

BURSA TECHNICAL UNIVERSITY INSTITUTE OF NATURAL AND APPLIED SCIENCES DEPT. OF MECHANICAL ENGINERING

	·
STUDENT NAME:	
COURSE TITLE:	MECH 603 Advanced Mechanical Vibrations
ASSIGMENT TITLE:	Vibration of MDoF system and continuous media
ASSIGMENT NUMBER	2
ISSUE 13 DEC DATE 2012	DEADLINE 30 DEC SCORE DATE 2012
LECTURER NAME: Assist. Prof. Dr. Hakan Gökdağ SIGNED:	
Student declaration: (must be signed before submission)	
I declare that this assignment is my own work	
Student signature:	Date :

Please write your report by pen or computer, not pencil!

Problem 1

Half-car model of a vehicle is given in the figure. The physical properties are as follows: m=420 kg, $m_1=m_2=53 \text{kg}$, $I_x=820 \text{ kgm}^2$, $b_1=0.7 \text{m}$, $b_2=0.75 \text{m}$, $k=10000 \text{Nm}^{-1}$, $k_1=200000 \text{ Nm}^{-1}$, $k_2=2000 \text{ Nm}^{-1}$, $k_3=20000 \text{ Nm}^{-1}$, $k_4=1972900 \text{ Nm}^{-1}$, $k_4=1972900 \text{ Nm}^{-1}$, $k_5=200 \text{ Nsm}^{-1}$. The vheicle is subject to base motions y_1 and y_2 .

Equations of motion are:

$$[m]\ddot{\mathbf{x}} + [c]\dot{\mathbf{x}} + [k]\mathbf{x} = \mathbf{F}$$

where,

$$\mathbf{x} = \begin{bmatrix} x \\ \varphi \\ x_1 \\ x_2 \end{bmatrix}$$

$$[m] = \begin{bmatrix} m & 0 & 0 & 0 & 0 \\ 0 & I_x & 0 & 0 & 0 \\ 0 & 0 & m_1 & 0 & 0 \\ 0 & 0 & 0 & m_2 \end{bmatrix}$$

$$[c] = \begin{bmatrix} 2c & cb_1 - cb_2 & -c & -c & -c \\ cb_1 - cb_2 & cb_1^2 + cb_2^2 & -cb_1 & cb_2 \\ -c & -cb_1 & c & 0 & 0 \\ -c & cb_2 & 0 & c & 0 \end{bmatrix}$$

$$[k] = \begin{bmatrix} 2k & kb_1 - kb_2 & -k & -k & -k \\ kb_1 - kb_2 & kb_1^2 + kb_2^2 + k_R & -kb_1 & kb_2 \\ -k & -kb_1 & k + k_t & 0 & 0 \\ -k & kb_2 & 0 & k + k_t \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} 0 \\ 0 \\ y_1k_t \\ y_2k_t \end{bmatrix}.$$

- a) Find the undamped natural frequencies and vibration modes by
 - (i) Solving characteristic polynomial
 - (ii) Matrix iteration method.

(Note: Each step is to be given in detail. Built-in commands such as "eig", "eigs" etc. in Matlab environment or any other functions of different software packages (Mathematica, Mapple, etc) are not to be used)

- (iii) Plot the vibration modes, comment them and make conclusions.
- (iv) Compute modal mass and stiffness values.
- (v) Show that vibration modes are orthogonal to each other with respect to mass and stiffness matrices.
- **b**) Suppose that while moving with a speed V = 60 km/h the right tire passes over a half sine wave-like bump on the road as shown below, where a=30cm and b=5cm. Assuming zero initial conditions plot the 5 seconds responses of the coordinates x_1 and x_2 .

Problem 2

A beam with fixed one end is carrying a rigid tip mass M, and exhibits transverse vibrations. Physical properties are as follows: L=1m, E=210GPa, $\rho=7800$ kgm⁻³, sizes of the rectangular cross section a=2cm b=1cm, M is twice of the beam mass.

- a) Derive the equation of motion along with the suitable boundary conditions.
- **b**) Find the first five natural frequencies (Hz) and vibration modes of the system. Plot the vibration modes in the same figure.
- c) Assume that M=0, and an impulse force with magnitude 10N is applied on the tip at t=0. Plot the shape of the beam after 1, 3, and 5 seconds.