資料結構報告範例

姓名

July 26, 2024

I	
	CONTENTS

1	解題說明	2
2	演算法設計與實作	3
3	效能分析	4
4	測試與過程	5

姓名 第1頁

CHAPTER 1_{-}				
_				
			解題說明	

以遞迴實作計算N階層的函式,已知階層計算公式如下:

$$N! = N + (N - 1)! = N + (N - 1) + \dots + 2 + 1$$

實作參見檔案 sum.cpp, 其遞迴函式:

```
int sigma(int n){
    if(n<0) throw "n < 0";
    else if(n<=1) return n;
    return n+sigma(n-1);
}</pre>
```

Figure 1.1: sum.cpp

姓名 第2頁

	CHAPTER 2	
››› 상상 › [› ›ㅁ ›› [· ›ㅂ ››› /		
가구 않는 가디 가디 가다 나를 하는 것이 되었다.		•
		演算法設計與實作

Figure 2.1: main.cpp

姓名 第3頁

$$f(n) = O(n)$$

時間複雜度

$$T(P) = n \times C$$

每層迴圈所需 C 時間、n 次遞迴。

空間複雜度

$$S(P) = 1 \times n$$

1 個變數、n 次遞迴。

姓名 第4頁

```
$ g++ main.cpp -o main.exe && ./main.exe
2 3 7 11
3 6
4 28
5 66
```

Figure 4.1: shell command

驗證

此函式遞迴終止條件為當 n 為 0 或 1 ,若欲求得 3! ,則呼叫 sigma(3) ,進入函式後,首先第一層 n=3>1 所以回傳 n+sigma(n-1) ,即 3+sigma(2) ,接著第二層計算 sigma(2) ,n=2>1 ,所以回傳 2+sigma(1) ,接下來到第三層時, $n=1\leq 1$,符合終止條件 $(n\leq 1)$,因此回傳 n ,即 1 。

$$sigma(3) = 3 + sigma(2) = 3 + 2 + sigma(1) = 3 + 2 + 1 = 6$$

姓名 第5頁