Chapter 1 Functions and Limits

1.6 Calculating Limits Using the Limit Laws

Operations With Limits

EXAMPLE 1

the graphs of f and g in Figure 1 to evaluate the

following limits, if they exist.

(a)
$$\lim_{x \to -2} [f(x) + 5g(x)]$$

(b)
$$\lim_{x \to 2} [f(x)g(x)]$$
 (c) $\lim_{x \to 2} \frac{f(x)}{g(x)}$

(c)
$$\lim_{x \to 2} \frac{f(x)}{g(x)}$$

(d)
$$\lim_{x \to -2} [2f(x)]$$

(e)
$$\lim_{x \to -2} [f(x) - g(x)]$$

(a)
$$\lim_{x\to 2} \left[f(x) + 5g(x)\right] = -4$$

= 1 + (-5)
= 1 + 5 (-1)
= $\lim_{x\to -2} f(x) + 5\lim_{x\to -2} g(x)$

https://www.desmos.com/calculator/7fy0x0ghia

(b)
$$\lim_{n\to 2} [f(n)g(n)] = 0 = 1.4 \cdot 0$$

$$= \lim_{n\to 2} f(n) \lim_{n\to 2} g(n)$$

$$= \lim_{n\to 2} f(n) \lim_{n\to 2} g(n)$$

(c)
$$\lim_{x\to -2} \frac{f(x)}{g(x)} = -1 = \frac{1}{-1} = \lim_{x\to -2} \frac{f(x)}{g(x)}$$

(d)
$$\lim_{2 \to -2} 2 f(2) = 2 \lim_{2 \to -2} f(2) = 2 \cdot 1 = 2$$

(e)
$$\lim_{x\to -2} [f(x) - g(x)] = \lim_{x\to -2} [f(x) + (-g(x))]$$

 $= \lim_{x\to -2} f(x) + \lim_{x\to -2} [-g(x)]$
 $= \lim_{x\to -2} f(x) - \lim_{x\to -2} g(x) = 1 - (-1) = 2$

Limit Laws Suppose that *c* is a constant and the limits

exist. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
.

2. $\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$.

3. $\lim_{x \to a} [cf(x)] = \lim_{x \to a} f(x)$.

4. $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x)$.

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim [cf(x)] = c \lim_{x \to \infty} f(x)$$
.

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f$$

EXAMPLE. Think of three ways of computing the following limit:

$$\lim_{x \to 2} (1+x)^{3}$$
1) Graph: $\lim_{x \to 2} (1+x)^{3} = 27$
2) Product: $\lim_{x \to 2} (1+x)^{3} = \lim_{x \to 2} (1+x)^{2} (1+x)$

$$= \lim_{x \to 2} (1+x)^{2} \lim_{x \to 2} (1+x)$$

$$= \lim_{x \to 2} (1+x) \lim_{x \to 2} (1+x) \lim_{x \to 2} (1+x)$$

$$= \lim_{x \to 2} (1+x) \lim_{x \to 2} (1+x) \lim_{x \to 2} (1+x)$$

$$= \lim_{x \to 2} (1+x)^{3}$$

$$= \lim$$

EXAMPLE. Think of three ways of computing the following limit:

$$\lim_{x \to \pi/4} \cos^2(x)$$

Product rule:
$$\lim_{x\to\pi/y} (05\%x) = \lim_{x\to\pi/y} \cos x$$

$$= \left(\lim_{x\to\pi/y} (05x)^2 = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{2}{4} = \frac{1}{2}$$

General Formula:

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$
 where *n* is a positive integer

Special cusio:

$$\lim_{x\to a} c = c$$
, $\lim_{x\to a} x = a$, $\lim_{x\to a} x = a$

EXAMPLE 2 Evaluate the following limits and justify each step

(a)
$$\lim_{x \to 3} (2x^2 - 3x + 4)$$
 (b) $\lim_{x \to 3} \frac{x^3 + 2x^2 - 1}{5 - 3x}$

(a) $\lim_{x \to 5} (2x^2 - 3x + 4) = \lim_{x \to 5} 2x^2 - \lim_{x \to 5} 3x + \lim_{x \to 5} 4$ [Sum]

$$= 2 \lim_{x \to 5} x^2 - 3 \lim_{x \to 6} x + 4$$
 [Constant]

$$= 2 \lim_{x \to 5} x^2 - 3 \cdot 5 + 4$$
 [Power]

$$= 2 \cdot 5^2 - 3 \cdot 5 + 4 = \boxed{39}$$
(b) Want quotient rule -6 $\lim_{x \to -2} 5 - 3x = 5 - 3(-2) = 11 \neq 6$

$$\lim_{x \to -2} \frac{x^3 + 72x^2 - 1}{5 - 32} = \lim_{x \to -2} \frac{x^3 + 72x^2 - 1}{1 + 6} = \lim_{x \to -2}$$

Remark:

Direct Substitution Property If f is a polynomial or a rational function and a is in the domain of f, then

= -1

$$\lim_{x \to a} f(x) = f(a)$$

Root Law.

11. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where *n* is a positive integer

[If *n* is even, we assume that $\lim_{x \to a} f(x) > 0$.]

Example. Compute $\lim_{u\to -2} \sqrt{u^4 + 3u + 6}$.

$$\lim_{2L\to -2} (u^{4} + 3u + le) = (-2)^{4} + 3(-2) + le = 16 > 0$$

$$\lim_{2L\to -2} \sqrt{u^{4} + 3u + le} = \sqrt{\lim_{2L\to -2} u^{4} + 3u + le}$$

$$= \sqrt{16}$$

$$= \sqrt{4}$$

EXAMPLE 3 Find $\lim_{x\to 1} \frac{x^2-1}{x-1}$.

