Produced with a Trial Version of PDF Annotator - www.PDFAnno

Linear Algebra and Analytic Geometry

Conf.univ.,dr. Elena Cojuhari

elena.cojuhari@mate.utm.md
Technical University of Moldova

2020

- Vector Geometry
 - Vectors in the Plane
 - Vectors in Three Dimensions
 - Dot Product and Angle Between Vectors
 - The Cross Product
 - Planes in Three-Space
 - A Survey of Quadratic Surfaces
 - Cylindrical and Spherical Coordinates

Subsection 6

A Survey of Quadratic Surfaces

Traces or Cross-Sections

 The curves of intersection of a given surface with planes parallel to the coordinate planes are called traces or cross-sections of the surface.

 Traces are very useful in sketching the graph of a 3-dimensional surface.

Parabolic Cylinders

• Consider the surface $z = x^2$.

- For planes y = k parallel to the coordinate xz-plane the traces are all curves with equations $z = x^2$, i.e., parabolas with vertex at the xz-origin and opening up.
- The surface $z = x^2$ is called a **parabolic cylinder**.

Cylinders

• Consider the surface $x^2 + y^2 = 1$.

- For planes z = k parallel to the coordinate xy-plane the traces are all curves with equations $x^2 + y^2 = 1$, i.e., circles with center the xy-origin and radius 1.
- The surface $x^2 + y^2 = 1$ is called a **cylinder**.

Quadric Surfaces

- Quadric surfaces are the three dimensional analogs of the two dimensional conic sections, i.e., of parabolas, ellipses and hyperbolas.
- The general equation of a quadric surface is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0;$$

• If one translates and rotates the quadric surface, then its equation may be simplified to one of the forms

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 or $Ax^2 + By^2 + Iz = 0$.

Example: What are the traces of the quadric $x^2 + \frac{y^2}{0} + \frac{z^2}{4} = 1$ parallel to the coordinate planes?

On plane z = k, the trace is $x^2 + \frac{y^2}{9} = 1 - \frac{k^2}{4}$, which is the equation of an ellipse.

The quadric $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$ (Cont'd)

• On plane y=k, the trace is $x^2+\frac{z^2}{4}=1-\frac{k^2}{9}$, which is the equation of an ellipse. On plane x=k, the trace is $\frac{y^2}{9}+\frac{z^2}{4}=1-k^2$, which is also the equation of an ellipse. Since all traces are ellipses, this surface is called an **ellipsoid**.

The Quadric Surface $z = 4x^2 + y^2$

• What are the traces of the quadric $z = 4x^2 + y^2$ parallel to the coordinate planes?

On plane z=k, the trace is $x^2+\frac{y^2}{4}=\frac{k}{4}$, which is the equation of an ellipse. On plane y=k, the trace is $z=4x^2+k^2$, which is the equation of a parabola. On plane x=k, the trace is $z=y^2+4k^2$, which is also the equation of a parabola. This surface is called an **elliptic paraboloid**.

The Quadric Surface $z = y^2 - x^2$

What are the traces of the quadric z = y² - x² parallel to the coordinate planes?
 On plane z = k, the trace is y² - x² = k, which is the equation of a hyperbola. On plane y = k, the trace is z = -x² + k², which is the equation of a parabola. On plane x = k, the trace is z = y² - k², which is also the equation of a parabola; This surface is called an

The Quadric Surface $\frac{x^2}{4} + y^2 - \frac{z^2}{4} = 1$

• What are the traces of the quadric $\frac{x^2}{4} + y^2 - \frac{z^2}{4} = 1$ parallel to the coordinate planes? On plane z = k, the trace is $\frac{x^2}{4} + y^2 = 1 + \frac{k^2}{4}$, which is the equation of an ellipse. On plane y = k, the trace is $\frac{x^2}{4} - \frac{z^2}{4} = 1 - k^2$, which is the equation of a hyperbola. On plane x = k, the trace is $y^2 - \frac{z^2}{4} = 1 - \frac{k^2}{4}$, which is also the equation of a hyperbola; This surface is called an **hyperboloid of one sheet**.

