Questão 01: Obter valores para um vetor de inteiros com dimensão 20 e então determinar qual o menor e qual o maior valor do conjunto. O vetor não está e não deverá ser ordenado.

Questão 02: Obter valores para um vetor de inteiro com dimensão 20 e:

- a) Trocar cada número par do vetor pelo valor que está em sua primeira posição;
- b) Trocar cada número ímpar do vetor pelo valor que está em sua última posição.

Questão 03: Obter somente valores inteiros, positivos e ímpares para um vetor com dimensão 20 e:

- a) Mostrar o vetor original;
- b) Mostrar quantos números múltiplos de 5 existem no vetor, e quais são;
- c) Mostrar somente os números que estão nas posições pares do vetor;
- d) Trocar cada um dos números que estão nas posições ímpares do vetor pela soma de todos os números múltiplos de 3 do vetor;
- e) Mostrar o vetor final.

Questão 04: Elabore um programa em linguagem C que receba um vetor A de dez elementos inteiros. Esse programa deve calcular o fatorial de cada elemento de A e armazená-los em um vetor B. O programa deve mostrar o vetor A e o vetor B ao seu final.

Questão 05: Os números binários são utilizados pelos computadores para processar dados. É um sistema de numeração que, em vez de utilizar 10 algarismos, utiliza apenas 2 (0 e 1).

Veja como converter valores decimais em binários:

Um modo simples de fazer essa conversão é dividir o número decimal que você quer converter em binário por dois. Faça a divisão "na mão", e anote o resto (será 0 ou 1). Pegue o quociente dessa divisão e divida-o, também, por dois. Anote outra vez o resto. Faça assim até que o quociente de sua divisão seja 1 (isto é, a divisão de 2 por 2).

O seu número em binário é o quociente da última divisão mais todos os restos das divisões, do quociente menor para o maior.

Por exemplo, o número 39:

$$39 \div 2 = 19 \text{ (resto 1)}$$
 $19 \div 2 = 9 \text{ (resto 1)}$
 $9 \div 2 = 4 \text{ (resto 1)}$
 $4 \div 2 = 2 \text{ (resto 0)}$
 $2 \div 2 = 1 \text{ (resto 0)}$

Logo o número decimal 39, convertido para binário é 100111

Construa um programa em linguagem C que receba um número inteiro (decimal) e mostre o seu correspondente em binário.

Questão 06: Construa um programa em C para:

- a) Preencher um vetor A com 25 números inteiros e positivos, sem repetições (o programa deve controlar estas restrições).
- b) Inserir em um vetor B, a partir do seu início, os números pares do vetor A e, a partir do seu final, os números ímpares do vetor A (*este item deve ser resolvido com apenas uma única estrutura de repetição*).
- c) Mostrar o conteúdo do vetor B, indicando a posição de cada número no vetor B e no vetor A.
- d) Intercalar o conteúdo dos vetores A (a partir do início) e B (a partir do final) em um vetor C (com tamanho 50) (este item deve ser resolvido com apenas uma única estrutura de repetição).
- e) Mostrar o vetor C.

Exemplo:

^{*}Questão 07: Faça um programa em C que carregue um vetor com 20 números inteiros não repetidos e um segundo vetor com 15 números inteiros não repetidos (o programa deve garantir que os números para os vetores não sejam repetidos). Calcule e mostre dois vetores resultantes. O primeiro vetor resultante será composto pelos números pares gerados pelo elemento do primeiro vetor somado a todos os elementos do segundo vetor. O segundo vetor resultante será composto pelos números ímpares gerados pelo elemento do primeiro vetor somado a todos os elementos do segundo vetor.

^{*}Questão 08: Faça um programa em C que leia um conjunto de 15 números e armazene-os em um vetor. A seguir, separe-os em dois outros vetores (P e I) com cinco posições cada. O vetor P armazena números pares e o vetor I armazena números ímpares. Como o tamanho dos vetores pode não ser suficiente para armazenar todos os números, deve-se sempre verificar se os mesmos já estão cheios. Caso P ou I estejam cheios, devese mostrá-los e recomeçar o preenchimento da primeira posição. Terminado o processamento, mostrar o conteúdo restante dentro dos vetores P e I.

