Convex Optimization Examples

Jaime Tenorio

April 2023

Convex Optimization

A convex optimization problem can be stated as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ (1)
 $a_i^T x = b_i$, $i = 1, ..., p$,

where the function $f_0(x)$ and the inequality constraints $f_i(x)$ are convex, and the equality constraint must be affine.

The feasible set is convex because it is the intersection of of the domain of the constraints, which are convex.

$$D = \bigcap_{i}^{m} \mathbf{dom} f_{i} \tag{2}$$

Suppose we have a convex optimization problem where the objective function f_0 is differentiable. Let X be the feasible set of the problem. Then $x \in X$ is optimal if and only if:

$$\nabla f_0(x)^T (y - x) \ge 0 \quad \forall y \in X \tag{3}$$

Geometrically, this means that the gradient of the objective function at x points in the direction of the feasible set, in other words, it is a supporting hyperplane to X.

Unconstrained Problems

Suppose we have no constraint inequalities f_i and the objective function f_0 is differentiable. Then $x \in X$ is optimal if and only if:

$$\nabla f_0(x) = 0 \tag{4}$$

Take as an example the unconstrained quadratic optimization:

minimize
$$f_0(x) = \frac{1}{2}x^T P x + q^T x + r$$
 (5)

where $P \in \mathbf{S}_{+}^{n}$. The optimality condition gives:

$$\nabla f_0(x) = Px + q = 0 \tag{6}$$

We can visualize this in two dimensions in the following figure:

