Отчёт по лабораторной работе №9

Дисциплина: Администрирование локальных сетей

Исаев Булат Абубакарович НПИбд-01-22

Содержание

1	Цель работы	6
2	Выполнение лабораторной работы	7
3	Вывод	20
	3.1 Контрольные вопросы	20

Список иллюстраций

2.1	Открытие проекта lab_PT-09.pkt	7
2.2	Формирование резервного соединения между коммутаторами msk-	
	donskaya-baisaev-sw-1 и msk-donskaya-baisaev-sw-3 (замена соеди-	
	нения между коммутаторами)	8
2.3	Настройка порта на интерфейсе Gig0/2 коммутатора msk-donskaya-	
	baisaev-sw-3 как транковый	8
2.4	Соединение между коммутаторами msk-donskaya-baisaev-sw-1 и	
	msk-donskaya-baisaev-sw-4 через интерфейсы Fa0/23	9
2.5	Активация в транковом режиме интерфейса Fa0/23 на коммутаторе	
	msk-donskaya-baisaev-sw-1	9
2.6	Активация в транковом режиме интерфейса Fa0/23 на коммутаторе	
	msk-donskaya-baisaev-sw-4.	10
2.7	Проверка командой ping серверов mail и web с оконечного устрой-	
	ства dk-donskaya-1	11
2.8	Отслеживание пакетов ICMP (DHCP) в режиме симуляции (web)	
	(движение пакетов происходит через коммутатор msk-donskaya-	
	baisaev-sw-2)	12
2.9	Отслеживание пакетов ICMP в режиме симуляции (mail) (движение	
	пакетов происходит через коммутатор msk-donskaya-baisaev-sw-2).	13
2.10	Просмотр на коммутаторе msk-donskaya-baisaev-sw-2 состояния	
	протокола STP для vlan 3 (указывается, что данное устройство	
	является корневым (This bridge is the root)).	13
2.11	Настройка в качестве корневого коммутатора STP коммутатора	
	msk-donskaya-baisaev-sw-1	14
2.12	Настройка режима Portfast на интерфейсах коммутатора msk-	
	donskaya-baisaev-sw-2	14
2.13	Настройка режима Portfast на интерфейсах коммутатора msk-	
	donskaya-baisaev-sw-3	14
2.14	Изучение отказоустойчивости протокола STP и времени восстанов-	
	ления соединения при переключении на резервное соединение	15
2.15	Изучение отказоустойчивости протокола STP и времени восстанов-	
	ления соединения при переключении на резервное соединение	16
2.16	Переключение коммутаторов в режим работы по протоколу Rapid	
	PVST+ (на примере msk-donskaya-baisaev-sw-1)	16
2.17	Изучение отказоустойчивости протокола Rapid PVST+ и времени	
	восстановления соединения при переключении на резервное со-	
	елинение	17

17
18
18
19

Список таблиц

1 Цель работы

Изучить возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

2 Выполнение лабораторной работы

Откроем проект с названием lab_PT-08.pkt и сохраним под названием lab_PT-09.pkt. После чего откроем его для дальнейшего редактирования (рис. 2.1)

Рис. 2.1: Открытие проекта lab_PT-09.pkt.

Теперь сформируем резервное соединение между коммутаторами msk-donskaya-baisaev-sw-1 и msk-donskaya-baisaev-sw-3. Для этого заменим соединение между коммутаторами msk-donskaya-baisaev-sw-1 (Gig0/2) и msk-donskaya-baisaev-sw-4 (Gig0/1) на соединение между коммутаторами msk-donskaya-baisaev-sw-1 (Gig0/2) и msk-donskaya-baisaev-sw-3 (Gig0/2) (рис. 2.2)

Рис. 2.2: Формирование резервного соединения между коммутаторами msk-donskaya-baisaev-sw-1 и msk-donskaya-baisaev-sw-3 (замена соединения между коммутаторами).

После чего сделаем порт на интерфейсе Gig0/2 коммутатора msk-donskayabaisaev-sw-3 транковым (рис. 2.3)

Рис. 2.3: Настройка порта на интерфейсе Gig0/2 коммутатора msk-donskayabaisaev-sw-3 как транковый.

