MAF: Masked Autoregressive Flow for Density Estimation

Lorne Whiteway lorne.whiteway@star.ucl.ac.uk

Astrophysics Group Department of Physics and Astronomy University College London

27 April 2020

Find the presentation at https://tinyurl.com/y72sf93t

Context

- Supervised machine learning i.e. selecting from a highly-parameterised family of non-linear functions to fit some training data.
- ► Fitting is done to optimise a utility function that rewards a close match to the training data and penalises complexity i.e. enforces regularization.
- Regularisation is also provided by any lack-of-flexibility in the fitting functions.
- ► Bayesian framework: adherence to training data = likelihood; regularisation = prior.

Density Estimation

- We want to do ML to do density estimation:
- We are given as training data some fair samples $\{x_i\}$ from a probability density p, and our goal is to find p.

MAF

- We will discuss the MAF algorithm: Papamakarios et al. 2018; Masked Autoregressive Flow for Density Estimation; https://arxiv.org/abs/1705.07057.
- Based on earlier algorithms of which the most relevant is MADE: Germain et al. 2015; MADE: Masked Autoencoder for Distribution Estimation; https://arxiv.org/abs/1502.03509.
- ▶ I will focus first on MADE as all the key ideas are present there.

Analogy

- An autoencoder is like a parrot it learns to mimic.
- ➤ An autoregressive autoencoder is like a deaf parrot it learns to play the probabilities (and hence becomes a density estimator).

Parrot training

- ➤ Simple example: single binary outcome. We want the parrot to mimic us when we say 'Yes' or 'No'.
- ➤ So give lots of 'Yes', 'No' training data; give the parrot treats but reduce the treats by the non-positive number log(% correctness of the parrot's response). This is called cross-entropy loss.

Parrot training

- The neural network is incentivised to model the identity function $\tilde{x_1} = x_1$.
- Depending on the flexibility of the neural network the parrot will get this exactly or approximately correct.

Deaf parrot

- Deaf parrot = no link between input and output.
- Parrot still squawks and gets feedback (more treats if the squawk accidentally matched the unheard training input).
- If say 75% of the training data was 'Yes' then the parrot will learn to say 'Yes' more often. Optimal strategy will be a word that is 75% 'Yes' and 25% 'No'.

Deaf parrot

So by removing links from the neural network but still rewarding the network for mimicry we create a density estimator.

Two word phrase

- ▶ Now consider two word phrases ("Yes, No").
- ▶ If there is no correlation between the two words then we just need two deaf parrots.
- ▶ But generally $p(x_1 \& x_2) = p(x_1)p(x_2|x_1)$.
- ▶ To model this: one deaf parrot for $p(x_1)$ as before. But for the second parrot: unmask its ears, let it hear the training word told to the first parrot, the re-mask its ears for the second word.
- Give treats as before (still encouraging mimicry).
- ▶ Easy to show that the second parrot learns $p(x_2|x_1)$.

Two word phrase

More generally if (for each i) $\tilde{x_i}$ is linked only to x_1, \ldots, x_{i-1} then we learn $p(x_1), \ldots, p(x_i|x_1, \ldots, x_{i-1})$, whose product is p(x).

Autoencoder; Autoregressive autoencoder

- ▶ The 'hearing' parrot (that mimics) is an autoencoder.
- The network of partially-deaf parrots (that learns the conditional probabilities) is called an autoregressive autoencoder.
- Autoregression appears in other contexts e.g. predicting the next element in a causal sequence.

Figure 1 from MADE paper

Sampling from the inferred probability density \tilde{p} (1)

- Use (0,0) as input to get $(\tilde{x_1}, \tilde{x_2})$ as output;
- ▶ Randomly choose s_1 in $\{0,1\}$ with probability $\tilde{x_1}$ of being 1;
- Use $(s_1,0)$ as input to get new $(\tilde{\tilde{x_1}},\tilde{\tilde{x_2}})$ as output;
- ▶ Randomly choose s_2 in $\{0,1\}$ with probability $\tilde{\tilde{x_2}}$ of being 1;
- ▶ Then (s_1, s_2) is a new sample from the inferred density.
- ► Takes *D* evaluations of the net to get one new sample.

More complicated distributions

- So far we have looked at binary distributions.
- Here the probability density could be described by a single number $(= p(x_i = 1))$. So output \tilde{x}_i has dual meaning as 'best guess at x_i ' and as ' $p(x_i = 1|x_1, \dots, x_{i-1})$ '.

More complicated distributions

- ► To handle continuous distributions:
- Model each univariate conditional distribution $p(x_i|x_1,...,x_{i-1})$ as a Gaussian;
- Two output cells for each input: one for mean and one for (log of) standard deviation - from this we easily calculate the conditional probabilities and hence the overall probability of any given input;
- Loss function is now sum of negative logs of probabilities of training data.

More complicated distributions

$$P(x_1) = N(\mu_1, \exp(\alpha_1))$$

$$P(x_2|x_1) = N(\mu_2, \exp(\alpha_2))$$

$$\mu_1 \qquad \qquad (\lambda_2)$$

Sampling from the inferred probability density \tilde{p}

- ► As before we can create new samples with *D* calls to the neural net.
- At each step we randomly choose u_i from N(0,1) and scale and shift it to get $\tilde{x}_i = \exp(\alpha) * u_i + \mu$.
- At each step the α and μ come from a call to the net with $\tilde{x}_1, \ldots, \tilde{x}_{i-1}$ as inputs.

Sampling from the inferred probability density \tilde{p}

- ▶ Thus we get a mapping f from $u \sim N(0, I)$ to $\tilde{x} \sim \tilde{p}$.
- ► The mapping is easily invertible!
- $u_i = (\tilde{x}_i \mu) \exp(-\alpha)$
- All the μ and α that we need are available in **one** call to the net (as here we have all the net input values that we need).
- ▶ This gives f^{-1} mapping \tilde{p} to N(0, I).

Sampling from the inferred probability density \tilde{p}

- Furthermore the autoregressive property means that the Jacobian of f^{-1} is triangular.
- ▶ Its diagonal elements are just the $exp(-\alpha_i)$ factors.
- ▶ So the determinant of $Jac(f^{-1})$ is easy to calculate.

Normalising flow

- ▶ So f maps N(0, I) to \tilde{p} .
- ► Such *f* is called a normalising flow.
- Recall how probability densities transform: $\tilde{p}(x) = \mathcal{N}_{(0,I)}(f^{-1}(x)) |\det(\operatorname{Jac}(f^{-1}))|$
- All of these components are easy to calculate, and let us evaluate and sample from \tilde{p} .

Example - Neural net

Example - Target distribution p

Example - inferred distribution \tilde{p}

Inverse image $u = f^{-1}(\tilde{p})$ of inferred distribution - should be N(0, I)

MAF idea

- ▶ Map the original training data back through f^{-1} to get $\{u_i\}$ that should be N(0, I) but aren't;
- ▶ Repeat the whole process! Treat the u as training data for a new neural net that is trying to model the u as a distorted N(0, I)
- Be prepared to do this five or ten iterations.

MAF - after four iterations $f^{-4}(\tilde{p})$) - should be N(0, I)

