Soit $g(t)=h(t)*h_c(t)*h_r(t)$ la réponse impulsionnelle globale de la chaine de transmission :

 $(T_s = durée symbole)$

QUESTION 1

La chaine de transmission :

Respecte le critère de Nyquist

Peut respecter le critère de Nyquist

Ne peut pas respecter le critère de Nyquist

Pas assez d'éléments pour répondre à la question

Cliquer sur la bulle correspondant à la bonne réponse

MAUVAISE REPONSE Cliquer <u>ici</u> pour RECOMMENCER

Le critère de Nyquist peut être respecté SI on échantillonne en réception à t_0+mT_s avec $t_0=T_s$ On a bien alors :

$$\begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in \mathbb{Z}^* \end{cases}$$

Expression du critère de Nyquist en temporel, où g(t) représente la réponse impulsionnelle globale de toute la chaine de transmission Soit $g(t)=h(t)*h_c(t)*h_r(t)$ la réponse impulsionnelle globale de la chaine de transmission :

 $(T_s = durée symbole)$

QUESTION 2

- Respecte le critère de Nyquist
- Peut respecter le critère de Nyquist
- Ne peut pas respecter le critère de Nyquist
- Pas assez d'éléments pour répondre à la question

MAUVAISE REPONSE Cliquer <u>ici</u> pour RECOMMENCER

Le critère de Nyquist :
$$\left\{\begin{array}{l} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \ for \ p \in \mathbf{Z}^* \end{array}\right.$$
 ne peut pas être respecté ici :

on ne peut pas trouver, pour ce g(t), de t₀ qui permette de satisfaire le critère.

Soit $g(t)=h(t)*h_c(t)*h_r(t)$ la réponse impulsionnelle globale de la chaine de transmission :

QUESTION 3

- Respecte le critère de Nyquist
- Peut respecter le critère de Nyquist
- Ne peut pas respecter le critère de Nyquist
- Pas assez d'éléments pour répondre à la question

MAUVAISE REPONSE Cliquer <u>ici</u> pour RECOMMENCER

Le critère de Nyquist peut être respecté SI on échantillonne en réception à t_0+mT_s avec $t_0=2T_s$ On a bien alors :

$$\begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in \mathbf{Z}^* \end{cases}$$

Considérons ici une chaine de transmission transportant des symboles binaires a_k prenant des valeurs +1 ou -1.

Nous donnons ci-dessous le diagramme de l'œil qui a été tracé, sans bruit, sur le signal en sortie du filtre de réception sur une durée T_s (composée de 10 échantillons de signal en

numérique)

QUESTION 4

- Peut respecter le critère de Nyquist
- Ne peut pas respecter le critère de Nyquist
- Pas assez d'éléments pour répondre à la question

MAUVAISE REPONSE Cliquer <u>ici</u> pour CHANGER DE REPONSE

Le critère de Nyquist peut être vérifié si nous échantillonnons à t_0+mT_s , avec $t_0=T_s=10^{\ (1)}$ En effet, à ces instants là nous allons avoir uniquement deux valeurs possibles quoi qu'il se passe dans le signal pendant T_s (ronds verts). Sachant que les symboles transmis peuvent prendre 2 valeurs, cela signifie qu'il n'y a pas d'interférence à ces instants là.

Ces deux valeurs sont +/- $g(t_0)$ = +/- $g(T_s)$ = +/- T_s = +/- 10 ici.

(1) Remarque : en considérant des signaux numériques donc échantillonnés à T_e , on échantillonne en fait en N_s+mN_s , N_s représentant le $10^{\rm ème}$ échantillon sur la durée T_s qui en compte ici 10 : $T_s=N_sT_e$, avec $N_s=10$. Si on voulait écrire t_0 en secondes, il est en fait égal à $10T_e$.

Considérons ici une chaine de transmission transportant des symboles binaires a_k prenant des valeurs +1 ou -1.

Nous donnons ci-dessous le diagramme de l'œil qui a été tracé, sans bruit, sur le signal en sortie du filtre de réception sur une durée $T_{\rm s}$ (composée de 4 échantillons de signal en

numérique)

QUESTION 5

- Peut respecter le critère de Nyquist
- Ne peut pas respecter le critère de Nyquist
- Pas assez d'éléments pour répondre à la question

MAUVAISE REPONSE Cliquer <u>ici</u> pour CHANGER DE REPONSE

Le critère de Nyquist peut être vérifié si nous échantillonnons à t₀+mT_s, avec t₀=1 ⁽¹⁾ En effet, à ces instants là, nous allons avoir uniquement deux valeurs possibles quoi qu'il se passe dans le signal pendant Ts (ronds verts). Sachant que les symboles transmis peuvent prendre 2 valeurs, cela signifie qu'il n'y a pas d'interférence à ces instants là.

Ces deux valeurs sont +/- $g(t_0)$ = +/- g(1) = +/- 1 ici.

(1) Remarque : en considérant des signaux numériques donc échantillonnés à T_e , on échantillonne en fait en $1+mN_s$, N_s représentant le nombre d'échantillon de signal sur la durée T_s qui en compte ici 4 : $T_s=N_sT_e$, avec $N_s=4$. Si on voulait écrire t_0 en secondes, il est en fait égal à T_e .

