Teoria da Computação

2022/2 - Trabalho da disciplina

Enunciado

Implemente em C/C++ um programa que lê do usuário uma Gramática Livre de Contexto na Forma Normal de Chomsky e uma sequência de palavras e, para cada palavra, determina se ela pertence ou não à linguagem gerada pela gramática.

Entrada

A primeira linha da entrada conterá um inteiro P, o número de produções da gramática. Cada uma das próximas P linhas conterá uma produção, na forma $A \rightarrow BC$ ou $A \rightarrow a$, onde A, $B \in C$ são símbolos não terminais, e a é símbolo terminal.

Símbolos não terminais serão sempre dados por letras maiús
uculas do alfabeto (A, B, ..., Z), e símbolos terminais serão dados por outros caracteres. O símbolo inicial será sempre dado pela letra S. A gramática dada sempre estará na Forma Normal de Chomsky, e ela nunca gera a palavra vazia ε .

Em seguida, a entrada conterá uma sequência de palavras, uma por linha. Para cada palavra, seu programa deverá determinar se ela pertence ou não à linguagem gerada pela gramática dada. As palavras poderão conter quaisquer caracteres, exceto espaços em branco.

A entrada termina com uma linha contendo apenas *.

Saida

Para cada palavra p, imprima uma linha contendo p: SIM se p pertence à linguagem, ou p: NAO caso contrário.

Exemplo

A gramática dada no exemplo de entrada e saida abaixo gera a linguagem $\{a^nb^n \mid n \geq 1\}$:

Exemplo de entrada	Exemplo de saida
7 S -> AX S -> AB R -> AX X -> RB R -> AB A -> a B -> b aaabbb aabab aabb aabb	Exemplo de saida aaabb: SIM aabab: NAO aabb: SIM aaabb: NAO aabba: NAO aabba: NAO abb: SIM
abb	
X -> RB	aabba: NAO
S -> AB	aabb: SIM
Exemplo de entrada	Exemplo de saida

Outros exemplos são dados ao final deste documento.

Implementação

- O trabalho deve ser feito em C ou em C++;
- Você pode utilizar o algoritmo que preferir para a implementação do trabalho. Suas opções incluem, mas não são limitadas a:
 - implementar um autômato à pilha (PDA), converter produções da gramática para transições do PDA, e simulá-lo em seguida;
 - buscar uma derivação válida através de função(es) recursiva(s) do tipo bool produz(S, i, j),
 que retorna "verdadeiro" se é possível produzir a (sub)string palavra[i..j] a partir do símbolo não terminal S, ou "falso" caso contrário;
 - implementar o algoritmo CYK¹;
 - outras idéias.
- O tempo de execução da sua solução não será levado em consideração na correção do trabalho. Entretanto, seu programa deve terminar em tempo "razoável" (< 1 min) para os exemplos dados neste documento;
- O trabalho poderá ganhar até 20 pontos extras (e valer ao todo 120 pontos) com as seguintes funcionalidades extras:
 - (10 pontos extras) para cada palavra dada que pertence à linguagem gerada pela gramática, imprimir sua derivação (como sequência ou como árvore). Veja exemplos no final deste documento;
 - (10 pontos extras, desafio) funcionar para gramáticas no geral (que não estão na Forma Normal de Chomsky). Novamente, você pode usar o algoritmo que preferir, incluindo, mas não limitado a, transformar a gramática na Forma Normal de Chomsky e então aplicar a solução desenvolvida anteriormente. Veja exemplos no final deste documento.

Orientações

- O trabalho pode ser feito por equipes de até 2 (dois) estudantes;
- Submeta, via *Moodle*, um pacote (zip ou tar.gz) contendo todo o código-fonte do trabalho, além de um arquivo de texto (txt) onde conste:
 - O nome de todos os integrantes da equipe;
 - Toda informação que a equipe julgar relevante para a correção (como *bugs* conhecidos, detalhes de implementação, escolhas de projeto, etc.)
- Comente adequadamente seus códigos para facilitar a correção.
- Atenção: a correção será parcialmente automatizada, e a saída do programa será testada com outras entradas além das fornecidas como exemplo. Siga fielmente o formato de saída dado nos exemplos, sob pena de grande redução da nota;
- Certifique-se que seu programa compila e funciona antes de submetê-lo;
- O trabalho deve ser entregue até 6 de Novembro de 2022, 23:59, apenas via *Moodle*. Trabalhos entregues por outros meios ou fora do prazo não serão aceitos. É suficiente que o trabalho seja submetido por apenas um estudante da equipe;
- Trabalhos detectados como cópia, plágio ou comprados receberão **todos** a nota 0 (**ZERO**) e estarão sujeitos a abertura de Processo Administrativo Disciplinar Discente.

 $^{^{1} \}verb|https://en.wikipedia.org/wiki/CYK_algorithm|$

A gramática abaixo gera expressões aritméticas cujos operandos são números de apenas um dígito:

Exemplo de entrada	Exemplo de saida
41	2*(3+5): SIM
S -> AX	2*)3+5(: NAO
S -> RY	2*(3+x): NAO
S -> RZ	(5/0)-(4*9): SIM
S -> RW	2*(0/(4+5)): SIM
S -> RP	6*(3/(7-6): NAO
S -> 0	8*2/(8*1): SIM
S -> 1	9*1/2-3): NAO
S -> 1 S -> 2	
	putz: NAO
S -> 3	
S -> 4	
S -> 5	
S -> 6	
S -> 7	
S -> 8	
S -> 9	
R -> AX	
R -> RY	
R -> RZ	
R -> RW	
R -> RP	
R -> 0	
R -> 1	
R -> 2	
R -> 3	
R -> 4	
R -> 5	
R -> 6	
R -> 7	
R -> 8	
R -> 9	
X -> RF	
Y -> MR	
Z -> BR	
W -> VR	
P -> DR	
A -> (
F ->)	
M -> +	
В -> -	
D -> /	
2*(3+5)	
2*)3+5(
2*(3+x)	
(5/0)-(4*9)	
2*(0/(4+5))	
6*(3/(7-6)	
8*2/(8*1)	
9*1/2-3)	
putz	
*	
i .	

A gramática abaixo gera expressões regulares sobre $\Sigma = \{a,b,c\}$:

Exemplo de entrada	Exemplo de saida
20 S -> a S -> b S -> c S -> RX S -> RA S -> RR S -> OY R -> a R -> b R -> c R -> RX X -> RR C -> RX C -> RC C -> RX C -> RX C -> C	
C ->) A -> * M -> +	
abba (a+b)* (a+)* (a+b)*cac(a+b)*	
a*b*a *a a*	
abba+* abca+b* a(b+c)	
*	

No exemplo abaixo, a saida apresenta também a derivação das palavras que pertencem à linguagem (o que vale até 10 pontos extras):

Exemplo de entrada	Exemplo de saida
7	aaabbb: SIM
S -> AX	S
S -> AB	AX
R -> AX	aRB
X -> RB	aAXb
R -> AB	aaRBb
A -> a	aaABbb
B -> b	aaabbb
aaabbb	
aababb	aababb: NAO
aabb	aabb: SIM
aaabb	S
aabba	AX
abb	aRB
ab	aABb
*	aabb
	aaabb: NAO
	aabba: NAO
	abb: NAO
	ab: SIM
	S
	AB
	ab

No exemplo abaixo, o programa reconhece gramáticas fora da Forma Normal de Chomsky (o que vale até $10~{\rm pontos~extras}$):

Exemplo de entrada	Exemplo de saida
26	42: SIM
S -> S+S	1024: SIM
S -> S-S	(85+32)*(5/4)-3: SIM
S -> S*S	(20*(3+5): NAO
S -> S/S	(-3+4)/2: NAO
S -> (S)	(0-3+4)/2: SIM
S -> N	
N -> 0	
N -> 1	
N -> 2	
N -> 3	
N -> 4	
N -> 5	
N -> 6	
N -> 7	
N -> 8	
N -> 9	
N -> NO	
N -> N1	
N -> N2	
N -> N3	
N -> N4	
N -> N5	
N -> N6	
N -> N7	
N -> N8	
N -> N9	
42	
1024	
(85+32)*(5/4)-3	
(20*(3+5)	
(-3+4)/2	
(0-3+4)/2	
*	