فهرست مطالب

۲	AVL آشنایی با درخت های		١	
۲		سرفصل ها .	۱.۱ ر	
۲	جستجوی دودویی	بادآوری درخت	۲.۱ ب	
۳	مونه ای از ساخت درخت جستجوی دودویی		نمونه ا	۲
۴	آیا می توانیم درخت جستجوی دودویی را بهینه تر کنیم؟		آیا می	۳
۵		ُنواع چرخش ه	۱.۳	
۵		tation 1.1. ⁸	,	
۵		tation Y.1.	ı	
۵		tation ۳.1.۳	ı	
۶	LR-Ro	tation F.1.	,	
۶	درخت AVL چیست ؟		درخت	۴
۶	حاسبه ی balance factor هر نود	نمونه هایی از ه	۱.۴	
٧		LL-Rotation	۲.۴	
٨		RR-Rotation	۳.۴	
٩		LR-Rotation	۴.۴	
9		RL-Rotation	۵.۴	
10	رخت ها	ی با وجود زیر د	چرخش	۵
۱۰	auبا وجود زیر درخت ها $ au$	چرخش ation	۱.۵	
11	RR-Rot با وجود زیر درخت ها	چرخش ation	۲.۵	
11	RL-Rot با وجود زیر درخت ها ۲۰۰۰، ۲۰۰۰، RL-Rot			
۱۲				
۱۳	نمونه ی ایجاد درخت AVL		۶	
1k	•	نکته مهم		
۱۵		مثالی دیگر		٨

m AVL آشنایی با درخت های m 1

۱.۱ سرفصل ها

- ۱. یادآوری درخت جستجوی دودویی
- ۲. چگونه می توان درخت جستجوی دودویی را بهینه تر کرد
 - ۳. درخت AVL چیست
 - ۴. چرخش های در درخت AVL
 - ۵. چگونگی ساخت درخت AVL

۲.۱ یادآوری درخت جستجوی دودویی

همانطور که قبلاً مطالعه کریدم درخت جستجوی دودویی درختی است که :

- مقدار تمام اعضای سمت چپ هر نود از مقدار آن نود کمتر است
- مقدار تمام اعضای سمت راست هر نود از مقدار آن نود بیشتر است

برای پیدا کردن عناصر به بهینه ترین روش از درخت جستجوی دودویی استفاده می کنیم و بیشترین تعداد مقایسه برای پیدا کردن یک عنصر بستگی به ارتفاع آن درخت دارد .

ارتفاع درخت جستجوی دودویی
$$\Rightarrow \left\{ egin{array}{l} Minimum \Rightarrow \log{(n)} \\ Maximum \Rightarrow n \end{array} \right.$$

۲ نمونه ای از ساخت درخت جستجوی دودویی

اگر ترتیب ورودی اعداد برای ساخت درخت جستجوی دودویی به صورت

keys: 30, 40, 10, 50, 20, 5, 35

باشد ، آنگاه درخت حاصل به صورت زیر خواهد بود ، همانطور که مشاهده می کنیدد در این حالت ارتفاع درخت جستجوی دودویی برابر با بهترین حالت خود یعنی $\log{(n)}$ خواهد بود

در صورتی که ترتیب ورودی اعداد را به شکل

keys: 50, 40, 35, 30, 20, 10, 5

داشته باشیم ، آنگاه درخت به دست آمده به شکل زیر می شود ، در این حالت ما بیشترین ارتفاع درخت را داریم و عملکرد درخت ما مشابه با لیست پیوندی خواهد بود .

ارتفاع درخت جستجوی دودویی به این بستگی دارد که ما عناصر را چگونه وارد کنیم

۳ آیا می توانیم درخت جستجوی دودویی را بهینه تر کنیم؟

فرض کنید که سه عنصر مثل

30, 20, 10

داریم ، آنگاه بسته به اینکه چطور عناصر را وارد کنیم شکل های زیر از درخت جستجوی دودویی حاصل می شود .

آیا راه حلی برای تبدیل شکل های ۱ تا ۴ به شکل ۵ وجود دارد ؟ جواب : بله ، با تعریف چرخش ها !

۱.۳ انواع چرخش ها

LL-Rotation 1.1."

RR-Rotation Y.1.W

RL-Rotation W.1.W

LR-Rotation F.1."

۴ درخت AVL چیست ؟

درخت AVL یک درخت جستجوی دودویی است که بین زیر درخت راست هر نود با زیر درخت چپ همان نود از نظر ارتفاع توازن وجود دارد .

برای ایجاد توازن در درخت جستجوی دودویی ما معیاری را به نام لاتین balance factor یا معیار توازن ایجاد می کنیم .

ارتفاع زیر درخت راست - ارتفاع زیر درخت چپ = balance factor

برای وجود توازن در هر نود درخت باید قوانین زیر برقرار باشند .

$$b_f = h_l - h_r = \{-1, 0, 1\}$$

 $|b_f| = |h_l - h_r| \le 1$

۱.۴ نمونه هایی از محاسبه ی balance factor هر نود

همانطورکه در شکل زیر مشاهده می شود $balance\ factor$ تمام نود ها بین 1 و 1 قرار دارد بنابراین درخت ما متوازن است .

در شکل های زیر نود های رنگی نامتوازن شده اند زیرا balance factor و 1 قرار ندارد

LL-Rotation Y.F

در شکل زیر پس از اینکه ما عنصری با مقدار 10را به درخت اضافه کردیم ، نود با مقدار 10 به حالت نامتوازن در آمده است .

عنصر $\frac{30}{}$ نامتوازن شده است زیرا ما عنصر $\frac{10}{}$ را در سمت چپ و دوباره سمت چپ اضافه کردیم بنابراین برای رفع نامتوازنی باید LL-Rotation کردیم

RR-Rotation W.F

در شکل زیر پس از اینکه ما عنصری با مقدار 30 را به درخت اضافه کردیم ، نود با مقدار نامتوازن در آمده است .

عنصر 10 نامتوازن شده است زیرا ما عنصر 30 را در سمت راست و دوباره سمت راست اضافه کردیم بنابراین برای رفع نامتوازنی باید RR-Rotation بزنیم

LR-Rotation F.F

در شکل زیر پس از اینکه ما عنصری با مقدار 20 را به درخت اضافه کردیم ، نود با مقدار نامتوازن در آمده است .

عنصر $\frac{30}{}$ نامتوازن شده است زیرا ما عنصر $\frac{20}{}$ را در سمت چپ و سپس سمت راست اضافه کردیم بنابراین برای رفع نامتوازنی باید $\mathrm{LR-Rotation}$ بزنیم

RL-Rotation **2.**F

در شکل زیر پس از اینکه ما عنصری با مقدار $\frac{20}{}$ را به درخت اضافه کردیم ، نود با مقدار نامتوازن در آمده است .

عنصر 10 نامتوازن شده است زیرا ما عنصر 20 را در سمت راست و سپس سمت چپ اضافه کردیم بنابراین برای رفع نامتوازنی باید RL-Rotation کردیم بنابراین برای رفع نامتوازنی باید

۵ چرخش با وجود زیر درخت ها

۱.۵ چرخش LL-Rotation با وجود زیر درخت ها

در چرخش LL-Rotation عناصر زیر درخت B_R که مقدار کمتری از عنصر لل-Rotation در چرخش این نود قرار می گیرند .

۲.۵ چرخش RR-Rotation با وجود زیر درخت ها

در چرخش RR-Rotation عناصر زیر درخت B_L که مقدار بیشتری از عنصر RR-kotation در چرخش این نود قرار می گیرند .

۳.۵ چرخش RL-Rotation با وجود زیر درخت ها

در چرخش RL-Rotation عناصر زیر درخت C_L که مقدار بیشتری از عنصر RL-Rotation در چرخش این نود قرار می گیرند و عناصر زیر درخت C_R که مقدار کمتری از A دارند در سمت چپ این نود قرار می گیرند و عناصر زیر درخت C_R که مقدار کمتری از

می گیرند .

۴.۵ چرخش LR-Rotation با وجود زیر درخت ها

در چرخش LR-Rotation عناصر زیر درخت C_L که مقدار بیشتری از عنصر E دارند در سمت راست این نود قرار می گیرند و عناصر زیر درخت E که مقدار کمتری از E دارند در سمت چپ این نود قرار می گیرند .

۶ نمونه ی ایجاد درخت AVL

در صورتی که بخواهیم با ورودی های

keys: 40, 20, 10, 25, 30, 22, 50

. یک درخت AVL ایجاد کنیم ، نحوه ی ایجاد درخت به صورت زیر خواهد بود

۷ نکته مهم

به هیچ نودی اجازه ندهید که $\mathrm{balance\ factor}$ آن از 2- کمتر و یا از 2+ بیشتر شود و به محض مشاهده ی عدم توازن ، چرخش های مورد نیاز را روی درخت اعمال کنید .

۸ مثالی دیگر

