

MATH 241

Chapter 3

SECTION 3.9: ANTIDERIVATIVES

Contents

Definition	2
General Antiderivatives	3
Table of Antiderivatives	4
Initial Condition	5

CREATED BY: PIERRE-OLIVIER PARISÉ

 $Fall\ 2022$

DEFINITION

A function F is an **antiderivative** of a function f if F'(x) = f(x).

EXAMPLE 1. Find an antiderivative of the following functions.

(a)
$$f(x) = x^2$$
. (b) $g(x) = 3x^3 + \cos(x)$. (c) $h(x) = x^{2/3} + 4\sec^2(x)$.

(a)
$$F(x) = x^2$$
 \rightarrow $F'(x) = 2x$
 $F(x) = x^3$ \rightarrow $F'(x) = 3x^2$
 $x^n \rightarrow \frac{x^{n+1}}{n+1}$
 $F(x) = \frac{x^3}{3}$ \rightarrow $F'(x) = \frac{1}{3}(3x^2) = x^2$ $n=-1$

(b)
$$x^3 - p \frac{x^4}{4}$$
 $cos(x) - p \sin(x)$

Check: $G'(x) = \frac{3}{4} (Ax^3) + cos(x)$
 $= 3x^3 + cos(x) = 9(x)$

$$= 3x^{3} + \cos(x) = g(x)$$

$$= 3x^{3} + \cos(x) = g(x)$$

$$= \frac{x^{3/3}}{2/3 + 1} = \frac{x^{5/3}}{5/3} = \frac{3}{5}x^{5/3}$$

$$4 \sec^{2}(x) = \frac{3}{5}x^{5/3} + 4 \tan x + C$$

$$H(x) = \frac{3}{5}x^{5/3} + 4 \tan x + C$$

Check:
$$H'(x) = \frac{3}{8} \left(\frac{5}{5} x^{5/3-1} \right) + 4 \sec^2 x$$

= $x^{2/3} + 4 \sec^2 x$.

Remarks:

- Recall that f'(x) = g'(x) if and only if f(x) = g(x) + C for some constant C.
- There are more than just one antiderivative!

The most general antiderivative of a function f is

$$F(x) + C$$
,

where C is a constant.

(a) Several Antiderivatives of $f(x) = x^2$, that is (b) Several antiderivatives of $f(x) = x^{2/3} + \cos(x)$, $\frac{x^3}{3} + C$

that is $\frac{3}{5}x^{5/3} + \sin(x) + C$.

Page 3

EXAMPLE 2. Find the most general antiderivative of each of the following functions.

(a)
$$f(x) = \sin x$$
.

(b)
$$f(x) = x^n, n \ge 0.$$

(a)
$$F(x) = -(0.5|x)$$
 (because $F'(x) = -(-5inx) = 5inx$)
 $\Rightarrow F(x) + C = [-(0.5|x) + C]$

(b)
$$F(x) = \frac{x^{n+1}}{n+1}$$

$$\Rightarrow F(x) + C = \frac{x^{n+1}}{n+1} + C$$

Function	Particular antiderivative	Function	Particular antiderivative
cf(x) f(x) + g(x)	cF(x) $F(x) + G(x)$	$\cos x$ $\sin x$	$\sin x$ $-\cos x$
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\sec^2 x$ $\sec x \tan x$	$\tan x$ $\sec x$

Figure 2: Properties and some Antiderivatives

EXAMPLE 3. Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Antiderivatives

1 4 sin x
$$\rightarrow$$
 -4 cos(x)
2 Simplify: $\frac{2x^5 - x'^2}{x} = \frac{2x^5}{x} - \frac{x'^2}{x}$
= $2x^{5-1} - x'^{2-1}$
= $2x^4 - x^{1/2}$

$$2x^{4} \longrightarrow 2x^{5}$$

$$x^{-1/2} \longrightarrow x^{-1/2+1} = x^{1/2} = 2x^{1/2}$$

$$x^{2} \longrightarrow x^{2} = x^{2} = 2x^{2}$$

$$x^{2} \longrightarrow x^{2} = x^{2} = 2x^{2} + C$$

(3)
$$F(x) = -4\cos(x) + \frac{2}{5}x^5 - 2x^4 + C$$

$$F(x) + C$$

EXAMPLE 4. Find F if $F'(x) = x\sqrt{x}$ and F(1) = 2.

$$x\sqrt{x} = xx^{1/2} = x^{1+1/2} = x^{3/2}$$

$$\Rightarrow F(x) = \frac{x}{5/2} + C = \frac{2}{5}x^{5/2} + C.$$

We have
$$F(1) = Z$$

$$\Rightarrow \frac{Z}{5}(1)^{5/2} + C = Z$$

$$\Rightarrow C = Z - \frac{Z}{5} = \frac{8}{5}$$
So, $F(x) = \frac{2}{5}x + \frac{8}{5}$

EXAMPLE 5. Find F if $F'(x) = \frac{1}{x^2}$ and F(1) = 2.

$$\frac{1}{\chi^2} = \chi^{-2}$$
 $\frac{\chi^{-2+1}}{-2+1} = \frac{\chi^{-1}}{-1} = \frac{-1}{\chi}$

$$\Rightarrow F(x) = -\frac{1}{x} + C$$

We have
$$F(1) = 2$$

$$\Rightarrow -1 + C = 2$$

$$F(x) = 3 - \frac{1}{x}$$