Finding Similar Items: Locality Sensitive Hashing

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

New thread: High dim. data

High dim.

Locality sensitive hashing

Clustering

Dimensional ity reduction

Graph data

PageRank, SimRank

Network Analysis

Spam
Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

10 nearest neighbors from a collection of 20,000 images

10 nearest neighbors from a collection of 2 million images

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Users who visited similar websites

Problem for today's lecture

- Given: High dimensional data points $x_1, x_2, ...$
 - For example: Image is a long vector of pixel colors

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- And some distance function $d(x_1, x_2)$
 - Which quantifies the "distance" between x_1 and x_2
- Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_i) \le s$
- Note: Naïve solution would take $O(N^2)$ \otimes where N is the number of data points
- **MAGIC:** This can be done in O(N)!! How?

Relation to the Previous Lecture

Last time: Finding frequent pairs

Single pass but requires space quadratic in the number of items

N ... number of distinct items

K ... number of items with support $\geq s$

A-Priori:

First pass: Find frequent singletons
For a pair to be a frequent pair
candidate, its singletons have to be
frequent!

Second pass:

Count only candidate pairs!

Relation to Previous Lecture

- Last time: Finding frequent pairs
- Further improvement: PCY
 - Pass 1:
 - Count exact frequency of each item:
 - Take pairs of items {i,j}, hash them into B buckets and count of the number of pairs that hashed to each bucket:

Items 1...N

Relation to Previous Lecture

- Last time: Finding frequent pairs
- Further improvement: PCY
 - Pass 1:
 - Count exact frequency of each item:
 - Take pairs of items {i,j}, hash them into B buckets and count of the number of pairs that hashed to each bucket:
 - Pass 2:
 - For a pair {i,j} to be a candidate for a frequent pair, its singletons {i}, {j} have to be frequent and the pair {i, j} has to hash to a frequent bucket!

Items 1...N

Relation to Previous Lecture

- Lastding Finding
- Previous lecture: A-Priori
 - Main idea: <u>Candidates</u>
 Instead of keeping a count of each pair, only keep a count of candidate pairs!
 - Today's lecture: Find pairs of similar docs
 - Main idea: Candidates
 - -- Pass 1: Take documents and hash them to buckets such that documents that are similar hash to the same bucket
 - -- Pass 2: Only compare documents that are candidates (i.e., they hashed to a same bucket)
 - Benefits: Instead of O(N²) comparisons, we need O(N) comparisons to find similar documents

Finding Similar Items

Distance Measures

- Goal: Find near-neighbors in high-dim. space
 - We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance/similarity
 - The Jaccard similarity of two sets is the size of their intersection divided by the size of their union: $sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$
 - Jaccard distance: $d(C_1, C_2) = 1 |C_1 \cap C_2|/|C_1 \cup C_2|$

3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors
 - Don't want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by "same story"

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

- 1. Shingling: Converts a document into a set
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

The Big Picture

Candidate pairs

those pairs of signatures that we need to test for similarity

Shingling

Step 1: Shingling:

Convert a document into a set

Documents as High-Dim Data

- Step 1: Shingling: Converts a document into a set
- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- **Example:** k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - Option: Shingles as a bag (multiset): Count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- **Example:** k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca} Hash the singles: $h(D_1)$ = {1, 5, 7}

Similarity Metric for Shingles

- Document D₁ is a set of its k-shingles C₁=S(D₁)
- Equivalently, each document is a
 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - $\mathbf{k} = 10$ is better for long documents

Motivation for Min-Hash/LSH

- Suppose we need to find near-duplicate documents among N=1 million documents
- Naïvely, we would have to compute pairwise
 Jaccard similarities for every pair of docs
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

The set of strings of length k that appear in the document

short integer vectors that represent the

sets, and reflect their similarity

Min-Hashing

Step 2: Min-Hashing: Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example:** $C_1 = 10111$; $C_2 = 10011$
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

Encode sets using 0/1 (bit, Boolean) vectors

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6,
 Jaccard similarity (not distance) = 3/6
 - $d(C_1,C_2) = 1 (Jaccard similarity) = 3/6$

Documents

Ollingies	1	1	1	0
	1	1	0	1
	0	1	0	1
	0	0	0	1
	1	0	0	1
	1	1	1	0
	1	0	1	0

Outline: Finding Similar Columns

So far:

- Documents → Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures

Warnings:

- Comparing all pairs takes too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Outline: Finding Similar Columns

- Next Goal: Find similar columns, Small signatures
- Naïve approach:
 - 1) Signatures of columns: small summaries of columns
 - 2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
 - 3) Optional: Check that columns with similar signatures are really similar
- Warnings:
 - Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature h(C), such that:
 - (1) h(C) is small enough that the signature fits in RAM
 - (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Goal: Find a hash function h(·) such that:
 - If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- Goal: Find a hash function h(·) such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value $\mathbf{1}$:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

 Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Min-Hashing Example

The Min-Hash Property

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - Let **X** be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any y ∈ X is mapped to the min element
 - Let \mathbf{y} be s.t. $\pi(\mathbf{y}) = \min(\pi(C_1 \cup C_2))$
 - $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or Then either: $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

One of the two cols had to have 1 at position y

- So the prob. that **both** are true is the prob. $\mathbf{y} \in C_1 \cap C_2$
- $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2|=sim(C_1, C_2)$

Four Types of Rows

• Given cols C₁ and C₂, rows may be classified as:

- a = # rows of type A, etc.
- Note: $sim(C_1, C_2) = a/(a + b + c)$
- Then: $Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$
 - Look down the cols C₁ and C₂ until we see a 1
 - If it's a type-A row, then h(C₁) = h(C₂)
 If a type-B or type-C row, then not

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Permutation π

3

6

5

6

Input matrix (Shingles x Documents)

1	О	1	О
1	O	O	1
0	1	O	1
0	1	O	1
0	1	О	1
1	О	1	0
1	O	1	0

Signature matrix M

1	5	1	5
2	3	1	3
6	4	6	4

Similarities:

Col/Col Sig/Sig

	1-3			3-4
	0.75			0
Sig	0.67	1.00	0	0

Min-Hash Signatures

- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document C is small ~ 400 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
 - Pick K = 100 hash functions k_i
 - Ordering under k_i gives a random row permutation!
- One-pass implementation
 - For each column C and hash-func. k_i keep a "slot" for the min-hash value
 - Initialize all sig(C)[i] = ∞
 - Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i :
 - If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where:

a,b ... random integers p ... prime number (p > N)

Locality Sensitive Hashing

Step 3: Locality Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

LSH: First Cut

2	1	4	1	
1	2	1	2	
2	1	2	1	

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Pick a similarity threshold s (0 < s < 1)</p>
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 - M(i, x) = M(i, y) for at least frac. s values of i
 - We expect documents x and y to have the same (Jaccard) similarity as their signatures

LSH for Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition M into b Bands

2 1 4 1
1 2 1 2
2 1 2 1

Signature matrix *M*

Partition M into Bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- **Goal:** Find pairs of documents that are at least s = 0.8 similar

C₁, C₂ are 80% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- **Find pairs of** \geq *s*=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

C₁, C₂ are 30% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of \geq s=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: $1 (1 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

Pick:

- The number of Min-Hashes (rows of M)
- The number of bands b, and
- The number of rows r per band to balance false positives/negatives
- Example: If we had only 15 bands of 5
 rows, the number of false positives would
 go down, but the number of false negatives
 would go up

Analysis of LSH – What We Want

Similarity $t = sim(C_1, C_2)$ of two sets———

What 1 Band of 1 Row Gives You

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = t'
 - Prob. that some row in band unequal = 1 t'
- Prob. that no band identical = $(1 t^r)^b$
- Prob. that at least 1 band identical = $1 (1 t^r)^b$

What b Bands of r Rows Gives You

Example: b = 20; r = 5

- Similarity threshold s
- Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions (r=5, b=10)

Blue area: False Negative rate
Green area: False Positive rate

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find **candidate pairs** of similarity \geq **s**