Week 3

Juan Patricio Carrizales Torres Section 7: Tautologies and Contradictions

August 18, 2021

The following logical equivalences and properties of logical equivalence will be used for the proofs without truth tables [1] [2]:

- 1. Logical equivalence for implication $P \Rightarrow Q \equiv (\sim P) \lor Q$
- 2. Double negation Law $\sim (\sim P) \equiv P$
- 3. Commutative Laws

a
$$P \wedge Q \equiv Q \wedge P$$

b
$$P \lor Q \equiv Q \lor P$$

 $4.\ Distributative\ Laws$

a
$$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$$

b
$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

5. Associative Laws

a
$$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$$

b
$$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$$

6. De Morgan's Laws

a
$$\sim (P \lor Q) \equiv (\sim P) \land (\sim Q)$$

$$b \sim (P \wedge Q) \equiv (\sim P) \vee (\sim Q)$$

7. Identity Laws

a
$$P \wedge T \equiv P$$

b
$$P \vee F \equiv P$$

8. Domination Laws

a
$$P \wedge F \equiv F$$

b $P \vee T \equiv T$

9. Negation Laws

a
$$P \wedge (\sim P) \equiv F$$

b
$$P \lor (\sim P) \equiv T$$

Due to the commutative property of the conjunctions and disjunctions, the *Identitiy Laws*, *Dominant Laws* and *Negation Laws* are commutative (e.g., $P \wedge F \equiv F \wedge P \equiv F$)

Problem 46. For statements P and Q, show that $P \Rightarrow (P \lor Q)$ is a tautology.

Solution. The implication $P\Rightarrow (P\vee Q)$ can only be false when the premise is true and the conclusion is false. In this case, if P is true, then $P\vee Q$ is true. Thus, $P\Rightarrow (P\vee Q)$ is a tautology, because this compound statement is true for all combinations of truth values of its component statements. This can be seen in the following truth table:

P	Q	$P \vee Q$	$P \Rightarrow (P \lor Q)$
Т	Τ	Τ	Τ
Τ	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$
\mathbf{F}	F	F	T

Proving that $P \Rightarrow (P \lor Q)$ is a tautology without a truth table:

Proof.

Logical equivalence for implication.

$$P \Rightarrow (P \lor Q) \equiv (\sim P) \lor (P \lor Q)$$

$$Associative \ Laws$$

$$\equiv ((\sim P) \lor P) \lor Q$$

$$Negation \ Laws$$

$$\equiv T \lor Q$$

$$Dominant \ Laws$$

$$\equiv T$$

Problem 47. For statements P and Q, show that $(P \land (\sim Q)) \land (P \land Q)$ is a contradiction.

Solution. The compound statement $(P \land (\sim Q)) \land (P \land Q)$, which is a conjunction, can only be true when both conjunctions $P \land (\sim Q)$ and $P \land Q$ are true. In the case where P is true, both conjunctions $P \land (\sim Q)$ and $P \land Q$ have opposite truth values because they contain $(\sim Q)$ and Q respectively. Thus, the compound statement $(P \land (\sim Q)) \land (P \land Q)$ is a contradiction because it is false for all the combinations of truth values of P and Q. This can be seen in the following table

P	Q	$\sim Q$	$P \wedge Q$	$P \wedge (\sim Q)$	$(P \land (\sim Q)) \land (P \land Q)$
\overline{T}	Τ	F	Т	F	F
Τ	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	T	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m F}$
\mathbf{F}	F	${ m T}$	\mathbf{F}	F	F

Proving that $(P \land (\sim Q)) \land (P \land Q)$ is a contradiction without a truth table:

Proof.

$$Associative \ Laws \\ (P \land (\sim Q)) \land (P \land Q) \equiv P \land ((\sim Q) \land (P \land Q)) \\ Commutative \ Laws \\ \equiv P \land ((\sim Q) \land (Q \land P)) \\ Associative \ Laws \\ \equiv P \land (((\sim Q) \land Q) \land P) \\ Negation \ Laws \\ \equiv P \land (F \land P) \\ Dominant \ Laws \\ \equiv P \land F \\ \equiv F$$

Problem 48. For statements P and Q, show that $(P \land (P \Rightarrow Q)) \Rightarrow Q$ is a tautology. Then state $(P \land (P \Rightarrow Q)) \Rightarrow Q$ in words. (This is an important logical argument form, called **modus ponens**.)

