In [76]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib.ticker as tcr
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn import metrics
from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score
from sklearn.metrics import roc_curve, auc
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import validation_curve
```

In [77]:

Preliminary data checks

In [78]:

#the data consist of a user id and 0s and 1s to show whether they clicked on various it
ems on the page and ultimately
#whether or not they placed an order
data.head()

Out[78]:

	UserID	basket_icon_click	basket_add_list	basket_add_detail	sort_by	image_picker a
0	a720- 6b732349- a720- 4862- bd21- 644732	0	0	0	0	0
1	b74a- 6b737717- b74a- 45c3- 8c6a- 421140	0	1	0	1	0
2	7775- 6b73b976- 7775- 4324- b1d9- 622031	0	0	0	0	0
3	4b8a- 6b74bd36- 4b8a- 4d10- a008- 67143	0	0	0	0	0
4	7009- 6b768104- 7009- 4526- 9da6- 129024	0	0	0	0	0

5 rows × 21 columns

In [79]:

#232,000 rows of data data.shape

Out[79]:

(232239, 21)

In [80]:

```
#don't need the id column so dropping this
data = data.drop('UserID', axis = 1)
data.head()
```

Out[80]:

	basket_icon_click	basket_add_list	basket_add_detail	sort_by	image_picker	account_page
0	0	0	0	0	0	
1	0	1	0	1	0	
2	0	0	0	0	0	
3	0	0	0	0	0	
4	0	0	0	0	0	
4						•

In [81]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 232239 entries, 0 to 232238
```

Data columns (total 20 columns):

Ducu	COTAMINIS (COCAT ZO COTAMINI	٠,٠	
#	Column	Non-Null Count	Dtype
0	<pre>basket_icon_click</pre>	232239 non-null	int64
1	<pre>basket_add_list</pre>	232239 non-null	int64
2	<pre>basket_add_detail</pre>	232239 non-null	int64
3	sort_by	232239 non-null	int64
4	image_picker	232239 non-null	int64
5	account_page_click	232239 non-null	int64
6	<pre>promo_banner_click</pre>	232239 non-null	int64
7	<pre>detail_wishlist_add</pre>	232239 non-null	int64
8	list_size_dropdown	232239 non-null	int64
9	<pre>closed_minibasket_click</pre>	232239 non-null	int64
10	<pre>checked_delivery_detail</pre>	232239 non-null	int64
11	<pre>checked_returns_detail</pre>	232239 non-null	int64
12	sign_in	232239 non-null	int64
13	saw_checkout	232239 non-null	int64
14	saw_sizecharts	232239 non-null	int64
15	saw_delivery	232239 non-null	int64
16	saw_account_upgrade	232239 non-null	int64
17	saw_homepage	232239 non-null	int64
18	returning_user	232239 non-null	int64
19	ordered	232239 non-null	int64

dtypes: int64(20) memory usage: 35.4 MB

Exploratory data analysis

In [82]:

```
#checking the proportion of customers who place an order - only 8% place an order so th
is must be a high ticket item. Will
#assume this is an interactive exercise bike for the rest of the analysis
order = data.groupby('ordered').size().to_frame().reset_index().rename(columns = {0: 'c
ount'})
order
```

Out[82]:

	ordered	count
0	0	213146
1	1	19093

In [149]:

```
#creating chart
fig = plt.figure(figsize = (15, 6))
ax = plt.subplot(1, 2, 1)
_, _, autotexts = plt.pie(order['count'], colors = ['red', 'black'], radius = 1.5, auto
pct = ('%.0f%%'), \
                          counterclock = False, startangle = -270)
plt.legend(labels = ['No order', 'Order'], loc = 'right', bbox_to_anchor = (1.5, 0.7),
fontsize = 12)
#setting the colour of percentage labels to white
for autotext in autotexts:
    autotext.set color('white')
    autotext.set_weight('bold')
    autotext.set fontsize(12)
plt.title('Proportion of customers who placed an order with Pedal Power', y = 1.2, font
size = 12)
#second chart
ax = plt.subplot(1, 2, 2)
plt.bar(order['ordered'], order['count'], color = 'red')
#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
#adding data labels for bars
bars = plt.bar(order['ordered'], order['count'], color = 'red')
for bar in bars:
    yval = bar.get height()
    #the '{:,}' command adds a thousand separator to the labels
    ax.annotate('{:,}'.format(yval),
    xy = (bar.get_x() + bar.get_width() / 2, yval),
    #shows label position on x and y axis
    xytext = (0, 3),
    textcoords = 'offset points', ha = 'center', va = 'bottom', fontsize = 12)
#function to add comma separator to labels
def comma(x, pos):
    return format(x, "6,.0f")
#this code adds a comma separater to the y tick marks
ax.yaxis.set major formatter(tcr.FuncFormatter(comma))
plt.xticks(order['ordered'], labels = ['No order', 'Order'], fontsize = 12)
plt.ylabel('Number of customers', fontsize = 12)
plt.title('Number of customers who placed an order with Pedal Power', y = 1.2, fontsize
= 12)
plt.tight layout()
plt.savefig('order_proportion_and_volumes')
```

Proportion of customers who placed an order with Pedal Power

Number of customers who placed an order with Pedal Power

In [84]:

```
#grouping by customers who added the bike to their wishlist and/or placed an order
wishlist = data.groupby(['detail_wishlist_add', 'ordered']).size().to_frame().reset_ind
ex().\
rename(columns = {0: 'count'})
wishlist
```

Out[84]:

	detail_wishlist_add	ordered	count
	0	0	211508
	0	1	18899
	2 1	0	1638
:	3 1	1	194

In [85]:

```
#filtering for users who added to wishlist only
wishlist = wishlist[wishlist['detail_wishlist_add'] == 1].reset_index(drop = True)
wishlist
```

Out[85]:

	detail_wishlist_add	ordered	count
0	1	0	1638
1	1	1	194

In [153]:

```
#creating chart
fig = plt.figure(figsize = (8, 6))
ax = plt.subplot(1, 1, 1)
plt.bar(wishlist['ordered'], wishlist['count'], color = 'red')
#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
#adding data labels for bars
bars = plt.bar(wishlist['ordered'], wishlist['count'], color = 'red')
for bar in bars:
    yval = bar.get_height()
    #the '{:,}' command adds a thousand separator to the labels
    ax.annotate('{:,}'.format(yval),
    xy = (bar.get_x() + bar.get_width() / 2, yval),
    #shows label position on x and y axis
    xytext = (0, 3),
    textcoords = 'offset points', ha = 'center', va = 'bottom', fontsize = 12)
#function to add comma separator to labels
def comma(x, pos):
    return format(x, "6,.0f")
#this code adds a comma separater to the y tick marks
ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))
plt.xticks(wishlist['ordered'], labels = ['No order', 'Order'], fontsize = 12)
plt.ylabel('Number of customers', fontsize = 12)
plt.title('Number of customers who placed an order after first adding \n the product to
their wish list', y = 1.0, fontsize = 12)
plt.tight layout()
plt.savefig('wishlist_volumes')
```


In [87]:

```
#grouping by customers who are returning customers
returning = data.groupby('returning_user').size().sort_values(ascending = False).to_fra
me().reset_index().\
rename(columns = {0: 'count'})
returning
```

Out[87]:

	returning_user	count
0	1	155441
1	0	76798

In [88]:

```
#grouping by customers who are returning customers and placed an order
returning_ordered = data.groupby(['returning_user', 'ordered']).size().to_frame().reset
_index().\
rename(columns = {0: 'count'})
returning_ordered
```

Out[88]:

	returning_user	ordered	count
0	0	0	70663
1	0	1	6135
2	1	0	142483
3	1	1	12958

In [89]:

```
#filtering for returning users
returning_ordered = returning_ordered[returning_ordered['returning_user'] == 1].reset_i
ndex(drop = True)
returning_ordered
```

Out[89]:

	returning_user	ordered	count
0	1	0	142483
1	1	1	12958

In [150]:

```
#creating chart
fig = plt.figure(figsize = (15, 6))
ax = plt.subplot(1, 2, 1)
_, _, autotexts = plt.pie(returning['count'], colors = ['red', 'black'], radius = 1.5,
autopct = ('%.0f%%'), \
                          counterclock = False, startangle = -270)
plt.legend(labels = ['Returning customer', 'New customer'], loc = 'right', bbox_to_anch
or = (1.7, 0.7), fontsize = 12)
#setting the colour of percentage labels to white
for autotext in autotexts:
    autotext.set color('white')
    autotext.set_weight('bold')
    autotext.set fontsize(12)
plt.title('Proportion of returning customers at Pedal Power', y = 1.2, fontsize = 12)
#second chart
ax = plt.subplot(1, 2, 2)
plt.bar(returning ordered['ordered'], returning ordered['count'], color = 'red')
#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
#adding data labels for bars
bars = plt.bar(returning_ordered['ordered'], returning_ordered['count'], color = 'red')
for bar in bars:
    yval = bar.get_height()
    #the '{:,}' command adds a thousand separator to the labels
    ax.annotate('{:,}'.format(yval),
    xy = (bar.get_x() + bar.get_width() / 2, yval),
    #shows label position on x and y axis
    xytext = (0, 3),
    textcoords = 'offset points', ha = 'center', va = 'bottom', fontsize = 12)
#function to add comma separator to labels
def comma(x, pos):
    return format(x, "6,.0f")
#this code adds a comma separater to the y tick marks
ax.yaxis.set major formatter(tcr.FuncFormatter(comma))
plt.xticks(returning_ordered['ordered'], labels = ['No order', 'Order'], fontsize = 12)
plt.ylabel('Number of customers', fontsize = 12)
plt.title('Number of returning customers who placed an order with \n Pedal Power', y =
1.2, fontsize = 12)
plt.tight layout()
plt.savefig('returning proportion and volumes')
```

Proportion of returning customers at Pedal Power

Number of returning customers who placed an order with Pedal Power

In [91]:

```
#grouping by customers who went to the checkout page
checkout = data.groupby('saw_checkout').size().sort_values(ascending = False).to_frame
().reset_index().\
rename(columns = {0: 'count'})
checkout
```

Out[91]:

	saw_checkout	count	
0	0	191159	
1	1	41080	

In [92]:

```
#grouping by customers who saw the checkout page and placed an order
checkout_ordered = data.groupby(['saw_checkout', 'ordered']).size().to_frame().reset_in
dex().\
rename(columns = {0: 'count'})
checkout_ordered
```

Out[92]:

	saw_checkout	ordered	count
0	0	0	191159
1	1	0	21987
2	1	1	19093

In [93]:

```
#filtering for users who saw the checkout page
checkout_ordered = checkout_ordered[checkout_ordered['saw_checkout'] == 1].reset_index(
drop = True)
checkout_ordered
```

Out[93]:

	saw_checkout	ordered	count
0	1	0	21987
1	1	1	19093

In [151]:

```
#creating chart
fig = plt.figure(figsize = (15, 6))
ax = plt.subplot(1, 2, 1)
_, _, autotexts = plt.pie(checkout['count'], colors = ['red', 'black'], radius = 1.5, a
utopct = ('%.0f%%'), \
                          counterclock = False, startangle = -270)
plt.legend(labels = ['Did not click checkout page', 'Clicked checkout page'], loc = 'ri
ght', bbox to anchor = (1.8, 1.0), \
           fontsize = 12)
#setting the colour of percentage labels to white
for autotext in autotexts:
    autotext.set_color('white')
    autotext.set_weight('bold')
    autotext.set_fontsize(12)
plt.title('Proportion of customers who viewed the checkout page \n at Pedal Power', y =
1.2, fontsize = 12)
#second chart
ax = plt.subplot(1, 2, 2)
plt.bar(checkout_ordered['ordered'], checkout_ordered['count'], color = 'red')
#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
#adding data labels for bars
bars = plt.bar(checkout_ordered['ordered'], checkout_ordered['count'], color = 'red')
for bar in bars:
    yval = bar.get_height()
    #the '{:,}' command adds a thousand separator to the labels
    ax.annotate('{:,}'.format(yval),
    xy = (bar.get_x() + bar.get_width() / 2, yval),
    #shows label position on x and y axis
    xytext = (0, 3),
    textcoords = 'offset points', ha = 'center', va = 'bottom', fontsize = 12)
#function to add comma separator to labels
def comma(x, pos):
    return format(x, "6,.0f")
#this code adds a comma separater to the y tick marks
ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))
plt.xticks(checkout_ordered['ordered'], labels = ['No order', 'Order'], fontsize = 12)
plt.ylabel('Number of customers', fontsize = 12)
plt.title('Number of customers who viewed the checkout page and \n placed an order with
Pedal Power',\
            y = 1.2, fontsize = 12)
plt.tight_layout()
plt.savefig('saw_checkout_proportion_and_volumes')
```

Proportion of customers who viewed the checkout page at Pedal Power Number of customers who viewed the checkout page and placed an order with Pedal Power

propensity to buy

Correlation analysis

In [95]:

```
#plot correlations between target feature (orderded) and all other features - checking
  delivery and viewing the checkout\
#page is most positively correlated with orders and list dropdown is most negatively co
  rrelated
fig = plt.figure(figsize = (15, 8))
ax = plt.subplot()
data.corr()['ordered'].sort_values(ascending = False).plot(kind = 'bar', color = 'red')
plt.title('Feature correlation with orders placed', fontsize = 12)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.xticks(fontsize = 10)
plt.yticks(fontsize = 10)
plt.tight_layout()
plt.savefig('correlation')
```


In [96]:

```
#spltting data into dependent and independent variables
y = data.ordered.values

X = data.drop('ordered', axis = 1)

#saving the X value columns to a separate list for reassigning after scaling the data data_columns = X.columns
```

In [97]:

```
#splitting data into training and testing datasets - we are dealing with only 0/1 numbe
rs so no need to scale
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state
= 42)
```

In [98]:

```
#checking shape of training and testing sets - all records are there
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
print('y_train shape:', y_train.shape)
print('y_test shape:', y_test.shape)
```

```
X_train shape: (185791, 19)
X_test shape: (46448, 19)
y_train shape: (185791,)
y_test shape: (46448,)
```

Logistic regression

In [99]:

```
#fitting the model - using a sag solver as this is faster for large datasets which we h
ave
logistic_model = LogisticRegression(solver = 'sag', random_state = 42)
logistic_model.fit(X_train, y_train)
```

Out[99]:

LogisticRegression(random_state=42, solver='sag')

In [100]:

```
#predicting the purchase values for X_train and X_test
y_pred_train = logistic_model.predict(X_train)
y_pred_test = logistic_model.predict(X_test)
```

In [101]:

```
#evaluating the model - finding the residual differences between train data and predict
ed train data
residuals = np.abs(y_train - y_pred_train)

#print value counts of predicted values
print(pd.Series(residuals).value_counts())

print('')

#print normalised value counts for predicted values - 98% of order predictions were cor
rect on the train data set
print(pd.Series(residuals).value_counts(normalize = True))
0 182591
```

1 3200 dtype: int64 0 0.982776 1 0.017224 dtype: float64

In [102]:

```
#evaluating the model for the test data - finding the residual differences between test
data and predicted test data
residuals_test = np.abs(y_test - y_pred_test)

#print value counts of predicted values
print(pd.Series(residuals_test).value_counts())

print('')

#print normalised value counts for predicted values - 98% of order predictions were cor
rect on the test data set
print(pd.Series(residuals_test).value_counts(normalize = True))
```

0 45705
1 743
dtype: int64
0 0.984004
1 0.015996
dtype: float64

In [103]:

```
#definitions
#precision - how precise the predictions are or TP / (TP + FP). (Out of the times the m
odel said the customer would order,
#how many times did they actually order)

#recall - what percentage of the class we're interested in were captured by the model o
r TP / (TP + FN). (Out of all the
#customers that ordered, what percentage did the model predict as 'going to order')

#accuracy - measures what percentage of predictions the model got right or (TP + TN) /
(TP + FP + TN + FN).

#F1 score - harmonic mean of precision and recall - can't have a high F1 score without
a strong model underneath.
#F1 = 2(precision * recall) / (precision + recall)
#F1 score penalises model heavily if it's skewed towards precison or recall
```

In [104]:

```
#printing the confusion matrix - we are trying to limit false positives (i.e. when we p
redict a customer will place an order
#but they don't). When trying to limit false positives we want to optimise on precision
rather than recall

#41957 = true negative, 3748 = true positive, 56 = false negative, 687 = false positive
matrix = confusion_matrix(y_test, y_pred_test)
print('Confusion matrix \n', matrix)
```

```
Confusion matrix
[[41957 687]
[ 56 3748]]
```

In [105]:

```
#visualising the confusion matrix with labels
y_test_df = pd.Series(y_test)
y_pred_test_df = pd.Series(y_pred_test)

pd.crosstab(y_test_df, y_pred_test_df, rownames = ['True'], colnames = ['Predicted'], m
argins = True).reset_index()
```

Out[105]:

Predicted	True	0	1	All
0	0	41957	687	42644
1	1	56	3748	3804
2	All	42013	4435	46448

In [106]:

```
#concatenating the series into a dataframe and adding a new row to describe what the re
sult is in each. The function uses
#if statements to define the result
results = pd.concat([y_test_df, y_pred_test_df], axis = 1).rename(columns = {0: 'actua
l', 1: 'prediction'})
def regression_results(row):
    if row['actual'] == 1 and row['prediction'] == 1:
        return 'actual = ordered and prediction = ordered - True positive'
    if row['actual'] == 0 and row['prediction'] == 0:
        return 'actual = did not order and prediction = did not order - True negative'
    if row['actual'] == 0 and row['prediction'] == 1:
        return 'actual = did not order but prediction = ordered - False positive'
    if row['actual'] == 1 and row['prediction'] == 0:
        return 'actual = ordered but prediction = did not order - False negative'
#applying the above function to a new row
results['result'] = results.apply(lambda row: regression_results(row), axis = 1)
print(results.head())
```

```
actual prediction result

0 0 actual = did not order and prediction = did n...

1 0 0 actual = did not order and prediction = did n...

2 0 0 actual = did not order and prediction = did n...

3 0 0 actual = did not order and prediction = did n...

4 0 0 actual = did not order and prediction = did n...
```

In [107]:

```
#grouping the results to compare with the confustion matrix
results_grouped = results.groupby('result').size()
results_grouped
```

Out[107]:

```
result
actual = did not order and prediction = did not order - True negative
41957
actual = did not order but prediction = ordered - False positive
687
actual = ordered and prediction = ordered - True positive
3748
actual = ordered but prediction = did not order - False negative
56
dtype: int64
```

In [108]:

```
#printing out the scores for precision, recall, accuracy and F1 for y_test and y_pred_t
est
print(metrics.classification_report(y_test, y_pred_test))
```

	precision	recall	f1-score	support
0	1.00	0.98	0.99	42644
1	0.85	0.99	0.91	3804
accuracy			0.98	46448
macro avg	0.92	0.98	0.95	46448
weighted avg	0.99	0.98	0.98	46448

