Résolution de Problèmes Programmation par Contraintes

Marie Pelleau

marie.pelleau@univ-cotedazur.fr

Algorithme glouton

Principe

- À chaque étape, on fait un choix, celui qui semble le meilleur à cet instant
- Construit une solution pas à pas
 - sans revenir sur ses décisions
 - en effectuant à chaque étape le choix qui semble le meilleur
 - en espérant obtenir un résultat optimum global
- Approche gloutonne
 - suivant les problèmes pas de garantie d'optimalité (heuristique gloutonne)
 - peu coûteuse (comparée à une énumération exhaustive)
 - choix intuitif

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
 - en essayant d'améliorer la valeur de la fonction objectif
 - en espérant obtenir l'optimum global
- Approche locale
 - suivant les problèmes pas de garantie d'optimalité (heuristique)
 - peu coûteuse

Remarque

S'il n'existe pas de fonction objectif Constraint Based Local Search

Programmation par Contraintes

- Recherche Arborescente
 - trouver une solution
 - trouver l'ensemble des solutions
 - trouver une solution optimale
 - prouver la non existence de solution
- Approche complète
 - garantie d'optimalité
 - plus coûteuse

Send More Money

Description

Contraintes possibles

```
s*1000 + e*100 + n*10 + d
C_{1}: + m*1000 + o*100 + r*10 + e
= m*10000 + o*1000 + n*100 + e*10 + y
C_{2}: s \neq e \qquad C_{3}: s \neq n \qquad C_{4}: s \neq d \qquad C_{5}: s \neq m \qquad C_{6}: s \neq o
C_{7}: s \neq r \qquad C_{8}: s \neq y \qquad C_{9}: e \neq n \qquad C_{10}: e \neq d \qquad C_{11}: e \neq m
C_{12}: e \neq o \qquad \dots \qquad C_{27}: o \neq r \qquad C_{28}: o \neq y \qquad C_{29}: r \neq y
```

Send More Money

Description

$$\begin{array}{c} r_4 r_3 r_2 r_1 \\ \text{SEND} \\ + \text{MORE} \\ \hline \text{MONEY} \end{array}$$

Contraintes possibles

```
\begin{array}{llll} C_1: & d+e=y+10*r_1 & r_1 \in \{0,1\} \\ C_2: & r_1+n+r=e+10*r_2 & r_2 \in \{0,1\} \\ C_3: & r_2+e+o=n+10*r_3 & r_3 \in \{0,1\} \\ C_4: & r_3+s+m=o+10*r_4 & r_4 \in \{0,1\} \\ C_5: & r_4=m \\ & C_6: s \neq e & C_7: s \neq n & C_8: s \neq d & C_9: s \neq m & C_{10}: s \neq o \\ C_{11}: s \neq r & C_{12}: s \neq y & C_{13}: e \neq n & C_{14}: e \neq d & C_{15}: e \neq m \\ C_{16}: e \neq o & ... & C_{31}: o \neq r & C_{32}: o \neq y & C_{33}: r \neq y \end{array}
```

Comment résoudre un CSP ?

Generate and Test

Méthode Naïve

Générer toutes les affectations possibles et vérifier si elles correspondent à des solutions

Remark

Pour trouver une seule solution, on va générer :

- $9^2 * 10^6 = 81 000 000$ feuilles avec la première modélisation
- $2^4 * 9^2 * 10^6 = 1$ 296 000 000 avec la seconde

On peut faire mieux ?

Generate and Test

Coloriage de carte

- $V = \{v_1, \ldots, v_7\}$
- $\begin{array}{ll}
 \bullet & D_1 = \cdots = D_7 \\
 &= \{\bullet, \bullet, \bullet\}
 \end{array}$
- $C_1: v_1 \neq v_2$ $C_2: v_1 \neq v_3$ $C_3: v_2 \neq v_3$ $C_4: v_2 \neq v_4$ $C_5: v_3 \neq v_4$ $C_6: v_3 \neq v_5$ $C_7: v_3 \neq v_6$ $C_8: v_4 \neq v_5$ $C_9: v_5 \neq v_6$

 $C_{10}: v_6 \neq v_7$

Forward Checking

Dès qu'une variable est affectée on essaye de filtrer les valeurs pour les autres variables

