Programme for today

- Introductory lecture
- Hands-on tutorial on data wrangling
- Individual exercises

At the end of the day you should be familiar with transforming and tidying data in R using the dplyr and tidy packages

A data science project workflow

Data transformation

Untidy Data

species	habitat	weight	length	latitude/longitude	date
Alligator mississippiensis	swamp	431 lb	4 ft 2	29.531,-82.184	Sept 15, 2015
Puma concolor	forest	125 lb	2.2m	29.125,-81.682	08/10/2015
Ursus americanus	forest	88 kg	133 cm	N29°7'30"/W81°40'55.2"	07-13-2015

In which ways is this dataset "untidy"?

Data transformation

tidyr dplyr

Untidy Data

species	habitat	weight	length	latitude/longitude	date
Alligator mississippiensis	swamp	431 lb	4 ft 2	29.531,-82.184	Sept 15, 2015
Puma concolor	forest	125 lb	2.2m	29.125,-81.682	08/10/2015
Ursus americanus	forest	88 kg	133 cm	N29°7'30"/W81°40'55.2"	07-13-2015

Tidy Data

meta-data data

species_code	date	station_code	weight_kg	length_cm
TSN 551771	2015-09-15	1	196	127
TSN 55247	2015-08-10	2	57	220
TSN 180544	2015-07-13	2	88	133

station_code	habitat	latitude	longitude
1		29.531	
1 2	forest	29.125	-81.682

species_code	class	genus	species
TSN 551771	Reptilia	Alligator	mississippiensis
TSN 55247	Mammalia	Puma	concolor
TSN 180544	Mammalia	Ursus	americanus

Example of a tidy version of dataset

Data transformation

1. Each variable has its own column

Rules for tidy data

Data transformation

1. Each variable has its own column

2. Each observation has its own row

Rules for tidy data

Data transformation

observations

1. Each variable has its own column

2. Each observation has its own row

3. Each values has its own cell

Rules for tidy data

Data transformation

pivot_longer(data, cols, names_to = "name",
values_to = "value", values_drop_na = FALSE)

table4a

country	1999	2000	country	year	cases
Α	0.7K	2K	Α	1999	0.7K
В	37K	80K	В	1999	37K
С	212K	213K	C	1999	212K
			Α	2000	2K
			В	2000	80K
			$lue{}$	2000	212K

The pivot_* functions

Data transformation

pivot_wider(data, names_from = "name",
values_from = "value")

table2

country	year	type	count
Α	1999	cases	0.7K
Α	1999	pop	19M
Α	2000	cases	2K
Α	2000	pop	20M
В	1999	cases	37K
В	1999	pop	172M
В	2000	cases	80K
В	2000	pop	174M
С	1999	cases	212K
С	1999	pop	1T
С	2000	cases	213K
С	2000	pop	1T

country	year	cases	pop
Α	1999	0.7K	19M
Α	2000	2K	20M
В	1999	37K	172M
В	2000	80K	174M
С	1999	212K	1T
С	2000	213K	1T

The pivot_* functions

Data transformation

select(.data, ...) Extract columns as a table. select(mtcars, mpg, wt)

arrange(.data, ..., .by_group = FALSE) Order
rows by values of a column or columns (low to
high), use with desc() to order from high to low.
arrange(mtcars, mpg)
arrange(mtcars, desc(mpg))

filter(.data, ..., .preserve = FALSE) Extract rows that meet logical criteria. filter(mtcars, mpg > 20)

mutate(.data, ..., .keep = "all", .before = NULL,
.after = NULL) Compute new column(s). Also
add_column(), add_count(), and add_tally().
mutate(mtcars, gpm = 1 / mpg)

Simple transformations

Data transformation

split-apply-combine

Data transformation

mtcars %>% group_by(cyl) %>% summarise(avg = mean(mpg))

split-apply-combine

Data transformation

Mutating joins - Inner join

Mutating joins - Outer joins

Filtering joins

Programme for today

- Introductory lecture
- Hands-on tutorial on data wrangling
- Individual exercises

At the end of the day you should be familiar with transforming and tidying data in R using the dplyr and tidy packages