1998年全国硕士研究生入学统一考试数学一试题解析

一、填空题(本题共5小题,每小题3分,满分15分.)

(1)【答案】 $-\frac{1}{4}$

【解析】方法1: 用四则运算将分子化简,再用等价无穷小替换,

原式 =
$$\lim_{x \to 0} \frac{\left(\sqrt{1+x} + \sqrt{1-x} - 2\right)\left(\sqrt{1+x} + \sqrt{1-x} + 2\right)}{x^2\left(\sqrt{1+x} + \sqrt{1-x} + 2\right)}$$

$$= \lim_{x \to 0} \frac{\left(\sqrt{1+x} + \sqrt{1-x}\right)^2 - 4}{x^2\left(\sqrt{1+x} + \sqrt{1-x} + 2\right)} = \lim_{x \to 0} \frac{2\left(\sqrt{1-x^2} - 1\right)}{4x^2}$$

$$\frac{\sqrt{1-x^2} - 1 - \frac{1}{2}x^2}{x^2} \lim_{x \to 0} \frac{-\frac{1}{2}x^2}{2x^2} = -\frac{1}{4}.$$

方法2: 采用洛必达法则.

原式
$$\underline{\underline{\hat{x}}} \lim_{x \to 0} \frac{\left(\sqrt{1+x} + \sqrt{1-x} - 2\right)'}{\left(x^2\right)'} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}}}{2x}$$

$$= \lim_{x \to 0} \frac{\sqrt{1-x} - \sqrt{1+x}}{4x\sqrt{1-x^2}} = \lim_{x \to 0} \frac{\sqrt{1-x} - \sqrt{1+x}}{4x} \xrightarrow{\underline{\hat{x}}} \lim_{x \to 0} \frac{\frac{-1}{2\sqrt{1-x}} - \frac{1}{2\sqrt{1+x}}}{4}$$

$$= \lim_{x \to 0} \left(\frac{-1}{2\sqrt{1-x}} - \frac{1}{2\sqrt{1+x}}\right) = -\frac{1}{4}.$$

方法3: 将分子按佩亚诺余项泰勒公式展开至 x^2 项,

(2) 【答案】 $yf''(xy) + \varphi'(x+y) + y\varphi''(x+y)$

【分析】因为 $z = \frac{1}{x} f(xy) + y \varphi(x+y), f, \varphi$ 具有二阶连续导数,利用混合偏导数在连续

的条件下与求导次序无关, 先求 $\frac{\partial z}{\partial x}$ 或 $\frac{\partial z}{\partial v}$ 均可, 但不同的选择可能影响计算的繁简.

方法1: 先求 $\frac{\partial z}{\partial x}$.

$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} \left[\frac{1}{x} f(xy) + y \varphi(x+y) \right] = -\frac{1}{x^2} f(xy) + \frac{y}{x} f'(xy) + y \varphi'(x+y) ,$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(-\frac{1}{x^2} f(xy) + \frac{y}{x} f'(xy) + y \varphi'(x+y) \right)$$

$$= -\frac{1}{x^2} f'(xy) + \frac{1}{x} f'(xy) + \frac{y}{x} f''(xy) + \varphi'(x+y) + y \varphi''(x+y)$$

$$= -\frac{1}{x} f'(xy) + \frac{1}{x} f'(xy) + y f''(xy) + \varphi'(x+y) + y \varphi''(x+y)$$

$$= y f''(xy) + \varphi'(x+y) + y \varphi''(x+y).$$

方法2: 先求 $\frac{\partial z}{\partial y}$.

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \left[\frac{1}{x} f(xy) + y \varphi(x+y) \right] = \frac{1}{x} f'(xy)x + \varphi(x+y) + y \varphi'(x+y)$$

$$= f'(xy) + \varphi(x+y) + y \varphi'(x+y),$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x} \left[f'(xy) + \varphi(x+y) + y \varphi'(x+y) \right]$$

$$= y f''(xy) + \varphi'(x+y) + y \varphi''(x+y).$$

方法3: 对两项分别采取不同的顺序更简单些:

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial y} \left(\frac{1}{x} f(xy) \right) \right] + \frac{\partial}{\partial y} \left[\frac{\partial}{\partial x} \left(y \phi(x+y) \right) \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{1}{x} f'(xy)x \right] + \frac{\partial}{\partial y} \left[y \phi'(x+y) \right]$$

$$= \frac{\partial}{\partial x} \left[f'(xy) \right] + \frac{\partial}{\partial y} \left[y \phi'(x+y) \right]$$

$$= y f''(xy) + \phi'(x+y) + y \phi''(x+y).$$

评注: 本题中, f, φ 中的中间变量均为一元, 因此本题实质上是一元复合函数的求导, 只要注意到对x 求导时, y 视为常数; 对y 求导时, x 视为常数就可以了.

(3)【答案】12a

【解析】 L 关于 x 轴 (y 轴) 对称, 2xy 关于 y (关于 x) 为奇函数 $\Rightarrow \int_{x}^{\infty} 2xyds = 0$.

又在L上,

$$\frac{x^2}{4} + \frac{y^2}{3} = 1 \Rightarrow 3x^2 + 4y^2 = 12 \Rightarrow \int_L (3x^2 + 4y^2) ds = \int_L 12 ds = 12a.$$

因此, 原式 = $\int_L 2xyds + \int_L (3x^2 + 4y^2)ds = 12a$.

【相美知识点】对称性: 平面第一型曲线积分 $\int_{l}f\left(x,y\right)ds$,设 $f\left(x,y\right)$ 在 l 上连续,如果 l 关

于 y 轴对称, l_1 为 $l \perp x \geq 0$ 的部分, 则有结论:

$$\int_{l} f(x,y) ds = \begin{cases} 2 \int_{l_{l}} f(x,y) ds, & f(x,y) \\ 0, & f(x,y) \\ \end{cases}$$
 表 为 係 函 数.

类似地, 如果l关于x轴对称, l, 为l上 $y \ge 0$ 的部分, 则有结论:

$$\int_{l} f(x,y) ds = \begin{cases} 2 \int_{l_{2}} f(x,y) ds, & f(x,y) \\ 0, & f(x,y) \\ \end{cases}$$
 (本,文) 关于y 为奇函数.

(4) 【答案】
$$\left(\frac{|A|}{\lambda}\right)^2 + 1$$

【解析】方法1:设A的对应于特征值 λ 的特征向量为 ξ ,由特征向量的定义有

$$A\xi = \lambda \xi, \qquad (\xi \neq 0).$$

由 $|A| \neq 0$,知 $\lambda \neq 0$ (如果0是A的特征值 $\Leftrightarrow |A| = 0$),将上式两端左乘 A^* ,得

$$A^*A\xi = |A|\xi = A^*\lambda\xi = \lambda A^*\xi ,$$

从而有 $A^*\xi = \frac{|A|}{\lambda}\xi$, (即 A^* 的特征值为 $\frac{|A|}{\lambda}$).

将此式两端左乘 A^* ,得

$$\left(A^{*}\right)^{2}\xi = \frac{|A|}{\lambda}A^{*}\xi = \left(\frac{|A|}{\lambda}\right)^{2}\xi.$$

又 $E\xi = \xi$,所以 $\left(\left(A^*\right)^2 + E\right)\xi = \left(\left(\frac{|A|}{\lambda}\right)^2 + 1\right)\xi$,故 $\left(A^*\right)^2 + E$ 的特征值为 $\left(\frac{|A|}{\lambda}\right)^2 + 1$.

