```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plfs=pd.read excel("/content/drive/MyDrive/plfs final.xlsx")
plfs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36 entries, 0 to 35
Data columns (total 62 columns):
     Column
                                                Non-Null Count
                                                                Dtype
     _ _ _ _ _
0
     State/UT
                                                36 non-null
                                                                object
 1
     Rural (Male)
                                                36 non-null
                                                                 float64
 2
     Rural (Female)
                                                36 non-null
                                                                 float64
 3
     Rural (Person)
                                                36 non-null
                                                                 float64
4
     Urban (Male)
                                                36 non-null
                                                                 float64
 5
     Urban (Female)
                                                36 non-null
                                                                 float64
 6
     Urban (Person)
                                                36 non-null
                                                                 float64
 7
     Rural + Urban (Male)
                                                36 non-null
                                                                object
 8
     Rural + Urban (Female)
                                                36 non-null
                                                                object
     Rural + Urban (Person)
 9
                                                36 non-null
                                                                obiect
 10
    wpr.Rural (1)
                                                35 non-null
                                                                 float64
     wpr.Rural (2)
                                                                 float64
 11
                                                35 non-null
 12
    wpr.Rural (3)
                                                35 non-null
                                                                 float64
 13
    wpr.Urban (4)
                                                35 non-null
                                                                 float64
    wpr.Urban (5)
 14
                                                35 non-null
                                                                 float64
 15
    wpr.Urban (6)
                                                35 non-null
                                                                 float64
    wpr.Total (7)
 16
                                                35 non-null
                                                                 object
 17
     wpr.Total (8)
                                                35 non-null
                                                                 object
 18
    wpr.Total (9)
                                                35 non-null
                                                                object
 19
    unemprate.Rural
                                                36 non-null
                                                                 float64
 20 unemprate.Urban
                                                36 non-null
                                                                 float64
 21
    unemprate.Rural + Urban
                                                36 non-null
                                                                 float64
 22 unemprate.Rural2
                                                36 non-null
                                                                 float64
 23
    unemprate.Urban3
                                                36 non-null
                                                                 float64
 24
    unemprate.Rural + Urban4
                                                36 non-null
                                                                 float64
 25
    unemprate.Rural5
                                                36 non-null
                                                                object
 26
    unemprate.Urban6
                                                36 non-null
                                                                object
27
     unemprate.Rural + Urban7
                                                36 non-null
                                                                object
     emprate.Self-Employed (%)
 28
                                                36 non-null
                                                                 float64
 29
     emprate.Regular Wage/Salary (%)
                                                36 non-null
                                                                 float64
     emprate.Casual Labour (%)
                                                36 non-null
 30
                                                                 float64
 31
     emprate.Total (%)
                                                36 non-null
                                                                 int64
 32
     lfpr edu.Not Literate
                                                33 non-null
                                                                float64
 33
    lfpr edu.Literate & Upto Primary
                                                33 non-null
                                                                float64
 34
    lfpr edu.Middle
                                                33 non-null
                                                                 float64
     lfpr edu.Secondary
 35
                                                33 non-null
                                                                 float64
```

```
36
