Spark the Definitive Guide 2nd Edition

Chapter 04

Structured API Overview

Structured API Overview

Text Book

Bill Chambers & Matei Zaharia

Objectives and Outcomes

- Introduced to Spark's Structured APIs, Datasets, DataFrames, and SQL Views
- Learn how Spark transforms into a physical execution plan on a cluster

Review

So far:

- ► We learned about Spark's programming model
- ► We learned how to run production code
- ▶ We were introduced to type-safe data structures in Spark
- We were introduced to Structured Streaming on Spark
- ▶ We were introduced to Machine Learning on Spark
- We were introduced to 3rd party Spark packages

API Overview 66

- Three datatypes in Spark:
 - DataFrames
 - Can you define this term?
 - Datasets
 - Can you define this term?
 - SQL Tables and Views
 - Can you define these terms?
- With these data types we can manipulate disparate types of data
 - Unstructured log files
 - Semi-structured CSV files
 - Structured Parquet files

Structured API concepts

- ► These concepts refer to both *batch* and *streaming*
 - Code should easily switch between the two
 - ▶ We will cover Streaming later in the course, Chapter 20

Structured Collections

- Spark has two notions of structured collections:
 - Datasets and DataFrames
- Each are distributed table-like collections with well defined rows and columns
 - ► Each row must have the same number of columns
 - Both are immutable
 - Both allow for lazily evaluated plans that are only deployed when an action is called

Schemas

- A schema defines the column names and data types of the column
 - Schemas can be defined manually or inferred
 - Schema on Read
- All of Spark actions take place in the internal Spark language called Catalyst
 - We don't write in this language but the JVM allows us to write in higher level languages that convert to Catalyst

DataFrames vs Datasets

- DataFrames have types of a sort...
 - ► These are maintained by Spark internally
 - Schema only checked at runtime
- Datasets are typed DataFrames
 - Only available in Scala and Java
 - Enforce type at compile time
 - P. 54

Overview of Structured Spark Types

- Spark is effectively a programming language of its own
 - ▶ Uses the *Catalyst* engine internally to maintain type information
- ► This code does not do math in Scala, but Catalyst:
 - scala val df = spark.range(500).toDF("number")
 df.select(df.col("number") + 10)

DataFrames vs. Datasets

- DataFrame schema checked at runtime
- ▶ Dataset schema checked at *compile time*
 - Datasets only available in Java and Scala
 - ► Why?
- DataFrames are Datasets of type Row
 - Type Row is Spark's internal optimized in-memory format for computation P.54
- Even without Datasets in Python and R, we are still always working on an optimized in-memory datatype

Columns and Rows

- Columns represent a 3 types of data:
 - ► A *simple type* like an integer or string
 - A complex type like an array or map
 - A null value :!
- A row is nothing more than a record of data
- ▶ Each record in a DataFrame must be of type Row
- Rows can be created in numerous ways:
 - Via SQL statements
 - DataSources (ingesting)
 - dynamically and in memory
 - spark.range(2).toDF().collect()

Spark Types

- You can import the types library you want to work with in Scala
 - import org.apache.spark.sql.types._
 - val b = ByteType
- You can import the types library you want to work with in Java
 - import org.apache.spark.sql.types.DataTypes;
 - ByteType x = DataTypes.ByteType;
- You can import the types library you want to work with in Python
 - ▶ from pyspark.sql.types import *
 - b = ByteType()
- ▶ Page 56 has an entire table of all the data type libraries available

Overview of Structured API Execution

- Structured API execution happens in 4 steps on Page 58:
 - Write your DataFrame/Dataset/SQL code
 - ▶ If valid code, Spark converts this to a *Logical Plan*
 - Spark transforms this Logical Plan to a Physical Plan, checking for optimizations along the way
 - ▶ Spark then executes this *Physical Plan* on the cluster

Figure 4-1. The Catalyst Optimizer

Logical and Physical Planning

Figure 4-2. The structured API logical planning process

Figure 4-3. The physical planning process

Logical Planning

- ► The first phase takes the user code and converts it into a logical plan
 - Purely to convert the code into the most optimized version
 - Spark has an unresolved logical plan
 - Your code may compile, but what if the table name or column name is wrong?
 - Spark uses a catalog an internal repo of all table and DataFrame information
 - Then resolves column and tables in the analyzer
- ► The analyzer might reject an *unresolved logical plan*, otherwise pass it to the *Catalyst Optimizer*
 - ► A collection of rules that attempts to optimize the logical plan by pushing predicates or selections down

Physical Planning

- After an optimized plan is generated.
 - Spark begins to specify how this plan will be executed on the cluster
 - Creates multiple strategies and compares them via a cost model

Figure 4-3. The physical planning process

At execution time, Java bytecode is generated and the final result returned to the user

Conclusion

- We were introduced to Spark's Structured APIs, Datasets, DataFrames, and SQL Views
- ► We learned how Spark transforms a logical plan into a physical execution plan on a cluster

Questions

- ► Any questions?
- ▶ Read Chapter 05 and do any exercises in the book.