# **Public Key Encryption**

Gianluca Dini
Dept. Ingegneria dell'Informazione
University of Pisa
Email: gianluca.dini@unipi.it

Version: 11/03/2025

1

Public Key Cryptography

#### **INTRODUCTION**

Mar-25

Public Key Encryption



3

#### Public key encryption - Definition



- A public key encryption scheme is a triple of algs (G, E, D) s.t.
  - **G** is a randomized alg. for key generation (pk, sk)
  - y = E(pk, x) is a (randomized) alg. that takes x ∈  $\mathcal{M}$  and outputs y ∈  $\mathcal{C}$
  - -x = D(sk, y) is deterministic alg. that takes  $y \in C$  and outputs  $x \in \mathcal{M}$
  - fulfills the Consistency Property
    - $\forall$ (pk, sk),  $\forall$  x  $\in$   $\mathcal{M}$ , D(sk, E(pk, x)) = x



Mar-25

Public Key Encryption

4

#### Security of PKE: informal



- Known  $pk \in \mathcal{K}$  and  $y \in C$ , it is computationally infeasible to find the message  $x \in \mathcal{M}$  such that  $E_{nk}(x) = y$
- Known the public key pk  $\in \mathcal{K}$ , it is computationally infeasible to determine the corresponding secret key  $sk \in \mathcal{K}$
- Constructions generally rely on hard problems from number theory and algebra

Mar-25 Public Kev Encryption

5

# Non-randomized PKE is not



- PK encryption scheme is not perfect

  Where a paper grh exist, same the UNIVERSITA DI PIS.

  PK scheme cannot
  - Proof
    - Let y = E(pk, x)
    - Adversary
      - intercepts y over the channel
      - selects x' s.t.  $Pr[M = x'] \neq 0$  (a priori)
      - computes  $y' = E_{pk}(x')$  Adversary common decrypt, but can encrypt
      - If y' == y then x' = x and  $Pr[M=x' \mid C=y] = 1$ else Pr[M=x' | C=y] = 0 (a posteriori)

I a postenion prob. is differed from the a priving one.

Mar-25

Public Key Encryption



/

#### Digital envelope



- Public key cryptography is 2-3 orders of magnitude slower than symmetric key cryptography Unconfement from performances por
  - Public-key performance can be a more serious bottleneck in constrained devices, e.g., mobile phones or smart cards, or on network servers that have to compute many publickey operations per second
- A digital envelope uses two layers for encryption:
  - Symmetric key encryption is used for message encryption and decryption.
  - Public key encryption is used to send symmetric key to the receiving party

Mar-25

Public Key Encryption

8



Basic key transport protocol **Alice Bob**  $(pubk_A, privk_A) \leftarrow G()$ "Alice", pubk<sub>A</sub> choose random key  $k \in \{0,1\}^{128}$ Bob,  $y \leftarrow E(pubk_A, k)$  $k \leftarrow D(privk_A, y)$ Data security AES(k, session) k: session key Disclaimer: toy protocol! Public Key Encryption Mar-25 @ Achiened shared secret without showing a secret in the first place! 10

Public Key Encryption

#### PUBLIC KEY CRYPTOGRAPHY

Mar-25

Public Key Encryption

11

11

### Families of pub key algs



- Built on the common principle of one-way function
- A function f() is a one-way function if:
  - -y = f(x) is computationally easy, and
  - $x = f^{-1}(y)$  is computationally infeasible



- Two popular one-way functions
  - Integer factorization
  - Discrete logarithm [log & a subset of Ns]

Mar-25

Public Key Encryption

12

#### Families of PK Cryptography



- Integer factorization schemes (mid 70s)
  - Most prominent scheme: RSA
- - Most prominent schemes: DHKE, ElGamal, DSA Duffe Hellman Key establishmet
- Elliptic Curves Schemes (mid 80s)
  - EC schemes are a generalization of the Discrete Logarithm algorithm
  - Most prominent schemes: ECDH, ECDSA

Completely broken by quiltin allactis

13

#### Families of PK Cryptography



- Other schemes
- PK schemes bossed on lathics seen.
  I Vo be resistant to grantum comprises Multivariate Quadratic, Lattice
  - - · They lack maturity
    - Poor performance characteristics
  - Hyperelliptic curve cryptosystems
    - · Secure and efficient
    - They have not gained widespread adoption

Encay phon schemes based on LaWice rechnology cannot be broken polinomially by quantum computing Public Key Encryption

#### Main security mechanisms



- Encryption
  - RSA and ElGamal
- Key establishment
  - Establishing keys over an insecure channel
  - DHKE, RSA key transport
- Non repudiation and message integrity
  - Digital signatures
  - RSA, DSA, ECDSA
- Identification
  - Challenge-response protocol together digital signatures

