11 – Směrovače a směrovací protokoly

Router

- aktivní síťové zařízení
- procesem zvaným routování přeposílá datagramy směrem k cíli

Směrování

- přímé
 - bez účasti routeru
- nepřímě
 - o s účastí routeru

Směrovací tabulka

- adresa sítě (síť + maska)
- gateway
- ohodnocení cesty

Vytvoření směrovací tabulky

- staticky (zápis administrátora)
- dynamicky (směrovací protokol)

Administrativní vzdálenost

- způsob získání routy
- čím menší tím lepší
- statické routy mají vzdálenost (1)

Metriky

- ohodnocení routy
 - o počet přeskoků
 - o šířka pásma

Implicitní routa

- směrování s neúplnou informací
- pokud router nemá konkrétní informaci o cíli
 - o router pošle packet víš na router, který může mít cíl ve směrovací tabulce
- je v tabulce routeru jako poslední
- důvod seřazení položek ve směrovací tabulce

Floating route

- záložní routa
 - o při výpadku primární routy
- vznik
 - o vyšší administrativní vzdálenost než primární routa

Asymetrické směrování

• cesta tam není stejná jako cesta zpět

Dynamické směrování

- vnitřní
 - o uvnitř autonomního systému
- vnější
 - o mezi autonomními systémy

Vnitřní dynamické směrovní Třídy algoritmů

DVA

• routery si posílají celé směrovací tabulky, ale jen sousedům

LSA

• posílají informace pouze o connected sítích (přímo připojených), ale všem routerům v autonomním systému

Směrovací protokoly

RIPv1

- DVA
- Nedostupná síť = 16 přeskoků
- Pro malé sítě
- Periodická aktualizace (30 sec)
 - o Pro zneplatněné trasy až 180 sec
- Výhody
 - o Snadná implementace
 - Velká podpora zařízení
- Nevýhody
 - o Pomalá reakce na změnu
 - Vysoká režie
 - Vysoký objem přenášených dat
 - o Nepodporuje VLSM
 - Aktualizace se šíří broadcastem
 - o Nepodporuje autentizaci

RIPv2

- Podpora VLSM
- Aktualize se šíří multicastem
- Podpora autentizace

RIPng

• IPv6

OSPF

- LSA
- Metrika = šířka pásma
- Pro velké sítě
 - o Rozdělení sítě do oblastí
- Aktualizace se šíří multicastem
- Podporuje VLSM
- Rychlá konvergence
 - o Nemá periodickou dobu aktualizace
- Umí rozložit zátěž
- Uchovává více tras do cílové sítě
- Používá WILDMASK (divoká/bitově převrácená maska)

Databáze OSPF

- Tabulka sousedů
- Tabulka topologie
- Směrovací tabulka

Typy oblastí OSPF

- Páteřní oblast (nejdůležitější oblast)
- Stub area (patní oblast)
- NSSA

Stavy routerů

- 1. DOWN
- 2. ATTEMPT
- 3. INIT
- 4. 2-WAY
- 5. EXSTART
- 6. EXCHANGE
- 7. LOADING
- 8. FULL

Typy routerů

- DR
- o Pověřený router
- BDR
 - o Záložní pověřený router
- ABR
 - Hraniční router oblasti
- ASBR
 - o Hraniční router autonomního systému

Typy oznámení

- Uvnitř oblasti
 - o Typ1
 - **224.0.0.6**
 - Dílčí oznámení
 - o Typ2
 - **224.0.0.5**
 - Souhrnná oznámení
- Mezi oblastmi
 - o Typ3
 - Souhrnná oznámení do páteřní oblasti
 - o Typ4
 - Cesta k ASBR
- Externí oznámení
 - o Typ5
 - O externích trasách
 - Typ7
 - Pro přenos přes NSSA

Typy packetů OSPF

- Hello packet
 - o Hledá sousedy
- Database description
- Link state request
 - o Info o lince
- Link state update
 - Aktualizace linky
- Link state advertisement (LSA)
 - o Potvrzení stavu linky

EIGRP

- Hybridní protokol
 - o DVA i LSA
- Rychlá konvergence
- Algoritmu dual
 - Nejkratší cesta
- Rozloží zátěž
- CISCO
- Podpora VLSM
- Aktualizace multicastem a unicastem
- Nevýhody
 - o Malá podpora zařízení

Databáze EIGRP

- Tabulka sousedů
- Topologie sítě
- Směrovací tabulka