Applications of Combinatorial Designs to Wireless Mesh Networks

Daniel Connolly, Anusha Datar, Emma Westerhoff

Application 1: Asynchronous wakeups of wireless mesh networks

- Application 1: Asynchronous wakeups of wireless mesh networks
- Application 2: Key distribution in wireless mesh networks

Introduction

- A wireless mesh network is a communications network made up of radio nodes organized in a mesh topology (rich interconnection)
- Problem Statement: How do we transmit data across a network while limiting the amount of time any node is on?

Properties of successful schedule

- Different power states
 - ON: ~200 mA
 - OFF: ~0.5 mA
- Maintain network connectivity regardless of the power states nodes may be in
- Synchronous: All wake up every ? seconds
 - Required to sync to a common clock
 - All devices are on longer than they need to be
- Asynchronous: Intelligent design
 - Much harder to implement
 - Increased battery life
 - Schedule can be constructed with symmetric designs

Block Designs: (v,b,r,k,λ)

- Balanced: Each pair of points appear together λ times
- Incomplete: Cannot fit all points in each block
- Symmetric: Equal number of points and blocks (v=b and r=k)

V

points (number of elements)

h

number of blocks

ľ

number of blocks containing a given point

k

number of points in a block

λ

number of blocks containing any 2 (or more generally *t*) distinct points

Projective Plane IS a SBIBD

- On a projective plane:
 - Any two distinct nodes occur in a unique time block.
 - Any pair of distinct time blocks intersect in a unique node.
 - There exist three nodes that are not awake during the same time block (non-collinear)
- Used to represent block designs with $\lambda=1$

Projective Plane

Construction of the Projective Plane: Approach 1 Difference Sets

Difference Sets

- Finding projective planes: 7 nodes
 - Generate difference set

	1	<u>2</u>	<u>4</u>
1	0	1	3
<u>2</u>	6	0	2
<u>4</u>	4	5	0

 Generate projective plane from difference set

4 **+1** = 5 4 **+2** = 6 4 **+4** (mod 7) = 1

Asynchronous Scheduling Using (v,k,λ) design

Objective: Given v, minimize k,

Map symmetric block design to symmetric wakeup schedule function

Symmetric: all nodes have same duty cycle

total number of time slots **k**_u

time slots in which a node u is awake every v slots

Application / Behavior of (v,k,λ) design

- Objective: Minimize amount of time any node is on (power management)
- Even with a shift in clock cycles (within reason), any two nodes can still communicate

Application 2: Key distribution in wireless mesh networks

- Application 1: Asynchronous wakeups of wireless mesh networks
 - Introduction
 - Properties of successful schedule
 - Block Designs (v,b,r,k,λ)
 - Projective Plane
 - Difference Sets
 - Asynchronous scheduling using (v,k,λ) design
 - Application and behavior
- Application 2: Key distribution in wireless mesh networks

Introduction

- Each node has a preloaded key-chain of selected keys from a key-pool
- Neighboring nodes must have a shared key and nodes communicate along a key-path
- Goal: minimize the length of the key-path given memory and security constraints

Key-Pool

A, B, **C**, **D**

Approaches to Key Distribution

- Symmetric Designs
- Generalized Quadrangle

Symmetric Designs

Symmetric (v,k,λ)-design (7,3,1)

V

Sensor nodes / key-chains

k

Keys in each key-chain

λ

Number of keys each pair of key-chains share

Construction of the Projective Plane: Approach 2 MOLS

MOLS and Symmetric Designs

- A set {L₁,L₂, ...,L_k} of Latin squares of the same order are called **mutually** orthogonal Latin squares (MOLS) if any two in the set are orthogonal mates
- For any prime power q, there are exactly q-1 MOLS
- Using MOLS, we can quickly construct a projective plane

MOLS and Symmetric Designs

 Projective Plane: a set of points such that every line is unique and each line contains at least three points