    lfpr edu.Higher Secondary
                                               33 non-null
                                                                float64
     lfpr edu.Diploma/Certificate Course
 37
                                               33 non-null
                                                                float64
 38
    lfpr edu.Graduate
                                               33 non-null
                                                                float64
 39
    lfpr edu.Post Graduate & Above
                                               33 non-null
                                                               float64
 40
    lfpr edu.Secondary & Above
                                               33 non-null
                                                               float64
     lfpr edu.All
 41
                                               33 non-null
                                                               float64
 42
    wpr edu.Not Literate
                                               36 non-null
                                                               float64
 43
     wpr edu.Literate & Up to Primary
                                               36 non-null
                                                               float64
 44 wpr edu.Middle
                                               36 non-null
                                                               float64
 45 wpr edu. Secondary
                                               36 non-null
                                                               float64
     wpr edu.Higher Secondary
 46
                                               36 non-null
                                                               float64
 47
     wpr edu.Diploma/ Certificate Course
                                               36 non-null
                                                               float64
 48
     wpr edu.Graduate
                                               36 non-null
                                                               float64
 49
     wpr edu.Post Graduate & Above
                                               36 non-null
                                                               float64
 50
    wpr edu.Secondary & Above
                                               36 non-null
                                                               float64
 51 wpr edu.All
                                                               float64
                                               36 non-null
 52
    uemprate edu.Not Literate
                                               35 non-null
                                                               float64
 53
     uemprate edu.Literate & up to Primary
                                               35 non-null
                                                               float64
 54 uemprate edu. Middle
                                               35 non-null
                                                               float64
 55
    uemprate edu. Secondary
                                               35 non-null
                                                               float64
 56 uemprate edu. Higher Secondary
                                                               float64
                                               35 non-null
 57 uemprate edu.Diploma/Certificate Course
                                               35 non-null
                                                               float64
 58 uemprate edu.Graduate
                                                               float64
                                               35 non-null
                                                               float64
 59 uemprate edu.Post Graduate & Above
                                               35 non-null
     uemprate edu. Secondary & Above
                                               35 non-null
                                                               float64
 60
                                                               float64
     uemprate edu.All
                                               35 non-null
 61
dtypes: float\overline{6}4(51), int64(1), object(10)
memory usage: 17.6+ KB
plfs.describe()
{"type": "dataframe"}
plfs demo=plfs.sort values(by="unemprate.Rural +
Urban",ascending=False)
plt.figure(figsize=(12,6))
sns.barplot(x="unemprate.Rural +
Urban",y="State/UT",data=plfs_demo,palette="coolwarm")
plt.xlabel("Unemployment Rate (%)")
plt.vlabel("State/UT")
plt.title("Unemployment Rate by State in India")
plt.show()
<ipython-input-8-83698169e743>:2: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be
removed in v0.14.0. Assign the `y` variable to `hue` and set
`legend=False` for the same effect.
```

```
sns.barplot(x="unemprate.Rural +
Urban",y="State/UT",data=plfs_demo,palette="coolwarm")
```



```
# Cap extreme outliers at the 99th percentile
upper limit = np.percentile(plfs[["unemprate.Rural",
"unemprate.Urban", "unemprate.Rural + Urban"]], 99)
# Apply clip to only the relevant columns
plfs capped = plfs.copy() # Create a copy to avoid modifying the
original DataFrame
plfs_capped[["unemprate.Rural", "unemprate.Urban", "unemprate.Rural +
Urban"]] = plfs capped[["unemprate.Rural", "unemprate.Urban",
"unemprate.Rural + Urban"]].clip(upper=upper_limit)
#.clip(upper=upper limit) replaces any value greater than the 99th
percentile with the threshold.
# Create the boxplot
plt.figure(figsize=(6, 4)) # Adjusted size for better visualization
sns.boxplot(data=plfs capped[["unemprate.Rural", "unemprate.Urban",
"unemprate.Rural + Urban"]],
            palette=["#4c72b0", "#dd8452", "#55a868"]) # Added color
palette
# Labels and title
plt.xlabel("Region Type")
plt.ylabel("Unemployment Rate (%)")
plt.title("Unemployment Rate Distribution Across States")
# Custom X-ticks
plt.xticks(ticks=[0, 1, 2], labels=["Rural", "Urban", "Overall"])
```

```
# Add grid lines for better readability
plt.grid(axis="y", linestyle="--", alpha=0.7)
plt.show()
```


- # 1 Higher Unemployment in Urban Areas
- # Observation: Urban areas exhibit a higher median unemployment rate and a greater spread of data compared to rural areas.

Reasons:

- $\# \sim \text{Migration Pressure: Rapid urbanization leads to high population density and increased job competition.}$
- # Sectoral Dependence: Urban employment relies heavily on manufacturing, IT, and services, which can be volatile due to economic downturns.
- # Skill Mismatch: Many urban job seekers do not meet industry requirements, leading to a higher unemployment rate despite available vacancies.
- # Actionable Policy Measures:
- #

 Expansion of skill development programs to align with market demands.
- #

 Encouragement of startups and MSMEs (Micro, Small & Medium Enterprises) for job creation.
- # [] Strengthening of social security schemes to support unemployed individuals.

```
2 2 Stability in Rural Unemployment Rates
# Observation: Rural areas display a lower and more stable
unemployment rate with fewer outliers.
# Reasons:
# ~ Agricultural Employment: A significant portion of the rural
workforce is self-employed in agriculture, reducing visible
unemplovment.
# 		Government Schemes: Programs such as MGNREGA (Mahatma Gandhi
National Rural Employment Guarantee Act) provide a minimum employment
safety net.
# ~ Lower Job Competition: Rural job markets tend to be localized and
skill-specific, leading to less variation in employment trends.
# Actionable Policy Measures:
\# \sqcap Promotion of rural entrepreneurship through credit facilities and
subsidies.
# \sqcap Enhancement of agri-tech and cooperative farming models for
sustainable employment.
# \sqcap Infrastructure development to attract industries to semi-urban and
rural areas.
3 3 Outliers Indicating Localized Unemployment Crises
# Observation: Some states show extreme outliers, particularly in
urban areas, signaling state-specific unemployment crises.
# Reasons:
# 	State-Specific Economic Slowdown: Industries in certain regions
may face decline, automation, or policy shifts affecting employment.
# ~ Post-Pandemic Job Recovery: Some states may still be recovering
from job losses due to past economic disruptions.
# < Education-Employment Gap: Graduates may struggle with unemployment
due to lack of practical skills.
# Actionable Policy Measures:
# 🛮 Targeted regional employment policies with sector-specific job
drives.
# □ Strengthening of Public-Private Partnerships (PPPs) to boost
industrial employment.
# 

Encouraging investment in high-unemployment regions to create
iobs.
# Convert necessary columns to numeric (if they are stored as object)
df=pd.DataFrame()
df["LFPR"] = pd.to numeric(plfs["wpr.Total (7)"], errors="coerce")
df["Unemployment Rate"] = pd.to numeric(plfs["unemprate.Rural +
Urban"], errors="coerce")
```

```
# Drop rows with NaN values
df = df.dropna(subset=["LFPR", "Unemployment Rate"])

# Scatter plot with regression line
plt.figure(figsize=(8, 5))
sns.regplot(x=df["LFPR"], y=df["Unemployment Rate"], scatter_kws={"s":
100}, line_kws={"color": "red"})

plt.xlabel("Labor Force Participation Rate (%)")
plt.ylabel("Unemployment Rate (%)")
plt.title("Relationship Between LFPR and Unemployment Rate")
plt.grid(True)
plt.show()
```

Relationship Between LFPR and Unemployment Rate

A higher LFPR (more people in the labor force) is generally associated with a lower unemployment rate.

This could indicate that as more people engage in the workforce, job opportunities also rise, reducing unemployment.

