1.1 亮点

- (1) 提出两个学习 pooling 的方法(结合 max pooling 和 average pooling)
- (2) 构建一种树状的自学习池化滤波器

1.2 初衷

在 CNN 网络中主要有两个操作,一个是卷积,另一个是池化,然后在 CNN 中,卷积 的参数是学习而来的,但是 pool 中,无论是 max pooling 和 average pooling 均不是 学习而来,因此作者提出一种方法使得 CNN 的 pooling 也是学习得到的,不仅没有改变 pooling 不变性,仅仅增加一点计算量即可令模型的效果刷到了 state of art。

1.3 原理

作者提出了两种学习 pooling 的算法,第一种是把传统的 pooling 方法组合起来,第二种是组合一些学习到的 pooling 方法 (tree pooling),其中第一种又分为两种实现,第一种实现为单纯地把 max pooling 和 average pooling 组合起来(mixed pooling),第二种实现是在第一种的基础上加一个门限 (gate pooling)。

1.3.1 mixed max-average pooling

average pooling 是把池化区域中的所有像素取平均值,max pooling 是取所有像素的最大值,然后两种方法都在特定的场合里有非常有的作用,因此我们希望能把他们放在一起,根据不同的情况去选择用哪一种 pooling 方法,因此有:

$$f_{\text{mix}}(\mathbf{x}) = a_{\ell} \cdot f_{\text{max}}(\mathbf{x}) + (1 - a_{\ell}) \cdot f_{\text{avg}}(\mathbf{x}),$$

其中参数 α_l 是学习得到的,但是这也有一个问题,在训练结束之后, α_l 一旦保持不变,也就意味着 pooling 的方法与被 pooling 的区域的特性无关,这样不太好,最好是有一个类似自适应的 pooling 方法,根据被 pooling 区域的特征确定 pooling 方法。这就产生了 gate max-average pooling。

1.3.2 gate max-average pooling

gate max-average pooling 把第一种方法的权值变成了门限权值矩阵与被 pooling 区域的像素值的内积,这样子学习的并不是 α_l 参数,而是权值矩阵 W:

$$f_{\text{gate}}(\mathbf{x}) = \sigma(\boldsymbol{\omega}^{\mathsf{T}}\mathbf{x})f_{\text{max}}(\mathbf{x}) + (1 - \sigma(\boldsymbol{\omega}^{\mathsf{T}}\mathbf{x}))f_{\text{avg}}(\mathbf{x})$$

在第二种方法中,我们可以看到原来的权值换成了权值矩阵与被 pooling 区域像素点的内积,这样被 pooling 区域矩阵 x 携带了这张特定图片自身的信息,导入了图片信息。

1.3.3 tree pooling

首先,用一个池化滤波器与被池化区域做内积,比如我们有四个池化滤波器,分别做完内积就是四个叶子节点。然后,用 gated pooling 的思路,四个叶子节点的数值分别乘以 gated pooling 的权重再相加,得到两个节点。最后,这两个节点再做一次 gated pooling,得到根节点,根节点的值就是这个区域池化得到的结果。

1.4 实验

Method	MNIST	CIFAR10	CIFAR10+	CIFAR100
Baseline	0.39	9.01	7.22	34.38
	± 0.031	± 0.096	± 0.099	± 0.096
w/ Stochastic	0.38	8.50	7.30	33.48
no learning	± 0.04	± 0.05	± 0.07	± 0.27
w/ 50/50 mix	0.34	8.11	6.78	33.53
no learning	± 0.012	± 0.10	± 0.17	± 0.16
W / Mixed 1 per pool layer 2 extra params	0.33	8.09	6.62	33.51
	± 0.018	± 0.19	± 0.21	± 0.11
W/ Mixed 1 per layer/ch/rg >40k extra params	0.30	8.05	6.58	33.35
	± 0.012	± 0.16	± 0.30	± 0.19
w/ Gated 1 per pool layer 18 extra params	0.29	7.90	6.36	33.22
	± 0.016	± 0.07	± 0.28	± 0.16

Method	MNIST	CIFAR10	CIFAR10 ⁺	CIFAR100	SVHN
Our baseline	0.39 ± 0.031	9.01 ± 0.096	7.22 ± 0.099	34.38 ± 0.096	1.89 ± 0.069
Tree 2 level; 1 per pool layer	0.34 ± 0.028	8.52 ± 0.175	6.54 ± 0.156	33.64 ± 0.285	1.81 ± 0.047
Tree 3 level; 1 per pool layer	0.38 ± 0.032	8.43 ± 0.091	6.38 ± 0.165	32.85 ± 0.181	1.73 ± 0.096
Tree+Max-Avg 1 per pool layer	0.31 ± 0.031	7.61 ± 0.121	6.02 ± 0.047	32.87 ± 0.278	1.70 ± 0.069

实验结果还是非常不错的,有时间才 caffe 或者 TensorFlow 下可以实现一下。