2015-10-22

ACM Template

[文档副标题]

zhyfzy

UESTC

目录

基础	2
头文件	2
扩栈代码	3
手写快排	3
输入挂	4
随机数	4
位运算	4
前向星	5
图论	6
最短路	6
最小生成树 (Prim)	7
最小树形图	8
网络流	10
ISAP	10
Dinic 非递归	12
最小费用最大流	14
无向图连通分量	16
有向图连通分量	20
2-SAT	22
欧拉路径	24
匈牙利	24
数论	26
扩展欧几里德定理	26
求模乘法的逆	26
快速幂求解 a^b	26
求解模方程 a^x=b(mod n)	27
中国剩余定理	30
素数	31
欧拉 phi 函数	32
三分法	33
大素数判断和素因子分解(POJ 1811)	33
数据结构	37
手写堆	37
LCA	38
离线 tarjan	38
在线倍增法	41
区间更新线段树	43
树状数组	45
字符串	46
字典树	46
KMP 与扩展 KMP	47
AC 自动机	49

Manacher 最长回文串	51
RMQ	53
并查集	54
计算几何	54
基础模板	54
凸包	57
旋转卡壳	57
有向直线半平面交	58
转角法判定点 P 是否在多边形内部	59
动态规划	60
区间类型	60
最长上升子序列	60
最长公共子序列	62
STL	63
Stack	63
queue	63
priority queue	
sets	
Bitset	66

基础

头文件

```
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<deque>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<string>
#include<sstream>
#include<ctime>
#define eps 1e-9
#define ALL(x) x.begin(),x.end()
```

```
#define INS(x) inserter(x,x.begin())
#define rep(i,j,k) for(int i=j;i \le k;i++)
#define MAXN 1005
#define MAXM 40005
#define INF 0x3fffffff
#define PB push back
#define MP make pair
#define X first
#define Y second
\#define lc (k<<1)
\#define rc ((k << 1) | 1)
\#define mii ((l+r) >> 1)
#define fuck puts("fuck!")
#define clr(x,y) memset(x,y,sizeof(x))
using namespace std;
typedef long long LL;
int i,j,k,n,m,x,y,T,ans,mx,mi,cas,num,len;
bool flag;
int main()
   scanf("%d",&T);
   return 0;
```

扩栈代码

#pragma comment(linker, "/STACK:1024000000,1024000000")

手写快排

```
t=a[i];a[i]=a[j];a[j]=t;
    i++;j--;
}
while (i<=j);
if (l<j) qsort(l,j);
if (i<r) qsort(i,r);
}</pre>
```

输入挂

```
inline int in() {
    char ch=getchar();
    while(ch<'0'||ch>'9') ch=getchar();
    int res=0;
    while(ch>='0' && ch<='9') {
        res=res*10+ch-'0';
        ch=getchar();
    }
    return res;
}</pre>
```

随机数

```
建立随机化种子: (一般放在 main 的开头)
#include <ctime>
srand(time(0));
产生0到32767的随机数,用取模来获得任意更小区间的值rand();
```

位运算

```
注意要带括号否则编译器会先运算 k-k
将 k 的二进制, 削去低位起的第一个 1
如 k=1168=10010010000(二进制), k-(k&-k)=10010000000(二进制)
异或的性质
0^x=x
x^x = 0
a^b=b^a
_____
枚举子集的方法
for (j=x; j; j=(j-1) &x)
其中×为原集合
========
取反操作
(~i) & ((1<<n)-1)
其中 n 为 i 的二进制位数, 注意由于优先级的关系 1<<n 必须加括号
取第k位
x&(1<<k)
=========
将第 i 位赋值为 1
s|1<<i
========
将第 i 位赋值为 0
s&~(1<<i)
```

前向星

```
int edge,head[MAXN];
struct edgenode
{
   int to,next,w;
} G[MAXM];

void add_edge(int x,int y,int w)
{
   G[edge].to=y;
   G[edge].w=w;
   G[edge].next=head[x];
   head[x]=edge++;
}
int main()
```

```
{
    memset(head, -1, sizeof(head));
    edge=0;
}
```

图论

最短路

```
void dijkstra(int s,int t)
   for (i=0;i<=n;i++) dis[i]=INF;</pre>
   dis[s]=0;
   priority_queue<pir,vector<pir>,greater<pir> > q;
   q.push(MP(dis[s],s));
   while (!q.empty())
   {
       int d=q.top().X;
       int u=q.top().Y;
       q.pop();
       for (i=head[u];i!=-1;i=G[i].next)
          int v=G[i].to;
          if (dis[v]>d+G[i].cap)
           {
              dis[v]=d+G[i].cap;
              q.push(MP(dis[v],v));
           }
       }
   }
}
bool SPFA(int s)
   int u,d,v;
   for (i=0;i\leq n;i++) dis[i]=INF;\square
   dis[s]=0;
   while (!q.empty()) q.pop();
```

```
q.push(s);
   while (!q.empty())
      int u=q.front();
      q.pop();
      vis[u]=0;
      for (int i=head[u];i!=-1;i=G[i].next)
          int v=G[i].to;
          if (dis[v]>dis[u]+G[i].w)
             dis[v]=dis[u]+G[i].w;
             if (!vis[v])
                 q.push(v);
                vis[v]=1;
                 if (cnt[v]>n) return false;
          }
   }
  return true;
}
```

最小生成树 (Prim)

```
bool vis[N];
int dis[N];
int prim()
{
    int i,j,u,v,w,ans=0;
    for(i=1; i<=n; i++) dis[i]=e[1][i];
    memset(vis,0,sizeof(vis));
    vis[1]=1;
    for(i=2; i<=n; i++)
    {
        w=inf;
        u=-1;
        for(j=1; j<=n; j++) if(!vis[j]&&w>dis[j]) w=dis[j],u=j;
        if(u==-1) return -1;
        vis[u]=1;
```

```
ans+=w;
for(v=1; v<=n; v++)
    if(!vis[v])
        if(dis[v]>e[u][v]) dis[v]=e[u][v];
}
return ans;
}
```

最小树形图

double ret=0;

```
有根的情况:直接求.
无根的情况: 建立超级根节点,向每个点连有向边,边权大于所有边权和即可.
int edge,head[MAXN];
struct edgenode
   int from, to, next;
   double w;
} G[MAXM];
void add edge(int x,int y,double w)
{
   G[edge].from=x;
   G[edge].to=y;
   G[edge].w=w;
   G[edge].next=head[x];
  head[x]=edge++;
}
int dcmp(double x)
   if (fabs(x) < eps) return 0;
  return x<0?-1:1;
}
int pre[MAXN],id[MAXN],vis[MAXN];
double in[MAXN];
//首先需要枚举根,这个模板并不包含根,然后 NV 是点数, NE 是边数,直接用 edge 即
double Direct MST(int root,int NV,int NE)
```

```
while (1)
   for (int i=0;i<NV;i++) in[i]=INF;</pre>
   memset(pre,-1, sizeof(pre));
   memset(vis,-1,sizeof(vis));
   memset(id,-1,sizeof(id));
   for (int i=0;i<NE;i++)</pre>
    {
       if (G[i].from==G[i].to) continue;
       int v=G[i].to;
       if (dcmp(G[i].w-in[v])<0)
          pre[v]=G[i].from;
          in[v]=G[i].w;
       }
   for (int i=0;i<NV;i++)</pre>
       if (dcmp(in[i]-INF) == 0 && i!=root)
          return -1;
       }
   int cnt=0;
   in[root]=0;
   for (int i=0;i<NV;i++)</pre>
       ret+=in[i];
       int v=i;
       while (vis[v]!=i && id[v]==-1 && v!=root)
          vis[v]=i;
          v=pre[v];
       if (v!=root && id[v]==-1)
       {
          for (int u=pre[v];u!=v;u=pre[u])
              id[u]=cnt;
          id[v]=cnt++;
       }
   if (cnt==0) break;
```

```
for (int i=0;i<NV;i++)
{
    if (id[i]==-1) id[i]=cnt++;
}
for (int i=0;i<NE;i++)
{
    int v=G[i].to;
    G[i].from=id[G[i].from];
    G[i].to=id[G[i].to];
    G[i].w-=in[v];
}
NV=cnt;
root=id[root];
}
return ret;
}</pre>
```

网络流

ISAP

```
struct edge{
   int from, to, w;
   int next;
}G[MAXM];
int head[MAXN];
int Edge;
void add edge(int u, int v, int w)
   G[Edge].from = u;
   G[Edge].to = v;
   G[Edge].w = w;
   G[Edge].next = head[u];
   head[u] = Edge++;
   G[Edge].from = v;
   G[Edge].to = u;
   G[Edge].w = 0;
   G[Edge].next = head[v];
   head[v] = Edge++;
}
```

```
int curedge[MAXN],parent[MAXN],level[MAXN];
int cnts[MAXN], augment[MAXN];
int isap(int n,int s, int e)
   int i,u,v,max flow,aug,min lev;
   memset(level, 0, sizeof(level));
   memset(cnts,0,sizeof(cnts));
   for (i=0;i\leq n;i++) curedge[i] = head[i];
   max flow=0;
   augment[s]=INF;
   parent[s]=-1;
   u=s;
   while (level[s] < n)
       if (u==e)
          max flow+=augment[e];
          aug=augment[e];
          for (v=parent[e];v!=-1;v=parent[v])
             i=curedge[v];
             G[i].w-=aug;
             G[i^1].w+=aug;
              augment[G[i].to] -= aug;
             if (G[i].w==0) u=v;
          }
       }
       for (i=curedge[u];i!=-1;i=G[i].next)
          v=G[i].to;
          if (G[i].w>0 && level[u] == (level[v]+1))
              augment[v]=min(augment[u],G[i].w);
             curedge[u]=i;
             parent[v]=u;
             u=v;
             break;
          }
       if (i==-1)
          if (--cnts[level[u]]==0)
          {
```

```
break;
}
curedge[u]=head[u];
min_lev=n;
for (i=head[u];i!=-1;i=G[i].next)
{
        if (G[i].w>0)
        {
            min_lev=min(level[G[i].to],min_lev);
        }
}
level[u]=min_lev+1;
cnts[level[u]]++;
        if (u!=s) u=parent[u];
}
return max_flow;
}
```

