

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2019

MATHEMATICS: PAPER I

MARKING GUIDELINES

Time: 3 hours 150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

NOTE:

- If a student answers a question more than once, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking memorandum.

SECTION A

QUESTION 1

(a)(1)	$2(-2)^2 + (-2) + k = 0$	correct subst. of -2
	8-2+k=0	, c
	k = -6	<i>k</i> = −6
(a)(2)	$\therefore 2x^2 + x - 6 = 0$	Factors/correct subst. in
	(2x-3)(x+2)=0	formula
	\therefore Other root is $\frac{3}{2}$	$\frac{3}{2}$
4. 1. 1. 1		=
(b)(1)	$x-2=3\sqrt{x+2}$	Isolate surd
	$\left(x-2\right)^2 = \left(3\sqrt{x+2}\right)^2$	$x^2 - 4x + 4$ 9(x+2)
	$x^2 - 4x + 4 = 9(x+2)$	$x^2 - 13x - 14$
	$x^2 - 13x - 14 = 0$	factors
	(x-14)(x+1)=0	answer with selection
	x = 14 or $x = -1$	
	Check: $x = -1$ is not valid	
(b)(2)		Factors/critical values
	$(x-3)(x+2) \le 0$	Factors/critical values
	Crit. values: 3; –2	Number line/graph
	+ - +	<i>x</i> ≥ −2
	-2 3	<i>x</i> ≤ 3
	6	
	Solution: $-2 \le x \le 3$	

(a)	$A = P(1+i)^n$	Sub. P into correct formula
	$A = 12349 \left(1 + \frac{0,123}{52}\right)^{1}$	0,123 52
	52 <i>)</i> A = R12 378,21	n = 1
(b)	·	
	$P = x \left[\frac{1 - (1+i)^{-n}}{i} \right]$	0,123
	$\begin{bmatrix} 1 & 0.123 \end{bmatrix}^{-52n}$	52
	$12349 = 94,75 \left[\frac{1 - \left(1 + \frac{0,123}{52}\right)^{-52n}}{\frac{0,123}{52}} \right]$	Correct P & x in correct formula
	$0,6917 = (1,00236)^{-52n}$	
	$\log_{1,00236} 0,6917 = -52n$	conversion to logs
	$n \approx 3$ years $A = P(1-in)$	answer
(c)	A = P(1-in)	P = 12349
	$A = 12349(1-0.2\times2)$	0,2×2
	A = 7409,40	answer
(d)	Balance outstanding = A – F	Lies of comment formatile
	$= 12349 \left(1 + \frac{0,123}{52}\right)^{2 \times 52} - \frac{94,75 \left[\left(1 + \frac{0,123}{52}\right)^{2 \times 52} - 1\right]}{0.123}$	Use of correct formula n = 104 in A-F formula
	52	94,75
	=15 788,54384 -11 156,97628	rate $\frac{123}{5200}$
	= R4 631,57	5200
	Depreciated amount = R7 409,40	Answer
	Therefore it would be sufficient.	Conclusion
	OR	
	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$	Correct Pv formula
	$\begin{bmatrix} (0.123)^{-52} \end{bmatrix}$	94,75 in P formula
	$P = \frac{94,75\left[1 - \left(1 + \frac{0,123}{52}\right)^{-52}\right]}{0,123}$	<i>n</i> ≈ 52 into formula
	<u>0,123</u> 52	rate $\frac{123}{5200}$
	P = R4 630,90	
	Depreciated amount = R7 409,40	Answer
	Therefore it would be sufficient.	Conclusion

