* Exercice 1 (Cours)

Donner le théorème de comparaison de séries à termes positifs avec des O.

* Exercice 2 (Cours)

Donner le théorème sur les séries de Riemann.

* Exercice 3 (Cours)

Donner la règle de D'Alembert.

* Exercice 4

Étudier la convergence de la série $\sum u_n$ dont le terme général est

$$a) u_n = \frac{n}{n^3 + 1}$$

$$b) u_n = \frac{1}{n!}$$

a)
$$u_n = \frac{n}{n^3 + 1}$$
 b) $u_n = \frac{1}{n!}$ c) $u_n = \frac{3^n + n^4}{5^n - 2^n}$

* Exercice 5

Étudier la convergence de la série $\sum u_n$ dont le terme général est

a)
$$u_n = \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}} \right)$$
 b) $u_n = a^n n!, a \in \mathbb{R}$ c) $u_n = n \sin \left(\frac{1}{n} \right)$

* Exercice 6

Étudier la convergence de la série $\sum u_n$ dont le terme général est

a)
$$u_n = \frac{\sqrt{n}}{n^2 + \sqrt{n}}$$
 b) $u_n = \left(\frac{1}{2}\right)^{\sqrt{n}}$ c) $u_n = \frac{\ln n}{\ln(e^n - 1)}$

* Exercice 7

Étudier la nature de la série $\sum u_n$ où $u_n = \frac{1}{n}$ si n est un carré, et $u_n = 0$ sinon.

* Exercice 8

Étudier la convergence de la série $\sum u_n$ dont le terme général est

a)
$$u_n = 1 - \cos \frac{\pi}{n}$$
 b) $u_n = \left(\frac{n}{n+1}\right)^{n^2}$ c) $u_n = ne^{-\sqrt{n}}$

* Exercice 9

Soit $x \in]-1,1[$. Calculer

$$\sum_{k=0}^{+\infty} kx^k.$$

* Exercice 10

Sachant que

$$\sum_{n=0}^{+\infty} \frac{1}{n!} = e,$$

déterminer la valeur des sommes suivantes.

$$S_1 = \sum_{n \ge 0} \frac{n+1}{n!}$$
 $S_2 = \sum_{n \ge 0} \frac{n^2 - 2}{n!}$ $S_3 = \sum_{n \ge 0} \frac{n^3}{n!}$

$$S_2 = \sum_{n>0} \frac{n^2 - 2}{n!}$$

$$S_3 = \sum_{n>0} \frac{n^3}{n!}$$

* Exercice 11

Dans cet exercice, on s'intéresse à la série

$$\sum_{n\geq 1} \frac{(-1)^{n-1}}{n}.$$

- 1. Justifier que cette série est convergente.
- 2. En utilisant l'inégalité de Taylor-Lagrange sur la fonction $t \mapsto \ln(1+t)$, montrer que la série est convergente de somme ln 2.
- 3. Sachant que

$$\frac{1}{k} = \int_0^1 t^{k-1} dt,$$

retrouver d'une autre façon le résultat précédent.

* Exercice 12

Soit (u_n) une suite positive et décroissante. Prouver que si la série $\sum_n u_n$ est convergente, alors la suite (nu_n) tend vers 0.

* Exercice 13

Soient (u_n) et (v_n) deux suites réelles positives. On suppose que les deux séries $\sum_n u_n$ et $\sum_n v_n$ convergent. Prouver la convergence de $\sum_n \sqrt{u_n v_n}$ et de $\sum_{n} \max(u_n, v_n).$

* Exercice 14

Soit $\sum_n u_n$ une série à termes positifs.

- 1. On suppose que $\sum_n u_n$ converge. Prouver que, pour tout $\alpha > 1$, la série $\sum_{n} (u_n)^{\alpha}$ converge.
- 2. On suppose que $\sum_n u_n$ diverge. Prouver que, pour tout $\alpha \in]0,1[$, la série $\sum_{n} (u_n)^{\alpha}$ diverge.