IUM zadanie 07 wariant 02

- Korneliusz Litman 310804
- Marcin Zasuwa 311022

Etap 1

Kontekst:

W ramach projektu wcielamy się w rolę analityka pracującego dla portalu "Pozytywka" – serwisu muzycznego, który swoim użytkownikom pozwala na odtwarzanie ulubionych utworów online. Praca na tym stanowisku nie jest łatwa –zadanie dostajemy w formie enigmatycznego opisu i to do nas należy doprecyzowanie szczegółów tak, aby dało się je zrealizować. To oczywiście wymaga zrozumienia problemu, przeanalizowania danych, czasami negocjacji z szefostwem. Same modele musimy skonstruować tak, aby gotowe były do wdrożenia produkcyjnego – pamiętając, że w przyszłości będą pojawiać się kolejne ich wersje, z którymi będziemy eksperymentować.

Zadanie

"Gdybyśmy tylko wiedzieli, kiedy użytkownik będzie chciał przesłuchać bieżący utwór w całości, a kiedy go przewinie – moglibyśmy lepiej zorganizować nasz cache"

Definicja problemu biznesowego

Kontekst

Serwis muzyczny Pozytywka umożliwia użytkownikom odtwarzanie utworów. Firma zbiera informacje m.in. dotyczączące artystów, utworów czy sesji użytkowników. W celu zwiększenia wydajności i poprawy doświadczeń użytkowników serwis Pozytywka chce ulepszych organizację cache poprzez przewidywanie, kiedy utwory będą odtwarzane w całości, a które będą przewijane

Zadanie biznesowe

Opracowanie i wdrożenie modelu predykcyjnego, który na podstawie dostępnych danych i historii użytkowników, będzie w stanie przewidywać prawdopodobieństwo, że użytkownik odtworzy utwór w całości lub go przewinie.

Biznesowe kryteria sukcesu

Wariant 1

- Zwiększenie satysfakcji użytkowników poprzez zmniejszenie czasu oczekiwania na załadowanie piosenek
- Priorytetyzowanie cachowania piosenek, które mają większe prawdopodobieństwo, że zostaną odtworzone w całości

Wariant 2

- Zwiększenie satysfakcji użytkowników poprzez rekomendowanie im piosenek, na które istnieje mniejsza szansa, że zostaną pominięte
- Zmniejszenie procentowe pomijanych utworów co najmniej o 5%

Analityczne kryteria sukcesu

Naiwny model, który zawsze przewiduje, że utwór zostanie odtworzony w całości, osiągnie wynik zbliżony do 65.88% dokładności.

Wynika to z tego, że w dostarczonym zbiorze danych 65.88% utworów zostało odtworzonych w całości.

Celem jest stworzenie predykcyjnego modelu, który przewiduje z dokładnością wyższą niż 65.88% prawdopodobieństwo czy utwór zostanie odtworzony w całości, czy zostanie pominięty.

Definicja zadania / zadań modelowania i wszystkich założeń

Zadania modelowania: Model predykcyjny, który na podstawie dostarczonych danych będzie w stanie przewidzieć, czy utwór zostanie odtworzony w całości, czy zostanie przewinięty.

Analiza danych

Przegląd struktury dostarczonych danych

Dostaliśmy dane składające się z 5 plików jsonl

- artists.jsonl zawiera informacje o artystach
- sessions. j sonl zawiera informacje o sesjach użytkowników
- tracks.jsonl zawiera informacje o utworach
- track_storage.jsonl zawiera informacje o tym na jakich klasach pamięci są przechowywane utwory
- users.jsonl zawiera informacje o użytkownikach portalu

Wstępne założenia

Aby sprawdzić czy utwór został przesłuchany w całości, czy został pominięty, należy przeanalizować plik sessions.jsonl

- podstawowym kryterium analizy jest sprawdzenie czy wystąpił event_type SKIP pomiędzy event_type PLAY
- na skipowanie utworów mogą wpływać wartości charakterystyczne dla danych utworów: niektóre utwory mogą być skipowane częściej niż inne
- skipowane utwory mogą też zależeć od preferencji użytkownika np. użytkownik lubi rock, przez co istnieje szansa, że takie utwory będą skipowane przez niego rzadziej

Analiza za pomocą programów

Do analizy danych wykorzystaliśmy Pythonowa bibliotekę pandas służącą do analizy danych.

Pierwsza wersja

Pierwsza wersja otrzymanych danych zawierała istotne błędy w dużym stopniu utrudniające dalszą analizę.

