Собствени вектори и собствени стойности на линеен оператор.

Всички полета F, които разглеждаме са числови, т.е. $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$ и F винаги е подмножество на множеството на комплексните числа. Ще се възползваме от основната теорема на алгебрата според, която всеки полином $f \in \mathbb{C}[x]$ на една променлива с комплексни коефициенти и степен $\deg f = n > 0$ има точно n на брой комплексни корена, броени с кратностите им. По-формално, ако

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

е полином с $a_i \in \mathbb{C}, n \geq 1, a_0 \neq 0$, то съществуват числа $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$, такива че

$$f(x) = a_0(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n).$$

Нека разгледаме матрицата

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix} \in F_{n \times n}.$$

Полиномът на x

$$f_A(x) = \det(A - xE) = \begin{vmatrix} \alpha_{11} - x & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} - x & \dots & \alpha_{2n} \\ \dots & \dots & \ddots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} - x \end{vmatrix}$$

е с коефициенти от F, степен $\deg f_A = n$ и старши коефициент $(-1)^n$, наречен xарактеристичен полином на матрицата A. Т.к. $\deg f_A = n$ и

е с коефициенти от $F \subseteq \mathbb{C}$, то $f_A(x)$ има n корена $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$, наречени xapaкmepucmuчни корени на матрицата A.

Пример:

Характеристичният полином на матрицата

$$A = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$$

е

$$f_A(x) = \begin{vmatrix} 3-x & 2 \\ -2 & -1-x \end{vmatrix} = (3-x)(-1-x) - 2 \cdot (-2) = x^2 - 2x + 1 = (x-1)^2$$

и характеристичните корени на A са $\lambda_1 = \lambda_2 = 1$.

Ще казаме, че матриците A и B от $F_{n\times n}$ са nodoбни, ако съществува неособена матрица $T\in F_{n\times n}$, такава че $B=T^{-1}AT$.

Твърдение 1. Ако $A \in F_{n \times n}$ и $B \in F_{n \times n}$ са подобни матрици, то $f_A(x) = f_B(x)$.

Доказателство. Щом A и B са подобни, то съществува неособена матрица $T \in F_{n \times n}$, $\det T \neq 0$, такава че $B = T^{-1}AT$. Тогава

$$f_B(x) = \det(B - xE) = \det(T^{-1}AT - xT^{-1}ET) = \det[T^{-1}(A - xE)T]$$

= $\det T^{-1} \det(A - xE) \det T = \frac{1}{\det T} \det(A - xE) \det T$
= $\det(A - xE) = f_A(x)$.

Нека V е линейно пространство над полето F с крайна размерност $\dim V = n$. Нека $\varphi \in \operatorname{Hom}(V)$ е линеен оператор с матрица A спрямо някакъв базис на V. Тогава характеристичен полином на оператора φ е $f_A(x)$. Тази дефиниция коректна, т.к. ако B е матрицата на φ спрямо друг базис на V, то A и B са подобни, а оттам и $f_A(x) = f_B(x)$. В такъв случай характерситичният полином на оператора φ не зависи от базиса и от матрицата на оператора спрямо него и го записваме просто като $f_{\varphi}(x)$.

Векторът $x \in V$ се нарича coбmcsen eemop на оператора φ , ако $x \neq o$ и $\varphi(x) = \lambda x$, където $\lambda \in F$ е число, наречено coscmsen стойност на оператора φ , съответстваща на coscmsen вектор x.

