

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 July 2001 (12.07.2001)

PCT

(10) International Publication Number
WO 01/49716 A2

(51) International Patent Classification⁷: **C07K 14/00**

(21) International Application Number: **PCT/US00/35596**

(22) International Filing Date:
29 December 2000 (29.12.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/476,296	30 December 1999 (30.12.1999)	US
09/480,321	10 January 2000 (10.01.2000)	US
09/504,629	15 February 2000 (15.02.2000)	US
09/519,444	6 March 2000 (06.03.2000)	US
09/575,251	19 May 2000 (19.05.2000)	US
09/609,448	29 June 2000 (29.06.2000)	US
09/649,811	28 August 2000 (28.08.2000)	US

(71) Applicant (for all designated States except US): **CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).**

(72) Inventors; and

(75) Inventors/Applicants (for US only): **XU, Jiangchun [US/US]; 15805 S.E. 43rd Place, Bellevue, WA 98006 (US). LODES, Michael, J. [US/US]; 9223-36th Avenue S.W., Seattle, WA 98126 (US). SECRIST, Heather [US/US]; 3844-35th Avenue W., Seattle, WA 98199 (US). BENSON, Darin, R. [US/US]; 723 N. 48th Street, Seattle, WA 98103 (US). MEAGHER, Madeleine, Joy [US/US]; 507 N.E. 71st, #1, Seattle, WA 98115 (US). STOLK,**

John, A. [US/US]; 7436 Northeast 144th Place, Bothell, WA 98011 (US). KING, Gordon, E. [US/US]; 15716 First Avenue N.W., Shoreline, WA 98177 (US). WANG, Tongtong [US/US]; 8049 N.E. 28th Street, Medina, WA 98039 (US). JIANG, Yuqiu [CN/US]; 5001 South 232nd Street, Kent, WA 98032 (US).

(74) Agents: **POTTER, Jane, E., R.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 et al. (US).**

(81) Designated States (national): **AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.**

(84) Designated States (regional): **ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).**

Published:

— *Without international search report and to be republished upon receipt of that report.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/49716 A2

(54) Title: **COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS OF COLON CANCER AND METHODS FOR THEIR USE**

(57) Abstract: Compositions and methods for the therapy and diagnosis of cancer, such as colon cancer, are disclosed. Compositions may comprise one or more colon tumor proteins, immunogenic portions thereof, or polynucleotides that encode such portions. Alternatively, a therapeutic composition may comprise an antigen presenting cell that expresses a colon tumor protein, or a T cell that is specific for cells expressing such a protein. Such compositions may be used, for example, for the prevention and treatment of diseases such as colon cancer. Diagnostic methods based on detecting a colon tumor protein, or mRNA encoding such a protein, in a sample are also provided.

**COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS
OF COLON CANCER AND METHODS FOR THEIR USE**

TECHNICAL FIELD

5 The present invention relates generally to therapy and diagnosis of cancer, such as colon cancer. The invention is more specifically related to polypeptides comprising at least a portion of a colon tumor protein, and to polynucleotides encoding such polypeptides. Such polypeptides and polynucleotides may be used in vaccines and pharmaceutical compositions for prevention and
10 treatment of colon cancer, and for the diagnosis and monitoring of such cancers.

BACKGROUND OF THE INVENTION

Cancer is a significant health problem throughout the world. Although advances have been made in detection and therapy of cancer, no vaccine or other universally successful method for prevention or treatment is currently available.
15 Current therapies, which are generally based on a combination of chemotherapy or surgery and radiation, continue to prove inadequate in many patients.

Colon cancer is the second most frequently diagnosed malignancy in the United States as well as the second most common cause of cancer death. An estimated 95,600 new cases of colon cancer will be diagnosed in 1998, with an
20 estimated 47,700 deaths. The five-year survival rate for patients with colorectal cancer detected in an early localized stage is 92%; unfortunately, only 37% of colorectal cancer is diagnosed at this stage. The survival rate drops to 64% if the cancer is allowed to spread to adjacent organs or lymph nodes, and to 7% in patients with distant metastases.

25 The prognosis of colon cancer is directly related to the degree of penetration of the tumor through the bowel wall and the presence or absence of nodal involvement, consequently, early detection and treatment are especially important. Currently, diagnosis is aided by the use of screening assays for fecal occult blood, sigmoidoscopy, colonoscopy and double contrast barium enemas. Treatment

regimens are determined by the type and stage of the cancer, and include surgery, radiation therapy and/or chemotherapy. Recurrence following surgery (the most common form of therapy) is a major problem and is often the ultimate cause of death. In spite of considerable research into therapies for the disease, colon cancer remains 5 difficult to diagnose and treat. In spite of considerable research into therapies for these and other cancers, colon cancer remains difficult to diagnose and treat effectively. Accordingly, there is a need in the art for improved methods for detecting and treating such cancers. The present invention fulfills these needs and further provides other related advantages.

10 SUMMARY OF THE INVENTION

Briefly stated, the present invention provides compositions and methods for the diagnosis and therapy of cancer, such as colon cancer. In one aspect, the present invention provides polypeptides comprising at least a portion of a colon tumor protein, or a variant thereof. Certain portions and other variants are 15 immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments, the polypeptide comprises a sequence that is encoded by a polynucleotide sequence selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-121, 123-197, 205-630, 632-684, 686, 690-691 and 694-1081; (b) variants of a sequence recited in SEQ ID 20 NO: 1-121, 123-197, 205-630 and 632-684, 686, 690-691 and 694-1081; and (c) complements of a sequence of (a) or (b).

The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a colon tumor protein), expression vectors comprising 25 such polynucleotides and host cells transformed or transfected with such expression vectors.

Within other aspects, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.

Within a related aspect of the present invention, vaccines are provided. Such vaccines comprise a polypeptide or polynucleotide as described above and an immunostimulant.

The present invention further provides pharmaceutical compositions
5 that comprise: (a) an antibody or antigen-binding fragment thereof that specifically binds to a colon tumor protein; and (b) a physiologically acceptable carrier.

Within further aspects, the present invention provides pharmaceutical compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient.

10 Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B cells.

Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.

15 The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins.

Within related aspects, pharmaceutical compositions comprising a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a
20 physiologically acceptable carrier are provided.

Vaccines are further provided, within other aspects, that comprise a fusion protein, or a polynucleotide encoding a fusion protein, in combination with an immunostimulant.

Within further aspects, the present invention provides methods for
25 inhibiting the development of a cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as recited above.

The present invention further provides, within other aspects, methods for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a colon tumor protein, wherein the step
30 of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.

Within related aspects, methods are provided for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated as described above.

Methods are further provided, within other aspects, for stimulating 5 and/or expanding T cells specific for a colon tumor protein, comprising contacting T cells with one or more of: (i) a polypeptide as described above; (ii) a polynucleotide encoding such a polypeptide; and/or (iii) an antigen presenting cell that expresses such a polypeptide; under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Isolated T cell populations comprising T cells prepared 10 as described above are also provided.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population as described above.

The present invention further provides methods for inhibiting the 15 development of a cancer in a patient, comprising the steps of: (a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with one or more of: (i) a polypeptide comprising at least an immunogenic portion of a colon tumor protein; (ii) a polynucleotide encoding such a polypeptide; and (iii) an antigen-presenting cell that expresses such a polypeptide; and (b) administering to the patient an effective amount 20 of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient.

Within further aspects, the present invention provides methods for determining the presence or absence of a cancer in a patient, comprising: (a) 25 contacting a biological sample obtained from a patient with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within preferred embodiments, the 30 binding agent is an antibody, more preferably a monoclonal antibody. The cancer may be colon cancer.

The present invention also provides, within other aspects, methods for monitoring the progression of a cancer in a patient. Such methods comprise the steps of: (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a polypeptide as recited above; (b) detecting in the 5 sample an amount of polypeptide that binds to the binding agent; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

10 The present invention further provides, within other aspects, methods for determining the presence or absence of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a colon tumor protein; (b) detecting in the sample a level of a polynucleotide, preferably mRNA, that hybridizes to the 15 oligonucleotide; and (c) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within certain embodiments, the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide encoding a 20 polypeptide as recited above, or a complement of such a polynucleotide. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide.

In related aspects, methods are provided for monitoring the progression 25 of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a colon tumor protein; (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and 30 (d) comparing the amount of polynucleotide detected in step (c) with the amount

detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

Within further aspects, the present invention provides antibodies, such as monoclonal antibodies, that bind to a polypeptide as described above, as well as 5 diagnostic kits comprising such antibodies. Diagnostic kits comprising one or more oligonucleotide probes or primers as described above are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached figures. All references disclosed herein are hereby incorporated by reference in their entirety as if 10 each was incorporated individually.

SEQUENCE IDENTIFIERS

SEQ ID NO: 1 is a first determined cDNA sequence for Contig 1, showing homology to Neutrophil Gelatinase Associated Lipocalin.

SEQ ID NO: 2 is the determined cDNA sequence for Contig 2, showing no 15 significant homology to any known genes.

SEQ ID NO: 3 is the determined cDNA sequence for Contig 4, showing homology to Carcinoembryonic antigen.

SEQ ID NO: 4 is the determined cDNA sequence for Contig 5, showing homology to Carcinoembryonic antigen.

20 SEQ ID NO: 5 is the determined cDNA sequence for Contig 9, showing homology to Carcinoembryonic antigen.

SEQ ID NO: 6 is the determined cDNA sequence for Contig 52, showing homology to Carcinoembryonic antigen.

SEQ ID NO: 7 is the determined cDNA sequence for Contig 6, showing 25 homology to Villin.

SEQ ID NO: 8 is the determined cDNA sequence for Contig 8, showing no significant homology to any known genes.

SEQ ID NO: 9 is the determined cDNA sequence for Contig 10, showing homology to Transforming Growth Factor (BIGH3).

SEQ ID NO: 10 is the determined cDNA sequence for Contig 19, showing homology to Transforming Growth Factor (BIGH3).

SEQ ID NO: 11 is the determined cDNA sequence for Contig 21, showing homology to Transforming Growth Factor (BIGH3).

5 SEQ ID NO: 12 is the determined cDNA sequence for Contig 11, showing homology to CO-029.

SEQ ID NO: 13 is the determined cDNA sequence for Contig 55, showing homology to CO-029.

10 SEQ ID NO: 14 is the determined cDNA sequence for Contig 12, showing homology to Chromosome 17, clone hRPC.1171_I_10, also referred to as C798P.

SEQ ID NO: 15 is the determined cDNA sequence for Contig 13, showing no significant homology to any known gene.

SEQ ID NO: 16 is the determined cDNA sequence for Contig 14, also referred to as 14261, showing no significant homology to any known gene.

15 SEQ ID NO: 17 is the determined cDNA sequence for Contig 15, showing homology to Ets-Related Transcription Factor (ERT).

SEQ ID NO: 18 is the determined cDNA sequence for Contig 16, showing homology to Chromosome 5, PAC clone 228g9 (LBNL H142).

20 SEQ ID NO: 19 is the determined cDNA sequence for Contig 24, showing homology to Chromosome 5, PAC clone 228g9 (LBNL H142).

SEQ ID NO: 20 is the determined cDNA sequence for Contig 17, showing homology to Cytokeratin.

SEQ ID NO: 21 is the determined cDNA sequence for Contig 18, showing homology to L1-Cadherin.

25 SEQ ID NO: 22 is the determined cDNA sequence for Contig 20, showing no significant homology to any known gene.

SEQ ID NO: 23 is the determined cDNA sequence for Contig 22, showing homology to Bumetanide-sensitive Na-K-Cl cotransporter (NKCC1).

SEQ ID NO: 24 is the determined cDNA sequence for Contig 23, showing no 30 significant homology to any known gene.

SEQ ID NO: 25 is the determined cDNA sequence for Contig 25, showing homology to Macrophage Inflammatory Protein 3 alpha.

SEQ ID NO: 26 is the determined cDNA sequence for Contig 26, showing homology to Laminin.

5 SEQ ID NO: 27 is the determined cDNA sequence for Contig 48, showing homology to Laminin.

SEQ ID NO: 28 is the determined cDNA sequence for Contig 27, showing homology to Myotubularin (MTM1).

10 SEQ ID NO: 29 is the determined cDNA sequence for Contig 28, showing homology to Chromosome 16 BAC clone CIT987SK-A-363E6.

SEQ ID NO: 30 is the determined cDNA sequence for Contig 29, also referred to as C751P and 14247, showing no significant homology to any known gene, but partial homology to Rat GSK-3 β -interacting protein Axil homolog.

15 SEQ ID NO: 31 is the determined cDNA sequence for Contig 30, showing homology to Zinc Finger Transcription Factor (ZNF207).

SEQ ID NO: 32 is the determined cDNA sequence for Contig 31, showing no significant homology to any known gene, but partial homology to Mus musculus GOB-4 homolog.

20 SEQ ID NO: 33 is the determined cDNA sequence for Contig 35, showing no significant homology to any known gene, but partial homology to Mus musculus GOB-4 homolog.

SEQ ID NO: 34 is the determined cDNA sequence for Contig 32, showing no significant homology to any known gene.

25 SEQ ID NO: 35 is the determined cDNA sequence for Contig 34, showing homology to Desmoglein 2.

SEQ ID NO: 36 is the determined cDNA sequence for Contig 36, showing no significant homology to any known gene.

SEQ ID NO: 37 is the determined cDNA sequence for Contig 37, showing homology to Putative Transmembrane Protein.

30 SEQ ID NO: 38 is the determined cDNA sequence for Contig 38, also referred to as C796P and 14219, showing no significant homology to any known gene.

SEQ ID NO: 39 is the determined cDNA sequence for Contig 40, showing homology to Nonspecific Cross-reacting Antigen.

SEQ ID NO: 40 is the determined cDNA sequence for Contig 41, also referred to as C799P and 14308, showing no significant homology to any known gene.

5 SEQ ID NO: 41 is the determined cDNA sequence for Contig 42, also referred to as C794P and 14309, showing no significant homology to any known gene.

SEQ ID NO: 42 is the determined cDNA sequence for Contig 43, showing homology to Chromosome 1 specific transcript KIAA0487.

10 SEQ ID NO: 43 is the determined cDNA sequence for Contig 45, showing homology to hMCM2.

SEQ ID NO: 44 is the determined cDNA sequence for Contig 46, showing homology to ETS2.

SEQ ID NO: 45 is the determined cDNA sequence for Contig 49, showing homology to Pump-1.

15 SEQ ID NO: 46 is the determined cDNA sequence for Contig 50, also referred to as C792P and 18323, showing no significant homology to any known gene.

SEQ ID NO: 47 is the determined cDNA sequence for Contig 51, also referred to as C795P and 14317, showing no significant homology to any known gene.

20 SEQ ID NO: 48 is the determined cDNA sequence for 11092, showing no significant homology to any known gene.

SEQ ID NO: 49 is the determined cDNA sequence for 11093, showing no significant homology to any known gene.

SEQ ID NO: 50 is the determined cDNA sequence for 11094, showing homology Human Putative Enterocyte Differentiation Protein.

25 SEQ ID NO: 51 is the determined cDNA sequence for 11095, showing homology to Human Transcriptional Corepressor hKAP1/TIF1B mRNA.

SEQ ID NO: 52 is the determined cDNA sequence for 11096, showing no significant homology to any known gene.

30 SEQ ID NO: 53 is the determined cDNA sequence for 11097, showing homology to Human Nonspecific Antigen.

SEQ ID NO: 54 is the determined cDNA sequence for 11098, showing no significant homology to any known gene.

SEQ ID NO: 55 is the determined cDNA sequence for 11099, showing homology to Human Pancreatic Secretory Inhibitor (PST) mRNA.

5 SEQ ID NO: 56 is the determined cDNA sequence for 11186, showing homology to Human Pancreatic Secretory Inhibitor (PST) mRNA.

SEQ ID NO: 57 is the determined cDNA sequence for 11101, showing homology to Human Chromosome X.

10 SEQ ID NO: 58 is the determined cDNA sequence for 11102, showing homology to Human Chromosome X.

SEQ ID NO: 59 is the determined cDNA sequence for 11103, showing no significant homology to any known gene.

SEQ ID NO: 60 is the determined cDNA sequence for 11174, showing no significant homology to any known gene.

15 SEQ ID NO: 61 is the determined cDNA sequence for 11104, showing homology to Human mRNA for KIAA0154.

SEQ ID NO: 62 is the determined cDNA sequence for 11105, showing homology to Human Apurinic/Apyrimidinic Endonuclease (hap1)mRNA.

20 SEQ ID NO: 63 is the determined cDNA sequence for 11106, showing homology to Human Chromosome 12p13.

SEQ ID NO: 64 is the determined cDNA sequence for 11107, showing homology to Human 90 kDa Heat Shock Protein.

SEQ ID NO: 65 is the determined cDNA sequence for 11108, showing no significant homology to any known gene.

25 SEQ ID NO: 66 is the determined cDNA sequence for 11112, showing no significant homology to any known gene.

SEQ ID NO: 67 is the determined cDNA sequence for 11115, showing no significant homology to any known gene.

30 SEQ ID NO: 68 is the determined cDNA sequence for 11117, showing no significant homology to any known gene.

SEQ ID NO: 69 is the determined cDNA sequence for 11118, showing no significant homology to any known gene.

SEQ ID NO: 70 is the determined cDNA sequence for 11119, showing homology to Human Elongation Factor 1-alpha.

5 SEQ ID NO: 71 is the determined cDNA sequence for 11121, showing homology to Human Lamin B Receptor (LBR) mRNA.

SEQ ID NO: 72 is the determined cDNA sequence for 11122, showing homology to H. sapiens mRNA for Novel Glucocorticoid.

10 SEQ ID NO: 73 is the determined cDNA sequence for 11123, showing homology to H. sapiens mRNA for snRNP protein B.

SEQ ID NO: 74 is the determined cDNA sequence for 11124, showing homology to Human Cisplatin Resistance Associated Beta-protein.

SEQ ID NO: 75 is the determined cDNA sequence for 11127, showing homology to M. musculus Calumenin mRNA.

15 SEQ ID NO: 76 is the determined cDNA sequence for 11128, showing homology to Human ras-related small GTP binding protein.

SEQ ID NO: 77 is the determined cDNA sequence for 11130, showing homology to Human Cosmid U169d2.

20 SEQ ID NO: 78 is the determined cDNA sequence for 11131, showing homology to H. sapiens mRNA for protein homologous to Elongation 1-g.

SEQ ID NO: 79 is the determined cDNA sequence for 11134, showing no significant homology to any known gene.

SEQ ID NO: 80 is the determined cDNA sequence for 11135, showing homology to H. sapiens Nieman-Pick (NPC1) mRNA.

25 SEQ ID NO: 81 is the determined cDNA sequence for 11137, showing homology to H. sapiens mRNA for Niecin b-chain.

SEQ ID NO: 82 is the determined cDNA sequence for 11138, showing homology to Human Endogenous Retroviral Protease mRNA.

30 SEQ ID NO: 83 is the determined cDNA sequence for 11139, showing homology to H. sapiens mRNA for DMBT1 protein.

SEQ ID NO: 84 is the determined cDNA sequence for 11140, showing homology to H. sapiens ras GTPase activating-like protein.

SEQ ID NO: 85 is the determined cDNA sequence for 11143, showing homology to Human Acidic Ribosomal Phosphoprotein PO mRNA.

5 SEQ ID NO: 86 is the determined cDNA sequence for 11144, showing homology to H. sapiens U21 mRNA.

SEQ ID NO: 87 is the determined cDNA sequence for 11145, showing homology to Human GTP-binding protein.

10 SEQ ID NO: 88 is the determined cDNA sequence for 11148, showing homology to H. sapiens U21 mRNA.

SEQ ID NO: 89 is the determined cDNA sequence for 11151, showing no significant homology to any known gene.

SEQ ID NO: 90 is the determined cDNA sequence for 11154, showing no significant homology to any known gene.

15 SEQ ID NO: 91 is the determined cDNA sequence for 11156, showing homology to H. sapiens Ribosomal Protein L27.

SEQ ID NO: 92 is the determined cDNA sequence for 11157, showing homology to H. sapiens Ribosomal Protein L27.

20 SEQ ID NO: 93 is the determined cDNA sequence for 11158, showing no significant homology to any known gene.

SEQ ID NO: 94 is the determined cDNA sequence for 11162, showing homology to Ag-X antigen.

SEQ ID NO: 95 is the determined cDNA sequence for 11164, showing homology to H. sapiens mRNA for Signal Recognition Protein sub14.

25 SEQ ID NO: 96 is the determined cDNA sequence for 11165, showing homology to Human PAC 204e5/127h14.

SEQ ID NO: 97 is the determined cDNA sequence for 11166, showing homology to Human mRNA for KIAA0108.

SEQ ID NO: 98 is the determined cDNA sequence for 11167, showing
30 homology to H. sapiens mRNA for Neutrophil Gelatinase assct. Lipocalin.

SEQ ID NO: 99 is the determined cDNA sequence for 11168, showing no significant homology to any known gene.

SEQ ID NO: 100 is the determined cDNA sequence for 11172, showing no significant homology to any known gene.

5 SEQ ID NO: 101 is the determined cDNA sequence for 11175, showing no significant homology to any known gene.

SEQ ID NO: 102 is the determined cDNA sequence for 11176, showing homology to Human maspin mRNA.

10 SEQ ID NO: 103 is the determined cDNA sequence for 11177, showing homology to Human Carcinoembryonic Antigen.

SEQ ID NO: 104 is the determined cDNA sequence for 11178, showing homology to Human A-Tubulin mRNA.

SEQ ID NO: 105 is the determined cDNA sequence for 11179, showing homology to Human mRNA for proton-ATPase-like protein.

15 SEQ ID NO: 106 is the determined cDNA sequence for 11180, showing homology to Human HepG2 3' region cDNA clone hmd.

SEQ ID NO: 107 is the determined cDNA sequence for 11182, showing homology to Human MHC homologous to Chicken B-Complex Protein.

20 SEQ ID NO: 108 is the determined cDNA sequence for 11183, showing homology to Human High Mobility Group Box (SSRP1) mRNA.

SEQ ID NO: 109 is the determined cDNA sequence for 11184, showing no significant homology to any known gene.

SEQ ID NO: 110 is the determined cDNA sequence for 11185, showing no significant homology to any known gene.

25 SEQ ID NO: 111 is the determined cDNA sequence for 11187, showing no significant homology to any known gene.

SEQ ID NO: 112 is the determined cDNA sequence for 11190, showing homology to Human Replication Protein A 70kDa.

SEQ ID NO: 113 is the determined cDNA sequence for Contig 47, also
30 referred to as C797P, showing homology to Human Chromosome X clone bWXD342.

SEQ ID NO: 114 is the determined cDNA sequence for Contig 7, showing homology to Equilibrative Nucleoside Transporter 2 (ent2).

SEQ ID NO: 115 is the determined cDNA sequence for 14235.1, also referred to as C791P, showing homology to H. sapiens chromosome 21 derived BAC 5 containing ets-2 gene.

SEQ ID NO: 116 is the determined cDNA sequence for 14287.2, showing no significant homology to any known gene, but some degree of homology to Putative Transmembrane Protein.

SEQ ID NO: 117 is the determined cDNA sequence for 14233.1, also referred 10 to as Contig 48, showing no significant homology to any known gene.

SEQ ID NO: 118 is the determined cDNA sequence for 14298.2, also referred to as C793P, showing no significant homology to any known gene.

SEQ ID NO: 119 is the determined cDNA sequence for 14372, also referred to as Contig 44, showing no significant homology to any known gene.

15 SEQ ID NO: 120 is the determined cDNA sequence for 14295, showing homology to secreted cement gland protein XAG-2 homolog.

SEQ ID NO: 121 is the determined full-length cDNA sequence for a clone showing homology to Beta IG-H3.

SEQ ID NO: 122 is the predicted amino acid sequence for the clone of SEQ ID 20 NO: 121.

SEQ ID NO: 123 is a longer determined cDNA sequence for C751P.

SEQ ID NO: 124 is a longer determined cDNA sequence for C791P.

SEQ ID NO: 125 is a longer determined cDNA sequence for C792P.

SEQ ID NO: 126 is a longer determined cDNA sequence for C793P.

25 SEQ ID NO: 127 is a longer determined cDNA sequence for C794P.

SEQ ID NO: 128 is a longer determined cDNA sequence for C795P.

SEQ ID NO: 129 is a longer determined cDNA sequence for C796P.

SEQ ID NO: 130 is a longer determined cDNA sequence for C797P.

SEQ ID NO: 131 is a longer determined cDNA sequence for C798P.

30 SEQ ID NO: 132 is a longer determined cDNA sequence for C799P.

SEQ ID NO: 133 is a first partial determined cDNA sequence for CoSub-3 (also known as 23569).

SEQ ID NO: 134 is a second partial determined cDNA sequence for CoSub-3 (also known as 23569).

5 SEQ ID NO: 135 is a first partial determined cDNA sequence for CoSub-13 (also known as 23579).

SEQ ID NO: 136 is a second partial determined cDNA sequence for CoSub-13 (also known as 23579).

10 SEQ ID NO: 137 is the determined cDNA sequence for CoSub-17 (also known as 23583).

SEQ ID NO: 138 is the determined cDNA sequence for CoSub-19 (also known as 23585).

SEQ ID NO: 139 is the determined cDNA sequence for CoSub-22 (also known as 23714).

15 SEQ ID NO: 140 is the determined cDNA sequence for CoSub-23 (also known as 23715).

SEQ ID NO: 141 is the determined cDNA sequence for CoSub-26 (also known as 23717).

