Convolutional Neural Networks

Dr. Wojtek Kowalczyk

wojtek@liacs.nl

Why do we need many layers?

- In theory, one hidden layer is sufficient to model any function with arbitrary accuracy; however, the number of required nodes and weights grows exponentially fast
- The deeper the network the less nodes are required to model "complicated" functions
- Consecutive layers "learn" features of the training patterns;
 from simplest (lower layers) to more complicated (top layers)
- Visual cortex consists of about 10 layers

Why can't we just add more layers?

- In practice, "classical" multi-layer networks work fine only for a very small number of hidden layers (typically 1 or 2) - this is an empirical fact ...
- Adding layers is harmful because:
 - the increased number of weights quickly leads to data overfitting (lack of generalization)
 - huge number of (bad) local minima trap the gradient descent algorithm
 - vanishing or exploding gradients (the update rule involves products of many numbers) cause additional problems

A disturbing observation

- Consider the digit recognition problem (16x16)
- Let us modify the images by randomly permuting all pixels: take a random permutation p and change every image x[0:16x16] into x[p(0:16x16)]
- What accuracy can be achieved by a single layer perceptron on such a "randomly permuted" data?

THE SAME AS ON THE ORIGINAL DATA!

(the same holds for a multi-layer perceptron)

MNIST data set

training: 60.000 images

testing: 10.000 images

each image: 32x32 pixels

accuracy: 99.7% (on the test set)

All 33 misclassified digits

LeNet5

- Input: 32x32 pixel image
- Cx: Convolutional layer
- Sx: Subsample layer (reduces image size by averaging 2x2 patches)
- Fx: Fully connected layer

A Convolutional Filter

Let us suppose that in an input image we want to find locations that look like a 3x3 cross. Define a matrix **F** (called a **kernel**, **receptive field** or **convolutional filter**) and "convolve it" with all possible locations in the image. We will get another (smaller) matrix with "degrees of overlap":

"multiply and add"

1 _{×1}	1 _{×0}	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Figure 9.1 (the "Deep Learning" textbook)

Motivation

A filter: a "feature detector" – returns high values when the corresponding patch is similar to the filter matrix

Think about all pixels being -1 (black) or +1 (white) and filter parameters also restricted to -1 and 1

Example: what features are "detected" by:

LeNet5

- Input: 32x32 pixel image
- Cx: Convolutional layer
- Sx: Subsample layer (reduces image size by averaging 2x2 patches)
- Fx: Fully connected layer

LeNet 5: Layer C1

- C1: Convolutional layer with 6 feature maps of size 28x28.
- Each unit of C1 has a 5x5 receptive field in the input layer.
- Shared weights (5*5+1)*6=156 parameters to learn Connections: 28*28*(5*5+1)*6=122304
- If it was fully connected we had: (32*32+1)*(28*28)*6 = **4.821.600** parameters

LeNet 5: Layer S2

- S2: Subsampling layer with 6 feature maps of size
 14x14 2x2 nonoverlapping receptive fields in C1
- Layer S2: 6*2=12 trainable parameters.
- Connections: 14*14*(2*2+1)*6=5880

... and so on ...

Study slides 11-27 of DeepLearning.pdf Read the original paper lecun-01a.pdf

LeNet 5: totals

- The whole network has:
 - 1256 nodes
 - 64.660 connections
 - 9.760 trainable parameters (and not millions!)
 - trained with the Backpropagation algorithm!

Misclassified cases

From LeNet5 to ImageNet (2010/2012)

ImageNet

- ■15M images
- ■22K categories
- Images collected from Web
- RGB Images
- ■Variable-resolution
- •Human labelers (Amazon's Mechanical Turk crowd-sourcing)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)

- IK categories
- ■1.2M training images (~1000 per category)
- ■50,000 validation images
- ■150,000 testing images

ImageNet (study slides 28-40)

ILSVRC-2010 test set

Model	Top-1	Top-5	
Sparse coding [2]	47.1%	28.2%	
SIFT + FVs [24]	45.7%	25.7%	
CNN	37.5%	17.0%	

ILSVRC-2012 test set

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]		10 0	26.2%
1 CNN	40.7%	18.2%	3
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Key Points

- convolutions, feature maps, kernels, ...
- subsampling/pooling
- weights sharing
- ReLU (Rectified Linear Unit)
- Data Augmentation
- Dropout

Homework

- Study slides 11-40 of DeepLearning.pdf
- Study Chapter 6 of Nielsen's book:
 - http://neuralnetworksanddeeplearning.com/chap6.html
- Read (but don't get intimidated!) Chapter 9 of the "Deep Learning" textbook
- How a random permutation of input pixels (in the training and testing sets) would affect the accuracy of CNNs?