

# **CLASSROOM CONTACT PROGRAMME**

(Academic Session: 2024 - 2025)

# **ENTHUSIAST COURSE**

PHASE: ALL

**TARGET: PRE MEDICAL 2025** 

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 05-02-2025

### **ANSWER KEY**

| Q. | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| A. | 2   | 4   | 3   | 1   | 3   | 4   | 1   | 2   | 3   | 2   | 2   | 3   | 1   | 3   | 3   | 2   | 2   | 2   | 3   | 4   | 2   | 2   | 2   | 1   | 2   | 1   | 2   | 1   | 4   | 3   |
| Q. | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| A. | 3   | 1   | 2   | 3   | 2   | 2   | 2   | 3   | 1   | 2   | 1   | 4   | 4   | 4   | 1   | 2   | 4   | 2   | 2   | 1   | 4   | 4   | 2   | 1   | 4   | 1   | 4   | 1   | 1   | 4   |
| Q. | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  |
| A. | 4   | 4   | 4   | 2   | 2   | 3   | 4   | 4   | 4   | 3   | 3   | 4   | 1   | 3   | 1   | 1   | 1   | 3   | 1   | 1   | 3   | 1   | 2   | 2   | 4   | 4   | 3   | 3   | 3   | 4   |
| Q. | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| A. | 3   | 1   | 3   | 4   | 2   | 1   | 1   | 3   | 2   | 1   | 3   | 2   | 3   | 2   | 4   | 4   | 3   | 2   | 2   | 2   | 1   | 1   | 3   | 4   | 2   | 3   | 1   | 3   | 3   | 1   |
| Q. | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
| A. | 2   | 3   | 1   | 4   | 1   | 2   | 4   | 3   | 1   | 2   | 1   | 2   | 2   | 3   | 2   | 4   | 1   | 2   | 4   | 4   | 3   | 2   | 4   | 4   | 3   | 4   | 2   | 1   | 1   | 1   |
| Q. | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| A. | 1   | 2   | 2   | 4   | 1   | 3   | 2   | 2   | 3   | 4   | 3   | 4   | 4   | 2   | 1   | 1   | 2   | 4   | 3   | 4   | 3   | 2   | 1   | 1   | 4   | 3   | 3   | 1   | 1   | 1   |

## HINT - SHEET

### 1. Ans (2)



If voltmeter has resistance :  $R_v$  then, measured P.D. across 'R' =  $IR_{eq}$ 

where 
$$R_{eq} = \left(\frac{RR_V}{R + R_V}\right) < R$$

Hence 
$$\frac{V_{\text{meas}}}{I} < R \Rightarrow \frac{3}{0.6} < R$$
  
 $\Rightarrow R > 5\Omega$ .

### 2. Ans (4)



Simplified circuit

$$i = \frac{10-6}{3+1} = 1A$$

Applying KVL between A and B

$$V_B - 6 - (1 \times 1) = V_A$$

$$V_B - V_A = 7 V$$
.

### 3. Ans (3)



For each resistor:  $I_{max}^2 R = P_{max}$ 

$$I_{max} = \sqrt{\frac{P_{max}}{R}} = \sqrt{\frac{20}{5}} = 2A$$

Each resistor can have maximum current of 2A, before it get damage. So maximum current in branch AB = 2A. These each resistor of branch BC will carry 1A as shown.

$$P_{\text{net}} = P_{AB} + P_{BC} = (2)^2 (5) + (2)(1)^2 (5) = 20 + 10 = 30 \text{W}.$$

### 4. Ans (1)

$$F_e = \frac{ke^2}{r^2} \quad F_g = \frac{Gm_e \cdot m_p}{r^2}$$
$$\frac{F_e}{F_g} = \frac{ke^2}{Gm_e \cdot m_p} \simeq 2.4 \times 10^{39}$$

### 5. Ans (3)

As the field is along x-direction, equipotential surface must be parallel to y-z plane and perpendicular to x-axis.

#### 7. Ans (1)

Distance of a n<sup>th</sup> bright fringe from central fringe

$$y_n = \frac{n\lambda D}{d}$$

$$\therefore \lambda_{blue} < \lambda_{yellow}$$

$$\therefore y_{n(blue)} < y_{n(yellow)}$$

#### 8. Ans (2)

This is a wheat stone bridge which is balanced hence circuit can be reduced to following

Ceq. = 
$$\frac{8 \times 8}{8 + 8} = 4\mu F$$

$$4\mu F$$

$$4\mu F$$

$$4\mu F$$

$$4\mu F$$

$$4\mu F$$

$$4\mu F$$

#### 9. Ans(3)

$$\frac{P_1}{P_2} = \frac{m_1 gh/t_1}{m_2 gh/t_2} = \frac{m_1/t_1}{m_2/t_2} = \frac{300/5}{50/2} = \frac{600}{250} = \frac{12}{5} = 2.4$$

#### 10. Ans (2)

Minimum value of velocity of pendulum to desires a circle is:

$$v_2 = \sqrt{5gl} = \sqrt{100} = 10 \text{m/s}$$

By linear momentum conservation,

$$mv_1 = -mv_1 + mv_2$$
  
 $50 \times 10^{-3} \text{ v} = -50 \times 10^{-3} \times 100 + 1 \times 10$ 

$$v = 100 \text{ m/s}$$

#### 11. Ans (2)



$$T = m_2 g$$
 \_\_\_(1)

 $T = mg \sin\theta$ 

$$N = mg \cos\theta$$
 (2)



$$\sin \theta = \frac{m_2}{m_1} = \frac{6}{10}$$

$$\Rightarrow \theta = 37^{\circ}$$

from (3)

$$N = 10 \times 10 \times \cos 37^{\circ}$$

$$N = 80 \text{ N}$$

(force exerted by inclined on block m1)

#### 12. Ans (3)

Speed of train A:  $V_A = 1 \text{ km/hr}$ 

Speed of train B:  $V_B = 2 \text{ km/hr}$ 

speed of person w.r.t. train A;

$$\Rightarrow$$
 V<sub>PA</sub> = 0.2

$$\Rightarrow$$
 V<sub>P</sub> - V<sub>A</sub> = 0.2  $\Rightarrow$  V<sub>P</sub> = 1.2 km/hr

Rel. speed of person wrt train B;

$$V_{PB} = V_P + V_B = 1.2 + 2 = 3.2 \text{ km/hr}$$

#### 13. Ans (1)

Average speed = 
$$\frac{\text{Total distance}}{\text{total time}}$$

$$\frac{\left(\frac{0+30}{2}\right)t + (30)(2t)}{3t} = 25 \text{ km/hr}$$

$$E_i = 4\pi R^2 T$$
 ...(i)

