Today

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search
- Graph Search

Recap: Search

Recap: Search

- Search problem:
 States (configurations of the world)
 Actions and costs
 Successor function (world dynamics)
 Start state and goal test

- Search tree:
 Nodes: represent plans for reaching states
 Plans have costs (sum of action costs)
- Search algorithm:
 Systematically builds a search tree
 Chooses an ordering of the frontier (unexplored nodes)
 Optimal: finds least-cost plans

Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!

- The bad:
 Explores options in every "direction"
 No information about goal location

Video of Demo Contours UCS Empty

Video of Demo Contours UCS Pacman Small Maze

Informed Search

What we would like to have happen

Guide search towards the goal instead of all over the place

Informed

Uninformed

Search Heuristics A heuristic is: A function that estimates how close a state is to a goal Designed for a particular search problem Examples: Manhattan distance, Euclidean distance for pathing

Romanian Heuristic | Tendanger | 100 | 10

Henristic

-a function that estimates how close the current State is to a goal.

-designed for a particular search problem

9 Sometimes, an idiot, other times a sevant

- Essentially, DFS (or BFS) with PQ

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

Combining UCS and Greedy

Is A* Optimal?

What went wrong?

- Actual bad solution cost < estimated good solution cost
- We need estimates to be less than actual costs!

Optimal:

> Our heuristic SUCKSI

our estimates need to be less than or equal to actual 605+5

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Stop when you dequeue the goal, not enqueue it

Admissible Heuristics

Idea: Admissibility

Snitty

Less Shitty

A "bad" heuristic will break optimality by trapping good plans on the frontier.

UNDERESTIMATE

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

 $0 \le h(n) \le h^*(n)$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

- Coming up with admissible heuristics is most of what's involved in using A* in practice.
- As we will talk about later, these should also be fast to compute.

if my heuristic guest is positive and less than the true cost to the nearest goal. In other words, a heuristic is optimistic if its positive and less than the actual true cost. NOT OURY W OVERESTIMATING

15 is closer to true cost

Optimality of A* Tree Search

Optimality of A* Tree Search

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

- A will be chosen for expansion before B
- In other words, A will exit the frontier before B

Optimality of A* Tree Search: Blocking

- Imagine B is on the frontier
- Imagine B is on the frontier
 Some ancestor n of A is on the frontier, too (maybe A itself!)
 Claim: n will be expanded before B
- - 1. f(n) is less than or equal to f(A

f(n) = g(n) + h(n)g(A) = f(A)

Definition of f-cost Admissibility of h h = 0 at a goal

Optimality of A* Tree Search: Blocking

- Some ancestor n of A is on the frontier, too (maybe A itself!)
- Claim: n will be expanded before B 1. f(n) is less than or equal to f(A)
- 2. f(A) is less than f(B)-

 $g(A) \leq g(B)$ f(A) < f(B)

h = 0 at a goal

Optimality of A* Tree Search: Blocking

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A itself!)
- Claim: n will be expanded before B
- 1. f(n) is less than or equal to f(A)
- All ancestors of A are expanded before B
- A is expanded before B A* tree search is optimal

 $f(n) \leq f(A) < f(B)$

backwar &

- \bigcirc $f(v) \leq f(A)$
- ② F(A) ≤ F(B)
- 3) ... n exits before B

Proof:

$$F(A) = g(A) + h(A)$$

$$g(n) \leq g(A) \implies h(n) \leq g(A) - g(n)$$

of n to A. h(n) has to UNDER estimate this distancel

$$\xi(n) \leq g(n) + g(A) - g(n)$$

$$\xi(n) \leq g(A)$$

$$\xi(u) = \partial(u) + \mu(u)$$

g(A) < g(B)

UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Comparison

Greedy (h)

Uniform Cost (g)

A* (g+h)

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- · Speech recognition
- Protein design
- Chemical synthesis
-

Creating Heuristics

$$\xi(A) \leq g(A) + 0$$

$$\Rightarrow \xi(A) = g(A)$$

$$g(n) \leq g(A) \implies h(n) \leq g(A) - g(n)$$
Lyunder estimate!

$$f(n) = g(n) + h(n)$$

$$A(A) = g(A) + h(A)$$

$$F(A) = g(A)$$

$$g(n) \leq g(A)$$

$$f(n) = g(n) + h(n)$$
 $f(A) = g(A) + h(A)$
 $f(A) \leq f(A) \leq f(B)$

- Most of the work in solving hard search problems optimally is in finding admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

- Problem P_2 is a relaxed version of P_1 if $A_2(s) ⊇ A_1(s)$ for every s
- Theorem: $h_2^*(s) \le h_1^*(s)$ for every s, so $h_2^*(s)$ is admissible for P_1
- Inadmissible heuristics are often useful too (will discuss later why!)

> Take some of the "lestrictions" and throw them away example: removing walls i manhattan >relaxed problem = under estimate

Example: 8 Puzzle

• What are the states?

- How many states?
- What are the actions?What are the step costs?

8 Puzzle I

- · Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
A*TILES	13	39	227		

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

anny white	ornissione i		
h(start) =	3 + 1 + 2 + = 18		

	Average nodes expanded when the optimal path has		
	4 steps	8 steps	12 steps
A*TILES	13	39	227
A*MANHATTAN	12	25	73

Heuristic > how far am I from the thing thing stelaxed problem: manipulate however you want

and make heuristic

- How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

• Dominance: $h_i \ge h_c$ if $y_i \ge h_c$ in $y_i \ge$

find the Silver lining

Graph Search

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work.

Graph Search

* In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

Idea: never expand a state twice

Yes,

A* Graph Search Gone Wrong?

State space graph

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 - h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc $h(A) - h(C) \leq \cos(A \text{ to } C)$
- Consequences of consistency:
- The f value along a path never decreases

 $h(A) \le cost(A \text{ to } C) + h(C)$

A* graph search is optimal

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:

 A* is optimal if heuristic is admissible
 UCS is a special case (h = 0)

- Consistency implies admissibility
- Most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

