中华人民共和国国家标准

物理科学和技术中使用的数学符号

GB 3102. 11 — 93

代替 GB 3102.11-86

Mathematical signs and symbols for use in the physical sciences and technology

引言

本标准参照采用国际标准 ISO 31-11:1992《量和单位 第十一部分:物理科学和技术中使用的数学标志与符号》。

本标准是目前已经制定的有关量和单位的一系列国家标准之一,这一系列国家标准是:

- GB 3100 国际单位制及其应用;
- GB 3101 有关量、单位和符号的一般原则;
- GB 3102.1 空间和时间的量和单位;
- GB 3102.2 周期及其有关现象的量和单位;
- GB 3102.3 力学的量和单位:
- GB 3102.4 热学的量和单位;
- GB 3102.5 电学和磁学的量和单位;
- GB 3102.6 光及有关电磁辐射的量和单位;
- GB 3102.7 声学的量和单位;
- GB 3102.8 物理化学和分子物理学的量和单位;
- GB 3102.9 原子物理学和核物理学的量和单位;
- GB 3102.10 核反应和电离辐射的量和单位;
- GB 3102.11 物理科学和技术中使用的数学符号;
- GB 3102.12 特征数;
- GB 3102.13 固体物理学的量和单位。

上述国家标准贯彻了《中华人民共和国计量法》、《中华人民共和国标准化法》、国务院于1984年2月27日公布的《关于在我国统一实行法定计量单位的命令》和《中华人民共和国法定计量单位》。

本标准特殊说明:

变量(例如x,y等)、变动附标(例如 Σx ;中的i)及函数(例如f,g等)用斜体字母表示。点A、线段 AB 及弧CD 用斜体字母表示。在特定场合中视为常数的参数(例如a,b等)也用斜体字母表示。

有定义的已知函数 (例如 sin, exp, ln, Γ等)用正体字母表示。其值不变的数学常数 (例如 e=2.718 281 8····, π =3.141 592 6····, i^2 =-1 等)用正体字母表示。已定义的算子 (例如 div, δx 中的 δ 及 df/dx 中的 d)也用正体字母表示。

数字表中数(例如 351 204,1.32,7/8)的表示用正体。

函数的自变量写在函数符号后的圆括号中,且函数符号与圆括号之间不留空隙,例如 f(x), $\cos(\omega t + \varphi)$ 。如果函数的符号由两个或更多的字母组成且自变量不含+,-, \times , \cdot 或 / 等运算时,括于自变量的圆括号可以省略,这时在函数与自变量符号之间应留一空隙,例如 ent 2. 4, $\sin n\pi$,arcosh 2A,

Ei x

为了避免混淆,常采用圆括号。例如不应将 $\cos(x)+y$ 或($\cos x$)+y写成 $\cos x+y$,因为后者可能被误解为 $\cos(x+y)$ 。

当一个表示式或方程式需断开、用两行或多行来表示时,最好在紧靠其中记号=,+,-,±,干,×, • 或/后断开,而在下一行开头不应重复这一记号。

用来表示某确定物理量的标量、矢量和张量与坐标系的选择无关,尽管矢量或张量的分量与坐标系的选择有关。

对"矢量 a 的分量"即 a_z , a_v 和 a_z 与"a 的分矢量"即 $a_z e_z$, $a_v e_v$ 和 $a_z e_z$ 加以区别是重要的。

径矢量的笛卡儿分量等同于径矢量端点的笛卡儿坐标。

物理量中的矢量可写成数值矢量与单位相乘的形式,

例:

分量
$$F_z$$
 数值矢量
$$F = (3N, -2N, 5N) = (3, -2, 5)N$$
 数值 单位 单位

这里的单位 N 为标量,同样的办法也适用于二阶和高阶张量。

本标准的主要内容以表格形式列出。

如果在表格的同一项号中所给出的数学符号或表示式多于一个时,它们应是等同的。但在列出的顺序中,总是将常用的数学符号、相应的名称或表示式靠前列出。

在本表格备注一栏中给出的是符号的使用说明和应用示例。

本标准规定物理科学、工程技术和有关的教学中一般常用的数学符号;过于专门的数学符号未列入。

在本标准中,将国际标准 ISO 31-11:1992《量和单位 第十一部分:物理科学和技术中使用的数学标志与符号》称为[1],将原国家标准 GB 789-65《数学符号(试行草案)》称为[2]。

1 主题内容与适用范围

本标准规定了物理科学和技术中使用的数学符号的含义、读法和应用。本标准适用于所有科学技术领域。

2 物理科学和技术中使用的数学符号表

2.1 几何符号¹⁾

项号	符号	意义或读法	备注及示例
11-1-1	AB,AB	[直] ²⁾ 线段 AB the line segment AB	用 <i>AB</i> , <i>AB</i> 或小写的拉丁字母表示该直线段的长。 矢量的表示参阅 11-12-1
11-1.2		[平面]角 plane angle	参阅 GB 3102.1 的 1-1 及 1-1.a ~1-1.d
11-1.3	AВ	孤 AB the arc AB	当 AB 为圆弧时,可用 AB 表示 圆弧 AB [对应]的度数
11-1.4	π	圆周率 ratio of the circumference of a circle to its diameter	圆周长与直径的比 , π=3.141 592 6····
11-1.5	Δ	三角形 triangle	
11-1.6		平行四边形 parallelogram	
11-1.7	•	圆 circle	
11-1.8		垂直 is perpendicular to	
11-1.9	//,	平行 is parallel to	■ 用于表示平行且相等
11-1.10	S	相似 is similar to	
11-1-11	S <u>I</u>	全等 is congruent to	

¹⁾ 几何符号取材于[2]。

²⁾ 行文中方括号内的文字表示可以略去或不读,下同。

2.2 集合论符号

项号	符号	应用	意义或读法	备注及示例
11-2. 1	€	$x \in A$	x 属于 A;x 是集合 A 的一个元[素] belongs to A; x is an element of the set A	集合 A 可简称为集 A
11-2. 2	∉	y ∉A	y 不属于A;y 不是集合A的 一个元[素] y does not belong to A; y is not an element of the set A	也可用€或₹
11-2.3		A x	集 A 包含[元] x the set A contains x (as element)	
11-2. 4		A y	集 A 不包含[元] y the set A does not contain y (as element)	也可用 或
11-2.5	{,,}	$\{x_1,x_2,\cdots,x_n\}$	诸元素 x_1,x_2,\dots,x_n 构成的集 set with elements x_1,x_2,\dots,x_n	也可用 $\{x_i, i \in I\}$,这里的 I 表示指标集
11-2.6	{ }	$\{x \in A \mid p(x)\}$	使命题 $p(x)$ 为真的 A 中诸元[素] 之集 set of those elements of A for which the proposition $p(x)$ is true	例: $\{x \in R x \le 5\}$,如果从前后关系来看,集 A 已很明确,则可使用 $\{x p(x)\}$ 来表示,例如: $\{x x \le 5\}$ $\{x \in A p(x)\}$ 有时也可写成 $\{x \in A : p(x)\}$ 或 $\{x \in A ; p(x)\}$
11-2.7	card	card(A)	A 中诸元素的数目; A 的势(或基数) number of elements in A; cardinal of A	
11-2.8	Ø		空集 the empty set	

