NLP and the Web - WS 2024/2025

Lecture 12 Neural Language Modeling 4

Dr. Thomas Arnold Hovhannes Tamoyan Kexin Wang

Ubiquitous Knowledge Processing Lab Technische Universität Darmstadt

Syllabus (tentative)

<u>Nr.</u>	<u>Lecture</u>		
01	Introduction / NLP basics		
02	Foundations of Text Classification		
03	IR – Introduction, Evaluation		
04	IR – Word Representation		
05	IR – Transformer/BERT		
06	IR – Dense Retrieval		
07	IR – Neural Re-Ranking		
08	LLM – Language Modeling Foundations, Tokenization		
09	LLM – Neural LLM		
10	LLM – Adaptation		
11	LLM – Prompting, Alignment, Instruction Tuning		
12	LLM – Long Contexts, RAG		
13	LLM – Scaling, Computation Cost		
14	Review & Preparation for the Exam		

Outline

Recap

Reinforcement Learning

Long Context

Retrieval-based LMs

In-Context Learning


```
Translate English to French: task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

Language Modeling != Following Human Instructions

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION

GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.

Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

There is a mismatch between LLM pre-training and user intents.

Instruction-Tuning

[Weller et al. 2020. Mishra et al. 2021; Wang et al. 2022, Sanh et al. 2022; Wei et al., 2022, Chung et al. 2022, many others]

1. Collect examples of (instruction, output) pairs across many tasks and finetune an LM

Outline

Recap

Reinforcement Learning

Long Context

Retrieval-based LMs

Why Reinforcement Learning?

- Remember the limits of Instruction-tuning?
 - Difficult to collect diverse labeled data
 - 2. Rote learning (token by token) —
 - limited creativity
 - 3. Agnostic to model's knowledge —
 - may encourage hallucinations

Limited/sparse feedback—usually considered a curse, but now a blessing.

"don't give a man fish rather teach him how to fish by himself"

The model itself should be involved in the alignment loop.

Reinforcement Learning: Intuition

Action here: generating responses/token

environment

Reward here: whether humans liked the generation (seguence

liked the generation (sequence of actions=tokens)

[figure credit]

Task: choose the better next message in a conversation

Scoring interface: Likert scale or rankings

human has conversation with the LLM

Reinforcement Learning: Abridged History

- The field of reinforcement learning (RL) has studied these (and related) problems for many years now [Williams, 1992; Sutton and Barto, 1998]
- Circa 2013: resurgence of interest in RL applied to deep learning, game-playing [Mnih et al., 2013]

- But there is a renewed interest in applying RL. Why?
 - RL w/ LMs has commonly been viewed as very hard to get right (still is!)
 - We have found successful RL variants that work for language models (e.g., PPO; [Schulman et al., 2017])

Reinforcement Learning: Formalism

- An agent interacts with an environment by taking actions
- The environment returns a reward for the action and a new state (representation of the world at that moment).
- Agent uses a policy function to choose an action at a given state.
- We need to figure out: (1) reward function and (2) the policy function

Some notation:

 s_t : state r_t : reward a_t : action

 $a_t \sim \pi_{\theta}(s_t)$: policy

Reinforcement Learning from Human Feedback

- Imagine a reward function: $R(s; prompt) \in \mathbb{R}$ for any output s to a prompt.
- The reward is higher when humans prefer the output.
- Good generation is equivalent to finding reward-maximizing outputs:

Expected reward over the course of sampling from our policy (generative model)

$$\mathbb{E}_{\hat{s} \sim p_{\theta}}[R(\hat{s}; \text{prompt})]$$

 $p_{\theta}(s)$ is a pre-trained model with params θ we would like to optimize (policy function)

Reinforcement Learning from Human Feedback

- Imagine a reward function: $R(s; prompt) \in \mathbb{R}$ for any output s to a prompt.
- The reward is higher when humans prefer the output.
- Good generation is equivalent to finding reward-maximizing outputs:

Expected reward over the course of sampling from our policy (generative model)

$$\mathbb{E}_{\hat{s} \sim p_{\theta}}[R(\hat{s}; \text{prompt})]$$

 $p_{\theta}(s)$ is a pre-trained model with params θ we would like to optimize (policy function)

- On the notation:
 - "E" here is an empirical expectation (i.e., average).
 - ■"~" indicates sampling from a given distribution.

Reinforcement Learning from Human Feedback

- Imagine a reward function: $R(s; prompt) \in \mathbb{R}$ for any output s to a prompt.
- The reward is higher when humans prefer the output
- Good generation is equivalent to finding reward-maximizing outputs:

$$\mathbb{E}_{\hat{s} \sim p_{\theta}}[R(\hat{s}; prompt)]$$

- What we need to do:
 - •(1) Estimate the reward function R(s; prompt).
 - (2) Find the best generative model p_{θ} that maximizes the expected reward:

$$\hat{\theta} = \operatorname{argmax}_{\theta} \mathbb{E}_{\hat{s} \sim p_{\theta}} [R(\hat{s}; prompt)]$$

