PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ CIENCIAS SOCIALES CICLO 2022-2

<u>Fundamentos en Econometría</u> <u>Práctica Dirigida 2 - Solucionario</u>

<u>Profesor: Juan Palomino</u> <u>Jefe de práctica: Tania Paredes</u>

1. Descomposición de la suma de cuadrados y R²

Se tiene el siguiente modelo: $Y_i = \beta_1 + \beta_2 X_i + \Sigma_i$, donde Y es la demanda de alimentos y X es el ingreso disponible. Se sabe que:

$$\sum_{i=1}^{20} X_i Y_i = 1973.67$$

$$\sum_{i=1}^{20} Y_i^2 = 1813.53$$

$$\bar{Y} = 8.765$$

$$\bar{X} = 9.56$$

$$\sum_{i=1}^{20} X_i^2 = 2165.18$$

$$n = 20$$

a. Estime los parámetros $\widehat{\beta_1}$ y $\widehat{\beta_2}$ por MCO.

SOL:

Para cotimar por MCO, planteamos el modeto en desviaciones: (visto en la

g on close

1 De este, definimos la Suna de Cuodradas Residuales (SCR)

$$Sce = \underbrace{\exists \hat{e}_{i}}_{i=1} \underbrace{\hat{e}_{i}}_{i} \underbrace{\exists (y_{i} - \hat{\beta}_{i})^{2}}_{en} \rightarrow ex$$

Despés de realizar el proceso de min SCL y de denvar respecto aβ2:

◆ For olva parie, podemos reescribir β₂ (con la finaudod de poder utilizar los datos del ejerción:

- We Necoritamos $\leq x_i$. Tenemos como doto que $\overline{x} = \frac{1}{n} \mathcal{L}_i x_i = 9.56$ y alodo que n=20 , dotenemos que sixi = 191.2 _29780l
- Reemplazamos datos on B₂

$$\frac{2 \times 1 \times 1 - \sqrt{4 \times 1}}{2 \times 1^2 - \sqrt{2 \times 1}} = \frac{1973.67 - 8765(194.2)}{2165.48 - 9.56(194.2)} = 0.883$$

b. Realice una interpretación económica de los resultados encontrados. **SOL:**

$$\frac{\partial Y}{\partial x} = \frac{\partial Y}{\partial x} = \beta 2 \Rightarrow \text{Espero} \quad \beta 2 > 0.883$$

Un incremento on 1 unidad teapecto a mi ingreso disponible generará un incremento de $\beta_2(0.883)$ en la variable γ (demanda de alimentos). Podría decirse que los bienes son normales , dodo que $\uparrow \chi \to \gamma \gamma$ Ejemplo: γ podría representar el consumo en arroz

- c. Calcule e SCT, SCE, SCR y btenga el valor del R-cuadrado SOL:
- 🚯 Partiendo del modelo en desviouiones i elluvernos este al wodrodo

$$(g_{i} = \hat{\beta}_{2} x_{i} + \hat{\epsilon}_{i})^{2}$$

$$y_{i}^{2} = \hat{\beta}_{2}^{2} x_{i}^{2} + 2\hat{\beta}_{2} x_{i}\hat{\epsilon}_{i} + \hat{\epsilon}_{i}^{2}$$

🚳 Aplicamos sumatoria ala expresión anterior

Byi² =
$$\beta^2 4 x^2 + 4 \epsilon^2 + 2\beta_2 4 x \epsilon$$

Photos de oucución normal

Pringimente dotenemos:

♦ Teniendo la forma funcional de la SCI, SCE ySCIR, procedemos a reemplozor:

* SCT =
$$2yi^2 = 2(Yi - Y)^2 = 2yi^2 - 2y2iYi + 2y^2$$
, $y dodogie$
= $2yi^2 - 2y(ny) + ny^2$, $ny = 2yi$
= $2yi^2 - 2ny^2 + ny^2$
= $2yi^2 - ny^2$
= $1813.53 - 20(8.765)^2$
SCT = 277.025

#SCE =
$$\hat{\beta}_{2}^{2} 2 \times i^{2} = \hat{\beta}_{2}^{2} 2 \times (x_{i} - x_{i})^{2} = \frac{\hat{\beta}_{2}^{2} 2 \times (x_{i} - x_{i})^{2}}{B_{2}^{2} 2 \times (x_{i} - x_{i})^{2}} = \frac{(0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + 2 \times x_{i})}{(0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})}$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} - 2 \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} + n \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} + n \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} + n \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} + n \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} + n \times x_{i} + n \times x_{i})$$

$$= (0.883)^{2} (2 \times i^{2} +$$

R-wadrado

- d. Estime la varianza del término de perturbación
 SOL:
- Procederemos a entimar la varianza del termino de perturbación

Cformula de Varianza del termino de error

- e. Halle la varianza de $\widehat{\beta_1}$ y $\widehat{\beta_2}$ SOL:
- Para hallar la varionza de PryB2, se tienen las siguiernes formas funcionales y en estas procederemos a reemplasar (os valoreo que tenemos).

$$Van(\hat{\beta}_{1}) = \hat{\mathbf{t}}^{2} \left(\frac{1}{n} + \mathbf{x}^{2} \mathbf{x}_{1}^{2} \right) = 0.792 \left(\frac{1}{20} + \frac{(9.56)^{2}}{354.308} \right)$$

$$= 0.2541$$

f. Encuentre el intervalo de confianza para la estimación de β_2 al 95% y 99% SOL:

Para el intervalo 95%

encen-

* Definido el intervalo, lo que nos intereza hallar es Pr (- 121-422423-4)=1-0

A partir de la función de densidad normal estándar, se definirá una variable aleatoria con distribución t-student para hallar los intervalos de confianza.

- 1 Para el intervalo de confianza a 0295 /.
- * El primer paso será definir el nivel de confianza de 100(1-à)./.

* Resolutendo:

$$P_{r}\left[\hat{\beta}_{2}-t_{1}-\underline{oos}(8)\sqrt{\sqrt{ont}}\right] = 0.95$$

$$P_{r}\left[0.883-(2,1009)\sqrt{0.0023} < \beta_{2} < \hat{\beta}_{2}+(2,1009)\sqrt{0.0023}\right] = 0.95$$

$$P_{r}\left[0.4820 < \beta_{2} < 0.4838\right] = 0.95$$

Para d intervalo de confianza o 199 ✓

Por analogía de la realizada para el intervala de conflanza de 95.1.

2. Demanda real de dinero e intervalos de confianza

Suponga que un investigador estima por MCO el siguiente modelo econométrico:

$$m_i^d = \beta_1 + \beta_2 Y_i + e_i$$

Donde m_i^d es la demanda real de dinero el individuo i e Y_i representa el ingreso del individuo i. Luego de realizar una encuesta a 20 individuos, el investigador obtuvo los siguientes resultados:

$$m_i^d = 0.15 + 0.2Y_i + e_i (\widehat{\beta_1} = 0.15, \widehat{\beta_2} = 0.2)$$

$$R^2 = 0.4$$

$$\mathfrak{F} = 0.9$$

 a. De acuerdo con estos resultados, cuál es el efecto de 1 unidad adicional de ingreso sobre la demanda real de dinero.
 SOL:

Una unided adicional delingues, aumema en promedio 0.2 unidodes de la demonda real de dinero.

- b. Construya un intervalo de confianza de 95% y al 99% para β_2 . SOL:
- () Para construir et intervalo de confianza, neasitemos conocer.

* Partitions de
$$6^2$$
 = SCR $\rightarrow (0.9)^2 = SCR \rightarrow 18$
Por logue $SCR = 14.58$

Además
$$R^2 = 0.4 \Rightarrow y R^2 = 1 - \frac{14.58}{9cT} = 1 - \frac{14.58}{9cT}$$

Por other partie, recordances: SCT = SCE + SCR

$$24.3 = 5cE + 14.58$$

 $SCE = 9.72$
Y dodo que $SCE = \beta^2 2! \chi^2 = (0.2)^2 2! \chi^2 = 9.72$
 $2\chi^2 = 243$ \Rightarrow Conello pademos hallan Van (β_2) \Rightarrow Conello pademos hallan Van (β_2) \Rightarrow $S^2/2! (\chi_1 - \chi_1)^2 = (0.9)^2$
Van (β_2) = $S^2/2! (\chi_1 - \chi_1)^2 = (0.9)^2$

* Date que ya obtivimos el valor de Varcías), definimos las intervalos para el 95:1. y99:1.

Para 95%

Para 991:

3. Laboratorio

En la siguiente tabla se muestran el salario por hora en soles percibido por un grupo de 10 trabajadores según años de educación. Realice en Excel los siguientes pasos.

Salario (soles por hora)	Educación (años de estudio)
58	11
70	12
90	18
65	10

100	20
75	16
47	11
92	20
75	14
73	15

a. Calcule los valores de los parámetros estimados por MCO del modelo bivariado:

$$W_i = \beta_1 + \beta_2 A_i + \mathbf{g}_i$$

Donde W_i y A_i denotan el salario y el número de años de educación del individuo i, respectivamente.

- b. En base a los parámetros estimados, calcule los valores estimados del salario, los residuos y los residuos al cuadrado
- c. Realice una gráfica de la recta de regresión estimada.
- d. ¿Existe otro par de valores para β_1 y β_2 que produzcan un SCR de menor valor?
- e. Realice la estimación en Stata

Sol excel

$$\widehat{\beta}_{2} = \underbrace{\sum_{i=1}^{N} y_{i} x_{i}}_{i=1} = \underbrace{\sum_{i=3}^{N} (y-\overline{y})(x-\overline{x})}_{i=3}$$