

ARC1 - Cours n°6 CIRCUITS COMBINATOIRES

A. CIRCUITS LOGIQUES

- 1. Correspondance logique / électrique
- 2. Divers types de broches (Alimentation, entrées, sorties)
- 3. Sorties normales et sorties 3 états
- 4. Assemblage de circuits logiques (règles d'assemblage, cas des 3 états)

B. CIRCUITS COMBINATOIRES

- 1. Comparateurs
- 2. Aiguillage d'information (multiplexeurs/démultiplexeurs)
- 3. Transformation de codes (codeurs/décodeurs)
- 4. Circuits arithmétiques (additionneurs binaires/DCB)

5. Contrôle et calcul de parité (code détecteur erreur)

A. Circuits logiques

<u>CircuitsLogiquesCircuitsTroisEtats</u>

1. Comparateurs

Fonction : comparer les grandeurs de deux quantités binaires ⇒ connaître la relation existant entre les deux quantités (ex : savoir si deux nombres sont égaux)

1.1 Egalité

• Comparer deux nombres de 1 bit : Porte OU EXCLUSIF (sortie vaut 1 si les deux bits sont différents et 0 si égaux)

• Comparer deux nombres de 2 bits : deux portes OU EXCLUSIF, une pour bits de poids faibles et une pour bits de poids fort. Montage à 5 portes :

• Exemple (les portes OU EXCLUSIF suivies des inverseurs sont remplacées par des NON OU EXCLUSIF) – Comparaison des nombres 10 à 10, et 10 à 11.

1.2 Inégalité

- Les CI de comparaison ont souvent 3 sorties :
 - ✓ une sortie Egalité (A=B)
 - ✓ une sortie Supériorité (A>B)
 - ✓ une sortie Infériorité (A<B)

Symbole logique d'un comparateur 4 bits

• Méthode de comparaison :

- ✓ Comparer les bits de poids forts
- ✓ Si inégalité, la relation entre les deux nombres est établie (relations aux autres rangs ignorées)
- ✓ Contient aussi 3 entrées permettant la mise en cascade de plusieurs comparateurs (nombres de plus de 4 bits)
- ✓ Si égalité au rang de poids fort, comparer bits rangs plus faibles

Nombres à comparer				Entrée	s de c	cascade	S	ortie	es
a3,b3	a2,b2	a1,b1	a0,b0	A>B	A <b< td=""><td>A=B</td><td>A>B,</td><td>A < B</td><td>, A=B</td></b<>	A=B	A>B,	A < B	, A=B
a3>b3	X	X	X	X	X	X	1	0	0
a3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b3<>	X	X	X	X	X	X	0	1	0
a3=b3	a2>b2	X	X	X	X	X	1	0	0
a3=b3	a2 <b2< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b2<>	X	X	X	X	X	0	1	0
a3=b3	a2=b2	a1>b1	X	X	X	X	1	0	0
a3=b3	a2=b2	a1 <b1< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b1<>	X	X	X	X	0	1	0
a3=b3	a2=b2	a1=b1	a0>b0	X	X	X	1	0	0
a3=b3	a2=b2	a1=b1	a0 <b0< td=""><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b0<>	X	X	X	0	1	0
a3=b3	a2=b2	a1=b1	a0=b0	1	0	0	1	0	0

a3=b3	a2=b2	a1=b1	a0=b0	0	1	0	0 1 0
a3=b3	a2=b2	a1=b1	a0=b0	0	0	1	0 0 1

- CI de Comparateurs : ex : 74HC85
 - ✓ Exemple : comparaison de deux nombres de 8 bits :

2. Aiguillage d'information (multiplexeur / démultiplexeur)

• Schémas d'aiguillage d'information :

2.1 Multiplexeur

• Fonction : acheminer les informations numériques de plusieurs sources sur une seule ligne (destination commune)

- Plusieurs lignes de données d'entrée / une seule ligne de sortie
- Entrées de sélection de données
- Principe et schéma:

Adresse de sélection	Sortie
CBA	
0 0 0	E_0
0 0 1	E_1
0 1 0	E_2
0 1 1	E_3
100	E_4
101	E_5
110	E_6
111	\mathbf{E}_7

Schéma symbolique d'un multiplexeur à 8 entrées

La sortie S présente l'état de l'entrée E_i sélectionnée par l'adresse CBA₂=i₁₀

$$S = \bar{C}\bar{B}\bar{A}\;E_0 + \bar{C}\bar{B}A\;E_1 + \bar{C}B\bar{A}\;E_2 + \bar{C}BA\;E_3 + C\bar{B}\bar{A}\;E_4 + C\bar{B}A\;E_5 + CB\bar{A}\;E_6 + CBA\;E_7$$

Existe sous forme de Circuit Intégré (CI 74151 par exemple)

Figure extraite JM Bernard et J. Hugon, CENT, ENST.

