# CS & IT ENGINEERING

Theory of Computation

**Regular Languages** 



Lecture No.- 09

#### **Recap of Previous Lecture**







Regular Language Vs Regular Expression

#### **Topics to be Covered**











Topic

Regular Language Vs Regular Expression



## Universal Set





| F          | Regular Exp.       | Regular Language         | Meaning                                                     | iset                     |
|------------|--------------------|--------------------------|-------------------------------------------------------------|--------------------------|
| (5)        | (a+b)*             | €a,b}*                   | Set of (all) strings over<br>= Set of (all) non zero lingth | I= 40,64 (2) LOUGU       |
| <b>(b)</b> | (a+b) <sup>t</sup> | fa,6}+=fw wE(a+b)*,1w1>0 | = Set of (all) non zeno brylk                               | strings                  |
| (3)        | a.(a+6)*           | = a E* = faw we E*}      | = Set of (all) strings where                                | every string begins will |
| (8)        | b (a+b)*           | Starting wilk b          |                                                             |                          |
| (19)       | (a+6) a            | ends wilk a              |                                                             |                          |
| 20         | (atb)*b            | 11 11 6                  |                                                             |                          |
| _          |                    |                          |                                                             |                          |



a followed by any bs

Set of (a11) strings starting with a' over E=da, b?

ab \_\_ a\tau



O  $ab^* = \{a, ab, abb, ab\}, \dots$ 

(2) a(a+b)\* = fa, aa, ab, aaa, aab, .....

$$(1)$$
  $(2)$ 





| 14         | Regular Exp. | Regular Language                      | Meaning                        |
|------------|--------------|---------------------------------------|--------------------------------|
| <b>(2)</b> | (otb)+       | = (a+b) b = Set of                    | all strings ending will b      |
|            | (b*a)+       |                                       | t of all Strings ending wilk a |
| 23         | (a6*)+       | = a E*                                |                                |
| ঞ্চ        | (bå*)*       | = b \( \Sigma^* \)                    |                                |
| क्ड        | (ab)* a      | $=(a+b)^*=\Sigma^*$                   |                                |
| 26)        | (ba * b*     | $= (a+b)^{*} = \overline{\Sigma}^{*}$ | Universal Set over 2           |
| 27)        | å (bå*)*     | = (a+b)* = I*                         |                                |
| Slide      | 5            |                                       |                                |

R

 $(a^*b)^+ = (a+b)^*b$ 

$$\alpha \Sigma^* = (\alpha b^*)^{\dagger}$$

$$b \Sigma^* = (ba^*)^+$$

$$\Sigma^* \alpha = (b^* \alpha)^{\dagger}$$





$$(a^{*}b)^{+} = (a+b)^{*}b$$
 $(a^{*}b)^{-}=b^{*}$ 
 $(a^{*}b)^{-}=b^{*}$ 
 $(a^{*}b)^{-}=b^{*}$ 
 $(a^{*}b)^{-}=b^{*}$ 
 $(a^{*}b)^{-}=b^{*}$ 
 $(a^{*}b)^{-}=b^{*}$ 





$$b^*(ab^*) = (a+b)^*$$
 $b^*(ab^*) = 0$ 
 $b^*(ab^*) = 0$ 
 $b^*(ab^*) = 0$ 



### TOPIC: Worte Regular Exp



= 
$$\int aa\epsilon, aaa, aaaa, ...$$
}  
=  $\int a^2, a^3, a^4, ...$ }  
=  $\int a^n |n=2|$ 

$$= \frac{x}{a} = \frac{$$





$$= (a+b)^* aa (a+b)^*$$

Set of all strings containing aa as substring.

 $(a+b)^{*}$   $\alpha a (a+b)^{*}$  $(a*b^{*})^{*}$   $\alpha a (b*a^{*})^{*}$ 



(a+b)=(xb) =(xb) =(xb) =(b\*x) =(b\*x) =





$$= (a+b)^2 = (aa+ab+ba+bb) = \sum_{i=1}^{2}$$

(32) 
$$\{\omega \mid \omega \in \{a,b\}^*, |\omega| \geq 2\}$$
  
=  $(a+b)^2 \cdot (a+b)^* = \sum_{z=1}^{2} \sum_{z=1}^{2} = \sum_{z=1}^{2} \sum_{z=1$ 

$$(E+a+b)^2$$







$$\begin{cases}
\omega \mid \omega \in \{a,b\}^*, \quad |\omega| = \text{divisible by } \\
= \{\epsilon, aa, ab, ba, bb, aaaa, aaab, \dots \}
\end{cases} = (\sum \sum)^*$$

$$= (aa+ab+ba+bb)^* = (a+b)^2 = (\Sigma^2)^*$$

$$(\Sigma^2)^*$$
,  $\Sigma = \Sigma.(\Sigma^2)^*$ 

$$= ((a+b)^{2})^{2}(a+b) = (a+b).((a+b)^{2})^{2}$$

$$=(atb).((atb))$$



$$\left(\left(a+b\right)^{2}\right)^{*}=\left(aa+ab+ba+bb\right)^{*}$$

$$\left( \left( \mathcal{E} + \mathbf{a} + \mathbf{b} \right)^{2} \right)^{*} = \left( \mathcal{E} + \mathbf{a} + \mathbf{b} + \mathbf{a} \mathbf{a} + \mathbf{a} \mathbf{b} + \mathbf{b} \mathbf{a} + \mathbf{b} \mathbf{b} \right)^{*}$$
$$= \left( \mathbf{a} + \mathbf{b} \right)^{*}$$
$$= \left( \mathbf{a} + \mathbf{b} \right)^{*}$$



$$Ma(w) = 2$$
  
 $mo.oga's in w is 2$   
 $Ha(w) = 2$ 





$$\{\omega \mid \omega \in \{a,b\}^*, n_a(\omega) = 2\}$$

$$= b^*ab^*ab^*$$

$$37$$
  $\{\omega | \omega \in \{a,b\}^*, n_a(\omega) \geq 2\}$   $baba(a+b)^* = (a+b)^* \alpha (a+b)^* \alpha (a+b)^* = \sum_{i=1}^{n} \alpha \sum_{$ 



$$N_{a}(\omega) = 0$$
  $\Rightarrow$   $b$ 
 $N_{a}(\omega) = 1$   $\Rightarrow$   $b$ 
 $N_{a}(\omega) = 1$   $\Rightarrow$   $b$ 
 $N_{a}(\omega) = 2$   $\Rightarrow$   $b$ 
 $N_{a}(\omega) = 2$   $\Rightarrow$   $b$ 
 $A_{a}(\omega) = 2$ 
 $A_{a$ 



#### Home work





#### 2 mins Summary



Topic

Operators

Topic

**Properties** 

Topic

Simplification



## THANK - YOU