

CI 项目编号:

产线/设备名称代码: Track2000A平台

单元/部门: 冲压单元 (Stamping unit)

KEIPER

项目定义:

	Kaizen 项目立项表									
项目名称: Tra	项目名称:Track2000A1#OP60/OP70折耳工序推料结构更改 项目负责人:于文龙									
商业影响:模	具稳定性低及换型时间长,影响产品质量及生产效率。									
问题描述: 1、	折耳尺寸不良;2、生产换型时间长。									
项目目标:同	项目目标:同类产品质量问题减少80%,每次换型时间减少20% 项目范围:Track2000A1#									
项目投资:	项目投资: 项目收益:									
团队成员	主要职责									
于文龙	设计,优化模具结构									
赵连波/潘浩	现场负责安装调试									

	KPI	
KPI	Before improvement	After improvement
	单次换型时间10min	单次换型时间3min
	产品质量稳定性差	同类产品质量问题减少 80%以上

Project Plan						
Project Plan	Planned Time	Actual Time				
D	20.09.20~20.09.30					
М	20.10.01~20.10.20					
А	20.10.21~20.11.10					
I	20.11.11~20.12.15					
С	20.12.16~20.12.31					

Track2000A1#折耳工序项目背景介绍:

上图为Track2000A平台手动上轨示意图

项目定义:

2019.10~2020.09

2019.10~2020.09

上图所示为2019年10月至2020年9月,一年内Track2000A1线所发生的折耳质量问题与其它主要质量问题对比图

项目定义:

Date 日期	Tooling No. 模具编号	Product Line 生产线	第 1 页 Issue Discription 故障描述	Issue Analy sis 原因分 析	Fixed Time 完成时间 ▽	Downtim e 停 机时间
2019. 11. 29E	V362手动右上轨	Track2000A1	折耳不良		12:40	130
2019. 12. 1E	MQBbeta手动左上轨	Track2000A1 #	折耳镶件打坏		13:50	20
2019. 12. 1D	MQBbeta手动右上轨	Track2000A1 #	挡点浅, 折耳带料		1:57	20
2019. 12. 2E	MQBbeta手动右上轨	Track2000A1 #	折耳开裂		9:10	43
2019. 12. 2D	MQBbeta手动右上轨	Track2000A1 #	换型轨扭, 折耳不良		3:05	180
2019. 12. 5D	MQBbeta手动右上轨	Track2000A1 #	折耳定位螺丝滑牙		1:40	10
2019. 12. 6D	MQB手动左上轨	Track2000A1 #	折耳开裂		0:42	190
2019. 12. 6D	MQBbeta手动左上轨	Track2000A1 #	折耳开裂		21:10	30

Date 日期	Tooling No. 模具编号 -	Product Line 生产线	Issue Discription 故障描述	Issue Analy sis 原因 分析	Start	Fixed Time 完成时间 •	Downtim e 停 机时间
2020. 5. 4D	HFT手动右上轨	Track2000A1#	折耳压印,顶针压印		0:37	1:54	77
2020. 5. 6E	MQB手动左上轨	Track2000A1#	折耳冲头断, 挡点崩		9:56	10:14	18
2020. 5. 6E	MQBA1手动左上轨	Track2000A1#	OP20折耳冲头断,OP70压印		8:35	8; 50	15
2020. 5. 14D	HFT手动左上轨	Track2000A1#	折耳不良		20;40	21:05	25
2020. 5. 15E	HFT手动左上轨	Track2000A1#	折耳推料不到位		15;15	15:30	15
2020. 5. 15E	2XP手动左上轨	Track2000A1#	折耳间隙波动		3:00	3;20	20
2020. 5. 19E	MQB手动左上轨	Track2000A1#	折耳尺寸不良,高边内扣		14:00	14:25	25

图表为2019年及2020年抽取的折耳问题模具维修停机清单,可以看出该工位引起的问题发生频次较高,平均3~4天,且发生异常时维修时长较长,每次平均达到55分钟。

折耳不稳定原因分析-1:

通过团队一起研究和鱼骨图分析,共找到两个可能影响的因素(下图五角星标记处)。

折耳不稳定原因分析-2:

潜在原因	验证方法	数据类型	统计工具	验证结果	是否显著
原材料机械性能	不同批次材料在 同等模具环境下 生产	可变数据	目视检查	有发现不良产品	N
模具结构及 工作原理	同批次材料在同 等模具环境下生 产	NA	目视检查	有发现不良产品	Y

经上图中可以发现,在两种不同的验证情况下都会产生产品不良,故不良产品的产生与原材料机械性能并无直接联系,而与模具本身的结构有强相关性。

模具结构分析:

经过分析,原有模具有3个影响产品质量的风险点:

- 1、复位弹簧:在正常工作中容易发生复位不及时现象。
- 2、上模推杆与活定位块:因上模推杆为圆形,在相互作用时易发生匹配不顺畅;
- 3、活定位块: 活定位块在运动过程中与模板之间存在较大摩檫力, 易发生卡滞。

模具结构分析:

经过分析原模具结构对生产换型效率影响同样较大,因Track2000A产品项目较多,每班都会涉及到多次换型且每次换型时都需更换模具定位块及推块,如图中圈出部分所示。

从照片中看出,定位块较多不便于产线管理,员工也有会出现拿错的风险。对于备件成本来说,也是一个较大的投入。

模具结构改善:

改善前

改善后

改善后

经过头脑风暴分析研 究,为改善生产换型 件管理及提高现场工 作效率,现对模具定 位结构进行改善,由 原来的一批定位块改 成一件通用固定块, 推料结构改为气缸式 结构(如图所示)。

模具结构改善:

孔位 编号	项目名称					
1	QOROS左,A30 1排左,3E45左					
2	FIT左,V362左					
3	MQB右					
4	B515左,C490左,D568左,B562左,XVS3Y左,XVS3Y右					
5	C519右,C490右,D568右,B562右,B515右					
6	CMA右,CMA左					
7	V362右 QOROS右,A30 1排右,3E45右 FIT右					
8						
9						
10	A30 2排左					
11	Z177左					
12	C519左					
13	Outlander左					
14	MQB左					
15	Z177右					
16	Outlander右					
17	A30 2排右					

孔位 编号	项目名称
1	QOROS右,A30 1排右,3E45右,A30 2排右
2	V362右,FIT右
3	Z177右
4	C519右,MQB左
5	Outlander右
6	C490右,D568右,B562右,B515右,XVS3Y左,XVS3Y右
7	MQB右,B515左,C490左,D568左,B562左,CMA右,CMA左,C519左
8	Z177左
9	V362左
10	QOROS左,A30 1排左,3E45左,Outlander左
11	FIT左
12	A30 2排左

改善后气缸位置对 应参照表

改善收益-生产:

改善后经跟踪生产,同类质量问题大幅下降,模具异常停机及模具稳定性都有较大的改善。

	I	I							
生产换型成本节省									
	改善前	改善后	备注						
停机时间	3545min 101min								
每班人数	1.5	人	两条线3人,单线1.5人						
人均工时费用	485	元/h							
工时费用	4254元	121.2元							
年节约费用	4132	2.8元							

生产员工等待 工时费用年节 省达4132.8元

改善收益-效率:

改善后生产换型时间也会有一个较大的节省,产线利用率及生产的产能都随之提高。

生产换型成本节省									
	改善前	改善后	备注						
每班工作时间	11	.5h							
每班人数	1.5	5人	两条线3人,单线1.5人						
开班次数	576	6次	年开班次按288天标准						
每班次换型次数	27	次	平均计算						
人均工时费用	485	₸/h							
平均每次换型时间	10min 3min								
工时费用	13824元	4147.2元	以年单位计算						
年节约费用	9676	6.8元							

改善收益-效率:

改善后产线MU也有相对应的提高,下图为Track2000A1线产线MU数据表(数据来源Protrack)。

□ #¤	20.01	00.00	20.02	20.04	00.05	00.00	00.07	00.00	00.00	20.10	20.11	20.10	T. 16
日期	20.01	20.02	20.03	20.04	20.05	20.06	20.07	20.08	20.09	20.10	20.11	20.12	平均
MU数据	70%	71%	67%	69%	68%	68%	72%	69%	71%	68%	73%	72%	69.8%

