

12. The airplane shown is in level flight at an altitude of 0.50 km and a speed of 150 km/h. At what distance d should it release a heavy bomb to hit the target X? Take $g = 10 \text{ m/s}^2$.

- 13. A spherical shell has inner radius R_1 , outer radius R_2 , and mass M, distributed uniformly throughout the shell. The magnitude of the gravitational force exerted on the shell by a point mass particle of m a distance d from the center, outside the inner radius, is:
 - A) 0

A) 150 m 295 m 417 m 2550 m 15,000 m

- GMm/R_1^2 B)
- \mathbb{C}) GMm/d^2
- $\widehat{D} \quad GMm / \left(R_2^2 d^2\right)$
- E) $GMm/(R_1-d)^2$

- 14. The escape velocity at the surface of Earth is approximately 8 km/s. What is the mass, in units of Earth's mass, of a planet with twice the radius of Earth for which the escape speed is twice that for Earth? Merca
 - A) 2
 - B) 4
 - 8
 - 1/2
 - 1/4

5. A giant wheel, 40 m in diameter, is fitted with a cage and platform on which a man can stand. The wheel rotates at such a speed that when the cage is at X (as shown) the force exerted by the man on the platform is equal to his weight. The speed of the man is:

- 6. An object of mass m and another object of mass 2m are each forced to move along a circle of radius 1.0 m at a constant speed of 1.0 m/s. The magnitudes of their accelerations are:
 - A) equal

A) 14 m/s

20 m/s 28 m/s D) 80 m/s

120 m/s

B)

E)

- B) in the ratio of $\sqrt{2}$:
- C) in the ratio of 2:1
- D) in the ratio of 4:1
- E) zero
- 7. At time t = 0 a 2-kg particle has a velocity in m/s of $(4 \text{ m/s})\hat{i} (3 \text{ m/s})\hat{j}$. At t = 3 s itsvelocity is $(2 \text{ m/s})\hat{i} + (3 \text{ m/s})\hat{i}$. During this time the work done on it was:
 - A) 4J
 - B) -4 J
 - (C) -12 J
 - D) -40 J
 - E) $(4 \text{ J})\hat{i} + (36 \text{ J})\hat{i}$

- 8. A man pushes an 80-N crate a distance of 5.0 m upward along a frictionless slope that makes an angle of 30° with the horizontal. The force he exerts is parallel to the slope. If the speed of the crate is constant, then the work done by the man is:
 - A) $-200 \, \text{J}$
 - B) 61 J
 - 140 J C)
 - 200 J
 - 260 J

