

Modello relazionale e algebra relazionale

Algebra relazionale

Algebra relazionale

- ∑ Selezione e proiezione
- Natural join, theta-join e semi-join
- Outer join
- □ Unione e intersezione
- □ Differenza e antijoin
- □ Divisione e altri operatori

Algebra relazionale

- Definisce un insieme di operatori che operano su relazioni e producono come risultato una relazione
- □ Gode della proprietà di chiusura
 - il risultato di qualunque operazione algebrica su relazioni è a sua volta una relazione

Operatori dell'algebra relazionale

- Operatori unari
 - selezione (σ)
 - proiezione (π)
- Operatori binari
 - prodotto cartesiano (x)
 - join (⋈)
 - **●** unione (∪)
 - intersezione (∩)
 - differenza (-)
 - divisione (/)

Operatori dell'algebra relazionale

- Operatori insiemistici
 - unione (∪)
 - intersezione (∩)
 - differenza (-)
 - prodotto cartesiano (x)
- Operatori relazionali
 - selezione (σ)
 - proiezione (π)
 - join (⋈)
 - divisione (/)

Relazioni d'esempio

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Selezione

- □ La selezione estrae un sottoinsieme "orizzontale"
 della relazione
 - opera una decomposizione orizzontale della relazione

Selezione: esempio

Trovare i corsi tenuti nel secondo semestre

Selezione: esempio

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Codice	NomeCorso	Semestre	MatrDocente
M4880	Sistemi digitali	2	D104
F0410	Basi di dati	2	D102

Selezione: definizione

$$R = \sigma_p A$$

- □ La selezione genera una relazione R
 - avente lo stesso schema di A
 - contenente tutte le tuple della relazione A per cui è vero il predicato p
- ∑ Il predicato p è un'espressione booleana (operatori ∧,∨,¬) di espressioni di confronto tra attributi o tra attributi e costanti
 - p: Città='Torino' ∧ Età>18
 - p: DataRestituzione>DataConsegna+10

Selezione: esempio

Trovare i corsi tenuti nel secondo semestre

$$R = \sigma_{Semestre=2} Corsi$$

Corsi

Codice	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Proiezione

- □ La proiezione estrae un sottoinsieme "verticale"
 della relazione
 - opera una decomposizione verticale della relazione

Proiezione: esempio (n. 1)

□ Trovare il nome dei docenti

Proiezione: esempio (n. 1)

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

R

NomeDoc
Verdi
Neri
Bianchi

Proiezione: definizione

$$R = \pi_I A$$

- De La proiezione genera una relazione R
 - avente come schema la lista di attributi L (sottoinsieme dello schema di A)
 - contenente tutte le tuple presenti in A

Proiezione: esempio (n. 1)

□ Trovare il nome dei docenti

$$R = \pi_{NomeDoc}$$
Docenti

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Proiezione: esempio (n. 2)

□ Trovare i nomi dei dipartimenti in cui è presente almeno un docente

Proiezione: esempio (n. 2)

□ Trovare i nomi dei dipartimenti in cui è presente almeno un docente

$$R = \pi_{Dipartimento}$$
Docenti

Proiezione: esempio (n. 2)

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

R

Dipartimento

Informatica

Elettronica

Proiezione: definizione

$$R = \pi_I A$$

- □ La proiezione genera una relazione R
 - avente come schema la lista di attributi L (sottoinsieme dello schema di A)
 - contenente tutte le tuple presenti in A
- Sono eliminati gli eventuali duplicati dovuti all'esclusione degli attributi non in L
 - se L include una chiave candidata, non vi sono duplicati

□ Selezionare il nome dei corsi nel secondo semestre

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Codice	NomeCorso	Semestre	MatrDocente
M4880	Sistemi digitali	2	D104
F0410	Basi di dati	2	D102

Codice	NomeCorso	Semestre	MatrDocente
M4880	Sistemi digitali	2	D104
F0410	Basi di dati	2	D102

Proiezione

R

NomeCorso

Sistemi digitali

Basi di dati

□ Trovare il nome dei corsi nel secondo semestre

$$R = \pi_{NomeCorso}(\sigma_{Semestre=2}Corsi)$$

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Selezione+proiezione: esempio (corretto?)