(a)(1)	f(x+h)-f(x)	
(α)(1)	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$-5(x+h)^2+(x+h)$
	$-5(x+h)^2+(x+h)-(-5x^2+x)$	
	$f'(x) = \lim_{h \to 0} \frac{-5(x+h)^2 + (x+h) - (-5x^2 + x)}{h}$	
		Squaring & distributing
	$f'(x) = \lim_{h \to 0} \frac{-5(x^2 + 2xh + h^2) + x + h + 5x^2 - x}{h}$	Factorisation
	$f'(x) = \lim_{h \to 0} \frac{-5x^2 - 10xh - 5h^2 + x + h + 5x^2 - x}{h}$	1 actorisation
	$f'(x) = \lim_{h \to 0} \frac{1}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{h(-10x - 5h + 1)}{h}$	notation
	II	sub. in 0 to get –10 <i>x</i> +1
	$f'(x) = \lim_{h \to 0} (-10x - 5h + 1)$	Sub. III o to get Tox 1 T
	=-10x+1	
	OR	
	$f(x+h) = -5(x+h)^2 + (x+h)$	
	$f(x+h) = -5(x^2 + 2xh + h^2) + x + h$	
	$f(x+h) = -5x^2 - 10xh - 5h^2 + x + h$	$-5(x+h)^2+(x+h)$
	$f(x+h)-f(x) = -5x^2-10xh-5h^2+x+h-(-5x^2+x)$	Squaring & distributing
	$f(x+h)-f(x) = -10xh-5h^2+h$	equaning a diethicaling
		Factorisation
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	notation
	11	Hotation
	$f'(x) = \lim_{h \to 0} \frac{h(-10x - 5h + 1)}{h}$	
	$f'(x) = \lim_{h \to 0} (-10x - 5h + 1)$	and in Oda and done d
	* **	sub. in 0 to get $-10x+1$
(a)(2)	=-10x+1 At: $x = 1$, $f'(1) = -10(1) + 1$	
(4)(-)	f'(1) = -9	f'(1) = -9
	\therefore Eq. of tangent: $y = -9x + c$	Calculating y-coord of
	Substitute: (1;-4)	_4
	-4 = -9(1) + c	Answer
	<i>c</i> = 5	
	$\therefore y = -9x + 5$	
	OR	f'(1) = -9
	At: $x = 1$, $f'(1) = -10(1) + 1$ f'(1) = -9	. (.)
		Calculating y-coord of
	Substitute: $(1; -4)$	_4 ^
	y - (-4) = -9(x - 1) $\therefore y = -9x + 5$	Answer
	y — ¬3∧ + 3	

(b)(1)	$y = \frac{x^3 + x^{\frac{3}{2}}}{x}$	
	$y = \frac{1}{X}$	
	$y = \frac{x^3}{x} + \frac{x^{\frac{3}{2}}}{x}$ $y = x^2 + x^{\frac{1}{2}}$	
	$y = x^2 + x^{\frac{1}{2}}$	χ^2
	$\frac{dy}{dx} = 2x + \frac{1}{2}x^{-\frac{1}{2}}$	$\chi^{\frac{1}{2}}$
		2 <i>x</i>
	$\frac{dy}{dx} = 2x + \frac{1}{2\sqrt{x}}$	$\frac{1}{2}x^{-\frac{1}{2}}$
(b)(2)	$D_{x}\left[\frac{(2x-3)(4x^{2}+6x+9)}{(4x^{2}+6x+9)}\right]$	$(2x-3)(4x^2+6x+9)$
	$D_{x}(2x-3)$	$D_x(2x-3)$
	= 2	= 2

IEB Copyright © 2019

(4)(a)	$T_n = a + (n-1)d$	
()(=)	$T_n = 5 + (n-1)(4)$	<i>d</i> = 4
	$T_n = 4n+1$	$T_n = 4n + 1$
		$I_n - 4H + 1$
	100 = 4n + 1 4n = 99	$T_n = 100$
	$n=24\frac{3}{4}$	Answer
	24 pentagons	
(b)(1)		
	$S_n = 300$	
	$S_n = \frac{n}{2}(a+I)$	Correct formula
	$300 = \frac{n}{2}(3+47)$	$300=\frac{n}{2}\big(3+47\big)$
(1.) (2)	n = 12	Answer
(b)(2)	$T_n = a + (n-1)d$	Correct formula 47 = 3 + 11 <i>d</i>
	47 = 3 + 11d d = 4	Answer
(c)	Series: $\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$	Expansion
	$r = \frac{1}{2}$, converging series	$r=\frac{1}{2}$
	$S_{\infty} = \frac{a}{1-r} ; -1 < r < 1$	Correct formula
	$S_{\infty} = \frac{\overline{4}}{1 - \frac{1}{2}}$	
	$S_{\infty} = \frac{1}{2}$	Answer
(d)	$\frac{T_5}{T_3} = \frac{T_7}{T_5}$	Equating ratios
	$\frac{4}{5p+1}=\frac{1}{4}$	Correct substitution
	$\rho = 3$	Answer

