Fundamentos de banco de dados

Curso de Sistemas de Informação/TADS Prof. Alexandre Vitoreti de Oliveira

Autora: Profa. Daniella Vieira

Unidade I

CONCEITOS DE BANCO DE DADOS

- Gerenciamento de dados nas organizações.
- Características de um banco de dados: visão, abstração, instâncias e esquema, independência de dados.
- Entidades e atributos.
- Relacionamentos.
- Sistemas de Gerência de Banco de Dados (SGBD's).

Motivação para o estudo

Uso dos dados

- Censo Americano de 1880.
- 50 milhões de pessoas.
- Idade, sexo, ocupação, educação, número de pessoas deficientes.

- Hollerith Tabulating System.
- Cartões perfurados de 80 colunas.
- Usados no censo de 1890.
- Os dados foram processados em seis semanas em vez de 7 anos ou mais.

Fitas magnéticas

Discos magnéticos

Tambores magnéticos (multi-discos);

Discos ópticos removíveis

- Big Science
- Big Business
- Big People
- Big Data

Source: Contents of above graphic created in partnership with Teradata, Inc.

Ao trabalho...

O que interessa armazenar?

- Calendários, censo, medidas de terras;
- Estoques, salários, produção;
- Grandes Navegações e a contabilidade (Séc. XIV);
- Prensa, Comércio, Balanço (Séc. XV a XVII)

Seres, Objetos, Organismos, Fatos

Informações Informais

Informações Formais

Dados

Bits e Bytes

MODELO

INTERNO

Representa organização e suas alterações

Descrição de Estruturas e Procedimentos

Estruturas de Informações e Definições de Manipulação

Estruturas Externas de Dados

Estruturas Internas de Arquivos

Banco de dados (BD)

Uma coleção de dados operacionais inter-relacionados e persistentes. Estes dados são gerenciados de forma independente dos programas que os utilizam, servindo assim a múltiplas aplicações de uma organização.

CANETA BIC NUM PAPEL DE PÃO

Problemas possíveis de imaginar:

- 1. Manutenção de dados da organização
- 2. Falta de padronização
- 3. Dificulta integração e reutilização
- 4. Operações de manipulação de dados
- 5. Redundância
- 6. Falta de segurança

Volume crescente de dados a serem gerenciados. Atualmente são mais de *terabytes* em dados.

Registros desde cadeias de supermercados ao censo populacional - IBGE.

Necessidade de independência da aplicação em relação aos dados.

Padronização e desempenho.

Vantagens do uso de banco de dados:

- Banco de dados tem como principal característica a organização e a facilidade de recuperação dos dados.
- 2. Dados armazenados em um único local o que minimiza redundância.
- 3. Dados compartilhados pelas aplicações.
- Operações de manipulação de dados não requerem modificação pesada no código da aplicação.
- 5. Aplicações não se preocupam com o gerenciamento dos dados.
- 6. Linguagens para manipulação de dados em mais alto nível.

Dado

Fato do mundo real que está registrado e possui um significado implícito no contexto de um domínio de aplicação.

Exemplo: Idade.

Informação

Fato útil que pode ser extraído direta ou indiretamente a partir dos dados.

Exemplos: Faixa etária da sala - faixa menor e maior de idade de todos os alunos da sala.

Banco de dados (BD)

Coleção de dados inter-relacionados e persistentes que representa um subconjunto dos fatos presentes em um domínio de aplicação (universo de discurso).

Exemplo: Banco de dados da biblioteca.

Área de banco de dados

Pesquisa e desenvolvimento de tecnologias para dar suporte eficiente ao gerenciamento de dados de sistemas de informação.

Campo

Unidade básica de uma tabela. Possui um nome, tipo e tamanho.

Exemplo: Nome, e-mail, endereço

Tabela Lógica

União de linhas e colunas para armazenamento de dados dos sistemas.

Exemplo: Tabela de clientes

Campos

Documento	Nome	Email	Endereço
012.012-11	João da Silva	js@gmail.com	Rua Acacias
123.123-00	Maria da Silva	ma@gmail.com	Rua Acacias

Registro

Coleção de itens de dados.

Exemplo: Um registro sobre o cliente

Um registro é dividido em vários campos: um campo pode ser um nome, um número ou uma combinação de caracteres.