Dinic 非递归

```
const int inf = 0x3f3f3f3f;
struct edgenode
   int from, to, next;
   int cap;
}edge[MAXM];
int Edge,head[MAXN],ps[MAXN],dep[MAXN];
void addedge(int x,int y,int c)
   edge[Edge].from=x;
   edge[Edge].to=y;
   edge[Edge].cap=c;
   edge[Edge].next=head[x];
   head[x]=Edge++;
   edge[Edge].from=y;
   edge[Edge].to=x;
   edge[Edge].cap=0;
   edge[Edge].next=head[y];
   head[y]=Edge++;
}
```

```
int dinic(int n, int s, int t)
   int tr,flow=0;
   int i,j,k,l,r,top;
   while(1){
      memset (dep, -1, (n+1) * size of (int));
       for(l=dep[ps[0]=s]=0,r=1;l!=r;)//BFS部分,将给定图分层
          for(i=ps[l++],j=head[i];j!=-1;j=edge[j].next)
              if (edge[j].cap&&-1==dep[k=edge[j].to])
              {
                 dep[k] = dep[i] + 1; ps[r++] = k;
                 if(k==t)
                     l=r;
                    break;
                 }
          }
       if (dep[t] == -1) break;
       for (i=s, top=0;;) //DFS 部分
          if(i==t)//当前点就是汇点时
          {
              for (k=0, tr=inf; k < top; ++k)
                 if (edge[ps[k]].cap<tr) tr=edge[ps[l=k]].cap;</pre>
              for (k=0; k<top; ++k)</pre>
                 edge[ps[k]].cap-=tr,edge[ps[k]^1].cap+=tr;
              flow+=tr;
              i=edge[ps[top=1]].from;
          }
          for(j=head[i];j!=-1;j=edge[j].next)//找当前点所指向的点
              if(edge[j].cap&&dep[i]+1==dep[edge[j].to]) break;
          if(j!=-1)
             ps[top++]=j;//当前点有所指向的点,把这个点加入栈中
```

```
i=edge[j].to;
}
else
{
    if (!top) break;//当前点没有指向的点,回溯
    dep[i]=-1;
    i=edge[ps[--top]].from;
}
}
return flow;
}
```

最小费用最大流

```
/*最小费用流模板 -BEGIN-*/
/*size 表示网络中的结点数,编号从 0 开始,如果是从 1 开始则 size=n+1*/
/*初始化: head 全设为-1, Edge 为边数预先设为 0*/
int head[MAXN], vis[MAXN], dis[MAXN], pos[MAXN], Edge, size;
struct edgenode
   int to,next,w,cost;
} edge[MAXM];
void add_edge(int x,int y,int w,int cost)
   edge[Edge].to=y;
   edge[Edge].w=w;
   edge[Edge].cost=cost;
   edge[Edge].next=head[x];
   head[x] = Edge;
   Edge++;
   edge[Edge].to=x;
   edge [Edge] .w=0;
   edge[Edge].cost=-cost;
   edge[Edge].next=head[y];
   head[y]=Edge;
   Edge++;
}
bool SPFA(int s, int t)
{
```

```
int u, v, i;
   queue <int> q;
   memset(vis,0,sizeof(vis));
   for(i=0;i<size;i++) dis[i]=INF;</pre>
    dis[s]=0;
    vis[s]=1;
   q.push(s);
   while(!q.empty())
       u=q.front(); q.pop(); vis[u]=0;
       for (i=head[u];i!=-1;i=edge[i].next)
         {
             v=edge[i].to;
             if(edge[i].w>0&&dis[u]+edge[i].cost<dis[v])</pre>
              dis[v]=dis[u]+edge[i].cost;
              pos[v]=i;
              if(!vis[v])
                  vis[v]=1;
                  q.push(v);
              }
             }
         }
   }
   return dis[t]!=INF;
int MinCostFlow(int s,int t)
   int i,cost=0,flow=0;
   while(SPFA(s,t))
       int d=INF;
       for (i=t;i!=s;i=edge[pos[i]^1].to)
       {
          d=min(d, edge[pos[i]].w);
       for (i=t;i!=s;i=edge[pos[i]^1].to)
       {
          edge[pos[i]].w-=d;
          edge[pos[i]^1].w+=d;
       flow+=d;
       cost+=dis[t]*d;
```

```
}
return cost; // flow 是最大流值
}
/*最小费用流模板 -END-*/
```

无向图连通分量

```
void tarjan(int u,int fa,int path)//u 当前节点, fa 父亲节点, path 边 u->fa
在前向星中的编号
   vis[u]=1;
   dfn[u] = low[u] = ++time;
   for (int i=head[u];i!=-1;i=G[i].next)
       if (i==path) continue;
       int v=G[i].to;
       if (!vis[v])
          tarjan(v,u,i^1);
          low[u] = min(low[u], low[v]);
          if (low[v]>dfn[u])
              G[i].flag=1;
              G[i^1].flag=1;
          }
       }else low[u]=min(low[u],dfn[v]);
   vis[u]=2;
}
例子 (CF231E)
int
edge, head[MAXN], bin[MAXN], headS[MAXN], edgeS, vis[MAXN], d[MAXN], id[
MAXN], num[MAXN];
struct edgenode
   int to, next, flag;
} G[MAXM],S[MAXM];
void add edge(int x,int y)
{
```

```
G[edge].to=y;
   G[edge].flag=0;
   G[edge].next=head[x];
   head[x]=edge++;
}
void add edgeS(int x,int y)
{
   S[edgeS].to=y;
   S[edgeS].flag=0;
   S[edgeS].next=headS[x];
   headS[x]=edgeS++;
}
int fa[MAXN];
int findset(int x)
   return x==fa[x]?x:fa[x]=findset(fa[x]);
void unionset(int x,int y)
   fa[findset(x)]=findset(y);
}
int dfn[MAXN],low[MAXN],time;
void dfs(int u,int fa)
   vis[u]=1;
   dfn[u] = low[u] = ++time;
   for (int i=head[u];i!=-1;i=G[i].next)
      int v=G[i].to;
       if (v!=fa && vis[v]==1)
          low[u]=min(low[u],dfn[v]);
       }
       if (!vis[v])
       {
          dfs(v,u);
          low[u]=min(low[u],low[v]);
          if (low[v]>dfn[u]) G[i].flag=1;
   }
```

```
vis[u]=2;
}
void dive(int u,int scc)
{
   id[u]=scc;
   vis[u]=1;
   num[scc]++;
   for (int i=head[u];i!=-1;i=G[i].next)
       if (!G[i].flag && !vis[G[i].to])
          dive(G[i].to,scc);
   }
}
void dis(int u,int dep)//记录当前节点到根节点有多少个"环"
   vis[u]=1;
   d[u] = dep;
   for (int i=headS[u];i!=-1;i=S[i].next)
      int v=S[i].to;
      if (!vis[v])
          if (num[v]>2) dis(v,dep+1);
          else dis(v,dep);
   }
}
vector<pair<int,int> > Q[MAXN];
int ans[MAXN];
void tarjan(int u)
   vis[u]=true;
   for (int i=0;i<Q[u].size();i++)</pre>
       int v=Q[u][i].X,id=Q[u][i].Y;
       if (vis[v])
          int com=findset(v);
          ans[id]=d[u]+d[v]-2*d[com];
          if (num[com]>2) ans[id]++;
       }
```

```
}
   for (int i=headS[u];i!=-1;i=S[i].next)
       int v=S[i].to;
       if (!vis[v])
          tarjan(v);
          unionset(v,u);
       }
   }
}
int main()
   memset(head, -1, sizeof(head));
   edge=0;
   memset(headS, -1, sizeof(headS));
   edgeS=0;
   scanf("%d%d",&n,&m);
   while (m--)
       scanf("%d%d",&x,&y);
       add edge (x, y);
       add_edge(y,x);
   }
   dfs(1,-1);
   memset(vis, 0, sizeof(vis));
   int scc=1;
   for (int i=1;i<=n;i++)
      if (!vis[i]) dive(i,scc++);
   }
   for (i=1;i<=n;i++)
       for (int j=head[i];j!=-1;j=G[j].next)
          int v=G[j].to;
          if (id[i]!=id[v])
          {
```

```
add edgeS(id[i],id[v]);
              add edgeS(id[v],id[i]);
          }
       }
   }
   int q;
   scanf("%d",&q);
   for (i=0; i < q; i++)
       scanf("%d%d", &x, &y);
       x=id[x];y=id[y];
       Q[x].PB(MP(y,i));
       Q[y].PB(MP(x,i));
   }
   memset(vis, 0, sizeof(vis));
   if (num[1]>2) dis(1,1); else dis(1,0);
   memset(vis, 0, sizeof(vis));
   for (i=1;i<=n;i++) fa[i]=i;
   tarjan(1);
   bin[0]=1;
   for(int i=1;i<MAXN;i++)</pre>
      bin[i]=bin[i-1]*2%100000007;
   for (int i=0; i < q; i++)
       printf("%d\n",bin[ans[i]]);
   return 0;
}
```

有向图连通分量

```
int
head[MAXN],ru[MAXN],chu[MAXN],index,dfn[MAXN],low[MAXN],cnt,scc[M
AXN],ans,r,c,Edge;
stack <int> tar;
struct edgenode
{
   int from,to,next;
} G[MAXM];
```

```
void add edge(int x,int y)
   G[Edge].from=x;
   G[Edge].to=y;
   G[Edge].next=head[x];
   head[x]=Edge++;
}
void add_new_edge(int x,int y)
   chu[x]++;
   ru[y]++;
}
void tarjan(int u)
   int x;
   dfn[u]=low[u]=++index;
   tar.push(u);
   for (int i=head[u];i!=-1;i=G[i].next)
       int v=G[i].to;
       if (!dfn[v])
          tarjan(v);
          low[u]=min(low[u],low[v]);
       } else
       if (!scc[v])
          low[u] = min(low[u], dfn[v]);
       }
   if (low[u] == dfn[u])
   {
       cnt++;
       do
          x=tar.top();
          tar.pop();
          scc[x]=cnt;
       } while (x!=u);
}
```

```
void build new map()
   memset(ru,0,sizeof(ru));
   memset(chu,0,sizeof(chu));
   for (int i=1;i<=m;i++)
       if (scc[G[i].to] == scc[G[i].from]) continue;
       add new edge(scc[G[i].from],scc[G[i].to]);
   }
}
void build map()
   memset(dfn,0,sizeof(dfn));
   memset(low, 0, sizeof(low));
   memset(scc, 0, sizeof(scc));
   index=cnt=0;
   for (i=1;i<=n;i++)
       if (!dfn[i]) tarjan(i);
   build new map();
}
```

2-SAT

【解释】

给多个语句,每个语句为"Xi 为真(假)或者 Xj 为真(假)"每个变量和拆成两个点 2*i 为假, 2*i+1 为真"Xi 为真 或 Xj 为真"等价于"Xi 为假 -> Xj 为真"。DFS 算法没有回溯过程。

【函数说明】

模板 bfs 函数在模板外一般用不到

void init(int n):初始化

void add(int x, int xval, int y, int yval):添加边, x, y 为节点编号, xval=1表示真, xval=0表示假, yval 同理

bool solve() :计算是否存在解。如果存在解返回 true, 不存在返回 false

【变量说明】

vector<int>G[MAXN*2];//邻接表表示图。

bool mark[MAXN*2];//表示某个结点(不是变量)是否已经被访问 int s[MAXN*2],c;//s存储某次 DFS 访问过那些点。用于重新标记时消去之前访问过的 点的记录(mark[]值)

```
struct Twosat
   int n;
   vector<int>G[MAXN*2];//邻接表表示图。
   bool mark[MAXN*2];//表示某个点是否已经被访问
   int s[MAXN*2],c;//s 存储答案。
   bool dfs(int x)
      if (mark[x^1]) return 0; //如果 x^1 被标记过, 说明 x 是不成立 (x^1 成
立), 返回 0
      if (mark[x]) return 1; //如果 x 被标记过, 说明 x 是成立的, 返回 1
      mark[x]=1;
      s[c++]=x;
      for (int i=0; i < G[x].size(); i++)
         if(!dfs(G[x][i]))return 0;
      return 1;//与之相连的变量都满足。
   }
   void init(int n)//初始化, n 为变量个数(结点数 2*n, 从 0 开始)
      this->n=n;
      for (int i=0; i< n*2; i++) G[i].clear();
      memset(mark, 0, sizeof(mark));
   }
   void add(int x, int xval, int y, int yval) //添加边, xval=1表示真,
xval=0 表示假, yval 同理
   {
      x=x*2+xval;
      y=y*2+yval;
      G[x^1].push back(y);
      G[y^1].push back(x);
   }
   bool solve()//计算。
      for (int i=0; i< n*2; i+=2)
         if(!mark[i]&&!mark[i+1])
```

```
c=0;
if(!dfs(i))//如果"Xi 为假"这个假定不成立
{
    while(c>0)mark[s[--c]]=0;
    if(!dfs(i+1))return 0;//改成"Xi 为真", 重新标记。
    }
    }
    return 1;
}
```

欧拉路径

有向图的欧拉路径 (无向图通过度数判断)

void dfs(int u,int fa)//c表示当前 DFS 的位置, pa 表示这个字母是从第 pa 个边来的,最后循环完加入 ans 数组即可,显然 ans 是倒序加入的。

```
for (int i=head[u];i!=-1;i=G[i].next)
{
    int v=G[i].to;
    if (!b[v])
    {
       b[v]=1;
       dfs(v,i);
    }
}
if (pa>0) ans.PB(fa);
}
```

匈牙利

```
used[i]=1;
          if (!linked[i]||find(linked[i]))
              linked[i]=u;
              return 1;
          }
   }
   return 0;
}
int max match()
   int ans=0;
   memset(linked, 0, sizeof(linked));
   for (int i=1;i<=n;i++)
       memset(used, 0, sizeof(used));
       if (find(i)) ans++;
   return ans;
}
int main()
   while (scanf("%d%d%d",&k,&n,&m),k)
       memset(map,0,sizeof(map));
       for (i=1;i<=k;i++)
          scanf("%d%d",&x,&y);
          map[x][y]=1;
       printf("%d\n", max_match());
   }
   return 0;
}
```

数论

扩展欧几里德定理

```
//拓展欧几里得定理, 求 ax+by=gcd(a,b)的一组解(x,y),d=gcd(a,b)
void gcd(int a,int b,int &d,int &x,int &y)
{
    if(!b){d=a;x=1;y=0;}
    else{gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
用法 1:
求 ax+by=c 的整数解。ax+by=gcd(a,b)=g 的一组解为(x0,y0),则 ax+by=c 的一组解为(x0*c/g,y0*c/g)。当 c 不是 g 的倍数时无整数解
若(x1,y1)是 ax+by=c 的一组解,则其任意整数解为(x1+k*bb,y1-k*aa),其中aa=a/gcd(a,b),bb=b/gcd(bb),k为任意整数
```

求模乘法的逆

```
//求得 a 在模 n 条件下的逆
int inv(int a,int n)
{
    int d,x,y;
    gcd(a,n,d,x,y);
    return d==1?(x+n)%n:-1;
}
或则:
v=pow_mod(a,n-m-1,n);//n 为素数, pow_mod(a,n-1,n)=1,费马小定理。所以
a^m*a^(n-m-1)=a^(n-1)=1 (mod n).
```

快速幂求解 a^b

```
int pow_mod(int a,int b)
{
   int s=1;
   while(b)
   {
```

求解模方程 a^x=b (mod n)

```
1.n 为素数。无解返回-1
//求解模方程 a^x=b (mod n) 。n 为素数,无解返回-1
int log_mod (int a,int b,int n)
   int m, v, e=1, i;
   m=ceil(sqrt(n+0.5));
   v=inv(pow_mod(a,m),n);
   map<int,int>x;
   x[1]=0;
   for(i=1;i<m;i++)
      e=(e*a)%n;
      if(!x.count(e))x[e]=i;
   for(i=0;i<m;i++)
      if(x.count(b))return i*m+x[b];
      b=(b*v)%n;
   return -1;
}
2.n 不是素数。
//hdu 2815 Mod Tree
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <iostream>
#include <algorithm>
```

using namespace std;

```
#define LL int64
LL gcd(LL a, LL b)
   return b==0?a:gcd(b,a%b);
//拓展欧几里得定理,求 ax+by=gcd(a,b)的一组解(x,y),d=gcd(a,b)
void gcd mod(LL a, LL b, LL &d, LL &x, LL &y)
{
   if(!b){d=a;x=1;y=0;}
   else{gcd_mod(b,a%b,d,y,x);y-=x*(a/b);}
//求解模方程 d*a^(x-c)=b(mod n)。d,a 和 n 互质,无解返回-1
LL log mod (LL a, LL b, LL n, LL c, LL d)
   LL m, v, e=1, i, x, y, dd;
   m=ceil(sqrt(n+0.5)); //x=i*m+j
   map<LL,LL>f;
   f[1] = m;
   for(i=1;i<m;i++) //建哈希表,保存a^0,a^1,...,a^m-1
      e=(e*a)%n;
      if(!f[e])f[e]=i;
   e=(e*a)%n;//e=a^m
   for (i=0;i<m;i++)//每次增加m次方, 遍历所有1<=f<=n
      gcd mod(d,n,dd,x,y);//d*x+n*y=1-->(d*x)%n=1-->d*(x*b)%n==b
      x=(x*b%n+n)%n;
      if(f[x])
         LL num=f[x];
          f.clear();//需要清空,不然会爆内存
          return c+i*m+(num==m?0:num);
      d=(d*e)%n;
   }
   return -1;
int main()
   LL a,b,n;
   while (scanf ("%I64d%I64d%I64d", &a, &n, &b)!=EOF)
```

```
if(b>=n)
          printf("Orz,I can't find D!\n");
          continue;
      }
      if(b==0)
         printf("0\n");
          continue;
      LL ans=0, c=0, d=1, t;
      while ((t=\gcd(a,n))!=1)
         if(b%t) {ans=-1;break;}
         C++;
         n=n/t;
         b=b/t;
         d=d*a/t%n;
          if (d==b) {ans=c;break;}//特判下是否成立。
      if(ans!=0)
          if(ans==-1){printf("Orz,I can't find D!\n");}
          else printf("%I64d\n",ans);
      else
          ans=log mod(a,b,n,c,d);
          if (ans==-1) printf ("Orz, I can't find D!\n");
          else printf("%I64d\n",ans);
      }
   }
   return 0;
/*
   求解模方程 a^x=b (mod n), n 不为素数。拓展 Baby Step Giant Step
   模板题。
   方法:
   初始 d=1,c=0,i=0;
   1. 令 g=gcd(a,n),若 g==1 则执行下一步。否则由于 a^x=k*n+b; (k 为某一整数),
则(a/g)*a^k=k*(n/g)+b/g,(b/g 为整除,若不成立则无解)
令 n=n/g, d=d*a/g, b=b/g,c++则 d*a^(x-c)=b(mod n),接着重复1步骤。
   2.通过 1 步骤后, 保证了 a 和 d 都与 n 互质, 方程转换为 d*a^(x-c)=b (mod n)。
```

由于 a 和 n 互质,所以由欧拉定理 a^phi(n) ==1 (mod n), (a, n 互质) 可知,phi(n) <=n, a^0==1 (mod n), 所以构成循环,且循环节不大于 n。从而推出如果存在解,则必定 1<=x<n。(在此基础上我们就可以用Baby Step Giant Step 方法了)

- 3.令 m=ceil(sqrt(n)),则 m*m>=n。用哈希表存储 a^0,a^1,...,a^(m-1),接着 判断 1~m*m-1 中是否存在解。
- 4. 为了减少时间,所以用哈希表缩减复杂度。分成 m 次遍历,每次遍历 a^m 长度。由于 a 和 d 都与 n 互质,所以 gcd(d,n)=1,

所以用拓展的欧几里德定理求得 d*x+n*y=gcd(d,n)=1,的一组整数解(x,y)。则 d*x+n*y=1-->d*x%n=(d*x+n*y)%n=1-->d*(x*b)%n=((d*x)%n*b%n)%n=b。 所以若 x*b 在哈希表中存在,值为 k,则 a^k*d=b(mod n),答案就是 ans=k+c+i*m。 如果不存在,则令 d=d*a^m,i++后遍历下一个 a^m,直到遍历 a^0 到 a^(m-1)还未找到,则说明不解并退出。

*/

中国剩余定理

```
互质情况
```

```
//中国剩余定理. 求得 M%A=a, M%B=b,...中的 M. 其中 A, B, C...互质
int china(int a[])
   int i,j,k,d,ans=0,x,y,M=1;
   for(i=0;i<n;i++)
      M=M*x[i];
   for(i=0;i<n;i++)
   {
       m=M/x[i];
       gcd(x[i],m,d,x,y);
       ans=(ans+y*m*a[i])%M;
   }
   return (ans+M) %M;
}
不互质的情况
int China(int n)
   int m1, r1, m2, r2, flag=0, i, d, x, y, c, t;
   scanf("%d%d", &m1, &r1);
   flag=0;
   for(i=1;i<n;i++)
```

```
{
      scanf("%d%d", &m2, &r2);
      if (flag) continue;
      gcd(m1, m2, d, x, y); //d=gcd(m1, m2); x*m1+y*m2=d;
      c=r2-r1;
      if (c%d) //对于方程 m1*x+m2*y=c, 如果 c 不是 d 的倍数就无整数解
         flag=1;
         continue;
      t=m2/d;//对于方程 m1x+m2y=c=r2-r1, 若(x0,y0)是一组整数解,那么
(x0+k*m2/d,y0-k*m1/d)也是一组整数解(k 为任意整数)
            //其中 x0=x*c/d, y0=x*c/d;
      x=(c/d*x%t+t)%t;//保证x0是正数,因为x+k*t是解,(x%t+t)%t也必定
是正数解(必定存在某个 k 使得(x%t+t)%t=x+k*t)
      r1=m1*x+r1;//新求的 r1 就是前 i 组的解, Mi=m1*x+M(i-1)=r2-m2*y(m1
为前 i 个 m 的最小公倍数);对 m2 取余时, 余数为 r2;
               //对以前的m取余时, Mi%m=m1*x%m+M(i-1)%m=M(i-1)%m=r
      m1=m1*m2/d;
   if(flag)return -1;
   else return r1;
}
```

素数

普诵筛选法

```
const int maxn=10000001;
const int maxc=700000;
int vis[maxn];//vis[i]=0 时, i 为素数或者 1, 否则为合数
int prime[maxc];
//筛素数
void sieve(int n)
{
   int m=(int)sqrt(n+0.5);//避免浮点误差
   memset(vis,0,sizeof(vis));
   for(int i=2;i<=m;i++)if(!vis[i])
        for(int j=i*i;j<=n;j+=i)vis[j]=1;
}
//生成素数表,存在 prime 数组中, 返回素数个数
int primes(int n)
{
   sieve(n);
```

```
int t=0;
   for(int i=2;i<=n;i++)if(!vis[i])</pre>
      prime[t++]=i;
   return t;
线性筛法:在O(n)时间复杂度内找出所有的素数
void init()//预处理, 找出所有 1e7 以内的素数, 以减少查找 1e14 范围数的因子的时
          //现行筛素数的方法, 时间复杂度为 ○ (n)
{
   memset(check, false, sizeof(check));
   int i,j;
   tot=0;
   for(i=2;i<=1e7;i++)
      if(!check[i])prime[tot++]=i;
      for(j=0;j<tot;j++)</pre>
         if(i*prime[j]>1e7)break;
         check[i*prime[j]]=true;
         if(i%prime[j]==0)break;
      }
   //printf("%d\n",tot);
   //for(i=0;i<20;i++)
   // printf("prime[%d]:%d\n",i,prime[i]);
}
```

欧拉 phi 函数

```
求不超过n且与n互质的正整数个数
```

```
int euler_phi(int n)//求单个欧拉函数
{
   int m=(int)sqrt(n+0.5);
   int i,ans=n;
   for(i=2;i<=m;i++)
       if(n%i==0)
       {
        ans=ans/i*(i-1);
        while(n%i==0)n/=i;
    }</pre>
```

```
if(n>1)ans=ans/n*(n-1);
return ans;

}

int phi[maxn];
void euler_phi()
{
   int i,j,k;
   //欧拉函数, phi[i]表示不超过i的与i互质的整数个数
   for(i=2;i<maxn;i++)phi[i]=0;
   phi[1]=1;
   for(i=2;i<maxn;i++)
        if(!phi[i])
        for(j=i;j<=maxn;j+=i) {
            if(!phi[j])phi[j]=j;
            phi[j]=phi[j]/i*(i-1);
        }
}
```

三分法

```
for (i=0; i<100; i++)
{
    m1=l+(r-1)/3;
    m2=r-(r-1)/3;
    if (find(m1)<find(m2)) r=m2;
    else l=m1;
}</pre>
```

大素数判断和素因子分解(POJ 1811)

```
// Miller_Rabin 算法进行素数测试
//速度快, 而且可以判断 <2^63 的数
//*********************
const int S=20;//随机算法判定次数,S 越大,判错概率越小
//计算 (a*b)%c.
              a,b 都是 long long 的数,直接相乘可能溢出的
// a,b,c <2^{63}
long long mult mod(long long a,long long b,long long c)
   a%=c;
  b%=c;
   long long ret=0;
   while(b)
   {
      if (b&1) {ret+=a; ret%=c; }
      a < < = 1;
      if(a>=c)a%=c;
      b>>=1;
   return ret;
}
//计算 x^n %c
long long pow mod(long long x,long long n,long long mod)//x^n%c
   if(n==1)return x%mod;
   x\%=mod;
   long long tmp=x;
   long long ret=1;
   while(n)
      if(n&1) ret=mult mod(ret,tmp,mod);
      tmp=mult mod(tmp,tmp,mod);
      n >> = 1;
   return ret;
}
//以a为基,n-1=x*2^t
                   a^(n-1)=1(mod n) 验证 n 是不是合数
//一定是合数返回 true,不一定返回 false
bool check(long long a,long long n,long long x,long long t)
   long long ret=pow mod(a,x,n);
```

```
long long last=ret;
   for(int i=1;i<=t;i++)
      ret=mult mod(ret,ret,n);
      if(ret==1&&last!=1&&last!=n-1) return true;//合数
      last=ret;
   if(ret!=1) return true;
   return false;
}
// Miller Rabin()算法素数判定
//是素数返回 true.(可能是伪素数, 但概率极小)
//合数返回 false;
bool Miller Rabin(long long n)
   if(n<2)return false;
   if (n==2) return true;
   if((n&1)==0) return false; //偶数
   long long x=n-1;
   long long t=0;
   while ((x\&1) == 0) \{x >> = 1; t++; \}
   for(int i=0;i<S;i++)</pre>
      long long a=rand()%(n-1)+1;//rand()需要 stdlib.h 头文件
      if(check(a,n,x,t))
         return false;//合数
   return true;
}
//************
//pollard rho 算法进行质因数分解
//************
long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始
long long gcd(long long a,long long b)
   if (a==0) return 1;//???????
   if(a<0) return gcd(-a,b);
   while(b)
```

```
{
       long long t=a%b;
       a=b;
       b=t;
   return a;
}
long long Pollard rho(long long x,long long c)
   long long i=1, k=2;
   long long x0=rand()%x;
   long long y=x0;
   while(1)
   {
       i++;
      x0 = (mult mod(x0, x0, x) + c) %x;
       long long d=gcd(y-x0,x);
       if (d!=1&&d!=x) return d;
       if (y==x0) return x;
       if (i==k) \{y=x0; k+=k; \}
   }
}
//对 n 进行素因子分解
void findfac(long long n)
   if(Miller_Rabin(n))//素数
   {
       factor[tol++]=n;
       return;
   }
   long long p=n;
   while (p>=n) p=Pollard rho(p, rand()%(n-1)+1);
   findfac(p);
   findfac(n/p);
}
int main()
   //srand(time(NULL));//需要 time.h 头文件//POJ 上 G++不能加这句话
   long long n;
   while(scanf("%I64d",&n)!=EOF)
       tol=0;
```

```
findfac(n);
  for(int i=0;i<tol;i++)printf("%I64d ",factor[i]);
  printf("\n");
  if(Miller_Rabin(n))printf("Yes\n");
  else printf("No\n");
}
return 0;
}</pre>
```

