EE25BTECH11026-Harsha

Question:

The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.

Solution:

Let us solve the given question theoretically and then verify the solution computationally.

Let x and y be the 2 numbers such that x > y.

The given equations are,

$$x^2 - y^2 = 180 ag{0.1}$$

$$v^2 = 8x \tag{0.2}$$

As the given equations are homogeneous, converting them into quadratic form,

$$\implies \mathbf{x}^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0 \tag{0.3}$$

where
$$\mathbf{x}^{\top} = \begin{pmatrix} x & y & 1 \end{pmatrix}$$
 and $\mathbf{F} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -180 \end{pmatrix}$

And also,

$$\mathbf{x}^{\mathsf{T}}\mathbf{G}\mathbf{x} = 0 \tag{0.4}$$

where $\mathbf{x}^{\mathsf{T}} = \begin{pmatrix} x & y & 1 \end{pmatrix}^{\mathsf{T}}$ and $\mathbf{G} = \begin{pmatrix} 0 & 0 & -4 \\ 0 & 1 & 0 \\ -4 & 0 & 0 \end{pmatrix}$ To identify the intersection of

conics, we can employ the approach of degenerating the conics.

This approach goes by the fact that as both the conics are 0 simultaneously, it's linear combination would also have the same solution.

$$\therefore \mathbf{x}^{\mathsf{T}} \left(\mathbf{F} + \lambda \mathbf{G} \right) \mathbf{x} = 0 \tag{0.5}$$

To degenerate the conic into a line, we can find the solutions of λ when $\|\mathbf{F} + \lambda \mathbf{G}\| = 0$

$$\therefore \|\mathbf{F} + \lambda \mathbf{G}\| = 0 \tag{0.6}$$

$$\implies (\lambda - 1)(4\lambda^2 + 45) = 0 \tag{0.7}$$

$$\therefore \lambda = 1 \tag{0.8}$$

1

Substituting λ in the equation,

$$\mathbf{x}^{\mathsf{T}} \left(\mathbf{F} + \mathbf{G} \right) \mathbf{x} \tag{0.9}$$

$$\implies x^2 - 8x - 180 = 0 \tag{0.10}$$

$$\implies x = 18, -10 \tag{0.11}$$

for x = -10, there is no real solution of y,

$$\implies y = \pm 12 \tag{0.12}$$

... The two numbers are
$$(18, 12)$$
 and $(18, -12)$ (0.13)

From the figure, it is clearly verified that the theoretical solution matches with the computational solution.

