Studio sistema

Classificazione

- 1. Numero di input e output: SISO, MISO, SIMO, MIMO
- 2. Strettamente proprio: y(t) = g(x(t), t)ovvero non compare u null'uscita.
- 3. Proprio: y(t) = q(u(t), t)
- 4. Tempo invariante (stazionario): y(t) = g(u(t)) non dipende da t. Altrimenti tempo variante.
- 5. Lineare: combinazioni lineari di $u \in x$. No esponeziali, prodotti o funzioni. altrimenti non lineare.
- 6. Dinamico: dipende da x. Ha ordine n numero di \dot{x}_n . Altrimenti statico.
- 7. Ordine: numero / dimensione ingressi.

Sistemi a tempo continuo

Ovvero nella forma $\dot{x} = Ax + Bu, y = Cx + Du.$

Equilibrio

Cerco y_e punto di equilibrio dato u_e ingresso.

- 1. Pongo le derivate a zero. $\dot{x} = 0$
- 2. Risolvo il sistema lineare. Trovo x_1, x_2, \ldots, x_n
- 3. Sostituisco nelle equazioni di output.

Trovo y_e punto di equilibrio.

Linearizzazione

Scrivere equazione del sistema linearizzato attorno a un punto di equilibrio dato: $(\overline{x}, \overline{u})$

Scrivo il sistema in forma matriciale. Avrò A, B, C, D dove $A \in n \times n$, $B \in n \times m$, $C \in p \times n$ e $D \in p \times m$. In genere p = m = 1:

$$A = \frac{\partial f}{\partial x}\Big|_{(\overline{x},\overline{u})} \quad B = \frac{\partial f}{\partial u}\Big|_{(\overline{x},\overline{u})} \quad C = \frac{\partial g}{\partial x}\Big|_{(\overline{x},\overline{u})} \quad D = \frac{\partial g}{\partial u}\Big|_{(\overline{x},\overline{u})}$$

Avrò quindi:

$$\begin{cases} \delta \overline{x} = A \delta \overline{x} + B \delta u \\ \delta \overline{y} = C \delta \overline{x} + D \delta u \end{cases}$$

Studio stabilità

A partire dal sistema linearizzato. Studio autovalori di A. Se hanno tutti parte reale negativa, il sistema è asintoticamente stabile.

Funzione di trasferimento

Due modi per trovarla:

$$G(s) = C(sI - A)^{-1}B + D$$

Oppure:

Sostituisco le derivate \dot{x}_i con sX_i e risolvo il sistema lineare: y = G(s)u.

Il sistema si risolve in genere per sostituzione.

NB: (se c'è un α) se serve valutare oss. e ragg. bisogna controllare gli autovalori positivi e cercare di eliminarli (semplificare numeratore e denominatore).

Studio ossevabilità e raggiungibilità

Osservabilità:

$$M_O = \left[[C][A \cdot C][A^2 \cdot C] \cdots [A^{n-1} \cdot C] \right]^T$$

(in verticale)

Se il determinante di ${\cal M}_O$ è diverso da zero, il sistema è ossevabile. Raggiungibilità:

$$M_{R} = \left[[B][A \cdot B][A^{2} \cdot B] \cdots [A^{n-1} \cdot B] \right]$$

Se il determinante di M_R è diverso da zero, il sistema è raggiungibile. Per entrambi, se il n. poli = ordine, allora il sistema è ossevabile e raggiungibile.

Guadagno statico

Studia stabilità. Se as. stabile, il guadagno statico è il rapporto tra l'uscita e l'ingresso a regime, ovvero il G(s) in y = G(s)u.

Calcolo risposta analitica (modi)

Risposta libera significa u = 0. L'esercizio da uno stato $x(0) = (x_1, x_2, \dots, x_n)$.

- 1. Calcolo autovalori di A.
- 2. Calcolo autovettori di A
- 3. Calcolo $x(t) = \sum_{i=1}^{n} x_i e^{\lambda_i t} v_i$ ovvero la somma dei modi.
- 4. Calcolo y(t) = Cx(t).

Sistemi a tempo discreto

Ovvero nella forma x(k+1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k)

Equilibrio

Cerco y_e punto di equilibrio dato u_e ingresso.

- 1. Pongo x(k+1) = x(k)
- 2. Risolvo il sistema lineare. Trovo x_1, x_2, \ldots, x_n
- 3. Sostituisco nelle equazioni di output.

Trovo y_e punto di equilibrio.

Studio stabilità

A partire dal sistema linearizzato. Studio autovalori di A. Se hanno tutti parte reale <1, il sistema è asintoticamente stabile.

Linearizzazione

Scrivere equazione del sistema linearizzato attorno a un punto di equilibrio dato: $(\overline{x},\overline{u})$

Scrivo il sistema in forma matriciale. Avrò A,B,C,D dove A è $n\times n,$ B è $n\times m,$ C è $p\times n$ e D è $p\times m.$ In genere p=m=1:

$$A = \left. \frac{\partial f}{\partial x} \right|_{(\overline{x},\overline{u})} \quad B = \left. \frac{\partial f}{\partial u} \right|_{(\overline{x},\overline{u})} \quad C = \left. \frac{\partial g}{\partial x} \right|_{(\overline{x},\overline{u})} \quad D = \left. \frac{\partial g}{\partial u} \right|_{(\overline{x},\overline{u})}$$

Avrò quindi:

$$\begin{cases} \delta x(k+1) = A\delta x + B\delta x \\ \delta y = C\delta x + D\delta u \end{cases}$$

Calcolo movimento libero uscita (modi)

Movimento libero significa u = 0. L'esercizio da uno stato $x(0) = (x_1, x_2, \dots, x_n)$.

- 1. Calcolo autovalori di A.
- 2. Calcolo autovettori di A.
- 3. Calcolo $x(t) = \sum_{i=1}^{n} x_i \lambda_i^k v_i$ ovvero la somma dei modi.
- 4. Calcolo y(t) = Cx(t).

Associare grafico al sistema

- 1. $Re(\lambda) = 0$ oscillazioni costanti.
- 2. $Re(\lambda) > 0$ diverge.
- 3. $Re(\lambda) < 0$ converge quindi studio tempo dominante e assestamento (vedi andamento qualitativo).

Il numeratore influenza l'ampiezza della risposta.

- 1. poli reali negativi: risposta smorzata esponenzialmente.
- 2. poli complessi coniugati: oscillazioni smorzate.
- 3. Poli puramente immaginari: oscillazioni non smorzate.
- 4. Poli reali positivi: risposta crescente esponenzialmente.

Risposta analitica a impulso unitario (Heaviside)

Dato un $G(s) = \frac{N(s)}{D(s)}$ con N(s) e D(s) polinomi.

1. Sviluppo di G(s) in fratti semplici: (NB i poli uguali appaiono una volta per ogni molteplicità)

$$G(s) = \frac{N(s)}{D(s)} = \sum_{i=1}^{n} \frac{P_i}{(s - \lambda_i)}$$

- 2. Calcolo i P_i : Sostituisco $s = \lambda_i$ in $\frac{N(s)}{Q(s)}$ dove Q(s) è il polinomio che rimane dopo aver rimosso il termine $(s \lambda_i)$ da D(s).
- 3. Se non si può calcolare come sopra, eguaglio $\sum_{i=1}^{n} P_i \cdot Q_i(s) = N(s) \text{ e risolvo il sistema lineare e sostituisco } s$ tale che sia diverso da tutti i λ_i .
- 4. Sostituisco i P_i in G(s).
- 5. Calcolo la trasformata inversa di G(s), ovvero i termini del tipo $\frac{P_i}{s-\lambda_i} \to P_i \cdot e^{\lambda_i t}$.

$$f(t) = \left(\sum_{i=1}^{n} P_i \cdot e^{\lambda_i t}\right) sca(t)$$

Schemi a blocchi

Serie: $G(s) = G_1(s) \cdot G_2(s)$

Parallelo: $G(s) = G_1(s) + G_2(s)$

Retroazione negativa: $G(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$

Retroazione positiva: $G(s) = \frac{G_1(s)}{1 - G_1(s)G_2(s)}$

Per lo studio di stabilità, si possono ignorare i blocchi in retroazione.

Andamento qualitativo

Data una funzione di trasferimento G(s)

Il polo dominante è quello con la parte reale maggiore.

NB se negativo, il polo dominante ha il valore assoluto minore.

- 1. valore finale: $y_{\infty} = \lim_{s \to 0} s \cdot G(s)$
- 2. valore iniziale: $y(0) = \lim_{s \to \infty} s \cdot G(s)$
- 3. derivata iniziale: $\dot{y}(0) = \lim_{s \to \infty} s^2 \cdot G(s)$
- 4. tempo dominante: $\tau = \left| \frac{1}{\Re(\lambda)} \right|$ dove λ è il polo dominante.
- 5. tempo di assestamento: al 99% è 5τ (sarebbe 4.6 τ), al 95% è 3τ .
- 6. Sovraelongazione percentuale: $S\% = e^{\frac{-\xi\pi}{\sqrt{1-\xi^2}}} = \frac{Max-y_\infty}{y_\infty} \cdot 100$ Ovvero il punto di massimo in che percentuale sfora il valore finale.
- 7. Se $\mu=e^{-ks}$ allora il ritardo $\tau_r=k$, quindi nel disegno la funzione parte da k.
- 8. Studio gli zeri:
 - a) zero positivo
 - b) zero negativo più vicino all'origine del piano complesso rispetto ai poli
 - c) zero negativo più lontano dall'origine del piano complesso rispetto ai poli