Większość tych błędów polegała na nullowych i nieprawidłowych wartościach:

Raport z analizy

- Artyści (artists.jsonl):
 - Wartość -1 dla id występuje 494 razy,
 - Brak wartości (null) w polu genres: 544 wystąpień,
 - Zduplikowane nazwy artystów: 14.
- Sesje (sessions.jsonl):
 - Brak wartości (null) w polu event_type : 167 wystąpień,
 - Brak wartości (null) w polu track_id: 163 wystąpień,
 - Brak wartości (null) w polu user_id: 195 wystąpień.
- Utwory (tracks.jsonl):
 - Brak wartości (null) w polu id: 1117 wystąpień,
 - o Brak wartości (null) w polu name: 1083 wystąpień,
 - Brak wartości (null) w polu artist_id: 1078 wystąpień,
 - Brak wartości (null) w polu popularity: 1044 wystąpień.
- Użytkownicy (users.jsonl):
 - Występuje pole id dla jednego rekordu, które nie istnieje dla innych rekordów (wartość pola: -1),
 - Brak wartości (null) w polu favourite genres: 5,
 - Brak wartości (null) w polu premium_user: 1.
- W pliku z danymi o przechowywaniu utworów (track_storage.jsonl) nie znaleźliśmy problemów.

Druga wersja

tracks.jsonl

W danych dalej występują błędy - dla kilku artystów powtarzają się nazwy utworów dla nich samych (występują duplikaty par nazwa utworu - artysta).

Nie jest to sytuacja całkowicie niespotykana, jednak na tyle rzadka, że została uznana za błąd w danych.

Lista duplikatów wraz z ilością wystąpień:

```
Duplicate entries for artist id: 1uNFoZAHBGtllmzznpCI3s and track name: Hold On - 4 occurrences

Duplicate entries for artist id: 6M2wZ9GZgrQXHCFfjv46we and track name: Blow Your Mind (Mwah) - 4 occurrences

Duplicate entries for artist id: 4tpUmLEVLCGFr93o8hFFIB and track name: Atomic - 3 occurrences

Duplicate entries for artist id: 5tOrTQaBRD5yPHqbEwsRn7 and track name: 99 Year Blues - 3 occurrences

...
```

track_storage.jsonl

W porównaniu do pierwszej wersji wszystkie wpisy track_storage.jsonl z track_id mają odpowiadający id z tracks.json

sessions.jsonl

- Dane zawierające eventy w sesjach wydają się być poprawne: dla każdego wpisu podany jest odpowiedni track_id, który ma odzwierciedlenie w pliku tracks.json (oprócz 3853 eventów typu ADVERTISTMENT lub BUY_PREMIUM, które go nie wymagają)
- Liczba event_type SKIP wynosi 4090, co sugeruje, że odpowiednia wielkość danych wydaje się być zachowana
- Kolejna analiza pokazała, że każdy event_type SKIP jest dla danej sesji poprzedzony
 (niekoniecznie bezpośrednio) event_type typu PLAY. Czyli dane w tym zakresie wydają się być
 poprawne. Ta cecha będzie miała kluczowe znaczenie dla naszego zadania (pozwala określić)
- Kolejna analiza pokazała statystyki po jakim czasie utwory są najczęściej pomijane.

When track was skipped: mean: 132.50 seconds median: 125.88 seconds min: 0.09 seconds max: 1057.39 seconds std: 90.49 seconds

• Procentowa liczba pominiętych utworów: 34.12%

Przygotowaliśmy histogram dla przedstawionych danych:

tracks.jsonl

Następnie przygotowaliśmy statystyki długości trwania utworów:

```
21608
count
           228.06 seconds
mean
          112.11 seconds
std
            4.00 seconds
min
25%
           176.74 seconds
50%
           216.51 seconds
           262.65 seconds
75%
          4120.26 seconds
max
```

Zaznaczyliśmy je na wykresie (zaznaczając dodatkowo 1 i 99 percentyl)

Na podstawie przedstawionych histogramów możemy wnioskować, że nie wszystkie atrybuty niosą istotne informacje dla zadania.

Transformacja

Aby uprościć strukturę danych, dane z pliku sessions.jsonl zostały poddane transformacji. Wyliczono następujące wartości:

- advertisementBefore (określa czy bezpośrednio przed utworem została odtworzona reklama)
- skipped (określa czy utwór został pominięty)
- likedWhilePlaying (czy podczas odtwarzania utworu został on polubiony)

Współczynniki korelacji dla atrubutów ciągłych

Współczynniki informacji wzajemnej

Po obliczeniu współczynnika informacji wzajemnej między dostarczonymi danymi, a zmienną celu, wynika, że dostarczone dane nie niosą zbyt dużo informacji o zmiennej celu. Nawet największa wartość współczynnika informacji wzajemnej jest poniżej 2%.

Wstępnie zdefiniowane danych wejściowych

Przy wstępnej próbie użyto MLPClassifier okazało się, że na poprawę modelu w sposób dość znaczący wpływa personalizacja utworów pod użytkownika, na podstawie jego ulubionych gatunków muzycznych

(71.23% vs 59.80%).

Istotne jest zatem uwzględnienie favourite_genres, genres w modelu.

