2022 Fall IE 313 Time Series Analysis

2. Fundamental Concepts

Yongjae Lee Department of Industrial Engineering

Chapter 2. Fundamental Concepts

2.1 Time Series and Stochastic Processes

2.2 Means, Variances, and Covariances

■ 2.3 Stationarity

Chapter 2.1

Time Series and Stochastic Processes

Time series

Time series data

- A series of data points observed at different points in time
- Usually, a time series is a sequence taken at successive equally spaced points in time
- Time series are mostly represented in line charts

Objective

 Find mathematical models that provide plausible descriptions for sample data

How?

We will model a time series as a stochastic process

Stochastic process

Stochastic process

- Sequence of random variables $\{Y_t: t=0,\pm 1,\pm 2,\pm 3,\dots\}$ indexed by time point t
 - Y_t denotes the value taken by the series at the i th time period

Stochastic process

Stochastic process

- Sequence of random variables $\{Y_t: t=0,\pm 1,\pm 2,\pm 3,...\}$ indexed by time point t
 - Y_t denotes the value taken by the series at the i th time period
 - The observed values of a stochastic process are referred to as a realization of the stochastic process
 - > There can be many different realizations based on a single stochastic process

 Objective: Find stochastic processes that provide plausible descriptions for sample data

Major difficulties arise in time series modeling

– If we have a large number of samples, we would have no problem of finding random variables $Y_1, Y_2, Y_3, Y_4, ...$

Major difficulties arise in time series modeling

- In time series analysis, it is common that we only observe a single realization (or just a few realizations)
- Then, how should we model random variables $Y_1, Y_2, Y_3, Y_4, ...$? Let's keep this in our mind

- Therefore,
 - 1. We are going to study the relationship between

$$Y_t$$
 and $Y_{t-1}, Y_{t-2}, ...$

instead of

each of
$$Y_1, Y_2, Y_3, ...$$

- 2. We will assume that the above relationship is consistent throughout the time series
- We will get into much details as we go on

Chapter 2.2

Means, Variances, and Covariances

Stochastic process

Stochastic process

- Sequence of random variables $\{Y_t: t=0,\pm 1,\pm 2,\pm 3,...\}$ indexed by time point t
 - Y_t denotes the value taken by the series at the i th time period
- A stochastic process is determined by the set of distributions of all finite collections of the Y_t 's
- Fortunately, we will not have to deal explicitly with these multivariate distributions
- Much of the information in these joint distributions can be described in terms of means, variances, and covariances

Mean function

- For a stochastic process $\{Y_t: t = 0, \pm 1, \pm 2, \pm 3, \dots\}$,
 - The mean function is defined by

$$\mu_t = E(Y_t)$$
 for $t = 0, \pm 1, \pm 2, ...$

- That is, μ_t is just the expected value of the process at time t
- In general, μ_t can be different at each time point t

Autocovariance function

- For a stochastic process $\{Y_t: t=0,\pm 1,\pm 2,\pm 3,\dots\}$,
 - The autocovariance function is defined by

$$\gamma_{t,s} = Cov(Y_t, Y_s)$$
 for $t, s = 0, \pm 1, \pm 2, ...$

• Where $Cov(Y_t, Y_s) = E[(Y_t - \mu_t)(Y_s - \mu_s)] = E(Y_t Y_s) - \mu_t \mu_s$

Autocorrelation function (ACF)

- For a stochastic process $\{Y_t: t = 0, \pm 1, \pm 2, \pm 3, \dots\}$,
 - The autocorrelation function (ACF) is defined by

$$\rho_{t,s} = Corr(Y_t, Y_s) \quad \text{for } t, s = 0, \pm 1, \pm 2, \dots$$

• Where
$$Corr(Y_t, Y_s) = \frac{Cov(Y_t, Y_s)}{\sqrt{Var(Y_t)Var(Y_s)}} = \frac{\gamma_{t,s}}{\sqrt{\gamma_{t,t}\gamma_{s,s}}}$$

You may refer to the basic properties of expectation, variance, covariance, and correlation in Appendix A on page 24 of our textbook

 Both covariance and correlations are measures of the (linear) dependence between random variables, but the unitless correlation is somewhat easier to interpret

Some important properties

$$\gamma_{t,t} = Var(Y_t)$$
 $\rho_{t,t} = 1$ $\gamma_{t,s} = \gamma_{s,t}$ $\rho_{t,s} = \rho_{s,t}$ $|\gamma_{t,s}| \le \sqrt{\gamma_{t,t}\gamma_{s,s}}$ $|\rho_{t,s}| \le 1$

