Grafos: Implementaciones y recorridos básicos

Estructuras de Datos y Algoritmos /
Algoritmos y Estructuras de Datos II
Año 2025
Dr. Pablo Ponzio
Universidad Nacional de Río Cuarto
CONICET

Grafos

Los grafos contienen dos tipos de elementos:

- Nodos o vértices: generalmente guardan algún tipo de información,
- **Arcos**: son conexiones entre vértices, también pueden contener información.
 - Grafos simples: Hay a lo sumo un arco entre cada par de nodos
 - Multigrafos: Admiten más de un arco entre un mismo par de nodos

Trabajaremos con grafos simples en la materia

Definición

Los grafos se pueden definir formalmente de la siguiente forma:

Un grafo es un par (V, E) en donde:

- V es un conjunto de nodos,
- $E \subseteq V \times V$ es una relación.

Por ejemplo:

$$= (\{v, w, y\}, \{(v, w), (w, y), (y, v)\})$$

Grafos No Dirigidos

Muchas veces nos interesan que los arcos no tengan dirección:

En este caso se llaman grafos no-dirigidos. Formalmente, son relaciones simétricas:

$$(\{v, w, y\}, \{(v, w), (w, y), (y, v), (w, v), (v, y), (v, w)\})$$

La mayor parte de los problemas pueden modelarse con grafos.

MAPAS

Representación de heaps (memoria de JAVA)

• Y muchas más...

application	item	connection		
тар	intersection	road		
web content	page	link		
circuit	device	wire		
schedule	job	constraint		
commerce	customer	transaction		
matching	student	application		
computer network	site	connection		
software	method	call		
social network	person	friendship		
Typical graph applications				

Definiciones...

- Un grafo se dice completo si cada par de nodos está conectado por un arco
- Un **camino** de un nodo v a un nodo w en un grafo G es una secuencia de nodos adyacentes que comienza en v y termina w
 - La longitud del camino es la cantidad de aristas en el camino
- Si todos los vértices en el camino son distintos el camino se denomina camino simple
- Un ciclo es un camino de un nodo w a si mismo
- Un ciclo simple es un ciclo en el cual no se repiten arcos ni vértices (salvo el primero y el último)
- Un grafo se llama conexo si existe un camino desde v a w, para cada par de nodos v y w
- Un grafo con **pesos** es un grafo en el cual los arcos poseen pesos y costos

Definiciones...

- Un grafo se dice conexo si hay un camino desde cualquier nodo del grafo a cualquier otro
- Un grafo no conexo consiste de un conjunto de componentes conexas, que son subgrafos conexos maximales
- El **grado** de un vértice es la cantidad de aristas que entran al vértice
- Un grafo es acíclico si no tiene ciclos
- Un árbol es un grafo acíclico y conexo

Un Ejemplo

Este es un grafo dirigido (**digrafo**), en muchas aplicaciones trabajamos con grafos dirigidos

Densidad de grafos

- La densidad es la proporción de aristas que posee un grafo respecto de la cantidad de vértices (|V|)
- En un grafo denso la cantidad de aristas es cercano al máximo número posible de aristas
- Un grafo disperso tiene relativamente pocas aristas, típicamente, proporcional a una constante pequeña multiplicada por |V|
- En la práctica, en la mayoría de las aplicaciones trabajamos con grafos dispersos
 Sparse (E = 200)
 Mense (E = 1000)

Representaciones de grafos

- Lista de adyacencias: Se crea un arreglo G de N lugares, en donde G[i] con tiene una lista con todos los vértices adyacentes al vértice i
- Grafo no dirigido: dos entradas por cada arista que conecta i con j: i->j y j->i

• Grafo dirigido:

Representaciones de grafos

 Matriz de adyacencias: Para un grafo de N vértices se crea una matriz G de NxN, en donde G[i][j]=1 si el nodo i está conectado con el nodo j, y G[i][j]=0 en otro caso

 Grafo no dirigido: dos 1's por cada arista que conecta i con j: G[i][j]=1 y G[j][i]=1

Grafo dirigido:

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	1 1 0 1 0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	0 0 1 0 0

Grafo no dirigido: Operaciones

```
/**
 * IntGraph represents an undirected graph, where vertices are labeled
 * with integers.
 * Formally, a graph G=<V,E> consists of a set of vertices V,
   and a relation E in VxV that describes the edges of the graph.
 */
public interface IntGraph {
    /**
     * @post Returns the number of vertices in this graph. */
    public int V();
    /**
     * @post Returns the number of edges in this graph. */
    public int E();
    /**
     * @pre 0 <= v < V && 0 <= w < V
     * @post Adds the undirected edge v-w to this graph. */
    public void addEdge(int v, int w);
    /**
     * @pre 0 <= v < V
     * @post Returns the list of vertices adjacent to vertex v.*/
    public List<Integer> adj(int v);
}
```

Grafo no dirigido: Operaciones

```
/**
 * IntGraph represents an undirected graph, where vertices are labeled
 * with integers.
 * Formally, a graph G=<V,E> consists of a set of vertices V,
    and a relation E in VxV that describes the edges of the graph.
 */
public interface IntGraph {
    /**
     * @post Returns the number of vertices in this graph. */
    public int V();
    /**
     * @post Returns the number of edges in this graph. */
    public int E();
    /**
     * @pre 0 <= v < V && 0 <= w < V
     * @post Adds the undirected edge v-w to this graph. */
    public void addEdge(int v, int w);
       Para facilitar la comprensión de los algoritmos, vamos a considerar
       primero grafos en donde los nodos sólo almacenan enteros, y luego
```

daremos una implementación más general

}

Grafo no dirigido: Algunas consideraciones

- Podríamos añadir fácilmente operaciones para agregar vértices, eliminar vértices, eliminar una arista, chequear si el grafo contiene una arista dada, etc..
 - Por ejemplo, podríamos usar conjuntos o hashes en lugar de listas de adyacencia para obtener una mayor eficiencia para consultar la existencia de una arista
- No vamos a hacerlo por varias razones:
 - Los problemas que resolveremos no las necesitan (muchos problemas sobre grafos no requieren de estas operaciones)
 - En los casos en que se requieren estas operaciones, o se invocan relativamente poco, o para listas de adyacencia cortas (grafos dispersos), por lo que la penalidad de usar listas no es alta
 - Usando listas de adyacencia las implementaciones se simplifican, y podemos enfocarnos mejor en entender los algoritmos sobre grafos

```
public class AdjacencyListIntGraph implements IntGraph {
    // Number of vertices in the graph
    private final int V;
    // Number of edges in the graph
    private int E;
    // Adjacency lists
    private List<Integer>[] adj;
    /**
     * @pre V>=0
     * @post Initializes a graph with V vertices and O edges
    public AdjacencyListIntGraph(int V) {
        if (V < 0)
            throw new IllegalArgumentException("Number of vertices must be non-
negative");
        this.V = V;
        this.E = 0;
        adj = new LinkedList[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new LinkedList<Integer>();
    }
```

```
/**
 * @pre 0 <= v < V
 * @post Returns the list of vertices adjacent to vertex v.
 */
public List<Integer> adj(int v) {
    if (v < 0 \mid | v >= V)
        throw new IllegalArgumentException("vertex " + v +
              " is not between 0 and " + (V-1));
    return adj[v];
/**
 * @post Returns the number of vertices in this graph.
 */
public int V() {
    return V;
/**
 * @post Returns the number of edges in this graph.
 */
public int E() {
    return E;
```

```
/**
 * @pre 0 <= v < V
 * @post Returns the list of vertices adjacent to vertex v.
 */
public List<Integer> adj(int v) {
    if (v < 0 \mid | v >= V)
        throw new IllegalArgumentException("vertex " + v +
              " is not between 0 and " + (V-1));
    return adj[v];
/**
 * @post Returns the number of vertices in this graph.
 */
public int V() {
    return V;
/**
```

Ejercicio: Implementar grafos no dirigidos con matrices de adyacencia

Eficiencia de las implementaciones de grafos

underlying data structure	space	add edge v-w	check whether w is adjacent to v	iterate through vertices adjacent to v
list of edges	E	1	E	E
adjacency matrix	V^2	1	1	V
adjacency lists	E + V	1	degree(v)	degree(v)
adjacency sets	E + V	$\log V$	$\log V$	degree(v)