Documento	Nome	Email	Endereço
012.012-11	João da Silva	js@gmail.com	Rua Acacias
123.123-00	Maria da Silva	ma@gmail.com	Rua Acacias

Registro

- Cada registro (linha) representa um relacionamento entre um conjunto de valores;
- 2) Cada linha da tabela é única e deve possuir um atributo identificador (Num_Matricula);
- 3) Este atributo identificador é chamado de chave primária;
- 4) Em uma tabela não devem existir linhas duplicadas;
- 5) As linhas de uma tabela não seguem uma ordem especifica.

en_cliente

Campo	Tipo
seq cliente	int(11)
txt_nome	varchar(255)
txt_razao_social	varchar(255)
txt_cnpj	varchar(50)
txt_fone	varchar(20)
txt_celular	varchar(20)
txt_obs	varchar(255)
en_endereco_seq_endereco	int(11)

Um nome de atributo (coluna) deve ser único em uma tabela e dizer exatamente o tipo de informação que ele representa.

<u>seq_cliente</u>	<u>txt_nome</u>	txt razao social	txt cnpj
77	Pectem Technology Ltda	Pectem Technology	00.000.000/0000- 0000
78	Unisul	Unisul	99.999.999/9999- 9999

Regras sobre nomenclatura:

- 1) Nomes de tabelas devem ser únicos no banco de dados (de preferência nomes curtos e no singular);
- 2) Uma coluna (atributo) não segue um ordenamento especifico;
- Nome de uma coluna deve expressar exatamente o que armazena (deve-se utilizar prefixos padronizados).

Os **Projetistas de Banco de Dados** (DBP) são analistas que identificam os dados a serem armazenados em um Banco de Dados e pela forma como estes serão representados.

Os **Analistas e Programadores** de desenvolvimento criam sistemas que acessam os dados da forma necessária ao Usuário Final, que é aquele que interage diretamente com o Banco de Dados.

Os Administradores de Banco de Dados (DBA) são responsáveis pelo controle ao acesso aos dados e pela coordenação da utilização do BD.

Resumo: conceitos básicos

- Campo: unidade básica de informação com mínimo significado (atributo).
- **Registro**: conjunto de campos.
- Tabela: conjunto de registros (arquivo ou relação).
- Banco de Dados: conjunto de tabelas e suas formas de manipulação.
- Esquema de BD: descrição do BD.
- Instância de BD: dados armazenados no BD em um determinado instante de tempo.

Atividade

Dado x Informação

- Vamos utilizar a ferramenta Enquete do EVA:
- Para cada frase apresentada, indique sua resposta:
- 1) Idade é um dado. (Verdadeiro ou Falso)
- 2) Salário é um dado. (Verdadeiro ou Falso)
- 3) Endereço é um dado. (Verdadeiro ou Falso)
- 4) A sua média final nesta UA é uma informação. (V ou F)
- 5) Apelido é uma informação. (V ou F)

Sistema de Gerenciamento de BD

Interfaces de aplicação

SGBD

Sistema de Gerência de BD (SGBD)

Coleção de programas responsável pelo gerenciamento dos dados em um BD.

Software para manipulação dos dados

SGBD

É um sistema de software que facilita os processos de definição, construção, compartilhamento de banco de dados entre vários usuários e aplicações.

Plataformas comerciais:

Microsoft ACCESS; Microsft SQL Server; MySQL; FireBird / Interbase; Oracle; Postgree; IBM DB2; SQLite; entre outras.

SGBD

Os SGBDs permitem fazer consultas através de linguagens, tal como SQL.

Definição: Especificação dos tipos de dados, das estruturas das tabelas e das restrições que devem ser impostas aos dados que serão armazenados.

Construção: Processo de acumular os dados num meio de armazenamento controlado pelo SGBD.

Manipulação: Operações como atualização do banco de dados (inclusão, exclusão e alteração de registros) e extração de dados, como consultas e relatórios.

Compartilhamento: Permite aos múltiplos usuários e programas acessar, de forma concorrente o banco de dados.

Integridade: Consiste em impedir que um determinado código ou chave em uma tabela não tenha correspondência em outra tabela.

