GSE143893

ukke

6 december 2021

```
library(affy)
library(arrayQualityMetrics)
library(ArrayExpress)
library(limma)
library(siggenes)
```

Methylation Data

We selected the dataset with accession number GSE143893 as a methylation dataset. This data contains Whole Genome Bisulfite Sequencing of CD4+ T cells from mice developmentally exposed to vehicle or TCDD prior to and during influenza infection. We loaded only samples from mice that were not treated with TCDD.

General info

Methylation profiling by high throughput sequencing:GSE143893 We selected the dataset with accession number GSE143893 as a methylation dataset. This data contains Whole Genome Bisulfite Sequencing of CD4+ T cells from mice developmentally exposed to vehicle or TCDD prior to and during influenza infection. We loaded only samples from mice that were not treated with TCDD.

Intensity values

loading in the data

```
library(methylKit)
## Warning: package 'methylKit' was built under R version 4.0.3
##
## Attaching package: 'methylKit'
## The following object is masked from 'package:AnnotationDbi':
##
##
       select.
file.list=list( "C:/Users/tobia/Documents/AHAT/GSM4276332_Vehicle-Naive1_CpG.txt",
                "C:/Users/tobia/Documents/AHAT/GSM4276334_Vehicle-Naive2_CpG.txt",
                "C:/Users/tobia/Documents/AHAT/GSM4276336_Vehicle-Naive3_CpG.txt",
                "C:/Users/tobia/Documents/AHAT/GSM4276338_Vehicle-Infected1_CpG.txt",
                "C:/Users/tobia/Documents/AHAT/GSM4276340_Vehicle-Infected2_CpG.txt",
                "C:/Users/tobia/Documents/AHAT/GSM4276342 Vehicle-Infected3 CpG.txt")
# read the files to a methylRawList object: myobj immediately filter so that sites supported by less th
myobj=methRead(file.list,
           sample.id=list("vehicle_naive1", "vehicle_naive2", "vehicle_naive3", "vehicle_infected1", "vehi
           assembly="GRCm38.p5",
```

```
treatment=c(0,0,0,1,1,1),
          context="CpG",
          mincov = 10
## Received list of locations.
## Reading file.
head(myobj)
## [[1]]
## methylRaw object with 3313657 rows
## -----
                    end strand coverage numCs numTs
     chr start
## 1 chr1 3003380 3003380 - 10 9
                         - 10 9
- 12 11
- 11 11
+ 12 12
- 13 9
## 2 chr1 3009138 3009138
                                                 1
## 3 chr1 3011266 3011266
                                                 1
## 4 chr1 3012097 3012097
## 5 chr1 3014974 3014974
                                                 0
## 6 chr1 3017888 3017888
                                                 4
## -----
## sample.id: vehicle_naive1
## assembly: GRCm38.p5
## context: CpG
## resolution: base
##
##
## [[2]]
## methylRaw object with 2388205 rows
## -----
                    end strand coverage numCs numTs
     chr start
## 1 chr1 3003583 3003583 - 10 10
                                                 0
                                 11 8
13 11
11 11
12 12
12 6
## 2 chr1 3005999 3005999
## 3 chr1 3007581 3007581
                                                 2
## 4 chr1 3012097 3012097
                                                 0
## 5 chr1 3014612 3014612
                                                 0
## 6 chr1 3017888 3017888
                                                 6
## -----
## sample.id: vehicle_naive2
## assembly: GRCm38.p5
## context: CpG
## resolution: base
##
##
## [[3]]
## methylRaw object with 3445871 rows
## -----
## chr start
                    end strand coverage numCs numTs
## 1 chr1 3007581 3007581
                                     13
                                         11
```

```
## 2 chr1 3009138 3009138
                             - 11
## 3 chr1 3012097 3012097
                                     12
                                          12
## 4 chr1 3020815 3020815
                                    10
                                          8
## 5 chr1 3020843 3020843
                                     10
                                           6
                                                 4
## 6 chr1 3020878 3020878
                                     13
                                          13
                                                 0
## -----
## sample.id: vehicle_naive3
## assembly: GRCm38.p5
## context: CpG
## resolution: base
##
##
## [[4]]
## methylRaw object with 3853966 rows
##
     chr start
                    end strand coverage numCs numTs
## 1 chr1 3003380 3003380
                                     13
                                          10
## 2 chr1 3003899 3003899
                                                 0
## 3 chr1 3007581 3007581
                                           8
                                                 3
                                     11
                                 12
14
10
## 4 chr1 3011266 3011266
                                          10
                                                 2
## 5 chr1 3012840 3012840
                             +
                                          9
                                                 5
## 6 chr1 3014602 3014602
                                          10
## -----
## sample.id: vehicle_infected1
## assembly: GRCm38.p5
## context: CpG
## resolution: base
##
##
## [[5]]
## methylRaw object with 3939620 rows
## -----
     chr
          start
                    end strand coverage numCs numTs
## 1 chr1 3003227 3003227
                          - 10
## 2 chr1 3003340 3003340
                                     10
                                          10
                                                 0
## 3 chr1 3014602 3014602
                                  11
18
                                     11
                                          11
                                                 0
## 4 chr1 3014612 3014612
                                        17
## 5 chr1 3014742 3014742
                                   10
                                          8
                                                 2
## 6 chr1 3020795 3020795
                                     11
                                          10
## -----
## sample.id: vehicle_infected2
## assembly: GRCm38.p5
## context: CpG
## resolution: base
##
##
## [[6]]
## methylRaw object with 4769378 rows
     chr start
                    end strand coverage numCs numTs
## 1 chr1 3011266 3011266
                           - 13
                                        12
                                                 1
                                  12
10
                                          10
                                                 2
## 2 chr1 3011314 3011314
## 3 chr1 3012097 3012097
                                          10
                                                 0
                                  12
## 4 chr1 3014533 3014533
                                          12
                                                 0
```

```
## 5 chr1 3014556 3014556 - 16 16 0
## 6 chr1 3014612 3014612 - 16 15 1
## ------
## sample.id: vehicle_infected3
## assembly: GRCm38.p5
## context: CpG
## resolution: base
```

