MATHEMATICAL FOUNDATION-II

Time: Three Hours Maximum Marks: 80 Note: Attempt five questions in all. Selectt one question from each section. Question No. 1 is compulsory. (COMPULSORY QUESTION) (COMPULSORY QUESTION) 1. (a) Prove that $\sim [p \vee (\sim p)]$ is a contradiction. (b) Define Group. (c) If $a^2 = e$, $\forall a \in G$, then G is an abelian group. 3 (d) Find the inverse of matrix $\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$. (e) Evaluate $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ [1 2 4 5]. (f) Define Prime Ideals.

UNIT-I

Using P.M.I., prove that for all $n \in N$, 2. (a)

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

Prove by Truth table (b) $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r).$

8

Construct the Truth table of 3. (a)

(3 + 5)(i) $(\neg p \land \neg q) \lor r$. Using P.M.I., prove that $2^n < 3^n$, $\forall n \in \mathbb{N}$.

(b) UNIT-II

If a group has four elements, show that it must be (a) 4. abelian.

Show that a subgroup H of a group G is normal if (b) 8 and only if $xHx^{-1} = H$, $\forall x \in G$.

8 Defined 'Field'. 5. (a)

Let f: R - R' be homomorphism, then f is an (b) isomorphis m of R into R' iff ker f = 0.

UNIT-III

Find the adjoint of matrix $A = \begin{bmatrix} 1 & 4 & 3 \\ 3 & 2 & 6 \\ 0 & 1 & 0 \end{bmatrix}$ and verify (a) 6.

(adj A)
$$A = A(adj A) = |A|I_3$$
.

(b) If
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, show that $A^3 - 3A - 2I = 0$ and 8

hence find
$$A^{-1}$$
.