Goal: think of the equation $A\mathbf{x} = \mathbf{b}$ in terms of the "multiplication by A" function: its input is \mathbf{x} and its output is \mathbf{b} .

$$2^2 = 4$$
$$3^2 = 9$$

Think of this as:
$$\frac{2}{3}$$
 squaring

$$\begin{bmatrix} -4 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 9 \end{bmatrix}$$

Think of this as:
$$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
 multiply by A $\begin{bmatrix} 10\\9 \end{bmatrix}$

6

$$\begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

 ∞ ∞

HKBU Math 2207 Linear Algebra

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \text{multiply by } A \quad \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \text{multiply by } A \qquad \boxed{4}$$

Semester 1 2016, Week 4, Page 1 of 22

Definition: A function f from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $f(\mathbf{x})$ in \mathbb{R}^m . We write $f:\mathbb{R}^n \to \mathbb{R}^m$.

f(x) is the image of x under f. images. It is a subset of the \mathbb{R}^m is the *codomain* of f. The range is the set of all \mathbb{R}^n is the *domain* of f. codomain.

Its domain = codomain = \mathbb{R} , its range = {zero and positive numbers}. **Example**: $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$.

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 4, Page 2 of 22

Examples:

 $g:\mathbb{R}^2 o \mathbb{R}^2$, given by reflection through the x_2 -axis.

$$g\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}.$$

 $k: \mathbb{R}^2 \to \mathbb{R}^2$, given by dilation by a factor of 3.

 $h: \mathbb{R}^3 o \mathbb{R}^2$, given by the matrix transformation $h(\mathbf{x}) = ig|$

The range of f is the plane z=0.

 $f:\mathbb{R}^2 o \mathbb{R}^3$, defined by f (

Examples:

 $k(\mathbf{x}) = 3\mathbf{x}.$

HKBU Math 2207 Linear Algebra

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 4, Page 3 of 22

Definition: A function $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if:

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T; 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and for all \mathbf{u} in the domain of T.

A line through the point $\mathbf p$ in the direction $\mathbf v$ is the set $\mathbf p+s\mathbf v$, where s is any number. For your intuition: the name "linear" is because these functions preserve lines: If T is linear, then the image of this set is

$$T(\mathbf{p} + s\mathbf{v}) \stackrel{1}{=} T(\mathbf{p}) + T(s\mathbf{v}) \stackrel{2}{=} T(\mathbf{p}) + sT(\mathbf{v}),$$

the line through the point $T(\mathbf{p})$ in the direction $T(\mathbf{v})$. (If $T(\mathbf{v}) = \mathbf{0}$, then the image is just the point $T(\mathbf{p})$.)

Fact: A linear transformation T must satisfy $T(\mathbf{0}) = \mathbf{0}$.

Proof: Put c = 0 in condition 2.

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 4, Page 5 of 22

Definition: A function $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if: 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} , in the domain of T. 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T; **Example**: $f\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}x_1^3x_2\\2x_2\\0\end{bmatrix}$ is not linear: $f\left(2\begin{bmatrix}1\\1\end{bmatrix}\right) = f\left(\begin{bmatrix}2\\2\end{bmatrix}\right) = \begin{bmatrix}16\\4\\0\end{bmatrix}.$ Take $\mathbf{u} = egin{bmatrix} 1 \\ 1 \end{bmatrix}$ and c=2:

HKBU Math 2207 Linear Algebra

 $2f\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = 2\begin{bmatrix}1\\2\\0\end{bmatrix} = \begin{bmatrix}2\\4\\4\end{bmatrix} \neq \begin{bmatrix}16\\4\\0\end{bmatrix}.$

Semester 1 2016, Week 4, Page 6 of 22

So condition 2 is false for f.

Definition: A function $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if:

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
- $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} , in the domain of T.

Alternatively, we can combine the two conditions at the same time, and check just one statement: $T(c\mathbf{u}+d\mathbf{v})=cT(\mathbf{u})+dT(\mathbf{v})$, for all scalars c,d and all

Example: $k(\mathbf{x}) = 3\mathbf{x}$ (dilation by a factor of 3) is linear:

1. $g\left(\begin{bmatrix}u_1+v_1\\u_2+v_2\end{bmatrix}\right)=\begin{bmatrix}-u_1-v_1\\u_2+v_2\end{bmatrix}=\begin{bmatrix}-u_1\\u_2\end{bmatrix}+\begin{bmatrix}-v_1\\v_2\end{bmatrix}=g\left(\begin{bmatrix}u_1\\u_2\end{bmatrix}\right)+g\left(\begin{bmatrix}v_1\\v_2\end{bmatrix}\right).$

Example: $g\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}-x_1\\x_2\end{bmatrix}$ (reflection through the x_2 -axis) is linear:

Definition: A function $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if: 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T; 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} , in the domain of T. Alternatively, we can combine the two conditions at the same time, and check just one statement: $T(c\mathbf{u}+d\mathbf{v})=cT(\mathbf{u})+dT(\mathbf{v})$, for all scalars c,d and all

2. $g\left(\begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}\right) = \begin{bmatrix} -cu_1 \\ cu_2 \end{bmatrix} = c \begin{bmatrix} -u_1 \\ u_2 \end{bmatrix} = cg\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\right)$.

$$k(\mathbf{cu} + d\mathbf{v}) = 3(\mathbf{cu} + d\mathbf{v}) = 3\mathbf{cu} + 3d\mathbf{v} = k(\mathbf{cu}) + k(d\mathbf{v}).$$

Important Example: All matrix transformations $T(\mathbf{x}) = A\mathbf{x}$ are linear:

$$T(\mathbf{c}\mathbf{u} + d\mathbf{v}) = A(\mathbf{c}\mathbf{u} + d\mathbf{v}) = A(\mathbf{c}\mathbf{u}) + A(d\mathbf{v}) = cA\mathbf{u} + dA\mathbf{v} = cT(\mathbf{u}) + dT(\mathbf{v}).$$

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 4, Page 7 of 22

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 4, Page 8 of 22

In general:

Write e_i for the vector with 1 in row i and 0 in all other rows.

For example, in
$$\mathbb{R}^3$$
, we have $\mathbf{e_1}=\begin{bmatrix}1\\0\\0\end{bmatrix}$, $\mathbf{e_2}=\begin{bmatrix}0\\1\\0\end{bmatrix}$, $\mathbf{e_3}=\begin{bmatrix}0\\1\\1\end{bmatrix}$.

$$\{\mathbf{e_1},\dots,\mathbf{e_n}\}$$
 span \mathbb{R}^n , and $\mathbf{x}=egin{array}{c} dots \ dots \ x_n \ dots \ x_n \ \end{array} = x_1\mathbf{e_1}+\dots+x_n\mathbf{e_n}.$

So, if $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then

$$T(\mathbf{x}) = T(x_1 \mathbf{e_1} + \dots x_n \mathbf{e_n}) = x_1 T(\mathbf{e_1}) + \dots x_n T(\mathbf{e_n}) = \begin{bmatrix} | & | & | & | \\ T(\mathbf{e_1}) & \dots & T(\mathbf{e_n}) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 4, Page 10 of 22

Theorem 10: The matrix of a linear transformation: Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation: $T(\mathbf{x}) = A\mathbf{x}$ where A is the *standard matrix for* T, the $m \times n$ matrix given by

$$A = \begin{bmatrix} | & | & | & | \\ T(\mathbf{e}_1) & \dots & T(\mathbf{e}_n) \end{bmatrix}.$$

Example: $k: \mathbb{R}^2 o \mathbb{R}^2$, given by dilation by a factor of 3, $k(\mathbf{x}) = 3\mathbf{x}$

$$k(\mathbf{e_1}) = k\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = 3\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\0\end{bmatrix}, \quad k(\mathbf{e_2}) = k\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = 3\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\3\end{bmatrix}.$$

So the standard matrix of k is $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$, i.e. $k(\mathbf{x}) = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \mathbf{x}$.

Example: $g\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}-x_1\\x_2\end{bmatrix}$ (reflection through the x_2 -axis):

Indeed, $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}.$

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix}$$

Projection onto the x_1 -axis

Image of the	Standard Matrix
Unit Square	เงาสเกา
$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	

Vertical Contraction and Expansion

EXAMPLE: $T:\mathbb{R}^2\to\mathbb{R}^2$ given by rotation counterclockwise about the origin through an angle ϕ :

Other ways of saying this:

- ullet The range is all of the codomain \mathbb{R}^m
- The equation $f(\mathbf{x}) = \mathbf{y}$ always has a solution.

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one (injective) if each \mathbf{y} in \mathbb{R}^m is the image of at most one ${f x}$ in ${\Bbb R}^n$

Other ways of saying this:

- ??? (something that only works for linear transformations)
- The equation $f(\mathbf{x}) = \mathbf{y}$ has no solutions or a unique solution.

HKBU Math 2207 Linear Algebra Semester 1 2016, Week 4, Page 16 of 22

Example: $f: \mathbb{R}^2 o \mathbb{R}^3$, defined by $f\left(\left|rac{x_1}{x_2}\right|
ight.$

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one (injective) if each y in \mathbb{R}^m is

the image of at most one \mathbf{x} in \mathbb{R}^n .

