微分積分学A 演習問題 (2018年4月19日)

数列 $\{a_n\}_{n=1}^\infty$ が実数 a に収束するとは, $|a_n-a|$ が n を大きくすると 0 に近づくことである. このとき, $\lim_{n\to\infty}a_n=a$ と書くことにする¹.

例 1.1.

$$\left\{\frac{2n}{n+1}\right\}_{n=1}^{\infty} は 2 に収束する.$$

証明.

$$\lim_{n \to \infty} \frac{2n}{n+1} = \lim_{n \to \infty} \frac{2}{1+\frac{1}{n}} = \frac{2}{1} = 2$$
 に注意すると
$$\left| \frac{2n}{n+1} - 2 \right| = \left| \frac{2(n+1) - 2}{n+1} - 2 \right|$$

$$= \left| 2 - \frac{-2}{n+1} - 2 \right| = \frac{2}{n+1}$$

となり, n を大きくすると, $\left|\frac{2n}{n+1}-2\right|$ は0 に近づく.

注意 1.1.

高校でやったような

$$\frac{2n}{n+1} = \frac{2}{1+\frac{1}{n}} \to \frac{2}{1} = 2 \quad (n \to \infty), \text{ or } \lim_{n \to \infty} \frac{2n}{n+1} = \lim_{n \to \infty} \frac{2}{1+\frac{1}{n}} = \frac{2}{1} = 2$$

は答えを求めるにはこれでよいが、証明にはならない.

問題 1.1.

 $n \in \mathbb{N}$ に対して $^2 a_n := \frac{3n+1}{n}$ とおく. $\lim_{n \to \infty} a_n$ を求め, 証明を与えよ.

問題 1.2.

 $n \in \mathbb{N}$ に対して $a_n := \frac{3n-2}{2n+3}$ とおく. $\lim_{n \to \infty} a_n$ を求め, 証明を与えよ.

問題 1.3 (講義ノート 例 1.3).

 $\sqrt{3} \notin \mathbb{Q}$ を証明せよ.

問題 1.4.

次の各問いに答えよ.

- (1) -2 を与える有理数の切断 (A,B) を求めよ.
- (2) $\sqrt{5}$ を与える有理数の切断 $\langle A, B \rangle$ を求めよ.

¹高校までは数列 $\{a_n\}$ と書いていたが、数列の添字が何であるかをはっきりさせるために $\{a_n\}_{n=1}^{\infty}$ と書くことにする.

^{2「}自然数 n に対して」と同じ意味.

問題 1.5.

 $x, y \in \mathbb{R}$ に対して3,次の問いに答えよ.

- (1) $|x+y| \le |x| + |y|$ を示せ. なお、この不等式を**三角不等式**という (ヒント: (左辺)² $(右辺)^2$ を考える. (左辺).(右辺) ≥ 0 はどこに書くのが適切か?).
- (2) $||x| |y|| \le |x y|$ を示せ (ヒント: |x| = |x y + y|, |y| = |y x + x| を用いる).

問題 1.6.

x > 0 とする. すべての $n \in \mathbb{N}$ について

$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2$$

が成り立つことを数学的帰納法で示せ.

問題 1.7.

 $n \in \mathbb{N}, n \geq 2$ に対して, $h_n := \sqrt[n]{n} - 1$ とおく. このとき $h_n^2 \leq \frac{2}{n-1}$ を示せ (ヒント: $1 + h_n = \sqrt[n]{n}$ と問題 1.6).

問題 1.8.

 $n \in \mathbb{N}$ に対して, $a_n := \sqrt[n]{n} = n^{\frac{1}{n}}$ とおく. $\lim_{n \to \infty} a_n = 1$ となることの証明を与えよ.

問題 1.9.

実数 0 < r < 1 と $n \in \mathbb{N}$ に対して $a_n := r^n$ とおく. $\lim_{n \to \infty} a_n = 0$ となることの証明を与 えよ(ヒント: $x := r^{-1} - 1$, すなわち $r^{-1} = 1 + x$ とおいて, 問題 1.6 を用いる).

問題 1.10 (宿題).

次の極限を求めよ(高校までのやりかたでよい)

(1)
$$\lim_{n \to \infty} (\sqrt{n^2 + 1} - \sqrt{n^2 - 1})$$

(2)
$$\lim_{n\to\infty} \frac{\sin n}{n}$$

(2)
$$\lim_{n \to \infty} \frac{\sin n}{n}$$
(3)
$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2}$$

(4) $\lim_{n \to \infty} a^n (a > 0)$ は正の定数).

^{3 「}実数 x, y に対して」と同じ意味.

微分積分学 A 演習問題 (2018年4月26日)

問題 2.1 (講義ノート 例. 1.14).

 $\inf[0,1)$ を求め、その証明を与えよ. なお、講義の例 1.14 のように、証明すべきことを書いてから証明を書くこと.

問題 2.2.

 $\sup(-2,1)$ を求め、その証明を与えよ. なお、講義の例 1.14 のように、証明すべきことを書いてから証明を書くこと.

問題 2.3.

 $\inf(-2,1)$ を求め、その証明を与えよ. なお、講義の例 1.14 のように、証明すべきことを書いてから証明を書くこと.

問題 2.4.

 $A := \left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$ とおく. $\sup A$ を求め、その証明を与えよ. また、 $\max A$ が存在するかどうか答えよ (ヒント: 講義の例 1.14 のように、中点を取るというアイデアはうまくいかない、Archimedes の原理を使う必要があるが、どのように記述すればよいか?).

問題 2.5.

問題 2.4 の A について, inf A を求め, その証明を与えよ. また, $\min A$ が存在するかどうか答えよ.

問題 2.6 (講義ノート 注意 1.4).

 $A := \{a \in \mathbb{Q} : a^2 < 2\}$ と定める. $\sup A = \sqrt{2}$ となることの証明を与えよ. なお, 証明には, 有理数の稠密性を用いる. このことにより, 有理数の部分集合の上限は一般に有理数にならないことがわかる.

問題 2.7.

 $n \in \mathbb{N}$ に対して $a_n := 1 - \frac{1}{n}$ とおく.

- (1) $\{a_n\}_{n=1}^{\infty}$ が単調増加である、すなわち、「 $\forall n \in \mathbb{N}$ に対して $a_n \leq a_{n+1}$ 」となることを示せ、
- (2) $\lim_{n\to\infty} a_n$ を求めて, 証明を与えよ.

問題 2.8.

問題 2.7 の数列 $\{a_n\}_{n=1}^{\infty}$ に対して

$$\sup_{n\in\mathbb{N}} a_n := \sup\{a_n : n\in\mathbb{N}\}\$$

と書く. $\sup_{n\in\mathbb{N}} a_n$ を求めて, 証明を与えよ (ヒント: 実は問題 2.4 と聞いていることは同じ).

問題 2.9.

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ に対して

$$\sup_{n\in\mathbb{N}}(a_n+b_n)\leq \sup_{n\in\mathbb{N}}a_n+\sup_{n\in\mathbb{N}}b_n$$

を示せ (ヒント: $a:=\sup_{n\in\mathbb{N}}a_n, b:=\sup_{n\in\mathbb{N}}b_n$ とおくときに, すべての $n\in\mathbb{N}$ に対して $a_n+b_n\leq a+b$ となることを示せ.).

問題 2.10 (cf. 白岩 p.31).

次の集合の上限,下限を求めよ(発表や発表用提出ノートではどうしてその答えになる のかの説明をせよ).

- (1) $\{(-1)^n : n \in \mathbb{N}\}$
- (2) $\{x \in \mathbb{Q} : x^2 < x + 1\}$
- (3) $\{3n+1: n \in \mathbb{N}\}$ (4) $\left\{\sin\frac{n\pi}{4}: n \in \mathbb{Z}\right\}$
- $(5) \left\{ \frac{1}{m} + (-1)^n \frac{1}{n} : m, n \in \mathbb{N} \right\}$

問題 2.11 (宿題).

次の各問いに答えよ.

- (1) 集合 $A \subset \mathbb{R}$ に対して, A が上に有界であることの定義を書け.
- (2) 集合 $A \subset \mathbb{R}$ に対して, A の上限 $\alpha := \sup A$ を論理記号を用いて書け.
- (3) 実数の連続性を述べよ.
- (4) Archimedes の原理を述べよ.

微分積分学A 演習問題 (2018年5月10日)

問題 3.1.

自然数 n に対して $a_n = \frac{3n+1}{n}$ とおく. $\lim_{n\to\infty} a_n$ を求め, ε -N 論法による証明を与えよ.

問題 3.2.

自然数 n に対して $a_n = \frac{3n-2}{2n+3}$ とおく. $\lim_{n\to\infty} a_n$ を求め, ε -N 論法による証明を与えよ.

問題 3.3.

自然数 n に対して $a_n := \sqrt[n]{n} = n^{\frac{1}{n}}$ とおく. $\lim_{n\to\infty} a_n = 1$ となることの証明を ε -N 論法を用いて証明せよ. (ヒント: アイデアは問題 1.8)

問題 3.4.

実数 0 < r < 1 と $n \in \mathbb{N}$ に対して $a_n = r^n$ とおく. $\lim_{n \to \infty} a_n = 0$ となることを, ε -N 論法を用いて証明せよ. ただし, \log を使わずに証明すること (ヒント: アイデアは問題 1.9)

問題 3.5.

実数 r>1 と $n\in\mathbb{N}$ に対して $a_n=r^n$ とおく. $\lim_{n\to\infty}a_n=\infty$ となることを, ε -N 論法を用いて証明せよ. ただし, \log を使わずに証明すること (ヒント: r=1+x と書きかえてから問題 3.4 と同じような計算をする).

問題 3.6.

自然数 n に対して $a_n = -\frac{1}{n}$, $b_n = \frac{1}{n}$ とおく.

- (1) すべてのnについて, $a_n < b_n$ であることを示せ.
- (2) $\lim_{n\to\infty} a_n$, $\lim_{n\to\infty} b_n$ を求めよ. ただし, ε -N 論法を用いなくてよい.
- (3) 定理 1.5 の (3) は二つの不等号 \leq を < にかえてはいけないことを説明せよ.

問題 3.7 (cf. 定理 1.5).

数列 $\{a_n\}_{n=1}$ が収束するならば、有界である. つまり、ある M>0 が存在して、すべての $n\in\mathbb{N}$ に対して $|a_n|\leq M$ が成り立つことを示せ.

問題 3.8 (cf. 定理 1.5).

収束数列 $\{a_n\}_{n=1}$, $\{b_n\}_{n=1}^{\infty}$ について, すべての $n \in \mathbb{N}$ について $a_n \leq b_n$ が成り立つとする. このとき, $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$ となることを示せ.

問題 3.9 (等比級数: 収束する場合).

実数
$$0 < r < 1$$
 と $n \in \mathbb{N}$ に対して $a_n = \sum_{k=0}^n r^k$ とおく.

- (1) a_n を $\sum_{i=1}^n$ を用いずに表せ (注意:わからない人は高校の復習をすること!!!)
- (2) a_n が収束することを示せ. なお, ε -N 論法を用いなくてよい.

問題 3.10 (等比級数: 発散する場合).

実数
$$r \ge 1$$
 と $n \in \mathbb{N}$ に対して $a_n = \sum_{k=0}^n r^k$ とおく.

- (1) a_n を $\sum_{k=0}^n$ を用いずに表せ $(r = 1 \ ensuremath{ ensuremat$
- (2) a_n が正の無限大に発散することを示せ. なお, ε -N 論法を用いなくてよい.

問題 3.11 (宿題).

次の各問いに答えよ.

- (1) 数列 $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ が $a \in \mathbb{R}$ に収束することの定義を書け. (2) 収束しない数列 $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ が (正の) 無限大に発散することの定義を書け.

問題 3.12 (宿題).

$$\frac{2n}{n+1} \to 2 \ (n \to \infty)$$
 が成り立つことの証明を書け (講義ノート 例 1.16 をみよ).

微分積分学 A 演習問題 (2018年5月17日)

問題 4.1.

次の極限値を求めよ. ただし, ε -N 論法を用いなくてもよい.

$$(1) \lim_{n \to \infty} (\sqrt{n^2 + n} - n)$$

$$(2) \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n} - n}$$

(2)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n} - n}$$

(3) $\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$
(4) $\lim_{n \to \infty} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right)$
(5) $\lim_{n \to \infty} \frac{4^{n+1} - 3^n}{4^n + 3^n}$
(6) $\lim_{n \to \infty} \frac{5^n - 4^n}{3^n}$

(4)
$$\lim_{n\to\infty} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right)$$

(5)
$$\lim_{n \to \infty} \frac{4^{n+1} - 3^n}{4^n + 3^n}$$

(6)
$$\lim_{n \to \infty} \frac{5^n - 4^n}{3^n}$$

$$(7) \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

(8)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

$$(9)$$
 2-3+ $\frac{9}{2}$ -… となる無限等比級数

(10)
$$\sqrt{2} + (2 - \sqrt{2}) + (3\sqrt{2} - 4) + \cdots$$
 となる無限等比級数

問題 4.2.

$$a,b>0$$
 に対して, 極限 $\lim_{n\to\infty}\frac{a^n-b^n}{a^n+b^n}$ を求めよ.

問題 4.3.

$$x \in \mathbb{R}$$
 に対して, 極限 $\lim_{n \to \infty} \frac{x(e^{nx} - e^{-nx})}{e^{nx} + e^{-nx}}$ を求めよ.

問題 4.4.

次の極限を求め, ε -N 論法を用いて証明を与えよ.

(1)
$$\lim_{n\to\infty} \frac{1}{\sqrt{n^2+n}-n}$$
 (ヒント: $x>0$ に対して $\sqrt{1+x}\leq 1+x$ である)

(3)
$$\lim_{n \to \infty} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right)$$
 (ヒント: $n \in \mathbb{N}$ に対して $|\sin\left(\frac{n\pi}{2}\right)| \le 1$ である)

問題 4.5.

数列 $\{a_n\}_{n=1}^{\infty}$ が実数 a に収束したとする. このとき $\lim_{n\to\infty}|a_n|=|a|$ を ε -N 論法を用いて 証明せよ(ヒント:問題1.5の(2)を使う).

問題 4.6.

数列 $\{a_n\}_{n=1}^\infty$ は $a\in\mathbb{R}$ に収束するとする. すなわち $\lim_{n\to\infty}a_n=a$ が成り立つとする. この とき, $\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n} = a$ となることを ε -N 論法を用いて証明せよ.

問題 4.7.

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は, それぞれ $a,b \in \mathbb{R}$ に収束するとする. このとき, 数列 $\{a_n-b_n\}_{n=1}^{\infty}$ は a-b に収束することを ε -N 論法を用いて示せ.

問題 4.8.

任意の $x \in \mathbb{R}$ に対して, 有理数列 $\{q_k\}_{k=1}^\infty$ が存在して, $\lim_{k \to \infty} q_k = x$ とできることを示せ (ヒント: 有理数の稠密性を使う. $k \in \mathbb{N}$ に対して, $x < x + \frac{1}{k}$ である)

注意.

 \mathbb{R} 上の部分集合 $A,B\subset\mathbb{R}$ に対して, A が B において稠密であるとは, すべての $b\in B$ に対して A 内の数列 $\{a_k\}_{k=1}^\infty\subset A$ が存在して, $\lim_{k\to\infty}a_k=b$ とできることをいう. 稠密を考えるときは通常, $A\subset B$ であることが多い.

問題 4.9.

収束数列 $\{a_n\}_{n=1}^{\infty}$ に対して, $\lim_{n\to\infty}a_n=a\neq 0$ を仮定する. このとき, ある $N_0\in\mathbb{N}$ が存在して, すべての $n\in\mathbb{N}$ に対して, $n\geq N_0$ ならば $|a_n|>\frac{|a|}{2}$ が成り立つことを示せ.

問題 4.10.

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は, それぞれ $a,b \in \mathbb{R}$ に収束するとする.

