스마트해운물류×ICT멘토링

2025 스마트해운물류 우수프로젝트 개 발 보 고 서

2025.9.2

	번호	25_42					
프로젝트명	국문	항만 유해물질 탐지 AI경비로봇					
	영문	Port Hazardous Substance Detection Al Security Robot					
작 품 명	항만 유해물질 탐지 AI경비로봇						
팀 명	서드임펙트						

작품 개요

작품 정보				
프로젝트명	국문	항만 유해물질 탐지 AI경비로봇		
=======================================	작품명	Port Hazardous Substance Detection Al Security Robot		
작품 소개	- 항만 내 야외 구역을 자율 순찰하며 유해물질 징후를 조기에 감지·경보하는 AI 경비로봇임. - GPS(+IMU), VOC/CO/NH3, RGB 카메라를 결합해 실시간 인지·위치 추정 수행함. - 시각 인지는 경량 딥러닝으로 엣지 추론함. - 관제는 MQTT/WS로 클라우드 대시보드 연동됨. - 야간 운용 강화를 위해 LED 라이트바와 작업등을 추가함. 지도상 위치·상태·알람 이력 모니터링 가능함. - 위험 이벤트는 현장 경비로봇의 RGB바·부저와 원격 앱, 웹 알림으로 동시 통보됨.			
작품의 개발배경 및 필요성	- 항만은 유해화학물질 취급, 컨테이너 적하, 탱크 시설 등 복합 위험이 상존함 넓은 면적, 복잡 동선, 야간 저조 관리자 피로도 누적로 인한 누락·지연 위험이 큼 가스 누출·고열 등 초기 징후 포착 실패 시 피해가 급증됨. 인력 안전과 운영비 절감의 동시 달성이 과제임 본 작품은 위 요구를 충족하도록 기획·개발됨. 자율주행+엣지, AI+클라우드 관제로 안전관리의 지속성·객관성·추적성을 확보함.			
작품의 특장점	- 24시간 상시 경비 자동화로 인건비·사후 비용 절감됨. 자율주행으로 현장 관리 부담 최소화됨 멀티센서 융합(VOC/CO/NH3 + RGB + GPS/IMU)으로 오탐/미탐 저감됨 야간 특화로 LED 전조등/작업등 적용으로 저조도 인지 안정화·원거리 식별성 향상됨 클라우드 관제로 웹/앱 모니터링, 지도 추적, 알람 이력·리포트 자동화 제공됨 위험지역의 위치 확인을 위한 나침반 탑재. 현장 관리인에게는 위험 방향성, 그 외일반인에게는 대비 방향성 빠른 제공 가능.			
작품 기능	- 유해가스 탐지: CO, VOCs, NH3 실시간 측정·임계치 초과 감지함 경보 통합: 탐지 시 현장 부저·RGB LED 점멸 및 모바일/웹 푸시 알림 동시 발령됨 관제 전송: 위치·시간·센서값·스냅샷(+현장 동영상)이 실시간 대시보드로 전송됨 위치 추정/추종: GPS(+IMU) 기반 상태 추정 및 사전 정의 경로 자율주행 수행함 야간 운용: LED 조명으로 노출·게인 안정화, 카메라 텍스처 인식률 유지됨. 야간에도 안정적 자율주행으로 경비 수행 가능.			
작품의 기대효과 및 활용분야	 사람의 야간·장거리 순찰 부담 크게 경감됨. 초기 위험 징후를 빠르게 포착하여 사고 예방과 대응 시간이 단축됨. LED 기반 야간 운용으로 심야 상·하역 시간대 공백이 줄어듦. 적용 분야는 항만, 컨테이너 야드, 석유화학 저장소, 산업단지, 물류센터, 지하공간 등 유해물질 사고가 쉽게 일어날 수 있는 장소. 			

