```
` <110> Chan, Doug W
        Chen, Ping-Chi B
        Chen, David J
 <120> DNA Dependent Protein Kinase Catalytic Subunit Phosphorylation Sites
 and Antibodies Thereto
 <130> IB-1807 PCT
 <140> US 60/375,094
 <141> 2003-04-21
 <150> US 60/375,094
 <151> 2002-04-22
 <160> 28
 <170> PatentIn version 3.1
 <210> 1
 <211> 14
 <212>
        PRT
 <213> Artificial Sequence
 <220>
 <221> PEPTIDE
 <222>
        (1)..(14)
 <223> HUMAN GENETIC ORIGIN
 <220>
 <221> MOD_RES
 <222>
        (7)..(7)
 <223> PHOSPHORYLATION at T2609
 <400> 1
 Thr Pro Met Phe Val Glu Thr Gln Ala Ser Gln Gly Thr Cys
 <210> 2
 <211> 14
 <212>
        PRT
 <213> Artificial Sequence
 <220>
 <221> PEPTIDE
 <222>
        (1)..(14)
 <223> HUMAN GENETIC ORIGIN
 <220>
 <221> MOD_RES
 <222>
        (7)..(7)
```

<223> PHOSPHORYLATION at S2056

<400> 2

Gln Ser Tyr Ser Tyr Ser Ser Gln Asp Pro Arg Pro Ala Cys $1 \hspace{1cm} 5 \hspace{1cm} 10$

<210> 3

<211> 4128

<212> PRT

<213> Homo sapiens

<400> 3

Met Ala Gly Ser Gly Ala Gly Val Arg Cys Ser Leu Leu Arg Leu Gln
1 10 15

Glu Thr Leu Ser Ala Ala Asp Arg Cys Gly Ala Ala Leu Ala Gly His $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gln Leu Ile Arg Gly Leu Gly Gln Glu Cys Val Leu Ser Ser Pro 35 40 45

Ala Val Leu Ala Leu Gln Thr Ser Leu Val Phe Ser Arg Asp Phe Gly 50 55 60

Leu Leu Val Phe Val Arg Lys Ser Leu Asn Ser Ile Glu Phe Arg Glu 65 70 75 80

Cys Arg Glu Glu Ile Leu Lys Phe Leu Cys Ile Phe Leu Glu Lys Met 85 90 95

Gly Gln Lys Ile Ala Pro Tyr Ser Val Glu Ile Lys Asn Thr Cys Thr 100 105 110

Ser Val Tyr Thr Lys Asp Arg Ala Ala Lys Cys Lys Ile Pro Ala Leu 115 120 125

Asp Leu Leu Ile Lys Leu Leu Gln Thr Phe Arg Ser Ser Arg Leu Met 130 135 140

Asp Glu Phe Lys Ile Gly Glu Leu Phe Ser Lys Phe Tyr Gly Glu Leu 145 150 155 160

Ala Leu Lys Lys Lys Ile Pro Asp Thr Val Leu Glu Lys Val Tyr Glu 165 170 175

Leu Leu Gly Leu Gly Glu Val His Pro Ser Glu Met Ile Asn Asn 180 185 190

Ala	Glu	Asn 195	Leu	Phe	Arg	Ala	Phe 200	Leu	Gly	Glu	Leu	Lys 205	Thr	Gln	Met
Thr	Ser 210	Ala	Val	Arg	Glu	Pro 215	Lys	Leu	Pro	Val	Leu 220	Ala	Gly	Cys	Leu
Lys 225	Gly	Leu	Ser	Ser	Leu 230	Leu	Cys	Asn	Phe	Thr 235	Lys	Ser	Met	Glu	Glu 240
Asp	Pro	Gln	Thr	Ser 245	Arg	Glu	Ile	Phe	Asn 250	Phe	Val	Leu	Lys	Ala 255	Ile
Arg	Pro	Gln	Ile 260	Asp	Leu	Lys	Arg	Tyr 265	Ala	Val	Pro	Ser	Ala 270	Gly	Leu
Arg	Leu	Phe 275	Ala	Leu	His	Ala	Ser 280	Gln	Phe	Ser	Thr	Cys 285	Leu	Leu	Asp
Asn	Tyr 290	Val	Ser	Leu	Phe	Glu 295	Val	Leu	Leu	Lys	Trp 300	Cys	Ala	His	Thr
Asn 305	Val	Glu	Leu	Lys	Lys 310	Ala	Ala	Leu	Ser	Ala 315	Leu	Glu	Ser	Phe	Leu 320
Lys	Gln	Val	Ser	Asn 325	Met	Val	Ala	Lys	Asn 330	Ala	Glu	Met	His	Lys 335	Asn
Lys	Leu	Gln	Tyr 340	Phe	Met	Glu	Gln	Phe 345	Tyr	Gly	Ile	Ile	Arg 350	Asn	Val
Asp	Ser	Asn 355	Asn	Lys	Glu	Leu	Ser 360	Ile	Ala	Ile	Arg	Gly 365	Tyr	Gly	Leu
Phe	Ala 370	Gly	Pro	Cys	Lys	Val 375	Ile	Asn	Ala	Lys	Asp 380	Val	Asp	Phe	Met
Tyr 385	Val	Glu	Leu	Ile	Gln 390	Arg	Cys	Lys	Gln	Met 395	Phe	Leu	Thr	Gln	Thr 400
Asp	Thr	Gly	Asp	Tyr 405	Arg	Val	Tyr	Gln	Met 410	Pro	Ser	Phe	Leu	Gln 415	Ser
Val	Ala	Ser	Val 420	Leu	Leu	Tyr	Leu	Asp 425	Thr	Val	Pro	Glu	Val 430	Tyr	Thr

Pro	Val	Leu 435	Glu	His	Leu	Val	Val 440	Met	Gln	Ile	Asp	Ser 445	Phe	Pro	Gln
Tyr	Ser 450	Pro	Lys	Met	Gln	Leu 455	Val	Cys	Cys	Arg	Ala 460	Ile	Val	Lys	Val
Phe 465	Leu	Ala	Leu	Ala	Ala 470	Lys	Gly	Pro	Val	Leu 475	Arg	Asn	Cys	Ile	Ser 480
Thr	Val	Val	His	Gln 485	Gly	Leu	Ile	Arg	Ile 490	Cys	Ser	Lys	Pro	Val 495	Val
Leu	Pro	Lys	Gly 500	Pro	Glu	Ser	Glu	Ser 505	Glu	Asp	His	Arg	Ala 510	Ser	Gly
Glu	Val	Arg 515	Thr	Gly	Lys	Trp	Lys 520	Val	Pro	Thr	Tyr	Lys 525	Asp	Tyr	Val
Asp	Leu 530	Phe	Arg	His	Leu	Leu 535	Ser	Ser	Asp	Gln	Met 540	Met	Asp	Ser	Ile
Leu 545	Ala	Asp	Glu	Ala	Phe 550	Phe	Ser	Val	Asn	Ser 555	Ser	Ser	Glu	Ser	Leu 560
Asn	His	Leu	Leu	Tyr 565	Asp	Glu	Phe	Val	Lys 570	Ser	Val	Leu	Lys	Ile 575	Val
Glu	Lys	Leu	Asp 580	Leu	Thr	Leu	Glu	Ile 585	Gln	Thr	Val	Gly	Glu 590	Gln	Glu
Asn	Gly	Asp 595	Glu		Pro						Pro	Thr 605	Ser	Asp	Pro
Ala	Ala 610	Asn	Leu	His	Pro	Ala 615	Lys	Pro	Lys	Asp	Phe 620	Ser	Ala	Phe	Ile
Asn 625	Leu	Val	Glu	Phe	Cys 630	Arg	Glu	Ile	Leu	Pro 635	Glu	Lys	Gln	Ala	Glu 640
Phe	Phe	Glu	Pro	Trp 645	Val	Tyr	Ser	Phe	Ser 650	Tyr	Glu	Leu	Ile	Leu 655	Gln
Ser	Thr	Arg	Leu 660	Pro	Leu	Ile	Ser	Gly 665	Phe	Tyr	Lys	Leu	Leu 670	Ser	Ile

Thr	Val	Arg 675	Asn	Ala	Lys	Lys	Ile 680	Lys	Tyr	Phe	Glu	Gly 685	Val	Ser	Pro
Lys	Ser 690	Leu	Lys	His	Ser	Pro 695	Glu	Asp	Pro	Glu	Lys 700	Tyr	Ser	Cys	Phe
Ala 705	Leu	Phe	Val	Lys	Phe 710	Gly	Lys	Glu	Val	Ala 715	Val	Lys	Met	Lys	Gln 720
Tyr	Lys	Asp	Glu	Leu 725	Leu	Ala	Ser	Cys	Leu 730	Thr	Phe	Leu	Leu	Ser 735	Leu
Pro	His	Asn	Ile 740	Ile	Glu	Leu	Asp	Val 745	Arg	Ala	Tyr	Val	Pro 750	Ala	Leu
Gln	Met	Ala 755	Phe	Lys	Leu	Gly	Leu 760	Ser	Tyr	Thr	Pro	Leu 765	Ala	Glu	Val
Gly	Leu 770	Asn	Ala	Leu	Glu	Glu 775	Trp	Ser	Ile	Tyr	Ile 780	Asp	Arg	His	Val
Met 785	Gln	Pro	Tyr	Tyr	Lys 790	Asp	Ile	Leu	Pro	Cys 795	Leu	Asp	Gly	Tyr	Leu 800
Lys	Thr	Ser	Ala	Leu 805	Ser	Asp	Glu	Thr	Lys 810	Asn	Asn	Trp	Glu	Val 815	Ser
Ala	Leu	Ser	Arg 820	Ala	Ala	Gln	Lys	Gly 825	Phe	Asn	Lys	Val	Val 830	Leu	Lys
His	Leu	Lys 835	Lys	Thr	Lys	Asn	Leu 840	Ser	Ser	Asn	Glu	Ala 845	Ile	Ser	Leu
Glu	Glu 850	Ile	Arg	Ile	Arg	Val 855	Val	Gln	Met	Leu	Gly 860	Ser	Leu	Gly	Gly
Gln 865	Ile	Asn	Lys	Asn	Leu 870	Leu	Thr	Val	Thr	Ser 875	Ser	Asp	Glu	Met	Met 880
Lys	Ser	Tyr	Val	Ala 885	_	Asp	Arg	Glu	Lys 890	Arg	Leu	Ser	Phe	Ala 895	Val
Pro	Phe	Arg	Glu 900	Met	Lys	Pro	Val	Ile 905	Phe	Leu	Asp	Val	Phe 910	Leu	Pro
Arg	Val	Thr	Glu	Leu	Ala	Leu	Thr	Ala	Ser	Asp	Arg	Gln	Thr	Lys	Val

915 920 925

- Ala Ala Cys Glu Leu Leu His Ser Met Val Met Phe Met Leu Gly Lys 930 935 940
- Ala Thr Gln Met Pro Glu Gly Gly Gln Gly Ala Pro Pro Met Tyr Gln 945 950 955 960
- Leu Tyr Lys Arg Thr Phe Pro Val Leu Leu Arg Leu Ala Cys Asp Val 965 970 975
- Asp Gln Val Thr Arg Gln Leu Tyr Glu Pro Leu Val Met Gln Leu Ile 980 985 990
- His Trp Phe Thr Asn Asn Lys Lys Phe Glu Ser Gln Asp Thr Val Ser 995 1000 1005
- Leu Leu Glu Ala Ile Leu Asp Gly Ile Val Asp Pro Val Asp Ser 1010 1015 1020
- Thr Leu Arg Asp Phe Cys Gly Arg Cys Ile Arg Glu Phe Leu Lys 1025 1030 1035
- Trp Ser Ile Lys Gln Ile Thr Pro Gln Gln Gln Glu Lys Ser Pro 1040 1045 1050
- Val Asn Thr Lys Ser Leu Phe Lys Arg Leu Tyr Ser Leu Ala Leu 1055 1060 1065
- His Pro Asn Ala Phe Lys Arg Leu Gly Ala Ser Leu Ala Phe Asn 1070 1075 1080
- Asn Ile Tyr Arg Glu Phe Arg Glu Glu Glu Ser Leu Val Glu Gln 1085 1090 1095
- Phe Val Phe Glu Ala Leu Val Ile Tyr Met Glu Ser Leu Ala Leu 1100 1105 1110
- Ala His Ala Asp Glu Lys Ser Leu Gly Thr Ile Gln Gln Cys Cys 1115 1120 1125
- Asp Ala Ile Asp His Leu Cys Arg Ile Ile Glu Lys Lys His Val 1130 1135 1140
- Ser Leu Asn Lys Ala Lys Lys Arg Arg Leu Pro Arg Gly Phe Pro 1145 1150 1155

Pro Ser Ala Ser Leu Cys Leu Leu Asp Leu Val Lys Trp Leu Leu Ala His Cys Gly Arg Pro Gln Thr Glu Cys Arg His Lys Ser Ile Glu Leu Phe Tyr Lys Phe Val Pro Leu Pro Gly Asn Arg Ser Pro Asn Leu Trp Leu Lys Asp Val Leu Lys Glu Glu Gly Val Ser Phe Leu Ile Asn Thr Phe Glu Gly Gly Gly Cys Gly Gln Pro Ser Gly Ile Leu Ala Gln Pro Thr Leu Leu Tyr Leu Arg Gly Pro Phe Ser Leu Gln Ala Thr Leu Cys Trp Leu Asp Leu Leu Leu Ala Ala Leu Glu Cys Tyr Asn Thr Phe Ile Gly Glu Arg Thr Val Gly Ala Leu Gln Val Leu Gly Thr Glu Ala Gln Ser Ser Leu Leu Lys Ala Val Ala Phe Phe Leu Glu Ser Ile Ala Met His Asp Ile Ile Ala Ala Glu Lys Cys Phe Gly Thr Gly Ala Ala Gly Asn Arg Thr Ser Pro Gln Glu Gly Glu Arg Tyr Asn Tyr Ser Lys Cys Thr Val Val Val Arg Ile Met Glu Phe Thr Thr Leu Leu Asn Thr Ser Pro Glu Gly Trp Lys Leu Leu Lys Lys Asp Leu Cys Asn Thr His Leu Met Arg Val Leu Val Gln Thr Leu Cys Glu Pro Ala Ser Ile Gly

Phe Asn Ile Gly Asp Val Gln Val Met Ala His Leu Pro Asp Val Cys Val Asn Leu Met Lys Ala Leu Lys Met Ser Pro Tyr Lys Asp Ile Leu Glu Thr His Leu Arg Glu Lys Ile Thr Ala Gln Ser Ile Glu Glu Leu Cys Ala Val Asn Leu Tyr Gly Pro Asp Ala Gln Val Asp Arg Ser Arg Leu Ala Ala Val Val Ser Ala Cys Lys Gln Leu His Arg Ala Gly Leu Leu His Asn Ile Leu Pro Ser Gln Ser Thr Asp Leu His His Ser Val Gly Thr Glu Leu Leu Ser Leu Val Tyr Lys Gly Ile Ala Pro Gly Asp Glu Arg Gln Cys Leu Pro Ser Leu Asp Leu Ser Cys Lys Gln Leu Ala Ser Gly Leu Leu Glu Leu Ala Phe Ala Phe Gly Gly Leu Cys Glu Arg Leu Val Ser Leu Leu Leu Asn Pro Ala Val Leu Ser Thr Ala Ser Leu Gly Ser Ser Gln Gly Ser Val Ile His Phe Ser His Gly Glu Tyr Phe Tyr Ser Leu Phe Ser Glu Thr Ile Asn Thr Glu Leu Leu Lys Asn Leu Asp Leu Ala Val Leu Glu Leu Met Gln Ser Ser Val Asp Asn Thr Lys Met Val Ser Ala Val Leu Asn Gly Met Leu Asp Gln Ser Phe Arg Glu Arg

Ala Asn Gln Lys His Gln Gly Leu Lys Leu Ala Thr Thr Ile Leu Gln His Trp Lys Lys Cys Asp Ser Trp Trp Ala Lys Asp Ser Pro Leu Glu Thr Lys Met Ala Val Leu Ala Leu Leu Ala Lys Ile Leu Gln Ile Asp Ser Ser Val Ser Phe Asn Thr Ser His Gly Ser Phe Pro Glu Val Phe Thr Thr Tyr Ile Ser Leu Leu Ala Asp Thr Lys Leu Asp Leu His Leu Lys Gly Gln Ala Val Thr Leu Leu Pro Phe Phe Thr Ser Leu Thr Gly Gly Ser Leu Glu Glu Leu Arg Arg Val Leu Glu Gln Leu Ile Val Ala His Phe Pro Met Gln Ser Arg Glu Phe Pro Pro Gly Thr Pro Arg Phe Asn Asn Tyr Val Asp Cys Met Lys Lys Phe Leu Asp Ala Leu Glu Leu Ser Gln Ser Pro Met Leu Leu Glu Leu Met Thr Glu Val Leu Cys Arg Glu Gln Gln His Val Met Glu Glu Leu Phe Gln Ser Ser Phe Arg Arg Ile Ala Arg Arg Gly Ser Cys Val Thr Gln Val Gly Leu Leu Glu Ser Val Tyr Glu Met Phe Arg Lys Asp Asp Pro Arg Leu Ser Phe Thr Arg Gln Ser Phe Val Asp Arg Ser Leu Leu Thr Leu Leu Trp His Cys Ser Leu Asp Ala Leu Arg Glu Phe Phe Ser Thr Ile Val Val Asp Ala Ile

Asp	Val 1850	Leu	Lys	Ser	Arg	Phe 1855	Thr	Lys	Leu	Asn	Glu 1860	Ser	Thr	Phe
Asp	Thr 1865	Gln	Ile	Thr	Lys	Lys 1870	Met	Gly	Tyr	Tyr	Lys 1875	Ile	Leu	Asp
Val	Met 1880	Tyr	Ser	Arg	Leu	Pro 1885	Lys	Asp	Asp	Val	His 1890	Ala	Lys	Glu
Ser	Lys 1895		Asn	Gln	Val	Phe 1900	His	Gly	Ser	Cys	Ile 1905	Thr	Glu	Gly
Asn	Glu 1910	Leu	Thr	Lys	Thr	Leu 1915	Ile	Lys	Leu	Cys	Tyr 1920	Asp	Ala	Phe
Thr	Glu 1925	Asn	Met	Ala	Gly	Glu 1930		Gln	Leu	Leu	Glu 1935	Arg	Arg	Arg
Leu	Tyr 1940	His	Cys	Ala	Ala	Tyr 1945	Asn	Суѕ	Ala	Ile	Ser 1950	Val	Ile	Cys
Cys	Val 1955		Asn	Glu	Leu	Lys 1960	Phe	Tyr	Gln	Gly	Phe 1965	Leu	Phe	Ser
Glu	Lys 1970		Glu	Lys	Asn	Leu 1975	Leu	Ile	Phe	Glu	Asn 1980	Leu	Ile	Asp
Leu	Lys 1985	-	Arg	Tyr	Asn	Phe 1990		Val	Glu	Val	Glu 1995	Val	Pro	Met
	Arg 2000	Lys	Lys	Lys	Tyr	Ile 2005	Glu	Ile	Arg	Lys	Glu 2010	Ala	Arg	Glu
Ala	Ala 2015		Gly	Asp	Ser	Asp 2020	Gly	Pro	Ser	Tyr	Met 2025	Ser	Ser	Leu
Ser	Tyr 2030		Ala	Asp	Ser	Thr 2035	Leu	Ser	Glu	Glu	Met 2040	Ser	Gln	Phe
Asp	Phe 2045		Thr	Gly	Val	Gln 2050		Tyr	Ser	Tyr	Ser 2055	Ser	Gln	Asp
Pro	Arg 2060		Ala	Thr	Gly	Arg 2065		Arg	Arg	Arg	Glu 2070	Gln	Arg	Asp

Pro Thr Val His Asp Asp Val Leu Glu Leu Glu Met Asp Glu Leu Asn Arg His Glu Cys Met Ala Pro Leu Thr Ala Leu Val Lys His Met His Arg Ser Leu Gly Pro Pro Gln Gly Glu Glu Asp Ser Val Pro Arg Asp Leu Pro Ser Trp Met Lys Phe Leu His Gly Lys Leu Gly Asn Pro Ile Val Pro Leu Asn Ile Arg Leu Phe Leu Ala Lys Leu Val Ile Asn Thr Glu Glu Val Phe Arg Pro Tyr Ala Lys His Trp Leu Ser Pro Leu Leu Gln Leu Ala Ala Ser Glu Asn Asn Gly Gly Glu Gly Ile His Tyr Met Val Val Glu Ile Val Ala Thr Ile Leu Ser Trp Thr Gly Leu Ala Thr Pro Thr Gly Val Pro Lys Asp Glu Val Leu Ala Asn Arg Leu Leu Asn Phe Leu Met Lys His Val Phe His Pro Lys Arg Ala Val Phe Arg His Asn Leu Glu Ile Ile Lys Thr Leu Val Glu Cys Trp Lys Asp Cys Leu Ser Ile Pro Tyr Arg Leu Ile Phe Glu Lys Phe Ser Gly Lys Asp Pro Asn Ser Lys Asp Asn Ser Val Gly Ile Gln Leu Leu Gly Ile Val Met Ala Asn Asp Leu Pro Pro Tyr Asp Pro Gln Cys Gly Ile Gln Ser Ser Glu

Tyr Phe Gln Ala Leu Val Asn Asn Met Ser Phe Val Arg Tyr Lys Glu Val Tyr Ala Ala Ala Ala Glu Val Leu Gly Leu Ile Leu Arg Tyr Val Met Glu Arg Lys Asn Ile Leu Glu Glu Ser Leu Cys Glu Leu Val Ala Lys Gln Leu Lys Gln His Gln Asn Thr Met Glu Asp Lys Phe Ile Val Cys Leu Asn Lys Val Thr Lys Ser Phe Pro Pro Leu Ala Asp Arg Phe Met Asn Ala Val Phe Phe Leu Leu Pro Lys Phe His Gly Val Leu Lys Thr Leu Cys Leu Glu Val Val Leu Cys Arg Val Glu Gly Met Thr Glu Leu Tyr Phe Gln Leu Lys Ser Lys Asp Phe Val Gln Val Met Arg His Arg Asp Asp Glu Arg Gln Lys Val Cys Leu Asp Ile Ile Tyr Lys Met Met Pro Lys Leu Lys Pro Val Glu Leu Arg Glu Leu Leu Asn Pro Val Val Glu Phe Val Ser His Pro Ser Thr Thr Cys Arg Glu Gln Met Tyr Asn Ile Leu Met Trp Ile His Asp Asn Tyr Arg Asp Pro Glu Ser Glu Thr Asp Asn Asp Ser Gln Glu Ile Phe Lys Leu Ala Lys Asp Val Leu Ile Gln Gly Leu Ile Asp Glu Asn Pro Gly Leu Gln Leu Ile Ile Arg Asn

Phe	Trp 2525	Ser	His	Glu		Arg 2530	Leu	Pro	Ser	Asn	Thr 2535	Leu	Asp	Arg
Leu	Leu 2540	Ala	Leu	Asn	Ser	Leu 2545	Tyr	Ser	Pro	Lys	Ile 2550	Glu	Val	His
Phe	Leu 2555	Ser	Leu	Ala	Thr	Asn 2560	Phe	Leu	Leu	Glu	Met 2565	Thr	Ser	Met
Ser	Pro 2570	Asp	Tyr	Pro	Asn	Pro 2575	Met	Phe	Glu	His	Pro 2580	Leu	Ser	Glu
Cys	Glu 2585		Gln	Glu		Thr 2590	Ile	Asp	Ser	Asp	Trp 2595	Arg	Phe	Arg
Ser	Thr 2600	Val	Leu	Thr	Pro	Met 2605	Phe	Val	Glu	Thr	Gln 2610	Ala	Ser	Gln
Gly	Thr 2615	Leu	Gln	Thr	Arg	Thr 2620		Glu	Gly	Ser	Leu 2625	Ser	Ala	Arg
Trp	Pro 2630	Val	Ala	Gly	Gln	Ile 2635	Arg	Ala	Thr	Gln	Gln 2640	Gln	His	Asp
Phe	Thr 2645		Thr	Gln		Ala 2650		Gly	Arg	Ser	Ser 2655	Phe	Asp	Trp
Leu	Thr 2660		Ser	Ser	Thr	Asp 2665	Pro	Leu	Val	Asp	His 2670	Thr	Ser	Pro
Ser	Ser 2675		Ser			Phe 2680			Lys		Ser 2685	Glu	Arg	Leu
Gln	Arg 2690	Ala	Pro	Leu	Lys	Ser 2695	Val	Gly	Pro	Asp	Phe 2700	Gly	Lys	Lys
Arg	Leu 2705	Gly	Leu	Pro	Gly	Asp 2710	Glu	Val	Asp	Asn	Lys 2715	Val	Lys	Gly
Ala	Ala 2720	Gly	Arg	Thr	Asp	Leu 2725	Leu	Arg	Leu	Arg	Arg 2730	Arg	Phe	Met
Arg	Asp 2735	Gln	Glu	Lys	Leu	Ser 2740	Leu	Met	Tyr	Ala	Arg 2745	Lys	Gly	Val
Ala	Glu	Gln	Lys	Arg	Glu	Lys	Glu	Ile	Lys	Ser	Glu	Leu	Lys	Met

	2750					2133					2760			
Lys	Gln 2765	Asp	Ala	Gln	Val	Val 2770	Leu	Tyr	Arg	Ser	Tyr 2775	Arg	His	Gly
Asp	Leu 2780	Pro	Asp	Ile	Gln	Ile 2785		His	Ser	Ser	Leu 2790	Ile	Thr	Pro
Leu	Gln 2795	Ala	Val	Ala		Arg 2800		Pro	Ile	Ile	Ala 2805		Gln	Leu
Phe	Ser 2810	Ser	Leu	Phe	Ser	Gly 2815	Ile	Leu	Lys	Glu	Met 2820	Asp	Lys	Phe
Lys	Thr 2825	Leu	Ser	Glu	Lys	Asn 2830		Ile	Thr	Gln	Lys 2835		Leu	Gln
Asp	Phe 2840	Asn	Arg	Phe	Leu	Asn 2845	Thr	Thr	Phe	Ser	Phe 2850	Phe	Pro	Pro
Phe	Val 2855	Ser	Cys	Ile	Gln	Asp 2860		Ser	Cys	Gln	His 2865	Ala	Ala	Leu
Leu	Ser 2870	Leu	Asp	Pro	Ala	Ala 2875	Val	Ser	Ala	Gly	Cys 2880	Leu	Ala	Ser
Leu	Gln 2885	Gln	Pro	Val	Gly	Ile 2890	Arg	Leu	Leu	Glu	Glu 2895	Ala	Leu	Leu
Arg	Leu 2900	Leu	Pro	Ala	Glu	Leu 2905	Pro	Ala	Lys	Arg	Val 2910	Arg	Gly	Lys
Ala	Arg 2915	Leu	Pro	Pro	Asp	Val 2920	Leu	Arg	Trp	Val	Glu 2925	Leu	Ala	Lys
Leu	Tyr 2930	Arg	Ser	Ile	Gly	Glu 2935	Tyr	Asp	Val	Leu	Arg 2940	Gly	Ile	Phe
Thr	Ser 2945	Glu	Ile	Gly	Thr	Lys 2950	Gln	Ile	Thr	Gln	Ser 2955	Ala	Leu	Leu
Ala	Glu 2960	Ala	Arg	Ser	Asp	Tyr 2965	Ser	Glu	Ala	Ala	Lys 2970	Gln	Tyr	Asp

Glu Ala Leu Asn Lys Gln Asp Trp Val Asp Gly Glu Pro Thr Glu 2975 2980 2985

Ala	Glu 2990	_	Asp	Phe		Glu 2995	Leu	Ala	Ser	Leu	Asp 3000	Cys	Tyr	Asn
His	Leu 3005		Glu	Trp	Lys	Ser 3010		Glu	Tyr	Cys	Ser 3015		Ala	Ser
Ile	Asp 3020	Ser	Glu	Asn	Pro	Pro 3025		Leu	Asn	Lys	Ile 3030	Trp	Ser	Glu
Pro	Phe 3035	Tyr	Gln	Glu	Thr	Tyr 3040		Pro	Tyr	Met	Ile 3045		Ser	Lys
Leu	Lys 3050	Leu	Leu	Leu	Gln	Gly 3055		Ala	Asp	Gln	Ser 3060	Leu	Leu	Thr
Phe	Ile 3065	Asp	Lys	Ala	Met	His 3070		Glu	Leu	Gln	Lys 3075		Ile	Leu
Glu	Leu 3080	His	Tyr	Ser	Gln	Glu 3085	Leu	Ser	Leu	Leu	Tyr 3090	Leu	Leu	Gln
Asp	Asp 3095	Val	Asp	Arg		Lys 3100		Tyr	Ile	Gln	Asn 3105	Gly	Ile	Gln
Ser	Phe 3110	Met	Gln	Asn	Tyr	Ser 3115	Ser	Ile	Asp	Val	Leu 3120	Leu	His	Gln
Ser	Arg 3125	Leu	Thr	Lys	Leu	Gln 3130	Ser	Val	Gln	Ala	Leu 3135	Thr	Glu	Ile
Gln	Glu 3140	Phe	Ile	Ser	Phe	Ile 3145	Ser	Lys	Gln	Gly	Asn 3150	Leu	Ser	Ser
Gln	Val 3155	Pro	Leu	Lys	Arg	Leu 3160	Leu	Asn	Thr	Trp	Thr 3165	Asn	Arg	Tyr
Pro	Asp 3170	Ala	Lys	Met	Asp	Pro 3175	Met	Asn	Ile	Trp	Asp 3180	Asp	Ile	Ile
Thr	Asn 3185	Arg	Cys	Phe	Phe	Leu 3190	Ser	Lys	Ile	Glu	Glu 3195	Lys	Leu	Thr
Pro	Leu 3200	Pro	Glu	Asp	Asn	Ser 3205	Met	Asn	Val	Asp	Gln 3210	Asp	Gly	Asp

Pro Ser Asp Arg Met Glu Val Gln Glu Glu Glu Asp Ile Ser Ser Leu Ile Arg Ser Cys Lys Phe Ser Met Lys Met Ile Asp Ser Ala Arg Lys Gln Asn Asn Phe Ser Leu Ala Met Lys Leu Leu Lys Glu Leu His Lys Glu Ser Lys Thr Arg Asp Asp Trp Leu Val Ser Trp Val Gln Ser Tyr Cys Arg Leu Ser His Cys Arg Ser Arg Ser Gln Gly Cys Ser Glu Gln Val Leu Thr Val Leu Lys Thr Val Ser Leu Leu Asp Glu Asn Asn Val Ser Ser Tyr Leu Ser Lys Asn Ile Leu Ala Phe Arg Asp Gln Asn Ile Leu Leu Gly Thr Thr Tyr Arg Ile Ile Ala Asn Ala Leu Ser Ser Glu Pro Ala Cys Leu Ala Glu Ile Glu Glu Asp Lys Ala Arg Arg Ile Leu Glu Leu Ser Gly Ser Ser Ser Glu Asp Ser Glu Lys Val Ile Ala Gly Leu Tyr Gln Arg Ala Phe Gln His Leu Ser Glu Ala Val Gln Ala Ala Glu Glu Glu Ala Gln Pro Pro Ser Trp Ser Cys Gly Pro Ala Ala Gly Val Ile Asp Ala Tyr Met Thr Leu Ala Asp Phe Cys Asp Gln Gln Leu Arg Lys Glu Glu Glu Asn Ala Ser Val Thr Asp Ser Ala Glu

Leu Gln Ala Tyr Pro Ala Leu Val Val Glu Lys Met Leu Lys Ala Leu Lys Leu Asn Ser Asn Glu Ala Arg Leu Lys Phe Pro Arg Leu Leu Gln Ile Ile Glu Arg Tyr Pro Glu Glu Thr Leu Ser Leu Met Thr Lys Glu Ile Ser Ser Val Pro Cys Trp Gln Phe Ile Ser Trp Ile Ser His Met Val Ala Leu Leu Asp Lys Asp Gln Ala Val Ala Val Gln His Ser Val Glu Glu Ile Thr Asp Asn Tyr Pro Gln Ala Ile Val Tyr Pro Phe Ile Ile Ser Ser Glu Ser Tyr Ser Phe Lys Asp Thr Ser Thr Gly His Lys Asn Lys Glu Phe Val Ala Arg Ile Lys Ser Lys Leu Asp Gln Gly Gly Val Ile Gln Asp Phe Ile Asn Ala Leu Asp Gln Leu Ser Asn Pro Glu Leu Leu Phe Lys Asp Trp Ser Asn Asp Val Arg Ala Glu Leu Ala Lys Thr Pro Val Asn Lys Lys Asn Ile Glu Lys Met Tyr Glu Arg Met Tyr Ala Ala Leu Gly Asp Pro Lys Ala Pro Gly Leu Gly Ala Phe Arg Arg Lys Phe Ile Gln Thr Phe Gly Lys Glu Phe Asp Lys His Phe Gly Lys Gly Gly Ser Lys Leu Leu Arg Met Lys Leu Ser Asp Phe Asn Asp Ile Thr Asn Met Leu Leu Lys Met Asn Lys Asp Ser Lys Pro Pro Gly

	•	
3665	3670	3675

	Leu 3680	Lys	Glu	Cys	Ser	Pro 3685	Trp	Met	Ser	Asp	Phe 3690	Lys	Val	Glu
	Leu 3695	Arg	Asn	Glu	Leu	Glu 3700	Ile	Pro	Gly	Gln	Туг 3705	Asp	Gly	Arg
	Lys 3710	Pro	Leu	Pro	Glu	Tyr 3715	His	Val	Arg	Ile	Ala 3720	Gly	Phe	Asp
	Arg 3725	Val	Thr	Val	Met	Ala 3730	Ser	Leu	Arg	Arg	Pro 3735	Lys	Arg	Ile
	Ile 3740	Arg	Gly	His	Asp	Glu 3745	Arg	Glu	His	Pro	Phe 3750	Leu	Val	Lys
	Gly 3755	Glu	Asp	Leu	Arg	Gln 3760	Asp	Gln	Arg	Val	Glu 3765	Gln	Leu	Phe
	Val 3770	Met	Asn	Gly	Ile	Leu 3775	Ala	Gln	Asp	Ser	Ala 3780	Cys	Ser	Gln
	Ala 3785	Leu	Gln	Leu	Arg	Thr 3790	Tyr	Ser	Val	Val	Pro 3795	Met	Thr	Ser
	Leu 3800	Gly	Leu	Ile	Glu	Trp 3805	Leu	Glu	Asn	Thr	Val 3810	Thr	Leu	Lys
_	Leu 3815	Leu	Leu	Asn	Thr	Met 3820	Ser	Gln	Glu	Glu	Lys 3825	Ala	Ala	Tyr
	Ser 3830	Asp	Pro	Arg	Ala	Pro 3835	Pro	Суз	Glu	Tyr	Lys 3840	Asp	Trp	Leu
	Lys 3845	Met	Ser	Gly	Lys	His 3850	Asp	Val	Gly	Ala	Tyr 3855	Met	Leu	Met
-	Lys 3860	Gly	Ala	Asn	Arg	Thr 3865	Glu	Thr	Val	Thr	Ser 3870	Phe	Arg	Lys
Arg (Glu 3875	Ser	Lys	Val	Pro	Ala 3880	Asp	Leu	Leu	Lys	Arg 3885	Ala	Phe	Val
Arg 1	Met 3890	Ser	Thr	Ser	Pro	Glu 3895	Ala	Phe	Leu	Ala	Leu 3900	Arg	Ser	His

Phe Ala Ser Ser His Ala Leu Ile Cys Ile Ser His Trp Ile Leu Gly Ile Gly Asp Arg His Leu Asn Asn Phe Met Val Ala Met Glu Thr Gly Gly Val Ile Gly Ile Asp Phe Gly His Ala Phe Gly Ser Ala Thr Gln Phe Leu Pro Val Pro Glu Leu Met Pro Phe Arg Leu Thr Arg Gln Phe Ile Asn Leu Met Leu Pro Met Lys Glu Thr Gly Leu Met Tyr Ser Ile Met Val His Ala Leu Arg Ala Phe Arg Ser Asp Pro Gly Leu Leu Thr Asn Thr Met Asp Val Phe Val Lys Glu Pro Ser Phe Asp Trp Lys Asn Phe Glu Gln Lys Met Leu Lys Lys Gly Gly Ser Trp Ile Gln Glu Ile Asn Val Ala Glu Lys Asn Trp Tyr Pro Arg Gln Lys Ile Cys Tyr Ala Lys Arg Lys Leu Ala Gly Ala Asn Pro Ala Val Ile Thr Cys Asp Glu Leu Leu Leu Gly His Glu Lys Ala Pro Ala Phe Arg Asp Tyr Val Ala Val Ala Arg Gly Ser Lys Asp His Asn Ile Arg Ala Gln Glu Pro Glu Ser Gly Leu Ser Glu Glu Thr Gln Val Lys Cys Leu Met Asp Gln Ala Thr Asp Pro Asn Ile Leu Gly Arg Thr Trp Glu Gly Trp Glu Pro Trp Met

```
<210> 4
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (1)..(21)
<223> HUMAN GENETIC ORIGIN
<220>
<221> MOD RES
<222> (11)..(11)
<223> PHOSPHORYLATION at T2609
<400> 4
Ser Thr Val Leu Thr Pro Met Phe Val Glu Thr Gln Ala Ser Gln Gly
                                    10
Thr Leu Gln Thr Arg
            20
<210> 5
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE <222> (1)..(29)
<223> HUMAN GENETIC ORIGIN
<220>
<221> MOD_RES
<222> (13)..(13)
<223> PHOSPHORYLATION at S2056
<400> 5
Asp Phe Ser Thr Gly Val Gln Ser Tyr Ser Tyr Ser Ser Gln Asp Pro
Arg Pro Ala Thr Gly Arg Phe Arg Arg Glu Gln Arg
            20
                                 25
<210> 6
<211> 303
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
```

<222> (1)..(303)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD_RES

<222> (177)..(177)

<223> PHOSPHORYLATION at S2056

<400> 6

Ile Asn Gln Val Phe His Gly Ser Cys Ile Thr Glu Gly Asn Glu Leu 20 25 30

Thr Lys Thr Leu Ile Lys Leu Cys Tyr Asp Ala Phe Thr Glu Asn Met 35 40 45

Ala Gly Glu Asn Gln Leu Leu Glu Arg Arg Arg Leu Tyr His Cys Ala 50 55 60

Ala Tyr Asn Cys Ala Ile Ser Val Ile Cys Cys Val Phe Asn Glu Leu 65 70 75 80

Lys Phe Tyr Gln Gly Phe Leu Phe Ser Glu Lys Pro Glu Lys Asn Leu 85 90 95

Leu Ile Phe Glu Asn Leu Ile Asp Leu Lys Arg Arg Tyr Asn Phe Pro 100 105 110

Val Glu Val Glu Val Pro Met Glu Arg Lys Lys Lys Tyr Ile Glu Ile 115 120 125

Arg Lys Glu Ala Arg Glu Ala Ala Asn Gly Asp Ser Asp Gly Pro Ser 130 135 140

Tyr Met Ser Ser Leu Ser Tyr Leu Ala Asp Ser Thr Leu Ser Glu Glu 145 150 155 160

Met Ser Gln Phe Asp Phe Ser Thr Gly Val Gln Ser Tyr Ser Tyr Ser 165 170 175

Ser Gln Asp Pro Arg Pro Ala Thr Gly Arg Phe Arg Arg Glu Gln 180 185 190

Arg Asp Pro Thr Val His Asp Asp Val Leu Glu Leu Glu Met Asp Glu
195 200 205

Leu Asn Arg His Glu Cys Met Ala Pro Leu Thr Ala Leu Val Lys His

Met His Arg Ser Leu Gly Pro Pro Gln Gly Glu Asp Ser Val Pro 225 230 235

Arg Asp Leu Pro Ser Trp Met Lys Phe Leu His Gly Lys Leu Gly Asn 245 250 255

Pro Ile Val Pro Leu Asn Ile Arg Leu Phe Leu Ala Lys Leu Val Ile 265 260

Asn Thr Glu Glu Val Phe Arg Pro Tyr Ala Lys His Trp Leu Ser Pro 280

Leu Leu Gln Leu Ala Ala Ser Glu Asn Asn Gly Gly Glu Gly Ile 290 295

<210> 7

<211> 388

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE <222> (1)..(388)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD_RES <222> (177)..(177) <223> PHOSPHORYLATION at S2056

