \; T_2 \; x_1}{k_2 \; k_4 \; k_7 \; k_2 \; k_7 \; k_8 \; k_2 \; k_3 \; k_7 \; x_1 \; + \; k_2 \; k_3 \; k_8 \; x_1 \; + \; k_3 \; k_7 \; k_8 \; x_1 \; + \; k_1 \; k_3 \; k_8 \; x_1^2 \; + \; k_1 \; k_3 \; k_8 \; x_1^2 \; + \; k_1 \; k_3 \; k_8 \; x_1^2 \; + \; k_2 \; k_3 \; k_8 \; x_1 \; + \; k_3 \; k_7 \; k_8 \; x_1 \; + \; k_1 \; k_3 \; k_8 \; x_1^2 \; + \; k_2 \; k_8 \; x_1 \; + \; k_3 \; k_8 \; x_1^2 \; + \; k_1 \; k_3 \; k_8 \; x_1^2 \; + \; k_2 \; k_1 \; k_1 \; k_2 \; k_3 \; k_1 \; k_2 \; k_1 \; k_2 \; k_3 \; k_1 \; k_2 \; k_2 \; k_3 \; k_1 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_3 \; k_1 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_3 \; k_1 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_3 \; k_1 \; k_2 \; k_3 \; k_3 \; k_1 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_3 \; k_1 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_1 \; k_3 \; k_1 \; k_1 \; k_1 \; k_2 \; k_1 \; k_1 \; k_2 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; k_1 \; k_2 \; k_3 \; k_1 \; k_2 \; k_3 \; k_1 \; 
                                                                                                                      k_2 k_3 T_2 (k_7 k_8 x_1 + k_1 k_8 x_1^2)
                                     \frac{-\frac{1}{k_2 k_4 k_7 + k_2 k_7 k_8 + k_2 k_3 k_7 x_1 + k_2 k_3 k_8 x_1 + k_3 k_7 k_8 x_1 + k_1 k_3 k_8 x_1^2}}{k_2 k_4 k_7 + k_2 k_7 k_8 + k_2 k_3 k_7 x_1 + k_2 k_3 k_8 x_1 + k_3 k_7 k_8 x_1 + k_1 k_3 k_8 x_1^2}}\right] / 
                                                                                                                                                                                           k_2 \ k_3 \ k_4 \ k_7 \ T_2 \ x_1
                          \left(k_5 \ T_3 \ \left(1 - \frac{1}{k_6 \ T_3} \left(\frac{k_2 \ k_3 \ k_4 \ k_7 \ T_2 \ x_1}{k_2 \ k_4 \ k_7 + k_2 \ k_7 \ k_8 + k_2 \ k_3 \ k_7 \ x_1 + k_2 \ k_3 \ k_8 \ x_1 + k_3 \ k_7 \ k_8 \ x_1 + k_1 \ k_3 \ k_8 \ x_1^2 \right)\right) \\ = \frac{k_2 \ k_3 \ k_4 \ k_7 \ T_2 \ x_1}{k_4 \ k_7 \ k_8 \ k_7 \ k_8 \ k_1 + k_2 \ k_3 \ k_8 \ x_1 + k_3 \ k_7 \ k_8 \ x_1 + k_1 \ k_3 \ k_8 \ x_1^2}
                                                                                                                                                  k_2 k_3 T_2 (k_7 k_8 x_1 + k_1 k_8 x_1^2)
```

 k_2 k_4 k_7 + k_2 k_7 k_8 + k_2 k_3 k_7 x_1 + k_2 k_3 k_8 x_1 + k_3 k_7 k_8 x_1 + k_1 k_3 k_8 x_1

$sol5 = Solve[x_8 == {x_8 /. sol1[[1]]} /. sol4[[1]], x_8]$

$$\left\{ \left\{ x_{8} \rightarrow \left(\frac{k_{2} \ k_{3} \ k_{4} \ k_{7} \ T_{2} \ x_{1}}{k_{2} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3} \ k_{7} \ x_{1} + k_{2} \ k_{3} \ k_{8} \ x_{1} + k_{3} \ k_{7} \ k_{8} \ x_{1} + k_{1} \ k_{3} \ k_{8} \ x_{1}^{2} \right. \\ \left. - \frac{k_{2} \ k_{3} \ T_{2} \ \left(k_{7} \ k_{8} \ x_{1} + k_{1} \ k_{8} \ x_{1}^{2} \right)}{k_{2} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3} \ k_{7} \ x_{1} + k_{2} \ k_{3} \ k_{8} \ x_{1} + k_{3} \ k_{7} \ k_{8} \ x_{1} + k_{1} \ k_{3} \ k_{8} \ x_{1}^{2} \right) \right/ \\ \left. \left(\left(1 - \frac{1}{k_{6} \ T_{3}} \left(\frac{k_{2} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3} \ k_{7} \ x_{1} + k_{2} \ k_{3} \ k_{8} \ x_{1} + k_{1} \ k_{3} \ k_{7} \ x_{1} + k_{1} \ k_{3} \ k_{8} \ x_{1}^{2} \right) \right) \right) \\ \left. \left(\frac{k_{2} \ k_{3} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3} \ k_{7} \ x_{1} + k_{2} \ k_{3} \ k_{8} \ x_{1} + k_{3} \ k_{7} \ k_{8} \ x_{1} + k_{1} \ k_{3} \ k_{8} \ x_{1}^{2} \right) \right) \\ \left. \left(\frac{k_{2} \ k_{3} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3} \ k_{7} \ x_{1} + k_{2} \ k_{3} \ k_{8} \ x_{1} + k_{3} \ k_{7} \ k_{8} \ x_{1} + k_{1} \ k_{3} \ k_{8} \ x_{1}^{2} \right) \right) \\ \left. \left(\frac{k_{2} \ k_{3} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3} \ k_{7} \ x_{1} + k_{2} \ k_{3} \ k_{8} \ x_{1} + k_{3} \ k_{7} \ k_{8} \ x_{1} + k_{1} \ k_{3} \ k_{8} \ x_{1}^{2} \right) \right) \\ \left. \left(\frac{k_{2} \ k_{3} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3} \ k_{7} \ x_{1} + k_{2} \ k_{3} \ k_{8} \ x_{1} + k_{3} \ k_{7} \ k_{8} \ x_{1} + k_{1} \ k_{3} \ k_{8} \ x_{1}^{2} \right) \right) \\ \left. \left(\frac{k_{2} \ k_{3} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3} \ k_{7} \ x_{1} + k_{2} \ k_{3} \ k_{8} \ x_{1} + k_{1} \ k_{3} \ k_{7} \ x_{1} + k_{1} \ k_{3} \ k_{8} \ x_{1}^{2} \right) \right) \right) \right\} \right\} \\ \left. \left(\frac{k_{2} \ k_{3} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3} \ k_{7} \ x_{1} + k_{2} \ k_{3} \ k_{8} \ x_{1} + k_{1} \ k_{3} \ k_{7} \ x_{1} + k_{1} \ k_{3} \ k_{8} \ x_{1}^{2} \right) }{ \left(\frac{k_{2} \ k_{3} \ k_{4} \ k_{7} + k_{2} \ k_{7} \ k_{8} + k_{2} \ k_{3}$$

term = Simplify[cons[[1]] /. Join[sol5[[1]], sol2[[1]], sol4[[1]]]]

$$-T_{1}+x_{1}+\frac{k_{2}\;k_{3}\;k_{7}\;T_{2}\;x_{1}}{k_{3}\;k_{8}\;x_{1}\;\left(k_{7}+k_{1}\;x_{1}\right)+k_{2}\;\left(k_{4}\;k_{7}+k_{3}\;k_{8}\;x_{1}+k_{7}\;\left(k_{8}+k_{3}\;x_{1}\right)\right)}+\\\frac{k_{3}\;k_{8}\;T_{2}\;x_{1}\;\left(k_{7}+k_{1}\;x_{1}\right)}{k_{3}\;k_{8}\;x_{1}\;\left(k_{7}+k_{1}\;x_{1}\right)+k_{2}\;\left(k_{4}\;k_{7}+k_{3}\;k_{8}\;x_{1}+k_{7}\;\left(k_{8}+k_{3}\;x_{1}\right)\right)}+\\\frac{k_{2}\;k_{3}\;T_{2}\;x_{1}\;\left(k_{4}\;k_{7}+k_{8}\;\left(k_{7}+k_{1}\;x_{1}\right)\right)}{k_{6}\;\left(k_{3}\;k_{8}\;x_{1}\;\left(k_{7}+k_{1}\;x_{1}\right)+k_{2}\;\left(k_{4}\;k_{7}+k_{3}\;k_{8}\;x_{1}+k_{7}\;\left(k_{8}+k_{3}\;x_{1}\right)\right)\right)}+\\\frac{k_{6}\;\left(k_{3}\;k_{8}\;x_{1}\;\left(k_{7}+k_{1}\;x_{1}\right)+k_{2}\;\left(k_{4}\;k_{7}+k_{3}\;k_{8}\;x_{1}+k_{7}\;\left(k_{8}+k_{3}\;x_{1}\right)\right)\right)}{\left(k_{2}\;k_{3}\;k_{6}\;T_{2}\;x_{1}\;\left(k_{4}\;k_{7}+k_{8}\;\left(k_{7}+k_{1}\;x_{1}\right)\right)\right)\left/\;\left(k_{5}\;\left(k_{3}\;k_{6}\;k_{8}\;T_{3}\;x_{1}\;\left(k_{7}+k_{1}\;x_{1}\right)+k_{2}\;\left(k_{8}+k_{3}\;x_{1}\right)\right)\right)\right)\right)}$$

Together[term]

polynomial = Collect[Numerator[Together[term]], x1]

```
k_{2}^{2} k_{4}^{2} k_{5} k_{6}^{2} k_{7}^{2} T_{1} T_{3} + 2 k_{2}^{2} k_{4} k_{5} k_{6}^{2} k_{7}^{2} k_{8} T_{1} T_{3} + k_{2}^{2} k_{5} k_{6}^{2} k_{7}^{2} k_{8}^{2} T_{1} T_{3} +
                       \left(-k_{2}^{2} k_{3} k_{4}^{2} k_{6}^{2} k_{7}^{2} T_{2}-2 k_{2}^{2} k_{3} k_{4} k_{6}^{2} k_{7}^{2} k_{8} T_{2}-k_{2}^{2} k_{3} k_{6}^{2} k_{7}^{2} k_{8}^{2} T_{2}-\right.
                                                                         k_{2}^{2} k_{3} k_{4}^{2} k_{5} k_{6} k_{7}^{2} T_{1} T_{2} - 2 k_{2}^{2} k_{3} k_{4} k_{5} k_{6} k_{7}^{2} k_{8} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3}^{2} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3}^{2} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3}^{2} k_{5} k_{6} k_{7}^{2} k_{7}^{2} k_{8}^{2} T_{1} T_{2} - k_{2}^{2} k_{3}^{2} k_{5} k_{6} k_{7}^{2} k_{7}^{2
                                                                         k_2^2 \ k_4^2 \ k_5 \ k_6^2 \ k_7^2 \ T_3 - 2 \ k_2^2 \ k_4 \ k_5 \ k_6^2 \ k_7^2 \ k_8 \ T_3 - k_2^2 \ k_5 \ k_6^2 \ k_7^2 \ k_8^2 \ T_3 + 2 \ k_2^2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7^2 \ T_1 \ T_3 + k_8^2 \ k_8 \ k_
                                                                         2 k_2^2 k_3 k_4 k_5 k_6^2 k_7 k_8 T_1 T_3 + 2 k_2^2 k_3 k_5 k_6^2 k_7^2 k_8 T_1 T_3 + 2 k_2 k_3 k_4 k_5 k_6^2 k_7^2 k_8 T_1 T_3 +
                                                                         2\ k_2^2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_1\ T_3\ +\ 2\ k_2\ k_3\ k_5\ k_6^2\ k_7^2\ k_8^2\ T_1\ T_3\ -\ k_2^2\ k_3\ k_4^2\ k_5\ k_6\ k_7^2\ T_2\ T_3\ -\ k_2^2\ k_3\ k_5^2\ k_6^2\ k_7^2\ k_8^2\ k_7^2\ k_8^2\ k_7^2\ k_8^2\ k_7^2\ k_8^2\ k_7^2\ k_8^2\ k_8
                                                                         k_2^2 k_3 k_4 k_5 k_6^2 k_7^2 T_2 T_3 - 2 k_2^2 k_3 k_4 k_5 k_6 k_7^2 k_8 T_2 T_3 - k_2^2 k_3 k_5 k_6^2 k_7^2 k_8 T_2 T_3 -
                                                                         \left(k_{2}^{2} k_{3} k_{4}^{2} k_{5} k_{6} k_{7}^{2} T_{2} - k_{2}^{2} k_{3}^{2} k_{4} k_{6}^{2} k_{7}^{2} T_{2} - k_{1} k_{2}^{2} k_{3} k_{4} k_{6}^{2} k_{7} k_{8} T_{2} - k_{2}^{2} k_{3}^{2} k_{4} k_{6}^{2} k_{7} k_{8} T_{2} + k_{2}^{2} k_{3}^{2} k_{4} k_{6}^{2} k_{7} k_{8} T_{2} + k_{3}^{2} k_{4}^{2} k_{5}^{2} k_{7} k_{8} T_{2} + k_{4}^{2} k_{5}^{2} k_{7}^{2} k_{8}^{2} k_{7}^{2} k_{7}^{2} k_{8}^{2} k_{7}^{2} k_{8}^{2} k_{7}^{2} k_
                                                                         2 k_{2}^{2} k_{3} k_{4} k_{5} k_{6} k_{7}^{2} k_{8} T_{2} - k_{2}^{2} k_{3}^{2} k_{6}^{2} k_{7}^{2} k_{8} T_{2} - k_{2} k_{3}^{2} k_{4} k_{6}^{2} k_{7}^{2} k_{8} T_{2} - k_{5}^{2} k_{7}^{2} k_{8} k_{7}^{2} k_{8} k_{7}^{2} k_{8} k_{7}^{2} k_{8}^{2} k_{7}^{2} k_{7}^
                                                                         k_1 \; k_2^2 \; k_3 \; k_6^2 \; k_7 \; k_8^2 \; T_2 \; - \; k_2^2 \; k_3^2 \; k_6^2 \; k_7 \; k_8^2 \; T_2 \; + \; k_2^2 \; k_3 \; k_5 \; k_6 \; k_7^2 \; k_8^2 \; T_2 \; - \; k_2 \; k_3^2 \; k_6^2 \; k_7^2 \; k_8^2 \; T_2 \; - \; k_2 \; k_3^2 \; k_6^2 \; k_7^2 \; k_8^2 \; T_2 \; - \; k_2 \; k_3^2 \; k_6^2 \; k_7^2 \; k_8^2 \; T_2 \; - \; k_2 \; k_3^2 \; k_6^2 \; k_7^2 \; k_8^2 \; T_2 \; - \; k_2 \; k_3^2 \; k_6^2 \; k_7^2 \; k_8^2 \; K_2 \; K_3 \; k_8^2 \; K_3 
                                                                         k_{2}^{2} k_{3}^{2} k_{4} k_{5} k_{6} k_{7}^{2} T_{1} T_{2} - k_{1} k_{2}^{2} k_{3} k_{4} k_{5} k_{6} k_{7} k_{8} T_{1} T_{2} - k_{2}^{2} k_{3}^{2} k_{4} k_{5} k_{6} k_{7} k_{8} T_{1} T_{2} -
                                                                         k_{2}^{2} k_{3}^{2} k_{5} k_{6} k_{7}^{2} k_{8} T_{1} T_{2} - k_{2} k_{3}^{2} k_{4} k_{5} k_{6} k_{7}^{2} k_{8} T_{1} T_{2} - k_{1} k_{2}^{2} k_{3} k_{5} k_{6} k_{7} k_{8}^{2} T_{1} T_{2} -
                                                                         k_{2}^{2} k_{3}^{2} k_{5} k_{6} k_{7} k_{8}^{2} T_{1} T_{2} - k_{2} k_{3}^{2} k_{5} k_{6} k_{7}^{2} k_{8}^{2} T_{1} T_{2} + k_{2}^{2} k_{3}^{2} k_{4}^{2} k_{5} k_{7}^{2} T_{2}^{2} + k_{2}^{2} k_{3}^{2} k_{4} k_{5} k_{6} k_{7}^{2} T_{2}^{2} +
                                                                         2\ k_2^2\ k_3^2\ k_4\ k_5\ k_6^7\ k_8\ T_2^2 + k_2^2\ k_3^2\ k_5\ k_6\ k_7^2\ k_8\ T_2^2 + k_2\ k_3^2\ k_4\ k_5\ k_6\ k_7^2\ k_8\ T_2^2 + k_2^2\ k_3^2\ k_5\ k_7^2\ k_8^2\ k_7^2\ k_8^2\ k_7^2\ k_8^2\ k_8
                                                                         k_2 k_3^2 k_5 k_6 k_7^2 k_8^2 T_2^2 - 2 k_2^2 k_3 k_4 k_5 k_6^2 k_7^2 T_3 - 2 k_2^2 k_3 k_4 k_5 k_6^2 k_7 k_8 T_3 -
                                                                         2 k_2^2 k_3 k_5 k_6^2 k_7^2 k_8 T_3 - 2 k_2 k_3 k_4 k_5 k_6^2 k_7^2 k_8 T_3 - 2 k_2^2 k_3 k_5 k_6^2 k_7 k_8^2 T_3 -
                                                                         2 k_2 k_3 k_5 k_6^2 k_7^2 k_8^2 T_3 + k_2^2 k_3^2 k_5 k_6^2 k_7^2 T_1 T_3 + 2 k_2^2 k_3^2 k_5 k_6^2 k_7 k_8 T_1 T_3 +
                                                                         2 k_1 k_2 k_3 k_4 k_5 k_6^2 k_7 k_8 T_1 T_3 + 2 k_2 k_3^2 k_5 k_6^2 k_7^2 k_8 T_1 T_3 + k_2^2 k_3^2 k_5 k_6^2 k_8^2 T_1 T_3 + k_2^2 k_3^2 k_5 k_6^2 k_8^2 
                                                                         2 k_1 k_2 k_3 k_5 k_6^2 k_7 k_8^2 T_1 T_3 + 2 k_2 k_3^2 k_5 k_6^2 k_7 k_8^2 T_1 T_3 + k_3^2 k_5 k_6^2 k_7^2 k_8^2 T_1 T_3 -
                                                                         k_2^2 \ k_3^2 \ k_4 \ k_5 \ k_6 \ k_7^2 \ T_2 \ T_3 \ - \ k_2^2 \ k_3^2 \ k_5 \ k_6^2 \ k_7^2 \ T_2 \ T_3 \ - \ k_1 \ k_2^2 \ k_3 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_2 \ T_3 \ - \ k_8 \ 
                                                                         k_2^2 k_3^2 k_4 k_5 k_6 k_7 k_8 T_2 T_3 - k_2^2 k_3^2 k_5 k_6^2 k_7 k_8 T_2 T_3 - k_1 k_2 k_3 k_4 k_5 k_6^2 k_7 k_8 T_2 T_3 -
                                                                         k_2^2 k_3^2 k_5 k_6 k_7^2 k_8 T_2 T_3 - k_2 k_3^2 k_4 k_5 k_6 k_7^2 k_8 T_2 T_3 - 2 k_2 k_3^2 k_5 k_6^2 k_7^2 k_8 T_2 T_3 -
                                                                         k_1 \ k_2^2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6^2 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6^2 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6^2 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6^2 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6^2 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6^2 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ T_3 \ - \ k_1 \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8 \ T_2 \ T_3 \ - \ k_1 \ k_2 \ k_3 \ k_3 \ k_1 \ k_2 \ k_3 \ k_3 \ k_1 \ k_2 \ k_3 \ 
                                                                         k_2 k_3^2 k_5 k_6^2 k_7 k_8^2 T_2 T_3 - k_2 k_3^2 k_5 k_6 k_7^2 k_8^2 T_2 T_3 - k_3^2 k_5 k_6^2 k_7^2 k_8^2 T_2 T_3
                         (k_2^2 k_1^2 k_4 k_5 k_6 k_7^2 T_2 + k_1 k_2^2 k_3 k_4 k_5 k_6 k_7 k_8 T_2 + k_2^2 k_3^2 k_4 k_5 k_6 k_7 k_8 T_2 - k_1 k_2^2 k_3^2 k_6^2 k_7 k_8 T_2 - k_1 k_2^2 k_3^2 k_6^2 k_7 k_8 T_2 - k_1 k_2^2 k_3^2 k_6^2 k_7 k_8 k_7
                                                                         k_1 \ k_2^2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ + \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3^2 \ k_6^2 \ k_7 \ k_8^2 \ T_2 \ + \ k_2 \ k_3^2 \ k_5 \ k_6 \ k_7^2 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3^2 \ k_6^2 \ k_7 \ k_8^2 \ T_2 \ + \ k_2 \ k_3^2 \ k_5 \ k_6 \ k_7^2 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3^2 \ k_6 \ k_7 \ k_8^2 \ T_2 \ + \ k_2 \ k_3^2 \ k_5 \ k_6 \ k_7^2 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3^2 \ k_6 \ k_7 \ k_8^2 \ T_2 \ + \ k_2 \ k_3^2 \ k_5 \ k_6 \ k_7^2 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3^2 \ k_6 \ k_7 \ k_8^2 \ T_2 \ + \ k_2 \ k_3^2 \ k_5 \ k_6 \ k_7^2 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3^2 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3^2 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ T_2 \ - \ 2 \ k_1 \ k_2 \ k_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ K_2 \ K_3 \ k_5 \ k_6 \ k_7 \ k_8^2 \ K_3 \ k_7 \ k_8 \ K_3 \ K_3 \ k_8 \ K_4 \ k_8 \ K_4 \ k_8 \ K_5 \ k_8 \ K_
                                                                         k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_7 \ k_8 \ T_1 \ T_2 - k_1 \ k_2 \ k_3^2 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3^2 \ k_3 \ k_5 \ k_6 \ k_8^2 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3 \ k_5 \ k_8 \ k_8 \ k_8 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3 \ k_8 \ k_8 \ k_8 \ T_1 \ T_2 - k_1 \ k_2^2 \ k_3 \ k_8 \ k_8 \ k_8 \ k_8 \ T_1 \ T_2 - k_1 \ k_2 \ k_3 \ k_8 \ k_8 \ k_8 \ K_1 \ K_2 \ k_3 \ k_8 \ k_8 \ K_1 \ K_2 \ k_8 \ K_3 \ k_8 \ K_1 \ K_2 \ K_3 \ K_3 \ K_1 \ K_2 \ K_3 \ K_3 \ K_3 \ K_1 \ K_2 \ K_3 
                                                                         2 k_1 k_2 k_3^2 k_5 k_6 k_7 k_8^2 T_1 T_2 + 2 k_1 k_2^2 k_3^2 k_4 k_5 k_7 k_8 T_2^2 + k_1 k_2^2 k_3^2 k_5 k_6 k_7 k_8 T_2^2 +
                                                                         k_1 k_2 k_3^2 k_4 k_5 k_6 k_7 k_8 T_2^2 + 2 k_1 k_2^2 k_3^2 k_5 k_7 k_8^2 T_2^2 + 2 k_1 k_2 k_3^2 k_5 k_6 k_7 k_8^2 T_2^2 -
                                                                         k_2^2 \ k_3^2 \ k_5 \ k_6^2 \ k_7^2 \ T_3 - 2 \ k_2^2 \ k_3^2 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 \ k_3 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_3 - 2 \ k_1 \ k_2 \ k_3 
