This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

..... (USPTO)

THIS PAGE BLANK (USPTO)

ОПИСАНИЕ НА ИЗОБРЕТЕНИЕ ПО АВТОРСКО СВИДЕТЕЛСТВО

патентно ведомство

- (21) Регистров № 95498
- (22) Заявсно на 19.11.91

Приоритетни данни

(31)

(32)

(33)

- (41) Публикувана заявка в бюлетин № на
- (45) Отпечатано на 30.07.93
- (46) Публикувано в бюлетин № 7 на 15.07.93
- (56) Информационни източници:

(62) Разделена заявка от рег. №

(71) Заявител(и):

Бургаски технологичен университет, Бургас

(72) Изобретател (и):

Атанас Костадинов Томов Поморие Курти Стоянов Куртев Бургас

(86) № и дата на РСТ заявка:

(87) № и дата на РСТ публикация:

(54) КАТАЛИЗАТОР ЗА ПОЛИМЕРИЗАЦИЯ НА ЕТИЛЕН И МЕТОД ЗА ПОЛУЧАВАНЕТО МУ

(57) Катализаторът се използва за получаване на линеен полиетилен в среда от полярни или неполярни разтворители, или смеси от тях, при температура от 0 до 120° C, концентрация на катализатора от 5.10^{-3} мол/л до 1 мол/л и налягане на етилена от 1 до 150 атмосфери. Катализаторът за полимеризация на етилен е с формула

в която R_1 , R_2 , R_3 , R_6 , R_7 и R_8 независимо една от друга означават алкилни групи, съдържащи от 1 до 10 въглеродни атома; арилалкилни

BEST AVAILABLE COPY

групи, съдържащи от 7 до 20 въглеродни атома; алкиларилни групи, съдържащи от 7 до 20 въглеродни атома; R_4 и R_5 независимо един от друг означават H, алкилни групи, съдържащи от 1 до 10 въглеродни атома. По метода Ni(O) съединения взаимодействат с бис- α -кетоилиди и третични фосфини в среда от полярни или неполярни разтворители, или смеси от тях, при температура от -20 до $80^{\circ}C$.

7претенции

5

(54) КАТАЛИЗАТОР ЗА ПОЛИМЕРИЗА-ЦИЯ НА ЕТИЛЕН И МЕТОД ЗА ПОЛУ-ЧАВАНЕТО МУ

Изобретението се отнася до катализатор за полимеризация на етилен и метод за неговото получаване.

Известно е, че никеловите комплекси, съдържащи хелатно свързани α-кетоилидни лиганди, са активни катализатори за олигомеризация на етилен до линейни α -алкени [1,2]. Модификацията in situ на тези органометални съединения ги превръща в двукомпонентни катализатори за полимеризация на етилен до линеен полиетилен [3]. Така например е известно [4] използването на α - кетоилидни никелови комплекси, модифицирани с различни фосфиноакцепторни добавки като катализатори за полимеризация на етилен. Никел-илидните комплекси [5,6], също катализират полимеризацията на етилен до линеен полиетилен. Това са двукомпонентни катализатори и се получават in situ по време на каталитичния процес.

Недостатъци на описаните катализатори за полимеризация на етилен са тяхната не особено висока активност и необходимостта от наличието на втори компонент.

Задачата на изобретението е да се създадат катализатор за полимеризация на етилен до линеен полиетилен, работещ без наличието на модифициращи добавки и притежаващ сравнително висока каталитична активност и метод за получаването му.

Задачата се решава с катализатор за полимеризация на етилен със структурна химична формула.

Задачата се решава и с метод на полу-

чаване на катализатор чрез взаимодействието на Ni(O) съединения с бис- α -кетоилидни и третични фосфини в среда от полярни или неполярни разтворители, или смеси от тях при температура от -20°C до 80°C. Като Ni(O) съединения се използват бис-1,5-циклооктадиен-ни-кел(O), биснорборнадиенникел(O), тетракистрифенилфосфинникел(O), тетракистрифенилфосфинникел(O).

10 Предимствата на катализатора съгласно изобретението са, че е еднокомпонентен и с повишена активност в сравнение с известните никел-илидни катализатори за полимеризация на етилен.

15 Изобретението се пояснява със следващите примери.

Пример 1. Към 1,71 g (2,5 mmol) 1,4-бис [(1-трифенилфосфоранилидено) ацетил] бензол, при 0°С се добавят 1,37 g (5 mmol) 20 трифенилфосфин, разтворени в 200 сm³ бензол. Сместа се разбърква 24h при 50°С. След охлаждане до стайна температура към реакционната смес се добавят 50 сm³ н-хексан и тя се филтрира в инвертна среда през стъклен филтър G-3. Отделената утайка се промива с 30 сm³ смес (1:1) бензол и хексан и се суши 2 h под вакуум (0,1 torr) при 50°С. Добив: 1,65 g (50% от теор).