Order-of-growth performance for typical Graph implementations

- Las matrices de adyacencia son prohibitivas para grafos grandes y dispersos, ya que usan una cantidad cuadrática de espacio
 - E iterar sobre los adyacentes es lineal, lo que también es malo para grafos dispersos
- Las aplicaciones típicas procesan grafos dispersos muy grandes, por lo que la representación con listas de adyacencia suele ser la más usada
 - O reemplazar las listas con conjuntos o hashes si la aplicación lo amerita

Eficiencia de las implementaciones de grafos

underlying data structure	space	add edge v-w	check whether w is adjacent to v	iterate through vertices adjacent to v
list of edges	E	1	E	O(V) en el
adjacency matrix	V^2	1	1	peor caso
adjacency lists	E + V	1	degree(v)	degree(v)
adjacency sets	E + V	$\log V$	$\log V$	degree(v)

Order-of-growth performance for typical Graph implementations

- Las matrices de adyacencia son prohibitivas para grafos grandes y dispersos, ya que usan una cantidad cuadrática de espacio
 - E iterar sobre los adyacentes es lineal, lo que también es malo para grafos dispersos
- Las aplicaciones típicas procesan grafos dispersos muy grandes, por lo que la representación con listas de adyacencia suele ser la más usada
 - O reemplazar las listas con conjuntos o hashes si la aplicación lo amerita

Grafo dirigido: Operaciones

```
/**
    IntDigraph represents an undirected graph, where vertices are labeled
 * with integers.
 * Formally, a graph G=<V,E> consists of a set of vertices V,
    and a relation E in VxV that describes the edges of the graph.
 */
public interface IntDigraph {
    /**
     * @post Returns the number of vertices in this graph. */
    public int V();
    /**
     * @post Returns the number of edges in this graph. */
    public int E();
    /**
     * @pre 0 <= v < V && 0 <= w < V
     * @post Adds the directed edge v->w to this graph. */
    public void addEdge(int v, int w);
    /**
     * @pre 0 <= v < V
     * @post Returns the list of vertices adjacent to vertex v.*/
    public List<Integer> adj(int v);
}
```

 Para implementar grafos dirigidos con listas de adyacencia sólo tenemos que modificar el método addEdge para que agregue aristas dirigidas

```
public class AdjacencyListIntDigraph implements IntDigraph {
   /** ...código omitido... **/
   /**
    * @pre 0 <= v < V && 0 <= w < V
    * @post Adds the directed edge v->w to this graph.
    */
   public void addEdge(int v, int w) {
       if (v < 0 \mid v >= v)
           throw new IllegalArgumentException("vertex " + v +
                 " is not between 0 and " + (V-1));
       if (w < 0 \mid w >= V)
           throw new IllegalArgumentException("vertex " + w +
                 " is not between 0 and " + (V-1));
       E++;
       adj[v].add(w);
   }
```

 Para implementar grafos dirigidos con listas de adyacencia sólo tenemos que modificar el método addEdge para que agregue aristas dirigidas

Ejercicio: Implementar grafos dirigidos con matrices de adyacencia

Recorridos de Grafos

Dos formas básicas de recorrer grafos, que permiten implementar muchos algoritmos sobre estos:

- **Depth-First Search (DFS)**: o primero en profundidad, se recorre el grafo tal que siempre nos metemos por un camino hasta completarlo antes de recorrer los otros.
- Breadth-First Search (BFS): o primero en amplitud, dado un nodo s se recorren los nodos a distancia 1 de s, luego los nodos a distancia 2 de s, luego los nodos a distancia 3, etc...

```
/**
 * @pre 0 \le s \le G.V().
 * @post Computes the vertices in graph G that are
 * connected to the source vertex s.
public DepthFirstSearch(AdjacencyListIntGraph G, int s) {
    boolean[] marked = new boolean[G.V()];
    dfs(G, s);
}
/**
 * @post Recursively traverses the graph G in Depth-first order
 * starting from v.
 */
private void dfs(AdjacencyListIntGraph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v)) {
        if (!marked[w]) {
            dfs(G, w);
```

```
/**
 * @pre 0 \le s \le G.V().
 * @post Computes the vertices in graph
 * connected to the source vertex s.
                                           O(V)
public DepthFirstSearch(AdjacencyListIn graph G, int s) {
    boolean[] marked = new boolean[G.V()];
    dfs(G, s);
}
/**
 * @post Recursively traverses the graph G in Depth-first order
 * starting from v.
 */
private void dfs(AdjacencyListIntGraph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v)) {
        if (!marked[w]) {
            dfs(G, w);
```

```
/**
 * @pre 0 \le s \le G.V().
 * @post Computes the vertices in graph
 * connected to the source vertex s.
                                            O(V)
public DepthFirstSearch(AdjacencyListIn graph G, int s) {
    boolean[] marked = new boolean[G.V()];
    dfs(G, s);
}
/**
                           O(E): Cada arista se
 * @post Recursivel
                                                    pth-first order
                     recorre una vez (no se vuelven a
 * starting from v.
                           recorrer para nodos
 */
                               marcados)
                                              v) {
private void dfs(Adjacen
    marked[v] = true;
    for (int w : G.adj(v)) {
        if (!marked[w]) {
            dfs(G, w);
```

```
DFS es O(V+E) < G. V().
               tes the vertices in graph
           d to the source vertex s.
                                           O(V)
public DepthFirstSearch(AdjacencyListIn graph G, int s) {
    boolean[] marked = new boolean[G.V()];
    dfs(G, s);
}
/**
                           O(E): Cada arista se
 * @post Recursivel
                                                   oth-first order
                     recorre una vez (no se vuelven a
 * starting from v.
                           recorrer para nodos
                               marcados)
                                              v) {
private void dfs(Adjacen
    marked[v] = true;
    for (int w : G.adj(v)) {
        if (!marked[w]) {
             dfs(G, w);
```

Depth-first Search: Ejemplo

Depth-first Search: Ejemplo

check 1 check 5

0 done

Aplicaciones: Determinar si el grafo es conexo

DFS(G, 0) da count = V -> el grafo es conexo

DFS(G, 0) da count \neq V -> el grafo no es conexo

DFS: Determinar si el grafo es conexo

```
/**
 * @pre 0 \le s \le G.V().
 * @post Traverses the graph G in Depth-first order starting from s.
 */
public DepthFirstSearch(AdjacencyListIntGraph G, int s) {
    boolean[] marked = new boolean[G.V()];
    count = 0;
    dfs(G, s);
}
/**
 * @post Recursively traverses the graph G in Depth-first order
 * starting from v.
 */
private void dfs(AdjacencyListIntGraph G, int v) {
    count++;
    marked[v] = true;
    for (int w : G.adj(v)) {
        if (!marked[w]) {
            dfs(G, w);
```

DFS: Determinar si el grafo es conexo

```
/**
 * @pre 0 \le s \le G.V().
 * @post Traverses the graph G in Depth-first order starting from s.
 */
public DepthFirstSearch(AdjacencyListIntGraph G, int s) {
   boolean[] marked = new boolean[G.V()];
   count = 0;
      Variable global
  (atributo de la clase) que al
 final de la ejecución tiene la
     cantidad de vértices
                          es the graph G in Depth-first order
     conectados con s
count++;
   marked[v] = true;
   for (int w : G.adj(v)) {
       if (!marked[w]) {
           dfs(G, w);
```

DFS: Buscar caminos desde un origen

```
/**
 * @pre 0 <= s < G.V().
 * @post Traverses the graph G in Depth-first order starting from s.
 */
public DepthFirstSearch(AdjacencyListIntGraph G, int s) {
    this.s = s;
    edgeTo = new int[G.V()];
   marked = new boolean[G.V()];
    this.G = G;
    dfs(G, s);
/**
 * @post Recursively traverses the graph G in Depth-first order
 * starting from v.
private void dfs(AdjacencyListIntGraph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v)) {
        if (!marked[w]) {
            edgeTo[w] = v;
            dfs(G, w);
```

DFS: Buscar caminos desde un origen

```
/**
 * @pre 0 \le s \le G.V().
 * @post Traverses the graph G in Depth-first order starting from s.
 */
public DepthFirstSearch(AdjacencyListIntGraph G, int s) {
    this.s = s;
    edgeTo = new int[G.V()];
    marked = new boolean[G.V()];
    this.G = G;
    dfs(G, s);
/**
 * @post Recursively traverses the graph G in Depth-first order
  w fue visitado en el
                        ncyListIntGraph G, int v) {
camino que viene desde v
                 J.adj(v)) {
        if (!ma_ked[w]) {
             edgeTo[w] = v;
             dfs(G, w);
```

DFS: Buscar caminos Podemos armar el camino Podemos armar el camino

```
/**
       que conecta s con un vértice v
         recorriendo edgeTo desde v
                                    epth-first order starting from s.
               hasta llegar a s
public De
                                 cyListIntGraph G, int s) {
    this
    edgeTo = new int[G.V()];
    marked = new boolean[G.V()];
    this.G = G;
    dfs(G, s);
/**
 * @post Recursively traverses the graph G in Depth-first order
  w fue visitado en el
                        ncyListIntGraph G, int v) {
camino que viene desde v
                 J.adj(v)) {
         if (!ma_ked[w]) {
             edgeTo[w] = v;
             dfs(G, w);
```

DFS: Buscar caminos de un origen

w fue visitado en el camino que viene desde v ncyListIntGraph G, int v) {

```
if (!ma.ked[w]) {
    edgeTo[w] = v;
    dfs(G, w);
}
```


DFS: Buscar caminos desde un origen

```
/**
 * @pre 0 \le v \le V \&\& dfs(G, s) has been executed
 * @post Is there a directed path from the source vertex s to vertex v?
public boolean hasPathTo(int v) {
    isValidVertex(v);
    return marked[v];
/**
 * @pre 0 \le v \le V \&\& dfs(G, s) has been executed
 * @post Returns a directed path from the source vertex s
 * to vertex v, or null if no such path.
public List<Integer> pathTo(int v) {
    isValidVertex(v);
    if (!hasPathTo(v)) return null;
    LinkedList<Integer> path = new LinkedList<>();
    for (int x = v; x != s; x = edgeTo[x])
        path.addFirst(x);
    path.addFirst(s);
    return path;
```

