

Epreuve de Thermodynamique

Exercice

On fait subir à un gaz une transformation élémentaire réversible. La quantité de chaleur échangée avec l'extérieur peut s'écrire :

$$\partial Q = C_e dT + IdV$$

ou encore

$$\delta Q = C_n dT + hdP$$

- On choisit comme variables indépendantes T et V.
- a. Ecrire les différentielles de l'énergie interne dU et de l'entropie dS.
- b. Sachant que dU et dS sont des différentielles totales exactes, montrer que $l = T(\frac{\partial F}{\partial T})_{ij}$ et $(\frac{\partial C_1}{\partial x^2})_7 = T(\frac{\partial^2 P}{\partial x^2})_{t'}$

- a Ecrire les différentielles de l'enthalpie dH et de l'entropie dS.
- b. Sachant que dH et d5 sont des différentielles totales exactes, montrer que $h = -T(\frac{\partial V}{\partial \tau})_F$ et $\left(\frac{\partial \mathcal{L}_{\mathbf{p}}}{\partial x}\right)_{T} = -T\left(\frac{\partial^{2} \mathbf{v}}{\partial x^{2}}\right)_{\mathbf{p}}.$

3. a. que deviennent les expressions de l, de $(\frac{\partial C_E}{\partial v})_T$, de h et de $(\frac{\partial C_E}{\partial p})_T$ pour un gaz parfait.

b. En déduire que l'énergie interne et l'enthalpie ne dépendent que de la température pour URRAINE ALONRAN un gaz parfait.

Problème

Un gaz parfait décrit le cycle de Stirling suivant :

- Compression isotherme de l'état initial $A(P_1, V_1, T_1)$ à l'état $B(P_2, V_2 = aV_1, T_1)$
- Echauffement isochore de l'état B à l'état $C(P_3, V_2, T_2)$.
- Détente isotherme de l'état C à l'état $D(P_4, V_1, T_2)$.
- Refroidissement isochore de l'état D à l'état A.

V1=0.42 Y2=V1

<u>Données</u>: Les températures T_1 et T_2 ; le taux de compression $\alpha = \frac{V_2}{V_3}$; le nombre de mole n du gaz parfait; la constante des gaz parfaits R et la capacité calorifique à volume constant C, (C, = cte). Toutes les transformations sont réversibles.

- 1. Représenter dans un diagramme (P, V) le cycle décrit par le gaz parfait.
- 2. a. Donner l'expression des variations d'énergie interne U_{AB} , U_{BC} , U_{CD} et U_{DA} lors des quatre transformations.
 - b. Calculer Ucycle. Conclusion.
- 3. a. Calculer les travaux W_{AB} , W_{EC} , W_{CD} et W_{DA} échangés avec l'extérieur lors des quatre transformations.
 - b. Calculer Weyels . Conclusion.
- 4. a. Calculer les quantités de chaleur Q_{AB} , Q_{BC} , Q_{CD} et Q_{DA} échangées avec l'extérieur lors des quatre transformations.
 - b. Calculer Qorde . Conclusion.
- 5. Calculer , Qayele + Weyele. Conclusion.
- 6. a. Calculer la variation d'entropie entre chacun des états A, B, C, D.
 - b. Calculer la variation d'entropie au cours du cycle. Conclusion.
- 7. Calculer le rendement du cycle de Stirling ρ_s .
- 8. Mettre ρ_s sous la forme $\rho_s = \frac{T_2 T_3}{T_2 + \alpha}$ et montrer que ρ_s est inferieur au rendement du cycle de Carnot $(\rho_c = \frac{T_2 T_3}{T_2})$
- 9. a. Exprimer la température T en fonction de l'entropie S (T = T(S)) pour une transformation isochore.
 - b. Représenter alors l'allure du cycle de Stirling dans un diagramme (T. 5).