数据结构

手写堆

```
int pl[MAXN];
void insert(int u)
   int t=u/2;
   while (t>0 \&\& pl[t]>pl[u])
       swap(pl[t],pl[u]);
       u=t;
       t=u/2;
   }
}
void down(int u)
{
   int t=1;
   while (t*2 \le u)
       int p=t*2;
       if (p<u && pl[p]>pl[p+1]) p++;
       if (pl[p]<pl[t])</pre>
           swap(pl[p],pl[t]);
           t=p;
       }else break;
   }
}
```

```
int main()
   scanf("%d",&n);
   for (i=1;i<=n;i++)
      scanf("%d", &k);
      if (k==1)
          num++;scanf("%d", &pl[num]);
          insert(num);
       }else
       if (k==2)
          printf("%d\n",pl[1]);
       }else
       if (k==3)
          pl[1]=pl[num];
          pl[num--]=0;
          down(num);
       }
   }
   return 0;
}
```

LCA

离线 tarjan

```
int u,v,w,d;
int edge,head[MAXN];

int fa[MAXN],query[MAXN][3],dist[MAXN];

bool vis[MAXN];

struct node
{
   int v,id;
   node (int _v,int _id):v(_v),id(_id){}};

int find(int x)
```

```
{
   if (x==fa[x]) return fa[x];
   return fa[x]=find(fa[x]);
vector <vector<node> > mp;
struct edgenode
   int to,next,w;
} G[MAXM];
void add_edge(int x,int y,int w)
   G[edge].to=y;
   G[edge].w=w;
   G[edge].next=head[x];
   head[x]=edge++;
}
void tarjan(int u)
   vis[u]=true;
   for (int i=0;i<mp[u].size();i++)</pre>
       int v=mp[u][i].v,id=mp[u][i].id;
       if (vis[v]) query[id][2]=find(v);
   }
   for (int i=head[u];i!=-1;i=G[i].next)
       int v=G[i].to, w=G[i].w;
       if (!vis[v])
       {
          dist[v]=dist[u]+w;
          tarjan(v);
          fa[v]=u;
   }
}
int main()
```

```
{
   scanf("%d",&T);
   while (T--)
      memset (head, -1, sizeof (head));
       edge=0;
       scanf("%d%d",&n,&m);
       for (i=0; i< n-1; i++)
          scanf("%d%d%d",&u,&v,&w);
          add edge(u,v,w);
          add_edge(v,u,w);
       }
       mp.clear();
      mp.resize(n+4);
       for (i=0;i<m;i++)
          scanf("%d%d",&u,&v);
          query[i][0]=u;
          query[i][1]=v;
          mp[u].push_back(node(v,i));
          mp[v].push back(node(u,i));
      for (i=1;i<=n;i++) fa[i]=i;
       memset(vis,0,sizeof(vis));
       dist[1]=0;
       tarjan(1);
       for (i=0;i<m;i++)
          u=query[i][0];
          v=query[i][1];
          d=query[i][2];
          printf("%d\n", dist[u]+dist[v]-2*dist[d]);
       }
   }
   return 0;
}
```

在线倍增法

```
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=40004;
struct node
   int to, w;
   node(int a=0, int b=0)
   {
       to=a;
       w=b;
   }
};
vector<node>e[maxn];
int f[maxn], dis[maxn], deep[maxn], p[maxn] [20], n;
void dfs(int u,int pre,int t)
{
   int i, num;
   deep[u]=t;//深度
   f[u]=pre;//父节点
   num=e[u].size();
   for(i=0; i<num; i++)</pre>
       int v=e[u][i].to;
       if(v!=pre)
          dis[v]=dis[u]+e[u][i].w;//距离跟的距离
          dfs(v,u,t+1);
       }
   }
}
void init()
   //p[i][j]表示 i 结点的第 2^j 祖先
   int i,j;
   for (j=0; (1<< j)<=n; j++)
```

```
for(i=1; i<=n; i++)
          p[i][j]=-1;
   for (i=1; i \le n; i++)p[i][0]=f[i];
   for (j=1; (1<< j)<=n; j++)
       for(i=1; i<=n; i++)
          if(p[i][j-1]!=-1)
             p[i][j]=p[p[i][j-1]][j-1];//i 的第 2^j 祖先就是 i 的第
2^(j-1)祖先的第 2^(j-1)祖先
int lca(int a,int b)//最近公共祖先
   int i,j;
   if (deep[a] < deep[b]) swap(a,b);</pre>
   for (i=0; (1<< i)<=deep[a]; i++);
   i--;
   //使 a, b 两点的深度相同
   for(j=i; j>=0; j--)
       if(deep[a]-(1<<j)>=deep[b])
          a=p[a][j];
   if(a==b)return a;
   //倍增法,每次向上进深度 2<sup>-</sup>j,找到最近公共祖先的子结点
   for(j=i; j>=0; j--)
       if(p[a][j]!=-1&&p[a][j]!=p[b][j])
       {
          a=p[a][j];
          b=p[b][j];
       }
   return f[a];
int main()
   int T;
   scanf("%d",&T);
   while (T--)
       int m, i, a, b, c, ans;
       scanf("%d%d",&n,&m);
       for(i=1; i<=n; i++)e[i].clear();</pre>
       for(i=1; i<n; i++)
          scanf("%d%d%d", &a, &b, &c);
          e[a].push back(node(b,c));
```

```
e[b].push_back(node(a,c));
}
dis[1]=0;
dfs(1,-1,0);//找到各点的深度和各点的父节点以及距离根的距离
init(); //初始各个点的 2^j 祖先是谁
for(i=0; i<m; i++)
{
    scanf("%d%d",&a,&b);
    ans=dis[a]+dis[b]-2*dis[lca(a,b)];
    printf("%d\n",ans);
}
return 0;
}
```

区间更新线段树

```
struct tree
   int l,r;
   int sum, lazy;
};
tree t[MAXN*4];
int a[MAXN];
int temp, l, r, s;
void pushdown(int k)
{
   int temp=t[k].lazy;
   t[lc].lazy+=temp;
   t[rc].lazy+=temp;
   t[lc].sum+=(t[lc].r-t[lc].l+1)*temp;
   t[rc].sum+=(t[rc].r-t[rc].l+1)*temp;
   t[k].lazy=0;
}
void buildtree(int k,int l,int r)
   if (l==r)
       t[k].l=l;t[k].r=r;
       t[k].sum=a[l];
```

```
t[k].lazy=0;
       return;
   t[k].l=l;
   t[k].r=r;
   t[k].lazy=0;
   buildtree(lc,l,mii);
   buildtree(rc,mii+1,r);
   t[k].sum=t[lc].sum+t[rc].sum;
}
void add(int k,int l,int r,int s)
   if ((t[k].l==1)&&(t[k].r==r))
   {
       t[k].lazy+=s;
       t[k].sum+=(r-l+1)*s;
       return;
   }
   int mid=(t[k].l+t[k].r)/2;
   if (t[k].lazy!=0) pushdown(k);
   if (r \le mid) add(lc, l, r, s); else
   if (mid<1) add(rc,1,r,s);</pre>
   else
   {
       add(lc,l,mid,s);
       add(rc, mid+1, r, s);
   t[k].sum=t[lc].sum+t[rc].sum;
}
int query(int k,int l,int r)
   if ((t[k].l==1) && (t[k].r==r))
   {
       return t[k].sum;
   int mid=(t[k].l+t[k].r)/2;
   if (t[k].lazy!=0) pushdown(k);
   if (mid<1) return query(rc,1,r);</pre>
   if (r<=mid) return query(lc,l,r);</pre>
   return query(lc,1,mid)+query(rc,mid+1,r);
}
```

```
int main()
{
    scanf("%d%d",&n,&m);
    for (i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
    }
    buildtree(1,1,n);
    while (m--)
    {
        scanf("%d",&temp);
        if (temp==0)
        {
            scanf("%d%d",&l,&r);
            printf("%d\n",query(1,l,r));
        } else
        {
            scanf("%d%d%d",&l,&r,&s);
            add(1,l,r,s);
        }
    }
}</pre>
```

