MNIST-Augmentaion

https://github.com/zhangabner

MNIST-Augmentaion

- Why this new dataset similar to MNIST?
- Please quit caring about MNIST

(Goodfellow 2017)

To Serious Machine Learning Researchers

Seriously, we are talking about replacing MNIST. Here are some good reasons:

- MNIST is too easy. Convolutional nets can achieve 99.7% on MNIST. Classic machine learning algorithms can also achieve 97% easily. Check out our side-by-side benchmark for Fashion-MNIST vs. MNIST, and read "Most pairs of MNIST digits can be distinguished pretty well by just one pixel."
- MNIST is overused. In this April 2017 Twitter thread, Google Brain research scientist and deep learning expert Ian Goodfellow calls for people to move away from MNIST.
- MNIST can not represent modern CV tasks, as noted in this April 2017 Twitter thread, deep learning expert/Keras author François Chollet.
 (fashion-mnist)

Current state of research based on MNIST

MNIST test

- Main part: ground true
- Some part: uncertain
- Few: ground false

MNIST training

- Main part: ground true
- Some part: uncertain
- Few: ground false

What's really happened there?

Result	Method	Venue	Details
0.21%	Regularization of Neural Networks using DropConnect	ICML 2	013
0.23%	Multi-column Deep Neural Networks for Image Classification	▶ CVPR:	2012
0.23%	APAC: Augmented PAttern Classification with Neural Networks	🛌 arXiv 2	015
0.24%	Batch-normalized Maxout Network in Network 🕒	arXiv 2	015 Details
0.29%	Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree	AISTAT 2016	"S Details
0.31%	Recurrent Convolutional Neural Network for Object Recognition	▶ CVPR:	2015
0.31%	On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units	🛌 arXiv 2	D15
0.32%	Fractional Max-Pooling	arXiv 2	015 Details
0.33%	Competitive Multi-scale Convolution	arXiv 2	015

The state of the art on MNIST

Ground-false and uncertain data in MNIST

```
number 2080 labeled as 3.

number 54915 labeled as 4.

number 30310 labeled as 5.

number 44960 labeled as 6.

number 62771 labeled as 4, which in test dataset.
```

Ground-false instances by applying majority voting on MNIST

Uncertain instances by analyzing the process of NIST SD19v2

Do we understand the prediction of CNN on MNIST?

The Karpathy's convnetjs can predict these correctly:

but make errors at some 'good' handwriting such as:

Turn the mixed dataset into ground-truth dataset

Majority voting to split MNIST

count of wrong predicted times	count of digits	
0	62161	Ground true
1	2059	
2	1008	
3	733	Uncertain
4 (Majority Vote)	622	
5 (Majority Vote)	593	
6 (Majority Vote)	722	
7 (Consensus Filters)	2023	Ground false

Majority voting process

Majority voting result

Majority voting by [Brodley *et al.*, 1999]

Ensemble method, num_networks = 5

Test Training Ground false Ground true Ground true Uncertain Uncertain Accuracy = 100%

Training

Ground true

Ground false
Uncertain

ortain Gr

Test

Ground true

>ncertain

4 Predicting 130 wrong in uncertain test Accurate at 383 previous wrong

Adding more uncertain data in training

	Dn0'	Dn1'	Dn2'	Dn3'	Dn4'	Dn5'	Dn6'	Dn7'
Dn0	0	2	18	37	53	61	96	276
Dn0+n1	0	1	5	18	46	46	87	271
Dn0+n2	0	1	6	15	31	39	80	269
Dn0+n3	1	2	3	18	38	33	67	251
Dn0+n4	1	4	6	16	21	32	52	253
Dn0+n5	3	2	7	20	19	18	50	232
Dn0+n6	5	4	6	21	17	17	33	211
Dn0+n7	15	4	9	8	6	5	13	93
Dtraining	16	4	7	11	5	5	11	70