However, other economic factors such as job availability, economic policies, and market conditions can also impact this relationship.

```
# Extract relevant columns
states = plfs['State/UT']
rural_male =plfs['Rural (Male)']
rural female = plfs['Rural (Female)']
urban male = plfs['Urban (Male)']
urban female = plfs['Urban (Female)']
# Set bar width and x-axis positions
bar width = 0.2
x = np.arange(len(states))
# Create the grouped bar chart
fig, ax = plt.subplots(figsize=(14, 6))
ax.bar(x - bar width*1.5, rural male, bar width, label='Rural Male',
color='blue')
ax.bar(x - bar width/2, rural female, bar width, label='Rural Female',
color='lightblue')
ax.bar(x + bar width/2, urban male, bar width, label='Urban Male',
color='green')
ax.bar(x + bar width*1.5, urban female, bar width, label='Urban'
Female', color='lightgreen')
# Labels and formatting
ax.set xlabel('States/UTs')
ax.set ylabel('Employment Rate (%)')
ax.set title('Employment Variation by Gender in Rural vs. Urban
Areas')
ax.set xticks(x)
ax.set_xticklabels(states, rotation=90)
ax.legend()
plt.tight layout()
# Show the plot
plt.show()
```

```
# Males dominate employment rates in both rural and urban areas.
# Urban areas provide better employment opportunities for females
compared to rural areas, but gender disparity still exists.
# The employment rate difference between rural and urban males is
smaller than that between rural and urban females.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Assuming 'plfs' is the DataFrame
df = plfs.copy() # Work on a copy to avoid modifying original data
# Convert necessary columns to numeric
df["Rural + Urban (Male)"] = pd.to numeric(df["Rural + Urban (Male)"],
errors='coerce')
df["Rural + Urban (Female)"] = pd.to numeric(df["Rural + Urban
(Female)"], errors='coerce')
# Calculate gender disparity in employment rates
df["Rural Gender Disparity"] = df["Rural (Male)"] - df["Rural
(Female)"1
df["Urban Gender Disparity"] = df["Urban (Male)"] - df["Urban
(Female)"1
df["Overall Gender Disparity"] = df["Rural + Urban (Male)"] -
df["Rural + Urban (Female)"]
# Drop rows with NaN values in disparity columns
df.dropna(subset=["Overall Gender Disparity", "Rural Gender
Disparity", "Urban Gender Disparity"], inplace=True)
# Sorting by disparity for better visualization
```

```
df sorted = df.sort values(by="Overall Gender Disparity",
ascending=False)
# Update x-axis values to match the number of valid rows
x = np.arange(len(df sorted)) # Corrected x size
# Plottina
width = 0.3 # Bar width
fig, ax = plt.subplots(figsize=(12, 6))
bars1 = ax.bar(x - width, df_sorted["Rural Gender Disparity"], width,
label='Rural Gender Disparity', color='blue')
bars2 = ax.bar(x, df sorted["Urban Gender Disparity"], width,
label='Urban Gender Disparity', color='green')
bars3 = ax.bar(x + width, df sorted["Overall Gender Disparity"],
width, label='Overall Gender Disparity', color='red')
# Labels and title
ax.set xlabel("States/UTs")
ax.set_ylabel("Employment Participation Gap (Male - Female)")
ax.set title("Gender Disparity in Workforce Participation")
ax.set xticks(x)
ax.set xticklabels(df sorted["State/UT"], rotation=90)
ax.legend()
# Show plot
plt.tight layout()
plt.show()
```



```
# The following observations highlight the disparity:
# Consistently Higher Male Participation: The employment participation
gap (Male - Female) is positive across all regions, showing that male
workforce participation is significantly higher than female
participation.
# State-wise Variation:
# Some states, like Lakshadweep, Delhi, Punjab, and Haryana, exhibit
high disparities, with large differences between male and female
employment participation.
# States like Meghalaya, Himachal Pradesh, and Sikkim have relatively
lower disparities, though a gap still exists.
# Rural vs. Urban Differences:
# The urban gender disparity (green bars) tends to be higher in
several states, indicating that female employment participation is
particularly low in urban areas.
# Rural disparity (blue bars) also remains significant but is
sometimes lower than urban gaps.
# Overall Gender Disparity:
# The overall workforce participation gap (red bars) remains high in
most regions, reinforcing the fact that women's participation in the
workforce is substantially lower than men's.
df=plfs.copy()
# Convert columns to numeric, handling errors
df['Rural + Urban (Male)'] = pd.to numeric(df['Rural + Urban (Male)'],
errors='coerce')
df['Rural + Urban (Female)'] = pd.to numeric(df['Rural + Urban
(Female)'], errors='coerce')
# Fill NaN values with 0
df.fillna(0, inplace=True)
# Compute totals
male self employed = df['Rural + Urban (Male)'].sum()
female self employed = df['Rural + Urban (Female)'].sum()
# Labels and values
labels = ['Male', 'Female']
sizes = [male self employed, female self employed]
colors = ['blue', 'pink']
```

```
# Create Pie Chart
plt.figure(figsize=(6,6))
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%',
startangle=90, shadow=True)
plt.title("Self-Employed Individuals: Male vs Female")
plt.show()
```

Self-Employed Individuals: Male vs Female


```
# This means that 62.8% of self-employed individuals are male, while
37.2% are female

# Copying the dataset
df = plfs.copy()

# Selecting relevant columns for unemployment rate by education
education_levels = [
    "uemprate_edu.Not Literate",
    "uemprate_edu.Literate & up to Primary",
    "uemprate_edu.Middle",
    "uemprate_edu.Secondary",
```

```
"uemprate edu.Higher Secondary",
    "uemprate edu.Diploma/Certificate Course",
    "uemprate_edu.Graduate",
    "uemprate edu.Post Graduate & Above",
]
# Calculate the average unemployment rate for each education level
unemployment rates = df[education levels].mean()
# Clean labels by removing 'uemprate edu.'
clean labels = [label.replace("uemprate edu.", "") for label in
unemployment rates.index]
# Plotting the bar chart
plt.figure(figsize=(10, 6))
plt.barh(clean labels, unemployment rates.values, color='skyblue',
edgecolor='black')
plt.xlabel("Employment Rate (%)")
plt.ylabel("Educational Level")
plt.title("employment Rate by Education Level")
plt.gca().invert yaxis() # Invert y-axis for better readability
plt.grid(axis="x", linestyle="--", alpha=0.7)
plt.show()
```



```
import matplotlib.pyplot as plt

# Extract relevant employment proportions
employment_types = [
    "Self-Employed",
```

```
"Regular Wage/Salary",
    "Casual Labour"
]

proportions = [
    df["emprate.Self-Employed (%)"].mean(),
    df["emprate.Regular Wage/Salary (%)"].mean(),
    df["emprate.Casual Labour (%)"].mean()
]

# Pie Chart for Employment Distribution
plt.figure(figsize=(8, 6))
plt.pie(proportions, labels=employment_types, autopct="%1.1f%%",
    colors=["skyblue", "lightcoral", "lightgreen"], startangle=140)
plt.title("Proportion of Workers by Employment Type")
plt.show()
```

Proportion of Workers by Employment Type


```
# Select relevant columns
employment_columns = ['State/UT', 'emprate.Self-Employed (%)',
```

```
'emprate.Regular Wage/Salary (%)', 'emprate.Casual Labour (%)']
df = df[employment_columns]

# Set state as index
df.set_index('State/UT', inplace=True)

# Plot employment type distribution across states
df.plot(kind='bar', stacked=True, figsize=(15, 7), colormap='viridis')
plt.title('Employment Type Distribution Across States')
plt.xlabel('State/UT')
plt.ylabel('Percentage')
plt.legend(title='Employment Type')
plt.xticks(rotation=90)
plt.show()
```


The employment type distribution varies significantly across Indian states, influenced by economic conditions, industrial presence, and regional factors. The three primary employment categories—Self-Employed, Regular Wage/Salary, and Casual Labour—are distributed differently across states due to various reasons:

1. High Self-Employment States (e.g., Himachal Pradesh, Arunachal

Pradesh, Rajasthan)
Reason:

- # These states have a large agricultural and small-business-based economy.
- # Himachal Pradesh and Arunachal Pradesh have challenging terrains, leading to more self-employment in agriculture, handicrafts, and tourism-related businesses.
- # Rajasthan has a significant number of small traders, entrepreneurs, and artisans involved in textiles, pottery, and other cottage industries.
- # 2. High Regular Wage/Salary Employment States (e.g., Delhi, Goa, Tamil Nadu, Karnataka)
 # Reason:
- # These states have a strong industrial and service sector presence.
- # Delhi and Karnataka (Bangalore) have a booming IT and corporate sector, leading to more formal jobs with regular salaries.
- # Goa has a tourism-driven economy, where hotels, casinos, and restaurants provide stable wage employment.
- # Tamil Nadu is an industrial hub for manufacturing and automobile industries, ensuring a significant proportion of salaried jobs.
- # 3. High Casual Labour States (e.g., Bihar, Odisha, Madhya Pradesh, Uttar Pradesh)
 # Reason:
- # These states have a large number of migrant laborers and daily wage earners.
- # Bihar and Uttar Pradesh have high population density but lower industrialization, leading to more people depending on informal sector jobs.
- # Odisha and Madhya Pradesh have a substantial number of workers involved in construction, agriculture, and low-skilled labor-intensive jobs.
- # 4. Balanced Employment Distribution (e.g., Maharashtra, Gujarat, Punjab, West Bengal)
 # Reason:
- # These states have a diverse economic base, including agriculture, industries, and services.

```
# Maharashtra (Mumbai, Pune) has a financial hub, industries, and a
large informal workforce.
# Gujarat has thriving business communities, textile industries, and
agriculture.
# Punjab is agriculturally rich, but urban centers like Ludhiana and
Amritsar also provide wage employment.
# West Bengal has a mix of trade, agriculture, and industrial jobs,
creating a balanced employment structure.
# Conclusion
# Agriculture-dominated states show higher self-employment.
# Industrialized and service-oriented states have a higher proportion
of salaried employment.
# States with underdeveloped economies rely more on casual labor.
# Urbanization, industrial policies, and economic development are key
factors influencing employment types.
df=plfs.copy()
# Selecting relevant columns
self employment = df['emprate.Self-Employed (%)']
unemployment = df['unemprate.Rural + Urban']
# Handling missing or non-numeric values
df filtered = df[['emprate.Self-Employed (%)', 'unemprate.Rural +
Urban']].dropna()
df filtered = df filtered.apply(pd.to numeric,
errors='coerce').dropna()
# Calculating correlation
correlation = df filtered.corr().iloc[0, 1]
print(f'Correlation between Self-Employment Rate and Unemployment
Rate: {correlation:.2f}')
# Scatter plot
plt.figure(figsize=(8, 6))
sns.scatterplot(x=df filtered['emprate.Self-Employed (%)'],
y=df filtered['unemprate.Rural + Urban'])
plt.xlabel('Self-Employment Rate (%)')
plt.ylabel('Unemployment Rate (%)')
plt.title('Self-Employment Rate vs. Unemployment Rate')
plt.grid()
plt.show()
Correlation between Self-Employment Rate and Unemployment Rate: -0.11
```

