Neural Network

Trần Trung Kiên (ttkien@fit.hcmus.edu.vn)

Last update: March 30, 2024

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Neural Network — idea

If our linear model is <u>underfitting</u> training data, what should we do?

- Approach (1) feature engineering: $\mathbf{x} {\to} \text{ hand-crafted } \Phi \to \mathbf{z} \to \text{linear model} \to y$
- Approach (2) Neural Network: $\mathbf{x} \! \to \mathsf{learned} \; \Phi \to \mathbf{z} \to \mathsf{linear} \; \mathsf{model} \to y$

Q: Which approach requires less human brain work? A: (2)

Q: Which approach produces **z** less interpretable? A: (2)

Q: Which approach requires more training data? A: (2)

Neural Network — model form

How is $a^{(l)}$ computed from $a^{(l-1)}$?

- Each node is a neuron
- Value inside a node is the output of this neuron
- Each edge is a weight (parameter)
- The output of a neuron is computed as follows: (1) compute the weighted sum of neurons' outputs in the previous layer, (2) pass the result through a nonlinear function – called activation function (e.g. logistic)
 - * $w_{ij}^{(l)}$: the weight corresponding to the edge from neuron i in layer l-1 to neuron j in layer l

$$(1 \le l \le L, \ 0 \le i \le d^{(l-1)}, \ 1 \le j \le d^{(l)})$$

• $a_j^{(l)} = \theta\left(s_j^{(l)}\right)$ with $s_j^{(l)} = \sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} a_i^{(l-1)}$ and θ is some activation function

How is $a^{(l)}$ computed from $a^{(l-1)}$?

Common activation functions:

- Logistic: $\theta(s) = \frac{1}{1+e^{-s}} \in [0, 1]$
- Tanh: $\theta(s) = 2 \operatorname{logistic}(2s) 1 \in [-1, 1]$
- Relu: $\theta(s) = \max(0, s) \in [0, \infty)$
 - ...

- Each node is a neuron
- Value inside a node is the output of this neuron
- Each edge is a weight (parameter)
 - The output of a neuron is computed as follows: (1) compute the weighted sum of neurons' outputs in the previous layer, (2) pass the result through a nonlinear function called activation function (e.g. logistic)
 - $w_{ij}^{(l)}$: the weight corresponding to the edge from neuron i in layer l-1 to neuron j in layer l

$$(1 \le l \le L, 0 \le i \le d^{(l-1)}, 1 \le j \le d^{(l)})$$

• $a_j^{(l)} = \theta\left(s_j^{(l)}\right)$ with $s_j^{(l)} = \sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} a_i^{(l-1)}$ and θ is some activation function

Q: Does layer L (last layer) need neuron 0 (whose output value is always 1)?

A: No

hidden layers, # neurons / hidden layer, and activation function are hyper-parameters (we must choose them before training)

Q: If we \uparrow # hidden layers as well as # neurons / hidden layer, training error \uparrow/\downarrow ?

A: \downarrow (this is good or bad?)

But it can \uparrow if difficulties of minimizing $E_{\rm train}$ kick in: The deeper (having more hidden layer) the network, the more complex the surface of $E_{\rm train}$

Neural Network — training

Given training data: $\{(\mathbf{x}^{(1)},y^{(1)}),...,(\mathbf{x}^{(N)},y^{(N)})\}$ where:

- $\mathbf{x}^{(n)} \in \mathbb{R}^{d+1}$
- $y^{(n)} \in \mathbb{R}$ (regression) or $\{1,2,...,K\}$ (classification)

We should choose model $h_{\mathbf{W}^{(1)},...,\mathbf{W}^{(L)}}(\mathbf{x})$

with $\mathbf{W}^{(1)}, ..., \mathbf{W}^{(L)} = ?$

Steps to find W's

Step 1. Define error function on training data

$$E_{\text{train}}(\mathbf{W}^{(1)},...,\mathbf{W}^{(L)}) = \frac{1}{N} \sum_{n=1}^{N} e\left(h_{\mathbf{W}^{(1)},...}(\mathbf{x}^{(n)}),y^{(n)}\right)$$

Step 2. $\min_{\mathbf{W}^{(1)},...,\mathbf{W}^{(L)}} E_{\text{train}}(\mathbf{W}^{(1)},...,\mathbf{W}^{(L)})$

Can use iterative gradient-based algorithms such as SGD

$$w_{ij}^{(l)} \leftarrow w_{ij}^{(l)} - \alpha \frac{1}{\text{mini-batch size}} \sum\nolimits_{(\mathbf{x},y) \in \text{mini-batch}} \frac{\partial e\left(h_{\mathbf{w}^{(1)},\dots}(\mathbf{x}),y\right)}{\partial w_{ij}^{(l)}}$$

Inside SGD, can use **back-prop**agation algorithm to compute $\frac{\partial e}{\partial w_{ij}^{(l)}} \forall l,i,j$ efficiently

