High Dimensional Data

An Investigation into General EDA when working with multi-dimensional datasets

How many dimensions count as high dimensional data?

What this presentation is about?

- 1. General approach to tackling high dimensional data
- 2. How to select a subset of features
- How to make pretty visualizations of clusters using dimensionality reduction algorithms

1. Questions to Ask When Doing EDA

Questions:

- What constitutes an outlier?
- Do I really need all of my features?
- Are there latent variables at play?
- Does missing data really matter (ignore vs. impute)?
- Are my classes unbalanced which distorts the distribution of covariates?

Less obvious questions:

- What plots really tell the story of the data?
- Are there any biases in data sampling?

1. Quickly Finding Dependencies And Problems

- Heatmaps?
- Lineplots?
- Pandas Profiler: https://github.com/pandas-profiling/pandas-profiling/pandas-profiling

2. Feature Selection Algorithms

Given P features, rank them by importance then select K of them.

Popular Strategies:

- statistical tests
- forward/recursive feature elimination
- model based importance

2. Feature Selection Algorithms

Questions

- Does feature selection introduce bias?
- Does your selection strategy deal with multicollinearity?
- Are there any underlying assumptions in your selection strategy?

Ideas

- Perfected correlated variables are truly redundant.
- Two variables that are useless by themselves can be useful together.

2. Questions to Ask During Feature Selection

More obvious questions:

- What constitutes an outlier?
- Do I really need all of my features?
- Are there latent variables at play?
- Does missing data really matter (ignore vs. impute)?

Less obvious questions:

- What plots really tell the story of the data?
- Are there any biases in data sampling?

3. Dimensionality Reduction Methods

Find a mapping, $f(x) \rightarrow y$, where x is dim N and y is dim M, N >> M.

Given some distance metric, D, these functions aim to have $D(x_i, x_i) \sim D(y_i, y_i)$.

Popular Examples:

- t-distributed stochastic neighbor embedding (T-SNE)
- principal components analysis (PCA)
- spectral embedding

Additional Resources

Feature Selection Paper: http://jmlr.csail.mit.edu/papers/volume3/guyon03a/guyon03a.pdf

Dimensionality Reduction Algorithms on MNIST: https://colah.github.io/posts/2014-10-Visualizing-MNIST/

Google Tensorflow High Dimensional Visualization: https://experiments.withgoogle.com/visualizing-high-dimensional-space