一、单项选择题

- 1. 设直线l的方程为 $x = \frac{y}{2} = \frac{z}{3}$,平面 π 的方程为x + y z = 1,则【 】.
- A. $l//\pi$; B. $l\perp\pi$; C. l与 π 斜交; D. l在 π 上。
- 2. 函数 f(x,y) 在点 (x_0,y_0) 连续是它在该点偏导数存在的 【 】.
- A. 充分非必要条件; B. 必要非充分条件;
- C. 充要条件; D. 既非充分又非必要条件。
- 3. 设 $f(x,y) = x^3 4x^2 + 2xy y^2$,则
- A. (0,0) 是极大值点; B. (0,0) 是极小值点;
- C. (2,2)是极大值点; D. (2,2)是极小值点。

4. 级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{\sin nx}{n^2} - \frac{1}{\sqrt{n}} \right)$$

- A. 发散; B. 绝对收敛; C. 条件收敛; D. 收敛性与 x 有关。
- 5. 函数 $f(x) = \begin{cases} 1, & -1 \le x \le 0 \end{cases}$ 的 Fourier 级数 $\begin{cases} x^2, & 0 < x < 1 \end{cases}$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\pi x + b_n \sin n\pi x) \stackrel{\text{def}}{=} x = 0 \qquad \qquad \blacksquare \qquad \blacksquare \qquad \blacksquare \qquad \blacksquare$$

A. 发散; B. 收敛于 1; C. 收敛于 0; D. 收敛于 0.5.

二、填空题

- 3. 函数 $f(x,y) = xy + x \ln y$ 在点 (1,2) 处方向导数的最大值为_____.
- 4. 交换积分次序, $\int_0^2 dx \int_0^{x^2} f(x,y) dy =$ _______.
- 三、设 f(u,v) 有连续二阶偏导数, $z = f(x^2 + y^2, 2xy)$, 求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 四、计算二重积分 $\iint_D \frac{\sin y}{y} dxdy$, 其中 D 为 y = x, $y = \sqrt{x}$ 所围成的区域.

五、计算曲线积分
$$I = \int_{I} (e^x \sin y - x - y) dx + (e^x \cos y - 2x) dy$$
,

其中 L 为从 A(2,0) 沿曲线 $y = \sqrt{2x - x^2}$ 到 O(0,0) 的一段弧.

六、计算曲面积分
$$I=\iint\limits_{\Sigma}(2x+z)dydz+zdxdy$$
, 其中 Σ 为曲面 $z=x^2+y^2$ ($0\leq z\leq 1$) 的下侧 .

七、求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n}}{2n-1}$$
 的和函数 $S(x)$.

八、设有半径为R的球体,它在点(x,y,z)处的密度 $\rho(x,y,z)$ 与该点到原点的距离成正比,比例系数为k,求球体对它的直径的转动惯量.