OSTRUZIONI SUI GRAFI

Alcune ostruzioni per l'esistenza di grafi con dato score

1) Vale il seguente lemma

Lemma 1. Se G = (V, E) è un grafo finito con n vertici allora

$$\deg(v) \le n - 1, \qquad \forall v \in V.$$

Dal lemma segue che se in un vettore $d = (d_1, \ldots, d_n)$ con n componenti esiste almeno una componente d_i maggiore di n-1, NON esiste un grafo di score d.

Esempio. Il vettore

$$d = (1, 1, 1, 2, 2, 3, 4, 8)$$

non può essere lo score di un grafo perché ha 8 componenti di cui una maggiore di 8-1.

2) Se in un vettore d con n componenti, scritto in forma canonica,

$$d = (d_1, \dots, d_n)$$

la componente d_n è uguale al numero di vertici meno 1, cioè

$$d_n = n - 1$$

allora, affinché d sia lo score di un grafo, necessariamente dovrà essere

$$d_i \geq 1, \qquad i = 1, \dots, n.$$

Esempio. Il vettore

$$d = (0, 1, 1, 2, 2, 3, 4, 7)$$

non può essere le score di un grafo.

3) Se in un vettore d con n componenti, scritto in forma canonica,

$$d = (d_1, \dots, d_n)$$

ci sono due componenti di grado n-1

$$d_{n-1} = n - 1,$$
 $d_n = n - 1$

allora, affinché d sia lo score di un grafo, necessariamente dovrà essere

$$d_i \geq 2, \qquad i = 1, \dots, n.$$

Esempio. Il vettore

$$d = (1, 2, 3, 4, 5, 6, 7, 8, 8)$$

non può essere le score di un grafo.

4) Dalla relazione fondamentale tra i gradi dei vertici e il numero di lati per un grafo finito

$$\sum_{v \in V} \deg(v) = 2 |E|$$

segue il seguente risultato:

Lemma 2 (delle strette di mano). Se G = (V, E) è un grafo finito allora il numero di vertici di grado dispari è pari.

Pertanto, se un vettore con n componenti

$$d = (d_1, \dots, d_n)$$

non verifica il lemma delle strette di mano, non esiste un grafo di score d.

Esempio. Il vettore

$$d = (1, 1, 2, 2, 3, 4, 4, 5, 7)$$

non verifica il lemma delle strette di mano, infatti

$$|\{v \in V \mid \deg(v) \text{ è dispari }\}| = 5$$

dunque, non esiste un grafo di score d.

5) Un altro tipo di ostruzione all'esistenza di un grafo con fissato score si ottiene da una conseguenza del seguente lemma

Lemma 3. Sia G = (V, E) un grafo finito con n vertici e siano u e v due vertici di grado massimo, cioè

$$\deg(w) \le \deg(u)$$

$$deg(w) \le deg(v), \ \forall w \in V.$$

Allora il numero di vertici di G, diversi da u e da v, con grado almeno 2, sono almeno $\deg(u) + \deg(v) - n$:

$$|\{w \in V \setminus \{u, v\} \mid \deg(w) \ge 2\}| \ge \deg(u) + \deg(v) - n.$$

Il lemma fornisce una condizione necessaria all'esistenza di un grafo con fissato score d.

Esempio. Il vettore

$$d = (1, 1, 1, 3, 5, 5, 7, 7, 8, 8)$$

ha due componenti di grado massimo. Se esistesse un grafo G = (V, E) di score d si avrebbero due vertici, u e v di grado massimo

$$\deg(u) = \deg(v) = 8$$

Per un tal grafo si avrebbe

$$|\{w \in V \setminus \{u, v\} \mid \deg(w) \ge 2\}| = 5$$

e

$$\deg(u) + \deg(v) - n = 8 + 8 - 10 = 6$$

Ma non è vero che $5 \ge 6$, quindi non esiste un grafo di score d.

6) Un altro lemma utile per stabilire se esista un grafo con fissato score è il seguente

Lemma 4. Sia $d = (d_1, \ldots, d_n)$ un vettore a componenti intere tali che

$$0 < d_1 < \ldots < d_n < 2$$

e tali che sia soddisfatto il "lemma delle strette di mano", vale a dire che o non compaiono componenti uguali a 1 oppure il numero di componenti uguali a 1 è pari e maggiore o uguale di 2.

Si possono presentare tre diversi casi:

- 1) Tra le componenti del vettore d
 - * NON compaiono componenti uguali ad 1 ed
 - * esistono UNA o DUE componenti uguali a 2

$$d = (\underbrace{0, \dots, 0}_{n}, 2)$$

$$d = (\underbrace{0, \dots, 0}_{n}, 2, 2)$$

In questo caso NON esiste un grafo avente d come score.

