

3.4~3.7 Softmax Regression

허지혜

Softmax Regression

Regression

- 집 가격이 얼마인지
- 어떤 야구팀이 몇 번 승리를 할 것인지
- 환자가 몇 일만에 퇴원할 것인지

Classification

- 메일이 스팸인지 아닌지
- 고객이 구독 서비스에 가입할지 아닐지
- 이미지에 있는 객체가 무엇인지
- 어떤 물건을 구매할지

⇒카테고리별로 값을 할당하거나 어떤 카테고리에 속할 확률이 얼마나 되는지 예측하는 것

Classification Problem

Network Architecture

여러 클래스를 분류할 때 예측할 때는 카테고리 개수와 같은 수의 출력들이 필요하다.

- 예) MNIST손글씨: 0~9 분류 -> 출력층의 노드 수는 10개
- 예) 4개 특성과 3개의 동물 카테고리 출력들이 있으니 가중치는 12개의 scalar로 구성, 3개의 bias 구성

Softmax Regression은 단일층의 NN으로 구성된다. 출력은 모든 입력들과 연관 되서 계산되기 때문에 위의 출력층은 Fully Connected이다.

Softmax Operation

$$egin{aligned} o_1 &= x_1w_{11} + x_2w_{21} + x_3w_{31} + x_4w_{41} + b_1\,, \ o_2 &= x_1w_{12} + x_2w_{22} + x_3w_{32} + x_4w_{42} + b_2\,, \ o_3 &= x_1w_{13} + x_2w_{23} + x_3w_{33} + x_4w_{43} + b_3\,. \end{aligned}$$

I번째 카테고리에 대한 Confidence level을 표현하기 위해서 출력을 O_1 으로 표현한다. 이렇게 구성하면 어떤 카테고리에 속하는지를 결과 값들 중에서 가장 큰 값의 클래스로 선택하면 되고 $ar.gmax~O_1$ 으로 계산할 수 있다.

그렇지만 출력층의 값을 직접 사용하면 두가지 문제가 있다.

- 1. 출력값의 범위가 불확실해서 시각적으로 이 값들의 의미를 판단하기 어렵다는 것이다.
- 2. 실제 label은 이산값을 갖기 때문에 불특성 범위를 갖는 출력값과 레이블 값의 오류를 측정하는 것은 어렵다. 위를 확률값으로 나오도록 해볼 순 있지만 새로운 데이터가 주어졌을 때 확률값이 0또는 확률값이고 전체 합이 1이 된다는 것을 보장할 수 없다.
- ⇒ 위를 다루기 위해 softmax regression 분류 모델을 만들었다.
- ⇒ 선형 회귀와 다르게 모든 결과값들의 합이 1이 되도록 하는 비선형성에 영향을 받는다.
- ⇒ 위 연산은 예측하는 카테고리의 결과를 안바꾸면서 적절한 의미부여를 해준다.
- ⇒ 각 결과값이 0 또는 양수값을 가진다.

벡터 표현법 :
$$\mathbf{o}^{(i)} = \mathbf{W}\mathbf{x}^{(i)} + \mathbf{b}$$
, $\hat{\mathbf{y}}^{(i)} = \operatorname{softmax}(\mathbf{o}^{(i)})$

$$\hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{o}) \text{ where } \hat{y}_i = \frac{\exp(o_i)}{\sum_j \exp(o_j)}$$

Vectorization for Minibatches

연산 효율을 더 높이기 위해 데이터의 Minibatch에 대한 연산을 벡터화 해보자.

차원 : d

배치 크기: n 인 데이터들의 미니 배치 X

결과 카테고리 : q

미니 배치 feature X는 $R^{n \times d}$ 에 속한다. 가중치 W는 $R^{d \times q}$ 에 속한다.

편향 b는 R^q 에 속한다.

$$\mathbf{O} = \mathbf{X}\mathbf{W} + \mathbf{b}$$

 $\hat{\mathbf{Y}} = \operatorname{softmax}(\mathbf{O})$

다음과 같이 정의하면 가장 많이 차지하는 연산을 가속화할 수 있다. 즉, WX가 행렬-벡터 곱에서 행렬-행렬 곱으로 변환된다. Softmax는 결과 O에 지수 함수를 적용하고, 지수 함수들의 값의 합으로 정규화 하는것으로 계산.

Loss Function : N log_likelihood

실제 softmax를 쓰게 되면 loss function은 Negative log-likelihood와 함께 사용한다.

$$-\log P(\mathbf{Y}\mid \mathbf{X}) = \sum_{i=1}^n -\log P(\mathbf{y}^{(i)}\mid \mathbf{x}^{(i)}) = \sum_{i=1}^n l(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}),$$

Parameter가 주어졌을 때 loss의 최소값을 찾아야 한다.

Loss Function : N log_likelihood

Softmax and Derivatives

범주형 데이터를 대상으로 하는 손실함수의 기반, cross-entropy error

1. 정보 이론에서 entropy란?

A. 정보 이론

어떤 사람이 정보를 많이 알수록, 새롭게 알 수 있는 정보의 양이 감소한다.

흔히 볼 수 있는 사건 -> 정보량 낮음 희귀한 사전 -> 정보량 매우 큼

발생 가능확률 p에따른 정보의 양

Softmax and Derivatives

범주형 데이터를 대상으로 하는 손실함수의 기반, cross-entropy error

1. 정보 이론에서 entropy란?

$$H[P] = \sum_{j} -P(j) \log P(j).$$

B. Entropy

사건 A를 반복 실행하였을 때 얻을 수 있는 평균 정보량 또는 어떤 사건에 대한 정보량의 기댓값

엔트로피 큼 -> 사건 A의 확률이 낮음 엔트로피 = 어떤 상태에서의 불확실성 예측하기 어려움 -> 정보량 증가 -> 엔트로피 큼

Softmax and Derivatives

범주형 데이터를 대상으로 하는 손실함수의 기반, cross-entropy error

2. 교차 엔트로피 오차(Cross Entropy Error(CEE))

$$H(P,Q) = -\sum_{x} P(x) lnQ(x)$$

Q(x) : 신경망의 출력값

P(x): 정답 레이블 -> One-hot 벡터를 사용한다.

예) 분류가 4개인 데이터

$$egin{aligned} label &= [0,0,1,0] \ pred &= [0.1,0.2,0.6,0.1] \end{aligned} \ E &= -(0*ln(0.1)+0*ln(0.2)+1*ln(0.6)+0*ln(0.1)) = -ln(0.6)=0.51 \end{aligned}$$

교차 엔트로피 오차는 특정 클래스에 속할 정보량을 이용한다는 것을 알 수 있다. 교차 엔트로피 오차 역시 정보량이 0에 가까워져 발생 확률이 1에 가깝게 만드는 것이 목적이다.

Model Prediction and Evaluation

Softmax regression model을 훈련한 뒤면 각 출력 클래스의 확률을 예측할 수 있다. 일반적으로 예측 확률이 가장 높은 클래스를 출력 클래스로 사용한다. 실제 클래스와 레이블이 일치하면 예측이 정확하다. Model의 성능은 정확도를 사용하여 평가한다. 이것은 정확한 예측 수와 총 예측 수 사이의 비율과 같다.

구현 및 실습

끝