(자연과학) (NATURAL SCIENCE)

주체103(2014)년 제60권 제10호 Vol. 60 No. 10 JUCHE103(2014).

깽지조개(Chlamys farreri)와 밥조개(Patinopecten yessoensis) 석불임후대의 발육과 성장에 대한 연구

김룡길, 석광진

경애하는 김정은동지께서는 다음과 같이 말씀하시였다.

《축산과 수산, 과수부문을 결정적으로 추켜세워 인민들의 식생활을 개선하고 더욱 풍족하게 하여야 합니다.》

깽지조개와 밥조개는 우리 나라 바다연안에 널리 분포되여있는 경제적가치가 큰 조 개류이다.

지금 세계 여러 나라들에서는 조개류에서 섞붙임육종, 다배체육종에 의한 새 품종조 개를 얻어내기 위한 연구가 활발히 진행되고있다.[1, 2]

우리는 우리 나라 홍원앞바다에서 서식하고있는 깽지조개(Chlamys farreri)와 밥조개 (Patinopecten yessoensis)를 섞붙임하여 얻어낸 후대의 발육과 성장특성에 대한 연구를 하였다.

재료 및 방법

연구재료로는 홍원앞바다에서 서식하고있는 질량이 250g이상인 3년생 밥조개 암컷 20마리, 수컷 10마리와 질량이 60g이상인 2년생 깽지조개 암컷 40마리와 수컷 10마리를 리용하였다.

깽지조개 암컷과 밥조개 수컷의 섞붙임은 깽지조개 암컷에서 인공적으로 알을 받은 다음 여기에 밥조개 수컷에서 인공적으로 받은 정액을 수정시키는 방법으로 하였다. 수정 알은 18℃의 바다물속에서 발육시켰다.

밥조개 암컷과 깽지조개 수컷의 섞붙임은 밥조개 암컷에서 인공적으로 알을 받은 다음 여기에 깽지조개 수컷에서 인공적으로 받은 정액을 수정시키는 방법으로 하였다. 수정 알은 13℃의 바다물속에서 발육시켰다.

수정알에서 까난 유생은 물멎음식으로 탕크에서 길렀으며 물갈이는 하루 두번 절반 씩 하였고 7일에 한번씩 완전물갈이를 하였다.

부착변태시킨 새끼조개는 바다에 내다 길렀다.

유생의 발육상태는 현미경으로 관찰하고 그 크기는 대안측미계로 측정하였고 새끼조 개의 크기는 노기스로 채였다.

알까남률(%)은 다음의 식으로 계산하였다.

알까남률 =
$$\frac{담륜유생개체수}{수정알수} \times 100$$

결과 및 고찰

1) 깽지조개(*C. farreri*, ♀)×밥조개(*P. yessoensis*, ♂)후대의 발육과 성장 깽지조개(♀)×밥조개(♂) 후대의 알까남률과 D형유생발생률을 조사한 결과는 표 1과 같다.

	# 1. OXIX/II			,eoe
수정후	대조구		시험구	
시간/h	알까남률/%	D형유생발생률/%	알까남률/%	D형유생발생률/%
18	78.4 ± 4.5		37.2±2.8	
19	89.6 ± 3.7		59.6 ± 3.9	
20	94.1 ± 2.0		78.7 ± 3.3	
21	98.7 ± 1.9		88.5 ± 3.5	
27		51.1 ± 4.8		35.1 ± 3.2
29		75.2 ± 3.2		48.2 ± 1.9
31		87.6 ± 1.5		67.0 ± 2.3
32		89.6 ± 2.4		80.2 ± 1.8

표 1 깽지주개(♀)×밥주개(♂) 후대이 알까남률과 D형유생발생률

물온도 $18\sim19^{\circ}$ C, 조사개체수 250마리/h, 대조구: 깽지조개(우)×깽지조개(σ), 시험구: 깽지조개(우)×밥조개(σ)

표 1에서 보는바와 같이 알까남률은 시험구에서 88.5%이고 대조구에서 94.1%로서 시험구에서 대조구보다 10%정도 낮았다. 그러나 시험구에서 담륜유생이 기본적으로 까났다는것을 알수 있다.

D형유생도 시험구에서 정상적으로 발육하였는데 그 발생률은 80.2%에 도달하였다. 대조구에서는 그것이 89.6%로서 시험구보다 약간 높았다.

조개류의 유생은 D형유생시기부터 먹이를 먹기 시작한다. D형유생과 각정기유생시기의 성장을 조사한 자료는 표 2와 같다.

