

## **AUTUMN MID-SEMESTER EXAMINATION-2022**

## School of Electrical Engineering Kalinga Institute of Industrial Technology

## 1st Semester

## Subject: Basic Electrical Engineering (EE 10002)

Time: 1.5 hours

Full Marks: 20

Answer any FOUR questions including question No.1 which is compulsory.

The figures in the right-hand side indicate full marks.

All parts of a question should be answered at one place only.

| Question<br>No | Question                                                                                                                      | CO<br>Mapping | Marks |
|----------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|-------|
| Q1.            | Answer the following questions.                                                                                               |               | [1x5] |
| a              | Define Active and Passive elements.                                                                                           | 1             |       |
| b              | Define Frequency. Time period and Phase of an AC sinusoidal waveform.                                                         | 2             |       |
| c              | If 3 resistances of each 10 $\Omega$ are connected in delta. Find the corresponding star resistances.                         | 1.            |       |
| d              | What is the rms and average value of sinusoidal waveform of amplitude of 400V?                                                | 2             |       |
| е              | Define Form Factor and Peak Factor in a sinusoidal signal.                                                                    | 2             |       |
| Q.2            | Find out the equivalent resistance across the terminal A and C using star delta transformation.                               | 1             | [5]   |
| Q.3            | Find the current through the 2 Ohm resistance by using the Mesh Analysis.                                                     | 1             | [5]   |
|                | 10 Ω                                                                                                                          |               |       |
| Q.4            | Find the current flowing through the 15 $\Omega$ resistance using nodal analysis.                                             | 1             | [5]   |
| Q.5            | Find the current in 1 $\Omega$ resistance using superposition Theorem. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1             | [5]   |