Multimedia Fall 2019 Lecture 2 JPEG

Dr. Mona Soliman IT Dept.

JPEG

JPEG: JOINT PHOTOGRAPHIC EXPERTS GROUP

JPEG encoder Consists of:

- I. Image/block preparation "Color Models"
- 2. DCT computation
- 3. Quantization
- 4. Entropy coding [vectoring, differential encoding, run-length encoding, Huffman encoding]
- 5. Frame building

2-JPEG: DISCRETE COSINETRANSFORM (DCT)

1-D Discrete Cosine Transform

$$C(u) = \alpha(u) \sum_{x=0}^{N-1} f(x) \cos\left(\frac{(2x+1)u\pi}{2N}\right)$$

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } u=0\\ \sqrt{\frac{2}{N}} & \text{otherwise} \end{cases}.$$

DISCRETE COSINETRANSFORM (2D-DCT)

2-D Discrete Cosine Transform the definition for alpha is the same as before

$$C(u, v) = \alpha(u)\alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) \cos\left(\frac{(2x+1)u\pi}{2N}\right) \cos\left(\frac{(2y+1)v\pi}{2N}\right)$$

INVERSE DCT

The DCT is invertible

Spatial samples can be recovered from the DCT coefficients

$$f(x) = \sum_{u=0}^{N-1} \alpha(u)C(u)\cos\left(\frac{(2x+1)u\pi}{2N}\right)$$

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u)\alpha(v)C(u,v)\cos\left(\frac{(2x+1)u\pi}{2N}\right)\cos\left(\frac{(2y+1)v\pi}{2N}\right)$$

SOME DCT PROPERTIES

☐ The DCT provides energy compaction

Low frequency coefficients have larger magnitude (typically)

High frequency coefficients have smaller magnitude (typically)

Most information is compacted into the lower frequency coefficients

(those coefficients at the 'upper-left')

☐ Compaction can be used for compression

Use the DCT coefficients to store image data but discard a certain percentage of the high-frequency coefficients!

JPEG does this

DCT ON A 8X8 BLOCK

139	144	149	153	155	155	155	155
144	151	153	156	159	156	156	156
150	155	160	163	158	156	156	156
159	161	162	160	160	159	159	159
159	160	161	162	162	155	155	155
161	161	161	161	160	157	157	157
162	162	161	163	162	157	157	157
162	162	161	161	163	158	158	158

$$\frac{\langle u \rangle}{\sqrt{3}} = \left\{ \frac{1}{N} \quad u = 0 \\ \sqrt{3} \quad 0. \quad u \cdot \sqrt{2} \right\} = \left\{ \frac{1}{N} \quad u \cdot u \cdot u \cdot u \right\}$$

$$C(u, v) = \alpha(u)\alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) \cos\left(\frac{(2x+1)u\pi}{2N}\right) \cos\left(\frac{(2y+1)v\pi}{2N}\right)$$

1 35.6	-1.0	-12.1	-5.2	2.1	-1.7	-2.7	1.3
-22.6	-17.5	-6.2	-3.2	-2.9	-0.1	0.4	-1.2
-10.9	-9.3	-1.6	1.5	0.2	-0.9	-0.6	-0.1
-7.1	-1.9	0.2	1.5	0.9	-0.1	-0.0	0.3
-0.6	-0.8	1.5	1.6	-0.1	-0.7	0.6	1.3
1.8	-0.2	1.6	-0.3	-0.8	1.5	1.0	-1.0
-1.3	-0.4	-0.3	-1.5	-0.5	1.7	1.1	-0.8
-2.6	1.6	-3.8	-1.8	1.9	1.2	-0.6	-0.4

IMPORTANCE OF DCT COEFFICIENTS

- Using the DCT, the entries will be organized based on the human visual system.
- The most important values to
- our eyes will be placed in the
- upper left corner of the matrix.
- The <u>least</u> important values
- will be mostly in the lower
- right corner of the matrix.

JPEG

3-JPEG: QUANTIZATION

- After DCT transform we have fraction, +ve and -ve numbers, which mean more bits is needed to store each block, we have to quantize DCT blocks But any change in any number of DCT will propagate to overall image, so HOW TO QUANTIZE??
- We formulate quntizer for each block with 64 different steps, but HOW TO DETERMINE STEP SIZE??

35.6	-1.0	-12.1	-5.2	2.1	-1.7	-2.7	1.3
-22.6	-17.5	-6.2	-3.2	-2.9	-0.1	0.4	-1.2
-10.9	-9.3	-1.6	1.5	0.2	-0.9	-0.6	-0.1
-7.1	-1.9	0.2	1.5	0.9	-0.1	-0.0	0.3
-0.6	-0.8	1.5	1.6	-0.1	-0.7	0.6	1.3
1.8	-0.2	1.6	-0.3	-0.8	1.5	1.0	-1.0
-1.3	-0.4	-0.3	-1.5	-0.5	1.7	1.1	-0.8
-2.6	1.6	-3.8	-1.8	1.9	1.2	-0.6	-0.4

3-JPEG: QUANTIZATION

- Each of the 64 positions of the DCT output block has its own quantization coefficient, with the higher-order terms with low magnitude being quantized more heavily than the low-order terms (that is, the higher-order terms have larger quantization coefficients).
- Separate quantization tables are employed for luminance and chrominance data, with the chrominance data being quantized more heavily than the luminance data. This allows JPEG to exploit further the eye's differing sensitivity to luminance and chrominance.

Quantization

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

The Luminance Quantization Table

The Chrominance Quantization Table

- The entries of Q(u,v) tend to have larger values towards the lower right corner. This
 aims to introduce more loss at the higher spatial frequencies.
- The tables above show the default Q(u,v) values obtained from psychophysical studies with the goal of maximizing the compression ratio while minimizing perceptual losses in JPEG images.

HOW TO FORMULATE MY QUANTIZATION MATRIX ??

$$Q = \left| \frac{x}{\Delta} + 0.5 \right|$$

If
$$x$$
 is $=+ve$

$$Q = \left| \frac{x}{\Delta} - 0.5 \right|$$

If
$$x$$
 is $=$ -ve

$$\chi^q = QX\Delta$$

De-Quantization

Quantization

EXAMPLE:

Example: Uniform quantization with $\Delta = 2$ of $x = \{6.00, -1.47, 1.00, 1.69\}$

$$q = \left\lfloor \frac{x}{\Delta} + 0.5 \right\rfloor \implies q = \{3, -1, 1, 1\}$$

$$\hat{x} = q \cdot \Delta \implies \hat{x} = \{6, -2, 2, 2\}$$

Quantization error:

$$MSE = \frac{1}{4} \left((6-6)^{2} + ((-2) - (-1.47)^{2} + (2-1)^{2} + (2-1.69)^{2} \right) = 0.34$$

QUANTIZED DCT COEFFICIENTS

							V	
(16	11	(10)	16	24	40	51	61	
12	12	14	19	26	58	60	55	
14	13	16	24	40	57	69	56	
14	17	22	29	51	87	80	62	
18	22	37	56	68	109	103	77	1
24	35	55	64	81	104	113	92	
49	64	78(87	103	121	120	101	
(72)	92	95	98	112	100	103	99	

35.6	-1.0	-(12.1	-5.2	2.1	-1.7	-2.7	1.3
-22.6 -	17.5	-6.2	-3.2	-2.9	-0.1	0.4	-1.2
-10.9	-9.3	-1.6	1.5	0.2	-0.9	-0.6	-0.1
-7.1	-1.9	0.2	1.5	0.9	-0.1	-0.0	0.3
-0.6	-0.8	1.5	1.6	-0.1	-0.7	0.6	1.3
1.8	-0.2	1.6	-0.3	-0.8	1.5	1.0	-1.0
1.3	-0.4	-0.3	-1.5	-0.5	1.7	1.1	-0.8
2.6	1.6	-3.8	-1.8	1.9	1.2	-0.6	-0.4

DCT Block

Quantization Matrix

(3			,			
	15	0	(-1)	0	0	0	0	0
	-2	-1	0	0	O	О	0	0
	-1	-1	10	0	O	Ο	0	0
	-1	9/	0	0	О	Ο	0	O
	0	0	0	0	О	О	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	О	О	0	0
	0	0	0	0	О	О	0	0

Pasul

Quantizatied DCT B

Quantization Table Used

8	5	5	8	12	20	25	30
6	6	7	9	13	29	30	27
7	6	8	12	20	28	34	28
7	8	11	14	25	43	40	31
9	11	18	28	34	54	51	38
12	17	27	32	40	52	56	46
24	32	39	43	51	60	60	50
36	46	47	49	56	50	51	49

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

64	44	40	64	96	160	204	244
48	48	56	76	104	232	240	220
56	52	64	96	160	228	276	224
56	68	88	116	204	300	300	248
72	88	148	224	272	300	300	300
96	140	220	256	300	300	300	300
196	256	300	300	300	300	300	300
288	300	300	300	300	300	300	300

128	128	128	128	128	128	128
128	128	128	128	128	128	128
128	128	128	128	128	128	128
128	128	128	128	128	128	128
	128 128 128 128 128 128	128 128 128 128 128 128 128 128 128 128 128 128	128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128	128 128 128 128 128 128 128 128	128 128 128 128 128 128 128 128 128 128	128 128 128 128 128 128 128 128 128 128 128 128

Compressed Image

Compression Ratio: 7.7

Compression Ratio: 12.3

Compression Ratio: 33.9

Compression Ratio 60.1

JPEG Example

Original Image

8 x 8 Pixels Original Image

Gray-Scale Example: Value Range 0 (black) --- 255 (white)

- 63 33 36 28 63 81 86 98
- 27 18 17 11 22 48 104 108
- 72 52 28 15 17 16 47 77
- **1**32 100 56 19 10 9 21 55
- 187 186 166 88 13 34 43 51
- 184 203 199 177 82 44 97 73
- 211 214 208 198 134 52 78 83
- **2** 211 210 203 191 133 79 74 86

Y (8x8 Block)

```
63 33 36 28 63 81 86 98 27 18 17 11 22 48 104 108 72 52 28 15 17 16 47 77 132 100 56 19 10 9 21 55 187 186 166 88 13 34 43 51 184 203 199 177 82 44 97 73 211 214 208 198 134 52 78 83 211 210 203 191 133 79 74 86
```

340 210 104 -69 10 20 -12 7 -327 -260 67 70 -10 -15 21 8 93 -84 -66 16 24 -2 -5 9 89 33 -19 -20 -26 21 -3 0 -9 42 18 27 -7 -17 29 -7 -5 15 -10 17 32 -15 -4 7 10 3 -12 -1 2 3 -2 -3 12 30 0 -3 -3 -6 12 -1

Y (8x8 Block)

2D-DCT of matrix

Numbers are coefficients of polynomial

- **3**40 210 104 -69 10 20 -12 7
- -327 -260 67 70 -10 -15 21 8
- **9** 93 -84 -66 | 16 | 24 -2 -5 | 9
- **89** 33 -19 -20 -26 21 -3 <u>0</u>
- -9 42 18 27 -7 -17 29
- **-** -5 | 15 -10 | 17 | 32 | -15 | -4 | 7
- 10 3 -12 -1 2 3 -2 -3
- **1** 12 30 0 -3 -3 -6 12 -1

Cut the least significant components (High Frequency Components) after quantization

340	210	104	-69	10	20	-12	0		55	41	2
-327	-260	67	70	-10	-15	0	0		35	22	
93	-84	-66	16	24	0	0	0		65	49	4
89	33	-19	-20	0	0	0	0	IDCT	130	114	-
-9	42	18	0	0	0	0	0				
-5	15	0	0	0	0	0	0		180	1/5	14
10	0	0	0	0	0	0	0		200	206	2
0	0	_	0	0	0	0	0		205	207	2
									044	005	

55 41 27 39 56 69 92 106 35 22 7 16 35 59 88 101 65 49 21 5 6 28 62 73 130 114 75 28 -7 -1 33 46 180 175 148 95 33 16 45 59 200 206 203 165 92 55 71 82 205 207 214 193 121 70 75 83 214 205 209 196 129 75 78 85

Apply Inverse DCT in the Image

```
55 41 27 39 56 69 92 106
```

- 35 22 7 16 35 59 88 101
- 65 49 21 5 6 28 62 73
- 130 114 75 28 -7 -1 33 46 DC
- 180 175 148 95 33 16 45 54
- 200 206 203 165 92 55 71 82
- 205 207 214 193 121 70 75 83
- 214 205 209 196 129 75 78 85

Original

Compressed-Decompressed

Original

Compressed-Decompressed

