

AD A O 47427 HUENEME

Beilniea!

title:

MIGHTY EPIC PRE-TEST ANALYSIS,

author:

CRAWFORD,

date:

J./ROLLINS, R./THOMPSON R. ODELLO

Sponsor:

DEFENSE NUCLEAR AGENCY WASHINGTON, DC

-02-108 program

FOO8 08 02

AU NO.

CIVIL ENGINEERING

NAVAL CONSTRUCTION BATTA Port Hueneme, California 93043

DIS

391111

TABLE OF CONTENTS

	•	-B.
ABSTRACT		1
OBJECTIVE AND SCOPE		1
PROBLEM DESCRIPTION		2
NONSAP Parameters		2
General Mesh Description	•	3
Materials		3
Geostatic Effects		3
Forcing Function		4
FREE FIELD VALIDATION AND DETERMINATION OF VARIOUS MESH PARAMETERS		4
Free Field Validation		4
Compatibility of 4-Node and Higher Quadrilateral Elements		5
Technique Employed for Removal of Reflection Waves		5
Computation of Residual Response		6
Use of Velocity as Forcing Function	•	6
ANALYSIS OF A CYLINDRICAL CAVITY WITHIN THE FREE FIELD	•	6
RESULTS OF ANALYSES OF MIGHTY EPIC STRUCTURES	•	8
Homogeneous Sphere		8
Composite Built-Up Liner		9
Composite Integral Liner		
SUMMARY		
ACKNOWLEDGEMENTS		11
APPENDICES		
A. Development of Material Parameters	•	49
B. Element and Step Size Selection	•	62
C. Study of Compatibility of 4-Node and Higher Order Quadrilateral Elements	•	72
D. Restart Using Progressively Larger At		79
E. Use of Velocity as a Forcing Function		

			TA	ABI	LE	OI	7 (COI	ITI	EN:	rs	((Cor	nt.	.)							Page
REFERENCES																			•	•		87
LIST OF SYMBOLS.																					•	89
LIST OF TABLES .																					•	92
LIST OF FIGURES.																						93

ABSTRACT

Analytical response predictions (pre-shot) are made for three structures that are to be evaluated during the Mighty Epic tests. Also included in the report is a prediction of the response for the free field and for the free field containing a cavity, as well as a study of the effects that various idealization parameters have on the predicted results.

OBJECTIVE AND SCOPE

The objective of this study is to analytically predict (pre-shot) the response of three structures that are in place at the Mighty Epic test site. These structures, shown in Figures 1 and 2, consist of:

(1) Homogeneous sphere,

2) Composite built-up liner ord

3; Composite integral liner.

These three structures are situated in a relatively weak rock (tuff) at the 0.5-Kbar range. Included in the study is a prediction of the response for the free field (i.e., tuff) and for the tuff containing a six-foot diameter cylindrical cavity. Also reported are the effects that the various parameters associated with the predictions have on the results.

The scope of the analyses is predicated on usage of NONSAP¹ computer code in its "as is" state. NONSAP is a finite element computer program designed primarily for the nonlinear analysis of three-dimensional structures subjected to either static or dynamic forces applied either separately or in combination. The program offers a variety of material models, two implicit time integration schemes (i.e., Wilson's θ or Newmark's β method), two finite deformation formulations (based on either an Eulerian or Lagrangian reference system), and several element types (including the truss, beam, 4-8 node isoparametric quadrilateral, 8-21 node isoparametric hexahedron, and several types of joint and boundary elements). An "in-core" version of NONSAP, operated on a CDC 7600, is used to develop the results presented in this report.

This report was prepared for use as an internal working document. Therefore, its distribution is limited, and disclosure of all or part of its contents outside the Government must have prior approval of the Civil

Engineering Laboratory or the sponsor of the work reported.

PROBLEM DESCRIPTION

NONSAP Parameters

NONSAP is particularly designed to solve nonlinear problems. The basic algorithm uses an incremental tangent approximation for the nonlinear stiffness coupled with equilibrium iterations at the end of a step to correct for the errors which arise as a consequence of the tangent approximation. For the problems discussed in this report, the stiffness matrix is inverted at every step while equilibrium iteration is used only for problems where large deformations are included. The large deformation formulation is based on a Lagrangian reference system which is felt to be most compatible with the material data provided. However, the lack of large deformation-oriented material data debilitates the employment of this formulation. The time integration is accomplished using Wilson's θ method.

For the problems in this report, 16 steps are used in application of nonlinear static runs while 44 steps with a 0.4-msec time step are used for dynamic runs (providing 17.6 msec of response). Typical CDC 7600 central processing times and costs are:

- o For the nonlinear static cases with equilibrium iteration, 210 seconds and \$80.
- o For the linear static cases, 7 seconds and \$10.
- o For the nonlinear dynamic cases with equilibrium iteration, 470 seconds and \$160.
- o For the linear dynamic cases, 45 seconds and \$15.

The high cost of equilibrium iteration is caused by its inefficient implementation on the CDC 7600. Reprogramming this algorithm in accordance with the 7600 architecture would mitigate this problem.

The elements employed in all solutions are 4-8 node, isoparametric quadrilaterals. Integration orders from 2-4 may be specified; in general, orders of 3 are used for the computations in this report. Integration orders of 3 result in nine integration points being established within the element at the Gauss points. Separate stress histories and material properties are computed for each of these points.

Some additional relevant features of NONSAP are:

- 1. Its restart capability, whereby any solution may be stopped and restarted with different parameters. For example, the geostatic stress at the Mighty Epic site may be computed as a nonlinear statics problem; these results would be automatically stored and be available as initial boundary conditions for the dynamic NONSAP simulation of the Mighty Epic structures.
- 2. Birth and death of elements, whereby elements are assigned times of appearance and/or disappearance. This makes it possible to solve the Mighty Epic geostatic problem as an unlined cavity where prior to the

dynamic run, the structure and grout elements would be "born" into the structural system.

General Mesh Description

Five different structural problems are presented in this study:

- 1. Free field
- 2. Free field with cavity
- 3. Homogeneous sphere
- 4. Composite built-up liner
- 5. Composite integral liner

Each structure was analyzed in four basic configurations: (1) linear static, (2) nonlinear static, (3) linear dynamic, and (4) nonlinear dynamic. Within each of the four basic configurations, several parameters were varied (e.g., mesh size, time step, degree and type of nonlinearity) with the intent of determining their effect and developing confidence in the final prediction for the nonlinear dynamic response.

The general character of the finite element mesh used for the five structural problems is shown in Figure 3. The column idealization is used for the free field calculations, while the cavity idealization is used for the other four structures. The center of the cavity is set 252 inches (approximately 6 meters) below the surface of the mesh. The side boundaries of both meshes are constrained horizontally while the mesh bottom is fixed far enough from the region of interest to prevent any interference caused by reflecting waves. The pressure loads are applied uniformly across the top of the structure either statically or as functions of time (dynamic). Typically, a thousand degrees-of-freedom are used to model the cavity idealizations while fewer are needed for the free field modeling.

Materials

These structures are composed of five different types of materials:

Tuff
Steel
Fiber reinforced concrete
Reinforced concrete
Cellular concrete

The material constants are listed in Table 1; their derivation is given in Appendix A. Two sets of properties are given for tuff: Tuff No. 2 is based on in-situ testing and Tuff No. 1 represents an earlier assessment of material behavior generated prior to the in-situ testing.

Geostatic Effects

The gravity effects are complicated by the employment of tunneling and grouting for structure emplacement. NONSAP could compute the geostatic stresses in tuff surrounding the tunnel. However, since the grout

surrounding the structures is in an unstressed condition (at least from gravity), and its dimensions uncertain (possibly 2-4 feet between structure and tunnel, and in the case of the sphere essentially unlimited along the tunnel axis), the inclusion of geostatic stresses seems unwarranted and somewhat specious. Also, since the estimated geostatic stress in the free field at the emplacement depth is only 70 bars², it does not appear the omission of gravitational forces will produce a serious degradation in predicted response.

Forcing Function

The forcing functions considered in-this study are derived from the curves (supplied by Weidlinger and Associates³) shown in Figures 4 and 5. They consist of uniaxial velocity and stress at various locations with respect to the structure (where, for example, -6m denotes a point that is six meters upstream from the structure's center). These curves are derived analytically based on a CAP model⁴ characterization of the tuff. From these curves and through a study of the free field calculations (next section), the forcing function for the dynamic configurations was chosen. Two forms of this function are shown in Figure 6: one is a detailed description of the curve which was applied to all five structural problems while the other is a simplified version developed to aid in studying the effects of various parameters on the free field response. For the static analyses, a peak pressure of 7250 psi was used.

FREE FIELD VALIDATION AND DETERMINATION OF VARIOUS MESH PARAMETERS

Free Field Validation

This section presents the studies conducted to validate the accuracy of the free field responses computed by NONSAP. The basic premise is that the free field response which occurs in the tuff/structure meshes (presented in next section) is similar to what occurs in a columnar mesh (Figure 7) made of tuff only. The element and step size selected for the columnar mesh are based on the results presented in Appendix B. The elements are 20 inches in height, 4-node quadrilaterals, constrained laterally, and subjected at the mesh surface to the -6m stress wave shown in Figure 4. A time step of 0.4 msec is used to compute the results shown in Figures 8 and 9. Figure 8 shows stress versus time at element 24 for the linear elastic and the Drucker-Prager approximations of Tuff No. 1. Figure 9 shows velocity versus time for node 49. The +6 meter CAP model results, which correspond in depth to element 24 and node 49, are also shown in the figures, as well as the stress wave applied to the mesh.

The results of these free field runs indicate:

1. Comparisons of the vertical stress/velocity is not an appropriate method for checking the validity of the tuff material characterization. More germane would be the comparison of horizontal stresses or material stiffness predictions at the springline/crown of a lined cavity. These stresses are much more sensitive to variations between the various material models.

- 2. Velocity output does not compare as well as stress output.
- 3. No appreciable decrease in the peak stress with travel distance occurs for either the linear or Drucker-Prager models. Moreover, these two models yield similar results for the columnar idealization.

Compatibility of 4-Node and Higher Order Quadrilateral Elements

In certain regions of a mesh it is advantageous to join two 4 node quadrilateral elements to the side of an element of higher order (i.e., one with 5 to 8 nodes). Figure 10a shows such a case. Because the midside node of a higher order element is 4 times stiffer than its corner node, some anomaly is expected as a stress wave passes through the transition region. To investigate this phenomenon, the top surfaces of the three free field meshes shown in Figure 10 were subjected to a ramp loading of infinite duration. The results of this study are given in Appendix C. These results indicate that while a local anomaly in the displacement/stress field transpires, the effect at a point some distance from this region is negligible. Therefore, these transition zones will not be located near regions of interest.

Technique Employed for Removal of Reflection Waves

A significant aspect of predicting the transient response is insuring that the fictitious boundaries within the free field imposed by the finite element idealization do not become sources for spurious reflection waves. Because the forcing functions are uniaxial, the location and type of side boundaries employed appears to have little effect on the computations (see results for Mesh 3.0 and 3.1 of next section). Reflections caused by the bottom boundary can most simply be dealt with by establishing its location far enough from the region of interest. The depth of the region of interest is denoted as $D_{\rm I}$ while $D_{\rm B}$ is the additional depth of mesh necessary to avoid reflection waves, Figure 3. $D_{\rm B}$ is computed from the wave speed in tuff (C = 57.5 in/msec, from Appendix B) and the amount of time needed to capture the response (estimated to be no more than 35 msec). Therefore, the depth of mesh needed beyond the region of interest is:

$$D_R = (57.5) (35)/2 = 1000 inches$$

Selecting the depth of the region of interest $(D_{\bar{I}})$ to be 500 inches, yields the total depth of mesh:

$$D = D_R + D_T = 1500$$
 inches

Since the element size needed in this region is 40 inches (see Appendix B) the total number of degrees of freedom needed to model this space is:

DOF (for 4-node quads) =
$$1000/40$$
 (2) = 50

DOF (for 8-node quads) =
$$1000/40$$
 (5) = 125

where one element is presumed to cover the whole space laterally. Whichever element type is employed, the number of degrees-of-freedom used to model this space is inconsequential compared to the total degrees-of-freedom for the whole model (i.e., more than 1000). Using more complicated schemes, such as nodal dampers, does not seem warranted in these circumstances.

Computation of Residual Response

A possible scheme for computing residual response consists of a deep mesh of successively larger element sizes used in conjunction with the NONSAP restart option, whereby a small time step is used until the peak response of the structure occurs. Then gradually larger time steps are employed until the structure is in static equilibrium. An example of this technique is shown in Appendix D. In general, for these types of problems, this technique appears to provide a way to reduce computer costs for large runs and to be a feasible means of computing response over a long period of time.

Use of Velocity as Forcing Function

NONSAP does not allow direct input of velocity as a forcing function. To use velocity data, it must be integrated to provide a displacement-time history. Then using the "stiff spring trick" (described in Appendix E), these displacements are used to drive the problem. Since both pressure and velocity data were provided, there was no need to perform these operations for any the analyses reported. However, for comparative purposes, a free the analyses on these techniques is included in Appendix E.

ANALISIS OF A CYLINDRICAL CAVITY WITHIN THE FREE FIELD

Four meshes were made to model a cylindrical cavity (72 inches in diameter) within a homogeneous tuff. Such parameters as mesh boundaries; element sizes, types, and shapes; and linear versus nonlinear materials and deformation were studies. These studies were carried out for both an unlined cavity and one lined with a thin steel shell (0.78 inches thick). The steel-lined cavity results are included to make the parametric studies relevant to the Mighty Epic structures.

For this analysis, seven static and seven dynamic problem configurations were deemed to be of interest. These are:

- 1. An elastic tuff with an unlined cavity (denoted SC1 and DC1).
- 2. A Drucker-Prager tuff with an unlined cavity (denoted SC2 and DC2).
- 3. An elastic tuff with an unlined cavity using the large deformation formulation and equilibrium iteration (denoted SC3 and DC3).
- 4. A Drucker-Prager tuff with an unlined cavity using the large deformation formulation and equilibrium iteration (denoted SC4 and DC4).
- 5. An elastic tuff with an elastic steel-lined cavity (denoted SC5 and DC5).

- 6. A Drucker-Prager tuff with an elastic steel-lined cavity (denoted SC6 and DC6).
- 7. A Drucker-Prager tuff with an elastic steel-lined cavity using the large deformation formulation and equilibrium iteration (denoted SC7 and DC7).

The following four meshes were used:

- Mesh 3.0: Conventional 4-node quadrilateral mesh where the right boundary is set at Y = 288 inches. The thin liner consists of thirty-two 8-node quadrilaterals connected by 5-node quadrilaterals to the rest of the mesh, Figure 11a.
- Mesh 3.1: Identical to Mesh 3.0 except that additional elements have been added to the right side moving the right boundary to Y = 435 inches, Figure 11b.
- Mesh 3.2: Similar to Mesh 3.0 except that 8-node quadrilaterals have (approximately) replaced groups of four 4-node quadrilaterals. The thin liner consists of only sixteen 8-node quadrilaterals, Figure 11c.
- Mesh 3.3: Provides a rectangular mesh for contrast with the previous radial meshes. The thin liner consists of eighteen 8-node quadrilaterals which are connected by 5-node quadrilaterals to the rest of the 4-node quadrilateral mesh.

Only the upper region of each mesh is shown in Figure 11. The lower regions are similar in depth to Figure 3b.

These four meshes are presumed to provide sufficient data for evaluation of right boundary selection; element sizing, layout and type; and the effect of mesh selection on response predictions. Both static and dynamic responses were obtained at the mesh locations shown in Figure 12. The static responses were included in Table 2-5, while the peak dynamic responses were included in Tables 6-9. A typical dynamic response for the four meshes is shown in Figure 13. The seven problem configurations were not run for every mesh, owing to expected similarities of results.

