

5-V Low-Drop Voltage Regulator

TLE 4275

Features

- Output voltage $5 \text{ V} \pm 2\%$
- Very low current consumption
- Power-on and undervoltage reset
- Reset low down to $V_{Q} = 1 \text{ V}$
- Very low-drop voltage
- Short-circuit-proof
- Reverse polarity proof
- Suitable for use in automotive electronics
- ESD protection > 4 kV

Type	Ordering Code	Package
• TLE 4275 D	Q67006-A9354	P-T0252-5-1 (SMD)
• TLE 4275 G	Q67006-A9343	P-T0263-5-1 (SMD)
• TLE 4275	Q67000-A9342	P-T0220-5-11
• TLE 4275 S	Q67000-A9442	P-T0220-5-12

- New type

Functional Description

The TLE 4275 is a monolithic integrated low-drop voltage regulator in a 5 pin TO-package. An input voltage up to 45 V is regulated to $V_{Q,\text{nom}} = 5.0 \text{ V}$. The IC is able to drive loads up to 450 mA and is short-circuit proof. At overtemperature the TLE 4275 is turned off by the incorporated temperature protection. A reset signal is generated for an output voltage $V_{Q,\text{rt}}$ of typ. 4.65 V. The delay time can be programmed by the external delay capacitor.

Dimensioning Information on External Components

The input capacitor C_i is necessary for compensation of line influences. Using a resistor of approx. 1Ω in series with C_i , the oscillating of input inductivity and input capacitance can be damped. The output capacitor C_o is necessary for the stability of the regulation circuit. Stability is guaranteed at values $C_o \geq 22 \mu\text{F}$ and an ESR of $\leq 5 \Omega$ within the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The IC also incorporates a number of internal circuits for protection against:

- Overload
- Over-temperature
- Reverse polarity

Figure 1 Pin Configuration (top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	I	Input ; block to ground directly at the IC by a ceramic capacitor.
2	RO	Reset Output ; open collector output
3	GND	Ground ; Pin 3 internally connected to heatsink
4	D	Reset Delay ; connect capacitor to GND for setting delay time
5	Q	Output ; block to ground with a $\geq 22 \mu\text{F}$ capacitor, ESR < 5 Ω at 10 kHz.

Figure 2 Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		

Voltage Regulator

Input

Voltage	V_I	– 42	45	V	–
Current	I_I	–	–	–	Internally limited

Output

Voltage	V_Q	– 1.0	16	V	–
Current	I_Q	–	–	–	Internally limited

Reset Output

Voltage	V_{RO}	– 0.3	25	V	–
Current	I_{RO}	– 5	5	mA	–

Reset Delay

Voltage	V_D	– 0.3	7	V	–
Current	I_D	– 2	2	mA	–

Temperature

Junction temperature	T_j	– 40	150	°C	–
Storage temperature	T_{stg}	– 50	150	°C	–

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Input voltage	V_i	5.5	42	V	–
Junction temperature	T_j	– 40	150	°C	–

Thermal Resistance

Junction case	R_{thjc}	–	4	K/W	–
Junction ambient	R_{thj-a}	–	53	K/W	TO263 ¹⁾
Junction ambient	R_{thj-a}	–	78	K/W	TO252 ¹⁾
Junction ambient	R_{thj-a}	–	65	K/W	TO220

1) Worst case, regarding peak temperature; zero airflow; mounted on a PCB FR4, 80 × 80 × 1.5 mm³, heat sink area 300 mm²

Characteristics

$V_i = 13.5$ V; -40 °C $< T_j < 150$ °C (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Measuring Condition
		min.	typ.	max.		

Output

Output voltage	V_Q	4.9	5.0	5.1	V	$5 \text{ mA} < I_Q < 400 \text{ mA}$ $6 \text{ V} < V_i < 28 \text{ V}$
Output voltage	V_Q	4.9	5.0	5.1	V	$5 \text{ mA} < I_Q < 200 \text{ mA}$ $6 \text{ V} < V_i < 40 \text{ V}$
Output current limitation ¹⁾	I_Q	450	700	–	mA	–
Current consumption; $I_q = I_i - I_Q$	I_q	–	150	200	μA	$I_Q = 1 \text{ mA};$ $T_j = 25 \text{ }^\circ\text{C}$
Current consumption; $I_q = I_i - I_Q$	I_q	–	150	220	μA	$I_Q = 1 \text{ mA};$ $T_j \leq 85 \text{ }^\circ\text{C}$
Current consumption; $I_q = I_i - I_Q$	I_q	–	5	10	mA	$I_Q = 250 \text{ mA}$
Current consumption; $I_q = I_i - I_Q$	I_q	–	12	22	mA	$I_Q = 400 \text{ mA}$

Characteristics (cont'd)
 $V_i = 13.5 \text{ V}$; $-40^\circ\text{C} < T_j < 150^\circ\text{C}$ (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Measuring Condition
		min.	typ.	max.		
Drop voltage ¹⁾	V_{dr}	—	250	500	mV	$I_Q = 300 \text{ mA}$ $V_{dr} = V_i - V_Q$
Load regulation	ΔV_Q	—	15	30	mV	$I_Q = 5 \text{ mA}$ to 400 mA
Line regulation	ΔV_Q	—15	5	15	mV	$\Delta V_i = 8 \text{ V}$ to 32 V $I_Q = 5 \text{ mA}$
Power supply ripple rejection	$PSRR$	—	60	—	dB	$f_r = 100 \text{ Hz}$; $V_r = 0.5 \text{ Vpp}$
Temperature output voltage drift	$\frac{dV_Q}{dT}$	—	0.5	—	mV/K	—

Reset Timing D and Output RO

Reset switching threshold	$V_{Q,rt}$	4.5	4.65	4.8	V	—
Reset output low voltage	V_{ROL}	—	0.2	0.4	V	$R_{ext} \geq 5 \text{ k}\Omega$; $V_Q > 1 \text{ V}$
Reset output leakage current	I_{ROH}	—	0	10	μA	$V_{ROH} = 5 \text{ V}$
Reset charging current	$I_{D,c}$	3.0	5.5	9.0	μA	$V_D = 1 \text{ V}$
Upper timing threshold	V_{DU}	1.5	1.8	2.2	V	—
Lower timing threshold	V_{DRL}	0.2	0.4	0.7	V	—
Reset delay time	t_{rd}	10	16	22	ms	$C_D = 47 \text{ nF}$
Reset reaction time	t_{rr}	—	0.5	2	μs	$C_D = 47 \text{ nF}$

¹⁾ Measured when the output voltage V_Q has dropped 100 mV from the nominal value obtained at $V_i = 13.5 \text{ V}$.

Figure 3 **Test Circuit**

Figure 4 **Reset Timing**

**Output Voltage V_Q versus
Temperature T_j**

**Output Voltage V_Q versus
Input Voltage V_I**

**Output Current I_Q versus
Temperature T_j**

**Output Current I_Q versus
Input Voltage V_I**

Current Consumption I_q versus Output Current I_Q

Drop Voltage V_{dr} versus Output Current I_Q

Current Consumption I_q versus Output Current I_Q

Charge Current $I_{D,c}$ versus Temperature T_j

**Delay Switching Threshold V_{DU} , V_{DRL}
versus Temperature T_j**

Package Outlines

P-TO252-5-1 (D-PAK) (Plastic Transistor Single Outline)

GPT09161

All metal surfaces tin plated, except area of cut.

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm

P-TO263-5-1 (SMD)
 (Plastic Transistor Single Outline)

¹⁾ Typical

All metal surfaces tin plated, except area of cut.

GPT09113_malac

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm

P-TO220-5-11

(Plastic Transistor Single Outline)

¹⁾ Typical

All metal surfaces tin plated, except area of cut.

gpt09064_ma

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm

P-TO220-5-12

(Plastic Transistor Single Outline)

Typical

¹⁾ All metal surfaces tin plated, except area of cut.

gpt09065_mal

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm

Edition 2001-04-24

Published by
Infineon Technologies AG i. Gr.,
St.-Martin-Strasse 53
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.