方法2: 由 $|A| \neq 0$,A 的特征值 $\lambda \neq 0$ (如果0是 A 的特征值 $\Leftrightarrow |A| = 0$),则 A^{-1} 有特征值

$$\frac{1}{\lambda}$$
, A^* 的特征值为 $\frac{|A|}{\lambda}$; $(A^*)^2 + E$ 的特征值为 $\left(\frac{|A|}{\lambda}\right)^2 + 1$.

【相关知识点】1. 矩阵特征值与特征向量的定义: 设 A 是 n 阶矩阵, 若存在数 λ 及非零的 n 维列向量 X 使得 $AX = \lambda X$ 成立, 则称 λ 是矩阵 A 的特征值, 称非零向量 X 是矩阵 A 的特征向量.

由 λ 为A的特征值可知,存在非零向量 α 使 $A\alpha = \lambda\alpha$,两端左乘 A^{-1} ,得 $\alpha = \lambda A^{-1}\alpha$.

因为
$$\alpha \neq 0$$
,故 $\lambda \neq 0$,于是有 $A^{-1}\alpha = \frac{1}{\lambda}\alpha$.按特征值定义知 $\frac{1}{\lambda}$ 是 A^{-1} 的特征值.

若 $AX=\lambda X$, 则 $(A+kE)X=AX+kX=(\lambda+k)X$. 即若 λ 是 A 的特征值, 则 A+kE 的特征值是 $\lambda+k$.

- 2. 矩阵 A 可逆的充要条件是 $\left|A\right|\neq 0$, 且 $A^{-1}=\frac{1}{\left|A\right|}A^{*}$.
- (5)【答案】 $\frac{1}{4}$

【解析】首先求(X,Y)的联合概率密度f(x,y).

$$D = \left\{ (x, y) \mid 1 \le x \le e^2, 0 \le y \le \frac{1}{x} \right\},\,$$

区域 D 的面积为 $S_D = \int_1^{e^2} \frac{1}{x} dx = \ln x \Big|_1^{e^2} = 2.$

当 x < 1 或 $x > e^2$ 时, $f_X(x) = 0$;

故
$$f_X(2) = \frac{1}{4}$$
.

- 二、选择题(本题共5小题,每小题3分,共15分.)
- (1)【答案】(A)

【解析】为变限所定义的函数求导数,作积分变量代换 $u=x^2-t^2$,

$$t: 0 \to x \Rightarrow u: x^2 \to 0$$
, $du = d(x^2 - t^2) = -2tdt \Rightarrow dt = -\frac{1}{2t}du$,

$$\int_0^x tf(x^2 - t^2)dt \, \underline{u = x^2 - t^2} \int_{x^2}^0 tf(u) \left(-\frac{1}{2t} \right) dt$$
$$= \int_{x^2}^0 -\frac{1}{2} f(u) du = \frac{1}{2} \int_0^{x^2} f(u) du,$$

$$\frac{d}{dx} \int_0^x t f(x^2 - t^2) dt = \frac{1}{2} \frac{d}{dx} \int_0^{x^2} f(u) du$$
$$= \frac{1}{2} f(x^2) \cdot (x^2)' = \frac{1}{2} f(x^2) \cdot 2x = x f(x^2),$$

选(A).

【相美知识点】对积分上限的函数的求导公式: 若 $F(t) = \int_{\alpha(t)}^{\beta(t)} f(x) dx$, $\alpha(t)$, $\beta(t)$ 均一阶可导, 则 $F'(t) = \beta'(t) \cdot f[\beta(t)] - \alpha'(t) \cdot f[\alpha(t)]$.

(2)【答案】(B)

【解析】当函数中出现绝对值号时,就有可能出现不可导的"尖点",因为这时的函数是分段函数. $f(x) = (x^2 - x - 2)|x||x^2 - 1|$,当 $x \neq 0$,±1时 f(x)可导,因而只需在x = 0,±1处 考察 f(x) 是否可导. 在这些点我们分别考察其左、右导数.

$$\exists f(x) = \begin{cases}
(x^2 - x - 2)x(1 - x^2), & x < -1, \\
(x^2 - x - 2)x(x^2 - 1), & -1 \le x < 0, \\
(x^2 - x - 2)x(1 - x^2), & 0 \le x < 1, \\
(x^2 - x - 2)x(x^2 - 1), & 1 \le x,
\end{cases}$$

$$\Rightarrow f'_{-}(-1) = \lim_{x \to -1^{-}} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1^{-}} \frac{(x^2 - x - 2)x(1 - x^2) - 0}{x + 1} = 0,$$

$$f'_{+}(-1) = \lim_{x \to -1^{+}} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1^{+}} \frac{(x^2 - x - 2)x(1 - x^2) - 0}{x + 1} = 0,$$

即 f(x) 在 x = -1 处可导. 又

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{(x^{2} - x - 2)x(x^{2} - 1) - 0}{x} = 2,$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{(x^{2} - x - 2)x(1 - x^{2}) - 0}{x} = -2,$$

所以 f(x) 在 x = 0 处不可导.

类似, 函数 f(x) 在 x=1 处亦不可导. 因此 f(x) 只有2个不可导点, 故应选 (B).

评注:本题也可利用下列结论进行判断:

设函数 $f(x) = |x-a| \varphi(x)$, 其中 $\varphi(x)$ 在 x = a 处连续, 则 f(x) 在 x = a 处可导的充要条件是 $\varphi(a) = 0$.

(3)【答案】(D)

【解析】由
$$\Delta y = \frac{y\Delta x}{1+x^2} + \alpha$$
,有 $\frac{\Delta y}{\Delta x} = \frac{y}{1+x^2} + \frac{\alpha}{\Delta x}$.

令 $\Delta x \to 0$, 得 $\alpha \in \Delta x$ 的高阶无穷小, 则 $\lim_{\Delta x \to 0} \frac{\alpha}{\Delta x} = 0$,

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(\frac{y}{1+x^2} + \frac{\alpha}{\Delta x} \right) = \lim_{\Delta x \to 0} \frac{y}{1+x^2} + \lim_{\Delta x \to 0} \frac{\alpha}{\Delta x} = \frac{y}{1+x^2}$$

$$\frac{dy}{dx} = \frac{y}{1+x^2} \,.$$

分离变量,得 $\frac{dy}{y} = \frac{dx}{1+x^2}$,

两边积分, 得 $\ln |y| = \arctan x + C$, 即 $y = C_1 e^{\arctan x}$.

代入初始条件 $y(0) = \pi$, 得 $y(0) = C_1 e^{\arctan 0} = C_1 = \pi$. 所以, $y = \pi e^{\arctan x}$.

故
$$y(1) = \pi e^{\arctan x}\Big|_{x=1} = \pi e^{\arctan 1} = \pi e^{\frac{\pi}{4}}.$$

<mark>【相关知识点】</mark>无穷小的比较:

设在同一个极限过程中, $\alpha(x)$, $\beta(x)$ 为无穷小且存在极限 $\lim \frac{\alpha(x)}{\beta(x)} = l$,

- (1) 若 $l \neq 0$,称 $\alpha(x)$, $\beta(x)$ 在该极限过程中为同阶无穷小;
- (2) 若 l=1, 称 $\alpha(x)$, $\beta(x)$ 在该极限过程中为等价无穷小, 记为 $\alpha(x)\sim\beta(x)$;
- (3) 若 l=0, 称在该极限过程中 $\alpha(x)$ 是 $\beta(x)$ 的高阶无穷小, 记为 $\alpha(x)=o(\beta(x))$.

