Classification of Blood Clot Origins in Ischemic Strokes

This notebook explores the task of classifying the etiology of blood clots in whole-slide digital pathology images, specifically identifying whether they are of Cardioembolic (CE) or Large Artery Atherosclerosis (LAA) origin. Through an extensive exploratory data analysis (EDA), we describe the dataset, analyze missing and duplicate values, examine the distribution of image sizes, classify variables, and review the label distribution for the training set, along with plenty of other analysis. This EDA provides a comprehensive understanding of the data and helps identify potential preprocessing steps for optimal model performance.

Following the EDA, we preprocess the images to standardize them for model input. The preprocessing involves resizing, converting images to grayscale, normalizing pixel values, and applying Gaussian blur to reduce noise. These steps ensure that the images are suitable for a Convolutional Neural Network (CNN) by preparing them with a consistent size, format, and reduced noise, enabling more efficient training and improved classification accuracy.

Authors:

- Daniel Valdez
- Emilio Solano
- Adrian Flores
- Andrea Ramírez

(1) Import Libraries 🛂

```
In []: # Data manipulation and visualization
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    import subprocess
    from PIL import Image
    import tifffile as tifi
    import cv2

# Set the maximum allowable pixels to a higher number.
    Image.MAX_IMAGE_PIXELS = None

# Standard libraries
```

```
import warnings
warnings.filterwarnings('ignore')

# ===== Reproducibility Seed ===== =====

# Set a fixed seed for the random number generator for reproducibility
random_state = 42

# Set matplotlib inline

%matplotlib inline

# Set default figure size
plt.rcParams['figure.figsize'] = (6, 4)

# Define custom color palette
palette = sns.color_palette("viridis", 12)

# Set the style of seaborn
sns.set(style="whitegrid")
```

(2) Data Upload 🗎

Out[]:		image_id	center_id	patient_id	image_num	label
	0	006388_0	11	006388	0	CE
	1	008e5c_0	11	008e5c	0	CE
	2	00c058_0	11	00c058	0	LAA
	3	01adc5_0	11	01adc5	0	LAA
	4	026c97_0	4	026c97	0	CE

(3) Exploratory Analysis 🔎

(1) Descripción de los Datos

```
In [ ]: # Print the number of records in the DataFrame
print("The given dataset has", df.shape[0], "registers and", df.shape[1], "c
```

The given dataset has 754 registers and 5 columns.

Observaciones 💡 -->

- El conjunto de datos contiene más de mil imágenes de patología digital de alta resolución de diapositivas completas. Cada diapositiva representa un coágulo de sangre de un paciente que sufrió de un accidente cerebrovascular isquémico agudo.
- En el conjunto train.csv, con el que se trabajará por el momento, se cuenta con 754 registros y 5 columnas, lo que indica que tiene una dimensión relativamente pequeña. Cada uno de los 754 registros representa una anotación única con relación a una de las imágenes dentro del directorio train/.

Fuente: Página oficial de Kaggle

```
In [ ]: # Basic information about the dataset
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 754 entries, 0 to 753
Data columns (total 5 columns):

```
Non-Null Count Dtype
#
    Column
- - -
   -----
               -----
                             ----
0
    image id
              754 non-null
                             object
    center id 754 non-null
1
                             int64
    patient id 754 non-null
                             object
3
    image num
               754 non-null
                             int64
    label
               754 non-null
                             object
```

dtypes: int64(2), object(3)
memory usage: 29.6+ KB

- image_id : Un identificador único para la instancia, con el formato {patient_id} _{image_num}. Corresponde a la imagen {image_id}.tif.
- center id: Identifica el centro médico donde se obtuvo la diapositiva.
- patient id: Identifica al paciente del que se obtuvo la diapositiva.
- image_num : Enumera las imágenes de coágulos obtenidas del mismo paciente.
- label: La etiología del coágulo, que puede ser CE (embolia cardioembólica) o LAA (ataque isquémico). Este campo es el objetivo de clasificación.

Nota importante: Las diapositivas que conforman los conjuntos de entrenamiento y prueba representan coágulos con una etiología (es decir, origen) que se conoce como CE (cardioembólica) o LAA (aterosclerosis de grandes arterias).

Fuente: Página oficial de Kaggle

(2) Clasificación de Variables

Nombre	Descripción	Tipo
image_id	Identificador único de la imagen.	Cualitativa (Nominal)
center_id	Identificador del centro médico donde se tomó la diapositiva.	Cualitativa (Nominal)
patient_id	Identificación del paciente de la diapositiva.	Cualitativa (Nominal)
image_num	Número que indica la secuencia de imágenes de un mismo paciente.	Cuantitativa (Discreta)
label	Clasificación del coágulo: CE (cardioembólica) o LAA (aterosclerosis).	Cualitativa (Nominal)

Observaciones 💡

- En nuestro conjunto de datos, la mayoría de las variables son de tipo cualitativo nominal.
- Por otro lado, solo una variable es de tipo **cuantitativo discreto**, que corresponde al número de imagen.

(3) Exploración y Limpieza Inicial de los Datos

(1) Análisis de Data Faltante

 A partir de este breve análisis de los datos faltantes, podemos observar que no hay columnas con valores nulos. Esto significa que no es

necesario realizar ningún tipo de imputación en el conjunto de datos. Todas las variables están completamente pobladas, lo que garantiza la integridad de los datos para su análisis posterior.

(2) Previsualización de Imágenes

```
In []: # Assuming your DataFrame is named df
base_path = "../input/mayo-clinic-strip-ai/train/"

# Add the full path to the df
df['image_path'] = base_path + df['image_id'] + '.tif'

# Preview the DataFrame to ensure the new column is added correctly
df.head()
```

Out[]:		image_id	center_id	patient_id	image_num	label	image_path
	0	006388_0	11	006388	0	CE	/input/mayo-clinic-strip-ai/ train/006388_0.tif
	1	008e5c_0	11	008e5c	0	CE	/input/mayo-clinic-strip-ai/ train/008e5c_0.tif
	2	00c058_0	11	00c058	0	LAA	/input/mayo-clinic-strip-ai/ train/00c058_0.tif
	3	01adc5_0	11	01adc5	0	LAA	/input/mayo-clinic-strip-ai/ train/01adc5_0.tif
	4	026c97_0	4	026c97	0	CE	/input/mayo-clinic-strip-ai/ train/026c97_0.tif

Observaciones 💡

Una de las principales técnicas de preprocesamiento será incluir el path
o la dirección de cada imagen dentro del DataFrame. Esto permitirá
acceder a las imágenes de manera más sencilla, ya que, como se ha
mencionado anteriormente, todas las imágenes se encuentran
almacenadas en el directorio train.

