目 录

1 绪论	. 1
1.1 钛合金特点	. 1
1.1.1 钛合金国内外发展	. 1
1.1.2 应用领域	. 2
1.2 钛合金分类	. 3
1.3 钛合金的显微组织	. 3
1.4 钛合金的相变	. 5
1.5 Ti6Al4V 合金热处理研究进展	5
1.6 研究背景意义与研究内容	5
1.6.1 研究意义	6
1.6.1 研究内容	6
2 实验材料与研究方法	7
2.1 实验材料属性	. 7
$2.1.1$ 试样 β 转变温度的计算 \dots	. 8
2.1.2 试样设计与加工	9
2.2 钛合金固溶时效热处理试验	10
2.2.1 TC4 合金热处理工艺设计	11
2.2.2 固溶时效处理实验过程	13
2.3 室温力学拉伸试验	14
2.4 组织观察与相结构分析	15
3 TC4 合金固溶时效处理	17
3.1 实验数据分析	17
3.1.1 力学性能分析	17

新疆大学本科毕业论文(设计)

3.1.2 正交实验设计分析18
3.1.3 组织转变机理分析19
3.2 固溶温度对组织性能的影响19
3.3 冷却速度对组织性能的影响21
3.4 时效温度对组织性能的影响22
3.5 固溶时效处理的强化作用研究23
结论与展望 26
参考文献27
附录: 不同热处理工艺对 Ti6A14V 钛合金微观结构和力学性
能影响29
致谢