단변량분석_범주형변수

기초 통계량 (숫자로 요약하기)

시각화

숫자형

양적 데이터 (정량적 데이터) min, max, mean, std 사분위수 Histogram
Density plot
Box plot

범주형

질적 데이터 (정성적 데이터) 범주 별 빈도수 범주 별 비율 Bar plot Pie chart

1.화경준비

(1) 라이브러리 불러오기

in [1]: import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

(2) 데이터 로딩

1) titanic

url: 'https://raw.githubusercontent.com/DA4BAM/dataset/master/titanic_simple.csv'

[titanic_simple 데이터 셋 정보]

• Passengerld : 승객번호

• Survived : 생존여부(1:생존, 0:사망)

• Pclass: 객실등급(1:1등급, 2:2등급, 3:3등급)

• Name : 승객이름

• Sex : 성별(male, female)

Age : 나이Fare : 운임(\$)

• Embarked : 승선지역(Southampton, Cherbourg, Queenstown)

In [2]: path = 'https://raw.githubusercontent.com/DA4BAM/dataset/master/titanic_simple.csv'
 titanic = pd.read_csv(path)

titanic.head()

Out[2]:		PassengerId	Survived	Pclass	Name	Sex	Age	Fare	Embarked		
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	7.2500	Southampton		
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	71.2833	Cherbourg		
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	7.9250	Southampton		
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	53.1000	Southampton		
	4	5	0	3	Allen, Mr. William Henry	male	35.0	8.0500	Southampton		

2) New York Air Quality

• url: https://raw.githubusercontent.com/DA4BAM/dataset/master/air2.csv

[airquality 데이터 셋 정보]

Ozone: 오존 농도Solar.R: 태양복사량

Wind: 풍속Temp: 기온Date: 연,월,일

In [3]: path = 'https://raw.githubusercontent.com/DA4BAM/dataset/master/air2.csv'
air = pd.read_csv(path)
air.head()

Out[3]:		Ozone	Solar.R	Wind	Temp	Date
	0	41	190.0	7.4	67	1973-05-01
	1	36	118.0	8.0	72	1973-05-02
	2	12	149.0	12.6	74	1973-05-03
	3	18	313.0	11.5	62	1973-05-04
	4	19	NaN	14.3	56	1973-05-05

2.범주형 변수

(1) 수치화: 기초통계량

- 범주형 변수는 범주별 빈도수와 비율을 확인합니다.
- 리스트.count('값')
 - 해당 값이 몇 개 있는지 count 해 줍니다.

- Count를 전체 개수(len(gender))로 나눠주면 비율이 됩니다.
- 그런데, 범주가 두 세 개 정도면, 이렇게 계산하는 게 가능합니다.
- 만약 범주가 10개라면?

1) 범주별 빈도수

• .value_counts(): 범주의 개수와 상관 없이 범주 별 개수를 count 해 줍니다.

```
In [4]: titanic['Pclass'].value_counts()
```

Out[4]:

Pclass 3 491

1 216

2 184

Name: count, dtype: int64

2) 범주별 비율

.value_counts(normalize = True)

```
In [5]: titanic['Pclass'].value_counts(normalize = True)
```

Out[5]:

Pclass

3 0.551066

1 0.242424

2 0.206510

Name: proportion, dtype: float64

- titanic['Pclass'] 해석
 - .value counts()를 이용하여 범주별 빈도수와 범주별 비율을 구할수 있습니다.
 - 3등급 객실 탑승객이 전체에서 55%를 차지합니다.
 - 1등급 객실이 24%, 2등급 객실이 20.7 %

-연합문제-

[문1] titanic의 Embarked에 대한 기초 통계량을 구하시오.

```
In [6]: titanic['Embarked'].value_counts()
```

Out[6]:

Embarked

Southampton 644 Cherbourg 168 Queenstown 77

Name: count, dtype: int64

[문2] titanic의 Survived에 대한 기초 통계량을 구하시오.

```
In [7]: titanic['Survived'].value_counts()
```

Out[7]: Survived 0 549 1 342

Name: count, dtype: int64

(2) 시각화

1) bar chart

- seaborn □ countplot
 - plt.bar() 를 이용하려면 먼저 집계한 후 결과를 가지고 그래프를 그려야 합니다.
 - countplot은 집계 + bar plot을 한꺼번에 해결해줍니다!

```
In [35]: # sns.countplot(x=titanic['Pclass'])
    #sns.countplot(x='Pclass', data=titanic)
    sns.countplot(y='Pclass', data=titanic)
    plt.grid()
    plt.show()
```


-연합문제-

[문1] titanic의 Embarked에 대한 bar chart를 그리시오.

```
In [40]: sns.countplot(x = 'Embarked', data = titanic)
plt.grid()
plt.show()
```


2) (추가) pie chart

- 범주별 비율 비교할 때 파이차트 사용.
- 역시 먼저 집계를 해야 합니다.
- plt.pie(값, labels=범주이름, autopct = '%.2f%%')
 - autopct = '%.**2f%**%' : 그래프에 표시할 값 비율 값에 대한 설정입니다.
 - .2f%: 소수점 두 자리 퍼센트로 표기 한다는 의미.
- pie chart 기본

- pie chart 꾸미기 1
 - 각도와 방향 조정
 - startangle = 90 : 90도 부터 시작
 - o counterclock = False : 시계 방향으로

```
In [22]: plt.pie(temp.values, labels = temp.index, autopct = '%.2f%%', startangle=90, counterclock=False) # startangle = 90 : 90도 부터 시작 # counterclock = False : 시계 방향으로 plt.show()
```


- pie chart 꾸미기 2
 - 간격 띄우고, 그림자 넣기
 - explode = [0.05, 0.05,0.05] : 중심으로 부터 1,2,3 을 얼마만큼 띄울지
 - shadow = True : 그림자 추가

-연합문제-

- 1) titanic의 Embarked에 대한 pie chart를 그리시오.
 - 소수점 1자리까지 비율(%)를 표시하시오.

```
In [33]: tmep = titanic['Embarked'].value_counts()
    temp
    plt.pie(temp.values, labels=temp.index, autopct='%.2f%%', shadow=True, explode = [0.07, 0.07,
    plt.show()
```


3.복습문제

(1) 환경준비

• 라이브러리 불러오기

In [43]:

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

• 보스톤 집값 데이터를 이용하여 다음의 복습문제를 풀어 봅시다.

변수설명

- medv: 1978 보스턴 주택 가격, 506개 타운의 주택 가격 중앙값 (단위 1,000 달러) <== Target
- crim 범죄율
- zn 25,000 평방피트를 초과 거주지역 비율
- indus 비소매상업지역 면적 비율
- chas 찰스강변 위치(범주 : 강변1, 아니면 0)
- nox 일산화질소 농도
- rm 주택당 방 수
- age 1940년 이전에 건축된 주택의 비율

- dis 직업센터의 거리
- rad 방사형 고속도로까지의 거리
- tax 재산세율
- ptratio 학생/교사 비율
- Istat 인구 중 하위 계층 비율

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [45]: # 보스톤 집값 데이터
boston = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/boston.csv')
boston.head()

Out[45]:		crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	Istat	medv
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	4.98	24.0
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	9.14	21.6
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	4.03	34.7
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	2.94	33.4
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	5.33	36.2

(2) 단변량 분석

• chas(찰스강변 여부)

In []: