Minicurso:

Modelagem de nicho e conservação biológica em cenários futuros de mudanças globais

Mariana M. Vale Tainá C. Rocha

MARIANA M. VALE

Mestre em Conservation Biology pela Columbia University, Estados Unidos. Doutora em Ecologia pela Duke University, Estados Unidos. Professora Associada e Chefe do Departamento de Ecologia da UFRJ. Coordenadora da sub-rede de Biodiversidade e Ecossistemas da RedeCLIMA/MCTI, membro do Conselho Gestor do INCT em Ecologia, Evolução e Conservação (EECBio), pesquisadora associada no Laboratório Internacional en Cambio Global (LincGlobal)

LINHAS DE PESQUISA: Modelagem de Nicho Ecológico para Conservação, Avaliação do Status de Conservação das Espécies e Tendenciosidade Amostral e Padrões de Biodiversidade.

Objetivos

Introdução superficial à teoria e prática da modelagem de distribuição e nicho ecológico e suas aplicações para a conservação da biodiversidade

Atividades

Manhã

- Aula teórica
- 2. Prática 1: distribuição de um mamífero invasor (MaxEnt)

Tarde

3. Prática 2: distribuição de espécies marinhas endêmicas (vários algoritmos)

E vocês?

Modelagem de distribuição

Brazilian Journal of Nature Conservation

Essays & Perspectives

Natureza & Conservação 10(2):102-107, December 2012 Copyright© 2012 ABECO Handling Editor: José Alexandre F. Diniz-Filho http://dx.doi.org/10.4322/natcon.2012.019

Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right

A. Townsend Peterson* & Jorge Soberón

Biodiversity Institute, The University of Kansas, Kansas, USA

Abstract

We provide an overview of conceptual considerations in terminology related to ecological niche modeling and species distribution modeling, two near-synonymous (but not quite), relatively new tools in macroecology and biogeography. We show that a large majority of published studies taking advantage of these tools use terminology inappropriate to the biogeographic and ecological basis on which their application is founded. We suggest that only via rigorous and appropriate terminology will these tools achieve their fullest potential.

Key words: Geographic Range, Niche, Species Distributions, Macroecology, Biogeography.

Modelagem de distribuição

Mapear a distribuição conhecida da espécie (registros de ocorrência e às vezes ausência da espécie)

Compilar um camadas ambientais potencialmente preditoras da distribuição da espécie (e.g. temp., prec., solo,) Rodar algoritmo de modelagem (e.g. MaxEnt, GLM, GARP)

Calibrar o modelo
(definição de
parâmetros, teste da
importância de
diferentes
preditores)

Teste da capacidade de previsão (campo adicional ou separação de dados)

Criação do mapa de distribuição atual)

Previsão da distribuição em diferentes regiões (e.g invasoras) ou cortes temporais (e.g. mudanças climáticas)

Se possível, testar as previsões contra dados observados, como registros de ocorrência em áreas invadidas ou mudanças recentes de distribuição

Modelagem de distribuição

Mapear a distribuição conhecida da espécie (registros de ocorrência e às vezes ausência da espécie)

Compilar um camadas ambientais potencialmente preditoras da distribuição da espécie (e.g. temp., prec., solo,) Rodar algoritmo de modelagem (e.g. MaxEnt, GLM, GARP)

Calibrar o modelo
(definição de
parâmetros, teste da
importância de
diferentes
preditores)

Teste da capacidade de previsão (campo adicional ou separação de dados)

Previsão da distribuição em diferentes regiões (e.g invasoras) ou cortes temporais (e.g. mudanças climáticas)

atual)

Se possível, testar as previsões contra dados observados, como registros de ocorrência em áreas invadidas ou mudanças recentes de distribuição

Figure 1. Publications on Ecologic Niche Modeling/Species Distribution Modeling from 1985 to 2012. The graph shows publications worldwide (gray), and from Brazil (black), and the years in which Dr. Rui Cerqueira has contributed publications (*).

Algoritmos

Method	Class of model, and explanation	Data ¹	Software	Std errors? ²	Contact person
BIOCLIM	envelope model	p	DIVA-GIS	no	CG, RH
BRT	boosted decision trees	pa	R, gbm package	no	JE
BRUTO	regression, a fast implementation of a gam	pa	R and Splus, mda package	yes	JE
DK-GARP	rule sets from genetic algorithms; desktop version	pa	DesktopGarp	no	ATP
DOMAIN	multivariate distance	p	DIVA-GIS	no	CG, RH
GAM	regression: generalised additive model	pa	S-Plus, GRASP add-on	ves	AG, AL, JE
GDM	generalised dissimilarity modelling; uses community data	pacomm	~	no	SF
GDM-SS	generalised dissimilarity modelling; implementation for single species	pa	as for GDM	no	SF
GLM	regression; generalised linear model	pa	S-Plus, GRASP add-on	yes	AG,AL,JE
LIVES	multivariate distance	p	Specialized program not general released	no	JLi
MARS	regression; multivariate adaptive regression splines	pa	R, mda package plus new code to handle binomial responses	yes	JE, FH
MARS- COMM	as for MARS, but implemented with community data	pacomm	as for MARS	yes	JE
MARS-INT	as or MARS; interactions allowed	na	as for MARS	vae	JE
MAXENT	maximum entropy	pa	Maxent	yes no	SP
MAXENT-T	maximum entropy with threshold	pa pa	Maxent	no	SP
MAAENI-I	features	Pa	Maxim	по	SI.
OM-GARP	rule sets derived with genetic algorithms; open modeller version	pa	new version of GARP not yet available	no	ATP

Diferentes algoritmos geram diferentes resultados...

