GCP - Getting started

Before the Cloud - Example 1 - Online Shopping App

- Challenge:
 - Peak usage during holidays and weekends
 - Less load during rest of the time
- Solution (before the Cloud):
 - PEAK LOAD provisioning: Procure (Buy) infrastructure for peak load
 - What would the infrastructure be doing during periods of low loads?

Before the Cloud - Example 2 - Startup

- Challenge:
 - Startup suddenly becomes popular
 - How to handle the sudden increase in load?
- Solution (before the Cloud):
 - Procure (Buy) infrastructure assuming they would be successful
 - What if they are not successful?

Before the Cloud - Challenges

- High cost of procuring infrastructure
- Needs ahead of time planning (Can you guess the future?)
- Low infrastructure utilization (PEAK LOAD provisioning)
- Dedicated infrastructure maintenance team (Can a startup afford it?)

Silver Lining in the Cloud

How about provisioning (renting)
resources when you want them and
releasing them back when you do not
need them?

- On-demand resource provisioning
- Also called Elasticity

Cloud - Advantages

Trade "capital expense" for "variable expense"

- Benefit from massive economies of scale
- Stop guessing capacity
- Stop spending money running and maintaining data centers
- "Go global" in minutes

In28 Minutes

Google Cloud Platform (GCP)

- One of the Top 3 cloud service providers
- Provides a number of services (200+)
- Reliable, secure and highly-performant:
 - Infrastructure that powers 8 services with over 1 Billion Users: Gmail, Google Search, YouTube etc

- Net carbon-neutral cloud (electricity used matched 100% with renewable energy)
- The entire course is all about GCP. You will learn it as we go further.

Google Cloud

Best path to learn GCP!

- Cloud applications make use of multiple GCP services
- There is **no single path** to learn these services independently
- HOWEVER, we've worked out a simple path!

Setting up GCP Account

Create GCP Account

Regions and Zones

Regions and Zones

- Imagine that your application is deployed in a data center in London
- What would be the challenges?
 - Challenge 1 : Slow access for users from other parts of the world (high latency)
 - Challenge 2 : What if the data center crashes?
 - Your application goes down (low availability)

Multiple data centers

- Let's add in one more data center in London
- What would be the challenges?
 - Challenge 1: Slow access for users from other parts of the world
 - Challenge 2 (**SOLVED**): What if one data center crashes?
 - o Your application is **still available** from the other data center
 - Challenge 3 : What if **entire region** of London is unavailable?
 - Your application goes down

Multiple regions

- Let's add a new region : Mumbai
- What would be the challenges?
 - Challenge 1 (PARTLY SOLVED): Slow access for users from other parts of the world
 - You can solve this by adding deployments for your applications in other regions
 - Challenge 2 (SOLVED): What if one data center crashes?
 - o Your application is still live from the other data centers
 - Challenge 3 (**SOLVED**): What if entire region of London is unavailable?
 - O Vour application is served from Mumbai

In 28 Minutes

Regions

- Imagine setting up data centers in different regions around the world
 - Would that be easy?
- (Solution) Google provides 20+
 regions around the world
 - Expanding every year
- **Region**: Specific geographical location to host your resources
- Advantages:
 - High Availability
 - Low Latency
 - Global Footprint
 - Adhere to government regulations

Zones

- How to achieve high availability in the same region (or geographic location)?
 - Enter Zones
- Each Region has three or more zones
- (Advantage) Increased availability and fault tolerance within same region
- (Remember) Each Zone has one or more discrete clusters
 - Cluster: distinct physical infrastructure that is housed in a data center
- (Remember) Zones in a region are connected through low-latency links

Regions and Zones examples

New Regions and Zones are constantly added

Region Code	Region	Zones	Zones List
us-west1	The Dalles, Oregon, North America	3	us-west1-a us-west1-b us-west1-c
europe- north1	Hamina, Finland, Europe	3	europe-north1-a, europe- north1-b europe-north1-c
asia-south1	Mumbai, India APAC	3	asia-south1-a, asia-south1-b asia-south1-c

Compute

Compute Engine Fundamentals

Google Compute Engine (GCE)

- Where do you deploy applications in the cloud?
 - Rent virtual servers
 - Virtual Machines Virtual servers in GCP
 - Google Compute Engine (GCE) Provision & Manage Virtual Machines

Compute Engine - Features

- Create and manage lifecycle of Virtual Machine (VM) instances
- Load balancing and auto scaling for multiple VM instances
- Attach storage (& network storage) to your VM instances
- Manage network connectivity and configuration for your VM instances
- Our Goal:
 - Setup VM instances as HTTP (Web) Server
 - Distribute load with Load Balancers

Compute Engine Hands-on

 Let's create a few VM instances and play with them

- Let's check out the lifecycle of VM instances
- Let's use SSH to connect to VM instances

In 28 Minutes

Compute Engine Machine Family

- What type of hardware do you want to run your workloads on?
- Different Machine Families for Different Workloads:
 - General Purpose (E2, N2, N2D, N1): Best price-performance ratio
 - Web and application servers, Small-medium databases, Dev environments
 - Memory Optimized (M2, M1): Ultra high memory workloads
 - Large in-memory databases and In-memory analytics
 - Compute Optimized (C2): Compute intensive workloads
 - Gaming applications

