<u>Disentangling Human Error from the Ground</u> <u>Truth in Segmentation of Medical Images</u>

Le Zhang, Ryutaro Tanno, Mou-Cheng Xu, Chen Jin, Joseph Jacob, Olga Ciccarelli, Frederik Barkhof and Daniel C. Alexander

NeurIPS (2020)

Problem

 Segmentation of anatomical structures suffers from high inter-observer variability in medical images (biases, level of expertise, etc.)

 Noisy labels limits the performance of automatic segmentation algorithms

Problem

Existing approaches (to deal with multiple annotations):

- Majority vote
- Weighing annotation according to estimated reliability of expert (image-wise of pixel-wise)

Objective

- Jointly learn from noisy observations the reliability of individual annotators and the true segmentation label distributions
 - → Produce a better segmentation at test-time

Hypothesis:

There is a **single**, **true segmentation map**, and each annotator produces a noisy approximation of it **according to its individual characteristics**

Method

- Jointly train a Segmentation CNN and Annotation CNN
- Set of images, with multiple noisy segmentation masks

Assumptions:

- Annotators are statistically independent
- 2) Annotations noise is independent of input image

Method

Experiment

Dataset

- MNIST
- MSLSC (multiple-sclerosis lesions) > Synthetically noisy labels
- BraTS (brain tumours)
- LIDC-IDRI (lung abnormalities) → multiple annotations

Baselines

- Mean of noisy labels
- Majority vote
- STAPLE
- Spatial STAPLE
- Probabilistic UNet

Results

Results

Results

-	BraTS	BraTS	LIDC-IDRI	LIDC-IDRI L
Models	DICE (%)	CM estimation	DICE (%) T	CM estimation \(\forall \)
Naive CNN on mean labels	29.42 ± 0.58	n/a	56.72 ± 0.61	n/a
Naive CNN on mode labels	34.12 ± 0.45	n/a	58.64 ± 0.47	n/a
Probabilistic U-net [24]	40.53 ± 0.75	n/a	61.26 ± 0.69	n/a
STAPLE [9]	46.73 ± 0.17	0.2147 ± 0.0103	69.34 ± 0.58	0.0832 ± 0.0043
Spatial STAPLE [14]	47.31 ± 0.21	0.1871 ± 0.0094	70.92 ± 0.18	0.0746 ± 0.0057
Ours with Global CMs	47.33 ± 0.28	0.1673 ± 0.1021	70.94 ± 0.19	0.1386 ± 0.0052
Ours without Trace	49.03 ± 0.34	0.1569 ± 0.0072	71.25 ± 0.12	0.0482 ± 0.0038
Ours	53.47 ± 0.24	0.1185 ± 0.0056	74.12 ± 0.19	0.0451 ± 0.0025
Oracle (Ours but with known CMs)	67.13 ± 0.14	0.0843 ± 0.0029	79.41 ± 0.17	0.0381 ± 0.0021

Conclusion

A supervised segmentation method for jointly estimating the spatial characteristics of labelling errors (annotation noise) from multiple human annotators and the ground-truth label distribution.

- → Finds the **maximal amount of confusion** which explains the noisy observations well.
- → Improves **robustness** against label noise