# Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО ITMO University

# ОТЧЁТ ПО ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

«Разработка веб-приложения на Python, предназначенное для анализа кластеризации с использованием алгоритмов k-means и иерархической кластеризации»

# Обучающиеся:

Опалев Владимир Константинович

(редактор, ответственный за оформление отчёта, поток 23.5)

Арройо Ариас Николас Рафаэль

(редактор, ответственный за разработку кода, поток 23.5)

Руководитель:

Яворук Татьяна Олеговна

Санкт-Петербург

# СОДЕРЖАНИЕ

| $\mathbf{B}$ | ЕДЕНИЕ                                    | 3  |
|--------------|-------------------------------------------|----|
| 1            | Теоретическая часть                       | 5  |
|              |                                           | 5  |
|              | 1.2 Алгоритм иерархической кластеризации  | 8  |
|              |                                           | 11 |
|              | 1.4 Метрики оценки качества кластеризации | 13 |
| 2            | Используемые программные средства 1       | L6 |
|              | 2.1 Технологический стек проекта          | 16 |
|              | 2.1.1 Ссылка на репозиторий 1             | 17 |
|              | 2.2 Описание структуры проекта            | 18 |
| 3            | Результаты (анализ по каждому датасету)   | 21 |
|              | 3.1 Wine 2                                | 21 |
|              |                                           | 28 |
|              | 3.3 Mall Customers                        | 38 |
| 4            | Выводы и обсуждение 4                     | 13 |
| 3            | КЛЮЧЕНИЕ 4                                | 16 |
| П            | РИЛОЖЕНИЕ А Веб-интерфейс 1 4             | 18 |
| П            | РИЛОЖЕНИЕ Б Веб-интерфейс 2 4             | 19 |

# ВВЕДЕНИЕ

Данный проект представляет собой интерактивное веб-приложение на Python, предназначенное для анализа кластеризации с использованием алгоритмов k-means и иерархической кластеризации. Пользователь может выбрать один из предустановленных наборов данных или загрузить свой собственный .csv файл для анализа

**Цель:** Целью данного проекта является проведение кластерного анализа на основе реальных многомерных данных с использованием алгоритмов **k-means** и **иерархической кластеризации**. Предполагается, что ни структура, ни количество классов заранее не известны, поэтому задача относится к классу *обучения без учителя*.

### Задачи:

Разработать модульную систему анализа данных, позволяющую:

- Выполнять предобработку данных (очистка, нормализация, понижение размерности);
- Строить кластеры с помощью методов k-means и иерархической кластеризации;
- Визуализировать распределение объектов и полученные кластеры;
- Оценивать качество кластеризации с использованием метрик (силуэт, инерция);
- Предоставить пользователю удобный интерфейс для запуска анализа.

# Выбор методов

Алгоритм **k-means** позволяет разбить данные на заранее заданное количество кластеров, минимизируя внутрикластерное расстояние. Он широко применяется благодаря своей простоте и эффективности.

Алгоритм **иерархической кластеризации** формирует древовидную структуру объединения объектов на основе меры расстояния между ними. В отличие от k-means, он не требует указания числа кластеров на этапе построения дерева. Однако, для выделения финальных кластеров

необходимо "разрезать" дендрограмму на определённом уровне, что в данной реализации осуществляется путём задания желаемого количества кластеров пользователем.

Использование обоих методов даёт возможность сравнить поведение кластеризаторов на разных типах данных и оценить стабильность кластеров.

### Описание используемых наборов данных

В ходе работы используются следующие открытые датасеты:

- Wine dataset содержит 13 химических признаков винных образцов, принадлежащих к трём различным сортам (класс target). Это хорошо сбалансированный набор для демонстрации кластеризации с возможностью валидации по меткам.
- Wholesale Customers dataset включает данные о закупках (в единицах объёма) различных категорий продуктов (молоко, бакалея, заморозка и др.) для клиентов оптовой торговли. Классы не заданы, задача выделение клиентских сегментов.
- *Mall Customers dataset* содержит демографические и поведенческие данные клиентов (возраст, доход, индекс расходов). Используется для сегментации клиентов на основе потребительского поведения.

Каждый из наборов данных подвергается масштабированию, а при необходимости — понижению размерности методом **PCA** (главных компонент) до двух признаков для визуализации кластеров.

Кроме предустановленных наборов, пользователь также может загрузить собственный CSV-файл для кластерного анализа. В этом случае система автоматически применит те же этапы обработки и визуализации к загруженному датасету, при условии, что структура данных позволяет это (числовые признаки, отсутствие пропусков и т.д.).

### 1 Теоретическая часть

### 1.1 Алгоритм k-means

k-means — это один из самых популярных алгоритмов кластеризации, относящийся к методам обучения без учителя. Его цель — разделить данные на k непересекающихся кластеров таким образом, чтобы внутрикластерная вариация (разброс) была минимальна.

### Основная идея

Пусть задан набор данных  $X = \{x_1, x_2, \dots, x_n\}$ , где каждый объект  $x_i \in \mathbb{R}^d$  — это точка в d-мерном пространстве. Алгоритм k-means разбивает эти точки на k кластеров  $C_1, C_2, \dots, C_k$  путём минимизации следующей функции потерь (суммы квадратов расстояний до центроидов):

$$J = \sum_{j=1}^{k} \sum_{x_i \in C_i} ||x_i - \mu_j||^2$$

где:

- $\mu_j$  центр (центроид) кластера  $C_j$ ;
- $\|x_i \mu_j\|^2$  квадрат евклидова расстояния между точкой и центром кластера.

# Пошаговый алгоритм

Алгоритм работает итеративно и состоит из следующих этапов:

- 1. Инициализация: случайным образом выбираются k центров кластеров  $\mu_1, \mu_2, \dots, \mu_k$ .
- 2. Шаг присваивания: каждому объекту  $x_i$  присваивается кластер  $C_j$ , чей центроид ближайший:

$$C_j = \{x_i \mid ||x_i - \mu_j||^2 \le ||x_i - \mu_l||^2$$
 для всех  $l = 1, \dots, k\}$ 

3. Шаг пересчёта центров: пересчитываются центры кластеров как среднее всех точек в каждом кластере:

$$\mu_j = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i$$

4. Повторять шаги 2–3 до сходимости (например, пока центры не перестанут существенно меняться).