改善前 (20.01-20.12平均每月MU)。

日期	21.01	21.02	21.03	21.04	21.05	21.06	平均
MU数据	75%	75%	72%	74%	70%	71%	72.8%

改善后 (21.01-21.06平均每月MU)。

改善前后Track2000A1#MU对比图

改善收益-质量:

下图为改善前(2019.10~2020.09)及改善后至今发生的质量问题次数、隔离分选分量、报废数量对比。

序号	日期	平台	线体	分选数	不良数
1	2019. 10. 4	Track2000A	1#	410	174
2	2019. 10. 7	Track2000A	1#	4700	135
3	2019. 10. 10	Track2000A	1#	420	20
4	2019. 10. 22	Track2000A	1#	2000	125
5	2019. 11. 19	Track2000A	1#	920	6
6	2019. 11. 20	Track2000A	1#	5530	45
7	2019. 11. 22	Track2000A	1#	450	7
8	2019. 11. 22	Track2000A	1#	1500	29
9	2019. 11. 23	Track2000A	1#	500	4
10	2019. 12. 1	Track2000A	1#	110	65
11	2019. 12. 2	Track2000A	1#	1500	19
12	2020. 1. 12	Track2000A	1#	670	35
13	2020. 5. 13	Track2000A	1#	600	13
14	2020. 6. 19	Track2000A	1#	150	35
15	2020. 7. 28	Track2000A	1#	1000	5
16	2020. 8. 23	Track2000A	1#	1000	10
17	2020. 9. 29	Track2000A	1#	500	139
合计				21960	866

序号	日期	平台	线体	分选数	不良数
1	2021. 2. 10	Track2000A	1#	2000	20
2	2021. 2. 17	Track2000A	1#	560	5
合计				2560	25

改善后

改善前后产品发生质量问题对比图

改善前

产品质量问题成本节省 改善前 备注 改善后 隔离分选数量 21960 2560 分选报废数 866 25 单轨分选用时 15秒/根 根据实际分选平均计算 单轨成本 6元/根 根据物料实际平均计算 人均工时费用 48元/h 工时费用 4392元 512元 报废产品费用 5196元 150元 年节约费用 8926元

> 产品因质量问题年 节省达8926元

改善收益-备件:

因改善之前,各种项目都有专用定位块,所以产线上需备置各种各样的定位块,而改善后定位块只需要一种,这样每年在备件费用上也有一定的节省。

备件采购成本节省					
	改善前	改善后	备注		
项目数量	23种		有些项目共用(实际项目数大 于此数字)		
项目备件数量	92件	2件	改善前每种项目一套需2个定位 块,并预留备件一套(共4 个),改善后只需一个定位 块,并预留一个(共2个)		
单件备件费用	240元	480元	CHU070MQB-202 定位块 CRH 240 1000408769 CHU070MQB-205 推料块 CRH 110.0 1000408769 ADN-20-15-A-P-A 气缸 CRH 132.75 1000436821		
备件合计费用	22080元	960元			
年节约费用	(22080-960)/5=4224元	备件使用寿命按照5年周期计算		

改善收益-综合:

综上, 此次改善总收益比如下:

总节省费用					
	改善后	备注			
生产员工等待工时费用	4132.8元				
生产换型节省工时费用	9676.8元				
产品质量问题节省费用	8926元				
产品定位块备件节省费用	4224元				
年节约总费用合计	26959.6元				
备件成本投资	9000/5=1800元	一次性投资9000元,主模板及辅助零件备件费用,使用寿命按照5年计算			
投资回收年数	0.07				
投资回报比	15				

如图所示,全年可节省费用为:26959元,投资回收比为:15.0。

经验总结:

经过这个模具的改善优化,我们总结到的此经验,可以推广到各个平台的模具上面,对相同的定位方式可以复制使用,大大减少因此类问题造成的停机等待以及人工分选成本。

KEIPER