Power calculation

```
knitr::opts_chunk$set(comment = NA, echo=FALSE, message = FALSE, warnings = FALSE)
library(data.table)
library(MASS)
library(ggplot2)
```

Distribution of reads number across samples

Distribution of mean reads per gene across samples

log(total_reads_per_gene_across_samples + 0.01, 2)

0% 25% 50% 75% 100% 5.691520e-04 2.276608e-03 4.097894e-02 3.164485e-01 1.530324e+02

Need to come up a function to random sample 20000 reads for each cell with more than 20000 reads.

0%	1%	2%	3%	4%
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
5%	6%	7%	8%	9%
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
10%	11%	12%	13%	14%
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
15%	16%	17%	18%	19%
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
20%	21%	22%	23%	24%
0.00000000	0.0000000	0.00000000	0.00000000	0.00000000
25%	26%	27%	28%	29%
0.00000000	0.0000000	0.00000000	0.01234568	0.01234568
30%	31%	32%	33%	34%
0.01234568	0.01234568	0.01234568	0.01234568	0.01234568
35%	36%	37%	38%	39%
0.01234568	0.01234568	0.01234568	0.02469136	0.02469136
40%	41%	42%	43%	44%
0.02469136	0.02469136	0.02469136	0.03703704	0.03703704
45%	46%	47%	48%	49%
0.03703704	0.04938272	0.04938272	0.06172840	0.06172840
50%	51%	52%	53%	54%
0.07407407	0.08641975	0.09876543	0.09876543	
55%	56%	57%	58%	59%
0.12345679	0.13580247			0.18518519
60%	61%	62%	63%	64%

0.19753086	0.2222222	0.23456790	0.25925926	0.28395062
65%	66%	67%	68%	69%
0.30864198	0.32098765	0.34567901	0.37037037	0.39506173
70%	71%	72%	73%	74%
0.43209877	0.45679012	0.49382716	0.51851852	0.5555556
75%	76%	77%	78%	79%
0.60493827	0.64197531	0.69135802	0.72839506	0.79012346
80%	81%	82%	83%	84%
0.85185185	0.91358025	0.97530864	1.04938272	1.13580247
85%	86%	87%	88%	89%
1.2222222	1.32098765	1.4444444	1.58024691	1.72839506
90%	91%	92%	93%	94%
1.8888889	2.11111111	2.33333333	2.62962963	2.96296296
95%	96%	97%	98%	99%
3.40740741 100%	4.08641975	5.18913580	7.28246914	12.2222222

192.74074074

- [1] NA
- [1] 3.550555
- [1] 10.16409
- [1] 7.194391

Genes with mean reads greater than 10

apply(dispersion_calculation, genes_above10, MoreArgs = list(count_matrix = t, genes =

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.8323 8.7606 12.2035 13.2920 16.2635 64.5893

Genes with mean reads between 5 to 10

apply(dispersion_calculation, genes_5_to_10, MoreArgs = list(count_matrix = t, genes =

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.000e+00 7.000e+00 1.000e+01 1.552e+15 1.500e+01 2.443e+17 1

Genes with mean reads between 1 to 5

apply(dispersion_calculation, genes_1_to_5, MoreArgs = list(count_matrix = t, genes = c

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.000e+00 4.000e+00 7.000e+00 2.868e+15 1.400e+01 7.113e+17 285

Genes with mean reads smaller than 1

apply(dispersion_calculation, genes_below1, MoreArgs = list(count_matrix = t, genes = ç

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.000e+00 1.000e+00 6.000e+00 8.457e+15 9.909e+15 8.454e+17 10613

Simulation will be performed assume thare are $50\mathrm{K}$ reads for each cell.

$10~{\rm reads}$ on average in control, $500~{\rm SNP\text{-}gene}$

$5~{\rm reads}$ on average in control, $500~{\rm SNP\text{-}gene}$

reads on average in control, 1000 SNP-gene

reads on average in control, $1000~\mathrm{SNP}\text{-}\mathrm{gene}$

