Ma2201/CS2022 Quiz 0010

Discrete Mathematics

Vame: ____

Print Name: ,	
Sign:	

- 1. (2 points each) Consider the set $C = \{\text{red}, \text{yellow}, \text{blue}, \text{green}, \text{black}\}.$
 - a) What is $|\mathcal{P}(\mathcal{P}(C))|$?
- We have $|\mathcal{P}(A)| = 2^{|A|}$ for a finite set A. So $|\mathcal{P}(C)| = 2^5 = 32$. Thus $|\mathcal{P}(\mathcal{P}(C))| = 2^{|\mathcal{P}(C)|} = 2^{32}$.

- b) If you order the colors alphabetically, so black < blue < green < red < yellow, then this gives an ordering on the power set $\mathcal{P}(C)$ with the 0'th and first elements being \emptyset and $\{\text{black}\}$ respectively. What is the twenty-second element in $\mathcal{P}(C)$?
 - Converting 22 to binary we have, repeatedly dividing by 2,

So in binary 22 is 10110 with 1's in the blue, green and yellow coordinates. So the twenty-second subset is $\{yellow, blue, green\}$.

- c) Is there a way so re-order C so that the twenty-second subset is {black, blue}? Give such an ordering or explain why that is impossible.
- \clubsuit Since 22 in binary has three 1's, every reordering will give a twenty-second subset with three elements. \clubsuit
 - d) List all the elements in the set $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\} \cap \mathcal{P}(C)$.
- \clubsuit All elements of $\mathcal{P}(C)$ are subsets of C. In $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}$ only \emptyset is a subset of C, so \emptyset the only element in the intersection¹, and so

$$\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\}\cap\mathcal{P}(C)=\{\emptyset\}\quad \clubsuit$$

- e) List all the elements in $\{X \in \mathcal{P}(C) \mid |X| = 1\}$.
- \clubsuit Here we want subsets with exactly one element, that is just one color. Remember, the elements in the power set are sets of colors, not colors, so $\{blue\} \in \mathcal{P}(C)$, but $blue \notin \mathcal{P}(C)$.

$$\{X \in \mathcal{P}(C) \mid |X| = 1\} = \{\{black\}, \{blue\}, \{green\}, \{red\}, \{yellow\}\}$$

 $^{^{1}\{\}emptyset\}$ is not a subset of C since \emptyset is not an *element* of C.