# Low Level Design (LLD) Stores Sales Prediction

Revision Number – 1.0 Last Date of Revision – 04/09/2024

Swapnil Shinde

## Document Version Control

| Date       | Version | Description   | Author         |
|------------|---------|---------------|----------------|
| 27-08-2024 | 1.0     | Abstract,     | Swapnil Shinde |
|            |         | Introduction  |                |
|            |         | Architecture  |                |
| 27-08-2024 | 1.1     | Data          | Swapnil Shinde |
|            |         | Preprocessing |                |
| 04-09-2024 | 1.2     | Deployment    | Swapnil Shinde |
|            |         |               |                |

| Low Level Design (LLD)               |    |
|--------------------------------------|----|
| Contents                             |    |
| Abstract                             | 4  |
| INTRODUCTION                         | 5  |
| Why this LLD documentation?          | 5  |
| 1 Architecture                       | 5  |
| 2 Architecture Description           | 6  |
| 2.1 Data Gathering from Main Source  | 6  |
| 2.2 Tools Used                       | 6  |
| 2.3 Data Description                 | 6  |
| 2.4 Data Ingestion                   | 8  |
| 2.5 Data Transformation              | 8  |
| 2.6 Model Building                   | 9  |
| 2.7 Batch Prediction                 | 9  |
| 2.8 training And Prediction Pipeline | 9  |
| 2.9 UI Integration                   | 10 |
| 2.10 Data From User                  | 10 |
| 2.11 Data Validation                 | 10 |
| 2.12 Rendering the Results           | 10 |
| 3. Deployment                        | 10 |
| 3.1 Unit Test Cases                  | 11 |

#### **Abstract**

This Low-Level Design Document encapsulates the development of a comprehensive system poised to revolutionize inventory management and customer demand forecasting within the retail landscape. In the contemporary retail ecosystem, shopping malls and Big Marts meticulously collect and archive individual item sales data, yielding invaluable insights into consumer behavior and product specifics. These data repositories, securely stored within a data warehouse, serve as reservoirs of opportunity. Our system embarks on a transformative journey through the realms of data, expertly harnessing its power. The journey unfolds through meticulously orchestrated steps: data ingestion from Kaggle datasets, data transformation for cleanliness and relevance, model building to extract meaningful patterns, and the establishment of an efficient batch prediction pipeline. We don't stop there; we extend this journey to the end-users with a well-crafted, user-friendly interface, bridging the gap between data and actionable insights. This document, a testament to our technical prowess, delves deep into the modular architecture, interfaces, algorithms, and visualizations that underpin this transformative solution, setting the stage for a future where anomalies and common patterns emerge as strategic assets in the world of retail...

#### 1 Introduction

#### 1.1 Why this Low-Level Design Document?

The main purpose of this LLD documentation is to feature the required details of the project and supply the outline of the machine learning model and also the written code. This additionally provides the careful description on however the complete project has been designed end-to-end.

#### 1.2 Architecture



# 2.Architecture Description

#### 2.1. Data Gathering

The data for the current project is being gathered from Kaggle dataset, the link to the data is: BigMart Sales Data | Kaggle

#### 2.2. Tool Used

- Python 3.9 is employed because the programming language and frame works like numpy, pandas, sklearn, Flask, Streamlit and alternative modules for building the model.
- Visual Studio Code is employed as IDE.
- For code versioning GitHub is used
- Localhost and Streamlit Cloud is employed for deployment

#### 2.3 Data Description

We have train (8523) and test (5681) data set, train data set has both input and output

Columns Are:

variable(s). We need to predict the sales for test data set.

Item\_Identifier: Unique product ID Item\_Weight: Weight of product

Item\_Fat\_Content: Whether the product is low fat or not

Item\_Visibility: The % of total display area of all products in a store allocated to

the

particular product

Item\_Type: The category to which the product belongs

Item\_MRP: Maximum Retail Price (list price) of the product

Outlet\_Identifier: Unique store ID

Outlet\_Establishment\_Year: The year in which store was established Outlet\_Size: The size of the store in terms of ground area covered Outlet\_Location\_Type: The type of city in which the store is located Outlet\_Type: Whether the outlet is just a grocery store or some sort of supermarket

Item\_Outlet\_Sales: Sales of the product in the particular store. This is the outcome

