Série 1

1. Considere que uma dada função f(x) se pode escrever como

$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{i k_n x} = \frac{1}{2} a_0 + \sum_{n=1}^{+\infty} a_n \cos k_n x + b_n \sin k_n x , \quad k_n = k n.$$

- a) Obtenha os coeficientes a_n , b_n , em termos dos coeficientes c_m , e as relações recíprocas.
- **b)** Determine o período da função f(x) admitindo que $a_1 b_1 \neq 0$.
- c) Estabeleça as condições necessárias e suficientes satisfeitas pelos coeficientes a_n , b_n , c_n , para que a função f(x) seja real.
- 2. Determine a solução da equação de difusão, u(t,x), no intervalo $0 \le x \le \ell$, satisfazendo as seguintes condições:
- a) solução estática com $u(0,0)=u_1, u(0,\ell)=u_2.$
- **b)** $u(0,x) = u_0 + u'_0 x + a \sin(n\pi x/\ell).$ **c)** $u(0,x) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos k_n x + b_n \sin k_n x$, com $k_n = k n$.
- 3. Determine a solução da equação de difusão, u(t,x), no domínio x>0, sujeita à condição fronteira $u(t,0) = u_0 + a\sin(\omega t)$.
- 4. Obtenha a solução geral da equação de Schrödinger de partícula livre, u(t,x):
- a) no intervalo $0 \le x \le \ell$, sujeita às condições $u(t,0) = 0 = u(t,\ell)$.
- b) satisfazendo a condição de periodicidade, $u(t,x) = u(t,x+L), x \in R$.
- **5.** Obtenha a solução geral da equação de onda, u(t,x):
- a) no intervalo $0 \le x \le \ell$, sujeita às condições $u(t,0) = 0 = u(t,\ell)$.
- b) satisfazendo a condição de periodicidade, $u(t,x) = u(t,x+L), x \in R$.
- 6. Obtenha a solução geral da equação de Laplace, u(x,y), no domínio $-\ell \leq$ $x \leq \ell$, $y \geq 0$, satisfazendo as condições: $u(-\ell, y) = u(\ell, y)$, $u'(-\ell, y) = u'(\ell, y)$, $\lim_{y\to+\infty} u(x,y) = 0.$
- 7.a) Reescreva a equação de onda em termos das variáveis independentes $x_1 = x ct$, $x_2 = x + ct$.
- b) Prove que a solução geral da equação é dada por: u = f(x ct) + q(x + ct).
- c) Verifique que a função u(x,y) = f(x+iy) + g(x-iy) é solução da equação de Laplace quaisquer que sejam as funções f, g.