Personalised Medicine

Methods to Estimate Personalised Treatment Effects in Observational Data

Daniela Buchwald

14 December 2018

Overview

- The Propensity Score for Observational Data
- 2 Estimating Personalised Treatment Effects

Part 1

The Propensity Score for Observational Data

Introduction

Goal: Estimation of the causal effect of a treatment T on the outcome Y given a confounder X:

$$T \xrightarrow{X} Y$$

T: Treatment (y/n)

Y: Outcome (y/n)

X: Confounder

 \Rightarrow Create a pseudo-randomized sample by eliminating the backdoor path from T to Y, i.e. erasing the arrow from X to T.

4 / 42

Propensity Score - A balancing Score

Propensity Score =
$$\mathbb{P}(T = 1|\mathbf{X})$$

- Estimate propensity score per person with Logistic Regression, Machine Learning Methods, . . .
- 2 Estimate the treatment effect with propensity adjustment:

model <-
$$glm(Y \sim T + X, *)$$

Method	Model adjustment
1) Inverse Probability of Treatment	* = Weights
Weighting (IPTW)	
2) Matching	* = Matched Dataset
3) Stratification	* = Separate Models
4) Include as a Covariate	* = Covariate "Propensity Score"

Motivating example

•
$$\mathbb{P}(T = 1 | X = Female) = 0.1$$
:

Among women 10% receive the treatment

•
$$\mathbb{P}(T = 1 | X = Male) = 0.8$$
:

Among men 80% receive the treatment

First Step: Estimating Propensity Score

Use of Logistic Regression:

Original Data:

Assign a weight w to each patient:

$$w = rac{T}{\mathbb{P}(T=1|\mathbf{X})} + rac{1-T}{1-\mathbb{P}(T=1|\mathbf{X})}$$

→ Patients who are under-represented get more weight and vice versa

Daniela Buchwald Personalised Medicine 14 December 2018

8 / 42

Here:

Treated Control
$$X = \text{Female}$$

$$\begin{array}{c} T_{\text{reated}} & Control \\ X = F_{\text{emale}} & \frac{1}{\mathbb{P}(T=1|X=F)} = \frac{1}{0.1} = 10 & \frac{1}{1-\mathbb{P}(T=1|X=F)} = \frac{1}{0.9} = 1.11 \\ X = \text{Male} & \frac{1}{\mathbb{P}(T=1|X=M)} = \frac{1}{0.8} = 1.25 & \frac{1}{1-\mathbb{P}(T=1|X=M)} = \frac{1}{0.2} = 5 \end{array}$$

Weighted Data:

$$\begin{array}{c} \mathsf{Treated} & \mathsf{Control} \\ \mathsf{X} = \mathsf{Female} & \bullet & \bullet & \bullet \\ \mathsf{X} = \mathsf{Male} & \bullet & \bullet & \bullet \\ \end{array}$$

Standardized Mean Differences:

$$\mathsf{SMD} = \frac{\bar{\mathsf{x}}_{treatm} - \bar{\mathsf{x}}_{control}}{\sqrt{\frac{s_{treatm}^2 - s_{control}^2}{2}}}$$

Data	Variable	n (%) (t = 0)	\mid n (%) (t $=$ 1)	SMD
Original	Gender (M)	204 (18.3)	801 (90.5)	2.105
Weighted	Gender (M)	996.3 (50.0)	1004.2 (49.6)	0.009

Pros:

- Easy to implement
- Retains the whole data set

Cons:

- ullet Can lead to high variance in estimated treatment effects with propensity scores close to 0 or 1 (o very large weights)
 - \rightarrow Possibility to trim weights

Matching

Original Data:

Choose pairs of patients between treatment and control group with similar ("1:1 nearest neighbor") propensity scores (on a logit scale) and discard the unmatched patients.

Matched data:

model <- glm(Y ~ T + X, data = matcheddata)</pre>

Matching

Matching

Pros:

- Good balance
- Simple to analyse

Cons:

- Discard individuals
- Choose the right matching method ("Nearest neighbor", "Optimal", "Exact", "Full", combination with Mahalanobis metric matching, ...)

Group patients into bins of similar propensity score and fit model within each bin

High propensity score
$$\longrightarrow$$
 data1 Low propensity score \longrightarrow data2

```
model1 <- glm(Y ~ T + X, data = data1)
model2 <- glm(Y ~ T + X, data = data2)</pre>
```


Pros:

- Works well for not too unbalanced datasets
- Provides effect estimates for every stratum

Cons:

• Choice of number and size of strata (Trade-off between control of confounding and sufficient number of observations in each strata)

Daniela Buchwald Personalised Medicine 14 December 2018 18 / 42

Include Propensity Score as a Covariate

- Until now: Balance covariates between treatment and control group
- Now: Covariate adjustment in the prediction model which aims to control for covariate effects (confounding)

```
model <- glm(Y ~ T + X + PS)
```

Include Propensity Score as a Covariate

Cons:

• Like traditional covariate adjustment

Pros:

• But over-parameterizing is no problem

Note

Causal Inference using propensity score requires certain assumptions:

 Unconfoundedness (Exchangeability, Ignorability): There are no unmeasured confounders

$$\{Y(0), Y(1)\} \perp T|X$$

- Consistency: Subject's potential outcome under treatment received = Observed Outcome
- Positivity: $0 < \mathbb{P}(T = 1) < 1$
- No misspecification of the propensity score model

21 / 42

Part 2

Estimating Personalised Treatment Effects

Methods for Personalised Treatment Effect Estimation

- Weighting
 - Model-based Trees (MOB Trees)
 - Causal Trees
 - Causal Forests
 - Pollinated Transformed Outcome (PTO) Forests
- Stratification
 - Causal Mulitivariate Adaptive Regression Splines (Causal MARS)
 - Causal Boosting
- Include Propensity Score as Covariate
 - Bayesian Additive Regression Trees (BART)

MOB Trees

Model-based recursive partitioning for automated detection of patient subgroups

Algorithm:

• Fit parametric model $\mathcal{M}((Y, \mathbf{X}), \theta)$ to a dataset with all observations with:

$$\theta = \begin{pmatrix} \alpha \\ \tau \end{pmatrix} \text{ intercept}$$
 treatment effect

Here: Model = GLM with logit-Link

Test for parameter instability over a set of partitioning variables

MOB Trees

- If there is some overall parameter instability, select the variable associated with the highest parameter instability (i.e. the lowest p-value), otherwise stop
- Repeat the procedure in each of the resulting subsamples
 - \Rightarrow Fit separate models $\mathcal{M}((X,Y),\theta_b)$ in partitions

glmt <- glmtree(Y ~ T | X, data, family = binomial)</pre>

MOB Trees and IPTW - Data Example

- n = 2000
- p = 20 (10 binary, 10 numeric)
- Confounder: X_{Gender}

$$\mathbb{P}(T=1|\mathbf{X}) = \left\{ egin{array}{ll} 0.8 & X_{Gender} = \mathsf{Male} \ 0.1 & X_{Gender} = \mathsf{Female} \end{array}
ight.$$

• Treatment Effect: X_{Score}

$$\tau(x) = \begin{cases} 5 & X_{Score} < 0 \\ 0 & X_{Score} > 0 \end{cases}$$

MOB Trees and IPTW - Possible results

$$X_{Score}$$
 \downarrow
 $T \longrightarrow Y$
 $\nwarrow \nearrow$
 X_{Gender}

$$\mathsf{logit}(\mathbb{P}(Y=1|T,X)) = \underbrace{0.5 + 1.2 \cdot I_{X_{\mathsf{Male}}}}_{\mathsf{Mean \ Effect \ (Intercept)}} + \underbrace{\tau(x) \cdot I_{t=1}}_{\mathsf{Treatment \ Effect}}$$

(Case	Intercept	Treatment Effect
Male	Score < 0	1.7	5
Male	Score > 0	1.7	0
Female	Score < 0	0.5	5
Female	Score > 0	0.5	0

MOB Trees and IPTW - Result

	Estimated		True	
Node	Intercept	Treatment Effect	Intercept	Treatment Effect
3	0.33	3.42	0.5	5
4	0.64	-0.10	0.5	0
6	1.67	4.32	1.7	5
7	1.64	0.03	1.7	0

MOB Trees and IPTW - Result with weights

Daniela Buchwald Personalised Medicine 14 December 2018 29 / 42

MOB Trees and IPTW - Result without weights

Daniela Buchwald Personalised Medicine 14 December 2018 30 / 42

Causal Trees

- Like a "rpart" (CART) object, but estimates treatment effects instead of outcomes
- ⇒ Data-driven approach to partition the data in to subpopulations
 - ullet "Honest" version: Two different samples for tree builing an treatment effect estimation ullet unbiased estimation
 - Confounding: Include PS weights
 - Tree splits are chosen by minimizing $-\widehat{EMSE}$

Causal Trees

True Treatment Effect:

$$\tau(x) = \mathbb{P}(Y = 1 | T = 1, X) - \mathbb{P}(Y = 1 | T = 0, X)$$

Estimated Treatment Effect in each leaf:

$$\hat{\tau}(x) = \hat{\mathbb{P}}(Y = 1 | T = 1, X) - \hat{\mathbb{P}}(Y = 1 | T = 0, X)$$

ct <- causalTree(Y ~ X, treatment = T, weights = weight)</pre>

Estimated Tree

Causal Trees - Result with weights

Causal Trees - Result without weights

Bayesian Additive Regression Trees

Estimation of potential outcomes:

$$\tau(x) = f(x,1) - f(x,0)$$

with f(x, t) = the estimated conditional mean functions f(x) = "sum of regression trees $g_l(x)$ "

$$\hat{Y} = f(x) = \sum_{l=1}^{L} g_l(x)$$

with l = 1, ..., L = Number of trees

Bayesian Additive Regression Trees

- Refits tree residuals \rightarrow Bayesian regularized tree boosting procedures
- Choose priori for f: keep trees small, s.t. they are "weak learners" and avoid overfitting
- ⇒ BART consists of:
 - Sum-of-tree models
 - 2 Regularization prior
 - Binary outcome: Y = P(Y = 1|X) = F(f(x)), with F(x) = probit link
 - Confounding: Include PS in the model

BART - Result with PS as Covariate

BART - Result without PS as Covariate

BART - Result with PS as Covariate

BART - Result without PS as Covariate

Discussion

- GLMTrees:
 - Little change in dataset results in big change in tree
 - Weights worsen the fit
- Causal Tree:
 - ▶ Trees get too big, pruning via complexity parameter not possible
 - \rightarrow Use of maxdepth?