Mathematics W4043 Algebraic Number Theory Assignment # 11

Benjamin Church
Worked With Matthew Lerner-Brecher

December 14, 2017

Hindry

6.1 I will prove that $p_k \leq 2^{k-1}$. The argument proceeds by induction. For k = 1, we compare $p_1 = 2$ and $2^{2^{k-1}} = 2^1 = 2$ so $p_1 \leq 2^{2^0}$. Now, assume that, for $i \leq k$, we have $p_i \leq 2^{2^{i-1}}$ then consider,

$$N = p_1 p_2 \cdots p_k - 1 \le 2^{2^0} \cdot 2^{2^1} \cdot 2^{2^2} \cdots 2^{2^{2^{k-1}}} = 2^{2^0 + 2^1 + 2^2 + \dots + 2^{k-1}} = 2^{2^k - 1} \le 2^{2^k}$$

By the fundamental theorem of arithmetic, since N > 1, there is some prime p_r such that $p_r \mid N$ but if $r \leq k$ then $p_r \mid p_1 \cdots p_k$. In that case, $p_r \mid p_1 \cdots p_k - N = 1$ which is impossible. Thus, $r \geq k + 1$ so $p_{k+1} \leq p_r \leq N \leq 2^{2^k}$. Therefore, by induction, $p_k \leq 2^{2^{k-1}}$ for all k.

For x > 2 let k be the least integer such that $2^{2^k} \ge x$ then $2^{2^k} \ge x \ge 2^{2^{k-1}} \ge p_k$. We choose x > 2 such that k > 1. Therefore, the first k primes are all less than x and therefore,

$$\pi(x) \ge k = \log\log 2^{2^k} \ge \log_2\log_2 x \ge \log\log x$$

6.4 Let 1 be the function 1(x) = 1. Then, consider the function $\mu * 1$. Because both μ and 1 are multiplicative, thus the function $\mu * 1$ is as well. Therefore, we must only consider its values at prime powers. Because the only square-free divisors of p^k are 1 and p (for k > 0) then,

$$(\mu * 1)(p^k) = \sum_{d|p^k} \mu(d) 1(\frac{p^k}{d}) = \mu(1) + \mu(p) = 1 - 1 = 0$$

and likewise, the only divisor of 1 is 1 so $(\mu * 1)(1) = \mu(1) = 1$. Thus, if n > 1 then n is divisible by some prime power (with k > 0) so we can write $n = p^k m$ with $(p^k, m) = 1$. Thus, $(\mu * 1)(n) = (\mu * 1)(p^k) \cdot (\mu * 1)(m) = 0$. Therefore $(\mu * 1)(n) = 0$ for n > 1 and $(\mu * 1)(1) = 1$ so $\mu * 1 = \delta$.

Next, we show that * is an assoicative operation. Let $D_3(n) = \{(a, b, c) \in \mathbb{N}^3 \mid abc = n\}$. Consider,

$$((f*g)*h)(n) = \sum_{d|n} (f*g)(d)h(\frac{n}{d}) = \sum_{d|n} \sum_{d'|d} f(d')g(\frac{d}{d'})h(\frac{n}{d}) = \sum_{(a,b,c) \in D_3(n)} f(a)g(b)h(c)$$

because $d' \cdot \frac{d}{d'} \cdot \frac{n}{d} = n$ so $(d', \frac{d}{d'}, \frac{n}{d}) \in D_3(n)$ and given $(a, b, c) \in D_3(n)$ we let d' = a and d = ab so $b = \frac{d}{d'}$ and $c = \frac{n}{ab} = \frac{n}{d}$. Likewise,

$$(f*(g*h))(n) = \sum_{d|n} f(d)(g*h)(\frac{n}{d}) = \sum_{d|n} \sum_{d'|d} f(d)g(d')h(\frac{n}{d'\cdot d}) = \sum_{(a,b,c)\in D_3(n)} f(a)g(b)h(c)$$

because $d \cdot d' \frac{n}{d' \cdot d} = n$ so $(d, d', \frac{n}{d' \cdot d}) \in D_3(n)$ and given $(a, b, c) \in D_3(n)$ we let d = a and d' = b so $c = \frac{n}{ab} = \frac{n}{d' \cdot d}$. Therefore, (f * g) * h = f * (g * h).

Finally, suppose that,

$$g(n) = \sum_{d|n} f(d) = (1 * f)(n)$$

Then, $\mu * g = \mu * (1 * f) = (\mu * 1) * f = \delta * f$ and

$$(\delta * f)(n) = \sum_{d|n} \delta(d) f(\frac{n}{d}) = \delta(1) f(n) = f(n)$$

therefore,

$$(\mu * g)(n) = \sum_{d|n} \mu(d)g(\frac{n}{d}) = (\delta * f)(n) = f(n)$$

- 6.6 Let χ be a nontrivial Dirichlet character modulo N.
 - (a) We make use of the taylor series for the logarithm,

$$-\log(1-x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$

which converges on the disk minus one point, $|x| \le 1$ and $x \ne 1$. Thus, take $x = e^{i\theta}$ for $\theta \in (0, 2\pi)$ so that $|x| \le 1$ and $x \ne 1$. Therefore,

$$-\log(1 - e^{i\theta}) = \sum_{n=1}^{\infty} \frac{(e^{i\theta})^n}{n} = \sum_{n=1}^{\infty} \frac{e^{in\theta}}{n} = L(\theta)$$

We can rewrite this expression as,

$$L(\theta) = -\log(1 - e^{i\theta}) = -\log(-2ie^{i\theta/2}\sin(\theta/2)) = -\log(2\sin(\theta/2)) - \log(-ie^{i\theta/2})$$
$$= -\log(2\sin(\theta/2)) - \log(e^{-i\frac{\pi}{2} + i\frac{\theta}{2}}) = -\log(2\sin(\theta/2)) + i\left(\frac{\pi}{2} - \frac{\theta}{2}\right)$$

(b) The formula given,

$$\chi(a) = G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \exp\left(\frac{2\pi i a x}{N}\right)$$

where the Gauss sum G of χ is given by

$$G(\chi) = \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \chi(x) \exp\left(\frac{2\pi i x}{N}\right)$$

only holds in general if (a, N) = 1. Suppose that (a, N) = 1 then $a \in (\mathbb{Z}/N\mathbb{Z})^{\times}$. Because $\chi(a) = 0$ if and only if $a \notin (\mathbb{Z}/N\mathbb{Z})^{\times}$ then we can replace the sum over $\mathbb{Z}/N\mathbb{Z}$ with a sum over $(\mathbb{Z}/N\mathbb{Z})^{\times}$ in the Gauss sum. That is,

$$\chi(a)G(\bar{\chi}) = \chi(a) \sum_{x \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \bar{\chi}(x) \exp\left(\frac{2\pi i x}{N}\right) = \sum_{x \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \bar{\chi}(a^{-1})\bar{\chi}(x) \exp\left(\frac{2\pi i x}{N}\right)$$
$$= \sum_{x \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \bar{\chi}(a^{-1}x) \exp\left(\frac{2\pi i x}{N}\right) = \sum_{y \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \bar{\chi}(y) \exp\left(\frac{2\pi i a y}{N}\right)$$

where $y = a^{-1}x$ and the sum runs over all $(\mathbb{Z}/N\mathbb{Z})^{\times}$ because $a \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ so multiplication by a^{-1} is simply a permutation of the group. Relabeling the summation variable,

$$\chi(a) = G(\bar{\chi})^{-1} \sum_{x \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \bar{\chi}(x) \exp\left(\frac{2\pi i a x}{N}\right) = G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \exp\left(\frac{2\pi i a x}{N}\right)$$

If N is prime then this formula holds for all $a \in \mathbb{Z}/N\mathbb{Z}$ because the only nonunit is a = 0 for which the formula reduces to,

$$\chi(a) = G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) = 0$$

which is in fact true because $\chi(a) = 0$ for all nonunits of $\mathbb{Z}/N\mathbb{Z}$.

(c) Now consider the Dirichlet L function $L(s,\chi)$ evaluated at s=1

$$L(s = 1, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \sum_{n=1}^{\infty} \frac{\chi(n)}{n}$$

Now applying the Gauss sum formula from above,

$$L(1,\chi) = \sum_{n=1}^{\infty} n^{-1} G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \exp\left(\frac{2\pi i n x}{N}\right) = G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \sum_{n=1}^{\infty} n^{-1} \exp\left(\frac{2\pi i n x}{N}\right)$$

Due to the subtlety of part (b) only generally holding for nonunits when N is prime, this formula also only holds in general for prime N. Now applying part (a),

$$L(1,\chi) = G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \left[-\log\left(2\sin\left(\frac{\pi x}{N}\right)\right) + i\left(\frac{\pi}{2} - \left(\frac{\pi x}{N}\right)\right) \right]$$

$$= -G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \left[\log\left(\sin\left(\frac{\pi x}{N}\right)\right) + \log 2\right] + iG(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \left(\frac{\pi}{2} - \left(\frac{\pi x}{N}\right)\right) + \log 2$$

using the fact that any nontrivial character satsife is, $\sum_{x \in \mathbb{Z}/N\mathbb{Z}} \chi(x) = 0$, we conclude that,

$$L(1,\chi) = -G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \log \left(\sin \left(\frac{\pi x}{N} \right) \right) - \frac{i\pi}{NG(\bar{\chi})} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) x$$

Suppose χ is an even character then clearly $\bar{\chi}$ is also an even character. Then, $\chi(x)x$ is an odd function so the terms $\bar{\chi}(x)x$ and $\bar{\chi}(-x)(-x)$ cancel. Futhermore, because N is a

prime and therefore odd (the case N=2 has no nontrivial characters), only 0 is its own additive inverse since $x \equiv -x \pmod{p} \implies 2x \equiv 0 \pmod{p} \implies p \mid 2x \implies p \mid x$ so the sum,

$$\sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x)x = 0$$

Therefore, for an even character χ ,

$$L(1,\chi) = -G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \log \left(\sin \left(\frac{\pi x}{N} \right) \right)$$

If χ is an odd character (so $\bar{\chi}$ is odd), then since the sin function is even about $\frac{\pi}{2}$, we can pair the terms in the first sum. The term, $\log\left(\sin\left(\frac{\pi x}{N}\right)\right) = \log\left(\sin\left(\frac{\pi(N-x)}{N}\right)\right)$ and $\bar{\chi}(N-x) = \bar{\chi}(-x) = -\bar{\chi}(x)$. Therefore,

$$\bar{\chi}(x)\log\left(\sin\left(\frac{\pi x}{N}\right)\right) + \bar{\chi}(N-x)\log\left(\sin\left(\frac{\pi(N-x)}{N}\right)\right) = 0$$

again, because N is odd, I can pair the terms in the sum like this without double counting (because $N - x \neq x$). Therefore,

$$\sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \log \left(\sin \left(\frac{\pi x}{N} \right) \right) = 0$$

so for an odd character, the entire expression for $L(1,\chi)$ reduces to,

$$L(1,\chi) = -\frac{i\pi}{NG(\bar{\chi})} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x)x$$

(d) First of all, for a character modulo 4 the above expressions do not necessarily hold because 4 is not prime and the above results rely upon N being prime. Second of all, for the character modulo 4 such that $\chi(-1) = -1$ the given value is simply wrong,

$$L(1,\chi) \neq \frac{\pi}{2\sqrt{2}}$$

this is easily checked directly from the definition because,

$$L(1,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n} = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \arctan(1) = \frac{\pi}{4}$$

since $\chi(n) = 0$ for odd n and $\chi(2k+1) = (-1)^k$.

Next, let χ' be an even nontrivial character modulo 5 such that $\chi'(2) = \chi'(3) = -1$. Because 5 is prime we can apply the above results to conclude that,

$$\begin{split} L(1,\chi) &= -G(\bar{\chi})^{-1} \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \log \left(\sin \left(\frac{\pi x}{N} \right) \right) \\ &= -G(\bar{\chi})^{-1} \left[\log \left(\sin \left(\frac{\pi}{5} \right) \right) - \log \left(\sin \left(\frac{2\pi}{5} \right) \right) - \log \left(\sin \left(\frac{3\pi}{5} \right) \right) + \log \left(\sin \left(\frac{4\pi}{5} \right) \right) \right] \\ &= -G(\bar{\chi})^{-1} \log \left(\frac{\sin \left(\frac{\pi}{5} \right) \sin \left(\frac{4\pi}{5} \right)}{\sin \left(\frac{2\pi}{5} \right) \sin \left(\frac{3\pi}{5} \right)} \right) \end{split}$$