20 SEQ ID NO: 142 is the determined cDNA sequence for CoSub-33 (also known as 23724).

SEQ ID NO: 143 is the determined cDNA sequence for CoSub-34 (also known as 23725).

SEQ ID NO: 144 is the determined cDNA sequence for CoSub-35 (also known as 23726).

25 SEQ ID NO: 145 is the determined cDNA sequence for CoSub-37 (also known as 23728).

SEQ ID NO: 146 is the determined cDNA sequence for CoSub-39 (also known as 23730).

30 SEQ ID NO: 147 is the determined cDNA sequence for CoSub-42 (also known as 23766).

SEQ ID NO: 148 is the determined cDNA sequence for CoSub-44 (also known as 23768).

SEQ ID NO: 149 is the determined cDNA sequence for CoSub-47 (also known as 23771).

5 SEQ ID NO: 150 is the determined cDNA sequence for CoSub-54 (also known as 23778).

SEQ ID NO: 151 is the determined cDNA sequence for CoSub-55 (also known as 23779).

10 SEQ ID NO: 152 is the determined cDNA sequence for CT1 (also known as 24099).

SEQ ID NO: 153 is the determined cDNA sequence for CT2 (also known as 24100).

SEQ ID NO: 154 is the determined cDNA sequence for CT3 (also known as 24101).

15 SEQ ID NO: 155 is the determined cDNA sequence for CT6 (also known as 24104).

SEQ ID NO: 156 is the determined cDNA sequence for CT7 (also known as 24105).

20 SEQ ID NO: 157 is the determined cDNA sequence for CT12 (also known as 24110).

SEQ ID NO: 158 is the determined cDNA sequence for CT13 (also known as 24111).

SEQ ID NO: 159 is the determined cDNA sequence for CT14 (also known as 24112).

25 SEQ ID NO: 160 is the determined cDNA sequence for CT15 (also known as 24113).

SEQ ID NO: 161 is the determined cDNA sequence for CT17 (also known as 24115).

30 SEQ ID NO: 162 is the determined cDNA sequence for CT18 (also known as 24116).

SEQ ID NO: 163 is the determined cDNA sequence for CT22 (also known as 23848).

SEQ ID NO: 164 is the determined cDNA sequence for CT24 (also known as 23849).

5 SEQ ID NO: 165 is the determined cDNA sequence for CT31 (also known as 23854).

SEQ ID NO: 166 is the determined cDNA sequence for CT34 (also known as 23856).

10 SEQ ID NO: 167 is the determined cDNA sequence for CT37 (also known as 23859).

SEQ ID NO: 168 is the determined cDNA sequence for CT39 (also known as 23860).

SEQ ID NO: 169 is the determined cDNA sequence for CT40 (also known as 23861).

15 SEQ ID NO: 170 is the determined cDNA sequence for CT51 (also known as 24130).

SEQ ID NO: 171 is the determined cDNA sequence for CT53 (also known as 24132).

20 SEQ ID NO: 172 is the determined cDNA sequence for CT63 (also known as 24595).

SEQ ID NO: 173 is the determined cDNA sequence for CT88 (also known as 24608).

SEQ ID NO: 174 is the determined cDNA sequence for CT92 (also known as 24800).

25 SEQ ID NO: 175 is the determined cDNA sequence for CT94 (also known as 24802).

SEQ ID NO: 176 is the determined cDNA sequence for CT102 (also known as 24805).

30 SEQ ID NO: 177 is the determined cDNA sequence for CT103 (also known as 24806).

SEQ ID NO: 178 is the determined cDNA sequence for CT111 (also known as 25520).

SEQ ID NO: 179 is the determined cDNA sequence for CT118 (also known as 25522).

5 SEQ ID NO: 180 is the determined cDNA sequence for CT121 (also known as 25523).

SEQ ID NO: 181 is the determined cDNA sequence for CT126 (also known as 25527).

10 SEQ ID NO: 182 is the determined cDNA sequence for CT135 (also known as 25534).

SEQ ID NO: 183 is the determined cDNA sequence for CT140 (also known as 25537).

SEQ ID NO: 184 is the determined cDNA sequence for CT145 (also known as 25542).

15 SEQ ID NO: 185 is the determined cDNA sequence for CT147 (also known as 25543).

SEQ ID NO: 186 is the determined cDNA sequence for CT148 (also known as 25544).

20 SEQ ID NO: 187 is the determined cDNA sequence for CT502 (also known as 26420).

SEQ ID NO: 188 is the determined cDNA sequence for CT507 (also known as 26425).

SEQ ID NO: 189 is the determined cDNA sequence for CT521 (also known as 27366).

25 SEQ ID NO: 190 is the determined cDNA sequence for CT544 (also known as 27375).

SEQ ID NO: 191 is the determined cDNA sequence for CT577 (also known as 27385).

30 SEQ ID NO: 192 is the determined cDNA sequence for CT580 (also known as 27387).

SEQ ID NO: 193 is the determined cDNA sequence for CT594 (also known as 27540).

SEQ ID NO: 194 is the determined cDNA sequence for CT606 (also known as 27547).

5 SEQ ID NO: 195 is the determined cDNA sequence for CT607 (also known as 27548).

SEQ ID NO: 196 is the determined cDNA sequence for CT599 (also known as 27903).

10 SEQ ID NO: 197 is the determined cDNA sequence for CT632 (also known as 27922).

SEQ ID NO: 198 is the predicted amino acid sequence for CT502 (SEQ ID NO: 187).

SEQ ID NO: 199 is the predicted amino acid sequence for CT507 (SEQ ID NO: 188).

15 SEQ ID NO: 200 is the predicted amino acid sequence for CT521 (SEQ ID NO: 189).

SEQ ID NO: 201 is the predicted amino acid sequence for CT544 (SEQ ID NO: 190).

20 SEQ ID NO: 202 is the predicted amino acid sequence for CT606 (SEQ ID NO: 194).

SEQ ID NO: 203 is the predicted amino acid sequence for CT607 (SEQ ID NO: 195).

SEQ ID NO: 204 is the predicted amino acid sequence for CT632 (SEQ ID NO: 197).

25 SEQ ID NO: 205 is the determined cDNA sequence for clone 25244.

SEQ ID NO: 206 is the determined cDNA sequence for clone 25245.

SEQ ID NO: 207 is the determined cDNA sequence for clone 25246.

SEQ ID NO: 208 is the determined cDNA sequence for clone 25248.

SEQ ID NO: 209 is the determined cDNA sequence for clone 25249.

30 SEQ ID NO: 210 is the determined cDNA sequence for clone 25250.

SEQ ID NO: 211 is the determined cDNA sequence for clone 25251.

SEQ ID NO: 212 is the determined cDNA sequence for clone 25252.
SEQ ID NO: 213 is the determined cDNA sequence for clone 25253.
SEQ ID NO: 214 is the determined cDNA sequence for clone 25254.
SEQ ID NO: 215 is the determined cDNA sequence for clone 25255.
5 SEQ ID NO: 216 is the determined cDNA sequence for clone 25256.
SEQ ID NO: 217 is the determined cDNA sequence for clone 25257.
SEQ ID NO: 218 is the determined cDNA sequence for clone 25259.
SEQ ID NO: 219 is the determined cDNA sequence for clone 25260.
SEQ ID NO: 220 is the determined cDNA sequence for clone 25261.
10 SEQ ID NO: 221 is the determined cDNA sequence for clone 25262.
SEQ ID NO: 222 is the determined cDNA sequence for clone 25263.
SEQ ID NO: 223 is the determined cDNA sequence for clone 25264.
SEQ ID NO: 224 is the determined cDNA sequence for clone 25265.
SEQ ID NO: 225 is the determined cDNA sequence for clone 25266.
15 SEQ ID NO: 226 is the determined cDNA sequence for clone 25267.
SEQ ID NO: 227 is the determined cDNA sequence for clone 25268.
SEQ ID NO: 228 is the determined cDNA sequence for clone 25269.
SEQ ID NO: 229 is the determined cDNA sequence for clone 25271.
SEQ ID NO: 230 is the determined cDNA sequence for clone 25272.
20 SEQ ID NO: 231 is the determined cDNA sequence for clone 25273.
SEQ ID NO: 232 is the determined cDNA sequence for clone 25274.
SEQ ID NO: 233 is the determined cDNA sequence for clone 25275.
SEQ ID NO: 234 is the determined cDNA sequence for clone 25276.
SEQ ID NO: 235 is the determined cDNA sequence for clone 25277.
25 SEQ ID NO: 236 is the determined cDNA sequence for clone 25278.
SEQ ID NO: 237 is the determined cDNA sequence for clone 25280.
SEQ ID NO: 238 is the determined cDNA sequence for clone 25281.
SEQ ID NO: 239 is the determined cDNA sequence for clone 25282.
SEQ ID NO: 240 is the determined cDNA sequence for clone 25283.
30 SEQ ID NO: 241 is the determined cDNA sequence for clone 25284.
SEQ ID NO: 242 is the determined cDNA sequence for clone 25285.

- SEQ ID NO: 243 is the determined cDNA sequence for clone 25286.
- SEQ ID NO: 244 is the determined cDNA sequence for clone 25287.
- SEQ ID NO: 245 is the determined cDNA sequence for clone 25288.
- SEQ ID NO: 246 is the determined cDNA sequence for clone 25289.
- 5 SEQ ID NO: 247 is the determined cDNA sequence for clone 25290.
- SEQ ID NO: 248 is the determined cDNA sequence for clone 25291.
- SEQ ID NO: 249 is the determined cDNA sequence for clone 25292.
- SEQ ID NO: 250 is the determined cDNA sequence for clone 25293.
- SEQ ID NO: 251 is the determined cDNA sequence for clone 25294.
- 10 SEQ ID NO: 252 is the determined cDNA sequence for clone 25295.
- SEQ ID NO: 253 is the determined cDNA sequence for clone 25296.
- SEQ ID NO: 254 is the determined cDNA sequence for clone 25297.
- SEQ ID NO: 255 is the determined cDNA sequence for clone 25418.
- SEQ ID NO: 256 is the determined cDNA sequence for clone 25419.
- 15 SEQ ID NO: 257 is the determined cDNA sequence for clone 25420.
- SEQ ID NO: 258 is the determined cDNA sequence for clone 25421.
- SEQ ID NO: 259 is the determined cDNA sequence for clone 25422.
- SEQ ID NO: 260 is the determined cDNA sequence for clone 25423.
- SEQ ID NO: 261 is the determined cDNA sequence for clone 25424.
- 20 SEQ ID NO: 262 is the determined cDNA sequence for clone 25426.
- SEQ ID NO: 263 is the determined cDNA sequence for clone 25427.
- SEQ ID NO: 264 is the determined cDNA sequence for clone 25428.
- SEQ ID NO: 265 is the determined cDNA sequence for clone 25429.
- SEQ ID NO: 266 is the determined cDNA sequence for clone 25430.
- 25 SEQ ID NO: 267 is the determined cDNA sequence for clone 25431.
- SEQ ID NO: 268 is the determined cDNA sequence for clone 25432.
- SEQ ID NO: 269 is the determined cDNA sequence for clone 25433.
- SEQ ID NO: 270 is the determined cDNA sequence for clone 25434.
- SEQ ID NO: 271 is the determined cDNA sequence for clone 25435.
- 30 SEQ ID NO: 272 is the determined cDNA sequence for clone 25436.
- SEQ ID NO: 273 is the determined cDNA sequence for clone 25437.

- SEQ ID NO: 274 is the determined cDNA sequence for clone 25438.
- SEQ ID NO: 275 is the determined cDNA sequence for clone 25439.
- SEQ ID NO: 276 is the determined cDNA sequence for clone 25440.
- SEQ ID NO: 277 is the determined cDNA sequence for clone 25441.
- 5 SEQ ID NO: 278 is the determined cDNA sequence for clone 25442.
- SEQ ID NO: 279 is the determined cDNA sequence for clone 25443.
- SEQ ID NO: 280 is the determined cDNA sequence for clone 25444.
- SEQ ID NO: 281 is the determined cDNA sequence for clone 25445.
- SEQ ID NO: 282 is the determined cDNA sequence for clone 25446.
- 10 SEQ ID NO: 283 is the determined cDNA sequence for clone 25447.
- SEQ ID NO: 284 is the determined cDNA sequence for clone 25448.
- SEQ ID NO: 285 is the determined cDNA sequence for clone 25844.
- SEQ ID NO: 286 is the determined cDNA sequence for clone 25845.
- SEQ ID NO: 287 is the determined cDNA sequence for clone 25846.
- 15 SEQ ID NO: 288 is the determined cDNA sequence for clone 25847.
- SEQ ID NO: 289 is the determined cDNA sequence for clone 25848.
- SEQ ID NO: 290 is the determined cDNA sequence for clone 25850.
- SEQ ID NO: 291 is the determined cDNA sequence for clone 25851.
- SEQ ID NO: 292 is the determined cDNA sequence for clone 25852.
- 20 SEQ ID NO: 293 is the determined cDNA sequence for clone 25853.
- SEQ ID NO: 294 is the determined cDNA sequence for clone 25854.
- SEQ ID NO: 295 is the determined cDNA sequence for clone 25855.
- SEQ ID NO: 296 is the determined cDNA sequence for clone 25856.
- SEQ ID NO: 297 is the determined cDNA sequence for clone 25857.
- 25 SEQ ID NO: 298 is the determined cDNA sequence for clone 25858.
- SEQ ID NO: 299 is the determined cDNA sequence for clone 25859.
- SEQ ID NO: 300 is the determined cDNA sequence for clone 25860.
- SEQ ID NO: 301 is the determined cDNA sequence for clone 25861.
- SEQ ID NO: 302 is the determined cDNA sequence for clone 25862.
- 30 SEQ ID NO: 303 is the determined cDNA sequence for clone 25863.
- SEQ ID NO: 304 is the determined cDNA sequence for clone 25864.

SEQ ID NO: 305 is the determined cDNA sequence for clone 25865.

SEQ ID NO: 306 is the determined cDNA sequence for clone 25866.

SEQ ID NO: 307 is the determined cDNA sequence for clone 25867.

SEQ ID NO: 308 is the determined cDNA sequence for clone 25868.

5 SEQ ID NO: 309 is the determined cDNA sequence for clone 25869.

SEQ ID NO: 310 is the determined cDNA sequence for clone 25870.

SEQ ID NO: 311 is the determined cDNA sequence for clone 25871.

SEQ ID NO: 312 is the determined cDNA sequence for clone 25872.

SEQ ID NO: 313 is the determined cDNA sequence for clone 25873.

10 SEQ ID NO: 314 is the determined cDNA sequence for clone 25875.

SEQ ID NO: 315 is the determined cDNA sequence for clone 25876.

SEQ ID NO: 316 is the determined cDNA sequence for clone 25877.

SEQ ID NO: 317 is the determined cDNA sequence for clone 25878.

SEQ ID NO: 318 is the determined cDNA sequence for clone 25879.

15 SEQ ID NO: 319 is the determined cDNA sequence for clone 25880.

SEQ ID NO: 320 is the determined cDNA sequence for clone 25881.

SEQ ID NO: 321 is the determined cDNA sequence for clone 25882.

SEQ ID NO: 322 is the determined cDNA sequence for clone 25883.

SEQ ID NO: 323 is the determined cDNA sequence for clone 25884.

20 SEQ ID NO: 324 is the determined cDNA sequence for clone 25885.

SEQ ID NO: 325 is the determined cDNA sequence for clone 25886.

SEQ ID NO: 326 is the determined cDNA sequence for clone 25887.

SEQ ID NO: 327 is the determined cDNA sequence for clone 25888.

SEQ ID NO: 328 is the determined cDNA sequence for clone 25889.

25 SEQ ID NO: 329 is the determined cDNA sequence for clone 25890.

SEQ ID NO: 330 is the determined cDNA sequence for clone 25892.

SEQ ID NO: 331 is the determined cDNA sequence for clone 25894.

SEQ ID NO: 332 is the determined cDNA sequence for clone 25895.

SEQ ID NO: 333 is the determined cDNA sequence for clone 25896.

30 SEQ ID NO: 334 is the determined cDNA sequence for clone 25897.

SEQ ID NO: 335 is the determined cDNA sequence for clone 25899.

SEQ ID NO: 336 is the determined cDNA sequence for clone 25900.
SEQ ID NO: 337 is the determined cDNA sequence for clone 25901.
SEQ ID NO: 338 is the determined cDNA sequence for clone 25902.
SEQ ID NO: 339 is the determined cDNA sequence for clone 25903.
5 SEQ ID NO: 340 is the determined cDNA sequence for clone 25904.
SEQ ID NO: 341 is the determined cDNA sequence for clone 25906.
SEQ ID NO: 342 is the determined cDNA sequence for clone 25907.
SEQ ID NO: 343 is the determined cDNA sequence for clone 25908.
SEQ ID NO: 344 is the determined cDNA sequence for clone 25909.
10 SEQ ID NO: 345 is the determined cDNA sequence for clone 25910.
SEQ ID NO: 346 is the determined cDNA sequence for clone 25911.
SEQ ID NO: 347 is the determined cDNA sequence for clone 25912.
SEQ ID NO: 348 is the determined cDNA sequence for clone 25913.
SEQ ID NO: 349 is the determined cDNA sequence for clone 25914.
15 SEQ ID NO: 350 is the determined cDNA sequence for clone 25915.
SEQ ID NO: 351 is the determined cDNA sequence for clone 25916.
SEQ ID NO: 352 is the determined cDNA sequence for clone 25917.
SEQ ID NO: 353 is the determined cDNA sequence for clone 25918.
SEQ ID NO: 354 is the determined cDNA sequence for clone 25919.
20 SEQ ID NO: 355 is the determined cDNA sequence for clone 25920.
SEQ ID NO: 356 is the determined cDNA sequence for clone 25921.
SEQ ID NO: 357 is the determined cDNA sequence for clone 25922.
SEQ ID NO: 358 is the determined cDNA sequence for clone 25924.
SEQ ID NO: 359 is the determined cDNA sequence for clone 25925.
25 SEQ ID NO: 360 is the determined cDNA sequence for clone 25926.
SEQ ID NO: 361 is the determined cDNA sequence for clone 25927.
SEQ ID NO: 362 is the determined cDNA sequence for clone 25928.
SEQ ID NO: 363 is the determined cDNA sequence for clone 25929.
SEQ ID NO: 364 is the determined cDNA sequence for clone 25930.
30 SEQ ID NO: 365 is the determined cDNA sequence for clone 25931.
SEQ ID NO: 366 is the determined cDNA sequence for clone 25932.

SEQ ID NO: 367 is the determined cDNA sequence for clone 25933.
SEQ ID NO: 368 is the determined cDNA sequence for clone 25934.
SEQ ID NO: 369 is the determined cDNA sequence for clone 25935.
SEQ ID NO: 370 is the determined cDNA sequence for clone 25936.
5 SEQ ID NO: 371 is the determined cDNA sequence for clone 25939.
SEQ ID NO: 372 is the determined cDNA sequence for clone 32016.
SEQ ID NO: 373 is the determined cDNA sequence for clone 32021.
SEQ ID NO: 374 is the determined cDNA sequence for clone 31993.
SEQ ID NO: 375 is the determined cDNA sequence for clone 31997.
10 SEQ ID NO: 376 is the determined cDNA sequence for clone 31942.
SEQ ID NO: 377 is the determined cDNA sequence for clone 31937.
SEQ ID NO: 378 is the determined cDNA sequence for clone 31952.
SEQ ID NO: 379 is the determined cDNA sequence for clone 31992.
SEQ ID NO: 380 is the determined cDNA sequence for clone 31961.
15 SEQ ID NO: 381 is the determined cDNA sequence for clone 31964.
SEQ ID NO: 382 is the determined cDNA sequence for clone 32005.
SEQ ID NO: 383 is the determined cDNA sequence for clone 31980.
SEQ ID NO: 384 is the determined cDNA sequence for clone 31940.
SEQ ID NO: 385 is the determined cDNA sequence for clone 32004.
20 SEQ ID NO: 386 is the determined cDNA sequence for clone 31956.
SEQ ID NO: 387 is the determined cDNA sequence for clone 31934.
SEQ ID NO: 388 is the determined cDNA sequence for clone 31998.
SEQ ID NO: 389 is the determined cDNA sequence for clone 31973.
SEQ ID NO: 390 is the determined cDNA sequence for clone 31976.
25 SEQ ID NO: 391 is the determined cDNA sequence for clone 31988.
SEQ ID NO: 392 is the determined cDNA sequence for clone 31948.
SEQ ID NO: 393 is the determined cDNA sequence for clone 32013.
SEQ ID NO: 394 is the determined cDNA sequence for clone 31986.
SEQ ID NO: 395 is the determined cDNA sequence for clone 31954.
30 SEQ ID NO: 396 is the determined cDNA sequence for clone 31987.
SEQ ID NO: 397 is the determined cDNA sequence for clone 32029.

SEQ ID NO: 398 is the determined cDNA sequence for clone 32028.
SEQ ID NO: 399 is the determined cDNA sequence for clone 32012.
SEQ ID NO: 400 is the determined cDNA sequence for clone 31959.
SEQ ID NO: 401 is the determined cDNA sequence for clone 32027.
5 SEQ ID NO: 402 is the determined cDNA sequence for clone 31957.
SEQ ID NO: 403 is the determined cDNA sequence for clone 31950.
SEQ ID NO: 404 is the determined cDNA sequence for clone 32011.
SEQ ID NO: 405 is the determined cDNA sequence for clone 32022.
SEQ ID NO: 406 is the determined cDNA sequence for clone 32014.
10 SEQ ID NO: 407 is the determined cDNA sequence for clone 31963.
SEQ ID NO: 408 is the determined cDNA sequence for clone 31989.
SEQ ID NO: 409 is the determined cDNA sequence for clone 32015.
SEQ ID NO: 410 is the determined cDNA sequence for clone 32002.
SEQ ID NO: 411 is the determined cDNA sequence for clone 31939.
15 SEQ ID NO: 412 is the determined cDNA sequence for clone 32003.
SEQ ID NO: 413 is the determined cDNA sequence for clone 31936.
SEQ ID NO: 414 is the determined cDNA sequence for clone 32007.
SEQ ID NO: 415 is the determined cDNA sequence for clone 31965.
SEQ ID NO: 416 is the determined cDNA sequence for clone 31935.
20 SEQ ID NO: 417 is the determined cDNA sequence for clone 32008.
SEQ ID NO: 418 is the determined cDNA sequence for clone 31966.
SEQ ID NO: 419 is the determined cDNA sequence for clone 32020.
SEQ ID NO: 420 is the determined cDNA sequence for clone 31971.
SEQ ID NO: 421 is the determined cDNA sequence for clone 31977.
25 SEQ ID NO: 422 is the determined cDNA sequence for clone 31985.
SEQ ID NO: 423 is the determined cDNA sequence for clone 32023.
SEQ ID NO: 424 is the determined cDNA sequence for clone 31981.
SEQ ID NO: 425 is the determined cDNA sequence for clone 32006.
SEQ ID NO: 426 is the determined cDNA sequence for clone 31991.
30 SEQ ID NO: 427 is the determined cDNA sequence for clone 31995.
SEQ ID NO: 428 is the determined cDNA sequence for clone 32000.

SEQ ID NO: 429 is the determined cDNA sequence for clone 31990.
SEQ ID NO: 430 is the determined cDNA sequence for clone 31946.
SEQ ID NO: 431 is the determined cDNA sequence for clone 31938.
SEQ ID NO: 432 is the determined cDNA sequence for clone 31941.
5 SEQ ID NO: 433 is the determined cDNA sequence for clone 31982.
SEQ ID NO: 434 is the determined cDNA sequence for clone 31996.
SEQ ID NO: 435 is the determined cDNA sequence for clone 32010.
SEQ ID NO: 436 is the determined cDNA sequence for clone 31974.
10 SEQ ID NO: 437 is the determined cDNA sequence for clone 31983.
SEQ ID NO: 438 is the determined cDNA sequence for clone 31999.
SEQ ID NO: 439 is the determined cDNA sequence for clone 31949.
SEQ ID NO: 440 is the determined cDNA sequence for clone 31947.
SEQ ID NO: 441 is the determined cDNA sequence for clone 31994.
15 SEQ ID NO: 442 is the determined cDNA sequence for clone 31958.
SEQ ID NO: 443 is the determined cDNA sequence for clone 31975.
SEQ ID NO: 444 is the determined cDNA sequence for clone 31984.
SEQ ID NO: 445 is the determined cDNA sequence for clone 32024.
SEQ ID NO: 446 is the determined cDNA sequence for clone 31972.
20 SEQ ID NO: 447 is the determined cDNA sequence for clone 31943.
SEQ ID NO: 448 is the determined cDNA sequence for clone 32018.
SEQ ID NO: 449 is the determined cDNA sequence for clone 32026.
SEQ ID NO: 450 is the determined cDNA sequence for clone 32009.
SEQ ID NO: 451 is the determined cDNA sequence for clone 32019.
25 SEQ ID NO: 452 is the determined cDNA sequence for clone 32025.
SEQ ID NO: 453 is the determined cDNA sequence for clone 31967.
SEQ ID NO: 454 is the determined cDNA sequence for clone 31968.
SEQ ID NO: 455 is the determined cDNA sequence for clone 31955.
SEQ ID NO: 456 is the determined cDNA sequence for clone 31951.
30 SEQ ID NO: 457 is the determined cDNA sequence for clone 31970.
SEQ ID NO: 458 is the determined cDNA sequence for clone 31962.
SEQ ID NO: 459 is the determined cDNA sequence for clone 32001.

SEQ ID NO: 460 is the determined cDNA sequence for clone 31953.
SEQ ID NO: 461 is the determined cDNA sequence for clone 31944.
SEQ ID NO: 462 is the determined cDNA sequence for clone 31825.
SEQ ID NO: 463 is the determined cDNA sequence for clone 31828.
5 SEQ ID NO: 464 is the determined cDNA sequence for clone 31830.
SEQ ID NO: 465 is the determined cDNA sequence for clone 31841.
SEQ ID NO: 466 is the determined cDNA sequence for clone 31847.
SEQ ID NO: 467 is the determined cDNA sequence for clone 31850.
SEQ ID NO: 468 is the determined cDNA sequence for clone 31852.
10 SEQ ID NO: 469 is the determined cDNA sequence for clone 31855.
SEQ ID NO: 470 is the determined cDNA sequence for clone 31858.
SEQ ID NO: 471 is the determined cDNA sequence for clone 31861.
SEQ ID NO: 472 is the determined cDNA sequence for clone 31868.
SEQ ID NO: 473 is the determined cDNA sequence for clone 31870.
15 SEQ ID NO: 474 is the determined cDNA sequence for clone 31872.
SEQ ID NO: 475 is the determined cDNA sequence for clone 31873.
SEQ ID NO: 476 is the determined cDNA sequence for clone 31877.
SEQ ID NO: 477 is the determined cDNA sequence for clone 31878.
SEQ ID NO: 478 is the determined cDNA sequence for clone 31885.
20 SEQ ID NO: 479 is the determined cDNA sequence for clone 31888.
SEQ ID NO: 480 is the determined cDNA sequence for clone 31890.
SEQ ID NO: 481 is the determined cDNA sequence for clone 31893.
SEQ ID NO: 482 is the determined cDNA sequence for clone 31898.
SEQ ID NO: 483 is the determined cDNA sequence for clone 31901.
25 SEQ ID NO: 484 is the determined cDNA sequence for clone 31909.
SEQ ID NO: 485 is the determined cDNA sequence for clone 31910.
SEQ ID NO: 486 is the determined cDNA sequence for clone 31914.
SEQ ID NO: 487 is the determined cDNA sequence for contig 1.
SEQ ID NO: 488 is the determined cDNA sequence for contig 2.
30 SEQ ID NO: 489 is the determined cDNA sequence for contig 3.
SEQ ID NO: 490 is the determined cDNA sequence for contig 4.

- SEQ ID NO: 491 is the determined cDNA sequence for contig 5.
- SEQ ID NO: 492 is the determined cDNA sequence for contig 6.
- SEQ ID NO: 493 is the determined cDNA sequence for contig 7.
- SEQ ID NO: 494 is the determined cDNA sequence for contig 8.
- 5 SEQ ID NO: 495 is the determined cDNA sequence for contig 9.
- SEQ ID NO: 496 is the determined cDNA sequence for contig 10.
- SEQ ID NO: 497 is the determined cDNA sequence for contig 11
- SEQ ID NO: 498 is the determined cDNA sequence for contig 12
- SEQ ID NO: 499 is the determined cDNA sequence for contig 13.
- 10 SEQ ID NO: 500 is the determined cDNA sequence for contig 14.
- SEQ ID NO: 501 is the determined cDNA sequence for contig 15.
- SEQ ID NO: 502 is the determined cDNA sequence for contig 16.
- SEQ ID NO: 503 is the determined cDNA sequence for contig 17.
- SEQ ID NO: 504 is the determined cDNA sequence for contig 18.
- 15 SEQ ID NO: 505 is the determined cDNA sequence for contig 19.
- SEQ ID NO: 506 is the determined cDNA sequence for contig 20.
- SEQ ID NO: 507 is the determined cDNA sequence for contig 21.
- SEQ ID NO: 508 is the determined cDNA sequence for contig 22.
- SEQ ID NO: 509 is the determined cDNA sequence for contig 23.
- 20 SEQ ID NO: 510 is the determined cDNA sequence for contig 24.
- SEQ ID NO: 511 is the determined cDNA sequence for contig 25.
- SEQ ID NO: 512 is the determined cDNA sequence for contig 26.
- SEQ ID NO: 513 is the determined cDNA sequence for contig 27.
- SEQ ID NO: 514 is the determined cDNA sequence for contig 28.
- 25 SEQ ID NO: 515 is the determined cDNA sequence for contig 29.
- SEQ ID NO: 516 is the determined cDNA sequence for contig 30.
- SEQ ID NO: 517 is the determined cDNA sequence for contig 31.
- SEQ ID NO: 518 is the determined cDNA sequence for contig 32.
- SEQ ID NO: 519 is the determined cDNA sequence for contig 33.
- 30 SEQ ID NO: 520 is the determined cDNA sequence for contig 34.
- SEQ ID NO: 521 is the determined cDNA sequence for contig 35.

SEQ ID NO: 522 is the determined cDNA sequence for contig 36.
SEQ ID NO: 523 is the determined cDNA sequence for contig 37.
SEQ ID NO: 524 is the determined cDNA sequence for contig 38.
SEQ ID NO: 525 is the determined cDNA sequence for contig 39.
5 SEQ ID NO: 526 is the determined cDNA sequence for contig 40.
SEQ ID NO: 527 is the determined cDNA sequence for contig 41.
SEQ ID NO: 528 is the determined cDNA sequence for contig 42.
SEQ ID NO: 529 is the determined cDNA sequence for contig 43.
SEQ ID NO: 530 is the determined cDNA sequence for contig 44.
10 SEQ ID NO: 531 is the determined cDNA sequence for contig 45.
SEQ ID NO: 532 is the determined cDNA sequence for contig 46.
SEQ ID NO: 533 is the determined cDNA sequence for contig 47.
SEQ ID NO: 534 is the determined cDNA sequence for contig 48.
SEQ ID NO: 535 is the determined cDNA sequence for contig 49.
15 SEQ ID NO: 536 is the determined cDNA sequence for contig 50.
SEQ ID NO: 537 is the determined cDNA sequence for contig 51.
SEQ ID NO: 538 is the determined cDNA sequence for contig 52.
SEQ ID NO: 539 is the determined cDNA sequence for contig 53.
SEQ ID NO: 540 is the determined cDNA sequence for contig 54.
20 SEQ ID NO: 541 is the determined cDNA sequence for contig 55.
SEQ ID NO: 542 is the determined cDNA sequence for contig 56.
SEQ ID NO: 543 is the determined cDNA sequence for contig 58.
SEQ ID NO: 544 is the determined cDNA sequence for contig 59.
SEQ ID NO: 545 is the determined cDNA sequence for contig 60.
25 SEQ ID NO: 546 is the determined cDNA sequence for contig 61.
SEQ ID NO: 547 is the determined cDNA sequence for contig 62.
SEQ ID NO: 548 is the determined cDNA sequence for contig 63.
SEQ ID NO: 549 is the determined cDNA sequence for contig 64.
SEQ ID NO: 550 is the determined cDNA sequence for contig 65.
30 SEQ ID NO: 551 is the determined cDNA sequence for contig 66.
SEQ ID NO: 552 is the determined cDNA sequence for contig 67.

SEQ ID NO: 553 is the determined cDNA sequence for contig 68.
SEQ ID NO: 554 is the determined cDNA sequence for contig 69.
SEQ ID NO: 555 is the determined cDNA sequence for contig 70.
SEQ ID NO: 556 is the determined cDNA sequence for contig 71.
5 SEQ ID NO: 557 is the determined cDNA sequence for contig 72.
SEQ ID NO: 558 is the determined cDNA sequence for contig 73.
SEQ ID NO: 559 is the determined cDNA sequence for contig 74.
SEQ ID NO: 560 is the determined cDNA sequence for contig 75.
SEQ ID NO: 561 is the determined cDNA sequence for contig 76.
10 SEQ ID NO: 562 is the determined cDNA sequence for contig 77.
SEQ ID NO: 563 is the determined cDNA sequence for contig 78.
SEQ ID NO: 564 is the determined cDNA sequence for contig 79.
SEQ ID NO: 565 is the determined cDNA sequence for contig 80.
SEQ ID NO: 566 is the determined cDNA sequence for contig 81.
15 SEQ ID NO: 567 is the determined cDNA sequence for contig 82.
SEQ ID NO: 568 is the determined cDNA sequence for contig 83.
SEQ ID NO: 569 is the determined cDNA sequence for clone CS1-101.
SEQ ID NO: 570 is the determined cDNA sequence for clone CS1-102.
SEQ ID NO: 571 is the determined cDNA sequence for clone CS1-104.
20 SEQ ID NO: 572 is the determined cDNA sequence for clone CS1-105.
SEQ ID NO: 573 is the determined 3' cDNA sequence for clone CS1-106.
SEQ ID NO: 574 is the determined 5' cDNA sequence for clone CS1-106.
SEQ ID NO: 575 is the determined cDNA sequence for clone CS1-114.
SEQ ID NO: 576 is the determined cDNA sequence for clone CS1-118.
25 SEQ ID NO: 577 is the determined cDNA sequence for clone CS1-120.
SEQ ID NO: 578 is the determined cDNA sequence for clone CS1-123.
SEQ ID NO: 579 is the determined 3' cDNA sequence for clone CS1-124.
SEQ ID NO: 580 is the determined 5' cDNA sequence for clone CS1-124.
SEQ ID NO: 581 is the determined cDNA sequence for clone CS1-128.
30 SEQ ID NO: 582 is the determined cDNA sequence for clone CS1-132.
SEQ ID NO: 583 is the determined cDNA sequence for clone CS1-136.

SEQ ID NO: 584 is the determined cDNA sequence for clone CS1-137.
SEQ ID NO: 585 is the determined cDNA sequence for clone CS1-139.
SEQ ID NO: 586 is the determined cDNA sequence for clone CS1-141.
SEQ ID NO: 587 is the determined cDNA sequence for clone CS1-152.
5 SEQ ID NO: 588 is the determined cDNA sequence for clone CS1-154.
SEQ ID NO: 589 is the determined cDNA sequence for clone CS1-156.
SEQ ID NO: 590 is the determined cDNA sequence for clone CS1-158.
SEQ ID NO: 591 is the determined cDNA sequence for clone CS1-160.
SEQ ID NO: 592 is the determined cDNA sequence for clone CS1-168.
10 SEQ ID NO: 593 is the determined cDNA sequence for clone CS1-169.
SEQ ID NO: 594 is the determined cDNA sequence for clone CS1-171.
SEQ ID NO: 595 is the determined cDNA sequence for clone CS1-176.
SEQ ID NO: 596 is the determined cDNA sequence for clone CS1-178.
SEQ ID NO: 597 is the determined cDNA sequence for clone CS1-180.
15 SEQ ID NO: 598 is the determined cDNA sequence for clone CS1-183.
SEQ ID NO: 599 is the determined cDNA sequence for clone CS1-184.
SEQ ID NO: 600 is the determined cDNA sequence for clone CS1-187.
SEQ ID NO: 601 is the determined cDNA sequence for clone CS1-190.
SEQ ID NO: 602 is the determined cDNA sequence for clone CS1-194.
20 SEQ ID NO: 603 is the determined cDNA sequence for clone CS1-195.
SEQ ID NO: 604 is the determined cDNA sequence for clone CS1-196.
SEQ ID NO: 605 is the determined cDNA sequence for clone CS1-197.
SEQ ID NO: 606 is the determined cDNA sequence for clone CS1-200.
SEQ ID NO: 607 is the determined cDNA sequence for clone CS1-206.
25 SEQ ID NO: 608 is the determined cDNA sequence for clone CS1-207.
SEQ ID NO: 609 is the determined cDNA sequence for clone CS1-234.
SEQ ID NO: 610 is the determined cDNA sequence for clone CS1-238.
SEQ ID NO: 611 is the determined cDNA sequence for clone CS1-239.
SEQ ID NO: 612 is the determined cDNA sequence for clone CS1-243.
30 SEQ ID NO: 613 is the determined cDNA sequence for clone CS1-246.
SEQ ID NO: 614 is the determined cDNA sequence for clone CS1-249.

- SEQ ID NO: 615 is the determined cDNA sequence for clone CS1-250.
- SEQ ID NO: 616 is the determined cDNA sequence for clone CS1-252.
- SEQ ID NO: 617 is the determined cDNA sequence for clone CT502.
- SEQ ID NO: 618 is the determined cDNA sequence for clone CT507.
- 5 SEQ ID NO: 619 is the determined cDNA sequence for clone CT521.
- SEQ ID NO: 620 is the determined cDNA sequence for clone CT544.
- SEQ ID NO: 621 is the determined cDNA sequence for clone CT577.
- SEQ ID NO: 622 is the determined cDNA sequence for clone CT580.
- SEQ ID NO: 623 is the determined cDNA sequence for clone CT594.
- 10 SEQ ID NO: 624 is the determined cDNA sequence for clone CT606.
- SEQ ID NO: 625 is the determined cDNA sequence for clone CT607.
- SEQ ID NO: 626 is the determined cDNA sequence for clone CT599.
- SEQ ID NO: 627 is the determined cDNA sequence for clone CT632.
- SEQ ID NO: 628 is the determined cDNA sequence for clone 35691.
- 15 SEQ ID NO: 629 is the determined cDNA sequence for clone 35707.
- SEQ ID NO: 630 is the determined cDNA sequence for clone CSE-2.
- SEQ ID NO: 631 is the amino acid sequence for clone CSE-2.
- SEQ ID NO: 632 is the determined cDNA sequence for clone CT2-1.
- SEQ ID NO: 633 is the determined cDNA sequence for clone CT2-6.
- 20 SEQ ID NO: 634 is the determined cDNA sequence for clone CT2-8.
- SEQ ID NO: 635 is the determined cDNA sequence for clone CT2-9.
- SEQ ID NO: 636 is the determined cDNA sequence for clone CT2-12.
- SEQ ID NO: 637 is the determined cDNA sequence for clone CT2-15.
- SEQ ID NO: 638 is the determined cDNA sequence for clone CT2-16.
- 25 SEQ ID NO: 639 is the determined cDNA sequence for clone CT2-17.
- SEQ ID NO: 640 is the determined cDNA sequence for clone CT2-19.
- SEQ ID NO: 641 is the determined cDNA sequence for clone CT2-23.
- SEQ ID NO: 642 is the determined cDNA sequence for clone CT2-25.
- SEQ ID NO: 643 is the determined cDNA sequence for clone CT2-27.
- 30 SEQ ID NO: 644 is the determined cDNA sequence for clone CT2-35.
- SEQ ID NO: 645 is the determined cDNA sequence for clone CT2-39.

SEQ ID NO: 646 is the determined cDNA sequence for clone CT2-41.
SEQ ID NO: 647 is the determined cDNA sequence for clone CT2-43.
SEQ ID NO: 648 is the determined cDNA sequence for clone CT2-44.
SEQ ID NO: 649 is the determined cDNA sequence for clone CT2-53.
5 SEQ ID NO: 650 is the determined cDNA sequence for clone CT2-54.
SEQ ID NO: 651 is the determined cDNA sequence for clone CT2-55.
SEQ ID NO: 652 is the determined cDNA sequence for clone CT2-57.
SEQ ID NO: 653 is the determined cDNA sequence for clone CT2-60.
SEQ ID NO: 654 is the determined cDNA sequence for clone CT2-64.
10 SEQ ID NO: 655 is the determined cDNA sequence for clone CT2-67.
SEQ ID NO: 656 is the determined cDNA sequence for clone CT2-68.
SEQ ID NO: 657 is the determined cDNA sequence for clone CT2-75.
SEQ ID NO: 658 is the determined cDNA sequence for clone CT2-79.
SEQ ID NO: 659 is the determined cDNA sequence for clone CT2-109.
15 SEQ ID NO: 660 is the determined cDNA sequence for clone CT2-112.
SEQ ID NO: 661 is the determined cDNA sequence for clone CT2-127.
SEQ ID NO: 662 is the determined cDNA sequence for clone CT2-129.
SEQ ID NO: 663 is the determined cDNA sequence for clone CT2-156.
SEQ ID NO: 664 is the determined cDNA sequence for clone CT2-162.
20 SEQ ID NO: 665 is the determined cDNA sequence for clone CT2-167.
SEQ ID NO: 666 is the determined cDNA sequence for clone CT2-169.
SEQ ID NO: 667 is the determined cDNA sequence for clone CT2-172.
SEQ ID NO: 668 is the determined cDNA sequence for clone CT2-173.
SEQ ID NO: 669 is the determined cDNA sequence for clone CT2-174.
25 SEQ ID NO: 670 is the determined cDNA sequence for clone CT2-177.
SEQ ID NO: 671 is the determined cDNA sequence for clone CT2-181.
SEQ ID NO: 672 is the determined cDNA sequence for clone CT2-191.
SEQ ID NO: 673 is the determined cDNA sequence for clone CT2-192.
SEQ ID NO: 674 is the determined cDNA sequence for clone CT2-207.
30 SEQ ID NO: 675 is the determined cDNA sequence for clone CT2-222.
SEQ ID NO: 676 is the determined cDNA sequence for clone CT2-223.

SEQ ID NO: 677 is the determined cDNA sequence for clone CT2-233.

SEQ ID NO: 678 is the determined cDNA sequence for clone CT2-244.

SEQ ID NO: 679 is the determined cDNA sequence for clone CT2-257.

SEQ ID NO: 680 is the determined cDNA sequence for clone CT2-279.

5 SEQ ID NO: 681 is the determined cDNA sequence for clone CT2-288.

SEQ ID NO: 682 is the determined cDNA sequence for clone CT2-291.

SEQ ID NO:683 is the full-length cDNA sequence for human PAC (SEQ ID NOs: 18 and 19).

10 SEQ ID NO:684 is the full-length cDNA sequence for murine homologue of human PAC (SEQ ID NO: 683).

SEQ ID NO:685 is the predicted amino acid sequence for the clone of SEQ ID NO:683.

SEQ ID NO:686 is a longer determined cDNA sequence for clone CoSub-19 (SEQ ID NO:138).

15 SEQ ID NO:687 is the predicted amino acid sequence for the clone of SEQ ID NO:686.

SEQ ID NO:688 is the nucleotide sequence of the M13 forward primer.

SEQ ID NO:689 is the nucleotide sequence of the M13 reverse primer.

20 SEQ ID NO:690 is a longer determined cDNA sequence for C799P (SEQ ID NO:40), showing homology to homo sapiens NADH/NADPH thyroid oxidase p138-tox mRNA.

SEQ ID NO:691 is a longer determined cDNA sequence for C794P (SEQ ID NO:41).

25 SEQ ID NO:692 is the predicted amino acid sequence for the clone of SEQ ID NO:690.

SEQ ID NO:693 is the predicted amino acid sequence for the clone of SEQ ID NO:691.

SEQ ID NO: 694 is the determined cDNA sequence for clone R0093:A03.

30 SEQ ID NO: 695 is the determined cDNA sequence for clone R0093:A10.

SEQ ID NO: 696 is the determined cDNA sequence for clone R0093:A11.

SEQ ID NO: 697 is the determined cDNA sequence for clone R0093:A12.

5 SEQ ID NO: 698 is the determined cDNA sequence for clone R0093:B03.

SEQ ID NO: 699 is the determined cDNA sequence for clone R0093:B04.

10 SEQ ID NO: 700 is the determined cDNA sequence for clone R0093:B09.

SEQ ID NO: 701 is the determined cDNA sequence for clone R0093:B10.

SEQ ID NO: 702 is the determined cDNA sequence for clone R0093:B11.

15 SEQ ID NO: 703 is the determined cDNA sequence for clone R0093:B12.

SEQ ID NO: 704 is the determined cDNA sequence for clone R0093:C01.

20 SEQ ID NO: 705 is the determined cDNA sequence for clone R0093:C03.

SEQ ID NO: 706 is the determined cDNA sequence for clone R0093:C04.

SEQ ID NO: 707 is the determined cDNA sequence for clone R0093:C06.

25 SEQ ID NO: 708 is the determined cDNA sequence for clone R0093:C08.

SEQ ID NO: 709 is the determined cDNA sequence for clone R0093:C09.

30 SEQ ID NO: 710 is the determined cDNA sequence for clone R0093:C10.

SEQ ID NO: 711 is the determined cDNA sequence for clone

R0093:C11.

SEQ ID NO: 712 is the determined cDNA sequence for clone

R0093:C12.

SEQ ID NO: 713 is the determined cDNA sequence for clone

5 R0093:D01.

SEQ ID NO: 714 is the determined cDNA sequence for clone

R0093:D02.

SEQ ID NO: 715 is the determined cDNA sequence for clone

R0093:D03.

10 SEQ ID NO: 716 is the determined cDNA sequence for clone

R0093:D04.

SEQ ID NO: 717 is the determined cDNA sequence for clone

R0093:D05.

SEQ ID NO: 718 is the determined cDNA sequence for clone

15 R0093:D06.

SEQ ID NO: 719 is the determined cDNA sequence for clone

R0093:D07.

SEQ ID NO: 720 is the determined cDNA sequence for clone

R0093:D08.

20 SEQ ID NO: 721 is the determined cDNA sequence for clone

R0093:D10.

SEQ ID NO: 722 is the determined cDNA sequence for clone

R0093:D11.

SEQ ID NO: 723 is the determined cDNA sequence for clone

25 R0093:E02.

SEQ ID NO: 724 is the determined cDNA sequence for clone

R0093:E03.

SEQ ID NO: 725 is the determined cDNA sequence for clone

R0093:E04.

30 SEQ ID NO: 726 is the determined cDNA sequence for clone

R0093:E06.

SEQ ID NO: 727 is the determined cDNA sequence for clone R0093:E07.

SEQ ID NO: 728 is the determined cDNA sequence for clone R0093:E08.

5 SEQ ID NO: 729 is the determined cDNA sequence for clone R0093:E09.

SEQ ID NO: 730 is the determined cDNA sequence for clone R0093:E10.

10 SEQ ID NO: 731 is the determined cDNA sequence for clone R0093:E11.

SEQ ID NO: 732 is the determined cDNA sequence for clone R0093:F02.

SEQ ID NO: 733 is the determined cDNA sequence for clone R0093:F03.

15 SEQ ID NO: 734 is the determined cDNA sequence for clone R0093:F04.

SEQ ID NO: 735 is the determined cDNA sequence for clone R0093:F05.

20 SEQ ID NO: 736 is the determined cDNA sequence for clone R0093:F06.

SEQ ID NO: 737 is the determined cDNA sequence for clone R0093:F08.

SEQ ID NO: 738 is the determined cDNA sequence for clone R0093:F09.

25 SEQ ID NO: 739 is the determined cDNA sequence for clone R0093:F10.

SEQ ID NO: 740 is the determined cDNA sequence for clone R0093:F12.

30 SEQ ID NO: 741 is the determined cDNA sequence for clone R0093:G01.

SEQ ID NO: 742 is the determined cDNA sequence for clone

R0093:G03.

SEQ ID NO: 743 is the determined cDNA sequence for clone

R0093:G04.

SEQ ID NO: 744 is the determined cDNA sequence for clone

5 R0093:G06.

SEQ ID NO: 745 is the determined cDNA sequence for clone

R0093:G07.

SEQ ID NO: 746 is the determined cDNA sequence for clone

R0093:G08.

10 SEQ ID NO: 747 is the determined cDNA sequence for clone

R0093:G09.

SEQ ID NO: 748 is the determined cDNA sequence for clone

R0093:G10.

SEQ ID NO: 749 is the determined cDNA sequence for clone

15 R0093:G11.

SEQ ID NO: 750 is the determined cDNA sequence for clone

R0093:G12.

SEQ ID NO: 751 is the determined cDNA sequence for clone

R0093:H02.

20 SEQ ID NO: 752 is the determined cDNA sequence for clone

R0093:H03.

SEQ ID NO: 753 is the determined cDNA sequence for clone

R0093:H04.

SEQ ID NO: 754 is the determined cDNA sequence for clone

25 R0093:H05.

SEQ ID NO: 755 is the determined cDNA sequence for clone

R0093:H07.

SEQ ID NO: 756 is the determined cDNA sequence for clone

R0093:H08.

30 SEQ ID NO: 757 is the determined cDNA sequence for clone

R0093:H09.

SEQ ID NO: 758 is the determined cDNA sequence for clone R0093:H10.

SEQ ID NO: 759 is the determined cDNA sequence for clone R0093:H11.

5 SEQ ID NO: 760 is the determined cDNA sequence for clone R0094:A03.

SEQ ID NO: 761 is the determined cDNA sequence for clone R0094:A05.

10 SEQ ID NO: 762 is the determined cDNA sequence for clone R0094:A06.

SEQ ID NO: 763 is the determined cDNA sequence for clone R0094:A07.

SEQ ID NO: 764 is the determined cDNA sequence for clone R0094:A09.

15 SEQ ID NO: 765 is the determined cDNA sequence for clone R0094:A10.

SEQ ID NO: 766 is the determined cDNA sequence for clone R0094:A12.

20 SEQ ID NO: 767 is the determined cDNA sequence for clone R0094:B03.

SEQ ID NO: 768 is the determined cDNA sequence for clone R0094:B06.

SEQ ID NO: 769 is the determined cDNA sequence for clone R0094:B08.

25 SEQ ID NO: 770 is the determined cDNA sequence for clone R0094:B11.

SEQ ID NO: 771 is the determined cDNA sequence for clone R0094:B12.

30 SEQ ID NO: 772 is the determined cDNA sequence for clone R0094:C01.

SEQ ID NO: 773 is the determined cDNA sequence for clone

R0094:C02.

SEQ ID NO: 774 is the determined cDNA sequence for clone

R0094:C03.

SEQ ID NO: 775 is the determined cDNA sequence for clone

5 R0094:C05.

SEQ ID NO: 776 is the determined cDNA sequence for clone

R0094:C06.

SEQ ID NO: 777 is the determined cDNA sequence for clone

R0094:C08.

