Sources of Error

EIE 240 Electrical and Electronic Measurement (2/2014)
Class 3, January 30, 2015

Errors in Electrical Measurements

- Systematic error ⇒ every times you measure e.g. loading or insertion of the measurement instrument
- Meter error ⇒ scaling (inaccurate marking), pointer bending, friction, no calibration
- Random error ⇒ temperature effect, noises (unwanted signals)
- Reading error ⇒ parallax, read a wrong scale
- Recording error ⇒ for many measured values

Background

- Electric charge, $e^- = 1.6 \times 10^{-19}$ Coulombs
- Current, I = dq/dt Coulomb/sec = Amps
- Voltage, the difference in electrical potential between two points (Joules/Coulomb)
- Power, P = IV Watts
- Energy, E = Pt Units (kW·hr)
- Ohm's Law, V = IR

3

Background (Cont'd)

• Kirchhoff's Current Law (KCL)

$$I_1 - I_2 - I_3 = 0$$

Kirchhoff's Voltage Law (KVL)
 - V₁ + I₁R₁ + V₂ + I₂R₂ = 0

• Thévenin's Theorem

Open circuit to find V_{th}

Norton's Theorem Short circuit to find I_N

Background (Cont'd)

Example

No Load ⇒ Equivalent Source

$$V_1$$
 R_1
 R_2
 R_2
 R_2
 R_3
 R_4
 R_2
 R_4
 R_2
 R_4
 R_4
 R_2
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_7
 R_7
 R_8
 R_9
 R_9

No Source ⇒ Equivalent Load

$$\begin{array}{c|c} \hline \\ \hline \\ R_1 \\ \hline \\ R_2 \\ \hline \end{array} = \begin{array}{c|c} \hline \\ R_{eq} = R_1 \parallel R_2 \\ \hline \\ \end{array}$$

Background (Cont'd)

• Ideal Voltage Source Vs. Ideal Current Source

• Superposition Theorem (for linear resistive network containing several sources)

Voltage source \rightarrow \Rightarrow Short Circuit $\stackrel{0 \ V}{\longrightarrow}$ Current source \Rightarrow Open Circuit $\stackrel{0 \ V}{\longrightarrow}$ Vector summation of the individual voltage or current caused by each separate source

Background (Cont'd)

The Maximum Power Transfer Theorem

If V_s and R_s are fixed, when $I_L \uparrow$ then $V_L \downarrow$ $P_{L} = (I_{L})^{2}R_{L}$ $= (V_{s} / (R_{s} + R_{L}))^{2}R_{L}$ $= V_{s}^{2}R_{L} / (R_{s} + R_{L})^{2}$

$$= (V_s / (R_s + R_L))^2 R_L$$

= $V_s^2 R_L / (R_s + R_L)^2$

= $[V_s^2 R_S / (R_S + R_L)^2] (R_L / R_S)$

Background (Cont'd)

• The Maximum Power Transfer Theorem

Maximum power is at $R_L = R_s$

Therefore $V_L = V_s / 2$ and $I_L = V_s / 2R_L$

$$P_L = (I_L)^2 R_L = (V_s / 2R_L)^2 R_L = V_s^2 / 4R_L^{10}$$

Ammeter Loading

For current measurement, open circuit to put an ammeter.

+
$$V$$
 I_A A R_A $I_A = V/(R+R_A)$

11

Ampmeter Loading (Cont'd)

Loading error,
$$I_A - I = V/(R+R_A) - V/R$$

$$= \frac{VR - V(R+R_A)}{R(R+R_A)}$$

$$= \frac{-VR_A}{R(R+R_A)}$$

% Loading Error =
$$(I_A - I)/I \times 100\%$$

= $\frac{-R_A}{R + R_A} \times 100\%$

It means if $R_A \uparrow$ then error \uparrow

Ampmeter Loading (Cont'd)

- Using ammeters connected in series with the circuit being measured, it might not be practical or possible to redesign the meter for a lower input (lead-to-lead) resistance!
- However, we could select a value of shunt resistor to place in the circuit based on voltage drop, and it would be best to choose the lowest practical resistance.

13

Ampmeter Loading (Cont'd)

- One ingenious way to reduce the impact that a current-measuring device has on a circuit is to use the circuit wire as part of the ammeter movement itself.
- All current-carrying wires produce a magnetic field, the strength of which is in direct proportion to the strength of the current.
- By building an instrument that measures the strength of that magnetic field, a nocontact ammeter can be produced.

Ampmeter Loading (Cont'd)

- Ammeters of this design are called "clamp-on" meters because they have "jaws" which can be opened and secured around a circuit wire.
- Clamp-on ammeters make for quick and safe current measurements, especially on high-power industrial circuits, because of no additional resistance inserted into it.

current to be measured

magnetic field encircling the current-carrying conductor

clamp-on ammeter

15

Voltmeter Loading

For voltage measurement, voltmeter is placed in parallel with the circuit element.

Voltmeter Loading (Cont'd)

$$\begin{split} I_{th} &= V_{th} / \left(\, R_{th} + R_{V} \, \right) \\ V_{V} &= I_{th} R_{V} = V_{th} R_{V} / \left(\, R_{th} + R_{V} \right) \quad , \, \text{Voltage Divider} \\ \left(V_{V} / \, V_{th} \right) &= R_{V} / \left(\, R_{th} + R_{V} \right) \\ &= \left[\, R_{th} \, / \left(\, R_{th} + R_{V} \right) \, \right] \, \left(R_{V} / \, R_{th} \right) \end{split}$$

Voltmeter Loading (Cont'd)

Error =
$$V_V - V_{th}$$

= $\left(\frac{R_V}{R_{th} + R_V} - 1\right) V_{th}$
% Error = $(V_V - V_{th})/V_{th} \times 100\%$
= $\frac{-R_{th}}{R_{th} + R_V} \times 100\%$

It means if $R_{V} \uparrow$ then error \downarrow

Using a circuit within the instrument

19

Analog Ammeters & Voltmeters

- The users have to read the meter manual to find the basic accuracy specifications.
- Moving-coil-based analog meters are characterized by their full-scale deflection (f.s.d.) and effective resistance of the meters (few Ω $k\Omega$)
- Typical meters produce a f.s.d. current of 50 μA - 1 mA (this is not the ranges of the meters)

Percentage of FSD

- The accuracy of analog ammeters and voltmeters are quoted as a percentage of the full-scale deflection of pointer on the linear scale for all reading on the selected range.
- e.g. an ammeter having accuracy $\pm 2\%$ f.s.d. within the range 0-10 A, Relative error $\Rightarrow \pm 2\%$ of 10 A Absolute error $\Rightarrow \pm 0.2$ A

• When a measured value is close to full scale, or at least above 2/3 of full scale, the published accuracy is meaningful. 21

Percentage of Midscale

- Moving-coil-based ohmmeters is characterized by their midscale deflection of the pointer on nonlinear scale.
- What figure lies exactly between infinity and zero?
- e.g. ± 3% of midscale Relative error $\Rightarrow \pm 3\%$ of 9 k Ω Absolute error $\Rightarrow \pm 0.27 \text{ k}\Omega$

Percentage of DMM Reading

- In the case of digital instruments, the accuracy is generally quoted as ± the percentage of the reading ± 1 digit.
- e.g. ± 0.5% Reading ± 1 Digit when you read a voltage 1.2 V with a digit of 0.03 V (depending on the range selected)

error = \pm 0.5% of 1.2 V \pm 0.03 V = \pm 0.036 V \Rightarrow absolute error

 $= \pm 3\%$ of reading \Rightarrow relative error

101

Potential Meter

- Before the moving coil meter, potentiometer was used in measuring the voltage in a circuit
- Calculated from a fraction of a known voltage (on resistive slide wire)
- Based on voltage divider (linearly)
- By means of a galvanometer (no deflection or null-balance)

Calibration of Potentiometer

- The end of a uniform resistance wire is at x₁
- The sliding contact or wiper is then adjusted to x₂
- The standard electrochemical cell whose E.M.F. is known (e.g. 1.0183 volts for Weston cell)

25

Calibration of Potentiometer (Cont'd)

- Adjust supply voltage V_s until the galvanometer shows zero (voltage on R₂ equals to the standard cell voltage or no current flows through the galvanometer)
- $x_2/x_1 V_s = V_{std_cell}$ $V_s = x_1/x_2 V_{std_cell}$

Measuring of Potentiometer

- Slide the wiper (change x₃) until the galvanometer shows zero again
- $V_{unknown} = x_3/x_1 V_s$ = $x_3/x_2 V_{std_cell}$

27

Rheostat

• Variable resistor with two terminals

Loading of a Potentiometer (Cont'd)

$$\begin{split} V_{th} &= I \; (R_{th} + R_L) \\ (x/p) V_s &= I \; [\; (x/p)(1-x/p)R_p + R_L \;] \\ &I = \underbrace{ \; \; (x/p) V_s }_{ \; (x/p)(1-x/p)R_p + R_L } \\ V_L &= IR_L = \underbrace{ \; \; (x/p) V_s R_L }_{ \; \; (x/p)(1-x/p)R_p + R_L } \\ &= \underbrace{ \; \; \; (x/p) V_s }_{ \; \; (R_p/R_L)(x/p)(1-x/p) + 1 } \end{split}$$

It means the relationship between V_L and x is nonlinear!

31

Loading of a Potentiometer (Cont'd)

Error,

$$V_{th} - V_{L} = (x/p)V_{s} \left[1 - \frac{1}{(R_{p}/R_{L})(x/p)(1 - x/p) + 1} \right]$$

$$= (x/p)V_{s} \left[\frac{(R_{p}/R_{L})(x/p)(1 - x/p)}{(R_{p}/R_{L})(x/p)(1 - x/p) + 1} \right]$$

$$\begin{split} & \text{If R}_{L} >> \ R_{p} \ \text{then R}_{p} / R_{L} \approx 0 \\ & \text{Error} \approx (x/p) V_{s} (R_{p} / R_{L}) (x/p) (1-x/p) \\ & \approx V_{s} (R_{p} / R_{L}) [(x/p)^{2} - (x/p)^{3}] \quad , \ R_{L} \uparrow \text{ error } \downarrow \\ & \% \ \text{Error} \approx (R_{p} / R_{L}) [(x/p) - (x/p)^{2}] \times 100\% \end{split}$$

Loading of a Potentiometer (Cont'd)

Let d(Error)/dx =
$$V_s(R_p/R_L)[2x/p^2 - 3x^2/p^3] = 0$$

We get $2x/p^2 = 3x^2/p^3$
 $x/p = 2/3$ for the maximum

Therefore, the max error = $V_s(R_p/R_L)[(2/3)^2 - (2/3)^3]$ $\approx 0.148 \ V_s(R_p/R_L)$

and the max % error $\approx 22.2 (R_p/R_L)$ %

33

Potentiometric Voltage Measurement

- One ingenious solution to the problem of voltmeter loading is that of the potentiometric or null-balance instrument.
- In a potentiometric instrument, a precision adjustable voltage source is compared against the measured voltage, and a sensitive device called a *null detector* is used to indicate when the two voltages are equal.

Potentiometric Voltage Measurement (Cont'd)

 When the voltages are equal, there will be zero current drawn from the circuit under test, and thus the measured voltage should be unaffected.

Null Detector

- An extremely simple type of sensitive null detector is a set of audio headphones.
- When a DC voltage is initially applied to a speaker, the resulting current through it will move the speaker cone and produce an audible "click."
- Another "click" sound will be heard when the DC source is disconnected.

Reference

- http://en.wikipedia.org/wiki/Potentiometer
- http://www.allaboutcircuits.com/vol_1/chpt_8/5.html
- http://www.allaboutcircuits.com/vol_1/chpt_8/3.html