Lineaire Algebra oefening assistentie

Oefenbundel 1 (Les 1 2 3)

Consistentie

Een stelsel is consistent als de matrix 1 of meerdere oplossing heeft. De uitgebreide matrix B

$$\begin{pmatrix}
3 & 6 & | & 1 \\
0 & 0 & | & 2
\end{pmatrix}$$
(1)

Is inconsistent want $0x_1 + 0x_2 = 2$ is niet mogelijk. De matrix B heeft dus geen oplossing.

Span

De span van vectoren is de verzameling van alle lineaire combinaties van die vectoren. Als je een matrix A (bestaande uit de kolomvectoren

 a_1,a_2,a_3) hebt dan is de kolomruimte (Col(A)) gelijk aan de span $\{a_1,a_2,a_3\}$

Extra info

Als je een span hebt van 2 vectoren (v_1 , v_2) en een derde vector (v_3) ligt in die span dan kan je die v_3 schrijven als een lineaire combinatie van v_1 en v_2

Inverteerbaar (invertible)

Een matrix is inverteerbaar als het aan de volgende voorwaarde voldoet:

- De matrix is vierkant m.a.w. eveneel kolommen als rijen
- De determinant van de matrix mag niet 0 zijn
- De matrix mag geen rijen hebben met alleen maar nullen

Als een matrix inverteerbaar is dan heeft deze een inverse matrix

Lineaire Combinatie

Gegeven de matrix multiplicatie van matrix A en B

$$\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \cdot \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} = \begin{pmatrix} a_1 \cdot b_1 + a_2 \cdot b_3 & a_1 \cdot b_2 + a_2 \cdot b_4 \\ a_3 \cdot b_1 + a_4 \cdot b_3 & a_3 \cdot b_2 + a_4 \cdot b_4 \end{pmatrix}$$
(2)

Zoals je kan zien hier zijn de kolommen van de matrix AB lineaire combinaties van de rijen van B

$$(b_1, b_2) + (b_3, b_4) = (b_1 + b_3, b_2 + b_4)$$

want hetzelfde is als hieronder (buiten de scalar). Wat we hieronder hebben is recht uit de matrix AB hierboven gehaald.

$$(a_1.b_1 + a_2.b_3, a_1.b_2 + a_2.b_4)$$

Echelon vorm

Een vierkante matrix is in echelon vorm als

- Alle niet-nul rijen zijn boven elke rij met alleen maar nullen staan
- Elke leidende entry van een rij is een kolom rechts van de leidende entry van de rij erboven
- Alle entries in een kolom onder leidende entry zijn nul.

Gereduceerd echelon vorm

Als het dan ook nog is voldoet aan de volgende voorwaarde dan is het in gereduceerd echelon vorm

- De leading entry in elke niet nul-rij is 1
- Elke leidende 1 is de enige niet nul entry in zijn kolom

Elke matrix heeft maar 1 gereduceerd echelon matrix

Homogeen

Een systeem van lineaire vergelijking is homogeen als het geschreven kan worden als Ax=0 waar A een $m\times n$ matrix is and 0 de zero vector. Zo een systeem Ax=0 heeft altijd een oplossing, namelijk x=0.

Dit noemen we de triviale oplossing. De vraag is of er een nontriviale oplossing bestaat.

De homogene vergelijking Ax=0 heeft een niet-triviale oplossing als en slechts als de vergelijking 1 vrije variable heeft.

Parametrische vector vorm

De oplossingsverzameling van Ax=0 (homogeen) kunnen we schrijven als $x=tv\,\mathrm{met}\,v$ een vector

We kunnen de oplossingsverzameling van Ax=b schrijven in parametrische vector vorm en de algemene formule van dit ziet er zo uit: x=p+tv

Als de vergelijking Ax=b consistent is voor een gegeven b en p is gelijk aan de oplossing. Dan is de oplossingsverzameling voor Ax=b de verzameling van alle vectoren van de vorm $w=p+v_h$, waar v_h gelijk is aan een oplossing van de homogene vergelijking Ax=0

Factorisaties

Een factorisatie van een matrix A is een vergelijking dat A uitdrukt als een product van 2 of meer matrices.

LU factorisatie

- L is een lower triangular matrix met alleen maar 1 op de diagonaal
- **U** is de echelon vorm van A

Het algoritme voor LU factorisatie:

- 1. Reduceer a naar de echelon vorm U
- 2. Plaats de entries in L

De enige operatie die je mag doen is:

(Vervanging) Vervang een rij door de som van zichzelf en een veelvoud van een andere rij.

