Ciencias de Datos con R: Fundamentos Estadísticos

Ana M. Bianco, Jemina García y Mariela Sued

Vectores Aleatorios Discretos

Vector Aleatorio (muchas observables juntas)

Vector Aleatorio: muchas variables aleatorias juntas

$$X_i:\mathcal{S} o\mathbb{R}$$
 k variables aleatorias $\mathbf{X}=(X_1,X_2,\cdots,X_k)$ vector aleatorio $\mathbf{X}:\mathcal{S} o\mathbb{R}^k$

Ya vimos esta situación: problema de alturas! ¿Quiénes eran las variables?

Vectores Aleatorios Discretos

Variables Aleatorias

Una variable aleatoria X es una función definida sobre el espacio muestral $\mathcal S$ que toma valores en los reales:

$$X: \mathcal{S} \to \mathbb{R}$$

La función de distribución acumulada ${\cal F}_X$ de la variable (aleatoria) ${\cal X}$ está definida por:

$$F_X(t) = \mathbb{P}(X \le t) = F(t)$$

Notemos que $F_X: \mathbb{R} \to [0,1]$

p_{XY} : Puntual Conjunta

Función de probabilidad puntual conjunta:

$$p_{XY}(x,y) = \mathbb{P}(X = x \cap Y = y) = \mathbb{P}(X = x, Y = y)$$

Género/Carrera	Biología	Física	Computación	Química	Matemática
Femenino	0.15	0.06	0.12	0.05	0.10
Masculino	0.10	0.12	0.15	0.10	0.05

Table: p_{XY} función de probabilidad puntual conjunta

Se elige una persona al azar. Calcule la probabilidad de que la persona elegida sea

- a) de género femenino y de Biología.
- b) de género fenenino.
- c) de Biología.
- d) de Biología o de género femenino.
- e) de Biología sabiendo que es de género femenino.
 etc.

p_{XY} : Puntual Conjunta

Función de probabilidad puntual conjunta:

$$p_{XY}(x,y) = \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x \cap Y = y)$$

Ojo!!! usamos , en lugar de ∩!!!

X/Y	1	2	3	4	5
1	0.15	0.06	0.12	0.05	0.10
0	0.10	0.12	0.15	0.10	0.05

Table: p_{XY} función de probabilidad puntual conjunta

$$P((X,Y) \in A) = \sum_{(x,y)\in A} p_{XY}(x,y)$$

$$\mathbb{P}(X=Y) = \dots \quad \mathbb{P}(X

$$\mathbb{P}(X=1) = \dots \quad \mathbb{P}(Y=5) = \dots$$$$

Conjunta y Marginales.

Función de probabilidad puntual conjunta:

$$p_{XY}(x,y) = \mathbb{P}(X=x,Y=y)$$

X/Y	y_1	y_2	y_3	y_4	y_5	$p_X(\cdot)$
x_1	0.15	0.06	0.12	0.05	0.10	0.48
x_2	0.10	0.12	0.15	0.10	0.10 0.05	0.52
$p_Y(\cdot)$	0.25	0.18	0.27	0.15	0.15	1.00

Table: p_{XY} función de probabilidad puntual conjunta

Marginales:

$$p_X(x) = \mathbb{P}(X = x) = \sum_y p_{XY}(x, y)$$

$$p_Y(x) = \mathbb{P}(Y = y) = \sum_x p_{XY}(x, y)$$

Distribución Bivarida Discreta

Función de probabilidad puntual conjunta:

$$p_{XY}(x,y) = \mathbb{P}(X=x,Y=y)$$

X/	$Y \mid$	y_1	y_2	 y		$p_X(\cdot)$
x_1						
x_2						
•						
x				$p_{XY}(x, y)$	<i>y</i>)	
$p_Y($	•)					

$$P((X,Y) \in A) = \sum_{(x,y)\in A} p_{XY}(x,y)$$
$$p_X(x) = \mathbb{P}(X=x) = \sum_y p_{XY}(x,y)$$
$$p_Y(y) = \mathbb{P}(Y=y) = \sum_x p_{XY}(x,y)$$

Ojo al piojo

X/Y	0	1	$p_X(\cdot)$
0	0.07	0.23	0.30
1	0.53	0.17	0.70
$p_Y(\cdot)$	0.60	0.40	1.00

X/Y	0	1	$p_X(\cdot)$
0	0.01	0.29	0.30
1	0.59	0.11	0.70
$p_Y(\cdot)$	0.60	0.40	1.00

X/Y	0	1	$p_X(\cdot)$
0	0.18	0.12	0.30
1	0.42	0.28	0.70
$p_Y(\cdot)$	0.60	0.40	1.00

Condicionando: Género, Carrera

Género/Carrera	Biología	Física	Computación	Química	Matemá
Femenino	0.15	0.06	0.12	0.05	0.10
Masculino	0.10	0.12	0.15	0.10	0.05

- ¿Cuál es la probabilidad de que estudie Biología?
- ¿Cuál es la probabilidad de que sea de Biología sabiendo que es de género femenino?

X/Y	1	2	3	4	5
1	0.15	0.06	0.12	0.05	0.10
0	0.10	0.12	0.15	0.10	0.05

- ¿Cuál es la probabilidad de que estudie Biología?
- ¿Cuál es la probabilidad de que sea de Biología sabiendo que es de género femenino?
- Probabilidad puntual condicional:

$$p_{Y|X=x}(y) = \mathbb{P}(Y = y \mid X = x) = \frac{p_{XY}(x, y)}{p_X(x)}$$

• ¿Cuál es la probabilidad de que sea de **** sabiendo que es de género femenino?

Y	1	2	3	4	5
$p_{Y X=1}(\cdot)$	0.15/0.48	0.06/0.48	0.12/0.48	0.05/0.48	0.10/0.48

• ¿Cuál es la probabilidad de que sea de **** sabiendo que es de género femenino?

Y	1	2	3	4	5
$p_{Y X=1}(\cdot)$	0.15/0.48	0.06/0.48	0.12/0.48	0.05/0.48	0.10/0.48

• ¿Cuál es la probabilidad de que sea de **** sabiendo que es de género femenino?

Y	1	2	3	4	5
$p_{Y X=1}(\cdot)$	0.15/0.48	0.06/0.48	0.12/0.48	0.05/0.48	0.10/0.48

Probabilidad puntual condicional:

$$p_{Y|X=x}(y) = \mathbb{P}(Y = y \mid X = x) = \frac{p_{XY}(x,y)}{p_X(x)}$$

Y	y_1	y_2	 y	
$p_{Y X=x}(\cdot)$	$\frac{p_{XY}(x,y_1)}{p_X(x)}$	$\frac{p_{XY}(x,y_2)}{p_X(x)}$	 $\frac{p_{XY}(x,y)}{p_X(x)}$	

Conjunta, Marginal y Condicional

• Probabilidad marginal:

$$p_X(x) = \sum_{y} p_{XY}(x, y)$$

• Probabilidad puntual condicional:

$$p_{Y|X=x}(y) = \mathbb{P}(Y = y \mid X = x) = \frac{p_{XY}(x, y)}{p_X(x)}$$

• Regla Multiplicativa

$$p_{XY}(x,y) = p_X(x) p_{Y|X=x}(y)$$

Conjunta, Marginal y Condicional

• Probabilidad marginal:

$$p_X(x) = \sum_{y} p_{XY}(x, y)$$

• Probabilidad puntual condicional:

$$p_{Y|X=x}(y) = \mathbb{P}(Y = y \mid X = x) = \frac{p_{XY}(x, y)}{p_X(x)}$$

• Probabilidad puntual condicional:

$$p_{X|Y=y}(x) = \mathbb{P}(X = x \mid Y = y) = \frac{p_{XY}(x,y)}{p_Y(y)}$$

• Regla Multiplicativa

$$p_{XY}(x,y) = p_X(x) p_{Y|X=x}(y)$$

 $p_{XY}(x,y) = p_Y(y) p_{X|Y=y}(x)$

Independencia

• Definición: X e Y se dicen independientes sii

$$P\left(X\in A,Y\in B\right)=P\left(X\in A\right)\ P\left(Y\in B\right)\quad$$
 para todo $A,\,B$

ullet Lema: X e Y son independientes si y solo si

$$p_{XY}(x,y) = p_X(x)p_Y(y)$$
 , para todo x , y

La conjunta es el producto de las marginales

• Bajo independencia, las marginales determinan la conjunta.