

Análise da Estrutura da Crosta na Região da Faixa Ribeira (entre as Províncias do Cráton São Francisco e da Bacia do Paraná) usando Métodos Sismológicos

Diogo Luiz de Oliveira Coelho

Dissertação para obter o grau de Mestre em **Geofísica**

Orientador **Stéphane Gerard Martial Drouet**

> Rio de Janeiro 2015

Análise da Estrutura da Crosta na Região da Faixa Ribeira (entre as Províncias do Cráton São Francisco e da Bacia do Paraná) usando Métodos Sismológicos

Diogo Luiz de Oliveira Coelho

Dissertação apresentada ao corpo docente do Programa de Pós-graduação em Geofísica do Observatório Nacional como parte dos requisitos necessários para a obtenção do grau de Mestre em Geofísica.

Lista de Figuras

1	Mapa das estações sismográficas instaladas (triângulos vermelhos). Os ou-	
	tros triângulos são estações da Rede Sismográfica Brasileira	4
2	Mapa das estações sismográficas instaladas (triângulos vermelhos). Os ou-	
	tros triângulos são estações da Rede Sismográfica Brasileira	6

Lista de Tabelas

Tabela com as coordenadas
(Lat Long) e altitude (m) das Estações. $\,\,5\,$

Sumário

Dedicatória

Agradecimentos

Resumo

Abstract

Contexto Geológico

Metodologia

Função do Receptor

Dados Geofísicos

No âmbito do projeto SUBSAL, realizado conjuntamente entre o Observatório Nacional e a Petrobras, instalou-se 24 estações sismográficas temporárias banda larga (STS2 ou Reftek RT151-120s). A faixa de frequência registrada varia de 50 Hz até 100 segundos. As estações foram dispostas geometricamente em tres perfis em relação à costa, dois perpendiculares à costa, perfil 1 a oeste e perfil 2 a leste, e um paralelo, perfil 3, como observado na Figura 1. O perfil 1 estende-se da estação STA01, localizada próximo à costa, até a STA09. O perfil 2 vai da estação STA10, ao norte, até a STA16, próximo à costa. O perfil 3 é da estação STA17, oeste, até a STA24, leste. A distância entre as estações é aproximativamente de 20 km. As coordenadas das estações são dadas na Tabela 1.

Figura 1: Mapa das estações sismográficas instaladas (triângulos vermelhos). Os outros triângulos são estações da Rede Sismográfica Brasileira.

O período de operação das estações foi distinto para os perfis. Os dois perfis perpendiculares à costa foram instalados no meio do ano de 2012 e o perfil paralelo no final de 2012. As estações ficaram em fucionamento até o final do ano de 2013 registrando o movimento do terreno de maneira contínua. O produto do deslocamento das partículas é registrado pelo sismógrafo, através de sensores verticais e horizontais, em três componentes. Esse registro das componentes é chamado de sismograma.

Tabela 1: Tabela com as coordenadas(Lat Long) e altitude (m) das Estações.

Nome	Latitude	Longitude	$ m Elevaç\~ao(m)$
STA01	-23.049408	-45.016808	950
STA02	-22.977707	-45.072017	886
STA03	-22.840839	-45.194141	576
STA04	-22.673525	-45.323162	902
STA05	-22.5325	-45.432383	1100
STA06	-22.386261	-45.549086	931
STA07	-22.241667	-45.647361	988
STA08	-22.050056	-45.781374	884
STA09	-21.903929	-45.946331	1045
STA10	-21.98335	-46.29471	1135
STA11	-22.12999	-46.20536	1455
STA12	-22.32379	-46.01047	890
STA13	-22.52571	-45.86029	918
STA14	-22.67147	-45.77467	974
STA15	-23.10378	-45.39983	895
STA16	-23.2387	-45.25919	906
STA17	-23.0337	-46.62914	776
STA18	-22.84539	-46.52033	957
STA19	-22.71192	-46.27943	1413
STA20	-22.56621	-45.96951	908
STA21	-22.39548	-45.75364	957
STA22	-22.21361	-45.53215	1052
STA23	-22.06692	-45.33267	993
STA24	-21.83834	-44.89324	995

Fundamentos Teóricos

A primeira análise feita é do nível de ruído nas estações usando o software PQLX. O cálculo do nível de ruído é baseado no trabalho de McNamara and Buland (2004). Os dados são cortados em intervalos de uma hora com 50

Esse método difere dos métodos utilizados normalmente porque não é necessário visualizar todos os dados para remover o ruído existente, como sismos de calibração, ruídos culturais, problemas instrumentais e falta de dados. Porque esse tipo de ruído terá uma probabilidade muito baixa, segundo McNamara and Buland (2004). Para calcular a espessura crustal na região utilizou-se o método da Função do Receptor que foi desenvolvido por Langston (1977). Tal método faz uso do sinal de tele-sismos, geradores de ondas planas de incidência quase-vertical embaixo de uma dada estação. A onda P chega na discontinuidade de Moho e se decompõe em uma onda P transmitida e uma onda S convertida. A diferença do tempo de chegada das duas ondas, onda S tem velocidade

Figura 2: Mapa das estações sismográficas instaladas (triângulos vermelhos). Os outros triângulos são estações da Rede Sismográfica Brasileira.

inferior a onda P, e de outras reflexões permite inferir a profundidade de Moho, como observado na Figura 1.2. Sismos próximos, com distância menor que 20 graus da estação estudada, geram ondas com incidência oblíqua e esse tipo de dado deve ser utilizado com um cuidado. Em sismos com distâncias maiores que 95 graus as ondas P não chegam na estação devido a inversão de velocidade no limite manto-núcleo, diminuição da velocidade da onda P entre o manto e o núcleo, e não é observada a onda P direta. No ínicio desse trabalho somente os dados de eventos incluídos no catálogo do IRIS (Incorporated Research Institutions for Seismology) com magnitude maior que 5,5 entre maio de 2011 e maio de 2012 foram disponibilizados. Mas agora utiliza-se dados coletados do segundo semestre de 2013. A Figura 1.3 mostra eventos registrados na estação STA08. A maior parte dos sismos registrados nas estações são eventos da cordilheira dos Andes ou da América Central.

O processamento dos dados inclui a remoção da média e da tendência, e aplicou-se um filtro "High-pass" com freqüência de corte de 0.1 Hz para eventos com distância entre 20 e 95 graus e de 2 Hz para eventos próximos. Os dados originais com amostragens a cada 0,01 segundos (100 Hz) são interpolados para gerar dados com amostragens cada 0,025 segundas (40 Hz), porque a informação de alta freqüência não é relevante nesse tipo de análise. Os dados foram examinados visualmente para identificar e salvar o tempo de chegada da onda P direta. Então as componente horizontais são rotadas para obter as componentes "radial" e "transversal". As Funções do Receptor são calculadas com uma deconvolução no dominio do tempo

da componente radial pela componente vertical. Isso elimina partes similares dos sinais, a fonte e a propagação da fonte até Moho, então a Função Receptor é sensível na delimitação da estruturação superficial da crosta embaixo da estação. O programa SAC (Seismic Analysis Code) foi usado para fazer o processamento e o cálculo das Funções Receptores. A Figura 1.4 apresenta um exemplo da marcação da chegada da onda P direta, a componente vertical e radial e a Função do Receptor registradas na estação STA08 em um dado evento.

Um método robusto de análise das Funções do Receptor é o método de Zhu and Kanamori (2000). Usando as velocidades medianas na crosta, as diferenças de tempo entre a P direta e a P convertida em S podem ser calculadas, bem como os tempos das múltiplas.

Usando uma dada velocidade v p , os tempos de chegada podem ser calculados usando a profundidade de Moho (H), a razão v p /v s e o parâmetro do raio, este é dependente

da localização do evento e da profundidade. Ao invés de tentar ajustar toda a função, o método faz uma pesquisa, grid search, da espessura crustal e da razão v p /v s para calcular o tempo de chegada teórico das ondas P convertidas em S e das múltiplas para cada registro. A melhor combinação da espessura crustal e da razão v p /v s é aquela que maximiza o valor das amplitudes reais das funções receptor.

Para obter uma imagem das discontinuidades, como por exemplo Moho, as Funções do Receptor empilhadas são mapeadas em relação a posição da estação no perfil. Os dados são separados em 4 grupos, segundo o azimute entre o sismo e a estação. A maioria do eventos ocorrem na região noroeste e sudoeste, nota-se a escassez de eventos na região do Oceano Atlântico. O objetivo dessa separação é avaliar se existem variações laterais de estrutura.

Dispersão de Ondas de Superfície

Dados Geofísicos

Fundamentos Teóricos

Resultados e Discussões

Conclusões