概率论与随机过程:作业 #1

完成于 9 月 22 日, 2019

杨勇,2019110294

习题 1

设 A_1, A_2, \cdots 为任一集序列, 若令

$$A_1' = A_1, \ A_n' = A_n \setminus \bigcup_{k=1}^{n-1} A_k, n = 2, 3, \dots$$
 (1)

试证: A'_1, \dots, A'_n, \dots 两两互不相交, 且

$$\bigcup_{n=1}^{+\infty} A_n = \bigcup_{n=1}^{+\infty} A'_n. \tag{2}$$

证明. 为表达方便, 令 $A_0 = \emptyset$. 先证明 $\{A'_n : n \in \mathbb{N}^*\}$ 互不相交. 据 De-Morgan 律知

$$A_n' = A_n A_0^c \cdots A_{n-1}^c \tag{3}$$

对任何不等的 $j, k \in \mathbb{N}^*$, 无妨 j < k, 这时有 $A'_k \subset A^c_i$, 而 $A'_i \subset A_j$, 这说明 $A'_k A'_i = \emptyset$. 一方面, 若 $\omega \in \bigcup_{n=1}^{+\infty} A'_n$, 则 $\exists n \in \mathbb{N}^* (\omega \in A'_n)$. 由于 $A'_n \subset A_n$, 故有 $\exists n \in \mathbb{N}^* (\omega \in A_n)$. 即

$$\bigcup_{n=1}^{+\infty} A_n' \subset \bigcup_{n=1}^{+\infty} A_n. \tag{4}$$

令一方面, 设 $\omega \in \bigcup_{n=1}^{+\infty} A_n$, 根据并的定义知: $\exists n \in \mathbb{N}^* (\omega \in A_n)$. 此时, 必有整数 $k \in \{1, \dots, n\}$ 使得 $\omega \notin A_0, \dots, A_{k-1}$, 但 $\omega \in A_k$. (否则 $\omega \notin \bigcup_{k=1}^n A_k$, 矛 盾) 即 $\omega \in A'_k$. 所以有 $\omega \in \bigcup_{n=1}^{+\infty} A'_n$. 这说明

$$\bigcup_{n=1}^{+\infty} A_n \subset \bigcup_{n=1}^{+\infty} A'_n. \tag{5}$$

结合式 4与 5知道结论成立.

习题 2

设 (Ω, \mathscr{F}) 为一可测空间, $A_n \in \mathscr{F}, n = 1, 2, \cdots$, 试证:

$$\bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_k = \{\omega : \omega 属于无穷多个A_n\}, \quad \bigcup_{n=1}^{+\infty} \bigcap_{k=n}^{+\infty} A_k = \{\omega : \omega 只不属于有限多个A_n\}. \quad (6)$$

证明. (1) 若 $\omega \in \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_k$, 则根据交与并的定义知道:

$$\forall n \in \mathbb{N}^*, \exists k \geqslant n \ (\omega \in A_k). \tag{7}$$

这说明 $\omega\in\bigcap_{n=1}^{+\infty}\bigcup_{k=n}^{+\infty}A_k$ 当且仅当 ω 属于集列 $\{A_j\}$ 中的无穷多个集合. (2) 若 $\omega\in\bigcup_{n=1}^{+\infty}\bigcap_{k=n}^{+\infty}A_k$, 则根据交与并的定义知道:

$$\exists j_0 \in \mathbb{N}^*, \forall k \geqslant j_0 \ (x \in A_k). \tag{8}$$

这说明 $\omega \in \bigcup_{n=1}^{+\infty} \bigcap_{k=n}^{+\infty} A_k$ 当且仅当 ω 仅不属于集列 $\{A_j\}$ 中的有限多个集合.