 □ Trovare il nome dei corsi nel secondo semestre

$$R = \sigma_{Semestre=2} (\pi_{NomeCorso} Corsi)$$

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente	
M2170	Informatica 1	1	D102	
M4880	Sistemi digitali	2	D104	
F1401	Elettronica	1	D104	
F0410	Basi di dati	2	D102	

Selezione+proiezione: soluzione errata

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Proiezione

NomeCorso

Informatica 1

Sistemi digitali

Elettronica

Basi di dati

Selezione+proiezione: soluzione errata

NomeCorso

Informatica 1

Sistemi digitali

Elettronica

Basi di dati

- D'L'attributo Semestre non esiste più
 - non è più disponibile l'informazione relativa al semestre
 - non si può eseguire l'operazione di selezione

Selezione+proiezione: soluzione errata

 □ Trovare il nome dei corsi nel secondo semestre

$$R = \sigma_{Semestre=2}(\pi_{NomeCorso}Corsi)$$

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Prodotto cartesiano

 □ Il prodotto cartesiano di due relazioni A e B genera tutte le coppie formate da una tupla di A e una tupla di B

☐ Trovare il prodotto cartesiano tra Corsi e Docenti

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento	
D102	Verdi	Informatica	
D105	Neri	Informatica	
D104	Bianchi	Elettronica	

R

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica
M4880	Sistemi digitali	2	D104	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D105	Neri	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D102	Verdi	Informatica
F1401	Elettronica	1	D104	D105	Neri	Informatica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica
F0410	Basi di dati	2	D102	D105	Neri	Informatica
F0410	Basi di dati	2	D102	D104	Bianchi	Elettronica

Prodotto cartesiano: definizione

$$R = A \times B$$

- - avente come schema l'unione degli schemi di A e di B
 - contenente tutte le coppie formate da una tupla di A e una tupla di B
- - commutativo
 - $A \times B = B \times A$
 - associativo
 - $(A \times B) \times C = A \times (B \times C)$

Trovare il prodotto cartesiano tra Corsi e Docenti

 $R = Corsi \times Docenti$

Legame tra attributi

R

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. Matroocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica
M4880	Sistemi digitali	2	D104	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D105	Neri	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D102	Verdi	Informatica
F1401	Elettronica	1	D104	D105	Neri	Informatica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica
F0410	Basi di dati	2	D102	D105	Neri	Informatica
F0410	Basi di dati	2	D102	D104	Bianchi	Elettronica

Join

□ Il join di due relazioni A e B genera tutte le coppie formate da una tupla di A e una tupla di B "semanticamente legate"

Join: esempio

□ Trovare le informazioni sui corsi e sui docenti che li tengono

Join: esempio

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica
M4880	Sistemi digitali	2	D104	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D105	Neri	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D102	Verdi	Informatica
F1401	Elettronica	1	D104	D105	Neri	Informatica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica
F0410	Basi di dati	2	D102	D105	Neri	Informatica
F0410	Basi di dati	2	D102	D104	Bianchi	Elettronica

Join: esempio

R

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica

Nota bene: il docente (D105,Neri,Informatica), che non tiene alcun corso, non compare nel risultato del join

Join: definizione

- □ Il join è un operatore derivato
 - può essere espresso utilizzando gli operatori \times , σ_{p} , π_{L}
- ∑ Il join è definito separatamente perché esprime sinteticamente molte operazioni ricorrenti nelle interrogazioni
- □ Esistono diversi tipi di join
 - natural join
 - theta-join (e il suo sottocaso equi-join)
 - semi-join

Natural join: definizione

 $R = A \bowtie B$

- - avente come schema
 - gli attributi presenti nello schema di A e non presenti nello schema di B
 - gli attributi presenti nello schema di B e non presenti nello schema di A
 - una sola copia degli attributi comuni (con lo stesso nome nello schema di A e di B)
 - contenente tutte le coppie costituite da una tupla di A e una tupla di B per cui il valore degli attributi comuni è uguale

Natural join: proprietà

$$R = A \bowtie B$$

☐ Il natural join è commutativo e associativo

Natural join: esempio

□ Trovare le informazioni sui corsi e sui docenti che li tengono
 R

R = Corsi ⋈ Docenti

Corsi Docenti

R

Corsi.	Corsi.	Corsi.		Docenti.	Docenti.
Codice	NomeCorso	Semestre	MatrDocente	NomeDoc	Diparimento
M2170	Informatica 1	1	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	Verdi	Informatica

Natural join: esempio

R

Corsi.	Corsi. NomeCorso	Corsi. Semestre	MatrDocente	Docenti. NomeDoc	Docenti. Diparimento
M2170	Informatica 1	1	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	Verdi	Informatica

Nota bene: l'attributo comune MatrDocente è presente una volta sola nello schema della relazione risultante R

Theta-join

☐ Il theta-join di due relazioni A e B genera tutte le coppie formate da una tupla di A e una tupla di B che soddisfano una generica "condizione di legame"

□ Trovare la matricola dei docenti che sono titolari di almeno due corsi

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Corsi C1

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Corsi C2

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

□ Trovare la matricola dei docenti che sono titolari di almeno due corsi

p: C1.MatrDocente=C2.MatrDocente \(\cdot C1.Codice <> C2.Codice \)

$$R = \pi_{C1.MatrDocente}((Corsi C1) \bowtie_p (Corsi C2))$$

	Th. 7 (1)							
	Corsi C1. Codice	Corsi C1. NomeCorso	Corsi C1. Semestre	Corsi C1. MatrDocente	Corsi C2. Codice	Corsi C2. NomeCorso	Corsi C2. Semestre	Corsi C2. MatrDocente
	M2170	Informatica 1	1	D102	M2170	Informatica 1	1	D102
	M2170	Informatica 1	1	D102	M4880	Sistemi digitali	2	D104
	M2170	Informatica 1	1	D102	F1401	Elettronica	1	D104
	M2170	Informatica 1	1	D102	F0410	Basi di dati	2	D102
	M4880	Sistemi digitali	2	D104	M2170	Informatica 1	1	D102
	M4880	Sistemi digitali	2	D104	M4880	Sistemi digitali	2	D104
	M4880	Sistemi digitali	2	D104	F1401	Elettronica	1	D104
	M4880	Sistemi digitali	2	D104	F0410	Basi di dati	2	D102
	F1401	Elettronica	1	D104	M2170	Informatica 1	1	D102
	F1401	Elettronica	1	D104	M4880	Sistemi digitali	2	D104
	F1401	Elettronica	1	D104	F1401	Elettronica	1	D104
	F1401	Elettronica	1	D104	F0410	Basi di dati	2	D102
	F0410	Basi di dati	2	D102	M2170	Informatica 1	1	D102
	F0410	Basi di dati	2	D102	M4880	Sistemi digitali	2	D104
	F0410	Basi di dati	2	D102	F1401	Elettronica	1	D104
3	F0410	Basi di dati	2	D102	F0410	Basi di dati	2	D102
/ 1	_							

Corsi C1. Codice	Corsi C1. NomeCorso	Corsi C1. Semestre	Corsi C1. MatrDocente	Corsi C2. Codice	Corsi C2. NomeCorso	Corsi C2. Semestre	Corsi C2. MatrDocente
M2170	Informatica 1	1	D102	F0410	Basi di dati	2	D102
M4880	Sistemi digitali	2	D104	F1401	Elettronica	1	D104
F1401	Elettronica	1	D104	M4880	Sistemi digitali	2	D104
F0410	Basi di dati	2	D102	M2170	Informatica 1	1	D102

Corsi C1. Codice	Corsi C1. NomeCorso	Corsi C1. Semestre	Corsi C1. MatrDocente	Corsi C2. Codice	Corsi C2. NomeCorso	Corsi C2. Semestre	Corsi C2. MatrDocente
M2170	Informatica 1	1	D102	F0410	Basi di dati	2	D102
M4880	Sistemi digitali	2	D104	F1401	Elettronica	1	D104
F1401	Elettronica	1	D104	M4880	Sistemi digitali	2	D104
F0410	Basi di dati	2	D102	M2170	Informatica 1	1	D102

R

Corsi C1.
MatrDocente
D102
D104

Theta-join: definizione

$$R = A \bowtie_{D} B$$

- □ Il theta-join di due relazioni A e B genera una relazione R
 - avente come schema l'unione degli schemi di A e di B
 - contenente tutte le coppie costituite da una tupla di A e una tupla di B per cui è vero il predicato p
- \supset Il predicato p è nella forma X θ Y
 - X è un attributo di A, Y è un attributo di B
 - θ è un operatore di confronto compatibile con i domini di X e di Y
- ☐ Il theta-join è commutativo e associativo

Equi-join: definizione

$$R = A \bowtie_p B$$

- □ Equi-join
 - caso particolare del theta-join in cui θ è l'operatore di uguaglianza (=)

Semi-join

- ☐ Il semi-join di due relazioni A e B seleziona tutte le tuple di A "semanticamente legate" ad almeno una tupla di B
 - le informazioni di B non compaiono nel risultato

☐ Trovare le informazioni relative ai docenti titolari di almeno un corso

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento	Corsi.	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente
D102	Verdi	Informatica	M2170	Informatica 1	1	D102
D102	Verdi	Informatica	M4880	Sistemi digitali	2	D104
D102	Verdi	Informatica	F1401	Elettronica	1	D104
D102	Verdi	Informatica	F0410	Basi di dati	2	D102
D105	Neri	Informatica	M2170	Informatica 1	1	D102
D105	Neri	Informatica	M4880	Sistemi digitali	2	D104
D105	Neri	Informatica	F1401	Elettronica	1	D104
D105	Neri	Informatica	F0410	Basi di dati	2	D102
D104	Bianchi	Elettronica	M2170	Informatica 1	1	D102
D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
D104	Bianchi	Elettronica	F1401	Elettronica	1	D104
D104	Bianchi	Elettronica	F0410	Basi di dati	2	D102

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento	Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente
D102	Verdi	Informatica	M2170	Informatica 1	1	D102
D102	Verdi	Informatica	F0410	Basi di dati	2	D102
D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
D104	Bianchi	Elettronica	F1401	Elettronica	3	D104

R

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
D102	Verdi	Informatica
D104	Bianchi	Elettronica

Semi-join: definizione

$$R = A \bowtie_{p} B$$

- - avente lo stesso schema di A
 - contenente tutte le tuple di A per cui è vero il predicato specificato da p
- ☐ Il predicato p è espresso nella stessa forma del theta-join (confronto tra attributi di A e di B)

Semi-join: proprietà

 □ Il semi-join può essere espresso in funzione del theta-join

•
$$A \bowtie_{p} B = \pi_{schema(A)}(A \bowtie_{p} B)$$

□ Il semi-join *non gode* della proprietà commutativa

□ Trovare le informazioni relative ai docenti titolari di almeno un corso

R=Docenti ⋈_p Corsi

p: Docenti.MatrDocente=Corsi.MatrDocente

R

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
D102	Verdi	Informatica
D104	Bianchi	Elettronica

Outer-join

- - completa con valori nulli le tuple prive di controparte
- Esistono tre tipi di outer-join
 - left: sono completate solo le tuple del primo operando
 - right: sono completate solo le tuple del secondo operando
 - full: sono completate le tuple di entrambi gli operandi

Left outer-join

- - una tupla di A e una di B "semanticamente legate"

+

 una tupla di A "non semanticamente legata" a tuple di B completata con valori nulli per tutti gli attributi di B

Left outer-join: esempio

□ Trovare le informazioni sui docenti e sui corsi che tengono

Left outer-join: esempio

R

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento	Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente
D102	Verdi	Informatica	M2170	Informatica 1	1	D102
D102	Verdi	Informatica	F0410	Basi di dati	2	D102
D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
D104	Bianchi	Elettronica	F1401	Elettronica	1	D104
D105	Neri	Informatica	null	null	null	null

Left outer-join: definizione

$$R = A \bowtie_{D} B$$

- - avente come schema l'unione degli schemi di A e di B
 - contenente le coppie formate da
 - una tupla di A e una tupla di B per cui è vero il predicato p
 - una tupla di A che non è correlata mediante il predicato p a tuple di B completata con valori nulli per tutti gli attributi di B

Il left outer-join *non è* commutativo

Left outer-join: esempio

□ Trovare le informazioni sui docenti e sui corsi che tengono

R = Docenti⊅⊲_pCorsi

R p: Docenti.MatrDocente=Corsi.MatrDocente

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento	Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente
D102	Verdi	Informatica	M2170	Informatica 1	1	D102
D102	Verdi	Informatica	F0410	Basi di dati	2	D102
D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
D104	Bianchi	Elettronica	F1401	Elettronica	1	D104
D105	Neri	Informatica	null	null	null	null

Right outer-join: definizione

$$R = A \bowtie_D B$$

- □ Il right outer-join di due relazioni A e B genera una relazione R
 - avente come schema l'unione degli schemi di A e di B
 - contenente le coppie formate da
 - una tupla di A e una tupla di B per cui è vero il predicato p
 - una tupla di B che non è correlata mediante il predicato p a tuple di A completata con valori nulli per tutti gli attributi di A

Il right outer-join *non è* commutativo

Full outer-join: definizione

$$R = A \bowtie_p B$$

- - avente come schema l'unione degli schemi di A e di B

Full outer-join: definizione

$$R = A \bowtie_{D} B$$

- ☐ Il full outer-join di due relazioni A e B genera una relazione R
 - contenente le coppie formate da
 - una tupla di A e una tupla di B per cui è vero il predicato p
 - una tupla di A che non è correlata mediante il predicato p a tuple di B completata con valori nulli per tutti gli attributi di B
 - una tupla di B che non è correlata mediante il predicato p a tuple di A completata con valori nulli per tutti gli attributi di A

Full outer-join: proprietà

$$R = A \bowtie_p B$$

□ Il full outer-join è commutativo

Unione

 ∠ L'unione di due relazioni A e B seleziona tutte le tuple presenti in almeno una delle due relazioni

Unione: relazioni d'esempio

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

Unione: esempio

☐ Trovare le informazioni relative ai docenti dei corsi di laurea o di master

Unione: esempio

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

Nota bene:
i duplicati sono eliminati

MatrDocente	NomeDoc	Dipartimento	
D102	Verdi	Informatica	
D105	Neri	Informatica	
D104	Bianchi	Elettronica	
D101	Rossi	Elettrica	

Unione: definizione

$$R = A \cup B$$

- ∠ L'unione di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A e B
 - contenente tutte le tuple appartenenti ad A e tutte le tuple appartenenti a B (o a entrambi)
- - le relazioni A e B devono avere lo stesso schema (numero e tipo degli attributi)
- □ Le tuple duplicate sono eliminate
 - L'unione è commutativa e associativa

Unione: esempio

☐ Trovare le informazioni relative ai docenti dei corsi di laurea o di master

-		
MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica
D101	Rossi	Elettrica

Intersezione

 ∠ L'intersezione di due relazioni A e B seleziona tutte le tuple presenti in entrambe le relazioni

Intersezione: esempio

Trovare le informazioni relative ai docenti sia di corsi di laurea, sia di master

Intersezione: esempio

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica

Intersezione: definizione

$$R = A \cap B$$

- ∠ L' intersezione di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A e B
 - contenente tutte le tuple appartenenti sia ad A sia a B
- - le relazioni A e B devono avere lo stesso schema (numero e tipo degli attributi)
- ∠'intersezione è commutativa e associativa

Intersezione: esempio

Trovare le informazioni relative ai docenti sia di corsi di laurea, sia di master

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica

Differenza

 □ La differenza di due relazioni A e B seleziona tutte le tuple presenti esclusivamente in A

Differenza

A-B≠B-A

□ Trovare i docenti di corsi di laurea ma non di master

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica
D104	Bianchi	Elettronica

Differenza: definizione

R = A - B

- □ La differenza di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A e di B
 - contenente tutte le tuple appartenenti ad A che non appartengono a B
- - le relazioni A e B devono avere lo stesso schema (numero e tipo degli attributi)
- La differenza non gode né della proprietà commutativa, né della proprietà associativa

Trovare i docenti di corsi di laurea ma non di master

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica
D104	Bianchi	Elettronica

□ Trovare i docenti di corsi di master ma non di laurea

□ Trovare i docenti di corsi di master ma non di laurea

DocentiMaster

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

MatrDocente	NomeDoc	Dipartimento
D101	Rossi	Elettrica

Trovare Matricola, Nome e Dipartimento dei docenti che non tengono corsi

Trovare Matricola, Nome e Dipartimento dei docenti che non tengono corsi

$$R = Docenti \bowtie ((\pi_{MatrDocente} Docenti) - (\pi_{MatrDocente} Corsi))$$