In [109]:

```
#another way to print the scores, pos label tells sklearn what class you want to print
- we want 1 as that's the 'will
#order' class
precision_train = precision_score(y_train, y_pred_train, pos_label = 1)
precision_test = precision_score(y_test, y_pred_test, pos_label = 1)
recall_train = recall_score(y_train, y_pred_train, pos_label = 1)
recall_test = recall_score(y_test, y_pred_test, pos_label = 1)
accuracy_train = accuracy_score(y_train, y_pred_train)
accuracy_test = accuracy_score(y_test, y_pred_test)
f1_train = f1_score(y_train, y_pred_train, pos_label = 1)
f1_test = f1_score(y_test, y_pred_test, pos_label = 1)
print('Precision train: ', round(precision_train, 2))
print('Precision test: ', round(precision_test, 2))
print('')
print('Recall train: ', round(recall_train, 2))
print('Recall test: ', round(recall_test, 2))
print('')
print('Accuracy train: ', round(accuracy_train, 2))
print('Accuracy test: ', round(accuracy_test, 2))
print('')
print('F1 train: ', round(f1_train, 2))
print('F1 test: ', round(f1_test, 2))
print('')
```

Precision train: 0.84 Precision test: 0.85

Recall train: 0.98 Recall test: 0.99

Accuracy train: 0.98 Accuracy test: 0.98

F1 train: 0.9 F1 test: 0.91

In [110]:

```
#calculating probabilities scores for test and train sets
prob train = logistic model.predict proba(X train)
prob_test = logistic_model.predict_proba(X_test)
#keeping probabilities for positive outcome only (the threshold is 0.5 which means, if
the predicted probability of the
#class for an instance is less than 0.5, that instance is predicted to be in class 0 (t
he negative class). If the
#probability of the class for an instance is equal or greater than 0.5, the instance is
classified as class 1.)
prob_train_order = prob_train[:, 1]
prob_test_order = prob_test[:, 1]
#calculate false positive rate (fpr), true positive rate (tpr) and thresholds for train
set
train_fpr, train_tpr, train_thresholds = roc_curve(y_train, prob_train_order)
#calculate false positive rate (fpr), true positive rate (tpr) and thresholds for test
test_fpr, test_tpr, test_thresholds = roc_curve(y_test, prob_test_order)
```

In [111]:

```
#calculating AUC (Area Under Curve) - this gives a single numeric metric to evaluate th
e model. An AUC value of 1 would
#represent a perfect classifier. If AUC = 0.5 the classifier only has 50% preision. AUC
scores above 0.99 so pretty good.

auc_train = auc(train_fpr, train_tpr)
auc_test = auc(test_fpr, test_tpr)
print('Training AUC: ', round(auc_train, 5))
print('Testing AUC: ', round(auc_test, 5))
```

Training AUC: 0.99289 Testing AUC: 0.99328

In [112]:

```
#plotting an ROC (Receiver Operator Characteristic) curve to evaluate the model perform
ance visually. It illustrates the
#true positive rate against the false positive rate of our classifier. Best performing
models will have an ROC curve that
#hugs the upper left corner of the graph. This would represent that we correctly classi
fy the positives much more often
#than we incorrectly classify them.
fig = plt.figure(figsize = (12, 6))
ax = plt.subplot(1, 2, 1)
plt.plot(train_fpr, train_tpr, label = 'ROC curve', color = 'red')
#plotting diagonal line from zero which represents a model that guesses incorrectly for
every correct quess
plt.plot([0, 1], [0, 1], color = 'black', linestyle = 'dashed')
plt.xlim([0, 1])
plt.ylim([0, 1.05])
plt.legend()
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
plt.xlabel('False positive rate', fontsize = 12)
plt.ylabel('True positive rate', fontsize = 12)
plt.title('ROC curve for training set', fontsize = 12)
ax = plt.subplot(1, 2, 2)
plt.plot(test_fpr, test_tpr, label = 'ROC curve', color = 'red')
#plotting diagonal line from zero which represents a model that quesses incorrectly for
every correct quess
plt.plot([0, 1], [0, 1], color = 'black', linestyle = 'dashed')
plt.xlim([0, 1])
plt.ylim([0, 1.05])
plt.legend()
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
plt.xlabel('False positive rate', fontsize = 12)
plt.ylabel('True positive rate', fontsize = 12)
plt.title('ROC curve for test set', fontsize = 12)
plt.savefig('ROC curves')
```


In [113]:

25/04/2021

```
#the ROC curve shows a near perfect classifier. Looking at the data to double check thi
s is correct - it is - these figures
#match the confusion matrix
print('counts for test set:')
print(pd.Series(y_test).value_counts())
print('')
print('counts for predictions on test set:')
print(pd.Series(y_pred_test).value_counts())
```

```
counts for test set:
0  42644
1  3804
dtype: int64

counts for predictions on test set:
0  42013
1  4435
dtype: int64
```

Random Forest

In [114]:

```
#first runningthe data through a random forest model with default hyperparameters
default_forest = RandomForestClassifier(random_state = 42)
default_model = default_forest.fit(X_train, y_train)
default_y_pred = default_model.predict(X_test)
```