树状数组

区间查询, 单点修改

```
int Sum(int x)
{
    int sum=0;
    while(n>0)
    {
        sum+=c[x];
        x=x-(x&(-x));
    }
    return sum;
}
void change(int i,int x)
{
    while(i<=n)
    {
        c[i]=c[i]+x;
        i=i+lowbit(i);</pre>
```

```
}

单点查询, 区间修改

int C[MAXN];

void update(int x,int y)
{
   for (int i=x;i>0;i-=(-i)&i)
        C[i]+=y;
}

int query(int x)
{
   int s=0;
   for (int k=x;k<=n;k+=(-k)&k) s+=C[k];
   return s;
}

求逆序对
维护树状数组, 每加入一个数, 查询有多少个数比它大(总数减去小于等于它的个数)</pre>
```

字符串

字典树

```
int c=s[i]-'a';
if (!ch[u][c])
{
         memset(ch[cnt],0,sizeof(ch[cnt]));
         ch[u][c]=cnt++;
}
u=ch[u][c];
}
tree;
```

KMP 与扩展 KMP

普通 KMP: 求出 A[i]往前和 B的前缀匹配的最大匹配长度,记为 ex[i]扩展 KMP: 求出 A[i]往后和 B的前缀匹配的最大匹配长度,记为 ex[i]

[KMP]

```
lenA = strlen(A);lenB = strlen(B);
next[0] = lenB;
int j = 0;
re2(i, 1, lenB)
{
    while (j && B[i] != B[j]) j = next[j - 1];
    if (B[i] == B[j]) j++;
    next[i] = j;
}
j = 0;
re(i, lenA)
{
    while (j && A[i] != B[j]) j = next[j - 1];
    if (A[i] == B[j]) j++;
    ex[i] = j;
}
```

【扩展 KMP】

```
lenA = strlen(A);
lenB = strlen(B);
next[0] = lenB;
next[1] = lenB - 1;
re(i, lenB-1) if (B[i] != B[i + 1])
{
```

```
next[1] = i;
   break;
int j, k = 1, p, L;
re2(i, 2, lenB)
   p = k + next[k] - 1;
   L = next[i - k];
   if (i + L \le p) next[i] = L;
   else
       j = p - i + 1;
      if (j < 0) j = 0;
       while (i + j < lenB \&\& B[i + j] == B[j]) j++;
      next[i] = j;
      k = i;
   }
}
int minlen = lenA <= lenB ? lenA : lenB;</pre>
ex[0] = minlen;
re(i, minlen) if (A[i] != B[i])
   ex[0] = i;
   break;
}
k = 0;
re2(i, 1, lenA)
{
   p = k + ex[k] - 1;
   L = next[i - k];
   if (i + L \le p) ex[i] = L;
   else
   {
       j = p - i + 1;
       if (j < 0) j = 0;
       while (i + j < lenA \&\& j < lenB \&\& A[i + j] == B[j]) j++;
       ex[i] = j;
       k = i;
   }
}
```

AC 自动机

```
插入操作:ac.insert(p[i],i);
构造失配函数:ac.getFail();
计算模板 T 的 cnt 值:ac.find(T);
struct ACauto
  int ch[MAXN][26];// 字典树, 类似于前向星, ch[i][j]为当前编号为 i 的结
点,下一个字符为;的所指向的编号。
  int size;
  int f[MAXN], last[MAXN], val[MAXN], cnt[MAXN];
  //val 用来在字典树中的模板串末尾处标记,标记为模板串的序号(从1开始)
  //last 后缀链接:结点 J 沿着失配指针往回走时,遇到的下一个单词尾结点。
  //cnt 用来统计配对数,每一个模板对应一个值,所以大小为模板数数量。只在 print
函数中使用
  void init()//初始化
     size=1;//字典树中的节点数
     memset(ch[0],0,sizeof(ch[0]));//字典树
     memset(cnt,0,sizeof(cnt)); //用于统计配对数
  }
  int idx(char c)//用于返回编号
     return c-'a';
  }
  void insert(char *s, int v) //将字符串 s 插入字典树中,其中 v 是字符串的
编号,从1开始编号
  {
     int u=0, len=strlen(s);
     for (int i=0;i<len;i++)</pre>
        int c=idx(s[i]);
        if (!ch[u][c])
           memset(ch[size], 0, sizeof(ch[size]));
           val[size]=0;
           ch[u][c]=size++;
        u=ch[u][c];
      }
```

```
val[u]=v;//在字符串末尾做出标记,标记为字符串的编号i
  }
  void print(int j)//用于输出处理,
   {
     if (j)
        cnt[val[j]]++;//成功配对数加1
        print(last[j]);//继续沿后缀链接走检查是否和某个模板匹配。
   }
  int getFail()//BFS 构造失配函数
     queue <int> q;
     f[0]=0;
     for (int c=0; c<26; c++) // 把各个模板的第一个字符压入队列中
        int u=ch[0][c];
        if (u)
        {
           f[u] = 0;
           q.push(u);
           last[u]=0;
        }
      }
     while (!q.empty())
        int r=q.front(); q.pop();
        for (int c=0; c<26; c++)
           int u=ch[r][c];
           if (!u)
              ch[r][c]=ch[f[r]][c];//如果节点不存在,直接链接到->失配
边所指向的节点,这样能够化简计算
              continue;
           }
           q.push(u);
           f[u]=ch[f[r]][c];//构造当前节点的失配函数:如果失配,找到失
配点的父亲节点 r, 父亲沿着失配边 f[r]走向下一个节点即可。
           last[u]=val[f[u]]?f[u]:last[f[u]];//构造后缀链接:如果沿
```

失配指针走的节点是尾节点,就标记为失配指针指向的节点,

50

//否则标记为其后缀链接的值

```
(类似于递归)。
     }
  }
  void find(char *T)//AC 自动机主函数,在文本串 T 中寻找模板
     int n=strlen(T);
     int j=0;
     for (int i=0;i<n;i++)</pre>
        int c=idx(T[i]);//返回字符的编号
        while(j&&!ch[j][c]) j=f[j];//如果字符不存在, 即失配, 就顺着失
配边走, 直到可以匹配
        j=ch[j][c];//如果可以匹配,就走向下一个结点
        if (val[j]) print(j);//如果j指向某个模板的尾部则输出
        else if (last[j]) print(last[j]);//即使不是某个模板的尾部也
要沿后缀链接走,检查是否为某个模板的尾部。
  }
}ac;
```

Manacher 最长回文串

```
if (p[i]+i>mx)//更新 mx 与 id, 因为 mx 是向右延伸的最大长度, 所以实时
更新
      {
         mx=p[i]+i;
          id=i;
   }
}
void init()//处理字符串
   int i,j,k;
   str[0]='$';
   str[1]='#';
   for(i=0;i<n;i++)
      str[i*2+2]=s[i];
      str[i*2+3]='#';
   n=n*2+2;
   s[n]=0;
}
int main()
   int i, ans;
   while(scanf("%s",s)!=EOF)
      n=strlen(s);//n 为给定字符串 s 的长度
      init();
      kp();
      ans=0;
      for(i=0; i<n; i++)
          if (p[i]>ans) //寻找最大的长度 ans
             ans=p[i];
      printf("%d\n",ans-1);
   return 0;
}
```

RMQ

```
int a[50005], mm[50005][30], mi[50005][30];
void init()
   for (int i=1;i<=n;i++) mm[i][0]=mi[i][0]=a[i];
   for (int j=1; (1 << j) <= n; j++)
       for (int i=1; i+(1<< j)-1<=n; i++)
          mm[i][j]=max(mm[i][j-1],mm[i+(1<<(j-1))][j-1]);
          mi[i][j]=min(mi[i][j-1], mi[i+(1<<(j-1))][j-1]);
       }
}
int RMQ(int l,int r)
   int k=0;
   while ((1 << (k+1)) <= r-1+1) k++;
   int ans1=max(mm[1][k],mm[r-(1<<k)+1][k]);//区间最大值
   int ans2=min(mi[1][k],mi[r-(1<<k)+1][k]);//区间最小值
   return ans1-ans2;
}
int main()
   while (~scanf("%d%d",&n,&m))
   {
       clr(mm,0);clr(mi,0);
       for (i=1;i<=n;i++) scanf("%d",&a[i]);
       init();
       for (i=1;i<=m;i++)
          int l,r;
          scanf("%d%d",&l,&r);
          printf("%d\n",RMQ(l,r));
       }
   }
   return 0;
}
```

并查集

```
int fa[MAXN];
int findfa(int x)
{
    return x==fa[x]?x:fa[x]=findfa(fa[x]);
}
void join(int x,int y)
{
    fa[findfa(x)]=findfa(y);
}
```