<400> 7

Met Tyr Ser Arg Leu Pro Lys Asp Asp Val His Ala Lys Glu Ser Lys 10

Ile Asn Gln Val Phe His Gly Ser Cys Ile Thr Glu Gly Asn Glu Leu 25

Thr Lys Thr Leu Ile Lys Leu Cys Tyr Asp Ala Phe Thr Glu Asn Met 40

Ala Gly Glu Asn Gln Leu Leu Glu Arg Arg Arg Leu Tyr His Cys Ala 55

Ala Tyr Asn Cys Ala Ile Ser Val Ile Cys Cys Val Phe Asn Glu Leu 70 75

Lys	Phe	Tyr	Gln	Gly 85	Phe	Leu	Phe	Ser	Glu 90	Lys	Pro	Glu	Lys	Asn 95	Leu
Leu	Ile	Phe	Glu 100	Asn	Leu	Ile	Asp	Leu 105	Lys	Arg	Arg	Tyr	Asn 110	Phe	Pro
Val	Glu	Val 115	Glu	Val	Pro	Met	Glu 120	Arg	Lys	Lys	Lys	Tyr 125	Ile	Glu	Ile
Arg	Lys 130	Glu	Ala	Arg	Glu	Ala 135	Ala	Asn	Gly	Asp	Ser 140	Asp	Gly	Pro	Ser
Tyr 145	Met	Ser	Ser	Leu	Ser 150	Tyr	Leu	Ala	Asp	Ser 155	Thr	Leu	Ser	Glu	Glu 160
Met	Ser	Gln	Phe	Asp 165	Phe	Ser	Thr	Gly	Val 170	Gln	Ser	Tyr	Ser	Tyr 175	Ser
Ser	Gln	Asp	Pro 180	Arg	Pro	Ala	Thr	Gly 185	Arg	Phe	Arg	Arg	Arg 190	Glu	Gln
Arg	Asp	Pro 195	Thr	Val	His	Asp	Asp 200	Val	Leu	Glu		Glu ·205	Met	Asp	Glu
Leu	Asn 210	Arg	His	Glu	Cys	Met 215	Ala	Pro	Leu	Thr	Ala 220	Leu	Val	Lys	His
Met 225	His	Arg	Ser	Leu	Gly 230	Pro	Pro	Gln	Gly	Glu 235	Glu	Asp	Ser	Val	Pro 240
Arg	Asp	Leu	Pro	Ser 245	Trp	Met	Lys	Phe	Leu 250	His	Gly	Lys	Leu	Gly 255	Asn
Pro	Ile	Val	Pro 260	Leu	Asn	Ile	Arg	Leu 265	Phe	Leu	Ala	Lys	Leu 270	Val	Ile
Asn	Thr	Glu 275	Glu	Val	Phe	Arg	Pro 280	Tyr	Ala	Lys	His	Trp 285	Leu	Ser	Pro
Leu	Leu 290	Gln	Leu	Ala	Ala	Ser 295	Glu	Asn	Asn	Gly	Gly 300	Glu	Gly	Ile	His
Tyr 305	Met	Val	Val	Glu	Ile 310	Val	Ala	Thr	Ile	Leu 315	Ser	Trp	Thr	Gly	Leu 320

Ala Thr Pro Thr Gly Val Pro Lys Asp Glu Val Leu Ala Asn Arg Leu 330 325

Leu Asn Phe Leu Met Lys His Val Phe His Pro Lys Arg Ala Val Phe 345

Arg His Asn Leu Glu Ile Ile Lys Thr Leu Val Glu Cys Trp Lys Asp 360

Cys Leu Ser Ile Pro Tyr Arg Leu Ile Phe Glu Lys Phe Ser Gly Lys 375

Asp Pro Asn Ser 385

<210> 8

<211> 821

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

(1)..(821) <222>

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD_RES <222> (177)..(177)

<223> PHOSPHORYLATION at S2056

<220>

<221> MOD_RES <222> (730)..(730)

<223> PHOSPHORYLATION at T2609

<400> 8

Met Tyr Ser Arg Leu Pro Lys Asp Asp Val His Ala Lys Glu Ser Lys 5 10

Ile Asn Gln Val Phe His Gly Ser Cys Ile Thr Glu Gly Asn Glu Leu 2.5 20

Thr Lys Thr Leu Ile Lys Leu Cys Tyr Asp Ala Phe Thr Glu Asn Met 35 40

Ala Gly Glu Asn Gln Leu Leu Glu Arg Arg Leu Tyr His Cys Ala 50 55 60

Ala Tyr Asn Cys Ala Ile Ser Val Ile Cys Cys Val Phe Asn Glu Leu

Lys	Phe	Tyr	Gln	Gly	Phe	Leu	Phe	Ser	GIu	Lys	Pro	Glu	Lys	Asn	Leu
				85					90					95	

65

- Leu Ile Phe Glu Asn Leu Ile Asp Leu Lys Arg Arg Tyr Asn Phe Pro $100 \hspace{1cm} 105 \hspace{1cm} 110$
- Val Glu Val Glu Val Pro Met Glu Arg Lys Lys Lys Tyr Ile Glu Ile 115 120 125
- Arg Lys Glu Ala Arg Glu Ala Ala Asn Gly Asp Ser Asp Gly Pro Ser 130 135 140
- Tyr Met Ser Ser Leu Ser Tyr Leu Ala Asp Ser Thr Leu Ser Glu Glu 145 150 155 160
- Met Ser Gln Phe Asp Phe Ser Thr Gly Val Gln Ser Tyr Ser Tyr Ser 165 170 175
- Ser Gln Asp Pro Arg Pro Ala Thr Gly Arg Phe Arg Arg Glu Gln 180 185 190
- Arg Asp Pro Thr Val His Asp Asp Val Leu Glu Leu Glu Met Asp Glu
 195 200 205
- Leu Asn Arg His Glu Cys Met Ala Pro Leu Thr Ala Leu Val Lys His 210 215 220
- Met His Arg Ser Leu Gly Pro Pro Gln Gly Glu Glu Asp Ser Val Pro 225 230 235 240
- Arg Asp Leu Pro Ser Trp Met Lys Phe Leu His Gly Lys Leu Gly Asn 245 250 255
- Pro Ile Val Pro Leu Asn Ile Arg Leu Phe Leu Ala Lys Leu Val Ile 260 265 270
- Asn Thr Glu Glu Val Phe Arg Pro Tyr Ala Lys His Trp Leu Ser Pro 275 280 285
- Leu Leu Gln Leu Ala Ala Ser Glu Asn Asn Gly Gly Glu Gly Ile His 290 295 300
- Tyr Met Val Val Glu Ile Val Ala Thr Ile Leu Ser Trp Thr Gly Leu 305 310 315 320

Ala Thr Pro Thr Gly Val Pro Lys Asp Glu Val Leu Ala Asn Arg Leu Leu Asn Phe Leu Met Lys His Val Phe His Pro Lys Arg Ala Val Phe Arg His Asn Leu Glu Ile Ile Lys Thr Leu Val Glu Cys Trp Lys Asp Cys Leu Ser Ile Pro Tyr Arg Leu Ile Phe Glu Lys Phe Ser Gly Lys Asp Pro Asn Ser Lys Asp Asn Ser Val Gly Ile Gln Leu Leu Gly Ile Val Met Ala Asn Asp Leu Pro Pro Tyr Asp Pro Gln Cys Gly Ile Gln Ser Ser Glu Tyr Phe Gln Ala Leu Val Asn Asn Met Ser Phe Val Arg Tyr Lys Glu Val Tyr Ala Ala Ala Glu Val Leu Gly Leu Ile Leu Arg Tyr Val Met Glu Arg Lys Asn Ile Leu Glu Glu Ser Leu Cys Glu Leu Val Ala Lys Gln Leu Lys Gln His Gln Asn Thr Met Glu Asp Lys Phe Ile Val Cys Leu Asn Lys Val Thr Lys Ser Phe Pro Pro Leu Ala Asp Arg Phe Met Asn Ala Val Phe Phe Leu Leu Pro Lys Phe His Gly Val Leu Lys Thr Leu Cys Leu Glu Val Val Leu Cys Arg Val Glu Gly Met Thr Glu Leu Tyr Phe Gln Leu Lys Ser Lys Asp Phe Val Gln Val Met Arg His Arg Asp Asp Glu Arg Gln Lys Val Cys Leu Asp Ile Ile

Tyr	Lys	Met	Met	Pro 565	Lys	Leu	Lys	Pro	Val 570	Glu	Leu	Arg	Glu	Leu 575	Leu
Asn	Pro	Val	Val 580	Glu	Phe	Val	Ser	His 585	Pro	Ser	Thr	Thr	Cys 590	Arg	Glu
Gln	Met	Tyr 595	Asn	Ile	Leu	Met	Trp 600	Ile	His	Asp	Asn	Tyr 605	Arg	Asp	Pro
Glu	Ser 610	Glu	Thr	Asp	Asn	Asp 615	Ser	Gln	Glu	Ile	Phe 620	Lys	Leu	Ala	Lys
Asp 625	Val	Leu	Ile	Gln	Gly 630	Leu	Ile	Asp	Glu	Asn 635	Pro	Gly	Leu	Gln	Leu 640
Ile	Ile	Arg	Asn	Phe 645	Trp	Ser	His	Glu	Thr 650	Arg	Leu	Pro	Ser	Asn 655	Thr
Leu	Asp	Arg	Leu 660	Leu	Ala	Leu	Asn	Ser 665	Leu	Tyr	Ser	Pro	Lys 670	Ile	Glu
Val	His	Phe 675	Leu	Ser	Leu	Ala	Thr 680	Asn	Phe	Leu	Leu	Glu 685	Met	Thr	Ser
Met	Ser 690	Pro	Asp	Tyr	Pro	Asn 695	Pro	Met	Phe	Glu	His 700	Pro	Leu	Ser	Glu
Cys 705	Glu	Phe	Gln	Glu	Tyr 710	Thr	Ile	Asp	Ser	Asp 715	Trp	Arg	Phe	Arg	Ser 720
Thr	Val	Leu	Thr	Pro 725	Met	Phe	Val	Glu	Thr 730	Gln	Ala	Ser	Gln	Gly 735	Thr
Leu	Gln	Thr	Arg 740	Thr	Gln	Glu	Gly	Ser 745	Leu	Ser	Ala	Arg	Trp 750	Pro	Val
Ala	Gly	Gln 755	Ile	Arg	Ala	Thr	Gln 760	Gln	Gln	His	Asp	Phe 765	Thr	Leu	Thr
Gln	Thr 770	Ala	Asp	Gly	Arg	Ser 775	Ser	Phe	Asp	Trp	Leu 780	Thr	Gly	Ser	Ser
Thr 785	Asp	Pro	Leu	Val	Asp 790	His	Thr	Ser	Pro	Ser 795	Ser	Asp	Ser	Leu	Leu 800

Phe Ala His Lys Arg Ser Glu Arg Leu Gln Arg Ala Pro Leu Lys Ser 805 810

Val Gly Pro Asp Phe 820

<210> 9

<211> 440

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(440)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD_RES <222> (349)..(349)

<223> PHOSPHORYLATION at T2609

<400> 9

Ser Gly Lys Asp Pro Asn Ser Lys Asp Asn Ser Val Gly Ile Gln Leu 5

Leu Gly Ile Val Met Ala Asn Asp Leu Pro Pro Tyr Asp Pro Gln Cys 25

Gly Ile Gln Ser Ser Glu Tyr Phe Gln Ala Leu Val Asn Asn Met Ser 40

Phe Val Arq Tyr Lys Glu Val Tyr Ala Ala Ala Glu Val Leu Gly

Leu Ile Leu Arg Tyr Val Met Glu Arg Lys Asn Ile Leu Glu Glu Ser 65 70 75 80

Leu Cys Glu Leu Val Ala Lys Gln Leu Lys Gln His Gln Asn Thr Met 85

Glu Asp Lys Phe Ile Val Cys Leu Asn Lys Val Thr Lys Ser Phe Pro 105 100

Pro Leu Ala Asp Arg Phe Met Asn Ala Val Phe Phe Leu Leu Pro Lys 115 120

Phe His Gly Val Leu Lys Thr Leu Cys Leu Glu Val Val Leu Cys Arg 140 135 130

Val 145	Glu	Gly	Met	Thr	Glu 150	Leu	Tyr	Phe	Gln	Leu 155	Lys	Ser	Lys	Asp	Phe 160
Val	Gln	Val	Met	Arg 165	His	Arg	Asp	Asp	Glu 170	Arg	Gln	Lys	Val	Cys 175	Leu
Asp	Ile	Ile	Tyr 180	Lys	Met	Met	Pro	Lys 185	Leu	Lys	Pro	Val	Glu 190	Leu	Arg
Glu	Leu	Leu 195	Asn	Pro	Val	Val	Glu 200	Phe	Val	Ser	His	Pro 205	Ser	Thr	Thr
Cys	Arg 210	Glu	Gln	Met	Tyr	Asn 215	Ile	Leu	Met	Trp	Ile 220	His	Asp	Asn	Tyr
Arg 225	Asp	Pro	Glu	Ser	Glu 230	Thr	Asp	Asn	Asp	Ser 235	Gln	Glu	Ile	Phe	Lys 240
Leu	Ala	Lys	Asp	Val 245	Leu	Ile	Gln	Gly	Leu 250	Ile	Asp	Glu	Asn	Pro 255	Gly
Leu	Gln	Leu	Ile 260	Ile	Arg	Asn	Phe	Trp 265	Ser	His	Glu	Thr	Arg 270	Leu	Pro
Ser	Asn	Thr 275	Leu	Asp	Arg	Leu	Leu 280	Ala	Leu	Asn	Ser	Leu 285	Tyr	Ser	Pro
Lys	Ile 290	Glu	Val	His	Phe	Leu 295	Ser	Leu	Ala	Thr	Asn 300	Phe	Leu	Leu	Glu
Met 305	Thr	Ser	Met	Ser	Pro 310	Asp	Tyr	Pro	Asn	Pro 315	Met	Phe	Glu	His	Pro 320
Leu	Ser	Glu	Cys	Glu 325	Phe	Gln	Glu	Tyr	Thr 330	Ile	Asp	Ser	Asp	Trp 335	Arg
Phe	Arg	Ser	Thr 340	Val	Leu	Thr	Pro	Met 345	Phe	Val	Glu	Thr	Gln 350	Ala	Ser
Gln	Gly	Thr 355	Leu	Gln	Thr	Arg	Thr 360	Gln	Glu	Gly	Ser	Leu 365	Ser	Ala	Arg
Trp	Pro 370	Val	Ala	Gly	Gln	Ile 375	Arg	Ala	Thr	Gln	Gln 380	Gln	His	Asp	Phe

Thr Leu Thr Gln Thr Ala Asp Gly Arg Ser Ser Phe Asp Trp Leu Thr Gly Ser Ser Thr Asp Pro Leu Val Asp His Thr Ser Pro Ser Ser Asp 405 410 Ser Leu Leu Phe Ala His Lys Arg Ser Glu Arg Leu Gln Arg Ala Pro 420 425 Leu Lys Ser Val Gly Pro Asp Phe 435 <210> 10 <211> 200 <212> PRT <213> Artificial Sequence <220> <221> PEPTIDE <222> (1)..(200) <223> HUMAN GENETIC ORIGIN <220> <221> MOD RES $\langle 222 \rangle$ $(10\overline{9})..(109)$ <223> PHOSPHORYLATION at T2609 <400> 10 Leu Ala Lys Asp Val Leu Ile Gln Gly Leu Ile Asp Glu Asn Pro Gly 5 10 Leu Gln Leu Ile Ile Arg Asn Phe Trp Ser His Glu Thr Arg Leu Pro 25 20 Ser Asn Thr Leu Asp Arg Leu Leu Ala Leu Asn Ser Leu Tyr Ser Pro 40 35 Lys Ile Glu Val His Phe Leu Ser Leu Ala Thr Asn Phe Leu Leu Glu 55 50 Met Thr Ser Met Ser Pro Asp Tyr Pro Asn Pro Met Phe Glu His Pro 65 7.0 Leu Ser Glu Cys Glu Phe Gln Glu Tyr Thr Ile Asp Ser Asp Trp Arg 90 85

