

Electric Forklift

Battery design 30.01.2019

Group 8.8 Muhammad Misykat Hiksas Chirag Shah Md Nahid Hossain Khan Umair Sabir

Chair for Electrochemical Energy Conversion and Storage Systems

Outline

- Problem Description
 - Assumptions
 - □ Capacity Requirement
- Battery Storage Technology Comparison & Selection
- Technical Analysis
 - Battery Cell
 - □ Battery Pack Design
- Charging Strategy
 - Standard Charging Strategy
 - Boost Charging Strategy
 - Optimal Charging Strategy
- Battery Management System (BMS)
- Thermal Management of Lithium-ion Battery Pack
- Economical Analysis
- References

Problem Description

- Background:
 - Demand of electric vehicle in industrial application.
 - Carbon reduction
 - Electromobility revolution
- Problem Statement:

Forklift truck for use during double shifts (16 hours) with a maximum power of 10 kW and a mean power of 2.5 kW.

- Requirement:
 - Low cost
 - High reliability
 - Low maintenance
 - ☐ High temperature range

Assumptions

- Indoor Application
- Double Shifts Duration = 16 Hours (15 Working Hour + 1 Hour Break)
- 6 Working Days/Week, 4.3 Week/Month, 12 Months Operation = 310 Days/Year
- Operating Strategy: Opportunity Charging
 - Overnight Charging
 - Charging in Breaks

Capacity Requirement: Power and Energy Demand

- Mean Power Requirement = 2.5 kW
- Operating Hours / Day = 15 Hours
- Total Energy Requirement per day = 2.5 kW × 15h = 37.5 kWh
- DOD = 75% → increase cycle lifetime

Battery Energy Requirement: 37.5 kWh / 0.75 = 50 kWh

Battery Technology: Comparison

Battery Type	Lead Acid	NiCd	NiMH	Li-ion		
Parameters				Cobalt	Manganese	Phosphate
Energy density (Wh/L)	60-110	50-150	140-300	560	420	333
Life Cycle (80% DOD)	200-300	1000	300-500	500-1000	500-1000	3000
Fast-Charge Time	8-16h	1h	2-4h	2-4h	1h or less	1h or less
Nominal Cell voltage	2 V	1.2 V	1.2V	3.6V	3.8V	3.3V
Maintenance Requirement	3-6 Months	1-2 months	2-3 months	Not Required		
Cost \$/ kWh	100-200	300-600	300-600	300-350	300-350	300-400

[1][2][3][4][5]

Battery Technology: Comparison & Selection

Fig: Comparison of different battery technologies based on selection parameters [7]

Battery Technology: Lithium Iron Phosphate (LiFePO₄)

Major advantages of Lithium Iron Phosphate [5]:

- Very safe and secure technology (No Thermal Runaway)
- Very low toxicity for environment (use of iron, graphite and phosphate)
- Calendar life > 10 years
- Cycle life: from 2000 to several thousand (DOD dependence)
- Operational temperature range: up to 70°C
- Very low internal resistance. Stability or even decline over the cycles
- Constant power throughout the discharge range
- Ease of recycling
- High Specific Power

Battery Technology: Lithium Iron Phosphate (LiFePO₄)

The actual number of cycles that can be performed depends on several factors:

- Level of power in C-Rate
- Depth of Discharge (DOD)
- Operational environment : temperature, humidity, etc.
- ~3000 cycles at 75% DoD.

Technical Analysis: Battery Cell (1/2)

Parameters	Value
Model	Cylindrical 22650 battery cell
Nominal Voltage	3.2 Volt
Nominal Capacity	2 Ah
Weight	0.0405 Kg
Cost	1.35 Euro / Cell
Full Cycle Lifetime	1500 Times
Volume	2.47 x 10 ⁻⁵ m ³ / Cell

Fig: Selected reference battery cell [6]

Technical Analysis: Battery Pack Design (2/2)

Fig. Schematic diagram of designed battery pack

Fig. Battery Pack [11]

$$V_{pack} = 3.2 \times 5 = 16 \, Volts$$

 $C_{pack} = 2 \, Ah \times 20 = 40 \, Ah$

$$V_{total} = V_{pack} \times 3 = 48 \, Volts$$

 $C_{total} = C_{pack} \times 26 = 1040 \, Ah$

One Pack: 5 Cells in Series 20 strings in parallel

Complete Battery: 3 Packs in Series 26 strings in parallel

Number of Cells = 7800

Technical Analysis: Battery Pack Design – Specifications (2/2)

Energy:

- $\Box C_{total} \times V_{total} = 49.92 \ kWh$
- Weight:
 - □ Number of Cells $\times \frac{Weight}{Cell} = 315.9 \text{ kg}$
- Volume:
 - \square Number of Cells \times Volume/_{Cell} = 192.72 Litre
- Cost:
 - \square Number of Cells \times Cost/Cell = 10530 Euro
- Lifetime
 - □ 310 Full Cycles a year.
 - \Box Cycle Lifetime /Cycle in a year = 4.8 years of usage

Standard Charging Strategy (1/3)

- CC-CV Charging
- Cut-off Voltage at 3.05V
- Cut-off Current at 0.05 C

Boost Charging Strategy (2/3)

- $(CCCV)^2$ or CC-CC-CV strategy
- Even charging with extremely high currents up to 5 C-rate, does not affect the temperature change more than 10 °C.