- On remplace la variable par sa valeur dans toutes les contraintes
- On peut filtrer si une contrainte ne contient plus qu'une variable

•
$${C_4 : r_3 + s + m = o + 10 * r_4, C_5 : r_4 = m}$$

• $r_4 = 0$
• $r_4 = 1$
• $r_3 + s + m = o \wedge m = 0 \times m$
• $r_4 = 1$
• $r_3 + s + m = o + 10 \wedge m = 1$
• $r_3 + s + 1 = o + 10$

Forward Checking

Dès qu'une variable est affectée on essaye de filtrer les valeurs pour les autres variables

- On remplace la variable par sa valeur dans toutes les contraintes
- On peut filtrer si une contrainte ne contient plus qu'une variable

Remark

Pour trouver une seule solution, on va générer :

- 483 840 feuilles avec la première modélisation
- 57 avec la seconde

Pourquoi attendre une affectation ?

Méthode avec Filtrage

Les 2 étapes clés de la programmation par contraintes !

Propagation

Supprime des domaines les valeurs inconsistantes, c'est-à-dire les valeurs ne pouvant être dans une solution

Exploration

Affecte une valeur à une variable

Propagation

Consistance pour une contrainte

Différentes consistances :

- Consistance d'arc généralisée [Mackworth, 1977b]
- Consistance de chemin [Montanari, 1974]
- Consistance de borne [van Hentenryck et al., 1995]
- ...

Toutes reposent sur la notion de support

Propagation

Consistance pour une contrainte

Definition (Support)

Soient v_1, \ldots, v_n des variables de domaines discrets finis D_1, \ldots, D_n et C une contrainte. La valeur $x_i \in D_i$ a un **support** ssi $\forall j \in [1, n], j \neq i, \exists x_i \in D_i$ tel que $C(x_1, \ldots, x_n)$ soit vrai

Exemple

$$C: r_4 = m \text{ avec } D_{r_4} = [0, 1] \text{ et } D_m = [1, 9]$$

- 1 pour r_4 a un support : 1 pour m car C(1,1) est vrai
- 0 pour r_4 n'a pas de support : $\forall x_m \in D_m, C(0, x_m)$ est faux

Propagation

Consistance pour une contrainte

Definition (Support)

Soient v_1, \ldots, v_n des variables de domaines discrets finis D_1, \ldots, D_n et C une contrainte. La valeur $x_i \in D_i$ a un **support** ssi $\forall j \in [1, n], j \neq i, \exists x_i \in D_i$ tel que $C(x_1, \ldots, x_n)$ soit vrai

Exemple

$$C: v_1 \neq v_2 \text{ avec } D_1 = D_2 = \{\bullet, \bullet, \bullet\}$$

- • pour v_1 a un support : pour v_2 car $C(\bullet, \bullet)$ est vrai
- • pour v_1 a un support : pour v_2 car $C(\bullet, \bullet)$ est vrai
- pour v_1 a un support : pour v_2 car $C(\bullet, \bullet)$ est vrai

Consistances

Definition (Consistance de bornes)

Soient v_1, \ldots, v_n des variables de domaines discrets finis D_1, \ldots, D_n et C une contrainte. Les domaines sont dits **borne-consistants** (BC) pour C ssi $\forall i \in [1, n], D_i = [a_i, b_i], a_i$ et b_i ont un support.

Exemple

Considérons deux variables v_1, v_2 de domaines $D_1 = D_2 = [-1, 4]$ et la contrainte $v_1 = 2v_2$. Les domaines borne-consistants pour cette contrainte sont $D_1 = [0, 4]$ et $D_2 = [0, 2]$

Consistances

Definition (Consistance d'arc généralisée)

Soient v_1, \ldots, v_n des variables de domaines discrets finis D_1, \ldots, D_n et C une contrainte. Les domaines sont dits **arc-consistants généralisés** (GAC) pour C ssi $\forall i \in [1, n], \forall x \in D_i, x$ a un support.