Compute Engine Machine Types

Machine name	vCPUs ¹	Memory (GB)	Max number of persistent disks (PDs) ²	Max total PD size (TB)	Local SSD	Maximum egress bandwidth (Gbps) ³
e2-standard-2	2	8	128	257	No	4
e2-standard-4	4	16	128	257	No	8
e2-standard-8	8	32	128	257	No	16
e2-standard-16	16	64	128	257	No	16
e2-standard-32	32	128	128	257	No	16

- How much CPU, memory or disk do you want?
 - Variety of machine types are available for each machine family
 - Let's take an example : **e2-standard-2**:
 - **e2** Machine Type Family
 - **standard** Type of workload
 - o 2 Number of CPUs
- Memory, disk and networking capabilities increase along with vCPUs

Image

- What operating system and what software do you want on the instance?
- Type of Images:
 - **Public Images**: Provided & maintained by Google or Open source communities or third party vendors
 - Custom Images: Created by you for your projects

In 28 Minutes

Compute Engine Hands-on: Setting up a HTTP server

```
#! /bin/bash
sudo su
apt update
apt -y install apache2
sudo service apache2 start
sudo update-rc.d apache2 enable
echo "Hello World" > /var/www/html/index.html
echo "Hello world from $(hostname) $(hostname -I)" > /var/www/html/index.html
```

• Commands:

- **sudo su** execute commands as a root user
- apt update Update package index pull the latest changes from the APT repositories
- apt -y install apache2 Install apache 2 web server
- sudo service apache2 start-Start apache2 web server
- echo "Hello World" > /var/www/html/index.html Write to index.html
- \$(hostname) Get host name
- \$(hostname -I) Get host internal IP address

In 28 Minutes

Internal and External IP Addresses

- External (Public) IP addresses are Internet addressable.
- Internal (Private) IP addresses are internal to a corporate network

- Compute Engine
- You CANNOT have two resources with same public (External) IP address.
 - HOWEVER, two different corporate networks CAN have resources with same Internal (private) IP address
- All VM instances are assigned at least one Internal IP address
- Creation of External IP addresses can be enabled for VM instances
 - (Remember) When you stop an VM instance, External IP address is lost
- **DEMO**: VM instances Internal and External IPs

Static IP Addresses

 Scenario: How do you get a constant External IP address for a VM instance?

- Quick and dirty way is to assign an Static IP Address to the VM!
- DEMO: Using Static IP Address with an VM instance

Static IP Addresses - Remember

 Static IP can be switched to another VM instance in same project

- Static IP remains attached even if you stop the instance. You have to manually detach it.
- Remember: You are billed for an Static IP when you are NOT using it!
 - Make sure that you explicitly release an Static IP when you are not using it.

Simplify VM HTTP server setup

 How do we reduce the number of steps in creating an VM instance and setting up a HTTP Server?

- Let's explore a few options:
 - Startup script
 - Instance Template
 - Custom Image

Bootstrapping with Startup script

```
#!/bin/bash
apt update
apt -y install apache2
echo "Hello world from $(hostname) $(hostname -I)" > /var/www/htr
```

- **Bootstrapping**: Install OS patches or software when an VM instance is launched.
- In VM, you can configure Startup script to bootstrap
- **DEMO** Using Startup script

Instance templates

- Why do you need to specify all the VM instance details (Image, instance type etc) every time you launch an instance?
 - How about creating a Instance template?
 - Define machine type, image, labels, startup script and other properties
- Used to create VM instances and managed instance groups
 - Provides a convenient way to create similar instances
- CANNOT be updated
 - To make a change, copy an existing template and modify it
- (Optional) Image family can be specified (example debian-9):
 - Latest non-deprecated version of the family is used
- **DEMO** Launch VM instances using Instance templates

Reducing Launch Time with Custom Image

- Installing OS patches and software at launch of VM instances increases boot up time
- How about creating a custom image with OS patches and software pre-installed?
 - Can be created from an instance, a persistent disk, a snapshot, another image, or a file in Cloud Storage
 - Can be shared across projects
 - (Recommendation) Deprecate old images (& specify replacement image)
 - (Recommendation) Hardening an Image Customize images to your corporate security standards
- Prefer using Custom Image to Startup script
- **DEMO**: Create a Custom Image and using it in an Instance Template

In28 Minutes

Compute Engine Scenarios

Scenario	Solution			
What are the pre-requisites to be able to create a VM instance?	 Project Billing Account Compute Engines APIs should be enabled 			
You want dedicated hardware for your compliance, licensing, and management needs	Sole-tenant nodes			
I have 1000s of VM and I want to automate OS patch management, OS inventory management and OS configuration management (manage software installed)	Use "VM Manager"			
You want to login to your VM instance to install software	You can SSH into it			
You do not want to expose a VM to internet	Do NOT assign an external IP Address			
You want to allow HTTP traffic to your VM	Configure Firewall Rules			