

Assignment 3 Old But Gold: Fourier Transform Applications in Image Processing (Hint)

• In the frequency domain, Equation (4) of problem 5 can be rewritten as:

$$\hat{\mathbf{x}}_{LS} = \mathcal{F}^{-1} \left(\frac{\overline{\mathcal{F}(k)} \circ \mathcal{F}(\mathbf{y})}{\overline{\mathcal{F}(k)} \circ \mathcal{F}(k)} \right)$$

where \mathcal{F} and $\mathcal{F}^{\text{-}1}$ are the Fourier and inverse Fourier transform operators, respectively. Also, $\overline{(\cdot)}$ denotes the conjugate transpose operation, whereas \circ is the pointwise product operator. Note that the division operator in the equation is also an elementwise operator.

Similarly, one can write Equation (6) such that:

$$\hat{\mathbf{x}}_{TRLS} = \mathcal{F}^{-1} \left(\frac{\overline{\mathcal{F}(k)} \circ \mathcal{F}(\mathbf{y})}{\overline{\mathcal{F}(k)} \circ \mathcal{F}(k) + \lambda \left(\overline{\mathcal{F}(\mathbf{A})} \circ \mathcal{F}(\mathbf{A}) \right)} \right)$$

in which the above definitions also apply.

Considering the fact that k and y (and also A) are of different sizes, a preprocessing step is required before the above element-wise calculations become possible.

Abbasi