In [115]:

```
#printing the confusion matrix - 669 false postives versus 687 with the logistic regres
sion so random forest performed
#better in reducing false positives

#41975 = true negative, 3703 = true positive, 101 = false negative, 669 = false positive
matrix = confusion_matrix(y_test, default_y_pred)
print('Confusion matrix \n', matrix)
```

```
Confusion matrix
[[41975 669]
[ 101 3703]]
```

In [116]:

```
#printing out the scores for precision, recall, accuracy and F1 for y_test and default_
y_pred - accuracy and precision
#are same as logistic regression
print(metrics.classification_report(y_test, default_y_pred))
```

	precision	recall	f1-score	support
0	1.00	0.98	0.99	42644
1	0.85	0.97	0.91	3804
accuracy			0.98	46448
macro avg	0.92	0.98	0.95	46448
weighted avg	0.99	0.98	0.98	46448

In [117]:

```
#will tune some of the hyperparameters of the random forest model to see if scores can
be improved. will tune number of
#estimators, max depth, min sample split and min sample leaf. Starting with n estimator
s - this shows the number of trees in
#the forest. Default value is 10
num_est = [50, 100, 250, 500, 750]
#preparing to create a validation curve - this is a tool that shows how accuracy change
s with changes in the model
#parameters.
#cv = cross validation - it's used to test the effectiveness of machine learning models
and is a resampling procedure
train score num est, test score num est = validation curve(
                                            RandomForestClassifier(),
                                            X = X_train, y = y_train,
                                            param name = 'n estimators',
                                            param_range = num_est,
                                            cv = 5,
                                            scoring = 'accuracy')
```

In [118]:

```
#to plot the validation curve, we need the mean of the 5 cross validation scores - calc
ulating mean and standard deviation
#for train and test sets

mean_train_score_num_est = np.mean(train_score_num_est, axis = 1)
std_train_score_num_est = np.std(train_score_num_est, axis = 1)

mean_test_score_num_est = np.mean(test_score_num_est, axis = 1)
std_test_score_num_est = np.std(test_score_num_est, axis = 1)
```

In [119]:

```
#plotting the validation curve - large difference between training scores and cross val
idation scores but the training set
#still had an average accuracy of 98% for each of the three cross validations. The two
lines are ever so slightly closer
#at 50 estimaters so will use this in tuned model

plt.plot(num_est, mean_train_score_num_est, label = 'Training score', color = 'red')
plt.plot(num_est, mean_test_score_num_est, label = 'Cross validation score', color = 'b
lack')

plt.title('Validation curve for Random Forest')
plt.xlabel('Values of hyperparameter n_estimators')
plt.ylabel('Accuracy score')
plt.legend(loc = 'best')
```

Out[119]:

<matplotlib.legend.Legend at 0x7fa1eaa3c358>

In [120]:

In [121]:

```
#calculating mean and standard deviation for train and test sets

mean_train_score_depth = np.mean(train_score_depth, axis = 1)
std_train_score_depth = np.std(train_score_depth, axis = 1)

mean_test_score_depth = np.mean(test_score_depth, axis = 1)
std_test_score_depth = np.std(test_score_depth, axis = 1)
```

In [122]:

```
#both the training and cross validations scores are highst at a tree depth of 5 so this
will be used in the final model

plt.plot(depth, mean_train_score_depth, label = 'Training score', color = 'red')
plt.plot(depth, mean_test_score_depth, label = 'Cross validation score', color = 'blac
k')

plt.title('Validation curve for Random Forest')
plt.xlabel('Values of hyperparameter max_depth')
plt.ylabel('Accuracy score')
plt.legend(loc = 'best')
```

Out[122]:

<matplotlib.legend.Legend at 0x7fa1eb56b7b8>

In [123]:

In [124]:

```
#calculating mean and standard deviation for train and test sets

mean_train_score_split = np.mean(train_score_split, axis = 1)

std_train_score_split = np.std(train_score_split, axis = 1)

mean_test_score_split = np.mean(test_score_split, axis = 1)

std_test_score_split = np.std(test_score_split, axis = 1)
```

In [125]:

```
#cross validation score is highest at 10 samples and then starts to flatten out. At thi
s point accuracy is falling but it's
#still high at 98.3%. Will therefore go with 10 samples before a leaf node can split -
    this should be ok given that we
#have over 100,000 samples in the training set

plt.plot(sample_split, mean_train_score_split, label = 'Training score', color = 'red')
plt.plot(sample_split, mean_test_score_split, label = 'Cross validation score', color =
    'black')

plt.title('Validation curve for Random Forest')
plt.xlabel('Values of hyperparameter min_samples_split')
plt.ylabel('Accuracy score')
plt.legend(loc = 'best')
```

Out[125]:

<matplotlib.legend.Legend at 0x7fa1eaecd668>

In [126]:

In [127]:

```
#calculating mean and standard deviation for train and test sets

mean_train_score_leaf = np.mean(train_score_leaf, axis = 1)
std_train_score_leaf = np.std(train_score_leaf, axis = 1)

mean_test_score_leaf = np.mean(test_score_leaf, axis = 1)
std_test_score_leaf = np.std(test_score_leaf, axis = 1)
```

