# Violation of the exogeneity assumption and the 2SLS estimator

Econometrics (35B206), Lecture 5

Tunga Kantarcı, TiSEM, Tilburg University, Spring 2018

One of the assumptions of the LRM is that  $\varepsilon_i$  is exogenous. Here we relax this assumption. Relaxing an assumption of a model means changing to a new model that can accommodate the new situation about  $\varepsilon_i$ . It also means that we need a new estimator to estimate  $\beta$ . We now study the new model, and the new estimator.

While we relax the exogeneity assumption and study its implications, we retain the other assumptions: linearity, full rank, homoskedasticity, random sampling, normality.

The strict exogeneity assumption states that

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{k}\right]=0.$$

 $\mathbf{x}_k$  contains n observations for variable k. It says that the mean of  $\varepsilon_i$  at observation i is independent of the explanatory variable k observed at any observation, including i.

The weak exogeneity assumption states that

$$E[\varepsilon_i \mid x_{ik}] = 0.$$

 $x_{ik}$  is the observation i for variable k. Hence, we do not consider all n observations of variable k, denoted by  $x_k$ , but just the observation i, denoted by  $x_{ik}$ .

Generalising

$$E[\varepsilon_i \mid x_{ik}] = 0$$

to K variables, we consider

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\boldsymbol{0}.$$

In this lecture we will consider violation of

$$E[\varepsilon_i \mid \mathbf{x}_i] = \mathbf{0},$$

but still assume that

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\mathbf{0}.$$

That is, we violate weak exogeneity, and not strict exogeneity.

A first implication of

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\mathbf{0}$$

is that, by the LIE,

$$\begin{aligned} \mathsf{E}\left[\varepsilon_{i}\mathbf{x}_{i}\right] &= \mathsf{E}_{\mathbf{x}_{i}}\left[\mathsf{E}\left[\varepsilon_{i}\mathbf{x}_{i} \mid \mathbf{x}_{i}\right]\right] \\ &= \mathsf{E}_{\mathbf{x}_{i}}\left[\mathbf{x}_{i}\mathsf{E}\left[\varepsilon_{i} \mid \mathbf{x}_{i}\right]\right] \\ &= \mathbf{0}. \end{aligned}$$

When referring to exogeneity, we will use the latter instead of the former because we can use it when talking about covariance, or because violating it is enough to violate the consistency of the OLS estimator (Lecture 2). Keep in mind that when the latter is ever stated, it is because the former holds.

A second implication of

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\boldsymbol{0}$$

is that, by the LIE,

$$\mathbf{E}\left[\varepsilon_{i}\right] = \mathbf{E}_{\boldsymbol{x}_{i}}\left[\mathbf{E}\left[\varepsilon_{i} \mid \boldsymbol{x}_{i}\right]\right]$$
$$= 0.$$

It says that if the average of  $\varepsilon_i$  at all slices of the population determined by the values of  $x_i$  equals zero, then the average of these zero conditional means must also be zero.

A third implication of

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\mathbf{0}$$

is that, using the above results,

$$Cov [\varepsilon_i, \mathbf{x}_i] = E [\varepsilon_i \mathbf{x}_i] - E [\varepsilon_i] E [\mathbf{x}_i]$$
$$= \mathbf{0} - \mathbf{0} E [\mathbf{x}_i]$$
$$= \mathbf{0}.$$

That is,  $\varepsilon_i$  are  $\mathbf{x}_i$  are not correlated.

So when you see

$$E[\varepsilon_i \mathbf{x}_i] = \mathbf{0},$$

and

$$E[\varepsilon_i] = 0$$
,

this means that  $\varepsilon_i$  and  $\mathbf{x}_i$  are not correlated. Or, when you see

$$E[\varepsilon_i x_i] \neq \mathbf{0},$$

and

$$\mathsf{E}\left[\varepsilon_{i}\right]=0,$$

this means that  $\varepsilon_i$  and  $x_i$  are correlated.

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\boldsymbol{0}$$

implies

$$\mathsf{E}\left[\varepsilon_{i}\right]=0.$$

This does not mean that the LHS of the two terms are equal to each other. We now assume this so that

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\mathsf{E}\left[\varepsilon_{i}\right].$$

It says that the average of  $\varepsilon_i$  is the same across all slices of the population determined by the values of  $\mathbf{x}_i$ . This then necessarily means that the common average is equal to the average of  $\varepsilon_i$  over the entire population. That is, values of  $\mathbf{x}_i$  do not determine the average value of  $\varepsilon_i$ . We then say that  $\varepsilon_i$  is mean independent of  $\mathbf{x}_i$ .

Consider

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\mathsf{E}\left[\varepsilon_{i}\right],$$

or

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\mathbf{0}.$$

Both are statements of the mean independence. What is the econometric interpretation?

For any function of  $x_i$  and  $\varepsilon_i$  (flexible case), by the LIE,

$$E[g(\mathbf{x}_i)h(\varepsilon_i)] = E_{\mathbf{x}_i}[E[g(\mathbf{x}_i)h(\varepsilon_i) \mid \mathbf{x}_i]]$$

$$= E_{\mathbf{x}_i}[g(\mathbf{x}_i)E[h(\varepsilon_i) \mid \mathbf{x}_i]]$$

$$= E[g(\mathbf{x}_i)E[h(\varepsilon_i)]]$$

$$= E[g(\mathbf{x}_i)]E[h(\varepsilon_i)]$$

if  $\varepsilon_i$  and  $\mathbf{x}_i$  are independent, meaning that

$$\mathsf{E}\left[h(\varepsilon_i)\mid \mathbf{x}_i\right] = \mathsf{E}\left[h(\varepsilon_i)\right].$$

It says that all unconditional moments of  $\varepsilon_i$  are equal to the conditional moments of  $\varepsilon_i$ . If  $\varepsilon_i$  is mean independent of  $\mathbf{x}_i$ , that is

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\mathsf{E}\left[\varepsilon_{i}\right],$$

the equality for the general function does not hold. Mean independence is weaker than independence!

