

### Sistemas Inteligentes I

Tema 5. Agentes Lógicos José A. Montenegro Montes

monte@lcc.uma.es

### Resumen

- O Introducción
- O Entorno
- O Lógica
  - O Lógica proposicional
- Fundamentos
- O Demostración Teoremas
- O Lógica Primer Orden

# Introducción

### Agentes lógicos

- O Los humanos conocen hechos, y lo que saben les ayuda a actuar
  - O Los procesos de razonamiento trabajan con representaciones internas del conocimiento
- La Inteligencia Artificial construye <u>agentes basados</u> <u>en el conocimiento</u> que también son capaces de razonar
- O CSPs introduce la idea de representar los estados cómo asignaciones de valores a variables
  - O Permite problemas independiente del dominio y algoritmos más eficientes.

### Agentes lógicos

- O Continuamos con la idea introducida por CSPs
- O Establecemos la lógica cómo una clase general de representaciones para definir agentes basados en el conocimiento (KbA).
- O KbA aceptan tareas que son objetivos descritos de forma explícita.
  - O Pueden aprender nuevos conocimientos sobre el entorno
  - Adaptare a cambios en el entorno modificando su conocimiento

### Agentes basados en Conocimiento

- O Base de conocimiento (KB) es el elemento principal.
  - O Es un conjunto de sentencias (sentences).
- C Lenguaje representación del conocimiento es utilizado para expresar la sentencias, que son afirmaciones sobre el mundo (entorno)
- Axiomas son sentencias que no son derivadas de otras sentencias.
- Procedimiento para añadir y consultar sentencias a la base de conocimiento (TELL y ASK)
  - Operaciones implican **inferencias**, **derivar** nuevas sentencias de antiguas

### Agentes basados en Conocimiento

Funcionamiento agente común, damos una percepción a KB y obtenemos una acción.

function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t))  $action \leftarrow Ask(KB, Make-Action-Query(t))$ Tell(KB, Make-Action-Sentence(action, t))  $t \leftarrow t + 1$ **return** action

### Entorno Wumpus World



- O Cueva con una serie de habitaciones conectados por pasadizos.
- O Bestia (wumpus) está en la cueva esperando comerse a quien entre en la cueva.
- O El agente solo tiene una flecha para disparar a la bestia.
- Algunas habitaciones tienen huecos profundos.
- O Lo único positivo de este entorno es que puedes encontrar oro en algunas habitaciones.



### Medida de rendimiento:

- +1000 Salir de la cueva con oro
- -1000 Caer en un hueco o que el wumpus coma al agente
- -1 Por cada acción realiza
- -10 Por utilizar la flecha
- El juego finaliza cuando el agente muere o cuando el agente sale de la cueva.

### O Entorno:

- Una mapa de 4 x4 cuadrículas
- El agente siempre comienza en la cuadricula [1,1]
- El oro y el wumpus son establecidos de forma aleatoria.
- Cada cuadricula puede ser un hueco con probabilidad 0.2

### O Actuadores:

- Agente puede moverse:
  - Hacia delante
  - Girar 90 a la izquierda
  - Girar 90 a la derecha.
- Choca con una pared no se mueve.
- Acciones:
  - Grab, coger oro que este en la misma posición que el agente.
  - **Shoot**, dispara una flecha en línea directa y la flecha continua hasta matar al wumpus o chocar con una pared.
  - *Climb*, salir de la cueva, pero solamente desde cuadrícula [1,1].

- O Sensores: Cinco sensores:
  - Hedor (stench), en la cuadricula que está el wumpus y en las adyacentes
  - Brisa (breeze), en las casillas adyacentes a un hueco
  - Brillo (glitter), en la casilla donde está el oro
  - Golpe (bump), cuando choca con una pared.
  - Grito (scream), cuando matan al wumpus.

El agente obtiene la información cómo una lista de cinco símbolos. Por ejemplo:

[Stench, Breeze, None, None, None]

El agente debe escoger si salir a salvo con las manos vacías o arriesgarse a recoger el oro. Aprox. 21% entornos el oro está rodeado de huecos.

- O KbA Wumpus para explorar el entorno.
- C Lenguaje informal para representar el conocimiento, 3 escribiendo <u>símbolos</u> en las cuadrículas.
- Inicialmente KB del agente contiene las reglas del entorno y que en la cuadrícula [1,1] 1 esta a salvo.



1

2

3

4

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

O La primera percepción del agente es

[None, None, None, None]

- O Intuimos que las casillas [1,2] y [2,1] no tienen peligro.
- O Son marcadas con OK, y forman parte de la KB del agente.

| 1,4            | 2,4       | 3,4 | 4,4 |
|----------------|-----------|-----|-----|
| 1,3            | 2,3       | 3,3 | 4,3 |
| 1,2<br>OK      | 2,2       | 3,2 | 4,2 |
| 1,1<br>A<br>OK | 2,1<br>OK | 3,1 | 4,1 |

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

- Agente se mueve al [2,1]
  [None, Breeze, None, None, None]
- Tiene que existir un hueco cerca [2,2] o [3,1]
- Agente volvería a una cuadrícula que este a salvo.

| 1,4            | 2,4              | 3,4    | 4,4 |
|----------------|------------------|--------|-----|
| 1,3            | 2,3              | 3,3    | 4,3 |
| 1,2<br>OK      | 2,2 <b>P</b> ?   | 3,2    | 4,2 |
| 1,1<br>V<br>OK | 2,1 A<br>B<br>OK | 3,1 P? | 4,1 |

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

- Agente se mueve al [1,2]