# 2. 6/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1})/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1}{1})/\frac{1}{1}(\frac{1})/\frac{1}(\frac{1}{1})/\frac{1}(\frac{1}{1})/\frac{1}{1}(\frac{1})/\fra						
수정후	대조	구	시험구			
날자/d	각장 / <i>μ</i> m	각고/ <i>μ</i> m	각장 / <i>μ</i> m	각고/ <i>μ</i> m		
3	114.4±5.8	94.2±6.0	113.0±4.3	92.5±5.2		
4	119.0±6.3	98.5 ± 6.7	117.0 ± 5.0	95.2 ± 4.4		
5	125.7±7.7	103.4 ± 7.4	126.3±6.3	101.3 ± 6.0		
6	133.3 ± 8.0	110.0 ± 8.4	131.6±6.1	107.7 ± 5.7		
7	137.8 ± 8.6	116.2 ± 8.0	136.7±7.2	114.5 ± 7.0		
8	141.6 ± 9.3	123.5 ± 8.6	139.5±7.4	118.8 ± 6.8		
9	149.5 ± 9.4	126.8 ± 9.0	147.8 ± 8.1	125.5 ± 7.0		
10	157.2±10.0	141.2 ± 9.6	154.2 ± 8.4	134.2 ± 8.1		
11	164.8 ± 9.5	141.2 ± 9.0	163.3 ± 9.0	139.6±8.5		
12	170.2±10.2	148.2 ± 9.8	171.5 ± 9.5	145.8 ± 9.0		
13	179.9±10.7	159.6±10.0	178.8±10.3	150.9 ± 9.7		
14	185.6±11.3	164.5 ± 10.4	186.2±10.0	158.5 ± 9.4		

표 2. 깽지조개(♀)×밥조개(♂) 후대에서 D형유생과 각정기유생의 성장

물온도 18~20℃, 조사개체수 250마리/d, 대조구와 시험구는 표 1에서와 같음

D형유생과 각정기유생은 시험구에서도 대조구에서와 같이 정상적으로 발육하였다.

유생의 크기는 초시기(수정후 3일)에 시험구에서 대조구의것보다 약간 작았지만 수정후 14일만에는 일반적으로 크기가 서로 비슷하였다.

밥조개류에서 안점출현은 일반적으로 유생이 바닥생활로 넘어가는 신호로 되며 이 시기에 유생은 부착기질에 붙어 새끼조개로 변태한다.

깽지조개(♀)×밥조개(♂) 후대유생의 안점출현정형을 조사한 자료는 표 3과 같다.

 수정후		대조구			시험구	
날자/d	안점출현률/%	각장/μm	각고/ <i>μ</i> m	안점출현률/%	각장/μm	각고/ <i>μ</i> m
13	10	179.9±10.7	159.6±10.0		178.8±10.3	150.9±9.7
14	30	185.0 ± 11.8	164.5±10.4	5	186.2 ± 10.0	158.5 ± 9.4
15	40	189.5±8.6	177.5±7.5	20	194.2±5.0	164.5±5.7
16	60	194.3±6.0	181.5±7.3	30	198.5 ± 6.2	172.5±7.3
17				50	204.5±10.0	180.5±9.5

표 3. 깽지조개(♀)×밥조개(♂) 후대유생에서 안점출현정형

물온도 19~21℃, 조사개체수 250마리/d, 대조구와 시험구는 표 1에서와 같음

표 3에서 보는바와 같이 유생의 안점은 시험구에서 수정후 14일에 출현하였고 대조구에서는 수정후 13일에 출현하였다. 이것은 안점출현이 대조구에서보다 늦어진다는것을 보여준다. 안점출현률은 시험구에서 17일경에 50%에 이르고 대조구에서는 16일에 60%에이르렀다.

이와 같이 깽지조개(♀)×밥조개(♂) 후대유생이 정상적으로 발육하여 안점이 나타나며 그 유생의 크기는 각장이 시험구에서 186.2 μm, 대조구에서 179.9 μm 였다.

우리는 부착기에 붙은 새끼조개를 바다에 내다 기르면서 성장상태를 관찰하였다.(표 4)

수정후	대 2	조구	시험구		
날자/d	각장/mm	각고/mm	각장/mm	각고/mm	
35	0.51±0.02	0.491±0.01	0.573±0.03	0.519 ± 0.02	
65	1.1 ± 0.07	1.4 ± 0.07	1.6 ± 0.08	2.6 ± 0.11	
95	2.9 ± 0.12	3.4 ± 0.13	4.2±0.15	5.9 ± 0.24	
125	8.7 ± 0.5	9.7 ± 0.8	10.4 ± 0.6	12.7 ± 0.7	
155	16.0±1.3	20.0 ± 1.1	23.0±1.2	29.0 ± 1.4	
185	26.0±1.8(100%)	29.8±1.9(100%)	29.8±2.3(115%)	35.0±2.6(117%)	

표 4. 깽지조개(♀)×밥조개(♂) 후대(새끼조개)의 성장상래

물온도 22~27℃, 조사개체수 30마리/d, 대조구와 시험구는 표 1에서와 같음

표 4에서 보는바와 같이 수정후 185일에 새끼조개의 각장과 각고는 시험구에서 각각 29.8, 35.0mm이고 대조구에서 각각 26.0, 29.8mm로서 시험구에서는 대조구에 비해 각장이 15%, 각고가 17% 더 자랐다.

