Chapter 4Digital Transmission

4-1 DIGITAL-TO-DIGITAL CONVERSION

In this section, we see how we can represent digital data by using digital signals. The conversion involves three techniques: line coding, block coding, and scrambling. Line coding is always needed; block coding and scrambling may or may not be needed.

Topics discussed in this section:

Line Coding
Line Coding Schemes
Block Coding
Scrambling

Figure 4.1 Line coding and decoding

A few basics ...

Date Rate (N): Number of data element sent in one second – bps

Signal Rate (S): Number of signal element sent in one second – baud rate

r: Number of data element carried in one signal

$$S = N/r$$

Objective is to:

Increase the data rate and decrease the signal rate

$$S_{avg} = c \times N \times (1/r)$$
 where c: case factor

Figure 4.2 Signal element versus data element

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

Note

Although the actual bandwidth of a digital signal is infinite, the effective bandwidth is finite.

Figure 4.3 Effect of lack of synchronization

a. Sent

b. Received

Figure 4.4 Line coding schemes

Figure 4.4 Line coding schemes

Figure 4.5 Unipolar NRZ scheme

$$\frac{1}{2}V^2 + \frac{1}{2}(0)^2 = \frac{1}{2}V^2$$

Normalized power

NRZ: Not return to zero at the middle of the bit Normalized power: the power needed to send 1 bit per unit line resistance

Figure 4.6 Polar NRZ-L and NRZ-I schemes

- O No inversion: Next bit is 0 Inversion: Next bit is 1
- NRZ-L: Level of voltage determine the value of bit
- NRZ-I: If there is no change, bit is 0; if there is a change, the bit is 1
- $S_{avg} = c \times N \times 1/r$, n is data rate, c is case factor, S is no. of signal element per second, r is no. of data element is carried by one signal

Figure 4.7 Polar RZ scheme

Figure 4.8 Polar biphase: Manchester and differential Manchester schemes

Polar RZ+NRZ-L

Polar RZ+NRZ-I

-

Note

In Manchester and differential Manchester encoding, the transition at the middle of the bit is used for synchronization.

The minimum bandwidth of Manchester and differential Manchester is 2 times that of NRZ.

Note

In bipolar encoding, we use three levels: positive, zero, and negative.

Figure 4.9 Bipolar schemes: AMI and pseudoternary

AMI: Alternate Mark Inversion