Module-I (Part-1): Introduction to Natural Language Processing

by:

Dr. Soumya Priyadarsini Panda

Sr. Assistant Professor

Dept. of CSE, SIT, Bhubaneswar

Contents

- Introduction
- Need of Processing natural languages
- Applications of NLP
- A brief history of NLP application development
- Issues and processing complexities
- Phases of Natural Language Processing

Introduction

Natural Language:

- Language spoken and written by human for general purpose communication
 - Examples: Odia, Hindi, English, French, Chinese,, etc

Natural Language Processing (NLP):

• Focuses on processing, understanding and generating natural languages by machines.

Overview of the NLP Field

 Designing intelligent machines that understands and generates human languages

Need of Processing Human Languages

• To develop different Human-computer Interactive systems through natural languages.

Allows to communicate with machines through human languages

- To design different information processing systems
 - to work on digital documents/data represented in natural languages

Applications of NLP

Example: The Search Engines

- The Web made it possible to access a large amount of information quickly
- Search engines provides the required information quickly at finger tip

Applications of NLP

Other Applications:

- Dictionary word suggestion
- Spelling error/ grammar correction
- Chat bots
- Sentiment analysis

. . . • •

Information Retrieval (IR):

- Focuses on retrieving the documents from a large document repository based on their relevance to a user's query.
- The IR technology is used in online search engines, library information retrieval, organizational data retrieval, etc

Information Extractions (IE):

- Refers to the automatic extraction of structured information from unstructured sources.
- The IE technology can be used to retrieve specific text such as place, organization, people, monetary values, etc from unstructured documents and present them in the form of a structured report.

Text Summarization:

- The goal of automatic summarization is to take an information source, extract contents from it and provide the most important contents to the user in a concise form as a summary.
- It has its applications in obtaining document summaries, storylines of events, summarization of user-generated content, etc.

Question Answering:

- Concerns with building systems that can automatically answer questions posed by users in a natural language.
- It has its applications in designing experts question answering systems on different domains such as: medical, agricultural, legal, etc

Machine Translation System:

- Translates from one human language text/speech into another language text/speech.
- It has its applications in designing language interpreters, website translation, document translation, speech translation applications, etc

Text to Speech:

- A text-to-speech (TTS) system converts natural language text into speech
- It has its applications in designing speech synthesizers, screen readers, language learning apps, etc.

Speech to Text:

- Speech to text (STT) conversion is the process of converting spoken words into written texts.
- This is also called **speech recognition**.
- It has its applications in designing text dictation systems, command and control, audio document transcription, etc

Advanced Applications

- Virtual Assistants:
 - Apple- Siri
 - Amazon- Alexa
 - Microsoft- Cortana
 - Google: Google Assistant

A Brief History of NLP Application Development

- 1950: Mathematical model of computation (Turing machine)
- 1957: Rule based syntactic structures (Chomsky's Syntactic Structures)
- 1969: Conceptual dependency theory
- **1970:** Finite State Automata concepts
- Up to 1980s: NLP systems based on complex sets of hand-written rules
- 1980 onwards: NLP with machine learning algorithms
- 1990s: NLP systems based on Statistical models
- 2000 onwards: NLP systems applied with advanced machine learning techniques

- Current trends in information processing technologies uses: AI, Data Science, NLP, Machine Learning for-
 - designing intelligent machines that-
 - Understands and generates human languages
 - Becomes more intelligent by learning from its experience

Goals of NLP

Scientific Goal

• Identify the computational machinery needed for an agent to exhibit various forms of linguistic behavior

Engineering Goal

• Design, implement, and test systems that process natural languages for practical applications

Issues and Processing Complexities

1. Ambiguity:

- Natural languages are highly ambiguous
- Words in a natural language may have a number of different meanings.

Examples:

- Bank (River bank/ Financial Institution),
- Bat(cricket bat/ species)

• For many NLP task, the proper sense of each ambiguous word in a sentence must be determine to interpret correct meaning.

2. Language Variability:

- There are various ways to express meaning
- A large number of languages are available world wide
 - most of the languages use different character set, structure and grammar rules.
- It is difficult to design a language processing model that can capture all language variability.

3. Difficult to incorporate human cognition over machine:

- It is difficult to capture all required knowledge human use to process natural languages
- People have no trouble understanding language as they have-common sense knowledge, reasoning capacity and experience
- Computers have- no common sense knowledge and no reasoning capacity

How can a machine understand these differences?

Examples:

- Decorate the cake with the kids.
- Throw out the cake with the kids.
- The man saw the girl with a telescope in a park.
- Stolen painting found by tree.
- The old man finally kicked the bucket.