이와 같이 깽지조개(♀)×밥조개(♂) 후대의 새끼조개는 깽지조개보다 빨리 자란다는 것을 알수 있다. 2) 밥조개(*P. yessoensis*,♀)×깽지조개(*C. farreri*, ♂) 후대의 발육과 성장 밥조개(♀)×깽지조개(♂) 후대의 알까남률과 D형유생발생률을 조사한 결과는 표 5 와 같다.

丑 5.	밥조개(위))×깽지조개(♂)	후대의	알까남률과	D형유생발생률
------	--------	-----------	-----	-------	---------

수정후시간/h —	대조구		시험구	
〒3千八건/N ─	알까남률/%	D형유생발생률/%	알까남률/%	D형유생발생률/%
32	65.4 ± 1.8		40.4 ± 3.0	
34	75.5 ± 2.1		62.8 ± 2.4	
36	84.5 ± 1.9		79.5 ± 3.1	
38	96.5 ± 3.5		88.6 ± 4.2	
60		65.4 ± 1.8		10.5 ± 1.1
62		75.5 ± 2.1		24.3 ± 2.3
64		84.5 ± 1.9		45.5 ± 3.2
68		96.5 ± 3.5		73.8 ± 3.8

물온도 12.5~13°C, 조사개체수 250마리/h, 대조구: 밥조개(♀)×깽지조개(♂),

시험구: 밥조개(♀)×깽지조개 (♂)

밥조개(♀)×깽지조개(♂) 섞붙임후대에서 D형유생과 각정기유생의 성장을 조사한 자료는 표 6과 같다.

표 6. 밥조개 (위)×깽지조개(♂) 후대에서 D형유생과 각정기유생의 성장

수정후	대 2	조구	시현]구
날자/d	각장/ <i>μ</i> m	각고/ <i>μ</i> m	각장/ <i>μ</i> m	각고/ <i>μ</i> m
4	96.3±5.2	81.3±3.8	104±4.0	84.5±4.1
5	114.0±5.9	89.5±4.6	117.5±5.3	95.2±4.3
6	122.0±6.8	97.5±4.9	119.5±6.1	95.3±5.2
7	127.5±6.4	102.5±5.2	124.7±6.5	102.8 ± 5.6
8	131.0±7.1	106.0±6.7	130.9 ± 6.8	105.1 ± 6.2
9	145.2±8.4	120.2±7.5	135.0±7.4	109.0 ± 7.0
10	151.3±9.6	133.1±8.8	140.0±7.9	110.3 ± 8.1
11	160.2 ± 10.2	138.0±9.9	145.0 ± 8.2	115.0 ± 8.7
12	167.5±10.5	140.0 ± 10.1	145.0 ± 9.5	119.2±9.3
13	168.0±11.1	140.5 ± 10.9	159.5 ± 10.8	126.5 ± 9.7
14	173.0 ± 12.4	145.0±11.2	162.2±11.3	132.0±10.5
15	179.5 ± 13.2	150.5 ± 11.8	174.5±11.9	149.5±10.8
16	180.0 ± 14.3	158.0 ± 12.4	181.0±12.6	156.0 ± 9.9
17	187.5 ± 14.8	161.0±12.9	192.5±13.7	167.5±11.5
18	189.5±15.7	164.5±13.6	198.0±14.5	168.5±12.4

물온도 12.3~18.0℃, 조사개체수 250마리/d, 대조구와 시험구는 표 5에서와 같음

표 6에서 보는바와 같이 D형유생단계에서 수정후 12일에 각장과 각고는 시험구에서 각각 145.0, 119.2 μ m 였고 대조구에서 각각 167.5, 140.0 μ m 였다. 시험구에서의 성장이 대조구에서의 성장보다 떠지는데 이것은 시험구(밥조개(우)×깽지조개(♂))에서 아비계통인 깽지조개의 영향을 받은것이라고 본다.

각정기유생단계(수정후 13~18일)에서 각장과 각고는 시험구에서 각각 198.0, 168.5 μ m 였고 대조구에서 각각 189.5, 164.5 μ m 였다. 각정기유생단계에서의 성장상태를 보면 대조구의것보다 시험구유생들이 더 크게 자랐다. 이것은 섞붙임에 의한 잡종강세효과와 관련된다고 본다.

