#### PREFACE, ix

#### 1. INTRODUCTION,

- Introduction, 2 1.1
- 1.2 A History of Control Systems, 4
- System Configurations, 7
- Analysis and Design Objectives, 10 Case Study, 12
- The Design Process, 15
- Computer-Aided Design, 20
- 1.7 The Control Systems Engineer, 21 Summary, 23 Review Questions, 23 Problems, 24 Cyber Exploration Laboratory, 30 Bibliography, 31

#### 2. MODELING IN THE FREQUENCY DOMAIN, 33

- 2.1 Introduction, 34
- Laplace Transform Review, 35
- The Transfer Function, 44
- 2.4 Electrical Network Transfer Functions, 47
- Translational Mechanical System Transfer Functions, 61
- Rotational Mechanical System Transfer Functions, 69
- 2.7 Transfer Functions for Systems with Gears, 74
- 2.8 Electromechanical System Transfer Functions, 79
- Electric Circuit Analogs, 84
- 2.10 Nonlinearities, 88
- 2.11 Linearization, Case Studies, 94 Summary, 97 Review Questions,

Problems, 98 Cyber Exploration Laboratory, 112 Bibliography, 115

#### 3. MODELING IN THE TIME DOMAIN, 117

- Introduction, 118 3.1
- Some Observations, 119
- The General State-Space Representation, 123
- 3.4 Applying the State-Space Representation, 124
- 3.5 Converting a Transfer Function to State Space, 132
- 3.6 Converting from State Space to a Transfer Function, 139
- 3.7 Linearization, 141 Case Studies, 144 Summary, 148 Review Questions, 149 Problems, 149 Cyber Exploration Laboratory, 157 Bibliography, 159

#### 4. TIME RESPONSE, 161

- Introduction, 162 4.1
- Poles, Zeros, and System Response, 162
- 4.3 First-Order Systems, 166
- Second-Order Systems: Introduction, 168
- 4.5 The General Second-Order System, 173
- 4.6 Underdamped Second-Order Systems, 177
- System Response with Additional Poles, 186
- System Response With Zeros,
- Effects of Nonlinearities Upon Time Response, 196

- 4.10 Laplace Transform Solution of State Equations, 199
- 4.11 Time Domain Solution of State Equations, 203 Case Studies, 207 Summary, 213 Review Questions, 214 Problems, 215 Cyber Exploration Laboratory, 228 Bibliography, 232

#### 5. REDUCTION OF **MULTIPLE SUBSYSTEMS**, 235

- 5.1 Introduction, 236
- Block Diagrams, 236
- Analysis and Design of Feedback Systems, 245
- Signal-Flow Graphs, 248
- Mason's Rule, 251
- Signal-Flow Graphs of State Equations, 254
- 5.7 Alternative Representations in State Space, 256
- Similarity Transformations, 266 Case Studies, 272 Summary, 278 Review Questions, 279 Problems, 280 Cyber Exploration Laboratory, 297 Bibliography, 299

#### 6. STABILITY, 301

- 6.1 Introduction, 302
- 6.2 Routh-Hurwitz Criterion, 305
- Routh-Hurwitz Criterion: Special Cases, 308
- 6.4 Routh-Hurwitz Criterion: Additional Examples, 314
- Stability in State Space, 320 Case Studies, 323 Summary, 325 Review Questions, 325 Problems, 326

Cyber Exploration Laboratory, 335 Bibliography, 336

#### 7. STEADY-STATE ERRORS, 339

- 7.1 Introduction, 340
- 7.2 Steady-State Error for Unity Feedback Systems, 343
- 7.3 Static Error Constants and System Type, 349
- 7.4 Steady-State Error Specifications, 353
- Steady-State Error for Disturbances, 356
- 7.6 Steady-State Error for Nonunity Feedback Systems, 358
- 7.7 Sensitivity, 362
- 7.8 Steady-State Error for Systems in State Space, 364 Case Studies, 368 Summary, 371 Review Questions, 372 Problems, 373 Cyber Exploration Laboratory, 384

#### 8. ROOT LOCUS TECHNIQUES, 387

8.1 Introduction, 388

Bibliography, 386

- Defining the Root Locus, 392
- Properties of the Root Locus, 394
- Sketching the Root Locus, 397
- Refining the Sketch, 402
- An Example, 411
- Transient Response Design via Gain Adjustment, 415
- Generalized Root Locus, 419
- Root Locus for Positive-Feedback Systems, 421
- 8.10 Pole Sensitivity, 424 Case Studies, 426 Summary, 431 Review Questions, 432 Problems, 432 Cyber Exploration Laboratory, 450 Bibliography, 452

# Chapter 8. Root Locus Techniques

### Objectives

- The *definition* of a root locus
- How to *sketch* a root locus
- How to *refine* your sketch of a root locus
- How to use the root locus to *find the poles* of a closed-loop system
- How to use the root locus to *design a parameter value* to meet a transient response specification

```
s=tf('s');
sys=1/(s+1)
controlSystemDesigner(sys)

s=tf('s');
sys=1/(s+1)^3
pidtool(sys)
```

#### 8.1 Introduction

• Root locus (Evans, 1948:1950): a powerful method of analysis and design for stability and transient response



$$G(s) = \frac{(s+1)}{s(s+2)}, \quad H(s) = \frac{(s+3)}{(s+4)} \implies T(s) = \frac{K(s+1)(s+4)}{s^3 + (6+K)s^2 + (8+4K)s + 3K}$$

• The root locus will be used to trace the poles of T(s) as K varies.

#### Example 8.1: Evaluation of a complex function via vectors

Find F(s) at the point s = -3 + j4.

$$F(s) = \frac{(s+1)}{s(s+2)}$$



Use magnitude and phase angle

$$F(s) = \frac{[s - (-1)]}{[s - 0][s - (-2)]}$$

$$= \frac{\sqrt{20} \angle 116.6^{\circ}}{(5 \angle 126.9^{\circ})(\sqrt{17} \angle 104.0^{\circ})}$$

$$= \frac{\sqrt{20}}{5\sqrt{17}} \angle 116.6^{\circ} - 126.9^{\circ} - 104.0^{\circ}$$

$$= 0.217 \angle -114.3^{\circ} = M \angle \theta$$

#### Vector Representation of Complex Numbers



(a) 
$$s = \sigma + j\omega$$
;

- (b) (s + a);
- (c) Alternate representation of (s + a);
- (d)  $(s + 7)|_{s \to 5 + j2}$

### 8.2 Defining the Root Locus



CameraMan: Courtesy of ParkerVision



• Pole location as a function of gain for the system

| K                                      | Pole 1                                                                                                          | Pole 2                                                                                                          |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 0<br>5<br>10<br>15                     | -10<br>-9.47<br>-8.87<br>-8.16                                                                                  | $ \begin{array}{r} 0 \\ -0.53 \\ -1.13 \\ -1.84 \end{array} $                                                   |
| 20<br>25<br>30<br>35<br>40<br>45<br>50 | $ \begin{array}{r} -7.24 \\ -5 \\ -5 + j2.24 \\ -5 + j3.16 \\ -5 + j3.87 \\ -5 + j4.47 \\ -5 + j5 \end{array} $ | $ \begin{array}{r} -2.76 \\ -5 \\ -5 - j2.24 \\ -5 - j3.16 \\ -5 - j3.87 \\ -5 - j4.47 \\ -5 - j5 \end{array} $ |

G(s)

```
% ch8_2.m
clc, clear all
numg=[1];
deng=[1 10 0];
  % deng=poly([0 -10]);
G=tf(numg, deng);
rlocus(G)
```