- Values of $\rho_{t,s}$ near ± 1 indicate strong (linear) dependence, whereas values near zero indicate weak (linear) dependence
 - If $\rho_{t,s} = 0$, we say that Y_t and Y_s are uncorrelated

 Both covariance and correlations are measures of the (linear) dependence between random variables, but the unitless correlation is somewhat easier to interpret

Some important properties

- If $c_1, c_2, ..., c_m$ and $d_1, d_2, ..., d_n$ are constants and $t_1, t_2, ..., t_m$ and $s_1, s_2, ..., s_n$ are time points, then

$$Cov\left[\sum_{i=1}^{m}c_{i}Y_{t_{i}},\sum_{j=1}^{n}d_{j}Y_{s_{j}}\right] = \sum_{i=1}^{m}\sum_{j=1}^{n}c_{i}d_{j}Cov(Y_{t_{i}},Y_{s_{j}})$$
Linear combinations of values in time series are called **filtered** series

- Both covariance and correlations are measures of the (linear) dependence between random variables, but the unitless correlation is somewhat easier to interpret
 - Very smooth series exhibit autocovariance (or autocorrelation) functions that stay large even when the two time points are far apart
 - Whereas choppy series tend to have autocovariance (or autocorrelation) functions that are nearly zero for large separations

- Both covariance and correlations are measures of the (linear) dependence between random variables, but the unitless correlation is somewhat easier to interpret
 - Recall from classical statistics that even when $\rho_{t,s}=0$, there still may be some dependence structure between them
 - Example of correlation (not autocorrelation)
 - *X* is a standard normal random variable
 - Let $Y = X^2$
 - \rightarrow Then, ho_{XY} would be 0
 - > But they have obvious dependence

Source: http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html

Random walk

- Let $e_1, e_2, ...$ be a sequence of independent and identically distributed (i.i.d.) random variables with zero mean and variance σ_e^2 .
- The observed time series $\{Y_t: t=1,2,...\}$ is constructed as follows:

$$Y_1 = e_1$$

 $Y_2 = e_1 + e_2$
 \vdots
 $Y_t = e_1 + e_2 + \dots + e_t$

Alternatively, we can write

$$Y_t = Y_{t-1} + e_t$$

• With initial condition $Y_1 = e_1$

Random walk

- Mean

$$\mu_t = E(Y_t)$$
= $E(e_1 + e_2 + \dots + e_t)$
= $E(e_1) + E(e_2) + \dots + E(e_t)$
= $0 + 0 + \dots + 0$
= 0

– Therefore, $\mu_t=0$ for all t

Random walk

- Variance

$$\begin{aligned} Var(Y_t) &= Var(e_1 + e_2 + \dots + e_t) \\ &= Var(e_1) + Var(e_2) + \dots + Var(e_t) \\ &= \sigma_e^2 + \sigma_e^2 + \dots + \sigma_e^2 \\ &= t\sigma_e^2 \end{aligned}$$

- Therefore, $Var(Y_t) = t\sigma_e^2$
 - Variance of random walk increases linearly with time

Random walk

- Autocovariance (for $1 \le t \le s$)

$$\begin{split} \gamma_{t,s} &= Cov(Y_t, Y_s) \\ &= Cov(e_1 + e_2 + \dots + e_t, e_1 + e_2 + \dots + e_s) \\ &= \sum_{i=1}^s \sum_{j=1}^t Cov(e_i, e_j) \end{split}$$
 From page 16
$$= t\sigma_e^2$$

Recall that

$$\rightarrow Cov(e_i, e_j) = \sigma_e^2 \text{ when } i = j$$

$$\rightarrow Cov(e_i, e_j) = 0$$
 otherwise

– Therefore,
$$\gamma_{t,s} = t\sigma_e^2$$
 for $1 \le t \le s$

Random walk

- Autocorrelation (for $1 \le t \le s$)

$$\rho_{t,s} = \frac{\gamma_{t,s}}{\sqrt{\gamma_{t,t}\gamma_{s,s}}} = \frac{t\sigma_e^2}{\sqrt{t\sigma_e^2 s \sigma_e^2}} = \sqrt{\frac{t}{s}}$$

Note that

$$\rho_{1,2} = \sqrt{\frac{1}{2}} = 0.707$$
 $\rho_{8,9} = \sqrt{\frac{8}{9}} = 0.943$

$$\rho_{24,25} = \sqrt{\frac{24}{25}} = 0.980$$
 $\rho_{1,25} = \sqrt{\frac{1}{25}} = 0.200$