# Low Level Design (LLD) variable to be predicted.

| 1  | Item_Ider | Item_Wei | Item_Fat_ | Item_Visi | Item_Type  | Item_MRF | Outlet_Id | Outlet_Es | Outlet_Si | Outlet_Lo | Outlet_Ty  | Item_Outl | et_Sales |
|----|-----------|----------|-----------|-----------|------------|----------|-----------|-----------|-----------|-----------|------------|-----------|----------|
| 2  | FDA15     | 9.3      | Low Fat   | 0.016047  | Dairy      | 249.8092 | OUT049    | 1999      | Medium    | Tier 1    | Supermar   | 3735.138  |          |
| 3  | DRC01     | 5.92     | Regular   | 0.019278  | Soft Drink | 48.2692  | OUT018    | 2009      | Medium    | Tier 3    | Supermar   | 443.4228  |          |
| 4  | FDN15     | 17.5     | Low Fat   | 0.01676   | Meat       | 141.618  | OUT049    | 1999      | Medium    | Tier 1    | Supermar   | 2097.27   |          |
| 5  | FDX07     | 19.2     | Regular   | 0         | Fruits and | 182.095  | OUT010    | 1998      |           | Tier 3    | Grocery St | 732.38    |          |
| 6  | NCD19     | 8.93     | Low Fat   | 0         | Househol   | 53.8614  | OUT013    | 1987      | High      | Tier 3    | Supermar   | 994.7052  |          |
| 7  | FDP36     | 10.395   | Regular   | 0         | Baking Go  | 51.4008  | OUT018    | 2009      | Medium    | Tier 3    | Supermar   | 556.6088  |          |
| 8  | FDO10     | 13.65    | Regular   | 0.012741  | Snack Foo  | 57.6588  | OUT013    | 1987      | High      | Tier 3    | Supermar   | 343.5528  |          |
| 9  | FDP10     |          | Low Fat   | 0.12747   | Snack Foo  | 107.7622 | OUT027    | 1985      | Medium    | Tier 3    | Supermar   | 4022.764  |          |
| 10 | FDH17     | 16.2     | Regular   | 0.016687  | Frozen Fo  | 96.9726  | OUT045    | 2002      |           | Tier 2    | Supermar   | 1076.599  |          |
| 11 | FDU28     | 19.2     | Regular   | 0.09445   | Frozen Fo  | 187.8214 | OUT017    | 2007      |           | Tier 2    | Supermar   | 4710.535  |          |
| 12 | FDY07     | 11.8     | Low Fat   | 0         | Fruits and | 45.5402  | OUT049    | 1999      | Medium    | Tier 1    | Supermar   | 1516.027  |          |
| 13 | FDA03     | 18.5     | Regular   | 0.045464  | Dairy      | 144.1102 | OUT046    | 1997      | Small     | Tier 1    | Supermar   | 2187.153  |          |
| 14 | FDX32     | 15.1     | Regular   | 0.100014  | Fruits and | 145.4786 | OUT049    | 1999      | Medium    | Tier 1    | Supermar   | 1589.265  |          |
| 15 | FDS46     | 17.6     | Regular   | 0.047257  | Snack Foo  | 119.6782 | OUT046    | 1997      | Small     | Tier 1    | Supermar   | 2145.208  |          |
| 16 | FDF32     | 16.35    | Low Fat   | 0.068024  | Fruits and | 196.4426 | OUT013    | 1987      | High      | Tier 3    | Supermar   | 1977.426  |          |
| 17 | FDP49     | 9        | Regular   | 0.069089  | Breakfast  | 56.3614  | OUT046    | 1997      | Small     | Tier 1    | Supermar   | 1547.319  |          |
| 18 | NCB42     | 11.8     | Low Fat   | 0.008596  | Health and | 115.3492 | OUT018    | 2009      | Medium    | Tier 3    | Supermar   | 1621.889  |          |
| 19 | FDP49     | 9        | Regular   | 0.069196  | Breakfast  | 54.3614  | OUT049    | 1999      | Medium    | Tier 1    | Supermar   | 718.3982  |          |
| 20 | DRI11     |          | Low Fat   | 0.034238  | Hard Drinl | 113.2834 | OUT027    | 1985      | Medium    | Tier 3    | Supermar   | 2303.668  |          |
| 21 | FDU02     | 13.35    | Low Fat   | 0.102492  | Dairy      | 230.5352 | OUT035    | 2004      | Small     | Tier 2    | Supermar   | 2748.422  |          |
| 22 | FDN22     | 18.85    | Regular   | 0.13819   | Snack Foo  | 250.8724 | OUT013    | 1987      | High      | Tier 3    | Supermar   | 3775.086  |          |
| 23 | FDW12     |          | Regular   | 0.0354    | Baking Go  | 144.5444 | OUT027    | 1985      | Medium    | Tier 3    | Supermar   | 4064.043  |          |
| 24 | NCB30     | 14.6     | Low Fat   | 0.025698  | Househol   | 196.5084 | OUT035    | 2004      | Small     | Tier 2    | Supermar   | 1587.267  |          |
| 25 | FDC37     |          | Low Fat   | 0.057557  | Baking Go  | 107.6938 | OUT019    | 1985      | Small     | Tier 1    | Grocery St | 214.3876  |          |

#### 2.4 Data Ingestion

The cornerstone of our data-driven project was established through a systematic process of data acquisition and ingestion. Utilizing Kaggle, a reputable platform renowned for its high-quality datasets, we identified and acquired the crucial data required for our price prediction project. This dataset, integral to our goal of accurate price forecasting, was meticulously downloaded and securely stored within our local system infrastructure. Subsequently, we initiated the data ingestion phase, where the dataset seamlessly integrated into our project's data pipeline. This meticulous approach ensures that our project is built upon a solid foundation, setting the stage for robust and precise price prediction models and analysis.