 $overdamped (0 \le K < 25), critically \ damped (K = 25), \ and \ underdamped (K > 25)$ 

### 8.3 Properties of the Root Locus



Closed-loop pole: 
$$1 + KG(s)H(s) = 0$$

$$KG(s)H(s) = -1$$
  
=  $1\angle (2k+1)180^{\circ}, \quad k = 0, \pm 1, \pm 2$ 

$$|KG(s)H(s)|=1$$
 and

$$\angle G(s)H(s) = (2k+1)180^{\circ}, K > 0$$



• Plot the poles of the closed—loop system T(s), as a function of K.

$$T(s) = \frac{KG_P(s)}{1 + KG_P(s)}$$

Poles: 
$$1 + KG_P(s) = 0$$



### Example:

$$G_P(s) = \frac{1}{(s+2)^2}$$

$$1 + KG_P(s) = 0$$
,  $1 + \frac{K}{(s+2)^2} = 0$ 

$$s^{2} + 4s + (K + 4) = 0$$

$$s = -2 \pm \sqrt{4 - (K + 4)} = -2 \pm \sqrt{-K}$$

$$s = -2 \pm j\sqrt{K}$$

### System is stable for all *K*



```
clc, clear all
numg = [1];
deng = poly([-2 -2]);
G=tf(numg, deng)
rlocus(G)
```



Example: 
$$G_P(s) = \frac{s-1}{(s+1)^2}$$

$$1 + KG_P(s) = 0$$
,  $(s+1)^2 + K(s-1) = 0$ 

$$s^{2} + (2+K)s + (1-K) = 0$$

$$s = \frac{-(2+K) \pm \sqrt{(2+K)^{2} - 4(1-K)}}{2}$$

$$= \frac{-(2+K) \pm \sqrt{K^{2} + 4K + 4 - 4 + 4K}}{2}$$

$$s = \frac{-2 - K \pm \sqrt{K^2 + 8K}}{2}$$



```
clc, clear all
numg = poly([1]);
deng = poly([-1 -1]);
G=tf(numg, deng)
rlocus(G)
```

# Example (continued):

$$s = \frac{-2 - K \pm \sqrt{K^2 + 8K}}{2} = \frac{-2 + (-K \pm \sqrt{K^2 + 8K})}{2}$$

$$+:-K+\sqrt{K^2+8K} = \frac{(-K+\sqrt{)}(K+\sqrt{)}}{K+\sqrt{}} = \frac{-K^2+K^2+8K}{K+\sqrt{K^2+8K}} = \frac{8K}{K\left(1+\sqrt{1+\frac{8}{K}}\right)}$$

$$\rightarrow \lim_{K \to \infty} \frac{8K}{K \left(1 + \sqrt{1 + \frac{8}{K}}\right)} = \lim_{K \to \infty} \frac{8K}{K \left(1 + \sqrt{1 + 0}\right)} = \frac{8}{2} \rightarrow 4 \implies K \to \infty , s \to \frac{-2 + 4}{2} = 1$$

$$-: -K - \sqrt{K^2 + 8K} = \frac{(-K - \sqrt{)}(-K + \sqrt{)}}{-K + \sqrt{}} = \frac{(K^2 - K^2 - 8K)}{-K + \sqrt{K^2 + 8K}} = \frac{-8K}{K\left(-1 + \sqrt{1 + \frac{8}{K}}\right)}$$

$$\rightarrow \lim_{K \to \infty} \frac{-8K}{K\left(-1 + \sqrt{1 + \frac{8}{K}}\right)} = \lim_{K \to \infty} \frac{-8K}{K\left(-1 + \sqrt{1 + 0}\right)} = \frac{-8}{0} \to -\infty$$

$$\Rightarrow K \to \infty, \ s \to \frac{-2 - \infty}{2} = -\infty$$

$$s^{2} + (2 + \overline{K})s + (1 - \overline{K})\Big|_{s=0} = 0 \Longrightarrow \overline{K} = 1$$

Stability: K < 1

If you have higher order polynomials, it can be impossible to plot the roots in this way.

