Notes of Machine Learning Foundation

Xiangli Chen

Computer Science Department University of Illinois at Chicago

October 3, 2017

Outline

- Probability
 - Theory
 - Some Special Distributions
 - Asymptotic Theory
- Statistical Inference
 - Confidence Interval
 - Frequentist Statistics
 - Maximum Likelihood Estimation (MLE)
 - Expectation and Maximization Algorithm (EM)
 - Bayesian Statistics

Set

Definition

A σ -field (σ -algebra) $\mathcal B$ is a non-empty class of subsets of Ω closed under countable union, countable intersection and complements.

A minimal set of postulates for ${\cal B}$ to be a σ -field is

- $B \in \mathcal{B} \text{ implies } B^c \in \mathcal{B}$
- **③** $B_i ∈ \mathcal{B}, i ≥ 1$ implies $\bigcup_{i=1}^{\infty} B_i ∈ \mathcal{B}$

Let $\mathcal C$ be a collection of subsets of Ω . The σ -field generated by $\mathcal C$, $\sigma(\mathcal C)$ (minimal σ -filed over $\mathcal C$), is a σ -field satisfying $\sigma(\mathcal C)\supset \mathcal C$ and $\mathcal B'\supset \sigma(\mathcal C)$ if $\mathcal B'$ is some other σ -field containing $\mathcal C$.

Suppose $\Omega = \mathbb{R}$ and let $\mathcal{C} = \{(a, b], -\infty \leq a \leq b < \infty\}$, define $\mathcal{B}(\mathbb{R}) := \sigma(\mathcal{C})$ and call $\mathcal{B}(\mathbb{R})$ the Borel subsets of \mathbb{R} .

Probability

Random experiment: can be repeated under the same condition, and each experiment terminates with an outcome Sample space Ω : the collection of every possible outcome.

Definition

A probability space is a triple (Ω, \mathcal{B}, p) where

- ullet Ω is the sample space corresponding to outcomes of some experiment.
- \mathcal{B} is the σ -field of subsets (events) (may be not all) of Ω .
- ullet p is a probability measure $p:\mathcal{B} o [0,1]$, a function such that

 - **2** p is σ -additive: If $\{A_n, n \geq 1\}$ are events in $\mathcal B$ that are disjoint, then

$$p(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}p(A_n).$$

An Example

This is an example where σ -field not equals the power set: $\mathcal{B} \neq \mathcal{P}(\Omega)$

Example

Let $\Omega = \{0,1\}^{\mathbb{N}}$ be the set of sequences with values only 0 and 1. Let $\mathcal{B} = \{\emptyset, B_0, B_1, \Omega\}$ where $B_i = \{\omega \in \Omega : \omega_1 = i\}$ (the first value of the sequence ω is i).

Then \mathcal{B} is the σ -field of subsets of Ω . If we define $p(B_0) = p(B_1) = 1/2$, then (Ω, \mathcal{B}, p) defines a probability space.

Random Variable

Measurable space: a pair (Ω, \mathcal{B}) consists of a set and a σ -field of subsets. If (Ω, \mathcal{B}) and (Ω', \mathcal{B}') are two measurable spaces, then a map

$$X:\Omega \to \Omega'$$

is called measurable if

$$X^{-1}(\mathcal{B}')\subset \mathcal{B}$$
.

X is also called a random element of Ω' .

Definition

X is called a random variable when $(\Omega', \mathcal{B}') = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Let (Ω, \mathcal{B}, p) be a probability space, define the function $p \circ X^{-1}$ on \mathcal{B}' by

$$p \circ X^{-1}(A') = p(X^{-1}(A')).$$

 $p \circ X^{-1}$ is a probability on (Ω', \mathcal{B}') called the induced probability or the distribution of X.

6/55

Distribution and Density Functions

Definition

The cumulative distribution function (cdf) $F_X(x)$ of a random variable X is

$$F_X(x) = p_X((-\infty, x]) = p(\{c \in \mathcal{C} : X(c) \le x\}).$$

We say a random variable X is continuous if its cdf $F_X(x)$ is a continuous function for all $x \in R$.

