

SUBJECT: Linear Algebra - TOPIC: Eigen Values/Vectors

Characteristic polynomial of a square matrix: Let $A \in M_n(\mathbb{F})$, where \mathbb{F} is an arbitrary field. The characteristic polynomial of A is denoted by $\Delta_A(x)$ or $\chi_A(x)$, which is given by $\chi_A(x) = det(xI - A) = x^n - S_1 x^{n-1} + S_2 x^{n-2} - \cdots + (-1)^n S_n$, where S_k is the sum of the principal minors of A of order k and x is a parameter.

Principal minor of a square matrix: Let $A \in M_n(\mathbb{F})$, a principal minor of order k is the minor obtained by removing $(n-k)^{\text{th}}$ rows and the corresponding $(n-k)^{\text{th}}$ columns.

Notes: The characteristic polynomial of $A \in M_n(\mathbb{F})$ is an n^{th} degree monic polynomial in x.

Def:[Characteristic equation]: Let $A \in M_n(\mathbb{F})$, characteristic equation of A is given by $\chi_A(x) = 0$. That is $det(xI - A) = x^n - S_1 x^{n-1} + S_2 x^{n-2} - \cdots + (-1)^n S_n = 0$.

Cayley Hamilton theorem: Every square matrix satisfies its characteristic equation. Let $A \in M_n(\mathbb{F})$ and $\chi_A(x)$ be the characteristic polynomial of A. Then $\chi_A(A) = 0$, that is $A^n - S_1 A^{n-1} + S_2 A^{n-2} - \cdots + (-1)^n S_n = 0$.

Result:

- 1. Let $A \in M_2(\mathbb{F})$, then $\chi_A(x) = x^2 tr(A)x + det(A)$.
- 2. Let $A \in M_3(\mathbb{F})$, then $\chi_A(x) = x^3 tr(A)x^2 + (M_{1,1} + M_{2,2} + M_{3,3})x det(A)$, where $M_{i,i}$ is the minor of $a_{i,i}$.
- 3. Let $A \in M_n(\mathbb{F})$ be a triangular matrix with diagonal entrie $a_{i,i}, i = 1, 2, \dots, n$. then

$$\chi_A(x) = (x - a_{1,1})(x - a_{2,2}) \cdot \cdot \cdot (x - a_{n,n}) = \sum_{i=1}^{n} (x - a_{i,i})$$

Minimal polynomial of a square matrix: Let $A \in M_n(\mathbb{F})$ and let $J_A(x)$ be the collection of all polynomials in x for which A is a root.

$$J_A(x) = \{ P(x) \in \mathbb{F}[x] : P(A) = 0 \}$$

The least degree monic polynomial in $J_A(x)$ which divides every elements of $J_A(x)$ is called the minimal polynomial of A, denoted by $m_A(x)$.

Notes:

- 1. $\chi_A(x) \in J_A(x)$. Therefore $m_A(x)$ divides $\chi_A(x)$.
- 2. $m_A(x)$ and $\chi_A(x)$ have the same irreducible factors over \mathbb{F} .

Result: Let $D = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, where A and B are square matrices (need not be of same order) then $\chi_D(x) = \chi_A(x) \cdot \chi_B(x)$ and $m_D(x) = LCM\{m_A(x), m_B(x)\}$.

Eigen values and Eigen vectors of a square matrix:

- 1. Let $A \in M_n(\mathbb{F})$ and let $\lambda \in \mathbb{F}$, λ is said to be an eigen value of A if there exist a non zero vector $x \in \mathbb{F}^n$ such that $Ax = \lambda x$, such an x is called eigen vector corresponding to the eigen value λ .
- 2. Let $A \in M_n(\mathbb{F})$ and let $\chi_A(x)$ be the characteristic polynomial of A. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ (need not be distinct) be roots of the characteristic polynomial. λ_i 's are called the eigen value of A if $\lambda_i \in \mathbb{F}$.

Result:

1. If $\mathbb{F} = \mathbb{C}$, the complex field, then A has n eigen values counting multiplicities

Eg:
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & i & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
 Eigen values: $1, 1, i$

2. If $\mathbb{F} = \mathbb{R}$, then A may or maynot have eigen values.

Eg:
$$\begin{bmatrix} 1 & -3 \\ 1 & -2 \end{bmatrix}$$
 No real eigen values

Eigen space: Let $A \in M_n(\mathbb{F})$ and let $\lambda \in \mathbb{F}$ be an eigen value of A. The eigen space of λ is the subspace of \mathbb{F}^n given by $E_{\lambda} = \{x : (A - \lambda I) = 0\} = N(A - \lambda I).$

Algebraic multiplicity and Geometric multiplicity: Let $A \in M_n(\mathbb{F})$ and let $\chi_A(x)$ be the characteristic polynomial of A. Let $\lambda \in \mathbb{F}$ be an eigen value of A, the multiplicity of λ as a root of the characteristic polynomial is called the algebraic multiplicity of λ , it is denoted by AM. The dimension of eigen space E_{λ} is called the geometric multiplicity of λ , denoted by GM. GM is the number of linearly independent eigen vectors corresponding to λ .

