Question 3

1D Harmonic Oscillator

3. 10 Marmonic oscillator.
$H(x_1p) = \frac{1}{2}kx^2 + \frac{p^2}{2m}$
2M
Hamilton's equations
$\tilde{x} = \frac{\partial H}{\partial P} = \frac{P}{m}$
9P m
p = - dH = - kn - 0
dn
From O, O,
$\frac{dp = -kn}{dt} = \frac{dn = P}{dt}$
dt out m
⇒ d(m) = - kn => mi = - Kn
it
Time evalution of n. P:
Time evalution of $x \cdot P$: $x(t) = A \sin(\omega t + \delta)$
P(+) = Amw sin(wt + 8)

After getting the Hamilton's equations from the equation of motion, we get the time evolution of position and momentum. For different values of H (determined by values of k,m)

Plotting the momentum vs position:

The trajectory is elliptical in nature as seen from the plot and the equation.

Plotting the Mean Squared Displacement:

The mean squared displacement is oscillatory in nature.