CHAPITRE 8

L'ÉTUDE DES FONCTIONS

8.1 L'asymptote verticale et l'asymptote horizontale :

8.1.1 L'asymptote verticale :

Proprieté 8.1 Si: $\lim_{x \to a} f(x) = \pm \infty$ ou $\lim_{\substack{x \to a \\ x > a}} f(x) = \pm \infty$ ou $\lim_{\substack{x \to a \\ x < a}} f(x) = \pm \infty$ alors on dit que la droite d'équation : x = a est une asymptote verticale à la courbe de $f(C_f)$.

L'interprétation géométrique :

Remarque 8.1

- Dons toute la suite on note la courbe de la fonction f par : (C_f)
- La courbe de la fonction f admet une asymptote verticale d'équation : x = a ça veut dire que la courbe de f sa proche de la droite : x = a quand x tend vers a. (Voir la courbe).

Exemple 8.1

Calculons les limites : $\lim_{\substack{x \to 1 \\ x > 1}} \frac{1}{x - 1}$ et $\lim_{\substack{x \to 1 \\ x > 1}} \frac{1}{x - 1}$ et déterminons l'interprétation géométrique des résultats. on a : $\lim_{\substack{x \to 1 \\ x > 1}} x - 1 = 0^+$ donc : $\lim_{\substack{x \to 1 \\ x > 1}} \frac{1}{x - 1} = +\infty$ et $\lim_{\substack{x \to 1 \\ x < 1}} x - 1 = 0^-$ donc : $\lim_{\substack{x \to 1 \\ x < 1}} \frac{1}{x - 1} = -\infty$ l'interprétation géométrique :

on a:
$$\lim_{\substack{x \to 1 \\ x > 1}} x - 1 = 0^+$$
 donc: $\lim_{\substack{x \to 1 \\ x > 1}} \frac{1}{x - 1} = +\infty$ et $\lim_{\substack{x \to 1 \\ x < 1}} x - 1 = 0^-$ donc: $\lim_{\substack{x \to 1 \\ x < 1}} \frac{1}{x - 1} = -\infty$

l'interprétation géométrique :

La droite d'équation x = 1 est une asymptote verticale à la courbe (C_f) ; avec : $f(x) = \frac{1}{x-1}$

8.1.2 L'asymptote horizontale :

Proprieté 8.2

- si $\lim_{x \to a} f(x) = b$: alors la droite d'équation : y = b est une asymptote horizontale à la courbe de $f(C_f)$ au voisinage de : $+\infty$
- si : $\lim_{x \to a} f(x) = b$: alors la droite d'équation : y = b est une asymptote horizontale à la courbe de $f(C_f)$ au voisinage de : $-\infty$

L'interprétation géométrique :

Exemple 8.2

Exemple 8.2 Calculons les limites : $\lim_{x \to +\infty} \frac{2x}{x+2}$ et $\lim_{x \to -\infty} \frac{2x}{x+2}$ et déterminons l'interprétation géométrique des résultats : on a : $\lim_{x \to +\infty} \frac{2x}{x+2} = \lim_{x \to +\infty} \frac{2x}{x} = 2$ et $\lim_{x \to -\infty} \frac{2x}{x+2} = \lim_{x \to -\infty} \frac{2x}{x} = 2$ on pose : $f(x) = \frac{2x}{x+2}$ on a : $\lim_{x \to +\infty} f(x) = 2$ et $\lim_{x \to -\infty} f(x) = 2$ alors la courbe de f admet une asymptote horizontale d'équation : y = 2 au voisinage de $+\infty$ et au voisinage de

on a:
$$\lim_{x \to +\infty} \frac{2x}{x+2} = \lim_{x \to +\infty} \frac{2x}{x} = 2 \quad \text{et} \quad \lim_{x \to -\infty} \frac{2x}{x+2} = \lim_{x \to -\infty} \frac{2x}{x} = 2$$

−∞

Exercice 54

Soit f la fonction définie par : $f(x) = \frac{3x+1}{x-2}$

- 1) Déterminer D_f l'ensemble de définition de la fonction f.
- 2) Calculer les limites : $\lim_{\substack{x\to 2\\x>2}} f(x)$ et $\lim_{\substack{x\to 2\\x<2}} f(x)$ et $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$ et donner l'interprétation géométrique des résultats trouver :

Solution:

- 1) $D_f = \mathbb{R} \{2\}$ (la fonction f est définie si : $x 2 \neq 0$) c'est à dire : $x \neq 2$, donc : $D_f = \mathbb{R} \{2\}$.
- 2) On a: $\lim_{\substack{x \to 2 \\ x > 2}} x 2 = 0^+$ et $\lim_{\substack{x \to 2 \\ x > 2}} 3x + 1 = 7$ donc: $\lim_{\substack{x \to 2 \\ x > 2}} \frac{3x + 1}{x 2} = '' \left(\frac{7}{0^+}\right)'' = +\infty$ et on a: $\lim_{\substack{x \to 2 \\ x < 2}} x 2 = 0^-$ et $\lim_{\substack{x \to 2 \\ x < 2}} 3x + 1 = 7$ donc $\lim_{\substack{x \to 2 \\ x < 2}} \frac{3x + 1}{x 2} = '' \left(\frac{7}{0^-}\right)'' = -\infty$

L'interprétation géométrique : la courbe de la fonction f admet une asymptote verticale d'équation : x = 2.

on a aussi : $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x+1}{x-2} = \frac{3}{1} = 3$ et $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{3x+1}{x-2} = \frac{3}{1} = 3$ L'interprétation géométrique : La courbe de la fonction f admet une asymptote horizontale : y = 3 au

voisinage de $+\infty$ et au voisinage de $-\infty$.

Étude de la fonction de seconde degré : $x \mapsto f : ax^2 + bx + c$ 8.2

Exemple: examen régional 2019

Soit f la fonction définie par : $f(x) = x^2 - 6x + 5$

- 1) Montrer que : $D_f =]-\infty; +\infty[$.
- 2) Calculer les limites : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
- 3) Soit f' la fonction dérivée de la fonction f: montrer que : pour tout x de \mathbb{R} : f'(x) = 2(x-3) et donner le tableau des variations de la fonction f.
- 4) Montrer que la fonction f admet une valeur minimale à déterminera
- a) Montrer que pour tout x de \mathbb{R} : f(x) = (x-1)(x-5), en déduire les points d'intersections de (C_f) avec l'axe des abscisses.
 - b) Déterminer le point d'intersection de (C_f) avec l'axe des ordonnées.
- 6) Déterminer l'équation de (Δ) la tangente à la courbe (C_f) en le point d'abscisse 0.
- 7) Construire la courbe (C_f) et la droite (Δ) dans le même repère $(O; \vec{i}; \vec{j})$

Solution:

- 1) On a f est une fonction polynôme alors : $D_f = \mathbb{R} =]-\infty; +\infty[$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 - 6x + 5 = \lim_{x \to +\infty} x^2 = +\infty \quad \text{et} \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 - 6x + 5 = \lim_{x \to -\infty} x^2 = +\infty$$

3) La fonction f est dérivable sur \mathbb{R} car c'est une fonction polynôme et pour tout x de \mathbb{R} :

$$f'(x) = (x^2 - 6x + 5)' = (x^2)' - (6x)' + (5)' = 2x - 6 = 2(x - 3)$$

Les variations de f dépend au signe de f'(x) on a :

$$\lim_{x o +\infty}f(x)=\lim_{x o +\infty}x^2=+\infty$$
 $\lim_{x o -\infty}f(x)=\lim_{x o -\infty}x^2=+\infty$ حل المعادلة $f'(x)=0$ هو $f'(x)=3^2-6 imes3+5=-4$

- 4) D'après le tableau des variations de la fonction f on a :
 - f(3) = -4 est la valeur minimale de la fonction f sur \mathbb{R} c'est à dire pour tout x de \mathbb{R} : $f(x) \ge -4$
- a) On a: $(x-1)(x-5) = x^2 x 5x + 5 = x^2 6x + 5 = f(x)$ (le développement suffisant) Pour déterminer les points d'intersection de (C_f) avec l'axe des abscisses il faut résoudre l'équation : f(x) = 0 : c'est à dire : (x-1)(x-5) = 0 c-a-d : x-1 = 0 ou x-5 = 0 c-a-d : x = 1 ou x = 5donc les points d'intersections de (C_f) avec l'axe des abscisses est : A(1;0) et B(5;0)

- b) Pour déterminer le point d'intersection de (C_f) avec l'axe des ordonnés : il faut calculer : f(0), on a : $f(0) = 0^2 6 \times 0 + 5 = 5$ donc le point d'intersection de (C_f) avec l'axe des ordonnés est : C(0;5)
- 6) L'équation de la tangente (Δ) à la courbe (C_f) en le point d'abscisse 0 est : (Δ) : y = f'(0)(x-0) + f(0) on a : f(0) = 5 et f'(0) = 2(0-3) = -6 (car : f'(x) = 2(x-3)) et donc : (Δ) : y = -6x + 5
- 7) La courbe (C_f) et la tangente (Δ) :

Pour construire la courbe de f il faut représenter les points particuliers :

من نقطتين يمر مستقيم

- les points d'intersections avec l'axe des abscisses et l'axe des ordonnées, puis autres points
- Pour construire la droite (Δ) : y = -6x + 5, il suffit de construire deux points.

