SİBER GÜVENLİKTE VERİ MADENCİLİĞİ ÖDEV-1 RAPOR

Büşra Kizilaslan (8)

Hasan Emir Kara (24)

Kyoto 2006+ dataset:

Kyoto 2006+ veri kümesi, başlangıçta 2006 Kasım'dan 2009 Ağustos'a kadar gerçek trafik verilerinin üç yılının kullanıldığı bir siber güvenlik veri kümesidir. Daha sonra 2006 Kasım'dan 2015 Aralık'a kadar ek verilerle güncellenmiştir. Bu veri kümesi genellikle İzinsiz Giriş Tespit Sistemleri (IDS) ve ağ güvenliği alanındaki araştırmalar ve analizler için kullanılır.

Özellikler: Veri kümesi toplamda 24 özellik içerir. Bu özelliklerden 14'ü, ağ giriş tespiti alanında bilinen bir veri kümesi olan KDD Cup '99 veri kümesinden türetilmiş istatistiksel özelliklerdir.[Table 1]

Index	Feature name	Description
1	Duration	Bağlantı süresi saniyeler cinsinden
2	Service	Bağlantı hizmetinin türü örneğin
		HTTP,telnet
3	Source bytes	Source IP adresinin gönderdiği veri
		baytının sayısı
4	Destination bytes	Hedef IP adresinin gönderdiği veri
		baytının sayısı
5	Count	Geçmiş iki saniye içinde mevcut
		bağlantının kaynak ve hedef IP adreslerine
		sahip olan benzer bağlantıların sayısı
6	Same_srv_rate	Count özelliğinde aynı hizmete yapılan
		bağlantıların yüzdesi
7	Serror_rate	Count özelliği " SYN" hatası olan
		bağlantıların yüzdesi
8	Srv_serror_rate	Srvcount (geçmiş iki saniye içinde hizmet
		türü aynı olan bağlantıların sayısı)
		özelliğinde SYN hatası olan bağlantıların
		yüzdesi
9	Dst_host_count	Mevcut bağlantının hedef IP adresi ile aynı
		olan son 100 bağlantı arasında, kaynak IP
		adresi de şu anki bağlantı ile aynı olan

		bağlantı sayısı.
10	Dst_host_srv_count	Şu anki bağlantının hedef IP adresi ile aynı
		olan son 100 bağlantı içinde, hizmet türü de
		şu anki bağlantı ile aynı olan bağlantıların
		sayısı.
11	Dst_host_same_src_port_rate	Dsthostcount özelliğinde kaynak portun
		mevcut bağlantının kaynak portu ile aynı
		olan bağlantıların yüzdesi
12	Dst_host_serror_rate	Dst_host_count özelliğinde 'SYN' hataları
		bulunan bağlantıların yüzdesi.
13	Dst_host_srv_serror_rate	Dst_host_srv_count özelliğinde 'SYN'
		hataları bulunan bağlantıların yüzdesi.
14	Flag	Her belirli bağlantı sonlandığında bir özel
		yazılır.Farklı bağlantılar için farklı
		durumlar olabilir ve bu durumlar bağlantı
		sonlandığında gözlemlenir ve bu özelliği
		kaydedilir.

Ayrıca, IDS ağ performansını analiz ve değerlendirmek için özel olarak tasarlanmış 10 ek özellik bulunmaktadır.[Table 2]

Index	Feature name	Description
1	IDS_detection	IDS'nin bağlantı için bir uyarı tetikleyip
		tetiklemediğine dair bir sayısal değeri saklar.
		'0' herhangi bir alarmın tetiklenmediğini ve
		'0' hariç farklı türdeki uyarıları temsil
		ederler.Parantez,aynı uyarının sayısını
		gösterir.
2	Malware_detection	Bağlantıda kötü amaçlı yazılımın(malware)
		tespit edilip edilmediğini temsil etmke için
		kullanılır; '0' herhangi bir saldırı
		bulunmadığını gösterir ancak bu özellikte
		sıfır olmayan bir sayısal değer
		bulunduğuunda,tespit edilen belirli bir
		saldırıyı temsil eder.Malware tespiti için
		'clamAV' adlı bir yazılım
		kullanılı.Parantez,bağlantının varlığının
		tespiti sırasında aynı kötü amaçlı yazılımın
		toplam gözlemini temsil etmek için kullanılır
3	Ashula_detection	Bir bağlantıda kabuk(shell) kodları ve saldırı
		kodlarının kullanılıp kullanılmadığını belirtir.
		'0' herhangi bir kabukkodu veya saldırı
		kodunun gözlemlendiğini ifade eder.Aksine
		bir durum olduğunda sıfır olmayan bir sayı
		içerir ve her sayı farklı türdeki kabuk kodları
		için kullanılı.Parantez ise aynı kabuk kodu
		veya saldırı kodunun sayısını gösterir.

4	Label	Bu veri kümesinin sınıf etiketi
		özelliğidir.Oturumun saldırıya uğrayıp
		uğramadığını belirtir.1 normal,-1bilinen bir
		saldırının gözlemlendiğini,-2 bilinmeyen bir
		saldırının gözlemlendiğini ifade eder.
5	Source_IP_Address	Oturumda kullanılan kaynak IP adresini ifade
		eder.IPv4 üzerindeki orijinal IP adresi
		benzersiz yerel IPV6 unicast adreslerinden
		birine sansürlenmiştir. Aynı özel IP adresleri
		yalnızca aynı ağ için geçerlidir. Aynı ağiçinde
		iki özrl IP adresi aynı ise bu IPv4 üzerindeki
		IP adreslerinin de aynı olduğu anlamına gelir.
6	Destination_Port_Number	Oturum tarafından kullanılan kaynak port
		numarasını içerir
7	Destinaiton_IP_Address	Oturumun IP aderslerini içerir.IP adesi,bazı
		güvenlik nedenlerinden dolayı karşılık gelen
		IPv4 özgü yerel bir IPv6 adresidir ve
		gizlenmiş veya sansürlenmiş bir biçimde
		olabilir.
8	Destination_Port_Number	Oturum tarafından kullanılan hedef port
		numarasını içerir.
9	Start_Time	Oturumun ne zaman başladığını belirtir.
10	Protocol type ("Duration")	Protokol Tipi (TCP, UDP)
		("Bağlantının toplam süresini temsil eder".)

Makalelerden Topladığımız veriler üzerine 10 numaralı özellik Duration olarak geçmektedir fakat makalelerin yanlış bilgi verdiğini varsayarak bu özelliği

KDD Cup '99 dataset 'in içindeki özelliklerde protokol type olarak geçtiğinden dolayı 10 numaralı özelliğimizi bu şekilde belirttik

Kyoto 2006+ veri kümesi, Kyoto Üniversitesi'nin çeşitli türdeki honeypotlardan elde ettiği gerçek trafik verilerine dayanan bir veri kümesidir. Bu veri kümesinin kaynağı, Kyoto Üniversitesi'nin ağ güvenliği araştırmaları için kendi honeypot sistemi olan Kyoto Honeypot System (KHS)'dir. KHS, 2006 yılından beri dünyanın dört bir yanından gelen ağ trafiğini toplamakta ve analiz etmektedir. Bu veri seti, bilgiye yetkisiz kullanım girişimlerini tespit eden honeypotlar, darknet sensörleri, e-posta sunucusu, web tarayıcı ve diğer bilgisayar ağ güvenliği mekanizmaları kullanılarak yakalanmıştır. KHS, ağ saldırılarını tespit etmek ve sınıflandırmak için çeşitli yöntemler kullanmaktadır.

Kyoto 2006+ dataset saldırı türleri

Kyoto 2006+ veri kümesinde, ağ trafiğindeki normal ve anormal davranışları ayırt etmek için kullanılabilecek çeşitli türde saldırılar bulunmaktadır

- DoS (Denial of Service
- Probe (Sonda)
- R2L (Remote to Local)
- U2R (User to Root)

Kyoto 2006+ veri kümesinin siber güvenliğe olan ilgisi, bu veri kümesinin ağ saldırısı tespit sistemleri (NIDS) geliştirmek ve değerlendirmek için kullanılabilmesidir. NIDS, ağ trafiğini izleyerek potansiyel tehditleri belirleyen ve önleyen bir yazılım veya donanım aracıdır. NIDS, ağ güvenliği için hayati bir öneme sahiptir, çünkü ağ saldırıları gün geçtikçe daha karmaşık ve zararlı hale gelmektedir. Kyoto 2006+ veri kümesi, NIDS'in performansını ölçmek ve iyileştirmek için kullanılabilir. Ayrıca, Kyoto 2006+ veri kümesi, ağ saldırılarının kaynaklarını, hedeflerini ve etkilerini analiz etmek için de kullanılabilir.