For  $x_i$  and  $\varepsilon_i$  (restrictive case),

$$E[x_i \varepsilon_i] = E_{x_i} [E[x_i \varepsilon_i \mid x_i]]$$

$$= E_{x_i} [x_i E[\varepsilon_i \mid x_i]]$$

$$= E[x_i E[\varepsilon_i]]$$

$$= E[x_i] E[\varepsilon_i]$$

if  $\varepsilon_i$  is mean independent of  $x_i$ , that is

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\mathsf{E}\left[\varepsilon_{i}\right].$$

Mean independence implies that  $\varepsilon_i$  and  $x_i$  are uncorrelated. Mean independence is stronger than uncorrelatedness!

For any function of  $x_i$ , and for  $\varepsilon_i$  (less restrictive case),

$$E[g(\mathbf{x}_i)\varepsilon_i] = E_{\mathbf{x}_i}[E[g(\mathbf{x}_i)\varepsilon_i \mid \mathbf{x}_i]]$$

$$= E_{\mathbf{x}_i}[g(\mathbf{x}_i)E[\varepsilon_i \mid \mathbf{x}_i]]$$

$$= E[g(\mathbf{x}_i)E[\varepsilon_i]]$$

$$= E[g(\mathbf{x}_i)]E[\varepsilon_i]$$

if  $\varepsilon_i$  is mean independent of  $x_i$ , meaning that

$$\mathsf{E}\left[\varepsilon_{i}\mid\boldsymbol{x}_{i}\right]=\mathsf{E}\left[\varepsilon_{i}\right].$$

If  $\varepsilon_i$  and  $\mathbf{x}_i$  are independent, the equality for the less restrictive function holds. If  $\varepsilon_i$  and  $\mathbf{x}_i$  are uncorrelated, the equality for the less restrictive function does not hold. Mean independence is in-between independence and uncorrelatedness!

# Violation of the exogeneity assumption

lf

$$E[\varepsilon_i \mathbf{x}_i] = 0$$

does not hold, we say that  $x_i$  is endogenous. When does it not hold? We consider three cases.

Consider the LRM

$$y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + \varepsilon_i.$$

Suppose that

$$\mathsf{E}\left[\varepsilon_{i}\mid x_{i1}\right]=0,$$

and

$$\mathsf{E}\left[\varepsilon_{i}\mid x_{i2}\right]=0.$$

Hence, the model is correctly specified.

Now suppose that we do not observe  $x_{i2}$  so that it enters the error. Hence, the model becomes

$$y_i = x_{i1}\beta_1 + \varepsilon_i^*$$

where

$$\varepsilon_i^* = x_{i2}\beta_2 + \varepsilon_i.$$

Then,

$$E\left[\varepsilon_{i}^{*} \mid x_{i1}\right] = E\left[x_{i2}\beta_{2} \mid x_{i1}\right] + E\left[\varepsilon_{i} \mid x_{i1}\right]$$
$$= \beta_{2}E\left[x_{i2} \mid x_{i1}\right] + 0$$
$$\neq 0$$

if  $\beta_2 \neq 0$  and  $\mathsf{E}\left[x_{i2} \mid x_{i1}\right] \neq 0$ . The former means that  $x_{i2}$  matters and enters the model. The latter means that  $x_{i1}$  and  $x_{i2}$  are correlated. The exogeneity assumption is violated for  $\varepsilon_i^*$ !

What is the implication of

$$\mathsf{E}\left[\varepsilon_{i}^{*}\mid x_{i1}\right]\neq0$$

for  $b_1$  as the OLS estimator of  $\beta_1$ ? Derive  $b_1$  when  $x_{i2}$  is omitted in the true model:

$$b_1 = (x_1'x_1)^{-1}x_1'y$$

$$= (x_1'x_1)^{-1}x_1'(x_1\beta_1 + x_2\beta_2 + \varepsilon)$$

$$= \beta_1 + (x_1'x_1)^{-1}x_1'x_2\beta_2 + (x_1'x_1)^{-1}x_1'\varepsilon.$$

Taking the expectation conditional on X,

$$\mathsf{E}[b_1 \mid \mathbf{X}] = \beta_1 + (\mathbf{x}_1' \mathbf{x}_1)^{-1} \mathbf{x}_1' \mathbf{x}_2 \beta_2$$

since  $E[\varepsilon \mid X] = 0$  in the true model.

$$E[b_1 \mid X] = \beta_1 + (x_1'x_1)^{-1}x_1'x_2\beta_2.$$

In two cases

$$\mathsf{E}\left[b_1\mid \boldsymbol{X}\right] = \beta_1,$$

that is,  $b_1$  is unbiased. First, if

$$(\mathbf{x}_1'\mathbf{x}_1)^{-1}\mathbf{x}_1'\mathbf{x}_2=0,$$

meaning that there is no correlation between  $x_1$  and  $x_2$  in the sample, realising that the stated expression is the OLS coefficient estimate of  $x_1$  from the regression of  $x_2$  on  $x_1$ . Second, if

$$\beta_2 = 0$$
,

meaning that  $x_2$  does not enter the true model. Otherwise  $b_1$  is subject to the omitted variable bias. The stated equation above is the OVB formula.

Regress *wage* on *educ* where we ignore *exper* say because it is unobserved:

#### . regress wage educ

| Source            | SS                       | df                   | MS                       | Number |                      | 997                  |
|-------------------|--------------------------|----------------------|--------------------------|--------|----------------------|----------------------|
| Model<br>Residual | 7842.35455<br>31031.0745 | 1<br>995             | 7842.35455<br>31.1870095 |        | F =<br>ed =          | 0.0000<br>0.2017     |
| Total             | 38873.429                | 996                  | 39.0295472               | ,      | •                    |                      |
| wage              | Coef.                    | Std. Err.            | t                        | P> t   | [95% Conf.           | Interval]            |
| educ<br>_cons     | 1.135645<br>-4.860424    | .0716154<br>.9679821 | 15.86<br>-5.02           |        | .9951106<br>6.759944 | 1.27618<br>-2.960903 |

In the regression we have ignored *exper*. We suspect that  $b_{educ}$  is biased. That is, we suspect that  $b_{educ}$  would change if we control for *exper* in the regression. Do you expect  $b_{educ}$  to have an upward or downward bias? Use the OVB formula to form an expectation:

$$E[b_{educ} \mid educ, exper] = \beta_{educ} + (educ'educ)^{-1}educ'exper\beta_{exper}.$$

We would expect

$$(educ'educ)^{-1}educ'exper$$

to be negative (effect of exper on educ), and

$$\beta_{exper}$$

to be positive (effect of exper on wage). Hence, we should expect  $b_{educ}$  to have downward bias when we ignore *exper* in the true regression!

Regress wage on educ and exper, and observe that  $b_{educ}$  increases. This confirms that  $b_{educ}$  has downward bias when exper is ignored in the previous regression.

#### . regress wage educ exper

Source

| Source   | 33         | u i       | MS         | Numbe   | 1 01 005 | =   | 997       |
|----------|------------|-----------|------------|---------|----------|-----|-----------|
|          |            |           |            | - F(2,  | 994)     | =   | 172.32    |
| Model    | 10008.3629 | 2         | 5004.18147 | Prob    | > F      | =   | 0.0000    |
| Residual | 28865.0661 | 994       | 29.0393019 | R-squ   | ared     | =   | 0.2575    |
|          |            |           |            | - Adj R | -squared | =   | 0.2560    |
| Total    | 38873.429  | 996       | 39.0295472 | . Root  | MSE      | =   | 5.3888    |
|          |            |           |            |         |          |     |           |
|          |            |           |            |         |          |     |           |
| wage     | Coef.      | Std. Err. | t          | P> t    | [95% Co  | nf. | Interval] |
|          |            |           |            |         |          |     |           |
| educ     | 1.246932   | .0702966  | 17.74      | 0.000   | 1.10898  | 5   | 1.384879  |
| exper    | .1327808   | .0153744  | 8.64       | 0.000   | .102610  | 8   | .1629509  |
| _cons    | -8.833768  | 1.041212  | -8.48      | 0.000   | -10.8769 | 9   | -6.790542 |
|          |            |           |            |         |          |     |           |

The fitted line from the regression of wage on educ. The slope is  $b_{educ}$ , and it is biased because we ignore exper!



Adding the fitted line from the regression of wage on educ after partialling out the effect of exper (red line). The slope is  $b_{educ}$ , and it is unbiased! The difference in the slopes is the size of the bias due to ignoring exper in the regression!



Consider the linear model

$$y_i = x_i^* \beta + \varepsilon_i.$$

Suppose  $x_i^*$  is the true variable we do not observe. Suppose we observe  $x_i$ , a noisy version of  $x_i^*$  with unobserved measurement error  $\omega_i$  so that

$$x_i = x_i^* + \omega_i.$$

Since we observe only  $x_i$ , replace  $x_i^*$  in the model to obtain

$$y_i = x_i \beta \underbrace{-\omega_i \beta + \varepsilon_i}_{\varepsilon_i^*}.$$

 $x_i$  is correlated with  $\varepsilon_i^*$  due to  $\omega_i$ . OLS estimator of  $\beta$  is subject to the measurement error bias.

Consider the simultaneous equations model

$$y_{i1} = y_{i2}\alpha_1 + z_{i1}\beta_1 + \varepsilon_{i1},$$
  
$$y_{i2} = y_{i1}\alpha_2 + z_{i2}\beta_2 + \varepsilon_{i2}.$$

The constant is ignored in each equation for simplicity. Assume that

$$E[\varepsilon_{i1} \mid z_{i1}, z_{i2}] = 0,$$
  
 $E[\varepsilon_{i2} \mid z_{i1}, z_{i2}] = 0,$ 

meaning that  $z_{i1}$  and  $z_{i2}$  are both uncorrelated with  $\varepsilon_{i1}$  and  $\varepsilon_{i2}$ . Also assume that

$$E[\varepsilon_{i1}] = 0,$$
  
 $E[\varepsilon_{i2}] = 0.$ 

Suppose that our interest lies in estimating  $\alpha_1$  in the first equation.

Solve the two equations for  $y_{i2}$ , in terms of  $z_{i1}$ ,  $z_{i2}$ ,  $\varepsilon_{i1}$ , and  $\varepsilon_{i2}$ . First replace  $y_{i1}$  in the equation for  $y_{i2}$ , and then solve for  $y_{i2}$  as

$$y_{i2} = y_{i1}\alpha_{2} + z_{i2}\beta_{2} + \varepsilon_{i2}$$

$$= (y_{i2}\alpha_{1} + z_{i1}\beta_{1} + \varepsilon_{i1})\alpha_{2} + z_{i2}\beta_{2} + \varepsilon_{i2}$$

$$= y_{i2}\alpha_{1}\alpha_{2} + z_{i1}\beta_{1}\alpha_{2} + \varepsilon_{i1}\alpha_{2} + z_{i2}\beta_{2} + \varepsilon_{i2}$$

$$(1 - \alpha_{1}\alpha_{2})y_{i2} = z_{i1}\beta_{1}\alpha_{2} + z_{i2}\beta_{2} + \varepsilon_{i1}\alpha_{2} + \varepsilon_{i2}$$

$$y_{i2} = z_{i1}\frac{\beta_{1}\alpha_{2}}{1 - \alpha_{1}\alpha_{2}} + z_{i2}\frac{\beta_{2}}{1 - \alpha_{1}\alpha_{2}} + \varepsilon_{i1}\frac{\alpha_{2}}{1 - \alpha_{1}\alpha_{2}}$$

$$+ \varepsilon_{i2}\frac{1}{1 - \alpha_{1}\alpha_{2}},$$

assuming that  $\alpha_1\alpha_2 \neq 1$ .

