Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Computer Science and Engineering	Semester	III
Course Code	20CS34P	Type of Course	Programme Core
Course Name	Database System Concepts and PL/SQL	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1.Rationale

Data, factual information, is the main driving force that is changing the face of our world. Database is an organized collection of related data which is stored and accessed electronically using a computer. Database management has evolved from a specialized computer application to a central component of virtually all enterprises, and, as a result, knowledge about database systems has become an essential part of an education in computer science. SQL is a powerful language for both querying and updating data in relational databases. Study of SQL empowers students to implement and work with relational data model.

2. Course Outcomes: At the end of the course, the student will be able to:

CO-01	Identify the elements of ER model for a given requirement, draw ER diagram and validate with the
CO-01	given requirement.
CO-02	Translate the given ER diagram to a relational model and verify against integrity constraints. Also
CO-02	refine and normalize the relational database design against first three normal forms.
CO-03	Use appropriate SQL statements to create a database and other DB objects using a DBMS software.
CO-04	Perform insert, delete and/or update operations on the database and query the database to
CO-04	retrieve the required information using appropriate SQL statements and clauses.

3. Course Content

Week	со	PO	Lecture (Knowledge Criteria) 3 hours/week	Tutorial (Activity Criteria)	Practice (Performance Criteria) 4 hours/week (2 hours/batch twice in a week)
1	1	1,4	Introduction Overview of DB: why a database? Purpose of database; Classification; Application; DBMS: features, providers; Functional components of DBMS; Types of DBMS architecture; View of data in DBMS; Database users; Role and responsibilities of DBA; Case study: Example of any database application, recruitment database	Refer Table 1	 Install and setup DBMS software such as MySQL, PostgreSQL Learn the interface and explore the features of installed DBMS
2	1	1,3,4	Database design Data model; types; importance of data modeling; Overview of database design; phases	Refer	 Identify and ER- model elements and draw ER

			of database design; database development life		diagram for the
			cycle;		given specifications
			Conceptual design: ER-Model: entity: types;		using tools.
			attribute: types; relationships: types,		
			constraints, Symbols and Notations;		
			Case study: conceptual design for a set of		
			specifications i. Restaurant		
			i. Restaurant ii. Retail shop		
			iii. Recruitment		
			iv. College		
			v. Library		
			Relational model: Overview; characteristics;	1.	
3	2	1,3	Constraints: types; Operations;	_	relational model
		,	Advantages and Disadvantages; applications;	2.	•
			Design anomalies; Features of good DB design;		constraints
			Functional dependency: overview, rules, types; Normalization: normalization process;	1	Normalize the
4	2	1,3	importance of normalization;1NF,2NF,3NF		above design
			Sufficient examples to understand the concept		
				1.	Validate the above
			database languages: types, commands/tasks in each type; Integrity constraints;		design against
5	3	1,4	MySQL/PostgreSQL: overview; features;		integrity
			datatypes; Standardization guidelines;		constraints
				1	Use
				1	MySQL/PostgreSQL
			Defining Data: DDL		DDL statements to
6	3	1,3,4	CREATE, ALTER, DROP different DB objects;		create database
			Temporary tables: types, create and use; external tables; Managing constraints		and other DB
			external tables, Managing constraints		objects for above
				1	design
				1.	Perform single table and multi
			Insert, delete and update data		table insertion
			Modifying data: UPDATE and DELETE	2.	
7	3,4	1,3,4	Update anomalies; impact of constraints		update operations
			Querying of available data: SELECT; Aliases; sorting data: ORDER BY	3.	Querying single
			Solding data. ONDER DI		table
				4.	
				1	of a query Querying single
			filtering data: WHERE, AND, OR, row limiting		table
8	4	1,4	clause, IN, BETWEEN, LIKE;	2	
			Joining table: INNER JOIN, LEFT JOIN,	3	_
			·		tables with joins
				1.	·
	4	1 4	Grouping data: Aggregate functions, GROUP		operators
9	4	1,4	BY, HAVING; Set operators: UNION, INTERSECT, MINUS;	2.	Report aggregated data using group
			Set operators. Uniton, in Ensect, Minus;		functions
			Subqueries:	1.	
			Comparator operators; subqueries: Single Row		to retrieve
10	4	1,4	Subqueries; Multiple Row Subqueries;		information from
			correlated subqueries; EXISTS, NOT EXISTS,		the created
			ANY, ALL, SOME;		database
11	4	1,4	Views: create, drop and update; realization of	1.	
		<u> </u>	views based on single and multiple tables;		query

