Formal Methods for Space Electronics

Georgy Lukyanov, supervised by Andrey Mokhov, Alexander Romanovsky, Jakob Lechner

School of Engineering

School of Engineering

School of CS

RUAG Space Austria

Motivation

Verification of functional correctness of control programs is an essential task for the development of space electronics; it is difficult and time-consuming and typically outweighs design and programming tasks in terms of development hours. We present a verification approach designed to help engineers reduce the effort required for formal program verification.

The approach uses a *metalanguage* to describe the semantics of a program as a *state transformer*, which can be compiled to multiple targets for the purpose of verification and code generation.

Conclusion

The presented approach has been validated by developing a metalanguage for a processing core designed for space missions, defining a set of high-level programming constructs on top of the metalanguage, and implementing compilation pipelines for program execution, verification and code generation.

Future Work

- **Dependently-typed metalanguage and assembly** Both microarchitecture-level semantics and instruction set architecture level modelling language may benefit from more advanced type-driven verification via devendent types.
- **Hardware synthesis backend** To convey the model's verification power down to the bare metal, we may implement a verified translation from the state-transformer metalanguage to a hardware description language to petrifythe semantics and turn it into silicon.

Related Work

■ **SAIL** "Detailed Models of Instruction Set Architectures: From Pseudocode to Formal Semantics." Alasdair Armstrong at al., Automated Reasoning Workshop, 2018.

g.lukyanov2@newcastle.ac.uk geo2a.info Together ahead. RUAG