Dyn. Syst. non-sériels

Dynamique des systèmes non-sériels

Paramétrage des systèmes non-sériels

$$\mathbf{q}(t) = [\alpha]$$

$$\mathbf{q}(t) = [\alpha \ \beta \ \lambda]^T$$

(a): 1 seul paramètre, paramétrage strict

(b): 3 paramètres, paramétrage articulaire

(d): 9 paramètres, paramétrage cartésien

$$\mathbf{q}(t) = [\alpha \ \beta \ \gamma \ \lambda]^T$$

$$\mathbf{q}(t) = [x_1 \ y_1 \ \theta_1 \ x_2 \ y_2 \ \theta_2 \ x_3 \ y_3 \ \theta_3]^T$$

Comparaison des types de paramétrage

Type de paramétrage	Strict	Articulaire	Cartésien
Nbre de paramètres	Minimal	Modéré	Important
Nbre d'éq. différentiels 2nd ordre	Minimal	Modéré	lmportant
Nbre d'éq. algébriques de contraintes	zéro	Modéré	lmportant
Ordre de non-linéarité	Elevé	Modéré	Faible
Obtention des éq. de mouvement	Difficile	Assez difficile	Simple
Efficacité computationnelle	Efficace	Assez efficace	Pas efficace
Généricité outil logiciel	Difficile	Assez difficile	Facile

Contraintes holonome et non-holonome

Contrainte holonome de la forme

$$\mathbf{\Phi}(\mathbf{q},t) = \mathbf{0}$$

Contrainte non-holonome de la forme

$$\Phi(\mathbf{q}, \dot{\mathbf{q}}, t) = \mathbf{0}$$

et non-intégrable

Autres contraintes

Éq. de Lagrange pour système contraint et holonome

Soit $\mathbf{q}=(q_1,q_2,\ldots,q_n)^T$ un ensemble de n paramètres, contraint par n_c équations algébriques holonomes

$$oldsymbol{\Phi}(\mathbf{q},t) = \left[egin{array}{l} \Phi_1(\mathbf{q},t) \ \Phi_2(\mathbf{q},t) \ dots \ \Phi_{n_c}(\mathbf{q},t) \end{array}
ight] = oldsymbol{0}$$

L'équation de Lagrange en présence de contraintes

$$\boxed{\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right)^T - \left(\frac{\partial \mathcal{L}}{\partial \mathbf{q}} \right)^T - \mathbf{Q}_{nc} + \mathbf{\Phi}_q^T \boldsymbol{\lambda} = \mathbf{0}}$$

 λ est le vecteur des multiplicateurs de Lagrange (de dimension n_c). $\Phi_{\mathbf{q}}$ est la Jacobienne des contraintes de $n_c \times n$

$$\mathbf{\Phi_{q}} = \frac{\partial \mathbf{\Phi}}{\partial \mathbf{q}} = \begin{bmatrix} \frac{\partial \Phi_{1}}{\partial q_{1}} & \frac{\partial \Phi_{1}}{\partial q_{2}} & \cdots & \frac{\partial \Phi_{1}}{\partial q_{n}} \\ \frac{\partial \Phi_{2}}{\partial q_{1}} & \frac{\partial \Phi_{2}}{\partial q_{2}} & \cdots & \frac{\partial \Phi_{2}}{\partial q_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \Phi_{n_{c}}}{\partial q_{1}} & \frac{\partial \Phi_{n_{c}}}{\partial q_{2}} & \cdots & \frac{\partial \Phi_{n_{c}}}{\partial q_{n}} \end{bmatrix}$$

Elle est de rang plein si les contraintes sont indépendantes.

Démonstration

On a L'éq. d'Euler-Lagrange issue du PTV

$$\underbrace{\left[\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}\right)^{T} - \left(\frac{\partial \mathcal{L}}{\partial \mathbf{q}}\right)^{T} - \mathbf{Q}_{nc}\right]^{T}}_{\mathbf{A}_{n,1}^{T}} \delta \mathbf{q} = \mathbf{0}$$

Résoudre :

$$(\mathbf{A}_{n\times 1})^T \delta \mathbf{q} = 0$$

sachant $\delta {f q}$ doit respecter

$$(\mathbf{\Phi}_{\mathbf{q}})_{n_c \times n} \delta \mathbf{q} = \mathbf{0}$$
 avec $n_c < n$

La solution à ce problème est :

$$\exists oldsymbol{\lambda} \in \mathbb{R}^{n_c} \ / \ \mathbf{A} = (oldsymbol{\Phi}_{\mathbf{q}})^T oldsymbol{\lambda}$$

