Tarea en el AT&T Face Database estudio comparativo de PCA LDA e ICA

Autor: Clayanela Zambrano, Universidad Yachay Tech

Resumen:

Este trabajo presenta un estudio comparativo de PCA, LDA e ICA para reconocimiento facial sobre la AT&T Face Database (ORL) bajo un protocolo binario cara/no-cara. El objetivo es valorar la capacidad representacional (varianza y reconstrucción), la separabilidad supervisada y la independencia estadística de cada método en un pipeline uniforme y reproducible: partición train/test, proyección al subespacio correspondiente y clasificación por centroide más cercano con similitud coseno. La evaluación emplea Top-1/Top-5 accuracy, precisión y recall macro, además de matrices de confusión y visualizaciones de componentes.

Los resultados muestran que PCA (α=0.85, k automático) es el baseline más robusto, con Top-1=0.81 en prueba (0.82 en entrenamiento), precisión=0.85 y recall=0.81, evidenciando buena generalización con un clasificador mínimo. LDA (binaria, k=1) obtiene Top-1=0.50 y precisión macro=0.25, indicando comportamiento cercano al azar y probable sesgo hacia una clase debido a la multimodalidad de "cara" y a supuestos de covarianzas iguales. ICA alcanza Top-1=0.43 en prueba (0.64 en entrenamiento), lo que sugiere inestabilidad/sobreajuste y sensibilidad a la inicialización y al número de componentes.

En conjunto, PCA ofrece la mejor relación rendimiento-simplicidad y se recomienda como línea base; LDA resulta más apropiado en escenarios multiclase o con regularización; ICA es prometedora con ajuste fino y clasificadores más expresivos. El protocolo y las métricas reportadas permiten una comparación transparente y fácilmente replicable.

Introducción:

El reconocimiento facial sigue siendo un problema emblemático de la visión por computador. A pesar del dominio actual de los enfoques basados en aprendizaje profundo, los métodos subespaciales lineales han demostrado ser baselines sólidos, interpretables y eficientes, especialmente en escenarios con datos limitados. Entre ellos destacan: PCA (Eigenfaces), que maximiza la varianza retenida; LDA (Fisherfaces), que optimiza la separabilidad entre clases; e ICA, que busca componentes estadísticamente independientes. Estos enfoques han sido fundamentales en la literatura clásica y continúan siendo relevantes como puntos de referencia rigurosos para comparar representaciones de rostros. [1], [2], [3], [4]

Para validar empíricamente estas metodologías realizamos un estudio comparativo sobre la AT&T Face Database (antes ORL Database of Faces), un conjunto de 400 imágenes en escala de grises (40 sujetos × 10 imágenes por sujeto) con resolución 92×112 píxeles. Las capturas presentan variaciones controladas de iluminación, expresión y pequeños cambios de apariencia (p. ej., uso de gafas), lo que la convierte en un banco de pruebas clásico y repraoducible para evaluación de algoritmos de reconocimiento facial [5], [6].

En este trabajo, denominado "AT&T Face Database: estudio comparativo de PCA, LDA e ICA", comparamos de manera sistemática tres configuraciones representativas: (i) PCA/Eigenfaces [1]; (ii) LDA/Fisherfaces para el caso binario y multiclase [2]; y (iii) ICA con blanqueo previo y estimación FastICA [3], [4]. El objetivo es contrastar el poder de representación (variancia explicada y reconstrucción), la

discriminación supervisada (separabilidad entre clases) y la independencia/no gaussianidad de las bases aprendidas, todo ello en un protocolo de partición train/test reproducible sobre AT&T/ORL.

Mi pipeline experimental incorpora: reducción y proyección al subespacio de cada método; un clasificador simple de centroide más cercano con similitud coseno para aislar el efecto de la representación; y un conjunto de métricas estándar: Top-1, Top-5, precision (macro), recall (macro) y matriz de confusión. Asimismo, reportamos visualizaciones cualitativas (rostro medio y componentes característicos) para apoyar la interpretación de las bases aprendidas. Este diseño busca una comparación justa y transparente que prioriza la reproducibilidad sobre la optimización específica de clasificadores.

Datos:

AT&T Database of Faces.

Es un conjunto de datos desarrollado por AT\&T Laboratories Cambridge en colaboración con el de la Universidad de Cambridge, recopilado entre abril de 1992 y abril de 1994 para proyectos de reconocimiento facial. Contiene 400 imágenes correspondientes a 40 sujetos distintos, con 10 fotos por persona que incluyen variaciones de iluminación, expresiones faciales (ojos abiertos o cerrados, sonriendo o no) y detalles como el uso de gafas, todas tomadas frente a un fondo oscuro y uniforme en posición frontal con ligeras variaciones laterales. Las imágenes están en formato PGM con resolución de 92x112 píxeles y 256 niveles de gris, organizadas en 40 directorios (s1 a s40), cada uno con 10 archivos numerados de 1.pgm a 10.pgm. Este dataset, ampliamente utilizado en la investigación en visión por computador y aprendizaje automático, está disponible en versiones comprimidas (.tar.Z o .zip de \~4.5 MB) y requiere dar crédito a AT\&T Laboratories Cambridge para su uso académico.

Metodología

La metodología se diseñó para una comparación justa y reproducible de PCA, LDA e ICA sobre la AT&T Face Database. Primero se prepararon las imágenes en escala de grises (92×112), se vectorizaron y se centraron respecto a la media del conjunto de entrenamiento. El conjunto se particionó en train/test mediante un esquema controlado por un parámetro α (proporción de entrenamiento) y con control explícito

de la proporción de no-rostros cuando aplica, manteniendo fija la semilla aleatoria para garantizar repetibilidad. La extracción de características se realizó solo con datos de entrenamiento: PCA seleccionó automáticamente k componentes reteniendo α=0.85 de varianza; LDA se configuró en su forma binaria con una dirección discriminante; e ICA se estimó tras blanqueo, fijando el número de componentes igual al de PCA y la semilla para estabilidad. Las muestras de train y test se proyectaron al subespacio aprendido por cada método.

Para aislar el efecto de la representación, la clasificación se efectuó con un centroide por clase y similitud del coseno tras normalización ℓ_2 de los embeddings. La evaluación incluyó Top-1 (y Top-5 cuando procede), precisión macro, recall macro y matriz de confusión; en binario, Top-5 coincide con Top-1 y se reporta solo a efectos de consistencia. Además, se generaron visualizaciones cualitativas (rostro medio y componentes característicos) que ayudan a interpretar las bases aprendidas. Todos los hiperparámetros se fijaron previamente o se seleccionaron en entrenamiento, y los resultados de prueba se obtuvieron sobre datos no vistos, garantizando un protocolo transparente y replicable.

Resultados

Evidencias de inferencias

Evidencia de la inferencia del Método PCA

Las primeras componentes muestran patrones globales de variación (iluminación, forma y contorno del rostro). Son "caras fantasma" suaves: la energía se concentra en regiones amplias —frente, mejillas, perímetro— y no en rasgos hiperlocales. Esto indica que PCA está capturando la estructura dominante del conjunto y explica su buen rendimiento: al separar cara/no-cara, esas direcciones de máxima varianza correlacionan con "aspecto facial" frente a fondo/ruido, lo que favorece un clasificador simple por centroides.

Evidencia de la inferencia LDA

En binario, LDA genera una sola dirección discriminante (como mucho C-1C-1C-1, con C=2C=2C=2 ⇒ 1). Esa primera imagen con apariencia facial es la Fisherface que maximiza la separación entre clases; los "componentes" siguientes que ves como ruido no son rasgos útiles, sino direcciones nulas/numéricas sin eigenvalor discriminante. Visualmente, que solo exista una proyección informativa y que el resto sea ruido es consistente con los resultados cuantitativos (Top-1≈0.50 y precisión macro 0.25): el modelo no logra capturar la multimodalidad de la clase "cara" y termina comportándose casi al azar.

