تمرین چهارم

سوال 1.

الف

Instruction	ALUSrc	MemRead	RegDst	RegWrite	ALUResult
Addi \$8, \$9, -4	1	0	0	1	0
Lw \$t2, 8(\$at)	1	1	0	1	1

ب. در این حالت ، مقدار immediate ماکسیمم 11 بیت می شود.

سوال 2.

الف. این بخش برای دستورات jump است ، که برای تعیین کردن مقدار PC استفاده می شود ، که در حالت 0 در MUX ، مقدار PC + 4 را در PC می ریزد. و Select آن ، با and بخش + 4 را در PC می ریزد. و Select آن ، با and بخش Zero در ALU و دستور کنترلی Branch است.

ب. برای 4 برابر کردن مقدار immediate استفاده میشود ، زیرا که خطهایی که PC می شمرد ، 4 تا 4 تا است.

ج. از Zero برای چک کردن مساوی بودن دو مقدار و از Branch برای اشتباهی PC را مقدار دهی کردن ، استفاده میشود.

سوال 3.

الف.

سوال 4.

الف. دستور R-type

ب. در قسمت محاسبهی PC ، این کار همزمان با بقیه ی کارها به صورت موازی انجام می شود ، و 2ns طول می کشد. بقیه ی کارها هم :

2(IM) + 0(MUX) + 1(RF(read)) + 0(MUX) + 2(ALU) + 0(MUX) + 1(RF(write)) = 6ns بس در کل نیز 6 نانو ثانیه طول میکشد.

باشد. 2 نیز باید hold-time است ، پس 2nsج. از آنجا که بیشترین تاخیر یک قطعه ، طوت میکشد. 8ns است که Load طولانی ترین دستور پس در کل داریم:

2 + 8 + 0.3 = 10.3ns

سوال 5.

الف. دستورات SW و Beq (در كل Stores و I-type ها).

ب. با درست کردن دستور RegDst ، دستورات Arithemtic قابل استفاده می شوند که شامل حدودا نصف دستورات اند. ولی با درست کردن MemtoReg ، دستورات Load آزاد می شوند که درصد کمتری در برنامه ها دارند(22%). پس RegDst مهمتر است.

ج. ميتوانيم به جاي MemtoReg ، از MemRead استفاده كنيم.

سوال 6.

اول باید بتوانیم rd + 4 را در \$ra ذخیره کنیم. برای این کار باید آدرس ra را (31) ، در Write Register و مقدار PC+4 را در Write Data قرار دهیم. برای این کار ، MUX های قبل هر کدام را ، 3 ورودی میکنیم و مقادیر مورد نظر را بهشان اضافه میکنیم.

برای بخش jump هم که باید مقدار PC را به اندازهی Immediate افرایش دهیم ، میتوانیم از همان حالت Beq استفاده کنیم. مقادیر سیگنالهای کنترلی خواهند بود:

RegDst	ALUSrc	Memto	Reg	Mem	Mem	Branch	ALUOp	ALUOp	Jump
		Reg	Write	Read	Write		1	2	
10	Х	10	1	0	1	Х	Х	Х	1