```
In [ ]: def plot_images(df, num_images=5):
    # Select first n images
    sample_df = df.head(num_images)

# Create subplots
fig, axes = plt.subplots(1, num_images, figsize=(15, 5))

# Flatten axes to make it easier to iterate
axes = axes.flatten()

for i, (img_path, label) in enumerate(zip(sample_df['image_path'], samplimg = Image.open(img_path)
    img.thumbnail((300,300), Image.Resampling.LANCZOS)
```

Observaciones 💡

- Una de las primeras observaciones clave es la gran variabilidad en los tamaños de las imágenes presentes en el conjunto de datos. Estas imágenes muestran diferentes valores de relación de aspecto, lo cual puede presentar desafíos al momento de alimentar estos datos en un modelo predictivo.
- También hemos detectado una variación considerable en las características cromáticas de las imágenes. Por ejemplo, algunas de ellas presentan fondos blancos, mientras que otras tienen fondos grises. Esto puede introducir ruido en el modelo si no se trata adecuadamente, ya que los modelos de visión por computadora son sensibles a las variaciones en las condiciones de iluminación y color de las imágenes.
- Adicionalmente, las imágenes presentan una mezcla de elementos que pueden afectar la precisión del modelo. Algunos coágulos están claramente definidos, mientras que otros están parcialmente oscurecidos o presentan sombras y brillos que pueden confundir al modelo.

Todas extas observaciones reflejan los primeros desafíos que enfrentaremos en el preprocesamiento de imágenes, un paso que se realizará más adelante.

(3) Distribución de Labels

```
In [ ]: def label_distribution(df, name='Training Dataframe'):
    label_counts = df['label'].value_counts().sort_index()
    total_counts = label_counts.sum()

# Calculate percentages
    label_percentages = (label_counts / total_counts) * 100

# Plot counts
    plt.plot(1, 2, 1)
    label_counts.plot(kind='bar', color=[palette[0], palette[6]])
    plt.title(f'{name}: Label Counts')
    plt.xlabel('Label')
    plt.ylabel('Count')
    plt.tight_layout()
    plt.show()
```

In []: label distribution(df)

Observaciones 💡

- Nuestro conjunto de datos presenta un fuerte desbalance, ya que se cuenta con aproximadamente 550 imágenes de coágulos de etiología cardioembólica (CE), lo que representa más del 70.0% del total de muestras.
- En contraste, solo se disponen de 200 imágenes de coágulos de etiología aterosclerótica de grandes arterias (LAA), lo que corresponde a menos del 30.0% del conjunto de datos.
- Este desequilibrio entre las clases puede tener un impacto negativo en

el rendimiento del modelo predictivo, ya que probablemente este se incline a **predecir mayormente la clase CE** debido a la falta de representatividad de la clase LAA. Un modelo sesgado de esta manera podría no capturar adecuadamente las características distintivas de los coágulos LAA, reduciendo su capacidad para hacer predicciones precisas.

 Para mitigar este problema, se tendrá que explorar técnicas como submuestreo de la clase mayoritaria, o el uso de algoritmos tales como data augmentation. Aunque esto forma parte de los siguientes pasos a tomar.

(4) Análisis de Tamaños de Imagen

```
In []: def get_image_size(image_path):
    try:
        with Image.open(image_path) as img:
            return img.size # Returns (width, height)
    except Exception as e:
        print(f"Error loading {image_path}: {e}")
        return None

# Applying the function to the DataFrame
df['image_size'] = df['image_path'].apply(get_image_size)

# Separate width and height if needed
df['width'], df['height'] = zip(*df['image_size'].dropna())
```

Observaciones 💡

Como parte del proceso de preprocesamiento de datos, se extraerán las
dimensiones (ancho y alto) de cada imagen del DataFrame. Estas
dimensiones se almacenarán en dos columnas separadas (width y
height) para facilitar el acceso y análisis de esta información. Este paso
es importante ya que nos permitirá analizar la distribución de los
tamaños de las imágenes, lo cual puede ser útil para determinar de qué
manera se deberá redimensionar estas en los próximos pasos.

```
In []: # Set up the plot size and style
plt.figure(figsize=(16, 5))

# Plot the distribution of the width
plt.subplot(1, 3, 1)
sns.histplot(df['width'], kde=True, color=palette[0])
plt.title('Distribution of Image Widths')
plt.xlabel('Width (pixels)')
plt.ylabel('Frequency')

# Plot the distribution of the height
```

```
plt.subplot(1, 3, 2)
sns.histplot(df['height'], kde=True, color= palette[4])
plt.title('Distribution of Image Heights')
plt.xlabel('Height (pixels)')
plt.ylabel('Frequency')

# Show the plots
plt.tight_layout()
plt.show()
```


In []: sns.scatterplot(data=df, x='width', y='height', hue='label', palette=[palett
 plt.title('Image Dimensions by Label')
 plt.show()


```
In [ ]: # Display descriptive statistics for image dimensions
        print("Training Set: Image Width Statistics")
        print(df['width'].describe())
        print("\nTraining Set: Image Height Statistics")
        print(df['height'].describe())
       Training Set: Image Width Statistics
                  754.000000
       count
       mean
                22988.594164
       std
                15653.642619
                 4417.000000
       min
       25%
                13215.250000
       50%
                18700.000000
       75%
                26376.750000
                99699.000000
       max
       Name: width, dtype: float64
       Training Set: Image Height Statistics
       count
                   754.000000
                 37622.196286
       mean
                 18058.750676
       std
       min
                 4470.000000
       25%
                 25402.500000
       50%
                 34981.500000
       75%
                 48919.750000
                118076.000000
       max
       Name: height, dtype: float64
```

Observaciones 💡

- En estos nuevos gráficos se confirma nuevamente la presencia de múltiples valores tanto en altura como en ancho de las imágenes. La mayoría de las imágenes presentan un ancho concentrado alrededor de los 20,000 píxeles, mientras que la altura se encuentra predominantemente alrededor de los 40,000 píxeles, como lo muestra claramente el histograma.
- Además, al continuar con este análisis, podemos observar en el diagrama de dispersión que existe una relación predominante entre el tamaño de las imágenes y el tipo de etiología del coágulo del paciente.
- Se han identificado datos atípicos, específicamente en relación con las dimensiones de las imágenes. Sin embargo, estos valores no son de gran relevancia, ya que se normalizarán al redimensionar las imágenes para su inclusión en el modelo.

A continuación veremos cuál es la imagen que posee las dimensiones más grandes y sus detalles.

```
In [ ]: # Find the largest image without creating a new column for area
largest_image_index = (df['width'] * df['height']).idxmax()
```

```
largest_image = df.loc[largest_image_index]

# Print the details neatly
print("Largest Image Details:")
print("-" * 30)
for column in df.columns:
    print(f"{column}: {largest_image[column]}")

# Open and display the image using Matplotlib
image_path = largest_image['image_path']
img = Image.open(image_path)
img.thumbnail((400,400), Image.Resampling.LANCZOS)

plt.imshow(img)
plt.axis('off') # Hide axes
plt.title(f"Largest Image: {largest_image['image_id']}")
plt.show()

del img
```

Largest Image Details:

image_id: 6baf51_0
center_id: 11
patient_id: 6baf51
image_num: 0
label: LAA

image path: ../input/mayo-clinic-strip-ai/train/6baf51 0.tif

image size: (48282, 101406)

width: 48282 height: 101406

Largest Image: 6baf51 0

(5) Cross-Tab Analysis

```
In [ ]: # Create a cross-tabulation of 'center_id' and 'label'
```

```
cross_tab = pd.crosstab(df['center_id'], df['label'])
# Display the cross-tabulation table
cross tab.head()
```

Out[]: label CE LAA

center_id 1 44 10 3 2 26 22 3 27 88 26

5 29 9

Plot a stacked bar plot for better visualization cross_tab.plot(kind='bar', stacked=True, color=[palette[0], palette[8]]) # Adding titles and labels plt.title('Cross-Tabulation of CE and LAA by Center ID')

```
plt.xlabel('Center ID')
plt.ylabel('Count of Labels')
plt.legend(title='Label', loc='upper right')
# Show plot
plt.tight layout()
plt.show()
```


Observaciones 💡

- El Centro 11 tiene la mayor cantidad de imágenes, predominantemente etiquetadas como CE (179) en comparación con LAA (7). Este desequilibrio significativo sugiere un posible enfoque o especialización en casos cardioembólicos en este centro.
- El Centro 4 también muestra una fuerte prevalencia de CE con 88 casos frente a 26 casos de LAA.
- Los Centros 3 y 7 demuestran una distribución más equilibrada, con el Centro 3 teniendo 22 CE y 27 LAA, y el Centro 7 reportando 70 CE frente a 29 LAA.
- Otros centros, como el Centro 2 y el Centro 5, presentan un menor número de casos en general, con el Centro 2 mostrando 26 CE y 3 LAA, lo que indica una posible subrepresentación de casos de aterosclerosis de grandes arterias.

Vemos que en general, los datos sugieren que los centros están más especializados en etiologías de accidente cerebrovascular, particularmente en casos **cardioembólicos**.

(6) Tablas de Frecuencia

=====		=======	======	====		
Top 10	9 most	frequent	values	for	column	'image id':
	Value	'				equency
1	ffec5c	1			1	
2	006388				1	
3	008e5c	_			1	
4	00c058				1	
5	01adc5				1	
6	026c97				1	
7	028989				1	
8	020303 029c68				1	
9					1	
	032f10	_				
10	0372b0				1	
=====		======		====		========
		trequent	values	tor		'center_id':
	Value				Fr	equency
1	11				25	7
2	4				11	.4
3	7				99	1
4	1				54	
5	3				49)
6	10				44	
7	5				38	}
8	6				38	}
9	2				29	
10	8				16	
=====	======					
=====		=======	======			========
						'patient id':
	Value	rrequerre	vacues	101		requency
THUCK	vacue					equency
1	016042					
	91b9d3				5	
2	56d177				5	
3	09644e				5	
4	3d10be				5	
5	a4c877				4	
6	f40c69				4	
7	4f6fb1				4	
8	5987c0				4	
9	a26055				3	
10	abc4a3				3	
=====						=======
=====	======	=======	======		======	=======
Top 10) most	frequent	values	for	column	'image num':
	Value	944-0116				equency
1	0	- ·	- -		63	2
	1				89	
2						
3	2				21	•
4	3				8	

```
5
_____
Top 10 most frequent values for column 'label':
Index Value
                         Frequency
------
1
   CE
                         547
                        207
   LAA
_____
_____
Top 10 most frequent values for column 'image path':
Index Value
               Frequency
-----
   ../input/mayo-clinic-strip-ai/ 1
1
2
    ../input/mayo-clinic-strip-ai/ 1
3
    ../input/mayo-clinic-strip-ai/ 1
4
    ../input/mayo-clinic-strip-ai/ 1
5
    ../input/mayo-clinic-strip-ai/ 1
    ../input/mayo-clinic-strip-ai/ 1
6
7
    ../input/mayo-clinic-strip-ai/ 1
8
    ../input/mayo-clinic-strip-ai/ 1
9
    ../input/mayo-clinic-strip-ai/ 1
10
    ../input/mayo-clinic-strip-ai/ 1
_____
Top 10 most frequent values for column 'image size':
                   Frequency
Index Value
-----
    (15496, 12017)
1
                         2
2
   (15410, 29532)
                         2
   (18772, 17529)
3
                         2
4
   (14355, 53736)
                         1
5
   (14368, 16628)
   (23078, 40562)
6
7
   (51843, 36423)
                         1
8
    (17545, 42426)
                         1
    (24121, 52541)
9
                         1
    (25276, 40548)
_____
Top 10 most frequent values for column 'width':
Index Value Frequency
1
    37885
                         5
2
    51843
                         5
3
   10533
4
   12062
                         4
5
                         4
   75771
6
   73777
                         4
7
    55831
                         4
8
    7814
                         4
                         3
9
    18660
```

```
10
      83747
Top 10 most frequent values for column 'height':
Index Value
                                       Frequency
1
      7339
2
                                       3
      29538
3
      12017
                                       2
4
      36924
                                       2
5
      33182
                                       2
                                       2
6
      17529
7
      35972
                                       2
                                       2
8
      35086
9
                                       2
      31366
```

Observaciones 💡

Tal como se espera, el valor más frecuente en la columna center_id
es 11, que aparece 257 veces, lo que indica que es el centro médico
principal involucrado en la mayoría de los casos. Otros centros notables
incluyen el 4, con 114 ocurrencias, y el 7, con 99.

- En la columna patient_id, los IDs más frecuentes (por ejemplo, 91b9d3, 3d10be y 09644e) aparecen cada uno 5 veces, lo que indica que estos pacientes tienen múltiples imágenes tomadas para análisis. Esta repetición sugiere un posible enfoque en pacientes específicos con imágenes recurrentes, posiblemente debido a un seguimiento continuo de condiciones particulares.
- Finalmente, la columna image_num muestra que 0 es el valor más común, con 632 ocurrencias, lo que sugiere que el conjunto de datos consiste principalmente en las primeras imágenes tomadas de varios pacientes. Los valores posteriores, con 1 apareciendo 89 veces y 2 solo 21 veces, indican que hay menos imágenes subsiguientes por paciente. Este patrón podría sugerir que la mayoría de los casos implican evaluaciones iniciales en lugar de imágenes de seguimiento.

(7) Análisis de Pacientes