Quotient:
$$\lim_{x \to 1} \frac{x^2-1}{x-1} = \frac{0}{1-1} = \frac{0}{0}$$
 for now, or subst.

Simplify:
$$\frac{x^{2}-1}{x-1} = \frac{(x+1)(x+1)}{x} = x(x) = x(x)$$

= $g(x) = (x+1)$

$$\lim_{x \to 1} \frac{x^{2}-1}{x+1} = \lim_{x \to 1} x+1 = \lim_{x \to 1} x+1 = \lim_{x \to 1} x = 1$$

We have to use the following new substitution rule:

EXAMPLE 5 Evaluate
$$\lim_{h\to 0} \frac{(3+h)^2-9}{h}$$
.

Que trent:
$$\lim_{h\to 0} \frac{1}{h}$$
.

Que trent: $\lim_{h\to 0} \frac{(3+h)^2-9}{h} = \frac{(3+o)^2-9}{0} = \frac{0}{0} \to \text{ undefined}$.

Simplify:
$$\frac{(3+h)^2-9}{h} = \frac{9+bh+h^2-9}{h}$$

= $\frac{bh+h^2}{h} = \frac{h+0}{h}$
= $\frac{(b+h)+h}{h} = b+h = g(h)$

$$\lim_{h\to 0} \frac{(314)^2 - 9}{h} = \lim_{h\to 0} \frac{(31$$

EXAMPLE 6 Find
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$
.

Subst: 0 undermed yet

Simplify:
$$\sqrt{\frac{t^2+9'-3}{t^2}}$$
 . $1 = \frac{\sqrt{t^2+9'-3}}{t^2}$. $\frac{\sqrt{t^2+9'+3}}{\sqrt{t^2+9'+3}}$

$$1 = \frac{\sqrt{t^2 + 9} - t^2}$$

$$\frac{1}{t^2} \cdot \frac{1}{\sqrt{t^2+q^2+3}}$$

$$=\frac{1}{2^{2}(1+q'+3)}=\frac{1}{\sqrt{1+q'+3}}=g(1)$$

$$\lim_{t\to 0} \frac{\int_{t^2+9}^{t^2+9} - 3}{t^2}$$

$$\lim_{t\to 0} \frac{\sqrt{t^2+q^2-3}}{t^2} = \lim_{t\to 0} \frac{1}{\sqrt{t^2+q^2+3}}$$

$$= \lim_{t\to 0} \frac{1}{t}$$

$$\lim_{t\to 0} \left(\sqrt{t^2 + q} + 3 \right)$$

$$= \lim_{t\to 0} 1$$

$$= \frac{1}{t\to 0}$$

$$= \int_{t\to 0}^{\infty} |root | dw$$

$$\int_{t\to 0}^{\infty} |root | dw$$

REMATK: ALL THE LIMIT RULES WORK AlsO FOR
THE LIMITS FROM THE LEFT AND FROM
THE RIGHT.

To prove lim tel doesn't wist, we will show that

lim 121 the lim tel.

2004 2 to 2004 2.

121=2

1) $\lim_{x\to 0^+} \frac{|x|}{x} = \lim_{x\to 0^+} \frac{z}{z} = \lim_{x\to 0^+} 1$

2) $\lim_{x\to 0^{-}} \frac{|x|}{x} = \lim_{x\to 0^{-}} \frac{-x}{x} = \lim_{x\to 0^{-}} \frac{1}{x}$ = -1

1) \(\neq z \) \(\neq \) \(\lambda \) \(\neq z \) \(\neq \) \(\neq z \) \(\n

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4 \\ 8-2x & \text{if } x < 4 \end{cases}$$

determine whether $\lim_{x\to 4} f(x)$ exists.

1) Left-hand limit.

$$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} 8 - 2x = \lim_{x \to 4^{-}} 8 - 2 \lim_{x \to 4^{-}} x = 8 - 2 \cdot 4 = 0$$

2) Right - Hand Limit.

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \sqrt{x-4} = \sqrt{\lim_{x \to 4^+} x - 4}$$

$$= \sqrt{4-4} = 0$$

$$\lim_{N\to 4^{-}} f(n) = 0 = \lim_{N\to 4^{+}} f(n)$$

$$= \lim_{N\to 4^{-}} f(n) = 0$$

EXAMPLE 11 Show that
$$\lim_{x\to 0} x^2 \sin(\frac{1}{x}) = 0$$
.

Protend:
$$\lim_{z\to 0} \left[z^z \sin\left(\frac{1}{z}\right)\right] \left(\lim_{z\to 0} z^z\right) \left(\lim_{z\to 0} \sin\left(\frac{1}{z}\right)\right)$$
.

Chase
$$A = \frac{1}{z}$$
 \Rightarrow $-1 \in Din(\frac{1}{z}) \in 1$ $(z \neq 0)$

mult by

 $\Rightarrow -z^2 \in z^2 Din(\frac{1}{z}) \in z^2 \Rightarrow$

We have
$$\lim_{x\to 0} -x^2 = 0$$
 (**)

A $\lim_{x\to 0} x^2 = 0$ (**)

(A) with
$$(**)$$
 & $(**)$

$$=) \lim_{n\to\infty} x^2 pin\left(\frac{1}{n}\right) = 0$$

3 The Squeeze Theorem If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g(x) = L$$

