# Parameterized Algorithms for Cycle Hitting Problems

M. Tech. Thesis Presentation

Akshay Kumar

Department of Computer Science & Engineering IIT Kanpur

July 22, 2015



### Table of Contents

- Introduction
- Peedback Vertex Set
- 3 Even Cycle Transversal

### **Definition**

### Decision problem

- Problem size, n
- Find a k-sized solution

Running time = 
$$n^{\mathcal{O}(1)}f(k)$$

### Cycle hitting problems

Delete vertices to kill all cycles with 'certain' properties.

Delete minimum number of vertices such that:

FEEDBACK VERTEX SET All cycles are killed (Forest)

ODD CYCLE TRANSVERSAL All odd cycles are killed (Bipartite)

EVEN CYCLE TRANSVERSAL All even cycles are killed

#### **Decision Problem**

Given a graph G, find a set of k vertices whose removal kills all the cycles/odd cycles/even cycles in the graph?

### Results

| Problem | f(k)                     | f(k)                  | Remarks       |
|---------|--------------------------|-----------------------|---------------|
|         | Best known               | Thesis                |               |
| FVS     | $\mathcal{O}^*(3.619^k)$ | $\mathcal{O}^*(5^k)$  | Deterministic |
| FV3     | $\mathcal{O}^*(3^k)$     | _                     | Randomized    |
| OCT     | $\mathcal{O}^*(2.31^k)$  | _                     | Randomized    |
| ECT     | $O^*(50^k)$              | $\mathcal{O}^*(17^k)$ | Deterministic |

- Simplifies the analysis of FVS algorithm presented by Chen et. al.
- Improves the running time of ECT.



### Idea

#### Iterative Compressive-FVS(IC-FVS)

#### Compress the size of fvs by one

- Solves Feedback Vertex Set .
  - Base case: trivial *fvs* of graph induced over k + 1 vertices.
  - Induction step: Contract fvs and add a vertex.



• 
$$|S| = k + 1$$

• 
$$|S'| = k$$

• Both N and N' are forests.

• Idea: Consider all partitions of S into (N, Y) and build N'.



### ldea Disjoint-FVS



Remove Y from S
Define 
$$H := G - Y$$



- H[N] and H-N are forests.
- N' is k |Y| sized fvs of H.
- Disjoint-FVS:  $\mathcal{O}^*(c^k) \implies \text{IC-FVS}: \mathcal{O}^*((c+1)^k)$ .
  - Summing over all subsets Y of S:  $\sum_{Y \subseteq S} c^{k-|Y|} = (c+1)^k$ .



#### FEEDBACK VERTEX SET Multicut on Trees

#### Multicut on Trees

Given: Tree T and  $\{(s_i, t_i)\}_{i=1}^n$ . Disconnect them by deleting minimum set of vertices.

- v<sub>i</sub> : Least Common Ancestor of  $(s_i, t_i)$
- $v_i$ : Maximum depth  $v_i$  over all  $v_i$ 's

#### Claim

There exists an optimal solution containing  $v_i$ .



### Feedback Vertex Set

#### **DISJOINT-FVS**

H[N] and H-N are forests. Find a k-sized fvs  $N' \subseteq V(H-N)$  of H.



#### Types of cycles:



T, T': Components of H - N

 $N_1, N_2$ : Components of N

#### Ensure:

- No cycle in  $T \cup N$ .
- Edges from T incident in same component of N.

### FEEDBACK VERTEX SET

Branching terminal pair and branching path



P : Path joining s to t "Branching path"

**Aim:** Disconnect all branching terminal pairs.



## FEEDBACK VERTEX SET Example



## Feedback Vertex Set Time Complexity

#### Time complexity:

 $\mu = k + \text{ number of connected components of } N$ 

- Initially,  $\mu < 2k + 1$ .
- $\bullet$   $\mu$  decreases by one in every step.
- Branching factor = 2.

Hence, time complexity =  $\mathcal{O}^*(2^{2k}) = \mathcal{O}^*(4^k)$ .

