

<u>CS2505</u> <u>Network Computing</u>

Prof. Cormac J. Sreenan

Copyright Notice: The CS2505 lecture notes are adapted from material provided by J.F. Kurose and K.W. Ross and includes contributions by C.J. Sreenan, L.L.. Peterson, B.S. Davie and others. This material is copyrighted and so the CS2505 lecture notes must not be copied or distributed without permission.

University College Cork C52505

Lecturer Details

- □ Email
 - * For Prof. Sreenan: cjs@cs.ucc.ie
 - Always put CS2505 in "Subject" line of message
 - Always send from ucc.ie to avoid being labelled as spam
- Meetings
 - * Room 1-75; just email for an appointment

University College Cork CS2505

3

Course Information

- □ CS2505 is a 5-credit module
 - 24 lectures plus practical laboratory sessions
 - Two lectures per week (Period 2 only)
- Assessment
 - Summer Exam. 80%
 - Lab. assignments 20%
- □ Course lectures on Moodle
 - cs4.ucc.ie
 - Lecture notes added as the course progresses; also lab. details

University College Cork CS2505

Textbooks

- □ Required to purchase:
 - J. Kurose & K. Ross, "Computer Networking", Addison-Wesley Pub
 - 6th is the latest International edition
- □ Other good books (in library):
 - L. Peterson and B. Davie.
 "Computer Networks: A Systems Approach". Morgan Kaufmann Pub.
 - A. Tanenbaum, "Computer Networks", Prentice Hall Pub.

University College Cork C52505

5

Plagiarism

- Plagiarism is presenting someone else's work as your own. It is a violation of UCC Policy and there are strict and severe penalties.
- 2. You must read and comply with the UCC Policy on Plagiarism www.ucc.ie/en/exams/procedures-regulations/
- 3. The Policy applies to all work submitted, including software.
- 4. You can expect that your work will be checked for evidence of plagiarism or collusion.
- In some circumstances it may be acceptable to reuse a small amount of work by others, but *only* if you provide explicit acknowledgement and justification.
- 6. If in doubt ask your module lecturer *prior* to submission. Better safe than sorry!

University College Cork CS2505

Course Overview

- □ Section 1: Networking Basics
- □ Section 2: Application layer
- □ Section 3: Transport layer
- □ Section 4: Network Management

University College Cork C52505

7

Section 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network performance metrics
- 1.5 Network protocol architecture
- 1.6 Networks under attack: security
- 1.7 History of computer networks

University College Cork CS2505

В

What's the Internet: "nuts and bolts" view

- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- □ Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- □ Internet standards
 - * RFC: Request for comments
 - IETF: Internet Engineering Task Force

University College Cork C52505

11

What's the Internet: a service view

- communication
 infrastructure enables
 distributed applications:
 - Web, VoIP, email, games, e-commerce, file sharing
- communication services provided to apps:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery

University College Cork C52505

What is a Protocol?

- □ The word originates in middle English where it referred to the fine details of an agreement
- □ For communication, it defines the "set of rules governing the exchange or transmission of data between devices."
 [Oxford English Dictionary]

University College Cork C52505

13

A Human Protocol

Asking the time

You're welcome!

Computer Protocols

- People are really good at adapting to the nuances of speech and social interaction
 - *And even to the use of different languages
- But computers work best when there is no ambiguity in the communication
 - So it must be specified as a set of rules

17

What's a protocol?

<u>human protocols:</u>

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

University College Cork C52505

A Request-Response Protocol

- ■Most network protocols are called request-response
 - The client sends a message to a server requesting some information
 - The server responds by sending back a message to the client

Specifying Protocols

- □Protocols are specified as follows:
 - The set of message types (eg request, response, error)
 - ❖ The format of each message

The action to be taken when a message is received, including what response to send

Implementing Protocols

- □Network protocols are usually implemented in software
- ☐ The software must faithfully implement the protocol specification
 - The choice of programming language and operating system does not matter
- ☐ This software must be installed at the client and the server computers
 - As long as the specification was adhered to, independent implementations should work together

21

Types of Protocols

- □ Each protocol is designed for a specific purpose
- The most crucial protocols allow messages to be routed to the right destination and reliably delivered
 - Their operation is largely invisible to end-users
- □Other protocols are more familiar, such as
 - HTTP which allows web browsers to send request to web servers
 - ❖BitTorrent for peer-to-peer file sharing

Section 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network performance metrics
- 1.5 Network protocol architecture
- 1.6 Networks under attack: security
- 1.7 History of computer networks

University College Cork CS2505

A closer look at network structure:

- □ network edge: applications and hosts
- access networks, physical media: wired, wireless communication links
- □ network core:
 - interconnected routers
- network of networks
 University College Cork CS2505

Concept of Bandwidth

- □ Amount of data that can be transmitted per time unit
 - Example: 10 Mega bits per second (Mb/s or Mbps) or 100 Kilo bits per second (Kb/s)
 - Also called data rate or capacity
- Notation
 - distinguish between bits (b) and bytes (B)
 - One byte = 8 bits; bytes sometimes called octets
 - Kb/s = 10³ bits per second; Mb/s = 106 bits per second

University College Cork CS2505

27

Dial-up Modem

- Old technology that uses existing telephony infrastructure
 - * Home is connected to central office
- up to 56Kb/s direct access to router (often less)
- Can't surf and phone at same time: not "always on"

University College Cork CS2505

Digital Subscriber Line (DSL)

- * Also uses existing telephone infrastructure
 - dedicated physical line to telephone central office
- Performance
 - up to 3.3 Mb/s upstream (today typically < 1 Mb/s)</p>
 - up to 24 Mb/s downstream (today typically < 8 Mb/s)</p>

University College Cork CS2505

29

Residential access: cable modems

- □ Does not use telephone infrastructure
 - Instead uses cable TV infrastructure
- □ HFC: hybrid fibre coax
 - asymmetric: typical per-home values of up to 30Mb/s downstream, 2 Mb/s upstream, but can be much higher
- network of cable and fibre attaches homes to ISP router (called a head-end)
 - homes share access to router
 - unlike DSL, which has dedicated access

University College Cork CS2505

Ethernet Internet access

- □ Typically used in companies, universities, etc
- □ 10 Mb/s, 100Mb/s, 1Gb/s, 10Gb/s Ethernet
- Today, end systems typically connect into Ethernet switch

University College Cork CS2505

37

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

□ WiFi wireless LANs:

- * 802.11g: up to 54 Mb/s
- * 802.11n up to 150 Mb/s

■ wider-area wireless access

- "terrestrial" fixed wireless usually < 8 Mb/s and asymmetric
- Mobile, up to 2Mb/s over 3G and 1 Gb/s in 4G cellular

University College Cork CS2505

Physical Media

- □ Bit: propagates between transmitter/rcvr pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fibre, coax
- unquided media:
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mb/s Ethernet
 - Category 5: 100Mb/s Ethernet
 - CAT 6: Gigabit Ethernet

University College Cork C52505

Physical Media: coax, fibre

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - HFC

University conege cork 652505

fibre optic cable:

- glass fibre carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (Tera b/s)
- low error rate: repeaters spaced far apart; immune to electromagnetic noise

41

Physical media: radio

- □ signal carried in electromagnetic spectrum
- □ no physical "wire"
- □ Bidirectional, but possibly asymmetric
- □ propagation environment effects:
 - reflection
 - · obstruction by objects
 - Interference
- □ Radio links types
 - Highly heterogeneous range and performance
 - Terrestrial microwave, WiFI LAN, cellular WAN, satellite

University College Cork CS2505

Section 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network performance metrics
- 1.5 Network protocol architecture
- 1.6 Networks under attack: security
- 1.7 History of computer networks

