Train a Neural Network in TensorFlow

import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense

model = Sequential([Dense (units=25, activation='sigmoid'), Dense (units=15, activation='sigmoid'), Dense(units=1, activation='sigmoid'),

from tensorflow.keras.losses import BinaryCrossentropy

model.compile(loss=BinaryCrossentropy()) (2)

Given set of (x,y) examples

model.fit(X,Y,epochs=100) (3) How to build and train this in code? gradient descent youchs number of steps

may want to run.

in gradient descent

Model Training Steps Tensor Flow

specify how to compute output given input x and parameters w,b (define model)

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = ?$$

specify loss and cost

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}), \underline{y}) \quad 1 \text{ example}$$

$$J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)})$$

Train on data to minimize $J(\vec{w}, b)$

logistic regression

$$z = np.dot(w,x) + b$$

$$f_x = 1/(1+np.exp(-z))$$

logistic loss

$$w = w - alpha * dj_dw$$

 $b = b - alpha * dj_db$

neural network

binary cross entropy

```
model.compile(
loss=BinaryCrossentropy())
model.fit(X,y,epochs=100)
```

Let's look in greater detail in

1. Create the model

Andrew Ng

2. Loss and cost functions

 $J(\mathbf{W}, \mathbf{B}) = \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}), \mathbf{y}^{(i)})$ handwritten digit binary classification classification problem _ $L(f(\vec{x}), y) = -y\log(f(\vec{x})) - (1 - y)\log(1 - f(\vec{x}))$ fw.B(X) $W^{[1]}, W^{[2]}, W^{[3]} \rightarrow \vec{h}^{[1]}, \vec{h}^{[2]}, \vec{h}^{[3]}$ Compare prediction vs. target > logisticloss
also Known as binary cross entropy from tensorflow.keras.losses import model.compile(loss= BinaryCrossentropy()) BinaryCrossentropy K Keras regression (predicting numbers mean squared error and not categories) from tensorflow.keras.losses import MeanSquaredError model.compile(loss= MeanSquaredError())

on all the parameters in

© Deep Learning AL Stanford ONLINE

1 4) 9:34 / 13:27

Andrew Ng

3. Gradient descent

repeat {

$$w_j^{[l]} = w_j^{[l]} - \alpha \frac{\partial}{\partial w_j} J(\overrightarrow{w}, b)$$

$$b_j^{[l]} = b_j^{[l]} - \alpha \frac{\partial}{\partial b_i} J(\overrightarrow{\mathbf{w}}, b)$$

} Compute derivatives for gradient descent using "backpropagation"

model.fit(X,y,epochs=100)

In fact, what you see later is that TensorFlow can use

@DeepLearning.AI

Stanford ONLINE

Andrew Ng

Examples of Activation Functions

"No activation function"

Linear activation function

$$\alpha = g(z) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

 $a_2^{[1]} = g(\overrightarrow{\mathbf{w}}_2^{[1]} \cdot \overrightarrow{\mathbf{x}} + b_2^{[1]})$

Siamoid

0 < g(z) < 1

a rich variety of powerful neural networks.

Later: Softmax activation

ReLU Rectified Linear Unit

Andrew Na

Choosing Activation Summary

6:39 / 8:24

$$\vec{a}^{[4]} = \vec{\mathbf{w}}_1^{[4]} \cdot \vec{a}^{[3]} + b_1^{[4]}$$

all linear (including output) Gequivalent to linear regression

$$\vec{a}^{[4]} = \frac{1}{1 + e^{-(\vec{w}_1^{[4]} \cdot \vec{a}^{[3]} + b_1^{[4]})}}$$

output activation is sigmoid (hidden layers still linear) Gequivalent to logistic regression

Don't use linear activations in hidden layers of the neural network.

© Deeplearning Al Stanford ONLINE **1 4 3** 4:33 / 5:30

Andrew Na

Logistic regression

(2 possible output values)
$$z = \vec{w} \cdot \vec{x} + b$$

$$a_1 = g(z) = \frac{1}{1 + e^{-z}} = P(y = 1 | \vec{x})$$

$$0 a_2 = |-a_1 = P(y = 0 | \vec{x})$$

Softmax regression (N possible outputs) y=1,2,3,...,N

$$z_{j} = \overrightarrow{w}_{j} \cdot \overrightarrow{x} + b_{j} \quad j = 1, ..., N$$

$$parameters \quad w_{1}, w_{2}, ..., w_{N}$$

$$a_{j} = \frac{e^{z_{j}}}{\sum_{k=1}^{N} e^{z_{k}}} = P(y = j | \overrightarrow{x})$$

note:
$$a_1 + a_2 + ... + a_N \le 1$$
thing as logistic regression.

