Cache Ellsworth

Linear Constrained Optimization Exercises

Exercise 8.1

See the jupyter notebook in the same folder.

Exercise 8.2

See the jupyter notebook in the same folder.

Exercise 8.3

The linear optimization problem in standard form which would maximize Kenny's profit on these two toys.

$$\begin{array}{ll} \text{maximize} & 4s+3d \\ \text{subject to} & 15s+10d \leq 1800 \\ & 2s+2d \leq 350 \\ & d \leq 200 \\ & s,d \geq 0 \end{array}$$

Exercise 8.4

The linear optimization problem.

minimize
$$2x_{AB} + 5x_{AD} + 2x_{BD} + 5x_{BC} + 7x_{BE} + 9x_{BF} + 4x_{DE} + 3x_{EF} + 2x_{CF}$$

subject to $(x_{AB} + x_{AD}) - 0 = 10$
 $(x_{BC} + x_{BF} + x_{BE} + x_{BE}) - (x_{AB}) = 1$
 $(x_{CF}) - (x_{BC}) = -2$
 $(x_{DE}) - (x_{AD}) = -3$
 $(x_{EF}) - (x_{BE} + x_{DE}) = 4$
 $0 - (x_{CF} + x_{BF} + x_{EF}) = -10$

i) The dictionary process is as follows

$$\frac{\zeta = 3x_1 + x_2}{w_1 = 15 - x_1 - 3x_2}$$

$$w_2 = 18 - 2x_1 - 3x_2$$

$$w_3 = 4 - x_1 + x_2$$

where $x_1 = 0, x_2 = 0, w_1 = 15, w_2 = 18, w_3 = 4$

$$\zeta = 12 - 3w_3 + 4x_2$$

$$w_1 = 11 - w_3 - 5x_2$$

$$w_2 = 10 + 2w_3 - 5x_2$$

$$x_1 = 4 - w_3 + x_2$$

where $x_1 = 4, x_2 = 0, w_1 = 11, w_2 = 10, w_3 = 0$

$$\frac{\zeta = 20 - \frac{7}{5}w_3 - \frac{4}{5}w_2}{w_1 = 1 - w_3 + w_2}$$
$$x_2 = 2 + \frac{2}{5}w_3 - \frac{w_2}{5}$$
$$x_1 = 6 - \frac{3}{5}w_3 - \frac{w_2}{5}$$

where $x_1 = 6, x_2 = 2, w_1 = 1, w_2 = 0, w_3 = 0$

This shows that the optimal point is (6,2) and the optimum value is 20. These agree with the same answers I got in Exercise 8.2. ii) The dictionary process is as follows

$$\frac{\zeta = 4x + 6y}{w_1 = 11 + x - y}$$
$$w_2 = 27 - x - y$$
$$w_3 = 90 - 2x - 5y$$

where $x = 0, y = 0, w_1 = 11, w_2 = 27, w_3 = 90$

$$\zeta = 108 - 4w_2 + 2y$$

$$x = 27 - w_2 - y$$

$$w_1 = 38 - w_2 - 2y$$

$$w_2 = 27 - x - y$$

$$w_3 = 36 + 2w_2 - 3y$$

where $x = 27, y = 0, w_1 = 38, w_2 = 0, w_3 = 68$

$$\zeta = 132 - \frac{8}{3}w_2 - \frac{2}{3}w_3$$
$$x = 15 - \frac{5}{3}w_2 + \frac{w_3}{3}$$
$$y = 12 + \frac{2w_2}{3} - \frac{w_3}{3}$$
$$w_1 = 14 - \frac{7}{3}w_2 + \frac{2}{3}w_3$$

where $x = 15, y = 12, w_1 = 14, w_2 = 0, w_3 = 0$

This shows that the optimal point is (15,12) and the optimum value is 132. These agree with the same answers I got in Exercise 8.2.

Exercise 8.6

The dictionary process is as follows

$$\frac{\zeta = 4s + 3d}{w_1 = 1800 - 10d - 15s}$$
$$w_2 = 350 - 2d - 2s$$
$$w_3 = 200 - d$$

where $s = 0, d = 0, w_1 = 1800, w_2 = 350, w_3 = 200$

$$\frac{\zeta = 480 + \frac{1}{3}d - \frac{4}{15}w_1}{s = 120 - \frac{2}{3}d - \frac{w_1}{15}}$$
$$w_2 = 110 - \frac{2}{3}d + \frac{2}{15}w_1$$
$$w_3 = 200 - d$$

where $s = 120, d = 0, w_1 = 0, w_2 = 110, w_3 = 200$

$$\frac{\zeta = 55 - \frac{1}{2}w_2 - \frac{1}{5}w_1}{s = 10 + w_2 - \frac{w_1}{5}}$$
$$d = 165 - \frac{3}{2}w_2 + \frac{1}{5}w_1$$
$$w_3 = 35 - \frac{3}{2}w_2 + \frac{1}{5}w_1$$

where $s = 10, d = 165, w_1 = 0, w_2 = 0, w_3 = 35$

This shows that the optimal point is (s = 10, d = 165) and the optimum value is 55.

i) The dictionary process is as follows

$$\frac{\zeta = -x_0}{x_3 = -8 + 4x_1 + 2x_2 + x_0}$$

$$x_4 = 6 + 2x_1 - 3x_2 + x_0$$

$$x_5 = 3 - x_1 + x_0$$

where $x_0 = 0, x_1 = 0, x_2 = 0, x_3 = -8, x_4 = 6, x_5 = 3$

$$\frac{\zeta = -8 + 4x_1 + 2x_2 - x_3}{x_0 = 8 - 4x_1 - 2x_2 + x_3}$$

$$x_4 = 14 - 2x_1 - 5x_2 + x_3$$

$$x_5 = 11 - 5x_1 - 2x_2 + x_3$$

where $x_0 = 8$, $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 14$, $x_5 = 11$

$$\begin{aligned} & \frac{\zeta = -x0}{x_1 = 2 - \frac{1}{2}x_2 + \frac{1}{4}x_3 - \frac{1}{4}x_0} \\ & x_4 = 10 - 4x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_0 \\ & x_5 = 1 + \frac{1}{2}x_2 - \frac{1}{4}x_3 + \frac{5}{4}x_0 \end{aligned}$$

where $x_0 = 0, x_1 = 2, x_2 = 0, x_3 = 0, x_4 = 10, x_5 = 1$ This is a feasible point.

$$\begin{split} & \zeta = 2 + \frac{3}{2}x_2 + \frac{1}{4}x_3 \\ & x_1 = 2 - \frac{1}{2}x_2 + \frac{1}{4}x_3 \\ & x_4 = 10 - 4x_2 + \frac{1}{2}x_3 \\ & x_5 = 1 + \frac{1}{2}x_2 - \frac{1}{4}x_3 \end{split}$$

where $x_1 = 2, x_2 = 0, x_3 = 0, x_4 = 10, x_5 = 1$

$$\zeta = 3 + 2x_2 - x_5$$

$$x_1 = 3 - x_5$$

$$x_4 = 12 - 3x_2 - 2x_5$$

$$x_3 = 4 + 2x_2 - 4x_5$$

where $x_1 = 3, x_2 = 0, x_3 = 4, x_4 = 12, x_5 = 0$

$$\frac{\zeta = 11 - \frac{2}{3}x_4 - \frac{7}{3}x_5}{x_1 = 3 - x_5}$$
$$x_2 = 4 - \frac{1}{3}x_4 - \frac{2}{3}x_5$$
$$x_3 = 4 - \frac{8}{3}x_4 - \frac{16}{3}x_5$$

where $x_1 = 3, x_2 = 4, x_3 = 4, x_4 = 0, x_5 = 0$

So the optimal point is $(x_1 = 3, x_2 = 4)$ where the optimal point is 11.

ii) The dictionary process is as follows changing it to the auxiliary problem

$$\frac{\zeta = -x_0}{x_3 = 15 - 5x_1 - 3x_2 + x_0}$$

$$x_4 = 15 - 3x_1 - 5x_2 + x_0$$

$$x_5 = -12 - 4x_1 + 3x_2 + x_0$$

where $x_0 = 0, x_1 = 15, x_2 = 0, x_3 = 15, x_4 = 15, x_5 = -12$

$$\frac{\zeta = -12 - 4x_1 + 3x_2 - x_5}{x_3 = 27 - x_1 - 6x_2 + x_5}$$

$$x_4 = 27 + x_1 - 8x_2 + x_5$$

$$x_0 = 12 + 4x_1 - 3x_2 + x_5$$

where $x_0 = 12, x_1 = 0, x_2 = 0, x_3 = 27, x_4 = 27, x_5 = 0$

$$\frac{\zeta = -\frac{15}{8} - \frac{29}{8}x_1 - \frac{3}{8}x_4 - \frac{5}{8}x_5}{x_3 = \frac{27}{4} - \frac{7}{4}x_1 + \frac{3}{4}x_4 + \frac{1}{4}x_5}$$
$$x_2 = \frac{27}{8} + \frac{1}{8}x_1 - \frac{1}{8}x_4 + \frac{1}{8}x_5$$
$$x_0 = \frac{15}{8} + \frac{29}{8}x_1 + \frac{3}{8}x_4 + \frac{5}{8}x_5$$

where
$$x_0 = \frac{15}{8}, x_1 = 0, x_2 = \frac{27}{8}, x_3 = \frac{27}{4}, x_4 = 0, x_5 = 0$$

This problem has no feasible solutions because the objective function is negative.

iii) The dictionary process is as follows

$$\frac{\zeta = -3x_1 + x_2}{w_1 = 4 - x_2}$$
$$w_2 = 6 + 2x_1 - 3x_2$$

where $x_1 = 0, x_2 = 0, w_1 = 4, w_2 = 6$

$$\frac{\zeta = 2 - \frac{7}{3}x_1 - \frac{1}{3}w_2}{w_1 = 2 - x_1 + \frac{1}{3}w_2}$$
$$x_2 = 2 + x_1 - \frac{1}{3}w_2$$

Thus the optimal point is $(x_1 = 0, x_2 = 2)$ where the optimal value is 2.

Exercise 8.8

$$\begin{aligned} \text{maximize } 5z + x + y \\ z &\leq 4 \\ z - x &\leq 3 \\ x, y, z &\geq 0 \end{aligned}$$

In this example, y is clearly unbounded. So the region is closed and unbounded. Also there is a unique feasible maximizer at $[1, 0, 4]^T$.

$$\begin{aligned} \text{maximize } x_1 + x_2 + x_3 \\ x_1 &\leq 1 \\ x_2 &\leq 1 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$$

Exercise 8.10

$$\begin{array}{l} \text{maximize } x_1+x_2+x_3\\ &-x_1\leq -2\\ &x_1\leq 1\\ &x_1,x_2,x_3\geq 0 \end{array}$$

Exercise 8.11

$$\begin{aligned} & \text{maximize } x_1 + x_2 + x_3 \\ & x_3 - x_2 - x_1 \leq -1 \\ & x_1 \leq 1 \\ & x_2 \leq 1 \\ & x_3 \leq 1 \\ & x_1, x_2, x_3 \geq 0 \end{aligned}$$

Exercise 8.12

The dictionary process is as follows:

$$\zeta = 10x_1 - 57x_2 - 9x_3 - 24x_4$$

$$w_1 = -0.5x_1 + 1.5x_2 + 0.5x_3 - x_4$$

$$w_2 = -0.5x_1 + 5.5x_2 + 2.5x_3 - 9x_4$$

$$w_3 = 1 - x_1$$

where
$$x_1=0, x_2=0, x_3=0, x_4=0, w_1=0, w_2=0, w_3=1.$$

$$\frac{\zeta=-27x_2+x_3-44x_4-20w_1}{x_1=3x_2+x_3-2x_4-2w_1}$$

$$w_2 = 4x_2 + 2x_3 - 8x_4 + x_5$$
$$w_3 = 1 - 3x_2 - x_3 + 2x_4 + 2w_1$$

where $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, w_1 = 0, w_2 = 0, w_3 = 1.$

$$\frac{\zeta = 1 - 30x_2 - 42x_4 - 18w_1 - w_3}{x_1 = 1 - w_3}$$

$$w_2 = 2 - 2x_2 - 4x_4 + 5w_1 - 2w_3$$

$$x_3 = 1 - 3x_2 + 2x_4 + 2w_1 - w_3$$

where $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, w_1 = 0, w_2 = 2, w_3 = 0$. So the optimal point is (1, 0, 1, 0) with an optimal value of 1.

Exercise 8.15

Proof. Let $x \in \mathbb{R}^n$ be a primal feasible point and $y \in mathrm \mathbb{R}^m$ is a feasible point for the dual problem. We know that $Ax \leq b$ and $A^T y \leq c$. Applying the transpose of the first equation.

$$x^T A^T \le b^T$$
. $\implies x^T A^T y \le x^T c \le y^T b \implies c^T x \le b^T y$.

Exercise 8.17

Proof. We change the dual form into the standard form:

maximize
$$(-b^T)y$$

subject to $(-A)^T y \leq -c$
 $y \geq 0$

Then the dual of this version (The dual of the dual) is:

minimize
$$(-c^T)x$$

subject to $((-A)^T)^Tx \succeq -b$
 $x \succeq 0$

Changing this into the standard form.

$$\begin{aligned} \text{maximize } c^T x \\ \text{subject to } Ax \succeq b \\ x \succeq 0 \end{aligned}$$

This is the original primal problem

The dictionary process is as follows

$$\frac{\zeta = x_1 + x_2}{w_1 = 3 - 2x_1 - x_2}$$

$$w_2 = 5 - x_1 - 3x_2$$

$$w_3 = 4 - 2x_1 - 3x_2$$

where $x_1 = 0, x_2 = 0, w_1 = 3, w_2 = 5, w_3 = 4$

$$\zeta = \frac{3}{2} + \frac{1}{2}x_2 - \frac{1}{2}w_1$$

$$x_1 = \frac{3}{2} - \frac{1}{2}x_2 - \frac{1}{2}w_1$$

$$w_2 = \frac{7}{2} - \frac{5}{2}x_2 + \frac{1}{2}w_1$$

$$w_3 = 1 - 2x_2 + w_1$$

where $x_1 = \frac{3}{2}, x_2 = 0, w_1 = 0, w_2 = \frac{7}{2}, w_3 = 1$

$$\zeta = \frac{7}{4} - \frac{1}{4}w_1 - \frac{1}{4}w_3$$

$$x_1 = \frac{3}{2} - \frac{1}{2}x_2 - \frac{1}{2}w_1$$

$$w_2 = \frac{7}{2} - \frac{5}{2}x_2 + \frac{1}{2}w_1$$

$$x_2 = \frac{1}{2} + \frac{1}{2}w_1 - \frac{1}{2}w_3$$

where $x_1 = \frac{3}{2}, x_2 = \frac{1}{2}, w_1 = 0, w_2 = \frac{7}{2}, w_3 = 0$ This shows that the optimal point is $(x_1 = \frac{5}{4}, x_2 = \frac{1}{2})$ and the optimum value is $\frac{7}{4}$.

The Dual problem's dictionary process.

minimize
$$3y_1 + 5y_2 + 4y_3$$

subject to $2y_1 + y_2 + 2y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1, y_2, y_3 \ge 0$

Dictionary process

$$\frac{\zeta = -v_0}{v_1 = -1 + 2y_1 + y_2 + 2y_3 + v_0}$$

$$v_2 = -1 + y_1 + 3y_2 + 3y_3 + v_0$$

where $v_0 = 0, v_1 = -1, v_2 = -1, y_1 = 0, y_2 = 0, y_3 = 0$

$$\underline{\zeta = -1 + 2y_1 + y_2 + 2y_3 - v_1}$$

$$v_0 = 1 - 2y_1 - y_2 - 2y_3 + v_1$$

$$v_2 = 2 - 5y_1 - 3y_3 + 3v_1 - 2v_0$$

where $v_0 = 1, v_1 = 0, v_2 = 2, y_1 = 0, y_2 = 0, y_3 = 0$

$$\frac{\zeta = -v_0}{y_2 = 1 - 2y_1 - 2y_3 + v_1 - v_0}$$

$$v_2 = 2 - 5y_1 - 3y_3 + 3v_1 - 2v_0$$

where $v_0 = 0, v_1 = 0, v_2 = 2, y_1 = 0, y_2 = 1, y_3 = 0$

$$\zeta = -2 + y_1 - 3y_2 - 2v_1$$
$$y_3 = \frac{1}{2} - y_1 - \frac{1}{2}y_2 + \frac{1}{2}v_1$$
$$v_2 = \frac{1}{2} - 2y_1 + \frac{3}{2}y_2 + \frac{3}{2}v_1$$

where $v_0 = 0, v_1 = 0, v_2 = \frac{1}{2}, y_1 = 0, y_2 = 0, y_3 = \frac{1}{2}$

$$\frac{\zeta = -\frac{7}{4} - \frac{3}{2}y_2 - \frac{5}{4}v_1 - \frac{1}{2}v_2}{y_3 = \frac{1}{4} - y_1 - \frac{7}{2}y_2 - \frac{1}{4}v_1 + \frac{1}{2}v_2}$$

$$y_1 = \frac{1}{4} + \frac{3}{2}y_2 + \frac{3}{4}v_1 - \frac{1}{2}v_2$$

where $v_0 = 0, v_1 = 0, v_2 = 0, y_1 = \frac{1}{4}, y_2 = 0, y_3 = \frac{1}{4}$ This shows that the optimal point is $(y_1 = \frac{1}{4}, y_2 = 0, y_3 = \frac{1}{4})$ and the optimum value is $-\frac{7}{4}$. Changing this to the primal form we get the same optimum value.