  [Stench, None, None, None, None]
- La nueva percepción hace pensar varias situaciones:
  - Wumpus estará en [1,3] o [2,2] pero [2,2] no puede estar ya que antes no obtuvo información.
  - En el [2,2] no hay un hueco, ya que no recibo la brisa, con lo cual el hueco tiene que estar en 3,1,
  - Y finalmente la casilla [2,2] SAFE

| 1,4             | 2,4        | 3,4    | 4,4 |
|-----------------|------------|--------|-----|
| 1,3 W!          | 2,3        | 3,3    | 4,3 |
| 1,2A<br>S<br>OK | 2,2<br>OK  | 3,2    | 4,2 |
| 1,1<br>V<br>OK  | 2,1 B V OK | 3,1 P! | 4,1 |

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

- Agente se mueve al [2,2] y [2,3] [Stench, Breeze, Glitter, None, None]
- Agente coge el oro y debe volver a casa.
- Agente llega a una conclusión desde la información disponible.
  - Las conclusiones son correctas si la información disponible era correcta

| 1,4               | 2,4 <b>P</b> ?    | 3,4    | 4,4 |
|-------------------|-------------------|--------|-----|
| 1,3 <sub>W!</sub> | 2,3 A<br>S G<br>B | 3,3 P? | 4,3 |
| 1,2 S V           | 2,2<br>V          | 3,2    | 4,2 |
| OK                | OK                |        |     |
| 1,1               | 2,1 B             | 3,1 P! | 4,1 |
| V<br>OK           | V<br>OK           |        | 47  |

- O KB está formada de sentencias.
- O Sintaxis: Define la correcta representación de las sentencias en un lenguaje dado.
  - o x+y=4 sentencia bien formada
  - $\bigcirc$  x4y+= sentencia no cumple sintaxis

- Semántica: Significado de las sentencias. Definen la <u>verdad</u> de cada sentencia dependiendo de un <u>mundo posible (modelo)</u>.
  - x+y=4 es verdad en un mundo donde x e y = 2.
  - O Los posibles modelos son todas las posibles asignaciones a las variables x e y.
  - O Si la sentencia α es verdad en el modelo m,
    - $\circ$  m satisface  $\alpha$  o
    - $\circ$  m es el modelo de  $\alpha$
  - $\circ$  M( $\alpha$ ) el conjunto de todos los modelos de  $\alpha$

### O Semántica:

- $\alpha = \beta$  Consecuencia lógica (infiere) entre sentencias. La idea es que una sentencia "sigue lógicamente" de otra sentencia.
- $\alpha$  se infiere de  $\beta$  sii en todo modelo en el que  $\alpha$  es verdadera,  $\beta$  también es verdadera.

### • Wumpus world:

- El agente no detecta nada en [1,1] y una brisa en [2,1]
- Estas percepciones, junto a las reglas son KB.
- Agente está pensando si las tres casillas [1,2],[2,2] y [3,1] tienen huecos.
- $\circ$  Hay  $2^3=8$  modelos posibles.

| 1,4                | 2,4              | 3,4            | 4,4 |
|--------------------|------------------|----------------|-----|
| 1,3                | 2,3              | 3,3            | 4,3 |
| 1,2<br><b>P</b> k? | 2,2<br>P?        | 3,2            | 4,2 |
| 1,1<br>V<br>OK     | 2,1 A<br>B<br>OK | 3,1 <b>P</b> ? | 4,1 |

- KB es falsa en los modelos que contradicen lo que el agente conoce.
  - KB es falsa en cualquier modelo el cual [1,2] tenga un hueco, ya que no percibimos brisa en el [1,1].
  - O Solo tenemos tres modelos verdaderos.





 $\alpha_1$  = No hay hueco en [1,2]



 $\alpha_2$  = No hay hueco en [2,2]





En cada modelo que KB es verdadero,  $\alpha_1$  es también verdadero, por tanto KB  $=\alpha_1$ : no hay hueco en [1,2]

En algunos modelos KB es verdadero,  $\alpha_2$  es falso, por tanto, KB  $|\neq \alpha_2$ : no podemos determinar si hay hueco en [2,2]

Model Checking: Enumero todos los modelos posibles para verificar que  $\alpha$  es verdad en todos los modelos los cuales KB es verdadero.

### Lógica Proposicional

Sintaxis



### Sintaxis (I)

- O La sintaxis de la lógica proposicional define las fórmulas bien formadas
- Las fórmulas atómicas (también llamadas átomos) consisten de un solo símbolo de proposición: P, Q, Rains,  $W_{13}$ (Wumpus cuadrícula 1,3), ...
  - O Dos símbolos especiales: True y False
- Las fórmulas compuestas se obtienen de fórmulas más sencillas empleando los paréntesis y las conectivas lógicas
- A continuación se presentan las cinco conectivas que usaremos, en <u>orden de precedencia</u>

### Sintaxis (II)

- o (no). Un literal es, o bien una fórmula atómica (literal positivo), o bien su negación (literal negativo)
- Λ (y). Una fórmula cuya conectiva de nivel más alto es Λ, se denomina conjunción
- V (o). Una fórmula cuya conectiva de nivel más alto es V, se denomina disyunción
- $\cap$  (implica). Una fórmula del tipo  $\alpha \to \beta$  se llama implicación, donde  $\alpha$  es la premisa o antecedente, y  $\beta$  es la conclusión o consecuencia
- (si y sólo si). Una fórmula cuya conectiva de nivel más alto es ↔, se denomina bicondicional

### Fundamentos

Semántica



### Semántica (I)

- O La semántica define las reglas para determinar la verdad de una sentencia con respecto a un modelo particular
- En la lógica proposicional, un modelo fija el valor de verdad (verdadero o falso) de todos los símbolos de proposición:

$$m_1 = \{P_{1,2} = \text{false}, P_{2,2} = \text{false}, P_{3,1} = \text{true}\}$$

La semántica debe especificar como calcular el valor de verdad de cualquier sentencia, dado un modelo. Todas las sentencias son construidas mediante sentencia atómicas y cinco conectores.

### Semántica (II)

- O Sentencias atómicas:
  - O True es verdadero en todo modelo, y False es falso en todo modelo
  - El valor de verdad de los demás símbolos lo especifica el modelo, p.ej. en  $m_1 P_{1,2}$  es falso.
- O Sentencias complejas, con subsentencias P y Q en cualquier modelo:
  - $\neg P$  es verdadero sii P es falso en m
  - $\bigcap$   $P \land Q$  es verdadero sii tanto P como Q son verdaderos en m
  - $\cap$   $P \vee Q$  es verdadero sii P o bien Q son verdaderos en m
  - $P \longrightarrow Q$  es verdadero a menos que P sea verdadero y Q sea falso en m
  - $P \leftrightarrow Q$  es verdadero sii  $P \lor Q$  son ambos verdaderos o ambos falsos en M

### Semántica (III)

### Tablas de Verdad

$$\begin{array}{c|ccc} A & B & A \wedge B \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \\ \end{array}$$

$$\begin{array}{c|c} A & \neg A \\ \hline V & F \\ F & V \end{array}$$

$$\begin{array}{c|ccc} A & B & A \rightarrow B \\ \hline V & V & V \\ V & F & F \\ F & V & V \\ F & F & V \end{array}$$

| A | B | $A \leftrightarrow B$ |
|---|---|-----------------------|
| V | V | V                     |
| V | F | F                     |
| F | V | F                     |
| F | F | V                     |

### Semántica (IV)

- O Si una sentencia  $\alpha$  es verdadera en un modelo m, decimos que m satisface  $\alpha$
- $\alpha$  se infiere de  $\alpha$  ( $\alpha = \beta$ ) sii en todo modelo en el que  $\alpha$  es verdadera,  $\beta$  también es verdadera.
- O Una sentencia es válida sii es verdadera en todos los modelos; en tal caso decimos que es una tautología
- O Una sentencia es satisfacible sii es verdadera en algún modelo
- O Una sentencia es insatisfacible si no es satisfacible
- Por último, se cumple que  $\alpha \models \beta$  sii  $(\alpha \land \neg \beta)$  es insatisfacible

### Ejemplo (Ejercicio 1)

O Demuestra que las siguientes fórmulas bien formadas son tautologías:

 $O[P \land (P \rightarrow Q)] \rightarrow Q$ 

| P | Q | $P\Rightarrow Q$ | $P \land (P \Rightarrow Q)$ | $[P \land (P \Rightarrow Q)] \Rightarrow Q$ |
|---|---|------------------|-----------------------------|---------------------------------------------|
| V | V | V                | V                           | V                                           |
| V | F | F                | F                           | V                                           |
| F | V | V                | F                           | V                                           |
| F | F | V                | F                           | V                                           |

$$\bigcirc (P \longrightarrow Q) \longleftrightarrow (\neg Q \longrightarrow \neg P)$$

| P | Q | $\neg Q$ | $\neg P$ | $P \Rightarrow Q$ | $\neg Q \Rightarrow \neg P$ | $(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$ |
|---|---|----------|----------|-------------------|-----------------------------|-----------------------------------------------------------------|
| V | V | F        | F        | V                 | V                           | V                                                               |
| V | F | V        | F        | F                 | F                           | V                                                               |
| F | V | F        | V        | V                 | V                           | V                                                               |
| F | F | V        | V        | V                 | V                           | V                                                               |

### Fundamentos

Base de conocimiento



### Bases de conocimiento

- O Base de conocimientos para Wumpus world:
  - $\bigcap$  P<sub>x,y</sub> es verdad si hay un hueco en [x,y]
  - $W_{x,y}$  es verdad si hay un wumpus en [x,y], vivo o muerto
  - $B_{x,y}$  es verdad si el agente percibe una brisa en [x,y]
  - $S_{x,y}$  es verdad si el agente percibe una brillo en [x,y]
- Queremos saber si no hay hueco en [1,2] ( $\neg P_{1,2}$ )
  - No hay hueco en [1,1]
    - $\cap$   $R_1: \neg P_{1,1}$
  - Hay brisa sii hay un hueco en una cuadrícula vecina. Es necesario realizarlo para cada cuadrícula

    - $\cap$  R<sub>3</sub>: B<sub>2,1</sub>  $\longleftrightarrow$  (P<sub>1,1</sub>  $\vee$  P<sub>2,2</sub> $\vee$  P<sub>3,1</sub>)
  - Las anteriores reglas son verdad en todos los mundos wumpus.
  - Ahora incluimos las situaciones específicas después de visitar las dos primeras cuadrículas:
    - $\cap$  R<sub>4</sub>: ¬B<sub>1.1</sub>
    - $\cap$  R<sub>5</sub>: B<sub>2,1</sub>

