Newton's 2nd Law (N2L) of Motion:	
- Classically, N2L is written as	
Net force mas mass	
Net Saccetranos accetranos paras hg	
- But we can remite N2L in its differential form if we	
think about how acceleration relates to displacement 'x':	
Ne call the change in displacement'x' over time't' the velocity'v.' If	
we want the instantaneous change of 'x' with 't', we turn to calculus:	
$V = \frac{dx}{dt}$	
• And since acceleration is the change in velocity over time,	
$a = \frac{dV}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}$	
- So the acceleration is the change in the change of position over time. So N2L	
becomes:	
$F = ma$ $F = m \frac{d^2x}{dt^2}$	
$F = m \frac{d^2x}{dt^2}$	
Springs	
- 2 main things to know about springs:	
1) Springs cause a restorative force	
1) Springs cause a restautive force	
-eel- m - eeele m	
If the mass moves rightward. If the mass moves leftward,	
the restantive spring force Fs pulls leftward. the restantive spring force Fs pushes right word.	
2) That force Fs is given by Hooke's Law:	
Fs=-Kx distance spring has been compressed or extended spring constant (spring stiffness)	
Putting it all together:	
F=ma 12	
the net force 'F' in N2L is just Fs dt release; m	
- 10t - 11 digit	