26: Homomorphism and Quotient Rings

Given a ring R and $S \leq R$ a subring, we wish to make $R/S = \{r+S : r \in R\}$ (additive cosets) into a ring.

If we only consider the additive groups of R, S. We already know that R/S is an abelian group because R is an abelian group, so S must be a normal subgroup.

Now let's consider the multiplication:

$$(r_1 + S) \times (r_2 + S) = r_1 r_2 + S.$$

Let's try

$$(r_1 + s_1 + S) \times (r_2 + s_2 + S) = (r_1 + s_1)(r_2 + s_2) + S$$

= $r_1 r_2 + s_1 r_2 + r_1 s_2 + s_1 s_2 + S$

We need $(r_1r_2 + s_1r_2 + r_1s_2 + s_1 + s_2) - r_1r_2 = s_1r_2 + r_1s_2 + s_1 + s_2 \in S$.

This must work when $r_1 = r_2 = 0$, $s_1 s_2 \in S \ \forall \ s_1, s_2 \in S$.

This must work when $s_1 = 0$, $r_1 s_2 \in S \ \forall \ r_1 \in R$, $s_2 \in S$.

This must work when $s_2 = 0$, $s_1 r_2 \in S \ \forall \ s_1 \in S, r_2 \in R$.

By the above observation/requirements, we need to require S to be nonempty, closed under +, -, and if $r \in R$ and $s \in S$, then $rs, sr \in S$.

Definition: ideal

Let R be a ring and let $I \leq R$. We say I is a (two-sided) **ideal** of R if

- (i) $0 \in I$ or $I \neq \emptyset$
- (ii) If $i_1, i_2 \in I$ then $i_1 + i_2 \in I$ and $i_1 i_2 \in I$ (or negation).
- (iii) If $i \in I$ and $r \in R$ then $ri \in I$ (left ideal) and $ir \in I$ (right ideal).

If I is an ideal of R, we write $I \subseteq R$.

 $\it Note.$ The first two conditions are already given by subring. The third condition implies closure under multiplication.

Example. $\mathbb{Z} \leq \mathbb{Q}$ but \mathbb{Z} is not an ideal of \mathbb{Q} . Take $r = 3 \in \mathbb{Z}$ and $\frac{1}{7} \in \mathbb{Q}$, but $3 \times \frac{1}{7} \notin \mathbb{Z}$.

Example. $2\mathbb{Z} \leq \mathbb{Z}$. We know this is a subring. If $i \in 2\mathbb{Z}$ and $r \in \mathbb{Z}$, then $ri = ir \in 2\mathbb{Z}$. "Multiplying an even integer by any integer gives an even integer."

Example. $R = M_2(\mathbb{R})$ (matrix ring). Let $s = \{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in \mathbb{R} \}$. It's a subring.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & 0 \\ f & 0 \end{pmatrix} = \begin{pmatrix} ae + bf & 0 \\ ce + df & 0 \end{pmatrix}.$$

But it wouldn't work on the right.

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \not \in S.$$

So this is a left ideal but not a ring ideal. If we swap the columns or transpose, we can get a right ideal.

Let R be a ring and $I \subseteq R$. Define $R/I = \{r+I : r \in R\}$. Define

$$(r+I) + (s+I) = r+s+I$$

 $(r+I) \times (s+I) = rs+I$ well-defined

To show that this is a ring, we need to show associativity of \times and distributive laws.

Distributivity:

$$((r+I) + (s+I))(t+I) = ((r+s)+I) \times (t+I)$$

$$= (r+s)t+I$$

$$= rt + st + I$$

$$= (rt+I) + (st+I)$$

$$= ((r+I)(t+I)) + ((s+I)(t+I))$$

The rest are similar. Thus R/S is a ring!

Example. Let $n \in \mathbb{N}$. Then $n\mathbb{Z} \subseteq \mathbb{Z}$. Then $\mathbb{Z}/n\mathbb{Z}$ is a ring. This is \mathbb{Z}_n by definition.

Example. $\mathbb{Z}_7 := \mathbb{Z}/7\mathbb{Z}$.

$$(5+7\mathbb{Z}) \times (4+7\mathbb{Z}) = 20+7\mathbb{Z}$$

= $6+7\mathbb{Z}$ because $20-6 \in 7\mathbb{Z}$

So $\overline{5} \times \overline{4} = \overline{6}$.

Theorem

If R is commutative, then so is R/I. (The converse is false.)

If R has identity 1_R , then so does R/I which is $1_R + I$.

Let $\phi:R\to S$ be a ring homomorphism. It preserves addition and multiplication. The kernel

$$\ker \phi = \{ r \in R : \phi(r) = 0_S \}.$$

Theorem

 $\ker \phi \leq R$.

Proof

We know $\ker \phi \leq R$ subgroup by applying group theory and ignoring multiplication. We also need to know if $k \in \ker \phi$, $r \in R$, then $rk \in \ker \phi$ and $kr \in \ker \phi$.

$$\phi(rk) = \phi(r)\phi(k) = \phi(r) \cdot 0 = 0$$
$$\phi(kr) = 0$$

Thus, $rk \in \ker \phi, kr \in \ker \phi$.

Example. Let $I \subseteq R$. Consider the map $\pi : R \to R/I, r \mapsto r + I$. Then π is a ring homomorphism.

$$\pi(r+s) = (r+s) + I$$

$$\pi(r) + \pi(s) = (r+I) + (s+I)$$

$$\pi(r \times s) = rs + I$$

$$\pi(r) \times \pi(s) = (r+I)(s+I)$$

im $\pi = R/I$. The zero element of R/I is $0_R + I$.

$$r \in \ker \phi \Leftrightarrow \pi(r) = 0 + I$$

 $\Leftrightarrow r + I = 0 + I$
 $\Leftrightarrow r - 0 \in I \Leftrightarrow r \in I$

Summary: kernels of ring homomorphisms are ideals. Ideals are kernels of ring homomorphisms.

Theorem

Let $\phi: R \to S$ be a homomorphism of rings. ϕ is injective if and only if $\ker \phi = \{0_R\}$.