Práctica 1 SWAP

En esta práctica se trata de instalar dos servidores en dos máquinas virtuales, y hacer que estén interconectados mediante una red interna, y que tengan la pila LAMP instalada y funcionando correctamente.

1. Instalación de las máquinas

Para ello se harán dos instalaciones diferentes en cada máquina, desde ahora m1 y m2. En m1 antes de la instalación se hará una conexión adicional para el adaptador en modo sólo anfitrión para conectarlo ya a la red interna, y en m2 se hará únicamente la conexión NAT a través de la cual se podrá acceder a Internet a través del dipositivo anfitrión.

Posteriormente se procede a instalar las dos máquinas, configurando el idioma, el perfil, la red, la instalación de ciertos servicios...

Nosotros avanzamos en todos los pasos sin realizar cambios excepto en estos dos:

Notamos que en esta imagen ya hacemos la instalación de SSH.

Hecho esto, esperamos a que se efectúe la instalación y reiniciaremos.

2. Instalación de la pila LAMP

Una vez hecho esto procedemos a instalar la pila LAMP en ambos servidores. Para ello se ejecuta el siguiente listado de comandos:

```
sudo apt install apache2
sudo apt install mysql-server mysql-client
```

Comprobamos que Apache funciona correctamente con el comando

service apache2 status

Lo cual nos muestra:

Y con esto ya tenemos instalada la pila LAMP. Ahora debemos asegurarnos de que ambas máquinas pueden comunicarse.

3. Configuración de red

Para esta labor, teniendo en cuenta las dos instalaciones diferentes que hemos realizado, vamos a ver las dos perspectivas:

Configuración para M1

En este caso la configuración está hecha de forma automática durante la instalación. Para comprobarlo usaremos la siguiente orden:

ifconfig

Y en este caso vemos que todo está correctamente configurado

Configuración para M2

Esta máquina aún no está conectada a la red interna con el conector sólo-anfitrión, por lo cual lo que debemos hacer es:

- 1. Apagar la máquina.
- 2. Abrir la configuración de la máquina virtual correspondiente a M2.
- 3. En el apartado Red habilitar el segundo conector de red, y seleccionamos el conector sólo-anfitrión.

Ahora procedemos a comprobar las redes a las que está conectada M2 con el comando usado en M1, y vemos lo siguiente:

```
Archivo Máquina Ver Entrada Dispositivos Ayuda

adizqpoz@m2: "$ ifconfig
enposin tiags=tl63(UP,BR0ADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.2.15 netmask 255.255.0 broadcast 10.0.2.255
inet6 fe80::a00:27ff:fe06:6079 prefixlen 64 scopeid 0x20inet6 fe80::a00:27ff:fe06:6079 prefixlen 64 scopeid 0x20RX packets 621 bytes 617080 (617.0 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 483 bytes 42004 (42.0 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

10: flags=73<UP,LODPBACK,RUNNING> mtu 6556
inet 127.0.0.1 netmask 255.0.00
inet6 ::1 prefixlen 128 scopeid 0x10</br>
Inop txqueuelen 1000 (Local Loopback)
RX packets 202 bytes 15888 (15.8 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 202 bytes 15888 (15.8 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

adizqpoz@m2:"$
```

Como se puede observar, esta máquina aún no está conectada a la red interna. Ahora debemos revisar el archivo de configuración de la red, el cual está alojado en la ruta /etc/netplan/50-cloud.init.yaml, y vemos lo siguiente:

Como vemos, el conector enp0s8 no está configurado. Lo configuramos del mismo modo que está configurado enp0s3.

