

Modelos Probabilísticos IIND-2104 Universidad de Los Andes 2024-II

1 Equipo

Rol Nombre		E-mail
Instructor	Alejandra Tabares	a.tabaresp@uniandes.edu.co
Instructor	Juan Fernando Pérez	jf.perez33@uniandes.edu.co
Instructor	Pablo Cortés	pj.cortes716@uniandes.edu.co
Asistente graduado	Samuel Ríos	sf.rios@uniandes.edu.co
Asistente graduado	María Gabriela Urango	m.urango@uniandes.edu.co
Asistente graduado	Juan Pablo Ríos	jp.riosh@uniandes.edu.co
Doble monitor	Juan Camilo Zabala	j.zabalav@uniandes.edu.co

e-mail institucional: modelos_inst@uniandes.edu.co

2 Objetivos

- Los estudiantes aprenderán a aplicar conocimiento matemático y probabilidad en el diseño, modelamiento
 y análisis de sistemas. Los formalismos de modelación utilizados incluyen: Cadenas de Márkov en tiempo
 discreto y continuo, teoría de colas y redes abiertas y programación dinámica. Este objetivo se evaluará
 con tres parciales. (Objetivo ABET 1).
- Los estudiantes utilizarán modelos estocásticos para analizar indicadores de comportamiento de sistemas reales. Los estudiantes tendrán la capacidad de proveer la mejor solución a un problema de decisión con diferentes alternativas que mejore el sistema, teniendo en cuenta implicaciones éticas. (Objetivo ABET 1).
- 3. Los estudiantes aprenderán a modelar computacionalmente herramientas de soporte a la decisión. (Objetivo ABET 1).

3 Contenidos

Semana académica	Tema	Texto guía	Texto complementario	Tema de clase	Anotaciones importantes
1 05/08-09/08	1 Motivación - 05/08-09/08 Introducción		Kulkarni 3.1 - 3.5 Winston 5.1 Winston 8.2	Motivación, organización del curso e introducción a modelación de sistemas dinámicos Variables aleatorias exponenciales e introducción a la modelación de procesos estocásticos	
2 12/08-16/08 Cadenas de Markov		Libro del curso: Lectura 3 Lectura 4	Kulkarni 2.1, 2.2, 4.1, 4.2 Winston 5.2	Procesos de Poisson, propiedad de no memoria e introducción a Cadenas de Markov Cadenas de Markov y matrices de transición	

