Aufgabenblatt 04

31. Oktober 2019

Aufgabe 04.1

Eine Weitspringerin schafft es, $\Delta L = 6,50 \,\text{m}$ weit zu springen. Wie weit springt sie auf dem Mond (Masse $M_M = 7,35 \cdot 10^{22} \,\text{kg}$, Radius $R_M = 1,74 \cdot 10^6 \,\text{m}$), wenn Absprunggeschwindigkeit und -winkel gleich sind?

Gravitationskonstante: $G=6,674\cdot 10^{-11}\,\mathrm{N\cdot m^2/kg^2}$. Wir nehmen hier an, dass sich der Vorteil des fehlenden Luftwiderstands und der Nachteil einer aufwändigen Bekleidung gegenseitig aufheben.

Aufgabe 04.2

Eine Person wirft einen Ball aus einem fahrenden Auto ($v_x = 60 \,\mathrm{km/h}$), der genau waagrecht in ein kleines Fenster treffen soll, das sich im Abstand $y_1 = 10,0 \,\mathrm{m}$ von der Straße entfernt in einer Höhe von $z_1 = 4,0 \,\mathrm{m}$ an einer Hauswand befindet. Der Ball wird – aus Sicht des fahrenden Autos – genau im rechten Winkel zur Fahrtrichtung geworfen, aber schräg nach oben. Abwurfhöhe: $z_0 = 1,0 \,\mathrm{m}$.

Wie weit vor dem Fenster muss der Ball abgeworfen werden, und welcher Winkel zur Waagrechten und welche Anfangsgeschwindigkeit sind notwendig? Luftwiderstand vernachlässigen. Skizze(n) erforderlich!

Aufgabe 04.3

Auf die Masse $m_3 = 9,0$ kg wirken das eigene Gewicht F_3 sowie die Gewichtskräfte F_1 und F_2 von zwei anderen Massen ($m_1 = 7,0$ kg und $m_2 = 11,0$ kg) nach schräg links oben bzw. schräg rechts oben (wie in der Skizze in den VL-Folien, Kap. 3, S. 14 oben rechts).

- (a) Unter welchen Winkeln zur Senkrechten müssen die Kräfte F_1 und F_2 angreifen, damit auf die Masse m_3 insgesamt keine Kraft wirkt? (Hinweis: Bedenken Sie, dass sich alle waagrechten und alle senkrechten Kraftkomponenten jeweils zu Null addieren müssen!)
- (b) Wenn F_1 und F_2 jeweils unter dem Winkel $30,0^{\circ}$ zur Senkrechten nach links bzw. rechts oben ziehen: Welche Beschleunigung wirkt dann auf die Masse m_3 (Richtung und Betrag)? Skizze(n) erforderlich!

Aufgabe 04.4

Ein Güterzug fährt mit $v_0 = 90 \, \mathrm{km/h}$ und muss plötzlich abgebremst werden. Dazu wird die Bremsbeschleunigung von Null weg immer weiter linear hochgefahren, bis der Zug zum Stehen kommt (konstanter "Ruck": $j = -0.08 \, \mathrm{m/s^3}$). In einem sonst leeren Waggon dieses Zugs mit glattem Stahlboden (innen $L = 14.5 \, \mathrm{m}$ lang) liegt an der hinteren Wand eine glatte Stahlplatte (Länge $l = 0.5 \, \mathrm{m}$). Diese wird vorerst mit dem Zug abgebremst. Sobald aber die Haftreibung nicht mehr ausreicht, gleitet sie im Waggon nach vorne und schlägt – nachdem der Zug zum Stillstand gekommen ist – an die vordere Waggonwand. Wann und mit welchem Tempo schlägt die Platte dort auf?

(Stahl-Stahl: Haftreibung $\mu_H = 0, 15$, Gleitreibung $\mu_G = 0, 12$).