若 $\lim \frac{\alpha(x)}{\beta(x)}$ 不存在 (不为 ∞), 称 $\alpha(x)$, $\beta(x)$ 不可比较.

(4)【答案】(A)

【解析】设
$$L_1: \frac{x-a_3}{a_1-a_2} = \frac{y-b_3}{b_1-b_2} = \frac{z-c_3}{c_1-c_2}$$
, $L_2: \frac{x-a_1}{a_2-a_3} = \frac{y-b_1}{b_2-b_3} = \frac{z-c_1}{c_2-c_3}$,题设矩阵

$$\begin{bmatrix} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \end{bmatrix}$$
是满秩的,则由行列式的性质,可知

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \underbrace{\frac{1}{7} \frac{1}{1} \frac{$$

故向量组 $(a_1-a_2,b_1-b_2,c_1-c_2)$ 与 $(a_2-a_3,b_2-b_3,c_2-c_3)$ 线性无关,否则由线性相关的定义知,一定存在 k_1,k_2 ,使得 $k_1(a_1-a_2,b_1-b_2,c_1-c_2)+k_2(a_2-a_3,b_2-b_3,c_2-c_3)=0$,这样上面行列式经过初等行变换值应为零,产生矛盾。

 $(a_1-a_2,b_1-b_2,c_1-c_2)$ 与 $(a_2-a_3,b_2-b_3,c_2-c_3)$ 分别为 L_1,L_2 的方向向量,由方向向量线性相关,两直线平行,可知 L_1,L_2 不平行.

又由
$$\frac{x-a_3}{a_1-a_2} = \frac{y-b_3}{b_1-b_2} = \frac{z-c_3}{c_1-c_2}$$
 得
$$\frac{x-a_3}{a_1-a_2} - 1 = \frac{y-b_3}{b_1-b_2} - 1 = \frac{z-c_3}{c_1-c_2} - 1 ,$$
 即
$$\frac{x-a_3-(a_1-a_2)}{a_1-a_2} = \frac{y-b_3-(b_1-b_2)}{b_1-b_2} = \frac{z-c_3-(c_1-c_2)}{c_1-c_2} .$$

同样由 $\frac{x-a_1}{a_2-a_3} = \frac{y-b_1}{b_2-b_3} = \frac{z-c_1}{c_2-c_3}$, 得

$$\frac{x-a_1}{a_2-a_3}+1=\frac{y-b_1}{b_2-b_3}+1=\frac{z-c_1}{c_2-c_3}+1,$$

可见 L_1, L_2 均过点 $\left(a_2-a_1-a_3, b_2-b_1-b_3, c_2-c_1-c_3\right)$, 故两直线相交于一点, 选 (A).

(5)【答案】C

【分析】由题设条件 $P(B|A) = P(B|\overline{A})$,知 A 发生与 A 不发生条件下 B 发生的条件概率相等,即 A 发生不发生不影响 B 的发生概率,故 A, B 相互独立. 而本题选项 (A) 和 (B) 是考虑 P(A|B) 与 $P(\overline{A}|B)$ 是否相等,选项 (C) 和 (D) 才是事件 A 与B是否独立.

【解析】由条件概率公式及条件 $P(B|A) = P(B|\overline{A})$,知

$$\frac{P\{AB\}}{P\{A\}} = \frac{P\{\overline{A}B\}}{P\{\overline{A}\}} = \frac{P\{B\} - P\{AB\}}{1 - P\{A\}},$$

于是有 $P\{AB\}\lceil 1-P\{A\}\rceil = P\{A\}\cdot \lceil P\{B\}-P\{AB\}\rceil$,

可见
$$P\{AB\} = P\{A\}P\{B\}.$$

应选(C).

【相关知识点】 条件概率公式: $P\{B \mid A\} = \frac{P\{AB\}}{P\{A\}}$.

三、(本题满分5分)

【解析】方法1: 求直线L在平面 Π 上的投影 L_0 :

方法1: 先求 L 与 Π 的交点 N_1 . 以 L : $\begin{cases} x=1+t,\\ y=t, \quad \text{代入平面 } \Pi \text{ 的方程, } \textit{得}\\ z=1-t \end{cases}$

$$(1+t)-t+2(1-t)-1=0 \Rightarrow t=1$$
.

从而交点为 $N_1(2,1,0)$; 再过直线 L 上点 $M_0(1,0,1)$ 作平面 Π 的垂线 L' : $\frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{2}$,

并求 L' 与平面 Π 的交点 N_2 :

$$(1+t)-(-t)+2(1+2t)-1=0 \Rightarrow t=-\frac{1}{3},$$

交点为 $N_2(\frac{2}{3},\frac{1}{3},\frac{1}{3})$.

$$N_1$$
与 N_2 的连接线即为所求 $L_0: \frac{x-2}{4} = \frac{y-1}{2} = \frac{z}{-1}$.

方法2: 求 L 在平面 Π 上的投影线的最简方法是过 L 作垂直于平面 Π 的平面 Π_0 ,所求投影 线就是平面 Π 与 Π_0 的交线. 平面 Π_0 过直线 L 上的点 (1,0,1) 与不共线的向量 l=(1,1,-1) (直线 L 的方向向量)及 n=(1,-1,2) (平面 Π 的法向量)平行,于是 Π_0 的方程是

$$\begin{vmatrix} x-1 & y & z-1 \\ 1 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix} = 0, \quad \text{If } x-3y-2z+1=0.$$

投影线为
$$L_0: \begin{cases} x-y+2z-1=0, \\ x-3y-2z+1=0. \end{cases}$$

下面求 L_0 绕y轴旋转一周所成的旋转曲面S的方程.为此,将 L_0 写成参数y的方程:

$$\begin{cases} x = 2y, \\ z = -\frac{1}{2}(y-1). \end{cases}$$

按参数式表示的旋转面方程得 S 的参数方程为

$$\begin{cases} x = \sqrt{(2y)^2 + (\frac{1}{2}(1-y))^2} \cos \theta, \\ y = y, \\ z = \sqrt{(2y)^2 + (\frac{1}{2}(1-y))^2} \sin \theta. \end{cases}$$

消去 θ 得 S 的方程为 $x^2+z^2=\left(2y\right)^2+\left[-\frac{1}{2}(y-1)\right]^2$,即 $4x^2-17y^2+4z^2+2y-1=0$.

四、(本题满分6分)

在单联通区域右半平面x > 0上为某二元函数u(x,y)的梯度 $\Leftrightarrow Pdx + Qdy$ 在x > 0上∃原

函数
$$u(x,y) \Leftrightarrow \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, x > 0.$$

其中,
$$\frac{\partial Q}{\partial x} = -2x(x^4 + y^2)^{\lambda} - \lambda x^2(x^4 + y^2)^{\lambda-1} \cdot 4x^3,$$
$$\frac{\partial P}{\partial y} = 2x(x^4 + y^2)^{\lambda} + 2\lambda xy(x^4 + y^2)^{\lambda-1} \cdot 2y.$$

由
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
,即满足
$$-2x(x^4 + y^2)^{\lambda} - \lambda x^2(x^4 + y^2)^{\lambda-1} \cdot 4x^3 = 2x(x^4 + y^2)^{\lambda} + 2\lambda xy(x^4 + y^2)^{\lambda-1} \cdot 2y ,$$

$$\Leftrightarrow 4x(x^4 + y^2)^{\lambda}(\lambda + 1) = 0 \Leftrightarrow \lambda = -1 .$$

可见, 当 $\lambda = -1$ 时, 所给向量场为某二元函数的梯度场.