Ако векторите

$$e_1, e_2, \ldots, e_n$$

образуват базис на V и матрицата на линейния оператор φ спрямо него е $A = (\alpha_{ij})_{n \times n}$, а за собствения вектор $x \in V$ на φ имаме, че

$$x = \xi_1 e_1 + \xi_2 e_2 + \dots + \xi_n e_n$$

то от една страна $\varphi(x) = \lambda x$ и координатите на λx са

$$(\lambda \xi_1, \lambda \xi_2, \dots, \lambda \xi_n)$$

, а от друга знаем, че действието на оператора φ върху векторите от V дава $\lambda x = Ax$, откъдето получаваме втори набор координати за λx :

$$(\alpha_{11}\xi_1 + \alpha_{12}\xi_2 + \dots + \alpha_{1n}\xi_n, \dots, \alpha_{n1}\xi_1 + \alpha_{n2}\xi_2 + \dots + \alpha_{nn}\xi_n).$$

Следователно трябва да е изпълнена системата

(*)
$$\begin{vmatrix} \alpha_{11}\xi_{1} + \alpha_{12}\xi_{2} + \dots + \alpha_{1n}\xi_{n} &= \lambda \xi_{1}, \\ \alpha_{21}\xi_{1} + \alpha_{22}\xi_{2} + \dots + \alpha_{2n}\xi_{n} &= \lambda \xi_{2}, \\ & \dots \\ \alpha_{n1}\xi_{1} + \alpha_{n2}\xi_{2} + \dots + \alpha_{nn}\xi_{n} &= \lambda \xi_{n} \end{vmatrix}$$

или еквивалентната

$$\begin{pmatrix}
(**) & (\alpha_{11} - \lambda)\xi_1 + \alpha_{12}\xi_2 + \dots + \alpha_{1n}\xi_n = 0, \\
\alpha_{21}\xi_1 + (\alpha_{22} - \lambda)\xi_2 + \dots + \alpha_{2n}\xi_n = 0, \\
\alpha_{n1}\xi_1 + \alpha_{n2}\xi_2 + \dots + (\alpha_{nn} - \lambda)\xi_n = 0.
\end{pmatrix}$$

Да разгледаме хомогенната система

$$(***) \begin{vmatrix} (\alpha_{11} - \lambda)x_1 + & \alpha_{12}x_2 + \dots + & \alpha_{1n}x_n = 0, \\ \alpha_{21}x_1 + (\alpha_{22} - \lambda)x_2 + \dots + & \alpha_{2n}x_n = 0, \\ & & & & & & & \\ \alpha_{n1}x_1 + & \alpha_{n2}x_2 + \dots + (\alpha_{nn} - \lambda)x_n = 0. \end{vmatrix}$$

Уравненията от (**) означават, че n-торката ($\xi_1, \xi_2, \ldots, \xi_n$) е решение на системата (* * *). При това (ξ_1, \ldots, ξ_n) \neq (0, ..., 0) т.к. това са координатите на вектора $x \neq o$. Тогава детерминантата на системата (* * *) е

равна на нула, т.е.

$$0 = \begin{vmatrix} \alpha_{11} - \lambda & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} - \lambda & \dots & \alpha_{2n} \\ \dots & \dots & \ddots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} - \lambda \end{vmatrix} = f_A(\lambda) = f_{\varphi}(\lambda)$$

и λ характеристичен корен на φ . По този начин ако λ е собствена стойност на φ , то тя е корен на характеристичния полиним на φ . Обратно, нека $\lambda \in F$ е характеристичен корен на φ . Тогава $f_{\varphi}(\lambda) = 0$ и $f_A(\lambda) = 0$. Следователно хомогенната система (* * *) има нулева детерминанта, а оттам притежава и ненулево решение $(\xi_1, \dots, \xi_n) \neq (0, \dots, 0)$. Ако вземем вектор x с координати (ξ_1, \ldots, ξ_n) , то факта, че (**) е еквивалентна на (*) следва, че $Ax = \lambda x$, т.е. $\varphi(x) = \lambda x$, което означава, че x е собствен вектор на φ , а λ е съответстващата му собствена стойност. Така доказахме

Твърдение 2. Собствените стойности на линеен оператор φ са онези негови характеристични корени, които принадлежат на полето F.

Алгоритъм за намиране на собствени стойности и собствени вектори на линеен оператор:

Нека линейният оператор φ е зададен с матрицата си A спрямо базиса e_1, \ldots, e_n на пространството V.