- *Questão 09: Faça um programa em C que preencha um vetor de 15 posições com números inteiros, fornecidos pelo usuário. O programa deve:
 - a) garantir que o vetor não tenha números repetidos;
 - b) garantir que o vetor tenha somente números pares maiores do que 6;
 - c) mostrar o vetor ao final do preenchimento.
- ****Questão 10:** Faça um programa em C que carregue um vetor de 20 posições com números inteiros e que mostre os números que aparecem mais de uma vez e quantas vezes cada número se repete, mostrando um relatório da seguinte forma:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
5	4	3	18	6	15	48	3	12	7	9	8	5	1	0	3	4	9	18	27

O número 5 aparece duas vezes no vetor, nas posições 0, 12

O número 4 aparece duas vezes no vetor, nas posições 1, 16

O número 3 aparece três vezes no vetor, nas posições 2, 7, 15

O número 18 aparece duas vezes no vetor, nas posições 3, 18

**Questão 11 - Implemente um programa que implemente uma matriz 4x4 de números inteiros. Verifique se esta matriz forma um quadrado mágico, um quadrado mágico é formado quando a soma dos elementos de casa linha é igual à soma dos elementos de cada coluna e é igual à soma dos elementos da diagonal principal e é igual a soma da diagonal secundaria.

	1	2	3	4
1	16	3	2	13
2	5	10	11	8
3	9	6	7	12
4	4	15	14	1

Questão 12 - Desenvolver um programa que efetue a leitura de 10 elementos de uma matriz A do tipo vetor. Construir uma matriz B de mesmo tipo, observando a seguinte lei de formação: Se o valor do índice for par, o valor deverá ser multiplicado por 5, sendo ímpar deverá ser somado por 5. Ao final mostrar os conteúdos das duas matrizes.

Questão 13 - Desenvolver um programa que efetue a leitura de 5 elementos de uma matriz A do tipo vetor. Ao final, apresente o total da soma de todos os elementos que sejam ímpares.

Questão 14 - Ler duas matrizes A e B do tipo vetor com 20 elementos. Construir uma matriz C, onde cada elemento de C é a subtração do elemento correspondente de A com B.

Questão 15 - Ler 15 elementos de uma matriz A do tipo vetor. Construir uma matriz B de mesmo tipo. Observando a seguinte lei de formação: "Todo elemento de B deverá ser o quadrado do elemento de A correspondente".

Questão 16 -Ler uma matriz A do tipo vetor com 15 elementos. Construir uma matriz B de mesmo tipo, sendo que cada elemento da matriz B seja o fatorial do elemento correspondente da matriz A.

Questão 17 - Ler duas matrizes A e B do tipo vetor com 15 elementos cada. Construir uma matriz C, sendo esta a junção das duas outras matrizes. Desta forma, C deverá ter a capacidade de armazenar 50 elementos.

Questão 18 - Ler 20 elementos de uma matriz A tipo vetor e construir uma matriz B de mesma dimensão com os mesmos elementos de A, sendo que estes deverão estar invertidos. Ou seja, o primeiro elemento de A passa a ser o último elemento de B. O segundo elemento de A passa a ser o penúltimo de B e assim por diante.

Questão 19 - Escreva um programa que:

- a) Leia uma matriz 20 x 20 de elementos reais;
- b) Divida cada elemento de uma linha da matriz pelo elemento da diagonal principal desta linha;
- c) Imprima a matriz assim modificada.

Questão 20 - Leia um vetor de 12 posições e em seguida ler também dois valores X e Y quaisquer correspondentes a duas posições no vetor. Ao final seu programa deverá escrever a soma dos valores encontrados nas respectivas posições X e Y.

Questão 21 - Declare um vetor de 10 posições e o preencha com os 10 primeiros números ímpares e o escreva.

Questão 22 - Leia um vetor de 16 posições e troque os 8 primeiros valores pelos 8 últimos e vice-e-versa. Escreva ao final o vetor obtido.

Questão 23 - Leia um vetor de 20 posições e em seguida um valor X qualquer. Seu programa deverá fazer uma busca do valor de X no vetor lido e informar a posição em que foi encontrado ou se não foi encontrado.

Questão 24 - Leia um vetor de 40 posições. Contar e escrever quantos valores pares ele possui.

Questão 25 - Leia um vetor contendo letras de uma frase inclusive os espaços em branco. Retirar os espaços em branco do vetor e depois escrevê-los.

Questão 26 - Leia duas matrizes 10 x 10 e faça uma substituição entre a diagonal inferior da primeira com a diagonal superior da segunda.

Questão 27 - Leia uma matriz 8x 8 e escreva o maior elemento da diagonal principal e a soma dos elementos da diagonal secundaria.

Questão 28 - Leia uma matriz 6 x 6 e atribuir o valor 0 para os valores negativos encontrados fora das diagonais principal e secundaria.

Questão 29 - Leia uma matriz 50 x 2, onde cada coluna corresponde a um lado de um triangulo retângulo. Declare um vetor que contenha a área dos respectivos triângulos e o escreva.

Questão 30 - Leia duas matrizes 20 x 20 e escreva os valores da primeira que ocorrem em qualquer posição da segunda.

**Questão 31 - Considere:

1) Um vetor *Sorteio* de seis (06) posições com números inteiros, onde cada item representa um número sorteado em uma extração da loteria — onde os apostadores podem jogar seis (06) dezenas em cada cartela, escolhendo números de um a sessenta (01 a 60) — (os números aparecem na ordem em que foram sorteados, não estão e não deverão ser ordenados):

0	1	2	3	4	5	
45	13	01	18	33	35	

2) Uma matriz *Jogos* de seis (06) colunas por n linhas, onde cada linha representa um jogo realizado para esta loteria.

A última linha da matriz contém o valor -1 (um negativo) na sua primeira coluna.

		0	1	2	3	4	5
	0	01	15	17	21	23	45
	1	13	14	36	48	49	60
	2	01	02	03	14	17	21
//		,		, ,			
		15	25	35	45	55	60
		-1	0	0	0	0	0

3) Uma variável *valor* com o valor total do prêmio a ser dividido entre os acertadores.

Construir algoritmo para:

- a) Verificar e mostrar quantos jogos acertaram seis (06) dezenas;
- b) Verificar e mostrar quantos jogos acertaram cinco (05) dezenas;
- c) Verificar e mostrar quantos jogos acertaram quatro (04) dezenas;
- d) Verificar e mostrar quantas vezes cada número (de 01 a 60) foi repetido na totalidade dos jogos realizados, gravando estes dados num vetor **Q** de sessenta (60) posições onde a posição 0 representa o número 01, a posição 1 representa o número 02 e assim sucessivamente;
- e) Verificar e mostrar qual foi o número que mais foi jogado;
- f) Verificar e mostrar qual foi o número que menos foi jogado;
- g) Verificar e mostrar qual ou quais os números que não foram jogados. Caso negativo, informar que todos os números, de 01 a 60, foram jogados;
- h) Verificar e mostrar quanto cada acertador irá receber, considerando a seguinte proporção (informar caso não existam ganhadores para algum dos casos isto é, se o prêmio foi acumulado para a próxima extração):
 - 85% do valor do prêmio: dividido entre os jogadores que acertaram seis (06) dezenas;
 - 10% do valor do prêmio: dividido entre os jogadores que acertaram cinco (05) dezenas;
 - 5% do valor do prêmio: dividido entre os jogadores que acertaram quatro (04) dezenas;

**Questão 32 - Considere uma matriz da seguinte forma (esta matriz já possui valores armazenados)

	0	1	2	3	4
0	0	15	396	90	15
1	15	0	411	75	30
2	396	411	0	486	411
3	90	75	486	0	105
4	15	30	411	105	0

Onde a intersecção entre uma linha e uma coluna contém a distância, em quilômetros, entre duas cidades. Considere também o seguinte vetor (este vetor já possui valores armazenados)

0	1	2	3	4
Londrina	Cambe	Curitiba	Maringá	Ibiporã

Onde cada posição contém o nome de uma cidade. (O índice da posição também é o índice que referencia a cidade na matriz de distâncias).

Faça um algoritmo que receba o itinerário de uma viagem entre estas cidades (considere qualquer itinerário e também a repetição de trechos entre as cidades com um máximo de 15 trechos percorridos), armazenados em um vetor da seguinte forma (este vetor deve receber os dados do itinerário e o algoritmo deve permitir somente a digitação dos códigos que existem no vetor de cidades).

0														
0	4	3	2	1	0	3	2	4	1	0	2	1	4	1

Calcule e mostre um relatório da seguinte forma:

Cidade	quilometragem percorrida
Londrina	
Ibiporã	15
Maringá	105
Curitiba	486
Cambe	411
Londrina	15
Maringá	90
Curitiba	486
Ibiporã	411
Cambe	30
Londrina	15
Curitiba	396
Cambe	411
Ibiporã	30
Cambe	30
Quilometragem total	2391