Fonctions thermodynamiques - Coefficients calorimétriques et thermoélastiques

P1 – Chapitre 4

I. Des fonctions thermodynamiques

Nom	Définition	Formule	Maxwell
Energie		dU = TdS - PdV	$\left(\frac{\partial P}{\partial S}\right)_{V} = -\left(\frac{\partial T}{\partial V}\right)_{S}$
Enthalpie	H = U + PV	dH = TdS + VdP	$\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$
Energie libre	F = U - TS	dF = -PdV - SdT	$\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$
Enthalpie libre	G = H - TS	dG = VdP - SdT	$\left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T$

II. Systèmes élémentaires soumis uniquement à des forces de pression

1. Coefficients calorimétriques

dS	$dS = \frac{C_v}{T} dT + \frac{\ell}{T} dV$	$dS = \frac{C_p}{T} dT + \frac{h}{T} dP$
Coefficients calorimétriques	$C_v = T \left(\frac{\partial S}{\partial T} \right)_V \qquad \ell = T \left(\frac{\partial S}{\partial V} \right)_T$	$C_p = T \left(\frac{\partial S}{\partial T} \right)_P \qquad h = T \left(\frac{\partial S}{\partial P} \right)_T$
Rapports	$\mathcal{C}_v = m_\Sigma c_v = n \mathcal{C}_{mv}$ \mathcal{C}_v : capacité thermique à V constant	$\mathcal{C}_p = m_\Sigma \mathcal{C}_p = n \mathcal{C}_{mp}$ \mathcal{C}_p : capacité thermique à P constant
Energie / Enthalpie	$dU = C_v dT + (\ell - P) dV$	$dH = C_p dT + (h + V) dP$
Relations diverses	$C_p - C_v = T \left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial V}{\partial T}\right)_T$ $\left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial T}{\partial V}\right)_P \left(\frac{\partial V}{\partial P}\right)_T = -1$	

2. Coefficients thermoélastiques

$\frac{dV}{V}$	$\frac{dV}{V} = \alpha \ dT - \chi \ dP$	
Coefficients thermoélastiques	$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \qquad \chi = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \qquad \boxed{\beta = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right)_V}$	
Relation	$\alpha = P\beta\chi$	

3. Corps indilatables et incompressibles

indilatable
$$\Leftrightarrow \left(\frac{\partial V}{\partial T}\right)_P = 0 \Leftrightarrow \alpha = 0$$
incompressible $\Leftrightarrow \left(\frac{\partial V}{\partial P}\right)_T = 0 \Leftrightarrow \chi = 0$

indilatable et incompressible : dU = C dT $C_v = C_p = C$

Thomas ROBERT

Fonctions thermodynamiques - Coefficients calorimétriques et thermoélastiques

P1 – Chapitre 4

III. Systèmes filiformes élastiques soumis à des forces de traction

Coefficients calorimétriques	Coefficients thermoélastiques	
$dS = \frac{C_f}{T} dT + \frac{h}{T} df$	$\frac{dL}{L} = \lambda dT + \frac{1}{sE} df$	
$C_f = T \left(\frac{\partial S}{\partial T} \right)_f$ $h = T \left(\frac{\partial S}{\partial f} \right)_T = T \left(\frac{\partial L}{\partial T} \right)_f$	$\lambda = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_f \qquad \frac{1}{sE} = \frac{1}{L} \left(\frac{\partial L}{\partial f} \right)_T \qquad \boxed{E = \frac{L}{S} \left(\frac{\partial f}{\partial L} \right)_T \\ \text{module de Young}}$	

IV. Applications

- 1. Détermination de l'équation d'état d'un système
- On détermine expérimentalement α et χ .
- On intègre $\frac{dV}{V}=d\ln V$ et on obtient l'équation d'état
- 2. Le gaz parfait

$$C_{mp} - C_{mv} = R$$
 $\alpha = \frac{1}{T}$ $\chi = \frac{1}{P}$ $H = C_p T + \text{cst}$