Informe técnico.md 2025-09-28

Informe Técnico – Plataforma de Recomendaciones de Ahorro y Escalabilidad

1. Introducción

Este informe describe el diseño, implementación y evaluación de dos modelos de Machine Learning aplicados a una plataforma de gestión de clientes y flotas:

1. Ranking de Repostajes

Algoritmo de *Learning to Rank* para recomendar estaciones de repostaje óptimas en función de coste, desvío, tiempo y sostenibilidad.

2. Hábitos Eficientes (eco-driving)

Modelo de clasificación + clustering que analiza telemetría de vehículos y genera recomendaciones personalizadas para mejorar hábitos de conducción, reducir consumo y emisiones.

2. Datos

- 2.1 Puntos de Repostaje (puntos_repostaje.csv)
 - **punto_id**: identificador único de la estación.
 - nombre_estacion, marca: metadatos comerciales.
 - latitud, longitud: geolocalización.
 - carretera, dirección, servicios: contexto de ubicación.
 - precio_litro, minutos_espera, tipo_combustible (sintéticos).

2.2 Rutas (rutas.csv)

- ruta_id, descripcion.
- latitud, longitud, carretera, km_desde_origen.
- 2.3 Puntos de Recarga Eléctrica (puntos_recarga_electrica.csv)
 - punto_ev_id, nombre_punto, operador.
 - latitud, longitud, tipo_conector, potencia_kw, precio_kwh, disponible_24h.
- 2.4 Beneficios de Tarjeta (beneficios_tarjeta.csv)
 - tarjeta, centimos_litro, porcentaje, estaciones_incluidas.
- 2.5 Telemetría Sintética para Hábitos
 - velocidad_media_kmh, frenadas_fuertes_100km, aceleraciones_100km, ratio_ralenti, ratio_carga.
 - Variables derivadas: consumo estimado (L/100 km), etiqueta binaria de eficiencia.

3. Metodología

Informe_técnico.md 2025-09-28

3.1 Ranking de Repostajes

- Modelo principal: LightGBM LGBMRanker (LambdaMART).
- Features:
 - o numéricas: delta precio, desvio km, minutos espera, litros necesarios.
 - o categóricas: marca, tipo_combustible, carretera.
- Etiquetas: rel (1 = estación óptima en la consulta).
- Métrica: NDCG@5 (Normalized Discounted Cumulative Gain).
- Validación: **GroupKFold** por consulta.
- Fallback: RandomForestRegressor en caso de no disponer de LightGBM.

3.2 Hábitos Eficientes

- Clasificación: RandomForest con class_weight=balanced.
 - o Optimización: grid de hiperparámetros (n estimators, max depth, min samples leaf).
 - Validación: StratifiedKFold con métrica **F1-macro**.
- **Clustering**: KMeans dentro de Pipeline con StandardScaler.
 - Selección de k (3–6) por silhouette score.
- Generación de **reglas de negocio** para cada cluster, traducidas en consejos prácticos.

4. Resultados

4.1 Ranking de Repostajes

- Mejor configuración LightGBM:
 - n_estimators=400, learning_rate=0.08, num_leaves=63.
 - NDCG@5 (CV) ≈ 0.82 en datos sintéticos.
- El modelo prioriza estaciones con precio inferior a la media y penaliza desvíos > 5 km o esperas > 10 min.

4.2 Hábitos Eficientes

- Clasificador:
 - Grid seleccionó n estimators=400, max depth=20, min samples leaf=2.
 - **F1-macro (CV)** ≈ 0.81.
- Clustering:
 - o k óptimo = 5 con silhouette ≈ 0.41.
- Ejemplo de consejos por cluster:
 - o Cluster 2: "Reducir ralentí > 12%, anticipar frenadas".
 - Cluster 4: "Mantener crucero entre 70–90 km/h".

5. Conclusiones y Próximos Pasos

- Los modelos sintéticos validan la viabilidad técnica.
- Métricas de ranking y clasificación muestran buen comportamiento.