为求u(x,y),采用折线法,在x>0半平面内任取一点,比如点(1,0)作为积分路径的起点,则根据积分与路径无关,有

$$u(x,y) = \int_{(1,0)}^{(x,y)} \frac{2xydx - x^2dy}{x^4 + y^2} + C$$

$$= \int_{1}^{x} \frac{2x \cdot 0}{x^4 + 0} dx + \int_{0}^{y} \frac{-x^2}{x^4 + y^2} dy + C \text{ (折线法)}$$

$$= \int_{0}^{y} \frac{-x^2}{x^4 + y^2} dy + C$$

$$= \int_{0}^{y} \frac{-x^2}{x^4 (1 + \left(\frac{y}{x^2}\right)^2)} dy + C \text{ (第一类换元法)}$$

$$= -\int_{0}^{y} \frac{x^2 \cdot x^2}{x^4 (1 + \left(\frac{y}{x^2}\right)^2)} d\left(\frac{y}{x^2}\right) + C = -\int_{0}^{y} \frac{1}{(1 + \left(\frac{y}{x^2}\right)^2)} d\left(\frac{y}{x^2}\right) + C$$

$$= -\arctan\frac{y}{x^2} + C \text{ (基本积分公式)}$$

其中C为任意常数.

【相关知识点】 1. 二元可微函数 u(x,y) 的梯度公式: $gradu = \frac{\partial u}{\partial x}i + \frac{\partial u}{\partial y}j$.

2. **定理**: 设D为平面上的单连通区域,函数P(x,y)与Q(x,y)在D内连续且有连续的一阶偏导数,则下列六个命题等价:

(1)
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, (x, y) \in D$$
;

- (2) $\oint_L Pdx + Qdy = 0, L$ 为 D 内任意一条逐项光滑的封闭曲线;
- (3) $\int_{LAB} Pdx + Qdy$ 仅与点 A, B 有关, 与连接 A, B 什么样的分段光滑曲线无关;
- (4) 存在二元单值可微函数u(x, y), 使

$$du = Pdx + Odv$$

(即 Pdx + Qdy 为某二元单值可微函数 u(x, y) 的全微分;

- (5) 微分方程 Pdx + Odv = 0 为全微分方程;
- (6) 向量场 Pi + Oj 为某二元函数 u(x, y) 的梯度 gradu = Pi + Oj.

换言之,其中任一组条件成立时,其它五组条件皆成立. 当条件成立时,可用试图法或折线 法求函数 u(x,y).

五、(本题满分6分)

【解析】先建立坐标系, 取沉放点为原点 O, 铅直向下作为 Oy 轴正向, 探测器在下沉过程中受重力、浮力和阻力的作用, 其中重力大小: mg, 浮力的大小: $F_{\mathbb{F}} = -\rho B$; 阻力: -kv, 则由牛顿第二定律得

$$m\frac{d^2y}{dt^2} = mg - B\rho g - kv, y \Big|_{t=0} = 0, v \Big|_{t=0} = 0.$$
 (*)

由
$$\frac{dy}{dt} = v$$
, $\frac{d^2y}{dt^2} = \frac{dv}{dt} = \frac{dv}{dv} \cdot \frac{dy}{dt} = v \frac{dv}{dv} = v / \frac{dy}{dv}$, 代入(*) 得 y 与 v 之间的微分方程

$$mv\left(\frac{dy}{dv}\right)^{-1} = mg - B\rho - kv, \quad v\big|_{y=0} = 0.$$

分离变量得 $dy = \frac{mv}{mg - B\rho - kv} dv$,

两边积分得
$$\int dy = \int \frac{mv}{mg - B\rho - kv} dv$$
,

$$y = \int \frac{mv + \frac{Bm\rho}{k} - \frac{m^2g}{k} - \frac{Bm\rho}{k} + \frac{m^2g}{k}}{mg - B\rho - kv}$$

$$= \int \frac{-\frac{m}{k}(mg - B\rho - kv) - \frac{Bm\rho}{k} + \frac{m^2g}{k}}{mg - B\rho - kv} dv$$

$$= \int \left(-\frac{m}{k} + \frac{\frac{m^2g - Bm\rho}{k}}{mg - B\rho - kv} \right) dv$$

$$= \int -\frac{m}{k} dv + \int \frac{m(mg - B\rho)}{k(mg - B\rho - kv)} dv$$

$$= -\frac{m}{k} v + \int \frac{m(mg - B\rho) \cdot (-\frac{1}{k})}{k(mg - B\rho - kv)} d(mg - B\rho - kv) \qquad (第一类換元法)$$

$$= -\frac{m}{k} v - \frac{m(mg - B\rho)}{k^2} \ln(mg - B\rho - kv) + C.$$

再根据初始条件 $v|_{v=0}=0$,即

$$-\frac{m(mg-B\rho)}{k^2}\ln(mg-B\rho)+C=0 \Rightarrow C=\frac{m(mg-B\rho)}{k^2}\ln(mg-B\rho).$$

故所求y与v函数关系为

$$y = -\frac{m}{k}v - \frac{m(mg - B\rho)}{k^2} \ln\left(\frac{mg - B\rho - kv}{mg - B\rho}\right).$$

六、(本题满分7分)

【解析】方法 1: 本题属于求第二类区面积分,且不属于封闭区面,则考虑添加一平面使被积区域封闭后用高斯公式进行计算,但由于被积函数分母中包含 $(x^2+y^2+z^2)^{\frac{1}{2}}$,因此不能立

即加、減輔助面 Σ_1 : $\begin{cases} x^2 + y^2 \le a^2 \\ z = 0 \end{cases}$,宜先将曲面方程代入被积表达式先化简:

$$I = \iint_{\Sigma} \frac{axdydz + (z+a)^{2}dxdy}{(x^{2} + y^{2} + z^{2})^{\frac{1}{2}}} = \frac{1}{a} \iint_{\Sigma} axdydz + (z+a)^{2}dxdy.$$

添加辅助面
$$\Sigma_1$$
: $\begin{cases} x^2+y^2 \leq a^2 \\ z=0 \end{cases}$,其侧向下(由于 Σ 为下半球面 $z=-\sqrt{a^2-x^2-y^2}$ 的上

侧, 而高斯公式要求是整个边界区面的外侧, 这里我们取辅助面的下侧, 和 Σ 的上侧组成整个边界区面的内侧, 前面取负号即可), 由高斯公式, 有

$$I = \frac{1}{a} \iint_{\Sigma + \Sigma_{1}} axdydz + (z+a)^{2}dxdy - \frac{1}{a} \iint_{\Sigma_{1}} axdydz + (z+a)^{2}dxdy$$
$$= \frac{1}{a} \left(- \iiint_{\Omega} \left(\frac{\partial (ax)}{\partial x} + \frac{\partial \left[(z+a)^{2} \right]}{\partial z} \right) dV - \left(- \iint_{D} a^{2}dxdy \right) \right).$$

第一个积分前面加负号是由于我们取边界区面的内侧,第二个积分前面加负号是由于 Σ_1 的方向向下;另外由曲面片 Σ_1 在 yoz 平面投影面积为零,则 $\iint_{\Sigma_1} axdydz = 0$,而 Σ_1 上 z = 0,

則 $(z+a)^2=a^2$.

$$I = \frac{1}{a} \left(- \iiint_{\Omega} (a + 2(z + a)) dV + \iint_{D} a^{2} dx dy \right),$$

其中 Ω 为 Σ 与 Σ_1 所围成的有界闭区域,D为 Σ_1 在xoy 面上的投影 $D = \{(x,y) | x^2 + y^2 \le a^2\}$. 从而,

$$I = \frac{1}{a} \left(-3a \iiint_{\Omega} dv - 2 \iiint_{\Omega} z dv + a^{2} \iint_{D} dx dy \right)$$
$$= \frac{1}{a} \left(-3a \cdot \frac{2}{3} \pi a^{3} - 2 \int_{0}^{2\pi} d\theta \int_{0}^{a} r dr \int_{-\sqrt{a^{2} - r^{2}}}^{0} z dz + a^{2} \cdot \pi a^{2} \right).$$

第一个积分用球体体积公式;第二个用柱面坐标求三重积分;第三个用圆的面积公式.

$$\begin{split} I &= \frac{1}{a} \left(-2\pi a^4 - 2 \int_0^{2\pi} d\theta \int_0^a r \left(\frac{1}{2} z^2 \Big|_{-\sqrt{a^2 - r^2}}^0 \right) dr + \pi a^4 \right) \\ &= \frac{1}{a} \left(-\pi a^4 - 2 \int_0^{2\pi} d\theta \int_0^a r \left(-\frac{1}{2} (a^2 - r^2) \right) dr \right) \\ &= \frac{1}{a} \left(-\pi a^4 + \int_0^{2\pi} d\theta \int_0^a (a^2 r - r^3) dr \right) \\ &= \frac{1}{a} \left(-\pi a^4 + 2\pi \cdot \left(\frac{a^2 r^2}{2} - \frac{r^4}{4} \right) \Big|_0^a \right) = \frac{1}{a} \left(-\pi a^4 + 2\pi \cdot \left(\frac{a^2 a^2}{2} - \frac{a^4}{4} \right) \right) \\ &= \frac{1}{a} \left(-\pi a^4 + 2\pi \cdot \frac{a^4}{4} \right) = -\frac{\pi}{2} a^3 \end{split}$$

方法2:逐项计算:

$$I = \iint_{\Sigma} \frac{axdydz + (z+a)^{2} dxdy}{(x^{2} + y^{2} + z^{2})^{\frac{1}{2}}} = \frac{1}{a} \iint_{\Sigma} axdydz + (z+a)^{2} dxdy$$
$$= \iint_{\Sigma} xdydz + \frac{1}{a} \iint_{\Sigma} (z+a)^{2} dxdy = I_{1} + I_{2}.$$

其中,

$$\begin{split} I_{1} &= \iint\limits_{\Sigma} x dy dz = -\iint\limits_{Dyz} \sqrt{a^{2} - x^{2} - y^{2}} dy dz + \iint\limits_{Dyz} -\sqrt{a^{2} - x^{2} - y^{2}} dy dz \\ &= -2 \iint\limits_{Dyz} \sqrt{a^{2} - x^{2} - y^{2}} dy dz, \end{split}$$

第一个负号是由于在x轴的正半空间区域 Σ 的上侧方向与x轴反向,第二个负号是由于被积函数在x取负数.

 D_{yz} 为 Σ 在 yoz 平面上的投影域 $D_{yz} = \{(y,z) \mid y^2 + z^2 \le a^2, z \le 0\}$,用极坐标,得

$$\begin{split} I_1 &= -2 \int_{\pi}^{2\pi} d\theta \int_{0}^{a} \sqrt{a^2 - r^2} r dr \\ &= -2\pi \cdot -\frac{1}{2} \int_{0}^{a} \sqrt{a^2 - r^2} d(a^2 - r^2) \\ &= \pi \frac{2}{3} (a^2 - r^2)^{\frac{3}{2}} \bigg|_{0}^{a} = \frac{2}{3} \pi (0 - a^3) = -\frac{2}{3} \pi a^3, \end{split}$$

$$\begin{split} I_2 &= \frac{1}{a} \iint\limits_{\Sigma} (z+a)^2 dx dy = \frac{1}{a} \iint\limits_{Dxy} \left(a - -\sqrt{a^2 - x^2 - y^2} \right)^2 dx dy \\ &= \frac{1}{a} \int_0^{2\pi} d\theta \int_0^a (2a^2 - 2a\sqrt{a^2 - r^2} - r^2) r dr \\ &= \frac{2\pi}{a} \int_0^a (2a^2 r - 2ar\sqrt{a^2 - r^2} - r^3) dr \\ &= \frac{2\pi}{a} \left[\int_0^a 2a^2 r dr - 2a \int_0^a r \sqrt{a^2 - r^2} dr - \int_0^a r^3 dr \right] \\ &= \frac{2\pi}{a} \left[a^2 r^2 \Big|_0^a - 2a \cdot \left(\frac{1}{3} a^3 \right) - \left(\frac{r^4}{4} \right) \Big|_0^a \right] \\ &= \frac{2\pi}{a} (a^4 - \frac{2}{3} a^4 - \frac{a^4}{4}) = \frac{\pi}{6} a^3, \end{split}$$

其中 D_{yz} 为 Σ 在 yoz 平面上的投影域 $D_{yz} = \{(y,z) \mid y^2 + z^2 \le a^2\}$. 故 $I = I_1 + I_2 = -\frac{\pi}{2}a^3$.

【相关知识点】高斯公式:设空间闭区域 Ω 是由分片光滑的闭曲面 Σ 所围成,函数

P(x,y,z)、Q(x,y,z)、R(x,y,z)在 Ω 上具有一阶连续偏导数,则有

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv = \bigoplus_{\Sigma} P dy dz + Q dz dx + R dx dy,$$

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv = \bigoplus_{\Sigma} \left(P \cos \alpha + Q \cos \beta + R \cos \gamma \right) dS,$$

或

这里 Σ 是 Ω 的整个边界曲面的外侧, $\cos \alpha$ 、 $\cos \beta$ 、 $\cos \gamma$ 是 Σ 在点(x,y,z) 处的法向量的方向余弦. 上述两个公式叫做高斯公式.

七、(本题满分6分)

【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.

当各项分母均相同是n时,n项和式

$$x_n = \frac{\sin\frac{\pi}{n}}{n} + \frac{\sin\frac{2\pi}{n}}{n} + \dots + \frac{\sin\frac{n\pi}{n}}{n}$$

是函数 $\sin \pi x$ 在 [0,1] 区间上的一个积分和. 于是可由定积分 $\int_0^1 \sin \pi x dx$ 求得极限 $\lim_{n\to\infty} x_n$.