项号	符号	应用	意义或读法	备注及示例
11-2.9	,N		非负整数集;自然数集 the set of positive integers and zero; the set of natural numbers	={0,1,2,3,···} 自 11-2.9 至 11-2.13 集内排 除 0 的集,应上标星号或下标+ 号,例如 *或 +; _k = {0,1,···,k-1}
11-2.10	, Z		整数集 the set of integers	={····,-2,-1,0,1,2,····} 参阅 11-2. 9 的备注
11-2-11	,Q		有理数集 the set of rational numbers	参阅 11-2. 9 的备注
11-2.12	,R		实数集 the set of real numbers	参阅 11-2.9 的备注
11-2.13	,с		复数集 the set of complex numbers	参阅 11-2.9 的备注
11-2.14	[,]	[a,b]	中由 a 到 b 的闭区间 closed interval in from a (included) to b (included)	$[a,b] = \{x \in a \leqslant x \leqslant b\}$
11-2. 15].]] a,b] (a,b]	中由 a 到 b(含于内)的左 半开区间 left half-open interval in from a (excluded) to b (included)	
11-2. 16	[,[$\begin{bmatrix} a,b \end{bmatrix}$	中由 a(含于内)到 b 的右 半开区间 right half-open interval in from a (included) to b (excluded)	$[a,b] = \{x \in a \leq x < b\}$
11-2-17],[a,b[(a,b)	中由 a 到 b 的开区间 open interval in from a (excluded) to b (excluded)	

项号	符号	应用	意义或读法	备注及示例
11-2. 18	⊆	$B \subseteq A$	B 含于 A; B 是 A 的子集 B is included in A; B is a subset of A	B 的每一元均属于 A ,也可以 用⊂
11-2. 19	≨	B⊊A	B 真包含于 A; B 是 A 的真子集 B is properly included in A; B is a proper subset of A	B 的每一元均属于 A ,但 B 不等于 A
11-2. 20	\$	C⊈A	C 不包含于A; C 不是 A 的 子集 C is not included in A; C is not a subset of A	也可用⊄
11-2-21	⊇	A⊇B	A 包含 B[作为子集] A includes B (as subset)	A 包含了 B 的每一元,也可用 \bigcirc 。 $A \supseteq B 与 B \subseteq A$ 的含义相同
11-2. 22	⊋	A⊋B	A 真包含 B A includes B properly	A 包含了 B 的每一元,但 A 不等于 B 。 $A \supseteq B \cup B \subseteq A$ 的含义相同
11-2. 23	⊉	A⊉C	A 不包含 C[作为子集] A does not include C (as subset)	也可用 力。 $A \not\supseteq C = A$ 的含义相同
11-2. 24	U	$A \cup B$	A 与 B 的并集 union of A and B	属于 A 或属于 B 或属于两者的所有元的集。 $A \cup B = \{x \mid x \in A \ \forall x \in B\}$ 参阅 11-3. 2
11-2. 25	U		诸集 A_1, \dots, A_n 的并集 union of a collection of sets A_1, \dots, A_n	

项号	符号	应用	意义或读法	备注及示例
11-2. 26	n	$A \cap B$	A 与 B 的交集 intersection of A and B	所有既属于 A 又属于 B 的元的集。 $A \cap B = \{x \mid x \in A \land x \in B\}$ 参阅 11-3. 1
11-2. 27	n	${\displaystyle\bigcap_{i=1}^{n}}A_{i}$	诸集 A_1, \dots, A_n 的交集 intersection of a collection of sets A_1, \dots, A_n	
11-2. 28	\	$A \setminus B$	A 与 B 之差;A 减 B difference of A and B; A minus B	所有属于 A 但不属于 B 的元的集。 $A \setminus B = \{x \mid x \in A \land x \notin B\}$ 也可用 $A - B$
11-2. 29		дB	A 中子集 B 的补集或余集 complement of subset B of A	A 中不属于子集 B 的所有元的集。 ${}_{A}B = \{x \mid x \in A \land x \notin B\}$ 如果行文中集 A 已很明确,则常可省去符号 A 。 也可写成 ${}_{A}B = A \setminus B$
11-2. 30	(,)	(a,b)	有序偶 a,b; 偶 a,b ordered pair a,b; couple a, b	(a,b) = (c,d) 当且仅当 a=c 及 b=d 不与其他符号混淆时,也可用 〈a,b〉
11-2.31	(,,)	(a_1,a_2,\cdots,a_n)	有序 n 元组 ordered n-tuplet	也可用〈a1,a2,…,a4〉
11-2. 32	×	$A \times B$	A 与 B 的笛卡儿积 cartesian product of A and B	所有由 $a \in A$ 与 $b \in B$ 作成的有序偶(a,b)的集。 $A \times B = \{(a,b) a \in A \land b \in B\}$ $A \times A \times \cdots \times A$ 记成 A^* , 其中 n 为乘积中的因子数

项号	符号	应用	意义或读法	备注及示例
11-2. 33	Δ	Δ_A	$A \times A$ 中点对 (x,x) 的集,其 中 $x \in A$; $A \times A$ 的对角集 set of pairs (x,x) of $A \times$ A , where $x \in A$; diagonal of the set $A \times A$	$\Delta_A = \{(x,x) x \in A\}$ 也可用 id_A

2.3 数理逻辑符号

2. 3 数柱	24471			
项号	符号	应用	符号名称	意义、读法及备注
11-3.1	٨	p∧q	合取符号 conjunction sign	p 和 q
11-3.2	V	p∨q	析取符号 disjunction sign	p 或 q
11-3.3	7	¬ p	否定符号 negation sign	p 的否定;不是 p;非 p
11-3. 4	⇒	$p \Rightarrow q$	推断符号 implication sign	若 p 则 q ; p 蕴含 q 也可写为 q←p 有时也用→
11-3.5	\Leftrightarrow	$p \Leftrightarrow q$	等价符号 equivalence sign	p ⇒ q 且 q ⇒ p ; p 等价于 q 有时也用↔
11-3.6	A	$\forall x \in A p(x)$ $(\forall x \in A) p(x)$	全称量词 universal quantifier	命题 $p(x)$ 对于每一个属于 A 的 x 为真。 当考虑的集合 A 从上下文看很明白时,可用记号 $\forall x p(x)$
11-3.7	Э	$\exists x \in A p(x)$ $(\exists x \in A) p(x)$	存在量词 existential quantifier	存在 A 中的元 x 使 $p(x)$ 为真。 当考虑的集合 A 从上下文看很明白时,可用记号 x $p(x)$ 。 x y

2.4 杂类符号

项号	符号	应用	意义或读法	备注及示例
11-4.1	=	a=b	a 等于 b a is equal to b	■用来强调这一等式是数学上 的恒等[式]
11-4.2	≠	a≠b	a 不等于 b a is not equal to b	
11-4. 3	def	a def b	按定义 a 等于 b 或 a 以 b 为 定义 a is definition equal to b	例: p def mv 式中 p 为动量,m 为质量,v 为速 度 也可用 d
11-4. 4	<u></u>	a riangleq b	a 相当于 b a corresponds to b	例如在地图上当 1 cm 相当于 10 km 长时,可写成 1 cm 10 km
11-4.5	*	a≈b	a 约等于 b a is approximately equal to b	符号~被用于"渐近等于";参 阅 11-6.11
11-4.6	∞	a ∞b	a 与b 成正比 a is proportional to b	在[1]中也用~
11-4.7	:	a : b	a 比 b ratio of a to b	选自[2]
11-4.8	<	a b	a 小于 b a is less than b	
11-4.9	>	b>a	b 大于 a b is greater than a	
11-4.10	<	$a \leqslant b$	a 小于或等于 b a is less than or equal to b	不用≦
11-4.11	>	b≥a	b 大于或等于 a b is greater than or equal to a	不用≧
11-4.12	«	$a \ll b$	a 远小于 b a is much less than b	
11-4.13	>>	b≫a	b 远大于 a b is much greater than a	

项号	符号	应用	意义或读法	备注及示例
11-4.14	∞		无穷[大]或无限[大] infinity	
11-4-15	~	a~b	数字范围 the range of numbers	这里的 a 和 b 为不同的实数, 例如 5~10 表示由 5 至 10。 选自[2]
11-4.16	•	1 3. 59	小数点 decimal point	整数和小数之间用处于下方位置的小数点"·"分开。参阅 GB 3101 的 3.3.2
11-4-17		3. 123 82	循环小数 circulator	即:3.123 823 82…
11-4. 18	%	5%~10%	百分率 percent	~前的%不应省略
11-4-19	()		圆括号 parentheses	
11-4. 20			方括号 square brackets	
11-4-21	{ }		花括号 braces	
11-4. 22	< >		角括号 angle brackets	
11-4. 23	土		正或负 positive or negative	
11-4. 24	Ŧ		负或正 negative or positive	
11-4. 25	max		最大 maximum	
11-4. 26	min		最小 minimum	

2.5 运算符号

项号	符号,应用	意义或读法	备注及示例
11-5.1	a+b	a 加 b a plus b	
11-5.2	a — b	a 减 b a minus b	
11-5.3	$a\pm b$	a 加或減 b a plus or minus b	
11-5.4	a∓b	a 减或加 b a minus or plus b	$-(a\pm b)=-a\mp b$
11-5. 5	$ab, a \cdot b, a \times b$	a 乘以 b a multiplied by b	参阅 11-2. 32, 11-12. 6 及 11-12.7。 数的乘号用叉(×)或上下居中的圆点(•)。如出现小数点符号时,数的相乘只能用叉。 参阅GB 3101的3.1.3和3.3.3
11-5.6	$\frac{a}{b}$, a/b , ab^{-1}	a 除以b或a被b除 a divided by b	参阅 GB 3101 的 3.1.3
11-5. 7	$\sum_{i=1}^{n} a_{i}$	$a_1+a_2+\cdots+a_n$	也可记为 $\sum_{i=1}^{n} a_{i}, \sum_{i} a_{i}, \sum_{i} a_{i}, \sum_{i} a_{i}$ $\sum_{i=1}^{\infty} a_{i} = a_{1} + a_{2} + \dots + a_{n} + \dots$
11-5. 8	$\prod_{i=1}^{s} a_{i}$	$a_1 \cdot a_2 \cdot \cdots \cdot a_n$	也可记为 $\prod_{i=1}^{n}a_{i},\prod_{i}a_{i},\prod_{i}a_{i},\prod a_{i}$
11-5. 9	a*	a 的 p 次方或 a 的 p 次幂 a to the power p	
11-5. 10	$a^{1/2}, a^{\frac{1}{2}},$ \sqrt{a}, \sqrt{a}	a 的二分之一次方;a 的平方 根 a to the power 1/2; square root of a	参阅 11-5.11

项号	符号,应用	意义或读法	备注及示例
11-5. 11	$a^{1/s}, a^{\frac{1}{s}},$ $\sqrt[s]{a}$, $\sqrt[s]{a}$	a 的n 分之一次方;a 的n 次 方根 a to the power 1/n; nth root of a	在使用符号 〈 或 〈 时,为了避免混淆,应采用括号把被开方的复杂表示式括起来
11-5. 12	α	a 的绝对值;a 的模 absolute value of a; modules of a	也可用 abs a
11-5. 13	sgn a	a 的符号函数 signum a	对于实数 a : $ sgn a = \begin{cases} 1 & \exists a > 0 \\ 0 & \exists a = 0 \\ -1 & \exists a < 0 \end{cases} $ 对于复数 a , 参阅 11-9.7
11-5. 14	\overline{a} , $\langle a \rangle$	a 的平均值 mean value of a	如果平均值的求法在文中不明了,则应指出其形成的方法。若 \overline{a} 容易与 a 的复共轭混淆时,就用 $\langle a \rangle$
11-5. 15	n!	n 的阶乘 factorial n	$n \geqslant 1$ 时, $n! = \prod_{k=1}^{n} k = 1 \times 2 \times 3 \times \dots \times n$ $n = 0$ 时, $n! = 1$
11-5. 16	$\binom{n}{p}$, C_n^p	二项式系数;组合数 binomial coefficient n,p	$\binom{n}{p} = \frac{n!}{p! (n-p)!}$
11-5. 17	ent a,E(a)	小于或等于 a 的最大整数; 示性 a the greatest integer less than or equal to a; characteristic of a	例:ent 2.4=2 ent(-2.4)=-3 有时也用[a]