110

Phe Arg Ser Thr Val Leu Thr Pro Met Phe Val Glu Thr Gln Ala Ser

105

100

Gln Gly Thr Leu Gln Thr Arg Thr Gln Glu Gly Ser Leu Ser Ala Arg 115 120

Trp Pro Val Ala Gly Gln Ile Arg Ala Thr Gln Gln His Asp Phe 135

Thr Leu Thr Gln Thr Ala Asp Gly Arg Ser Ser Phe Asp Trp Leu Thr 150 155

Gly Ser Ser Thr Asp Pro Leu Val Asp His Thr Ser Pro Ser Ser Asp 165 170

Ser Leu Leu Phe Ala His Lys Arg Ser Glu Arg Leu Gln Arg Ala Pro 180 185

Leu Lys Ser Val Gly Pro Asp Phe 195

<210> 11

<211> 428

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE <222> (1)..(428)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD RES

<222> (335)..(335) <223> PHOSPHORYLATION at T2609

<400> 11

Gln Leu Leu Gly Ile Val Met Ala Asn Asp Leu Pro Pro Tyr Asp Pro 10

Gln Cys Gly Ile Gln Ser Ser Glu Tyr Phe Gln Ala Leu Val Asn Asn 20

Met Ser Phe Val Arg Tyr Lys Glu Val Tyr Ala Ala Ala Ala Glu Val 40

Leu Gly Leu Ile Leu Arg Tyr Val Met Glu Arg Lys Asn Ile Leu Glu 55

Glu Ser Leu Cys Glu Leu Val Ala Lys Gln Leu Lys Gln His Gln Asn 75 70

Thr	Met	Glu	Asp	Lys 85	Phe	Ile	Val	Cys	Leu 90	Asn	Lys	Val	Thr	Lys 95	Ser
Phe	Pro	Pro	Leu 100	Ala	Asp	Arg	Phe	Met 105	Asn	Ala	Val	Phe	Phe 110	Leu	Leu
Pro	Lys	Phe 115	His	Gly	Val	Leu	Lys 120	Thr	Leu	Cys	Leu	Glu 125	Val	Val	Leu
Cys	Arg 130	Val	Glu	Gly	Met	Thr 135	Glu	Leu	Tyr	Phe	Gln 140	Leu	Lys	Ser	Lys
Asp 145	Phe	Val	Gln	Val	Met 150	Arg	His	Arg	Asp	Asp 155	Glu	Arg	Gln	Lys	Val 160
Cys	Leu	Asp	Ile	Ile 165	Tyr	Lys	Met	Met	Pro 170	Lys	Leu	Lys	Pro	Val 175	Glu
Leu	Arg	Glu	Leu 180	Leu	Asn	Pro	Val	Val 185	Glu	Phe	Val	Ser	His 190	Pro	Ser
Thr	Thr	Cys 195	Arg	Glu	Gln	Met	Tyr 200	Asn	Ile	Leu	Met	Trp 205	Ile	His	Asp
Asn	Tyr 210	Arg	Asp	Pro	Glu	Ser 215	Glu	Thr	Asp	Asn	Asp 220	Ser	Gln	Glu	Ile
Phe 225	Lys	Leu	Ala	Lys	Asp 230	Val	Leu	Ile	Gln	Gly 235	Leu	Ile	Asp	Glu	Asn 240
Pro	Gly	Leu	Gln	Leu 245	Ile	Ile	Arg	Asn	Phe 250	Trp	Ser	His	Glu	Thr 255	Arg
Leu	Pro	Ser	Asn 260	Thr	Leu	Asp	Arg	Leu 265	Leu	Ala	Leu	Asn	Ser 270	Leu	Tyr
Ser	Pro	Lys 275	Ile	Glu	Val	His	Phe 280	Leu	Ser	Leu	Ala	Thr 285	Asn	Phe	Leu
Leu	Glu 290	Met	Thr	Ser	Met	Ser 295	Pro	Asp	Tyr	Pro	Asn 300	Pro	Met	Phe	Glu
His 305	Pro	Leu	Ser	Glu	Cys 310	Glu	Phe	Gln	Glu	Tyr 315	Thr	Ile	Asp	Ser	Asp 320

Trp Arg Phe Arg Ser Thr Val Leu Thr Pro Met Phe Val Glu Thr Gln 330 325

Ala Ser Gln Gly Thr Leu Gln Thr Arg Thr Gln Glu Gly Ser Leu Ser 340 345

Ala Arg Trp Pro Val Ala Gly Gln Ile Arg Ala Thr Gln Gln His 360

Asp Phe Thr Leu Thr Gln Thr Ala Asp Gly Arg Ser Ser Phe Asp Trp 375

Leu Thr Gly Ser Ser Thr Asp Pro Leu Val Asp His Thr Ser Pro Ser 390 395

Ser Asp Ser Leu Leu Phe Ala His Lys Arg Ser Glu Arg Leu Gln Arg 410

Ala Pro Leu Lys Ser Val Gly Pro Asp Phe Gly Lys 425

<210> 12

<211> 273

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(273)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD_RES

<222> (180)..(180) <223> PHOSPHORYLATION at T2609

<400> 12

Glu Arg Gln Lys Val Cys Leu Asp Ile Ile Tyr Lys Met Met Pro Lys

Leu Lys Pro Val Glu Leu Arg Glu Leu Leu Asn Pro Val Val Glu Phe

Val Ser His Pro Ser Thr Thr Cys Arg Glu Gln Met Tyr Asn Ile Leu 40

Met Trp Ile His Asp Asn Tyr Arg Asp Pro Glu Ser Glu Thr Asp Asn 50 55 60

Asp Ser Gln Glu Ile Phe Lys Leu Ala Lys Asp Val Leu Ile Gln Gly Leu Ile Asp Glu Asn Pro Gly Leu Gln Leu Ile Ile Arg Asn Phe Trp Ser His Glu Thr Arg Leu Pro Ser Asn Thr Leu Asp Arg Leu Leu Ala Leu Asn Ser Leu Tyr Ser Pro Lys Ile Glu Val His Phe Leu Ser Leu Ala Thr Asn Phe Leu Leu Glu Met Thr Ser Met Ser Pro Asp Tyr Pro Asn Pro Met Phe Glu His Pro Leu Ser Glu Cys Glu Phe Gln Glu Tyr Thr Ile Asp Ser Asp Trp Arg Phe Arg Ser Thr Val Leu Thr Pro Met Phe Val Glu Thr Gln Ala Ser Gln Gly Thr Leu Gln Thr Arg Thr Gln Glu Gly Ser Leu Ser Ala Arg Trp Pro Val Ala Gly Gln Ile Arg Ala Thr Gln Gln Gln His Asp Phe Thr Leu Thr Gln Thr Ala Asp Gly Arg Ser Ser Phe Asp Trp Leu Thr Gly Ser Ser Thr Asp Pro Leu Val Asp His Thr Ser Pro Ser Ser Asp Ser Leu Leu Phe Ala His Lys Arg Ser Glu Arg Leu Gln Arg Ala Pro Leu Lys Ser Val Gly Pro Asp Phe Gly Lys

<210> 13

<211> 140

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(140)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD_RES

<222> (49)..(49)

<223> PHOSPHORYLATION at T2609

<400> 13

Phe Leu Leu Glu Met Thr Ser Met Ser Pro Asp Tyr Pro Asn Pro Met

Phe Glu His Pro Leu Ser Glu Cys Glu Phe Gln Glu Tyr Thr Ile Asp 25

Ser Asp Trp Arg Phe Arg Ser Thr Val Leu Thr Pro Met Phe Val Glu 40 35

Thr Gln Ala Ser Gln Gly Thr Leu Gln Thr Arg Thr Gln Glu Gly Ser 55

Leu Ser Ala Arg Trp Pro Val Ala Gly Gln Ile Arg Ala Thr Gln Gln 70

Gln His Asp Phe Thr Leu Thr Gln Thr Ala Asp Gly Arg Ser Ser Phe 85

Asp Trp Leu Thr Gly Ser Ser Thr Asp Pro Leu Val Asp His Thr Ser 100 105

Pro Ser Ser Asp Ser Leu Leu Phe Ala His Lys Arg Ser Glu Arg Leu 120 115

Gln Arg Ala Pro Leu Lys Ser Val Gly Pro Asp Phe 130 135

<210> 14

<211> 102

<212> PRT <213> Artificial Sequence

<220>

<221> PEPTIDE <222> (1)..(102) <223> HUMAN GENETIC ORIGIN

<220> <221> MOD_RES <222> (9)..(9) <223> PHOSPHORYLATION at T2609 <400> 14 Val Leu Thr Pro Met Phe Val Glu Thr Gln Ala Ser Gln Gly Thr Leu 10 Gln Thr Arg Thr Gln Glu Gly Ser Leu Ser Ala Arg Trp Pro Val Ala 20 25 Gly Gln Ile Arg Ala Thr Gln Gln His Asp Phe Thr Leu Thr Gln 35 40 45 Thr Ala Asp Gly Arg Ser Ser Phe Asp Trp Leu Thr Gly Ser Ser Thr 50 55 Asp Pro Leu Val Asp His Thr Ser Pro Ser Ser Asp Ser Leu Leu Phe 70 75 65 Ala His Lys Arg Ser Glu Arg Leu Gln Arg Ala Pro Leu Lys Ser Val 90 85 Gly Pro Asp Phe Gly Lys 100 <210> 15 <211> 13509 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> $(623\overline{3})..(6235)$ <223> Encodes S2056 <220> <221> misc feature <222> (7882)..(7884)Encodes T2609 <223> <400> 15 60 ggggcatttc cgggtccggg ccgagcgggc gcacgcgcgg gagcgggact cggcggcatg gcgggctccg gagccggtgt gcgttgctcc ctgctgcggc tgcaggagac cttgtccgct 120 geggaeeget geggtgetge eetggeeggt cateaactga teegeggeet ggggeaggaa 180 tgcgtcctga gcagcagccc cgcggtgctg gcattacaga catctttagt tttttccaga 240 gatttcggtt tgcttgtatt tgtccggaag tcactcaaca gtattgaatt tcgtgaatgt 300 agagaagaaa tootaaagtt tttatgtatt ttottagaaa aaatgggoca gaagatogoa 360 ccttactctg ttgaaattaa gaacacttgt accagtgttt atacaaaaga tagagctgct 420 aaatgtaaaa ttccagccct ggaccttctt attaagttac ttcagacttt tagaagttct 480 agactcatgg atgaatttaa aattggagaa ttatttagta aattctatgg agaacttgca 540 ttgaaaaaaa aaataccaga tacagtttta gaaaaagtat atgagctcct aggattattg 600 ggtgaagttc atcctagtga gatgataaat aatgcagaaa acctgttccg cgcttttctg 660 ggtgaactta agacccagat gacatcagca gtaagagagc ccaaactacc tgttctggca 720 ggatgtctga aggggttgtc ctcacttctg tgcaacttca ctaagtccat ggaagaagat 780 ccccagactt caagggagat ttttaatttt gtactaaagg caattcgtcc tcagattgat 840 900 ctgaagagat atgctgtgcc ctcagctggc ttgcgcctat ttgccctgca tgcatctcag tttagcacct gccttctgga caactacgtg tctctatttg aagtcttgtt aaagtggtgt 960 1020 qcccacacaa atgtagaatt gaaaaaagct gcactttcag ccctggaatc ctttctgaaa 1080 caggtttcta atatggtggc gaaaaatgca gaaatgcata aaaataaact gcagtacttt atggagcagt tttatggaat catcagaaat gtggattcga acaacaagga gttatctatt 1140 1200 gctatccgtg gatatggact ttttgcagga ccgtgcaagg ttataaacgc aaaagatgtt 1260 gacttcatgt acgttgagct cattcagcgc tgcaagcaga tgttcctcac ccagacagac 1320 actggtgacg accgtgttta tcagatgcca agcttcctcc agtctgttgc aagcgtcttg 1380 ctgtaccttg acacagttcc tgaggtgtat actccagttc tggagcacct cgtggtgatg cagatagaca gtttcccaca gtacagtcca aaaatgcagc tggtgtgttg cagagccata 1440 gtgaaggtgt tectagettt ggeageaaaa gggeeagtte teaggaattg cattagtaet 1500 gtggtgcatc agggtttaat cagaatatgt tctaaaccag tggtccttcc aaagggccct 1560 1620 gagtctgaat ctgaagacca ccgtgcttca ggggaagtca gaactggcaa atggaaggtg 1680 cccacataca aagactacgt ggatctcttc agacatctcc tgagctctga ccagatgatg 1740 gattctattt tagcagatga agcatttttc tctgtgaatt cctccagtga aagtctgaat catttacttt atgatgaatt tgtaaaatcc gttttgaaga ttgttgagaa attggatctt 1800 1860 acacttgaaa tacagactgt tggggaacaa gagaatggag atgaggcgcc tggtgtttgg atgateceaa etteagatee ageggetaae ttgeateeag etaaacetaa agattttteg 1920 gctttcatta acctggtgga attttgcaga gagattctcc ctgagaaaca agcagaattt 1980 2040 tttgaaccat gggtgtactc attttcatat gaattaattt tgcaatctac aaggttgccc

