

Assignatura	Codi	Data	Hora inici
Lògica	05.570	26/06/2013	18:30

]_□、□``□`□`∟□℧□ 05.570 26 06 13 EX

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- · Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- · No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%, problema 2: 25%, problema 3: 25%, problema 4: 20%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	26/06/2013	18:30

Problema 1

- a) Respon les següents preguntes utilitzant els àtoms proposats:
 - E: Tenir escrúpols
 - C: Fer el cor fort
 - M: Poder mentir
 - T: Poder trair el teu millor amic
 - 1) Formalitza la frase "Quan no tens escrúpols, no cal fer el cor fort per a poder mentir."

$$\neg E \rightarrow \neg (M \rightarrow C)$$

- 2) Quin dels següents enunciats és una formalització correcte de la frase "Si no pots mentir, cal fer el cor fort per a poder trair el teu millor amic."?
 - a. $\neg M \rightarrow (T \rightarrow C)$
 - b. $(T \rightarrow C) \rightarrow \neg M$
 - c. $\neg M \rightarrow (C \rightarrow T)$
- 3) Quin dels següents enunciats és una formalització correcte de la frase "Si fas el cor fort pots mentir, quan no pots trair el teu millor amic."?
 - a. $\neg T \rightarrow (C \rightarrow M)$
 - $b. \quad \neg T \to C \to M$
 - c. $(C \rightarrow M) \rightarrow \neg T$
- b) Respon les següents preguntes utilitzant els predicats proposats:
 - Domini: un conjunt no buit
 - P(x): x és polític
 - H(x): x és honest
 - A(x): x és altruista
 - V(x, y): x és votant de (vota a) y
 - T(x, y): x traeix la confiança d' y
 - 1) Formalitza la frase "Hi ha polítics honestos, però cap és altruista."

$$\exists x (P(x) \land H(x)) \land \neg \exists x (P(x) \land A(x))$$

- 2) Quina de les següents fórmules és una formalització correcte de la frase "Cap polític honest traeix la confiança de qui el vota."?
 - a. $\neg \exists x \{P(x) \land H(x) \land \exists y [V(y,x) \land T(x,y)]\}$
 - b. $\neg \exists x \{P(x) \land H(x) \land \forall y [V(y,x) \rightarrow T(x,y)]\}$
 - c. $\neg \exists x \{ P(x) \land H(x) \land \neg \forall y [V(y,x) \rightarrow T(x,y)] \}$
- 3) Digues quina frase formalitza la fórmula $\exists x[P(x) \land \neg \exists yV(y,x)]$
 - a. Hi ha polítics a qui algú no vota.
 - b. Hi ha polítics a qui ningú vota.
 - c. Hi ha polítics que no voten a ningú.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	26/06/2013	18:30

Problema 2

Demostra la validesa del raonament següent utilitzant les 9 regles primitives de la deducció natural (és a dir, no pots utilitzar ni regles derivades ni equivalents deductius ni teoremes):

$$R \vee \neg T \rightarrow (P \rightarrow Q \wedge W), R \wedge S \therefore \neg (S \rightarrow \neg (P \rightarrow Q))$$

1.	$R \vee \neg T \rightarrow (P \rightarrow Q \wedge W)$			Р
2.	R ^ S			Р
3.		$S \rightarrow \neg (P \rightarrow Q)$		Н
4.		S		E _^ 2
5.		¬ (P → Q)		E→ 3,4
6.		R		E _^ 2
7.		Rv¬T		lv 6
8.		$P \rightarrow Q \wedge W$		E→ 1,7
9.			Р	Н
10.			Q∧W	E→ 8,9
11.			Q	E∧ 10
12.		$P \rightarrow Q$		l→ 9,11
13.	$\neg (S \rightarrow \neg (P \rightarrow Q))$			I¬ 3,5,12

Assignatura	Codi	Data	Hora inici
Lògica	05.570	26/06/2013	18:30

Problema 3

Analitza la validesa o la invalidesa del següent raonament utilitzant el mètode de resolució. Comprova la consistència de les premisses.

$$A \rightarrow B$$
, $\neg (C \lor D)$, $B \rightarrow C$, $\neg C \rightarrow \neg D$ $\therefore \neg (A \lor D)$

Busquem la FNC de les premisses i de la negació de la conclusió:

$$A \rightarrow B = \neg A \lor B$$
$$\neg (C \lor D) = \neg C \land \neg D$$
$$B \rightarrow C = \neg B \lor C$$
$$\neg C \rightarrow \neg D = C \lor \neg D$$
$$A \lor D$$

Conjunt de clàusules resultants(amb negreta, el conjunt de suport):

$$\{\neg A \lor B, \neg C, \neg D, \neg B \lor C, C \lor \neg D, A \lor D\}$$

Aplicant la regla de subsumpció, la clàusula C ∨ ¬D es pot eliminar ja que queda subsumida per ¬D.

Llavors, el conjunt resultant de clàusules és:

$$\{\neg A \lor B, \neg C, \neg D, \neg B \lor C, A \lor D\}$$

Resolució:

A v D	¬D
Α	¬A v B
В	¬B v C
С	¬C

Hem arribat a la clàusula buida, per tant el raonament és vàlid.

A continuació comprovem la consistència de les premisses:

$$\{\neg A \lor B, \neg C, \neg D, \neg B \lor C\}$$

Aplicant la regla del literal pur, eliminem totes les clàusules amb ¬D ja que no hi ha D. Ens queda:

$$\{\neg A \lor B, \neg C, \neg B \lor C\}$$

Aplicant la regla del literal pur, eliminem totes les clàusules amb ¬A ja que no hi ha A. Ens queda:

$$\{\neg C, \neg B \lor C\}$$

Aplicant un altre cop la regla del literal pur, eliminem totes les clàusules amb ¬B ja que no hi ha B. Ens queda:

{C}

Apliquem un cop més la regla del literal pur i eliminem C, ja que no tenim ¬C, i ens quedem sense clàusules. Amb un conjunt buit no es pot construir un arbre de resolució que ens porti a la clàusula buida. Per tant, queda demostrat que **les premisses són consistents**.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	26/06/2013	18:30

Problema 4

Demostra, utilitzant la deducció natural, que el següent raonament és correcte. Pots utilitzar les regles bàsiques, les regles derivades i els equivalents deductius vistos a l'assignatura.

$$\begin{array}{l} \forall x \; (P(x) \; \vee \; \neg \; T(x) \rightarrow Q(x)) \\ \exists x \; (\neg Q(x) \; \wedge \; \forall y \; (T(y) \rightarrow S(x,y))) \\ \therefore \; \exists x (\neg P(x) \; \wedge \; S(x,x)) \end{array}$$

	,	
1.	$\forall x \ (P(x) \lor \neg \ T(x) \to Q(x))$	P
2.	$\exists x \ (\neg Q(x) \land \forall y \ (T(y) \rightarrow S(x,y))$	Р
3.	$\neg Q(a) \land \forall y (T(y) \rightarrow S(a,y))$	E3 2
4.	¬Q(a)	E^ 3
5.	$\forall y (T(y) \rightarrow S(a,y))$	E^ 3
6.	$P(a) \lor \neg T(a) \rightarrow Q(a)$	E¥ 1
7.	¬(P(a) v ¬ T(a))	MT 4, 6
8.	¬P(a) ^ ¬¬T(a)	ED 7
9.	¬P(a)	E^ 8
10.	¬¬T(a)	E^ 8
11.	T(a)	E¬ 10
12.	$T(a) \rightarrow S(a,a)$	E¥ 5
13.	S(a,a)	E→ 11,12
14.	¬P(a) ∧ S(a,a)	I _A 9,13
15.	$\exists x (\neg P(x) \land S(x,x))$	I3 14