Système algébro-différentiel

avec

$$\mathbf{Q}_{co} = -\left(rac{\partial E_p}{\partial \mathbf{q}}
ight)^T$$
 les forces généralisées conservatives,

$$\mathbf{Q}_v = -\dot{\mathbf{M}}\dot{\mathbf{q}} + \left(rac{\partial E_c}{\partial \mathbf{q}}
ight)^T = -\mathbf{C}\dot{\mathbf{q}}$$
 les forces des vitesses quadratiques,

Éq. de Lagrange pour système contraint et non-holonome

Soit $\mathbf{q}=(q_1,q_2,\ldots,q_n)^T$ un ensemble de n paramètres, contraint par n_c équations algébriques non-holonomes qui peuvent être mises sous la forme matricielle

$$\mathbf{H}(\mathbf{q})\dot{\mathbf{q}}=\mathbf{0}$$

 $\delta {f q}$ doit respecter ${f H}({f q})\delta {f q}={f 0}$ alors même démonstration qu'avec des contraintes non-holonomes

$$\boxed{\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right)^T - \left(\frac{\partial \mathcal{L}}{\partial \mathbf{q}} \right)^T - \mathbf{Q}_{nc} + \mathbf{H}^T \boldsymbol{\lambda} = \mathbf{0}}$$

Résolution des EAD : Formulation augmentée

Après dérivation 2 fois % temps des équations de contraintes holonomes $\Phi(\mathbf{q})=\mathbf{0}$

$$\begin{split} & \boldsymbol{\Phi}_{\mathbf{q}} \dot{\mathbf{q}} = -\frac{\partial \boldsymbol{\Phi}}{\partial t} = -\boldsymbol{\Phi}_{t} \\ & \boldsymbol{\Phi}_{\mathbf{q}} \ddot{\mathbf{q}} = -\boldsymbol{\Phi}_{tt} - \dot{\boldsymbol{\Phi}}_{\mathbf{q}} \dot{\mathbf{q}} = \boldsymbol{\gamma}_{h}(\mathbf{q}, \dot{\mathbf{q}}, t) \end{split}$$

Les équations de contraintes non-holonomes ${f \Phi}({f q},{\dot {f q}},t)={f 0}$ s'écrivent en général sous la forme

$$\mathbf{H}(\mathbf{q})\dot{\mathbf{q}} = \mathbf{0}$$

Si on dérive **qu'une fois** % temps, on obtient une expression similaire aux cas de contraintes holonome, de la forme

$$\mathbf{H}(\mathbf{q})\ddot{\mathbf{q}} = -\dot{\mathbf{H}}(\mathbf{q})\dot{\mathbf{q}} = \boldsymbol{\gamma}_{nh}(\mathbf{q},\dot{\mathbf{q}},t)$$

Le système précédent devient

$$\left[\begin{array}{ccc} \mathbf{M} & \mathbf{\Phi}_{\mathbf{q}}^T & \mathbf{H}^T \\ \mathbf{\Phi}_{\mathbf{q}} & \mathbf{0} & \mathbf{0} \\ \mathbf{H} & \mathbf{0} & \mathbf{0} \end{array} \right] \left[\begin{array}{c} \ddot{\mathbf{q}} \\ \boldsymbol{\lambda}_h \\ \boldsymbol{\lambda}_{nh} \end{array} \right] = \left[\begin{array}{c} \mathbf{Q}_{co} + \mathbf{Q}_{nc} + \mathbf{Q}_v \\ \boldsymbol{\gamma}_h \\ \boldsymbol{\gamma}_{nh} \end{array} \right]$$

$$\left[\begin{array}{ccc} \mathbf{M} & \boldsymbol{\Phi}_{\mathbf{q}}^T & \mathbf{H}^T \\ \boldsymbol{\Phi}_{\mathbf{q}} & \mathbf{0} & \mathbf{0} \\ \mathbf{H} & \mathbf{0} & \mathbf{0} \end{array}\right] \text{ est carrée, symétrique et inversible (si les }$$

contraintes sont indépendantes) et de la forme $\mathbf{A}\mathbf{x} = \mathbf{b}$, ce qui permet

de résoudre les accélérations et les multiplicateurs de Lagrange $\left| egin{array}{c} oldsymbol{\lambda}_h \end{array}
ight|$

en simultané.