Solution. The compound statement $(P \land (P \Rightarrow Q)) \Rightarrow Q$ is a tautology because it is true for all combinations of truth values of the component statements P and Q. This is shown in the following truth table:

P	Q	$P \Rightarrow Q$	$P \wedge (P \Rightarrow Q)$	$(P \land (P \Rightarrow Q)) \Rightarrow Q$
Т	Т	Τ	Τ	T
\mathbf{T}	\mathbf{F}	\mathbf{F}	F	${ m T}$
F	T	${ m T}$	F	T
F	\mathbf{F}	Τ	\mathbf{F}	T

The compound statement in words:

$$(P \land (P \Rightarrow Q)) \Rightarrow Q$$
: If P and P implies Q, then Q.

Proving that $(P \land (P \Rightarrow Q)) \Rightarrow Q$ is a tautology without a truth table:

Proof.

$$(P \land (P \Rightarrow Q)) \Rightarrow Q \equiv (P \land ((\sim P) \lor Q)) \Rightarrow Q$$

$$\equiv (\sim (P \land ((\sim P) \lor Q))) \lor Q$$

$$De \ Morgan's \ Laws$$

$$\equiv ((\sim P) \lor (\sim ((\sim P) \lor Q))) \lor Q$$

$$\equiv ((\sim P) \lor ((\sim (\sim P)) \land (\sim Q))) \lor Q$$

$$Double \ Negation$$

$$\equiv ((\sim P) \lor (P \land (\sim Q))) \lor Q$$

$$Distributative \ Laws$$

$$\equiv (((\sim P) \lor P) \land ((\sim P) \lor (\sim Q))) \lor Q$$

$$Negation \ Laws$$

$$\equiv (T \land ((\sim P) \lor (\sim Q))) \lor Q$$

$$Identity \ Laws$$

$$\equiv ((\sim P) \lor (\sim Q)) \lor Q$$

$$Associative \ Laws$$

$$\equiv (\sim P) \lor ((\sim Q) \lor Q)$$

Negation Laws

$$\equiv (\sim P) \vee T$$

Domination Laws

 $\equiv T$

Problem 49. For statements P, Q and R, show that $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology. Then state this compound statement in words. (This is another important logical argument form, called **syllogism.**)

Solution. The compound statement $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology because it is true for all combinations of truth values of its component statements P, Q and R. This can be seen in the following truth table:

$\mid P \mid$	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$P \Rightarrow R$	$((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$
T	Т	Т	Т	Т	Т	Т	Т
$\mid T \mid$	Т	F	T	\mathbf{F}	F	F	T
$\mid T \mid$	F	Γ	F	Τ	F	Т	T
$\mid T \mid$	F	F	F	Τ	F	F	T
F	Т	Γ	T	Т	Γ	Т	${ m T}$
F	Т	F	Т	F	F	Т	T
F	F	Т	Γ	Τ	m T	T	Γ
F	F	F	Т	Τ	Γ	Т	T

The compound statement in words:

 $((P\Rightarrow Q)\land (Q\Rightarrow R))\Rightarrow (P\Rightarrow R): \text{If P implies Q and Q implies R, then P implies R.}$

Proving that $((P\Rightarrow Q)\land (Q\Rightarrow R))\Rightarrow (P\Rightarrow R)$ is a tautology without a truth table:

Proof.

Logical equivalence for implication

$$\begin{split} ((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R) &\equiv (((\sim P) \lor Q) \land ((\sim Q) \lor R)) \Rightarrow ((\sim P) \lor R) \\ &\equiv (\sim (((\sim P) \lor Q) \land ((\sim Q) \lor R))) \lor ((\sim P) \lor R) \end{split}$$

De Morgan's Laws

$$\equiv ((\sim ((\sim P) \lor Q)) \lor (\sim ((\sim Q) \lor R))) \lor ((\sim P) \lor R)$$

$$\equiv (((\sim (\sim P)) \land (\sim Q)) \lor ((\sim (\sim Q)) \land (\sim R))) \lor ((\sim P) \lor R)$$

Double negation Law

$$\equiv ((P \land (\sim Q)) \lor (Q \land (\sim R))) \lor ((\sim P) \lor R)$$

Distributative Laws

$$\equiv (((P \land (\sim Q)) \lor Q) \land ((P \land (\sim Q)) \lor (\sim R))) \lor ((\sim P) \lor R)$$

Commutative Laws

$$\equiv ((Q \vee (P \wedge (\sim Q))) \wedge ((P \wedge (\sim Q)) \vee (\sim R))) \vee ((\sim P) \vee R)$$

Distributative Laws

$$\equiv (((Q \lor P) \land (Q \lor (\sim Q))) \land ((P \land (\sim Q)) \lor (\sim R))) \lor ((\sim P) \lor R)$$

Negation Laws

$$\equiv (((Q \lor P) \land T) \land ((P \land (\sim Q)) \lor (\sim R))) \lor ((\sim P) \lor R)$$

Identity Laws

$$\equiv ((Q \vee P) \wedge ((P \wedge (\sim Q)) \vee (\sim R))) \vee ((\sim P) \vee R)$$

Commutative Laws

$$\equiv ((\sim P) \vee R) \vee ((Q \vee P) \wedge ((P \wedge (\sim Q)) \vee (\sim R)))$$

Distributative Laws

$$\equiv (((\sim P) \vee R) \vee (Q \vee P)) \wedge (((\sim P) \vee R) \vee ((P \wedge (\sim Q)) \vee (\sim R)))$$

Commutative Laws

$$\equiv ((R \vee (\sim P)) \vee (P \vee Q)) \wedge (((\sim P) \vee R) \vee ((\sim R) \vee (P \wedge (\sim Q))))$$

Associative Laws

$$\equiv (((R \lor (\sim P)) \lor P) \lor Q) \land ((((\sim P) \lor R) \lor (\sim R)) \lor (P \land (\sim Q)))$$

$$\equiv ((R \lor ((\sim P) \lor P)) \lor Q) \land (((\sim P) \lor (R \lor (\sim R))) \lor (P \land (\sim Q)))$$

Negation Laws

$$\equiv ((R \vee T) \vee Q) \wedge (((\sim P) \vee T) \vee (P \wedge (\sim Q)))$$

Domination Laws

$$\equiv (T \lor Q) \land (T \lor (P \land (\sim Q)))$$

$$\equiv T \land T$$

$$\equiv T$$

Problem 50. Let R and S be compound statements involving the same component statements. If R is a tautology and S is a contradiction, then what can be said of the following?

(A)
$$R \vee S$$

Solution a. For all combinations of component statements, the compound statement R is true, while S is false. Thus, this disjunction is a tautology since one of its compound statements is true for all combinations of component statements.

(B)
$$R \wedge S$$

Solution b. Since the compound statement S is a contradiction, both compound statements of this conjunction are not true for all the combinations of component statements. This conjunction is a contradiction.

(C)
$$R \Rightarrow S$$

Solution c. The compound statement R is a tautology and S is a contradiction. For all combinations of the component statements, the premise and conclusion are therefore true and false, respectively. This implication is a contradiction.

(D)
$$S \Rightarrow R$$

Solution d. For all combinations of the component statements, the premise and conclusion are false and true, respectively. This is because S is a contradiction and R is a tautology. This implication is a tautology.

References

- [1] G. Chartrand, A. Polimeni, P. Zhang, Mathematical Proofs: A Transition to Advanced Mathematics, Pearson, 2014.
- [2] GeeksforGeeks, Mathematics Propositional Equivalences, Apr 02, 2019. Retrieved Aug 04, 2021.