Problema de Integridade

Muitas vezes é preciso satisfazer restrições de consistência (validação).

Exemplo: idade é positiva e inteira.

Quando os dados se encontram em um estado inconsistente, informações incorretas ou contraditórias podem ser fornecidas aos usuários.

Consistência: Sempre que a mesma informação for armazenada, mesmo que em locais diferentes (redundância), ela deve ter o mesmo valor.

Quando uma operação requer a execução de diversas etapas. Se uma delas falhar, pode-se criar inconsistência dos dados.

A atomicidade garante que se algo der errado, tudo será desfeito até deixar como se nunca tivesse iniciado a operação.

Ex. Transferência bancárias de A para B.

Controle de redundância

A redundância desnecessária de dados levam ao armazenamento excessivo de informações (ocupa espaço).

Compartilhamento de dados

Múltiplos usuários acessam o BD ao mesmo tempo. O SGBD mantém o controle de concorrência para assegurar que o resultado de atualizações.

Restrição de acesso não autorizado

Subsistema de autorização e segurança. Isso se aplica tanto ao acesso aos dados quanto ao uso de softwares SGBD.

Objetos do SGBD

Tabelas

Vantagens do uso de SGBD

Representação de relacionamento complexos entre dados

O SGBD oferece recursos para representar os relacionamentos entre os dados.

Tolerância a falhas

O SGBD fornece recursos para recuperação de falhas tanto de SW quanto de HW.

Abstração dos dados

Níveis de abstração

Nível físico

Esquema interno de baixo nível de abstração. Descreve como os dados estão de fato armazenados.

Descreve as estruturas de dados.

Nível lógico

Esquema conceitual de médio nível de abstração. Descreve os dados armazenados e seus relacionamentos.

Utilizado pelos administradores para definir como o banco será construído.

Nível de visão

Esquema de visão de alto nível de abstração. Proporciona diversas visões do mesmo BD.

Nível de visão

Visões

Uma visão é definida como um subconjunto de uma base de dados (conjunto virtual de informações)

Tabela lógica de um banco de Dados, não contém dados.

Visão idêntica

Visão por seleção de colunas

Nível de visão

Visão por seleção de linhas

Visão por seleção de Linhas e colunas

Nível de visão

Visão por junção de tabelas

Atividade

Informe o resultado com relação as tabelas

Tabela 1

Tabela 2

ı	⊿	Е	F	G	Н
	1				
	2				
	3				
Ó	4				

- A. Junção por colunas
- B. Junção por linhas
- C. Junção por linhas e colunas
- D. Junção de linhas por tabela
- E. Junção de colunas por tabela

	Α	F	G	Н
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

	D	Е
1		
2		
3		
9		
10		

]

	Α	В	С	D	E	F	G	Н
1								
2								
3								
4								

Nível lógico

Sob a estrutura do BD está o modelo de dados. São ferramentas conceituais usadas para a descrever dados, regras e relacionamentos.

Modelo lógico com base em objetos:

Utilizados na descrição de dados no nível lógico e de visões. Dispõem recursos de estruturação flexíveis

Modelo de entidade-relacionamento.

Modelo orientado a objeto.

Nível lógico

Modelo lógico com base em registros:

Utilizados na descrição de dados no nível lógico e de visões.

Especifica tanto a estrutura lógica quando a implementação de alto nível.

Modelo relacional.

Modelo de rede.

Modelo hierárquico.

Modelos de Dados

Lembrando...

Modelos de dados são formas de representação que servem para descrever as estruturas das informações contidas em um BD.

O usuário vê o banco de dados segundo um modelo de visões.

- Abordagem (Modelo) Hierárquica;
- Abordagem (Modelo) em Rede;
- Abordagem (Modelo) Relacional.

- Esta seção e as seguintes são baseadas em um banco de dados contendo as entidades: Filial, Departamento e Funcionário.
- Na abordagem hierárquica, como o próprio nome já diz, os dados são organizados de acordo com níveis hierárquicos preestabelecidos.
- Os primeiros bancos de dados estão baseados nesta abordagem. Segundo Date, "um banco de dados hierárquico, compõe-se de um conjunto ordenado de árvores – mais precisamente, de um conjunto ordenado de ocorrências múltiplas de um tipo único de árvore".

