Nome:

Matricola:

Crittoanalisi di un Cifrario Affine (y=e(x) = ax+b mod 26).

	letter	probability	letter			
	A	.082	N	probability .067		
	В	.015	Ö	.075		
	C	.028	P	.019		
	D	.043		.001		
	B C D E F G H	.127	Q R	.060		
	F	.022	S	.063		
	G	.020	S	.091		
	H	.061	и	.028		
	1	.070	V	.010		
	K	.002	W	.023		
	K	.008	Х	.001		1
	L	.040	Y	.020		
	М	.024	Z	.001		
1. E, having prob	rability a	about 0.120				
2. T, A, O, I, N, S	, H, R, ea	ich having p	robabili	ty between 0.0	% and 0.09	
3. D, L, each hav	ing prob	ability arour	d 0.04			
4. C, U, M, W, F,	2 5 5				0.035 4	0.00

Supponiamo che Oscar abbia intercettato il testo cifrato mostrato nell'esempio seguente: ciphertext =

"FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDKAPRKDLYEVLRHHRH" In questo ciphertext la lettera A appare 2 volte, la lettera R appare 8 volte, ...

- 1) Determinare la funzione di decifratura d(y), ovvero i valori di a e b del Cifrario Affine utilizzando l'analisi statistica della lingua Inglese (vedi tabella sopra). (Suggerimento: $e_k(E)=?$, $e_k(T)=?$). Vi ricordo che le scelte di a e b devono essere valide!
- 2) Calcolare il plaintext del ciphertext di cui sopra.

(7 punti / 24)

 Sia n un intero positivo. Un quadrato latino di ordine n è un array L di n×n degli interi 1, ..., n, tale che ognuno degli n interi ricorra esattamente una volta in ogni riga e in ogni colonna di L. Un esempio di quadrato latino di ordine 3 è come segue:

1	2	3
3	1	2
2	3	1

Fondamenti di Cybersecurity 05-07-2024 Cognome:

Nome:

Matricola:

Dato un qualsiasi quadrato latino L di ordine n, possiamo definire un relativo Crittosistema quadrato latino. Prendiamo $\dot{P} = C = K = \{1, \dots, n\}$. Per $1 \le i \le n$, la regola di crittografia. (encryption rule) è definita come $e_i(j) = L(i, j)$ (Quindi ogni riga di L dà origine a una regola di

Domanda: Dimostrare che questo crittosistema quadrato latino raggiunge la perfect secrecy a condizione che ogni chiave venga utilizzata con la stessa probabilità. (Suggerimento: Bayes'

(5 punti / 24)

- 3. Che cos'è AES? Fornire lo schema generale di questo cifrario: ad ogni iterazione quali . funzioni vengono eseguite? Spiegare brevemente lo scopo di ognuna di queste funzioni. (4 punti / 24)
- 4. Descrivere il concetto di anonimizzazione e che cos'è il Routing a Cipolla (Onion Routing); quest'ultimo meccanismo come garantisce l'anonimizzazione del traffico sulla rete? (4 punti / 24)
- 5. Unix utilizza un sistema di sicurezza composto da ACL (Access Control List) e Capabilities. Descrivere questi 2 meccanismi e cosa garantiscono assieme.

(4 punti / 24)