

26 March 2019

BOT IN A DAY

- Understanding Intent
 - Search Engines
- Question Answering
 - Azure QnA, Bots, Watson
- Digital Assistants
 - Cortana, Siri, Alexa
- Translation Systems
 - Azure Language Translation, Google Translate
- News Digest
 - Flipboard, Facebook, Twitter
- Other uses
 - Polling, Crime mapping, Earthquake prediction

UNDERSTANDING HUMANS IS HARD

NLP requires inputs from :

- Linguistics
- Computer Science
- Mathematics
- Statistics
- Machine Learning
- Psychology
- Database Engineering

KEY: CHANGE UNCERTAINTY TO CERTAINTY

I am changing this sentence to numbers

1 2

3

4

6

7

"Vectorizing"

You are changing too many sentences!

8

3

9

?

Vectorizing

Mapping words to numbers to reduce ambiguity

MAPPING WORDS TO NUMBERS:

CORPUS CREATION, VECTORIZING, TFIDF

Corpus Creation

• Create a library of all words in original dataset

Vectorizing

- Changing words to numbers
- Typically a raw count of frequency(Bag of Words)

TFIDF

- Term Frequency / Inverse Document Frequency
- Example:
 - "This" mentioned 3 times in a given review, and the review has 27 words in it
 - Tfidf = 3 / 27 = 1/9

THE BAG OF WORDS APPROACH

P(Positive Review | Words Contained)

- Look at the unordered words of a document to determine underlying characteristics
- Coffee reviews with the word 'bean' tend to be far more positive
- Common in sentiment and feature analysis

$P(A|B) = \frac{P(A) P(B|A)}{P(B|B)}$

Example from Charles Dickens:

- P("Darnay looked at Dr. Manette")
- Use maximum likelihood estimates for the n-gram probabilities
 - Unigram: P(w) = c(w)/V
 - Bigram: $P(w1 \mid w2) = c(w1, w2)/c(w2)$
- Values
 - P("Darnay") = 533 / 598633 = .00089
 - P("looked"|"Darnay") = 3 / 676 = .0044
 - P("at|looked") = 77 / 312 = .247
 - P("Dr. Manette" | "at") = 2 / 4512 = .000443
- Bigram probability
 - P("Darnay looked at Dr. Manette") = 4.28 * e^-10
 - P("at Dr. Manette Darnay looked") = 0

CHALLENGES IN NLP

SYNTAX VS. SEMANTICS

Syntax

- Lamb a Mary had little
- Colorless orange liquid

Semantics

- Merry hat hey lid tell lam
- I no like!

Structure

- Grammatically ok but makes no sense
- Grammatically ok but makes no sense, a liquid cannot be both colorless and orange

Meaning

- Has meaning but uses the wrong syntax for vocabulary
- Childlike syntax but clear semantics

Compiles but Meaningless

if 2==2:

print("Hello World")

Won't Compile

F(0)=0, F(1)=1

F(n)=F(n-1)+F(n-2) for

n > 1

Semantics

CHALLENGES IN NLP: AMBIGUITY I

Prepositional Phrase Attachment

- You ate spaghetti with meatballs / pleasure / a fork / Jillian
- Incorrectly attaching positional phrases is a large source of error in current parsing systems.

Metonymy

- Sydney is essential to this class
- Figure of speech replacing a thing or concept with the name of something closely associated

Ellipsis and Parallelism

- I gave the Steven a shovel and Joseph a ruler
- Ellipsis: omitting clauses when context is clear
- Parallelism: compounding words that have equivalent meanings

Phonetic

• My toes are getting number

CHALLENGES IN NLP: AMBIGUITY II

Referential

• Sharon complimented Lisl. She had been kind all day.

Subjectivity

• Karen believes that the Economy will stay strong

Reflexive

• Brandon brought himself an apple

Syntactic

• Call Wayne a Dentist

OTHER CHALLENGES IN NLP

Parsing N-grams

- United States of America
- Hot dog

Non-standard language

- (208)929-6136 vs 208-929-6136
- Cause = because

Typos

• John Hopkins vs Johns Hopkins

SARCASM

• Human's are so clear with language

HOW DO WE SPELLCHECK?

EDIT DISTANCE

- Can reference box above, left, or diagonal up-left
- If letter matches, +0
- If letter doesn't match, +1
- Score is the box at the bottom-right

		S	T	R	Ε	N	G	T	Н
	0	1	2	3	4	5	6	7	8
T	1	1	1	2	3	4	5	5	6
R	2	2	2	1	2	3	4	5	6
E	3	3	3	2	1	2	3	4	5
Ν	4	4	4	3	2	1	2	3	4
D	5	5	5	4	3	2	2	3	4

HOW DO WE DETERMINE SEMANTIC RELATIONSHIPS?

ASSOCIATIONS THAT EXIST BETWEEN THE MEANINGS OF WORDS

- Use a tree structure(Wordnet) to model relationships between words
- Measures how words are related to each other.
- Birdcage will be more like Dog Kennel than it will be to Bird
- Many different systems to draw out semantic relationships, but 'Wordnet' is one of the most commonly used
- Similarity metric:
 Sim(V,W) = ln(pathlength(V,W))
 Sim(Run, Miracle) would be = -ln(7)

PREPROCESSING: REMOVING STOPWORDS AND PUNCTUATION

Advantage of removing them?

- "And", "If", "But", ".", "," Will almost ALWAYS be your most significant words
- Therefore they tell you nothing about what's going on in the text you're processing

Note: if you are focussing on Natural Language Generation you should NOT remove these

▲ Preprocess Text

PREPROCESSING: **MEASURING AND STEMMING**

Measure

- A 'measure' of a word is an indication of how many syllables are in it.
- Consonants = 'C', Vowels = 'V'
- Every sequence of 'VC' is counted as +1
- Intellectual = (VC)C(VC)C(VC)CV(VC) = 4

Stemming: Porter's Algorithm

- Strip a word down to its barest form
- Ex: 'Alleviation' 'ation' + 'ate' = 'Alleviate' Transformation rule
- The stem isn't always a word
- argue, argued, argues, arguing, and argus -> argu

Stemming: Sample Rules

- If measure >0:
 - Lies -> li
 - Abilities = Abiliti
 - Ational -> ate
 Biliti -> ble
 - National = National
 Abiliti = able
 - Recreational = recreate

- Sses -> ss
 - Sunglasses = sunglass

STEMMING: EXAMPLES

Computational

- Computational 'ational' + 'ate' = Computate
- Computate 'ate' = **Comput**

Computer

• Computer – 'er' = Comput

SENTENCE BOUNDARY RECOGNITION

Problem: terms like Dr., A.M., U.S.A.

Use a decision tree to estimate the boundary

Features:

- Punctuation
- Formatting
- Fonts
- Spaces
- Capitalization
- Known Abbreviations

N-GRAM MODELING

- N-grams are words that have a distinct meaning when combined with other words
- Excellent way to highlight the importance of context when performing NLP
- Examples:
 - Unigram: Apple
 - Bigram: Hot Dog
 - Trigram: George Bush Sr.
- I'll meet you in Times _____

PRE-PROCESSING CHECKLIST

Remove Extraneous Text Convert sentences to lower case

Tokenize Sentences Tokenize Words Remove Stopwords & Punctuation

Stemming / Lemmatizing

Identify N-Grams