【解析】由于
$$\frac{\sin\frac{i\pi}{n}}{n+1} \le \frac{\sin\frac{i\pi}{n}}{n+\frac{1}{i}} \le \frac{\sin\frac{i\pi}{n}}{n}, i = 1, 2, \dots, n$$
,

于是,
$$\sum_{i=1}^{n} \frac{\sin \frac{i\pi}{n}}{n+1} \le \sum_{i=1}^{n} \frac{\sin \frac{i\pi}{n}}{n+\frac{1}{i}} \le \sum_{i=1}^{n} \frac{\sin \frac{i\pi}{n}}{n}.$$

由于
$$\lim_{n\to\infty}\sum_{i=1}^n\frac{\sin\frac{i\pi}{n}}{n}=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\sin\frac{i\pi}{n}=\int_0^1\sin\pi xdx=\frac{2}{\pi},$$

$$\lim_{n\to\infty}\sum_{i=1}^n \frac{\sin\frac{i\pi}{n}}{n+1} = \lim_{n\to\infty} \left[\frac{n}{n+1} \cdot \frac{1}{n} \sum_{i=1}^n \sin\frac{i\pi}{n} \right] = \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \sin\frac{i\pi}{n} = \int_0^1 \sin \pi x dx = \frac{2}{\pi}$$

根据夹逼定理知, $\lim_{n\to\infty}\sum_{i=1}^n \frac{\sin\frac{i\pi}{n}}{n+\frac{1}{i}} = \frac{2}{\pi}$.

【相关知识点】夹逼准则: 若存在 N, 当 n > N 时, $y_n \le x_n \le z_n$, 且有 $\lim_{n \to +\infty} y_n = \lim_{n \to +\infty} z_n = a$,

则 $\lim_{n\to+\infty} x_n = a$.

八、(本题满分5分)

【解析】方法1: 因正项数列 $\{a_n\}$ 单调减少有下界0, 知极限 $\lim_{n\to\infty}a_n$ 存在, 记为a, 则 $a_n\geq a$ 且 $a\geq 0$.

又 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散, 根据莱布尼茨判别法知, 必有 a > 0 (否则级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛).

又正项级数
$$\left\{a_{n}\right\}$$
 单调减少,有 $\left(\frac{1}{a_{n}+1}\right)^{n} \leq \left(\frac{1}{a+1}\right)^{n}$,而 $0 < \frac{1}{a+1} < 1$,级数 $\sum_{n=1}^{\infty} \left(\frac{1}{a+1}\right)^{n}$

收敛. 根据正项级数的比较判别法, 知级数 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 也收敛.

方法2: 同方法1,可证明 $\lim_{n\to\infty}a_n=a>0$. 令 $b_n=\left(\frac{1}{a_n+1}\right)^n$,则

$$\lim_{n \to \infty} \sqrt[n]{b_n} = \lim_{n \to \infty} \frac{1}{a_n + 1} = \frac{1}{a + 1} < 1,$$

根据根值判别法, 知级数 $\sum_{n=1}^{\infty} (\frac{1}{a_n+1})^n$ 也收敛.

【相关知识点】1. 交错级数的莱布尼茨判别法:

15

设交错级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
 满足:

(1)
$$u_n \ge u_{n+1}, n = 1, 2, \dots;$$
 (2) $\lim_{n \to \infty} u_n = 0.$

则
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
 收敛, 且其和满足 $0 < \sum_{n=1}^{\infty} (-1)^{n-1} u_n < u_1$, 余项 $\left| r_n \right| < u_{n+1}$.

反之, 若交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 发散, 只是满足条件(1), 则可以反证说明此级数一定不满足

条件 (2)
$$\lim_{n\to\infty} u_n = 0$$
, 所以有 $\lim_{n\to\infty} u_n > 0$. (否则级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 收敛)

2. 正项级数的比较判别法:

设
$$\sum_{n=1}^{\infty} u_n$$
 和 $\sum_{n=1}^{\infty} v_n$ 都是正项级数, 且 $\lim_{n\to\infty} \frac{v_n}{u_n} = A$, 则

(1) 当
$$0 < A < +\infty$$
 时, $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 同时收敛或同时发散;

(2) 当
$$A = 0$$
 时, 若 $\sum_{n=1}^{\infty} u_n$ 收敛, 则 $\sum_{n=1}^{\infty} v_n$ 收敛, 若 $\sum_{n=1}^{\infty} v_n$ 发散, 则 $\sum_{n=1}^{\infty} u_n$ 发散;

(3) 当
$$A = +\infty$$
 时,若 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛; 若 $\sum_{n=1}^{\infty} u_n$ 发散,则 $\sum_{n=1}^{\infty} v_n$ 发散.

3. 根值判别法:

设
$$u_n > 0$$
,则当 $\lim_{n \to \infty} \sqrt[n]{u_n} = \rho$ $\begin{cases} < 1$ 时, $\sum_{n=1}^{\infty} u_n$ 收敛, $\sum_{n=1}^{\infty} u_n$ 发散, 且 $\lim_{n \to \infty} u_n \neq 0$, 此判别法无效.

九、(本题满分6分)

【解析】 (1) 要证
$$\exists x_0 \in (0,1)$$
 ,使 $x_0 f(x_0) = \int_{x_0}^1 f(x) dx$; 令 $\varphi(x) = x f(x) - \int_x^1 f(t) dt$,要证 $\exists x_0 \in (0,1)$,使 $\varphi(x_0) = 0$.可以对 $\varphi(x)$ 的原函数 $\Phi(x) = \int_0^x \varphi(t) dt$ 使用罗尔定理:
$$\Phi(0) = 0$$
 ,

$$\Phi(1) = \int_0^1 \varphi(x) dx = \int_0^1 x f(x) dx - \int_0^1 (\int_x^1 f(t) dt) dx$$

$$= \int_0^1 x f(x) dx - \left[x \int_x^1 f(t) dt \right]_{x=0}^{x=1} + \int_0^1 x f(x) dx = 0,$$

又由 f(x) 在 [0,1] 连续 $\Rightarrow \varphi(x)$ 在 [0,1] 连续, $\Phi(x)$ 在 [0,1] 连续,在 (0,1) 可导. 根据罗尔定理, $\exists x_0 \in (0,1)$,使 $\Phi'(x_0) = \varphi(x_0) = 0$.

(2) 由 $\varphi'(x) = xf'(x) + f(x) + f(x) = xf'(x) + 2f(x) > 0$,知 $\varphi(x)$ 在(0,1)内单调增,故(1)中的 x_0 是唯一的.

评注: 若直接对 $\varphi(x)$ 使用零点定理, 会遇到麻烦:

$$\varphi(0) = -\int_0^1 f(t)dt \le 0, \varphi(1) = f(1) \ge 0.$$

当 $f(x) \equiv 0$ 时,对任何的 $x_0 \in (0,1)$ 结论都成立;

当 $f(x) \neq 0$ 时, $\varphi(0) < 0$,但 $\varphi(1) \geq 0$,若 $\varphi(1) = 0$,则难以说明在 (0,1) 内存在 x_0 . 当直接对 $\varphi(x)$ 用零点定理遇到麻烦时,不妨对 $\varphi(x)$ 的原函数使用罗尔定理.

【相关知识点】1. 罗尔定理:如果函数 f(x) 满足

- (1) 在闭区间[a,b]上连续;
- (2) 在开区间(a,b)内可导;
- (3) 在区间端点处的函数值相等, 即 f(a) = f(b),

那么在(a,b)内至少有一点 $\xi(a < \xi < b)$,使得 $f'(\xi) = 0$.

