2023 珏德 • 润材 51 人联考卷

数学

注意事项:

- 1. 答卷前,考生务必把自己的姓名、考生号写等填写在答题卡和试卷指定位置上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。
- 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
 - 1. 遁地摩天轮是衡朝著名建筑师格鲁•布拉德(Glue Brother)的杰作,其可运行至地面下方,使游客感受从地底升起的奇妙感受. 已知该摩天轮的中心位于地面上方 20 m 处,旋转半径为 50 m,摩天轮转一周的用时为 20 min,设初始位置为摩天轮正上方,则摩天轮货箱高度 y (m) 关于运动时间 t (min) 的表达式可能为

A.
$$y = 50 \cos \frac{\pi t}{20} + 20$$

B. $y = 20 \cos \frac{\pi t}{20} + 50$
C. $y = 50 \cos \frac{\pi t}{10} + 20$
D. $y = 20 \cos \frac{\pi t}{10} + 50$

2. Digital 的成绩向来为人称道,而其体育成绩也是首屈一指的:在他带领之下,13 班的篮球队常年称霸领奖台.已知领奖台的形状为正四棱台,其上、下底面的边长分别为 2、4,体积为 $28\sqrt{2}$,则 其外接球的表面积为

A. 8π B. 32π C. 40π D. 72π

3. 1951 年,生物学家张明觉发现精子获能现象,从此试管婴儿的研究踏入了正轨;数十年后,生物化学家张文珏继承先辈的志向,在生物化学领域做出了卓著贡献. 他在观测生物的某一指标时,发现该指标 ϕ 关于时间 t 的关系式大致符合 $\phi = c(t-\lambda)e^{-t}$ 的关系,其对应的观测图象如下. 则 λ 的值约为

图 1: 第 3 题观测数据

A. 2 B. 3 C. 4 D. 5

4.	《论语•侍坐》中提到孔子	产 与弟子子路、曾皙、冉石	有、公西华的逐一对话;数千年	年后,班主任 Jimmy
	常请学生吃面,体现了中华	华优秀教育文化的传承.	假设某日 Jimmy 要请包括语	高中英在内的8名高
	智能学生中的 4 名吃面,	其中高中英因被要求奏乐	乐, 若选中则只能放在最后一	位,则吃面顺序安排
	的可能情况总数为			
	A. 1680	B. 1440	C. 1280	D. 1050
5.	Remain 是人型自走计算器	器,善于解决估算问题.	例如本题:设 $a=e^2$, $b=$	2^e , $c = 6e - 8$,则
	a,b,c 的大小关系为			
	A. $c < a < b$	B. $a < b < c$	C. $b < a < c$	D. $a < c < b$

6. 小国和小潇在 Minecraft 中进行箭术决斗,两人用无限弓互相射击,局面一时十分混乱. 小国以自己为坐标原点研究箭矢,发现箭矢的运动轨迹为抛物线 $C: x^2 = -2py \ (p>0)$,其焦点为 F,过 F 的直线交 C 于 A,B. 若 |FA|=2|FB|=6,则 C 的焦点为

A. (0,-1) B. (0,-2) C. (0,-3) D. (0,-4)

7. 阿颂是衡朝著名化学家.某日,阿颂进入实验室,使用有机溶剂 CCl_4 进行卤素 I_2 溶液的萃取实验.已知用 CCl_4 从水溶液中萃取 I_2 时, I_2 在 CCl_4 溶液中的浓度(浓度为溶液中该物质的物质的量与溶剂体积的比值)恒为水中的 85 倍. 现阿颂将一定体积的 I_2 溶液置于烧杯,将体积相同的 CCl_4 溶液平均分为 k 份,分 k 次加入烧杯中萃取 I_2 ,每次萃取完后立即将烧杯中的 CCl_4 溶液分液取出,以此增大总萃取量.若要使萃取完后水溶液中的 I_2 浓度不超过萃取前的 1×10^{-10} 倍,则 k 至少为(注:参考数据见表)

n	9	10	11	12
$\lg n$	0.9542	1	1.0413	1.0791
$\lg(n+85)$	1.9731	1.9777	1.9822	1.9867

图 2: 第 7 题参考数据

A. 9 B. 10 C. 11 D. 12 8. 志泉施工队在施工时,施工用铅垂重球(下称为"沉球",球心为O)由于意外砸到地上,砸出了一个坑. 为确定坑的深度,工作人员在空中吊起另一个球(称为"高球",球心为O'),使得两球的连心线竖直. 小尖站在距离两球连心线距离为a处的点A,测得 $\angle OAO' = 120^\circ$;再用工具升至A点正上方 $\sqrt{2}a$ 处的点A',测得 $\angle OA'O' = 90^\circ$,则高球与沉球的连心线长OO' = A. $\sqrt{6}a$ B. $2\sqrt{3}a$ C. 4a D. $2\sqrt{6}a$

二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分。在每小题给出的四个选项中,有多个选项是正确的。全部选对得 5 分,部分选对得 2 分,错选或不选不得分。

