Manufacturers

- Xilinx
- Altera
- Lattice
- Actel

FPGA structure

Simplified CLB Structure

Example: 4-input AND gate

Α	В	С	D	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Example 2: Find the configuration bits for the following circuit

Α0	A 1	S	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Interconnection Network

Example 3

 Determine the configuration bits for the following circuit implementation in a 2x2 FPGA, with I/O constraints as shown in the following figure. Assume 2-input LUTs in each CLB.

CLBs required

Placement: Select CLBs

Routing: Select path

Configuration Bitstream

- The configuration bitstream must include ALL CLBs and SBs, even unused ones
- CLB0: 00011
- CLB1: 01100
- CLB2: XXXXX
- CLB3: XXXXXX
- SB0: 000000
- SB1: 000010
- SB2: 000000
- SB3: 000000
- SB4: 000001

- Programmable logic blocks (Logic Element "LE") Implement combinatorial and sequential logic. Based on LUT and DFF.
- Programmable I/O blocks
 Configurable I/Os for external connections supports various voltages and tri-states.
- Programmable interconnect
 Wires to connect inputs , outputs and logic blocks.
 - clocks
 - short distance local connections
 - long distance connections across chip

Realistic FPGA CLB: Xilinx

SRAM-type FPGA Interconnect Architecture (contd)

Configuration Logic Block (CLB)

- 5-i/p function implemented using G, F and H LUTs (Look Up Tables) using Shannon's Expansion: p(a,b,c,d,e) = a p(1, b, c, d, e) + a' p(0, b, c, d, e) = a q(b,c,d,e) + a' r(b,c,d,e). q() impl. using LUT G, r impl. using LUT F and p=ag + a'h impl. using LUT H
- The LUT o/ps can go through a FF (for seq. ckt design) or bypass it for a combinational o/p
- This is called *technology mapping*: mapping the logic to CLB logic components

Mapping

Example

Implement the following functions on a single CLB of the XC4000 FPGA:

$$X = A'B'(C + D)$$

 $Y = AK + BK + C'D'K + AEJL$

- Use look up table F to implement X
- Use look up table G for AEJL
- Use F, G and H for Y:

$$Y = K(A+B+C'D') + AEJL$$

= $KX' + AEJL = KF'+G$

Programming a CLB (contd)

Example

Components of Modern FPGAs

FPGA EDA Tools

- Must provide a design environment based on digital design concepts and components (gates, flip-flops, MUXs, etc.)
- Must hide the complexities of placement, routing and bitstream generation from the user. Manual placement, routing and bitstream generation is infeasible for practical FPGA array sizes and circuit complexities.

FPGA EDA Tools

- High level Description of Logic Design
 - Hardware Description Language (Textual)
- Compile (Synthesise) into Netlist.
- Boolean Logic Gates.
- Target FPGA Fabric
 - Mapping
 - Routing
- Bit File for FPGA
- Commercial CAE Tools (Complex & Expensive)
- Logic Simulation

FPGA Internals: Configurable Logic Blocks (CLBs)

FPGA Internals: Sequential Circuit Example using CLBs

FPGA Internals: Programming an FPGA

- All configuration memory bits are connected as one big shift register
 - Known as scan chain

а

 Shift in "bit file" of desired circuit

Configuring an FPGA

- Millions of SRAM cells holding LUTs and Interconnect Routing
- Volatile Memory. Loses configuration when board power is turned off.
- Keep Bit Pattern describing the SRAM cells in non-Volatile Memory e.g. ROM or Digital Camera card
- Configuration takes ~ secs

Summary

- Programmable Logic Devices
 - Basics
- Field Programmable Gate Arrays (FPGAs)
 - Architecture
- Design Flow
 - Hardware Description Languages
 - Design Tools