- (1) $(a_n a)(b_n b) + (a_n a)b + a(b_n b)$ を計算せよ.
- (2) 数列 $\{a_nb_n\}_{n=1}^{\infty}$ は ab に収束することを ε -N 論法を用いて示せ. なお, 収束する数列は有界であることは用いずに示してみよ.

問題 4.11 (宿題).

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は, それぞれ $a,b \in \mathbb{R}$ に収束するとき, 数列 $\{a_n+b_n\}_{n=1}^{\infty}$ は a+b に収束することを ε -N 論法を用いて示せ (講義ノート 定理 1.6)

微分積分学 A 演習問題 (20

(2018年5月24日)

問題 5.1.

数列 $\{a_n\}_{n=1}^\infty$ が下に有界かつ単調減少となるならば, $\{a_n\}_{n=1}^\infty$ は収束して

$$\lim_{n\to\infty}a_n=\inf_{n\in\mathbb{N}}a_n$$

となることを示せ.

問題 5.2 (優収束定理).

数列 $\{a_n\}_{n=1}^{\infty}$ に対して, $S_n := \sum_{k=1}^{n} |a_n|$ とおく.

- (1) $\{S_n\}_{n=1}^{\infty}$ は単調増加となることを示せ.
- (2) 数列 $\{b_n\}_{n=1}^{\infty}$ が、すべての $n \in \mathbb{N}$ に対して $|a_n| \leq b_n$ かつ $\lim_{n \to \infty} \sum_{k=1}^n b_n < \infty$ をみたすとする.このとき $\{S_n\}_{n=1}^{\infty}$ が収束することを示せ.

問題 5.3.

 $n \in \mathbb{N}$ に対して $a_n := (-1)^n \left(1 + \frac{1}{n}\right)$ とおく. 1 に収束する $\{a_n\}_{n=1}^{\infty}$ の収束部分列と、-1 に収束する $\{a_n\}_{n=1}^{\infty}$ の収束部分列をそれぞれ作れ.

問題 5.4.

 $n \in \mathbb{N}$ に対して $a_n := \sin\left(\frac{n}{4}\pi\right)$ とおく. 収束先の異なる収束部分列を 4 つ作れ.

問題 5.5.

数列 $\{a_n\}_{n=1}^\infty$, $n\in\mathbb{N}$ に対して, $b_n:=\sup_{k\geq n}a_n$ とおく. このとき, $\{b_n\}_{n=1}^\infty$ は単調減少になることを示せ(ヒント: $\{a_{n+1},a_{n+2},a_{n+3}\ldots\}\subset\{a_n,a_{n+1},a_{n+2},a_{n+3},\ldots\}$).

問題 5.6 (講義ノート 定理 1.6).

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ がそれぞれ $a,b \in \mathbb{R}$ に収束し, $b \neq 0$ かつ, すべての $n \in \mathbb{N}$ に対して $b_n \neq 0$ と仮定する. このとき, $\frac{a_n}{b_n} \to \frac{a}{b}$ $(n \to \infty)$ となることを示せ. ただし, 問題 4.9 は証明抜きに用いてよい.

問題 5.7.

 $\lim_{n\to\infty} \frac{3n+2}{4n-3}$ を求めて, ε -N 論法を用いて証明を与えよ.

問題 5.8.

数列 $\{a_n\}_{n=1}^{\infty}$ はすべての $n \in \mathbb{N}$ に対して, $a_n > 0$ をみたすとする. このとき, $\lim_{n \to \infty} a_n = 0$ と $\lim_{n \to \infty} \frac{1}{a_n} = \infty$ が同値であることを示せ.

問題 5.9.

次が正しければ証明し,正しくなければ反例をあげよ.

- (1) 数列 $\{a_n\}_{n=1}^{\infty}$ は $a \in \mathbb{R}$ に収束し、ある正定数 K > 0 が存在して、すべての $n \in \mathbb{N}$ に 対して $a_n < K$ と仮定する. このとき, a < K が成り立つ.
- (2) 数列 $\{a_n\}_{n=1}^\infty$, $\{b_n\}_{n=1}^\infty$ は $\lim_{n\to\infty}(a_n-b_n)=0$ をみたすとする. このとき, 数列 $\{a_n\}_{n=1}^\infty$, $\{b_n\}_{n=1}^{\infty}$ は収束し、 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$ が成り立つ.

問題 5.10.

次をみたす数列の例を与えよ.

- (1) 数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は発散するが $\{a_n+b_n\}_{n=1}^{\infty}$ は収束する. (2) 数列 $\{a_n\}_{n=1}^{\infty}$ は発散するが $\{|a_n|\}_{n=1}^{\infty}$ は収束する.
- (3) 数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は収束するが $\left\{\frac{a_n}{b_n}\right\}_{n=1}^{\infty}$ は発散する.
- (4) 数列 $\{a_n\}_{n=1}^{\infty}$ は発散するが, $\lim_{n\to\infty}(a_n-a_{n+1})=0$ となる.

問題 5.11 (宿題).

次の各問いについて答えよ.

- (1) 数列 $\{a_n\}_{n=1}^{\infty}$ が (広義) 単調増加であることの定義を書け.
- (2) 有界な単調数列の収束性に関する定理を述べよ(参考,定理1.8)
- (3) 自然対数の底の定義を述べよ.
- (4) Bolzano-Weierstrass の定理を述べよ.

微分積分学A 演習問題 (2018年5月24日)

問題 6.1.