Résolution des EAD : Partitionnement et Réduction

Partitionnement des paramètres $\mathbf{q} = \left[\mathbf{q}_{ ext{de}}^T \; \mathbf{q}_{ ext{in}}^T
ight]^T$

- lacksquare \mathbf{q}_{de} paramètres dépendants
- lacktriangle \mathbf{q}_{in} paramètres indépendants

La variation virtuelle des contraintes $\delta {f \Phi}$

$$\Phi_{\mathbf{q}_{\mathrm{de}}}\delta\mathbf{q}_{\mathrm{de}}+\Phi_{\mathbf{q}_{\mathrm{in}}}\delta\mathbf{q}_{\mathrm{in}}=\mathbf{0}$$

Les paramètres indépendants choisis $\mid \mathbf{\Phi}_{\mathbf{q}_{\mathrm{de}}}$ de dimension $n_c imes n_c$ soit inversible

$$\delta \mathbf{q}_{\mathrm{de}} = -\mathbf{\Phi}_{\mathbf{q}_{\mathrm{de}}}^{-1} \mathbf{\Phi}_{\mathbf{q}_{\mathrm{in}}} \delta \mathbf{q}_{\mathrm{in}}$$

$$\delta \mathbf{q} = \left[\begin{array}{c} \delta \mathbf{q}_{\mathrm{de}} \\ \delta \mathbf{q}_{\mathrm{in}} \end{array} \right] = \left[\begin{array}{c} -\mathbf{\Phi}_{\mathbf{q}_{\mathrm{de}}}^{-1} \mathbf{\Phi}_{\mathbf{q}_{\mathrm{in}}} \\ \mathbf{I}_{n-n_c} \end{array} \right] \delta \mathbf{q}_{\mathrm{in}} = \mathbf{N} \ \delta \mathbf{q}_{\mathrm{in}}$$

 ${f N}$ est la matrice de réduction de dimension $n imes (n-n_c)$:

$$\mathbf{N} = \left[egin{array}{c} -\mathbf{\Phi}_{\mathbf{q}_{\mathrm{de}}}^{-1}\mathbf{\Phi}_{\mathbf{q}_{\mathrm{in}}} \ \mathbf{I}_{n-n_c} \end{array}
ight]$$

On montre que ${f N}$ décrit l'espace Nul (Noyau) de la jacobienne ${f \Phi}_{f q}$

$$\mathbf{\Phi}_{\mathbf{q}}\mathbf{N} = \mathbf{0} \Rightarrow \mathbf{N}^T\mathbf{\Phi}_{\mathbf{q}}^T = \mathbf{0}$$

Si on multiplie maintenant l'équation de Lagrange par \mathbf{N}^T , on élimine les multiplicateurs de Lagrange, on obtient alors

$$\mathbf{N}^{T}\mathbf{M}\ddot{\mathbf{q}} = \mathbf{N}^{T}\left(\mathbf{Q}_{nc} + \mathbf{Q}_{co} + \mathbf{Q}_{v}\right)$$

Aussi comme

$$\dot{\mathbf{q}} = \mathbf{N} \; \dot{\mathbf{q}}_{\mathrm{in}}$$

après dérivation % temps

$$\ddot{\mathbf{q}} = \mathbf{N} \ \ddot{\mathbf{q}}_{\mathrm{in}} + \dot{\mathbf{N}} \ \dot{\mathbf{q}}_{\mathrm{in}}$$

L'équation \mathbf{N}^T \mathbf{M} $\ddot{\mathbf{q}} = \mathbf{N}^T \left(\mathbf{Q}_{nc} + \mathbf{Q}_{co} + \mathbf{Q}_v \right)$ devient

$$\mathbf{N}^T \mathbf{M} \mathbf{N} \ddot{\mathbf{q}}_{\text{in}} = \mathbf{N}^T (\mathbf{Q}_{nc} + \mathbf{Q}_{co} + \mathbf{Q}_v) - \mathbf{N}^T \mathbf{M} \dot{\mathbf{N}} \dot{\mathbf{q}}_{\text{in}}$$

d'où la forme réduite stricte du modèle dynamique directe

$$\left| \ddot{\mathbf{q}}_{\mathrm{i}} = \left(\mathbf{N}^T \ \mathbf{M} \ \mathbf{N}
ight)^{-1} \mathbf{N}^T \left(\mathbf{Q}_{nc} + \mathbf{Q}_{co} + \mathbf{Q}_v - \mathbf{M} \ \dot{\mathbf{N}} \ \dot{\mathbf{q}}_{\mathrm{in}}
ight)
ight|$$

Si $\tau = \mathbf{N}^T \mathbf{Q}_{nc}$ représente les efforts des actionneurs associés aux paramètres indépendants \mathbf{q}_{in} , car le travail virtuel des forces non conservatives

$$\delta W = \mathbf{Q}_{nc}^T \delta \mathbf{q} = \mathbf{Q}_{nc}^T \mathbf{N} \ \delta \mathbf{q}_{\text{in}} = (\underbrace{\mathbf{N}^T \mathbf{Q}_{nc}}_{T})^T \delta \mathbf{q}_{\text{in}}$$

alors la forme réduite stricte du modèle dynamique inverse

$$oldsymbol{ au} = \mathbf{N}^T \mathbf{M} \; \mathbf{N} \; \ddot{\mathbf{q}}_{ ext{in}} + \mathbf{N}^T \left(\mathbf{M} \; \dot{\mathbf{N}} \; \dot{\mathbf{q}}_{ ext{in}} - \mathbf{Q}_{co} - \mathbf{Q}_v
ight)$$

Remarque: \mathbf{N}^T \mathbf{M} \mathbf{N} est la matrice masse associée au vecteur des paramètres indépendants \mathbf{q}_{in} . D'ailleurs comme $\dot{\mathbf{q}} = \mathbf{N}$ $\dot{\mathbf{q}}_{\mathrm{in}}$, l'énergie cinétique

$$E_c = \frac{1}{2}\dot{\mathbf{q}}^T \mathbf{M} \ \dot{\mathbf{q}} = \frac{1}{2}\dot{\mathbf{q}}_{\rm in}^T \underbrace{\left(\mathbf{N}^T \mathbf{M} \ \mathbf{N}\right)}_{\mathbf{M}_{\rm in}} \dot{\mathbf{q}}_{\rm in}$$

Résolution des EAD : Projecteur orthogonal aux contraintes

Si on commence par résoudre les multiplicateurs de Lagrange dans l'EAD, on a d'abord

$$\ddot{\mathbf{q}} = \mathbf{M}^{-1} \left(-\mathbf{\Phi}_{\mathbf{q}}^T \boldsymbol{\lambda} + \mathbf{Q}_{co} + \mathbf{Q}_{nc} + \mathbf{Q}_v \right)$$

et comme ${f \Phi_q}\ddot{f q}={f \gamma}_h({f q},\dot{f q})$, si on multiplie cette dernière par ${f \Phi_q}$

$$\mathbf{\Phi}_{\mathbf{q}} \mathbf{M}^{-1} \left(-\mathbf{\Phi}_{\mathbf{q}}^{T} \boldsymbol{\lambda} + \mathbf{Q}_{co} + \mathbf{Q}_{nc} + \mathbf{Q}_{v} \right) = \boldsymbol{\gamma}_{h}(\mathbf{q}, \dot{\mathbf{q}})$$

On déduit donc les multiplicateurs de Lagrange en fonction des actions (conservatives et non-conservatives)

$$oldsymbol{\lambda} = \left(oldsymbol{\Phi}_{oldsymbol{q}} \mathbf{M}^{-1} oldsymbol{\Phi}_{oldsymbol{q}}^T
ight)^{-1} \left(oldsymbol{\Phi}_{oldsymbol{q}} \mathbf{M}^{-1} (\mathbf{Q}_{co} + \mathbf{Q}_{nc} + \mathbf{Q}_v) - oldsymbol{\gamma}_h(\mathbf{q}, \dot{\mathbf{q}})
ight)$$

On peut en déduire un projecteur de dimesion $n \times n$

$$\mathbf{P} = \mathbf{I} - \mathbf{\Phi}_{\mathbf{q}}^T \left(\mathbf{\Phi}_{\mathbf{q}} \mathbf{M}^{-1} \mathbf{\Phi}_{\mathbf{q}}^T \right)^{-1} \mathbf{\Phi}_{\mathbf{q}} \mathbf{M}^{-1}$$

qui rejette les forces de contraintes tout en maintenant les forces motrices agissant sur le système. On vérifie bien que

$$\mathbf{P} \; \mathbf{\Phi}_{\mathbf{q}}^T = \mathbf{0}$$

Si on multiplie l'equation de Lagrange par ${f P}$ on obtient la forme suivante

$$\mathbf{P}(\mathbf{M} \ddot{\mathbf{q}} - \mathbf{Q}_{co} - \mathbf{Q}_{v}) = \mathbf{P} \mathbf{Q}_{nc}$$

ce qui permet d'éliminer les multiplicateurs de Lagrange.

 (\mathbf{PM}) est une matrice carrée de dimension $n \times n$, on peut donc calculer les accélarations $\ddot{\mathbf{q}}$ pour des actions motrices (non conservatives) \mathbf{Q}_{nc} données