浙江工业大学 2022/2023 学年第一学期 概率论与数理统计(48学时)期末考试试卷

	学号:		姓名:			
班级		i:				
	题号	_	<u>-</u> :	三	总分	
	得分					
分位点数据	君 :					
$t_{0.02}$	$_{5}(9) = 2$	$.2622, t_{0.025}(8)$	$t_0 = 2.3060, t_0$	0.05(9) = 1.8331	$t_{0.05}(8) = 1$.8595
一. 填空题	(共 28 分	分,每空 2 分)			
1. 设 A, B,	C 相互》	独立,且 $P(A)$	=P(B)=P(0)	C)=0.5,则 P	$P(A \cup B) = \underline{\hspace{1cm}}$	
$P(A \cup B)$	$B A \cup C)$	=	·			
		分别有 2,3,4 克 	胀,从这 9 张-	卡片中随机选取	(3 张,恰好耶	双到3种卡片的
		均匀的硬币 3 ~	欠,至少有 1 %	大正面朝上的概	率为 <u>37</u> ,则恰	î有 2 次正面朝
4. 己知 X	服从指数	女分布. 若 P(X	$(>a)=\frac{2}{3}, \ \ \mathbb{M}$	P(X > 2a) =		
P(X > 1)	2a X > a	$a) = \underline{\hspace{1cm}}$	·			
5. 设 X 的	密度函数	$f(x) = Ce^{-2x}$	x^{2-x} (C 为常	数),则 <i>E(X</i>) =	
		满足 $EX =$ _, $E(X^3) = _$ _		•	$[(X-1)^3] =$	0,则 $DX =$
		(Y)=8,相关		$=-rac{1}{2}$,则 Co	$v(X,Y) = \underline{\hspace{1cm}}$	

一. 填空题

每件产品的利润(单位:元)分别为 10,7,5. 现生产 300 件产品,根据中心极限定理,可

8. 设某台机器生产的每件产品是一、二、三等品的概率分别为 0.2,0.5,0.3, 一、二、三等品

	得总利润不少于 2070 元的概率约为示).		_(用标准正态分布的分	分布函数Φ(-	·)表			
9.	设 X_1, X_2, X_3, X_4, X_5 是来自正态总	体 $N(\mu, \sigma^2)$ 的样		$(2+X_3), \ \vec{a}$	占			
	$C^{\frac{(X_1-\overline{X})}{2}}$	$\frac{(X_4 - \overline{X})^2 + (X_2 - \overline{X})^2 + (X_4 - X_5)^2}{(X_4 - X_5)^2}$	$(X_3 - \overline{X})^2$					
	服从 F 分布, 其两个自由度为	, C	′=					
	选择题 (共 12 分, 每题 3 分)							
1.	设 A, B, C 为随机事件, $0 < P(A) <$	< 1.		()			
	(A) 若 $A \subseteq B \cup C$,则 $P(B A) + B$	P(C A) = 1						
	(B) 若 $P(B A) + P(C A) = 1$, 则	$A \subseteq B \cup C$						
	(C) 若 $ABC = \emptyset$,则 $P(B \cup C A)$	= P(B A) + P(C	C(A)					
	(D) 若 $P(B \cup C A) = P(B A) + P(B A)$	(C A),则 ABC :	$=\varnothing$					
2.	设 $X \sim B(n,p)$, $Y \sim B(m,p)$, F_X	$,F_{Y}$ 分别是 X,Y	的分布函数. 若 $n > n$	m,则 ()			
	(A) $X \ge Y$	(B) $X \leq Y$						
	(C) 对任意 z , $F_X(z) \ge F_Y(z)$	(D) 对任意	$z, F_X(z) \leq F_Y(z)$					
3.	设 (X,Y) 的密度函数 $f(x,y) = \begin{cases} xy \\ 0, \end{cases}$	$y + Ax + \frac{1}{6}y + B,$	0 < x < 1, 0 < y < 抵他	< 1, 若 <i>X</i> , Y	′ 独			
	立,则		六世 .	()			
	(A) $A = 1, B = \frac{1}{6}$	(B) $A = \frac{1}{6}$,	$B = \frac{1}{36}$					
	(C) $A = \frac{1}{6}, B = \frac{7}{12}$	(D) $A = \frac{1}{3}$,	$B = \frac{1}{2}$					
4.	设总体 X 的分布列为 $P(X=1)=p$, $P(X=0)=1-p$, 其中未知参数 $p\in(0,1)$.							
	考虑假设检验问题: H ₀ : p =	$\frac{1}{3}$ $H_1: p = \frac{2}{3}$.	给定 X 的样本 X_1	$_{1},X_{2}$,取排	三绝			
	域 $W = \{X_1 + X_2 < 1\}$,则犯第二差	类错误的概率是		()			
	(A) $\frac{1}{9}$ (B) $\frac{2}{9}$	(C) $\frac{4}{9}$	(D) $\frac{8}{9}$					

三. 解答题 (共 6 题, 60 分)

1. (10 分) 设离散型随机变量 X 的分布列为 $P(X=k)=C(k^2+k+1)$, k=1,2,3. 求: (1) 常数 C; (2) P(X 是奇数); (3) $E(\frac{1}{X(X+1)})$.

2. $(8 \ \beta)$ 设连续型随机变量 X 的密度函数为 $f(x) = \begin{cases} Ax^2, & -1 < x \le 1, \\ Bx, & 1 < x \le 3, \\ 0, & 其他. \end{cases}$

且 $P(X < 2) = \frac{1}{2}$. 求: (1) 常数 A, B; (2) X 的期望、方差.

3. $(12 \ \mathcal{H})$ 把两个相同的球等可能地放入编号为 1,2 的两个盒子中, 记落入第 1 号盒子中球的个数为 X, 落入第 2 号盒子中球的个数为 Y.

求: (1) X, Y 的联合分布; (2) P(2X + Y = 4); (3) X 的分布列.

4. (12 分)设连续型随机变量 (X,Y) 的密度函数

$$f(x,y) = \begin{cases} \frac{Ay}{x^2}, & 1 < x < 2, 1 < y < 2, \\ 0, & \text{ 其他.} \end{cases}$$

(1) 求常数 A; (2) 求 P(X < Y); (3) 判断 X 与 Y 是否独立, 并写明原因.

5. (10 分)设总体 X 的概率分布是

$$\begin{array}{c|ccccc} X & 0 & 1 & 2 \\ \hline P & \theta^2 & \theta(1-\theta) & 1-\theta \end{array}$$

其中 $\theta(0 < \theta < 1)$ 是未知参数, 现从该总体中抽取容量为 5 的样本, 样本值为: 2, 1, 0, 1, 0. 求: θ 的矩估计值和极大似然估计值.

6. (8 分) 设某种仪器附近的磁场强度(单位:T)服从正态分布 $N(\mu, \sigma^2)$,要求其均值不高于 50. 现有一台新仪器,对其附近磁场强度测量 9 次,测得其样本均值 $\overline{x}=51$ T,样本标准差 s=5 T. (1) 求该仪器附近的磁场强度的均值 μ 的置信水平 0.95 的单侧置信上限;(2) 取显著水平 $\alpha=0.05$,能否认为该仪器附近的磁场强度的均值不高于 50 T?