Inverse

Een $n \times n$ matrix A is invertible als er een $n \times n$ matric C bestaat zodat

$$CA = I$$
 en $AC = I$

waar I de identiteitsmatrix is

De inverse van een 2×2 matrix kan berekend worden door de volgende formule:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Als ad-bc=0 dan is A niet inverseerbaar aangezien we dit ook gebruiken in de berekening van de determinant kunnen we zeggen dat een **matrix alleen een inverse heeft als** $det(a) \neq 0$

Eigenschappen:

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$

Partitionering

We kunnen matrices ook partitioneren. Dit wilt zeggen dat we een matrix gaan opdelen in kleinere submatrices. Er zijn 3 opties:

1. **Rij partitionering:** Hier gaan we een matrix A opspliten in 2 of meer matrices die telkens 1 of meer rijen bevat van onze originele matrix.

```
A = [a11 a12 a13 a14]
[a21 a22 a23 a24]
[a31 a32 a33 a34]

A1 = [a11 a12]
[a21 a22]
[a31 a32]

A2 = [a13 a14]
[a23 a24]
[a33 a34]
```

2. **Kolom partitionering:** Hier gaan we een matrix A opsplitsen in 2 of meer matrices die telkens 1 of meer kolommen bevat van onze originele matrix

```
A = [a11 a12 a13 a14]
[a21 a22 a23 a24]
[a31 a32 a33 a34]

A1 = [a11 a12]
[a21 a22]
[a31 a32]

A2 = [a13 a14]
[a23 a24]
[a33 a34]
```

3. **Block partitionering:** Hier gaan we de matrix A opsplitsen in kleinere matrices die telkens een vierkante blok bevatten van de matrix

```
A = [a11 a12 a13 a14]
[a21 a22 a23 a24]
[a31 a32 a33 a34]

A1 = [a11 a12]
[a21 a22]

A2 = [a13 a14]
[a23 a24]
```

Dit kan handig zijn voor het berekenen van de inverse van een matrix.

Hier wat formules voor het berekenen van de determinant van een block partitionering (blok matrix).

Als A B C D matrices zijn dan:

$$det\begin{pmatrix}A&0\\C&D\end{pmatrix}=det(A)det(D)=det\begin{pmatrix}A&B\\0&D\end{pmatrix}$$

Transpose

Gegeven een $m \times n$ matrix A, dan is the transpose de $n \times m$ matrix, genoteerd door A^T , waarvan de kolommen gevormd worden door de overeenkomstige rijen van A

Eigenschappen:

- $(A^T)^T = A$
- $\bullet \ (A + B)^T = A^T + B^T$
- ullet Voor elke scalar $r,(rA)^T=rA^T$
- $(AB)^T = B^T A^T$

De transpose van een product van matrices is gelijk aan het product van de transpose in omgekeerd volgorde: $(AB)^T=B^TA^T$

Belangrijk voor examen:

• Vraag over inverse maar je mag het niet expliciet berekenen met rijreducties etc. Kijk dan of je het kan partitioneren. Vraag 13 in oefenbundel 1 is een goed voorbeeld

Oefenbundel 2

Basis

BASES FOR NUL A AND COL A

- Theorem 6: The pivot columns of a matrix A form a basis for Col A.
- **Proof:** Let B be the reduced echelon form of A.
- The set of pivot columns of B is linearly independent, for no vector in the set is a linear combination of the vectors that precede it.
- Since A is row equivalent to B, the pivot columns of A are linearly independent as well, because any linear dependence relation among the columns of A corresponds to a linear dependence relation among the columns of B.

© 2016 Pearson Education, Ltd.

Slide 4.3-13

13

BASES FOR NUL A AND COL A

- For this reason, every nonpivot column of A is a linear combination of the pivot columns of A.
- Thus the nonpivot columns of A may be discarded from the spanning set for Col A, by the Spanning Set Theorem.
- This leaves the pivot columns of A as a basis for Col A.
- Warning: The pivot columns of a matrix A are evident when A has been reduced only to echelon form.
- But, be careful to use the pivot columns of A itself for the basis of Col A.

© 2016 Pearson Education, Ltd. - correcties: Ronald Cools (recentste = 12-10-2021)

Slide 4.3- 14

14

Lineaire Transformatie

Definitie: Een lineaire transformatie T van een vector ruimte V in een vector ruimte W is een regel die elke vector x in V een unieke vector T(x) in W toewijst zodat:

- 1. T(u+v) = T(u) + T(v) voor alle u, v in V
- 2. T(cu) = cT(u) voor alle u in V en alle scalars c

Determinant

De determinant van een matrix A is de schaal factor van de matrix. Afhankelijk van welke dimensie kan dit het volume of oppervlak zijn die de matrix spant.

Eigenschappen:

- De determinant van een matrix is gelijk aan het product van zijn eigenvalues
- De determinant van een matrix is gelijk aan het volume van de parallellogram die men krijgt door de kolommen van de matrix
- De determinant van een diagonaal matrix is gelijk aan het product van zijn diagonale entries
- De determinant van een (lower of upper) triangular matrix is gelijk aan het product van zijn diagonale entries.
- De determinant van een matrix is gelijk aan de determinant van zijn transpose
- $Det(A+B) \neq Det(A) + Det(B)$
- Det(AB) = Det(A)Det(B)

Row Space

Als A een $m \times x$ matrix is, dan heeft elke rij van A n entries en dus kan deze geïdentificeerd worden met een vector in \mathbb{R}^n

De set van alle lineaire combinaties van de rij vectors noemen we de **row space** van A en noteren we met **Row A**

- ullet Elke rij heeft n entries dus is Row A een subspace van \mathbb{R}^n
- Aangezien de rijen van A geïdentificeerd worden met de kolommen van A^T, we kunnen ook schrijven Col A^AT in plaats van Row A

Als 2 matrices A en B rij-equivalent zijn dan zijn hun row spaces hetzelfde. Als B in echelon vorm dan vormen de niet-nul rijen van B een basis voor de row space van A en van B

Coördinaat Vector

De coördinaat vector $[x]_B$ van een vector x ten opzichte van een gegeven basis $B = \{b_1,...,b_n\}$ is een representatie van de vector x in termen van de basis B.

Om deze coordinaat vector $[x]_b$ te vinden, drukken we x uit als een **lineaire combinatie** van de vectoren van de basis B. Met andere woorden, we schrijven x als de som van de scalaire veelvouden van de vectors in basis B.

Voorbeeld:

Gegeven de vectoren:

$$x = \begin{pmatrix} \begin{bmatrix} 8 \\ -9 \\ 6 \end{bmatrix} \end{pmatrix}, b_1 = \begin{pmatrix} \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix} \end{pmatrix}, b_2 = \begin{pmatrix} \begin{bmatrix} -3 \\ 4 \\ 9 \end{bmatrix} \end{pmatrix}, b_3 = \begin{pmatrix} \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix} \end{pmatrix}$$
(3)

Zoek de coordinaatvector $[x]_b$ van x relatief ten opzichte van de basis B = b_1,\ldots,b_3

$$\begin{pmatrix} 1 & -3 & 2 & 8 \\ -1 & 4 & -2 & -9 \\ -3 & 9 & 4 & 6 \end{pmatrix} \tilde{} \begin{pmatrix} 1 & -3 & 2 & 8 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 10 & 30 \end{pmatrix}$$
 (4)

$$C_1 - 3C_2 + 2C_3 = 8 \Longrightarrow C_1 = -1$$

$$C_2 = -1$$

$$C_3 = 3$$

Thus:

$$[x]_b = \left(egin{bmatrix} 8 \ -9 \ 6 \end{bmatrix}
ight)$$

Change of basis (Verandering van basis)

Rang

De rang van een matrix is gelijk aan de dimensie van ColA. ColA is gelijk aan het aantal pivotkolommen.

Gegeven een ($m \times n$) matrix A en een inverteerbare ($m \times m$) matrix P, dan is de rang van PA gelijk aan de rang van A

Rij-operaties

De null space van een matrix blijft hetzelfde wanneer we rij-operaties uitvoeren op deze matrix. Rij-operaties veranderen. Rij-operaties veranderen de hoeveelheid vrije variabelen in een matrix niet dus blijft de null space hetzelfde.

De column space van een matrix blijft niet hetzelfde wanneer we rij-operaties uitvoeren op de matrix. Rij-operaties veranderen de entries in de matrix, wat de lineaire combinaties van de kolommen kan veranderen.

De row space van een matrix blijft hetzelfde omdat we de rijen alleen scalen of dingen gaan bijtellen. Dus een matrix en zijn echelon vorm hebben dezelfde

Belangrijk voor examen:

- De determinant van een matrix is gelijk aan de determinant van de transpose van die matrix
- Als A en B, $n \times n$ matrices zijn dan is det(AB) = det(A)det(B)
- Als de determinant van een vierkante matrix 0 is dan is deze niet inverteerbaar
- Vraag 8 oefenbundel bekijken
- Vraag 19 herbekijken (d!!!)
- Quiz me again vraag a nog is bekijken