9. 海天、Remain、阿颂经常根据考试成绩互相请吃饭. 某次考后,阿颂说:"我要请吃饭";海天说:"阿颂要请吃饭";Remain 说:"我不用请吃饭". Luostar 看了他们的考试成绩并听了他们上述的对话后说:"你们之中有且仅有一个人要请吃饭,有且仅有一个人说对了". 则下列说法正确的是

A. Remain 要请吃饭

B. 海天要请吃饭

C. 阿颂说对了

- D. 海天说对了
- 10. 已知 $\triangle ABC$ 的重心为 O, OA = 2OB = 2, 记 $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$, $\vec{c} = \overrightarrow{OC}$, 则 $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ 的值可能为

A.
$$-8$$

B.
$$-6$$

C.
$$-4$$

D.
$$-2$$

11. 三棱锥 A - BCD 中,AB = 2,平面 $ABD \perp$ 平面 BCD, $\triangle ABD$ 和 $\triangle BCD$ 都为等边三角形, P,Q 为 AB,CD 上的动点,记 PQ 与平面 BCD、平面 ABD 的夹角分别为 α,β ,该三棱锥外接 球的表面积为 S, 二面角 B - AC - D 的平面角为 θ , 则

A.
$$\tan \alpha \leq 2$$

B.
$$\alpha + \beta = \frac{\pi}{2}$$

C.
$$S = \frac{20\pi}{3}$$

D.
$$\cos \theta = \frac{1}{3}$$

A. $\tan \alpha \leqslant 2$ B. $\alpha + \beta = \frac{\pi}{2}$ C. $S = \frac{20\pi}{3}$ D. $\cos \theta = \frac{1}{3}$ 12. 对函数 $f(x) = \frac{bx^2 - 4x + b}{(a+1)x^2 + (a-1)}$, 记数对的集合 $U = \{(a,b) \mid a \in \mathbb{Z}, b \in \mathbb{Z}, |a| \leqslant 4, |b| \leqslant 4\}$, $A = \{(a,b) \in U \mid f(x)$ 无最小值}, $B = \{(a,b) \in U \mid f(x) \leqslant 0\}$, 并记事件 $E : (a,b) \in U$, $F:(a,b)\in A$, $G:(a,b)\in B$, $H:(a,b)\in A\cap B$, $I:(a,b)\in A\cup B$,则下列说法正确的是 A. $P(F \mid E) = \frac{1}{3}$ B. $P(G \mid E) = \frac{8}{27}$ C. $P(H \mid E) = \frac{10}{81}$ D. $P(I \mid E) = \frac{37}{81}$

A.
$$P(F \mid E) = \frac{1}{3}$$

B.
$$P(G \mid E) = \frac{8}{27}$$

C.
$$P(H \mid E) = \frac{10}{21}$$

D.
$$P(I \mid E) = \frac{37}{81}$$

- 三、填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分
 - 13. 金钩热爱刷题,且刷法多变,令人眩目. 经过研究发现,金钩在上一节课上刷的题对下一节课上 刷的题有影响,情况如下表所示.若已知本节课刷的题为数学,则上节课刷的题为物理的概率为

本节课\上节课	数学	物理	化学
数学	0.2	0.4	0.4
物理	0.6	0.2	0.2
化学	0.4	0.3	0.3

图 3: 第 13 题金钩刷题概率分布

- 14. 在数学小组"北约"的一次会议上, 珏•尼格•卷签的复数难题吸引了大家的目光, 激起了大家 对复数动态问题的兴趣. 已知复数 z_1 与 z_2 满足: z_1 与 z_2 的实部均为正实数,且 z_1^2 与 z_2^2 的实 部均为 2. 则 $|z_1+2|+|z_2+2|-|z_1-z_2|$ 的最小值为 ______
- 15. 作为珠海一中的信息竞赛之光,万哥常常研究各类数据结构,常见的"二叉树"更是不在话下.对 数列 $\{a_n\}$,可用如下方式将其排成二叉树结构: 在一张白纸上写下 a_1 ,随后在该数的左下与右下 分别写下 a_2 与 a_3 , 再在 a_2 的左下与右下分别写下 a_4 与 a_5 , 在 a_3 的左下与右下分别写下 a_6 与 a_7 ,依此类推. 由此得到的二叉树中, a_1 称为第一层, a_2 与 a_3 所在行称为第二层, a_4 至 a_7 所 在行称为第三层,依此类推. 现将数列 $\{a_n\}$: $a_1=71$, $a_n=\begin{cases} a_{\frac{n}{2}}+31, & \text{若n为偶数; \\ a_{\frac{n-1}{2}}+40, & \text{若n}为奇数. \end{cases}$ 排成二

叉树结构,记 b_m 为前 m 层中所有数之和,则 b_m 的通项公式为 ______; 记 S_n 为 $\{a_n\}$ 的 前 n 项和,任写出两个使 S_n 为完全平方数的两个 n 值: _______. (第一空 2 分,第二空 3分, 其中第一个n值1分, 第二个n值2分)

16. "珏玉标志"是 13 班的精神图腾,如图所示.其中横线与竖线相交于 9 个交点,算上横线的 6 个端点,共 15 个项点.现用 4 种颜色给这 15 个项点上色,使得相邻(有短边相连)的两顶点不同色,则总染色方案数为 ________.

