

COMP 2019

Week 11
Deployment of ML Systems

Learning Objectives

- Explain the ML project lifecycle (CO3)
- Discuss key challenges and activities in the ML project lifecycle (CO3)
- Explain Deployment Options and MLOps (CO4)

ML Project Lifecycle

Key Challenges for Deployment

- Concept Drift
 - Has the data changed?
 - What to monitor?

- Software Engineering issues
 - Realtime vs batch
 - Cloud vs Edge/Browser
 - Compute resources
 - Latency, throughput
 - Security & privacy
 - Logging

Deployment Patterns

- Shadow mode
 - Al runs in parallel to the manual task
 - Al not involved in decision-making
- Canary mode
 - Deploy to a small fraction (5%) of requests
 - Monitor and ramp up gradually
- Old/New routing
 - Setup new prediction service alongside the old service
 - Router component switches to new service (gradual?)
 - Easy rollback

Degrees of Automation

Monitoring

Metrics

- Software metrics
 - Memory, compute, latency, throughput, server load
- Input metrics
 - Average length, average volume, missing values
- Output metrics
 - Frequency of null answers, frequency of users switching/redoing query, ... (application specific)

Model Maintenance

Iterative Model Development

Doing Well?

- On the training set
- On the dev/test set
- On the business metrics & goals

Error Analysis & Prioritization

Туре	Accuracy	Human Level Performance	Gap to HLP	% of data	Potential improvement
Clean speech	94%	95%	1%	60%	0.60%
Car noise	89%	93%	4%	4%	0.16%
People noise	87%	89%	2%	30%	0.60%
Low bandwidth	70%	70%	0%	6%	0.00%

Data Centric Development

- Model Centric
 - Hold the data fixed and iteratively improve the model
- Data Centric
 - Hold the code fixed and improve the data
 - Good data will allow multiple models to do well
 - Collect more data, data augmentation, data/label quality

Good Data

- Ensure data quality in all phases of the project lifecycle
- Good data
 - Inputs cover all important cases
 - Defined consistently and unambiguous
 - Timely feedback from production to development
 - Appropriate volume of data

Label Quality

Ways to Obtain Data

Obtaining Data Quickly

- Quick iterations
- How much data can we collection in k days?
 - (not: How long would it take to obtain *m* samples?)
 - Except if we know from prior experience that we need m samples

POC vs Production

- Proof of Concept (POC)
 - Goal is to decide if the application is feasible and worth deploying
 - Getting the prototype to work
 - Manual steps are okay, but need to be documented
- Production phase
 - Utility is established
 - Replicable, automated data pipeline
 - » Tensorflow Transform, Apache Beam, Airflow

Tracking Model Lineage

- Information needed to pre-process data and replicate model & results
- Algorithm/code/configuration versioning
- Datasets used
- Hyperparameters
- Experiment results (+summary metrics, analysis)
- Resource monitoring, error analysis, ...
- Meta-data

Meta Data

- Not directly needed for model training/prediction
- Useful for error analysis, spotting unexpected effects
- Data provenance
- Time, machines/sensors, camera settings, phone morel, inspector ID, labeller ID, ...

Scoping

- What projects should we work on?
- What are the metrics for success?
- What resources are needed? (data, time, people)

Deployment Options

Edge Devices

Servers / Datacentres

On Prem vs On Cloud

- On Prem
 - Train & deploy on own infrastructure
 - Large companies running ML projects for long time; security
- On Cloud
 - Flexible, on-demand
 - Lower cost in the short term
 - Amazon Web Services, Google Cloud, Microsoft Azure, ...

Model Servers

- Simplify task of deploying models at scale
- Scaling, performance, lifecycle management, logging, ...

Data Scientist vs Software Engineers

Data Scientists

- Often work on fixed datasets
- Focus on models and metrics
- Prototyping in Jupyter notebooks
- Expert in modelling techniques and feature engineering
- Model size, cost, latency, fairness often ignored

Data Scientist vs Software Engineers

Software Engineers

- Build a product
- Concerned about cost, performance, stability, schedule
- Quality = Customer satisfucation
- Scale, large amounts of data
- Detect and handle errors (automatically)
- Requirements about security, safety, fairness
- Maintain, evolve, and extend the product over long periods

MLOps

- Continuous Integration (CI): Testing and validating code, components, data, data schemas, and models
- Continuous Delivery (CD): deploying software package/service, model servers
- Continuous Training (CT): automatically re-trains models for testing and serving
- Continuous Monitoring (CM): Catching errors in production systems, monitoring inference data and model performance metrics

ML Solution Lifecycle

Summary

- An ML Prototype is not a production system
- The task does not end when the system is deployed
- Continuous monitoring and improvement is required throughout the lifetime of the service
- Data centric development is often advantageous
- Model servers and other infrastructure help deploy and scale production systems reliably
- MLOps apply software engineering practices to ML

University of South Australia

Questions?