4. Föll af mörgum breytistærðum Stærðfræðigreining IIB, STÆ205G

14. janúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is Verkfræði- og náttúruvísindasvið Háskóli Íslands

Graf falls

Skilgreining 4.1

Látum $f:\mathbb{R}^2 o \mathbb{R}$ vera fall. Graf fallsins er skilgreint sem mengið

$$\{(x,y,f(x,y))\mid (x,y)\in\mathbb{R}^2\}\subseteq\mathbb{R}^3.$$

Ef $f: \mathbb{R}^3 \to \mathbb{R}$ er fall, þá er *graf* fallsins skilgreint sem mengið

$$\{(x,y,z,f(x,y,z)) \mid (x,y,z) \in \mathbb{R}^3\} \subseteq \mathbb{R}^4.$$

Graf falls

Dæmi: $f(x, y) = \sqrt{1 - x^2 - y^2}$, $-0.5 \le x, y \le 0.5$.

Jafnhæðarlínur

Skilgreining 4.2

Látum $f:\mathbb{R}^2 \to \mathbb{R}$ vera fall. Ef c er fasti þá er mengið

$$\{(x,y)\mid f(x,y)=c\}\subseteq \mathbb{R}^2$$

kallað jafnhæðarlína eða jafnhæðarferill (e. level curve) fallsins f fyrir fastann c.

Látum $f:\mathbb{R}^3 o \mathbb{R}$ vera fall. Ef c er fasti þá er mengið

$$\{(x, y, z) \mid f(x, y, z) = c\}$$

kallað jafnhæðarflötur (e. level surface) fallsins f fyrir fastann c.

Jafnhæðarlínur

Dæmi: $f(x, y) = \sqrt{1 - x^2 - y^2}$, $-0.5 \le x, y \le 0.5$.

Fjarlægð milli punkta

Skilgreining 4.3

Fjarlægðin milli tveggja punkta $\mathbf{x} = (x_1, x_2, \dots, x_n)$ og $\mathbf{y} = (y_1, y_2, \dots, y_n)$ í \mathbf{R}^n er skilgreind sem talan

$$|\mathbf{x} - \mathbf{y}| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}.$$

Opnar kúlur

Skilgreining 4.4

Látum $P = (p_1, p_2, \dots, p_n)$ vera punkt í \mathbb{R}^n . Skilgreinum *opnu kúluna* með miðju í P og geisla r sem mengið

$$B_r(P) = \{Q \in \mathbb{R}^n \mid |Q - P| < r\}.$$

Í \mathbb{R}^2 er eðlilegra að tala um *opna skífu* eða *opinn disk* í stað opinnar kúlu og í \mathbb{R} þá er talað um opin bil.

Opin mengi

Skilgreining 4.5

Látum U vera hlutmengi í \mathbb{R}^n .

Sagt er að U sé *opið mengi* ef um sérhvern punkt P í U gildir að til er tala r > 0 þannig að $B_r(P) \subseteq U$.

Mengið U er sagt *loka*ð ef fyllimengið er opið. (*Fyllimengi* U er skilgreint sem mengið $\mathbb{R}^n \setminus U = \{Q \in \mathbb{R}^n \mid Q \notin U\}$.)

Jaðarpunktur

Skilgreining 4.6

Látum U vera mengi í \mathbb{R}^n . Punktur P í \mathbb{R}^n er sagður jaðarpunktur U ef sérhver opin kúla $B_r(P)$ með r>0 inniheldur bæði punkt úr U og punkt úr $\mathbb{R}^n\setminus U$. (Athugið að bæði er mögulegt að jaðarpunktur U sé í U og að hann sé ekki í U.)

Skilgreiningarmengi

Skilgreining 4.7

Fyrir fall $f(x_1, x_2, \ldots, x_n)$ þá táknar $\mathcal{D}(f)$ skilgreiningarmengi fallsins f. Ef fallið er gefið með formúlu og ekkert sagt um $\mathcal{D}(f)$ þá lítum við svo á að $\mathcal{D}(f)$ sé mengi allra punkta í \mathbf{R}^n þannig að formúlan gefi vel skilgreinda tölu.

Markgildi

Skilgreining 4.8

Látum $f(x_1, x_2, \ldots, x_n)$ vera fall af n breytistærðum með skilgreiningarmengi $\mathcal{D}(f) \subseteq \mathbb{R}^n$. Látum $P = (p_1, p_2, \ldots, p_n)$ vera punkt í \mathbb{R}^n þannig að sérhver opin kúla um P inniheldur meira en einn punkt úr $\mathcal{D}(f)$.

Segjum að $f(x_1, x_2, ..., x_n)$ stefni á tölu L þegar $(x_1, x_2, ..., x_n)$ stefnir á $(p_1, p_2, ..., p_n)$ ef eftirfarandi gildir:

Fyrir sérhverja tölu $\varepsilon > 0$ er til tala $\delta > 0$ þannig að ef $(x_1, x_2, \dots, x_n) \in \mathcal{D}(f)$ og

$$|(x_1, x_2, \ldots, x_n) - (p_1, p_2, \ldots, p_n)| < \delta$$

þá er

$$|f(x_1,x_2,\ldots,x_n)-L|<\varepsilon.$$

Markgildi

Ritháttur 4.9

Ef $f(x_1, x_2, ..., x_n)$ stefnir á tölu L þegar $(x_1, x_2, ..., x_n)$ stefnir á $(p_1, p_2, ..., p_n)$ þá er ritað

$$\lim_{(x_1,x_2,...,x_n)\to(p_1,p_2,...,p_n)} f(x_1,x_2,...,x_n) = L.$$

Markgildi

Skilgreining 4.10 (Skilgreining 4.8 sett fram fyrir föll af tveimur breytum.)

Látum f(x,y) vera fall skilgreint á mengi $\mathcal{D}(f) \subseteq \mathbb{R}^2$. Látum (a,b) vera punkt í \mathbb{R}^2 þannig að sérhver opin skífa um (a,b) inniheldur meira en einn punkt úr $\mathcal{D}(f)$.

Segjum að f(x,y) stefni á tölu L þegar (x,y) stefnir á (a,b) ef eftirfarandi gildir:

fyrir sérhverja tölu $\varepsilon>0$ er til tala $\delta>0$ þannig að ef $(x,y)\in\mathcal{D}(f)$ og

$$\delta > |(x,y) - (a,b)| = \sqrt{(x-a)^2 + (y-b)^2}$$

þá er

$$|f(x,y)-L|<\varepsilon.$$

Reglur um markgildi

Setning 4.11

Látum f og g vera föll af tveimur breytum. Gerum ráð fyrir að

$$\lim_{(x,y)\to(a,b)} f(x,y) = L \quad \text{og} \quad \lim_{(x,y)\to(a,b)} g(x,y) = M,$$

og að sérhver grennd um (a,b) innihaldi fleiri en einn punkt þar sem bæði föllin f og g eru skilgreind. Þá gildir

- (a) $\lim_{(x,y)\to(a,b)} (f(x,y)\pm g(x,y)) = L\pm M$.
- **(b)** $\lim_{(x,y)\to(a,b)} f(x,y)g(x,y) = LM$.
- (c) $\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}$, svo framarlega sem $M \neq 0$.
- (d) $\lim_{(x,y)\to(a,b)} F(f(x,y)) = F(L)$ ef F er fall af einni breytistærð sem er samfellt í punktinum L.

Samfelldni

Skilgreining 4.12

Látum f vera fall af n breytistærðum skilgreint á mengi $\mathcal{D}(f)$ í \mathbb{R}^n . Fallið f er sagt samfellt í punkti (p_1, p_2, \ldots, p_n) í $\mathcal{D}(f)$ ef

$$\lim_{(x_1,x_2,...,x_n)\to(p_1,p_2,...,p_n)} f(x_1,x_2,...,x_n) = f(p_1,p_2,...,p_n).$$

Sagt er að fallið sé *samfellt* ef það er samfellt í öllum punktum skilgreiningarmengis síns.