计算几何

基础模板

```
const double pi=acos(-1.0);
int dcmp(double x) {if(fabs(x) < eps) return 0; else return x < 0 ?
-1 : 1; }
struct Vector
             double x, y;
             Vector (double x=0, double y=0) :x(x),y(y) {}
             Vector operator + (const Vector &B) const { return Vector
 (x+B.x,y+B.y); }
            Vector operator - (const Vector &B) const { return Vector(x -
B.x, y - B.y); }
             Vector operator * (const double &p) const { return Vector(x*p,
y*p); }
             Vector operator / (const double &p) const { return Vector(x/p,
y/p);
             double operator * (const Vector &B) const { return x*B.x +
y*B.y;}//点积
             double operator ^ (const Vector &B) const { return x*B.y -
y*B.x;}//叉积
             bool operator < (const Vector &b) const { return x < b.x \mid \mid (x + b.x) \mid (x 
== b.x && y < b.y);}
             bool operator == (const Vector &b) const { return dcmp(x-b.x) ==
0 \&\& dcmp(y-b.y) == 0;}
};
```

```
typedef Vector Point;
Point Read(){double x, y;scanf("%lf%lf", &x, &y);return Point(x,
double Length (Vector A) { return sqrt(A*A); }//向量的模
double Angle(Vector A, Vector B) {return acos(A*B / Length(A) /
Length (B)); }//向量的夹角,返回值为弧度
double Area2(Point A, Point B, Point C) { return (B-A)^(C-A); }/向
量 AB 叉乘 AC 的有向面积
Vector VRotate(Vector A, double rad) {return Vector(A.x*cos(rad) -
A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));}//向量A旋转rad弧度
Point PRotate(Point A, Point B, double rad) {return A + VRotate(B-
A, rad);}//将B点绕A点旋转rad弧度
Vector Normal (Vector A) {double l = Length(A); return Vector (-A.y/l,
A.x/1); //求向量 A 向左旋转 90°的单位法向量,调用前确保 A 不是零向量
Point GetLineIntersection/*求直线交点,调用前要确保两条直线有唯一交点
*/(Point P, Vector v, Point Q, Vector w) \{double\ t = (w^(P - Q)) / (Point P, Vector v, Point Q, Vector w)\}
(v^w); return P + v^*t; } //在精度要求极高的情况下,可以自定义分数类
double DistanceToLine/*P点到直线 AB的距离*/(Point P, Point A, Point
B) {Vector v1 = B - A, v2 = P - A; return fabs(v1^v2) / Length(v1);}//
不加绝对值是有向距离
double DistanceToSegment/*点到线段的距离*/(Point P, Point A, Point B)
   if (A==B) return Length (P-A);
   Vector v1=B-A, v2=P-A, v3=P-B;
   if (dcmp(v1*v2)<0) return Length(v2);else
   if (dcmp(v1*v3)>0) return Length(v3);else
   return fabs(v1^v2)/Length(v1);
}
Point GetLineProjection/*点在直线上的射影*/(Point P, Point A, Point B)
   Vector v=B-A;
   return A+v*((v*(P-A))/(v*v));
}
bool OnSegment/*判断点是否在线段上(含端点)*/(Point P,Point a1,Point a2)
{
   Vector v1=a1-P, v2=a2-P;
         (dcmp(v1^v2) == 0
                           & &
                                 min(a1.x,a2.x) \le P.x
P.x \le \max(a1.x, a2.x) && \min(a1.y, a2.y) \le P.y \le P.y \le \max(a1.y, a2.y)
return true;
   return false;
}
```

```
bool SegmentInter/*线段相交判定*/(Point al, Point a2, Point b1, Point
b2)
{
   //if
          (OnSegment (a1, b1, b2) | OnSegment (a2, b1, b2) | |
OnSegment(b1,a1,a2) || OnSegment(b2,a1,a2)) return 1;
   //如果只判断线段规范相交(不算交点),上面那句可以删掉
   double c1=(a2-a1)^(b1-a1), c2=(a2-a1)^(b2-a1);
   double c3=(b2-b1)^(a1-b1), c4=(b2-b1)^(a2-b1);
   return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}
bool InTri/*判断点是否在三角形内*/(Point P, Point a,Point b,Point c)
         (dcmp(fabs((c-a)^(c-b))-fabs((P-a)^(P-b))-fabs((P-b)^(P-b))
   if
c))-fabs((P-a)^(P-c)))==0) return true;
   return false;
}
double PolygonArea/*求多边形面积,注意凸包 P 序号从 0 开始*/(Point *P ,int
n)
{
   double ans = 0.0;
   for(int i=1;i<n-1;i++)
      ans+= (P[i]-P[0]) ^ (P[i+1]-P[0]);
   return ans/2;
}
bool CrossOfSeqAndLine/* 判断线段是否与直线相交*/(Point a1, Point
a2, Point b1, Vector b2)
   if (OnSegment(b1,a1,a2) || OnSegment(b1+b2,a1,a2)) return true;
   return dcmp(b2^(a1-b1))*dcmp(b2^(a2-b1))<0;
double Cross/*B-A和C-A的叉积*/(Point A, Point B, Point C)
   return (B-A)^(C-A);
double dis pair seg/*两条线段间的最短距离*/(Point p1, Point p2, Point
p3, Point p4)
   return
               min(min(DistanceToSegment(p1,
                                                 р3,
                                                           p4),
DistanceToSegment(p2, p3, p4)),
    min(DistanceToSegment(p3, p1, p2), DistanceToSegment(p4, p1,
p2)));
```

}

凸包

```
int ConvexHull(Point* p,int n,Point* ch)
{
    sort(p,p+n);
    int m=0;
    for(int i=0;i<n;++i)
    {
        while(m>1&&((ch[m-1]-ch[m-2])^(p[i]-ch[m-2]))<=0) m--;
        ch[m++]=p[i];
    }
    int k=m;
    for(int i=n-2;i>=0;i--)
    {
        while(m>k&&((ch[m-1]-ch[m-2])^(p[i]-ch[m-2]))<=0) m--;
        ch[m++]=p[i];
    }
    if(n>1) m--;
    return m;
}
```

旋转卡壳

```
double rotating_calipers(Point *ch,int n)
{
    int q=1;
    double ans=0;
    ch[n]=ch[0];
    for(int p=0; p<n; p++)
    {
        while(((ch[q+1]-ch[p+1])^(ch[p]-ch[p+1]))>((ch[q]-ch[p+1])^(ch[p]-ch[p+1]))) q=(q+1)%n;
        ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1])));
    }
    return ans;
}
//为什么是大于号而不是大于等于号?因为 ch 默认是凸多边形
//旋转卡壳只是一种思想、需要灵活运用
```

有向直线半平面交

```
struct Line//有向直线
   Point p;
   Vector v;
   double ang;
   Line() { }
   Line (Point p, Vector v): p(p), v(v) { ang = atan2(v.y, v.x); }
   Point point(double t)
      return p + v*t;
   bool operator < (const Line& L) const</pre>
      if (fabs(ang-L.ang) < eps)</pre>
          return ((v)^(L.p-p))<0;
      return ang < L.ang;
} ;
bool OnRight (Line L, Point p) //判断是否p点在有向直线右边
   return ((L.v^(p-L.p))<0);
Point GetIntersection (Line a, Line b) //求两个有向直线的交点
   Vector u=a.p-b.p;
   double t=(b.v^u)/(a.v^b.v);
   return a.p+a.v*t;
}
bool IsParallel(Line a, Line b) //判断两条有向直线是否平行
   if (dcmp(a.v ^ b.v) == 0) return 1;
   return 0;
Line q[MAXN];
```

```
int HalfPlane(Line *L, int n, Point *poly) //半平面交, 输入直线数组 L(需要
保证逆时针顺序), n 是直线的个数, poly 用于输出, 返回值为 poly 中点的个数
   sort(L,L+n);
   int m, i;
   for (m=i=1;i<n;i++)
      if (dcmp(L[i].ang-L[i-1].ang)!=0) L[m++]=L[i];
   }
   n=m;
   int l=0, r=1;
   q[0]=L[0];q[1]=L[1];
   for (int i=2;i<n;i++)
       //if (IsParallel(q[r],q[r-1]) || IsParallel(q[l],q[l+1]))
return 0;
      while (1 < r \&\& OnRight(L[i], GetIntersection(q[r-1],q[r])))
      while (l < r \&\& OnRight(L[i], GetIntersection(q[l], q[l+1])))
1++;
      q[++r]=L[i];
   while (1 \le x \le 0) OnRight(q[1], GetIntersection(q[r-1], q[r]))) r--;
   while (1 \le x \le 0) OnRight(q[r], GetIntersection(q[1], q[1+1]))) 1++;
   if (r-1 \le 1) return 0;
   q[r+1]=q[1];
   m=0;
   for (int i=1;i<=r;i++) poly[m++]=GetIntersection(q[i],q[i+1]);</pre>
   return m;
}
```

转角法判定点 P是否在多边形内部

```
int d1 = dcmp(Poly[i].y - P.y);
int d2 = dcmp(Poly[(i+1)%n].y - P.y);
if(k > 0 && d1 <= 0 && d2 > 0) wn++;
if(k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if(wn != 0) return 1; //內部
return 0; //外部
}
```

动态规划

区间类型

```
for (j=1;j<=n;j++)
  for (i=1;i<=n-j+1;i++)
    for (k=i;k<=i+j-1;k++)
        f[i][i+j-1]=f[i][k]+f[k][i+j-1];

for (i=n;i>=1;i--)
  for (j=i+1;j<=n;j++)
    for (k=i;k<=j-1;k++)
    f[i][j]=f[i][k]+f[k][j];</pre>
```