Definition

Most continuous random variables are absolutely continuous; i.e.,

$$F_X(x) = \int_{-\infty}^x f_X(t) d_t$$

The function $f_X(t)$ is called a probability density function (pdf) of X. If $f_X(x)$ is also continuous, then

$$\frac{d}{dx}F_X(x)=f_X(x).$$

Transformations

Theorem

Let X be a continuous random variable with pdf $f_X(x)$ and support S_X . Let Y=g(X), where g(x) is a one-to-one differentiable function on S_X . We note that $x=g^{-1}(y)$ and let $dx/dy=d(g^{-1}(y))/dy$. Then

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$
, for $y \in S_Y$,

where the support of Y is $S_Y = \{y = g(x) : x \in S_X\}.$

Transformation proof

Proof.

Since g(x) is one-to-one and continuous, it is either strictly monotonically increasing or decreasing. Assume it is strictly monotonically increasing,

$$F_Y(y) = P[Y \le y] = P[g(X) \le y] = P[X \le g^{-1}(y)] = F_X(g^{-1}(y)).$$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_X(g^{-1}(y)) \frac{dx}{dy}, \quad (\frac{dx}{dy} > 0)$$

Suppose it is strictly monotonically decreasing,

$$F_Y(y) = 1 - F_X(g^{-1}(y))$$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_X(g^{-1}(y))(-\frac{dx}{dy}) \quad (\frac{dx}{dy} < 0),$$

Important Inequalities

Theorem

Markov's Inequality

Let u(X) be a nonnegative function. If $\mathbb{E}[u(X)]$ exists, then for any c > 0,

$$p(u(X) \ge c) \le \mathbb{E}[u(X)]/c.$$

Chebyshev's Inequality

Assume there is a finite variance σ^2 (implies $\mu = \mathbb{E}$ exists), then for envery k > 0,

$$p(|X - \mu| \ge k\sigma) \le 1/k^2.$$

Jensen's Inequality

If ϕ is convex on an open interval I and the support of X is contained in I and $\mathbb{E}[X] < \infty$, then

$$\phi([\mathbb{E}(X)]) \leq \mathbb{E}[\phi(X)].$$

If ϕ is strictly convex, then the inequality is strict unless X is a constant.

Outline

- Probability
 - Theory
 - Some Special Distributions
 - Asymptotic Theory
- Statistical Inference
 - Confidence Interval
 - Frequentist Statistics
 - Maximum Likelihood Estimation (MLE)
 - Expectation and Maximization Algorithm (EM)
 - Bayesian Statistics

Bernoulli, Binomial and Multinomial Distributions

Bernoulli (e.g. flip coin) $X \sim ber(\theta)$

$$p(x) = \theta^{x} (1 - \theta)^{1-x}$$
 $x = 0, 1$ $\mu = \theta$ $\sigma^{2} = \theta (1 - \theta)$

Binomial (e.g. number of successes) $X \sim bin(n, \theta)$

$$p(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x} \quad x = 0, 1, 2, \dots, n$$
$$\mu = n\theta \qquad \sigma^{2} = n\theta (1 - \theta)$$

Let X_i 's iid and $X_i \sim \text{bin}(n_i, \theta)$, then $Y = \sum_{i=1}^m X_i \sim \text{bin}(\sum_{i=1}^m n_i, \theta)$. Multinomial (e.g. tossing a K-side die) $X_j \sim \text{mul}(n, \theta_j)$

$$p(x_1,...,x_K) = \frac{n!}{\prod_{j=1}^K x_j!} \prod_{j=1}^K \theta_j^{x_j} \quad \sum_{j=1}^K x_j = n \ x_j \in \mathbb{N} \quad \sum_{j=1}^K \theta_j = 1$$

Poisson Distribution

Poisson (e.g. number of alpha paricles, defects, automobile accidents)

$$X \sim \operatorname{poi}(\lambda) \quad \lambda > 0$$

$$p(x) = e^{-\lambda} \frac{\lambda^{x}}{x!} \quad x \in \mathbb{N}$$

$$\mu = \sigma^{2} = \lambda$$

Note that

$$1 + \lambda + \frac{\lambda^2}{2!} + \dots = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda}$$

Let X_i 's iid and $X_i \sim \text{poi}(\lambda_i)$, then $Y = \sum_{i=1}^n X_i \sim \text{poi}(\sum_{i=1}^n \lambda_i)$.

