

Hypothesis Testing: One-sample Inference

Lecture 3

Overview

- Null hypothesis and alternative hypothesis
- Type I error and type II error
- Hypothesis testing using one-sample inference, including:
 - calculation of t statistics, critical value and p-value for one-sided alternative
 - computation of t statistics, critical value and p-value for twosided alternative
- Calculate the power of a test and determine the appropriate sample size

Hypothesis Testing

- Hypothesis-testing framework: null and alternative hypothesis
- Hypothesis-testing: make decisions using probabilities methods, (not rely on subjective impressions)
 - uniform and consistent decision-making criterion
- one-sample problem: hypotheses about a single distribution
- two-sample problem: compare two different distributions

Hypothesis Testing

- The null hypothesis (H_o): hypothesis to be tested
- The **alternative hypothesis** (*H*₁): hypothesis **contradicts** the null hypothesis

$$H_0$$
: $\mu = \mu_0$ vs. H_1 : $\mu < \mu_0$

- Decisions: H₀ is true or H₁ is true
- All outcomes in a hypothesis testing situation: null hypothesis
- If we decide H₀ is true → accept H₀
 If we decide H₁ is true → H₀ is not true (reject H₀)

Table 7.1 Four possible outcomes in hypothesis testing

		Tru	ith
ecision		H_{0}	H_1
Deci	Accept H ₀	$H_{\scriptscriptstyle 0}$ is true and $H_{\scriptscriptstyle 0}$ is accepted	$H_{\scriptscriptstyle 1}$ is true and $H_{\scriptscriptstyle 0}$ is accepted
	Reject H₀	$H_{\scriptscriptstyle 0}$ is true and $H_{\scriptscriptstyle 0}$ is rejected	$H_{\scriptscriptstyle 1}$ is true and $H_{\scriptscriptstyle 0}$ is rejected

Hypothesis Testing

Given the Null Hypothesis Is True False Type I Correct Reject Error Decision Your Decision Based On a Random Sample Do Not Type II Correct Reject Decision Error

- Probability of a type I error:
 α : significance level of a test
- Probability of a type II error:
- β : function of μ and other factors
- Power of a test : $1 \beta = 1$ probability of a type II error = Pr(rejecting H₀|H₁ true)
- Objective of hypothesis testing: use statistical tests that make α and β as small as possible

Determination of Statistical Significance for Results from Hypothesis Tests

- Critical-value method: compute a test statistic and determine the outcome of a test by comparing the test statistic with a critical value determined by α (type I error)
- P-value: α level that we are not concerned between accepting or rejecting H₀

Figure 7.1 Graphic display of a p-value $0.4 \\
0.3 \\
0.1 \\
0.0$ $0.1 \\
0.0$ $0.1 \\
0.0$ $0.1 \\
0.0$ Value

$$p = Pr(t_{n-1} \le t)$$

Determination of Statistical Significance for Results from Hypothesis Tests

Critical-value method

- 1) Compute test statistic t
- 2) Compare with critical value $t_{n-1,\alpha}$ at α level e.g. 0.05

$$H_0$$
: $\mu = \mu_0$ vs. H_1 : $\mu < \mu_0$

t < t_{n-1,0.05}
 Reject H₀

Result: statistically significant (p<0.05)

• $t \ge t_{n-1,0.05}$ Accept H_0

Result: not statistically significant (p≥0.05)

P-value method

- -Compute exact p-value
- If p < 0.05 Reject H₀

Result: statistically significant (p<0.05)

• if $p \ge 0.05$ Accept H_0

Result: not statistically significant (p≥0.05)

P-value

- P-value: probability of obtaining a test statistic <u>as extreme</u>
 as or more extreme than the actual test statistic obtained
 (null hypothesis is true)
 - If the null hypothesis is true → determine likelihood of getting me observed sample data
 - "If the null hypothesis is true, are your sample data unusual?"

Guidance for Judging the significance of a p-value:

- If $0.01 \le p < 0.05$: significant results
- If $0.001 \le p < 0.01$: highly significant results
- o If p < 0.001: very highly significant results
- \circ If p > 0.05: results are considered not statistically significant (NS)
- If $0.05 \le p < 0.1$: a trend toward statistical significance

One-Sample Test for the Mean of a Normal Distribution: One-Sided Alternatives

- Acceptance region: range of values of x that H₀ is accepted
- Rejection region: range of values of x that H₀ is rejected
- One-tailed test: values of the parameter being studied (i.e. μ) under the <u>alternative hypothesis</u> are allowed to be either > or < the values of the parameter under the <u>null hypothesis</u> (μ_0)

One-sample t Test for the Mean of a Normal Distribution with Unknown Variance (Alternative Mean < Null Mean)

• H_0 : $\mu = \mu_0$ vs. H_1 : $\mu < \mu_0$ * σ unknown* *with a significance level of α

$$t = (\overline{x} - \mu_0)/(s/\sqrt{n})$$

- $t_{n-1,\alpha}$: critical value
- $t < t_{n-1,\alpha} \rightarrow \text{Reject } H_0$ $t \ge t_{n-1,\alpha} \rightarrow \text{accept } H_0$

FIGURE 7.1 Graphic display of a p-value

One-Sample t Test for the Mean of a Normal Distribution with Unknown Variance (Alternative Mean > Null Mean)

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu > \mu_0$ with a significance level of α $t = (x - \mu_0)/(s/\sqrt{n})$

- $t > t_{n-1,1-\alpha}$ \rightarrow reject H_0 $t \le t_{n-1,1-\alpha}$ \rightarrow accept H_0
- P-value = $Pr(t > t_{n-1})$

Figure 7.2 p-value for the one-sample t test when the alternative mean (μ_s) > null mean (μ_s)

Example on One-Sample *t* Test for the Mean of a Normal Distribution with Unknown Variance: Cardiovascular Disease: Pediatrics

- A current area of research interest is the familial aggregation of cardiovascular risk factors in general and lipid levels in particular.
- Suppose the "average" cholesterol level in children is 175 mg/dL. A group of men
 who have died from heart disease within the past year are identified, and the
 cholesterol levels of their offspring are measured.
- Two hypotheses are considered:
- (1) The average cholesterol level of these children is 175 mg/dL.
- (2) The average cholesterol level of these children is >175 mg/dL.
- Suppose the mean cholesterol level of 10 children whose fathers died from heart disease is 200 mg/dL and the sample standard deviation is 50 mg/dL.

Q: Test the hypothesis that the mean cholesterol level is higher in this group than in the general population.

Example on One-Sample t Test for the Mean of a Normal Distribution with Unknown Variance: Cardiovascular Disease: Pediatrics

Solution:

- Hypothesis: H_0 : $\mu = 175$ vs. H_1 : $\mu > 175$ at α level of .05
- H_0 is rejected if: $t > t_{n-1,1-\alpha} = t_{9,.95}$

$$t = \frac{200 - 175}{50/\sqrt{10}} = \frac{25}{15.81} = 1.58$$

- *Table:* $t_{9..95} = 1.833$
- 1.833 > 1.58 → accept H0 at the 5% level of significance
- use *p*-value method:
 - exact *p*-value : p = Pr(t9 > 1.58)
 - -t9,.90 = 1.383 and t9,.95 = 1.833
 - because $1.383 < 1.58 < 1.833 \rightarrow .05 < p < .10$
 - using the pt function of R: exact p-value = Pr(t9 > 1.58) = 1 - pt (1.58,9) = .074 (p > .05)
- Conclusion: results are not statistically significant, and the null hypothesis is accepted
 - → mean cholesterol level of these children does not differ significantly from that of an average child

TABLE 5 Percentage points of the t distribution $(t_{dv})^a$

D	и								
Degrees of freedom, d	.75	.80	.85	.90	.95	.975	.99	.995	.9995
1	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.619
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.598
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965
18	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922
19	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.819
22	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.767
24	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.725
26	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674
29	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659
30	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.646
40	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.551
60	0.679	0.848	1.046	1.296	1.671	2.000	2.390	2.660	3.460
120	0.677	0.845	1.041	1.289	1.658	1.980	2.358	2.617	3.373
00	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.291

^{*}The uth percentile of a t distribution with d degrees of freedom.

Source: Table 5 is taken from Table III of Fisher and Yates: "Statistical Tables for Biological, Agricultural and Medical Research," published by Longman Group Ltd., London (previously published by Oliver and Boyd Ltd., Edinburgh).

One-Sample Test for the Mean of a Normal Distribution: Two-Sided Alternatives

- Two-tailed test: values of the parameter being studied (μ) under H₁ are allowed to be either > or < the values of the parameter under H₀ (μ = μ ₀)
- Decision rule: reject H₀ if t is either too small or too large
 - o if t is either $< c_1$ or $> c_2$ for some constants $c_1, c_2 \rightarrow$ reject H_0
 - o if $c_1 \le t \le c_2 \rightarrow \text{accept } H_0$

One-sample t Test for the Mean of a Normal Distribution with Unknown Variance (Two-Sided Alternative)

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$ with a significance level of α $t = (x - \mu_0)/(s/\sqrt{n})$

• If
$$|t| > t_{n-1,1-\alpha/2}$$
 \rightarrow reject

• If
$$|t| > t_{n-1,1-\alpha/2}$$
 \rightarrow reject H_0
• If $|t| < t_{n-1,1-\alpha/2}$ \rightarrow accept H_0

One-sample t test for the mean of a normal distribution (two-sided alternative)

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

- Population mean
- Sample mean
- Sample standard deviation
- Sample size
- Type I error, the proportion of the time the incorrectly reject the null

 $f(\overline{x})$

Hο

The number of sample standard deviations (s) the sample mean (\overline{X}) is away from the population mean (μ)

Example on One-sample t Test for the Mean of a Normal Distribution with Unknown Variance: Cardiovascular Disease

- Suppose we want to compare fasting serum-cholesterol levels among recent Asian immigrants to the United States with typical levels found in the general U.S. population.
- Assumption: cholesterol levels in women ages 21–40 in the United States are approximately normally distributed with mean 190 mg/dL. It is unknown whether cholesterol levels among recent Asian immigrants are higher or lower than those in the general U.S. population.
- Let's assume that levels among recent female Asian immigrants are normally distributed with unknown mean μ.
- we wish to test H0: $\mu = \mu_0 = 190$ vs. H1: $\mu \neq \mu_0$. Blood tests are performed on 100 female Asian immigrants ages 21–40, and the mean level (\bar{x}) is 181.52 mg/dL with standard deviation = 40 mg/dL.

Q: Test the hypothesis that the mean cholesterol level of recent female Asian immigrants is different from the mean in the general U.S. population.

Example on One-sample t Test for the Mean of a Normal Distribution with Unknown Variance: Cardiovascular Disease

Solution:

Given that
$$t_{40,.975} = 2.021$$
, $t_{60,.975} = 2.000$, $t_{120,.975} = 1.980$

We compute the test statistic:
$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{181.52 - 190}{40/\sqrt{100}} = \frac{-8.48}{4} = -2.12$$

- two-sided test with $\alpha = .05$: critical values are c1 = t99,.025, c2 = t99,.975.
- $t99,.975 < t60,.975 = 2.000 \rightarrow c2 < 2.000$
- $c1 = -c2 \rightarrow c1 > -2.000$
- $t = -2.12 < -2.000 < c1 \rightarrow \text{reject } H0$ at the 5% level of significance
- Conclusion: the mean cholesterol level of recent Asian immigrants is significantly different from that of the general U.S. population

TABLE 5 Percentage points of the t distribution $(t_{dv})^a$

Degrees of	f								
freedom, d	.75	.80	.85	.90	.95	.975	.99	.995	.9995
1	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.619
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.598
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965
18	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922
19	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.819
22	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.767
24	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.725
26	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674
29	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659
30	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.646
40	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.551
60	0.679	0.848	1.046	1.296	1.671	2.000	2.390	2.660	3.460
120	0.677	0.845	1.041	1.289	1.658	1.980	2.358	2.617	3.373
00	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.29

[&]quot;The uth percentile of a t distribution with d degrees of freedom.

Source: Table 5 is taken from Table III of Fisher and Yates: "Statistical Tables for Biological, Agricultural and Medical Research," published by Longman Group Ltd., London (previously published by Oliver and Boyd Ltd., Edinburgh).

P-Value for the One-Sample t Test for the Mean of a Normal Distribution (Two-Sided Alternative)

Let
$$t = (x - \mu_0)/(s/\sqrt{n})$$

$$p = \begin{cases} 2 \times Pr(t_{n-1} \le t), & \text{if } t \le 0 \\ 2 \times [1 - Pr(t_{n-1} \le t)], & \text{if } t > 0 \end{cases}$$

- P-value: probability under H₀ of obtaining a test statistic as extreme as or more extreme than the observed test statistic
 - a two-sided H₁ is used
 - o **absolute value** of t: measures extremeness

Example on P-Value calculation for the One-Sample t Test

Q: Compute the *p*-value for the hypothesis test in the previous example (cholesterol levels).

Solution:

• Because t = -2.12: p-value for the test is twice the left-hand tail area, or

$$p = 2 \times Pr(t_{99} < -2.12) = 2 \times pt (-2.12,99) = .037$$
 (using pt function of R)

Conclusion: results are statistically significant with a p-value of .037

When is a one-sided test more appropriate than a two-sided test?