十、(本题满分6分)

【解析】经正交变换化二次型为标准形,二次型矩阵与标准形矩阵既合同又相似. 由题设知,

二次曲面方程左端二次型对应矩阵为 $A = \begin{bmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{bmatrix}$,则存在正交矩阵P,使得

$$P^{-1}AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \stackrel{\square}{=} B,$$

即 A与B 相似.

由相似矩阵有相同的特征值, 知矩阵 A 有特征值 0,1,4. 从而,

$$\begin{cases} 1+a+1=0+1+4, \\ |A|=-(b-1)^2=|B|=0. \end{cases} \Rightarrow a=3,b=1.$$

从而,
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

当 $\lambda_1 = 0$ 时,

$$(0E-A) = \begin{bmatrix} -1 & -1 & -1 \\ -1 & -3 & -1 \\ -1 & -1 & -1 \end{bmatrix} \underbrace{1 \text{ 行} \times (-1) \text{ 分别加到2.3 \text{ 行}}}_{\text{ }} \begin{bmatrix} -1 & -1 & -1 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

于是得方程组 (0E-A)x=0 的同解方程组为 $\begin{cases} -x_1-x_2-x_3=0, \\ -2x_2=0. \end{cases}$

r(0E-A)=2,可知基础解系的个数为n-r(0E-A)=3-2=1,故有1个自由未知量,选 x_1 为自由未知量,取 $x_1=1$,解得基础解系为 $\alpha_1=(1,0,-1)^T$.

当 λ ₂ = 1 时,

$$\begin{split} (E-A) = &\begin{bmatrix} 0 & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & 0 \end{bmatrix} \underbrace{3 \times (-1) \underline{m} \underline{927}}_{3 \times (-1)} \begin{bmatrix} 0 & -1 & -1 \\ 0 & -1 & -1 \\ -1 & -1 & 0 \end{bmatrix} \\ & \underbrace{1 \div \times (-1) \underline{m} \underline{927}}_{1} \begin{bmatrix} 0 & -1 & -1 \\ 0 & 0 & 0 \\ -1 & -1 & 0 \end{bmatrix} \underbrace{2.37 \underline{5} \underline{5}}_{2} \underbrace{5}_{1} \begin{bmatrix} 0 & -1 & -1 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{1}, \end{split}$$

于是得方程组 (E-A)x = 0 的同解方程组为 $\begin{cases} -x_2 - x_3 = 0, \\ -x_1 - x_2 = 0. \end{cases}$

当 $\lambda_3 = 4$ 时,

$$(4E-A) = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 3 \end{bmatrix} \underbrace{1,2行互换} \begin{bmatrix} -1 & 1 & -1 \\ 3 & -1 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

1行的3,
$$(-1)$$
 倍分别加到2, 3 行 $\begin{bmatrix} -1 & 1 & -1 \\ 0 & 2 & -4 \\ 0 & -2 & 4 \end{bmatrix}$ 2行加到3行 $\begin{bmatrix} -1 & 1 & -1 \\ 0 & 2 & -4 \\ 0 & 0 & 0 \end{bmatrix}$,

于是得方程组 (4E-A)x=0 的同解方程组为 $\begin{cases} -x_1+x_2-x_3=0,\\ 2x_2-4x_3=0. \end{cases}$

r(4E-A)=2,可知基础解系的个数为n-r(4E-A)=3-2=1,故有1个自由未知量, 选 x_2 为自由未知量,取 $x_2=2$,解得基础解系为 $\alpha_3=(1,2,1)^T$.

由实对称矩阵不同特征值对应的特征向量相互正交,可知 $\alpha_1,\alpha_2,\alpha_3$ 相互正交.

将 $\alpha_1,\alpha_2,\alpha_3$ 单位化,得

$$\eta_{1} = \frac{\alpha_{1}}{\|\alpha_{1}\|} = (\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})^{T},$$

$$\eta_{2} = \frac{\alpha_{2}}{\|\alpha_{2}\|} = (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^{T},$$

$$\eta_{3} = \frac{\alpha_{3}}{\|\alpha_{3}\|} = (\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})^{T}.$$

因此所求正交矩阵为 $P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$.

评注:利用相似的必要条件求参数时, $\sum a_{ii} = \sum b_{ii}$ 是比较好用的一个关系式. 亦可用 $\left|\lambda E - A\right| = \left|\lambda E - B\right|$ 比较 λ 同次方的系数来求参数.

【相关知识点】 1. 特征值的性质: $\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii}$

2. 相似矩阵的性质: 若矩阵 A与B 相似,则|A|=|B|.

十一、(本题满分4分)

【解析】用线性无关的定义证明.

设有常数 $\lambda_0, \lambda_1, \dots, \lambda_{l-1}$, 使得

$$\lambda_0 \alpha + \lambda_1 A \alpha + \dots + \lambda_{k-1} A^{k-1} \alpha = 0. \tag{*}$$

两边左乘 A^{k-1} ,则有

$$A^{k-1}\left(\lambda_0\alpha + \lambda_1A\alpha + \dots + \lambda_{k-1}A^{k-1}\alpha\right) = 0$$
 ,

$$\exists \exists \qquad \lambda_0 A^{k-1} \alpha + \lambda_1 A^k \alpha + \dots + \lambda_{k-1} A^{2(k-1)} \alpha = 0 \, .$$

上式中因 $A^k\alpha=0$, 可知 $A^{k+1}\alpha=\cdots=A^{2(k-1)}\alpha=0$, 代入上式可得 $\lambda_0A^{k-1}\alpha=0$.

由题设 $A^{k-1}\alpha \neq 0$,所以 $\lambda_0 = 0$.

将 $\lambda_0 = 0$ 代入(*), 有 $\lambda_1 A \alpha + \cdots + \lambda_{k-1} A^{k-1} \alpha = 0$.

两边左乘 A^{k-2} ,则有 $A^{k-2}(\lambda_1 A\alpha + \cdots + \lambda_{k-1} A^{k-1}\alpha) = 0$,

 $\mathbb{E} \lambda_1 A^{k-1} \alpha + \dots + \lambda_{k-1} A^{2k-3} \alpha = 0.$

同样, 由 $A^k\alpha=0$, $A^{k+1}\alpha=\cdots A^{2(k-1)}\alpha=0$, 可得 $\lambda_1A^{k-1}\alpha=0$.

由题设 $A^{k-1}\alpha \neq 0$,所以 $\lambda_1 = 0$.

类似地可证明 $\lambda_2 = \cdots = \lambda_{k-1} = 0$, 因此向量组 $\alpha, A\alpha, \cdots, A^{k-1}\alpha$ 是线性无关的.

【相关知识点】 向量组线性相关和线性无关的定义:存在一组不全为零的数 k_1,k_2,\cdots,k_m 使 $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0$,则称 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关;否则,称 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关.

十二、(本题满分5分)

【解析】(II)的通解为

$$k_1 \xi_1 + k_2 \xi_2 + \dots + k_n \xi_n$$
,

其中, $\xi_1 = (a_{11}, a_{12}, \dots, a_{1,2n})^T$, $\xi_2 = (a_{21}, a_{22}, \dots, a_{2,2n})^T$, \dots , $\xi_n = (a_{n1}, a_{n2}, \dots, a_{n,2n})^T$, k_1, k_2, \dots, k_n 为任意常数.