(a)	50	50
(b)	2a = -4 $3a + b = 18$ $a + b + c = 2$	Determining differences
	a = -2 $3(-2) + b = 18$ $(-2) + 24 + c = 2$	a = -2
	b = 24 $c = -20$	b = 24
		<i>c</i> = -20
	$T_n = -2n^2 + 24n - 20$	
	OR	
	2a = -4 a = -2	
	$T_n = -2n^2 + bn + c$	Determining differences $a = -2$
	$T_1: -2+b+c=2 : b+c=4 : eq 1$	b = 24 $c = -20$
	T_2 : $-8+2b+c=20$:: $2b+c=28$ eq 2	
	$T_2 - T_1$: $b = 24$	
	Subst. in eq. 1: $24 + c = 4$: $c = -20$	
	$T_n = -2n^2 + 24n - 20$	
	OR	
	$T_n = T_2(n-1) - T_1(n-2) + \frac{(n-1)(n-2)}{2} \times (2^{nd} \text{ diff.})$	Determining differences $a = -2$
	$T_n = 20(n-1) - 2(n-2) + \frac{(n-1)(n-2)}{2} \times (-4)$	b = 24 $c = -20$
	$T_n = 20n - 20 - 2n + 4 - 2(n^2 - 3n + 2)$	
	$T_n = 20n - 20 - 2n + 4 - 2n^2 + 6n - 4$	
	$T_n = -2n^2 + 24n - 20$	

(c)	$T_n = -2n^2 + 24n - 20$	Determining n
	$T_n = -2(n^2 - 12n + 10)$	n = 6
	$T_n = -2\left[\left(n-6\right)^2 - 26\right]$	
	$T_n = -2(n-6)^2 + 52$	Answer
	Max. passengers is 52	
	OR	Determining n
	$T_n' = -4n + 24$	<i>n</i> = 6
	-4n + 24 = 0	H = 0
	n=6	
	Subst. $n = 6$ $T_n = -2(6)^2 + 24(6) - 20$	Answer
	$T_6 = 52$	
	Max. passengers is 52	
(d)	Let <i>n</i> be 12 stops	
	$T_{12} = -2(12)^2 + 24(12) - 20$	
	$T_{12} = -20$	Substitution
	Invalid due to negative answer	Explanation
	OR	
	$-2n^2 + 24n - 20 \ge 0$	
	Passengers must be ≥ 0 Crit. Values: $6 \pm \sqrt{26}$	
	one values. Si vice	Substitution
		Explanation
	- I + I - 0,9 + 11.09	
	Hence $0.9 \le n \le 11.09$	

SECTION B

QUESTION 6

(a)	f(x) > g(x) for $0 < x < 3$	x > 0
		<i>x</i> < 3
(b)	$g(x) = \log_a x \text{ subst. } (3;1)$	Substitution
	$1 = \log_a 3$	Answer
	a = 3	7 WIOWOI
	$f(x) = \sqrt{kx} \text{ subst. } (3;1)$ $1 = \sqrt{3k}$ $(1)^{2} = (\sqrt{3k})^{2}$ $k = \frac{1}{3}$	Substitution
	$k = \frac{1}{3}$	Answer
(c)	$f: y = \sqrt{\frac{1}{3}x}$ $f^{-1}: x = \sqrt{\frac{1}{3}y}$ $x^{2} = \frac{1}{3}y$ $y = 3x^{2} \text{ for } x \ge 0$	Changing x and y
	$f^{-1}: X = \sqrt{\frac{1}{3} y}$	
	$x^2 = \frac{1}{3}y$	
	$y = 3x^2$ for $x \ge 0$	$y = 3x^2$
		Domain: $x \ge 0$

40_0	HON 0	
(a)(1)	$\left(2x-1\right)^2\geq 0$	Answer
(a)(2)	28 T Y 24	Shape T.P. $\left(\frac{1}{2};5\right)$ y-int.: $(0;6)$
(a)(3)	Shift 5 units down	Answer
(a)(4)	Shift 5 units down $(2x-1)^2 = k$	
	$4x^2 - 4x + (1-k) = 0$	Sub in formula
	$4x^{2} - 4x + (1 - k) = 0$ $x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(4)(1 - k)}}{2(4)}$	$x = \frac{1 \pm \sqrt{k}}{2}$
	2(4)	2
	$x = \frac{4 \pm \sqrt{16k}}{2}$	<i>k</i> ≥ 0
	8	
	$x = \frac{4 \pm \sqrt{16k}}{8}$ $x = \frac{4 \pm 4\sqrt{k}}{8}$ $x = \frac{1 \pm \sqrt{k}}{2}$ Roots are real for $k \ge 0$	
	\mathbf{OR} $(2x-1)^2 = k$	
	$4x^2 - 4x + (1-k) = 0$	Sub in formula
	$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(4)(1-k)}}{2(4)}$ $x = \frac{4 \pm \sqrt{16k}}{8}$	$x = \frac{4 \pm \sqrt{16k}}{8}$
	$x = \frac{4 \pm \sqrt{16k}}{8}$	$16k \ge 0 : k \ge 0$
	Roots are real for $16k \ge 0$ $\therefore k \ge 0$	
	OR	
	$\left(2x-1\right)^2=k$	$2x - 1 = \pm \sqrt{k}$ $x = \frac{1 \pm \sqrt{k}}{2}$
	$2x-1=\pm\sqrt{k}$	$X = \frac{1 - \sqrt{n}}{2}$
	$x = \frac{1 \pm \sqrt{k}}{2}$	<i>k</i> ≥ 0
	Roots are real for $k \ge 0$	

