2019-2020 学年第 1 学期 泛函分析作业

目录

1	第	1	周	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	1
2	第	2	周	•				•	•							•					•														•	•						3
3	第	3	周	•		•									•				•	•											•						•			•		8
4	第	4	周	•		•									•				•	•											•						•			•		12
5	第	5	周	•		•									•				•	•											•						•			•	•	14
6	第	6	周	•		•									•				•	•											•						•			•		20
7	第	7	周	•												•							•																			20
8	第	8	周	•		•									•				•	•											•						•			•	•	22
9	第	9	周	•																			•		•	•												•				2 5
10	第	10)																				•		•	•												•				30
11	第	1	L 周																			•	•		•	•								•				•		•		32
12	第	1:	2 周]		•			•						•				•	•	•	•									•			•	•	•	•	•				33

第1周

定义 1.1. 等价距离

设集合 X 上有两种距离: d_1 , d_2 . 如果 X 中按距离 d_1 收敛的点列 $\{x_n\}$ 都在距离 d_2 下收敛于同一点, 并且按距离 d_2 收敛的点列 $\{x_n\}$ 都在距离 d_1 下收敛于同一点, 即

$$d_1(x_n, x) \to 0 \iff d_2(x_n, x) \to 0,$$

则称距离 d_1 和 d_2 等价.

 \triangle 作业题 1.1 设 d(x,y) 是集合 X 上的距离, 令

$$\tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

证明: $\tilde{d}(x,y)$ 也是 X 上的距离, 并且 \tilde{d} 与 d 等价.

证明 显然, 对任意 $x, y \in X$,

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)} \in \mathbb{R}.$$

- (i) 由距离 d(x,y) 的正定性可知 $\tilde{d}(x,y) \geq 0$,并且 $\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)} = 0$ 等价于 d(x,y) = 0,进而等价于 x = y.
- (ii) 由距离 d(x,y) 的三点不等式可知,对任意 $x,y,z \in X$,总有

$$d(x,y) \le d(x,z) + d(y,z),$$

从而,根据函数

$$f(t) = \frac{t}{1+t}, \quad t \in [0, +\infty)$$

的单调递增性,就有

$$\begin{split} \tilde{d}(x,y) &= \frac{d(x,y)}{1+d(x,y)} & \leq & \frac{d(x,z)+d(y,z)}{1+d(x,z)+d(y,z)} \\ &= & \frac{d(x,z)}{1+d(x,z)+d(y,z)} + \frac{d(y,z)}{1+d(x,z)+d(y,z)} \\ &\leq & \frac{d(x,z)}{1+d(x,z)} + \frac{d(y,z)}{1+d(y,z)} \\ &= & \tilde{d}(x,z) + \tilde{d}(y,z). \end{split}$$

综上, $\tilde{d}(x,y)$ 也是空间 X 上的距离. 注意到

$$0 \le \tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)} < 1,$$

于是

$$d(x,y) = \frac{\tilde{d}(x,y)}{1 - \tilde{d}(x,y)}. (1.1)$$

若点列 $\{x_n\} \subset X$ 和点 $x \in X$ 满足

$$d(x_n, x) \to 0 \quad (n \to \infty),$$

则根据数列极限的四则运算法则, 就有

$$\tilde{d}(x_n, x) = \frac{d(x_n, x)}{1 + d(x_n, x)} \to 0 \quad (n \to \infty).$$

若点列 $\{x_n\} \subset X$ 和点 $x \in X$ 满足

$$\tilde{d}(x_n, x) \to 0 \quad (n \to \infty),$$

同样根据 (1.1) 式以及数列极限的四则运算法则, 就有

$$d(x_n, x) = \frac{\tilde{d}(x_n, x)}{1 - \tilde{d}(x_n, x)} \to 0 \quad (n \to \infty).$$

所以距离 d 和 \tilde{d} 等价.

注 上述距离空间 (X,\tilde{d}) 中任何两点的距离都小于 1, 从而任何子集都是有界集. 上述结论说明, 任何距离空间上 (X,d) 上都能够找到与 d 等价的"有界"距离 \tilde{d} .

△ 作业题 1.2 在 \mathbb{R}^N 中可定义两种距离:

$$d_1(x,y) = \sqrt{\sum_{i=1}^{N} |\xi_i - \eta_i|^2},$$

$$d_2(x,y) = \max_{1 \le i \le N} |\xi_i - \eta_i|,$$

其中 $x = (\xi_1, \xi_2, \dots, \xi_N) \in \mathbb{R}^N$, $y = (\eta_1, \eta_2, \dots, \eta_N) \in \mathbb{R}^N$. 证明: d_1 和 d_2 等价. 证明 对任意 $x = (\xi_1, \xi_2, \dots, \xi_N) \in \mathbb{R}^N$, $y = (\eta_1, \eta_2, \dots, \eta_N) \in \mathbb{R}^N$, 都有

$$\max_{1 \le i \le N} |\xi_i - \eta_i|^2 \le \sum_{i=1}^N |\xi_i - \eta_i|^2 \le N \max_{1 \le i \le N} |\xi_i - \eta_i|^2,$$

从而

$$\max_{1 \le i \le N} |\xi_i - \eta_i| \le \sqrt{\sum_{i=1}^N |\xi_i - \eta_i|^2} \le \sqrt{N} \max_{1 \le i \le N} |\xi_i - \eta_i|,$$

即

$$d_2(x,y) \le d_1(x,y) \le \sqrt{N} d_2(x,y).$$

若点列 $\{x_n\} \subset \mathbb{R}^N$ 和点 $x \in \mathbb{R}^N$ 满足

$$d_1(x_n, x) \to 0 \quad (n \to \infty),$$

由(1)式的前半部分以及数列极限的迫敛性可知

$$d_2(x_n, x) \to 0 \quad (n \to \infty).$$

若点列 $\{x_n\} \subset \mathbb{R}^N$ 和点 $x \in \mathbb{R}^N$ 满足

$$d_2(x_n, x) \to 0 \quad (n \to \infty),$$

由(1)式的后半部分以及数列极限的迫敛性可知

$$d_1(x_n, x) \to 0 \quad (n \to \infty).$$

综上, d_1 和 d_2 等价.

注 若距离空间 X 上的两种距离 d_1 和 d_2 满足

$$C_1d_1(x,y) \le d_2(x,y) \le C_2d_1(x,y), \quad \forall x,y \in X,$$

其中 $C_1, C_2 > 0$ 是正的常数, 则 d_1 与 d_2 一定等价.

第 2 周

△ 作业题 2.1 设 $P_r[a,b]$ 是定义在闭区间 [a,b] 上的所有**有理系数多项式函数**的全体. 显然, $(P_r[a,b],d)$ 是连续函数空间 (C[a,b],d) 的距离子空间, 其中

$$d(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|, \quad \forall f, g \in C[a,b].$$

证明: $P_r[a,b]$ 是 C[a,b] 的可数稠密子集, 从而 C[a,b] 可分.

证明

Step1. 对任意 $n \in \mathbb{N}$, 设 $P_r^n[a,b]$ 是定义在 [a,b] 上的所有**有理系数** n 次多项式函数的全体,则 $P_r^n[a,b]$ 是可数集. 由于

$$P_r[a,b] = \bigcup_{n=0}^{\infty} P_r^n[a,b],$$

则 $P_r[a,b]$ 也是可数集.

Step2. 下证 $P_r[a,b]$ 按距离 d 在 P[a,b] 中稠密. 任取 $h \in P[a,b]$,

$$h(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n, \quad t \in [a, b],$$

其中 $a_0, a_1, \dots, a_n \in \mathbb{R}, n \in \mathbb{N}$. 令

$$M = \max_{1 \le k \le n} \max_{t \in [a,b]} |t|^k > 0.$$

根据有理数集 \mathbb{Q} 在实数集 \mathbb{R} 中的稠密性, 对任意 $\epsilon > 0$, 存在 $q_0, q_1, \dots, q_n \in \mathbb{Q}$ 使得

$$|a_0 - q_0| < \frac{1}{n+1}\epsilon, \quad |a_1 - q_1| < \frac{1}{(n+1)M}\epsilon, \quad \cdots, \quad |a_n - q_n| < \frac{1}{(n+1)M}\epsilon.$$

$$g(t) = q_0 + q_1 t + \dots + q_n t^n, \quad t \in [a, b],$$

则 $g \in P_r[a,b]$, 并且对任意 $t \in [a,b]$ 都有

$$|h(t) - g(t)| \le |a_0 - q_0| + |a_1 - q_1| \cdot |t| + \dots + |a_n - q_n| \cdot |t|^n \le |a_0 - q_0| + |a_1 - q_1| M + \dots + |a_n - q_n| M < \epsilon,$$

从而

$$\max_{t \in [a,b]} |h(t) - g(t)| < \epsilon.$$

综上, 对任意 $h \in P[a,b]$ 以及任意 $\epsilon > 0$, 存在 $g \in P_r[a,b]$ 使得

$$d(h,g) = \max_{t \in [a,b]} |h(t) - g(t)| < \epsilon,$$

所以 $P_r[a,b]$ 按距离 d 在 P[a,b] 中稠密.

Step3. 根据 Weierstrauss 逼近定理, P[a,b] 按距离 d 在 C[a,b] 中稠密, 则对任意 $\epsilon > 0$ 以及任意 $f \in C[a,b]$, 存在 $h \in P[a,b]$ 使得

$$d(f,h) < \frac{1}{2}\epsilon.$$

由 Step2 可知, 存在 $g \in P_r[a,b]$ 使得

$$d(h,g) < \frac{1}{2}\epsilon,$$

从而 $d(f,g) \le d(f,h) + d(h,g) < \epsilon$.

综上, $P_r[a,b]$ 是 C[a,b] 的可数稠密子集, 从而 C[a,b] 可分.

△ 作业题 2.2 按以下步骤证明

定理 2.1. Riemann-Lebesgue 引理

 $f \in L[a,b]$, 对应的 Fourier 系数为

$$a_n = \int_a^b f(x) \sin nx dx, \quad b_n = \int_a^b f(x) \cos nx dx, \quad n \in \mathbb{N},$$

则
$$a_n, b_n \to 0 \quad (n \to \infty)$$
. \mathbb{R}^n

Step1 若 f 是 [a,b] 上的简单函数 (P80 定义 3), 证明上述结论成立.

Step2 设 S[a,b] 是定义在闭区间 [a,b] 上的简单函数的全体. 显然, S[a,b] 是 L[a,b] 的距离子空间, 其中距离

$$d(f,g) = \int_{a}^{b} |f(t) - g(t)| dt, \quad \forall f, g \in L[a,b].$$

证明: S[a,b] 是 L[a,b] 的稠密子集.

Step3 利用稠密性,证明 Riemann-Lebesgue 引理成立.

证明

Step0. 设 $h \in [a,b]$ 上的一个阶梯函数,

$$h(x) = \begin{cases} c_1, & x \in (a_1, b_1), \\ c_2, & x \in (a_2, b_2), \\ \cdots & \cdots \\ c_k, & x \in (a_k, b_k), \\ 0, & x \in [a, b] \setminus \bigcup_{i=1}^k (a_i, b_i), \end{cases}$$

其中 c_1, c_2, \dots, c_k 为常数, $(a_1, b_1), \dots, (a_k, b_k)$ 是 [a, b] 中互不相交的非空开子区间. 于是,

$$\int_{a}^{b} h(x) \sin nx dx$$

$$= \sum_{i=1}^{k} c_{i} \int_{a_{i}}^{b_{i}} \sin nx dx$$

$$= \frac{1}{n} \sum_{i=1}^{k} c_{i} (\cos na_{i} - \cos nb_{i})$$

$$\to 0 \quad (n \to \infty).$$

同理可证

$$\int_{a}^{b} h(x) \cos nx dx \to 0 \quad (n \to \infty).$$

Step1. 设 $E \in [a,b]$ 中的可测子集, $\chi \in E$ 的特征函数, 即

$$\chi(x) = \left\{ \begin{array}{ll} 1, & x \in E, \\ 0, & x \in [a, b] \setminus E, \end{array} \right.$$

下证

$$\int_{a}^{b} \chi(x) \sin nx dx \to 0 \quad (n \to \infty).$$

令 $\tilde{E}=E\cap(a,b)$, 则 \tilde{E} 也可测并且 $m(E\setminus \tilde{E})=0$. 对任意 $\epsilon>0$, 存在开集 $G\subset [a,b]$ 使得 $\tilde{E}\subset G$ 并且

$$m(G \setminus \tilde{E}) < \frac{1}{2}\epsilon.$$

另一方面, 根据 \mathbb{R}^1 中开集的构造定理 (P44), G 可表为

$$G = \bigcup_{i=1}^{\infty} O_i,$$

其中 $O_i = (a_i, b_i)$ 是 G 的构成区间, 从而

$$\sum_{i=1}^{\infty} (b_i - a_i) = mG \le b - a < +\infty.$$

于是, 对上述 $\epsilon > 0$, 存在 $N \in \mathbb{N}_+$ 使得

$$\sum_{i=N+1}^{\infty} (b_i - a_i) < \frac{1}{2}\epsilon.$$

令 $V = \bigcup_{i=1}^{N} (a_i, b_i)$, 并定义阶梯函数

$$h(x) = \begin{cases} 1, & x \in V, \\ 0, & x \in [a, b] \setminus V, \end{cases}$$

则

$$\begin{split} &\int_{a}^{b} |\chi(x) - h(x)| dx \\ &= \left(\int_{E \setminus V} + \int_{V \setminus E} + \int_{[a,b] \setminus (E \cup V)} \right) |\chi(x) - h(x)| dx \\ &= \left(\int_{\tilde{E} \setminus V} + \int_{V \setminus \tilde{E}} + \int_{[a,b] \setminus (\tilde{E} \cup V)} \right) |\chi(x) - h(x)| dx \\ &= \int_{\tilde{E} \setminus V} |1 - 0| dx + \int_{V \setminus \tilde{E}} |0 - 1| dx + \int_{[a,b] \setminus (\tilde{E} \cup V)} |0 - 0| dx \\ &= m(\tilde{E} \setminus V) + m(V \setminus \tilde{E}) \\ &\leq m(G \setminus V) + m(G \setminus \tilde{E}) \\ &< \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon, \end{split}$$

从而

$$0 \le \left| \int_{a}^{b} \chi(x) \sin nx dx \right|$$

$$\le \left| \int_{a}^{b} \left(\chi(x) - h(x) \right) \sin nx dx \right| + \left| \int_{a}^{b} h(x) \sin nx dx \right|$$

$$\le \int_{a}^{b} \left| \chi(x) - h(x) \right| \left| \sin nx \right| dx + \left| \int_{a}^{b} h(x) \sin nx dx \right|$$

$$\le \int_{a}^{b} \left| \chi(x) - h(x) \right| dx + \left| \int_{a}^{b} h(x) \sin nx dx \right|$$

$$<\epsilon + \left| \int_{a}^{b} h(x) \sin nx dx \right|.$$

由于 h 是阶梯函数, 综合 Step0, 数列极限的迫敛性以及 $\epsilon > 0$ 的任意性, 可得

$$\int_{a}^{b} \chi(x) \sin nx dx \to 0 \quad (n \to \infty).$$

设 f 是 [a,b] 上的简单函数,

$$f(x) = \sum_{i=1}^{k} c_i \chi_i(x),$$

其中

- (i) $[a,b] = \bigcup_{i=1}^{k} E_i, E_1, E_2, \cdots, E_k$ 是 [a,b] 中互不相交的可测子集;
- (ii) c_1, c_2, \dots, c_k 是非负常数;
- (iii) $\chi_i(x)$ 是 E_i 的特征函数, 即

$$\chi_i(x) = \begin{cases} 1, & x \in E_i, \\ 0, & x \in [a, b] \setminus E_i. \end{cases}$$

由前面的结论可知

$$\int_{a}^{b} f(x) \sin nx dx = \sum_{i=1}^{k} c_{i} \int_{a}^{b} \chi_{i}(x) \sin nx dx \to 0 \quad (n \to \infty).$$

同理可证

$$\int_{a}^{b} f(x) \cos nx dx \to 0 \quad (n \to \infty).$$

Step2. (P118) 设 $f \in L[a, b]$, 则 f^+ 和 f^- 也是 [a, b] 上的非负 L 可积函数, 从而, 根据非负可测函数 L 积分的定义 (P102, 定义 1), 对任意 $\epsilon > 0$, 存在 [a, b] 上的简单函数 ϕ_1, ϕ_2 , 使得

$$0 \le \phi_1(x) \le f^+(x), \quad 0 \le \phi_2(x) \le f^-(x), \quad \forall x \in [a, b],$$

并且

$$\int_a^b f^+(x)dx - \frac{\epsilon}{2} \le \int_a^b \phi_1(x)dx \le \int_a^b f^+(x)dx,$$
$$\int_a^b f^-(x)dx - \frac{\epsilon}{2} \le \int_a^b \phi_2(x)dx \le \int_a^b f^-(x)dx.$$

令 $\phi(x) = \phi_1(x) - \phi_2(x)$, 则 ϕ 也是 [a,b] 上的简单函数, 并且

$$d(f,\phi) = \int_{a}^{b} |f(x) - \phi(x)| dx$$

$$= \int_{a}^{b} |f^{+}(x) - f^{-}(x) - \phi_{1}(x) + \phi_{2}(x)| dx$$

$$\leq \int_{a}^{b} |f^{+}(x) - \phi_{1}(x)| dx + \int_{a}^{b} |f^{-}(x) - \phi_{2}(x)| dx$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

综上, S[a,b] 是 L[a,b] 的稠密子集.

Step3. 由 Step2, 对任意 $f \in L[a,b]$ 以及任意 $\epsilon > 0$, 存在 $g \in S[a,b]$, 使得

$$d(f,g) = \int_{a}^{b} |f(x) - g(x)| dx < \epsilon,$$

从而

$$0 \le \left| \int_{a}^{b} f(x) \sin nx dx \right|$$

$$\le \left| \int_{a}^{b} \left(f(x) - g(x) \right) \sin nx dx \right| + \left| \int_{a}^{b} g(x) \sin nx dx \right|$$

$$\le \int_{a}^{b} \left| f(x) - g(x) \right| \left| \sin nx \right| dx + \left| \int_{a}^{b} g(x) \sin nx dx \right|$$

$$\le \int_{a}^{b} \left| f(x) - g(x) \right| dx + \left| \int_{a}^{b} g(x) \sin nx dx \right|$$

$$< \epsilon + \left| \int_{a}^{b} g(x) \sin nx dx \right|.$$

另一方面, 根据 Step1, 就有

$$\int_{a}^{b} g(x) \sin nx dx \to 0 \quad (n \to \infty).$$

综上, 由以上两式, 结合数列极限的迫敛性以及 $\epsilon > 0$ 的任意性, 可得

$$\int_{a}^{b} f(x) \sin nx dx \to 0 \quad (n \to \infty).$$

同理可证

$$\int_{a}^{b} f(x) \cos nx dx \to 0 \quad (n \to \infty).$$

第 3 周

作业题 3.1 设 (X,d) 是度量空间, $\{x_n\}$ 是 (X,d) 中的 Cauchy 点列, 证明: $\{x_n\}$ 收敛当且仅当 $\{x_n\}$ 存在收敛子列.

证明 必要性是显然的.

下证充分性. 设 Cauchy 点列 $\{x_n\}$ 存在收敛子列 $\{x_{n_k}\}$ 使得 $x_{n_k} \to x$ $(k \to \infty)$. 任取 $\epsilon > 0$. 一方面, 由于 $\{x_n\}$ 是 Cauchy 点列, 则存在 $N = N(\epsilon) \in \mathbb{N}_+$, 使得

$$d(x_n, x_m) < \frac{1}{2}\epsilon, \quad \forall m, n > N.$$
 (3.1)

另一方面, 由于 $x_{n_k} \to x \ (k \to \infty)$, 则存在 $K = K(\epsilon) \in \mathbb{N}_+$ 使得

$$n_k > N$$
 #\(\frac{\pm}{2}\) $d(x_{n_k}, x) < \frac{1}{2}\epsilon, \quad \forall k > K.$ (3.2)

综上,由 (3.1)-(3.2)式,对任意 n > N,取 k = K + 1,就有

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon,$$

所以 $x_n \to x \ (n \to \infty)$.

作业题 3.2 设 f 是度量空间 (X,d) 到 ℝ 的连续映射, M 是 X 中的紧集, 证明: 连续映射 f 在紧集 M 上能够取到最值, 即存在 $x_0, x_1 \in M$ 使得

$$f(x_0) = \min_{x \in M} f(x), \quad f(x_1) = \max_{x \in M} f(x).$$

证明 Step1. 设

$$l = \inf_{x \in M} f(x).$$

下证 $l \in \mathbb{R}$.

反证法, 假设 $l = -\infty$, 则对任意 $n \in \mathbb{N}_+$, 存在 $x_n \in M$ 使得

$$f(x_n) < -n$$

于是

$$f(x_n) \to -\infty \quad (n \to \infty).$$
 (3.3)

另一方面, 由于 $\{x_n\} \subset M$ 并且 M 是紧集, 则存在 $\{x_n\}$ 的子列 $\{x_{n_k}\}$ 以及 $x \in M$ 使得

$$x_{n_k} \to x \quad (k \to \infty).$$

根据映射 f 的连续性, 就有

$$f(x_{n_k}) \to f(x) \in \mathbb{R} \quad (k \to \infty).$$

这与 (3.3) 式矛盾. 所以 $l \in \mathbb{R}$.

Step2. 根据下确界的定义, 存在 $\{x_n\} \subset M(称为极小化序列)$ 使得

$$f(x_n) \to l \quad (n \to \infty).$$

由于 M 是紧集, 则存在 $\{x_n\}$ 的子列 $\{x_{n_k}\}$ 以及 $x \in M$ 使得

$$x_{n_k} \to x \quad (k \to \infty).$$

根据映射 f 的连续性, 就有

$$\inf_{x \in M} f(x) = l = \lim_{n \to \infty} f(x_n) = \lim_{k \to \infty} f(x_{n_k}) = f\left(\lim_{k \to \infty} x_{n_k}\right) = f(x).$$

所以连续映射 f 在紧集 M 上可以取到最小值.

同理可证, 连续映射 f 在紧集 M 上可以取到最大值.

注 上述结论才是数学分析中闭区间上的连续函数最值性的本质. 在一般的度量空间中, 有界闭集不一定是紧集, 有界闭集上的连续映射不一定有最值性.

▲ 作业题 3.3

定义 3.1. Hölder 连续函数

设 $\alpha \in (0,1]$. 若 $f \in C[a,b]$ 满足

$$[f]_{\alpha} = \sup_{\substack{x,y \in [a,b], \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < +\infty,$$

则称 f 是 [a,b] 上具有指数 α 的 Hölder 连续函数. C[a,b] 中所有具有指数 α 的 Hölder 连续函数的全体记为 $C^{0,\alpha}[a,b]$.

(1) 令

$$\bar{d}(f,g) = \max_{t \in [a,b]} |f(t) - g(t)| + [f - g]_{\alpha}, \quad \forall f, g \in C^{0,\alpha}[a,b],$$

证明 $(C^{0,\alpha}[a,b],\bar{d})$ 是一个度量空间.

- (2) 证明 ($C^{0,\alpha}[a,b],\bar{d}$) 是完备的度量空间.
- (3) 利用 Ascoli-Arezela 定理证明, 若 M 是 $(C^{0,\alpha}[a,b],\bar{d})$ 中的有界集, 则 M 是 (C[a,b],d) 中的列紧集, 其中 d 是最大值距离, 即

$$d(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|, \quad \forall f, g \in C[a,b].$$

证明 (1) 任取 $f, g \in C^{0,\alpha}[a, b]$, 对任意 $x, y \in [a, b]$ 且 $x \neq y$, 都有

$$\frac{|(f-g)(x) - (f-g)(y)|}{|x-y|^{\alpha}}$$

$$\leq \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} + \frac{|g(x) - g(y)|}{|x - y|^{\alpha}}$$

$$\leq [f]_{\alpha} + [g]_{\alpha} < +\infty,$$

从而

$$[f - g]_{\alpha} = \sup_{\substack{x,y \in [a,b], \\ x \neq y}} \frac{|(f - g)(x) - (f - g)(y)|}{|x - y|^{\alpha}} \le [f]_{\alpha} + [g]_{\alpha} < +\infty.$$

所以 $\bar{d}(f,g)$ 的定义是合理的

(i) 显然 $\bar{d}(f,g) \geq 0$. 由于 $d(f,g) \leq \bar{d}(f,g)$,根据 d(f,g) 的正定性可知, $\bar{d}(f,g) = 0$ 等价于

$$f(t) = g(t), \quad \forall t \in [a, b],$$

从而等价于 f = g.

(ii) 设 $f, g, h \in C^{0,\alpha}[a, b]$, 则

$$d(f,g) \le d(f,h) + d(h,g).$$

另一方面, 对任意 $x, y \in [a, b]$ 且 $x \neq y$, 都有

$$\begin{split} &\frac{|(f-g)(x)-(f-g)(y)|}{|x-y|^{\alpha}} \\ &= &\frac{\left|[(f-h)+(h-g)](x)-[(f-h)+(h-g)](y)\right|}{|x-y|^{\alpha}} \\ &\leq &\frac{|(f-h)(x)-(f-h)(y)|}{|x-y|^{\alpha}} + \frac{|(h-g)(x)-(h-g)(y)|}{|x-y|^{\alpha}}, \end{split}$$

从而

$$[f-g]_{\alpha} \le [f-h]_{\alpha} + [h-g]_{\alpha}.$$

综上,

$$\bar{d}(f,g) \leq \bar{d}(f,g) + \bar{d}(h,g).$$

所以 $(C^{0,\alpha}[a,b],\bar{d})$ 是一个度量空间.

(2) 设 $\{f_n\}$ 是空间 $(C^{0,\alpha}[a,b],\bar{d})$ 中的 Cauchy 点列. 由于 $C^{0,\alpha}[a,b] \subset C[a,b]$ 并且

$$0 \leq d(f,g) \leq \bar{d}(f,g), \quad \forall f,g \in C^{0,\alpha}[a,b],$$

易证 $\{f_n\}$ 也是 (C[a,b],d) 中的 Cauchy 点列. 根据 (C[a,b],d) 的完备性, 存在 $f \in C[a,b]$ 使得

$$d(f_n, f) \to 0 \quad (n \to \infty).$$

下证 $f \in C^{0,\alpha}[a,b]$ 并且

$$\bar{d}(f_n, f) \to 0 \quad (n \to \infty).$$

由于 $\{f_n\}$ 是空间 $(C^{0,\alpha}[a,b],\bar{d})$ 中的 Cauchy 点列, 从而是 $(C^{0,\alpha}[a,b],\bar{d})$ 中的有界点列 (p219 第 14 题), 于是存在 M>0 使得对任意 $x,y\in[a,b]$ 并且 $x\neq y$ 都有

$$\frac{|f_n(x) - f_n(y)|}{|x - y|^{\alpha}} \le [f_n]_{\alpha} = [f_n - 0]_{\alpha} \le \bar{d}(f_n, 0) \le M, \quad \forall n \in \mathbb{N}_+.$$
 (3.4)

由于函数列 $\{f_n\}$ 在 [a,b] 上一致收敛于 f, 那么也逐点收敛于 f, 即对任意 $x \in [a,b]$, 都有

$$f_n(x) \to f(x) \quad (n \to \infty).$$
 (3.5)

因此, 在 (3.4) 两端令 $n \to \infty$, 可得

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le M, \quad \forall x, y \in [a, b], \ x \ne y,$$

从而 $[f]_{\alpha} < +\infty, f \in C^{0,\alpha}[a,b].$

对任意 $\epsilon > 0$, 由于 $\{f_n\}$ 是空间 $(C^{0,\alpha}[a,b],\bar{d})$ 中的 Cauchy 点列, 则存在正整数 N, 使得对任意 m,n>N, 都有

$$\frac{\left| [f_n(x) - f_m(x)] - [f_n(y) - f_m(y)] \right|}{|x - y|^{\alpha}} \le [f_n - f_m]_{\alpha} \le \bar{d}(f_n, f_m) < \epsilon, \quad \forall x, y \in [a, b], \ x \ne y.$$

在上式中固定 x, y 以及 n > N, 令 $m \to \infty$, 结合 (3.5) 式可得

$$\frac{\left|\left[f_n(x) - f(x)\right] - \left[f_n(y) - f(y)\right]\right|}{|x - y|^{\alpha}} \le \epsilon, \quad \forall n \ge N, \ \forall x, y \in [a, b], \ x \ne y,$$

所以

$$[f_n - f]_{\alpha} \le \epsilon, \forall n > N.$$

综上

$$[f_n - f]_{\alpha} \to 0 \quad (n \to \infty),$$

从而

$$\bar{d}(f_n, f) = d(f_n, f) + [f_n - f]_{\alpha} \to 0 \quad (n \to \alpha).$$

所以 $(C^{0,\alpha}[a,b],\bar{d})$ 是完备的度量空间.

(3) 设 M 在 $(C^{0,\alpha}[a,b],\bar{d})$ 中有界. 由于 $C^{0,\alpha}[a,b] \subset C[a,b]$ 并且

$$0 \le d(f,g) \le \bar{d}(f,g), \quad \forall f, g \in C^{0,\alpha}[a,b],$$

所以 M 也在 (C[a,b],d) 中有界. 任取 $\{f_n\} \subset M$, 则 $\{f_n\}$ 既是 $(C^{0,\alpha}[a,b],\bar{d})$ 中的有界点列, 又是 (C[a,b],d) 中的有界点列, 从而函数列 $\{f_n\}$ 在 [a,b] 上一致有界. 下证函数列 $\{f_n\}$ 在 [a,b] 上等度连续.

由于 $\{f_n\}$ 是 $(C^{0,\alpha}[a,b],\bar{d})$ 中的有界点列, 则存在 M>0. 使得

$$[f_n]_{\alpha} = [f_n - 0]_{\alpha} \le \bar{d}(f_n, 0) \le M.$$

从而

$$|f_n(x) - f_n(y)| \le M|x - y|^{\alpha}, \quad \forall n \in \mathbb{N}_+, \ \forall x, y \in [a, b].$$
(3.6)

对任意 $\epsilon > 0$, 取

$$\delta = \left(\frac{\epsilon}{M}\right)^{\frac{1}{\alpha}} > 0,$$

则对任意 $x, y \in [a, b]$ 且 $|x - y| < \delta$, 根据 $\alpha \in (0, 1]$ 以及(3.6)式可得

$$|f_n(x) - f_n(y)| \le M|x - y|^{\alpha} < M\delta^{\alpha} = \epsilon, \quad \forall n \in \mathbb{N}_+,$$

因此函数列 $\{f_n\}$ 在 [a,b] 上等度连续.

根据 Ascoli-Arezela 定理, 点列 $\{f_n\}$ 在空间 (C[a,b],d) 中有收敛子列, 由此可知集合 M 是空间 (C[a,b],d) 中的列紧集.

由于 $\{f_n\}$ 是 $(C^{0,\alpha}[a,b],\bar{d})$ 中的有界点列, 根据 (2) 的证明的前半部分可知, 上述收敛子列 $\{f_{n_k}\}$ 的极限 f 也在 $C^{0,\alpha}[a,b]$ 中. 然而, 虽然 $\{f_{n_k}\}$ 在 (C[a,b],d) 中收敛, 但是却不能保证 $\{f_{n_k}\}$ 是 $(C^{0,\alpha}[a,b],\bar{d})$ 的 Cauchy 点列, 因此我们无法像 (2) 的证明的后半部分那样证明

$$[f_{n_k} - f]_{\alpha} \to 0 \quad (k \to \infty).$$

第4周

作业题 4.1 设 X 是完备的度量空间, T 是 X 到 X 中的映射, 如果存在正整数 $m \in \mathbb{N}_+$ 以及常数 $\alpha \in [0,1)$ 使得对所有的 $x,y \in X$, 都有

$$d(T^m x, T^m y) \le \alpha d(x, y),$$

其中 T^m 表示映射 T 作用 m 次, 则 T 在 X 中有且只有一个不动点 x^* , 特别地, 迭代点 列

$$x_0, x_1 = Tx_0, \cdots, x_n = Tx_{n-1}, \cdots,$$

在 (X,d) 中收敛于不动点 x^* .

证明 由条件可知映射 $T^m: X \to X$ 是压缩映射, 由于 X 完备, 根据压缩映射原理, T^m 在 X 上存在唯一的不动点 x^* , 即

$$x^* = T^m x^*. (4.1)$$

下证 x^* 也是映射 T 在 X 上的唯一的不动点.

由(4.1)式可得

$$Tx^* = T(T^mx^*) = T^{m+1}x^* = T^m(Tx^*),$$

所以 Tx^* 也是 T^m 的不动点. 根据 T^m 的不动点的唯一性, 就有 $Tx^* = x^*$, 所以 x^* 也是映射 T 的不动点. 若 $x \in X$ 也是映射 T 的不动点, 则

$$x = Tx, \ x = Tx = T(Tx) = T^{2}x, \cdots, x = T^{m}x,$$

即 x 也是 T^m 的不动点. 根据 T^m 的不动点的唯一性, 就有 $x^* = x$. 所以 x^* 是映射 T 在 X 上的唯一的不动点.

任取 $x_0 \in X$. 通过映射 T 构造迭代点列

$$x_0, x_1 = Tx_0, x_2 = Tx_1, \dots, x_n = Tx_{n-1}, \dots$$

任取

$$s \in \{0, 1, 2, \cdots, m-1\},\$$

令

$$y_0 = T^s x_0 = x_s,$$

 $y_1 = T^m y_0 = x_{m+2},$
 $y_2 = T^m y_1 = x_{2m+s},$
...,
 $y_n = T^m y_{n-1} = x_{nm+s},$
...

根据由于 T^m 是压缩映射, X 完备, 则迭代点列 y_n 收敛于 T^m 的不动点 x^* , 即

$$\lim_{n \to \infty} x_{nm+s} = x^*, \quad \forall s \in \{0, 1, 2, \dots, m-1\}.$$

于是对任意 $\epsilon > 0$,以及任意 $s \in \{0, 1, 2, \dots, m-1\}$,邻域 $U(x^*, \epsilon)$ 之外只含有点列 $\{x_{nm+s}\}_{n=0}^{\infty}$ 中的有限多项,将这些项的集合记为 A_s . 由于

$$\bigcup_{s=0}^{m-1} \bigcup_{n=0}^{\infty} \{x_{nm+s}\} = \bigcup_{n=0}^{\infty} \bigcup_{s=0}^{m-1} \{x_{nm+s}\} = \bigcup_{n=0}^{\infty} \{x_n\},$$

于是点列 $\{x_n\}$ 在邻域 $U(x^*,\epsilon)$ 之外的项的全体为有限集

$$\bigcup_{s=0}^{m-1} A_s,$$

所以

$$\lim_{n \to \infty} x_n = x^*.$$

任给 $\epsilon > 0$, 若点列 $\{x_n\}$ 在邻域 $U(x,\epsilon)$ 之外至多只有有限多项, 则称点列 $\{x_n\}$ 收敛于 x.

点列极限与其子列极限的转化思路, 可参考华东师大《数学分析(第四版•上册)》P27例 8和 P35-P36 习题 7(2)的证明.

作业题 4.2 (Volterra 型线性积分方程解的存在唯一性问题) 设 $f \in C[a,b]$, 二元函数 k(t,s) 在 $[a,b] \times [a,b]$ 上连续. 利用上题的结论证明, 对任意 $\lambda \in \mathbb{R}$, 积分方程

$$\phi(t) - \lambda \int_0^t k(t, s)\phi(s) \, \mathrm{d}s = f(t), \quad t \in [a, b]$$
(4.2)

总存在唯一的连续函数解 $\phi \in C[a,b]$.

证明 任取 $\phi \in C[a,b]$, 定义 [a,b] 上的函数 $T\phi$:

$$(T\phi)(t) = f(t) + \lambda \int_a^t k(t,s)\phi(s) \,\mathrm{d}s, \quad t \in [a,b]. \tag{4.3}$$

由于 $\phi, f \in C[a, b], k(t, s)$ 在 $[a, b] \times [a, b]$ 上连续, 由上式可知 $T\phi \in C[a, b]$. 由此得到映射

$$T: C[a,b] \to C[a,b],$$

$$\phi \mapsto T\phi.$$

显然, 积分方程(4.2)在 [a,b] 上的连续函数解等价于映射 T 在空间 C[a,b] 中的不动点. (下面验证 T 是否是压缩映射, 若不是, 继续验证 T^m 是否是压缩映射) 对任意 $\phi_1,\phi_2\in C[a,b]$ 以及任意 $t\in [a,b]$, 由(4.3)可得

$$\begin{aligned} &|(T\phi_1)(t) - (T\phi_2)(t)| \\ &= |\lambda| \cdot \left| \int_a^t k(t,s) \left[\phi_1(s) - \phi_2(s) \right] \mathrm{d}s \right| \\ &\leq |\lambda| \cdot \int_a^t \max_{\substack{a \le t \le b \\ a \le s \le b}} |k(t,s)| \cdot \max_{t \in [a,b]} |\phi_1(s) - \phi_2(s)| \, \mathrm{d}s \\ &= M|\lambda|(t-a) \cdot d(\phi_1,\phi_2), \end{aligned}$$

其中

$$M = \max_{\substack{a \le t \le b \\ a \le s \le b}} |k(t, s)| \ge 0.$$

(这样看 T 不一定是压缩映射) 利用上述结果,继续计算可得

$$|(T^2\phi_1)(t) - (T^2\phi_2)(t)|$$

$$= |\lambda| \cdot \left| \int_{a}^{t} k(t,s) \left[(T\phi_{1})(s) - (T\phi_{2})(s) \right] ds \right|$$

$$\leq |\lambda| \cdot \int_{a}^{t} M \cdot |(T\phi_{1})(s) - (T\phi_{2})(s)| ds$$

$$\leq M^{2} |\lambda|^{2} \int_{a}^{t} (s-a) \cdot d(\phi_{1},\phi_{2}) ds$$

$$= \frac{\left[M|\lambda|(t-a) \right]^{2}}{2} d(\phi_{1},\phi_{2}).$$

一直做下去, 对任意 $m \in \mathbb{N}_+$ 就有

$$|(T^m \phi_1)(t) - (T^m \phi_2)(t)| \le \frac{[M|\lambda|(t-a)]^m}{m!} d(\phi_1, \phi_2), \quad \forall t \in [a, b],$$

上式两端对 $t \in [a,b]$ 取最大值可得

$$d\left(T^{m}\phi_{1}, T^{m}\phi_{2}\right) \leq \frac{\left[M|\lambda|(b-a)\right]^{m}}{m!}d(\phi_{1}, \phi_{2}).$$

对任意 $a \in \mathbb{R}$, 都有 $\lim_{m \to \infty} \frac{a^m}{m!} = 0$, 由该事实可知, 存在充分大的一个正整数 m 使得

$$\alpha = \frac{\left[M|\lambda|(b-a)\right]^m}{m!} \in [0,1),$$

此时 T^m 就是完备度量空间 C[a,b] 上的压缩映射. 根据上一个问题的结论, 映射 T 在 C[a,b] 中存在唯一的不动点, 所以积分方程(4.2)在 [a,b] 上存在唯一的连续函数解.

第5周

△ 作业题 5.1 设 $(X, \|\cdot\|)$ 是一个赋范空间, $x_0 \in X$, $\epsilon > 0$. 令

$$U(x_0, \epsilon) = \{x \mid ||x - x_0|| < \epsilon\},\$$

$$S(x_0, \epsilon) = \{x \mid ||x - x_0|| \le \epsilon\},\$$

则

$$\overline{U(x_0,\epsilon)} = S(x_0,\epsilon).$$

证明 由于范数 $\|\cdot\|$ 作为映射是赋范线性空间 X 上的连续映射, 则可证 $S(x_0, \epsilon)$ 是空间 X 中的闭集. 由于 $U(x_0, \epsilon) \subset S(x_0, \epsilon)$, 则 $\overline{U(x_0, \epsilon)} \subset S(x_0, \epsilon)$. 下证 $S(x_0, \epsilon) \subset \overline{U(x_0, \epsilon)}$.

$$D = \{ x \in X \, | \, ||x - x_0|| = \epsilon \},$$

则 $S(x_0, \epsilon) = U(x_0, \epsilon) \cup D$. 显然, $U(x_0, \epsilon) \subset \overline{U(x_0, \epsilon)}$, 所以只需要证明 $D \subset \overline{U(x_0, \epsilon)}$. 任取 $y_0 \in D$. 对任意 $n \in \mathbb{N}$, 令

$$x_n = y_0 + \frac{x_0 - y_0}{n||x_0 - y_0||} = y_0 + \frac{1}{n\epsilon}(x_0 - y_0), (\underline{\mathbf{M}}$$
范线性空间里可以做加法和数乘)

则 $x_n \in X$, 并且当 n 足够大时, 就有(下式还用到了范数的正齐次性)

$$||x_n - x_0|| = \left\| \left(\frac{1}{n\epsilon} - 1 \right) (x_0 - y_0) \right\| = \left| \frac{1}{n\epsilon} - 1 \right| ||x_0 - y_0|| = \left| \frac{1}{n} - \epsilon \right| = \epsilon - \frac{1}{n} < \epsilon,$$

从而 $x_n \in U(x_0, \epsilon)$. 另一方面,

$$||x_n - y_0|| = \left\| \frac{1}{n\epsilon} (x_0 - y_0) \right\| = \frac{1}{n\epsilon} ||x_0 - y_0|| = \frac{1}{n},$$

所以 $\lim_{x\to\infty} \|x_n - y_0\| = 0$, y_0 就是 $U(x_0, \epsilon)$ 的聚点, 因此 $y_0 \in \overline{U(x_0, \epsilon)}$. 综上, $D \subset \overline{U(x_0, \epsilon)}$. 所以 $\overline{U(x_0, \epsilon)} = S(x_0, \epsilon)$.

△ 作业题 5.2 利用 Hölder 不等式证明

定理 5.1. 内插不等式

设 $1 \le s \le r \le t < \infty, u \in L^s(\Omega) \cap L^t(\Omega), 则 u \in L^r(\Omega)$ 并且

$$||u||_r \le ||u||_s^{\theta} ||u||_t^{1-\theta},$$

其中 $\theta \in [0,1]$ 满足

$$\frac{1}{r} = \frac{\theta}{s} + \frac{1 - \theta}{t}.$$

证明 当 r=s 时, 取 $\theta=1$; 当 r=t 时, 取 $\theta=0$. 在这两种情况下, 结论都成立. 下设

$$1 \le s < r < t < \infty$$
.

若存在 m, n > 0 使得 $r = \frac{s}{m} + \frac{t}{n}$, 则

$$|u|^r = |u|^{\frac{s}{m}} \cdot |u|^{\frac{t}{n}}.$$

由于 $u \in L^s(\Omega) \cap L^t(\Omega)$, 则

$$\int_{\Omega} \left(|u|^{\frac{s}{m}} \right)^m dx = \int_{\Omega} |u|^s dx < +\infty,$$

$$\int_{\Omega} \left(|u|^{\frac{t}{n}} \right)^n dx = \int_{\Omega} |u|^t dx < +\infty,$$

从而 $|u|^{\frac{s}{m}} \in L^m(\Omega), |u|^{\frac{t}{n}} \in L^n(\Omega).$ 于是, 当 m, n 满足

$$\begin{cases} m, n > 0, \\ \frac{s}{m} + \frac{t}{n} = r, \\ \frac{1}{m} + \frac{1}{n} = 1, \end{cases}$$

即 $m = \frac{t-s}{t-r}, n = \frac{t-s}{r-s}$ 时, 利用 Hölder 不等式可得

$$\int_{\Omega} |u|^r \, \mathrm{d}x = \int_{\Omega} |u|^{\frac{s}{m}} \cdot |u|^{\frac{t}{n}} \, \mathrm{d}x \le \left[\int_{\Omega} \left(|u|^{\frac{s}{m}} \right)^m \, \mathrm{d}x \right]^{\frac{1}{m}} \cdot \left[\int_{\Omega} \left(|u|^{\frac{t}{n}} \right)^n \, \mathrm{d}x \right]^{\frac{1}{n}}$$

$$= \left(\int_{\Omega} |u|^s \, \mathrm{d}x \right)^{\frac{1}{m}} \cdot \left(\int_{\Omega} |u|^t \, \mathrm{d}x \right)^{\frac{1}{n}} = \|u\|_s^{\frac{s}{m}} \cdot \|u\|_t^{\frac{t}{n}} < \infty,$$

所以 $u \in L^r(\Omega)$, 并且

$$||u||_r^r = \int_{\Omega} |u|^r dx \le ||u||_s^{\frac{s}{m}} \cdot ||u||_t^{\frac{t}{n}}.$$

 $\Leftrightarrow \theta = \frac{s}{rm}, \text{ } \emptyset \text{ } \theta \in (0,1), \text{ } \frac{t}{rn} = 1 - \theta,$

$$\frac{\theta}{s} + \frac{1-\theta}{t} = \frac{1}{rm} + \frac{1}{rm} = \frac{1}{r},$$

并且

$$||u||_r \le ||u||_s^{\theta} ||u||_t^{1-\theta}.$$

- △ 作业题 5.3 $(L^p(\Omega))$ 与 $L^\infty(\Omega)$ 的联系) 设 Ω 是 \mathbb{R}^n 中的可测集并且 $m(\Omega) < +\infty$, 证明
 - (1) 若 p, q 满足 $1 \le p < q \le \infty$, 则

$$L^q(\Omega) \subset L^p(\Omega),$$

并且存在与 $m(\Omega)$, p 和 q 相关的正常数 C 使得

$$||f||_p \le C||f||_q, \quad \forall f \in L^q(\Omega).$$

(2) 对任意 $f \in L^{\infty}(\Omega)$,都有

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

证明 (1) Step1. 任取 $f \in L^{\infty}(\Omega)$, 下证

$$f \in L^p(\Omega), \quad \forall p \ge 1.$$

由于 $f \in L^{\infty}(\Omega)$, 则存在 $E_0 \subset \Omega$ 使得 $m(E_0) = 0$ 并且

$$|f(x)|^p \le ||f||_{\infty}^p, \quad \forall x \in \Omega \setminus E_0, \quad \forall p \ge 1.$$

于是

$$\int_{\Omega} |f(x)|^p dx = \int_{\Omega \setminus E_0} |f(x)|^p dx + \int_{E_0} |f(x)|^p dx
= \int_{\Omega \setminus E_0} |f(x)|^p dx
\leq \int_{\Omega \setminus E_0} ||f||_{\infty}^p dx
\leq m(\Omega) ||f||_{\infty}^p < +\infty,$$

所以 $f \in L^p(\Omega)$ 并且

$$||f||_p \le [m(\Omega)]^{\frac{1}{p}} ||f||_{\infty}.$$
 (5.1)

Step2. 下证当 p,q 满足

$$1 \le p < q < \infty$$

时结论成立.

任取 $f \in L^q(\Omega)$, 令 $t = \frac{q}{p}$, $s = \frac{t}{t-1}$, 则 t, s > 0, $\frac{1}{t} + \frac{1}{s} = 1$, 并且

$$\int_{\Omega} (|f(x)|^p)^t dx = \int_{\Omega} |f(x)|^q dx < \infty,$$

即 $|f|^p \in L^t(\Omega)$. 定义

$$g(x) \equiv 1, \quad x \in \Omega,$$

则 $g \in L^s(\Omega)$. 利用 Hölder 不等式可得

$$\int_{\Omega} |f(x)|^p \, \mathrm{d}x$$

$$= \int_{\Omega} 1 \cdot |f(x)|^p dx$$

$$\leq \left(\int_{\Omega} 1^s dx \right)^{\frac{1}{s}} \left(\int_{\Omega} (|f(x)|^p)^t dx \right)^{\frac{1}{t}}$$

$$= [m(\Omega)]^{\frac{1}{s}} \left(\int_{\Omega} |f(x)|^q dx \right)^{\frac{1}{t}}$$

$$= [m(\Omega)]^{\frac{q-p}{q}} ||f||_q^p < +\infty,$$

所以 $f \in L^p(\Omega)$, 并且

$$||f||_p \le [m(\Omega)]^{\frac{q-p}{pq}} ||f||_q.$$

(2) 当 $||f||_{\infty} = 0$ 时, 由 (1) 部分的结论可知 $||f||_{p} \equiv 0$, $\forall p > 1$, 此时结论显然成立. 下设 $||f||_{\infty} > 0$.

一方面,由(5.1)可得

$$\overline{\lim}_{p \to +\infty} \|f\|_p \le \overline{\lim}_{p \to +\infty} \left[m(\Omega) \right]^{\frac{1}{p}} \|f\|_{\infty} = \|f\|_{\infty}. \tag{5.2}$$

另一方面, 对任意 $\epsilon \in (0, ||f||_{\infty})$, 令

$$E_{\epsilon} = \{ x \in \Omega \mid |f(x)| \ge ||f||_{\infty} - \epsilon \},$$

下证 $m(E_{\epsilon}) > 0$. 反证法, 假设 $m(E_{\epsilon}) = 0$, 由 $||f||_{\infty}$ 的定义可得

$$\sup_{x \in \Omega \setminus E_{\epsilon}} |f(x)| \ge \inf_{\substack{E_0 \subset \Omega \\ m(E_0) = 0}} \left(\sup_{x \in \Omega \setminus E_0} |f(x)| \right) = ||f||_{\infty}.$$
 (5.3)

但是另一方面,对任意 $x \in \Omega \setminus E_{\epsilon}$, 有 $|f(x)| \le ||f||_{\infty} - \epsilon$, 从而

$$\sup_{x \in \Omega \setminus E_{\epsilon}} |f(x)| \le ||f||_{\infty} - \epsilon,$$

这与(5.3)矛盾. 所以 $m(E_{\epsilon}) > 0$. 于是

$$\int_{\Omega} |f(x)|^p dx \ge \int_{E_{\epsilon}} |f(x)|^p dx$$

$$\ge \int_{E_{\epsilon}} (\|f\|_{\infty} - \epsilon)^p dx$$

$$= m(E_{\epsilon}) (\|f\|_{\infty} - \epsilon)^p$$

进而

$$||f||_{p} = \left(\int_{\Omega} |f(x)|^{p} dx \right)^{\frac{1}{p}} \ge [m(E_{\epsilon})]^{\frac{1}{p}} (||f||_{\infty} - \epsilon),$$

$$\lim_{\epsilon \to \infty} ||f||_{p} \ge \lim_{\epsilon \to \infty} [m(E_{\epsilon})]^{\frac{1}{p}} (||f||_{\infty} - \epsilon)$$

$$\frac{\lim_{p \to +\infty} \|f\|_p}{\lim_{p \to +\infty}} \left[m(E_{\epsilon}) \right]^{\frac{1}{p}} (\|f\|_{\infty} - \epsilon)$$

$$= \|f\|_{\infty} - \epsilon.$$

由 $\epsilon > 0$ 的任意性可知

$$\underline{\lim}_{p \to +\infty} \|f\|_p \ge \|f\|_{\infty}. \tag{5.4}$$

综合(5.2)与(5.4)式,可得

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

▲ 作业题 5.4 证明

定理 5.2. Brezis-Lieb 引理

设 Ω 是 \mathbb{R}^n 中的可测集, $1 \leq p < \infty$. 若 $L^p(\Omega)$ 中的函数列 $\{u_n\}$ 满足

- (1) $\{u_n\}$ 是 $L^p(\Omega)$ 中的有界点列;
- (2) $u_n(x) \to u(x) \ a.e.x \in \Omega \quad (n \to \infty).$

则 $u \in L^p(\Omega)$ 并且

$$\lim_{n \to \infty} (\|u_n\|_p^p - \|u_n - u\|_p^p) = \|u\|_p^p.$$

证明 Step1. 由于 $\{u_n\}$ 在 $L^p(\Omega)$ 中有界, 则存在 M>0, 使得

$$||u_n||_p \leq M, \quad \forall n \in \mathbb{N}_+.$$

由于

$$u_n(x) \to u(x) \ a.e. x \in \Omega \quad (n \to \infty),$$

则

$$|u_n(x)|^p \to |u(x)|^p \ a.e.x \in \Omega \quad (n \to \infty).$$

由 Fatou 引理 (P107) 可得

$$\int_{\Omega} |u(x)|^p dx = \int_{\Omega} \underline{\lim}_{n \to \infty} |u_n(x)|^p dx \le \underline{\lim}_{n \to \infty} \int_{\Omega} |u_n(x)|^p dx = \underline{\lim}_{n \to \infty} ||u_n||_p^p \le M^p < +\infty,$$

所以 $u \in L^p(\Omega)$.

Step2. (为什么要有这一步?从下面的(5.7)式最后一步估计可以看到端倪) 任取 $\epsilon > 0$. 下证存在只与 ϵ 和 p 有关的正常数 C > 0 使得

$$|a+b|^p - |a|^p \le \epsilon |a|^p + C|b|^p, \quad \forall a, b \in \mathbb{R}.$$

事实上, 当 p=1 时,

$$|a+b|-|a| \le |(a+b)-a| = |b| \le \epsilon |a| + |b|,$$

结论成立. 当 p > 1 时, 由微分中值定理, 存在 $\theta \in [0,1]$ 使得

$$\begin{aligned} & \left| |a+b|^{p} - |a|^{p} \right| \\ &= \left| p |\theta a + (1-\theta)b|^{p-2} (\theta a + (1-\theta)b)b \right| \\ &= p |\theta a + (1-\theta)b|^{p-1} |b| \\ &\leq p 2^{p-1} \left(|\theta a|^{p-1} + |(1-\theta)b|^{p-1} \right) |b| \\ &\leq p 2^{p-1} \left(|a|^{p-1} + |b|^{p-1} \right) |b| \\ &= p 2^{p-1} |a|^{p-1} |b| + p 2^{p-1} |b|^{p}. \end{aligned}$$

$$(5.5)$$

令 $q = \frac{p}{p-1}$, 则 p > 1 且 $\frac{1}{p} + \frac{1}{q} = 1$. 由 Young 不等式可得

$$p2^{p-1}|a|^{p-1}|b|$$

$$= \left[(q\epsilon)^{\frac{1}{q}}|a|^{p-1} \right] \cdot \left[(q\epsilon)^{-\frac{1}{q}}p2^{p-1}|b| \right]$$

$$\leq \frac{\left[(q\epsilon)^{\frac{1}{q}}|a|^{p-1} \right]^{q}}{q} + \frac{\left[(q\epsilon)^{-\frac{1}{q}}p2^{p-1}|b| \right]^{p}}{p}$$

$$= \epsilon |a|^p + \left(\frac{2^p(p-1)}{\epsilon}\right)^{p-1} |b|^p \tag{5.6}$$

$$C = \left(\frac{2^p(p-1)}{\epsilon}\right)^{p-1} + p2^{p-1},$$

再将(5.6)式代入到(5.5)中可得

$$\left| |a+b|^p - |a|^p \right| \le \epsilon |a|^p + C|b|^p.$$

Step3. 下证

$$\lim_{n \to \infty} \left(\left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right) = 0.$$

由 Step2 可得

$$\left| |u_{n}(x)|^{p} - |u_{n}(x) - u(x)|^{p} - |u(x)|^{p} \right|$$

$$\leq \left| |u_{n}(x)|^{p} - |u_{n}(x) - u(x)|^{p} \right| + |u(x)|^{p}$$

$$= \left| |(u_{n}(x) - u(x)) + u(x)|^{p} - |u_{n}(x) - u(x)|^{p} \right| + |u(x)|^{p}$$

$$\leq \epsilon |u_{n}(x) - u(x)|^{p} + (C+1)|u(x)|^{p}.$$
(5.7)

$$f_n^{\epsilon}(x) = \left| |u_n(x)|^p - |u_n(x) - u(x)|^p - |u(x)|^p \right| - \epsilon |u_n(x) - u(x)|^p,$$

则由条件 (ii) 可知

$$f_n^{\epsilon}(x) \to 0$$
 a.e. $x \in \Omega$ $(n \to \infty)$,

同样也有 f_n^{ϵ} 的正部 $(f_n^{\epsilon})^+$ 也满足

$$(f_n^{\epsilon})^+(x) \to 0, \quad a.e. \ x \in \Omega \quad (n \to \infty).$$
 (5.8)

由(5.7)式可得

$$0 \le (f_n^{\epsilon})^+(x) \le (C+1)|u(x)|^p, \quad \forall x \in \Omega.$$
 (5.9)

由于 $u \in L^p(\Omega)$, 则 $|u|^p \in L^1(\Omega)$, 综合(5.8)和(5.9), 利用 Lebesgue 控制收敛定理可得

$$\lim_{n \to \infty} \int_{\Omega} (f_n^{\epsilon})^+(x) \, \mathrm{d}x = \int_{\Omega} \lim_{n \to \infty} (f_n^{\epsilon})^+(x) \, \mathrm{d}x = 0. \tag{5.10}$$

再由(5.7)式可得

$$\begin{aligned} & \left| |u_n(x)|^p - |u_n(x) - u(x)|^p - |u(x)|^p \right| \\ &= f_n^{\epsilon}(x) + \epsilon |u_n(x) - u(x)|^p \\ &\le (f_n^{\epsilon})^+(x) + \epsilon |u_n(x) - u(x)|^p, \end{aligned}$$

上式两端在 Ω 上积分可得

$$\left| \left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right|$$

$$\leq \int_{\Omega} \left| |u_n(x)|^p - |u_n(x) - u(x)|^p - |u(x)|^p \right| dx$$

$$\leq \int_{\Omega} (f_n^{\epsilon})^+(x) dx + \epsilon \|u_n - u\|_p^p$$

$$\leq \int_{\Omega} (f_n^{\epsilon})^+(x) dx + \left(M^p + \|u\|_p^p \right) \epsilon,$$

在上式两端令 $n \to \infty$ 可得

$$\overline{\lim}_{n \to \infty} \left| \left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right| \\
\leq \overline{\lim}_{n \to \infty} \int_{\Omega} (f_n^{\epsilon})^+(x) \, \mathrm{d}x + \left(M^p + \|u\|_p^p \right) \epsilon \\
= \left(M^p + \|u\|_p^p \right) \epsilon$$

再由 $\epsilon > 0$ 的任意性可得

$$\overline{\lim_{n \to \infty}} \left| \left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right| = 0,$$

所以

$$\lim_{n \to \infty} \left(\left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right) = 0,$$

即

$$\lim_{n \to \infty} (\|u_n\|_p^p - \|u_n - u\|_p^p) = \|u\|_p^p.$$

第6周

欢度国庆!

第7周

作业题 7.1 设 Ω 是 \mathbb{R}^n 中的一个可测集, $1 \leq p < \infty$. 若 $\{f_n\} \subset L^p(\Omega), f \in L^p(\Omega)$ 并且

$$||f_n - f||_p \to 0 \quad (n \to \infty),$$

则函数列 $\{f_n\}$ 在 Ω 上依测度收敛于 f.

证明 对任意 $\sigma > 0$, 都有

$$||f_n - f||_p^p = \int_{\Omega} |f_n(x) - f(x)|^p dx$$

$$\geq \int_{\Omega[|f_n - f| \geq \sigma]} |f_n(x) - f(x)|^p dx$$

$$\geq \int_{\Omega[|f_n - f| \geq \sigma]} \sigma^p dx$$

$$= \sigma^p m \left(\Omega[|f_n - f| \geq \sigma]\right).$$

由于

$$||f_n - f||_p \to 0 \quad (n \to \infty),$$

则

$$\operatorname{m}(\Omega[|f_n - f| \ge \sigma]) \to 0 \quad (n \to \infty),$$

从而函数列 $\{f_n\}$ 在 Ω 上依测度收敛于 f.

▲ 作业题 7.2 证明

引理 7.1. Risez 引理

设 $(X,\|\cdot\|)$ 是一个赋范线性空间, X_0 是 X 的一个真闭子空间, 则对任意 $\varepsilon\in(0,1)$, 存在 $y\in X$ 使得

(i) ||y|| = 1,

(ii)
$$\forall x \in X_0$$
, \uparrow $||y - x|| > \varepsilon$.

 \sim

证明 由于 X_0 是 X 的真闭子空间,则存在非零向量 $\bar{y} \in X \setminus X_0$.由于 X_0 是闭集,则

$$d = d(\bar{y}, X_0) = \inf_{x \in X_0} \|\bar{y} - x\| > 0.$$

由于 $\varepsilon \in (0,1)$, 则 $d < \frac{d}{\varepsilon}$, 从而存在 $x_0 \in X_0$, 使得

$$d \le \|\bar{y} - x_0\| < \frac{d}{\varepsilon}.\tag{7.1}$$

令 $y = \frac{\bar{y} - x_0}{\|\bar{y} - x_0\|}$, 则 $\|y\| = 1$. 对任意 $x \in X_0$, 都有

$$y - x = \frac{\bar{y} - x_0}{\|\bar{y} - x_0\|} - x$$
$$= \frac{1}{\|\bar{y} - x_0\|} \left[\bar{y} - (x_0 + \|\bar{y} - x_0\|x) \right].$$

由于 $x_0, x \in X_0, X_0$ 是 X 的子空间, 则

$$x_0 + \|\bar{y} - x_0\|x \in X_0,$$

从而

$$\|\bar{y} - (x_0 + \|\bar{y} - x_0\|x)\| \ge \inf_{x \in X_0} \|\bar{y} - x\| = d,$$

由(7.1)式可得

$$||y - x|| = \left\| \frac{1}{\|\bar{y} - x_0\|} \left[\bar{y} - (x_0 + \|\bar{y} - x_0\|x) \right] \right\| \ge \frac{d}{\|\bar{y} - x_0\|} > \varepsilon.$$

▲ 作业题 7.3

定义 7.1. 严格凸

设 $(X, \|\cdot\|)$ 是一个赋范线性空间. 如果对任意

$$x, y \in S = \{x \in X \mid ||x|| = 1\}, \quad \text{#} \exists x \neq y,$$

都有

$$\|\alpha x + \beta y\| < 1 \quad (\forall \alpha, \beta > 0, \ \alpha + \beta = 1)$$

则称 $(X, \|\cdot\|)$ 是严格凸的赋范线性空间.

设 $(X, \|\cdot\|)$ 是严格凸的赋范线性空间, $M = \{e_1, e_2, \dots, e_n\} \subset X$, 则对任意 $x \in X$, 证明存在唯一的 $y_0 \in \text{span}M$, 使得

$$||x - y_0|| = \min_{y \in \text{span}M} ||x - y||.$$

(我们在课上已经证明了最佳逼近元 y_0 的存在性. 这里只需要证明, 在严格凸的条件下, 最佳逼近元是唯一的.)

证明 任取 $x \in X$, 假设存在 $y_0, y_1 \in \operatorname{span} M$ 并且 $y_0 \neq y_1$, 使得

$$||x - y_0|| = \min_{y \in \text{span}M} ||x - y|| = ||x - y_1||.$$

若 d > 0, 令

$$z_0 = \frac{x - y_0}{d}, \quad z_1 = \frac{x - y_1}{d},$$

则 $||z_0|| = ||z_1|| = 1$ 并且 $z_0 \neq z_1$. 根据赋范空间 X 的严格凸性, 对任意 $\alpha, \beta > 0$ 且 $\alpha + \beta = 1$ 就有

1 >
$$\|\alpha z_0 + \beta z_1\|$$

= $\frac{1}{d} \|\alpha(x - y_0) + \beta(x - y_1)\|$
= $\frac{1}{d} \|x - (\alpha y_0 + \beta y_1)\|$.

由于 $y_0, y_1 \in \text{span}M$, 则 $\alpha y_0 + \beta y_1 \in \text{span}M$, 从而

$$1 > \frac{1}{d} ||x - (\alpha y_0 + \beta y_1)|| \ge \frac{1}{d} \cdot d = 1,$$

矛盾.

若 d = 0, 则 $||x - y_0|| = ||x - y_1|| = 0$, 从而 $y_0 = x = y_1$, 这与 $y_0 \neq y_1$ 矛盾. 综上, 必有 $y_0 = y_1$. 所以 x 的最佳逼近元必定唯一.

第8周

作业题 8.1 设 $(X, \|\cdot\|_1)$ 是 n 维赋范线性空间, $(Y, \|\cdot\|_2)$ 是 m 维赋范线性空间,数域 均为实数域 \mathbb{R} . 证明 X 到 Y 上的任何线性算子都是有界线性算子. 证明 Step1.

$$\begin{array}{ccc}
X & \xrightarrow{I} & Y \\
\phi^{-1} & \downarrow \phi & & \psi^{-1} & \downarrow \psi \\
\mathbb{R}^n & \xrightarrow{\mathbb{A}} & \mathbb{R}^m
\end{array}$$

设 $\{e_1,e_2,\cdots,e_n\}$ 是 n 维空间 X 的一组 Hamel 基, $\{f_1,f_2,\cdots,f_m\}$ 是 m 维空间 Y 的一组 Hamel 基. 对任意 $x=\sum\limits_{i=1}^n\xi_ie_i\in X$, 定义映射 $\phi:X\to\mathbb{R}^n$, 使得

$$\phi(x) = (\xi_1, \xi_2, \cdots, \xi_n) \in \mathbb{R}^n;$$

对任意 $y = \sum_{j=1}^{m} \eta_j f_j \in Y$, 定义映射 $\psi: Y \to \mathbb{R}^m$, 使得

$$\psi(y) = (\eta_1, \eta_2, \cdots, \eta_m) \in \mathbb{R}^m.$$

易证 ϕ 和 ψ 都是拓扑同构映射, 从而 ϕ , ϕ^{-1} , ψ , ψ^{-1} 都是有界性性算子. Step2. 设 $T: X \to Y$ 是一个线性算子, 则 $T \to \mathbb{R}^n$ 到 \mathbb{R}^m 的线性算子

$$\mathbb{A} = \psi \circ T \circ \phi^{-1} : \mathbb{R}^n \to \mathbb{R}^m$$

一一对应. 下证 $\mathbb{A}: \mathbb{R}^n \to \mathbb{R}^m$ 是有界线性算子.

根据线性代数的知识可知, 存在一个 $n \times m$ 矩阵 $A = (a_{ij})_{n \times m}$, 使得对任意 $\xi = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$, 都有

$$\mathbb{A}\xi = \xi A = (\xi_1, \xi_2, \dots, \xi_n) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \\
= \left(\sum_{i=1}^n \xi_i a_{i1}, \sum_{i=1}^n \xi_i a_{i2}, \dots, \sum_{i=1}^n \xi_i a_{im} \right) \\
= \sum_{i=1}^n \xi_i \left(a_{i1}, a_{i2}, \dots, a_{im} \right),$$

从而

$$|A\xi|_{m} = \left| \sum_{i=1}^{n} \xi_{i} \left(a_{i1}, a_{i2}, \cdots, a_{im} \right) \right|_{m}$$

$$\leq \sum_{i=1}^{n} |\xi_{i}| \cdot |(a_{i1}, a_{i2}, \cdots, a_{im})|_{m}$$

$$\leq \left(\sum_{i=1}^{n} |\xi_{i}|^{2} \right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} |(a_{i1}, a_{i2}, \cdots, a_{im})|_{m}^{2} \right)^{\frac{1}{2}}$$

$$= |\xi|_{n} \cdot \left(\sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}|^{2} \right)^{\frac{1}{2}},$$

所以 $A: \mathbb{R}^n \to \mathbb{R}^m$ 是有界线性算子.

Step3. 由于

$$T = \psi^{-1} \circ \mathbb{A} \circ \phi,$$

 ψ, \mathbb{A}, ϕ 都是有界线性算子, 则 T 也是有界线性算子.

作业题 8.2 设 $D = [a,b] \times [a,b] \subset \mathbb{R}^2$ 是一个正方形区域, 三元函数 k(x,y,u) 在 $D \times \mathbb{R}^1$ 上连续. 令

$$(K\phi)(x) = \int_a^b k(x, y, \phi(y)) dy, \quad \phi \in C[a, b].$$

证明 K 是从 C[a,b] 映入 C[a,b] 的全连续算子. (提示: 证明紧性需要用到 Ascoli-Arezela 定理.)

证明 Step1. 由于 k(x, y, u) 在 $D \times \mathbb{R}^1$ 上连续, 则对任意 $\phi \in C[a, b]$, $K\phi$ 也在 [a, b] 上连续, 即 $K\phi \in C[a, b]$.

Step2. 下证 $K: C[a,b] \to C[a,b]$ 是紧算子.

设 $S \in C[a,b]$ 中的有界集:

$$\|\phi\| \le C, \quad \forall \phi \in S,$$

其中 C > 0 是正的常数. 则对任意 $x \in [a,b]$ 以及任意 $\phi \in S$, 有 $|\phi(x)| \leq C$, 从而

$$|(K\phi)(x)| = \left| \int_a^b k(x, y, \phi(y)) \, \mathrm{d}y \right| \le \int_a^b M \, \mathrm{d}y = M(b - a),$$

其中

$$M = \max_{\substack{(x,y) \in D \\ |u| \le C}} |k(x,y,u)|.$$

所以 $||k\phi|| \le M(b-a), \forall \phi \in S$, 即 K(S) 中的函数在 [a,b] 上一致有界.

另一方面, 对任意 $\varepsilon > 0$, 由于 k(x,y,u) 在 $D \times [-C,C]$ 上一致连续, 则存在只依赖于 ε 的正数 $\delta > 0$, 使得对任意 $x_1, x_2 \in [a,b]$ 且 $|x_1 - x_2| < \delta$, 有

$$|k(x_1, y, u) - k(x_2, y, u)| < \frac{\varepsilon}{b-a}, \quad \forall u \in [a, b], \ |t| \le C.$$

于是对任意 $\phi \in S$, 有

$$|(K\phi)(x_1) - (K\phi)(x_2)|$$

$$= \left| \int_a^b \left[k(x_1, y, \phi(y)) - k(x_2, y, \phi(y)) \right] dy \right|$$

$$< \int_a^b \frac{\varepsilon}{b - a} dy = \varepsilon.$$

所以 K(S) 中的函数在 [a,b] 上等度连续. 根据 Ascoli-Arezela 定理, K(S) 是 C[a,b] 中的列紧集, 从而 $K:C[a,b]\to C[a,b]$ 是紧算子.

Step3. 下证 K 是连续算子.

设 $\{\phi_n\} \subset C[a,b]$, $\phi_0 \in C[a,b]$ 并且 $\|\phi_n - \phi_0\| \to 0$ $(n \to \infty)$, 则 $\{\phi_n\}$ 是 C[a,b] 中的有界点列, 令

$$L = \sup \{ \|\phi_0\|, \|\phi_1\|, \|\phi_2\|, \cdots, \|\phi_n\|, \cdots \}.$$

由于 k(x,y,u) 在 $D \times [-L,L]$ 上一致连续, 则对任意 $\varepsilon > 0$, 存在只依赖于 ε 的正数 $\delta > 0$, 使得对任意 $u_1,u_2 \in [-L,L]$ 且 $|u_1-u_2| < \delta$, 有

$$|k(x, y, u_1) - k(x, y, u_2)| < \frac{\varepsilon}{b - a}.$$

由于 $\|\phi_n - \phi_0\| \to 0 \ (n \to \infty)$, 则存在正整数 N, 使得对任意 n > N 有

$$|(K\phi_n)(x) - (K\phi_0)(x)|$$

$$= \left| \int_a^b \left[k(x, y, \phi_n(y)) - k(x, y, \phi_0(y)) \right] dy \right|$$

$$< \int_a^b \frac{\varepsilon}{b - a} dy = \varepsilon,$$

从而

$$||K\phi_n - K\phi_0|| = \max_{x \in [a,b]} |(K\phi_n)(x) - (K\phi_0)(x)| < \varepsilon, \quad \forall n > N.$$

所以

$$\lim_{n \to \infty} ||K\phi_n - K\phi_0|| = 0,$$

 $K: C[a,b] \to C[a,b]$ 是连续算子.