Exemple

Considérons deux variables v_1, v_2 de domaines $D_1 = D_2 = [-1, 4]$ et la contrainte $v_1 = 2v_2$. Les domaines arc-consistants pour cette contrainte sont $D_1 = \{0, 2, 4\}$ et $D_2 = \{0, 1, 2\}$

Consistance d'arc

Plusieurs implémentations

- AC1 et AC3 [Mackworth, 1977a]
- AC4 [Mohr and Henderson, 1986]
- AC5 [van Hentenryck et al., 1992]
- AC6 [Bessière, 1994]
- AC7 [Bessière et al., 1999]
- AC2001 [Bessière and Régin, 2001]
- AC3.2 et AC3.3 [Lecoutre et al., 2003]

Maintaining Generalized Arc Consistency

On alterne deux phases

- Propagation, on utilise l'arc-consistance généralisée
- Exploration, on fait un choix

Remark

Pour trouver une seule solution, on va générer :

- 6 feuilles avec la première modélisation
- 7 avec la seconde

Stratégie d'exploration

L'ordre des variables compte

Stratégie d'exploration

Choisir la variable

- Ayant le plus petit domaine (dom), First-fail [Haralick and Elliott, 1979]
- Apparaissant dans le plus grand nombre de contraintes (deg)
- dom + deg [Brélaz, 1979]
- ullet dom/deg [Bessière and Régin, 1996]
- dom/wdeg [Boussemart et al., 2004]
- . . .

Stratégie d'exploration

- $V = \{v_1, \ldots, v_7\}$
- $\begin{array}{ll}
 \bullet & D_1 = \cdots = D_7 \\
 &= \{\bullet, \bullet, \bullet\}
 \end{array}$
- $C_1 : v_1 \neq v_2$
 - $C_2: v_1 \neq v_4$
 - $C_3 : v_2 \neq v_3$
 - $C_4: v_2 \neq v_4$
 - $C_5: v_3 \neq v_4$
 - $C_5 \cdot v_3 \neq v_4$
 - $C_6: v_3 \neq v_5$
 - $C_7: v_4 \neq v_5$
 - $C_8 : v_4 \neq v_6$
 - $C_9: v_5 \neq v_6$
 - $C_{10}: v_6 \neq v_7$

Stratégie d'exploration - dom

- $V = \{v_1, \ldots, v_7\}$
- $D_1 = \cdots = D_7$ $= \{ \bullet, \bullet, \bullet \}$
- $C_1 : v_1 \neq v_2$
 - $C_2: v_1 \neq v_4$
 - $C_3: v_2 \neq v_3$
 - $C_4: v_2 \neq v_4$
 - $C_4 \cdot v_2 \neq v_4$
 - $C_5: v_3 \neq v_4$
 - $C_6: v_3 \neq v_5$
 - $C_7: v_4 \neq v_5$
 - $C_8: v_4 \neq v_6$
 - $C_9: v_5 \neq v_6$
 - $C_{10}: v_6 \neq v_7$

Stratégie d'exploration - deg

- $V = \{v_1, \ldots, v_7\}$
- $D_1 = \cdots = D_7$ $= \{ \bullet, \bullet, \bullet \}$
- $C_1: v_1 \neq v_2$
 - $C_2: v_1 \neq v_4$
 - $C_3: V_2 \neq V_3$
 - $C_4: v_2 \neq v_4$
 - $C_5: v_3 \neq v_4$
 - $C_6: v_3 \neq v_5$
 - $C_7: v_4 \neq v_5$

 - $C_8: v_4 \neq v_6$
 - $C_9: v_5 \neq v_6$
 - $C_{10}: v_6 \neq v_7$

Ça marche tout le temps ?

Limites

- $V = \{v_1, \ldots, v_7\}$
- $D_1 = \cdots = D_7$ $= \{ \bullet, \bullet, \bullet \}$
- $C_1: v_1 \neq v_2$
 - $C_2: v_1 \neq v_3$
 - $C_3 : v_2 \neq v_3$
 - $C_4: v_2 \neq v_4$
 - $C_5: v_3 \neq v_4$
 - $C_6: v_3 \neq v_5$
 - $C_7: v_3 \neq v_6$
 - $C_8: v_4 \neq v_5$
 - $C_9: v_5 \neq v_6$