viewing the data

View the methylation rates per sample with the plot function that is provided in the package.

naive_1 <- getMethylationStats(myobj[[1]],plot=TRUE,both.strands=FALSE)</pre>

naive_2 <- getMethylationStats(myobj[[2]],plot=TRUE,both.strands=FALSE)</pre>

naive_3 <- getMethylationStats(myobj[[3]],plot=TRUE,both.strands=FALSE)</pre>

infected_1 <- getMethylationStats(myobj[[4]],plot=TRUE,both.strands=FALSE)</pre>

infected_2 <- getMethylationStats(myobj[[5]],plot=TRUE,both.strands=FALSE)</pre>

infected_3 <- getMethylationStats(myobj[[6]],plot=TRUE,both.strands=FALSE)</pre>

View the coverage rates per sample with the plot function that is provided in the package.

naive_1 <- getCoverageStats(myobj[[1]],plot=TRUE,both.strands=FALSE)</pre>

naive_2 <- getCoverageStats(myobj[[2]],plot=TRUE,both.strands=FALSE)</pre>

naive_3 <- getCoverageStats(myobj[[3]],plot=TRUE,both.strands=FALSE)</pre>

infected_1 <- getCoverageStats(myobj[[4]],plot=TRUE,both.strands=FALSE)</pre>

infected_2 <- getCoverageStats(myobj[[5]],plot=TRUE,both.strands=FALSE)</pre>

infected_3 <- getCoverageStats(myobj[[6]],plot=TRUE,both.strands=FALSE)</pre>

filtering the data is not necessary because no signs of PCR bias are observed (features with very high coverage). But is strongly recommended by methylkit so....

```
# filter out extreme coverage values (top 0.1%)
filtered <- filterByCoverage(myobj, hi.count = 99.9)
# normalize coverage to to avoid bias introduced by systematically more sequenced samples
normalized <- normalizeCoverage(filtered)</pre>
```

merging samples

 ${\it \# destrand parameter can be set to TRUE as we're working with base-pair resolution \it CpG methylation data} \\ {\it meth=unite(normalized, destrand=TRUE)}$

```
## destranding...
```

uniting...

head (meth)

##		chr	start	end	strand c	overage1	numCs1	numTs1	coverage2	numCs2	numTs2
##	1	GL456210.1	773	773	+	34	32	2	26	24	2
##	2	GL456210.1	779	779	+	36	36	0	28	24	4
##	3	GL456210.1	7360	7360	+	16	13	3	15	13	2
##	4	GL456210.1	17333	17333	+	20	10	10	11	9	2
##	5	GL456210.1	26873	26873	+	12	12	0	14	14	0
##	6	GL456210.1	33611	33611	+	34	24	10	29	21	8
##		coverage3	numCs3	numTs3	coverage	e4 numCs4	numTs4	covera	age5 numCs	5 numTs	5
##	1	12	12	0		22 22	2 ()	14 1	4 ()
##	2	13	13	0		24 24	. ()	16 1	5	1
##	3	19	13	6		29 17	' 12	2	16 1	3 :	3
##	4	15	9	6		11 7	, 4	<u> </u>	13	8 !	5
##	5	11	10	1		18 18	3 ()	11 1	0 :	1
##	6	21	13	8	;	30 21	. 9)	28 1	7 1:	1
##		coverage6	numCs6	numTs6							
##	1	14	14	0							
##	2	13	11	2							

```
## 3
             19
                     14
                              5
## 4
             27
                     19
                              8
## 5
                     10
             10
                              0
## 6
             31
                     24
                              7
```

get the sample correlation

getCorrelation(meth,plot=F)

##	,	vehicle_naive1	vehicle_naive2	vehicle_naive3	
## vehicl	e_naive1	1.0000000	0.8918948	0.8959197	
## vehicl	e_naive2	0.8918948	1.0000000	0.8957106	
## vehicl	e_naive3	0.8959197	0.8957106	1.0000000	
## vehicl	e_infected1	0.8900042	0.8923888	0.8952116	
## vehicl	e_infected2	0.8916590	0.8929707	0.8954318	
## vehicl	e_infected3	0.8965660	0.8973933	0.9013212	
##	,	vehicle_infecte	ed1 vehicle_infe	ected2 vehicle_	infected3
## vehicl	e_naive1	0.89000	0.89	916590	0.8965660
## vehicl	e_naive2	0.89238	388 0.89	929707	0.8973933
## vehicl	e_naive3	0.89521	.16 0.89	954318	0.9013212
## vehicl	e_infected1	1.00000	000 0.89	950831	0.8993060
## vehicl	e_infected2	0.89508	331 1.00	000000	0.9004814
## vehicl	e_infected3	0.89930	0.90	004814	1.0000000

All samples have a very high correlation rate.

Cluster the samples samples

```
clusterSamples(meth, dist="correlation", method="ward")
```

The "ward" method has been renamed to "ward.D"; note new "ward.D2"


```
##
## Call:
## hclust(d = d, method = HCLUST.METHODS[hclust.method])
##
## Cluster method : ward.D
## Distance : pearson
## Number of objects: 6
PCA
```

PCASamples (meth)

