Math 1540: HW1

February 24, 2023

Book Problems:

- 72. (i) Since α and β are algebraic over F there exist monic irreducible polynomials p_1 and p_2 of finite degree with roots α and β respectively. Therefore, we can say that $[F(\alpha):F] = \deg(p_1)$ and $[F(\alpha,\beta):F(\alpha)] = \deg(p_2)$ and using the degree formula we can see that $[F(\alpha,\beta):F] = [F(\alpha,\beta):F(\alpha)][F(\alpha):F] = \deg(p_1) \cdot \deg(p_2)$. Moreover, this is a finite degree extension. Finally, we can use the fact if E / F is a finite extension, then it is an algebraic extension to show that every element of $F(\alpha,\beta)$ (ex. $\alpha + \beta$, $\alpha\beta$, α^{-1}) is algebraic over F
 - (ii) K contains $F: \forall x \in F$ x is algebraic over F so $\forall x \in F$ $x \in K$ K is a subfield of E: For all x in K but not F we know that from the prior result that x^{-1} , x + y where $y \in F$, xy where $y \in F$, etc. are all algebraic. This shows that K is closed and contains additive/multiplicative inverses. Moreover, K has additive and multiplicative identities from F and gets associativity, commutativity, distributivity laws from E. Therefore, K is a field. By definition $K \subseteq E$. Therefore, K is a subfield of E.
 - (iii) \mathbb{A}/\mathbb{Q} is not finite since it must contain all roots of polynomials of the form $x^2 p$ where p is prime, which would require \mathbb{Q} have a nonfinite extension with $\mathbb{Q}(\sqrt{2}, \sqrt{3} \dots \sqrt{p} \dots)$, and we know that there are an infinite number of primes.
- 76. Suppose that there exists some $a \in F$ s.t. a does not have a pth root in F. Let $b^p = a$ in an extension of F. Therefore, in F[x], there exists $x^p a = x^p b^p = (x b)^p$. If $x^p a$ is not irreducible over F, then $(x b)^i$ where $1 \le i \le p 1$ must be a factor in F[x] and all its coefficients must be in F. $(x b)^i = x^i ibx^{i-1} \dots$, so $-ib \in F$ so $b^p = a \in F$, but we assumed a does not have a pth root in F contradiction. Therefore, $x^p a$ is irreducible. From here we see that irreducible polynomials must be inseparable, because if they weren't, they could be reduced by using arithmetic in characteristic p
- 77. Let F be a finite field of characteristic p, φ be the map from F to itself where $\forall x \in F$ $\varphi(x) = x^p$

From this map it is evident:

$$\varphi(xy) = (xy)^p = x^p y^p = \varphi(x)\varphi(y)$$
$$\varphi(x+y) = (x+y)^p = x^p + y^p$$

Moreover, φ is injective since $x^p \neq 0$; therefore it is surjective (F is finite) and $F^p = F$ — F is perfect

Given Problems:

- 1. Let the field of fractions be written as $Frac(F[x]) = \{f(x)/g(x) \in E \mid f,g \in F[x] \text{ and } g(x) \neq 0\}$. Let φ be a map between F[x] and Frac(F[x]) where φ sends $f(x) \in F[x]$ to f(x)/1. This map is well defined since $f(x) = g(x) \Rightarrow \varphi(f(x)) = f(x)/1 = g(x)/1 = \varphi(g(x))$. And injective since only 0 is sent to $\varphi(0) = 0/1$. Moreover, since F(x) is a field if $x \in E/F$ we can construct the inverse map σ from Frac(F[x]) to F[x] where σ sends f(x)/g(x) to $f(x)g^{-1}(x) \in F[x]$. This map is well defined since $f_1(x)/f_2(x) = g_1(x)/g_2(x) \Rightarrow \sigma(f_1(x)/f_2(x)) = f_1(x)f_2^{-1}(x) = g_1(x)g_2^{-1}(x) = \varphi(g_1(x)/g_2(x)) \Leftrightarrow f_1(x)g_2(x) = g_1(x)f_2(x)$. Moreover, it is surjective since $\sigma(f(x)/1) = f(x)$ for all $f(x) \in F[x]$. Therefore, there is an isomorphism between Frac(F[x]) and F(x)
- 2. Although I could show that f(x) has no linear factors since $f(0) \neq 0$, $f(1) \neq 0$ and no irreducible quadratic factor (of which there is one $x^2 + x + 1$ and $(x^2 + x + 1)^2 = x^4 + x^2 + 1 \neq f(x)$) (what I've written so far is sufficient for irreducibility), we can use Rabin's test:

Rabin's test of Irreducibility:

Let f(x) be a polynomial of degree n over \mathbb{F}_p . Then f is irreducible over \mathbb{F}_p if and only if f(x) divides $x^{p^n} - x$, and $\gcd\left(f(x), x^{p^{n/q}} - x\right) = 1$ for each prime divisor q of n.

Here it is sufficient to show that $gcd(x^4 + x + 1, x^{2^4} - x)$ is a multiple of $x^4 + x + 1$ and that $gcd(x^4 + x + 1, x^{2^2} - x) = 1$

I've computed both calculations in Mathmatica:

$$\label{eq:polynomial} \begin{split} \text{PolynomialExtendedGCD}[x^4+x+1,x^{2^4}-x,x,Modulus->2][[1]] &= x^4+x+1 \\ \text{PolynomialExtendedGCD}[x^4+x+1,x^{2^{4/2}}-x,x,Modulus->2][[1]] &= 1 \end{split}$$

Therefore, both criteria are satisfied, so $x^4 + x + 1$ is irreducible in \mathbb{Z}_2 . Therefore, E, the splitting field of $x^4 + x + 1$, has the same degree of $x^4 + x + 1$, 4.

3. We find that $1/\sqrt{2+\sqrt{3}} = \sqrt{2-\sqrt{3}}$ from the following:

$$\frac{1}{\sqrt{2-\sqrt{3}}} \frac{1}{\sqrt{2+\sqrt{3}}} \frac{\sqrt{2+\sqrt{3}}}{\sqrt{2+\sqrt{3}}} \frac{\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}\sqrt{2+\sqrt{3}}} \frac{\sqrt{2+\sqrt{3}}}{\sqrt{2+\sqrt{3}}} \frac{\sqrt{2+\sqrt{3}}}{\sqrt{1}} \frac{\sqrt{2+\sqrt{3}}}{\sqrt{1}}$$

Therefore, $\mathbb{Q}(\sqrt{2+\sqrt{3}})$ will contain $\sqrt{2-\sqrt{3}}$ as the multiplicative inverse of $\sqrt{2+\sqrt{3}}$ and thus will contain $\mathbb{Q}(\sqrt{2+\sqrt{3}},\sqrt{2-\sqrt{3}})$, and it is evident that $\mathbb{Q}(\sqrt{2+\sqrt{3}},\sqrt{2-\sqrt{3}})$ contians $\mathbb{Q}(\sqrt{2+\sqrt{3}})$, so $\mathbb{Q}(\sqrt{2+\sqrt{3}}) = \mathbb{Q}(\sqrt{2+\sqrt{3}},\sqrt{2-\sqrt{3}})$.

Therefore, the extension $\mathbb{Q}(\sqrt{2+\sqrt{3}},\sqrt{2-\sqrt{3}})$ is simple since it can be written as $\mathbb{Q}(\sqrt{2+\sqrt{3}})$ with generating element $\sqrt{2+\sqrt{3}}$

To find the minimal polynomial of $\sqrt{2+\sqrt{3}}$ let's set $x=\sqrt{2+\sqrt{3}}$:

$$\sqrt{2+\sqrt{3}} = x$$

$$2+\sqrt{3} = x^2$$

$$\sqrt{3} = x^2 - 2$$

$$3 = (x^2 - 2)^2$$

$$0 = (x^2 - 2)^2 - 3$$

$$0 = x^4 - 4x^2 + 1$$

Since the degree of the extension is equal to the degree of the minimal polynomial, the degree of the extension is 4.