Avaliação de modelos de previsão

Baseado em: "Practical Data Science With R"

Por: Pedro de Araújo Ribeiro

Objetivo:

Utilizar de métricas de performance e proporções de acerto para determinar qual modelo de previsão melhor atende uma determinada tarefa.

Considerações:

- Dataset usado: <u>Diabetes prediction</u>
- Todas iterações de K-fold CV utilizam K=10
- Bibliotecas do R Studio usadas:

```
library(tidyverse)
library(class)
library(rpart)
library(rpart.plot)
library(wrapr)
library(WVPlots)
library(randomForest)
```

Ferramenta: Método K-fold Cross-Validation

K-fold Cross Validation será aplicado em cada modelo de previsão que testaremos a fim de melhor estimar sua eficiência mas também para descobrir quais parâmetros levam a melhor performance no caso de modelos como KNN e florestas aleatórias.

ISRLv2 - sessão 5.1.3

Análise de tarefa:

Diferentes modelos atendem diferentes tarefas e conjuntos de dados, especificamente temos 3 tipos distintos de modelos estatisticos:

- Pontuação, onde estimamos um valor quantitativo
- Clasificação, onde atribuímos um valor qualitativo
- Agrupamento, onde buscamos padrões nos dados

Para nossos estudos, focaremos apenas em modelos de classificação e suas aplicações.

Avaliação de modelos: Matriz de confusão

A matriz de confusão é uma ferramenta de imensa importância pois quantifica não apenas a acurácia de um modelo mas também a natureza de suas previsões, o quão tendencioso ele é, e os tipos de erro que ele mais comete.

A partir dessas informações poderemos avaliar a performance em conjuntos de dados anormais onde há disparidades entre a proporção de certas classificações ou onde a acurácia geral não é a mais importante

PDSWR - sessão 6.2.3

Quadrantes da matriz: Precision

Precisão é a medida de acertos dentre as observações que foram classificadas como positivas.

Acertos em positivos/Total de positivos previstos

PDSWR - sessão 6.2.3

Quadrantes da matriz: Recall

Recall é a medida de acertos dentre quantidade total de positivos reais.

Acertos em positivos/Total de positivos reais

PDSWR - sessão 6.2.3

Quadrantes da matriz: Sensitivity

Sensitividade é a medida de acertos dentre as observações que foram classificadas como negativas.

Acertos em negativos/Total de negativos previstos

Quadrantes da matriz: Specificity

Especificidade é a medida de acertos dentre quantidade total de negativos reais.

Acertos em negativos/Total de negativos reais

PDSWR - sessão 6.2.3

Exemplo prático: Conjunto de dados e objetivo

•	gender	÷ .	age ‡	hypertension	‡	heart_disease	+	smoking_history	+	bmi ‡	HbA1c_level ‡	blood_glucose_level ‡	diabetes ‡
1	Female		80		0		1	never		25.19	6.6	140	0
2	Female		54		0		0	No Info		27.32	6.6	80	0
3	Male		28		0		0	never		27.32	5.7	158	0
4	Female		36		0		0	current		23,45	5.0	155	0
5	Male		76		1		1	current		20.14	4.8	155	0
6	Female		20		0		0	never		27.32	6.6	85	0
7	Female		44		0		0	never		19.31	6.5	200	1
8	Female		79		0		0	No Info		23.86	5.7	85	0
9	Male		42		0		0	never		33.64	4.8	145	0
10	Female		32		0		0	never		27.32	5.0	100	0
11	Female		53		0		0	never		27.32	6.1	85	0
12	Female		54		0		0	former		54.70	6.0	100	0
13	Female		78		0		0	former		36.05	5.0	130	0
14	Female		67		0		0	never		25.69	5.8	200	0
15	Female		76		0		0	No Info		27.32	5.0	160	0

Exemplo prático: Conjunto de dados e objetivo

O conjunto Diabetes possui majoritariamente pessoas que não possuem a doença, ou seja, observações cuja variável diabetes é negativa.

Portanto, para nossas análises de performance não mediremos a acurácia geral, que é o *total de previsões corretas/total de observações*, e sim a capacidade do modelo de identificar pessoas com diabetes, que são os *acertos em positivos/total de positivos reais*.

De agora pra frente, a capacidade em questão será chamada de 'acurácia relevante'

Exemplo prático: Null Model

Inicialmente não utilizamos nenhum modelo real e sim um chamado *null model*, que consiste de uma previsão estática para todas as observações

```
actual <- teste$diabetes
pred <-rep(0,nrow(teste))
t1 <- table(actual,pred)

pred
actual 0
0 9200
1 800
```

Neste caso, a acurácia relevante será 0

Exemplo prático: KNN

Para KNN realizamos K-fold CV para identificar a quantidade de vizinhos que resulta na melhor acurácia relevante.

