F	7	ጎ	0	<u>.</u> لر	.e)ر	Ξ	1		-	0	~	٦	-	5	•
			1	4			-		-		-	 -	_			-

Note Title

Note Tit	le I
Defn:	The decomposition $V = W + W + for any W = V , V = W + W + W + W + W + W + W + W + W + W$
<i>\overline{\pi}</i>	decomposition for every VEV as-
	decomposition for every VEV as- decomposition
	$ \cdot $
	$V = W + W'$, $W \in W$, $W' \in W$. $W_1 \subseteq W_2$ then
	In this case, the map v > w is called W2 = W1+
	V = W + W', W ∈ W, W' ∈ W W, ⊆ W2 then In this case, the map V → W is called . W2 ⊆ W1 + "the orthogonal projection of V onto W". (Sometimes, w itself is called the orthogonal proj. of v onto W.).
	(sometimes, w itself is called the orthogonal proj.
	of v onto W.).
•	In general you can define P_W : $V \rightarrow V$, for $V = W_1 \oplus W_2$ $V \mapsto W$, $W \in W_1$
	$V \mapsto W, w \in W_1$
	Leven' & check that (1) Phy is a linear transf.
	$V = W_1 \oplus W_2$ V $(2) P_{W_1}(V) = W$
	WI COM WI COM CAR POLICE AND CARD
	V=W, W=W1 V=W1PW2 V=W1PW2 V=W1PW2 V=W1PW2 V=W1 PW, (V) = W. (3) PW, = PW, (i.e. Pw. is an idempotent.)
٠٠	-1-
	im (PW) = Wi
	$p^{2}(x) = p(p(x)) = P(x)$
	$P_{W_i}^2(v) = P_{W_i}(P_{W_i}(v)) = P_{W_i}(w) = w = P_{W_r}(v)$
	Pw, is called the "projection of V outo W1 along W2".
•	In particular, if V=W & W & we define
	\mathcal{D} . $\mathcal{V} \rightarrow \mathcal{V}$
	W - W F W
	Han Disalled the "outless of Danie of Vantall"
	Pw: V -> V v +> w, w \in W then Pw is called the "orthogonal proj. of V onto W."
	Notice that for vEV, Pw(v) EW & v-Pw(v) EW
	1 1 N
	i.e. (PW(v) - v E (range PW) = W1)

12 PM(v) -V --- range (P). Schematic: If V= W1 D--- & Wk. P = proj. of V outs W1 along W20. + Wk Orthogonal projections occur often in practice those to compute the matrix of Pw? Theorem Let W be a subspace of a fd ips. $V \notin V \in V$:

(i) $||V - P_{W}(v)|| \leq ||V - w||$ for any $w \in W$. (ii) If $\{x_1, ..., x_m\}$ is an orthonormal basis of W, then $P_W(v) = \sum \langle v, x_i \rangle x_i$. Proof: (i) v-PW(v) EW, so for any wEW, V-PW(V) I PW(V)-M Consider 11v-w11 = 11v - Pw(v) + Pw(v) -w11 = 11v - Pw(v)[1+ 11 Pw(v) -w112 (ii) Recall that for $V = W \oplus W^{\dagger}$ $V = \sum_{i=1}^{m} \langle v_i n_i \rangle n_i + w'$ $\overrightarrow{L} W^{\dagger}$

So
$$P_{W}(v) = \sum_{i=1}^{M} \langle v_i x_i \rangle x_i$$

If
$$W = \langle a \rangle$$
, then $P_{W}(v) = \langle v, \frac{a}{|a|} \rangle \cdot \frac{a}{|1a||}$

$$= \frac{1}{4} \langle v, a \rangle \cdot a$$

$$= \frac{1}{4} \langle v, a \rangle \cdot a$$

$$= \frac{1}{4} \langle a^*v \rangle \cdot a$$

$$= \frac$$

Let
$$P_{W}: \mathbb{R}^{\frac{1}{2}} \to \mathbb{W}$$
 $P_{W} = A \left(\Lambda^{T} A \right)^{\frac{1}{2}} A^{T}$, where $A = \begin{bmatrix} \frac{1}{2} & \frac{5}{6} \\ \frac{3}{4} & \frac{3}{8} \end{bmatrix}$

• calculate P_{W} .

• check that P_{W} does indeed map any vector of $\mathbb{R}^{\frac{1}{2}}$ and \mathbb{W}
 $P_{W} \begin{pmatrix} \frac{1}{6} \\ \frac{1}{6} \end{pmatrix} = \begin{pmatrix} 1 & -\infty \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{5}{6} \right) \\ \frac{1}{8} \end{pmatrix}$.

Note: rank $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{V}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{W}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{W}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{W}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{W}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{W}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{W}$ rank $P_{W} = \dim \mathbb{W}$.

 $P_{W} = \dim \mathbb{W} < \dim \mathbb{W}$ rank $P_{W} = \dim \mathbb{W}$.

(Tutoria	1: How to compute e-values & e-vectors?)
Remarks	: 1) Notice that $Tv = Av = A \cdot Iv$
	$(T - AI)v = 0 \longrightarrow for \text{ noil use}$ Computation $V \in \text{ for } (T - AI)$
	⇒ V E Ker (T-AI).
	2) If $T_v = A_v$, then $\ker(T-AI)$ is non-empty & non-zero. 3) From the 1 st isomorphism thm, if $T: V \to V$ is linear then
	3 From the 1st isomorphism thm, if
	l: V -t V is linear then
	dim V = dim (ker T) + dim (im T).
	Here, dim V = dim (ker (T-II)) + dim (im (T-II)).
	> 0 < dim V
	(3) To compute all the p-values of T, we solve the
	So det (T-AI) = 0. (4) To compute all the e-values of T, we solve the above equation
	$A = \begin{bmatrix} 6 & -1 & 2 \\ 4 & 1 & 2 \\ -10 & 0 & 3 \end{bmatrix} \xrightarrow{\text{lin. trans. from } \mathbb{R}^3 \longrightarrow \mathbb{R}^3.}$
	$\begin{bmatrix} -10 & 0 & 3 \end{bmatrix} A - \times I = \begin{bmatrix} A \\ A \end{bmatrix} - \begin{bmatrix} \chi & 0 \\ 0 & \chi \end{bmatrix}$
	$= \begin{bmatrix} 6-x & -1 & 2 \\ 4 & 1-x & 2 \\ -10 & 0 & 3-x \end{bmatrix}$
	$det(A-\alpha I) = (poly. of deg. 3 in a).$
	solve to get all e-values of A
	(exercise).