The response of each mesh for a particular problem configuration is essentially the same. Comparison of Mesh 3.3 to the other meshes indicates that the easily generated radial meshes can satisfactorily be employed in the structural meshes. Comparison of Meshes 3.0 and 3.1 indicates that a right boundary of 288 inches is satisfactory. Comparison of Meshes 3.0 and 3.2 indicates that sixteen 8-node quadrilaterals are adequate to handle the bending present in a thin liner, and 8-node quadrilaterals can replace groups of four 4-node quadrilaterals in the medium. Comparison of Runs SC6 and SC7 indicates that when the steel liners are employed, deflections are so small that large deformation theory is not necessary.

RESULTS OF ANALYSES OF MIGHTY EPIC STRUCTURES

Based on the results of the previous section and various finite element analyses of the structures alone, the following three structural meshes were generated:

Mesh 4.0: Homogeneous Sphere - Conventional 4-node quadrilateral mesh where the right boundary is set at Y = 288 inches. The concrete sphere consists of six layers of 4-node quadrilaterals.

Mesh 5.0: Composite Built-Up Liner - Conventional 8-node quadrilateral mesh. The steel liner and cellular concrete consists of 1 and 2 element layers, respectively.

Mesh 6.0: Composite Integral Liner - Identical in topology to Mesh 5.0.

The upper region of each mesh is shown in Figures 14, 15 and 16. For each mesh, four different runs were made:

- 1. Linear static.
- 2. Nonlinear static, where the nonlinear material properties of Table 1 were employed and small deformation theory was assumed valid.
 - 3. Linear dynamic, where $\Delta t = 0.4$ msec and 44 steps were employed.
- 4. Nonlinear dynamic, where the material characterizations of Run 2 and the time parameters of Run 3 were employed.

Homogeneous Sphere (Figure 1)

Since the designers of the homogeneous sphere based their design on the stress distribution within a thick-walled sphere subjected to a uniform external pressure, the elastic thick-wall theory in its general form is given below:

$$S_{t} = \frac{p_{o}r_{o}^{3}}{2r^{3}} \qquad \left(\frac{r_{i}^{3} + 2r^{3}}{r_{o}^{3} - r_{i}^{3}}\right)$$

$$S_{r} = \frac{p_{o}r_{o}^{3}}{r^{3}} \qquad \left(\frac{r^{3} - r_{i}^{3}}{r_{o}^{3} - r_{i}^{3}}\right)$$

where:

St = wall stress in tangential direction (psi)

 S_r = wall stress in radial direction (psi)

po = external pressure (psi)

ro = external radius (in)

ri = interior radius (in)

r = radius to location in wall under consideration (in)

Using these equations, an external pressure of 7250 psi acting on the sphere shown in Figure 1 would produce tangential and radial stresses of -15,450 psi and 0 psi at the inner surface and -11,820 psi and -7250 psi at the outer surface. The diameter change of the sphere with the elastic properties shown in Table 1 would equal -0.17 in.

The static and dynamic peak responses computed by the finite element model for the sphere are listed in Table 10 (see Figure 12 for mesh locations). The diameter change for the nonlinear dynamic run is shown in Figure 17. Because the dynamic peak response is similar to the static peak response, only the static results will be discussed.

The employment of the nonlinear models for the tuff and the fiber reinforced concrete did affect the structural response. All of the relatively weak Tuff No. 1 elements became plastic, while all of the concrete elements stayed elastic. Thus, the difference between the linear and the nonlinear runs is entirely caused by the yielding of the tuff elements. The interior vertical diameter change for the linear (-0.32 in) and the nonlinear (-0.24 in) runs both exceeded the theoretical change (-0.17 in). The respective interior horizontal changes (+0.02 and -0.02 in) were negligible. Thus, the displaced shape of the sphere at peak static load is oval. This lack of hydrostatic behavior is also evident in the radial stresses of the tuff elements adjacent to the sphere. For the elastic run, the peak radial stress is -10,500 psi at the crown and -3300 psi at the springline. For both runs, the greatest concrete stresses occur at the springline interior in the tangential direction. The Drucker-Prager tuff reduces this tangential stress from -31,250 psi to -24,210 psi. However, this is still greater than the theoretical value (15,450 psi). This indicates a negative arching behavior for the structure. This behavior is also evident by observing the vertical tuff stresses at the crown and the springline. The stress at the crown (-9150 psi) is greater than the incident peak (-7250 psi), while the stress at the springline (-5400 psi) is less. The non-hydrostatic loading produces both thrust and moment in the sphere. Positive bending (exterior fibers in compression) occurs at the crown and invert, while negative bending occurs at the springline. The amount of positive bending at the crown is enough to cause the highest compressive tangential stresses to occur at the exterior rather than the interior surface. For the nonlinear run, the tangential stress is -13,200 psi at the exterior and -7350 psi at the interior.

Composite Built-Up Liner (Figure 1)

The static and dynamic peak responses are listed in Table 11. The diameter change for the nonlinear dynamic run is shown in Figure 18. Like the homogeneous sphere, the dynamic peak response is similar to the static peak response. For brevity, only the static results will be discussed.

Positive arching is indicated because the vertical tuff stress at the crown is less than at the springline. For the nonlinear run, the stress at the crown (-3200 psi) is less than the incident peak (-7250 psi), while the stress at the springline (-9360 psi) is greater. Thus, the Elastic and the Curve Description models which were derived for the cellular concrete, act as a well-designed back-packing material. The displaced shape for both runs is oval. The inside diameter changes in the vertical direction are -0.65 in and -0.86 in, and in the horizontal direction are +0.65 in and +.82 in, for the linear and nonlinear runs, respectively.

Unlike the Tuff No. 1 in the homogeneous sphere mesh, only the tuff elements adjacent to the liner yield. This is primarily because of the increased strength of the Tuff No. 2 model. This yielding plus the yielding in the steel liner are the principal reasons for the difference between the linear and nonlinear structural response. At the maximum load, yielding of the outer fibers in the steel elements near the springline occurred. Yielding is sufficient to cast doubt on the validity of the linear run. Positive bending occurs at the crown while negative bending occurs at the springline of the steel liner. For the nonlinear run, the hoop stress at the crown varies from +6800 psi at the inner surface to -44,120 psi at the outer surface. At the springline it varies from -46,220 psi at the inner surface to -11,430 at the outer surface.

Composite Integral Liner (Figure 2)

The static and dynamic peak responses are listed in Table 12. The diameter change for the nonlinear dynamic run is shown in Figure 19. Because the dynamic peak response is similar to the static peak response, only the static results will be discussed. The displaced shape of the liner is oval. The inside diameter changes for the linear and nonlinear runs in the vertical direction are -0.62 in and -0.84 in, and in the horizontal direction are +0.26 in and +0.28 in, respectively. The vertical tuff stresses at the crown are -6410 psi (linear) and -5560 psi (nonlinear), repsectively. This indicates positive arching behavior. The high strength of the Tuff No. 2 model combined with the structure-media interaction produces no yielding of the tuff elements in the nonlinear run. Thus, the difference between the linear and nonlinear results is caused only by the nonlinear behavior of the steel and concrete. For the nonlinear run, the steel hoop stress at the crown varies from -18,170 psi at the inner surface to -34,420 psi at the outer surface. At the springline it varies from -46,660 psi to -47,860 psi. Compression yielding of the steel liner occurs throughout the entire thickness from ±45° about the springline. This extensive yielding casts doubt on the validity of the linear run as is verified by the preposterous steel centroidal hoop stress of -214,410 psi at the springline. Examination of the concrete hoop and radial stresses indicates a thick-wall cylinder behavior for the concrete shell. The radial stress at any location varies throughout the thickness, while the much larger hoop stresses transmit the load around the cavity. At the maximum load, the concrete is plastic to ±45° from the springline throughout its entire thickness. The concrete hoop stress at the crown varies from -5510 psi at the inner surface to -17,840 psi at the outer surface, and at the springline it varies from -45,570 psi to -28,870 psi. This maximum hoop stress at the springline is approximately eight times the unconfined compressive strength ($f_c^1 = 5500 \text{ psi}$). References presented in Appendix A indicate that plain concrete subjected to multi-axial loading exhibits more ductility and higher strength than concrete subjected to uniaxial or biaxial loading. The extremely high concrete stresses seem in line with experimental data.

SUMMARY

Based on these response calculations, the three Mighty Epic structures seem adequate for the 0.5 Kbar load level. However, this conclusion is predicated on the appropriateness of the material models. This is of particular concern for the concrete models, which were derimed from little more than estimated values of $f_{\rm C}^{\star}$. Significant confidence in calculations can not be established until better material data is gathered and its validity checked against prototype structures.

ACKNOWLEDGMENTS

This study was sponsored by the Defense Nuclear Agency under Subtask Y99QAXSC318. Dr. Kent Goering monitored the work and provided valuable assistance and information necessary for the calculations.

The authors gratefully acknowledge the assistance provided by Mr. V. J. Gerwe, structural engineering technician (CEL) in preparing the figures.

Table 1. Material Properties

	rtion el								See Appendix A
	Curve Description Model								See
es Model	Post Yield Mod- ulus ET (psi)				30,000	30,000			
von-Mise	Yield Stress ^O y (psi)				36,000	40,000			A.62
Drucker-Prager Model von-Mises Model	Friction Angle \$\phi\$ (Degrees)	9.23	18				35	35	
Drucker-Pr	Cohesion c (psi)	435	1100				3600	1980	
lodel	Poisson's Ratio	0.286	0.286	0.30	0.30	0.30	0.24	0.17	
Linear Model	Young's Modulus E (psi)	448,173	600,000	30,000,000	30,000,000	30,000,000	5,700,000	4,264,000	
	Composite Integral Lining		×			×		×	
e.	Composite Built-Up Lining		x		×				x
Structure	Homogeneous Sphere	x					×		
	Cavity	×		×					
	Free	×							
	Material	Tuff No. 1	Tuff No. 2	Steel	Steel	Steel	Fiber Reinforced Concrete	Reinforced Concrete	Cellular Concrete

Table 2. Static Results for Mesh 3.0

		Materia	Material Model For	Large			Tuff	Tuff Response: 6,	δ _V · δ _H · σ _Z · σ _Y · σ _Z γ Order in Columns	92Y Order in	Columns			0.70	X, 1, X1, X1, A, 1,	12,
10 P	Description			(= of	r.k	В	J	q	Е	£	9	z	-	1	×	7
		ii.	Cavity Liner	\Steps/	31 q1	57 33	113 57	10 129	234 144	233 128	228 124	225 121	458 144	-	16	33
SCI	Linear elastic	Linear	Linear elastic	No (I)	-19.25	-19.11	-19.00	-17.22	-15.86	-15.86	-15.84	-15.83	-14.51	-100	-18160	-100
	unlined cavity		ž		0.0	-0.08	0.0	0.0	60:0-	-0.01	-0.02	0.0	0.0	-1880	-190	-1940
					-7200	-7280	-7260	-800	-14830	06801~	-7670	-7390	-790	100	870	-110
					-3340	-2800	-2620	-2960	-1910	-3210	-3150	-3050	-3000			
					40	06	40	280	470	130	30	10	280			
SC2	Nonlinear	Drucker-	Drucker-	No (16)	-22.3	-22.1	-21.6	-20.9	-18.2	-18.2	-18.2	-18.2	-15.62	-3320	-8100	-3290
	unlined	Prager	Prager tuff		0.0	-0.35	0.0	0.0	-1.62	06:0-	91.0-	0.0	0.0	-6230	4600	9190
					-7220	-7270	-7465	-3300	-8500	-8700	-8100	-7520	-3260	143	170	-140
					-516()	-4460	4520	-6200	-4850	0009-	-5040	-5900	-6148			
					30	165	284	143	160	165	96	20	-142			
SC3	Linear elastic	Linear	Linear elastic	Yes (16)	-19.30	-19.1	-19.0	-17.2	-15.86	-15.86	-15.84	-15.83	-14.51	86-	-18160	-98
	unlined cavity, incl.	elastic			0.0	90.0	0.0	0.0	-0.094	-0.094	0.025	0.0	0.0	-1878	161-	-1942
	deformation				-7200	-7280	-7250	-795	-14830	06801-	-7670	-7400	-190	104	870	-106
					-3340	-2800	-2620	-2960	-1910	-3200	-3150	-3050	-2998			
					38	87	35	283	470	128	25	8	-280			
SC4	Nonlinear	Drucker-	Drucker-	Yes (16)												
	cavity	rrager	rrager turr							peg	Bad Pivot					
	deformation															
SCS	_	Linear	Linear elastic	No (I)	-18.9	6'81-	-18.9	-16.5	-15.7	-15.7	-15.7	-15.7	-15.0	-1747	-325000	-1744
	steel lined	elastic	steel		0.0	0.026	0.0	0.0	0.279	0.217	0.051	0.0	0.0	-125000	-3480	-124500
	cavity				-7225	-7250	-7250	-4030	-7150	-7250	-7260	-7238	-4035	6144	18191	-6145
					-2999	-2890	-2860	-3500	-5900	-4650	-3210	-3064	-3556			
					20	40	20	400	-250	161-	91-	-1.9	-74			
926	Nonlinear	Drucker-	Linear elastic	No (16)	-21.5	-21.4	-21.3	-18.8	-17.83	-17.83	-17.81	-17.80	-16.86	-2600	-317700	-2600
	tuff with	Prager	steel		0.0	-0.089	0.0	0.0	0.412	0.346	0.117	0.0	0.0	-208500	-3516	-208500
	cavity				-7220	-7250	-7280	-5500	-7100	-7250	-7250	-7230	-5500	10200	15400	-10200
					-4570	-4500	-4480	-5200	-6000	-5230	-4650	4580	-5260			
					6.0	-50	-30	-25	-240	-90	-10	5.0	-18			
203	Nonlinear tuff with	Drucker- Prager	Linear elastic	Yes (16)												
	steel lined cavity, incl.															
	large															

*Location of response, see Figure 12. All values of stress/strain taken from element centrold.

*Blode number associated with displacement (inches) (6, vertical, and 8_H horizontal).