In [128]:

```
#cross validation score is highest at 6 samples. At this point accuracy is falling but
   it's still high at 98.3%. Will
#therefore go with 8 samples as the minumum for each leaf node to classify

plt.plot(sample_leaf, mean_train_score_leaf, label = 'Training score', color = 'red')
plt.plot(sample_leaf, mean_test_score_leaf, label = 'Cross validation score', color = 'black')

plt.title('Validation curve for Random Forest')
plt.xlabel('Values of hyperparameter min_samples_leaf')
plt.ylabel('Accuracy score')
plt.legend(loc = 'best')
```

Out[128]:

<matplotlib.legend.Legend at 0x7fa1eaa4de10>

In [139]:

In [140]:

```
#printing the confusion matrix - 711 false positives versus 669 in default forest

#41933 = true negative, 3752 = true positive, 52 = false negative, 711 = false positive
matrix = confusion_matrix(y_test, tuned_y_pred)
print('Confusion matrix \n', matrix)
```

```
Confusion matrix
[[41933 711]
[ 52 3752]]
```

In [141]:

#printing out the scores for precision, recall, accuracy and F1 for y_test and default_
y_pred - accuracy and precision
#are same as logistic regression and default random forest when printed to 2 dp
print(metrics.classification_report(y_test, tuned_y_pred))

	precision	recall	f1-score	support
0	1.00	0.98	0.99	42644
1	0.84	0.99	0.91	3804
				45440
accuracy			0.98	46448
macro avg	0.92	0.98	0.95	46448
weighted avg	0.99	0.98	0.98	46448

In [142]:

```
#printing all scores for all models for class 1 on the test sets. Default model has a h
igher precision score than the tuned
#model and logistic regression model also had a higher precision score then tuned mode
L. Logistic regression model also has
#a higher accuracy and F1 score than both random forest models although differences are
smal.L
#precision
log_reg_precision = precision_score(y_test, y_pred_test, pos_label = 1)
default forest precision = precision score(y test, default y pred, pos label = 1)
tuned_forest_precision = precision_score(y_test, tuned_y_pred, pos_label = 1)
#recall
log_reg_recall = recall_score(y_test, y_pred_test, pos_label = 1)
default_forest_recall = recall_score(y_test, default_y_pred, pos_label = 1)
tuned_forest_recall = recall_score(y_test, tuned_y_pred, pos_label = 1)
#accuracy
log_reg_accuracy = accuracy_score(y_test, y_pred_test)
default_forest_accuracy = accuracy_score(y_test, default_y_pred)
tuned_forest_accuracy = accuracy_score(y_test, tuned_y_pred)
#f1 score
log_reg_f1 = f1_score(y_test, y_pred_test, pos_label = 1)
default forest f1 = f1 score(y test, default y pred, pos label = 1)
tuned_forest_f1 = f1_score(y_test, tuned_y_pred, pos_label = 1)
print('Logistic regression precision: ', round(log_reg_precision, 5))
print('Default Random Forest precision: ', round(default_forest_precision, 5))
print('Tuned Random Forest precision: ', round(tuned_forest_precision, 5))
print('')
print('Logistic regression recall: ', round(log_reg_recall, 5))
print('Default Random Forest recall: ', round(default_forest_recall, 5))
print('Tuned Random Forest recall: ', round(tuned forest recall, 5))
print('')
print('Logistic regression accuracy: ', round(log_reg_accuracy, 5))
print('Default Random Forest accuracy: ', round(default_forest_accuracy, 5))
print('Tuned Random Forest accuracy: ', round(tuned_forest_accuracy, 5))
print('')
print('Logistic regression F1: ', round(log_reg_f1, 5))
print('Default Random Forest F1: ', round(default_forest_f1, 5))
print('Tuned Random Forest F1: ', round(tuned_forest_f1, 5))
Logistic regression precision: 0.8451
```

```
Default Random Forest precision: 0.84698
Tuned Random Forest precision: 0.84669

Logistic regression recall: 0.98528
Default Random Forest recall: 0.97345
Tuned Random Forest recall: 0.98633

Logistic regression accuracy: 0.984
Default Random Forest accuracy: 0.98342
Tuned Random Forest accuracy: 0.98357

Logistic regression F1: 0.90982
Default Random Forest F1: 0.90582
Tuned Random Forest F1: 0.90771
```

In [143]:

```
#calculating probabilities scores for test sets
default_prob = default_model.predict_proba(X_test)
tuned_prob = tuned_model.predict_proba(X_test)

#keeping probabilities for positive outcome only (the threshold is 0.5 which means, if
    the predicted probability of the
#class for an instance is less than 0.5, that instance is predicted to be in class 0 (t
    he negative class). If the
#probability of the class for an instance is equal or greater than 0.5, the instance is
    classified as class 1.)
default_prob_order = default_prob[:, 1]
tuned_prob_order = tuned_prob[:, 1]

#calculate false positive rate (fpr), true positive rate (tpr) and thresholds for test
    set
    test_fpr_d, test_tpr_d, test_thresholds_d = roc_curve(y_test, default_prob_order)
    test_fpr_t, test_tpr_t, test_thresholds_t = roc_curve(y_test, tuned_prob_order)
```