10 SEQ ID NO: 778 is the determined cDNA sequence for clone

R0094:C09.

SEQ ID NO: 779 is the determined cDNA sequence for clone

R0094:C10.

SEQ ID NO: 780 is the determined cDNA sequence for clone

15 R0094:C11.

SEQ ID NO: 781 is the determined cDNA sequence for clone

R0094:C12.

SEQ ID NO: 782 is the determined cDNA sequence for clone

R0094:D01.

20 SEQ ID NO: 783 is the determined cDNA sequence for clone

R0094:D02.

SEQ ID NO: 784 is the determined cDNA sequence for clone

R0094:D03.

SEQ ID NO: 785 is the determined cDNA sequence for clone

25 R0094:D04.

SEQ ID NO: 786 is the determined cDNA sequence for clone

R0094:D05.

SEQ ID NO: 787 is the determined cDNA sequence for clone

R0094:D07.

30 SEQ ID NO: 788 is the determined cDNA sequence for clone

R0094:D08.

SEQ ID NO: 789 is the determined cDNA sequence for clone R0094:D09.

SEQ ID NO: 790 is the determined cDNA sequence for clone R0094:D10.

5 SEQ ID NO: 791 is the determined cDNA sequence for clone R0094:D12.

SEQ ID NO: 792 is the determined cDNA sequence for clone R0094:E01.

10 SEQ ID NO: 793 is the determined cDNA sequence for clone R0094:E02.

SEQ ID NO: 794 is the determined cDNA sequence for clone R0094:E03.

SEQ ID NO: 795 is the determined cDNA sequence for clone R0094:E05.

15 SEQ ID NO: 796 is the determined cDNA sequence for clone R0094:E06.

SEQ ID NO: 797 is the determined cDNA sequence for clone R0094:E07.

20 SEQ ID NO: 798 is the determined cDNA sequence for clone R0094:E08.

SEQ ID NO: 799 is the determined cDNA sequence for clone R0094:E09.

SEQ ID NO: 800 is the determined cDNA sequence for clone R0094:E10.

25 SEQ ID NO: 801 is the determined cDNA sequence for clone R0094:E11.

SEQ ID NO: 802 is the determined cDNA sequence for clone R0094:E12.

30 SEQ ID NO: 803 is the determined cDNA sequence for clone R0094:F01.

SEQ ID NO: 804 is the determined cDNA sequence for clone

R0094:F03.

SEQ ID NO: 805 is the determined cDNA sequence for clone

R0094:F05.

SEQ ID NO: 806 is the determined cDNA sequence for clone

5 R0094:F06.

SEQ ID NO: 807 is the determined cDNA sequence for clone

R0094:F07.

SEQ ID NO: 808 is the determined cDNA sequence for clone

R0094:F08.

10 SEQ ID NO: 809 is the determined cDNA sequence for clone

R0094:F09.

SEQ ID NO: 810 is the determined cDNA sequence for clone

R0094:F10.

SEQ ID NO: 811 is the determined cDNA sequence for clone

15 R0094:F11.

SEQ ID NO: 812 is the determined cDNA sequence for clone

R0094:F12.

SEQ ID NO: 813 is the determined cDNA sequence for clone

R0094:G02.

20 SEQ ID NO: 814 is the determined cDNA sequence for clone

R0094:G03.

SEQ ID NO: 815 is the determined cDNA sequence for clone

R0094:G04.

SEQ ID NO: 816 is the determined cDNA sequence for clone

25 R0094:G06.

SEQ ID NO: 817 is the determined cDNA sequence for clone

R0094:G07.

SEQ ID NO: 818 is the determined cDNA sequence for clone

R0094:G08.

30 SEQ ID NO: 819 is the determined cDNA sequence for clone

R0094:G10.

SEQ ID NO: 820 is the determined cDNA sequence for clone R0094:G11.

SEQ ID NO: 821 is the determined cDNA sequence for clone R0094:G12.

5 SEQ ID NO: 822 is the determined cDNA sequence for clone R0094:H01.

SEQ ID NO: 823 is the determined cDNA sequence for clone R0094:H03.

10 SEQ ID NO: 824 is the determined cDNA sequence for clone R0094:H04.

SEQ ID NO: 825 is the determined cDNA sequence for clone R0094:H05.

SEQ ID NO: 826 is the determined cDNA sequence for clone R0094:H06.

15 SEQ ID NO: 827 is the determined cDNA sequence for clone R0094:H08.

SEQ ID NO: 828 is the determined cDNA sequence for clone R0094:H09.

20 SEQ ID NO: 829 is the determined cDNA sequence for clone R0094:H10.

SEQ ID NO: 830 is the determined cDNA sequence for clone R0094:H11.

SEQ ID NO: 831 is the determined cDNA sequence for clone R0095:A03.

25 SEQ ID NO: 832 is the determined cDNA sequence for clone R0095:A06.

SEQ ID NO: 833 is the determined cDNA sequence for clone R0095:A07.

30 SEQ ID NO: 834 is the determined cDNA sequence for clone R0095:B01.

SEQ ID NO: 835 is the determined cDNA sequence for clone

R0095:B02.

SEQ ID NO: 836 is the determined cDNA sequence for clone
R0095:B03.

5 SEQ ID NO: 837 is the determined cDNA sequence for clone
R0095:B04.

SEQ ID NO: 838 is the determined cDNA sequence for clone
R0095:B05.

SEQ ID NO: 839 is the determined cDNA sequence for clone
R0095:B06.

10 SEQ ID NO: 840 is the determined cDNA sequence for clone
R0095:B10.

SEQ ID NO: 841 is the determined cDNA sequence for clone
R0095:B11.

15 SEQ ID NO: 842 is the determined cDNA sequence for clone
R0095:B12.

SEQ ID NO: 843 is the determined cDNA sequence for clone
R0095:C01.

SEQ ID NO: 844 is the determined cDNA sequence for clone
R0095:C03.

20 SEQ ID NO: 845 is the determined cDNA sequence for clone
R0095:C04.

SEQ ID NO: 846 is the determined cDNA sequence for clone
R0095:C05.

25 SEQ ID NO: 847 is the determined cDNA sequence for clone
R0095:C06.

SEQ ID NO: 848 is the determined cDNA sequence for clone
R0095:C07.

SEQ ID NO: 849 is the determined cDNA sequence for clone
R0095:C08.

30 SEQ ID NO: 850 is the determined cDNA sequence for clone
R0095:C10.

SEQ ID NO: 851 is the determined cDNA sequence for clone R0095:C12.

SEQ ID NO: 852 is the determined cDNA sequence for clone R0095:D01.

5 SEQ ID NO: 853 is the determined cDNA sequence for clone R0095:D03.

SEQ ID NO: 854 is the determined cDNA sequence for clone R0095:D04.

10 SEQ ID NO: 855 is the determined cDNA sequence for clone R0095:D06.

SEQ ID NO: 856 is the determined cDNA sequence for clone R0095:D07.

SEQ ID NO: 857 is the determined cDNA sequence for clone R0095:D08.

15 SEQ ID NO: 858 is the determined cDNA sequence for clone R0095:D09.

SEQ ID NO: 859 is the determined cDNA sequence for clone R0095:D11.

20 SEQ ID NO: 860 is the determined cDNA sequence for clone R0095:D12.

SEQ ID NO: 861 is the determined cDNA sequence for clone R0095:E01.

SEQ ID NO: 862 is the determined cDNA sequence for clone R0095:E02.

25 SEQ ID NO: 863 is the determined cDNA sequence for clone R0095:E04.

SEQ ID NO: 864 is the determined cDNA sequence for clone R0095:E05.

30 SEQ ID NO: 865 is the determined cDNA sequence for clone R0095:E06.

SEQ ID NO: 866 is the determined cDNA sequence for clone

R0095:E07.

SEQ ID NO: 867 is the determined cDNA sequence for clone

R0095:E08.

SEQ ID NO: 868 is the determined cDNA sequence for clone

5 R0095:E11.

SEQ ID NO: 869 is the determined cDNA sequence for clone

R0095:E12.

SEQ ID NO: 870 is the determined cDNA sequence for clone

R0095:F01.

10 SEQ ID NO: 871 is the determined cDNA sequence for clone

R0095:F03.

SEQ ID NO: 872 is the determined cDNA sequence for clone

R0095:F06.

SEQ ID NO: 873 is the determined cDNA sequence for clone

15 R0095:F10.

SEQ ID NO: 874 is the determined cDNA sequence for clone

R0095:F11.

SEQ ID NO: 875 is the determined cDNA sequence for clone

R0095:G02.

20 SEQ ID NO: 876 is the determined cDNA sequence for clone

R0095:G03.

SEQ ID NO: 877 is the determined cDNA sequence for clone

R0095:G04.

SEQ ID NO: 878 is the determined cDNA sequence for clone

25 R0095:G08.

SEQ ID NO: 879 is the determined cDNA sequence for clone

R0095:G09.

SEQ ID NO: 880 is the determined cDNA sequence for clone

R0095:G10.

30 SEQ ID NO: 881 is the determined cDNA sequence for clone

R0095:H01.

SEQ ID NO: 882 is the determined cDNA sequence for clone R0095:H02.

SEQ ID NO: 883 is the determined cDNA sequence for clone R0095:H04.

5 SEQ ID NO: 884 is the determined cDNA sequence for clone R0095:H06.

SEQ ID NO: 885 is the determined cDNA sequence for clone R0095:H07.

10 SEQ ID NO: 886 is the determined cDNA sequence for clone R0095:H09.

SEQ ID NO: 887 is the determined cDNA sequence for clone R0096:A02.

SEQ ID NO: 888 is the determined cDNA sequence for clone R0096:A08.

15 SEQ ID NO: 889 is the determined cDNA sequence for clone R0096:A09.

SEQ ID NO: 890 is the determined cDNA sequence for clone R0096:A10.

20 SEQ ID NO: 891 is the determined cDNA sequence for clone R0096:A11.

SEQ ID NO: 892 is the determined cDNA sequence for clone R0096:A12.

SEQ ID NO: 893 is the determined cDNA sequence for clone R0096:B02.

25 SEQ ID NO: 894 is the determined cDNA sequence for clone R0096:B03.

SEQ ID NO: 895 is the determined cDNA sequence for clone R0096:B04.

30 SEQ ID NO: 896 is the determined cDNA sequence for clone R0096:B05.

SEQ ID NO: 897 is the determined cDNA sequence for clone

R0096:B06.

SEQ ID NO: 898 is the determined cDNA sequence for clone

R0096:B07.

SEQ ID NO: 899 is the determined cDNA sequence for clone

5 R0096:B08.

SEQ ID NO: 900 is the determined cDNA sequence for clone

R0096:B09.

SEQ ID NO: 901 is the determined cDNA sequence for clone

R0096:B10.

10 SEQ ID NO: 902 is the determined cDNA sequence for clone

R0096:B11.

SEQ ID NO: 903 is the determined cDNA sequence for clone

R0096:B12.

SEQ ID NO: 904 is the determined cDNA sequence for clone

15 R0096:C01.

SEQ ID NO: 905 is the determined cDNA sequence for clone

R0096:C03.

SEQ ID NO: 906 is the determined cDNA sequence for clone

R0096:C04.

20 SEQ ID NO: 907 is the determined cDNA sequence for clone

R0096:C05.

SEQ ID NO: 908 is the determined cDNA sequence for clone

R0096:C06.

SEQ ID NO: 909 is the determined cDNA sequence for clone

25 R0096:C07.

SEQ ID NO: 910 is the determined cDNA sequence for clone

R0096:C08.

SEQ ID NO: 911 is the determined cDNA sequence for clone

R0096:C09.

30 SEQ ID NO: 912 is the determined cDNA sequence for clone

R0096:C10.

SEQ ID NO: 913 is the determined cDNA sequence for clone R0096:C11.

SEQ ID NO: 914 is the determined cDNA sequence for clone R0096:C12.

5 SEQ ID NO: 915 is the determined cDNA sequence for clone R0096:D01.

SEQ ID NO: 916 is the determined cDNA sequence for clone R0096:D02.

10 SEQ ID NO: 917 is the determined cDNA sequence for clone R0096:D03.

SEQ ID NO: 918 is the determined cDNA sequence for clone R0096:D04.

SEQ ID NO: 919 is the determined cDNA sequence for clone R0096:D05.

15 SEQ ID NO: 920 is the determined cDNA sequence for clone R0096:D08.

SEQ ID NO: 921 is the determined cDNA sequence for clone R0096:D09.

20 SEQ ID NO: 922 is the determined cDNA sequence for clone R0096:D10.

SEQ ID NO: 923 is the determined cDNA sequence for clone R0096:D12.

SEQ ID NO: 924 is the determined cDNA sequence for clone R0096:E01.

25 SEQ ID NO: 925 is the determined cDNA sequence for clone R0096:E02.

SEQ ID NO: 926 is the determined cDNA sequence for clone R0096:E03.

30 SEQ ID NO: 927 is the determined cDNA sequence for clone R0096:E04.

SEQ ID NO: 928 is the determined cDNA sequence for clone

R0096:E05.

SEQ ID NO: 929 is the determined cDNA sequence for clone

R0096:E06.

SEQ ID NO: 930 is the determined cDNA sequence for clone

5 R0096:E08.

SEQ ID NO: 931 is the determined cDNA sequence for clone

R0096:E09.

SEQ ID NO: 932 is the determined cDNA sequence for clone

R0096:E10.

10 SEQ ID NO: 933 is the determined cDNA sequence for clone

R0096:E11.

SEQ ID NO: 934 is the determined cDNA sequence for clone

R0096:E12.

SEQ ID NO: 935 is the determined cDNA sequence for clone

15 R0096:F01.

SEQ ID NO: 936 is the determined cDNA sequence for clone

R0096:F02.

SEQ ID NO: 937 is the determined cDNA sequence for clone

R0096:F03.

20 SEQ ID NO: 938 is the determined cDNA sequence for clone

R0096:F04.

SEQ ID NO: 939 is the determined cDNA sequence for clone

R0096:F05.

SEQ ID NO: 940 is the determined cDNA sequence for clone

25 R0096:F07.

SEQ ID NO: 941 is the determined cDNA sequence for clone

R0096:F10.

SEQ ID NO: 942 is the determined cDNA sequence for clone

R0096:F11.

30 SEQ ID NO: 943 is the determined cDNA sequence for clone

R0096:G01.

SEQ ID NO: 944 is the determined cDNA sequence for clone R0096:G03.

SEQ ID NO: 945 is the determined cDNA sequence for clone R0096:G04.

5 SEQ ID NO: 946 is the determined cDNA sequence for clone R0096:G05.

SEQ ID NO: 947 is the determined cDNA sequence for clone R0096:G06.

10 SEQ ID NO: 948 is the determined cDNA sequence for clone R0096:G07.

SEQ ID NO: 949 is the determined cDNA sequence for clone R0096:G09.

SEQ ID NO: 950 is the determined cDNA sequence for clone R0096:G10.

15 SEQ ID NO: 951 is the determined cDNA sequence for clone R0096:G12.

SEQ ID NO: 952 is the determined cDNA sequence for clone R0096:H01.

20 SEQ ID NO: 953 is the determined cDNA sequence for clone R0096:H02.

SEQ ID NO: 954 is the determined cDNA sequence for clone R0096:H03.

SEQ ID NO: 955 is the determined cDNA sequence for clone R0096:H07.

25 SEQ ID NO: 956 is the determined cDNA sequence for clone R0096:H08.

SEQ ID NO: 957 is the determined cDNA sequence for clone R0097:A05.

30 SEQ ID NO: 958 is the determined cDNA sequence for clone R0097:A06.

SEQ ID NO: 959 is the determined cDNA sequence for clone

R0097:A10.

SEQ ID NO: 960 is the determined cDNA sequence for clone

R0097:A11.

SEQ ID NO: 961 is the determined cDNA sequence for clone

5 R0097:B01.

SEQ ID NO: 962 is the determined cDNA sequence for clone

R0097:B03.

SEQ ID NO: 963 is the determined cDNA sequence for clone

R0097:B04.

10 SEQ ID NO: 964 is the determined cDNA sequence for clone

R0097:B05.

SEQ ID NO: 965 is the determined cDNA sequence for clone

R0097:B06.

SEQ ID NO: 966 is the determined cDNA sequence for clone

15 R0097:B07.

SEQ ID NO: 967 is the determined cDNA sequence for clone

R0097:B11.

SEQ ID NO: 968 is the determined cDNA sequence for clone

R0097:C01.

20 SEQ ID NO: 969 is the determined cDNA sequence for clone

R0097:C02.

SEQ ID NO: 970 is the determined cDNA sequence for clone

R0097:C03.

SEQ ID NO: 971 is the determined cDNA sequence for clone

25 R0097:C04.

SEQ ID NO: 972 is the determined cDNA sequence for clone

R0097:C05.

SEQ ID NO: 973 is the determined cDNA sequence for clone

R0097:C07.

30 SEQ ID NO: 974 is the determined cDNA sequence for clone

R0097:C08.

SEQ ID NO: 975 is the determined cDNA sequence for clone R0097:C09.

SEQ ID NO: 976 is the determined cDNA sequence for clone R0097:C10.

5 SEQ ID NO: 977 is the determined cDNA sequence for clone R0097:D01.

SEQ ID NO: 978 is the determined cDNA sequence for clone R0097:D08.

10 SEQ ID NO: 979 is the determined cDNA sequence for clone R0097:E02.

SEQ ID NO: 980 is the determined cDNA sequence for clone R0097:E09.

15 SEQ ID NO: 981 is the determined cDNA sequence for clone R0097:E11.

SEQ ID NO: 982 is the determined cDNA sequence for clone R0097:F01.

20 SEQ ID NO: 983 is the determined cDNA sequence for clone R0097:F11.

SEQ ID NO: 984 is the determined cDNA sequence for clone R0097:G01.

25 SEQ ID NO: 985 is the determined cDNA sequence for clone R0097:G11.

SEQ ID NO: 986 is the determined cDNA sequence for clone R0097:G12.

25 SEQ ID NO: 987 is the determined cDNA sequence for clone R0097:H01.

SEQ ID NO: 988 is the determined cDNA sequence for clone R0097:H02.

30 SEQ ID NO: 989 is the determined cDNA sequence for clone R0097:H04.

SEQ ID NO: 990 is the determined cDNA sequence for clone

R0097:H06.

SEQ ID NO: 991 is the determined cDNA sequence for clone

R0097:H07.

SEQ ID NO: 992 is the determined cDNA sequence for clone

5 R0097:H09.

SEQ ID NO: 993 is the determined cDNA sequence for clone

R0097:H11.

SEQ ID NO: 994 is the determined cDNA sequence for clone

R0098:A03.

10 SEQ ID NO: 995 is the determined cDNA sequence for clone

R0098:A05.

SEQ ID NO: 996 is the determined cDNA sequence for clone

R0098:A06.

SEQ ID NO: 997 is the determined cDNA sequence for clone

15 R0098:A10.

SEQ ID NO: 998 is the determined cDNA sequence for clone

R0098:A12.

SEQ ID NO: 999 is the determined cDNA sequence for clone

R0098:B01.

20 SEQ ID NO: 1000 is the determined cDNA sequence for clone

R0098:B02.

SEQ ID NO: 1001 is the determined cDNA sequence for clone

R0098:B05.

SEQ ID NO: 1002 is the determined cDNA sequence for clone

25 R0098:B06.

SEQ ID NO: 1003 is the determined cDNA sequence for clone

R0098:B10.

SEQ ID NO: 1004 is the determined cDNA sequence for clone

R0098:C03.

30 SEQ ID NO: 1005 is the determined cDNA sequence for clone

R0098:C04.

SEQ ID NO: 1006 is the determined cDNA sequence for clone R0098:C05.

SEQ ID NO: 1007 is the determined cDNA sequence for clone R0098:C10.

5 SEQ ID NO: 1008 is the determined cDNA sequence for clone R0098:C11.

SEQ ID NO: 1009 is the determined cDNA sequence for clone R0098:D01.

10 SEQ ID NO: 1010 is the determined cDNA sequence for clone R0098:D02.

SEQ ID NO: 1011 is the determined cDNA sequence for clone R0098:D07.

SEQ ID NO: 1012 is the determined cDNA sequence for clone R0098:D08.

15 SEQ ID NO: 1013 is the determined cDNA sequence for clone R0098:D09.

SEQ ID NO: 1014 is the determined cDNA sequence for clone R0098:D10.

20 SEQ ID NO: 1015 is the determined cDNA sequence for clone R0098:D11.

SEQ ID NO: 1016 is the determined cDNA sequence for clone R0098:D12.

SEQ ID NO: 1017 is the determined cDNA sequence for clone R0098:E01.

25 SEQ ID NO: 1018 is the determined cDNA sequence for clone R0098:E04.

SEQ ID NO: 1019 is the determined cDNA sequence for clone R0098:E05.

30 SEQ ID NO: 1020 is the determined cDNA sequence for clone R0098:E06.

SEQ ID NO: 1021 is the determined cDNA sequence for clone

R0098:E07.

SEQ ID NO: 1022 is the determined cDNA sequence for clone

R0098:E11.

SEQ ID NO: 1023 is the determined cDNA sequence for clone

5 R0098:F04.

SEQ ID NO: 1024 is the determined cDNA sequence for clone

R0098:F05.

SEQ ID NO: 1025 is the determined cDNA sequence for clone

R0098:F06.

10 SEQ ID NO: 1026 is the determined cDNA sequence for clone

R0098:F07.

SEQ ID NO: 1027 is the determined cDNA sequence for clone

R0098:F08.

SEQ ID NO: 1028 is the determined cDNA sequence for clone

15 R0098:F09.

SEQ ID NO: 1029 is the determined cDNA sequence for clone

R0098:F10.

SEQ ID NO: 1030 is the determined cDNA sequence for clone

R0098:F11.

20 SEQ ID NO: 1031 is the determined cDNA sequence for clone

R0098:F12.

SEQ ID NO: 1032 is the determined cDNA sequence for clone

R0098:G02.

SEQ ID NO: 1033 is the determined cDNA sequence for clone

25 R0098:G03.

SEQ ID NO: 1034 is the determined cDNA sequence for clone

R0098:G05.

SEQ ID NO: 1035 is the determined cDNA sequence for clone

R0098:G06.

30 SEQ ID NO: 1036 is the determined cDNA sequence for clone

R0098:G07.

SEQ ID NO: 1037 is the determined cDNA sequence for clone R0098:G08.

SEQ ID NO: 1038 is the determined cDNA sequence for clone R0098:G09.

5 SEQ ID NO: 1039 is the determined cDNA sequence for clone R0098:G10.

SEQ ID NO: 1040 is the determined cDNA sequence for clone R0098:G11.

10 SEQ ID NO: 1041 is the determined cDNA sequence for clone R0098:G12.

SEQ ID NO: 1042 is the determined cDNA sequence for clone R0098:H02.

SEQ ID NO: 1043 is the determined cDNA sequence for clone R0098:H03.

15 SEQ ID NO: 1044 is the determined cDNA sequence for clone R0098:H04.

SEQ ID NO: 1045 is the determined cDNA sequence for clone R0098:H05.

20 SEQ ID NO: 1046 is the determined cDNA sequence for clone R0098:H07.

SEQ ID NO: 1047 is the determined cDNA sequence for clone R0098:H08.

SEQ ID NO: 1048 is the determined cDNA sequence for clone R0098:H11.

25 SEQ ID NO: 1049 is the determined cDNA sequence for clone C878P which shows sequence similarity to homo sapiens cDNA FLJ10884 fis, clone NT2RP4001950 and homo sapiens cDNA FLJ11111 fis, clone PLACE1005923.

SEQ ID NO: 1050 is the determined cDNA sequence for clone C882P which shows sequence similarity to homo sapiens cDNA FLJ20116 fis, clone COLO 5655

30 and homo sapiens cDNA FLJ20740 fis, clone HEP07118.

SEQ ID NO: 1051 is the determined cDNA sequence for clone C883P which shows sequence similarity to human homeobox protein Cdx2 mRNA.

SEQ ID NO: 1052 is the determined cDNA sequence for clone C884P which shows sequence similarity to human TM4SF3 (aka, CO-029).

5 SEQ ID NO: 1053 is the determined cDNA sequence for clone C886P which shows sequence similarity to human secretory protein (P1.B) mRNA and homo sapiens trefoil factor 3 (intestinal) (TFF3) mRNA.

SEQ ID NO: 1054 is the determined cDNA sequence for clone C892P which shows sequence similarity to human galectin-4 mRNA.

10 SEQ ID NO: 1055 is the determined cDNA sequence for clone C900P which shows sequence similarity to homo sapiens mucin 11 (MUC11) mRNA.

SEQ ID NO: 1056 is the determined cDNA sequence for clone C902P which shows sequence similarity to homo sapiens calcium-dependent chloride channel-1 (hCLCA1) mRNA.

15 SEQ ID NO: 1057 is the determined cDNA sequence for clone C903P which shows sequence similarity to homo sapiens transmembrane mucin 12 (MUC12) mRNA.

SEQ ID NO: 1058 is the determined cDNA sequence for clone C899P which shows sequence similarity to homo sapiens intestinal mucin (MUC2) mRNA.

20 SEQ ID NO:1059 is the predicted amino acid sequence for the clone of SEQ ID NO:1049.

SEQ ID NO:1060 is the predicted amino acid sequence for the clone of SEQ ID NO:1050.

25 SEQ ID NO:1061 is the predicted amino acid sequence for the clone of SEQ ID NO:1051.

SEQ ID NO:1062 is the predicted amino acid sequence for the clone of SEQ ID NO:1052.

