e.g
$$(2t^2+1)+(-t^2+3t+2)=t^2+3t+3$$
.

e.g
$$(-3)(-t^2+3t+2)=3t^2-9t-6$$
.

We want to represent abstract vectors as column vectors so we can do calculations (e.g. row-reduction) to study linear systems (e.g. week 7 p15) and linear transformations (e.g. week 7 p28)

Is this really different from \mathbb{R}^3 ?

$$\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}.$$
 (-3)
$$\begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -9 \\ -6 \end{bmatrix}.$$

Semester 1 2016, Week 8, Page 1 of 20

HKBU Math 2207 Linear Algebra

We want to represent abstract vectors as column vectors so we can do calculations (e.g. row-reduction) to study linear systems and linear transformations.

In
$$\mathbb{R}^n$$
, $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$. $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ must span V

 $\lfloor \mathbf{L}^{u}n_{
m J}$ We can copy this idea: in V, pick a special set of vectors $\{\mathbf{b}_1,\dots,\mathbf{b}_n\}$, write each

$${\bf x}$$
 in V uniquely as $c_1{\bf b}_1+\dots+c_n{\bf b}_n$ and represent ${\bf x}$ by the column vector \vdots .

Example: In
$$\mathbb{P}_2$$
, let $\mathbf{b}_1 = 1$, $\mathbf{b}_2 = t$, $\mathbf{b}_3 = t$

Example: In \mathbb{P}_2 , let $\mathbf{b}_1=1, \mathbf{b}_2=t, \mathbf{b}_3=t^2$. Then we represent $a_0+a_1t+a_2t^2$ by $\begin{bmatrix} a_0\\a_1\\a_2\end{bmatrix}$ (slightly different from previous page; see p9, p12).

HKBU Math 2207 Linear Algebra

§4.3: Bases

Definition: Let W be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if

i ${\cal B}$ is a linearly independent set, and ii Span $\{\mathbf{b}_1,\dots,\mathbf{b}_p\}=W$

The order matters: $\{\mathbf{b}_1,\mathbf{b}_2\}$ and $\{\mathbf{b}_2,\mathbf{b}_1\}$ are different bases.

ii means: W is the set of vectors of the form $c_1\mathbf{b}_1+\cdots+c_p\mathbf{b}_p$ where c_1,\ldots,c_p means: The only solution to $x_1\mathbf{b}_1+\cdots+x_p\mathbf{b}_p=\mathbf{0}$ is $x_1=\cdots=x_p=0$. can take any value.

Condition ii implies that $\mathbf{b}_1,\dots,\mathbf{b}_p$ must be in W, because $\mathsf{Span}\left\{\mathbf{b}_1,\dots,\mathbf{b}_p\right\}$ contains each of $\mathbf{b}_1,\dots,\mathbf{b}_p.$

Every vector space ${\cal V}$ is a subspace of itself, so we can take ${\cal W}={\cal V}$ in the definition and talk about bases for ${\cal V}.$

Definition: Let W be a subspace of a vector space V. An indexed set of vectors

 $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if i \mathcal{B} is a linearly independent set, and ii Span $\{\mathbf{b}_1,\dots,\mathbf{b}_p\}=W.$

$$\mathbf{e}_1 = egin{bmatrix} 1 \ 0 \end{bmatrix}, \mathbf{e}_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}, \mathbf{e}_3 = egin{bmatrix} 0 \ 0 \end{bmatrix}.$$

HKBU Math 2207 Linear Algebra

 $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if i \mathcal{B} is a linearly independent set, and ii Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$. A basis for W is not unique: (different bases are useful in different situations, more later).

more later). Let's look for a different basis for \mathbb{R}^3

Example: Let
$${f v}_1=egin{bmatrix}1\\2\\0\end{bmatrix}$$
 , ${f v}_2=egin{bmatrix}0\\1\end{bmatrix}$. Is $\{{f v}_1,{f v}_2\}$ a basis for \mathbb{R}^3 ?

Answer: No, because two vectors cannot span \mathbb{R}^3 : $\begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$ cannot

have a pivot in every row

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 8, Page 5 of 20

Definition: Let W be a subspace of a vector space V. An indexed set of vectors

 $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if i \mathcal{B} is a linearly independent set, and

ii Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$.

A basis for W is not unique: (different bases are useful in different situations,

More than \boldsymbol{n} vectors: too many vectors, linearly dependent.

Answer: No, because four vectors in
$$\mathbb{R}^3$$
 must be linearly dependent:
$$\begin{bmatrix} | & | & | \\ | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
 cannot have a pivot in every column.

