Физика с элементами компьютерного моделирования. БИТ 2019-2020. Второй семестр.

Лектор Н.В. Теплова, преподаватели практики О.Н. Сергаева, Т.А. Эйхвальд

Модуль №6. Проект№2. Срок сдачи проекта – консультация перед экзаменом.

Максимальный балл за проект – 7 баллов.

Проект можно защищать в группах по 3 человека.

Тема проекта: Квантово-механическая модель атома.

Теория.

В квантовой физике вероятность обнаружения электрона в заданном объеме около ядра атома в стационарном состоянии не зависит от времени и определяется как:

$$W(x,y,z)=\int\limits_V \left|\Psi\right|^2 dV$$
 , где $\left|\Psi\right|^2 =\Psi\cdot\Psi^*$, $\Psi(x,y,z)$ - комплексная волновая функция электрона в

атоме, удовлетворяющая дифференциальному уравнению Шрёдингера второго порядка в частных производных для частицы массой m, движущейся в потенциальном поле U=U(x,y,z) (в стационарной задаче поле не изменяется во времени):

$$-\frac{\hbar^2}{2m}\Delta\Psi + U(x, y, z)\Psi = E\Psi$$

где
$$\Delta = \frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y} + \frac{\partial^2}{\partial z}$$
 - оператор Лапласа, $\hbar = \frac{h}{2\pi} = 1,05 \cdot 10^{-34} \, \text{Дж} \cdot c$ - постоянная Планка, $E - 1000 \, \text{Полная}$ энергия частицы.

Решение уравнения Шрёдингера — волновая функция $\Psi(x,y,z)$ - удовлетворяет условиям регулярности:

- 1. Условие конечности волновой функции. Волновая функция не может принимать бесконечных значений, таких, что интеграл нормировки $W(x,y,z)=\int\limits_{-\infty}^{+\infty}\left|\Psi\right|^2dV=1$ станет расходящимся. В частности, в задачах с нормированной волновой функцией квадрат модуля волновой функции должен стремиться к нулю на бесконечности.
- 2. Условие однозначности волновой функции. Волновая функция должна быть однозначной функцией координат и времени, так как плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно. В задачах с использованием цилиндрической или сферической системы координат условие однозначности приводит к периодичности волновых функций по угловым переменным.
- 3. Условие непрерывности волновой функции. В любой момент времени волновая функция должна быть непрерывной функцией пространственных координат. Кроме того, непрерывными должны быть также частные производные волновой функции

Уравнение Шрёдингера решается точно только для водородоподобного атома с одним электроном, заряд ядра которого равен q=+Ze, где Z — порядковый номер элемента (Z=1 для атома водорода), e = $1,6\cdot10^{-19}$ K π - элементарный заряд.

Между ядром и электроном действует сила Кулона: $\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{qe}{r^2} \frac{\vec{r}}{r}$, где r – расстояние между

ядром и электроном. Считая, что ядро находится в начале системы координат r=0 (x=y=z=0), потенциальная энергия взаимодействия (или поле, в котором находится электрон), описывается

как:
$$U(r)=rac{1}{4\piarepsilon_0}rac{qe}{r}$$
. Уравнение Шрёдингера преобразуется: $-rac{\hbar^2}{2m}\Delta\Psi-rac{1}{4\piarepsilon_0}rac{Ze^2}{r}\Psi=E\Psi$.

Стационарное уравнение Шредингера принято решать в сферической системе координат, связанной с декартовой системой соотношениями: $x=r\sin\theta\cos\phi$, $y=r\sin\theta\sin\phi$, $z=r\cos\theta$

(см. рис.1.). Переписанное в сферической системе координат уравнение Шредингера принимает вид:

$$\frac{\partial^2 \Psi}{\partial r^2} + \frac{2}{r} \frac{\partial \Psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \theta^2} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Psi}{\partial \phi^2} + \frac{\cos \theta}{r^2 \sin \theta} \frac{\partial \Psi}{\partial \theta} + \frac{2m}{\hbar^2} \left(E + \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r} \right) \Psi = 0$$

Перепишем уравнение в виде

$$\frac{\partial^{2} \Psi}{\partial r^{2}} + \frac{2}{r} \frac{\partial \Psi}{\partial r} + \frac{2m}{\hbar^{2}} \left(E + \frac{1}{4\pi\epsilon_{0}} \frac{Ze^{2}}{r} \right) \Psi = -\frac{1}{r^{2}} \left[\frac{\partial^{2} \Psi}{\partial \theta^{2}} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2} \Psi}{\partial \phi^{2}} + \frac{\cos \theta}{\sin \theta} \frac{\partial \Psi}{\partial \theta} \right]$$

Уравнение такого вида решается методом разделения переменных с помощью представления волновой функции в виде произведения двух функций с разделенными переменными: $\Psi(r,\theta,\phi)=R(r)\cdot Y(\theta,\phi)$, где R(r) - радиальная часть, а $Y(\theta,\phi)$ - угловая часть. Подставляя произведение в уравнение Шредингера получим:

$$\frac{r^{2}}{R(r)} \left[\frac{\partial^{2} R(r)}{\partial r^{2}} + \frac{2}{r} \frac{\partial R(r)}{\partial r} + \frac{2m}{\hbar^{2}} \left(E + \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{r} \right) \right] =$$

$$= -\frac{1}{Y(\theta, \phi)} \left[\frac{\partial^{2} Y(\theta, \phi)}{\partial \theta^{2}} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2} Y(\theta, \phi)}{\partial \phi^{2}} + \frac{\cos \theta}{\sin \theta} \frac{\partial Y(\theta, \phi)}{\partial \theta} \right]$$

В курсе математической физики [А.Н. Тихонов, А.А. Самарский «Уравнения математической физики»] показано, что правая и левая часть уравнения приравниваются константе, т.к. зависят от разных переменных. Слева — от r, справа от θ и ϕ . Также показано, что для уравнения угловой части эта константа равна I(I+1), I=0,1,2,3... и I—орбитальное квантовое число:

$$-\left[\frac{\partial^{2}Y(\theta,\phi)}{\partial\theta^{2}} + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}Y(\theta,\phi)}{\partial\phi^{2}} + \frac{\cos\theta}{\sin\theta} \frac{\partial Y(\theta,\phi)}{\partial\theta}\right] = l(l+1)Y(\theta,\phi)$$

Решения этого уравнения также широко известны в математике и называются сферическими функциями. Нормированные решения с точностью до знака записываются в виде:

$$\mathbf{Y}_{l,m}\left(\theta,\varphi\right)=A_{lm}P_{l}^{m}\left(\cos\ \theta\right)e^{im\ \varphi}$$
 .
 Здесь
$$A_{l,m}=\sqrt{\frac{(l-\left|m\right|)!\left(2l+1\right)}{(l+\left|m\right|)!\left(4\pi\right)}}$$

нормировочный коэффициент. l - орбитальное квантовое число; $m=0,\pm 1,\pm 2,\pm 3 \dots \pm l$ - магнитное квантовое число.

$$P_e^m(\cos\theta) = \left(1 - \cos^2\theta\right)^{\frac{|m|}{2}} \frac{\partial^m}{(\partial\cos\theta)^{|m|}} P_e(\cos\theta)$$

$$P_e(\cos\theta) = \frac{1}{2ll!} \frac{\partial l}{(\partial\cos\theta)l} (\cos 2\theta - 1) l$$

- полиномы Лежандра. $i = \sqrt{-1}$ - мнимая единица.

Уровни в атоме:

Главное квантовое число — целое число, для водорода и водородоподобных атомов определяет возможные значения энергии.

Орбитальное (побочное или азимутальное) квантовое число — определяет форму распределения амплитуды волновой функции электрона в атоме, то есть форму электронного облака. Если I=0, то орбиталь имеет форму сферы (s-орбиталь), если I=1, то гантели (p-орбиталь) итд.

Магни́тное ква́нтовое число́ — характеризует ориентацию в пространстве орбитального момента импульса электрона или пространственное расположение атомной орбитали. Оно принимает целые значения от -/ до +/, где / — орбитальное квантовое число, то есть имеет ровно столько значений, сколько орбиталей существует на каждом подуровне.

Рис. 2. Энергетические уровни атома водорода.

Левая часть уравнения Шрёдингера в сферических координатах приравнивается той же константе I(I+1), тогда после простых преобразований получаем:

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{d}{dr}(r^2\frac{dR}{dr}) - (\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2} + \frac{ze^2}{4\pi\varepsilon_0 r})R = ER.$$

После перехода к безразмерным переменным по формулам:

$$\rho = \frac{r}{a}$$
, $\varepsilon = -\frac{E}{E_0}$, где a=0,529 A , $E_0 = 27,07 эВ$

уравнение (229) пишется в виде

$$\frac{d^{2}R}{d\rho^{2}} + \frac{2}{\rho} \frac{dR}{d\rho} + (-2\varepsilon - \frac{l(l+1)}{\rho^{2}} + \frac{2z}{\rho})R = 0.$$
 (7.23)

Решения этого уравнения также хорошо известны в математике. Они также определяются двумя квантовыми числами $n=1,2,3,\ldots$ – главное квантовое число и $l=0,1,2,\ldots$, n-1 – орбитальное квантовое число.

$$R_{nl} = A_{nl} \rho^{l} e^{-\beta \rho} L_{n+l}^{2l+1}(2 \rho \beta), \qquad (7.24)$$

где
$$A_{nl} = \frac{1}{(2l+1)!} \sqrt{\frac{(n+l)!}{2n(n-l-1)!}} \left(\frac{2z}{n}\right)^{\frac{3}{2}}$$
 (7.25)

нормировочный коэффициент.

$$\beta = \sqrt{2\varepsilon} \text{ if } n - \frac{z}{\beta} = 0 \tag{7.26}$$

 $L_{n+1}^{2l+1}(2\rho\beta)$ — присоединенный полином Лаггера.

Нормированные полиномы Лаггера определяются выражениями

$$L_{\gamma}^{\alpha}(\xi) = \frac{d\alpha}{d\xi\alpha} L_{\gamma}(\xi) , \qquad (7.27)$$

$$L_{\gamma}(\xi) = e^{\xi} \frac{d^{\gamma}}{d\xi^{\gamma}} (e^{-\xi} \xi^{\gamma}). \tag{7.28}$$

(В нашем случае $\alpha=2l+1, \gamma=n+l, \xi=2\beta\rho$).

Значение энергии электрона в водородоподобном атомне на уровне n:

$$E_n = -\frac{1}{(4\pi\epsilon_0)^2} \frac{me^4z^2}{2n^2\hbar^2} \mathcal{A} = -13.5 \frac{z^2}{n^2} \Im B.$$

Излучаемые частоты определяются как

$$\omega_{ik} = \frac{E_i - E_k}{\hbar} .$$

Минимальная энергия получается при n=1. $E_1=-13,5$ эВ. (z=1).

Состояние атома с минимальной энергией называется основным состоянием. Таким образом, радиальная функция основного состояния атома водорода имеет вид:

$$R_{10}(r) = 2\sqrt{\frac{1}{a^3}}e^{-\frac{r}{a}}$$
 (7.31)

Тогда полная волновая функция основного состояния будет

$$\psi_{100}(r, \theta, \varphi) = R_{10}(r)Y_{00}(\theta, \gamma) = \sqrt{\frac{1}{\pi a^3}}e^{-\frac{r}{a}}.$$
 (7.32)

Плотность вероятности

$$|\psi_{100}|^2 = \frac{1}{\pi a^3} e^{-\frac{2r}{a}}.$$
 (7.33)

Пусть $dv = 4\pi r^2 dr$ — объем шарового слоя радиуса r и толщины dr. Вероятность обнаружения электрона внутри этого слоя будет

$$dw = |\psi_{100}|^2 dv = |\psi_{100}|^2 4\pi r^2 dr.$$

Величина

$$p(r) = \frac{dw}{dr} = |\psi_{100}|^2 4\pi r^2 \tag{7.34}$$

есть вероятность обнаружения электрона внутри шарового слоя радиуса ${\bf r}$ и единичной толщины. Причем максимум вероятности приходится на расстояние ${\bf r}$ =a=0,529 ${\bf r}^0$, что можно найти из условия экстремума ${\bf p}({\bf r})$. (Обратим внимание, что a=0,529 ${\bf r}^0$ есть первый боровский радиус).

Задание на моделирование для атома водорода

- 1) Для главных квантовых чисел n=1,2,3,4 и всех соответствующих им орбитальных чисел:
- рассчитать радиальные функции $R_{nl}(
 ho)$.
- построить графики функций $R_{nl}(\rho)$, $\left|R_{nl}(\rho)\right|^2$ и вероятности обнаружения электрона на расстоянии ρ от ядра $D(\rho) = \left|R_{nl}(\rho)\right|^2 \cdot 4\pi \rho^2$.
- Уровень энергии E_n и все возможные частоты излучения и поглощения.
- 2) Для соответствующих орбитальных чисел:
- рассчитать все формы орбиталей s, p, d, f (I=0,1,2,3) для всех возможных магнитных чисел $Y_{lm}(\theta,\phi)$. Построить форму орбитали в координатах (θ,ϕ) .
- 3) Вычислить волновые функции состояний $\Psi_{nlm}(r,\theta,\phi)=R_{nl}(r)\cdot Y_{lm}(\theta,\phi)$ для указанных выше квантовых чисел n,m,l и построить их графики в полярных координатах r,θ,ϕ , величину функции обозначая цветовой шкалой.

Содержание отчета:

- 1. Теоретическая часть. Мотивация. Что покажут расчеты?
- 2. Расчетная часть. Текст кода и результаты расчетов. Графики, систематизированные по квантовым числам.
- 3. **В работе обязательно сделать выводы.** Какой смысл несет магнитное квантовое число? Как различаются графики $\Psi_{nlm}(r,\theta,\phi)=R_{nl}(r)\cdot Y_{lm}(\theta,\phi)$ для разных магнитных квантовых чисел? На каком расстоянии от ядра вероятность обнаружения электрона максимальна? Можно ли это расстояние оценить в рамках модели Бора? Почему $\left|\Psi_{nlm}(r,\theta,\phi)\right|^2=\left|R_{nl}(r)\right|^2$? Что нового о строении атома Вы узнали из расчетов? Можно ли применить эти расчеты для много электронных атомов? Какие уточнения необходимо сделать при этом?

Литература:

- Р.Ф. Маликов. «Практикум по компьютерному моделированию» стр. 199
- А.Н. Тихонов, А.А. Самарский «Уравнения математической физики»
- И.В. Савельев, Курс общей физики, т.3, стр. 330 Атом водорода
- Д.В. Сивухин, Курс общей физики, т.5, Атомная физика