Algorithms and Combinatorics

Volume 28

Editorial Board

Ronald Graham

Bernhard Korte

László Lovász

Avi Wigderson

William J. Cook

Günter M. Ziegler

For further volumes: http://www.springer.com/series/13

Sparsity

Graphs, Structures, and Algorithms

Jaroslav Nešetřil
Computer Science Institute of
Charles University (IUUK)
and
Department of Applied Mathematics
Charles University
Prague
Czech Republic

Patrice Ossona de Mendez CNRS Centre d'Analyse et de Mathématique Sociales (UMR 8557) Paris France

Algorithms and Combinatorics ISSN 0937-5511 ISBN 978-3-642-27874-7 ISBN 978-3-642-27875-4 (eBook) DOI 10.1007/978-3-642-27875-4 Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012937285

Mathematics Subject Classification (2010): 05-02; 05C05, 05C15, 05C15, 05C42, 05C60, 05C62, 05C65, 05C75, 05C76, 05C78, 05C83, 05C85, 05C90, 03C13, 68R10, 90C35

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Supported by a grant of the Czech Ministry of Education

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

The drawings under the parts' title are freely inspired by works of

- Jan Vredeman de Vries,
- Vassily Kandinsky,
- Jiří Načeradský and Jaroslav Nešetřil.

The image on the first page of the front-matter is an original drawing by $Jaroslav\ Ne\breve{s}et\check{r}il$, which is freely inspired by the ink on paper "Elegant Rocks and Sparse Trees" by $Zhao\ Mengfu$.

Preface

This text is aimed at doctoral students and researchers, who are interested in Combinatorics and Graph Theory or who would just like to learn about some active topics and trends. But the book may be also interesting to researchers in mathematics, physics, chemistry, computer science, etc. who would seek for an introduction to the tools available for analysis of the properties of discrete structures, and sparse structures particularly. The dichotomy between sparse and dense objects is one of the main paradigm of the whole mathematics which transcends boundaries of particular disciplines. This is also reflected by our book.

The book is organized in three parts, called *Presentation*, *Theory*, and *Applications*.

The first part, *Presentation*, gives a general overview of the covered material and of its relationships with other domains of contemporary mathematics and computer science. In particular, Chap. 2 is devoted to the exposition of some typical examples illustrating the scope of this book.

The second part, Theory, is the largest part of the book and it is divided into eleven chapters. Chapter 3 introduces all the relevant notions and results which will be used in the book: basic notions and standard terminology, as well as more involved concepts and constructions (such as homomorphisms, minors, expanders, Ramsey theory, logic, or complexity classes), or more specific considerations on graph parameters, structures, and homomorphism counting. Chapter 4 introduces the specific notions used to study the density properties, shallow minors, shallow topological minors, or shallow immersions of individual graphs, as well as the related fundamental stability results. These results are applied in Chap. 5, and this leads to the nowhere dense/somewhere dense classification and to the notion of classes with bounded expansion (which are sparser than general nowhere dense classes). This classification is very robust and it can be characterized by virtually

viii Preface

all main combinatorial invariants. Several first characterizations are included in Chap. 5, and more characterizations are given in Chaps. 7, 8, 12, and 11. Chapter 5 ends with a discussion about the connection to model theory and the various approaches to handle general relational structures. Although the study of dense graphs frequently relies on the properties of dense homogeneous core structures (like complete graphs or even random graphs), it will be shown that sparse graph properties are intimately related to the properties of trees, and particularly to the ones of bounded height trees. Fundamental results on bounded height trees and, more generally, on graphs with bounded tree-depth are proved in Chap. 6. They open the way to the main decomposition theorem, which is the subject of Chap. 7. The decomposition scheme introduced there, which we call low tree-depth coloring, is a deep generalization of the concept of proper coloring. The low tree-depth colorings also lead to an alternative characterization of the nowhere dense/somewhere dense dichotomy. Yet another characterization of this dichotomy is proved in Chap. 8, that relies on the notion of independence through the notion of quasi-wideness (which has been introduced in the context of mathematical logic). Chapters 9 and 11 deal with homomorphism dualities. Bounded expansion classes are proved to have the richest spectrum of finite dualities and, in the oriented case, they are actually characterized by this property. Meanwhile, Chap. 10 establishes a connection to model theory and deals particularly with relativizations of the homomorphism preservation theorem of first-order logic. A last characterization of the somewhere dense/nowhere dense dichotomy is proved in Chap. 12 by considering the asymptotic logarithmic density of a fixed pattern in the shallow minors of the graph of a class. In a sense, one can view this last result as a characterization of the dichotomy in probabilistic terms. The *Theory* part ends with Chap. 13 where the results of the previous chapters are gathered and put to service in the study of the characteristics of nowhere dense classes, of classes with bounded expansion, and of classes with bounded tree-depth (which are derived from trees with bounded height). It is pleasing to see how these characterizations are nicely related.