Gamma Distribution

Gamma function

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} d_x = \begin{cases} (\alpha - 1)\Gamma(\alpha - 1) & \alpha > 1\\ 1 & \alpha = 1 \end{cases}$$

If $\alpha > 1$ and $\alpha \in \mathbb{N}$,

$$\Gamma(\alpha) = (\alpha - 1)(\alpha - 2) \cdots 1\Gamma(1) = (\alpha - 1)!.$$

This suggests 0! = 1.

Gamma (e.g. time needed to obtain lpha changes modeled with poisson)

$$X \sim \Gamma(\alpha, \beta) \quad \alpha > 0 \quad \beta > 0$$

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} \quad 0 < x < \infty \quad \mu = \alpha\beta \quad \sigma^2 = \alpha\beta^2$$

Let X_i 's iid and $X_i \sim \Gamma(\alpha_i, \beta)$, then $Y = \sum_{i=1}^n X_i \sim \Gamma(\sum_{i=1}^n \alpha_i, \beta)$.

Exponential, Laplace, Chi-square distributions

Exponential
$$X \sim e(\lambda) = \Gamma(1, 1/\lambda)$$
 $\lambda > 0$

$$f(x) = \lambda e^{-\lambda x}$$
 $0 < x < \infty$ $\mu = 1/\lambda$ $\sigma^2 = 1/\lambda^2$

Laplace (double sided exponential)

$$X \sim \mathsf{lap}(\mu, b) \quad -\infty < \mu < \infty \quad b > 0$$

$$f(x) = 1/(2b)e^{-\frac{|x-\mu|}{b}} \quad -\infty < x < \infty \quad \mu = \mu \quad \sigma^2 = 2b^2$$

Chi-squared

$$X \sim \mathcal{X}^2(r) = \Gamma(r/2, 2) \quad r > 0$$

$$f(x) = \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2 - 1} e^{-x/2} \quad 0 < x < \infty \quad \mu = r \quad \sigma^2 = 2r$$

Let
$$X_i$$
's iid, $X_i \sim \mathcal{X}^2(r_i)$, then $Y = \sum_{i=1}^n X_i \sim \mathcal{X}^2(\sum_{i=1}^n r_i)$.

Beta, Dirichlet distributions

Beta

Let
$$X_1 \sim \Gamma(\alpha, 1)$$
, $X_2 \sim \Gamma(\beta, 1)$ and $X_1 \perp X_2$, define $X = X_1/(X_1 + X_2)$,

$$X \sim \beta(\alpha, \beta) \quad \alpha > 0, \quad \beta > 0$$

$$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \quad 0 < x < 1$$

$$\mu = \frac{\alpha}{\alpha + \beta} \quad \sigma^2 = \frac{\alpha \beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}$$

Beta function

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

Dirichlet (built from $\Gamma(\alpha_j, 1)$)

$$f(x_1,...,x_K) = \frac{1}{B(\alpha_1,...,\alpha_K)} \prod_{i=1}^K x_j^{\alpha_j-1} \quad 0 \le x_j \le 1 \quad \sum_{i=1}^K x_j = 1$$

Normal Distribution

If
$$X \sim N(\mu, \sigma^2), \sigma^2 > 0$$
, then $V = (X - \mu)^2/\sigma^2 \sim \mathcal{X}^2(1)$. To be continued

Multivariate Normal Distribution

To be continued

t and F Distributions

Let $W \sim N(0,1), V \sim \mathcal{X}^2(r)$ and $W \perp V$,

$$f(x) = \frac{T = W/(\sqrt{V/r}) \sim t(r) \quad r > 0}{\int ((r+1)/2)}$$

$$f(x) = \frac{\Gamma((r+1)/2)}{\sqrt{\pi r} \Gamma(r/2) (1 + x^2/r)^{(r+2)/2}}, \quad -\infty < x < \infty$$

$$\mu = 0 \quad r > 1; \quad \sigma^2 = r/(r-2) \quad r > 2$$

Let
$$U \sim \mathcal{X}^2(\mathit{r}_1), V \sim \mathcal{X}^2(\mathit{r}_2)$$
 and $U \bot V$,

$$F = (U/r_1)/(V/r_2) \sim F(r_1, r_2) \quad r_1 > 0 \quad r_2 > 0$$

$$f(x) = \frac{\Gamma((r_1 + r_2)/2)(r_1/r_2)^{r_1/2} x^{r_1/2 - 1}}{\Gamma(r_1/2)\Gamma(r_2/2)(1 + r_1 x/r_2)^{(r_1 + r_2)/2}} \quad x > 0$$