理由:可记方程组 $(I)A_{n\times 2n}X=0$, $(II)B_{n\times 2n}Y=0$,(I),(II)的系数矩阵分别记为A,B,由

于 B 的每一行都是 $A_{n\times 2n}X=0$ 的解,故 $AB^T=0$. B^T 的列是 (I) 的基础解系,故由基础解系 资料搜集 QQ1836989006 微信 1836989006 20

的定义知, B^T 的列向量是线性无关的, 因此 r(B) = n. 故基础解系所含向量的个数 n = 2n - r(A), 得 r(A) = 2n - n = n. 因此, A 的行向量线性无关.

对 $AB^T=0$ 两边取转置,有 $\left(AB^T\right)^T=BA^T=0$,则有 A^T 的列向量,即 A 的行向量是

BY = 0 的线性无关的解.

又r(B) = n,故BY = 0基础解系所含向量的个数应为2n - r(B) = 2n - n = n,恰好等 于 A 的行向量个数. 故 A 的行向量组是 BY = 0 的基础解系, 其通解为

$$k_1 \xi_1 + k_2 \xi_2 + \cdots + k_n \xi_n$$
,

其中,
$$\xi_1=(a_{11},a_{12},\cdots,a_{1,2n})^T$$
, $\xi_2=(a_{21},a_{22},\cdots,a_{2,2n})^T,\cdots$, $\xi_n=(a_{n1},a_{n2},\cdots,a_{n,2n})^T$, k_1,k_2,\cdots,k_n 为任意常数.

十三、(本题满分6分)

【分析】把X-Y看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的 性质, 可以知道 $X - Y \sim N(0,1)$, 这样可以简化整题的计算.

【解析】令Z = X - Y,由于X,Y相互独立,且都服从正态分布,因此Z也服从正态分布,且

$$E(Z) = E(X) - E(Y) = 0$$
, $D(Z) = D(X) + D(Y) = \frac{1}{2} + \frac{1}{2} = 1$.

于是, $Z = X - Y \sim N(0.1)$.

$$D|X - Y| = D(|Z|) = E(|Z|^{2}) - (E|Z|)^{2}$$
$$= D(Z) + (E(Z))^{2} - (E|Z|)^{2} = 1 - (E|Z|)^{2}.$$

$$\begin{split} \overline{\text{mi}} \qquad \qquad E \left| Z \right| &= \int_{-\infty}^{+\infty} \left| z \right| \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} z e^{-\frac{z^2}{2}} dz \\ &= \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{-\frac{z^2}{2}} d \left(\frac{z^2}{2} \right) = \frac{2}{\sqrt{2\pi}} \left[-e^{-\frac{z^2}{2}} \right]_{0}^{+\infty} = \sqrt{\frac{2}{\pi}} \,, \end{split}$$

故 $D|X-Y|=1-\frac{2}{\pi}$.

【相关知识点】1. 对于随机变量 X 与 Y 均服从正态分布, 则 X 与 Y 的线性组合亦服从正态 分布.

若 X 与 Y 相互独立, 由数学期望和方差的性质, 有

$$E(aX + bY + c) = aE(X) + bE(Y) + c$$

$$D(aX + bY + c) = a^2D(X) + b^2D(Y),$$

其中a,b,c为常数.

- 2. 方差的定义: $DX = EX^2 (EX)^2$.
- 3. 随机变量函数期望的定义: 若Y = g(X),则 $EY = \int_{-\infty}^{+\infty} g(x)f(x)dx$.

十四、(本题满分4分)

【解析】由题知: $X_1, X_2, \dots, X_n \sim N(3.4, 6^2)$, $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, 各样本相互独立, 根据独立

正态随机变量的性质,
$$\overline{X}_n = \frac{1}{n}\sum_{i=1}^n X_i \sim N(\mu, \sigma^2)$$
. 其中 $\mu = E\overline{X}_n = E\left(\frac{1}{n}\sum_{i=1}^n X_i\right)$,

$$\sigma^2 = D\overline{X}_n = D\left(\frac{1}{n}\sum_{i=1}^n X_i\right).$$

根据期望和方差的性质,

$$\mu = E\overline{X}_n = E\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n}\sum_{i=1}^n EX_i = \frac{3.4n}{n} = 3.4,$$

$$\sigma^2 = D\overline{X}_n = D\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}D\left(\sum_{i=1}^n X_i\right) = \frac{1}{n^2}\sum_{i=1}^n DX_i = \frac{6^2n}{n^2} = \frac{6^2}{n}.$$

所以,
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N(3.4, \frac{6^2}{n})$$
.把 \overline{X}_n 标准化, $U = \frac{\overline{X}_n - 3.4}{6/\sqrt{n}} \sim N(0,1)$.

从而,

$$P\{1.4 < \overline{X} < 5.4\} = P\{1.4 - 3.4 < \overline{X} - 3.4 < 5.4 - 3.4\}$$

$$= P\{-2 < \overline{X} - 3.4 < 2\} = P\{|\overline{X} - 3.4| < 2\}$$

$$= P\{\frac{|\overline{X} - 3.4|}{6}\sqrt{n} < \frac{2\sqrt{n}}{6}\} = 2\Phi(\frac{\sqrt{n}}{3}) - 1 \ge 0.95,$$

故 $\Phi\left(\frac{\sqrt{n}}{3}\right) \ge 0.975$, 查表得到 $\frac{\sqrt{n}}{3} \ge 1.96$, 即 $n \ge \left(1.96 \times 3\right)^2 \approx 34.57$, 所以 $n \le 0$ 应取35.

【相关知识点】1. 对于随机变量 X 与 Y 均服从正态分布, 则 X 与 Y 的线性组合亦服从正态分布.

若 X 与 Y 相互独立, 由数学期望和方差的性质, 有

$$E(aX + bY + c) = aE(X) + bE(Y) + c$$

$$D(aX + bY + c) = a^2D(X) + b^2D(Y)$$
,

其中a,b,c为常数.

2. 若
$$Z \sim N(u, \sigma^2)$$
, 则 $\frac{Z-u}{\sigma} \sim N(0,1)$

十五、(本题满分4分)

【解析】设该次考试的考生成绩为X,则 $X \sim N(\mu, \sigma^2)$,设 \overline{X} 为从总体X抽取的样本容量为n的样本均值,S为样本标准差,则在显著性水平 $\alpha = 0.05$ 下建立检验假设:

$$H_0: \mu = \mu_0 = 70, H_1: \mu \neq 70,$$

由于 σ^2 未知,故用t检验.

选取检验统计量,

$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n} = \frac{\overline{X} - 70}{S} \sqrt{36}$$

在 $\mu = \mu_0 = 70$ 时, $X \sim N(70, \sigma^2), T \sim t(35)$.

选择拒绝域为 $R = \{|T| \ge \lambda\}$,其中 λ 满足:

$$P\{|T| \ge \lambda\} = 0.05, \text{ dif } P\{|T| \le \lambda\} = 0.975, \lambda = t_{0.975}(35) = 2.0301.$$

由 $n = 36, \bar{x} = 66.5, \mu_0 = 70, s = 15$, 可算得统计量 T 的值:

$$|t| = \frac{|66.5 - 70|}{15} \sqrt{36} = 1.4 < 2.0301.$$

所以接受假设 H_0 : $\mu = 70$, 即在显著性水平0.05下, 可以认为这次考试全体考生的平均成绩为70分.