- 1. Пресмятаме $f_{\varphi}(x) = f_A(x) = \det(A xE)$.
- 2. Решаваме уравнението $f_A(x) = 0$ и намираме характеристичните корени $\lambda_1, \ldots, \lambda_n$ на φ .
- 3. Нека λ е кое да е от числата $\lambda_1, \ldots, \lambda_n$ и $\lambda \in F$. Решаваме хомогенната система (* * *) с него и намираме всички съответстващи му собствени вектори $x = \xi_1 e_1 + \cdots + \xi_n e_n$.

Пример:

В двумерното линейно пространство V над $\mathbb R$ линейният оператор φ има матрица $A = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$. Да се намерят собствените стойности и собствените вектори на φ .

1. $f_A(x) = \begin{vmatrix} 3-x & 2 \\ -2 & -1-x \end{vmatrix} = x^2 - 2x + 1 = (x-1)^2$.

2. Уравнението $(x-1)^2 = 0$ има един двоен корен $\lambda_1 = \lambda_2 = 1 \in \mathbb{R}$ и

1.
$$f_A(x) = \begin{vmatrix} 3-x & 2 \\ -2 & -1-x \end{vmatrix} = x^2 - 2x + 1 = (x-1)^2$$
.

следователно φ има единствена собствена стойност $\lambda = 1$.

3. В системата

$$\begin{vmatrix} (3-\lambda)x_1 + 2x_2 = 0, \\ -2x_1 + (-1-\lambda)x_2 = 0 \end{vmatrix}$$

заместваме $\lambda=1$ и получаваме

$$\begin{vmatrix} 2x_1 + 2x_2 &= 0, \\ -2x_1 - 2x_2 &= 0. \end{vmatrix}$$

Всички решения на последната система са $x_1 = t, x_2 = -t$ за $t \in \mathbb{R}$. Тогава всички собствени вектори на оператора φ са от вида

$$x = x_1e_1 + x_2e_2 = t(e_1 - e_2)$$

за $t \in \mathbb{R} \setminus \{0\}$.

Твърдение 3. Ако $a_1, a_2, \ldots, a_k \in V$ са собствени вектори на φ , отговарящи на различни собствени стойности $\lambda_1, \lambda_2, \ldots, \lambda_k$, то те са линейно независими.

Доказателство. По условие $\varphi(a_1) = \lambda_1 a_1, \varphi(a_2) = \lambda_2 a_2, \ldots, \varphi(a_k) = \lambda_k a_k,$ $a_1 \neq o, a_2 \neq o, \ldots, a_k \neq o$ и $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_k$. Ще извършим доказателството с индукция по k – броя на векторите. Основа на идукцията: при k=1 имаме, единствен собствен вектор a_1 и съответстващата му стойност λ_1 . Т.к. a_1 е собствен, то $a_1 \neq o$ и следователно е линейно независими. Индукционно предположение: Нека $k \geq 2$ и твърдението е вярно за k-1 на брой вектора. Индукционна стъпка: ще докажем, че твърдението остава в сила за k на брой вектора. Взимаме линена комбинация на векторите a_1, a_2, \ldots, a_k , такава че

$$(*) \quad \mu_1 a_1 + \mu_2 a_2 + \dots + \mu_k a_k = o$$

(коефициентите μ_i са от полето F). Прилагаме линейния оператор φ към двете страни на уравнението и получаваме последователно

$$\varphi(\mu_1 a_1 + \mu_2 a_2 + \dots + \mu_k a_k) = \varphi(o),$$

$$\mu_1 \varphi(a_1) + \mu_2 \varphi(a_2) + \dots + \mu_k \varphi(a_k) = o$$

И

$$(**) \quad \mu_1 \lambda_1 a_1 + \mu_2 \lambda_2 a_2 + \dots + \mu_k \lambda_k a_k = 0.$$

Към уравнение (**) прибавяме уравнение (*) умножено по $(-\lambda_k)$, за да получим

$$\mu_1(\lambda_1 - \lambda_k)a_1 + \mu_2(\lambda_2 - \lambda_k)a_2 + \dots + \mu_{k-1}(\lambda_{k-1} - \lambda_k)a_{k-1} = 0.$$

Според индукционното предположение векторите a_1, a_2, \dots, a_{k-1} са k-1 на брой и следователно са линейно независими. Тогава трябва

$$\mu_1 \underbrace{(\lambda_1 - \lambda_k)}_{\neq 0} = 0, \mu_2 \underbrace{(\lambda_2 - \lambda_k)}_{\neq 0} = 0, \dots, \mu_{k-1} \underbrace{(\lambda_{k-1} - \lambda_k)}_{\neq 0} = 0,$$

което означава, че $\mu_1 = \mu_2 = \cdots = \mu_{k-1} = 0$. В такъв случай уравнение (*) дава, че $\mu_k a_k = o$. Но a_k е собствен вектор и като такъв $a_k \neq o$. Следователно $\mu_k = 0$. Така $\mu_i = 0$ за $i = 1, 2, \ldots, k$ и векторите a_1, a_2, \ldots, a_k са линейно независими.

Знаем, че матрицата на всеки линеен оператор $\varphi \in \text{Hom}(V)$ зависи от базиса, който сме фиксирали в момента. Логично е да потърсим такъв базис f_1, f_2, \ldots, f_n на V, спрямо който матрицата на φ има "най-прост" вид. Нека допуснем, че при дадения базис матрицата на φ е диагонална (това не винаги е възможно) и има вида

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

От дефиницията на матрица на линеен оператор следва, че φ действа на базисните вектори по следния начин:

$$\varphi(f_1) = \lambda_1 f_1, \varphi(f_2) = \lambda_2 f_2, \dots, \varphi(f_n) = \lambda_n f_n.$$

Но това означава точно, че базисните вектори f_1, f_2, \ldots, f_n са собствени вектори на φ със съответстващи собствени стойности $\lambda_1, \lambda_2, \ldots, \lambda_n$. Следователно (ако е възможно) матрицата на линеен оператор би била диагонална спрямо базиса от собствените му вектори, а числата, които стоят по диагонала й ще бъдат точно съответстващите собствени стойности. Да видим кова е възможно.

Теорема. Ако линейният оператор φ има $n (= \dim V)$ на брой различни собствени стойности (т.е. всичките му характеристични корени са различни и са от полето F), то съществува базис на V, спрямо който матрицата на φ е диагонална.

Доказателство. Нека собствените стойности на φ са $\lambda_1, \lambda_2, \ldots, \lambda_n$, а f_1, f_2, \ldots, f_n са съответстващите им собствени вектори. Според Твърдение $3 f_1, f_2, \ldots, f_n$ са линейно независими и следователно образуват базис на V. Освен това $\varphi(f_i) = \lambda_i f_i$, което означава, че матрицата на φ спрямо него е

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Следствие. При $F = \mathbb{C}$, ако $A \in \mathbb{C}_{n \times n}$ и характеристичните корени $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$ са всичките различни, то съществува неособена матрица $T \in \mathbb{C}_{n \times n}$, такава че

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = D.$$

Доказателство. Нека V е n-мерно линейно пространство над \mathbb{C} и e_1, e_2, \ldots, e_n е базис. Тогава съществува единствен линеен оператор $\varphi \in \mathrm{Hom}(V)$, чиято матрица спрямо този базис е A. Операторът φ има n на брой различни собствени стойности $\lambda_1, \lambda_2, \ldots, \lambda_n$ и според теоремата съществува базис от собствени вектори f_1, f_2, \ldots, f_n , съответстващи на $\lambda_1, \lambda_2, \ldots, \lambda_n$, спрямо който матрицата на φ е D. Нека T е матрицата на прехода от e към f. Тогава $D = T^{-1}AT$.