Problem Statement

Linear Regression

Import Libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
a=pd.read_csv("Sleep.csv")
a
```

Out[2]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68
											•

To display top 10 rows

In [3]:

```
c=a.head(15)
c
```

Out[3]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	 Pre
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	1
1	2	Male	28	Doctor	6.2	6	60	8	Normal	1
2	3	Male	28	Doctor	6.2	6	60	8	Normal	1
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	1
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	1
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	1
6	7	Male	29	Teacher	6.3	6	40	7	Obese	1
7	8	Male	29	Doctor	7.8	7	75	6	Normal	1
8	9	Male	29	Doctor	7.8	7	75	6	Normal	1
9	10	Male	29	Doctor	7.8	7	75	6	Normal	1
10	11	Male	29	Doctor	6.1	6	30	8	Normal	1
11	12	Male	29	Doctor	7.8	7	75	6	Normal	1
12	13	Male	29	Doctor	6.1	6	30	8	Normal	1
13	14	Male	29	Doctor	6.0	6	30	8	Normal	1
14	15	Male	29	Doctor	6.0	6	30	8	Normal	1
4										•

To find Missing values

In [4]:

```
c.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15 entries, 0 to 14
Data columns (total 13 columns):
    Column
                             Non-Null Count Dtype
    ----
    Person ID
                             15 non-null
                                            int64
 0
 1
    Gender
                             15 non-null
                                            object
 2
    Age
                             15 non-null
                                            int64
 3
    Occupation
                             15 non-null
                                            object
 4
    Sleep Duration
                                            float64
                            15 non-null
    Quality of Sleep 15 non-null
 5
                                            int64
    Physical Activity Level 15 non-null
                                            int64
 7
    Stress Level
                                            int64
                            15 non-null
    BMI Category
                            15 non-null
                                            object
    Blood Pressure
                            15 non-null
                                            object
 10 Heart Rate
                             15 non-null
                                             int64
 11 Daily Steps
                            15 non-null
                                            int64
 12 Sleep Disorder
                             15 non-null
                                            object
dtypes: float64(1), int64(7), object(5)
memory usage: 1.6+ KB
```

To display summary of statistics

In [5]:

a.describe()

Out[5]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000
4							+

To display column heading

In [6]:

```
a.columns
```

Out[6]:

Pairplot

In [7]:

```
s=a.dropna(axis=1)
s
```

Out[7]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Pr
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	
1	2	Male	28	Doctor	6.2	6	60	8	Normal	
2	3	Male	28	Doctor	6.2	6	60	8	Normal	
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	
374 rows x 13 columns										

374 rows × 13 columns

In [8]:

```
s.columns
```

Out[8]:

In [9]:

```
sns.pairplot(a)
```

Out[9]:

<seaborn.axisgrid.PairGrid at 0x20748bc46d0>

Distribution Plot

In [10]:

sns.displot(c['Person ID'])

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x2074bb6a3d0>

Correlation

In [11]:

Out[11]:

<AxesSubplot:>

Train the model - Model Building

```
In [12]:
```

```
g=c[['Person ID']]
h=c['Age']
```

To split dataset into training end test

```
In [13]:
```

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

```
In [14]:
```

```
from sklearn.linear_model import LinearRegression
```

In [15]:

```
lr=LinearRegression()
lr.fit(g_train,h_train)
```

Out[15]:

LinearRegression()

In [16]:

```
print(lr.intercept_)
```

27.6666666666668

Coeffecient

In [17]:

```
coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
```

Out[17]:

Co-effecient

Person ID

0.1

Best Fit line

In [18]:

```
prediction=lr.predict(g_test)
plt.scatter(h_test,prediction)
```

Out[18]:

<matplotlib.collections.PathCollection at 0x2074e0faf70>

To find score

```
In [19]:
print(lr.score(g_test,h_test))
```

0.6052631578947364

Import Lasso and ridge

```
In [20]:
from sklearn.linear_model import Ridge,Lasso

Ridge
In [21]:
```

```
ri=Ridge(alpha=5)
ri.fit(g_train,h_train)
```

```
Out[21]:
Ridge(alpha=5)
```

```
In [22]:
ri.score(g_test,h_test)
```

```
11130010(8_0030)11_00
```

0.5968505263157902

```
In [23]:
```

Out[22]:

```
ri.score(g_train,h_train)
```

```
Out[23]:
```

0.89856

Lasso

```
In [24]:

l=Lasso(alpha=6)
1.fit(g_train,h_train)
```

Out[24]:

Lasso(alpha=6)

```
In [25]:

1.score(g_test,h_test)

Out[25]:
-0.10526315789473784

In [26]:
ri.score(g_train,h_train)

Out[26]:
0.89856
```

ElasticNet

```
In [27]:
from sklearn.linear_model import ElasticNet
```

e.fit(g_train,h_train)

Out[27]:

ElasticNet()

e=ElasticNet()

Coeffecient, intercept

```
In [28]:
print(e.coef_)

[0.07317073]

In [29]:
print(e.intercept_)

27.9349593495935
```

Prediction

```
In [31]:
```

```
print(e.score(g_test,h_test))
```

0.5169228842480982

Evaluation

```
In [32]:
from sklearn import metrics
print("Mean Absolute error:",metrics.mean_absolute_error(h_test,d))

Mean Absolute error: 0.3974706413730797

In [33]:
print("Mean Squared error:",metrics.mean_squared_error(h_test,d))

Mean Squared error: 0.22662877035274404

In [34]:
print("Mean Squared error:",np.sqrt(metrics.mean_squared_error(h_test,d)))

Mean Squared error: 0.47605542781565263

In []:
```