Problem 2: Bit allocation for uniform scalar quantization of independent sources (10 points):

Consider a pair of uniformly distributed continuous independent sources X_1 and X_2 , both with mean zero and variances 5 and 10 respectively. Let the rate of the uniform scalar quantizers used for X_1 and X_2 be R_1 and R_2 respectively where $R_i = \log_2 K_i$ for $i \in \{1,2\}$ and K_i denotes the number of quantization points. Given a budget sum rate constraint of $R_1 + R_2 = 3$, compute the rate pair (R_1, R_2) that minimizes the sum of squared error in the respective reconstructions $\mathbb{E}\left[(X_1 - \hat{X}_1)^2\right] + \mathbb{E}\left[(X_2 - \hat{X}_2)^2\right]$. Comment on how you would allocate bits among different DCT coefficients based on this result.

$$\rightarrow$$
 Given x , follows uniform distribution with mean =0, variable =5 $x_1 \times U[-\sqrt{15}, \sqrt{15}]$

Given
$$x_2$$
 follows uniform distribution with mean =0, variance =10
 $x_2 \sim U[-130, 130]$

The rate of uniform scalar quantizers of
$$X_1, X_2$$
 are R_1, R_2

$$R_1 = \log_2 k_1 \quad i = 1/2$$
where k_1 is number of quantization points

since the ranges of source signals are in finite range, the column scalar quantization with finite support

$$\delta_i(x) = \hat{x_i}$$
 $x \in [u_i, u_{i+1}]$

$$u_{j+1} - u_j = \Delta$$
, $\hat{x}_j = \underbrace{u_j + u_j + 1}_{2}$, $\Delta = \underbrace{x_{max} - x_{min}}_{k}$

For the source
$$X_1$$

Distortion = $E[(x_1 - \hat{x_1})^2] = E[(x_1 - \hat{x_2})^2]$

Distortion =
$$E[(x_1 - \hat{x_1})^2] = \sum_{i=0}^{k_1-1} (x_1 - \hat{x_2}) P_{x_1}(x_i) dx_i$$

$$P_{X_{i}}(z) = \begin{cases} \frac{1}{A} & -1\sqrt{5} \le x \le \sqrt{15} \\ 0 & \text{otherwise} \end{cases} = \begin{cases} \frac{1}{A} \left(x_{i} - \left(x_{min} + i\Delta\right)^{2}\right) dx_{i} \end{cases}$$

When
$$A = 2\sqrt{15}$$

$$= \sum_{i=0}^{k_i-1} \int_{u_i}^{u_{i+1}} \frac{1}{A} \left(x_i - \left(x_{min} + \frac{iA}{2k_i}\right)\right) dx_i$$

$$x_{min} = -\sqrt{15}$$

$$= \frac{A^2}{12} \frac{-2R_1}{2} = \frac{2}{61} \frac{-2R_1}{2}$$

Similarly
$$E((\lambda_1 - \hat{\lambda}_2)^2) = \frac{2}{2} \hat{a}^{2R} \hat{a}$$
 $\hat{a}^2 = 5, \hat{a}^2 = 10$

min
$$\sigma_{1}^{2} = \frac{2}{3} + \sigma_{2}^{2} + \frac{2}{3} + \frac{2}{3}$$

1.+ $R_{1} + R_{2} = 3$

⇒ min
$$5a^{-2\log k_1} + 10a^{-2\log k_2}$$

5-1 $\log k_1 + \log k_2 = 3$

$$\rightarrow$$
 bring them $k_1, k_2 = (2,4)$ minimizes $5k_2^{-2\log k_1} + 102^{-2\log k_2}$

$$(R_1, R_2) = (1, 2)$$

Bit allocation:

4	>	If	varia	nce	of	the	input	20urce	21	high	, the	n th	ie	distortion
		increasi	w.\$0	as	to	Keep	the	disto	rtial	lower	we	allocal	æ	more
		bits	to	that	D	CT	coeffic	cient	which	i's	evident	; f	m	the
		disto	rtian	for	mulae) : 6	3-JR,						
	ラ	ltere	٧٥	arianu	e of	X	> \	Vaniance	of	X				
				· <u>.</u>	ر د د	R)								
						•								