Exercice: examen régional 2017

Le plan est menu d'un repère orthonormé $(O; \vec{i}; \vec{j})$

Soit f la fonction définie par : $f(x) = x^2 - 4x + 3$

- 1) Déterminer D_f l'ensemble de définition de la fonction f.
- 2) Calculer les limites : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
- 3) Soit f' la fonction dérivée de la fonction f: montrer que : pour tout x de \mathbb{R} : f'(x) = 2(x-3)
- 4) Étudier le signe de f'(x) et donner le tableau des variations de la fonction f.
- 5) Montrer que pour tout x de \mathbb{R} : f(x) = (x-1)(x-5),
- 6) Déterminer les points d'intersections de (C_f) avec l'axe des abscisses, et avec l'axe des ordonnées.
- 7) Déterminer l'équation de (Δ) la tangente à la courbe (C_f) en le point d'abscisse 3.
- 8) Construire la courbe (C_f) et la droite (Δ) dans le même repère $(O; \vec{i}; \vec{j})$

Exercice: examen régional 2016

Soit f la fonction définie sur \mathbb{R} par : $f(x) = -x^2 + 4x$ et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$

- 1) Calculer: f(2) et f(4)
- 2) Calculer les limites : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$

- 3) Soit f' la fonction dérivée de la fonction f: montrer que : pour tout x de \mathbb{R} : f'(x) = -2(x-2)
- 4) Étudier le signe de f'(x) et donner le tableau des variations de la fonction f.
- 5) Montrer que pour tout x de \mathbb{R} : f(x) = -x(x-4),
- 6) Déterminer les points d'intersections de (C_f) avec l'axe des abscisses, et avec l'axe des ordonnées.
- 7) Déterminer l'équation de (Δ) la tangente à la courbe (C_f) en le point d'abscisse 0.
- 8) Construire la courbe (C_f) et la droite (Δ) dans le même repère $(O; \vec{i}; \vec{j})$

8.3 Étude de la fonction : $x \mapsto \frac{ax+b}{cx+d}$

1) Exemple:

Soit f la fonction définie par : $f(x) = \frac{2x+1}{x-1}$ et (C_f) sa courbe représentative.

- 1) Montrer que : $D_f =]-\infty, 1[\cup]1, +\infty[$.
- 2) Calculer les limites : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$ et $\lim_{\substack{x \to 1 \\ x < 1}} f(x)$ et $\lim_{\substack{x \to 1 \\ x > 1}} f(x)$. En déduire les équations des asymptote à (C_f) .
- 3) Montrer que : $f'(x) = \frac{-3}{(x-1)^2}$ pour tout $x \neq 1$, puis donner le tableau des variations de la fonction f.
- 4) Déterminer l'équation de la tangente (\triangle) à (C_f) en le point d'abscisse 0.
- 5) Construire la courbe (C_f) et les asymptotes et la tangente (\triangle) dans le même repère $(O; \overrightarrow{i}; \overrightarrow{j})$.

Solution:

1) La fonction f est définie si : $x - 1 \neq 0$ c'est à dire : $x \neq 1$ donc : $D_f =]-\infty, 1[\cup]1, +\infty[$.

2) On a:
$$\lim_{\substack{x \to 1 \\ x > 1}} x - 1 = 0^+ \text{ et } \lim_{\substack{x \to 1 \\ x > 1}} 2x + 1 = 3 > 0 \text{ donc}: \lim_{\substack{x \to 1 \\ x > 1}} \frac{2x + 1}{x - 1} = +\infty$$
et on a:
$$\lim_{\substack{x \to 1 \\ x < 1}} x - 1 = 0^- \text{ avec } \lim_{\substack{x \to 1 \\ x < 1}} 2x + 1 = 3 > 0 \text{ donc}: \lim_{\substack{x \to 1 \\ x < 1}} \frac{2x + 1}{x - 1} = -\infty$$
L'interprétation géométrique: La droite d'équation $x = 1$ est une asymptote à (C_f) la courbe de f

L'interprétation géométrique : La droite d'équation x=1 est une asymptote à (C_f) la courbe de f et on a : $\lim_{x \to +\infty} \frac{2x+1}{x-1} = \lim_{x \to +\infty} \frac{2x}{x} = 2$ et $\lim_{x \to -\infty} \frac{2x+1}{x-2} = \lim_{x \to -\infty} \frac{2x}{x} = 2$ L'interprétation géométrique : la courbe de f admet une asymptote horizontale d'équation y=2 au

L'interprétation géométrique : la courbe de f admet une asymptote horizontale d'équation y=2 au voisinage de $+\infty$ et de $-\infty$

3) Montrons que : $f'(x) = \frac{-3}{(x-1)^2}$. On a la fonction f est dérivable sur D_f et :

$$f'(x) = \left(\frac{2x+1}{x-1}\right)' = \frac{(2x+1)'(x-1) - (2x+1)(x-1)'}{(x-1)^2}$$
$$= \frac{2(x-1) - (2x+1)}{(x-1)^2}$$
$$= \frac{2x-2-2x-1}{(x-1)^2}$$
$$= \frac{-3}{(x-1)^2}$$

On a pour tout $x \neq 1$: $(x-1)^2 > 0$ et -3 < 0 donc : f'(x) < 0 alors la fonction f est décroissante sur chaque intervalle de D_f .

 \rightarrow La fonction f n'est pas définie en 1 : il faut noté dans le tableau des variations.

Le tableau des variations de f est :

لا تنسى أيضا أن:

$$\quad \quad \lim_{x\to +\infty} f(x)=2$$

$$\lim_{x o -\infty} f(x) = 2$$

$$\lim_{\substack{x \to 1 \\ x > 1}} f(x) = +\infty$$

$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = -\infty$$

هذا الرمز يعنى أن الدالة f غير معرفة في تلك النقطة

4) L'équation de la tangente à la courbe de f en le point d'abscisse 0 est : (Δ) : y = f'(0)(x-0) + f(0) on a : $f(x) = \frac{2x+1}{x-1}$ donc $f(0) = \frac{1}{-1} = -1$ et $f'(x) = \frac{-3}{(x-1)^2}$ donc $f'(0) = \frac{-3}{(-1)^2} = \frac{-3}{1} = -3$ et donc : (Δ) : y = -3x - 1

5) La courbe de f et les asymptotes et la tangente

2) Exercice : examen régional 2018

Le plan est muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$

Soit f la fonction définie par : $f(x) = \frac{2x}{x-1}$ et (C_f) sa courbe représentative

1) Montrer que : $D_f =]-\infty; +\infty[$

2) Calculer les limites : Calculer les limites : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$ et $\lim_{\substack{x \to 1 \\ x < 1}} f(x)$ et $\lim_{\substack{x \to 1 \\ x > 1}} f(x)$. En déduire les équations des asymptote à (C_f) .

3) Montrer que : $f'(x) = \frac{-2}{(x-1)^2}$ pour tout $x \neq 1$, puis donner le tableau des variations de la fonction f.

- 4) Déterminer l'équation de la tangente (\triangle) à (C_f) en le point d'abscisse 0.
- 5) Construire la courbe (C_f) et les asymptotes et la tangente (\triangle) dans le même repère $(O; \overrightarrow{i}; \overrightarrow{j})$.

Étude de la fonction polynôme degré 3 : $x \mapsto f : ax^3 + bx^2 + cx + d$ 8.4

Exemple: Régional 2008

Soit f la fonction définie par : $f(x) = x^3 + 3x^2$ et (C_f) sa courbe représentative

- 1) Déterminer D_f l'ensemble de définition de la fonction f.
- 2) Calculer les limites : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
- 3) Calculer: f(-3) et f(-2) et f(0).
- a) Montrer que : f'(x) = 3x(x+2) pour tout x de \mathbb{R} .
 - b) Donner le tableau des variations de la fonction f
- 5) Construire la courbe (C_f)
- 6) Résoudre graphiquement l'inéquation : $f(x) \ge 0$.

Solution:

- 1) f est une fonction polynôme alors elle est définie sur \mathbb{R} , c'est à dire : $D_f = \mathbb{R} =]-\infty; +\infty[$
- 2) $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$ et $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$ 3) $f(-3) = (-3)^3 + 3 \times (-3)^2 = -27 + 27 = 0$ et $f(-2) = (-2)^3 + 3 \times (-2)^2 = -8 + 12 = 4$ et $f(0) = (0)^3 + 3 \times (0)^2 = 0$
- 4) a) f est dérivable sur \mathbb{R} car c'est une fonction polynôme et pour tout x de \mathbb{R} :

$$f'(x) = (x^3 + 3x^2)' = (x^3)' + 3(x^2)'$$
$$= 3x^2 3 \times 2x$$
$$= 3x(x+2)$$

b) Les variations de f dépend au signe de : f'(x) = 3x(x+2)

$$\lim_{x o -\infty}f(x)=\lim_{x o -\infty}x^3=-\infty$$
 $\lim_{x o +\infty}f(x)=\lim_{x o +\infty}x^3=+\infty$ $f(-2)=4$ g $f(0)=0$

\boldsymbol{x}	$-\infty$ -	-2		0	$+\infty$
3x إشارة			_	0	+
x+2 إشارة		0	+		+
f'(x) إشارة	+	ø	_	0	+
تغيرات	4	$\overline{4}$			$+\infty$
تغيرات الدالة					/
f					
	$-\infty$			0	

5) La construction de la courbe de f :

6) Les solutions graphique de l'inéquation $f(x) \ge 0$: est les abscisses des points où (C_f) est au dessus de l'axe des abscisses donc: $S = [-3; +\infty[$.

2) Exercice:

Soit f la fonction définie par : $f(x) = x^3 + x^2 - x - 1$ et (C_f) sa courbe représentative

- 1) Déterminer D_f l'ensemble de définition de la fonction f.
- 2) Calculer les limites : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
- 3) Montrer que : $f'(x) = 3x^2 + 2x 1$) pour tout x de \mathbb{R} .
- 4) Étudier le signe de f'(x) et donner le tableau des variations de la fonction f
- 5) Montrer que : $f(x) = (x+1)^2(x+1)$ pour tout x de \mathbb{R}
- 6) Déterminer les points d'intersection de (C_f) avec les axes du repère.
- 7) Construire la courbe (C_f)

Solution:

- 1) f est une fonction polynôme donc : $D_f = \mathbb{R} =]-\infty; +\infty[$
- 2) $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$ et $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$
- 3) f est dérivable sur \mathbb{R} car c'est une fonction polynôme et pour tout x de \mathbb{R} :

$$f'(x) = (x^3 + x^2 - x - 1)' = (x^3)' + (x^2)' - x' - 1'$$
$$= 3x^2 + 2x - 1$$

4) Les variations de f dépend au signe de : $f'(x) = 3x^2 + 2x - 1$; pour déterminer le signe de f'(x) il faut résoudre l'équation : $3x^2 + 2x - 1 = 0$; on a : $\Delta = 2^2 - 4 \times 3 \times -1 = 4 + 12 = 16 > 0$ donc les solutions de l'équation sont :

$$x_1 = \frac{-2 - \sqrt{16}}{2 \times 3} = \frac{-2 - 4}{6} = -1$$
 et $x_2 = \frac{-2 + \sqrt{16}}{2 \times 3} = \frac{-2 + 4}{6} = \frac{1}{3}$

• Le tableau de signe de f'(x):

 \bullet le tableau des variations de f:

5) on a pour tout x de \mathbb{R} :

$$(x+1)^{2}(x-1) = (x^{2}+2x+1)(x-1)$$
$$= x^{3}-x^{2}+2x^{2}-2x+x-1$$
$$= x^{3}+x^{2}-x-1=f(x)$$

6) Pour déterminer les points d'intersection de (C_f) avec l'axe des abscisse il faut résoudre l'équation : f(x) = 0, on a :

$$f(x) = 0 \Leftrightarrow (x+1)^{2}(x-1) = 0$$

$$\Leftrightarrow (x+1)^{2} = 0 \quad ou \quad x-1 = 0$$

$$\Leftrightarrow x+1 = 0 \quad ou \quad x-1 = 0$$

$$\Leftrightarrow x = -1 \quad ou \quad x = 1$$

et donc les points d'intersections de (C_f) avec l'axe des abscisses sont : A(-1;0) et B(1;0)

• Pour déterminer le point d'intersection de (C_f) avec l'axe des ordonnés il faut calculer : f(0), on a : f(0) = -1 donc le point d'intersection est : C(0; -1)

7) la courbe de f:

