PRINCIPAL COMPONENTS ANALYSIS

11.30.2020

FINAL

* the final will be posted next monday (Dec. 7)

* it will be due (and this
 is a HARD deadline) on
 Monday, December 14 at
 10:59 AM

FINAL

- * the final will be SELF-TIMED (honor system!) for 4 hours (no proctorio, etc.)
 - * your time starts when you first look at it, and you should stop working on it (& turn it in) 4 hours later
- * it is OPEN BOOK, OPEN DOCUMENTATION, & OPEN INTERNET
 - * but don't discuss it with anyone else until you have both finished it

FINAL

- * the final will cover all the topics we've touched on in class
- * it will be EASIER THAN THE HOMEWORKS
 - * i.e. the vast majority of you should finish in 4 hours
- * good luck :)

- * **Principal Components Analysis** is an unsupervised method for finding structure in datasets
 - * (This is different from regression & classification, which are examples of supervised learning. They learn a function f(X)=y. Here we only have X!)

- * The typical explanation of PCA:
- * PCA "fits an ellipse" to a cloud of datapoints

- * The typical explanation of PCA:
- * PCA "fits an ellipse" to a cloud of datapoints

* The axes of the ellipse are the "principal components"

* It also gives you a way to transform the data so that the ellipse becomes a perfect circle

- * But the key use case of PCA is dimensionality reduction
 - * If your data has lots of dimensions, PCA finds new dimensions along which the data vary a lot (the long axis of the ellipse)
 - * and dimensions along which the data don't vary much at all, and can be ignored (the short axis)

EXAMPLE: HUMAN GENETICS

- * Hundreds of Europeans are genotyped for thousands of genes
- * This info is reduced to 2 dimensions using PCA

- * The input to PCA
 is a matrix X with
 shape (n_samples,
 n_features)
- * (Assume that each column of X has zero mean. If this isn't true, you can make it true!)

- * PCA represents X as a product of 3 matrices: U, Sigma, and W
- * (Here assuming that n_features >
 n_samples)

- * W contains the principal components (each row is one)
- * **U** is the **score matrix**, which tells you how much of each PC is in each sample
- * **Sigma** is a diagonal matrix of **singular values**, which tell you how "big" (or important) each PC is

* You can then visualize the scores (data projected onto PCs), the PCs themselves, and the singular values

- * Singular values are typically visualized as a "Scree plot"
- * this shows how much variance each component accounts for in the dataset

- * (If you're familiar with the **singular value decomposition** (SVD), this is exactly the same thing)
- * you can use the SVD directly with
 np.linalg.svd

- * But it's better to do PCA through scikitlearn with **sklearn.decomposition.PCA**
- * (This has more options, and will do nice things like subtract the column means for you.)

- * PCA can be used for either data analysis or data visualization (and often both)
- * It should probably be your #1 go-to visualization tool whenever you have lots of features and don't know how to look at them

* population
analyses of
neural activity

* PCA gives a "neural state space"

* visualization of high-dimensional regression models

* spike sorting!

- * it's almost certain that PCA is something that individual neurons do
- * Hebbian learning ("neurons that fire together wire together") results in a neuron learning the first principal component of its inputs

* do PCA on a whole bunch of
 (aligned) face images to get
 "eigenfaces" - basis functions
 that all face images are built
 out of

* it turns out this might fundamental to how individual neurons represent faces! (Chang & Tsao, Cell 2017)

PCA EXTENSIONS: AUTOENCODERS

- * autoencoders are artificial neural networks that push each sample through a "bottleneck layer" and then try to reconstruct the original sample
- * simple (linear) autoencoders compute
 exactly PCA
- * more complicated ones can do very cool stuff

PCA EXTENSIONS: AUTOENCODERS

from Cheung, Livezey, Bansal, & Olshausen (2015)

MORE RESOURCES

```
* If you want to learn more about PCA, see this great chapter from PDSH:

https://jakevdp.github.io/
PythonDataScienceHandbook/05.09-
principal-component-analysis.html
```

THANK YOU!