ASSESSMENT 2: PROBLEM SETS BRIEF				
Subject Code and Title	MFA501 Mathematical Foundations of Al			
Assessment	Problem Sets			
Individual/Group	Individual			
Length				
Learning Outcomes	This assessment addresses the Subject Learning Outcomes outlined at the bottom of this document.			
Submission	Due by 11:55pm AEST Sunday end of: Module 6 (Week 6) (20%) Module 10 (Week 10) (20%)			
Weighting	40%			
Total Marks	100 marks			

Task Summary

In this assessment, you will be given a wide range of programming exercises to complete, which require using and applying mathematical concepts. These will be submitted in Module 6 (20%) and in Module 10 (20%). This assessment is to be completed individually and you are to submit a zip file including source code, debug, and release build and supporting documents for each problem set.

Context

This assessment activity assesses your skills in employing AI mathematical foundation to solve real-world problems and scenarios. The assessment is made of two parts due in modules 6 and 10 over the course of trimester.

Task Instructions

- The programs that you submit should be free of warnings and errors.
- You need to submit the source code and the executable format.
 - Name the source code folder as:
 MFA501_Assessment2_Week6_LastName_FirstName.zip
 - MFA501_Assessment2_Week10_LastName_FirstName.zip
- Your code should be structured and written with the best practices in the field of programming.
- There should be enough number of comments in the source files to show your understanding of the program. Any third-part code should be appropriately attributed.

After implementation and testing your programs, write a reflective report detailing the experience of the development process. The report needs to be at least 500 words in length and include the following sections:

- Overview
- Justifications and elaborations on the mathematical approaches and models used to solve the cases study
- Justifications and elaborations on the programing methods and practices used to implement the mathematical approaches and models
- What went right
- What went wrong
- What you are not sure about
- Conclusion

Your problem sets should include the following elements and should be zipped prior to submission:

- **Release Build Zip:** A release build executable must be zipped and included with the submission. Ensure that project settings are set to Release when creating this build.
- **Source Code Zip:** All relevant source code files and project files must be zipped and included with the submission
- Reflective report: PDF or Word
- Naming & File structure for the zip file (should be done for all problem sets).
 - MFA501_Assessment2_Set1_Release Build_LastName_FirstName.zip
 - MFA501_Assessment2_Set1_Source_LastName_FirstName.zip
 - MFA501_Assessment2_Set1_report_LastName_Firstname.pdf or .docx
- Make sure to submit Problem Set 1 by Sunday 11:55pm Module 6
- Make sure to submit Problem Set 2 by Sunday 11:55pm Module 10

Submission Instructions

This assessment task is due in two stages throughout the trimester as outlined above. Please submit your completed assessments via the Assessment link in the main navigation menu in MFA501 Mathematical Foundations of Al. The Learning Facilitator will provide feedback via the Grade Centre on Blackboard. Feedback can be viewed in My Grades

Assessment 2 Rubric

Assessment Attributes	Fail (Yet to achieve minimum standard) 0-49%	Pass (Functional) 50-64%	Credit (Proficient) 65-74%	Distinction (Advanced) 75-84%	High Distinction (Exceptional) 85-100%
Work demonstrates the knowledge and understanding of linear algebra in Al	Little or no knowledge of linear algebra in AI. The calculations and codes are mostly incorrect.	Acceptable but further work is required to show the knowledge of linear algebra in AI. The calculations and codes are mostly correct with occasional inaccuracies and errors.	Good level of knowledge about linear algebra in AI. The calculations and codes are correct with no errors. The codes are not efficient for the case study.	Very good but not thorough knowledge about linear algebra in AI. The calculations and codes are accurate. The codes are occasionally not efficient.	Excellent and thorough understanding of linear algebra in AI. The calculations and codes are accurate and completely error-free. The most efficient implementations are given.
Work demonstrates the knowledge and understanding of calculus in Al	Little or no knowledge of calculus in AI. The calculations and codes are mostly incorrect.	Acceptable but further work is required to show the knowledge of calculus in AI. The calculations and codes are mostly correct with occasional inaccuracies and errors.	Good level of knowledge about calculus in AI. The calculations and codes are correct with no errors. The codes are not efficient for the case study.	Very good but not thorough knowledge about calculus in AI. The calculations and codes are accurate. The codes are occasionally not efficient.	Excellent and thorough understanding of calculus in AI. The calculations and codes are accurate and completely error-free. The most efficient implementations are given.
Work demonstrates the knowledge and understanding of probability in Al	Little or no knowledge of probability in Al. The calculations and codes are mostly incorrect.	Acceptable but further work is required to show the knowledge of probability in AI. The calculations and codes are mostly correct with occasional inaccuracies and errors.	Good level of knowledge about probability in AI. The calculations and codes are correct with no errors. The codes are not efficient for the case study.	Very good but not thorough knowledge about probability in AI. The calculations and codes are accurate. The codes are occasionally not efficient.	Excellent and thorough understanding of probability in AI. The calculations and codes are accurate and completely error-free. The most efficient implementations are given.
Work demonstrates the knowledge and understanding of statistics in Al	Little or no knowledge of statistics in Al. The calculations and codes are mostly incorrect.	Acceptable but further work is required to show the knowledge of statistics in Al. The calculations and codes are mostly correct with	Good level of knowledge about statistics in AI. The calculations and codes are correct with no errors. The codes are not efficient for	Very good but not thorough knowledge about statistics in AI. The calculations and codes are accurate. The codes are occasionally not	Excellent and thorough understanding of statistics in AI. The calculations and codes are accurate and completely error-free. The

20%		occasional inaccuracies and errors.	the case study.	efficient.	most efficient implementations are given
		CITOIS.			
The reflective essay	The reflective essay	The reflective essay includes	The reflective essay includes	The reflective essay includes	The reflective essay includes
demonstrates the	includes no or little	some of the sections and	all the sections and	all the sections and	all the sections and
knowledge and	sections and concepts	concepts required. There is	concepts required.	concepts required.	concepts required.
understanding of the	required. There is no or	little elaborations or	Elaborations and	Elaborations and	Elaborations and
whole process of	little elaborations or	justifications to demonstrate	justifications are not	justifications are not	justifications are thorough
implementing and using	justifications on the use of	the knowledge and	discussed well to show the	thorough and in-depth to	and show the mastery of
the mathematical	the mathematical models	understanding of the whole	knowledge and thorough	demonstrate mastery of the	the whole process of
models and methods to	and methods used to solve	process of implementing and	understanding of the whole	whole process of	implementing and using the
solve the case study.	the case study.	using the mathematical	process of implementing	implementing and using the	mathematical models and
		models and methods to solve	and using the mathematical	mathematical models and	methods to solve the case
20%		the case study.	models and methods to	methods to solve the case	study.
			solve the case study.	study.	

The following Subject Learning Outcomes are addressed in this assessment		
SLO a)	Formulate key mathematical concepts used in Artificial Intelligence.	
SLO b)	Apply mathematical techniques in manipulating large data sets, and in designing and analysing experimental work in Al.	
SLO c)	Use standard mathematical notations and terminologies in statistics, probabilities, linear algebra, vectors, matrixes, differential calculus,	
	and logical reasoning.	
SLO d)	Compute accurately standard computations in statistics, probabilities, linear algebra, vectors, matrixes and differential calculus.	