PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Coração Eucarístico

Disciplina	Curso	Turno	Período
Projeto e Análise de Algoritmos	Ciência da Computação	Manhã	5°
Professor			
Felipe Cunha (felipe@pucminas.br)			

It always seems impossible until it's done.
Nelson Mandela

Lista 02

1. Existe uma equação na qual podemos substituir o valor de n e calcular diretamente o valor de S(n) sem ter que calcular os valores anteriores?

$$\begin{cases} S(1) = 2 \\ S(n) = 2 * S(n-1) \end{cases}$$

2. Resolva as seguintes relações de recorrência. Para todas elas assuma que $T(1) = \Theta(1)$.

(a)
$$T(n) = T(\frac{n}{2}) + \Theta(1)$$

(b)
$$T(n) = T(\frac{n}{2}) + \Theta(n)$$

(c)
$$T(n) = 2T(\frac{n}{2}) + \Theta(1)$$

(d)
$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

3. O tempo de execução de um algoritmo A é descrito pela recorência:

$$T(n) = 7T(\frac{n}{2}) + n^2$$

Um outro algoritmo A' tem um tempo de execução descrito pela recorrência:

$$T(n) = aT(\frac{n}{4}) + n^2$$

Qual é o maior valor inteiro de a tal que A' é assintoticamente mais rápido que A? Explique.

4. Use o Teorema Mestre para resolver as seguintes equações de recorrência:

(a)
$$T(n) = 4T(\frac{n}{2}) + n$$

(b)
$$T(n) = 4T(\frac{n}{2}) + n^2$$

(c)
$$T(n) = 4T(\frac{n}{2}) + n^3$$

(d)
$$T(n) = 2T(\frac{n}{2}) + n^3$$