DFS: Buscar caminos desde un origen

```
/**
 * @pre 0 \le v \le V \&\& dfs(G, s) has been executed
 * @post Is there a directed path from the source vertex s to vertex v?
public boolean hasPathTo(int v) {
    isValidVertex(v);
    return marked[v];
/**
 * @pre 0 \le v \le V \&\& dfs(G, s) has been executed
 * @post Returns a directed path from the source vertex s
 * to vertex v, or null if no such path.
public List<Integer> pathTo(int v) {
    isValidVertex(v);
    if (!hasPathTo(v)) return null;
    LinkedList<Integer> path = new LinkedList<>();
    for (int x = v; x != s; x = edgeTo[x])
        path.addFirst(x);
                                                                    edgeTo[]
    path.addFirst(s);
    return path;
```

```
/**
 * @pre 0 \le s \le G.V().
 * @post Traverses the graph in Breadth-first order starting from s.
 */
public void bfs(AdjacencyListIntGraph G, int s) {
   marked = new boolean[G.V()];
   edgeTo = new int[G.V()];
   Queue<Integer> q = new Queue<Integer>();
  marked[s] = true;
  q.enqueue(s);
  while (!q.isEmpty()) {
       int v = q.dequeue();
       for (int w : G.adj(v)) {
           if (!marked[w]) {
               marked[w] = true;
               edgeTo[w] = v;
               q.enqueue(w);
```

```
/**
 * @pre 0 <= s < G.V()
 * @post Traverses
                                  readth-first order starting from s.
                         O(V)
 */
public void bfs(Adjacer yLIStIntGraph G, int s) {
   marked = new boolean[G.V()];
   edgeTo = new int[G.V()];
   Queue<Integer> q = new Queue<Integer>();
  marked[s] = true;
  q.enqueue(s);
  while (!q.isEmpty()) {
       int v = q.dequeue();
       for (int w : G.adj(v)) {
           if (!marked[w]) {
               marked[w] = true;
               edgeTo[w] = v;
               q.enqueue(w);
```

```
/**
 * @pre 0 <= s < G.V()
 * @post Traverses
                                   readth-first order starting from s.
                          O(V)
 */
public void bfs(Adjacer yLIStIntGraph G, int s) {
   marked = new boolean[G.V()]:
   edgeTo = new int[G.V()
                              O(E): Cada arista se
   Queue<Integer> q = n
                         recorre una vez (no se vuelven a
   marked[s] = true;
                              recorrer para nodos
   q.enqueue(s);
                                   marcados)
   while (!q.isEmpty()) {
       int v = q.dequeue();
       for (int w : G.adj(v)) {
           if (!marked[w]) {
               marked[w] = true;
                edgeTo[w] = v;
               q.enqueue(w);
```

```
BFS es O(V+E)
               < G.V(
                                   readth-first order starting from s.
                          O(V)
public void bfs(Adjacer yLIStIntGraph G, int s) {
   marked = new boolean[G.V()]:
   edgeTo = new int[G.V()
                              O(E): Cada arista se
   Queue<Integer> q = n
                         recorre una vez (no se vuelven a
   marked[s] = true;
                              recorrer para nodos
   q.enqueue(s);
                                  marcados)
   while (!q.isEmpty()) {
       int v = q.dequeue();
       for (int w : G.adj(v)) {
           if (!marked[w]) {
               marked[w] = true;
               edgeTo[w] = v;
               q.enqueue(w);
```

```
BFS es O(V+E) < G. V()
                                   readth-first order starting from s.
             √erses
                          O(V)
public void bfs(Adjacer yLIStIntGraph G, int s) {
   marked = new boolean[G.V()]:
   edgeTo = new int[G.V()
                              O(E): Cada arista se
   Queue<Integer> q = n
                        recorre una vez (no se vuelven a
   marked[s] = true;
                              recorrer para nodos
   q.enqueue(s);
                                  marcados)
   while (!q.isEmpty()) {
       int v = q.dequeue();
       for (int w : G.adj(v)) {
           if (!marked[w]) {
               marked[w] = true;
               edgeTo[w] = v;
```

Ejercicio: Si cambiamos la cola por una pila obtenemos una implementación iterativa de DFS. Implementar DFS iterativo.

Breadth-first Search: Ejemplo

Breadth-first Search: Ejemplo

Breadth-first Search: Caminos más cortos

Breadth-first Search: Caminos más cortos

BFS computa los caminos más cortos (con mínima cantidad de aristas) entre el nodo origen y los nodos que alcanza

Breadth-first Search: Caminos más cortos

BFS computa los caminos más cortos (con mínima cantidad de aristas) entre el nodo origen y los nodos que alcanza

Primero pone en la cola todos los nodos a distancia 0 de s (s mismo), luego todos los nodos a distancia 1 de s, después los nodos a distancia 2, y así sucesivamente

Grafos genéricos

- Si bien fueron útiles para explicar más fácilmente los algoritmos, los grafos de enteros son muy limitados
- En muchas de las aplicaciones queremos guardar información en los nodos del grafo
 - Por ejemplo, el siguiente grafo modela (algunas de) las rutas aéreas entre aeropuertos de estados unidos

- Podemos extender fácilmente nuestra implementación anterior para soportar este tipo de aplicaciones
- Por ejemplo, asociando la información de los vértices con los índices (enteros) de los nodos en una estructura aparte (map)

Grafos genéricos

```
public interface Graph<T extends Comparable<? super T>> {
    /**
     * @post Returns the number of vertices in this graph. */
    public int V();
    /**
     * @post Returns the number of edges in this graph. */
    public int E();
    /**
     * @pre !containsVertex(v).
     * @post Adds the vertex with label v to this graph. */
    public void addVertex(T v);
    /**
     * @post Returns true iff there is a vertex with label v
     * in this graph. */
    public boolean containsVertex(T v);
    /**
     * @pre v and w are vertices of the graph
     * @post Adds the undirected edge v-w to this graph.*/
    public void addEdge(T v, T w);
}
```

