Use a resource request as follows: # qsub -I -l select=1:ncpus=8:chip type=e5-2665:mem=24gb

You can change the chip_type to e5-2665, e5-2670v2, e5-2680v3, e5-2680v4. The memory must be 2GB or more less than the total ram.

You can get the available hardware types as follows:

cat /etc/hardware-table

PALMETTO HARDWARE TABLE Last updated: July 23 2018

PHASE COUNT MAKE MODEL CHIP(0)CORES RAM(1) /local scratch In terconnect GPUs PHIs SSD 0 6 HP DL580 Intel Xeon 7542 24 505 GB(2) 99 GB 1g, 10g, mx 0 0 0 2 TB(2) 0 1 HP DL980 Intel Xeon 7560 64 99 GB 1g, 10g, 0 0 mx 0 HP DL560 E5-4627v4 40 1.5 TB(2) 881 GB 1 Intel Xeon 1g, 56g, fdr, 10ge 0 0 Dell R830 Intel Xeon E5-4627v4 40 1.0 TB(2) 880 GB 1g, 56g, fdr, 10ge 0 0 0 1 HP DL560 Intel Xeon 6138G 80 1.5 TB(2)3.6 TB 1g, 10ge 0 $0 \quad 0$ 108 Dell PE1950 Intel Xeon E5345 12 GB 37 GB 1g, 10g, mx 0 0 0 2a 206 Dell PE1950 Intel Xeon E5410 12 GB 37 GB 1g, 10g, 0 mx 2b37 Dell PE1950 Intel Xeon E5410 16 GB 37 GB 1g, 10g, 0 0 0 mx 227Sun X2200 AMD Opteron 2356 16 GB 193 GB 1g, 10g, mx 0 0 326 IBM DX340 Intel Xeon 16 GB 111 GB E5410 1g, 10g, 0 mx Sun X6250 Intel Xeon 5a 329 L5420 32 GB 31 GB 1g, 10g, mx 0 0 0 X4150 Intel Xeon 5b 9 Sun E541032 GB 99 GB 1g, 10g, 0 0 mx 6 68 HP DL165AMD Opteron 6176 24 48 GB 193 GB 1g, 10g, mx 0 0 7a 42 HP SL230 Intel Xeon E5-2665 16 64 GB 240 GB 1g, 56g, fdr 0 0 0

7b 12 HP		Intel Xeon	E5-2665	16	$64~\mathrm{GB}$	$240~\mathrm{GB}$	1g,
<u> </u>	$(3) \ 0 \ 0$						
8a 71 HP			E5-2665	16	64 GB	900 GB	1g,
56g, fdr 20	$(4) \ 0 \ 300$	0 GB(7)					
8b 57 HP	SL250s	Intel Xeon	E5-2665	16	$64~\mathrm{GB}$	$420~\mathrm{GB}$	1g,
0,	$(4) \ 0 \ 0$						
8c 84 Dell	PEC6220	Intel Xeon	E5-2665	16	$64~\mathrm{GB}$	$350~\mathrm{GB}$	1g,
10ge 0							
9 72 HP	SL250s I	Intel Xeon	E5-2665	16	$128~\mathrm{GB}$	$420~\mathrm{GB}$	1g,
56g, fdr, 10ge							
	$\mathrm{SL}250\mathrm{s}$	Intel Xeon	E5-2670v	$r^2 20$	$128\mathrm{GB}$	$800~\mathrm{GB}$	1g,
56g, fdr, 10ge	2(4) 0)					
11a 40 HP	SL250s	Intel Xeon	E5-2670	v2 20	128 GB	$800~\mathrm{GB}$	1g,
56g, fdr, 10ge	2(6) 0)					
11b 4 HP	$\mathrm{SL}250\mathrm{s}$	Intel Xeon	E5-2670v	$r^2 20$	128 GB	$800~\mathrm{GB}$	1g,
56g, fdr, 10ge	$0 2(8) \ 0$)					
12 30 Leno	vo NX3601	M5 Intel Xe	on E5-26	80v3	24 128	GB = 800	
GB 1g, 56g	g, fdr, 10ge	$= 2(6) \ 0$)				
13 24 Dell	C4130	Intel Xeon	E5-2680v3	3 24	$128~\mathrm{GB}$	1.8 TB	1g,
56g, fdr, 10ge	2(6) 0)					
14 12 HP	XL1X0R	Intel Xeon	E5-2680	v3 2	4 128 GE	880 GB	1g,
56g, fdr, 10ge	2(6) 0)					
15 32 Dell	C4130	Intel Xeon	E5-2680v3	3 24	$128~\mathrm{GB}$	$880~\mathrm{GB}$	1g,
56g, fdr, 10ge	2(6) 0)					
16 40 Dell	C4130	Intel Xeon	$E5-2680v^2$	4 28	$128~\mathrm{GB}$	$1.8\mathrm{TB}$	1g,
56g, fdr, 10ge	$2(9) \ 0 \ ($)					
17 20 Dell	C4130	Intel Xeon	E5-2680v	4 28	$128~\mathrm{GB}$	1.8 TB	1g,
56g, fdr, 10ge	2(9) 0)					
18a 2 Dell	C4140	Intel Xeon	6148G	40	$372~\mathrm{GB}$	1.9 TB	1g, 56g,
fdr, 40ge 4(10	0 (
18b 65 Dell	R740	Intel Xeon	6148G	40	$372~\mathrm{GB}$	1.8 TB	1g, 56g,
	0 0						
18c 10 Dell	R740	Intel Xeon	6148G	40 7	$748\mathrm{GB}$	1.8 TB	1g, 56g,
fdr, 25ge 2(11	0 0						

^{***} PBS resource requests are always lowercase ***

⁽⁰⁾ CHIP has 3 resources: chip_manufacturer, chip_model, chip_type

⁽¹⁾ Leave 2 or 3GB for the operating system when requesting memory in PBS jobs

⁽²⁾ Specify queue "bigmem" to access the large memory machines, only ncpus and mem are valid PBS resource requests

^{(3) 2} NVIDIA Tesla M2075 cards per node, use resource request "ngpus=[1 \mid 2]" and "gpu_model=m2075"

- (4) 2 NVIDIA Tesla K20m cards per node, use resource request "ngpus= $[1\,|\,2]$ " and "gpu_model=k20"
- (5) 2 NVIDIA Tesla M2070-Q cards per node, use resource request "ngpus=[1 | 2]" and "gpu_model=m2070q"
- (6) 2 NVIDIA Tesla K40m cards per node, use resource request "ngpus= $[1 \mid 2]$ " and "gpu_model=k40"
- (7) Use resource request "ssd=true" to request a chunk with SSD in location /ssd1, /ssd2, and /ssd3 (100GB max each)
- (8) Use resource request "nphis=[1 | 2]" to request phi nodes, the model is Xeon 7120p
- (9) 2 NVIDIA Tesla P100 cards per node, use resource request "ngpus=[1 | 2]" and "gpu model=p100"
- (10)4 NVIDIA Tesla V100 cards per node with NVLINK2, use resource request "ngpus= $[1\,|\,2\,|\,3\,|\,4]$ " and "gpu_model=v100nv"
- (11)2 NVIDIA Tesla V100 cards per node, use resource request "ngpus=[1 | 2]" and "gpu_model=v100"