This PCA plot is not similar to the other pca-plots we made => make same figure with our figure style.

```
# preprocessing steps used by methylkit (code obtained from open source scripts on their github)
mat = getData(meth)
meth.mat = mat[, meth@numCs.index]/
  (mat[,meth@numCs.index] + mat[,meth@numTs.index] )
names(meth.mat)=meth@sample.ids
# remove rows (bases) that are to simillar to avoid error from scale. parameter
sds=rowSds(as.matrix(meth.mat))
cutoff=quantile(sds,0.5)
meth.mat=meth.mat[sds>cutoff,]
# transpose the data before PcA as this function requires the variables to b columns
pca <- prcomp(t(meth.mat), center = T, scale. = T)</pre>
summary(pca)
## Importance of components:
##
                                PC1
                                         PC2
                                                   PC3
                                                            PC4
                                                                      PC5
                                                                                PC6
                           145.4873 142.2571 141.5512 138.7873 135.8371 3.092e-12
## Standard deviation
## Proportion of Variance
                             0.2135
                                      0.2041
                                                0.2021
                                                         0.1943
                                                                  0.1861 0.000e+00
## Cumulative Proportion
                             0.2135
                                                0.6197
                                                         0.8139
                                                                  1.0000 1.000e+00
                                      0.4176
# save as dataframe and add treatment variable
pca_out <- as.data.frame(pca$x)</pre>
pca_out$treatment <- c("control", "control", "control", "infected", "infected", "infected")</pre>
pca_out$sample <- c("rep1", "rep2", "rep3", "rep1", "rep2", "rep3")</pre>
# qet lablels
percentage <- round(pca$sdev / sum(pca$sdev) * 100, 2)</pre>
percentage <- paste( colnames(pca_out), "(", paste( as.character(percentage), "%", ")", sep="") )</pre>
ggplot(data = pca_out)+
  geom_point(aes(x = PC1, y = PC2, colour = treatment, label=sample), size=3)+
 \#geom\_text(aes(x = PC1, y = PC2, colour = treatment, label=sample), hjust=0.5, vjust=1.15)+
```

```
theme_bw()+
xlab(percentage[1])+
ylab(percentage[2])+
labs(colour = "treatment")+
theme(plot.title = element_text(hjust = 0.5))+
scale_colour_manual(values = c("firebrick", "midnightblue"))+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
```

Warning: Ignoring unknown aesthetics: label


```
ggsave("PCA_WGBS.png", dpi=750, height = 5, width = 8)
```

get differentially methylated bases

```
myDiff=calculateDiffMeth(meth)
```

```
## two groups detected:
## will calculate methylation difference as the difference of
## treatment (group: 1) - control (group: 0)

myDiff25p=getMethylDiff(myDiff,difference=50,qvalue=0.05)
diffMethPerChr(myDiff,plot=FALSE,qvalue.cutoff=0.05, meth.cutoff=25)
```

```
## Warning in eval(quote(list(...)), env): NAs introduced by coercion
## $diffMeth.per.chr
             chr number.of.hypermethylated percentage.of.hypermethylated
##
## 2
                                                                0.023485204
            chr1
## 13
            chr2
                                           2
                                                                0.014286735
## 14
            chr3
                                           5
                                                                0.056605910
## 15
            chr4
                                           0
                                                                0.00000000
## 16
            chr5
                                           1
                                                                0.007189589
## 17
            chr6
                                           1
                                                                0.010610080
                                           2
## 18
            chr7
                                                                0.016335865
## 19
            chr8
                                           3
                                                                0.024135157
## 20
            chr9
                                           1
                                                                0.009399380
## 3
                                           2
           chr10
                                                                0.019892580
## 4
           chr11
                                           0
                                                                0.00000000
## 5
           chr12
                                           0
                                                                0.00000000
                                           2
## 6
           chr13
                                                                0.023482447
```

```
## 7
           chr14
                                                                0.027348557
## 8
           chr15
                                           1
                                                                0.012134450
           chr16
## 9
                                           1
                                                                0.016095284
## 10
           chr17
                                           3
                                                                0.032119914
## 11
           chr18
                                           0
                                                                0.00000000
## 12
                                           1
           chr19
                                                                0.016911889
## 1
      JH584304.1
                                           1
                                                                0.123762376
## 21
            chrX
                                           4
                                                                0.078988942
##
      number.of.hypomethylated percentage.of.hypomethylated
## 2
                              2
                                                  0.015656803
## 13
                              3
                                                  0.021430102
                              5
## 14
                                                  0.056605910
                              9
## 15
                                                  0.061859922
## 16
                              1
                                                  0.007189589
## 17
                              4
                                                  0.042440318
## 18
                              4
                                                  0.032671731
## 19
                              5
                                                  0.040225261
## 20
                              1
                                                  0.009399380
## 3
                              2
                                                  0.019892580
                              3
## 4
                                                  0.024246343
                                                  0.035215401
## 5
                              3
## 6
                              4
                                                  0.046964894
## 7
                              6
                                                  0.082045672
## 8
                                                  0.012134450
                              1
## 9
                              4
                                                  0.064381136
## 10
                              2
                                                  0.021413276
## 11
                              5
                                                  0.082209799
                              5
## 12
                                                  0.084559445
## 1
                              0
                                                  0.00000000
## 21
                              1
                                                  0.019747235
##
## $diffMeth.all
     number.of.hypermethylated percentage.of.hypermethylated
## 1
                             35
                                                    0.01763997
##
     number.of.hypomethylated percentage.of.hypomethylated
## 1
                                                  0.03527995
myDiff25p
##
                 chr
                                    end strand
                                                      pvalue
                                                                    qvalue meth.diff
                         start
## 823
          JH584304.1
                         34304
                                  34304
                                              + 8.199773e-25 1.489274e-19 58.17783
## 2181
                chr1 23116177 23116177
                                              + 1.509287e-06 1.305345e-02 -50.82067
## 25320
               chr11 12515663 12515663
                                              + 3.913577e-06 2.328643e-02 -50.73359
## 54015
               chr14 14346963 14346963
                                              + 3.793240e-07 5.299560e-03 -51.04396
                                              + 2.402432e-07 3.636157e-03 52.82230
## 57803
               chr14 63756321 63756321
## 73359
               chr16 67339031 67339031
                                              + 1.342956e-05 3.752504e-02 -50.11583
               chr18 12517640 12517640
                                              + 2.020320e-07 3.636157e-03 -53.55898
## 85272
## 113429
                chr3 57941935 57941935
                                              + 5.898043e-17 5.356126e-12 81.43590
                chr7 79299862 79299862
                                              + 1.501372e-07 3.636157e-03
## 163682
                                                                            51.22549
Diffmeth <-calculateDiffMeth(meth, overdispersion="MN",test="Chisq")
## two groups detected:
## will calculate methylation difference as the difference of
## treatment (group: 1) - control (group: 0)
```

```
Diff25p=getMethylDiff(Diffmeth,difference=50,qvalue=0.05)
diffMethPerChr(Diffmeth,plot=FALSE,qvalue.cutoff=0.05, meth.cutoff=25)
## $diffMeth.per.chr
##
      chr number.of.hypermethylated percentage.of.hypermethylated
## 1 chr3
                                                        0.02264236
## 2 chr4
                                   0
                                                        0.0000000
    number.of.hypomethylated percentage.of.hypomethylated
## 1
                            0
                                                0.006873325
## 2
                            1
##
## $diffMeth.all
     number.of.hypermethylated percentage.of.hypermethylated
##
## 1
                                                  0.001007998
     number.of.hypomethylated percentage.of.hypomethylated
##
## 1
```

There appear to be a very low number of differentially methylated positions between cells from mice infected with influenza and those that are not infected with influenza.

annotating differentially methylated bps

##

```
library(genomation)
## Warning: package 'genomation' was built under R version 4.0.3
## Loading required package: grid
## Attaching package: 'genomation'
## The following objects are masked from 'package:methylKit':
##
##
       getFeatsWithTargetsStats, getFlanks, getMembers,
##
       getTargetAnnotationStats, plotTargetAnnotation
# load the hgr18 bed file.
gene.obj=readTranscriptFeatures("C:/Users/tobia/Documents/AHAT/mm10_RefSeq.bed.gz")
## Reading the table...
## Calculating intron coordinates...
## Calculating exon coordinates...
## Calculating TSS coordinates...
## Calculating promoter coordinates...
## Outputting the final GRangesList...
# annotate to promotors, exons, introns.
diffAnn=annotateWithGeneParts(as(myDiff25p, "GRanges"),gene.obj)
## Warning in .Seqinfo.mergexy(x, y): Each of the 2 combined objects has sequence levels not in the oth
##
     - in 'x': JH584304.1
##
     - in 'y': chr2, chr4, chr5, chr6, chr8, chr9, chrM, chrX, chrY, chr10, chr12, chr13, chr15, chr17,
```

