

Intelligent Systems

Susana M. Vieira

Universidade de Lisboa, Instituto Superior Técnico IS4, Center of Intelligent Systems, IDMEC, LAETA, Portugal {susana.vieira}@tecnico.ulisboa.pt

FUZZY SETS

SI2 – Introduction to Fuzzy Sets

Reading: Part I Fuzzy Set Theory: Chapter 2 Fuzzy Sets

J.-S. Jang, C.-T. Sun and E. Mizutani. *Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence.* Prentice Hall, New Jersey, 1997.

Precision vs. Relevancy

Introduction

- How to simplify very complex systems?
 - Allow some degree of imprecision in their description!
- How to deal mathematically with uncertainty?
 - Using probabilistic theory (stochastic).
 - Using the theory of fuzzy sets (non-stochastic).
- Proposed in 1965 by Lotfi Zadeh (Fuzzy Sets, Information Control, 8, pp. 338-353).
- Imprecision or vagueness in natural language does not imply a loss of accuracy or meaningfulness!

Examples

- Give travel directions in terms of city blocks OR in meters?
- The day is sunny OR the sky is covered by 5% of clouds?
 - If the sky is covered by 10% of clouds is still *sunny*?
 - And 25%?
 - And 50%?
 - Where to draw the line from sunny to not sunny?
 - Member and not member or membership degree?

Probability vs. Possibility

- Event *u*: Hans ate *X* eggs for breakfast.
- Probability distribution: $P_X(u)$
- Possibility distribution: $\pi_X(u)$

и	1	2	3	4	5	6	7	8
$P_X(u)$	0.1	0.8	0.1	0	0	0	0	0
$\pi_X(u)$	1	1	1					

You're lost in the outback; dying of thirst

"Honestly, the water hole is back that way... Why would I lie?"

You come upon two bottles containing liquid

• Which one will you choose?

How will you process the information?

0.9 probability of belonging to the **set of non-poisonous liquid**

OR

1 out of 10

0.9 degree of membership to the set of non-poisonous liquid

Might taste funky, but shouldn't kill you

Applications of fuzzy sets

- Fuzzy sets belong to "conventional" mathematics (measures, relations, topology, etc.)
- Fuzzy logic and AI (approximate reasoning, expert systems, etc.)
- Fuzzy systems
 - Fuzzy modeling
 - Fuzzy control, etc.
- Fuzzy decision making
 - Multi-criteria optimization
 - Optimization techniques

• ...

Classical set theory

- Set: collection of objects with a common property.
- Examples:
 - Set of basic colors:

$$A = \{\text{red, green, blue}\}$$

• Set of positive integers:

$$A = \{ x \in \mathbf{Z} | x \ge 0 \}$$

• A line in **R**³:

$$A = \{(x,y,z) \mid ax + by + cz + d = 0\}$$

Representation of sets

- Enumeration of elements: $A = \{x_1, x_2, ..., x_n\}$
- Definition by property $P: A = \{x \in X \mid P(x)\}$
- Characteristic function $\mu_{A(x)}: X \to \{0,1\}$

$$\mu_A(x) = \begin{cases} 1, & \text{if } x \text{ is member of } A \\ 0, & \text{if } x \text{ is not member of } A \end{cases}$$

Example:

Set of odd numbers: $\mu_A(x) = x \mod 2$

Set operations

- Intersection: $C = A \cap B$
 - C contains elements that belong to A and B
 - Characteristic function: $\mu_C = \min(\mu_A, \mu_B) = \mu_A \cdot \mu_B$
- Union: $C = A \cup B$
 - C contains elements that belong to A or to B
 - Characteristic function: $\mu_C = \max(\mu_A, \mu_B)$
- Complement: $C = \bar{A}$
 - ullet C contains elements that do not belong to A
 - Characteristic function: $\mu_C = 1 \mu_A$

Fuzzy sets

- Represent uncertain (vague, ambiguous, etc.) knowledge in the form of propositions, rules, etc.
- Propositions:
 - expensive cars,
 - cloudy sky,...
- Rules (decisions):
 - Want to buy a big and new house for a low price.
 - If the temperature is *low*, then *increase* the heating.
 - ...

Classical set

• Example: set of old people $A = \{age \mid age \ge 70\}$

Logic propositions

- "Nick is old" ... true or false
- Nick's age:
 - $age_{Nick} = 70$, $\mu_A(70) = 1$ (true)
 - age_{Nick} = 69.9, μ_A (69.9) = 0 (false)

Fuzzy set

• Graded membership, element belongs to a set to a certain

degree.

Fuzzy proposition

- "Nick is old"... degree of truth
 - $age_{Nick} = 70$, $\mu_A(70) = 0.5$
 - $age_{Nick} = 69.9$, $\mu_A(69.9) = 0.49$
 - $age_{Nick} = 90$, $\mu_A(90) = 1$

Context dependent

Typical linguistic values

Support of a fuzzy set

Core (nucleous, kernel)

α -cut of a fuzzy set

- α -cut is the crisp set: $A_{\alpha} = \{ x \in X \mid \mu_{A}(x) \geq \alpha \}$
- Strong α -cut: $A_{\alpha} = \{ x \in X \mid \mu_A(x) > \alpha \}$

Resolution principle

• Every fuzzy set A can be uniquely represented as a collection of α -level sets according to

$$\mu_A(x) = \sup_{\alpha \in [0,1]} \{ \alpha \in [0,1] \mid x \in A_\alpha \}$$

• Resolution principle implies that fuzzy set theory is a generalization of classical set theory, and that its results can be represented in terms of classical set theory.

Resolution principle

Other properties

- **Height** of a fuzzy set: hgt $(A) = \sup \mu_A(x), x \in X$
- Fuzzy set is **normal(ized)** when hgt(A) = 1.
- A fuzzy set A is **convex** iff $\forall x,y \in X$ and $\alpha \in [0,1]$:

Other properties (2)

- Fuzzy singleton: single point $x \in X$ where $\mu_A(x) = 1$.
- Fuzzy number: fuzzy set in R that is normal and convex.
- Two fuzzy sets are **equal** (A = B) iff:

$$\forall x \in X, \ \mu_A(x) = \mu_B(x)$$

• A is a **subset** of B iff:

$$\forall x \in X, \ \mu_A(x) \leq \mu_B(x)$$

Other properties (3)

• Bandwith (or width): of *normal* and *convex* fuzzy sets is defined as the distance between two unique crossover points:

width(A) =
$$|x_2 - x_1|$$
, where $\mu_A(x_1) = \mu_A(x_2) = 0.5$.

• **Symmetry**: a fuzzy set A is symmetric if its μ_A is symmetric around a certain point x = c:

$$\mu_A(\mathbf{c} + x) = \mu_A(x + c), \forall x \in X,$$

Open left, open right, closed:

$$\lim x \to -\infty \ \mu_A(x) = 1 \text{ and } \lim x \to +\infty \ \mu_A(x) = 0$$

$$\lim x \to -\infty \ \mu_A(x) = 0 \text{ and } \lim x \to +\infty \ \mu_A(x) = 1$$

$$\lim x \to -\infty \ \mu_A(x) = \lim x \to +\infty \ \mu_A(x) = 0$$

Non-convex fuzzy sets

• Example: car insurance risk

Representation of fuzzy sets

Discrete Universe of Discourse:

Point-wise as a list of membership/element pairs:

•
$$A = \mu_A(x_1)/x_1 + ... + \mu_A(x_n)/x_n = \sum_i \mu_A(x_i)/x_i$$

•
$$A = \{\mu_A(x_1)/x_1, \dots, \mu_A(x_n)/x_n\} = \{\mu_A(x_i)/x_i \mid x_i \in X\}$$

• As a list of α -level/ α -cut pairs:

•
$$A = \{\alpha_1/A_{\alpha_1}, ..., \alpha_n/A_{\alpha_n}\} = \{\alpha_i/A_{\alpha_i} | \alpha_i \in [0,1]\}$$

Representation of fuzzy sets

Continuous Universe of Discourse:

$$\bullet \ A = \int_X \mu_A(x)/x$$

• Analytical formula:
$$\mu_A(x) = \frac{1}{1+x^2}, x \in \mathbb{R}$$

- Various possible notations:
 - $\mu_A(x)$, A(x), A, a, etc.

Examples

Discrete universe

- Fuzzy set A = "sensible number of children".
 - number of children: $X = \{0, 1, 2, 3, 4, 5, 6\}$
 - A = 0.1/0 + 0.3/1 + 0.7/2 + 1/3 + 0.6/4 + 0.2/5 + 0.1/6
- Fuzzy set C = "desirable city to live in"
 - $X = \{SF, Boston, LA\}$ (discrete and non-ordered)
 - $C = \{(SF, 0.9), (Boston, 0.8), (LA, 0.6)\}$

Examples

Continuous universe

- Fuzzy set B = "about 50 years old"
 - $X = R^+$ (set of positive real numbers)

$$\bullet B = \{(x, \mu_B(x)) \mid x \in X\}$$

$$\mu_B(x) = \frac{1}{1 + \left(\frac{x - 50}{10}\right)^4}$$

Complement of a fuzzy set

$$c: [0,1] \to [0,1]; \quad \mu_{A}(x) \to c(\mu_{A}(x))$$

- Fundamental axioms
- Boundary conditions c behaves as the ordinary complement

$$c(0) = 1;$$
 $c(1) = 0$

2. Monotonic non-increasing

$$\forall a,b \in [0,1]$$
, if $a < b$, then $c(a) \ge c(b)$

Complement of a fuzzy set

Other axioms:

- c is a **continuous** function.
- c is *involutive*, which means that

$$c(c(a)) = a, \forall a \in [0,1]$$

Complement of a fuzzy set

Equilibrium point

$$c(a) = a = e_c, \ \forall a \in [0,1]$$

- Each complement has at most one equilibrium.
- If c is a continuous fuzzy complement, it has one equilibrium point.

Examples of fuzzy complements

Standard complement:

Satisfying only fundamental axioms:

$$c(a) = \begin{cases} 1, & \text{if } a \le t \\ 0, & \text{if } a > t \end{cases}$$

Examples of fuzzy complements

Cosine complement:

$$c(a) = \frac{1}{2} (1 + \cos \pi a)$$

Satisfying fundamental axioms and continuity:

Examples of fuzzy complements

Sugeno complement:

$$c_{\lambda}(a) = \frac{1-a}{1+\lambda a}, \ \lambda \in]-1,\infty]$$

Examples of fuzzy complement

Yager complement:

$$c_w(a) = \left(1 - a^w\right)^{1/w}, \quad w \in]0, \infty]$$

Representation of complement

$$\bullet \ \mu_{\bar{A}}(x) = 1 - \mu_{A}(x)$$

Representation of complement

Standard complement

Sugeno complement

0.5 0.5

Yager complement

 $-\mu_A(x)$

Intersection of fuzzy sets

i:
$$[0,1] \times [0,1] \to [0,1];$$

 $\mu_{A \cap B}(x) \to i(\mu_A(x), \mu_B(x))$

- Fundamental axioms: triangular norm or t-norm
- 1. Boundary conditions i behaves as the classical intersection

$$i(1,1) = 1;$$

 $i(0,1) = i(1,0) = i(0,0) = 0$

2. Commutativity

$$i(a,b) = i(b,a)$$

Intersection of fuzzy sets

3. Monotonicity

If
$$a \le a$$
 and $b \le b$, then $i(a,b) \le i(a',b')$

4. Associativity

$$i(i(a,b),c) = i(a,i(b,c))$$

- Other axioms:
 - *i* is a *continuous* function.
 - i(a,a) = a (idempotent).

Examples of fuzzy conjunctions

Zadeh

$$\mu_{A \cap B}(x) = \min(\mu_A(x), \, \mu_B(x))$$

Probabilistic (or algebraic product)

$$\mu_{A \cap B}(x) = \mu_A(x) \cdot \mu_B(x)$$

Łukaziewicz

$$\mu_{A \cap B}(x) = \max(0, \mu_A(x) + \mu_B(x) - 1)$$

Intersection of fuzzy sets

Intersection of fuzzy sets

Yager *t*-norm

$$i_w(a,b) = 1 - \min \left[1, \left((1-a)^w + (1-b)^w \right)^{1/w} \right], \ w \in]0,\infty]$$

Example of weak and strong intersections:

Parametric t-norm

Union of fuzzy sets

$$u: [0,1] \times [0,1] \to [0,1];$$

 $\mu_{A \cup B}(x) \to u(\mu_A(x), \mu_B(x))$

- Fundamental axioms: triangular co-norm or s-norm
- 1. Boundary conditions u behaves as the classical union

$$u(0,0) = 0;$$

 $u(0,1) = u(1,0) = u(1,1) = 1$

2. Commutativity

$$u(a,b) = u(b,a)$$

Union of fuzzy sets

3. Monotonicity

If
$$a \le a$$
 and $b \le b$, then $u(a,b) \le u(a',b')$

4. Associativity

$$u(u(a,b),c) = u(a,u(b,c))$$

Other axioms:

- *u* is a *continuous* function.
- u(a,a) = a (idempotent).

Examples of fuzzy disjunctions

Zadeh

$$\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$$

Probabilistic (algebraic sum)

$$\mu_{A \cup B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$$

Łukasiewicz

$$\mu_{A \cup B}(x) = \min(1, \mu_A(x) + \mu_B(x))$$

Union of fuzzy sets

Union of fuzzy sets

Yager *t*-conorm (s-norm)
$$u_{w}(a,b) = \min\left[1,\left(a^{w}+b^{w}\right)^{1/w}\right], \ w \in]0,\infty]$$

Example of weak and strong disjunctions:

Parametric t-conorm

General aggregation operations

$$h: [0,1]^n \to [0,1];$$

 $\mu_A(x) \to h(\mu_{A_1}(x),...,\mu_{A_n}(x))$

- Axioms
- 1. Boundary conditions

$$h(0,...,0) = 0$$

 $h(1,...,1) = 1$

2. Monotonic non-decreasing

For any pair
$$a_i, b_i \in [0,1], i \in \mathbb{N}$$

If $a_i \ge b_i$ then $h(a_i) \ge h(b_i)$

General aggregation operations

Other axioms:

- h is a *continuous* function.
- h is a **symmetric** function in all its arguments:

$$h(a_i) = h(a_{p(i)})$$

for any permutation p on \mathbf{N}

Averaging operations

• When all the four axioms hold:

$$\min(a_1,...,a_n) \le h(a_1,...,a_n) \le \max(a_1,...,a_n)$$

Operator covering this range: Generalized mean

$$h_{\alpha}(a_1,\ldots,a_n) = \left(\frac{\left(a_1^{\alpha} + \ldots + a_n^{\alpha}\right)}{n}\right)^{1/\alpha}$$

Generalized mean

- Typical cases:
 - Lower bound:
 - Geometric mean:
 - Harmonic mean:

- Arithmetic mean:
- Upper bound:

$$h_{-\infty} = \min(a_1, \dots, a_n)$$

$$h_0 = (a_1 \cdot a_2 \cdot \ldots \cdot a_n)^{1/n}$$

$$h_{-1} = \frac{n}{\frac{1}{a_1} + \ldots + \frac{1}{a_n}}$$

$$h_1 = \frac{a_1 + \dots + a_n}{n}$$

$$h_{\infty} = \max(a_1, \dots, a_n)$$

$$h_{\infty} = \max(a_1, \dots, a_n)$$

Fuzzy aggregation operations

Membership functions (MF)

• Triangular MF:
$$Tr(x;a,b,c) = \max\left(\min\left(\frac{x-a}{b-a},\frac{c-x}{c-b}\right),0\right)$$

• Trapezoidal MF:
$$Tp(x;a,b,c,d) = \max\left(\min\left(\frac{x-a}{b-a},1,\frac{d-x}{d-c}\right),0\right)$$

• Gaussian MF:
$$Gs(x;a,b,c) = e^{-\frac{1}{2}\left(\frac{x-c}{\sigma}\right)^2}$$

• Generalized bell MF:
$$Bell(x;a,b,c) = \frac{1}{1 + \left| \frac{x-c}{b} \right|^{2a}}$$

Membership functions

Left-right MF

$$LR(x;c,\alpha,\beta) = \begin{cases} F_L\left(\frac{c-x}{\alpha}\right), x < c \\ F_R\left(\frac{x-c}{\beta}\right), x \ge c \end{cases}$$

Two-dimensional fuzzy sets

$$A = \int_{X \times Y} \mu_A(x, y) = \left\{ \mu_A(x, y) \middle| (x, y) \in X \times Y \right\}$$

2-D membership functions (a) z = min(trap(x), trap(y)) (b) z = max

Compound fuzzy propositions

• Small = Short and Light (conjunction) $\mu_{Small}(h, w) = \mu_{Short}(h) \cap \mu_{Light}(w)$

$$\mu_{Small}(h, w) = \mu_{Short}(h) \cap \mu_{Light}(w)$$

Cylindrical extension

• Cylindrical extension of fuzzy set A in X into Y results in a two-dimensional fuzzy set in $X \times Y$, given by

$$\operatorname{cext}_{y}(A) = \int_{X \times Y} \mu_{A}(x) / (x, y) = \{ \mu_{A}(x) / (x, y) | (x, y) \in X \times Y \}$$

Example

• Premise: Fuzzy set $\mu(x)$ that represents 'Young people' in the domain X representing age:

```
• X = \{18, 20, 22, 25, 30\} [years] \mu_{Young}(x) x \qquad 18 \quad 20 \quad 22 \quad 25 \quad 30 \mu_{Young}(x) \qquad 1 \quad 1 \quad 0.8 \quad 0.5 \quad 0.2
```

• Consider the set of 'duration of mobile calls' $Y = \{1, 3, 5, 7, 10, 20\}$ [min/call]

Example

• Compute the cylindrical extension of $\mu(x)$ in to Y:

```
[years]
            20
                22
                     25
                         30
\mu_{Young}(x) 1 1 0.8 0.5
                                         \mu_{Young}(x) into X x Y
  Y = \{1, 3, 5, 7, 10, 20\} [min/call]
                                    \mu_{Young}(x)_1 3 5 7
                                 X
                                       1 1 1 1 1 1
                                 18
                                       1 1 1 1 1
                                 20
                                 22
                                       0.8 0.8 0.8 0.8 0.8
                                                           8.0
                                      0.5 0.5 0.5 0.5 0.5 0.5
                                 25
                                 30
                                       0.2 0.2 0.2 0.2 0.2 0.2 0.2
```


Projection

Cartesian product and co-product

• Cartesian product of fuzzy sets A and B is a fuzzy set in the product space $X \times Y$ with membership

$$\mu_{A\times B}(x,y) = \min(\mu_A(x), \mu_B(y))$$

• Cartesian co-product of fuzzy sets A and B is a fuzzy set in the product space $X \times Y$ with membership

$$\mu_{A+B}(x,y) = \max(\mu_A(x), \mu_B(y))$$

Cartesian product and co-product

