Ficha-Resumo de Lógica

Professor Douglas Maioli

Conectivos Lógicos

Conectivos	Símbolos	Símbolos	Lê-se	Exemplos
Negação	П	~ (′)	Não	¬р
Conjunção	Λ		Е	$p \land q$
Disjunção	\/		Ou	m\/a
(Inclusiva)	V		Ou	$p \lor q$
Disjunção	\/	Φ.	Ou Ou	201/0
Exclusiva	<u>V</u>	\oplus	(mas não ambos)	p abla q
Condicional	\Rightarrow	\rightarrow	Se Então	$p \Rightarrow q$
Bicondicional	\Leftrightarrow	\leftrightarrow	Se, e somente se	$p \Leftrightarrow q$

Palavras Chaves de cada Conectivo Lógico:

Negação

Palavras: "Não", "Não é verdade que", "É falso que"

Conjunção

Palavras: "e", "além disso", "mas", "também", "." (Ponto final e começa outra

frase)

<u>Disjunção (Inclusiva)</u>

Palavras: "ou".

Atenção: alguns livros consideram que "ou ... ou" pode ser "ou inclusivo".

Disjunção Exclusiva

Palavras: "ou ... ou, mas não ambas", "ou ou"

Condicional

Palavras: "implica", "então", "logo", frases que tenham "se"

Bicondicional

Palavras: "se, e somente se", "é condição necessária e suficiente"

Ordem Dos Conectivos

1. Parênteses (à partir dos mais internos)

2. ¬ **3.** ∨, ∧ **4.** ⇒ **5.** ⇔

Doualas Maioli

Tabela Verdade dos Conectivos Lógicos

F OU OU EXCLUSIVO

A	B	$A \land B$
V	V	V
V	F	F
F	V	F
F	F	F

A	В	$A \lor B$
V	V	V
V	F	V
F	V	V
F	F	F

A	В	A⊻B
V	V	F
V	F	V
F	V	V
F	F	F

IMPLICA

A	В	$A \Rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

	- 111	\mathbf{N}	
EU	JI	VΑ	LE

A	В	$A \Leftrightarrow B$
V	V	V
V	F	F
F	V	F
F	F	V

NÃO

A	$\neg A$
V	F
F	V

Regras De Equivalência

Equivalência	Nome / Abreviatura
$ \begin{array}{c} A \land B \iff B \land A \\ A \lor B \iff B \lor A \end{array} $	Comutatividade / com
$ (A \land B) \land C \Leftrightarrow A \land (B \land C) $ $ (A \lor B) \lor C \Leftrightarrow A \lor (B \lor C) $	Associatividade / ass
$AV(B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$ $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$	Distributividade / dist
$ \begin{array}{c} A \land 1 \Leftrightarrow A \\ A \lor 0 \Leftrightarrow A \end{array} $	Elementos neutros
$ \begin{array}{c} A \land 0 \Leftrightarrow 0 \\ A \lor 1 \Leftrightarrow 1 \end{array} $	Outras propriedades do 0 e 1
$ \begin{array}{c} A \land \neg A \iff 0 \\ A \lor \neg A \iff 1 \end{array} $	Complementares

Equivalência	Nome / Abreviatura
$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$ $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$	Lei de Morgan / De Morgan
$(A \Rightarrow B) \land (B \Rightarrow A) \Leftrightarrow (A \Leftrightarrow B)$	Definição de Equivalência / que
$(A \Rightarrow B) \Leftrightarrow \neg A \lor B$	Condicional / cond
$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$	Contraposição / cont
$\neg(\neg A) \Leftrightarrow A$	Dupla Negação / dn
$A \Leftrightarrow A \land A \\ A \Leftrightarrow A \land A$	Idempotência / id