最长上升子序列

- (1) 对序列 B 排序
- (2) 计算 A 中每个元素在 B 中的序号, 并构成新序列
- (3) 使用 LIS 的方法计算最长严格递增子序列
- (4) 获取最长公共子序列

```
struct node
{
    char c;
    int num;
} u[10005];
bool cmp(node a,node b)
{
    if (a.c==b.c) return a.num>b.num;
```

```
return a.c<b.c;
vector <int> p;
char a[10005],b[10005],c[10005];
int lena,lenb,dp[10005];
int main()
   scanf("%s",a);//读入a串
   scanf("%s",b);//读入b串
   lena=strlen(a);
   lenb=strlen(b);
   for (i=0; i<lenb; i++)
      u[i].c=b[i];
      u[i].num=i;
   sort(u,u+lenb,cmp);//对b串排序
   for (i=0; i<lenb; i++) //排序后存入字符串 c 中, 便于使用 lower bound
      c[i]=u[i].c;
   c[lenb]='\0';
   for (i=0; i<lena; i++) //计算 A 中每个元素在 B 中的序号
      k=lower bound(c,c+lenb,a[i])-c;
      while (k \le a[i] == c[k])
         p.push back(u[k].num);
         k++;
      }
   }
   n=p.size();
   memset(dp,0,sizeof(dp));//计算最长上升子序列
   num=0;
   for (i=0; i<n; i++)
      if (p[i]>dp[num])
      {
         dp[++num]=p[i];
      }
      else
          k=lower bound(dp+1,dp+1+num,p[i])-dp;
          dp[k]=p[i];
```

```
}
printf("%d\n", num);
return 0;
}
```

最长公共子序列

```
int dp[100005],pre[100005],nam[100005];
void out(int u)
   if (pre[u]) out(pre[u]);
   printf("%d ",u);
}
int main()
   scanf("%d",&n);
   for (i=1;i<=n;i++)
      scanf("%d",&p[i]);
   } 🗌
   memset(dp,0,sizeof(dp));
   num=0;
   for (i=1;i<=n;i++)
      if (p[i]>dp[num])//若求最长不下降子序列把这里改成大于等于
         dp[++num]=p[i];
         nam[num]=i;//nam[i]用于记录dp[i]在p中的编号,用于输出
         pre[i]=nam[num-1];//pre[i]用于记录 dp[i-1]在 p 中的编号,用于
输出
      }else
         k=lower bound(dp+1,dp+1+num,p[i])-dp; //若求最长不下降子序
列把这里 upper bound
         dp[k]=p[i];
```

```
nam[k]=i;
    pre[i]=nam[k-1];
}

printf("%d\n", num);
out(nam[num]);
    printf("\n");
    return 0;
}
```

STL

Stack

```
s.top(); //取栈顶
s.push(x); //入栈
s.pop(); //出栈
s.empty(); //是否为空
s.size(); //栈中元素个数
```

queue

队列 STL 基本用法

```
q.front(); //取队头
q.push(x); //入队
q.pop(); //出队
q.empty(); //是否为空
q.size(); //队列中元素个数
```

priority_queue

```
      q.top();
      //取队首元素,默认是队列中的最大值,注意,没有元素时会 Runtime error

      q.empty()
      //判断为空,则返回 true

      q.pop()
      //删除第一个元素

      q.push()
      //加入一个元素

      q.size()
      //返回队列中元素的个数
```

这样默认是元素大的优先级高

```
如果要元素小的
priority queue<int vector<int>, greater<int> > g;//最右边两个>>中间应
该有一个空格
也可自定义比较函数
struct cmp
  bool operator()(const int &a, const int &b)
     return a<b;
  }
};
priority queue<int, vector<int>, cmp> p;
set
p.insert(K); //将K加入集合p中
p.size(); //返回元素个数
p.empty();
          //判断是否为空
             //清除所有元素
p.clear();
p.erase(K); //将集合中元素 K 删去
p.count(K); //返回某个值元素的个数(只对 multiset 有效, set 的 count()值只
有 0 和 1)
p.lower bound() //返回指向大于(或等于)某值的第一个元素的迭代器,注意这个比
直接用 lower bound 快
p.upper_bound() //返回指向大于(不等于)某值的第一个元素的迭代器,注意这个比
直接用 upper bound 快
set<int>::iterator it; //定义迭代器
set<int>::reverse iterator it; //定义反向迭代器
it=p.begin(); //指向头
it=p.end();
            //指向末尾,末尾不包含元素
it=rbegin()
            //返回指向集合中最后一个元素的反向迭代器
            //返回指向集合中第一个元素的反向迭代器
it=rend()
it=p.find(K); //返回一个指向被查找到元素的迭代器,如果没有找到返回
p.end();
for (set<int>::iterator it=p.begin();it!=p.end();it++)
```

/*注意迭代器指针不能进行四则运算, 只能自增自减*/ /*set 的插入, 查找, 删除操作复杂度均为 o(log(N)) */

cout << * it << endl; }//输出元素,默认按照升序排序

```
其他不常用的函数:
equal range()
             返回集合中与给定值相等的上下限的两个迭代器
get allocator() 返回集合的分配器
         返回一个用于元素间值比较的函数
key comp()
max_size()
           返回集合能容纳的元素的最大限值
           交换两个集合变量
swap()
value comp() 返回一个用于比较元素间的值的函数
自定义比较函数
   (1) 元素不是结构体:
     例:
     //自定义比较函数 myComp,重载"()"操作符
     struct myComp
      {
        bool operator()(const your type &a,const your type &b)
           return a.data-b.data>0;
         }
      set<int, myComp>s;
      . . . . . .
     set<int, myComp>::iterator it;
   (2) 如果元素是结构体,可以直接将比较函数写在结构体内。
     例:
     struct Info
        string name;
        float score;
        //重载"<"操作符, 自定义排序规则
        bool operator < (const Info &a) const
         {
           //按 score 从大到小排列
           return a.score<score;</pre>
        }
     set<Info> s;
     set<Info>::iterator it;
关于 multiset
删除操作 :st.erase(st.find(x));这样是删除一个数 X,而不是把值为 X 的数全删掉。
```

Bitset

```
std::bitset 是 STL 的一部分,
准确地说, std::bitset 是一个模板类, 它的模板参数不是类型, 而整形的数值(这一特
性是 ISO C++2003 的新特性).
有了它我们可以像使用数组一样使用位。
下面看一个例子:
#include<bitset>
std::bitset<8> bs; //它是一个模板,传递的参数告诉编译器 bs 有 8 个位。
我们接着看上面的代码,通过上面两行的代码我们得到一个 bitset 的对象 bs, bs 可以装
入8个位,我们可以通过数组的下标运算符来存取:
bs[0]=1; //把第0位设置为1
bs[3]=true; //把第3位设置为1,因为 true 可以转换为1
bs[7]=0; //这个大家都明白了
bitset 被设计为开放的,也就是说一个 bitset 对象可以转换为其它类型的值,典型的,
我们想把一个整数设置成具有特定的位模式,我们可以简单地把一个 bitset 转换为一个
整数:
unsigned long value=bs.to ulong();
std::bitset<32> bs32(value);
bs32[15]=1;
value=bs32.to ulong();
此外 bitset 还可以也字符串互换,这样我们就可以更直观对 bitset 进行操作了,我只
是简单地把我们想要的"01"字符串就可以了:
std::bitset<32> bs("011010101001");
std::string str=bs.to string();
【初始化】
bitset<n> b;
            //b 有 n 位,每位都为 0.参数 n 可以为一个表达式.
如 bitset<5> b0;则"b0"为"00000";
bitset<n> b(unsigned long u); //b有n位,并用u赋值;如果u超过n位,则顶
端被截除
如:bitset<5>b0(5);则"b0"为"00101";
bitset<n> b(string s); //b是 string 对象 s 中含有的位串的副本
string bitval("10011");
bitset<5> b0(bitval4); //则"b0"为"10011";
bitset<n> b(s, pos); //b 是 s 中从位置 pos 开始位的副本,前面的多余位自动
填充 0;
string bitval("01011010");
bitset<10> b0(bitval5, 3); //则"b0" 为 "0000011010";
```

bitset<n> b(s, pos, num); //b是s中从位置pos开始的num个位的副本,如果num<n,则前面的空位自动填充0; string bitval("11110011011"); bitset<6> b0(bitval5, 3, 6); //则"b0"为 "100110";

【流】

os << b //把 b 中的位集输出到 os 流 os >>b //输入到 b 中,如"cin>>b",如果输入的不是 0 或 1 的字符,只取该字符前面的二进制位.

【属性方法】

```
bool any() //是否存在置为 1 的二进制位?和 none()相反
bool none() //是否不存在置为 1 的二进制位,即全部为 0?和 any()相反.
size_t count() //二进制位为 1 的个数.
size_t size() //二进制位的个数
flip() //把所有二进制位逐位取反
flip(size_t pos) //把在 pos 处的二进制位取反
bool operator[](size_type _Pos) //获取在 pos 处的二进制位
set() //把所有二进制位都置为 1
set(pos) // 把在 pos 处的二进制位置为 1
reset() // 把所有二进制位都置为 0
reset(pos) // 把在 pos 处的二进制位置为 0
test(size_t pos) //在 pos 处的二进制位是否为 1?
unsigned long to_ulong() //用同样的二进制位返回一个 unsigned long 值
string to_string() //返回对应的字符串.
```