Poisoning Attack

Training

Ground false Ground true

Uncertain

Test

Ground true

Uncertain

Example: poisoning attack

F(M2,Dn0,x61466)=5

F(M2, Dn0+d2080,x61466)=3

F(M2,Dn0,x68553)=5

F(M2, Dn0+d2080,x68553)=3

F(M2,D0,x61941) = 7

F(M2, D0+d54915,x61941) = 4

F(M2, Dn0,x61466)=5

F(M2, Dn0+d2080,x61466)=3

F(M2, Dn0+n7, x61466) = 5

F(M2, Dn0, x68553)=5

F(M2, Dn0+d2080,x68553)=3

F(M2, Dn0+n7, x68553) = 5

F(M2, Dn0+n1, x60115)=y60115

F(M2, Dn0+n2, x60115)=y60115

F(M2, Dn0+n3, x60115)=y60115

F(M2, Dn0+n4, x60115)=y60115

F(M2, Dn0+n5, x60115)=y60115

F(M2, Dn0+n6, x60115)=y60115

F(M2, Dn0+n7, x60115)=y60115

F(M2,Dn0+n1-7,x60115)!=y60115

The poisoning effect

The neutralized effect

number 2080 labeled as 3 number 54915 labeled as 4

number 30310 labeled as 5.

number 44960 labeled as 6

The compounded effect

Poisoning Attack

Uncertain

Training

Ground true

Test

Ground true

Uncertain

How to evaluate the effect of adding more Ground false?

Pseudo label in MNIST

12958 in the context of form is 9, but in a large context of 0-9 and a-z, it should be 'g', which is unknown in 0-9.

q

23652 is labeled as 4 and some readers may think it is closer to 9, but in a large context of 0-9 and a-z, it should be 'q', which is unknown in 0-9.

Reason:

- Lack of ground-truth source
- Definition:
- It must be one of digits
- Bias:
- Different personal views

How to be ground-truth

HSF_4 and HSF_6 images groundtrueV01.csv

Original form

segmentation

Manual check

Majority vote Crowd review

Augmentation

The source of Ground-truth

NIST SD19v2

Definition:

- The print version
- Distinguishable

A good dataset will motivate a thousands good papers

CIFAR-10

By web crawlers from internet

Tiny Images dataset 80 million 32 × 32

CIFAR-10 by students

only 59863 unique hashes of 60000 images. 137 Duplicate images

Image 16925 and 22490 are labeled as automobile.

Image 55416 and 5013 are labeled as truck.

- "The only criteria for including an image were that the image contain one dominant instance of a CIFAR-10 class, and that the object in the image be easily identifiable as belonging to the class indicated by the image label."
- "There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks"

4 Unknown labels:

1569 labeled as a deer

5074 labeled as a deer.

52226 labeled as a bird

4 Wrong labels:

52405 labeled as cat.

52804 labeled as cat

21347 labeled as cat

17455 labeled as a cat

4 Multi-objects labels

15696: a bird on a car ₽

56859 is a cat on a car ↓

8208: a deer in front of a car 35829: a truck beside a car

35829: a truck bes

CIFAR-10 augmentation

fashion-mnist

- Unlike CIFAR-10, Fashion-MNIST doesn't provide the process of labeling and the mutually exclusive definition.
- There is no definition of female t-shirt and female shirt, and the definition of male t-shirt and male shirt is not mutually exclusive.

- Image 2693 19545,34248,27110 in class trousers are a model.
- Image 37183,30191 in class pullover is a model.
- Image 7388, 14274 in class dress is a model.
- Image 21701 in class coat is a model.
- Image 65249 in class shirt is a model.

How to use MNIST-augmentation

- https://github.com/zhangabner/ML
 - hsf_4.tar.gz and hsf_6.tar.gz
 - groundtrueV1.csv
 - Groundtrue2.py
 - demo how to input new instances and replace MNIST instances
 - https://www.kaggle.com/abnerzhang/mnistaugmentationv1
- How to change instances (when found errors)
 - Change Groundtrue2.py to replace errors
- Using it as a new benchmark after it stable

Thanks