Name:			Date:				Score:/100		
			Cal	culate ea	ch produ	ct.			
$\frac{\overset{3}{\times 9}}{\overset{27}{\times 9}}$	×8 48	$\begin{array}{r} 7 \\ \times 2 \\ \hline 14 \end{array}$	×4 28	$\begin{array}{r} 10 \\ \times 2 \\ \hline 20 \end{array}$	×7 42	$\frac{8}{32}$	$\frac{2}{8}$	$\frac{3}{\times 4}$	×9 18
×8 32	$\begin{array}{r} 10 \\ \times 3 \\ \hline 30 \end{array}$	7 × 9 63	×3 9	×7 14	×7 56	9 × 6 54	$\begin{array}{r} 5 \\ \times 6 \\ \hline 30 \end{array}$	×2 8	× 5 45
$\frac{4}{\times 4}$	7 × 5 35	5 × 8 40	4 ×7 28	×4 36	6 × 6 36	× 5 25	10 × 5 50	×2 10	×9 72
$\frac{7}{\times 10}$	10 × 4 40	×2/4	10 ×8 80	10 × 9 90	$\frac{3}{\times 2}$	×8 24	$\frac{\overset{3}{\times 10}}{\overset{30}{\times 10}}$	×9 81	×5 10
4 	×5 30	7 × 6 42	8 ×2 16	×7 21	×9 45	×8 56	$\begin{array}{r} 6 \\ \times 10 \\ \hline 60 \end{array}$	9 ×2 18	$\begin{array}{r} 3 \\ \times 6 \\ \hline 18 \end{array}$
$\frac{9}{\times 10}$	×5 15	8 × 8 64	5 ×7 35	×9 36	9 ×7 63	×2 12	$\frac{2}{\times 4}$	×9 54	$\frac{2}{\times 6}$
$\frac{8}{\times 10}$	8 × 6 48	4 ×3 12	6 ×4 24	$\frac{2}{\times 10}$	5 ×3 15	8 ×3 24	×8 72	5 × 10 50	5 ×4 20
9 ×3 27	×3 6	× 5 20	7 ×3 21	7 × 7 49	$\begin{array}{r} 4 \\ \times 10 \\ \hline 40 \end{array}$	$\frac{10}{\times 7}$	×5 40	$\frac{10}{\times 10}$	10 × 6 60
×3 18	×9 27	10 × 6 60	6 × 5 30	$\begin{array}{r} 6 \\ \times 10 \\ \hline 60 \end{array}$	10 × 9 90	×9 54	$\frac{\times 10}{80}$	9 ×8 72	×8 32
×2	9 ×3 27	3 × 5	3 ×6 18	×9 45	× 3	$\frac{5}{\times 2}$	9 × 5 45	$\begin{array}{r} 7 \\ \times 6 \\ \hline 42 \end{array}$	10 × 8

Math-Drills.com

Unit ll

Answer Key

Section 11-1

1. D 2. A 3. $\frac{9}{16}$ 4. 2 5. $\frac{1}{2}$

Section 11-2

1. C 2. B 3. A 4. A 5. C 6. D

Section 11-3

1. A 2. D 3. B 4. D 5. C 6. B

Section 11-4

1. D 2. A 3. C 4. D 5. 11 6. $\frac{9}{16}$

Section 11-5

1. C 2. A 3. D 4. D 5. B 6. C

Section 11-6

1. C 2. B 3. C 4. D

Chapter 11 Practice Test

1. B 2. C 3. A 4. A 5. D 6. C 7. A 8. B 9. B

Answers and Explanations

Section 11-1

1. D

Change the given equation into the vertex form $y = a(x-h)^2 + k$, in which (h,k) is the vertex of the parabola, by completing the square.

$$y = x^2 - 6x + 5$$

$$= x^{2} - 6x + \left(\frac{-6}{2}\right)^{2} - \left(\frac{-6}{2}\right)^{2} + 5$$
$$= (x^{2} - 6x + 9) - 9 + 5$$
$$= (x - 3)^{2} - 4$$

The coordinate of the vertex can be read as (3,-4).

2. A

Change the given equation into the factored form y = (x - a)(x - b), in which x = a and x = b are the x-intercepts of the parabola. Find two numbers with a sum of -6 and a product of 5. The two numbers are -1 and -5.

 $y = x^2 - 6x + 5$ can be written in the factored form y = (x - 1)(x - 5). The x-intercepts are 1 and 5.

3. $\frac{9}{16}$

$$y = a(x-h)^2$$

$$0 = a(4-h)^2$$
 x- intercept at (4,0)

Since
$$a \neq 0$$
, $4-h=0$, or $h=4$.

The graph of the parabola passes through (0,9), since the y-intercept of the parabola is 9.

$$9 = a(0-h)^2$$
 y-intercept at (0,9)

$$9 = ah^2$$
 Simplify.

$$9 = a(4)^2$$
 Substitute 4 for h.

$$\frac{9}{16} = a$$

4. 2

$$y = a(x+2)^2 - 15$$

 $3 = a(1+2)^2 - 15$ $x = 1$ and $y = 3$
 $3 = 9a - 15$
 $18 = 9a$
 $2 = a$

5. $\frac{4}{3}$

The x-intercepts of the graph of the equation y = a(x-1)(x+5) are -5 and 1. The x-coordinate of the vertex is the average of the two x-intercepts.

Therefore,
$$h = \frac{-5+1}{2} = -2$$
. The value of k is -12

because the minimum value of y is -12. So the coordinate of the vertex is (-2,-12). Substitute x=-2 and y=-12 in the given equation.

$$-12 = a(-2-1)(-2+5)$$

$$-12 = -9a$$

$$\frac{12}{9} = a$$
 or $a = \frac{4}{3}$

Section 11-2

1. C

$$x^2 - 2x - 24$$

Find two numbers with a sum of -2 and a product of -24. The two numbers are -6 and 4.

Therefore,
$$x^2 - 2x - 24 = (x - 6)(x + 4)$$
.

2. B

$$x^2 - 17x + 72$$

Find two numbers with a sum of -17 and a product of 72 . The two numbers are -8 and -9.

Therefore,
$$x^2 - 17x + 72 = (x - 8)(x - 9)$$
.

3. A

$$-x^2 + 5x + 84 = -(x^2 - 5x - 84)$$

Find two numbers with a sum of -5 and a product of -84. The two numbers are -12 and 7.

$$-x^2 + 5x + 84 = -(x^2 - 5x - 84)$$
$$= -(x - 12)(x + 7) = (12 - x)(x + 7)$$

4. A

$$3x^2 + 7x - 6$$

Find two numbers with a sum of 7 and a product of $3 \cdot -6$ or -18. The two numbers are -2 and 9.

$$3x^2 + 7x - 6$$

= $3x^2 - 2x + 9x - 6$ Write $7x$ as $-2x + 9x$.
= $(3x^2 - 2x) + (9x - 6)$ Group terms.
= $x(3x - 2) + 3(3x - 2)$ Factor out the GCF.
= $(3x - 2)(x + 3)$ Distributive Property

5. C

$$2x^2 + x - 15$$

Find two numbers with a sum of 1 and a product of $2 \cdot -15$ or -30. The two numbers are -5 and 6.

$$2x^2 + x - 15$$

= $2x^2 - 5x + 6x - 15$ Write x as $-5x + 6x$.
= $(2x^2 - 5x) + (6x - 15)$ Group terms.
= $x(2x - 5) + 3(2x - 5)$ Factor out the GCF.
= $(2x - 5)(x + 3)$ Distributive Property

6. I

$$-6x^2 + x + 2 = -(6x^2 - x - 2)$$

Find two numbers with a sum of -1 and a product of $6 \cdot -2$ or -12. The two numbers are -4 and 3.

$$-6x^{2} + x + 2$$
= $-(6x^{2} - x - 2)$
= $-(6x^{2} - 4x + 3x - 2)$ Write $-x$ as $-4x + 3x$.

= $-[(6x^{2} - 4x) + (3x - 2)]$ Group terms.

= $-[2x(3x - 2) + (3x - 2)]$ Factor out the GCF.