 $\mu = r_2/(r_2 - 2)$ $r_2 > 2$; $\sigma^2 = 2\left(\frac{r_2}{r_2 - 2}\right)^2 \frac{r_1 + r_2 - 2}{r_1(r_2 - 4)}$ $r_2 > 4$

Student's Theorem

Let X_1, \dots, X_n iid and $X_i \sim N(\mu, \sigma^2)$, define

Sample mean:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

- $\overline{X} \sim N(\mu, \sigma^2/n)$
- $\overline{X} \perp S^2$
- $(n-1)S^2/\sigma^2 \sim \mathcal{X}^2(n-1)$
- $T = \frac{\overline{X} \mu}{S/\sqrt{n}} \sim t(n-1)$

Mixture Distributions

To be continued

Outline

- Probability
 - Theory
 - Some Special Distributions
 - Asymptotic Theory
- Statistical Inference
 - Confidence Interval
 - Frequentist Statistics
 - Maximum Likelihood Estimation (MLE)
 - Expectation and Maximization Algorithm (EM)
 - Bayesian Statistics

Basic Concepts

Basic Concepts

- sample: X_1, \ldots, X_n have the same distribution
- random sample: X_1, \ldots, X_n iid
- statistics: a function of a sample $T = T(X_1, \dots, X_n)$

Converge in probability

Definition

Let $\{X_n\}$ be a sequence of random variables and let X be a random variable. We say that X_n converges in probability to X if, for all $\epsilon > 0$,

$$\lim_{n\to\infty}p((x_n-x)\geq\epsilon)=0$$

or equivalently,

$$\lim_{n\to\infty} p((x_n-x)<\epsilon)=1.$$

If so, we write

$$X_n \stackrel{p}{\to} X$$
.

Converge of the real sequence $a_n \to a$ is equivalent to $a_n \stackrel{p}{\to} a$.

- Suppose $X_n \stackrel{p}{\to} X$, $Y_n \stackrel{p}{\to} Y$, then $X_n + Y_n \stackrel{p}{\to} X + Y$, $X_n Y_n \stackrel{p}{\to} XY$.
- Suppose $X_n \stackrel{p}{\to} X$, then $aX_n \stackrel{p}{\to} aX$.
- Suppose $X_n \stackrel{p}{\to} X$ and g is continuous, then $g(X_n) \stackrel{p}{\to} g(X)$.

Law of Large Numbers

Definition

Weak law of large numbers $\{X_n\}$ iid, mean $\mu < \infty$, variance $\sigma^2 < \infty$, let

$$\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$$

Then

$$\overline{X}_n \stackrel{p}{\to} \mu$$

Strong law of large numbers only requires $\mu < \infty$.

Consistency

Definition

Consistency:

Let X be a random variable with cdf $F(x,\theta)$, $\theta \in \Theta$. Let X_1, \dots, X_n be a sample from the distribution of X and let T_n denote a statistic. We say T_n is a consistent estimator of θ if

$$T_n \stackrel{p}{\rightarrow} \theta$$
.

Example

Consistent estimator

- Sample mean (iid) $\overline{X}_n \stackrel{p}{\to} \mu \quad \mu < \infty$
- Sample variance (iid) $S_n^2 \xrightarrow{p} \sigma^2$, $S_n \xrightarrow{p} \sigma$ var $(S^2) < \infty$

Converge in Distribution

Definition

Let $\{X_n\}$ be a sequence of random variables and let X be a random variable. Let F_{X_n} and F_X be, respectively, the cdfs of X_n and X. Let $C(F_X)$ denote the set of all points where F_X is continuous. We say that X_n converges in distribution to X if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x), \text{ for all } x\in C(F_X).$$

We denote this convergence by If so, we write

$$X_n \stackrel{D}{\to} X$$
.

Example

- Let $Y_n \sim \text{bin}(n, p)$, we know $\mu = np$, then $Y_n \stackrel{D}{\rightarrow} \text{poi}(\mu)$.
- Let $Z_n \sim \mathcal{X}^2(n)$, then $Y_n = (Z_n n)\sqrt{(2n)} \stackrel{D}{\to} N(0,1)$.

Some properties

Some properties

- If $X_n \stackrel{p}{\to} X$, then $X_n \stackrel{D}{\to} X$.
- If $X_n \stackrel{D}{\to} b$ (a constant), then $X_n \stackrel{p}{\to} b$.
- If $X_n \stackrel{p}{\to} X$, $Y_n \stackrel{p}{\to} 0$, then $X_n + Y_n \stackrel{D}{\to} X$.
- If $X_n \stackrel{p}{\to} X$, g is continuous, then $g(X_n) \stackrel{D}{\to} g(X)$

Theorem

Slutsky's Theorem

If
$$X_n \stackrel{D}{\to} X$$
, $A_n \stackrel{p}{\to} a$, $B_n \stackrel{p}{\to} b$ (a, b constant), then $A_n + B_n X_n \stackrel{D}{\to} a + b X$

Bounded in Probability

Definition

Bounded in probability (Stochastically bounded):

We say that the sequence of random variables $\{X_n\}$ is bounded in probability if, for all $\epsilon>0$, there exists a constant C>0 and an integer N_ϵ such that for all $n\geq N_\epsilon$

$$p(|X_n| \leq C) \geq 1 - \epsilon$$
.

Some properties

- If $X_n \stackrel{D}{\to} X$, then $\{X_n\}$ is bounded in probability.
- $\{X_n\}$ is bounded in probability and $Y_n \stackrel{p}{\to} 0$, then $X_n Y_n \stackrel{p}{\to} 0$

Converge Rate

Consider random sequences $\{X_n\}_{n=1}^{\infty}$ and $\{Y_n\}_{n=1}^{\infty}$.

The o_p notation.

 $X_n = o_p(Y_n)$ if and only if

$$\frac{X_n}{Y_n} \stackrel{p}{\to} 0.$$

The O_p notation.

 $X_n = O_p(Y_n)$ (X_n is of order no larger than Y_n) if and only if

$$\frac{X_n}{Y_n}=O_p(1).$$

If $X_n = O_p(1)$, we say that X_n is bounded in probability. If $\{Y_n\}$ is bounded in probability and $X_n = o_p(Y_n)$, then $X_n \stackrel{p}{\to} 0$

Δ -Method

Theorem

 Δ method

Let $\{X_n\}$ be a sequence of random variables such that

$$\sqrt{n}(X_n-\theta)\stackrel{D}{\to} N(0,\sigma^2).$$

Suppose the function g(x) is differentiable at θ and $g'(\theta) \neq 0$. Then

$$\sqrt{n}(g(X_n)-g(\theta))\stackrel{D}{\to} N(0,\sigma^2(g'(\theta))^2).$$

Central Limit Theory

Theorem

Central limit theory:

Let X_1, \ldots, X_n iid from a distribution has mean μ and variance $\sigma^2 > 0$. Then

$$Y_n = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} N(0,1)$$

Remark

Note $\mathbb{E}[\overline{X}_n] = \mu$ and $\text{Var}(\overline{X}_n) = \sigma^2/n$, CLT shows $\overline{X}_n \stackrel{D}{\to} N(\mu, \sigma^2/n)$.

Large sample inference for μ - X_1, \ldots, X_n iid, μ and σ^2 are unknown,

$$\frac{\overline{X}_n - \mu}{S/\sqrt{n}} \stackrel{D}{\to} N(0,1)$$

Note that

$$\frac{\overline{X}_n - \mu}{S/\sqrt{n}} = \left(\frac{\sigma}{S}\right) \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \text{ and } s \stackrel{p}{\to} \sigma.$$

CLT applications

Normal approximation to the binomial distribution Let X_1, \ldots, X_n iid, $X_i \sim \text{ber}(p)$, we know $Y_n = X_1 + \ldots + X_n \sim \text{bin}(n, p)$

$$\frac{\overline{X}_n - p}{\sqrt{p(1-p)/n}} \stackrel{D}{\to} N(0,1)$$

Large sample inference for properties Let X_1, \ldots, X_n iid, $X_i \sim \text{ber}(p)$, let $\hat{p} = \overline{X}$

$$\frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p})/n}}\stackrel{D}{\to} N(0,1)$$

Note that $\hat{p} = \overline{X} \stackrel{p}{\rightarrow} p$ Large sample inference for \mathcal{X}^2 -test