2.6 函数符号

项号	符号,应用	意义或读法	备注及示例
11-6.1	f	函数 f function f	也可以表示为 x→f(x)
11-6.2	$f(x)$ $f(x,y,\cdots)$	函数 f 在 x 或在 (x,y,\cdots) 的值 value of the function f at x or at (x,y,\cdots) respectively	也表示以 x,y,… 为自变量的 函数 f
11-6.3	$f(x) _a^b$ $[f(x)]_a^b$	f(b)-f(a)	这种表示法主要用于定积分计 算
11-6.4	$g\circ f$	f 与 g 的合成函数或复合函数 the composite function of f and g	$(g \circ f)(x) = g(f(x))$
11-6.5	<i>x</i> → <i>a</i>	x 趋于 a x tends to a	用 <i>x</i> ₃→a 表示序列{ <i>x</i> ₃}的极限 为 a
11-6.6	$\lim_{x \to a} f(x)$ $\lim_{x \to a} f(x)$	x 趋于 a 时 $f(x)$ 的极限 limit of $f(x)$ as x tends to a	$\lim_{x\to a} f(x) = b$ 可以写为: $f(x) \to b$ 当 $x\to a$ 右极限及左极限可分别表示 为: $\lim_{x\to a} + f(x)$ 和 $\lim_{x\to a} - f(x)$
11-6.7	lim	上极限 superior limit	
11-6.8	<u>lim</u>	下极限 inferior limit	
11-6.9	sup	上确界 supremum	
11-6.10	inf	下确界 infimum	11-6.7至11-6.10取材于[2]
11-6.11	~	渐近等于 is asymptotically equal to	例: $\frac{1}{\sin(x-a)} \simeq \frac{1}{x-a} \exists x \to a$

项号	符号,应用	意义或读法	备注及示例
11-6.12	O(g(x))	f(x)=O(g(x))的含义为 $ f(x)/g(x) $ 在行文所述的 极限中有上界 $ f(x)/g(x) $ is bounded above in the limit implied by the context	当 f/g 与 g/f 都有界时,称 f 与 g 是同阶的
11-6.13	o(g(x))	f(x) = o(g(x))表示在行文 所述的极限中 $f(x)/g(x)$ $\rightarrow 0$ $f(x)/g(x) \rightarrow 0$ in the limit implied by the context	
11-6.14	Δx	x 的[有限]增量 (finite) increment of x	
11-6.15	$rac{ ext{d}f}{ ext{d}x}$ $ ext{d}f/ ext{d}x$ f'	单变量函数 f 的导[函]数或微商 derivative of the function f of one variable	也可用 Df 。 即: $\frac{df(x)}{dx}$, $df(x)/dx$, $f'(x)$, $Df(x)$ 。 如自变量为时间 t ,也可用 f 表示 df/dt
11-6.16	$\left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_{x=a}$ $\left(\mathrm{d}f/\mathrm{d}x\right)_{x=a}$ $f'(a)$	函数 f 的导[函]数在 α 的值 value at α of the derivative of the function f	也可用 $\frac{\mathrm{d}f}{\mathrm{d}x}\Big _{x=a}$ 或 $\mathrm{D}f(a)$
11-6.17	$\frac{\mathrm{d}^{*}f}{\mathrm{d}x^{*}}$ $\mathrm{d}^{*}f/\mathrm{d}x^{*}$ $f^{(*)}$	单变量函数f的n阶导函数 nth derivative of the function f of one variable	也可用 $D^{\bullet}f$ 。 当 $n=2,3$ 时,也可用 f'',f''' 来 代替 $f^{(\bullet)}$ 。如自变量是时间 t ,可 用 f 来代替 $\frac{d^2f}{dt^2}$
11-6.18	<u>Af</u> Ar Af/Ar A₂f	多变量 x,y,\cdots 的函数 f 对于 x 的偏微商或偏导数 partial derivative of the function f of several variables x,y,\cdots with respect to x	即: $\frac{\partial f(x,y,\cdots)}{\partial x}$, $\partial f(x,y,\cdots)/\partial x$, $\partial f(x,y,\cdots)$ 。 也可用 $\int f_x$ 或 $\left(\frac{\partial f}{\partial x}\right)_y$ … $D_x = \frac{1}{i}\partial_x$ 等常用于 Fourier 变换

项号	符号,应用	意义或读法	备注及示例
11-6. 19	ær*ay™	函数 f 先对 y 求 m 次偏微 商,再对 x 求 n 次偏微商;混合偏导数 n th partial derivative of the function $\partial^n f/\partial y^m$ of several variables x , y , with respect to x ; mixed partial derivative	
11-6. 20	$\frac{\partial(u,v,w)}{\partial(x,y,z)}$	u,v,w 对 x,y,z 的函数行 列式 Jacobian; functional determinant of the functions u,v,w with respect to x,y,z	即: $\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}$ 11-6. 19 与 11-6. 20 选自[2]
11-6. 21	d <i>f</i>	函数 f 的全微分 total differential of the function f	$\mathrm{d}f(x,y,\cdots) = \frac{\partial f}{\partial x}\mathrm{d}x + $ $\frac{\partial f}{\partial y}\mathrm{d}y + \cdots$
11-6. 22	δf	函数 f 的(无穷小)变分 (infinitesimal) variation of the function f	
11-6. 23	$\int f(x) \mathrm{d}x$	函数 f 的不定积分 an indefinite integral of the function f	
11-6. 24	$\int_{a}^{b} f(x) dx$ $\int_{a}^{b} f(x) dx$	函数 f 由 a 至 b 的定积分 definite integral of the function f from a to b	
11-6. 25	$\iint\limits_{A}f(x,\!y)\;\mathrm{d}A$	函数 $f(x,y)$ 在集合 A 上的 二重积分 the double integral of function $f(x,y)$ over set A	选自 [2]。 $\int_{\mathcal{I}}, \int_{\mathcal{I}}, \int_{\mathcal{I}}, \int_{\mathcal{I}} \mathcal{I}$ 分别用于沿曲 线 C ,沿曲面 S ,沿体积 V 以及沿闭曲线或闭曲面的积分

项号	符号,应用	意义或读法	备注及示例
11-6. 26	δ_{ik}	克罗内克 δ 符号 Kronecker delta symbol	$\delta_{ii} = egin{cases} 1 & \exists \ i = k \\ 0 & \exists \ i eq k \end{cases}$ 式中 $i = k$ 均为整数
11-6. 27	Eijk	勒维-契维塔符号 Levi-Civita symbol	ε _{ijk} = 1 若 ijk 为 1,2,3 的偶排列 -1 若 ijk 为 1,2,3 的奇排列 0 若 ijk 为 1,2,3 的真重复 排列
11-6. 28	$\delta(x)$	狄拉克 δ 分布[函数] Dirac delta distribution (function)	$\int_{-\infty}^{+\infty} f(x)\delta(x)dx = f(0)$
11-6. 29	ε(x)	单位阶跃函数;海维赛函数 unit step function; Heaviside function	$ \epsilon(x) = \begin{cases} 1 & \exists x > 0 \\ 0 & \exists x < 0 \end{cases} $ 也可用 $\mathbf{H}(x)$ $\mathbf{f}(t)$ 用于时间的单位阶跃函数
11-6.30	f * g	f 与 g 的卷积 convolution of f and g	$(f * g)(x) = \int_{-\infty}^{+\infty} f(y)g(x - y)dy$

