

Convex Hulls in 3-space

Jason C. Yang

Problem Statement

• Given P: set of n points in 3-space

• Return:

- Convex hull of P: CH(P)
- Smallest polyhedron s.t. all elements of P on or in the interior of $C\mathcal{H}(P)$.

4

Algorithm

Randomized incremental algorithm

• Steps:

- Initialize the algorithm
- Loop over remaining points Add p_r to the convex hull of P_{r-1} to transform $CH(P_{r-1})$ to $CH(P_r)$ [for integer $r \ge 1$, let $P_r := \{p_1, \dots, p_r\}$]

Main Idea:

Incrementally insert new points into the running/intermediate Convex Hull.

Initialization

- Need a CH to start with
- Build a tetrahedron using 4 points in P
 - Start with two distinct points in $P: p_1$ and p_2
 - Walk through P to find p_3 that does not lie on the line through p_1 and p_2
 - Find p_4 that does not lie on the plane through p_1, p_2, p_3
 - Special case: No such points exist?
 All points lie on a plane. Use planar CH algorithm!
- Compute random permutation $p_5,...,p_n$ of the remaining points

Inserting Points into CH

• Add p_r to the convex hull of P_{r-1} to transform $\mathcal{CH}(P_{r-1})$ to $\mathcal{CH}(P_r)$ [for integer $r \ge 1$, let $P_r := \{p_1, \dots, p_r\}$]

- Two Cases:
 - 1) P_r is inside or on the boundary of $CH(P_{r-1})$ Trivial: $CH(P_r) = CH(P_{r-1})$
 - 2) P_r is outside of $CH(P_{r-1})$

Case 2: P_r outside $CH(P_{r-1})$

- Determine *horizon* of p_r on $CH(P_{r-1})$
 - Closed curve of edges enclosing the *visible* region of p_r on $\mathcal{CH}(P_{r-1})$

Visibility

- Consider plane h_f containing a facet f of $CH(P_{r-1})$
- f is visible from a point if that point lies in the open half-space on the other side of h_f

Rethinking the Horizon

– Boundary of polygon obtained from projecting $CH(P_{r-1})$ onto a plane with p_r as the center of projection

- Remove *visible* facets from $CH(P_{r-1})$
- Found *horizon*: Closed curve of edges of $CH(P_{r-1})$
- Form $CH(P_r)$ by connecting each horizon edge to p_r to create a new triangular facet

Algorithm So Far...

Initialization

- Form tetrahedron $CH(P_4)$ from 4 points in P
- Compute random permutation of remaining pts.

• For each remaining point in P

- $-p_r$ is point to be inserted
- If p_r is outside $CH(P_{r-1})$ then
 - Determine visible region
 - Find horizon and remove visible facets
 - Add new facets by connecting each horizon edge to p_r

How to Find Visible Region

- Naïve approach:
 - Test every facet with respect to p_r
 - $-O(n^2)$

• Trick is to work ahead:

Maintain information to aid in determining visible facets.

Conflict Lists

• For each facet f maintain

$$P_{\text{conflict}}(f) \subseteq \{p_{r+1}, ..., p_n\}$$

containing points to be inserted that can see f

• For each p_r , where t > r, maintain

$$F_{\text{conflict}}(p_t)$$
 containing facets of $\mathcal{CH}(P_r)$ visible from p_t

• p and f are in *conflict* because they cannot coexist on the same convex hull

Conflict Graph G

- Bipartite graph
 - pts not yet inserted
 - facets on $CH(P_r)$
- Arc for every point-facet conflict
- Conflict sets for a point or facet can be returned in linear time

At any step of our algorithm, we know all conflicts between the remaining points and facets on the current CH

Initializing G

- Initialize G with $CH(P_4)$ in linear time
- Walk through P_{5-n} to determine which facet each point can see

 p_5

Updating G

- Discard visible facets from p_r by removing neighbors of p_r in G
- Remove p_r from G
- Determine new conflicts

 \mathcal{G}

Determining New Conflicts

- If p_t can see $\underline{\text{new }} f$, it can see edge e of f.
- e on horizon of p_r , so e was already in and visible from p_t in $\mathcal{CH}(P_{r-1})$
- If p_t sees e, it saw either f_1 or f_2 in $\mathcal{CH}(P_{r-1})$
- P_t was in $P_{\text{conflict}}(f_1)$ or $P_{\text{conflict}}(f_2)$ in $\mathcal{CH}(P_{r-1})$

Determining New Conflicts

• Conflict list of f can be found by testing the points in the conflict lists of f_1 and f_2 incident to the horizon edge e in $\mathcal{CH}(P_{r-1})$

What About the Other Facets?