		Libro del	Kulkarni 2.2, 4.2, 4.3 Winston 5.3	5. Modelación de Cadenas de Markov	
3 19/08-23/08	Cadenas de Markov	curso: Lectura 4 Lectura 5	Kulkarni 2.3, 4.4 Winston 5.3	6. Análisis transitorio	
4 26/09/20/09 Coderned Medicine		Libro del curso:	Killkarni / 3 4 4	7. Análisis transitorio	
26/08-30/08	Cadenas de Markov	Lectura 5 Libro del	winston 5.3, 5.4	8. Clasificación de estados	
5 02/09-06/09	Cadenas de Markov	curso: Lectura 6	Winston 5.4	9. Clasificación de cadenas de Markov	Lunes: Parcial 1, 6:30 p.m.
6 09/09-13/09	Comportamiento en estado estable	Libro del curso:	Kulkarni 2.1, 2.2, 4.2, 4.3, 4.6, 4.7 Winston 5.5	10. Clasificación de cadenas de Markov 11. Estado estable y	
		Lectura 7 Libro del	Kulkarni 2.1, 2.2, 4.2, 4.3, 4.6, 4.7,	comportamiento límite 12. Modelación de cadenas embebidas	
7 16/09-20/09	1 1		4.2, 4.3, 4.0, 4.7, 6.1, 6.2, 6.3 Winston 5.5, 8.3, 8.4	13. Tiempos de primera pasada	
8 23/09-27/10	Aplicaciones de las cadenas de Markov	Libro del curso:	Kulkarni 4.7, 6.1, 6.2, 6.3 Winston 8.3, 8.4	14. Tiempos de ocupación	
23/09-27/10	Cadellas de Markov	Lectura 9 Lectura 10	Kulkarni 5.6	15. Cadenas absorbentes y probabilidades de absorción	
			Semana de Receso		
		Libro del curso:	Kulkarni 5.6 Kulkarni 6.3, 6.4,	16. Cadenas absorbentes y probabilidades de absorción	
9 07/10-11/10	Teoría de colas	Lectura 9 Lectura 10 Lectura 11 Lectura 12 Lectura 13	6.5 Winston 8.4, 8.5 8.6, 8.7, 8.8 Winston 8.3	17. Procesos de Nacimiento y muerte y Ley de Little	Viernes: Fecha límite para reportar el 30%
10 14/10-18/10	Teoría de colas y redes	Libro del curso:	Kulkarni 6.3.3 Winston 8.9	18. Introducción a Teoría de Colas	Sábado: Parcial 2, 9:00 a.m.
1 1, 10 10, 10		Lectura 13 Lectura 14	Winston 5.7	19. Teoría de Colas y medidas de desempeño	
11		Libro del curso:			Viernes: Fecha límite
21/10-25/10	Teoría de colas y redes	Lectura 13 Lectura 14 Lectura 15	Kulkarni 6.7 Winston 8.10	20. Redes abiertas	para retiro del curso
		Libro del curso:	Winston 5.7	21. Redes abiertas y funciones de costos	
12 28/10-01/11	Programación dinámica	Lectura 14 Lectura 15 Lectura 16 Lectura 17 Lectura 18	Puterman 1, 2.1 Winston 6.2	22. Introducción a Procesos de Decisión	

		Libro del curso:		23. Formulación de MDP	
13 04/11-08/11	MDP	Lectura 16 Lectura 17 Lectura 18 Lectura 19	Winston 7.5 Puterman 3.1, 3.2, 6.9	24. Solución de MDP	
14		Libro del	Winston 7.5	25. Formulación de SDP	
11/11-15/11	SDP	curso: Lectura 19	Puterman 6.9	26. Solución de SDP	
		Libro del		27. Aplicación de SDP	
15 18/11-22/11	SDP	Curso: Lectura 16 Lectura 17 Lectura 18	Puterman 4.5, 4.6 Winston 7.1, 7.3, 7.4 Puterman 6.1, 6.2	28. Aplicación de SDP	
16	Repaso y cierre			29. Actividad de cierre	
25/11-29/11	Repaso y cicire			30. Clase de review	

4 Bibliografía

4.1 Texto guía

• Libro del curso: https://modelos-inst.github.io/BookLecturas/intro.html

4.2 Texto complementario y recursos adicionales

- V. Kulkarni. Introduction to Modeling and Analysis of Stochastic Systems. Second Edition, New York: Springer, 2011.
- W Winston. Introduction to Probability Models, Fourth edition, Thomson, 2004.
- M. Puterman. Markov decision processes: discrete stochastic dynamic programming. New York: John Wiley & Sons 2005.
- S. Ross. Introduction to Probability Models, Ninth Edition, Academic Press, Elsevier, 2010.
- W. Hopp and M. Spearman. Factory Physics, Third Edition, McGraw Hill, 2008.
- L. Castañeda, V. Arunachalam, and S. Dharmaraja. Introduction to Probability and Stochastic Processes with Applications. New Jersey: Wiley, 2012.
- Johns Hopkins University. R Programming. Coursera [online]. https://www.coursera.org/learn/r-programming

5 Método de evaluación

Actividad	Valor	Fecha	Comentarios
Parcial 1	20%	Lunes Septiembre 2 6:30 pm	Examen escrito
Parcial 2	25%	Sábado Octubre 19 9:00 am	Examen escrito
Parcial 3	25%	Agendado por registro (Diciembre 2 – Diciembre 7)	Examen escrito
Actividades en clase	15%	Trabajo en clase (15%)	
Trabajo Asistido	15%	Trabajo en clase (15%)	
Total	100%		

Las notas parciales serán publicadas antes de la fecha límite de publicación del 30%.

