Метод разность разностей (Difference-in-Differences)

Дарья Сальникова

29 сентября 2025

Планы на сегодня:

- Идеальные условия для каузального вывода: рандомизированный эксперимент
- А что если невозможно создать такие условия?
- Разность разностей: посчитаем «руками»
- А что было до воздействия? Допущение параллельности трендов
- Cоответствующая DiD регрессионная модель

Кормить или не кормить? 😊

Наблюдение: в школах с бесплатными обедами ученики демонстрируют более низкую успеваемость по сравнению со школами, в которых не реализуется программа бесплатного школьного питания.

Переменные-confounders

Присутствие «третьих» переменных, влияющих и на введение бесплатных обедов, и на успеваемость, не позволяет интерпретировать результаты в терминах причинно-следственной связи. Получаем смещенные оценки в результате пропущенных значимых переменных.

Что дает рандомизированный эксперимент?

Значения X определяются случайным образом, то есть, переменные C больше не влияют на X (treatment). Между группами воздействия и контрольной нет значимых различий кроме непосредственно самого факта воздействия. Следовательно, можем интерпретировать результаты в терминах причинно-следственной связи.

А что если нет возможности для проведения рандомизированного эксперимента?

• В качестве альтернативы можно обратиться к квазиэкспериментам. Задача заключается в том, чтобы обеспечить максимальное приближение к условиям эксперимента.

А что если нет возможности для проведения рандомизированного эксперимента?

- В качестве альтернативы можно обратиться к квазиэкспериментам. Задача заключается в том, чтобы обеспечить максимальное приближение к условиям эксперимента.
- Так и в методе DiD предварительно отобранных экспериментальной и контрольной групп в классическом понимании у нас нет, мы используем те группы, которые уже естественным образом сформировались.

А что если нет возможности для проведения рандомизированного эксперимента?

- В качестве альтернативы можно обратиться к квазиэкспериментам. Задача заключается в том, чтобы обеспечить максимальное приближение к условиям эксперимента.
- Так и в методе DiD предварительно отобранных экспериментальной и контрольной групп в классическом понимании у нас нет, мы используем те группы, которые уже естественным образом сформировались.
- Адаптация к примеру с бесплатными обедами: здесь целесообразнее ориентироваться на участие в системе UFM (Universal Free Meals): бесплатное питание в школах вне зависимости от дохода семей школьников.

Что сравнивать?

Что если сравнить среднюю успеваемость в экспериментальной группе в период до и после введения программы бесплатных обедов?

Что сравнивать?

- Что если сравнить среднюю успеваемость в экспериментальной группе в период до и после введения программы бесплатных обедов?
- А что если сравнить среднюю успеваемость в экспериментальной группе и контрольной группе в период после введения программы бесплатных обедов?

Что сравнивать?

- Что если сравнить среднюю успеваемость в экспериментальной группе в период до и после введения программы бесплатных обедов?
- А что если сравнить среднюю успеваемость в экспериментальной группе и контрольной группе в период после введения программы бесплатных обедов?

Группа/Период	До	После
Группа воздействия	4.1	4.3
Контрольная группа	3.9	3.3

В данной таблице учитываем средний балл школьника

- как в разные периоды (до и после введения программы)
- так и в разных школах (с введенной программой бесплатных обедов и без соответствующей программы)

Разности: сравниваем изменения во времени

Группа/Период	До	После	Разность
Группа воздействия	4.1	4.3	4.3 - 4.1 = 0.2
Контрольная группа	3.9	3.3	3.3 - 3.9 = -0.6

Посчитаем разности (изменения внутри группы):

