

UNIDAD 1 - TAREA 4 CONSTRUCCIÓN DE MÁQUINAS DE TURING

PRESENTADO POR:

HERNAN DARIO VARGAS

DANIEL STEVEN CRUZ GRISALES

ORLANDO DELGADO PINZON

LORENA PATRICIA VASQUEZ

ORTIZ

GRUPO NO. 301405_30

TUTOR: RAFAEL PÉREZ HOLGUÍN

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA PROGRAMA INGENIERÍA DE SISTEMAS AUTOMATAS Y LENGUAJES FORMALES COLOMBIA 2022

EJERCICIO A TRABAJAR

Registre aquí el Ejercicio a trabajar. Por favor agregue la imagen

Es reconocedora por que no transforma la información de la pila, mas si identifica un lenguaje concreto

Caracterización de la máquina de turing

- DEFINICION FORMAL MT

 $M=(Q,\Sigma,T,\delta,q0,B,F)$

donde

Q es el conjunto finito de estados que denotaremos

{q0,q1,q2}

 Σ es el alfabeto: el conjunto finito de símbolos de entrada.

{0,1}

T es el conjunto de símbolos de cinta. El alfabeto es un subconjunto de T.

{0,1}

q0 es el estado inicial: el estado en el que se encuentra inicialmente la MT.

B es un elemento de Σ : el símbolo en blanco. Se encuentra en todas las casillas de la cinta que no tienen un símbolo de entrada.

F es el conjunto de estados finales.

 $\{q2\}$

δ es la función de transiciones.

- CUADRO COMPARATIVO

ĺ	M TRANSDUCTORA	M ACEPTADORA
	Son aquellas en donde la	Son las más generales, que
	salida es binaria (sí/no),	convierten una secuencia de
	depende únicamente del	señales de entrada en una
	estado y existe un estado	secuencia de salida,

inicial. Puede decirse, entonces, que cuando la máquina produce una salida "positiva" (es decir, un "si"). **Ejemplo:** Es porque ha reconocido o aceptado la secuencia de entrada. En las máquinas de estados aceptoras, los estados con salida positiva se denominan estados finales.

pudiendo ésta ser binaria o más compleja, dependiendo de la entrada actual (no sólo del estado) y pudiendo también prescindirse de un estado inicial.

Ejemplo: La salida de cada estado de este tipo de máquinas, es una aceptación o no aceptación/rechazo. Los estados con salida positiva se les conoce como estados finales.

Procedimiento de paso a paso del recorrido de una cadena Realice de manera detallada y grafica el procedimiento paso a paso del recorrido de una cadena (La cadena la selecciona el estudiante, debe contener como mínimo 10 caracteres) en la

12345678910 0001100111

- Paso 1

La cabeza de la MT se encuentra en el primer dato de la

- Paso 2...

La cabeza de la MT se encuentra en el segundo dato de la

- Paso 3...

I a achara da la MT as anomentes an al tancan data da la sinta

en ei estado qu.

1 2 3 4 5 6 7 8 9 10 0 0 0 1 1 1 1

- Paso 4...

La cabeza de la MT se encuentra en el cuarto dato de la cinta, cambia el 1 por 1, mueve la cabeza hacia la D y transita al estado q1

1	2	3	4	5	6	7	8	9	10
0	0	0	1	1	0	0	1	1	1
T.	-					>			

- Paso 5...

La cabeza de la MT se encuentra en el quinto dato de la cinta, cambia el 1 por 1, mueve la cabeza hacia la D y se mantiene en el estado q1.

1	2	3	4	5	6	7	8	9	10
0	0	0	1	1	0	0	1	1	1
							>		

- Paso 6...

La cabeza de la MT se encuentra en el sexto dato de la cinta, cambia el 0 por 0, mueve la cabeza hacia la D y transita al estado q1

1	2	3	4	5	6	7	8	9	10
0	0	0	1	1	0	0	1	1	1
									•

- Paso 7...

La cabeza de la MT se encuentra en el séptimo dato de la cinta, cambia el 0 por 0, mueve la cabeza hacia la D y se mantiene en el estado q0.

1	2	3	4	5	6	7	8	9	10
0	0	0	1	1	0	0	1	1	1
									→

- Paso 8...

La cabeza de la MT se encuentra en el octavo dato de la cinta, cambia el 1 por 1, mueve la cabeza hacia la D y transita al estado q1

1	2	3	4	5	6	7	8	9	10
0	0	0	1	1	0	0	1	1	1

Desarrolle el siguiente ejercicio: Asuma que hubo error en el dato recibido en el par de bits codificados 2, 5 y 8 con distancia de haming.

Teniendo en cuenta que el dato de entrada es: 11100101

Bit (Posición dada en el orden que entran)								
	8	7	6	5	4	3	2	1
DATOS	1	1	1	0	0	1	0	1
ESTADO PRESENTE	11	11	10	00	01	10	01	10
CODIFICADO	01	10	11	11	01	00	01	11
RECIBIDO	11	10	11	10	01	00	11	11

Tabla De Datos, Estados Y Datos Codificados:

1 0 0	1
2	
0 1 0 0	1
3	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
4	
0 1 0	
5	
0 0 1	1
6	
1 0 0	1

Diagrama de árbol:

Diagrama de Estados:

Diagrama de Trellis:

BIBLIOGRAFÍA

- Martin, J. C., & Blanco y Correa Magallanes, J. L. (2004). Introduction to languages and the theory of computation. Lenguajes formales y teoría de la computación.
- Giro, J., Vázquez, J., Meloni, B., & Constable, L. (2015). Lenguajes formales y teoría de autómatas. Marcombo.

CK-12, (2012). Case History: How Math, Science, and Engineering

Led to the First Pocket Radio. [OVI]. Recuperado de

http://www.ck12.org/book/Engineering%3A-An-Introduction-forHigh-School/section/5.2/

- Kelley, D. (1995). Teoría de Autómatas y Lenguajes Formales, Prentice Hall Hispanoamericana.
- Brookshear, G. (1993). Teoría de la Computación, Addison Wesley Iberoamericana.