Types of Quadric Surfaces

- Ellipsoids with equations $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- Elliptic Paraboloids with equations $\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
- Hyperbolic Paraboloids with equations $\frac{z}{c} = \frac{x^2}{a^2} \frac{y^2}{b^2}$.
- Cones with equations $\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
- Hyperboloids of One Sheet with equations $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$.
- Hyperboloid of Two Sheets with equations $-\frac{x^2}{a^2} \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Identifying a Quadric Surface

• Classify the quadric surface $x^2 + 2z^2 - 6x - y + 10 = 0$. Rewrite $x^2 - 6x - y + 2z^2 = -10$. Complete x-square $(x-3)^2 - y + 2z^2 = -1$. Separate square terms from linear terms $y-1=(x-3)^2+2z^2$. Divide by 2 and put in standard form $\frac{y-1}{(\sqrt{2})^2} = \frac{(x-3)^2}{(\sqrt{2})^2} + z^2$. This has form of an elliptic Paraboloid with vertex (3,1,0) opening in the positive y-direction.

Subsection 7

Cylindrical and Spherical Coordinates

Cylindrical Coordinates

- In cylindrical coordinates, we replace the x- and y-coordinates of a point P = (x, y, z) by polar coordinates.
- The cylindrical coordinates of P = (x, y, z) are

$$(r, \theta, z),$$

where (r, θ) are polar coordinates of the projection Q = (x, y, 0) of P onto the xy-plane. We usually assume $r \ge 0$.

 Note that the points at fixed distance r from the z-axis make up a cylinder, hence the name "cylindrical coordinates".

Cylindrical and Rectangular

• We convert between rectangular and cylindrical coordinates using the familiar rectangular-polar formulas and we usually assume r > 0.

Cylindrical to Rectangular

$$x = r \cos \theta;$$

$$y = r \sin \theta;$$

$$z = z.$$

Rectangular to Cylindrical

$$r = \sqrt{x^2 + y^2}$$

$$\tan \theta = \frac{y}{x};$$

$$z = z.$$

From Cylindrical to Rectangular

• Find the rectangular coordinates of the point P with cylindrical coordinates $(r, \theta, z) = (2, \frac{3\pi}{4}, 5)$.

$$x = r\cos\theta = 2\cos\frac{3\pi}{4}$$

$$= 2\left(-\frac{\sqrt{2}}{2}\right) = -\sqrt{2};$$

$$y = r\sin\theta = 2\sin\frac{3\pi}{4}$$

$$= 2\left(\frac{\sqrt{2}}{2}\right) = \sqrt{2}.$$

The *z*-coordinate is unchanged. So $(x, y, z) = (-\sqrt{2}, \sqrt{2}, 5)$.

From Rectangular to Cylindrical

• Find cylindrical coordinates for the point with rectangular coordinates $(x, y, z) = (-3\sqrt{3}, -3, 5)$.

We have

$$r = \sqrt{x^2 + y^2}$$

= $\sqrt{(-3\sqrt{3})^2 + (-3)^2} = 6.$

The angle θ satisfies $\tan \theta = \frac{y}{x} = \frac{-3}{-3\sqrt{3}} = \frac{1}{\sqrt{3}}$. So $\theta = \frac{\pi}{6}$ or $\frac{7\pi}{6}$. The correct choice is $\theta = \frac{7\pi}{6}$ because the projection $Q = (-3\sqrt{3}, -3, 0)$ lies in the third quadrant.

The cylindrical coordinates are $(r, \theta, z) = (6, \frac{7\pi}{6}, 5)$.

Level Surfaces of Cylindrical Coordinates

- The level surfaces of a coordinate system are the surfaces obtained by setting one of the coordinates equal to a constant.
 - In rectangular coordinates, the level surfaces are the planes $x = x_0$, $y = y_0$, and $z = z_0$.
 - In cylindrical coordinates, the level surfaces come in three types.

Level Surfaces in Cylindrical Coordinates:

- r = R: Cylinder of radius R with the z-axis as axis of symmetry;
- $\theta = \theta_0$: Half-plane through the z-axis making an angle θ_0 with the xz-plane;
- z = c: Horizontal plane at height c.

Equations in Cylindrical Coordinates

• Find an equation of the form $z = f(r, \theta)$ for the surfaces

(a)
$$x^2 + y^2 + z^2 = 9$$
; (b) $x + y + z = 1$.

We use the formulas $x^2 + y^2 = r^2$, $x = r \cos \theta$, $y = r \sin \theta$.

- (a) The equation $x^2 + y^2 + z^2 = 9$ becomes $r^2 + z^2 = 9$, or $z = \pm \sqrt{9 r^2}$. This is a sphere of radius 3.
- (b) The plane x + y + z = 1 becomes $z = 1 x y = 1 r \cos \theta r \sin \theta$ or $z = 1 r(\cos \theta + \sin \theta)$.

Spherical Coordinates

- Spherical coordinates make use of the fact that a point P on a sphere of radius ρ is determined by two angular coordinates θ and ϕ :
 - θ is the polar angle of the projection Q of P onto the xy-plane;
 - φ is the angle of declination, which measures how much the ray through P declines from the vertical.

Thus P is determined by the triple (ρ, θ, ϕ) , which are called **spherical coordinates**.

Spherical and Rectangular

Spherical to Rectangular

$$x = r \cos \theta = \rho \sin \phi \cos \theta;$$

 $y = r \sin \theta = \rho \sin \phi \sin \theta;$
 $z = \rho \cos \phi.$

Rectangular to Spherical

$$\rho = \sqrt{x^2 + y^2 + z^2};$$

$$\tan \theta = \frac{y}{x};$$

$$\cos \phi = \frac{z}{\rho}.$$

From Spherical to Rectangular

• Find the rectangular coordinates of $P = (\rho, \theta, \phi) = (3, \frac{\pi}{3}, \frac{\pi}{4})$, and find the radial coordinate r of its projection Q onto the xy-plane.

$$\begin{array}{rcl} x & = & \rho \sin \phi \cos \theta \\ & = & 3 \sin \frac{\pi}{4} \cos \frac{\pi}{3} \\ & = & 3 \frac{\sqrt{2}}{2} \frac{1}{2} = \frac{3\sqrt{2}}{4}. \\ y & = & \rho \sin \phi \sin \theta \\ & = & 3 \sin \frac{\pi}{4} \sin \frac{\pi}{3} \\ & = & 3 \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} = \frac{3\sqrt{6}}{4}. \\ z & = & \rho \cos \phi \\ & = & 3 \cos \frac{\pi}{4} = \frac{3\sqrt{2}}{2}. \end{array}$$

Now consider the projection $Q=(x,y,0)=(\frac{3\sqrt{2}}{4},\frac{3\sqrt{6}}{4},0)$. The radial coordinate r of Q is $r=\rho\sin\phi=3\sin\frac{\pi}{4}=\frac{3\sqrt{2}}{2}$.

From Rectangular to Spherical

• Find the spherical coordinates of the point $P = (x, y, z) = (2, -2\sqrt{3}, 3).$

The radial coordinate is $\rho = \sqrt{2^2 + (-2\sqrt{3})^2 + 3^2} = \sqrt{25} = 5.$ The angular coordinate θ satisfies $\tan \theta =$ $\frac{-2\sqrt{3}}{2} = -\sqrt{3}$. Thus, $\theta = \frac{2\pi}{3}$ or $\frac{5\pi}{3}$. Since the point $(x, y) = (2, -2\sqrt{3})$ lies in the fourth quadrant, the correct choice is $\theta = \frac{5\pi}{2}$.

Finally, $\cos \phi = \frac{z}{a} = \frac{3}{5}$. Thus, $\phi = \cos^{-1} \frac{3}{5}$. Therefore, P has spherical coordinates $(5, \frac{5\pi}{3}, \cos^{-1} \frac{3}{5})$.

Level Surfaces of Cylindrical Coordinates

- There are three types of level surfaces in spherical coordinates.
 - $\rho = R$: Sphere of radius R;
 - $\theta = \theta_0$: Vertical half-plane at angle θ_0 from x-axis;
 - If $\phi \neq 0, \frac{\pi}{2}, \pi$, $\phi = \phi_0$ is the right circular cone consisting of points P such that \overline{OP} makes an angle ϕ_0 with the z-axis.

There are three exceptional cases:

- $\phi = \frac{\pi}{2}$ defines the xy-plane;
- $\phi = 0$ is the positive z-axis;
- $\phi = \pi$ is the negative z-axis.

Equations in Spherical

• Find an equation of the form $\rho = f(\theta, \phi)$ for the following surfaces:

(a)
$$x^2 + y^2 + z^2 = 9$$
 (b) $z = x^2 - y^2$.

- (a) The equation $x^2 + y^2 + z^2 = 9$ defines the sphere of radius 3 centered at the origin. We know $\rho^2 = x^2 + v^2 + z^2$. So the equation in spherical coordinates is $\rho = 3$.
- (b) To convert $z = x^2 y^2$ to spherical coordinates, we substitute the formulas for x, y, and z in terms of ρ, θ , and ϕ :

$$\rho\cos\phi = (\rho\sin\phi\cos\theta)^2 - (\rho\sin\phi\sin\theta)^2$$

$$\Rightarrow \cos\phi = \rho\sin^2\phi(\cos^2\theta - \sin^2\theta)$$

$$\Rightarrow \cos\phi = \rho\sin^2\phi\cos 2\theta.$$

Solving for ρ , we obtain

$$\rho = \frac{\cos \phi}{\sin^2 \phi \cos 2\theta}.$$