# Assignment -4 SMS SPAM Classification

| Assignment Date     | 26 October 2022                                 |
|---------------------|-------------------------------------------------|
| Team ID             | PNT2022TMID27796                                |
| Project Name        | A Novel Method for Handwritten DigitRecognition |
|                     | System                                          |
| Student Name        | AKASH KV                                        |
| Student Roll Number | 311519104301                                    |
| Maximum Marks       | 2 Marks                                         |

## Question-1. Import required library

#### **Solution:**

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model\_selection import train\_test\_split

from sklearn.preprocessing import LabelEncoder

from keras.models import Model

from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding

from keras.optimizers import Adam

from keras.preprocessing.text import Tokenizer

from keras.preprocessing import sequence

from keras.utils import pad\_sequences

from keras.utils import to\_categorical

from keras.callbacks import EarlyStopping

# Question-2. Read the Dataset

#### **Solution:**

```
df = pd.read_csv('spam.csv',delimiter=',',encoding='latin-1')
df.head()
```

|   | V1   | V2                                             | Unnamed: 2 | Unnamed: 3 | Unnamed: 4 |
|---|------|------------------------------------------------|------------|------------|------------|
| 0 | ham  | Go until jurong point, crazy Available only    | NaN        | NaN        | NaN        |
| 1 | ham  | Ok lar Joking wif u oni                        | NaN        | NaN        | NaN        |
| 2 | spam | Free entry in 2 a wkly comp to win FA Cup fina | NaN        | NaN        | NaN        |
| 3 | ham  | U dun say so early hor U c already then say    | NaN        | NaN        | NaN        |
| 4 | ham  | Nah I don't think he goes to usf, he lives aro | NaN        | NaN        | NaN        |

## **Question-3.** Preprocessing the Dataset

#### **Solution:**

```
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1,inplace=True)
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator

X = df.v2
Y = df.v1
le = LabelEncoder()
Y = le.fit_transform(Y)
Y = Y.reshape(-1,1)

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.25)

max_words = 1000
max_len = 150
tok = Tokenizer(num_words=max _words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences_matrix = pad_sequences(sequences,maxlen=max_len)
```

# Question-4. Create Model

#### **Solution:**

```
inputs = Input(shape=[max_len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
layer = LSTM(128)(layer)
layer = Dense(128)(layer)
```

layer = Activation('relu')(layer)

layer = Dropout(0.5)(layer)

layer = Dense(1)(layer)

layer = Activation('sigmoid')(layer)

model = Model(inputs=inputs,outputs=layer)

Question-5. Add Layers (LSTM, Dense-(Hidden Layers), Output)

# **Solution:**

# model.summary()

Model: "model\_1"

| Layer (type)              | Output Shape    | Param # |
|---------------------------|-----------------|---------|
| input_2 (InputLayer)      | [(None, 150)]   | 0       |
| embedding_1 (Embedding)   | (None, 150, 50) | 50000   |
| lstm_1 (LSTM)             | (None, 128)     | 91648   |
| dense_2 (Dense)           | (None, 128)     | 16512   |
| activation_2 (Activation) | (None, 128)     | 0       |
| dropout_1 (Dropout)       | (None, 128)     | 0       |
| dense_3 (Dense)           | (None, 1)       | 129     |
| activation_3 (Activation) | (None, 1)       | 0       |
|                           |                 |         |

\_\_\_\_\_\_

Total params: 158,289 Trainable params: 158,289 Non-trainable params: 0

#### Question-6. Compile the Model

#### **Solution:**

model.compile(loss='binary\_crossentropy',optimizer=Adam(),metrics=['accuracy'])

Question-7. Fit the Model

#### Solution:

history = model.fit(sequences\_matrix,Y\_train,batch\_size=20,epochs=15, validation\_split=0.2)

```
Epoch 1/15
168/168 [==========] - 34s 190ms/step - loss: 0.1980 - accuracy: 0.9354 - val loss: 0.0649 - val accuracy: 0.9821
Epoch 2/15
Epoch 3/15
168/168 [========] - 31s 186ms/step - loss: 0.0217 - accuracy: 0.9946 - val_loss: 0.0613 - val_accuracy: 0.9868
Epoch 4/15
Fnoch 5/15
168/168 [========] - 32s 188ms/step - loss: 0.0132 - accuracy: 0.9964 - val loss: 0.0661 - val accuracy: 0.9821
Epoch 6/15
168/168 [========] - 32s 190ms/step - loss: 0.0065 - accuracy: 0.9985 - val_loss: 0.0772 - val_accuracy: 0.9868
Epoch 7/15
168/168 [===========] - 32s 192ms/step - loss: 0.0057 - accuracy: 0.9982 - val_loss: 0.0811 - val_accuracy: 0.9844
Epoch 8/15
Epoch 9/15
168/168 [========] - 32s 189ms/step - loss: 0.0046 - accuracy: 0.9988 - val_loss: 0.1282 - val_accuracy: 0.9833
Fnoch 10/15
Epoch 11/15
168/168 [=========] - 33s 194ms/step - loss: 0.0036 - accuracy: 0.9991 - val loss: 0.1149 - val accuracy: 0.9844
Epoch 12/15
168/168 [========] - 31s 186ms/step - loss: 0.0131 - accuracy: 0.9982 - val_loss: 0.1019 - val_accuracy: 0.9773
Epoch 13/15
Epoch 14/15
168/168 [========] - 31s 187ms/step - loss: 0.0081 - accuracy: 0.9967 - val loss: 0.1005 - val accuracy: 0.9844
Fnoch 15/15
```

```
metrics = pd.DataFrame(history.history)
metrics.rename(columns = {'loss': 'Training_Loss', 'accuracy': 'Training_Accuracy', 'val_loss': 'Validation_Loss', 'val_accuracy': 'Validation_Accuracy'}, inplace = True)
def plot_graphs1(var1, var2, string):
    metrics[[var1, var2]].plot()
```

```
plt.title('Training and Validation ' + string)
plt.xlabel ('Number of epochs')
plt.ylabel(string)
plt.legend([var1, var2])
```

plot\_graphs1('Training\_Accuracy', 'Validation\_Accuracy', 'Accuracy')



Question-8. Save The Model

# **Solution:**

model.save('Spam\_sms\_classifier.h5')



Question-9. Test The Model

### **Solution:**

test\_sequences = tok.texts\_to\_sequences(X\_test)

```
test\_sequences\_matrix = pad\_sequences(test\_sequences,maxlen=max\_len)
```

print(' loss: {:0.4f}'.format(accuracy1[0]))
print(' Accuracy: {:0.4f}'.format(accuracy1[1]))

loss: 0.1061 Accuracy: 0.9828