X(4660)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

Seen in radiative return from e^+e^- collisions at $\sqrt{s}=9.54$ –10.58 GeV by WANG 07D. Also obtained in a combined fit of WANG 07D, AUBERT 07S, and LEES 14F. See also the review under the X(3872)particle listings. (See the index for the page number.)

X(4660) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
4643 ± 9 OUR AVERAGE Error includes scale factor of 1.2.						
$4652 \pm 10 \pm 11$	279	$^{ m 1}$ WANG	15A	BELL	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$	
$4669 \pm 21 \pm 3$	37	² LEES	14F	BABR	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$	
4634^{+}_{-} $^{8+}_{7-}$ $^{5}_{8}$	142	³ PAKHLOVA	08 B	BELL	$e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$	
• • • We do no	ot use the	e following data for	avera	iges, fits	, limits, etc. • • •	
4661^{+}_{-} $^{9}_{8}\pm$ 6	44	⁴ LIU	08н	RVUE	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$	
$4664 \pm 11 \pm 5$	44	WANG	07 D	BELL	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$	

¹ From a two-resonance fit. Supersedes WANG 07D.

X(4660) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
72±11 OUR	AVERAGE				
$68\pm11\pm~5$	279	¹ WANG			10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$
$104 \pm 48 \pm 10$	37	² LEES	14F	BABR	10.58 e ⁺ e ⁻ $\rightarrow \gamma \pi^{+} \pi^{-} \psi(2S)$
$92 + 40 + 10 \\ -24 - 21$	142	³ PAKHLOVA	08 B	BELL	$e^+e^- ightarrow \Lambda_c^+\Lambda_c^-$
• • • We do n	ot use the	following data for	avera	ges, fits,	, limits, etc. • • •
$_{42}+17_{\perp}$ 6	44	4	ЛОП	DV/HE	10.58 0+0- 305+5-3/(25)

 $^{42^{+17}}_{-12} \pm 6$ 08H RVUE 10.58 $e^{+}e^{-} \rightarrow \gamma \pi^{+}\pi^{-}\psi(2S)$ LIU 07D BELL 10.58 $e^+e^- \to \gamma \pi^+\pi^- \psi(2S)$ WANG

Created: 5/30/2017 17:21

 $^{^2}$ From a two-resonance fit. 3 The $\pi^+\pi^-\psi(2S)$ and $\Lambda_c^+\Lambda_c^-$ states are not necessarily the same. 4 From a combined fit of AUBERT 07S and WANG 07D data with two resonances.

¹ From a two-resonance fit. Supersedes WANG 07D.

² From a two-resonance fit. ³ The $\pi^+\pi^-\psi(2S)$ and $\Lambda_c^+\Lambda_c^-$ states are not necessarily the same.

⁴ From a combined fit of AUBERT 07S and WANG 07D data with two resonances.

X(4660) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	e^+e^-	
	$\psi(2S)\pi^+\pi^-$	seen
Γ ₃	$J/\psi \eta \ D^0 D^{*-} \pi^+$	
Γ_4	$D^0 D^{*-} \pi^+$	
Γ ₅	$\chi_{c1}\gamma$	
Γ_6	$\begin{array}{c} \chi_{c2} \gamma \\ \Lambda_c^+ \Lambda_c^- \end{array}$	
Γ ₇	$\Lambda_c^+ \Lambda_c^-$	

$X(4660) \Gamma(i) \times \Gamma(e^+e^-)/\Gamma(total)$

$\Gamma ig(\psi(2S)\pi^+\pi^-ig)\, imes\,\Gammaig(e^+\,e^-ig)/\Gamma_{ m total}$ VALUE (eV)

