Differential Evolution and Particle Swarm Optimization

Luong Ngoc Hoang

University of Information Technology (UIT) Vietnam National University - Ho Chi Minh City

3 April 2020

Overview

- Motivation
- 2 Differential Evolution (DE)
- 3 Particle Swarm Optimization (PSO)
- 4 Research Questions

Can the sGA solve the following problem?

Minimize
$$f(x_0, x_1) = (x_0 - 0.5)^2 + (x_1 - 0.5)^2$$

 $x_0, x_1 \in [0, 1] \subset \mathbb{R}$

Minimize
$$f(x_0, x_1) = (x_0 - 0.5)^2 + (x_1 - 0.5)^2$$

<i>x</i> ₀	<i>x</i> ₁
0.25	0.80
0.40	0.97

Minimize
$$f(x_0, x_1) = (x_0 - 0.5)^2 + (x_1 - 0.5)^2$$

<i>x</i> ₀	<i>x</i> ₁
0.25	0.80
0.40	0.97

$$f(0.40, 0.80) = 0.1$$

Minimize
$$f(x_0, x_1) = (x_0 - 0.5)^2 + (x_1 - 0.5)^2$$

<i>x</i> ₀	<i>x</i> ₁
0.25	0.80
0.40	0.97
0.12	0.34
0.67	0.72

Minimize
$$f(x_0, x_1) = (x_0 - 0.5)^2 + (x_1 - 0.5)^2$$

<i>x</i> ₀	<i>x</i> ₁
0.25	0.80
0.40	0.97
0.12	0.34
0.67	0.72

$$f(0.40, 0.34) = 0.0356$$

Minimize
$$f(x_0, x_1) = (x_0 - 0.5)^2 + (x_1 - 0.5)^2$$

<i>x</i> ₀	<i>x</i> ₁
0.25	0.80
0.40	0.97
0.12	0.34
0.67	0.72
0.55	0.81
0.52	0.04
0.85	0.23
0.76	0.65

$$f(0.52, 0.65) = 0.0229$$

Can sGA be used for real-valued optimization?

A binary string (a_i) of q bits

$$(a_i), a_i \in \{0,1\}, i = 0,1,\ldots,q-1$$

can encode a real-valued variable $x \in [b_L, b_U]$, and x can be decoded by:

$$x = b_L + \frac{b_U - b_L}{2^q - 1} \cdot \sum_{i=0}^{q-1} a_i 2^i$$

A binary string (a_i) of q bits

$$(a_i), a_i \in \{0,1\}, i = 0,1,\ldots,q-1$$

can encode a real-valued variable $x \in [b_L, b_U]$, and x can be decoded by:

$$x = b_L + \frac{b_U - b_L}{2^q - 1} \cdot \sum_{i=0}^{q-1} a_i 2^i$$

Example: Using q=3 bits to encode a real-valued variable $x\in[0,1]$

Problems with this binary encoding?

Problems with this binary encoding?

- The algorithm must handle *q* times more variables.
- Values close to each other can have different representation, e.g., 0.43 (011) and 0.57 (100).
 - \rightarrow The function mapping the bit string into real-valued number is multi-modal.

• . . .

DIFFERENTIAL EVOLUTION

Differential Evolution - Introduction

- Developed by Storn and Price in 1995.
- Core concept: Variation by adding the scaled difference between two randomly selected individuals to a third randomly selected individual.

DE - Notations

Population $P_{x,g}$ at generation g consists of N vectors $\mathbf{x}_{i,g}$

$$egin{aligned} P_{\mathsf{x},g} &= (\mathbf{x}_{i,g}), \quad i = 0, 1, \dots, N-1, \quad g = 0, 1, \dots, g_{\mathsf{max}} \ \mathbf{x}_{i,g} &= (x_{j,i,g}), \quad j = 0, 1, \dots, D-1 \ x_{j,i,g} &\in [b_{j,L}, b_{j,U}] \subset \mathbb{R} \end{aligned}$$

N: the population size

D: the number of real-valued parameters g_{max} : the maximum number of generations

 $[b_{j,L},b_{j,U}]$: the range of the j-th parameter

DE - Initialization

$$g = 0$$
 $P_{x,0} = (\mathbf{x}_{i,0})$
 $x_{j,i,0} = rand_j(0,1) \times (b_{j,U} - b_{j,L}) + b_{j,L}$
 $0 \le rand_j(0,1) \le 1$

Mutant population $P_{v,g}$ contains N mutant vectors $\mathbf{v}_{i,g}$

$$P_{v,g} = (\mathbf{v}_{i,g}), \quad i = 0, 1, \dots, N-1, \quad g = 0, 1, \dots, g_{max}$$

 $\mathbf{v}_{i,g} = (v_{j,i,g}), \quad j = 0, 1, \dots, D-1$

F: the scale factor, $F \in \mathbb{R}_{>0}$, and mostly $F \in (0,1)$

For each $\mathbf{v}_{i,g}$:

$$r0 \neq r1 \neq r2$$
: randomly selected from $\{0, 1, \dots, N-1\} \setminus \{i\}$

r0: base vector index

r1, r2: difference vector indices

$$\mathbf{x}_{r0,g}, \mathbf{x}_{r1,g}, \mathbf{x}_{r2,g} \in P_{x,g}$$

$$\mathbf{v}_{i,g} = \mathbf{x}_{r0,g} + F \times (\mathbf{x}_{r1,g} - \mathbf{x}_{r2,g})$$

Figure: Consider each current vector $\mathbf{x}_{i,g}$.

Figure: Randomly select 3 different vectors $\mathbf{x}_{r0,g}, \mathbf{x}_{r1,g}, \mathbf{x}_{r2,g}$.

Figure: Compute the scaled difference vector $F(\mathbf{x}_{r1,g} - \mathbf{x}_{r2,g})$.

Figure: Create $\mathbf{v}_{i,g}$ by adding the scaled difference vector to the base vector $\mathbf{x}_{r0,g}$.

Trial population $P_{u,g}$ contains N trial vectors $\mathbf{u}_{i,g}$

$$P_{u,g} = (\mathbf{u}_{i,g}), \quad i = 0, 1, \dots, N-1, \quad g = 0, 1, \dots, g_{max}$$

 $\mathbf{u}_{i,g} = (u_{j,i,g}), \quad j = 0, 1, \dots, D-1$

 Cr : the crossover probability, $\mathit{Cr} \in [0,1]$

For each trial vector $\mathbf{u}_{i,g}$:

 j_{rand} : an index randomly selected from $\{0, 1, \dots, D-1\}$

 $\mathbf{x}_{i,g}$: the target vector, $\mathbf{x}_{i,g} \in P_{x,g}$

$$u_{j,i,g} = \begin{cases} v_{j,i,g} & \text{if } rand_j(0,1) \leq Cr & \text{or} \quad j = j_{rand} \\ x_{j,i,g} & \text{otherwise} \end{cases}$$

Figure: Perform crossover the current vector $\mathbf{x}_{i,g}$ with the mutant vector $\mathbf{v}_{i,g}$.

Figure: $\mathbf{u}_{i,g}^1$: x_0 is from the mutant vector and x_1 is from the current vector.

Figure: $\mathbf{u}_{i,\sigma}^2$: x_0 is from the current vector and x_1 is from the mutant vector.

Figure: $\mathbf{u}_{i,g}^3$: both x_0 and x_1 are from the mutant vector, $\mathbf{u}_{i,g}^3 = \mathbf{v}_{i,g}$.

DE - Selection

The next population $P_{x,g+1}$ consists of N vectors $\mathbf{x}_{i,g+1}$

$$\begin{split} P_{\mathsf{x},g+1} &= (\mathbf{x}_{i,g+1}), \quad i = 0, 1, \dots, \mathit{N}-1, \quad \mathit{g} = 0, 1, \dots, \mathit{g}_{\mathit{max}} \\ \mathbf{x}_{i,g+1} &= \begin{cases} \mathbf{u}_{i,g} & \text{if } f(\mathbf{u}_{i,g}) \text{ is better than } f(\mathbf{x}_{i,g}) \\ \mathbf{x}_{i,g} & \text{otherwise} \end{cases} \end{split}$$

DE - Example

$$f(x,y) = 3(1-x)^{2} \exp(-x^{2} - (y+1)^{2})$$
$$-10(\frac{x}{5} - x^{3} - y^{5}) \exp(-x^{2} - y^{2}) - \frac{1}{3} \exp(-(x+1)^{2} - y^{2})$$

Figure: Generation 0

Figure: Generation 5

Figure: Generation 10

Figure: Generation 20

Figure: Generation 25

Figure: Generation 30

DE - Control Parameters

The performance of DE is influenced by its control parameters.

- Population size.
- How base vectors $\mathbf{x}_{r0,g}$ and difference vectors $\mathbf{x}_{r1,g}, \mathbf{x}_{r2,g}$ are chosen.
- The scale factor *F*.
- How crossover is performed.
- ...

PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization - Introduction

- First simulations done by Kennedy and Eberhart in 1995.
- Core concept: PSO maintains a swarm (i.e., a population) of particles that move through the search space. Each particle determines its movement based on:
 - Its current position.
 - Its best previous position.
 - Its neighbors' best previous position.

PSO - Notations

Swarm $P_{x,g}$ at generation g consists of N particles $\mathbf{x}_{i,g}$

$$P_{x,g} = (\mathbf{x}_{i,g}), \quad i = 0, 1, \dots, N-1, \quad g = 0, 1, \dots, g_{max}$$
 $\mathbf{x}_{i,g} = (x_{j,i,g}), \quad j = 0, 1, \dots, D-1$ $x_{j,i,g} \in [b_{j,L}, b_{j,U}] \subset \mathbb{R}$

N: the population size

D: the number of real-valued parameters

 g_{max} : the maximum number of generations

Each particle i has:

- $\mathbf{x}_{i,g}$: the current position of particle i
- $\mathbf{v}_{i,g}$: the current velocity vector of particle i
- $\mathbf{y}_{i,g}$: the best position found so far by particle i
- $\mathbf{z}_{i,g}$: the best position found so far in the neighborhood \mathcal{N}_i

PSO - Neighborhood Topology - Ring

Figure: Ring topology. For example, $\mathcal{N}_3 = \{2,3,4\}, \mathcal{N}_0 = \{7,0,1\}, \dots$

 $\mathbf{z}_{i,g}$ is the best position found so far by the particles in its neighborhood (i.e., particle i and its adjacent particles).

PSO - Neighborhood Topology - Star

Figure: Star topology. For all i, $\mathcal{N}_i = \{0, 1, \dots, 7\}$.

 $\mathbf{z}_{i,g}$ is the best position found so far by the whole swarm.

PSO - Position Update

In each generation, the velocity vector of particle i is updated as:

$$\mathbf{v}_{i,g+1} = w\mathbf{v}_{i,g} + c_1\mathbf{r}_1 \otimes (\mathbf{y}_{i,g} - \mathbf{x}_{i,g}) + c_2\mathbf{r}_2 \otimes (\mathbf{z}_{i,g} - \mathbf{x}_{i,g})$$

w: inertia weight

 c_1, c_2 : acceleration constants

r1, **r2**: vectors of uniformly random values $\in (0,1)$

Velocity components

 $w\mathbf{v}_{i,g}$: the inertia component.

 $c_1\mathbf{r}_1\otimes(\mathbf{y}_{i,g}-\mathbf{x}_{i,g})$: the cognitive component.

 $c_2\mathbf{r}_2\otimes(\mathbf{z}_{i,g}-\mathbf{x}_{i,g})$: the social component.

The next position of particle i is computed as:

$$\mathbf{x}_{i,g+1} = \mathbf{x}_{i,g} + \mathbf{v}_{i,g+1}$$

PSO - Position Update

PSO - Position Update

Figure: Generation 0

Figure: Generation 5

Figure: Generation 10

Figure: Generation 20

Figure: Generation 25

Figure: Generation 30

PSO - Control Parameters

The performance of PSO is influenced by its control parameters.

- Swarm size.
- Neighborhood topology.
- Coefficients, i.e., inertia weight w and acceleration constants c_1, c_2 .
- ...

Research Questions

- Comparing DE and PSO? And comparing different evolutionary algorithms in general?
- How to set/tune/adapt control parameters?
- Considering your optimization problem, which algorithm should be used, how to customize, or how to design our own algorithm?
- ...

References

- Price K.V., Storn R.M., Lampinen J.A. (2005). The Differential Evolution Algorithm. Differential Evolution: A Practical Approach to Global Optimization, 37-134
- Riccardo P., Kennedy J., Blackwell T. (2007). Particle swarm optimization: An overview. Swarm intelligence 1 (1), 33-57