Estructuras Discretas Examen 3 Jueves 14 de Diciembre de 2023

Profesor: Nestaly Marín Nevárez
Ayudantes de teoría: Eduardo Pereyra Zamudio
Ricardo López Villafán
Ayudantes de laboratorio: Edgar Mendoza León
David Valencia Rodríguez

Resuelve de manera limpia y ordenada los siguientes ejercicios. Indica claramente el número de pregunta que se esta resolviendo.

2 puntos

1. Demuestra, usando inducción, que para todo número natural $n \geq 1$ se cumple:

$$\sum_{k=1}^{n} k(k!) = (n+1)! - 1$$

2 puntos

2. Demuestra, utilizando inducción, que la suma de los cubos de tres números naturales consecutivos es divisible entre nueve, es decir, que $(n-2)^3 + (n-1)^3 + n^3 = 9(x)$ para algún $x \in \mathbb{N}$.

1 punto

3. Define de manera recursiva una función lop(A) que devuelva una lista con los operadores lógicos en una fórmula de lógica proposicional A.

5 puntos

- 4. Define de manera recursiva las siguientes funciones:
 - a) Una función aplana(T) que reciba un árbol binario T y regrese una lista con las etiquetas de los nodos que lo componen. $(1 \ punto)$
 - b) Una función $\operatorname{nn}(T)$ que reciba un árbol binario T y regrese el número de nodos que lo componen. (1 punto)
 - c) Una función long(xs) que reciba una lista xs y regrese su longitud. (1 punto)

Luego, demuestra, usando inducción estructural y las funciones previamente definidas, que la longitud de la lista que regresa aplana(T) es igual al número de nodos de T, es decir, demuestra que long(aplana(T)) = nn(T).

2 puntos

1. Demuestra, usando inducción, que para todo número natural $n \ge 1$ se cumple:

$$\sum_{k=1}^{n} k(k!) = (n+1)! - 1$$

$$B_{ase} - P(1) - P.D.: \sum_{k=1}^{1} k(k!) = 2! - 1$$

$$\sum_{k=1}^{1} k(k!) = 1 \cdot (1!) = 1 \cdot 1 = 2 - 1 = 2! - 1$$

H.T.: Supongamos que
$$\sum_{k=1}^{n} k(k!) = (n+1)! - 1$$

= (n+2)1

P.T:
$$P.D: \sum_{k=1}^{n+1} k(k!) = (n+2)! -1$$

$$\sum_{k=1}^{n+1} k(k!) = \sum_{k=1}^{n} k(k!) + (n+1)(n+1)! \quad \text{def } \Sigma$$

$$= (n+1)! - 1 + (n+1)(n+1)! \quad \text{H.I.}$$

$$= (n+1)! (n+2) - 1$$

def fact

2 puntos

2. Demuestra, utilizando inducción, que la suma de los cubos de tres números naturales consecutivos es divisible entre nueve, es decir, que $(n-2)^3 + (n-1)^3 + n^3 = 9(x)$ para algún $x \in \mathbb{N}$.

Dem. J Inducción sobre n.

-Notemos que exister 3 noturales consecutivos (n-2)+(n-1)+n a portir de $n \ge 2$.

Base. P(2) $0^3 + 1^3 + 2^3 = 9$

H.T.- Supongamos que para para algún $n \in \mathbb{N}$ se cumple que $(n-2)^3 + (n-1)^3 + n^3$ es divisible entre 9.

P.I. P.D.: (n-1)3 + n3 + (n+1)3 es divisible entre 9.

- Sean $m = (n-1)^3 + n^3 + (n+1)^3$ y $m' = (n-2)^3 + (n-1)^3 + n^3$

- Entonces $m = m' - (n-2)^3 + (n+1)^3$, y por H.I., $m' = 9 \times para$ algún $\times \in \mathbb{N}$.

 $-Asi: m = 9x - (n-2)^3 + (n+1)^3$

 $= 9x - (n^3 - 6n^2 + 12n - 8) + (n^3 + 3n^2 + 3n + 1)$

 $= 9x + 9n^2 - 9n + 9$

 $= 9(x + n^2 - n + 1)$

1 punto 3. Define de manera recursiva una función lop(A) que devuelva una lista con los operadores lógicos en una fórmula de lógica proposicional A.

$$\log(\rho) = []$$

$$\cdot \log(\tau A) = (\tau : \log(A))$$

$$| \log (\pi(p \to \neg q \land (s \lor r))) = | \pi : \log(p \to \neg q \land (s \lor r)) |$$

$$= | \pi : (\to : \log(p) \sqcup \log(\neg q \land (s \lor r)) |) |$$

$$= | \pi : (\to : \exists \sqcup (\land : \log(\neg q) \sqcup \log(s \lor r)) |) |$$

$$= | \pi : (\to : (\land : (\pi : \log(q)) \sqcup (\lor : \log(s) \sqcup \log(r))) |) |$$

$$= | \pi : (\to : (\land : (\pi : \exists) \sqcup (\lor : \exists \sqcup \exists))) |) |$$

$$= | \pi : (\to : (\land : (\pi : \exists) \sqcup (\lor : \exists \sqcup \exists))) |) |$$

$$= | \pi : (\to : (\land : (\pi : (\lor : \exists))) |) | = | [\pi , \to , \land, \pi , \lor] |$$

5 puntos

4. Define de manera recursiva las siguientes funciones:

a) Una función aplana(T) que reciba un árbol binario T y regrese una lista con las etiquetas de los nodos que lo componen. $(1 \ punto)$

b) Una función nn(T) que reciba un árbol binario T y regrese el número de nodos que lo componen. $(1 \ punto)$

c) Una función long(xs) que reciba una lista xs y regrese su longitud. (1 punto)

Luego, demuestra, usando inducción estructural y las funciones previamente definidas, que la longitud de la lista que regresa aplana(T) es igual al número de nodos de T, es decir, demuestra que long(aplana(T)) = nn(T).

Aplanar un arbol

· aplana (void) = []

·aplana (tree (T1, C, T2)) = (c: aplana (T1) 4 aplana (T2))

Número de nodos de un arbol

• nn (void) = 0

· nn $\{\text{tree}(T_1, c, T_2)\} = 1 + nn(T_1) + nn(T_2)$

Longitud de una lista

· long([])=0

· long ((a: 1)) = 1 + long (1)

Concatenación de listas

· [] ~ [= l2

· (a: l1) ~ l2 = (a: l1 ~ l2)

Propiedad de longitud de concatenación:

Para dos listas xs, ys:

 $long(xs \sqcup ys) = long(xs) + long(ys)$

Luego, demuestra, usando inducción estructural y las funciones previamente definidas, que la longitud de la lista que regresa aplana(T) es igual al número de nodos de T, es decir, demuestra que long(aplana(T)) = nn(T).

Dem.] - Inducción sobre T.

H.I.- Sean Ti y Tz arboles binarios arbitrarios.

Supongamos que long(aplana (T_1)) = $nn(T_1)$ y que long (aplana (T_2)) = $nn(T_2)$.

P.I.: P.D.: long(aplana(tree(T1,c,T2))) = nn(tree(T1,c,T2))

long(aplana(tree(T1,C,T2)))

$$=1+nn(T_1)+nn(T_2)$$

prop. long.