Estimating the Reward R

- Obviously, we don't want to use human feedback directly since that could be 🚳 🚳
- Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]

Estimating the Reward R

- Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]
- Approach 1: get humans to provide absolute scores for each output

Challenge: human judgments on different instances and by different people can be noisy and mis-calibrated!

Estimating the Reward *R*

Obviously, we don't want to use human feedback directly since that could be (5) (5)

- Alternatively, we can build a model to mimic their preferences [Knox and Stone, 2009]
- Approach 2: ask for pairwise comparisons [Phelps et al. 2015; Clark et al. 2018]

Bradley-Terry [1952] paired comparison model

Pairwise comparison of multiple provides which can be more reliable

prompt

Explain "space elevators" to a 6year-old.

 p_{θ}

It is like any typical elevator, but it goes to space. ...

Explain gravity to a 6-year-old. ...

 $S_1, S_2 \sim p_\theta$

Scaling Reward Models

Large enough reward trained on large enough data approaching human performance.

[Stiennon et al., 2020]

Putting it Together

- First collect a dataset of human preferences
 - Present multiple outputs to human annotators and ask them to rank the output based on preferability

Human annotators specify their preferences

Putting it Together (2)

- Using this data, we can train a reward model
 - The reward model returns a scalar reward which should numerically represent the human preference.

Putting it Together (3)

■ We want to learn a policy (a Language Model) that optimizes against the reward model

Putting it Together (4)

Periodically train the reward model with more samples and human feedback

One missing ingredient

■ It turns out that this approach doesn't quite work. The policy will learn to "cheat".

One missing ingredient

- Will learn to produce an output that would get a high reward but might be gibberish or irrelevant to the prompt.
- Note, since *R* is trained on natural inputs, it may not generalize to unnatural inputs.

Regularizing with Pre-trained Model

Solution: add a penalty term that penalizes too much deviations from the distribution of the pre-trained LM.

$$\widehat{R}(s;p) \coloneqq R(s;p) - \beta \log \left(\frac{p^{RL}(s)}{p^{PT}(s)}\right)$$
 pay a price when $p^{RL}(s) < p^{PT}(s)$

■ This prevents the policy model from diverging too far from the pretrained model.

The overall recipe

RLHF Gains over Instruction-Tuning

[Stiennon et al., 2020]

GPT3 vs. InstructGPT3 (RLHF-ed)

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION

GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.

Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and sent them back to the earth so we could all see them.

GPT3 vs. InstructGPT3 (RLHF-ed)

PROMPT Write a short poem about a wise frog.

COMPLETION GPT-3

Write a short story in which a character has two different names.

Write a short story in which you try to get something back that you have lost.

Write a short story in which a character has a bad dream.

InstructGPT

The frog is a symbol of wisdom
He knows all the secrets of the world
He is a master of disguise
And a great teacher of life
He is a symbol of transformation
And the bringer of change
He is the frog who has seen it all
And knows the meaning of it all

Can Help with Toxicity and Truthfulness

- Note, reward model can be used to induce any desired behavior as needed:
 - Avoiding bias
 - Avoiding responses outside its scope
 - Avoiding toxicity

• ...

	RealToxicity	
Lower is better	GPT	0.233
	Supervised Fine-Tuning	0.199
	InstructGPT	0.196

Higher is better

Summary Thus Far

- Reinforcement learning can help mitigate some of the problems with supervised instruction tuning
- Reward model is trained via ranking feedback of humans.
- Regularization to restraint the model from deviating too far from the pre-trained policy
- Limitations:
 - RL can be tricky to get right
 - Training a good reward may require a lot of annotations

Outline

Recap

Reinforcement Learning

Long Context

Retrieval-based LMs

Feeding Lots of Things to LM

- Books, scientific articles, government reports, videos, your daily experience, etc. they all are much longer than 2k tokens!!
- How do you enable language models process massive amounts of data?
- One approach: just scale up your model—train it on a much longer context window size.
 - The bottleneck: memory usage and number of operations in Self-Attention increases quadratically.

Transformer LMs and Long Inputs

Length generalization: Do Transformers work accurately on long inputs?

• Efficiency considerations: How efficient are LMs are long inputs?

Transformer LMs and Long Inputs

Length Generalization

Efficiency consideration: Sparse Attention Patterns

Sparse Attention Patterns

■ The idea is to make the attention operation sparse

[NAACL 2021 Tutorial Beltagy, Cohan, Hajishirzi, Min, and Peters]

Pre-specified Sparsity Patterns

- A variety of patterns has been explored in the past work
 - Longformer (Beltagy et al., 2020), Sparse Transformer (Child et al., 2019), ...

[NAACL 2021 Tutorial Beltagy, Cohan, Hajishirzi, Min, and Peters]

Pre-specified Sparsity Patterns

Different layers and attention heads can follow different patterns

- A common setup is to have earlier layers with sparser attention pattern.
 - Longformer (<u>Beltagy et al., 2020</u>)

Pre-specified Sparsity Patterns: Computations

[Longformer (Beltagy et al., 2020)]

A Notable Adoption: GPT-3

■ Sparse patterns also used in GPT-3 (Brown et al., 2020)

2.1 Model and Architectures

We use the same model and architecture as GPT-2 [RWC⁺19], including the modified initialization, pre-normalization, and reversible tokenization described therein, with the exception that we use alternating dense and locally banded sparse attention patterns in the layers of the transformer, similar to the Sparse Transformer [CGRS19]. To study the dependence of ML performance on model size, we train 8 different sizes of model, ranging over three orders of magnitude from 125 million parameters to 175 billion parameters, with the last being the model we call GPT-3. Previous work [KMH⁺20]

Outline

Recap

Long Context

Retrieval-based LMs

Retrieval-based Language Models

• It is a **language model** $P(x_n | x_1, x_2, \dots, x_{n-1})$ The capital city of Ontario is ____

It retrieves from an external datastore (at least during inference time)

LLMs can't memorize all (long-tail) knowledge in their parameters

List 5 important papers authored by Geoffrey Hinton

Geoffrey Hinton is a renowned computer scientist ... Here are five important papers authored by him:

- 1. "Learning Internal Representations by Error Propagation" (with D. E. Rumelhart and R. J. Williams) This paper, published in 1986, ...
- "Deep Boltzmann Machines" (with R. Salakhutdinov) Published in 2009, ...
- 4. "Deep Learning" (with Y. Bengio and A. Courville) Published as a book in 2016,...
- 5. "Attention Is All You Need" (with V. Vaswani, N. Shazeer, et al.) Published in 2017, this paper introduced the Transformer model,...

LLMs' knowledge is easily outdated and hard to update

Who is the CEO of Twitter?

As of my **knowledge cutoff in September 2021**, the CEO of
Twitter is **Jack Dorsey**....

LLMs' output is challenging to interpret and verify

Q Create an itinerary for exploring Toronto over a span of two days.

LLMs are *large* and expensive to train and run

Long-term goal: can we possibly reduce the training and inference costs, and scale down the size of LLMs?

e.g., RETRO (Borgeaud et al., 2021): "obtains comparable performance to GPT-3 on the Pile, despite using **25x fewer parameters**"

What are the Key Design Questions?

- What are your memories?
 - o Documents, database records, training examples, etc.
- How to retrieve memories?
 - Use an off-the-shelf search engine (e.g. Google, StackOverflow).
 - How to train your own memory retriever.
- How to use retrieved memories?
 - "Text fusion"
 - Common failure modes:
 - Underutilization: model ignores retrieved memories.
 - Overreliance: model depends too much on memories!

Anatomy of a Neural Retreiver

Remember our IR lectures? (especially neural retrieval and approximate NN)

Prompt

■ x = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.

 $x = \text{World Cup } 2022 \text{ was } \dots \text{ the increase to [MASK] in } 2026.$

Retrieval-Augmented LM: Common Variant

What to retrieve?

When to retrieve?

- Chunks
- Tokens
- Others

- Input layer
- Intermediate layers

How to use retrieval?

- Output layer

- Once
- Every *n* tokens (*n*>1)
- Every token

Retrieval-Augmented LM: Example Variation

What to retrieve?

How to use retrieval?

When to retrieve?

- Chunks
- Tokens
- Others

- Input layer
- Intermediate layers
- Output layer

- Once
- Every *n* tokens (*n*>1)
- Every token

IR in the Middle of LM

(k chunks of text per split)

Borgeaud et al. 2021. "Improving language models by retrieving from trillions of tokens"

IR in the Middle of LM

(k chunks of text per split)

IR in the Middle of LM

(k chunks of text per split)

(A $r \times k \times d$ matrix)

(r = # tokens per text chunk)

(d = hidden dimension)

(k = # retrieved chunks per split)

Regular Decoder

Regular Decoder with IR Embeddings

Chunked CrossAttention (CCA)

Training: End-to-end

There are various ideas in the literature for how to train these models efficiently and in an end-toend fashion.

Main Takeaways

- How do we enable LMs to utilize external knowledge?
 - Retrieval-augmented language models
- A retriever is a function, f(input, memory) → score
- What we did not discuss:
 - Attribution: Tracing decisions to the source knowledge
 - How to modify the knowledge
 - Conflicting knowledge
 - Editing knowledge
 - More efficient scaling
 -