Secure Content Filtering in Document Summarization

Team Members

Akshat Gangrade (axg210048)

Ankit Sahu (axs210226)

Sarthak Gupta (sxg200139)

Yash Shah (yxs210015)

Problem Statement

- Integration of Security Protocols in Summarization
- Handling Classified Information
- Innovative Use of NLP Techniques
- Dynamic Clearance Check Function
- Continuous Improvement and Adaptation
- Beyond Traditional Summarization Methods

System Design

- Data Collection and Preprocessing
- Model Implementation with NLP and Security Layers
- Data Analysis for Security Assessment
- Model Evaluation: Accuracy and Sensitivity Analysis

System Implementation

- Feature Analysis with NLP Tools
- Data Visualization for Preprocessing Insights
- Model Training with Machine Learning Algorithms
- Implementing Security Layer in Summarization
- Evaluation on Test Dataset
- Practical Application for Controlled Access

Experiment Setup

- Platform: Google Colab for cloud computation.
- **Programming:** Python for its extensive data science and MLlibraries.
- Visualization Tools: Data visualization with Matplotlib and Seaborn.
- Libraries: Pandas for data manipulation, SkLearn for ML, NumPy for numerical tasks, and NLP tools (NLTK, spaCy).
- Data Splitting: Dataset divided into 80% training and 20% testing.
- Evaluation Metrics: Accuracy, precision, recall, F1 score, ROC curve.
- Model Comparison: Baseline (Logistic Regression, Random Forest) vs advanced NLP models for content filtering and summarization.
- **Testing & Optimization:** Model testing on test dataset, fine-tuning with cross-validation.
- Documentation: Comprehensive documentation for reproducibility.

Results

Confusion Matrix and ROC curve Diagrams

Results

Different models – Random Forest Classifier & Logistic Regression

Classification Report	precision	recall	f1-score	support	р	recision	recall	f1-score	support
0	0.89	0.99	0.93	85030	0	0.88	0.99	0.93	84816
1	0.81	0.28	0.42	14970	1	0.82	0.28	0.41	15184
accuracy			0.88	100000	accuracy			0.88	100000
macro avg	0.85	0.63	0.68	100000	macro avg	0.85	0.63	0.67	100000
weighted avg	0.88	0.88	0.86	100000	weighted avg	0.87	0.88	0.86	100000

Confusion Matrix

[[84218 902] [10660 4220]]

[[84197 968] [10673 4162]]

Challenges Encountered

- Difficulty finding an appropriate dataset
- Limited features
- Ethical and Privacy Concerns
- Real-time Data Processing
- Language and Textual Data Challenges

Future Directions

- The model's objective is to automatically identify and replace sensitive information like Zip Codes, SSNs, Addresses, and Passwords in uploaded PDFs with an 'X'.
- Replace the sensitive information with 'X' when sending the information from one person to another person.
- Currently the model is built on the English language and has limited functionality in other languages.
- The model is built on sensitive filtration but in future we can add more features like toxic, inserting, obscene and threat.

Thank You