                                                                         2\ k_2\ k_3^2\ k_5\ k_6^2\ k_7^2\ k_8\ T_3\ -\ k_2^2\ k_3^2\ k_5\ k_6^2\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_6^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_8^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_5\ k_8^2\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_7\ k_8^2\ T_3\ -\ 2\ k_1\ k_2\ k_3\ k_7\ k_8^2\ K_7\ k_8^2
                                                                         2 k_2 k_3^2 k_5 k_6^2 k_7 k_8^2 T_3 - k_3^2 k_5 k_6^2 k_7^2 k_8^2 T_3 + 2 k_1 k_2 k_3^2 k_5 k_6^2 k_7 k_8 T_1 T_3 +
                                                                         2 k_1 k_2 k_3^2 k_5 k_6^2 k_8^2 T_1 T_3 + 2 k_1 k_3^2 k_5 k_6^2 k_7 k_8^2 T_1 T_3 - k_1 k_2^2 k_3^2 k_5 k_6 k_7 k_8 T_2 T_3 - k_1 k_2^2 k_3^2 k_5 k_6 k_7 k_8 k_7 k_7 k_8 k_
                                                                         k_1 \ k_2 \ k_3^2 \ k_4 \ k_5 \ k_6 \ k_7 \ k_8 \ T_2 \ T_3 - 2 \ k_1 \ k_2 \ k_3^2 \ k_5 \ k_6^2 \ k_7 \ k_8 \ T_2 \ T_3 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_2 \ T_3 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_2 \ T_3 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_2 \ T_3 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ T_2 \ T_3 - k_1 \ k_2^2 \ k_3^2 \ k_5 \ k_6 \ k_8^2 \ K_7 \ K_8 \ 
                                                                         k_1 k_2 k_3^2 k_5 k_6^2 k_8^2 T_2 T_3 - 2 k_1 k_2 k_3^2 k_5 k_6 k_7 k_8^2 T_2 T_3 - 2 k_1 k_3^2 k_5 k_6^2 k_7 k_8^2 T_2 T_3 
                         \left(k_{1} \; k_{2}^{2} \; k_{3}^{2} \; k_{5} \; k_{6} \; k_{7} \; k_{8} \; T_{2} + k_{1} \; k_{2} \; k_{3}^{2} \; k_{4} \; k_{5} \; k_{6} \; k_{7} \; k_{8} \; T_{2} + k_{1} \; k_{2}^{2} \; k_{3}^{2} \; k_{5} \; k_{6} \; k_{8}^{2} \; T_{2} - k_{1}^{2} \; k_{2} \; k_{3}^{2} \; k_{6}^{2} \; k_{8}^{2} \; T_{2} + k_{1} \; k_{2}^{2} \; k_{3}^{2} \; k_{5}^{2} \; k_{6} \; k_{7}^{2} \; k_{8} \; T_{2} - k_{1}^{2} \; k_{2} \; k_{3}^{2} \; k_{6}^{2} \; k_{1}^{2} \; k_{2}^{2} \; k_{3}^{2} \; k_{5}^{2} \; k_{6}^{2} \; k_{1}^{2} \; k_{1}^{2} \; k_{2}^{2} \; k_{3}^{2} \; k_{5}^{2} \; k_{6}^{2} \; k_{1}^{2} \; k_{1}^{2} \; k_{2}^{2} \; k_{3}^{2} \; k_{5}^{2} \; k_{6}^{2} \; k_{1}^{2} \; k_{2}^{2} \; k_{3}^{2} \; k_{5}^{2} \; k_{5}^
                                                                         2 k_1 k_2 k_3^2 k_5 k_6 k_7 k_8^2 T_2 - k_1^2 k_2 k_3^2 k_5 k_6 k_8^2 T_1 T_2 + k_1^2 k_2^2 k_3^2 k_5 k_8^2 T_2^2 + k_1^2 k_2 k_3^2 k_5 k_6 k_8^2 T_2^2 - k_1^2 k_2^2 k_5^2 k_5^
                                                                         2 k_1 k_2 k_3^2 k_5 k_6^2 k_7 k_8 T_3 - 2 k_1 k_2 k_3^2 k_5 k_6^2 k_8^2 T_3 - 2 k_1 k_3^2 k_5 k_6^2 k_7 k_8^2 T_3 +
                                                                         k_1^2 k_3^2 k_5 k_6^2 k_8^2 T_1 T_3 - k_1^2 k_2 k_3^2 k_5 k_6 k_8^2 T_2 T_3 - k_1^2 k_3^2 k_5 k_6^2 k_8^2 T_2 T_3  x_1^4 + x_2^2 k_3^2 k_5 k_6^2 k_8^2 k_5 k_6^2 k_6^2 k_6^2 k_6^2 k_5 k_6^2 k_6
                       (k_1^2 k_2 k_3^2 k_5 k_6 k_8^2 T_2 - k_1^2 k_3^2 k_5 k_6^2 k_8^2 T_3) x_1^5
```

This is also a degree 5 polynomial. Now the polynomial is simple (comparing to the original model) enough for sampling the parameters to check if the polynomial has 5 roots of x₁.

Sampling the parameter to make the system display multistable dynamics

```
(Test) In[1]:= ClearAll["Global`*"];
                                                                pol = k_2^2 k_4^2 k_5 k_6^2 k_7^2 T_1 T_3 + 2 k_2^2 k_4 k_5 k_6^2 k_7^2 k_8 T_1 T_3 + k_2^2 k_5 k_6^2 k_7^2 k_8^2 T_1 T_3 +
                                                                                                   \left(-k_{2}^{2} k_{3} k_{4}^{2} k_{6}^{2} k_{7}^{2} \mathbf{T}_{2}-2 k_{2}^{2} k_{3} k_{4} k_{6}^{2} k_{7}^{2} k_{8} \mathbf{T}_{2}-k_{2}^{2} k_{3} k_{6}^{2} k_{7}^{2} k_{8}^{2} \mathbf{T}_{2}-k_{2}^{2} k_{3} k_{4}^{2} k_{5} k_{6} k_{7}^{2} \mathbf{T}_{1} \mathbf{T}_{2}-k_{2}^{2} k_{3} k_{4}^{2} k_{5}^{2} k_{5}^{2} \mathbf{T}_{1} \mathbf{T}_{2}-k_{2}^{2} k_{3}^{2} k_{5}^{2} \mathbf{T}_{2}-k_{2}^{2} k_{3}^{2} k_{5}^{2} \mathbf{T}_{2}-k_{2}^{2} k_{5}^{2} \mathbf{T}_{3}^{2} \mathbf{T}_{
                                                                                                                                  2 k_2^2 k_3 k_4 k_5 k_6 k_7^2 k_8 T_1 T_2 - k_2^2 k_3 k_5 k_6 k_7^2 k_8^2 T_1 T_2 - k_2^2 k_4^2 k_5 k_6^2 k_7^2 T_3 -
                                                                                                                                  2 k_{2}^{2} k_{4} k_{5} k_{6}^{2} k_{7}^{2} k_{8} T_{3} - k_{2}^{2} k_{5} k_{6}^{2} k_{7}^{2} k_{8}^{2} T_{3} + 2 k_{2}^{2} k_{3} k_{4} k_{5} k_{6}^{2} k_{7}^{2} T_{1} T_{3} +
                                                                                                                                  2 k_2^2 k_3 k_4 k_5 k_6^2 k_7 k_8 T_1 T_3 + 2 k_2^2 k_3 k_5 k_6^2 k_7^2 k_8 T_1 T_3 + 2 k_2 k_3 k_4 k_5 k_6^2 k_7^2 k_8 T_1 T_3 +
                                                                                                                                  2 k_{2}^{2} k_{3} k_{5} k_{6}^{2} k_{7} k_{8}^{2} T_{1} T_{3} + 2 k_{2} k_{3} k_{5} k_{6}^{2} k_{7}^{2} k_{8}^{2} T_{1} T_{3} - k_{2}^{2} k_{3} k_{4}^{2} k_{5} k_{6} k_{7}^{2} T_{2} T_{3} -
                                                                                                                                 k_2^2 k_3 k_4 k_5 k_6^2 k_7^2 T_2 T_3 - 2 k_2^2 k_3 k_4 k_5 k_6 k_7^2 k_8 T_2 T_3 - k_2^2 k_3 k_5 k_6^2 k_7^2 k_8 T_2 T_3 -
                                                                                                                                 \left(k_{2}^{2} k_{3} k_{4}^{2} k_{5} k_{6} k_{7}^{7} T_{2} - k_{2}^{2} k_{3}^{2} k_{4} k_{6}^{2} k_{7}^{7} T_{2} - k_{1} k_{2}^{2} k_{3} k_{4} k_{6}^{2} k_{7} k_{8} T_{2} - k_{2}^{2} k_{3}^{2} k_{4} k_{6}^{2} k_{7} k_{8} T_{2} + k_{3}^{2} k_{4}^{2} k_{5}^{2} k_{7}^{2} k_{8}^{2} k_{7}^{2} k_{7}^{2
                                                                                                                                  2 k_{2}^{2} k_{3} k_{4} k_{5} k_{6} k_{7}^{2} k_{8} T_{2} - k_{2}^{2} k_{3}^{2} k_{6}^{2} k_{7}^{2} k_{8} T_{2} - k_{2} k_{3}^{2} k_{4} k_{6}^{2} k_{7}^{2} k_{8} T_{2} -
                                                                                                                                 \mathbf{k}_{1} \ \mathbf{k}_{2}^{2} \ \mathbf{k}_{3} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{2}^{2} \ \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} + \mathbf{k}_{2}^{2} \ \mathbf{k}_{3} \ \mathbf{k}_{5} \ \mathbf{k}_{6} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{2} \ \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} - \mathbf{k}_{3}^{2} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{k}_{7}^{2} \ \mathbf{k}_{8}^{2} \ \mathbf{k
                                                                                                                                 k_{2}^{2} k_{3}^{2} k_{4} k_{5} k_{6} k_{7}^{2} T_{1} T_{2} - k_{1} k_{2}^{2} k_{3} k_{4} k_{5} k_{6} k_{7} k_{8} T_{1} T_{2} - k_{2}^{2} k_{3}^{2} k_{4} k_{5} k_{6} k_{7} k_{8} T_{1} T_{2} -
                                                                                                                                 k_{2}^{2}\ k_{3}^{2}\ k_{5}\ k_{6}\ k_{7}^{2}\ k_{8}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{2}\ k_{3}^{2}\ k_{4}\ k_{5}\ k_{6}\ k_{7}^{2}\ k_{8}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{5}\ k_{6}\ k_{7}\ k_{8}^{2}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{5}\ k_{5}\ k_{6}\ k_{7}\ k_{8}\ \mathbf{T}_{1}\ \mathbf{T}_{2}\ -\ k_{1}^{2}\ k_{2}^{2}\ k_{3}\ k_{5}\ k_{5
                                                                                                                                 k_{2}^{2} k_{3}^{2} k_{5} k_{6} k_{7} k_{8}^{2} \mathbf{T}_{1} \mathbf{T}_{2} - k_{2} k_{3}^{2} k_{5} k_{6} k_{7}^{2} k_{8}^{2} \mathbf{T}_{1} \mathbf{T}_{2} + k_{2}^{2} k_{3}^{2} k_{4} k_{5} k_{6}^{2} k_{1}^{2} \mathbf{T}_{2}^{2} + k_{2}^{2} \mathbf{T}_{3}^{2} + \mathbf{T}_{4}^{2} \mathbf{T}_{2}^{2}
                                                                                                                                 2 k_2^2 k_3^2 k_4 k_5 k_7^2 k_8 T_2^2 + k_2^2 k_3^2 k_5 k_6 k_7^2 k_8 T_2^2 + k_2 k_3^2 k_4 k_5 k_6 k_7^2 k_8 T_2^2 + k_2^2 k_3^2 k_5 k_7^2 k_8^2 T_2^2 +
                                                                                                                                  k_2 k_3^2 k_5 k_6 k_7^2 k_8^2 T_2^2 - 2 k_2^2 k_3 k_4 k_5 k_6^2 k_7^2 T_3 - 2 k_2^2 k_3 k_4 k_5 k_6^2 k_7 k_8 T_3 -
                                                                                                                                  2 k_2^2 k_3 k_5 k_6^2 k_7^2 k_8 T_3 - 2 k_2 k_3 k_4 k_5 k_6^2 k_7^2 k_8 T_3 - 2 k_2^2 k_3 k_5 k_6^2 k_7 k_8^2 T_3 -
                                                                                                                                  2 k_2 k_3 k_5 k_6^2 k_7^2 k_8^2 T_3 + k_2^2 k_3^2 k_5 k_6^2 k_7^2 T_1 T_3 + 2 k_2^2 k_3^2 k_5 k_6^2 k_7 k_8 T_1 T_3 +
