WO 2005/072270 PCT/US2005/002023

CLAIMS:

- 1. A composition comprising a conjugate formed by
- (a) a modified metallothionein (MT) amino acid sequence or fragment
 thereof that binds the megalin receptor less avidly than naturally-occurring metallothionein; and
 - (b) at least one or multiple molecules of a therapeutic divalent metal ion.
- 2. The composition according to claim 1, wherein said modified MT does not bind megalin.
 - 3. The composition according to claim 1, wherein said modified MT comprises a modified β-MT subunit sequence MDPNC₁ SC₂ATGNSC₃TC₄ASSC₅KC₆KEC₇KC₈TSC₉X SEQ ID NO: 2, wherein X
- is any uncharged or negatively charged amino acid and is not K.
 - 4. The composition according to claim 1, wherein said modified MT comprises a modified α MT subunit sequence
 - X'SC₁₀C₁₁SC₁₂C₁₃PAGC₁₄TKC₁₅AQGC₁₆IC₁₇KGASDKC₁₈SC₁₉C₂₀A, SEQ ID NO:
- 3, wherein X' is any uncharged or negatively charged amino acid and is not K.
 - 5. The composition according to claim 1, wherein said modified MT comprises a modified MT sequence
 - MDPNC₁ SC₂ATGNSC₃TC₄ASSC₅KC₆KEC₇KC₈TSC₉X X'SC₁₀C₁₁SC₁₂C₁₃PAGC₁₄
- 25 TKC₁₅AQGC₁₆IC₁₇KGASDKC₁₈SC₁₉C₂₀A, SEQ ID NO: 4, wherein X and X' are independently selected from any uncharged or negatively charged amino acid and is not K.
- 6. The composition according to any of claims 3 to 5, wherein all C residues in said sequence are invariant.

WO 2005/072270 PCT/US2005/002023

7. The composition according to claim 3 and 5, wherein said modified MT is truncated at the amino or carboxy terminus.

8. The composition according to any of claims 3 to 5, wherein X or X' is Q.

5

- 9. The composition according to any of claims 3 to 5, wherein any amino acid other than C is modified by substitution with a non-naturally-occurring amino acid.
- 10. The composition according to any of claims 3-5, wherein said modified MT comprises a fusion protein comprising multiple copies of full-length MT or subunit fragments thereof, wherein the fusion protein has an overall negative or neutral charge or a negative or neutral charge at the positions indicated by X and X'
- 11. The composition according to claim 1, wherein said conjugate has a size greater than 70 kD.
 - 12. The composition according to claim 1, wherein the number of molecules of heavy metals complexes to a single modified MT or fragment thereof range from 1 to 7.

20

- 13. The composition according to claim 1, wherein said divalent metal ions are selected from the group consisting of anti-neoplastic platinum compounds, cadmium, and copper.
- 25 14. The composition according to claim 1, wherein said conjugate further comprises
 - (c) a delivery peptide for targeted delivery to a desired cell, wherein said delivery peptide is fused to said modified MT or fragment thereof.
- 30 15. The composition according to claim 1, further comprising a pharmaceutically acceptable carrier.

WO 2005/072270 PCT/US2005/002023

16. The composition according to claim 1, further comprising a second therapeutic compound or composition.

- 5 17. A method for treating cancer comprising administering to a mammalian subject an effective amount of the composition of claim 1, wherein said treatment inhibits the renal uptake of said divalent metal ions.
- 18. Use of the composition of claim 1 in the preparation of a medicament for the treatment of cancer.
 - 19. A method for inhibiting renal uptake of therapeutic divalent metals ions comprising administering said ions as part of a conjugate of a composition of claim 1.
- 15 20. A metallothionein derivative amino acid sequence that does not bind megalin as avidly as naturally occurring metallothionein.