Machine Learning - Prediction Assignment Writeup

cstanca1

January 31, 2016

- 1 Introduction
- · 2 Required Packages
- 3 Data
 - 3.1 Data Pre-Processing
- · 4 Pre-Processing
 - 4.1 Features Variance
 - 4.2 Features-Outcome Relationship
 - 4.3 Features Correlation Matrix
 - 4.4 tSNE Visualization
- 5 Machine Learning Model
 - 5.1 XGBoost Parameters
 - 5.2 Error Rate
 - 5.3 Cross-Validation
 - 5.4 Confusion Matrix
 - 5.5 Model Training
 - 5.6 Predicting Testing Data
 - 5.7 Post-Processing
 - 5.8 Feature Importance
- · 6 Create Submission Files for 20 Test Cases

1 Introduction

This report incorporates the results of the analysis performed to predict the manner in which 6 participants perform barbell lifts. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website: http://groupware.les.inf.puc-rio.br/har (http://groupware.les.inf.puc-rio.br/har) (see the section on the Weight Lifting Exercise Dataset).

2 Required Packages

```
require(caret)

## Loading required package: caret

## Warning: package 'caret' was built under R version 3.2.3
```

```
## Loading required package: lattice
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.2.3
require(corrplot)
## Loading required package: corrplot
## Warning: package 'corrplot' was built under R version 3.2.3
require(Rtsne)
## Loading required package: Rtsne
## Warning: package 'Rtsne' was built under R version 3.2.3
require(xgboost)
## Loading required package: xgboost
## Warning: package 'xgboost' was built under R version 3.2.3
require(stats)
require(knitr)
## Loading required package: knitr
## Warning: package 'knitr' was built under R version 3.2.3
require(ggplot2)
require(Ckmeans.1d.dp)
## Loading required package: Ckmeans.1d.dp
```

```
## Warning: package 'Ckmeans.1d.dp' was built under R version 3.2.3
```

```
knitr::opts chunk$set(cache=TRUE)
```

3 Data

```
# training and testing data:
training.url ="https://d396qusza40orc.cloudfront.net/predmachlearn/pml-trainin
g.csv"
testing.url = "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.
# set file names
training.filename = "./data/pml-training.csv"
testing.filename = "./data/pml-testing.csv"
# create directory, if one does not exist
if (!file.exists("./data")) {
 dir.create("./data")
}
# download files, if they don't exist already
if (!file.exists(training.filename)) {
 download.file(training.url, destfile=training.filename, method="curl")
if (!file.exists(testing.filename)) {
 download.file(testing.url, destfile=testing.filename, method="curl")
# define training and testing dataframes
training = read.csv(training.filename)
testing = read.csv(testing.filename)
# set training and testing dataframes dimensions
dim(training)
```

```
## [1] 19622 160
```

```
dim(testing)
```

```
## [1] 20 160
```

collect training and testing column names
names(training)

```
##
     [1] "X"
                                     "user name"
##
    [3] "raw timestamp part 1"
                                     "raw timestamp part 2"
##
    [5] "cvtd timestamp"
                                     "new window"
                                     "roll belt"
##
    [7] "num window"
    [9] "pitch belt"
                                     "yaw belt"
##
   [11] "total accel belt"
                                     "kurtosis roll belt"
                                     "kurtosis yaw belt"
##
    [13] "kurtosis picth belt"
##
    [15] "skewness roll belt"
                                     "skewness roll belt.1"
   [17] "skewness yaw belt"
                                     "max roll belt"
##
   [19] "max picth belt"
                                     "max yaw belt"
##
   [21] "min roll belt"
                                     "min pitch belt"
   [23] "min yaw belt"
                                     "amplitude roll belt"
##
   [25] "amplitude pitch belt"
                                     "amplitude yaw belt"
##
   [27] "var total accel belt"
                                     "avg roll belt"
##
   [29] "stddev roll belt"
                                     "var roll belt"
##
   [31] "avg pitch belt"
                                     "stddev pitch belt"
##
   [33] "var pitch belt"
                                     "avg yaw belt"
##
   [35] "stddev yaw belt"
                                     "var yaw belt"
    [37] "gyros belt x"
                                     "gyros belt y"
##
   [39] "gyros belt z"
                                     "accel belt x"
##
   [41] "accel belt y"
                                     "accel belt z"
   [43] "magnet belt x"
                                     "magnet belt y"
##
    [45] "magnet belt z"
                                     "roll arm"
##
   [47] "pitch arm"
                                     "yaw arm"
   [49] "total accel arm"
                                     "var accel arm"
##
   [51] "avg roll arm"
                                     "stddev roll arm"
   [53] "var roll arm"
                                     "avg pitch arm"
##
   [55] "stddev pitch arm"
                                     "var_pitch_arm"
##
   [57] "avg yaw arm"
                                     "stddev yaw arm"
   [59] "var yaw arm"
                                     "gyros arm x"
   [61] "gyros_arm_y"
##
                                     "gyros arm z"
##
   [63] "accel arm x"
                                     "accel arm y"
##
   [65] "accel arm z"
                                     "magnet arm x"
   [67] "magnet arm y"
                                     "magnet arm z"
   [69] "kurtosis_roll_arm"
##
                                     "kurtosis picth_arm"
##
    [71] "kurtosis yaw arm"
                                     "skewness roll arm"
##
   [73] "skewness pitch arm"
                                     "skewness yaw arm"
    [75] "max roll arm"
                                     "max picth arm"
    [77] "max_yaw_arm"
##
                                     "min roll arm"
##
   [79] "min pitch arm"
                                     "min yaw arm"
    [81] "amplitude_roll_arm"
                                     "amplitude_pitch_arm"
##
    [83] "amplitude yaw arm"
                                     "roll dumbbell"
##
   [85] "pitch dumbbell"
                                     "yaw dumbbell"
##
    [87] "kurtosis roll dumbbell"
                                     "kurtosis picth dumbbell"
##
    [89] "kurtosis_yaw_dumbbell"
                                     "skewness_roll_dumbbell"
##
   [91] "skewness pitch dumbbell"
                                     "skewness yaw dumbbell"
##
   [93] "max roll dumbbell"
                                     "max picth dumbbell"
##
    [95] "max yaw dumbbell"
                                     "min roll dumbbell"
```

```
## [97] "min pitch dumbbell"
                                    "min yaw dumbbell"
                                    "amplitude_pitch_dumbbell"
## [99] "amplitude roll dumbbell"
## [101] "amplitude yaw dumbbell"
                                    "total accel dumbbell"
## [103] "var accel dumbbell"
                                    "avg roll dumbbell"
## [105] "stddev roll dumbbell"
                                    "var roll dumbbell"
## [107] "avg pitch dumbbell"
                                    "stddev pitch dumbbell"
## [109] "var pitch dumbbell"
                                    "avg yaw dumbbell"
## [111] "stddev yaw dumbbell"
                                    "var yaw dumbbell"
## [113] "gyros dumbbell x"
                                    "gyros dumbbell y"
## [115] "gyros dumbbell z"
                                    "accel dumbbell x"
                                    "accel dumbbell z"
## [117] "accel dumbbell y"
## [119] "magnet dumbbell x"
                                    "magnet dumbbell y"
## [121] "magnet dumbbell z"
                                    "roll forearm"
## [123] "pitch forearm"
                                    "yaw forearm"
## [125] "kurtosis roll forearm"
                                    "kurtosis picth forearm"
## [127] "kurtosis yaw forearm"
                                    "skewness roll forearm"
## [129] "skewness pitch forearm"
                                    "skewness yaw forearm"
## [131] "max roll forearm"
                                    "max picth forearm"
## [133] "max yaw forearm"
                                    "min roll forearm"
## [135] "min_pitch_forearm"
                                    "min yaw forearm"
## [137] "amplitude_roll_forearm"
                                    "amplitude pitch forearm"
## [139] "amplitude_yaw_forearm"
                                    "total accel forearm"
## [141] "var_accel_forearm"
                                    "avg roll forearm"
## [143] "stddev roll forearm"
                                    "var roll forearm"
## [145] "avg pitch forearm"
                                    "stddev pitch forearm"
## [147] "var pitch forearm"
                                    "avg yaw forearm"
## [149] "stddev yaw forearm"
                                    "var_yaw_forearm"
## [151] "gyros forearm x"
                                    "gyros forearm y"
## [153] "gyros forearm z"
                                    "accel forearm x"
## [155] "accel forearm y"
                                    "accel forearm z"
## [157] "magnet forearm x"
                                    "magnet forearm y"
## [159] "magnet forearm z"
                                    "classe"
```