数列 $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ が Cauchy 列であることを定義に基づいて示せ. ただし, $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ が収束 することを用いずに示せ.

問題 6.2.

 $r,q,x \in \mathbb{R}, r \neq \pm 1$ に対して, 漸化式

$$\begin{cases} a_{n+1} = ra_n + q \\ a_0 = x > 0 \end{cases}$$

を考える.

- (1) 数列 $\{a_n\}_{n=0}^{\infty}$ の一般項を求めよ. (2) 数列 $\{a_n\}_{n=0}^{\infty}$ の一般項を調べることで, $\{a_n\}_{n=0}^{\infty}$ が収束するためのr に関する条件を求めよ. ただし, 縮小写像の原理は用いないこと.
- (3) 縮小写像の原理を用いて、 $\{a_n\}_{n=1}^{\infty}$ が収束するためのr に関する条件を求めよ.

問題 6.3 (講義ノート 定理 1.12).

数列 $\{a_n\}_{n=0}^{\infty}$ に対して、ある定数 $0 \le L < 1$ が存在して、すべての $n \in \mathbb{N}$ に対して

$$|a_{n+1} - a_n| \le L|a_n - a_{n-1}|$$

をみたすとする. このとき, $m,n \in \mathbb{N}$ に対して, m > n ならば

$$|a_m - a_n| \le \frac{L^n}{1 - L} |a_1 - a_0|$$

となることを示せ.

問題 6.4.

A > 1, x > 0 に対して漸化式

$$\begin{cases} a_{n+1} = \sqrt{a_n + A} \\ a_0 = x > 0 \end{cases}$$

を考える. 数列 $\{a_n\}_{n=0}^{\infty}$ が収束することを示せ.

問題 6.5.

関数 $f: \mathbb{R} \to \mathbb{R}$ はある定数 $0 \le L < 1$ が存在して、 すべての $y_1, y_2 \in \mathbb{R}$ に対して

$$|f(y_1) - f(y_2)| \le L|y_1 - y_2|$$

をみたすとする.このとき,漸化式

$$\begin{cases} a_{n+1} = f(a_n) \\ a_0 = x > 0 \end{cases}$$

により定まる数列 $\{a_n\}_{n=0}^{\infty}$ は収束することを示せ.

問題 6.6.

 $0 < r < 1, k > 0, n \in \mathbb{N}$ に対して, $a_n := n^k r^n$ とおく.

(1) $\frac{a_{n+1}}{2}$ を求めよ.

 $\frac{a_n}{a_{n+1}} < 1 となる n \in \mathbb{N}$ の条件を求めよ.

(3) $\lim_{n\to\infty} a_n = 0$ を示せ.

問題 6.7.

 $r > 0, n \in \mathbb{N}$ に対して, $a_n := \frac{r^n}{n!}$ とおく.

(1) $\frac{a_{n+1}}{a_n}$ を求めよ. (2) $\frac{a_{n+1}}{a_n} < 1$ となる $n \in \mathbb{N}$ の条件を求めよ.

(3) $\lim_{n\to\infty} a_n = 0$ を示せ.

問題 6.8.

数列 $\{a_n\}_{n=1}^{\infty}$ に対して, $S_n:=\sum_{k=1}^n a_k$ とおく. $\{S_n\}_{n=1}^{\infty}$ が $S\in\mathbb{R}$ に収束するとき, 無限級数

 $\sum_{n=0}^{\infty} a_n$ は S に収束するという.

(1) $\{S_n\}_{n=1}^{\infty}$ が Cauchy 列であることの定義を, S_n を使わずに a_n を用いて書け.

(2) $\sum_{n=0}^{\infty} a_n$ が収束するならば, $\lim_{n\to\infty} a_n = 0$ を示せ.

問題 6.9.

 $\sum_{n=0}^{\infty} \frac{1}{n}$ は収束しないことを示せ.

問題 6.10 (宿題).

次の各問いに答えよ

- (1) 数列 $\{a_n\}_{n=1}^{\infty}$ が Cauchy 列であることの定義を述べよ.
- (2) 実数の完備性に関する定理を述べよ.

問題 6.11 (宿題).

数列 $\{a_n\}_{n=1}^{\infty}$ が収束列であるとき, Cauchy 列であることを証明せよ (講義ノート 定理 1.11).

微分積分学 A 演習問題

(2018年5月31日)

問題 7.1.

 $f: \mathbb{R} \to \mathbb{R}$ をすべての $x \in \mathbb{R}$ に対して, $f(x) := x^2$ で定義する.

- (1) 像 f([-2,1]) を求めよ.
- (2) 任意の $x_1, x_2 > 0$ に対して, $f(x_1) = f(x_2)$ ならば $x_1 = x_2$ となることを示せ.

問題 7.2.

次を求めよ.

(1)
$$\arcsin\left(\frac{\sqrt{3}}{2}\right)$$

(2)
$$\arccos\left(\frac{1}{2}\right)$$

(4)
$$\arcsin\left(\sin\left(\frac{3}{2}\pi\right)\right)$$

問題 7.3.

指数法則と逆関数の性質を用いて、「任意の a,b>0 に対して $\log(ab)=\log a+\log b$ を示せ.

問題 7.4.

 $a > 0, x \in \mathbb{R}$ に対して, $a^x := \exp(x \log a)$ と定義する. 任意の $a, b > 0, x \in \mathbb{R}$ に対して, $(ab)^x = a^x b^x$ となることを, 定義に基づいて示せ.

注意.

