University Physics with Modern Physics - Modern Physics by Young and Freedman Problems

Chris Doble

June 2023

${\bf Contents}$

17	Tem	peratur	e aı	\mathbf{nd}	Н	ea	at														2
	17.1	Guided 1	Prac	etic	се.																2
		17.1.1																			2
		17.1.2																			2
		17.1.3																			3
		17.1.4																			3
		17.1.5																			3
		17.1.6																			3
		17.1.7																			4
		17.1.8																			4
		17.1.9																			4
		17.1.10																			5
		17.1.11																			5
		17.1.12																			6
	17.2	Exercise	s an	d I	Pro	ob.	ler	ns	3												6
		17.2.15																			6
		17.2.25																			6
		17.2.33																			7
		17.2.35																			7
		17.2.45																			7
		17.2.55																			8
		17.2.57																			8
		17.2.65																			8
		17.2.69																			9
		17.2.71																			9
		17.2.73																			9
		17.2.75																			9
		17.2.79																			10
		17.2.85																			10
		17.2.95																			11

17.2.99																	11
17.2.105																	12
17.2.107																	13
17.2.113																	13
17.2.115																	14
17.2.117																	14
17.2.119																	14

17 Temperature and Heat

17.1 Guided Practice

17.1.1

(a)

$$\Delta L = \alpha L_0 \Delta T$$

$$\alpha = \frac{\Delta L}{L_0 \Delta T}$$

$$= 2.0 \times 10^{-5} \,\mathrm{K}^{-1}$$

(b)

$$\Delta L = \alpha L_0 \Delta T$$
$$= -0.27 \,\mathrm{mm}$$

17.1.2

$$\Delta V_C = \beta V_{C0} \Delta T$$

$$= (5.1 \times 10^{-5})(250)(-70)$$

$$= -0.893 \text{ cm}^3$$

$$\Delta V_E = \beta V_{E0} \Delta T$$

$$= (75 \times 10^{-5})(250)(-70)$$

$$= -13.1 \text{ cm}^3$$

$$\Delta V_C - \Delta V_E = 12.2 \text{ cm}^3$$

$$= 12.2 \text{ mL}$$

$$\frac{\Delta L}{L_0} = \alpha \Delta T$$

$$Y = \frac{F/A}{\Delta L/L_0}$$

$$\frac{\Delta L}{L_0} = \frac{F}{AY}$$

$$\alpha \Delta T + \frac{F}{AY} = 0$$

$$\frac{F}{AY} = -\alpha \Delta T$$

$$F = -\alpha AY \Delta T$$

$$= -(2.0 \times 10^{-5})(\pi 0.005^2)(9.0 \times 10^{10})(-12)$$

$$= 1.70 \times 10^3 \text{ N}$$

Tensile

17.1.4

$$\begin{split} \Delta L &= \alpha_A L_A \Delta T + \alpha_B L_B \Delta T \\ \frac{\Delta L}{\Delta T} &= \alpha_A L_A + \alpha_B (L - L_A) \\ &= (\alpha_A - \alpha_B) L_A + \alpha_B L \\ L_A &= \frac{1}{\alpha_A - \alpha_B} \left(\frac{\Delta L}{\Delta T} - \alpha_B L \right) \end{split}$$

17.1.5

$$\begin{split} 0 &= m_{Al}c_{Al}\Delta T_{Al} + m_W c_W \Delta T_W \\ &= m_{Al}c_{Al}(T-T_{Al}) + m_W c_W (T-T_W) \\ m_{Al} &= -\frac{m_W c_W (T-T_W)}{c_{Al}(T-T_{Al})} \\ &= 0.20\,\mathrm{kg} \end{split}$$

17.1.6

$$0 = m_I L_f + m_C c_C \Delta T$$
$$= m_I L_f - m_C c_C T$$
$$T = \frac{m_I L_f}{m_C c_C}$$
$$= 14.0 \,^{\circ}\text{C}$$

$$0 = m_I L_F + m_I c_I \Delta T_I + m_E c_E \Delta T_E$$

$$= m_I (L_F + c_I \Delta T_I) + m_E c_E \Delta T_E$$

$$m_I = -\frac{m_E c_E \Delta T_E}{L_F + c_I \Delta T_I}$$

$$= 0.176 \text{ kg}$$

17.1.8

Cooling the silver to $0\,^{\circ}\mathrm{C}$ would take

$$Q = mc\Delta T = 92\,137.5\,\mathrm{J}$$

whereas melting all of the ice would take

$$Q = mL_f = 83\,500\,\mathrm{J}$$

so all of the ice will melt.

