This problem set has 19 questions, for a total of 110 points. Answer the questions below and mark your answers in the spaces provided. Additionally, fill out the bubble sheet provided **clearly** for your Gradescope submission. If the question asks for showing your work, you must provide details on how your answer was calculated.

|    | Your Nam    | e:                                                                                                                       |
|----|-------------|--------------------------------------------------------------------------------------------------------------------------|
| 1. | [5 points]  | Which of the following descriptions best describes what <b>mystery</b> does?                                             |
|    | $_{ m int}$ | mystery(int *arr, int n) {                                                                                               |
|    |             | if(n = 1) return arr[0];                                                                                                 |
|    |             | int val = mystery(arr + 1, n - 1)                                                                                        |
|    |             | $\mathbf{return} \ (\operatorname{arr} [0] > \operatorname{val}) \ ? \ \operatorname{arr} [0] \ : \ \operatorname{val};$ |
|    | }           |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |
|    |             |                                                                                                                          |

B. find the maximum element of arr

C. find the sum of all

A. find the minimum element of arr

D. sort all elements of arr

elements of arr

2. [5 points] Which of the following descriptions best describes what mystery does?

```
bool mystery(int n, int i) {
    if (n <= 2)
        return (n == 2) ? true : false;
    if (n % i == 0)
        return false;
    if (i * i > n)
        return true;

    return mystery(n, i + 1);
}
```

A. determine if n is an even number B. determine if n is a prime number C. determine if i evenly divides n D. determine if n is an odd number

3. [5 points] Given the following sorting algorithm, determine if it is **stable**, **in-place**, **both**, or **neither**.

```
int sort(int *arr, int n) {
    if (n <= 1) return;
    sort(arr, n-1);
    int tmp = arr[n-1];
    int j = n-2;
    while (j >= 0 && arr[j] > tmp) {
        arr[j+1] = arr[j];
        j--;
    }
    arr[j+1] = tmp;
}
```

A. stable B. in-place C. both D. neither

4. [10 points] Solve the following recurrence relation: T(0) = 1; T(n) = T(n+1) + 3

A. 3n+1 B. 3n-1 C. 1-3n

4. \_\_\_\_\_

5. [10 points] Solve the following recurrence relation: T(1) = 1; T(n) = 2T(n/2) + n

A. n + logn B. nlogn C. n + nlogn D.  $n^2 + nlogn$ 

| [5 points] Is a vector the best underlying structure to implement a qu  | ueue with? Justify your answer |
|-------------------------------------------------------------------------|--------------------------------|
|                                                                         |                                |
|                                                                         |                                |
|                                                                         |                                |
|                                                                         |                                |
|                                                                         |                                |
|                                                                         |                                |
|                                                                         |                                |
| A. Yes B. No                                                            |                                |
|                                                                         | 6                              |
| [2:] W                                                                  |                                |
| [3 points] Would a stack (A) or queue (B) be more efficient for an un   | ido button in a text editor    |
|                                                                         | 7                              |
| [3 points] Would a stack (A) or queue (B) be more efficient for a web   | o server connection manager    |
|                                                                         | 8                              |
| [3 points] Would a stack (A) or queue (B) be more efficient for a brea  | adth-first search              |
|                                                                         | 9                              |
| [3 points] Would a stack (A) or queue (B) be more efficient for a dep   |                                |
| [o points] Troute a stack (11) of quote (D) be more efficient for a dep |                                |
|                                                                         | 10                             |

11. [5 points] Given the following function **mystery**, determine its output assuming **stack** has had the following elements inserted in order: 7, 20, 300, 5, 10

```
int mystery(std::stack<int> stack) {
    int result = 0;
    int loop = stack.size();
    for(int i = 0 ; i < loop; i++) {
        if(!(i % 2)) {
            result += stack.top();
        }
        else {
            result *= stack.top();
        }
        stack.pop();
    }
    return result;
}</pre>
```