Review of chain rule

1 path

$$x \rightarrow y = f_1(x) \rightarrow z = f_2(y)$$

 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}$

More than 1 path

$$x \to y_1 = f_1(x) \to z = f_3(y_1, y_2)$$

$$\searrow y_2 = f_2(x) \nearrow$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x}$$

$$w_{ij}^{(l)} \xrightarrow{g_{ij}^{(l)}} s_{i}^{(l)} \xrightarrow{g_{ij}^{(l)}} s_{i}^{(l+1)} \xrightarrow{\vdots} s_{k}^{(l+1)} \xrightarrow{\vdots} s_{d^{(l+1)}} s_{d^{(l+1)}} \xrightarrow{\vdots} s_$$

$$w_{ij}^{(l)} \xrightarrow{g_{ij}^{(l)}} s_{i}^{(l)} \xrightarrow{g_{ij}^{(l+1)}} s_{i}^{(l+1)} \xrightarrow{\vdots} s_{ij}^{(l+1)} \xrightarrow{\vdots} s_{ij}^{(l+1)} \xrightarrow{\vdots} s_{ij}^{(l+1)}$$

$$\theta'\left(s_{j}^{(l)}\right)\sum_{k=1}w_{jk}^{(l+1)}\delta_{k}^{(l+1)}$$
 To compute $\frac{\partial e}{\partial w_{i,i}^{(l)}}$ $\forall l,i,j$, we need to compute:

$$dw_{ij}^{(l)}$$

$$1 \quad a^{(l-1)} \forall l \quad i \quad \mathbf{r} = \mathbf{g}^{(0)} \rightarrow \mathbf{g}^{(1)} \rightarrow \dots \rightarrow \mathbf{g}^{(L)}$$

1.
$$a_i^{(l-1)} \, \forall l, i$$
: $\mathbf{x} = \mathbf{a}^{(0)} \rightarrow \mathbf{a}^{(1)} \rightarrow \cdots \rightarrow \mathbf{a}^{(L)}$
2. $\delta_j^{(l)} \, \forall l, j$: $\underline{\delta^{(1)} \leftarrow \cdots \leftarrow \delta^{(L-1)} \leftarrow \delta^{(L)}}$
Back-prop

Q: Do we need to compute $\delta_0^{(l)}$ (delta of neuron 0 whose output value is always 1)?

A: No

Q: If layer L (last layer) is Softmax Regression (and the error function is cross-entropy), what is the formula to compute $\delta_i^{(L)}$?

Hint: In "HW2-Slide.pdf", we have this formula for Softmax Regression:

$$\frac{\partial E_{train}}{\partial w_{ij}} = \frac{1}{N} \sum_{n=1}^{N} x_i^{(n)} (h_{\mathbf{W}}(\mathbf{x}^{(n)})_j - onehot(y^{(n)})_j)$$

A:
$$\begin{split} \delta_j^{(L)} &= h_{\mathbf{W}^{(1)},...,\mathbf{W}^{(L)}}(\mathbf{x})_j - onehot(y)_j \\ & \text{with } h_{\mathbf{W}^{(1)},...,\mathbf{W}^{(L)}}(\mathbf{x})_j \equiv a_j^{(L)} \end{split}$$

Sketch of SGD implementation for Neural Network

- 1. Initialize $\mathbf{W}^{(1)},...,\mathbf{W}^{(L)}$ (it's important to initialize "properly")
- 2. Repeat until termination criteria are satisfied:
 - A. Shuffle the order of training examples
 - B. For mini-batch $b=1,...,\frac{N}{B}$:

Do "SGD mini-batch steps" to update $\mathbf{W}^{(1)},...,\mathbf{W}^{(L)}$

SGD mini-batch steps

1. Compute output matrices of all layers:

$$\mathbf{A}^{(0)} = mb_{\mathbf{X}}$$

$$nb$$
_X

$$\begin{aligned} \mathbf{A}^{(l)} &= some_funct\left(\mathbf{A}^{(l-1)}, \mathbf{W}^{(l)}\right) & l = 1, ..., L - 1 \\ \mathbf{A}^{(L)} &= some_funct\left(\mathbf{A}^{(L-1)}, \mathbf{W}^{(L)}\right) \end{aligned}$$

2. Compute delta matrix of layer *L*: $\mathbf{D}^{(L)} = some_funct\left(\mathbf{A}^{(L)}, mb_\mathbf{Y}\right)$

3. Compute gradient of layer
$$L$$
: $\mathbf{G}^{(L)} = some_funct\left(\mathbf{A}^{(L-1)}, \mathbf{D}^{(L)}\right)$

- 4. Update weight matrix of layer L: $\mathbf{W}^{(L)} \leftarrow \mathbf{W}^{(L)} - \alpha \mathbf{G}^{(L)}$
- 5. For layer l = L 1, ..., 1:

A. Compute delta matrix of layer l:

A. Compute delta matrix of layer
$$l$$
: $\mathbf{D}^{(l)} = some_funct\left(\mathbf{D}^{(l+1)}, \mathbf{W}^{(l+1)}, \mathbf{A}^{(l)}\right)$

B. Compute gradient of layer l: similar to step 3 C. Update weight matrix of layer l: similar to step 4

Neural Network — dealing with overfitting

- Weight decay (L2 regularization)
- Drop-out
- Data augmentation
- ..