$$\frac{4}{3}\pi R^3 = n\frac{4}{3}\pi r^3$$

$$E_f = n4\pi r^2 T$$

$$= n^{1/3} 4\pi R^2 T \dots (ii)$$

$$\Delta E = W = E_f - E_i$$

$$=4\pi R^2 T [n^{1/3}-1]$$

#### 15. Ans (3)

$$\frac{F_T}{A} = n\phi$$

$$\phi = \frac{F}{A\eta} = \frac{1000}{(0.04)(2 \times 10^9)}$$

$$\phi = \frac{10^{-4}}{4 \times 2} = 0.125 \times 10^{-4}$$

$$\phi = \frac{10^{-4}}{4 \times 2} = 0.125 \times 10^{-4}$$

$$\mathbf{\Phi} = 1.25 \times 10^{-5}$$

#### 16. Ans (2)

$$T = m\omega^2 r$$

$$450 = \frac{1}{2} \times \omega^2 \times (1)$$

$$\therefore \omega = 30 \text{ rad/sec}$$

#### Ans (2) 17.

$$\frac{E_0}{B_0} = C \text{ in vaccum}$$

$$E_0 = B_0 C$$

$$E_0 = B_0C$$

$$= 3 \times 10^{-6} \times 3 \times 10^{8}$$

$$= 900 \text{ V/m}$$

#### 18. Ans (2)

All in parallel,

After redraw,



$$L_{PQ} = \frac{2}{4} = \frac{1}{2}H$$

### 19. Ans (3)

$$V^2 = V_R^2 + V_L^2$$

$$\therefore V_L^2 = V^2 - V_R^2$$

$$V_L = \sqrt{(220)^2 - (132)^2}$$

$$=\sqrt{88 \times 352} = 176V$$

#### 20. Ans (4)

In presence of magnetic field

$$\vec{F} = q(\vec{v} \times \vec{B})$$

$$\Rightarrow \vec{F} \bot \vec{B}$$

$$\Rightarrow \vec{a} \perp \vec{B}$$

$$\therefore \vec{a} \bot \vec{B} = 0$$

$$3-12\alpha=0$$

$$\alpha = 3/12 = 1/4$$

#### 21. Ans (2)

$$\frac{F}{\ell} = \frac{\mu_0 i, i_2}{2\pi d}$$

$$\Rightarrow \frac{F}{\ell} = \frac{2 \times 10^{-7} \times 5 \times 5}{0.5}$$

$$= 10^{-6} \text{ N/m and repulsive}$$

#### Ans (2) 22.

$$r = \frac{mv}{qB}$$

 $v \rightarrow same$ 

 $B \rightarrow same$ 

$$r \propto \frac{m}{a}$$

$$\frac{r_1}{r_2} = \frac{(m/q)_1}{(m/q)_2}$$

$$\frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{4\mathbf{m}}{\mathbf{m}} \times \frac{\mathbf{q}}{2\mathbf{q}}$$

$$r_2 = r/2$$

### Ans (2)

$$P_1V_1^{\ \gamma} = P_2V_2^{\ \gamma}$$

$$P_2 = P_1 \left(\frac{V_1}{V_2}\right)^{\gamma}$$

$$P_2 = 1 \times \left(\frac{16}{2}\right)^{5/3}$$

$$Y = 5/3$$

$$P_2 = 32 \text{ atm}$$

#### 24. Ans (1)

$$\ell_{Ai} = \ell_{Bi}$$
 and  $\ell_{Af} = \ell_{Bf}$ 

$$\therefore \Delta \ell_{\rm A} = \Delta \ell_{\rm B}$$

$$\ell \propto_A \Delta T_1 = \ell \alpha_B \Delta T_2$$

$$\alpha_{\rm A}(180^{\circ} - 30^{\circ}) = \alpha_{\rm B} (T - 30^{\circ})$$

$$4 \alpha \times 150^{\circ} = 3 \alpha (T - 30^{\circ})$$

$$T = 230$$
°C

### Ans (2)

$$U = \frac{5}{2} RT \qquad \therefore PV = RT$$

$$U = \frac{5}{2} PV \qquad V = \frac{m}{\rho}$$

$$U = \frac{5}{2} \times P \frac{m}{\rho} = \frac{5}{2} \times 8 \times 10^4 \times \frac{1}{4}$$

$$= 5 \times 10^4 J$$

### 26. Ans (1)

$$U = n_1 f_1 RT + n_2 f_2 RT$$

$$= 2 \times \frac{5}{2} RT + 4 \times \frac{3}{2} RT$$

$$= 5 RT + 6 RT$$

$$= 11 RT$$

### Ans (2)

The second pendulum is a simple pendulum whose time period is constant and 2 sec, which does not depend on mass of the bob

### 28. Ans (1)

$$I \propto w^2 A^2 \text{ So, } \frac{I_1}{I_2} = \frac{(4)^2}{(8)^2} \times \frac{(2\pi)^2}{(6\pi)^2} = \left(\frac{4}{8}\right)^2 \left(\frac{2\pi}{6\pi}\right)^2$$
  
$$\frac{I_1}{I_2} = \frac{1}{4} \times \frac{1}{9} = 1 : 36$$

### 29. Ans (4)

$$K = 6\pi \times 0.01$$

$$\Rightarrow \frac{2\pi}{\lambda} = 6\pi \times 0.01$$

$$\therefore \frac{\lambda}{2} = \frac{1}{0.06} \text{(m)}$$

$$\Rightarrow d_{\text{C.T}} = \frac{100}{6} \text{(m)} = 16.67\text{m}$$

### 30. Ans (3)

When light ray travels parallel to the base, the light suffers minimum deviation

$$\delta_{min} = 40^{\circ}$$
  
from graph,  
 $i = e = 45^{\circ}$ 

### 31. Ans (3)

$$\frac{1}{-20} + \frac{1}{v} = -\frac{1}{10}$$

$$v = -20 \text{ cm}$$

### 32. Ans (1)

$$[ML^2T^{-2}] \rightarrow \text{Energy and Torque}$$
  
 $[ML^2T^{-3}] \rightarrow \text{Power}$   
 $[M^0L^0T^{-1}] \rightarrow \text{Frequency}$   
 $[MLT^{-2}] \rightarrow \text{Force}$ 

### 33. Ans (2)

For (A): A and  $\frac{A^3}{R}$  may have same dimension.