Let $Y_n \sim \text{bin}(n, p)$, we know $(Y_n - np)/\sqrt{np(1-p)} \stackrel{D}{\rightarrow} N(0, 1)$. Then

$$((Y_n - np)/\sqrt{np(1-p)})^2 \stackrel{D}{\to} \mathcal{X}^2(1)$$

Outline

- Probability
 - Theory
 - Some Special Distributions
 - Asymptotic Theory
- Statistical Inference
 - Confidence Interval
 - Frequentist Statistics
 - Maximum Likelihood Estimation (MLE)
 - Expectation and Maximization Algorithm (EM)
 - Bayesian Statistics

Confidence Interval

Definition

Confidence Interval Let X_1, \ldots, X_n be a sample on $X \sim f(x; \theta), \theta \in \Omega$. Let $L = L(X_1, \ldots, X_n)$ and $U = U(X_1, \ldots, X_n)$ be two statistics and $0 < \alpha < 1$.

The interval (L,U) is a (1-lpha)100% confidence interval for heta if

$$1-\alpha=p_{\theta}(\theta\in(L,U))$$

Confidence interval for μ -under normality

$$X_1,\ldots,X_n$$
 iid $X_i\sim N(\mu,\sigma^2)$, we know $T=(\overline{X}-\mu)(s/\sqrt(n))\sim t(n-1)$.

$$1 - \alpha = p(\overline{x} - t_{\alpha/2, n-1}S/\sqrt{n} < \mu < \overline{x} + t_{\alpha/2, n-1}S/\sqrt{n})$$

Some Applications

Large sample confidence interval for μ X_1,\ldots,X_n iid, X_i has mean μ and variance σ^2 , we know $(\overline{X}_n-\mu)/(S/\sqrt{n})\stackrel{D}{\to} Z=N(0,1)$

$$1 - \alpha \approx p \left(\overline{x} - z_{\alpha/2} S / \sqrt{n} < \mu < \overline{x} + z_{\alpha/2} S / \sqrt{n} \right)$$

Large sample confidence interval for p

$$X_1, \ldots, X_n$$
 iid, $X_i \sim \operatorname{ber}(p)$, let $\hat{p} = \overline{X}$. Note $\operatorname{Var}(\hat{p}) = p(1-p)/n$, by CLT $(\hat{p} - p)\sqrt{p(1-p)/n} \stackrel{D}{\to} Z = N(0,1)$ and we know $\hat{p} \stackrel{D}{\to} p$.

$$1-lphapprox p\left(\hat{
ho}-z_{lpha/2}\sqrt{\hat{
ho}(1-\hat{
ho})/n}< p<\hat{
ho}+z_{lpha/2}\sqrt{\hat{
ho}(1-\hat{
ho})/n}
ight)$$

Outline

- Probability
 - Theory
 - Some Special Distributions
 - Asymptotic Theory
- Statistical Inference
 - Confidence Interval
 - Frequentist Statistics
 - Maximum Likelihood Estimation (MLE)
 - Expectation and Maximization Algorithm (EM)
 - Bayesian Statistics

Maximum Likelihood Estimation (MLE)

MLE: Choose θ that maximizes the probability of observed data ${\cal D}$

$$\hat{ heta}_{ extit{MLE}} = rgmax_{ heta} p(\mathcal{D}| heta)$$

In general, we assume $\mathcal{D}: x_1, \dots, x_n$ independent draw and identically distributed (iid) of $p(x|\theta)$.

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i|\theta)$$

Let $J(\theta) = \prod_{i=1}^{n} p(x_i | \theta)$, often,

$$\partial J(\theta)/\partial \theta|_{\theta=\hat{\theta}_{MLE}}=0$$

In pratice, for computation benefit, we consider the log form, $L(\theta)$

MLE-Examples

To be continued

Expectation and Maximization Algorithm (EM)

EM: a general method of finding the maximum likelihood estimate. **Motivation**: when MLE of a problem is analytically intractable and gradient learning method is slow.

Approach: computing the MLE of an incomplete-data problem by formulating an associated complete-data problem.

Remark: If local maximums of likelihood exist, EM algorithm may monotonically converge to a local maximum.