Make sure to always combine/compare objects based on the same reference

genome (use suppressWarnings() to suppress this warning).

```
## Warning in .Seqinfo.mergexy(x, y): Each of the 2 combined objects has sequence levels not in the oth
     - in 'x': JH584304.1
##
##
     - in 'y': chr2, chr4, chr5, chr6, chr8, chr9, chrM, chrX, chrY, chr10, chr12, chr13, chr15, chr17,
    Make sure to always combine/compare objects based on the same reference
##
     genome (use suppressWarnings() to suppress this warning).
## Warning in .Seqinfo.mergexy(x, y): Each of the 2 combined objects has sequence levels not in the oth
##
     - in 'x': JH584304.1
##
     - in 'y': chr2, chr4, chr5, chr6, chr8, chr9, chrM, chrX, chrY, chr10, chr12, chr13, chr15, chr17,
##
     Make sure to always combine/compare objects based on the same reference
     genome (use suppressWarnings() to suppress this warning).
## Warning in .Seqinfo.mergexy(x, y): Each of the 2 combined objects has sequence levels not in the oth
     - in 'x': chr2, chr4, chr5, chr6, chr8, chr9, chrM, chrX, chrY, chr10, chr12, chr13, chr15, chr17,
##
##
     - in 'y': JH584304.1
    Make sure to always combine/compare objects based on the same reference
##
     genome (use suppressWarnings() to suppress this warning).
## Warning in .Seqinfo.mergexy(x, y): Each of the 2 combined objects has sequence levels not in the oth
     - in 'x': chr2, chr4, chr5, chr6, chr8, chr9, chrM, chrX, chrY, chr10, chr12, chr13, chr15, chr17,
##
##
     - in 'y': JH584304.1
    Make sure to always combine/compare objects based on the same reference
##
     genome (use suppressWarnings() to suppress this warning).
##
## Warning in .Seqinfo.mergexy(x, y): Each of the 2 combined objects has sequence levels not in the oth
     - in 'x': chr2, chr4, chr5, chr6, chr8, chr9, chrM, chrX, chrY, chr10, chr12, chr13, chr15, chr17,
##
     - in 'y': JH584304.1
##
     Make sure to always combine/compare objects based on the same reference
     genome (use suppressWarnings() to suppress this warning).
# get associated transcription start sites
getAssociationWithTSS(diffAnn)
        target.row dist.to.feature
                                     feature.name feature.strand
## 2654
                 2
                             -7812
                                      XR 373275.2
## 446
                 3
                            -50704 XM_006514485.3
## 1756
                 4
                              -134 XM 006517940.1
## 3580
                 5
                            -13886
                                      XR_383493.2
## 2992
                 6
                            106991
                                      XR_876148.2
                 7
## 30
                             13434 XM 006525690.2
## 2433
                             -7173
                                      XR 867305.2
## 5296
                 9
                               914
                                      XR_882244.1
# save features as vector
features <- c("no feature linked", getAssociationWithTSS(diffAnn)[[3]])
features
## [1] "no feature linked" "XR_373275.2"
                                                "XM_006514485.3"
## [4] "XM_006517940.1"
                           "XR_383493.2"
                                                "XR_876148.2"
## [7] "XM_006525690.2"
                           "XR_867305.2"
                                                "XR_882244.1"
dist_features <- c(NA, getAssociationWithTSS(diffAnn)[[2]])</pre>
summary <- as.data.frame(myDiff25p)</pre>
# add feature information to myDiff25p
summary$feature <- features</pre>
summary$dist.to.feature <- dist_features</pre>
```

```
summary
##
                 chr
                         start
                                    end strand
                                                                    qvalue meth.diff
                                                      pvalue
## 823
          JH584304.1
                         34304
                                  34304
                                              + 8.199773e-25 1.489274e-19 58.17783
## 2181
                chr1 23116177 23116177
                                              + 1.509287e-06 1.305345e-02 -50.82067
## 25320
                                              + 3.913577e-06 2.328643e-02 -50.73359
               chr11 12515663 12515663
## 54015
               chr14 14346963 14346963
                                              + 3.793240e-07 5.299560e-03 -51.04396