Semester 1 2016, Week 8, Page 7 of 20

HKBU Math 2207 Linear Algebra

Definition: Let W be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if

i ${\cal B}$ is a linearly independent set, and ii Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$. A basis for ${\cal W}$ is not unique: (different bases are useful in different situations,

Example: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$. Is $\left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\}$ a basis for \mathbb{R}^3 ?

Answer: Form the matrix
$$A=\begin{bmatrix} |&|&|\\ \mathbf{v}_1&\mathbf{v}_2&\mathbf{v}_3\\ |&|&|\end{bmatrix}=\begin{bmatrix} 1&0&-1\\ 2&1&0\\ 0&1&3\end{bmatrix}$$
 . Because $\det A=1\neq 0$, the matrix A is invertible, so (by Invertible Matrix Theorem) its

columns are linearly independent and its columns span \mathbb{R}^3 . Semester 1 2016, Week 8, Page 6 of 20

Fewer than n vectors: not enough vectors, can't span $\mathbb R$ Fact: $\{\mathbf{v}_1,\dots\mathbf{v}_p\}$ is a basis for \mathbb{R}^n if and only if. \bullet p=n (i.e. the set has exactly n vectors), and By the same logic as in the above examples: • $\det \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ 1 & \cdots & 1 \end{bmatrix} \neq 0.$

To check that this is a basis:

- ii By definition of \mathbb{P}_n , every element of \mathbb{P}_n has the form $a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n$, so $\mathcal B$ spans $\mathbb P_n$.
- i To see that ${\cal B}$ is linearly independent, we show that $c_0=c_1=\cdots=c_n=0$ is the only solution to

$$c_0+c_1t+c_2t^2+\cdots+c_nt^n=0$$
. (the zero function)

Substitute t=0: we find $c_0=0$.

Differentiate, then substitute t=0: we find $c_1=0$.

Differentiate again, then substitute t=0: we find $c_2=0$.

Repeating many times, we find $c_0=c_1=\cdots=c_n=0$.

Once we have the standard basis of \mathbb{P}_n , it will be easier to check if other sets are bases of \mathbb{P}_n , using coordinates (later, p14).

Semester 1 2016, Week 8, Page 9 of 20 Advanced exercise: what do you think is the standard basis for $M_{m \times n}$?

One way to make a basis for V is to start with a set that spans V.

Theorem 5: Spanning Set Theorem: If $V = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, then some subset of $\{\mathbf{v}_1,\dots,\mathbf{v}_p\}$ is a basis for V .

- **Proof**: (essentially the casting-out algorithm see week 3)

 If $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent, it is a basis for V.

 If $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent, then one of the \mathbf{v}_i s is a linear combination of the others. Removing this \mathbf{v}_i from the set still gives a set that spans V. Continue removing vectors in this way until the remaining vectors are linearly independent.

Example:
$$\mathbb{R}^2 = \mathsf{Span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}$$
, but this set is not linearly independent

because
$$\begin{bmatrix} 2\\2 \end{bmatrix}$$
 is a linear combination of the others: $\begin{bmatrix} 2\\2 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix} + \begin{bmatrix} 1\\2 \end{bmatrix}$. So remove $\begin{bmatrix} 2\\2 \end{bmatrix}$ to get the basis $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$.

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 8, Page 10 of 20

PP 234, 238-240 (§4.4), 307-308 (§5.4): Coordinates

Recall (p2) that our motivation for finding a basis is because we want to write each vector ${\bf x}$ as $c_1{\bf b}_1+\dots+c_p{\bf b}_p$ in a unique way. Let's show that this is indeed possible

Theorem 7: Unique Representation Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1,\ldots,c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

Since $\mathcal B$ spans V, there exists scalars c_1,\ldots,c_n such that the above equation holds. Suppose x has another representation

$$\mathbf{x} = d_1\mathbf{b}_1 + \dots + d_n\mathbf{b}_n.$$
 for some scalars d_1,\dots,d_n . Then $\mathbf{0} = \mathbf{x} - \mathbf{x} = (c_1-d_1)\mathbf{b}_1 + \dots + (c_n-d_n)\mathbf{b}_n.$

Because ${\cal B}$ is linearly independent, all the weights in this equation must be zero, i.e. $(c_1-d_1)=\cdots=(c_n-d_n)=0.$ So $c_1=d_1,\ldots,c_n=d_n.$

Semester 1 ZUID, VVeek 8, Page 11 of 2U

coordinates of x relative to \mathcal{B} , or the \mathcal{B} -coordinates of x, are the unique weights **Definition**: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for V. Then, for any \mathbf{x} in V, the

Because of the Unique Representation Theorem, we can make the following definition:

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of x relative to \mathcal{B} , or the \mathcal{B} -coordinate vector of x.