SEQ ID NO:1063 is the predicted amino acid sequence for the clone of SEQ ID NO:1053.

30 SEQ ID NO:1064 is the predicted amino acid sequence for the clone of SEQ ID NO:1054.

SEQ ID NO:1065 is the predicted amino acid sequence for the clone of SEQ ID NO:1055.

SEQ ID NO:1066 is the predicted amino acid sequence for the clone of SEQ ID NO:1056.

5 SEQ ID NO:1067 is the predicted amino acid sequence for the clone of SEQ ID NO:1057.

SEQ ID NO:1068 is the predicted amino acid sequence for the clone of SEQ ID NO:1058.

SEQ ID NO:1069 is the full length nucleotide sequence for clone CS1-152
10 (C880P, C887P).

SEQ ID NO:1070 is the predicted amino acid sequence for the clone of SEQ ID NO:1069.

SEQ ID NO:1071 is the cDNA sequence for human colon specific gene
(geneseq X03195) identified from a computer search of the public geneseq database
15 and which shows similarity to clone C880P.

SEQ ID NO:1072 is the cDNA sequence for human protein comprising
secretory signal nucleotide sequence 3 (geneseq V29035) identified from a computer
search of the public geneseq database and which shows similarity to clone C880P.

SEQ ID NO:1073 is the cDNA sequence for open reading frame human
20 protein comprising secretory signal 3 (geneseq V29036) identified from a computer
search of the public geneseq database and which shows similarity to clone C880P.

SEQ ID NO:1074 is the cDNA sequence for human colon specific protein
cDNA (geneseq T51784) identified from a computer search of the public geneseq
database and which shows similarity to clone C880P.

25 SEQ ID NO:1075 is the cDNA sequence for human Reg 1-gamma protein
(geneseq V29156) identified from a computer search of the public geneseq database
and which shows similarity to clone C880P.

SEQ ID NO:1076 is the cDNA sequence for human intestinal peptide-
associated transporter HPT-1 mRNA, complete cds and homo sapiens mRNA for L1-
30 cadherin (geneseq X18166) identified from a computer search of the public geneseq
database and which shows similarity to clone C888P.

SEQ ID NO:1077 is the amino acid sequence of geneseq record W12691 which shows sequence similarity to clone C880P.

SEQ ID NO:1078 is the amino acid sequence of geneseq record W37866 which shows sequence similarity to clone C880P.

5 SEQ ID NO:1079 is the amino acid sequence of geneseq record W37929 which shows sequence similarity to clone C880P.

SEQ ID NO:1080 is the amino acid sequence of geneseq record W84274 which shows sequence similarity to clone C880P.

10 SEQ ID NO:1081 is the amino acid sequence of geneseq record W740898 which shows sequence similarity to clone C888P.

SEQ ID NO:1082 is the determined cDNA sequence for clone 27540

SEQ ID NO:1083 is the predicted amino acid sequence of clone 27540 (SEQ ID NO:1082)

DETAILED DESCRIPTION OF THE INVENTION

15 As noted above, the present invention is generally directed to compositions and methods for the therapy and diagnosis of cancer, such as colon cancer. The compositions described herein may include colon tumor polypeptides, polynucleotides encoding such polypeptides, binding agents such as antibodies, antigen presenting cells (APCs) and/or immune system cells (e.g., T cells).

20 Polypeptides of the present invention generally comprise at least a portion (such as an immunogenic portion) of a colon tumor protein or a variant thereof. A "colon tumor protein" is a protein that is expressed in colon tumor cells at a level that is at least two fold, and preferably at least five fold, greater than the level of expression in a normal tissue, as determined using a representative assay provided herein. Certain colon

25 tumor proteins are tumor proteins that react detectably (within an immunoassay, such as an ELISA or Western blot) with antisera of a patient afflicted with colon cancer. Polynucleotides of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of such a polypeptide, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or antigen-binding

30 fragments thereof, that are capable of binding to a polypeptide as described above.

Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B-cells that express a polypeptide as described above. T cells that may be employed within such compositions are generally T cells that are specific for a polypeptide as described above.

5 The present invention is based on the discovery of human colon tumor proteins. Sequences of polynucleotides encoding specific tumor proteins are provided in SEQ ID NO: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081.

COLON TUMOR PROTEIN POLYNUCLEOTIDES

10 Any polynucleotide that encodes a colon tumor protein or a portion or other variant thereof as described herein is encompassed by the present invention. Preferred polynucleotides comprise at least 15 consecutive nucleotides, preferably at least 30 consecutive nucleotides and more preferably at least 45 consecutive nucleotides, that encode a portion of a colon tumor protein. More preferably, a
15 polynucleotide encodes an immunogenic portion of a colon tumor protein. Polynucleotides complementary to any such sequences are also encompassed by the present invention. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include HnRNA molecules, which contain introns and correspond to
20 a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

25 Polynucleotides may comprise a native sequence (*i.e.*, an endogenous sequence that encodes a colon tumor protein or a portion thereof) or may comprise a variant of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the immunogenicity of the encoded polypeptide is not diminished, relative to a native tumor protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as
30 described herein. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity

to a polynucleotide sequence that encodes a native colon tumor protein or a portion thereof.

Two polynucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acids in the two sequences is the same when 5 aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, in which a sequence may be compared to a reference sequence 10 of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies 15 several alignment schemes described in the following references: Dayhoff, M.O. (1978) *A model of evolutionary change in proteins – Matrices for detecting distant relationships*. In Dayhoff, M.O. (ed.) *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) *Unified Approach to Alignment and Phylogenies* pp. 626-645 20 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) *CABIOS* 5:151-153; Myers, E.W. and Muller W. (1988) *CABIOS* 4:11-17; Robinson, E.D. (1971) *Comb. Theor* 11:105; Santou, N. Nes, M. (1987) *Mol. Biol. Evol.* 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy*, Freeman Press, San 25 Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) *Proc. Natl. Acad. Sci. USA* 80:726-730.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the 30 comparison window may comprise additions or deletions (i.e. gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference

sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of 5 matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

Variants may also, or alternatively, be substantially homologous to a native gene, or a portion or complement thereof. Such polynucleotide variants are 10 capable of hybridizing under moderately stringent conditions to a naturally occurring DNA sequence encoding a native colon tumor protein (or a complementary sequence). Suitable moderately stringent conditions include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5 X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X 15 SSC containing 0.1% SDS.

It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, 20 polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The 25 resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

Polynucleotides may be prepared using any of a variety of techniques. For example, a polynucleotide may be identified, as described in more detail below, 30 by screening a microarray of cDNAs for tumor-associated expression (i.e., expression that is at least two fold greater in a colon tumor than in normal tissue, as determined

using a representative assay provided herein). Such screens may be performed using a Synteni microarray (Palo Alto, CA) according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA* 93:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA* 94:2150-2155, 1997).

- 5 Alternatively, polypeptides may be amplified from cDNA prepared from cells expressing the proteins described herein, such as colon tumor cells. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.

10 An amplified portion may be used to isolate a full length gene from a suitable library (e.g., a colon tumor cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be
15 preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with ^{32}P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing
20 denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for
25 example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into a single contiguous sequence. A full
30 length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.

Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers 5 may be designed using, for example, software well known in the art. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68°C to 72°C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.

One such amplification technique is inverse PCR (*see* Triglia et al., *Nucl. Acids Res.* 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a 15 partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is 20 described in WO 96/38591. Another such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom et al., *PCR Methods Applic.* 1:111-19, 1991) and walking 25 PCR (Parker et al., *Nucl. Acids Res.* 19:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may 30 generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence.

Certain nucleic acid sequences of cDNA molecules encoding portions of colon tumor proteins are provided in SEQ ID NO: 1-121, 123-197, 205-630, 632-684, 686, 690-691, and 694-1081. These polynucleotides were isolated from colon tumor cDNA libraries using conventional and/or PCR-based subtraction techniques,
5 as described below.

Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (see Adelman et al., *DNA* 2:183, 1983). Alternatively, RNA molecules may be generated by *in vitro* or *in vivo* transcription of DNA sequences encoding a colon tumor protein, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6). Certain portions may be used to prepare an encoded polypeptide, as
10 described herein. In addition, or alternatively, a portion may be administered to a patient such that the encoded polypeptide is generated *in vivo* (e.g., by transfecting antigen-presenting cells, such as dendritic cells, with a cDNA construct encoding a colon tumor polypeptide, and administering the transfected cells to the patient).

A portion of a sequence complementary to a coding sequence (*i.e.*, an
20 antisense polynucleotide) may also be used as a probe or to modulate gene expression. cDNA constructs that can be transcribed into antisense RNA may also be introduced into cells of tissues to facilitate the production of antisense RNA. An antisense polynucleotide may be used, as described herein, to inhibit expression of a tumor protein. Antisense technology can be used to control gene expression through triple-helix formation, which compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (see Gee et al., *In Huber and Carr, Molecular and Immunologic Approaches*, Futura Publishing Co. (Mt. Kisco, NY; 1994)). Alternatively, an antisense molecule may be designed to hybridize with a control region of a gene (e.g.,
25 promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.
30

A portion of a coding sequence, or of a complementary sequence, may also be designed as a probe or primer to detect gene expression. Probes may be labeled with a variety of reporter groups, such as radionuclides and enzymes, and are preferably at least 10 nucleotides in length, more preferably at least 20 nucleotides in 5 length and still more preferably at least 30 nucleotides in length. Primers, as noted above, are preferably 22-30 nucleotides in length.

Any polynucleotide may be further modified to increase stability *in vivo*. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather 10 than phosphodiester linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutoxine, as well as acetyl-methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

Nucleotide sequences as described herein may be joined to a variety of 15 other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors. In general, a vector will contain an origin of 20 replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.

Within certain embodiments, polynucleotides may be formulated so as to permit entry into a cell of a mammal, and expression therein. Such formulations 25 are particularly useful for therapeutic purposes, as described below. Those of ordinary skill in the art will appreciate that there are many ways to achieve expression of a polynucleotide in a target cell, and any suitable method may be employed. For example, a polynucleotide may be incorporated into a viral vector such as, but not limited to, adenovirus, adeno-associated virus, retrovirus, or vaccinia or other pox 30 virus (e.g., avian pox virus). Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally

transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.

Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle *in vitro* and *in vivo* is a liposome (*i.e.*, an artificial membrane vesicle). The preparation and use of such systems is well known in the art.

COLON TUMOR POLYPEPTIDES

Within the context of the present invention, polypeptides may comprise at least an immunogenic portion of a colon tumor protein or a variant thereof, as described herein. As noted above, a "colon tumor protein" is a protein that is expressed by colon tumor cells. Proteins that are colon tumor proteins also react detectably within an immunoassay (such as an ELISA) with antisera from a patient with colon cancer. Polypeptides as described herein may be of any length. Additional sequences derived from the native protein and/or heterologous sequences may be present, and such sequences may (but need not) possess further immunogenic or antigenic properties.

An "immunogenic portion," as used herein is a portion of a protein that is recognized (*i.e.*, specifically bound) by a B-cell and/or T-cell surface antigen receptor. Such immunogenic portions generally comprise at least 5 amino acid residues, more preferably at least 10, and still more preferably at least 20 amino acid residues of a colon tumor protein or a variant thereof. Certain preferred immunogenic portions include peptides in which an N-terminal leader sequence and/or transmembrane domain have been deleted. Other preferred immunogenic portions may contain a small N- and/or C-terminal deletion (*e.g.*, 1-30 amino acids, preferably 5-15 amino acids), relative to the mature protein.

Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (*i.e.*, they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well known techniques. An immunogenic portion of a native colon tumor protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (*e.g.*, in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A.

As noted above, a composition may comprise a variant of a native colon tumor protein. A polypeptide "variant," as used herein, is a polypeptide that differs from a native colon tumor protein in one or more substitutions, deletions, additions and/or insertions, such that the immunogenicity of the polypeptide is not substantially diminished. In other words, the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein. Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants

in which a small portion (*e.g.*, 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein.

Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity 5 (determined as described above) to the identified polypeptides.

Preferably, a variant contains conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the 10 polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups 15 having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or 20 alternatively, contain non-conservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.

As noted above, polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (*e.g.*, poly-His), or to enhance binding of the polypeptide to a solid 30 support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

Polypeptides may be prepared using any of a variety of well known techniques. Recombinant polypeptides encoded by DNA sequences as described above may be readily prepared from the DNA sequences using any of a variety of expression vectors known to those of ordinary skill in the art. Expression may be 5 achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO. Supernatants from suitable host/vector systems which secrete 10 recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.

15 Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino 20 acids are sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

25 Within certain specific embodiments, a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known tumor protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized 30 by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both

immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein.

5 Fusion proteins may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion protein is expressed as a recombinant protein, allowing the production of increased levels, relative to a non-fused protein, in an expression system. Briefly, DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate
10 expression vector. The 3' end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion protein that retains the biological activity of both component polypeptides.

15 A peptide linker sequence may be employed to separate the first and the second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following
20 factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as
25 Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene* 40:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA* 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not
30 required when the first and second polypeptides have non-essential N-terminal amino

acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements 5 responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Fusion proteins are also provided that comprise a polypeptide of the 10 present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. *New Engl. J. Med.*, 336:86-91, 1997).

Within preferred embodiments, an immunological fusion partner is 15 derived from protein D, a surface protein of the gram-negative bacterium *Haemophilus influenzae* B (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is 20 included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in *E. coli* (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from *influenzae* virus, NS1 (hemagglutinin). Typically, the N-terminal 81 amino acids are 25 used, although different fragments that include T-helper epitopes may be used.

In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from *Streptococcus pneumoniae*, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene; *Gene* 43:265-292, 30 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible

for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of *E. coli* C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (see 5 *Biotechnology* 10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.

In general, polypeptides (including fusion proteins) and 10 polynucleotides as described herein are isolated. An "isolated" polypeptide or polynucleotide is one that is removed from its original environment. For example, a naturally-occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least 15 about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment.

BINDING AGENTS

The present invention further provides agents, such as antibodies and 20 antigen-binding fragments thereof, that specifically bind to a colon tumor protein. As used herein, an antibody, or antigen-binding fragment thereof, is said to "specifically bind" to a colon tumor protein if it reacts at a detectable level (within, for example, an ELISA) with a colon tumor protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, "binding" refers to a noncovalent 25 association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind," in the context of the 30 present invention, when the binding constant for complex formation exceeds about

10^3 L/mol. The binding constant may be determined using methods well known in the art.

Binding agents may be further capable of differentiating between patients with and without a cancer, such as colon cancer, using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a colon tumor protein will generate a signal indicating the presence of a cancer in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without the cancer. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, sputum, urine and/or tumor biopsies) from patients with and without a cancer (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin

or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be

prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be 5 separated by affinity chromatography on protein A bead columns.

Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs 10 include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diphtheria toxin, cholera toxin, gelonin, *Pseudomonas* exotoxin, *Shigella* toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a 15 suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulphhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl 20 group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an 25 agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described 30 in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl

groups, sulphydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitzer), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing

nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

10

T CELLS

Immunotherapeutic compositions may also, or alternatively, comprise T cells specific for a colon tumor protein. Such cells may generally be prepared *in vitro* or *ex vivo*, using standard procedures. For example, T cells may be isolated from bone marrow, peripheral blood, or a fraction of bone marrow or peripheral blood of a patient, using a commercially available cell separation system, such as the ISOLEX™ system, available from Nexell Therapeutics Inc., Irvine, CA. Alternatively, T cells may be derived from related or unrelated humans, non-human mammals, cell lines or cultures.

20

T cells may be stimulated with a colon tumor polypeptide, polynucleotide encoding a colon tumor polypeptide and/or an antigen presenting cell (APC) that expresses such a polypeptide. Such stimulation is performed under conditions and for a time sufficient to permit the generation of T cells that are specific for the polypeptide. Preferably, a colon tumor polypeptide or polynucleotide is present within a delivery vehicle, such as a microsphere, to facilitate the generation of specific T cells.

25

T cells are considered to be specific for a colon tumor polypeptide if the T cells kill target cells coated with the polypeptide or expressing a gene encoding the polypeptide. T cell specificity may be evaluated using any of a variety of standard techniques. For example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation,

compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al., *Cancer Res.* 54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques. For example, T cell proliferation can be detected by 5 measuring an increased rate of DNA synthesis (e.g., by pulse-labeling cultures of T cells with tritiated thymidine and measuring the amount of tritiated thymidine incorporated into DNA). Contact with a colon tumor polypeptide (100 ng/ml - 100 µ g/ml, preferably 200 ng/ml - 25 µg/ml) for 3 - 7 days should result in at least a two fold increase in proliferation of the T cells. Contact as described above for 2-3 hours 10 should result in activation of the T cells, as measured using standard cytokine assays in which a two fold increase in the level of cytokine release (e.g., TNF or IFN- γ) is indicative of T cell activation (see Coligan et al., *Current Protocols in Immunology*, vol. 1, Wiley Interscience (Greene 1998)). T cells that have been activated in response to a colon tumor polypeptide, polynucleotide or polypeptide-expressing APC 15 may be CD4 $^{+}$ and/or CD8 $^{+}$. Colon tumor protein-specific T cells may be expanded using standard techniques. Within preferred embodiments, the T cells are derived from either a patient or a related, or unrelated, donor and are administered to the patient following stimulation and expansion.

For therapeutic purposes, CD4 $^{+}$ or CD8 $^{+}$ T cells that proliferate in 20 response to a colon tumor polypeptide, polynucleotide or APC can be expanded in number either *in vitro* or *in vivo*. Proliferation of such T cells *in vitro* may be accomplished in a variety of ways. For example, the T cells can be re-exposed to a colon tumor polypeptide, or a short peptide corresponding to an immunogenic portion of such a polypeptide, with or without the addition of T cell growth factors, such as 25 interleukin-2, and/or stimulator cells that synthesize a colon tumor polypeptide. Alternatively, one or more T cells that proliferate in the presence of a colon tumor protein can be expanded in number by cloning. Methods for cloning cells are well known in the art, and include limiting dilution.

30 **PHARMACEUTICAL COMPOSITIONS AND VACCINES**

Within certain aspects, polypeptides, polynucleotides, T cells and/or

binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (*i.e.*, vaccines). Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds and an immunostimulant. An immunostimulant may be any substance that enhances or potentiates an immune response to an exogenous antigen. Examples of immunostimulants include adjuvants, biodegradable microspheres (*e.g.*, polylactic galactide) and liposomes (into which the compound is incorporated; *see e.g.*, Fullerton, U.S. Patent No. 4,235,877). Vaccine preparation is generally described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other tumor antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.

A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated *in situ*. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, *Crit. Rev. Therap. Drug Carrier Systems* 15:143-198, 1998, and references cited therein. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope. In a preferred embodiment, the DNA may be introduced using a viral expression system (*e.g.*, vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., *Proc. Natl. Acad. Sci. USA* 86:317-321, 1989; Flexner et al., *Ann. N.Y.*

Acad. Sci. 569:86-103, 1989; Flexner et al., *Vaccine* 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, *Biotechniques* 6:616-627, 1988; Rosenfeld et al., *Science* 252:431-434, 1991; Kolls et al., *Proc. Natl. Acad. Sci. USA* 91:215-219, 1994; Kass-Eisler et al., *Proc. Natl. Acad. Sci. USA* 90:11498-11502, 1993; Guzman et al., *Circulation* 88:2838-2848, 1993; and Guzman et al., *Cir. Res.* 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., *Science* 259:1745-1749, 10 1993 and reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of 15 carrier will vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a 20 wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as 25 carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, 30 antioxidants, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide) and/or preservatives. Alternatively, compositions of the present

invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.

Any of a variety of immunostimulants may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most 5 adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 10 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl 15 lipid A and quill A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

Within the vaccines provided herein, the adjuvant composition is preferably designed to induce an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN- γ , TNF α , IL-2 and IL-12) tend to favor 20 the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is 25 predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, *Ann. Rev. Immunol.* 7:145-173, 1989.

Preferred adjuvants for use in eliciting a predominantly Th1-type, 30 response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt.

MPL adjuvants are available from Corixa Corp. (Seattle, WA) (*see* US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in 5 WO 96/02555 and WO 99/33488. Immunostimulatory DNA sequences are also described, for example, by Sato et al., *Science* 273:352, 1996. Another preferred adjuvant is a saponin, preferably QS21 (Aquila Biopharmaceuticals Inc., Framingham, MA), which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and 10 saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprises an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in 15 WO 95/17210.

Other preferred adjuvants include Montanide ISA 720 (Seppic, France), SAF (Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (*e.g.*, SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Ribi ImmunoChem Research Inc., Hamilton, 20 MT), RC-529 (Corixa, Seattle, WA) and Aminoalkyl glucosaminide 4-phosphates (AGPs).

Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient. The compositions described herein may be administered 25 as part of a sustained release formulation (*i.e.*, a formulation such as a capsule, sponge or gel (composed of polysaccharides, for example) that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology (*see, e.g.* Coombes et al., *Vaccine* 14:1429-1438, 1996) and administered by, for example, oral, rectal or subcutaneous implantation, or by 30 implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained

within a reservoir surrounded by a rate controlling membrane.

Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. Such carriers include microparticles of poly(lactide-co-glycolide), as well as polyacrylate, latex, starch, cellulose and dextran. Other delayed-release carriers include supramolecular biovectors, which comprise a non-liquid hydrophilic core (e.g., a cross-linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (see e.g., U.S. Patent No. 5,151,254 and PCT applications WO 10 94/20078, WO/94/23701 and WO 96/06638). The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects *per se* and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, *Nature* 392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (see Timmerman and Levy, *Ann. Rev. Med.* 50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate *in situ*, with marked cytoplasmic processes (dendrites) visible *in vitro*), their

ability to take up, process and present antigens with high efficiency, and their ability to activate naïve T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells *in vivo* or *ex vivo*, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al., *Nature Med.* 4:594-600, 1998).

Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNF α to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNF α , CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fc γ receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).

APCs may generally be transfected with a polynucleotide encoding a colon tumor protein (or portion or other variant thereof) such that the colon tumor polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place *ex vivo*, and a composition or vaccine comprising

such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs *in vivo*. *In vivo* and *ex vivo* transfection of dendritic cells, for example, may generally 5 be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., *Immunology and cell Biology* 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the colon tumor polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant 10 bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence 15 of the polypeptide.

Vaccines and pharmaceutical compositions may be presented in unit-dose or multi-dose containers, such as sealed ampoules or vials. Such containers are preferably hermetically sealed to preserve sterility of the formulation until use. In general, formulations may be stored as suspensions, solutions or emulsions in oily or aqueous vehicles. Alternatively, a vaccine or pharmaceutical composition may be 20 stored in a freeze-dried condition requiring only the addition of a sterile liquid carrier immediately prior to use.

CANCER THERAPY

In further aspects of the present invention, the compositions described 25 herein may be used for immunotherapy of cancer, such as colon cancer. Within such methods, pharmaceutical compositions and vaccines are typically administered to a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of 30 a cancer or to treat a patient afflicted with a cancer. A cancer may be diagnosed using criteria generally accepted in the art, including the presence of a malignant tumor.

Pharmaceutical compositions and vaccines may be administered either prior to or following surgical removal of primary tumors and/or treatment such as administration of radiotherapy or conventional chemotherapeutic drugs.

Within certain embodiments, immunotherapy may be active 5 immunotherapy, in which treatment relies on the *in vivo* stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (such as polypeptides and polynucleotides disclosed herein).

Within other embodiments, immunotherapy may be passive 10 immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T cells as discussed above, T lymphocytes (such as CD8⁺ cytotoxic T lymphocytes and CD4⁺ T-helper tumor- 15 infiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokine-activated killer cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein. T cell receptors and antibody receptors specific for the polypeptides recited herein may be cloned, expressed and transferred into other vectors or effector cells for adoptive 20 immunotherapy. The polypeptides provided herein may also be used to generate antibodies or anti-idiotypic antibodies (as described above and in U.S. Patent No. 4,918,164) for passive immunotherapy.

Effector cells may generally be obtained in sufficient quantities for adoptive immunotherapy by growth *in vitro*, as described herein. Culture conditions 25 for expanding single antigen-specific effector cells to several billion in number with retention of antigen recognition *in vivo* are well known in the art. Such *in vitro* culture conditions typically use intermittent stimulation with antigen, often in the presence of cytokines (such as IL-2) and non-dividing feeder cells. As noted above, immunoreactive polypeptides as provided herein may be used to rapidly expand 30 antigen-specific T cell cultures in order to generate a sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic,

macrophage, monocyte, fibroblast and/or B cells, may be pulsed with immunoreactive polypeptides or transfected with one or more polynucleotides using standard techniques well known in the art. For example, antigen-presenting cells can be transfected with a polynucleotide having a promoter appropriate for increasing expression in a recombinant virus or other expression system. Cultured effector cells for use in therapy must be able to grow and distribute widely, and to survive long term *in vivo*. Studies have shown that cultured effector cells can be induced to grow *in vivo* and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al., *Immunological Reviews* 157:177, 1997).

Alternatively, a vector expressing a polypeptide recited herein may be introduced into antigen presenting cells taken from a patient and clonally propagated *ex vivo* for transplant back into the same patient. Transfected cells may be reintroduced into the patient using any means known in the art, preferably in sterile form by intravenous, intracavitory, intraperitoneal or intratumor administration.

Routes and frequency of administration of the therapeutic compositions disclosed herein, as well as dosage, will vary from individual to individual, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Preferably, between 1 and 10 doses may be administered over a 52 week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response, and is at least 10-50% above the basal (*i.e.*, untreated) level. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells *in vitro*. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (*e.g.*, more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-

vaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 25 µg to 5 mg per kg of host. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

5 In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome (e.g., more frequent remissions, complete or partial, or longer disease-free survival) in treated patients as compared to non-treated patients. Increases in
10 preexisting immune responses to a colon tumor protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.