- **2a)** Tra le componenti del vettore d
 - * NON compaiono componenti uguali ad 1 ed
 - * il numero m di componenti uguali a 2 o \grave{e} ZERO oppure \grave{e} maggiore o uguale a TRE

$$d = (\underbrace{0, \dots, 0}_{n}) \qquad m = 0$$

$$d = (\underbrace{0, \dots, 0}_{n}, \underbrace{2, \dots, 2}_{m}) \qquad m \ge 3$$

In entrambi i casi esiste un grafo avente d come score.

Nel primo caso (m=0) si avrà un grafo formato da n vertici di grado zero.

Nel secondo caso ($m \geq 3$) si potrà considerare il grafo costituito da n vertici di grado zero unito ad un ciclo C_m di lunghezza m.

2b) Tra le componenti del vettore d compaiono componenti uguali ad 1:

 $con \ n \ge 0, \ 2k + 2 \ge 2 \ e \ m \ge 0.$

In questo caso esiste un grafo di score d, basta prendere il grafo formato dall'unione di

- n vertici isolati di grado 0,
- un cammino formato dagli eventuali vertici di grado $2, w_1, \ldots, w_m$, con agli estremi i primi due vertici di grado $1, q_1 e q_2$,
- e infine k eventuali cammini di lunghezza 1 costituiti dai restanti vertici di grado $1, q_3, \ldots, q_{2k+2}$.

Esempio. d = (1, 1, 1, 1, 2, 2, 2)

Condizioni sufficienti alla connessione e alla sconnessione

Il seguente lemma è una conseguenza del teorema di esistenza di un albero di copertura per i grafi connessi finiti e della formula di Eulero per gli alberi.

Lemma 5. Sia G = (V, E) un grafo finito. Se G = (V, E) è connesso, allora

$$|E| \ge |V| - 1.$$

Osservazione importante! La condizione appena espressa è solo necessaria, non sufficiente, in altre parole, il viceversa è falso! Esistono cioè grafi finiti sconnessi per i quali vale la relazione

$$|E| > |V| - 1$$
.

Esempio. Il vettore d=(1,1,2,2,2) può essere sia lo score di un grafo connesso che di un grafo sconnesso:

- \bullet un cammino di lunghezza 4 realizza un grafo connesso di score d;
- un 3-ciclo unito ad un cammino di lunghezza 1 realizza un grafo SCONNESSO di score d e per esso vale la relazione $|E| \geq |V| 1$ infatti |V| = 5 e |E| = 4.

La condizione necessaria alla connessione di un grafo finito, stabilita dal lemma precedente, fornisce una condizione sufficiente alla sconnessione:

Lemma 6 ("forzatura" alla sconnessione). $Sia\ G = (V, E)\ un\ grafo$ finito. Se

$$|E| < |V| - 1$$

allora G è sconnesso.

Esempio. Sia G = (V, E) un grafo finito di score

$$d = (1, 1, 1, 1, 1, 1, 2, 2)$$

Notiamo che applicando il teorema dello score possiamo stabilire che esiste almeno un grafo di score d.

Per G vale la relazione |E| < |V| - 1, infatti

$$|V| = 8$$
 e $|E| = 5$

e vale

$$5 < 8 - 1$$

Dunque necessariamente ("per forza") G è sconnesso.

Una condizione sufficiente alla connessione è data dal seguente lemma:

Lemma 7 ("forzatura" alla connessione). Sia G = (V, E) un grafo finito e sia n = |V| il numero di vertici di G. Siano

$$d := \min \left\{ \deg(v) \mid v \in V \right\}$$
$$D := \max \left\{ \deg(v) \mid v \in V \right\}$$

Se

$$d \ge n - D - 1$$

allora G è connesso.

Esempio. Sia G = (V, E) un grafo finito di score

$$e = (2, 2, 3, 3, 3, 3, 4)$$

Notiamo che applicando il teorema dello score possiamo stabilire che esiste almeno un grafo di score e.

Per G abbiamo

$$d=2, \qquad D=4, \qquad n=7$$

e vale

$$2 \ge 7 - 4 - 1$$

Dunque necessariamente ("per forza") G è connesso.

Osservazione importante! La condizione appena espressa è solo sufficiente, non necessaria! Esistono cioè grafi finiti connessi per i quali NON vale la relazione

$$d \ge n - D - 1$$

Esempio. Sia G = (V, E) il grafo finito di score

$$e = (1, 1, 2, 2, 2)$$

rappresentabile come un cammino di lunghezza 4. Allora G è connesso ma non vale $d \geq n-D-1,$ infatti

$$d = 1, \qquad D = 2, \qquad n = 5$$

e

$$1 > 5 - 2 - 1 = 2$$
 è FALSA !!!