```
In []: # Count unique patients
unique_patient_count = df['patient_id'].nunique()

# Print the result neatly
print(f"Unique Patients Count: {unique_patient_count}")
```

Unique Patients Count: 632

Observaciones 💡

 Como se ha mencionado anteriormente, solamente algunos pacientes tienen más de una imagen asociada a su persona, por lo que en nuestro conjunto de datos hay imágenes de 630 pacientes únicos.

(8) Análisis de Valores Duplicados

```
In [ ]: # Check duplicate rows in dataset
    df = df.drop_duplicates()
    # Print the number of records in the DataFrame
    print("The given dataset has", df.shape[0], "registers and", df.shape[1], "c
```

The given dataset has 754 registers and 9 columns.

Observaciones 💡

• Vemos que no existen valores duplicados en el conjunto de datos.

(9) Análisis de Datos Atípicos

```
In [ ]: # Calculate quartiles
        # Calculate the first quartile (Q1)
        Q1 = df["width"].quantile(0.25)
        # Calculate the third quartile (Q3)
        Q3 = df["width"].quantile(0.75)
        # Calculate the interquartile range (IQR)
        IQR = Q3 - Q1
        # Create the box and whisker plot with quartiles
        sns.boxplot(x="width", data=df, palette=palette)
        plt.title("Diagrama de Caja y Bigotes para Ancho de Imagen")
        plt.xlabel("Ancho de Imagen")
        # Add quartile information as text annotations
        plt.text(0.95, 0.9, f"Q1: {Q1:.2f}", transform=plt.gca().transAxes, ha="righ")
        plt.text(0.95, 0.8, f"IQR: {IQR:.2f}", transform=plt.gca().transAxes, ha="ri
        plt.text(0.95, 0.85, f"Q3: {Q3:.2f}", transform=plt.gca().transAxes, ha="rig
        # Adding grid with custom style
        plt.grid(True, linestyle='--', linewidth=0.5) # Adding grid with dashed lin
        plt.show()
```


Ancho de Imagen

Observaciones 💡

- Se observa en las estadísticas del conjunto de datos para el ancho de las imágenes que la mediana (50%) es de 18,700 píxeles, lo que indica que la mitad de las imágenes tienen un ancho igual o menor a este valor.
- El primer cuartil (25%) se encuentra en 13,215 píxeles y el tercer cuartil (75%) en 26,376.75 píxeles, lo que sugiere que la mayoría de las imágenes tienen un tamaño moderado, con un rango intercuartílico (IQR) de 13,161.5 píxeles.
- El valor máximo de 99,699 píxeles, así como la desviación estándar de 15,653.64 píxeles indica sugieren que existe una variabilidad notable entre los tamaños de las imágenes y revelan la existencia de imágenes significativamente más anchas en el conjunto

```
In []: # Calculate quartiles
    # Calculate the first quartile (Q1)
    Q1 = df["height"].quantile(0.25)
    # Calculate the third quartile (Q3)
    Q3 = df["height"].quantile(0.75)
    # Calculate the interquartile range (IQR)
    IQR = Q3 - Q1

# Create the box and whisker plot with quartiles
sns.boxplot(x="height", data=df, palette=palette)
plt.title("Diagrama de Caja y Bigotes para Alto de Imagen")
plt.xlabel("Alto de Imagen")
```

```
# Add quartile information as text annotations
plt.text(0.95, 0.9, f"Q1: {Q1:.2f}", transform=plt.gca().transAxes, ha="righ
plt.text(0.95, 0.8, f"IQR: {IQR:.2f}", transform=plt.gca().transAxes, ha="ri
plt.text(0.95, 0.85, f"Q3: {Q3:.2f}", transform=plt.gca().transAxes, ha="rig

# Adding grid with custom style
plt.grid(True, linestyle='--', linewidth=0.5) # Adding grid with dashed lin
plt.show()
```

Diagrama de Caja y Bigotes para Alto de Imagen

Observaciones 💡

- Se observa que la mediana (50%) es de 34,981.5 píxeles, lo que indica que la mitad de las imágenes tiene una altura igual o menor a este valor.
- El primer cuartil (25%) se sitúa en 25,402.5 píxeles y el tercer cuartil (75%) en 48,919.75 píxeles, sugiriendo que la mayoría de las imágenes poseen una altura moderada, con un rango intercuartílico (IQR) de 23,517.25 píxeles.
- La media de 37,622.20 píxeles refleja la altura promedio de las imágenes, mientras que la desviación estándar de 18,058.75 píxeles indica una considerable dispersión en las alturas.

```
In []: # Calculate quartiles
    # Calculate the first quartile (Q1)
Q1 = df["image_num"].quantile(0.25)
    # Calculate the third quartile (Q3)
Q3 = df["image_num"].quantile(0.75)
```

```
# Calculate the interquartile range (IQR)
IQR = Q3 - Q1

# Create the box and whisker plot with quartiles
sns.boxplot(x="image_num", data=df, palette=palette)
plt.title("Diagrama de Caja y Bigotes para Cantidad de Imagenes")
plt.xlabel("Cantidad de Imagenes")

# Add quartile information as text annotations
plt.text(0.95, 0.9, f"Q1: {Q1:.2f}", transform=plt.gca().transAxes, ha="right.text(0.95, 0.8, f"IQR: {IQR:.2f}", transform=plt.gca().transAxes, ha="right.text(0.95, 0.85, f"Q3: {Q3:.2f}", transform=plt.gca().transAxes, ha="right.text
```

Diagrama de Caja y Bigotes para Cantidad de Imagenes


```
In []: # Define the limits to determine outliers
    lower_limit = Q1 - 1.5 * IQR
    upper_limit = Q3 + 1.5 * IQR

# Count the number of outliers
    outliers = df[(df["image_num"] < lower_limit) | (df["image_num"] > upper_liminum_outliers = len(outliers)

# Calculate the percentage of outliers
    percentage_outliers = (num_outliers / len(df)) * 100

print("Outliers Percentage in 'image_num':", round(percentage_outliers, 2))
```

Outliers Percentage in 'image_num': 16.18