The third part, *Applications*, concerns both theoretical and algorithmic applications of the concepts and results introduced in the second part. This part opens with Chap. 14 which gives several examples of classes with bounded expansion, such as classical classes defined in the context of geometric graphs and graph drawing, as well as classes admitting bounded non-repetitive colorings. It is also the occasion for a connection with the Erdős-Rényi model of random graphs. Some applications are considered in Chap. 15, such as the existence of linear matching (and more generally unions of long disjoint paths), connection with the Burr-Erdős conjecture, with game coloring, and with spectral graph theory. In Chap. 16, the use of a density

Preface

driven criterion for the existence of sublinear vertex separators links our study to the sparse model of property testing, via the concept of *hyperfiniteness*.

We provide in Chap. 17 core algorithms related to our study. In particular, we detail a fast iterative algorithm to compute a low tree-depth decomposition, the number of colors being controlled by a polynomial dependence on the densities of the shallow minors of the graph. The fact that this algorithm is nearly linear for sparse classes is one of the main advantages of our approaches. In Chap. 18 we consider algorithmic applications, which mainly derive from the fast low tree-depth coloring algorithm. These cover various well-known algorithmic problems, such as *subgraph isomorphism*, decidability of first-order properties, as well as their counting versions.

The title of the last chapter—Further Directions—is self-explanatory.

This book contains some previously unpublished results of the authors, as can be expected in a fast developing field. The extensive literature reflects the multiplicity of connections, applications, and similarities to other parts of mathematics and theoretical computer science.

We included exercises at the end of nearly every chapter. These exercises may complement previous material by a small question but often they suggest further study or extension of the main text. Such exercises may also contain hints for solutions. Some hints are also included at the end of the book.

This book is the result of the collaboration of the authors for over a decade in both Paris and Prague (and elsewhere). This was made possible thanks to the generous support of institutions at both ends: École des Hautes Études en Sciences Sociales, École Normale Supérieure, and Université Paris VI in Paris, as well as the Institute of Theoretical Computer Science (ITI) and the Department of Applied Mathematics (KAM) and most recently by Computer Science Institute (IUUK) of Charles University in Prague. We thank our colleagues for friendly working atmosphere. Particularly, we would like to thank Zdeněk Dvořák, Louis Esperet, Tomáš Gavenčák, Andrew Goodall, Jan van den Heuvel, Ida Kantor, Jíří Matoušek, Reza Naserasr, Melda Nešetřilová (née Hope), and Pascal Ochem for comments to parts of the book.

Paris, Prague, December 2011 Jaroslav Nešetřil Patrice Ossona de Mendez

Contents

Presentation

1	Intr	oduction	3
2	A F	ew Problems	7
	2.1	Breaking a Mesh	7
	2.2	Forging Alliances	9
	2.3	Are Symmetries Frequent?	12
	2.4	Large Matchings on a Torus	14
	2.5	Homomorphism Dualities	15
\mathbf{Th}	e Th	eory	
3	Pro	legomena	21
	3.1	Graphs	21
	3.2	Average Degree and Minimum Degree	22
	3.3	Graph Degeneracy and Orientations	23
	3.4	Girth	27
	3.5	Minors	30
	3.6	Width, Separators and Expanders	33
	3.7	Homomorphisms	39
	3.8	Relational Structures and First-Order Logic	46
	3.9	Ramsey Theory	52
	3.10	Graph Parameters	54
	3.11	Computational complexity	56
	Exer	cises	59
4	Mea	asuring Sparsity	61
	4.1	Basic Definitions	61
	4.2	Shallow Minors	62

xii Contents

	4.3	Shallow Topological Minors	65
	4.4	Grads and Top-Grads	66
	4.5	Polynomial Equivalence of Grads and Top-Grads	68
	4.6	Relation with Chromatic Number	77
	4.7	Stability of Grads by Lexicographic Product	80
	4.8	Shallow Immersions	83
	4.9	Generalized Coloring Numbers	86
	Exer	cises	88
5	Clas	sses and Their Classification	89
	5.1	Operations on Classes and Resolutions	91
	5.2	Logarithmic Density and Concentration	97
	5.3	Classification of Classes by Clique Minors	100
	5.4	Classification by Density—Trichotomy of Classes	102
	5.5	Classes with Bounded Expansion	104
	5.6	Classes with Locally Bounded Expansion	107
	5.7	A Historical Note on Connection to Model Theory	108
	5.8	Classes of Relational Structures	110
	Exer	cises	113
6	Bou	anded Height Trees and Tree-Depth	115
	6.1	Definitions and Basic Properties	115
	6.2	Tree-Depth, Minors and Paths	117
	6.3	Compact Elimination Trees and Weak-Coloring	122
	6.4	Tree-Depth, Tree-Width and Vertex Separators	123
	6.5	Centered Colorings	125
	6.6	Cycle Rank	128
	6.7	Games and a Min-Max Formula for Tree-Depth	130
	6.8	Reductions and Finiteness	132
	6.9	Ehrenfeucht-Fraïssé Games	136
	6.10	Well Quasi-orders	136
	6.11	The Homomorphism Quasi-order	140
	Exer	cises	142
7	Dec	omposition	145
	7.1	Motivation, Low Tree-Width and Low Tree-Depth	145
	7.2	Low Tree-Depth Coloring and p-Centered Colorings	153
	7.3	Transitive Fraternal Augmentation	154
	7.4	Fraternal Augmentations of Graphs	158
	7.5	The Weak-Coloring Approach	168
	Ever	rrises	

Contents xiii

8	Inde	ependence	175
	8.1	How Wide is a Class?	175
	8.2	Wide Classes	179
	8.3	Finding d-Independent Sets in Graphs	180
	8.4	Quasi-Wide Classes	185
	8.5	Almost Wide Classes	188
	8.6	A Nice (Asymmetric) Application	189
	Exer	cises	194
9	Firs	t-Order CSP, Limits and Homomorphism Dualities	195
	9.1	Introduction	195
	9.2	Homomorphism Dualities and the Functor \mathbf{U}	197
	9.3	Metrics on the Homomorphism Order	203
	9.4	Left Limits and Countable Structures	212
	9.5	Right Limits and Full Limits	217
	Exer	cises	224
10	Pres	servation Theorems	227
	10.1	Introduction	227
	10.2	Primitive Positive Theories and Left Limits	228
	10.3	Theories and Countable Structures	233
	10.4	Primitive Positive Theories Again	235
	10.5	Quotient Metric Spaces	237
	10.6	The Topological Preservation Theorem	240
	10.7	Homomorphism Preservation Theorems	242
	10.8	Homomorphism Preservation Theorems	
		for Finite Structures	246
	Exer	cises	251
11	Res	tricted Homomorphism Dualities	253
		Introduction	
	11.2	Classes with All Restricted Dualities	254
	11.3	Characterization of Classes with All Restricted Dualities by	
		Distances	254
	11.4	Characterization of Classes with All Restricted Dualities by	
		Local Homomorphisms	
	11.5	Restricted Dualities in Bounded Expansion Classes	260
	11.6	Characterization of Classes with All Restricted Dualities by	
		Reorientations	262
	11.7	Characterization of Classes with All Restricted Dualities by	
		Subdivisions	264

xiv Contents

	11.8 First-Order Definable H-Colorings	
	11.9 Consequences and Related Problems	
	Exercises	14
12	Counting 27	
	12.1 Introduction	77
	12.2 Generalized Sunflowers	81
	12.3 Counting Patterns of Bounded Height in a Colored Forest 28	83
	12.4 Counting in Graphs with Bounded Tree Depth 28	89
	12.5 Counting Subgraphs in Graphs	92
	12.6 Counting Subgraphs in Graphs in a Class	93
	Exercises	
13	Back to Classes	99
10	13.1 Resolutions	
	13.2 Parameters	
	13.3 Nowhere Dense Classes	
	13.4 Bounded Expansion Classes	
	13.5 Bounded Tree-Depth Classes 30	
	13.6 Remarks on Structures	
	15.0 Remarks on Structures	00
Ap	plications	
14	Classes with Bounded Expansion – Examples	13
	14.1 Random Graphs (Erdős-Rényi Model)	14
	14.2 Crossing Number	19
	14.3 Queue and Stack Layouts	21
	14.4 Queue Number	22
	14.5 Stack Number	27
	14.6 Non-repetitive Colorings	28
	Exercises	
15	Some Applications	
15	15.1 Finding Matching and Paths	39
15	15.1 Finding Matching and Paths3315.2 Burr-Erdős Conjecture35	39 50
15	15.1 Finding Matching and Paths	39 50
15	15.1 Finding Matching and Paths3315.2 Burr-Erdős Conjecture35	39 50 52
15 16	15.1 Finding Matching and Paths3315.2 Burr-Erdős Conjecture3515.3 The Game Chromatic Number35	39 50 52 55
	15.1 Finding Matching and Paths3315.2 Burr-Erdős Conjecture3515.3 The Game Chromatic Number3515.4 Fiedler Value of Classes with Sublinear Separators35	39 50 52 55 63
	15.1 Finding Matching and Paths3315.2 Burr-Erdős Conjecture3515.3 The Game Chromatic Number3515.4 Fiedler Value of Classes with Sublinear Separators35Property Testing, Hyperfiniteness and Separators36	39 50 52 55 63
	15.1 Finding Matching and Paths	39 50 52 55 63 68
	15.1 Finding Matching and Paths3315.2 Burr-Erdős Conjecture3515.3 The Game Chromatic Number3515.4 Fiedler Value of Classes with Sublinear Separators35Property Testing, Hyperfiniteness and Separators3616.1 Property Testing36	39 50 52 55 63 63 68

Contents xv

17	Core Algorithms
	17.1 Data Structures and Algorithmic Aspects 381
	17.2 p-Tree-Depth Coloring
	17.3 Computing and Approximating Tree-Depth
	17.4 Counting Homomorphisms to Graphs with Bounded
	Tree-Depth
	17.5 First-Order Cores of Graphs with Bounded Tree-Depth 393
	Exercises
18	Algorithmic Applications
	18.1 Introduction
	18.2 Truncated Distances
	18.3 The Subgraph Isomorphism Problem and Boolean Queries 400
	18.4 The Distance-d Dominating Set Problem
	18.5 General First-Order Model Checking
	18.6 Counting Versions of Model Checking
	Exercises
19	Further Directions
20	Solutions and Hints for some of the Exercises 417
Rei	ferences
Ind	ex

List of Symbols

We list here most of the symbols throughout this book, together with the page corresponding to the symbol's definition.

	– Variables –
F, G, H	finite loopless undirected graphs, 21
Ğ, Ĥ	finite directed graphs, 24
$\mathbb{A}, \mathbb{B}, \mathbb{L}$	Limits of homomorphism equivalence classes, 219
u, v, x, y	vertices, 21
e, f, g	edges, 21
$\mathcal{C}, \mathcal{F}, \mathcal{D}$	classes of graphs, 89
C	a sequence of infinite graph classes, 93
Σ	a surface, 31
ϱ,ς	graph parameters, 95
$\lambda_1, \lambda_2, \dots, \lambda_n$	eigenvalues, 37
a, b, c	depth of a shallow (topological) minor, 62
\mathcal{H}	a hypergraph, 48
ф	formula or sentence, 49
σ	signature, 47
P(X), Q(X, Y)	polynomials, 55
	- Asymptotic Notations
f = O(q)	Landau symbol O: asymptotic domination of f by g, 55
$f = \Omega(g)$	asymptotic domination of g by f, 55
$f = \Theta(g)$	asymptotic equivalence of f and g, 55
f = o(g)	Landau symbol o: $f/g \rightarrow 0$, 55
f ~ g	Asymptotic equality, 55
$f \approx g$	polynomial functional dependence, 55

xviii List of Symbols

Special Structures

 C_n cycle of order n (and length n), 21 K_n complete graph of order n, 21

 $K_{n,m}$ complete bipartite graph with parts of size n and m, 21

 P_n path of order n (and length n-1), 21

 \vec{P}_n directed path of order n (and length n-1), 42

 \vec{T}_n transitive tournament of order n, 42

G(n, p(n)) random graph of order n and edge probability p(n), 314

Graph Parameters

|G| order of the graph G, 21 ||G|| size of the graph G, 21

 $\alpha(G)$ independence number of G, 58

 $\beta^*(G)$ size of a maximum induced matching of G, 344

 $\begin{array}{ll} \beta(G) & \text{matching number of } G,\, 14 \\ \Delta(G) & \text{maximum degree of } G,\, 21 \\ \delta(G) & \text{minimum degree of } G,\, 21 \\ \chi(G) & \text{chromatic number of } G,\, 24 \\ \chi_g(G) & \text{game chromatic number},\, 352 \end{array}$

 $\chi_{\rm rk}(G)$ vertex ranking number of G, 125

 $\chi_s(G)$ star chromatic number of G, 147

 $\omega(G)$ clique number of G, 39 $b_{\epsilon}(G)$ ϵ -boundedness of G, 39bw(G)band-width of G, 37col(G)coloring number of G, 86

 $col_k(G)$ k-coloring number of G, 86 cr(G) crossing number of G, 319

 $cr(\vec{G})$ cycle rank of the digraph \vec{G} , 127

 $\overline{d}(G)$ average degree of G, 21 g(G) genus of the graph G, 55 $g_{\alpha}(G)$ α -vertex expansion of G, 37

girth(G) minimum length of a cycle of G, 27

h(G) Hadwiger number of G, 33 Iso(G) edge expansion of G, 37

mad(G) maximum average degree of G, 24

 $\begin{array}{lll} pw(G) & path-width of G, 34 \\ qn(G) & queue \ number \ of \ G, 321 \\ r(G) & Ramsey \ number \ of \ G, 53 \\ s(G) & separation \ number \ of \ G, 37 \\ sn(G) & stack \ number \ of \ G, 321 \\ tw(G) & tree-width \ of \ G, 34 \\ \end{array}$

List of Symbols xix

$\operatorname{wcol}_k(G)$ $\langle G \rangle$	weak k-coloring number of G, 86 profile, Lovász vector, 46
_	Other Voices, Other Rooms
$\alpha_r(G)$	r-independence number of G, 175
$\chi_{p}(G)$	p-chromatic number of G, 150
$\Phi_{\mathfrak{C}}$	Scattering function of the class C, 176
$\overline{\Phi}_{\mathfrak{C}}$	Uniforam scattering function of the class C, 177
free(F, G)	degree of freedom of F in C, 280
$h_i(G)$	maximal order of a clique immersion in G, 33
$h_t(G)$	maximal order of a topological clique minor of G, 33
ldens(G)	logarithmic density of G, 97
$s_G(i)$	maximum minimal size of a $\frac{1}{2}$ -vertex separator of a sub-
+d(C)	graph of G of order i, 37 tree-depth of G, 115
$\operatorname{td}(G)$ $\nabla_{r}(G)$	grad of rank r of G, 66
	maximum edge-density of a minor of G, 66
$\widetilde{\nabla}_r(G)$	top-grad of rank r of G, 67
$\begin{array}{l} \nabla(G) \\ \widetilde{\nabla}_{r}(G) \\ \widetilde{\nabla}(G) \end{array}$	maximum edge-density of a topological minor of G, 67
$\overset{\circ}{\nabla}_{p,q}(G)$	imm-grad of rank (p, q) of G, 84
,	
	Functions ————
<i>F</i> (c,t)	maximum order of a c-colored graph of tree-depth t with-
F(c,t) F(t)	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-
F(t)	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132
	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-
$F(t)$ $R(n_1,, n_k)$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52
$F(t)$ $R(n_1, \dots, n_k)$ $E[X]$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171
$\begin{split} & \digamma(t) \\ & R(n_1, \dots, n_k) \\ & E[X] \\ & \underbrace{Inj}(A, B) \\ & \widehat{f} \end{split}$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171 set of all injective injective mappings from A to B, 92 smallest upper continuous concave function greater or equal to f, 370
$F(t)$ $R(n_1,, n_k)$ $E[X]$ $Inj(A, B)$ f $f(C)$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171 set of all injective injective mappings from A to B, 92 smallest upper continuous concave function greater or equal to f, 370 $\sup_{G\in\mathcal{C}} f(G)$, 91
$F(t)$ $R(n_1,, n_k)$ $E[X]$ $Inj(A, B)$ \widehat{f} $f(\mathcal{C})$ $\limsup_{G \in \mathcal{C}} f(G)$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171 set of all injective injective mappings from A to B, 92 smallest upper continuous concave function greater or equal to f, 370 sup_ $G \in \mathcal{C}$ f(G), 91 limit superior of f on the class \mathcal{C} , 92
$F(t)$ $R(n_1,, n_k)$ $E[X]$ $Inj(A, B)$ \widehat{f} $f(\mathcal{C})$ $\limsup_{G \in \mathcal{C}} f(G)$ $\overline{f}(\mathcal{C})$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171 set of all injective injective mappings from A to B, 92 smallest upper continuous concave function greater or equal to f, 370 $\sup_{G\in\mathcal{C}} f(G)$, 91 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class \mathcal{C} , 92
$F(t)$ $R(n_1,, n_k)$ $E[X]$ $Inj(A, B)$ \widehat{f} $f(\mathcal{C})$ $\limsup_{G \in \mathcal{C}} f(G)$ $\overline{f}(\mathcal{C})$ $\overline{f}(\mathcal{C})$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171 set of all injective injective mappings from A to B, 92 smallest upper continuous concave function greater or equal to f, 370 $\sup_{G\in\mathcal{C}} f(G)$, 91 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class sequence \mathcal{C} , 93
$F(t)$ $R(n_1,, n_k)$ $E[X]$ $Inj(A, B)$ \widehat{f} $f(C)$ $\limsup_{G \in C} f(G)$ $\overline{f}(C)$ $\delta(S)$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171 set of all injective injective mappings from A to B, 92 smallest upper continuous concave function greater or equal to f, 370 sup_ $G \in \mathcal{C}$ f(G), 91 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class sequence \mathcal{C} , 93 cut-set (or cobord) of S, 37
$F(t)$ $R(n_1,, n_k)$ $E[X]$ $Inj(A, B)$ \widehat{f} $f(\mathcal{C})$ $\limsup_{G \in \mathcal{C}} f(G)$ $\overline{f}(\mathcal{C})$ $\delta(S)$ $d_G(v)$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X , 171 set of all injective injective mappings from A to B , 92 smallest upper continuous concave function greater or equal to f , 370 sup $_{G\in\mathcal{C}} f(G)$, 91 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class sequence \mathcal{C} , 93 cut-set (or cobord) of f , 37 degree of vertex f in the graph f , 21
$F(t)$ $R(n_1,, n_k)$ $E[X]$ $Inj(A, B)$ \widehat{f} $f(\mathcal{C})$ $\limsup_{G \in \mathcal{C}} f(G)$ $\overline{f}(\mathcal{C})$ $\delta(S)$ $d_G(v)$ $d^-(v)$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171 set of all injective injective mappings from A to B, 92 smallest upper continuous concave function greater or equal to f, 370 $\sup_{G\in\mathcal{C}} f(G)$, 91 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class sequence \mathfrak{C} , 93 cut-set (or cobord) of S, 37 degree of vertex ν in the graph G, 21 indegree of ν , 24
$F(t)$ $R(n_1,, n_k)$ $E[X]$ $Inj(A, B)$ f $f(\mathcal{C})$ $\limsup_{G \in \mathcal{C}} f(G)$ $\overline{f}(\mathcal{C})$ $\delta(S)$ $d_G(v)$ $d^-(v)$ $dist_G(x, y)$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171 set of all injective injective mappings from A to B, 92 smallest upper continuous concave function greater or equal to f, 370 $\sup_{G\in\mathcal{C}} f(G)$, 91 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class sequence \mathcal{C} , 93 cut-set (or cobord) of S, 37 degree of vertex ν in the graph G, 21 indegree of ν , 24 shortest path distance of x and y in G, 61
$F(t)$ $R(n_1,, n_k)$ $E[X]$ $Inj(A, B)$ \widehat{f} $f(\mathcal{C})$ $\limsup_{G \in \mathcal{C}} f(G)$ $\overline{f}(\mathcal{C})$ $\delta(S)$ $d_G(v)$ $d^-(v)$	maximum order of a c-colored graph of tree-depth t without non-trivial involutive automorphisms, 132 maximum order of a graph of tree-depth t without non-trivial involutive automorphisms, 132 Ramsey number, 52 expected value of X, 171 set of all injective injective mappings from A to B, 92 smallest upper continuous concave function greater or equal to f, 370 $\sup_{G\in\mathcal{C}} f(G)$, 91 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class \mathcal{C} , 92 limit superior of f on the class sequence \mathfrak{C} , 93 cut-set (or cobord) of S, 37 degree of vertex ν in the graph G, 21 indegree of ν , 24

xx List of Symbols

number of induced copies of F in G, 278
number of ζ -consistent mappings from F to Y, 283
left distance in $[Rel(\sigma)]$ (and $\overline{[Rel(\sigma)]}$), 208
right distance in $[Rel(\sigma)]$ (and $\overline{[Rel(\sigma)]}$), 208
full distance in $[Rel(\sigma)]$ (and $\overline{[Rel(\sigma)]}$), 208
first-order pseudo-metric on $Rel(\sigma)$, 239
first-order distance in \mathfrak{T} , 234
tree-depth distance in $[Rel(\sigma)]$, 236
quotient metric of $(\mathfrak{T}_{\mathbf{C}}, \operatorname{dist}_{FO})/\sim_{P}$, 238
set of all homomorphisms from G to H, 41
bijective mapping from $Rel(\sigma)$ to P, 229
bijective mapping from P to $Rel(\sigma)$, 229

Operations

A(G)	adjacency matrix of G, 37
D(G)	degree matrix of G, 355
L(G)	Laplacian of G, 355
$N_d^G(u)$	d-neighborhood of u in G, 61
$Q_k(G_L, y)$	set of vertices that are weakly k-accessible from y, 86
$R_k(G_L, y)$	set of vertices that are k-accessible from y, 86
G - v	vertex deletion, 23
G/e	edge contraction, 30
$G \setminus e$	edge deletion, 30
G[A]	subgraph of G induced by A, 22
$G_{< k}$	subgraph of G induced by the vertices of degree strictly
	smaller than k, 22
$G_{\leq k}$	subgraph of G induced by the vertices of degree at most
	k, 22
G/\mathfrak{P}	minor of G obtained as the adjacency graph of the parts
	in P, 62
clos(F)	closure of the rooted forest F, 115
G□H	Cartesian product of G and H, 279
$G \times H$	categorical product of G and H, 40
G • H	lexicographic product of G and H, 80
G + H	disjoint union (categorical sum) of G and H, 40
Gaifman(A)	Gaifman graph of A, 49
$Inc(\mathbf{A})$	incidence graph of a relational structure A , 49
$\operatorname{Inc}(\mathcal{H})$	incidence graph of a hypergraph \mathcal{H} , 49
$\mathbf{A} \times \mathbf{B}$	categorical product of A and B, 47
A + B	disjoint union (categorical sum) of A and B , 47
$\mathbf{U}(\mathbf{A})$	Feder and Vardi function U, 199

List of Symbols xxi

$[\mathfrak{I},\mathfrak{F}]$	Limit in $\overline{[Rel(\sigma)]}$ defined by the ideal $\mathcal I$ and the filter $\mathcal F$,
	220
$left\ lim_{i\to\infty}[\mathbf{G}_i]$	left limit of the $[G_i]$'s, 212
$\text{right } \lim_{\mathfrak{i} \to \infty} [\mathbf{G}_{\mathfrak{i}}]$	right limit of the $[G_i]$'s, 218
$\lim_{i \to \infty} [\mathbf{G}_i]$	full limit of the $[G_i]$'s, 219
$G \triangledown 0$	class of all the subgraphs of G, 62
$G \triangledown r$	class of shallow minors of depth r of G, 62
G ♥ r	class of shallow topological minors of depth r of G, 65
$G \stackrel{\propto}{\nabla} (p,q)$	class of all shallow immersions of G with complexity p
	and stretch q, 84
$G \triangle O$	monotone closure of C, 94
$H(\mathcal{C})$	hereditary closure of the class C, 61
$\mathbb{C} \mathbin{\triangledown} \infty$	minor closure of C , 94
C ∨ r	class of shallow minors of depth r of graphs in C , 93
$\mathfrak{C} \widetilde{\triangledown} \infty$	topological closure of C, 94
e v r	class of shallow topological minors of depth r of graphs
	in C, 93
C • F	class which contains the lexicographic products of graphs
	in C and F, 93

Relations

$H\subseteqG$	H is a subgraph of G, 22
$G\subseteq_{\mathfrak{i}}H$	induced subgraph relation, 22
$(G,\gamma)\subseteq_{\mathfrak{i}}(H,\eta)$	labeled induced subgraph relation, 136
$G\leq_{\mathfrak{m}} H$	minor order, 30
$G \leq_{t} H$	topological minor order, 31
$G \leq_{\mathfrak{i}} H$	immersion order, 31
$G \leq_h H$	homomorphism quasi-order, 42
$G\toH$	existence of a homomorphism of G to H, 39
$G \nrightarrow H$	non-existence of a homomorphism of G to H, 39
$G \xrightarrow{\longrightarrow} H$	$G \rightarrow H$ and $H \rightarrow G$, 45
$G \cong H$	isomorphism, 39
$G \subseteq_{i}^{\star} H$	is a retract of relation, 139
$[G] \leq_h [H]$	homomorphism order, 43
	Classes and Sets