#### 2.5 Data Transformation

Steps performed in pre-processing are:

- First read data from Artifact folder
- Checking unnecessary columns
- One column has product id which is unique for every product so I deleted that column.
- Checked for null values
- there are too many null values are present in two columns that's why
  I deleted them
- Performed one-hot encoder on categorical columns.
- Perform Ordinal Encoder on Ordinal Columns.
- Scaling is performed for needed information.
- And, the info is prepared for passing to the machine learning formula

#### 2.6 Modelling

The pre-processed information is then envisioned and every one the specified insights are being drawn. though from the drawn insights, the info is at random unfold however still modelling is performed with completely different machine learning algorithms to form positive we tend to cowl all the chances. and eventually, Gradient Boosting performed well.

#### 2.7 Batch Prediction

In the pursuit of creating a comprehensive and efficient system, we have successfully executed batch prediction as a pivotal component of our project. Leveraging a meticulously designed data transformation pipeline, we have harnessed the power of our predictive model to generate accurate and timely batch predictions. This milestone signifies the culmination of our efforts in seamlessly processing and analyzing data, resulting in actionable insights that drive informed decision-making. As we prepare our Low-Level Design Document, this achievement underscores the significance of our data transformation pipeline and predictive model, which will be elaborately detailed to ensure clarity and scalability in our system architecture.

#### 2.8 Training And Prediction Pipeline

In our endeavor to create a robust and end-to-end data-driven solution, we have meticulously crafted both a training pipeline and a prediction pipeline. The training pipeline serves as the backbone for developing our predictive models, allowing us to iteratively train and fine-tune them with the highest precision possible. Meanwhile, the prediction pipeline enables us to seamlessly apply these trained models to new data, ensuring that our insights and forecasts remain consistently accurate and adaptable to real-

#### Low Level Design (LLD)

world scenarios. This dual pipeline approach embodies our commitment to providing a comprehensive, data-driven solution that empowers decision-makers with the most reliable and up-to-date information. As we delve into the creation of our Low-Level Design Document, we will intricately detail these pipelines, showcasing their sophistication and efficiency in our system architecture.

#### 2.9 UI Integration

Both CSS and HTML files are being created and are being integrated with the created machine learning model. All the required files are then integrated to the app.py file and tested locally

#### 2.3 Data from User

The data from the user is retrieved from the created HTML web page and Streamlit application .

#### 2.4 Data Validation

The data provided by the user is then being processed by app.py and application.py(streamlit application) file andvalidated. The validated data is then sent for the prediction.

#### 2.11 Rendering Result

The data sent for the prediction is then rendered to the web page.

#### 3. Deployment

The tested model is then deployed on local machine and Streamlit Cloud. So, users can access the project from any internet devices.

## 3.1 Unit Test

| Test Case                               | Description Pre-Requisite        | Expected Result                       |  |  |
|-----------------------------------------|----------------------------------|---------------------------------------|--|--|
| Verify whether the Application URL      | 1. Application URL               | Application URL should be             |  |  |
| is accessible to the user               | should be defined                | accessible to the user                |  |  |
| Verify whether the Application loads    | 1. Application URL is accessible | The Application should load           |  |  |
| completely for the user when the        | 2. Application is deployed       | completely for the user when the      |  |  |
| URL is accessed                         |                                  | URL is accessed                       |  |  |
| Verify whether user is able to edit all | 1. Application is accessible     | User should be able to edit all input |  |  |
| input fields                            | 2. User is signed up to the      | fields                                |  |  |
|                                         | application                      |                                       |  |  |
|                                         | 3. User is logged in to the      |                                       |  |  |
|                                         | application                      |                                       |  |  |
| Verify whether user gets Submit         | 1. Application is accessible     | User should get Submit button to      |  |  |
| button to submit the inputs             | 2. User is signed up to the      | submit the inputs                     |  |  |
|                                         | application                      |                                       |  |  |
|                                         | 3. User is logged in to the      |                                       |  |  |
|                                         | application                      |                                       |  |  |
| Verify whether user is presented        | 1. Application is accessible     | User should be presented with         |  |  |
| with Predicted results on clicking      | 2. User is signed up to the      | Predicted results on clicking         |  |  |
| submit                                  | application                      | submit                                |  |  |
|                                         | 3. User is logged in to the      |                                       |  |  |
|                                         | application                      |                                       |  |  |
|                                         |                                  |                                       |  |  |
|                                         |                                  |                                       |  |  |

Low Level Design (LLD)