(c) 
$$B^2 - 4AC > 0$$

$$(a) B^2 - 4AC = 0$$

(b) 
$$B^2 - 4AC < 0$$

(d) 
$$A = B = C = 0$$

## **EXERCISE 14.9**

Classify the following partial differential equations:

1. 
$$9 \frac{\partial^2 u}{\partial x^2} - 6 \frac{\partial^2 u}{\partial x \partial t} + \frac{\partial^2 u}{\partial t^2} = 0$$

2. 
$$3\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + 4\frac{\partial^2 z}{\partial y^2} = 0$$

3. 
$$2\frac{\partial^2 z}{\partial x^2} - 6\frac{\partial^2 z}{\partial x \partial y} + 3\frac{\partial^2 z}{\partial y^2} = 0$$

4. 
$$t \frac{\partial^2 u}{\partial t^2} + 3 \frac{\partial^2 u}{\partial x \partial t} + x \frac{\partial^2 u}{\partial x^2} + 17 \frac{\partial u}{\partial x} = 0$$

Ans. Hyperbolic if 
$$xt < \frac{9}{4}$$
, parabolic if  $xt = \frac{9}{4}$ , elliptic if  $xt > \frac{9}{4}$ 

$$5. \quad \frac{\partial^2 z}{\partial x^2} = \frac{\partial x}{\partial y}$$

$$6. \quad \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$$

Ans. Hyperbolic

7. 
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

## **OBJECTIVE TYPE QUESTIONS**

Choose the correct alternative:

1. The complementary function of 
$$(D^2 - 6DD' + 9D'^2) z = 0$$
 is

(i) 
$$f_1(y+3x) + x f_2(y+3x)$$

(ii) 
$$f_1(y-3x) + x f_2(y-3x)$$

(iii) 
$$f_1(y+3x) + x f_2(y-3x)$$

(iv) 
$$f_1(y+x) + x f_2(y+x)$$

2. The complementary function of 
$$(D^2 - DD' - 6D'^2)z = 0$$
 is

(i) 
$$f_1(y-3x) + f_2(y-2x)$$

$$(ii) f_1(y+3x) + f_2(y-2x)$$

(iii) 
$$f_1(y+3x)-f_2(y-2x)$$

$$(iv) f_1 (y-3x) - f_2(y-2x)$$

$$(iv) f_1(y-3x) - f_2(y-2x)$$

3. The C.F. of 
$$r = c^2 t$$
 is

(i) 
$$f_1(y-cx) + f_2(y-cx)$$

(ii) 
$$f_1(y-cx) + f_2(y+2x)$$

(iii) 
$$f_1(y + cx) + f_2(y - cx)$$

(iv) 
$$f_1(y-cx)-f_2(y-cx)$$

REDMI NOTE 5 PRO MI DUAL CAMERA

$$(i) \ \frac{e^{ax-by}}{F(a,b)}$$

$$(ii) \ \frac{e^{ax+by}}{F(a,b)}$$

$$(iii) \ \frac{F(a,b)}{e^{ax+by}}$$

$$(iv) \ \frac{e^{ax+by}}{F(a^2,b^2)}$$

12. The rule for finding the P.I. of  $(D^2 + DD' + D'^2)$   $z = \sin(ax + by)$  is

(i) 
$$\frac{1}{(a^2, ab, b^2)} \sin(ax + by)$$

(ii) 
$$\frac{1}{(-a^2, -ab, b^2)} \sin(ax + by)$$

(iii) 
$$\frac{1}{(a,ab,b)}\sin(ax+by)$$

(iv) 
$$\frac{1}{(-a^2, -ab, -b^2)} \sin(ax + by)$$
13. P.I. of  $(D^2 + DD' - 6D'^2) z = e^{2x + 3y}$  is

(i) 
$$\frac{1}{-3}e^{2x+3y}$$

(ii) 
$$\frac{1}{-44}e^{2x+3y}$$

$$(iii) + \frac{1}{44}e^{2x+3y}$$

(iv) 
$$\frac{1}{-8}e^{2x+3y}$$

**14.** The P.I. of  $(D^2 + 6DD' + D'^2) z = e^x$  is

(iii) 
$$e^{x+y}$$

15. The P.I. of  $(2D^2 - DD' + 4D'^2) z = \cos(2x + 3y)$  is

(i) 
$$\frac{1}{38}\cos(2x-5y)$$

(ii) 
$$\frac{1}{-38}\cos(2x-3y)$$

(iii) 
$$\frac{1}{-38}\cos(2x+3y)$$

$$(iv) \ \frac{1}{38}\cos\left(2x+3y\right)$$

16. The P.I. of  $(D^2 - DD' - 6D'^2)$  z = x + y is

$$(i) \quad \frac{x^2y^2}{2}$$

(ii) 
$$\frac{x^2y}{2}$$

(iii) 
$$\frac{xy^2}{2}$$
 (iv)  $x^2y$ 

(i)  $\frac{x^2y^2}{2}$  (ii)  $\frac{x^2y}{2}$  (iii)  $\frac{xy^2}{2}$  (iv)  $x^2y$ 17. The P.I. of  $(D^2 - D'^2) z = x - y$  is

(i) 
$$\frac{x^3}{6} - \frac{x^2y}{2}$$

(ii) 
$$\frac{x^3}{6} + \frac{x^2y}{2}$$

(iii) 
$$\frac{x^3}{2} - \frac{x^2y}{6}$$

$$(iv) x^3 - x^2 y$$

(iii)  $\frac{x^3}{2} - \frac{x^2y}{6}$ 18. The P.I. of  $(D^2 - DD' - 6D'^2)$  z = xy is

$$(i) \quad \frac{xy}{6} + \frac{x^4}{24}$$

(ii) 
$$\frac{xy^3}{6} + \frac{x^4}{24}$$

(iii) 
$$\frac{x^3y}{6} - \frac{x^4}{24}$$

(iv) 
$$\frac{x^3y}{6} + \frac{x^4}{24}$$

19. The solution of  $\frac{\partial^3 z}{\partial x^3} = 0$  is



(ii) 
$$z = (1 + x + x^2) f(y)$$

7the soluti

21. Particular

(i)  $xe^{x+2y}$ 

2. Particular i

(i)  $\frac{x}{2}\cos(x)$ Ans. (iv)

3. The comple (i)  $f_1(y-z)$ 

(iii)  $f_1(y +$ 

Ans. (ii)

 $u = \frac{1}{f(D, D')} x''$ 

(i) [f(D, L Ans. (i) (iii) [f(D, L

 $5.\frac{1}{(D-mD)}F($ 

Ans. (iii) (i)  $\int F(x, c)$ 

(iii) F(x, mx)State True and f Ans. (ii)

t The solution of

The C.F. of (D Ans. (i) The solution of

he solution of

Ans. (iv) Desolution of

he solution of



The solution of the partial differential equation  $\left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}\right) z = 0$  is

$$z = f_1(v + x) + f_2(v - x)$$

Ans. False

The solution of the partial differential equation  $(D^3 + 4D^2 + 4D)z = 0$  is 33.

$$z = f_1(v) + f_2(v + 2x) + x f_3(v + 2x)$$

Ans, True

The C.F. of the partial differential equation

$$2r - s - 3t = 5\frac{e^x}{e^y}$$
 is  $f_1\left(y - \frac{1}{2}x\right) + x f_2\left(y - \frac{1}{2}x\right)$ 

Ans. False

35. The solution of the linear partial differential equation  $\frac{\partial^4 z}{\partial x^4} - 2 \frac{\partial^4 z}{\partial x^3 \partial y} + 2 \frac{\partial^4 z}{\partial x \partial y^3} - \frac{\partial z^4}{\partial y^4} = 0 \text{ is}$  $z = f_1(v - x) + f_2(v + x) + x f_3(v + x) + x^2 f_4(v + x)$ 

Ans. True

Fill in the blanks

**36.** The solution of the partial differential equation  $2 \frac{\partial^2 z}{\partial x^2} + 5 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = 0$  is ....

**Ans.** 
$$f_1(y-2x) + f_2\left(y-\frac{x}{2}\right)$$

- **Ans.**  $z = f_1 \left( y + \frac{4}{5} x \right) + x f_2 \left( y + \frac{4}{5} x \right)$ **37.** The solution of 25r - 40s + 16t = 0 is ......
- **38.** The solution of  $(D^3 6D^2D' + 12DD'^2 8D'^3)$  z = 0 is ......

Ans. 
$$z = f_1(y + 2x) + x f_2(y + 2x) + x^2 f_3(y + 2x)$$

**39.** The solution of 4r - 4s + t = 0 is ...... **40.** The solution of  $[D^2 + (\alpha + \beta) DD' + \alpha\beta D'^2] z = 0$  is....

Ans. 
$$z = f\left(y + \frac{1}{2}x\right) + x f\left(y + \frac{1}{2}x\right)$$

Ans.  $z = f_1(y - \alpha x) + f_2(y - \beta x) + \frac{1}{6}x^3y$ 

15.1 IN

formulati solving SI

> The differenti and deter to find p condition equation.

15.2 ME

In th which inv formed.

Solu

Let

REDMI NOTE 5 PRO MI DUAL CAMERA