28. Januar 2015

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Institut für Computerlinguistik Universität Heidelberg

Gliederung

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereic

Anwendungsberei

Umeotzun

Features

Featureextraktion Schwierigkeiten

Evaluation

Ausblick

Literatur

Referenze

Problemstellung

Anwendungsbereich

Daten

Problemstellung

Umsetzung

Features

Featureextraktion

Schwierigkeiten

Evaluation

Ausblick

Literatur

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Anwendungsbereich

Daten

Problemstellu

Umsetzur

Features

Celevisistski

Evaluatio

Ausblick

Literatur

Heierenzer

Was ist Semantic Argument Classifcation?

► Zuweisung bestimmter Rollen in einem Satz → "Wer tut wem was an?"

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Anwendungsbereich

Daten

Problemstellu

Umsetzu

Features Featureextrakti

Evaluatio

Ausblick

Literatur

Referenze

Was ist Semantic Argument Classifcation?

- ➤ Zuweisung bestimmter Rollen in einem Satz → "Wer tut wem was an?"
- ▶ It operates stores mostly in Iowa and Nebraska

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Anwendungsbereic

Daten

Problemstellu

Umsetzur

Features

Featureextrakti

Evaluatio

Ausblio

Literatur

Heterenzei

Was ist Semantic Argument Classifcation?

- ➤ Zuweisung bestimmter Rollen in einem Satz → "Wer tut wem was an?"
- ▶ It operates stores mostly in Iowa and Nebraska
- [Arg0 lt][Pred operates][Arg1 stores][ArgLoc mostly in lowa and Nebraska]

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Anwendungsbereich

Daten

Problemstellun

Umsetzun

Features

Featureeytrakt

Cobusionialvoito

Evaluation

Ausblick

Literatur

Referenzen

- ► NLTK
- ► PropBank

PropBank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Daten

Problemstellun

UIIISEIZU

Featureextraktion

Evaluatio

Aushlick

Literatur

Referenzer

- ▶ versucht generalisierte Argumente zu verwenden → Parser
 - ▶ Argumentrollen sind für jedes Verb in Frames organisiert → weniger spezifisch
 - ▶ ARG0 = Proto-Agent
 - ▶ ARG1 = Proto-Patient
 - ► ARG2-ARG5 = Argumente mit steigender Intensität

Penn Treebank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Anwendungsbereich

Daten

Problemstellur

Umsetzui

Features Featureextraktion

Evaluation

Ausblick

Literatur

Referenzer

- Subkorpus aus WSJ und Brown Corpus, bestehend aus ungefähr 3.478.101 Wörtern
 - ▶ 112.917 Sätze annotiert nach PropBank-Annotationsschema
 - ► 292.975 Instanzen
 - ▶ wsj/00/wsj₀001.mrg110goldpublish.01p - a10: 0 rel11: 0 ARG0

Penn Treebank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Anwendungsbereid

Daten

1 TODIOTISCOIL

Umsetzun

Features

Schwioriakoite

Evaluatio

Ausblick

Literatur

Referenzen

```
( (S
    (NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (ADJP
        (NP (CD 61) (NNS years) )
        (JJ old) )
      (, ,)
    (VP (MD will)
      (VP (VB ioin)
        (NP (DT the) (NN board) )
        (PP-CLR (IN as)
          (NP (D) a) (JJ nonexecutive) (NN director) ))
        (NP-TMP (NNP Nov.) (CD 29) )))
    (. .) ))
( (s
    (NP-SBJ (NNP Mr.) (NNP Vinken) )
    (VP (VBZ is)
      (NP-PRD
        (NP (NN chairman) )
        (PP (IN of)
          (NP
            (NP (NNP Elsevier) (NNP N.V.) )
            (NP (DT the) (NNP Dutch) (VBG publishing) (NN group) )))))
    (...))
```

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Features

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Daten

Problemstellur

Features

Featureextraktion

Schwierigkeiten

Evaluation

Ausblick

Literatur

Referenzen

- ▶ Predicate
- → Path
 - ► Phrase Type
 - ► Position
 - ▶ Voice

Predicate

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Daten

Features

Aushlick

Literatur

► lemmatisierte Prädikat

▶ 197 unique

▶ 3966 distinct

Path

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Daten

Problemstellu

Umentzung

Features

_

Schwieriekeiten

Evaluation

Aushlick

Literatur

Referenzer

- beschreibt Pfad zwischen ARG und Predicate
- ▶ vereinfacht z.B. NP-SBJ → NP
- extrahiert über Lowest Common Ancestor
- ▶ beispielsweise: NP↑S↓VP↓VBD
- ▶ 41737 distinct

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Phrase Type

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Anwendungsbereich

Daten

Problemstellur

Features

Featureextraktion Schwierigkeiten

=

Aushlick

Literatur

Referenzer

▶ beschreibt die Kategorie des Argument

► z.B: NP, MD, PP, SBAR

▶ 65 distinct

Position

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Daten Problemstellun

Fioblemstellul

Features

Peatureextraktion

_ . . .