- 9. Se ho poli complessi coniugati, studio $\xi = \frac{\Re(\lambda)}{11}$
 - a) $\xi < 0.5$

The state of the s

c) $\xi > 0.5$

b) $\xi = 0.5$

Disegno il grafico con multipli di τ su asse x i valori di y su asse y. Se chiede andamento qualitativo a sca allora i valori finali e iniziali devono essere moltiplicati per $\frac{1}{s}$. Se Ram allora per $\frac{1}{s^2}$. Margine di fase: $\varphi_m=180+\arg(L(j\omega_\pi))$ (distanza da -180°). ω_c è il punto in cui il modulo di $L(j\omega)$ passa per 0dB.

Disegno diagrammi di Bode

Viene fornita una funzione di trasferimento G(s).

- 1. trasformo la funzione nella forma: $G(s) = \frac{\mu}{s^m} \cdot \frac{\prod_{i=1}^n (s+z_i)}{\prod_{i=1}^n (s+p_i)}$
- 2. trovo zeri, poli e μ guadagno statico.
- 3. Per il diagramma di modulo:
 - Popolo gli assi: in generale l'ordine di grandezza del primo polo o zero lo colloco nella terza decade. Su asse y metto α_{dB} poco sopra la metà.
 - Tipo di funzione: 0 se m = 0, 1 se m = 1, 2 se $m \ge 2$.
 - Posizione iniziale: $\alpha_{dB} = 20 \log_{10}(\mu)$.

- metto un punto in (λ₁, α_{dB}) con λ₁ polo o zero più piccolo.
- Traccio una retta con pendenza $20 \cdot m$ dB/decade verso sinistra.
- Proseguo verso destra e ogni polo o zero mi fa cambiare pendenza. Se zero sale, se polo scende.
- 4. Per il diagramma di fase:
 - Copio asse x da sopra, asse y centro il valore di φ .
 - fase iniziale $\varphi = -m \cdot 90 + k$ con k = -180 se $\mu < 0, k = 0$ altrimenti.
 - Traccio una retta orizzontale fino al primo polo o zero.
 - Ogni polo o zero mi fa cambiare di 90 gradi. Se z⁺ scende, se p⁺ sale, se z⁻ sale, se p⁻ scende.
 - Traccio curva reale approssimata. (per Nyquist) NB: se smorzamento $\xi < \frac{1}{sqrt2}$ allora sui cambi di modulo la funzione reale ha un picco di risonanza. (ovvero sfora)

P.S.: Se c'è complesso coniugato, i due poli sono la radice del coefficiente di $s^0\,$

Disegno diagrammi di Nyquist

Diagramma polare. L'esercizio fornisce una funzione di trasferimento $G(s)=\frac{\mu}{s^g}\cdot \frac{\prod_{i=1}^n(s+z_i)}{\prod_{i=1}^n(s+p_i)}.$

Regole di tracciamento, dato diagramma di Bode:

- Se q=0 allora il punto di partenza è $(\mu,0)$
- Se g < 0 allora il punto di partenza è l'origine.
- $\bullet~$ Se g>0 allora il punto di partenza è l'infinito.
- La funzione abbandona l'asse reale sempre ortogonalmente.
- $\bullet\,$ Se numero di poli numero di zeri > 0 allora il punto di arrivo è l'origine.

Per disegnare il diagramma, utilizzo la fase di Bode come angolo e il modulo come raggio (coordinate polari).

Criteri di stabilità

Dato un sistema. Se bisogna scegliere, si fa Nyquist.

Criterio di Nyquist

Il sistema è asintoticamente stabile se N=P con P numero di poli a parte reale positiva e N numero di giri antiorari del diagramma di Nyquist. Studio stabilità \forall intervallo di $\frac{-1}{k}$ e poi passo a k.

Esempio: $-0, 5 < -\frac{1}{k} < 0 \Rightarrow k > 2$

Criterio di Bode

Condizioni per poter applicare il criterio di Bode:

- 1. Numero di poli a parte reale positiva è zero.
- 2. w_c è unica ovvero passa una sola volta per 0dB.
- 3. La funzione di trasferimento è strettamente propria.

Se è applicabile, il sistema è asintoticamente stabile se $\mu > 0$ e $\varphi_m > 0$.

Risposta in frequenza / transitorio esaurito

Margine di guadagno: $MG = \frac{1}{|L(j\omega_{\pi})|}$

Trasformo u(t) in y(t): i numeri diventano coeff. di $u \in \kappa sin(\alpha t + \beta)$ diventa $\kappa |G(j\alpha)| sin(\alpha t + \beta + \arg(G(j\alpha)))$. Analogamente per cos.

Posso calcolare $|G(j\alpha)|$ oppure prenderlo dal diagramma di Bode 10 $^{\frac{200}{20}}$ Attenzione a sovraelongazione.

Regolatore

L'esercizio fornisce una funzione di trasferimento G(s) con uno schema di controllo e delle specifiche.

Ogni specifica mi da un vincolo su G(s).

Studio vincoli

- Attenuazione ampiezza $n(t) = sin(\omega_n \cdot t)$ inferiore a -15dB. $|L(j\omega)| < -15dB$.
- Attenuazione ampiezza $d(t) = sin(\omega_d \cdot t)$ inferiore a -15dB $|L(j\omega)| > 15dB$.
- Banda passante in anello chiuso B > 10rad/s. $\omega_c > 10$.
- Ampiezza segnale y(t) a fronte di ingressi $d(t) = 5sin(\omega_d \cdot t)$ inferiore a 0.1. $|S(j\omega)| \cdot 5 < 0.1$ ovvero $|L(j\omega)| > 50dB$.
- Margine di fase superiore a 60°.
- $\varphi_m > 60^{\circ}$.
- Attenuazione $w(t) = sin(\omega_w \cdot t)$ superiore a -3dB [0, 20]. $\omega_b \ge 20 \Rightarrow \omega_c > 20$.
- |e(t)| < 0.11 a trans.es.a fronte di $w(t) = (6 + 6sin(\omega_w \cdot t))sca(t)$ e $n(t) = \frac{2}{6}cos(\omega_n \cdot t)sca(t)$ e $\omega_n \ge 1$
 - 1. $6|S(j\omega)| < 0.1 \Rightarrow \frac{6}{|L(j\omega)|} < 0.1 \Rightarrow |L(j\omega)| > 60dB$
 - 2. $\frac{2}{6}|F(j\omega)| < 0.01 \Rightarrow \frac{2}{6}|L(j\omega)| < 0.01 \Rightarrow |L(j\omega)| > \frac{3}{100}dB$

$$S\% < 25\% \Rightarrow e^{\frac{-\xi\pi}{\sqrt{1-\xi^2}}} < 0.25.$$

 $\xi\pi > ln(0.25) \cdot \sqrt{1-\xi^2} \Rightarrow \xi > \frac{ln(0.25)}{\sqrt{\pi^2 + |ln(0.25)|^2}} \simeq 0.404$
 $\varphi_m > 40^\circ.$

- Se ho un vincolo del tipo $|e_{\infty}| = Ram(t)$ o $|e_{\infty}| = sca(t)$ allora l'ordine di L(s) è g+1.
- Tempo di assestamento inferiore a 2 unità di tempo. Se $\varphi_m > 75^\circ$ allora $\frac{1}{\omega_c} < 2$ quindi $\omega_c > 0.5$. Se $\varphi_m \le 75^\circ$ allora $\frac{1}{\omega_c \cdot \xi} < 2$ quindi $\omega_c > \frac{0.5}{\xi}$ dato che $\xi = \frac{\varphi_m}{100}$ allora $\omega_c = 0.8$.

$ e_{\infty} $	$\frac{A}{S}$	$\frac{A}{S^2}$	$\frac{A}{S^3}$
g = 0	$\frac{A}{1+u}$	∞	∞
g = 1	0	$\frac{A}{u}$	∞
g=2	0	0	$\frac{A}{a}$

- NB se ho due vincoli su e_{∞} ma uno è sca e l'altro è ram, allora ignoro il sca.
- $|e_{\infty}| \le 0.5$ con w(t) = 8Par(t) $\frac{8}{u} < 0.5$ quindi u > 16 e g = 2.
- $|e_{\infty}| \le 0.5 \text{ con } w(t) = 8Sca(t)$ $\frac{8}{1+u} < 0.5 \text{ quindi } u > 15 \text{ e } g = 0.$
- $|e_{\infty}| \le 0.5 \text{ con } w(t) = 8Ram(t)$ $\frac{8}{a} < 0.5 \text{ quindi } u > 16 \text{ e } g = 1.$
- $|e_{\infty}| = 0$ allora g + 1.

Progetto per inversione

- 1. Sul diagramma di Bode, disegno i vincoli ottenui dalle specifiche.
- 2. Scelgo una L(s) che rispetti i vincoli (disegnandola sul diagramma).
- 3. Calcolo $R(s) = L(s) \cdot G(s)^{-1}$.