ctcatcagtg gtttctacaa attgctttct attacagtaa gaaatgccaa gaaaataaaa 2100 tatttcgagg gagttagtcc aaagagtctg aaacactctc ctgaagaccc agaaaagtat 2160 tcttgctttg ctttatttgt gaaatttggc aaagaggtgg cagttaaaat gaagcagtac 2220 2280 aaagatgaac ttttggcctc ttgtttgacc tttcttctgt ccttgccaca caacatcatt gaactcgatg ttagagccta cgttcctgca ctgcagatgg ctttcaaact gggcctgagc 2340 2400 tataccccct tggcagaagt aggcctgaat gctctagaag aatggtcaat ttatattgac 2460 agacatgtaa tgcagcctta ttacaaagac attctcccct gcctggatgg atacctgaag 2520 acttcagcct tgtcagatga gaccaagaat aactgggaag tgtcagctct ttctcgggct 2580 gcccagaaag gatttaataa agtggtgtta aagcatctga agaagacaaa gaacctttca 2640 tcaaacgaag caatatcctt agaagaaata agaattagag tagtacaaat gcttggatct 2700 ctaggaggac aaataaacaa aaatcttctg acagtcacgt cctcagatga gatgatgaag 2760 agctatgtgg cctgggacag agagaagcgg ctgagctttg cagtgccctt tagagagatg 2820 aaacctqtca ttttcctgga tgtgttcctg cctcgagtca cagaattagc gctcacagcc 2880 agtgacagac aaactaaagt tgcagcctgt gaacttttac atagcatggt tatgtttatg 2940 ttgggcaaag ccacgcagat gccagaaggg ggacagggag ccccacccat gtaccagctc tataaqcqqa cqtttcctgt gctgcttcga cttgcgtgtg atgttgatca ggtgacaagg 3000 3060 caactgtatg agccactagt tatgcagctg attcactggt tcactaacaa caagaaattt 3120 gaaagtcagg atactgttgc cttactagaa gctatattgg atggaattgt ggaccctgtt 3180 gacagtactt taagagattt ttgtggtcgg tgtattcgag aattccttaa atggtccatt 3240 aagcaaataa caccacagca gcaggagaag agtccagtaa acaccaaatc gcttttcaag cgactttata gccttgcgct tcaccccaat gctttcaaga ggctgggagc atcacttgcc 3300 3360 tttaataata tctacaggga attcagggaa gaagagtctc tggtggaaca gtttgtgttt gaagccttgg tgatatacat ggagagtctg gccttagcac atgcagatga gaagtcctta 3420 3480 ggtacaattc aacagtgttg tgatgccatt gatcacctat gccgcatcat tgaaaagaag catgtttctt taaataaagc aaagaaacga cgtttgccgc gaggatttcc accttccgca 3540 3600 tcattqtgtt tattggatct ggtcaagtgg cttttagctc attgtgggag gccccagaca quatgtcqac acaaatccat tgaactcttt tataaattcg ttcctttatt gccaggcaac 3660 3720 agatccccta atttgtggct gaaagatgtt ctcaaggaag aaggtgtctc ttttctcatc aacacctttg agggggtgg ctgtggccag ccctcgggca tcctggccca gcccaccctc 3780 ttgtaccttc gggggccatt cagcctgcag gccacgctat gctggctgga cctgctcctg 3840 gccgcgttgg agtgctacaa cacgttcatt ggcgagagaa ctgtaggagc gctccaggtc 3900

ctaggtactg aagcccagtc ttcacttttg aaagcagtgg ctttcttctt agaaagcatt 3960 gccatgcatg acattatagc agcagaaaag tgctttggca ctggggcagc aggtaacaga 4020 acaagcccac aagagggaga aaggtacaac tacagcaaat gcaccgttgt ggtccggatt 4080 atggagttta ccacgactct gctaaacacc tccccggaag gatggaagct cctgaagaag 4140 4200 gacttgtgta atacacacct gatgagagtc ctggtgcaga cgctgtgtga gcccgcaagc 4260 ataggtttca acatcggaga cgtccaggtt atggctcatc ttcctgatgt ttgtgtgaat ctgatgaaag ctctaaagat gtccccatac aaagatatcc tagagaccca tctgagagag 4320 4380 aaaataacag cacagagcat tgaggagctt tgtgccgtca acttgtatgg ccctgacgcg 4440 caagtggaca ggagcaggct ggctgctgtt gtgtctgcct gtaaacagct tcacagagct gggcttctgc ataatatatt accgtctcag tccacagatt tgcatcattc tgttggcaca 4500 4560 gaacttettt eeetggttta taaaggeatt geeeetggag atgagagaea gtgtetgeet 4620 tototagaco toagttgtaa goagotggoo agoggactto tggagttago otttgotttt 4680 qgaqqactqt gtgagcgcct tgtgagtctt ctcctgaacc cagcggtgct gtccacggcg tccttgggca gctcacaggg cagcgtcatc cacttctccc atggggagta tttctatagc 4740 ttgttctcag aaacgatcaa cacggaatta ttgaaaaatc tggatcttgc tgtattggag 4800 4860 ctcatgcagt cttcagtgga taataccaaa atggtgagtg ccgttttgaa cggcatgtta 4920 gaccagaget teagggageg ageaaaceag aaacaceaag gactgaaact tgegaetaca 4980 attctgcaac actggaagaa gtgtgattca tggtgggcca aagattcccc tctcgaaact 5040 aaaatggcag tgctggcctt actggcaaaa attttacaga ttgattcatc tgtatctttt 5100 aatacaagte atggtteatt eeetgaagte tttacaacat atattagtet aettgetgae 5160 acaaagctgg atctacattt aaagggccaa gctgtcactc ttcttccatt cttcaccagc ctcactggag gcagtctgga ggaacttaga cgtgttctgg agcagctcat cgttgctcac 5220 ttccccatgc agtccaggga atttcctcca ggaactccgc ggttcaataa ttatgtggac 5280 5340 tqcatqaaaa aqtttctaga tqcattqgaa ttatctcaaa gccctatgtt gttggaattg 5400 atgacagaag ttctttgtcg ggaacagcag catgtcatgg aagaattatt tcaatccagt 5460 ttcaqqaqqa ttqccaqaaq gggttcatgt gtcacacaag taggccttct ggaaagcgtg 5520 tatgaaatgt tcaggaagga tgacccccgc ctaagtttca cacgccagtc ctttgtggac cgctccctcc tcactctgct gtggcactgt agcctggatg ctttgagaga attcttcagc 5580 acaattgtgg tggatgccat tgatgtgttg aagtccaggt ttacaaagct aaatgaatct 5640 5700 acctttgata ctcaaatcac caagaagatg ggctactata agattctaga cgtgatgtat

tctcgccttc ccaaagatga tgttcatgct aaggaatcaa aaattaatca agttttccat 5760 ggctcgtgta ttacagaagg aaatgaactt acaaagacat tgattaaatt gtgctacgat 5820 gcatttacag agaacatggc aggagagaat cagctgctgg agaggagaag actttaccat 5880 5940 tgtgcagcat acaactgcgc catatctgtc atctgctgtg tcttcaatga gttaaaattt taccaaggtt ttctgtttag tgaaaaacca gaaaagaact tgcttatttt tgaaaatctg 6000 6060 atcgacctga agcgccgcta taattttcct gtagaagttg aggttcctat ggaaagaaag 6120 aaaaagtaca ttgaaattag gaaagaagcc agagaagcag caaatgggga ttcagatggt 6180 ccttcctata tgtcttccct gtcatatttg gcagacagta ccctgagtga ggaaatgagt 6240 caatttgatt teteaacegg agtteagage tatteataea geteeeaaga eeetagaeet 6300 gccactggtc gttttcggag acgggagcag cgggacccca cggtgcatga tgatgtgctg 6360 gagetggaga tggaegaget caateggeat gagtgeatgg egeceetgae ggeeetggte 6420 aagcacatgc acagaagcct gggcccgcct caaggagaag aggattcagt gccaagagat 6480 cttccttctt ggatgaaatt cctccatggc aaactgggaa atccaatagt accattaaat 6540 atcogtotot tottagocaa gottgttatt aatacagaag aggtotttog coottacgog 6600 aagcactggc ttagcccctt gctgcagctg gctgcttctg aaaacaatgg aggagaagga attcactaca tggtggttga gatagtggcc actattcttt catggacagg cttggccact 6660 6720 ccaacagggg tccctaaaga tgaagtgtta gcaaatcgat tgcttaattt cctaatgaaa 6780 catgtctttc atccaaaaag agctgtgttt agacacaacc ttgaaattat aaagaccctt 6840 gtcgagtgct ggaaggattg tttatccatc ccttataggt taatatttga aaagttttcc ggtaaagatc ctaattctaa agacaactca gtagggattc aattgctagg catcgtgatg 6900 gccaatgacc tgcctcccta tgacccacag tgtggcatcc agagtagcga atacttccag 6960 7020 gctttggtga ataatatgtc ctttgtaaga tataaagaag tgtatgccgc tgcagcagaa 7080 gttctaggac ttatacttcg atatgttatg gagagaaaaa acatactgga ggagtctctg 7140 tgtgaactgg ttgcgaaaca attgaagcaa catcagaata ctatggagga caagtttatt 7200 gtgtgcttga acaaagtgac caagagcttc cctcctcttg cagacaggtt catgaatgct 7260 gtgttctttc tgctgccaaa atttcatgga gtgttgaaaa cactctgtct ggaggtggta 7320 ctttgtcgtg tggagggaat gacagagctg tacttccagt taaagagcaa ggacttcgtt 7380 caagtcatga gacatagaga tgatgaaaga caaaaagtat gtttggacat aatttataag 7440 atgatgccaa agttaaaacc agtagaactc cgagaacttc tgaaccccgt tgtggaattc 7500 gtttcccatc cttctacaac atgtagggaa caaatgtata atattctcat gtggattcat 7560 gataattaca gagatccaga aagtgagaca gataatgact cccaggaaat atttaagttg

7620 gcaaaagatg tgctgattca aggattgatc gatgagaacc ctggacttca attaattatt 7680 cgaaatttct ggagccatga aactaggtta ccttcaaata ccttggaccg gttgctggca ctaaattcct tatattctcc taagatagaa gtgcactttt taagtttagc aacaaatttt 7740 ctgctcgaaa tgaccagcat gagcccagat tatccaaacc ccatgttcga gcatcctctg 7800 tcagaatgcg aatttcagga atataccatt gattctgatt ggcgtttccg aagtactgtt 7860 7920 ctcactccqa tgtttgtgga gacccaggcc tcccagggca ctctccagac ccgtacccag 7980 qaaqqqtccc tctcaqctcq ctgqccaqtg gcagggcaga taagggccac ccagcagcag 8040 catgacttca cactgacaca gactgcagat ggaagaagct catttgattg gctgaccggg agcagcactg accegetggt egaceacace agteceteat etgacteett getgtttgee 8100 cacaagagga gtgaaaggtt acagagagca cccttgaagt cagtggggcc tgattttggg 8160 8220 aaaaaaaggc tgggccttcc aggggacgag gtggataaca aagtgaaagg tgcggccggc 8280 cggacggacc tactacgact gcgcagacgg tttatgaggg accaggagaa gctcagtttg 8340 atgtatgcca gaaaaggcgt tgctgagcaa aaacgagaga aggaaatcaa gagtgagtta 8400 aaaatgaagc aggatgccca ggtcgttctg tacagaagct accggcacgg agaccttcct gacattcaga tcaagcacag cagcctcatc accccgttac aggccgtggc ccagagggac 8460 ccaataattg caaaacagct ctttagcagc ttgttttctg gaattttgaa agagatggat 8520 8580 aaatttaaga cactgtctga aaaaaacaac atcactcaaa agttgcttca agacttcaat cgttttctta ataccacctt ctctttcttt ccaccctttg tctcttgtat tcaggacatt 8640 8700 agetgtcage acgeageett getgageete gacceagegg etgttagege tggttgeetg 8760 gccagcctac agcagcccgt gggcatccgc ctgctagagg aggctctgct ccgcctgctg 8820 cctgctgagc tgcctgccaa gcgagtccgt gggaaggccc gcctccctcc tgatgtcctc 8880 agatgggtgg agcttgctaa gctgtataga tcaattggag aatacgacgt cctccgtggg 8940 atttttacca gtgagatagg aacaaagcaa atcactcaga gtgcattatt agcagaagcc 9000 aqaaqtgatt attctgaagc tgctaagcag tatgatgagg ctctcaataa acaagactgg 9060 qtaqatqqtq agcccacaga agccgagaag gatttttggg aacttgcatc ccttgactgt 9120 tacaaccacc ttgctgagtg gaaatcactt gaatactgtt ctacagccag tatagacagt gagaaccccc cagacctaaa taaaatctgg agtgaaccat tttatcagga aacatatcta 9180 9240 ccttacatga tccgcagcaa gctgaagctg ctgctccagg gagaggctga ccagtccctg 9300 ctgacattta ttgacaaagc tatgcacggg gagctccaga aggcgattct agagcttcat tacagtcaag agctgagtct gctttacctc ctgcaagatg atgttgacag agccaaatat 9360