# Метрика расстояния

Наиболее часто используется евклидово расстояние между точками:

$$d(x_i, x_j) = \sqrt{\sum_{p=1}^{d} (x_i^{(p)} - x_j^{(p)})^2}$$

Однако могут применяться и другие метрики (манхэттенское, косинусное и т.д.), в зависимости от природы данных.

# Преимущества и недостатки

### Преимущества:

- Простота реализации и высокая скорость работы на больших данных;
- Хорошо работает при чётко выраженных, компактных и равномерных кластерах.

### Недостатки:

- Требует заранее указать число кластеров k;
- Чувствителен к инициализации (может попасть в локальный минимум);
- Плохо работает при наличии выбросов и кластеров неправильной формы.

# Выбор оптимального числа кластеров

Алгоритм k-means требует предварительно указать количество кластеров k, что может быть нетривиальной задачей. Для его выбора применяются следующие методы:

- Memod локтя  $(Elbow\ method)$  — основан на анализе uhepuuu (внутрикластерной суммы квадратов расстояний до центроидов). Вычисляется инерция J(k) для разных значений k и строится график зависимости J(k) от k. С увеличением k инерция всегда уменьшается, но начиная с некоторого значения  $k^*$  темп уменьшения резко замедляется. Оптимальное значение k определяется как «излом» (локоть) на графике, изображённом на рисунке 1.1:



Рисунок 1.1 — Оптимальное значение k

В точке излома добавление новых кластеров перестаёт существенно улучшать качество разбиения.

- Силуэт-анализ (Silhouette Score) — измеряет качество кластеризации, оценивая, насколько хорошо каждый объект  $x_i$  соответствует своему кластеру по сравнению с ближайшим другим кластером. Для каждого объекта вычисляется коэффициент силуэта s(i):

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

где:

- -a(i) среднее расстояние от  $x_i$  до всех других точек в том же кластере;
- -b(i) минимальное среднее расстояние от  $x_i$  до точек в другом (наиболее близком) кластере.

Значения  $s(i) \in [-1, 1]$ , где:

- $-s(i) \approx 1$  означает хорошо кластеризованный объект;
- $-s(i) \approx 0$  объект находится на границе кластеров;
- -s(i) < 0 вероятно, объект отнесён к неправильному кластеру.

Затем вычисляется среднее значение силуэта для всех объектов. Оптимальное значение k соответствует максимуму средней silhouette-оценки. Это значение можно визуализировать на  $cunyəm-spa\phiuke$ , который показывает распределение s(i) по кластерам.

# 1.2 Алгоритм иерархической кластеризации

Иерархическая кластеризация — это метод группировки объектов, при котором создаётся иерархическая (древовидная) структура кластеров. В отличие от алгоритма k-means, иерархическая кластеризация не требует указания числа кластеров на этапе инициализации и является методом обучения без учителя.

# Виды иерархической кластеризации

Существует два базовых подхода:

- *Агломеративная кластеризация* (снизу вверх): каждый объект сначала рассматривается как отдельный кластер, после чего на каждом шаге объединяются два наиболее близких кластера. Объединения продолжаются до тех пор, пока все объекты не окажутся в одном кластере.
- *Дивизивная кластеризация* (сверху вниз): начинается с одного общего кластера, который рекурсивно делится на подгруппы. Используется реже из-за вычислительной сложности.

В рамках данного проекта используется агломеративная стратегия.

# Расстояние между кластерами (методы связи)

Выбор метода расчёта расстояния между кластерами напрямую влияет на структуру формируемого дерева и итоговые группы. Пусть A и B — два кластера, содержащие объекты  $x_i \in A$  и  $x_j \in B$ . Тогда расстояние D(A, B) между ними может определяться следующим образом:

- Single linkage (ближайший сосед):

$$D(A, B) = \min_{x_i \in A, x_j \in B} ||x_i - x_j||$$

Этот подход может приводить к «цепочкам», объединяющим разрозненные объекты.

- Complete linkage (самый дальний сосед):

$$D(A, B) = \max_{x_i \in A, x_j \in B} ||x_i - x_j||$$

Обеспечивает компактные, плотно сгруппированные кластеры.

- Average linkage (среднее расстояние):

$$D(A, B) = \frac{1}{|A||B|} \sum_{x_i \in A} \sum_{x_i \in B} ||x_i - x_j||$$

Представляет собой компромисс между предыдущими методами.

- *Метод Уорда (Ward's method)* — минимизирует прирост внутрикластерной дисперсии при объединении:

$$D(A, B) = \frac{|A||B|}{|A| + |B|} \cdot ||\mu_A - \mu_B||^2$$

где  $\mu_A,\,\mu_B$  — центры кластеров A и B соответственно.

Метод Уорда чаще всего применяется в практических задачах благодаря склонности формировать кластеры равномерной плотности и формы.

# Результат кластеризации: дендрограмма

В результате работы агломеративного алгоритма строится дендрограмма — дерево, на каждом уровне которого отображается слияние двух ближайших кластеров. По оси Y указывается расстояние между объединяемыми кластерами. Такой способ представления позволяет пользователю интерпретировать структуру данных и выявлять естественные разбиения (Рисунок 1.2).



Рисунок 1.2 — Дендрограмма

# Выбор количества кластеров

Хотя алгоритм сам по себе не требует указания числа кластеров k, на практике часто возникает необходимость получить фиксированное разбиение на k групп. Это реализуется путём «обрезания» дендрограммы на определённой высоте, соответствующей k кластерам. Такой подход позволяет контролировать уровень агрегации без изменения алгоритма.

В рамках нашей веб-интерфейсной системы, реализованной с использованием библиотеки Gradio, пользователю предоставляется возможность вручную задать желаемое количество кластеров. Это приводит к автоматическому усечению иерархической структуры на нужном уровне, после чего визуализируются полученные группы. Такой подход остаётся полностью валидным в контексте иерархической кластеризации и широко

применяется в реальных аналитических задачах, поскольку сохраняет все преимущества метода и гибкость интерпретации.

# 1.3 Метод главных компонент (РСА)

Метод главных компонент (Principal Component Analysis, PCA) — это классический метод понижения размерности данных, широко используемый в анализе многомерных выборок и визуализации. Его цель — уменьшить число признаков, сохранив при этом как можно больше информации о дисперсии данных.

### Математическая постановка задачи

Пусть задана выборка  $X \in \mathbb{R}^{n \times d}$ , содержащая n наблюдений и d признаков. Метод PCA ищет новую ортонормированную систему координат (главные компоненты), в которой: - первая компонента объясняет максимально возможную дисперсию данных; - каждая следующая компонента ортогональна предыдущим и объясняет максимально возможную оставшуюся дисперсию.

Построение  $\operatorname{PCA}$  основано на спектральном разложении ковариационной матрицы  $\Sigma$ :

$$\Sigma = \frac{1}{n} X^{\top} X = Q \Lambda Q^{\top}$$

где:

- Q матрица собственных векторов (направления главных компонент),
- $\Lambda$  диагональная матрица собственных значений (дисперсий вдоль компонент).

Результатом применения РСА является проекция исходных данных X на пространство меньшей размерности:

$$Z = XQ_k$$

где  $Q_k$  — первые k столбцов из Q, соответствующие наибольшим k собственным значениям.

# Зачем применять РСА в кластеризации

Кластеризация работает хуже, если признаки:

- имеют сильно разную шкалу или коррелированы;
- содержат «шумовые» измерения (низкоинформативные);
- превышают 2–3 измерения, затрудняя визуализацию.

Метод РСА позволяет:

- устранить коррелированные признаки;
- визуализировать многомерные данные в двумерном пространстве (для графиков кластеров);
- ускорить работу алгоритмов кластеризации за счёт уменьшения размерности;
- устранить выбросы и уменьшить влияние шума.

### Когда РСА применялся в проекте

В нашей системе PCA применяется по выбору пользователя перед кластеризацией, если исходное пространство имеет более двух признаков (d>2). Это особенно полезно для:

- *Wine dataset* содержит 13 признаков: без РСА визуализация невозможна;
- Wholesale dataset 6 признаков: PCA позволяет компактно отразить клиентские сегменты;

Для Mall Customers dataset, где уже есть только два числовых признака (ежемесячные расходы и доход), PCA не применяется, поскольку дальнейшее понижение размерности нецелесообразно.

# Объяснённая дисперсия

Одним из важных выходов метода является доля объяснённой дисперсии (explained variance ratio), т.е. какая часть общей изменчивости данных сохраняется при проекции. В нашей системе она рассчитывается как:

Explained variance ratio = 
$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{j=1}^{d} \lambda_j}$$

Это значение отображается пользователю после применения РСА, позволяя судить, насколько адекватно сниженная размерность сохраняет структуру данных.

# 1.4 Метрики оценки качества кластеризации

Поскольку кластеризация является методом обучения без учителя и заранее заданных меток классов не существует, оценка качества разбиения на кластеры требует специальных метрик. В данной работе используются две ключевые меры:

- *Инерция (inertia)* мера компактности кластеров;
- *Силуэт-оценка (silhouette score)* мера согласованности объекта с кластером.

Обе метрики автоматически рассчитываются в веб-приложении для каждого результата кластеризации методом k-means, и их значения отображаются пользователю после выполнения анализа.

# Инерция (Inertia)

Инерция — это сумма квадратов расстояний всех точек до центров своих кластеров. В терминах функции потерь алгоритма k-means она выражается как:

Inertia = 
$$\sum_{j=1}^{k} \sum_{x_i \in C_j} ||x_i - \mu_j||^2$$

где:

- $C_i$  кластер j;
- $\mu_j$  центр (центроид) кластера  $C_j$ ;
- $\|\cdot\|$  евклидова норма.

Инерция всегда убывает с увеличением числа кластеров k, так как каждый объект находится ближе к более локальному центру. Однако чрезмерное увеличение k приводит к переобучению, поэтому инерция полезна в сочетании с методом локтя (Elbow method) для выбора оптимального k.

В нашем проекте график зависимости инерции от k автоматически строится и предоставляется пользователю для анализа.

# Силуэт-оценка (Silhouette Score)

Силуэт-оценка позволяет оценить, насколько хорошо каждый объект соответствует своему кластеру по сравнению с другими кластерами. Для каждого объекта  $x_i$  вычисляется коэффициент силуэта s(i):

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}, \quad s(i) \in [-1, 1]$$

где:

- a(i) среднее расстояние от  $x_i$  до всех других точек в том же кластере (внутрикластерная плотность);
- b(i) минимальное среднее расстояние от  $x_i$  до точек в другом (наиболее близком) кластере (межкластерная близость).

Интерпретация значений:

- $s(i) \approx 1$  объект хорошо соответствует своему кластеру;
- $s(i) \approx 0$  объект находится на границе между кластерами;
- s(i) < 0 объект, вероятно, попал не в свой кластер.

Среднее значение s(i) по всей выборке используется как глобальная метрика качества кластеризации. В нашем приложении оно рассчитывается для результата k-means и визуализируется в виде силуэт-графика, где показано распределение s(i) по кластерам.

# Зачем нужны обе метрики

*Инерция* — это внутренняя характеристика плотности кластеров и удобна для построения графика «локтя», но она не учитывает расстояние до других кластеров.

Силуэт-оценка, напротив, сравнивает каждый объект как внутри, так и вне своего кластера, предоставляя более сбалансированную оценку качества.

Использование обеих метрик вместе позволяет:

- выбирать число кластеров, которое не только минимизирует инерцию, но и максимизирует силуэт;
- оценивать, есть ли «плохие» кластеры с низким качеством;
- определять, насколько разбиение отражает естественную структуру данных.

### 2 Используемые программные средства

### 2.1 Технологический стек проекта

Для реализации данного проекта была использована современная экосистема Python, подходящая для задач анализа данных, машинного обучения и визуализации. Ниже перечислены основные компоненты, использованные в процессе разработки, а также их назначение и роль в проекте.

### Язык программирования

Проект реализован на языке Python 3.8 — одном из самых распространённых языков в области анализа данных и машинного обучения. Python обеспечивает высокую читаемость кода, широкую поддержку научных библиотек и активное сообщество. Его гибкость позволила удобно реализовать как математическую логику кластеризации, так и визуальную часть.

# Среда разработки

Для написания и отладки кода использовалась среда Visual Studio Code (VSCode), обладающая встроенной поддержкой Python, автодополнением, управлением виртуальными окружениями и интеграцией с GitHub.

Изоляция зависимостей обеспечивалась с помощью виртуального окружения (venv), созданного локально. Это позволяет избежать конфликтов библиотек и обеспечить воспроизводимость среды.

# Используемые библиотеки

Для выполнения задач обработки данных, кластеризации, визуализации и построения веб-интерфейса были использованы следующие Python-библиотеки:

- pandas обработка табличных данных, загрузка CSV-файлов, фильтрация и очистка. Используется в модуле preprocessing.py для предварительной подготовки данных.
- *питру* работа с массивами, линейная алгебра, передача данных между модулями. Является фундаментом для большинства других библиотек.
- scikit-learn реализация основных алгоритмов машинного обучения: KMeans, AgglomerativeClustering, PCA, StandardScaler. В проекте эта библиотека лежит в основе всей логики кластеризации и снижения размерности.
- scipy поддержка алгоритма иерархической кластеризации и построения дендрограмм через scipy.cluster.hierarchy и linkage. Используется в модуле визуализации.
- *matplotlib* и *seaborn* построение графиков распределения, кластеров, силуэт-оценок и метода локтя. Визуальные компоненты проекта реализованы через эти библиотеки в visualization.py.
- gradio библиотека для быстрого создания веб-интерфейсов к Python-программам. Используется в app.py для организации интерактивного интерфейса, позволяющего пользователю выбрать датасет, метод кластеризации, количество кластеров и параметры PCA, а также сразу видеть результат в виде графиков.

Все библиотеки указаны в файле requirements.txt и могут быть установлены одной командой, обеспечивая воспроизводимость проекта.

# 2.1.1 Ссылка на репозиторий

Полный исходный код проекта размещён в открытом репозитории на GitHub по ссылке: https://github.com/NicolasRAA/clustering-webapp

### 2.2 Описание структуры проекта

Проект структурирован в виде модульного репозитория, обеспечивающего раздельную ответственность каждого компонента. Все модули разделены по функциональности, что упрощает поддержку и расширение проекта. Ниже приведено описание структуры:

- *арр.ру* основной исполняемый файл. Запускает веб-интерфейс Gradio, обрабатывает действия пользователя, вызывает предобработку, кластеризацию и визуализацию. Здесь объединяются все логические блоки проекта.
- generate\_datasets.py вспомогательный скрипт, позволяющий загрузить и сохранить три предустановленных набора данных (Wine, Wholesale, Mall Customers) в виде CSV-файлов в папке datasets/.
- requirements.txt список зависимостей проекта, необходимых для установки. Позволяет создать воспроизводимую среду.
- *README.md* документация по установке, запуску и использованию проекта. Также содержит описание рекомендованных параметров кластеризации.
- .gitignore файл, исключающий временные и служебные файлы из индексации Git (например, venv/, \_\_pycache\_\_).
- Папка *analysis*/— основной логический блок, содержащий все модули, отвечающие за обработку и анализ данных:
  - $-\_\_init\_\_.py$  файл инициализации, обозначает папку как модуль Python.
  - preprocessing.py содержит функции для загрузки данных, удаления нечисловых колонок, масштабирования признаков с помощью StandardScaler, а также применения PCA для снижения размерности. Использует формулу дисперсионного объяснения:

Explained Variance Ratio = 
$$\frac{\lambda_i}{\sum \lambda_j}$$
,  $\lambda_i$  = собственное значение

– clustering.py — реализует методы кластеризации:

- \* KMeans с фиксированным числом кластеров k, использует метод минимизации инерции.
- \* Agglomerative Clustering иерархическая кластеризация с различными метриками связи: ward, average, complete, single.
- evaluation.py рассчитывает количественные метрики качества кластеризации:
  - \* *Инерция* (*Inertia*): сумма квадратов расстояний до ближайшего центра.
  - \* Silhouette Score:

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}},$$

где a(i) — внутрикластерное расстояние, b(i) — расстояние до ближайшего кластера.

- visualization.py отвечает за построение всех графиков:
  - \* Графики кластеров после KMeans и иерархии
  - \* Дендрограмма
  - \* График локтя
  - \* Силуэт-график
  - \* График с истинными метками, если доступны (например, колонка *target* в Wine)
- Папка *datasets/* содержит три предустановленных CSV-файла с наборами данных:
  - wine.csv химические свойства и целевая переменная (target)
    для классификации 3 видов вина.
  - $-\ wholesale.csv$  данные о закупках различных категорий товаров.
  - mall.csv данные о клиентах торгового центра: возраст, пол, доход и индекс трат.
- Папка assets/ содержит вспомогательные ресурсы, включая изображение логотипа logo.png, отображаемое в верхней части интерфейса Gradio.

Важно отметить, что в рамках отчёта представлено только текстовое и визуальное описание основных компонентов проекта. Для более глубокого

изучения реализации, подробностей по архитектуре и комментариев к коду рекомендуется ознакомиться с исходным кодом на GitHub.

# 3 Результаты (анализ по каждому датасету)

В данном разделе проводится подробный анализ результатов кластеризации для каждого из трёх наборов данных. Мы исследуем, как предварительная обработка данных (в частности, метод главных компонент — PCA), а также выбор количества кластеров k и метода связи влияют на итоговую сегментацию. Для оценки качества кластеризации используются метрики инерции и силуэта.

### 3.1 Wine

# Выбор параметров

Для анализа набора данных Wine были выбраны следующие параметры:

- Количество кластеров: k=3, так как известно, что в наборе содержится три типа вина (метка target: 0, 1, 2).
- Memod  $\kappa$ ластеризации: как k-means, так и иерархическая кластеризация.
- *Метод связи:* ward, так как он минимизирует внутрикластерную дисперсию и наиболее подходит для числовых признаков.
- *Применение PCA:* Да, так как изначально в данных 13 признаков, и визуализация возможна только после снижения размерности.

