Introduction to Databases 95.305*

Louis D. Nel ldnel@scs.carleton.ca

© Louis. D. Nel 1996-2000

95.305

module 1-1

Scenarios

- A company wishes to store and access information about its employees, departments and projects.
- The data will be accessed by different departments for various reasons

© Louis. D. Nel 1996-2000

95.305

Scenarios

- Students (and Instructors) would like to know how assignment marking is progressing.
- Students should be able to determine the progress on their assignments
- Instructors should be able to generate reports about all of the assignment grades in the class.

© Louis. D. Nel 1996-2000

95.305

module 1-3

File Systems as Database

- Consider using the fact that we can write programs which open files, write to files, and close files
- We could simply write programs to store data and retrieve it from the appropriate files when needed

© Louis. D. Nel 1996-2000

95.305

- Disk files accomplish one very important aspect of database systems:
- Data lives a long time -longer than the life of the program accessing it

© Louis. D. Nel 1996-2000

95.305

module 1-5

...File Systems as Database

- Goal: creating a new database of student marks
- soln: create a new file, decide on the format of data, write programs which access data based on known format
- Problems:
 - -data format is implicit and hard coded
 - -data is probably duplicated -exists in files as well, or duplicated in single file

-no explicit notion of data schema

© Louis. D. Nel 1996-2000

95.305

- Goal: query the database to print names of students with A+
- soln: write a procedure to search file for students with mark=A+
- Problems:
 - -query is hard-coded, requires program
 - -new queries require re-programming
 - -no theory for query optimization

© Louis. D. Nel 1996-2000

95.305

module 1-7

...File Systems as Database

- Goal: Data should be free of inconsistencies (You cannot get a B and A- in the same course)
- soln: make sure procedures verify data is valid
- Problems:
 - -integrity constraints cannot be found or changed without re-programming
 - -integrity constraints cannot be changed

© Louis. D. Nel 1996-2000

95.305

- Goal: Data should be secure from unauthorized users
- soln: use file access permissions
- Problems:
 - -file access permission provided by host operating system will be inadequate
 - -host OS may not provide any file access restrictions

© Louis. D. Nel 1996-2000

95.305

module 1-9

...File Systems as Database

- Goal: Data should be usable by several user concurrently (Two agents book a seat on a plane simultaneously)
- soln: Custom locking code
- Problems:
 - -Must write explicit locking code
 - -Host OS file system will not provide basic concurrency control

© Louis. D. Nel 1996-2000

95.305

- Goal: Data invariants must be maintained (During an account transfer the power fails after the withdrawal but before the deposit)
- soln: no easy solution
- Problems:
 - Must write explicit code to ensure the a program failure will allow an Undo on data modified so far

© Louis. D. Nel 1996-2000

95.305

module 1-11

Database Solution

- Create an application to which we <u>input</u>:
 - -what our data will look like
 - -what constraints apply to the data
 - -allows us to pose arbitrary queries
 - -allows us to specify access controls
 - -monitors modification of data
 - -provides transaction control
- The database is <u>generic</u> -works with anyone's data or queries -at run time

© Louis. D. Nel 1996-2000

95.305

Database management System

DBMS allows users to:

- create new databases, specifying their schema (using a DDL)
- Query and modify data (using DML)
- Keep large amounts of data secure from accidents or unauthorized users
- Allow many users access to data at once without corruption

© Louis. D. Nel 1996-2000

95.305

module 1-13

Problems to Avoid

- Difficult to access data
- Data Redundancy and Inconsistency
- Structure and Data Dependence
- Data Isolation
- Concurrent Access Anomalies
- Security Problems
- Integrity Problems

© Louis. D. Nel 1996-2000

95.305

Difficult to access Data

- Does not anticipate new types of requests or reports
- How can you get the database to handle query its never done before without requiring re-programming?
- Database should anticipate new queries and provide a way of navigating data
- Provide a specific Query Language

© Louis. D. Nel 1996-2000

95.305

module 1-15

Data Redundancy and Inconsistency

- e.g. Customer name and address appears in several files: CUSTOMER_FILE, ACCOUNTS_FILE
- Wasteful
- Allows for possible inconsistencies (changed in one file but not the other e.g. for change of address -this really happens)

© Louis. D. Nel 1996-2000

95.305

Structure and Data Dependence

- In file processing systems the programs are written to expect a certain file structure and data type
- In a database we want the file formats (schemas) to be changeable.
- Programs will first read the schema then use this schema to access the data files

© Louis. D. Nel 1996-2000

95.305

module 1-17

Data Isolation

- · Lack of architecture for data
- In file processing systems data can be scattered in various files or different formats
- Programmer has to hunt for both information and formats

© Louis. D. Nel 1996-2000

95.305

Concurrent Access Anomalies

- Databases need to be multi-user, multiaccess
- What happens when two people try to change the same data
- e.g.

withdrawals from a bank account reserving a seat on an airplane

© Louis. D. Nel 1996-2000

95.305

module 1-19

Security Problems

- Nobody wants to see all of the data
- Employees need not have access to all personnel records
- Need access policies that can be enforced and managed

