A GRADUATE COURSE IN OPTIMIZATION

A GRADUATE COURSE

IN

OPTIMIZATION

CIE6010 Notebook

Prof. Yin Zhang

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	ix
Notati	ions	xi
1	Week1	1
1.1	Monday	1
1.1.1	Introduction to Optimizaiton	1
1.2	Wednesday	2
1.2.1	Reviewing for Linear Algebra	2
1.2.2	Reviewing for Calculus	2
1.2.3	Introduction to Optimization	3
2	Week2	7
2.1	Monday	7
2.1.1	Reviewing and Announments	7
2.1.2	Quadratic Function Case Study	8
2.2	Wednesday	11
2.2.1	Convex Analysis	11
3	Week3	17
3.1	Wednesday	17
3.1.1	Convex Analysis	17
3.1.2	Iterative Method	18
3.2	Thursday	22
3.2.1	Announcement	22
3.2.2	Sparse Large Scale Optimization	22

4	Week4	27
4.1	Wednesday	27
4.1.1	Comments for MATLAB Project	27
4.1.2	Local Convergence Rate	28
4.1.3	Newton's Method	29
4.1.4	Tutorial: Introduction to Convexity	30
5	Week5	33
5.1	Monday	33
5.1.1	Review	33
5.1.2	Existence of solution to Quadratic Programming	36
5.2	Wednesday	39
5.2.1	Comments about Newton's Method	39
5.2.2	Constant Step-Size Analysis	40
6	Week6	45
6.1	Monday	45
6.1.1	Announcement	45
6.1.2	Introduction to Quasi-Newton Method	45
6.1.3	Constrainted Optimization Problem	46
6.1.4	Announcement on Assignment	47
6.1.5	Introduction to Stochastic optimization	49
6.2	Tutorial: Monday	49
6.2.1	LP Problem	49
6.2.2	Gauss-Newton Method	50
6.2.3	Introduction to KKT and CQ	51
6.3	Wednesday	52
6.3.1	Review	52
632	Dual-Primal of LP	53

1	Week7	57
7.1	Monday	57
7.1.1	Announcement	57
7.1.2	Recap about linear programming	57
7.1.3	Optimization over convex set	60
7.2	Wednesday	62
7.2.1	Motivation	62
7.2.2	Convex Projections	63
7.2.3	Feasible diection method	65
8	Week8	69
8.1	Monday	69
8.1.1	Constraint optimization	70
8.1.2	Inequality Constraint Problem	71
8.2	Monday Tutorial: Review for CIE6010	71
9	Week9	79
9.1	Monday	79
9.1.1	Reviewing for KKT	79
9.2	Monday Tutorial: Reviewing for Mid-term	82
10	Week10	83
10.1	Monday	83
10.1.1	Duality Theory	83
10.1.2	Penalty Algorithms	86
10.2	Wednesday	89
10.2.1	Introduction to penalty algorithms	89
10.2.2	Convergence Analysis	90

11	Week11	3
11.1	Monday 9	3
11.1.1	Equality Constraint Problem)3
11.1.2	ADMM9)6
11.2	Wednesday 9	7
11.2.1	Comments on Assignment 6)7
11.2.2	Inequality Constraint Problem	98
11.2.3	Non-smooth unconstraint problem	9
12	Week12	1
12.1	Monday 10	1
12.1.1	Comments on Final Project)1
12.1.2	Trust Region Method)2

Acknowledgments

This book is from the CIE6010 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

X

Set

```
\inf X \subseteq \mathbb{R} Infimum over the set X
\mathbb{R}^{m \times n}
                  set of all m \times n real-valued matrices
\mathbb{C}^{m \times n}
                  set of all m \times n complex-valued matrices
                  ith entry of column vector \boldsymbol{x}
x_i
                  (i,j)th entry of matrix \boldsymbol{A}
a_{ij}
                  ith column of matrix A
\boldsymbol{a}_i
\boldsymbol{a}_{i}^{\mathrm{T}}
                  ith row of matrix A
                  set of all n \times n real symmetric matrices, i.e., \mathbf{A} \in \mathbb{R}^{n \times n} and a_{ij} = a_{ji}
\mathbb{S}^n
                  for all i, j
                  set of all n \times n complex Hermitian matrices, i.e., \mathbf{A} \in \mathbb{C}^{n \times n} and
\mathbb{H}^n
                  \bar{a}_{ij} = a_{ji} for all i, j
\boldsymbol{A}^{\mathrm{T}}
                  transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}} means b_{ji} = a_{ij} for all i,j
                  Hermitian transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{H} means b_{ji} = \bar{a}_{ij} for all i,j
A^{H}
trace(A)
                  sum of diagonal entries of square matrix A
1
                  A vector with all 1 entries
0
                  either a vector of all zeros, or a matrix of all zeros
                  a unit vector with the nonzero element at the ith entry
e_i
C(A)
                  the column space of \boldsymbol{A}
\mathcal{R}(\boldsymbol{A})
                  the row space of \boldsymbol{A}
\mathcal{N}(\boldsymbol{A})
                  the null space of \boldsymbol{A}
\operatorname{Proj}_{\mathcal{M}}(\mathbf{A}) the projection of \mathbf{A} onto the set \mathcal{M}
```

Chapter 12

Week12

12.1. Monday

12.1.1. Comments on Final Project

min
$$f(x,y) = \frac{1}{2}(\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{y}^{T}\mathbf{A}\mathbf{y}) - \mathbf{b}^{T}\mathbf{x} - \mathbf{c}^{T}\mathbf{y} := q_{b}(\mathbf{x}) + q_{c}(\mathbf{y})$$
 such that
$$\frac{1}{2}(\mathbf{x}^{T}\mathbf{x} - 1) = 0$$

$$\frac{1}{2}(\mathbf{y}^{T}\mathbf{y} - 1) = 0$$

$$\mathbf{x}^{T}\mathbf{y} = 0$$
 (12.1)

The Lagrangian function is given by:

$$L(\boldsymbol{x}, \boldsymbol{y}, \lambda) = q_b(\boldsymbol{x}) + q_c(\boldsymbol{y}) + \frac{\lambda_1}{2} (\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} - 1) + \frac{\lambda_2}{2} (\boldsymbol{y}^{\mathrm{T}} \boldsymbol{y} - 1) + \lambda_3 \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}$$
(12.2)

Stationarity:

$$Ax - b + \lambda_1 x + \lambda_3 y = 0$$
$$Ay - c + \lambda_2 y + \lambda_3 x = 0$$
$$\|h(x)\|^2 = 0$$

The stopping criteria is given by:

$$\max \left\{ \frac{\|\nabla_{\boldsymbol{x}} L\|}{\|\boldsymbol{b}\| + 1}, \frac{\|\nabla_{\boldsymbol{y}} L\|}{\|\boldsymbol{c}\| + 1}, \|h(\boldsymbol{x})\| \right\} \le \text{tol}$$

The problem(12.1) admits its global minimum since the constraint set is compact.

Three methods are suggests: ADMM (yz used this); ALMM; quadratic penalty method.

Sometimes we have the second-kind Lagrangian function

$$\hat{L}(\boldsymbol{x},\boldsymbol{y},\lambda) = q_b(\boldsymbol{x}) + q_c(\boldsymbol{y}) + \lambda_3 \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y} + \frac{h}{2} (\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y})^2$$

We do the minimization

min
$$\hat{L}(\boldsymbol{x}, \boldsymbol{y}, \lambda)$$

 $\boldsymbol{x} \in X = \{\boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} = 1\}$
 $\boldsymbol{y} \in Y = \{\boldsymbol{y} \mid \boldsymbol{y}^{\mathrm{T}} \boldsymbol{y} = 1\}$ (12.3)

The update rule is therefore given by $(\tau = 1.618)$

$$\lambda_3 = \lambda_3 + \tau \rho(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y})$$

Develop a solver for the **trust region** sub-problem

min
$$\frac{1}{2} \mathbf{p}^{\mathrm{T}} \mathbf{B} \mathbf{p} + \mathbf{g}^{\mathrm{T}} \mathbf{p}$$

 $\mathbf{p}^{\mathrm{T}} \mathbf{p} = \Delta^{*}$ (12.4)

How to get the **global minimum** for the non-convex problem (12.4)?

12.1.2. Trust Region Method

Our **B** has the form

$$\boldsymbol{A} + \lambda_1 \boldsymbol{I} + \rho \boldsymbol{y} \boldsymbol{y}^{\mathrm{T}}$$

with sparse A and dense rank 1 matrix y. Apply the Sherman-Morrison Formula; apply congugate gradient (command: pcg)

Unconstraint method. Our goal is to minimize $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$. To choose the stepsize, we apply the trust region method. First approximate f(x) with quadratic problem:

$$f(x^* + p) \approx f(x^*) + \nabla^{\mathrm{T}} f(x^*) p + \frac{1}{2} p^{\mathrm{T}} \nabla^2 f(x^*) p$$
$$\approx f(x^*) + \nabla^{\mathrm{T}} f(x^*) p + \frac{1}{2} p^{\mathrm{T}} \underbrace{\mathbf{B}}_{\text{Approximate Hessian}} p := m(p)$$

It suffices to choose the step size p to minimize the quadratic function above. The constraint is that the ||p|| should be small enough. Thus it suffices to solve

min
$$\frac{1}{2} \mathbf{p}^{\mathrm{T}} \mathbf{B} \mathbf{p} + \mathbf{g}^{\mathrm{T}} \mathbf{p}$$
 (12.5) $\|\mathbf{p}\| \le \Delta$

Given Δ ,

1. Solve the TR subproblem to get p

2.
$$\rho := \frac{f(x) - f(x+p)}{m(0) - m(p)}$$
.

- (a) If $\rho < \frac{1}{4}$, decrease the trust region Δ to $\frac{1}{4}\Delta$.
- (b) If $\rho > \frac{3}{4}$, increase Δ into 2Δ
- (c) Else, keep Δ .
- 3. (a) If $\rho \ge \frac{1}{4}$ and $\rho > \eta$, then $x \leftarrow x + p$
 - (b) Else, *x* keeps unchanged.