

4. Morfologia matemática binária

Teoria elementar de conjuntos. Propriedades dos conjuntos. Propriedades das transformações morfológicas. Elemento estruturante. Transformação de vizinhança. Transformações morfológicas elementares. Transformações Tudo-ou-Nada. Adelgaçamento e Espessamento. Transformações geodésicas. Número de Euler (conectividade).

Origens:

- Trabalhos pioneiros de *Georges Matheron* e *Jean Serra* (década de 60, França).
- Criação do Centre de Morphologie Mathématique de Fontainebleau (1968).

Objectivo:

 A morfologia matemática baseia-se na teoria dos conjuntos, e pretende quantificar estruturas do ponto de vista geométrico.

Metodologia:

- 1. Utiliza a noção de conjunto para representar estruturas.
- 2. Transformação dos conjuntos por forma a torná-los mensuráveis:
 - Interacção do conjunto de objectos em estudo, com outro objecto com forma conhecida (<u>elemento estruturante</u>).
 - A transformação do conjunto inicial, ao longo de sucessivas operações, evidencia as suas características estruturais, que são registadas ao longo dos novos conjuntos gerados, o que implica que <u>o conjunto transformado é mais simples</u> <u>que o conjunto original.</u>

Metodologia:

3. Realização de medidas sobre os conjuntos transformados.

O processamento morfológico de imagem pode ser aplicado nos seguintes contextos:

- Morfologia binária: as imagens são binárias (mais frequente).
- Morfologia numérica: as imagens podem ser, ou de níveis de cinzento (monocromáticas), ou coloridas (policromáticas).

Os termos «Morfologia» e «Matemática», associados (que constituem a designação desta teoria), referem-se à utilização de conceitos de lógica de conjuntos e operações numéricas.

Intersecção

$$X \cap Y = \{x \colon x \in X \land x \in Y\}$$

Comutativa:

$$X \cap Y = Y \cap X$$

Associativa:

$$X \cap (Y \cap Z) = (Y \cap X) \cap Z$$

• Idempotente:

$$X \cap X = X$$

Reunião

$$X \cup Y = \{x \colon x \in X \lor x \in Y\}$$

Comutativa:

$$X \cup Y = Y \cup X$$

Associativa:

$$X \cup (Y \cup Z) = (Y \cup X) \cup Z$$

• Idempotente:

$$X \cup X = X$$

Relação entre a intersecção e a união (distributividade):

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

Conjunto complementar

$$(X^c)_E = \{x \colon x \in E \land x \notin X\}$$

Fórmulas de Morgan:

$$((X \cap Y)^c)_E = (X^c)_E \cup (Y^c)_E$$

$$((X \cup Y)^c)_E = (X^c)_E \cap (Y^c)_E$$

Diferença lógica

$$X - Y = \{x \colon x \in X \land x \notin Y\}$$

ou

$$X - Y = X \cap (X \cap Y)^c$$

Propriedades dos conjuntos

Conexidade: um conjunto X diz-se conexo se, para quaisquer dois pontos $P(x_i,y_i)$ e $Q(x_m,y_n)$ nele incluídos, existe pelo menos um caminho que os une e que está totalmente incluído em X.

A conexidade de um conjunto depende, no entanto, da forma como se encontra definida a ligação entre os pixels numa malha digital (nas malhas digitais quadradas com conectividade-4 e conectividade-8, ou hexagonal com conectividade-6).

Propriedades dos conjuntos

Convexidade: um conjunto X diz-se convexo se, qualquer que seja o par de pontos $P(x_i, y_i)$ e $Q(x_m, y_n)$ nele incluídos, o segmento de recta que os une está totalmente incluído em X.

Propriedades dos conjuntos

Isotropia: Um conjunto X diz-se isotrópico se está uniformemente espalhado segundo todas as direções.

Predominando uma dada direcção, está-se perante um conjunto anisotrópico. Este conceito está associado à estrutura espacial dos objetos.

