Sinusoidal model

Adeline Leclercq Samson

2023-01-11

Description of the sinusoidal model

The observations along the tusk are denoted Y_i for i = 1, ..., n, with the corresponding position along the tusk denoted x_i . The model is the following

$$Y_i = f(x_i, \varphi) + \varepsilon_i$$

with ε_i a random noise assumed to be normally distributed with mean 0 and variance ω^2 . The regression function is a periodic sinusoidal function

$$f(x,\varphi) = A\sin(g(x) + b) + B\sin(2g(x) + 2b + \pi/2)$$

with function g defined as

$$g(x) = ax + \xi_x$$

and finally ξ_x is assumed to be a random Ornstein-Uhlenbeck process

$$d\xi_x = -\beta \xi_x dx + \sigma dW_x$$

The objective is to estimate the parameters $\varphi=(A,B,a,b); \psi=e^{\beta\Delta}$ where Δ is the step size between two observations and $\gamma^2=\frac{\sigma^2}{2\beta}(1-e^{-2\beta\Delta})$.

Simulation of trajectories

Let us start with some simulations.

```
# parameters
A = 1/2
B = -1/4
b = 1
a = 0.1
beta = 0.05
sigma = 0.1
omega = 0.01
# simulations
n = 500
x = 1:n
delta = 1
psi = exp(-delta*beta)
gamma = sigma/sqrt(2*beta)*sqrt(1-psi^2)
xi = rep(0,n)
for (i in 2:n){
  xi[i] = xi[i-1]*psi + rnorm(1,0, gamma)
}
```

```
gx = a*x+xi
fx = A*sin(gx+b) + B*sin(2*gx + 2*b + pi/2)
Y = fx + rnorm(n,0,omega)
plot(x,Y,type = "1")
```


Estimation with the EM algorithm

The EM algorithm is based on the complete log-likelihood of the model. The solution of the hidden process ξ_x is

$$\xi_{x+\Delta} = \xi_x e^{-\beta \Delta} + \int_x^{x+\Delta} \sigma e^{\beta(s-x)} dW_s$$

such that the transition density is

$$p(\xi_{x+\delta}|\xi_x) = \mathcal{N}(\xi_x e^{-\beta\Delta}, \frac{\sigma^2}{2\beta}(1 - e^{-2\beta\Delta}))$$

The complete log-likelihood is thus

$$\log L(Y, \xi, \theta) = \sum_{i=1}^{n} \log p(Y_{i}|\xi_{i}) + \sum_{i=1}^{n} \log p(\xi_{i}|\xi_{i-1}) + \log p(\xi_{1})$$

$$= -\sum_{i=1}^{n} \frac{(Y_{i} - f(x_{i}, \varphi))^{2}}{2\omega^{2}} - \frac{n}{2} \log(\omega^{2})$$

$$-\sum_{i=1}^{n} \frac{(\xi_{i} - \xi_{i-1}e^{-\beta\Delta})^{2}}{\frac{\sigma^{2}}{\beta}(1 - e^{-2\beta\Delta})} - \frac{n}{2} \log(\frac{\sigma^{2}}{2\beta}(1 - e^{-2\beta\Delta}))$$

$$= -\sum_{i=1}^{n} \frac{(Y_{i} - f(x_{i}, \varphi))^{2}}{2\omega^{2}} - \frac{n}{2} \log(\omega^{2})$$

$$-\sum_{i=1}^{n} \frac{(\xi_{i} - \xi_{i-1}\psi)^{2}}{2\gamma^{2}} - \frac{n}{2} \log(\gamma^{2})$$

The EM algorithm proceeds at iteration k with the two following steps, given the current value of the parameters θ^k

- E step: calculation of $Q(\theta, \theta^k)$
- M step: update of the parameters $\theta^{k+1} = \arg \max_{\theta} Q(\theta, \theta^k)$

E step The condition distribution $p(\xi|Y;\theta^k)$ is not explicit because the regression function is not linear. We should proceed with a MCMC algorithm to sample from this distribution. This will lead to a stochastic version of the EM algorithm, namely the SAEM algorithm.

M step We need the sufficient statistics to update the algorithm.

The statistics are

$$S_{1}(\xi_{i}) = \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - f(x_{i}(\xi_{i}), \varphi))^{2}$$

$$S_{2}(\xi_{i}) = \sum_{i=1}^{n} \xi_{i-1} \xi_{i}$$

$$S_{3}(\xi_{i}) = \sum_{i=1}^{n} \xi_{i-1}^{2}$$

$$S_{4}(\xi_{i}) = \sum_{i=1}^{n} \xi_{i}^{2}$$

The update of the parameters are based on these statistics.

SAEM algorithm The steps of the SAEM algorithm are

- E step: simulation of a new trajectory ξ^k with a MCMC algorithm targeting $p(\xi|Y;\theta^k)$ as stationary distribution
- SA step: stochastic approximation of the sufficient statistics

$$s_1^k = s_1^{k-1} + (1 - \alpha_k)(S_1(\xi^k) - s_1^{k-1})$$

$$s_2^k = s_2^{k-1} + (1 - \alpha_k)(S_2(\xi^k) - s_2^{k-1})$$

$$s_3^k = s_3^{k-1} + (1 - \alpha_k)(S_3(\xi^k) - s_3^{k-1})$$

$$s_4^k = s_4^{k-1} + (1 - \alpha_k)(S_4(\xi^k) - s_4^{k-1})$$

• M step: update of θ^k using the sufficient statistics s^k

$$\widehat{\varphi}^{k} = \arg\min_{\varphi} \sum_{i=1}^{n} (y_{i} - f(x_{i}(\xi_{i}^{k}), \varphi))^{2}$$

$$\widehat{\psi}^{k} = \frac{s_{2}^{k}}{s_{3}^{k}}$$

$$\widehat{\omega}^{2}^{k} = s_{1}^{k}$$

$$\widehat{\gamma}^{2}^{k} = \frac{1}{n} (\widehat{\psi}^{2}^{k} s_{3}^{k} - 2\widehat{\psi}^{k} s_{2}^{k} + s_{4}^{k})$$

 \mathbf{MCMC} On fixe le jeu de données

```
xi_true = xi
On initialise l'algo
xi_init = rep(0,n)
for (i in 2:n){
    xi_init[i] = xi_init[i-1]*psi + rnorm(1,0, gamma)
```