 - $C_{10}: v_6 \neq v_7$

Limites

- $V = \{v_1, \ldots, v_7\}$
- $D_1 = \cdots = D_7$ $= \{ \bullet, \bullet, \bullet \}$
- $C_1: v_1 \neq v_2$
 - $C_2: v_1 \neq v_3$ $C_3: v_2 \neq v_3$
 - $C_3 \cdot v_2 \neq v_3$
 - $C_4: v_2 \neq v_4$
 - $C_5: v_3 \neq v_4$
 - $C_6: v_3 \neq v_5$
 - $C_7: v_3 \neq v_6$
 - $C_8: v_4 \neq v_5$
 - $C_9: v_5 \neq v_6$
 - $C_9: V_5 \neq V_6$
 - $C_{10}: v_6 \neq v_7$

Contraintes globales

Permet de représenter un ensemble de contraintes

- Facilite la modélisation
- Algorithme dédié pour supprimer les valeurs inconsistantes des domaines

Catalogue des contraintes [Beldiceanu et al., 2010]

Les plus connues

- alldifferent
- cycle
- global_cardinality
- nvalue
- element

Contrainte alldifferent

Présentée la première fois dans [Lauriere, 1978] Retourne vrai si toutes les variables sont différentes deux à deux

Exemple

On peut ré-écrire les contraintes de différences du problème send + more = money all different (s, e, n, d, m, o, r, y)

Contrainte alldifferent

- $V = \{v_1, \ldots, v_7\}$
- $D_1 = \cdots = D_7 = \{ \bullet, \bullet, \bullet \}$
- $C_1: v_1 \neq v_2$
 - $C_2: v_1 \neq v_3$
 - $C_3 : V_2 \neq V_3$
 - $C_4: v_2 \neq v_4$
 - $C_5: V_3 \neq V_4$
 - $C_6: v_3 \neq v_5$
 - $C_7: v_3 \neq v_6$
 - $C_8: v_4 \neq v_5$
 - $C_9: v_5 \neq v_6$
 - $C_{10}: v_6 \neq v_7$

- $V = \{v_1, \ldots, v_7\}$
- $D_1 = \cdots = D_7 = \{ \bullet, \bullet, \bullet \}$
- \bullet $C_1:$ all different($v_1,\,v_2,\,v_3)$
 - C_2 : all different (v_2, v_3, v_4)
 - C_3 : all different (v_3, v_4, v_5)
 - C_4 : all different (v_3, v_5, v_6)
 - $C_5: v_6 \neq v_7$

Contrainte alldifferent

- Pas que du sucre syntaxique
 - Arc-consistance
 - Développé indépendamment par [Costa, 1994] et [Régin, 1994]
 - Repose sur la théorie des graphes
 - Borne-consistance
 - Développé par [Puget, 1998] puis amélioré par [Mehlhorn and Thiel, 2000] et [Lopez-Ortiz et al., 2003]
 - Repose sur la notion d'intervalle de Hall

Graphe des valeurs

Definition (Graphe des valeurs)

À partir des variables et des domaines d'un CSP on peut créer un graphe biparti, appelé graphe des valeurs

- Les sommets correspondent aux variables et aux valeurs
- Une arête relie une variable v_i et une valeur x si $x \in D_i$

Example

- $V = \{v_1, v_2, v_3, v_4, v_5\}$
- $D_1 = \{1, 2, 3\}, D_2 = \{1, 2, 4, 5\}, \text{ et } D_3 = D_4 = D_5 = \{4, 5, 6\}$

Théorie des graphes

Definition (Couplage)

Étant donné un graphe G = (V, E), un sous-ensemble M des arêtes E est appelé couplage ssi deux arêtes ne partage pas de sommet

Théorie des graphes

Definition (Couplage maximal)

Un couplage est dit maximal si il contient le plus d'arêtes possibles

L'algorithme de Hopcroft-Karp [Hopcroft and Karp, 1973] permet de calculer le couplage maximal dans un graphe biparti

Algorithme de Hopcroft-Karp

Composante fortement connexe

Definition (Graphe orienté)

Un graphe orienté G = (V, E) est un graphe dont les arêtes ont une direction, on les appelle des arcs

Definition (Composante fortement connexe)

Étant donné un graphe **orienté** G = (V, E), une **composante fortement connexe** est un ensemble maximal de sommets tel que pour chaque sommet de l'ensemble il existe un chemin vers les autres sommets de l'ensemble

