

Variance Networks When Expectation Does Not Meet Your Expectations

Dmitry Molchanov*, Arsenii Ashukha*, **Dmitry Vetrov**

Kirill Neklyudov*,

Motivation

$$w \sim \mathcal{N}(\mu, \sigma^2)$$

Stochastic Networks

$$w \sim \mathcal{N}(0, \sigma^2)$$

It works!

Usual Networks

This paper: Variance Nets 3. Uniform: $w_{ij} \sim \phi_{ij} \cdot \varepsilon_{ij}$,

We can store information using variances only!

Stochastic Deep Neural Networks

How to train:

- 1. $\hat{W} \sim q(W \mid \phi)$ e.g., Gaussian $q(W \mid \phi) = \mathcal{N}(W \mid \phi) \Big|_{10}$
- 2. $\nabla_{\phi} L \cong \nabla_{\phi} (-\log p(Y \mid X, \hat{W}) + R(\phi))$
- 3. Update ϕ and repeat until convergence

How to predict:

1. Weight Scaling Rule (WSR) (heuristic)

$$p(y \mid x) \approx p(y \mid x, \mathbb{E}W)$$

- + Fast and usually works well in practice
- May yield arbitrarily bad predictions!
- 2. Monte-Carlo estimate (proper way)

$$p(y|x) \approx \frac{1}{K} \sum_{k} p(y|x, \hat{W}_k), \quad \hat{W}_k \sim q(W|\phi)$$

- + Produces a correct unbiased estimate
- Requires to compute the output K times

Variance Networks

Variance layer has a symmetric weight distribution:

$$q(W \mid \phi) = q(-W \mid \phi)$$

Examples of variance layers:

- 1. Gaussian: $w_{ij} \sim \sigma_{ij} \cdot \varepsilon_{ij}$,
- 2. Bernoulli: $w_{ij} \sim \phi_{ij} \cdot (2\varepsilon_{ij} 1)$, $\varepsilon_{ij} \sim Bernoulli(\frac{1}{2})$

How it works? A toy example

Classification results

Architecture	Dataset	Network	Accuracy (%)		
			1 samp.	Det.	20 samp.
LeNet5	MNIST	Dropout	99.1	99.4	99.4
		Variance	98.2	11.3	99.3
VGG-like	CIFAR10	Dropout	91.0	93.1	93.4
		Variance	91.3	10.0	93.4
VGG-like	CIFAR100	Dropout	77.5	79.8	81.7
		Variance	76.9	5.0	82.2

We achieve the same performance as usual networks!

Variational Dropout+Variance Networks **Variational Dropout:**

$$\underbrace{-\mathbb{E}_{q(W \mid \phi)} \log p(Y \mid X, W)}_{\text{Data-term (e.g. cross-entropy loss)}} + \underbrace{\mathbb{D}_{\text{KL}}(q(W \mid \phi) \parallel p(W))}_{\text{Regularizer}} \rightarrow \min_{\phi}$$

$$\varepsilon_{ij} \sim \mathcal{N}(0, 1) \quad \tilde{w}_{ij} \sim \mathcal{N}(w_{ij}, \alpha_{ij}w_{ij}^2) \quad p(\tilde{w}_{ij}) \propto \frac{1}{|\tilde{w}_{ij}|} \quad \phi_{ij} = \{\alpha_{ij}, \mu_{ij}\}$$

In practice the Variational Dropout model converges to variance networks!

$$\mathcal{N}(\mu_{ij},\alpha\mu_{ij}^2) \xrightarrow{\alpha\to\infty} \mathcal{N}(0,\alpha\mu_{ij}^2)$$
0.9
0.8
0.7
0.6
0.5
0.5
0.4
0.3
0.2
0.1
0
20
40
60
80
100

Better ELBO

layer-wise neuron $\mathcal{N}(\mu_{ij}, \alpha \mu_{ij}^2)$ $\mathcal{N}(\mu_{ij}, \alpha \mu_{ij}^2)$		weight $\mathcal{N}(\mu_{ij}, \epsilon)$		additive $\mathcal{N}(\mu_{ij}, \sigma^2_{ij})$
	Layer	Neuron	Weight	Additive
ELBO	-9.4	-11.0	-287.4	-227.9
Data term	-9.04	-8.34	-21.13	-31.2
KL term	0.36	2.66	266.25	196.74
Mean prop. acc.	11.3	11.3	96.6	99.2
Test-time averaging	99.3	99.2	99.4	99.2

Less flexible posterior approximations result in much better ELBO!