II BOB SONLAR KETMA-KETLIGI

2.1. Sonlar ketma-ketligi va ularning limiti

 1^{0} . Sonlar ketma-ketligi tushunchasi. Biz birinchi bobda ixtiyoriy E to'plamni F to'plamga akslantirish:

$$f: E \to F$$

tushunchasi bilan tanishgan edik.

Endi E = N, F = R deb, har bir natural n songa biror haqiqiy x_n sonni mos qo'yuvchi

$$f: n \to x_n, \quad (n=1,2,3,...)$$
 (1)

akslantirishni qaraymiz.

1-ta'rif. 1- akslantirishning akslaridan iborat ushbu

$$x_1, x_2, x_3, ..., x_n, ...$$
 (2)

toʻplam sonlar ketma-ketligi deyiladi. Uni $\{x_n\}$ yoki x_n kabi belgilanadi.

 x_n (n = 1, 2, 3,...) sonlar (2) **ketma-ketlikning hadlari** deyiladi.

Masalan,

1)
$$x_n = \frac{1}{n}$$
: 1, $\frac{1}{2}$, $\frac{1}{3}$, ..., $\frac{1}{n}$,...,

2)
$$x_n = (-1)^n : -1, 1, -1, ..., (-1)^n, ...$$

3)
$$x_n = \sqrt[n]{n}$$
: 1, $\sqrt{2}$, $\sqrt[3]{3}$, ..., $\sqrt[n]{n}$, ...

4)
$$x_n = 1: 1, 1, 1, ..., 1, ...$$

n ta

lar sonlar ketma-ketliklaridir.

Biror $\{x_n\}$ ketma-ketlik berilgan bo'lsin.

2-ta'rif. Agar shunday oʻzgarmas M soni mavjud boʻlsaki, ixtiyoriy x_n (n=1,2,3,...) uchun $x_n \le M$ tengsizlik bajarilsa (ya'ni $\exists M, \forall n \in N : x_n \le M$ boʻlsa), $\{x_n\}$ ketma-ketlik yuqoridan chegaralangan deyiladi.

3-ta'rif. Agar shunday oʻzgarmas m soni mavjud boʻlsaki,ixtiyoriy x_n (n=1,2,3,...) uchun $x_n \ge m$ tengsizlik bajarilsa (ya'ni, $\exists m, \forall n \in N : x_n \ge m$ bo'lsa), $\{x_n\}$ ketma-ketlik quyidan chegaralangan deyiladi.

4-ta'rif. Agar $\{x_n\}$ ketma-ketlik ham yuqoridan, ham quyidan chegaralangan bo'lsa (ya'ni $\exists m, M, \forall n \in N : m \le x_n \le M$ bo'lsa), $\{x_n\}$ ketma-ketlik **chegaralangan** deyiladi.

5-ta'rif. Agar $\{x_n\}$ ketma-ketlik uchun

$$\forall M \in R, \exists n_0 \in N : x_{n_0} > M$$

boʻlsa, ketma-ketlik yuqoridan chegaralanmagan deyiladi.

 2^0 . Sonlar ketma-ketligining limiti. Aytaylik, $a \in R$ son hamda ixtiyoriy musbat ε berilgan boʻlsin.

6-ta'rif. Ushbu

$$U_{\varepsilon}(a) = \{x \in R | a - \varepsilon < x < a + \varepsilon\} = (a - \varepsilon, a + \varepsilon)$$

to'plam a nuqtaning ε - atrofi deyiladi.

Faraz qilaylik $\{x_n\}$ ketma-ketlik va $a \in R$ soni beril-gan bo'lsin.

7-ta'rif. Agar ixtiyoriy $\varepsilon > 0$ son olinganda ham shunday n_0 natural soni mavjud bo'lsaki, $n > n_0$ tengsizlikni qanoatlantiruvchi barcha natural sonlar uchun

$$|x_n - a| < \varepsilon \tag{3}$$

tengsizlik bajarilsa, ya'ni

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : |x_n - a| < \varepsilon$$

bo'lsa a son $\{x_n\}$ ketma-ketlikning limiti deyiladi va

$$a = \lim_{n \to \infty} x_n$$
 yoki $n \to \infty$ da $x_n \to a$

kabi belgilanadi.

Ravshanki, yuqoridagi (3) tengsizlik uchun

$$\mid x_n - a \mid < \varepsilon \Leftrightarrow a - \varepsilon < x_n < a + \varepsilon$$

ya'ni, $x_n \in U_\varepsilon(a)$, $(n > n_0)$ bo'ladi. Shuni e'tiborga olib, ketma-ketlikning limitini quyidagicha ta'riflasa bo'ladi.

8-ta'rif. Agar a nuqtaning ixtiyoriy $U_{\varepsilon}(a)$ atrofi olinganda ham $\{x_n\}$ ketma-ketlikning biror hadidan keyingi barcha hadlari shu atrofga tegishli bo'lsa, a son $\{x_n\}$ ketma-ketlikning limiti deyiladi.

Yuqorida keltirilgan ta'riflardan koʻrinadiki ε ixtiyoriy musbat son boʻlib, natural n_0 soni esa ε ga va qaralayotgan ketma-ketlikka bogʻliq ravishda topiladi.

Teorema. Agar $\{x_n\}$ ketma-ketlikning limiti mavjud emasligi isbotlansin.

Teskarisini faraz qilaylik, $\{x_n\}$ ketma-ketlik ikkita a va b $(a \neq b)$ limitga ega bo'lsin:

$$\lim_{n \to \infty} x_n = a, \quad \lim_{n \to \infty} x_n = b \quad (a \neq b)$$

Limitning ta`rifiga ko'ra

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \ \forall n > n_0: \ |x_n - a| < \varepsilon,$$

$$\forall \varepsilon > 0, \quad \exists n_0 \in N, \quad \forall n > n_0 : |x_n - b| < \varepsilon$$

bo'ladi.

Agar n_0 va n_0 sonlarning kattasi \overline{n} desak,unda $\forall n > \overline{n}$ da

$$|x_n - a| < \varepsilon, |x_n - b| < \varepsilon$$

bo'lib

$$|x_n - a| + |x_n - b| < 2\varepsilon$$

bo'ladi.

Ravshanki,
$$|a-b| = |a-x_n + x_n - b| \le |x_n - a| + |x_n - b|$$
.

Demak, $\forall \ \varepsilon > 0$ da $|a-b| < 2\varepsilon$ bo'lib,unda a = b bo'lishi kelib chiqadi.