Example: Let $\mathcal{B}=\left\{1,t,t^2,t^3
ight\}$ be the standard basis for \mathbb{P}_3 . Then the coordinate

vector of an arbitrary polynomial is $[a_0+a_1t+a_2t^2+a_3t^3]_{\mathcal{B}}=igg|_{a_2}$

HKBU Math 2207 Linear Algebra

Semester 1 2 $\lfloor a_3 \rfloor$ \Leftrightarrow 8, Page 12 of 20

Because of the Unique Representation Theorem, the function V to \mathbb{R}^n given by

$$\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$$
 (e.g. $a_0 + a_1 t + a_2 t^2 + a_3 t^3 \mapsto \begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix}$) is linear, one-to-one and onto.

Definition: A linear transformation $T:V \to W$ that is both one-to-one and onto is called an isomorphism. We say V and W are isomorphic.

different, the two spaces behave the same as vector spaces. Every vector space This means that, although the notation and terminology for ${\cal V}$ and ${\cal W}$ are calculation in ${\cal V}$ is accurately reproduced in ${\cal W}$, and vice versa.

isomorphic, so we can solve problems about V (e.g. span, linear independence) mportant consequence: if V has a basis of n vectors, then V and \mathbb{R}^n are by working in \mathbb{R}^n .

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 8, Page 13 of 20

If V has a basis of n vectors, then V and \mathbb{R}^n are isomorphic, so we can solve problems about V (e.g. span, linear independence) by working in \mathbb{R}^n .

Answer: The coordinates of these polynomials relative to the standard basis of \mathbb{P}_3 are **Example**: Is the set of polynomials $\left\{1,2-t,(2-t)^2,(2-t)^3
ight\}$ linearly independent?

$$[1]_{\mathcal{B}} = \begin{bmatrix} 1\\0\\0\\2\\1 \end{bmatrix}, \qquad [(2-t)^2]_{\mathcal{B}} = [4-4t+t^2]_{\mathcal{B}} = \begin{bmatrix} -4\\1\\1\\8 \end{bmatrix},$$

$$[2-t]_{\mathcal{B}} = \begin{bmatrix} -1\\0\\0 \end{bmatrix}, \quad [(2-t)^3]_{\mathcal{B}} = [(8-12t+6t^2-t^3]_{\mathcal{B}} = \begin{bmatrix} -12\\6\\0\\-1 \end{bmatrix}$$

The set of polynomials is linearly independent if and only if their coordinate vectors are linearly independent (continued on next page).

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 8, Page 14 of 20

Example: Is the set of polynomials $\left\{1,2-t,(2-t)^2,(2-t)^3\right\}$ linearly independent? Answer: (continued). The matrix

$$\begin{bmatrix} 1 & 2 & 4 & 8 \\ 0 & -1 & -4 & -12 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

linearly independent in \mathbb{R}^4 . So the polynomials are linearly independent. (In fact they has determinant 1 (it is diagonal so its determinant is the product of the diagonal entries), so it is invertible, and by the Invertible Matrix Theorem, its columns are form a basis, because IMT says they also span \mathbb{R}^4)

fewer than four vectors, we would have to row reduce: free variable \implies dependent; (Because we have a set of four vectors in \mathbb{R}^4 , we can use the det+IMT. If we had no free variables / pivot in each column \implies independent.)

(This idea is how I usually prove that a set is a basis in my research work.) 3U Math 2207 Linear Algebra Advanced exericse: if \mathbf{p}_i has degree exactly i, then $\{\mathbf{p}_0,\mathbf{p}_1,\dots\mathbf{p}_n\}$ is a basis for \mathbb{P}_n . HKBÙ Math 2207 Linear Algebra

If V has a basis of n vectors, then V and \mathbb{R}^n are isomorphic, so we can solve problems about V (e.g. span, linear independence) by working in \mathbb{R}^n .

What about problems concerning linear transformations $T: V \to W$?

- apply T to ith basis vector, put the Remember from week 4: Every linear transformation $T:\mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation $T(\mathbf{x}) = A\mathbf{x}$, where

The standard matrix is useful because we can solve $T(\mathbf{x}) = \mathbf{y}$ by row-reducing $[A|\mathbf{y}]$.

