Question	Answer	Marks	Guidance
(a)	$^{12}C_5 \times {}^{7}C_4 \ [\times {}^{3}C_3]$	M1	12 C _r × q, r = 3, 4, 5 q a positive integer > 1, no + or
		M1	$\begin{vmatrix} {}^{12}C_s \times {}^{12-s}C_t & [\times {}^{12-s-t}C_u] \\ s = 3, 4, 5; t = 3, 4, 5 \neq s; u = 3, 4, 5 \neq s, t \end{vmatrix}$
	$\frac{12!}{5! \times 3! \times 4!}$	M1	12! ÷ by a product of three factorials.
		M1	$\frac{n!}{5 \bowtie 3 \bowtie 4!}$
	$[792 \times 35 =] 27720$	A1	CAO
		3	

Question	Answer	Marks	Guidance	
(b)	4! (Lizo) × 6! (Kenny) × 2! (Martin) × 2! (Nantes)	M1	Product involving at least 3 of 4!, 6!, 2!, 2!	
	× 3! (orders of K, M and N)	M1	$w \times 3!$, w integer > 1.	
	414 720	A1	WWW CAO	
		3		
(c)	7 C ₄ (adults) × 4 C ₁ × 3 C ₁	M1	7 C ₄ × <i>b</i> , <i>b</i> integer > 1 no + or – .	
	420	A1		
		2		
(d)	K not L ${}^5C_3 \times {}^8C_3 = 560$ L not K ${}^5C_3 \times {}^8C_3 = 560$ L and K ${}^5C_2 \times {}^8C_3 = 560$	M1	$^{8}\text{C}_{3}(\text{or }^{8}\text{P}_{3}) \times c$ for one of the products or $^{5}\text{C}_{3}(\text{or }^{5}\text{P}_{3}) \times c$, positive integer >1 for first 2 products only.	
		M1	Add 2 or 3 correct scenarios only values, no additional incorrect scenarios, no repeated scenarios. Accept unsimplified.	
	[Total or Difference=] 1680	A1		
	Alternative method for question (d)			
	Total no of ways – neither L nor K Total = ${}^{7}C_{4} \times {}^{8}C_{3} = 1960$ Neither K nor L = ${}^{5}C_{4} \times {}^{8}C_{3} = 280$	M1	${}^{8}C_{3} \times c$, c a positive integer >1.	
		M1	Subtracting the number of ways with neither from their total number of ways.	
	[Total or Difference=] 1680	A1		

Question	Answer	Marks	Guidance	
(d)	Alternative method for question (d)			
	Subtracting K and L from sum of K and L K ${}^6C_3 \times {}^8C_3 = 1120$ L ${}^6C_3 \times {}^8C_3 = 1120$ L and K ${}^5C_2 \times {}^8C_3 = 560$ $1120 + 1120 - 560 = 1680$	M1	${}^{8}C_{3} \times c$, c a positive integer >1.	
		M1	Subtracting number of ways with both from sum of number of ways with K and number of ways with L.	
	[Total or Difference=] 1680	A1		
		3		