Теперь соединение между коммутаторами msk-donskaya-baisaev-sw-1 и msk-

donskaya-baisaev-sw-4 сделаем через интерфейсы Fa0/23 (Рис. 1.4), не забыв активировать их в транковом режиме (рис. 2.5), (рис. 2.6)

Рис. 2.4: Соединение между коммутаторами msk-donskaya-baisaev-sw-1 и msk-donskaya-baisaev-sw-4 через интерфейсы Fa0/23.

Рис. 2.5: Активация в транковом режиме интерфейса Fa0/23 на коммутаторе msk-donskaya-baisaev-sw-1.

Рис. 2.6: Активация в транковом режиме интерфейса Fa0/23 на коммутаторе msk-donskaya-baisaev-sw-4.

С оконечного устройства dk-donskaya-1 пропингуем серверы mail и web (рис. 2.7). В режиме симуляции проследим движение пакетов ICMP и убедимся, что движение пакетов происходит через коммутатор msk-donskaya-baisaev-sw-2 (рис. 2.8), (рис. 2.9)

Рис. 2.7: Проверка командой ping серверов mail и web с оконечного устройства dk-donskaya-1.

Рис. 2.8: Отслеживание пакетов ICMP (DHCP) в режиме симуляции (web) (движение пакетов происходит через коммутатор msk-donskaya-baisaev-sw-2).

Simulation Panel						
Event L	ist					
Vis.	Time(sec)	Last Device	At Device	Type		
	39.466		dep-donskaya-baisaev-1	DHCP		
	39.467	dep-donskaya-baisaev-1	msk-donskaya-baisaev-sw-4	DHCP		
	39.468	msk-donskaya-baisaev-sw-4	msk-donskaya-baisaev-sw-1	DHCP		
	39.469	msk-donskaya-baisaev-sw-1	msk-donskaya-baisaev-mc-1	DHCP		
	39.469	msk-donskaya-baisaev-sw-1	msk-donskaya-baisaev-sw-3	DHCP		
	39.469	msk-donskaya-baisaev-sw-1	msk-donskaya-baisaev-gw-1	DHCP		
	39.469	msk-donskaya-baisaev-sw-1	msk-donskaya-baisaev-sw-2	DHCP		
	39.469		other-pavlovskaya-baisaev-1	DHCP		
	39.470	other-pavlovskaya-baisaev-1	msk-pavlovskaya-baisaev-sw-1	DHCP		
	39.470	msk-donskaya-baisaev-mc-1	msk-pavlovskaya-baisaev-mc-1	DHCP		
	39.470	msk-donskaya-baisaev-sw-2	msk-donskaya-baisaev-sw-3	DHCP		
	39.471	msk-pavlovskaya-baisaev-mc-1	msk-pavlovskaya-baisaev-sw-1	DHCP		
	39.472		dk-pavlovskaya-baisaev-1	DHCP		
	39.473	dk-pavlovskaya-baisaev-1	msk-pavlovskaya-baisaev-sw-1	DHCP		
	39.474	msk-pavlovskaya-baisaev-sw-1	msk-pavlovskaya-baisaev-mc-1	DHCP		
	39.475	msk-pavlovskaya-baisaev-mc-1	msk-donskaya-baisaev-mc-1	DHCP		

Рис. 2.9: Отслеживание пакетов ICMP в режиме симуляции (mail) (движение пакетов происходит через коммутатор msk-donskaya-baisaev-sw-2).

На коммутаторе msk-donskaya-baisaev-sw-2 посмотрим состояние протокола STP для vlan 3 (указывается, что данное устройство является корневым (строка This bridge is the root)) (рис. 2.10)

Рис. 2.10: Просмотр на коммутаторе msk-donskaya-baisaev-sw-2 состояния протокола STP для vlan 3 (указывается, что данное устройство является корневым (This bridge is the root)).

В качестве корневого коммутатора STP настроим коммутатор msk-donskayabaisaev-sw-1 (рис. 2.11)

Рис. 2.11: Настройка в качестве корневого коммутатора STP коммутатора msk-donskaya-baisaev-sw-1.

Настроим режим Portfast на тех интерфейсах коммутаторов, к которым подключены сервера (рис. 2.12), (рис. 2.13)

Настройка режима Portfast на интерфейсах коммутатора msk-donskaya-baisaev-sw-2.

