Covariant Electrodynamics (1) $\partial_{\mu} = \partial_{\mu} = \left(\frac{1}{2} \frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) + \frac{1}{2} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}$ There is also contra components $\partial^{m} = (-1\partial_{t}, \overline{\nabla})^{m}$ $\frac{\partial_{1} \partial^{2} - 1}{c^{2} \partial t^{2}} + \nabla^{2} = 1$ is invariant Then there is the continuity Eqn $\frac{\partial}{\partial t} + \nabla \cdot \vec{j} = 0 \Rightarrow \frac{1}{2} \frac{\partial}{(cp)} + \nabla \cdot \vec{J} = 0$ $C \frac{\partial}{\partial t}$ / JM=(cp,J) as a four vector. 2, J = 0 the equations for the gauge potential - D.Y = J°/c Together with the lorente gauge condition: 1 2 4 + V. A = 0

 $F^{0i} = E^{i} = -\frac{1}{2}A^{i} - \frac{\partial \varphi}{\partial x} = \frac{\partial^{0}}{\partial x^{i}} - \frac{\partial^{i}}{\partial x^{0}} = F^{0i}$ $B_k = (\nabla \times A)_k$ Fig = Eigk B = Eigk E klm, 2 Am (8' 8'8 - 81 8k) 21Am = 9,49 -944; So $F^{\alpha\beta} = \partial^{\alpha}A - \partial^{\beta}A^{\alpha}$ transforms as a second rank tensor in the following way FMV = LM LV FAB Excercise · Show that $F' = F^{0i} = -F^{0} = F^{i} = -F^{i} = F^{0i}$

(5) Now the EOM (Part I)
lack lac
V.E=P => -2, Flo = J/c
and
$-13_{1}E + \nabla \times B = J \implies -\left(3F^{\circ i} + 3F^{i}\right) = J^{i}$
$\frac{1}{2}$ $\frac{2}{3}$ $\frac{2}{3}$
So
$\left[-\partial_{x}F^{\alpha\beta}=J^{\beta}\right]$
Excercise:
- Starting from -2, For = JB/c and the
8
definition of Faß derive.
$- \prod A^{\beta} = J^{\beta}/c$
Lorentz Gauge
Solution
$-\partial_{\alpha} \left(\partial^{\alpha} A^{\beta} - \partial^{\beta} A^{\alpha} \right) = -\partial_{\alpha} \partial^{\alpha} A^{\beta} + \partial^{\beta} (\partial_{\alpha} A^{\alpha}) = J^{\beta}$
Lorentz Gauge 2, A = 0, so
U
-
~

6) The Remaing Maxwell Eqs
V.B=0
10,B+ 7xE=0
Comparison with the first two egs in absence of currents gives
$\nabla \cdot E = 0$ So the Second two maxwell -1 ∂E + $\nabla \times B = 0$ eqs involve the replacement (duality) $C \partial t$ $E \rightarrow B$ and $B \rightarrow -E$.
Thus define the dual tensor $ \frac{-B^{4}}{-B^{4}} \stackrel{E^{2}}{=} 0 \stackrel{E^{2}}{=} \stackrel{E^{3}}{=} 0 $ $ \frac{-B^{4}}{-B^{4}} \stackrel{E^{2}}{=} 0 \stackrel{E^{2}}{=} \stackrel{E^{3}}{=} 0 $
So - 2, F ~ = 0

The dual tensor can be defined from Fur
$\vec{F}^{nv} = \int \mathcal{E}^{nv} d\vec{\beta} \vec{F}$ = $\int \vec{E} d\vec{\beta} \vec{B} \vec{\beta} \vec{\beta} - \vec{E}$
Here
$\mathcal{E}^{\mu\nu\alpha\beta} = \begin{cases} +1 & \text{for even perms of } 0,1,2,3 \\ -1 & \text{for odd perms of } 0,1,2,3 \end{cases}$
Expressing in therms of antisymmetric in mag $\partial_{\mu} \widetilde{F}^{\mu\nu} = -1 \epsilon^{\nu} \mu^{\alpha\beta} \partial_{\mu} F_{\alpha\beta} = 0$
$\frac{\partial}{\partial F} = -1 \frac{E^{\gamma \alpha \beta}}{2} \frac{\partial}{\partial F} = 0$
This can be written as the Bianchi-Identity
2 F = 0 or 2 F + 2 F MM
where 2p, Fring Stands for the antisymmetric combo
examples Tanz = 1 (Trinz - Trinz) [m,nz] = 21 (Trinz - Trinz)
like a JX3 dekemin
[MM2M3] = 1 (T -T) - (T -T) - T2M3M2
+ (Tm3m1m2 - Tm3m2m1)

Excercise
Show that is Fn= 2, Av-2, An then the second two Maxwell eqs are althomatically satisfied
Solutión
DFMV = Dm 1 Emvaß (DAB-DBAa)
= -1 E ^{VMQB} (2,2,AB -2,2,AQ) = 0
But, $\partial_{\mu} \partial_{\alpha} A_{\beta} - \partial_{\alpha} \partial_{\mu} A_{\beta}$ and $\mathcal{E}^{\nu \mu \alpha \beta} = -\mathcal{E}^{\nu \alpha \mu \beta}$
Symmetric antisymmetric
And the Contraction of antisymm and a symmetric
tensor gives zero.
•

Last Time
· Finished by discussing the stress tensor:
$\frac{\Theta^{mV}}{Tot} = \frac{\left(\frac{U_{ToT}}{C_{0}^{2}}\right) \frac{\vec{S}_{tot}}{\vec{C}_{0}}}{\vec{S}_{tot}} = 0$
710+
E-consv 0-component
$\Theta_{ToT}^{\circ 0} = \text{energy density} = u_{ToT}$ $\partial_{ToT} \Theta_{ToT}^{\circ 0} = 0$
$\Theta_{tot}^{oi} = energy flux = S/c = gc$
(Y)om-cons V (of momentu
$\Theta_{\text{ToT}}^{\text{io}} = \text{momentum density} = \vec{g}c = \vec{S}/c$
O'\for = stress force area = Tig
If I have a mechanical system (like a fluid) with currents
If I have a mechanical system (like a fluid) with currents then the E+M fields will push and pull the System:
then the EtM fields will push and pull the system: 2 Dm V = Fr JP 2 Bmo = E.j.
\

And thus mechanical energy and momentum went be conserved.

The electromagnetic force must be the divergence of something: differences of force/area
$F^{\nu} = -\partial_{\nu} \Theta^{\nu} $ $= -\partial_{\nu} \Theta^{\nu} $ $= -\partial_{\nu} \Theta^{\nu} (x) \Theta^{\nu} (x + \Delta x)$
Homework show using -2 FMV = JV/c that
Omv = Fmx Fv + gmv (-1 F2) (see below)
Then
Du Omech = - 2, Oem
$\frac{\partial \mathcal{O}_{mech}^{m} + \mathcal{O}_{em}^{mv}}{\partial \mathcal{O}_{em}^{mech} + \mathcal{O}_{em}^{mv}} = 0$
and thus the combined mechanical telectromagnetic energy and momentum will be conserved.
$ \frac{\partial^{m}}{\partial x} = \frac{1(E^{2} + B^{2})}{E \times B} \qquad E \times B $ $ \frac{E}{E} \times B} \qquad E \times B $ $ \frac{E}{E} \times B} \qquad E \times B $ $ \frac{E}{E} \times B} \qquad E \times B$ $\frac{E}{E} \times B} \qquad E \times B$