The Redfield or "RKR" Equation (A Model)

The mean elemental ratio of marine organic particles is given as:

$$P:N:C = 1:16:106$$

■ The average ocean photosynthesis (forward) and aerobic (O_2) respiration (reverse) is written as:

106 CO₂ + 16 HNO₃ + H₃PO₄ + 122 H₂O + trace elements (e.g. Fe, Zn, Mn...) →
$$(CH_2O)_{106}(NH_3)_{16}(H_3PO_4)$$
 + 138 O₂

Reduction half reactions:

$$CO_2 + 4H^+ + 4e^- \rightarrow CH_2O + H_2O$$

 $NO_3^- + 9H^+ + 8e^- \rightarrow NH_3 + 3H_2O$

Oxidation half reaction:

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

- From plankton tows
- O_2 production was estimated theoretically, assuming I mol of O_2 released for every atom of carbon converted into biomass and 2 moles of O_2 for every atom of nitrogen.
- Assumes all OM is carbohydrates (and represents OM as an average "molecule")

Actual ratios of C/N/P/O vary considerably

C – Carbohydrates

P – Proteins

L - Lipids

Respiration Quotient ($\Delta O_2/\Delta C$)

Modified RKR using actual stoichiometry of plankton:

 $(O/C)_a$

Biological production: limitations

$$CO_2 + N + P + H_2O \stackrel{P}{\rightleftharpoons} Organic matter + O_2$$

"inorganic nutrients": N, P and Si

They are also called "biolimiting elements" -- Why?

- 1. Small reservoir size in oceans
- 2. Fast turnover time
- 3. Required for many kinds of biological activity

Winter Mean Nitrate distribution

World Ocean Atlas Climatology

Contour Interval=5

Winter (Jan.-Mar.) nitrate [umol/kg] at the surface (one-degree grid)

Summer (Jul.-Sep.) nitrate [umol/kg] at the surface (one-degree grid)

180°

120°W

60°W

60°E

120°E

0,

Biological production: limitations

$$CO_2 + N + P + H_2O \stackrel{P}{\rightleftharpoons} Organic matter + O_2$$

"inorganic nutrients": N, P and Si – macronutrient limitation

Biological production: limitations

$$CO_2 + N + P + H_2O \stackrel{P}{\rightleftharpoons} Organic matter + O_2$$

"inorganic nutrients": N, P and Si – macronutrient limitation

Trace metal needs:

Fe (photosynthesis, uptake of NH₄⁺, N₂ fixation)

Mn (phtoynthesis)

Zn (carbonic anhydrase, enzyme that catalyses HCO₃⁻ to CO₂)

Cu, Co, Ni

Can be limiting: High-Nutrient, Low Chlorophyll regions (HNLC)

What happens to that primary production?

What happens to that primary production?

- Primary production: autotrophic production
- Net primary production: PP minus respiration by autotrophs
- Net community production: PP minus all respiration (auto and heterotrophic)
- Annual net community production: The amount of organic matter that is produced but is removed from contact with the upper ocean on time scales > lyr

Dissolved vs. Particulate: Operational definition

Emerson and Hedges 2008

The Martin Curve: How much OM sinks out of the upper ocean?

- Carbon leaving upper ocean is a mix of soft (OM) and hard parts (silica and calcium carbonate shells)
- \sim 6% of carbon leaving upper ocean is CaCO₃
- SiO₂ is often ~2x the CaCO₃
- Weights down OM, also can protect from grazing

Apparent Oxygen Utilization: $AOU = [O_2]_{sat} - [O_2]_{measured}$

Oxygen Utilization Rate: OUR = AOU/t

Apparent Oxygen Utilization: $AOU = [O_2]_{sat} - [O_2]_{measured}$

Oxygen Utilization Rate: OUR = AOU/t

Why does OUR decrease with depth?

 Most of the organic matter that crosses 100m is respired by 200m (I/e remains at ~165 m)

 Most of the organic matter that crosses 100m is respired by 200m (I/e remains at ~165 m) Why does OUR decrease with depth?