• Различие в успеваемости в разные периоды (до и после воздействия) в группе воздействия:

$$\Delta_1 = \bar{y}_{(T=1,G=1)} - \bar{y}_{(T=0,G=1)}$$

2 Различие в успеваемости в разные периоды (до и после воздействия) в контрольной группе:

$$\Delta_2 = \bar{y}_{(T=1,G=0)} - \bar{y}_{(T=0,G=0)}$$

Разность разностей:

$$DiD = \Delta_1 - \Delta_2 = 0.2 - (-0.6) = 0.8$$

Разности: различия между группами

Группа/Период	До	После
Группа воздействия	4.1	4.3
Контрольная группа	3.9	3.3
Разность	4.1 - 3.9 = 0.2	4.3 - 3.3 = 1

 Различие в успеваемости между школами с бесплатными обедами и без в период после введения программы:

$$\Delta_1 = \bar{y}_{(T=1,G=1)} - \bar{y}_{(T=1,G=0)}$$

Различие в успеваемости между школами с бесплатными обедами и без в период до введения программы:

$$\Delta_2 = \bar{y}_{(T=0,G=1)} - \bar{y}_{(T=0,G=0)}$$

Разность разностей:

$$DiD = \Delta_1 - \Delta_2 = 1 - 0.2 = 0.8$$

Иллюстрация

Параллельность трендов

Почему вообще такое сравнение возможно?

Параллельность трендов

Почему вообще такое сравнение возможно?

Мы исходим из допущения о параллельности трендов. Динамика средней успеваемости схожа в контрольной группе и экспериментальной группе в период до введения программы бесплатных обедов.

Counterfactual — предполагаем, что если бы воздействия не было, то динамика экспериментальной группы продолжала бы повторять динамику контрольной группы и в период после воздействия.

Иллюстрация параллельности трендов

Источник: Pischke, J.-S. (2007). The impact of length of school year on student performance and earnings: Evidence from the German short school years. Economic Journal 117(523), 1216 – 1242.

Модель, оценивающая DiD

В случае соблюдения допущения о параллельности трендов, можем использовать следующую спецификацию:

$$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1 D_i + \hat{\beta}_2 T_t + \hat{\beta}_3 D_i T_t$$

Пояснения:

- y_{it} успеваемость;
- D_i дамми-переменная для группы (1 экспериментальная группа, 0 контрольная группа);
- T_t дамми-переменная для периода (1 период после воздействия, 0 период до воздействия);
- \bullet D_iT_t соответствующая переменная взаимодействия

Если допущение нарушается, можно предположить, что есть некоторые «третьи» факторы (confounders). И тогда пробовать расширять модель с помощью контрольных переменных.

$$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1 D_i + \hat{\beta}_2 T_t + \hat{\beta}_3 D_i T_t$$

Группа	Период	Модель
Контрольная группа	До	

$$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1 D_i + \hat{\beta}_2 T_t + \hat{\beta}_3 D_i T_t$$

Группа	Период	Модель
Контрольная группа	До	$\hat{y}_{it} = \hat{\beta}_0$
Группа воздействия	До	

$$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1 D_i + \hat{\beta}_2 T_t + \hat{\beta}_3 D_i T_t$$

Группа	Период	Модель
Контрольная группа	До	\hat{y}_{it} = \hat{eta}_0
Группа воздействия	До	$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1$
Контрольная группа	После	

$$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1 D_i + \hat{\beta}_2 T_t + \hat{\beta}_3 D_i T_t$$

Группа	Период	Модель
Контрольная группа	До	$\hat{y}_{it} = \hat{\beta}_0$
Группа воздействия	До	$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1$
Контрольная группа	После	$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_2$
Группа воздействия	После	

$$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1 D_i + \hat{\beta}_2 T_t + \hat{\beta}_3 D_i T_t$$

Группа	Период	Модель
Контрольная группа	До	$\hat{y}_{it} = \hat{\beta}_0$
Группа воздействия	До	$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1$
Контрольная группа	После	$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_2$
Группа воздействия	После	$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$

$$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1 D_i + \hat{\beta}_2 T_t + \hat{\beta}_3 D_i T_t$$

Группа	Период	Модель
Контрольная группа	До	$\hat{y}_{it} = \hat{\beta}_0$
Группа воздействия	До	$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1$
Контрольная группа	После	$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_2$
Группа воздействия	После	$\hat{y}_{it} = \hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$

Группа/Период	До	После
Группа воздействия	$\hat{\beta}_0 + \hat{\beta}_1 = 4.1$	$\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3 = 4.3$
Контрольная группа	$\hat{\beta}_0 = 3.9$	$\hat{\beta}_0 + \hat{\beta}_2 = 3.3$

• $\hat{\beta}_0$ — средняя успеваемость в контрольной группе в период до введения программы бесплатных обедов;

- $\hat{\beta}_0$ средняя успеваемость в контрольной группе в период до введения программы бесплатных обедов;
- $\hat{\beta}_1$ насколько отличается средняя успеваемость в экспериментальной группе по сравнению с контрольной группой в период до введения программы бесплатных обедов;

- $\hat{\beta}_0$ средняя успеваемость в контрольной группе в период до введения программы бесплатных обедов;
- $\hat{\beta}_1$ насколько отличается средняя успеваемость в экспериментальной группе по сравнению с контрольной группой в период до введения программы бесплатных обедов;
- \hat{eta}_2 как изменяется средняя успеваемость в контрольной группе в период после введения бесплатных обедов (речь только о периоде, сама программа для данной группы школы не вводилась) по сравнению с периодом, предшествующим введению бесплатных обедов;

- $\hat{\beta}_0$ средняя успеваемость в контрольной группе в период до введения программы бесплатных обедов;
- $\hat{\beta}_1$ насколько отличается средняя успеваемость в экспериментальной группе по сравнению с контрольной группой в период до введения программы бесплатных обедов;
- \hat{eta}_2 как изменяется средняя успеваемость в контрольной группе в период после введения бесплатных обедов (речь только о периоде, сама программа для данной группы школы не вводилась) по сравнению с периодом, предшествующим введению бесплатных обедов;
- \hat{eta}_3 непосредственно эффект воздействия программы бесплатных обедов на успеваемость.

Practice makes perfect

	Pre-period	Post-period	Difference
Treatment = 1	4.03	3.59	
Treatment = 0	1.99	1.97	
DiD			
			(0.16)

• Восстановим значения в третьем столбце.

Источник таблицы: Draca et al. (2011) Panic on the Streets of London: Police, Crime, and the July 2005 Terror Attacks. American Economic Review, 101 (5), 2157 — 2181.

¹Crime rate (outcome) is defined as crimes per 1,000 population. Standard errors are in parentheses.

Practice makes perfect

	Pre-period	Post-period	Difference
Treatment = 1	4.03	3.59	•••
Treatment = 0	1.99	1.97	
DiD			
			(0.16)

- Восстановим значения в третьем столбце.
- Проверим значимость оценки коэффициента, соответствующего DiD. N = 384. В модель не были включены контрольные переменные.

Источник таблицы: Draca et al. (2011) Panic on the Streets of London: Police, Crime, and the July 2005 Terror Attacks. American Economic Review, 101 (5), 2157 — 2181.

 $[\]overline{^1\text{Crime}}$ rate (outcome) is defined as crimes per 1,000 population. Standard errors are in parentheses.

Practice makes perfect: проверяем себя

	Pre-period	Post-period	Difference
Treatment = 1	4.03	3.59	-0.44
Treatment = 0	1.99	1.97	-0.02
DiD			-0.42**
			(0.16)

$$H_0: \beta_{DID} = 0; H_1: \beta_{DID} \neq 0$$

$$t = \frac{-0.42}{0.16} \approx -2.625; t \sim t(df = 384 - 3 - 1 = 380)$$

В модели 4 параметра:

3 коэффициента при предикторах + 1 константа.

 $p-value \approx 0.009$

