Data Provided: Formula Sheet

The University of Sheffield

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Autumn Semester 2005-2006 (2 hours)

Electric and Magnetic Fields 2

Answer **THREE** questions. **No marks will be awarded for solutions to a fourth question.** Solutions will be considered in the order that they are presented in the answer book. Trial answers will be ignored if they are clearly crossed out. **The numbers given after each section of a question indicate the relative weighting of that section.**

1. a.

In the figure above, six small beads of equal positive charge are free to move without the effects of gravity or friction along a straight wire (the wire has end-stops to prevent the beads dropping off). Sketch the approximate bead distribution that corresponds to an equilibrium state. If the wire is now bent to form a perfect closed circle, how would the bead distribution change? Explain all your reasoning.

- **(6)**
- **b.** A hollow conducting sphere of radius 0.5m is located at the origin, and carries a total charge of -4×10^{-8} C.
 - i. Calculate the magnitude of the electric field at the points (0.25, 0, 0) m and (2.5, 0, 0) m. (4)

An identical sphere, carrying a charge of $+16 \times 10^{-8}$ C is now positioned at the point (y, 0, 0) m.

- ii. Find the value of y such that a point charge situated at the point (2.5, 0, 0) m would experience zero force. (4)
- iii. Calculate the potential difference between the two spheres (6)

EEE220 1 TURN OVER

2. a. i. Using Gauss' Law, show that the electric field due to an infinite line of charge is given by the following expression, and define the symbols used:-

$$\mathbf{E} = \frac{q_{\ell}}{2\pi\varepsilon_0 r} \hat{\mathbf{r}} \tag{6}$$

ii. An infinitely long wire parallel to the y-axis passes through the point (0, 0, 1), and carries a charge per unit length of $+7 \times 10^{-6}$ Cm⁻¹. Calculate the electric field at the point (2, 1, 0).

b.

The figure above shows the cross-section of a coaxial cable consisting of two hollow conducting cylinders. The inner cylinder has a radius of a, and is negatively charged; the outer has a radius of b and is positively charged.

- i. Redraw the diagram above, showing the field lines and lines of equipotential. (2)
- ii. Show that the capacitance per unit length is given by the expression:-

$$C_{\ell} = \frac{2\pi\varepsilon_0}{\ln\left(\frac{b}{a}\right)} \tag{6}$$

iii. If a 10m long coaxial cable has a capacitance of 400pF, and its inner conductor has a radius of 2mm, find the radius of the outer conductor. (2)

3. a. Use the Biot-Savart Law to show that the magnitude of the magnetic flux density at a radial distance r from the centre of a current carrying wire is given by the following expression, where L is the length of the wire, and I is the current.

$$\left|\mathbf{B}\right| = \frac{\mu_0 I L}{2\pi r \sqrt{4r^2 + L^2}}$$

You may need to use the standard integral:-

$$\int \frac{dx}{\left(ax^2 + bx + c\right)^{3/2}} = \frac{2(2ax + b)}{\left(4ac - b^2\right)\sqrt{ax^2 + bx + c}}$$
(8)

b. Use the above expression to find the magnetic flux density at the centre of a 1m square circuit carrying a current of 5A (4)

c.

The figure above shows a detour in an otherwise infinitely long wire carrying a current I. Use superposition to derive an expression for the flux density at the point P. Evaluate this expression assuming I = 400A and d = 0.1m, and state the direction of the field.

(8)

EEE220

- 4. a. The magnetic flux density along the axis of an infinitely long solenoid is given by the expression $B = \mu_0 nI$ where n is the number of turns per unit length, and I is the current flowing. Using Ampère's Law, describe in detail how you would find expressions for the field off-axis, both inside and outside the solenoid. (10)
 - **b.** A 2000 turn solenoid is 15cm long, 3cm in diameter and carries a current of 1A. Calculate:
 - i. the magnetic field at the centre of the solenoid (2)
 - ii. the self-inductance of the solenoid (2)
 - c. A 12V battery is now connected, via a series resistor of 10Ω , to the solenoid described in (b).
 - i. Calculate the energy stored in the solenoid when the circuit reaches steady-state. (2)
 - ii. What will happen to this energy when the battery is disconnected? When might this be a problem, and what could be done to prevent it? (4)

JW/JBW

EEE220 4 END OF PAPER