 $\Rightarrow$  You need systematic plotting methods.

Let 
$$G_P(s) = A \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}, m \le n$$

### Rules for Root Locus



Rule 1. Symmetry about the real axis



Rule 2. Each branch starts at a pole of  $G_P(s)$  and terminates at a zero of  $G_P(s)$ , including zeros at  $\infty$ .

Explanation Let 
$$G_P(s) = \frac{s-1}{s^3 + 4s + 2}$$

 $G_P(s)$  has one zero and three poles.

At  $\infty$ , namely as  $s \to \infty$ ,  $G_P(s)$  behaves like i.e. it has two zeros at  $\infty$ .

 $\Rightarrow$  How do the *branches* approach to  $\infty$ ?



Chapter 8. Root Locus Techniques -14-

### Rule 3. *n-m branches* approach ∞ like asymptotes

with angles 
$$\Psi_K = \frac{180 + 360K}{n - m}$$
,  $K = 0, 1, \dots, n - m - 1$ .

The asymptotes intersect at the real axis at

$$\sigma = \frac{\sum Poles - \sum Zeros}{n - m}$$

#### Example:

$$G_P(s) = \frac{1}{(s+2)^2}$$
,  $n = 2$ ,  $m = 0$   
 $\sigma = (-4)/2 = -2$ ,  
 $\Psi_0 = 180/2 = 90$ ,  
 $\Psi_1 = (180 + 360)/2 = -90$ 







Chapter 8. Root Locus Techniques -15-

Rule 4. If a branch is on the <u>real axis</u>, then the number of real poles + zeros of  $G_P(s)$  to the right of it must be <u>odd</u>.

Example:

$$G_P(s) = \frac{s-1}{(s+1)(s+1)}$$

$$n - m = 1$$

 $\Psi_0 = 180 \rightarrow \text{you have a branch at } -\infty$ 





Chapter 8. Root Locus Techniques -16-

Example: 
$$G_P(s) = \frac{s-2}{(s+1)(s+5)}$$

$$n-m=1$$

$$\Psi_0 = 180$$
 Stability:  $K < \overline{K}$ 

$$1 + \overline{K} \frac{s-2}{(s+1)(s+5)} \Big|_{s=0} = 0, \quad \overline{K} = 2.5, \quad \text{Stability: } K < 2.5$$

Stability: 
$$K < 2.5$$

Example: 
$$G_p(s) = \frac{1}{(s+2)(s-1)(s+1)}$$

$$1 + KG_p(s) = 0$$

$$s^3 + 2s^2 - s - 2 + K = 0$$

$$1 + KG_p(s) = 0$$

$$-2 - 1$$

$$-2 + 1$$
never stable

Cross 
$$j\omega$$
 axis:  $\Rightarrow 1 + KG_p(s)|_{s=j\omega} = 0$ 

$$-j\omega^3 - 2\omega^2 - j\omega - 2 + K = 0$$

$$(K - 2\omega^2 - 2) - j\omega(1 + \omega^2) = 0$$

$$\downarrow \qquad \qquad \neq 0$$

$$K=2 \qquad \omega^{2+1=0} \text{ or } \omega=0 \text{ is the only solution}$$



numg = poly([]);
deng = poly([-2 1 -1]);
G=tf(numg, deng)
rlocus(G)

### Rule 5. Angle rule

Let  $p_1, ..., p_n$  be the poles of  $G_p$ Let  $z_1, ..., z_m$  be the zeros of  $G_p$ 

Simple pole: Let  $p_i$  be a simple pole.