                                              + 2.402432e-07 3.636157e-03 52.82230
## 57803
               chr14 63756321 63756321
## 73359
               chr16 67339031 67339031
                                              + 1.342956e-05 3.752504e-02 -50.11583
## 85272
               chr18 12517640 12517640
                                              + 2.020320e-07 3.636157e-03 -53.55898
## 113429
                chr3 57941935 57941935
                                              + 5.898043e-17 5.356126e-12 81.43590
                                              + 1.501372e-07 3.636157e-03 51.22549
## 163682
                chr7 79299862 79299862
##
                    feature dist.to.feature
## 823
          no feature linked
                XR_373275.2
                                       -7812
## 2181
## 25320
             XM 006514485.3
                                      -50704
             XM 006517940.1
## 54015
                                        -134
## 57803
                XR 383493.2
                                      -13886
## 73359
                XR_876148.2
                                      106991
## 85272
             XM 006525690.2
                                       13434
## 113429
                XR_867305.2
                                       -7173
## 163682
                XR_882244.1
                                         914
diffAnn@members
##
         prom exon intron
##
    [1,]
            0
                         0
##
    [2,]
            0
                 0
                         0
##
   [3,]
            0
                 0
                         0
##
  [4,]
            1
##
  [5,]
            0
                 0
##
   [6,]
            0
                 0
##
   [7,]
            0
                 Λ
                         1
##
    [8,]
##
   [9,]
            1
                 1
                         1
promoters=regionCounts(normalized,gene.obj$promoters)
head(promoters[[1]])
##
      chr
            start
                       end strand coverage numCs numTs
## 1 chr1 3360551 3362551
                                        11
## 2 chr1 3670498 3672498
                                       285
                                               16
                                                    270
## 3 chr1 3671278 3673278
                                       160
                                               15
                                                    146
## 4 chr1 4232728 4234728
                                        25
                                               17
                                                      8
## 5 chr1 4242365 4244365
                                        11
                                                8
                                                      3
## 6 chr1 4359314 4361314
                                        26
                                               21
                                                      5
getTargetAnnotationStats(diffAnn,percentage=TRUE,precedence=TRUE)
##
     promoter
                     exon
                              intron intergenic
##
        22.22
                    0.00
                               33.33
                                           44.44
same for more stringent
# annotate to promotors, exons, introns.
diffAnn_str=annotateWithGeneParts(as(Diff25p, "GRanges"), gene.obj)
```

```
# get associated transcription start sites
getAssociationWithTSS(diffAnn_str)
       target.row dist.to.feature feature.name feature.strand
## 2433
          1
                    -7173 XR 867305.2
# save features as vector
features <- c(getAssociationWithTSS(diffAnn_str)[[3]])</pre>
dist_features <- c(getAssociationWithTSS(diffAnn_str)[[2]])</pre>
summary <- as.data.frame(Diff25p)</pre>
# add feature information to myDiff25p
summary$feature <- features</pre>
summary$dist.to.feature <- dist_features</pre>
summary
                start end strand
                                                       qvalue meth.diff
##
         chr
                                            pvalue
## 113429 chr3 57941935 57941935 + 5.898043e-17 1.117464e-11 81.4359
      feature dist.to.feature
## 113429 XR_867305.2
                       -7173
diffAnn_str@members
       prom exon intron
## [1,]
         0 0
getTargetAnnotationStats(diffAnn_str,percentage=TRUE,precedence=TRUE)
##
                           intron intergenic
    promoter
                   exon
##
                     0
                                0
```