*Element number associated with stress/strain (2₂ and c₂ vertical, c₃ and c₃ horizontal, and c₃₉ and

Table 3. Static Results for Mesh 3.1

11			Material	d Model Lor	Laree			Puff	Tuff Response:	0 1/0 Hg Ag	Y. Orde	Ay AH O O Oy Oy. Oy. Order in Columns			1 0	Liner Response	
Little Carrol Linear datasic lateral classes with selection of the control of t	Prob	_			Detorm	r,	~	5	-	3	-	3	-	-	-		-
Union regard Linear claims	<u> </u>		Tutt	Cavity Liner	(Steps)	y 91			,	4	-		=	-			1 2
Nonlinear Durkter Du								,	-								
Notificiary Practical Control of the control of	*	unlined	clastic	Linear clustic	(E) 00												
Production Direct Product Pr								1							1	1	17.7
State Stat	S	Nonlinear	Drucker-	Drucker-	No (16)	-24.5		-52.7	-23.1	-20.0	-20.0	4.91-	1.61-	-17.0	-3700	05:0-	-16.10
Linear classic linear classic letternations 1,22,61 1,22,61 1,24,61		cavity				0.0		0.0	0.0	1.78	-0.92	0.40	0.0	0.0	-6850	-5340	-6700
Second						-7250		-7400	-3700	0096-	9720	-8760	-3580	-7870	150	-189	-150
Linear classic Linear						-5680		4500	0089-	-5600	-5660	-5450	-6630	-5250			
Linear clastic Linear clastic clastic Linear clastic Cartifician actually actually actually actually actually classical linear clastic Linear clastic Linear clastic Cartifician actually cartifician actually classical linear clastic cartification actually cartifician actually classical linear clastic Cartifician actually cartifician actually classical linear clastic Linear clastic Cartifician actually classical linear classic Cartifician actually classi						22		ئ	150	175	061	366	-150	230			
Public particular pa	SC3	Linear elastic	Linear	Linear elastic	Yes (16)	-20.4		-19.9	-18.4	-16.96	-16.96	-16.82	-16.7	-15.5	-104	-20630	-102
Nominear Ducker Prager Linear clastic No (16) A Nominear Ducker Linear clastic Linear cl		unlined cavity, incl.	elastic			0.0		0.0	0.0	-0.07	-0.02	890.0	0.0	0.0	-1890	-230	-1815
Nonlinear and purker Praget uff autic class Praget uff and purker Praget uff autic class		deformation				-1245		-7250	-830	-16560	-12000	-8500	-7540	-825	-100	-1019	-100
Nonlinear activity includes activity includes activity includes a page to Linear delatic						-3430		-2520	-3140	-2280	-3660	-3360	-3260	-3050			
Nonlinear Praget utf Prag						22		2	300	510	110	100	09	-295			
Linear elastic Linear clastic No (1) -20.5 20.1 -18.0 -17.2 -17.1 -16.9 -16.3 -1900 -357900 -357900 -3790	SC4	Nonlinear	Drucker-	Drucker-	Yes (16)												
Linear clastic Linear clastic Linear clastic No (1)		cavity incl.	Prager	Prager tuit							9	Bad Pivot)					
Linear elastic tuff with steel incd cavity Linear elastic tuff with steel incd cavity Linear elastic tuff with steel incd cavity, incl. late incd cavity. Linear elastic tuff with steel tuff with steel incd cavity. Linear elastic tuff with steel with with steel tuff with steel tuff with steel		deformation															
unit with steel ined cavity 1	8	Linear elastic	Linear	Linear elastic	No (1)	-20.5		20.1	-18.0	-17.2	-17.2	-17.1	-16.9	-16.3	-1900	-357900	-1850
Nonlinear Drucker Linear elastic Ver (16) Assistant Pager Assistant Pager Assistant Pager Assistant Pager Assistant Assistant Pager Assistant		steel lined	elastic	Nec.		0.0		0.0	0.0	0.32	0.25	0.08	0.0	0.0	-134000	-3800	-132800
Nonlinear Drucker- Linear elastic Ver (16) Steel Interference Linear elastic Ver (16) Steel Steel Interference Ver (16) Steel S		cavity				-7280		-7250	4200	-8150	-8100	-8050	-7570	180	6620	-17400	-6500
Nonlinear Drucker Linear elastic No (16) Sa Linear elastic No (16) Sa Linear elastic Sa Linear elastic						-3020		-2650	-3390	0099-	-5130	-3400	-3300	-3333			
Nonlinear Drucker- Linear elastic tuff with Prager steel steel lined cavity Nonlinear Drucker- Linear elastic tuff with Prager steel cavity, incl. large deformation						6-		-	370	-340	-210	09+	55	-376			
steel lined cavity Nonlinear Drucker- Linear elastic tuff with Prager steel cavity, incl. large deformation	908	Nonlinear	Drucker-	Linear elastic	No (16)									*			
Nonlinear Drucker- Linear elastic tuff with Prager steel cavity, incl. large deformation		steel lined cavity															
	SC7	Nonlinear tuff with	Drucker- Prager	Linear elastic	Yes (16)												
large deformation		steel lined cavity, incl.															
		large															

⁸Location of response, see Figure 12. All values of stress/strain taken from element centroid.

⁸Node number associated with displacements (inches) (6_γ vertical, and 6_H horizontal).

⁹Element number associated with stress/strain (σ_χ, and c_χ vertical, σ_γ and c_χ horizontal, and σ_{χχ} and c_{χχ} and

Table 4. Static Results for Mesh 3.2

Material Model For Large Deform.			Tuff	Tuff Response:	H9 . A9	(+) . A 20 . A 20 . A 20 . A 9		~	Colums		Steel	Steel Liner Response:	. , , , , , , , , , , , , , , , , , , ,
_	+	B	- 1	J	٥	2	٤	0	=	-	-	×	1
1 lb 1 c 41 11	11 14	=		91 18	11 8	171 40	170 39	166 38	161 36	331 80	-	8	91
Linear elastic No (1) -19.38 -19.23	-19.23	_		-19.14	-17.36	-15.98	-15.98	-15.97	-15.95	-14.62	69	-18171	69
0.0 -0.09		-0.09		0.0	0.0	60 07	+0.01	+0.03	0.0	0.0	-1890	-244	6661-
-7164 -7287		7387	_	-7279	-2022	-11093	-8509	-7804	-7390	-1988	+201	+1763	-212
-3207 -2825		2825	-	-2710	-3687	-2348	-3295	-3162	-3049	-3721			
+83 +121	-	7	17	+58	+748	+413	+15	\$1+	6+	-733			
Drucker- No (16) -27.65 -25.62	_	25.	_	-23.14	-32.16	-21.45	-21.06	-19.68	-19.65	-11.26	-405	-755	-3192
Prager tuff 0.0 -1	-	7	-1.74	0.0	0.0	-17.67	-12.77	-0.49	0.0	0.0	-1651	+361	-1646
6840 -1929		79	-	1611-	+8827	+6399	-2376	8619-	-8832	+9053	+379	+101	+517
-7450 -5251		2	-	4578	*7597	+7929	-764	-3969	-6543	+7839			
+328 +1036		2	36	+308	+527	+152	+224	+443	+214	-397			
Linear elastic Yes (16) -19.06 -18.91	_	18	-	-18.81	-17.07	-15.72	-15.72	-15.70	-15.68	-14.38	68	-18653	99-
0.0 -0.09	-	9	8	0.0	0.0	-0.08	+0.02	+0.03	0.0	0.0	-1770	-266	-1883
-7170 -7285	_	72	-	-7273	-1989	-11038	-8484	-1789	-7377	+561-	183	1877	-194
-3219 -2821		28	-	-2703	-3637	-2438	-3349	-3184	-3058	-3672			
811		=	6	99	740	393	7	15	9	-723			
Ducker. Yes (16)							Blew at T	Blew at Time Step 8 (Bad Pivot)	3ad Pivot)				
Linear elastic No (1) -19.07 -19	-	6	-19.01	-18.98	-16.63	-15.86	-15.86	-15.85	-15.85	-15.09	-2090	-322047	-2080
0.0	_	7	-0.03	0.0	0.0	0.29	0.20	0.0	0.0	0.0	-126817	4590	-126975
72201		-	-7265	-7259	4738	-7478	-7356	-7300	-7238	4713	12279	-31791	-12238
-2991 -2		~	-2877	-2852	-2849	-5137	-3724	-3281	-3066	-2865			
29	29	- 1	33	12	527	-397	-133	97	φ	-518			
Linear elastic No (16) -21.81 -2	_	"	-21.71	-21.53	-19.16	-18.12	-18.12	-18.12	-18.08	-17.09	-3541	-313041	-3506
0.0			-0.14	0.0	0.0	0.51	0.42	0.21	0.0	0.0	-213498	4375	-212923
r- 2221-		-	-7280	-7294	-5808	-7557	-7431	-7312	-7253	-5795	20887	-30675	-20737
7 7197		-	4474	-4470	4378	-5709	-5004	4782	-4631	4388			
17	17	,	55	80	318	-246	99-	æ	24	-316			
Liner elastic Yes (16) -21.40 -2	_	~	-21.26	-21.02	-18.85	-17.74	-17.74	-17.73	-17.69	-16.64	-3308	-307537	-3271
0.0			-0.19	0.0	0.0	09:0	0.51	0.27	0.0	0.0	-213218	4329	-212185
1231			-7283	-7286	-5664	-7687	-7497	-7341	-7244	-5636	20419	30635	-20230
4667 4474	-	4 1	-+	3 7	4372	-5927	-5163	4878	74686	4373	1	1	
n			77	•	298	-226	67	0.37	31	-294			

^alocation of Response, see Figure 12. All values of streat/strain taken from element centroid.

^bNode number associated with displacements (8, vertical, and 8₁₁, horizontal).

Element number associated with streat/strain (9₂, and e₂, vertical, o₂ and e₃, horizontal, and e₂y and e₂y, sheat).

Table 5. Static Results for Mesh 3.3

No. December Cont. December			Material	Material Model I or	Large			Tuff	Tuff Response:	10. Hq 19	0 y. 0, y. Or	δ _V , δ _H , σ _V , σ _Y , σ _{YY} . Order in Columns	*		T	Liner Response.	, , , ,
Linear charks Linear chains Fig. Cata Linear Charks Linear chains	Prob.	Description			Deform.	P.V	n	0	a	ш	-	O	=	-	1	×	1
Linear chaine Linear chain			Tuff	Cavity Liner	(Steps)	31 q1											
Notice Park	3	Linear elastic		Linear elastic	No (1)												
walking and walking wal		cavity															
Marine Parke Par	SC2	Nonlinear	Drucker-	Drucker-	No (16)	-27.27	-25.56	-23.22	-37.16	-20.84	-20.55	-19.35	-19.36	-5.87	-1030	-1869	-204
Figure 1 Figure 2 Figure 2 Figure 3		cavity	rager	такет		0.0	-1.62	0.0	0.0	-19.42	-12.85	-1.00	0.0	0.0	-2847	-387	-1611
Monitorate Linear chaire						-7236	-7332	-	+2411	+1665	8774	-8667	-9420	+4155	-32	124	-78
Manifectation Linear classic lates 18.56 18.61 18.75 18.51 18.52 18.52						9006-	-5109		+2288	+1995	-2359	4987	-6474	+3687		1	
Linear chark Line						35	496	11	11	27	210	321	136	67			
Project	SC3	Linear elastic	Linear	Linear elastic		-18.76	-18.62	-18.51	-16.76	-15.42	-15.42	-15.41	-15.39	-14.09		8772	-109
Particulation Accordance		unlined cavity, incl.	elastic	in a		0.0	-0.09	0.0	0.0	-0.08	0.01	0.03	0.0	0.0	ė.	1.9	-1701
Nowlhear Drucker: Dru		large				-7202	-7242	-7246	-749	-13832	-10783	-7639	-7391	-837		1.593	-180
Nowlinear Hayer Frager Luff Charter Area Luff Charter						-3320	-2804	-2892	-3122	-2016	-3332	-3157	-3067	-3207			
Nonlinear Drucker-						99	47	=	521	109	991	33	*	-527			
Linear classified Linear classi	30	Nonlinear	Drucker-	Drucker-	Yes (16)										4		
Linear diatric Linear Linear chainte chaife chaife ebaife reference control of the chaife cha		unlined cavity incl.	Prager	Prager tuff								(Bad Pivot)					
Luncar charife (Linear Linear lastic No (1) -18 80 -18.73 -18.71 -16.36 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.59 -15.56 -15.59		large deformation															
Line First	SCS	Linear elastic	Linear	Linear elastic		-18.80	-18.75	-18.71	-16.36	-15.59	-15.59	-15.59	-15.58	-14.82	-2669	-325163	-2603
The cavity in the late of the cavity in the late of th		tuff with	ebstic	age e		0.0	-0.03	0.0	0.0	0.28	0.2089	0.01	0.0	0.0	-123141	-5831	-123000
Monitinear Drucker- Linear elastic No (16) -21.34 -21.05 -21.09 -18.65 -54.05 -17.65 -17.		cavity				-7246	-7249	-7250	-3946	-7547	-7392	-7266	-7239	-3980	11216	28351	-11091
Nonlinear land vice in turn with steel in turn with ateel lined deformation Drucker. Linear elastic language in turn with ateel lined deformation 49 15 2 577 477 -298 -3 3 -546 -1565 -17.66 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29						-3060	-2868	-2816	-2966	-5922	-4621	-3199	-3067	-2940			
Nonlinear Lunear clastic Notice and carried integrated integrated integrated and cavity intell integrated and cavity intell large integrated and cavity intell integrated and cavity intelligent and cavity and cavity intelligent and cavity intelligent and cavity an						6+	15	2	577	-477 .	-298	-3	3	-546			
vired intered cavity Tager steel ined cavity Tager steel ined cavity According to a steel ined cavity 0.0 0.045 0.45 0.36 0.045 0.045 0.046 0.045 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.047 0.046 0.047 0.040 0.017.29 0.17.29 0.17.29 0.17.29 0.17.29 0.17.29 0.17.29 0.17.29 0.17.29 0.17.20 0.00	SC6	Nonlinear	Drucker-	Linear elastic	No (16)	-21.34	-21.25	-21.09	-18.65	-17.66	-17.66	-17.65	-17.63	-16.67	4516	-312921	4470
Tayling the fired carlin, inclination deformation and a series and a s		tuff with steel lined	Tager	a dec		0.0	-0.13	0.0	0.0	0.45	0.38	0.18	0.0	0.0	-213262	-5403	-212442
Monitinear Drucker- Linear clastic Yes (16) -20.91 -20.84 -18.29 -17.29		cavity				-7253	-7234	-7253	-5465	-7646	-7569	-7290	-7246	-5441	19118	27369	96681-
Nonlinear Drucker- Linear elastic Yes (16) 4-20.91 -20.81 -20.64 -18.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.29 -17.20 -16.31 -4400 -314600 -3400 -3						-4649	4483	4430	₹208	-6040	-5355	-4684	6191	-4453			
Nonlinear Drucker. Linear clastic Yes (16) -20.91 -20.81 -20.64 -18.29 -17.29 -17.29 -17.26 -17.26 -16.31 -4400 -314600 rate lined steel ined steel ined steel ined cornation deformation						q	15	3	373	-284	-111	52	13	-356			
Trager steet 0.0 -0.13 0.0 0.0 0.40 0.40 0.40 0.09 -201900 -5400 -5400 -7260 -7240 -7240 -5370 -7730 -7300 -7330 -7350 -7360 -7360 -7360 -7360 -7360 -7360 -7360 -7360 -7360	SCI	Nonlinear	Drucker-	Linear elastic		-20.91	-20.81	-20.64	-18.29	-17.29	-17.29	-17.28	-17.26	-16.31	4400	-314600	₹360
-7260 -7230 -7240 -5370 -7730 -7730 -7730 -7730 -7350 -8350 18630 27500 4680 -4480 -4420 -4520 -6120 -5410 -4700 -4650 -4660 -7500 0.0 10 0.0 380 -280 -110 30 10 -360 -360		steel lined	rrager			0.0	-0.13	0.0	0.0	0.47	0.40	0.19	0.0	0.0	-207900	-5400	-201000
-4680 -4480 -4420 -4520 -6120 -5410 -4700 -4630 0.0 10 0.0 380 -280 -110 30 10		large				-7260	-7230	-7240	-5370	-7730	-7610	-7290	-7230	-5350	18630	27500	-18500
10 0.0 380 -280 -110 30 10		deformation				-4680	-4480	-4420	4520	-6120	-5410	4100	-4630	-4460			
						0.0	01	0.0	380	-280	-110	30	01	-360			

*Location of response, see Figure 12. All values of stress/strain taken from element centroid. Bhode number associated with displacements ($\delta_{\mathbf{v}}$ vertical, and $\delta_{\mathbf{H}}$, horizontal). Element number associated with stress/strain ($\delta_{\mathbf{z}}$ and $\epsilon_{\mathbf{z}}$, vertical, $\sigma_{\mathbf{y}}$ and $\epsilon_{\mathbf{y}}$, horizontal, and $\sigma_{\mathbf{z}\mathbf{y}}$ and $\epsilon_{\mathbf{z}\mathbf{y}}$, wheat).