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *onto* (surjective) if each \mathbf{y} in \mathbb{R}^m is the image of at least one \mathbf{x} in \mathbb{R}^n .

$$f$$
 is not onto, because $f(\mathbf{x})=\begin{bmatrix}0\\0\\1\end{bmatrix}$ does not have a solution. Indeed, the range of f is the plane $z=0$.

$$f$$
 is one-to-one: the solution to $f(\mathbf{x})=egin{bmatrix} y_2 \ y_2 \end{bmatrix}$ is $x_2=rac{1}{2}y_2$, $x_1=rac{3}{y_2}$.

Semester 1 2016, Week 4, Page 17 of 22

HKBU Math 2207 Linear Algebra

There is an easier way to check if a linear transformation is one-to-one:

Definition: The *kernel* of a linear transformation $T:\mathbb{R}^n
ightarrow \mathbb{R}^m$ is the set of solutions to $T(\mathbf{x}) = \mathbf{0}$.

Fact: If $T({f v_1})=T({f v_2})$, then ${f v_1}-{f v_2}$ is in the kernel of T.

Example: Let T be projection onto the x_1 -axis.

The kernel of T is the x_2 -axis.

$$egin{aligned} & \Gamma\left(egin{bmatrix}2\\2\\-\end{bmatrix} = T\left(egin{bmatrix}2\\1\end{bmatrix}\right) = \begin{bmatrix}2\\0\end{bmatrix}. \\ & \text{which is in the kernel.} \end{aligned}$$

Proof of Fact: If
$$T(\mathbf{v_1}) = T(\mathbf{v_2}) = \mathbf{y}$$
, then $T(\mathbf{v_1} - \mathbf{v_2}) = T(\mathbf{v_1}) - T(\mathbf{v_2}) = \mathbf{y} - \mathbf{y} = \mathbf{0}$.

HKBU Math 2207 Linear Algebra

There is an easier way to check if a linear transformation is one-to-one:

Definition: The *kernel* of a linear transformation $T:\mathbb{R}^n\to\mathbb{R}^m$ is the set of solutions to $T(\mathbf{x})=\mathbf{0}$.

Fact: If $T(\mathbf{v_1}) = T(\mathbf{v_2})$, then $\mathbf{v_1} - \mathbf{v_2}$ is in the kernel of T.

Theorem: A linear transformation is one-to-one if and only if its kernel is $\{0\}$.

Warning: this only works for linear transformations. For other functions, the solution sets of $f(\mathbf{x}) = \mathbf{y}$ and $f(\mathbf{x}) = \mathbf{0}$ are not related

Proof:

Suppose T is one-to-one. So $T(\mathbf{x})=\mathbf{0}$ has at most one solution. Since $\mathbf{0}$ is a solution, it must be the only one. So its kernel is $\{0\}$ Suppose the kernel of T is $\{0\}$. Then, from the Fact, if there are vectors ${\bf v_1},{\bf v_2}$ with $T(\mathbf{v_1}) = T(\mathbf{v_2}) = \mathbf{y}$, then $\mathbf{v_1} - \mathbf{v_2} = \mathbf{0}$, i.e. $\mathbf{v_1} = \mathbf{v_2}$.

Theorem: Uniqueness of solutions to linear systems: For a matrix A, the

following are equivalent:

a. $A\mathbf{x} = \mathbf{0}$ has no non-trivial solution.

b. If Ax = b is consistent, then it has a unique solution.

c. The columns of A are linearly independent. d. rref(A) has a pivot in every column (i.e. all variables are basic).

e. T is a one-to-one function.

The range of a linear transformation $T:\mathbb{R}^n \to \mathbb{R}^m$ is the set of images, i.e. the set of \mathbf{y} in \mathbb{R}^m with $T(\mathbf{x}) = \mathbf{y}$ for some \mathbf{x} . So, if A is the standard matrix of T, then the range of T is the set of ${f b}$ for which $A\mathbf{x} = \mathbf{b}$ has a solution.

So the range of T is the span of the columns of A.

Example: The standard matrix of projection onto the x_1 -axis is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Its range is the x_1 -axis, which is also Span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$.

HKBU Math 2207 Linear Algebra

HKBU Math 2207 Linear Algebra Semester 1 2016, Week 4, Page 20 of 22

Semester 1 2016, Week 4, Page 21 of 22

So the range of T is the span of the columns of A.

For a linear transformation $T:\mathbb{R}^n o\mathbb{R}^m$ whose standard matrix is ATheorem 4: Existence of solutions to linear systems: For an $m \times n$ matrix

4. the following statements are logically equivalent (i.e. for any particular matrix

A, they are all true or all false)

a. For each ${\bf b}$ in \mathbb{R}^m , the equation $A{f x}={f b}$ has a solution

b. Each b in \mathbb{R}^m is a linear combination of the columns of A.

c. The columns of A span \mathbb{R}^m . d. rref(A) has a pivot in every row.

T is onto