CLAIMS

- 1. 52. (CANCELLED)
- 53. (CURRENTLY AMENDED) A method of estimating arterial delay and arterial dispersion (t, α, σ) values for outputting blood perfusion indices for a region of interest (ROI) by from operating a computer program on intensity data [[in]] input to a computer comprising:
- a. using a computer to apply applying a first gamma-variate function (GVF) to an arterial input function (AIF_a) using a computer to provide an estimated first model of a vascular transport function h_a(t), wherein for t <
 10 t₁, h_a(t) = 0 and for t ≥ t₁, h_a(t) = 1/σ₁ (t t₁)^{α₁} e^{-(t-t₁)/σ₁}, wherein t₁ is the transit time of a contrast agent from a measured initial said AIF_a to a region of interest (ROI) and σ₁ is an estimating estimate of an initial delay dispersion value of said contrast agent, wherein said σ₁=(t₁)(β₁)/(1-β₁), wherein said β₁ is a known relative dispersion value having a range from 0 to 1;
 - b. using a computer to convolve convolving AIF_a(t) with said $h_a(t)$ with $\alpha_1=0$ using a computer for obtaining an arterial input function AIF₁(t) = AIF_a(t) \otimes $h_a(t)$ with $\alpha_1=0$ at said ROI;
 - c. using a computer to estimate estimating a blood flow rate F_t and a tissue impulse residue function $R_e(t)$ using a computer by deconvolving a concentration curve $C(t) = (F_t/k_H)AIF_t(t) \otimes R_e(t)$, wherein k_H is a hermatocrit hematocrit correction constant having a known value, wherein

20

5

- a tissue transport function $h_e(t)$ is determined by $h_e(t) = -dR_e(t)/dt$;
- d. using a computer to optimize said mean transit time and dispersion (t_2 , α_2 , σ_2) values using a least squares method from an estimated transport function $h_e(t)$; and
- e. using a computer to output inputting said estimated and optimized calculated tissue mean transit time and dispersion (t₂, \alpha_{27}, \sigma_{2}) values from an estimated transport function h₀(t) for input to a simulated transport function h₀(t), wherein a simulated tissue impulse residue function R₀(t) is determined, wherein a simulated concentration curve C₀(t) is fitted to said measured C(t) and quantitative said blood perfusion indices are calculated, wherein each said step is performed by a suitably programmed computer.
- d. determining a simulated transport function $h_s(t) = \frac{1}{A_2} (t t_2)^{\alpha_2} e^{-(t t_2)/\sigma_2}$ when $t \ge t_2$ and $h_s(t) = 0$ when $t < t_2$, wherein $A_2 = \sigma_2^{1 + \alpha_2} \Gamma(1 + \alpha_2)$, wherein said $h_s(t) = \frac{1}{A_2} t^{\alpha_2} e^{-t/\sigma_2}$ when said $t_2 = 0$, or said $h_s(t) = \frac{1}{\sigma_2} e^{-(t t_2)/\sigma_2}$ when said $\alpha_2 = 0$, wherein said α_2 is a dispersion of said α_2 and said α_2 is a mean transit time of said α_2 , wherein when said $\alpha_2 = 0$ a peak height $(PH)=1/\sigma_2$ and a mean transit time $(MTT)=t_2+\sigma_2$ are used to determine said α_2 ;
- e. <u>determining a simulated tissue impulse residual function (IRF)</u> $R_{s}(t) = 1 \int_{0}^{t} h_{s}(\tau) d\tau, \text{ wherein a simulated contrast agent concentration}$ $\underline{C_{s}(t) \text{ is determined by } C_{s}(t) = (F_{t}/k_{H})AIF_{t}(t) \otimes R_{s}(t); \text{ and}}$

5

10

15

fitting said simulated $C_s(t)$ to said C(t) by iteratively minimizing S using a least squares method defined by $S = \sum_t (C(t) - C_s(t))^2$, wherein said iteratively minimizing S comprises reducing the number of adjustable parameters, wherein said adjustable parameters are reduced to five by fixing said $\alpha_1=0$ and said $t_2=0$, or by fixing said $\alpha_1=0$ and said $\alpha_2=0$, and wherein said adjustable parameters are further reduced to four by fixing said relative dispersion $\beta_1=-\alpha_1/(\alpha_1+t_1)$ of said $\underline{h}_e(t)$ resulting in said α_1 dependent on said t_1 ;

wherein each said step is performed by a suitably programmed computer.

10

5

54. (CURRENTLY AMENDED) The method of claim 53, wherein said intensity data is generated by administering a contrast agent to a body lumen of a body during a dynamic imaging scan, wherein said body lumen comprises an artery or <u>a</u> vein, wherein an image response from said contrast agent is recorded to computer data storage in a computer.

15

55. (PREVIOUSLY PRESENTED) The method of claim 53, wherein said C(t) is a temporal concentration of said contrast agent obtained from said intensity data, wherein said intensity data comprises contrast images sequentially acquired from a region in a body, whereby said contrast agent concentration is plotted versus time.

20

56. (CURRENTLY AMENDED) The method of claim 53, wherein said AIFa is

APL-101/US 4/8 Reply 3

based on a measured early arrival contrast agent peak intensity profile from a feeding blood vessel to said ROI.

- 57. (CURRENTLY AMENDED) The method of claim 53, wherein said AIF_a is scaled upward according to a venous input function (VIF), wherein said VIF is based on a measured late arrival—contrast agent peak intensity profile from a large-vein draining from said ROI.
- 58. (PREVIOUSLY PRESENTED) The method of claim 53, wherein said estimated transit time t₁ is the transit time of said contrast agent from a measured initial said AIF_a of said contrast agent C(t) in a body lumen to said ROI, wherein said t₁ is estimated from plots of said AIF_a versus time and said C(t) versus time.
- 15 59. (PREVIOUSLY PRESENTED) The method of claim 53, wherein said $h_a(t)$ is calculated using said estimated transit time t_1 and said estimated dispersion value σ_1 , wherein $h_a(t)$ with α_1 =0 is plotted versus time.

60. - 65. (CANCELED)

20

5

10

66. (CURRENTLY AMENDED) The method of claim 53, wherein said AIF_t(t) is measureable in a small lumen showing a delay relative to said AIF_a(t), wherein optimized values for said σ_1 and said t_1 are determined by fitting said simulated

convolved AIF_t(t) to said measured AIF_t(t), wherein said relative dispersion β_1 is determined and applied to all other said intensity data of said ROI using said β_1 , wherein a more robust fitting process is provided by a reduced number of parameters for optimization.

5

67. (CURRENTLY AMENDED) The method of claim 66, wherein when said relative dispersion β₁ is determined, said vascular transport function h_a(t) is described by a single variable said t₁ with a constant said β₁, wherein a two-step method is used to determine said delay and said dispersion values comprising:

10

a. deriving an initial tissue impulse residue function $R_0(t)$ by deconvolving $C(t) = (F_0/k_H)AIF_a(t) \otimes R_0(t)$ using a model-free singular value decomposition (SVD) deconvolution method, wherein said time delay t_1 is determined by a maximum position of said $R_0(t)$ at R_0 $max(t=t_1)$; and

15

b. determine said AIF₁(t) at an input of said ROI using said $h_a(t)$ with said t_1 and said β_1 held constant, wherein said σ_1 is determined.

20

68. (CURRENTLY AMENDED) The method of claim 67, wherein a value of tissue blood flow F_t and a corrected impulse residue function $R_e(t)$ are obtained by deconvolving $C(t) = (F_t/k_H)AIF_t(t) \otimes R_e(t)$ using said $\frac{SVD \text{ model-free deconvolution}}{R_e(t)} \text{ method, wherein said perfusion indices}$ are determined from a curve of said $R_e(t)$, wherein $MTT = \int_0^\infty R_e(\tau)d\tau$,

5

69. (CURRENTLY AMENDED) The method of claim 53, wherein said contrast agent is in a tissue ROI having a tissue mean transit time τ, wherein a tissue impulse residue function is approximated by the relation R(t >τ) = Ee^{-k(t-τ)} and R(t≤τ) = 1, wherein E is an extraction fraction of said contrast agent in said tissue, wherein k is a constant clearance rate of said contrast agent diffusing from said tissue having a relation k = E*F_t/V_e, wherein V_e_is the volume

fraction of extravascular and extracellular space (EES) in said tissue.

10

70. (CURRENTLY AMENDED) The method of claim 69, wherein said tissue impulse residue function R_s(t) of said simulated concentration curve C_s(t) is replaced by an average impulse residue function that incorporates said contrast agent leaked out of a blood vessel into said tissue and gradually clearing from said tissue, wherein said simulated concentration curve C_s(t) is fitted to said measured C(t) and quantitative said blood perfusion indices are calculated, wherein said E and said V_e are additional parameters optimized with other adjustable parameters using a least squares method.

15