MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Fall 2011)

Tutorial 4 October 6/7, 2011

- 1. Let X and Y be independent random variables. Random variable X has mean μ_X and variance σ_X^2 , and random variable Y has mean μ_Y and variance σ_Y^2 . Let Z = 2X 3Y. Find the mean and variance of Z in terms of the means and variances of X and Y.
- 2. The joint PMF of the random variables X and Y is given by the following table:

y = 3	c	c	2c
y = 2	2c	0	4c
y = 1	3c	c	6c
	x = 1	x = 2	x = 3

- (a) Find the value of the constant c.
- (b) Find $p_Y(2)$.
- (c) Consider the random variable $Z = YX^2$. Find $\mathbf{E}[Z \mid Y = 2]$.
- (d) Conditioned on the event that $X \neq 2$, are X and Y independent? Give a one-line justification.
- (e) Find the conditional variance of Y given that X = 2.
- 3. Consider 10 independent tosses of a biased coin with a probability of heads of p.
 - (a) Let A be the event that there are 6 heads in the first 8 tosses. Let B be the event that the 9th toss results in heads. Show that events A and B are independent.
 - (b) Find the probability that there are 3 heads in the first 4 tosses and 2 heads in the last 3 tosses.
 - (c) Given that there were 4 heads in the first 7 tosses, find the probability that the 2nd head occurred during the 4th trial.
 - (d) Find the probability that there are 5 heads in the first 8 tosses and 3 heads in the last 5 tosses.