习题 3

若记

$$\bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_k = A^* = \limsup_{n \to \infty} A_n, \tag{9}$$

称为集序列 $\{A_n\}$ 的上限集. 若记

$$\bigcup_{n=1}^{+\infty} \bigcap_{k=n}^{+\infty} A_k = A_{\star} = \liminf_{n \to \infty} A_n, \tag{10}$$

称为集序列 $\{A_n\}$ 的下限集. 试证:

- 1. $\liminf_{n\to\infty} A_n \subset \limsup_{n\to\infty} A_n$;
- 2. 若 $A_n \uparrow$, 则 $A^* = A_* = \bigcup_{n=1}^{+\infty} A_n$;
- 3. 若 $A_n \downarrow$, 则 $A^* = A_* = \bigcap_{n=1}^{+\infty} A_n$;
- 4. 若 A 为任一集合, 则 $A \setminus A_{\star} = \limsup_{n \to \infty} (A \setminus A_n), A \setminus A^{\star} = \liminf_{n \to \infty} (A \setminus A_n)$
- 证明. 1. 根据习题 2 知道: $\omega \in A_{\star}$ 当且仅当除去集列 $\{A_j\}$ 中的有限个集合外, 元 ω 属于该序列的其余集合. 这可推出 ω 属于集列 $\{A_j\}$ 中的无穷多个集, 也就是 $\omega \in A^{\star}$. 即证.
 - 2. 不难看出对一般的集合列 $\{A_i\}$, 总有下列的包含关系:

$$\bigcap_{n=1}^{+\infty} A_n \subset \liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n \subset \bigcup_{n=1}^{+\infty} A_n \tag{11}$$

若 $\{A_n\}$ 非降, 则 $\bigcap_{k=n}^{+\infty} A_k = A_n$. 所以 $\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{+\infty} A_n$. 结合式 11知结论成立.

- 3. $\{A_n\}$ 非增, 则 $\bigcup_{k=n}^{+\infty} A_k = A_n$. 所以 $\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{+\infty} A_n$. 结合式 11知结论成立.
- 4. 回忆 de Morgen 法则:

$$A \setminus \bigcup_{\lambda \in \Lambda} B_{\lambda} = \bigcap_{\lambda \in \Lambda} (A \setminus B_{\lambda}), \quad A \setminus \bigcap_{\lambda \in \Lambda} B_{\lambda} = \bigcup_{\lambda \in \Lambda} (A \setminus B_{\lambda}). \tag{12}$$

我们由此知道

$$A \setminus \liminf_{n \to \infty} A_n = A \setminus \bigcup_{n=1}^{+\infty} \bigcap_{k=n}^{+\infty} A_k = \bigcap_{n=1}^{+\infty} \left(A \setminus \bigcap_{k=n}^{+\infty} A_k \right)$$
$$= \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} (A \setminus A_k) = \limsup_{n \to \infty} (A \setminus A_n), \tag{13}$$

和

$$A \setminus \limsup_{n \to \infty} A_n = A \setminus \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_k = \bigcup_{n=1}^{+\infty} \left(A \setminus \bigcup_{k=n}^{+\infty} A_k \right)$$
$$= \bigcup_{n=1}^{+\infty} \bigcap_{k=n}^{+\infty} (A \setminus A_k) = \liminf_{n \to \infty} (A \setminus A_n). \tag{14}$$

习题 4

证明: 包含一切形如 $(-\infty, x)$ 的区间的最小 σ -代数是一维 Borel 域.

证明. 根据定义, 一维 Borel 集合系 $\mathscr{B}_{\mathbb{R}}$ 是由 π -系 $\mathscr{P}_{\mathbb{R}} = \{(-\infty, a] : a \in \mathbb{R}\}$ 生成的 σ -代数:

$$\mathscr{B}_R = \sigma(\mathscr{P}_{\mathbb{R}}). \tag{15}$$

对任意 $a \in \mathbb{R}$, 我们有

$$\bigcap_{n=1}^{+\infty} \left(-\infty, a + \frac{1}{n} \right) = \left(-\infty, a \right], \quad \bigcup_{n=1}^{+\infty} \left(-\infty, a - \frac{1}{n} \right] = \left(-\infty, a \right) \tag{16}$$

因此, 对任何 $x \in \mathbb{R}, (-\infty, x) \in \mathcal{B}_{\mathbb{R}}$. 所以 $\sigma(\{(-\infty, x) : x \in \mathbb{R}\}) \subset \mathcal{B}_{\mathbb{R}}$. 另外, 对任何 $x \in \mathbb{R}, (-\infty, x] \in \sigma(\{(-\infty, x) : x \in \mathbb{R}\})$. 所以 $\sigma(\{(-\infty, x) : x \in \mathbb{R}\}) \supset \mathcal{B}_{\mathbb{R}}$. 二者结合起来便说明 $\sigma(\{(-\infty, x) : x \in \mathbb{R}\}) = \mathcal{B}_{\mathbb{R}}$.

习题 5

求包含二集合 A,B 的最小 σ -代数, 其中 $\Omega,AB\neq\varnothing,A\cup B\neq\Omega$, 且 A,B 互不包含. 解. 所求的集合系为:

$$\mathscr{A} = \{\varnothing, A, B, A \cup B, A \triangle B, A \setminus B, B \setminus A, \Omega, A^c, B^c, A^c B^c, A B^c, B A^c, (AB)^c, (A \triangle B)^c\}$$
(17)

证明. 由于 $\mathscr A$ 对任何可列次的集合运算封闭, 且 $\Omega\in\mathscr A$, 所以 $\mathscr A$ 是 σ 代数. 又因为 σ 代数对有限次的集合运算都封闭, 所以任何一个包含 $\{A,B\}$ 的 σ 代数都包含 $\mathscr A$ 中的所有集. 因此, 集类 $\mathscr A=\sigma(\{A,B\})$.

习题 6

若 $\mathscr{G} = \{A_k : A_k \subset \Omega, k = 1, 2, \cdots, 两两不交\},$ 试求 $\sigma(\mathscr{G})$. **解.** 引入 $A_0 = \left(\bigcup_{k=1}^{+\infty} A_k\right)^c$, 则所求为:

$$\sigma(\mathscr{G}) = \left\{ \bigcup_{k \in K} A_k : K \subset \mathbb{N} \right\}. \tag{18}$$

证明. 不妨记 (18) 式右端为 \mathscr{D} . 由于 σ 代数是对于可列并的运算以及补的运算封闭的, 故 $\sigma(\mathscr{G}) \supset \mathscr{D}$. 因此, 要完成这个定理的证明, 必须且只需证 $\sigma(\mathscr{G}) \subset \mathscr{D}$. 为此, 又只需证 \mathscr{D} 是 σ -代数. 下面, 分别验证 σ -代数的三个条件:

1)
$$\Omega = \bigcup_{k=0}^{+\infty} A_k \in \mathscr{D};$$

2)
$$A = \bigcup_{k \in K} A_k \in \mathscr{D} \Rightarrow A^c = \bigcup_{k \in (\mathbb{N} \setminus K)} A_k \in \mathscr{D};$$

3) 对 $B_n \in \mathcal{D}, n \in \mathbb{N}^*$, 有对应的 $K_n \in \mathbb{N}$, 使 $B_n = \bigcup_{k \in K_n} A_k, n = 1, 2, \cdots$. 这时,

$$\bigcup_{n=1}^{+\infty} B_n = \bigcup_{n=1}^{+\infty} \bigcup_{k \in K_n} A_k = \bigcup_{k \in K} A_k \in \mathcal{D}, \quad K = \bigcup_{n=1}^{+\infty} K_n.$$
 (19)

由此知道 \mathcal{D} 确是 σ 代数.

习题 7

设 Ω 是不可列集, \varnothing 是 Ω 的一切有限子集、可列子集及以有限子集或可列子集为余集的子集所作成的集合类, 试证 \varnothing 是一 σ -代数.

证明. 对集类 \mathscr{A} 分别验证 σ -代数的三个条件:

- 1) 由于 \varnothing 是 Ω 的一个有限子集, 所以 $\Omega = \varnothing^c \in \mathscr{A}$;
- 2) 设 $A \in \mathcal{A}$, 即 $A \in \Omega$ 的至多可列子集或以 Ω 的至多可列子集为余集的子集, 则 A^c 分别是 Ω 的以至多可列子集为余集的子集或 Ω 的至多可列子集, 因此, $A^c \in \mathcal{A}$;
- 3) 设 $A_1, A_2, \dots \in \mathcal{A}$. 若诸 A_j 均是 Ω 的至多可列子集, 则 $\cup_j A_j$ 仍是 Ω 的至多可列子集; 若诸 A_j 中至少有一个是以 Ω 的至多可列子集为余集的子集, 则 $\cup_j A_j$ 仍是以 Ω 的至多可列子集为余集的子集.

所以总有
$$\bigcup_{n=1}^{+\infty} A_n \in \mathcal{A}$$
.

