

STIC-ILL

From: Scheiner, Laurie
To: STIC-ILL
Subject: Reference request (467,605)
Date: Friday, December 13, 1996 2:20PM

Pietropaolo et al., (1991) Diabetes 40:1A (Abstract # 2). Thanks.

A handwritten signature consisting of a stylized, cursive 'J' or 'L' shape followed by a more fluid, sweeping flourish.

Pasic, J., 1907
 Pasmantier, R., 703
 Pasqual, C., 1844
 Pasquarello, C., 1813
 Pasquel, M., 1938
 Passa, Ph.L., 970, 1148, 1154, 1480,
 1737
 Passariello, N., 663
 Passmann, R., 1138
 Pastore, M.R., 498
 Pastorek, D., 353
 Pata, P., 2043
 Patel, A., 1158
 Patel, B., 308
 Patel, N., 6, 1698
 Patel, P., 1183
 Patel, V., 2039
 Pathan, F., 1162
 Pátkay, J., 1874
 Pato, P., 1626
 Patrick, A., 1601
 Patrick, A.W., 1049, 2169, 2183
 Patrick, S.L., 1251
 Patten, R., 1705
 Patterson, C.C., 1277
 Patterson, D., 1082
 Patti, L., 2198
 Paul, F., 1872
 Paulsen, E.P., 1279
 Pavlić-Renar, I., 1415
 Pavlik, V., 1429, 2164
 Pavliuk, P.M., 1087
 Pawagi, S., 1193
 Paynter, L.N., 1244
 Peak, M., 729
 Peakman, M., 587, 895, 918
 Pearce, R.B., 208
 Pearson, R.E., 1596
 Pecoraro, R.E., 1408, 1412, 2209
 Peddicord, M., 2233
 Pedersen, M.M., 1764
 Pedersen, R.O., 601
 Pedneault, L., 1814
 Pedromigo-Marino, A., 1402
 Pehar, D., 1415
 Pek, S.B., 315, 334, 608, 929
 Pelikánová, T., 244, 996
 Pelkonen, R., 1817
 Pena, J., 290
 Peña-Varela, J., 2117
 Peñaloza, J.B., 1679
 Pencharz, P.B., 773
 Pendsey, S., 1353
 Peniche, J., 1741
 Penno, G., 1291
 Penny, M., 554, 557, 562
 Penttilä, P., 916, 115, 116
 Percheron, C., 1283, 1707
 Perdereau, D., 9
 Pereira, A.B., 1337
 Perentesis, G., 1855
 Perez, A., 761, 1572, 1819
 Perez, J.E., 2090
 Perez-Pasten, E., 1958
 Perez-Reyes, E., 646
 Perfetti, M.G., 288
 Peries, J., 1091
 Perkins, L., 1559
 Perlemuter, L., 1029, 2032
 Perlmuter, L., 1904
 Permutt, A., 625
 Permutt, M.A., 572, 628, 643, 1897
 Perng, J.C., 437
 Perret, G., 54
 Perriello, G., 626, 1220
 Persaud, S.J., 695, 697
 Perseghin, G., 21, 1005, 1012
 Persson, B., 1687, 1757
 Persson, L., 81, 1686
 Persson, L.M., 1346
 Pescovitz, M., 894
 Peshock, R.M., 124
 Pessin, J.E., 447, 1191
 Pessino, A., 338
 Petäys, T., 1110
 Peters, J.R., 969, 1748
 Petersen, K.E., 1265
 Peterson, C., 594
 Peterson, C.M., 208, 1871, 2230
 Peterson, D., 1945
 Peterson, J.S., 2142
 Peterson, L., 461
 Peterson, R.G., 871, 883
 Petraryi, G., 1821
 Petrucci, E., 726
 Pettitt, D.J., 123, 1186, 1211, 1683,
 1710, 1965
 Petty, M.L., 1603, 1915
 Peugeot, R.L., 2209
 Peynet, J., 1078
 Peyrot, M., 2143
 Pfeiffer, E.F., 274, 384, 917, 925,
 1598, 1863, 2034
 Pfeiffer, M.A., 1924
 Phatak, R.B., 1411
 Phenekos, C., 1350
 Philippides, Ph., 1946
 Philipson, L.H., 647
 Phillipou, G., 1458
 Phillips, L., 2009
 Phillips, L.A., 381
 Phillips, L.S., 335, 674, 671
 Phillips, P., 1435, 1458, 1642
 Phillips-Ross, D., 1638
 Pianese, I., 627
 Piatti, P.M., 58, 1937
 Piazza, E., 818, 1515, 1586
 Pibernik-Okanović, M., 1608
 Piccinini, M., 1351
 Pichel, C., 1365
 Pichert, J., 1635
 Pickup, J.C., 1907
 Piehl, E., 1667
 Pieper, G.M., 1047
 Pieramico, O., 2034
 Pieri, M., 818, 1515, 1586, 1673
 Pietrangeli, A., 1775
 Pietravalle, P., 1780, 2203
 Pietropaolo, M., 2, 191
 Piette, C., 2053
 Piga, A., 158
 Pignatelli, D., 460, 849
 Pillay, V., 2128
 Pillion, D.J., 519, 1914
 Pillon, B., 2185
 Pina-Cabral, J.M., 1532
 Pinal, C., 6
 Ping, H.C., 1413
 Ping, Z.X., 236
 Pinget, M., 1135, 1799
 Pinheiro, M.F.M.C., 915
 Pinies, J., 296
 Pintor, M.P., 2036
 Pipeleers, D.G., 707, 596
 Piraphatdist, T., 170, 652
 Pisu, E., 1491, 1723
 Pitaro, M., 1362
 Pitts, K., 1221
 Piwernetz, K., 813, 1440, 1926
 Plasman, P.O., 321
 Platanisiotis, D., 2222
 Platilová, H., 72, 2008
 Pleasic, S., 3
 Plehn, R.J., 927
 Plourde, G., 795
 Ploybutr, S., 170, 652
 Podar, T., 1253, 1266
 Podolsky, S., 1702
 Pogátsa, G., 1374, 1774
 Poinsot, D., 1135
 Pointer, R.H., 358
 Poirier, J.L., 2120
 Poirier, P., 1585
 Poisson, D., 798
 Poitout, V., 1602
 Polak, J., 1311
 Polak, M., 570
 Polanco, R., 1797
 Policicchio, D., 1533
 Pollare, T., 1473
 Pollet, R.J., 165, 335
 Polonsky, K., 52
 Polonsky, W., 2156
 Poma, R., 53, 1971
 Ponci, J., 1418
 Pontiroli, A.E., 58, 288, 1937
 Ponzani, P., 1310
 Poorters, A.M., 1091
 Pope-Cordle, J., 1400
 Poppi, C., 1747
 Porcellati, F., 626, 1784
 Porcelli, G., 1749
 Porcellini, A., 627
 Porciatti, V., 1329, 1330
 Poretela, E., 1651
 Pories, W.J., 630, 1711
 Porte, D., Jr., 24, 62, 273, 1498
 Porter, R.E., 883
 Portha, B., 708
 Portocarrero, M.C., 849
 Posadas, R.C., 1560
 Poser, H., 1657
 Poskus, E., 128
 Possa, G., 498
 Postic, C., 354

