Parenthèse théorique: (loi Gamma et foution générative)

X m M(a, B) si son denvite est donnée par $f(n) = \frac{1}{\Gamma(a)} \stackrel{2}{\triangleright} n^{-1} \stackrel{2}{\triangleright} n \begin{cases} \frac{1}{a} > 0 \\ \frac{1}{a} > 0 \end{cases}$ elongen 1=1 Mars) et hai E(B) En plus de la fonction de devoite et la fonction de répartition, mons provons conactériser le lai d'une v.a à l'aide de la fauction ajanuratura donnée pon: $G_{X}(Y) = \mathbb{E}\left[e^{tX}\right] = \int \frac{e^{tx}}{f^{T}(a)} p^{2} \propto e^{-1} - pox$ $= \int \frac{\partial^{2}}{\partial x} \chi^{-1} - (\beta^{-1}) \chi$ $= \int \frac{\partial^{2}}{\partial x} \chi^{-1} - (\beta^{-1}) \chi$ il fant que $\beta-t>0$ pron que $\frac{d\kappa}{dy} = \frac{1}{\beta-t}$ Cette integrale prinsse exister

Application on changement de nominale
$$y = (p-t)x$$

bring $x = 30$ $y = 30$
 $x = 40$ $y = 40$
 $x = 40$

A qui sert un fonction generation? $T = X_1 + X_2$ on $X_1 \perp X_2$ ole mên Q_{01} exporner tille $\mathcal{E}(\lambda)$. independents

da la de Te?

nous allons calculer la fourin génerature de T2
your identifier sa loi

 $G_{+1}(t) = \mathbb{E}\left(e^{tT_2}\right) = \mathbb{E}\left[e^{t(x_1 + x_2)}\right]$

= \(\begin{align*} & \text{tx} & \text{tx

 $= \left(\frac{\lambda}{t - \lambda}\right) \times \left(\frac{\lambda}{t - \lambda}\right) = \left(\frac{\lambda}{t - \lambda}\right)^{2}$

donc, on part-concluse que $T_2 \sim \Gamma(2, \lambda)$.

le colul prinder montre la slifficalté de Calal de là de statistique simple sonne le somme de deux N. a enponentalles.

De la même façon, scient $\chi_1, ----, \chi_n$ n'id

In lei de T at donnée par so fourbien ajenimentie:
$$G_{+}(Y) = F_{+} \left(\begin{array}{c} t \left(X_{1} + \cdots + X_{n} \right) \\ e \end{array} \right) = \prod_{i=1}^{n} F_{+} \left(\begin{array}{c} t X_{i} \\ e \end{array} \right)$$

$$= \left(\begin{array}{c} \lambda \\ t - \lambda \end{array} \right)^{n} \quad \text{dear } T_{n} \in \Gamma\left(n,\lambda\right).$$

Eri du minimum de deux exponentielles:

 $X_1 \perp X_2 \longrightarrow \mathcal{E}(\lambda)$. Lie de $M = \min(X_1, X_2)$

Forction de répontition de M: $F_{M}(x) = P(M \leq 2) = P(min(X_1, X_2) \leq 2)$

et
$$P(\min(X_{\Lambda_3}X_2) \leq z) = \Lambda - P(\min(X_{\Lambda_3}X_2) > x)$$

 $= 1 - P(X_{\Lambda_3} > z) \times_2 > z)$
 $= \Lambda - P(X_{\Lambda_3} > z) \cdot P(X_{\Lambda_3} > x) = \Lambda - (e \times e)$
 $= \Lambda - e$ dow $H \sim E(\lambda_{\Lambda})$.

