

Pré-Cálculo

1 Regras Básicas

Propriedades básicas das operações de adição e multiplicação

Quaisquer que sejam on números reais $a, b \in c$ tem-se:

1.
$$a + b = b + a$$

$$ab = ba$$

2.
$$(a+b) + c = a + (b+c)$$

$$a(bc) = (ab)c$$

3.
$$a + 0 = a$$

$$a.1 = a$$

4.
$$a + (-a) = 0$$

$$a.\frac{1}{a} = 1$$

$$5. \ a(b+c) = ab + ac$$

$$(b+c)a = ba + ac$$

Consequências das propriedades básicas

A) Cancelamento

Vamos supor que a + b = c. Se quisermos isolar a no primeiro membro, pela regra da balança, podemos somar -b a ambos os membros da igualdade, e assim obtermos a + b + (-b) = c + (-b). Como b + (-b) = 0, temos a = c + (-b) = c - b.

Suponhamos agora que ab=c, com $b\neq 0$. Se quisermos isolar a, multiplicamos ambos os membros da igualdade por 1/b, o que é permitido pela regra da balança. obtemos

$$ab.\frac{1}{b} = c.\frac{1}{b}$$

e como b.(1/b)=1, a.1=a, o primeiro membro vale a, de modo que $a=c.\frac{1}{b}=\frac{c}{b}$

B) Anulamento

Registraremos a seguir duas propriedades envolvendo o número 0:

Regra do fator nulo. Qualquer que seja a real,

$$a.0 = 0.a = 0$$

Regra do produto nulo. Sendo a e b números reais, tem-se: a.b = 0 então ou a = 0 ou b = 0 ou ainda a = b = 0

C)Regras de sinal

Para quaisquer a e b reais tem-se:

$$1. -(-a) = a$$

2.
$$(-a)b = -(ab) = a(-b)$$

3.
$$(-a)(-b) = ab$$

Regras de potenciação

Sendo a um número real, definimos:

$$a^1 = a$$
 e $a^n = a.a.a....a(n \text{ fatores})$

$$a^0 = 1 \qquad e \qquad a^{-n} = \frac{1}{a^n}$$

Sendo a, b, m e n números reais, tem-se:

$$1. \ a^{m+n} = a^m a^n$$

$$2. \ a^{m-n} = \frac{a^m}{a^n}$$

3.
$$(a^m)^n = a^{mn}$$

$$4. (ab)^n = a^n b^n$$

$$5. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Propriedades da subtração

Quaisquer que sejam on números reais $a,\,b$ e c tem-se:

$$b - a = b + (-a)$$
 $a(b - c) = ab - ac$ $(b - c)a = ba - ac$

Propriedades de frações

$$\frac{b}{a} = b.\frac{1}{a}$$

 $\mathbf{ATENC\tilde{A}O}:$ Por definição, pressupõe-se $a\neq 0,$ ou seja, é proibido dividir por 0.

Uma fração não se altera se multiplicarmos numerador e denominador por um mesmo número não nulo.

2

Regras de sinais para frações

Para quaisquer a e b reais tem-se:

$$1. \ \frac{-b}{a} = \frac{b}{-a} = -\frac{b}{a}$$

$$2. \ \frac{-b}{-a} = \frac{b}{a}$$

Soma de frações

1.
$$\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c} \ (c \neq 0)$$

2.
$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd} \ (b \neq 0, d \neq 0)$$

Produto de frações

Se
$$b \neq 0$$
 e $d \neq 0$, então

$$\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$$

Quociente de frações

Se
$$b \neq 0$$
, $d \neq 0$ e $c \neq 0$, então

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b}\frac{d}{c}$$

3

2 Expressões Algébricas

Produtos notáveis

1.
$$(x+a)(x-a) = x^2 - a^2$$

2.
$$(x+a)^2 = x^2 + 2ax + a^2$$
 $(x-a)^2 = x^2 - 2ax + a^2$

3.
$$(x+a)^3 = x^3 + 3ax^2 + 3a^2x + a^3$$
 $(x-a)^3 = x^3 - 3ax^2 + 3a^2x - a^3$

Módulo ou valor Absoluto

$$|a| = \begin{cases} a & \text{se } a \ge 0\\ -a & \text{se } a < 0 \end{cases}$$

Propriedades de módulo

1.
$$|a| \ge 0$$
 e $|a| = 0$ se e somente se $a = 0$

2.
$$|ab|=|a||b|$$
e se $b\neq 0$ então $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$

3.
$$|-a| = |a|$$

4.
$$|a|^2 = a^2$$

5.
$$|a+b| \le |a| + |b|$$

- 6. $|a| |b| \le |a b|$
- 7. |x| < a se e somente se -a < x < a em que a > 0
- 8. $|x| \le a$ se e somente se $-a \le x \le a$ em que a > 0
- 9. |x| > a se e somente se x > a ou x < -a em que a > 0
- 10. $|x| \ge a$ se e somente se $x \ge a$ ou $x \le -a$ em que a > 0

Radiciação

Seja $b \ge 0$ um número real e n > 1 um inteiro par. Chama-se **raiz n-ésima** de b ao número $a \ge 0$ tal que $a^n = b$. Indica-se $a = \sqrt[n]{b}$. b é chamado de **radicando**, $\sqrt{}$ é o chamado **radical** e n o **índice**.

Sendo b um número real e n > 1 um inteiro ímpar, o único número a tal que $a^n = b$ é chamado de **raiz n-ésima** de b. Indica-se $a = \sqrt[n]{b}$.

Propriedades de radiciação

Valem as propriedades, para n, p, m inteiros, n > 1, m > 1:

1.
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$2. \quad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \qquad (b \neq 0)$$

$$3. \ (\sqrt[n]{a}^m) = \sqrt[n]{a^m}$$

$$4. \sqrt[p]{\sqrt[n]{a}} = \sqrt[pn]{a}$$

Observações:

- $\bullet \,$ Se n for par, então $a \geq 0$ e $b \geq 0$
- Se m < 0, então $a \neq 0$

Alguns erros a serem evitados

Este parágrafo se destina a citar alguns erros, que são destacados pelo fato de serem comuns. Preste atenção para não cometê-los.

- 1. Confundir $-|-x| \cos -(-x)$.
- 2. Confundir $(-x)^2$ com $-x^2$.
- 3. Escrever -(a+b) como -a+b.
- 4. Concluir que se x < a então cx < ca.
- 5. Escrever $(x+a)^2$ como $x^2 + a^2$.

- 6. Em uma fração, cancelar uma parcela do numerador com uma parcela do denominador.
- 7. Escrever $\sqrt{x+a}$ como $\sqrt{x}+\sqrt{a}$.
- 8. Escrever 2 > x > 6, como equivalente a x < 2 ou x > 6.
- 9. Confundir $a + bc \operatorname{com} (a + b)c$.
- 10. Confundir a^{b^c} com $(a^b)^c$

Conjunto: Uma coleção de zero ou mais elementos, na maioria das vezes com alguma característica em comum. Notação: A, B, C etc. Os elementos de um conjunto são representados por letras minúsculas: a, b, c etc.

 $y \notin A$ Relação de pertinência: $x \in A$

Subconjuntos: $A \subset B$ Conjunto vazio: Ø

Conjunto Universo: E ou S ou Ω .

$$A = B \Leftrightarrow A \subset B \in B \subset A$$

Operações entre conjuntos: Sejam P e Q dois conjuntos de um mesmo conjunto universo E.

Intersecção: $P \cap Q = \{x \in E | x \in P \text{ e } x \in Q\}$

União: $P \cup Q = \{x \in E | x \in P \text{ ou } x \in Q\}$

Complementar de um conjunto: P^c ou $\tilde{P} = \{x \in E | x \notin P\}$

Conjuntos Numéricos

Conjunto dos números naturais (N)

$$\mathbb{N} = \{0, 1, 2, 3...\}$$

Conjunto dos números inteiros (\mathbb{Z})

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3...\}$$

Conjunto dos números racionais (Q)

$$\mathbb{Q} = \{ \frac{p}{q} | p \in \mathbb{Z}, 0 \neq q \in \mathbb{Z} \}$$

Os números racionais podem ser representados na forma decimal quando se efetua a divisão de p por q.

Exemplos: $\frac{2}{10} = 0, 2;$ $\frac{12}{5} = 2, 4;$ $\frac{1}{3} = 0, 3333...$ $\frac{5}{11} = 0, 454545... = 0, 4\overline{5}.$ Mas nem todos os números podem ser representados na forma $\frac{p}{a}$

Exemplo: a medida da diagonal de um quadrado de lado igual a 1 unidade.

Surgem então os números que não têm representação fracionária, os quais são chamados de números irracionais (\mathbb{I}) .

Outros exemplos: $\sqrt{3}$, $-\sqrt{2}$, π etc.

Tem-se então:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \in \mathbb{Q} \cup \mathbb{I} = \mathbb{R}$$

Esse novo conjunto é denominado de conjunto dos números reais.

Intervalos

Sejam a e b dois números reais, com a < b. Um intervalo em $\mathbb R$ é um subconjunto de $\mathbb R$ que tem uma das seguintes formas:

Representação geométrica

1.
$$[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$$

2.
$$]a, b[= \{x \in \mathbb{R} | a < x < b\}]$$

3.
$$|a, b| = \{x \in \mathbb{R} | a < x \le b\}$$

4.
$$[a, b] = \{x \in \mathbb{R} | a \le x < b\}$$

5.
$$] - \infty, a = \{x \in \mathbb{R} | x < a\}$$

6.
$$] - \infty, a] = \{x \in \mathbb{R} | x \le a\}$$

7.
$$[a, \infty[=\{x \in \mathbb{R} | x \ge a\}]$$

8.
$$]a, \infty[=\{x \in \mathbb{R} | x > a\}]$$

9.
$$]-\infty,\infty[=\mathbb{R}$$

Observação: $-\infty$ e ∞ não são números, são apenas símbolos.