- One-sided test is easier to reject H_0 : sample mean falls in the expected direction from μ_0
- One-sided test is better: only alternatives on one side of the null mean are of interest or possible
 - o more power (easier to reject H₀ based on a finite sample if H₁ is true)
- Decision about using one-side or two-sided test should be made <u>before</u> the data analysis (or <u>before data collection</u>)
 - not to bias conclusions based on results of hypothesis testing
 - Do not change from a two-sided to a one-sided test after looking at the data

One-Sample z Test for the Mean of a Normal Distribution with Known Variance (Two-Sided Alternative)

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$ with a significance level of α

standard deviation σ is known

$$z = (\overline{x} - \mu_0)/(\sigma/\sqrt{n})$$

- If $z < z_{\alpha/2}$ or $z > z_{1-\alpha/2} \rightarrow \text{reject H}_0$
- If $z_{\alpha/2} \le z \le z_{1-\alpha/2} \rightarrow \text{accept } H_0$
- Two-sided p-value calculation:

$$p = 2\Phi(z)$$
 if $z \le 0$

$$p = 2[1 - \Phi(z)] \text{ if } z > 0$$

One-Sample z Test for the Mean of a Normal Distribution with Known Variance (One-Sided Alternative)

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu < \mu_0$ with a significance level of α

- standard deviation σ is known $z = (x \mu_0)/(\sigma/\sqrt{n})$
- If $z < z_{\alpha} \rightarrow reject H_0$
- if $z \ge z_{\alpha}$, \rightarrow accept H_0 is accepted
- p-value: $p = \Phi(z)$

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu > \mu_0$ with a significance level of α

- standard deviation σ is known $z = (x \mu_0)/(\sigma/\sqrt{n})$
- If $z > z_{1-\alpha} \rightarrow \text{reject } H_0$
- if $z \le z_{1-\alpha} \to accept H_0$
- p-value: $p = 1 \Phi(z)$.

Example on One-Sample z Test for the Mean of a Normal Distribution with Known Variance

Q: Consider the cholesterol data in the cholesterol example. Assume that the standard deviation is known to be 40 and the sample size is 200 instead of 100. Assess the significance of the results.

Solution:

The test statistic :
$$z = \frac{181.52 - 190}{40/\sqrt{200}} = \frac{-8.48}{2.828} = -3.00$$

- Critical-value method with $\alpha = 0.05$
 - critical values are -1.96 and 1.96
- z = -3.00 < -1.96 -> reject H0 at a 5% level of significance
- two-sided *p*-value : $2 \times \Phi(-3.00) = .003$

TABLE 3 The normal distribution

-				_
2,96	.9985	.0015	.4985	.9969
2.97	,9985	.0015	4985	.9970
2,98	,9986	.0014	4986	9971
2.99	,9986	0014	4986	9972
3,00	.9987	.0013	4987	.9973
3,01	.9987	.0013	4987	9974
3.02	,9987	.0013	4987	9975
3.03	,9988	.0012	4988	9976
3.04	.9988	.0012	.4988	9976
3.05	.9989	.0011	4989	.9977
3.06	.9989	,0011	.4989	9978
3.07	9989	.0011	4989	9979
3.08	.9990	.0010	,4990	.9979
3.09	9990	.0010	4990	9980
3,10	.9990	.0010	.4990	.9981
3.11	,9991	.0009	.4990	.9981
3,12	,9991	,0009	,4991	,9982
3.13	.9991	.0009	.4991	.9983
3.14	,9992	.0008	,4992	,9983
3.15	.9992	.0008	,4992	.9984
3.16	,9992	.0008	.4992	.9984
3.17	.9992	.0008	.4992	.9985
3.18	,9993	.0007	.4993	.9985
3.19	.9993	.0007	.4993	.9986
3,20	,9993	.0007	.4993	,9986
3.21	.9993	.0007	4993	.9987
3,22	,9994	.0006	,4994	.9987
3.23	,9994	.0006	.4994	.9988
3,24	,9994	,0006	,4994	,9988
3.25	.9994	.0006	.4994	.9988
3,26	.9994	,0006	,4994	,9989
3.27	.9995	.0005	4995	.9989
3,28	,9995	,0005	.4995	,9990
3.29	.9995	.0005	.4995	.9990
3,30	,9995	,0005	4995	.9990
3,31	.9995	.0005	.4995	.9991
3,32	,9995	,0005	4995	9991
3,33	.9996	.0004	4996	.9991
3,34	,9996	,0004	4996	,9992
3,35	.9996	.0004	,4996	.9992
3,36	,9996	,0004	4996	.9992
3,37	,9996	.0004	,4996	.9992
3,38	,9996	.0004	.4996	.9993
3,39	.9997	.0003	4997	.9993
3.40	.9997	.0003	.4997	.9993
3.42	.9997	.0003	4997	.9994
3,43	.9997	.0003	.4997	.9994
3,45	.9997	.0003	4997	.9994
3,46	,9997	.0003	.4997	.9995
3.47	.9997	.0003	.4997	.9995
3,48	.9997	.0003	.4997	.9995
	$\Phi(x) = P(X \le x)$			

The normal distribution (continued)

C°

ВÞ

 A^*

x

 ${}^{*}A(x) = \Phi(x) = Pr(X \leq x)$, where X is a standard normal distribution, ${}^{*}B(x) = 1 - \Phi(x) = Pr(X > x)$, where X is a standard normal distribution. ${}^{*}C(x) = Pr(0 \leq X \leq x)$, where X is a standard normal distribution. ${}^{*}D(x) = Pr(-x \leq X \leq x)$, where X is a standard normal distribution.

The Power of a Test

- how likely a statistically significant difference will be distinguished based on a finite sample size n
- probability that statistical test correctly rejects the null hypothesis
- Likelihood of a true positive result
- Probability of avoiding a Type II error

The power of the one-sided test (one-sample z test):

$$\Phi(z_{\alpha} + | \mu_0 - \mu_1 | \sqrt{n/\sigma}) = \Phi(-z_{1-\alpha} + | \mu_0 - \mu_1 | \sqrt{n/\sigma})$$

$$\Phi\!\left[-z_{1-\alpha/2} + \frac{\left(\mu_0 - \mu_1\right)\sqrt{n}}{\sigma}\right] + \Phi\!\left[-z_{1-\alpha/2} + \frac{\left(\mu_1 - \mu_0\right)\sqrt{n}}{\sigma}\right]$$

Approx. by:
$$\Phi(-z_{1-\alpha/2} + |\mu_0 - \mu_1|\sqrt{n/\sigma})$$

Example on Power Calculation:Cardiovascular Disease, Pediatrics

Q: Using a 5% level of significance and a sample of size 10, compute the power of the test for the cholesterol data example, with an alternative mean of 190 mg/dL, a null mean of 175 mg/dL, and a standard deviation (σ) of 50 mg/dL.

