Wissenschaftliches Rechnen - Übung 4.3

Wiederholung der letzten Wochen

08.01.2024 bis 12.01.2024

Aufgabe 1: Lineare Gleichungssysteme

1. In diesem Kurs wurden verschiedene Lösungsverfahren für lineare Gleichungssysteme $\mathbf{A}\mathbf{x} = \mathbf{b}$ vorgestellt. Im Folgenden sollen Sie die effizienteste Methode und deren Laufzeit nennen, um ein lineares Gleichungssystem mit zusätzlichen Eigenschaften der Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ und des Vektors $\mathbf{b} \in \mathbb{R}^n$ zu lösen.

Eigenschaft A	Eigenschaft b	Lösungsmethode	Laufzeit
regulär	$\mathbf{b} eq 0$		
obere Dreiecksmatrix	$\mathbf{b} eq 0$		
untere Dreiecksmatrix	$\mathbf{b} eq 0$		
Diagonalmatrix	$\mathbf{b} eq 0$		
symmetrisch und PD	$\mathbf{b} eq 0$		
orthogonal	$\mathbf{b} eq 0$		
beliebig	$\mathbf{b} = 0$		

Aufgabe 2: Lineare Ausgleichsrechnung

1. Berechnen Sie die Cholesky-Zerlegung folgender Matrix:

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix}$$

2. Im Folgenden möchten wir folgende Punkte (x,y,f(x,y)) mittels einer quadratischen Funktion $f:\mathbb{R}^2\to\mathbb{R}$ approximieren:

x	0	1	1	2	1	2	3	3
y	1	0	1	1	2	2	2	3
f(x,y)	1	2	1	-1	5	3	1	0

Stellen Sie ein lineares Gleichungssystem $\mathbf{A}\mathbf{x}=\mathbf{b}$ auf, dessen approximative Lösung mit der Normalengleichung die Koeffizienten des gewünschten Polynoms liefert.

Hinweis: Die Menge der Basisfunktionen ist $\{1, x, y, x^2, xy, y^2\}$.

Aufgabe 3: Eigenzerlegung

1. Gegeben ist folgende Matrix $\mathbf{A}_{\alpha} \in \mathbb{R}^{2 \times 2}$:

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & \alpha \\ \alpha & 1 \end{bmatrix}$$

Für welche Werte von $\alpha \in \mathbb{R}$ ist \mathbf{A}_{α} indefinit?

Aufgabe 4: Singulärwertzerlegung

1. Geben Sie eine Singulärwertzerlegung sowie die Pseudoinverse folgender Matrizen an:

a)
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$
 b) $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix}$ c) $\mathbf{C} = \begin{bmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$ d) $\mathbf{D} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

2. Sei $\mathbf{U} \in \mathbb{R}^{n \times k}$ eine Matrix mit n > k, die orthonormale Spalten hat. Zeigen Sie, dass \mathbf{U}^T ihre Pseudoinverse ist

Aufgabe 5: Interpolation

1. Gegeben seien die folgenden zwei Punktmengen $(x_i, y_i) \in \mathbb{R}^2$:

Welche Menge an (Basis-)Funktionen genügt, um die Punkte mittels einer Linearkombination dieser zu interpolieren?

- a) $\{x\}$
- b) $\{1, x\}$
- c) $\{x, x^2, x^3\}$
- d) $\{1, x^3, x^5\}$
- e) $\{\exp(x), \exp(2x), \exp(3x)\}$
- f) $\{1, x^2, \exp(x)\}$
- g) $\{1, \cos^2(x), \sin^2(x)\}$
- h) $\{1, x, x^2 \cos(x), \sin(x), \exp(x)\}\$
- 2. Gegeben die folgenden zwei Polynome 2. Grades: $p_1(x) = -x^2 + 3x 2$ und $p_2(x) = 3x^2 2x + 4$.
 - a) Stellen Sie die Polynome in der Monombasis dar, welche alle Polynome 4. Grades darstellen kann.
 - b) Stellen Sie die Polynome in der Lagrange-Basis zu den Stützstellen 0, 1, 2, 3, 4 dar.
 - c) Berechnen Sie das Produktpolynom $p(x) = p_1(x) \cdot p_2(x)$. Welche Basisrepräsentation eignet sich besser?
 - d) Berechnen Sie die Matrix, welche einen Basiswechsel von der Monombasis in die Lagrange-Basis durchführt.
 - e) Berechnen Sie die Matrix, welche einen Basiswechsel von der Lagrange-Basis in die Monombasis durchführt.