Table 6. Dynamic Results for Mesh 3.0

Prob. Prop. DCI				Large		101	o suods	A . 2 . H . A	Tuff Response: 6, 6H. 92, 9V. 92V (Time of Peak Stress) Order in Columns	ic of reak stre	iss) Order in	Columns		A, .Z, .AZ, .Ao .Zo	12, . 1, . 2, . 12, . 10, . 10, . 20	Y2,
	Description			(# of	P.V	8	o	a	Е	F	5	Ξ	-	-	×	1
		Tuff	Cavity Liner	(Steps)	1 p 1c	57 33	113 57	10 129	234 144	233 128	228 124	121 222	458 144	-	91	32
	Linear elastic unlined cavity	Linear elastic	Linear elastic tuff	No (44)												
2	Nonlinear unlined cavity	Drucker- Prager	Drucker- Prager tuff	No (44)												
DC3	Linear clastic	Linear	Linear elastic	Yes (44)												
5 6 2	cavity, incl.	elastic	ě													
9	deformation															
DC4 No	Nonlinear	Drucker-	Drucker-	Yes (44)												
ESE	unlined cavity, incl. large	Prager	Prager tuit													
8	deformation															
DCS	Linear clastic	Linear	Linear elastic	No (44)	-6.99	-6.93	48.9	-5.20	4.55	4.55	4.59	4.55	-3.89	-1680	-320980	-1650
2 %	steel lined	custic	2		0.0	-0.06	0.0	0.0	0.25	0.20	0.07	0.0	0:0	-121210	-3400	-117910
8	MIY				-7260	-7280	-7210	-3670	-7217	-7150	0669-	-2090	-3640	2890	15570	-5830
					-2920	-2920	-2870	-2970	-5940	-4650	-3170	-2940	-2930			
					5	6	7	310	-330	-170	<i>t-</i>	-30	-340			
					(10.4)	(10.4)	(10.4)	(13.6)	(15.2)	(15.2)	(14.4)	(14.4)	(15.2)	(14.4)	(15.2)	(15.2)
DC6 No	Nonlinear	Drucker-	Linear elastic	No (44)	-7.44	-7.36	-7.24	-5.43	4.63	4.63	4.59	4.57	-3.74	-2428	-298613	-2475
2 %	steel lined	rager	steel		0.0	-0.07	0.0	0.0	+0.40	+0.34	+0.10	0.0	0.0	-198393	-3325	-204448
8	AII)				-7231	-7226	-7173	1881	-7055	1717-	-7047	-6994	-5058	+9729	+14511	-10034
					-4498	-4492	-4454	+804	-5891	-5246	4570	4369	4555			
					+3	-7	-3	194	-210	-101	-52	-30	-203			
					(10.4)	(10.4)	(10.4)	(14.4)	(15.2)	(15.2)	(15.2)	(15.2)	(16.0)	(14.4)	(15.2)	(15.2)
DC7 No	Nonlinear	Drucker-	Linear elastic	Yes (44)	-7.40	-7.31	-7.18	-5.44	₹9.62	4.62	€5:1	₹.56	-3.70	-2467	-295135	-2532
2 %	steel lined	Frager	steel		0.0	-0.08	0.0	0.0	+0.45	-0.39	+0.12	0.0	0.0	119661-	-3528	-207253
3 4	cavity, incl.				-7262	-7258	-7200	0181	-7147	-7275	-7070	-7028	-7147	+9603	+15373	6466-
8	Tormation				-4521	4517	-4471	+204	-6066	-5456	-4636	4353	9909-			
					÷	-1	φ	+181	-276	-137	-56	ş	-276			
					(10.4)	(10.4)	(10.4)	(14.4)	(15.2)	(15.2)	(15.2)	(14.4)	(15.2)	(14.4)	(15.2)	(15.2)

**Location of response, see Figure 12. All values of streadstrain taken from element centroid.

**Divode number associated with displacements (6, vertical, and 6₁₁, horizontal).

**Element number associated with stread/strain (0, and 6, vertical, 0, and 0, and

Table 7. Dynamic Results for Mesh 3.1

Maintain											-						
Decision Telegraphic Tel			Materia		Large		Tuff Res	bonse:d 6,	10.20 Hg.	V. "2Y (I	ime of Peak	Stress) Order	in Columns		Λ ₀ . Ζ ₀	ner Response	Y,
Maintenage Linear class	£ 0.	Description			Detorm.	λ ³	В	C	Q	3	F	S	Ξ	-	-	х	1
Linear chaire Linear chair			Tuff	Cavity Liner	Steps					1		244			-	91	32
Secondary Designation De	E I	Linear elastic unlined	Linear	Linear elastic tuff	No (44)												
Nonlineary Progress Progres		cavity															
Different claiment	DC3	Nonlinear	Drucker-	Drucker-	No (44)												
Linear chaine Linear chain		cavity															
Particulary	DC3	Linear elastic	Linear	Linear elastic	Yes (44)												
Nonlinear Drucker Prager		cavity, incl.	elastic														
bonding and purples		deformation															
Direct class Paget	9 00	Nonlinear	Drucker-	Drucker-	Yes (44)												
Linear class Linear Line		unlined cavity, incl.	Prager	Prager													
Linear classic Linear Linear Classic No. (44) -7.00 -6.86 6.78 -5.20 -4.55 -4.		deformation															
Table Figure Fi	DC3	Linear elastic	Linear	Linear elastic	No (44)	-7.00	-6.86	-6.78	-5.20	4.55	4.55	4.55	4.54	-3.88	-1690	-320580	-1630
Secondary Continue		tuff with	elastic	ieel		0.0	-0.05	0.0	0.0	0.2	0.21	0.05	0.0	0.0	-117430	-3410	-117070
Monitoral Drucker Linear clastic 7-220 2-220 2-236 2-2466 2-5440 4-617 6-187		cavity				-7257		-7112	-3676	-7210	-7141	9669-	-7116	-3638	2800	15550	-5780
Nonlinear Drucker Linear classic No. (44) -7.24 -7.29 -5.43 -4.63 -4.65 -4.57 -7.029 -3.74 -3.74 -3.79 -3.74 -3.79						-2920		-2836	-2966	-5940	-4637	-3137	-2899	-2907			
Nonlinear Dructer Linear clastic No (44) -7.74 -7.29 -7.29 -5.43 -4.63 -4.63 -4.56 -4.57 -5.74 -5.249 -7.29 -7.29 -5.43 -4.63 -4.63 -4.63 -4.56 -4.57 -5.74 -5.249 -7.296 -7.29 -7.2						4	4	-12	310	-325	-167	•	×	-341			
Nonlinear line Drucker- linear classic No (44) -7.44 -7.29 -5.43 -4.63 -4.65 -4.57 -3.74 -2.30 -298060 cutf with classic lined carrity Prager lined carrity Appear lined carrity Appear lined carrity -7.24 -7.29 -5.43 -4.63 -4.63 -4.51 -3.74 -2.30 -298060 -3380 -29806 -3380 -39806 -3380 -39806 -3380 -39806 -3380 -39806 -3380 -39806 -3380 -39806 -3380 -39806 -3380 -39806 -3380 -39806 -3380 -39806 -3380 -39806 -3380 -3880 -3						(10.4)		(10.4)	(13.6)	(15.2)	(15.2)	(14.4)	(14.4)	(15.2)	(13.6)	(15.2)	(15.2)
uelf with stell ined cavity reset ined adormation reset ined cavity ined large reset ined cavity reset ined adormation	900	Nonlinear	Drucker-	Linear elastic	No (44)	-7.44	-7.29	-7.29	-5.43	€9.	₹97	4.56	4.57	-3.74	-2430	090867-	-2500
1.230 -7214 -7214 -7173 -4891 -7047 -7162 -7029 -7029 -7021 -5051 9750 14510 14510		steel lined	Traffer	zieci zieci		0.0	+0.0-	0.0	0.0	•••	0.35	0.05	0.0	0.0	096861-	-3330	-200620
Honlinear Drucker Linear clastic Act Act Act Act Act Act Act Act Act Ac		cavity				-7230		-7173	1684	-7047	-7162	-7029	-7021	-5051	9750	14510	-9850
Nonlinear Drucker. Linear elastic Yes (44) -1.74 1.04) (10.4)						-4495	-4476	4442	4508	-5890	-5237	4544	-4354	₹338			
Nonlinear Practer Linear elastic Yes (44) -7.41 -7.23 -7.24 -4.62 -4.61 -4.52 -4.56 -4.56 -3.69 -2468 -287870 -287						1.95		-15.4	195	-212	-102	-37	8	-202			
Nonlinear utf with sized lined captily inclination of the formation of the formation and the formation of the formation						(10.4)		(10.4)	(14.4)	(15.2)	(15.2)	(15.2)	(15.2)		(14.4)	(15.2)	(16.0)
Prager steel 0.0 -0.5 0.0 0.45 0.40 0.06 0.06 0.0 -200160 -3570 -370 -7265 -7065 -7042 -4986 96.20 14970 -370 -401 -401 -4086 96.20 14970 -7064 -4611 -4372 -4986 96.20 14970 -7064 -4611 -4372 -4586 P. -4704 -4611 -4372 -4586 P. -7064 -780 -138 -40 12 -175 P. -7164 P. -7	100	Nonlinear	Drucker-	Linear elastic	Yes (44)	-7.41	-7.23	-7.24	-5.44	-4.62	19:4	4.55	4.56	-3.69	-2468	-287870	-2530
-1761 -7247 -3390 -7138 -7265 -7056 -7042 -4986 9620 14970 -4518 -4499 -3077 -6064 -5446 -4611 -4372 -4586 2 -1 134 -280 -138 -40 12 -175		steel lined	Prager	steel		0.0	-0.5	0.0	0.0	0.45	0.40	90:0	0.0	0.0	-200160	-3570	-206900
4518 4499 -3077 -6064 -5446 -4611 -4372 -4586 2 -1 134 -280 -138 -40 12 -175 (10.4) (9.6) (12.0) (15.2) (14.4) (15.2) (14.4) (14.4) (14.4)		cavity, incl.				-7261	-7247		-3390	-7138	-7265	-7056	-7042	-4986	9620	14970	9980
-1 134 -280 -138 -40 12 -175 (16.4) (15.2) (16.4) (16.2) (16.4) (16.4)		deformation				4518	-4499		-3077	+909-	-5446	1194	4372	-4586			
(10.4) (9.6) (12.0) (13.2) (15.2) (14.4) (15.2) (14.4) (14.4)						2	7		134	-280	-138	0	12	-175			
								(9.6)	(12.0)	(15.2)	(15.2)	(15.2)	(14.4)	(15.2)	(14.4)	(14.4)	(15.2)

*Location of response, see Figure 12. All values of streadstrain taken from element centroid.

**Bhode number associated with displacements (6, vertical, and 6,11, horizontal).

**Element number associated with streadstrain (0,2 and e2, vertical, oy and e4, horizontal, and 0,2y, and e2y, and e2y, and e2, vertical, oy and e4, horizontal, and 0,2y, and e2y, and e2, vertical, oy and e4, horizontal, and e2y, and e2y, and e2, vertical, oy and e4, horizontal, and e2y, and e2y, and e2y, and e2y, and e2y, and e2y, ertical, oy and e4, horizontal, and e2y, horizontal, and e2y, and e

Table 8. Dynamic Results for Meth 3.2

The parameter															_		
Lineary Color) Line	404		Materia	I Model For	Large		Tuff	Kesponse:	0.H 9.A9	A'0 . A0 .	(Time of Pea	k Stress) Orde	r in Columns		10.20	mer Response	, , , ,
Mainteed Proceedings Proceeding Proceding Proce	9	Description			jo =	P _A	æ	3	Q	E	ш	9	Η	-	1	Х	1
Linear data			Tutt	Cavity Liner	Steps	Jp Ic							191	331	1	8	16
Note that the part of the pa	Ki	Linear clastic	Linear	Linear elastic	No (44)												
Notificiary Director Direct		cavity	etash.														
Linear close Line	DC2	Nonlinear	Drucker-	Drucker-	No (44)												
Linear clasive thank thank thank thank thank cashin a cavity and solution and thank thank thank clasive thank cavity in the clasive thank cavity in thank cavity cav		cavity	riakei	נומי ומווי													
Linear chark Product	DC3	Linear elastic	Linear	Linear elastic	Yes (44)												
Linear davis: Davier: Page: Pa		cavity, incl.	elastic														
Liber dating Daucker D		deformation															
Section Part	5 00	Linear elastic	_	Drucker-	Yes (44)												
Linear clastic Linear clastic Action 1		steel lined cavity		tuff													
Table Tabl	DCS	Linear elastic		Linear elastic	No (44)	86:9	-6.91	-6.83	-5.19	4.54	4.55	4.59	4.58	-3.86	-1988	-315684	0161-
10,000 1		steel lined		stee		0.0	10.0-	0.0	0.0	0.27	0.20	0.10	0.0	0.0	-120279	4518	165711-
Nonlinear utf Dructer Linear clastic Linear clastic No (44) -7.34		cavity				-7012	-7029	9269-	4483	-7253	-7048	-7019	-6903	-4445	11651	-31156	-11322
Modifinear tuff Daucker Linear clastic No (44) -7.34 -7.14 -5.39 -144 -5.9 -79 -544 -7.34 -7.34 -7.14 -5.39 -4.60 -4.60 -4.60 -4.60 -3.70 -3.176 -3.97.34 -3.18 -3.14 -3.18 -4.25 -3.14 -3.18 -4.60 -4.60 -4.60 -4.60 -3.70 -3.176 -3.97.34 -3.18 -3.14 -3.18 -3.14 -3.18 -3.14 -3.18 -3.14 -3.18 -3.14 -3.18 -3.14 -3.18 -3.14 -3.18 -3.14 -3.18 -3.14 -3.18 -3.14 -3.18 -3.14 -3.18 -3						-2719	-2805	-2827	-2794	-5031	-3660	-3190	-2952	-2618			
Nonlinear utf Drucker Linear clastic No. (44) (10.4) (10.4) (113.6) (113.2) (15.2) (14.4) (14.4) (14.4) (16.0) (13.6) (13.2) (13.2) (13.2) (13.2) (14.4) (14.4) (16.0) (13.6) (13.2) (13.2) (14.4) (14.4) (16.0) (13.6) (13.2) (13.2) (14.4) (14						6-	-33	21	487	447	-144	-59	61-	-544			
Nonlinear utflined cavity Ducker linear clastic No (44) -7.34 -7.14 -5.39 -4.59 -4.60 -4.60 -4.66 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 -1.86 -3.70 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>(10.4)</td> <td>(10.4)</td> <td>(10.4)</td> <td>(13.6)</td> <td>(15.2)</td> <td>(15.2)</td> <td>(14.4)</td> <td>(14.4)</td> <td>(16.0)</td> <td>(13.6)</td> <td>(15.2)</td> <td>(15.2)</td>						(10.4)	(10.4)	(10.4)	(13.6)	(15.2)	(15.2)	(14.4)	(14.4)	(16.0)	(13.6)	(15.2)	(15.2)
with sized lined cavity Tage: Ta	900	Nonlinear tuff	-	Linear elastic	No (44)	-7.34	-7.34	-7.14	-5.39	4.59	4.60	9.4	4.66	-3.70	-3178	-297236	-3327
Parity Prage Parity Parity Prage Parity Parity Prage Parity Parity Prage Parity Parity Parity Prage Parity		with steel lined cavity	Prager	steel		0.0	0.04	0.0	0.0	0.40	0.33	0.13	0.0	0.0	-196205	4189	-202780
Harrian Harr						-7037	-6940	-6977	-5267	-7142	-7072	-1009	-6872	-5468	19248	-29061	-19744
Nonlinear Drucker. Linear elastic Yes (44) -7.30 -7.29 -7.09 -5.40 -4.58 -4.50 (15.2) (15.2) (15.2) (15.2) (16.4) (16.0) (14.4) (15.2) (15.2) (15.2) (15.2) (14.4) (15.2) (15.2) (15.2) (16.0) (14.4) (15.2) (15.2) (15.2) (16.0) (16.0) (16.0) (16.0) (16.0) (16.0) (16.0) (16.2) (15.2) (15.2) (16.0)						4318	4226	4333	4204	-5463	₹820	4600	4241	4185			
Monitorary Drucker- Libers elastic Ves.(44) -7.30 -7.29 -7.09 -5.40 -4.58 -4.59 -4.60 -4.65 -4.65 -3.65 -3.65 -3.83866 -3.						<u>se</u>	5-	911	319	-219	-27	99	-70	-309			
Nonlinear Drucker. Linear classic Yes (44) -7.30 -7.29 -7.09 -5.40 -4.58 -4.59 -4.60 -4.65 -3.65 -3.137 -283866 intiff with steel lined cavity, incl. large deformation 4.24 -4.24 -4.24 -4.24 -4.24 -4.24 -5.17 -5.17 -5.17 -5.17 -5.17 -5.18 -5.19 -						_	(10.4)	(11.2)	(14.4)	(15.2)	(15.2)	(15.2)	(14.4)	(16.0)	(14.4)	(15.2)	(16.0)
Prager steel 0.0 0.04 0.0 0.45 0.37 0.16 0.0 0.0 -197549 -4397 -197549 -4397 -197549 -4397 -197549 -4397 -197549 -4397 -197549 -4397 -197549 -4397 -197549 -4397 -19764 -197	120	Nonlinear	Drucker-	Linear elastic	Yes (44)	-7.30	-7.29	-7.09	-5.40	4.58	4.59	9.4	4.65	-3.65	-3137	-283866	-3213
-1065 -6963 -6988 -5140 -7246 -7102 -7036 -6929 -5392 19048 28704 - 1339 -4244 4348 -4243 -5674 -5017 -4685 -4283 -4244 19048 28704 - 18 -5 114 306 -257 -37 -71 -67 -283		steel lined	Prager	steel		0.0	₩0.0	0.0	0.0	0.45	0.37	91.0	0.0	0.0	-197549	4397	-204062
-4339 -4244 -4348 -4243 -5674 -5017 -4685 -4283 -4244 19048 28704 -8783 -183 -183 -183 -183 -183 -183 -183 -1		cavity, incl.				-7065	-6963	8869-	-5140	-7246	-7102	-7036	-6929	-5392	19048	28704	-19483
-5 114 306 -257 -37 -71 -67 -283 (16.0) (14.4) (10.4) (15.2) (15.2) (14.4) (16.0) (14.4) (16.0)		deformation				4339	4244	4348	4243	-5674	-5017	4685	4283	4544	19048	28704	-19483
(10.4) (11.2) (14.4) (15.2) (15.2) (15.2) (14.4) (16.0) (14.4) (14.4)						18	ş	114	306	-257	-37	11-	-61	-283			
								_	(14.4)	(15.2)	(15.2)	(15.2)	(14.4)	(16.0)	(14.4)	(14.4)	(15.2)

