Simulation of Biomolecules

Markov State Modelling

2024 CCP5 Summer School

Dr Matteo Degiacomi Durham University

matteo.t.degiacomi@durham.ac.uk

Dr Antonia Mey University of Edinburgh

antonia.mey@ed.ac.uk

Markov State Modelling (MSM)

Can we predict the equilibrium structure of a peptide?

MSMs allow for quantitive data from molecular simulations

YITIY TAYAG SGGSC

Protein dynamics

Clustering is the first step towards a model providing quantitive equilibrium and kinetic information from the simulation

Simulation movie

Probabilistic understanding of the trajectory

Frogs jumping and proteins moving

Over the period of a day:

What do a protein and a frog jumping have in common?

What is a Markov chain?

Over the period of a day:

What is a Markov chain?

Transition matrices are:

- Stochastic matrices
- Containing conditional jump probabilities

If they are **irreducible** and **ergodic**:

- They have a stationary probability
- Has a stationary probability π .
- The stationary probability is the eigenvector of the eigenvalue λ_1

$$\lambda_1 = 1 > \lambda_2 > \lambda_3, \dots, > \lambda_n$$

If they are reversible

$$\pi_i P_{ij} = \pi_j P_{ji}$$

How to model protein dynamics using a Markov approach?

Approximate with a transition matrix from the trajectory:

$$P = egin{bmatrix} P_{1,1} & P_{1,2} & \dots & P_{1,j} & \dots & P_{1,S} \ P_{2,1} & P_{2,2} & \dots & P_{2,j} & \dots & P_{2,S} \ dots & dots & \ddots & dots & \ddots & dots \ P_{i,1} & P_{i,2} & \dots & P_{i,j} & \dots & P_{i,S} \ dots & dots & \ddots & dots & \ddots & dots \ P_{S,1} & P_{S,2} & \dots & P_{S,j} & \dots & P_{S,S} \ \end{bmatrix}.$$

Dimensionality reduction is (often) needed for MSM

Alanine dipeptide

['PHI 0 ALA 2', 'PSI 0 ALA 2']

Dimensionality reduction is (often) needed for MSM


```
['ATOM: ACE 1 CH3 1 x',
'ATOM: ACE 1 CH3 1 y',
'ATOM: ACE 1 CH3 1 z',
'ATOM: ACE 1 C 4 x',
'ATOM: ACE 1 C 4 y',
'ATOM: ACE 1 C 4 z',
'ATOM: ACE 1 0 5 x',
'ATOM: ACE 1 0 5 y',
'ATOM: ACE 1 0 5 z',
'ATOM:ALA 2 N 6 x',
'ATOM:ALA 2 N 6 y',
'ATOM:ALA 2 N 6 z',
'ATOM:ALA 2 CA 8 x',
'ATOM:ALA 2 CA 8 y',
'ATOM:ALA 2 CA 8 z',
'ATOM:ALA 2 CB 10 x',
'ATOM:ALA 2 CB 10 y',
'ATOM:ALA 2 CB 10 z',
'ATOM:ALA 2 C 14 x',
```

['PHI 0 ALA 2', 'PSI 0 ALA 2']

Dimensionality reduction — TICA, PCA, VAMP

PCA: Linear combination of input features maximising the variance

TICA: Linear combination of input features maximising time autocorrelation

VAMP: Variational approach for Markov Process, true for non-equilibrium data

Building a Markov Model requires several steps

Clustering on reduced dimensional space

Dimensionality reduction and discretisation require a lot of parameter optimisation. It is necessary to spend a good amount of time on hyper parameter optimisation.

The transition matrix contains all quantative properties

Approximate with a transition matrix from the trajectory:

$$P = egin{bmatrix} P_{1,1} & P_{1,2} & \dots & P_{1,j} & \dots & P_{1,S} \ P_{2,1} & P_{2,2} & \dots & P_{2,j} & \dots & P_{2,S} \ dots & dots & \ddots & dots & \ddots & dots \ P_{i,1} & P_{i,2} & \dots & P_{i,j} & \dots & P_{i,S} \ dots & dots & \ddots & dots & \ddots & dots \ P_{S,1} & P_{S,2} & \dots & P_{S,j} & \dots & P_{S,S} \ \end{bmatrix}.$$

varying the lag time

right eigenvector

eigenvector

We can find the most likely structure/coordinates!

Eigenvalues tell us about timescales

The eigenvectors tell us about the slowest processes

Validation with the Chapman-Kolmogorov (CK) test

$$T(k\tau) = T(\tau)^k$$

Conformational dynamics of a peptide

Can we predict the equilibrium structure of a peptide?

Python tools are available for building MSMs

https://www.livecomsjournal.org

How to analyze molecular dynamics data with PyEMMA

https://github.com/deeptime-ml/deeptime