### Fundamentos

Procedimiento simple inferencia



#### Procedimiento simple inferencia

- Nuestro objetivo es decidir si KB  $\mid = \alpha$  para alguna sentencia  $\alpha$ .
  - $\bigcap$   $\neg P_{1,2}$  se infiere de nuestra KB.
- Model-checking: Enumerara todos los modelos y verificar que  $\alpha$  es verdadero en cada modelo en el cual KB es verdadero.
  - O 2<sup>7</sup>=128 modelos, en los cuales 3 KB son verdaderos.
  - $\neg P_{1,2}$  son verdaderos en esos 3, por tanto no hay hueco [1,2].
  - $P_{2,2}$  verdadero en dos de los tres, no puedo decir si hay hueco en [2,2]

| B <sub>1,1</sub> | B <sub>2,1</sub> | P <sub>1,1</sub> | P <sub>1,2</sub> | P <sub>2,1</sub> | $P_{2,2}$ | P <sub>3,1</sub> | $R_1$ | $R_2$ | $R_3$ | $R_4$ | $R_5$ | КВ    |
|------------------|------------------|------------------|------------------|------------------|-----------|------------------|-------|-------|-------|-------|-------|-------|
| false            | false            | false            | false            | false            | false     | false            | true  | true  | true  | true  | false | false |
| false            | false            | false            | false            | false            | false     | true             | true  | true  | false | true  | false | false |
|                  |                  |                  |                  |                  |           |                  |       |       |       |       |       |       |
| false            | true             | false            | false            | false            | false     | true             | true  | true  | true  | true  | true  | true  |
| false            | true             | false            | false            | false            | true      | false            | false | true  | true  | true  | true  | true  |
| false            | true             | false            | false            | false            | true      | true             | true  | true  | true  | true  | true  | true  |
|                  |                  |                  |                  |                  |           |                  |       |       |       |       |       |       |



#### Demostración por resolución

- O Una regla de inferencia toma varias sentencias y produce otra sentencias que puede inferirse de ellas
- O Una demostración es una secuencia de sentencias obtenida por aplicación de reglas de inferencia a partir de una KB
- O Sólo consideraremos una regla de inferencia, la regla de resolución
  - O La resolución es correcta, es decir, nunca produce una fórmula que no se infiera de la KB
  - También es completa, es decir, cuando se combina con cualquier algoritmo de búsqueda completo, es capaz de alcanzar cualquier fórmula que pueda deducirse de la KB

#### La regla de inferencia de resolución

La resolución toma dos cláusulas (disyunciones de literales) tales que hay un literal  $l_i$  en la primera cláusula que es la negación de un literal  $m_j$  de la segunda cláusula, o sea,  $l_i$  y  $m_j$  son literales complementarios.

$$C2. \neg R \lor Q$$

C3. 
$$\neg R$$
 Resolver C1 con C2

C2. 
$$\neg P_{1,1} \lor \neg P_{2,2}$$

C3. 
$$P_{3,1} \vee \neg P_{2,2}$$
 Resolver C1 con C2



#### La regla de inferencia de resolución

O Produce una cláusula con todos los literales de las dos cláusulas originales excepto los dos literales complementarios.

$$\frac{l_1 \vee ... \vee l_k, \quad m_1 \vee ... \vee m_n}{l_1 \vee ... \vee l_{i-1} \vee l_{i+1} \vee ... \vee l_k \vee m_1 \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_n}$$

O Las apariciones repetidas de literales son también eliminadas de la cláusula resultante.

$$C1. \neg P \vee Q$$

C3. Q

Resolver C1 con C2



Demostración Teoremas

Forma normal conjuntiva



#### Forma normal conjuntiva

- O La resolución sólo se puede aplicar a cláusulas
- O Una sentencia que es una <u>conjunción</u> de cláusulas se dice que está en forma normal <u>conjuntiva</u> (*conjunctive normal form*, CNF)
- O Toda fórmula de la lógica proposicional es lógicamente equivalente a una conjunción de cláusulas
  - O Un algoritmo para convertir a CNF sería

#### Conversión a CNF

- 1. Eliminar ↔ reemplazando
- 2. Eliminar → reemplazando
  - $\alpha \rightarrow \beta$  por  $\neg \alpha \lor \beta$
- 3. Mover ¬ hacia dentro aplicando repetidamente:
  - $\neg (\neg \alpha) \equiv \alpha$

  - $\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$
- 4. Aplicar la distributividad de V respecto a Λ:



#### **Ejemplos**

```
p \rightarrow ((q \rightarrow r) \lor \neg s);
        \Rightarrow p \longrightarrow ((\neg q \lor r) \lor \neg s);
        = \neg p \lor ((\neg q \lor r) \lor \neg s)
\neg (\neg p \land (q \land \neg (r \land s)));
        = \neg \neg p \lor \neg (q \land \neg (r \land s));
        \exists p \lor (\neg q \lor \neg \neg (r \land s));
        \exists \quad p \lor (\neg q \lor (r \land s));
        \exists p \lor ((\neg q \lor r) \land (\neg q \lor s));
         = (p \lor \neg q \lor r) \land (p \lor \neg q \lor s));
```

#### **Ejemplos**

$$((p \land q) \lor (r \land s)) \lor (\neg q \land (p \lor t))$$

Demostración Teoremas

Un algoritmo de resolución



#### Un algoritmo de resolución

- Nuestro objetivo es demostrar que KB  $\mid = \alpha$ . Lo haremos por reducción al absurdo, o sea, demostraremos que KB  $\land \neg \alpha$  es insatisfacible
  - 1. Primero convertimos KB  $\wedge \neg \alpha$  a CNF
  - 2. Después aplicamos la regla de resolución repetidamente
- O Hay dos posibles resultados:
  - No se <u>pueden añadir más cláusulas</u>, lo que significa que  $\alpha$  no se infiere de KB
  - O Se produce la <u>cláusula vacía</u>, lo que significa que α se infiere de KB