Exemple d'estimation du pour miter d'un loi esponentielle pour le mitherle des moments: X1, ..., Xn NS E(x) Su soit sur: E(X) = 1 (=) $\lambda = \frac{1}{E(X)}$

On sait que: $\mathbb{E}[X] = \frac{1}{\lambda}$ (=) $\lambda = \frac{1}{\mathbb{E}[X]}$ on sait que $X_n = \frac{1}{n}\sum_{i=1}^{n}X_i$ est un approximation de $\mathbb{E}[X]$

donc l'estimateur par la méthode des moments de 2:

$$\hat{\lambda} = \frac{1}{X_N}$$

Show grown (estimaten pru to method seo minus 15):

$$X_1, \dots, X_N \xrightarrow{(i)} \Pi(d, \beta) \xrightarrow{(i)} \text{ for some force}$$
:

 $f(x) = \frac{1}{\Gamma(\alpha)} \beta d \times d = \frac{1}{\beta} \left[\frac{1}{H(x)} = d \beta \right]$

On soint que X_n apparche et $X_n^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ apparche

$$\mathbb{E}(X^2) = d \beta \dots = 0$$

$$\mathbb{E}(X^2) - (\mathbb{E}(X))^2 = d \beta^2 \dots = 0$$

$$\mathbb{E}(X^2) - (\mathbb{E}(X))^2 = d \beta^2 \dots = 0$$

On soint que X_n apparche $X_n^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ apparche

$$f(x) = \begin{cases} \frac{1}{\theta} & \text{si o} < x < 0 \\ 0 & \text{since} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{\theta} & \text{si o} < x < 0 \\ 0 & \text{since} \end{cases}$$

$$\begin{cases} \frac{1}{\theta} & \text{si o} < x < 0 \\ 0 & \text{since} \end{cases}$$

Estimateur de
$$\theta$$
 par la méthode des moments:

on voit que: $\mathbb{E}(X) = \frac{\theta}{2}$ et $Var(X) = \frac{\theta^2}{12}$
 $\theta = 2\mathbb{E}(X)$ oborc $\theta_n = 2\overline{X}n$
 $\mathbb{E}(\theta_n) = \mathbb{E}(2\overline{X}n) = \frac{2}{n}\sum_{i=1}^{n}\mathbb{E}(X_i) = \frac{x^i x^i}{x^i}\frac{\theta}{x^i}$
 $Var(\overline{X}n) = Var(2\overline{X}n) = 4 \text{ Var}(\overline{X}n)$
 $= 4 \times \frac{\theta^2}{12n} = \frac{\theta^2}{3n}$

Un second estimateur:

Intuitivement $\theta_2 = may\{x_1, \ldots, x_n\}$ - Calculer la li de $\widehat{\theta}_{2}$, son espérance et su variance? - Propriser en etémeten 23 sous biais, bousé sur Biais d'une vanionce empirique: Soient X1, ..., Xn vid telles que $\mathbb{E}(X_n) = \mu$ er $\sqrt{m(X_n)} = \sigma^2$ - d'estimoteur de 12 par la méthode des moments et donnée par

moments at donnée par $S^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - x_n)^2$. Coluter le boiais de S^2 .

Loi un joure avec deux bornes incommes:

Snient X1, ---, Xn iid Unif [0x, 92] -10<91<02<400

$$\mathbb{E}(X_1) = \underbrace{x_1 + \theta_L}_{2} \quad \text{at} \quad \mathbb{E}(X_1^2) = \underbrace{\theta_1^2 + \theta_2 + \theta_2^2}_{3}$$

Proposer deux estimateurs ê, et ê, de et êz form la méthode des moments.

Soi de Pareto en dit que $X \sim Sa(a, b)$ $f(x) = 0 \quad \frac{a}{\gamma^{0+1}} \quad \text{if } x > a, \quad a > 0$ $f(x) = 0 \quad \frac{a}{\gamma^{0+1}} \quad \text{if } x > a, \quad a > 0$

 $\mathbb{E}(x) = \frac{\theta \alpha}{\theta - 1} \quad \text{at } \mathbb{E}(x^2) = \frac{\theta^2 \alpha^2}{(\theta - 2)}$

Notions que: $\frac{(\theta-1)^2}{\theta(\theta-2)}-1=\frac{1}{\theta(\theta-\theta)}$

Propreser deux extimateurs à et êt par la méthode des