問題 7.4 のアイデアを使うと, 高校では対数微分法の練習問題として習ったであろう微分の計算 $(a^x)'$ や $(x^x)'$ を

$$(a^{x})' = (\exp(x \log a))' = \exp(x \log a) \log a = a^{x} \log a$$

$$(x^{x})' = (\exp(x \log x))' = \exp(x \log x) (\log x + 1) = x^{x} (\log x + 1)$$

と計算することができる.

問題 7.5.

a > 0, $a \ne 1$ に対して, 底の変換公式

$$\log_a y = \frac{\log y}{\log a}$$

を導け.

注意.

問題 7.5 より, a > 0, $a \ne 1$ に対して, 底を a とする対数 \log_a を, y > 0 に対して

$$\log_a y := \frac{\log y}{\log a}$$

と定義することができる. つまり, a^x や $\log_a y$ は指数関数 e^x と自然対数 \log があれば自然に定義することができる.

注意.

 $f: \mathbb{R} \to \mathbb{R}$ が奇関数であるとは「任意の $x \in \mathbb{R}$ に対して, f(-x) = -f(x)」, 偶関数であるとは「任意の $x \in \mathbb{R}$ に対して, f(-x) = f(x)」となることをいうのであった.

問題 7.6.

任意の関数 $f: \mathbb{R} \to \mathbb{R}$ に対して、ある奇関数 $g: \mathbb{R} \to \mathbb{R}$ とある偶関数 $h: \mathbb{R} \to \mathbb{R}$ が存在して、 f=g+h と書けることを示せ (ヒント: 書けるとしたらどうなるか?).

問題 7.7.

Euler の公式と指数法則をみとめて、任意の $x, y \in \mathbb{R}$ に対して加法定理

$$\sin(x + y) = \cos x \sin y + \sin x \cos y$$

を示せ.

問題 7.8.

 $x \in \mathbb{R}$ に対して

$$\cosh x := \frac{e^x + e^{-x}}{2}, \quad \sinh x := \frac{e^x - e^{-x}}{2}, \quad \tanh x := \frac{\sinh x}{\cosh x},$$

と定義する. $\cos(hx)$ とは違うことに注意せよ. これらの関数を双曲線関数という. $\cosh^2 x - \sinh^2 x$ を計算せよ.

問題 7.9.

すべての $x,y \in \mathbb{R}$ に対して、双曲線関数に対する加法定理

$$\sinh(x + y) = \cosh x \sinh y + \sinh x \cosh y$$

 $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$

を示せ.

問題 7.10 (宿題, 演習微分積分 p.22, 例 2.4).

逆三角関数 arcsin, arccos, arctan の定義域, 値域をそれぞれ述べよ. そして, $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$ のグラフの概形をそれぞれ書け.

微分積分学 A 演習問題 (2018年6月7日)

問題 8.1.

 $a \in \mathbb{R}, n \in \mathbb{N}$ に対して $\lim_{r \to a} \frac{x^n - a^n}{r - a}$ を求めよ.

問題 8.2.

 $a,b \in \mathbb{R}, a,b \neq 0$ に対して, $\lim_{r \to 0} \frac{\sin(bx)}{\sin(ax)}$ を求めよ.

問題 8.3.

$$\lim_{x \to \frac{\pi}{6}} \frac{\sin(2x - \frac{\pi}{3})}{x - \frac{\pi}{6}} を求めよ.$$

問題 8.4.

 $\lim_{x\to 0} x\cos\frac{1}{x}$ を求め, ε - δ 論法を用いて証明を与えよ.

問題 8.5.

 $\lim_{x \to -1} x^2$ を求め ε - δ 論法を用いて証明を与えよ.

以下の問題では $(a,b) \subset \mathbb{R}, x_0 \in (a,b), f:(a,b) \setminus \{x_0\} \to \mathbb{R}, g:(a,b) \setminus \{x_0\} \to \mathbb{R}$ に対 $\bigcup T, f(x) \to A, g(x) \to B \quad (x \to x_0) \ \exists x \to x_0$

問題 8.6.

 $|f(x)| \rightarrow |A|$ $(x \rightarrow x_0)$ となることを ε - δ 論法を用いて証明せよ.

問題 8.7.

 $(f(x) + g(x)) \rightarrow A + B$ $(x \rightarrow x_0)$ となることを ε - δ 論法を用いて証明せよ.

問題 8.8.

 $(f(x)g(x)) \rightarrow AB$ $(x \rightarrow x_0)$ となることを ε - δ 論法を用いて証明せよ (ヒント: 問 題 4.10 のアイデアを用いる).

問題 8.9.

A > 0とする. このとき, ある $\delta > 0$ が存在して, すべての $x \in (a,b) \setminus \{x_0\}$ に対して

$$0 < |x - x_0| < \delta \Longrightarrow f(x) > \frac{A}{2}$$

とできることを示せ.

問題 8.10 (宿題).

 $I = (a,b) \subset \mathbb{R}, x_0 \in (a,b), f : I \setminus \{x_0\} \to \mathbb{R}$ に対して, 次の定義を ε - δ 論法で述べよ.

- (1) f が $x \to x_0$ のときに, $A \in \mathbb{R}$ に収束する.
- (2) f が $x \to x_0$ のときに, ∞ に発散する.

問題 8.11 (宿題).

講義ノート 定理 2.4 の主張を書け (証明は書かなくてよい).