Time complexity of FVS =  $\mathcal{O}^*(5^k)$ .

### EVEN CYCLE TRANSVERSAL

- Builds on Feedback Vertex Set solution.
- Branching path in FVS  $\rightarrow$  Branching path in ECT.

#### Branching path

A path P in C (a component of H-N) is a branching path if  $P \cup N$  has an even cycle in which P is a subpath or P has adjacencies to multiple connected components of N.



P : Path joining s to t "Branching path"

**Aim:** Disconnect all branching terminal pairs.

### No branching path ensures:

- No even cycle in  $C \cup N$ .
- Edges from *C* incident in same component of *N*.

## EVEN CYCLE TRANSVERSAL

Remaining even cycles

Even cycles still remaining.

- Cycle in  $C_1 \cup N$  and  $C_2 \cup N$ : Odd
- Cycle in  $C_1 \cup C_2 \cup N$ : Even



Fact: At most two edges from each connected component.

#### Theorem

There exists an optimal solution which contains only one vertex (which has a neighbor in N) from each component C of H-N.

Claim: Only look at even cycles containing two components.

- Kills all the even cycles.
- Two way branching algorithm.



### EVEN CYCLE TRANSVERSAL

Only look at even cycles containing two components of H-N

Ensures all even cycles are killed.





- Cycle containing  $\geq$  3  $C_i$ 's  $\Longrightarrow$  Cycle containing 2  $C_i$ 's.
- Cycle containing 2  $C_i$ 's  $\Longrightarrow$  Even cycle containing 2  $C_i$ 's.

## EVEN CYCLE TRANSVERSAL Odd Cactus

Cactus graph: Two cycles have at most one vertex in common.

#### Theorem

If S is an ect of G, then G - S is an odd cactus.



## Branching path in the tree Upper branching path - I



- $P = p_1 p_2 \dots p_t$
- Decompose P
  - $\bullet \ P \equiv p_1 P_1 p_{i_0} P_2 p_t$

## Branching path in the tree Upper branching path - II



- $P = p_1 p_2 \dots p_t$
- Decompose P
  - $\bullet \ P \equiv p_1 P_1 p_{i_0} P_2 p_t$

## Branching path in the tree Lower branching path



- $P = p_1 p_2 \dots p_t$
- Decompose P
  - $P \equiv p_1 P_1 p_{i_1} P_0 p_{i_2} P_2 p_t$

## Partial order on branching paths

Two branching paths:  $P_a$  and  $P_b$ 

- Top most node of  $P_a$  lies strictly in the subtree rooted at top most node of  $P_b \implies P_b \triangleleft P_a$ .
- Both have the same top most node:







 $P_b \lhd P_a$ 

• **Idea:** The further lower down a branching path is, the "higher" it is.

## Maximal lower branching path Properties





## Maximal lower branching path Properties





## Maximal lower branching path Properties





#### **Theorem**

There exists an optimal solution  $S_0$  containing only  $p_{i_1}$ ,  $p_{i_2}$  or  $x_0$  from P.

- Move  $p_{i_1}/p_{i_2}/x_0$  to  $S_0$ .
- Move P to N.



## Maximal upper bracking path Properties



#### Theorem

There exists an optimal solution  $S_0$  containing only  $p_{i_0}$  from P.

- Move  $p_{i_0}$  to  $S_0$ .
- Move P to N.

## EVEN CYCLE TRANSVERSAL Time Complexity

 $\mu = k + \text{ number of connected component of } N$ 

- Initially,  $\mu \leq 2k + 1$ .
- ullet  $\mu$  decreases by one in every step.
- Overall branching factor = 4.
  - First phase: 4
  - Second phase: 2

Hence, time complexity =  $\mathcal{O}^*(4^{2k}) = \mathcal{O}^*(16^k)$ .

Time complexity of ECT =  $\mathcal{O}^*(17^k)$ .



Thank You!

Questions?