Self-Employment Rate vs. Unemployment Rate


```
# Convert object columns to numeric where necessary
cols to convert = ['Rural + Urban (Male)', 'Rural + Urban (Female)',
'Rural + Urban (Person)',
                   'wpr.Total (7)', 'wpr.Total (8)', 'wpr.Total (9)',
                   'unemprate.Rural5', 'unemprate.Urban6',
'unemprate.Rural + Urban7']
for col in cols to convert:
    df[col] = pd.to_numeric(df[col], errors='coerce')
# Plot 1: Unemployment Rate (Rural vs. Urban)
plt.figure(figsize=(12, 6))
sns.barplot(x=df["State/UT"], y=df["unemprate.Rural"], color='blue',
label="Rural")
sns.barplot(x=df["State/UT"], y=df["unemprate.Urban"], color='red',
alpha=0.7, label="Urban")
plt.xticks(rotation=90)
plt.ylabel("Unemployment Rate (%)")
plt.xlabel("States/UTs")
plt.title("Unemployment Rate: Rural vs. Urban")
plt.legend()
```

```
plt.show()
education levels = ["lfpr edu.Not Literate", "lfpr edu.Literate & Upto
Primary",
                    "lfpr edu.Middle", "lfpr edu.Secondary",
"lfpr edu.Higher Secondary",
                    "lfpr_edu.Graduate", "lfpr_edu.Post Graduate &
Above"1
# Melt DataFrame for seaborn plotting
df melted edu = df.melt(id vars=["State/UT"],
value vars=education levels,
                         var name="Education Level", value name="Work
Participation Rate")
# Set plot style
sns.set theme(style="whitegrid")
plt.figure(figsize=(14, 7))
# Use a visually appealing color palette
palette = sns.color palette("Set2", len(df["State/UT"].unique()))
# Create the line plot with enhancements
sns.lineplot(x="Education Level", y="Work Participation Rate",
hue="State/UT",
             data=df melted edu, marker='o', linewidth=2.5,
markersize=8, alpha=0.8, palette=palette)
# Rotate x-axis labels for better readability
plt.xticks(rotation=35, ha="right", fontsize=12)
plt.yticks(fontsize=12)
# Add grid for better readability
plt.grid(axis='y', linestyle="--", alpha=0.7)
# Labels and title with improved styling
plt.xlabel("Education Level", fontsize=14, fontweight='bold')
plt.ylabel("Work Participation Rate (%)", fontsize=14,
fontweight='bold')
plt.title("Work Participation Rate by Education Level", fontsize=16,
fontweight='bold', pad=15)
# Show only a limited legend for clarity
plt.legend(title="State/UT", bbox to anchor=(1.05, 1), loc='upper
left', fontsize=10, frameon=True)
# Display the plot
plt.tight layout()
plt.show()
```


