Módulo 5

Desarrollando alternativas

Curso de Posgrado: "Redes Bayesianas para la toma de decisiones para el manejo y conservación de recursos naturales."

Andrea P. Goijman goijman.andrea@inta.gob.ar

Instituto Nacional de Tecnología Agropecuaria Argentina

¿Cuándo consideramos las consecuencias?

Cuando necesitamos

predecir las <u>consecuencias</u>

de las diferentes <u>acciones</u>

(alternativas) en término de

los <u>objetivos</u>

Las <u>consecuencias</u> conectan los <u>objetivos</u> a las <u>acciones</u>

¿Cuándo consideramos las consecuencias?

Los modelos son herramientas

- Utilizados para predecir *Consecuencias*
- No tienen que ser complejos (ej. ¿llego a la reunión de las 8:30am, si salgo a las 7:45?)
 - Tienen que ser tan complejos como sea necesario para analizar la decisión y no más
- Tienen que ser explícitos
- Pueden incorporar incertidumbre
 - ¿Qué incertidumbre?

Beneficios: Transparencia

- Cada tomador de decisión/ actor tiene algún tipo de modelo para predecir consecuencias de las acciones alternativas
- Los modelos están disponibles para todos
- Durante el desarrollo del modelo
 - Se ilustran los elementos clave y sus relaciones clave
 - Captura información compleja

Tipos de modelos

- Conceptuales: Esquemas o diagramas de flujo simples
- Físicos o análogos: representan un sistema de manera análoga a cómo funciona en la vida real (ej. avión a escala)
- Gráficos
- Analíticos: sistema de ecuaciones
- Estadísticos

$$logit (\psi_i) = \alpha_{psi} + \beta_{x1} * x1_i$$

MODELOS

- Cualitativo
 - ej. descripción general de un área
- Cuantitativo
 - Resultado preciso
- Discretos
 - ej. abundancia
- Continuos
 - ej. densidad
- Determinístico
 - No hay incertidumbre
- Estocástico
 - Distribuciones de probabilidad

$$A+B=C$$

$$A + B + X = C + Incertidumbre$$

Predicción de consecuencias

- Requiere proyecciones hacia el futuro
- Utiliza una escala para cada objetivo
- Puede incluir datos y evaluaciones subjetivas (consultas a expertos)
- Aprovecha lo más posible la información disponible, incluyendo opinión de expertos
- Incorpora incertidumbre relevante
- Para comparar y contrastar alternativas, debemos predecir consecuencias en términos relevantes para nuestros objetivos

Predecir las consecuencias del objetivo Y en función de las alternativas X1, X2, X3 y otros parámetros z

Tabla de Consecuencias

¿A donde me voy de vacaciones?			Alternativas				
Objetivo	Atributo	Dirección	Playa en Mar del Plata	Playa lejana Brasil	Sierras de Córdoba	Miami	No me voy
Descansar	cuanto pienso que descansaré (0-10) cuanto me gusta el	maximizar					
Lugar lindo Ahorrar plata		maximizar minimizar					
Socializar		maximizar					

Tabla de Consecuencias

¿A donde me voy de vacaciones?			Alternativas				
Objetivo	Atributo	Dirección	Playa en Mar del Plata	Playa lejana Brasil	Sierras de Córdoba	Miami	No me voy
Descansar	cuanto pienso que descansaré (0-10)	maximizar	5	10	7	4	0
Lugar lindo	cuanto me gusta el paisaje (0-10)	maximizar	4	10	8	6	0
Ahorrar plata	\$	minimizar	\$\$	\$\$\$	\$\$	\$\$\$\$\$\$	\$
Socializar	# de amigos	maximizar	8	0	2	4	10

Conceptos básicos de probabilidad

Naturaleza estocástica del mundo natural explicada por medio de variables aleatorias

Es una característica que exhibe una variabilidad entre unidades o elementos con dicha característica

- Los posibles valores de una variable aleatoria tiene valores posibles que pueden ser representados con una abstracción matemática: distribución de probabilidad
- La distribución de probabilidad le asigna a cada evento de una variable aleatoria, una probabilidad de ocurrir.

