

Figure 54.25: Running (SVM_{s5}) on two sets of 30 points; K = 1/13000.

Our second run was made with K = 1/13000; see Figure 54.25. We have $p_m = 30$ and $q_m = 30$ and we see that the width of the slab is a bit excessive. This example demonstrates that the margin lines need not contain data points.

Method (SVM_{s5}) always returns a value for b and η smaller than the value returned by (SVM_{s4}) (because of the term $(1/2)b^2$ added to the objective function) but in this example the difference is too small to be noticed.

54.17 Summary and Comparison of the SVM Methods

In this chapter we considered six variants for solving the soft margin binary classification problem for two sets of points $\{u_i\}_{i=1}^p$ and $\{v_j\}_{j=1}^q$ using support vector classification methods. The objective is to find a separating hyperplane $H_{w,b}$ of equation $w^{\top}x - b = 0$. We also try to find two "margin hyperplanes" $H_{w,b+\delta}$ of equation $w^{\top}x - b - \delta = 0$ (the blue margin hyperplane) and $H_{w,b-\delta}$ of equation $w^{\top}x - b + \delta = 0$ (the red margin hyperplane) such that δ is as big as possible and yet the number of misclassified points is minimized, which is achieved by allowing an error $\epsilon_i \geq 0$ for every point u_i , in the sense that the constraint

$$w^{\top}u_i - b \ge \delta - \epsilon_i$$

should hold, and an error $\xi_j \geq 0$ for every point v_j , in the sense that the constraint

$$-w^{\top}v_j + b \ge \delta - \xi_j$$