15 **METHODS FOR DETECTING CANCER**

In general, a cancer may be detected in a patient based on the presence of one or more colon tumor proteins and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, sputum, urine and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to
20 indicate the presence or absence of a cancer such as colon cancer. In addition, such proteins may be useful for the detection of other cancers. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding a tumor protein, which is also indicative of the
25 presence or absence of a cancer. In general, a colon tumor sequence should be present at a level that is at least three fold higher in tumor tissue than in normal tissue

There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory,
30 1988. In general, the presence or absence of a cancer in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b)

detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

In a preferred embodiment, the assay involves the use of binding agent immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include full length colon tumor proteins and portions thereof to which the binding agent binds, as described above.

The solid support may be any material known to those of ordinary skill in the art to which the tumor protein may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding

agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to 5 about 10 µg, and preferably about 100 ng to about 1 µg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on 10 the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

15 In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized 20 polypeptide-antibody complexes and a detection reagent (preferably a second antibody capable of binding to a different site on the polypeptide) containing a reporter group is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as 25 described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed 30 to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is a period of time that is sufficient to detect the

presence of polypeptide within a sample obtained from an individual with colon cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary 5 to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second 10 antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include those groups recited above.

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of 15 binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, 20 luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

25 To determine the presence or absence of a cancer, such as colon cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value for the detection of a cancer is the average mean signal obtained when the immobilized antibody is incubated with 30 samples from patients without the cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered

positive for the cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined 5 from a plot of pairs of true positive rates (*i.e.*, sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (*i.e.*, the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by 10 this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for a cancer.

15 In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the binding agent is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized binding agent as the sample passes through the membrane. A second, labeled binding agent then binds to the binding agent-polypeptide complex as a 20 solution containing the second binding agent flows through the membrane. The detection of bound second binding agent may then be performed as described above. In the strip test format, one end of the membrane to which binding agent is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second binding agent and to the area of 25 immobilized binding agent. Concentration of second binding agent at the area of immobilized antibody indicates the presence of a cancer. Typically, the concentration of second binding agent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of binding agent immobilized on the membrane is selected to generate a 30 visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich

assay, in the format discussed above. Preferred binding agents for use in such assays are antibodies and antigen-binding fragments thereof. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 μ g, and more preferably from about 50 ng to about 500 ng. Such tests can typically be
5 performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the tumor proteins or binding agents of the present invention. The above descriptions are intended to be exemplary only. For example, it will be apparent to those of ordinary skill in the art that the above protocols may be readily modified to
10 use colon tumor polypeptides to detect antibodies that bind to such polypeptides in a biological sample. The detection of such colon tumor protein specific antibodies may correlate with the presence of a cancer.

A cancer may also, or alternatively, be detected based on the presence of T cells that specifically react with a colon tumor protein in a biological sample.
15 Within certain methods, a biological sample comprising CD4 $^{+}$ and/or CD8 $^{+}$ T cells isolated from a patient is incubated with a colon tumor polypeptide, a polynucleotide encoding such a polypeptide and/or an APC that expresses at least an immunogenic portion of such a polypeptide, and the presence or absence of specific activation of the T cells is detected. Suitable biological samples include, but are not limited to, isolated
20 T cells. For example, T cells may be isolated from a patient by routine techniques (such as by Ficoll/Hypaque density gradient centrifugation of peripheral blood lymphocytes). T cells may be incubated *in vitro* for 2-9 days (typically 4 days) at 37°C with one or more representative polypeptides (e.g., 5 - 25 μ g/ml). It may be desirable to incubate another aliquot of a T cell sample in the absence of colon tumor
25 polypeptide to serve as a control. For CD4 $^{+}$ T cells, activation is preferably detected by evaluating proliferation of the T cells. For CD8 $^{+}$ T cells, activation is preferably detected by evaluating cytolytic activity. A level of proliferation that is at least two fold greater and/or a level of cytolytic activity that is at least 20% greater than in disease-free patients indicates the presence of a cancer in the patient.

30 As noted above, a cancer may also, or alternatively, be detected based on the level of mRNA encoding a colon tumor protein in a biological sample. For

example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a colon tumor cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (i.e., hybridizes to) a polynucleotide encoding the colon tumor protein. The amplified 5 cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes that specifically hybridize to a polynucleotide encoding a colon tumor protein may be used in a hybridization assay to detect the presence of polynucleotide encoding the tumor protein in a biological sample.

10 To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a colon tumor protein that is at least 15 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers and/or probes will hybridize to a polynucleotide encoding a polypeptide disclosed herein under moderately stringent conditions, as defined above. Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers comprise at least 20 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a DNA molecule having a sequence recited in SEQ ID NO: 1-121, 123-197, 205-630, 632-684, 686, 690-691, and 694-1081. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al., *Cold Spring Harbor Symp. Quant. Biol.*, 51:263, 1987; Erlich ed., *PCR Technology*, 25 Stockton Press, NY, 1989).

One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, such as biopsy tissue, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, 30 which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and

from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically
5 considered positive.

In another embodiment, the disclosed compositions may be used as markers for the progression of cancer. In this embodiment, assays as described above for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) or polynucleotide evaluated. For example, the assays may
10 be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide or polynucleotide detected increases over time. In contrast, the cancer is not progressing when the level of reactive polypeptide or polynucleotide either remains constant or decreases with time.

15 Certain *in vivo* diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.

20 As noted above, to improve sensitivity, multiple colon tumor protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of tumor protein markers may be based on routine experiments to determine combinations that
25 results in optimal sensitivity. In addition, or alternatively, assays for tumor proteins provided herein may be combined with assays for other known tumor antigens.

DIAGNOSTIC KITS

The present invention further provides kits for use within any of the
30 above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds,

reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a colon tumor protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose 5 elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.

Alternatively, a kit may be designed to detect the level of mRNA encoding a colon tumor protein in a biological sample. Such kits generally comprise 10 at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a colon tumor protein. Such an oligonucleotide may be used, for example, within a PCR or hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a colon 15 tumor protein.

The following Examples are offered by way of illustration and not by way of limitation.

100

EXAMPLES

Example 1

ISOLATION AND CHARACTERIZATION OF COLON TUMOR POLYPEPTIDES
5 BY PCR-BASED SUBTRACTION AND MICROARRAY ANALYSIS

A cDNA library was constructed in the PCR2.1 vector (Invitrogen, Carlsbad, CA) by subtracting a pool of three colon tumors with a pool of normal colon, spleen, brain, liver, kidney, lung, stomach and small intestine using PCR subtraction methodologies (Clontech, Palo Alto, CA). The subtraction was performed using a PCR-based protocol, which was modified to generate larger fragments. Within this protocol, tester and driver double stranded cDNA were separately digested with five restriction enzymes that recognize six-nucleotide restriction sites (MluI, MscI, PvuII, Sall and StuI). This digestion resulted in an average cDNA size of 600 bp, rather than the average size of 300 bp that results from digestion with RsaI according to the Clontech protocol. This modification did not affect the subtraction efficiency. Two tester populations were then created with different adapters, and the driver library remained without adapters.

The tester and driver libraries were then hybridized using excess driver cDNA. In the first hybridization step, driver was separately hybridized with each of the two tester cDNA populations. This resulted in populations of (a) unhybridized tester cDNAs, (b) tester cDNAs hybridized to other tester cDNAs, (c) tester cDNAs hybridized to driver cDNAs, and (d) unhybridized driver cDNAs. The two separate hybridization reactions were then combined, and rehybridized in the presence of additional denatured driver cDNA. Following this second hybridization, in addition to populations (a) through (d), a fifth population (e) was generated in which tester cDNA with one adapter hybridized to tester cDNA with the second adapter. Accordingly, the second hybridization step resulted in enrichment of differentially expressed sequences which could be used as templates for PCR amplification with 30 adaptor-specific primers.

The ends were then filled in, and PCR amplification was performed using adaptor-specific primers. Only population (e), which contained tester cDNA that did not hybridize to driver cDNA, was amplified exponentially. A second PCR amplification step was then performed, to reduce background and further enrich 5 differentially expressed sequences.

This PCR-based subtraction technique normalizes differentially expressed cDNAs so that rare transcripts that are over-expressed in colon tumor tissue may be recoverable. Such transcripts would be difficult to recover by traditional subtraction methods.

10 To characterize the complexity and redundancy of the subtracted library, 96 clones were randomly picked and 65 were sequenced, as previously described. These sequences were further characterized by comparison with the most recent Genbank database (April, 1998) to determine their degree of novelty. No significant homologies were found to 21 of these clones, hereinafter referred to as
15 11092, 11093, 11096, 11098, 11103, 11174, 11108, 11112, 11115, 11117, 11118, 11134, 11151, 11154, 11158, 11168, 11172, 11175, 11184, 11185 and 11187. The determined cDNA sequences for these clones are provided in SEQ ID NO: 48, 49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101 and 109-111, respectively.

20 Two-thousand clones from the above mentioned cDNA subtraction library were randomly picked and submitted to a round of PCR amplification. Briefly, 0.5 µl of glycerol stock solution was added to 99.5 µl of pcr MIX (80 µl H₂O, 10 µl 10X PCR Buffer, 6 µl 25 mM MgCl₂, 1 µl 10 mM dNTPs, 1 µl 100 mM M13 forward primer (CACGACGTTGTAAAACGACGG), 1 µl 100 mM M13 reverse primer (CACAGGAAACAGCTATGACC)), and 0.5 µl 5 u/ml Taq polymerase (primers
25 provided by (Operon Technologies, Alameda, CA). The PCR amplification was run for thirty cycles under the following conditions: 95°C for 5 min., 92°C for 30 sec., 57°C for 40 sec., 75°C for 2 min. and 75°C for 5 minutes.

mRNA expression levels for representative clones were determined using microarray technology (Synteni, Palo Alto, CA) in colon tumor tissues (n=25),
30 normal colon tissues (n=6), kidney, lung, liver, brain, heart, esophagus, small intestine, stomach, pancreas, adrenal gland, salivary gland, resting PBMC, activated

PBMC, bone marrow, dendritic cells, spinal cord, blood vessels, skeletal muscle, skin, breast and fetal tissues. The number of tissue samples tested in each case was one (n=1), except where specifically noted above; additionally, all the above-mentioned tissues were derived from humans. The PCR amplification products were dotted onto 5 slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, and fluorescent-labeled cDNA probes were generated by reverse transcription according to the protocol provided by Synteni. The microarrays were probed with the labeled cDNA probes, the slides scanned, and fluorescence intensity was measured. This intensity correlates 10 with the hybridization intensity.

One hundred and forty nine clones showed two or more fold over-expression in the colon tumor probe group as compared to the normal tissue probe group. These cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A and/or 15 Model 377 (Foster City, CA). These sequences were compared to known sequences in the most recent GenBank database. No significant homologies to human gene sequences were found in forty nine of these clones, represented by the following sixteen cDNA consensus sequences: SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46 and 47, hereinafter referred to as Contig 2, 8, 13, 14, 20, 23, 29, 31, 35, 20 32, 36, 38, 41, 42, 50 and 51, respectively). Contig 29 (SEQ ID NO: 30) was found to be a Rat GSK-3- β -interacting protein Axil homolog. Also, Contigs 31 and 35 (SEQ ID NO: 32 and 33, respectively) were found to be a Mus musculus GOB-4 homolog. The determined cDNA sequences of SEQ ID NO: 1, 3-7, 9-14, 17-21, 23, 25-29, 31, 35, 37, 39, 42-45, 50, 51, 53, 55-58, 61-64, 70-78, 80-88, 91, 92, 94-98, 102-108 and 25 112 were found to show some homology to previously identified genes sequences.

Microarray analysis demonstrated Contig 2 (SEQ ID NO: 2) showed over-expression in 34% of colon tumors tested, as well as increased expression in normal pancreatic tissue, with no over-expression in normal colon tissues. Upon further analysis, Contigs 2, 8 and 23 were found to share homology to the known gene 30 GW112. Contigs 4, 5, 9 and 52 showed homology to carcinoembryonic antigen (SEQ ID NO: 3, 4, 5 and 6, respectively). A representative sampling of these fragments

showed over-expression in 85% of colon tumors, with over-expression in normal bone marrow and 3/6 normal colon tissues. Contig 6 (SEQ ID NO: 7), showing homology to the known gene sequence for villin, and was over-expressed in about half of all colon tumors tested, with a limited degree of low level over-expression in normal
5 colon. Contig 12 (SEQ ID NO: 14), showing homology to Chromosome 17, clone hRPC.1171_I_10, also referred to as C798P, was over-expressed in approximately 70% of colon tumors tested, with low over-expression in 1/6 normal colon samples. Contig 14, also referred to as 14261 (SEQ ID NO: 16), showing no significant homology to any known gene, showed over-expression in 44% of colon tumors tested,
10 with low level expression in half of normal colon tissues, as well as small intestine and pancreatic tissue. Contig 18 (SEQ ID NO: 21), showing homology to the known gene for L1-cadherin, showed over-expression in approximately half of colon tumors and low level over-expression in 3/6 normal colon tissues tested. Contig 22 (SEQ ID NO: 23), showing homology to Bumetanide-sensitive Na-K-Cl cotransporter was
15 over-expressed in 70% of colon tumors and no over-expression in all normal tissues tested. Contig 25 (SEQ ID NO: 25), showing homology to macrophage inflammatory protein-3 α , was over-expressed in over 40% of colon tumors and in activated PBMC. Contigs 26 and 48 (SEQ ID NOS: 25 and 26), showing homology to the sequence for laminin, was over-expressed in 48% of colon tumors and with low over-expression in
20 stomach tissue. Contig 28 (SEQ ID NO: 29), showing homology to the known gene sequence for Chromosome 16 BAC clone CIT987SK-A-363E6, was over-expressed in 33% of colon tumors tested with normal stomach and 2/6 normal colon tissues showing low level over-expression. Contigs 29, 31 and 35 (SEQ ID NOS: 30, 32 and 33, respectively), also referred to as C751P, an unknown sequence showing limited
25 and partial homology to Rat GSK-3 β -interacting protein Axil homolog and Mus musculus GOB-4 homolog, was over-expressed in 74% of colon tumors and no over-expression in all normal tissues tested. Contig 34 (SEQ ID NO: 35), showing homology to the known sequence for desmoglein 2, was over-expressed in 56% of colon tumors and showed low level over-expression in 1/6 normal colon tissues.
30 Contig 36 (SEQ ID NO: 36), an unknown sequence also referred to as C793P, showed over-expression in 30% of colon tumor tissues tested. Contig 37 and 14287.2 (SEQ

ID NOS: 37 and 116), an unknown sequence, but with limited (89%) homology to the known sequence for putative transmembrane protein was over-expressed in 70% of colon tumors, as well as in normal lung tissue and 3/6 normal colon tissues tested. Contig 38, also referred to as C796P and 14219 (SEQ ID NO: 38), showing no significant homology to any known gene, was over-expressed in 38% in colon tumors and no elevated over-expression in any normal tissues. Contig 41 (SEQ ID NO: 40), also referred to as C799P and 14308, an unknown sequence showing no significant homology to any known gene, was over-expressed in 22% of colon tumors. Contig 42, (SEQ ID NO: 41), also referred to as C794P and 14309, an unknown sequence with no significant homology to any known gene, was over-expressed in 63% of colon tumors tested, as well as in 3/6 normal colon tissues. Contig 43 (SEQ ID NO: 42), showing homology to the known sequence for Chromosome 1 specific transcript KIAA0487 was over-expressed in 85% of colon tumors tested and in normal lung and 4/6 normal colon tissues. Contig 49 (SEQ ID NO: 45), showing homology to the known sequence for pump-1, was over-expressed in 44% of colon tumors and no over-expression in all normal tissues tested. Contig 50 (SEQ ID NO: 46), also referred to as C792P and 18323, showing no significant homology to any known gene, was over-expressed in 33% of colon tumors with no detectable over-expression in any normal tissues tested. Contig 51 (SEQ ID NO: 47), also referred to as C795P and 14317 was over-expressed in 11% of colon tumors.

Additional microarray analysis yielded seven clones showing two or more fold over-expression in the colon tumor probe group as compared to the normal tissue probe group. Three of these clones demonstrated particularly good colon tumor specificity, and are represented by SEQ ID NO: 115, 116 and 120. Specifically, SEQ ID NO: 115, referred to as C791P or 14235, which shows homology to the known gene sequence for *H. sapiens* chromosome 21 derived BAC containing ets-2 gene, was over-expressed in 89% of colon tumors tested and in 5/6 normal colon tissues, as well as over-expressed at low levels in normal lung and activated PBMC. Microarray analysis for SEQ ID NO: 116 is discussed above. SEQ ID NO: 120, referred to as 14295, showing homology to the known gene sequence for secreted cement gland protein XAG-2 homolog, was over-expressed in 70% of colon tumors and in 5/6

normal colon tissues, as well as low level over-expression in normal small intestine, stomach and lung. All clones showing over-expression in colon tumor were sequenced and these sequences compared to the most recent Genbank database (February 12, 1999). Of the seven clones, three contained sequences that did not
5 share significant homology to any known gene sequences, represented by SEQ ID NO: 116, 117 and 119. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in colon. The determined cDNA sequences of the remaining clones (SEQ ID NO: 113-115 and 120) were found to show some homology to previously identified genes.

10 Further analysis identified a clone which was recovered several times by PCR subtraction and by expression screening using a mouse anti-scid antiserum. The determined full length cDNA sequence for this clone is provided in SEQ ID NO: 121, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 122. This clone is homologous with the known gene Beta IG-H3, as disclosed in
15 U.S. Patent No. 5,444,164. Microarray analysis demonstrated this clone to be over-expressed in 75 to 80% of colon tumors tested (n=27), with no over-expression in normal colon samples (n=6), but with some low level over-expression in other normal tissues tested.

Further analysis of the PCR-subtraction library described above led to
20 the isolation of longer cDNA sequences for the clones of SEQ ID NO: 30, 115, 46, 118, 41, 47, 38, 113, 14 and 40 (known as C751P, C791P, C792P, C793P, C794P, C795P, C796P, C797P, C798P and C799P, respectively). These determined cDNA sequences are provided in SEQ ID NO: 123-132, respectively. Additional sequences for the clones C794P and C799P are shown in SEQ ID NO:683 and 684, respectively,
25 and the predicted amino acid sequences are shown in SEQ ID NO:685 and 686, respectively. Still further sequences for the clones C794P and C799P are shown in SEQ ID NO: 691 and 690, respectively, and to the predicted amino acid sequence as shown in SEQ ID NO: 693 and 692, respectively.

Using PCR subtraction methodology described above with minor
30 modifications, transcripts from a pool of three moderately differentiated colon adenocarcinoma samples were subtracted with a set of transcripts from normal brain,

pancreas, bone marrow, liver, heart, lung, stomach and small intestine. Modifications of the above protocol were included at the cDNA digestion steps and in the tester to drive hybridization ratios. In a first subtraction, the restriction enzymes PvuII, DraI, MscI and StuI were used to digest cDNAs, and the tester to driver ratio was 1:40, as
5 suggested by Clontech. In a second subtraction, DraI, MscI and StuI were used for cDNA digestion and a tester to driver ratio of 1:76 was used. Following the PCR amplification steps, the cDNAs were clones into pCR2.1 plasmid vector. The determined cDNA sequences of 167 isolated clones are provided in SEQ ID NO: 205-371. These sequences were compared to sequences in the public databases as
10 described above. The sequences of SEQ ID NO: 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369 and
15 371 were found to show some homology to previously identified ESTs. The remaining sequences were found to show some homology to previously identified genes.

Using the PCR subtraction technology described above, a cDNA library from a pool of primary colon tumors was subtracted with a cDNA library prepared from normal tissues, including brain, bone marrow, kidney, heart, lung, liver,
20 pancreas, small intestine, stomach and trachea. The determined cDNA sequences for 90 clones isolated in this subtraction are provided in SEQ ID NO: 372-461. Comparison of these sequences with those in the public databases as described above, revealed no homologies to the sequences of SEQ ID NO: 426, 445 and 453. The sequences of SEQ ID NO: 372-378, 380-404, 406, 409-417, 419-423, 425, 427-429,
25 433-436, 438-441, 443, 446-451, 454, 455 and 457-461 showed some homology to previously identified genes, while the sequences of SEQ ID NO: 379, 405, 407, 408, 418, 424, 430-432, 437, 442, 444, 452 and 456 showed some homology to previously isolated ESTs.

Using the PCR subtraction methodology described above, a cDNA library prepared from a pool of metastatic colon tumors was subtracted with cDNA from a pool of normal tissues, namely brain, heart, lung, lymph nodes, PBMC,
30

pancreas, small intestine and stomach. The determined cDNA sequences for 82 clones isolated from the subtracted library are provided in SEQ ID NO: 487-568 (referred to as contigs 1-56 and 58-83, respectively). The sequences of SEQ ID NO: 487, 489, 490, 493-496, 499, 501-509, 511-518, 520-526, 529-542, 544, 546, 548-
5 552, 554, 555, 557, 558, 560, 562, 563, 566 and 567 showed some homology to previously identified gene sequences. The sequences of SEQ ID NO: 488, 491, 492, 497, 498, 500, 510, 519, 527, 528, 543, 545, 547, 553, 559, 564, 564 and 568 showed some homology to previously isolated ESTs.

10

Example 2

ISOLATION OF TUMOR POLYPEPTIDES
USING SCID MOUSE-PASSAGED TUMOR RNA

Human colon tumor antigens were obtained using SCID mouse
15 passaged colon tumor RNA as follows. Human colon tumor was implanted in SCID mice and harvested, as described in Patent Application Serial No. 08/556,659 filed 11/13/95, U.S. Patent No. 5,986,170. First strand cDNA was synthesized from poly A+ RNA from three SCID mouse-passaged colon tumors using a Lambda ZAP Express cDNA synthesis kit (Stratagene). The reactions were pooled and digested
20 with RNase A, T1 and H to cleave the RNA and then treated with NaOH to degrade the RNA. The resulting cDNA was annealed with biotinylated (Vector Labs, Inc., Burlingame, CA) cDNA from a normal resting PBMC plasmid library (constructed from Superscript plasmid System, Gibco BRL), and subtracted with streptavidin by phenol/chloroform extraction. Second strand cDNA was synthesized from the
25 subtracted first strand cDNA and digested with S1 nuclease (Gibco BRL). The cDNA was blunted with Pfu polymerase and EcoRI adaptors (Stratagene) were ligated to the ends. The cDNA was phosphorylated with T4 polynucleotide kinase, digested with restriction endonuclease Xhol, and size selected with Sephadryl S-400 (Sigma). Fractions were pooled, ligated to Lambda ZAP Express arms (Stratagene) and
30 packaged with Gigapack Gold III extract (Stratagene). Random plaques were picked,

phagemid was excised, transformed into XLOLR cells (Stratagene) and resulting plasmid DNA (Qiagen Inc., Valencia, CA) was sequenced as described above.

The determined cDNA sequences for 17 clones isolated as described above are provided in SEQ ID NO: 133-151, wherein 133 and 134 represent partial sequences of a clone referred to as CoSub-3 and SEQ ID NO: 135 and 136 represent partial sequences of a clone referred to as CoSub-13. These sequences were compared with those in the public databases as described above. The sequences of SEQ ID NO: 139 and 149 showed no significant homologies to any previously identified sequences. The sequences of SEQ ID NO: 138, 140, 141, 142, 143, 148 and 149 showed some homology to previously isolated expressed sequence tags (ESTs). The sequences of SEQ ID NO: 133-137, 144-147, 150 and 151 showed some homology to previously isolated gene sequences.

The determined cDNA sequences for an additional 46 clones isolated as described above, are provided in SEQ ID NO: 569-616, wherein SEQ ID NO: 573 and 574 represent the 3' and 5' determined cDNA sequences, respectively, for clone CS1-106, and SEQ ID NO: 579 and 580 represent the determined 3' and 5' cDNA sequences, respectively, for clone CS1-124. Comparison of the isolated sequences with those in the public databases revealed no significant homologies to the sequences of SEQ ID NO: 580, 585, 610 and 613. The sequences of SEQ ID NO: 569, 574-577, 584, 587, 592, 595, 598, 603 and 608 showed some homology to previously isolated ESTs, while the sequences of SEQ ID NO: 570-573, 578, 581-583, 586, 588-591, 593, 594, 596, 597, 599-602, 604-607, 609, 611, 612 and 514-616 showed some homology to previously isolated gene sequences.

25

Example 3

USE OF MOUSE ANTISERA TO IDENTIFY DNA SEQUENCES ENCODING COLON TUMOR ANTIGENS

This example illustrates the isolation of cDNA sequences encoding colon tumor antigens by screening of colon tumor cDNA libraries with mouse anti-tumor sera.

A cDNA expression library was prepared from SCID mouse-passaged

human colon tumor poly A+ RNA using a Stratagene (La Jolla, CA) Lambda ZAP Express kit, following the manufacturer's instructions. Sera was obtained from the colon tumor-bearing SCID mouse. This serum was injected into normal mice to produce anti-colon tumor serum. Approximately 600,000 PFUs were screened from 5 the unamplified library using this antiserum. Using a goat anti-mouse IgG-A-M (H+L) alkaline phosphatase second antibody developed with NBT/BCIP (BRL Labs.), positive plaques were identified. Phage was purified and phagemid excised for several clones with inserts in a pBK-CMV vector for expression in prokaryotic or eukaryotic cells.