No final, faremos uma previsão com o melhor parâmetro encontrado.

```
dados_norm = scale(dados1[-c(1,5,9)])
Ks \leftarrow seq(from = 10, to = 100, by = 10)
det2 <- c()
for(j in Ks){
detection <- c()
for(i in 1:10){
teste_knn <- kFoldPartitionTeste(dados_norm,10,i)
treino_knn <- kFoldPartitionTreino(dados_norm,10,i)
actual_knn <- kFoldPartitionTeste(dados1,10,i)$diabetes
treino2 <- kFoldPartitionTreino(dados1,10,i)
test_pred <- knn(
  train = treino_knn,
  test = teste_knn,
  cl = treino2$diabetes,
  k=j
cm <- table(actual_knn,test_pred)</pre>
detection \leftarrow c(detection,cm[2,2]/(cm[2,2]+cm[2,1]))
det2 <- c(det2,mean(detection))</pre>
```

Exemplo prático: KNN

Aqui concluímos que uma quantidade maior de vizinhos leva a uma acurácia pior.

```
> max(det2)
[1] 0.6448449
> Ks[which(det2==max(det2))]
[1] 10
```


Exemplo prático: KNN

Ao observar a tendência anterior o experimento foi replicado para o intervalo de vizinhos 1 a 10 e observamos que 1 vizinho resultou na acurácia mais alta

```
> max(det2)
[1] 0.7115987
> Ks[which(det2==max(det2))]
[1] 1
```


Exemplo prático: Árvore

Como árvores não possuem parâmetros a serem testados do mesmo jeito que KNN e floresta aleatória, apenas realizamos o K-fold CV para obter uma média de acurácia que será comparada as demais.

```
> mean(detection)
[1] 0.7107549
```

```
detection <- c()
for(i in 1:10){
teste_arv <- kFoldPartitionTeste(dados1,10,i)
treino_arv <- kFoldPartitionTreino(dados1,10,i)
actual arv <- teste arv$diabetes
modelo <- rpart(diabetes ~ .,data = treino_arv,</pre>
                 method="class",control=rpart.control(cp=0))
pred1 <- predict(modelo,teste_arv,"class")</pre>
tab <- table(actual_arv,pred1)
detection \leftarrow c(detection, tab[2,2]/(tab[2,1]+tab[2,2]))
mean (detection)
```

Exemplo prático: Florestas aleatórias

Para florestas aleatórias realizaremos o mesmo processo que KNN para identificar a quantidade ideal de árvores.

```
fs < seq(from = 300, to = 1500, by = 200)
det4 <- c()
for(j in fs){
  detection <- c()
  for(i in 1:10){
    teste_fore <- kFoldPartitionTeste(dados1,10,i)
    treino_fore <- kFoldPartitionTreino(dados1,10,i)
    actual fore <- teste fore diabetes
    modelo2 <- randomForest(diabetes ~., data=treino_fore,ntree=j)
    pred2 <- predict(modelo2,teste_fore,"class")</pre>
    cm2 <- table(actual_fore,pred2)</pre>
    detection <- c(detection,cm2[2,2]/sum(cm2[,2]))</pre>
  print(j)
  det4 <- c(det4,mean(detection))</pre>
```

Exemplo prático: Florestas aleatórias

Aqui observamos que 900 árvores produziram o melhor resultado.

```
> max(det4)
[1] 0.6743584
> fs[which(det4==max(det4))]
[1] 900
```


Exemplo prático: Regressão logística

Neste caso deveremos analisar não apenas o aumento na acurácia relevante mas também na acurácia para negativos, pois seria muito fácil simplesmente assumir todos como positivos.

Escolheremos arbitrariamente manter uma taxa de acerto de 90% para os negativos reais

Exemplo prático: Regressão logística

```
for(i in 1:10){
teste_logit <- kFoldPartitionTeste(dados1,10,j)
treino_logit <- kFoldPartitionTreino(dados1,10,j)
modelo3 <- glm(diabetes~., data = treino_logit,
                family = binomial(link = "logit"))
teste1 <- teste_logit
testel pred <- predict (modelo3, newdata=teste_logit, type="response")
treino_logit$pred <- predict(modelo3, newdata=treino_logit, type = "response")</pre>
DoubleDensityPlot(treino_logit, "pred", "diabetes",
                   title = "Distribuição de diabetes")
i < -0
1 < -0.01
while(i < 0.90){
tab4 <- table(actual = teste1$diabetes,pred = teste1$pred >1)
1 \leftarrow 1 + 0.01
i \leftarrow tab4[1,1]/(tab4[1,1]+tab4[1,2])
det5 \leftarrow c(det5, tab4[2,2]/(tab4[2,2]+tab4[2,1]))
cuts <- c(cuts, 1)
```

Exemplo prático: Regressão logística

Para o experimento anterior obtivemos a acurácia relevante média e observamos que quase sempre o mesmo ponto de split levava aos melhores resultados, portanto o usaremos na análise final.

Exemplo prático: Análise final

Utilizando todos os parâmetros ideais obtidos, sendo eles:

- K=1 para KNN
- T=900 para florestas

R studio

Split = 0.11 para regressão logistica

Realizaremos uma previsão final para um subconjunto aleatório da base de dados e compararemos a performance dos modelos entre si e também com seus resultados no K-fold CV.

```
dados_fim <- shuffle(dados)
treino_fim <- kFoldPartitionTreino(dados_fim,10,5)
teste_fim <- kFoldPartitionTeste(dados_fim,10,5)</pre>
```

Exemplo prático: Análise final

*	Null [‡]	KNN ‡	Arvore ‡	Floresta ‡	Logistica ‡
Acuracia	0.9199	0.955100	0.9676000	0.9738000	0.9061000
Positivos	801.0000	801.000000	801.0000000	801.0000000	801.0000000
Negativos	9199.0000	9199.000000	9199.0000000	9199.0000000	9199.0000000
Falsos positivos	0.0000	217.000000	90.0000000	4.0000000	809.0000000
Falsos negativos	801.0000	232.000000	234.0000000	258.0000000	130.0000000
Verdadeiros positivos	0.0000	569.000000	567.0000000	543.0000000	671.0000000
Veradeiros negativos	9199.0000	8982.000000	9109.0000000	9195.0000000	8390.0000000
% de positivos detectados	0.0000	0.710362	0.7078652	0.6779026	0.8377029

Exemplo prático: Análise final - KNN

```
> max(det2)
[1] 0.7115987
> Ks[which(det2==max(det2))]
[1] 1
```

```
> cm[2,2]/(cm[2,1]+cm[2,2])
[1] 0.710362
```

```
treino\_norm = scale(treino\_fim[-c(1,5,9)])
teste_norm = scale(teste_fim[-c(1,5,9)])
test_pred <- knn(
  train = treino_norm,
  test = teste_norm,
  cl = treino_fim$diabetes,
  k=1
cm <- table(actual, test_pred)</pre>
matriz[,2]<-fillMatriz(cm)
```

Exemplo prático: Análise final - Árvore

```
> mean(detection)
[1] 0.7107549
```

```
> tab[2,2]/(tab[2,1]+tab[2,2])
[1] 0.7067938
```

```
modelo <- rpart(diabetes ~ .,data = treino_fim,
                 method="class", control=rpart.control(cp=0))
pred1 <- predict(modelo,teste_fim,"class")</pre>
tab <- table(actual,pred1)
matriz[,3]<-fillMatriz(tab)</pre>
tab[2,2]/(tab[2,1]+tab[2,2])
```

Exemplo prático: Análise final - Floresta aleatória

```
> max(det4)
[1] 0.6743584
> fs[which(det4==max(det4))]
[1] 900
```

```
> tab2[2,2]/(tab2[2,1]+tab2[2,2])
[1] 0.6779026
```

```
modelo2 <- randomForest(diabetes ~.,
                         data=treino_fim,ntree=900)
pred2 <- predict(modelo2,teste_fim,"class")</pre>
tab2 <- table(actual,pred2)
matriz[,4]<-fillMatriz(tab2)
```

Exemplo prático: Análise final - Regressão logística

```
> cuts

[1] 0.11 0.11 0.11 0.10

> mean(det5)

[1] 0.8569157
```

```
> ctab.test[2,2]/
[1] 0.8377029
```

```
modelo3 <- glm(diabetes~., data = treino_fim,
                family = binomial(link = "logit"))
teste1 <- teste_fim
teste1$pred <- predict(modelo3,</pre>
                        newdata=teste_fim, type="response")
ctab.test <- table(actual = teste_fimsdiabetes,
                    pred = teste1$pred > 0.11)
matriz[,5]<-fillMatriz(ctab.test)</pre>
```

Conclusão:

- Quando realizamos previsões e analisamos a performance de modelos, devemos levar em consideração a natureza da variável resposta e o objetivo da previsão
- Métodos que priorizam apenas a acurácia geral e o ganho de pureza de partições como árvores e florestas não são capazes dessa nuance sem alterações no seu funcionamento
- Para conjuntos com uma disparidade muito grande na proporção de variáveis resposta, KNN com muitos vizinhos tende a perder acurácia para a variável em menor número
- Na regressão logística devemos encontrar um ponto de trade-off entre verdadeiros positivos e verdadeiros negativos

FIM.