Evidencia de la inferencia ICA

Además de la media, las componentes independientes presentan contrastes más localizados (bordes en zona periocular, puente nasal, contorno de boca/mentón) y patrones de iluminación lateral, coherentes con la búsqueda de no gaussianidad e independencia. Esta "descomposición por partes" es útil para interpretar qué activa cada componente; sin embargo, en tu protocolo la generalización es limitada (caída marcada de train a test), señal de sensibilidad a la inicialización y al número de componentes. La lectura conjunta de las imágenes (rasgos más "afilados") y las métricas sugiere que ICA necesita selección de n_compn\compn_comp y, probablemente, un clasificador más expresivo para que esas partes se traduzcan en mejor discriminación fuera de entrenamiento.

Graficos por Metricas

Comparativa por Métrica

Matriz de confusión (normalizada por clase real)

Los resultados muestran un claro liderazgo de PCA: con Top-1 de 0.825 (train) y 0.815 (test) y métricas macro equilibradas (Precisión 0.862/0.854; Recall 0.825/0.815), evidencia buena capacidad de representación y generalización estable; la brecha train-test es mínima (~0.01), por lo que el desempeño no depende de sobreajuste ni de un clasificador complejo.

LDA se mantiene en 0.50 de Top-1 tanto en entrenamiento como en prueba y su precisión macro de 0.25 indica un fuerte sesgo hacia una sola clase (patrón típico cuando, en binario balanceado, el modelo predice casi siempre la misma etiqueta: acierta la mitad, recupera una clase al 100% y la otra al 0%, y la precisión promedio cae). En este setup cara/no-cara, LDA con una sola dirección discriminante no captura la multimodalidad de la clase "cara".

ICA alcanza 0.64 en train pero cae a 0.4375 en test, señal de sobreajuste y sensibilidad a la inicialización / n.º de componentes; además, con un clasificador por centroides su poder discriminante no se traslada bien fuera de entrenamiento. En resumen, PCA es el baseline recomendado para este protocolo; LDA requeriría configuración multiclase o regularización, e ICA precisa selección de componentes y/o un clasificador más expresivo (p. ej., SVM). Nota: el Top-5=1.000 en todos los casos porque hay solo 2 clases, por lo que esa métrica es no informativa en este escenario.

Tabla comparativa

Variante / Modelo	Resumen de cambios	Top 1 Accuracy		Precision		Recall		
		Train	Test	Train	Test	Train	Test	Obsevaciones
PCA	Reducción lineal; α=0.85; k automático; eigenfaces.	0.82	0.81	0.86	0.85	0.82	0.81	Media de train; clasificador centroides-coseno; métricas (Top-1/Top- 5/Prec/Rec/CM); en 2 clases Top-5=Top-1.
LDA	Discriminante lineal binaria; k=1 (Fisherface).	0.5	0.5	0.25	0.25	0.5	0.5	Solo 0/1; proyección con mean=0; mismas métricas; en 2 clases Top-5=Top-1.
ICA	FastICA (componentes independientes); n_comp = k de PCA; blanqueo SVD.	0.64	0.43	0.64	0.64	0.64	0.43	Sensible a inicialización (random_state); ajustar tol/max_iter; mismas métricas y visualización.

Conclusiones

En el estudio comparativo sobre AT&T, PCA ofrece el mejor desempeño y la mayor estabilidad: Top-1 \approx 0.82 (train) y 0.81 (test), con precisión y recall macro equilibrados (\approx 0.86/0.85 en train y \approx 0.81/0.82 en test) y una brecha mínima entre entrenamiento y prueba. Esto indica una representación robusta con buen poder discriminante aun usando un clasificador simple por centroides con coseno.

