Parallelization Strategies for a Multi-Layer Neural Network

Matteo Fasulo matteo.fasulo@studio.unibo.it

1 Introduction

Deep learning applications increasingly rely on large neural networks. This project focuses on accelerating a multilayer feedforward network composed of 1D locally connected layers, distinct from standard convolutional layers as each neuron possesses unique weights (Figure 1).

Figure 1: A 1D locally connected layer (R = 3). Each output neuron y_i connects to a distinct input window via unique weights W_i .

Our goal is to optimize the forward propagation phase on multi-core CPUs using OpenMP and GPUs using CUDA by exploiting the inherent parallelism within each layer's computation. We evaluate performance by varying input size (N) and layer depth (K), measuring execution time, scalability, and throughput.

All experimental code, including build scripts and profiling tools, is publicly available at

and can be reproduced on any Linux-based system with an NVIDIA GPU and a modern multi-core CPU.

2 Parallelization Strategy

The computation across the network layers must proceed sequentially, as the output of layer k ($\mathbf{y}^{(k+1)}$) serves as the input for layer k+1. However, the calculation within each layer is embarrassingly parallel. Specifically, determining the output vector $\mathbf{y}^{(k+1)} \in \mathbb{R}^M$ (where M = N - R + 1) from the input vector $\mathbf{x}^{(k)} \in \mathbb{R}^N$ involves computing each output neuron $y_i^{(k+1)}$ independently:

$$y_i^{(k+1)} = \sigma \left(\sum_{r=0}^{R-1} W_{i,r}^{(k)} x_{i+r}^{(k)} + b_i^{(k)} \right), \text{ for } i = 0, \dots, M-1.$$

Here, $\sigma(\cdot)$ represents the sigmoid activation. Crucially, there are no loop-carried dependencies across the iterations calculating different $y_i^{(k+1)}$ values within the same layer. Each output neuron's value depends only on its corresponding input window and its unique set of weights

 $W_{i,\cdot}^{(k)}$. Furthermore, since each thread computes and writes to a distinct output element $y_i^{(k+1)}$, synchronization requirements are minimal.

While the core computation is inherently parallel, efficient implementation faces challenges related to memory access patterns:

- Redundant reads: Adjacent neurons share R-1 input elements, leading to multiple threads potentially fetching the same data.
- Coalescing: Achieving optimal GPU memory bandwidth requires threads within a warp to access contiguous memory locations.

We address these challenges with specific strategies in the OpenMP and CUDA implementations discussed below.

2.1 OpenMP Implementation

We parallelize the outer loop $(i=0,\ldots,M-1)$ over CPU cores using OpenMP's 'parallel for' with 'static' scheduling, suitable for uniform workloads. The inner dot product loop (sum over R) is manually unrolled to reduce loop overhead and potentially enable compiler optimizations like SIMD vectorization, although the specific impact of SIMD was not explored in detail in this report.

2.2 CUDA Implementation

Each output neuron $y_i^{(k+1)}$ is mapped to a CUDA thread. We use a standard grid-block hierarchy with a large block dimension (BLKDIM, e.g., 1024) to maximize occupancy. The number of blocks ensures all M outputs are computed: Blocks = $\lceil M + \texttt{BLKDIM} - 1/\texttt{BLKDIM} \rceil$. Two memory strategies were compared:

- 1. Global Memory Access: Threads directly read required inputs $\mathbf{x}^{(k)}$ and weights $W^{(k)}$ from global memory. Performance relies on coalesced access patterns.
- 2. **Shared Memory Caching:** Threads within a block collaboratively load a tile of $\mathbf{x}^{(k)}$ (including halo regions for the receptive field R) into fast on-chip shared memory. This reduces global memory traffic by reusing shared input elements but still requires global reads for unique weights $W_{i}^{(k)}$.

GPU buffers (input \mathbf{x} , weights W, output \mathbf{y}) are managed within a single NeuralNet struct, allocated contiguously to minimize fragmentation using a centered-stencil indexing (RADIUS = (R-1)/2). Layer dimensions are computed dynamically. After each layer's computation, input and output pointers (\mathbf{x}, \mathbf{y}) within the struct are swapped, avoiding redundant memory copies. Host-side timers (hpc_gettime) measure end-to-end execution time, averaged over multiple trials. Throughput is calculated as total output elements computed across all layers per second.

3 Performance Results

Experiments were conducted on the Giano HPC cluster (8-core/16-thread CPU, NVIDIA L40 GPU). R=3 is used unless stated otherwise. We denote input length by N, number of layers by K, receptive field width by R, and CPU threads by P.

3.1 CPU Scaling

Strong Scaling. We fix the problem size at $N = 2^{20}$, K = 1000, R = 3 and vary P from 1 to 16. Speedup is defined as

Speedup $(P) = \frac{T_1}{T_P}$,

where T_1 is the single-threaded runtime and T_P the runtime on P OpenMP threads. Strong scaling (Figure 2) shows near-ideal speedup up to 8 physical cores (max $7.3\times$), limited by hyperthreading contention beyond that (only $5.3\times$ on 16 threads).

Weak Scaling. For weak scaling, each thread handles a fixed subproblem of size $N/P = 2^{20}/P$ over K = 1000 layers. Efficiency is

$$E_{\text{weak}}(P) = \frac{T_1}{T_P},$$

where T_P measures the time to solve P subproblems in parallel. Weak scaling efficiency (Figure 3) remains high (> 90%) up to 8 cores but drops significantly when relying on logical cores, confirming memory/cache saturation limits.