^aLocation of response, set Figure 12. All values of stress/strain taken from element centrold.

blode number associated with displacements (6_v vertical, and 6_{th} horizontal).

Element number associated with stress/strain (c_z and e_z, vertical, cy and e_z, vertical, and e_zy and e_zy, and e_zy, and e_zy and e_zy

Table 9. Dynamic Results for Mesh 3.3

Column C									-	-			-			-	
Decision Table Care Long Care Ca			Material	Model For	Large		Tuff	Response:	1 6v. 6H. 9z.	9 Y. 9 2 Y. (1)	ime of Peak S	tress) Order 1	n Columns		Lin 0,.0	ner Response	**
Tuber class Tuber class State	Prob D	Description			Deform.	A.	8	0	Q	3	1	9	=	-	-	×	-
Direct Note Legar Charte Se of 44)			Tut	Cavity Liner	(Steps)												
Notificated Physics Products (1984) Notificated Physics (ž	Linear elastic unlined cavity		Linear clastic tuff	No (44)												
unitary Physics I was unitary and the color of the color	DC 7	Nonlinear	Drucker-	Drucker-	No (44)	-8.26	-7.81	-7.38	-10.76	4.27	29.4	4.65	4.57	0.25	-14440	-207420	-2250
Fig. 2009 Color		unlined	Prager	Prager tuff		0.0	-0.37	0.0	0.0	-5.24	-3.82	10.0-	0.0	0.0	-21200	-199950	-4420
Heart claim Linear claim Fact claim						-7095	-7094	-7104	-680	-3440	4210	-7220	0669-	-100	-1750	-39370	450
State Parket Pa						4414	4388	4396	-2180	-1640	-1950	4570	₹320	-2450			
Linear thing						s	12	-	180	-210	06	07	0.0	06-			
Librar closic Librar closi						(10.4)	(10.4)	(10.4)	(12.0)	(15.2)	(13.6)	(15.2)	(15.2)	(15.2)	(07.6)	(971)	(17.6)
Authorized Linear classic activity and below and the classic static activity and the classic activity and the classic activity and the classic activity activity activity activity and the classic activity a	DC	Linear elastic	Linear	Linear elastic	Yes (44)	-7.31	-7.07	-6.87	-5.78	4.60	09.4	19.4	4.55	-3.40	56-	-18882	-102
Harper H		cavity, incl.	elastic	i i		0.0	-0.19	0.0	0.0	-0.02	90.0	0.01	0.0	0.0	1861-	-347	-1858
Note Product		deformation				-7082	-7098	-7104	-566	-13846	-10678	-7254	-707-	-734	185	1603	-193
Nonlinear Drucker Dr						-2889	-2826	-2821	-3324	-2008	-3323	-2970	-2818	-3325			
Nonlinear Drucker- Prager Luff cavity incl. Nonlinear Drucker- Prager Luff cavity incl. Nonlinear Drucker- Prager Luff cavity incl. Nonlinear Drucker- Linear classic Me (44) -7.04 -6.93 -6.84 -5.23 -4.57 -4.58 -4.59 -4.55 -3.91 -2.502 -3.17970 -3.017 -3.04 -6.93 -6.84 -5.23 -4.57 -4.58 -4.59 -4.55 -3.91 -2.502 -3.17970 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.019 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018 -3.017 -3.018						1	15	1	97.9	121	185	45	•	-544			
Nonlinear Drucker: Praget tuff carrival. Linear chaite Linear chaite ch						(10.4)	(10.4)	(10.4)	(14.4)	(15.2)	(15.2)	(14.4)	(14.4)	(15.2)	(14.4)	(15.2)	(15.2)
Linear chatic Linear Linear chatic Mo (44) -7.04 6-693 6-684 -5.23 4-57 4-58 4-59 6-199 1-200 1-19982 1-5179 1-100	200	Nonlinear	Drucker-	Drucker	Yes (44)												
Linear chastic Linear chastic Ro (44)		cavity incl.	Prager	Prager tull													
Linear classic Linear classic No (44) -7.04 -6.93 -6.84 -5.23 -4.57 -4.58 -4.59 -4.55 -1.91 -2.502 -317970 Linear classic steel lined cavity with teletimed cavity and linear classic No (44) -7.04 -7.04 -6.92 -6.84 -5.23 -4.55 -7.206 -7.06 -		deformation															
Second	S	Linear elastic	Linear	Linear elastic	No (44)	-7.04	-6.93	6.84	-5.23	4.57	4.58	4.59	4.55	-3.91	-2502	-317970	-2389
Cabrity Cabr		steel lined	elastic	steel		0.0	-0.07	0.0	0.0	0.26	0.20	60.0	0.0	0.0	-119382	-5726	-115448
Nonlinear Drucker Linear clastic Ves (44) Residential Nonlinear Linear clastic Linear Linear clastic Linear Linear Linear Linear Linear Linear Linear Linear		Cavity				-7100		-7109	-3747	-7365	-7206	-7065	-7075	-3740	10875	27754	-10421
Nonlinear Drucker Linear elastic Ro (44) -7100 -7107 -4924 -7244 -7019 -7022 -5119 -4059 -295612 and will with steel lined atteil broker Linear elastic Ro (44) (10.5) (15.2) (15						-2869	-2838	-2841	-2898	-5825	4556	-3172	-2979	-2755			
Monthmar Drucker Linear clastic No. (44) -7100 -7102 -7107 -4924 -7244 -7019 -7022 -5119 -4059 -295612 -29411 -4119						3	9	0	555	431	-245	36	9	-550			
Nonlinear Drucker Linear clastic No (44) -7100 -7102 -7107 -7107 -7248 -7248 -7244 -7019 -7022 -5119 -4059 -295612						(10.4)		(10.4)	(14.0)	(14.8)	(14.8)	(14.8)	(14.8)	(15.2)	(14.4)	(14.8)	(14.8)
Second Prage Seco	920	Nonlinear	Drucker-	Linear clastic	No (44)	-7100		-7107	4924	-7248	-7244	-7019	-7022	-5119	650+	-298612	4184
Sample S		steel lined	Linker	dice		114	4396	4399	4292	-5758	-5161	-4532	-4380	4237	696261-	-5162	-203428
Nonlinear Drucker- Linear elastic Ves (44) (10.4) (10.4) (10.4) (10.4) (10.4) (10.5) (15.2)		Cavily				3	s	-	331	-338	-165	-36	-	-355	01771	28002	-18156
Nonlinear Drucker- Linear elastic tuff with Prager steel lined cavity, incl. large deformation						(10.4)	-	(10.4)	(14.4)	(15.2)	(15.2)	(15.2)	(15.2)	(16.0)	(14.4)	(15.2)	(15.2)
in a second	DC1	Nonlinear	Drucker-	Linear clastic	Yes (44)												
large large deformation		steel lined	rrager	Net.													
		large deformation															

*Location of response, see Figure 12. All values of stress/strain taken from element centroid.

**Disode number associated with displacements (sq. vertical, and 64, protectorals).

**Element number associated with stress/strain (sq. and cq. vertical, oy and cq. horizontal and sq.y and cq.y, wheat).

**General number associated with stress/strain (sq. and cq. vertical, oy and cq. horizontal and sq.y and cq.y, wheat).

**Gonly the peak responses are shown. The peak displacements occur at the end of the run at 17.5 mater while the peak stresses and strains occur at the times indicated in parentheses.

Table 10 Results for Homogeneous, Fiber Reinforced, Concrete Sphere (Mesh 4.0) - Static at Full Load; Dynamic at Peak

Photop Decirption Turis Caroly Lines Caro							-								-	-	
Turical Linear Cavity Line	Prob		Materia	Model For	Large			Tuff Respons		λ ² ₀ . λ ₀ . ² ₀	Time of Per	rder in Colum ak Stress) – I	ns) Vynamic		ο, λο, ζο	concrete Response: $a_2, a_3, a_4, a_7, a_7, a_7, a_{14}$	'2Y' (!*)
Linear Fibre Carity Linear Carity Linear Carity Linear Fibre Carity Linear Car	ID.	Description	,		(to z)	4	В	3	D	Е	_	9	Ξ	-	-	×	7
Linear Linear Fiber No (1) -18 8 -18 84 -18 85 -15 84 -15				Cavity Liner	(educh			1				1	1		9	96	96
Nonlinear Drucker Brance Since as No (44) E Since as Since as No (44) E Since as Since as No (44) E Since as Sin	SHS1	Linear	Linear	Fiber	No (1)	-18.83	-18.84	-18.85	-15.88	-15.72	-15.72	-15.72	-15.71	-15.56	-380	-31250	-380
Nonlinear Drucker Same as No (44) -6-51 -6-50 -7-360 -5-360 -5-360 -5-360 -7-36		elastic	elastic	concrete E = 5700000		0.0	0.005	0.0	0.0	0.017	-0.02	10.0-	0.0	0:0	4000	-1550	4000
Nonlinear Drucker Phager 2-366 -214 -214 -214 -1734 -1784 -1783 -1784		STATIC		v = 0.24		-7260			-10500	4630	-6400	-7180	-7250		720	1380	\$12-
Nonlinear Drucker Bucker No (15)						-2860			4050	-3300	-2700	-2830	-2880				
Nonlinear Prager Prager Prager						-5			-30	-235	-26	15	2				
Notitinear Prager	SHS2	Nonlinear	Drucker-	Drucker-	No (15)	-21.4	-21.4	-21.4	-17.94	-17.83	-17.83	-17.84	-17.85	-17.71	959-	-24210	959-
Linear Linear Same as No (44) 4500 -7080 -7080 -5400 -5400 -4450 -5700 -		STATIC	Prager	Prager 0 = 35		0.0	0.013	0.0	0.0	-0.005	-0.05	-0.04	0.00	0.0	-7350	-1400	-7420
Linear Linear Same as No (44)				0 = 3600		-7250			-9150	-5400	-6700	-7240	-7246		700	1140	-710
Linear Linear Sine as No (44)						4500			-5900	4380	4000	9574	4500				
Linear Linear Same as No (44) -6.51 -6.61 -6.60 -4.47 4.35 -4.36 -4.37 -4.38 -4.22 -9900						-			-12	-240	9	7	2				
DYNAMIC Classic SHS 17060 -708	DHSI	Linear	Linear	Same as	No (44)	-6.51	19:9-	9.60	14.47	4.35	4.36	4.37	4.38	4.22	-370	-29200	-370
Nonlinear Drucker Same as No (44)		DYNAMIC	elastic	SHSI		-7060	-7080	-7010	-9970	4370	-6050	-6700	-6730	0066-	-3750	-1450	-3800
Monlinear Drucker Same as No (44) (10.2) (10.						-2800	-2850	2830	-3850	-3100	-2500	-2670	-2700	-3800	680	1300	-680
Nonlinear Drucker- Same as No (44)						7	-19	-25	-28	-260	-50	64	8-	36			
Nonlinear Drucker Same as No (44)						(10.4)	(10.4)	(10.4)	(14.4)	(15.2)	(15.2)	(15.2)	(15.2)	(15.2)	(14.4)	(14.4).	(15.2)
-7050 -7050 -7000 -8550 -5000 -6300 -6300 -6730 -8260 -8260 -6730 -8260 -8360 -6730 -8260 -8260 -8360	DHS2	Nonlinear	Drucker-	Same as	No (44)	-6.93	-7.03	-7.03	4.46	4.38	4.37	4.37	4.43	4.28	-620	-22000	-630
4370 438 -5440 4100 -3700 4130 -4130 -5250 -15 -16 -19 1.0 40 -28 20 (10.4) (14.4) (15.2) (15.2) (15.2) (15.0)		DYNAMIC	rrager	26115		-7050	-7050	-1000	-8550	-5000	-6300	0089-	-6730	-8260	-7000	-1300	-7000
-15 -16 -18 -190 1.0 -40 -28 20 (10.4) (14.4) (15.2) (15.2) (15.2) (15.2) (16.0)						4360	4370	4350	-5440	100	-3700	4130	-4130	-5250	654	1000	-630
(10.4) (10.4) (15.2) (15.2) (15.2) (15.2) (16.0)						-50	-15	-16	-18	-190	1.0	04	-28	20			
						(10.4)	(10.4)	(10.4)	(14.4)	(15.2)	(15.2)	(15.2)	(15.2)	(16.0)	(15.2)	(15.2)	(16.0)

(1°) = Time of peak stress.

