Probability and Statistics Notes

December 2020

1 Measures of location

- Sample mean \bar{x} is the mean of all observations
- Population mean μ is conceptual this is the mean of the whole population: $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ where N is the size of the population
- Median \tilde{x} is the $\frac{n-1}{2}^{\text{th}}$ value if n is odd and the average of the $\frac{n}{2}^{\text{th}}$ and $\frac{n}{2} + 1^{\text{th}}$ values if n is even
- Population median $\tilde{\mu}$ is the median of the population
- Our task is the make conclusions about μ and $\tilde{\mu}$ knowing just \bar{x} and \tilde{x}
- Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{N} (x_i \bar{x})^2 = \frac{S_{xx}}{n-1}$ where $S_{xx} = \sum_{i=1}^{N} (x_i \bar{x})^2$
- Population variance $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$

2 Basic probability theory

- Conditional probability P(A|B) means probability of A given B
- $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- For mutually exclusive and exhaustive events A_1 to A_i , $P(B) = P(B|A_1)P(A_1) + (B|A_2)P(A_2) + ... + P(B|A_i)P(A_i)$
- Bayes Theorem: $P(A_j|B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^k P(B|A_i)P(A_i)}$
- Independence means that $P(A \cap B) = P(A)P(B)$

3 Discrete random variables

- For a given sample space S of an experiment, a random variable (rv) is a rule that associates a number with each outcome in S
- A Bernoulli rv can only be 0 or 1
- rv's can be discrete or continuous

4 Probability distributions

- The probability distribution (pd) of a discrete rv is defined for every number x by $p(x) = P(X = x) = P(\text{all } s \in S \text{ for which } X(s) = x)$ this is the probability of observing value x when the experiment is performed
- The Bernoulli distributions are the family of distributions where $p(x;a) = \begin{cases} 1-\alpha & x=0\\ \alpha & x=1\\ 0 & \text{otherwise} \end{cases}$

5 Cumulative distribution function of a discrete random variable

- The cdp of a discrete rv x with probability distribution p is defined as $F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$
- \bullet This is the probability that the observed value will be at most x

6 Expected value of a discrete random variable

- E(X) or μ_X is the expected or mean value
- $E(X) = \mu_X = \sum_{x \in D} xp(x)$

7 Variance of a discrete random variable

- V(X) or σ_X^2 is the variance
- $V(X) = \sum_{x \in D} (x \mu)^2 p(x) = E[(X \mu)^2]$
- The standard deviation is the square root of the variance
- Variance can also be obtained as $V(X) = E(X^2) [E(X)]^2$

8 Binomial probability distribution

- A binomial experiment is defined as follows:
 - 1. The experiment consists of a sequence of n smaller experiments (trials).
 - 2. Each trial can result in one of two possible outcomes, which we denote by S (success) and F (failure).
 - 3. The trials are independent from each other.
 - 4. The probability of success is constant from trial to trial. We denote it by p.
- The binomial random variable X is the number of successes among the n trials
- The probability distribution for X, denoted by b(X; n, p) is $b(X; n, p) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 1, 2, ..., n \\ 0 & \text{otherwise} \end{cases}$
- If X is a binomial rv with n trials and probability p then

$$-E(X)=np$$

$$-V(X) = np(1-p)$$

9 Poisson probability distribution

- $p(x; \lambda) = \frac{e^{\lambda} \lambda^x}{x!}$ for x = 0,1,2,...
- $E(X) = V(X) = \lambda$
- The Poisson distribution arises as the limit of the Binomial distribution when $n \to \infty$ and $p \to 0$ in such a way that $np \to \lambda > 0$ in this case $b(X; n, p) \to p(x; \lambda)$
- A Poisson process is defined as:
 - There is an event, for example a radioactive pulse, that occurs at a certain rate α
 - The probability that the event occurs in a small time interval δt is $\alpha \cdot \delta t$
 - The number of events that occur during a time interval Δt is independent of the number of events that occurred prior to this time interval
 - $-P_k(t) = \frac{e^{\alpha t}(\alpha t)^k}{k!}$ is the probability that k pulses will be received during an time interval of length t
 - $P_k(t)$ is a Poisson distribution with parameter $\lambda = \alpha t$

10 Continuous random variables

- A random variable is said to be continuous if its set of possible values is an entire interval of numbers, that is, if for some A; B any number x between A and B is possible
- The probability distribution of X is a function f(x) such that for any 2 numbers a and b with $a \le b$, $P(a \le X \le b) = \int_a^b f(x) dx$
- Probability distributions always integrate to 1

11 Cumulative distribution function of continuous random variable

- Cumulative probability distribution $F(x) = \int_{-\infty}^{x} f(y) dy$
- P(X > a) = 1 F(a)
- $P(a \le X \le b) = F(b) F(a)$
- F'(x) = f(x)

12 Percentiles

- $p = F[\eta(p)] = \int_{-\infty}^{\eta(p)} f(y) dy$
- Probability to have $x \leq \eta(p)$ is p
- Median of continuous distribution, $\tilde{\mu}$, is the 50th percentile
- $\tilde{\mu}$ satisfies $F[\tilde{\mu}] = 0.5$ half the area is on the right, half on the left

13 Expected value

- E(x) is the expected or mean value
- $E(x) = \int_{-\infty}^{\infty} x f(x) dx$

14 Variance

• $V(x) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

15 Normal distribution

• $f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

• The ; sign means parameterised by

 \bullet Expected value is μ

• Standard deviation is σ

• We can compute probabilities numerically or by looking up values in a statistical table

• A binomial distribution with np > 10 and n(1-p) > 10 can be approximated by a normal distribution with mean $\mu = np$ and standard deviation $\sigma = \sqrt{np(1-p)}$

16 Standard normal distribution

• Define $z = \frac{x-\mu}{\sigma}$

• z has a Standard Normal Distribution - can look up in statistical table

• Has cumulative probability distribution $\Phi(z)$

17 Joint probability distributions

• p(x,y) = P(X = x and Y = y)

• If A is the set of all pairs $(x,y), P(X,Y) \in A = \sum_{(x,y) \in A} p(x,y)$

• For continuous random variables, $f(x,y) = P(X,Y) \in A = \int \int_A f(x,y) \ dx \ dy$

• $E[h(X,Y)] = \begin{cases} \sum_{x} \sum_{y} h(x,y) p(x,y) & \text{discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) dx dy & \text{continuous} \end{cases}$

18 Marginal probability distributions

• $p_x(x) = \sum_y p(x,y)$

• $p_y(y) = \sum_x p(x,y)$

• $f_x(x) = \int_{-\infty}^{\infty} f(x, y) dy$

• $f_y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

• X and Y are independent if $p(x, y) = p_x(x)p_y(y)$

19 Covariance

• $Cov(x,y) = E[(x - \mu_x)(y - \mu_y)] = \sum_x \sum_y (x - \mu_x)(y - \mu_y)p(x,y)$

4

20 Correlation coefficient

- Normalise the covariance $\rho_{x,y} = \frac{\operatorname{Cov}(x,y)}{\sigma_x \sigma_y}$
- $\rho_{x,y}$ is between -1 (perfect anti-correlation) and 1 (perfect correlation)

21 Central limit theorem

- States that in many situations, when independent random variables are added, their properly normalized sum tends toward a normal distribution
- Normal distribution has the same mean as the sample mean
- $\sigma_z = \frac{\sigma}{\sqrt{n}}$ or $\sigma_z^2 = \frac{\sigma^2}{n}$
- What if the random variables are not independent or from different distributions?
 - Let random variables X_1 to X_n have mean values μ_1 to μ_n and variance σ_1^2 to σ_n^2
 - The linear combination $Y = \sum_{i=1}^{n} a_i X_i$ has mean $E(Y) = a_1 \mu_1 + ... + a_n \mu_n = \sum_{i=1}^{n} a_i \mu_i$ and variances $V(Y) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \operatorname{Cov}(X_i, X_j)$
 - If the random variables are independent, the variance simplifies to $V(Y) = \sum_{i=1}^{n} a_i^2 \sigma_i^2$

