UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE ELÉCTRICA-ELECTRÓNICA

LABORATORIO DE CIRCUITOS ELÉCTRICOS I INFORME No. 5

POTENCIA Y MÁXIMA TRANSFERENCIA DE POTENCIA

Estudiante:

Caballero Burgoa, Carlos Eduardo.

Carrera:

Ing. Electromecánica.

Docente:

Ing. Marco Antonio Vallejo Camacho.

Grupo: 3E.

Fecha de entrega: 28 de Mayo del 2024.

1. Cálculos previos

Pre-informe

014

7) Resudue el circuito de la figura y encuentre los valores de potencias, Ps, Pz, Y Pz. Registre los resultadas obtenidos en la tabla.

	R [m]	[A] I	V [v]	P[w]	
R	500	0.2857	142.8571	40.8163	
Rz	250	0.2286	57.1429	13.0612	
153	1000	0.0571	57.1429 57.1429	3.2653	

Ps= 200 (0.2857) = 57.1429 [w]

2) Reelice le simulación del circuito y encuentre los valores de VI, V2, V3, S1, I2, e I3. Calcula las potencias y registra los resultados obtenidos.

	[A]	VIV1	P[w]
R	0.286	143	40.298
	0.229	57.1	13.0759
R ₃	0.0571	57.1	3.26041

3) En el circuito de la figura, considere que la resistencia variable Ri puede variar desde Osos hasta 1 ksos. Grafique Pi vs. Ri.

RL	It	PL	RL	IL	PL
Ø	0.400	0.000	500	0.133	8.889
50	Ø.333	5.556	550	0.125	8.594
100	0.286	8.163	600	0.118	8.304
50	0.250	9.375	650	0.111	8.025
200	0.727	9.877	700	0.105	7.756
250	0.200	10.000	750	0.100	7.500
300	0.182	9.917	800	0.095	7.256
350	0.167	9.722	850	0.091	7.025
400	0.154	9.467	900	0.087	6.805
150	0.143	9.184	950	0.083	6.597
			1000	0.080	6.400

2. Simulación

Se utilizó el software *Quite Universal Circuit Simulator*. para simular el circuito, este puede verse en la figura (1).

Figura 1: Simulación del circuito para calculo de potencias.

3. Tablas y mediciones

En la figura (2), se adjunta la hoja de resultados provista en la guía de laboratorio, rellenada con la información teórica, simulada y las mediciones realizadas en laboratorio.

PRÁCTICA 5	MARTES	14:47 Hora	3E Grupo	14 105 124 Fecha	7 / 24 Gestion	
CABALLERO BURGOA		CARLOS EDUARDO				
	Apellido(s)		No	mbre(s)		VoBo Docente Laboratorio

	Vs	R,=	500 Ω	R ₂ =	250 Ω	R₃ = 1 kΩ		
		V ₁	1,	V ₂	l ₂	V ₃	l ₃	
TEÓRICO	200 V	142.86	0. 286	67.14	0.229	57.14	0.0571	
SIMULACIÓN	200 V	143	0.286	57.1	0.229	57.1	0.0571	
Ps=Vs×I1 = 55	7.14	$P_1 = V_1 \times I_1 =$	40.82	$P_2 = V_2 \times I_2 =$	13.06	$P_3 = V_3 \times I_3 =$	3.26	

Tabla 5.1.

	$(500\Omega) R_1 = 521$		(250Ω) R ₂ =	257	$(1K\Omega)R_3 = 1046$		
V _s	V ₁	1,	V ₂	l ₂	V ₂	l ₂	
187	135.6	0.76	53	0.21	53	50.6	
Ps=Vs×1= 48.62	$P_1 = V_1 \times I_1 =$	P. = V.×I. = 35.256		P2 = V2×12 = 11.13		P3 = V3×13 = 26.82	
P _s (Vatímetro)	P, (Va	P ₁ (Vatímetro)		P₂ (Vatímetro)		tímetro)	
62	44		14		3		

Tabla 5.2.

(250 Ω) R ₁ = 25 -7											
N°	1	2	3	4	5	6	7	8	9 .	10	11
V _a	1000.1	99.7	99.5	99.2	100.5	100.2	100	99.8	99.7	926	99.5
V . ••••	74.8	71.1	65.8	60.4	55.8	50.3	46.5	42.4	38.7}	36.0	33.2
le T	0.10	0.11	0.13	0.16	0.18	0.20	0.21	0.73	0.24	0.25	0.27
	G1-F0	G1-F10	G1-F20	G1-F30	G1-F40	G1-F50	G1-F60	G1-F70	G1-F80	G1-F90	G1-F100
$R_{L} = V_{L}/I_{L}$	न्युष्ठ	646.36	506.15	377.50	310.00	251.50	221,43	184.35	161.25	144.00	122.96
P.=L'×R.	2,57	3.11	4.34	6,58	8.33	10.28	11.33	1359	14.80	16.06	18.73
$P_L = V_L \times I_L$	7.48	7.82	8.65	9.66	10.04	10.06	9.76	9.75	9.29	9,0	8.96
Pr+Pr	10.05	1093	12.91	16.24	13.37	SØ 34	26.1	23.35	24.1	25.06	27.7

Tabla 5.3.

