

Bayesian Compression for Deep Learning[1]

Подготовила: Мадуар Дарин

ниу вшэ

5 марта, 2020

Мотивация

Цена вопроса

• 1 кВт·ч стоит ~ 21.1 евроцентов;

- 1 кВт·ч стоит ~ 21.1 евроцентов;
- ullet стомость NVIDIA TITAN X \sim 4.77 евроцента в час;

- 1 кВт·ч стоит ~ 21.1 евроцентов;
- ullet стомость NVIDIA TITAN X \sim 4.77 евроцента в час;
- у компании Facebook порядка 2.5 млрд активных пользователей;

- 1 кВт⋅ч стоит ~ 21.1 евроцентов;
- ullet стомость NVIDIA TITAN X \sim 4.77 евроцента в час;
- у компании Facebook порядка 2.5 млрд активных пользователей;
- ullet VGG тратит ~ 147 мс / 16 предсказаний;

- 1 кВт·ч стоит ~ 21.1 евроцентов;
- ullet стомость NVIDIA TITAN X \sim 4.77 евроцента в час;
- у компании Facebook порядка 2.5 млрд активных пользователей;
- VGG тратит ~ 147 мс / 16 предсказаний;
- одно предсказание обходится \sim 20 тыс. евро.

Мотивация

Summary

 мобильные устройства имеют очень ограниченную процессорную мощность;

Мотивация

Summary

- мобильные устройства имеют очень ограниченную процессорную мощность;
- стомость энергопотребления для получения предсказаний;

Summary

- мобильные устройства имеют очень ограниченную процессорную мощность;
- стомость энергопотребления для получения предсказаний;
- ускорение обработки в режиме реального времени;

Summary

- мобильные устройства имеют очень ограниченную процессорную мощность;
- стомость энергопотребления для получения предсказаний;
- ускорение обработки в режиме реального времени;
- лучшая защита личных данных.

Sparsity learning

Unstructured Pruning

$$[2]CR \approx \frac{|w|}{2|w_0|}$$

Structured Pruning

$$CR = \frac{|w|}{|w_0|}$$

Quantisation

-3.5667 0.4545 0.8735

0.33546

Precision Quantisation

$$CR = \frac{32}{10} \approx 3$$

- + быстрый в реализации
- сжатие незначительно

Set Quantisation by clustering

$$CR = \frac{32}{4} = 8$$

- + очень хорошо сжимает
 - как реализовывать?

Принцип минимальной длины описания (minimum description length, MDL)

[Принцип MDL] основыван на следующем осознании: любая закономерность в заданном наборе данных может быть использована для сжатия данных, то есть описания данных с использованием меньшего набора символов, чем нужно для описания данных буквально. (Грюнвальд, 1998)[3]

Вариационный байесовский вывод

• Пусть $\mathcal{D} = (\mathbf{X}, \mathbf{y})$ – набор данных. Причем, $p(\mathcal{D} \mid \mathbf{w}) = \prod_{(x,y) \in \mathcal{D}} p(y \mid x, \mathbf{w})$ и мы предполагаем априорное распределение на веса $p(\mathbf{w})$;

$$\mathcal{L}(\phi) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{w})}[\log p(\mathcal{D}|\mathbf{w})]}_{\mathcal{L}^{E}} + \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{w})}[\log p(\mathbf{w})] + \mathcal{H}(q_{\phi}(\mathbf{w}))}_{\mathcal{L}^{C}},$$

Вариационный байесовский вывод

- Пусть $\mathcal{D} = (\mathbf{X}, \mathbf{y})$ набор данных. Причем, $p(\mathcal{D} \mid \mathbf{w}) = \prod_{(x,y) \in \mathcal{D}} p(y \mid x, \mathbf{w})$ и мы предполагаем априорное распределение на веса $p(\mathbf{w})$;
- Хотим приблизить $p(\mathbf{w} \mid \mathcal{D})$ некоторым параметрическим распределением $q_{\phi}(\mathbf{w})$;

$$\mathcal{L}(\phi) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{w})}[\log p(\mathcal{D}|\mathbf{w})]}_{\mathcal{L}^{E}} + \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{w})}[\log p(\mathbf{w})] + \mathcal{H}(q_{\phi}(\mathbf{w}))}_{\mathcal{L}^{C}},$$

Вариационный байесовский вывод

- Пусть $\mathcal{D} = (\mathbf{X}, \mathbf{y})$ набор данных. Причем, $p(\mathcal{D} \mid \mathbf{w}) = \prod_{(x,y) \in \mathcal{D}} p(y \mid x, \mathbf{w})$ и мы предполагаем априорное распределение на веса $p(\mathbf{w})$;
- Хотим приблизить $p(\mathbf{w} \mid \mathcal{D})$ некоторым параметрическим распределением $q_{\phi}(\mathbf{w})$;
- ф оптимизируемый параметр

$$\mathcal{L}(\phi) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{w})}[\log p(\mathcal{D}|\mathbf{w})]}_{\mathcal{L}^{E}} + \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{w})}[\log p(\mathbf{w})] + \mathcal{H}(q_{\phi}(\mathbf{w}))}_{\mathcal{L}^{C}},$$

Soft weight-sharing for NN compression[4]

Soft weight-sharing for NN compression

$$q(w) = \prod_{i} q(w_i) = \delta(w_i \mid \mu_i)$$

$$p(w) = \prod_{i} \sum_{j} \pi_{j} \mathcal{N}(w_{i} \mid \mu_{j}, \sigma_{j}^{2})$$

Model	Method	Top-1 Error[%]	Δ [%]	$ {f W} [10^6]$	$\frac{ \mathbf{W}_{\neq 0} }{ \mathbf{W} }$ [%]	CR
LeNet-300-100	Han et al. (2015a)	$1.64 \to 1.58$	0.06	0.2	8.0	40
	Guo et al. (2016)	$2.28 \to 1.99$	-0.29		1.8	56
	Ours	$1.89 \to 1.94$	-0.05		4.3	64
LeNet-5-Caffe	Han et al. (2015a)	$0.80 \to 0.74$	-0.06	0.4	8.0	39
	Guo et al. (2016)	$0.91 \to 0.91$	0.00		0.9	108
	Ours	$0.88 \to 0.97$	0.09		0.5	(162)
ResNet (light)	Ours	$6.48 \to 8.50$	2.02	2.7	6.6	45

Основная идея: сделать вариационный дропаут!

• Обучаем dropout rate для каждого распределения весов;

Основная идея: сделать вариационный дропаут!

- Обучаем dropout rate для каждого распределения весов;
- Веса с высоким dropout rate игнорируем;

Основная идея: сделать вариационный дропаут!

- Обучаем dropout rate для каждого распределения весов;
- Веса с высоким dropout rate игнорируем;
- Используем дисперсию распределения весов, чтобы понимать какой bit precision валидно использовать.

$$q(z) = \prod_i q(z_i) = \mathcal{N}(z_i | \mu_i^z, \alpha_i)$$
$$q(\mathbf{w}|z) = \prod_i q(w_i | z_i) = \mathcal{N}(w_i | z_i \mu_i, z_i^2 \sigma_i^2)$$

$$p(w) = \int p(z)p(w|z)dz$$

 $p(w) \propto \int \frac{1}{|z|} \mathcal{N}(w|0, z^2)dz = \frac{1}{|w|}$

Примеры априорных распределений на z:

- log-uniform prior $p(z) \sim |z|^{-1}$
- half-Cauchy scale prior

$$p(z) \sim C^{+}(0,s) = 2(s\pi(1+(z/s)^{2}))^{-1}$$

Эксперименты

Table 1: Learned architectures with Sparse VD [51], Generalized Dropout (GD) [66] and Group Lasso (GL) [73]. Bayesian Compression (BC) with group normal-Jeffreys (BC-GNJ) and group horseshoe (BC-GHS) priors correspond to the proposed models. We show the amount of neurons left after pruning along with the average bit precisions for the weights at each layer.

