R for data analysis

3

3 steps to Basic data analysis

1. Reading in data

- read.table()
- read.csv(), read.delim()

2. Analysis

- Manipulating & reshaping the data
- Any maths you like
- Plotting the outcome
 - High level plotting functions (covered tomorrow)

3. Writing out results

- write.table()
- write.csv()

A simple walkthrough Exemplifies 3 steps to R analysis

- 50 neuroblastoma patients were tested for NMYC gene copy number by interphase nuclei FISH
 - Amplification of NMYC correlates with worse prognosis
 - We have count data
 - Numbers of cells per patient assayed
 - For each we have NMYC copy number relative to base ploidy
- We need to determine which patients have amplifications
 - (i.e >33% of cells show NMYC amplification)

Step 1. Read in the data

Patient	Nuclei	NB_Amp	NB_Nor	NB_Del
1	42	0	34	8
2	40	3	30	7
3	56	6	50	0
4	42	5	37	0
5	32	1	30	1
6	70	10	53	7
7	65	3	58	4
8	40	4	31	5
9	60	0	54	6
10	61	0	57	4
11	43	13	29	1

We need to read in the results table and assign it to an object (rawData)

If the data had been comma separated values, then sep=","

read.csv("08_NBcountData.csv")

?read.table for a full list of arguments

08_NBcountData.R (script commands)

08_NBcountData.txt (data file)

Step 2. Analysis (reshaping data & maths)

- Our analysis involves identifying patients with > 33% NB amplification
 - prop <- rawData\$NB_Amp / rawData\$Nuclei # create an index of results
 - amp <- which(prop > 0.33) # Get sample names of amplified patients
- We can plot a simple chart of the % NB amplification
 - plot(prop, ylim=c(0,1.2))
 - abline(h=0.33,lwd=1.5,lty=2)

These 2 samples are amplified (11 & 23)

Step 3. Outputting the results

- We write out a data frame of results (patients > 33% NB amplification) as a 'comma separated values' text file
 - write.csv(rawData[amp,],file="selectedSamples.csv") #
 Export table, file name = selectedSamples.csv
 - Files are directly readable by Excel and Calc
- Its often helpful to double check where the data has been saved
 - Use get working directory function
 - getwd() # print working directory

Data analysis exercise: Which samples are near normal?

Patients are near normal if:

```
(NB\_Amp/Nuclei < 0.33 \& NB\_Del == 0)
```

Modify the condition in our previous code to find these patients

 Write out a results file of the samples that match these criteria, and open it in a spreadsheet program

Solution to NB normality test Basic data analysis

```
> norm <- which( prop < 0.33 & rawData$NB_Del==0)
> norm

[1] 3     4     7     15     20     24     36     37     42     47

> write.csv(rawData[norm,],"My_NB_output.csv")
```