Comprobamos y vemos lo siguiente:

```
Archivo Máquina Ver Entrada Dispositivos Ayuda

adizqpoz@m2:~% sudo netplan apply
adizqpoz@m2:~% ifconfig
enpos3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
inet6 fe80::aou0:27fif:e06:6079 prefixlen 64 scopeid 0x20link>
ether 08:00:27:06:80:79 txqueuelen 1000 (Ethernet)
RX packets 19 bytes 3691 (3.6 kB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 35 bytes 3818 (3.8 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

enpos8: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.56.103 netmask 255.255.255.0 broadcast 192.168.56.255
inet6 fe80::aou0:27fifieda:26d5 prefixlen 64 scopeid 0x20link>
ether 08:00:27:da:26:d5 txqueuelen 1000 (Ethernet)
RX packets 2 bytes 1180 (1.1 kB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 9 bytes 1250 (1.2 kB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

10: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<nd>
inet 1:2.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<nd>
inet 1:2.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<nd>
inet 1:2.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<nd>
inet 1:2.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<nd>
inet 1:2.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<nd>
inet7 packet8 4 bytes 6324 (6.3 kB)
inet7 prefixlen 128 scopeid 0x10<nd>
inet7 packet8 4 bytes 634 (6.3 kB)
inet7 prefixlen 128 scopeid 0x10<nd>
inet7 packet8 4 bytes 63624 (6.3 kB)
inet7 pr
```

Vemos que no tiene asignada la IP que le corresponde. Para cambiarla a la que deseamos debemos volver a configurar nuestro archivo de configuración, acabando de esta forma:

Al verificar observamos que todo está a priori correctamente configurado.

```
Archivo Máquina Ver Entrada Dispositivos Ayuda

adizapozēm2: "$ ifconfig
enpos3: flags=4163.UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
inet6 fe80::a00:27ff:fe06:6079 prefixien 64 scopeid 0x20<link>
ether 08:00:27ff:fe06:6079 prefixien 64 scopeid 0x20RX packets 31 bytes 5521 (5.6 kB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 59 bytes 6172 (6.1 kB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

enpos8: flags=4163.UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 192.168.56.102 netmask 255.255.255.0 broadcast 192.168.56.255
inet6 fe80::a00:27ff:feda:26d5 prefixien 64 scopeid 0x20<link>
ether 08:00:27ff:feda:26d5 prefixien 64 scopeid 0x20<link>
ether 08:00:27ff:feda:26d5 prefixien 64 scopeid 0x20<link>
ether 08:00:27ff:feda:26d5 prefixien 64 scopeid 0x20RX packets 6 bytes 3276 (3.2 kB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 18 bytes 2404 (2.4 kB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

10: flags=73.UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6::1 prefixien 128 scopeid 0x10</br>
RX packets 84 bytes 6324 (6.3 kB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 84 bytes 6324 (6.3 kB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 84 bytes 6324 (6.3 kB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

adizqpoz@m2:~$
```

En condiciones normales comprobaríamos que esto funciona utilizando el comando ping. Sin embargo, debido a la naturaleza de esta práctica, esta comprobación la haremos en el siguiente apartado, cuya finalidad es exactamente esa.

4. Cuestiones a resolver

Las tareas que nuestros servidores deben ser capaces de realizar son las siguientes:

- Acceder por ssh de una máquina a otra
- Acceder mediante la herramienta curl desde una máquina a la otra

En teoría, tras el trabajo previo realizado debemos ser capaces de, de manera inmediata, resolver estas cuestiones.

4.1. Acceder por ssh de una máquina a otra

Para ello debemos ejecutar el siguiente comando en cada una de las máquinas: ssh adizqpoz@<ip de la máquina complementaria> Cuando hacemos esto en ambas máquinas vemos el siguiente resultado:

Podemos observar que el servicio ssh funciona como debe.

4.2. Acceder mediante la herramienta curl desde una máquina a la otra

Para ello, en la ruta /var/www/html/ creamos un archivo "ejemplo.html" con el contenido que se nos da como ejemplo en el guión de la práctica, es decir:

```
<hr/>
<BODY>
Web de ejemplo de adizqpoz para SWAP
</BODY>
</HTML>
```

Posteriormente usamos el siguiente comando en cada una de las máquinas:

curl <ip de la máquina complementaria>/ejemplo.html

Ejecutando este comando observamos lo siguiente:

Por	tanto	, el servic	lor A	Apache	funciona	correctament	te y	podemos	dar	por	conclu-
ida	esta p	oráctica.									

Autor: Adrián Izquierdo Pozo

Si desea ver el archivo Markdown puede verlo en mi repositorio de Github