Figure 2: OpenMP strong scaling on CPU $(N=2^{20},K=1000)$. (a) Speedup vs. 1 thread. (b) Efficiency = Speedup / Threads.

3.2 GPU Performance

We compare CUDA global and shared memory approaches against the 8-core OpenMP baseline.

Execution Time and Throughput. Figure 4 shows execution time scaling linearly with input size N and layer count K. Shared memory consistently outperforms global memory due to efficient data reuse via on-chip memory, with the benefit increasing for larger N. We define throughput as

$$\Theta = \frac{\sum_{t=1}^{K-1} [N - t (R - 1)]}{T} \quad [M \text{ elements/sec}],$$

i.e. total number of output elements computed across all layers divided by runtime T, expressed in millions of elements per second. Correspondingly, Figure 5 shows throughput increasing with N, indicating better GPU utilization. Shared memory achieves significantly higher throughput by reducing global memory latency and bandwidth usage. Throughput is relatively stable across different K for a fixed N.

Figure 3: OpenMP weak scaling efficiency on CPU threads (K = 1000).

Figure 4: Execution time vs. N for CUDA global and shared memory across different K.

Relative Speedup. Figure 6 presents the speedup of CUDA implementations relative to the 8-core OpenMP baseline. Speedup generally increases with N, showcasing the GPU's advantage for larger problems. Shared memory (green bars) consistently provides higher speedup than global memory (blue bars). For the largest input size $(N=2^{21}\approx 2.1\times 10^6)$, shared memory achieves impressive speedups up to $354\times$ (for K=4000). Increasing the number of layers K also tends to improve speedup by amortizing kernel launch overheads, although the gains may lessen for very deep networks (compare K=2000 vs K=4000 panels). At $N=2^{20}$ (approx 1.05×10^6), the speedups are $295\times (K=1000)$, $342\times (K=2000)$, and $333\times (K=4000)$ for shared memory.

Appendix: Sliding-Window Reformulation

Given an input vector $\mathbf{x} = [x_0, x_1, \dots, x_{N-1}]$ of dimension N and a receptive field size R, the output vector \mathbf{y} has a dimension M = N - R + 1. For an example case where N = 5 and R = 3, the output dimension is M = 3. The first two output elements (y_0, y_1) are computed individually as:

$$y_0 = \sigma (x_0 W_{0,0} + x_1 W_{0,1} + x_2 W_{0,2} + b_0),$$

$$y_1 = \sigma (x_1 W_{1,0} + x_2 W_{1,1} + x_3 W_{1,2} + b_1).$$

Figure 5: GPU throughput (M elements/sec) vs. N for CUDA global and shared memory across different K.

Figure 6: Speedup of CUDA kernels relative to OpenMP (8 threads) baseline, varying N and K. Speedup values annotated.

Here, $W_{i,j}$ represents the weight connecting the j-th input in the window for output i to the i-th output neuron, and b_i is the bias for the i-th output neuron. Weights are generally *not* shared between different output neurons in this locally connected formulation.

To potentially improve data locality and leverage matrix operations, one can construct an intermediate matrix X by applying a sliding window to the input vector \mathbf{x} (often called 'im2col' or 'unfold'):

$$X = \begin{bmatrix} x_0 & x_1 & \cdots & x_{R-1} \\ x_1 & x_2 & \cdots & x_R \\ \vdots & \vdots & \ddots & \vdots \\ x_{M-1} & x_M & \cdots & x_{N-1} \end{bmatrix} \in \mathbb{R}^{M \times R}.$$

Let $W \in \mathbb{R}^{M \times R}$ be the weight matrix where row *i* contains the weights for output y_i , and let $\mathbf{b} \in \mathbb{R}^M$ be the bias vector. The entire output vector $\mathbf{y} \in \mathbb{R}^M$ can then be expressed as:

$$\mathbf{y} = \sigma \big(\operatorname{diag}(XW^{\top}) + \mathbf{b} \big).$$

In this equation, diag(·) extracts the main diagonal of the $M \times M$ matrix product XW^{\top} , yielding the required weighted sums.

Although this sliding-window ('im2col') approach enables potentially fully coalesced memory reads and leverages highly optimized Basic Linear Algebra Subprograms (BLAS) for the internal matrix–matrix product (XW^{\top}) , it introduces complexity and overhead. Firstly, explicit transformation of the input activations of each layer into the matrix X can be costly, potentially compensating for the gains in BLAS performance, especially for small R or deep networks

requiring repeated transformations. Secondly, it's crucial to note that even after performing the computation via XW^{\top} , the desired result is the vector \mathbf{y} obtained from the *diagonal* (plus bias and activation). This output vector \mathbf{y} is analogous in structure to the original input vector \mathbf{x} ; it is **not** automatically in a matrix format (like X) suitable for direct use as an operand in a subsequent layer's computation if that layer also relies on a GEMM-based strategy (e.g., another 'im2col' followed by matrix multiplication). Such a subsequent layer would require its *own* 'im2col' transformation applied to \mathbf{y} . Consequently, considering the transformation overhead and the fact that the output requires further processing for subsequent GEMM-based layers, the direct, per-neuron formulation might be preferred for clarity, simplicity, and potentially better end-to-end performance in certain scenarios.