

ENGINEERING MATHEMATICS - I Partial Differentiation

Dr. AnithaDepartment of Science and Humanities

UNIT 2: Partial Differentiation

Session: 4

Sub Topic: Composite Functions, Total Derivative & Chain Rule

Dr. Anitha

Department of Science and Humanities

ENGINEERING MATHEMATICS - I TOPICS

- > COMPOSITE FUNCTIONS
- > TOTAL DERIVATIVE RULE
- > CHAIN RULE

Total derivative rule, Chain Rule and Composite functions

If $y = e^{\sin(x^2)}$ then, we can find the derivative of the function by using chain rule.

$$\frac{dy}{dx} = d\left(e^{\sin x^2}\right) \cdot d\left(\sin(x^2)\right) \cdot d(x^2)$$

$$\frac{dy}{dx} = e^{\sin x^2} \cos(x^2) \ 2x$$

Total derivative rule

PES UNIVERSITY ONLINE

Total derivative rule:

If z = f(x, y) where x and y are functions of one independent variable 't' then we can find the derivative of z with respect t as

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

Tree Diagram -Total derivative rule

Total Derivative Rule

PES UNIVERSITY ONLINE

Example:

$$z = x^2y^3$$
, $x = t^2$, $y = 2t^3$

Differentiating z partially with respect to x we get

$$\frac{\partial z}{\partial x} = 2xy^3 = 2t^{11}$$

And the partial derivative of z with respect to y will be

$$\frac{\partial z}{\partial y} = 3x^2y^2 = 9t^{10}$$

Also,

$$\frac{dx}{dt} = 2t, \frac{dy}{dt} = 6t^2$$

Substituting, we get $\frac{dz}{dt} = 60t^{12}$

Problems on Total derivatives

Solution:

Given
$$\frac{dx}{dt} = 0.2$$
 cm\sec
$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$x^2 + y^2 = 5, \qquad \frac{dy}{dx} = -\frac{x}{y}$$

Problems on Total derivatives

PES UNIVERSITY ONLINE

Contd....

$$\frac{dy}{dt} = -\frac{x}{y}\frac{dx}{dt} = -0.4 \text{ cms} \sec \frac{dz}{dt}$$

$$\frac{dz}{dt} = 0.139 \text{ cms/sec}$$

Problems on Total derivatives

2. Given that f(2,-3) = 6, $f_x(2,-3) = 1.3$ and $f_y(2,-3) = -0.6$, approximate f(2.1,-3.03).

Solution:

The total differential approximates how much f changes from the point (2,-3) to (2.1,-3.03). With dx=0.1 and dy=0.03, we have

$$dz = f_x(2, -3)dx + f_y(2, -3)dy$$

= 1.3(0.1) + (-0.6)(-0.03)
= 0.148

The change in z is approximately 0.148, so we approximate $f(2.1, -3.03) \approx 6.148$

Problems on Total Derivatives

3. One side of a triangle is increasing at a rate of 3cm/s and second side is decreasing at a rate of 2cm/s. If the area of a triangle remains constant, at what rate does the angle between the sides change when the first side is 20cms long, the second side is 30cms and the angle is $\frac{\pi}{6}$.

Solution:

A=
$$\frac{1}{2}$$
(base *height)
= $\frac{1}{2}xysin\theta$
 $\frac{dA}{dt} = \frac{\partial A}{\partial x}\frac{dx}{dt} + \frac{\partial A}{\partial y}\frac{dy}{dt} + \frac{\partial A}{\partial \theta}\frac{d\theta}{dt}$

Problems on Total Derivatives

PES UNIVERSITY ONLINE

Contd...

$$\frac{dA}{dt} = \frac{1}{2} \left(y sin\theta(3) + x sin\theta(-2) + x y cos\theta \frac{d\theta}{dt} \right)$$

Here
$$x = 20cm$$
; $y = 30cm$; $\theta = \frac{\pi}{6}$
$$\frac{d\theta}{dt} = \frac{-25}{300\sqrt{3}} = 0.04831$$

 θ should decrease at the rate of 0.0481 rad/sec

Problems on Total derivatives

4. A cylindrical steel storage tank is to be built that is 10ft tall and 4ft across in diameter. It is known that the steel will expand/contract with temperature changes; is the overall volume of the tank more sensitive to changes in the diameter or in the height of the tank?

