Complexity and Fitness of Methylated DNA sites and RNAs in the context of Breast Cancer Tissues

March 24, 2023

1 Aim of the study

Highlighting the nestedness structure of the bipartite network representing correlations between methylated DNA sited and RNAs.

2 Methods and Data

2.1 Nestedness

Nested structures appear in the nature such that in ecological and socio-economic systems. In ecological systems, for instance, there is a nested distribution of species habitats. Where as some species only live in particular locations, some others live in a large variety of environments including those particular locations. In the context of network theory, a perfectly nested structure is such that for any pair of node (i,j) with $k_i < k_j$ their respective degree (number of neighbors), the set of nodes i is interacting with is included in the set of nodes j is interacting with. The adjacency matrix of such a network shows a triangular shape when columns and rows are sorted accordingly to the degree ordering of respective nodes. There are many metrics (other than degrees) permitting to infer the nested structure of a given network. Nestedness can appear in unipartite and bipartite networks. In the context of economical systems, especially the world trade network seen as a countryproduct bipartite network, recent research shows the existence of nestedness, see a complete review in [3]. In the context of biological systems nestedness structures have also been studied. In [2] different biological scales are considered. However, it seems that DNA-RNA interactions have not been studied yet. We choose the metric called fitness-complexity introduced in [1] to investigate the nestedness structure of DNA-RNA bipartite network. Fitness and complexity is a non-linear and iterative algorithm permitting to infer the nestedness in bipartite network such as economical networks. In this context, the fitness is a country quality, and complexity is a product quality. In our approach we try to make an analogy where RNAs play the role of products and DNAs the role of countries. Here are the economical definitions of fitness and complexity.

Country's fitness

Product's complexity

2.2 Data

We used an open access cancer dataset from GDC Data Portal. From raw data consisting in methylated DNA and RNA's beta-values for up to 841 tumorous and normal breast tissues, we built a Matrix of Pearson Correlation Coefficients between Methylated DNA and RNA from these beta-values. A network representing the Pearson correlation coefficients between pairs (M-DNA,RNA) consists in a bipartite graph with coefficients as weight of the links. Two possibilities are considered either the correlation is positive or negative. Therefore we consider a signed bipartite graph with undirected links. Two other correlation matrices can be constructed from these beta-values, the DNA-DNA and RNA-RNA correlation matrices.

We are doing an analogy with the fitness-complexity nestedness model proposed in [citation] where DNAs and RNAs are treated as countries and products.

3 The case of ESR1 synthesis and regulation

Here is presented some preliminary results obtained by performing fitness-complexity model on a subset of the dataset. We are considering 508 RNAs and 13707 DNAs involved in ESR1 synthesis and regulation. We can see that, for different Pearson correlation thresholds, both positive and negative Pearson correlations based interactions between DNAs and RNAs, from this subset, present a nested structure.

Table 1: Top 10 of the best RNAs and CGs, and their role in ESR1 synthesis and regulation, in terms of Complexity and Fitness score for Positive and negative Pearson correlation coefficients in the context of a threshold $\rho_c = 0.5$.

CGs				RNAs			
Negative	Role	Positive	Role	Negative	Role	Positive	Role
cg03633268	regulated	cg18006085	regulated	FAM110C	regulated	KRT37	regulated
cg22275306	regulated	cg12279294	regulator	CCDC148	regulated	C5orf49	regulated
cg18322772	regulated	cg14534336	regulated	SCTR	regulated	PFKFB1	regulated
cg09664492	regulated	cg24183909	regulated	GALR1	regulated	MYZAP	regulated
cg27647589	regulated	cg15391651	regulated	CCN5	regulated	AGTR1	regulated
cg10233455	regulated	cg09116658	regulated	FAM180A	regulated	ABCC11	regulated
cg22270384	regulated	cg09920632	regulated	COLCA1	regulated	MAG	regulated
cg03228065	regulated	cg17541142	regulated	CPEB1	regulated	PKIB	regulated
cg11694119	regulated	cg11608447	regulated	PHKG1	regulated	FAM110C	regulated
cg20078972	regulator	cg24282422	regulated	PFKFB1	regulated	TOX3	regulated

Table 2: Top 10 of the worst RNAs and CGs, and their role in ESR1 synthesis and regulation, in terms of Complexity and Fitness score for Positive and negative Pearson correlation coefficients in the context of a threshold $\rho_c = 0.5$.