Network & size	Method	Pruned architecture	Bit-precision
LeNet-300-100	Sparse VD	512-114-72	8-11-14
784-300-100	BC-GNJ BC-GHS	278-98-13 311-86-14	8-9-14 13-11-10
LeNet-5-Caffe	Sparse VD GD	14-19-242-131 7-13-208-16	13-10-8-12
20-50-800-500	GL	3-12-192-500	-
	BC-GNJ BC-GHS	8-13-88-13 5-10-76-16	18-10-7-9 10-10–14-13
VGG	BC-GNJ	63-64-128-128-245-155-63- -26-24-20-14-12-11-11-15	10-10-10-10-8-8-8- -5-5-5-5-6-7-11
(2× 64)-(2× 128)- -(3×256)-(8× 512)	BC-GHS	51-62-125-128-228-129-38- -13-9-6-5-6-6-20	11-12-9-14-10-8-5- -5-6-6-6-8-11-17-10

Эксперименты

Table 2: Compression results for our methods. "DC" corresponds to Deep Compression method introduced at [25], "DNS" to the method of [21] and "SWS" to the Soft-Weight Sharing of [70]. Numbers marked with * are best case guesses.

	•		Compression Rates (Error %)			
Model Original Error %	Method	w ≠0 %	Pruning	Fast Prediction	Maximum	
LeNet-300-100	DC	8.0	6 (1.6)		40 (1.6)	
Lenet-300-100	DNS	1.8	28* (2.0)	-	40 (1.0)	
1.6	SWS	4.3	12* (1.9)		64(1.9)	
1.0	Sparse VD	2.2	21(1.8)	84(1.8)	113 (1.8)	
	BC-GNJ	10.8	9(1.8)	36(1.8)	58(1.8)	
	BC-GHS	10.6	9(1.8)	23(1.9)	59(2.0)	
LeNet-5-Caffe	DC	8.0	6*(0.7)	-	39(0.7)	
	DNS	file input	55*(0.9)	-	108(0.9)	
0.9	SWS	0.5	100*(1.0)	-	162(1.0)	
	Sparse VD	0.7	63(1.0)	228(1.0)	365(1.0)	
	BC-GNJ	0.9	108(1.0)	361(1.0)	573(1.0)	
	BC-GHS	0.6	156(1.0)	419(1.0)	771(1.0)	
VGG	BC-GNJ	6.7	14(8.6)	56(8.8)	95(8.6)	
8.4	BC-GHS	5.5	18(9.0)	59(9.0)	116(9.2)	

Эксперименты

Figure 1: **Left:** Avg. Time a batch of 8192 samples takes to pass through LeNet-5-Caffe. Numbers on top of the bars represent speed-up factor relative to the CPU implementation of the original network. **Right:** Energy consumption of the GPU of the same process (when run on GPU).

- Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning, 2017.
- Song Han, Huizi Mao, and William J. Dally.
 Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, 2015.
- Jorma Rissanen.
 Information and Complexity in Statistical Modeling.
 Springer Publishing Company, Incorporated, 1 edition, 2007.
- Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression, 2017.

Вопросы к самостоятельной

- 1. Дана выборка $\mathcal{D}=(\mathbf{X},\mathbf{y})$. Пусть $p(\mathcal{D}\mid\mathbf{w})=\prod_{(x,y)\in\mathcal{D}}p(y\mid x,\mathbf{w})$ и нам известно априорное распределение на веса $p(\mathbf{w})$. Опишите схему вариационного байесовского вывода для нахождения $q_{\phi}(\mathbf{w})$. Запишите формулу для оптимизируемого функционала $\mathcal{L}(\phi)$.
- 2. Опишите общую идею принципа MDL (Minimum Description Length Principle). Какую задачу он решает?
- 3. Опишите общую схему Bayesian compression:
 - какая задача решается?
 - как именно? (опишите основные этапы, выпишите формулы распределений на скрытые параметры и веса, покажите связь с вариационным байесовским выводом)
 - какие распределения можно выбрать в качестве априрных на скрытые параметры?