Adjoint of a linear transformation and Fundamental subspaces

Zexi Sun

August 2021

1 Introduction

- Thm 5.1: Relation between fundamental subspaces
- "Essential part" of an operator: $B: Ran(A^*) \to RanA$.
- Complex rank theorem: Complex conjugation does not change the rank of a matrix

2 Properties of adjoint matrix

- 1. Main property: $(Ax, y) = (x, A^*y)$ for all $x \in \mathbb{C}^n$, $y \in \mathbb{C}^m$.
- 2. $(AB)^* = B^*A^*$
- 3. $(A^*)^* = A$
- 4. $(A+B)^* = A^* + B^*$
- 5. $(\alpha A^*) = \alpha A^*$
- 6. $(y, Ax) = (A^*y, x)$
- 7. Uniqueness: If a matrix B satisfies (Ax, y) = (x, By) for all x, y then $B = A^*$.
- 8. $[A^*]_{AB} = ([A]_{BA})^*$. where the subscript A and B are orthogonal bases $A = v_1, ..., v_n$ in V and $B = w_1, ..., w_m$ in W, respectively.

3 Thm 5.1

Let $A:V\to W$ be an operator acting from one IPS to another. Then

- 1. $KerA^* = (RanA)^{\perp}$
- 2. $KerA = (RanA^*)^{\perp}$

- 3. $RanA = (KerA^*)^{\perp}$
- 4. $RanA^* = (KerA)^{\perp}$

It follows from the theorem that the operator A can be represented as a composition of orthogonal projection onto A^* and as isomorphism from $RanA^*$ to RanA. Indeed, $A = BP_{RanA^*}$, where $B: RanA^* \to RanA$ is the restriction of A to the domain $RanA^*$ and the target space RanA st Bx = Ax for all $x \in RanA^*$.

Note also that $B: RanA^* \to RanA$ is an invertible transformation.

4 Complex rank theorem

 $\begin{aligned} rankA &= rankA^* \\ rankA &= rank\overline{A} \end{aligned}$