(a)(5)	$y = 4x^2 - 4x + (1+k)$ For real, unequal and rational, $\Delta > 0$ and perfect square	
	$\Delta = (-4)^2 - 4(4)(1+k)$ $\Delta = -16k$	$\Delta = -16k$
	$\therefore k = -1$, $k = -\frac{1}{4}$, $k = -\frac{1}{16}$ etc.	accurate value of k accurate value of k accurate value of k
	OR	
	$y = 4x^2 - 4x + (1+k)$	
	Solve for $4x^2 - 4x + (1+k) = 0$ through trial & improvement:	$4x^2 - 4x + (1+k) = 0$
	When $k = -1$ roots are real, rational & unequal When $k = -4$ roots are real, rational & unequal, etc.	accurate value of k accurate value of k
		accurate value of k
(b)	$px^2 + qx + r = 0$	
	$x = \frac{-q \pm \sqrt{q^2 - 4\rho r}}{2\rho}$	
	$\therefore P = \frac{-q + \sqrt{q^2 - 4pr}}{2p}$ $X = \frac{-q \pm \sqrt{q^2 - 4pr}}{2}$	$P = \frac{-q + \sqrt{q^2 - 4pr}}{2p}$
	$x = \frac{-q \pm \sqrt{q^2 - 4pr}}{2}$	2ρ
	$\therefore Q = \frac{-q + \sqrt{q^2 - 4pr}}{2}$	$Q = \frac{-q + \sqrt{q^2 - 4pr}}{2}$
	For: P:Q,	2
	$\frac{1}{p} \left[\frac{-q + \sqrt{q^2 - 4pr}}{2} \right] : 1 \left[\frac{-q + \sqrt{q^2 - 4pr}}{2} \right]$	
	Ratio: $\frac{1}{\rho}$:1	
	OR	Answer
	Ratio: 1: <i>p</i>	

(a)(1)	$y = a(x - x_1)(x - x_2)(x - x_3)$	formula
	$y = a(x+3)(x+3)\left(x-\frac{1}{2}\right)$	Substitution of intercepts
	Subst.: (0;9) $a = -2$	Subst. of (0;9)
	$y = -2(x+3)^2\left(x-\frac{1}{2}\right)$	a = -2
	$y = -2\left(x - \frac{1}{2}\right)\left(x^2 + 6x + 9\right)$	Answer showing a,b,c and d
	$y = -2\left(x^3 + 6x^2 + 9x - \frac{1}{2}x^2 - 3x - 4\frac{1}{2}\right)$ $y = -2\left(x^3 + 5\frac{1}{2}x^2 + 6x - 4\frac{1}{2}\right)$	a, b, o and a
	$y = -2x^3 - 11x^2 - 12x + 9$	
	OR	formula Substitution of intercepts Subst. of (0;9)
	y = a(x+3)(x+3)(2x-1) Subst.: (0,9)	
	a = -1	<i>a</i> = −1
	y = -1(x+3)(x+3)(2x-1)	
	$y = -1(x^2 + 6x + 9)(2x - 1)$	
	$y = -1(2x^3 + 12x^2 + 18x - x^2 - 6x - 9)$	Answer showing
	$y = -1(2x^3 + 11x^2 + 12x - 9)$	a,b,c and d
	$y = -2x^3 - 11x^2 - 12x + 9$	
(a)(2)	$f(x) = -2x^3 - 11x^2 - 12x + 9$	
	$f'(x) = -6x^2 - 22x - 12$	$f'(x) = -6x^2 - 22x - 12$
	f''(x) = -12x - 22	f''(x) = -12x - 22
	-12x-22=0	I(X) = -12X - 22
	$x = -\frac{11}{6}$	$x = -\frac{11}{6}$
(b)	f'(x) = 8	f'(x) = 8
	$-6x^2 - 22x - 12 = 8$	
	$-6x^2 - 22x - 20 = 0$	<i>x</i> = −2
	$x = -\frac{5}{3}$ or $x = -2$	<i>y</i> = 5
	E(-2;5)	