Softmax regression (4 possible outputs) 4=1,2.3,4

$$= P(y = 1|\vec{x})$$
 0.30

$$z_3 = \vec{w}_3 \cdot \vec{x} + b_3$$
 $a_3 = \frac{e^{z_3}}{e^{z_1} + e^{z_2} + e^{z_3} + e^{z_4}}$
= $P(y = 3|\vec{x})$ 0.15

© DeepLearning.AI Stanford ONLINE

Andrew Ng

Cost

Logistic regression

$$z = \vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + b$$

$$a_1 = g(z) = \frac{1}{1 + e^{-z}} = P(y = 1|\vec{x})$$

$$a_2 = 1 - a_1 = P(y = 0 | \vec{x})$$

$$a_{2} = 1 - a_{1}$$

$$= P(y = 0 | \vec{x})$$

$$loss = -y \log a_{1} - (1 - y) \log(1 - a_{1})$$

$$if y = 0$$

$$J(\vec{w}, b) = \text{average loss}$$

Softmax regression

$$a_{1} = \frac{e^{z_{1}}}{e^{z_{1}} + e^{z_{2}} + \dots + e^{z_{N}}} = P(y = 1|\vec{x})$$

$$\vdots$$

$$a_{N} = \frac{e^{z_{N}}}{e^{z_{1}} + e^{z_{2}} + \dots + e^{z_{N}}} = P(y = N|\vec{x})$$

$$a_N = \frac{e^{z_N}}{e^{z_1} + e^{z_2} + \dots + e^{z_N}} = P(y = N | \vec{x})$$

Crossentropy loss
$$loss(a_1, ..., a_N, y) = \begin{cases} -\log a_1 & \text{if } y = 1 \\ -\log a_2 & \text{if } y = 2 \end{cases}$$

$$\vdots$$

$$-\log a_N & \text{if } y = N$$

For example, if y was equal to 2

© Deeplearning Al Stanford ONLINE

Neural Network with Softmax output

10 units

loclasses

$$z_1^{[3]} = \vec{w}_1^{[3]} \cdot \vec{a}^{[2]} + b_1^{[3]}$$
 $a_1^{[3]} = \frac{e^{z_1^{[3]}}}{e^{z_1^{[3]}} + \dots + e^{z_{10}^{[3]}}}$

$$a_1^{[3]} = \frac{e^{z_1}}{e^{z_1^{[3]}} + \dots + e^{z_n}}$$

$$= P(y = 1|\vec{x})$$

$$z_{10}^{[3]} = \vec{w}_{10}^{[3]} \cdot \vec{a}^{[2]} + b_{10}^{[3]}$$

$$z_{10}^{[3]} = \vec{w}_{10}^{[3]} \cdot \vec{a}^{[2]} + b_{10}^{[3]} \qquad a_{10}^{[3]} = \frac{e^{z_{10}^{[3]}}}{e^{z_{1}^{[3]}} + \dots + e^{z_{10}^{[3]}}}$$
$$= P(y = 10|\vec{x})$$

$$a_1^{[3]} = g\left(z_1^{[3]}\right) \quad a_2^{[3]} = g\left(z_2^{[3]}\right)$$

$$\vec{\mathbf{a}}^{[3]} = \left(a_1^{[3]}, \dots a_{10}^{[3]}\right) = g\left(\mathbf{z}_1^{[3]}, \dots, \mathbf{z}_{10}^{[3]}\right)$$

specify the model

MNIST with softmax

 $f_{\overrightarrow{\mathbf{w}},\mathbf{b}}(\overrightarrow{\mathbf{x}}) = ?$

import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense model = Sequential([Dense (units=25, activation='relu'), Dense(units=15, activation='relu'), Dense (units=10, activation='softmax') 1)

(2) specify loss and cost $L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}),\mathbf{y})$

from tensorflow.keras.losses import SparseCategoricalCrossentropy

model.fit(X,Y,epochs=100)

Train on data to minimize $I(\vec{w}, b)$ model.compile(loss= SparseCategoricalCrossentropy())

you can train a neural network on a multi class classification problem.