Рис. 2.12: Настройка режима Portfast на интерфейсах коммутатора msk-donskayabaisaev-sw-2.

Настройка режима Portfast на интерфейсах коммутатора msk-donskaya-baisaev-sw-3.

Рис. 2.13: Настройка режима Portfast на интерфейсах коммутатора msk-donskayabaisaev-sw-3.

Теперь изучим отказоустойчивость протокола STP и время восстановления

соединения при переключении на резервное соединение. Для этого используем команду ping -n 1000 mail.donskaya.rudn.ru на хосте dk-donskaya-1, а разрыв соединения обеспечим переводом соответствующего интерфейса коммутатора в состояние shutdown (рис. 2.14), (рис. 2.15)

Рис. 2.14: Изучение отказоустойчивости протокола STP и времени восстановления соединения при переключении на резервное соединение.

Рис. 2.15: Изучение отказоустойчивости протокола STP и времени восстановления соединения при переключении на резервное соединение.

Далее переключим коммутаторы в режим работы по протоколу Rapid PVST+ (рис. 2.16)

Рис. 2.16: Переключение коммутаторов в режим работы по протоколу Rapid PVST+ (на примере msk-donskaya-baisaev-sw-1).

Изучим отказоустойчивость протокола Rapid PVST+ и время восстановления соединения при переключении на резервное соединение (рис. 2.17), (рис. 2.18)

Рис. 2.17: Изучение отказоустойчивости протокола Rapid PVST+ и времени восстановления соединения при переключении на резервное соединение.

Рис. 2.18: Изучение отказоустойчивости протокола Rapid PVST+ и времени восстановления соединения при переключении на резервное соединение.

Сформируем агрегированное соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-baisaev-sw-1 и msk-donskaya-baisaev-sw-4 (рис. 2.19), (рис. 2.20), (рис. 2.21)

Рис. 2.19: Формирование агрегированного соединение интерфейсов Fa0/20 — Fa0/23 между коммутаторами msk-donskaya-baisaev-sw-1 и msk-donskaya-baisaev-sw-4.

Рис. 2.20: Формирование агрегированного соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-baisaev-sw-1 и msk-donskaya-baisaev-sw-4.

Рис. 2.21: Формирование агрегированного соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-baisaev-sw-1 и msk-donskaya-baisaev-sw-4.

3 Вывод

В ходе выполнения лабораторной работы мы изучили возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

3.1 Контрольные вопросы

- Какую информацию можно получить, воспользовавшись командой определения состояния протокола STP для VLAN (на корневом и не на корневом устройстве)? Приведите примеры вывода подобной информации на устройствах
 - VLAN... // Homep VLAN STP ... // Тип протокола Root ID/Bridge ID // Ближайший коммутатор/Текущий коммутатор Priority ... // Приоритет Address ... // MAC-адрес Cost ... // «Затраты» до этого коммутатора Port ... // Порт Hello Time ... Max Age ... Forward Delay ... Aging Time ... // Время работы STP // Свойства портов
- При помощи какой команды можно узнать, в каком режиме, STP или Rapid PVST+, работает устройство? Приведите примеры вывода подобной информации на устройствах

sh ru

3. Для чего и в каких случаях нужно настраивать режим Portfast? -

Он позволяет сразу включать выделенные порты, поскольку они не подключены к коммутаторам и не участвуют во включении STP.

4. В чем состоит принцип работы агрегированного интерфейса? Для чего он используется? -

Он объединяет параллельные каналы для увеличения пропускной способности, а также не теряет соединение при обрыве одного из каналов, перенаправляя трафик.

5. В чём принципиальные отличия при использовании протоколов LACP (Link Aggregation Control Protocol), PAgP (Port Aggregation Protocol) и статического агрегирования без использования протоколов? -

LACP общий стандарт IEEE, PAgP — локальный протокол Cisco. Для них обязательна настройка сторон (активная, пассивная, авто). При статическом агрегировании коммутатор обрабатывает данные как с магистрали, даже если она не настроена на другой стороне.

6. При помощи каких команд можно узнать состояние агрегированного канала EtherChannel? -

show etherchannel