Solution:

 $dV = 40\pi dr + 4\pi dh$.

A cylindrical solid with height h and radius r has volume $V = \pi r^2 h$.

$$\frac{\partial V}{\partial r}=V_r(r,h)=2\pi rh$$
 and $\frac{\partial V}{\partial h}=V_h(r,h)=\pi r^2$ $dV=(2\pi rh)\;dr+(\pi r^2)dh.$ When $h=10$ and $r=2$, we have

Problems on Total derivatives

Contd....

Note that the coefficient of dr is $40\pi \approx 125.7$; the coefficient of dh is a tenth of that, approximately 12.57. A small change in radius will be multiplied by 125.7, whereas a small change in height will be multiplied by 12.57. Thus the volume of the tank is more sensitive to changes in radius than in height.

Chain Rule

PES UNIVERSITY ONLINE

We can define chain rule for a function of two or more independent variable:

If z = f(x, y) is a bivariate function and x, y are functions of two or more independent variables say u, v then we can find the partial derivative of z with respect to u and v, given by

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \quad and$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

Tree diagram for Chain Rule

$$x = g(u, v)$$

$$\frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial y}$$

$$y = h(u, v)$$

$$\frac{\partial z}{\partial y}$$

$$y = h(u, v)$$

$$\frac{\partial z}{\partial y}$$

Chain rule - Problems

1. If
$$v = f(2x - 3y, 3y - 4z, 4z - 2x)$$
, prove that $6v_x + 4v_y + 3v_z = 0$.

Solution:

$$\frac{\partial v}{\partial x} = \frac{\partial v}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x}$$

$$Let \ r = 2x - 3y, s = 3y - 4z \ and \ t = 4z - 2x$$

$$r_x = 2, s_x = 0, t_x = -2$$

Similarly

$$r_y = -3$$
, $s_y = 3$, $t_y = 0$.

Also

$$r_z = 0$$
, $s_z = -4$, $t_z = 4$
 $\frac{\partial v}{\partial x} = 2\frac{\partial v}{\partial r} - 2\frac{\partial v}{\partial t}$

Partial Derivatives of composite functions

$$\frac{\partial v}{\partial y} = \frac{\partial v}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y}$$

$$= -3 \frac{\partial v}{\partial r} + \frac{\partial v}{\partial s}$$

$$\frac{\partial v}{\partial z} = \frac{\partial v}{\partial r} \frac{\partial r}{\partial z} + \frac{\partial v}{\partial s} \frac{\partial s}{\partial z} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial z}$$

$$= -4 \frac{\partial v}{\partial s} + 4 \frac{\partial v}{\partial t}$$

Therefore $6v_x + 4v_y + 3v_z = 0$.

Partial Derivatives of composite functions

2. Find
$$\frac{\partial z}{\partial s}$$
 and $\frac{\partial z}{\partial t}$ where $z=f(r,\theta)$ and $r=ts-t^2$, $\theta=\sqrt{s^2+t^2}$

Solution:

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial r} \frac{\partial r}{\partial s} + \frac{\partial z}{\partial \theta_s} \frac{\partial \theta}{\partial s}$$

$$r_s = t, \theta_s = \frac{1}{\sqrt{s^2 + t^2}}$$

$$\frac{\partial z}{\partial s} = f_r(r, \theta)t + f_{\theta}(r, \theta) \frac{s}{\sqrt{s^2 + t^2}}$$

Similarly

$$r_t = s - 2t, \theta_t = \frac{t}{\sqrt{s^2 + t^2}}$$

$$\frac{\partial z}{\partial t} = f_r(r, \theta)(s - 2t) + f_{\theta}(r, \theta) \frac{t}{\sqrt{s^2 + t^2}}$$

Dr. Anitha

Department of Science and Humanities

nanitha@pes.edu

Extn 730