SCIENTIFIC AND CLINICAL PROGRAM

1

Carboxypeptidase H is an Autoantigen of the ICA and is Expressed on the Cell Surface of Islet Cells. Alvin C. Powers, Sarah Bowen, Sandra West, Nashville, TN.

The islet molecules targeted by the islet cell autoantibodies (ICA) of Type I diabetes are incompletely characterized. To identify the protein targets of the ICA, we have created a human islet cell λGT 11 cDNA library from human insulinomas and screened this library with ICA sera. We have identified 8 clones which react with only an ICA serum and not with normal sera. One of the clones reacts with two/six ICA sera and the cDNA insert has been analyzed by DNA sequencing and RNA analysis. This 1.4 kb cDNA has greater than 80% homology with the rat carboxypeptidase H (CPH) cDNA sequence and likely encodes human CPH. RNA analysis with the labeled cDNA detects a 2.5 kb mRNA species in poly-A RNA from human insulinomas and RIN 1046-38, Beta TC-1, and alpha TC-6 cell lines. CPH mRNA is also found in poly-A RNA from human kidney, adrenal, and testes, but not from liver, duodenum, spleen, or fibroblasts.

CPH is a proinsulin processing enzyme within the beta cell secretory granule and exists as a membrane and soluble form. To determine if CPH is expressed on the cell surface and thus accessible to the immune system, viable Beta TC-1 cells were stained with an anti-CPH serum and cell surface fluorescence analyzed by flow cytometry. At least 25% of the Beta TC-1 cells were positive for cell surface staining for CPH when analyzed three hours after the addition of the anti-CPH serum. These results suggest that CPH is an autoantigen of the ICA and is expressed on the cell surface of islet cells.

2

Utilization of a human λgt11 islet library to identify novel autoantigens associated with Type I diabetes. M. PIETROPAOLO, L. CASTANO, E. RUSSO, *A. POWERS, O. BARNEA, GS.EISENBARTH. Boston, MA, *Nashville, TN.

We have in the past identified with sera from prediabetic relatives a clone producing carboxypeptidase H [termed DC-1 (codes for amino acid 199 to 335 of carboxypeptidase H)] in a rat cDNA library. Recently we have utilized a cDNA expression library (A. Permutt, St. Louis, MO) from human pancreas islets to screen for clones reacting with our rat carboxypeptidase H probe and novel autoantigens. Our rat islet probe hybridized with 23 human carboxypeptidase reactive clones after screening 25×10^6 plaques which are being sequenced. In addition utilizing antibodies from prediabetic relatives we have recently identified in this library what we believe is a novel islet antigen. This clone, termed PM-1, reacts with 2 out of 6 ICA positive relatives screened to date, whereas none of 10 control sera react. The labeled PM-1 insert detects a 2.0 Kb mRNA species in total RNA from a human insulinoma, a human islet carcinoid cell line (BON-1), and 3 rodent islet cell lines (RIN 1046-38, BTC-1, αTC-6). No hybridization was detected in total RNA from 3 human, non-islet cell lines (HepG2-hepatoma, HeLa-fibroblast, JEG-choriocarcinoma), suggesting that the PM-1 clone reacts with an islet protein expressed in all human and rat pancreatic islet cell lines and human insulinoma. Initial sequence shows a 252 bp open reading frame coding for 84 amino acids without significant homologies to known sequences in Gene Bank and containing two regions of dibasic amino acids. In summary autoreactive molecules can readily be isolated from a human λgt11 expression library and we believe will contribute to characterize the family of autoantigens of prediabetics and should facilitate identification of novel islet molecules.

3

Cloning and Expression of Islet Cell Autoantigens. D. RABIN,* S. PLEASEC, R. PALMER-CROCKER, P.M.M. RAE*, J. SHAPIRO, J. BARBOSA*, W. KNOWLES, C. ROWE and J. OLES, West Haven, CT

A DNA cloning approach was taken to define, purify, and characterize islet cell antigens that are recognized by Type I diabetic sera. Such antigens could be useful in diagnosis of pre-Type I diabetes, and could help provide markers for the study of autoimmune aspects of the disease.

A cDNA library was generated in bacteriophage λ-*gt11* from human islet material (provided by P. Lacy and D. Schatz, St. Louis MO) and screened with sera from newly diagnosed diabetics. Plaques that were reactive with the diabetic sera were expressed in *E. coli* and immune precipitated with diabetic and normal sera.

Clone ICAS12 was recognized by 16/32 (50%) diabetic sera and 0/20 (0%) normals by immunoprecipitation and 41/104 (39%) diabetic and 1/61 (1.6%) normals by ELISA reactivity.

Sequence analysis of ICAS12 reveals partial homology to human LCA (CD45).

Preliminary results with two other antigens that show diabetic specificity will also be presented.

4

Characterization Of The Antigen Recognized By The Islet-Specific T Cell Clone BDC-2.5, BARBARA BERGMAN and KATHRYN HASKINS, Denver, CO.

Disease transfer studies with the islet-specific T cell clone BDC-2.5 show it is able to accelerate the disease process in young, unirradiated nonobese diabetic (NOD) mice resulting in hyperglycemia by six weeks of age. BDC-2.5 was derived from a newly diabetic NOD mouse and is of the CD4 phenotype. In *in vitro* assays, BDC-2.5 proliferates and makes IL-2 in response to NOD antigen presenting cells and islet cell antigen isolated from a number of mouse strains. In addition, the mouse beta tumor cell lines BTC3 and NIT-1 can serve as sources of antigen. Islet cell membranes, as well as whole islet cells and islet cell lysates, can stimulate BDC-2.5, suggesting a cell surface antigen. We are currently investigating the ability of anti-islet cell antibodies to inhibit the proliferative response of BDC-2.5 to islet cell antigen. We have identified at least three antibody reagents that appear to react with the antigen recognized by the T cell clone.