Section 4.3 – Polar Coordinates and Graphs

Definition of Polar Coordinates

To define polar coordinates, let an *origin* O (called the *pole*) and an *initial ray* from O. Then each point P can be located by assigning to it a *polar coordinate pair* (r, θ) in which r gives the directed from O to P and θ gives the directed angle from the initial ray to yay OP.

Polar Coordinates

Find all the polar coordinates of the point $P\left(2, \frac{\pi}{6}\right)$

Solution

For
$$r = 2$$
 \Rightarrow $\theta = \frac{\pi}{6}, \frac{\pi}{6} \pm 2\pi, \frac{\pi}{6} \pm 4\pi, \dots$

For
$$r = -2 \implies \theta = -\frac{5\pi}{6}, -\frac{5\pi}{6} \pm 2\pi, -\frac{5\pi}{6} \pm 4\pi, \dots$$

The corresponding coordinate pairs of P are

$$\left(2, \frac{\pi}{6} + 2n\pi\right), \quad n = 0, \pm 1, \pm 2, \dots$$

And

$$\left(-2, -\frac{5\pi}{6} + 2n\pi\right), \quad n = 0, \pm 1, \pm 2, \dots$$

Polar Equations and Graphs

Equation	Graph
r = a	Circle of radius $ a $ centered at O
$\theta = \theta_0$	Line through O making an angle θ_0 with the initial ray

Example

Graph the polar coordinate $1 \le r \le 2$ and $0 \le \theta \le \frac{\pi}{2}$

Solution

Graph the polar coordinate $-3 \le r \le 2$ and $\theta = \frac{\pi}{4}$

Solution

Example

Graph the polar coordinate $\frac{2\pi}{3} \le \theta \le \frac{5\pi}{6}$ (no restriction on r)

Solution

Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins together and take the initial polar ray as the positive *x*-axis. The ray $\theta = \frac{\pi}{2}$, r > 0 becomes the positive *y*-axis. The two coordinate systems are then related by the following equations

Equations Relating Polar and Cartesian Coordinates

$$\begin{cases} x = r\cos\theta, & y = r\sin\theta \\ r^2 = x^2 + y^2, & \tan\theta = \frac{y}{x} \end{cases}$$

Polar equation	Cartesian equation			
$r\cos\theta = 2$	x = 2			
$r^2\cos\theta\sin\theta = 4$	xy = 4			
$r^2\cos^2\theta - r^2\sin^2\theta = 1$	$x^2 - y^2 = 1$			
$r = 1 + 2r\cos\theta$	$y^2 - 3x^2 - 4x - 1 = 0$			
$r = 1 - \cos \theta$	$x^4 + y^4 + 2x^2y^2 + 2x^3 + 2xy^2 - y^2 = 0$			

Find a polar equation for the circle $x^2 + (y-3)^2 = 9$

Solution

$$x^{2} + (y-3)^{2} = 9$$

$$x^{2} + y^{2} - 6y + 9 = 9$$

$$x^{2} + y^{2} - 6y = 0$$

$$x^{2} + y^{2} = r^{2}$$

$$r^{2} - 6r\sin\theta = 0$$

$$r(r - 6\sin\theta) = 0 \Rightarrow \boxed{r = 0} \boxed{r = 6\sin\theta}$$

Example

Replace the polar equation by equivalent Cartesian equation and identify the graph: $r \cos \theta = -4$

Solution

$$r\cos\theta = -4 \implies x = -4$$

The graph: Vertical line through x = -4

Example

Replace the polar equation by equivalent Cartesian equation and identify the graph: $r^2 = 4r\cos\theta$

Solution

$$r^2 = 4r\cos\theta$$
$$x^2 + y^2 = 4x$$

$$x^2 - 4x + v^2 = 0$$

$$x^2 - 4x + 4 + y^2 = 4$$

$$(x-2)^2 + y^2 = 4$$

The *graph*: Circle with center (2, 0) and radius 2.

Symmetry Test for Polar Graphs

1. *Symmetry about the x-axis*: If the point (r,θ) lies on the graph, then the point $(r,-\theta)$ or $(-r,\pi-\theta)$ lies on the graph.

2. Symmetry about the y-axis: If the point (r,θ) lies on the graph, then the point $(r,\pi-\theta)$ or $(-r,-\theta)$ lies on the graph.

3. *Symmetry about the origin*: If the point (r,θ) lies on the graph, then the point $(-r,\theta)$ or $(r,\theta+\pi)$ lies on the graph.

Graph the curve $r = 1 - \cos \theta$

Solution

The curve is symmetric about the *x*-axis:

$$1 - \cos(-\theta) = 1 - \cos\theta = r$$

θ	$r = 1 - \cos \theta$				
0	0				
$\frac{\pi}{3}$	$\frac{1}{2}$				
$\frac{\pi}{2}$	1				
$\frac{2\pi}{3}$	$\frac{3}{2}$				
π	2				

Graph the curve $r^2 = 4\cos\theta$

Solution

The curve is symmetric about the *x*-axis:

$$r^{2} = 4\cos\theta$$
$$r^{2} = 4\cos(-\theta)$$
$$(r, -\theta)$$

The curve is symmetric about the *origin*:

$$r^{2} = 4\cos\theta$$
$$(-r)^{2} = 4\cos\theta$$
$$(-r,\theta)$$

Therefore, the curve is also symmetric about the *y*-axis.

$$r^2 = 4\cos\theta \implies r = \pm 2\sqrt{\cos\theta}$$

θ	$r = \pm 2\sqrt{\cos\theta}$
0	±2
$\pm \frac{\pi}{6}$	≈ ±1.9
$\pm \frac{\pi}{4}$	≈ ±1.7
$\pm \frac{\pi}{3}$	≈ ±1.4
$\pm \frac{\pi}{2}$	0

A Technique for Graphing

One way to graph a polar equation $r = f(\theta)$ is to make a table of (r, θ) values, plot the corresponding points, and connect them in order of increasing.

26

Another method of graphing more reliable is

- **1.** First graph $r = f(\theta)$ in the *Cartesian* $r\theta plane$,
- **2.** Then use the *Cartesian* graph as a table and guide to sketch the *polar coordinate* graph.

Graph the *lemniscate* curve $r^2 = \sin 2\theta$

Solution

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{7\pi}{6}$
$r = \pm \sqrt{\sin 2\theta}$	0	$\pm\sqrt{\frac{\sqrt{3}}{2}}\approx\pm.93$	±1	$\pm\sqrt{\frac{\sqrt{3}}{2}}\approx\pm.93$	0	0	$\pm\sqrt{\frac{\sqrt{3}}{2}}\approx\pm.93$

1. Find the Cartesian coordinates of the following points (given in polar coordinates)

a) $\left(\sqrt{2}, \frac{\pi}{4}\right)$ b) $\left(1, 0\right)$ c) $\left(0, \frac{\pi}{2}\right)$ d) $\left(-\sqrt{2}, \frac{\pi}{4}\right)$

2. Find the polar coordinates, $0 \le \theta < 2\pi$ and $r \ge 0$, of the following points given in Cartesian coordinates

a) (1, 1) b) (-3, 0) c) $(\sqrt{3}, -1)$ d) (-3, 4)

3. Find the polar coordinates, $-\pi \le \theta < \pi$ and $r \ge 0$, of the following points given in Cartesian coordinates

a) (-2, -2) b) (0, 3) c) $(-\sqrt{3}, 1)$ d) (5, -12)

Graph

- **4.** $1 \le r \le 2$
- 5. $0 \le \theta \le \frac{\pi}{6}, \quad r \ge 0$
- 6. $\theta = \frac{\pi}{2}, \quad r \leq 0$

- 7. $-\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}, \quad 0 \le r \le 1$
- **8.** $0 \le \theta \le \frac{\pi}{2}, \quad 1 \le |r| \le 2$

Replace the polar equation with equivalent Cartesian equation and identify the graph

9. $r\cos\theta = 2$

- 14. $r = \frac{5}{\sin \theta 2\cos \theta}$
- $18. \quad r = 2\cos\theta + 2\sin\theta$

- **10.** $r\sin\theta = -1$
- **15.** $r = 4 \tan \theta \sec \theta$
- 19. $r\sin\left(\frac{2\pi}{3}-\theta\right)=5$

- 11. $r = -3\sec\theta$ 12. $r\cos\theta + r\sin\theta = 1$
- $16. \quad r\sin\theta = \ln r + \ln\cos\theta$
- 20. $r = \frac{4}{2\cos\theta \sin\theta}$

- 13. $r^2 = 4r\sin\theta$
- $17. \quad \cos^2\theta = \sin^2\theta$

Replace the Cartesian equation with equivalent polar equation

21. x = y

24. xy = 1

26. $x^2 + (y-2)^2 = 4$

- **22.** $x^2 y^2 = 1$
- **25.** $x^2 + xy + y^2 = 1$
- **27.** $(x+2)^2 + (y-5)^2 = 16$

- $23. \quad \frac{x^2}{9} + \frac{y^2}{4} = 1$
- **28.** a) Show that every vertical line in the xy-plane has a polar equation of the form $r = a \sec \theta$
 - b) Find the analogous polar equation for horizontal lines in the xy-plane.

Identify the symmetries of the curves. Then sketch the curves.

- **29.** $r = 2 2\cos\theta$
- $31. \quad r = 2 + \sin \theta$
- 33. $r^2 = -\sin\theta$

30.
$$r = 1 + \sin \theta$$

32.
$$r^2 = \sin \theta$$

34.
$$r^2 = -\cos\theta$$

Graph the lemniscate. What symmetries do these curves have?

35.
$$r^2 = 4\cos 2\theta$$

36.
$$r^2 = 4\sin 2\theta$$

37.
$$r^2 = -\cos 2\theta$$

Graph the limaçons is Old French for "snail". Equations for limaçons have the form $r = a \pm b \cos \theta$ or $r = a \pm b \sin \theta$

38.
$$r = \frac{1}{2} + \cos \theta$$

$$40. \quad r = 1 - \cos \theta$$

42.
$$r = 2 + \cos \theta$$

39.
$$r = \frac{1}{2} + \sin \theta$$

41.
$$r = \frac{3}{2} - \sin \theta$$

Graph the equation

$$43. \quad r = 1 - 2\sin 3\theta$$

44.
$$r = \sin^2 \frac{\theta}{2}$$
 45. $r = 1 - \sin \theta$

45.
$$r = 1 - \sin \theta$$

46.
$$r^2 = 4 \sin \theta$$

47. Graph the *nephroid* of *Freeth* equation
$$r = 1 + 2\sin\frac{\theta}{2}$$

48. Water flows in a shallow semicircular channel with inner and outer radii of 1 m and 2 m. At a point $P(r, \theta)$ in the channel, the flow is in the tangential direction (counterclockwise along circles), and it depends only on r, the distance from the center of the semicircles.

- a) Express the region formed by the channel as a set in polar coordinates.
- b) Express the inflow and outflow regions of the channel as sets in polar coordinates.
- c) Suppose the tangential velocity of the water in m/s is given by v(r) = 10r, for $1 \le r \le 2$. Is the velocity greater at $\left(1.5, \frac{\pi}{4}\right)$ or $\left(1.2, \frac{3\pi}{4}\right)$? Explain.
- d) Suppose the tangential velocity of the water is given by $v(r) = \frac{20}{r}$, for . Is the velocity greater $(1.8, \frac{\pi}{6})$ or $(1.3, \frac{2\pi}{3})$? Explain.
- e) The total amount of water that flows through the channel (across a cross section of the channel $\theta = \theta_0$) is proportional to $\int_1^2 v(r) dr$. Is the total flow through the channel greater for the flow in part (c) or (d)?
- 49. A simplified model assumes that the orbits of Earth and Mars are circular with radii of 2 and 3, respectively, and that Earth completes one orbit in one year while Mars takes two years. When t = 0

. Earth is at (2, 0) and Mars is at (3, 0); both orbit the Sum (at (0, 0)) in the counterclockwise direction.

The position of Mars relative to Earth is given by the parametric equations

$$x = (3 - 4\cos \pi t)\cos \pi t + 2, \quad y = (3 - 4\cos \pi t)\sin \pi t$$

- *a*) Graph the parametric equations, for $0 \le t \le 2$
- **b**) Letting $r = 3 4\cos \pi t$, explain why the path of Mars relative to Earth is a limaçon.