Regras De Inferência

De	Deduzimos	Nome / Abreviatura
$A \\ A \Rightarrow B$	В	Modus ponens / mp
$ \begin{array}{c} \neg B\\A\Rightarrow B \end{array} $	$\neg A$	Modus Tollens / mt
A B	$A \wedge B$	Conjunção / conj
$A \wedge B$	A	Simplificação / simp
$A \wedge B$	В	Simplificação / simp
A	$A \lor B$	Adição / ad
$A \Rightarrow B \\ B \Rightarrow C$	$A \Rightarrow C$	Silogismo Hipotético / sh
$\neg A$ $A \lor B$	В	Silogismo Disjuntivo / sd
$(A \land B) \Rightarrow C$	$A \Rightarrow (B \Rightarrow C)$	Exportação / exp

Regras De Inferência de Quantificadores

Douglas Maioli

De	Deduzimos	Nome / Abreviatura	Restrições do Uso
$(\forall x)P(x)$	P(t), t é uma variável ou uma constante	Particularização Universal / pu	Se t for uma variável, não deve estar dentro do escopo de um quantificador de t
$(\exists x)P(x)$	P(a), a é uma constante	Particularização Existencial / pe	É necessário que seja a primeira regra a usar a
P(x)	$(\forall x)P(x)$	Generalização Universal / gu	P(x) não pode ser deduzida de nenhuma hipótese na qual x é uma variável livre.
P(x) ou $P(a)$ em que a é constante	$(\exists x)P(x)$	Generalização Existencial / ge	x não pode aparece em $P(a)$

Explicação informal das regras de inferência de Quantificadores:

1) Particularização Universal

Você retira o "para todo" e a variável que estiver na frente do "para todo", você muda naquela linha toda por outra letra.

Cuidado: essa nova letra não pode aparecer em outro quantificador dessa linha.

Exemplo:

$$(\forall y)(\exists u)(\mathcal{C}(y) \to \mathcal{D}(y,u))$$

 $(\exists u)(\mathcal{C}(r) \to \mathcal{D}(r,u)$

Tirei o "para todo y" e troquei nessa linha o "y" por "r", perceba que eu poderia chamar "y" de qualquer nome, menos de "u".

2) Particularização Existencial

Você retira o "existe" e a variável que estiver na frente do "existe", você muda naquela linha toda por outra letra.

<u>Cuidado:</u> essa nova letra deve ser considerada como constante e não pode ter sido utilizada em nenhum passo anterior, nem em hipóteses, nem na tese.

Exemplo:

$$(\exists x)(Q(x) \land P(y, x))$$
$$Q(a) \to P(y, a)$$

Tirei o "existe x" e troquei nessa linha o "x" por "a", o "a" não pode aparecer antes.

3) Generalização Universal

Douglas Maioli

Você troca alguma letra de uma linha por uma variável, pode ser "x" e coloca na frente o "para todo x".

<u>Cuidado:</u> em geral só podemos fazer isso em variáveis que vieram de particularização universal. Nunca usar em constante e nem em letras que vieram de particularização existencial.

Exemplo:

$$A(t) \to B(t) \land C(t, g)$$

$$(\forall x)(A(x) \to B(x) \land C(x, g))$$

Supondo que as variáveis "t" de todos os predicados da linha de cima, vieram de uma particularização universal, então troquei todos os "t" dessa linha por "x" e coloquei o "para todo x"

4) Generalização Existencial

Você troca alguma letra de uma linha por uma variável, pode ser "x" e coloca na frente o "existe x".

<u>Cuidado:</u> a variável que vai colocar junto com o existe não pode aparecer no predicado dessa linha.

Exemplo:

$$Q(a) \land P(x, a)$$

(\(\exists y\))(\(Q(y) \lambda P(x, y)\)

Troquei na linha de cima o "a" pela variável "y" e acrescentei o "existe y", perceba que nesse caso não podia trocar "a" por "x" e colocar o "existe x", pois o "x" aparece no predicado que tem a letra "a" que vai ser trocada.