Transient Dynamical Indicators of Critical Transitions

Grace Zhang

January 6, 2022

Abstract

Replace the text here with your abstract.

 $\textbf{Keywords:} \ \ \textbf{tipping point}, \ \textbf{critical transition}, \ \textbf{critical slowing down}, \ \textbf{early warning signals}, \ \textbf{resilience}, \ \textbf{intensity of attraction}$

Contents

1		duction
	1.1	Critical Transitions
	1.2	Motivation
2		ience Quantification
	2.1	Asymptotic Resilience
	2.2	Width of Basin of Attraction
	2.3 I	Reactivity
	2.4 I	Intensity of Attraction
3		cal Slowing Down
	3.1 I	Local Bifurcation
		Critical Slowing Down
		Early Warning Signals
4	Trans	sient Dynamical Indicators of Critical Transitions
	4.1 I	Indicators from Reactivity
		Possibility for Indicators from Intensity of Attraction
5	Thesi	is Proposal
	5.1	Continuity of Intensity of Attraction
	5.2 I	Intensity through Critical Transitions
		Europhy Dogolibilities

1 Introduction

1.1 Critical Transitions

A tipping point or critical transition occurs in a dynamical system when a small perturbation to the system causes an abrupt qualitative shift in overall behavior. This informal concept is often understood as a local bifurcation, but may also correspond to a variety of other dynamical behaviors including global bifurcations, perturbations pushing a state variable across the boundary between two basins of attraction, and rate-induced tipping.

Empirically, critical transitions have been studied in contexts ranging from Earth's climate [2] to emerging infectious disease [1] to

In complex empirical systems, the conditions under which a critical transition occurs are generally extremely difficult to predict. In many cases, the underlying mechanisms driving such a system toward the brink may be impossible to fully understand or identify.

1.2 Motivation

[?]

2 Resilience Quantification

- 2.1 Asymptotic Resilience
- 2.2 Width of Basin of Attraction
- 2.3 Reactivity
- 2.4 Intensity of Attraction
- 3 Critical Slowing Down
- 3.1 Local Bifurcation
- 3.2 Critical Slowing Down
- 3.3 Early Warning Signals

4 Transient Dynamical Indicators of Critical Transitions

- 4.1 Indicators from Reactivity
- 4.2 Possibility for Indicators from Intensity of Attraction
- 5 Thesis Proposal
- 5.1 Continuity of Intensity of Attraction
- 5.2 Intensity through Critical Transitions
- 5.3 Further Possibilities

References

- [1] Tobias S. Brett and Pejman Rohani. Dynamical footprints enable detection of disease emergence. *PLOS Biology*, 18(5):e3000697, May 2020. ISSN 1545-7885. doi:10.1371/journal.pbio.3000697.
- [2] Timothy M. Lenton. Early warning of climate tipping points. *Nature Climate Change*, 1(4):201-209, July 2011. ISSN 1758-6798. doi:10.1038/nclimate1143.