búsqueda Indexada

Juan Cortez.

Francisco Ramirez.

Christopher Salvatierra

Universidad Tecnológica Metropolitana

11 noviembre 2013

Índice

- Introducción
- 2 complejidad
- 3 pasos de búsqueda indexada
- 4 ejemplo búsqueda indexada
- Tiempos de ejecucion
- 6 Cuando utilizar búsqueda indexada
- conclusión

Introducción

- Algoritmo Utilizado para encontrar un elemento.
- Uso de Key o Índices.
- Acción de registrar ordenadamente la información para elaborar su índice
- La indexación es un elemento fundamental para motores de búsqueda y las base de datos.
- Es la manera mas eficiente de organizar y recuperar contenido de una base de datos.

La complejidad de búsqueda indexada es variable ya que en este caso depende de factores como:

conclusión

- método de búsqueda que usemos
- arreglo ordenado o por ordenar
- método de ordenamiento utilizado

Busqueda Binaria

Busqueda Indexada

Peor Caso: $n^2 + n^2 + \log_2(n)$

Mejor Caso: $n \log(2)n + n^2 + 1$

Introducción complejidad

pasos de búsqueda indexada ejemplo búsqueda indexada Tiempos de ejecucion Cuando utilizar búsqueda indexada conclusión

Busqueda Secuencial

n-1

n-1

Busqueda Indexada

Peor Caso: n^2 + n^2 + n

Caso Medio: n log2(n) + n^2 + n

Mejor Caso: $n \log_2(n) + n^2 + 1$

- array debe estar ordenado de menor a mayor.
- se divide arreglo principal en sub arreglos.
- se toma el primer valor de cada sub arreglo y se copia en un arreglo de indices
- arreglo de indices támbien ordenado de menor a mayor
- se comienza la búsqueda en el arreglo de indices.
- se utiliza búsqueda alternativa (secuencial, binaria)
- una vez encontrado el valor al que pertenece el numero buscado, se recorre sub arreglo en array principal

ejemplo:

12											
3	4	5	6	7	8	9	10	14	16	19	

ejemplo:

3 4 5	6 7	8	9	10	14	16	19
-------	-----	---	---	----	----	----	----

$$X = 10$$

ejemplo:

3 4 5	6 7	8	9 10	14	16	19
-------	-----	---	------	----	----	----

$$X = 10$$

Juan Cortez. Francisco Ramirez. Christopher Salvatierra

ejemplo:

Juan Cortez. Francisco Ramirez. Christopher Salvatierra

ejemplo:

tabla de tiempos de ejecución

N° de Datos	Tiempo (seg)		
100	0,014		
1000	0,116		
10000	0,582		
50000	3,114		
100000	5,923		

Cuando utilizar búsqueda indexada

- cuando se tiene N muy grande
- Al ingresar gran cantidad de datos sin un orden establecido
- Muy utilizado para realizar búsquedas en bases de datos

conclusión

- Es el método de Búsqueda más rápido
- necesita un método de ordenamiento y ocupar otro tipo de búsqueda.
- Muy utilizado cuando se necesita buscar un elemento dentro de una gran cantidad de datos.
- Su uso requiere mayor espacio de memoria
- Utilizado en bases de datos para realizar búsqueda de datos de forma mas eficaz