Math 185 Notes Complex Analysis

Professor: Christopher Ryba Scribe: Kelvin Lee

Contents

		3
1.1	Întro	3
	nplex Differentiation	6
2.1	Derivatives	6
	2.1.1 Continuity	6
	2.1.2 Properties of Limits	8
2.2	Derivatives (Cont'd)	8
	2.2.1 Properties of complex-derivatives	9

Lecture 1

Complex Numbers

1.1 Intro

Suppose we have the a Taylor series as follows:

$$\sum_{n=0}^{\infty} a_n x^n, \quad a_n \in \mathbb{R}$$

which happens to converge absolutely for |x| < r, where r is the radius of convergence, i.e.

$$\sum_{n=0}^{\infty} |a_n| |x|^n < \infty \quad \text{when } |x| < r, \quad \text{i.e. } x \in (-r, r).$$

Example 1.1.1. The series

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

converges absolutely for |x| < 1.

Question. Now what if we replace the real variable x by the complex variable z?

Answer. If |z| < r, then

$$\sum_{n=0}^{\infty} |a_n| |z|^n < \infty.$$

so the sum converges absolutely for $z \in D(0,r)$ (disc of radius r centered at zero). This gives a wider range than the real case.

So in this situation, our real-valued series can be extended to a complex-valued series.

Example 1.1.2. Let

$$f(z) = \begin{cases} e^{-1/z^2} & z \neq 0, \\ 0 & z = 0. \end{cases}$$

When viewed as a function $\mathbb{R} \to \mathbb{R}$, f(z) is infinitely differentiable at z = 0, and all derivatives of f(z) are zero at z = 0. Hence, the Taylor series is

$$f(0) + f'(0) \cdot x + \frac{f''(0)}{2} \cdot x^2 + \dots = 0 + 0 + 0 + \dots = 0.$$

So the Taylor series converges to a function different from f(z)!

Example 1.1.3. Consider the same example as above, but with z as a complex number. Let z = it where $t \in \mathbb{R}$. Then

$$e^{-1/z^2} = e^{1/t^2}$$
.

and so

$$f(it) = \begin{cases} e^{1/t^2} & t \neq 0, \\ 0 & t = 0 \end{cases}$$

which is not continuous at z = 0 and thus not complex-differentiable at z = 0.

Example 1.1.4. Now let's set z = x + iy where $x, y \in \mathbb{R}$. Consider a suitable power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

which we may view as a function $\mathbb{R}^2 \to \mathbb{R}^2$ (instead of $\mathbb{C} \to \mathbb{C}$). Let's differentiate with respect to x:

$$\frac{\partial f(z)}{\partial x} = \frac{\partial f(z)}{\partial z} \cdot \frac{\partial z}{\partial x} = f'(z)$$
$$\frac{\partial^2 f(z)}{\partial x^2} = \frac{\partial f'(z)}{\partial x} = \frac{\partial f'(z)}{\partial z} \cdot \frac{\partial z}{\partial x} = f''(z).$$

Now with respect to y:

$$\begin{split} \frac{\partial f(z)}{\partial y} &= \frac{\partial f(z)}{\partial z} \cdot \frac{\partial z}{\partial y} = if'(z) \\ \frac{\partial^2 f(z)}{\partial y^2} &= i\frac{\partial f'(z)}{\partial y} = i\frac{\partial f'(z)}{\partial z} \cdot \frac{\partial z}{\partial y} = -f''(z). \end{split}$$

We observe that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) = 0,$$

which means (the real and imaginary parts of) f(z) satisfy the two-dimensional Laplace equation.

Thus, complex analysis is a very powerful tool for solving the 2D Laplace equation.

Example 1.1.5. Consider the integral

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \arctan(\infty) - \arctan(-\infty)$$
$$= \frac{\pi}{2} - \left(-\frac{\pi}{2}\right)$$
$$= \pi.$$

But what about

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{1+x^2} dx, \quad a \in \mathbb{R}$$

It turns out that this would be quite tricky to compute this with real-valued techniques. But it would be easier using complex techniques (contour integration). Thus, complex analysis is also a powerful too for computing integrals.

Lecture 2

Complex Differentiation

2.1 Derivatives

Definition 2.1.1 (Derivative). The *derivative* of a complex-valued function is

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

just as in the real-valued case.

Recall that for real valued $f: \mathbb{R} \to \mathbb{R}$,

$$\lim_{x \to a} f(x) = L$$

means for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$

whenever $0 < |x - a| < \delta$. (For any "tolerance" ϵ , we can guarantee f(x) is within ϵ of L by forcing x to be close enough to a.)

Remark. Note that x = a doesn't satisfy 0 < |x - a|, so the value of f at x = a has no bearing on whether $\lim_{x\to a} f(x)$ exists.

2.1.1 Continuity

Definition 2.1.2 (Continuous). If $\lim_{x\to a} f(x) = f(a)$, then we say f is continuous at a.

Remark. Setting L = f(a) in the limit, $0 < |x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$ (even when x = a) when talking about continuity, we leave out the 0 < |x - a| part for convenience because x - a = 0 automatically works.

Now let's consider a function $f: \mathbb{C} \to \mathbb{C}$, $\lim_{z\to a} f(z) = L$ means for every $\epsilon > 0$, there is $\delta > 0$ such that

$$0 < |z - a| < \delta \implies |f(z) - L| < \epsilon$$
.

Remark. Now the z's that we worry about form an open disc with radius δ instead of an interval from the real case.

