3D Graphics and Animation Space, Camera and Projection

Recap

- In the last lecture, we studied concepts of vector, matrix and transformation for 3D graphics
- These are the basics for understanding objects represented in 3D and basic methods to manipulate them

- Start from 3D object and finally displayed on the 2D screen
- The objects are being transformed to various spaces, they include
 - Object Space
 - World Space
 - Camera Space
 - Screen Space

- To convert between spaces, different matrices are involved
 - Model Matrix
 (From object space to world space)
 - View Matrix(From world space to camera space)
 - Projection Matrix(From camera space to screen space)

Object Space

- Local coordinate system of the 3D geometrical objects
- In OpenGL, it is the space whenever the 3D geometry is being created
 - E.g. a cube created about origin

The vertices' coordinates:

World Space

- The space where all objects are positioned
 - E.g. our cube are moved to the desired place in the world space's coordinate frame
 - We can do this by multiplying the vertices of the cube with the Model Matrix

Example

 A vertex (-1,1,1) in object space is going to transform into world space by the following Matrix M_{model}

$$\mathbf{M}_{\text{model}} = \begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{M}_{\text{model}} \mathbf{v} = \begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 + 10 \\ 1 - 3 \end{bmatrix} = \begin{bmatrix} 9 \\ -2 \end{bmatrix}$$

$$\mathbf{M}_{\text{model}} \mathbf{v} = \begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1+10 \\ 1-3 \\ 1-6 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ -2 \\ -5 \\ 1 \end{bmatrix}$$

Camera Space / Eye Space

 The space where the camera is being the center (origin)

 Moving a Video Camera Backward is the same as moving the filmed object forward

Example

A vertex (9,-2,-5) in world space is going to transform into camera space by the following Matrix M_{view}

$$M_{view} =$$

$$\begin{bmatrix} 0.707 & -0.707 & 0 & -1 \\ 0.707 & 0.707 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{View}_{\text{view}} \mathbf{V} = \begin{bmatrix} 0.707 & -0.707 & 0 & -1 \\ 0.707 & 0.707 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 9 \\ -2 \\ -5 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 9 \times 0.707 + 2 \times 0.707 - 1 \\ 9 \times 0.707 - 2 \times 0.707 + 2 \\ -5 + 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6.777 \\ 6.949 \\ -3 \\ 1 \end{bmatrix}$$

Camera Space / Eye Space

- In some rendering engine, e.g. OpenGL, the Camera is always set at the world's center
 - So, The Model and View Matrix are being combined to form the ModelView Matrix instead
- Using the examples above

$$\mathbf{M}_{\text{modelview}} = \mathbf{M}_{\text{model}} \mathbf{M}_{\text{view}} = \begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.707 & -0.707 & 0 & -1 \\ 0.707 & 0.707 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Screen Space

- In the camera space, we already have all vertices in a position viewing from the camera
- The last process is the projection of 3D vertices to the 2D coordinates on the screen/film of a camera

 The process of projection is a bit complicated and will be explained in detail in later slides

- Some of the spaces (e.g. world space) are more conceptual than necessary to be explicitly included in the rendering process
 - E.g. in OpenGL world space = camera space

- However, space transformation can simplify the computation in each step
- As things can be computed based on the most convenient coordinate system
- We will see how it benefit the computation of projection if we do that in the camera space
 - i.e. the formation of projection matrix

Camera and Projection

Camera in Real World

- Both camera and eyes contains
 - LENS
 - Projection plane

Camera: Film

Eye: Retina

Things will look blurry without lens

Nidek Co. Ltd.

Camera in Real World

 Since we have a large aperture, it causes light from different objects overlap

scratchapixel.com

This overlap causes the blurriness

Camera in Real World

- The projection will look less blurry when the aperture size decreases
- No matter far or near, all objects will look sharp and clear

Camera in 3D Graphics

- The light transfer in lens are complicated
- Usually we will use a simple camera model without lens
- Pinhole camera model
 - Assume an infinitely small sized aperture
 - No lens (so, no depth of field)

The Boy Scientist. 1925

scratchapixel.com

View Projections

- It is common that we move the projection plane to the front, so that the projection is not inverted in our virtual camera
- Also, this simplified the computation of projection in the virtual camera

Perspective vs Parallel

- In CG, 2 common view projections are
 - Parallel/Orthographic project
 - Perspective projection
- But we can still treat all projections the same way
 - again by matrix multiplication

Orthographic Projection

 All projection lines are orthogonal (perpendicular) to the projection plane

- Preserves both distances and angles
 - Shapes preserved
 - Suitable for measurements

Orthographic Projection

- Commonly used in graphics design and Computer Aided Design (CAD)
 - Frontal, Rear, Top views

The Orthographic Projection Matrix

 Assume an orthographic projection is onto a projection plane at z = 0, its projection matrix is

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• So, for any vertex v

$$\mathbf{P}\boldsymbol{v} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \\ 1 \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{z}$$

The Orthographic Projection Matrix

- The effect is simply ignoring the z coordinate
- No change of the x and y coordinates
- Example, v = (3,5,10), the projected vertex will be (3,5) on the projection plane

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 10 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 0 \\ 1 \end{bmatrix}$$

Perspective Projection

- All projection lines converge to a point : the center of projection (COP)
 - COP is the aperture of camera

Perspective Projection

- Objects further from viewer are projected smaller than the same sized objects closer to the viewer
 - Looks realistic
 - Feeling of depth
- More difficult to construct by hand than parallel projections (but not more difficult by computer)

Perspective Projection Matrix

- Let's look at the projection of a vertex (x,y,z) from one side
- By rule of similar triangles, we have ratio:

$$y_s = \frac{d}{z}y$$

This also applies to x direction, i.e.

$$x_{s} = \frac{d}{z}x$$

Perspective Projection Matrix

- Finally, projected z_s will always be d

According to the above
$$Pv = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$Pv = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathsf{P}v = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} y \\ z \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} \xrightarrow{\text{Convert from homogenous coordinates}}$$

$$= > \left(\frac{d}{z}x, \frac{d}{z}y, d\right)$$

Clipping planes

- To save computational power, virtual camera commonly included clipping planes
 - Only objects within the clip volume (frustum) are included
 - Things far away are not included

Clipping planes in Orthographic and perspective projections

- In both orthographic and perspective projection
 - Near plane (commonly used as the projection plane)
 - Far plane

Clipping Planes

Far Clip Plane

Perspective Projection Matrices

- Apart from the near plane position n and far plane position f
- The viewing frustum is also defined by the top, bottom, left and right positions
 - They are corresponding to t,b,l,r in the following figures

Perspective Matrix

$$\mathbf{M}_{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & (n+f)/n & -f \\ 0 & 0 & 1/n & 0 \end{bmatrix} \equiv \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- This matrix the simple projection matrix, but it does some extra things to z to map the depth properly
 - Other projection matrix configuration will map z non-linearly
- We can multiply a homogenous matrix by any number without changing the final point, so the two matrices above have the same effect

Perspective Matrix

- This perspective matrix will map the z-coordinate nicely and suitable to use in hidden surface removal (more details in later lectures)
 - It will preserve the relative order of z after projection
 i.e. if z1 > z2 then projected z1 > projected z2

$$\mathbf{P} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \frac{n+f}{n} - f \\ \frac{z}{n} \end{bmatrix} \sim \begin{bmatrix} \frac{nx}{z} \\ \frac{ny}{z} \\ n+f - \frac{fn}{z} \\ 1 \end{bmatrix}$$

Example

• A vertex (1,1,-1) in camera space are going to project on the screen space which its near plane n at z = -0.5, far plane f at z = -10.0

$$\mathsf{PV} = \begin{bmatrix} -0.5 & 0 & 0 & 0 \\ 0 & -0.5 & 0 & 0 \\ 0 & 0 & -0.5 - 10 & -0.5 \times 10 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.5 \\ -0.5 \\ 10.5 - 5 \\ -1 \end{bmatrix}$$

The projected point = (0.5,0.5)

OpenGL Perspective Projection

- For OpenGL you give the distance to the near and far clipping planes
- The total perspective projection matrix resulting from a glFrustum call is:

$$\mathbf{M}_{OpenGL} = \begin{bmatrix} \frac{2|n|}{(r-l)} & 0 & \frac{(r+l)}{(r-l)} & 0\\ 0 & \frac{2|n|}{(t-b)} & \frac{(t+b)}{(t-b)} & 0\\ 0 & 0 & \frac{(|n|+|f|)}{(|n|-|f|)} & \frac{2|f||n|}{(|n|-|f|)}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Field of View (FOV)

 Instead of representing the projection plane by its 4 corner's offset to center, we can further simplify by assuming it to be symmetric about the center

$$I = -r$$
, $b = -t$

 Assume pixels are square, the field of view (FOV) will be the last parameter left for us to define the camera configuration

It is a specific feature in perspective projection

Far Clip Plane

For example, in OpenGL Utility, we have following function to define the projection:

void gluPerspective(double fovy, double aspect,
double zNear, double zFar);

ViewPort

- In CG, it refers to the region of screen where shows the rendered results
 - So it is 2D and no longer in 3D
 - A fundamental difference between viewport and projection plane

Advanced Camera Effects

- Lens flare
 - Simulate the effect with the use of the flare texture
- Motion blur
 - Accumulate the rendering result of several frames

Motion Blur - OpenGL projects in Delphi

Fast OpenGL-rendering of Lens Flares

Summary

- Transformation of coordinate systems
 - Object Space, World Space, Camera Space, Screen Space
- Pin-hole camera is the most commonly used camera model in CG, due to its simplified computation of 3D to 2D projection
 - Orthographic and Perspective
 - Projection Matrix
- Clipping plane are usually included to define a finite viewing frustum for rendering