Result:

- 1. For any eigen value λ of A, $1 \leq GM \leq AM$.
- 2. If x_1 and x_2 are two eigen vectors of A corresponding to the eigen value λ , then $c_1x_1+c_2x_2$ where $c_1,c_2\in\mathbb{F}$ is also an eigen vector of A corresponding to λ provided c_1 and c_2 cannot be zero simultaniously or $c_1 x_1 + c_2 x_2 \neq 0.$

Theorem: Let $A \in M_n(\mathbb{F})$ and let $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{F}$ be distinct eigen values of A if x_1, x_2, \dots, x_k are the eigen vectors corresponding to the eigen values $\lambda_1, \lambda_2, \dots, \lambda_k$, then x_1, x_2, \dots, x_k are linearly independent. That is eigen vector corresponding to distinct eigen values are linearly independent.

Result:

1. Let $A \in M_n(\mathbb{F})$ and let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the n solutions of the characteristic equation $\chi_A(x) = 0$ (need not be eigen values) then,

$$S_{1} = \sum_{i=1}^{n} \lambda_{i} = trace(A)$$

$$S_{2} = \sum_{\substack{i,j=1\\i < j}}^{n} \lambda_{i} \lambda_{j}$$

$$S_{3} = \sum_{\substack{i,j,k=1\\i < j}}^{n} \lambda_{i} \lambda_{j} \lambda_{k}$$

 \vdots $S_n = \prod_{i=1}^n \lambda_i = \det(A)$

2. Let $A \in M_n(\mathbb{F})$ be a triangular matrix, then it has eigen values and they are the diagonal entries. (Consider a $n \times n$ triangular matrix and find $|A - \lambda I|$)

Result:

- 1. If $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$, $a, b \in \mathbb{R}$, then eigen values of A are (a b) and (a + b).

 2. If $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $a, b \in \mathbb{R}$, then the roots of characteristic polynomial of A are (a ib) and (a + ib).
- 3. Let $A \in M_n(\mathbb{F})$ and let λ be an eigen value of A then
 - (i) $k\lambda$ is an eigen value of $kA, k \in \mathbb{F}$.
 - $Ax = \lambda x \implies (kA)x = (k\lambda)x$ (ii) λ^m is an eigen value of $A^m, m \in \mathbb{N}$. $Ax = \lambda x \implies A^2x = \lambda Ax = \lambda^2 x$. (use induction)
 - (iii) $P(\lambda)$ is an eigen value of P(A), where P is a polynomial in $\mathbb{F}[x]$.

Result:

- 1. Let $A \in M_n(\mathbb{F})$, if $\sum_{i=1}^n (a_{i,j}) = k$, $\forall i$, then k is an eigen value of A and then corresponding eigen vector
 - is given by $\begin{bmatrix} 1\\1\\\vdots\\\vdots\end{bmatrix}$

2. Let $A \in M_n(\mathbb{F})$, and each element of A is non negetive and $A \neq 0$, then A has a maximal positive eigen value which is called perron root. If λ is the perron root of A, then

$$\min_{i} \sum_{j=1}^{n} a_{i,j} \le \lambda \le \max_{i} \sum_{j=1}^{n} a_{i,j}$$

If
$$\sum_{i=1}^{n} a_{i,j} = k$$
, $\forall i$, then $\lambda = k$.

Theorem: Let $A \in M_n(\mathbb{F})$, then the following are equivalent

- 1. λ is an eigen value of A.
- 2. $(\lambda I A)$ is singular.
- 3. λ is a root of the characteristic polynomial of A.

Identity matrix, $A = I_n$

- 1. $\chi_A(x) = (x-1)^n$.
- 2. $m_A(x) = (x-1)$.
- 3. Eigen values are $\underbrace{1, 1, \cdots, 1}$.

i times

- 4. Eigen vectors are any non zero $x \in \mathbb{F}^n$.
- 5. AM = GM = n, number of linearly independent eigen vectors.

Scalar matrix, $A = kI_n, k \in \mathbb{F}$

- 1. $\chi_A(x) = (x-k)^n$.
- 2. $m_A(x) = (x k)$.
- 3. Eigen values are k, k, \dots, k .

 $_{
m n}$ time:

- 4. Eigen vectors are any non zero $x \in \mathbb{F}^n$
- 5. AM = GM = n.
- 6. $E_k = \mathbb{F}^n$.

Result: Let $A \in M_n(\mathbb{F})$ and let any non zero $x \in \mathbb{F}^n$ is an eigen value of A corresponding to its eigen value, then A is in the form $A = kI_n$, $k \in \mathbb{F}$.