Application: Gaussian mixture model, hidden markov model

Formulation

Data

- observed $x = (x_1, ..., x_{n_1})$
- unobserved $z = (z_1, \ldots, z_{n_2})$

Likelihood

- observed $f(x|\theta)$ complete $f(x,z|\theta)$
- conditional $f(z|x,\theta) = f(x,z|\theta)/f(x|\theta)$

E-M algorithm: imporve $f(x|\theta)$ using $f(x, z|\theta)$.

$$\begin{aligned} \log f(x|\theta) &= \int (\log f(x|\theta)) f(z|x,\theta') dz \\ &= \int (\log f(x,z|\theta) - \log f(z|x,\theta)) f(z|x,\theta') dz \\ &= \mathbb{E}_{z|x,\theta'} (\log f(x,Z|\theta)|x,\theta') - \mathbb{E}_{z|x,\theta'} (\log f(Z|x,\theta)|x,\theta') \end{aligned}$$

EM Algorithm

Initialize the estimate $\hat{\theta}^0$ of θ . Let $\hat{\theta}^m$ be the estimate on the m-th step. To compute the estimate $\hat{\theta}^{m+1}$ on the m+1-th step, do

Expectation step (E step)

$$Q(\theta|\hat{\theta}^m, x) = \mathbb{E}_{z|x, \hat{\theta}^m}(\log f(x, Z|\theta)|x, \hat{\theta}^m)$$

Maximization step (M step)

$$\hat{\theta}^{m+1} = \arg\max Q(\theta|\hat{\theta}^m, x)$$

EM algorithm monotonically improves the likelihood $f(x|\theta)$ (or unchanged).

Theorem

The sequence of estimate $\hat{\theta}^m$, defined by EM algorithm, satisfies

$$\log f(x|\hat{\theta}^{m+1}) \ge \log f(x|\hat{\theta}^m)$$

EM Property

Proof.

$$\begin{split} \log f(\boldsymbol{x}|\hat{\boldsymbol{\theta}}^{m+1}) - \log f(\boldsymbol{x}|\hat{\boldsymbol{\theta}}^{m}) \\ &= \int \log f(\boldsymbol{x}|\hat{\boldsymbol{\theta}}^{m+1}) f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m}) d\boldsymbol{z} - \int \log f(\boldsymbol{x}|\hat{\boldsymbol{\theta}}^{m}) f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m}) d\boldsymbol{z} \\ &= \int (\log f(\boldsymbol{x},\boldsymbol{z}|\hat{\boldsymbol{\theta}}^{m+1}) - \log f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m+1})) f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m}) d\boldsymbol{z} - \\ & \int (\log f(\boldsymbol{x},\boldsymbol{z}|\hat{\boldsymbol{\theta}}^{m}) - \log f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m})) f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m}) d\boldsymbol{z} - \\ & = Q(\hat{\boldsymbol{\theta}}^{m+1}|\hat{\boldsymbol{\theta}}^{m},\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m}}(\log f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m+1})|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m}) - \\ & (Q(\hat{\boldsymbol{\theta}}^{m}|\hat{\boldsymbol{\theta}}^{m},\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m}}(\log f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m})|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m})) \\ &= \underbrace{Q(\hat{\boldsymbol{\theta}}^{m+1}|\hat{\boldsymbol{\theta}}^{m},\boldsymbol{x}) - Q(\hat{\boldsymbol{\theta}}^{m}|\hat{\boldsymbol{\theta}}^{m},\boldsymbol{x})}_{\hat{\boldsymbol{\theta}}^{m}+1 = \arg\max Q(\hat{\boldsymbol{\theta}}|\hat{\boldsymbol{\theta}}^{m},\boldsymbol{x})} + \mathbb{E}_{\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m}}\left(\log \frac{f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m})}{f(\boldsymbol{z}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m+1})}|\boldsymbol{x},\hat{\boldsymbol{\theta}}^{m}\right) \geq 0 \end{split}$$

EM in General

Factorize the log likelihood as

$$\log f(x|\theta) = \int (\log f(x|\theta)) f(z) dz$$

$$= \int (\log f(x,z|\theta) - \log f(z|x,\theta)) f(z) dz$$

$$= L(f(z),\theta) + KL(f(z)||f(z|x,\theta))$$

where

$$L(f(z), \theta) = \int \log \left(\frac{f(x, z | \theta)}{f(z)} \right) f(z) dz$$

$$KL(f(z) || f(z | x, \theta)) = \int \log \left(\frac{f(z)}{f(z | x, \theta)} \right) f(z) dz$$

