20 October 2020

Lack of fit

Provide a test statistic for testing

 H_0 : the model is fitted well or H_0 : there is no lack of fit

if there are repeated measures on y for the same set of independent variables.

Notation

 y_{ij} represent the j^{th} response at the i^{th} experimental combination, $j = 1, 2, ..., n_i$ and i = 1, 2, ..., m;

m is the number of combinations;

 n_i is the number of measures on y for the i^{th} combination, for $i = 1, \ldots, m$;

n is the total number of observations, i.e., $\sum_{j=1}^{m} n_i = n$.

Idea

There are two methods to estimate σ^2 . One is from the model, i.e., $\hat{\sigma}^2 = \frac{\text{Res.S.S.}}{n-p'}$ and another one is sample variance based on the repeated measures on y, i.e., $\hat{\sigma}^2_{\text{pure error}} = \frac{\text{Pure Error S.S.}}{n-m}$.

$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_i)^2 = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 + \sum_{i=1}^{m} n_i (\bar{y}_{i.} - \hat{y}_i)^2$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Res S.S. Pure error S.S. Lack of fit S.S.
$$\Rightarrow \sim \sigma^2 \chi^2 (n - p', \lambda) \qquad \sim \sigma^2 \chi^2 (n - m) \qquad \sim \sigma^2 \chi^2 (m - p', \lambda)$$

where $\lambda = \frac{\beta_2^T (X_2^T X_2 - X_2^T X_1 (X_1^T X_1)^{-1} X_1^T X_2) \beta_2}{\sigma^2}$ since Pure error S.S. & Lack of fit S.S. are independent.

Define the test statistic

$$F = \frac{\sum_{i=1}^{m} n_i (\bar{y}_{i.} - \hat{y}_{i.})^2 / (m - p')}{\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 / (n - m)} \sim F(m - p', n - m)$$

Since E(F) $\approx 1 + \frac{\lambda}{m - p'}$, then

Reject
$$H_0$$
 if $F > F_{\alpha}(m-p', n-m)$

Remarks

- 1. Pure error S.S. is equal to $\sum_{i=1}^{m} (n_i 1)S_i^2$ where S_i^2 is the sample variance of repeated measures on y for the i^{th} combination of \underline{x} .
- 2. Lack of fit S.S. is calculated as

3. If the null hypothesis can't be rejected, $\hat{\sigma}^2$ is still equal to

$$\frac{\text{Res S.S.}}{n-p'} \ .$$

Formulaes in Sections of "Confidence Interval & Hypothesis Testing" & "Prediction" can be used without any change.

4. If the null hypothesis is rejected, $\hat{\sigma}^2$ is equal to

$$\frac{\text{Pure error S.S.}}{n-m} \ .$$

Formulaes in Sections of "Confidence Interval & Hypothesis Testing" & "Prediction" can be used by using the correct $\hat{\sigma}^2$. The degrees of freedom of $\hat{\sigma}^2$ is n-m.