Lutzomyia faviscutellata

Rhinophylla fischerae

<u>Algoritmos</u>

Diferentes algoritmos geram diferentes resultados... e apresentam diferentes desempenhos

Desempenho

Poa sieberiana

1

2

<u>Algoritmos</u>

Desempenho

Ophioscincus truncatus

2

1

3

Desempenho

Desempenho por região geográfica

Desempenho para diferentes espécies

Espécies
raras
+
distribuição
restrita

envelope e distância

aquário

ajuste estatístico

caixa preta

aprendizado de máquina

cofre

Envelope e distância

aquário

Características

- complexidade baixa
- interpretação fácil
- dados de presença apenas
- baixo ajuste aos dados
- •alta transferibilidade
- boa opção quando se tem poucos registros

envelope e distância

aquário

Exemplos

- •BIOCLIM
- DOMAIN
- Distância Euclidiana
- Distância de Gower
- Distância de Mahalanobis
- •ENFA

envelope climático

aquário

Envelope máx e mín

- máx/mín para cada variável
- •envelope = [máx, mín]

Nicho ecológico

George E. Hutchinson

2. Nicho ecológico

George E. Hutchinson

2. Nicho ecológico

George E. Hutchinson

"Espaço geográfico"

George E. Hutchinson

registros de ocorrência da espécie

"Espaço geográfico"

George E. Hutchinson

camada ambiental (temperatura média)

"Espaço geográfico"

George E. Hutchinson

4,7°C → **25,2** °C

camada ambiental (temperatura média)

"Espaço geográfico"

George E. Hutchinson

4,7°C → **25,2** °C

camada ambiental (temperatura média)

"Espaço geográfico"

George E. Hutchinson

92 mm → 2671 mm

camada ambiental (precipitação total)

"Espaço geográfico"

George E. Hutchinson

envelope climático

ajuste estatístico

caixa preta

Características

- complexidade média
- •interpretação média
- •dados de presença e ausência
- bom ajuste aos dados
- boa transferibilidade
- boa opção quando se tem muitos registros e há dados de ausência

ajuste estatístico

caixa preta

Exemplos

- •GLM
- •GAM
- •FDA
- •GBM
- •MARS

Rhinophylla fischerae

Tipos de algoritmos

aprendizado de máquina

cofre

Características

- complexidade alta
- interpretação baixa
- dados de presença e ausência ou background
- excelente ajuste aos dados
- baixa transferibilidade
- boa opção quando se tem muitos registros e não se pretente fazer projeções em cenários adversos

Tipos de algoritmos

aprendizado de máquina

cofre

Exemplos

- MaxEnt
- •GARP
- Random Forest
- •Redes Neurais

Com tantos algoritmos, como determinar o modelo final de distribuição ou nicho?

Leoparuds jacobita

Linha de corte para desempenho mínimo

	AUC
BIOCLIM	0.967
SVM	0.911
GLM	0.733
MAXENT	0.807

• Linha de corte de desempenho mínimo

Leoparuds jacobita

Leoparuds jacobita

Regra da Maioria

Regra da maioria

Incluído em 3 modelos
Incluído em 2 modelos
Incluído em 1 modelo

Regra da maioria

Leoparuds jacobita

Leoparuds jacobita

média

Leoparuds jacobita

- média ponderada
- média das saídas contínuas dos modelos
- média ponderada das saídas contínuas
- soma das saídas contínuas
- Soma ponderada das saídas contínuas
- etc...

- Pacotes que rodam diversos algoritmos
 - OpenModeller
 - ModEco
 - BioEmsambles
 - Dismo (ambiente R)
 - BioMod (ambiente R)
 - ModelR (JBRJ)

Outras questões importantes

Questões conceituais

- o que está sendo modelado?
- o que pode ser inferido?
- quais as limitações?

Registros de ocorrência

- erros de localização
- erros de identificação
- dados de ausência e pseudo-ausência
- agregações, lacunas e auto-correlação espacial

Camadas ambientais

- escolha das variáveis (presente e futuro)
- correlação entre variáveis
- resolução espacial
- extensão da análise (área de calibração)

Inscrições abertas

Programa de Pós-graduação em Ecologia (PPGE/UFRJ) e Programa de Pós-graduação em Ecologia e Evolução (PPGEE/UERJ)

22/06 a 01/07 à tarde UFRJ

Prática 1

Aqui vamos usar um único algoritmo:

"MaxEnt"

Estudo de caso

Ratão-do-banhado (Myocastor coypus)

Myocastor coypus

Myocastor coypus

Myocastor coypus

GLOBAL INVASIVE SPECIES DATABASE

HOME

ABOUT THE GISD

HOW TO USE

CONTACTS

- Erosão das margem de rios (tocas)
- Alteração na comunidade vegetal (alimentação)
- Conversão de habitat (p.ex. pântano → lago)
- Praga em lavouras

Bank erosion caused by Nutria. Photo by Tess McBride, USFWS

Itália

Andorinha-do-mar (Chlidonias hybrida)

Lebellula angelina

Acheilognathus longipinnis

Objetivos da prática

- 1. Mapear a distribuição original
- 2. Projetar a distribuição em escala global
- 3. Verificar se as áreas invadidas são mapeadas
- 4. Verificar se há outras áreas não invadidas susceptíveis à invasão