

Assuntos abordados

- Campo Magnético vs. Matéria;
- A curva B x H: materiais não-magnéticos;
- A curva B x H: materiais magnéticos;
 - Saturação;
 - Histerese;
 - Perdas por Histerese;
 - Desmagnetização por temperatura;
- Ímãs Permanentes (materiais duros);

Campo Magnético vs. Matéria

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

Campo Magnético vs. Matéria

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

Campo Magnético vs. Matéria

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

• Materiais não-magnéticos:

- Diamagnéticos: $\mu \approx \mu_o \gg \mu_r < 1$;
- Paramagnéticos: $\mu \approx \mu_o \gg \mu_r > 1$;
- − Antiferromagnéticos: $\mu \approx \mu_0 \gg \mu_r \approx 1$;

- Materiais magnéticos:
 - Ferromagnéticos: $\mu \neq \mu_o \gg \mu_r >> 1$;
 - Ferrimagnéticos: $\mu \neq \mu_o \gg \mu_r >> 1$;
- Desmagnetizado: a;

- Materiais magnéticos:
 - Ferromagnéticos: $\mu \neq \mu_o \gg \mu_r >> 1$;
 - Ferrimagnéticos: $\mu \neq \mu_o \gg \mu_r >> 1$;
- Desmagnetizado: a;
- Primeira Magnetização: a-b;
 - Não-linearidade: saturação (Bs);

- Materiais magnéticos:
 - Ferromagnéticos: $\mu \neq \mu_0 \gg \mu_r >> 1$;
 - Ferrimagnéticos: $\mu \neq \mu_o \gg \mu_r >> 1$;
- Desmagnetizado: a;
- Primeira Magnetização: a-b;
 - Não-linearidade: saturação (Bs);
- Desmagnetização parcial: b-c;
 - Histerese: Densidade de Campo Residual (Br);

- Materiais magnéticos:
 - Ferromagnéticos: $\mu \neq \mu_0 \gg \mu_r >> 1$;
 - Ferrimagnéticos: $\mu \neq \mu_o \gg \mu_r >> 1$;
- Desmagnetizado: a;
- Primeira Magnetização: a-b;
 - Não-linearidade: saturação (Bs);
- Desmagnetização parcial: b-c;
 - Histerese: Densidade de Campo Residual (Br);

- Completa desmagnetização: c-d;
 - Campo magnético coercitivo (-Hc);

- Completa desmagnetização: c-d;
 - Campo magnético coercitivo (Hc);
- Magnetização no sentido oposto: d-e;
 - Saturação negativa (-Bs);

- Completa desmagnetização: c-d;
 - Campo magnético coercitivo (Hc);
- Magnetização no sentido oposto: d-e;
 - Saturação negativa (-Bs);
- Desmagnetização parcial: e-f;
 - Densidade de Campo Residual (-Br);

- Completa desmagnetização: c-d;
 - Campo magnético coercitivo (Hc);
- Magnetização no sentido oposto: d-e;
 - Saturação negativa (-Bs);
- Desmagnetização parcial: e-f;
 - Densidade de Campo Residual (-Br);
- Completa desmagnetização: f-g;
 - Campo magnético coercitivo (Hc);

• Remagnetização positiva: g-b;

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

- Remagnetização positiva: g-b;
- Histerese: 2ª não linearidade;
 - Densidade magnética de campo residual/remanescente;
 - Campo magnético coercitivo;
 - Dissipação de energia a cada ciclo;
- Completa desmagnetização:
 - temperatura de Curie;
 - Paramagnético até resfriar;

Ímã Neodímio

• Remagnetização positiva: g-b;

	Material	Tipo	T. de Curie (°C)	
	Ferrite de Manganês (MnOFe ₂ O)	Mole (ferrimagnético)	300	
	- Magnetita (FeOFe ₂ O ₃)	Mole (ferrimagnético)	585	
• Co	Óxido de Ferro (Fe ₂ O ₃)	Mole (ferrimagnético)	675	
	Níquel (Ni)	Mole (ferromagnético)	354	(kA/m)
	Ferro (Fe)	Mole (ferromagnético)	770	
_	Cobalto (Co)	Mole (ferromagnético)	1127	
	Ímã AlNiCo	Duro (ferromagnético)	700	
	Ímã Samário	Duro (ferromagnético)	720	

Duro (ferromagnético)

310

Curva B x H: comparativo

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

Ímãs AlNiCo:

- Compostos por um substrato de ferro ao qual são adicionados Alumínio (Al),
 Níquel (Ni) e Cobalto (Co);
- Br \approx 1T;
- Hc > 50kA/m;
- **−** $Tc \approx 700^{\circ}C$;
- Boa condutividade elétrica;

- Îmãs de óxido de ferro:
 - Compostos por um substrato de óxido de ferro ao qual são adicionados Estrôncio $(SrFe_{12}O_{19})$ ou Bário $(BaFe_{12}O_{19})$;
 - Br \approx 0,4T;
 - Hc > 100kA/m;
 - **−** $Tc \approx 450^{\circ}C$;
 - Baixíssima condutividade elétrica;
 - Tecnologia mais barata;

- Îmãs de terras raras:
 - O de maior desempenho é composto por um substrato de ferro ao qual são adicionados Neodímio e Boro (Nd₂Fe₁₄B);
 - Br > 1T;
 - Hc > 600kA/m;
 - **−** $Tc \approx 300-700^{\circ}C$;
 - Boa condutividade elétrica;
 - Tecnologia mais cara;

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral