

MANUAL

1. Compute prediction

This tool is used to compute the prediction of being an enhancer. It uses classifiers based on Random Forest method, trained on 4-mers frequency of DNA sequence.

Compute prediction Put DNA sequence: Select classifiers: ATAATCTTTATTAAAGGCTACACATGTGCATGCAT CTCCATAGTTTAATGCCTTCTCTGTTCTTTTTACC Drosophila melanogaster (green) GTATGTATGTTTTCACACTCATTGTTTGTGTACT ☐ Human FANTOM heart (purple) TCTAAATAAATCAACCATCTGTAATATTTAAGACT ☐ Human FANTOM brain (brown) CTTTATTTTTACTGAGGACCAAATATAAAATTCAT CTCTCAGAGGCTTCCATTCAGGGTAAAGTGCTA ☐ Human VISTA heart (red) GATAAATTAGCCAGCAGAAAACAAAAAGCCAGCA ☐ Human VISTA brain (vellow) GATTTTTTTAAGTCTGTTTCTTTGCTCAACACCTA TGAAATGTCCTAAAGATAATTTTGAAATTCAGTAA **ACATGCTTGGTACAATTCTTATTTTTCTCTtatatttat** Predict! atatataatatttacatattatatattataGTGAAATTTCAAATT CAGCATTTAAGAAATTATTTTAGTAAACATAATTT TAGGTTTACTTTGGTTAGAGTTAATTTCTGGAGA CTGGAGAGCATCAGTGAGGTGAGGAGGGTCTTT TAGAAATGAAGATTTTCATGCAGTGGGACTAGTA GAAAATGATTCATGGAAGTATGGAATCACTTGAA ATCTTCAGGAAATTGTTATGCACCTGGGTTATAT CAAGGGATGGGTTTTTGTGGGGTTtttttttttgttgtttgttt atttattttttaanatanaatettaetetattaeeeaaaetanaaceeaata VISTA Set Set test sequence:

You can put both uppercase and lowercase nucleotides characters and white characters (new lines, spaces). We were prepared for testing 3 sample DNA sequences, which were chosen specifically for the presented classifiers. Classifiers were trained on fixed length DNA sequences, hence it is required to note minimum length of the typing DNA sequence:

classifier	frame length	step length
Drosophila melanogaster	200 n.	100 n.
Human FANTOM	300 n.	150 n.
Human VISTA	1500 n.	750 n.

Results of prediction are visualized by an interactive graphic containing line charts using the library Bokeh (http://bokeh.pydata.org/en/latest/):

2. Mutate

This tool is used to find a point mutations which decreases prediction value of the DNA sequence to the level of potentially enhancer inactivating. It uses classifiers based on Random Forest method, trained on 4-mers frequency of DNA sequence.

Mutate enhancer

Put DNA sequence: Set parameters: TACTCAGCTGCTGATGCTGCACATAACTATGCACA TACATATGAATGTACATATGTACGTTCCGTTGGAAA select classifier: D. melanogaster GAGAGATCACAACGGAGCGCCCATTCGTTGTATTC ACTCTCACGTATCACACTGAACCATTGGCGTTAGT CTCATTTAGGCTTAATTGCGTAAAATTCTGATATTA max. number of outputs: 20 AAAACATATTCATTTTAAACTCT cut-off: 0.63 ‡ n best sequences for 10 ‡ random choice: k best sequences selceted randomly from n: set mutation region: e.g. 30:50 run mutate: REDFly ▼ Set test sequence Mutatel and default parameters

You can put both uppercase and lowercase nucleotides characters and white characters (new lines, spaces). We were prepared for testing 3 sample DNA sequences, which were chosen specifically for the presented classifiers (with default parameters). Classifiers were trained on fixed length DNA sequences and it is required to type sequence with <u>frame</u> lengths provided below:

classifier	frame length	step length
Drosophila melanogaster	200 n.	100 n.
Human FANTOM	300 n.	150 n.
Human VISTA	1500 n.	750 n.

Before mutation computing you can set following parameters:

- · max. number of outputs
- **cutoff:** prediction value of which is considered a potential inactivation of the enhancer sequence
- **n best sequences for random choice:** number of mutated sequences with the lowest prediction value of which will be selected randomly sequences to the next iteration
- **k best sequences selected randomly from n:** number of random sequences from the *n best sequences for random choice* taken to the next iteration
- **set mutation region** proper format of a region in which the sequence will be mutated: *start_position:end_position*, e.g. *20:200* (default: entire length of the sequence)

Proposition of mutated sequence is visualized with highlighted of modified nucleotides:

Sequence mutated: 1

10	20	30	40	50
TACTCAGCTG	CTGATGCTGC AC	CATAACTAT GO	CACATCCAT ATO	GAATGTAC
60	70	80	90	100
ATATGTACGT	TCCGTTGGAA AG	GAGAGATCA CA	ACGGAGCC CCC	CATTCGTT
110	120	130	140	150
GTATTCACTC	TCACGTATCA CA	ACTGAACCA TI	GGCGTTAG TC	CATTTAG
160	170	180	190	200
GCTTAATTGC	TTAAAATTCT GA	ATATTAAAA AC	CATATTCAT TT	TAAACTCT

Positions:

Prediction value:

original sequence	mutated sequence
0.93	0.63

Sequence mutated: 2

10	20	30	40	50
TACTCAGATG CTGA	TGCTGC ACATA	ACTAT GCAC	ATACAT ATGA	ATGTAC
60	70	80	90	100
ATATGTACGT TCC	STTGGAA AGAGA	GATCA CAAC	GGAGCC CCCAT	TTCGTT
110	120	130	140	150
GTATTCACTC TCAC	GTATCA CACTG	SAACCA TTGG	CGTTAG TCTCA	ATTTAG
160	170	180	190	200
GCTTAATTGC TTAA	AAATTCT GATAT	TAAAA ACAT	ATTCAT TTTA	ACTCT

Positions:

```
1) C -> A on positions [8]
2) G -> C on positions [90]
3) G -> T on positions [161]
```

Prediction value:

original sequence	mutated sequence
0.93	0.63