综上, $K: C[a,b] \rightarrow C[a,b]$ 是全连续算子.

△ 作业题 8.3 设 X 是一个 Banach 代数,则对任意 $x \in X$,极限

$$\lim_{n\to\infty} \sqrt[n]{\|x^n\|}$$

存在, 并且等于 $\inf_{n>1} \sqrt[n]{\|x^n\|}$.

证明 令 $r = \inf_{n \ge 1} \sqrt[n]{\|x^n\|}$, 根据下极限的定义, 显然

$$\underline{\lim}_{n \to \infty} \sqrt[n]{\|x^n\|} \ge r.$$

下证

$$\overline{\lim}_{n \to \infty} \sqrt[n]{\|x^n\|} \le r.$$

根据下确界的定义, 对任意 $\varepsilon > 0$, 存在正整数 m 使得

$$r \le \sqrt[m]{\|x^m\|} < r + \varepsilon. \tag{8.1}$$

另一方面, 对任意 $n \in \mathbb{N}_+$, 存在非负整数 $k_n, l_n \in \mathbb{N}$, 使得 $0 \le l_n < m$ 并且

$$n = k_n m + l_n$$
.

由于

$$||x^k|| \le ||x||^k, \quad \forall k \in \mathbb{N},$$

则利用赋范代数的定义和(8.1)式,就有

$$\sqrt[n]{\|x^n\|} = \sqrt[n]{\|x^{l_n}x^{k_n m}\|} \le \sqrt[n]{\|x\|^{l_n} \cdot \|x^m\|^{k_n}}$$

$$= \|x\|^{\frac{l^n}{n}} \cdot \|x^m\|^{\frac{k_n}{n}} < \|x\|^{\frac{l_n}{n}} \cdot (r+\varepsilon)^{\frac{mk_n}{n}}.$$

由于

$$0 \le \frac{l_n}{n} < \frac{m}{n} \to 0 \ (n \to \infty), \quad 1 \ge \frac{mk_n}{n} = \frac{n - l_n}{n} = 1 - \frac{l_n}{n} > 1 - \frac{m}{n} \to 1 \ (n \to \infty),$$

则

$$\lim_{n \to \infty} \frac{l_n}{n} = 0, \quad \lim_{n \to \infty} \frac{mk_n}{n} = 1,$$

从而

$$\overline{\lim}_{n \to \infty} \sqrt[n]{\|x^n\|} \le \overline{\lim}_{n \to \infty} \left(\|x\|^{\frac{l_n}{n}} \cdot (r+\varepsilon)^{\frac{mk_n}{n}} \right) = \|x\|^0 \cdot (r+\varepsilon)^1 = r+\varepsilon.$$

由 $\varepsilon > 0$ 的任意性可知

$$\overline{\lim}_{n \to \infty} \sqrt[n]{\|x^n\|} \le r.$$

综上, 极限

$$\lim_{n\to\infty} \sqrt[n]{\|x^n\|}$$

存在,并且

$$\lim_{n\to\infty} \sqrt[n]{\|x^n\|} = \inf_{n\geq 1} \sqrt[n]{\|x^n\|}.$$

第9周

作业题 9.1 (连续线性算子的保范延拓) 设 X 是赋范线性空间, Y 是 Banach 空间, D 是 X 的线性子空间, 算子

$$T:D\to Y$$

是连续线性算子. 证明 T 能唯一地延拓到 \overline{D} 上成为连续线性算子

$$T_1: \overline{D} \to Y$$
,

使得 $||T_1|| = ||T||$ 并且

$$T_1x = Tx, \quad \forall x \in D.$$

证明 Step1. 任取 $x \in \overline{D}$, 总存在点列 $\{x_n\} \subset D$, 使得

$$x = \lim_{n \to \infty} x_n.$$

由于 $T: D \to Y$ 是连续线性算子, 从而也是有界线性算子, 存在常数 C > 0 使得

$$||Tx|| \le C||x||, \quad \forall x \in D. \tag{9.1}$$

于是对任意 $m, n \in \mathbb{N}_+$, 有

$$||Tx_m - Tx_n|| \le C||x_m - x_n||. \tag{9.2}$$

由于 $\{x_n\}$ 在 X 中收敛, 根据(9.2)式可知 $\{Tx_n\}$ 就是 Y 中的 Cauchy 点列. 又因为 Y 是 Banach 空间, 所以 $\{Tx_n\}$ 在空间 Y 中收敛, 设

$$y = \lim_{n \to \infty} Tx_n,$$

下证 y 与点列 $\{x_n\}$ 的选取无关. 若存在点列 $\{z_n\} \subset D$ 使得

$$x = \lim_{n \to \infty} z_n,$$

按上述过程同样可证 $\{Tz_n\}$ 是 Y 中的收敛点列, 从而存在 $z \in Y$, 使得

$$z = \lim_{n \to \infty} Tz_n.$$

由于

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n,$$

则

$$\lim_{n\to\infty} ||x_n - z_n|| = 0.$$

根据 T 的线性、有界性以及范数的连续性, 就有

$$||y - z|| = \left\| \lim_{n \to \infty} Tx_n - \lim_{n \to \infty} Tz_n \right\| = \lim_{n \to \infty} ||T(x_n - z_n)|| \le ||T|| \cdot \lim_{n \to \infty} ||x_n - z_n||,$$

因此 z=y.

这样就得到了 X 的闭子空间 \overline{D} 到 Y 的算子 $T_1:\overline{D}\to Y$, 使得

$$T_1 x = y = \lim_{n \to \infty} T x_n, \tag{9.3}$$

其中 $\{x_n\}$ 是 D 中收敛于 x 的任意点列. 当 $x \in D$ 时, 令 $x_n \equiv x, n \in \mathbb{N}_+$, 于是

$$T_1 x = \lim_{n \to \infty} T x_n = T x.$$

Step2. 下证 $T_1: \overline{D} \to Y$ 是连续线性算子. 对任意 $\alpha, \beta \in \mathbb{F}$, 任意 $x, z \in \overline{D}$, 存在 $\{x_n\}, \{z_n\} \subset D$ 使得

$$x = \lim_{n \to \infty} x_n, \quad z = \lim_{n \to \infty} z_n.$$

于是

$$\alpha x_n + \beta z_n \in D, \quad \forall n \in \mathbb{N}_+,$$

 $\alpha x + \beta z = \alpha \lim_{n \to \infty} x_n + \beta \lim_{n \to \infty} z_n = \lim_{n \to \infty} (\alpha x_n + \beta z_n),$

从而根据 T 的线性和连续性就有

$$T_1(\alpha x + \beta z)$$

$$= \lim_{n \to \infty} T(\alpha x_n + \beta z_n)$$

$$= \alpha \lim_{n \to \infty} Tx_n + \beta \lim_{n \to \infty} Tz_n$$

$$= \alpha T_1 x + \beta T_1 z,$$

所以 T_1 是线性算子. 再根据范数的连续性就有

$$||T_1x|| = \left\|\lim_{n \to \infty} Tx_n\right\| = \lim_{n \to \infty} ||Tx_n|| \le ||T|| \lim_{n \to \infty} ||x_n|| = ||T|| ||x||,$$

所以 T_1 是有界线性算子, 并且 $||T_1|| \le ||T||$.

Step3. 由 Step2 已证 $||T_1|| \le ||T||$. 另一方面,

$$||T|| = \sup_{\substack{x \in D \\ x \neq 0}} \frac{||Tx||}{||x||} = \sup_{\substack{x \in D \\ x \neq 0}} \frac{||T_1x||}{||x||} \le \sup_{\substack{x \in \overline{D} \\ x \neq 0}} \frac{||T_1x||}{||x||} = ||T_1||.$$

因此 $||T|| = ||T_1||$.

Step4. 设连续线性算子 $\tilde{T}: \overline{D} \to Y$ 也满足 $\tilde{T}x = Tx$ $(x \in D)$ 并且 $||T|| = ||\tilde{T}||$. 对任意 $x \in \overline{D}$, 存在点列 $\{x_n\} \subset D$ 使得 $x_n \to x$ $(n \to \infty)$, 利用范数的连续性可知

$$0 \leq \|T_1 x - \tilde{T}x\|$$

$$= \left\| \left(\lim_{n \to \infty} T_1 x_n \right) - \left(\lim_{n \to \infty} \tilde{T}x_n \right) \right\|$$

$$= \left\| \left(\lim_{n \to \infty} Tx_n \right) - \left(\lim_{n \to \infty} Tx_n \right) \right\|$$

$$= \lim_{n \to \infty} \|Tx_n - Tx_n\| = 0,$$

从而 $T_1x = \tilde{T}x$. 由 $x \in \overline{D}$ 的任意性可知 $T = \tilde{T}$. 综上, T 能唯一地延拓到 \overline{D} 上成为连续线性算子

$$T_1:\overline{D}\to Y$$
,

使得 $||T_1|| = ||T||$ 并且

$$T_1x = Tx, \quad \forall x \in D.$$

△ 作业题 9.2 设 $k \in C[a, b]$. 定义 C[a, b] 上的线性泛函

$$f(x) = \int_{a}^{b} k(t)x(t)dt, \quad \forall x \in C[a, b].$$

证明 $f \in C[a,b]$ 上的有界线性泛函, 并求出泛函 f 的范数 ||f||. 证明 Step1. 显然, $f \in C[a,b]$ 上的线性泛函. 对任意 $x \in C[a,b]$, 有

$$|f(x)| = \left| \int_{a}^{b} k(t)x(t) dt \right|$$

$$\leq \int_{a}^{b} |k(t)||x(t)| dt$$

$$\leq \int_{a}^{b} |k(t)| \max_{t \in [a,b]} |x(t)| dt$$

$$= \left(\int_{a}^{b} |k(t)| dt \right) ||x||,$$

所以 $f \in C[a,b]$ 上的有界线性泛函, 并且

$$||f|| \le \int_a^b |k(t)| \, \mathrm{d}t.$$

Step 2. $\diamondsuit x(t) = signk(t), t \in [a, b], \mathbb{N}$

$$|k(t)| = k(t)x(t), \quad \forall t \in [a, b].$$

由于 $k \in C[a,b]$, 则 x 是 [a,b] 上的可测函数, 并且 $\sup_{t \in [a,b]} |x(t)| \le 1$.

由 Lusin 定理, 对任意 $n \in \mathbb{N}_+$, 村子闭集 $F_n \subset [a,b]$ 以及 $x_n \in C[a,b]$ 使得

- (i) $m([a,b] \setminus F_n) \leq \frac{1}{n}$;
- (ii) $x_n(t) = x(t), \forall t \in F_n;$
- (iii) $||x_n|| = \max_{t \in [a,b]} |x_n(t)| \le \sup_{t \in [a,b]} |x(t)| \le 1.$

于是

$$\left| \int_{a}^{b} k(t)x_{n}(t) dt - \int_{a}^{b} k(t)x(t) dt \right|$$

$$\leq \int_{a}^{b} |k(t)| \cdot |x_{n}(t) - x(t)| dt$$

$$= \left(\int_{F_{n}} + \int_{[a,b] \setminus F_{n}} \right) |k(t)| \cdot |x_{n}(t) - x(t)| dt$$

$$= \int_{[a,b] \setminus F_{n}} |k(t)| \cdot |x_{n}(t) - x(t)| dt$$

$$\leq \int_{[a,b] \setminus F_{n}} \max_{t \in [a,b]} |k(t)| \cdot (\max_{t \in [a,b]} |x_{n}(t)| + \sup_{t \in [a,b]} |x(t)|) dt$$

$$\leq \frac{1}{n} \cdot 2K,$$

其中 $K = \max_{t \in [a,b]} |k(t)|$, 从而

$$\begin{split} \int_{a}^{b} |k(t)| \, \mathrm{d}t &= \left| \int_{a}^{b} |k(t)| \, \mathrm{d}t \right| = \left| \int_{a}^{b} k(t) x(t) \, \mathrm{d}t \right| \\ &\leq \left| \int_{a}^{b} k(t) x_{n}(t) \, \mathrm{d}t \right| + \frac{2K}{n} = |f(x_{n})| + \frac{2K}{n} \\ &\leq \|f\| \|x_{n}\| + \frac{2K}{n} \leq \|f\| + \frac{2K}{n}, \end{split}$$

由 $n \in \mathbb{N}_+$ 的任意性可得

$$\int_a^b |k(t)| \, \mathrm{d}t \le ||f||.$$

综上,

$$||f|| = \int_a^b |k(t)| \, \mathrm{d}t.$$

▲ 作业题 9.3

定义 9.1. Schauder 基

设 X 是一个赋范线性空间, $\{e_k \mid k \in \mathbb{N}_+\}$ 是 X 中的可数向量列. 如果对任意 $x \in X$, 存在唯一的一列数 $\alpha_1, \alpha_2, \cdots, \alpha_k, \cdots \in \mathbb{F}$, 使得

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} \alpha_k e_k = \sum_{k=1}^{\infty} \alpha_k e_k,$$

则称 $\{e_k\}$ 是 X 的一组 Schauder 基. 如果还有 $||e_k|| = 1$ ($\forall k \in \mathbb{N}_+$), 则称 $\{e_k\}$ 是 X 的一组标准 Schauder 基.

设 $1 \le p < \infty$. 对任意 $k \in \mathbb{N}_+$, 取

$$e_k = (0, \cdots, 0, 1, 0, \cdots) \in l^p,$$

证明 $\{e_k\}$ 是 l^p 的一组标准 Schauder 基.

注意 原题中 1 ≤ p ≤ ∞ 是错误的.
 证明 Step1. 显然

$$||e_k||_p = 1, \quad \forall k \in \mathbb{N}_+.$$

对任意

$$x = (\alpha_1, \alpha_2, \cdots, \alpha_n, \cdots) \in l^p$$

以及任意 $n \in \mathbb{N}_+$, 令

$$x_n = \sum_{k=1}^n \alpha_k e_k = (\alpha_1, \alpha_2, \cdots, \alpha_n, 0, 0, \cdots),$$

则 $x_n \in l^p$, 并且

$$||x - x_n||_p^p = ||(0, \dots, 0, \alpha_{n+1}, \alpha_{n+2}, \dots)||_p^p = \sum_{k=n+1}^{\infty} |\alpha_k|^p.$$

由于 $\sum_{k=1}^{\infty} |\alpha_k|^p < +\infty$,则 $\lim_{n \to \infty} ||x - x_n||_p^p = 0$,从而

$$x = \lim_{n \to \infty} x_n = \sum_{k=1}^{\infty} \alpha_k e_k.$$

Step2. 设存在数列 $\beta_1, \beta_2, \dots, \beta_n, \dots \in \mathbb{F}$, 使得

$$x = \sum_{k=1}^{\infty} \beta_k e_k.$$

令 $\tilde{x}_n = \sum_{k=1}^n \beta_k e_k = (\beta_1, \beta_2, \dots, \beta_n, \dots)$,则 $\tilde{x}_n \in l^p$ 并且 $\tilde{x}_n \to x \ (n \to \infty)$,于是存在 M > 0,使

$$\sum_{n=1}^{n} |\beta_n|^p \le \|\tilde{x}_n\|_p^p \le M, \quad \forall n \in \mathbb{N}_+,$$

从而级数 $\sum_{k=1}^{\infty} |\beta_k|^p$ 收敛, 即

$$(\beta_1, \beta_2, \cdots, \beta_n, \cdots) \in l^p$$
.

