LieAlgebraRepresentations: Motivation

Let $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ be a Lie algebra representation (complex, semisimple, finite dimensional).

Up to isomorphism, V is classified by its highest weights (or equivalently, its character). The LieTypes package implements this.

We can learn a lot from character calculations, but for some purposes we need to describe ρ explicitly.

Example: Invariants of plane cubics (SL₃ acting on Sym³ \mathbb{C}^3)

Find an invariant degree 4 polynomial for plane cubics

 \iff

Describe the trivial submodule in $\operatorname{Sym}^4\operatorname{Sym}^3\mathbb{C}^3$

 \iff

Describe weight 0 vectors that are killed by every raising operator

Compute the kernel of the Casimir operator

LieAlgebraRepresentations: Goals

We implement Lie algebra representations $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ in LieAlgebraRepresentations.

Inputs: a special basis of ${\mathfrak g}$ (a Chevalley basis) and the images of this basis under ρ

So far: implemented in type A using the Gelfand-Tsetlin basis

Goals for the week:

- ► Implement Chevalley bases for other types
- ► Matrix generators for other types: [de Graaf 2001]
- Matrix generators for other bases of V
 - Young tableaux
 - ▶ Gelfand-Tsetlin
 - Crystal bases
 - ▶ String bases