$$0 = m_{Ag}c_{Ag}\Delta T_{Ag} + m_{I}L_{f} + m_{I}c_{I}\Delta T_{I} + m_{I}c_{W}\Delta T_{W}$$

$$= m_{Ag}c_{Ag}(T - T_{Ag}) + m_{I}L_{F} - m_{I}c_{I}T_{I} + m_{I}c_{W}T$$

$$= (m_{Ag}c_{Ag} + m_{I}c_{W})T - m_{Ag}c_{Ag}T_{Ag} + m_{I}L_{F} - m_{I}c_{I}T_{I}$$

$$T = \frac{m_{Ag}c_{Ag}T_{Ag} + m_{I}c_{I}T_{I} - m_{I}L_{F}}{m_{Ag}c_{Ag} + m_{I}c_{W}}$$

$$= 3.31 \, ^{\circ}\text{C}$$

17.1.9

(a)

$$H = kA \frac{T_H - T_C}{L}$$

$$k = \frac{HL}{A(T_H - T_C)}$$

$$= 0.754 \text{ W/(m K)}$$

(b)
$$H = kA \frac{T_H - T_C}{L} = 733 \,\mathrm{W}$$

(a)

$$L = 0.250 \,\mathrm{m}$$

$$A = 2.00 \times 10^{-4} \,\mathrm{m}^2$$

$$k_B = 109.0 \,\mathrm{W/(m \, K)}$$

$$k_{Pb} = 34.7 \,\mathrm{W/(m \, K)}$$

$$T = 185 \,\mathrm{^{\circ}C}$$

$$H = 6.00 \,\mathrm{W}$$

$$H = k_B A \frac{T_H - T}{L}$$

$$T_H = \frac{HL}{k_B A} + T$$

$$= 254 \,^{\circ}\text{C}$$

(b)

$$H = k_{Pb}A \frac{T - T_C}{L}$$
$$T_C = T - \frac{HL}{k_{Pb}A}$$
$$= -31.1 \,^{\circ}\text{C}$$

17.1.11

$$H = 4\pi (kr_E)^2 e\sigma T^4$$

$$(kr_E)^2 = \frac{H}{4\pi e\sigma T^4}$$

$$k = \frac{1}{r_E} \sqrt{\frac{H}{4\pi e\sigma T^4}}$$

$$= 1.70$$

(a)

$$H = Ae\sigma T^4$$

$$= \pi r^2 \sigma T^4$$

$$H = kA \frac{T_H - T_C}{L}$$

$$= k\pi r^2 \frac{T_H - T_C}{L}$$

$$\pi r^2 \sigma T^4 = k\pi r^2 \frac{T_H - T_C}{L}$$

$$T_H = \frac{L\sigma T^4}{k} + T_C$$

$$= 14.26 \,\text{K}$$

(b)

$$H = mL_f$$

$$\pi r^2 \sigma T^4 = mL_f$$

$$m = \frac{\pi r^2 \sigma T^4}{L_f}$$

$$= 1.19 \times 10^{-4} \,\text{kg/s}$$

$$= 0.427 \,\text{kg/h}$$

17.2 Exercises and Problems

17.2.15

$$\Delta V = \beta V_0 \Delta T$$

$$\frac{\Delta V}{V_0} = \beta (T - T_0)$$

$$T = T_0 + \frac{\Delta V}{\beta V_0}$$

$$= 49 \,^{\circ}\text{C}$$

$$Q = (m_{Al}c_{Al} + m_W c_W)\Delta T$$

= 5.55 \times 10⁵ J

$$\Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mv'^2$$

$$= \frac{1}{2}m(v^2 - v'^2)$$

$$= 3.47 \text{ kJ}$$

$$\Delta K = mc\Delta T$$

$$\Delta T = \frac{\Delta K}{mc}$$

$$= 6.14 \times 10^{-2} \text{ °C}$$

17.2.35

(a)

$$0 = m_m c_m \Delta T_m + m_w c_w \Delta T_w$$

$$c_m = -\frac{m_w c_w \Delta T_w}{m_m \Delta T_m}$$

$$= 215 \text{ J/(kg K)}$$

- (b) Water because it has a higher specific heat
- (c) It would be too small

$$\frac{1}{2}mv^2 = mc\Delta T + mL_F$$
$$v = \sqrt{2(c\Delta T + L_F)}$$
$$= 366 \,\text{m/s}$$

$$k_{C}A\frac{T_{H}-T}{L} = kA\frac{T}{L}$$

$$k_{C}T_{H} - k_{C}T = kT$$

$$k_{C}T_{H} = (k+k_{C})T$$

$$T = \frac{k_{C}}{k+k_{C}}T_{H}$$

$$0.71 = \frac{k_{C}}{k+k_{C}}$$

$$0.71(k+k_{C}) = k_{C}$$

$$0.71k + 0.71k_{C} = k_{C}$$

$$0.71k = 0.29k_{C}$$

$$k = \frac{0.29}{0.71}k_{C}$$

$$\approx 157 \text{ W/(m K)}$$

17.2.57

(a)