- Na abordagem hierárquica, podemos ver o banco de dados como um único arquivo organizado em níveis. O nível superior que contém a filial é chamado de raiz.
- Qualquer acesso ao banco de dados deve ser feito a partir dele.
- Em geral, a raiz pode ter qualquer quantidade de dependentes, e estes, qualquer quantidade de dependentes de nível mais baixo.

- No modelo em rede as informações são representadas por uma coleção de registros e o relacionamento entre elas é formado através de ligações (link).
- Extensão do modelo hierárquico.
- É uma relação membro-proprietário, na qual um membro pode ter muitos proprietários.

- Em um BD estruturado como um modelo em rede há frequentemente mais de um caminho para acessar um determinado elemento de dado.
- A principal diferença entre a abordagem hierárquica e a em rede é que um registro-filho tem exatamente um pai na abordagem hierárquica, enquanto na estrutura de rede um registro-filho pode ter qualquer número de pais.

- Um banco de dados relacional consiste em uma coleção de tabelas, cada uma designada por um nome único.
- Uma tabela é uma representação bidimensional de dados composta de linhas e colunas.

- Padrão atual para a construção de ferramentas de BD.
- Composto de tabelas ou relações.
- Uma tabela é um conjunto não ordenado de linhas.
- Cada linha é composta por uma série de valores de campo.
- Cada campo é identificado por um nome de campo.
- O conjunto de campos das linhas de uma tabela que possuem o mesmo nome formam uma coluna.

Entidade:

Objeto do mundo real. Um fato.

Relacionamento:

Associação existente entre elementos de entidades

Atributo

Informações que se deseja guardar sobre o objeto

Cardinalidade

Número de ocorrências possíveis de cada entidade envolvida num relacionamento 1..N

N .. M

1..1

Modelos de Dados

Exemplo de BD relacional

Cliente

seq cliente	<u>txt_nome</u>	txt razao social	<u>txt cnpj</u>	txt fone	txt celular	txt web	txt obs	en endereco seq endereco
77	Pectem Technology Ltda	Pectem Technology	00.000.000/0000-0000					78
78	Unisul	Unisul	99.999.999/9999-9999					79

Cliente tem um ou mais contratos

en cliente seq cliente	<u>en contrato seq contrato</u>
77	41
77	42

Contrato

seq contrato	txt_id	txt titulo	txt termo principal	dta inicio	dta conclusao	dta vigencia
41	11	22	6666666666	33/33/3333	44/44/4444	55/55/5555
42	1	2	ew	33/33/3333	44/44/4444	55/55/5555
43	1	2	ew	33/33/3333	44/44/4444	55/55/5555

Atividade

Construa o modelo de dados para o formulário apresentado

👚 > Empresa	> Meus clientes
* Empresa	
Razão Social	
CNPJ	
E-mail	
* Fone	
Celular	
Web	
* Endereço	
Número	
País	SELECIONE ▼
Estado	SELECIONE ▼
Cidade	SELECIONE ▼
Bairro	
Сер	
Referência	
	255 Caracteres disponíveis
Obs. adicionais	255 Caracteres disponíveis
	Salvar

Referências bibliográficas

DATE, C. J. Introdução a sistemas de bancos de dados. Rio de Janeiro: Campus, 2004. 865 p. ISBN 85-352-1273-6.

ELMASRI, Ramez; NAVATHE, Sham. **Sistemas de banco de dados**. 4. ed. São Paulo: Addison-Wesley, 2005. 724 p. ISBN 8588639173.

PEREIRA, Silvio do Lago. **Estruturas de dados fundamentais: conceitos e aplicações**. 8. ed. São Paulo: Érica, 2004. 238 p. ISBN 85-7194-370-2.

SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. **Sistema de banco de dados**. 3. ed. São Paulo: Makron Books, 2004. 778 p. ISBN 85-346-1073-8.

Próxima aula

- 1) Escolher uma ferramenta de banco de dados (Oracle, MS SQL SERVER, MongoDB, etc)
- 2) Pesquisar quais das características que foram apresentadas na aula de hoje são "vendidas" como funcionalidades
- 3) Registrar na ferramenta Fórum (anexar o arquivo ou escrever o texto)