Similarly, if $\lim_{z\to a} f(z) = f(a)$, we say f is continuous at z=a.

Example 2.1.3. f(z) = z is continuous at any point $a \in \mathbb{C}$.

Proof. For $\epsilon > 0$, let $\delta = \epsilon$, then

$$|z - a| < \delta = \epsilon \implies |f(z) - f(a)| < \epsilon.$$

Example 2.1.4. $\lim_{z\to 0} \overline{z}/z$ (although this is undefined at z=0, this has no bearing on whether the limit exists).

Proof. Suppose $\lim_{z\to 0} \overline{z}/z = L$ for some L. Let's take $\epsilon = 1$. There is a $\delta > 0$ such that

$$0 < |z - 0| < \delta \implies \left| \frac{\overline{z}}{z} - L \right| < \epsilon = 1.$$

Let $z = \delta/2$ and so does $z = i\delta/2$. Then for $z = \delta/2$:

$$\frac{\overline{z}}{z} = \frac{\delta/2}{\delta/2} = 1 \implies |1 - L| < 1,$$

and for $z = i\delta/2$:

$$\frac{\overline{z}}{z} = \frac{-i\delta/2}{i\delta/2} = -1 \implies |-1 - L| < 1.$$

Thus, we see that the L must lie in the intersection of the two open unit discs centered at -1 and 1. However, since they are open discs, these two discs do not overlap and so L does not exist.

Remark. This implies that there is no way to extend \overline{z}/z to a continuous function at z=0.

2.1.2 Properties of Limits

If $\lim_{x\to a} f(x) = L_1$, $\lim_{x\to a} g(x) = L_2$, then

(i) $\lim_{x \to a} (f(x) + g(x)) = L_1 + L_2.$

(ii) $\lim_{x \to a} f(x)g(x) = L_1 L_2.$

(iii) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L_1}{L_2}, \quad L_2 \neq 0.$

Remark. These implies that the sum/product/quotient of continuous functions are continuous.

Proposition 2.1.5 (Composite function of continuous functions is continuous). If f(x) is continuous at x = a, and g(x) is continuous at x = f(a), then g(f(x)) is continuous at x = a.

Proof. We want $|g(f(x)) - g(f(a))| < \epsilon$. By continuity of g at x = f(a), there exists $\delta_1 > 0$ such that

$$|w - f(a)| < \delta_1 \implies |g(w) - g(f(a))| < \epsilon.$$

We want to take w = f(x), so we need

$$|f(x) - f(a)| < \delta_1.$$

But by continuity of f at x = a, we know that δ_1 will be our ϵ when $|x - a| < \delta_2$ for some $\delta_2 > 0$. Then for such x,

$$|g(f(x)) - g(f(a))| < \epsilon.$$

2.2 Derivatives (Cont'd)

Definition 2.2.1 (Differentiable). We say that f(z) is differentiable at z = a iff $\frac{f(z) - f(a)}{z - a}$ extends to a continuous function at z = a (the value there is f'(a)).

Example 2.2.2. f(z) = z is differentiable with f'(z) = 1.

Proof.

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{z+h-z}{h} = \lim_{h \to 0} 1 = 1.$$

Example 2.2.3 (Interesting one). $f(z) = \overline{z}$ is not differentiable but is continuous.

Proof.

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{\overline{z+h} - \overline{z}}{h}$$

$$= \lim_{h \to 0} \frac{\overline{z+h} - \overline{z}}{h}$$

$$= \lim_{h \to 0} \frac{\overline{h}}{h}$$

$$= \text{DNE} \qquad \text{(proved in previous example)}$$

Proposition 2.2.4 (Differentiability implies continuity). f(z) differentiable at z = a implies that f(z) is continuous at z = a.

Proof. We want to show that $\lim_{z\to a} f(z) = f(a)$.

$$\lim_{z \to a} f(z) - f(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a} \cdot (z - a)$$

$$= \lim_{z \to a} \frac{f(z) - f(a)}{z - a} \cdot \lim_{z \to a} (z - a) \quad \text{(assume both limits exist)}$$

$$= f'(a) \cdot 0$$

$$= 0.$$

Remark. This is a common technique to show continuity by showing the limit of the difference is zero.

2.2.1 Properties of complex-derivatives

(i)
$$\frac{d}{dz}cf(z) = cf'(z), \qquad \forall c \in \mathbb{C}.$$

(ii)
$$\frac{d}{dz}(f+g) = f'(z) + g'(z).$$

(iii)
$$\frac{d}{dz}(fg) = f'g + fg'.$$

(iv)
$$\frac{d}{dz}\left(\frac{f}{g}\right) = \frac{f'g - fg'}{g^2}.$$

(v)
$$\frac{d}{dz}f(g(z)) = g'(z)f'(g(z)).$$

Proposition 2.2.5 (Power rule).

$$\frac{d}{dz}z^n = nz^{n-1}$$

for all integers n.

Proof. We induct on n. For $n \geq 0$, when n = 0,

$$\frac{d}{dz}z^0 = \frac{d}{dz}1 = 0 = 0z^{-1}.$$

By the product rule,

$$\frac{d}{dz}z^n = \frac{d}{dz}(z \cdot z^{n-1})$$

$$= 1 \cdot z^{n-1} + z \cdot (n-1)z^{n-2} \qquad \text{(inductive hypothesis)}$$

$$= nz^{n-1}.$$

For n < 0, simply apply quotient rule.