1、实验名称及目的

PX4 控制器的外部通信:本例程以外部发送的 rfly_ctrl 数据来作为遥控器输入,同时会将收到的数据向 rfly_px4 发送出去,回传给外部程序。

2、实验效果

在 Simulink 直接控制硬件在环仿真中的飞机。

3、文件目录

文件夹/文件名称	说明	
PythonSender	PX4 外部通信发送端模型文件(Python 版)。详见 Readme.pdf 文件	
Init_control.m	初始化文件。	
PX4ExtMsgReceiver.slx	PX4 外部通信接收端模型文件。	
PX4ExtMsgSender.slx	PX4 外部通信发送端模型文件(Simulink 版)。	

4、运行环境

序号	软件要求	硬件要求	
1/1 		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版	卓翼 H7 飞控 ^②	1
3	MATLAB 2017B 及以上	数据线	1

- ①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: droneyee_zyfc-h7_default, 固件版本为: 1.12.1。其他配套飞控请见: http://doc.rflysim.com/hardware.html。

5、实验步骤

Step 1:

打开 MATLAB 软件,运行 Init_control.m 文件,同时将打开 PX4ExtMsgReceiver.slx 文件,在 Simulink 中,点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编译报告。

Step 3:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或 点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中, 等待上传成功。

Step 4:

打开 QGroundControl 软件。确认无人机机架设置如下:

Step 5:

上传成功后,双击打开"*\桌面\RflyTools\HITLRun.lnk"或"*\PX4PSP\RflySimAPIs\HITLRun.bat"文件,在弹出的 CMD 对话框中输入插入的飞控 Com 端口号,即可自动启动 RflySim3D、CopterSim、QGroundControl 软件,等待 CopterSim 的状态框中显示: PX4: GPS 3D fixed & EKF initialization finished。

Step 6:

在 MATLAB 中运行 PX4ExtMsgSender.slx 文件, 在运行过程中, 滑动 CH5 的 Slider 模块至最大值 1900 处, 代表飞机解锁, 滑动 CH3 的 Slider 模块, 来模拟飞机油门, 实现飞机起飞动作, 可在 RflySim3D 观察到飞机起飞。

同时,在PX4ExtMsgSender.slx模型中,也可看到飞机的一些状态量,具体定义如下:

