MODE

Mode is that value of variable which has **highest frequency** or that value which repeats maximum times in the series. It is also known as **NORM**.

In 9th class, we have discussed about Mode in Individual Series. In this section, we shall discuss Mode in **Discrete series** and **Continuous Series**.

Discrete Series:

In Discrete Series, Mode is calculated by observation, Which value has highest frequency that is Mode.

1. Find the mode of the distribution:

Size of garments	28	29	30	31	32	33
No. of persons	5	14	26	50	23	10

Sol:- We notice that 50 is the maximum frequency and 31 has it.

 \therefore 31 is the mode of the distribution.

2. Find the mode of the distribution:

Marks	10	12 (on 14 -beco	om 16 :du	cat 18	20
No. of Students	6	14	9	10	5	7

Sol:- We notice that 14 is the maximum frequency and 12 has it.

∴ 12 is the mode of the distribution.

MODE OF A GROUPED DISTRIBUTION

- While computing mode of continuous series, we have to find the class which has the **maximum frequency**. This class is known as **Modal Class**.
- Give name f_1 to maximum frequency, f_0 to frequency of upper class and f_2 to frequency to lower class.
- Replace these values in the following formula:

Mode = L +
$$\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$

 $\mathbf{L} = \text{Lower limit of the modal class}; \mathbf{f_1} = \text{frequency of modal class}$

 $f_0 =$ Frequency of class preceding the modal class

 f_2 = Frequency of class succeeding the modal class

i = Width of the modal class

1. Find the mode for the following distribution:-

Class Interval	1-3	3-5	5-7	7-9	9-11
No. of students	7	8	8	2	1

Sol:-

Class Interval	No. of Students
1-3	$7 f_0$
3-5	8 f ₁
5-7	2 f ₂
7-9	2
9-11	1

Here Highest frequency is $f_1 = 8$ and its modal class interval is $\mathbf{3} - \mathbf{5}$ and its lower limit $\mathbf{L} = \mathbf{3}$ and $\mathbf{class\ size}(i) = \mathbf{2}$, $f_0 = 7$, $f_2 = 2$,

∴ Mode = L +
$$\left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times i$$

= 3 + $\left(\frac{8 - 7}{2 \times 8 - 7 - 2}\right) \times 2$
= 3 + $\left(\frac{1}{16 - 9}\right) \times 2 = 3 + \frac{2}{7} = 3 + 0.286 = 3.286$

Hence modal value is 3.286

2. Find the mode for the following distribution:-

Age	0-15	15-30	30-45	45-60	60-75	75-90
No. of patients	6	9	12	18 eau	15	10

Sol:-

Age	No. of Patients
0-15	6
15-30	9
30-45	12 f_0
45-60	18 f ₁
60-75	$15 f_2$
75-90	10

Here Highest frequency is $f_1 = 18$ and its modal class interval is $\mathbf{45} - \mathbf{60}$ and its lower limit $\mathbf{L} = \mathbf{45}$ and $\mathbf{class\ size}(i) = \mathbf{15}, f_0 = 12, f_2 = 15,$

$$\therefore \text{ Mode} = L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times i$$

$$= 45 + \left(\frac{18 - 12}{2 \times 18 - 12 - 15}\right) \times 15$$

$$= 45 + \left(\frac{6}{36 - 27}\right) \times 15 = 45 + \frac{6}{9} \times 15 = 45 + 10 = 55$$

Hence modal value is 55

3. Find the Arithmetic Mean and Mode for the following distribution:-

Class Interval	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	15	14	13	10	21	12

Sol:-

Class Interval	Frequency (f)	Mid Value (x)	fx
0-20	15	10	150
20-40	14	30	420
40-60	13	50	650
60-80	10 f_0	70	700
80-100	21 f ₁	90	1890
100-120	12 f ₂	110	1320
Total	$\Sigma f = 85$		$\Sigma f x = 5130$

Arithmetic Mean:
$$\overline{X} = \frac{\Sigma f x}{\Sigma f} = \frac{5130}{85} = 60.39 \text{ (app)}$$

Mode: Here Highest frequency is $f_1 = 21$ and its modal class interval is $\mathbf{80} - \mathbf{100}$ and its lower limit $\mathbf{L} = \mathbf{80}$ and $\mathbf{class\ size}(i) = \mathbf{20}$, $f_0 = 10$, $f_2 = 12$

$$\therefore \text{ Mode} = L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times i$$

$$= 80 + \left(\frac{21 - 10}{2 \times 21 - 10 - 12}\right) \times 20$$

$$= 80 + \left(\frac{11}{42 - 22}\right) \times 20 = 80 + \frac{11}{20} \times 20 = 80 + 11 = 91$$

Hence modal value is 91

4. Find the Mode for the following distribution:-

Class Interval	15-20	20-25	25-30	30-35	35-40	40-45
Frequency	8	10	2	5	3	4

Sol:-

Class Interval	Frequency (f)
15-20	8 f_0
20-25	10 f_1
25-30	$2 f_2$
30-35	5
35-40	3
40-45	4

Here Highest frequency is $f_1 = 10$ and its modal class interval is $\mathbf{20} - \mathbf{25}$ and its lower limit $\mathbf{L} = \mathbf{20}$ and $\mathbf{class\ size}(i) = \mathbf{5}, f_0 = 8, f_2 = 2$

∴ Mode = L +
$$\left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times i$$

= 20 + $\left(\frac{10 - 8}{2 \times 10 - 8 - 2}\right) \times 5$

$$=20+\left(\frac{2}{20-10}\right)\times 5=20+\frac{2}{10}\times 5=20+1=21$$
 Hence modal value is 21

EXERCISE

1. Ex 14.2

come-become-educated