Większość innych atrybutów nie niesie wiele informacji i nie wpływa w znaczący sposób na poprawę modelu (potwierdza to wyznaczone wcześniej współczynniki informacji wzajemnych)

Etap 2

Modele

- Modele zostały przygotowane w języku Python z wykorzystaniem PyTorch.
- Modele są oparte o perceptrony wielowarstwowe (MLP)
- Do trenowania modeli wykorzystano rdzenie CUDA w GPU Nvidia.

Proces budowy modelów

Przygotowanie danych

Za pomocą skryptu transformation/transform_sessions.py dane zostały przeformatowane do uproszczonej postaci. Zawiera ona etykietę mówiącą o tym czy utwór został pominięty, czy nie

Etapy przygotowania danych do trenowania

- Wczytanie danych z plików wejściowych
- Łączenie danych w jeden duży zestaw danych
- Wektoryzacja tekstu na liczby za pomocą mechanizmu TF-IDF
- Redukcja wymiarowości za pomocą PCA (Principal Component Analysis)
- Klasteryzacja danych za pomocą algorytmu KMeans
- Kodowanie danych One-hot
- Podział danych na zbiór treningowy i testowy
- Normalizacja danych za pomocą StandardScaler
- Przepróbkowanie danych za pomocą SMOTE (Synthetic Minority Oversampling Technique) aby zrównoważyć klasę mniejszościową w zestawie danych

Opis budowy modeli

Budowa modelu Simple

- Model złożony z 3 warstw
 - o Pierwsza warstwa: 50 neuronów, Funkcja aktywacji: ReLU
 - o Druga warstwa: 30 neuronów, Funkcja aktywacji: ReLU
 - o Trzecia warstwa: 2 neurony
- CrossEntropyLoss i optimizer Adam
- 1000 epok

Budowa modelu Advanced

- Model złożony z 4 warstw
 - o Pierwsza warstwa: 100 neuronów, Funkcja aktywacji: ReLU
 - Dropout z prawdopodobieństwem 0.5
 - o Druga warstwa: 50 neuronów, Funkcja aktywacji: ReLU
 - Dropout z prawdopodobieństwem 0.5
 - o Trzecia warstwa: 30 neuronów, Funkcja aktywacji: ReLU
 - Czwarta warstwa: 2 neurony
- CrossEntropyLoss i optimizer Adam
- scheduler ReduceLROnPlateau
- 1000 epok

Uruchomienie trenowania

Wszystkie kroki trenowania można wykonać używając jednego skryptu:

```
DATA_VERSION=<data_version> CUDA_USE_GPU=<cuda_use_gpu> ./prepare_models.sh
```

gdzie:

- data_version wersja danych wejściowych (domyślnie v2)
- cuda_use_gpu czy używać GPU (0 lub 1 domyślnie 1)

Modele

Simple

Przewiduje czy utwór zostanie pominięty czy nie tylko na podstawie favourite_genres użytkownika i genres utworu

Advanced

Przewiduje czy utwór zostanie pomięty czy nie na podstawie favourite_genres użytkownika, genres utworu oraz dodatkowych informacji o utworze.

Porównanie modeli

Dane v2:

Simple: 70.74%Advanced: 73.27%

Dane v3:

Simple: 63.49%Advanced: 62.23%

Inne próby

RandomForest i GradientBoosting

Próby z wykorzystaniem RandomForest i GradientBoosting nie przyniosły zadowalających rezultatów. Ponieważ wykorzystywane trenowanie na CPU ich trenowanie trwało dużo dłużej

Mikroserwis

Mikroserwis został zaimplementowany w języku Python z wykorzystaniem FastAPI. Jest on udostępniony jako obraz Dockerowy.

Uruchomienie mikroserwisu

Aby uruchomić mikroserwis, należy skopiować plik env.example do env i uzupełnić go odpowiednimi wartościami.

```
cp .env.example .env
```

Następnie należy zbudować obraz Dockerowy i uruchomić go:

```
docker-compose up -d --build
```

Endpointy

Lista modeli

```
GET /api/models
```

Zwraca dostępne modele (simple i advanced)

Predykcja z wykorzystaniem konkretnej wersji modelu

```
POST /api/predict/{model_name}, gdzie model_name simple lub advanced
```

Przykładowe request body:

```
{
    "track_id": "0qGcYAUhkokluTCAuLUSdY",
    "favourite_genres": [
        "argentine rock"
]
}
```

Przykładowy response:

```
{
    "skipped": false
}
```

Predykcja z wykorzystaniem losowej wersji modelu do przeprowadzenia testów A/B

POST /api/predict/random

Informacje o predykcji są zapisane do dokumentowej bazy danych MongoDB.

Dane te mogą posłużyć do późniejszej oceny jakości modeli.

Prezentacja działania mikroserwisu