For (B): As A and B have different dimension so  $\exp\left(-\frac{A}{B}\right)$  is meaningless.

For (C):  $AB^2$  is meaningful.

For (D):  $AB^{-4}$  is meaningful.

### 34. Ans (3)

T = I
$$\alpha$$
  
5g × 0.5 - 2g × 0.5  
=  $(5 \times 0.5^2 + 2 \times 0.5^2)\alpha$   
 $\alpha = 8.4 \text{ ra/s}^2$ 

### 35. Ans (2)

Forces will be such that door will be in rotational as well as translational equilibrium

### 36. Ans (2)

$$\frac{dA}{dt} = \frac{\pi R^2}{T}$$

$$T^2 = \frac{4\pi^2}{GM} R^3$$

$$T = \frac{2\pi}{\sqrt{GM}} R^{3/2} \Rightarrow \frac{dA}{dT} = \frac{\pi R^2}{\frac{2\pi}{\sqrt{GM}} R^{3/2}}$$

$$\frac{\frac{dA_1}{dt}}{\frac{dA_2}{dt}} = \sqrt{\frac{R_1}{R_2}} = n \Rightarrow \frac{R_1}{R_2} = n^2$$

### 37. Ans (2)

$$W_{ext} + W_g = 4K = 0$$

$$W_{ext} - m_4 V = 0$$

$$Wext = 2 \times \frac{4}{2} = 4 J$$

### 38. Ans (3)



Diode 2 is in reverse bias

So current will not flow in branch of 2<sup>nd</sup> diode, So we can assume it to be broken wire.

Diode 1 is in forward bias

So it will behave like conducting wire. So new circuit will be



### 39. Ans (1)

For emission of photo electron  $\lambda \leq \lambda_0$  $\lambda_0 \longrightarrow$  threshold wavelength

### 40. Ans (2)

$$F \propto \frac{1}{r^2}$$
 [Electrostatic force]  
 $r \propto n^2$   
 $F \propto \frac{1}{4}$ 

### 41. Ans (1)

Only Lyman series is absorbed as higher energy levels are unstable.

#### 42. Ans (4)

$$NMSD = (N+1)VSD \Rightarrow 1VSD = \left(\frac{N}{N+1}\right)MSD$$

[Given = 1MSD = a units]

$$LC = 1MSD - 1VSD = \left(1 - \frac{N}{(N+1)}\right) a = \left(\frac{1}{N+1}\right) a \text{ unit}$$

#### 43. Ans (4)

MSR = 0 mm, CSR = 52 div,

$$LC = \frac{1}{100} = 0.01 \text{ mm}$$

Diameter =  $(0 + 52 \times 0.01)$ mm = 0.052 cm

#### 44. Ans (4)

$$v_T \propto r^2 \Rightarrow \frac{r_1^2}{r_2^2} = \frac{v_{T_1}}{v_{T_2}} = \frac{9}{4} \Rightarrow \frac{r_1}{r_2} = \frac{3}{2}$$

$$\therefore \frac{V_1}{V_2} = \left(\frac{r_1}{r_2}\right)^3 = \frac{27}{8}$$

#### 46. Ans (2)

for isoelectronic species

Cation < Neutral < anion

#### 47. Ans (4)

Concept

#### 48. Ans (2)

NCERT, Pg # 90

Electron gain enthalpy order is Cl > F > Br

#### 49. Ans (2)

CO<sub>2</sub> has linear shape.