University College Cork CS2505

43

The Network Core

- mesh of interconnected routers
- the fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

University College Cork C52505

Network Core: Circuit Switching

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

University College Cork CS2505

45

Network Core: Circuit Switching

network resources (e.g., bandwidth) divided into "pieces"

- pieces allocated to calls
- resource piece idle if not used by owning call (no sharing)
- dividing link bandwidth into "pieces"
 - frequency division
 - time division

University College Cork CS2505

Numerical example

- □ How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
 - All links are 1.536 Mb/s
 - * Each link uses TDM with 24 slots/sec
 - 500 msec to establish end-to-end circuit

Let's work it out!

University College Cork CS2505

Network Core: Packet Switching

each end-end data stream divided into *packets*

- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed

Bandwidth division into "pieces" Dedicated allocation Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - Node receives complete packet before forwarding

49

Packet Switching: Statistical Multiplexing

Sequence of A & B packets does not have fixed pattern, bandwidth shared on demand → statistical multiplexing.

TDM: each host gets same slot in revolving TDM frame.

University College Cork CS2505

Packet-switching: store-and-forward

- □ takes L/R seconds to transmit (push out) packet of L bits on to link at R b/s
- store and forward:
 entire packet must
 arrive at router before
 it can be transmitted
 on next link
- delay = 3 L/R (assuming zero propagation delay)

Example:

- □ L = 7.5 Mbits
- □ R = 1.5 Mb/s
- transmission delay = 15 sec

> more on delay shortly ...

University College Cork CS2505

51

Packet switching versus circuit switching

Packet switching allows more users to use network!

- □ 1 Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

- circuit-switching:
 - 10 users
- packet switching:
 - At least 10; depends on probability of users being active at same time

University College Cork C52505

Packet switching versus circuit switching

Is packet switching a clear winner?

- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem

Q: human analogies of reserved resources (circuit switching) versus ondemand allocation (packet-switching)?

Internet structure: network of networks

- roughly hierarchical
- □ at center: "tier-1" ISPs (e.g., Global Crossing, Level 3, Sprint, AT&T), national/international coverage
 - treat each other as equals

University College Cork CS2505

Section 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network performance metrics
- 1.5 Network protocol architecture
- 1.6 Networks under attack: security
- 1.7 History of computer networks

University College Cork CS2505

59

How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn

packet being transmitted (delay)

B

packets queueing (delay)

free (available) buffers: arriving packets
dropped (loss) if no free buffers

Nodal delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- \Box d_{proc} = processing delay
 - typically a few microsecs or less
- □ d_{queue} = queuing delay
 - depends on number of hops (routers) and traffic
- \Box d_{trans} = transmission delay
 - = L/R, significant for low-speed links
- \Box d_{prop} = propagation delay
 - a few microsecs to hundreds of millisecs (msecs)

University College Cork CS2505

65

Queueing delay (revisited)

- R=link bandwidth (b/s)
- □ L=packet length (bits)
- a=average packet arrival rate

traffic intensity = La/R where La is arrival rate

- □ La/R ~ 0: average queueing delay small
- □ La/R -> 1: delays become large
- La/R > 1: more "work" arriving than can be serviced, average delay infinite!

University College Cork CS2505

"Real" Internet delays and routes

- What do "real" Internet delay & loss look like?
- ☐ Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - sender times interval between transmission and reply.

University College Cork C52505

67

"Real" Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

Three delay measurements from gaia.cs.umass.edu to cs-gw.cs.umass.edu

1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms

2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms

3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms

4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms

5 jn1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms

6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms

7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms

8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms

9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms

10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms

11 renater-gw.fr1.fr.geant.net (62.40.96.51) 113 ms 114 ms 112 ms

12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms

13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms

14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms

15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms

16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms

17 ***

** means no response (probe lost, router not replying)

19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

University College Cork CS2505

Section 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network performance metrics
- 1.5 Network protocol architecture
- 1.6 Networks under attack: security
- 1.7 History of computer networks