10 The determined cDNA sequences for 46 of the isolated clones are provided in SEQ ID NO: 152-197. The predicted amino acid sequences for the cDNA sequences of SEQ ID NO: 187, 188, 189, 190, 194, 195 and 197 are provided in SEQ ID NO: 198-204, respectively. The determined cDNA sequences were compared with those in the public database as described above. The sequences of 15 SEQ ID NO: 156, 168, 184, 189, 192 and 196 showed some homology to previously isolated ESTs. The sequences of SEQ ID NO: 152-155, 157-167, 169-182, 183, 185-188, 190, 194, 195 and 197 showed some homology to previously identified genes.

10 The determined cDNA sequences for an additional eleven clones isolated as described above, are provided in SEQ ID NO: 617-627. Comparison of 20 these sequences with those in the public database as described above revealed no known homologies to SEQ ID NO: 621 and 623. The sequences of SEQ ID NO: 622 and 626 were found to show some homology to previously isolated ESTs, while the sequences of SEQ ID NO: 617-620, 624, 625 and 627 showed some homology to previously identified genes.

25 In further studies, a cDNA library was prepared from SCID-mouse grown colon tumors and screened with mouse anti-SCID serum as described above. Briefly first strand cDNA was synthesized from poly A+ RNA from three SCID mouse-grown human colon tumors using a Lambda ZAP Express cDNA synthesis kit (Stratagene). The reactions were pooled and digested with RNase A, T1 and H to 30 cleave the RNA and then treated with NaOH to degrade the RNA. The cDNA was annealed with biotinylated cDNA from a normal resting PBMC plasmid library

(constructed from Superscript plasmid system; Gibco BRL) and subtracted with streptavidin by phenol/chloroform extraction. Second strand cDNA was synthesized from the subtracted first strand cDNA and digested with S1 nuclease. The cDNA was blunted with Pfu polymerase and EcoRI adaptors were ligated to the ends. The cDNA
5 was phosphorylated with T4 polynucleotide kinase, digested with restriction endonuclease XbaI, and size selected with Sephadryl S-400 (Sigma). Fractions were pooled, ligated to Lambda ZAP Express arms (Stratagene) and packaged with Gigapack Gold III extract (Stratagene). The resulting library was screened with a mouse antiserum raised against serum from SCID mice containing human colon
10 tumors, including the three tumors used to prepare the cDNA libraries.

The determined cDNA for one clone isolated using this procedure is provided in SEQ ID NO: 630. This clone was found to show homology to a previously identified gene. The amino acid sequence encoded by the clone of SEQ ID NO: 630 is provided in SEQ ID NO: 631.

15 In subsequent studies, an additional cDNA library was prepared from a SCID-passaged human colon tumor and screened with a mouse antiserum raised against serum from the SCID mouse containing the colon tumor. The determined cDNA sequences for 51 clones isolated in these studies are provided in SEQ ID NO: 632-682. Comparison of these sequences with those in the public databases revealed
20 no significant homologies to the sequences of SEQ ID NO: 648 and 668. The sequence of SEQ ID NO: 642 showed some homology to previously isolated ESTs. The sequences of SEQ ID NO: 632-641, 643-647, 649-667 and 669-682 were found to show some homology to previously identified genes. SEQ ID NO: 684 and SEQ ID NO: 690 showed homology to human NADH/NADPH thyroid oxidase p138-tox
25 mRNA.

Example 4

ISOLATION AND CHARACTERIZATION OF COLON TUMOR POLYPEPTIDES BY CONVENTIONAL SUBTRACTION

Two cDNA libraries were constructed and used to create a subtracted cDNA library as follows.

Using the GibcoBRL Superscript Plasmid System with minor modifications, two cDNA libraries were created. The first library, referred to as CTCL, was prepared from a pool of mRNA samples from three colon adenocarcinoma tissue samples. Two of the samples were described as Duke's stage C and one as Duke's stage B. All three samples were grade III in histological status. A second library (referred to as DriverLibpcDNA3.1+) was prepared from a pool of normal tissues, namely liver, pancreas, skin, bone marrow, resting PBMC, stomach and brain. Both libraries were prepared using the manufacturer's instructions with the following modifications: an EcoRI-NotI 5' cDNA adapter was used instead of the provided reagent; the vector pCDNA3.1(+) (Invitrogen) was substituted for the pSPORT vector; and the ligated DNA molecules were transformed into ElectroMaxDH10B electrocompetent cells. Clones from the libraries were analyzed by restriction digest and sequencing to determine average insert size, quality of the library and complexity of the library. DNA was prepared from each library and digested.

The driver DNA was biotinylated and hybridized with the colon library tester DNA at a ratio of 10:1. After two rounds of hybridizations, streptavidin incubations and extractions, the remaining colon cDNAs were size-selected by column chromatography and cloned into the pCMV-Script vector from Stratagene. Clones from this subtracted library (referred to as CTCL-S1) were characterized as described above for the unsubtracted libraries.

The determined cDNA sequences for 20 clones isolated from the CTCL-S1 library are provided in SEQ ID NO: 462-479, 628 and 629. Comparison of these sequences with those in the public databases, as described above, revealed no significant homologies to the sequences of SEQ ID NO: 476, 477 and 479. The remaining sequences showed some homology to previously identified genes.

In further studies, a cDNA library was prepared from a pool of mRNA from three metastatic colon adenocarcinomas derived from liver tissue samples. All samples were described as Duke's stage D. Conventional subtraction was performed as described above, using the DriverLibpcDNA3.1+ library described above as the

driver. The resulting subtracted library (referred to as CMCL-S1) was characterized by isolating a set of clones for restriction analysis and sequencing.

The determined cDNA sequences for 7 clones isolated from the CMCL-S1 library are provided in SEQ ID NO: 480-486. Comparison of these 5 sequences with those in the public databases revealed no significant homologies to the sequence of SEQ ID NO: 483. The sequences of SEQ ID NO: 480-482 and 484-486 were found to show some homology to previously identified genes.

Example 5

10

SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems Division 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A 15 Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, 20 the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be 25 characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, 30 various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

CLAIMS

10 1. An isolated polypeptide, comprising at least an immunogenic portion of a colon tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

15 (a) sequences recited in SEQ ID NOs: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479, 483, 488, 491, 492, 497, 498, 500, 510, 519, 527, 528, 543, 545, 547, 553, 556, 559, 561, 564, 565, 568, 569, 574-577, 579, 580, 584, 585, 587, 592, 595, 598, 603, 608, 610, 613, 621-623, 626, 642, 648, 668, 682-684, 686, 690-691, and 694-1081;

20 (b) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-

193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233,
234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259,
260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298,
300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345,
347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-
417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454,
455, 457-461, 476, 477, 479, 483, 488, 491, 492, 497, 498, 500,
510, 519, 527, 528, 543, 545, 547, 553, 556, 559, 561, 564, 565,
568, 569, 574-577, 579, 580, 584, 585, 587, 592, 595, 598, 603,
608, 610, 613, 621-623, 626, 642, 648, 668, 682-684, 686, 690-
691, and 694-1081 under moderately stringent conditions; and
(c) complements of sequences of (a) or (b).

2. An isolated polypeptide according to claim 1, wherein the
15 polypeptide comprises an amino acid sequence that is encoded by a polynucleotide
sequence recited in any one of SEQ ID NOs: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38,
40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-
132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207,
210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248,
20 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294,
298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358,
361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-
436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479, 483, 488, 491, 492,
497, 498, 500, 510, 519, 527, 528, 543, 545, 547, 553, 556, 559, 561, 564, 565, 568,
25 569, 574-577, 579, 580, 584, 585, 587, 592, 595, 598, 603, 608, 610, 613, 621-623,
626, 642, 648, 668, 682-684, 686, 690-691, and 694-1081, or a complement of any of
the foregoing polynucleotide sequences.

3. An isolated polypeptide comprising a sequence recited in any
30 one of SEQ ID NOs: 122 and 198-204.

4. An isolated polynucleotide encoding at least 15 amino acid residues of a colon tumor protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with antigen-specific antisera is not substantially diminished, wherein the
5 tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID Nos: 2, 8, 15, 16, 22, 24, 30, 32-
34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-
119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196,
205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245,
10 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291,
293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347,
356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-
429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479, 483, 488,
491, 492, 497, 498, 500, 510, 519, 527, 528, 543, 545, 547, 553, 556, 559, 561, 564,
15 565, 568, 569, 574-577, 579, 580, 584, 585, 587, 592, 595, 598, 603, 608, 610, 613,
621-623, 626, 642, 648, 668, 682-684, 686, 690-691, and 694-1081, or a complement
of any of the foregoing sequences.

5. An isolated polynucleotide encoding a colon tumor protein, or a
20 variant thereof, wherein the tumor protein comprises an amino acid sequence that is
encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID
NOs: _ 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79,
89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168,
170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228,
25 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263,
266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317,
320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404,
406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455,
457-461, 476, 477, 479, 483, 488, 491, 492, 497, 498, 500, 510, 519, 527, 528, 543,
30 545, 547, 553, 556, 559, 561, 564, 565, 568, 569, 574-577, 579, 580, 584, 585, 587,
592, 595, 598, 603, 608, 610, 613, 621-623, 626, 642, 648, 668, 682-684, 686, 690-

691, and 694-1081, or a complement of any of the foregoing sequences.

6. An isolated polynucleotide, comprising a sequence recited in any one of SEQ ID NOs: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54,
5 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148,
149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218,
224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259,
260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-
313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-
10 378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451,
454, 455, 457-461, 476, 477, 479, 483, 488, 491, 492, 497, 498, 500, 510, 519, 527,
528, 543, 545, 547, 553, 556, 559, 561, 564, 565, 568, 569, 574-577, 579, 580, 584,
585, 587, 592, 595, 598, 603, 608, 610, 613, 621-623, 626, 642, 648, 668, 682-684,
686, 690-691, and 694-1081.

15

7. An isolated polynucleotide, comprising a sequence that hybridizes to a sequence recited in any one of SEQ ID NOs: 2, 8, 15, 16, 22, 24, 30,
32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111,
116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193,
20 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242,
245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282,
291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345,
347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425,
25 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479, 483,
488, 491, 492, 497, 498, 500, 510, 519, 527, 528, 543, 545, 547, 553, 556, 559, 561,
564, 565, 568, 569, 574-577, 579, 580, 584, 585, 587, 592, 595, 598, 603, 608, 610,
613, 621-623, 626, 642, 648, 668, 682-684, 686, 690-691, and 694-1081 under
moderately stringent conditions.

30

8. An isolated polynucleotide complementary to a polynucleotide according to any one of claims 4-7.

9. An expression vector, comprising a polynucleotide according to any one of claims claim 4-8.

5 10. A host cell transformed or transfected with an expression vector according to claim 9.

11. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a colon tumor protein that comprises an amino acid sequence that
10 is encoded by a polynucleotide sequence recited in any one of SEQ ID NOS: _2, 8, 15,
16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-
101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184,
189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236,
238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-
15 273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324,
332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417,
419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476,
477, 479, 483, 488, 491, 492, 497, 498, 500, 510, 519, 527, 528, 543, 545, 547, 553,
556, 559, 561, 564, 565, 568, 569, 574-577, 579, 580, 584, 585, 587, 592, 595, 598,
20 603, 608, 610, 613, 621-623, 626, 642, 648, 668, 682-684, 686, 690-691, and 694-
1081, or a complement of any of the foregoing polynucleotide sequences.

12. A fusion protein, comprising at least one polypeptide according to claim 1.

25

13. A fusion protein according to claim 12, wherein the fusion protein comprises an expression enhancer that increases expression of the fusion protein in a host cell transfected with a polynucleotide encoding the fusion protein.

30

14. A fusion protein according to claim 12, wherein the fusion protein comprises a T helper epitope that is not present within the polypeptide of

claim 1.

15. A fusion protein according to claim 12, wherein the fusion protein comprises an affinity tag.

5

16. An isolated polynucleotide encoding a fusion protein according to claim 12.

10 17. A pharmaceutical composition, comprising a physiologically acceptable carrier and at least one component selected from the group consisting of:

15

- (a) a polypeptide according to claim 1;
- (b) a polynucleotide according to claim 4;
- (c) an antibody according to claim 11;
- (d) a fusion protein according to claim 12; and
- (e) a polynucleotide according to claim 16.

18. A vaccine comprising an immunostimulant and at least one component selected from the group consisting of:

20

- (a) a polypeptide according to claim 1;
- (b) a polynucleotide according to claim 4;
- (c) an antibody according to claim 11;
- (d) a fusion protein according to claim 12; and
- (e) a polynucleotide according to claim 16.

25

19. A vaccine according to claim 18, wherein the immunostimulant is an adjuvant.

20. A vaccine according to any claim 18, wherein the immunostimulant induces a predominantly Type I response.

30

21. A method for inhibiting the development of a cancer in a

patient, comprising administering to a patient an effective amount of a pharmaceutical composition according to claim 17.

22. A method for inhibiting the development of a cancer in a
5 patient, comprising administering to a patient an effective amount of a vaccine
according to claim 18.

23. A pharmaceutical composition comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with
10 a pharmaceutically acceptable carrier or excipient.

24. A pharmaceutical composition according to claim 23, wherein
the antigen presenting cell is a dendritic cell or a macrophage.

15 25. A vaccine comprising an antigen-presenting cell that expresses
a polypeptide comprising at least an immunogenic portion of a colon tumor protein, or
a variant thereof, wherein the tumor protein comprises an amino acid sequence that is
encoded by a polynucleotide sequence selected from the group consisting of:

20 (a) sequences recited in SEQ ID NOs: 1-121, 123-197, 205-630
and 632-684, 686, 690-691, and 694-1081;

(b) sequences that hybridize to a sequence recited in any one of
SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081
under moderately stringent conditions; and

25 (c) complements of sequences of (i) or (ii);
in combination with an immunostimulant.

26. A vaccine according to claim 25, wherein the immunostimulant
is an adjuvant.

30 27. A vaccine according to claim 25, wherein the immunostimulant
induces a predominantly Type I response.

28. A vaccine according to claim 25, wherein the antigen-presenting cell is a dendritic cell.

5 29. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of an antigen-presenting cell that expresses a polypeptide comprising at least an immunogenic portion of a colon tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence 10 selected from the group consisting of:

(a) sequences recited in SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081;

15 (b) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081 under moderately stringent conditions; and

(c) complements of sequences of (i) or (ii) encoded by a polynucleotide recited in any one of SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081;

and thereby inhibiting the development of a cancer in the patient.

20

30. A method according to claim 29, wherein the antigen-presenting cell is a dendritic cell.

31. A method according to any one of claims 21, 22 and 29, 25 wherein the cancer is colon cancer.

32. A method for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a colon tumor protein, wherein the tumor protein comprises an amino acid sequence 30 that is encoded by a polynucleotide sequence selected from the group consisting of:

(i) polynucleotides recited in any one of SEQ ID NOs: 1-

121

121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081; and

(ii) complements of the foregoing polynucleotides;

wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the antigen from the sample.

5

33. A method according to claim 32, wherein the biological sample is blood or a fraction thereof.

34. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated according to the method of claim 32.

35. A method for stimulating and/or expanding T cells specific for a colon tumor protein, comprising contacting T cells with at least one component selected from the group consisting of:

(a) polypeptides comprising at least an immunogenic portion of a colon tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(i) sequences recited in SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081;

(ii) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081 under moderately stringent conditions; and

(iii) complements of sequences of (i) or (ii);

(b) polynucleotides encoding a polypeptide of (a); and

(c) antigen presenting cells that express a polypeptide of (a);

under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.

30

36. An isolated T cell population, comprising T cells prepared

according
to the method of claim 35.

37. A method for inhibiting the development of a cancer in a
5 patient, comprising administering to a patient an effective amount of a T cell
population according to claim 36.

38. A method for inhibiting the development of a cancer in a
patient, comprising the steps of:

10 (a) incubating CD4⁺ and/or CD8+ T cells isolated from a patient
with at least one component selected from the group consisting of:

15 (i) polypeptides comprising at least an immunogenic
portion of a colon tumor protein, or a variant thereof, wherein the tumor
protein comprises an amino acid sequence that is encoded by a polynucleotide
sequence selected from the group consisting of:

(1) sequences recited in SEQ ID NOs: 1-121, 123-
197, 205-630 and 632-684, 686, 690-691, and 694-1081

20 (2) sequences that hybridize to a sequence recited in
any one of SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686,
690-691, and 694-1081 under moderately stringent conditions; and

(3) complements of sequences of (1) or (2);

(ii) polynucleotides encoding a polypeptide of (i); and

(iii) antigen presenting cells that expresses a polypeptide of
(i);

25 such that T cells proliferate; and

(b) administering to the patient an effective amount of the
proliferated T cells, and thereby inhibiting the development of a cancer in the patient.

39. A method for inhibiting the development of a cancer in a
30 patient, comprising the steps of:

(a) incubating CD4⁺ and/or CD8+ T cells isolated from a patient

123

with at least one component selected from the group consisting of:

(i) polypeptides comprising at least an immunogenic portion of a colon tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(1) sequences recited in SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081;

(2) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081 under moderately stringent conditions; and

(3) complements of sequences of (1) or (2);

(ii) polynucleotides encoding a polypeptide of (i); and

(iii) antigen presenting cells that express a polypeptide of (i);

such that T cells proliferate;

(b) cloning at least one proliferated cell to provide cloned T cells;

and

(c) administering to the patient an effective amount of the cloned T cells, and thereby inhibiting the development of a cancer in the patient.

40. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient with a binding agent that binds to a colon tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081 or a complement of any of the foregoing polynucleotide sequences;

(b) detecting in the sample an amount of polypeptide that binds to the binding agent; and

(c) comparing the amount of polypeptide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

41. A method according to claim 40, wherein the binding agent is an antibody.

5 42. A method according to claim 43, wherein the antibody is a monoclonal antibody.

10 43. A method according to claim 40, wherein the cancer is colon cancer.

44. A method for monitoring the progression of a cancer in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a colon tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081 or a complement of any of the foregoing polynucleotide sequences;

(b) detecting in the sample an amount of polypeptide that binds to the binding agent;

(c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and

(d) comparing the amount of polypeptide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

45. A method according to claim 44, wherein the binding agent is an antibody.

30 46. A method according to claim 45, wherein the antibody is a monoclonal antibody.

47. A method according to claim 44, wherein the cancer is a colon cancer.

5 48. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a colon tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a 10 polynucleotide sequence recited in any one of SEQ ID NOS: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081 or a complement of any of the foregoing polynucleotide sequences;

(b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and

15 (c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

49. A method according to claim 48, wherein the amount of 20 polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.

50. A method according to claim 48, wherein the amount of 25 polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.

51. A method for monitoring the progression of a cancer in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient with an 30 oligonucleotide that hybridizes to a polynucleotide that encodes a colon tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a

polynucleotide sequence recited in any one of SEQ ID NOs: 1-121, 123-197, 205-630 and 632-684, 686, 690-691, and 694-1081 or a complement of any of the foregoing polynucleotide sequences;

5 (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide;

(c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and

10 (d) comparing the amount of polynucleotide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

52. A method according to claim 51, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.

15

53. A method according to claim 51, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.

20

54. A diagnostic kit, comprising:

- (a) one or more antibodies according to claim 11; and
- (b) a detection reagent comprising a reporter group.

25

55. A kit according to claim 54, wherein the antibodies are immobilized on a solid support.

56. A kit according to claim 54, wherein the detection reagent comprises an anti-immunoglobulin, protein G, protein A or lectin.

30

57. A kit according to claim 54, wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent

groups, enzymes, biotin and dye particles.

58. An oligonucleotide comprising 10 to 40 contiguous nucleotides that hybridize under moderately stringent conditions to a polynucleotide that encodes
5 a colon tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236,
10 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-
273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324,
332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417,
419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476,
477, 479, 483, 488, 491, 492, 497, 498, 500, 510, 519, 527, 528, 543, 545, 547, 553,
15 556, 559, 561, 564, 565, 568, 569, 574-577, 579, 580, 584, 585, 587, 592, 595, 598,
603, 608, 610, 613, 621-623, 626, 642, 648, 668, 682-684, 686, 690-691, and 694-
1081, or a complement of any of the foregoing polynucleotides.

59. A oligonucleotide according to claim 58, wherein the
20 oligonucleotide comprises 10-40 contiguous nucleotides recited in any one of SEQ ID
NOs: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79,
89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168,
170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228,
233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263,
25 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317,
320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404,
406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455,
457-461, 476, 477, 479, 483, 488, 491, 492, 497, 498, 500, 510, 519, 527, 528, 543,
545, 547, 553, 556, 559, 561, 564, 565, 568, 569, 574-577, 579, 580, 584, 585, 587,
30 592, 595, 598, 603, 608, 610, 613, 621-623, 626, 642, 648, 668, 682-684, 686, 690-
691, and 694-1081.

60. A diagnostic kit, comprising:
 - (a) an oligonucleotide according to claim 59; and
 - (b) a diagnostic reagent for use in a polymerase chain reaction or
5 hybridization assay.

SEQUENCE LISTING

<110> Corixa Corporation
Xu, Jiangchun
Lodes, Michael J.
Secrist; Heather
Benson, Darin R.
Meagher, Madeleine Joy
King, Gordon E.

<120> COMPOUNDS FOR IMMUNOTHERAPY AND
DIAGNOSIS OF COLON CANCER AND METHODS FOR THEIR USE

<130> 210121,47101PC

<140> PCT

<141> 2000-12-29

<160> 1083

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 458

<212> DNA

<213> Homo sapien

<220>

<221> misc feature

<222> (1) . . . (458)

<223> n = A, T, C or G

<400> 1

ncaggctctgg	cggcacctgt	gcactcagcc	gtcgatacac	tggtcgattt	ggacaggaa	60
gacgatgtgg	ttttcaggga	ggccccagaga	tttggagaag	cggatgaagt	tctcccttag	120
ttccgaagtc	agctccctgg	ttctcccgtt	gagggtgatc	ttaaagtact	ccctgtttt	180
agaaaacttc	ttgaaagaaca	ccatagcatg	ctggttgttag	tttgtgctca	ccactcgac	240
gaggtaactc	gttaatccag	gttaactctt	aatgttgccc	acggtgaact	cgccgggtcg	300
gcaaccttgg	acaaaagtcc	tgatccagta	gtcacacttc	ttttccctaa	acaggacgga	360
ggtgacattt	tagctcttgc	tttctttcag	ctcatagatg	gtggcataca	tctttgcgg	420
gtctttgtct	tctctgagaa	ttgcattcccc	tgcccaagga			458

<210> 2

<211> 423

<212> DNA

<213> Homo sapien

<400> 2

```

cagggtccat aggtgatccg caactctcg a cattttatata acaatagcaa atcatccagt 60
gttgttaca gtctataata ctccaaacagt ctcccatctg tattcaatgg cgccacccaa 120
tacagtcttt tggttggatg ctggggagag taatccctac cccaaggacc atatacgat 180
gaaaaccctc tccagtttag g tgaaccaca gacggttgc tgatgttac cacaccacca 240
tgaccacagc tccctggagt gggaggaggg tggacgacag gggtgttttq atctttqaq 300

```

gcttcacact ctttcagctt ggtttcaga gccacgattt ctccggcgaat ggcaaggaca	360
ttgttttgtt ctatgtctc aagttctct accaagagag tcatatttct tatctccacc	420
tcc	423

<210> 3
<211> 538
<212> DNA
<213> Homo sapien

<400> 3

ggtctgtcca atggcaacag gaccctcaact ctaytcartg tcacaagraa tgayrcagsa	60
msctayraat gtgaaaycca gaacctcagt agtgccarsc gcagtgayyc agtcatcctg	120
aatgtcctct atggccrca tgmccccacc atttcccctc taaacacatm ttaccgwyc	180
ggggaaaatc tgaacctctc ctgccacgca gcctctaacc cacctgcaca gtactcttg	240
tttrtcaatg ggactttcca gcaatccacm caagagctct ttatccccaa catcaactgt	300
aataatagyg gatcctatac gtgccaagcc cataactcg mactggct caataggacc	360
acagtcacga cgatcacagt ctatgcaaga gccacccaaa cccttcatca ccagcaacaa	420
ctccaacccc gtggaggatg aggtatgtt agccttaacc tgtgaacctg agattcagaa	480
cacaacctac ctgtggggg taaaataatca gagcctcccg gtcagtcaca ggctgcag	538

<210> 4
<211> 309
<212> DNA
<213> Homo sapien

<400> 4

tggtaascca aaaagatgct gggcagatt gtggacaagt agaagaacct cttccccc	60
tgcgaacatt gaacggcggtg gattcaatag tgagcttgc agtgggtggc gggttccaga	120
aggttagaag tgaggctgtg agcaggagcc cctgccaggg gatvcacgca mtctgtggg	180
aggggctgag rggdgwcycc atggctctg ctgtctgtc tgcctccctc tgcggagaag	240
agctttagct ccaggaacgc tttgrtcavv gctgcctgtg acctytgtc tgbtctgcct	300
ccccggcgc	309

<210> 5
<211> 412
<212> DNA
<213> Homo sapien

<400> 5

gtccaatggc aacaggaccc ctcacttcta ttcaatgtca caagaaatga cgcaagagcc	60
tatgtatgtg gaatccagaa ctkcagttag tgcaaacgc agtgcacccag tcaccctgga	120
tgtccttat gggccagaca scccccatca ttccccccccc agactcgct tacctttcgg	180
gagcgaacct caaccttcc tgccactcgg cctctaacc atccccgcag tattcttgc	240
kgtatcaatg ggataccgca gcaacacaca caagttctct ttatcgccaa aatcagcga	300
aataataacg ggacctatgc ctgttttgc tctaacttgg ctactggccc gcaataattc	360
catatgtcaag agcatcacag tcttctgcat ctggaaacctc tcctggctt ct	412

