Intro Video: Section 4.1 Maximum and Minimum Values

Math F251X: Calculus I

Some définitions

Setup: f is a function with domain D and CED.

- We say f has a absolute maximum if $f(c) \ge f(x)$ for all $x \in D$.

 at x = c
- We say f has a absolute minimum if $f(c) \le f(x)$ for all $x \in D$ at x = c
- We say f has a local maximum if f(c) > f(x) for all x = c
- . We say f has a local minimum if f(c) ≤ f(x) for all x=c x"near" c

Note: "What is the absolute maximum off"

D this means we want a y-value/output

Example

X	f(x)	feature of f
0	1	Absolute MIN
2	4	ABSOLUTE MAX (Also local max)
3	3	LOCAL MIN
4	3.5	LOCAL MAX
5	2	

The absolute maximum value of this function is y = 4 and it occurs at x=2. The absolute minimum value of this function is y=1, and it occurs at x=0.

Domain: [1,4] Absolute max = 16, which it reaches at X = 1 and X = 3. There is no absolute minimum.

Definition: A value x = c is a <u>critical point</u> if f'(c) = 0 or f'(c) is undefined.

Extreme Value Theorem: If f is continuous and

f has a closed, bounded domain (that is, domain = [a,b])

then

@ f has an absolute max value and an absolute min value

2) the absolute max and min occur either at endpoints

or at critical points

Recipe to find absolute max/min:

- 1) Find critical points
- 2) Evaluate f at critical points and end points
- 3) I dentify absolute max/nun

No also max/min
but
closed, bounded chomain

Example: Let $f(x) = 2x^3 - 3x^2 - 36x$. Find the absolute maximum and minimum values of f(x) on [-4, 6] and the x-values where they occur.

Find Critical points:
$$f'(x) = 0 \Rightarrow 6x^2 - 6x - 36 = 0$$

$$\Rightarrow x^2 - x - 6 = 0 \Rightarrow (x - 3)(x + 2) = 0$$

$$\Rightarrow x = 3 \text{ or } x = -2.$$

Find where f'(x) is undefined: nowhere.

X	f(x)	
- 4	-32	
- 2	44	
3	- 81	4 Absolute min = -81 at x = 3
6		4 Absolute max = 108 at $x = 6$

Example: Find absolute max/min for
$$f(t) = \frac{\sqrt{t}}{1+t^2}$$
 on $[0,2]$.

Critical points:
$$f'(t) = (1+t^2)(\frac{1}{2}t^{-1/2}) - \sqrt{t}(2t)$$

$$= \frac{1-3t^2}{2\sqrt{t}(1+t^2)^2}$$

$$f'(t) = 0 \Rightarrow 1 - 3t^2 = 0$$

$$\Rightarrow 1 = 3t^2$$

$$\Rightarrow t = -\frac{1}{\sqrt{3}} \Rightarrow t = \sqrt{\frac{1}{3}}$$

$$f'(t)$$
 is undefined \Rightarrow
 $2\sqrt{t} (1+t^2)^2 = 0 \Rightarrow$
 $t=0$ \Rightarrow $1+t^2=0$ (Never!)

$$\frac{1}{10} \frac{f(t)}{0} = 0$$

$$\frac{3}{4} \approx 0.56 \quad 4 \quad y = 3 \quad 3/4 \quad \text{is absolute}$$

$$\frac{3}{4} \approx 0.56 \quad 4 \quad y = 3 \quad 4 \quad \text{is absolute}$$

$$\frac{3}{4} \approx 0.28$$

