Συναρτήσεις (Ερωτήσεις)

		Σωστο	Λαθος
1.	Αν f είναι 1-1, τότε f' είναι 1-1. Απ: $f(x)=x^3$ είναι 1-1. Όμως η $f'(x)=3x^2$ δεν είναι 1-1		•
2.	Η συνάρτηση $f(x)=x^3,\ \forall x\in[-1,0]$ είναι περιττή. Απ: $\frac{1}{2}\not\in[-1,0]$. Θυμάμαι ότι f περιττή \Leftrightarrow $\forall x\in A,-x\in A$ και $f(-x)=f(x),\ \forall x\in A$		•
3.	Αν f είναι περιττή, τότε η f' είναι άρτια. Απ: $f(-x)=-f(x)\Rightarrow f'(-x)\cdot (-1)=-f'(x)\Rightarrow f'(-x)=f'(x)$, άρα άρτια.		
4.	Αν το σημείο $(1,2)\in C_f$ και f αντιστρέψιμη, τότε το $(2,1)\in C_{f^{-1}}$. Απ: Η f και η αντίστροφή της είναι συμμετρικές ως προς την ευθεία $y=x$.		
5.	$\begin{aligned} & \text{An } f(x) = x+1, \ \forall x \in \mathbb{R} \text{ και } g(x) = \ln{(x-2)}, \ \forall x \in (1,+\infty), \text{ the to } D_{g\circ f} = (2,+\infty). \\ & \text{Ap: } D_{g\circ f} = \{x \in A \ : \ x+1 \in (2,\infty)\} = \{x \in A \ : \ x+1 > 2\} = \{x \in A \ : \ x > 1\} = (1,\infty). \end{aligned}$		•
6.	Κάθε γνησίως αύξουσα συνάρτηση είναι "1-1". Απ: Είναι πρόταση	•	
7.	Αν μιά συνάρτηση είναι περιοδική, τότε η περίοδος της είναι μοναδική. Απ: Το $2p$ είναι επίσης περίοδος.		
8.	Αν f είναι περιοδική, τότε και f' είναι περιοδική. Απ: $f(x+p)=f(x)\Rightarrow f'(x+p)\cdot 1=f'(x)\Rightarrow f'(x+p)=f'(x)$	•	
9.	Η συνάρτηση Dirichlet είναι περιοδική. Απ: $p\in\mathbb{Q}\Rightarrow x\in\mathbb{Q}\Rightarrow f(x+p)=1=f(x),\ x\not\in\mathbb{Q}\Rightarrow f(x+p)=0=f(x)$	•	
10.	$\lim_{x\to x_0} f(x) = l \Rightarrow \lim_{x\to x_0}f(x)=l.$ Ap: $\pi.\chi$. $\lim_{x\to\infty} (-1)^n =1$, ómως $\not\equiv\lim_{x\to\infty}(-1)^n$ (iscute, móno an $l=0$).		•
11.	Αν f συνεχής στο A , τότε η $ f $ με $ f (x)= f(x) ,\ \forall x\in A$ είναι συνεχής στο A . Απ: είναι πρόταση.	•	
12.	$f\colon [0,1] \cup \{2\} \to \mathbb{R}$ είναι συνεχής στο 2. Απ: Κάθε συνάρτηση, είναι συνεχής σε όλα τα μεμονωμένα σημεία του πεδίου ορισμού της.	٠	
13.	$ \text{Aν } a_n \in A \text{ με } \lim_{n \to \infty} a_n = a, \text{ αλλά } \lim_{n \to \infty} f(a_n) \neq f(a) \text{ τότε } f \colon A \to \mathbb{R} \text{ όχι συνεχής στο } a \in A. $ Απ: είναι το αντιθετοαντίστροφο της Αρχής Μεταφοράς.	•	
14.	Αν f είναι ομοιόμορφα συνεχής στο A , τότε f είναι συνεχής στο A . Απ: είναι πρόταση. Το αντίστροφο δεν ισχύει.	•	
15.	Αν f είναι συνεχής σε φραγμένο διάστημα, τότε η f είναι ομοιόμορφα συνεχής σε αυτό. Απ: πρέπει να είναι κλειστό και φραγμένο διάστημα για να ισχύει η πρόταση.		•
16.	Η $f(x)=x^2$ είναι ομοιόμορφα συνεχής στο $(2,4)$. Απ: $\exists \delta=\frac{\varepsilon}{8}>0 \ : \ \text{an}\ x\in (2,4)\ \text{me}\ x-x_0 <\delta\Rightarrow \left x^2-x_0^2\right = x-x_0 x+x_0 <\frac{\varepsilon}{8}(4+4)=0$	ε	

Φοιτητικό Πρόσημο

Φοιτητικό Πρόσημο