Solution:

We have $\mu 0 = 175$, $\mu 1 = 190$, $\alpha = .05$, $\sigma = 50$, n = 10

Power =
$$\Phi \left[-1.645 + \frac{(190 - 175)\sqrt{10}}{50} \right] = \Phi \left(-1.645 + \frac{15\sqrt{10}}{50} \right)$$

= $\Phi(-0.696) = 1 - \Phi(0.696) = 1 - 0.757 = 0.243$

- Chance of finding a significant difference in this case is only 24%
- it is not surprising that a significant difference was not found the previous example because the sample size was too small

TABLE 3 The normal distribution

	X	A*	Вь	C:	D⁴
	1.56	.9406	.0594	.4406	.8812
	1.57	.9418	.0582	.4418	.8836
	1.58	.9429	.0571	.4429	.8859
	1.59	.9441	.0559	.4441	.8882
	1.60	.9452	.0548	.4452	.8904
	1.61	.9463	.0537	.4463	.8926
	1.62	.9474	.0526	.4474	.8948
	1.63	.9484	.0516	.4484	.8969
1	1.64	.9495	.0505	.4495	.8990
1	1.65	9505	.0495	.4505	.9011
	1.66	.9515	.0485	.4515	.9031
	1.67	.9525	.0475	.4525	.9051
	1.68	.9535	.0465	.4535	.9070
	1.69	.9545	.0455	.4545	.9090
	1.70	.9554	.0446	.4554	.9109
	1.71	.9564	.0436	.4564	.9127
	1.72	.9573	.0427	.4573	.9146
	1.73	.9582	.0418	.4582	.9164
	1.74	.9591	.0409	.4591	.9181
	1.75	.9599	.0401	.4599	.9199
	1.76	.9608	.0392	.4608	.9216
	1.77	.9616	.0384	.4616	.9233
	1.78	.9625	.0375	.4625	.9249
	1.79	.9633	.0367	.4633	.9265
	1.80	.9641	.0359	.4641	.9281
	1.81	.9649	.0351	.4649	.9297

TABLE 3 The normal distribution (continued)

TABLE 3	The nor	rmal distributi	on (continue	ed)
x	A=	BÞ	C=	D⁴
1.82	.9656	.0344	.4656	.9312
1.83	.9664	.0336	.4664	.9327
1.84	.9671	.0329	.4671	.9342
1.85	.9678	.0322	.4678	.9357
1.86	.9686	.0314	.4686	.9371
1.87	.9693	.0307	.4693	.9385
1.88	.9699	.0301	.4699	.9399
1.89	.9706	.0294	.4706	.9412
1.90	.9713	.0287	.4713	.9426
1.91	.9719	.0281	.4719	.9439
1.92	.9726	.0274	.4726	.9451
1.93	.9732	.0268	.4732	.9464
1.94	.9738	.0262	.4738	.9476
1.95	.9744	.0256	.4744	.9488
1.96	.9750	.0250	.4750	.9500
1.97	.9756	.0244	.4756	.9512
1.98	.9761	.0239	.4761	.9523
1.99	.9767	.0233	.4767	.9534
2.00	.9772	.0228	.4772	.9545
2.01	.9778	.0222	.4778	.9556
2.02	.9783	.0217	.4783	.9566
2.03	.9788	.0212	.4788	.9576
2.04	.9793	.0207	.4793	.9586
2.05	.9798	.0202	.4798	.9596
2.06	.9803	.0197 .0192	.4803 .4808	.9606 .9615
2.07	.9812	.0192	.4812	.9625
2.09	.9817	.0183	.4817	.9634
2.10	.9821	.0179	.4821	.9643
2.10	.9826	.0174	.4826	.9651
2.12	.9830	.0170	.4830	.9660
2.13	.9834	.0166	.4834	.9668
2.14	.9838	.0162	.4838	.9676
2.15	.9842	.0158	.4842	.9684
2.16	.9846	.0154	.4846	.9692
2.17	.9850	.0150	.4850	.9700
2.18	.9854	.0146	.4854	.9707
2.19	.9857	.0143	.4857	.9715
2.20	.9861	.0139	.4861	.9722
2.21	.9864	.0136	.4864	.9729
2.22	.9868	.0132	.4868	.9736
2.23	.9871	.0129	.4871	.9743
2.24	.9875	.0125	.4875	.9749
2.25	.9878	.0122	.4878	.9756
2.26	.9881	.0119	.4881	.9762
2.27	.9884	.0116	.4884	.9768
2.28	.9887	.0113	.4887	.9774
2.29	.9890	.0110	.4890	.9780
2.30	.9893	.0107	.4893	.9786
2.31	.9896	.0104	.4896	.9791
2.32	.9898	.0102	.4898 .4901	.9797 .9802
2.33	.9901 .9904	.0099	.4901	.9802
2.34	.9904	.0096	.4904	.9807
2.36	.9909	.0094	.4906	.9817
2.37	.9911	.0089	.4909	.9822
2.38	.9913	.0087	.4913	.9827
2.00	.0010	.0007	.4010	.0027

INSIGHTS

TABLE 3 The normal distribution

TABLE 3 The normal distribution (continued)

x	A*	B ^b	C+	D^{i}	т
_	^	ь	-		н
0,64	,7389	2611	,2389	.4778	ш
0.65	.7422	.2578	.2422	.4843	ш
38,0	.7454	.2546	2454	.4907	11
0.67	.7486	.2514	2486	.4971	П
88,0	7517	2483	2517	,5035	ш
96,0	.7549	.2451	2549	.5098	ш
,70	.7580	,2420	2580	.5161	ш
.71	.7611	12308	.2611	.5223	ш
0.72	.7642	2358	,2642	.5285	ш
).73	.7673	.2327	.2673	.5346	ш
0.74	.7703	2297	2703	5407	п
0.75	.7734	.2266	.2734	.5467	
),76	.7764	.2236	2764	.5527	
).77	.7793	.2207	.2793	.5587	ш
),78	.7823	.2177	2823	.5646	ш
.79	.7852	.2148	2852	.5705	ш
08,0	7881	2119	2881	5763	ш
,81	.7910	.2090	2910	.5821	ш
0.82	.7939	2061	2939	5878	п
0,83	.7967	.2033	.2967	.5935	ш
0.84	.7995	2005	2995	5991	ш
0.85	.8023	.1977	3023	.6047	ш
38,0	8051	.1949	3051	6102	ш
0.87	.8078	.1922	.3078	.6157	
88,0	8106	.1894	3106	6211	
0.89	8133	.1867	3133	.6265	
0,90	,8159	1841	3159	6319	
0.91	8186	1814	3186	6372	
0.00	8919	1700	9010	8494	

Example on Power Calculation: Obstetrics

Suppose we want to test the hypothesis that mothers with low socioeconomic status (SES) deliver babies whose birthweights are lower than "normal." To test this hypothesis, a list is obtained of birthweights from 100 consecutive, full-term, live-born deliveries from the maternity ward of a hospital in a low-SES area. The mean birthweight (x) is found to be 115 oz with a sample standard deviation (s) of 24 oz. Suppose we know from nationwide surveys based on millions of deliveries that the mean birthweight in the United States is 120 oz. Compute the power of the test for the birthweight data with an alternative mean of 115 oz and $\alpha = .05$, assuming the true standard deviation = 24 oz.

Q: Assuming a sample size of 10 rather than 100, compute the power for the birthweight data with an alternative mean of 115 oz and $\alpha = .05$.