令 $\gamma_k = \alpha_k - \beta_k \ (k \in \mathbb{N}_+), \ z = (\gamma_1, \gamma_2, \cdots, \gamma_n, \cdots), \ \mathbb{N} \ z \in l^p$. 另一方面, 按照 Step1 的过程可证

$$z = \sum_{k=1}^{\infty} \gamma_k e_k,$$

从而

$$(\gamma_1, \gamma_2, \cdots, \gamma_n, \cdots) = \sum_{k=1}^{\infty} \gamma_k e_k = \lim_{n \to \infty} \sum_{k=1}^n (\alpha_k - \beta_k) e_k = \lim_{n \to \infty} (x_n - \tilde{x}_n) = 0,$$

于是

$$\alpha_k = \beta_k, \quad \forall k \in \mathbb{N}_+.$$

第 10 周

作业题 10.1 设 X 是一个内积空间, M 是 X 中的闭凸子集, $x \in X$. 证明: $y_0 \in M$ 是 x 在 M 中的最佳逼近元, 即

$$||x - y_0|| = d(x, M),$$

当且仅当

$$Re\langle x - y_0, y_0 - y \rangle \ge 0, \quad \forall y \in M.$$

证明 (充分性) 设 $y_0 \in M$ 满足

$$\operatorname{Re}\langle x - y_0, y_0 - y \rangle \ge 0, \quad \forall y \in M,$$

则对任意 $y \in M$, 有

$$||x - y||^2 = ||(x - y_0) - (y - y_0)||^2$$

= $||x - y_0||^2 + ||y - y_0||^2 - 2\operatorname{Re}\langle x - y_0, y - y_0\rangle$
\geq ||x - y_0||^2,

所以

$$||x - y_0|| = \inf_{y \in M} ||x - y|| = d(x, M).$$

(必要性) 设 $y_0 \in M$ 是向量 x 在 M 中的最佳逼近元,则对任意 $y \in M$,任意 $t \in [0,1]$,就有

$$\bar{y} = (1 - t)y_0 + ty \in M,$$

并且

$$||x - y_0|| \le ||x - \bar{y}||$$

$$= ||x - [(1 - t)y_0 + ty]||$$

$$= ||(x - y_0) - t(y - y_0)||,$$

从而

$$||x - y_0||^2 \le ||(x - y_0) - t(y - y_0)||^2$$
.

按照内积空间中范数的定义将上式展开可得

$$t^2 ||x - y_0||^2 \ge 2t \text{Re}\langle x - y_0, y - y_0 \rangle, \quad \forall t \in [0, 1],$$

从而

$$t||x - y_0||^2 \ge 2\text{Re}\langle x - y_0, y - y_0 \rangle, \forall t \in (0, 1].$$

上式中令 $t \to 0$ 可得

$$\operatorname{Re}\langle x - y_0, y - y_0 \rangle \le 0, \quad \forall y \in M,$$

即

$$\operatorname{Re}\langle x - y_0, y_0 - y \rangle \ge 0, \quad \forall y \in M.$$

△ 作业题 10.2 设 X 是一个内积空间, $x_0 \in X$, 实数 r > 0. 令

$$M = \{ x \in X \mid ||x - x_0|| \le r \}.$$

证明:

- (1) M 是 X 中的闭凸子集;
- (2) 对任意 $x \in X$, 令

$$y = \begin{cases} x_0 + r \frac{x - x_0}{\|x - x_0\|}, & x \notin M, \\ x, & x \in M. \end{cases}$$

则 y 是 x 在 M 中的最佳逼近元.

证明 (1) 根据范数的连续性可知, 映射

$$x \mapsto ||x - x_0||$$

是 X 上的连续映射, 所以

$$M = \{ x \in X \mid ||x - x_0|| \le r \}$$

是 X 中的闭集. 对任意 $x,y \in M$, 任意 $t \in [0,1]$, 都有

$$||tx + (1-t)y|| \le t||x|| + (1-t)||y||$$

$$$$

所以 M 是 X 中的凸集.

综上, $M \in X$ 中的闭凸集.

(2) 当 $x \in M$ 时, 显然 y = x 是 x 在 M 中的最佳逼近元. 下设 $x \notin M$, 则

$$||x - x_0|| > r$$
.

此时令

$$y = x_0 + r \frac{x - x_0}{\|x - x_0\|}.$$

对任意 $\bar{y} \in M$, 就有

$$\langle x - y, y - \bar{y} \rangle$$

$$= \left\langle x - x_0 - r \frac{x - x_0}{\|x - x_0\|}, x_0 + r \frac{x - x_0}{\|x - x_0\|} - \bar{y} \right\rangle$$

$$= \left\langle \left(1 - \frac{r}{\|x - x_0\|} \right) (x - x_0), (x_0 - \bar{y}) + \frac{r}{\|x - x_0\|} (x - x_0) \right\rangle$$

$$= \left(1 - \frac{r}{\|x - x_0\|} \right) \left\langle x - x_0, (x_0 - \bar{y}) + \frac{r}{\|x - x_0\|} (x - x_0) \right\rangle$$

$$= \left(1 - \frac{r}{\|x - x_0\|} \right) \left[\langle x - x_0, x_0 - \bar{y} \rangle + r \|x - x_0\| \right].$$

由 Cauchy-Schwartz 不等式可得

$$|\operatorname{Re}\langle x - x_0, x_0 - \bar{y}\rangle| \le ||x - x_0|| ||x_0 - \bar{y}|| \le r||x - x_0||,$$

从而

$$\operatorname{Re} \langle x - x_0, x_0 - \bar{y} \rangle + r \|x - x_0\| \ge -(r \|x - x_0\|) + r \|x - x_0\| = 0.$$

综上,

$$\operatorname{Re} \langle x - y, y - \overline{y} \rangle$$

$$= \left(1 - \frac{r}{\|x - x_0\|}\right) \left[\operatorname{Re} \langle x - x_0, x_0 - \overline{y} \rangle + r\|x - x_0\|\right] \ge 0,$$

所以 y 也是 x 在 M 中的最佳逼近元.

第 11 周

▲ 作业题 11.1 证明:

定理 11.1. Riesz-Fischer 定理

设 $\{e_i\}$ 是 $L^2(\Omega)$ 中的规范正交系,则对任意 $x=(\xi_1,\xi_2,\cdots)\in l^2$,存在 $f\in L^2(\Omega)$,使得 $\|f\|_2=\|x\|_2$ 并且

$$\langle f, e_i \rangle = \xi_i, \quad i = 1, 2, \cdots.$$

证明 对任意 $k \in \mathbb{N}_+$, 令

$$S_k = \sum_{i=1}^k \xi_i e_i \in L^2(\Omega).$$

对任意 $p \in \mathbb{N}_+$, 由于 $\{e_i\}$ 是 $L^2(\Omega)$ 中的规范正交系, 则有

$$||S_{k+p} - S_k||_2^2 = \left\| \sum_{i=k+1}^{k+p} \xi_i e_i \right\|_2^2 = \sum_{i=k+1}^{k+p} |\xi|^2.$$

由于 $x=(\xi_1,\xi_2,\cdots)\in l^2$,根据上式可知 $\{S_k\}$ 是 $L^2(\Omega)$ 中的 Cauchy 点列. 由于 $L^2(\Omega)$ 是 Banach 空间, 则存在 $f\in L^2(\Omega)$ 使得

$$f = \lim_{k \to \infty} S_k = \lim_{k \to \infty} \sum_{i=1}^k \xi_i e_i = \sum_{i=1}^\infty \xi_i e_i.$$

对任意 $j \in \mathbb{N}_+$,根据内积对第一变元的连续性和线性,就有

$$\langle f, e_j \rangle = \left\langle \sum_{i=1}^{\infty} \xi_i e_i, e_j \right\rangle = \sum_{i=1}^{\infty} \xi_i \left\langle e_i, e_j \right\rangle = \xi_j.$$

对任意 $k \in \mathbb{N}_+$, 由于

$$\left\| \sum_{i=1}^{k} \xi_i e_i \right\|^2 = \sum_{i=1}^{k} |\xi_i|^2,$$

根据范数的连续性以及 $x = (\xi_1, \xi_2, \dots) \in l^2$ 就有

$$||f||_2^2 = \left\| \sum_{i=1}^{\infty} \xi_i e_i \right\|^2 = \lim_{k \to \infty} \left\| \sum_{i=1}^k \xi_i e_i \right\|^2 = \lim_{k \to \infty} \sum_{i=1}^k |\xi_k|^2 = \sum_{i=1}^{\infty} |\xi_i|^2 = ||x||_2^2,$$

从而 $||f||_2 = ||x||_2$.

第 12 周

设 $e_0(t) \equiv \frac{1}{\sqrt{2}}$, $e_1(t) = \cos t$, $e_2(t) = \sin t$, $e_3(t) = \cos 2t$, $e_4(t) = \sin 2t$, \cdots , $e_{2n-1}(t) = \cos nt$, $e_{2n}(t) = \sin nt$, \cdots . 令 $M = \{e_i\}_{i=0}^{\infty}$, 我们已经知道, M 是 Hilbert 空间

$$L^{2}[-\pi,\pi], \quad \langle f,g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt, \ f,g \in L^{2}[-\pi,\pi]$$

中的规范正交系.

按以下步骤证明, 三角函数系 M 是 $L^2[a,b]$ 中的完全规范正交系.

Step1. 证明

定理 12.1. Weierstrauss 三角逼近定理

设 $f \in C[-\pi, \pi]$, 并且 $f(-\pi) = f(\pi)$, 则对任意 $\varepsilon > 0$, 存在三角多项式

$$T(t) = a_0 + \sum_{k=1}^{m} (a_k \cos kt + b_k \sin kt), \quad t \in [-\pi, \pi],$$

使得

$$\max_{t \in [-\pi,\pi]} |f(t) - T(x)| < \varepsilon.$$

Step2. 设 T 是 $[-\pi,\pi]$ 上的一个三角多项式,则 $T \in C[-\pi,\pi]$,同时也有 $T \in L^2[-\pi,\pi]$.证明: T 关于三角函数系 M 满足 Parseval 等式,即

$$||T||^2 = \sum_{e \in M} |\langle T, e \rangle|^2.$$

(提示:根据三角函数系的两两正交性,上述等式右边的级数其实是一个有限和. 计算三角多项式 T 的范数时也要利用三角函数系的两两正交性.)

Step3. 利用 Steklov 定理 (教材 P255 推论 2), 证明 M 是 $L^2[a,b]$ 中的完全规范正交系.

证明 Step1. (Fejér 核方法) 由于 $f \in C[-\pi, \pi]$, 则 $f \in L^2[-\pi, \pi]$. 对任意 $e_k \in M$, f 关于 e_k 的 Fourior 系数为

$$a_{k} = \langle f, e_{k} \rangle = \begin{cases} \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{\sqrt{2}} f(t) dt, & k = 0, \\ \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt, & k = 2n - 1, \\ \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt dt, & k = 2n. \end{cases}$$

记 f 的 Fourior 级数的前 n 项部分和为

$$S_n = \sum_{k=0}^n \langle f, e_k \rangle = \sum_{k=0}^n a_k e_k,$$

则 $S_n \in C[-\pi, \pi] \subset L^2[-\pi, \pi]$, 并且 $S_n(-\pi) = S_n(\pi)$. 将 Fourior 系数代入, 得

$$S_n(t) = \frac{a_0}{\sqrt{2}} + \sum_{k=1}^n (a_{2k-1}\cos nt + a_{2k}\sin nt)$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s) ds$$

$$+ \frac{1}{\pi} \sum_{k=1}^{n} \left[\left(\int_{-\pi}^{\pi} f(s) \cos ks \, ds \right) \cos kt + \left(\int_{-\pi}^{\pi} f(s) \sin ks \, ds \right) \sin kt \right]$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \left[\frac{1}{2} + \sum_{k=1}^{n} (\cos ks \cos kt + \sin ks \sin kt) \right] ds$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \left[\frac{1}{2} + \sum_{k=1}^{n} \cos k(s-t) \right] ds.$$

将 $S_n(t)$ 和 f(t) 延拓成 \mathbb{R} 上的以 2π 为周期的连续函数, 并令 $\tau=s-t$, 则

$$S_n(t) = \frac{1}{\pi} \int_{-\pi - t}^{\pi - t} f(t + \tau) \left[\frac{1}{2} + \sum_{k=1}^n \cos k\tau \right] d\tau.$$

注意到上式右端积分中的被积函数也是以 2π 为周期的连续函数, 因此在 $[-\pi-t,\pi-t]$ 上的积分等于 $[-\pi,\pi]$ 上的积分, 从而

$$S_n(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t+\tau) \left[\frac{1}{2} + \sum_{k=1}^{n} \cos k\tau \right] d\tau, \quad t \in [-\pi, \pi].$$

注意到 (积化和差)

$$\cos kx \sin \frac{x}{2} = \frac{1}{2} \left[\sin \left(k + \frac{1}{2} \right) x - \sin \left(k - \frac{1}{2} \right) x \right],$$

则

$$\left(\frac{1}{2} + \sum_{k=1}^{n} \cos kx\right) \sin \frac{x}{2} = \frac{1}{2} \sin \left(n + \frac{1}{2}\right) x,$$

于是

$$S_n(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t+\tau) \frac{\sin(n+\frac{1}{2})\tau}{2\sin\frac{\tau}{2}} d\tau, \quad t \in [-\pi, \pi].$$

\$

$$\sigma_n(t) = \frac{S_0(t) + S_1(t) + \dots + S_{n-1}(t)}{n}$$
$$= \frac{1}{2n\pi} \int_{-\pi}^{\pi} \left[\sum_{k=0}^{n-1} \frac{\sin(k + \frac{1}{2})\tau}{\sin\frac{\tau}{2}} \right] f(t + \tau) d\tau.$$

显然, σ_n 也是一个三角多项式. 注意到 (积化和差)

$$\sin\left(k + \frac{1}{2}\right)x \cdot \sin\frac{x}{2} = \frac{1}{2}\left[\cos kx - \cos(k+1)x\right],$$

则

$$\sum_{k=0}^{n-1} \sin\left(k + \frac{1}{2}\right) x = \frac{1 - \cos nx}{2\sin\frac{x}{2}} = \frac{\sin^2\frac{nx}{2}}{\sin\frac{x}{2}}.$$

令 (称为 Fejér 核)

$$\Phi_n(x) = \frac{1}{2n\pi} \left[\frac{\sin^2 \frac{nx}{2}}{\sin^2 \frac{x}{2}} \right],$$

于是

$$\sigma_n(t) = \int_{-\pi}^{\pi} \Phi_n(\tau) f(t+\tau) d\tau.$$
 (12.1)

下证 Fejér 核 $\Phi_n(t)$ 满足以下 3 条性质:

- (i) $\Phi_n(x) \ge 0$;
- (ii) $\int_{-\pi}^{\pi} \Phi_n(x) dx = 1$.
- (iii) 对任意固定的 $\delta \in (0,\pi)$, 记

$$\eta_n(\delta) = \int_{-\pi}^{-\delta} \Phi_n(x) dx = \int_{\delta}^{\pi} \Phi_n(x) dx,$$

则 $\lim_{n\to\infty} \eta_n(\delta) = 0.$

性质 (i) 显然成立.