#### Ejemplo

- Queremos saber si no hay hueco en  $[1,2] \neg (P_{1,2})$ 
  - $\cap$  R<sub>1</sub>:  $\neg P_{1,1}$
  - $\cap R_2: B_{1,1} \longleftrightarrow (P_{1,2} \lor P_{2,1})$
  - $R_3: B_{2,1} \longleftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
  - $\cap$  R<sub>4</sub>: ¬B<sub>1,1</sub>
  - $\cap$  R<sub>5</sub>: B<sub>2,1</sub>
- $\begin{array}{lll} \text{O} & \text{KB} = \text{R}_{2} \, \wedge \, \text{R}_{4} = (\text{B}_{1,1} \, \leftrightarrow (\text{P}_{1,2} \, \vee \, \text{P}_{2,1})) \, \wedge \, \neg \text{B}_{1,1} \\ & (\text{B}_{1,1} \, \leftrightarrow (\text{P}_{1,2} \, \vee \, \text{P}_{2,1})) = (\text{B}_{1,1} \, \rightarrow (\text{P}_{1,2} \, \vee \, \text{P}_{2,1})) \, \wedge \, ((\text{P}_{1,2} \, \vee \, \text{P}_{2,1}) \, \wedge \, \text{B}_{1,1}) \\ & (\neg \text{B}_{1,1} \, \vee \, \text{P}_{1,2} \, \vee \, \text{P}_{2,1}) \, \wedge \, (\neg (\text{P}_{1,2} \, \vee \, \text{P}_{2,1}) \, \vee \, \text{B}_{1,1}) \\ & (\neg \text{B}_{1,1} \, \vee \, \text{P}_{1,2} \, \vee \, \text{P}_{2,1}) \, \wedge \, (\neg \text{P}_{1,2} \, \wedge \, \neg \text{P}_{2,1}) \, \vee \, \text{B}_{1,1}) \\ & (\neg \text{B}_{1,1} \, \vee \, \text{P}_{1,2} \, \vee \, \text{P}_{2,1}) \, \wedge \, (\neg \text{P}_{1,2} \, \vee \, \text{B}_{1,1}) \, \wedge \, (\neg \text{P}_{2,1} \, \vee \, \text{B}_{1,1}) \end{array}$
- $\alpha = \neg P_{1,2}$

#### Ejemplo



function PL-RESOLUTION( $KB, \alpha$ ) returns true or false

inputs: KB, the knowledge base, a sentence in propositional logic  $\alpha$ , the query, a sentence in propositional logic

clauses  $\leftarrow$  the set of clauses in the CNF representation of  $KB \land \neg \alpha$   $new \leftarrow \{\ \}$ 

#### loop do

for each pair of clauses  $C_i$ ,  $C_j$  in clauses do  $resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)$ if resolvents contains the empty clause then return true  $new \leftarrow new \cup resolvents$ if  $new \subseteq clauses$  then return false  $clauses \leftarrow clauses \cup new$ 



O Una base de conocimiento sencilla:

- $\cap$  Regla<sub>1</sub>: Wet  $\leftrightarrow$  (Rain  $\vee$  Flooding)
- $\cap$  Regla<sub>2</sub>:  $Hot \leftrightarrow (Summer \lor Sunny \lor Fire)$
- Hecho<sub>1</sub>: ¬Summer
- ∩ Hecho<sub>2</sub>: ¬Wet
- O Hecho<sub>3</sub>: Hot

- Restringimos nuestra KB a Regla<sub>1</sub> y Hecho<sub>2</sub>
  - $\cap$  Regla<sub>1</sub>: Wet  $\leftrightarrow$  (Rain  $\vee$  Flooding)
  - ∩ Hecho<sub>2</sub>: ¬Wet
- O Queremos demostrar  $\alpha = \neg Rain$
- O Primero mostramos la conversión de KB a CNF

- $\cap$  [ Wet  $\leftrightarrow$  (Rain  $\vee$  Flooding)]  $\wedge \neg$ Wet



### Ejercicio 7.7

Sea un vocabulario con solamente cuatro proposiciones, A, B, C, y D. ¿Cuántos modelos hay para las siguientes fórmulas?

b. 
$$\neg A \lor \neg B \lor \neg C \lor \neg D$$

c. 
$$(A \rightarrow B) \land A \land \neg B \land C \land D$$

## Ejercicio 7.7

 $2^4=16$  modelos

a. B 
$$\vee$$
 C

Es falso cuando B y C son falsos, solo ocurre en 4 modelos, por lo que 16-4 = 12 modelos.