A. 2210 B. 60050 C. 7007 D. 10640

| 12. | . [7 points] If a Binary Tree is complete, does that necessarily mean it is also full? Justify your answer with drawings of trees. |    |      |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------|----|------|--|--|
|     |                                                                                                                                    |    |      |  |  |
|     |                                                                                                                                    |    |      |  |  |
|     |                                                                                                                                    |    |      |  |  |
|     |                                                                                                                                    |    |      |  |  |
|     | A. Yes B. No                                                                                                                       |    |      |  |  |
|     |                                                                                                                                    |    |      |  |  |
|     |                                                                                                                                    | 12 |      |  |  |
| 13. | [8 points] If a Binary Tree is full, does that necessarily mean it is also complete? Justidrawings of trees.                       |    | with |  |  |
| 13. |                                                                                                                                    |    | with |  |  |
| 13. |                                                                                                                                    |    | with |  |  |
| 13. |                                                                                                                                    |    | with |  |  |
| 13. |                                                                                                                                    |    | with |  |  |
| 13. |                                                                                                                                    |    | with |  |  |
| 13. |                                                                                                                                    |    | with |  |  |

|   | tree?                                                                                                                                                                                                                     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                                           |
|   | A. 10, 7, 15, 4, 8, 12, 19, 1, 5, 13, 20 B. 1, 4, 5, 7, 8, 10, 12, 13, 15, 19, 20 C. 10, 7, 4, 1, 5, 8, 15, 12, 13, 19, 20 D. 1, 5, 4, 8, 7, 13, 12, 20, 19, 15, 10                                                       |
|   | 1.4                                                                                                                                                                                                                       |
|   | 14                                                                                                                                                                                                                        |
| • | [5 points] Assume a binary search tree has undergone the following insertions in order: 20, 10, 30, 5, 4, 6, 24, 52, 28, 13. Which of the following represents the output of a pre-order traversal on the resulting tree? |
| • | [5 points] Assume a binary search tree has undergone the following insertions in order: 20, 10, 30, 5, 41, 6, 24, 52, 28, 13. Which of the following represents the output of a pre-order traversal on the resulting      |
| • | [5 points] Assume a binary search tree has undergone the following insertions in order: 20, 10, 30, 5, 41, 6, 24, 52, 28, 13. Which of the following represents the output of a pre-order traversal on the resulting      |
|   | [5 points] Assume a binary search tree has undergone the following insertions in order: 20, 10, 30, 5, 41, 6, 24, 52, 28, 13. Which of the following represents the output of a pre-order traversal on the resulting      |
|   | [5 points] Assume a binary search tree has undergone the following insertions in order: 20, 10, 30, 5, 41, 6, 24, 52, 28, 13. Which of the following represents the output of a pre-order traversal on the resulting      |

A. 1, 4, 5, 6, 10, 13, 20, 24, 28, 30, 52 B. 20, 10, 5, 4, 1, 6, 13, 30, 24, 28, 52 C. 1, 4, 6, 5, 13, 10, 28, 24, 52, 30, 20 D. 10, 7, 4, 1, 5, 8, 15, 12, 13, 19, 20

For questions 16 - 19, let T be a full k-ary tree, where k=2 (a.k.a. binary tree), with n nodes. Let h denote the height of T.

16. [7 points] What is the minimum number of leaves for T of height h? Justify your answer.

Example when h = 0: T, being a full tree can have a minimum of 1 leaf.



A.  $2^h$  B. 2h C.  $2^{h-1}$  D.  $2^h - 1$  E. h + 1

16. \_\_\_\_\_

17. [7 points] What is the maximum number of leaves for T? Justify your answer.



A.  $2^h$  B. 2h C.  $2^{h-1}$  D.  $2^h - 1$  E. h + 1

| points] What is the minimum number of internal nodes for $T$ | ? Justify your answer.  |
|--------------------------------------------------------------|-------------------------|
|                                                              |                         |
|                                                              |                         |
|                                                              |                         |
|                                                              |                         |
|                                                              |                         |
|                                                              |                         |
|                                                              |                         |
| $2^h$ B. $2h$ C. $2^{h-1}$ D. $h$ E. $h+1$                   |                         |
|                                                              | 18                      |
| points] What is the maximum number of internal nodes for $T$ | 7? Justify your answer. |
|                                                              |                         |
|                                                              |                         |
|                                                              |                         |
|                                                              |                         |

A.  $2^h$  B. 2h C.  $2^{h-1}$  D.  $2^h - 1$  E. h + 1