Duplicação

Universidade Tecnológica Federal do Paraná Bacharelado em Ciência da Computação Sistemas Distribuídos

Introdução

- Balanceamento de carga
 - Modo mais fácil de aumentar a capacidade de um serviço;
 - O Balanceador age como um distribuidor da rede de servidores do serviço;
 - O cliente enxerga somente um IP virtual de um dos servidores;
 - Pode gerar gargalo nas dependências;
 - É necessário escolher um método de balanceamento;
 - Ex: Escolher 2 aleatórios e usar o menos ocupado;
- Descoberta de serviço
 - Pode ser implementado via lista estática de servidores;
 - Ou por métodos dinâmicos como DNS;
 - Permite o escalonamento automático;
- Checagem de operação (health check)
 - Método passivo ou ativo;

- Balanceamento de carga com DNS
 - o Intermediário entre cliente e serviço.
 - Forma mais básica de implementação de balanceamento de carga.
 - Atribuindo IPs de servidores acessíveis publicamente ao registro DNS do serviço para que os clientes escolham ao resolver o endereço DNS

Não lida bem com falhas, se um dos dois servidores cair, o servidor
DNS continuará a fornecer seu endereço IP, alheio à falha.

- Balanceamento de carga na Camada de Transporte
 - o Uma solução de balanceamento de carga mais flexível
 - Quando um cliente estabelece uma conexão TCP com o balanceador d carga, este seleciona um servidor do grupo e encaminha os pacotes entre o cliente e o servidor escolhido.
 - Desvantagem é que o balanceador de carga está apenas movendo byte sem saber o que realmente significam eles.

- Balanceamento de carga na Camada de Aplicação
 - Proxy Reverso HTTP
 - Tem acesso a dados do pacote
 - Pode Tomar decisões com base no conteúdo.

- Balanceamento de carga Geográfica
 - Redireciona pacotes com base na localização
 - Pelo IP determina a localização do cliente
 - Redireciona o tráfego para a região mais perto do cliente

Replicação

- Coordenação para escalar
- Guardar cópias em vários nós
- Dados estáticos x dinâmicos
- Replicação com único líder
 - o Método mais comum
 - Clientes enviam dados exclusivamente para o líder
 - Assíncrona
 - Responde o cliente antes da replicação acabar
 - Rápida, mas não é tolerante a falhas
 - Problema de consistência levando à perda de dados.
 - Síncrona
 - Espera a replicação acontecer para todos seguidores
 - Problema de desempenho
 - Se uma réplica for extremamente lenta, cada solicitação será afetado por ela

Replicação

- Replicação com múltiplos líderes
 - Mais de um nó pode aceitar escrita

Utilizado quando a quantidade de escritas é muito alta ou quando o líder deve ficar em

várias localidades

- Muito complexa
- Principal problema é o conflito de escritas
 - Pode ser resolvido pelo próprio cliente
 - Pode ser resolvido de forma automática

Replicação

- Replicação sem líderes
 - Precisa satisfazer uma invariante:
 - W+R > N
 - W: Número de réplicas necessário para aceitar o pedido de escrita
 - R: Número de réplicas lidas para descobrir a mais recente
 - N: Número de réplicas que o dado tem
 - A escrita sempre é enviada às N réplicas em paralelo
 - Também precisa de uma resolução de conflito
 - Performance depende da quantidade de escritas e leituras realizadas
 - Ainda mais complexa

Caching

- Reduz a carga nos servidores, aumentando a performance do acesso aos dados.
- Políticas:
- Tratamento de erro: duas formas de tratamento:
 - Side cache: cliente trata o erro.
 - o Inline cache: cache trata o erro.
- Eliminação de dados não acessados recentemente:
 - LRU: Elimina os dados não utilizados com frequência
 - TTL: Elimina dados com marcações de tempo
- A eliminação não ocorre imediatamente. Pode ocorrer no próximo acesso ao cache.

Caching

- Clientes (in-process cache): Cada cliente tem uma fração de memória dedicada ao serviço remoto, como tabelas hash de tamanho limitado.
- Gera problemas de inconsistência por caches diferentes obtendo dados diferentes uns dos outros.

Figure 14.8: In-process cache

Caching

- Serviços (out-of-process cache): Cada porção de clientes se comunicam com um servidor cache.
- Esse tipo de serviço gera menos inconsistências na cache, porém gera mais problemas na recuperação dos dados caso haja uma falha no servidor.
- Aumento no tempo de acesso (latência)

Figure 14.9: Out-of-process cache

Referências

• VITILLO, Roberto. Understanding Distributed Systems. Fevereiro, 2021.