The parameter of interest was  $\alpha_1$  in equation

$$y_{i1} = y_{i2}\alpha_1 + z_{i1}\beta_1 + \varepsilon_{i1},$$

and we have just shown that

$$\mathbf{y_{i2}} = z_{i1} \frac{\beta_1 \alpha_2}{1 - \alpha_1 \alpha_2} + z_{i2} \frac{\beta_2}{1 - \alpha_1 \alpha_2} + \varepsilon_{i1} \frac{\alpha_2}{1 - \alpha_1 \alpha_2} + \varepsilon_{i2} \frac{1}{1 - \alpha_1 \alpha_2}.$$

Does

$$\mathsf{E}\left[\mathbf{y}_{i2}\varepsilon_{i1}\right]=0$$

hold?

$$y_{i2} = z_{i1} \frac{\beta_1 \alpha_2}{1 - \alpha_1 \alpha_2} + z_{i2} \frac{\beta_2}{1 - \alpha_1 \alpha_2} + \varepsilon_{i1} \frac{\alpha_2}{1 - \alpha_1 \alpha_2} + \varepsilon_{i2} \frac{1}{1 - \alpha_1 \alpha_2}.$$

Multiply both sides with  $\varepsilon_{i1}$ , take expectations, and use the earlier assumption that  $E[z_{i1}\varepsilon_{i1}]=0$  and  $E[z_{i2}\varepsilon_{i1}]=0$  to obtain

$$\mathsf{E}\left[y_{i2}\varepsilon_{i1}\right] = \mathsf{E}\left[\varepsilon_{i1}\varepsilon_{i1}\right] \frac{\alpha_2}{1 - \alpha_1\alpha_2} + \mathsf{E}\left[\varepsilon_{i2}\varepsilon_{i1}\right] \frac{1}{1 - \alpha_1\alpha_2}.$$

lf

$$\alpha_2 \neq 0, \mathsf{E}\left[\varepsilon_{i2}\varepsilon_{i1}\right] = 0,$$

or if

$$\alpha_2 = 0, \mathsf{E}\left[\varepsilon_{i2}\varepsilon_{i1}\right] \neq 0,$$

we have

$$E[y_{i2}\varepsilon_{i1}]\neq 0,$$

and the OLS estimator of  $\alpha_{1}$  is subject to the simultaneity bias.

Why does

$$\alpha_2 \neq 0, \mathsf{E}\left[\varepsilon_{i2}\varepsilon_{i1}\right] = 0$$

cause simultaneity? Considering the SEM,

$$y_{i1} = y_{i2}\alpha_1 + z_{i1}\beta_1 + \varepsilon_{i1},$$
  
$$y_{i2} = y_{i1}\alpha_2 + z_{i2}\beta_2 + \varepsilon_{i2},$$

this is obvious.

Why does

$$\alpha_2 = 0, \mathsf{E}\left[\varepsilon_{i2}\varepsilon_{i1}\right] \neq 0,$$

cause simultaneity? Considering the SEM,

$$y_{i1} = y_{i2}\alpha_1 + z_{i1}\beta_1 + \varepsilon_{i1},$$
  
$$y_{i2} = y_{i1}\alpha_2 + z_{i2}\beta_2 + \varepsilon_{i2},$$

 $\varepsilon_{i2}$  is a determinant of  $y_{i2}$ .  $\varepsilon_{i2}$  is correlated with  $\varepsilon_{i1}$ . Hence,  $y_{i2}$  enters  $\varepsilon_{i1}$ , making  $y_{i2}$  endogenous in the first equation.

#### Violation of the exogeneity assumption, estimation methods

When

$$E[\varepsilon_i \mathbf{x}_i] \neq 0$$

the OLS estimator is biased and inconsistent. As we will study, there are alternative estimators that are consistent. The **2SLS** and LIML estimators estimate a single equation, and hence are called single-equation methods. The 3SLS, **GMM**, and FIML estimators jointly estimate an entire system of equations, and hence are called system of equations methods. In this lecture we consider the 2SLS estimator. In the next lecture, we consider the GMM estimator.

#### IV Model, assumptions

Consider the LRM

$$y_i = \mathbf{x}_i' \mathbf{\beta} + \varepsilon_i$$
.

 $\emph{\textbf{x}}_i$  is  $\emph{K} \times 1$ . Assume that all the assumptions of the LRM hold except that

$$E[\varepsilon_i \mathbf{x}_i] \neq 0.$$

That is,  $x_i$  is endogenous.

# IV Model, assumptions

Suppose  $z_i$  is a  $L \times 1$  vector of instrumental variables.  $z_i$  satisfies two main assumptions.

A1.IV. Relevance. The variables in  $z_i$  are sufficiently linearly related to the variables in  $x_i$ . That is,

$$E[z_ix_i']$$

has full column rank. Consider the dimensions of the expected value.  $z_i$  is  $L \times 1$ .  $x_i'$  is  $1 \times K$ . Hence,

$$E[z_ix_i']$$

is  $L \times K$ . Hence its rank should be K. Hence, the assumption imposes a rank condition. What does a rank condition has to do with  $z_i$  being related to  $x_i$ ?

Consider the LRM

$$y_i = \beta_1 + x_{i2}\beta_2 + x_{i3}\beta_3 + \varepsilon_i$$

so that

$$\mathbf{x}_i' = \begin{bmatrix} 1 & x_{i2} & x_{i3} \end{bmatrix}.$$

Suppose that  $x_{i2}$  is exogenous but  $x_{i3}$  is endogenous. Suppose we have access to instruments  $z_{i1}$ ,  $z_{i2}$ ,  $z_{i3}$ . 1 and  $x_{i2}$  can also be instruments because they can have explanatory power for  $x_{i3}$ . The vector of instruments then takes the form

$$\mathbf{z}_{i} = \begin{vmatrix} 1 \\ x_{i2} \\ z_{i1} \\ z_{i2} \\ z_{i3} \end{vmatrix}.$$

Then,

$$\mathbf{z}_{i}\mathbf{x}_{i}' = \begin{bmatrix} 1 \\ x_{i2} \\ z_{i1} \\ z_{i2} \\ z_{i3} \end{bmatrix} \begin{bmatrix} 1 & x_{i2} & x_{i3} \end{bmatrix} = \begin{bmatrix} 1 & x_{i2} & x_{i3} \\ x_{i2} & x_{i2}x_{i2} & x_{i2}x_{i3} \\ z_{i1} & z_{i1}x_{i2} & z_{i1}x_{i3} \\ z_{i2} & z_{i2}x_{i2} & z_{i2}x_{i3} \\ z_{i3} & z_{i3}x_{i2} & z_{i3}x_{i3} \end{bmatrix}.$$

Taking the expectation,

$$\mathsf{E} \begin{bmatrix} \mathbf{z}_i \mathbf{x}_i' \end{bmatrix} = \begin{bmatrix} 1 & \mathsf{E} [x_{i2}] & \mathsf{E} [x_{i3}] \\ \mathsf{E} [x_{i2}] & \mathsf{E} [x_{i2} x_{i2}] & \mathsf{E} [x_{i2} x_{i3}] \\ \mathsf{E} [z_{i1}] & \mathsf{E} [z_{i1} x_{i2}] & \mathsf{E} [z_{i1} x_{i3}] \\ \mathsf{E} [z_{i2}] & \mathsf{E} [z_{i2} x_{i2}] & \mathsf{E} [z_{i2} x_{i3}] \\ \mathsf{E} [z_{i3}] & \mathsf{E} [z_{i3} x_{i2}] & \mathsf{E} [z_{i3} x_{i3}] \end{bmatrix}.$$

Consider a case where we do not have access to any  $z_i$ . Then,

$$\mathsf{E}\left[\boldsymbol{z}_{i}\boldsymbol{x}_{i}^{\prime}\right] = \begin{bmatrix} 1 & \mathsf{E}\left[\boldsymbol{x}_{i2}\right] & \mathsf{E}\left[\boldsymbol{x}_{i3}\right] \\ \mathsf{E}\left[\boldsymbol{x}_{i2}\right] & \mathsf{E}\left[\boldsymbol{x}_{i2}\boldsymbol{x}_{i2}\right] & \mathsf{E}\left[\boldsymbol{x}_{i2}\boldsymbol{x}_{i3}\right] \end{bmatrix}.$$

Assume that individual expectations are such that

$$\mathsf{E}\left[\boldsymbol{z}_{i}\boldsymbol{x}_{i}^{\prime}\right]=\begin{bmatrix}1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix}.$$

The matrix

$$E[z_ix_i']$$

cannot have full column rank. That is, rank cannot be K which is 3. Matrix has fewer rows than columns. First and third columns are linearly dependent. Rank condition is not satisfied.  $\beta_3$  is under identified. Not surprising:  $E[x_{i2}x_{i3}] - E[x_{i2}]E[x_{i3}] = 0$ .  $x_{i2}$  and  $x_{i3}$  are not correlated!  $x_{i2}$  cannot be an instrument.

Consider a case where we have access to only  $z_{i1}$  of  $z_i$ . Then,

$$E[\mathbf{z}_{i}\mathbf{x}'_{i}] = \begin{bmatrix} 1 & E[x_{i2}] & E[x_{i3}] \\ E[x_{i2}] & E[x_{i2}x_{i2}] & E[x_{i2}x_{i3}] \\ E[z_{i1}] & E[z_{i1}x_{i2}] & E[z_{i1}x_{i3}] \end{bmatrix}.$$

Assume that individual expectations are such that

$$\mathsf{E}\left[\mathbf{z}_{i}\mathbf{x}_{i}'\right] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & \mathsf{E}\left[z_{i1}x_{i3}\right] \end{bmatrix}.$$

 $E[z_ix_i']$ 

The matrix

has full column rank if

$$\mathsf{E}\left[z_{i1} \times_{i3}\right] \neq 0.$$

That is, if  $z_{i1}$  and  $x_{i3}$  are correlated! Columns do not add up. Rank condition is satisfied.  $\beta_3$  is exactly identified.

Consider a case where we have access to all  $z_i$ . Then,

$$E\begin{bmatrix} 1 & E[x_{i2}] & E[x_{i3}] \\ E[x_{i2}] & E[x_{i2}x_{i2}] & E[x_{i2}x_{i3}] \\ E[z_{i1}] & E[z_{i1}x_{i2}] & E[z_{i1}x_{i3}] \\ E[z_{i2}] & E[z_{i2}x_{i2}] & E[z_{i2}x_{i3}] \\ E[z_{i3}] & E[z_{i3}x_{i2}] & E[z_{i3}x_{i3}] \end{bmatrix}.$$

Assume that individual expectations are such that

$$\mathsf{E}\left[\boldsymbol{z}_{i}\boldsymbol{x}_{i}^{\prime}\right] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & \mathsf{E}\left[z_{i1}x_{i3}\right] \\ 0 & 0 & \mathsf{E}\left[z_{i2}x_{i3}\right] \\ 0 & 0 & \mathsf{E}\left[z_{i2}x_{i3}\right] \end{bmatrix}.$$

The matrix

ne matrix
$$\mathsf{E}\left[oldsymbol{z}_{i}oldsymbol{x}_{i}^{\prime}
ight]$$

has full column rank if one of the expectations  $\neq$  0.  $\beta_3$  is exactly identified. Or if two or more of them  $\neq$  0.  $\beta_3$  is overidentified.

In the examples above, we have assumed values for the individual expectations. However, some of the assumptions we made for certain expectations are not arbitrary but intentional. Now we change one these assumptions, and study the consequences. This exercise provides insights into the implications of the rank condition.

Consider again the case where we have only  $z_{i1}$  of  $z_i$ . Then,

$$E \begin{bmatrix} \mathbf{z}_{i} \mathbf{x}_{i}' \end{bmatrix} = \begin{bmatrix} 1 & E [x_{i2}] & E [x_{i3}] \\ E [x_{i2}] & E [x_{i2} x_{i2}] & E [x_{i2} x_{i3}] \\ E [z_{i1}] & E [z_{i1} x_{i2}] & E [z_{i1} x_{i3}] \end{bmatrix}.$$

Assume that individual expectations are such that

$$\mathsf{E}\left[m{z}_im{x}_i'
ight] = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 1 & \mathsf{E}\left[z_{i1}x_{i3}
ight] \end{bmatrix}.$$

Compared to the earlier example, the difference is that 1 was 0. We have full column rank if  $E[z_{i1}x_{i3}]=1$ . However, this setup is wrong. If  $E[z_{i1}x_{i2}] \neq 0$  and  $E[z_{i1}x_{i3}] \neq 0$ , then  $E[x_{i2}x_{i3}]=0$  cannot be true:  $x_{i2}$  and  $x_{i2}$  are correlated through  $z_{i1}$ . Hence, let us assume that  $E[x_{i2}x_{i3}]=1$  in the next example.