밥조개(♀)×깽지조개(♂) 후대의 안점출현정형을 조사한 자료는 표 7과 같다.

수정후		대조구			시험구	
날자/d	안점출현률/%	각장/μm	각고/μm	안점출현률/%	각장/μm	각고/μm
19		201±16.4	186±14.1	10	216.0±15.2	195.0±13.3
20		215±17.1	199 ± 15.0	20	220.0±16.4	204.0 ± 14.1
21		218±17.8	201±15.8	50	225.0 ± 17.3	210.0 ± 15.7
22	10	240±18.5	220±16.0			
23	42	250±19.1	230±17.2			
ПОІ	= 164 155°C	7 1] -1] & 250	-1-1/1 -17-7	이 기위기 = =	٠١ ١ ١ ١ ١ ١	

표 7. 깽지조개(Ŷ)×밥조개(♂) 후대유생에서 안점출현정형

물온도 16.4~17.5°C, 조사개체수 250마리/d, 대조구와 시험구는 표 5에서와 같음

표 7에서 보는바와 같이 안점유생은 시험구에서 수정후 19일에 나타나기 시작하였으며 대조구에서는 수정후 22일에 나타나기 시작하였다. 유생의 안점출현시기는 시험구에서 대조구에서보다 3일 더 앞섰다는것을 알수 있다. 안점이 나타나는 시기의 크기는 시험구에서 각장이 216 μ m, 각고가 195 μ m 였으며 대조구에서는 각장이 240 μ m, 각고가 220 μ m 였다.

밥조개(♀)×깽지조개(♂) 후대의 새끼조개를 부착기에 붙여놓은 다음 밥조개와 같이 바다에 내다 길렀다. 새끼조개의 크기를 조사한 결과는 표 8과 같다.

수정후	대조구		시험구	
날자/d	각장/mm	각고/mm	각장/mm	각고/mm
70	−(전부 죽음)	_	5.2±0.5	5.3±0.8
102	_	_	8.0±0.9	8.5±1.1

표 8. 밥조개(Ŷ)×깽지조개(♂) 새끼조개의 성장

물온도 25~27℃, 조사개체수 30마리/d, 대조구와 시험구는 표 5에서와 같음

표 8에서 보는바와 같이 새끼조개의 크기는 수정후 102일에 각장이 8mm, 각고가 8.5mm였다. 시험구(밥조개(♀)×깽지조개(♂)) 새끼조개는 정상적으로 자랐지만 같은 시기에 대조구(밥조개(♀)×밥조개(♂))의 새끼조개는 전부 죽었다. 그것은 밥조개가 일반적으로 협온성조개류로서 물온도적응범위가 비교적 작으며 특히 23℃이상 올라가면 대부분 죽는것과 관련되며 밥조개(♀)×깽지조개(♂)의 새끼조개는 C. farreri(♀)× P. yessoensis(♂)의 새끼조개보다[2] 성장이 빠르다.

그러므로 깽지조개와 밥조개를 섞붙임하여 얻어낸 새끼조개들은 밥조개보다 높은 바다물온도에 대한 견딜성이 세다는것을 알수 있다.

맺 는 말

- 1) 깽지조개(♀)×밥조개(♂)와 밥조개(♀)×깽지조개(♂)의 후대는 정상적으로 발육 하며 깽지조개, 밥조개보다 빨리 자랐다.
- 2) 깽지조개와 밥조개를 섞붙임하여 얻어낸 새끼조개들은 밥조개보다 높은 바다물온 도에 대한 견딜성이 세다.

참 고 문 헌

- [1] D. Hedgecoc et al.; J. Shell., 199, 614, 2000.
- [2] Zhen-ming et al.; Journal of Fishery Sciences of China, 13, 4, 507, 2006.

주체103(2014)년 6월 5일 원고접수

Development and Growth of Hybrid offspring from Chlamys farreri and Patinopecten yessoensis

Kim Ryong Gil, Sok Kwang Jin

The scallop hybrid offspring from *Chlamys farreri*($\begin{array}{l} ? \end{array} \times Patinopecten yessoensis(\end{array}) and$ *P. yessoensis* $(<math>\begin{array}{l} ? \end{array}$) normally developed, and their growth was higher than *C. farreri* and *P. yessoensis*.

The scallop hybrid offspring from *Chlamys farreri*(\mathcal{P}) × *Patinopecten yessoensis*(\mathcal{O}) has the tolerance on higher seawater temperature than *P. yessoensis*.

Key words: shell, Chlamys farreri, Patinopecten yessoensis