Stresses (psi)

Table 11. Results for Composite Built-Up Liner (Mesh 5.0) - Static at Full Load: Dynamic at Peak

															Contract Description				
40		Material Model For	odel For	Large		Tuff	Tuff Response:	λ ² ₀ . λ ₀ . ² ₀ . λ ₀ . ² ₀ . λ ₀	ο, ο ΙΙ. ος, ογ. οχν. ((*)	Dynamic -	Order of Columns	dumns		10. A0. 20	(a)) . X7 , . X , . Z , . Z X o . X o . Z o		(a)) . X2, . X3, . Z3, . ZX0 . X0 . Z0	1.1.1.1	
G	Description	Steel/		(go #)	<		J	Q	Е	4	ა	=	-	1	×	-	-	×	-
		Concrete		Adver	-	83 b	105 16	11 8	219 40	218 39	214 37	300 36	427 40	-	×	91	7	16	32
SBLI	Linear	Linear	Linear	No (1)	-15.32	-15.24	-15.18	-13.70	-12.84	-12.84	-12.83	-12.82	86°11-	-330	-10880	-330	1164	-560	069-
	STATIC STATIC	chalic	chanc		0.0	-0.05	0.0	0.0	-0.03	0.03	0.03	0.0	0.0	-10680	9:7	-10680	049	065-	0+9-
					-7180	-7250	-7270	-2580	05101-	-8220	-7450	-7340	-2550	1020	1050	-1020	0	-10	0
					-3130	-2990	-2760	-3450	-2570	-3350	-3060	-3030	-3470						
					09	120	40	099	320	-20	01	0	059-						
SBL2	Nonlinear	Steel.	Drucker-	No (16)	-14.39	-14.30	-14.24	-12.73	-11.90	-11.90	-11.89	-11.88	-11.09	2610	-35630	2580	-1500	-1110	-1500
	material, STATIC	von-Miges concrete,	Frager		0.0	-0.05	0.0	0.0	-0.10	-0.06	0.05	0.0	0.0	-27890	4600	-27860	-840	0691-	-840
		description			-7180	-7250	-7270	-3200	-9360	-8260	-7430	-7330	-3170	2950	4890	-2940	40	-130	9
					-3130	-2990	-2760	-3230	-2460	-3610	-3150	-3100	-3240	4	-1740	440			
					70	130	40	999	310	9	0	0	-550	-880	1170	-880			
														260	069	-260			
DBLI	Linear	Linear	Linear	No (44)	-6.14	-6.07	-5.93	4.97	4.26	4.25	4.26	4.24	-3.56	₹20	-11300	-380	-940	-630	-910
	material, DYNAMIC	elastic	elastic		-6920	0969-	-7020	-2660	-10420	-8010	-7110	0869-	-2510	-12320	48 0	-11160	-860	099-	-830
					-2720	-2750	-2800	-3260	-2620	-3360	-2890	-2850	-2890	1170	0601	-1060	0	-20	0
					20	01	20	570	270	-80	-100	-70	-590						
					(10.4)	(10.4)	(10.8)	(12.8)	(14.4)	(14.4)	(14.0)	(14.0)	(16.4)	(13.6)	(14.4)	(16.4)	(13.2)	(14.4)	(17.6)
DBL2	Nonlinear	Steel,	Drucker-	No (44)	6.14	90.9-	-5.93	4 .98	4.25	4.25	4.25	4.24	-3.50	3800	-34680	2890	-1590	-1130	-1320
	material, DYNAMIC	von-Mises concrete,	Lage:		-6930	-6970	-6970	-3070	-9110	-7930	-7010	-6870	-2950	-29770	2800	-25390	026-	-1610	-790
		curve			-2700	-2740	-2820	-2980	-2260	-3560	-2950	-2810	-3230	3130	4160	-2630	20	-110	-30
					10	0	0	480	280	-110	-130	09-	-560	200	-1510	420			
														-950	066	-810			
														270	520	-230			
					(10.4)	(10.4)	(10.4)	(12.8)	(14.4)	(14.4)	(14.4)	(14.4)	(15.6)	(14.4)	(14.8)	(15.2)	(13.6)	(14.8)	(16.0)

able 12. Results for Composite Integral Liner (Medi 6.0). Static at Itali Load. Dynamic at Peak

Description Steel/ Concrete Linear Material, converte STATIC innear elastic imaterial, converte Davker- Prager Linear Steel, innear material, converte Davker- Prager innear elastic innear material, converte innear material, converte innear material, converte innear material, clastic fastic			2	and weshouse	$_{0}$, $_{0}$,1) X ² ₀	$\delta_{\mathbf{v}}, \sigma_{\mathbf{z}}, \sigma_{\mathbf{y}}, \sigma_{\mathbf{z}} \mathbf{y}, \dots (\mathbf{t}^{\bullet})$ — Dynamic	-	Order of Columns		X2, .X, .Z, .X20 .X0 .20	$(\bullet_1)\cdot \lambda^2, \cdot \lambda, \cdot^2, \cdot \lambda^2, \cdot^2\lambda \cdot (1_\bullet)$		(a) . X2, . X, . Z, . X2, . X0, . X0, 20		1) . K2, . K, 2, . K2, . K, . Z,
Linear Steet, linear elastic material, concrete linear elastic material, won-Mises STATIC concrete Drucker- Prager Elinear Steet, material, concrete Drucker- Prager elastic concrete, inear material, clastic concrete, linear elastic linear elastic	(to =)	V	В	С	D	Е	F	G	н	-	-	×	7	-	×	-
Linear Steet, imear material, concrete inear elastic material, concrete imeareial, condition material, concrete Drucker. Prager material, elastic dastic dastic inear elastic	(dan)	1 1	53 6	105 16	11 5	219 40	218 39	214 37	209 36	427 40	-	œ	91	2	91	32
Nonlinear Steel, imear elastic imear elastic imear elastic imear elastic material, von-Mises STATIC concrete Drucker- Prager material, elastic imear elastic imear elastic	No (1)	-37.41	-37.41	-37.41	-35.38	-35.07	-35.07	-35.07	-35.07	-34.76	-770	-214410	-770	-2170	-24110	-2160
Nonlinear Steel, material, concrete STATIC concrete Drucker- Prager Linear Steel, linear material, clastic linear concrete, linear elastic		0.0	0.0	0.0	0.0	0.12	90.0	0.03	0.0	0.0	-31060	4020	-31280	-8820	-6430	-8790
Nonlinear Steet, material, concrete STATIC Concrete Drucker- Prager Linear Steet, linear material, clastic DYNAMIC concrete, linear elastic		-7250	-7250	-7250	-6410	0299-	-7110	-7230	-7230	0689-	3370	20550	-3300	1800	630	-1790
Nonlinear Steet, material, von-Mies STATIC concrete Drucker- Prager Linear Steet, linear material, concrete, linear elastic		-2900	-2900	-2910	-2950	7450	-3190	-2960	-2940	-2460						
Nonlinear Steel, material, con-Mises STATIC Energet Drucker- Prager Linear Steel, imear material, clastic DYNAMIC concrete, linear elastic		0	0	0	280	-360	09-	-10	-10	-280						
Maderial, converter Prager Prager Prager Prager Prager Prager Prager DYNAMIC concrete, linear linear clastic linear clastic	No (16)	-37.46	-37.44	-37.43	-35.51	-35.09	-35.09	-35.09	-35.09	-34.67	-620	46520	450	-1580	40780	-1570
Ducker- Prager Linear Steel, linear material, concrete, linear linear elastic		0.0	-0.01	0.0	0.0	91.0	60:0	0.03	0.0	0.0	-26190	-730	-26400	-8480	-2880	-8440
Linear Steel, imear material, elastic DYNAMIC concrete, linear elastic		-7230	-7250	-7260	-5560	-7360	-7310	-7260	-7240	-5540	2720	4550	-2740	1290	3590	-1280
Linear Steel, linear material, elastic DYNAMIC concrete, linear elastic		-2950	-2920	-2880	-2890	4560	-3390	-3020	-2990	-2910	320	-12890	320			
Linear Steel, linear material, elastic DYNAMIC concrete, linear elastic		20	30	10		-310	-70	-10	0	-360	2-790	11940	-790			
Linear Steet, linear material, elastic DYNAMIC concrete, linear elastic											240	4950	-240			
material, clastic DYNAMIC concerte, linear elastic	No (44)	-5.86	-5.92	-5.88	4.4	4.21	-4.21	4.23	4.23	-3.98	-710	-207890	069-	-2050	-23300	-2000
linear elastic		0269-	0869-	-7030	-6180	-6440	-6870	-7000	-6930	-6140	-28290	-3900	-27570	-8340	-6220	-8280
		-2680	-2740	-2840	-2820	-4280	-3070	-2860	-2870	-2810	3080	01661	-3020	1730	530	-1750
		0	-20	0	270	-360	-80	-100	-70	-280			1			
		(10.4)	(10.4)	(10.8)	(13.6)	(14.0)	(14.0)	(14.0)	(14.0)	(14.8)	(13.2)	(14.4)	(14.4)	(13.6)	(14.4)	(14.4)
_	No (44)	-5.91	-5.94	-5.89	4.56	4.21	4.21	4.23	4.22	-3.86	009-	46490	-550	-1520	-39870	-1440
		-7000	-7000	-1060	-5370	-7110	-7030	0869-	-6930	-5300	-25050	-800	-23460	-8110	-2910	-8060
Drucker- Prager		-2720	-2810	-2830	-2780	-4450	-3300	-2940	-2850	-2760	2610	4830	-2460	1250	3440	-1270
		0	-10	0	350	-330	-110	-130	-70	-370	310	-12570	290			
											-750	11630	-700			
											230	4810	-210			
		(10.4)	(10.8)	(10.8)	(13.6)	(14.0)	(14.0)	(14.0)	(14.0)	(14.8)	(13.2)	(14.0)	(14.0)	(13.6)	(14.4)	(14.4)

23

HOMOGENEOUS LINING

Idealized as axisymmetric solid
 Constructed of fibrous reinforced concrete

COMPOSITE BUILT-UP LINING

Idealized as plane strain sliceConstructed of steel liner and cellular concrete

Figure 1. Homogeneous Sphere and Composite Built-up Liner

Idealized as plane strain slice Constructed of steel liner and reinforced concrete

Figure 2. Composite Integral Liner

Figure 3. General Character of Finite Element Meshes

Figure 4. Predicted Free Field Radial Stress Time Histories for Mighty Epic (Uniaxial Case, Ref. 3)

Figure 5. Predicted Free Field Velocity Time Histories for Mighty Epic (uniaxial case, Ref. 3)

Figure 6. Forcing functions used to generate the responses for the Mighty Epic Structures

Figure 7. Columnar mesh used to produce free field response

Figure 8. Free Field Response Stress vs. Time (Element 24)

Figure 9. Free Field Response Velocity vs. Time (at node 49)

Figure 10. Meshes used to check element compatibility

Figure 11. Meshes for Free Field with Cylindrical Cavity

(Note: thin cylindrical cavity liner too small to be seen on figures)

(b) Mesh 3.1

(c) Mesh 3.2

(d) Mesh 3.3

- 1. All stresses are at the centroids of the elements nearest the locations shown.
- 2. A-I are either in tuff or at tuff/liner interface where A is top left, B top mid, C is top right, D at crown, E adjacent springline, F adjacent E, G at mid mesh, H at right edge even with springline, I at invert.
- 3. J, K, and L are at the interior surface of the liner where J is at crown, K at springline, and L at invert.

Figure 12. Locations of Responses shown in Tables 2-12

Figure 13. Change in diameter history-Run DC5

Figure 14. Homogeneous Sphere Mesh (Mesh 4.0)

Figure 14b. Fiber Reinforced Concrete Elements

a. Tuff Elements (0" - 504")

Figure 15. Composite Built-Up Liner (Mesh 5.0)

Figure 15b. Steel and Cellular Concrete Elements

a. Tuff Elements (0" - 504")

Figure 16. Composite Integral Liner (Mesh 6.0)

Figure 16b. Steel and Concrete Elements

Figure 17. Change in diameter history; Mesh 4.0-Run DHS2

Figure 18. Change in diameter history; Mesh 5.0-Run DBL2

Figure 19. Change in diameter history; Mesh 6.0-Run DIL2

APPENDIX A DEVELOPMENT OF MATERIAL PARAMETERS

INTRODUCTION

The material models employed should accurately represent the actual materials under field conditions. That is, the constitutive relationships must be valid throughout the expected loading range. Several linear and nonlinear models are available in NONSAP to describe material behavior; the linear elastic isotropic model, the von Mises model, the Drucker-Prager model and a curve description model with tension weakening. The von Mises and Drucker-Prager models have explicit yield functions which specify the state of multiaxial stress corresponding to the start of plastic flow. The von Mises yield surface is parallel to the hydrostat, and the Drucker-Prager yield surface is at an angle to it. Both models may incorporate flow rules and hardening rules. Currently in NONSAP the von Mises condition can be used for either perfectly plastic conditions or isotropic hardening; and the Drucker-Prager yield condition is limited to elastic, perfectly plastic analysis. In both cases an initially elastic material is assumed. The curve description model is an incremental stress-strain law which describes tangent bulk moduli in loading (K_I) and unloading (K_{IJ}) and the loading shear modulus (GL) as piecewise linear functions of volumetric strain (e_v). This model has no explicit yield function, and it allows the material to weaken abruptly (crack) if the tensile stress resulting from applied loads exceeds the allowable tensile strength. Model selection for the analysis was based on laboratory material test data supplied by Defense Nuclear Agency (DNA) contractors and supplemented with material behavior information from the technical literature.

TUFF

The experimental test data supplied by Paul Weidlinger Associates Al was initially used to derive a tuff model. Results from one-dimensional, hydrostatic, and triaxial tests are shown in Figures Al, A2 and A3, respectively. These figures indicate that the material does not behave linear elastically at the stress levels of interest and that some form of yielding must be incorporated into the constitutive relationships. The Drucker-Prager yield model was selected to model this inelastic behavior. The free field, the cavity, and the homogeneous sphere used this model (Tuff No. 1). The composite built-up liner and the composite integral liner used a different tuff model (Tuff No. 2) based on more recent experimental data from Terra TekA2. The derivation of Tuff No. 1 is outlined below. A similar technique, which is not shown, was also used for Tuff No. 2.

Mohr circles are shown in Figure A4 for the unconfined compression test and the 0.5-Kbar confining stress test. A failure envelope was then constructed which has a cohesive intercept, c=0.3 Kbar and a friction angle, $\phi=9.23^{\circ}$. Values of E and ν were chosen to best describe the behavior of the tuff at the 0.5-Kbar stress level. A trial and error technique is used to determine these values from the given data and from the following elastic equations:

$$K = \frac{E}{3(1 - 2\nu)} \tag{1}$$

$$G = \frac{E}{2(1+\nu)} \tag{2}$$

$$M = \frac{E(1 - v)}{(1 + v)(1 - 2v)}$$
 (3)

$$K_0 = \frac{v}{1 - v} \tag{4}$$

where:

G = Modulus of Elasticity in shear (psi)

K = Bulk Modulus (psi)

M = One-dimensional confined modulus (psi)

K = At-rest coefficient of lateral earth pressure

Because I-D strain tests are more difficult to perform on rock than soil, the data from the hydrostatic and triaxial tests are used to determine E and ν . The I-D test data are used to check results. Values for the shear modulus, G, at each level of confining stress are calculated from Figure A3 (G = one-half the slope of stress difference versus strain difference). These values were then plotted against the confining stress in Figure A5. The trial and error procedure is as follows:

1. Assume a value for Ko.

Determine the hydrostatic stress state equivalent to the 0.5 Kbar
 1-D confined stress state.

$$p_{H} = \frac{1 + 2K_{O}}{3} \sigma_{V}$$

where: $\sigma_v = Vertical 1-D stress$

p_H = Equivalent hydrostatic stress

3. Determine the secant bulk modulus, K, at this stress level from Figure A2.

4. Determine the confining stress, p_T , in the triaxial test equivalent to the 0.5-Kbar 1-D confined stress state.

$$p_T = K_0 \sigma_v$$

5. Determine G at this stress level from Figure A5.

6. Determine E and ν by solving Equations 1 and 2 simultaneously.

7. Determine Ko from Equation 4 and compare it to the assumed value.

Iterate these 7 steps until the results converge. Assuming an initial value of $K_0 = 0.30$, the following results are obtained after three iterations:

 $K_0 = 0.40$

G = 12 Kbar = 174,000 psi

K = 24 Kbar = 348,000 psi

E = 30.9 Kbar = 448,000 psi

v = 0.286

M = 40 Kbar = 581,000 psi

The dotted straight lines in Figures Al, A2 and A3 are drawn to represent these moduli. The value of M obtained directly from Figure Al at the 0.5-Kbar stress level is 32 Kbar. This compares reasonably well with the value calculated above.

These derived values for Tuff No. 1, as well as the Tuff No. 2 values, are shown in Table 1.

STEEL

The cavity, the composite built-up liner, and the composite integral liner contain a steel cylindrical liner. The cavity liner is assumed to behave elastically while the von Mises model is selected to describe the nonlinear behavior of the other two. The material parameters are shown in Table 1.

FIBER REINFORCED CONCRETE

The homogeneous spherical shell is constructed of steel fiber reinforced concrete. In addition to increased tensile strength, concrete containing steel fibers has slightly increased compressive strengths, greater strain capacity, toughness, post-peak strength, and post-peak integrity than conventional concretes. A3 These characteristics are further enhanced under biaxial and triaxial compression. A4 Thus, the material definitely possesses elasto-plastic characteristics.

The designers of the structure have indicated that a shot day strength of 17,000 psi is probable. However, concrete experts at CEL feel that the interaction and compounding of the various factors contributing to such a high strength are not well understood. A more reasonable assumption for the shot day dynamic unconfined compressive strength is 10,000 psi*. This value is used in the analysis.

^{*} Six months after shot day, CEL tested concrete cores from an unused sphere. The average static compressive strength was 12,450 psi.

A technical literature search dealing with triaxial testing of concrete was carried out to select the appropriate plasticity model for the fiber reinforced concrete. Literature indicates that concrete behavior is similar to tuff. That is, the Mohr failure envelope has both a cohesion intercept and a friction angle. Thus, the Drucker-Prager model is used. Since triaxial test data for the fiber reinforced concrete was not available, c and \$\phi\$ were estimated from the data available in the literature. Triaxial test data from References A5 and A6 are used to derive values of c and . That is, Mohr's circles were plotted using principal stress differences normalized with respect to f; and the average failure envelope is drawn. The results indicate that the cohesion is approximately 0.36 ft and the friction angle approximately 35°. Thus, for 10,000 psi fiber reinforced concrete, the cohesion is 3600 psi. According to Reference A3, the addition of steel fibers to concrete does not significantly affect Young's modulus or Poisson's ratio. An average value for Poisson's ratio of 0.24 was selected from Reference A3. The following equation was used to determine Young's modulus:

$$E = 33 \text{ w}^{1.5} \sqrt{f_c^1}$$
 (5)

where, $w = weight density of concrete (lb/ft^3)$. For 144 lb/ft³ concrete, the calculated E is 5,700,000 psi.

REINFORCED CONCRETE

The cylindrical composite integral liner consists of a thin steel liner surrounded by reinforced concrete. The presence of the various rebars in the plain concrete shell changes the outer shell from a relatively simple homogeneous structure to a complicated "matrix" of interacting materials. The effect of the rebar on the structural behavior must therefore be considered in the analysis.

A special finite element study of a concentrated load acting on the end of a cantilever beam was undertaken to evaluate the interaction between the concrete and rebar. The three meshes shown in Figure A6 were used to model the beam, which was similar in thickness (5 in) to the reinforced concrete shell. Meshes 1 and 2 represent a plain concrete beam; Mesh 3 represents a reinforced beam. The concrete elements are all 8-node quadrilaterals; the steel rebar is modeled by truss elements. The area of the truss members was adjusted to match the steel area of the actual reinforced concrete shell. The primary objective is to determine the influence of the rebar on structural response. A concentrated load (P = 1,000 lb) was applied to the beam tip. The theoretical end deflections of the plain concrete and the reinforced concrete beams were 0.117 inch. The deflections computed by NONSAP were 0.120 inch for all three meshes. This indicates that a plain concrete mesh can be used to model the stiffness of a reinforced concrete shell.

Under the postulated loading conditions, a triaxial compressive stress state should exist throughout the reinforced concrete. Recent experiments A5, A6, A7 indicate that plain concrete subjected to multiaxial loading, exhibits more ductility and higher strength than concrete subjected to uniaxial or biaxial loading. This behavior suggests that a Drucker-Prager plasticity model is applicable.

The only material property data supplied to CEL was the unconfined compressive strength (f½) of the plain concrete, 5500 psi. The previous approach of determining the friction angle and cohesion for the fiber reinforced concrete is also used for the plain concrete. The friction angle equals 35° and the cohesion is $0.36 \text{ f}_{\text{C}}^{\circ}$ (1980 psi). The value of E calculated from Equation 5 is 4,264,000 psi, while the value of Poisson's ratio is 0.17.

CELLULAR CONCRETE

Cellular concrete is a lightweight, low modxlus backpacking material surrounding the steel liner in the composite built-up liner. Its function is to reduce the stresses acting on the structure through positime arching action.

Laboratory test data on cellular concrete performed by Waterways Experimental Station was used to determine which NONSAP material model is applicable. The idealized results from a hydrostatic test on 60 pcf cellular concrete are shown in Figure A7. Three distinct regions of behavior are present. Initially, the material deforms linearly up to a yield stress (σ_{yL}) of about 1500 psi. At this stress level the material begins to crush, reducing the amount of initial air space. This ideal plastic behavior stops at a hardening strain (e_{hL}) of about 20 to 30 percent. At this strain value, the void space has essentially been reduced to zero. The material is now capable of resisting subsequent loading. The modulus in this region is approximately one-half the initial modulus. This material behavior can best be approximated in NONSAP by the Curve Description Model. Neither the Drucker-Prager nor the von Mises model is capable of simulating this unique elastic-plastic behavior. To obtain the input for the Curve Description Model, the following trial and error procedure is used:

- 1. Determine approximate values for the model based on Figure A7.
- 2. Hydrostatically load an axisymmetric element using NONSAP.
- 3. Plot a p-ev curve and compare with Figure A7.
- 4. Modify the model and repeat steps 2 and 3 until satisfactory convergence is obtained.

The final values for the model are outlined in Table Al. The NONSAP $p-e_{\nu}$ curve for this model is shown in Figure A7.

The Elastic Model shown in Table 1 was obtained by assuming a Poisson's Ratio of 0.48 and a Bulk Modulus of 7500 psi (see Figure A7). Like the actual cellular concrete behavior, this linear approximation is very soft and has little shear resistance.

Table A1. Curve Description Model for Cellular Concrete

Volume Strain e _v (Percent)	Loading Bulk Modulus K (psi)	Unloading Bulk Modulus KU (psi)	Loading Shear Modulus G _L (psi)	Poisson's Ratio v
0	90,000	90,000	67,500	0.20
0.008	16,000	90,000	650	0.48
0.050	5,000	90,000	200	0.48
0.20	5,000	90,000	200	0.48
0.30	14,000	90,000	570	0.48
10.0	37,500	90,000	1,520	0.48

Figure A1. Results of static one-dimensional compression test on tuff $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

Figure A2. Results of Static Hydrostatic Test on Tuff

Figure A3. Results of Static Triaxial Tests on Tuff

Figure A4. Failure envelope for tuff

Figure A5. Shear modulus vs. confining stress

- O Concrete Elements
- Steel Elements

Figure A6. Cantilever beam meshes.

Figure A7. Hydrostatic test results

Hydrostatic pressure, p (psi)

APPENDIX B ELEMENT AND STEP SIZE SELECTION

In order to theoretically determine the element and step size of the columnar mesh (shown in Figure Bla), two analogous systems are employed (Figure Blb and Blc). Blb is a lumped mass and spring system defined as follows:

$$k = \frac{AM}{L}$$
 Constrained spring stiffness (1)

$$m = \rho AL$$
 Lumped Mass (2)

where:

A is the element's cross sectional area

M is the tuff's constrained modulus

L is the element's length

p is the tuff's mass density

Blc is an ideal continuous constrained rod system with the following wave speed for the tuff:

$$C = \sqrt{\frac{M}{\rho}} = 57.5 \text{ in/msec}$$
 (3)

To enable the spring/mass system to reasonably approximate the rod's response to a ramp loading, P(t), the following expression derived from Reference B1 may be employed:

$$\frac{t_r}{T} >> 3$$

where:

t_r is the rise time of P(t) (defined in Figure 6b)

T is the period of a single spring/mass

Inverting this expression, the maximum frequency (f_{max}) which needs to be transmitted through the spring/mass system, given a rise time t_r , is:

$$f_{\text{max}} = \frac{3}{t_r} = \frac{3}{0.006} = 500 \text{ cps}$$
 (4)

The maximum frequency that can be propagated through the spring/mass system is given in Reference B2 as follows:

$$f = \frac{1}{\pi} \sqrt{\frac{k}{m}}$$

Substituting from (1), (2), and (3):

$$f = \frac{1}{\pi} \sqrt{\frac{M}{\rho L^2}} = \frac{1}{L\pi} \sqrt{\frac{M}{\rho}} = \frac{C}{L\pi}$$
 (5)

The maximum frequency (f_{max}) that can be expected to propagate unattentuated through system (B1b) is given by (5). Combining (4) and (5) yields:

$$\frac{3}{t_r} = f_{max} = \frac{C}{L\pi}$$

$$L = \frac{C}{3\pi} = \frac{(57.5)(6)}{3\pi} = 36.6 \text{ inches}$$
(6)

An alternative mesh size selection procedure is given in Reference B3 for use in conjunction with calculations for the continuous rod system as follows:

$$L = \frac{t_r C}{3}$$

 $L = \frac{6(57.5)}{3} = 115 \text{ inches}$

To select a time step, Δt , for use in conjunction with the implicit step-by-step integration procedure of the NONSAP program the following criteria are derived for a single-degree-of-freedom system (Reference B4):

Components of P(t) with periods less that 5 Δ t will experience attenuation caused by the time integration algorithm. Thus, to pass f_{max} requires:

$$\Delta t < \frac{1}{5f_{max}} = \frac{1}{5(500)} = 0.4 \text{ msec}$$

The wave propagation through three columnar meshes (Figure B2) was studied to determine the appropriateness of the element and step size equations. The dynamic loading shown in Figure 6b was applied to the top surface of each mesh (linear Tuff No. 1). The vertical stress histories at the locations shown in Figure B2 are plotted in Figure B3. Figure B4 shows the shape of the stress wave as a function if L and Δt . The data shown indicates that for L = 40 inches and Δt = 0.4 msec satisfactory results are achieved.

Figure B1. Columnar Systems Used For Tuff Free Field Calculations

Figure B2. Free Field Meshes

Figure B3. Vertical Stress vs. time for Free Field Meshes

(c) 150-inch depth (Element 2) L=100 inch

Figure B4. Stress Wave Profile at 10 msec

APPENDIX C STUDY OF COMPATIBILITY OF 4-NODE AND HIGHER ORDER QUADRILATERAL ELEMENTS

In some circumstances it is advantageous to join 8-node to 4-node quadrilateral elements. Three different column meshes are employed to investigate the effect on stresses and displacements (Figure 10). Case 1 represents the "ideal" mesh, containing two columns of 4-node elements. The Case 2 mesh consists of two columns of 4-node elements in the upper 200 inches while the lower 600 inches contain one column of 8-node elements. The Case 3 mesh consists of one column of 8-node elements in the upper 200 inches with the lower 600 inches consisting of two columns of 4-node elements. For all elements, L is 20 inches. A 0.50Kbar ramp loading (t_r = 6 msec) is applied to the top surface of each mesh. Both linear and Drucker-Prager Tuff No. 1 are used for the material characterization.

The response at the 200-inch depth interface and just above and below is investigated. Each run is-for 30 time steps where $\Delta t = 0.4$ msec. The reported stresses and displacements occur at t = 12 msec (30th time step); these responses represent the maximums expected for this region. Tables C1 and C2 show the responses at locations indicated by Figure C1 using an integration order of three. To measure the impact of integration order on the response, the stresses at all integration points are shown in Tables C3 and C4 for integration orders 2 and 3.

The results indicated that for integration order 3, such mesh transitions produce:

- 1. No significant change in overall displacements.
- Element stresses that are not significantly affected beyond two elements of the transition.
- 3. Correct centroidal stresses for only the 4-node quad elements near the region. Also, the average stress of all nine stress points is correct for only the 4-node quad elements.
- 4. Neither centroidal stress nor the average stress for the 8-node quad elements are correct near the transition.

For integration order 2:

- 1. No significant change in overall displacements.
- Element stresses that are not significantly affected beyond two elements of the transition.
- 3. Near the interface, all four stresses for the 8-node quad elements are correct.
- 4. Near the interface, all four stresses for the 4-node quad elements are incorrect. However, the average stress is correct.

Table C1. Vertical Nodal Displacement at t = 12ms (Inches)

Material	Case	Vertic At	Vertical Displacement At Top Surface	nent e	Verti At	Vertical Displacement At 100 In. Depth	nent th	Vertic At	Vertical Displacement At 200 In. Depth	nent ith
Model		A	В	0	D	Е	F	G	н	-
	-	-6.8281	-6.8281	-6.8281	-5.4091	-5.4091	-5.4091	-3.9925	-3.9925	-3.9925
Drucker- Prager	2	-6.8364	-6.8364	-6.8364	-5.4180	-5.4180	-5.4180	4.0299	-3.9678	4.0299
Tuff	3	-6.8324	-6.8367	-6.8324	-5.4155	-5.4196 -5.4155	-5.4155	-3.9560	4.0235	-3.9560
	-	-6.4547	-6.4547	-6.4547	-5.2076	-5.2076 -5.2076	-5.2076	-3.9618	-3.9618	-3.9618
Linear	2	-6.4607	-6.4607	-6.4607	-5.2132	-5.2132	-5.2132	-3.9853	-3.9468	-3.9853
	3	-6.4598	-6.4598 -6.4595	-6.4598	-6.4598 -5.2129	-5.2128	-5.2129	-3.9407	-3.9792	-3.9407
The second secon										

Table C2. Vertical Stress at t = 12ms (psi)

Material	550		Stress	Stress Location (Taken at Element Centroid)	at Element Cent	roid)	
Model	Case	A, z=150 in.	B, z=170 in.	C, z=190 in.	D, z=210 in.	E, z=230 in.	F, z=250 in.
	-	-7296	-7237	-7152	-7159	-7301	-7446
	•	-7296a	-7237	-7152	-7159	-7301	-7446
Drucker-	,	-7313	-7256	1911-	-6603	-7379	-7439
Tuff	1	-7313	-7256	-7167			
		-7278	7277	-6610	-7197	-7342	-7460
					-7197	-7342	-7460
	-	-7280	-7247	1614-	-7180	-7248	-7367
	•	-7280	-7247	-7191	-7180	-7248	-7367
Linear	,	-7291	-7256	<i>L</i> 61 <i>L</i> -	<i>L9L9-</i>	-7326	-7368
Tuff	1	-7291	-7256	-7197			
	3	-7269	-7296	0929-	1617-	-7278	-7393
	,				-7191	-7278	-7393

^aSecond entries within the box occur for locations where a pair of side-by-side elements exist. The second entry is for the element on the left.

Table C3. Vertical Stress and its Deviation^a Caused by Transition for Linear Tuff (Integration Order 2) (psi)

	Location of Stress ^c for							
Stress ^b Points			Element No	p. (Case 2)				
	9	19	10	20	21	22		
1	-7308	-7207	-6784	-7611	-7190	-7273		
	-61	40	407	-420	-10	-25		
2	-7308	-7207	-6784	-7611	-7184	-7249		
	-61	40	407	-420	-4	-1		
3	-7207	-7308	-7611	-6784	-7190	-7273		
	40	-61	-420	407	-10	-25		
4	-7207	-7308	-7611	-6784	-7184	-7249		
	40	-61	-420	407	-4	-1		
			Element No	o. (Case 3)				
	9	10	11	41	12	42		
1	-7225	-7177	-6780	-7607	-7332	-7232		
	22	14	400	-427	-84	16		
2	-7239	-7181	-6780	-7607	-7332	-7232		
	8	10	400	-427	-84	16		
3	-7225	-7177	-7607	-6780	-7232	-7332		
	22	14	-427	400	16	-84		
4	-7239	-7181	-7607	-6780	-7232	-7332		
	8	10	-427	400	16	-84		

^a First entry in box is vertical stress while the second entry is the difference between first entry and corresponding stress for the "ideal" solution (Case 1, Figure 10b) ^bLocation of stress output, 4 per element, see Figure 10a. ^c Element numbers shown in Figure 10c and 10d.

Table C4. Vertical Stress and its Deviation^a Caused by Transition for Linear Tuff (Integration Order 3) (psi)

	Location of Stress ^c for							
Stress ^b Point			Element No	. (Case 2)				
	9	19	10	20	21	22		
1	-7315	-7196	-6711	-7683	-7529	-7220		
	-68	50	480	-492	-349	28		
2	-7315	-7196	-6711	-7683	-7525	-7205		
	-68	50	480	-492	-345	43		
3	-7315	-7196	-6711	-7683	-7521	-7189		
	-68	50	480	-492	-341	59		
4	-7256	-7256	-7197	-7197	-6771	-7342		
	-9	-9	-6	-6	409	-94		
5	-7256	-7256	-7197	-7197	-6767	-7327		
	-9	-9	-6	-6	413	-79		
6	-7256	-7256	-7197	-7197	-6763	-7311		
	-9	-9	-6	-6	417	-63		
7	-7197	-7315	-7683	-6711	-7528	-7220		
	50	-68	-492	480	-349	28		
8	-7197	-7315	-7683	-6711	-7525	-7205		
	50	-68	-492	480	-345	43		
9	-7197	-7315	-7683	-6711	-7521	-7189		
	50	-68	-492	480	-341	59		
			Element No	. (Case 3)				
	9	10	11	41	12	42		
1	-7176	-7515	-6704	-7677	-7337	-7218		
	71	-324	476	-497	-89	30		
2	-7185	-7519	-6704	-7677	-7337	-7218		
	62	-328	476	-497	-89	30		
3	-7194	-7522	-6704	-7677	-7337	-7218		
	53	-331	476	-497	-89	30		

continued

Table C4. Continued

			Location of	Stress ^c for		
Stress ^b Point			Element No	o. (Case 3)		
	9	10	11	41	12	42
4	-7287	-6756	-7190	-7190	-7277	-7277
	-40	435	-10	-10	-29	-29
5	-7296	-6760	-7190	-7190	-7277	-7277
	-49	431	-10	-10	-29	-29
6	-7305	-6763	-7190	-7190	-7277	-7277
	-58	428	-10	-10	-29	-29
7	-7176	-7515	-7677	-6704	-7218	-7337
	71	-324	-497	476	30	-89
8	-7185	-7519	-7677	-6704	-7218	-7337
	62	-328	-497	476	30	-89
9	-7194	-7522	-7677	-6704	-7218	-7337
	53	-331	-497	476	30	-89

^a First entry in box is vertical stress while the second entry is the difference between first entry and corresponding stress for the "ideal" solution (Case 1, Figure 10b) ^bLocation of stress output, 9 per element, see Figure 10a. ^c Element numbers shown in Figure 10c and 10d.

Figure C1. Location of Responses snown in Tables C1 and C2

APPENDIX D RESTART USING PROGRESSIVELY LARGER At

The columnar mesh shown in Figure Dl is used to demonstrate that predictions at the structure site can be satisfactorily computed using a progressively increasing Δt . The Mighty Epic forcing function (Figure 6a) is applied to the top surface of the linear Tuff No. 1 column. For this run:

- 1. $\Delta t = 0.4$ msec for the first 50 steps (20 msec total)
- 2. $\Delta t = 1.0$ msec for next 50 steps (70 msec total)
- 3. $\Delta t = 5.0$ msec for next six steps (100 msec total)
- 4. $\Delta t = 50$ msec for the next 28 steps (1500 msec total)

The stress history at the 290-inch depth (Element 15) is shown in Figure D2. For this idealization the reflected wave arrives at Element 15 in 204 msec. As shown in Figure D2, the amplitude of the reflected stress wave is reduced by 95%.

This study suggests that a progressively increasing Δt is a viable means of reducing the run's cost and the system's degrees-of-freedom for "long-time" finite element runs. However, this conclusion must be checked on a "case-by-case" basis with verification runs being made for the particular idealization involved. Special attention must be applied in the region of interest to insure that secondary transient responses (i.e., those created by the structure's response to the forcing function) are neither prematurely attenuated nor wastefully computed.

Figure D1. Columnar Mesh Used for Progressively Increasing $\Delta \tau$

Figure D2. Vertical stress history at 290-inch depth

APPENDIX E USE OF VELOCITY AS A FORCING FUNCTION

The velocity time history at the structure location ("0" on Figure 5) is integrated yielding a displacement time history. Stiff springs are inserted at the top nodes of a columnar mesh (Figure E1). Loads (Figure E2) which cause the desired displacement time history are applied to these nodes. Both linear and Drucker-Prager Models are used to describe the material. The vertical stress vs time is shown in Figures E3 and E4 and compared with the given radial stress time histories (i.e., "0" wave of Figure 4). Both models show good agreement up to the peak stress level. Niether model agrees after this time. Note: When integration order 3 was used, indefinite results were detected. Only integration order 2 could be used.

Figure E1. Stiff Spring Free Field Mesh

Figure E2. Nodal Load vs. time

Figure E3. Radial (vertical) stress in Element 1; linear elastic Tuff

Figure E4. Radial (vertical) stress in Element 1; Drucker-Prager Tuff

REFERENCES

- 1. Bathe, K. J. and Peterson, F. E., User's Manual for CEL/NONSAP, a Nonlinear Structural Analysis Program, Contract Report, CR 75.004. Civil Engineering Laboratory, NCBC, Port Hueneme, CA 91043. October 1974.
- 2. Private communication from Ivan Sandler of Weidlinger Associates Consulting Engineers. November 14, 1975.
- 3. Private communication from Ivan Sandler of Weidlinger Associates Consulting Engineers. September 22, 1975.
- 4. Nelson, I., Baron, M. L., and Sandler, I., Mathematical Models for Geological Materials for Wave Propagation Studies, Shock Waves and the Mechanical Properties of Solids. Syracuse University Press, Syracuse, NY. 1971.
- Al. Private communication from Ivan Sandler of Weidlinger Associates, Consulting Engineers. August 8, 1975.
- A2. Butters, S. W., Stowe, R. L., LaComb, J. W., and Bendinelli, R. A., Characterization of Tuff and Development of Grouts for Mighty Epic Structures Program, TR76-21, Terra Tek, Salt Lake City, UT. April 1976.
- A3. Williamson, G. R., SP-44 ACI Publication Fiber Reinforced Concrete. The Effect of Steel Fibers on the Compressive Strength of Concrete.
- A4. Taylor, M. A., Tai, M. K., and Ramey, Melvin R., Proceedings of the ACI: Biaxial Compressive Behavior of Fiber Reinforced Mortar, No. 9, V. 72, September 1975.
- A5. Endebrock, E. G., and Traina, L. A., Static Concrete Constitutive Relations Based on Cubical Specimens. U. S. Air Force Weapons Lab Tech Report WL-TR-72-59, Vol 1, Vol 2. 1975.
- A6. Green, S. J. and Swanson, S. R., Static Constitutive Relations for Concrete. Air Force Weapons Lab Tech Report WL-TR-72-244. 1973.
- A7. Chinn, J. and Zimmerman, R., Behavior of Plain Concrete Under Various High Triaxial Compression Loading Conditions. U. S. Air Force Weapons Lab Tech Report WL-TR-64-163. 1965.
- B1. Biggs, J. M., Introduction to Structural Dynamics. New York. McGraw-Hill Book Company. 1964.
- B2. Hadala, P. F. and Taylor, H. M., Army Engineer Waterways Experiment Station, Technical Report S-72-2: Effect of grid size on cutoff frequency in the numerical solution of an elastic one-dimensional wave propagation problem. Vicksburg, Miss. February 1972.

- B3. Agbabian-Jacobsen Associates. R-6820-1178: DEPS Code Modeling Techniques for Safeguard Structures. Los Angeles, CA. April 1970. (Contract DACA-69-C-0004).
- B4. Bathe, K. J. and Peterson, F. E., Theoretical Basis for CEL/NONSAP. A Nonlinear Structural Anslysis Program, Contract Report CR75.005. Civil Engineering Laboratory, NCBC, Port Hueneme, CA. October 1974.

LIST OF SYMBOLS

A	Cross-sectional area of finite element (in ²)
С	Wave speed (in/msec)
c	Cohesion (psi)
D	Depth of mesh (in)
D B	Additional depth of mesh necessary to avoid
	reflection waves (in)
$D_{\mathbf{I}}$	Depth of region of interest (in)
E	Young's modulus of Elasticity (psi)
ET	Post-yield modulus of elasticity (psi)
e_{hL}	Volumetric hardening strain (%)
e _v	Volumetric strain (%)
f	Frequency (cps)
f'c	Unconfined compressive strength (psi)
fmax	Maximum frequency of mesh (cps)
G	Modulus of Elasticity in shear (psi)
G_{L}	Tangent shear modulus in loading (psi)
K	Bulk Modulus (psi)
K _L	Tangent Bulk Modulus in loading (psi)
Ko	At-rest coefficient of lateral earth pressure
κ_{U}	Tangent Bulk Modulus in Unloading (psi)
k	Constrained spring constant (lb/in)
L	Length of finite element (in)
М	One-dimensional confined modulus (psi)
m	Lumped mass of finite element (1b-sec ² /in)

p	Hydrostatic pressure (psi)
P_{H}	Equivalent hydrostatic stress (psi)
P_{o}	External pressure (psi)
P_{T}	Equivalent confining stress (psi)
r	Radius to location in wall under consideration (in)
r _i	Internal radius (in)
r _o	External radius (in)
s_r	Wall stress in radial direction (psi)
s _t	Wall stress in tengential direction (psi)
T	Period (sec)
t _r	Rise time of stress wave (msec)
t*	Time of peak stress (msec)
w	Weight density (pcf)
Δt	Time increment (msec)
$\delta_{\mathbf{H}}$	Horizontal nodal displacement (in)
$\delta_{\mathbf{V}}$	Vertical nodal displacement (in)
$\epsilon_{\mathbf{a}}$	Axial strain (%)
εr	Radial strain (%)
ϵ_{y}	Horizontal strain (μ in/in)
$\epsilon_{ m z}$	Vertical strain (μin/in)
ϵ_{zy}	Shear strain (µin/in)
ν	Poisson's ratio
ρ	Mass density (1b-sec ² /in ⁴)
σ_{Y}	Horizontal stress (psi)
$\sigma_{\rm Z}$	Vertical stress (psi)

σZY	Shear stress (psi)
$^{\sigma}$ a	Axial stress (Kbar)
$\sigma_{f r}$	Radial stress (Kbar)
$\sigma_{\mathbf{v}}$	Vertical one-dimensional stress (psi)
σ _y	Yield stress (psi)
σ _{yL}	Yield stress of cellular concrete (psi)
ф	Friction angle (degrees

LIST OF TABLES

Table 1.	Material Properties
2.	Static Results for Mesh 3.0
3.	Static Results for Mesh 3.1
4.	Static Results for Mesh 3.2
5.	Static Results for Mesh 3.3
6.	Dynamic Results for Mesh 3.0
7.	Dynamic Results for Mesh 3.1
8.	Dynamic Results for Mesh 3.2
9.	Dynamic Results for Mesh 3.3
10.	Results for Homogeneous, Fiber Reinforced, Concrete Sphere (Mesh 4.0) - Static at Full Load; Dynamic at Peak
11.	Results for Composite Built-Up Liner (Mesh 5.0) - Static at Full Load; Dynamic at Peak
12.	Results for Composite Integral Liner (Mesh 6.0) - Static at Full Load; Dynamic at Peak
A1.	Curve Description Model for Cellular Concrete
C1.	Vertical Nodal Displacement at t = 12 ms
C2.	Vertical Stress at t = 12ms
C3.	Vertical Stress and its Deviation Caused by Transition for Linear Tuff (Integration Order 2)
C4.	Vertical Stress and its Deviation Caused by Transition for Linear Tuff (Integration Order 3)

LIST OF FIGURES

Figure 1.	Homogeneous Sphere and Composite Built-Up Liner
2.	Composite Integral Liner
3.	General Character of Finite Element Meshes
4.	Predicted Free Field Radial Stress Time Histories for Mighty Epic (unixial case, Ref. 3)
5.	Predicted Free Field Velocity Time Histories for Mighty Epic (uniaxial case, Ref. 3)
6.	Forcing functions used to generate the responses for the Mighty Epic Structures
7.	Columnar mesh used to produce free field response
8.	Free Field Response Stress vs Time (Element 24)
9.	Free Field Response Velocity vs Time (at node 49)
10.	Meshes used to check element compatibility
11.	Meshes for Free Field with Cylindrical Cavity
12.	Locations of Responses shown in Tables 2-12
13.	Change in diameter history - Run DC5
14.	Homogeneous Sphere Mesh (Mesh 4.0)
15.	Composite Built-Up Liner (Mesh 5.0)
16.	Composite Integral Liner (Mesh 6.0)
17.	Change in diameter history; Mesh 4.0 - Run DHS2
18.	Change in diameter history; Mesh 5.0 - Run DBL2
19.	Change in diameter history; Mesh 6.0 - Run DIL2
A1.	Results of static one-dimensional compression test on Tuff
A2.	Results of static hydrostatic test on Tuff
АЗ.	Results of static triaxial tests on Tuff
Δ4	Failure envelope for Tuff

AD-A047 427

CIVIL ENGINEERING LAB (NAVY) PORT HUENEME CALIF MIGHTY EPIC PRE-TEST ANALYSIS.(U) MAR 77 J CRAWFORD, R MURTHA, J ROLLINS CEL-TM-51-77-5

F/G 18/3

UNCLASSIFIED

2 OF 2 ADI A047427

END DATE **-78** DDC

NL

Figure	A5.	Shear modulus vs confining stress
	A6.	Cantilever beam meshes
	A7.	Hydrostatic test results
	B1.	Columnar Systems Used for Tuff Free Field Calculations
11	B2.	Free Field Meshes
	ВЗ.	Vertical stress vs time for Free Field Meshes
	B4.	Stress Wave Profile at 10 msec
	C1.	Location of Responses shown in Tables C1 and C2
	D1.	Columnar Mesh used for Progressively Increasing At
	D2.	Vertical stress history at 290-inch depth
	E1.	Stiff Spring Free Field Mesh
	E2.	Nodal Load vs Time
	E3.	Radial (vertical) stress in Element 1; linear elastic
	vi fuid	tuff
	E4.	Radial (vertical) stress in Element 1; Drucker-Prager Tuff
		THE PROPERTY OF THE PROPERTY O