Let  $\phi_j$ =angle at which the branch starts from  $p_j$ 



$$\phi_j = \sum_{k=1}^m \angle (p_j - z_k) - \sum_{\substack{i=1 \ i \neq j}}^n \angle (p_j - p_i) + r \cdot 180 \quad (r : odd)$$

Example: 
$$G_p(s) = \frac{(s-1)(s+2)}{s^2+2}$$





numg = poly([1 -2]);
deng = [1 0 2];
G=tf(numg, deng)
rlocus(G)

$$\angle(p_1 - z_2) \approx 125^{\circ}$$
 $\angle(p_1 - z_1) \approx 35^{\circ}$ 
 $z_2$ 

>> atan(sqrt(2)/2)\*180/pi
ans = 35.2644

$$\phi_1 = \angle (p_1 - z_1) + \angle (p_1 - z_2) - \angle (p_1 - p_2) + (1) \cdot 180$$

$$\phi_1 \approx 35^{\circ} + 125^{\circ} - 90^{\circ} + 180^{\circ} = 250^{\circ} = -110^{\circ}$$

• Crossing of '0': 
$$1+K\frac{(s-1)(s+2)}{s^2+2}=0$$
  
 $s=0, 1+K\frac{-2}{2}=0, K=1$ 



• Explanation of rule 5: For every s on a branch,

stability: K < 1

$$T(s) = \frac{KG_P(s)}{1 + KG_P(s)}$$

$$1 + K \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)} = 0$$

$$K \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)} = -1$$

$$\sum_{k=1}^{m} \angle (s - z_k) - \sum_{k=1}^{n} \angle (s - p_i) = r \cdot 180 \quad (r : odd)$$

$$\sum_{k=1}^{n} \angle (s - z_k) - \sum_{k=1}^{n} \angle (s - p_i) = r \cdot 180 \quad (r : odd)$$

#### • Explanation of rule 5(continue):

now: 
$$\theta_j = \lim_{s \to p_j} \angle (s - p_j)$$



Then, 
$$\theta_{j} = \lim_{s \to p_{j}} \angle(s - p_{j})$$

$$= \lim_{s \to p_{j}} \sum_{k=1}^{m} \angle(s - z_{k}) - \lim_{s \to p_{j}} \sum_{\substack{i=1 \ i \neq j}}^{n} \angle(s - p_{i}) + r \cdot 180 \qquad (r : odd)$$

$$= \sum_{k=1}^{m} \angle(p_{j} - z_{k}) - \sum_{\substack{i=1 \ i \neq j}}^{n} \angle(p_{j} - p_{i}) + r \cdot 180$$

$$\sum_{k=1}^{m} \angle (s - z_k) - \sum_{i=1}^{n} \angle (s - p_i) = r \cdot 180 \quad (r : odd)$$

$$\sum_{k=1}^{m} \angle (s - z_k) - \sum_{i=1}^{n} \angle (s - p_i) = r \cdot 180 \quad (r : odd)$$

#### • Angle rule for double pole

Let  $p_1 = p_2$ , for all s on a branch

$$\sum_{k=1}^{m} \angle(s - z_k) - \sum_{i=1}^{n} \angle(s - p_i) + r \cdot 180$$

$$\angle(s - p_1) + \angle(s - p_2) = \sum_{k=1}^{m} \angle(s - z_k) - \sum_{i=3}^{n} \angle(s - p_i) + r \cdot 180$$
but  $p_1 = p_2 \rightarrow \angle(s - p_1) = \angle(s - p_2)$ 

$$\Rightarrow 2\angle(s - p_1) = \sum_{k=1}^{m} \angle(s - z_k) - \sum_{i=3}^{n} \angle(s - p_i) + r \cdot 180$$

$$\Rightarrow \varphi_1, \varphi_2 = \left[\sum_{k=1}^{m} \angle(s - z_k) - \sum_{i=3}^{n} \angle(s - p_i) + r \cdot 180\right] / 2$$

$$\Rightarrow p_i$$

Example: 
$$G_p(s) = \frac{(s+1)(s-3)}{(s+2)^2}$$

$$\begin{cases} z_1 = -1, & z_2 = 3 \\ p_1 = p_2 = -2 \end{cases}$$



$$\angle (p_1 - z_1) = \angle (p_1 - z_2) = 180$$
  
 $\rightarrow \varphi_1, \varphi_2 = [+180 + 180 - 0 + 180r]/2 = 90r$ 

$$r = 1 : \varphi_1 = 90^{\circ}$$

$$r = 3 : \varphi_2 = 270^{\circ} = -90^{\circ}$$

numg = poly([-1 3]);
deng = poly([-2 -2]);
G=tf(numg, deng)
rlocus(G)



Chapter 8. Root Locus Techniques -24-

#### Example (continue):



$$G_p(s) = \frac{s^2 - 2s - 3}{s^2 + 4s + 4}, \quad 1 + KG_p(s) = 0$$

$$s^{2} + 4s + 4 + K(s^{2} - 2s - 3) = 0$$

#### Example (continue):

$$(1+K)s^2 + (4-2K)s + (4-3K) = 0$$
 at  $j\omega$ -axis  $\rightarrow s = j\omega$ 

$$-\omega^{2}(1+K)+j\omega(4-2K)+(4-3K)=0$$

$$K=2$$
,

$$-\omega^2(3)+(4-6)=0$$

$$3\omega^2 + 2 \neq 0$$
: impossible  $\therefore \Rightarrow$ 



At 
$$s = 0 \to 1 + KG_p(s) = 0 \to 1 + K\left(-\frac{3}{4}\right) = 0 \to K = \frac{4}{3} = 1.333$$

$$(1+K)s^2 + (4-2K)s + (4-3K) = 0$$

$$\therefore$$
 stability  $K < \frac{4}{3}$ 



# Pole Sensitivity

Case 1: Very small changes in gain
High Sensitivity.

Very large changes

- in pole location
- in performance

- Case 2: Low Sensitivity.
- ⇒ We prefer systems with *low sensitivity* to changes in gain
- Root sensitivity
   Sensitivity of a closed-loop pole:



$$S_{s:K} = \frac{K}{s} \cdot \frac{\Delta s}{\Delta K} \implies$$

$$\Delta s = s(S_{S:K}) \frac{\Delta K}{K}$$

Change in the pole location



#### (ref: chapter 7.7)

$$S_{F:P} = \lim_{\Delta P \to 0} \frac{\Delta F/F}{\Delta P/P}$$
$$= \lim_{\Delta P \to 0} \frac{P}{F} \frac{\Delta F}{\Delta P}$$

#### Example:

$$\begin{array}{c|c}
R(s) & K & C(s) \\
\hline
 & s^2 + 10s + K & \end{array}$$

- 1 Find the root sensitivity of the system at s = -9.47 and s = -5 + j5
- ② Calculate the change in the pole location for a 10% change in *K*.

$$s^2 + 10s + K = 0$$

# Example (continued):

$$\Rightarrow \text{Characteristic equation}$$

$$s^2 + 10s + K = 0$$

$$\frac{\delta s}{\delta K} = 2s \frac{\delta s}{\delta K} + 10 \frac{\delta s}{\delta K} + 1 = 0$$

$$\frac{\delta s}{\delta K} = \frac{-1}{2s + 10}$$

$$S_{s:K} = \frac{K}{s} \cdot \frac{\delta s}{\delta K} = \frac{K}{s} \cdot \frac{-1}{2s + 10} \cdot \dots (1)$$

| K  | Pole 1 | Pole 2 |
|----|--------|--------|
| 0  | - 10   | 0      |
| 5  | -9.47  | -0.53  |
| :  | :      | :      |
| 50 | -5+j5  | -5-j5  |

i) 
$$s = -9.47 \rightarrow K = 5 \rightarrow (1)$$
  
 $S_{s:K} = -0.059$   

$$\Delta s = s(S_{s:K}) \frac{\Delta K}{K}$$

$$= 0.056$$

The pole will move to the right by 0.056 units for a 10% change in K at K=5 or s=-9.47

### Example (continue):

ii) For 
$$s = -5 + j5 \rightarrow K = 50 \rightarrow (1)$$
;

$$S_{s:k} = \frac{K}{s} \cdot \frac{-1}{2s+10} = \frac{1}{2} - j\frac{1}{2} = \sqrt{\frac{1}{2}} \angle -45^{\circ}$$

Find the change in the pole location at  $\Delta K / K = 10\%$ 

$$\Delta s = s \left( S_{s:K} \right) \frac{\Delta K}{K}$$
$$= (-5 + j5) \left( \frac{1}{2} - j \frac{1}{2} \right) (0.1)$$



The pole will move vertically by 0.5 unit for a 10% change in *K* 

### 8.3 Properties of the Root Locus



$$1 + KG(s)H(s) = 0$$

$$KG(s)H(s) = -1 = 1\angle(2k+1)180^{\circ}, k = 0, \pm 1, \pm 2,...$$

$$|KG(s)H(s)|=1 \implies K = \frac{1}{|G(s)H(s)|}$$

$$\angle G(s)H(s) = (2k+1)180^{\circ} (K > 0)$$



A point s on the root locus should be satisfied these conditions.

$$\frac{K(s+3)(s+4)}{(s+1)(s+2)}$$

$$(a)$$



$$KG(s)H(s) = \frac{K(s+3)(s+4)}{(s+1)(s+2)}$$

(1) In the case of s = -2 + j3

$$\angle G(s)H(s) = \angle G(s) = \theta_1 + \theta_2 - \theta_3 - \theta_4$$
  
= 56.31° + 71.57° - 90° - 108.43°

$$=-70.55^{\circ} \neq \pm 180^{\circ}$$

Therefore, s = -2 + j3 is not a point on the root locus.

(2) In the case of 
$$s = -2 + j\frac{1}{\sqrt{2}}$$
  
 $\angle G(s)H(s) = \theta_1 + \theta_2 - \theta_3 - \theta_4$   
 $= 19.47^{\circ} + 35.26^{\circ} - 90^{\circ} - 144.74^{\circ}$   
 $= -180^{\circ} = +180^{\circ}$ 



Therefore,  $s = -2 + j \frac{1}{\sqrt{2}}$  is a point on the root locus for some value of K.

 $\frac{GH \to \frac{1}{GH}}{GH} \to \frac{1}{GH}$ 

s-plane

Let's find the *K*!

Ĺ

$$K = \frac{1}{|G(s)||H(s)|} = \frac{1}{M} = \frac{\Pi \text{ pole lengths}}{\Pi \text{ zero lengths}}$$

$$K = \frac{l_3 l_4}{l_1 l_2} = \frac{\frac{1}{\sqrt{2}} (1.22)}{(2.12)(1.22)} = 0.33$$
 and  $M = 3$ 

A point *s* on the root locus should be satisfied the following conditions.

$$\hat{\Box}$$

$$|KG(s)H(s)|=1 \Rightarrow K = \frac{1}{|G(s)H(s)|}$$

 $\angle G(s)H(s) = (2k+1)180^{\circ} (K>0)$ 

```
G=(s^2+7*s+12)/(s^2+3*s+2);
                                                         deng = poly([-1 -2]);
                                                                                                                                  Theta=(180/pi)*angle(G)
                                                         G=tf(numg, deng)
                                                                                                                                  M=abs(G)
                                                        rlocus(G)
                                                                                                                                  Theta = 180
                                                                                                                                 M = 3
                                                                                   Root Loc System: T1
                                                                                           Gain: 0.333
                                                                                           Pole: -2 + 0.707i
                                                                                           Damping: 0.943
                                                                                           Overshoot (%): 0.0138
   8.0
                                                                                           Frequency (rad/s): 2.12
   0.6
   0.4
   0.2
Imaginary Axis (seconds
                                                                                           System: T1
   -0.4
                                                                                           Gain: 0.333
                                                                                           Pole: -2 - 0.707i
                                                                                           Damping: 0.943
                                                                                           Overshoot (%): 0.0138
   -0.6
                                                                                           Frequency (rad/s): 2.12
   -0.8
     -1
                                      -3.5
                                                       -3
                                                                       -2.5
                                                                                                       -1.5
                                                                                                                                         -0.5
                                                                                                                                                                          0.5
     -4.5
                                                                              Real Axis (seconds
```

numg = poly([-3 -4]);

Chapter 8. Root Locus Techniques -33-

>> a=1/sqrt(2); s=-2+a\*j;

# 8.4 Sketching the Root Locus

- (1) Number of branches :# of branches = # of closed-loop poles
- (2) Symmetry
- (3) Real-axis segments
- (4) Starting and ending points: (K=0, poles), ( $K=\infty$ , zeros)
- (5) Behavior at infinity: asymptote

Real-axis intercept: 
$$\sigma_a = \frac{\Sigma \text{ finite poles } - \Sigma \text{ finite zeros}}{\# \text{ of finite poles } - \# \text{ of finite zeros}}$$

Angle: 
$$\theta_a = \frac{(2k+1)\pi}{\# \text{ of finite poles } - \# \text{ of finite zeros}}$$

#### Example 8.2 Sketching a root locus with asymptotes



# 8.5 Refining the Sketch

(1) Root locus example showing real- axis breakaway  $(\sigma_1)$  and break-in points  $(\sigma_2)$ 



$$1 + KG(s)H(s) = 0$$

$$K = -\frac{1}{G(s)H(s)}$$

$$K(\sigma) = -\frac{1}{G(\sigma)H(\sigma)}$$



Chapter 8. Root Locus Techniques -36-

#### Example 8.3 Breakaway and break-in points via differentiation





$$KG(s)H(s) = \frac{K(s-3)(s-5)}{(s+1)(s+2)} = \frac{K(s^2-8s+15)}{s^2+3s+2}$$

$$\frac{K(\sigma^2 - 8\sigma + 15)}{\sigma^2 + 3\sigma + 2} = -1$$

$$K = \frac{-(\sigma^2 + 3\sigma + 2)}{(\sigma^2 - 8\sigma + 15)}$$

$$\frac{dK}{d\sigma} = \frac{11\sigma^2 - 26\sigma - 61}{\sigma^2 - 8\sigma + 15} = 0$$

$$\Rightarrow \sigma = -1.453$$
, 3.817

#### Example 8.4 Breakaway and break-in points without differentiation

• Breakaway and break-in points satisfy the relationship:  $\sum_{i=1}^{m} \frac{1}{\sigma + z_i} = \sum_{i=1}^{n} \frac{1}{\sigma + p_i}$ 

where  $z_i$  and  $p_i$  are the zero and pole values, respectively, of G(s)H(s)



$$\frac{1}{\sigma - 3} + \frac{1}{\sigma - 5} = \boxed{\frac{1}{\sigma + 1} + \frac{1}{\sigma + 2}}$$

$$11\sigma^2 - 26\sigma - 61 = 0$$

$$\Rightarrow \sigma = -1.453, \quad 3.817$$

- The *jw* -Axis Crossings
- Angle of Departure and Arrival
- Plotting and Calibrating the Root Locus

# 8.7 Transient Response design via Gain Adjustment (Find K for $t_s$ , $t_p$ , $e_{ss}$ , overshoot)

#### 8.8 Generalized Root Locus

How can we obtain a root locus for variations of the value of  $p_1$ ?

- 8.9 Root Locus for Positive-Feedback Systems
- 8.10 Pole Sensitivity