#### 50. Ans (1)

[NCERT-XI, Part-1, Chapter - Chemical Bonding

$$Pg.no. = 128 - 29$$

As pre M.O.T. (iso e species)

#### 51. Ans(4)

(1) 
$$NH_4^+Cl^-$$
 (2)  $K^+MnO_4^-$ 

(3) 
$$Na^{+}(O-H)^{-}$$
 (4)  $Cl$   $Al$   $Cl$ 

#### 52. Ans (4)

All sp<sup>3</sup> hybridised species show  $p\pi$ -d $\pi$  type of bonding.

#### 53. Ans (2)

BCl<sub>3</sub>, PCl<sub>5</sub>, CO<sub>3</sub><sup>2-</sup>, SO<sub>3</sub>

#### Ans (1) 54.

H<sub>2</sub>S, BF<sub>4</sub>, PCl<sub>5</sub> can exist

#### Ans (4) 55.



P-H bond is non-polar i.e. is PH3 dipole is only due to L.P.

#### 56. Ans (1)

 $[Co(NH_3)_5(NO_2)]Cl_2$ (A)

Linkage

NO<sub>2</sub> can be converted into ONO

 $[Co(NH_3)_5SO_4]Br$ 

Ionisation

[Co(NH<sub>3</sub>)<sub>6</sub>] [Cr(CN)<sub>6</sub>]

Coordination

$$[Co(H2O)6]Cl3$$

Solvate

#### 57. Ans (4)

(C)

Trans 
$$- \left[ \text{CoCl}_2(\text{en})_2 \right]^+$$



POS present optically inactive

#### 58. Ans (1)

 $KMnO_4$ 

 $K^{+}MnO_{4}^{-}$ 



configuration diamagnetic

#### Ans (1) 59.

KMnO<sub>4</sub> is strong O.A. so HCl can't be taken in titration.

#### Ans (4) 60.

Zn has fulfilled configuration

#### Ans (4) 61.

$$\begin{array}{c}
+4 & -1 \\
PbI_4 & \xrightarrow{\text{Redox}} & PbI_2 + I_2 \\
\text{(O.A.)(R.A.)}
\end{array}$$

### 64. Ans (2)

### 66. Ans (3)

Sucrose is a disaccharide of  $\alpha - D$  – Glucose and  $\beta - D$  – Fructose.

### 68. Ans (4)

$$CH_3COOH + PCl_5 \rightarrow CH_3 - C - Cl \xrightarrow{CH_3MgBr} \frac{CH_3COOH + PCl_5}{O} \rightarrow CH_3 - Cl \xrightarrow{CH_3MgBr} \frac{CH_3MgBr}{O}$$

$$CH_{3} \xrightarrow{C} C-CH_{3} \xrightarrow{(1) CH_{3}MgBr} CH_{3} \xrightarrow{C} C-CH_{3}$$

$$OH$$

$$OH$$

$$Product$$

## 69. Ans (4)

Reagent : 
$$\begin{matrix} O \\ \parallel \\ NH_2 - NH - C - NH_2 \end{matrix}$$
  
Semicarbazide

## 72. Ans (4)

NCERT 11th P.No. 374

## 73. Ans (1)

Rate of  $S_N^2$  reaction  $\alpha = \frac{1}{\text{steric hindrance}}$ 

## 74. Ans (3)

Fact.

### 75. Ans (1)

Because they have same molecular formula but different F-G.

### 83. Ans (2)

More reactive metal displaces less reactive metal from their salt solution.

$$RLVP = \frac{in_B}{n_A + in_B}$$

$$0.4 = \frac{i}{3 + i}$$

$$i = 2$$

$$\Rightarrow \alpha = 100\%$$

## 91. Ans (3)

NCERT, Pg. # 22

NCERT XII Pg. # 15, 16

NCERT, Pg. #7

### 94. Ans (4)

NCERT-XII, Pg. # (E)-63

## 95. Ans (2)

NCERT Pg. # 62

### 96. Ans (1)

NCERT Pg. No. # 64

### 97. Ans (1)

NCERT Pg. #72

### 98. Ans (3)

NCERT Pg. #73

### 99. Ans (2)

NCERT Pg. #83

### 100. Ans (1)

NCERT Pg. #92

### 101. Ans (3)

NCERT Pg. # 90

### 102. Ans (2)

NCERT XII Pg. # 95

### 103. Ans (3)

NCERT XII, Pg. # 100, 101

### 104. Ans (2)

NCERT Pg. # 106

### 105. Ans (4)

NCERT Pg. # 104

106. Ans (4)

NCERT Pg. # 193

107. Ans (3)

NCERT, Pg. # 202

108. Ans (2)

NCERT Pg. # 198

109. Ans (2)

NCERT Pg. # 223

110. Ans (2)

NCERT Pg.# 213

111. Ans (1)

Module-1

112. Ans (1)

NCERT-XI, Pg. # 19, 129

113. Ans (3)

NCERT (XI) Pg # 09

114. Ans (4)

NCERT XI Pg.# 9

115. Ans (2)

NCERT Pg. No. # 19,21,26,39

116. Ans (3)

NCERT Pg. No. # 223

117. Ans (1)

Module Pg. #234

118. Ans (3)

NCERT XI, Page No. - 227,230 + Module

119. Ans (3)

NCERT XI Page No. 233

120. Ans (1)

NCERT XI Pg. # 223

121. Ans (2)

NCERT XI Page No. 218, 220

122. Ans (3)

NCERT Pg. No. # 243

123. Ans (1)

NCERT Pg. No. # 239

124. Ans (4)

XI NCERT Page. No :- 207, 13.2

125. Ans (1)

NCERT XI Pg. # 228, 231, 233

126. Ans (2)

NCERT (XI) Pg # 80, 81

127. Ans (4)

NCERT (XI) Pg # 78, 79, 80, 81

128. Ans (3)

NCERT-XI, Pg. # 76

129. Ans (1)

Both A & R are correct and R is correct explaination of assertion.

130. Ans (2)

NCERT Page No. 87, 90

131. Ans (1)

NCERT Page No. 86

132. Ans (2)

XIth NCERT Page No. - 87, 90

133. Ans (2)

NCERT, Pg. # 193

134. Ans (3)

NCERT, Pg # 225

135. Ans (2)

NCERT Pg#61,69,73,(E);68,76,77,82(H)

138. Ans (2)

NCERT, Pg. # 44, 45

139. Ans (4)

NCERT, Pg. # 42

140. Ans (4)

NCERT XII Pg # 124

141. Ans (3)

NCERT Pg. # 200

142. Ans (2)

NCERT Pg # 194

143. Ans (4)

NCERT Pg#199

### **ALLEN®**

144. Ans (4) NCERT-XI Page No. 234

145. Ans (3) NCERT, Pg. # 234

146. Ans (4) NCERT Pg # 48

147. Ans (2) NCERT Pg. # 188 (Fig. 14.3)

148. Ans (1) NCERT Pg. # 183

149. Ans (1) NCERT Pg. # 185, 186, 187

150. Ans (1) NCERT Page No. # 138

152. Ans (2) NCERT Pg. # 18

153. Ans (2) NCERT, Pg. # 332

154. Ans (4) NCERT Pg # 242

155. Ans (1) NCERT Pg. # 211,212,213

156. Ans (3) NCERT, Pg. # 208

157. Ans (2) NCERT, Pg. # 35

158. Ans (2) NCERT Pg. # (E)-36, (H)-39

159. Ans (3) Module-4 Pg#100

160. Ans (4) NCERT Pg. No. # 222-223

161. Ans (3) NCERT Pg. # 30

163. Ans (4) NCERT XI, Pg.# 107 164. Ans (2) NCERT (XII) Pg. # 195

165. Ans (1) NCERT-XII Pg. # 202

166. Ans (1) NCERT Pg # 212

168. Ans (4) NCERT XI Pg # 134

169. Ans (3) NCERT-XI, Pg. # 94

170. Ans (4) NCERT-XI, Pg # 125

171. Ans (3) NCERT Pg#236

172. Ans (2) NCERT Pg. No. # 186, 187

173. Ans (1) NCERT-XI Pg. # 278, 279

174. Ans (1) NCERT Pg. # 241

175. Ans (4) NCERT Pg. No. # 223

176. Ans (3) Module-120

177. Ans (3) Module-5 Page No. # 103

178. Ans (1) NCERT Pg. # 83

180. Ans (1) Module-8 Page No. #61