 $\Gamma_2\Gamma_1/\Gamma$

ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
$2.0 \pm 0.3 \pm 0.2$	279	$^{ m 1}$ WANG	15A	BELL	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$		
$8.1 \pm 1.1 \pm 1.0$	279	² WANG	15 A	BELL	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$		
$2.7\!\pm\!1.3\!\pm\!0.5$	37	³ LEES			10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$		
$7.5\!\pm\!1.7\!\pm\!0.7$	37	⁴ LEES	14F	BABR	10.58 $e^+e^- \to \gamma \pi^+\pi^- \psi(2S)$		
$2.2^{igoplus 0.7}_{-0.6}$	44	⁵ LIU	08н	RVUE	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$		
$5.9 \!\pm\! 1.6$	44	⁶ LIU	08н	RVUE	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$		
$3.0\pm0.9\pm0.3$	44	³ WANG			10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$		
$7.6\!\pm\!1.8\!\pm\!0.8$	44	⁴ WANG	07 D	BELL	10.58 $e^+e^- \to \gamma \pi^+\pi^- \psi(2S)$		

¹ Solution I of two equivalent solutions from a fit using two interfering resonances. Super-

⁵ Solution I in a combined fit of AUBERT 07S and WANG 07D data with two resonances. ⁶ Solution II in a combined fit of AUBERT 07S and WANG 07D data with two resonances.

$\Gamma(J/\psi\eta) \times \Gamma(e^+\epsilon)$	$(r^-)/\Gamma_{tota}$	ıl				$\Gamma_3\Gamma_1/\Gamma$	
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT		
ullet $ullet$ $ullet$ We do not use t	he followin	g data for averages	s, fits,	limits,	etc. • • •		
< 0.94	90	WANG	13 B	BELL	e^+e^-	$J/\psi\eta\gamma$	
$\Gamma(\chi_{c1}\gamma) \times \Gamma(e^+e^-)/\Gamma_{total}$ $\Gamma_5\Gamma_1/\Gamma$							
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT		
<0.45	90	¹ HAN	15	BELL	10.58 e^+e	$- \rightarrow \chi_{c1} \gamma$	
¹ Using B($\eta \rightarrow \gamma \gamma$) = (39.41 \pm 0.21)%.							

Created: 5/30/2017 17:21

sedes WANG 07D. 2 Solution II of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.

³ Solution I of two equivalent solutions in a fit using two interfering resonances.

⁴ Solution II of two equivalent solutions in a fit using two interfering resonances.

$\Gamma(\chi_{c2}\gamma) \times \Gamma(e^+e^-$	·)/Γ _{total}					$\Gamma_6\Gamma_1/\Gamma$		
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT			
<2.1	90	¹ HAN	15	BELL	$10.58 e^+e^-$ -	$\rightarrow \chi_{c2} \gamma$		
1 Using B $(\eta ightarrow \gamma \gamma)$ =	Using B($\eta \to \gamma \gamma$) = (39.41 \pm 0.21)%.							

X(4660) BRANCHING RATIOS

$\Gamma(D^0D^{*-}\pi^+)/\Gamma(\psi$	$(2S)\pi^{+}$	π^-)			Γ_4/Γ_2		
VALUE	CL%	DOCUMENT ID		TECN	COMMENT		
<10	90	PAKHLOVA	09	BELL	$e^{+}e^{-} \rightarrow D^{0}D^{*-}\pi^{+}$		
$\Gamma(D^0D^{*-}\pi^+)/\Gamma_{\text{tot}}$	_{al} × Г($e^+e^-)/\Gamma_{ m total}$			$\Gamma_4/\Gamma \times \Gamma_1/\Gamma$		
VALUE	<u>CL%_</u> `	DOCUMENT ID		TECN	COMMENT		
$< 0.37 \times 10^{-6}$	90	$^{ m 1}$ PAKHLOVA	09	BELL	$e^{+}e^{-} \rightarrow D^{0}D^{*-}\pi^{+}$		
1 Using 4664 \pm 11 \pm 5 MeV for the mass of X (4660).							
$\Gamma(\Lambda_c^+\Lambda_c^-)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_7/\Gamma \times \Gamma_1/\Gamma$							
VALUE (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT		
10161000		_					

 $1.68^{+0.16}_{-0.15}^{+0.29}$ 142 1_{PAKHLOVA} 08B BELL $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$

X(4660) REFERENCES

Created: 5/30/2017 17:21

 $^{^{1}}$ The $\pi^{+}\pi^{-}\psi(2S)$ and $\Lambda^{+}_{C}\Lambda^{-}_{C}$ states are not necessarily the same.