Jackknife variance estimation corrections

Xuelong Wang 2019-12-06

Contents

1	Jack	kknife variance correction	1
2	Sim	nulation study compare two GCTA and GCTA_rr	1
	2.1	compare the performance of delete 1 and delete d in variance estimation	4

1 Jackknife variance correction

If we assume the S is a smooth functions of emperical CDF, especially a quadratic functions, then it can be shown the leading terms of $E(\tilde{Var}(S(X_1,\ldots,S_{n-1}))) \geq Var(S(X_1,\ldots,S_{n-1}))$ is a quadratic term in expectation. Therefore we could try to estimate the quadratic term and correct the bias for the jackknife variance estimation.

Define $Q_{ii'} \equiv nS - (n-1)(S_i + S_{i'}) + (n-2)S_{(ii')}$, then the correction will be

$$\hat{Var}^{corr}(S(X_1,\ldots,X_n)) = \hat{Var}(S(X_1,\ldots,X_n)) - \frac{1}{n(n-1)} \sum_{i < i'} (Q_{ii'} - \bar{Q})^2$$

where $\bar{Q} = \sum_{i < i'} (Q_{ii'}) / (n(n-1)/2)$

2 Simulation study compare two GCTA and GCTA_rr

GCTA_rr is the mixed.solve function from rrBLUP r package. Based on the following simulation results,

- 1. when n < p case, those two methods' results are very closed to each other.
- 2. when n > p case, in terms of effect estimation and jackknife variance estimation those two methods's reuslts are similar to each other. But for the variance corrections are quite different. That is the statistics Q of our method has a very large variance which leads to negative correction result.

2.0.1 setup

- Independent
- Normal
- p = 100
- $n = \{50, 75, 100, 150, 200\}$
- with interaction terms
- main effect: $Var(X^T\beta) = \{0, 8, 100\}$

2.0.2 Simulation result

2.0.3 $Var(X^T\beta) = \{0\}$

```
1.32
                                                 0.59
1: 50 3.40
             1.83
                                     0
2: 75 1.19
               0.98
                         0.56
                                     0
                                                 0.46
                                                                2.73
3: 100 1.08
               0.84
                         0.57
                                     0
                                                 0.44
                                                                 1.35
4: 150 0.28
               0.19
                         0.32
                                                -1.09
                                                                0.86
                                     0
5: 200 0.21
               0.12
                         0.32
                                                -1.60
                                                                0.78
   GCTA_v_jack_2 GCTA_v_corr
            9.62
                        -9.28
1:
            2.68
2:
                        -5.64
3:
            1.35
                        -0.77
4:
            0.67
                       -64.08
5:
            0.69
                       -46.14
     n MSE est_var est_mean NA_main GCTA_rr_main_jack GCTA_rr_v_jack_1
1: 50 3.40
                1.83
                         1.32
                                     0
                                                     0.60
                                                                       9.55
2: 75 1.19
               0.98
                         0.56
                                     0
                                                     0.46
                                                                       2.73
3: 100 1.08
                         0.57
                                                     0.44
               0.84
                                     0
                                                                       1.35
4: 150 0.28
               0.19
                         0.33
                                     0
                                                    -0.17
                                                                       0.62
5: 200 0.21
               0.12
                         0.33
                                                     0.28
                                                                       0.61
   GCTA_rr_v_jack_2 GCTA_rr_v_corr
                             -3.560
1:
               9.47
2:
                2.68
                             -5.643
3:
                1.35
                             -0.770
                             -1.204
4:
                0.61
5:
                0.61
                             -0.041
2.0.4 Var(X^T\beta) = \{100\}
         MSE est_var est_mean NA_main GCTA_main_jack GCTA_v_jack_1
1: 50 9247
                1784
                            87
                                      0
                                                     66
                                                                  8795
2: 75 10077
                 1863
                            92
                                      0
                                                    103
                                                                  5170
3: 100 11839
                 2142
                           100
                                      0
                                                     84
                                                                  2072
4: 150 10953
                  443
                           103
                                      0
                                                     31
                                                                  1280
5: 200 9778
                  245
                            98
                                      0
                                                     30
                                                                  725
   GCTA_v_jack_2 GCTA_v_corr
1:
            8793
                        -3687
            5109
2:
                        -3122
3:
            2081
                          194
4:
            1148
                       -80475
                       -32124
5:
             673
         MSE est_var est_mean NA_main GCTA_rr_main_jack GCTA_rr_v_jack_1
   50 9247
                 1784
                            87
                                      0
                                                        66
                                                                        8795
2: 75 10077
                                      0
                                                       103
                 1863
                            92
                                                                        5170
3: 100 11839
                           100
                                      0
                 2142
                                                        84
                                                                        2072
4: 150 11194
                                      0
                                                       103
                  414
                           104
                                                                         969
5: 200 9854
                  238
                            98
                                      0
                                                        98
                                                                         616
   GCTA_rr_v_jack_2 GCTA_rr_v_corr
                8787
                               -3492
1:
                5109
2:
                              -3124
```

