

Agent Based Modelling of the Spread of COVID-19 in Austria

Patricia Freyler, Lisbora Likaj, Lukas Schilcher, Florian Steinwidder, Computational Modelling of Social Systems - Group 6

28. Juni 2023

Agenda

- 1. Introduction
- 2. SIR-Model
- 3. Most Influential Spreaders
- 4. SIS-Model
- 5. Conclusion

Basic Idea

Identify most-influential spreaders in an SIR-model

SIR-model adapted to Covid Statistic in Austria

(Source: Statistik Austria. (2022). Deutlich niedrigere Sterberaten bei gegen COVID-19 geimpften Personen im Vergleich zu Ungeimpften)

Age distribution in Austria based on WIBIS-Inhabitants

https://wibis-steiermark.at/bevoelkerung/struktur/einwohner-nach-altersklassen/

- Identification of most-influential Spreaders
 - k-shell Decomposition

Compartment Model - SIR Model

- Individuals with a closed population
- Separated into mutually exclusive groups
 - 1. susceptible
 - 2. infected
 - recovered

Transmission Probabilities

Different Grid Sizes

Vaccination Impact

Influential Spreaders in Complex Networks: Key Takeaway

- most influential spreader nodes not always most connected nodes
- method to identify most influential spreaders: k-shell decomposition

k-shell Decomposition

k index is denoted by k_S , initially k_1

- recursively eliminate nodes (agents) with degree S.
- no nodes with degree S left to eliminate? $k_S o k_{S+1}$
- continued until no nodes left in network
- Result: each node is associated with one k_S index.

Highest k_S index nodes \rightarrow most influential spreaders

SIR-Model & k-shell Decomposition Problem

$\begin{array}{c} \textbf{SIR network} \rightarrow \textbf{tree} \\ \textbf{structure} \end{array}$

- no cycles in network
- each node (agent) has k₁ index
- Solution: Switch to an SIS-Model

SIS-Model

Implementation

- Agents become susceptible again instead of being removed
- Agents have a 10% probability to get infected again
- We do not consider that immunity decreases with time

SIS-Model & k-shell Decomposition

Cycles in Network

- Nodes with k_S, where S > 1, can exist
- Nodes with k_S = max k_S are the most influential spreaders.
- 81.25% of influential spreaders are not vaccinated

Conclusion

- Higher transmission probabilities and smaller environments increase the number of infections
- Early vaccination and greater number of vaccinated agents flatten infection curve
- k-shell decomposition can capture the topolgy of the network better than counting degrees
- Contrary to what is stated in the paper, we do not find the k-shell decomposition useful for SIR models
- We are also implementing differentiation according to preconditions, type of vaccination and their efficacy.