In [144]:

```
#calculating AUC (Area Under Curve) - AUC is higher for the tuned model. But logistic r
egression model is still higher than
#both (0.99328)

default_auc = auc(test_fpr_d, test_tpr_d)
tuned_auc = auc(test_fpr_t, test_tpr_t)
print('Default AUC: ', round(default_auc, 5))
print('Tuned_AUC: ', round(tuned_auc, 5))
```

Default AUC: 0.99187 Tuned_AUC: 0.9926

In [145]:

```
#plotting an ROC curves for random forest models - again they show a very good model, s
imilar to the logistic regression
fig = plt.figure(figsize = (12, 6))
ax = plt.subplot(1, 2, 1)
plt.plot(test_fpr_d, test_tpr_d, label = 'ROC curve', color = 'red')
#plotting diagonal line from zero which represents a model that guesses incorrectly for
every correct guess
plt.plot([0, 1], [0, 1], color = 'black', linestyle = 'dashed')
plt.xlim([0, 1])
plt.ylim([0, 1.05])
plt.legend()
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
plt.xlabel('False positive rate', fontsize = 12)
plt.ylabel('True positive rate', fontsize = 12)
plt.title('ROC curve for default Random Forest model', fontsize = 12)
ax = plt.subplot(1, 2, 2)
plt.plot(test_fpr_t, test_tpr_t, label = 'ROC curve', color = 'red')
#plotting diagonal line from zero which represents a model that guesses incorrectly for
every correct quess
plt.plot([0, 1], [0, 1], color = 'black', linestyle = 'dashed')
plt.xlim([0, 1])
plt.ylim([0, 1.05])
plt.legend()
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
plt.xlabel('False positive rate', fontsize = 12)
plt.ylabel('True positive rate', fontsize = 12)
plt.title('ROC curve for tuned Random Forest model', fontsize = 12)
plt.savefig('RF ROC curves')
```


In [146]:

```
#checking feature importance in default model
feature_importance = pd.Series(default_model.feature_importances_, index = X.columns)
feature_importance.sort_values(ascending = False, inplace = True)
print(feature_importance)
```

```
checked_delivery_detail
                            0.486037
saw_checkout
                            0.218194
sign_in
                            0.152668
basket_add_detail
                            0.044707
basket icon click
                            0.042424
basket add list
                            0.012417
saw_delivery
                            0.007964
saw_homepage
                            0.006766
list_size_dropdown
                            0.005295
checked_returns_detail
                            0.005062
returning_user
                            0.004297
closed_minibasket_click
                            0.003183
                            0.002450
image_picker
promo_banner_click
                            0.002180
sort_by
                            0.002065
detail_wishlist_add
                            0.001568
account_page_click
                            0.001540
saw_account_upgrade
                            0.000899
                            0.000284
saw_sizecharts
dtype: float64
```

In [147]:

```
#checking feature importance in tuned model
feature_importance_t = pd.Series(tuned_model.feature_importances_, index = X.columns)
feature_importance_t.sort_values(ascending = False, inplace = True)
print(feature importance t)
```

```
checked delivery detail
                            0.410433
saw checkout
                            0.250969
sign_in
                            0.200023
basket_add_detail
                            0.059542
basket_icon_click
                            0.044216
basket add list
                            0.013162
saw homepage
                            0.006571
list size dropdown
                            0.004283
saw delivery
                            0.003197
checked_returns_detail
                            0.002900
returning_user
                            0.001676
image picker
                            0.001168
closed minibasket click
                            0.000848
detail_wishlist_add
                            0.000462
account_page_click
                            0.000291
sort_by
                            0.000162
promo banner click
                            0.000044
saw account upgrade
                            0.000037
saw sizecharts
                            0.000016
dtype: float64
```

In [148]:

```
#plotting feature importance for default model
plt.figure(figsize = (12,6))
ax = plt.subplot(1, 2, 1)

feature_importance.nlargest(10).plot(kind = 'barh', color = 'red').invert_yaxis()
plt.xlabel('Relative importance')
plt.title('Feature importance in default \n Random Forest model', fontsize = 12)

ax = plt.subplot(1, 2, 2)

feature_importance_t.nlargest(10).plot(kind = 'barh', color = 'red').invert_yaxis()
plt.xlabel('Relative importance')
ax.set_xlim(0.0, 0.5)
plt.title('Feature importance in tuned \n Random Forest model', fontsize = 12)

plt.subplots_adjust(wspace = 0.6)
plt.savefig('feature_importance')
plt.show()
```


In []:

In []: