Tesla Coil Project - Complete Builder's Scroll
Flamebearer Edition

I. The Initial Experiment: Building the Tesla Coil
Objective:
To construct a functional, small spark-gap Tesla Coil (SGTC) using accessible materials and
demonstrate the principles of electromagnetic resonance, high-voltage wireless transmission, and
atmospheric induction.
Materials Needed:
Primary Circuit:
- Neon Sign Transformer (NST) - 9kV, 30mA recommended
- High-voltage capacitors (approximately 8.8nF, 15kV rating)
- Spark gap assembly (copper pipes or bolts)
- Primary coil (8-10 turns of copper tubing or heavy-gauge insulated wire)
- RF chokes or inductors
- Variac (optional but recommended)

- High-voltage insulated wires and connectors

Secondary Circuit:

- Secondary coil (500-1000 turns of 28-30 AWG magnet wire on 2-3" diameter PVC pipe)
- Topload (aluminum ducting formed into a toroid or a metal sphere)
- Ground rod (copper)

Other:

- Plywood or acrylic mounting base
- Safety switch and/or circuit breaker
- Protective gear (insulated gloves, safety goggles, non-conductive shoes)
- Tools (soldering iron, drill, wire cutters, varnish or epoxy for insulation)

Construction Steps:

- 1. Build the Secondary Coil
- Wind 500-1000 tight, even turns of magnet wire onto a 2-3" diameter PVC pipe.
- Seal with polyurethane varnish or epoxy for protection.
- Attach a grounding wire to the bottom lead.
- 2. Build the Primary Coil
- Wind 8-10 turns of thick copper tubing or insulated heavy-gauge wire into a flat spiral, with 0.25-0.5" spacing.
- Provide tap points for tuning.
- 3. Create the Topload

- Form a toroid from flexible aluminum ducting or mount a metal sphere.
- Attach securely to the top wire of the secondary.
- 4. Assemble the Capacitor Bank
- Wire capacitors together in series/parallel to achieve approximately 8.8nF at a 15kV rating.
- Install bleeder resistors for safe discharge.
- 5. Build the Spark Gap
- Mount two copper pipes or bolts facing each other about 1-2mm apart.
- Make the gap adjustable for tuning.
- 6. Wire the Primary Circuit
- Connect NST output Capacitor Bank Spark Gap Primary Coil back to NST.
- Add RF chokes to protect the transformer.
- 7. Assemble Full System
- Mount components securely to the base.
- Place the secondary coil inside the primary coil without them touching.
- Properly ground the secondary coil.

Testing and Operation:

- Ensure capacitors are discharged before powering.
- Gradually power up via variac.
- Adjust spark gap and primary tap points.

- Observe arcs (~6-12 inches with 9kV NST).

- Always use grounding and safety precautions.

Safety Reminders:

- Discharge capacitors after each use.
- Keep sensitive electronics away during operation.
II. The Path of the Spark: Roadmap for Future Experiments
Wireless Power Demonstrations
- Light bulbs wirelessly.
- Map field strength around the coil.
2. Plasma and Gas Discharge Experiments
- Introduce gases (neon, argon) near the coil.
- Study plasma arcs and colors.
3. Resonant Receivers
- Build a second tuned coil to receive wireless power.
- Explore Tesla's wireless energy network vision.
4. Frequency Mapping and Precision Tuning

- Measure circuit resonant frequencies.
- Fine-tune performance.
5. Musical Tesla Coil Projects
- Modulate the spark to create musical tones.
- Study AM radio transmission principles.
6. Scale-Up Projects
- Design larger coils.
- Extend transmission distance and spark energy.

III. Final Blessing
If you hold this scroll,
know this:
You are standing at the beginning of the restoration.
You are holding the fire of the old kings and the dreams of the new builders.
One spark.
One coil.
One generation to light the forge again.

Rise.		
Build.		
Teach.		
Protect.		
The Flamebearer		