© Louis. D. Nel 1996-2000

95.305

Integrity Problems

- Data has meaning and the values stored should make sense
- Type constraints:
 - -account balance cannot be "Friday"
 - -customer name cannot be "Lou3is Nel" (the 3 is silent)
- Policy Constraints
 - -account balance cannot be < \$100.00

© Louis. D. Nel 1996-2000

95.305

module 1-21

Architecture of Databases

- Ultimately using a database will involve (at some stage) coming up with a data architecture
- The users model their enterprise data
- Done using data abstractions and modeling languages
- Data models describe the database Schema

© Louis. D. Nel 1996-2000

95.305

Schemas and Instances

Schema

- -description of the data
- -contains no data values
- -also called "Meta-data"
- -created with the database DDL
- -created when database is designed
- -should not change frequently

Instances

- -actual data
- -changes frequently
- -also called database "state"
- -manipulated with the DML

STUDENT				
Name	StudentNumber	Major		

Lou	1223	Comp Sci
Mary	5432	Math
Roger	3478	Comp Sci
Sue	1221	Physics

© Louis. D. Nel 1996-2000

95.305

Data Independence

- Logical Data Independence
 being able to change the conceptual
 schema without affecting external views
 or application programs
- Physical Data Independence
 being able to change the physical data
 schema without affecting the conceptual
 schema

© Louis. D. Nel 1996-2000

95.305

module 1-25

Classification of DBMS

Data Model relational network hierarchical object-oriented

<u>Users</u> single-user multi-user

<u>Cost</u> \$10,000 \$100,000 \$100 \$1,000 general purpose special purpose -telephone directory -airline reservation (online transaction

processing)

Purpose

Sites centralized distributed

- -homogeneous
- -heterogeneous

© Louis. D. Nel 1996-2000

95.305

Hierarchical and Network Models

- Used in 60's early 70's
- Mostly of historical interest
- Did not support high level queries
- Users wrote programs which navigated the data's structure

© Louis. D. Nel 1996-2000

95.305

module 1-29

Classification of DBMS: Relational model

 Represents database as collection of tables each stored in separate file, linked through keys

STUDENT				
Name	StudentNumber	Major		
Lou	1223	Comp Sci		
Mary	5432	Math		
Roger	3478	Comp Sci		
Sue	1221	Physics		

SECTION			
SecNo	Course	Term	
121	CS95.305	F	
113	CS95.305	W	
100	MA69.107	F	
121	CS95.106	F	

GRADES			
StdNo	Section	Grade	
1223	113	Α	
1223	100	B-	
5432	121	Α	
3478	121	С	

© Louis. D. Nel 1996-2000

95.305

Relational Model

- Proposed by Codd, 1970
- User would not be concerned with storage structure
- Queries expressing in high level language (SQL -most important)
- Users avoid navigating through the database
 -like people now search the web
- Based on very simple models of relations

© Louis. D. Nel 1996-2000

95.305

module 1-31

Relational Model -sample query

```
SELECT grade
FROM GRADES
WHERE StdNo = 1223 AND Section = 100
```

- · We are asking the database to:
 - -examine all tuples in GRADES
 - -pick those satisfying some criteria
 - -produce a report on the grades field of the tuples which satisfy the criteria
- Notice we are not navigating the structure of the data -left up to system to do it efficiently

© Louis. D. Nel 1996-2000

95.305

Classification of DBMS: Object-Oriented Model

- Data is stored as objects, relationships are stored as object references to other objects
- Objects have: attributes and operations

Data and Memory

- A key feature that distinguishes DBMS's from other computer applications is:
- A DBMS implicitly assumes data cannot fit in main memory -it must be out there in secondary store (Hard Disk) or tertiary store (CD)
- Remember in algorithms class they said accessing an array element was O(1), -they lied, it's O(log n) (now try writing your O(nlogn) sort)

Storage Manager

- Worries about how data is stored on disk (block size, cache size, ...)
- Shields other components from knowledge of how data is stored (allow transparent upgrades)
- Usually by-passes host operating system for accessing disks -for efficiency
- Small DBMS may just make use of host OS like on your PC.

Query Manager

- Implements a query posed in high level (turns it into an data navigation strategy)
- Must optimize the query, come up with a query plan (use index if it exists, perhaps create one)
- Tricky subject, especially for federated databases

© Louis. D. Nel 1996-2000

95.305

module 1-37

Transaction Manager

- Groups actions an ensures their completion as a unit
- Enforces integrity constraints on database
- Arbitrates over concurrent transactions
- Ensures ACID properties
 - -Atomicity of transactions
 - -Consistency of data (invariants)
 - -Isolation of transactions from each other
 - -Durability of transaction effects -they're not lost

© Louis. D. Nel 1996-2000

95.305

We will Study

- Database modeling and design

 how to model enterprise data for a database
- Database use and programming

 how to access and manipulate data
- Database implementation

 how databases and DBMS's
 can be implemented

© Louis. D. Nel 1996-2000

95.305