- $P_{\text{conflict}}(f)$ for any f unaffected by p_r remains unchanged
- Deleted facets not on horizon already accounted for

Final Algorithm

- Initialize $CH(P_4)$ and G
- For each remaining point
 - Determine visible facets for p_r by checking G
 - Remove $F_{\text{conflict}}(p_r)$ from \mathcal{CH}
 - Find horizon and add new facets to CH and G
 - Update G for new facets by testing the points in existing conflict lists for facets in $\mathcal{CH}(P_{r-1})$ incident to e on the new facets
 - Delete p_r and $F_{\text{conflict}}(p_r)$ from G

Fine Point

- Coplanar facets
 - $-p_r$ lies in the plane of a face of $CH(P_{r-1})$

- f is not visible from p_r so we merge created triangles coplanar to f
- New facet has same conflict list as existing facet

Analysis

Complexity

- Complexity of CH for n points in 3-space is O(n)
- Number of edges of a convex polytope with n vertices is at most 3n-6 and the number of facets is

• From Euler's formula: $n - n_e + n_f = 2$

Complexity

- Each face has at least 3 arcs
- Each arc incident to two faces

$$2n_e \ge 3n_f$$

• Using Euler

$$n_f \le 2n-4$$
 $n_e \le 3n-6$

Expected Number of Facets Created

• Will show that expected number of facets created by our algorithm is at most 6*n*-20

• Initialized with a tetrahedron = 4 facets

Expected Number of New Facets

- Backward analysis:
 - Remove p_r from $CH(P_r)$
 - Number of facets removed same as those created by p_r
 - Number of edges incident to p_r in $CH(P_r)$ is degree of p_r :

 $\deg(p_r, \mathcal{CH}(P_r))$

Expected Degree of p_r

- Convex polytope of r vertices has at most 3r-6 edges
- Sum of degrees of vertices of $CH(P_r)$ is 6r-12
- Expected degree of p_r bounded by (6r-12)/r

$$E[\deg(p_r, \mathcal{CH}(P_r))] = \frac{1}{r-4} \sum_{i=5}^{r} \deg(p_i, \mathcal{CH}(P_r))$$

$$\leq \frac{1}{r-4} \left(\left\{ \sum_{i=1}^{r} \deg(p_i, \mathcal{CH}(P_r)) \right\} - 12 \right)$$

$$\leq \frac{6r-12-12}{r-4} = 6.$$

Expected Number of Created Facets

- 4 from initial tetrahedron
- Expected total number of facets created by adding $p_5,...,p_n$

$$4 + \sum_{r=5}^{n} E[\deg(p_r, \mathcal{CH}(P_r))] \le 4 + 6(n-4) = 6n - 20.$$

Running Time

- Initialization $\Rightarrow O(n \log n)$
- Creating and deleting facets $\Rightarrow O(n)$
 - Expected number of facets created is O(n)
- Deleting p_r and facets in $F_{\text{conflict}}(p_r)$ from \mathcal{G} along with incident arcs $\Rightarrow O(n)$
- Finding new conflicts $\Rightarrow O(?)$

Total Time to Find New Conflicts

• For each edge e on horizon we spend $O(\operatorname{card}(P(e)))$ time

where $P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)$

- Total time is $O(\Sigma_{e \in \mathcal{L}} \operatorname{card}(P(e)))$
 - bounded by expected value of Σ card(P(e))
- **Lemma 11.6** The expected value of Σ_e card(P(e)), where the summation is over all horizon edges that appear at some stage of the algorithm is O(nlogn)

Randomized Insertion Order

Running Time

- Initialization $\Rightarrow O(n \log n)$
- Creating and deleting facets $\Rightarrow O(n)$
- Updating $G \Rightarrow O(n)$
- Finding new conflicts $\Rightarrow O(n \log n)$

• Total Running Time is O(nlogn)

Convex Hulls in Dual Space

• Upper convex hull of a set of points is essentially the lower envelope of a set of lines (similar with lower convex hull and upper envelope)

Half-Plane Intersection

- Convex hulls and intersections of half planes are dual concepts
- An algorithm to compute the intersection of half-planes can be given by dualizing a convex hull algorithm. *Is this true?*

Half-Plane Intersection

- Duality transform cannot handle vertical lines
- If we do not leave the Euclidean plane, there cannot be any general duality that turns the intersection of a set of half-planes into a convex hull. Why?

Intersection of half-planes can be empty! And Convex hull is well defined.

- Conditions for duality:
 - Intersection is not empty
 - Point in the interior is known.

Voronoi Diagrams Revisited

- $U:=(z=x^2+y^2)$ a paraboloid
- p is point on plane z=0
- h(p) is non-vert plane $z=2p_xx+2p_yy-(p_{x+}^2p_y^2)$
- q is any point on z=0
- $vdist(q',q(p)) = dist(p,q)^2$
- h(p) and paraboloid encodes any distance p to any point on z=0

Voronoi Diagrams

- $H := \{h(p) \mid p \in P\}$
- $\mathcal{VE}(H)$ upper envelope of the planes in H
- Projection of VE(H) on plane z=0 is Voronoi diagram of P

Simplified Case

Demo

• /mit/6.837/voronoi/voronoi

Delaunay Triangulations from CH

Higher Dimensional Convex Hulls

• Upper Bound Theorem:

The worst-case combinatorial complexity of the convex hull of n points in d-dimensional space is $\Theta(n^{\lfloor d/2 \rfloor})$.

• Our algorithm generalizes to higher dimensions with expected running time of $\Theta(n^{\lfloor d/2 \rfloor})$

Higher Dimensional Convex Hulls

• Best known output-sensitive algorithm for computing convex hulls in R^d is:

$$O(n\log k + (nk)^{1-1/(\lfloor d/2\rfloor + 1)}\log^{O(n)})$$

where *k* is complexity