Again, if we have access to only  $z_{i1}$  of  $z_i$ ,

$$\mathsf{E} \begin{bmatrix} \mathbf{z}_{i} \mathbf{x}_{i}' \end{bmatrix} = \begin{bmatrix} 1 & \mathsf{E} [x_{i2}] & \mathsf{E} [x_{i3}] \\ \mathsf{E} [x_{i2}] & \mathsf{E} [x_{i2} x_{i2}] & \mathsf{E} [x_{i2} x_{i3}] \\ \mathsf{E} [z_{i1}] & \mathsf{E} [z_{i1} x_{i2}] & \mathsf{E} [z_{i1} x_{i3}] \end{bmatrix}.$$

Assume that individual expectations are such that

$$\mathsf{E}\left[\mathbf{z}_{i}\mathbf{x}_{i}'\right] = egin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & \mathsf{E}\left[z_{i1}x_{i3}
ight] \end{bmatrix}.$$

We wish that  $E[z_{i1}x_{i3}] = 1$ . However, in this case column rank is not 3. Columns add up. But this is surprising because if  $E[z_{i1}x_{i3}] = 1$ , that is if  $z_{i1}$  and  $x_{i3}$  are correlated, we would expect the rank condition to hold. What is wrong?

We have

$$\mathsf{E} \begin{bmatrix} \mathbf{z}_i \mathbf{x}_i' \end{bmatrix} = \begin{bmatrix} 1 & \mathsf{E} [x_{i2}] & \mathsf{E} [x_{i3}] \\ \mathsf{E} [x_{i2}] & \mathsf{E} [x_{i2}x_{i2}] & \mathsf{E} [x_{i2}x_{i3}] \\ \mathsf{E} [z_{i1}] & \mathsf{E} [z_{i1}x_{i2}] & \mathsf{E} [z_{i1}x_{i3}] \end{bmatrix}.$$

and

$$\mathsf{E}\left[\mathbf{z}_{i}\mathbf{x}_{i}'\right] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & \mathsf{E}\left[\mathbf{z}_{i1}\mathbf{x}_{i3}\right] \end{bmatrix}.$$

If  $E[z_{i1}x_{i3}]=1$ , then  $E[z_{i1}x_{i3}]=E[x_{i2}x_{i3}]$ . This says that  $z_{i1}$  is correlated with  $x_{i3}$ , but this correlation is the same as the correlation between  $x_{i2}$  and  $x_{i3}$ . This means that  $z_{i1}$  does not bring new information for  $x_{i3}$ !  $z_{i1}$  cannot be an instrument!  $z_{i1}$  should bring new information for  $x_{i3}$ ! that is different than the information  $x_{i2}$  brings!

There is another, perhaps a more explicit way of seeing this if you are willing to consider another assumption we make. Consider the assumption  $\mathsf{E}\left[z_{i1}\right] = \mathsf{E}\left[x_{i2}\right]$ . It implies that  $z_{i1} = x_{i2} + \nu_i$  where  $\mathsf{E}\left[\nu_i\right] = 0$ . Furthermore, note that  $\mathsf{E}\left[z_{i1}x_{i3}\right] = \mathsf{E}\left[x_{i2}x_{i3}\right]$  implies that  $\mathsf{E}\left[(z_{i1}-x_{i2})\,x_{i3}\right] = \mathsf{E}\left[\nu_ix_{i3}\right] = 0$ . That is,  $v_i$  is not correlated with  $x_{i3}$ . This means that  $z_{i1}$  does not bring new information for  $x_{i3}$  through  $v_i$ .  $z_{i1}$  brings information for  $x_{i3}$  through  $x_{i2}$  because  $\mathsf{E}\left[x_{i2}x_{i3}\right] \neq 0$ . But we already know that  $x_{i2}$  is an instrument for  $x_{i3}$ . Hence,  $z_{i1}$  does not bring new information for  $x_{i3}$ .  $z_{i1}$  cannot be an instrument.

A2.IV. Exogeneity.  $\varepsilon_i$  is uncorrelated with each variable in  $z_i$ . That is,

$$\mathsf{E}\left[\mathbf{z}_{i}\varepsilon_{i}\right]=\mathbf{0}.$$

This assumption imposes an orthogonality condition. What does this mean?

A2.IV. Exogeneity.  $\varepsilon_i$  is uncorrelated with each variable in  $z_i$ . That is, Two vectors m and n are orthogonal to each other if their dot product is zero, that is, if

$$m'n = 0.$$

Two vectors  $\mathbf{m}$  and  $\mathbf{n}$  with random components are orthogonal to each other if

$$\mathsf{E}\left[\boldsymbol{m}'\boldsymbol{n}\right]=0.$$

This means that the random components of m'n may be positive, negative, or zero, but the average of them is 0. If two random vectors are orthogonal, this does not mean that they are independent. It also does not mean that they are uncorrelated. They are uncorrelated if one of the vectors has zero mean.

A2.IV. Exogeneity.  $\varepsilon_i$  is uncorrelated with each variable in  $\mathbf{z}_i$ . That is, Hence, the assumption

$$E[z_i\varepsilon_i]=\mathbf{0}$$

implies an orthogonality condition. There are L such conditions since  $z_i$  is  $L \times 1$ .

A3.IV.  $\mathbf{x}_i, \mathbf{z}_i, \varepsilon_i$ , for  $i = 1, \dots, n$ , are an i.i.d. sequence of random variables.

A4.IV. 
$$\operatorname{Var}\left[\varepsilon_{i}\mathbf{z}_{i}\right]=\operatorname{E}\left[\varepsilon_{i}\varepsilon_{i}\mathbf{z}_{i}\mathbf{z}_{i}'\right]$$
 is a finite positive definite matrix.

 $\mathbf{z}_i$  is  $L \times 1$ . The instruments in  $\mathbf{z}_i$  satisfy the rank and exogeneity assumptions.  $\mathbf{x}_i$  is  $K \times 1$ . Suppose that L > K so that there are more instruments than there are endogenous variables. In this case we say that the system is overidentified. We can consider a linear combination of the instruments, and estimate  $\boldsymbol{\beta}$  consistently. This is done in two stages and leads to the two-stage least squares estimator:  $\mathbf{b}_{2SLS}$ , which we study now.

 $\mathbf{z}_i$  is  $L \times 1$ .  $\mathbf{x}_i$  is  $K \times 1$ . If L > K there are more instruments than there are endogenous variables. That is, we have more information than we need to proxy a given endogenous variable. Should we then just use an arbitrary selection of K instruments, and throw away the remaining L - K instruments? No. Throwing away useful information leads to an inefficient estimator:  $\mathbf{b}_{IV}$ . Linear combinations of the L instruments also satisfy the rank and exogeneity assumptions. This choice leads to an efficient estimator:  $\mathbf{b}_{2SLS}$ . Here efficiency refers to a smaller variance of the estimator used.

Consider the LRM

$$y_i = \mathbf{x}_i' \mathbf{\beta} + \varepsilon_i$$
.

Suppose that  $\mathbf{x}_i'$  contains two variables which are both endogenous. To derive our estimator, it is enough if one of them is endogenous. We assume that we have two endogenous variables instead of one only to keep the derivation general.

Stage one. For each endogenous regressor, estimate by OLS

$$x_{ik} = \mathbf{z}_i' \boldsymbol{\pi}_k + v_{ik}.$$

 $z_i'$  contains the instruments.  $1 \times L$ .  $\pi_k$  contains the parameters for  $z_i'$ .  $L \times 1$ . Obtaining the prediction  $\hat{x}_{ik}$ , and generalising to n observations,

$$\hat{x}_k = P_Z x_k = Z \underbrace{\left(Z'Z\right)^{-1} Z' x_k}_{\hat{\pi}_k}.$$

 $\hat{\boldsymbol{x}}_k$  contains n predictions.  $n \times 1$ .  $\boldsymbol{Z}$  contains L instruments, each with n observations.  $n \times L$ .  $\hat{\boldsymbol{\pi}}_k$  contains L parameter estimates, for variable k.  $L \times 1$ . Generalising to K endogenous variables,

$$\hat{\mathbf{X}} = \mathbf{Z} \underbrace{\left(\mathbf{Z}'\mathbf{Z}\right)^{-1}\mathbf{Z}'\mathbf{X}}_{\bullet}.$$

 $\hat{\boldsymbol{\pi}}$  contains L parameter estimates, for K endogenous variables.  $L \times K$ .  $\hat{\boldsymbol{X}}$  is  $n \times K$ .

**Stage two.** Using the predictions as regressors, estimate by OLS the single equation

$$y_i = \hat{\mathbf{x}}_i' \mathbf{\beta} + \varepsilon_i^*$$

where

$$\varepsilon_i^* = \hat{v}_i' \boldsymbol{\beta} + \varepsilon_i.$$

 $\hat{\mathbf{x}}_i'$  is the vector of predicted endogenous variables, for individual i. It is  $1 \times K$ . Generalising to n observations, the OLS estimator of this model is

$$m{b} = \left(\hat{m{X}}'\hat{m{X}}\right)^{-1}\hat{m{X}}'m{y}$$
 $\equiv m{b}_{2SLS}.$ 

This estimator, obtained in two stages, is the two-stage least squares (2SLS) estimator.

In case that you are curious about how we end up with

$$\varepsilon_i^* = \hat{v}_i' \boldsymbol{\beta} + \varepsilon_i.$$

Considering that there is only one endogenous variable,

$$x_i = z_i \pi + v_i.$$

Then,

$$x_i = \hat{x}_i + \hat{v}_i.$$

Replacing  $x_i$  in

$$y_i = x_i \beta + \varepsilon_i,$$

we have

$$y_i = \hat{x}_i \beta + \hat{v}_i \beta + \varepsilon_i$$

and

$$\varepsilon_i^* \equiv \hat{v}_i \beta + \varepsilon_i.$$

Why  $b_{2SLS}$  is in fact the OLS estimator in the model considered? First take note of the following facts.

$$\hat{\mathbf{X}} = \mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'\mathbf{X}.$$
 $\mathbf{P}_{\mathbf{Z}} = \mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'.$ 
 $\mathbf{P}_{\mathbf{Z}} = \mathbf{P}'_{\mathbf{Z}}\mathbf{P}_{\mathbf{Z}}.$ 
 $\mathbf{P}'_{\mathbf{Z}} = \mathbf{P}_{\mathbf{Z}}.$ 

$$b_{2SLS} = (\hat{\mathbf{X}}'\hat{\mathbf{X}})^{-1}\hat{\mathbf{X}}'\mathbf{y}$$

$$= (\mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$$

$$= (\mathbf{X}'\mathbf{P}'_{\mathbf{Z}}\mathbf{P}_{\mathbf{Z}}\mathbf{X})^{-1}\mathbf{X}'\mathbf{P}'_{\mathbf{Z}}\mathbf{y}$$

$$= (\mathbf{X}^*\mathbf{X}^*)^{-1}\mathbf{X}^*\mathbf{y}$$

where

$$X^* \equiv P_Z X$$
.

That is, the 2SLS estimator is indeed the OLS estimator: in the first stage  $X^*$  is constructed, and in the second stage the OLS estimator is applied on y and  $X^*$  (transformed X). In the first stage,  $P_Z$  projects X on to the space spanned by Z which is orthogonal to  $\varepsilon$ , because

$$E[z_i\varepsilon_i]=\mathbf{0}.$$

The first stage has removed the endogeneity problem!

 $oldsymbol{b}_{2SLS}$  takes an alternative form. Using  $\hat{oldsymbol{X}} = oldsymbol{Z} \left( oldsymbol{Z}' oldsymbol{Z} 
ight)^{-1} oldsymbol{Z}' oldsymbol{X}$  ,

$$b_{2SLS} = (\hat{\boldsymbol{X}}'\hat{\boldsymbol{X}})^{-1} \hat{\boldsymbol{X}}' \boldsymbol{y}$$

$$= (\boldsymbol{X}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{X})^{-1} \hat{\boldsymbol{X}}' \boldsymbol{y}$$

$$= (\boldsymbol{X}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{X})^{-1} \hat{\boldsymbol{X}}' \boldsymbol{y}$$

$$= (\hat{\boldsymbol{X}}' \boldsymbol{X})^{-1} \hat{\boldsymbol{X}}' \boldsymbol{y}.$$

For future reference, note that

$$\mathbf{b}_{2SLS} = (\hat{\mathbf{X}}'\hat{\mathbf{X}})^{-1} \hat{\mathbf{X}}' \mathbf{y}$$

$$= (\mathbf{X}' \mathbf{Z} (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{Z}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{Z}' \mathbf{y}.$$

 $\equiv \boldsymbol{b}_{IV}$ .

