NAIL062 P&P Logic: Worksheet 9 - Prep for resolution in predicate logic

Teaching goals: After completing, the student

- umí převádět formule do prenexní normální formy (PNF)
- rozumí pojmu Skolemova varianta, umí skolemizovat danou teorii
- umí převést danou otevřenou teorii do CNF, zapsat v množinové reprezentaci
- zná Herbrandovu větu, umí ji demonstrovat na příkladě, popsat Herbrandův model

IN-CLASS PROBLEMS

Problem 1. Převedte následující formule do PNF. Poté najděte jejich Skolemovy varianty.

- (a) $(\forall y)((\exists x)P(x,y) \to Q(y,z)) \land (\exists y)((\forall x)R(x,y) \lor Q(x,y))$
- (b) $(\exists x)R(x,y) \leftrightarrow (\forall y)P(x,y)$
- (c) $\neg((\forall x)(\exists y)P(x,y) \rightarrow (\exists x)(\exists y)R(x,y)) \land (\forall x)\neg(\exists y)Q(x,y)$

Problem 2. Převedte na ekvisplnitelnou CNF formuli, zapište v množinové reprezentaci.

- (a) $(\forall y)(\exists x)P(x,y)$
- (b) $\neg(\forall y)(\exists x)P(x,y)$
- (c) $\neg(\exists x)((P(x) \rightarrow P(c)) \land (P(x) \rightarrow P(d)))$
- (d) $(\exists x)(\forall y)(\exists z)(P(x,z) \land P(z,y) \rightarrow R(x,y))$

Problem 3. Nechť $T = \{(\exists x)R(x), (\exists y)\neg P(x,y), (\exists y)(\forall z)(\neg R(x) \lor P(y,z))\}$ je teorie jazyka $L = \langle P, R \rangle$ bez rovnosti. Najděte otevřenou teorii T' ekvisplnitelnou s T. Převedte T' do CNF a výslednou formuli S zapište v množinové reprezentaci.

Problem 4. Nechť $T = \{\varphi_1, \varphi_2\}$ je teorie v jazyce $L = \langle R \rangle$ s rovností, kde:

$$\varphi_1 = (\exists y) R(y, x)$$

$$\varphi_2 = (\exists z) (R(z, x) \land R(z, y) \land (\forall w) (R(w, x) \land R(w, y) \rightarrow R(w, z)))$$

- (a) Pomocí skolemizace sestrojte otevřeně axiomatizovanou teorii T' (případně v širším jazyce L') ekvisplnitelnou s T.
- (b) Buď $\mathcal{A} = \langle \mathbb{N}, R^A \rangle$, kde $(n, m) \in R^A$ právě když n dělí m. Nalezněte expanzi \mathcal{A}' L-struktury \mathcal{A} do jazyka L' takovou, že $\mathcal{A}' \models T'$. (Množina všech přirozených čísel \mathbb{N} obsahuje nulu, viz ISO 80000-2:2019.)

Problem 5. Sestrojte Herbrandův model dané teorie, nebo najděte nesplnitelnou konjunkci základních instancí jejích axiomů (c, d) jsou konstantní symboly v daném jazyce).

- (a) $T = {\neg P(x) \lor Q(f(x), y), \neg Q(x, d), P(c)}$
- (b) $T = {\neg P(x) \lor Q(f(x), y), Q(x, d), P(c)}$
- (c) $T = \{P(x, f(x)), \neg P(x, g(x))\}\$
- (d) $T = \{P(x, f(x)), \neg P(x, g(x)), P(g(x), f(y)) \rightarrow P(x, y)\}$

EXTRA PRACTICE

Problem 6. Teorie těles T jazyka $L = \langle +, -, \cdot, 0, 1 \rangle$ obsahuje jeden axiom φ , který není otevřený: $x \neq 0 \rightarrow (\exists y)(x \cdot y = 1)$. Víme, že $T \models 0 \cdot y = 0$ a $T \models (x \neq 0 \land x \cdot y = 1 \land x \cdot z = 1) \rightarrow y = z$.

- (a) Najděte Skolemovu variantu φ_S formule φ s novým funkčním symbolem f.
- (b) Uvažme teorii T' vzniklou z T nahrazením φ za φ_S . Platí φ v T'?
- (c) Lze každý model T jednoznačně rozšířit na model T'?

Nyní uvažme formuli $\psi = x \cdot y = 1 \lor (x = 0 \land y = 0).$

- (d) Platí v T axiomy existence a jednoznačnosti pro $\psi(x,y)$ a proměnnou y?
- (e) Sestrojte extenzi T'' teorie T o definici symbolu f formulí ψ .
- (f) Je T'' ekvivalentní teorii T'?
- (g) Najděte L-formuli, která je v T"-ekvivalentní s formulí: $f(x \cdot y) = f(x) \cdot f(y)$

Problem 7. Víme, že platí následující:

- Je-li cihla na (jiné) cihle, potom není na zemi.
- Každá cihla je na (jiné) cihle nebo na zemi.
- Žádná cihla není na cihle, která by byla na (jiné) cihle.

Chceme dokázat rezolucí následující tvrzení: "Je-li cihla na (jiné) cihle, spodní cihla je na zemi.". Sestrojte příslušnou CNF formuli S, a pokuste se najít i její rezoluční zamítnutí.

FOR FURTHER THOUGHT

Problem 8. Skolemova varianta nemusí být ekvivalentní původní formuli, ověřte, že platí:

- (a) $\models (\forall x)P(x, f(x)) \rightarrow (\forall x)(\exists y)P(x, y)$
- (b) $\not\models (\forall x)(\exists y)P(x,y) \rightarrow (\forall x)P(x,f(x))$