Docenti

Matricole dei docenti

	<u>MatrDocente</u>	NomeDoc	Dipartimento
Г	D102	Verdi	Informatica
	D105	Neri	Informatica
	D104	Bianchi	Elettronica

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Matricole dei docenti che tengono almeno un corso

MatrDocente
D102
D105
D104

Differenza

MatrDocente

D105

MatrDocente

D102

D104

MatrDocente

D105

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Natural Join

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica

Anti-join

- □ L'anti-join tra due relazioni A e B seleziona tutte le tuple di A "semanticamente non legate" a tuple di B
 - le informazioni di B non compaiono nel risultato

Anti-join: esempio

Trovare Matricola, Nome e Dipartimento dei docenti che non tengono corsi

Anti-join: esempio

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica

Anti-join: definizione

$$R = A \overline{\bowtie}_p B$$

- ∑ L'anti-join di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A
 - contenente tutte le tuple di A per cui non esiste nessuna tupla in B per cui è vero il predicato p
- □ Il predicato p è espresso nella stessa forma del theta-join e del semi-join
- ∠ L'anti-join non gode né della proprietà commutativa, né della proprietà associativa

Anti-join: esempio

Trovare Matricola, Nome e Dipartimento dei docenti che non tengono corsi

 $R = Docenti \bowtie_p Corsi$

p: Docenti.MatrDocente=Corsi.MatrDocente

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica

Divisione: esempio

Trovare gli studenti che hanno superato l'esame di tutti i corsi del primo anno

EsamiSuperati

<u>MatrStudente</u>	<u>CodCorso</u>
S1	C1
S1	C2
S1	C3
S1	C4
S1	C5
S1	C6
S2	C1
S2	C2
S3	C2
S4	C2
S4	C4
S4	C5

CorsiPrimoAnno

<u>CodCorso</u>	

Divisione: esempio (n. 1)

EsamiSuperati

<u>MatrStudente</u>	CodCorso	
<i>S1</i>	<i>C1</i>	
S1	C2	
S1	C3	
S1	C4	
S1	C5	
S1	C6	
<i>S2</i>	<i>C1</i>	
S2	C2	
S3	C2	
S4	C2	
S4	C4	
S4	C5	

CorsiPrimoAnno

CodCorso C1

Divisione: esempio (n. 2)

EsamiSuperati

<u>MatrStudente</u>	CodCorso
S1	C1
<i>S1</i>	<i>C2</i>
S1	C3
<i>S1</i>	<i>C4</i>
S1	C5
S1	C6
S2	C1
S2	C2
S3	C2
<i>S4</i>	<i>C2</i>
<i>S4</i>	<i>C4</i>
S4	C5

CorsiPrimoAnno

<u>CodCorso</u>	
C2	
C4	

Divisione: esempio (n. 3)

EsamiSuperati

<u>MatrStudente</u>	CodCorso
<i>S1</i>	<i>C1</i>
<i>S1</i>	<i>C2</i>
<i>S1</i>	<i>C3</i>
<i>S1</i>	C4
<i>S1</i>	<i>C5</i>
<i>S1</i>	<i>C6</i>
S2	C1
S2	C2
S3	C2
S4	C2
S4	C4
S4	C5

CorsiPrimoAnno

<u>CodCorso</u>	
C1	
C2	
C3	
C4	
C5	
C6	

MatrStudente

S1

Divisione: definizione

$$R = A / B$$

- □ La divisione della relazione A per la relazione B genera una relazione R
 - avente come schema schema(A) schema(B)
 - contenente tutte le tuple di A tali che per ogni tupla (Y:y) presente in B esiste una tupla (X:x, Y:y) in A
- □ La divisione non gode né della proprietà commutativa, né della proprietà associativa

Divisione: esempio

Trovare gli studenti che hanno superato l'esame di tutti i corsi del primo anno

R = EsamiSuperati / CorsiPrimoAnno

Altri operatori

- Sono stati proposti numerosi altri operatori per estendere il potere espressivo dell'algebra relazionale
 - estensione con un nuovo attributo, definito da un'espressione scalare
 - PESO_LORDO=PESO_NETTO+TARA
 - calcolo di funzioni aggregate
 - max, min, avg, count, sum
 - eventualmente con la definizione di sottoinsiemi in cui raggruppare i dati (GROUP BY di SQL)