Solution:

We have $\mu 0 = 120 \text{ } oz, \mu 1 = 115 \text{ } oz, \alpha = .05, \sigma = 24, n = 100.$

$$Power = \Phi \left[z_{.05} + \frac{(120 - 115)\sqrt{100}}{24} \right] = \Phi \left[-1.645 + \frac{5(10)}{24} \right]$$
$$= \Phi(0.428) = 0.669$$

 There is about a 67% chance of detecting a significant difference using a 5% significance level with this sample size

TABLE 3 The normal distribution

x	A*	Bh	C°	D ⁴	ж	Α	В	С	D
0.0	,5000	.5000	.0	.0	0.32	6255	,3745	.1255	.2510
0,01	5040	.4960	,0040	,0080	0,33	6293	3707	.1293	2586
0.02	.5080	.4920	.0080	.0160	0,34	6331	,3669	.1331	,2661
0,03	5120	.4880	,0120	.0239	0,35	.6368	3632	.1368	2737
0.04	.5160	.4840	.0160	.0319	0,36	.6406	3594	.1406	.2812
0,05	5199	.4801	,0199	,0399	0,37	,6443	3557	.1443	,2886
0.06	5239	.4761	.0239	.0478	0,38	.6480	3520	.1480	.2961
0,07	5279	4721	0279	,0558	0,39	6517	3483	1517	3035
80.0	5319	.4681	.0319	.0638	0,40	6554	3446	.1554	3108
0,09	,5359	.4641	,0359	.0717	0,41	6591	3409	.1591	,3182
0.10	,5398	4602	.0398	.0797	0.42	6628	3372	.1628	3255
0,11	5438	,4562	,0438	.0876	0,43	,6684	3336	,1684	3328
0.12	5478	4522	0478	.0955	0.44	.6700	,3300	.1700	,3401
0,13	5517	.4483	.0517	,1034	0,45	,6736	3264	.1736	3473
0.14	5557	.4443	.0557	.1113	0.46	6772	3228	.1772	3545
0,15	5596	.4404	,0596	,1192	0,47	,6808	3192	.1808	3616
0.16	5636	4364	.0636	.1271	0.48	6844	3156	.1844	,3688
0,17	5675	.4325	.0675	,1350	0,49	6879	3121	.1879	3759
0.18	.5714	.4286	.0714	.1428	0.50	6915	3085	1915	3829
0,19	.5753	.4247	.0753	.1507	0,51	.6950	.3050	.1950	.3899
0.20	5793	4207	0793	1585	0.52	6985	3015	1985	3969
0,21	.5832	,4168	.0832	.1663	0,53	7019	,2981	2019	4039
0.22	.5871	4129	.0871	1741	0.54	7054	2946	2054	4108
0,23	5910	,4090	.0910	.1819	0,55	7088	2912	.2088	4177
0.24	5948	4052	.0948	.1897	0.56	7123	.2877	2123	4245
0,25	.5987	.4013	.0987	.1974	0,57	.7157	2843	,2157	4313
0.26	6026	3974	1026	2051	0.58	.7190	2810	2190	4381
0,27	.6064	3936	,1084	,2128	0,59	7224	2776	2224	4448
0.28	6103	3897	1103	.2205	0,60	7257	2743	2257	4515
0,29	,6141	3859	.1141	,2282	0,61	7291	2709	2291	,4581
0.30	6179	3821	1179	2358	0.62	7324	2676	2324	4647
0,31	6217	3783	.1217	.2434	0,63	7357	2643	2357	4713

Example on Power Calculation: Obstetrics

$$\mu 0 = 170 \text{ oz}, \mu 1 = 190, \alpha = .05, \sigma = 50, n = 10$$
:

Power =
$$\Phi \left[z_{.05} + \frac{(120 - 115)\sqrt{10}}{24} \right] = \Phi \left[-1.645 + \frac{5\sqrt{10}}{24} \right] = \Phi(-0.986)$$

= $1 - 0.838 = 0.162$

- there is only a 16% chance of finding a significant difference with a sample size of 10
- whereas there was a 67% chance with a sample size of 100
- → if 10 infants were sampled, we would have virtually no chance of finding a significant difference and would almost surely report a false-negative result

TABLE 3 The normal distribution (continued)

TABLE 3	The nor	mal distribut	ion (continue	ed)
x	A*	Вь	C.	D ^a
0.64	7389	2611	,2389	.4778
0.65	7422	.2578	.2422	.4843
0.66	7454	.2546	.2454	.4907
0.67	.7486	.2514	.2486	.4971
0,68	7517	.2483	.2517	.5035
0.69	7549	.2451	.2549	.5098
0.70	7580	.2420	.2580	5161
0.71	.7611	.2389	.2611	.5223
0.72 0.73	7642 7673	.2358	.2642 .2673	.5285
0.74	7703	.2327	2703	5346 5407
0.75	7734	2266	2734	5467
0.76	7764	,2236	.2764	.5527
0.77	7793	2207	2793	5587
0.78	7823	,2177	,2823	5646
0.79	7852	2148	.2852	5705
0.80	7881	,2119	,2881	5763
0.81	7910	2090	2910	5821
0,82	7939	2061	.2939	5878
0.83	7967	2033	.2967	5935
0.84	7995	.2005	,2995	5991
0.85	8023	.1977	3023	.6047
0,86	8051	.1949	3051	6102
0.87	8078	.1922	.3078	.6157
0.88	8106	.1894	3106	6211
0.89	8133	.1867	.3133	.6265
0,90	8159	1841	,3159	6319
0.91	8186	.1814	.3186	.6372
0.92	8212	.1788	3212	.6424
0.93	8238	.1762	.3238	.6476
0,94	8264	.1736	,3264	.6528
0.95	8289	.1711	.3289	.6579
0,96	8315	.1685	3315	.6629
0.97	8340	.1660	.3340	.6680
0.98 0.99	8365 8389	.1635 .1611	,3365 ,3389	6729 6778
1,00	.8413	.1587	,3413	.6827
1.01	8438	1562	3438	6875
1.02	8461	1539	3461	6923
1.03	8485	1515	3485	.6970
1.04	8508	.1492	,3508	.7017
1,05	8531	.1469	3531	7063
1,06	8554	.1446	3554	7109
1.07	8577	.1423	.3577	.7154
1,08	8599	.1401	3599	7199
1.09	8621	.1379	.3621	.7243
1.10	8643	.1357	3643	.7287
1.11	.8665	.1335	.3665	.7330
1.12	8686	1314	,3686	.7373
1.13	.8708	.1292	.3708	.7415
1.14	8729	.1271	3729	.7457
1.15	8749	.1251	.3749	.7499
1.16	8770	.1230	,3770	.7540
1.17	8790	.1210	.3790	.7580
1.18	8810	.1190	3810	.7620
1.19	8830	.1170	.3830	.7660
1,20 1,21	8849 8869	.1151	,3849 ,3869	.7699 .7737
1,21	,8888		,3888	.7775
1,22	,0000	.1112	10000	17770

Factors affecting the power

E.g. 2-sided one-sample test: $\Phi(-z_{1-\alpha/2} + |\mu_0 - \mu_1|\sqrt{n/\sigma})$

- If the significance level is made smaller (α decreases) → z_α increases → power decreases
- If the alternative mean is shifted farther away from the null mean (|μ₀ μ₁| increases) → power increases
- If σ of the distribution of individual observations increases (σ increases) → power decreases
- If the sample size increases (n increases) → power increases

Sample-Size Determination: One-Sided Alternatives

$$H_0$$
: $\mu = \mu_0$ vs. H_1 : $\mu = \mu_1$, data ~ $N(\mu, \sigma^2)$

• What is the same size for a one-sided test with significance level α and probability of detecting a significant difference = 1- β ?

$$n = \frac{\sigma^2 (z_{1-\beta} + z_{1-\alpha})^2}{(\mu_0 - \mu_1)^2}$$

Factors Affecting the Sample Size (n)

$$n = \frac{\sigma^2 (z_{1-\beta} + z_{1-\alpha})^2}{(\mu_0 - \mu_1)^2}$$

- $\triangleright \sigma^2$ increases \rightarrow n increases
- > The significance level is made smaller (α decreases) \rightarrow n increases
- The required power increases (1- β increases) \rightarrow n increases
- The absolute value of the distance between the null and alternative means ($|\mu_0 \mu_1|$) increases \rightarrow n decreases

Sample-Size Estimation When Testing for the Mean of a Normal Distribution (Two-Sided Alternative)

$$H_0$$
: $\mu = \mu_0$ vs. H_1 : $\mu = \mu_1$, data ~ $N(\mu, \sigma^2)$

• What is the sample size for a one-sided test with significance level α and power 1- β ?

$$n = \frac{\sigma^2 \left(z_{1-\beta} + z_{1-\alpha/2} \right)^2}{\left(\mu_0 - \mu_1 \right)^2}$$

Sample-Size Estimation Based on CI Width

- What is the mean of a normal distribution with sample variance s²?
 - The two-sided 100% × (1 α) CI for μ be no wider than L

$$n = 4z_{1-\alpha/2}^2 \, s^2 / L^2$$

Example on Sample Size Estimation: Obstetrics

Consider the birthweight data. Suppose that $\mu 0 = 120$ oz, $\mu 1 = 115$ oz, $\sigma = 24$, $\alpha = .05$, $1 - \beta = .80$.

Q: Using a one-sided test, compute the appropriate sample size needed to conduct the test.

Solution:

$$n = \frac{24^{2}(z_{.8} + z_{.95})^{2}}{25} = 23.04(0.84 + 1.645)^{2} = 23.04(6.175) = 142.3$$

- sample size is always rounded up → sure to achieve at least the required level of power (in this case, 80%)
- a sample size of 143 is needed to have an 80% chance of detecting a significant difference at the 5% level (if the alternative mean is 115 oz and a one-sided test is used)

TAT
х
0,6
0.66
0.6
0.89
0.7
0.73
0.74
0.70
0,78
0.79
0.8
0,83
0.8
0.8
0.89
0.9
0.9
0.9
0.99
0.9
0.99
1.00
1.03
1,04
1.00
1.03
1.09
1.11
1.13
1.14 1.18
1.16 1.13 1.18
1.18
1,20
1.21 1.21

TABLE 3	The normal distribution /	continued)

x	A*	Вь	C°	D^{a}	x	Α	В	С	D
),64	,7389	.2611	,2389	.4778	1,23	.8907	,1093	,3907	,7813
0.65	7422	2578	2422	4843	1,24	8925	.1075	3925	.7850
38,0	7454	.2546	.2454	4907	1,25	.8944	.1056	3944	.7887
0.67	7486	2514	2486	4971	1,26	8962	.1038	3962	.7923
0,68	7517	2483	2517	.5035	1,27	.8980	,1020	.3980	,7959
0.69	7549	2451	2549	.5098	1,28	8997	.1003	3997	.7995
0,70	7580	.2420	,2580	,5161	1,29	.9015	.0985	4015	.8029
0.71	7611	2389	.2611	5223	1,30	9032	.0968	4032	.8064
0.72	7642	2358	,2642	.5285	1,31	9049	.0951	4049	,8098
0.73	7673	.2327	.2673	.5346	1,32	9066	.0934	4066	.8132
),74	7703	2297	2703	,5407	1,33	9082	.0918	4082	.8165
.75	7734	.2286	2734	.5467	1,34	9099	.0901	4099	.8198
),76	7764	2236	2764	5527	1,35	,9115	.0885	4115	.8230
.77	7793	2207	2793	.5587	1,36	9131	.0869	4131	.8262
,78	7823	.2177	.2823	.5646	1,37	.9147	.0853	4147	.8293
.79	7852	2148	2852	5705	1,38	9162	.0838	4162	8324
0,80	7881	2119	,2881	5763	1,39	,9177	.0823	4177	.8355
.81	7910	.2090	2910	5821	1,40	9192	.0808	4192	.8385
,82	.7939	2061	.2939	5878	1,41	9207	.0793	4207	.8415
).83	7067	.2033	2967	5935	1.42	9222	.0778	4222	8444
.84	,7995	,2005	2995	5991	1,43	9236	.0764	4236	8473
0.85	,8023	.1977	3023	6047	1.44	.9251	.0749	4251	8501
),86	,8051	1949	,3051	6102	1.45	9265	.0735	4265	.8529
0,87	,8078	.1922	3078	.6157	1.46	9279	.0735	4279	.8557
88,0	8106	.1894	,3106	6211	1,47	.9292	.0708	4292	.8584
.89	8133	.1867	3133	.6265	1.48	.9306	.0694	4306	.8611 .8638
.90	8159	1841	3159	6319	1.49	.9319	.0881	.4319	
0.91	,8186	.1814	,3186	.6372	1.50	.9332	.0668	.4332	.8664
.92	8212	.1788	3212	.6424	1.51	.9345	.0655	.4345	.8690
0.93	.8238	.1762	.3238	.6476	1.52	.9357	.0643	.4357	.8715
),94	8264	.1736	,3264	.6528	1,53	.9370	.0630	.4370	.8740
.95	.8289	.1711	.3289	.6579	1.54	.9382	.0618	.4382	.8764
,96	8315	.1685	3315	.6629	1.55	.9394	.0606	.4394	.8789
.97	.8340	.1660	.3340	.6680	1.56	.9408	.0594	.4408	.8812
98,0	8365	.1635	3365	6729	1,57	.9418	.0582	.4418	.8836
.99	,8389	.1611	,3389	.6778	1.58	.9429	.0571	.4429	.8859
,00	8413	.1587	,3413	6827	1,59	.9441	.0559	.4441	8882
.01	8438	.1562	.3438	.6875	1.60	.9452	.0548	.4452	.8904
.02	8461	.1539	,3461	6923	1,61	.9463	.0537	.4463	.8926
.03	,8485	.1515	.3485	.6970	1.62	.9474	.0526	4474	.8948
.04	8508	.1492	.3508	.7017	1.63	.9484	.0516	.4484	,8969
.05	.8531	.1469	.3531	.7063	1.64	.9495	.0505	.4495	.8990
.06	8554	.1446	.3554	7109	1,65	.9505	.0495	.4505	.9011
.07	.8577	.1423	.3577	.7154	1,66	.9515	.0485	.4515	.9031
.08	8599	.1401	,3599	7199	1,67	.9525	.0475	.4525	9051
.09	8621	.1379	.3621	.7243	1.68	.9535	.0465	4535	.9070
.10	8643	.1357	,3643	.7287	1,69	.9545	.0455	.4545	,9090
.11	,8665	.1335	.3665	.7330	1.70	.9554	.0446	.4554	.9109
.12	,8686	.1314	,3686	.7373	1.71	9564	.0436	4564	.9127
.13	.8708	.1292	.3708	.7415	1.72	.9573	.0427	.4573	.9146
.14	8729	1271	3729	.7457	1.73	9582	.0418	.4582	.9164
.15	.8749	.1251	3749	.7499	1.74	.9591	.0409	.4591	.9181
.16	8770	.1230	3770	.7540	1.75	9599	.0401	.4599	9199
.17	.8790	.1210	3790	.7580	1.76	.9608	.0392	.4608	.9216
.18	8810	.1190	3810	.7620	1,77	9616	.0384	4616	,9233
.19	8830	.1170	.3830	.7660	1.78	9625	.0375	4625	.9249
.20	8849	1151	3849	.7699	1,79	9633	.0367	4633	,9265
.21	8869	1131	3869	.7737	1,80	.9641	.0359	4641	.9281
.22	8888	.1112	3888	.7775	1,81	9649	.0351	4649	,9297