Grafos genéricos

map: String -> Integer 3 fos genéricos

rafor genéricos

map: String -> Integer

keys: int -> String

cenérices map: String -> Integer keys: int -> String adj: int -> List<Integer> 10 int V JFK 0 JFK MC0 1 MCO ORD ORD 2 DEN adj DEN 3 HOU 0 DFW HOU 4 PHX DFW 5 **ATL** LAX PHX 6 9 LAS 4 ATL LAX 8 6 LAS 9 key value 8 ORD JFK DEN 9 ATL MCO

```
/**
 * AdjacencyListGraph implements a generic undirected graph.
 * Formally, a graph G=<V,E> consists of a set of vertices V,
   and a relation E in VxV that describes the edges of the graph.
 * This implementation uses an adjacency-lists representation, which
   is a vertex-indexed array of List objects.
 */
public class AdjacencyListGraph<T extends Comparable<? super T>>
  implements Graph<T> {
    // Number of vertices in the graph
    private int V;
    // Number of edges in the graph
   private int E;
    // T -> index
    private TreeMap<T, Integer> map;
    // index -> T
    private T[] keys;
    // Adjacency lists
    private List<Integer>[] adj;
```

```
/**
     * @pre V>=0
     * @post Initializes an empty graph that can store up to V vertices */
    public AdjacencyListGraph(int V) {
        if (V < 0)
            throw new IllegalArgumentException("Number of vertices must be non-
negative");
        this.V = 0;
        this.E = 0;
        adj = new LinkedList[V];
        map = new TreeMap<>();
        keys = (T[]) new Comparable[V];
    }
    /**
     * @pre 0<=v<V
     * @post Returns the name of the vertex associated with the integer v. */
    T nameOf(int v) {
        return keys[v];
    }
    /**
     * @pre containsVertex(v).
     * @post Returns the integer associated with the vertex named v. */
    int indexOf(T v) {
        return map.get(v);
    }
```

```
/**
     * @pre V>=0
     * @post Initializes an empty graph that can store up to V vertices */
    public AdjacencyListGraph(int V) {
        if (V < 0)
            throw new IllegalArgumentFr
                                                                            🗠 non-
                                           Podemos usar un arreglo que vaya
negative");
                                      creciendo dinámicamente, o un map, si fuera
        this.V = 0;
                                         necesario para la aplicación particular
        this.E = 0;
        adj = new LinkedList[V];
        map = new TreeMap<>();
        keys = (T[]) new Comparable[V];
    }
    /**
     * @pre 0<=v<V
     * @post Returns the name of the vertex associated with the integer v. */
    T nameOf(int v) {
        return keys[v];
    }
    /**
     * @pre containsVertex(v).
     * @post Returns the integer associated with the vertex named v. */
    int indexOf(T v) {
        return map.get(v);
    }
```

```
/**
 * @post Returns true iff there is no vertex with label v
 * in this graph.
public boolean containsVertex(T v) {
    return map.containsKey(v);
/**
 * @pre !containsVertex(v).
 * @post Adds the vertex with label v to this graph.
 */
public void addVertex(T v) {
    if (containsVertex(v))
        throw new IllegalArgumentException("Vertex already in the graph");
    int vid = V++;
    map.put(v, vid);
    adj[vid] = new LinkedList<>();
    keys[vid] = v;
```

```
/**
 * @pre 0 <= v < V && 0 <= w < V
 * @post Adds the undirected edge v-w to this graph.
 */
public void addEdge(T v, T w) {
    if (!containsVertex(v))
        throw new IllegalArgumentException("vertex " + v +
            " is not between 0 and " + (V-1));
    if (!containsVertex(w))
        throw new IllegalArgumentException("vertex " + w +
            " is not between 0 and " + (V-1));
    E++;
    int vid = indexOf(v);
    int wid = indexOf(w);
    adj[vid].add(wid);
    adj[wid].add(vid);
```

```
/**
  * @post Returns a string representation
  * of this graph.

*/
public String toString() {
    String s = "";
    for (int v = 0; v < V; v++) {
        s += nameOf(v) + ": ";
        for (int w : adj[v]) {
            s += nameOf(w) + " ";
        }
        s += '\n';
    }
    return s;
}</pre>
```

```
/**
  * @post Returns a string representation
  * of this graph.

*/
public String toString() {
    String s = "";
    for (int v = 0; v < V; v++) {
        s += nameOf(v) + ": ";
        for (int w : adj[v]) {
            s += nameOf(w) + " ";
        }
        s += '\n';
    }
    return s;
}</pre>
```



```
Output toString():

ATL: JFK HOU ORD MCO
DEN: ORD PHX LAS
DFW: PHX ORD HOU
HOU: ORD ATL DFW MCO
JFK: MCO ATL ORD
LAS: DEN LAX PHX
LAX: PHX LAS
MCO: JFK ATL HOU
ORD: DEN HOU DFW PHX JFK ATL
PHX: DFW ORD DEN LAX LAS
```

```
/**
  * @post Returns a string representation
  * of this graph.

*/
public String toString() {
    String s = "";
    for (int v = 0; v < V; v++) {
        s += nameOf(v) + ": ";
        for (int w : adj[v]) {
            s += nameOf(w) + " ";
        }
        s += '\n';
    }
    return s;
}</pre>
```



```
Output toString():

ATL: JFK HOU ORD MCO
DEN: ORD PHX LAS
DFW: PHX ORD HOU
HOU: ORD ATL DFW MCO
```