CGs				RNAs				
Negative	Role	Positive	Role	Negative	Role	Positive	Role	
cg21537947	regulated	cg19153710	regulated	MID1	regulated	MID1	regulated	
cg23855715	regulated	cg26741576	regulated	ID4	regulated	IRF4	regulator	
cg18882971	regulated	cg21647833	regulated	BBOX1	regulated	SIT1	regulated	
cg20930514	regulated	cg24181188	regulated	RBBP8NL	regulated	BANK1	regulated	
cg18061532	regulated	cg21123519	regulated	POU5F1	regulated	CCR7	regulated	
cg24857238	regulated	cg20906829	regulated	TLCD3B	regulated	ICOS	regulated	
cg21056978	regulated	cg20664721	regulated	B3GALT1	regulated	PPP2R2B	regulated	
cg25110043	regulated	cg18130076	regulated	RAB26	regulated	GZMM	regulated	
cg20591337	regulated	cg26473110	regulated	BANK1	regulated	CXCL9	regulated	
cg23725567	regulated	cg26572392	regulated	IRF4	regulator	BBOX1	regulated	

Table 3: Top 10 of the best RNAs and CGs, and their role in ESR1 synthesis and regulation, in terms of Complexity and Fitness score for Positive and negative Pearson correlation coefficients in the context of a threshold $\rho_c = 0.6$.

CGs				RNAs			
Negative	Role	Positive	Role	Negative	Role	Positive	Role
cg22275306	regulated	cg14534336	regulated	PPARG	regulator	PR	regulator
cg03633268	regulated	cg17391830	regulated	HSPB7	regulated	CAPN8	regulated
cg17391830	regulated	cg22761619	regulated	KCNIP2	regulated	LONRF2	regulated
cg03228065	regulated	cg10216820	regulated	ITGA7	regulated	FOXM1	regulator
cg27647589	regulated	cg20631750	regulated	CAPN8	regulated	BIRC5	regulated
cg02385230	regulated	cg05539265	regulated	SYTL5	regulated	NUF2	regulated
cg03190578	regulated	cg03451296	regulated	UBXN10	regulated	TFF1	regulated
cg03387103	regulated	cg20284025	regulated	FAM13C	regulated	FAM13C	regulated
cg11938491	regulated	cg18263686	regulated	IGF1	regulated	ZG16B	regulated
cg14843902	regulated	cg24282422	regulated	SCNN1A	regulated	MGAM2	regulated

Figure 1: Binary bi-adjacency matrix representing the interactions between DNAs and RNAs involved in ESR1 synthesis and regulation. Matrix entries equal to 1 (blue cells) if there is an interaction between entities, 0 otherwise (bright yellow cells). Raw matrix (top left), Fitness and Complexity based reorganized matrix (top right), Degree based reorganized matrix (bottom left) and matrix reorganized with BINMATNEST algorithm (bottom right). For each panel, two matrices are presented, the one containing positive correlations are at the top, negative correlations are at the bottom. Here we have considered all Pearson correlation such that $|\rho| \geq 0.5$. Color code in the top right panel gives information about CGs and RNAs role. CG of ESR1 is in black, CG (RNA) of ESR1 regulator in green, CG (RNA) of ESR1 regulated in red, orange is for CG being both a ESR1 regulator and regulated and white is for CGs being ESR1's CG, regulator and regulated.

Figure 2: Binary bi-adjacency matrix representing the interactions between DNAs and RNAs involved in ESR1 synthesis and regulation. Matrix entries equal to 1 (blue cells) if there is an interaction between entities, 0 otherwise (bright yellow cells). Raw matrix (top left), Fitness and Complexity based reorganized matrix (top right), Degree based reorganized matrix (bottom left) and matrix reorganized with BINMATNEST algorithm (bottom right). For each panel, two matrices are presented, the one containing positive correlations are at the top, negative correlations are at the bottom. Here we have considered all Pearson correlation such that $|\rho| \geq 0.6$. Color code in the top right panel gives information about CGs and RNAs role. CG of ESR1 is in black, CG (RNA) of ESR1 regulator in green, CG (RNA) of ESR1 regulated in red, orange is for CG being both a ESR1 regulator and regulated and white is for CGs being ESR1's CG, regulator and regulated.

Table 4: Top 10 of the worst RNAs and CGs, and their role in ESR1 synthesis and regulation, in terms of Complexity and Fitness score for Positive and negative Pearson correlation coefficients in the context of a threshold $\rho_c = 0.6$.

CGs					RI	NAs	
Negative	Role	Positive	Role	Negative	Role	Positive	Role
cg25296982	regulated	cg22512377	regulated	MID1	regulated	MID1	regulated
cg25316898	regulated	cg18664900	regulated	PRR15	regulated	SIT1	regulated
cg18006085	regulated	cg27168900	regulated	MLPH	regulated	BANK1	regulated
cg22356484	regulated	cg18439323	regulated	FOXA1	regulated	IRF4	regulator
cg26833538	regulated	cg19561609	regulated	ID4	regulated	CCR7	regulated
cg24317002	regulated	cg20889476	regulated	ESR1		ICOS	regulated
cg24845324	regulated	cg20074699	regulated	TTC6	regulated	GZMM	regulated
cg23859078	regulated	cg26572856	regulated	C5AR2	regulated	BBOX1	regulated
cg24775832	regulated	cg19897251	regulated	CA12	regulated	PPP2R2B	regulated
cg26550787	regulated	cg20803232	regulated	AGR3	regulated	ID4	regulated

Table 5: Top 10 of the best RNAs and CGs, and their role in ESR1 synthesis and regulation, in terms of Complexity and Fitness score for Positive and negative Pearson correlation coefficients in the context of a threshold $\rho_c = 0.7$.