names(testing)

```
##
     [1] "X"
                                     "user name"
##
    [3] "raw timestamp part 1"
                                     "raw timestamp part 2"
##
    [5] "cvtd timestamp"
                                     "new window"
                                     "roll belt"
##
    [7] "num window"
    [9] "pitch belt"
                                     "yaw belt"
##
   [11] "total accel belt"
                                     "kurtosis roll belt"
                                     "kurtosis yaw belt"
##
    [13] "kurtosis picth belt"
##
    [15] "skewness roll belt"
                                     "skewness roll belt.1"
   [17] "skewness yaw belt"
                                     "max roll belt"
##
   [19] "max picth belt"
                                     "max yaw belt"
##
   [21] "min roll belt"
                                     "min pitch belt"
   [23] "min yaw belt"
                                     "amplitude roll belt"
##
   [25] "amplitude pitch belt"
                                     "amplitude yaw belt"
##
   [27] "var total accel belt"
                                     "avg roll belt"
##
   [29] "stddev roll belt"
                                     "var roll belt"
##
   [31] "avg pitch belt"
                                     "stddev pitch belt"
##
   [33] "var pitch belt"
                                     "avg yaw belt"
##
   [35] "stddev yaw belt"
                                     "var yaw belt"
    [37] "gyros belt x"
                                     "gyros belt y"
##
   [39] "gyros belt z"
                                     "accel belt x"
##
   [41] "accel belt y"
                                     "accel belt z"
   [43] "magnet belt x"
                                     "magnet belt y"
##
    [45] "magnet belt z"
                                     "roll arm"
##
   [47] "pitch arm"
                                     "yaw arm"
   [49] "total accel arm"
                                     "var accel arm"
##
   [51] "avg roll arm"
                                     "stddev roll arm"
   [53] "var roll arm"
                                     "avg pitch arm"
##
   [55] "stddev pitch arm"
                                     "var_pitch_arm"
##
   [57] "avg yaw arm"
                                     "stddev yaw arm"
   [59] "var yaw arm"
                                     "gyros arm x"
   [61] "gyros_arm_y"
##
                                     "gyros arm z"
##
   [63] "accel arm x"
                                     "accel arm y"
##
   [65] "accel arm z"
                                     "magnet arm x"
   [67] "magnet arm y"
                                     "magnet arm z"
   [69] "kurtosis_roll_arm"
##
                                     "kurtosis picth_arm"
##
    [71] "kurtosis yaw arm"
                                     "skewness roll arm"
##
   [73] "skewness pitch arm"
                                     "skewness yaw arm"
    [75] "max roll arm"
                                     "max picth arm"
    [77] "max_yaw_arm"
##
                                     "min roll arm"
##
   [79] "min pitch arm"
                                     "min yaw arm"
    [81] "amplitude_roll_arm"
                                     "amplitude_pitch_arm"
##
    [83] "amplitude yaw arm"
                                     "roll dumbbell"
##
   [85] "pitch dumbbell"
                                     "yaw dumbbell"
##
    [87] "kurtosis roll dumbbell"
                                     "kurtosis picth dumbbell"
##
    [89] "kurtosis_yaw_dumbbell"
                                     "skewness_roll_dumbbell"
##
   [91] "skewness pitch dumbbell"
                                     "skewness yaw dumbbell"
##
   [93] "max roll dumbbell"
                                     "max picth dumbbell"
##
    [95] "max yaw dumbbell"
                                     "min roll dumbbell"
```

```
## [97] "min pitch dumbbell"
                                    "min yaw dumbbell"
## [99] "amplitude roll dumbbell"
                                    "amplitude pitch dumbbell"
                                    "total accel dumbbell"
## [101] "amplitude yaw dumbbell"
## [103] "var accel dumbbell"
                                    "avg roll dumbbell"
## [105] "stddev roll dumbbell"
                                    "var roll dumbbell"
## [107] "avg pitch dumbbell"
                                    "stddev pitch dumbbell"
## [109] "var pitch dumbbell"
                                    "avg yaw dumbbell"
## [111] "stddev yaw dumbbell"
                                    "var yaw dumbbell"
## [113] "gyros dumbbell x"
                                    "gyros dumbbell y"
## [115] "gyros dumbbell z"
                                    "accel dumbbell x"
## [117] "accel dumbbell y"
                                    "accel dumbbell z"
## [119] "magnet dumbbell x"
                                    "magnet dumbbell y"
## [121] "magnet dumbbell z"
                                    "roll forearm"
## [123] "pitch forearm"
                                    "yaw forearm"
## [125] "kurtosis roll forearm"
                                    "kurtosis picth forearm"
## [127] "kurtosis_yaw forearm"
                                    "skewness roll forearm"
## [129] "skewness pitch forearm"
                                    "skewness yaw forearm"
## [131] "max roll forearm"
                                    "max picth forearm"
## [133] "max yaw forearm"
                                    "min roll forearm"
## [135] "min pitch forearm"
                                    "min yaw forearm"
## [137] "amplitude roll forearm"
                                    "amplitude pitch forearm"
## [139] "amplitude yaw forearm"
                                    "total accel forearm"
## [141] "var accel forearm"
                                    "avg roll forearm"
## [143] "stddev roll forearm"
                                    "var roll forearm"
## [145] "avg pitch forearm"
                                    "stddev pitch forearm"
## [147] "var pitch forearm"
                                    "avg yaw forearm"
## [149] "stddev yaw forearm"
                                    "var yaw forearm"
## [151] "gyros forearm x"
                                    "gyros forearm y"
## [153] "gyros forearm z"
                                    "accel forearm x"
## [155] "accel forearm y"
                                    "accel forearm z"
## [157] "magnet forearm x"
                                    "magnet forearm y"
## [159] "magnet forearm z"
                                    "problem id"
```

The raw training data has 19622 rows of observations and 160 features (predictors). Column $\,\mathrm{x}\,$ is an unusable row number. The raw testing data has 20 rows and 39 features. There is one column of target outcome named <code>classe</code>.

3.1 Data Pre-Processing

Keep only the predictors ("activity monitors"). Extract target outcome from training data ("activity quality").

```
# target outcome
outcome.o = training[, "classe"]
outcome = outcome.o
levels(outcome)
```

```
## [1] "A" "B" "C" "D" "E"
```

Outcome has 5 levels in character format, "A", "B" ... XGBoost gradient booster only recognizes numeric data. Thus, it needs to be converted to numeric, 1, 2, ...

```
# convert character levels to numeric
num.class = length(levels(outcome))
levels(outcome) = 1:num.class
head(outcome)
```

Remove outcome from training data.

```
# remove outcome from training
training$classe = NULL
```

Per assignment, only belt, forearm, arm, and dumbell features are needed.

```
# filter columns on belt, forearm, arm, dumbell
filter = grepl("belt|forearm|arm|dumbell", names(training))
training = training[, filter]
testing = testing[, filter]
```

Remove all columns with NA values.

```
# remove columns with NA, use test data as referal for NA
cols.without.na = colSums(is.na(testing)) == 0
training = training[, cols.without.na]
testing = testing[, cols.without.na]
```

4 Pre-Processing

4.1 Features Variance

Per PCA, features must have maximum variance for maximum uniqueness; each feature is as distant as possible from the other features.

```
# zero variance
zero.var = nearZeroVar(training, saveMetrics=TRUE)
zero.var
```

```
##
                     freqRatio percentUnique zeroVar
## roll belt
                     1.101904
                                 6.7781062 FALSE FALSE
## pitch belt
                     1.036082
                                  9.3772296 FALSE FALSE
                     1.058480 9.9734991 FALSE FALSE
1.063160 0.1477933 FALSE FALSE
## yaw belt
## total accel belt
                     1.063160
## gyros belt x
                     1.058651
                                 0.7134849 FALSE FALSE
                    1.144000 0.3516461 FALSE FALSE
1.066214 0.8612782 FALSE FALSE
## gyros_belt_y
## gyros belt z
## accel belt_x
                                 0.8357966 FALSE FALSE
                     1.055412
                     1.113725 0.7287738 FALSE FALSE
1.078767 1.5237998 FALSE FALSE
## accel_belt_y
## accel_belt_z
## magnet belt x
                     1.090141
                                 1.6664968 FALSE FALSE
                     1.099688
## magnet belt y
                                 1.5187035 FALSE FALSE
## magnet_belt_z
                     1.006369 2.3290184 FALSE FALSE
## roll_arm
## pitch_arm
## yaw_arm
                    52.338462 13.5256345 FALSE FALSE
                   87.256410 15.7323412 FALSE FALSE
                    33.029126 14.6570176 FALSE FALSE
## total accel arm
                     1.024526
                                 0.3363572 FALSE FALSE
## gyros_arm_x
## gyros_arm_y
                     1.015504
                                 3.2769341 FALSE FALSE
                     1.454369 1.9162165 FALSE FALSE
## gyros_arm_z
## accel_arm_x
## accel_arm_y
                                 1.2638875 FALSE FALSE
3.9598410 FALSE FALSE
                     1.110687
                     1.017341
                     1.140187 2.7367241 FALSE FALSE
## accel arm z
                     1.128000
                                 4.0362858 FALSE FALSE
## magnet_arm_x
## magnet_arm_y
                                 6.8239731 FALSE FALSE
                     1.000000
                     1.056818 4.4439914 FALSE FALSE
## magnet arm z
                     1.036364
                                  6.4468454 FALSE FALSE
## roll forearm
                    11.589286 11.0895933 FALSE FALSE
                   65.983051 14.8557741 FALSE FALSE
15.322835 10.1467740 FALSE FALSE
## pitch forearm
## yaw forearm
## total accel forearm 1.128928
                                 0.3567424 FALSE FALSE
## gyros forearm x 1.059273
                                 1.5187035 FALSE FALSE
                                 3.7763735 FALSE FALSE
## gyros forearm y
                     1.036554
## gyros forearm z
                     1.122917
                                 1.5645704 FALSE FALSE
## accel forearm z
                                   2.9558659 FALSE FALSE
                      1.006250
## magnet forearm x
                     1.012346
                                  7.7667924 FALSE FALSE
                                 9.5403119 FALSE FALSE
## magnet forearm y
                      1.246914
## magnet forearm z
                      1.000000
                                   8.5771073 FALSE FALSE
```

All features have variability. No feature will be removed.

4.2 Features-Outcome Relationship

Features have approximately the same distribution among the 5 outcome levels.

featurePlot(training, outcome.o, "strip")

4.3 Features Correlation Matrix

As per plot below, features seem to be good enough because they seem reasonably uncorrelated (orthogonal) each others. The average of correlation is not too high, so I decided to not perform any further PCA pre-processing.

```
corrplot.mixed(cor(training), lower="circle", upper="color", tl.pos="lt", diag
="n", order="hclust", hclust.method="complete")
```


4.4 tSNE Visualization

The tSNE (t-Distributed Stochastic Neighbor Embedding) plot below does not show a clear clustering separation of the 5 levels of outcome. So manually building of any regression equation from the irregularity does not seem needed.

t-SNE 2D Embedding of Classe Outcome

5 Machine Learning Model

The model is built to predict activity quality (classe outcome) from the activity monitors (predictors).

```
# convert training, testing and outcome to matrix and numeric, as required by X
GBoost
training.matrix = as.matrix(training)
mode(training.matrix) = "numeric"
testing.matrix = as.matrix(testing)
mode(testing.matrix) = "numeric"
# convert outcome from factor to numeric matrix
# xgboost takes multi-labels in [0, numOfClass)
y = as.matrix(as.integer(outcome)-1)
```

5.1 XGBoost Parameters

Set XGBoost parameters for cross validation and training, multiclass classification and evaluation metric.

```
# xgboost parameters
param <- list("objective" = "multi:softprob",</pre>
                                                  # multiclass classification
"num class" = num.class,
                                                  # number of classes
"eval metric" = "merror",
                                                 # evaluation metric
"nthread" = 8,
                                                  # number of threads to be used
"max depth" = 16,
                                                  # max. depth of tree
"eta" = 0.3,
                                                  # step size shrinkage
"gamma" = 0,
                                                  # min. loss reduction
"subsample" = 1,
                                                  # part of data instances to gro
w tree
"colsample bytree" = 1,
                                                  # subsample ratio of columns, b
y tree
"min child weight" = 12
                                                  # min. sum of instance weight i
n a child
)
```

5.2 Error Rate

Perform cross-validation to estimate the error rate using 4-fold cross validation, with 200 epochs to reach the expected error rate of less than 1%.

5.3 Cross-Validation

```
# set random seed, for reproducibility
set.seed(1234)
# k-fold cross validation with timing
nround.cv = 200
system.time( bst.cv <- xgb.cv(param=param, data=training.matrix, label=y, nfold
=4, nrounds=nround.cv, prediction=TRUE, verbose=FALSE) )</pre>
```

```
## user system elapsed
## 879.49 40.68 252.64
```

```
tail(bst.cv$dt)
```

```
train.merror.mean train.merror.std test.merror.mean test.merror.std
## 1:
                                   0
                                            0.005504
                                                          0.001165
                                            0.005555
## 2:
                   0
                                   0
                                                         0.001071
## 3:
                  0
                                  0
                                           0.005555
                                                         0.001071
## 4:
                   0
                                  0
                                            0.005555
                                                         0.001071
## 5:
                   0
                                  0
                                            0.005606
                                                         0.001135
## 6:
                                            0.005555
                                                         0.001109
```

From the cross-validation, choose the index with the minimum multiclass error rate, index to be used in the model training to meet the expected minimum error rate of < 1%.

```
# minimum merror index
min.merror.idx = which.min(bst.cv$dt[, test.merror.mean])
min.merror.idx
```

```
## [1] 187
```

```
# minimum merror
bst.cv$dt[min.merror.idx,]
```

```
## train.merror.mean train.merror.std test.merror.mean test.merror.std
## 1: 0 0 0.005402 0.000978
```

The results indicate that the best minimum error rate testing.merror.mean is about 0.005 (0.5%).

5.4 Confusion Matrix

Tabulates the cross-validation's predictions of the model against the truths.

```
# get cross-validation prediction decoding
pred.cv = matrix(bst.cv$pred, nrow=length(bst.cv$pred)/num.class, ncol=num.clas
s)
pred.cv = max.col(pred.cv, "last")
# confusion matrix
confusionMatrix(factor(y+1), factor(pred.cv))
```

```
## Confusion Matrix and Statistics
##
##
           Reference
## Prediction 1 2
                       3
         1 5566 10
##
          2 12 3772 12
                           0
##
          3 0
                  24 3384 14
##
          4 0 0 19 3194 3
                     1 8 3597
##
## Overall Statistics
##
               Accuracy: 0.9944
##
                 95% CI: (0.9933, 0.9954)
     No Information Rate: 0.2843
##
##
     P-Value [Acc > NIR] : < 2.2e-16
##
##
                  Kappa: 0.993
## Mcnemar's Test P-Value : NA
## Statistics by Class:
##
##
                    Class: 1 Class: 2 Class: 3 Class: 4 Class: 5
                     0.9978 0.9908 0.9901 0.9925 0.9989
## Sensitivity
## Specificity
                     0.9990 0.9984 0.9977 0.9987 0.9994
                     0.9975 0.9934 0.9889 0.9932 0.9972
## Pos Pred Value
## Neg Pred Value
                     0.9991 0.9978 0.9979 0.9985 0.9998
## Prevalence
                     0.2843 0.1940 0.1742 0.1640 0.1835
                0.2837 0.1922 0.1725 0.1628 0.1833
## Detection Rate
## Detection Prevalence 0.2844 0.1935 0.1744 0.1639 0.1838
                             0.9946 0.9939 0.9956 0.9991
                     0.9984
## Balanced Accuracy
```

The confusion matrix shows concentration of correct predictions on the diagonal. The average accuracy is more than 99%, with an error rate less than 1%, both fulfilling the requirements.

5.5 Model Training

Fit the XGBoost gradient boosting model on the training data.

```
# real model fit training, with full data
system.time( bst <- xgboost(param=param, data=training.matrix, label=y, nrounds
=min.merror.idx, verbose=0) )</pre>
```

```
## user system elapsed
## 270.86 10.33 75.28
```

5.6 Predicting Testing Data

```
# xgboost predict test data using the trained model
pred <- predict(bst, testing.matrix)
head(pred, 10)</pre>
```

```
## [1] 2.722199e-04 9.982042e-01 1.132105e-03 1.515472e-04 2.398420e-04 ## [6] 9.991074e-01 6.353945e-04 2.402208e-04 3.893657e-06 1.299460e-05
```

5.7 Post-Processing

The output is the predicted probability of the 5 levels of outcome.

```
# decode prediction to qualitative letters (A, B, C, D, E).
pred = matrix(pred, nrow=num.class, ncol=length(pred)/num.class)
pred = t(pred)
pred = max.col(pred, "last")
pred.char = toupper(letters[pred])
pred
```

```
## [1] 2 1 2 1 1 5 4 2 1 1 2 3 2 1 5 5 1 2 2 2
```

5.8 Feature Importance

```
# get the trained model
model = xgb.dump(bst, with.stats=TRUE)
# get the feature names
names = dimnames(training.matrix)[[2]]
# compute feature importance matrix
importance_matrix = xgb.importance(names, model=bst)
# plot feature importance
gp = xgb.plot.importance(importance_matrix)
print(gp)
```


Feature importance plot is useful to select only best features with highest correlation to the outcome(s).

6 Create Submission Files for 20 Test Cases