QUESTION (HD0308): Let $S = \{X^{\alpha} : \alpha \in Q^{+}\}$ where Q^{+} denotes the set of nonnegative rational numbers. Let R be the semi-group ring Q[S] and if P is a nonzero prime ideal of R, must $P^{-1} = R$?

ANSWER: The answer is **not generally**! To understand the answer you need to know that (i) R is a directed union of PID's $R_n = Q[X^{\frac{1}{n}}]$, where n ranges over integers ≥ 1 , (ii) R is a Bezout domain and (iii) in a Bezout domain every irreducible element is a prime. If you do not know some or all of these requirements then go read the requirements before reading further.

If you know all these then consider the element X-2 in R. I claim that X-2 is irreducible in R and hence a prime. If X-2=fg with f,g nonunits in R then because R is a directed union of R_n 's, X-2=fg with f,g nonunits in R_n for some natural number n. But for each n>1, $X-2=(X^{\frac{1}{n}})^n-2$ which is irreducible in $Q[X^{\frac{1}{n}}]$ using Eisenstein's irreducibility criterion. So X-2 is not reducible in the Bezout domain R and hence is a prime. Thus P=(X-2)R is a prime ideal in R, but $P^{-1}=\frac{1}{X-2}R \supsetneq R$.

Requirements:

- (i) R can be regarded as a directed union (or direct limit) of the polynomial rings $R_n = Q[X^{\frac{1}{n}}]$. By directed union we mean that $R = \bigcup_{n \geq 1} R_n$ such that if there are some natural numbers $n_1, n_2 \dots n_r$ then there is a natural number m (divisible by each of n_i) such that $\bigcup_{i=1}^{i=r} R_{n_i} \subseteq R_m$.
- (ii). Using the fact that $R = \bigcup_{n \ge 1} R_n$ is a directed union, and the fact that each of R_n is a PID we can show that R is a Bezout domain (every finitely generated ideal is principal). This can be established as follows: Let $f, g \in R$ then there is a natural number n such that $f, g \in R_n$ for some natural number n. Since R_n is a PID there exists $h \in R_n$ such that $fR_n + gR_n = hR_n$. But since R_n is a subring of R we have $R_nR = R$ and so $(fR_n + gR_n)R = hR_nR$, which gives fR + gR = hR. Thus every two generated ideal in R is principal and this can be used to show that every finitely generated ideal of R is principal.
- (iii). Using fR + gR = hR, for every pair of nonzero elements $f,g \in R$ we can say that for each pair of nonzero elements $f,g \in R$ there exist elements $h,u,v \in R$ such that uf + vg = h such that $h \mid f$ and $h \mid g$ in R. The element h has the property that each d that divides both f and g also divides h. But this is the characteristic property of the GCD (greatest common divisor) of two integers, in elementary number theory. For this reason the h in fR + gR = hR is called a GCD of f and g. Using the elementary number theory language we can say that if g is a GCD of g and g and g in g then there exist g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a GCD of g and g is a common factor of g is a common factor of g is a GCD of g in g i

NOTES: (a). The description of requirement (iii) is stated for *R* but it works generally for all Bezout domains and essentially it is a review of the basic number theory or the basic ring theory.

(b). I mentioned Eisenstein's irreducibility criterion. If you do not remember it here it is (stated for the ring of integers Z): If $f = \sum a_i X^i \in Z[X]$, $\deg(f) \ge 1$ and p is an irreducible element of Z such that $p \not\mid a_n : p \mid a_i$ for $i = 0, 1, \dots, n-1; p^2 \not\mid a_0$ then f is irreducible in Q[X]. (For a more general statement look up Theorem 6.15 (page 164) of [Thomas Hungerford, Algebra, Springer-Verlag, 1974].)