작품 구성도

본 문

I. 작품 개요

※ 평가항목: 기획의 적절성

1. 작품 소개

- 1) 작품명
- 딥러닝을 활용한 자율주행 자동차를 기반으로 하는 항만경비로봇임
- 특정 구역을 자율주행하며 유해물질이 유출되었는지 감지하고 빠르게 대처하기 위해 사용됨
- 2) 기획의도
 - 위험물을 대량으로 처리하는 항만에서는 위험물에 의한 사고위험이 큼
 - 항만 경비의 자동화로 현장 관리자의 근로 피로도를 줄일 필요성이 있음
 - 항만 경비를 자동화하여 경비 비용을 최소화하고 앱과 웹을 통해서 유해물질 감지에 대한 빠른 대처를 목표로 함

2. 작품의 개발 배경 및 필요성

- 1) 개발배경
- 2025년 5월 진해 경유 유출사고로 인한 오염과 안전 취약성을 인지함
- 한국에는 아직 항만 경비에 대한 자동화가 진행되지 않아 효율성이 높지 않다는 것을 파악
- 2) 필요성
 - 한국에는 아직 항만 경비에 대한 자동화가 진행되지 않아 24시간 경비가 힘들다는 시간적 허점이 존재함
 - 사람이 경비함에따라 발생하는 인건비, 유해물질 사고 지역에 대한 구역 통제 및 시민 대피를 위해 사용되는 자원등 때문에 시간적, 경제적 비용이 큼

3. 작품의 특징 및 장점 / 국내·외 기술 현황 및 본 프로젝트의 차별성

- 1) 국내 · 외 기술 현황
 - 부산 스마트 항만 프로젝트 : IoT 와 AI 기술활용, 항만 운영 효율화 및 안전성 강화
 - 인천항 항만물류기술개발 사업 : AI와 빅데이터로 스마트 물류 시스템 구축, 화물 처리 속도 개선
 - 광양항 스마트 항만 구축 프로젝트 : 자동화 테스트베드 구축 및 스마트 기술 실증

- 싱가포르 PSA 항만 자동화 프로젝트 : AI와 자율주행 기술로 컨테이너 관리, 세계 최대 자동화 항만 운영
- 미국 SMP Roborics Rover S5 Hazmat : 위험물질 감지를 위한 자율주행 로봇, 화학 공장 및 항만에서 사용
- 2) 작품의 특징 및 장점(차별성)
- 주로 실시간 감지와 기본적인 모니터링을 통한 데이터 수집을 목표로 하는 기존 시스템과 달리 다중센서를 통한 여러 유해물질 감지와 더불어 앱을 통해서 항만 종사자가 빠른 대처를 할 수 있을 뿐만 아니라 일반 시민들 또한 위험지역을 확인하고 대피하도록 할수 있음

Ⅱ. 작품 내용

※ 평가항목 : 기획의 적절성, 완성도

1. 목표 시스템 구성도

1) 예상결과물

2) SW/HW구성도 (또는 서비스흐름도)

- SW구성도

- HW구성도

2. 주요 적용 기술

- 1) 시나리오
 - 경비 로봇이 정해진 위험 지역을 자동으로 순찰함
 - 순찰 지역에 유해물질이 유출되면 유해물질을 감지한 경비로봇이 그 자리에 멈추고 경비음과 LED를 통해 해당 지역에서 유해물질을 감지했음을 알림.
 - 앱을 가지고 있던 일반 시민들은 알림을 통해 위험지역임을 확인하고 스스로 대피함
 - 앱과 웹의 지도 및 방향을 알려주는 기능 등을 통해 현장 관리자 분들이

- 위험지역으로 빠르게 이동하고 사고 해결을 위한 조치를 취함
- 현장 대처가 전부 끝났다면 현장 관리자의 앱과 관제실의 웹간의 통신을 통해 유해물질 유출 사고가 해결되었음을 알림
- 웹에서 해결로그를 통해 사건이 해결됨을 확인하고 탐지된 유해물질 농도가 정상 수치로 돌아갔음을 확인하면 현장관리자의 앱에게 위험지역 알림 해제를 승인함
- 위험지역 알림이 해제되면 앱에서 알림이 사라지고 경비로봇은 경비음과 LED를 멈추고 다시 지정된 지역을 순찰함
- 2) 적용 알고리즘 및 기능
 - CNN기반 딥러닝 모델(TensorRT 추론 엔진)을 통한 자율주행
 - tanh 스칼라 출력을 통한 각도 변환
 - EMA 필터, Slew Rate Limiter, Heutral Hold를 통한 제어 안정화
 - YOLO 모델을 이용한 유해물질 분류
 - Vocs, NH3, CO 센서등을 통해서 유해물질 감지
 - 유해물질을 감지하면 경비음과 LED를 통해 위험을 알림
 - 유해물질이 감지되면 위험 알림이 앱을 통해서 발생
 - GPS센서를 통해서 얻은 값으로 앱의 지도보기 기능과 방향을 알려주는 기능
- 앱에서 현장 대처가 끝났다는 증거(영상 등)을 웹으로 보냄
- 웹에서 해결로그 기능으로 어떤사고가 해결된 증거가 도착하고 도착한 증거를 통해 현장 대처가 끝났음을 확인하면 경비 알림 해제를 승인

3. 작품 개발 환경

구분		상세내용
	OS	Linux
S/W 개발환경	개발환경(IDE)	Arduino IDE, Android Studio IDE, Node.js
	개발도구	Visual studio code,Android Studio, VS Code, Flutter, FCM, Next.js, Tailwind CSS, Flask,
	개발언어	Python,cpp,Dart, TypeScript, JavaScript
	기타사항	
	디바이스	Arduino Uno,jetson Nano Orin super, YB-ERF01-V3.0 with STM32, ESP32-DEVKITC-32UE
H/W	센서	GPS센서(SZH-NT07), VOC센서(GSBT11-P110), NH3센서(MQ-7, SEN0132), CO센서(MQ-7, SEN0132)
구성장비	통신	Serial, network
	언어	C, python
	기타사항	
프로젝트 관리환경		브랜치 전략 - main: 배포 가능한 안정 버전 보관함. 항상 신뢰 가능해야 함 dev: 통합 개발용 브랜치임. 기능을 모아 테스트·안정화 후 main으로 승격함 feature/* : 새 기능 단위 개발 브랜치임(예: feature/add-night-led). 완료 시 dev로 PR 올림 hotfix/* : 운영 중 긴급 버그 수정용임. main에 우선 반영 후 dev에 도 동일 병합함.
	형상관리	PR(병합) 절차 - feature/hotfix에서 작업 완료 → PR 생성함 코드리뷰 1인 이상 승인 + CI 통과되면 병합함 릴리스 시 dev→main 병합하고 태그(예: v0.3.0) 부여함. 커밋 규칙(Conventional Commits) - 형식: <type>(<scope>): <짧은 설명> - 주요 type: feat(기능), fix(버그), docs(문서), refactor(리팩터), perf(성능), test(테스트), chore(설정)</scope></type>
	의사소통관리	카카오톡 채팅, Notion, 주간 미팅(google meet) 회의 마다 자신의 활동을 발표
	기타사항	

4. 작품 구성 기능

1) 주요 기능 목록

구분	기능	설명	현재진척도(%)		
		유해물질 감지로 인한 위험 상황 발생시			
	· · 앱	(관리자 활용)	100		
	=	- 상황 발생 위치 공유	100		
		- 상황 처리 메뉴얼을 제공			
		유해물질 감지로 인한 위험 상황 발생시			
		(관제실 활용)			
		- 실시간 유해물질 감지 농도 확인	90		
S/W	웹	- 관리자의 현장 처리 상황을 확인			
		- DB에 있는 데이터를 가공하여 통계 자료 제공			
		- 실시간 CCTV 화면 제공			
		완료 가능 시점 (9월/15일)			
		구매 S/W	4.00		
	Ec2서버	위험 상황이 있었던 기존 데이터들을	100		
	유해물질 감지 (YOLO)	모아서 DB에 저장 이미지 분석을 통한 유해물질 종류 감지			
		어디서 분기를 하면 뉴에들을 하开 다시 완료가능시점 (9월/15일)	20		
		구매 H/W			
	VOcs, CO, NH3, GPS센서		100		
		구매 H/W			
	ESP32-DEVKITC-32UE	, · · · · · 이두이노가 처리한 아날로그 신호(각종 센서 신호)	100		
		를 Ec2서버로 전송			
		구매 H/W			
	Jetson Orin Nano Super	- 딥러닝을 통한 자율주행	100		
		- YOO 모델를 이용한 추론으로 유해물질 종류 확인			
LI /\//	Andria - Ha-	구매 H/W	100		
H/W	Arduino Uno	각종 센서들에서 나오는 아날로그 신호 처리	100		
		구매 H/W			
		- 서보 모터 조작 (조향각 설정)			
	YB-ERF01-V3.0 with STM32	- 모터 속도 설정	100		
		- 부저 제어			
		- 전원 관리			
		구매 H/W			
	LED&camera&부저	- camera : 자율주행 구현 및	100		
		실시간 CCTV에서 사용			

2) S/W 개발 기능 상세내용

기능	설명	작품실물사진		
앱 (모바일)	유해물질 감지 시 경고 알림과 로그 기록을 제공하며, 지도에서 로봇 위치 확인과 해결 상태 전송 기능을 지원 함. 또한 상황발생 지점에 대한 방향 지원과 상황대비 숙지 메뉴얼이 있음	10-36 < 목욕무로를 합성 기 이용 설립 단기 27.5746. [14.5327 UP resolved [19.3.46] (15.5327 UP resolved [19		
웹	실시간 센서 데이터를 시각화 하고 주의 이상에 대한 이벤트 승인과 승 인을 하기 전 이중승인을 빌미로 앱 에서 보내온 증거 기록을 관리함. 이 벤트들의 통계 분석 기능 또한 포함 되어 있음	# 10 CM 10 C		
EC2서버	AWS EC2 인스턴스를 통해서 서버를 열고 서버에서 Esp32네트워크 모듈에 게 센서값을 받고 데이터 베이스에 저장한다 필요에 따라 앱과 웹등에 데이터베이스에 저장된 값을 보내준 다.	ec2-user@ip-172-31-44-208-jg cd /opt/alter_bot [cc2-user@ip-172-31-44-208-jg cd /opt/alter_bot [cc2-user@ip-172-31-44-208 alter_bot]\$ source venv/bin/activate [venv) [cc2-user@ip-172-31-44-208 alter_bot]\$ source venv/bin/activate [venv) [cc2-user@ip-172-31-44-208 alter_bot]\$ python app.py abelug modes: on warming on all addresses (0.0.0) **Summing on all addresses (0.0.0) **Summing on all addresses (0.0.0) **Summing on http://272.31.44-2085000 **Prass CTRL-C to quit **Restarting with stat **Debugger 1s active(31-910 17. 16.195.74 - [0.196/2035 01:26:12] "GET /incident/active HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /freadings/lates HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 - 117. 16.195.74 - [0.1/sep/2035 01:26:12] "GET /fread HTTP/1.1" 200 -		

- S/W 주요 목표대비 현재 개발정도 상세 설명

1. 앱 (모바일)

목표: - 유해물질 감지 시 경고 알림 발송함. 지도에서 로봇 위치・사건 지점 확인.

- 사건 상태 전송(위험 상황 알림→이중 승인 대기→해제)과 대응 매뉴얼 지원
- 나침반으로 방향 안내 제공.
- 현장 증거(사진/메모/동영상) 업로드 지원.

현재: 구현 완료.

2. 웹

목표: - 실시간 센서 시각화(VOCs/CO/NH3, 지도/타임라인) 제공.

- 사건 승인 처리(앱 증거 확인 후 승인) 운영함.
- 기간·구역·센서별 통계/리포트 제공함.

- 실시간 CCTV 패널 제공함.

현재: 대시보드(그래프·지도) 동작됨. 증거 기반 승인/반려 기능 동작됨. 통계/리포트 생성됨(CSV). CCTV 패널 UI 슬롯 마련됨.

구현 중: 실시간 CCTV 정보를 jetson Orin Nano로부터 받아오는 것 구현 중.

3. EC2 서버 (수집·저장·API)

목표: - ESP32 네트워크 모듈에서 수집한 센서값·GPS를 안정 수신하여 DB 저장함.

- 앱/웹에 최근값·이벤트·통계 API 제공함. 보안그룹/IAM, 백업/모니터링, MQTT(TLS) 브로커/브리지 운용함.

현재: 구현 완료.

3) H/W 개발 기능 상세내용

기능/부품	설명	작품실물사진			
VOCs,CO,NH3,GPS 센서	Arduino Uno에의해 명령받아 각 VOCs,CO,NH3 기체의 농도를 측정. GPS 센서의 경우 해당 위치를 측정.	ERPLANTE!			
ESP32-DEVKITC-32 UE	측정한 VOCs,CO,NH3,GPS 값을 Arduino Uno에서 전달받고 전달받은 값을 서버로 보냄				
Arduino Uno	- 센서들을 통해 해당값을 측정 - 측정한 값을 Serial을 통해 esp32네 트워크 모듈로 보냄	OND THE RESERVE OF THE PARTY OF			
Jetson Orin Nano Super	- 센서와 카메라 데이터를 받고 그 정보를 기반으로 딥러닝 학습을 통 해 자율주행을 구현 - 서버와 통신을 통해 실시간 CCTV 를 공유 - YOLO기반의 이미지 판단을 통한 위험 물질 분류	E. Bollows			
- LED와 부저는 정해진 시간 간격등을 통해 위험하다는 신호를 알림 - camera의 경우는 자율주행과 실시 간 모니터링을 위해 사용					
YB-ERF01-V3.0 with STM32	- LED의 밝기, 깜빡이는 간격, 색 등을 제어하여 위험을 알림 - 부저의 소리의 세기 등을 제어해 위험을 알림				

- H/W 주요 목표대비 현재 개발정도 상세 설명
- 1. VOCs·CO·NH3 ·GPS 센서 (Arduino Uno + 센서 보드)

목표: 각 센서의 농도(ppm/ppb)와 위치(GPS) 안정 취득

현재: Arduino에서 주기 샘플링 및 단위 변환 수행됨. GPS 좌표 취득됨. 시리얼로 ESP32에 전달됨.

2. ESP32-DEVKITC-32UE (네트워크 모듈)

목표: Arduino로부터 수신한 값(VOCs/CO/NH₃ /GPS)을 MQTT(TLS)로 서버에 안정 전송, **현재**: 시리얼 수신·파싱 및 값 전달 루틴 구현됨(초기 전송 경로 동작됨).

3. Arduino Uno (센싱·전처리 컨트롤러)

목표: 센서 통합, 고정 샘플링 레이트, 시리얼 프로토콜 표준화

현재: 센서 값 취득 및 시리얼 송신 동작됨.

3. Jetson Orin Nano Super (엣지 컴퓨팅/자율주행/추론)

목표: 카메라·센서 수집, TensorRT 기반 저지연 추론, 자율주행(조향 필터·슬루), 관제 연동, 실시간 CCTV, 유해물질 종류 분류 구현

현재: 도로 추종 TRT 추론 + EMA + 슬루 제한으로 저속 크루즈 동작됨. 유해 물질 감지시 정지 후 서버에서 승인 완료 시 다시 경비 시작

구현 중: 실시간 CCTV 스트리밍(WebRTC/RTSP→HLS) 구현 중.

YOLO를 통한 유해물질 종류 분류 구현 중.(시각/가스 멀티모달 결합 필요). GStreamer 파이프라인 확정 → WebRTC 송출(지연 < 500 ms 목표) 구현 중.

4. LED & 부저 & 카메라 (현장 경보/야간 운용)

목표: 위험에 따른 광·음 패턴(색/주기/음압) 제공, 야간 시야 확보(LED 라이트바/작업등), 자율주행·모니터링용 영상 확보함.

현재: LED · 부저 제어 루틴 동작됨, 야간 LED 운용 가능함. 카메라는 자율주행 입력에 사용됨.

구현 중: 야간 운용용 LED 자동화

5. YB-ERF01-V3.0 with STM32 (확장 보드)

목표: 경보용 LED 밝기/패턴, 부저 음압/톤을 명령 세트로 수신·실행, 모터 제어 현재: 기본 명령에 따른 밝기/깜빡임/색, 부저 세기 제어 동작됨. 서보 모터를 통한 조향각 제어, 모터를 통한 속도 제어

5. 기타 사항 [본문에서 표현되지 못한 작품의 가치(Value)] 및 제작 노력

- 사고 알림과 신속 대피 유도

앱으로 위험 알림이 바로 뜸. 지도로 어디서 문제가 생겼는지 한눈에 보이고, 어느 길로 피하면 안전한지 안내됨. 야간에는 로봇의 LED 라이트가 켜져 현장 식별이 쉬워짐.

- 현장 관리자 안전 강화

야간 순찰을 로봇이 대신 돌면서 피로·사고 위험이 줄어듦. 위험 징후가 보이면 부저·LED로 바로 알려 주변 작업자가 즉시 대비할 수 있음.

- 현장 관리자. 관제실의 신속 정확한 판단에 도움

웹에서 타임라인과 시간대비 농도 그래프를 통해 판단 시간이 단축됨. 경비로봇이 현장에서 바로 판단하고(엣지 처리), 관제실과 앱에 동시에 통보됨. 지연이 줄어 골든타임 확보에 도움이 됨.

- 비용·자원 절감

불필요한 출동·탐색을 줄여 인력·차량·장비 사용이 효율화됨. 사고를 초기에 차단해 수리·정지·보상 등 큰 비용을 사전에 막는 데 기여함.

- 환경·건강 모니터링 기반 마련

누적 데이터로 시간대·계절별 패턴과 위험 핫스팟 지도를 만들 수 있음. 악취·유해가스 민원등 있을 시, 근거 있는 설명과 대책을 제시할 수 있음.

- 실시간 데이터 파이프라인

GPS 선전송(/data), 센서 분리(/data/hazard)로 수집 경로 명확화·지연 감소됨 SSE 큐·keep-alive(ping) 적용으로 장시간 연결 안정화·자동 재접속 호환성 확보됨 임계 미만 값도 reading이벤트로 상시 송출되어 UI 공백·지연 현상 해소됨

- 사건(Incident) 관리·알림

Upsert 로직과 레벨상승 규칙으로 중복 사건 생성·푸시 스팸 억제됨 승인·해결 상태 분리 표시로 워크플로우 추적성과 책임 구분성 강화됨

- 시간/날짜 처리・로그 가시성

UTC 저장+로컬 날짜키 변환으로 날짜 오표시 버그(28→27) 해결됨 /incidents/active_by_date·달력 필터로 날짜별 로그 탐색 기능 제공됨

- 저장소/DB 안정화

SQLite NullPool·세션 즉시 반납으로 락·교착 현상 완화됨 PRAGMA 기반 자동 마이그레이션으로 배포 시 스키마 불일치 문제 예방됨

- 통계・지표 API

duration/intensity/percentiles/availability 지표로 품질 모니터링 체계화됨

hotspots/cooccur/hotspot detail로 위험 구역·동시발생 분석 근거 제공됨

- 운영 도구·관리

최근 N시간/전체 초기화, 경계 반경 수정, Co-sign 옵션 등 운영 기능 제공됨 업로드 SHA-256·절대 URL 일관화로 증거 무결성·추적 가능성 강화됨