HAHRINE ZO

Example on Sample Size Estimation: Cardiology

Suppose it is well known that propranolol lowers heart rate over 48 hours when given to patients with angina at standard dosage levels. A new study is proposed using a higher dose of propranolol than the standard one. Investigators are interested in estimating the drop in heart rate with high precision.

Q: Find the minimum sample size needed to estimate the change in heart rate (μ), if we require that the two-sided 95% CI for μ be no wider than 5 beats per minute and the sample standard deviation for change in heart rate equals 10 beats per minute.

Solution:

$$n = \frac{4(z_{.975})^2(10)^2}{(5)^2} = \frac{4(1.96)^2(100)}{25} = 61.5$$

We have $\alpha = .05$, s=10,L=5

62 patients need to be studied

	TABLE 3	The norm	na distributi	on (continu	ed)						A A		
	x	A*	Вь	C°	D ²	х	А	В	С	D	TO THE		
	1.82 1.83	9656 9664	.0344	4656 4664	.9312 .9327	2,39 2,40	9916 9918	,0084	4916 4918	,9832 ,9836	8		
	1.84	9671	.0329	.4671	9342	2.41	.9920	.0080	4920	.9840			
	1.85 1.86	9678 9686	.0322	4678 4686	.9357 .9371	2.42 2.43	.9922 .9925	.0078	.4922 .4925	.9845 .9849			
	1.87	.9693	.0307	.4693	.9385	2.44	.9927	.0073	.4927	.9853			
	1,88 1,89	9699 9706	.0301	4699 4706	.9399 .9412	2.45 2.46	.9929 .9931	.0071	.4929 .4931	.9857 .9861			
	1,90 1,91	.9713 .9719	.0287	.4713 .4719	.9426 .9439	2.47 2.48	.9932 .9934	.0068	.4932 .4934	.9865 .9869			
	1,92	9726	.0274	4726	.9451	2,49	.9936	.0064	4936	.9872			
	1.93 1.94	9732 9738	.0268 .0262	4732 4738	.9464 .9476	2.50 2.51	.9938 .9940	.0062	.4938 .4940	.9876 .9879			
	1.95	0744	.0256	4744	9488	2.52	.9941	.0059	4941	.9883			
		.9750 .9756	.0250	4750 4756	.9500 .9512	2.53 2.54	.9943 .9945	.0057	.4943 .4945	9886 9889			
y million to the	1,98	9761	.0239	4761	.9523	2,55	.9946	.0054	4946	.9892			
	1.99 2.00	.9767 .9772	.0233	4767	.9534 .9545	2.56 2.57	.9948 .9949	.0052 .0051	.4948 .4949	.9895 .9898			
	2.01	.9778	.0222	4778	.9556	2.58	.9951	.0049	4951	.9901			
	2.02	.9783 .9788	.0217	4783 4788	.9566 .9576	2,59 2,60	.9952 .9953	.0048	.4952 .4953	.9904 .9907			
	2.04	9793	.0207	4793	.9586	2,61	.9955	.0045	4955	.9909	2		
	2.05 2.06	.9798 .9803	.0202	4798	.9596 .9606	2.62 2.63	.9956 .9957	.0044	.4956 .4957	9912 9915			
	2.07	8089.	.0192	.4808	.9615	2.64	.9959	.0041	.4959	.9917			
	2.08	.9812 .9817	.0188	.4812 .4817	.9625 .9634	2.65 2.66	.9960 .9961	.0040	.4980 .4981	9920 9922			
	2.10 2.11	.9821 .9826	.0179 .0174	.4821 .4826	.9643 .9651	2,67 2,68	.9962 .9963	.0038	.4962 .4963	.9924 .9926			
	2.12	9830	0170	4830	.9660	2,69	.9964	.0037	4964	9929			
	2.13 2.14	.9834 .9838	.0166 .0162	4834 4838	.9668 .9676	2.70 2.71	.9965 .9966	.0035	.4965 .4966	.9931 .9933	500		
	2.15	9842	.0158	4842	.9884	2.72	.9967	.0033	4967	.9935	5(0)		
[] B B	2.16 2.17	9846 9850	.0154 .0150	.4846 .4850	.9692 .9700	2.73 2.74	.9968 .9969	.0032	.4968 .4969	9937 9939			
SOCIA	2.18	9854	.0146	4854	.9707	2.75	.9970	.0030	.4970	9940] 0		
	2.19 2.20	9857 9861	0143 0139	4857 4861	.9715 .9722	2.76 2.77	.9971 .9972	.0029	.4971 .4972	9942			
	2.21	.9864	.0136	4864	.9729	2.78	.9973	.0027	4973	.9946			
	2.22	.9868 .9871	0132 0129	4868 4871	.9736 .9743	2.79 2.80	9974	.0026 .0026	4974	9947 9949			
	2.24	9875	0125	.4875	.9749	2.81	.9975	.0025	.4975	9950			
	2.25 2.26	.9878 .9881	.0122	.4878 .4881	.9756 .9762	2.82 2.83	.9976 .9977	.0024	.4976	9952 9953			
	2.27	.9884	.0116	.4884	.9768	2.84	.9977	.0023	.4977	.9955			
	2.28 2.29	9887 9890	.0113	.4887 .4890	.9774 .9780	2,85 2,86	.9978 .9979	.0022	.4978 .4979	.9956 .9958			
	2,30 2,31	9893 9896	.0107	.4893 .4896	.9786 .9791	2,87 2,88	.9979 .9980	.0021 .0020	.4979 .4980	.9959 .9960			
	2,32	,9898	0102	4898	.9797	2.89	.9981	.0019	4981	9961			
	2,33 2,34	.9901 .9904	.0099	.4901 .4904	.9802 .9807	2.90 2.91	.9981 .9982	.0019 .0018	.4981 .4982	.9963 .9964			
	2.35	.9906	.0094	4906	.9812	2.92	.9982	.0018	.4982	.9965			
	2,36 2,37	.9909 .9911	.0091	.4909 .4911	.9817 .9822	2,93 2,94	.9983 .9984	.0017 .0016	.4983 .4984	.9966 .9967			
		9913	.0087	4913	.9827	2,95	9984	,0016	4984	.9968			
										. /			

The Relationship Between Hypothesis Testing and Confidence Intervals (Two-Sided Case)

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$

- The two-sided 100% × (1 α) CI for μ does not contain $\mu_0 \rightarrow \text{Reject } H_0$
- The two-sided 100% × (1 α) CI for μ does contain $\mu_0 \rightarrow$ Accept H_0

Summary

- Null (H₀) and alternative (H₁) hypotheses
- Type I error (α), type II error (β), and the power (1-β) of a hypothesis test
- P-value of a hypothesis test and the distinction between on-sided and two-sided tests
- Hypothesis testing:
 - -critical value method
 - -p-value method
- Estimating appropriate sample size as determined by the pre-specified null and alternative hypotheses and type I and type II errors

TABLE 3	The non	mal distributi	on (continu	ed)						
x	A*	Bb	C°	D ^d	X	Α	В	С	D	A LOUL PIE
1.82	.9656 .9664	.0344	.4656 .4664	.9312 .9327	2.39 2.40	.9916 .9918	.0084	.4916 .4918	.9832 .9836	
1.84	.9671	.0329	.4671	.9342	2.40	.9920	.0082	.4920	.9840	D TOTAL AND
1.85	.9678	.0322	.4678	.9357	2.42	.9922	.0078	.4922	.9845	A DIUNAGE
1.86 1.87	.9686 .9693	.0314	.4686 .4693	.9371 .9385	2.43	.9925 .9927	.0075	.4925 .4927	.9849 .9853	
1.88	.9699	.0301	.4699	.9399	2.45	.9929	.0073	.4929	.9857	
1.89	.9706	.0294	.4708	.9412	2.46	.9931	.0069	.4931	.9861	
1.90 1.91	.9713 .9719	.0287	.4713 .4719	.9426 .9439	2.47 2.48	.9932	.0068	.4932 .4934	.9865 .9869	
1.92	.9726	.0274	.4726	.9451	2.49	.9936	.0064	.4936	.9872	
1.93	.9732	.0268	.4732	.9464	2.50	.9938	.0062	.4938	.9876	
1.94 1.95	.9738	.0262 .0256	.4738 .4744	.9476 .9488	2.51 2.52	.9940 .9941	.0060	.4940 .4941	.9879 .9883	
1.96	.9750	.0250	.4750	.9500	2.53	.9943	.0059	.4943	.9886	
1.97	.9756	.0244	.4756	.9512	2.54	.9945	.0055	.4945	.9889	
1.98	.9761	.0239	.4761	.9523	2.55	.9946	.0054	.4946	.9892	
1.99 2.00	.9767 .9772	.0233	.4767 .4772	.9534 .9545	2.56 2.57	.9948	.0052	.4948 .4949	.9895 .9898	
2.01	.9778	.0222	.4778	.9556	2.58	.9951	.0049	.4951	.9901	
2.02	.9783	.0217	.4783	.9566	2.59	.9952	.0048	.4952	.9904	
2.03	.9788 .9793	.0212	.4788 .4793	.9576 .9586	2.60 2.61	.9953 .9955	.0047	.4953 .4955	.9907 .9909	
2.05	.9798	.0202	.4798	.9596	2.62	.9956	.0044	.4956	.9912	
2.06	.9803	.0197	.4803	.9606	2.63	.9957	.0043	.4957	.9915	
2.07 2.08	.9808 .9812	.0192 .0188	.4808 .4812	.9615 .9625	2.64 2.65	.9959	.0041	.4959 .4960	.9917 .9920	
2.09	.9817	.0183	.4817	.9634	2.66	.9961	.0039	.4961	.9922	
2.10	.9821	.0179	.4821	.9643	2.67	.9962	.0038	.4962	.9924	
2.11 2.12	.9826 .9830	.0174	.4826 .4830	.9651 .9660	2.68 2.69	.9963 .9964	.0037	.4963 .4964	.9926 .9929	
2.13	.9834	.0166	.4834	.9668	2.70	.9965	.0035	.4965	.9931	
2.14	.9838	.0162	.4838	.9676	2.71	.9966	.0034	.4966	.9933	
2.15 2.16	.9842 .9846	.0158 .0154	.4842 .4846	.9684 .9692	2.72 2.73	.9967 .9968	.0033	.4967 .4968	.9935	
2.17	.9850	.0150	.4850	.9700	2.74	.9969	.0032	.4969	.9939	70 0
2.18	.9854	.0146	.4854	.9707	2.75	.9970	.0030	.4970	.9940	
2.19	.9857	.0143	.4857	.9715	2.76	.9971	.0029	.4971	.9942	DI ATEADM 1 COD
2.20 2.21	.9861 .9864	.0139 .0136	.4861 .4864	.9722 .9729	2.77 2.78	.9972 .9973	.0028	.4972 .4973	.9944 .9946	KLAUDINII TO SON
2.22	.9868	.0132	.4868	.9736	2.79	.9974	.0026	.4974	.9947	760
2.23	.9871	.0129	.4871	.9743	2.80	.9974	.0026	.4974	.9949	
2.24	.9875 .9878	.0125 .0122	.4875 .4878	.9749 .9756	2.81 2.82	.9975 .9976	.0025	.4975 .4976	.9950 .9952	· O· J - MASI
2.26	.9881	.0119	.4881	.9762	2.83	.9977	.0023	.4977	.9953	
2.27	.9884	.0116	.4884	.9768	2.84	.9977	.0023	.4977	.9955	
2.28	.9887 .9890	.0113	.4887 .4890	.9774 .9780	2.85 2.86	.9978	.0022	.4978 .4979	.9956 .9958	
2.30	.9893	.0107	.4893	.9786	2.87	.9979	.0021	.4979	.9959	
2.31	.9896	.0104	.4896	.9791	2.88	.9980	.0020	.4980	.9960	
2.32 2.33	.9898 .9901	.0102	.4898 .4901	.9797 .9802	2.89 2.90	.9981 .9981	.0019	.4981 .4981	.9961 .9963	
2.34	.9904	.0096	.4904	.9807	2.91	.9982	.0018	.4982	.9964	
2.35	.9906	.0094	.4906	.9812	2.92	.9982	.0018	.4982	.9965	
2.36 2.37	.9909 .9911	.0091	.4909 .4911	.9817 .9822	2.93 2.94	.9983	.0017	.4983 .4984	.9966 .9967	
2.37	.9913	.0087	.4913	.9827	2.95	.9984	.0016	.4984	.9968	
								V 100	-73	