

Test de Sélection pour les IOI et EGOI 2025

Nourrir les Tortues Ninja

Limite de temps : 4 secondes Limite de mémoire : 512 Mo

Dans la ville de Tichy vivent des créatures très spéciales : les tortues ninja! Chaque tortue a un entier positif inscrit sur sa carapace. Lorsqu'on nourrit une tortue avec une crevette, le nombre sur sa carapace change comme suit :

- Si le nombre est supérieur à 1, il devient son plus grand diviseur propre (le plus grand nombre strictement inférieur qui le divise).
- Si le nombre est 1, il reste inchangé.

Deux amis, Elyas et Iyed, possèdent chacun une collection de n tortues. Ils veulent associer leurs tortues en n paires de telle sorte que :

- Chaque paire contient une tortue d'Elyas et une tortue d'Iyed.
- Deux tortues ne peuvent être appariées que si elles affichent le même nombre sur leur carapace.

Comme les tortues ne sont pas très sociables, Elyas et Iyed devront peut-être nourrir leurs tortues plusieurs fois jusqu'à ce que des paires compatibles puissent être formées. Nourrir une tortue coûte une crevette par opération.

Tâche

Votre tâche est de déterminer le nombre total minimal de nourrissages nécessaires pour apparier toutes les tortues.

Entrée

- Première ligne : un entier n le nombre de tortues que possède chaque ami $(1 \le n \le 10^5)$.
- Deuxième ligne : n entiers a_1, a_2, \ldots, a_n nombres sur les carapaces des tortues d'Iyed (1 $< a_i < 10^6$).
- Troisième ligne : n entiers b_1, b_2, \ldots, b_n nombres sur les carapaces des tortues d'Elyas (1 $\leq b_i \leq 10^6$).

Il est garanti qu'une solution existe toujours et tient dans un entier 64 bits.

Sortie

Affichez un seul entier - le nombre minimal de nourrissages nécessaires.

Remarques

- Les diviseurs propres d'un nombre sont les entiers positifs strictement inférieurs à ce nombre qui le divisent exactement.
- Par exemple, le plus grand diviseur propre de :
 - -6 est 3
 - -10 est 5
 - 7 est 1 (car 7 est premier)

Exemple 1

Entrée 1

```
5
1 7 4 3 2
7 3 2 4 1
```

Sortie 1

0

Explication 1

Les tortues peuvent déjà être appariées sans nourrissage :

- 1 (Iyed) avec 1 (Elyas)
- 7 (Iyed) avec 7 (Elyas)
- 4 (Iyed) avec 4 (Elyas)
- 3 (Iyed) avec 3 (Elyas)
- 2 (Iyed) avec 2 (Elyas)

Aucun nourrissage n'est nécessaire!

Exemple 2

Entrée 2

```
3
8 6 7
14 9 7
```

Sortie 2

7

Explication 2

Plusieurs nourrissages sont nécessaires :

• Nourrir la tortue 8 trois fois : 8 \rightarrow 4 \rightarrow 2 \rightarrow 1

• Nourrir la tortue 6 une fois : $6 \rightarrow 3$

• Ne pas nourrir la tortue 7

• Nourrir la tortue 14 une fois : 14 \rightarrow 7

• Nourrir la tortue 9 une fois : 9 \rightarrow 3

 $\bullet\,$ Nourrir la tortue 7 une fois : 7 \rightarrow 1

Après nourrissage:

• Tortues d'Iyed : 1, 3, 7

 \bullet Tortues d'Elyas : 7, 3, 1

Ils peuvent maintenant être appariés. Nombre total de nourrissages utilisés : 3 + 1 + 0 + 1 + 1 + 1 = 7.

Sous-tâches

Sous-tâche	Points	Contraintes
1	8	$n \leq 8$
2	12	Tous les nombres sont premiers ou
		1
3	10	Tous les nombres sont des puis-
		sances de 2
4	40	$n \le 700$
5	30	Pas d'autres contraintes