Medidas o parámetros de dispersión.

Para tener una mejor idea del grado de dispersión de los datos con respecto al promedio se utilizan otros parámetros llamados de dispersión , estos son:

- 1- Desviación o dispersión.
- 2- Desviación media o desviación promedio.
- 3- Varianza y desviación estándar.
- a) Calculo de los parámetros de dispersión en una seria simple.

1. Desviación:

Se llama desvío de un valor de la variable a la diferencia entre el valor de la variable y el promedio.

Ejemplo:

Consideremos el conjunto de notas de Matemática de un alumno.

Cuyo promedio es de \bar{x} = 6, 60 Calculamos los desvío d = x - \bar{x}

Х	\bar{x}	$d = x - \bar{x}$	$ x-\bar{x} $	$d^2 = ((x - \bar{x})^2)$
5	6,60	- 1.60	1,60	2,56
8	6,60	+ 1,40	1,40	1, 96
5	6,60	- 1,60	1,60	1,60
9	6,60	+ 2,40	2,40	2,40
6	6,60	- 0,60	0,60	0,60
	Suma =	0	7,60	13,20

<u>Desviación media</u>: La desviación media es el promedio de los valores absolutos de las desviaciones.

$$dm = \frac{\sum |x - \bar{x}|}{n}$$

$$dm = \frac{1,60+1,40+1,60+2,40+0,60}{5} = 1,52$$

Si observamos que, en lugar de tomar el valor absoluto se hubieran tomado los desvíos, el promedio seria siempre cero y este resultado no brindan ninguna información útil.

d = x - \bar{x} esta fórmula representa cada valor de la variable, menos el promedio.

 $|x - \bar{x}|$ = esta fórmula representa la resta anterior considerando el valor absoluto, es decir siempre la resta con resultado positivo.

 $\sigma^2 = \underline{\text{varianza}} = \frac{\sum |x - \overline{x}|^2}{n}$ Se llama varianza al promedio de los cuadrados de los desvíos.

$$\sigma^2 = \frac{\sum (x - \bar{x})^2}{n} = \frac{13,20}{5} = 2,64$$

 $\underline{\sigma=\ Desviacion\ estandar}\ \sqrt{rac{\sum|x-\overline{x}|^2}{n}}$ Se llama desviación estándar a la raíz cuadrada de la varianza.

$$\sigma = \sqrt{\frac{\sum |x - \bar{x}|^2}{n}} = \sqrt{2,64} = 1,52$$

Ejercitación:

Siguiendo el ejemplo anterior:

Completar la siguiente tabla, calcular la desviación media la varianza y la desviación estándar.

Х	\bar{x}	$d = x - \bar{x}$	$ x-\bar{x} $	$d^2 = ((x - \bar{x})^2)$
4	6,80			
6	6,80			
7	6,80			
8	6,80			
9	6,80			
	Suma =			