Ejercicio: Implementar grafos genéricos dirigidos, y las versiones dirigidas y no dirigidas de grafos genéricos con matrices de adyacencias

JFK ATL

PHX: DFW ORD DEN LAX LAS

Ejemplo: Grados de separación de Bacon

- Kevin Bacon es un actor muy prolífico, por lo que el grado de separación entre Bacon y la mayoría de los actores de Hollywood es un número pequeño
- El grado de separación entre Bacon y otro actor se calcula como:
 - Bacon tiene número 0
 - Cualquier actor que comparte elenco en una película con Bacon tiene número 1
 - Tienen número i+1 los actores que comparten elenco con cualquier actor que tiene número i

Podemos representar este problema con un grafo bipartito: un grafo de películas y actores, donde los actores sólo están conectados con películas, y las películas sólo están conectadas con actores

Representación de grafos en archivos

- Muchas veces es conveniente almacenar los grafos en archivos, y que las aplicaciones carguen estos archivos
- Usaremos el siguiente formato para representar grafos en archivos
- La primera línea indica la cantidad de vértices V (opcional)
- La segunda línea indica la cantidad de aristas E (opcional)
- Cada una de las líneas siguientes representa una arista
 - Tienen dos enteros i y j, que representan una arista entre los nodos i y j del grafo

Ejemplo: Grados de separación de Bacon

- Ejercicio: desarrollar algoritmos para computar los grados de separación entre dos actores cualquiera
 - Y los caminos más cortos (con menor cantidad de aristas) que los conectan
- Para esto, primero se deberá procesar un archivo como el que se muestra a continuación, que tiene una descripción en texto plano del grafo de actores y películas a utilizar, y cargarlo un grafo
 - El archivo será provisto por el equipo docente

```
wovies.txt
not explicitly
specified
...

Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/.../Geppi, Cindy/Hershey, Barbara...
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/.../Winslet, Kate/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/.../Bancroft, Anne/...
To Catch a Thief (1955)/París, Manuel/.../Grant, Cary/.../Kelly, Grace/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/.../Tucci, Maria...

movie

performers
```

Actividades

 Leer el capítulo 22 del libro "Introduction to Algorithms, 3rd Edition". T. Cormen, C. Leiserson, R. Rivest, C. Stein. MIT Press. 2009

Bibliografía

- "Algorithms (4th edition)". R. Sedgewick, K. Wayne.
 Addison-Wesley. 2016
- Implementaciones basadas en el código del repositorio del libro: https://github.com/kevin-wayne/algs4
- "Introduction to Algorithms, 3rd Edition". T. Cormen, C. Leiserson, R. Rivest, C. Stein. MIT Press. 2009
- "Data Structures and Algorithms". A. Aho, J. Hopcroft, J. Ullman. Addison-Wesley. 1983