b. 
$$\neg A \lor \neg B \lor \neg C \lor \neg D$$

Falso cuando A  $\wedge$  B  $\wedge$  C  $\wedge$  D solo ocurre 1 modelo, por lo que 16-1=15

c. 
$$(A \rightarrow B) \land A \land \neg B \land C \land D$$

$$(\neg A \lor B) \land A \land \neg B \land C \land D$$

Falso si (A  $\wedge$  ¬B) 0 modelos

| A | В | C | D |
|---|---|---|---|
| F | F | F | F |
| F | F | F | T |
| F | F | T | F |
| F | F | T | T |
| F | T | F | F |
| F | T | F | T |
| F | T | T | F |
| F | T | T | T |
| T | F | F | F |
| T | F | F | T |
| T | F | T | F |
| T | F | T | T |
| T | Т | F | F |
| T | T | F | T |
| T | T | T | T |
| Т | Т | Т | Т |

$$\neg Q \land (R \rightarrow Q)$$

$$\neg R \rightarrow P$$

$$\mid =$$

$$\neg R$$

$$\neg Q \land (R \longrightarrow Q)$$
$$\neg R \longrightarrow P$$

$$\neg R \longrightarrow P$$

$$\neg R$$

C2. 
$$\neg R \lor Q$$

C5. ¬R Resolver C1 con C2

C6. False Resolver C4 con C5

| $\neg Q \land (R \longrightarrow Q)$ |
|--------------------------------------|
| $\neg R \longrightarrow P$           |
| =                                    |
| $\neg R$                             |
|                                      |
|                                      |
|                                      |

| QRP | $\neg Q \wedge (R \rightarrow Q)$ | $\neg R \longrightarrow P$ | $\wedge$ | $\neg R$ |
|-----|-----------------------------------|----------------------------|----------|----------|
| 000 | 1                                 | 0                          | 0        | 1        |
| 001 | 1                                 | 1                          | 1        | 1        |
| 010 | 0                                 | 1                          | 0        | 0        |
| 011 | 0                                 | 1                          | 0        | 0        |
| 100 | 0                                 | 0                          | 0        | 1        |
| 101 | 0                                 | 1                          | 0        | 1        |
| 110 | 0                                 | 1                          | 0        | 0        |
| 111 | 0                                 | 1                          | 0        | 0        |

$$P \longleftrightarrow T$$

$$(T \longrightarrow \neg S) \longleftrightarrow Q$$

$$\neg P$$

$$|=$$

$$Q$$

$$P \longleftrightarrow T$$

$$(T \longrightarrow \neg S) \longleftrightarrow Q$$

$$\neg P$$

$$|=$$

$$Q$$

C1. 
$$\neg P \lor T$$
  
C2.  $P \lor \neg T$   
C3.  $T \lor Q$   
C4.  $S \lor Q$   
C5.  $\neg T \lor \neg S \lor \neg Q$   
C6.  $\neg P$   
C7.  $\neg Q$ 

| $P \longleftrightarrow T$                          |
|----------------------------------------------------|
| $(T \longrightarrow \neg S) \longleftrightarrow Q$ |
| $\neg P$                                           |
| =                                                  |
| Q                                                  |
|                                                    |

| PTSQ | $P \longleftrightarrow T$ | $(T \longrightarrow \neg S) \longleftrightarrow Q$ | $\neg P$ | $\wedge$ | Q |
|------|---------------------------|----------------------------------------------------|----------|----------|---|
| 0000 | 1                         | 0                                                  | 1        | 0        | 0 |
| 0001 | 1                         | 1                                                  | 1        | 1        | 1 |
| 0010 | 1                         | 0                                                  | 1        | 0        | 0 |
| 0011 | 1                         | 1                                                  | 1        | 1        | 1 |
| 0100 | 0                         | 0                                                  | 1        | 0        | 0 |
| 0101 | 0                         | 1                                                  | 1        | 0        | 1 |
| 0110 | 0                         | 1                                                  | 1        | 0        | 0 |
| 0111 | 0                         | 0                                                  | 1        | 0        | 1 |
| 1000 | 0                         | 0                                                  | 0        | 0        | 0 |
| 1001 | 0                         | 1                                                  | 0        | 0        | 1 |
| 1010 | 0                         | 0                                                  | 0        | 0        | 0 |
| 1011 | 0                         | 1                                                  | 0        | 0        | 1 |
| 1100 | 1                         | 0                                                  | 0        | 0        | 0 |
| 1101 | 1                         | 1                                                  | 0        | 0        | 1 |
| 1110 | 1                         | 1                                                  | 0        | 0        | 0 |
| 1111 | 1                         | 0                                                  | 0        | 0        | 1 |

$$(P \lor Q) \longleftrightarrow (R \land S)$$

$$P \to Q$$

$$P \land S$$

$$|=$$

$$R$$

| $(P \lor Q) \longleftrightarrow (R \land S)$ |
|----------------------------------------------|
| $P \longrightarrow Q$                        |
| $P \wedge S$                                 |
| =                                            |
| R                                            |
|                                              |

|   |   |   |   |                         |                  |     | and the contract      | The party of the same |
|---|---|---|---|-------------------------|------------------|-----|-----------------------|-----------------------|
| P | Q | R | S | $\mathbf{A} = P \vee Q$ | $B = R \wedge S$ | A↔B | $P{\longrightarrow}Q$ | <i>P</i> ∧ <b>S</b>   |
| 0 | 0 | 0 | 0 | 0                       | 0                | 1   | 1                     | 0                     |
| 0 | 0 | 0 | 1 | 0                       | 0                | 1   | 1                     | 0                     |
| 0 | 0 | 1 | 0 | 0                       | 0                | 1   | 1                     | 0                     |
| 0 | 0 | 1 | 1 | 0                       | 1                | 0   | 1                     | 0                     |
| 0 | 1 | 0 | 0 | 1                       | 0                | 0   | 1                     | 0                     |
| 0 | 1 | 0 | 1 | 1                       | 0                | 0   | 1                     | 0                     |
| 0 | 1 | 1 | 0 | 1                       | 0                | 0   | 1                     | 0                     |
| 0 | 1 | 1 | 1 | 1                       | 1                | 1   | 1                     | 0                     |
| 1 | 0 | 0 | 0 | 1                       | 0                | 0   | 0                     | 0                     |
| 1 | 0 | 0 | 1 | 1                       | 0                | 0   | 0                     | 1                     |
| 1 | 0 | 1 | 0 | 1                       | 0                | 0   | 0                     | 0                     |
| 1 | 0 | 1 | 1 | 1                       | 1                | 1   | 0                     | 1                     |
| 1 | 1 | 0 | 0 | 1                       | 0                | 0   | 1                     | 0                     |
| 1 | 1 | 0 | 1 | 1                       | 0                | 0   | 1                     | 1                     |
| 1 | 1 | 1 | 0 | 1                       | 0                | 0   | 1                     | 0                     |
| 1 | 1 | 1 | 1 | 1                       | 1                | 1   | 1                     | 1                     |

```
(P \lor Q) \longleftrightarrow (R \land S)
P \longrightarrow Q
P \land S
|=
R
```

```
C1. \neg P \lor R

C2. \neg P \lor S

C3. \neg Q \lor R

C4. \neg Q \lor S

C5. \neg R \lor \neg S \lor P \lor Q

C6. \neg P \lor Q

C7. P

C8. S

C9. \neg R
```

C10. R Resuelvo C1 con C7 C11. *False* Resuelvo C9 con C10

#### **Ejemplos**

$$((p \land q) \lor (r \land s)) \lor (\neg q \land (p \lor t))$$

$$\equiv (((p \land q) \lor r) \land ((p \land q) \lor s)) \lor (\neg q \land (p \lor t))$$

$$\equiv ((p \lor r) \land (q \lor r) \land (p \lor s) \land (q \lor s)) \lor (\neg q \land (p \lor t))$$

$$\equiv ((p \lor r) \lor (\neg q \land (p \lor t)) \land ((q \lor r) \lor (\neg q \land (p \lor t)) \land ((q \lor s) \lor (\neg q \land (p \lor t)) \land ((q \lor s) \lor (\neg q \land (p \lor t)))$$

$$\equiv (p \lor r \lor \neg q) \land (p \lor r \lor p \lor t) \land (q \lor r \lor \neg q) \land (q \lor r \lor p \lor t) \land (p \lor s \lor \neg q) \land (p \lor s \lor p \lor t)$$

#### **Ejemplos**

$$((p \land q) \lor (r \land s)) \lor (\neg q \land (p \lor t))$$

$$\equiv (p \lor r \lor \neg q) \land (p \lor r \lor p \lor t)) \land$$

$$(q \lor r \lor \neg q) \land (q \lor r \lor p \lor t) \land$$

$$(p \lor s \lor \neg q) \land (p \lor s \lor p \lor t) \land$$

$$(q \lor s \lor \neg q) \land (q \lor s \lor p \lor t)$$

$$= (p \lor r \lor \neg q) \land (p \lor r \lor t) \land (q \lor r \lor p \lor t) \land (p \lor s \lor \neg q) \land (s \lor p \lor t) \land (q \lor s \lor p \lor t)$$

# Introducción

Lógica primer orden



#### Generalidades

- O La lógica proposicional es demasiado sencilla para representar el conocimiento en entornos complejos
- O La lógica de primer orden toma prestadas ideas de los lenguajes naturales a la vez que evita sus ambigüedades
  - O Se construye sobre los objetos y las relaciones entre ellos
  - O Supone que dichas relaciones o se cumplen o no se cumplen entre los objetos

#### Modelos

- O Un modelo de la lógica de primer orden tiene los siguientes componentes:
  - O Un dominio, que es el conjunto de objetos o elementos del dominio que contiene.
  - O Un conjunto de relaciones entre objetos. Una relación es un conjunto de tuplas de objetos que están relacionados.

#### O Ejemplo:

- Objetos: El rey Ricardo Corazón de León; su hermano menor, el malvado rey Juan; y una corona (en total 3 objetos)
- Relaciones:
  - O Hermandad={<Ricardo Corazón de León, Rey Juan>, <Rey Juan, Ricardo Corazón de León>}
  - O Sobre la cabeza={<La corona, Rey Juan>}

#### Símbolos e interpretaciones

- O Hay dos tipos de símbolos:
  - O Símbolos de constante, que representan objetos
  - O Símbolos de predicado, que representan relaciones
- O Todos los símbolos empiezan por mayúscula
- O Cada símbolo de predicado tiene su aridad que fija su número de argumentos
- O Cada modelo incluye una interpretación que dice qué objetos y relaciones se corresponden con los símbolos de constante y predicado

#### Ejemplo de símbolos e interpretaciones

beather





- O Una posible interpretación (entre otras muchas):
  - Richard se refiere a Ricardo Corazón de León y John se refiere al malvado rey Juan
  - Brother se refiere a la relación de hermandad; OnHead se refiere a la relación "sobre la cabeza"; Person, King y Crown se refieren a los conjuntos de objetos que son personas, reyes y coronas, respectivamente

# Sintaxis y Semántica

Términos, Fórmulas Atómicas y Compuestas



1/3

#### Términos

- O Un término es una expresión lógica que hace referencia a un objeto
  - O Los símbolos de constante son términos
- O Ejemplos de términos:
  - O Richard,
  - O John

#### Fórmulas atómicas

- O Una fórmula atómica (también llamada átomo) es un símbolo de predicado seguido de una lista de términos que hacen de argumentos
- O Una sentencia atómica es verdadera en un determinado modelo si la relación a la que se refiere el símbolo de predicado se cumple entre los objetos a los que se refieren los argumentos
- O Ejemplos de átomos:
  - O Brother(Richard, John),
  - O Person(Richard)

### Fórmulas compuestas

- Conectivas lógicas forman fórmulas compuestas a partir de los átomos, con la misma sintaxis y semántica que en la lógica proposicional
- O Ejemplos de fórmulas compuestas:
  - O Brother(Richard, John) \triangleright Brother(John, Richard)
  - King(Richard) ∨ King(John)
  - $\bigcirc$  ¬King(Richard)  $\longrightarrow$  King(John)
    - O (todas ellas son verdaderas en nuestro ejemplo de modelo bajo la interpretación considerada anteriormente)

# Sintaxis y Semántica Cuantificadores



#### Cuantificadores

- O Los cuantificadores nos permiten expresar propiedades de colecciones de objetos
  - $\cap$  El cuantificador universal  $\forall$  se lee "para todo".
    - O Va seguido de una o más variables en minúsculas.
    - Control de la completa del completa del completa de la completa del completa del completa de la completa del completa del completa de la completa de la completa del compl
  - $\bigcirc$  El cuantificador existencial  $\exists$  se lee "existe".
    - O Va seguido de una o más variables en minúsculas.
    - O La fórmula  $\exists x \ P$  quiere decir que P es verdadero para al menos un objeto x

#### Ejemplos de uso de cuantificadores

- O "Todos los reyes son personas"
  - $\bigcirc \forall x \ King(x) \rightarrow Person(x) \ (correcto)$
  - $\bigcirc \forall x \ King(x) \land Person(x) \ (error)$ 
    - O "Todos los objetos son reyes y personas"
- O "El rey Juan tiene una corona sobre su cabeza"
  - $\bigcap$   $\exists x \operatorname{Crown}(x) \land \operatorname{OnHead}(x, \operatorname{John}) (correcto)$
  - $\bigcap$   $\exists x \operatorname{Crown}(x) \longrightarrow \operatorname{OnHead}(x, \operatorname{John}) \text{ (error)}$ 
    - "Existe un objeto que o no es una corona o está sobre la cabeza del rey Juan"

#### Más acerca de los cuantificadores

- O Los cuantificadores se pueden anidar.
- O Si combinamos existenciales con universales, el orden es muy importante:
  - "Todo el mundo ama a alguien":  $\forall x \exists y Loves(x,y)$
  - "Existe alguien que es amado por todo el mundo":  $\exists y \ \forall x \ Loves(x,y)$
- O Reglas de De Morgan para fórmulas cuantificadas:

  - $\exists x P \equiv \neg \ \forall x \neg P$

## Igualdad

- O Podemos usar el símbolo de igualdad = para indicar que dos términos se refieren al mismo objeto
  - O Si queremos expresar que el objeto al que se refiere Father(John) y el objeto al que se refiere Henry son el mismo, escribimos:

Father(John)=Henry

O "Ricardo tiene al menos dos hermanos":

 $\exists x,y \; Brother(x,Richard) \land Brother(y,Richard) \land \neg(x=y)$ 

# Ejercicio 9.6

<u>Ejercicio 9.6</u> de la tercera edición del libro. Escribe representaciones lógicas para los siguientes enunciados:

- a.Los caballos, las vacas y los cerdos son mamíferos.
- b.La cría de un caballo es un caballo.
- c. Bluebeard es un caballo.
- d. Bluebeard es un progenitor de Charlie.
- e. Cría y progenitor son relaciones inversas.

# Ejercicio 9.6

- a. Los caballos, las vacas y los cerdos son mamíferos.
  - Caballo(x)  $\rightarrow$  Mamimero(x)
  - $Vaca(x) \rightarrow Mamimero(x)$
  - $Cerdo(x) \longrightarrow Mamimero(x)$
- b. La cría de un caballo es un caballo.  $Cria(x,y) \land Caballo (y) \longrightarrow Caballo (X)$
- c. Bluebeard es un caballo. Caballo(Bluebeard)
- d. Bluebeard es un progenitor de Charlie. Progenitor(Bluebeard, Charlie)
- e. Cría y progenitor son relaciones inversas.
  - $Cria(x,y) \rightarrow Progenitor(y,x)$
  - Progenitor(x,y)  $\rightarrow$  Cria(y,x)



#### Combinación cuantificadores

Usa el predicado Loves, donde Loves(x,y) quiere decir "x ama a y".

- a) "Hay alguien que ama a todo el mundo".
- b) "Hay alguien que ama a al menos una persona".
- c) "Hay alguien que ama a algún otro".
- d) "Todos se aman mutuamente".
- e) "Hay alguien que es amado por todos".
- f) "Hay alguien a quien todos aman".
- g) "Todo el mundo tiene a alguien que lo ama".

#### Combinación cuantificadores

a) "Hay alguien que ama a todo el mundo".

$$\exists x \ \forall y \ Loves(x,y)$$

b) "Hay alguien que ama a al menos una persona".

$$\exists x \; \exists y \; Loves(x,y)$$

c) "Hay alguien que ama a algún otro".

$$\exists x \ \exists y \ Loves(x,y) \land x \neq y$$

d) "Todos se aman mutuamente".

$$\forall x \ \forall y \ Loves(x,y)$$

e) "Hay alguien que es amado por todos".

$$\exists x \ \forall y \ Loves(y,x)$$

f) "Hay alguien a quien todos aman".

$$\exists x \ \forall y \ Loves(y,x)$$

g) "Todo el mundo tiene a alguien que lo ama".

$$\forall x \exists y Loves(y,x)$$



# Sistemas Inteligentes

José A. Montenegro Montes monte@lcc.uma.es