2.2 Démultiplexeur

- L'information E d'entrée est aiguillée vers une sortie Yi choisie parmi un groupe de sorties, grâce à une adresse CBA
- Yi=E quand CBA₂=i₁₀

Adresse de	Sortie
sélection	
CBA	Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
0 0 0	E XXXXXXX
0 0 1	X E X X X X X
010	X X E X X X X X
0 1 1	X X X E X X X X
100	X X X X E X X X
101	X X X X X E X X
110	X X X X X X E X
111	X X X X X X X E

Schéma symbolique d'un démultiplexeur à 8 sorties

3. Transformation de code

3.1. Notions

- Plusieurs façons de représenter l'information codée / Passer d'un code à l'autre
- Circuits Intégrés pour codes courants
- Exemples :

- a) Circuits qui décodent une combinaison codée en binaire pur, en DCB, en code Gray.. en une combinaison 1 parmi N
 - Une seule sortie du circuit active à la fois
 - Appelés « <u>Décodeurs</u> »
- b) Circuits opération inverse : 1 code 1 parmi N (une seule entrée active parmi N) transformée en code binaire pur
 - Valeur code binaire=rang entrée active
 - Appelés « <u>codeurs</u> » ou « <u>encodeurs</u> »
 - Si plusieurs entrées actives : affectation d'une priorité (encodeur de priorité)
- c) Circuits transforment un code DCB en code n parmi 7 pour représenter visuellement les chiffres de 0 à 9 (« décodeur 7 segments »)

3.2. Fonction de décodage binaire

- Transformer un codage binaire pur en codage 1 parmi N.
- En entrée : un code sur n bits (N=2ⁿ codes possibles) et une entrée de validation
- En sortie : une seule sortie active parmi les N sorties.

• Entrée(s) supplémentaire(s) de validation souvent présente(s)

Exemple : table de vérité du décodeur 74138.

Entrées												
valid	ation	Ac	fres	se			Sorties					
G,	G₂*	С	в	A	Yo	Υ,	Y ₂	Y ₃	Υ.	Y ₅	Ye	Υ,
×	1 X	X	X	X	1	1	1	1	1	1	1	1
1 1 1 1 1 1 1 1 1 1	0 0 0 0	0 0 0 0 1 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	0 1 1 1 1 1 1 1	1 0 1 1 1 1 1 1 1	1 0 1 1 1 1 1 1	1 1 0 1 1 1 1 1	1 1 1 0 1 1 1	1 1 1 1 0 1 1 1	1 1 1 1 1 0 1	1 1 1 1 1 1 0

 $G_2 = G_{2A} + G_{2B}$

(Extrait de J.M. Bernard et J. Hugon, Ed CNET, ENST)

Schéma symbolique et schéma interne du décodeur 74138

(Extrait de J.M. Bernard et J. Hugon, Ed CNET, ENST)

- 3.3. Fonction d'encodage binaire prioritaire Voir TD3
- 3.4. Décodage binaire 7 segments Voir DT3

4. Circuits arithmétiques

4.1. Additionneur binaire

• A chaque rang : addition de 3 bits

<i>a</i> ₃	<i>a</i> 3	<i>a</i> 1	a o	Nombre A
В	<i>b</i> 2	<i>b</i>	<i>b</i> °	Nombre B
S 3	S 2	S	S	Somme $S = A + B$
<i>r</i>	r 2	r 1	r	Retenues

• Etape 1 : addition de 2 bits par un ½ additionneur

A	В	S	R
0	0	0	0
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1	$egin{array}{c} 0 \\ 0 \\ 0 \end{array}$
1	0	1	0
1	1	0	1

D'après la table de vérité, on peut écrire l'expression de la somme S et de la retenue R :

$$S = \overline{AB} + A\overline{B} = A \oplus B$$
$$R = A \cdot B$$

• Etape 2 : addition de 3 bits par un additionneur complet

$A \mid B$	R_{e}	S	R_{s}
------------	---------	---	---------

0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Re				
0	0	1	0	1
1	1	0	1	0

$S = A \oplus B \oplus Re$

Re	A			
0	0	0	1	0
1	0	1	1	1

$$Rs = AB + ARe + BRe$$

Ou encore $Re(A \oplus B) + AB$

 \rightarrow permet de re-utiliser le $A \oplus B$ de S

• Circuit intégré : CI 7483 : additionneur binaire de deux nombres de 4 bits

Exercice d'application n°1 : Additionneur/Soustracteur binaire de deux nombres positifs de 8 bits représentés en Complément à 2, avec les CI 7483.

- Les circuits 7483 sont des additionneurs 4bits.
- Un 7483 a 4 sorties sommes : Σ_1 , Σ_2 , Σ_3 , Σ_4 et une sortie retenue C_4 .
- Pour additionner deux nombres de 8 bits chacun, on utilise deux circuits 7483.
- Supposons que l'on dispose d'un signal de contrôle M qui permet de réaliser :
 - ✓ soit l'addition de A et B (S=A+B)
 - ✓ soit la soustraction (S=B-A)
- Ecriture de A et B en notation Cpt2 :

$$A : (\underline{A_8} A_7 A_6 A_5 A_4 A_3 A_2 A_1)_{Cpt2}$$

 $B_1)_{Cpt2}$

 $B: (B_8 B_7 B_6 B_5 B_4 B_3 B_2$

• Connexion des deux additionneurs 7483

- Soustraction (B-A) obtenue en ajoutant à B le complément à 2 de A. $Cpt_2(A) \!\!=\!\! Cpt_1(A) \!\!+\!\! 1$
- Pour faire B-A, on ajoute à B le Cpt1 de A et une retenue C₀=1

 Additionneur/soustracteur 4 bits

 Schéma complet additionneur/soustracteur 8 bits

$$M \oplus A$$

= $M \overline{A} + \overline{M} A$
= $Cpt_1(A)(siM = 1)$
= $A(siM = 0)$