L'algorithme de Tarjan [Tarjan, 1972] permet de calculer efficacement les composantes fortement connexes dans un graphe

Algorithme de Tarjan

- $V = \{v_1, v_2, v_3, v_4, v_5\}$
- $D_1 = \{1, 2, 3\}, D_2 = \{1, 2, 4, 5\}, \text{ et } D_3 = D_4 = D_5 = \{4, 5, 6\}$
- On trouve un couplage maximal ⇒ une solution

- $V = \{v_1, v_2, v_3, v_4, v_5\}$
- $D_1 = \{1, 2, 3\}, D_2 = \{1, 2, 4, 5\}, \text{ et } D_3 = D_4 = D_5 = \{4, 5, 6\}$
- On trouve un couplage maximal ⇒ une solution
- On cherche les composantes fortement connexes ⇒ les permutations

- $V = \{v_1, v_2, v_3, v_4, v_5\}$
- $D_1 = \{1, 2, 3\}, D_2 = \{1, 2, 4, 5\}, \text{ et } D_3 = D_4 = D_5 = \{4, 5, 6\}$
- On trouve un couplage maximal ⇒ une solution
- On cherche les composantes fortement connexes ⇒ les permutations
- On ajoute les valeurs isolées aux domaines initiaux

- $V = \{v_1, v_2, v_3, v_4, v_5\}$
- $D_1 = \{1, 2, 3\}, D_2 = \{1, 2\}, \text{ et } D_3 = D_4 = D_5 = \{4, 5, 6\}$
- On trouve un couplage maximal ⇒ une solution
- On cherche les composantes fortement connexes ⇒ les permutations
- On ajoute les valeurs isolées aux domaines initiaux

Intervalle de Hall

Definition

Soit (v_1, \ldots, v_n) des variables de domaines discrets finis (D_1, \ldots, D_n) . Étant donné un intervalle I, on définit $K_I = \{v_i \mid D_i \subseteq I\}$. I est un intervalle de Hall si $|I| = |K_I|$.

Exemple

On considère le problème suivant :

- $V = \{v_1, v_2, v_3, v_4, v_5\}$
- $D_1 = [1, 3], D_2 = [1, 5], \text{ et } D_3 = D_4 = D_5 = [4, 6]$
- I = [4, 6] est un intervalle de Hall car $K_I = \{v_3, v_4, v_5\}$ on a bien $|I| = |K_I|$
- I = [1,3] n'est pas un intervalle de Hall car $K_I = \{v_1\}$ et $|I| \neq |K_I|$

- Pour chaque borne inférieure a et borne supérieure b des domaines, on regarde si I = [a, b] est un intervalle de Hall
- Si I est de Hall on peut supprimer des domaines des variables de $V \setminus K_I$ les valeurs de I

Exemple

On considère le problème suivant :

- $V = \{v_1, v_2, v_3, v_4, v_5\}$
- $D_1 = [1, 3], D_2 = [1, 3], \text{ et}$ $D_3 = D_4 = D_5 = [4, 6]$
- I = [1, 6] n'est pas de Hall
- I = [1, 5] n'est pas de Hall
- I = [1, 3] n'est pas de Hall
- I = [4, 5] n'est pas de Hall
- I = [4, 6] est de Hall \Rightarrow on supprime les valeurs 4, 5, 6 des domaines des variables qui ne sont pas dans K_I

Contrainte global_cardinality

```
Présentée la première fois dans [Oplobedu et al., 1989]
global_cardinality(\{v_1,\ldots,v_n\},\{x_1,\ldots,p\},\{nb_1,\ldots,nb_p\})
                       Variables Valeurs
                                                 Occurrences
```

Retourne vrai si parmi les variables $\{v_1, \ldots, v_n\}$, il y a nb_i variables ayant la valeur x;

```
global_cardinality(\{v_1, v_2, v_3, v_4, v_5, v_6\}, \{0, 1\}, \{2, 4\})
Dans certains cas, on peut écrire une alldifferent en utilisant une
global_cardinality
all different (v_1, v_2, v_3) = \text{global\_cardinality}(\{v_1, v_2, v_3\}, \{\bullet, \bullet, \bullet\}, \{1, 1, 1\})
```

Contrainte global_cardinality

- Arc-consistance
 - Développé par [Régin, 1996]
 - Repose sur un algorithme de flot
- Borne-consistance
 - Développé par [Quimper et al., 2003]
 - Repose sur la notion d'intervalle de Hall
 - Développé par [Katriel and Thiel, 2003]
 - Repose sur la convexité pour améliorer l'efficacité de l'algorithme de flot

Emploi du temps sportif

Description

- n équipes, n-1 semaines et n/2 périodes
- chaque paire d'équipe joue exactement 1 fois
- chaque équipe joue un match chaque semaine
- chaque équipe joue au plus 2 fois dans la période

Example (Solution possible)

	S1	S2	S 3	S4	S5	S6	S7
P1	1 vs 2 3 vs 4 5 vs 6 7 vs 8	1 vs 3	5 vs 8	4 vs 7	4 vs 8	2 vs 6	3 vs 5
P2	3 vs 4	2 vs 8	1 vs 4	6 vs 8	2 vs 5	1 vs 7	6 vs 7
P3	5 vs 6	4 vs 6	2 vs 7	1 vs 5	3 vs 7	3 vs 8	1 vs 8
P4	7 vs 8	5 vs 7	3 vs 6	2 vs 3	1 vs 6	4 vs 5	2 vs 4

Séquence magique

Description

Une séquence magique de longueur n est une séquence d'entiers v_0, \ldots, v_{n-1} compris entre 0 et n-1 telle que le nombre $i \in \{0, \ldots, n-1\}$ apparaisse exactement v_i fois dans la séquence

Séquence magique (n = 10)

0 1 2 3 4 5 6 7 8 9 V; 6 2 1 0 0 0 1 0 0 0

Suite de Langford

Description

Une suite de Langford est une séquence d'entiers $v_1, \ldots, v_{k \times n}$ compris entre 1 et n telle que le nombre $i \in \{1, \ldots, n\}$ apparaisse exactement k fois, et que 2 occurrences successives soient séparées par une distance i On ne considère ici que pour k=2

Suite de Langford (n = 7)

Alice et Bob vont au travail

Description

- Alice va au travail en voiture (30 à 40 min) ou par bus (au moins 60 min)
- Bob s'y rend en vélo (40 ou 50 min) ou en moto (20 à 30 min)
- Ce matin :
 - Alice a quitté sa maison entre 7h10 et 7h20
 - Bob est arrivé au travail entre 8h00 et 8h10
 - Alice est arrivée 10 à 20 min après que Bob soit parti
- Modélisez ce problème
- L'histoire est-elle cohérente ?
- Quand Bob est-il parti? Est-il possible qu'il ait pris son vélo?
- L'histoire est-elle cohérente si on ajoute le fait que :
 - la voiture d'Alice est en panne
 - Alice et Bob se sont rencontrés en chemin

Binairo - Examen 2018

Description

Un jeu belge, basé sur une grille carrée dans laquelle sont inscrits uniquement les chiffres 0 et 1. Sur chaque ligne et chaque colonne :

- il y a autant de 0 que de 1
- il ne peut pas y avoir plus de 2 chiffres identiques côte à côte Il ne peut y avoir 2 lignes ou 2 colonnes identiques.

Exemple de grille

	0			1	0
	1	0			1
1	0		0	1	
1					
				1	1

Beldiceanu, N., Carlsson, M., and Rampon, J.-X. (2010).

Global constraint catalog, 2nd edition.

Technical Report T2010:07, The Swedish Institute of Computer Science.

Bessière, C. (1994).

Arc-consistency and arc-consistency again. Artificial Intelligence, 65(1):179–190.

Bessière, C., Freuder, E. C., and Régin, J.-C. (1999).

Using constraint metaknowledge to reduce arc consistency computation. Artificial Intelligence, 107(1):125–148.

Bessière, C. and Régin, J.-C. (1996).

Mac and combined heuristics: Two reasons to forsake fc (and cbj?) on hard problems.

In Proceedings of the Second International Conference on Principles and Practice of Constraint Programming, volume 1118 of Lecture Notes in Computer Science. Springer.

Bessière, C. and Régin, J.-C. (2001).

Refining the basic constraint propagation algorithm.

