Perceptual Multistability in a Temporal Illusion

Joseph Marrama

Department of Symbolic Systems
Stanford University
jmarrama@stanford.edu

Alden Timme

Department of Ball Sucking Stanford University aotimme@ballsuck.edu

Abstract

In this project, we model the cognitive conception of a visual illusion that can be perceived in four primary modes. We model perceptual multistability using a generative Bayesian network that captures the relations between high level features that are extracted from the illusion and the different overall conceptions of the illusion that the viewer can have. Due to the high complexity of the illusion itself, we simplify the visual stimulus down to a single unit that corresponds to the viewer's observation of the visual stimulus. Despite this simplifying assumption, our model is sophisticated enough to allow it to exhibit human-like perceptual multistability using Markov Chain Monte Carlo (MCMC) methods to sample from the model conditioned on the observed stimulus. (once we actually get results we should write the rest)

1 Perceptual Multistability

What should be our first section? We should probably do the model first.....

Table 1: Sample table title

PART DESCRIPTION

Dendrite Input terminal Axon Output terminal

Soma Cell body (contains cell nucleus)

COOL LATEX 2ε STUFF!!! alright! LOL?

1.1 Footnotes

Indicate footnotes with a number¹ in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote with a horizontal rule of 2 inches (12 picas).²

1.2 Figures

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction; art work should not be hand-drawn. The figure number and caption always appear after the figure. Place one line space before the figure caption, and one line space after the figure caption is lower case (except for first word and proper nouns); figures are numbered consecutively.

Make sure the figure caption does not get separated from the figure. Leave sufficient space to avoid splitting the figure and figure caption.

You may use color figures. However, it is best for the figure captions and the paper body to make sense if the paper is printed either in black/white or in color.

Figure 1: Sample figure caption.

1.3 Tables

All tables must be centered, neat, clean and legible. Do not use hand-drawn tables. The table number and title always appear before the table. See Table 1.

Place one line space before the table title, one line space after the table title, and one line space after the table. The table title must be lower case (except for first word and proper nouns); tables are numbered consecutively.

LaTeX users:

• Consider directly generating PDF files using pdflatex (especially if you are a MiKTeX user). PDF figures must be substituted for EPS figures, however.

¹Sample of the first footnote

²Sample of the second footnote

• Otherwise, please generate your PostScript and PDF files with the following commands:

```
dvips mypaper.dvi -t letter -Ppdf -G0 -o mypaper.ps
ps2pdf mypaper.ps mypaper.pdf
```

Check that the PDF files only contains Type 1 fonts.

- xfig "patterned" shapes are implemented with bitmap fonts. Use "solid" shapes instead.
- The \bbold package almost always uses bitmap fonts. You can try the equivalent AMS Fonts with command

```
\usepackage[psamsfonts]{amssymb}
```

or use the following workaround for reals, natural and complex:

• Sometimes the problematic fonts are used in figures included in LaTeX files. The ghostscript program eps2eps is the simplest way to clean such figures. For black and white figures, slightly better results can be achieved with program potrace.

Acknowledgments

Use unnumbered third level headings for the acknowledgments. All acknowledgments go at the end of the paper. Do not include acknowledgments in the anonymized submission, only in the final paper.

References

References follow the acknowledgments. Use unnumbered third level heading for the references. Any choice of citation style is acceptable as long as you are consistent. It is permissible to reduce the font size to 'small' (9-point) when listing the references. Remember that this year you can use a ninth page as long as it contains *only* cited references.

- [1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule extraction. In G. Tesauro, D. S. Touretzky and T.K. Leen (eds.), *Advances in Neural Information Processing Systems* 7, pp. 609-616. Cambridge, MA: MIT Press.
- [2] Bower, J.M. & Beeman, D. (1995) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. New York: TELOS/Springer-Verlag.
- [3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. *Journal of Neuroscience* **15**(7):5249-5262.