程序代写代做 CS编程辅导

Single Agent Se

Lecture 5 IDA*, Pattern Databases

IDA*

at: cstutorcs

Assignment Project Exam Help

IDA* DemoEmail: tutorcs@163.com

•[0 1 2 | 3 4 5]

Tent (-cost: 5 (9 (1)) Q: 749389476 [0 1 2 | 4 3 5]

Admissible heuristic

tutores.com

Termination (程序代写代做 CS编程辅评ality

UNIVERSITY DENVER

- · All path costs are strictly increasing
- All nodes with a given cost are experimental interaction
 - Cost-limit strictly increasing
- At least 1 new node expanded each
- · No infinite-length paths of finite cos
- · Must eventually expand the goal

 Frontier -- nodes which have been generated but not expanded

- Frontier always contains node on optimal path to goal
- · Cost thresholds are monotonically increasing
- No thresholds > optimal path length
 - f(n) < optimal solution cost
- Goal has f(n) = g(n) -- no shorter solution
- Cannot run with a threshold > g(goal)

WeChat: cstutorcs

Single Agent Search

Single Agent Search

Assignment Project Exam Help

Space Complexity : tutorcs@163.com Expansions

- · Assume goal has cost c, minimum edge cost e
- Maximum depth of c/e (+1 for expanding at this 749389476 depth)
- e is constant, so space is O(c)

- How much work on last iteration of IDA*?
- Same set of nodes as A*
 - · Except for tie-breaking

https://tutorcs.com

123 Single Agent Search 124 Single Agent Search

Node Expansims代写代做 战黨電腦pansions (2)

- How much time in previous iterations?
 - Assume that the number of node cost x is N(x)
 - Then we usually assume N(x)/N
 - The number of nodes grows exp. factor of b) with each iteration
 - DFID analysis applies

UNIVERSITY DENVER

- Worst-Case performance?
 - 1 more node expanded each step
 - 1, 2, 3, ... b^d 1, b^d = $O(b^{2d})$

WeChat: cstutorcs

Assignment Project Exam Help

Other Limitations of IDA* tutorcs@163.com

- A* expands every state with cost < c
- IDA* expands every *node* with cost
 - eg. turns a graph into a tree -- doesn't detect 493894 duplicates
- What problems will IDA* work well in? ttps://tutorcs.com different paths
 - Sliding tile puzzle -- few cycles
- What problems will it not work well in?
 - Pathfinding -- √2 edge costs and lots of cycles

- http://movingai.com/SAS/IDA/
- What is the shortest cycle?
 - Find cycles in the graph
 - Find an example where IDA* visits a state by two

Single Agent Search

UNIVERSITY OF DENVER

Pattern Datab

- · Modern sources of heuristics:
 - Pattern Databases
 - True-Distance Heuristics
- Where do these work well?
- Where don't they work?

WeChat: cstutorcs

Assignment Project Exam Help

Heuristics as Relaxations tutores Heuristics as Relaxations

- Consider TSP In solution:
 - All cities must be included in path : 749389476
 - Each city must have two incident edges
 - · Graph must be connected
- What happens if we relax/remove chitigs://tutorcs.compther example?
 - Use a MST
 - Solve sub-problems independently

- Consider route finding on a map<=>graph
- Must travel edges
 - Otherwise just go straight to goal (euclidean)

Logic represent程im代写代做 微編號關鍵tile puzzle

- International planning competitions represent problems in generic language(s)
- STRIPS (Stanford Research Institu Solver) - became name of descript
 - Preconditions -- things that must an action
 - Postconditions (effects) -- how th changes when an action is applied
 - · represented as add and delete lists

- adjacent([0, 0], [0, 1])
- at([1, 0], 2)
- adjacent([0, 0], [1, 0])
- at([0, 1], 1)
- adjacent([1, 0], [1, 1])
- at([1, 1], 0)
- adjacent([0, 1], [1, 1])
- \cdot at([0, 0], 3)

WeChat: cstutorcs

Goal

- •at([0, 0], 0)
- at([1, 0], 1)
- •at([0, 1], 2)
- at([1, 1], 3)

Assignment Project Exam Help

Email: tutores Action: Move(x, loc1, loc2)

- Preconditions:
- at([loc₁], 0) QQ: 749389476
 - at([loc₂], x)
 - adjacent([loc₁], [loc₂])

- at([loc₂], 0)
- ¬at([loc₁], 0)
- at([loc₁], x)
- ¬at([loc₂], x)

Single Agent Search

How do we build heuristics?

- First method:
 - · Relax preconditions & solve exa
 - · What happens if we relax:
 - at([loc₁], 0)?
 - at([loc₂], x)?
 - adjacent([loc₁], [loc₂])?

- Second method?
 - · Ignore "delete" effects of postconditions
 - What happens to state?
 - Tile can be in multiple positions
 - Apply all possible moves at each step

WeChat: cstutorcs

Assignment Project Exam Help

Properties Email: tutorcs@163.com

- Will these methods produce admissible heuristics?
 - Consider that the search space is a graph
 - These methods add edges to the graph
 - Never remove edges
- Therefore, the result must be an adhistibles: //tutorcs.com heuristic
- One generalized type of abstraction is one where edges are added into the search space (S)
- 49389476 Form an "edge supergraph" (T)
 - T contains all the edges in S plus possibly additional edges

Single Agent Search

- Theorem: If T is an edge super graph of S, and distances in T are computed by BF distances in T as its heuristic is use problem P, then for any s∈S that is expanded if BFS is used to solve P.
 - s is expanded by A* in S, or
 - s is expanded by BFS in T
 - (BFS is reverse search)

Valtorta's Theo程序代写代做How编裡辦事ake this work

- · Possibilities:
 - Pre-compute abstraction values
 - Decompose the heuristic computation
 - Use a different type of abstraction

Single Agent Search

Assignment Project Exam Help

Generalized Valtorta's Review Email: tutorcs@1637ceprem (Holte)

- · Valtorta's Theorem
 - Every node expanded by BFS in the original 1 graph will be expanded by either the SPS in the supergraph or by A* in the original graph
- •Let φ be a mapping from states to abstract states

- If $\phi(S)$ is any abstraction of S, for any $s \in S$ that is necessarily expanded if BFS is used to solve \bigcap problem P. if A* is used to solve P using distances in $\phi(S)$ computed by BFS as its heuristic, then either:
- - $\phi(s)$ is expanded by BFS in $\phi(S)$

How do we get saen 写代的 CS编程辅导

- If a large number of states are mapped into a single abstract state, there is a larg search in the abstract state space
 - We only have to touch 1 node in space instead of many nodes

WeChat: cstutorcs

45

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com