由此知道 \mathcal{A} 确是 σ -代数.

习题 8

设 \mathscr{G} 是由 Ω 的子集组成的集合类, A 是 Ω 的一个非空子集, 令

$$\mathscr{G} \cap A = \{ A' : A' = B \cap A, B \in \mathscr{G} \}, \tag{20}$$

试证: $\sigma(\mathcal{G}) \cap A$ 是以 A 为空间的包含集合类 $\mathcal{G} \cap A$ 的最小 σ -代数.

证明. 先证明 $\sigma(\mathcal{G}) \cap A = \{BA : B \in \sigma(\mathcal{G})\}$ 是以 A 为空间的一个 σ -代数. 为此, 我们分别对它验证 σ -代数的三个条件.

- 1) 因 $\Omega \in \sigma(\mathcal{G})$, 所以 $A = \Omega \cap A \in \sigma(\mathcal{G}) \cap A$;
- 2) 设 $E \in \sigma(\mathcal{G}) \cap A$. 即 E = AB, 其中 $B \in \sigma(\mathcal{G})$. E 相对 A 的补是 $A \setminus E = A \setminus AB = AB^c$. 因为 $B^c \in \sigma(\mathcal{G})$, 所以 $A \setminus E \in \sigma(\mathcal{G}) \cap A$;
- 3) 设 $E_1, E_2, \dots \in \sigma(\mathscr{G}) \cap A$. 即 $E_j = AB_j$, 其中 $B_j \in \sigma(\mathscr{G}), j \in \mathbb{N}^*$. 由于 $\sigma(\mathscr{G})$ 是一个 σ -代数, 所以 $\bigcup_{j=1}^{+\infty} B_j \in \sigma(\mathscr{G})$. 这说明

$$\bigcup_{j=1}^{+\infty} E_j = \bigcup_{j=1}^{+\infty} AB_j = A\left(\bigcup_{j=1}^{+\infty} B_j\right) \in \sigma(\mathscr{G}) \cap A. \tag{21}$$

再设某个以 A 为空间的 σ -代数 $\mathscr{E} \supset (\mathscr{G} \cap A)$, 下证 $(\sigma(\mathscr{G}) \cap A) \subset \mathscr{E}$. 因 $\mathscr{E} \supset (\mathscr{G} \cap A)$, 所以 $\forall B \in \mathscr{G}, AB \in \mathscr{E}$. 令

$$\mathscr{H}_A = \{ H \subset \Omega : AH \in \mathscr{E} \}. \tag{22}$$

则 $\mathcal{G} \subset \mathcal{H}_A$. 继续证明 \mathcal{H}_A 是一个 σ -代数. 注意到 \mathcal{E} 是以 A 为空间的一个 σ -代数, 所以有

- 1) $A\Omega = A \in \mathscr{E}$, $\mathbb{P} \Omega \in \mathscr{H}_A$;
- 2) 设 $H \in \mathcal{H}_A$, 则 $AH \in \mathcal{E}$. 利用上面条件, 有 $AH^c = A \setminus AH \in \mathcal{E}$. 这说明 $H^c \in \mathcal{H}_A$;
- 3) 再设 $H_1, H_2, \dots \in \mathcal{H}_A$, 则 $AH_j \in \mathcal{E}, j = 1, 2, \dots$. 再次利用 \mathcal{E} 是以 A 为空间的一个 σ -代数, 得到

$$A\left(\bigcup_{j=1}^{+\infty} H_j\right) = \bigcup_{j=1}^{+\infty} AH_j \in \mathscr{E}.$$
 (23)

这说明 $\bigcup_{j=1}^{+\infty} H_j \in \mathscr{H}_A$.

因此, \mathcal{H}_A 确是个 σ -代数. 又因为 $\mathcal{G} \subset \mathcal{H}_A$. 根据 σ -代数的生成的定义, $\sigma(\mathcal{G}) \subset \mathcal{H}_A$. 即

$$\forall B \in \sigma(\mathcal{G}), \& fab A \in \mathscr{E}. \tag{24}$$

这正是
$$(\sigma(\mathcal{G}) \cap A) \subset \mathcal{E}$$
.

习题 9

设 $A \in \Omega$ 的一个子集, $\mathcal{G} \in \Omega$ 的包含 A 的一切子集所组成的集合类, 试问 $\sigma(\mathcal{G})$ 是由哪些子集组成的?