# Применение РСА и объяснённая дисперсия

Для визуализации кластеров и анализа структуры данных был применён метод главных компонент (PCA). После снижения размерности до двух компонент, совокупная объяснённая дисперсия составила 57.38%, что позволяет сделать вывод о том, что две главные компоненты улавливают большую часть информации о вариации в данных.

### Визуализация распределения и истинных меток

На рисунке 3.1 представлено распределение объектов в пространстве первых двух главных компонент с окраской по реальным меткам (целевой переменной). Видно, что три класса достаточно чётко разделяются, особенно класс 2 (зелёный), который формирует компактную группу справа.



Рисунок 3.1 — Распределение по PCA с истинными метками классов

# Кластеры, полученные методом K-means

На рисунке 3.2 показаны результаты кластеризации методом k-means. Центроиды отмечены чёрными крестами. По визуальному совпадению с рисунком 3.1 можно заметить хорошее соответствие между реальными метками и предсказанными кластерами, хотя некоторые элементы (особенно между классами 0 и 1) были перепутаны.



Рисунок 3.2 — Результаты кластеризации методом K-means (k=3)

# Результаты иерархической кластеризации

На рисунке 3.3 показан результат агломеративной кластеризации с методом связи ward. Видно, что структура кластеров также повторяет разделение на три группы, хотя наблюдаются отличия в границах между сегментами.



Рисунок 3.3 — Иерархическая кластеризация (k=3, метод ward)

# Дендрограмма

На рисунке 3.4 показана дендрограмма, отражающая иерархическую структуру слияния объектов. Видно, что выбор трёх кластеров (по трём крупным ветвям) является обоснованным.



Рисунок 3.4 — Дендрограмма для Wine (метод ward)

### Оценка качества кластеризации

Для количественной оценки качества кластеризации использовались две ключевые метрики: инерция и силуэт-оценка (Silhouette Score).

- Инерция: 1285.56 это сумма квадратов расстояний между каждым объектом и центроидом своего кластера. Чем меньше инерция, тем плотнее объекты расположены внутри кластера, а значит, сегментация считается более «собранной». Полученное значение 1285.56 при k=3 указывает на приемлемую плотность кластеров, особенно учитывая изначальную размерность данных (13 признаков) и её снижение до 2D через PCA.
- Silhouette Score: 0.308 данная метрика измеряет, насколько хорошо каждый объект согласуется со своим кластером по сравнению с соседними. Значения выше 0.5 считаются хорошими, в диапазоне 0.3—0.5 умеренными, а ниже 0.2 слабыми. Таким образом, полученное значение говорит о среднем качестве кластеризации, что ожидаемо при наличии некоторого перекрытия между классами.

На рисунке 3.5 изображён график метода локтя. Видно, что при k=3 наблюдается заметный излом (локоть), после которого темп уменьшения инерции замедляется. Это подтверждает, что выбор k=3 является обоснованным, так как добавление большего числа кластеров не даёт существенного прироста в уплотнении данных.



Рисунок 3.5 — График метода локтя (Elbow method)

На рисунке 3.6 представлен силуэт-анализ для k=3. Каждому кластеру соответствует горизонтальный блок, ширина которого пропорциональна количеству объектов, а ширина в горизонтальном направлении — значение силуэт-коэффициента. Красная пунктирная линия показывает среднее значение — около 0.308. Видно, что большинство объектов имеют положительное значение силуэта, что указывает на удовлетворительное разделение кластеров. Однако наличие части объектов с отрицательным значением говорит о некотором наложении классов и граничных случаях, когда объект может относиться к соседнему кластеру.



Рисунок 3.6 — Силуэт-анализ кластеров

# Выводы по Wine

- Алгоритмы кластеризации успешно воспроизводят структуру данных: как k-means, так и иерархическая кластеризация корректно сегментируют три вида вина.
- Использование РСА позволило визуализировать и интерпретировать результаты, сохранив 57% дисперсии.
- Выбранное значение k=3 подтверждается как визуально, так и количественно (метод локтя, silhouette).
- Метки кластеров в значительной степени совпадают с реальными метками target, что доказывает эффективность методов.

### 3.2 Wholesale

# Выбор параметров

Для анализа набора данных Wholesale были выбраны следующие параметры:

- Количество кластеров: k=5. Это значение было выбрано на основе визуального анализа дендрограммы и метода локтя (см. рисунки 3.9 и 3.11), где при k=5 наблюдается заметное «плечо» в графике инерции.
- *Метод кластеризации: k*-means и агломеративная кластеризация.
- *Memod связи:* average часто используется для бизнес-данных, таких как покупки и потребительские расходы, поскольку учитывает среднее расстояние между всеми парами объектов из разных кластеров, обеспечивая более стабильную структуру кластеров в условиях высокой дисперсии.
- *Применение PCA:* Да, так как набор содержит 6 признаков, и для качественной визуализации было выполнено понижение размерности до двух компонент.

# Wholesale (метод average)

# Применение РСА и объяснённая дисперсия.

После применения метода главных компонент (PCA), две первые компоненты объясняют 61.12% общей дисперсии признаков. Это означает, что основная структура данных хорошо сохраняется в двумерном пространстве, что подтверждает допустимость визуализации.

# Визуализация кластеров.

На рисунке 3.7 показаны кластеры, полученные методом k-means. Можно выделить компактные сегменты (например, кластер 3) и более рассеянные группы, особенно кластеры 0 и 2. Наличие точек вдали от

основной массы данных указывает на потенциальные выбросы— клиентов с нестандартным профилем потребления.



Рисунок 3.7 — Кластеры KMeans (k=5) для набора Wholesale (PCA)

Агломеративная кластеризация с методом average дала результат, при котором большинство точек оказалось в одном кластере (кластер 1), а остальные распределены между малыми группами. Это может указывать на слабую дифференциацию клиентов при использовании среднего расстояния.