 $z_i$  is  $L \times 1$ .  $x_i$  is  $K \times 1$ . Suppose L = K. The number of instruments is equal to the number of endogenous variables. The system is exactly identified. Then,

$$b_{2SLS} = (\hat{\mathbf{X}}'\hat{\mathbf{X}})^{-1} \hat{\mathbf{X}}' \mathbf{y}$$

$$= (\mathbf{X}'\mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'\mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}' \mathbf{y}$$

$$= (\mathbf{X}'\mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}' \mathbf{y}$$

$$= (\mathbf{Z}'\mathbf{X})^{-1} (\mathbf{X}'\mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1})^{-1} \mathbf{X}'\mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}' \mathbf{y}$$

$$= (\mathbf{Z}'\mathbf{X})^{-1} \mathbf{Z}' \mathbf{y}$$

If L = K, Z'X is a  $K \times K$  square matrix with full rank. Square matrices are nonsingular and invertible if they have full rank. Z'X is invertible.  $\mathbf{b}_{2SLS} = \mathbf{b}_{IV}$ . If L > K, Z'X is  $L \times K$  with rank K < L. Z'X is not invertible.  $\mathbf{b}_{2SLS} \neq \mathbf{b}_{IV}$ .

### IV Model, 2SLS estimator, statistical properties

Small sample properties of  $\boldsymbol{b}_{2SLS}$  can not be established analytically. Using simulation analysis it can be shown that  $\boldsymbol{b}_{2SLS}$  is in general biased. Hence, we rely on the large sample properties of  $\boldsymbol{b}_{2SLS}$ .  $\boldsymbol{b}_{2SLS}$  is consistent and asymptotically normally distributed. We prove these later.

### IV Model, 2SLS estimator, example

#### . reg lwage educ age age2 black

| Source                                | SS                                                     | df                                                       | MS                     |                                           | er of obs<br>2215)                               | =           | 2,220<br>143.09                                         |
|---------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------|-------------------------------------------|--------------------------------------------------|-------------|---------------------------------------------------------|
| Model<br>Residual                     | 88.0908302<br>340.908673                               | 4<br>2,215                                               | 22.0227076             | Prob<br>R-sq                              |                                                  | =           | 0.0000<br>0.2053                                        |
| Total                                 | 428.999503                                             | 2,219                                                    | .193330105             | -                                         |                                                  | =           | .39231                                                  |
| lwage                                 | Coef.                                                  | Std. Err.                                                | t                      | P> t                                      | [95% Co                                          | nf.         | Interval]                                               |
| educ<br>age<br>age2<br>black<br>_cons | .0385118<br>.1326507<br>0015523<br>2127221<br>3.315457 | .0032895<br>.0555628<br>.0009674<br>.0232691<br>.7883061 | 2.39<br>-1.60<br>-9.14 | 0.000<br>0.017<br>0.109<br>0.000<br>0.000 | .03206<br>.023690<br>003449<br>258353<br>1.76956 | 1<br>4<br>7 | .0449627<br>.2416113<br>.0003448<br>1670906<br>4.861354 |

### IV Model, 2SLS estimator, example

. ivregress 2sls lwage (educ = motheduc fatheduc) age age2 black, first

#### First-stage regressions

| Number of obs       | = | 2,220  |
|---------------------|---|--------|
| F( <b>5, 2214</b> ) | = | 157.81 |
| Prob > F            | = | 0.0000 |
| R-squared           | = | 0.2628 |
| Adj R-squared       | = | 0.2611 |
| Root MSE            | = | 2.2244 |
|                     |   |        |

| educ                                                  | Coef.                                                               | Std. Err.                                                           | t                                                | P> t                                      | [95% Conf.                                                          | Interval]                                                           |
|-------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| age<br>age2<br>black<br>motheduc<br>fatheduc<br>_cons | .9804534<br>0160649<br>1607076<br>.1975247<br>.2230658<br>-5.389924 | .314502<br>.0054764<br>.1376706<br>.0201066<br>.0167964<br>4.472077 | 3.12<br>-2.93<br>-1.17<br>9.82<br>13.28<br>-1.21 | 0.002<br>0.003<br>0.243<br>0.000<br>0.000 | .3637036<br>0268043<br>4306846<br>.1580948<br>.1901275<br>-14.15983 | 1.597203<br>0053256<br>.1092694<br>.2369545<br>.2560042<br>3.379979 |

### IV Model, 2SLS estimator, example

| Instrumental | variables | (2SLS) | regression | Number | of   | obs | = | 2,220  |
|--------------|-----------|--------|------------|--------|------|-----|---|--------|
|              |           |        |            | Wald o | :hi2 | (4) | = | 503.26 |
|              |           |        |            | Prob > | - ch | i2  | = | 0.0000 |

R-squared

Root MSE

0.1900

.39564

| lwage | Coef.    | Std. Err. | z     | P>   z | [95% Conf. | Interval] |
|-------|----------|-----------|-------|--------|------------|-----------|
| educ  | .0600324 | .0069201  | 8.68  | 0.000  | .0464692   | .0735955  |
| age   | .1094726 | .0564143  | 1.94  | 0.052  | 0010974    | .2200426  |
| age2  | 0011585  | .0009819  | -1.18 | 0.238  | 003083     | .0007659  |
| black | 1833938  | .0248831  | -7.37 | 0.000  | 2321638    | 1346237   |
| _cons | 3.354017 | .7950635  | 4.22  | 0.000  | 1.795721   | 4.912313  |

Instrumented: educ

Instruments: age age2 black motheduc fatheduc