Midterm

Time: Apr. 15 Thursday, in class (10:15-11:55am)

Location: 教学中心 201 & 301.

Seating arrangement TBA.

Covers Chapter 2, 4~8

Format:

- 5 multi-choices + 4 problems;
- closed-book, one A4-size cheat sheet allowed

Grade: %35 of the total grade

Midterm Review

Basics of Algorithm Analysis

Basics of Algorithm Analysis

Worst case analysis. Obtain bound on largest possible running time of algorithm on input of a given size N.

Asymptotic Order of Growth

- Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le c \cdot f(n)$.
- Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot f(n)$.
- Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

Asymptotic Bounds for Some Common Functions

Polynomials. $a_0 + a_1 n + ... + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.

Logarithms. For every x > 0, $\log n = O(n^x)$.

Exponentials. For every r > 1 and every d > 0, $n^d = O(r^n)$.

Greedy Algorithms

Greedy Algorithms

Basic idea

Make the locally optimal choice at each step.

Algorithms

- Interval Scheduling
 - Choose the job with the earliest finish time
- Scheduling to Minimize Lateness
 - Choose the job with the earliest deadline
- Optimal Caching
 - Evict item that is requested farthest in future
- Clustering
 - Single-link k-clustering

Greedy Algorithms

Proof skills

- Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Chapter 5 Divide and Conquer

Divide-and-Conquer

Basic idea

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Algorithms

- Mergesort
 - Divide a sequence into two of same size
- Closest Pair of Points
 - Vertically divide the space
- Integer Multiplication
 - Divide each n-digit integer into two ½n-digit integers
- Matrix Multiplication
 - Divide each n-by-n matrix into four $\frac{1}{2}$ n-by- $\frac{1}{2}$ n blocks
- Fast Fourier Transform
 - Divide a polynomial into two with even and odd powers

Dynamic Programming

Dynamic Programming

Basic idea

- Polynomial number of sub-problems with a natural ordering from smallest to largest.
- Optimal solution to a sub-problem can be constructed from optimal solutions of smaller sub-problems.
- Sub-problems are overlapping!

Guideline

- Define the sub-problems
 - OPT(...)
- Write down the recursive formulas
 - Ex: OPT(i) = max(f(OPT(j)), g(OPT(k)), ...), j,k < i
- Compute the formulas either bottom-up or top-down

Dynamic Programming

Algorithms

- Weighted interval scheduling
 - 1D array; binary choice
- Knapsack
 - 2D array; adding a new variable (weight limit)
- RNA secondary structure
 - 2D array: intervals
- Sequence Alignment
 - 2D array: prefix alignment
- Sequence Alignment in Linear Space
 - Combination of divide-and-conquer and dynamic programming
- Shortest path with negative edges
 - (Bellman-Ford) 2D array: shortest path with edge number ≤ i
- Distance Vector Protocol
- Negative Cycle Detection

Network Flow

Flows

Concepts

- s-t flow
- Max-flow
- s-t cut
- Min-cut

Max-flow min-cut theorem.

The value of the max flow is equal to the value of the min cut.

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all edge $e \in E$.
- Find an augmenting path P in the residual graph G_f .
 - Can be chosen using capacity scaling
- Augment flow along path P.
- Repeat until you get stuck.


```
Ford-Fulkerson(G, s, t, c) {
   foreach e ∈ E f(e) ← 0
   G<sub>f</sub> ← residual graph

while (there exists augmenting path P) {
   f ← Augment(f, c, P)
     update G<sub>f</sub>
   }
   return f
}
```

Applications

Problems covered in class

- Bipartite Matching
- Circulation with Demands (+ edge lower bounds)
- Survey Design
- Image Segmentation
- Project Selection
- Baseball Elimination

NP and Computational Intractability

Key Concepts

Decision problem

- Answer yes/no
- P. Decision problems for which there is a poly-time algorithm.
- NP. Decision problems for which there exists a poly-time certifier.
 - Algorithm C(s, t) is a certifier for problem X if for every string s, s $\in X$ iff there exists a string t such that C(s, t) = yes.

co-NP. Complements of decision problems in NP.

EXP. Decision problems for which there is an exponential-time algorithm.

Claim. $P \subseteq NP$, $co-NP \subseteq EXP$

Polynomial-Time Reduction

Reduction. Problem X polynomial-time reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_P Y$.

Common approach: polynomial transformation

• Given any input x to X, construct an input y in poly-time such that x is a yes instance of X iff y is a yes instance of Y.

NP-Completeness

NP-complete. A problem Y in NP with the property that for every problem X in NP, $X \leq_p Y$.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_p Y$.

NP-Completeness