微分積分学A 演習問題 (2018年6月21日)

問題 9.1.

$$\lim_{x \to -1+0} \frac{x^3}{x+1}, \lim_{x \to -1-0} \frac{x^3}{x+1} を求めよ.$$

問題 9.2.

 $f: \mathbb{R} \to \mathbb{R}$ に対して, $\lim_{x \to \infty} f(x) = \infty$ の ε - δ 論法による定義を書け.

問題 9.3.

 $f: \mathbb{R} \to \mathbb{R}$ に対して, 任意の $x \in \mathbb{R}$ に対して $f(x) := 2x^3 + 1$ で定義する. f が x = -1で連続となることを ε - δ 論法を用いて示せ.

問題 9.4.

 $I \subset \mathbb{R}$ に対して, $f: I \to \mathbb{R}$ が $x_0 \in I$ で右連続であるとは

$$f(x) \rightarrow f(x_0) \quad (x \rightarrow x_0 + 0)$$

と教科書に書かれている. ε - δ 論法による定義を書け.

問題 9.5.

 $I \subset \mathbb{R}$ に対して $f: I \to \mathbb{R}$ が I 上連続ならば, $|f|: I \to \mathbb{R}$ も I 上連続であることを示せ. なお, 任意の $x \in I$ に対して, |f|(x) := |f(x)| で定義する.

問題 9.6.

 $a,b \in \mathbb{R}$ に対して

$$\max\{a,b\} = \frac{a+b+|a-b|}{2}, \quad \min\{a,b\} = \frac{a+b-|a-b|}{2}$$

を示せ、

問題 9.7.

 $I \subset \mathbb{R}$ に対して $f: I \to \mathbb{R}, g: I \to \mathbb{R}$ が I 上連続であれば, $\max\{f,g\}$, $\min\{f,g\}$ も連続 になることを示せ. なお、 $x \in I$ に対して

$$\max\{f,g\}(x) := \max\{f(x),g(x)\}, \quad \min\{f,g\}(x) := \min\{f(x),g(x)\}$$

と定義する.

問題 9.8.

 $I \subset \mathbb{R}$ に対して $f: I \to \mathbb{R}, g: I \to \mathbb{R}$ が I 上連続であるとする. 「すべての $x \in I \cap \mathbb{Q}$ に対して f(x) = g(x)」が成り立つならば、「すべての $x \in I$ に対して f(x) = g(x)」とな ることを示せ.

問題 9.9.

 $f:(a,b)\to\mathbb{R}$ が **Lipschitz 連続**, すなわち, ある定数 L>0 が存在して, 任意の $x, x' \in (a,b)$ に対して

$$|f(x) - f(x')| \le L|x - x'|$$

をみたすとする. このとき, f は (a,b) 上連続であることを示せ.

問題 9.10 (宿題).

次の定義を ε - δ 論法で述べよ.

- (1) $I = (a,b) \subset \mathbb{R}, x_0 \in (a,b)$ に対して, $f: I \setminus \{x_0\} \to \mathbb{R}$ が $x \to x_0 + 0$ のときに, $A \in \mathbb{R}$ に収束する.
- (2) $I=(a,b)\subset\mathbb{R}, x_0\in(a,b)$ に対して, $f:I\setminus\{x_0\}\to\mathbb{R}$ が $x\to x_0-0$ のときに, $A\in\mathbb{R}$ に収束する.
- (3) $f: \mathbb{R} \to \mathbb{R}$ が $x \to \infty$ のときに, $A \in \mathbb{R}$ に収束する.
- (4) $I \subset \mathbb{R}$ に対して, $f: I \to \mathbb{R}$ が $x_0 \in I$ で連続.

微分積分学A 演習問題 (2018年6月28日)

問題 10.1.

 $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ が $x_0 \in \mathbb{R}$ で連続であれば, f+g も $x_0 \in \mathbb{R}$ で連続となることを 示せ.

問題 10.2.

 $f: \mathbb{R} \to \mathbb{R}$ が $x_0 \in \mathbb{R}$ で連続であれば, 任意の $\lambda \in \mathbb{R}$ に対して λf は $x_0 \in \mathbb{R}$ で連続とな ることを示せ.

問題 10.3.

 $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ が $x_0 \in \mathbb{R}$ で連続であれば, fg も $x_0 \in \mathbb{R}$ で連続となることを 示せ.

問題 10.4.

 $f: \mathbb{R} \to \mathbb{R}$ を任意の $x \in \mathbb{R}$ に対して, $f(x) := x^3 + x - 1$ とおく. このとき, f(x) = 0 と なる実数解 $x \in \mathbb{R}$ が存在することを示せ. どの範囲に実数解があるか?

問題 10.5.

 $f: [a,b] \to \mathbb{R}$ を連続とする. f(a)f(b) < 0 ならば, f(x) = 0 となる実数解 $x \in [a,b]$ が 存在することを示せ.

問題 10.6.

 $f:[a,b] \to \mathbb{R}$ を連続とするとき

$$\inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$$

となることを示せ.

問題 10.7.

 $f:[a,b] \to \mathbb{R}$ を連続とするとき, f の像 f([a,b]) が閉区間となることを示せ.

問題 10.8.

 $f:(0,1) \to \mathbb{R}$ を任意の $x \in \mathbb{R}$ に対して

$$f(x) := \frac{1}{x}$$

で定義する.

- (1) f が (0,1) 上連続となることを ε - δ 論法を用いて示せ.
- (2) fの最大値が存在しないことを説明せよ.

