JRC - IFORCE meeting - September, 7th 2013

Modelling and forecasting tropical deforestation: advances and perspectives

Ghislain Vieilledent^{1,2}

[1] JRC Forest Resources and Climate, [2] Seconded National Expert from Cirad

- Deforestation and demography in Africa
 - Model
 - Results
 - Reflexion
- 2 forestatrisk Python module
 - Functionality
 - Improvements
 - Model performance

- Forecasting spatial deforestation spatially
 - Extending at the tropical scale
 - Computational challenge
- Perspectives

- Deforestation and demography in Africa
 - Model
 - Results
 - Reflexion
- 2 forestatrisk Python module
 - Functionality
 - Improvements
 - Model performance

- Forecasting spatial deforestation spatially
 - Extending at the tropical scale
 - Computational challenge
- 4 Perspectives

Model

- The fate of African tropical forests
- Associated to demographic explosion
- $\log D = \beta_0 + \beta_1 \log F + \beta_2 \log P$
- Data on deforestation :
 - 1. JRC: 1990-2000-2010
 - 2. GFC: 2000-2005-2010-2015
- Projection of forest cover in 2050, 2100

Model averaging per country

Percentage of forest loss 21st century

Reflexion

- Scientific articles
- Integration of Roadless data on deforestation?
- Use of the results for future deforestation scenario in Africa
- ullet Predictions in percentage of forest loss : \sim independent of forest definition

- Deforestation and demography in Africa
 - Model
 - Results
 - Reflexion
- 2 forestatrisk Python module
 - Functionality
 - Improvements
 - Model performance

- Forecasting spatial deforestation spatially
 - Extending at the tropical scale
 - Computational challenge
- 4 Perspectives

forestatrisk Python module specifications

- Spatial probability of deforestation
- $logit(\theta_i) = f(spatial factors_i) + \rho_j$
- Factors: accessibility (dist. towns, roads, villages), landscape (dist. forest edge), land-tenure (protected areas)
- ρ_i : spatial random effect
- {<https://github.com/ghislainv/forestatrisk>}

Spatial random effects

- Hotspots of deforestation
- Not explained by the fixed env. factors

Spatial probability of deforestation

- Computed at 30 m resolution
- Greener : lower probability
- Darker red : higher probability

Future forest cover

• green : residual forest in 2050

• red : deforested area 2010-2050

Improvements

- Python 2.7 and Python 3.x compatible
- Spatial random effects limited to country border
- Set of new functions for model validation
- Can be used from R with reticulate

Model peformance

model	deviance	perc
null	27629	0
nsre	25365	8
icar	19279	30
full	0	100

TODO: Add map of differences

- Deforestation and demography in Africa
 - Model
 - Results
 - Reflexion
- 2 forestatrisk Python module
 - Functionality
 - Improvements
 - Model performance

- Forecasting spatial deforestation spatially
 - Extending at the tropical scale
 - Computational challenge
- 4 Perspectives

Africa

- Map of deforestation probability in 2015
- Future forest cover in 2050, 2100

Asia

- 11 countries in tropical Asia
- Including MMR, THA, KHM, LAO, VNM (ReCaREDD focus countries)
- Ex. Vietnam in 2050 (half current deforestation rate)

Computational challenge

- Use of Google Cloud Computing
- Cluster of small machines with some cores
- Parrallelization : one country per machine

- Deforestation and demography in Africa
 - Model
 - Results
 - Reflexion
- 2 forestatrisk Python module
 - Functionality
 - Improvements
 - Model performance

- Forecasting spatial deforestation spatially
 - Extending at the tropical scale
 - Computational challenge
- Perspectives

Perspectives

- 1. Finalize the deforestation-demography study
- Consolidate the code for the forestatrisk Python module and publish a methodological paper
- 3. Update the spatial prediction for Africa taking into account the demography
- 4. Extend projection to South America and publish the pantropical future forest cover map in 2050

... Thank you for attention ...