Se φ é uma transformação morfológica então obedece a uma ou mais do que uma das seguintes propriedades:

• φ é **extensiva** se o conjunto resultante contém conjunto inicial X.

$$X\subset \varphi(X)$$

• φ é anti-extensiva se o conjunto resultante está contido no conjunto inicial X.

$$\varphi(X) \subset X$$

Propriedades das transformações morfológicas

• φ é **crescente** se a relação de inclusão entre os conjuntos inicial e resultante se mantém.

$$Y \subset X \Rightarrow \varphi(Y) \subset \varphi(X)$$

• φ é **idempotente** se a sua aplicação sucessiva a X não o altera.

$$\varphi(\varphi(X)) \equiv X$$

Propriedades das transformações morfológicas

• Duas transformações morfológicas φ_1 e φ_2 são **duais** se:

$$\varphi_1(X) \equiv \varphi_2(X^c)$$

• Finalmente, uma transformação é dita **homotópica** se ela não modifica o número de conexidade E de um conjunto X, isto é:

$$E[\varphi(X)] = E[X]$$

Elemento estruturante

Elemento estruturante (B): É um caso particular de imagem binária, sendo usualmente pequeno e simples (por exemplo $B_{3\times3}$ com todos os valores iguais a um).

Uma transformação morfológica só pode ser realizada com a definição prévia de um elemento estruturante.

Como o próprio nome indica, quando associado a uma certa transformação morfológica, B percorre a imagem com o propósito de aferir se "encaixa" ou não nos objectos nela presentes. No processo, pode modificar a forma e as características topológicas desses objectos (por exemplo, a conexidade ou a convexidade).

Elemento estruturante

A <u>forma</u> de B pode ser qualquer, sendo as mais comuns o quadrado, o disco, o segmento, o círculo, o par de pontos e o hexágono (na malha digital hexagonal), que são escolhidos de acordo com os objectivos pretendidos. Por exemplo:

- DISCO: determinação da distribuição de tamanho dos objectos (granulometria).
- SEGMENTO: detecção de alinhamentos preferenciais.
- PAR DE PONTOS: caracterização do estado de dispersão (covariância).
- CIRCUNFERÊNCIA: estudo da vizinhança de um ponto (transformação de vizinhança).

Elemento estruturante

O <u>centro</u>, ou pixel de referência de B é geralmente o seu centro geométrico, podendo contudo ser definido qualquer outro ponto para o efeito.

O centro de B marca a sua posição sobre a imagem inicial e, por conseguinte, a posição do pixel transformado.

A distribuição dos valores dos pixels no interior de B designa-se por configuração de vizinhança (V).

Transformação de vizinhança

Uma transformação de vizinhança consiste na identificação/alteração de um pixel de uma imagem no caso de se verificar uma dada configuração de vizinhança V em redor desse pixel.

- Na figura, tem-se um quadrado elementar B que percorrerá todos os pixels da imagem i).
- Em ii) estão marcadas as posições em que a configuração de vizinhança $V(B_x)$ é idêntica à de B.
- Como transformações de vizinhança mais comuns têm-se o <u>adelgaçamento</u> e o <u>espessamento</u>.

A transformação morfológica de **erosão** (ε) de um dado conjunto X, por um elemento estruturante com a sua origem em x (B_x), define-se pela expressão seguinte:

$$\varepsilon_B(X) = \{x \colon B_x \subset X\}$$

A transformação morfológica de **dilatação** (δ) de um dado conjunto X, por um elemento estruturante com a sua origem em x (B_x), define-se pela expressão seguinte:

$$\delta_B(X) = \{x \colon B_x \cap X \neq \emptyset\}$$

A **abertura** (γ) de X consiste em executar a dilatação do resultado da erosão do conjunto X.

$$\gamma_B(X) = \delta_B(\varepsilon_B(X))$$

24

O **fecho** (ϕ) de X consiste em executar a erosão do resultado da dilatação do conjunto X.

$$\phi_B(X) = \varepsilon_B(\delta_B(X))$$

Síntese das propriedades das transformações morfológicas elementares:

	Extensiva	Anti-extensiva	Crescente	Idempotente	Homotópica	Transformação dual
Erosão	-	Х	x	-	-	Dilatação
Dilatação	x	-	x	-	-	Erosão
Abertura	-	X	х	х	-	Fecho
Fecho	X	-	X	x	-	Abertura

Transformação tudo-ou-nada (*Hit-or-Miss*)

A transformação "Tudo-ou-Nada" (Hit-or-Miss transformation - HMT) aplicada a X consiste numa transformação de vizinhança que recorre a um elemento estruturante composto $B = (B_1, B_2)$, com $B_1 \cap B_2 = \phi$, e que resulta da verificação simultânea das seguintes condições: B_1 coincide com $X \in B_2$ coincide com X^c .

$$HMT_B(X) = \{x \colon (B_1)_x \subseteq X \land (B_2)_x \subseteq X^c\}$$

$$HMT_B(X) = \varepsilon_{B_1}(X) \cap \varepsilon_{B_2}(X^c)$$

- Os índices do elemento estruturante composto são geralmente três: "1" (∈ domínio de B₁), "-1" (∈ domínio de B₂) e "0" (é indiferente).
- A HMT é geralmente usada para encontrar configurações específicas em grupos de pixels ou objectos e determina-se pela intersecção entre as erosões de X por B₁ e de X^c por B₂ (como se verá em alguns exemplos a seguir).

