ADATSZERKEZETEK ÉS ALGORITMUSOK

Kupac

- Egy majdnem teljes (bináris) fa heap tulajdonságú, ha
 - Üres, vagy
 - A gyökérben lévő kulcs nagyobb, mint mindkét gyerekében és mindkét részfája is heap tulajdonságú

Kupac

- A kupacok használhatóak
 - A prioritásos sorok megvalósítására, mivel a gyökérben lévő elem a maximális és ez az, amit a delmax kitöröl
 - A törlés után helyre kell állítani a heap tulajdonságot
 - Rendezésre (később)

- Az első lépésében a majdnem teljes tulajdonságot állítjuk helyre
 - Vigyük fel a legutolsó elemet a gyökérbe
 - Ezzel a majdnem teljes tulajdonságot teljesítettük
 - Azért működik ez, mert az eredeti fa majdnem teljes volt

- A kapott majdnem teljes fa azonban nem kupac
 - Tehát a gyökér nem nagyobb a gyerekeinél
 - A helyreállításhoz cseréljük fel a gyökeret a nagyobb gyerekével

- A jobb részfa kupac, a bal részfa azonban nem teljesíti a kupac tulajdonságot
 - Ismételjük meg az előző lépést a bal részfára

Ezt a lépést végrehajtva a kapott fa kupac

Kupac – Törlés ideje

• Gyökér eltávolítása $\mathcal{O}(1)$

• Utolsó elem a gyökérbe $\mathcal{O}(1)$

• Nagyobb gyerekkel csere $\mathcal{O}(h) = \mathcal{O}(\log_2 n)$

• Összesen (ignorálva a konstansokat) $O(\log_2 n)$

- Adjunk egy elemet a kupachoz
 - Helyezzük a következő üres pozícióra a jobb szélén
 - Ez kell legyen a következő kitöltendő hely
 - Vigyük felfelé, amíg nagyobb, mint a szülei
 - Újra maximum h csere tehát a beszúrás is $\mathcal{O}(\log_2 n)$

- Adjunk egy elemet a kupachoz
 - Helyezzük a következő üres pozícióra a jobb szélén
 - Ez kell legyen a következő kitöltendő hely
 - Vigyük felfelé, amíg nagyobb, mint a szülei
 - Újra maximum h csere tehát a beszúrás is $\mathcal{O}(\log_2 n)$

- Adjunk egy elemet a kupachoz
 - Helyezzük a következő üres pozícióra a jobb szélén
 - Ez kell legyen a következő kitöltendő hely
 - Vigyük felfelé, amíg nagyobb, mint a szülei
 - Újra maximum h csere tehát a beszúrás is $\mathcal{O}(\log_2 n)$

- Adjunk egy elemet a kupachoz
 - Helyezzük a következő üres pozícióra a jobb szélén
 - Ez kell legyen a következő kitöltendő hely
 - Vigyük felfelé, amíg nagyobb, mint a szülei
 - Újra maximum h csere tehát a beszúrás is $\mathcal{O}(\log_2 n)$

- Adjunk egy elemet a kupachoz
 - Helyezzük a következő üres pozícióra a jobb szélén
 - Ez kell legyen a következő kitöltendő hely
 - Vigyük felfelé, amíg nagyobb, mint a szülei
 - Újra maximum h csere tehát a beszúrás is $O(\log_2 n)$

Kupacok – reprezentáció

- Dinamikusan allokált csomópontok és mutatók
 - mint bármilyen más láncolt lista vagy fa
- Használjunk egy tömböt és
 - használjuk ki a "majdnem teljes" tulajdonságot
 - a k csomópont gyerekei a 2k, 2k + 1-nél vannak
 - a k szülője a $\frac{k}{2}$ -nél van
 - ha k > n, akkor a csomópont nem létezik

Kupac – hatékonyság

- A beszúró és törlő műveletek egy h magasságú fában
 - $h \leq \log_2 n$
 - Vagyis $O(\log n)$ az időigénye

- Empty: $\rightarrow K$ az üres kupac létrehozása
 - A reprezentáló tömb létrehozása a Maxmeretnek megfelelően
 - Aktmeret beállítása nullára
- IsEmpty: $K \to L$ üres a kupac?
 - return (Aktmeret = 0)

• Insert: $K \times N \rightarrow K$ elem betétele a kupacba

Aktmeret≠Maxmeret	
Aktmeret \leftarrow Aktmeret + 1 $T[Aktmeret] \leftarrow$ ujelem $Szulo \leftarrow$ Aktmeret / 2 $Gyerek \leftarrow$ Aktmeret	
$(Szulo \ge 1) \land (T[Szulo] < T[Gyerek])$ $Csere(T[Szulo], T[Gyerek])$ $Gyerek \leftarrow Szulo$	Tele!
Szulo ← Szulo/2	

• Max: $K \rightarrow E$ maximális elem lekérdezése

	Aktmeret≠ 0	
return $T[1]$		Üres!

- DelMax: $K \to K \times N$ maximális elem kivétele a kupacból
 - A maximális elem értékét a maxelem-ben kapjuk

Aktmeret≠ 0	
Maxelem← $T[1]$	
$T[1] \leftarrow T[Aktmeret]$	
Aktmeret ← Aktmeret − 1	Üres!
Sullyeszt	
return Maxelem	

• Sullyeszt: feltételezzük, hogy a kupacban két jó részfa van, de a T[1]-t megfelelően le kell süllyeszteni

Prioritásos sor megvalósítása kupaccal

(az üres prioritásos sor konstruktor – létrehozás) • Empty • Empty (üres kupac) • isempty (üres a prioritásos sor?) IsEmpty (üres a kupac?) (elem betétele a prioritásos sorba) insert Insert (elem betétele a kupacba) (maximális elem kivétele a prioritásos sorból) delmax DelMax (maximális elem kivétele a kupacból) (maximális elem lekérdezése a prioritásos sorból) max Max (maximális elem lekérdezése a kupacból)

Bináris keresőfa

Következő téma