Mar-25 Public Key Encryption

15

#### Key Lenghts and Security Level



- An algorithm has security level of n bit, if the best known algorithm requires 2" steps (16 back the exception school)
- Symmetric algorithms with security level of n have a level of n bits of best known allock is building, we require
- In asymmetric algorithms, the relationship between security level and cryptographic strengh is no as straightforward

a ASSUMPTION: Where exist no better allock than bruleforce

Mar-25 Public Key Encryption 16

#### Key Lenghts and Security Level



| Alexadahan Familia       | Comments and a second | Security Level |          |          |           |  |  |  |  |  |
|--------------------------|-----------------------|----------------|----------|----------|-----------|--|--|--|--|--|
| Algorithm Family         | Cryptosystem          | 80             | 128      | 192      | 256       |  |  |  |  |  |
| Integer<br>Factorization | RSA                   | 1024 bit       | 3072 bit | 7680 bit | 15360 bit |  |  |  |  |  |
| Discrete<br>Logarithm    | DH, DSA, ElGamal      | 1024 bit       | 3072 bit | 7680 bit | 15360 bit |  |  |  |  |  |
| Elliptic curves          | ECDH, ECDSA           | 160 bit        | 256 bit  | 384 bit  | 512 bit   |  |  |  |  |  |
| Symmetric key            | AES, 3DES             | 80 bit         | 128 bit  | 192 bit  | 256 bit   |  |  |  |  |  |

Skapsack

RULE OF THUMB - The computational complexity of the three public key algorithm families grows roughly with the cube of bit length

For RSA, to have 806 as security level a need 10246. Is. With elliptic curves we only need 1606

Mar-25 NOTE: No fact book for the sample Stemper med larger keys is an indication 17

What PKE is slower than SKE.

17

Elleptisc curves are more camparable

Public Key Cryptography

#### THE NEED FOR ENCRYPTION **RANDOMIZATION**

Mar-25

Public Key Encryption



19

# Attack against a small plaintex space



- Attack complexity
  - If bid x is an integer, then up to 232 attempts
  - If bid x ∈ [ $x_{min}$ ,  $x_{max}$ ], then #attempts  $\ll 2^{32}$

Mar-25

Public Key Encryption

20

|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       | _     |    |  |  |
|--|-----|-------|------|-------|-------|-------|----------------|-----|---------|------|-------|------|--------|-------|-------|----|--|--|
|  | Mal | lubus | bho  | dden  | wants | \$ 6  | W <sub>N</sub> | n K | he a    | ucha | , by  | ) of | lowing | Vhe   | leu   | sk |  |  |
|  | amo | unt   | q,   | monle | 1. 14 | o ok  | , <i>Y</i> ,   | ZaY | brobole | h    | xs 16 | Knol | w a    | nont  | ef    |    |  |  |
|  | bug | d of  | Alm  | 6. a  | )     |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  | Twe | ck,   | us K | Pat N | now   | the o | udvers         | cny | Celn    | enc  | ypt.  | No   | perfe  | ct ay | phen, |    |  |  |
|  | Ter | nembe | er.  |       |       |       |                |     |         |      |       |      |        | _     |       |    |  |  |
|  | No1 | ίε; ν | de a | ie mo | Y a   | Nach  | Ing            | the | Heys,   | Zu.  | st W  | r Se | ek of  | mes   | Sages |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |
|  |     |       |      |       |       |       |                |     |         |      |       |      |        |       |       |    |  |  |

## Attack against a small plaintex space



- · Countermeasure: salting. Inhaduce randomitation
  - Bidder side
    - Salt s ← random()|<sub>r-bit</sub> Random sequele of r buts
       Bid b ← (s, x) S concultomated to salt

    - $y = E_{pubK}(b)$
  - Auctioneer side
    - $(s, x) \leftarrow D_{privK}(b)$  and retain x
  - Adversary
    - Try alle the possible pairs (bid, salt)
    - Attack complexits gets multiplied by 2<sup>r</sup>

· I discord the sult

Mar-25

Public Key Encryption

21

Public Key Cryptography

**KEY AUTHENTICATION** 

Mar-25

Public Key Encryption

22





15 advisory becomes active, Pt encryption is not crough to solve the problem of working with a key. Nothing ensures that the public key I get us the one associated to the climant. Answer: contribute.



25



# MiM attack vs key authentication



- MIM attack is an active attack
- Lack of key authentication makes MIM possible
- Certificates are a solution



Mar-25

Public Key Encryption

28