9420 tacattcaaa atggcattca gagttttatg cagaattatt ctagtattga tgtcctctta caccaaagta gactcaccaa attgcagtct gtacaggctt taacagaaat tcaggagttc 9480 9540 atcagettta taageaaaca aggeaattta teateteaag tteeeettaa gagaettetg 9600 aacacctgga caaacagata tccagatgct aaaatggacc caatgaacat ctgggatgac 9660 atcatcacaa atcgatgttt ctttctcagc aaaatagagg agaagcttac ccctcttcca 9720 gaagataata gtatgaatgt ggatcaagat ggagacccca gtgacaggat ggaagtgcaa gagcaggaag aagatatcag ctccctgatc aggagttgca agttttccat gaaaatgaag 9780 atgatagaca gtgcccggaa gcagaacaat ttctcacttg ctatgaaact actgaaggag 9840 9900 ctgcataaag agtcaaaaac cagagacgat tggctggtga gctgggtgca gagctactgc 9960 cgcctgagcc actgccggag ccggtcccag ggctgctctg agcaggtgct cactgtgctg aaaacagtot otttgttgga tgagaacaac gtgtcaagot acttaagcaa aaatattotg 10020 10080 gctttccgtg accagaacat tctcttgggt acaacttaca ggatcatagc gaatgctctc agcagtgagc cagcctgcct tgctgaaatc gaggaggaca aggctagaag aatcttagag 10140 10200 ctttctggat ccagttcaga ggattcagag aaggtgatcg cgggtctgta ccagagagca 10260 ttccaqcacc tctctgaggc tgtgcaggcg gctgaggagg aggcccagcc tccctcctgg agctgtgggc ctgcagctgg ggtgattgat gcttacatga cgctggcaga tttctgtgac 10320 caacagctgc gcaaggagga agagaatgca tcagttattg attctgcaga actgcaggcg 10380 10440 tatccagcac ttgtggtgga gaaaatgttg aaagctttaa aattaaattc caatgaagcc 10500 agattgaagt ttcctagatt acttcagatt atagaacggt atccagagga gactttgagc 10560 ctcatqacaa aaqaqatctc ttccgttccc tgctggcagt tcatcagctg gatcagccac 10620 atgqtqqcct tactqqacaa aqaccaagcc gttgctgttc agcactctgt ggaagaaatc 10680 actgataact acccgcaggc tattgtttat cccttcatca taagcagcga aagctattcc 10740 ttcaaggata cttctactgg tcataagaat aaggagtttg tggcaaggat taaaagtaag 10800 ttqqatcaag gaggagtgat tcaagatttt attaatgcct tagatcagct ctctaatcct 10860 quactoctct ttaaggattg gagcaatgat gtaaggagctg aactagcaaa aacccctgta 10920 aataaaaaaa acattgaaaa aatgtatgaa agaatgtatg cagccttggg tgacccaaag 10980 qctccaqqcc tqqqgqcctt tagaaggaag tttattcaga cttttggaaa agaatttgat 11040 aaacattttg ggaaaggagg ttctaaacta ctgagaatga agctcagtga cttcaacgac 11100 attaccaaca tgctactttt aaaaatgaac aaagactcaa agccccctgg gaatctgaaa qaatgttcac cctggatgag cgacttcaaa gtggagttcc tgagaaatga gctggagatt 11160 11220 cccqqtcagt atgacggtag gggaaagcca ttgccagagt accacgtgcg aatcgccggg

tttgatgagc gggtgacagt catggcgtct ctgcgaaggc ccaagcgcat catcatccgt 11280 ggccatgacg agagggaaca ccctttcctg gtgaagggtg gcgaggacct gcggcaggac 11340 11400 cagcgcgtgg agcagctctt ccaggtcatg aatgggatcc tggcccaaga ctccgcctgc agccagaggg ccctgcagct gaggacctat agcgttgtgc ccatgacctc caggttagga 11460 ttaattgagt ggcttgaaaa tactgttacc ttgaaggacc ttcttttgaa caccatgtcc 11520 caagaggaga aggcggctta cctgagtgat cccagggcac cgccgtgtga atataaagat 11580 tggctgacaa aaatgtcagg aaaacatgat gttggagctt acatgctaat gtataagggc 11640 11700 ctcttaaagc gggccttcgt gaggatgagt acaagccctg aggctttcct ggcgctccgc 11760 teceaetteg ecagetetea egetetgata tgeateagee aetggateet egggattgga 11820 gacagacatc tgaacaactt tatggtggcc atggagactg gcggcgtgat cgggatcgac 11880 11940 tttgggcatg cgtttggatc cgctacacag tttctgccag tccctgagtt gatgcctttt 12000 cggctaactc gccagtttat caatctgatg ttaccaatga aagaaacggg ccttatgtac 12060 agcatcatgg tacacgcact ccgggccttc cgctcagacc ctggcctgct caccaacacc 12120 atggatgtgt ttgtcaagga gccctccttt gattggaaaa attttgaaca gaaaatgctg aaaaaaggag ggtcatggat tcaagaaata aatgttgctg aaaaaaattg gtacccccga 12180 12240 cagaaaatat gttacgctaa gagaaagtta gcaggtgcca atccagcagt cattacttgt 12300 qatqaqctac tcctgggtca tgagaaggcc cctgccttca gagactatgt ggctgtggca 12360 cgaggaagca aagatcacaa cattcgtgcc caagaaccag agagtgggct ttcagaagag 12420 actcaagtga agtgcctgat ggaccaggca acagacccca acatccttgg cagaacctgg 12480 qaaqqatqqq agccctggat gtgaggtctg tgggagtctg cagatagaaa gcattacatt 12540 gtttaaagaa tctactatac tttggttggc agcattccat gagctgattt tcctgaaaca ctaaagagaa atgtcttttg tgctacagtt tcgtagcatg agtttaaatc aagattatga 12600 12660 tgagtaaatg tgtatgggtt aaatcaaaga taaggttata gtaacatcaa agattaggtg 12720 aggtttatag aaagatagat atccaggctt accaaagtat taagtcaaga atataatatg 12780 tgatcagett teaaageatt tacaagtget geaagttagt gaaacagetg teteegtaaa 12840 tggaggaaat gtggggaagc cttggaatgc ccttctggtt ctggcacatt ggaaagcaca 12900 ctcaqaaggc ttcatcacca agattttggg agagtaaagc taagtatagt tgatgtaaca ttgtagaagc agcataggaa caataagaac aataggtaaa gctataatta tggcttatat 12960 13020 ttaqaaatga ctgcatttga tattttagga tatttttcta ggttttttcc tttcatttta 13080 ttctcttcta gttttgacat tttatgatag atttgctctc tagaaggaaa cgtctttatt

```
taggagggca aaaattttgg tcatagcatt cacttttgct attccaatct acaactggaa 13140
gatacataaa agtgctttgc attgaatttg ggataacttc aaaaatccca tggttgttgt 13200
tagggatagt actaagcatt tcagttccag gagaataaaa gaaattccta tttgaaatga 13260
attecteatt tggaggaaaa aaageatgea ttetageaca acaagatgaa attatggaat 13320
acaaaaqtqq ctccttccca tgtgcagtcc ctgtcccccc ccgccagtcc tccacaccca 13380
aactqtttct qattqqcttt taqctttttq ttqttttttt ttttccttct aacacttqta
                                                                  13440
tttqqaqqct cttctqtqat tttqaqaaqt atactcttga gtgtttaata aagttttttt 13500
ccaaaagta
                                                                   13509
<210> 16
<211>
      63
<212>
      DNA
<213> Artificial Sequence
<220>
<223> cDNA sequence encoding the 2599-2619 peptide
<220>
<221> CDS
<222>
      (1)..(63)
<223> HUMAN GENETIC ORIGIN
<220>
<221> misc_feature
<222>
      (31)..(33)
<223>
      encodes T2609 residue
<400> 16
agtactgttc tcactccgat gtttgtggag acccaggcct cccagggcac tctccagacc
                                                                      60
                                                                      63
cgt
<210> 17
<211>
      87
<212>
      DNA
<213> Artificial sequence
<220>
<223> cDNA sequence encoding the 2044-2072 peptide
<220>
<221> CDS
      (1)..(87)
<222>
<223> HUMAN GENETIC ORIGIN
<220>
<221> misc_feature
<222>
      (37)..(37)
```

<223> encodes S2056 resdiue <400> 17 gatttctcaa ccggagttca gagctattca tacagctccc aagaccctag acctgccact 60 87 ggtcgttttc ggagacggga gcagcgg <210> 18 <211> 909 <212> DNA <213> Artificial Sequence <220> <223> cDNA sequence encoding the 1879-2182 peptide <220> <221> CDS <222> (1)..(909)<223> HUMAN GENETIC ORIGIN <220> <221> misc feature <222> (529)..(529)<223> encodes S2056 residue <400> 18 atqtattctc gccttcccaa agatgatgtt catgctaagg aatcaaaaat taatcaagtt 60 ttccatggct cgtgtattac agaaggaaat gaacttacaa agacattgat taaattgtgc 120 180 tacgatgcat ttacagagaa catggcagga gagaatcagc tgctggagag gagaagactt 240 taccattgtg cagcatacaa ctgcgccata tctgtcatct gctgtgtctt caatgagtta 300 aaattttacc aaggttttct gtttagtgaa aaaccagaaa agaacttgct tatttttgaa 360 aatctgatcg acctgaagcg ccgctataat tttcctgtag aagttgaggt tcctatggaa 420 agaaagaaaa agtacattga aattaggaaa gaagccagag aagcagcaaa tggggattca 480 gatggtcctt cctatatgtc ttccctgtca tatttggcag acagtaccct gagtgaggaa 540 atgagtcaat ttgatttctc aaccggagtt cagagctatt catacagctc ccaagaccct agacctgcca ctggtcgttt tcggagacgg gagcagcggg accccacggt gcatgatgat 600 660 qtqctqqaqc tgqaqatgga cgagctcaat cggcatgagt gcatggcgcc cctgacggcc 720 ctggtcaagc acatgcacag aagcctgggc ccgcctcaag gagaagagga ttcagtgcca 780 agagatette ettettggat gaaatteete catggeaaac tgggaaatee aatagtaeea ttaaatatcc gtctcttctt agccaagctt gttattaata cagaagaggt ctttcgccct 840 tacgcgaagc actggcttag ccccttgctg cagctggctg cttctgaaaa caatggagga 900 909

gaaggaatt

```
<210> 19
<211>
      1164
<212>
       DNA
<213>
      Artificial sequence
<220>
      Cloned DNA sequence encoding the 1879-2267 peptide
<223>
<220>
<221>
      CDS
<222>
       (1)...(1164)
<223>
       HUMAN GENETIC ORIGIN
<220>
<221> misc feature
      (529)..(531)
<222>
<223>
       encodes S2056 residue
<400> 19
atgtattctc gccttcccaa agatgatgtt catgctaagg aatcaaaaat taatcaagtt
                                                                       60
                                                                      120
ttccatggct cgtgtattac agaaggaaat gaacttacaa agacattgat taaattgtgc
tacgatgcat ttacagagaa catggcagga gagaatcagc tgctggagag gagaagactt
                                                                      180
taccattgtg cagcatacaa ctgcgccata tctgtcatct gctgtgtctt caatgagtta
                                                                      240
aaattttacc aaggttttct gtttagtgaa aaaccagaaa agaacttgct tatttttgaa
                                                                      300
aatctgatcg acctgaagcg ccgctataat tttcctgtag aagttgaggt tcctatggaa
                                                                      360
                                                                      420
aqaaaqaaaa aqtacattga aattaggaaa gaagccagag aagcagcaaa tggggattca
                                                                      480
qatqqtcctt cctatatqtc ttccctqtca tatttggcag acagtaccct gagtgaggaa
                                                                      540
atgagtcaat ttgatttctc aaccggagtt cagagctatt catacagctc ccaagaccct
agacctgcca ctggtcgttt tcggagacgg gagcagcggg accccacggt gcatgatgat
                                                                      600
                                                                      660
gtgctggagc tggagatgga cgagctcaat cggcatgagt gcatggcgcc cctgacggcc
                                                                      720
ctggtcaagc acatgcacag aagcctgggc ccgcctcaag gagaagagga ttcagtgcca
                                                                      780
agagatette ettettggat gaaatteete eatggeaaae tgggaaatee aatagtaeea
                                                                      840
ttaaatatcc qtctcttctt aqccaaqctt qttattaata cagaagaggt ctttcgccct
                                                                      900
tacqcqaaqc actqqcttaq ccccttqctg cagctggctg cttctgaaaa caatggagga
                                                                      960
qaaqqaattc actacatggt ggttgagata gtggccacta ttctttcatg gacaggcttg
                                                                     1020
qccactccaa caggggtccc taaagatgaa gtgttagcaa atcgattgct taatttccta
atqaaacatg tctttcatcc aaaaagagct gtgtttagac acaaccttga aattataaaag
                                                                     1080
                                                                     1140
```

accettqtcq aqtqctqqaa qqattqttta tccatccett ataggttaat atttgaaaaq

```
<210> 20
<211>
       2463
<212>
       DNA
<213> Artificial Sequence
<220>
<223> cDNA sequence encoding the 1879-2700 peptide
<220>
<221>
      CDS
<222>
       (1)..(2463)
<223> HUMAN GENETIC ORIGIN
<220>
<221> misc_feature
<222>
      (529)..(531)
<223> encodes S2056 residue
<220>
<221> misc feature
<222>
      (2188)..(2190)
       encodes T2609 residue
<223>
<400>
       20
atgtattctc gccttcccaa agatgatgtt catgctaagg aatcaaaaat taatcaagtt
                                                                       60
ttccatggct cgtgtattac agaaggaaat gaacttacaa agacattgat taaattgtgc
                                                                      120
                                                                      180
tacqatqcat ttacagagaa catggcagga gagaatcagc tgctggagag gagaagactt
taccattqtq caqcatacaa ctqcgccata tctgtcatct gctgtgtctt caatgagtta
                                                                      240
                                                                      300
aaattttacc aaggttttct gtttagtgaa aaaccagaaa agaacttgct tatttttgaa
                                                                      360
aatctqatcg acctgaagcg ccgctataat tttcctgtag aagttgaggt tcctatggaa
                                                                      420
aqaaaqaaaa agtacattga aattaggaaa gaagccagag aagcagcaaa tggggattca
                                                                      480
qatqqtcctt cctatatgtc ttccctgtca tatttggcag acagtaccct gagtgaggaa
                                                                      540
atgagtcaat ttgatttctc aaccggagtt cagagctatt catacagctc ccaagaccct
                                                                      600
agacctgcca ctggtcgttt tcggagacgg gagcagcggg accccacggt gcatgatgat
                                                                      660
qtqctqqaqc tqqaqatqqa cqaqctcaat cqqcatqaqt qcatqqcqcc cctqacqqcc
                                                                      720
ctgqtcaagc acatgcacag aagcctgggc ccgcctcaag gagaagagga ttcagtgcca
                                                                      780
agagatette ettettggat gaaatteete eatggeaaae tgggaaatee aatagtaeea
ttaaatatcc gtctcttctt agccaagctt gttattaata cagaagaggt ctttcgccct
                                                                      840
                                                                      900
tacgcgaagc actggcttag ccccttgctg cagctggctg cttctgaaaa caatggagga
                                                                      960
qaaqqaattc actacatggt ggttgagata gtggccacta ttctttcatg gacaggcttg
```