- 보안/진단/테스트

관리자 토큰 검증·CORS 제어·환경변수화로 보안·이식성 향상됨
FCM 토픽/직접토큰 진단 엔드포인트·curl스크립트로 E2E 점검 체계 마련됨

- 엣지(ESP32) 연동

시리얼 파싱 견고화・GPS→센서 전송 순서 및 지연 적용으로 데이터 신뢰성 향상됨 단위/문자열 정규화(_to_float)로 센서값 파싱 오류 감소됨

- 사용자 가치・현장 효익

앱 실시간 알림·지도 위험지점·대피경로 안내로 대응 속도 향상됨 관제실 타임라인/그래프로 판단 시간 단축·골든타임 확보에 기여됨 불필요한 출동·탐색 감소로 인력·장비 비용 절감 효과 기대됨 누적 데이터로 패턴·핫스팟 분석 및 민원 대응 근거 제공됨

6. 향후 개선사항

- 1) 지금까지 일어났던 유해물질 사고 데이터를 기반으로 추후 유해물질 사고가 자주 일어났던 시기를 예측해 대비하도록 하는 유해물질 사고 예측 기능을 추가 할 예정임.
- 2) 실시간 상황파악을 위해 로봇에 있는 카메라를 웹에 옮겨 cctv 기능을 추가 할 예정임.
- 3) 만든 앱을 항만근로자 뿐만 아니라 외부에서 온 근로자를 위한 앱으로도 쓸 수 있도록 계정을 만들 수 있도록 함 (사고대비 피해자 절감을 위함)

Ⅲ. 프로젝트 수행 내용

※ 평가항목 : 완성도, 협업의 적절성

1. 프로젝트 수행일정

프로젝트 기간			2025. 06. 01. ~ 2025. 10. 31.				
그브	구분 추진내용		프로젝트 기간				
丁正	<u>구인네</u> ᆼ	구분	6월	7월	8월	9월	10월
게히	해운 물류 관련 위험물 탐색	계획					
계획	및 해결방안 모색	진행					
ㅂ서	경비로봇 전체적 구상 및	계획					
분석	및 관련 자료 조사 및 스터디	진행					
	H/W 설계 및 관련 역할 분담	계획					
설계		진행					
2/11	S/W 설계 및 관련 역할 분담	계획					
		진행					
	자율 주행 제어 관련 개발	계획					
	시설 부경 세의 현현 개설	진행					
개발	센서 및 서버 개발	계획 진행					
112	변시 옷 사이 세달						
데이티	데이터 처리, 모니터링 관련 개발	계획					
	네이디 시디, 포디디잉 근근 게딜	진행					
테스트	작동과정 테스트 및 피드백	계획					
-II	7040 4 X 4-1	진행					
종료	성과 정리, 프로젝트 문서화	계획 진행					
ᅙᄑ	정의 정니, 프로크트 군시회						

2. 팀원의 세부목표 수립 및 협업을 위한 노력

팀원	역할	프로젝트 세부목표	
팀장	프로젝트 관리 및 자율 주행 구현	르젝트 관리 및 Jetson nano와 딥러닝을 활용한 자율주행 제어 율 주행 구현 HW/SW간의 결합을 도모함	
팀원A	앱과 웹 구현 앱에서 알림과 지도확인등의 다양한 기능들을 통해 빠른 대처를 가능하도록 웹에서 실시간 모니터링 및 앱과의 통신으로 현장대처를 도움		
팀원B서버 및 다양한 센서 구축Ec2를 이용하여 센서와 앱,웹간의 통신을 제어함 Vocs, CO, NH3, GPS등의 센서를 구축함			

1) 프로젝트 수행(협업) 방안

- 팀 프로젝트를 수행하면서 팀원들과 각자 만날 수 있는 시간을 확인하고 만날 수 있는시간에는 특정장소(학교)에 모여서 각자의 일을 수행함
- 전부 만날 수 없는 날에는 각자 집에서 일을 수행하다가 일주일에 한번씩 google meet를 통해서 진행 상황을 공유함
- 한 달에 한 번씩 멘토님과 질의응답 및 조언을 얻는 시간을 가짐

