16-833: Robot Localization and Mapping, Spring 2021 Homework 4 - ICP

Aditya Ramakrishnan

April 17, 2022

Note: collaborated with Shravan Kumar Gulvadi - sgulvadi

1 Projective data association - *icp.py*

Question 2.1.1 (First filter section)

Filtering out indices that are outside the vertex map requires that the following criteria be met:

```
target_u \in [0, w); \quad target_v \in [0, h); \quad target_ds \ge 0
```

Question 2.1.2 (Second filter section)

We implement a second filter to ensure that projection q is in the within the permitted neighbourhood of the source point p. This permitted neighbourhood is set by a threshold of 0.07 (provided in the source code)

It is important to understand why this thresholding is performed - in order to remove outliers and prevent a large drift in the fusing step. Ideally, if the transformed points are not close to the source points, they can be discarded.

```
# TODO: first filter: valid projection
mask = np.zeros_like(target_us).astype(bool)
#(mask[target_us<w] & mask[target_us >= 0] & mask[target_vs >= 0] & mask[target_vs < h] & mask[target_ds >= 0]) = TRUE
mask = ((target_us < w) & (target_vs < h) & (target_us >= 0) & (target_vs >= 0) & (target_ds >= 0)).astype(bool)
# End of TODO

source_indices = source_indices[mask]
target_us = target_us[mask]
target_vs = target_vs[mask]
T_source_points = T_source_points[mask]
# TODO: second filter: apply distance threshold
#mask = np.zeros_like(target_us).astype(bool)

q_points = target_vertex_map[target_vs,target_us]
p_points = T_source_points

mask = ((np.linalg.norm((p_points - q_points), axis=1)) < dist_diff).astype(bool)</pre>
```

Figure 1: Fig. 1: First and Second filter implementation

2 Linearization - icp.py

Question 2.2 (Matrices A_i and b_i)

Here, we are required to linearize the error function. I have performed the linearization by hand as I am not able to resolve formatting issues in my latex (I have made the derivation clear and legible):

Lagrange of from peoples
Q2.2 Linearization:
The state of the s
20 (6R) (p;) + (6E) - q; /
C .
Error function can be written by
Error function can be written by
Substituting for OK from can (11) and OL
$\sum_{n} g^{2}(R+) = m (p_{n}+k-q_{n}) $
ie a ligi (pi to qu'il
cis as in the start of the start
1 + 1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\sum_{i \in \Omega} g_i^2(R, t) = \ \eta_{g_i}^T(Rp_i + t - q_i)\ ^2$ $i \in \Omega$ $i \in \Omega$ $i \in \Omega$
Parametrizing with a good and in Sie Sie o Ch'
Parametrizing with a small angle assumption SR 8 St
$SR = \begin{bmatrix} 1 & -3 & \beta \\ \gamma & 1 & -\alpha \end{bmatrix}$ $\begin{bmatrix} -\beta & \alpha & 1 \end{bmatrix}$
OK- Lin and John Mills
1 - x(11)
1-B 02 13
4.01.01.01.01.00
1 - 4 (par faction = 1, (par - 3p' + Bp' + to - 9)
St = $\int tx, ty, t_2 \int (iii)$
of frage the state of the
+ 13 (Ba' + 20' + 12' + 12 - 9.
Add Forally, we consider P-prime "pi":
nadironally, we consider 1- from pi
Parting this date into A: & b.
, 20 ,0 ,7
$p_i' = R^{\circ} p_i + t^{\circ} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
Reforming the equation => $\Re (\alpha, \beta, \delta, t_x, t_y, t_z) = A \delta t_x + b_i$
3
Relamine 4. equation => 9: (\alpha B. 8 t. t. t. t.) = A + b.
Reforming the equation => 9: (a, B, 8, tx, ty, tz) = A tx + bi
ty
8
Soling for Ai 8 bi
somy by it at

Thus we have our A_i and b_i matrices from parsing the resultant matrix from our previous step.

We further implement the cross product operator as instructed in the Homework as shown below:

Figure 2: Fig. 2: Error function Linearization

3 Optimization - *icp.py*

Question 2.3.1 (Implement Linearized System)

Implement build_linear_system and the corresponding solve

```
def build_linear_system(source_points, target_points, target_normals, T):
    M = len(source_points)
    assert len(target_points) == M and len(target_normals) == M

R = I[:3, :3]
    t = I[:3, 3:]

p_prime = (R @ source_points.T + t).T
    q = target_points
    n_q = target_points
    n_q = target_normals
    # print(n_q[0])
    # print(" \n H - Stack:")
    # print(np.hstack(n_q[0]))
# print(" \n Neshape:")
# a=n_q[0]
# b-a.reshape([1, 3])
# print(b)
# print(" \n New Axis: ")
# print(n_q[0][np.newaxis, :])

A = np.zeros((M, 6))
b = np.zeros((M, 6))
b = np.zeros((M, 1))

# TODO: build the linear system
for i in range(M):
    A[i, :] = np.hstack(([n_q[i][np.newaxis, :] @ cross_product_operator(p_prime[i]), -n_q[i][np.newaxis, :]]))
    b[i] = np.dot(n_q[i], (p_prime[i] - q[i]))
# End of TODO
```

Figure 3: Build Linear System

```
def solve(A, b):
    ...
    \param A (6, 6) matrix in the LU formulation, or (N, 6) in the QR formulation
    \param b (6, 1) vector in the LU formulation, or (N, 1) in the QR formulation
    \return delta (6, ) vector by solving the linear system. You may directly use dense solvers from numpy.
    # TODO: write your relevant solver
    Q, R = np.linalg.qr(A)
    d = np.dot(Q.T, b)
    return np.dot(np.linalg.inv(R), d)
```

Figure 4: Solve

Please note that the A_i matrix has the last 3 columns as the normal vector with a negative sign. This is attributed to the import of the QR solver from the previous assignment which solved for (AX - B), however here it is of the format (AX + B), hence I have corrected within the A matrix (it is also possible within the solver as well).

Question 2.3.2 (ICP Visualization)

Below are the results for visualization of frame 10-50 as well as frame 10-100.

Frames 10 - 100 use 100 iterations to arrive fusion result. It can be inferred that for closer source and target frames, a fewer number of iterations are required for convergence.

Frames 10 - 100 use 100 iterations to arrive fusion result. It can be inferred that for far apart source and target frames, a larger number of iterations are required for convergence.

Figure 5: Frame10-50 (before ICP)

Figure 6: Frame 10-50 (after ICP)

Figure 7: Frame 10-100 (before ICP)

Figure 8: Frame 10-100 (after ICP)

Q3 Fusion.py

Question 3.1 (Filter Passes)

Filter pass1 masks all indices outside our vertex map limits. It also ensures depths are greater than 0.

Filter pass2 masks all indices beyond a threshold euclidean distance between source and input points. It also checks the angle in between source and input normals using cosine (dot product)

Figure 9:

Figure 10:

Question 3.2 (Merge function)

The Merge function takes the incoming transformed points, normals and colors and merges it with the existing class attributes to produce a "merged" output map representation.

$$\begin{bmatrix}
P = (\omega * P) + 9 \\
\omega + 1
\end{bmatrix}; \begin{bmatrix}
n = (\omega * n_P) + n_q \\
\omega + 1
\end{bmatrix}; \begin{bmatrix}
c = (\omega * c) + new-colon \\
\omega + 1
\end{bmatrix}$$

$$[\omega = \omega + 1]$$

Figure 11:

```
def merge(self, indices, points, normals, colors, R, t):
   TODO: implement the merge function
    \param self The current maintained map
    \param indices Indices of selected points. Used for IN PLACE modification.
   \param points Input associated points, (N, 3)
   \param normals Input associated normals, (N, 3)
   \param colors Input associated colors, (N, 3)
   \param R rotation from camera (input) to world (map), (3, 3)
   \param t translation from camera (input) to world (map), (3, )
   \return None, update map properties IN PLACE
   den = (self.weights[indices] + 1)
   num_p = (self.weights[indices] * self.points[indices] + (R @ points.T + t).T)
   num_n = (self.weights[indices] * self.normals[indices] + (R @ normals.T).T)
   self.points[indices] = num_p/den
   self.normals[indices] = num_n/den
   self.normals[indices] /= np.linalg.norm(self.normals[indices], axis=1, keepdims=True)
   # Colours
   num_c = (self.weights[indices] * self.colors[indices] + colors)
   self.colors[indices] = num_c/den
   den += 1
```

Figure 12:

Question 3.3 (Add function)

The Add function takes the incoming transformed points, and concatenates them to the existing mapping. As stated in the paper, it provides this added data to the next merge function call.

```
def add(self, points, normals, colors, R, t):
    TODO: implement the add function
    \param self The current maintained map
    \param points Input associated points, (N, 3)
    \param normals Input associated normals, (N, 3)
    \param colors Input associated colors, (N, 3)
    \param R rotation from camera (input) to world (map), (3, 3)
    \param t translation from camera (input) to world (map), (3, )
    \return None, update map properties by concatenation
    p unassociated = (R @ points.T + t)
    n unassociated = (R @ normals.T)
    self.points = np.concatenate((self.points, p_unassociated.T))
    self.normals = np.concatenate((self.normals, n_unassociated.T))
    # Colours
    self.colors = np.concatenate((self.colors, colors))
   weight incr = np.ones((points.shape[0], 1))
    self.weights = np.concatenate((self.weights, weight_incr))
```

Figure 13:

Question 3.4 (Fusion)

Once the fusion.py file is run, we get 2 point-based fusion output maps - the actual fused map and the map of normals.

The compression ratio can be given by the total number of points (1155977), divided by, the total size of the map times the number of frames (w*h*200).

Therefore, Compression Ratio = 1155977/(480*600*200) = 0.02

Figure 14: Fusion-point based map

Figure 15: Normal map

Q4 Main.py

The source frame is the RGBD frame and the target frame is the map and their roles should not be switched as the projection to the vertex map happens first which produces weights accordingly, and would otherwise be incorrect. The target map consequently is then projected back from the vertex map. The map after running main.py which combines both ICP and fusion is shown below.

Figure 16: Final output (drift)