問題 10.9.

 $I \subset \mathbb{R}, f: I \to \mathbb{R}$ に対して

- (A) f は $x_0 \in I$ で連続
- (B) すべての $\{x_n\}_{n=1}^{\infty} \subset I$ に対して, $x_n \to x_0 (n \to \infty)$ ならば $f(x_n) \to f(x_0) (n \to \infty)$ とおく.
 - (1) (A) ならば (B) が成り立つことを示せ.
 - (2) (B) ならば (A) が成り立つことを示せ.

問題 10.10 (宿題).

次の定理の主張を述べよ.

- (1) 中間値の定理
- (2) Weierstrass の (最大値) 定理

微分積分学A 演習問題 (2018年7月5日)

問題 11.1.

 $f: \mathbb{R} \to \mathbb{R}$ を任意の $x \in \mathbb{R}$ に対して f(x) := 3x + 2 で定める. このとき, f が \mathbb{R} 上一様連続となることを示せ.

問題 11.2.

 $f: \mathbb{R} \to \mathbb{R}$ を任意の $x \in \mathbb{R}$ に対して $f(x) := \sqrt{x^2 + 1}$ で定める. このとき, f が \mathbb{R} 上一様連続となることを示せ (ヒント: $x, x' \in \mathbb{R}$ に対して $\frac{|x + x'|}{\sqrt{x^2 + 1} + \sqrt{x'^2 + 1}} \le \frac{|x| + |x'|}{\sqrt{x^2 + 1} + \sqrt{x'^2 + 1}} \le 1$ となることを使う).

問題 11.3.

 $f:(a,b)\to\mathbb{R}$ が **Lipschitz 連続**, すなわち, ある定数 L>0 が存在して, 任意の $x,x'\in(a,b)$ に対して

$$|f(x) - f(x')| \le L|x - x'|$$

をみたすとする. このとき, f は (a,b) 上一様連続であることを示せ.

問題 11.4.

 $0 < \alpha < 1$ に対して $f:(a,b) \to \mathbb{R}$ が α 次 Hölder 連続, すなわち, ある定数 C > 0 が存在して, 任意の $x,x' \in (a,b)$ に対して

$$|f(x) - f(x')| \le C|x - x'|^{\alpha}$$

をみたすとする. このとき, f は (a,b) 上一様連続であることを示せ.

問題 11.5.

 $f:(0,1)\to\mathbb{R}$ を任意の $x\in(0,1)$ に対して $f(x):=\sin\frac{1}{x}$ とおく.

- (1) $x \in (0,1)$ に対して、微分 $\frac{df}{dx}(x)$ を求めよ.
- (2) 導関数 $\frac{df}{dx}$: $(0,1) \to \mathbb{R}$ は有界とならないことを示せ.

注意.

実は「導関数が有界ならば一様連続」が示せる. 対偶を取れば「一様連続でなければ、 導関数は有界でない」が得られる. 「導関数は有界でない」からといっても、一様連続にな らないことは示せないが (導関数は有界でないが Hölder 連続となることがある)、問題 11.5では、f が (0,1) 上一様連続にならないことを実際に示すことができる.

問題 11.6 (宿題).

次の各問いに答えよ.

- (1) $I \subset \mathbb{R}$ に対して, $f: I \to \mathbb{R}$ が I 上一様連続であることの定義を述べよ.
- (2) 講義ノート, 定理 2.10(Heine-Cantor の定理ということがある) の主張を書け.

問題 11.7 (宿題, 演習微分積分 p.21).

 $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して

$$f(x) := \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

で定める. f は x = 0 で連続になるかどうかを説明せよ.

下記の問題については、演習発表の問題の対象ではない. 友人とお互いに計算を考えあい、答えあわせをせよ.

問題 11.8.

次の性質を持つ関数の例をあげよ(定義域をきちんと明記すること).

- (1) x = 0 で右連続だが, x = 0 で連続でない.
- (2) 有界だが最小値が存在しない.
- (3) 連続だが一様連続でない.

問題 **11.9** (わからない問題については, 高校の教科書を復習すること)**.** 次の極限を求めよ.

(1)
$$\lim_{x \to 0} \frac{x^2 + 2x}{x}$$

(2)
$$\lim_{x \to 2} \frac{2x^2 - 5x + 2}{x^2 - 4}$$

(3)
$$\lim_{x \to 0} \frac{1}{x} \left(1 - \frac{1}{x+1} \right)$$

(4)
$$\lim_{x \to 2} \frac{\sqrt{x+2} - 2}{x-2}$$

(5)
$$\lim_{x \to 0+0} \frac{x^2 + x}{|x|}$$

(6)
$$\lim_{x \to 0-0} \frac{x^2 + x}{|x|}$$

(7)
$$\lim_{x \to 0+0} \frac{1}{x}$$

(8)
$$\lim_{x \to 0-0} \frac{1}{x}$$

(9)
$$\lim_{x \to \infty} \frac{2x^2 - 3x + 4}{3x^2 + 5}$$

(10)
$$\lim_{x \to -\infty} \frac{x^2 - 5}{x + 1}$$

(11)
$$\lim_{x \to \infty} (\sqrt{4x^2 + x} - 2x)$$

$$(12) \lim_{x \to -\infty} (\sqrt{x^2 + x} + x)$$

$$(13) \lim_{x \to 0} \frac{\sin 2x}{x}$$

(14)
$$\lim_{x \to 0} \frac{x^2}{1 - \cos x}$$