Deep learning

RNNs

Announcements

- Environment
 - It is a lot faster now, next week it will be even faster.
 - Docker image 1.2
- Assignment 2 will be set on 9th of April, due 23rd of April.
 - RNN based.

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} (l(f(x_i, w), y_i) + \frac{\lambda}{2n} \sum_{j=1}^{n} w_j^2)$$

- Regularisation
 - L2 regularisation
- Practiced BN,
 Dropout and L2.

Set weight to 0

Feed-Forward Network Data

Recurrent Network Data

Sequential data

Data = (examples, sequence_length, features)

Data = (examples, sequence_length, features)

Dataset of sentences

"hi" "hoe" "gaat"	"het	" " <ec< th=""><th>OS>"</th></ec<>	OS>"
"goed" " <eos>"</eos>	0	0	0
"leuk" " <eos>"</eos>	0	0	0
"mag" "je" "iets" '	' <e0< td=""><td>S>".</td><td>0</td></e0<>	S>".	0

Dataset's dimensions = (4, 5, ?)

Dataset of measurements

(21, 998) (20, 998) (19, 980)
(10, 1040) (13, 1000) (11, 981)
(40, 970) (40, 970) (41, 978)

Dataset's dimensions = (3, 3, 2)

(21, 998, -4) (20, 998, -4) (19, 980, -6) (19, 980, -6)

Dataset's dimensions = ?

Basic RNN cell

Overview

Today we will cover

Topic: RNNs.

- Training RNNs.
- Long term dependencies, LSTM & GRU.
- Residual connections.

Notebook: RNN using GRU.

Topic: Improving RNNS.

- Regularisation in RNNs.
- Going deep, stacking layers.

Notebook: Improving RNNs.

- After each time-step we store some information.
- When we train RNNs we are training them to do two things.
 - Store the correct information between time-steps. This is hard.
 - Map the stored information to solve the task. This is easy.

- Why is it hard?
- RNNs are trying to learn to represent sequences by remembering what they contain.
 - In question detection we want to remember if we saw "what",
- We learn to represent the sequence in order to solve the task at hand.
 - At start we are doing poorly (random weights) and we see almost no indication that "what" was used previously.
 - We want to update our RNN cell so that next time we remember when we see "what".

- If the sequence is long, little information is passed all the way to the end so a small error signal is sent back for the word "what".
- Small error signal = small updates

- The is the problem of long term dependencies, which is because the gradient vanishes (the error signal).
- This is a general problem in neural networks trained with gradient descent, but very tangible in RNNs due to their depth.

LSTMs and GRUs

- The solution to the vanishing gradient problem in RNNs was a different implementation of the RNN cell.
 - LSTM (1997)
 - GRU (2014)
- They are more complex and expensive but are able to deal better with long term dependencies.
 - LSTM is heavier than GRU.

Residual connections

- The solution to this problem in general are residual connections, (ResNet, 2015).
- We add connections
 which bypass non linear activations (or go
 through fewer).
- This allows the error signal to flow directly to earlier layers.

Generating sequences

We want to break this long sequence into many sequences

Reshape approach - sequence length = 7

1st example

Generating sequences

We want to break this long sequence into many sequences

Shift approach, using shift = 2, sequence length = 7

1st example

2nd example

3rd example

$$(5, \dots) (6, \dots) (7, \dots) (8, \dots) (9, \dots) (10, \dots) (11, \dots)$$

4th example

Generating sequences

Shift approach, using shift = 2, sequence length = 7, target shift = 1

Hands-on

Go to https://dba.projects.sda.surfsara.nl/

Notebook: 05a-rnns.ipynb

Break at 11:00 / 15:00

Second part at 11:10 / 15:10

Improving RNNs

- Regularisation
 - L1/L2
 - Dropout, recurrent dropout
- Improving RNNs
 - Stacking
 - Stateful
 - Bi-directional

Improving RNNs L2/L1 regularisation

- Just like with normal dense layers.
- we add L2/L1 regularisation to the weights learnt in the RNN cell.

```
layer_gru(units = 10, kernel_regularizer = regularizer_l2(l = 0.001))
```

layer_gru(units = 10, kernel_regularizer = regularizer_l1(l = 0.001))

Improving RNNs Dropout

- In RNNs we consider dropouts in two locations.
 - Input
 - Recurrent dropout

layer_gru(units = 10, dropout = 0.2, recurrent_dropout = 0.3)

Improving RNNs Stacking RNNs

- Why would we consider input dropout?
 - Maybe in production we might not always get all inputs.
- More likely, we are stacking RNNs.
- Stacking RNNs is like adding additional layers in a dense network.
 - We never go that deep, 1-6 layers. Long training time.

layer_gru(units = 10, return_sequences = TRUE) %>%
layers_gru(units = 10)

Improving RNNs Stateful

 A stateful RNN passes the last state of the previous batch to as an initial state to the next batch.

- Otherwise the initial state is "all zeroes".
- This is useful if there is some connection between batches.
 - For example, the batches are in sequence.

Improving RNNs Bi-directional

- We process the sequence in both directions.
- Very helpful for example in named entity recognition, in which we classify every word as a "person", "place",
 - He said, "Teddy Roosevelt ...
 - He said, "Teddy bears ...

Summary

- Regularisation
 - L1/L2
 - Dropout, recurrent dropout
- Improving RNNs
 - Stacking
 - Stateful
 - Bi-directional

Hands-on

Go to https://dba.projects.sda.surfsara.nl/

Notebook: 05b-.ipynb

Wrap-up at 12:20 / 16:20

RNN architectures

Intput / Output

Will not cover

Bi-directional

- We did not cover any natural language processing (NLP).
 - Word embeddings, representing words as vectors
- RNNs have been very successful in NLP over the years.
- NLP requires a lot of data preprocessing and large models.
- Same models used.

Word Embedding Space

Summary

Topic: RNNs.

Training RNNs.

 Long term dependencies, LSTM & GRU.

Residual connections.

Notebook: RNN using GRU.

Topic: Improving RNNS.

Regularisation in RNNs.

Going deep, stacking layers.

Notebook: Improving RNNs.