Задача 1. Докажите, что у броуновского движения почти наверное бесконечная полная вариация.

 $\it 3ada$ ча 2. Пусть $\it B_t$ – броуновское движение. Вычислить:

$$Z_t = \int_0^t 2B_t dB_t$$

Задача 3. Доказать формулу Ито для процесса Ито.

 $3a\partial a$ ча 4. При каком α процесс $X_t = e^{\alpha t + \sigma B_t}$ является мартингалом?

 $3a\partial a$ ча 5. Пусть $X_t=B_t^4$, где B_t – броуновское движение. Найти $\mathbb{E} X_t$.

Задача 6. Пусть

$$\begin{cases} dX_t = X_t(\mu_x dt + \sigma_x dB_t), \\ dY_t = Y_t(\mu_y dt + \sigma_y dZ_t), \end{cases}$$

где $dB_t \cdot dZ_t = \rho dt$ — броуновские движения с корреляций ρ . Выписать уравнения для процессов $X_t^{\alpha}, X_t \cdot Y_t, \frac{X_t}{Y_t}$

 $3 a \partial a {\it va}$ 7 (Variance swap). Пусть $dX_t = X_t \sigma_t dB_t$ – процесс Ито, σ_t – согласованный процесс. Найти

$$\mathbb{E} \int_0^T \sigma_t^2 dt$$

Покажите, что:

$$\int_{0}^{T} \sigma_{t}^{2} dt = -2 \ln \frac{X_{T}}{X_{0}} + \int_{0}^{T} \frac{2}{X_{t}} dX_{t}$$

 $3a\partial a$ ча 8. Пусть процесс X_t удовлетворяет следующуему СДУ:

$$dX_t = \alpha X_t dt + \sigma_t dB_t$$

для некоторого процесса σ_t и $\alpha \in \mathbb{R}$. Найти $\mu(t) = \mathbb{E} X_t$.

Задача 9 (Броуновский мост). Пусть

$$dX_t = \frac{-X_t dt}{1 - t} + dB_t$$

при $0 \le t \le 1$. Найти $\mathbb{E}X_t$, Var X_t . Убедитесь, что $X_1 = 0$ почти наверное.

 $3a \partial a u a$ 10 (Уравнение Орнштейна-Уленбека). Решить стохастическое дифференциальное уравнение на X_t :

$$dX_t = \alpha(\theta - X_t)dt + \sigma dB_t$$

где $\alpha, \theta \in \mathbb{R}, \sigma \in \mathbb{R}^+$.

При каком распределении X_0 процесс X_t стационарен?