University College Cork CS2505

...With Varied Applications

75

Dealing with Complexity

- □ Need to cope with heterogeneity of function and requirements, including for example
 - Network speed, errors, latency
 - Application security, reliability, quality of service
- ■Need to facilitate evolution of network elements and applications
 - Upgrade to better technology
 - ❖ Adapt to changing needs

Layered Architectures

- ☐ Similar network functions are grouped together into distinct layers
- □ Layers are organised in a stack, representing increasing functionality
 - And the dependency of a layer on the layer below
- □ Layering is an abstraction that enforces modularity
 - Makes it easier to change the network functions

77

Organization of air travel

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

□ a series of steps

University College Cork CS2505

В

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
- session: synchronization, checkpointing, recovery of data exchange
- □ Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

University College Cork CS2505

application
presentation
session
transport
network
link
physical

Section 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network performance metrics
- 1.5 Network protocol architecture
- 1.6 Networks under attack: security
- 1.7 History of computer networks

University College Cork C52505

83

Network Security

- □ The field of network security is about:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- □ Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network"
 - Internet protocol designers playing "catch-up"
 - Security considerations in all layers!

University College Cork CS2505

Bad guys can put malware into hosts via Internet

- □ Malware can get in host from a virus, worm, or trojan horse.
- □ Spyware malware can record keystrokes, web sites visited, upload info to collection site.
- ☐ Infected host can be enrolled in a botnet, used for spam and DDoS attacks.
- Malware is often self-replicating: from an infected host, seeks entry into other hosts

University College Cork C52505

85

Bad guys can put malware into hosts via Internet

Trojan horse

- Hidden part of some otherwise useful software
- Today often on a Web page (Active-X, plugin)

Virus

- infection by receiving object (e.g., e-mail attachment), actively executing
- self-replicating: propagate itself to other hosts, users

University College Cork CS2505

■ Worm:

- infection by passively receiving object that gets itself executed
- self- replicating: propagates to other hosts, users

Sapphire Worm: aggregate scans/sec in first 5 minutes of outbreak (CAIDA, UWisc data)

Bad guys can attack servers and network infrastructure

- □ Denial of service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic
- 1. select target
- break into hosts around the network (see botnet)
- send packets toward target from compromised hosts

University College Cork C52505

87

The bad guys can sniff packets

Packet sniffing:

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

 Wireshark software used in labs is a (free) packet-sniffer

University College Cork CS2505

The bad guys can use false source addresses

□ *IP spoofing:* send packet with false source address

University College Cork CS2505

89

The bad guys can record and playback

- □ record-and-playback: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view

University College Cork C52505

Section 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network performance metrics
- 1.5 Network protocol architecture
- 1.6 Networks under attack: security
- 1.7 History of computer networks

University College Cork C52505

91

Internet History

1961-1972: Early packet-switching principles

- □ 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- □ 1964: Baran packetswitching in military nets
- □ 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- **1972**:
 - ARPAnet public demonstration
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

University College Cork C52505

Internet History

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- □ 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- □ late 70's: switching fixed length packets (ATM precursor)
- □ 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

University College Cork C52505

93

Internet History

1980-1990: new protocols, a proliferation of networks

- □ 1983: deployment of TCP/IP
- □ 1982: smtp e-mail protocol defined
- □ 1983: DNS defined for name-to-IP-address translation
- □ 1985: ftp protocol defined
- 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

University College Cork CS2505

Internet History

1990, 2000's: commercialization, the Web, new apps

- □ Early 1990's: ARPAnet decommissioned
- □ 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- □ early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - * HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

Late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gb/s

University College Cork C52505

95

Internet Statistics

University College Cork CS2505

Section 1: Summary

Covered a "ton" of material!

- ☐ Internet overview
- □ what's a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- layering, service models
- security
- history

University College Cork CS2505

You now have:

- context, overview, "feel" of networking
- □ more depth *to follow!*