Pontos isolados (pixels sem quaisquer outros pixels na sua vizinhança).

Desenham-se duas configurações (EE) B_1 e B_2 , tal que, $B_1 \subseteq X$ e $B_2 \subseteq X^c$.

В1

0	0	0
0	1	0
0	0	0

1	1	1
1	0	1

B2

Optando por um B composto tem-se a seguinte configuração:

В

-1	-1	-1
-1	1	-1
-1	-1	-1

1 = pertence

-1 = pertence ao complementar

0 = indiferente.

$$\varepsilon_{B_1}(X) = \{x \colon B_1 \subset X\}$$

$$\varepsilon_{B_2}(X^c) = \{x \colon B_2 \subset X^c\}$$

 $Pontos\ isolados = \varepsilon_{B_1} \cap \varepsilon_{B_2}$

Pontos extremos (pixels com um pixel no máximo na sua vizinhança próxima).

Com B_1 e B_2 :

B1(90º)				
-1	1	-1		
-1	1	-1		
-1	-1	-1		

B1(45º)				
1	-1	-1		
-1	1	-1		
-1	-1	-1		

B2(45º)			
-1	1	1	
1	-1	1	
1	1	1	

Optando por B composto:

Extremidades

Pontos múltiplos (pixels com mais do que dois pixels na sua vizinhança próxima).

Com B_1 e B_2 :

Optando por B composto:

Pontos múltiplos

Cantos rectos (pixels que formam um ângulo recto convexo).

Com B_1 e B_2 :

В1

-1	1	-1
-1	1	1
-1	-1	-1

-1 -1 -1 1 -1 -1

B2

Optando por B composto:

В

0	1	0
-1	1	1
-1	-1	0

Cantos rectos

Contornos (pixels com pelo menos um pixel pertencente ao conjunto complementar na sua vizinhança próxima).

Com B_1 e B_2 :

B1(90º)			В	2(909	2)
-1	-1	-1	-1	1	
-1	1	-1	-1	-1	
-1	-1	-1	-1	-1	

B2(90º)			В	1(459	2)
	1	-1	-1	1	
	-1	-1	1	1	
	-1	-1	1	1	

Optando por B composto:

Pontos de fronteira

Transformação de adelgaçamento

Adelgaçamento (THIN) de um conjunto X: consiste numa transformação de vizinhança que retira a X todos pontos que correspondam a uma dada configuração de vizinhança $V(B_{\nu})$.

$$THIN(X,B) = X \cap NOT[HMT(X,B)]$$

É aplicada apenas a imagens binárias e produz uma imagem binária como resultado.

De forma geral, a operação de adelgaçamento é determinada por translação do elemento estruturante B, por todos os pixels da imagem, comparando em cada um a sua configuração de vizinhança com a configuração dos correspondentes pixels na imagem.

Havendo uma coincidência entre ambas as configurações, então, ao pixel da imagem correspondente à posição do centro de B, <u>é atribuído o valor 0</u>; caso contrário mantém-se inalterável.

Exemplos de transformações de adelgaçamento

Fernando Soares

A erosão e a abertura morfológicas são exemplos de transformações de adelgaçamento.

Exemplos de transformações de adelgaçamento

Esqueletização: é um exemplo de adelgaçamento morfológico que reduz as regiões de uma imagem binária a uma estrutura mínima que preserve a extensão e conectividade das regiões originais. É uma transformação usada frequentemente para "estreitar" resultados de detecção de fronteiras, reduzindo a espessura das linhas a outras com apenas um pixel de espessura. Note-se que o esqueleto resultante é um conjunto conexo é igualmente um conjunto conexo.

O esqueleto de um conjunto pode ser determinado de diversas formas: a) Localização dos centros de circunferências máximas bi-tangentes aos limites da região considerada.

Exemplos de transformações de adelgaçamento

b) <u>Fórmula de Lantuéjoul</u>: para uma imagem binária discreta X, o esqueleto S(X) é a união de todos os subconjuntos $S_k(X)$, com um elemento estruturante B de dimensão k.

$$S(X) = \bigcup_{k}^{K} S_k(X)$$

$$S_k(X) = \varepsilon_{kB}(X) \cap NOT[\gamma_B(\varepsilon_{kB}(X))]$$

Exemplos de transformações de adelgaçamento

Escanhoamento (*prune*): é também uma operação de adelgaçamento que visa suprimir sucessivamente os pontos extremos de um conjunto binário, até se verificar a condição de idempotência.

Transformação de espessamento

Espessamento (THICK) de um conjunto X: consiste numa transformação de vizinhança que adiciona a X todos pontos que correspondam a uma determinada configuração de vizinhança $V(B_x)$.

$$THICK(X,B) = X \cup HMT(X,B)$$

É aplicada apenas a imagens binárias e produz uma imagem binária como resultado.

De forma geral, a operação de adelgaçamento é determinada por translação do elemento estruturante B, por todos os pixels da imagem, comparando em cada um a sua configuração de vizinhança com a configuração dos correspondentes pixels na imagem.

Se se verificar uma coincidência entre ambas as configurações, então no pixel correspondente à posição do centro de B <u>é atribuído o valor 1</u>; caso contrário mantém-se inalterável.

Fernando Soares

A dilatação e o fecho morfológicos são exemplos de transformações de espessamento.

Fernando Soares

Envelope convexo (*convex hull*): determina-se por execução da transformação HMT, para determinar concavidades nos objectos e consequente preenchimento. A operação é iterativa e continuará até atingir a idempotência.

Convex Hull

Fernando Soares

Esqueleto por zonas de influência (*SKeleton by Influence Zones - SKIZ***)**: é uma estrutura de esqueleto que divide uma imagem em regiões, cada qual contendo um objecto distinto da imagem.

As fronteiras são definidas por forma a que todos os pontos interiores a cada área estejam mais próximos do correspondente objecto interior a essa área. É por vezes designada por *Diagrama de Voronoi*. A operação é iterativa e continuará até atingir a idempotência.

O SKIZ pode ser obtido por um processo métrico, calculando distâncias euclidianas, ou por processos morfológicos, envolvendo dilatações com elementos estruturantes de diferentes tamanhos.

As **transformações geodésicas** binárias são transformações morfológicas sobre uma imagem binária Y, condicionadas por uma determinada geodesia binária X. Destacam-se as seguintes:

- 1 Dilatação geodésica
- 2 Erosão geodésica
- 3 Reconstrução geodésica binária por dilatações geodésicas sucessivas.
- 4 Reconstrução geodésica binária por erosões geodésicas sucessivas.

Dilatação geodésica: dilatação morfológica de um conjunto Y condicionada à geodesia X.

$$\delta_X(Y) = \delta(Y) \cap X$$

Erosão geodésica: erosão morfológica de um conjunto Y condicionada à geodesia X.

$$\varepsilon_X(Y) = \varepsilon(Y) \cup X$$

Reconstrução geodésica binária por dilatações geodésicas sucessivas:

$$R_X(Y) = \delta_X^{\infty}(Y) = \lim_{n \to \infty} (\delta_X \ o \dots o \ \delta_X)(Y) = \delta_X^n \left(\delta_X^{n-1} \left(\delta_X^{n-2} \left(\dots \left(\delta_X^1(Y) \right) \right) \right) \right)$$

Reconstrução geodésica binária por erosões geodésicas sucessivas:

$$R_X(Y) = \varepsilon_X^{\infty}(Y) = \lim_{n \to \infty} (\varepsilon_X \ o \dots o \ \varepsilon_X)(Y) = \varepsilon_X^n \left(\varepsilon_X^{n-1} \left(\varepsilon_X^{n-2} \left(\dots \left(\varepsilon_X^1(Y) \right) \right) \right) \right)$$

Número de conectividade (número de Euler)

Fernando Soares

De forma geral, o **número de conexidade** de uma superfície ou conjunto, ou também chamado número de Euler (E), é igual ao número de vértices v, menos o número de arestas a, mais o número de polígonos p, quando dividida a dita superfície em polígonos planos definidos pelas arestas e pelos vértices.

E = v - a + p E = 4 - 5 + 2 = 1 E = 8 - 16 + 8 = 0 E = 7 - 14 + 7 = 0 E = 11 - 25 + 13 = -1

Número de conectividade (número de *Euler*)

No domínio de representação de uma imagem digital, o valor de E determina-se a partir do grafo de representação dos pixels. A seguir exemplifica-se a determinação de E para o objecto binário sombreado.

$$E = v - a + p$$

Número de pixels = 11 Número de arestas do grafo = 15 Número de triângulos = 5 E = 11-15+5=1

Número de objectos = 2 Número de buracos = 1

$$E = 2-1 = 1$$