Distribución de probabilidad

- Una probabilidad puede pensarse como una medida de incertidumbre de un evento aleatorio
- Si X tiene P=1de ocurrir , estamos seguros que X ocurre
- Si P=0 entonces estamos seguros que X no ocurre
- Si P=0.5 estamos igual de seguros que X ocurre y que no

El valor "X" es una variable aleatoria (no determinística)

Distribución de probabilidad

- Es un modelo que describe la relación entre los valores de una variable aleatoria y la probabilidad de asumir esos valores (discretas o continuas)
- Función de probabilidad de densidad f(x) describe la probabilidad que una variable aleatoria toma sobre un valor particular de x.

¿Cuál es la probabilidad que x sea 0,4? y ¿0,2?

 Describe todas las posibles posibilidades de ocurrencia, para que la suma de todas las probabilidades sea 1.

Ejemplo. Predicción de la respuesta de pérdida agrícola (kg/ha/año) con aplicación de insecticidas. Error residual.

Ejemplo. Predicción de la respuesta de pérdida agrícola (kg/ha/año) con aplicación de insecticidas. Error residual.

Ejemplo. Predicción de la respuesta de mejora del recurso agrícola con aplicación de insecticidas.

Supongamos probabilidades discretas.

	Probabilidad					
Acción	Igual	Mejor	Mucho mejor	Mucho mucho mejor		
Sin Acción	0.8	0.2	0	0		
Insecticida larvas	0.1	0.8	0.1	0		
Insecticida Adultos	0	0.1	0.8	0.1		
Insecticida larvas y Adultos	0	0	0.2	0.8		

¿Cuál es la probabilidad de mejorar la cosecha agrícola <u>dado que</u> aplico un insecticida para larvas?

Probabilidad (MEJORA | Insecticida larvas)

	Probabilidad					
Acción	Igual	Mejor	Mucho mejor	Mucho mucho mejor		
Sin Acción	0.8	0.2	0	0		
Insecticida larvas	0.1	0.8	0.1	0		
Insecticida Adultos	0	0.1	0.8	0.1		
Insecticida larvas y Adultos	0	0	0.2	0.8		

Probabilidad Condicional

```
f(\text{igual}|\text{ insecticida para larvas}) = 0,1
f(\text{mejor}|\text{ insecticida par larvas}) = 0,8
f(\text{mucho mejor}|\text{ insecticida para larvas}) = 0,1
f(\text{mucho mucho mejor}|\text{ insecticida para larvas}) = 0,0
f(x|y) \text{ significa "probabilidad de que ha ocurrido un resultado en x dado un resultado en y"}
<math display="block">f(\text{igual})+f(\text{mejor})+f(\text{mucho mejor})+)+f(\text{mucho mucho mejor}) = 1
0,1+0,8+0,1+0,0=1,0
```

- Herramienta de modelado conceptual o de estructurado de un problema, donde GRAFICAMENTE se muestran las principales relaciones causales entre variables de importancia para una decisión.
- Las ACCIONES (medios) disponibles para el manejador y los objetivos son lo que les importa, así como fuentes externas de incertidumbre.

- Modelos conceptuales que conectan acciones con objetivos
- Distinguen entre relaciones que pueden y no ser controladas
- Distintos nodos, representan distintos elementos
- Pueden convertirse en redes de creencias bayesianas o árboles de decisión

Consecuencias por medio de tablas de probabilidad condicional (CPT)

Tablas de probabilidad condicional (CPT)

NO	DOS PADRES
NO	DO HIJO

				Cosecha		
Ocupación Aves centro	Acciones	180 210		2100- 2400	2400- 2576	
Si	Acción 1					
Si	Acción 2		Probabilidades			
Si	Acción 3					
No	Acción 1					
No	Acción 2					
No	Acción 3					

Tablas de probabilidad condicional (CPT)

Parametrización de la RB - Modelar consecuencias

Parametrización de la RB - Modelar consecuencias

Elicitando los números

- En primer lugar **verificar y revisar** la estructura del modelo **antes** de proceder al paso cuantitativo
- TPC: probabilidades condicionales [0,1]
 - Bases de datos
 - Conocimiento experto (subjetivo): Varios métodos. Incluso se puede ponderar por nivel de expertise o "confianza"
 - Modelos matemáticos

