6/3/2020

Raiesh Shashi Kumar Logout

Question 1 Consider the following figure.

Figure 1

Consider the power law $X(\epsilon) \propto (1/\epsilon)^{\nu}$, which holds in the scaling region of a curve (if one exists). How would you approximate $_{
u}$ from the curve in Figure 1?

- A. The y-intercept of a line fitted to the curve in region B.
- ✓

 B. The slope of a line fitted to the curve in region B.
 - C. The lowest value of $X(\epsilon)$ where the curve flattens out (i.e., near the boundary between B and C).
 - D. The lowest value of $X(\epsilon)$ where the curve becomes a line (i.e., near the boundary between A and

Question 3

Consider Figure 1. On this type of plot, region B is called \dots

- ✓ A. A scaling region.
 - B. A numerical side effect.
 - C. A power law.
 - D A fractal dimension

Assume the curve in the plot in Figure 1 was generated with the box-counting algorithm from the lecture with ¢ ranging between 0.0001 and 5, and assume that the set has diameter 1.

The shape of the curve in Figure 1 region A is due to ...

- A. The power law relationship.
- B. Each point being covered by a single ε -ball.
- ✓ C. The entire set being covered by a single e-ball.

(b)

The shape of the curve in Figure 1 region ${\bf C}$ is due to ...

- A. The power law relationship.
- ✔○ B. Each point being covered by a single €-ball.
 - C. The entire set being covered by a single $\varepsilon\text{-ball}.$

The shape of the curve in Figure 1 region B is due to \dots

- \checkmark \bigcirc A. The power law relationship.
 - B. Each point being covered by a single $\varepsilon\text{-ball}.$
 - C. The entire set being covered by a single ϵ -ball.

You got 7 out of 7 questions correct Reset