图 4: 第 16 题珏玉标志

- 四、解答题: 本大题共 6 小题, 第 17 小题 10 分, 其余每题各 12 分, 共 70 分。
 - 17. (10 分) 锐角三角形 ABC 中, $a\cos C = c(1-\cos A)$.
 - (1) 求 B 的取值范围;
 - (2) 若 $\triangle ABC$ 的周长为 4, 求 \overrightarrow{AB} 在 \overrightarrow{AC} 上的投影向量长度的最大值.
- 18. (12 分) 如图,三棱锥 A-BCD 中, $AB\bot CD$,平面 $ABD\bot$ 平面 BCD,M,N 分别为 BC,AD 中点, $MN\bot BC$,BD>BC.
 - (1) 求证: 平面 *ABC* ⊥ 平面 *ACD*;
 - (2) 若 $BC = CD = \sqrt{2}AB = 2\sqrt{2}$, 求平面 AMN 与平面 BMN 夹角的余弦值.

图 5: 第 18 题图

- 19. (12 分) 已知数列 $\{a_n\}$ 满足: $a_1=3$, $a_{n+1}=\frac{a_n^2+8}{2a_n+2}$, S_n 为 $\{a_n\}$ 的前 n 项和,记 $S_0=0$.
- (1) 令 $b_n = \ln \frac{a_n 2}{a_n + 4}$, 求 $\{b_n\}$ 的通项公式.
- (2) 记 [x] 为不超过 x 的最大整数, $c_n = \frac{2^n [S_{n-1}]}{[S_n][S_{n+1}]}$,求 $\{c_n\}$ 的前 n 项和 T_n .

阅读下列材料,完成第20题。

好的诛题,可以帮我们更好地骗分和做题,可以触动选项、启迪智慧;好的诛题,可以改变一个人的命运,可以展现一个民族的形象······诛题是有力量的。

20. (12 分) 在不会做选择题时, 诛题是一种行之有效的办法, 用此法, 平行班也能超越尖尖班.

- (1) 小明是一名学生,他的诛题方法比较平庸. 其方法是: 遇到会的题,就做; 遇到不会的题,就诛(四个选项猜一个). 已知某次考试的单选题中,小明会做 5 个,不会做 3 个,每道题 5 分,求小明得分的分布列及期望.
- (2) 多选题是一款由国家教育考试院开发的开放试卷游戏,每道多选题的正确选项数 ξ 服从两点分布: $P(\xi=2)=p$, $P(\xi=3)=1-p$. 在该种题中,选全对得 5 分,部分选对得 2 分,选错或不选得 0 分. 对此,小明有两种诛题方案:

方案一: 选一个走人 (纯随机);

方案二: 算一个选项, 若它错,则从剩下的选项中随机选一个; 若它正确,则选它,并在剩下的选项中随机再选一个.

请从得分期望的角度讨论分析:对给定的p,哪种方案更优?

阅读下列材料,完成第21题。

数千年前,古希腊数学家使用本轮—均轮模型,描述世间万物运行的轨道;数千年后,被誉为"数千年一遇的数学天材"的衡朝数学家高球澜村(Takatama Namimura)无师自通提出原理类似的"两圆法"并借此解决复杂的三角函数问题。高球提出的"两圆法",本质上是通过搭建几何图形与复杂三角函数式之间的桥梁,将三角函数的级数与图形的性质一一对应,借此快速得到相关问题的答案。对"两圆法"的研究,不仅能为解决图形及函数问题提供帮助,更能为我们启迪研究周期函数的思路,揭示更深层的原理——傅里叶变换的本质。

- 21. (12 分) O, P, Q 为空间中的三个星球,其中 O 为恒星,P 为 O 的行星,Q 为 P 的彗星. P 环绕 O 公转的轨道为一圆轨道,其半径为 4 个单位长度;Q 环绕 P 公转的轨道也为圆轨道,其半径为 1 个单位长度. 这两个轨道在同一平面上,且 P 环绕 O 公转的角速度、Q 环绕 P 公转的角速度大小相同,方向相反. 己知时间 t=0 时,O, P, Q 三点依次排列在同一射线上. 现以 O 为原点,该射线方向为 x 轴正方向,垂直于该射线方向为 y 轴正方向,建立平面直角坐标系.
 - (1) 求彗星 Q 运动轨迹的方程;
- (2) 为了便于观测彗星 Q 的运动,计划发射一个环绕 Q 作半径为 r 的圆周运动的观测器,要求该观测器始终位于彗星 Q 轨道的外测,且观测 Q 点轨道的视角(即过该探测器所在位置的作彗星 Q 轨迹的两切线的夹角)不能小于 90° ,求 r 的取值范围.

22. (12 分) 已知函数 $f(x) = f'(1)x^2 + f'(1)x - 2e^x$.

(1) 求 f(x).

(2)
$$\Rightarrow g(x) = f(x) - e^x \ln x$$
, \vec{x} iE: $g\left(\sqrt{\frac{e+4}{4e}} - \frac{1}{2}\right) > 0$.