(c)	$y = \frac{2}{x+p} + q$	
	p = 3	
	$y = \frac{2}{x+3} + q$ subst. (-2;5)	<i>x</i> + 3
	$5 = \frac{2}{-2+3} + q$	Substitution
	q=3	<i>q</i> = 3
	$\therefore y = \frac{2}{x+3} + 3$ $y = x+6$	
(d)	y = x + 6	y = x
		y = x + 6
	OR	
	Line goes through (–3;3)	(-3;3) $y = x + 6$
	y = x + c substitute (-3;3)	y = x + 6
	$\therefore y = x + 6$	
(e)	$(-\infty;-3)\cup[-2;0]$	$(-\infty;-3)$
		() due to asymptote
		[-2;0]
(f)	$h(x) - k = -2x^3 - 11x^2 - 12x + 9$	
	For h: <i>y</i> -int. (0;9)	<i>y</i> -int. (0;9)
	For g: y -int. $\left(0; \frac{11}{3}\right)$	$y-int.\left(0;\frac{11}{3}\right)$ $k < -\frac{16}{3}$
	$k < -\frac{16}{3}$	$k < -\frac{16}{3}$

$$V = \pi r^{2}h + \frac{4}{3}\pi r^{3}$$

$$1000 = \pi r^{2}h + \frac{4}{3}\pi r^{3}$$

$$\pi r^{2}h = 1000 - \frac{4}{3}\pi r^{3}$$

$$h = \frac{1}{\pi r^{2}} \left(1000 - \frac{4}{3}\pi r^{3}\right) \quad \quad Eq. \ 1$$

$$Total S.A. (S) = S.A. \quad Cylinder + S.A. \quad Sphere$$

$$S = 2\pi rh + 4\pi r^{2} \quad \quad Sub. \quad Eq. \ 1$$

$$S = 2\pi r \left[\frac{1}{\pi r^{2}} \left(1000 - \frac{4}{3}\pi r^{3}\right)\right] + 4\pi r^{2}$$

$$S = 2000 r^{-1} - \frac{8}{3}\pi r^{2} + 4\pi r^{2}$$

$$S = 2000 r^{-1} + \frac{4}{3}\pi r^{2}$$

$$\frac{dS}{dr} = -2000 r^{-2} + \frac{8}{3}\pi r$$

$$\frac{8\pi r}{3} - \frac{2000}{8\pi} r^{2} = 0$$

$$8\pi r^{3} - 6000 = 0$$

$$r^{3} = \frac{6000}{8\pi}$$

$$r \approx 6.2 \text{ for S.A to be a minimum}$$

$$Answer$$

(a)	10!	10!
	5!×2!×3!	<u> </u>
	= 2 520	[] 5!×2!×3! Answer
(b)(1)	$P(\text{not picked}) = 0.3 \times 0.65$	0,3 and 0,65
	= 0,195	multiplication of above Answer
(b)(2)	P(made into juice)	indicating 0,6 or 60%
	$=(0,7\times0,6)+(0,3\times0,35\times0,6)$	$(0,7\times0,6)$
	= 0,483	$(0,3\times0,35\times0,6)$
	∴ Approx. 48,3% will be made into juice	0,483
	OR	
	P(made into juice) = $(1-0.195) \times 0.6$	indicating 0,6 or 60%
	= 0,483	(1)
	∴ Approx. 48,3% will be made into juice	(1-0,195)×0,6 0,483

(b)(3)	Total oranges exported = 120×172 = 20 640	20 640
	P(exported)	
	$= (0,7 \times 0,09) + (0,3 \times 0,35 \times 0,09)$ = 0,07245	$(0,7 \times 0,09)$ $(0,3 \times 0,35 \times 0,09)$
	∴ 7,245% exported	
	Let total number of oranges = x $\frac{20 640}{x} \times 100 = 7,245$	
	$\therefore x = 284 886 \text{ oranges in total}$	Answer
	OR	
	Total oranges exported = 120×172 = 20 640	20 640
	P(exported) = (1-0,195)×0,09 = 0,07245 ∴ 7,245% exported	(1-0,195) (1-0,195)×0,09
	Let total number of oranges = x $\frac{20640}{x} \times 100 = 7,245$	
	∴ <i>x</i> = 284 886 oranges in total	Answer

Total: 150 marks