Zero matrix:

- 1. $\chi_A(x) = (x)^n$.
- 2. $m_A(x) = (x)$.
- 3. Eigen values are $0, 0, \dots, 0$.

n times

- 4. Eigen vectors are any non zero $x \in \mathbb{F}^n$.
- 5. AM = GM = n.
- 6. $E_0 = \mathbb{F}^n$

Nilpotent matrices: Let $A \in M_n(\mathbb{F})$ be a nilpotent matrix with index k, that is $A^k = 0, k \leq n$

- 1. $\chi_A(x) = (x)^n$.
- 2. $m_A(x) = (x)^k$
- 3. Eigen values are $0, 0, \dots, 0$.

n times

- 4. $E_0 = \{x \in \mathbb{F}^n : Ax = 0\}$, is a proper subspace of \mathbb{F}^n . Hence its dimension is < n.
- 5. $GM < n \text{ if } A \neq 0.$

Theorem: Let $A \in M_n(\mathbb{F})$, A is nilpotent iff all its eigen values are zeroes.

Necessary Condition: A is nilpotent.

ie.,
$$A^k = 0$$
 for some $k \in \mathbb{N}$.

Let λ be an eigenvalue of A with eigenvector x.

$$Ax = \lambda x$$

$$A^k x = \lambda^k x \implies \lambda^k = 0 \implies \lambda = 0$$

Sufficient Condition: All eigenvalues are zero.

$$\chi(x) = (x - \lambda_1)(x - \lambda_2)\dots(x - \lambda_n) = x^n \quad (\because \lambda_i = 0 \quad i = 1, 2, \dots, n)$$

By Cayley-Hamilton Theorem,

$$\chi(A) = A^n = 0 \implies A \text{ is nilpotent.}$$

Idempotent matrices: $A^2 = A, A \neq I, A \neq 0$.

- 1. $\chi_A(x) = (x)^{k_1}(x-1)^{k_2}, k_1 + k_2 = n \text{ and } k_1, k_2 \in \mathbb{N}.$
- 2. $m_A(x) = (x)(x-1)$.
- 3. Eigen values are $0, 0, \dots, 0$ and Eigen values are $1, 1, \dots, 1$

 k_2 t

4. $GM(0) = AM(0) = k_1$ and $GM(1) = AM(1) = k_2$.

Involuntary matrices $A^2 = I, A \neq \pm I$.

- 1. $\chi_A(x) = (x-1)^{k_1}(x+1)^{k_2}, k_1 + k_2 = n \text{ and } k_1, k_2 \in \mathbb{N}.$
- 2. $m_A(x) = (x+1)(x-1)$.
- 3. Eigen values are $\underbrace{1,1,\cdots,1}_{k_1 \text{ times}}$ and $\underbrace{-1,-1,\cdots,-1}_{k_2 \text{ times}}$.
- 4. $GM(1) = AM(1) = k_1$ and $GM(-1) = AM(-1) = k_2$.

Real symmetric matrices: Let $A \in M_n(\mathbb{R}), A^T = A$

1. All eigen values of A are real.

 λ be eigenvalue of real symmetric matrix A.

$$Ax = \lambda x \implies x^T A x = x^T \lambda x$$
$$= \lambda x^T x.$$
$$\lambda = \frac{x^T A x}{x^T x} \in \mathbb{R} \quad [\because x^T A x \in \mathbb{R}]$$

2. Eigen vectors corresponding to distinct eigen values are orthogonal.

Hermitian matrices: Let $A \in M_n(\mathbb{C})$, $A^* = A$

1. All eigen values of A are real.

(Similar to above)

$$\lambda = \frac{x^*Ax}{x^*x}$$
Now $\lambda^* = \frac{x^*A^*x}{x^*x} = \frac{x^*Ax}{x^*x} = \lambda$

- λ is real.
- 2. Eigen vectors corresponding to distinct eigen values are orthogonal.

Real skew symmetric matrices: Let $A \in M_n(\mathbb{R}), A^T = -A$

1. Roots of the characteristic polynomial are either zero or purely imaginary Let λ be eigen value with eigen vector x.

$$Ax = \lambda x.$$

$$\Rightarrow iAx = i\lambda x$$

Now iA is hermitian matrix, so its eigenvalue

 $i\lambda$ is real.

 $\Rightarrow \lambda = 0$ or λ is purely imaginary.

- 2. If $det(A) \neq 0$, then A has no real eigen value. $det(A) \neq 0 \implies \lambda \neq 0$.
 - $\therefore \lambda$ is purely imaginary.

Skew hermitian matrices: Let $A \in M_n(\mathbb{C}), A^* = -A$

1. All eigen values of A are either zero or purely imaginary. (Same as above).

Real orthogonal matrices: Let $A \in M_n(\mathbb{C})$, $A^TA = AA^T = I$

1. If A has real eigen values of then they are either 1 or -1. Let λ be an eigenvalue with eigenvector x.

$$Ax = \lambda x$$
.

Taking transpose on each side

$$x^T A^T = \lambda x^T$$

$$\Rightarrow x^T A^T A x = \lambda x^T \lambda x.$$

$$x^T I x = \lambda^2 x^T x \quad [\because A^T A = I]$$

$$(1 - \lambda^2)(x^T x) = 0,$$

$$\lambda^2 = 1 \quad \lambda = \pm 1.$$

