Chemical Bonding

- 1.)
- a.) Ba and S Ionic
- b.) P and CI Covalent
- c.) Ca and O Ionic
- d.) Rb and I Ionic
- e.) O and H Covalent
- f.) S and O Covalent
- **2a.)** NaCl. Both sodium and chlorine have fewer shells, so the ions can bond closer together.
- **2b.)** Increases Smaller ions mean protons and electrons are closer, increasing attraction.
- **2c.**) Strength increases. Smaller ions = stronger intermolecular forces = higher melting point. Example: NaCl = 801° C vs. KBr = 734° C
- **3.)** MgO has a higher melting point than NaF due to greater ionic charges. MgO = 2852° C vs. NaF = 993° C
- 4.)
- a.) CaO
- b.) LiF
- c.) BaS
- d.) KCI
- e.) BeO
- 5a.) Increases
- 5b.) Increases
- 5c.) Bigger
- 6a.) Decreases
- **6b.)** Decreases
- 6c.) Smaller
- 7.)
- a.) S and O Covalent
- b.) Ba and O Ionic
- c.) Fe and CI Ionic
- d.) N and O Covalent
- e.) H and S Covalent
- f.) C and H Covalent
- **8a.**) Decreases Greater distance = weaker electrostatic attraction
- **8b.)** Decreases As atomic size increases down the group, bond strength decreases
- 9.) Increases More shared electrons = stronger electrostatic attraction = stronger bond

10.) Decreases – More shared electrons = stronger pull = shorter bond length
11.) a.) P and CI – PCI ₃ b.) B and O – B ₂ O ₃ c.) C and S – CS ₂ d.) P and O – P ₂ O ₃ e.) H and Se – H ₂ Se f.) F and O – F ₂ O g.) H and O – H ₂ O h.) N and I – NI ₃ i.) B and C – B ₄ C ₃ j.) C and CI – CCI ₄ k.) Si and P – Si ₃ P ₄ I.) Si and S – SiS ₂
Polarity
1.a) polar
b) non polar
c) polar
d) non polar
e) polar
f) non polar
g) non polar
h) polar
2 a) Sb, As, and P in this order have decreasing electron numbers the more electrons you have the greater your london forces are. The greater londen forces means higher melting point
b) Nh3 has hydrogen bonds as well including london dispersion forces
3. Only c,e,g,h are hydrogen bonds

- 4. Glycerine has both hydrogen and london forces. High forces = high viscosity
- 5. a) london forces
- b) london forces
- c) covalent bond
- d) hydrogen bond
- e) ionic bond
- f) london forces
- 6. a) Xe larger london forces
- b) Hbr has dipole dipole forces
- c) HO-Ch2-Ch2-OH has hydrogen bonds
- d) Br2 larger london forces

Lewis Structures

1.

$$[K^{+}]: B_{r}:] [Ca:] Alt^{3} [Ca:]$$

$$[K^{+}]: B_{r}:] [Mg]^{2} [Co:]$$

$$[K^{+}]: Ca:]$$

$$[$$

2. Assign Lewis structures to the following molecules.

m. r. roor-Dr. m. r	structures to the following mole	cuics.	
HCl 1=7 =8	00	I2 7+7=14	(m) / m
H Cl	H: Cl: / H-Ci:	Jacobson	: I 3 I: /: I - I:
IC1 7+7 = 14	(i	C ₂ H ₆ H H	H H / H 4
I CI	T. Q-/: I-Q-	H==== C==== H 8+6 = 14 H	
C₂H₄ Ḥ Ḥ	HH	C2H V2	/
C annual C	H C . C . C . L . H	Hama Cama Cama H	H:C:16:H/A-CEC-H
8+4=12 H H	й ййй	8+2=10	/"
BeF ₂	- +2	O2 6x2=12	
2+ 1 4=16 F=== Be====F	[SF.] [Be][SF.	O	00000
SCl2 6+14=20	111111111111111111111111111111111111111	N ₂ /6	2
Cl-sum S mun Cl	: ¿: s: ¿: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	N anson N	: M :: N : M = N :
H2CO 244672	100	C4H4 16+4=20	16 0
O H H	H: C:H	H H	i i i i i i i i

HCN (HF5=10	H: C.K.	BH ₃	H:B:# H
H N	., 665	3+3=6 H	, ,
	H-CEN:	нВ н	H-B-H
HCSCI 14464 Z 18	15:	NO ₂	10:4:6:
S	H:C:C	5+12+1=18 [O N O]-	
HCCI	H- E-a:		[:: -N=0:] or [:= N -0:]
NO+ 5+6+=10	'A :00:	NCOH 5141641 = /6	H: ö: N:C;
[NO]+	t	H O N C	11 " - 15"
	[: N=0:]		H-0=N-C: H-0-N=C:
NH ₂		SO ₂	4-0 5/1-6
[HNH]-		oso	
	[H-N-H]		0=5-0: 0 -5=0
S ₂ Cl ₂	: cc - s- s- ce:	N ₂ H z ∉ Ḥ Ḥ	
CISS CI		NN	H H
	·	ÄÄ	: y-y:
SF ₆ F		CNO-	,
Family F	3. F.	[CNO]	C" 13 C C" 13-
F" # "F	16.75-E		[c=N=0] or [c-N=0.]
NO ₃	1.15	C ₄ H ₄	[:c=N-0:]
	<u> </u>	H C H	
. [10=4-6 [in-4:5] [in-4:3]	HСН	H-C-C-H H-C-C-H
L O J	[0:4-0] [:0-4-0] [:0-4-0]		12-E-19 H
N ₂ O ₃ O N O	20-1 1-E B . E . E	CH₃CO₂H	4 .0.
O.L. Karanja	10'	H O	H-C-C-Ö-H
0	16-4=4=6 10-4-4=01	н	DH . #
SeBr ₄		, H	н : 6:
Br	18, Se		H-C-C=Ö-H
Br Se Br	Br.		
Br	Br . Br.		
			,