

Predicting Age with Multiple Linear Regression

Agenda

Introduction

Hypothesis

Data-Analysis Process

Data Visualizations

Findings

Limitations

Summary

Introduction

- Kim Fowler
- Completing a Master's degree in Data Analytics from WGU
- Database Developer with 10 years of experience
- Predicting a person's age (years) from a set of health and lifestyle variables

Hypothesis

- Hypothesis The variables Cholesterol Level, Bone Density, Blood Glucose Level, Vision Sharpness, Hearing Ability, and Smoking Status do impact Age (years).
- Alterative Hypothesis The variables Cholesterol Level, Bone Density, Blood Glucose Level, Vision Sharpness, Hearing Ability, and Smoking Status do not impact Age (years).

Data-Analysis Process

- Data Collection
- Exploratory Data Analysis
- Prepare the Data
- Data Wrangling
- Predictive Modeling
- Feature Selection
- Model Evaluation

Visualizations to explore the Data

Research Findings

	OLD.	Regression	Results				
Dep. Variable:	Ag	ge (years)	R-	squared	d: ().928	
Model:		OLS	Adj. R-	squared	d: ().928	
Method:	Leas	t Squares	F-	statisti	c: 6	416.	
Date:	Wed, 22	Jan 2025	Prob (F-s	tatistic):	0.00	
Time:		20:23:27	Log-Lik	elihood	d: -93	884.0	
No. Observations:		3000		AIC	1.878	e+04	
Df Residuals:		2993		ВІС	1.882	+04	
Df Model:		6					
Covariance Type:	n	onrobust					
		coe	ef std er		t P> t	[0.025	0.975]
	con	st 73.018	6 1.620	45.08	34 0.000	69.843	76.194
Cholesterol Level (mg/dL)		L) 0.033	5 0.005	6.8	76 0.000	0.024	0.043
Blood Glucose Level (mg/dL)		L) 0.042	3 0.006	6.78	35 0.000	0.030	0.054
Bone Dens	sity (g/cm	²) -25.873	5 0.454	-56.9	55 0.000	-26.764	-24.983
Smoking St	atus_Nev	er -0.573	1 0.217	-2.64	46 0.008	-0.998	-0.148
Vision Sharpness		ss -32.614	2 0.929	-35.09	0.000	-34.436	-30.792
Hearing A	Ability (dl	3) 0.150	5 0.010	15.43	0.000	0.131	0.170
				2.034			
Omnibus:	0.335	Ourbin-Wat					
Omnibus:		Ourbin-Wat raue-Bera					
Prob(Omnibus):		Ourbin-Wat rque-Bera Prob	(JB):	0.384			

This model can be used to predict a person's age, thus helping to determine if they are a longevity risk

Formula:

Age (years) = 73.02 + 0.03 (Cholesterol Level) + 0.04 (Blood Glucose Level) - 25.87 (Bone Density)

- 32.61 (Vision Sharpness) + 0.15 (Hearing Ability) - 0.57 (Smoking Status)

Limitations

- Multiple Linear Regression Limitations sensitive to outliers. Outliers must be handled carefully before performing analysis.
- Data Limitations The major life insurance company's data may not include all the relevant health and lifestyle variables.

Next Steps

- Gather comprehensive health and lifestyle information on current customers and their beneficiaries.
- Collect similar health and lifestyle information for new customers and their beneficiaries.

Conclusion

By using a predictive multiple linear regression model, insights can be gained into whether an individual may be considered a longevity risk.

Identifying individuals who are likely to live longer than expected allows life insurance companies to take proactive measures to mitigate unexpected cash flow issues.

