Universidad Nacional de Colombia

FACULTAD DE INGENIERÍA

Matemática discreta ii

Taller 1

Autor: Haider Andres Mayorga Vela

Profesor: Francisco Albeiro Gomez Jaramillo

Febrero 2023

1. : $G \to H$ es homomorfismo, entonces $Img(\theta)$ y $kernel(\theta)$ es subgrupo de H.

Demostracion de: $kernel(\theta)$ y $Img(\theta)$ son subgrupos, Para tal fin las propiedades que deben cumplir para un subgrupo: cerradura, inversos y el elemento neutro.

Inicialmente kernel(θ). Sea $a, b \in \text{kernel}(\theta)$, es decir, $\theta(a) = \theta(b) = 1$. por tanto,

$$\theta(ab) = \theta(a)\theta(b) = 1 \cdot 1 = 1$$

asi que ab ademas estaria en kernel (θ) , y por lo tanto, kernel (θ) es cerrado bajo la operación del grupo G.

ademas si a está dentro de kernel (θ) , entonces $\theta(a) = 1$, y por lo tanto, $\theta(a^{-1}) = (\theta(a))^{-1} = 1^{-1} = 1$. Asi que, el inverso de a también está en kernel (θ) , y kernel (θ) es cerrado bajo inversos.

la ultima propiedad se demostraria de la siguiente manera, el elemento neutro del grupo G, que se identifica como 1_G , está en kernel (θ) porque $\theta(1_G) = 1_H$ (porque es un homomorfismo), y por lo tanto kernel (θ) contiene el elemento neutro. Por consiguiente es subgrupo de H. por tales razones, kernel (θ) cumple propiedades de un subgrupo y por lo tanto es un subgrupo de G.

ya en segundo lugar, $\operatorname{Img}(\theta)$. Sea $c, d \in \operatorname{Img}(\theta)$, o en otras palabras, existen $a, b \in G$ tales que $\theta(a) = c$ y $\theta(b) = d$. Entonces,

en $Img(\theta)$, y $Img(\theta)$ es cerrado bajo inversos.

Finalmente, el elemento neutro del grupo H, denotado como 1_H , está en $\operatorname{Img}(\theta)$ porque $\theta(1_G) = 1_H$ (ya que es un homomorfismo), y por lo tanto $\operatorname{Img}(\theta)$ contiene el elemento neutro.

Entonces, $\mathrm{Img}(\theta)$ cumple todas las propiedades de un subgrupo y por lo tanto es un subgrupo de H.

2. Sea $X \subseteq G$. Entonces, existe un subgrupo S de G tal que $X \subseteq S$.

para la demostración se entiende que $X\subseteq G$ que conlleva a que existe un subgrupo S tal que $X\subseteq S$, y para cualquier otro subgrupo T que contenga a X, se tiene que $S\subseteq T$.

Además, dado que S es un subconjunto que contiene a X, es posible definir el subgrupo T=G, tal que por definición de subgrupo ya dicha en el punto anterior, $X\subseteq T$. Por lo tanto, se cumple que $X\subseteq T$ y $S\subseteq T$ para cualquier subgrupo T que contenga a X.