Рисунок 3.8 — Кластеры иерархической кластеризации (average)

### Структура данных и дендрограмма.

На рисунке 3.9 показана дендрограмма, построенная методом average. При высоте отсечения около 10 формируются примерно пять основных ветвей, что подтверждает выбор k=5. Однако наблюдается слабая иерархическая структура, где большая часть наблюдений сгруппирована близко, а удалённые точки формируют отдельные кластеры.



Рисунок 3.9 — Дендрограмма (метод average)

# Метрики кластеризации.

- *Инерция*: 1551.67. Это отражает внутрикластерную дисперсию. Учитывая высокий разброс расходов у клиентов, значение является приемлемым, но не минимальным.
- Silhouette Score: 0.353 умеренное качество кластеризации. Как видно из рисунка 3.10, кластер 0 имеет отрицательные значения силуэта, что указывает на возможную ошибку в его определении. Наоборот, кластер 3 демонстрирует хорошую степень согласованности внутри группы.



Рисунок 3.10 — Силуэт-анализ кластеров (k=5)

### Обоснование числа кластеров.

Согласно методу локтя (рисунок 3.11), при k=5 происходит значительное замедление снижения инерции. Добавление новых кластеров после этой точки не даёт существенного выигрыша. Силуэт-анализ также подтверждает умеренную согласованность кластеров при k=5.



Рисунок 3.11 — График метода локтя

### Выводы по кластеризации методом average

- Mетод average продемонстрировал удовлетворительное разбиение клиентов на 5 кластеров.
- Основной кластер (кластер 1) содержит большинство клиентов, в то время как меньшие группы могут представлять аномальные или специализированные потребительские профили.
- Наличие выбросов и слабое качество силуэта в части групп может говорить о потенциальной пользе альтернативного метода, такого как ward, который будет рассмотрен далее.

# Wholesale (метод ward)

# Мотивация выбора метода связи

Несмотря на то, что метод average является традиционно рекомендуемым для бизнес-данных, его результаты в предыдущем разделе показали, что большая часть наблюдений была сгруппирована в один кластер, что может снижать информативность сегментации. Поэтому было принято решение повторить агломеративную кластеризацию с методом связи ward, который минимизирует увеличение внутрикластерной дисперсии при объединении кластеров и зачастую приводит к более чётко очерченным и компактным группам. Этот метод опирается на эвристику минимизации квадратичного критерия объединения:

$$\Delta E(C_i, C_j) = \frac{n_i n_j}{n_i + n_j} \cdot \|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|^2$$

где  $n_i,\,n_j$  — размеры объединяемых кластеров,  ${m \mu}_i,\,{m \mu}_j$  — их центроиды.

### Визуализация кластеров и распределения

На рисунке 3.12 представлены кластеры, полученные с помощью алгоритма k-means (k=5) для ориентира. Несмотря на то, что метод ward не использует центроиды как таковые, сравнение с k-means полезно для оценки компактности кластеров.



Рисунок 3.12 — Кластеры K<br/>Means (k=5) для набора Wholesale (для сравнения)

На рисунке 3.13 показаны результаты агломеративной кластеризации с методом связи ward. В отличие от метода average, здесь наблюдается более равномерное распределение между кластерами: каждый сегмент содержит компактную и плотную группу точек. Особенно чётко видны отделённые кластеры клиентов с ярко выраженным отличием в параметрах покупок.



Рисунок 3.13 — Кластеры иерархической кластеризации (метод ward)

# Структура кластеров на дендрограмме

На дендрограмме (рисунок 3.14) видно, что при отсечке на уровне расстояния около 25–27 формируется пять крупных кластеров. Ветви дерева более симметричны и сбалансированы, чем в случае с методом average, что свидетельствует о более равномерной агломерации.



Рисунок 3.14 — Дендрограмма (метод ward)

### Оценка качества кластеризации

Используемые метрики:

- *Инерция*: 1551.67 такое же значение, как и в случае k-means, что логично, поскольку используется тот же k и пространство после PCA. Однако важно отметить, что инерция не учитывает интерклассовую структуру.
- Silhouette Score: 0.353 совпадает с предыдущим случаем, но визуальный анализ силуэт-графика (рисунок 3.15) показывает, что доля объектов с отрицательным значением значительно ниже. Это означает, что объекты стали лучше «согласованы» со своими кластерами, а перекрытие между группами уменьшилось.



Рисунок 3.15 — Силуэт-анализ кластеров (ward, k = 5)

# Сравнение методов и выводы

Результаты показывают, что метод ward обеспечил более чёткую и структурированную сегментацию:

- Кластеры визуально более компактны и симметричны.
- Дендрограмма показывает сбалансированные объединения и отсутствие доминирующих макрокластеров.
- Отрицательных значений силуэта стало меньше, а плотность внутри кластеров выше.

Пояснение: Метод ward минимизирует внутрикластерную вариативность при каждом объединении, что особенно эффективно в случаях, когда данные имеют непрерывную и количественную природу, как в наборе Wholesale. В отличие от метода average, который ориентирован на средние расстояния между группами и чувствителен к выбросам, метод ward стабильно группирует схожие по структуре наблюдения. Таким образом, в данном случае он показал лучшие результаты и может быть рекомендован для кластеризации покупателей на основе их расходов.

#### Выводы по Wholesale

Проведённый анализ набора данных Wholesale с использованием двух различных методов агломеративной кластеризации (average и ward) позволил выявить ключевые особенности структуры данных и оценить качество сегментации клиентов.

- Метод average продемонстрировал приемлемые результаты: удалось выделить основной макрокластер и несколько малочисленных групп, а метрика силуэта подтвердила удовлетворительное качество кластеризации. Однако визуальный анализ показал значительное перекрытие между кластерами и наличие плохо отделённых групп.
- Метод ward показал более сбалансированное распределение кластеров, лучшее визуальное разделение и меньшее количество объектов с отрицательным значением силуэта. Это подтверждает, что ward-агломерация в данном случае позволяет лучше минимизировать внутрикластерную дисперсию и формирует компактные и интерпретируемые сегменты.
- Объяснённая дисперсия PCA в обоих случаях составила 61.12%, что обеспечило достаточную визуализацию и стабильность структуры данных при понижении размерности.
- При одинаковом значении k=5 обе стратегии достигли идентичной инерции (1551.67), однако только метод ward смог чётко отделить группы по признакам расходов, что особенно важно в задачах маркетинговой сегментации.
- Сравнение силуэт-анализов выявило, что метод ward способствует более «уверенному» отнесению объектов к своим кластерам, снижая амбигуитет сегментации и улучшая её надёжность.

#### Общий вывод

Несмотря на теоретические рекомендации по использованию метода average для данных бизнес-аналитики, в данном случае метод ward оказался более эффективным с практической точки зрения. Он позволил получить чётко различимые сегменты, что делает его предпочтительным выбором при

кластеризации клиентов по типам потребления в задачах, подобных анализу набора Wholesale.

#### 3.3 Mall Customers

#### Выбор параметров

Для анализа набора данных Mall Customers были выбраны следующие параметры:

- Количество кластеров: k=5, что подтверждается анализом локтя (рис. 3.20) и силуэт-графиком (рис. 3.19). Это значение позволяет выделить чёткие и интерпретируемые сегменты клиентов.
- *Метод кластеризации: k*-means и агломеративная кластеризация.
- *Метод связи:* complete, так как он обеспечивает хорошую разделимость компактных кластеров и чувствителен к выбросам что полезно при анализе потребительского поведения.
- *Применение PCA:* не использовалось, так как в наборе данных всего два признака: Annual Income и Spending Score. Эти переменные уже лежат в двумерном пространстве, позволяя сразу визуализировать результаты без потерь информации.

# Визуализация кластеров (KMeans и иерархическая кластеризация)

На рисунке 3.16 представлены результаты кластеризации методом k-means с k=5. Видно, что центроиды (обозначены чёрными крестами) расположены в центре соответствующих групп, что указывает на компактность и сбалансированность кластеров. Каждый кластер представлен в виде плотной группы, что свидетельствует о чётком разделении клиентов по их уровню дохода и активности покупок.



Рисунок 3.16 — Кластеры KMeans (k=5) — Mall Customers

Агломеративная кластеризация с методом связи **complete** также даёт хорошо разделённые группы (рис. 3.17). По сравнению с результатами k-means, агломеративный алгоритм определяет кластеры с несколько иной геометрией, но сохраняет логическую структуру: кластеры не перекрываются, чётко выделяются высокодоходные клиенты, а также группы с низкими показателями расходов.



Рисунок 3.17 — Кластеры (агломеративная кластеризация, complete)

#### Дендрограмма и оценка структуры

Ha 3.18 рисунке показана дендрограмма иерархической ДЛЯ кластеризации с методом complete. Видно, что при отсечке на уровне расстояния  $\sim 5.5$  формируются пять устойчивых кластеров. Метод complete выбирающий максимальное linkage, расстояние между элементами кластеров, способствует созданию компактных и устойчиво различимых групп.



Рисунок 3.18 — Дендрограмма (метод complete)

### Метрики оценки качества кластеризации

Uнерция для метода k-means составила 209.58, что отражает суммарную внутрикластерную дисперсию. В отличие от более сложных и многомерных наборов, инерция здесь невелика, что связано с двухмерностью данных и чётко выраженными сегментами.

 $Silhouette\ Score\ -0.427$ , что считается хорошим показателем. Данный коэффициент показывает, насколько объекты ближе к своему кластеру по сравнению с другими. Как видно на силуэт-графике (рис. 3.19), почти все кластеры имеют положительные значения силуэта выше 0.3, особенно кластеры 2 и 3, что указывает на их чёткую внутреннюю связность и слабое перекрытие с соседями.



Рисунок 3.19 — Силуэт-анализ кластеров (k=5)

График локтя (рис. 3.20) показывает, что при k=5 инерция начинает снижаться с заметно меньшим темпом. Это подтверждает, что пять кластеров — разумный компромисс между качеством сегментации и сложностью модели.



Рисунок 3.20 — Метод локтя для Mall Customers

#### Выводы по Mall Customers

- Использование complete linkage позволило чётко разделить клиентов на группы с различным профилем: от высокодоходных с высокой покупательской активностью до клиентов с низкими значениями по обоим признакам.
- Метод PCA не применялся, так как признаки уже находятся в двумерном пространстве и не требуют снижения размерности.
- Инерция и силуэт-анализ подтверждают высокое качество кластеризации при k=5, особенно благодаря компактности и чёткой сегментации.
- Дендрограмма показывает устойчивое формирование 5 кластеров при достаточно низком пороге расстояния, что дополнительно обосновывает выбор параметров.
- Таким образом, кластеризация клиентов торгового центра позволяет выделить легко интерпретируемые сегменты, которые могут быть полезны для маркетинга, рекомендаций и персонализированных акций.

#### 4 Выводы и обсуждение

#### Сравнение методов кластеризации

В рамках данного исследования были применены два алгоритма кластеризации — **k-means** и **иерархическая кластеризация** (агломеративная). Каждый из них показал свои преимущества и ограничения в зависимости от структуры данных.

Метод k-means, будучи итеративным методом минимизации внутрикластерной дисперсии, хорошо показал себя на относительно симметричных и компактных распределениях (например, в данных Mall Customers и Wine). Его эффективность основана на гипотезе, что кластеры имеют форму гиперсфер в евклидовом пространстве, и минимизируется следующая функция:

$$J = \sum_{i=1}^{k} \sum_{x \in C_i} ||x - \mu_i||^2$$

Однако для данных Wholesale, имеющих высокую гетерогенность и выбросы, k-means страдал от чувствительности к инициализации центроидов и неустойчивости к нестандартным кластерам.

Иерархическая кластеризация, напротив, позволяет гибко исследовать структуру данных на разных уровнях агрегации. Метод average linkage, агрегирующий расстояния между группами как среднее парное расстояние, оказался теоретически обоснованным для бизнес-данных, но не дал столь отчетливых кластеров, как метод ward. Последний минимизирует при каждом шаге увеличение внутрикластерной суммы квадратов и оказался наиболее устойчивым в случае Wholesale, где структура данных предполагала наличие плотных и малых групп.

## Где результаты были лучше интерпретируемы

Лучшее совпадение между истинной структурой и результатами кластеризации наблюдалось на датасете Wine. Это объясняется тем, что

в нем присутствуют метки классов (target: copтa вина), а также хорошо выраженные различия между группами. Применение метода ward позволило практически идеально воспроизвести эти группы.

Датасет Mall Customers также показал хорошие результаты с k=5: группы четко отделены на двумерной плоскости без применения PCA, что говорит о том, что признаки уже информативны. Средний силуэт выше 0.4 подтверждает высокую степень "уверенности" объектов в своей кластерной принадлежности.

Наименее интерпретируемым оказался результат агломеративной кластеризации с average linkage на датасете Wholesale. Несмотря на теоретическую обоснованность метода, распределение клиентов оказалось слишком неравномерным. Однако переключение на метод ward улучшило силуэт (до 0.38), что подтверждает его преимущество в данной ситуации.

#### Роль PCA и silhouette

Применение **PCA** оказалось ключевым при работе с датасетами **Wine** и **Wholesale**, где исходная размерность превышала два признака. Снижение размерности позволило не только визуализировать кластеры, но и сохранить значительную часть дисперсии (от 57

$$\max_{w} \quad w^{\top} \Sigma w$$
 при условии  $\|w\| = 1$ 

где  $\Sigma$  — ковариационная матрица исходных данных.

Метрика Silhouette Score была особенно полезна для оценки качества кластеризации независимо от меток. Она показала себя как чувствительный инструмент: при хорошей сегментации значения превышали 0.4 (что считается высоким качеством), тогда как при неудачной — опускались до 0.3 и ниже, как в случае с average linkage на Wholesale.

### Возможные улучшения и направления для будущей работы

Несмотря на достигнутые результаты, существует ряд направлений, которые могут значительно улучшить качество кластеризации:

- Добавление новых признаков. Например, в Wholesale можно использовать дополнительные характеристики клиентов (география, история заказов, размер предприятия), что позволит алгоритму выделить более осмысленные кластеры.
- *Использование других метрик расстояния*. Вместо евклидовой можно рассмотреть cosine distance или Manhattan distance, особенно если данные имеют разную шкалу или содержат категориальные признаки.
- *Методы плотностной кластеризации*. Алгоритмы как DBSCAN и HDBSCAN хорошо работают с выбросами и могут выявлять кластеры произвольной формы, что потенциально применимо к сложным наборам типа Wholesale.
- *Полуавтоматическая интерпретация*. Кластеры можно дополнительно описывать с помощью правил или деревьев решений, определяя их свойства на основе значимых признаков (например, средний возраст, доход, уровень затрат).
- *Ручная валидация и обратная связь*. Подключение эксперта доменной области (например, маркетолога для Mall или аналитика закупок для Wholesale) может существенно повысить практическую ценность кластеров.
- Автоматический выбор <math>k. Использование методов как Gap Statistic или BIC/AIC может формализовать выбор оптимального числа кластеров.

В целом, результаты подтверждают, что выбор метода кластеризации должен соответствовать структуре данных, цели анализа и контексту применения. Универсальных решений нет, но комбинация визуализации, метрик качества и теоретических обоснований позволяет сделать выбор максимально осознанным.

#### ЗАКЛЮЧЕНИЕ

В ходе выполнения данного проекта было реализовано интерактивное веб-приложение для проведения кластерного анализа с использованием алгоритмов k-means и иерархической кластеризации. Главной целью проекта было создание инструмента, способного анализировать многомерные данные без предварительного знания структуры и количества классов, то есть в условиях обучения без учителя.

Для достижения этой цели были поставлены и решены следующие задачи:

- Разработка системы предварительной обработки данных: модуль реализует очистку, масштабирование признаков, а также при необходимости понижение размерности с помощью метода главных компонент (PCA). Это позволило улучшить качество кластеризации и обеспечить визуальную интерпретируемость даже для многомерных датасетов.
- Реализация двух популярных алгоритмов кластеризации k-means и иерархической (агломеративной) кластеризации с возможностью выбора числа кластеров, методов связи и визуализации результата. Это дало пользователю инструменты для анализа данных с различной структурой и плотностью.
- Визуализация результатов кластеризации в двумерном пространстве, что существенно повышает удобство анализа. Визуализации включают графики кластеров, дендрограммы, силуэт-диаграммы и графики локтя все это позволяет не только «увидеть» структуру данных, но и оценить обоснованность выбора числа кластеров.
- Автоматический расчёт ключевых метрик качества инерции и силуэт-оценки позволил перейти от субъективной оценки кластеров к более формализованной, обеспечивая прозрачность и воспроизводимость результатов.
- Создание полноценного веб-интерфейса с помощью библиотеки Gradio дало возможность использовать систему без необходимости погружения

в программный код. Пользователь может выбрать предустановленный датасет (Wine, Wholesale, Mall Customers) или загрузить собственный .csv-файл, после чего провести полный цикл анализа в интерактивном режиме.

Реализация проекта подтвердила важность комплексного подхода к кластерному анализу: правильная предобработка, грамотный выбор алгоритма и метрик, а также визуальная интерпретация являются ключевыми элементами успешной сегментации данных.

Разработанное приложение может применяться как в учебных целях — для иллюстрации принципов кластеризации и оценки её результатов, — так и в прикладных задачах: сегментации клиентов, анализе поведения, поиске структур в неразмеченных данных. Кроме того, система может служить основой для расширения функциональности: добавления новых алгоритмов (например, DBSCAN), автоматического выбора числа кластеров, построения интерпретируемых описаний групп и подключения обратной связи от пользователей.

В итоге, проект не только достиг поставленной цели, но и продемонстрировал потенциал кластерного анализа как мощного инструмента исследования сложных данных при отсутствии априорной информации о классах.

# ПРИЛОЖЕНИЕ А Веб-интерфейс 1



Рисунок А.1 - Веб-интерфейс 1

# ПРИЛОЖЕНИЕ Б Веб-интерфейс 2



Рисунок Б.1 - Веб-интерфейс 2