Work Participation Rate by Education Level


```
# Convert WPR columns to numeric (handling errors for object columns)
for col in wpr columns:
   plfs[col] = pd.to numeric(plfs[col], errors='coerce') # Convert
to numeric, replacing errors with NaN
# Drop rows with missing WPR data
plfs clean = plfs.dropna(subset=wpr columns)
# Compute regional averages
wpr summary = plfs clean[['State/UT', 'wpr.Rural (1)', 'wpr.Urban
(4), 'wpr.Total (7)']].copy()
wpr summary.columns = ['State/UT', 'Rural WPR', 'Urban WPR', 'Total
WPR'1
# Sort by Total WPR
wpr_summary_sorted = wpr_summary.sort_values(by='Total WPR',
ascending=False)
plt.figure(figsize=(12, 6))
sns.barplot(x='Total WPR', y='State/UT', data=wpr summary sorted,
palette='viridis')
plt.xlabel('Work Participation Rate (%)')
plt.ylabel('State/UT')
```

```
plt.title('Work Participation Rate (WPR) by State in India')
plt.show()
<ipython-input-24-9cc00f4700b8>:20: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='Total WPR', y='State/UT', data=wpr_summary_sorted, palette='viridis')
```



```
df=plfs.copy()

# Selecting only relevant columns
df_filtered = df[['State/UT', 'wpr_edu.All', 'uemprate_edu.All']]

# Convert columns to numeric (handling errors)
df_filtered['wpr_edu.All'] = pd.to_numeric(df_filtered['wpr_edu.All'],
errors='coerce')
df_filtered['uemprate_edu.All'] =
pd.to_numeric(df_filtered['uemprate_edu.All'], errors='coerce')

# Drop missing values
df_filtered = df_filtered.dropna()

# Display summary
df_filtered.head()
<ipython-input-25-8dea3c751342>:7: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

```
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy
  df filtered['wpr edu.All'] =
pd.to numeric(df filtered['wpr edu.All'], errors='coerce')
<ipython-input-25-8dea3c751342>:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
returning-a-view-versus-a-copy
  df filtered['uemprate edu.All'] =
pd.to numeric(df filtered['uemprate edu.All'], errors='coerce')
{"summary":"{\n \"name\": \"df filtered\",\n \"rows\": 35,\n
\"fields\": [\n {\n \"column\": \"State/UT\",\n
\"properties\": {\n \"dtype\": \"string\",\n
                                  \"samples\": [\n
\"num unique values\": 35,\n
\"Uttarakhand\",\n \"Madhya Pradesh\",\n
\"Telangana\"\n ],\n \"semantic_type\": \"\",\n
\"description\": \"\"\n }\n {\n'
                                                 \"column\":
\"wpr edu.All\",\n \"properties\": {\n \"dtype\":
\"number\",\n
                    \"std\": 7.990743594514674,\n
                                                         \"min\":
       \"max\": 74.4,\n \"num_unique_values\": 35,\n
es\": [\n 58.1,\n 68.3,\n 59.2\n
\"semantic_type\": \"\",\n \"description\": \"\"\
42.7,\n
\"samples\": [\n
],\n
                                           \"description\": \"\"\n
\"min\": 1.0,\n \"max\": 11.9,\n
                              \"samples\": [\n 3.4.\n
\"num unique values\": 27,\n
\"semantic type\": \"\",\n
n}","type":"dataframe","variable name":"df filtered"}
# Calculate correlation
correlation =
df filtered['wpr edu.All'].corr(df filtered['uemprate edu.All'])
print(f"Correlation between Work Participation Rate (WPR) and
Unemployment Rate: {correlation:.2f}")
Correlation between Work Participation Rate (WPR) and Unemployment
Rate: -0.33
# Selecting relevant columns
wpr_column = "wpr_edu.All" # Adjust based on the dataset
unemployment column = "unemprate.Rural + Urban" # Adjust based on the
dataset
```

```
# Set plot style
sns.set_style("whitegrid")
plt.figure(figsize=(10, 6))

# Scatter plot with regression line
sns.regplot(x=df[wpr_column], y=df[unemployment_column],
scatter_kws={'alpha':0.7}, line_kws={'color':'black',
'linestyle':'dashed'})

# Titles and labels
plt.title("Relationship between Work Participation Rate (WPR) and
Unemployment Rate", fontsize=14)
plt.xlabel("Work Participation Rate (%)", fontsize=12)
plt.ylabel("Unemployment Rate (%)", fontsize=12)
# Display the plot
plt.show()
```



```
# Load data (assuming df is your DataFrame)
df['urban_percentage'] = df['Urban (Person)'] / (df['Urban (Person)']
+ df['Rural (Person)']) * 100
# Define urbanization threshold (median-based categorization)
```

```
median urban = df['urban percentage'].median()
df['urbanization level'] = df['urban percentage'].apply(lambda x:
'High Urban' if x >= median urban else 'Low Urban')
# Group by urbanization level
employment comparison = df.groupby('urbanization level').agg({
    'wpr.Urban (4)': 'mean', # Urban WPR
    'wpr.Rural (1)': 'mean', # Rural WPR
'unemprate.Urban': 'mean', # Urban Unemployment Rate
    'unemprate.Rural': 'mean', # Rural Unemployment Rate
    'emprate.Self-Employed (%)': 'mean',
    'emprate.Regular Wage/Salary (%)': 'mean',
    'emprate.Casual Labour (%)': 'mean'
})
print(employment comparison)
                    wpr.Urban (4) wpr.Rural (1) unemprate.Urban \
urbanization level
High Urban
                         54.611765
                                        54.729412
                                                           6.850000
Low Urban
                        55.750000
                                        59.872222
                                                           5.105556
                    unemprate.Rural emprate.Self-Employed (%) \
urbanization level
High Urban
                                                       40.972222
                            3.738889
Low Urban
                            2.755556
                                                       36.627778
                    emprate.Regular Wage/Salary (%) emprate.Casual
Labour (%)
urbanization level
High Urban
                                           11.927778
52.916667
Low Urban
                                           19.200000
55.822222
# Work Participation Rate (WPR) Trends:
# The WPR in urban areas is slightly lower in high urbanization states
(54.61%) than in low urbanization states (55.75%).
# Similarly, rural WPR is lower in high urbanization states (54.73%)
compared to low urbanization states (59.87%).
# This suggests that states with lower urbanization have a higher
workforce participation rate in both rural and urban areas, possibly
due to a greater reliance on labor-intensive sectors like agriculture.
# Unemployment Rate Trends:
```

```
# The unemployment rate is higher in urban areas of highly urbanized
states (6.85%) than in less urbanized states (5.10%).
# The rural unemployment rate is also higher in highly urbanized
states (3.73%) compared to low urbanization states (2.75%).
# This indicates that employment opportunities might be more
competitive in highly urbanized states, leading to higher
unemployment.
# Employment Type Distribution:
# Self-Employment: More prevalent in high urbanization states (40.97%)
compared to low urbanization states (36.63%). This could be due to
higher entrepreneurial activity and gig economy opportunities in urban
settings.
# Regular Wage/Salary Jobs: Higher in low urbanization states (19.2%)
compared to high urbanization states (11.93%). This suggests that
structured employment is more common in states with lower
urbanization, possibly due to a stronger manufacturing or government
job sector.
# Casual Labor: Slightly higher in low urbanization states (55.82%)
compared to high urbanization states (52.92%). This indicates a
greater dependence on temporary or daily wage jobs in less urbanized
states.
# Overall Insights:
# Highly urbanized states have higher unemployment rates despite
having more self-employment.
# States with lower urbanization have a higher WPR and lower
unemployment, potentially due to stronger agricultural and informal
sector employment.
# Formal salaried jobs are more prevalent in less urbanized states,
while self-employment is more common in urbanized regions.
# Data
data = {
    "Category": ["WPR Urban", "WPR Rural", "Unemployment Urban",
"Unemployment Rural",
                 "Self-Employed", "Regular Wage/Salary", "Casual
Labour"],
    "High Urban": [54.61, 54.73, 6.85, 3.74, 40.97, 11.93, 52.92],
    "Low Urban": [55.75, 59.87, 5.10, 2.75, 36.63, 19.20, 55.82]
}
df = pd.DataFrame(data)
```

