1 2 3 4	EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
5	1. An improved apparatus for identifying the existence of viable
6	biological particles from a particle population containing a mixture of biologically
7	viable and biologically inert particles, the improvement comprising:
8	a solid state excitation source wherein said source is a laser diode for
9	emitting a light beam being directed to contact particles of the particle population
10	and having a wavelength above about 320nm which is operative to excite
11	biomolecules contained therein to produce fluorescence;
12	a photon counter for measuring the intensity of fluorescence emitted
13	from each contacted particle and producing a signal indicative thereof; and
14	a microprocessor for comparing each contacted particle's fluorescent
15	intensity signal against predetermined criteria and establishing whether that particle
16	is a biologically viable particle or an inert particle.
17	
18	2. The improved apparatus of claim 1 wherein the laser diode has a
19	wavelength operative to excite biomolecules from the group consisting of NADH and
20	flavinoids.
21	
22	3. The improved apparatus of claim 2 wherein the laser diode has a
23	wavelength in the range of about 320 nm to about 420 nm.
24	
25	4. The improved apparatus of claim 3 wherein the laser diode has a
26	wavelength operative to excite NADH.

1	5. The improved apparatus of claim 4 wherein the laser diode has a
2	wavelength in the range of about 320 nm to about 360 nm.
3	
4	6. The improved apparatus of claim 3 wherein the laser diode has a
5	wavelength operative to excite flavinoids.
6	
7	7. The improved apparatus of claim 6 wherein the laser diode has a
8	wavelength in the range of about 360 nm to about 420 nm.
9	
10	8. The improved apparatus of claim 6 further comprising:
11	means for measuring the size of the contacted particle as indicative of
12	a biological characteristic; and
13	means for establishing the contacted particle as a candidate particle if
14	its size is within the range of particles which are respirable.
15	
16	9. The improved apparatus of claim 8 wherein the size measuring
17	means comprises:
18	a sequencer for directing the particles individually and sequentially
19	along a substantially linear path through air;
20	an instrument for determining the position of each particle in the
21	airstream as a function of time and the particle's time of flight between two points
22	along the linear path so as to establish the particle's size.
23	
24	10. The improved apparatus of claim 1 wherein the laser diode light
25	heam is emitted at a nower of about 8 – 15mW

1	11. The improved apparatus of claim 10 wherein the laser diode has a
2	wavelength operative to excite biomolecules from the group consisting of NADH and
3	flavinoids.
4	
5	12. The improved apparatus of claim 10 wherein the laser diode has a
6	wavelength in the range of about 320 nm to about 420 nm.
7	
8	13. The improved apparatus of claim 12 wherein the laser diode has a
9	wavelength operative to excite NADH.
10	
11	14. The improved apparatus of claim 13 wherein the laser diode has a
12	wavelength in the range of about 320 nm to about 360 nm.
13	
14	15. The improved apparatus of claim 12 wherein the laser diode has a
15	wavelength operative to excite flavinoids.
16	
17	16. The improved apparatus of claim 15 wherein the laser diode has a
18	wavelength in the range of about 360 nm to about 420 nm.
19	
20	17.
21	

1	An improved apparatus for identifying the existence of viable
2	biological particles from a particle population containing a mixture of biologically
3	viable and biologically inert particles, the improvement comprising:
4	a solid state excitation source wherein said source is a laser diode for
5	emitting a light beam being directed to contact particles of the particle population
6	and having a wavelength above about 320nm which is operative to excite
7	biomolecules contained therein to produce fluorescence;
8	means for measuring the intensity of fluorescence emitted from each
9	particle and producing a signal indicative thereof; and
10	means for comparing each particle's fluorescence intensity signal
11	against pre-determined criteria and establishing whether that particle is biologically
12	viable or an inert particle.
13	
14	18. The improved apparatus of claim 17 wherein the intensity
15	measuring means comprise a photon counter.
16	
17	19. The improved apparatus of claim 17 wherein the intensity
18	measuring means comprise a microprocessor.
19	
20	

'	20. A method for identifying the existence of viable biological particles
2	from a particle population containing a mixture of biologically viable and biologically
3	inert particles, the method comprising:
4	providing a solid state excitation source wherein said source is a laser
5	diode for emitting a light beam having a wavelength from about 320nm to 500nm
6	and a detector for measuring fluorescence emission and producing a signal
7	indicative of the intensity thereof;
8	contacting the laser beam and particles of the population so as to
9	excite biomolecules contained in a contacted particle to produce fluorescence;
10	using the detector to measure the intensity of fluorescence from the
11	contacted particle;
12	comparing each particle's fluorescence intensity signal against pre-
13	determined criteria and establishing whether that particle is biologically viable or an
14	inert particle.
15	
16	21. The method of claim 20 further comprising:
17	measuring the size of the contacted particle as a biological
18	characteristic; and
19	establishing the contacted particle as a candidate particle if its size is
20	within the range of particles which are respirable.
21	
22	22. The method of claim 20 wherein the laser diode has a wavelength
23	operative to excite biomolecules from the group consisting of NADH and flavinoids.
24	
25	

7	23. The method of claim 20 wherein the laser diode has a wavelength
2	operative to excite NADH.
3	
4	24. The method of claim 20 wherein the laser diode has a wavelength
5	operative to excite riboflavin.
6	