                                                                                                                                  2 k_1 k_2 k_3 k_4 k_5 k_6^2 k_7 k_8 T_1 T_3 + 2 k_2 k_3^2 k_5 k_6^2 k_7^2 k_8 T_1 T_3 + k_2^2 k_3^2 k_5 k_6^2 k_8^2 T_1 T_3 +
                                                                                                                                  2 k_1 k_2 k_3 k_5 k_6^2 k_7 k_8^2 T_1 T_3 + 2 k_2 k_3^2 k_5 k_6^2 k_7 k_8^2 T_1 T_3 + k_3^2 k_5 k_6^2 k_7^2 k_8^2 T_1 T_3 -
                                                                                                                                 k_{2}^{2} k_{3}^{2} k_{4} k_{5} k_{6} k_{7}^{2} T_{2} T_{3} - k_{2}^{2} k_{3}^{2} k_{5} k_{6}^{2} k_{7}^{2} K_{5} K_{6}^{2} K_{7}^{2} K_{7
                                                                                                                                 k_{2}^{2} k_{3}^{2} k_{4} k_{5} k_{6} k_{7} k_{8} \mathbf{T}_{2} \mathbf{T}_{3} - k_{2}^{2} k_{3}^{2} k_{5} k_{6}^{2} k_{7} k_{8} \mathbf{T}_{2} \mathbf{T}_{3} - k_{1} k_{2} k_{3} k_{4} k_{5} k_{6}^{2} k_{7} k_{8} \mathbf{T}_{2} \mathbf{T}_{3} -
                                                                                                                                 k_2^2 k_3^2 k_5 k_6 k_7^2 k_8 T_2 T_3 - k_2 k_3^2 k_4 k_5 k_6 k_7^2 k_8 T_2 T_3 - 2 k_2 k_3^2 k_5 k_6^2 k_7^2 k_8 T_2 T_3 -
                                                                                                                                 \mathbf{k}_{1} \ \mathbf{k}_{2}^{2} \ \mathbf{k}_{3} \ \mathbf{k}_{5} \ \mathbf{k}_{6} \ \mathbf{k}_{7} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} \ \mathbf{T}_{3} - \mathbf{k}_{2}^{2} \ \mathbf{k}_{3}^{2} \ \mathbf{k}_{5} \ \mathbf{k}_{6} \ \mathbf{k}_{7} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} \ \mathbf{T}_{3} - \mathbf{k}_{1} \ \mathbf{k}_{2} \ \mathbf{k}_{3} \ \mathbf{k}_{5} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} \ \mathbf{T}_{3} - \mathbf{k}_{1} \ \mathbf{k}_{2} \ \mathbf{k}_{3} \ \mathbf{k}_{5} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} \ \mathbf{T}_{3} - \mathbf{k}_{1} \ \mathbf{k}_{2} \ \mathbf{k}_{3} \ \mathbf{k}_{5} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} \ \mathbf{T}_{3} - \mathbf{k}_{1} \ \mathbf{k}_{2} \ \mathbf{k}_{3} \ \mathbf{k}_{5} \ \mathbf{k}_{6}^{2} \ \mathbf{k}_{7} \ \mathbf{k}_{8}^{2} \ \mathbf{T}_{2} \ \mathbf{T}_{3} - \mathbf{k}_{1} \ \mathbf{k}_{2} \ \mathbf{k}_{3} \ \mathbf{k}_{5} \ \mathbf{k}_{6} \ \mathbf{k}_{7} \ \mathbf{k}_{8}^{2} \ \mathbf{k}_{8} \ \mathbf{k}_{8}^{2} \ \mathbf{k}_{8} \ \mathbf{k}_{8} \ \mathbf{k}_{8}^{2} \ \mathbf{k}_{8} \ \mathbf{k}_{8}^{2} \ \mathbf{k}_{8} \ \mathbf{k}_{8} \ \mathbf{k}_{8}^{2} \ \mathbf{k}_{8} \ \mathbf{k}_{8}^{2} \ \mathbf{k}_{8} \ \mathbf{k}_{8} \ \mathbf{k}_{8}^{2} \ \mathbf{k}_{8} \ \mathbf{k}_{
                                                                                                                                  k_2 k_3^2 k_5 k_6^2 k_7 k_8^2 T_2 T_3 - k_2 k_3^2 k_5 k_6 k_7^2 k_8^2 T_2 T_3 - k_3^2 k_5 k_6^2 k_7^2 k_8^2 T_2 T_3 x_1^2 +
                                                                                                    \left(k_{2}^{2}\;k_{3}^{2}\;k_{4}\;k_{5}\;k_{6}\;k_{7}^{2}\;\mathbf{T}_{2}+k_{1}\;k_{2}^{2}\;k_{3}\;k_{4}\;k_{5}\;k_{6}\;k_{7}\;k_{8}\;\mathbf{T}_{2}+k_{2}^{2}\;k_{3}^{2}\;k_{4}\;k_{5}\;k_{6}\;k_{7}\;k_{8}\;\mathbf{T}_{2}-k_{1}\;k_{2}^{2}\;k_{3}^{2}\;k_{6}^{2}\;k_{7}\;k_{8}\;\mathbf{T}_{2}-k_{1}^{2}\;k_{2}^{2}\;k_{3}^{2}\;k_{4}^{2}\;k_{5}^{2}\;k_{6}^{2}\;k_{7}^{2}\;k_{8}\;\mathbf{T}_{2}-k_{1}^{2}\;k_{2}^{2}\;k_{3}^{2}\;k_{6}^{2}\;k_{7}^{2}\;k_{8}\;\mathbf{T}_{2}-k_{1}^{2}\;k_{2}^{2}\;k_{3}^{2}\;k_{4}^{2}\;k_{5}^{2}\;k_{6}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{8}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2}\;k_{7}^{2
                                                                                                                                 k_1 k_2 k_3^2 k_4 k_6^2 k_7 k_8 \mathbf{T}_2 + k_2^2 k_3^2 k_5 k_6 k_7^2 k_8 \mathbf{T}_2 + k_2 k_3^2 k_4 k_5 k_6 k_7^2 k_8 \mathbf{T}_2 - k_1 k_2^2 k_3^2 k_6^2 k_8^2 \mathbf{T}_2 +
                                                                                                                                 k_1 k_2^2 k_3 k_5 k_6 k_7 k_8^2 \mathbf{T}_2 + k_2^2 k_3^2 k_5 k_6 k_7 k_8^2 \mathbf{T}_2 - 2 k_1 k_2 k_3^2 k_6^2 k_7 k_8^2 \mathbf{T}_2 + k_2 k_3^2 k_5 k_6 k_7^2 k_8^2 \mathbf{T}_2 -
                                                                                                                                  k_1 k_2^2 k_3^2 k_5 k_6 k_7 k_8 \mathbf{T}_1 \mathbf{T}_2 - k_1 k_2 k_3^2 k_4 k_5 k_6 k_8^2 \mathbf{T}_1 \mathbf{T}_2 -
                                                                                                                                  2 k_1 k_2 k_3^2 k_5 k_6 k_7 k_8^2 T_1 T_2 + 2 k_1 k_2^2 k_3^2 k_4 k_5 k_7 k_8 T_2^2 + k_1 k_2^2 k_3^2 k_5 k_6 k_7 k_8 T_2^2 +
                                                                                                                                  k_1 k_2 k_3^2 k_4 k_5 k_6 k_7 k_8 T_2^2 + 2 k_1 k_2^2 k_3^2 k_5 k_7 k_8^2 T_2^2 + 2 k_1 k_2 k_3^2 k_5 k_6 k_7 k_8^2 T_2^2 -
                                                                                                                                 k_2^2 k_3^2 k_5 k_6^2 k_7^2 T_3 - 2 k_2^2 k_3^2 k_5 k_6^2 k_7 k_8 T_3 - 2 k_1 k_2 k_3 k_4 k_5 k_6^2 k_7 k_8 T_3 -
                                                                                                                                  2 k_2 k_3^2 k_5 k_6^2 k_7^2 k_8 T_3 - k_2^2 k_3^2 k_5 k_6^2 k_8^2 T_3 - 2 k_1 k_2 k_3 k_5 k_6^2 k_7 k_8^2 T_3 -
                                                                                                                                  2 k_2 k_3^2 k_5 k_6^2 k_7 k_8^2 T_3 - k_3^2 k_5 k_6^2 k_7^2 k_8^2 T_3 + 2 k_1 k_2 k_3^2 k_5 k_6^2 k_7 k_8 T_1 T_3 +
                                                                                                                                  2 k_1 k_2 k_3^2 k_5 k_6^2 k_8^2 T_1 T_3 + 2 k_1 k_3^2 k_5 k_6^2 k_7 k_8^2 T_1 T_3 - k_1 k_2^2 k_3^2 k_5 k_6 k_7 k_8 T_2 T_3 -
                                                                                                                                  \mathbf{k}_1 \mathbf{k}_2 \mathbf{k}_3^2 \mathbf{k}_4 \mathbf{k}_5 \mathbf{k}_6 \mathbf{k}_7 \mathbf{k}_8 \mathbf{T}_2 \mathbf{T}_3 - 2 \mathbf{k}_1 \mathbf{k}_2 \mathbf{k}_3^2 \mathbf{k}_5 \mathbf{k}_6 \mathbf{k}_8^2 \mathbf{T}_2 \mathbf{T}_3 -
                                                                                                                                 k_1 k_2 k_3^2 k_5 k_6^2 k_8^2 T_2 T_3 - 2 k_1 k_2 k_3^2 k_5 k_6 k_7 k_8^2 T_2 T_3 - 2 k_1 k_3^2 k_5 k_6^2 k_7 k_8^2 T_2 T_3 
                                                                                                    (k_1 k_2^2 k_3^2 k_5 k_6 k_7 k_8 T_2 + k_1 k_2 k_3^2 k_4 k_5 k_6 k_7 k_8 T_2 + k_1 k_2^2 k_3^2 k_5 k_6 k_8^2 T_2 -
                                                                                                                                 \mathbf{k}_{1}^{2} \, \mathbf{k}_{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{6}^{2} \, \mathbf{k}_{1}^{2} \, \mathbf{k}_{2}^{2} \, \mathbf{k}_{1} \, \mathbf{k}_{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{5} \, \mathbf{k}_{6} \, \mathbf{k}_{7} \, \mathbf{k}_{8}^{2} \, \mathbf{T}_{2} - \mathbf{k}_{1}^{2} \, \mathbf{k}_{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{5} \, \mathbf{k}_{6} \, \mathbf{k}_{8}^{2} \, \mathbf{T}_{1} \, \mathbf{T}_{2} + \mathbf{k}_{1}^{2} \, \mathbf{k}_{2}^{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{5} \, \mathbf{k}_{6} \, \mathbf{k}_{7} \, \mathbf{k}_{1}^{2} \, \mathbf{T}_{2} + \mathbf{k}_{1}^{2} \, \mathbf{k}_{2}^{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{5} \, \mathbf{k}_{6} \, \mathbf{k}_{7} \, \mathbf{k}_{1}^{2} \, \mathbf{k}_{2}^{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{5} \, \mathbf{k}_{6} \, \mathbf{k}_{7}^{2} \, \mathbf{k}_{1}^{2} \, \mathbf{k}_{2}^{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{5} \, \mathbf{k}_{6} \, \mathbf{k}_{7} \, \mathbf{k}_{1}^{2} \, \mathbf{k}_{2}^{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{5} \, \mathbf{k}_{6} \, \mathbf{k}_{7}^{2} \, \mathbf{k}_{1}^{2} \, \mathbf{k}_{2}^{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{5} \, \mathbf{k}_{6} \, \mathbf{k}_{7}^{2} \, \mathbf{k}_{1}^{2} \, \mathbf{k}_{2}^{2} \, \mathbf{k}_{3}^{2} \, \mathbf{k}_{5} \, \mathbf{k}_{6} \, \mathbf{k}_{7}^{2} \, \mathbf{k}
                                                                                                                                 k_1^2 k_2 k_3^2 k_5 k_6 k_8^2 T_2^2 - 2 k_1 k_2 k_3^2 k_5 k_6^2 k_7 k_8 T_3 - 2 k_1 k_2 k_3^2 k_5 k_6^2 k_8^2 T_3 -
                                                                                                                                  2 k_1 k_3^2 k_5 k_6^2 k_7 k_8^2 T_3 + k_1^2 k_3^2 k_5 k_6^2 k_8^2 T_1 T_3 - k_1^2 k_2 k_3^2 k_5 k_6 k_8^2 T_2 T_3 - k_1^2 k_3^2 k_5 k_6^2 k_8^2 T_2 T_3 \Big)
                                                                                                            x_1^4 + (k_1^2 k_2 k_3^2 k_5 k_6 k_8^2 T_2 - k_1^2 k_3^2 k_5 k_6^2 k_8^2 T_3) x_1^5;
```

Sampling

```
(Test) In[3]:= multistableParSets = { };
        multistablePolSets = {};
        multistableSolSets = {};
        bistableParSets = {};
        bistablePolSets = {};
        bistableSolSets = {};
        biCount = 0;
        multiCount = 0;
        termCount = 0;
        Timing[
         Do [ {
             pars = Exp[-RandomVariate[
                    ExponentialDistribution[Log[2] / (-Log[0.001])], 8]] * 1000;
             tots = Exp[-RandomVariate[ExponentialDistribution[
                     Log[2] / (-Log[0.0001])], 3]] * 1000;
             (*pars=Exp[RandomReal[{Log[0.001],Log[1000.]},8]];*)
             (*tots=Exp[RandomReal[{Log[0.001],Log[10.]},3]];*)
             subs = \{k_1 \rightarrow pars[[1]], k_2 \rightarrow pars[[2]], k_3 \rightarrow pars[[3]],
                k_4 \rightarrow pars[[4]], k_5 \rightarrow pars[[5]], k_6 \rightarrow pars[[6]], k_7 \rightarrow pars[[7]],
                k_8 \rightarrow pars[[8]], T_1 \rightarrow tots[[1]], T_2 \rightarrow tots[[2]], T_3 \rightarrow tots[[3]];
             (*term4=coeff4/.subs;
             term3=coeff3/.subs;
             term2=coeff2/.subs;
             term1=coeff1/.subs;
             If[term4<0&&term3>0&&term2<0&&term1>0,{*)
             solution = NSolve[\{pol = 0 \&\& x_1 > 0\} /. subs, x_1, Reals];
             If[Length[Flatten[solution]] > 1, {
                AppendTo[bistableParSets, Flatten[Join[pars, tots]]];
                AppendTo[bistablePolSets, pol /. subs];
                AppendTo[bistableSolSets, Flatten[solution]];
                biCount++;
                If[Length[Flatten[solution]] > 3, {
                  AppendTo[multistableParSets, Flatten[Join[pars, tots]]];
                  AppendTo[multistablePolSets, pol /. subs];
                  AppendTo[multistableSolSets, Flatten[solution]];
                  multiCount++;
                 }];
              }];
             (*}];*)
            }, {i, 100 000}];
(Test) Out[12] = \{2537.84, Null\}
(Test) In[16]:= Length[bistableParSets]
(Test) Out[16] = 52169
(Test) In[17]:= Length[multistableParSets]
(\text{Test) Out} [17] = \ 53
(Test) In[18]:= Length[multistableSolSets]
(\text{Test}) \ \text{Out} [18] = \ 53
(Test) In[20]:= SetDirectory[NotebookDirectory[]];
       Export["fullCycle_simplified_bistableParSets3.csv", bistableParSets, "Table"];
```

Export["fullCycle_simplified_multistableParSets3.csv", multistableParSets, "Table"];

InputForm[multistableParSets]

{57.61608551314746, 0.08771656907227311, 87.69045071228797, 71.91044050429956, 0.76583 $0.009580305153584377,\ 0.016429689638779867,\ 4.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 3.675785278981223,\ 0.19517048522124297,\ 0.1951704852124297,\ 0.19517048522124297,\ 0.19517048522124297,\ 0.19517048522124297,\ 0.19517048522124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.1951704852124297,\ 0.195170485212424297,\ 0.19517$ $0.0023956989820281722,\ 0.008660261037543956,\ 0.0020142243202341324,\ 2.231429728879039,$ 0.04507952831274341, 0.0535558392276498, 9.657989391827222, 1.1405826441331537, 0.3627 4.47064017905331, 2.7510184248154608, 0.41532178389818114, 6.040741667482379}, {34.179 $\textbf{3.177412521303917, 1.91249378213722, 0.0023253076307465344}, \quad \{\textbf{409.5122683616875, 0.6877412521303917, 1.91249378213722, 0.0023253076307465344}\}, \quad \{\textbf{409.5122683616875, 0.6877412521303917, 1.91249378213722, 0.0023253076307465344}\}, \quad \{\textbf{409.5122683616875, 0.68774825213722, 0.0023253076307465344}\}, \quad \{\textbf{409.5122683616875, 0.6877465344}\}, \quad \{\textbf{409.512683616875, 0.6877465344}\}, \quad \{\textbf{409.51268361685, 0.687465344}\}, \quad \{\textbf{409.51268361685, 0.68746544}\}, \quad \{\textbf{409.51683616875, 0.68746544}\}, \quad \{\textbf{409.5168361685, 0.6874644}\}, \quad \{\textbf{409.5168361685, 0.6874644, 0.6874644, 0.687464, 0.687464, 0.687464, 0.687464, 0.687464, 0.687464, 0.687464, 0.687464, 0.687464, 0.68746, 0.687464, 0.$ 0.010734624584546083, 0.6692675937051257, 0.019332522921326346}, $\{3.1441773904917256$, 128.76025772333844, 5.57588095950202, 0.0042069491789756145, 0.09449920357902004, 1.11 11.65646170494112, 0.020509964906097064, 0.008343183160426565, 2.3785900729256317, 2.2 101.19957307358229, 0.003123705511777472, 0.001860516720804966, 0.034085691973296535, 0.051770678256908655, 0.014521590481172833, 1.447159013706113, 0.0029540738734454538, $0.013216330832411367,\ 0.004096918714925813,\ 0.0011171819013612225,\ 0.8445458314344887,$ $0.016999407186649936\},\ \{2.2881959838559194,\ 0.02909683944171355,\ 15.265900430297231,\ 64999407186649936\}$ $0.039590634587821145,\ 1.109564142046944,\ 0.08047498936625691,\ 0.0057086205760147335,\ 3.00666991,\ 0.0066991,\ 0.00691,\ 0.006991,\ 0.006991,\ 0.006991,\ 0.006991,\ 0.006991,\ 0.0069$ $0.007534704360826151\}, \quad \{469.98298073777624, \quad 0.002609507318442764, \quad 17.209193725883765, \quad 18.00866986181, \quad 19.0086986181, \quad 19.00869861, \quad 19.0086961, \quad 19.008661, \quad 19.00$ 0.42648500380631954, $\{4.627887096543039, 0.001204128735291439, 60.51090576637821, 5788648500380631954\}$ 0.08768198092811469, 0.044467881403052356, 1.2543546574484203, 0.3915202574340788, 3.5 $0.009538411810138142,\ 0.002942395323682531,\ 0.17380707249970337,\ 0.691113716900121,\ 0.69111371690012$ 0.7476230989411994, 24.471760095204772, 0.039755383440962494, 0.004582540728342662, 5. 0.003687129514447145, 0.010662454309944136, 10.617760398651688, 1.001614401340306, 0.2 $0.00163767692744332\},\ \{24.68502654174744,\ 0.10201927082593946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 104.40409977670161,\ 3486981946,\ 34$ 0.056116651444029275, 0.2821687738215711, 0.019766723646458324, 0.03721023688877549, 0.03721023688877549 $\{103.10877481843977,\ 0.04007349056847505,\ 404.8073595230388,\ 291.501636252402,\ 0.00259130338,\ 0.0025913038,\ 0.002$ 1.8869751704662112, 0.0010803784037141993, 0.0988187038850412, 0.006179941373099217}, $0.2559680417462635,\ 0.008598410228800655,\ 4.16991422946075,\ 2.2600492293300967\},\ \{130.2559680417462635,\ 0.008598410228800655,\ 4.16991422946075,\ 2.2600492293300967\},$

5.360502218022036, 2.6206540038961097, 0.18292641729182327}, $\{29.855362695253024$, 0.0384961097, $\{29.855362695253024\}$, $\{29.855362695253024\}$, $\{29.855362695253024\}$ $0.09075102048224383,\ 0.001938119273411963,\ 0.012587579050315961,\ 0.06951190725674702,$ 0.0027637661146621634, 0.08285901114102223, 0.019022177300605552}, {625.9999224165767, 121.04620109917191, 395.86172238642087, 0.07863411393205541, 1.657508103357724, 2.1228 $0.6612805156581183,\ 0.045584201819317084\},\ \{3.911030282665472,\ 0.8690316751982282,\ 21.66612805156581183,\ 0.045584201819317084\}$ $0.006193749424776668,\ 0.03134433777741915,\ 0.8263330477687076,\ 0.0010843244643823535,$ 4.683678080306408, 0.004761347357691533, 1.3215606032182015, 242.2053466920907, 6.3358 283.22202260665773, 0.004381131592985138, 0.2527607872240596, 6.12868893209221, 0.7270 0.0037175699015476607, $\{5.247993600913849, 0.028502706410826414, 56.24433347954524, 0.028502706410826414, 56.24433347954524, 0.028502706410826414$ $0.0017490119654873057,\ 0.0016445786150689526,\ 0.0023471270599877965,\ 4.194871008593885$ 0.004333806406532435}, {29.522851452997518, 0.28376792716760363, 58.453606183178195, 7 0.0016679981320222362, 0.011343806036930727, 0.11721494017535658, 0.12604215533334132, 0.18389851572138974, 0.0012084764729967654}, {1.0011197415234105, 0.05562020900569785, 104.57092248159246, 0.006130918098400263, 0.110464614562566, 0.10934780579840203, 0.84 $0.007923346751003108,\ 0.04253317929945389,\ 0.19643904385086539,\ 0.033159319817561636,$ 4.458979767881841, 0.0029547659872258083, 0.00472686368432624, 0.19242723967703387, 0. $0.026616452594341273\}, \quad \{81.63512952346132, \quad 0.003051170835971339, \quad 429.03466592579576, \quad 129.03466592579576, \quad 129.03466592576, \quad 129.03466592576576, \quad 129.03466592576, \quad 129.034665925766576, \quad 129.03466576, \quad 129.03466576576, \quad 129.03466576, \quad 129.03466576, \quad 129.03466576, \quad 129.03466576, \quad 129.03466576, \quad 129.$ $0.009295570428308631,\ 0.052038250898230075,\ 12.440214667320777,\ 0.011482107275585225,$ 0.2268769760678126}}

multistablePolSets

```
\{1.33822 \times 10^{-10} - 0.03515 \text{ x}_1 + 1.02866 \text{ x}_1^2 - 2.41965 \text{ x}_1^3 - 0.0175867 \text{ x}_1^4 + 0.0282587 \text{ x}_1^5,
        0.0236851 - 294.153 x_1 + 11081.3 x_1^2 - 24867.7 x_1^3 + 2308.05 x_1^4 + 479.397 x_1^5
        \textbf{2.57687} \times \textbf{10}^{-13} - \textbf{1.52863} \times \textbf{10}^{-9} \ \textbf{x}_{1} + \textbf{2.24381} \times \textbf{10}^{-6} \ \textbf{x}_{1}^{2} - \textbf{0.000781859} \ \textbf{x}_{1}^{3} + \textbf{10}^{-1} \times \textbf{x}_{1}^{2} + \textbf{1
                \textbf{0.0634058} \ \textbf{x}_{1}^{4} - \textbf{0.0190919} \ \textbf{x}_{1}^{5} \textbf{, 6.1546} \times \textbf{10}^{-15} - \textbf{8.76933} \times \textbf{10}^{-7} \ \textbf{x}_{1} + \textbf{10.0190919} \ \textbf{x}_{1}^{-1} \textbf{, 6.1546} \times \textbf{10}^{-15} + \textbf{10.0190919} \ \textbf{x}_{1}^{-1} \textbf{, 6.1546} \times \textbf{10.0190919} \ \textbf{x}_{1}^{-1} \textbf{, 6.1546}
                 \textbf{5.49526} \times \textbf{10}^{-6} \ x_1^2 - \textbf{2.31826} \times \textbf{10}^{-6} \ x_1^3 + \textbf{1.4296} \times \textbf{10}^{-7} \ x_1^4 + \textbf{1.29855} \times \textbf{10}^{-10} \ x_1^5 \textbf{,}
        \textbf{1.63625} \times \textbf{10}^{-7} - \textbf{0.00282682} \ \textbf{x}_1 + \textbf{1.37527} \ \textbf{x}_1^2 - \textbf{21.1987} \ \textbf{x}_1^3 + \textbf{11.8515} \ \textbf{x}_1^4 - \textbf{1.11358} \ \textbf{x}_1^5 \textbf{,}
        \textbf{0.168336} - 29 \\ \textbf{1.276} \ x_1 + 96 \\ \textbf{367.7} \ x_1^2 - \\ \textbf{5.94823} \times \\ \textbf{10}^6 \ x_1^3 + \\ \textbf{6.28961} \times \\ \textbf{10}^7 \ x_1^4 - \\ \textbf{2.8504} \times \\ \textbf{10}^7 \ x_1^5 \\ \textbf{,}
        1.90734 \times 10^{-15} - 1.21984 \times 10^{-8} x_1 +
                0.0000499543 x_1^2 - 0.00487213 x_1^3 - 0.442624 x_1^4 + 0.44872 x_1^5
        0.000894105 - 63770.1 \,x_1 + 2.02292 \times 10^6 \,x_1^2 - 623308. \,x_1^3 + 29654.9 \,x_1^4 + 550.474 \,x_1^5
        1.21056 \times 10^{-7} - 0.00326804 x_1 + 0.153701 x_1^2 -
                 0.0646671 x_1^3 + 0.00273229 x_1^4 - 0.0000213098 x_1^5
        1.68371 \times 10^{-6} - 0.0191338 \ x_1 + 4.98081 \ x_1^2 - 84.8017 \ x_1^3 - 15.363 \ x_1^4 + 7.58868 \ x_1^5
        \textbf{1.52396} \times \textbf{10}^{-8} - \textbf{0.000202273} \ x_1 + \textbf{0.00328598} \ x_1^2 - \textbf{0.00159079} \ x_1^3 + \textbf{0.000103096} \ x_1^4 + \textbf{0.00103096} \ x_1^4 + \textbf{0.000103096} \ x_1^4 
                 0.0000175456 x_1^5, 3.20562 \times 10<sup>-17</sup> – 7.90562 \times 10<sup>-10</sup> x_1 + 0.000017057 x_1^2 –
                 0.000614207 \ x_1^2 - 0.000493835 \ x_1^3 + 0.0000713777 \ x_1^4 - 1.24595 \times 10^{-6} \ x_1^5 \ ,
        5.10169 \times 10^{-10} - 0.0000111201 x_1 + 0.00660951 x_1^2 - 0.41752 x_1^3 +
                 0.825833 x_1^4 - 0.346597 x_1^5, 4.31479 \times 10<sup>-18</sup> - 2.15649 \times 10<sup>-12</sup> x_1 +
                 6.10047 \times 10^{-9} \text{ x}_1^2 - 1.02029 \times 10^{-7} \text{ x}_1^3 - 6.34668 \times 10^{-7} \text{ x}_1^4 + 7.88173 \times 10^{-6} \text{ x}_1^5
```

```
0.00371709 - 87.3307 x_1 + 58.181 x_1^2 - 10.031 x_1^3 + 0.332291 x_1^4 + 0.0000631377 x_1^5,
1.24275 \times 10^{-8} - 0.00219696 \ x_1 + 0.37727 \ x_1^2 - 10.6408 \ x_1^3 - 7.74015 \ x_1^4 + 1.06825 \ x_1^5
\textbf{6.75659} \times \textbf{10}^{-11} - \textbf{0.00337044} \ \textbf{x}_1 + \textbf{5.77961} \ \textbf{x}_1^2 - \textbf{31.5569} \ \textbf{x}_1^3 - \textbf{19.4083} \ \textbf{x}_1^4 + \textbf{1.17834} \ \textbf{x}_1^5 \textbf{,}
6.43786 \times 10^{-10} - 0.00166443 x_1 + 0.405672 x_1^2 - 10.2343 x_1^3 - 0.607918 x_1^4 + 0.325647 x_1^5
\textbf{2.13391} \times \textbf{10}^{-15} - \textbf{2.99959} \times \textbf{10}^{-10} \ \textbf{x}_1 + \textbf{3.78353} \times \textbf{10}^{-9} \ \textbf{x}_1^2 - \textbf{7.08488} \times \textbf{10}^{-9} \ \textbf{x}_1^3 + \textbf{10}^{-10} \ \textbf{x}_1 
    1.35053 \times 10^{-9} \text{ x}_{1}^{4} + 3.09229 \times 10^{-11} \text{ x}_{1}^{5}, 2.62396 \times 10^{-13} - 1.07416 \times 10^{-7} \text{ x}_{1} + 1.07416 \times 10^{-7} \text{ x}_{1}
    0.000201172 x_1^2 - 0.0100807 x_1^3 + 0.00292006 x_1^4 + 0.00014002 x_1^5, 0.0252988 -
    3.35376 \times 10^6 \ x_1 + 1.74086 \times 10^7 \ x_1^2 - 7.79216 \times 10^6 \ x_1^3 + 167238. \ x_1^4 + 136.287 \ x_1^5,
 1.51619 \times 10^{-8} - 0.00550272 \ x_1 + 0.562512 \ x_1^2 - 2.69499 \ x_1^3 - 0.0130301 \ x_1^4 + 0.0674595 \ x_1^5,
7 \, \centerdot \, 08845 \times 10^{-14} \, - \, 3 \, \centerdot \, 33531 \times 10^{-8} \, \, x_1 \, + \, 0 \, \ldotp \, 0000129216 \, \, x_1^2 \, + \,
   0.000456301 x_1^3 - 0.0219676 x_1^4 + 0.123809 x_1^5
1.87915 \times 10^{-6} - 0.176691 \ x_1 + 15.8493 \ x_1^2 - 3.04673 \ x_1^3 + 0.114817 \ x_1^4 + 0.00318554 \ x_1^5
 \textbf{2.04555} \times \textbf{10}^{-6} - \textbf{0.0746466} \ \textbf{x}_{1} + \textbf{397.804} \ \textbf{x}_{1}^{2} - \\
    254 706. x_1^3 + 3.29852 \times 10^7 x_1^4 - 1.67538 \times 10^7 x_1^5,
4.20834 \times 10^{-6} - 0.339882 \ x_1 + 28.8352 \ x_1^2 - 46.4785 \ x_1^3 - 319.067 \ x_1^4 + 158.935 \ x_1^5,
7.04479 \times 10^{-11} - 9.42958 \times 10^{-6} \ x_1 + 0.00232553 \ x_1^2 -
    0.0191517 x_1^3 - 0.00617532 x_1^4 + 0.0099982 x_1^5
3.15053 \times 10^{-8} - 0.000407566 \ x_1 + 1.27854 \ x_1^2 - 13.2111 \ x_1^3 + 40.1966 \ x_1^4 - 32.356 \ x_1^5
0.0000233285 - 5916.55 x_1 + 3.72567 \times 10^6 x_1^2 - 2.22255 \times 10^7 x_1^3 -
    9.97753 \times 10^6 \ x_1^4 + 972276. \ x_1^5, 3.98349 \times 10^{-16} - 4.76003 \times 10^{-9} \ x_1 - 10^{-16}
    2.06791 \times 10^{-6} \ x_1^2 + 0.0103492 \ x_1^3 - 2.92478 \ x_1^4 + 208.383 \ x_1^5,
0.000484893 - 3678.52 x_1 + 811565. x_1^2 + 287778. x_1^3 - 875074. x_1^4 + 85278.2 x_1^5
8.93885 x_1^4 + 12.6813 x_1^5, 3.1367 \times 10^{-15} - 1.29892 \times 10^{-8} x_1 +
    0.0000636969 \ x_1^2 + 0.00308463 \ x_1^3 - 0.0422298 \ x_1^4 + 0.100018 \ x_1^5,
\textbf{1.04276} \times \textbf{10}^{-7} - \textbf{0.347433} \ \textbf{x}_1 + \textbf{1.14219} \ \textbf{x}_1^2 - \textbf{0.799071} \ \textbf{x}_1^3 + \textbf{0.11047} \ \textbf{x}_1^4 + \textbf{0.000463965} \ \textbf{x}_1^5 \textbf{,} \\ \textbf{x}_1^5 + \textbf{0.11047} \ \textbf{x}_1^4 + \textbf{0.000463965} \ \textbf{x}_1^5 \textbf{,} \\ \textbf{x}_2^5 + \textbf{0.11047} \ \textbf{x}_2^4 + \textbf{0.000463965} \ \textbf{x}_2^5 \textbf{,} \\ \textbf{x}_3^5 + \textbf{0.11047} \ \textbf{x}_2^4 + \textbf{0.000463965} \ \textbf{x}_2^5 \textbf{,} \\ \textbf{x}_3^5 + \textbf{0.11047} \ \textbf{x}_2^4 + \textbf{0.000463965} \ \textbf{x}_2^5 \textbf{,} \\ \textbf{x}_3^5 + \textbf{0.11047} \ \textbf{x}_2^4 + \textbf{0.000463965} \ \textbf{x}_2^5 \textbf{,} \\ \textbf{x}_3^5 
15 593.7 - 1.63492 × 10^8 x_1 + 7.84976 \times 10^9 x_1^2 +
    3.09057 \times 10^{10} x_1^3 - 1.59926 \times 10^{11} x_1^4 + 7.30727 \times 10^{10} x_1^5,
0.000184852 - 8852.12 \ x_1 + 33351.6 \ x_1^2 - 7637.59 \ x_1^3 - 121.364 \ x_1^4 + 24.4298 \ x_1^5,
5.69968 \times 10^{-10} - 0.000540343 \ x_1 + 0.0177462 \ x_1^2 - 0.0946004 \ x_1^3 +
    0.0174095 x_1^4 - 0.000222965 x_1^5, 0.00627163 - 266.594 x_1 +
    110 584. x_1^2 - 2.72649 \times 10^6 x_1^3 - 1.95415 \times 10^7 x_1^4 + 1.4245 \times 10^7 x_1^5,
1.42487 \times 10^{-7} - 0.0090789 \ x_1 + 2.52485 \ x_1^2 - 101.933 \ x_1^3 - 769.186 \ x_1^4 + 1019.83 \ x_1^5
\textbf{7.9131} \times \textbf{10}^{-17} - \textbf{3.57754} \times \textbf{10}^{-10} \ \textbf{x}_{1} + \textbf{1.84267} \times \textbf{10}^{-9} \ \textbf{x}_{1}^{2} - \\
    1.02949 \times 10^{-9} \text{ x}_1^3 + 8.71107 \times 10^{-11} \text{ x}_1^4 - 3.41861 \times 10^{-13} \text{ x}_1^5
0.0000116505 - 0.469318 x_1 + 86.3545 x_1^2 - 916.633 x_1^3 - 13787.1 x_1^4 + 43866.1 x_1^5
1.4607 \times 10^{-14} - 3.1896 \times 10^{-10} \text{ x}_1 + 2.23687 \times 10^{-7} \text{ x}_1^2 -
   9.61354 \times 10^{-7} x_1^3 - 0.0000232105 x_1^4 + 0.0000114772 x_1^5,
7.75877 \times 10^{-10} - 0.00455349 \ x_1 + 11.9456 \ x_1^2 - 5.78444 \ x_1^3 + 0.382369 \ x_1^4 + 0.0766462 \ x_1^5, \\
\textbf{1.75088} \times \textbf{10}^{-14} - \textbf{0.0000897341} \ x_1 + \textbf{0.0104409} \ x_1^2 + \\
   0.0223439 x_1^3 - 0.0820013 x_1^4 + 0.0467038 x_1^5
1.22061 \times 10^{-8} - 0.453044 \ x_1 + 16.8365 \ x_1^2 - 14.8379 \ x_1^3 - 0.0426511 \ x_1^4 + 0.0825087 \ x_1^5
7.8399 \times 10^{-14} - 3.23044 \times 10^{-6} \ x_1 + 0.000738961 \ x_1^2 -
    0.0377643 x_1^3 - 0.0185127 x_1^4 + 0.00571236 x_1^5,
2.82002 \times 10^{-8} - 7.14353 x_1 + 18135.7 x_1^2 - 51465.1 x_1^3 - 31930.4 x_1^4 + 3376.02 x_1^5
\textbf{5.15211} \times \textbf{10}^{-6} - \textbf{0.264371} \ x_1 + \textbf{12.55} \ x_1^2 - \textbf{151.506} \ x_1^3 + \textbf{294.91} \ x_1^4 - \textbf{15.1544} \ x_1^5 \text{,}
1.50727 \times 10^{-7} - 75.1104 \ x_1 + 4094.79 \ x_1^2 - 5875.46 \ x_1^3 - 1248.86 \ x_1^4 + 839.921 \ x_1^5,
0.000101316 - 0.833382 x_1 + 49.1395 x_1^2 - 496.067 x_1^3 + 183.892 x_1^4 - 1.5452 x_1^5,
1.74992 \times 10^{-8} - 0.1339 x_1 + 34.9934 x_1^2 - 76.9315 x_1^3 + 13.9723 x_1^4 + 0.036552 x_1^5
0.667989 - 286642. x_1 + 7.56776 \times 10^6 x_1^2 - 1.1208 \times 10^6 x_1^3 + 38157.6 x_1^4 - 35.2843 x_1^5
```

bistableSolSets[[1;; 50]]

multistableSolSets

```
\left\{\left\{x_{1} 
ightarrow 3.80717 	imes 10^{-9} \text{, } x_{1} 
ightarrow 0.0374747 \text{, } x_{1} 
ightarrow 0.3872 \text{, } x_{1} 
ightarrow 9.35804 
ight\} ,
  \{x_1 \rightarrow 0.0000807655, x_1 \rightarrow 0.0282564, x_1 \rightarrow 0.43804, x_1 \rightarrow 4.86918\}
  \{x_1 \rightarrow 0.000257067, x_1 \rightarrow 0.000630689, x_1 \rightarrow 0.00295021, x_1 \rightarrow 0.00852842,
    x_1 \to \textbf{3.30872} \, \text{, } \left\{ x_1 \to \textbf{7.01832} \times \textbf{10}^{-9} \, \text{, } x_1 \to \textbf{0.171916} \, \text{, } x_1 \to \textbf{2.66908} \, \text{, } x_1 \to \textbf{13.1765} \right\} \, \text{, } \right.
  \{\,x_1 \rightarrow \textbf{0.0000596104}\,,\,\, x_1 \rightarrow \textbf{0.00206335}\,,\,\, x_1 \rightarrow \textbf{0.0651934}\,,\,\, x_1 \rightarrow \textbf{2.18363}\,,\,\, x_1 \rightarrow \textbf{8.39172}\,\}\,,
   \{x_1 	o 0.000760242, x_1 	o 0.00295185, x_1 	o 0.0158737, x_1 	o 0.0786327, x_1 	o 2.10835\}
   \left\{\mathbf{x}_1 	o 	extbf{1.56461} 	imes 	extbf{10}^{-7} , \mathbf{x}_1 	o 	extbf{0.000250287} , \mathbf{x}_1 	o 	extbf{0.00628692} , \mathbf{x}_1 	o 	extbf{0.99719} 
ight\} ,
    \{x_1 \rightarrow 1.40208 \times 10^{-8}, x_1 \rightarrow 0.0318356, x_1 \rightarrow 4.06638, x_1 \rightarrow 12.6683\}
   \{x_1 \rightarrow 0.000037107, x_1 \rightarrow 0.0214184, x_1 \rightarrow 2.64783, x_1 \rightarrow 27.5441, x_1 \rightarrow 98.0041\},
   \{x_1 \rightarrow 0.0000901068, x_1 \rightarrow 0.00403515, x_1 \rightarrow 0.0540521, x_1 \rightarrow 4.48399\}
   \{x_1 \rightarrow 0.0000754341, x_1 \rightarrow 0.0634224, x_1 \rightarrow 2.72081, x_1 \rightarrow 4.91521\},
   \left\{ \mathbf{x}_1 	o 	exttt{4.05842} 	imes 10^{-8} 	exttt{, } \mathbf{x}_1 	o 	exttt{0.0000466552}, \ \mathbf{x}_1 	o 	exttt{0.00399646}, \ \mathbf{x}_1 	o 	exttt{1.15444} 
ight\} ,
   \{\mathbf{x}_1 	o \mathbf{0.000838556}, \ \mathbf{x}_1 	o \mathbf{0.0238136}, \ \mathbf{x}_1 	o \mathbf{1.57201}, \ \mathbf{x}_1 	o \mathbf{6.21267}, \ \mathbf{x}_1 	o \mathbf{49.4784} \}
   \{\,x_1 	o 	exttt{0.0000471981,}\ x_1 	o 	exttt{0.00185823,}\ x_1 	o 	exttt{0.0143931,}\ x_1 	o 	exttt{0.6699542,}\ x_1 	o 	exttt{1.66685}\,\} ,
   \left\{\mathbf{x}_1 	o 	extbf{2.01229} 	imes 10^{-6} , \mathbf{x}_1 	o 	extbf{0.000353592} , \mathbf{x}_1 	o 	extbf{0.053421} , \mathbf{x}_1 	o 	extbf{0.134126} 
ight\} ,
   \{x_1 \rightarrow 0.0000425646, x_1 \rightarrow 2.45721, x_1 \rightarrow 4.63184, x_1 \rightarrow 22.9598\}
   \left\{\mathbf{x}_1 	o \mathbf{5.6622} 	imes 10^{-6} , \mathbf{x}_1 	o \mathbf{0.00735114} , \mathbf{x}_1 	o \mathbf{0.0273702} , \mathbf{x}_1 	o \mathbf{8.4232} \right\} ,
    \{x_1 
ightarrow 2.00473 	imes 10^{-8} , x_1 
ightarrow 0.000585011 , x_1 
ightarrow 0.165773 , x_1 
ightarrow 17.9478 \} ,
   \{\mathbf{x}_1 
ightarrow 3.86827 	imes 10^{-7} , \mathbf{x}_1 
ightarrow 0.00464764 , \mathbf{x}_1 
ightarrow 0.0349088 , \mathbf{x}_1 
ightarrow 6.59998\} ,
    \{x_1 	o 7.11462 	imes 10^{-6} , x_1 	o 0.0963317 , x_1 	o 0.496156 , x_1 	o 4.18812\} ,
   \left\{ \mathbf{x}_1 
ightarrow 2.45408 	imes 10^{-6} , \mathbf{x}_1 
ightarrow 0.000546531 , \mathbf{x}_1 
ightarrow 0.0195208 , \mathbf{x}_1 
ightarrow 2.99821 
ight\} ,
    \{x_1 	o 7.54343 	imes 10^{-9} , x_1 	o 0.212832 , x_1 	o 2.1295 , x_1 	o 42.6808\} ,
    \{\mathbf{x}_1 
ightarrow 2.75612 	imes 10^{-6} , \mathbf{x}_1 
ightarrow 0.0102868 , \mathbf{x}_1 
ightarrow 0.198441 , \mathbf{x}_1 
ightarrow 6.3127\} ,
    \{x_1 \rightarrow 2.12703 \times 10^{-6}, x_1 \rightarrow 0.00239884, x_1 \rightarrow 0.0443476, x_1 \rightarrow 0.147802\}
   \{\, x_1 
ightarrow 	exttt{0.0000106454,} \ x_1 
ightarrow 	exttt{0.0111615,} \ x_1 
ightarrow 	exttt{9.18993,} \ x_1 
ightarrow 	exttt{9.81233} \, \} ,
   \{x_1 	o 0.0000331283, x_1 	o 0.000178934, x_1 	o 0.00184671, x_1 	o 0.00568738,
    x_1 \rightarrow 1.96107, \{x_1 \rightarrow 0.0000123948, x_1 \rightarrow 0.0120272, x_1 \rightarrow 0.240499, x_1 \rightarrow 2.10572\},
   \left\{ \mathbf{x}_1 
ightarrow 	extstyle{7.48477} 	imes 10^{-6} , \mathbf{x}_1 
ightarrow 	extstyle{0.00419254} , \mathbf{x}_1 
ightarrow 	extstyle{0.113696} , \mathbf{x}_1 
ightarrow 1.67723 
ight\} ,
   \{x_1 \rightarrow 0.000131351, x_1 \rightarrow 0.000188224, x_1 \rightarrow 0.186955, x_1 \rightarrow 0.267485, x_1 \rightarrow 0.787564\}
   \left\{ \mathbf{x}_1 	o \mathbf{3.94294} 	imes \mathbf{10}^{-9} , \mathbf{x}_1 	o \mathbf{0.00160339} , \mathbf{x}_1 	o \mathbf{0.155258} , \mathbf{x}_1 	o \mathbf{12.1218} 
ight\} ,
   \left\{ \mathbf{x}_1 
ightarrow \mathbf{8.36833} 	imes 10^{-8} , \mathbf{x}_1 
ightarrow \mathbf{0.000923006} , \mathbf{x}_1 
ightarrow \mathbf{0.00556707} , \mathbf{x}_1 
ightarrow \mathbf{0.00809467} 
ight\} ,
   \left\{ \mathbf{x}_1 
ightarrow 1.31821 	imes 10^{-7} , \mathbf{x}_1 
ightarrow 0.00452533 , \mathbf{x}_1 
ightarrow 1.22819 , \mathbf{x}_1 
ightarrow 9.81907 
ight\} ,
   \{\,\mathbf{x}_1 
ightarrow \mathbf{0.0000279485}\,,\,\,\mathbf{x}_1 
ightarrow \mathbf{0.00128919}\,,\,\,\mathbf{x}_1 
ightarrow \mathbf{0.00297476}\,,\,\,\mathbf{x}_1 
ightarrow \mathbf{0.702371}\,\}\,,
   \left\{ \mathbf{x}_1 	o \mathbf{2.41771} 	imes \mathbf{10}^{-7} , \mathbf{x}_1 	o \mathbf{0.000201713} , \mathbf{x}_1 	o \mathbf{0.119437} , \mathbf{x}_1 	o \mathbf{0.319437} 
ight\} ,
    \{\mathbf{x}_1 
ightarrow 3.00133 	imes 10^{-7} , \mathbf{x}_1 
ightarrow 0.420892 , \mathbf{x}_1 
ightarrow 1.37775 , \mathbf{x}_1 
ightarrow 5.26727\} ,
   \{\,x_1 	o 	exttt{0.0000958199}\,,\; x_1 	o 	exttt{0.0193919}\,,\; x_1 	o 	exttt{0.381383}\,,\; x_1 	o 	exttt{1.94272}\,\} ,
   \left\{ \, {
m x}_1 
ightarrow 2.08823 	imes 10^{-8} , \, {
m x}_1 
ightarrow 0.283962 , \, {
m x}_1 
ightarrow 4.03049 , \, {
m x}_1 
ightarrow 18.1229 
ight\} ,
    \{\mathbf{x}_1 
ightarrow 1.05486 	imes 10^{-6}, \mathbf{x}_1 
ightarrow 0.0381527, \mathbf{x}_1 
ightarrow 0.155217, \mathbf{x}_1 
ightarrow 5.66607, \mathbf{x}_1 
ightarrow 72.2223\},
   \{\, x_1 	o 	exttt{0.0000237591,} \,\, x_1 	o 	exttt{0.00255206,} \,\, x_1 	o 	exttt{0.030755,} \,\, x_1 	o 	exttt{1.49628} \, \} ,
   \{\mathbf{x}_1 	o \mathbf{0.0000157633}, \ \mathbf{x}_1 	o \mathbf{0.00438463}, \ \mathbf{x}_1 	o \mathbf{0.0174245}, \ \mathbf{x}_1 	o \mathbf{0.866321} \}
   \left\{ \mathbf{x}_1 
ightarrow \mathbf{2.21189} 	imes \mathbf{10^{-7}}, \; \mathbf{x}_1 
ightarrow \mathbf{0.220903}, \; \mathbf{x}_1 
ightarrow \mathbf{1.91738}, \; \mathbf{x}_1 
ightarrow \mathbf{10.1891}, \; \mathbf{x}_1 
ightarrow \mathbf{242.486} \right\},
   \{x_1 \rightarrow 0.0000249388, x_1 \rightarrow 0.00579904, x_1 \rightarrow 0.0512037, x_1 \rightarrow 0.357575\}
   \{\,x_1\rightarrow \text{0.0000473689,}\ x_1\rightarrow \text{0.0013874,}\ x_1\rightarrow \text{0.0800278,}\ x_1\rightarrow \text{2.05841}\,\} ,
   \left\{ \mathbf{x}_1 
ightarrow 	extbf{1.70468} 	imes 	extbf{10}^{-7} , \mathbf{x}_1 
ightarrow 	extbf{0.000381084} , \mathbf{x}_1 
ightarrow 	extbf{3.07587} , \mathbf{x}_1 
ightarrow 	extbf{4.14807} 
ight\} ,
   \{\mathbf{x}_1 	o \mathbf{1.95119} 	imes \mathbf{10}^{-10} , \mathbf{x}_1 	o \mathbf{0.00844652} , \mathbf{x}_1 	o \mathbf{0.781383} , \mathbf{x}_1 	o \mathbf{1.20711}\} ,
    \{x_1 
ightarrow 2.69424 	imes 10^{-8} , x_1 
ightarrow 0.0275788 , x_1 
ightarrow 1.1113 , x_1 
ightarrow 13.0776 \} ,
   \left\{\mathbf{x}_1 
ightarrow 2.42689 	imes 10^{-8} \,,\; \mathbf{x}_1 
ightarrow 0.00661523 \,,\; \mathbf{x}_1 
ightarrow 0.0128096 \,,\; \mathbf{x}_1 
ightarrow 4.65503 
ight\} ,
    (\mathbf{x}_1 
ightarrow 3.94769 	imes 10^{-9} , \mathbf{x}_1 
ightarrow 0.00039433 , \mathbf{x}_1 
ightarrow 0.298417 , \mathbf{x}_1 
ightarrow 10.8209 ,
   \{x_1 	o 0.0000195062, x_1 	o 0.0343378, x_1 	o 0.0625123, x_1 	o 0.428822, x_1 	o 18.9347\} ,
   \left\{ \mathbf{x}_1 	o 	extbf{2.00674} 	imes 10^{-9} 	extbf{,} \; \mathbf{x}_1 	o 	extbf{0.018855}, \; \mathbf{x}_1 	o 	extbf{0.628143}, \; \mathbf{x}_1 	o 	extbf{3.19966} 
ight\} 	extbf{,}
   \{x_1 \rightarrow 0.000122455, x_1 \rightarrow 0.0214874, x_1 \rightarrow 0.0806774, x_1 \rightarrow 2.65699, x_1 \rightarrow 116.249\}
   \left\{\mathbf{x}_1 	o 	extbf{1.30693} 	imes 	extbf{10}^{-7} , \mathbf{x}_1 	o 	extbf{0.00385901} , \mathbf{x}_1 	o 	extbf{0.496116} , \mathbf{x}_1 	o 	extbf{4.93519} 
ight\} ,
   \{\mathbf{x}_1 	o \mathbf{2.33053} 	imes 10^{-6}, \ \mathbf{x}_1 	o \mathbf{0.0380891}, \ \mathbf{x}_1 	o \mathbf{10.3153}, \ \mathbf{x}_1 	o \mathbf{19.6642}, \ \mathbf{x}_1 	o \mathbf{1051.41}\} \}
```

Example 3

```
subpars = multistableParSets[[6]]
 {2.8539, 0.0220535, 755.232, 865.923, 10.7986,
        0.0693642, 0.023003, 4.47064, 2.75102, 0.415322, 6.04074}
 subs = \{k_1 \rightarrow \text{subpars}[[1]], k_2 \rightarrow \text{subpars}[[2]], k_3 \rightarrow \text{subpars}[[3]],
                 k_4 \rightarrow subpars[[4]], k_5 \rightarrow subpars[[5]], k_6 \rightarrow subpars[[6]], k_7 \rightarrow subpars[[7]],
                k_8 \rightarrow subpars \texttt{[[8]], T}_1 \rightarrow subpars \texttt{[[9]], T}_2 \rightarrow subpars \texttt{[[10]], T}_3 \rightarrow subpars \texttt{[[11]]} \}
  \{k_1 \rightarrow 2.8539, k_2 \rightarrow 0.0220535, k_3 \rightarrow 755.232, k_4 \rightarrow 865.923, k_5 \rightarrow 10.7986, k_6 \rightarrow 0.0693642, k_8 \rightarrow 0.0693642, k_9 \rightarrow 0.069642, k_9 \rightarrow 0.066442, k_9 \rightarrow 0.06644442, k_9 \rightarrow 0.06644442, k_9 \rightarrow 0.0664442, k_9 \rightarrow 0.066444442, k_9 \rightarrow 0.066444444444444444444444444
       k_7 \rightarrow \text{0.023003}, \ k_8 \rightarrow \text{4.47064}, \ T_1 \rightarrow \text{2.75102}, \ T_2 \rightarrow \text{0.415322}, \ T_3 \rightarrow \text{6.04074} \}
 solution = NSolve[{pol == 0} /. subs, x<sub>1</sub>]
 \{ \{ x_1 \rightarrow 0.000760242 \}, \{ x_1 \rightarrow 0.00295185 \}, 
        \{x_1 \rightarrow 0.0158737\} , \{x_1 \rightarrow 0.0786327\} , \{x_1 \rightarrow 2.10835\}\}
 subpol = pol /. subs
 \textbf{0.168336} - 29 \\ \textbf{1.276} \ x_1 + 96 \ 36 \\ \textbf{7.7} \ x_1^2 - \\ \textbf{5.94823} \times \\ \textbf{10}^6 \ x_1^3 + \\ \textbf{6.28961} \times \\ \textbf{10}^7 \ x_1^4 - \\ \textbf{2.8504} \times \\ \textbf{10}^7 \ x_1^5 + \\ \textbf{10}^7 \ x_1^8 + \\ \textbf{10}^7 \ x_1^8
LogLinearPlot[subpol, \{x_1, 0.000001, 10\}, PlotRange \rightarrow \{\{0.0001, 50\}, \{-2, 2\}\}\}]
                                                                 0.001
                                                                                                                                 0.010
                                                                                                                                                                                                   0 100
 Example 2
 subpars = multistableParSets[[5]]
 {2.64186, 0.00108907, 182.393, 61.4205, 4.46069,
      0.0339027, 0.0450795, 0.0535558, 9.65799, 1.14058, 0.362777}
subpars
 {2.64186, 0.00108907, 182.393, 61.4205, 4.46069,
        0.0339027, 0.0450795, 0.0535558, 9.65799, 1.14058, 0.362777}
 subs = \{k_1 \rightarrow subpars[[1]], k_2 \rightarrow subpars[[2]], k_3 \rightarrow subpars[[3]], k_4 \rightarrow subpars[[3]], k_5 \rightarrow subpars[[3]], k_6 \rightarrow subpars[[3]], k_7 \rightarrow subpars[[3]], k_8 \rightarrow subpars[[3
                 k_4 \rightarrow subpars[[4]], k_5 \rightarrow subpars[[5]], k_6 \rightarrow subpars[[6]], k_7 \rightarrow subpars[[7]],
                k_8 \rightarrow subpars \texttt{[[8]], T}_1 \rightarrow subpars \texttt{[[9]], T}_2 \rightarrow subpars \texttt{[[10]], T}_3 \rightarrow subpars \texttt{[[11]]} 
  \{\,k_1 \to \text{2.64186}\,\text{, } k_2 \to \text{0.00108907}\,\text{, } k_3 \to \text{182.393}\,\text{, }
        k_4 \rightarrow 61.4205 , k_5 \rightarrow 4.46069 , k_6 \rightarrow 0.0339027 , k_7 \rightarrow 0.0450795 ,
```

 $k_8 \to \text{0.0535558, } T_1 \to \text{9.65799, } T_2 \to \text{1.14058, } T_3 \to \text{0.362777} \}$

```
solution = NSolve[\{pol = 0\} /. subs, x_1]
\{\{x_1 \rightarrow 0.0000596104\}, \{x_1 \rightarrow 0.00206335\},
     \{x_1 \rightarrow 0.0651934\}, \{x_1 \rightarrow 2.18363\}, \{x_1 \rightarrow 8.39172\}
subpol = pol /. subs
1.63625 \times 10^{-7} - 0.00282682 \text{ x}_1 + 1.37527 \text{ x}_1^2 - 21.1987 \text{ x}_1^3 + 11.8515 \text{ x}_1^4 - 1.11358 \text{ x}_1^5
LogLinearPlot[subpol, \{x_1, 0.000001, 10\},
    PlotRange \rightarrow {{0.00001, 10}, {-0.000002, 0.000002}}]
  2. \times 10^{-6}
   1. × 10<sup>-6</sup>
                                                   10-4
                                                                                                                                                                                                                10
                                                                               0.001
                                                                                                              0.010
                                                                                                                                              0.100
-1. \times 10^{-6}
-2. × 10<sup>-6</sup>
Example I
subpars = multistableParSets[[3]]
{22.7426, 0.0224984, 339.861, 0.799421, 0.0343432,
    0.00396755, 0.00958031, 0.0164297, 4.67579, 0.19517, 3.29662}
subpars
{22.7426, 0.0224984, 339.861, 0.799421, 0.0343432,
    0.00396755, 0.00958031, 0.0164297, 4.67579, 0.19517, 3.29662
subs = \{k_1 \rightarrow subpars[[1]], k_2 \rightarrow subpars[[2]], k_3 \rightarrow subpars[[3]],
         k_4 \rightarrow subpars \texttt{[[4]], } k_5 \rightarrow subpars \texttt{[[5]], } k_6 \rightarrow subpars \texttt{[[6]], } k_7 \rightarrow subpars \texttt{[[7]], } k_9 \rightarrow subpars \texttt{[[7]], } k_9 \rightarrow subpars \texttt{[[7]], } k_9 \rightarrow subpars \texttt{[[6]], } k_9 \rightarrow subpars \texttt{[[6
         k_8 \rightarrow subpars \texttt{[[8]], T}_1 \rightarrow subpars \texttt{[[9]], T}_2 \rightarrow subpars \texttt{[[10]], T}_3 \rightarrow subpars \texttt{[[11]]} 
 \{k_1 \rightarrow 22.7426, k_2 \rightarrow 0.0224984, k_3 \rightarrow 339.861,
   k_4 \rightarrow \text{0.799421,} \ k_5 \rightarrow \text{0.0343432,} \ k_6 \rightarrow \text{0.00396755,} \ k_7 \rightarrow \text{0.00958031,}
    k_8 \rightarrow \text{0.0164297, } T_1 \rightarrow \text{4.67579, } T_2 \rightarrow \text{0.19517, } T_3 \rightarrow \text{3.29662} \}
solution = NSolve[{pol == 0} /. subs, x<sub>1</sub>]
\{\,\{\,x_1 \to \text{0.000257067}\,\}\,\text{, } \{\,x_1 \to \text{0.000630689}\,\}\,\text{,}
     \{x_1 \rightarrow 0.00295021\}, \{x_1 \rightarrow 0.00852842\}, \{x_1 \rightarrow 3.30872\}
subpol = pol /. subs
\textbf{2.57687} \times \textbf{10}^{-13} - \textbf{1.52863} \times \textbf{10}^{-9} \ \textbf{x}_{1} + \\
```

 $2.24381 \times 10^{-6} \ x_1^2 - 0.000781859 \ x_1^3 + 0.0634058 \ x_1^4 - 0.0190919 \ x_1^5$

Test