Figura 2: Tabla de resultados.

4. Cuestionario

1. Con los datos presentados en la tabla 5.2, verifique la conservación de la energía.

Los valores de potencia son los siguientes:

Medición	$V_S[W]$	$R_1[W]$	$R_2[W]$	$R_3[W]$
Calculo teórico	57.14	40.82	13.06	3.26
Voltaje x corriente	48.62	35.256	11.13	2.682
Vatímetro	62	44	14	3

Para verificar la conservación de la energía, la potencia disipada por las resistencias debe ser igual a la potencia suministrada por la fuente de voltaje:

Calculo teórico:

$$P_{\text{dis}} = 40.82 + 13.06 + 3.26 = 57.14[W] = P_{\text{sum}}$$

Voltaje x corriente:

$$P_{\rm dis} = 35.256 + 11.13 + 2.682 = 49.068[W] \approx 48.62[W]$$

$${\rm Error} = \frac{49.068 - 48.62}{48.62} * 100 = 0.92 \%$$

Vatímetro:

$$P_{\rm dis} = 44 + 14 + 3 = 61[W] \approx 62[W]$$

$${\rm Error} = \frac{62 - 61}{62} * 100 = 1.61 \%$$

Ambas discrepancias están dentro de los margenes de error de la medición.

2. Si consideramos un circuito como el mostrado en la figura a continuación se puede encontrar que la potencia consumida en la resistencia de carga R_L esta dada por la ecuación presentada en la misma figura. Demostrar matemáticamente el teorema de la máxima transferencia de potencia $(R_L = R_S)$.

Se calcula el voltaje de la resistencia R_L a partir del divisor de tensión:

$$V_L = V_S \frac{R_L}{R_S + R_L} \tag{1}$$

Se calcula la corriente de la resistencia R_L a partir de la ley de Ohm:

$$I_L = \frac{V_S}{R_{eq}} = \frac{V_S}{R_S + R_L} \tag{2}$$

Se halla la potencia de la resistencia R_L haciendo uso de las ecuaciones (1) y (2):

$$P_{L} = I_{L} V_{L}$$

$$= \frac{V_{S}}{R_{S} + R_{L}} V_{S} \frac{R_{L}}{R_{S} + R_{L}}$$

$$P_{L} = V_{S}^{2} \frac{R_{L}}{(R_{S} + R_{L})^{2}}$$
(3)

Para hallar el máximo de la función se calcula la derivada de (3) y se iguala a 0:

$$\frac{dP_L}{dR_L} = \left(V_S^2 \frac{R_L}{(R_S + R_L)^2}\right)'$$

$$0 = V_S^2 \left(\frac{R_L}{(R_S + R_L)^2}\right)'$$

$$0 = V_S^2 \left(\frac{R_L'}{(R_S + R_L)^2} + \frac{R_L}{[(R_S + R_L)^2]'}\right)$$

$$0 = V_S^2 \left(\frac{1}{(R_S + R_L)^2} - \frac{2R_L}{(R_S + R_L)^3}\right)$$

$$\frac{1}{(R_S + R_L)^2} = \frac{2R_L}{(R_S + R_L)^3}$$

$$R_S + R_L = 2R_L$$
(4)

3. Graficar P_L vs. R_L empleando los resultados obtenidos en la tabla 5.3. Verifique en que valor de R_L se da la máxima transferencia de potencia.

Los datos medidos son:

Nº	R_L	P_L
1	748.00	7.48
2	646.36	7.82
3	506.15	8.55
4	377.50	9.66
5	310.00	10.04
6	251.50	10.06
7	221.43	9.76
8	184.35	9.75
9	161.25	9.29
10	144.00	9.00
11	122.96	8.96

Figura 3: Curva de potencia y valores tomados en laboratorio.

En la figura (3) se muestra la curva de la función potencia y los datos tomados en laboratorio, puede apreciarse que la máxima transferencia de potencia se realizó en la muestra 6, cuyo valor de resistencia es $251.51[\Omega]$ para la cual la potencia es 10.06[W].

5. Conclusiones

En laboratorio se realizaron mediciones de potencia con la ayuda de multímetros para la toma de tensión y corriente, además haciendo uso del vatímetro, si bien en las mediciones de

potencia se pudo constatar la conservación de energía, los valores son diferentes.

	Voltaje x corriente	Vatímetro	Error
V_S	48.62	62	21.58%
R_1	35.26	44	19.86%
R_2	11.13	14	20.50%
R_3	2.68	3	10.67%

Esta discrepancia puede deberse a la forma de medición, ya que la medición con vatímetro se realizo en cuatro etapas (una componente a la vez), mientras que la medición con multímetros se realizo en dos etapas (conectando hasta cuatro multímetros a la vez en el circuito). Por lo cual el voltaje de regulación de la fuente ha podido caer por debajo del valor real.

Entonces la medición con vatímetro debe estar mas próximo al valor real de potencia.

Adicionalmente se comprobó teóricamente y en laboratorio la máxima potencia que es transferida a una resistencia y como tal valor máximo esta relacionado con la resistencia de *Thévenin*.