Source: P.H.L. Notten, J.H.G. O. h. Veld, and J.R.G. van Beek, "Boostcharging Li-ion batteries: A challenging new charging concept," Journal of Power Sources, vol. 145, no. 1, pp. 89–94, 2005.

Optimal Charging Strategy (3/3)

■ Three Constraints:

- 1. $0 \le I(t) \le I_{max}$
- 2. $T(t) \leq T_{max}$

3.
$$\eta_{sr}(x,t) = \phi_s(x,t) - \phi_e(x,t) > 0$$

Source: R. Klein et al., "Optimal charging strategies in lithium-ion battery," in American Control Conference (ACC), 2011: June 29 - July 1 2011, San Francisco, CA, USA, San Francisco, CA, 2011, pp. 382–387.

Battery Management System (BMS)

- Master Slave Configuration is used for Li-ion battery pack
- Voltage measurement, temperature measurement, and charge balancing are done by slave system with parallel connected blocks
- Slave transfers local information to the Master module
- Reduce wiring connection
- Communication is done by CANbus and RS-485 system

Fig: REC Battery Management System [8]

Thermal Management of Lithium-ion Battery Pack (1/2)

- Forklift batteries are usually used for high power application. So, batteries need to cool down to avoid thermodynamic instability and proper voltage distribution
- Internal short circuit, ambient temperature, and overcharging causes the battery to overheat
- Lithium plating might occur due to low temperature during the winter season and due to high charging current rate. So, battery pack need to be operated properly

 Air Cooling System is chosen for our Forklift battery system

Thermal Management of Lithium-ion Battery Pack (2/2)

- Why air cooling system? [9]
 - Lower cost
 - □ Simple design
 - □ No possibility of leakage
 - Maintenance easier
 - □ No requirement of separate cooling procedure
 - Elimination of the possibility of short circuit due to fluid

Fig: Air cooling system for Lithium-ion battery [9]

Fig: Air inlet system of Hyster Forklift [10]

Economic Analysis: Electric Forklifter (1/2)

Electrical based			
Electricity Cost [12]	0,3	Euro/kWh	
Battery cells cost	10530	Euro	
Operation day	310	Days/year	
Energy Requirement per day	50	kWh	
Annual Energy Consumption	15500	KWh/year	
Annual electricity cost	4650	Euro/year	
Operation & Maintenance (O&M)	1%	Total invest 1st year	
BMS + Power Electronics drive [17]	1000	Euro	
AC Motor [13]	2500	Euro	
Battery cells years of usage	4.8	Year	
Annual Interest/Discount rate	5%		
Initial Investment	14030	Euro	
Cost per year	4790.3	Euro	
Cost change battery	10530	Euro	
Net Present Value	-66809.15	Euro (For 10 Years)	
Annuity	-8652.09	Euro	

Economic Analysis: Gasoline Based Forklifter (2/2)

Gasoline Based			
Cost of Forklift [14]	12500	Euro	
Cost of Gasoline [15]	1.26	Per liter	
Operating Hours/day	15	Hours	
Operation & Maintenance (O&M)	125	1% forklift cost per year	
Efficiency [16]	3	liters per hour	
Operating Hours	4650	Per year	
Annual Fuel Cost	13950	Euro	
Initial Investment	12500	Euro	
Annual Cost (Fuel cost + O&M)	14075	Euro	
Annual Interest/Discount rate	5%		
Net Present Value	-121183.42	Euro	
Annuity	-15693.8	Euro	

References

- https://www.epectec.com/batteries/cell-comparison.html
- https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/
- https://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-battery-costs-andmarket.pdf
- https://www.epectec.com/batteries/lithium-battery-technologies.html
- https://www.powertechsystems.eu/home/tech-corner/lithium-iron-phosphate-lifepo4/ 5.
- 6. https://www.alibaba.com/product-detail/Rechargeable-22650-3-7v-Liion_60762615921.html?spm=a2700.7724838.2017115.313.432a3cdchNpsLs
- Batteries for electric cars challenges opportunities and the outlook to 2020
- http://www.rec-bms.com/index.html 8
- https://www.nrel.gov/docs/fy13osti/52818.pdf
- https://www.briggsequipment.us/wp-content/uploads/2015/07/E45-70XN-Brochure.pdf
- 11. http://www.batterysupports.com/24v-8ah-500w-750w-ev-ebike-lithium-ion-battery-pack-with-bms- p-171.html

References

- 12. https://www.statista.com/statistics/418078/electricity-prices-for-households-in-germany/
- 13. https://www.evwest.com/catalog/product_info.php?cPath=8&products_id=341
- https://www.ecoglobal21.com/en/forklift/yale-veracitor-gdp-30-vx-carretilla-yale
- 15. http://www.fuel-prices-europe.info/
- 16. https://www.yale.com/emea/en-gb/our-products/product-overview/internal-combustion- trucks/diesel-lpg-forklift-truck-2000-3500kg/#tabs-1
- http://elithion.com/orion_bms_comparison.php

Questions

Electric Forklift

Battery design 30.01.2019

Group 8.8 Muhammad Misykat Hiksas Chirag Shah Md Nahid Hossain Khan Umair Sabir

Chair for Electrochemical Energy Conversion and Storage Systems