gccactccaa caggggtccc taaagatgaa gtgttagcaa atcgattgct taatttccta 1020 atgaaacatg tctttcatcc aaaaagagct gtgtttagac acaaccttga aattataaag 1080 accettgtcg agtgctggaa ggattgttta tecatecett ataggttaat atttgaaaag 1140 ttttccggta aagatcctaa ttctaaagac aactcagtag ggattcaatt gctaggcatc 1200 gtgatggcca atgacctgcc tccctatgac ccacagtgtg gcatccagag tagcgaatac 1260 1320 ttccaggctt tggtgaataa tatgtccttt gtaagatata aagaagtgta tgccgctgca gcagaagttc taggacttat acttcgatat gttatggaga gaaaaaacat actggaggag 1380 tctctgtgtg aactggttgc gaaacaattg aagcaacatc agaatactat ggaggacaag 1440 1500 tttattgtgt gcttgaacaa agtgaccaag agcttccctc ctcttgcaga caggttcatg aatgctgtgt tctttctgct gccaaaattt catggagtgt tgaaaacact ctgtctggag 1560 1620 gtggtacttt gtcgtgtgga gggaatgaca gagctgtact tccagttaaa gagcaaggac 1680 ttcgttcaag tcatgagaca tagagatgat gaaagacaaa aagtatgttt ggacataatt 1740 tataagatga tgccaaagtt aaaaccagta gaactccgag aacttctgaa ccccgttgtg 1800 gaattegttt eccateette tacaacatgt agggaacaaa tgtataatat teteatgtgg 1860 attcatgata attacagaga tocagaaagt gagacagata atgactocca ggaaatattt 1920 aagttggcaa aagatgtgct gattcaagga ttgatcgatg agaaccctgg acttcaatta 1980 attattcgaa atttctggag ccatgaaact aggttacctt caaatacctt ggaccggttg 2040 ctggcactaa attccttata ttctcctaag atagaagtgc actttttaag tttagcaaca 2100 aattttctqc tcqaaatqac cagcatgagc ccagattatc caaaccccat gttcgagcat 2160 cctctgtcag aatgcgaatt tcaggaatat accattgatt ctgattggcg tttccgaagt 2220 actyttctca ctccgatgtt tgtggagacc caggcctccc agggcactct ccagacccgt acccaggaag ggtccctctc agctcgctgg ccagtggcag ggcagataag ggccacccag 2280 cagcagcatg acttcacact gacacagact gcagatggaa gaagctcatt tgattggctg 2340 accgggagca gcactgaccc gctggtcgac cacaccagtc cctcatctga ctccttgctg 2400 2460 tttqcccaca aqaqqaqtga aaggttacag agagcaccct tgaagtcagt ggggcctgat 2463 ttt

<210> 21

<211> 1320

<212> DNA

<213> Artificial sequence

<220>

<223> cDNA sequence encoding the 2261-2700 peptide
<220>
<221> CDS
<222> (1)..(1320)
<223> HUMAN GENETIC ORIGIN
<220>
<221> misc_feature
<222> (1045)..(1047)
<223> encodes T2609 residue

<400> 21

60 tccqqtaaaq atcctaattc taaaqacaac tcaqtaqqqa ttcaattgct aggcatcgtg 120 atggccaatg acctgcctcc ctatgaccca cagtgtggca tccagagtag cgaatacttc 180 caqqctttqq tqaataatat gtcctttgta agatataaag aagtgtatgc cgctgcagca qaaqttctaq qacttatact tcgatatgtt atggagagaa aaaacatact ggaggagtct 240 300 ctqtqtqaac tggttgcgaa acaattgaag caacatcaga atactatgga ggacaagttt 360 attqtqtqct tqaacaaaqt gaccaagagc ttccctcctc ttgcagacag gttcatgaat 420 gctqtqttct ttctqctqcc aaaatttcat ggagtgttga aaacactctg tctggaggtg 480 qtactttqtc gtgtggaggg aatgacagag ctgtacttcc agttaaagag caaggacttc qttcaaqtca tgagacatag agatgatgaa agacaaaaag tatgtttgga cataatttat 540 600 aaqatqatqc caaaqttaaa accagtagaa ctccgagaac ttctgaaccc cgttgtggaa 660 ttcgtttccc atccttctac aacatgtagg gaacaaatgt ataatattct catgtggatt 720 catgataatt acagagatcc agaaagtgag acagataatg actcccagga aatatttaag 780 ttqqcaaaaq atqtqctqat tcaaggattg atcgatgaga accctggact tcaattaatt 840 attcqaaatt tctqqaqcca tqaaactagg ttaccttcaa ataccttgga ccggttgctg 900 gcactaeatt ccttatattc tcctaagata gaagtgcact ttttaagttt agcaacaaat 960 tttctgctcg aaatgaccag catgagccca gattatccaa accccatgtt cgagcatcct 1020 ctgtcagaat gcgaatttca ggaatatacc attgattctg attggcgttt ccgaagtact 1080 qttctcactc cgatgtttgt ggagacccag gcctcccagg gcactctcca gacccgtacc 1140 caqqaaqggt ccctctcagc tcgctggcca gtggcagggc agataagggc cacccagcag 1200 caqcatqact tcacactgac acagactgca gatggaagaa gctcatttga ttggctgacc 1260 gggagcagca ctgacccgct ggtcgaccac accagtccct catctgactc cttgctgttt 1320 qcccacaaqa ggagtgaaag gttacagaga gcacccttga agtcagtggg gcctgatttt

<210> 22

```
<211>
       600
<212>
      DNA
<213> Artificial Sequence
<220>
<223> cDNA sequence encoding the 2500-2700 peptide
<220>
<221> CDS
<222>
      (1)..(600)
<223> HUMAN GENETIC ORIGIN
<220>
<221> misc_feature
<222>
      (325)..(327)
<223> encodes T2609 residue
<400> 22
ttggcaaaag atgtgctgat tcaaggattg atcgatgaga accctggact tcaattaatt
                                                                       60
                                                                      120
attcqaaatt tctqqaqcca tgaaactagg ttaccttcaa ataccttgga ccggttgctg
                                                                      180
gcactaaatt ccttatattc tcctaagata gaagtgcact ttttaagttt agcaacaaat
                                                                      240
tttctgctcg aaatgaccag catgagccca gattatccaa accccatgtt cgagcatcct
ctgtcagaat gcgaatttca ggaatatacc attgattctg attggcgttt ccgaagtact
                                                                      300
gttctcactc cgatgtttgt ggagacccag gcctcccagg gcactctcca gacccgtacc
                                                                      360
                                                                      420
caggaagggt ccctctcagc tcgctggcca gtggcagggc agataagggc cacccagcag
cagcatgact tcacactgac acagactgca gatggaagaa gctcatttga ttggctgacc
                                                                      480
qqqaqcaqca ctgacccqct ggtcgaccac accagtccct catctgactc cttgctgttt
                                                                      540
gcccacaaga ggagtgaaag gttacagaga gcacccttga agtcagtggg gcctgatttt
                                                                      600
<210> 23
<211>
      1284
<212>
       DNA
<213> Artificial sequence
<220>
<223> cDNA sequence encoding 2275-2702 peptide
<220>
<221>
      CDS
<222>
       (1)..(1284)
<223> HUMAN GENETIC ORIGIN
<220>
<221> misc feature
<222>
      (100\overline{3})..(1005)
<223> encodes T2609 residue
<400> 23
```

```
caattgctag gcatcgtgat ggccaatgac ctgcctccct atgacccaca gtgtggcatc
                                                                       60
cagagtagcg aatacttcca ggctttggtg aataatatgt cctttgtaag atataaagaa
                                                                      120
gtgtatgccg ctgcagcaga agttctagga cttatacttc gatatgttat ggagagaaaa
                                                                      180
                                                                      240
aacatactgg aggagtctct gtgtgaactg gttgcgaaac aattgaagca acatcagaat
actatggagg acaagtttat tgtgtgcttg aacaaagtga ccaagagctt ccctcctctt
                                                                      300
                                                                      360
qcagacaggt tcatgaatgc tgtgttcttt ctgctgccaa aatttcatgg agtgttgaaa
                                                                      420
acactctqtc tqqaqqtqqt actttqtcqt qtqqaqqqaa tqacaqaqct qtacttccaq
                                                                      480
ttaaagagca aggacttcgt tcaagtcatg agacatagag atgatgaaag acaaaaagta
                                                                      540
tgtttggaca taatttataa gatgatgcca aagttaaaac cagtagaact ccgagaactt
ctgaaccccg ttgtggaatt cgtttcccat ccttctacaa catgtaggga acaaatgtat
                                                                      600
                                                                      660
aatattotoa tgtggattoa tgataattao agagatooag aaagtgagao agataatgao
                                                                     720
tcccaggaaa tatttaagtt ggcaaaagat gtgctgattc aaggattgat cgatgagaac
cctqqacttc aattaattat tcqaaatttc tggagccatg aaactaggtt accttcaaat
                                                                      780
accttggacc ggttgctggc actaaattcc ttatattctc ctaagataga agtgcacttt
                                                                      840
                                                                      900
ttaagtttag caacaaattt tctgctcgaa atgaccagca tgagcccaga ttatccaaac
cccatgttcg agcatcctct gtcagaatgc gaatttcagg aatataccat tgattctgat
                                                                      960
tggcgtttcc gaagtactgt tctcactccg atgtttgtgg agacccaggc ctcccagggc
                                                                     1020
actotocaga coogtacoca ggaagggtoo ototoagoto gotggocagt ggcagggcag
                                                                     1080
                                                                     1140
ataaqqqcca cccaqcaqca qcatqacttc acactqacac agactqcaga tggaagaagc
                                                                     1200
tcatttgatt ggctgaccgg gagcagcact gacccgctgg tcgaccacac cagtccctca
                                                                     1260
totgactoot tgotgtttgc ccacaagagg agtgaaaggt tacagagagc accottgaag
                                                                     1284
tcagtggggc ctgattttgg gaaa
```

```
<210> 24
<211>
       819
<212>
       DNA
<213> Artificial Sequence
<220>
       cDNA sequence encoding 2429-2072 peptide
<223>
<220>
<221>
       CDS
<222>
       (1)..(819)
<223>
       HUMAN GENETIC ORIGIN
<220>
```

<221> misc feature

```
<222> (538)..(540)
<223> encodes T2609 residue
```

<400> 24

gaaagacaaa aagtatgttt ggacataatt tataagatga tgccaaagtt aaaaccagta 60 gaactccgag aacttctgaa ccccgttgtg gaattcgttt cccatccttc tacaacatqt 120 agggaacaaa tgtataatat tctcatgtgg attcatgata attacagaga tccaqaaaqt 180 qaqacaqata atqactccca qqaaatattt aaqttqqcaa aaqatqtqct qattcaaqqa 240 ttgatcgatg agaaccctgg acttcaatta attattcgaa atttctggag ccatgaaact 300 aggttacctt caaatacctt ggaccggttg ctggcactaa attccttata ttctcctaag 360 atagaagtgc actttttaag tttagcaaca aattttctgc tcgaaatgac cagcatgagc 420 ccagattatc caaaccccat gttcgagcat cctctgtcag aatgcgaatt tcaggaatat 480 540 accattgatt ctgattggcg tttccgaagt actgttctca ctccgatgtt tgtggagacc 600 caggectece agggeactet ceagaceegt acceaggaag ggteeetete agetegetgg 660 ccaqtqqcaq qqcaqataaq qqccacccaq caqcaqcatq acttcacact gacacagact 720 gcagatggaa gaagctcatt tgattggctg accgggagca gcactgaccc gctggtcgac cacaccagtc cctcatctga ctccttgctg tttgcccaca agaggagtga aaggttacag 780 819 agagcaccct tgaagtcagt ggggcctgat tttgggaaa

- <210> 25
- <211> 420
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> cDNA Sequence encoding 2561-2700 peptide
- <220>
- <221> CDS
- <222> (1)..(420)
- <223> HUMAN GENETIC ORIGIN
- <220>
- <221> misc feature
- $\langle 222 \rangle$ (145)...(147)
- <223> Encodes T2609 residue
- <400> 25

tttctgctcg aaatgaccag catgagccca gattatccaa accccatgtt cgagcatcct 60
ctgtcagaat gcgaatttca ggaatatacc attgattctg attggcgttt ccgaagtact 120
qttctcactc cgatgtttgt ggagacccag gcctcccagg gcactctcca gacccgtacc 180

caggaaq	gggt	ccctctcagc	tcgctggcca	gtggcagggc	agataagggc	cacccagcag	240
cagcat	gact	tcacactgac	acagactgca	gatggaagaa	gctcatttga	ttggctgacc	300
gggagca	agca	ctgacccgct	ggtcgaccac	accagtccct	catctgactc	cttgctgttt	360
gcccaca	aaga	ggagtgaaag	gttacagaga	gcacccttga	agtcagtggg	gcctgatttt	420
<210>	26						
<211> <212> <213>	306 DNA Arti	ficial Sequ	ience		·		
<220> <223> cDNA sequence encoding 2600-2702 peptide							
<220> <221> <222> <223>		.(306) N GENETIC (DRIGIN				
<220> <221> <222> <223>	(25)	_feature (27) odes T2609 1	residue				
<400>	26						
gttctca	actc	cgatgtttgt	ggagacccag	gcctcccagg	gcactctcca	gacccgtacc	60
caggaaq	gggt	ccctctcagc	tcgctggcca	gtggcagggc	agataagggc	cacccagcag	120
cagcatgact tcacactgac acagactgca gatggaagaa gctcatttga ttggctgacc						180	
gggagcagca ctgacccgct ggtcgaccac accagtccct catctgactc cttgctgttt					240		
gcccacaaga ggagtgaaag gttacagaga gcacccttga agtcagtggg gcctgatttt						300	
gggaaa 306							
<210>	27						
<211> <212> <213>	34 DNA Arti	ficial sequ	ience				
<220> <223> Primer to create T2609A mutation							
<400> 27							
tccgatgttt gtggaggacc aggcctccca gggc 3							
<210>	28						
<211>	34						

<212> DNA

<213> Artificial Sequence

<220>
<223> Reverse primer to create T2609A mutation

<400> 28

gccctgggag gcctggtcct ccacaaacat cgga