Evaluation

Ausblick

Literatur

Referenze

- Beschreibt, ob das Argument vor oder nach dem Prädikat steht
- ▶ berechnet mithilfe von WordNum
- ▶ 2 distinct

Voice

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Daten

Problemstellui

Umsetzung

Features

Schwierigkei

_ . . .

Evaluation

Ausblick

Literatur

- ▶ gibt an, ob das Prädikat aktiv oder passiv ist
- ▶ größtenteils annotiert
- ▶ 3 distinct: active, passive, unknown

Featureextraktion

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Problemstellu

Umsetzung

Featureextraktion

Schwierigkeiten

Evaluation

Ausblick

Literatur

Referenzen

extract.py

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

_

Problem

Features

Featureextraktion

Evaluation

Ausblick

Literatur

Referenzer

@relation SAC_All

@data

join,NP,before,NP^S!VP!VP,active,ARG0 join,MD,before,MD^VP^S!VP!VP,active,ARGM join,NP,after,NP^VP^VP^S!VP!VP,active,ARG1 join,PP,after,PP^VP^VP^S!VP!VP,active,ARGM

join, NP, after, NP^VP^VP^S!VP!VP, active, ARGM join, NP, after, NP^VP^S!VP!VP, active, ARGM

publish,NN,after,NN^NP^NP^PP^NP^VP^S!VP!NP!PP!NP!NP,active,ARG0
name,NP,before,NP^S!VP!VP,passive,ARG1

name,NP,after,NP^S^VP^VP^S!VP!VP,passive,ARG2
use,ADVP,before,ADVP^RRC^NP^S^S!S!NP!PRC!YP,passive,ARGM
use,NP,before,NPNPSSSIS!NP!PRC!YP,passive,ARGM

use, NP, before, NP^NP^S^S!S!NP!RRC!VP, passive, ARG1
use, S, after, S^VP^RRC^NP^S^S!S!NP!RRC!VP, passive, ARG2

use, s, arter, s 'P' RAC 'M' 5' 5:181*:RAC:YP;3851Ve; ARO2
make, NONE-, before, NONE-'NP^SYPARC'NP^SYS!S!NP!RRC!VP!S!VP!VP,active,ARG0
make,NP,after,NP^VP^VP^SYPARC^NP^SYS!S!NP!RRC!VP!S!VP!VP,active,ARG1

cause, NP, before, NP^S^S!S!VP!VP, active, ARG0 cause, NP, after, NP^VP^VP^S^S!S!VP!VP, active, ARG1

exposé, PP, after, PP-VP^RRC^MP^PP^NP^PP^NP^VP^S^S I SIVPIVPINPIPPINPIPPINPIRRCIVP, passive, ARG2 expose, ADVP, after, ADVP-VP^RRC^NP^PPPNPVPPNPS^S I SIVPIVPINPIPPINPIPPINPIRRCIVP, passive, ARGM expose, NP, before, NP*PP*NPVPVPYPS^S I SIVPIVPINPIPPINPIRRCIVP, passive, ARG1

report,NP,before,NP^S!VP,active,ARG0 report,S,before,S^S!VP,active,ARG1

enter,NP,before,NP^S^SBAR^VP^S^S!S!VP!SBAR!S!VP,active,ARG0
enter,NP,after,NP^VP^S^SBAR^VYP^S^S!S!VP!SBAR!S!VP,active,ARG1
cause,NP,before,NP^S^PP^VP^S^S!S!VP!PP!S!VP,active,ARG0

cause,NP,after,NP^VP^S^PP^VP^S^SIS!VP!PPIS!VP,active,ARG1
show,NP,before,NP^NP^VP^S^PP^VP^S^SIS!VP!PIS!VP!NP!SBARIS!VP,active,ARG1
show,ADVP_After,ADVP^VP^S^SBAR^NP^VP^SPS^SIS!VP!PPIS!VP!NP!SBARIS!VP.active.ARGM

say,NP,before,NP^S!VP,active,ARG0 say,S,before,S^S!VP,active,ARG1

make,NP,after,NP^VP^S^SBAR^NP^NP^S!NP!NP!SBAR!S!VP,active,ARG1 make,NP,before,NP^NP^NP^S!NP!NP!SBAR!S!VP,active,ARG0 stop.NP.before,NP^S!VP.active.ARG0

stop, VBG, after, VBG^VP^VP^S!VP, active, ARG1

Quellen

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Problemstellu

Engluron

Featureextrakti

Evaluation

Ausblick

Literatur

Referenzen

- [1] Omri Abend und Roi Reichart. Unsupervised Argument Identification for Semantic Role Labeling.
- [2] Jean Carletta. "Assessing agreement on classification tasks: the kappa statistic". In: Computational Linguistics (1996), S. 249–254.
- [3] Daniel Gildea. "Automatic labeling of semantic roles". In: *Computational Linguistics* 28 (2002), S. 245–288.
- [4] Alessandro Moschitti und Cosmin Adrian Bejan. "A Semantic Kernel for Predicate Argument Classification". In: *IN CONLL 2004*. 2004, S. 17–24.
- [5] Sameer Pradhan u. a. Support Vector Learning for Semantic Argument Classification. 2005.

Vielen Dank für Eure Aufmerksamkeit! Noch Fragen?