Lower Bound

 $L(f(z), \theta)$ is a lower bound on $\log f(x|\theta)$ (KL divergence is nonegative)

$$L(f(z), \theta) \le \log f(x|\theta)$$

Figure 1: lower bound

Interprete E-step

E-step is equivalent to (suppose the current estimate is $\hat{\theta}^m$)

$$\begin{split} \hat{f}^{m+1}(z) &= \arg\max_{f(z)} L(f(z), \hat{\theta}^m) \\ &= \arg\min_{f(z)} \log f(x|\hat{\theta}^m) - L(f(z), \hat{\theta}^m) \\ &= \arg\min_{f(z)} KL(f(z)||f(z|x, \hat{\theta}^m)) = f(z|x, \hat{\theta}^m) \end{split}$$

In this case, KL(.) = 0, i.e.,

$$L(\hat{f}^{m+1}(z), \hat{\theta}^m) = L(f(z|x, \hat{\theta}^m), \hat{\theta}^m) = \log f(x|\hat{\theta}^m)$$

.

Interprete E-step

E-step causes
$$L() = \log f()$$

Figure 2: E-step

Interprete M-step

M-step is equivalent to

$$\begin{split} \hat{\theta}^{m+1} &= \arg\max_{\theta} L(f(z|x,\hat{\theta}^m),\theta) \\ &= \arg\max_{\theta} \int (\log(f(x,z|\theta))) f(z|x,\hat{\theta}^m) dz + \text{const} \\ &= \arg\max_{\theta} Q(\theta,\hat{\theta}^m) + \text{const} \end{split}$$

The log likelihood becomes

$$\log f(x|\hat{\theta}^{m+1}) = L(f(z|x,\hat{\theta}^{m}),\hat{\theta}^{m+1}) + KL(f(z|x,\hat{\theta}^{m})||f(z|x,\hat{\theta}^{m+1}))$$

Interprete M-step

The M-step causes both L(.) and $\log f(.)$ increase, and KL divergence becomes nonzero (unless converges to maximum).

Figure 3: M-step

Operations of the EM Algorithm

EM algorithm

- E-step: $L(.) = \log f(.)$ and KL(.) = 0
- M-step: $\log f(.) \uparrow = L(.) \uparrow + KL(.) (\geq 0)$

Figure 4: EM-algorithm

Converge Property

EM-algorithm overview

$$\hat{\theta} = \arg\max_{\theta} \max_{f(z)} L(f(z), \theta) = \arg\max_{\theta} f(x|\theta)$$

- Any algorithm that converges to the global maximum of $L(., \theta)$ that is also a global maximum of $\log f(x|\theta)$.
- Provided $f(x, z|\theta)$ is continuous on θ , local maximum of $L(., \theta)$ is also a local maximum of $\log f(x|\theta)$.

EM Algorithm for MAP

Posterior distribution

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{f(x)}$$

$$\log f(\theta|x) = \log f(x|\theta) + \log f(\theta) - f(x)$$

$$= L(f(z), \theta) + KL(f(z)||f(z|x, \theta)) + \log f(\theta) - f(x)$$

EM algorithm

- E-step: the same
- M-step: consider additional $\log f(\theta)$

Outline

- Probability
 - Theory
 - Some Special Distributions
 - Asymptotic Theory
- Statistical Inference
 - Confidence Interval
 - Frequentist Statistics
 - Maximum Likelihood Estimation (MLE)
 - Expectation and Maximization Algorithm (EM)
 - Bayesian Statistics

Maximum a Posteriori Estimation (MAP)

A Bayesian approach

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

where prior $p(\theta)$ represents expert knowledge.

Conjugate priors: $p(\theta)$ and $p(\theta|\mathcal{D})$ have the same form.

Maximum a posteriori (MAP) estimation: choose value that is most probable given observed data and prior belief

$$egin{aligned} \hat{ heta}_{MAP} &= rgmax \, p(heta|\mathcal{D}) \ &= rgmax \, p(\mathcal{D}| heta) p(heta) \end{aligned}$$

If $p(\theta) \sim \textit{Uniform}$ (a constant), MAP and MLE are the same. Typically, when $|\mathcal{D}|$ increases, MAP \rightarrow MLE that the data dominate the posteriori distribution.

MAP-examples

To be continued