Yapılan İşlemler

- -TXT Belgesi Olarak İndirilen Dataset Excel İle CSV formatına Dönüştürüldü
- -Gerekli Kütüphaneler Eklendi
- -Dataset Tanımlandı
- -Datasete Ait Olan Feature'lar İçin Araştırma Yapılıp Eklendi
- -Dataset'e Feature'ler Tanımlandı
- -Dataset Gösterildi
- -Dataset için önemli olan Feature'lar Sayısal İstatistik Gösterildi
- -PCA ile fazlalık olan sütunlar 2 sütuna indirgendi
- -PCA Öncesi ve Sonrası İstatistikler Görüntülendi
- -Label İstatistiği Görsel Grafik Üzerinde Gösterildi

```
Gerekli Kütüphaneler Eklendi
Kodlar Ve Yapılan İşlemler
import pandas as pd
import numpy as np
import sys
import sklearn
import io
import random
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
# Dataset Tanımlanması
dataset = 'https://raw.githubusercontent.com/WarFires/Kyoto2006-
Dataset/main/kyoto2006%2B20151011.csv'
# Değerler
features = ["duration", "service", "src_bytes", "dst_bytes",
  "count", "serror rate", "srv serror rate", "same srv rate",
  "dst_host_count","dst_host_srv_count","dst_host_same_src_port_rate",
  "dst_host_serror_rate", "dst_host_srv_serror_rate", "flag", "IDS_detection",
"Malware_detection", "Ashula_detection", "label", "Source_IP_Address", "Source_Port_Number",
  "Destination_IP_Address", "Destination_Port_Number", "Start_Time", "Protocoltype"]
#Dataset featureları okutma
df = pd.read_csv(dataset,header=None, names = features)
```

```
#Label Sayı İstatistiği - Bilinen Ve Bilinmeyen Saldırıların Sayısı Görmek İçin
print('Label distribution Dataset:')
print(df['label'].value_counts())
print()
Label distribution Dataset:
-1
       88957
     11038
 1
-2
           5
Name: label, dtype: int64
1: normal
-1: bilinen bir saldırının gözlemlendiğini
-2 : bilinmeyen bir saldırının gözlemlendiğini ifade eder.
#Malware Sayı İstatistiği - Hangi Saldırı Türlerini İçerdiğini Görmek İçin
print('Malware Types')
print(df['Malware_detection'].value_counts())
print()
  Malware Types
                                    98267
                                     1696
  Win.Worm.Downadup-5(1)
                                        6
  Win.Worm.Kido-173(1)
                                        4
  Win.Dropper.Agent-35454(1)
                                        3
  Win.Worm.Downadup-4(1)
                                        3
                                        3
  Win.Worm.Downadup-11(1)
  Win.Worm.Kido-423(1)
                                        3
                                        3
  Win.Worm.Kido-392(1)
  Win.Worm.Kido-266(1)
                                        3
  Win.Worm.Kido-37(1)
                                         2
```

2

1

Win.Worm.Kido-160(1)

Win.Worm.Kido-355(1)

Win.Worm.Kido-197(1) Win.Worm.Kido-185(1)

Win.Worm.Conficker-178(1) Win.Worm.Downadup-110(1)

Name: Malware_detection, dtype: int64

```
#Servis Tipleri İstatistiği - Bağlantıların Kullandığı Servislerin Sayılarını Gösterir
print('Service Types')
print(df['service'].value_counts())
print()
Service Types
other 84355
dns
            8672
            4954
ssh
sip
          1352
           359
snmp
            148
rdp
             102
smtp
http
              46
               10
dhcp
Name: service, dtype: int64
#Flag - Bağlantının Durumlarının Sayılarını Görmek İçin
print('Flag')
print(df['flag'].value_counts())
print()
#Bağlanıların kullandıkları Kabuk kodların ve saldırı kodlarının tipleriye beraber sayısını
gösterir
print('Ashula Detection')
print(df['Ashula_detection'].value_counts())
print()
#Bağlantıların Kullandıkları Protokol Tiplerinin Sayısını Gösterir
print('Protocoltype')
print(df['Protocoltype'].value_counts())
print()
```

#Geçmiş iki saniye içinde mevcut bağlantının kaynak ve hedef IP adreslerine sahip olan benzer bağlantıların sayısı

```
print('count')
print(df['count'].value_counts())
print()
#PCA öncesi istatistikler
summary_stats = df.describe()
print("\nPCA öncesi istatistikler :")
print(summary_stats)
#PCA sonrası istatistikler
summary_stats_pca = df_pca.describe()
print("\nPCA sonrası istatistikler:")
print(summary_stats_pca)
#Label Görsel Grafiği
df[['label']].hist(bins=10, figsize=(12, 6))
```



```
' Denemeye Çalışıp Başarısız Olduğumuz Encoding'
RareEncoding
Deneme 1:
nadir\_degerler = df['serror\_rate'].value\_counts()[df['serror\_rate'].value\_counts() < 1].index
df['serror rate'] = df['serror rate'].apply(lambda x: 'Diğer' if x in nadir degerler else x)
print(df['src_bytes'].value_counts())
Deneme 2:
#Kütüphane Tanımlama
from feature_engine.encoding import RareLabelEncoder
# Rare Encoder Oluşturma
encoder = RareLabelEncoder(tol=0.03, n_categories=2, variables=['cabin', 'pclass',
'embarked'],
                replace_with='Rare')
# Encoder Datasete Uydurma
encoder.fit(dataset)
encoder.encoder_dict_
# Datayı Dönüştürme
dataset = encoder.transform(dataset)
```

Normalizasyon - Dataset Start Time Üzerinden Normalize Edilmiş Halde İndirildi Fakat Aşağıdaki Kod ile duration Üzerinden Normalize Edilmeye Çalışıldı

```
Normalization (e.g., min-max scaling)

scaler = MinMaxScaler()

df[["duration","src_bytes","dst_bytes",

"count","serror_rate"]] = scaler.fit_transform(df[["duration","src_bytes","dst_bytes",

"count","serror_rate"]])

df[["duration","src_bytes","dst_bytes",

"count","serror_rate"]] *= 100
```