= $-(3x - 2)(2x + 1)$ Distributive Property

Section 11-3

1. A

$$3x^2 - 48$$

= $3(x^2 - 16)$ Factor out the GCF.
= $3((x)^2 - (4)^2)$ Write in the form $a^2 - b^2$.
= $3(x - 4)(x + 4)$ Difference of Squares

2. D

$$x-6\sqrt{x}-16$$

Let $y=\sqrt{x}$, then $y^2=x$.
 $x-6\sqrt{x}-16$
 $=y^2-6y-16$ $y=\sqrt{x}$ and $y^2=x$
 $=(y-8)(y+2)$
 $=(\sqrt{x}-8)(\sqrt{x}+2)$ $y=\sqrt{x}$ and $y^2=x$

3. B

$$(x-y)^{2}$$
= $(x-y)(x-y)$
= $x^{2} - 2xy + y^{2}$
= $(x^{2} + y^{2}) - 2xy$
= $10 - 2(-3) = 16$ $x^{2} + y^{2} = 10$ and $xy = -3$

4. D

$$x^{2} - y^{2}$$

= $(x + y)(x - y)$
= $(10)(4)$
= 40 $x + y = 10$ and $x - y = 4$

5. C

$$6x^2 + 7x - 24 = 0$$

$$(3x+8)(2x-3)=0$$

$$3x+8=0 \text{ or } 2x-3=0$$

Zero Product Property

$$x = -\frac{8}{3}$$
 or $x = \frac{3}{2}$

Solve each equation.

Since
$$\frac{3}{2} > -\frac{8}{3}$$
, $r = \frac{3}{2}$ and $s = -\frac{8}{3}$.

$$r-s=\frac{3}{2}-(-\frac{8}{3})=\frac{9}{6}+\frac{16}{6}=\frac{25}{6}$$

$$x^2 - 3x = 28$$

$$x^2 - 3x - 28 = 0$$

Make one side 0.

$$(x-7)(x+4)=0$$

Factor.

$$x-7=0$$
 or $x+4=0$
 $x=7$ or $x=-4$

Zero Product Property Solve each equation.

Therefore, r + s = 7 + (-4) = 3.

Section 11-4

1. D

$$x^2 - 10x = 75$$

Add $(\frac{-10}{2})^2$ to each side.

$$x^2 - 10x + \left(-\frac{10}{2}\right)^2 = 75 + \left(-\frac{10}{2}\right)^2$$

$$x^2 - 10x + 25 = 75 + 25$$

Simplify.

$$(x-5)^2 = 100$$

Factor $x^2 - 10x + 25$.

$$x - 5 = \pm 10$$

Take the square root.

$$x = 5 \pm 10$$

Add 5 to each side.

$$x = 5 + 10$$
 or $x = 5 - 10$

Separate the solutions.

$$x = 15$$
 or $x = -5$

Simplify.

If
$$x < 0$$
, $x = -5$. Therefore, $x + 5 = -5 + 5 = 0$.

2. A

$$x^2 - kx = 20$$

Add $(\frac{-k}{2})^2$ to each side.

$$x^2 - kx + (\frac{-k}{2})^2 = 20 + (\frac{-k}{2})^2$$

$$x^2 - kx + \frac{k^2}{4} = 20 + \frac{k^2}{4}$$
 Simplify.

$$(x-\frac{k}{2})^2 = 20 + \frac{k^2}{4}$$
 Factor $x^2 - kx + \frac{k^2}{4}$

$$(6)^2 = 20 + \frac{k^2}{4}$$

 $(6)^2 = 20 + \frac{k^2}{4}$ Substitute 6 for $x - \frac{k}{2}$

$$16 = \frac{k^2}{4}$$

Solving for k gives $k = \pm 8$.

Solving the given equation $x - \frac{k}{2} = 6$ for x

gives
$$x = 6 + \frac{k}{2}$$
.

If
$$k = 8$$
, $x = 6 + \frac{k}{2} = 6 + \frac{8}{2} = 10$.

If
$$k = -8$$
, $x = 6 + \frac{k}{2} = 6 + \frac{-8}{2} = 2$.

Of the answer choices, 2 is a possible value of x. Therefore, Choice A is correct.

