UGANDA MARTYRS UNIVERSITY EXAMINATIONS FACULTY OF SCIENCE FINAL ASSESSMENT

STAT 2201: ADVANCED PROBABILITY

 $\underline{\text{Monday } 28^{th} \text{ April, } 2008}$

2:00 PM - 5:00 PM

INSTRUCTIONS:

- (i) Answer any FOUR questions.
- (ii) Read all the instructions on the Answer book.

Question 1

- (a) (i) Define what is meant by two events A and B being independent. (1 Marks)
 - (ii) If events A and B are independent, show that events A^c and B^c are also independent. (3 Marks)
 - (iii) Three men Smith, Brown and Jones independently participate in a shooting competition. Their respective chances of hitting the target are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{2}$ respectively. Find the probability that the target will be hit by exactly two of the candidates. (3 Marks)
- (b) (i) State Baye's theorem. (2 Marks)
 - (ii) In a bolt factory, 30%, 50% and 20% of production is manufactured by machines A, B and C respectively. If 4%, 5% and 3% of the output of these machines are defective, what is the probability that a randomly selected bolt that is found to be defective is manufactured by machine C. (3 Marks)
- (c) For a Binomial random variable X with a probability mass function given by

$$f(x) = \binom{n}{x} p^x q^{n-x}, \ x = 0, 1, 2, \dots, n$$

- (i) Derive the expressions for E(X) and E[X(X-1)] (2+2 Marks)
- (ii) Using your results in a(i) above, show that Var(X) = npq (3 Marks)
- (d) A random variable X is said to be a Poisson distributed if its probability mass function is

given by
$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}, x = 0, 1, 2, \dots$$
 Show that $E(X) = \lambda$ (3 Marks)

(e) A random variable X is said to be uniformly distributed over an interval (a, b) if its probability density function is given by $f(x) = \frac{1}{b-a}$, a < x < b Find the expected value of X, E(X).

(a) (i) Define a probability generating function of a random variable X.

2Marks

(ii) State any two properties of a probability generating function.

2Marks

(b) Given the moment generating function of a random variable X is $M_X(t) = \frac{5}{(5-t)}$.

State the density function of X. Deduce E[X].

4Marks

(c) Let Y have a pdf

$$f(y) = \begin{cases} 2y, & 0 \le y \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

Find $M_Y(t)$ the moment-generating function of Y.

5Marks

(d) (i) Let X be a gamma random variable with parameters α and β , show that

$$E(X^{k}) = \frac{(\alpha + k - 1)(\alpha + k - 2) \dots \alpha}{\beta^{k}}$$

5 Marks

(ii) Find an expression for $E(X^2)$ if the moment generating function for X is given by

$$M_X(t) = (1 - p_1 - p_2) + p_1 e^t + p_2 e^{2t}$$

3Marks

(e) The probability density function of a random variable X is

$$f(x) = kx^{14}(1-x)^{13}, 0 < x < 1$$

Find the constant k.

4 Marks

(a) Assume the probabilistic behavior of a pair of discrete random variables X and Y is described by the joint probability density function

$$f(x,y) = \frac{xy^2}{39}$$

defined over the four points (1, 2), (1, 3), (2, 2), (2, 3)

- (i) Determine the probability mass function of X+Y and use it to compute $P(X+Y\leq 4)$.

 4Marks
- (ii) Find the expectation of XY. 3Marks
- (iii) Find the conditional probability that X = 1 given that Y = 2. 2Marks
- (iv) Calculate the correlation coefficient of X and Y. 5Marks
- (b) If Y is the number of heads obtained in two tosses of a balanced coin, find the probability distribution of $X = Y^2 + 4$. 3Marks
- (c) A supermarket has two express lines. Let X and Y denote the number of customers in the first and second lines respectively, at any given time. During non-rush hours, the joint pdf of X and Y is summarized by the following table:

		X			
		0	1	2	3
Y	0	0.1	0.2	0	0
	1	0.2	0.25	0.05	0
	2	0	0.05	0.05	0.025
	3	0	0	0.025	0.05

- (i) Find P(|X Y| = 1), the probability that X and Y differ by exactly one. 3Marks
- (ii) Compute E(X/Y=2). 5Marks

(a) Let X and Y be continuous random variables with joint pdf

$$f(x,y) = \begin{cases} \frac{1}{8}(6-x-y), & 0 < x < 2, \ 2 < y < 4 \\ 0, & \text{elsewhere} \end{cases}$$

Compute

- (i) $f_X(x)$ the marginal probability of X. 3Marks
- (ii) $f_{Y/x}(y)$. 3Marks
- (iii) P(2 < Y < 3/X = 1). 3Marks
- (b) Show whether the two random variables X and Y with the following joint probability density functions are independent or not. 5Marks

$$f(x,y) = \begin{cases} 8xy; & 0 \le x \le y \le 1 \\ 0; & \text{otherwise} \end{cases}$$

(c) Suppose that

$$f_{Y/x}(y) = \frac{2y + 4x}{1 + 4x}$$
 and $f_X(x) = \frac{1}{3}(1 + 4x)$

For 0 < x < 1 and 0 < y < 1. Find the marginal pdf of Y.

- 5Marks
- (d) (i) Let X be a random variable with the set of possible values $\{-1,0,1\}$ and probability mass function $P(-1) = P(0) = P(1) = \frac{1}{3}$. Letting $Y = X^2$, find cov(X,Y) 3Marks
 - (ii) A student in mathematics argues that the concept of cov(X,Y) = 0 and X,Y being independent events are really the same, and that if cov(X,Y) = 0, they must be independent. Do you agree with this statement?

 3Marks

- (a) Let $X \sim N(0,1)$ and $Y \sim N(0,1)$ be independent random variables. Find the joint probability density function of $R = \sqrt{X^2 + Y^2}$ and $\theta = \arctan\left(\frac{Y}{X}\right)$. Show that R and θ are independent.
- (b) Let $X \sim \text{Gamma}(\alpha_1, \beta)$ independent of $Y \sim \text{Gamma}(\alpha_2, \beta)$. Define

$$U = \frac{X}{X + Y} \text{ and } V = X + Y$$

Find, by the Jacobian method, the joint probability density function of $\Phi(u, v)$. 5Marks

(c) Suppose that the p.d.f of a random variable X is as follows:

$$f(x) = \begin{cases} \frac{1}{2}x, & 0 < x < 2\\ 0, & \text{otherwise} \end{cases}$$

Determine the distribution and probability density functions of $Z = 4 - X^3$ 5Marks

(d) If the probability density function of X is given by

$$f(x) = \frac{kx^3}{(1+2x)^6} \quad , \quad x > 0$$

Show that the probability density of a random variable $Y = \frac{2X}{1+2X}$ is

$$f(y) = \frac{k}{16}y^3(1-y)$$
 ; $0 < y < 1$

5Marks

(a) Suppose that $\{X_1, X_2, \dots, X_8\}$ are independent and identically distributed random variables, from an exponential density function with mean $\frac{1}{4}$.

Let
$$Y_8 = \max\{X_1, \dots, X_8\}$$
 and $Y_1 = \min\{X_1, \dots, X_8\}$

(i) Find the probability density function of Y_8 .

5Marks

(ii) Find the joint probability density function of Y_1 and Y_8 .

5Marks

- (b) (i) Let $\{X_1, \ldots, X_n\}$ be a random sample from a $N(\mu, \sigma^2)$. Show that the sample mean \bar{X} is also normally distributed. State its mean and variance. 5Marks
 - (ii) Show that the sum of identically independent Geometric random variables is a negative binomial. 5Marks
- (c) Let X and Y be independent random variables with Poisson distributions of parameters λ_1 and λ_2 respectively. Use the moment generating function technique to find the distribution of Z = X + Y.

END