6 Reglas

6.1 Nota final

La nota final del curso será aproximada al decimal de dos dígitos más cercano, ej. 3.925 será 3.93.

La nota final, una vez publicada, es innegociable. Solamente se aceptarán reclamos por errores numéricos o recalificación del examen final. Visitas de los estudiantes a la oficina del profesor o asistentes graduados para encontrar "fórmulas" que le permitan mejorar la nota obtenida, son **impertinentes, improductivas** e **indeseables.** Las notas son el resultado del rendimiento académico en los términos que el curso lo mide y como tal no son objeto de **ninguna** negociación.

6.2 Clases complementarias

Las clases complementarias son opcionales para los estudiantes. Sin embargo, se sugiere realizar los ejercicios de complementaria para reforzar temas particulares y programación en R. Los temas tratados serán los siguientes:

	Tema
1	_
05/08-09/08	M
2	Motivación e introducción a R
12/08-16/08	Funciones de R
3 19/08-23/08	Algebra lineal en R
4 26/08-30/08	Ejercicios pre-parcial
5 02/09-06/09	Cadenas de Markov en R
6 09/09-13/09	Manejo de datos y análisis preliminar en R
7 16/09-20/09	Introducción a Shiny
8 23/09-27/09	Análisis de tiempos en R
30/09-04/10	Semana de Receso
9 07/10-11/10	Shiny
10 14/10-18/10	Ejercicios pre-parcial
11 21/10-18/10	Cálculo de filas
12 28/10-01/11	Simulación de Montecarlo en R
13 04/11-08/11	Dashboard
14 11/11-15/11	SDP en R
15 18/11-22/11	Optimización y MDP en R
16 25/11-29/11	Ejercicios pre-parcial

6.3 Parciales

Se realizarán tres parciales durante el semestre. Los parciales serán resueltos de forma individual en horario adicional. Se espera que todo procedimiento esté debidamente definido y explicado. Los supletorios se realizarán de acuerdo con las reglas de la Universidad, solamente a los estudiantes que no hayan presentado el parcial. **Los estudiantes que**

tengan una actividad académica preestablecida para la fecha de los parciales deberán enviar una excusa escrita antes de finalizar la segunda semana de clases.

6.4 Recursos adicionales

Los estudiantes podrán hacer uso de los horarios de atención para dudas y aclaraciones de temas. Los horarios, reglas y lugar de los horarios de atención serán dispuestos en Bloque Neón. Los estudiantes pueden escribir un correo a su profesor magistral o asistente graduado en cualquier momento para agendar una cita en horario adicional.

<u>6.5</u> Inasistencias por motivos especiales

Las excusas por inasistencias debido a motivos especiales serán gestionadas de acuerdo con lo estipulado en el artículo 49 del capítulo VII del Reglamento General de Estudiantes de Pregrado y, en caso necesario, validadas por el profesor y la Decanatura de Estudiantes.

6.6 Reclamos

Una vez las notas de cualquier actividad sean publicadas, las fechas límite para presentar reclamos serán anunciadas. Todos los reclamos seguirán las reglas del reglamento de la Universidad.

6.7 Fraude

Cualquier sospecha de fraude con relación a las actividades del curso será tratada de acuerdo con el Reglamento General de Estudiantes de Pregrado. Asegúrese de revisar el capítulo X en el siguiente enlace: http://secretariageneral.uniandes.edu.co/images/documents/ReglamentoGralEstudiantesPregrado.pdf

Objetivos ABET

	ABET Outcome	Contribution	Description	Course Measures
1	Math, Science and Engineering Problems	Major	An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.	Three individual exams.
2	Design Systems, Components, Process	Minor	An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	
3	Communication	Minor	An ability to communicate effectively with a range of audiences.	
4	Professional and Ethical Responsibilities, Impact of Engineering Solutions, Contemporary Issues	Minor	An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.	
5	Multi-disciplinary Teams	Minor	An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.	
6	Design and Conduct Experiments	Minor	An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.	
7	Life-long Learning	Minor	An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	