3. C

$$x^2 - \frac{k}{3}x = 5$$

The equation could be solved by completing the square by adding $(\frac{1}{2}, \frac{k}{3})^2$, or $\frac{k^2}{36}$, to each side. Choice C is correct.

$$x^2 - rx = \frac{k^2}{4}$$

Add $(\frac{-r}{2})^2$, or $\frac{r^2}{4}$, to each side.

$$x^2 - rx + \frac{r^2}{4} = \frac{k^2}{4} + \frac{r^2}{4}$$

$$(x-\frac{r}{2})^2 = \frac{k^2 + r^2}{4}$$

Factor
$$x^2 - rx + \frac{r^2}{4}$$

$$x - \frac{r}{2} = \pm \sqrt{\frac{k^2 + r^2}{4}}$$

Take the square root.

$$x - \frac{r}{2} = \pm \frac{\sqrt{k^2 + r^2}}{2}$$

$$x = \frac{r}{2} \pm \frac{\sqrt{k^2 + r^2}}{2}$$

Add $\frac{r}{2}$ to each side.

Choice D is correct.

$$(x-7)(x-s) = x^2 - rx + 14$$

$$x^2 - (s+7)x + 7s = x^2 - rx + 14$$

Since the x-terms and constant terms have to be equal on both sides of the equation,

$$r = s + 7$$
 and $7s = 14$.
Solving for s gives $s = 2$.
 $r = s + 7 = 2 + 7 = 9$
Therefore, $r + s = 9 + 2 = 11$.

6.
$$\frac{9}{16}$$

$$x^{2} - \frac{3}{2}x + c = (x - k)^{2} \implies$$

 $x^{2} - \frac{3}{2}x + c = x^{2} - 2kx + k^{2}$

Since the x-terms and constant terms have to be equal on both sides of the equation,

$$2k = \frac{3}{2}$$
 and $c = k^2$.

Solving for k gives $k = \frac{3}{4}$.

Therefore, $c = k^2 = (\frac{3}{4})^2 = \frac{9}{16}$.

Section 11-5

1. C

$$(p-1)x^2-2x-(p+1)=0$$

Use the quadratic formula to find the solutions for x.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4(p-1)(-(p+1))}}{2(p-1)}$$

$$= \frac{2 \pm \sqrt{4 + 4(p-1)(p+1)}}{2(p-1)}$$

$$= \frac{2 \pm \sqrt{4 + 4p^2 - 4}}{2(p-1)}$$

$$= \frac{2 \pm \sqrt{4p^2}}{2(p-1)} = \frac{2 \pm 2p}{2(p-1)}$$

$$= \frac{2(1 \pm p)}{2(p-1)} = \frac{1 \pm p}{p-1}$$

The solutions are $\frac{1+p}{p-1}$ and $\frac{1-p}{p-1}$, or -1.

Choice C is correct.

2. A

Let r_1 and r_2 be the solutions of the quadratic

equation $3x^2 + 12x - 29 = 0$. Use the sum of roots formula.

$$r_1 + r_2 = -\frac{b}{a} = -\frac{12}{3} = -4$$
.

3. D

$$kx^2 + 6x + 4 = 0$$

If the quadratic equation has exactly one solution, then $b^2 - 4ac = 0$.

$$b^2 - 4ac = 6^2 - 4(k)(4) = 0 \implies 36 - 16k = 0$$

$$\implies k = \frac{36}{16} = \frac{9}{4}$$

4. D

$$y = bx - 3$$
 and $y = ax^2 - 7x$

Substitute bx-3 for y in the quadratic equation.

$$bx - 3 = ax^2 - 7x$$

$$ax^2 + (-7 - b)x + 3 = 0$$
 Make one side 0.

The system of equations will have exactly two real solutions if the discriminant of the quadratic equation is positive.

$$(-7-b)^2-4a(3)>0$$
, or $(7+b)^2-12a>0$.

We need to check each answer choice to find out for which values of a and b the system of equations has exactly two real solutions.

A) If
$$a = 3$$
 and $b = -2$, $(7-2)^2 - 12(3) < 0$.

B) If
$$a = 5$$
 and $b = 0$, $(7+0)^2 - 12(5) < 0$.

C) If
$$a = 7$$
 and $b = 2$, $(7+2)^2 - 12(7) < 0$.

D) If
$$a = 9$$
 and $b = 4$, $(7+4)^2 - 12(9) > 0$.

Choice Dis correct.

5 1

$$x^{2} + 4 = -6x$$

$$x^{2} + 6x - 4 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-6 \pm \sqrt{6^{2} - 4(1)(4)}}{2(1)}$$

$$= \frac{-6 \pm \sqrt{20}}{2} = \frac{-6 \pm 2\sqrt{5}}{2}$$

$$= -3 \pm \sqrt{5}$$

6. C

If the quadratic equation has no real solution, the discriminant, $b^2 - 4ac$, must be negative. Check each answer choice.

A)
$$5x^2 - 10x = 6 \implies 5x^2 - 10x - 6 = 0$$

 $b^2 - 4ac = (-10)^2 - 4(5)(-6) > 0$

B)
$$4x^2 + 8x + 4 = 0$$

 $b^2 - 4ac = (8)^2 - 4(4)(4) = 0$

C)
$$3x^2 - 5x = -3 \Rightarrow 3x^2 - 5x + 3 = 0$$

 $b^2 - 4ac = (-5)^2 - 4(3)(3) < 0$

Choice C is correct.

Section 11-6

1. C

Since the two x-intercepts are -4 and 2, the equation of the parabola can be written as y = a(x+4)(x-2). Substitute x = 0 and $y = \frac{16}{3}$ in the equation, since the graph of the

parabola passes through $(0, \frac{16}{2})$.

$$\frac{16}{3} = a(0+4)(0-2)$$

Solving the equation for a gives $a = -\frac{2}{3}$.

Thus the equation of the parabola is

$$y = -\frac{2}{3}(x+4)(x-2)$$
.

The x-coordinate of the vertex is the average of the two x-intercepts: $\frac{-4+2}{2}$, or -1.

The y-coordinate of the vertex can be found by substituting -1 for x in the equation of the parabola: $y = -\frac{2}{3}(-1+4)(-1-2) = 6$.

The line passes through (2,0) and (-1,6).

The slope of the line is $\frac{6-0}{-1-2} = -2$. The equation of the line in point-slope form is y-0=-2(x-2). To find the y-intercept of the line, substitute 0 for x. y = -2(0-2) = 4

Choice C is correct.

B

$$y = x^2 + x$$
 and $y = ax - 1$

Substitute ax-1 for y in the quadratic equation.

$$ax-1=x^2+x$$

$$x^2 + (-a+1)x + 1 = 0$$
 Make one side 0.

If the system of equations has exactly one real solution, the discriminant $b^2 - 4ac$ must be equal to 0.

$$(-a+1)^2-4(1)(1)=0$$

$$b^2 - 4ac = 0$$

$$a^2 - 2a + 1 - 4 = 0$$

$$a^2 - 2a - 3 = 0$$

$$(a-3)(a+1) = 0$$

 $a=3 \text{ or } a=-1$

Since a > 0, a = 3.

3. C

One can find the intersection points of the two graphs by setting the two functions f(x) and g(x) equal to one another and then solving for x. This yields $2x^2 + 2 = -2x^2 + 18$. Adding $2x^2 - 2$ to each side of the equation gives $4x^2 = 16$. Solving for x gives $x = \pm 2$. $f(2) = 2(2)^2 + 2 = 10$ and also f(-2) = 10. The two point of intersections are (2,10) and (-2,10). Therefore, the value of b is 10.

4. D

$$x^2 + y^2 = 14$$
 First equation

$$x^2 - y = 2$$

Second equation

$$x^2 = v + 2$$

Second equation solved for x^2 .

$$y+2+y^2=14$$

Substitute y+2 for x^2 in

$$y + 2 + y^{-} = 1$$

first equation.

$$y^2 + y - 12 = 0$$

Make one side 0.

$$(y+4)(y-3)=0$$

Factor.

$$y = -4 \text{ or } y = 3$$

Solve for y.

Substitute -4 and 3 for y and solve for x^2 .

$$x^2 = v + 2 = -4 + 2 = -2$$
.

Since x^2 cannot be negative, y = -4 is not a solution.

$$x^2 = y + 2 = 3 + 2 = 5$$

The value of x^2 is 5.

Chapter 11 Practice Test

1. B

The x-coordinate of the vertex is the average of the x-intercepts. Thus the x-coordinate of the vertex is $x = \frac{-2+6}{2} = 2$. The vertex form of the parabola can be written as $y = a(x-2)^2 + k$. Choices A and D are incorrect because the x-coordinate of the vertex is not 2.

Also, the parabola passes through (0,6).

Check choices B and C.

B)
$$y = -\frac{1}{2}(x-2)^2 + 8$$

 $6 = -\frac{1}{2}(0-2)^2 + 8$ Correct.

C)
$$y = -\frac{1}{2}(x-2)^2 + 9$$

 $6 = -\frac{1}{2}(0-2)^2 + 9$ Not correct.

Choice B is correct.

2. C

$$(x+y)^2 = 324 \implies x^2 + 2xy + y^2 = 324$$

 $x^2 + y^2 = 324 - 2xy$
 $(x-y)^2 = 16 \implies x^2 - 2xy + y^2 = 16$
 $\implies x^2 + y^2 = 16 + 2xy$
Substituting $16 + 2xy$ for $x^2 + y^2$ in the equation $x^2 + y^2 = 324 - 2xy$ yields $16 + 2xy = 324 - 2xy$.
Solving this equation for xy yields $xy = 77$.

3. A

From the graph we read the length of AD, which is 9. Let the length of CD = w.

Perimeter of rectangle ABCD is 38. $2 \cdot 9 + 2w = 38 \implies 2w = 20 \implies w = 10$ Therefore, the coordinates of B are (-1,10) and the coordinates of C are (8,10).

The equation of the parabola can be written in vertex form as $y = a(x-3)^2$.

Now substitute 8 for x and 10 for y in the equation. $10 = a(8-3)^2$. Solving for a gives $a = \frac{10}{25} = \frac{2}{5}$. Choice A is correct.

4. A

$$(ax+b)(2x-5) = 12x^2 + kx - 10$$

FOIL the left side of the equation.

$$2ax^2 + (-5a + 2b)x - 5b = 12x^2 + kx - 10$$

By the definition of equal polynomials, 2a = 12, -5a + 2b = k, and 5b = 10. Thus, a = 6 and b = 2, and k = -5a + 2b = -5(6) + 2(2) = -26.

5. D

$$h = -\frac{1}{2}gt^2 + v_0t + h_0$$

In the equation, g = 9.8, initial height $h_0 = 40$, and initial speed $v_0 = 35$. Therefore, the equation of the motion is $h = -\frac{1}{2}(9.8)t^2 + 35t + 40$. Choice D is correct.

6. C

In the quadratic equation, $y = ax^2 + bx + c$, the x-coordinate of the maximum or minimum point is at $x = -\frac{b}{2a}$.

Therefore, the object reaches its maximum height when $t = -\frac{35}{2(-4.9)} = \frac{25}{7}$.

7. A

The object reaches to its maximum height when $t = \frac{25}{7}$. So substitute $t = \frac{25}{7}$ in the equation.

$$h = -4.9(\frac{25}{7})^2 + 35(\frac{25}{7}) + 40 = 102.5$$

To the nearest meter, the object reaches a maximum height of 103 meters.

8. F

Height of the object is zero when the object hits the ground.

$$0 = -4.9t^2 + 35t + 40$$

Use quadratic formula to solve for t.

$$t = \frac{-35 \pm \sqrt{35^2 - 4(-4.9)(40)}}{2(-4.9)}$$
$$= \frac{-35 \pm \sqrt{2009}}{-9.8} \approx \frac{-35 \pm 44.82}{-9.8}$$

Solving for t gives $t \approx -1$ or $t \approx 8.1$. Since time cannot be negative, the object hits the ground about 8 seconds after it was thrown.

9. B

When an object hits the ground, h = 0.

$$h_0 = 150$$
 is given.

$$0 = -16t^2 + 150$$

Substitution

$$16t^2 = 150$$

Add 16t2 to each side.

$$t^2 = \frac{150}{16}$$

Divide each side by 16.

$$t = \sqrt{\frac{150}{16}} \approx 3.06$$