Andrew No

Numerical Roundoff Errors

More numerically accurate implementation of logistic loss:

model = Sequential([

Logistic regression:

(a) = $g(z) = \frac{1}{1 + e^{-z}}$

Dense(units=25, activation='relu'), Dense (units=15, activation='relu'), linear' Dense(units=1, activation='sigmoid')

Original loss

 $loss = -y \log(a) - (1-y)\log(1-a) \xrightarrow{\text{model.compile(loss=BinaryCrossEntropy())}}$ $model.compile(loss=BinaryCrossEntropy(from_logits=True))$

More accurate loss (in code)

 $loss = -y \log \left(\frac{1}{1 + e^{-z}}\right) - (1 - y) \log \left(1 - \frac{1}{1 + e^{-z}}\right)$

worse when it comes to softmax.

More numerically accurate implementation of softmax

Softmax regression

$$(a_1, \dots, a_{10}) = g(z_1, \dots, z_{10})$$

$$\text{Dense (units=25, activation='relu'),}$$

$$\text{Dense (units=15, activation='relu'),}$$

$$\text{Dense (units=10, activation='softmax')}$$

$$\vdots$$

$$-\log a_{10} \text{ if } y = 10$$

model.compile(loss=SparseCategoricalCrossEntropy())

More Accurate

$$L(\vec{a}, y) = \begin{cases} -\log \frac{e^{(z_1)}}{e^{z_1} + \dots + e^{z_{10}}} & \text{if } y = 1\\ -\log \frac{e^{(z_{10})}}{e^{z_1} + \dots + e^{z_{10}}} & \text{if } y = 10 \end{cases}$$

model = Sequential([

and this whole computation of

@DeepLearning.AI

predict

Stanford ONLINE

Andrew Ng

MNIST (more numerically accurate)

from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense model = Sequential([Dense (units=25, activation='relu'), Dense (units=15, activation='relu'), Dense(units=10, activation='linear')])

loss from tensorflow.keras.losses import

SparseCategoricalCrossentropy

model.compile(...,loss=SparseCategoricalCrossentropy(from logits=True))

fit model.fit(X,Y,epochs=100)

logits = model(X) \sim not $\alpha_1 ... \alpha_{10}$ $f_x = tf.nn.softmate It is instead of putting <math>z_1$ through z_1 10.

Deeplearning AL Stanford ONLINE 8:27 / 9:11

logistic regression (more numerically accurate)

```
model = Sequential([
model
            Dense (units=25, activation='sigmoid'),
            Dense(units=15, activation='sigmoid'),
            Dense(units=1, activation='linear')
          from tensorflow.keras.losses import
            BinaryCrossentropy
          model.compile(..., BinaryCrossentropy(from_logits=True))
 loss
          model.fit(X,Y,epochs=100)
          logit = model(X)
 fit
          f_x = tf.nn.sigmoid(logit)
 predict
```

to actually get the probability.

8:47 / 9:11

© Deeplearning Al Stanford ONLINE

Andrew Na

Multi-label Classification

Is there a car? Is there a bus? Is there a pedestrian Yes

The second one to detect buses and

Multi-label Classification

Alternatively, train one neural network with three outputs

$$\vec{x} \xrightarrow{\vec{a}^{[1]}} \vec{a}^{[2]} \xrightarrow{\vec{a}^{[3]}} \vec{a}^{[3]} = \begin{bmatrix} a_1^{[3]} \\ a_2^{[3]} \\ a_3^{[3]} \end{bmatrix} \begin{array}{c} car \\ bus \\ pedestrian \\ activations \end{array}$$

and no pedestrians in the image.

O Deeplearning Al Stanford ONLINE

Gradient Descent

a smaller learning rate Alpha.

© Deeplearning Al Stanford ONLINE

Andrew Na

MNIST Adam

model

```
model = Sequential([
        tf.keras.layers.Dense(units=25, activation='sigmoid'),
        tf.keras.layers.Dense(units=15, activation='sigmoid'),
        tf.keras.layers.Dense(units=10, activation='linear')
])
```

compile

```
d=10-3=0,001
```

```
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),
  loss=tf.keras.losses.SparseCategoricalCrossentropy(from logits=True))
```

fit

model.fit(X,Y,epochs=100)

see what gives you the fastest learning performance.

@DeepLearning.AI

Stanford ONLINE

Andrew Ng

Convolutional Layer

Each neuron only looks at part of the previous layer's outputs.