Issues in Processing Indian Languages

1. Unlike English, Indic scripts have a nonlinear structure.

Example:

Language Script

English English language

Hindi हिन्दी भाषा

Odia ଓଡ଼ିଆ ଭାଷା

Bengali: বাংলা ভাষা

2. English uses SVO (Subject-Verb-Object) format while Indian languages uses SOV (Subject-Object-Verb) format

Example:

English: pooja plays veena

(S) (V) (O)

Hindi: pooja veena Bajati hai

(S) (O) (V)

- 3. Indian languages have a free word order
 - i.e. words can be moved freely within a sentence without changing the meaning of the sentence

Example:

Usne khaanaa khaya

or

Usne khaaya Khanaa

4. Have rich set of morphological variants

• Example: variants of the word 'horse'

Hindi:

ghodda, ghodde, ghoddi, ghoddon.....

5. Extensive and productive use of complex predicates

Example:

हिन्दी

शब्द

सम्पूर्ण

6. Ambiguity:

Example:

सोना

Language and Grammar

• Automatic processing of language requires the rules and exceptions of a language to be explained to the computer.

• Grammar defines the language

• It consists of a set of rules that allows parse and generate sentences in a language

Major Approaches of NLP

- Rationalist approach(Symbolic approach)
- Empiricist approach

Rationalist approach (Symbolic approach)

- Assumes existence of some language faculty in human brain
 - i.e. significant part of the knowledge in human mind is not derived by sense. It is fixed in advance by genetic inheritance.
- Example: children can't learn complex things from limited sensory inputs.
- Machines can be made to function like human brain by giving some basic knowledge and reasoning mechanisms.
- Linguistic knowledge is explicitly encoded in rule or other forms of representation

Empiricist Approach

- No language faculty
- Believes in existence of some general organization principles:
 - Pattern reorganization
 - Generalization
 - Association
- Learning of detailed structures can takes place through the applications of these principles on sensory inputs available
- Focused on use of large amount of data and procedures involving statistical manipulation

Classification of Computational Models

Knowledge driven:

- Rely on explicitly coded linguistic knowledge expressed as a set of hand crafted grammar rules.
- Constrained by the lack of sufficient coverage of domain knowledge (acquiring and encoding such knowledge is difficult)

Data driven:

- Assumes the existence of large amount of data and techniques to learn syntactic pattern.
- Requires less human effort
- Performance depends on quantity of data
- Adaptive to noisy data

2 Main Components of NLP

- Mapping given inputs in a language into useful representations
- Analyzing different aspects of the language

 Involves producing meaningful phrases and sentences to convey some internal representation

Phases of Natural Language Processing

Word level analysis

Phrase level analysis based on grammar rules

Sentence level analysis focusing on meaning

Paragraph level

Real world knowledge

Lexical Analysis

- Analysis of words (most fundamental units of any natural language)
- Word level processing requires Morphological Knowledge
- i.e. knowledge about the structure and formation of words from basic units (morphemes)
- A morpheme is the smallest meaningful unit in a language

Example:

- cat (1 morpheme)
- cats (2 morphemes: 'cat', 's')
- Rules for forming words are language specific

Syntactic Analysis

- Analysis of sequence of words as a unit(i.e. a sentence) and find its structure.
- It involves decomposes a sentence in to its constituents (or words) and identifies the relation between them
- Requires Syntactic Knowledge (how words are combined to form large units and constructs imposed on them)

Example:

"she is going to the market"

"she are going to the market"

valid sentence

invalid sentence

Semantic Analysis

- Concerned with creating meaningful representation of linguistic inputs.
- Example: "colorless green ideas sleep furiously"

 (Syntactically correct but semantically anomalous)
- Requires semantic knowledge
 - What words mean
 - How word meanings combined in sentences to form sentence meanings

Discourse Analysis

- Attempts to interpret structure and meaning of even larger units
- The meaning of any sentence depends upon the meaning of the sentence just before it.
- Requires **Discourse Knowledge**
 - Knowledge of how the meaning of a sentence is determined by processing sentences

Example:

She forgot her book.

To understand to whom- 'she', 'her' refers, processing of previous sentences are required

Pragmatic Analysis

- The meaning of a sentence can't be always derived based on the meaning of its words. Multiple interpretations of a sentence can be possible.
- Syntactic structure and compositional semantics fail to explain these interpretations.
- Pragmatic analysis deals with the purposeful use of sentences in situations.
- It requires real world knowledge along with language knowledge

Example:

Do u know who am I?

(different context of use can be possible)