$$k_W \frac{T - T_C}{L_W} = k_S \frac{T_H - T}{L_S}$$

$$\left(\frac{k_W}{L_W} + \frac{k_S}{L_S}\right) T = \frac{k_S}{L_S} T_H + \frac{k_W}{L_W} T_C$$

$$T = \frac{\frac{k_S}{L_S} T_H + \frac{k_W}{L_W} T_C}{\frac{k_W}{L_W} + \frac{k_S}{L_S}}$$

$$= -0.86 \,^{\circ}\text{C}$$

(b)

$$H = k_W \frac{T - T_C}{L_W}$$
$$= 24.4 \,\mathrm{W/m^2}$$

$$H = Ae\sigma T^4$$

$$A = \frac{H}{e\sigma T^4}$$

$$= 2.1 \text{ cm}^2$$

$$\Delta L = (\alpha_B L_B + \alpha_S L_S) \Delta T$$
$$T = T_0 + \frac{\Delta L}{\alpha_B L_B + \alpha_S L_S}$$
$$= 35.0 \,^{\circ}\text{C}$$

17.2.71

$$\begin{split} Q &= mc\Delta T \\ &= \rho V c\Delta T \\ \Delta T &= \frac{Q}{\rho V c} \\ \Delta V &= \beta V \Delta T \\ &= \frac{\beta Q}{\rho c} \\ c &= \frac{\beta Q}{\rho \Delta V} \end{split}$$

17.2.73

(a)

$$0.0 \,^{\circ}\text{M} = -39 \,^{\circ}\text{C}$$

$$100.0 \,^{\circ}\text{M} = 357 \,^{\circ}\text{C}$$

$$T_M = \frac{T_C + 39 \,^{\circ}\text{C}}{3.96}$$

$$\frac{100 \,^{\circ}\text{C} + 39 \,^{\circ}\text{C}}{3.96} = 35.1 \,^{\circ}\text{M}$$

(b)
$$10\,\mathrm{M}^{\circ} = 10\frac{357\,^{\circ}\mathrm{C} - (-39\,^{\circ}\mathrm{C})}{100} = 39.6\,\mathrm{C}^{\circ}$$

$$Ah + \beta_G Ah(T - T_0) = Ah' + \beta_O Ah'(T - T_0)$$

$$Ah + \beta_G AhT - \beta_G AhT_0 = Ah' + \beta_O Ah'T - \beta_O Ah'T_0$$

$$(\beta_G Ah - \beta_O Ah')T = (Ah' - \beta_O Ah'T_0) - (Ah - \beta_G AhT_0)$$

$$T = \frac{(1 - \beta_O T_0)h' - (1 - \beta_G T_0)h}{\beta_G h - \beta_O h'}$$

$$= 69.4 \, ^{\circ}C$$

(a)

$$Y = \frac{F/A}{\Delta L/L_0}$$

$$\Delta L = \frac{FL_0}{AY}$$

$$\Delta L = \alpha L_0 \Delta T$$

$$\Delta L = \alpha L_0 \Delta T + \frac{FL_0}{AY}$$

$$\frac{F}{A} = Y \left(\frac{\Delta L}{L_0} - \alpha \Delta T\right)$$

(b)

$$\Delta L_B = \alpha_B L_{B0} \Delta T$$

$$\frac{\Delta L_B}{L_{B0}} = \alpha_B \Delta T$$

$$\frac{F}{A} = Y_S (\alpha_B - \alpha_S) \Delta T$$

$$= 1.9 \times 10^8 \, \text{Pa}$$

17.2.85

(a)

$$\begin{split} \frac{dQ}{dT} &= nk \frac{T^3}{\theta^3} \\ Q &= \int_a^b nk \frac{T^3}{\theta^3} \\ &= \frac{nk}{\theta^3} \left[\frac{1}{4} T^4 \right]_a^b \\ &= \frac{nk}{4\theta^3} (b^4 - a^4) \\ &= 83.6 \, \mathrm{J} \end{split}$$

(b)

$$\begin{split} Q &= nC\Delta T \\ C &= \frac{Q}{n\Delta T} \\ &= 1.86\,\mathrm{J/(mol\,K)} \end{split}$$

(c)

$$C = 5.60 \,\mathrm{J/(mol\,K)}$$

(a)
$$0 = m_I L_f + m_I c_W \Delta T_I + m_C c_C \Delta T_I - m_S L_v + m_S c_W \Delta T_S$$
$$= m_I L_f + m_I c_W T + m_C c_C T - m_S L_v + m_S c_W (T - T_S)$$
$$T = \frac{m_S (L_v + c_W T_S) - m_I L_f}{m_I c_W + m_C c_C + m_S c_W}$$
$$= 86.1 \, ^{\circ}\text{C}$$

(b) No ice, 0.13 kg water, no steam

17.2.99

(a)

$$H = kA \frac{T_H - T_C}{L}$$
$$= 94 \,\mathrm{W}$$

(b)

$$\begin{split} H_{\rm wood} &= 12.4\,{\rm W} \\ H_{\rm glass} &= 45.0\,{\rm W} \\ H' &= H + (H_{\rm glass} - H_{\rm wood}) \\ &= 126.6\,{\rm W} \\ \frac{H'}{H} &= 1.35 \end{split}$$

(b)

$$\begin{split} \frac{dQ}{dt} &= k \frac{T_H - T_C}{L} \\ \frac{dQ}{dL} &= \rho L_f \\ \frac{dL}{dt} &= \frac{dL}{dQ} \frac{dQ}{dt} \\ &= \frac{1}{\rho L_f} k \frac{T_H - T_C}{L} \\ L \frac{dL}{dt} &= \frac{k(T_H - T_C)}{\rho L_f} \\ \int_0^t L \frac{dL}{dt} \, dt &= \int_0^t \frac{k(T_H - T_C)}{\rho L_f} \, dt \\ \int_0^L L' \, dL' &= \frac{k(T_H - T_C)}{\rho L_f} t \\ \frac{1}{2} L^2 &= \frac{k(T_H - T_C)}{\rho L_f} t \\ L &= \sqrt{\frac{2k(T_H - T_C)}{\rho L_f}} t \end{split}$$

(c)

$$t = \frac{L^2 \rho L_f}{2k(T_H - T_C)}$$
$$= 7.5 \,\text{days}$$

(d) $t \approx 530 \, \text{years}$; no

$$A = 2\pi \left(\frac{d}{2}\right)^{2} + 2\pi \left(\frac{d}{2}\right)h$$

$$= 8.34 \times 10^{-2} \text{ m}^{2}$$

$$H = Ae\sigma(T^{4} - T_{s}^{4})$$

$$= Ae\sigma(T^{4} - T_{s}^{4})$$

$$= -3.38 \times 10^{-2} \text{ W}$$

$$m = \frac{H \times 60 \times 60}{L_{v}}$$

$$= 5.82 \times 10^{-3} \text{ kg/h}$$

$$= 5.82 \text{ g/h}$$

$$r(x) = R_2 - (R_2 - R_1) \frac{x}{L}$$

$$A(x) = \pi r(x)^2$$

$$= \pi \left[R_2 - (R_2 - R_1) \frac{x}{L} \right]^2$$

$$H = kA(x) \frac{dT}{dx}$$

$$= k\pi \left[R_2 - (R_2 - R_1) \frac{x}{L} \right]^2 \frac{dT}{dx}$$

$$\frac{1}{\left[R_2 - (R_2 - R_1) \frac{x}{L} \right]^2} H \, dx = k\pi \, dT$$

$$\int_0^L \frac{1}{\left[R_2 - (R_2 - R_1) \frac{x}{L} \right]^2} H \, dx = \int_{T_H}^{T_C} k\pi \, dT$$

$$\frac{HL}{R_2 - R_1} \left[\frac{1}{R_2 - (R_2 - R_1) \frac{x}{L}} \right]_0^L = k\pi (T_C - T_H)$$

$$\frac{HL}{R_2 - R_1} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = k\pi (T_C - T_H)$$

$$\frac{HL}{R_2 - R_1} \frac{R_2 - R_1}{R_1 R_2} = k\pi (T_C - T_H)$$

$$H = \frac{k\pi R_1 R_2 (T_C - T_H)}{R_2 - R_1}$$

$$H = \frac{k\pi R_1 R_2 (T_C - T_H)}{R_2 - R_1}$$

(a)

$$H = k(2\pi rL)\frac{dT}{dr}$$

$$\frac{1}{r}H dr = 2\pi kL dT$$

$$\int_a^b \frac{1}{r}H dr = \int_{T_1}^{T_2} 2\pi kL dT$$

$$H \ln \frac{b}{a} = 2\pi kL(T_2 - T_1)$$

$$H = \frac{2\pi kL(T_2 - T_1)}{\ln b/a}$$

(b)

$$\frac{2\pi k L(T - T_2)}{\ln r/a} = \frac{2\pi k L(T_2 - T_1)}{\ln b/a}$$

$$\frac{T - T_2}{\ln r/a} = \frac{T_2 - T_1}{\ln b/a}$$

$$T - T_2 = \frac{\ln r/a}{\ln b/a} (T_2 - T_1)$$

$$T = T_2 + \frac{\ln r/a}{\ln b/a} (T_2 - T_1)$$

17.2.117

 \mathbf{a}

17.2.119

a