2. 프로젝트 추진 과정에서의 문제점(애로사항) 및 해결방안

1) 프로젝트 관리 측면

- 기숙사의 정책상 기숙사를 비워야하는 기간이 존재하게 되어 혼자 먼 지역에서 살고있는 한 팀원 때문에 지속적으로 만나서 프로젝트를 수행함에 있어 어려움을 겪음.
- 팀원간의 역할을 정해서 각자 맡은 바를 수행하다가 모두 만날 수 있는 하루를 정하고 모두 만나는 날에 밤샘 작업을 수행함으로써 문제를 해결함.

2) 작품 개발 측면

- 장비 사용 미숙으로 인한 하드웨어 고장이라는 문제가 발생하였고 이를 알아채는데 늦어 많은 시간이 낭비되는 문제가 발생함
- 같은 기능을 하는 새로운 장비를 구매 후 고장난 장비와 기능적으로 비교하여 차이점을 확인하고 이를 기준으로 고장난 장비인지 아닌지를 판단하는 기준을 세움.
- 또한 하드웨어를 고장낸 위험한 행동을 반복하지 않도록 기존 방식이 아닌 안전한 새로운 방식을 찾아서 개발에 진행함.

3. 프로젝트를 통해 배우거나 느낀 점

- 팀원 A : 하드웨어의 고장 또는 잘못된 연결로 인해서 발생하는 기능 부재는 그 원인을 찾는 것이 어렵다는 것을 알게됨.
- 팀원 B : 내 작업 뿐만이 아닌 다른 팀원의 작업도 알아야 비로소 일이 해결된다는 것을 알아감.
- 팀장: jetson Nano와 jetson Orin Nano에 부팅 문제를 해결하며, 임베디드 보드에 대한 이해도가 높아짐. 여러 가지 버전 문제를 해결하며 개발 환경 설정에 대해서 많이 배울 수 있었음.

Ⅳ. 작품의 기대효과 및 활용분야

※ 평가항목 : 결과의 활용성

1. 작품의 활용(적용)분야

- 환경부, 해양수산부 등 항만과 관련하여 종사하는 관리자 분들, 관제실 근로자 분들이 사용하는 것을 목표로 함
- 항만 뿐만 아니라 유해물질 유출 사고가 자주 일어나는 지역에서도 활용되는 것을 목표로 함
- 유해물질 사고지역을 알려주는 앱의 일부 기능들은 항만 종사자 뿐만 아니라 유해물질 사고가 자주 일어나는 지역 시민들을 위해서 사용되는 것을 목표로 함

2. 작품의 활용에 의한 기대효과 (사용자)

- 유해물질 누출 및 이상상황 발생 시, 실시간 자동 경고 및 관리자 보고를 통해 초기 대응 시간 단축
- 기존 인력 감시 방식의 한계를 보완하여, 24시간 무중단 감시체계 구축
- 반복되는 순찰 데이터를 기반으로 위험도 분석 및 고위험 지역 선별 감시로 감시 효율성 향상
- 앱을 통해서 시민들을 대피시킬 수 있음으로 지역 통제 및 시민 대피 비용을 절감

3. 작품의 기대가치

- 다중 센서 융합 감지(NH3/VOC/CO)로 유해물질 유출을 조기 탐지하고 교차 검증하여 오탐·미탐을 최소화함.
- 앱·웹 실시간 알림과 지도 기반 대피 경로 안내로 골든타임 내 대응을 지원해. 인명·재산 피해를 최소화함.
- 24시간 자율주행 순찰 및 관제 연동으로 경비 효율을 높이고, 인력 중심. 모니터링 대비 운영비를 절감함.
- 누적 데이터 분석으로 시간대·구역별 핫스팟을 도출해 재발 방지 정책과 시설 개선에 근거를 제공함.
- 모듈형 아키텍처로 센서·로봇 플랫폼 확장이 용이해 항만을 넘어 산업단지· 물류창고 등으로 손쉽게 확장 가능함.