

TE2015

Microcontroladores

OUTLINE

TE2015 Microcontroladores

Syllabus

ABOUT THE PROFESSOR

Researcher at Technical University of Denmark

Adjunct professor at Tecnológico de Monterrey

Cofounder & CTO at AdSensors S.A.P.I. de C.V.

Teaching

 Microcontrollers, Digital Systems, Computer Architectures, Embedded Systems

- Van der Waals Heterostructures & Electrokinetics
- UVM hardware Verification

Contact

- WhatsApp: +45 5033-3514
- E-mail: matias.vazquez@tec.mx

RESEARCH PROJECTS

Graphene-hBN Van der Waals Heterostructures (Technical University of Denmark)

- Graphene stacking and encapsulation
- Microfluidics & Electrokinetics
- Challenges related to TE2015
 - Pico-liter syringe pump
 - Vacuum control in desiccator
 - Precise UV radiation in flood exposure chamber

Hardware verification of NAND Flash Controller (SAGE Microelectronique, Tecnológico de Monterrey & Hangzhou Dianzi University)

- SystemVerilog testbench development under UVM framework
- Master students at Tec de Monterrey

TO DOS BEFORE TUESDAY CLASS

Slack

- Install <u>Slack</u> app on your mobile or PC/Mac
- Join our group on Slack from the invitation e-mail received yesterday

EAGLE

- Create an account on <u>Autodesk</u> (use @tec.mx e-mail)
- Join our Autodesk group from the invitation e-mail received yesterday
- Download and install EAGLE

MPLAB X

- <u>Download MPLAB X from Microchip website</u> and install it
- <u>Download XC8 C compiler from Microchip website</u> and install it

GitHub

- Open an account on <u>GitHub</u> (use @tec.mx e-mail)
- Create a repository for the class
- Download and install GitKraken
- Make sure you can push your files from GitKraken to your repository

WHY A MICROCONTROLLERS CLASS?

APPLICATION

ALGORITHMS

PROGRAMMING LANGUAGES

OPERATING SYSTEMS/VIRTUAL MACHINES

INSTRUCTION SET ARCHITECTURE

MICROARCHITECTURE

REGISTER-TRANSFER LEVEL

LOGIC GATES

ELECTRICAL CIRCUITS

SEMICONDUCTOR DEVICES

PHYSICS

CLASS SCOPE

1st Term

- 1.Introduction to microcontrollers 2.PIC18 microcontroller
- architecture
- 3. Memory organization in microcontrollers
- 4. Assembly language for PIC18

2nd Term

- 1.Embedded programming with C
- 2.General-purpose input/output (GPIO)
- 3. Hardware interrupts and interrupt service

Final Term

- 1.Use of timers 2. Analog to digital conversion
- 3. Serial communications

CLASS TOPICS

CLASS ACTIVITIES

LABORATORY

WEEK	DATE	ACTIVITY	DESCRIPTION
1	08-Aug-22	LB1	Hardware design: schematic capture
2	15-Aug-22	LB2	Hardware design: physical layout
3	22-Aug-22	LB2	Hardware design: physical layout
4	29-Aug-22	LB3	Introduction to MPLAB and PIC18
5	05-Sep-22	LB4	Assembly programming of PIC18
6	12-Sep-22	LB4	Assembly programming of PIC18
7	19-Sep-22	LB5	High-level programming of PIC18 with C
8	26-Sep-22	LB5	High-level programming of PIC18 with C
9	03-Oct-22	LB6	GPIO: LCD display
10	10-Oct-22	LB7	GPIO: 4x4 keypad and 7-segment display
11	17-Oct-22	LB8	Hardware interrupts and ISR
12	24-Oct-22	LB8	Hardware interrupts and ISR
13	31-Oct-22	LB9	Timers, comparators and PWM
14	07-Nov-22	LB10	Analog inputs for microcontrollers
15	14-Nov-22	LB11	Asynchronous serial communications
16	21-Nov-22		HOLIDAY

LABORATORY

11 laboratories

25% of class grade

3 students per team

Self-enrollment on Canvas

2 deliverables

- 50% Demostrative video (maximum length of 3 min.)
- 50% MPLAB project

CLASS RESOURCES

Bibliography

PIC
 Microcontroller: An
 Introduction to
 Software &
 Hardware
 Interfacing Huang

- Interfacing PIC Microcontrollers to Peripheral Devices – Bohdan Borowik
- Programming 8-bit Microcontrollers in C – Martin P. Bates
- •C Programming for the PIC Microcontroller – Hubert Henry Ward

Documentation

MPLAB

∞

PIC18

- •MPLAB XC8 PIC Assembler
- •MPLAB C18 C Compiler
- •PIC18F57Q43 Datasheet
- •CURIOSITY NANO PIC18F57Q43 User Guide

GitHub Repository

- Laboratories
- Datasheets
- Examples
- Simulations

Slack

- •Group Communications
- Questions & Queries
- File sharing
- Team channels

TE2015 Microcontroladores

The history of the microcomputer

Intel 4004 Invención del Transistor 4 Bits, proceso MOS Inventado en Bells Lab Primer µprocesador Hecho de Germanio commercial Junta bipolar tipo NPN Diseñado para calculadoras 1948 1966 1975 1971 16 Bits 8 Bits Diseñada en el MIT • Microprocesador de bajo costo Usada para guía, navegación y control · Inició la revolución de la THE del modulo lunar del computación en casa Apollo 11. MOS 6502 Apollo guidance

Tecnológico de Monterrey

PROGRAMMING LANGUAGE

computer

Apple 1

- Incluía un MOS 6502
- Fabricaron 200 modelos
- Diseñada para uso recreativo

IBM PC (5150)

- Procesador INTEL 8088 de 16 Bits
- SO Microsoft MS-DOS
- Introdujo el concepto de Computadora Personal

1976

1979

1981

1983

- Incluía un MOS 6502
- Diseñadas para juegos y computadora personal
- Integraba un teclado completo

Atari 400 y 800

- Motorola 68000 de 16/32 Bits
- SO Lisa OS
- Primera PC con interfaz gráfica.
- Fracaso comercial

Apple Lisa

Compaq Deskpro 386

- Procesador Intel 80386 de 32 Bits
- BUS de datos de 16 Bits
- SO Windows/386.

Apple PowerBook

- Motorola 68000 de 16/32 Bits
- SO System 7.0.1
- Considerada como una de las computadoras más importantes de todos los tiempo

1986

1989

1991

1995

- Procesador de 32 Bits
- BUS de datos mejorado
- Doblada el desempeño respecto a la 386

Intel 80486

- Procesador R3000A de 32 Bits
- Creada en colaboración con Nintendo para desarrollar una versión de CD-ROM del Súper Nintendo

Sony Playstation

PowerMac G5

- Procesador PowerPC 970 de 64 Bits
- SO MacOS X.
- Primera PC de 64 bits

Microsoft Xbox One

- AMD Jaguar CPU con dos módulos Quad-Core, sumando 8 núcleos de 64 bits
- Soportaba 1080p y 720p

2003

2007

2013

2018

- Procesador de 32 Bits*
 (Samsung ARM11)
- Combinaba web browsing, reproducción de música, y teléfono celular

Apple iPhone

- Procesador de 10 núcleos de 64 Bits
- Incorpora 7 mil millones de transistores en un volumen de 37.5 mm × 37.5 mm × 4.4 mm

Intel Core i9

TE2015 Microcontroladores

Microchip fabrication process

SEMICONDUCTORS FABRICATION PROCESS

SEMICONDUCTORS FABRICATION PROCESS

INTEL 4004 (1971)

INTEL CORE i9-9900K (2018)

TE2015 Microcontroladores

Von Neumann and Harvard Architectures

https://bit.ly/TE2015MIRO

https://youtu.be/5BpgAHBZgec Tecnológico de Monterrey

VON NEUMANN ARCHITECTURE

- The CPU includes the ALU and Control units, plus some Registers
- Memory address bus is implicit in data bus between Control and Memory
- Registers are small memories built into the CPU for fast access to data (low latency)
- The main registers in this architecture are
 - Program counter (PC)
 - Accumulator (AC)
 - Memory address (MAR)
 - Memory data (MDR)
 - Instruction (IR)
- Main memory holds instructions and data
- The Input/Output unit is a signal conditioning stage for incoming/outcoming data

VON NEUMANN ARCHITECTURE

INSTRUCTION CYCLE

- 1. The Control unit **fetches** the next program instruction from main memory using the PC to determine where the instruction is located
- 2. The instruction is **decoded** so the ALU can understand it
 - Data operands required to execute the instruction are fetched from main memory and placed in registers in the CPU
- The ALU executes the instruction and stores the result in registers or main memory

VON NEUMANN EXAMPLE: INTEL 4004

VON NEUMANN VS HARVARD

VON NEUMANN

- Data and Program in the same physical memory
- Single BUS that sequentially reads data and instructions
 - 1. One instrution cycle to read an instruction
 - 2. One instruction cycle to read data
- Slower but simpler than Harvard

HARVARD

- Data and program in separate physical memory
- Fetch can be carried out while other instruction is in Execution
 - This is called **Pipelining**
- Faster but more complex than Von Neumann