In Proceedings of the 17th International Joint Conference on Artificial intelligence (IJCAl'01), pages 309–315. Morgan Kaufmann

Boussemart, F., Hemery, F., Lecoutre, C., and Sais, L. (2004).

Boosting systematic search by weighting constraints.

In Proceedings of the 16th Eureopean Conference on Artificial Intelligence, (ECAl'2004), pages 146–150. IOS Press.

Brélaz, D. (1979).

New methods to color the vertices of a graph.

Communications of the ACM, 22(4):251–256.

Costa, M.-C. (1994).

Persistency in maximum cardinality bipartite matchings.

Haralick, R. M. and Elliott, G. L. (1979).

Increasing tree search efficiency for constraint satisfaction problems.

In Proceedings of the 6th International Joint Conference on Artificial intelligence (IJCAI'79), pages 356–364. Morgan Kaufmann Publishers Inc.

Hopcroft, J. E. and Karp, R. M. (1973).

An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225–231.

Katriel, I. and Thiel, S. (2003).

Fast bound consistency for the global cardinality constraint.

In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP'03), volume 2833 of Lecture Notes in Computer Science, pages 437–451. Springer Berlin / Heidelberg.

Lauriere, J.-L. (1978).

A language and a program for stating and solving combinatorial problems. Artificial Intelligence, 10(1):29 – 127.

Lecoutre, C., Boussemart, F., and Hemery, F. (2003).

Exploiting multidirectionality in coarse-grained arc consistency algorithms.

In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP'03), volume 2833 of Lecture Notes in Computer Science, pages 480–494. Springer.

Lopez-Ortiz, A., Quimper, C.-G., Tromp, J., and Beek, P. V. (2003).

A fast and simple algorithm for bounds consistency of the all different constraint.

In Proceedings of the 18th International Joint Conference on Artificial Intelligence, pages 245-250.

Mackworth, A. K. (1977a).

Consistency in networks of relations.

Artificial Intelligence, 8(1):99–118.

Mackworth, A. K. (1977b).

On reading sketch maps.

In Proceedings of the 5th International Joint Conference on Artificial Intelligence, pages 598-606.

Mehlhorn, K. and Thiel, S. (2000).

Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint.

In Proceedings of the 6th International Conference on Principles and Practice of Constraint Programming (CP '00), volume 1894 of Lecture Notes in Computer Science, pages 306–319. Springer.

Mohr, R. and Henderson, T. C. (1986).

Arc and path consistency revisited.

Artificial Intelligence, 28(2):225–233.

Montanari, U. (1974).

Networks of constraints: Fundamental properties and applications to picture processing. *Information Science*, 7(2):95–132.

Oplobedu, A., Marcovitch, J., and Tourbier, Y. (1989).

Charme: Un langage industriel de programmation par contraintes, illustré par une application chez renault. In Proceedings of the Ninth International Workshop on Expert Systems and their Applications: General Conference, pages 155–70.

Puget, J.-F. (1998).

A fast algorithm for the bound consistency of alldiff constraints.

In Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative applications of artificial intelligence (AAAI '98/IAAI '98), pages 359–366. American Association for Artificial Intelligence.

Quimper, C.-G., van Beek, P., López-Ortiz, A., Golynski, A., and Sadjad, S. (2003).

An efficient bounds consistency algorithm for the global cardinality constraint.

All enticents business considered algorithm for the global cardinality Constraint of Constraint Programming (CP'03), in Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP'03), volume 2833 of Lecture Notes in Computer Science, pages 600–614. Springer Berlin / Heidelberg.

Régin, J.-C. (1994).

A filtering algorithm for constraints of difference in csps.

In Proceedings of the 12th National Conference on Artificial Intelligence (Vol. 1), pages 362–367.

Régin, J.-C. (1996).

Generalized arc consistency for global cardinality constraint.

In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-96), pages 209-215.

Tarjan, R. (1972).

Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160.

van Hentenryck, P., Deville, Y., and Teng, C.-M. (1992).

A generic arc-consistency algorithm and its specializations. *Artificial Intelligence*, 57.

van Hentenryck, P., Saraswat, V. A., and Deville, Y. (1995).

Design, implementation, and evaluation of the constraint language cc(fd).

In Selected Papers from Constraint Programming: Basics and Trends, pages 293-316. Springer-Verlag.