http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

Intro to Probability

Instructor: Alexandre Bouchard Fall 2014

Plan for today:

- Combinatorics wrap-up
- Independence
- Conditioning
- Review problems

http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

Logistics

- What's new/recent on the website:
 - Released Wed: Webwork.
 - Today 5:00: Assignment #1 release.
 - Office hours (under CONTACT).
 - New readings (under SCHEDULE).

Classrooms

 There are 3 classrooms and 9 students in a school. The classrooms have the following

capacities:

Classroom (a): 4 students

Classroom (b): 3 students

Classroom (c): 2 students

Hint: first level of the tree: all the assignments of classroom(a); second level: all the assignments of classroom(b); ...

i) How many assignments are possible?

A. 1,260

B. 362

C. 125

D. 24

ii) What is the probability that you get assigned to class (a)

A. 1/3

B. 4/9

C. 2/3

D. 7/9

Previous example

- Suppose now we only known:
 - 60 % chance that first power supply works at delivery (W_1)
 - 70 % chance that second power supply works at delivery
 (W₂)
 - Another quality control study also revealed that both power supplies work at delivery 40 % of the time

A different example

- Suppose now we only known:
 - 60 % chance that first power supply works at delivery (W_I)
 - 70 % chance that second power supply works at delivery
 (W₂)
 - Another quality control study also revealed that both power supplies work at delivery 40 % of the time

A different example

- Suppose now we only known:
 - 60 % chance that first power supply works at delivery (W_1)
 - 70 % chance that second power supply works at delivery
 (W₂)
 - Another quality control study also revealed that both power supplies work at delivery 40 % of the time
- Not enough info! Instead, assume $P(W_1 W_2) = P(W_1) P(W_2)$
 - An extra assumption: not implied by the 3 axioms
 - Interpretation: if one power supply breaks, it is not going to make the other one more or less likely to break
 - Terminology: W₁ and W₂ are independent

A different example

- Why do we get a different answer? (12 % vs. 10%)
- Independence assumptions can be wrong
- Examples:
 - Catastrophic failures: sometimes the factor that breaks one power supply breaks the other one.
 - Safeguards not captured by our model: a factory rule to never assemble two power supplies that both look in bad condition in the same machine
- Thinking about all these possibilities is complicated, but the world is complicated

Independence: an equally weighted setup

Recall: equally weighted means

•
$$P() = 1/4$$

$$\bullet \ \mathsf{P}(\bigcirc) = 1/4$$

Ex. 16a Independence: an equally weighted setup

Events:

• R = shape is red

• C = shape is circular

• Are these events: independent? disjoint?

no no

yes no

no yes

yes yes Ex. 16b

Independence: an equally weighted setup

• Events:

- R = shape is red
- C = shape is circular
- Are these events: independent? disjoint?

<u>A.</u>	no	no
В.	yes	no
C.	no	yes
D.	yes	yes

Independent vs. disjoint events

A, B are disjoint
$$\Rightarrow$$
 $P(A \cup B) = P(A) + P(B)$
($\Leftrightarrow A \cap B = \emptyset$)

A, B are indep.

$$\Leftrightarrow$$

$$P(A \cap B) = P(A) * P(B)$$

Independent vs. disjoint events

Synonym: mutually exclusive

A, B are disjoint
$$(\Leftrightarrow A \cap B = \emptyset)$$

$$\Rightarrow$$
 P(A \cup B) = P(A) + P(B)

$$\Leftrightarrow$$

$$P(A \cap B) = P(A) * P(B)$$

Conditional probability

Two interpretations of a probability

 So far: probability as limit of frequencies when an experiment is <u>repeated</u> identically and independently.

Example:

Stroboscopic image of a coin flip by Andrew Davidhazy

Two interpretations of a probability

 So far: probability as limit of frequencies when an experiment is <u>repeated</u> identically and independently.

Example:

Stroboscopic image of a coin flip by Andrew Davidhazy

Second interpretation: **belief** of what an outcome will be. Note: it is often not possible to repeat this 'experiment.'

Demonstration

- A couple have 2 children.
- Probability of two girls?

A: 2/3

B: 1/2

C: 1/3

D: 1/4

Demonstration

- A couple have 2 children.
- Probability of two girls?
- Probability of two girls given that the elder is girl?

A: 2/3

B: 1/2

C: 1/3

D: 1/4

Demonstration

- A couple have 2 children.
- Probability of two girls?
- Probability of two girls given that the elder is girl?
- Probability of two girls given that one of the children is a girl?

A: 2/3

B: 1/2

C: 1/3

D: 1/4

Demonstration

- A couple have 2 children.
- Probability of two girls?
- Probability of two girls given that the elder is girl?
- Probability of two girls given that one of the children is a girl?
- Probability of two girls given that one of the children is a boy?

A: 2/3

B: 1/2

C: 1/3

D: 1/4

Conditional probability: overview

Conditional probability: overview

New information (observation): a fixed event E

Conditional probability: overview

New information (observation): a fixed event *E* Interpretation: 'the true outcome is somewhere in the event *E*'

Conditional probability: overview

New information (observation): a fixed event *E* Interpretation: 'the true outcome is somewhere in the event *E*'