Also,

$$G(\bar{\chi}) = \sum_{x \in \mathbb{Z}/N\mathbb{Z}} \bar{\chi}(x) \exp\left(\frac{2\pi i x}{N}\right) = e^{i\frac{2\pi}{5}} - e^{i\frac{4\pi}{5}} - e^{i\frac{6\pi}{5}} + e^{i\frac{8\pi}{5}} = \sqrt{5}$$

So our final answer is,

$$L(1,\chi) = -\frac{1}{\sqrt{5}} \log \left(\frac{\sin\left(\frac{\pi}{5}\right) \sin\left(\frac{4\pi}{5}\right)}{\sin\left(\frac{2\pi}{5}\right) \sin\left(\frac{3\pi}{5}\right)} \right) = \frac{1}{\sqrt{5}} \log \left(\frac{\sin\left(\frac{2\pi}{5}\right) \sin\left(\frac{3\pi}{5}\right)}{\sin\left(\frac{\pi}{5}\right) \sin\left(\frac{4\pi}{5}\right)} \right)$$

By the way,

$$\eta = \frac{\sin\left(\frac{2\pi}{5}\right)\sin\left(\frac{3\pi}{5}\right)}{\sin\left(\frac{\pi}{5}\right)\sin\left(\frac{4\pi}{5}\right)} = \frac{3+\sqrt{5}}{2} \neq \frac{1+\sqrt{5}}{2}$$

but whatever.

Part II

Let K be a number field and $\chi: CL(K) \to \mathbb{C}^{\times}$ a homomorphism.

- 1. Since Cl(K) is a finite group its image under χ is also a finite group in \mathbb{C}^{\times} . Thus, by Lagrange's theorem, $\chi(Cl(K))$ has an exponent. Therefore, for some $n \in \mathbb{N}$ we must have $\chi(\mathfrak{a})^n = 1$ so $|\chi(\mathfrak{a})| = 1$.
- 2. Define,

$$L(s,\chi) = \sum_{\mathfrak{a} \subset \mathcal{O}_K} \frac{\chi(\mathfrak{a})}{\mathcal{N}(\mathfrak{a})^s}$$

Then, consider the sum of the absolute values with $\sigma = \text{Re}(s)$,

$$\sum_{\mathfrak{a}\subset\mathcal{O}_K}\left|\frac{\chi(\mathfrak{a})}{\mathrm{N}(\mathfrak{a})^s}\right|=\sum_{\mathfrak{a}\subset\mathcal{O}_K}\frac{|\chi(\mathfrak{a})|}{\mathrm{N}(\mathfrak{a})^\sigma}=\sum_{\mathfrak{a}\subset\mathcal{O}_K}\frac{1}{\mathrm{N}(\mathfrak{a})^\sigma}=\zeta_K(\sigma)$$

which we proved converges for $\text{Re}(s) = \sigma > 1$. Therefore, $L(s,\chi)$ converges absolutly for Re(s) > 1.

We can rewrite this function as,

$$L(s,\chi) = \sum_{\mathfrak{a} \subset \mathcal{O}_K} \frac{\chi(\mathfrak{a})}{\mathcal{N}(\mathfrak{a})^s} = \sum_{n=1}^{\infty} \frac{Y(n)}{n^s}$$

where $Y(n) = \sum_{N(\mathfrak{a})=n} \chi(\mathfrak{a})$ which exists because there are only a finite number of ideals of a given norm. This fact holds because any ideal of norm n is a product of prime ideas with norms dividing n. However, each of these primes lies above a rational prime dividing the norm of the prime ideal. Since there is a finite set of rational primes dividing n and each prime has a finite factorization in ideals, there are finitly many possible combinations of prime ideas to form an ideal of norm n. Now we apply Abel's summation formula to $L(s,\chi)$.

$$L(s,\chi,N) = \sum_{n=1}^{N} \frac{Y(n)}{n^s} = A(N) \frac{1}{N^s} - \int_{1}^{N} A(x) \left(\frac{1}{x^s}\right)' dx = A(n) \frac{1}{n^s} + \int_{1}^{N} A(x) \frac{s}{x^{s+1}} dx$$

where $A(x) = \sum_{n \le x} Y(n)$. If A(x) is a bounded function, then $L(s, \chi) = \lim_{N \to \infty} L(s, \chi, N)$ is convergent for Re(s) > 0 because then the leading term goes to zero,

$$\lim_{N \to \infty} A(N) \frac{1}{N^s} = 0$$

because A(N) is bounded and N^s is unbounded. Also, the integral term in $L(s,\chi)$ is also convergent since,

$$\int_{1}^{\infty} \frac{s}{x^{s+1}} \mathrm{d}x = -\left[\frac{1}{x^{s}}\right]_{1}^{\infty} = 1$$

is convergent and the function A(x) is bounded. Therefore, for $L(s,\chi)$ to be convergent on the half-plane Re(s) > 0 we require the function,

$$A(x) = \sum_{n \leq x} Y(n) = \sum_{n \leq x} \sum_{\mathcal{N}(\mathfrak{a}) = n} \chi(\mathfrak{a}) = \sum_{\mathcal{N}(\mathfrak{a}) \leq x} \chi(\mathfrak{a})$$

to be bounded. In particular, this requires that $\chi: Cl(K) \to \mathbb{C}$ be a nontrivial homomorphism which clearly requires Cl(K) to be a nontrivial group. Therefore, it is a necessary condition that \mathcal{O}_K have a nontrivial class group and therefore not be a PID.

3. Let I^S be the set of ideals not divisible by any ideal of S. Now define,

$$L^{S}(s,\chi) = \sum_{\mathfrak{a} \in L^{S}} \frac{\chi(\mathfrak{a})}{\mathcal{N}(\mathfrak{a})^{s}}$$

by Dedekind prime factorization,

$$L^{S}(s,\chi) = \sum_{r\geq 0} \sum_{(k_{1},\cdots,k_{r})\in(\mathbb{Z}^{+})^{r}} \sum_{\mathfrak{p}_{i}\notin S} \frac{\chi(\mathfrak{p}_{1}^{k_{1}}\cdots\mathfrak{p}_{r}^{k_{r}})}{\mathrm{N}(\mathfrak{p}_{1}^{k_{1}}\cdots\mathfrak{p}_{r}^{k_{r}})^{s}} = \sum_{r\geq 0} \sum_{(k_{1},\cdots,k_{r})\in(\mathbb{Z}^{+})^{r}} \sum_{\mathfrak{p}_{i}\notin S} \prod_{i=1}^{r} \frac{\chi(\mathfrak{p}_{1})^{k_{i}}}{\mathrm{N}(\mathfrak{p}_{1})^{s\cdot k_{i}}}$$

$$= \prod_{\mathfrak{p}\notin S} \sum_{k=0}^{\infty} \frac{\chi(\mathfrak{p})^{k_{i}}}{\mathrm{N}(\mathfrak{p})^{s\cdot k_{i}}} = \prod_{\mathfrak{p}\notin S} \left(1 - \chi(\mathfrak{p})\mathrm{N}(\mathfrak{p})^{-s}\right)^{-1}$$

$$= \prod_{\mathfrak{p}\in S} \left(1 - \chi(\mathfrak{p})\mathrm{N}(\mathfrak{p})^{-s}\right) \prod_{\mathfrak{p}\subset\mathcal{O}_{K}} \left(1 - \chi(\mathfrak{p})\mathrm{N}(\mathfrak{p})^{-s}\right)^{-1} = \prod_{\mathfrak{p}\in S} \left(1 - \chi(\mathfrak{p})\mathrm{N}(\mathfrak{p})^{-s}\right) L(s,\chi)$$

In the region on which $L(s,\chi)$ converges absolutly, $L(s,\chi)$ cannot be zero because convergence of the Euler product requires convergence of $\log L(s,\chi)$ which implies that $L(s,\chi)$ cannot be zero. Futhermore, $|\chi(\mathfrak{p})| = 1$ and $|\mathcal{N}(\mathfrak{p})^{-s}| < 1$ because $\mathcal{N}(\mathfrak{p}) > 1$. Therefore, $|\chi(\mathfrak{p})\mathcal{N}(\mathfrak{p})^{-s}| < 1$ so $1 - \chi(\mathfrak{p})\mathcal{N}(\mathfrak{p})^{-s} \neq 0$. This means that neither of the terms in the factorization of $L^S(s,\chi)$ can be zero so there are no obvious zeros for $\mathrm{Rs}(s) > 1$.