			DCL: Controlling user access: Differentiating system privileges from object privileges; Granting privileges on tables		2. Create users and assign privileges for DB operations
12	4	1,4	PL/SQL: variables, datatypes; control statements (decision making); Stored procedures and Functions Concept; syntax and structure of store procedure; syntax and structure of functions; calling a function; Examples;		 Create and execute store procedures Create and execute functions
13	4	1,4	Managing and controlling transactions: Introduction of transaction, ACID properties; states of transaction; Transaction control; Overview of transaction management, using transaction control commands: COMMIT, ROLLBACK, SAVE POINT, SET TRANSACTION; sufficient examples;		 Create and execute transactions Call previously created store procedure or function in transaction
Total	Total in hours 39 13 52		52		

^{*}PO = Program outcome as listed and defined in year 1 curriculum

Table 1: Suggestive activities for tutorials (the list is only shared as an example and not inclusive of all possible activities for that course. Student and faculty are encouraged to choose activities that are relevant to the topic and the availability of such resources at their institution)

,
1. Identify the drawbacks of file system and how DB enables us to overcome them. Identify distinguishable features of each of DBMS available in the market.
Transform given n-ary relationship to binary relationship
2. Document the steps to create ER diagram.
3. Identify the components of ER model in the given requirements.
1. Document the steps to create logical design
2. Discuss and document Codd's 12 rules
1. Explore and document other normal forms
1. study and present the working of SQL optimizer
2. Learn and report optimization techniques
1. Learn and demonstrate use of DISTINCT, ALL, IS NULL;
2. Learn and present RIGHT JOIN;
1. Identify the advantages of Cascading Referential Integrity Constraints
Identify need of subqueries
1. identify the advantages and disadvantages of store procedure and functions,
1. presentation on the latest developments in research and industry related to this course
Learn and present need of scalar subqueries
1. Learn iterative statements in PL/SQL
1. Does Relational model support storage of unstructured data, if no, what are the alternatives to
store unstructured data.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	

	Semester Ena Examination	r (i ractice)		Total Marks	100	
	Semester End Examination	(Practice)	180	100	40	
			Tot	al CIE Marks	60	
6	CIE-6 Portfolio continuous evaluation of Activity through Rubrics	1-13		10	10	
5	CIE-5 Skill Test-Practice	12	180	100	Average of two skill tests reduced to 20	

5. Format for CIE written Test

Course Na	me	Database System Concepts and PL/SQL	Test	I/II/III	Sem	III/IV
Course Coo	de	20CS34P	Duration	80 Min	Marks	30
Note: Ansv	wer a	ny one full question from each section. Ea	ach full ques	tion carries	10 marks.	
Section		Assessment Questions		Cognitive	Course	Marks
Section		Assessment Questions	Levels	Outcome	Marks	
T	1					
1	2					
П	3					
II	4					
111	5					
III	6					

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Database System Concepts by Abraham Silberschatz, Henry F. Korth, S. Sudarshan
2	https://binaryterms.com/
3	https://beginnersbook.com/
4	https://www.oracletutorial.com/

8. CIE Skill Test Scheme of Evaluation

SL. No.	Particulars/Dimension	Marks
1	Draw ER diagram for the given specifications.	30

2	Translate ER diagram to relational model, verify against integrity constraints and	
	refine and normalize DB design	
	Explain above DB design	
3	In the event of student failing to verify integrity constraints and apply	
	normalization the examiner shall use viva voce to assess the student understanding	
	of normal forms and integrity constraints	
4	Portfolio evaluation of practice sessions	10
	Total Marks	100
	Total Marks	100

Note: For CIE skill test 2, SEE scheme of evaluation shall be used.

9. SEE Scheme of Evaluation

SL. No.	Particulars/Dimension	Marks
1	Draw ER diagram for the given specifications.	10
2	Translate ER diagram to relational model, verify against integrity constraints and refine and normalize DB design	
3	Use appropriate SQL statements to create the database and other DB objects using a DBMS software for the above design	
4	Perform insert, delete and/or update operations on the database and query the database to retrieve the required information using appropriate SQL statements and clauses.	30
5	Demonstrate the working of above queries. In the event of not working of above queries (with no syntactical errors), the examiner shall use viva voce to assess the student understanding of ER model, Relational model concepts and SQL.	
6	Portfolio evaluation of practice sessions	10
	Total Marks	100

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
1	Computers		20
2	MySQL workbench/ or equivalent software; Lucid chart, draw.io		