As an example consider the set of 3 MOLS of order 4:

```
    1
    2
    3
    4
    1
    2
    3
    4
    1
    2
    3
    4

    2
    1
    4
    3
    3
    4
    1
    2
    4
    3
    2
    1

    3
    4
    1
    2
    4
    3
    2
    1
    2
    1
    4
    3
    2
    1

    4
    3
    2
    1
    4
    3
    2
    1
    4
    3
    3
    4
    1
    2
```

Now, let A be the matrix,

```
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
```

Lines of the projective plane (size 20) are

- 4: Rows of A ({1,2,3,4}, {5,6,7,8}...)
- 4: Columns of A ({1,5,9,13},{2,6,10,14}...)
- 12: Columns of Latin Squares superimposed on A
 - Column 1 of LS1: {1,2,3,4} -> {1,6,11,16}
 - Column 2 of LS1: {2,1,4,3} -> {2,5,12,15}
 - Column 1 of LS2: {1,3,4,2} -> {1,7,12,14}

Symmetric Designs

- Simple to construct
- Probability of key-share is 1

Approaches to Key Distribution

- Symmetric Designs
- Generalized Quadrangle

Generalized Quadrangle Key Distribution

Generalized Quadrangle

With a GQ(s, t):

- Each point is a key
- Each line is a key-chain for a node

GQ(2,2)
Key-pool size: 15

Nodes/keychains: 15

Performance

Metric	Most Optimized Design
Minimize Keys Per Node	Generalized Quadrangle
Maximize resilience	Generalized Quadrangle
Maximize probability two blocks have a shared key	Symmetric Design
Maximize simplicity for construction	Symmetric Design

Conclusion

- Application 1: Asynchronous wakeups of wireless mesh networks
- Application 2: Key distribution in wireless mesh networks
 - Introduction
 - Symmetric Designs
 - MOLS and Symmetric Designs
 - Generalized Quadrangle Design
 - Performance

Any Questions?

Thanks for listening!

Supplementary Materials

The following slides constitute our supplementary materials.

MOLS and Symmetric Designs

- A set {L₁,L₂, ...,L_k} of Latin squares of the same order are called mutually orthogonal Latin squares (MOLS) if any two in the set are orthogonal mates
- For any prime power q, there are exactly q-1 MOLS
- Using MOLS, we can quickly construct a symmetric design of size v (O($v^{1.5}$))

Algorithm Step	Run Time	
Require: :v {total number of nodes}		
Find minimum prime power q such that q²+q+1 ≥ v	O(? [?])	
Construct q-1 MOLS of order q	$O(q^3) \cong O(v^{1.5})$	
Construct q ² blocks of <i>affine plane</i> of order q	O(v ^{1.5})	
Affine Plane ⇒ Projective Plane	O(v)	

Complementary Designs

The **complement** of a D(v, k, λ) design is:

$$D = (v, v-k, v-2k+\lambda)$$

For the Fano Plane (7, 3, 1) Design, the complement is a (7, 4, 2) design, and the complementary blocks of the design are {3, 4, 5, 6}, {1, 2, 5, 6}, {1, 2, 3, 4}, {0, 2, 4, 6}, {0, 2, 3, 5}, {0, 1, 4, 5}, and {0, 1, 5, 6}

Difference Sets

• A cyclic (v,k, λ)-difference set is a set D={d₁,d₂, ...,d_k} of <u>distinct</u> elements of Z_v such that each non-zero element $d \in Z_v$ can be expressed in the form $d=d_i-d_i$ (mod v) in precisely λ ways.

rows

- Finding symmetric designs
 - Generate difference set
 - Small size
 - Minimize modulus
 - Minimum possible: s²-s+1
 - Generate projective plane from difference set
 - Iterative for-loop approach

_	1	<u>2</u>	<u>4</u>
1	0	*	*
2	*	0	*
4	*	*	0

slots per row

Multiplier Theorem for Difference Sets

- 1. If p is a prime divisor of $n=k-\lambda$ with $p>\lambda$ and (p,v)=1, then p is a multiplier of D.
- 2. If D is a (v,k,λ) difference set in Z_v with (v,k)=1, then there exists a translate of D which is fixed by every multiplier of D.

Example:

- 2 is a multiplier for the (7,3,1) difference set D={2,3,5}.
 - \circ {2*2,2*3,2*5} mod 7 = {4,6,10} mod 7 = {3,4,6}

Golomb Ruler - Application of Difference Sets

Difference sets are closely related to Golomb rulers

Golomb Ruler

- Set of marks at integer positions along an imaginary ruler such that no two pairs of marks are the same distance apart
- Number of marks on the ruler is its order, and the largest distance between two of its marks is its length

Power Management on top of scheduling

On demand vs slot based

Visualization of GQ

Maximize number of blocks given block size

Symmetric Design

Symmetric designs are characterized by $(\mathbf{v}=q^2+q+1, \mathbf{k}=q+1, \boldsymbol{\lambda}=1)$

So, they will always have a ratio of number of blocks over number of points per block of

Generalized Quadrangle

The generalized quadrangle design GQ(q, q) has $(q+1)(q^2+1)$ blocks per design and q+1 points per block, so they will always have a ratio of:

$$\frac{(q+1)(q^2+1)}{q+1}$$

The GQ(q, q²) design has the maximum number of blocks given a specific block size.

.

Minimize block size given number of blocks

Symmetric Design

Symmetric designs are characterized by $(\mathbf{v}=\mathbf{q}^2+\mathbf{q}+1, \mathbf{k}=\mathbf{q}+1, \boldsymbol{\lambda}=1)$

So, they will always have a ratio of number of points per block over number of blocks of

Generalized Quadrangle

The generalized quadrangle design GQ(q, q) has $(q+1)(q^2+1)$ blocks per design and q+1 points per block, so they will always have a ratio of:

$$\frac{(q+1)(q^2+1)}{q+1}$$

The $GQ(q^2, q^3)$ design has the minimum block size given the number of blocks.

.

Simplicity of Construction

Symmetric Design

When built using the MOLS-based construction method, this requires constructing a q-1 MOLS of order q, creating q^2 blocks of affine plane, and then converting the affine plane into the projective plane.

In total, this is a runtime of $O(q^3) = O(v^{1.5})$

Generalized Quadrangle

The GQ construction algorithm requires finding the \mathbf{v} points where $\mathbf{v} = (\mathbf{s+1})(\mathbf{st+1})$ and then finding collinear points for each point and drawing lines between them.

In total, this is a runtime of $O(v^2)$

The symmetric design has a simpler construction runtime.

Maximize Resilience

The generalized quadrangle design, especially GQ(q², q³), is the most resilient.

Maximize probability two blocks have a shared key

Symmetric Design

For a symmetric design, the probability that any pair of blocks share a key is equal to **1**.

Generalized Quadrangle

For a generalized quadrangle, the probability that any pair of blocks share a key is equal to the number of lines over the number of blocks:

$$P_{GQ} = \frac{t(s+1)}{b} = \frac{t(s+1)}{(t+1)(st+1)}.$$

This will always be **less than 1** when t is greater than 0.

The symmetric design has a higher probability of key-share.

Generalized Quadrangle

With a GQ(s, t):

- Each point is a key
- Each line is a key-chain

Properties:

- Each line has *s*+1 points
- Each point has *t*+1 lines going through it
- GQ(s,t) has v = (s+t)(st+1) points and b = (t+1)(st+1) lines
- The construction runtime is O(v²)

GQ(2,2) Kev-pool size:

Key-pool size: 15 Nodes/key-chains: 15

Performance

Metric	Most Optimized Design
Maximize number of blocks given block size	GQ(q, q ²)
Minimize block size given number of blocks	GQ(q ² , q ³)
Maximize resilience	GQ(q ² , q ³)
Maximize probability two blocks have a shared key	Symmetric Design
Maximize simplicity for construction	Symmetric Design