Artificial Intelligence Uninformed Search

Nilsson - Chapters 7 and 8 Russell and Norvig - Chapter 3

Uninformed Search; page 1 of 26

Uninformed Search; page 2 of 26

Uninformed Search; page 4 of 26

state spaces goal state (or performance measure) state program (search, planning) current state W N S W N S Goal state State space

Uninformed Search; page 5 of 26

examples of state spaces

missionaries and cannibals

Three missionaries and three cannibals are on one side of a river, along with a boat that can hold one or two people. Find the quickest way to get everyone to the other side, without ever leaving a group of missionaries in one place outnumbered by the cannibals in that place.

states? actions?

examples of state spaces

eight puzzle

1	3	2
5	6	
7	8	4

states? actions?

Uninformed Search; page 6 of 26

examples of state spaces

travelling salesperson problem

Given a map with n cities. Find a shortest tour that visits each city once and then returns to the start city.

states? actions?

search problems

graph search search problem

graph state space vertices states

edges actions = operators = successor function

edge costs action costs start vertex start state

goal vertices goal states or goal test

solution is a solution is a (minimum cost) (minimum cost)

path from the action sequence from the

start vertex to start state to the goal vertex the goal state

(or a state that satisfies the goal test)

abstraction

Uninformed Search; page 9 of 26

state space search tree

start with a tree that contains only the start state

pick a fringe node n
if fringe node n represents a goal state: stop
expand fringe node n
go to

uninformed (blind) search vs. informed (heuristic) search today next time

state space

search tree

terminology:

- successor states

terminology:

- node (parent node, child node)
- leaf
- fringe = frontier
- depth
- node expansion

Uninformed Search; page 10 of 26

breadth-first search

search tree?

start with a tree that contains only the start state

pick a fringe node n with the smallest depth
if fringe node n represents a goal state: stop
expand fringe node n

go to

non-uniform costs: uniform-cost search

breadth-first search: avoiding repeated states not necessary, but can increase efficiency

do not return to the state you just came from do not create paths with cycles in them

Uninformed Search; page 13 of 26

depth-first search

search tree?

start with a tree that contains only the start state

pick a fringe node n with the largest depth
if fringe node n represents a goal state: stop
expand fringe node n

go to

breadth-first search: avoiding repeated states not necessary, but can increase efficiency

do not generate any state that was ever generated before

Uninformed Search; page 14 of 26

depth-first search: avoiding repeated states guarantees termination in finite state spaces?

do not return to the state you just came from do not create paths with cycles in them

Uninformed Search; page 15 of 26

Uninformed Search; page 16 of 26

depth-first search: avoiding repeated states

cannot be done?

do not generate any state that was ever generated before

Uninformed Search; page 17 of 26

space and time complexity

state space = uniform tree branching factor b (here: 2) depth of goal d (here: 3) depth of tree m (here: 4)

Uninformed Search; page 19 of 26

breadth-first depth-first iterative-deepening

completeness

optimality

space complexity (= max nodes in memory) time complexity (= max nodes expanded)

all numbers are "tight on the order of ..."

branching factor b depth of goal d depth of tree m

Uninformed Search; page 18 of 26

breadth-first search

depth	nodes	time	memory
0	1	1 millisecond	100 bytes
2	111	0.1 seconds	11 kilobytes
4	11,111	11 seconds	1 megabytes
6	10^{6}	18 minutes	111 megabytes
8	10^{8}	31 hours	11 gigabytes
10	10^{10}	128 days	1 terabyte
12	10^{12}	35 years	111 terabytes
14	10^{14}	3500 years	11,111 terabytes

b = 10; 1000 nodes per second; 100 bytes per node

Uninformed Search; page 20 of 26

Uninformed Search; page 21 of 26

all numbers are "tight on the order of ..."

branching factor b depth of goal d depth of tree m the best of both worlds: iterative-deepening depth-first search

Uninformed Search; page 22 of 26

forward search (= search from start to goal)

backward search (= search from goal to start)

forward search is better than backward search if

- -
- -
- -
- -

combining forward and backward search: bi-directional search

need to be able to test for intersection of the search trees

Uninformed Search; page 25 of 26

	breadth-first	bi-directional
completeness	yes	yes
optimality	yes	yes
space complexity	b^d	$b^{d/2}$
time complexity	b^d	$b^{d/2}$

all numbers are "tight on the order of ..."

branching factor b depth of goal d depth of tree m

Uninformed Search; page 26 of 26