Why?

- Faster computation
- Need less training data (less prone to overfitting)

of how to get convolutional layers to work and popularized their use.

ODeeplearning Al Stanford ONLINE

Andrew Na

Even More Derivative Examples

$$w = 2 - \begin{cases} J(w) = w^2 = 4 & \frac{\partial}{\partial w} J(w) = 2w = 4 \\ J(w) = w^3 = 8 \end{cases} \qquad \frac{\partial}{\partial w} J(w) = 3\omega^2 = 2 \qquad w \uparrow \varepsilon \qquad J(w) = 8.012006 \\ J(w) \uparrow 12 \times \varepsilon \end{cases}$$

$$J(w) = w = 2 \qquad \frac{\partial}{\partial w} J(w) = 1 \qquad w \uparrow \varepsilon \qquad J(w) = 2.001 \\ J(w) \uparrow 12 \times \varepsilon \qquad J(w) = 2.001 \\ J(w) \uparrow 1 \times \varepsilon \qquad -0.25 \times 0.001 \end{cases}$$

$$J(w) = \frac{1}{w} = \frac{1}{2} = 0.5 \qquad \frac{\partial}{\partial w} J(w) = -\frac{1}{\omega^2} = \frac{1}{2} \qquad w \uparrow \varepsilon \qquad 0.5 - 0.00025 \\ J(w) \uparrow 0.49975 \qquad J(w) \uparrow 0.49975$$

$$J(w) \uparrow 0.49975 \qquad J(w) \uparrow 0.49975$$

Computing the Derivatives

© DeepLearning.AI Stanford ONLINE

© Deeplearning Al Stanford ONLINE

13:26 / 19:19

Andrew Ng

Backprop is an efficient way to compute derivatives

Compute $\frac{\partial J}{\partial a}$ once and use it to compute both $\frac{\partial J}{\partial w}$ and $\frac{\partial J}{\partial b}$.

If N nodes and P parameters, compute derivatives

in roughly N + P steps rather than $N \times P$ steps.

N	P	N+P	NXP
10,000	100,000	1.1×10 ⁵	109

Deenlearning Al Stanford ONLINE

Neural Network Example $x = 1 \ y = 5$ $w^{[1]} = 2, b^{[1]} = 0$ $w^{[2]} = 3, b^{[2]} = 1$ $g(z) = \max(0, z)$ $g(z) = \max(0, z)$ $g(z) = \max(0, z)$

$$x = 1$$
 $y = 5$

$$w^{[1]} = 2, b^{[1]} = 0$$

$$\overrightarrow{x} \bigcirc \overrightarrow{a}^{[1]} \bigcirc \overrightarrow{a}^{[2]}$$

$$w^{[2]} = 3, b^{[2]} = 1$$

$$g(z) = \max(0, z)$$

$$a^{[1]} = g(w^{[1]} \times b^{[1]}) = w^{[1]} \times b^{[1]} = 2 \times 1 + 0 = 2$$

$$a^{[2]} = g(w^{[2]} a^{[1]} + b^{[2]}) = w^{[2]} a^{[1]} + b^{[2]} = 3 \times 2 + 1 = 7$$

$$J(w,b) = \frac{1}{2}(a^{[2]} - y)^2 = \frac{1}{2}(7-5)^2 = 2$$

Neural Network Example x = 1 y = 5Network Example ReLU activation

$$x = 1 \ y = 5$$

$$w^{[1]} = 2, b^{[1]} = 0$$

$$\xrightarrow{\vec{X}} \bigcirc \overrightarrow{a^{[1]}} \bigcirc \overrightarrow{a^{[2]}}$$

$$w^{[2]} = 3, b^{[2]} = 1$$

$$g(z) = \max(0, z)$$

 $a^{[2]} = g(w^{[2]} a^{[1]} + b^{[2]}) = w^{[2]} a^{[1]} + b^{[2]} = 3 \times 2 + 1 = 77.003$ $J(w, b) = \frac{1}{2} (a^{[2]} - y)^2 = \frac{17.003}{2} (7 - 5)^2 = 2 (7 - 60.005)$ $\frac{\partial J}{\partial x} \frac{\partial J}{\partial x} \frac{\partial$

N nodes 12-12-12

P parameters $w_4, b_2, w_2, b_2 \cdots$

NXP

efficient way (backprop)

N+P