- The values of Y at neighboring time points are more and more strongly and positively correlated as time goes by
- On the other hand, the values of Y at distant time points are less and less correlated

Random walk

Exhibit 2.1 Time Series Plot of a Random Walk

Random walk

Moving average

- Suppose that $\{Y_t\}$ is constructed as

$$Y_t = \frac{e_t + e_{t-1}}{2}$$

An example of **filtered** series

Mean

$$\mu_t = E(Y_t) = E\left\{\frac{e_t + e_{t-1}}{2}\right\} = \frac{E(e_t) + E(e_{t-1})}{2} = 0$$

Variance

$$Var(Y_t) = Var\left\{\frac{e_t + e_{t-1}}{2}\right\} = \frac{Var(e_t) + Var(e_{t-1})}{4} = \frac{1}{2}\sigma_e^2$$

Moving average

- Autocovariance
 - First, let's see

$$\begin{aligned} Cov(Y_t, Y_{t-1}) &= Cov\left\{\frac{e_t + e_{t-1}}{2}, \frac{e_{t-1} + e_{t-2}}{2}\right\} \\ &= \frac{Cov(e_t, e_{t-1}) + Cov(e_t, e_{t-2}) + Cov(e_{t-1}, e_{t-1}) + Cov(e_{t-1}, e_{t-2})}{4} \\ &= \frac{Cov(e_{t-1}, e_{t-1})}{4} \\ &= \frac{1}{4}\sigma_e^2 \end{aligned}$$

Furthermore,

$$Cov(Y_t, Y_{t-2}) = Cov\left\{\frac{e_t + e_{t-1}}{2}, \frac{e_{t-2} + e_{t-3}}{2}\right\} = 0$$

- \rightarrow Since e_t 's are independent for different t's
- Similarly, $Cov(Y_t, Y_{t-k}) = 0$ for k > 1

Moving average

- Autocovariance
 - Therefore,

$$\gamma_{t,s} = \begin{cases} 0.5\sigma_e^2 & \text{for } |t - s| = 0\\ 0.25\sigma_e^2 & \text{for } |t - s| = 1\\ 0 & \text{for } |t - s| > 1 \end{cases}$$

Autocorrelation

• Similarly,

$$\rho_{t,s} = \begin{cases} 1 & \text{for } |t - s| = 0\\ 0.5 & \text{for } |t - s| = 1\\ 0 & \text{for } |t - s| > 1 \end{cases}$$

Moving average

- Autocorrelation
 - Similarly,

$$\rho_{t,s} = \begin{cases} 1 & \text{for } |t - s| = 0\\ 0.5 & \text{for } |t - s| = 1\\ 0 & \text{for } |t - s| > 1 \end{cases}$$

Unlike random walks,

$$\rho_{2.1} = \rho_{3.2} = \rho_{4.3} = \rho_{9.8} = 0.5$$

$$\rho_{3,1} = \rho_{4,2} = \rho_{t,t-2}$$

- ightarrow More generally, $ho_{t,t-k}$ is the same for all values of t
- As long as the distance between the two time points are the same, it doesn't matter where they occur in time

Chapter 2.3

Stationarity

Stationarity

 To make statistical inferences about the structure of a stochastic process, it is helpful to make some simplifying assumptions about that structure

The most important such assumption is that of stationarity

- The basic idea of **stationarity** is that the **probability laws** that govern the behavior of the process **do not change over time**
 - In a sense, the process is in statistical equilibrium

Strict stationarity

- A process $\{Y_t\}$ is said to be **strictly stationary**

if the joint distribution of Y_{t_1} , Y_{t_2} , ..., Y_{t_n} is the same as

the joint distribution of Y_{t_1-k} , Y_{t_2-k} , ..., Y_{t_n-k}

for all choices of time points $t_1, t_2, ..., t_n$

and all choices of time lag k

Strict stationarity

- For n=1,
 - The (univariate) distribution of Y_t is the same as that of Y_{t-k} for all t and k
 - > That is, Y's are (marginally) identically distributed
 - Also, $E(Y_t) = E(Y_{t-k})$ for all t and k
 - Mean function is constant over time
 - And $Var(Y_t) = Var(Y_{t-k})$ for all t and k
 - Variance is also constant over time

