Leçon 253 : Utilisation de la notion de convexité en analyse.

Développements :

Ellipsoïde de John-Loewner, Processus de Galton-Watson, Algorithme du gradient à pas optimal

Bibliographie:

Rombaldi, Li, FGN, Tauvel Géométrie, OA, Gourdon analyse, Garet

Plan

1 En analyse réelle

1.1 Ensembles convexes

[Tauvel]

Proposition 1 (Tau p.70). Les convexes de \mathbb{R} sont les connexes, ce sont les intervalles.

 ${\bf Application}$ 2. Les notions de convexité et connexité coı̈ncident. On a par ex le TVI

Contre-exemple 3 (Hauchecorne p.328). Pas vrai en dimension supérieure : cercle dans \mathbb{R}^2

Définition 4 (Tau p.71). Enveloppe convexe

Théorème 5 (Tauvel p.71). Gauss-Lucas

Application 6 (FGN Alg 1 5.43c). Soit P un polynôme non constant de $\mathbb{C}[X]$, Δ une droite du plan complexe, H_1 et H_2 les deux demi-plans ouverts limités par Δ .On suppose que P' a une racine dans H_1 alors $P(H_1) = \mathbb{C}$.

Théorème 7 (Tauvel p.71). Carathéodory

 $A\ l'oral$ 8. Résultat utile pour passer à la limite dans des combinaisons convexes

Application 9 (Tau p.72). L'enveloppe convexe d'une partie compacte/bornée l'est

 $A\ l'oral$ 10. C'est un résultat important : chercher pourquoi...

Contre-exemple 11 (???). Faux en dimension infinie : H un espace de Hilbert, muni de sa base hilbertienne (e_n) , alors $K = \frac{e_n}{n+1}, n \in \mathbb{N} \cup 0$ est compact mais son enveloppe convexe n'est même pas fermée

1.2 Caractérisation des fonctions convexes

Proposition 12 (Rom 9.1 p.233). Caractérisation de la convexité avec la convexité de l'épigraphe

Faire un dessin

Théorème 13 (Rom p.238). Equivalence de la convexité et inégalité des pentes+croissance des pentes

Application 14 (OA p.28). Une fonction convexe est localement lipschitzienne

Application 15 (Gou p.98). Existence de limites

Théorème 16 (Rom thm915 p.244). Si f est dérivable alors on a equivalence entre : f convexe, f', croissante, f située au dessus de ses tangentes +dimension supérieure

Application 17. Une fonction convexe est au dessus de ses tangentes -> tracé de graphe

Théorème 18 (Rom - thm9.18 - p.246). Si f deux fois dérivable sur I. f convexe (resp concave) ssi $f'' \ge 0$ (resp. f'' < 0). +dimension supérieure

Exemple 19 (Rom p.246). exp est convexe sur \mathbb{R} . log est concave sur \mathbb{R}^{+*} , fonction quadratique

 ${\bf Application~20}$ (Gou p.295). Convexité et Log-convexité de la fonction Gamma + allure du graphe

Application 21 (Rouv ex 42 p.127). Calcul du minimum d'un ensemble

A l'oral 22. Unicité de la fonction gamma log convexe etc

Théorème 23 (Rom - thm9.17 - p.245). Si f est derivable alors on a EQU: f strict convexe sur I - f' strict croissante - f située strict au-dessus de ses tangentes.

Application 24 (Cottrel). Processus de Galton-Watson

Théorème 25 (Rom p.246). f est strictement convexe ssi f'' > 0 et zéros de f sont isolés.

Exemple 26 (Rom p.246). $x \mapsto x^p$ stt convexe sur \mathbb{R}^{+*} pour p > 1.

Application 27 (ex 4 p.15 Rouv). norme p est une norme pour $p \ge 1$

2 En optimisation

Proposition 28 (Rouv p.371 ex 11ç ou Rom p.241). *Point critique ssi minimum global*

 ${\bf Application} \ \ {\bf 29.} \ \ {\bf Recherche} \ \ {\bf d'extremum} \ \ {\bf facile} \ \ {\bf pour} \ \ {\bf une} \ \ {\bf fonction} \ \ {\bf convexe} : \\ {\bf exemple} \ \ {\bf gradient} \ \ {\bf \grave{a}} \ \ {\bf pas} \ \ {\bf optimal}$

Remarque 30 (Hiriart p 274). Quand la fonction n'est pas différentiable mais seulement continue, on peut utiliser la sous-différentielle et on obtient une caractérisation pour être un minimum. Donner l'ex de la valeur absolue TROP DANGEREUX!!

Proposition 31 (OA p.30 ou Rom p.242). Pour une fonction convexe, un minimum local est global

A l'oral 32. Vrai sans hypothèse de différentiabilité/dérivabilité

Application 33.

Proposition 34 (OA p.30). Stricte convexe implique unicité du minimum

Remarque 35. Pas forcément existence : exp

Application 36. gradient à pas optimal

3 Pour obtenir des inégalités de convexité

3.1 Inégalités pour les fonctions usuelles

Proposition 37 (Rom - thm9.21 p.249). Inégalité de Jensen

Application 38. Inégalité arithmético-géométrique

Proposition 39 (Rom p.247). $e^x \ge x + 1$

Application 40. lemme du TCL

Proposition 41 (Rom p.247). $ln(x) \le x - 1$

Application 42 (Gou p.295). Convergence de $\int_0^n (1-t/n)^n t^{x-1} dt$ vers la fonction Gamma (TCVD)

Proposition 43 (FGN). Stricte concavité logarithmique du déterminant

Application 44 (FGN). Ellipsoïde de John-Loewner

3.2 Inégalités en théorie de l'intégration

Proposition 45 (Garet p.187). Inégalité de Young

Corollaire 46 (Garet p.187). Inégalité de Hölder

Application 47 (Garet p.190). Inclusion des L^p

Corollaire 48 (Garet p.189). Inégalité de Minkowski

Application 49. La norme p est une norme (inégalité triangulaire)

3.3 Inégalités en probabilités

Proposition 50 (Garet p.152). Inégalité de Jensen en proba

Application 51. Avec la valeur absolue, le carré, la fonction inverse. Rien d'exceptionnel...

Application 52. Montrer que l'estimateur $1/X_n$ pour une loi exponentielle, est biaisé

4 Projection sur un convexe fermé

Théorème 53 (Li p. 32-35). Thm de projection sur un convexe fermé

Application 54. Polynômes de meilleure approximation quadratique

Application 55. Moindres carrés

Corollaire 56 (Li p.36). thm du supplémentaire orthogonal

Application 57. (csqce)[Li p. 39] Thm de représentation de Riesz

Corollaire 58 (Li p.37). Critère de densité

Application 59. Le polynômes orthogonaux forment une base hilbertienne