22 Parameter estimation

- θ is the symbol for a parameter, for example population average μ
- $\hat{\theta}$ is the symbol for a point estimator, for example sample average \bar{x}
- If the point estimator is unbiased, this means that $E(\hat{\theta}) = \theta$ for every possible θ
- $E(\hat{\theta}) \theta$ is the bias of $\hat{\theta}$
- Sample average \bar{x} and sample median \tilde{x} are both unbiased estimators
- Precision of estimator $\sigma_{\hat{\theta}} = \sqrt{V(\hat{\theta})}$
- Standard error of $\bar{x} = \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$
- If σ is unknown, we can estimate σ through the sample standard deviation: $\hat{\sigma} = s = \hat{\sigma}_{\bar{x}} = \frac{s}{\sqrt{n}}$

23 Confidence intervals

• Assume $x_1, x_2, ..., x_n$ come from a normal distribution - this means \bar{x} has a normal distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$

5

- If we know \bar{x} , this can be turned into a probability for μ , the population mean
- $p(\mu) = \frac{1}{\sqrt{2\pi} \frac{\sigma}{\sqrt{n}}} e^{-\frac{(\bar{x}-\mu)^2}{2\sigma^2/n}}$
- The $100(1-\alpha)\%$ confidence interval for μ lies between $\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$ and $\bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$

24 t - distribution

- If n is small, $s \neq \sigma$
- Must use t distribution
- If $x_1, x_2, ..., x_n$ come from a normal distribution, $T = \frac{\bar{x} \mu}{s/\sqrt{n}}$ has a t distribution with n-1 degrees of freedom
- The t critical values can be used in the same way as normal
- t distribution leads to larger confidence intervals as it is wider

25 Bayesian statistics

- m(x) is the probability distribution of x, called the Marginal Distribution How likely is it to observe data x in general?
- $\pi(\mu)$ is the probability distribution of μ , called the Prior Distribution What we believed about the the population mean before we started the test.
- $h(x,\mu)$ is the joint distribution of x and μ How likely is it for both the data x to be observed and the mean to be μ .
- $f(x|\mu)$ is the conditional probability of x given μ , called the Likelihood How likely was it to observe data x given we knew the mean distribution?
- $\pi(\mu|x)$ is the conditional probability of μ given x, called the Posterior Distribution Probability distribution of possible population mean values given the data that has been observed.
- Bayes Theorem: $\pi(\mu|x) = \frac{f(x|\mu)\pi(\mu)}{m(x)}$
- $m(x) = \int f(x|\mu)\pi(\mu)d\mu$
- If $\pi(\mu)$ is distributed as $\mathcal{N}(\nu, \tau^2)$ and $f(x|\mu)$ is distributed as $\mathcal{N}(\mu, \sigma^2)$
 - We can use Bayes theorem to compute the posterior
 - $\pi(\mu|x)$ is distributed as $\mathcal{N}(\frac{\tau^2}{\sigma^2+\tau^2}x+\frac{\sigma^2}{\sigma^2+\tau^2}\nu,\frac{\tau^2\sigma^2}{\sigma^2+\tau^2})$
 - The posterior is a weighted average of the prior and new data we're measuring
 - The amount of shift depends on the confidence (variance) in prior and new data
- For n observations $x_1, x_2, ..., x_n$
 - $f(\text{All of the data points } | \mu) = \mathcal{N}(\mu, \frac{\sigma^2}{n})$
 - $-\pi(\mu|x_1,x_2,...,x_n)$ is distributed as $\mathcal{N}(\frac{\tau^2}{\frac{\sigma^2}{n}+\tau^2}\bar{x}+\frac{\frac{\sigma^2}{n}}{\frac{\sigma^2}{n}+\tau^2}\nu,\frac{\tau^2\frac{\sigma^2}{n}}{\frac{\sigma^2}{n}+\tau^2})$

26 Bayesian prediction

- Given observations x_1 to x_n , we can predict the next observation x_{n+1} using Bayesian prediction
- $f(x_{n+1}|x_1, x_2, ..., x_n) = \int f(x_{n+1}|\mu)\pi(\mu|x_1, x_2, ..., x_n) d\mu$
- The Bayesian prediction is not only based on the most likely value for μ but on the whole distribution this makes a difference when the distribution is not symmetrical as values lower or higher than μ may be more likely