n MSE est_var est_mean NA_main GCTA_main_jack GCTA_v_jack_1

```
3:
               2081
                                194
4:
                970
                                158
5:
                616
                                220
2.0.5 Var(X^T\beta) = \{8\}
     n MSE est_var est_mean NA_main GCTA_main_jack GCTA_v_jack_1
1: 50 90
              25.8
                        8.0
                                   0
                                                8.5
                                                              74.1
2: 75 70
              13.1
                        7.5
                                   0
                                                7.5
                                                              32.1
3: 100 68
               6.3
                        7.8
                                   0
                                                7.5
                                                              13.7
4: 150 70
               4.0
                                   0
                        8.1
                                                8.4
                                                               9.2
5: 200 65
               2.5
                        7.9
                                   0
                                                7.6
                                                               4.6
   GCTA_v_jack_2 GCTA_v_corr
            73.8
1:
                     -190.67
2:
            31.9
                      -25.67
            13.8
                       -0.97
3:
4:
             8.1
                     -502.59
             4.3
                     -214.51
     n MSE est_var est_mean NA_main
1: 50 24.0
               24.0
                         8.0
2: 75 13.8
               13.8
                         7.9
                                    0
3: 100 8.6
                8.6
                         8.1
                                    0
4: 150 3.7
                3.7
                         8.0
                                    0
5: 200 2.7
                2.7
                         8.0
                                    0
     n MSE est_var est_mean NA_main GCTA_rr_main_jack GCTA_rr_v_jack_1
1: 50 90
              25.8
                        8.0
                                   0
                                                   8.5
                                                                    74.1
2: 75 70
              13.1
                        7.5
                                   0
                                                   7.5
                                                                    32.1
3: 100 68
               6.3
                        7.8
                                   0
                                                   7.5
                                                                    13.7
4: 150 70
               4.1
                        8.1
                                   0
                                                   8.1
                                                                     6.9
5: 200 65
               2.5
                        7.9
                                   0
                                                   7.9
                                                                     3.9
   GCTA_rr_v_jack_2 GCTA_rr_v_corr
               73.6
1:
                           -177.35
2:
               31.8
                            -16.78
3:
               13.8
                              -0.97
4:
                6.9
                               1.49
5:
                3.9
                               1.38
     n MSE est_var est_mean NA_main
1: 50 23.8
               23.9
                         8.0
2: 75 13.7
                         7.9
               13.7
                                    0
3: 100 8.6
                8.6
                         8.1
                                    0
```

2.0.6 correlation test \$

3.8

2.7

8.0

8.1

4: 150 3.8

5: 200 2.7

	n	MSE	est_var	est_mean	${\tt NA_main}$	cor_main_jack	cor_v_jack_1
1:	50	0.0131	0.0130	0.49	0	0.49	0.0127
2:	75	0.0083	0.0083	0.50	0	0.50	0.0079
3:	100	0.0057	0.0057	0.50	0	0.50	0.0059
4:	150	0.0038	0.0038	0.50	0	0.50	0.0039
5:	200	0.0030	0.0030	0.50	0	0.50	0.0029

0

```
cor_v_jack_2 cor_v_corr
          0.0128
                      0.0120
1:
          0.0079
                      0.0076
2:
3:
         0.0059
                      0.0057
4:
          0.0039
                      0.0038
          0.0029
                      0.0029
5:
```

2.1 compare the performance of delete 1 and delete d in variance estimation

The delete-d jackknife varinace estimator is

$$\sqsubseteq_{J(d)} = \frac{n-d}{d} \cdot \frac{1}{S} \sum_{S} (\hat{\theta}_s - \hat{\theta}_{s.})$$

, where $S = \binom{n}{d}$. Note that S could a very large value, so in the following simulation, only S = 1000 is used. In Jun Shao's another paper, he proposed an approximation of the deletel-d variance estimation. That is just select m from $S = \binom{n}{d}$ sub-samples and in that paper it recommended $m = n^{1.5}$.

2.1.1 setup

- Independent
- Normal
- $p = \{100, 1000\}$
- $n = \{50, 75, 100, 150, 200, 500, 750, 1000, 1500, 2000\}$
- $d = 0.5 \times n$
- $n_{repeat} = 1000$ for delete d jackknife
- main effect: $Var(X^T\beta) = 8$

2.1.2 GCTA with p = 100

n	MSE	est_var	est_mean	NA_main	GCTA_main_jack	GCTA_v_jack	GCTA_v_jack_var	d	n_sub
50	25.6	25.8	8.0	0	8.5	74.1	8383.8	1.0	NA
75	13.2	13.1	7.5	0	7.5	32.1	685.1	1.0	NA
100	6.2	6.3	7.8	0	7.5	13.7	102.2	1.0	NA
150	4.0	4.0	8.1	0	8.4	9.2	16.4	1.0	NA
200	2.5	2.5	7.9	0	7.6	4.6	2.1	1.0	NA
50	25.6	25.8	8.0	0	45.5	41.2	365.2	0.5	NA
75	13.2	13.1	7.5	0	-177.5	27.1	99.7	0.5	NA
100	6.2	6.3	7.8	0	-237.3	18.5	38.1	0.5	NA
150	4.0	4.0	8.1	0	-13.8	9.4	7.5	0.5	NA
200	2.5	2.5	7.9	0	17.3	5.0	1.4	0.5	NA
50	25.6	25.8	8.0	0	35.1	41.1	366.6	0.5	354
75	13.2	13.1	7.5	0	-107.6	27.0	100.1	0.5	650
100	6.2	6.3	7.8	0	-237.3	18.5	38.1	0.5	1000
150	4.0	4.0	8.1	0	-20.2	9.3	7.0	0.5	1837
200	2.5	2.5	7.9	0	53.4	5.1	1.3	0.5	2828

2.1.3 GCTA with p = 1000

n	MSE	est_var	est_mean	NA_main	GCTA_main_jack	GCTA_v_jack	GCTA_v_jack_var	d
500	2.88	2.91	8.0	0	7.8	4.65	1.08	1.0
750	1.29	1.30	8.0	0	8.0	2.26	0.15	1.0
1000	0.77	0.78	8.0	0	8.0	1.28	0.04	1.0
1500	0.47	0.48	7.9	0	6.7	0.80	0.01	1.0
500	2.88	2.91	8.0	0	-79.1	6.56	1.17	0.5
750	1.29	1.30	8.0	0	-5.9	3.04	0.13	0.5
1000	0.77	0.78	8.0	0	40.8	1.71	0.05	0.5
1500	0.41	0.41	8.0	0	9.9	0.80	0.01	0.5
2000	0.31	0.31	8.0	0	25.6	0.48	0.00	0.5

$2.1.4 \quad GCTA_rr_rr \ with \ p = 100$

n	MSE	est_var	est_mean	NA_main	$GCTA_rr_main_jack$	$GCTA_rr_v_jack$	$GCTA_rr_v_jack_var$	d	n_sub
50	25.6	25.8	8.0	0	8.5	74.1	8378.6	1.0	NA
75	13.2	13.1	7.5	0	7.5	32.1	685.3	1.0	NA
100	6.2	6.3	7.8	0	7.5	13.7	102.2	1.0	NA
150	4.1	4.1	8.1	0	8.1	6.9	8.5	1.0	NA
200	2.5	2.5	7.9	0	7.9	3.9	1.3	1.0	NA
50	25.6	25.8	8.0	0	52.5	40.6	363.1	0.5	NA
75	13.2	13.1	7.5	0	-198.0	26.6	100.2	0.5	NA
100	6.2	6.3	7.8	0	-257.6	18.1	38.6	0.5	NA
150	4.1	4.1	8.1	0	-11.9	9.3	7.5	0.5	NA
200	2.5	2.5	7.9	0	25.4	5.0	1.4	0.5	NA
50	25.6	25.8	8.0	0	35.2	40.5	363.4	0.5	354
75	13.2	13.1	7.5	0	-120.5	26.6	100.8	0.5	650
100	6.2	6.3	7.8	0	-257.6	18.1	38.6	0.5	1000
150	4.1	4.1	8.1	0	-17.0	9.3	7.1	0.5	1837
200	2.5	2.5	7.9	0	76.2	5.1	1.3	0.5	2828

$2.1.5 \quad GCTA_rr \ with \ p=1000$

n	MSE	est_var	est_mean	NA_main	$GCTA_rr_main_jack$	$GCTA_rr_v_jack$	GCTA_rr_v_jack_var	d
500	2.88	2.91	8.0	0	7.8	4.65	1.08	1.0

(continued)

n	MSE	$_{\rm est_var}$	est_mean	NA_main	$GCTA_rr_main_jack$	$GCTA_rr_v_jack$	GCTA_rr_v_jack_var	d
750	1.29	1.30	8.0	0	8.0	2.26	0.15	1.0
1000	0.77	0.78	8.0	0	8.0	1.28	0.04	1.0
1500	0.48	0.48	7.9	0	8.0	0.62	0.00	1.0
500	2.88	2.91	8.0	0	-79.1	6.56	1.17	0.5
750	1.29	1.30	8.0	0	-5.9	3.04	0.13	0.5
1000	0.77	0.78	8.0	0	40.8	1.71	0.05	0.5
1500	0.41	0.41	8.0	0	11.8	0.80	0.01	0.5
2000	0.31	0.31	8.0	0	24.4	0.48	0.00	0.5

2.1.6 cor with n = 200

n	MSE	est_var	est_mean	NA_main	cor_main_jack	cor_v_jack	d
50	0.01252	0.01265	0.50001	0	0.50432	0.01229	1.0
75	0.00774	0.00782	0.50050	0	0.50323	0.00815	1.0
100	0.00607	0.00613	0.50148	0	0.50334	0.00582	1.0
150	0.00383	0.00385	0.49584	0	0.49709	0.00391	1.0
200	0.00281	0.00284	0.49930	0	0.50027	0.00288	1.0
50	0.01252	0.01265	0.50001	0	5.32154	0.01282	0.5
75	0.00774	0.00782	0.50050	0	3.26213	0.00844	0.5
100	0.00607	0.00613	0.50148	0	2.50378	0.00595	0.5
150	0.00383	0.00385	0.49584	0	1.59064	0.00396	0.5
200	0.00281	0.00284	0.49930	0	1.46439	0.00293	0.5

2.1.7 median with n = 200

n	MSE	est_var	est_mean	NA_{main}	median_main_jack	median_v_jack	d
50	0.03138	0.03135	-0.00775	0	-0.00775	0.06818	1.0
75	0.02211	0.02212	-0.00212	0	0.05228	0.03113	1.0
100	0.01523	0.01523	-0.00378	0	-0.00378	0.02720	1.0
150	0.01072	0.01072	-0.00279	0	-0.00279	0.01885	1.0
200	0.00804	0.00804	-0.00051	0	-0.00051	0.01614	1.0
50	0.03138	0.03135	-0.00775	0	5.04459	0.03477	0.5
75	0.02211	0.02212	-0.00212	0	8.44376	0.02248	0.5
100	0.01523	0.01523	-0.00378	0	2.68868	0.01587	0.5
150	0.01072	0.01072	-0.00279	0	-1.47581	0.01110	0.5
200	0.00804	0.00804	-0.00051	0	3.96797	0.00827	0.5