

Dragon Labyrinth

การทดสอบความสามารถในการแก้ปัญหาโดยการเขียนโปรแกรม

เขียนวันที่ 28 ก.ค. 2566

มังกรตัวหนึ่งได้ทำผิดกฎสวรรค์จึงถูกเนรเทศลงมาอยู่บนแดนมนุษย์ โดนเสกให้ไม่สามารถเหาะเหินเดินอากาศได้และขังไว้ใน เขาวงกตที่สร้างจากไม่ใหญ่ทึบ อยู่บริเวณที่เป็นเนิน มีระดับความสูงต่างกัน

มังกรทราบว่าในเขาวงกตแห่งนี้มีที่ที่มีวิวสวยๆ หรืออัญมณีอันงดงามน่าชื่นชมอยู่มากมาย มังกรตัวนี้จึงวางแผนที่จะแยกร่าง จำนวน D ร่างเพื่อไปชมจุดต่างๆ D จุด การเดินทางในเขาวงกตขนาด M × M นั้นเวลาที่ใช้จะขึ้นอยู่กับระดับความสูงที่ต่างกัน เสมอ อาจมีบางจุดที่เป็นเหวหากพลัดตกลงไปจะไม่สามารถกลับขึ้นมาได้

แผนที่จะระบุพิกัดเป็น (X, Y) เมื่อกำหนดค่า M = 4 โดยที่ X และ Y เป็นพิกัดเลขจำนวนเต็ม ($1 \le X$, Y $\le M$) มังกรสามารถ เดินทางจากตำแหน่งเริ่มต้นหลังแยกร่างได^{*} 4 ทิศทางคือ ทิศอุดร ทิศทักษิณ ทิศบูรพา และทิศประจิม เวลาที่ใช้ในการเดินทาง จากพื้นที่ A ไปยังพื้นที่ B ที่อยู่ติดกันคือ $T_{A\to B}=1+|H_A-H_B|$ วัน โดย H_C คือความสูงของพื้นที่ C ใดๆ และเหวจะมีค่า H_C เป็น -1 เสมอ มังกรจะทราบความสูงเพียง K พื้นที่

(1, 1) H = 1	(1, 2) H = 1	(1, 3) H = 7	(1, 4) D H = 1
(2, 1)	(2, 2)	(2, 3)	(2, 4)
H = 1	H = 2	H = 7	H = 1
(3, 1) H = -1	(3, 2) S H = 1	(3, 3) H = 7	(3, 4) H = 1
(4, 1)	(4, 2)	(4, 3)	(4, 4)
H = 1	H = 1	H = 1	H = 1

 $\mathsf{T}_{(3,2)\to(2,2)\to(1,2)\to(1,3)\to(1,4)} = (1+|1-2|) + (1+|2-1|) + (1+|1-7|) + (1+|7-1|) = 18\ \Im \mathsf{u}$

 $\mathsf{T}_{(3,2) \to (4,2) \to (4,3) \to (4,4) \to (3,4) \to (2,4) \to (2,4) \to (1,4)} = (1+|1-1|) + (1+|1-1|) + (1+|1-1|) + (1+|1-1|) + (1+|1-1|) + (1+|1-1|) + (1+|1-1|) = 6 \ \tilde{\Im} \mathsf{L}_{(3,2) \to (4,2) \to (4,3) \to (4,4) \to (2,4) \to (2$

มังกรตัวนี้ต้องใช้เวลาน้อยที่สุดกี่วันที่ร่างทั้งหมดจะไปถึงยังจุดหมายปลายทางทั้งหมด D จุดได้ และเวลาน้อยสุดที่ร่างใดร่าง หนึ่งไปถึงจุดหมายปลางทางแรก แต่หากมีบางร่างไม่สามารถไปถึงพื้นที่เป้าหมายได้ ให้หาว่ามีกี่ร่างที่ไม่สามารถไปถึงจุดหมาย ปลายทางได้แทน

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็ม M D K X_S Y_S และ H_S เมื่อ S คือพื้นที่เริ่มต[้]นก่อนออกเดินทาง (4 ≤ M ≤ 2,000; 1 ≤ D ≤ 1,000; 0 ≤ K ≤ M²; 1 ≤ X_S, Y_S, ≤ M; 0 ≤ H_S ≤ 100)

อีก D บรรทัดระบุข้อมูลของจุดหมายลปายทาง กล่าวคือบรรทัดที่ i+1 สำหรับ $1 \le i \le D$ จะระบุจำนวนเต็ม X_i, Y_i และ H_i แทนตำแหน่งและความสูงของจุดหมายปลายทางลำดับที่ i

อีก K บรรทัดระบุข้อมูลของพื้นที่ที่ทราบความสูง กล่าวคือบรรทัดที่ D + i + 1 สำหรับ 1 \leq i \leq K จะระบุจำนวนเต็ม X_i , Y_i และ H_i แทนตำแหน่งและความสูงของพื้นที่ที่ทราบความสูงลำดับที่ i โดยพื้นที่ที่ไม่ระบุความสูงหมายถึงพื้นที่ที่เป็นเหว (ไม่มี พื้นที่ที่ทราบความสูงใดเป็นพื้นที่เดียวกับจุดเริ่มต้นและจุดหมายปลายทาง)

ข้อมูลส่งออก

<u>กรณีที่ทุกร่างไปถึงจุดหมายปลายทางได้ทั้ง D ร่าง</u>จะมี 2 บรรทัด บรรทัดแรกระบุเวลาที่น้อยที่สุดในหน่วยวันที่มั่นใจได้ว่าร่าง ทั้ง D จะไปถึงจุดหมายปลายทางแล้ว บรรทัดที่สองระบุจำนวนวันที่น้อยสุดที่ร่างใดร่างหนึ่งไปถึงจุดหมายปลางทางแรก กรณีที่มีบางร่างไม่สามารถไปถึงพื้นที่เป้าหมายได้จะมีหนึ่งบรรทัด เป็นจำนวนร่างที่ไม่สามารถไปถึงจุดหมายปลายทางได้

เงื่อนไขการทำงาน

โปรแกรมต้องทำงานภายใน 3 วินาที ใช้หน่วยความจำไม่เกิน 256 MB

ตัวอย่าง 1

Input	Output
4 1 14 3 2 1	3
4 4 1	3
1 1 1	
1 2 1	
1 3 7	
1 4 1	
2 1 1	
2 2 2	
2 3 7	
2 4 1	
3 1 -1	
3 3 7	
3 4 1	
4 1 1	
4 2 1	
4 3 1	

(มีตัวอย่างการทำงานหน้าถัดไป)

ตัวอย่าง 2

Input	Output
4 2 13 3 2 1	6
1 4 1	3
4 4 1	
1 1 1	
1 2 1	
1 3 7	
2 1 1	
2 2 2	
2 3 7	
2 4 1	
3 1 -1	
3 3 7	
3 4 1	
4 1 1	
4 2 1	
4 3 1	

ตัวอย่าง 3

Input	Output
4 2 8 3 2 1	1
1 4 1	
4 4 1	
1 1 1	
1 2 1	
1 3 7	
2 1 1	
2 2 2	
2 3 7	
2 4 1	
3 1 -1	

รายละเอียดเพิ่มเติมเกี่ยวกับชุดทดสอบ

ชุดที่	คะแนนสูงสุดของชุดทดสอบ	เงื่อนไข
1	20%	ตัวอย [่] างดังแสดงในโจทย [์]
2	40%	4 ≤ M ≤ 50; D = 1
3	80%	4 ≤ M ≤ 500
4	100%	4 ≤ M ≤ 2,000