```
In [ ]: print("\nTraining Set: 'image num' Statistics")
        print(df['image_num'].describe())
       Training Set: 'image num' Statistics
              754.000000
       count
       mean
                 0.226790
                  0.599046
       std
                 0.000000
       min
       25%
                 0.000000
       50%
                  0.000000
                  0.000000
       75%
                  4.000000
       max
       Name: image num, dtype: float64
In [ ]: # Create a cross-tabulation of 'center id' and 'label'
        cross tab = pd.crosstab(df['image num'], df['label'])
        # Display the cross-tabulation table
        cross tab.head()
Out[]:
             label CE LAA
        image_num
                0 457
                       175
                    66
                         23
                1
                2
                    15
                          6
                3
                     6
                          2
                4
                     3
                          1
        # Plot a stacked bar plot for better visualization
        cross tab.plot(kind='bar', stacked=True, color=[palette[0], palette[8]])
        # Adding titles and labels
        plt.title('Cross-Tabulation of CE and LAA by Image Number')
        plt.xlabel('Image Number')
        plt.ylabel('Count of Labels')
        plt.legend(title='Label', loc='upper right')
        # Show plot
        plt.tight layout()
        plt.show()
```


Observaciones 🔋

- El valor de todos los cuartiles es de 0, lo que indica que el conjunto de datos consiste principalmente en las primeras imágenes tomadas de varios pacientes. Sin embargo, el valor máximo de 4 indica que hay algunos pacientes que presentan hasta cuatro imágenes de coágulos, lo que introduce cierta variabilidad en el conjunto de datos.
- Los puntos atípicos representan alrededor del 16.18% de la totalidad de los datos.

(4) Image Preprocessing 🔯

```
In []: def preprocess_image(image_path, idx):
    print(f"Processing image at index {idx}") # Print the current index
    # Read the image from the file
    img = tifi.imread(image_path)
    #img = cv2.imread(image_path)
    img = cv2.resize(img, (0,0), fx=0.05, fy=0.05)
    # Convert the image to grayscale (if required by your model)
    # If your CNN expects color images, skip this step
    img = cv2.cvtColor(img, cv2.CoLOR_BGR2GRAY)
    # Reason: Convert to grayscale if the model is designed for single-chann
    # Normalize pixel values to the range [0, 1]
    img = img / 255.0
    # Reason: Normalization ensures that pixel values are in a consistent ra
    # Apply Gaussian blur to reduce noise (optional, depending on the noise
    img = cv2.GaussianBlur(img, (5, 5), 0)
```

```
# Reason: Noise reduction can help the CNN by removing small details tha
img = np.expand_dims(img, axis=-1)
# Reason: Consistent image size is required for CNN input.
return img

In []: # Apply the function
df['image'] = df.apply(lambda row: preprocess_image(row['image_path'], row.n
```

Processing	image	at	index	0
Processing	image	at	index	1
Processing	image	at	index	2
Processing	image	at	index	3
Processing	image	at	index	4
Processing	image	at	index	5
Processing	image	at	index	6
Processing	image	at	index	7
Processing	image	at	index	8
Processing	image	at	index	9
Processing	image	at	index	10
Processing	image	at	index	11
Processing	image	at	index	12
Processing	image	at	index	13
Processing	image	at	index	14
Processing	image	at	index	15
Processing	image	at	index	16
Processing	image	at	index	17
Processing	image	at	index	18
Processing	image	at	index	19
Processing	image	at	index	20
Processing	image	at	index	21
Processing	image	at	index	22
Processing	image	at	index	23
Processing	image	at	index	24
Processing	image	at	index	25
Processing	image	at	index	26
Processing	image	at	index	27
Processing	image	at	index	28
Processing	image	at	index	29
Processing	image	at	index	30
Processing	image	at	index	31
Processing	image	at	index	32
Processing	image	at	index	33
Processing	image	at	index	34
Processing	image		index	35
_	_	at at	index	36
Processing Processing	image	at	index	37
	image		index	38
Processing	image	at at	index	39
Processing	image	at	index	40
Processing	image		index	41
Processing	image	at at	index	41
Processing	image	at		
Processing	image	at	index	43 44
Processing	image	at	index	
Processing	image	at	index	45
Processing	image	at	index	46
Processing	image	at	index	47
Processing	image	at at	index	48
Processing	image	at at	index	49
Processing	image	at at	index	50 51
Processing	image	at	index	51
Processing	image	at	index	52
Processing	image	at	index	53
Processing	image	at	index	54
Processing	image	at	index	55

Processing	image	at	index	56
Processing	image	at	index	57
Processing	image	at	index	58
Processing	image	at	index	59
Processing	image	at	index	60
Processing	image	at	index	61
Processing	image	at	index	62
Processing	image	at	index	63
Processing	image	at	index	64
Processing	image	at	index	65
Processing	image	at	index	66
Processing	image	at	index	67
Processing	image	at	index	68
Processing	image	at	index	69
Processing	image	at	index	70
Processing	image	at	index	71
Processing	image	at	index	72
Processing	image	at	index	73
Processing	image	at	index	74
Processing	image	at	index	75
Processing	image	at	index	76
Processing	image	at	index	77
Processing	image	at	index	78
Processing	image	at	index	79
Processing	image	at	index	80
Processing	image	at	index	81
Processing	image	at	index	82
Processing	image	at	index	83
Processing	image	at	index	84
Processing	image	at	index	85
Processing	image	at	index	86
Processing	image	at	index	87
Processing	image	at	index	88
Processing	image	at	index	89
Processing	_		index	90
_	image	at at		91
Processing	image	at at	index index	92
Processing	image	at at	index	93
Processing	image	at	index	94
Processing Processing	image	at	index	95
	image		index	96
Processing	image	at	index	96
Processing	image	at	index	
Processing	image	at		98
Processing	image	at	index	99
Processing	image	at	index	100
Processing	image	at	index	101
Processing	image	at	index	102
Processing	image	at	index	103
Processing	image	at	index	104
Processing	image	at	index	105
Processing	image	at	index	106
Processing	image	at	index	107
Processing	image	at	index	108
Processing	image	at	index	109
Processing	image	at	index	110
Processing	image	at	index	111

Processing	image	at	index	112
Processing	image	at	index	113
Processing	image	at	index	114
Processing	image	at	index	115
Processing	image	at	index	116
Processing	image	at	index	117
Processing	image	at	index	118
Processing	image	at	index	119
Processing	image	at	index	120
Processing	image	at	index	121
Processing	image	at	index	122
Processing	image	at	index	123
Processing	image	at	index	124
Processing	image	at	index	125
Processing	image	at	index	126
Processing	image	at	index	127
Processing	image	at	index	128
Processing	image	at	index	129
Processing	image	at	index	130
Processing	image	at	index	131
Processing	image	at	index	132
Processing	image	at	index	133
Processing	image	at	index	134
Processing	image	at	index	135
Processing	image	at	index	136
_	_	at	index	137
Processing	image		index	138
Processing	image	at		
Processing	image	at	index	139
Processing	image	at	index	140
Processing	image	at	index	141
Processing	image	at	index	142
Processing	image	at	index	143
Processing	image	at	index	144
Processing	image	at	index	145
Processing	image	at	index	146
Processing	image	at	index	147
Processing	image	at	index	148
Processing	image	at	index	149
Processing	image	at	index	150
Processing	image	at	index	151
Processing	image	at	index	152
Processing	image	at	index	153
Processing	image	at	index	154
Processing	image	at	index	155
Processing	image	at	index	156
Processing	image	at	index	157
Processing	image	at	index	158
Processing	image	at	index	159
Processing	image	at	index	160
Processing	image	at	index	161
Processing	image	at	index	162
Processing	image	at	index	163
Processing	image	at	index	164
Processing	image	at	index	165
Processing	image	at	index	166
Processing	image	at	index	167

Processing	image	at	index	168
Processing	image	at	index	169
Processing	image	at	index	170
Processing	image	at	index	171
Processing	image	at	index	172
Processing	image	at	index	173
Processing	image	at	index	174
Processing	image	at	index	175
Processing	image	at	index	176
Processing	image	at	index	177
Processing	image	at	index	178
Processing	image	at	index	179
Processing	image	at	index	180
Processing	image	at	index	181
Processing	image	at	index	182
Processing	image	at	index	183
Processing	image	at	index	184
Processing	image	at	index	185
Processing	image	at	index	186
Processing	image	at	index	187
Processing	image	at	index	188
Processing	image	at	index	189
Processing	image	at	index	190
Processing	image	at	index	191
Processing	image	at	index	192
Processing	image	at	index	193
Processing	image	at	index	194
Processing	image	at	index	195
Processing	image	at	index	196
Processing	image	at	index	197
Processing	image	at	index	198
Processing	image	at	index	199
Processing	image	at	index	200
Processing	image	at	index	201
Processing	image	at	index	202
Processing	image	at	index	203
Processing	image	at	index	204
Processing	image	at	index	205
Processing	image	at	index	206
Processing	image	at	index	207
Processing	image	at	index	208
Processing	image	at	index	209
Processing	image	at	index	210
Processing	image	at	index	211
Processing	image	at	index	212
Processing	image	at	index	213
Processing	image	at	index	214
Processing	image	at	index	215
Processing	image	at	index	216
Processing	image	at	index	217
Processing	image	at	index	218
Processing	image	at	index	219
Processing	image	at	index	220
Processing	image	at	index	221
Processing	image	at	index	222
Processing	image	at	index	223

Processing	image	at	index	224
Processing	image	at	index	225
Processing	image	at	index	226
Processing	image	at	index	227
Processing	image	at	index	228
Processing	image	at	index	229
Processing	image	at	index	230
Processing	image	at	index	231
Processing	image	at	index	232
Processing	image	at	index	233
Processing	image	at	index	234
Processing	image	at	index	235
Processing	image	at	index	236
Processing	image	at	index	237
Processing	image	at	index	238
Processing	image	at	index	239
Processing	image	at	index	240
Processing	image	at	index	241
Processing	image	at	index	242
Processing	image	at	index	243
Processing	image	at	index	244
Processing	image	at	index	245
Processing	image	at	index	246
Processing	image	at	index	247
Processing	image	at	index	248
Processing	image	at	index	249
Processing	image	at	index	250
Processing	image	at	index	251
Processing	image	at	index	252
Processing	image	at	index	253
Processing	image	at	index	254
Processing	image	at	index	255
Processing	_	at	index	256
-	image	at	index	257
Processing	image		index	258
Processing	image	at		
Processing	image	at	index index	259
Processing	image	at		260
Processing	image	at	index	261
Processing	image	at	index	262
Processing	image	at	index	263
Processing	image	at	index	264
Processing	image	at	index	265
Processing	image	at	index	266
Processing	image	at	index	267
Processing	image	at	index	268
Processing	image	at	index	269
Processing	image	at	index	270
Processing	image	at	index	271
Processing	image	at	index	272
Processing	image	at	index	273
Processing	image	at	index	274
Processing	image	at	index	275
Processing	image	at	index	276
Processing	image	at	index	277
Processing	image	at	index	278
Processing	image	at	index	279

Processing	image	at	index	280
Processing	image	at	index	281
Processing	image	at	index	282
Processing	image	at	index	283
Processing	image	at	index	284
Processing	image	at	index	285
Processing	image	at	index	286
Processing	image	at	index	287
Processing	image	at	index	288
Processing	image	at	index	289
Processing	image	at	index	290
Processing	image	at	index	291
Processing	image	at	index	292
Processing	image	at	index	293
Processing	image	at	index	294
Processing	image	at	index	295
Processing	image	at	index	296
Processing	image	at	index	297
Processing	image	at	index	298
Processing	image	at	index	299
Processing	image	at	index	300
Processing	image	at	index	301
Processing	image	at	index	302
Processing	image	at	index	303
Processing	image	at	index	304
Processing	image	at	index	305
Processing	image	at	index	306
Processing	image	at	index	307
Processing	image	at	index	308
Processing	image	at	index	309
Processing	image	at	index	310
Processing	image	at	index	311
Processing	image	at	index	312
Processing	image	at	index	313
Processing	image	at	index	314
Processing	image	at	index	315
Processing	image	at	index	316
Processing	image	at	index	317
Processing	image	at	index	318
Processing	image	at	index	319
Processing	image	at	index	320
Processing	image	at	index	321
Processing	image	at	index	322
Processing	image	at	index	323
Processing	image	at	index	324
Processing	image	at	index	325
Processing	image	at	index	326
Processing	image	at	index	327
Processing	image	at	index	328
Processing	image	at	index	329
Processing	image	at	index	330
Processing	image	at	index	331
Processing	image	at	index	332
Processing	image	at	index	333
Processing	image	at	index	334
Processing	image	at	index	335
J	-			

Processing	image	at	index	336
Processing	image	at	index	337
Processing	image	at	index	338
Processing	image	at	index	339
Processing	image	at	index	340
Processing	image	at	index	341
Processing	image	at	index	342
Processing	image	at	index	343
Processing	image	at	index	344
Processing	image	at	index	345
Processing	image	at	index	346
Processing	image	at	index	347
Processing	image	at	index	348
Processing	image	at	index	349
Processing	image	at	index	350
Processing	image	at	index	351
Processing	image	at	index	352
Processing	image	at	index	353
Processing	image	at	index	354
Processing	image	at	index	355
Processing	image	at	index	356
Processing	image	at	index	357
Processing	image	at	index	358
_	_	at	index	359
Processing	image	at	index	360
Processing	image	at	index	361
Processing	image		index	362
Processing	image	at		
Processing	image	at	index	363
Processing	image	at	index	364
Processing	image	at	index	365
Processing	image	at	index	366
Processing	image	at	index	367
Processing	image	at	index	368
Processing	image	at	index	369
Processing	image	at	index	370
Processing	image	at	index	371
Processing	image	at	index	372
Processing	image	at	index	373
Processing	image	at	index	374
Processing	image	at	index	375
Processing	image	at	index	376
Processing	image	at	index	377
Processing	image	at	index	378
Processing	image	at	index	379
Processing	image	at	index	380
Processing	image	at	index	381
Processing	image	at	index	382
Processing	image	at	index	383
Processing	image	at	index	384
Processing	image	at	index	385
Processing	image	at	index	386
Processing	image	at	index	387
Processing	image	at	index	388
Processing	image	at	index	389
Processing	image	at	index	390
Processing	image	at	index	391

Processing	image	at	index	392
Processing	image	at	index	393
Processing	image	at	index	394
Processing	image	at	index	395
Processing	image	at	index	396
Processing	image	at	index	397
Processing	image	at	index	398
Processing	image	at	index	399
Processing	image	at	index	400
Processing	image	at	index	401
Processing	image	at	index	402
Processing	image	at	index	403
Processing	image	at	index	404
Processing	image	at	index	405
Processing	image	at	index	406
Processing	image	at	index	407
Processing	image	at	index	408
Processing	image	at	index	409
Processing	image	at	index	410
Processing	image	at	index	411
Processing	image	at	index	412
Processing	image	at	index	413
Processing	image	at	index	414
Processing	image	at	index	415
Processing	image	at	index	416
Processing	image	at	index	417
Processing	image	at	index	418
Processing	image	at	index	419
Processing	image	at	index	420
Processing	image	at	index	421
Processing	image	at	index	422
Processing	image	at	index	423
Processing	image	at	index	424
Processing	image	at	index	425
Processing	image	at	index	426
Processing	image	at	index	427
Processing	image	at	index	428
Processing	image	at	index	429
Processing	image	at	index	430
Processing	image	at	index	431
Processing	image	at	index	432
Processing	image	at	index	433
Processing	image	at	index	434
Processing	image	at	index	435
Processing	image	at	index	436
Processing	image	at	index	437
Processing	_	at	index	438
Processing	image	at	index	439
	image		index	440
Processing	image	at at	index	441
Processing	image	at at	index	441
Processing	image	at at	index	
Processing	image	at at		443
Processing	image	at at	index	444
Processing	image	at	index	445
Processing	image	at at	index	446 447
Processing	image	at	index	44/

Processing	image	at	index	448
Processing	image	at	index	449
Processing	image	at	index	450
Processing	image	at	index	451
Processing	image	at	index	452
Processing	image	at	index	453
Processing	image	at	index	454
Processing	image	at	index	455
Processing	image	at	index	456
Processing	image	at	index	457
Processing	image	at	index	458
Processing	image	at	index	459
Processing	image	at	index	460
Processing	image	at	index	461
Processing	image	at	index	462
Processing	image	at	index	463
Processing	image	at	index	464
Processing	image	at	index	465
Processing	image	at	index	466
Processing	•	at	index	467
	image		index	468
Processing	image	at at	index	469
Processing	image	at	index	470
Processing	image	at		470
Processing	image	at	index	
Processing	image	at	index	472
Processing	image	at	index	473
Processing	image	at	index	474
Processing	image	at	index	475
Processing	image	at	index	476
Processing	image	at	index	477
Processing	image	at	index	478
Processing	image	at	index	479
Processing	image	at	index	480
Processing	image	at	index	481
Processing	image	at	index	482
Processing	image	at	index	483
Processing	image	at	index	484
Processing	image	at	index	485
Processing	image	at	index	486
Processing	image	at	index	487
Processing	image	at	index	488
Processing	image	at	index	489
Processing	image	at	index	490
Processing	image	at	index	491
Processing	image	at	index	492
Processing	image	at	index	493
Processing	image	at	index	494
Processing	image	at	index	495
Processing	image	at	index	496
Processing	image	at	index	497
Processing	image	at	index	498
Processing	image	at	index	499
Processing	image	at	index	500
Processing	image	at	index	501
Processing	image	at	index	502
Processing	image	at	index	503

Processing	image	at	index	504
Processing	image	at	index	505
Processing	image	at	index	506
Processing	image	at	index	507
Processing	image	at	index	508
Processing	image	at	index	509
Processing	image	at	index	510
Processing	image	at	index	511
Processing	image	at	index	512
Processing	image	at	index	513
Processing	image	at	index	514
Processing	image	at	index	515
Processing	image	at	index	516
Processing	image	at	index	517
Processing	image	at	index	518
Processing	image	at	index	519
Processing	image	at	index	520
Processing	image	at	index	521
Processing	image	at	index	522
Processing	image	at	index	523
Processing	image	at	index	524
Processing	image	at	index	525
Processing	image	at	index	526
Processing	image	at	index	527
Processing	image	at	index	528
Processing	image	at	index	529
Processing	image	at	index	530
Processing	image	at	index	531
Processing	image	at	index	532
Processing	image	at	index	533
Processing	image	at	index	534
Processing	image	at	index	535
Processing	image	at	index	536
Processing	image	at	index	537
Processing	image	at	index	538
Processing	image	at	index	539
Processing	image	at	index	540
Processing	image	at	index	541
Processing	image	at	index	542
Processing	image	at	index	543
Processing	image	at	index	544
Processing	image	at	index	545
Processing	image	at	index	546
Processing	image	at	index	547
Processing	image	at	index	548
Processing	image	at	index	549
Processing	image	at	index	550
Processing	image	at	index	551
Processing	image	at	index	552
Processing	image	at	index	553
Processing	image	at	index	554
Processing	image	at	index	555
Processing	image	at	index	556
Processing	image	at	index	557
Processing	image	at	index	558
Processing	image	at	index	559
	- 5 -	-		

Processing	image	at	index	560
Processing	image	at	index	561
Processing	image	at	index	562
Processing	image	at	index	563
Processing	image	at	index	564
Processing	image	at	index	565
Processing	image	at	index	566
Processing	image	at	index	567
Processing	image	at	index	568
Processing	image	at	index	569
Processing	image	at	index	570
Processing	image	at	index	571
Processing	image	at	index	572
Processing	image	at	index	573
Processing	image	at	index	574
Processing	image	at	index	575
Processing	image	at	index	576
Processing	image	at	index	577
Processing	image	at	index	578
Processing	image	at	index	579
Processing	image	at	index	580
Processing	image	at	index	581
Processing	image	at	index	582
Processing	image	at	index	583
Processing	image	at	index	584
Processing	image	at	index	585
Processing	image	at	index	586
Processing	image	at	index	587
_	_	at	index	588
Processing	image		index	589
Processing	image	at		590
Processing	image	at	index	
Processing	image	at	index index	591
Processing	image	at		592
Processing	image	at	index	593
Processing	image	at	index	594
Processing	image	at	index	595
Processing	image	at	index	596
Processing	image	at	index	597
Processing	image	at	index	598
Processing	image	at	index	599
Processing	image	at	index	600
Processing	image	at	index	601
Processing	image	at	index	602
Processing	image	at	index	603
Processing	image	at	index	604
Processing	image	at	index	605
Processing	image	at	index	606
Processing	image	at	index	607
Processing	image	at	index	608
Processing	image	at	index	609
Processing	image	at	index	610
Processing	image	at	index	611
Processing	image	at	index	612
Processing	image	at	index	613
Processing	image	at	index	614
Processing	image	at	index	615

Processing	image	at	index	616
Processing	image	at	index	617
Processing	image	at	index	618
Processing	image	at	index	619
Processing	image	at	index	620
Processing	image	at	index	621
Processing	image	at	index	622
Processing	image	at	index	623
Processing	image	at	index	624
Processing	image	at	index	625
Processing	image	at	index	626
Processing	image	at	index	627
Processing	image	at	index	628
Processing	image	at	index	629
Processing	image	at	index	630
Processing	image	at	index	631
Processing	image	at	index	632
Processing	image	at	index	633
Processing	image	at	index	634
Processing	image	at	index	635
Processing	image	at	index	636
Processing	image	at	index	637
Processing	image	at	index	638
Processing	image	at	index	639
Processing	image	at	index	640
Processing	image	at	index	641
Processing	image	at	index	642
Processing	image	at	index	643
Processing	image	at	index	644
Processing	image	at	index	645
Processing	image	at	index	646
Processing	image	at	index	647
Processing	image	at	index	648
Processing	image	at	index	649
Processing	image	at	index	650
Processing	image	at	index	651
Processing	image	at	index	652
Processing	image	at	index	653
Processing	image	at	index	654
Processing	image	at	index	655
Processing	image	at	index	656
Processing	image	at	index	657
Processing	image	at	index	658
Processing	image	at	index	659
Processing	image	at	index	660
Processing	image	at	index	661
Processing	image	at	index	662
Processing	image	at	index	663
Processing	image	at	index	664
Processing	image	at	index	665
Processing	image	at	index	666
Processing	image	at	index	667
Processing	image	at	index	668
Processing	image	at	index	669
Processing	image	at	index	670
Processing	image	at	index	671
occasing	±mage	uС	THUCK	0/1

```
Processing image at index 672
Processing image at index 673
Processing image at index 674
Processing image at index 675
Processing image at index 676
Processing image at index 677
Processing image at index 678
Processing image at index 679
Processing image at index 680
Processing image at index 681
Processing image at index 682
Processing image at index 683
Processing image at index 684
Processing image at index 685
Processing image at index 686
Processing image at index 687
Processing image at index 688
Processing image at index 689
Processing image at index 690
Processing image at index 691
Processing image at index 692
Processing image at index 693
Processing image at index 694
Processing image at index 695
Processing image at index 696
Processing image at index 697
Processing image at index 698
Processing image at index 699
Processing image at index 700
Processing image at index 701
Processing image at index 702
Processing image at index 703
Processing image at index 704
Processing image at index 705
Processing image at index 706
Processing image at index 707
Processing image at index 708
Processing image at index 709
Processing image at index 710
Processing image at index 711
Processing image at index 712
Processing image at index 713
Processing image at index 714
Processing image at index 715
Processing image at index 716
Processing image at index 717
Processing image at index 718
Processing image at index 719
Processing image at index 720
Processing image at index 721
```

Observaciones 💡 -->

1. Conversión a Escala de Grises

• **Código**: img = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)

- Descripción: Convierte la imagen de color (BGR) a una imagen en escala de grises.
- **Propósito**: Reducir la complejidad del modelo ya que se espera una entrada de un solo canal (grayscale). Permitirá que el entrenamiento sea más rápido.

2. Normalización de Valores de Pixel

- **Código**: img = img / 255.0
- **Descripción**: Normaliza los valores de los píxeles a un rango de [0, 1].
- Propósito: Normalizar los valores de los píxeles asegura que estén en un rango consistente, lo que ayuda a mantener una iluminación y contraste uniformes en todas las imágenes. Esto facilita la comparación de patrones y características, haciendo que las imágenes sean más adecuadas para el análisis. Además, permite que los modelos de aprendizaje automático aprendan patrones de manera más efectiva, sin que las diferencias en las condiciones de iluminación afecten el rendimiento.

3. Aplicación de Desenfoque Gaussiano

- Código: img = cv2.GaussianBlur(img, (5, 5), 0)
- **Descripción**: Aplica un filtro de desenfoque gaussiano para reducir el ruido en la imagen.
- Propósito: El desenfoque gaussiano reduce el detalle y el ruido en la imagen aplicando una función gaussiana a cada píxel y sus píxeles circundantes. Esto suaviza los bordes y elimina pequeños detalles que pueden no ser útiles para el aprendizaje, ayudando a la red neuronal a centrarse en las características más relevantes. La reducción de ruido mejora la capacidad de generalización del modelo y puede facilitar tareas como la detección de bordes o la segmentación al reducir las variaciones no deseadas en la imagen.

4. Expansión de Dimensiones

- Código: img = np.expand dims(img, axis=-1)
- **Descripción**: Expande las dimensiones de la imagen para agregar un canal adicional.
- **Propósito**: Asegura que la imagen tenga un formato consistente para la entrada de la red neuronal, especialmente si la red espera una entrada con un número específico de canales (por ejemplo, [alto, ancho, canales]).

5. Redimensionamiento de Imagen

- **Código**: img = cv2.resize(img, (0,0), fx=0.05, fy=0.05)
- **Descripción**: Redimensiona la imagen aplicando un factor de escala del 5% en los ejes horizontal (fx) y vertical (fy).
- Propósito: Reduce el tamaño de la imagen para disminuir la cantidad de información que se procesa en la red neuronal convolucional (CNN), lo que puede ser útil para ahorrar recursos computacionales o ajustar la entrada a las dimensiones esperadas por el modelo.

Referencia

• https://medium.com/@maahip1304/the-complete-guide-to-image-preprocessing-techniques-in-python-dca30804550c