Classes and Sets

$\binom{G}{H}$	set of all the induced subgraphs of G which are isomor-
	phic to H, 22
[G]	hom-equivalence class of G, 43
$Forb_{m}(\mathfrak{F})$	Class of graphs with no minor in \mathcal{F} , 90

xxii List of Symbols

$\operatorname{Forb_h}(\mathfrak{F})$	Class of graphs with no homomorphic image of a graph in \mathcal{F} , 90
$(\mathbf{A} ightarrow)$	structures with a homomorphism from A, 205
$(\rightarrow \mathbf{A})$	
	structures with a homomorphism to A, 205
$Inc(\mathcal{C})$	Class of the incidence graphs of relational structures in
	C, 111
\mathcal{T}_{t}	class of all graphs with tree-depth at most t, 134
Graph	class of all (isomorphism types of) finite graphs, 40
$Rel(\sigma)$	Category of all finite σ -structures, 47
$\mathfrak{Rel}(\sigma)$	class of all (finite or infinite) σ-structures, 233
$Tree(\sigma)$	Class of all finite σ -trees, 49
[Graph]	poset of all hom-equivalence classes of graphs, 43
$\frac{[\operatorname{Rel}(\sigma)]_{\mathrm{I}}}{[\operatorname{Rel}(\sigma)]_{\mathrm{I}}}$	left completion of $[Rel(\sigma)]$, 212
	right completion of $[Rel(\sigma)]$, 218
$\frac{[\text{Rel}(\sigma)]}{[\text{Rel}(\sigma)]}$ R	
$[\operatorname{Rel}(\sigma)]$	full completion of $[Rel(\sigma)]$, 219
e [⊽]	resolution of C, 94
$oldsymbol{G}_{\widetilde{\Delta}}$	topological resolution of C, 94
G _^	immersion resolution of C, 94
\mathfrak{P} T	class of all closed PP-theories, 231
	class of all theories, 233
$\mathfrak{T}_{\mathbf{C}}$	class of all complete theories, 233
$\mathfrak{T}_{ ext{F}}$	class of all complete theories with a finite model, 233
$\mathfrak{T}_{ extsf{FMP}}$	class of all complete theories with finite model property,
	233
	Posets ———
$x \vee y$	join of x and y , 203
$x \wedge y$	meet of x and y, 203
$x \leq_F y$	partial order induced by a rooted forest F, 115
A^{ℓ}	set of lower bounds of A, 204
F*	Ideal dual to the filter \mathcal{F} , 205
J*	•
A ^u	Filter dual to the ideal J, 205
	set of upper bounds of A, 204
\downarrow [A]	lower set of $[Rel(\sigma)]$ defined as the elements $\leq_h \mathbf{A}$, 203
$[\mathbf{A}]^{\top}$	upper set of $[Rel(\sigma)]$ defined as the elements $\geq_h \mathbf{A}$, 203
	Logic ————
$\phi \vdash \psi$	entailment relation, 231
$G \equiv H$	elementary equivalence, 50
$G = \Pi$	1 1 1 C 11 : 1 FO

n-back-and-forth equivalence, 50

A satisfies ϕ , 49

 $G \equiv^n H$

 $\mathbf{A} \models \phi$

List of Symbols xxiii

 $qcount(\phi)$ quantifier count of ϕ , 49 $qrank(\phi)$ quantifier rank of ϕ , 49

Mod(T) class of the models of the theory T, 233

Th(A) theory of A, 233

FO Class of all σ -sentences, 229

FOⁿ Class of all σ -sentences with quantifier rank at most n,

229

P Class of all primitive positive sentences, 229

Pⁿ Class of all primitive positive sentences with quantifier

rank at most n, 229

Complexity Classes

ACⁱ unbounded fanin O(logⁱ(n))-depth circuits, 57

AW[*] alternating W[*], 399 FO first-order logic, 57

FPT fixed-parameter tractable, 399 L deterministic logarithmic space, 56

 NC^{i} Nick's Classes: $O(\log^{i}(n))$ time on a polynomial num-

ber of processors, 57

NL non-deterministic logarithmic space, 56
NP non-deterministic polynomial time, 56
P deterministic polynomial time, 56

PSPACE polynomial space, 56

W[1] weighted analogue of NP, 399

W[t] non-deterministic fixed-parameter hierarchy, 399

W[*] union of the W[t]'s, 399