LDA (binaria, k=1) alcanza Top-1 = 0.50 en train y test y precisión macro = 0.25, lo que sugiere decisiones sesgadas hacia una clase y un comportamiento cercano al azar para este escenario "cara/no-cara", probablemente por la multimodalidad de la clase "cara" y las hipótesis de covarianzas iguales. ICA queda en un nivel intermedio pero poco estable: pasa de 0.64 (train) a 0.43 (test) en Top-1, evidenciando sobreajuste y sensibilidad a la inicialización y al número de componentes. En síntesis, PCA es el baseline recomendado por su equilibrio entre rendimiento y generalización; LDA sería más adecuado en configuración multiclase o con regularización; ICA requiere ajuste fino y, previsiblemente, clasificadores más expresivos para competir. (En un problema binario, Top-5 coincide con Top-1 y no añade información).

Limitaciones y ética:

Este estudio usa AT&T/ORL, un conjunto pequeño y controlado con diversidad demográfica limitada, por lo que los resultados no se generalizan a poblaciones amplias ni a condiciones de captura reales (iluminación, pose, oclusiones). En escenarios reales, el desempeño puede variar por grupo demográfico: NIST FRVT documenta diferencias sistemáticas en tasas de falsos positivos/negativos según sexo, edad y fenotipo [7]; Gender Shades mostró brechas de exactitud con peores errores en mujeres de piel oscura [8]; y otros trabajos señalan que la composición demográfica del conjunto de entrenamiento influye en coincidencias y error de verificación [9]. Además, su uso operativo plantea riesgos de vigilancia y afectaciones a derechos si se despliega sin regulación, necesidad y proporcionalidad [10]; la literatura recomienda auditorías públicas, reportes desagregados por subgrupo y rendición de cuentas sobre sesgos y fallos [11], junto con gobernanza y transparencia antes de cualquier despliegue sensible [12]. En nuestro

caso, no realizamos análisis de equidad por subgrupos por carecer de etiquetas demográficas; por ello, las métricas reportadas deben interpretarse como promedios globales y no como garantías de ausencia de sesgo. Los datos se usaron con fines académicos conforme a su licencia, sin intentos de reidentificación ni vinculación externa de identidades.

Referencias

- [1] M. Turk and A. Pentland, "Eigenfaces for Recognition," *Journal of Cognitive Neuroscience*, vol. 3, no. 1, pp. 71–86, 1991.
- [2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 19, no. 7, pp. 711–720, 1997.
- [3] A. Hyvärinen and E. Oja, "Independent Component Analysis: Algorithms and Applications," *Neural Networks*, vol. 13, no. 4–5, pp. 411–430, 2000.
- [4] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, "Face Recognition by Independent Component Analysis," *IEEE Transactions on Neural Networks*, vol. 13, no. 6, pp. 1450–1464, 2002.
- [5] OpenCV Documentation, "Face Recognition AT&T (ORL) Database of Faces," Consultado: 31-Aug-2025.
- [6] GTDLBench, "The Database of Faces (AT&T)," Consultado: 31-Aug-2025; y Kaggle mirror "AT&T Database of Faces."
- [7] P. J. Grother, M. Ngan, and K. Hanaoka, "Face Recognition Vendor Test (FRVT) Part 3: Demographic Effects," NIST Interagency/Internal Report 8280, 2019, doi: 10.6028/NIST.IR.8280.
- [8] J. Buolamwini and T. Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification," in *Proc. FAT* (PMLR, vol. 81)*, pp. 77–91, 2018.
- [9] B. F. Klare, M. J. Burge, J. C. Klontz, R. W. V. Bruegge, and A. K. Jain, "Face Recognition Performance: Role of Demographic Information," *IEEE Trans. Inf. Forensics Secur.*, vol. 7, no. 6, pp. 1789–1801, Dec. 2012.
- [10] C. Garvie, A. M. Bedoya, and J. Frankle, The Perpetual Line-Up: Unregulated Police Face Recognition in America, Center on Privacy & Technology, Georgetown Law, Oct. 2016
- [11] I. D. Raji and J. Buolamwini, "Actionable Auditing: Investigating the Impact of Publicly Naming Biased Performance Results of Commercial AI Products," in *Proc. AAAI/ACM Conf. on AI, Ethics, and Society (AIES)*, 2019, doi: 10.1145/3306618.3314244.
- [12] K. Crawford et al., AI Now 2019 Report, AI Now Institute, New York University, 2019.