Lecture 2

Assignment

1. Let X_1, \dots, X_n, \dots be a sequence of independent random variables such that

$$E[X_i] = \mu, \quad Var(X_i) < \sigma^2, \quad n = 1, 2, \cdots$$

With Chebychev's inequality, prove that $\bar{X_n} \xrightarrow{P} \mu$.

- 2. Let U_1, U_2, \cdots be independent random variables having the uniform distribution on [0,1] and $Y_n = (\prod_{i=1}^n U_i)^{-1/n}$). Show that $\sqrt{n}(Y_n e) \stackrel{d}{\longrightarrow} N(0, e^2)$.
- 3. Let X_1, \dots, X_n be i.i.d. random variables following Uniform[0,1].Let $Y_n = \min(X_1, \dots, X_n)$.
 - (i) Show that $Y_n \xrightarrow{a.s} 0$ as $n \to \infty$.
 - (ii) Show that $nY_n \xrightarrow{d} \exp(1)$, where $\exp(1)$ is the exponential distribution with density $f(x) = e^{-x}$ for x > 0.