Strict stationarity

$$-$$
 For $n=2$,

- The bivariate distribution of Y_t and Y_s must be the same as that of Y_{t-k} and Y_{s-k} for all t, s and k
- It follows that $Cov(Y_t, Y_s) = Cov(Y_{t-k}, Y_{s-k})$ for all t, s and k
 - > If we put k = s and then k = t, we have

$$\gamma_{t,s} = Cov(Y_{t-s}, Y_0) \qquad k = s$$

$$= Cov(Y_0, Y_{s-t}) \qquad k = t$$

$$= Cov(Y_0, Y_{|t-s|})$$

$$= \gamma_{0,|t-s|}$$

> That is, autocovariance depends on time only through the time difference |t - s| and not otherwise on the actual times t and s

Strict stationarity

$$-$$
 For $n=2$,

 Thus, for a stationary process, we can simplify our notation and write

$$\gamma_k = Cov(Y_t, Y_{t-k})$$
 and $\rho_k = Corr(Y_t, Y_{t-k})$
 \Rightarrow Also, $\rho_k = \frac{\gamma_k}{\gamma_0}$

• General properties for a stationary process

$$\gamma_0 = Var(Y_t)$$
 $\rho_0 = 1$
$$\gamma_k = \gamma_{-k}$$

$$\rho_k = \rho_{-k}$$

$$|\gamma_k| \le \gamma_0$$

$$|\rho_k| \le 1$$

One problem

- Strict stationarity is too strong for most applications
 - Moreover, it is difficult to assess strict stationarity from a single data set
- Therefore, we would need a milder version that imposes conditions only on the first two moments of the series
 - Rather than imposing conditions on all possible distributions of a time series

(Weak) Stationarity

- (Weak) Stationarity
 - A process $\{Y_t\}$ is said to be **weakly** (or **second-order**) stationary if
 - The mean function is constant over time
 - $\gamma_{t,t-k} = \gamma_{0,k}$ for all time t and lag k
- Henceforth, the term 'stationary' when used alone will always refer to this weaker form of stationarity
 - But if the joint distributions for the process are all multivariate normal distributions, the two definitions coincide

White noise

- A very important example of a stationary process is the socalled white noise process
 - Defined as a sequence of i.i.d. random variables $\{e_t\}$
 - > Usually assume that it has mean zero and variance $Var(e_t) = \sigma_e^2$
 - Its strict stationarity is easy to see

$$\begin{aligned} &\Pr(e_{t_1} \leq x_1, e_{t_2} \leq x_2, \dots, e_{t_n} \leq x_n) \\ &= \Pr(e_{t_1} \leq x_1) \Pr(e_{t_2} \leq x_2) \cdots \Pr(e_{t_n} \leq x_n) \\ &= \Pr(e_{t_1-k} \leq x_1) \Pr(e_{t_2-k} \leq x_2) \cdots \Pr(e_{t_n-k} \leq x_n) \end{aligned}$$
 by independence
$$= \Pr(e_{t_1-k} \leq x_1) \Pr(e_{t_2-k} \leq x_2) \cdots \Pr(e_{t_n-k} \leq x_n)$$
 by independence
$$= \Pr(e_{t_1-k} \leq x_1, e_{t_2-k} \leq x_2, \dots, e_{t_n-k} \leq x_n)$$

$$\Rightarrow \ \, \mathsf{Also,} \, \mu_t = E(e_t) \text{ is constant and } \gamma_k = \begin{cases} Var(e_t) & \text{for } k = 0 \\ 0 & \text{for } k \neq 0 \end{cases}$$

$$\Rightarrow \text{ Alternatively, } \rho_k = \begin{cases} 1 & \text{for } k = 0 \\ 0 & \text{for } k \neq 0 \end{cases}$$

White noise

- A very important example of a stationary process is the socalled white noise process
 - Defined as a sequence of i.i.d. random variables $\{e_t\}$
 - > Usually assume that it has mean zero and variance $Var(e_t) = \sigma_e^2$

White noise

- A very important example of a stationary process is the socalled white noise process
 - Many useful processes can be constructed from white noise
 - > Example: moving average

$$Y_t = \frac{e_t + e_{t-1}}{2}$$

» In our new notation, the process has

$$\rho_k = \begin{cases} 1 & \text{for } k = 0 \\ 0.5 & \text{for } |k| = 1 \\ 0 & \text{for } |k| \ge 2 \end{cases}$$

White noise

- A very important example of a stationary process is the socalled white noise process
 - Many useful processes can be constructed from white noise
 - > Example: random walk

$$Y_t = Y_{t-1} + e_t, Y_1 = e_1$$

- » Note that random walk is constructed from white noise but is not stationary
 - $Var(Y_t) = t\sigma_e^2$ is not constant
 - $\gamma_{t,s} = Cov(Y_t,Y_s) = t\sigma_e^2$ for $0 \le t \le 2$ does not depend only on time lag |t-s|