CGs					RI	NAs	
Negative	Role	Positive	Role	Negative	Role	Positive	Role
cg02385230	regulated	cg11694119	regulated	TFF3	regulated	ESR1	
cg03633268	regulated	cg03451296	regulated	CT62	regulated	APOA4	regulated
cg24546153	regulated	cg20284025	regulated	IRF4	regulator	CBFA2T3	regulated
cg20078972	regulator	cg24183909	regulated	TSPAN1	regulated	TTC6	regulated
cg19321739	regulated	cg22761619	regulated	THSD4	regulated	AR	regulator
cg03190578	regulated	cg23784313	regulated	FSIP1	regulated	ID4	regulated
cg03228065	regulated	cg07052041	regulated	CCR7	regulated	PTH1R	regulated
cg16013349	regulated	cg22877623	regulated	ID4	regulated	MLPH	regulated
cg02212575	regulated	cg10617287	regulated	CA12	regulated	PRR15	regulated
cg02711212	regulated	cg18006085	regulated	C5AR2	regulated	FOXA1	regulated

Figure 3: Binary bi-adjacency matrix representing the interactions between DNAs and RNAs involved in ESR1 synthesis and regulation. Matrix entries equal to 1 (blue cells) if there is an interaction between entities, 0 otherwise (bright yellow cells). Raw matrix (top left), Fitness and Complexity based reorganized matrix (top right), Degree based reorganized matrix (bottom left) and matrix reorganized with BINMATNEST algorithm (bottom right). For each panel, two matrices are presented, the one containing positive correlations are at the top, negative correlations are at the bottom. Here we have considered all Pearson correlation such that $|\rho| \ge 0.7$. Color code in the top right panel gives information about CGs and RNAs role. CG of ESR1 is in black, CG (RNA) of ESR1 regulator in green, CG (RNA) of ESR1 regulated in red, orange is for CG being both a ESR1 regulator and regulated and white is for CGs being ESR1's CG, regulator and regulated.

Table 6: Top 10 of the worst RNAs and CGs, and their role in ESR1 synthesis and regulation, in terms of Complexity and Fitness score for Positive and negative Pearson correlation coefficients in the context of a threshold $\rho_c = 0.7$.

	RNAs						
Negative	Role	Positive	Role	Negative	Role	Positive	Role
cg18623708	regulated	cg24751886	regulated	FOXA1	regulated	SIT1	regulated
cg16773127	regulated	cg17826679	regulated	ESR1		MID1	regulated
cg02477603	regulated	cg24704593	regulated	MLPH	regulated	CCR7	regulated
cg01099300	regulated	cg21038780	regulated	PRR15	regulated	IRF4	regulator
cg03995434	regulated	cg21210531	regulated	TTC6	regulated	ICOS	regulated
cg05089968	regulated	cg23543604	regulated	SIT1	regulated	BANK1	regulated
cg18263686	regulated	cg13556253	regulated	ICOS	regulated	GZMM	regulated
cg18174678	regulated	cg10444350	regulated	AGR3	regulated	CXCL9	regulated
cg15043801	regulated	cg12737152	regulated	C5AR2	regulated	FOXA1	regulated
cg11938491	regulated	cg00952322	regulated	CA12	regulated	PRR15	regulated

Table 7: Nestedness scores of the network. The NODF (BINMATNEST) score goes from 0 (100) for non nested network to 1 (0) for highly nested network. For each threshold, the table gives the scores associated to positive-correlation- and negative-correlation-based networks, annotated - and + respectively.

Threshold	NO	DF	BINMATNEST		
Tilleshold	-	+	-	+	
0.5	0.22	0.24	1.6	1.3	
0.6	0.34	0.24	2.4	1.6	
0.7	0.46	0.46	5	3.3	

References

- [1] Andrea Tacchella et al. "A New Metrics for Countries' Fitness and Products' Complexity". en. In: Scientific Reports 2.1 (Oct. 2012). Number: 1 Publisher: Nature Publishing Group, p. 723. ISSN: 2045-2322. DOI: 10.1038/srep00723. URL: https://www.nature.com/articles/srep00723 (visited on 12/15/2022).
- [2] Mauricio Cantor et al. "Nestedness across biological scales". en. In: *PLOS ONE* 12.2 (Feb. 2017). Publisher: Public Library of Science, e0171691. ISSN: 1932-6203. DOI: 10.1371/journal.pone. 0171691. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone. 0171691 (visited on 01/17/2023).
- [3] Manuel Sebastian Mariani et al. "Nestedness in complex networks: Observation, emergence, and implications". en. In: *Physics Reports*. Nestedness in complex networks: Observation, emergence, and implications 813 (June 2019), pp. 1–90. ISSN: 0370-1573. DOI: 10.1016/j.physrep.2019. 04.001. URL: https://www.sciencedirect.com/science/article/pii/S037015731930119X (visited on 01/16/2023).