

Internship Presentation

Dimitris Boumparis

Supervisor: Prof. Dr. Walter Daelemans

Mentor: Jens Lemmens

Suggest a couple of titles for a powerpoint presentation about an internship on natural language processing

- 1. "Exploring Natural Language Processing: My Internship Experience"
- 2. "Learning and Implementing NLP Techniques during My Internship"
- 3. "My Journey into Natural Language Processing: An Internship Experience"
- 4. "Applying Natural Language Processing in Real-World Settings: An Internship Perspective"
- 5. "Gaining Hands-On Experience with NLP through an Internship"

Be more creative; maybe add a pun

- 1. "NLP: It's a Natural Fit for My Internship"
- 2. "Intern-lingual Processing: My Experience with NLP"
- 3. "Interning in NLP Land: Adventures in Natural Language Processing"
- 4. "From Intern to NLP Pro: My Journey in Natural Language Processing"
- 5. "Interning on the Cutting Edge of NLP: My Experience with Natural Language Processing"

General Information

Objective

- Apply the knowledge and skills acquired in the MA DTA in concrete organizational contexts
- Paths: research, experiments, programming, application development, etc.

Requirements

- 336 hours minimum (240 work+ 96 self-studying)
- Flexible conditions (on-site, WFH)
- combination with thesis

Evaluation

- Portfolio (2,5k 5k words)
 - More personal tone
 - Experiences and takeaways
- Presentation:
 - More formal tone
 - Results-oriented

Motivation

- Already been an:
 - intern during my bachelor's (translation and localization) (summer of 2017)
 - associate at the Computational Stylistics Lab at NKUA (Prof. Dr. George Mikros)
 (2017-2019)
- Prior experience in programming (front-end web dev)
- New challenges:
 - Longest stay abroad to date
 - Multi-cultural environment
 - Research centre with international prestige
- Aspirations for a research-oriented career

Tasks

- Main: Author profiling
- Predict:
 - Gender
 - Age group
 - Personality
 - Job (industry)
- Classification-only
- Algorithms used:
 - Experimented with traditional machine learning and deep learning (BERT)
 - (Linear) Support Vector Machines was preferred

- Other: NRC Word-Emotion Association Lexicon (Mohammad & Turney, 2010)
 - Used in (multilingual) sentiment analysis
 - Version 0.92
 - Translation into Greek
 - MTPE of the Greek MT

NRC Lexicon

 MTPE (where column B already populated, ~5,500)

Challenges:

- English is analytical
- The same form for different purposes (noun == verb) → translations in multiple PoS
- Polysemous words → only emotional connotations
- Greek is a cased language → prone to mistranslations

	Α	В	С	D	Е
1	English (en)	Greek (el) - automatic	Greek (el) - manual	Positive -	Negative 🕝
39	abrasion	τριβή	τριβή	0	1
41	abrogate	ακυρώνω	ακυρώνω	0	1
44	abscess	απόστημα	απόστημα	0	1
45	absence	απουσία	απουσία	0	1
46	absent	απών	απών	0	1
47	absentee	απών	απών	0	1
48	absenteeism	κατά συνήθεια απουσία	κατά συνήθεια απουσία	0	1
50	absolute	απόλυτος	απόλυτος	1	0
51	absolution	απαλλαγή	απαλλαγή	1	0
52	absorbed	απορροφηθεί	απορροφημένος	1	0
61	absurd	παράλογος	παράλογος	0	1
62	absurdity	παραλογισμός	παραλογισμός	0	1
63	abundance	αφθονία	αφθονία	1	1
64	abundant	άφθονος	άφθονος	1	0
65	abuse	κατάχρηση	καταχρώμαι, κατάχρηση	0	1
68	abysmal	αβυσσαλέες	αβυσσαλέος	0	1
69	abyss	άβυσσος	άβυσσος	0	1

Author Profiling Tasks

- Datasets:
 - PAN15 Author Profiling Shared Task
 - Tweets in **English**, Spanish, Italian and Dutch
 - Balanced in genders and ages (see graph)
 - Blog Authorship Corpus
 - Short and mid-length tweets/texts (English)

- Compatibility/Sanitization:
 - Age groups
 - Cleaning
 - Tokenization
- Classifications:
 - 5 or 10-fold Grid Search Cross-Validation on F1-macro score
 - Run on CLiPS server or locally
 - Models saved as joblib files
 - Used sklearn's GroupShuffleSplit()
 for the PAN dataset

Preprocessing

- Lowercasing (stdlib)
- Tokenization (spacy)
- Replace content words with POS tags while maintaining function words

- Different levels of cleaning (RegEx):
 - Remove https://urls, @mentions, #hastags
 - Remove repeated punctuation
 - Replace whitespace with single space

documents	semicleaned	tokenized	pos_fw
How to Test Your Startup Idea for \$50 http://t	how to test your startup	how to test your startup	how to VERB your NOUN
	idea for \$50	idea for \$ 50	NOUN for SYM NUM
@username @username @username @usern	you've been quoted in my	you 've be quote in my	you ' AUX be INTJ in my
	story "new story"	story " new story "	NOUN " ADJ NOUN "
New Story http://t.co/Uu5AggZP #storify #cacer	new story	new story	ADJ NOUN
@username @username @username @username You've	you've been quoted in my	you 've be quote in my	you ' AUX be INTJ in my
	story	story	NOUN
@username @username @username @usern	you've been quoted in my	you 've be quote in my	you ' AUX be INTJ in my
	story	story	NOUN

Gender (LSVM / LogReg)

- Binary classification
- LogReg performed significantly worse

Unigrams: .73

• 1-3grams: .74

1-2grams + POS + Punct: .68

• 1-2grams + POS + Punct + LIWC: .67

45000

40000

35000

30000

- 25000

20000

Age group (LSVM)

- Groups:
 - Initially: 18-24, 25-34, 35-50, 50+
 - After sanitization: <18, 18-24, 25-34, 35+
 - Finally: <35, 35+ (binary)

- 4 classes: .35, .44, .52 (1-2grams)
- 3 classes: .51-.57 (unigrams)
- 2 classes: .54 (word/char 1-3grams + FU)
- 4 classes (all samples): .62 (1-3grams)

Industry (SVM)

- 36 industries with various # of samples
- 8 with 1,000 samples each

- 1-2grams: .25 (left)
- All features: .26 (right)

Personality (LSVM)

- Extrovert: -0.5...0.4
- Binary: 1 if score > 0, else 0
- Very imbalanced dataset → adjust weights

```
1 # Calculate the weights for each class
2 class_weights = dict(df['extroverted'].value_counts(normalize=True))
3 class_weights = {k: round(1-v, 3) for k, v in class_weights.items()}
```

- 1-4grams (tokenized text): .56
- 1-3grams (tokenized text) + other personality traits + POS FW: .70

Scikit-Learn Classes Spotlight

- FeatureUnion()
 - Combine several feature extraction mechanisms into a single transformer
 - 1. TF-IDF word Vectorizer
 - 2. TF-IDF POS Vectorizer
 - 3. Punctuation Vectorizer
 - 4. Numeric Transformers (punctuation and LIWC)

from sklearn.pipeline import FeatureUnion

```
1 word_pipe = Pipeline([
       ('selector', ItemSelector(key='tokenized')),
       ('vect', TfidfVectorizer(analyzer='word'))
6 pos_pipe = Pipeline([
       ('selector', ItemSelector(key='pos')),
       ('vect', TfidfVectorizer(analyzer='word'))
11 num_cols = ['total_punct', 'punct_dist'] + [col for col in X.columns
                                               if col.startswith('liwc ')]
14 num_pipe = Pipeline([
       ('selector', ItemSelector(key=num_cols)),
  punct pipe = Pipeline([
       ('selector', ItemSelector(key='count_punct')),
       ('iter', RowIterator()),
       ('vect', DictVectorizer())
24 pipe = Pipeline([(
           FeatureUnion([
               ('word', word_pipe),
               ('pos', pos_pipe),
               ('num', num_pipe),
               ('punct', punct_pipe)
       ('clf', LinearSVC(random_state=97, class_weight='bulanced'))
```

Scikit-Learn Classes Spotlight (cont'd)

- GroupShuffleSplit()
 - Shuffle-Group(s)-Out cross-validation iterator
 - Provides randomized train/test indices to split data according to a third-party provided group

from sklearn.model_selection import GroupShuffleSplit


```
gss_cv = GroupShuffleSplit(n_splits=10, test_size=0.2, random_state=97)
train_idx, test_idx = next(gss_cv.split(X, y, groups)) # GSS is a generator, so we need to call next()

X_train, X_test, y_train, y_test = X[train_idx], X[test_idx], y[train_idx], y[test_idx]
X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

Conclusions & Takeaways

Tasks

- There's always more to learn in the packages we use every day!
- Tokenization performs better than uncleaned and semicleaned text (kudos to NLP group project)
- Still room to improve models for secondary/tertiary author features

Better data (+ better features) > better models

Overall experience

- Pros:
 - Met awesome people!
 - Participated in very intriguing meetings
 - Tested and expanded the knowledge acquired during the past year
- Cons:
 - Always (or mostly) on-site would be nice
 - Some technical difficulties
 - Put more time on other stuff

Dank u wel! Nog vragen?

When there's a task that can be done manually in 10 minutes but you find a way to automate it in 10 days