27 Interval estimation

- We can define a credibility interval C with area $1-\alpha$ on the cumulative distribution of $\pi(\mu|x_1,x_2,...,x_n)$
- $\pi(\mu|x_1, x_2, ..., x_n) = \mathcal{N}(\kappa, \lambda^2)$
- This can be standardised using variable $z = \frac{\mu \kappa}{\lambda}$ which has a standard normal distribution
- $(\kappa z_{\alpha/2}\lambda, \kappa + z_{\alpha/2}\lambda)$ is the 1α % credibility interval

28 Hypothesis testing

- Type 1 error: Rejecting the null hypothesis when it is in fact true aka false positive has probability α
- Type 2 error: Accepting the null hypothesis when it is in fact false aka false negative has probability β
- We generally try to err on the side of the null hypothesis and so aim to minimise α , the probability of a type 1 error
- \bullet Devising a test that minimises α
 - If we assume x comes from $\mathcal{N}(\mu, \sigma)$, we can say that \bar{x} is distributed as $\mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$
 - The null hypothesis $\mu = \mu_0$ implies that \bar{x} comes from a normal distribution with mean μ_0 and standard deviation $\frac{\sigma}{\sqrt{n}}$
 - If \bar{x} lies within a selected confidence interval on the distribution $p_0(\bar{x})$, that is $\mathcal{N}(\mu_0, \frac{\sigma}{\sqrt{n}})$, then it is likely that \bar{x} comes from this old probability distribution p_0 and that $\mu = \mu_0$ in this case we accept H_0
 - If \bar{x} lies outside a certain interval on the distribution $p_0(\bar{x})$, it is unlikely that \bar{x} comes from p_0 and probably $\mu \neq \mu_0$ in this case we reject H_0
- We can use normalisation with variable $z = \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}}$ (which has a standard normal distribution) in order to define a rejection region using z cutoff values
- Tests can include both tails, or just one
- For a single tailed test, we can place a cutoff at z_{α} which separates off an area α on the standard normal distribution in this case the probability that $z \geq z_{\alpha}$ is α
- We reject H_0 when $z \geq z_{\alpha}$
- The probability of a Type 1 error is α
- Probability of Type 2 error (null hypothesis accepted although it is false)
 - Assume the true mean $\mu > \mu_0$
 - We can define $\tilde{z} = \frac{\bar{x} \mu}{\sigma / \sqrt{n}}$
 - Then $\tilde{z} = z \frac{\mu \mu_0}{\sigma / \sqrt{n}}$
 - $-\beta = p(z \le z_{\alpha}) = p(\tilde{z} \le z_{\alpha} \frac{\mu \mu_0}{\sigma / \sqrt{n}}) = \phi(z_{\alpha} \frac{\mu \mu_0}{\sigma / \sqrt{n}})$
 - Knowing α , μ and μ_0 we can obtain β
 - The smaller α , the larger β
- What to do if standard deviation σ unknown?
 - For a large sample n > 30, use the sample standard deviation as a proxy replace σ by sample standard deviation s this means $z = \frac{\bar{x} \mu}{s/\sqrt{n}}$ has a standard normal distribution
 - For a small sample n < 30, use the t distribution this means $T = \frac{\bar{x} \mu}{s/\sqrt{n}}$ has a t distribution with n-1 degrees of freedom

29 ANOVA

- ANOVA stands for analysis of variance
- Consider a number I of populations / medical treatments with means μ_1 to μ_I
- Each population / treatment 1 to I has the same standard deviation / variance σ/σ^2
- \bullet A number J measurements are taken from each of the I populations
- X_{ij} is the random variable that denotes the j^{th} measurement taken from the i^{th} population
- Mean square for populations (treatments) MSTr = $\frac{J}{I-1}\sum_{i=1}^{I}(\bar{X}_i-\bar{X})^2$
 - $-\bar{X}_i = \frac{1}{J} \sum_{j=1}^J \bar{X}_{ij}$ is the mean for population i
 - $-\bar{X} = \frac{1}{I} \sum_{i=1}^{I} \bar{X}_i$ is the grand mean
- Mean square error $MSE = \frac{1}{I} \sum_{i=1}^{I} S_i^2$
 - $-\ S_i^2 = \frac{1}{J-1} \sum_{j=1}^J (X_{ij} \bar{X}_i)^2$ is the variance for population i
 - MSE is the average population variance
- Null hypothesis: μ_1 to μ_I are equal $\longrightarrow \mathcal{E}(\text{MSTr}) = \mathcal{E}(\text{MSE}) = \sigma^2$
- Alternate hypothesis: At least 2 means are different $\longrightarrow \mathcal{E}(MSTr) > \mathcal{E}(MSE) = \sigma^2$
- The variable $f = \frac{\text{MSTr}}{\text{MSE}}$ follows an F distribution and is the test statistics for a single factor ANOVA
 - The F distribution has 2 parameters, denoted by ν_1 and ν_2 which are both positive integers
 - A random variable that follows the F distribution is always non negative
 - $-\nu_1$ is the number of numerator degrees of freedom
 - $-\nu_2$ is the number of denominator degrees of freedom
 - For ANOVA $\nu_1 = I 1$ and $\nu_2 = I \cdot (J 1)$
- If $f \approx 1$ accept H_0
- If f >> 1 reject H_0
- Note that f can be smaller than 1 but this would be just due to chance fluctuations
- More precisely, if $f > F_{\alpha,\nu_1,\nu_2}$ reject H_0 , otherwise accept H_0

30 Non parametric testing

- If the data does not follow a Gaussian distribution, we cannot use the t distribution
- An alternative is the Wilcoxon signed rank test
- We assume $\mu_0 = 0$ (or otherwise normalise data by looking at $x_1 \mu_0$, $x_2 \mu_0$, etc.)
- The null hypothesis is that $\mu = 0$
- We assume that the distribution is symmetric around the mean, and then test if the data is symmetric around 0
- Step 1: Rank the values by absolute value
- Step 2: Compute s+ which is the sum of the ranks of the values with a positive sign
- If H_0 is true, p(s+) will follow a specific distribution
- Note the maximum value of s+ is $\frac{n(n+1)}{2}$ as this is the sum of the natural numbers from 1 to n
- We can test if $\mu > 0$, $\mu < 0$ or $\mu \neq 0$, and use a table to look up the critical value for any significance level α

31 Correlation

- Sample correlation coefficient = $r = \frac{\sum_{i=1}^{n}(x_i \bar{x})(y_i \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i \bar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i \bar{y})^2}} = \frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$
- r is the estimator for the true population correlation coefficient ρ
- We can test whether ρ is greater, smaller or equal to 0
- The null hypothesis is that $\rho = 0$
- We look at test statistics $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ which follows a t distribution with n-2 degrees of freedom
 - n is the number of data points
- If n > 30, $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ tends towards the normal distribution

32 Linear Regression

- The aim of linear regression is to find β_0 , β_1 and σ^2 such that $y = \beta_0 + \beta_1 x + \epsilon$ where ϵ is a normally distributed random variable with mean 0 and standard deviation σ
- By minimising the sum of squared deviations we can find an expression for $\hat{b}eta_1$

•
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- We can obtain $\hat{\beta}_0$ using $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$
- Estimate of σ^2 is $\hat{\sigma}^2 = s^2 = \frac{\text{Sum of squared errors}}{\text{Degrees of freedom}} = \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{n-2}$
 - This represents the noise strength
 - The sum of squared errors = SSE = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$
- How strong is the linear relationship?
 - The total sum of squares = SST = $\sum_{i=1}^{n} (y_i \bar{y}_i)^2$
 - Coefficient of determination $r^2 = 1 \frac{\text{SSE}}{\text{SST}}$
 - * This represents that proportion of observed variation in y that can be explained by the linear regression
 - * r^2 is between 0 and 1
 - * r^2 is the square of sample correlation coefficient r