Bounded-Real Lemma for s-parameters

by: S.-Behzad Nouri

1 Mathematical Preliminaries

This section presents the mathematical backgrounds and theories required for studying the Bounded-Real Lemma (BRL) in scattering-parameters of linear systems.

Let,

- - $spec(\mathbf{A})$ be spectrum of \mathbf{A} , the set of eigenvalues of the matrix $\{\lambda_i\}$,
- \bullet $mspec\left(\cdot\right)$ be read as $\{\lambda_i\},$ even if it is multiple,
- - $tr(\cdot)$ denote the trace, i.e., the sum of the diagonal elements of its argument,
- - For $\mathbf{A} \in \mathbb{F}^{n \times n}$, \mathbf{A}^* denotes the conjugate (Hermitian) transpose of $\mathbf{A} = [a_{ij}]$ as $a_{ij}^* = (a_{ji})^*$, where $\mathbf{A}^* = [a_{ij}^*]$.

Definition 1.1 For Square matrix $\mathbf{A} \in \mathbb{F}^{n \times n}$ define the following types:

- (i) A is **Hermitian** if $A = A^*$.
- (ii) A is positive-semidefinite $(A \ge 0)$ if A is Hermitian and $\mathbf{x}^*A\mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{F}^n$.
- [1], Definition 3.1.1, pp. 81-82

Fact 1.2 Consider $\mathbf{A} \in \mathbb{F}^{n \times n}$ (e.g. a scattering parameter matrix of a n-port linear system), $\mathbf{A}^*\mathbf{A}$ and $\mathbf{A}\mathbf{A}^*$ are Hermitian.

Proof:

$$\left(\mathbf{A}^{*}\mathbf{A}\right)^{*} = \mathbf{A}^{*}\left(\mathbf{A}^{*}\right)^{*} = \mathbf{A}^{*}\mathbf{A}$$

For $\mathbf{A}\mathbf{A}^*$ matrix it is proved similarly.

Fact 1.3 Consider $\mathbf{A} \in \mathbb{F}^{n \times n}$, matrix $\mathbf{A}^* \mathbf{A}$ is positive-definite.

Proof: let $\mathbf{x} = [x_1, \cdots, x_n]^T \in \mathbb{F}^n$, then

$$\mathbf{x}^* (\mathbf{A}^* \mathbf{A}) \mathbf{x} = (\mathbf{x}^* \mathbf{A}^*) (\mathbf{A} \mathbf{x}) = (\mathbf{A} \mathbf{x})^* (\mathbf{A} \mathbf{x})$$

It is noted that $(\mathbf{A}\mathbf{x})$ is a column vector with complex entries $(\in \mathbb{F}^n)$. Therefore, we have

$$(\mathbf{A}\mathbf{x})^* (\mathbf{A}\mathbf{x}) = \begin{bmatrix} A_{x_1}^* & \cdots & A_{x_n}^* \end{bmatrix} \begin{bmatrix} a_{x_1} \\ \vdots \\ a_{x_n} \end{bmatrix} = |a_{x_1}|^2 + \cdots + |a_{x_n}|^2 \ge 0.$$

Proposition 1.4 Let $\mathbf{A} \in \mathbb{F}^{n \times n}$ and $\alpha \in \mathbb{F}$, then, the following statements hold:

- (i) $mspec(\alpha \mathbf{A}) = \alpha mspec(\mathbf{A})$.
- (ii) $mspec(\beta I_n + \alpha \mathbf{A}) = \beta + \alpha mspec(\mathbf{A}).$
- (iii) if **A** is Hermitian, spec (**A**) $\subset \mathbb{R}$.
- [1], Proposition 4.4.4, pp. 131 In a general form, let $\mathbf{F} \in \mathbb{F}^{n \times m}$, Noting (1.3) and (1.4), it is concluded

Fact 1.5 Matrices $\mathbf{A}^*\mathbf{A} \in \mathbb{F}^{m \times m}$ and $\mathbf{A}\mathbf{A}^* \in \mathbb{F}^{n \times n}$ have positive-real eigenvalues.

$$\mathit{spec}\left(\mathbf{A}^{*}\mathbf{A}\right) \subset \, \mathbb{R}^{+}$$

Definition 1.6 Let $\mathbf{A} \in \mathbb{F}^{(n \times m)}$. Then, the **singular values** of \mathbf{A} are the $min\{m,n\}$ nonnegative number $\sigma_1(A), \cdots, \sigma_{min\{m,n\}}(A)$, where, for all $i = 1, \cdots, min\{m,n\}$,

$$\sigma_i(\mathbf{A}) \triangleq [\lambda (\mathbf{A} \mathbf{A}^*)]^{1/2} = [\lambda (\mathbf{A}^* \mathbf{A})]^{1/2}.$$

Then,

$$\sigma_1(\mathbf{A}) \geq \cdots \geq \sigma_{\min\{n,m\}}(\mathbf{A}) \geq 0.$$

[1], Definition 5.6.1, pp. 181-182

Fact 1.7 Let $\mathbf{A} \in \mathbb{F}^{(n \times m)}$, and let $r = rank\mathbf{A}$. Then, for all $i = 1, \dots, r$,

$$\sigma_i(\mathbf{A}^*\mathbf{A}) = \sigma_i(\mathbf{A}\mathbf{A}^*) = \sigma_i^2(\mathbf{A}).$$

In particular,

$$\sigma_1(\mathbf{A}^*\mathbf{A}) = \sigma_{max}^2(\mathbf{A}).$$

[1], Fact 5.10.18, pp. 198

Fact 1.8 Let $\mathbf{A} \in \mathbb{F}^{(n \times n)}$,

$$\|\mathbf{A}\|_F^2 = tr(\mathbf{A}\mathbf{A}^*) = tr(\mathbf{A}^*\mathbf{A}) = \sum_{i,j} |a_{ij}|^2$$

Proof: e.g.:

$$\mathbf{A}^*\mathbf{A} = \begin{bmatrix} a_{11}^* & a_{21}^* \\ a_{12}^* & a_{22}^* \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} |a_{11}^2| + |a_{21}^2| & X \\ X & |a_{12}^2| + |a_{22}^2| \end{bmatrix}$$
$$tr(\mathbf{A}^*\mathbf{A}) = |a_{11}^2| + |a_{21}^2| + |a_{12}^2| + |a_{22}^2| = ||\mathbf{A}||_F^2 . \quad \blacksquare$$

Fact 1.9 For the norm of the matrix A we have

(i)
$$||A||_2 = \sqrt{\max(eig(A^*A))}$$
.

(ii)
$$||A||_{\infty} = \max_{i} \sum_{j} |A_{ij}|.$$

[2], ch. 10.3

Fact 1.10 For the (ii) in fact. 1.9 and def. 1.6, it is norm of the matrix A we have

$$||A||_2 = \sigma_{max}(A). \tag{1-1}$$

2 Bounded Real Lemma (BRL)

As a (passivity) checking criterion for bounded-real-ness of s-parameter matrix $\mathbf{Q} \in \mathbb{F}^{n \times n}$, which is the scattering-parameters for a n-port linear system, we have:

$$I_n - \mathbf{Q}^* \mathbf{Q} \ge 0. \tag{2-2}$$

From the mathematical elaborations in previous chapter, it is concluded that, eq. (2-2) requires

$$mspec(I - \mathbf{Q}^*\mathbf{Q}) = 1 - mspec(\mathbf{Q}^*\mathbf{Q}) \ge 0,$$
 (2-3)

which is equivalently shortened as

$$mspec\left(\mathbf{Q}^*\mathbf{Q}\right) \le 1. \tag{2-4}$$

The above notation in (2-4) shows that all eigenvalues of Hermitian matrix $\mathbf{Q}^*\mathbf{Q}$ requires to be bounded to one, while they are known from previous section as real and positive values. This is logically means that

$$\lambda_{max}\left(\mathbf{Q}^*\mathbf{Q}\right) \le 1. \tag{2-5}$$

According to the Definition. 1.6 we have $[\lambda(\mathbf{A}^*\mathbf{A})] = \sigma_i^2(\mathbf{A})$, by substituting which in (2-4) it is

$$\sigma_{max}^2(\mathbf{Q}) \le 1, \tag{2-6}$$

or equivalently

$$\sigma_{max}\left(\mathbf{Q}\right) \le 1. \tag{2-7}$$

Fact 2.1 Considering fact 1.10 and (2-7) the following inequalities are equivalent.

- (i) $\sigma_{max}(\mathbf{Q}) \leq 1$.
- (ii) $\|\mathbf{Q}\|_2 \leq 1$.

References

[1] D. S. Bernstein, Matrix Mathematics: Theorey, Facts, and Formulas with Application to Linear System Theory, NJ:Priceton University Press, 2005.

[2] K. B. Petersen and M. S. Pedersen, *The Matrix Cookbook*, available:[http://matrixcookbook.com], Nov. 14, 2008.