customers-segmentation-clustering-k-means final 1/14/22, 9:31 PM

CUSTOMER SEGMENTATION USING MACHINE LEARNING

(adopted from kaggle)

Appendix-1

Importing necessary libraries

```
In [125]: import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
           import seaborn as sns
           %matplotlib inline
            import warnings
           warnings.filterwarnings('ignore')
           import plotly.express as px
           import plotly.graph_objects as go
```

Reading the data

In [126]:
 df = pd.read_csv(r"E:\Fynn Lab\Note Books/Mall_Customers.csv")

Exploring the data

In [127]: df

	ит						
out[127]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	
	•••						
	195	196	Female	35	120	79	
	196	197	Female	45	126	28	
	197	198	Male	32	126	74	
	198	199	Male	32	137	18	
	199	200	Male	30	137	83	

In [128]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns): # Column Non-Null Count Dtype --------0 CustomerID 200 non-null int64 200 non-null object 200 non-null int64 2 Age 3 Annual Income (k\$) 200 non-null int64 4 Spending Score (1-100) 200 non-null int64 dtypes: int64(4), object(1) memory usage: 7.9+ KB

Performing Exploratory Data Analysis

In [129]: df.drop("CustomerID",axis=1)

200 rows × 5 columns

```
Out[129]:
           Gender Age Annual Income (k$) Spending Score (1-100)
         0 Male 19
        1 Male 21
         2 Female 20
        3 Female 23
         4 Female 31
        195 Female 35
        196 Female 45
        197 Male 32
                               126
        198 Male 32
        199 Male 30
                               137
```

200 rows × 4 columns

In [130]: print(df.drop("CustomerID", axis=1).corr()) sns.heatmap(df.drop("CustomerID",axis=1).corr(), cmap="YlGnBu", annot=True)

83

In [131]: sns.pairplot(df, hue = 'Gender' ,palette="husl");

In [132]: sns.countplot(data = df, x = 'Gender') plt.title('Gender Countplot', fontsize = 16, y = 1.1);

Gender

In [133]: #Generating box plot to examine if any outlier is there fig, axes = plt.subplots(1,3, figsize = (15,5)) fig.suptitle('Useful Boxplots', fontsize = 18)

Male

sns.boxplot(data = df, x = 'Gender', y = 'Age', ax = axes[0])sns.boxplot(data = df, x = 'Gender', y = 'Annual Income (k\$)', ax = axes[1])

sns.boxplot(data = df, x = 'Gender', y = 'Spending Score (1-100)', ax = axes[2]);

We can observe that there is mostly no outliers.

In [134]: #Droping "Custoemer ID column" df1=df.drop("CustomerID", axis=1) df1.describe()

[134]:		Age	Annual Income (k\$)	Spending Score (1-100)
	count	200.000000	200.000000	200.000000
	mean	38.850000	60.560000	50.200000
	std	13.969007	26.264721	25.823522
	min	18.000000	15.000000	1.000000
	25%	28.750000	41.500000	34.750000
	50%	36.000000	61.500000	50.000000
	75%	49.000000	78.000000	73.000000
	max	70.000000	137.000000	99.000000

sns.displot(df1, x="Spending Score (1-100)",kind="kde");

localhost:8888/nbconvert/html/Fynn Lab/customers-segmentation-clustering-k-means final.ipynb?download=false

1/14/22, 9:31 PM customers-segmentation-clustering-k-means final

```
0.025
   0.020
  0.015
   0.010
   0.005
   0.000
  0.014
   0.012
   0.010
 € 0.008
   0.006
  0.004
   0.002
  0.000
           0 25 50 75 100 125 150
                     Annual Income (k$)
  0.016
   0.014
   0.012
   0.010
  € 0.008
   0.006
   0.004
   0.002
   0.000
                  25 50 75 100 125
Spending Score (1-100)
         -25
It can be observed that data of Age coulumn and Annual Income is sckewed but of low mangnitute
```

```
hence no processing for removal of skewness is done
```

```
In [136]: df1.head(1)
 Out[136]: Gender Age Annual Income (k$) Spending Score (1-100)
          0 Male 19
```

Data Cleaning

```
df1.isnull().sum()
```

```
Annual Income (k$)
Spending Score (1-100) 0
dtype: int64
```

No null value in the data so no need for cleaning

```
In [138]: df1.drop(['Gender'],axis=1, inplace=True)
```

```
In [139]: df1
              Age Annual Income (k$) Spending Score (1-100)
           2 20
          195 35
                             120
                             126
          197 32
                             126
```

137

K-Means Clustering

199 30

200 rows × 3 columns

In [140]: #Importing libraries from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans

Since K-Means is a distance based algorithim, performing Scalling

scaler=StandardScaler()

scaled_df = scaler.fit_transform(df1) As a per part of hyperparameter tunng and to dicide the optimum Nos of clusters Elbow method is adopted

In [142]: intertia = [] for i in range(2, 11):

intertia.append(model.inertia_)

model.fit(scaled_df)

plt.plot(range(2,11), intertia, 'o--') plt.xlabel('number of clusters') plt.ylabel('Sum of Squared Distances');

number of clusters

model=KMeans(n_clusters=i, random_state=101)

The best cluser may be 6 or 5 as per the elbow method. The best way to generate the model for cluster No 5 and Cluster No 6 and Points to remember while calculating silhouette coefficient:

The value of the silhouette coefficient is between [-1, 1]. A score of 1 denotes the best meaning that the data point i is very compact within the cluster to which it belongs and far away from the other clusters.

The worst value is -1. Values near 0 denote overlapping clusters. Generating model for Cluster No 6

In [144]: df_model = KMeans(n_clusters=6, random_state=101,init='k-means++', max_iter=400)

df_model.fit(scaled_df) Out[145]: KMeans(max_iter=400, n_clusters=6, random_state=101)

In [146]:
 df_labels = df_model.labels_
 df_centroids = df_model.cluster_centers_

#Calculating the silhouette score for Cluster no 6 from sklearn.metrics import silhouette_score silhouette_score(scaled_df,df_model.labels_)

Out[147]: 0.4284167762892593

Generating model for Cluster No 5

In [148]: df_model1 = KMeans(n_clusters=5, random_state=101,init='k-means++', max_iter=400) df_model1.fit(scaled_df) df_labels1 = df_model1.labels_ df_centroids1 = df_model1.cluster_centers_

#Calculating the silhouette score for Cluster no 6 from sklearn.metrics import silhouette_score

silhouette_score(scaled_df,df_model1.labels_) Out[149]: **0.41664341513732767**

silhouette_score for cluster No 6 is .42 where as the same is .41 for cluster No 5 so Cluster No 6 is taken for further analysis In [150]: df['clusters'] = df_labels

Out[151]: CustomerID Gender Age Annual Income (k\$) Spending Score (1-100) clusters 1 Male 19

2 Male 21 3 Female 20 77 5 4 Female 23 40 2 5 Female 31 In [152]: df_centroids

Out[152]: array([[-0.86515664, -0.13196835, -0.08043031],

[1.25472096, -0.24021294, -0.04399777], [0.47895722, -1.30822992, -1.19644353], [-0.44191719, 0.99158305, 1.23950275], [0.22171558, 1.08322527, -1.29005223], [-0.99396865, -1.34734766, 1.06404834]])

In [153]: df.head(1)

Out[153]: CustomerID Gender Age Annual Income (k\$) Spending Score (1-100) clusters

1 Male 19

In [154]: import plotly.io as pio pio.renderers.default = "notebook"

In [155]: fig = plt.figure(figsize=(30,8)) # visualize clusters

figure = px.scatter_3d(df, color='clusters', x="Age", y="Annual Income (k\$)", z="Spending Score (1-100)",

localhost:8888/nbconvert/html/Fynn Lab/customers-segmentation-clustering-k-means final.ipynb?download=false

category_orders = {"clusters": ["0", "1", "2", "3", "4","5"]}

1/14/22, 9:31 PM customers-segmentation-clustering-k-means final

```
autosize=False,
 width=700,
 height=600
```

figure.show();

clusters

<Figure size 2160x576 with 0 Axes>

In [156]: df.head(1)

Out[156]: CustomerID Gender Age Annual Income (k\$) Spending Score (1-100) clusters **0** 1 Male 19

Check for Cluster Magnitude

df.clusters.value_counts().reset_index())

inplace=True)

In [158]: CustomerMagnitue_df Out[158]: Customer Groups Customer Group Magnitude

tick0 = 1, dtick = 1),yaxis = dict(tickmode = 'linear',
tick0 = 1000,
dtick = 1000))

fig.show()