解.

$$\sigma(\mathscr{G}) = \mathscr{G} \cup \{G \cup A^c : G \in \mathscr{G}\}. \tag{25}$$

习题 10

设 $\xi(\omega)$ 是定义在 Ω 上而值域为 $\mathbb{R}^{(1)}$ 的单值实函数, $B \subset \mathbb{R}^{(1)}$, $\{\omega : \xi(\omega) \in B\}$ 表示使 $\xi(\omega)$ 的值属于 B 的一切 $\omega(\in \Omega)$ 的集合, 试证:

- 1. $\overline{\{\omega : \xi(\omega) \in B\}} = \{\omega : \xi(\omega) \in \overline{B}\};$
- 2. 若 $B_k \subset \mathbb{R}^{(1)}, k = 1, 2, \dots, 则有$

$$\bigcup_{k=1}^{+\infty} \{\omega : \xi(\omega) \in B_k\} = \left\{\omega : \xi(\omega) \in \bigcup_{k=1}^{+\infty} B_k\right\}.$$
 (26)

分析: 回忆数学分析中引入的映射的原像(preimage/inverse image). 设映射 $\varphi: A \to B$, 集合 $D \subset B$ 的原像定义为

$$\varphi^{-1}(D) \triangleq \{x \in A : \varphi(x) \in D\}. \tag{27}$$

那时候,曾经证明过这样两个关于映射与集合运算之间关系的公式.

$$\varphi^{-1}\left(\bigcup_{\lambda\in\Lambda}E_{\lambda}\right) = \bigcup_{\lambda\in\Lambda}\varphi^{-1}\left(E_{\lambda}\right);\tag{28}$$

$$\left(\varphi^{-1}(D)\right)^c = \varphi^{-1}(D^c). \tag{29}$$

我们愿意在此重新温习一下它的证明.

证明.

$$x \in \varphi^{-1} \left(\bigcup_{\lambda \in \Lambda} E_{\lambda} \right) \iff \exists y \in \bigcup_{\lambda \in \Lambda} E_{\lambda} \left(y = \varphi(x) \right)$$
$$\iff \exists \lambda \in \Lambda \exists y \in E_{\lambda} \left(y = \varphi(x) \right)$$
$$\iff \exists \lambda \in \Lambda \left(x \in \varphi^{-1}(E_{\lambda}) \right). \tag{30}$$

还需要讨论空集的情况.

$$\varphi^{-1}\left(\bigcup_{\lambda\in\Lambda}E_{\lambda}\right)=\varnothing\Longleftrightarrow\left(\bigcup_{\lambda\in\Lambda}E_{\lambda}\right)\bigcap\operatorname{Im}\varphi=\varnothing$$

$$\Longleftrightarrow\forall\lambda\in\Lambda\left(E_{\lambda}\cap\operatorname{Im}\varphi\right)=\varnothing$$

$$\Longleftrightarrow\forall\lambda\in\Lambda\left(\varphi^{-1}(E_{\lambda})=\varnothing\right)$$

$$\Longleftrightarrow\bigcup_{\lambda\in\Lambda}\varphi^{-1}(E_{\lambda})=\varnothing.$$
(31)

再考虑另一个公式.

$$x \in (\varphi^{-1}(D))^{c} \iff x \notin \varphi^{-1}(D) \iff \varphi(x) \notin D$$
$$\iff \varphi(x) \in D^{c} \iff x \in \varphi^{-1}(D^{c})$$
(32)

利用这两个公式, 就容易完成本题的证明.

证明. 1.

$$\overline{\{\omega : \xi(\omega) \in B\}} = (\xi^{-1}(B))^c = \xi^{-1}(B^c) = \{\omega : \xi(\omega) \in \overline{B}\};$$
(33)

2.

$$\bigcup_{k=1}^{+\infty} \{\omega : \xi(\omega) \in B_k\} = \bigcup_{k=1}^{+\infty} \xi^{-1}(B_k) = \xi^{-1} \left(\bigcup_{k=1}^{+\infty} B_k\right) = \left\{\omega : \xi(\omega) \in \bigcup_{k=1}^{+\infty} B_k\right\}. \tag{34}$$