Definition: If V is a vector space with basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $T: V \to V$ is a linear transformation, then the matrix for T relative to \mathcal{B} is $[T]_{\mathcal{B}} = \begin{bmatrix} T(\mathbf{b}_1)]_{\mathcal{B}} & \dots & [T(\mathbf{b}_n)]_{\mathcal{B}} \\ & & \text{basis of } \mathbb{R}^n. \end{bmatrix}$

$$[T]_{\mathcal{B}} = \begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{B}} & \dots & [T(\mathbf{b}_n)]_{\mathcal{B}} \\ & & & \end{bmatrix}$$

HKBU Math 2207 Linear Algebra

basis of \mathbb{R}^n .) Semester 1 2016, Week 8, Page 16 of 20

$$[T]_{\mathcal{B}} = \begin{bmatrix} & & & & \\ & & & \\ [T(\mathbf{b}_1)]_{\mathcal{B}} & \dots & [T(\mathbf{b}_n)]_{\mathcal{B}} \end{bmatrix}.$$

EXAMPLE:(p308 of textbook) Let $T:\mathbb{P}_2 \to \mathbb{P}_2$ be the differentiation notion

$$T(a_0+a_1t+a_2t^2)=\frac{d}{dt}(a_0+a_1t+a_2t^2)=a_1+2a_2t$$
 Nok in the standard basis of \mathbb{P}_2 . $b_1=1$, $b_2=t$, $b_3=t^2$.

$$T(\mathbf{b_1}) = T(\mathbf{b_2}) = T(\mathbf{b_3}) =$$

$$\begin{bmatrix} \\ \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

The matrix $[T]_{\mathcal{B}}$ is useful because

$$[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}},$$

*

so we can solve $T(\mathbf{x}) = \mathbf{y}$ by row-reducing $\left\lceil [T]_{\mathcal{B}} \middle| [\mathbf{x}]_{\mathcal{B}}
ight
ceil$

Example: Let $T:\mathbb{P}_2\to\mathbb{P}_2$ be the differentiation function $T(\mathbf{p})=\frac{d}{dt}\mathbf{p}$ as on the previous page. Here is an example of equation (*) for $\mathbf{x}=2+3t-t^2$.

$$T(2+3t-t^2)=\frac{d}{dt}(2+3t-t^2) = 3-2t$$

$$[T]_{\mathcal{B}}\begin{bmatrix}2\\3\\-1\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&2\\-1\end{bmatrix}\begin{bmatrix}2\\3\\-1\end{bmatrix}=\begin{bmatrix}0\\1\end{bmatrix}$$
 Some other things about T that we can learn from the matrix $[T]_{\mathcal{B}}$:

- ome other things about T that we can learn from the matrix $[I]_{\mathcal{B}}$: $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$
 - ullet $[T]_{\mathcal{B}}$ is in reduced echelon form, and it does not have a pivot in every row, so T is

Basis and coordinates for subspaces: $\begin{bmatrix} a \\ b \end{bmatrix}, \text{ where } a,b \text{ can take any value.}$

We showed (week 7 p13) that W is a subspace of \mathbb{R}^3 because $W={\sf Span}\left\{egin{array}{c} 1\\0\\0 \end{array}, egin{array}{c} 0\\0\\1 \end{array}
ight]$

Because
$$\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ the coordinate vector of } \begin{bmatrix} a \\ 0 \end{bmatrix}, \text{ relative to the basis}$$

$$\begin{cases} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \text{ is } \begin{bmatrix} a \\ b \end{bmatrix}. \text{ So } \begin{bmatrix} a \\ 0 \end{bmatrix} \\ b \end{bmatrix} \xrightarrow{\text{Semester 1 2016, Week 8, Page 15}}$$

Semester 1 2016, Week 8, Page 19 of 20

instead of 3 numbers). In this picture (p239 of textbook, example 7 in
$$\S4.4$$
), $\mathcal{B} = \{\mathbf{v_1}, \mathbf{v_2}\}$ is a basis for a plane. The basis allows us to draw a coordinate grid on the plane.

Coordinates for subspaces (e.g. planes in \mathbb{R}^3) are useful as they allow us to represent points in the subspace with fewer numbers (e.g. with 2 numbers

vector describes the location of x

relative to this coordinate grid.

The \mathcal{B} -coordinate vector of \mathbf{x} is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\3 \end{bmatrix}$. This coordinate