2.7 指数函数和对数函数符号

项号	符号,表达式	意义或读法	备注及示例
11-7.1	a^{x}	x 的指数函数(以 a 为底) exponential function (to the base a) of x	比较 11-5.9
11-7.2	е	自然对数的底 base of natural logarithms	$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2.718 \ 281 \ 8 \cdots$
11-7.3	e ^x ,exp x	x 的指数函数(以e 为底) exponential function (to the base e) of x	在同一场合中,只用其中一种 符号

项号	符号,表达式	意义或读法	备注及示例
11-7.4	$\log_a x$	以α为底的x的对数 logarithm to the base α of x	当底数不必指出时,常用 logx 表示
11-7.5	ln x	$\ln x = \log_e x$ x 的自然对数 $natural logarithm of x$	$\log x$ 不能用来代替 $\ln x$, $\lg x$, $\log x$, $\log_{10}x$, $\log_{2}x$
11-7.6	lg x	$\lg x = \log_{10} x$ x 的常用对数 $subsetem common (decimal)$ $subsetem common (decimal)$	参阅 11-7.5 的备注
11-7.7	16 x	$1b \ x = \log_2 x$ x 的以 2 为底的对数 binary logarithm of x	参阅 11-7.5 的备注

2.8 三角函数10和双曲函数符号

项号	符号,表达式	意义或读法	备注及示例
11-8.1	sin x	x 的正弦 sine of x	
11-8.2	cos x	x 的余弦 cosine of x	
11-8.3	tan x	x 的正切 tangent of x	也可用 tg x
11-8.4	cot x	x 的余切 cotangent of x	$\cot x = 1/\tan x$
11-8.5	Sec x	x 的正割 secant of x	$\sec x = 1/\cos x$
11-8.6	csc x	x 的余割 cosecant of x	也可用 $\cos c x$ $\csc x = 1/\sin x$

¹⁾ 在[1]中称为圆函数。

项号	符号,表达式	意义或读法	备注及示例
11-8.7	sin ^m x	sin x 的 m 次方 sin x to the power m	选自[2]。 其他三角函数和双曲函数的 <i>m</i> 次方的表示法类似
11-8.8	arcsin x	x 的反正弦 arc sine of x	$y = \arcsin x \Leftrightarrow x = \sin y$, $-\pi/2 \leqslant y \leqslant \pi/2$ 反正弦函数是正弦函数在上述 限制下的反函数
11-8.9	arccos x	x 的反余弦 arc cosine of x	$y = \arccos x \Leftrightarrow x = \cos y$, $0 \leqslant y \leqslant \pi$ 反余弦函数是余弦函数在上述 限制下的反函数
11-8. 10	arctan x	x 的反正切 arc tangent of x	也可用 $\operatorname{arctg} x$ 。 $y = \operatorname{arctan} x \Leftrightarrow x = \operatorname{tan} y$, $-\pi/2 < y < \pi/2$ 反正切函数是正切函数在上述 限制下的反函数
11-8.11	arccot x	x 的反余切 arc cotangent of x	$y = \operatorname{arccot} x \Leftrightarrow x = \cot y$, $0 < y < \pi$ 反余切函数是余切函数在上述 限制下的反函数
11-8. 12	arcsec x	x 的反正割 arc secant of x	$y = \operatorname{arcsec} x \Leftrightarrow x = \operatorname{sec} y$, $0 \leqslant y \leqslant \pi, y \neq \pi/2$ 反正割函数是正割函数在上述限制下的反函数
11-8. 13	arcese x	x 的反余割 arc cosecant of x	也可用 $\operatorname{arccosec} x$ 。 $y = \operatorname{arccsc} x \Leftrightarrow x = \operatorname{csc} y$, $-\pi/2 \leqslant y \leqslant \pi/2$, $y \neq 0$ 反余割函数是余割函数在上述限制下的反函数。 对于 $11-8$. 8 至 $11-8$. 13 各项不采用 $\sin^{-1}x$, $\cos^{-1}x$ 等符号,因为可能被误解为 $(\sin x)^{-1}$, $(\cos x)^{-1}$ 等

项号	符号,表达式	意义或读法	备注及示例
11-8.14	sinh x	x 的双曲正弦 hyperbolic sine of x	也可用 sh x
11-8. 15	cosh x	x 的双曲余弦 也可用 ch x hyperbolic cosine of x	
11-8.16	tanh x	x 的双曲正切 hyperbolic tangent of x	也可用 th x
11-8. 17	coth x	x 的双曲余切 hyperbolic cotangent of x	$\coth x = 1/\tanh x$
11-8. 18	sech x	x 的双曲正割 hyperbolic secant of x	$\operatorname{sech} x = 1/\cosh x$
11-8. 19	csch x	x 的双曲余割 hyperbolic cosecant of x	也可用 $\cos ch x$ 。 $\cosh x = 1/\sinh x$
11-8. 20	arsinh x	x 的反双曲正弦 inverse hyperbolic sine of x	也可用 $arsh x$ 。 $y = arsinh x \Leftrightarrow x = sinh y$ 反双曲正弦函数是双曲正弦函数的反函数
11-8. 21	arcosh x	x 的反双曲余弦 inverse hyperbolic cosine of x	也可用 $arch x$ 。 $y = arcosh x \Leftrightarrow x = cosh y$, $y \geqslant 0$ 反双曲余弦函数是双曲余弦函数在上述限制下的反函数
11-8. 22	artanh x	x 的反双曲正切 inverse hyperbolic tangent of x	也可用 $arth x$ 。 $y = artanh x \Leftrightarrow x = tanh y$ 反双曲正切函数是双曲正切函数的反函数
11-8. 23	arcoth x	x 的反双曲余切 inverse hyperbolic cotangent of x	$y = \operatorname{arcoth} x \Leftrightarrow x = \operatorname{coth} y$, $y \neq 0$ 反双曲余切函数是双曲余切函 数在上述限制下的反函数

项号	符号,表达式	意义或读法	备注及示例
11-8. 24	arsech x	x 的反双曲正割 inverse hyperbolic secant of x	$y = \operatorname{arsech} x \iff x = \operatorname{sech} y$, $y \geqslant 0$ 反双曲正割函数是双曲正割函数在上述限制下的反函数
11-8. 25	arcsch x	x 的反双曲余割 inverse hyperbolic cosecant of x	也可用 $arcosech x$ 。 $y = arcsch x \Leftrightarrow x = csch y$, $y \neq 0$ 反双曲余割函数是双曲余割函数在上述限制下的反函数。 对于反双曲函数,不应使用 $sinh^{-1}x$, $cosh^{-1}x$ 等符号,因为可能被误解为 $(sinh x)^{-1}$, $(cosh x)^{-1}$ 等

2.9 复数符号

Z• 3	, ,		<u></u>
	符号,表达式	意义或读法	备注及示例
11-9.1	i,j	虚数单位,i ² =-1 imaginary unit	在电工技术中常用 j,参阅 GB 3102.5的 5-44.1 的备注
11-9.2	Re z	z 的实部 real part of z	
11-9.3	Im z	z 的虚部 imaginary part of z	$z=x+iy$ $\pm x=\text{Re }z,y=\text{Im }z$
11-9.4	z	z 的绝对值;z 的模 absolute value of z; modulus of z	也可用 mod z
11-9.5	arg z	z 的辐角;z 的相 argument of z; phase of z	$z=re^{i\varphi}$ 其中 $r= z $, $\varphi=\arg z$, 即 Re $z=r\cos \varphi$,Im $z=r\sin \varphi$
11-9.6	z*	z 的[复]共轭 (complex) conjugate of z	有时用 ₹ 代替 z*
11-9.7	sgn z	z 的单位模函数 signum z	当 $z\neq 0$ 时, $\operatorname{sgn} z=z/ z =$ exp(i arg z); 当 $z=0$ 时, $\operatorname{sgn} z=0$

2.10 矩阵符号

项号	符号,表达式	意义或读法	备注及示例
11-10.1	$egin{array}{c} A \ \left(egin{array}{ccc} A_{11} \cdots A_{1s} \ dots & dots \ A_{m1} \cdots A_{ms} \end{array} ight)$	m×n 型的矩阵 A matrix A of type m by n	也可用 A = (A _{ij}), A _{ij} 是矩阵 A 的元素; m 为行数, n 为列数。当 m = n 时, A 称为[正]方阵。矩阵 元可用小写字母表示。 也可用方括号代替矩阵表示中的圆括号
11-10. 2	AB	矩阵 A 与 B 的积 product of matrices A and B	$(AB)_{ii} = \sum_{j} A_{ij} B_{ji}$ 式中 A 的列数必须等于 B 的行数
11-10.3	E,I	单位矩阵 unit matrix	方阵的元素 $E_{i*} = \delta_{i*}$,参阅 11-6.26
11-10. 4	A^{-1}	方阵 A 的逆 inverse of the square matrix A	$AA^{-1} = A^{-1}A = E$
11-10.5	$A^{\! ext{T}}, \widetilde{A}$	A的转置矩阵 transpose matrix of A	(A ^T); =A; 也可用 A'
11-10.6	A*	A的复共轭矩阵 complex conjugate matrix of A	$(A^*)_{ii} = (A_{ii})^* = A_{ii}^*$ 在数学中也常用 \overline{A}
11-10.7	$A^{\!\scriptscriptstyle \mathrm{H}}$, $A^{\!\scriptscriptstyle \dagger}$	A的厄米特共轭矩阵 Hermitian conjugate matrix of A	$(A^{\mathrm{H}})_{ii} = (A_{ii})^* = A_{ii}^*$ 在数学中也常用 A^*
11-10.8	$\begin{vmatrix} A_{11} \cdots A_{1s} \\ \vdots & \vdots \\ A_{s1} \cdots A_{ss} \end{vmatrix}$	方阵 A 的行列式 determinant of the square matrix A	
11-10.9	tr A	方阵 A 的迹 trace of the square matrix A	$\operatorname{tr} A = \sum_{i} A_{ii}$
11-10.10	A	矩阵 A 的范数 norm of the matrix A	矩阵的范数有各种定义 , 例如 范数 $\ A\ = (\operatorname{tr}(AA^{H}))^{1/2}$

2.11 坐标系符号

项号	坐标	径矢量及其微分	坐标系名称	备注
11-11.1	x ,y ,z	$r=xe_x+ye_y+ze_z$, $dr=dx e_x+dy e_y+dz e_z$	笛卡儿坐标 cartesian coordinates	e_z,e_y 与 e _z 组成一标准正交 右手系,见图 1
11-11.2	$ ho, \varphi, z$	$r=\rho e_{\rho}(\varphi)+ze_{z}$, $dr=$ $d\rho e_{\rho}(\varphi)+\rho d\varphi e_{\varphi}(\varphi)+dz e_{z}$	圆柱坐标 cylindrical coordinates	e_{ρ} , e_{φ} 与 e_{z} 组成一标准正交 右手系, 见图 3 和图 4 。 若 $z=0$,则 ρ 与 φ 成为极坐 标
11-11.3	r, θ, φ	$r=re_r(\theta,\varphi)$, $dr=dr e_r(\theta,\varphi)+$ $r d\theta e_\theta(\theta,\varphi)+r \sin \theta d\varphi e_\varphi(\varphi)$	球坐标 spherical coordinates	e,,e ₀ 与 e ₉ 组成一标准正交 右手系,见图 3 和图 5

注:如果为了某些目的,例外地使用左手坐标系(见图 2)时,必须明确地说出,以免引起符号错误

X 轴方向朝外 图 1 右手笛卡儿坐标系

X 轴方向朝里 图 2 左手笛卡儿坐标系

图 3 Oxyz 是右手坐标系

图 4 右手柱坐标

图 5 右手球坐标

2.12 矢量和张量符号

项号	符号,表达式	意义或读法	备注及示例
11-12.1	a à	矢量或向量 a vector a	这里,笛卡儿坐标用 x,y,z 或 x_1,x_2,x_3 表示,在后一种情况,指标 i,j,k,l 从1到3取值,并采用下面的求和约定:如果在一项中某个指标出现两次,则表示该指标对 $1,2,3$ 求和。印刷用黑体 α ,书写用 $\vec{\alpha}$
11-12.2	a a	矢量 a 的模或长度 magnitude of vector a	也可用 a
11-12.3	€ _a	a 方向的单位矢量 unit vector in the direction of a	$e_a = a/ a $ $a = ae_a$
11-12. 4	$egin{array}{c} e_x, e_y, e_z\ i, j, k\ &e_i \end{array}$	在笛卡儿坐标轴方向的单位 矢量 unit vectors in the directions of the cartesian coordinate axes	
11-12.5	a_x, a_y, a_z a_i	矢量 a 的笛卡儿分量 cartesian components of vector a	$a=a_xe_x+a_ye_y+a_ze_z=(a_x,a_y,a_z),$ a_z), a_xe_x 等为分矢量。 $r=xe_x+ye_y+ze_z$ 为矢径
11-12.6	a • b	a 与 b 的标量积或数量积 scalar product of a and b	$a \cdot b = a_x b_x + a_y b_y + a_z b_z$, $a \cdot b = a_i b_i = \sum_i a_i b_i$ (参阅 11-12.1的备注)。 $a \cdot a = a^2 = a ^2 = a^2$ 在特殊场合,也可用 (a,b)
11-12.7	$a \times b$	a 与 b 的矢量积或向量积 vector product of a and b	在右手笛卡儿坐标系中,分量 $(\mathbf{a} \times \mathbf{b})_x = a_y b_z - a_z b_y$, $-$ 般 $(\mathbf{a} \times \mathbf{b})_i = \sum_j \sum_k \epsilon_{ijk} a_j b_k$ 对于 ϵ_{ijk} ,参阅 11-6. 27

项号	符号,表达式	意义或读法	备注及示例
11-12.8	∇ ▽	那勃勒算子或算符 nabla operator	也称矢量微分算子。 $ \nabla = e_x \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z} = e_i \frac{\partial}{\partial x_i} $ 也可用 $\frac{\partial}{\partial r}$
11-12. 9	abla arphi grad $arphi$	φ的梯度 gradient of φ	也可用 grad φ $\nabla \varphi = e_i \frac{\partial \varphi}{\partial x_i}$
11-12.10	$ abla \cdot a$ div a	a 的散度 divergence of a	$\nabla \cdot a = \frac{\partial a_i}{\partial x_i}$
11-12.11	∇×a rot a curl a	a 的旋度 curl of a	气象学上称为涡度。 也可用 rot a , curl a 。 $(\nabla \times a)_x = \frac{\partial a_x}{\partial y} - \frac{\partial a_y}{\partial z}$, $- 般(\nabla \times a)_i = \sum_j \sum_k \epsilon_{ijk} \frac{\partial a_k}{\partial x_j}$ 关于 ϵ_{ijk} ,参阅 11-6. 27
11-12.12	∇² Δ	拉普拉斯算子 Laplacian	$\Delta = \frac{3}{2x^2} + \frac{3}{2y^2} + \frac{3}{2x^2}$ 若与 11-6. 14 中有限增量的符号容易混淆时,就用 ∇^2
11-12.13		达朗贝尔算子 Dalembertian	$\Box = \frac{\vartheta}{\partial x^2} + \frac{\vartheta}{\partial y^2} + \frac{\vartheta}{\partial z^2} - \frac{1}{c_2} \frac{\vartheta}{\partial z^2}$ 式中 c 为电磁波在真空中的传播速度,参阅 GB 3102.6 的 6-6
11-12. 14	Т	二阶张量 T tensor T of the second order	也用 才
11-12. 15	$T_{zz}, T_{zy}, \cdots, T_{zz}$ T_{ij}	张量 T 的笛卡儿分量 cartesian components of tensor T	$T=T_{xx}e_xe_x+T_{xy}e_xe_y+\cdots,$ $T_{xx}e_xe_x$ 等为分张量

项号	符号,表达式	意义或读法	备注及示例
11-12.16	ab,a⊗b	两矢量 a 与 b 的并矢积或张 量积 dyadic product; tensor product of two vectors a and b	即具有分量(ab) _{ij} = a _i b _j 的二 阶张量
11-12. 17	T⊗S	两个二阶张量 T 与 S 的张量积 tensor product of two tensors T and S of the second order	即具有分量 (T⊗S)_{ijk}=T _{ij} S _{kl} 的四阶张量
11-12. 18	T•S	两个二阶张量 T 与 S 的内积 inner product of two tensors of second order T and S	即具有分量 $(T \cdot S)_{ii} = \sum_j T_{ij} S_{ji}$ 的二阶张量
11-12. 19	T • a	二阶张量 T 与矢量 a 的内积 inner product of a tensor of second order T and a vector a	即具有分量 $(T \cdot a)_i = \sum_j T_{ij} a_j$ 的矢量
11-12-20	T: S	两个二阶张量 T 与 S 的标量积 scalar product of two tensors of second order T and S	即标量 $T: S = \sum_{i} \sum_{j} T_{ij} S_{ji}$ 11-12. 1 至 11-12. 20 注: 矢量 和张量往往用其分量的通用符号 表示,例如矢量用 a_i ,二阶张量用 T_{ij} ,并矢积用 a_ib_j 等等,但这里指的都是张量的协变分量,张量 还具有其他形式的分量,如逆变 分量、混合分量等

2.13 特殊函数符号

项号	符号,表达式	意义或读法	备注及示例
11-13.1	$\mathrm{J}_l(x)$	[第一类]柱贝塞尔函数 cylindrical Bessel functions (of the first kind)	即方程 $x^2y'' + xy' + (x^2 - l^2)y = 0$ 的特解 $J_l(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{l+2k}}{k! \Gamma(l+k+1)}$ $(l \geqslant 0)$ 关于 Γ ,参阅 11-13. 19
11-13. 2	$N_i(x)$	柱诺依曼函数;第二类柱贝塞尔函数 cylindrical Neumann functions; cylindrical Bessel functions of the second kind	$N_t(x) = \lim_{k o t} rac{J_k(x) \cos k\pi - J_{-k}(x)}{\sin k\pi}$ 也记作 $Y_t(x)$
11-13.3	$egin{aligned} &\mathrm{H}_l^{(1)}(x)\ &\mathrm{H}_l^{(2)}(x) \end{aligned}$	柱汉开尔函数;第三类柱贝塞尔函数 cylindrical Hankel functions; cylindrical Bessel functions of the third kind	$egin{aligned} & \mathrm{H}_{l}^{(1)}(x) = & \mathrm{J}_{l}(x) + \mathrm{i} \mathrm{N}_{l}(x), \ & \mathrm{H}_{l}^{(2)}(x) = & \mathrm{J}_{l}(x) - \mathrm{i} \mathrm{N}_{l}(x) \end{aligned}$
11-13.4	$I_l(x)$ $K_l(x)$	修正的柱贝塞尔函数 modified cylindrical Bessel functions	$x^2y'' + xy' - (x^2 + l^2)y = 0$ 的特解 $I_l(x) = i^{-l}J_l(ix)$, $K_l(x) = (\pi/2)i^{l+1}(J_l(ix) + iN_l(ix))$
11-13.5	$j_l(x)$	[第一类]球贝塞尔函数 spherical Bessel functions (of the first kind)	$x^{2}y'' + 2xy' + [x^{2} - l(l + 1)]y = 0$ $(l \ge 0)$ 的特解 $j_{l}(x) = (\pi/2x)^{1/2}J_{l+1/2}(x)$
11-13.6	$n_l(x)$	球诺依曼函数;第二类球贝塞尔函数 spherical Neumann functions; spherical Bessel functions of the second kind	$\mathbf{n}_{l}(x) = (\pi/2x)^{1/2}\mathbf{N}_{l+1/2}(x)$ 也记作 $\mathbf{y}_{l}(x)$

项号	符号,表达式	意义或读法	备注及示例
11-13.7	$\mathbf{h}_{l}^{(1)}(x)$ $\mathbf{h}_{l}^{(2)}(x)$	球汉开尔函数;第三类球贝塞尔函数 spherical Hankel functions; spherical Bessel functions of the third kind	$h_{i}^{(1)}(x) = j_{i}(x) + in_{i}(x) = (\pi/2x)^{1/2}H_{i+1/2}^{(1)}(x),$ $h_{i}^{(2)}(x) = j_{i}(x) - in_{i}(x) = (\pi/2x)^{1/2}H_{i+1/2}^{(2)}(x)$ 修正的球贝塞尔函数分别写为 $i_{i}(x)$ 与 $k_{i}(x)$;比较 11-13.4
11-13.8	$\mathbf{P}_{l}(x)$	勒让德多项式 Legendre polynomials	$(1 - x^{2})y'' - 2xy' + l(l + 1)y = 0 的特解$ $P_{l}(x) = \frac{1}{2^{l}l!} \frac{d^{l}}{dx^{l}} (x^{2} - 1)^{l}$ $(l \in)$
11-13. 9	$\mathbf{P}_{l}^{m}(x)$	关联勒让德函数 associated Legendre functions	$(1-x^{2})y'' - 2xy' + [l(l+1) - \frac{m^{2}}{1-x^{2}}]y = 0 $ 的特解 $P_{l}^{m}(x) = (1-x^{2})^{m/2} \frac{d^{m}}{dx^{m}} P_{l}(x)$ $(l,m \in ;m \leq l)$
11-13.10	$\mathbf{Y}_{l}^{n}(heta,oldsymbol{arphi})$	球面调和函数,球谐函数 spherical harmonics	$\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} (\sin\theta \frac{\partial y}{\partial \theta}) + \frac{1}{\sin^2\theta} \frac{\partial^2 y}{\partial \phi^2} +$ $l(l+1)y = 0 \text{ 的特解}$ $\mathbf{Y}_l^m(\theta, \phi) = (-1)^m \times$ $\left[\frac{(2l+1)}{4\pi} \frac{(l- m)!}{(l+ m)!}\right]^{1/2} \times$ $\mathbf{P}_l^{ m }(\cos\theta) e^{im\phi}$ $(l, m \in ; m \leq l)$
11-13.11	$H_a(x)$	厄米特多项式 Hermite polynomials	$y'' - 2xy' + 2ny = 0$ 的特解 $H_*(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$ $(n \in)$
11-13. 12	$\mathbf{L}_{s}(x)$	拉盖尔多项式 Laguerre polynomials	$xy'' + (1-x)y' + ny = 0$ 的特解 $\mathbf{L}_{\mathbf{a}}(x) = \mathbf{e}^{x} \frac{\mathbf{d}^{\mathbf{a}}}{\mathbf{d}x^{\mathbf{a}}} (x^{\mathbf{a}} \mathbf{e}^{-x})$ $(n \in)$

项号	符号,表达式	意义或读法	备注及示例
11-13.13	$\mathbf{L}_{s}^{m}(x)$	关联拉盖尔多项式 associated laguerre polynomials	$xy'' + (m+1-x)y' + (n-m)y = 0$ 的特解 $L_{*}^{m}(x) = \frac{d^{m}}{dx^{m}}L_{*}(x) (m,n \in \mathbb{R})$; $m \leq n$
11-13. 14	F(a,b;c;x)	超几何函数 hypergeometric functions	$x(1-x)y'' + [c - (a+b+c)x]y' - aby = 0$ 的特解 $F(a,b;c;x) = 1 + \frac{ab}{c}x + \frac{a(a+1)b(b+1)}{2!c(c+1)}x^2 + \cdots$
11-13. 15	F(a;c;x)	合流超几何函数 confluent hypergeometric functions	xy'' + (c-x)y' - ay = 0 的 特解 $\mathbf{F}(a;c;x) = 1 + \frac{a}{c}x + \frac{a(a+1)}{2!c(c+1)}x^2 + \cdots$
11-13. 16	$\mathbf{F}(k, \varphi)$	第一类[不完全]椭圆积分 (incomplete) elliptic integral of the first kind	$\mathbf{F}(k, \varphi) = \int_{0}^{\varphi} \frac{\mathrm{d}\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$ $\mathbf{F}(k) = \mathbf{F}(k, \pi/2) (0 < k < 1)$ 为第一类完全椭圆积分
11-13.17	$\mathrm{E}\left(k,arphi ight)$	第二类[不完全]椭圆积分 (incomplete) elliptic integral of the second kind	$\mathbf{E}(k, \varphi) = \int_{0}^{\varphi} \sqrt{1 - k^2 \sin^2 \theta} \ d\theta$ $\mathbf{E}(k) = \mathbf{E}(k, \pi/2) (0 < k < 1)$ 为第二类完全椭圆积分
11-13. 18	$\Pi(k,n,\varphi)$	第三类[不完全]椭圆积分 (incomplete) elliptic integral of the third kind	$\Pi(k,n,\varphi) = \int_{0}^{\varphi} \frac{d\theta}{(1+n\sin^{2}\theta)\sqrt{1-k^{2}\sin^{2}\theta}}$ $\Pi(k,n,\pi/2) (0 < k < 1)$ 为第三类完全椭圆积分

项号	符号,表达式	意义或读法	备注及示例
11-13. 19	$\Gamma(x)$	Г(伽马)函数 gamma function	$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt (x > 0)$ $\Gamma(n+1) = n! (n \in)$
11-13. 20	$\mathrm{B}(x,\!y)$	B(贝塔)函数 beta function	$B(x,y) = \int_{0}^{t^{x-1}} (1-t)^{y-1} dt$ $(x,y \in x > 0,y > 0)$ $B(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$
11-13. 21	Ei x	指数积分 exponential integral	$\operatorname{Ei} x = \int_{x}^{\infty} \frac{\mathrm{e}^{-t}}{t} \mathrm{d}t (x \neq 0)$
11-13. 22	erf x	误差函数 error function	erf $x = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t^2} dt$, erf(∞) = 1 erfc $x = 1$ —erf x 称为余误差 函数。 在统计学中,使用分布函数 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} dt$
11-13. 23	ξ(x)	黎曼(泽塔)函数 Riemann zeta function	$\xi(x) = \frac{1}{1^x} + \frac{1}{2^x} + \frac{1}{3^x} + \cdots$ $(x > 1)$

附加说明:

本标准由全国量和单位标准化技术委员会提出并归口。

本标准由全国量和单位标准化技术委员会第七分委员会负责起草。

本标准主要起草人李志深。