Анализ:

Елементарен анализ:

Изчислено: С-74,35% H-4,99% Определено: С-73,93% H-4,79% ИЧ-спектър (сm $^{-1}$):1560 $\upsilon_{\rm cc}$), 1523($\upsilon_{\rm cc}$), 1478($\upsilon_{\rm cc}$), 1430($\upsilon_{\rm clapom}$), 1375($\upsilon_{\rm cm}$), 1332($\upsilon_{\rm cc}$), 1280($\upsilon_{\rm co}$), 855($\delta_{\rm clapom}$), 740-730($\delta_{\rm clapom}$), 690($\delta_{\rm clapom}$). УВ-спектър: $\lambda_{\rm max}$ =250q 340 nm

Пример 2. В метален автоклав, снабден с магнитна бъркалка, се зараждат 8,7.10⁻³ g 40 катализатор (пример 1) и 20 ста толуол. Реакторът се свързва с устройство за дозиране на етилен и след достигане на работното налягане реакционната смес се нагрява до 70°С. Пломеризацията продължава 30 твп. Добив на 45 полиетилен: 6,8 g (таблица 1).

BEST AVAILABLE COPY

30

35

Таблица 1.

Свойства на полиетилена, получен с катализатор 1

№ на	Разтво-	Конц.	Рс ₂ н ₄	A _{kar.}	М.м.	Т.т.	Крис-	Бр. СН,	Плътност
опита	рител	на кат			на ПЕ	на ПЕ	талност	на 1000	на ПЕ
1		x10⁴					на ПЕ	С-атома	
ļ		mol/l	at	kg/g Ni	g/mol	° C	%		kg/m³
1	толуол	3,3	20	8,81	281300	125,5	68,8	5,3	948
				2.00	220200	124.0	(0.0	5.0	0.15
2	хептан	3,3	′	3,89	220700	124,0	68,0	5,8	945
3*	цикло-	39	3,5	3,2					
	хексан	39	3,3	3,2					
	Acrean					1			

Сравнителните данни са взети от US 4 716 205

Пример 3. В метален автоклав, снабден с магнитна бъркалка, се зареждат 8,7.10⁻³ g ка-25 тализатор (пример 1) и 20 сm³ н-хептан. Реакторът се свързва с устройство за дозиране на етилен и след достигане на работното налягане реакционната смес се нагрява до 70°C. Полимеризацията продължава 4 h. Добив на 30 полиетилен 3 g (таблица 1).

Авторски претенции

1. Катализатор за полимеризация на ети- 35 лен със структурна химична формула

2. Метод за получаване на катализатор 45 за полимеризация на етилен съгласно претенция 1, характеризиращ се с това, че Ni(O) съединения взаимодействат с бис-α-кетоилиди и третични фосфини в среда от полярни и неполярни разтворител, или смеси от тях при тем- 50 пература от -20 до 80°C и реакционно време от 30 min до 72 h.

- 3. Метод съгласно претенция 2, характеризиращ се с това, че като Ni(O) съединения се използват бис-1,5-циклооктадиенникел(O), биснорборнадиенникел(O), тетракистрифенилфосфинникел(O), тетракистринафтилфосфинникел(O).
- 4. Метод съгласно претенция 2, характеризиращ се с това, че като полярни разтворители се използват етери, съдържащи от 3 до 20 въглеродни атома, кетони, съдържащи от 3 до 20 въглеродни атома, естери, съдържащи от 2 до 20 въглеродни атома, тетрахидрофуран, диоксан, пиридин.
- 5. Метод съгласно претенция 2, характеризиращ се с това, че като неполярни разтворители се използват бензол, алкилароматни въглеводороди, съдържащи от 7 до 20 въглеродни атома.
- 6. Метод съгласно претенция 2, характеризиращ се с това, че катализаторът се изолира от реакционната смес чрез утаяване, филтриране, изпаряване на разтворителя.
- 7. Метод съгласно претенция **6**, характеризиращ се с това, че за утаяване на катализатора се използват алкани, съдържащи от 5 до 20 въглеродни атома, циклоалкани, съдържащи от 5 до 20 въглеродни атома.

4

5

Литература

1. Keim, W., A. Behr., B. Gruber, B. Hoffman, F.H. Kowaldt, U. Kurschner, B. Limbacker and F. P. Sistg, Organometallics, 5 (1986), 2356.

2. Keim. W., J. Mol. Catal., 52 (1989),19.

3. Klabunde U., S. D. Ittel, J. Mol. Catal.,

41 (1987) 123.

4. US 4716205

5. US 4691036

6. US 4620021

Издание на Патентното ведомство на Република България София - 1113, бул. "Д-р Г. М. Димитров" 52-Б

Експерт: П. Димитров

Редактор: Н. Божинова

Пор. 36953

Тираж: 40 СР

REST AVAILABLE COPY

THIS PAGE BLANK (USPTO)