Fig. 6.23 Mapping of verbal statements of probability to probabilities

Opinion de expertos

Fig. 4. Columna izquierda esquina superior: Diagrama de la toma de decisiones estructuradas (TDE), y el manejo adaptativo de recursos (MAR), mostrando sus elementos y pasos. Se indican en gris los pasos sobre los que ya se avanzó. Columna izquierda esquina inferior: imágenes de uno de los talleres realizados en la EEA Bordenave y recorrida por campo de un productor participante. Columna derecha esquina superior: enunciado del problema. Columna derecha centro: Jerarquía de objetivos fundamentales y medios en relación al daño por cotorras. Columna derecha esquina inferior: Alternativas que se propusieron en los talleres para alcanzar los objetivos.

(Gonzalez, D. A. no publicado)

Consultas a expertos

Ejemplo: Se quiere estimar el efecto que la aplicación de cada alternativa de manejo tendría sobre el daño a almendros (Gonzalez, D. A. no publicado).

- 1. Búsqueda bibliográfica: Se encontraron escasos estudios y no involucraban al cultivo, ni todas las practicas, dificultando estimar probabilidades. Se decidió obtener esa información mediante el juicio (elicitación) de expertos en el tema.
- 2. Consulta a expertos por método Delphi. Cuestionario individual y anónimo. Luego se comparten las respuestas, y se repite el proceso hasta que todos se sientan cómodos con los resultados.

MÉTODO DELPHI (ver Mukherjee et al. 2015)

Técnica de consulta grupal para búsqueda de consenso.

- Repetitividad
- Retroalimentación controlada;
- Respuesta grupal estadística.

EXISTEN MUCHAS OTRAS...

Consultas a expertos

- 3. Se contactó a los expertos por mail explicando brevemente el problema en cuestión, que información les será solicitada y como se va a usar, expectativas y logística (forma de los cuestionarios, tiempos, etc). Se les consultó sobre su aceptación a participar de la actividad.
- 4. En los casos que aceptaron, se envió por mail una breve descripción de la problemática y la decisión sobre la que se está trabajando, una diversidad de información sobre el tema (una variedad de papers e informes sobre evaluaciones de manejo) y el protocolo que usaremos para la consulta.
- 5. Segunda etapa, con preguntas donde esperamos que estime la reducción en el daño esperable por cada uno de los manejos y la confianza en la respuesta. Para evitar sesgos de disponibilidad y anclaje, se elicitarán primero valores extremos y después valores medios.

	onsidera que es la opción de <u>ahuyentamiento sonoro</u> que sería más efectiva para reducir el daño orras en almendros? <i>Marque solo una</i> .
	Cañones de explosión Disparos de escopeta Pirotecnia Sonidos de rapaces Sonidos de aves (llamados de peligro o estrés)
	No conoce ninguna Pase a la pregunta 2.
efectiva a. ¿Cu ese	ite las siguientes preguntas para la opción de <u>ahuyentamiento sonoro</u> que usted consideró másica. Itál es el menor porcentaje de reducción del daño que usted esperaría que produzca la aplicación de método de ahuyentamiento sonoro en el daño a frutos? Utilice una escala de 0% de reducción de sono a 100% de reducción de daño.
ese	rál es el mayor porcentaje de reducción del daño que usted esperaría que produzca la aplicación de método de ahuyentamiento sonoro en el daño a frutos? Utilice una escala de 0% de reducción de do a 100% de reducción de daño.
de a	rál es un valor medio de reducción que usted esperaría que produzca la aplicación de ese método ahuyentamiento sonoro en el daño a frutos? Utilice una escala de 0% de reducción de daño a 100% reducción de daño.

Sección 1 Efec	10. ¿Considera que existen algunas otras alternativas que no hayan sido nombradas que podrían ser aplicadas para reducir el daño por cotorras en fruticultura?
¿Cuál considera que es la opción de <u>a</u> por cotorras en almendros? Marque so	☐ Si ☐ No ———————————————————————————————————
Cañones de explosión	10.1 ¿Cuáles?
Disparos de escopeta	
Pirotecnia Sonidos de rapaces	
Sonidos de aves (llamados de peli	
Otra	Conteste las siguientes preguntas para la <u>alternativa que usted nombró previamente</u> . Si nombró más de una, conteste las preguntas para la que considera que sería más efectiva.
☐ No conoce ninguna —	a. ¿Cuál es el menor porcentaje de reducción del daño que usted esperaría que produzca la aplicación de esa alternativa en el daño a frutos? Utilice una escala de 0% de reducción de daño a 100% de reducción de daño.
Conteste las siguientes preguntas pa efectiva.	%
a. ¿Cuál es el menor porcentaje de re ese método de ahuyentamiento se daño a 100% de reducción de daño.	b. ¿Cuál es el mayor porcentaje de reducción del daño que usted esperaría que produzca la aplicación de esa alternativa en el daño a frutos? Utilice una escala de 0% de reducción de daño a 100% de reducción de daño.
b. ¿Cuál es el mayor porcentaje de re	9
ese método de ahuyentamiento si daño a 100% de reducción de daño. %	c. ¿Cuál es un valor medio de reducción que usted esperaría que produzca la aplicación de esa alternativa en el daño a frutos? Utilice una escala de 0% de reducción de daño a 100% de reducción de daño.
	%
c. ¿Cuál es un valor medio de reducción de daño. de reducción de daño.	d. ¿Qué tanta confianza tiene, en una escala de 50% a 100%, que el intervalo que dio entre el menor y el mayor porcentaje incluya al valor verdadero de reducción de daño? Utilice una escala de 50% de confianza a 100% de confianza.

- National Conservation Training Center (NCTC), US Fish and Wildlife Service & USGS. Introduction to Structured Decision Making (Course material, presentations)
- Conroy, M.J. and J.T. Peterson. 2013. Decision Making in Natural Resource Management. A Structures, Adaptive Approach. Wiley-Blackwell. 456pp.
- Converse, S., Morey, S., Parkin, M., Smith, D., & Szymanski, J. (2014). *Decision Analysis: Elicitation and Facilitation*. NCTC Course Material. Shepherdstown, WV.
- Gonzalez, D. A. Tesis Doctoral. FAUBA. En curso. La Toma de Decisiones Estructuradas aplicada al manejo de daño por psitácidos en agroecosistemas del centro-este argentino.
- Gregory, R., L. Failing, M. Harstone, G. Long. T. McDaniels, and D. Ohlson. 2012. Structures Decision Making. A Practical Guide to Environmental Management Choices. Wiley-Blackwell. 299pp.
- Hammond, J. S., Keeney, R. L., & Raiffa, H. 1999. Smart choices: a practical guide to making better life decisions. Random House LLC.
- Kjaerulff, U. B., & Madsen, A. L. (2008). Bayesian networks and influence diagrams. *Springer Science+ Business Media*, 200, 114.
- Martin, Julien, Runge, M.C., Flewelling, L.J., Deutsch, C.J., and Landsberg, J.H., 2017, An expert elicitation process to project the frequency and magnitude of Florida manatee mortality events caused by red tide (Karenia brevis): U.S. Geological Survey Open-File Report 2017–1132, 17., https://doi.org/10.3133/ofr20171132.
- Mukherjee, N., Hugé, J., Sutherland, W. J., McNeill, J., Van Opstal, M., Dahdouh-Guebas, F., & Koedam, N. (2015). The Delphi technique in ecology and biological conservation: applications and guidelines. *Methods in Ecology and Evolution*, 6(9), 1097-1109.
- Rusch, V. E., Rusch, G. M., Goijman, A. P., Varela, S. A., & Claps, L. (2017). Ecosystem services to support environmental and socially sustainable decision-making. *Ecología austral*, *27*(1), 162-176.
- Zaccagnini N. E., Goijman A. P., Conroy M. J., Thompson J. J. 2014. Toma de Decisiones Estructuradas y Manejo Adaptativo de Recursos Naturales y Problemas Ambientales en Ecosistemas Productivos. INTA Ediciones.