注意到 Fejér 核 $\Phi_n(t)$ 和函数 f 无关. 当 $f(t) \equiv 1$ 时, f 关于 $e_k \in M$ 的 Fourior 系数为

$$a_0 = \sqrt{2}; \quad a_k = 0, \ \forall k \in \mathbb{N}_+.$$

所以

$$S_n(t) \equiv S_0(t) = 1, \quad \forall n \in \mathbb{N}_+,$$

从而

$$\int_{-\pi}^{\pi} \Phi_n(t) dt = \sigma_n(t) = \frac{S_0(t) + S_1(t) + \dots + S_{n-1}(t)}{n} = \frac{n}{n} = 1.$$

性质 (ii) 得证.

当 $0 < \delta \le x \le \pi$ 时, $\sin \frac{x}{2} \ge \sin \frac{\delta}{2} > 0$, 从而

$$\Phi_n(x) = \frac{1}{2n\pi} \left[\frac{\sin^2 \frac{nx}{2}}{\sin^2 \frac{x}{2}} \right] \le \frac{1}{2n\pi} \frac{1}{\sin^2 \frac{\delta}{2}},$$
$$0 \le \eta_n(\delta) \le \frac{\pi - \delta}{2\pi \sin^2 \frac{\delta}{2}} \cdot \frac{1}{n},$$

所以 $\lim_{n\to\infty} \eta_n(\delta) = 0$. 性质 (iii) 得证.

现在 f 已经延拓成了 \mathbb{R} 上的 2π 周期函数, 则 f 在 \mathbb{R} 上有界并且一致连续, 即存在 M>0 使得

$$|f(x)| \le M, \quad \forall x \in \mathbb{R};$$

对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得

$$\forall x', x'' \in \mathbb{R} : |x' - x''| < \delta,$$

都有

$$|f(x') - f(x'')| < \varepsilon.$$

利用上述 $\delta > 0$ 以及 Fejér 核 $\Phi_n(t)$ 的性质 (ii), 我们有

$$f(t) - \sigma_n(t) = \left(\int_{-\pi}^{\pi} \Phi_n(\tau) d\tau \right) f(t) - \int_{-\pi}^{\pi} \Phi_n(\tau) d\tau f(t+\tau) d\tau$$
$$= \int_{-\pi}^{\pi} \Phi_n(\tau) \left[f(t) - f(t+\tau) \right] d\tau$$
$$=: J_- + J_0 + J_+,$$

其中

$$J_{-} = \int_{-\pi}^{-\delta} \Phi_{n}(\tau) \left[f(t) - f(t+\tau) \right] d\tau,$$

$$J_{0} = \int_{-\delta}^{\delta} \Phi_{n}(\tau) \left[f(t) - f(t+\tau) \right] d\tau,$$

$$J_{+} = \int_{\delta}^{\pi} \Phi_{n}(\tau) \left[f(t) - f(t+\tau) \right] d\tau,$$

利用 Fejér 核 $\Phi_n(t)$ 的性质 (iii) 以及函数 f 的有界性和一致连续性, 就有

$$|J_{-}| \le 2M\eta_n(\delta), \quad |J_{+}| \le 2M\eta_n(\delta), \quad |J_0| \le \frac{\varepsilon}{2} \int_{-\delta}^{\delta} \Phi_n(\tau) d\tau < \frac{\varepsilon}{2}.$$

由于 $\lim_{n\to\infty} \eta_n(\delta) = 0$, 则存在正整数 N, 使得对任意 n > N, 都有

$$2M\eta_n(\delta) < \frac{1}{4}\varepsilon,$$

从而

$$|f(t) - \sigma_n(t)| < \varepsilon, \quad \forall t \in \mathbb{R}, \quad \forall n > N.$$

令 $T(t) = \sigma_n(t), n > N, 则 T 是 [-\pi, \pi] 上的三角多项式并且$

$$\max_{t \in [-\pi,\pi]} |f(t) - T(t)| < \varepsilon.$$

Step2. 设 $T \in [-\pi, \pi]$ 上的三角多项式。

$$T(t) = a_0 + \sum_{k=1}^{m} (a_k \cos kt + b_k \sin kt) = \sum_{i=0}^{2m} c_i e_i(t), \quad t \in [-\pi, \pi],$$

其中

$$c_i = \begin{cases} a_0, & i = 0, \\ a_k, & i = 2k - 1 \\ b_k, & i = 2k. \end{cases}$$

由于 $M = \{e_i\}_{i=0}^{\infty}$ 是 $L^2[-\pi,\pi]$ 中的规范正交系, 则

$$||T||^2 = \sum_{i=0}^{2m} ||c_i e_i||^2 = \sum_{i=0}^{2m} |c_i|^2.$$

另一方面, 对任意 $l \in \mathbb{N}$, 由 $L^2[-\pi,\pi]$ 中内积的定义, 就有

$$\langle T, e_l \rangle$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left[\sum_{i=0}^{2m} c_i e_i(t) \right] \overline{e_l(t)} dt$$

$$= \sum_{i=0}^{2m} c_i \left[\frac{1}{\pi} \int_{-\pi}^{\pi} e_i(t) \overline{e_l(t)} \right] dt$$

$$= \sum_{i=0}^{2m} c_i \langle e_i, e_l \rangle$$

由于 $M = \{e_i\}_{i=0}^{\infty}$ 是 $L^2[-\pi,\pi]$ 中的规范正交系, 则

$$\begin{cases} \langle T, e_l \rangle = c_l, & l \le 2m, \\ \langle T, e_l \rangle = 0, & l > 2m. \end{cases}$$

综上,

$$\sum_{e \in M} |\langle T, e \rangle|^2 = \sum_{i=0}^{\infty} |\langle T, e_i \rangle|^2 = \sum_{i=0}^{2m} |c_i|^2 = ||T||^2.$$

Step3. 将 $[-\pi,\pi]$ 上的三角多项式全体集合记为 $\mathrm{Tri}[-\pi,\pi]$, 将 $[-\pi,\pi]$ 上满足 $f(-\pi)=f(\pi)$ 的连续函数全体集合记为 $C(\mathbb{T})$, 显然 $\mathrm{Tri}[-\pi,\pi]\subset C(\mathbb{T})\subset L^2[-\pi,\pi]$, 并且 $\mathrm{Tri}[-\pi,\pi]$ 和 $C(\mathbb{T})$ 在 L^2 -范数

$$||f|| = \left[\frac{1}{\pi} \int_{-\pi}^{\pi} |f(t)|^2 dt\right]^{\frac{1}{2}}$$

下都是 $L^2[-\pi,\pi]$ 的赋范线性子空间. 由 Step1, 对任意 $f \in C(\mathbb{T})$ 以及任意 $\varepsilon > 0$, 存在 $T \in Tri[-\pi,\pi]$ 使得

$$\max_{t \in [-\pi, \pi]} |f(t) - T(t)| < \sqrt{\pi}\varepsilon,$$

从而

2019-2020 学年第 1 学期

$$||f - T|| = \left[\frac{1}{\pi} \int_{-\pi}^{\pi} |f(t) - T(t)|^2 dt\right]^{\frac{1}{2}}$$

$$\leq \left[\frac{1}{\pi} \int_{-\pi}^{\pi} \max_{t \in [-\pi, \pi]} |f(t) - T(t)|^2 dt\right]^{\frac{1}{2}}$$

$$< \varepsilon.$$

所以 $Tri[-\pi,\pi]$ 按照 L^2 -范数在 $C(\mathbb{T})$ 中稠密.

下证 $C(\mathbb{T})$ 按 L^2 -范数在 $C[-\pi,\pi]$ 中稠密. 对任意 $f \in C[-\pi,\pi]$, 以及任意 $n \in \mathbb{N}_+$, 令

$$\phi_n(t) = \begin{cases} f(t), & t \in \left[-\pi, \pi - \frac{2\pi}{n} \right] \\ k_n(t-\pi) + f(-\pi), & t \in \left(\pi - \frac{2\pi}{n}, \pi \right], \end{cases}$$

其中

$$k_n = \frac{f(-\pi) - f\left(\pi - \frac{2\pi}{n}\right)}{\pi - \left(\pi - \frac{2\pi}{n}\right)},$$

显然, $\phi_n \in C(\mathbb{T})$. 令 $C = \max_{t \in [-\pi,\pi]} |f(t)|$, 则 $\max_{t \in [-\pi,\pi]} |\phi_n(t)| \leq C$, 从而

$$||f - \phi_n||^2$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} |f(t) - \phi_n(t)|^2 dt$$

$$= \frac{1}{\pi} \int_{\pi - \frac{2\pi}{n}}^{\pi} |f(t) - \phi_n(t)|^2 dt$$

$$\leq \frac{1}{\pi} \int_{\pi - \frac{2\pi}{n}}^{\pi} 4C^2 dt$$

$$= \frac{C^2}{\pi} \cdot \frac{2\pi}{n} = \frac{2C^2}{n} \to 0 \quad (n \to \infty).$$

所以 $C(\mathbb{T})$ 按 L^2 -范数在 $C[-\pi,\pi]$ 中稠密.

将 $[-\pi,\pi]$ 上的有界可测函数全体集合记为 $M_b[-\pi,\pi]$, 显然在 L^2 范数下 $M_b[-\pi,\pi]$ 也是 $L^2[-\pi,\pi]$ 的赋范线性子空间. 下证 $C[-\pi,\pi]$ 按 L^2 -范数在 $M_b[-\pi,\pi]$ 中稠密.

任取 $f \in M_b[-\pi,\pi]$, 设

$$|f(x)| \le K$$
, a.e. $x \in [-\pi, \pi]$.

对任意 $\varepsilon > 0$, 由 Lusin 定理, 存在 $[-\pi, \pi]$ 上的连续函数 g 以及闭集 $F \subset [-\pi, \pi]$ 使得

- (i) $f(t) = g(t), \forall t \in F;$
- (ii) $m([-\pi,\pi]\setminus F)<\frac{\varepsilon^2}{4K^2};$
- (iii) $\max_{t \in [-\pi,\pi]} |g(t)| \le K$.

于是,

$$||f - g||^{2}$$

$$= \int_{-\pi}^{\pi} |f(t) - g(t)|^{2} dt$$

$$= \int_{[-\pi,\pi]\backslash F} |f(t) - g(t)|^{2} dt$$

$$\leq 4K^{2}m([-\pi,\pi]\backslash F)$$

$$< \varepsilon^{2},$$

即 $||f - g|| < \varepsilon$. 所以 $C[-\pi, \pi]$ 按 L^2 -范数在 $M_b[-\pi, \pi]$ 中稠密. 下证 $M_b[-\pi, \pi]$ 按 L^2 -范数在 $L^2[-\pi, \pi]$ 中稠密. 任取 $f \in L^2[-\pi, \pi]$, 对任意 $n \in \mathbb{N}_+$, 令

$$f_n(t) = \begin{cases} f(t), & |f(t)| \le n, \\ 0, & |f(t)| > n, \end{cases}$$

则 $f_n \in M_b[-\pi,\pi]$, 并且

$$||f_n - f||^2 = \int_{-\pi}^{\pi} |f_n(x) - f(x)|^2 dt = \int_{\{t \in [-\pi,\pi] \mid |f(t)| > n\}} |f(t)|^2 dt,$$

从而

$$||f||^2 \ge \int_{\{t \in [-\pi,\pi] \mid |f(t)| > n\}} |f(t)|^2 dt \ge n^2 m \{t \in [-\pi,\pi] \mid |f(t)| > n\},$$

即

$$m\{t \in [-\pi, \pi] \mid |f(t)| > n\} \le \frac{1}{n^2} ||f||^2, \quad \forall n \in \mathbb{N}_+.$$
 (12.2)

由于 $|f|^2 \in L^1[-\pi,\pi]$, 由积分的绝对连续性 (教材 P113), 对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对于任意的可测集 $A \subset [-\pi,\pi]$ 且 $m(A) < \delta$, 都有

$$\int_{\Lambda} |f(t)|^2 \, \mathrm{d}t < \varepsilon^2.$$

另一方面, 根据(12.2)式, 对上述 $\delta > 0$, 存在正整数 N, 使得对任意 n > N, 都有

$$m\{t \in [-\pi, \pi] \mid |f(t)| > n\} < \delta,$$

从而

$$||f_n - 2||^2 = \int_{\{t \in [-\pi,\pi] \mid |f(t)| > n\}} |f(t)|^2 dt < \varepsilon^2,$$

即

$$||f_n - f|| < \varepsilon, \quad \forall n > N.$$

所以 $M_b[-\pi,\pi]$ 按 L^2 -范数在 $L^2[-\pi,\pi]$ 中稠密.

综上, 按照稠密性的传递关系, $\operatorname{Tri}[-\pi,\pi]$ 按照 L^2 -范数在 $L^2[-\pi,\pi]$ 中稠密. 由 Step2 可知, 对任意 $f \in \operatorname{Tri}[-\pi,\pi]$, f 关于规范正交系 M 成立 Parseval 等式. 根据 Steklov 定理 (教材 P255 推论 2), M 是 $L^2[\pi,\pi]$ 中的完全规范正交系.