<210> 6
<211> 332
<212> DNA
<213> Homo sapien

<400> 6

gtgcaaggc ttacaaaaaa ctgtgccagt krcttctyca tgwsrcwrga tctgacttka	60
ttsaygtkt atgagsysa saatmtgaw getcmtyts sakgrwsttc kgsatmrgca	120
gtsrattcsa catttgggrt akrytmtctc tsgaagysam tgtcakgcag tgrcayccwr	180
gkktcwgcwt gcwgtgrggt amcakcmwtr ywtagkgsym ayatrattta ramrgtayak	240
cytymtcmct cytymccay wtgcwcaass mkcacaccc tcctggctt acgctaagcc	300

cgaattccag cacactggcg gccgttacta gt 332

<210> 7
<211> 401
<212> DNA
<213> Homo sapien

<400> 7

tggtgttgtt ggccgcagg ccctggacct ggaacagccg tggggagggc cgggtctcca	60
atgtgttagt tcgggagggt ctccttggt agaccacca gctcccttg aagatggaca	120
taagatgagg tggctcccttgc cccattggga cccggatctg gactggttca ccattgtact	180
tctggtccag gatgacggct tgataagctg atgctgtaat ttcatcttgg ctggcctggc	240
tgcccctgcca aacgttagac aggtaatgtc gtttctcgcc gatgaaggta ggtgtaaagag	300
cagcaggtaa gcaaggccgc cccatagaa gtggggccctag ccacttggaa ttccagcaca	360
ctggcggccc gttactagtggatccc gag ctcggtagcca a	401

<210> 8

<211> 1151
<212> DNA
<213> Homo sapien

<400> 8

ctctctccat aaaactcagc actttacaga tgtagaatat ataagcatgc caaatttact	60
tatctgccac atacaagca tcattccagg tgcttagtgag gggaaaaaaa agttggagat	120
ttggcccttc gaggagctcc agatattaat ctacctaact aagtccccag gtttcttcca	180
ggcatgaaag aattagtgtt getacatggta tgaggactag tcattggca atatttcctg	240
tacaaagaat ccctagacgc catactgagt tttaagttcc ttaattccta atttaaggct	300
tctagtgaag ctccttcaca gttaggcttca cttaggcccac agtgccttca gacctctgac	360
aatcccaccc tagacagact ttattgcaaa atgcgcetga agagggcagat gattcccaag	420
agaactcacc aaatcaagac aaatgtccta gatctctagt gtggtagaac tatgcaccta	480
aacattgtctg caaaatgaac acacttttag acacccctgc agatatctaa gtaagtggag	540
aagactattt ttcaacaaa cattttctct ttcaccccaa ctctaaaca gcttactggg	600
gcttctgcaa gacagaaaaga tcataattca gaaggtaacc atcgttatag acataaagtt	660
tctggtcaaa agggttatag ttaatgtctt gcacttttc ctgatctta tgcattacaa	720
tgtctagttt gccctcttcc cctgtgtttg tgcataata gtaaaaaatc tcttctgttc	780
tgggtttca tagtaeagggt ggcatacaga acccccacata ccatgaaggc gttagaagca	840
gatggtttat actgcttggt ataccaagtg tttagcacct gaagtgtgtt gtcattgaat	900
ttactaatca ccatgttacc agtgcgtggct tcagttgaat aaataaccca caatccatc	960
tcatccacag caaagtcaat atcttgccaa gcaacatcg catataaaa gcggttatta	1020
taggcagcat tagggagagt ttgagtcaca gcaatcggt tgggtgtcag gttactctg	1080
gcaatattcc cggtgtgtt catgttgcg tacatgtgt tggtaaac tgctgtacca	1140
ctaccttggaa c	1151

<210> 9

<211> 604
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(604)
<223> n = A,T,C or G

<400> 9

ctgtgcaagg gctttacaaa aactgtgcca ggacttccca tgaggctgga ttgcttgatt	60
catgttttat gagccccaca atactgaagc tccttttcca gggacttgc ataggcagtc	120
aattccacat ttggatagg tcctctctgg aagtgaatgt caggcgtga catccaagtt	180
tctgcatttca gttggtaac agccatgtttt agggggaaaca tgataaaa agtacatctc	240

tctccctcct	cccccacatg	cacaaggctc	acatctcatt	atggtgkcg	cccatgtcac	300
attaaagtgt	gatacttgg	tttgaaaac	attcaaaacag	tctctgtgg	aatctggaga	360
gaaattggcg	gagagctgcc	gtgggtgcatt	cctcctgttag	tgcttcaagn	taatgcttca	420
tcctttntta	ataactttt	atagacaggg	gctagtcgc	cagacacctg	ggaagccctg	480
gaaaacgcgt	atgctgttt	gaagatctca	agcgcagagt	ctgcaagttc	atccccttt	540
tcctgagggtc	tgttgctgg	aggctgcaga	acattggta	tgacatggac	cacgccattt	600
gtgg						604

<210> 10
<211> 473
<212> DNA
<213> Homo sapien

<400> 10						
tcgagaagat	cccttagttag	actttgaacc	gtatcctggg	cgacccagaa	gcccctgagag	60
acctgctgaa	caaccacatc	ttgaagttag	ctatgtgtgc	tgaagccatc	gttgcggggc	120
tgtctgtgg	gaccctggag	ggcacgacac	tggaggtggg	ctgcagcggg	gacatgctca	180
ctatcaacgg	gaaggcgatc	atctccaata	aagacatctt	agccaccaac	gggggtgatcc	240
actacattga	tgagctactc	atcccagact	cagccaagac	actatttga	ttggctgcag	300
agtctgtgt	gtccacagcc	attgaccttt	tcaagacaage	cggcctcgcc	aatcatctt	360
ctggaaagtga	gccccgtgacc	ctccctgggct	ccccctgaatt	ctgtattcaa	agatgaaacc	420
cctccaattt	atgcccatac	aaggaatttgc	tttcggaaacc	acataattaa	aga	473

<210> 11
<211> 411
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(411)
<223> n = A,T,C or G

<400> 11						
tcctcattgg	tcggggccaa	aagcgtgtac	tggccgttac	cttcaagcat	cgtgttgagc	60
cctgatgcag	ccacagcagc	ccgaagggtc	tcaaagggtt	cctcgatctc	aatgatctgc	120
tggatgttgt	tggtgatgtt	ggagatgacc	ttatcgatga	ggtcaccac	cccgttgg	180
gcatgggtgt	cggcttlyar	carccgggca	cagttcacag	ttacaatccc	attaggatag	240
tggtggatct	nggatgttgg	aattctgtt	catagnaggt	gagggtcat	gcccgtgtt	300
cagctcatca	gtcaggactc	gcctgcccac	catatgtta	gcsgraggc	atttgagcag	360
ctcaatgttt	gacattgtct	gaccagggg	gttccagcac	ttctangang	a	411

<210> 12
<211> 560
<212> DNA
<213> Homo sapien

<400> 12

tacttgcctg	gagatwgcyt	tykckwtmtg	ytcwrawgtc	cgtggataca	gaaatctctg	60
caggcaagg	gtcccaagac	atattgcagg	acaaggctgt	aacgaatagt	taaattcacg	120
gcatctggat	tcctaatect	tttccgaaat	ggcagggtgt	agtgcctgt	taaaatattc	180
tatgtttacc	ttcaacttct	tgttctggct	atgtggtac	ttgatcctag	cattagcaat	240
atgggtacga	gtaagaatgt	actctcaage	aatttttgg	tctgaagat	taggetctag	300
ctcctacgtt	gctgtggaca	tattgttgc	tgttaggtgc	atcatcatga	ttctgggctt	360
cctggggatgc	tgcgggtct	taaaagaaag	tgcgtgcatt	ettctgtgt	ttttcatagg	420
tttgcttctg	atccctgtcc	tgcaagggtgg	cgacaggat	cctaggagat	gttttcaaat	480
ctaagtctga	tcgcattgtg	aatgaaactc	tctatgaaaa	cacaagctt	ttgagcgc	540
caggggaaag	tgaaaaacaa					560

<210> 13
<211> 150
<212> DNA
<213> Homo sapien

<400> 13
ggcaggctg tcttttaaa atgtctcgcc tagctagacc acagatatct tctagacata 60
ttgaacacat ttaagatgg agggatataa gggaaaatga tatgaatgtg tattttact 120
caaaataaaa gtaactgtt acgttggta 150

<210> 14
<211> 403
<212> DNA
<213> Homo sapien

<400> 14
ctgctgcctg tggcgtgtgt gggctggatc ctttgaaggc tgagttttg agggcagaaa 60
gctagctatg gtagccagg ttttacaaag gtgctgcctc ttctccaacc cctacttgg 120
ttccctcacc ccaagcctca ttttcatacc agccagttgg ttcaagcagaa cgcatgacac 180
cttatcacct ccctccttgg gtgagctctg aacaccagct ttggcccttc cacagtaagg 240
ctgctacatc agggcaacc ctggctctat cattttcctt ttttgc当地 aggaccagta 300
gcataggtga gccctgagca ctaaaaggag gggccctga agcttccca ctatagtgtg 360
gagttctgtc cctgaggtgg gtacagcage ctggcttctt ctg 403

<210> 15
<211> 688
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(688)
<223> n = A,T,C or G

<400> 15
caaagcacat tttatcatt tttttaaaaa gggggagtaa agcatttaaa ctgccaatcc 60
tatagactag gacttgaaca tcaaaggaaa aatagacaaa gactagatga taaagtcatt 120
caaaagcaca gaagcacatc acatacacca gcaaggtttc caactactgc actgattaac 180
tagatactct caatagctt tctatagctc gtcctagaaa aaaaattaa attttcattt 240
tcttacaagt tccaggctta aacaaaggca aaaattacat gcaacaactg atacactcat 300
aagttgcaca tatgtccaa ggtctttatt agataacaat aaatgttagc actttgtcac 360
tgccatcaga ttttccat agtcttagag tcattgtaaat aaaagtccaa taatgaaatt 420
aaagaaaatt aattttctta atcttagatc agttccatag aaaactattaa atttttttaa 480
agtaggcagt agaagggggt tgggggggg tggaaattgg tagtaagtct ggttctaatc 540
ttctgagctg ccttggaaag gaagttatga ggtagaagat tctactgact ttttagtaagg 600
tggacaatga gagaaaagaa aaagcagggtg cctcatcnnc agatcctnt ggtattttatn 660
tgccangtnc nanntaatnc atanaaag 688

<210> 16
<211> 408
<212> DNA
<213> Homo sapien

<400> 16
caggtcatca agatgactta caggatgtaa tagggagagc tgtcgagatt ggtgttaaaa 60
agtttatgat tacaggtgg aatctacaag acagtaaaga tgcactgcat ttggcacaaa 120
caaatggat gttttcgtt acagttggat gtcgtccatc aagatgtggt gaatttgaaa 180

agaataaccc tcatctttac ttaaaaggagt tgctaaatct tgctgaaaac aataaaaggga	240
aagttgtggc aataggagaa tgccggacttg attttgaccc gactgcgtt ttgtcccaa	300
gatactcaac tcaaataattt taaaaaacag ttgaactgt cagaacaaac aaaattacca	360
atgtttcttc attgtccgaa actcacatgc tgaatttttgc acataat	408

<210> 17
<211> 407
<212> DNA
<213> Homo sapien

<400> 17	
ggtcctgggg aggccctagg ggagcaccgt gatggagagg acagagcagg ggctccagca	60
ccttccttctt ggactggcg tCACCTCCCT gctcagtgtc tggctccac gggcagggtt	120
cagagcactc cctaatttat gtgctatata aatatgtcag atgtacatag agatctattt	180
tttctaaaac attccccctyc ccactcctct cccacagagt gctggactgt tccaggccct	240
ccagtgggct gatgctggga cccttaggat ggggctccca gctccttctt cctgtgaatg	300
gaggcagaag acctccaaata aagtgccttc tgggctttt ctaacctttt tcttagctac	360
ctgtgtactg aaatttgggc ctggatcg aatatggtca agaggtt	407

<210> 18
<211> 405
<212> DNA
<213> Homo sapien

<400> 18	
tgaagagtca acttgggcct ggaggactga taaagttgt gattttgagg gcctctaaaa	60
gtattaaage agccggcagcc getgcacgca gacatgaggg ctaggttaaa acagtaagat	120
caagttgtttt ggacagaaaag gctacagagt gtggctctgg ctcttgttta agaattacga	180
ccacgctaac catgcctagg aaggaaagga gttattttt ttagaaagg tgctggggtt	240
tgagagatca gtcggacacg attggcaggg agagcacgtg tgttttatag agaattatgc	300
ccgagatagg taacagatga ggaagaaaatt tgggcttgat tgaagatag ggggctgtct	360
gtgaagctttt gcagcgtac agccttagtta atttgctgag cctaa	405

<210> 19
<211> 401
<212> DNA
<213> Homo sapien

<400> 19	
tcctgacatt cctgccttct tatattaata agacaataaa aacaaaatag ttttgaagt	60
ttggggcagc gaaaattttt ggggggttgtt atggagagat aatgggcgtat gtttctcagg	120
gctgcttcaa gcgggattag gggccggctg ggagcctaga gtggagaga ttaagctgaa	180
gggaggtctt gtggtaaggg gtgatatcat gggatgttta gaagaaacat ttgtcgtata	240
aatgtattgg ttagtgcctg gatacggttt tggatgatattt gagaagctaa atgaaagata	300
caaggctccga ataaaaggag gaaaaaaatg gttttaat gtctaaagat tgggaggacc	360
taggacatctt gattagagat tgcttaagga gattcagcat a	401

<210> 20
<211> 331
<212> DNA
<213> Homo sapien

<400> 20	
aggcccacgt ctgtctcata cttgactcta aagtcatcag cagcaagacg ggcattgtca	60
atctgcagaa cgatgcgggc attgtccaca gtatggcgaa agatctgacg cctcaggccc	120
tgcgtatct tgaagtaatg gctccagttt ctgacctggg gtccttctt ctccaagtgc	180
tcccgattt tgctctccag cctccgggtt tcggtctcca ggctctcac tctgtccagg	240
taagaggccta ggcggctgtt caggtttgc atggtctctt tctcgatctg gatgcctccc	300

attcctgccca gaccccccgc tatcccggtg' g 331

<210> 21
<211> 346
<212> DNA
<213> Homo sapien

<220> .
<221> misc_feature
<222> (1)...(346)
<223> n = A,T,C or G

<400> 21

ggtccaccac ttgtacccga tatggacttc cggcttctct gtccaatgga	60
agatctcacc agtcaegtgg tcaattttaa gccaacctct ttgtctccc	120
agcttatgtc cagacccctct ggatccttgg ,cagtcacatt gcccacttta	180
ctacatcctc actgacttgc gcttggaaa cgtgttggga aaattgaggt	240
catctgtcac aataagnctg gaacttggca aaagaacttg cattgtactt cacaccaa	300
actagaggct caggatttgc tgcttgaac acaatgttgg aaacag	346

<210> 22

<211> 360
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(360)
<223> n = A,T,C or G

<400> 22

gaagactcccc tctctcgaa gccggatccc gagccgggca ggatggatca	60
gggactgggc gctaccagggt gtttcttaat gaagaggata actcagaatc	120
gagcagccac ctacttcaaa cccagcaccc gcagattgtg caggctgcgt	180
agcacttggaa actgacttctt cccctccacc atatagtatg attactgttgc	240
caacttcaga tacagaagtt tacgggtgatg ttatccctgt gcccacccc	300
ctacctctct tcctacnwta cgatgaaagc tgagaaggct aaagctgtg	360

<210> 23

<211> 251
<212> DNA
<213> Homo sapien

<400> 23

ggcggagctc cacgacgagc tggaaaagga accttttgag gatggcttg	60
agaaaatact ccaaccagag atgctgtgtt cacgtatact gcagaaagta	120
gaagtttggc tggateaagg gtgtattatg acgttgatg ttaaacattt	180
gtttttcattt agattgtcat ggattgtggg tcaagctgga ataggtctat	240
aataatgatg g	251

<210> 24

<211> 421
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(421)

<223> n = A,T,C or G

<400> 24

caggcttttc ccagggtttg actccagctc cagcttcage tccagctcca ggtcggtc	60
cagctccagc cgccagttar gcagcgggag gttctgtgc ccagttgtt tccaatttca	120
ccggctcccc tggatgamcg yggacactgy caswgctct gkttyccctgc yagsacacca	180
cnytttyccg tggacacrar kgaaccckct tggaaattcac agctyatgtt ctttctcara	240
agtttgagaa agaactttct aaagtgggg aatatgtcca attaattagt gtgtatgaaa	300
agaaactgtt aaacctaact gtccgaattt acatcatgga raaaggatac catttcttac	360
actgaactgg acttcgagct gatcaaggta gaagtgaagg agatggaaaa actggtcata	420
c	421

<210> 25

<211> 381

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(381)

<223> n = A,T,C or G

<400> 25

gaactttttt tttctttatt ttcaatattt gtcttattaa tatttttctt attttataat	60
gcaattacaa caatttagga nacaaaacaa tataaacaaa agaatgttaa atagtttttt	120
ttaaaaataa gcttggctgct tgcaanaaaag tccatataat cttaattcccc cccaaatata	180
attttataact ttgcactaaa cccaaatagc ttatggaaaa ttagtattaa atagctaaac	240
acagaaaacc tacagctata aataacataa aatacagtt aactttatag ngatgcttaa	300
acaaaagcaaaa ctatgatgca atatgaatca acttcattaa ttggacaagt ccagngggagg	360
cacaaattag ataagcacta a	381

<210> 26

<211> 401

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(401)

<223> n = A,T,C or G

<400> 26

gaaaaaggaa ctggcctctc tgaagagtga gatgaggaa gtggaggag agctggaaag	60
gaaggagctg gagtttgaca cgaatatggc tgcaagtacag atggtgatta cagaagccca	120
gaaggttcat accagaagcc aagaacgctg gggttacaat ccaagacaca ctcaacacat	180
tagacgggct cctgcattt gatggaccaa ccttttcang tggtaagatt gaaganggg	240
cctgggctta cctgggaagc aaaaactttt cccganccaa ggaacccagg attcaaccan	300
gcnacttgcn ggcaaggaa ggcanaactn ggaanaaaag gccccttaag caaaagggn	360
accttcattt gctnggaaan cagccttan ttggaatctt g	401

<210> 27

<211> 383

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(383)

<223> n = A,T,C or G

<400> 27

aattgcaact ggactttat tggcagttt cnacaacnaa tgtttcana aaaatattt	60
gaaaaaaaaat accacttcat agctaagtct tacagagaan aggatttgct aataaaaactt	120
aagtttggaa aattaagatg cnggtanago ttctgaacta atgcccacag ctccaaggaa	180
nacatgtccct atttagttat tcaaatacca gttgagggca ttgtgattaa gcaaacaata	240
tatttgttan aacttgnntt ttaaattact gntncttgac attacttata aaggagnctc	300
taactttcga ttctaaaac tatgtaatac aaaagtatan nttccccat tttgataaaa	360
gggcnnanga tactgantag gaa	383

<210> 28

<211> 401

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(401)

<223> n = A,T,C or G

<400> 28

ggtecgcttt cccctggctc acagtctgcc attatttgca tttttaaatg aagaaaaagtt	60
taacgtggat ggatggacag ttacaatcc agtggaaagaa tacaggaggc agggcttgc	120
caatcaccat tggagaataa cttttattaa taagtgttat gagctctgcg acacttaccc	180
tgcctttttt gtggtccgt atcgtgcctc anatgtatgac ctccggagag ttgcaacttt	240
taggtcccgaa atatcgaaatc cagtgcgtc atggattcat ccagaaaata agacggatcat	300
tgtgcgttgc agtcagecctc ttgtcggtat gatgtggaaa cgaaataaaag atgatgagaa	360
atatctcgat ttatcaggg agactaataa acaaattttt a	401

<210> 29

<211> 401

<212> DNA

<213> Homo sapien

<400> 29

atatgagttt gccatctcca tggatgccat ttcaatgcct tcaggtaat cattctctcc	60
ccaaagactg cccacgggt catcaacttct gtgacgaaat gagggctgaa ttgaagatgt	120
tctgctgagc accccccctgg tcatctttgg ggtctcagaa gagccataat catgaccatt	180
ctcagcatct gaataatcg gttctctcca agtgcttgc aagttctgtat tgtcctcagc	240
actgggatag tctggctccc caaaaaagggg tggagagttt ggttgaatgt cagcgcctgg	300
ataatcaggg tttcccaagag agtctgcgtt tggattgtt ctaaaaacttg tatgttccag	360
attctttctg gatcctggat ggttcaaatt ggctctgggt c	401

<210> 30

<211> 401

<212> DNA

<213> Homo sapien

<400> 30

cctgaactat ttataaaaaa catgaccact cttggctatt gaagatgcgt cctgtatttg	60
agagactgcc atacataata tatgacttcc tagggatctg aaatccataa actaagagaa	120
actgtgtata gtttacactga acaggaatcc ttactgtat ttatagaaca gttgatttcc	180
cccateccccca gtttatggat atgctgtttt aaacttggaa gggggagaca ggaagttta	240
attgttctga ctaaaacttag gatgtgagct aggagtgcgt tcatggtttcc ttcaactaaca	300
gaggaattat gctttgcact acgtccctcc aagtgaagac agactgtttt agacagactt	360
ttttaaatgg tgccctacca ttgacacatg cagaaattgg t	401

<210> 31
<211> 297
<212> DNA
<213> Homo sapien

<400> 31

acctccatta atgccagggt ttcctcctct gatgccagga atgccaccag ttatgccagg	60
catgccacct ggattgcata atcagagaaa atacaccagg tcattttcg gtgaaaaacat	120
aatgatgcca atgggtggaa tgatgccacc tggaccagga ataccaccc tcgtatgcctgg	180
aatgccacca ggtatgc(cc) cacctgttcc acgttctggaa attcctccaa tgactcaagc	240
acaggctgtt tcagcgccag gtattcttaa tagaccaccc gcaccaacag caactgt	297

<210> 32

<211> 401

<212> DNA

<213> Homo sapien

<400> 32

caaaccctgga gccaaaaagg acacaaaagg ctctcgaccc aaactgcccc agaccctctc	60
cagagggtgg ggtgaccaac tcatactggac tcagacatat gaagaagctc tatataaaatc	120
caagacaagc aacaaaccct tgatgattat tcatacttg ggtgagtggc cacacagtc	180
agctttaaag aaagtgtttg ctgaaaataa agaaatccag aaattggcag agcagtttg	240
cctcctcaat ctggttatg aaacaactga caaacaccc ttctctgatg gccagttatgt	300
ccccaggatt atgtttgtt acccatctct gacagttaga gcccggatatc actggaaagat	360
attcaaaaccc tctctatgt tacgaacactg cagatacagc t	401

<210> 33

<211> 401

<212> DNA

<213> Homo sapien

<400> 33

agcagaggga caggaatcat tcggccactg ttccagacggg agccacaccc ttctccaatc	60
caaggcctggc cccagaagat cacaagagc caaagaaact ggcagggtgc cacgcgcctcc	120
aggccagtga gttgggtgtc acttactttt tctgtggggaa agaaattcca taccggagga	180
tgctgaaggc tcagagcttg accctggggcc actttaaaga gcagctcagc aaaaaggggaa	240
attataggtt ttacttccaa aaagcaagcg atgagtttgc ctgtggagcg gtgtttgagg	300
agatctggga ggtatgagacg gtgctcccgaa tgtatgaagg ccggattctg ggcaaaagtgg	360
agcggatcga ttgagccctg gggctctggct ttggtaact g	401

<210> 34

<211> 401

<212> DNA

<213> Homo sapien

<400> 34

aacaatggct atgaaggcat tgcgttgca atcgacccca atgtgccaga agatgaaaca	60
ctcattcaac aaataaaaggc catggtgacc caggcatctc tgcgtatctt tgaagctaca	120
gaaaaggcgat tttatttcaa aaatgttgcc attttgcattt ctgaaaacatg gaagacaaaag	180
gctgactatgt tgagacccaa acttggatcc tacaaaaatg ctgtatgttgc gtttgcttgc	240
gtctactcctt ccaggtaatg atgaacccta cactggcag atggggcaac tgtggagaga	300
aggggtgaaa ggatcccacc tcactcttgc ttccatttgc gaaaaaaagt tagcttgaat	360
atggaccaca aggttaaggc atttgtccat gaatggggct c	401

<210> 35

<211> 401

<212> DNA

<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(401)
 <223> n = A,T,C or G

<400> 35

catttcttcc tactagactg cccccttgat ccactggcag aaatgatggc accaccttgt	60
cttcagggtgg tgctccttca ttattccaag gatgcagcat ctctatggtg ccaggtatgg	120
gggttaaagcc tttggcccc tttccgcaat ggcacatcg cagtaaaagt ggtaccaata	180
gcangaaacag aaaggcaaa atcatgancg caattgtgc gggtcccaag cccacatagg	240
aatcatgctg ngcttccctg canccgctgc catgcaagac actnacaaac tgngantgta	300
aggacctgtc tttcaggaca actaaaaccc tgattgnctg aaatcaggaa ctgaatttca	360
cttctcccaa gcttttctc actttggc aacancacac t	401

<210> 36

<211> 401

<212> DNA

<213> Homo sapien

<400> 36

cctgcttagaa tcactgcccgc tggatgttgc tggaaatgac agttccttgt tttttttgtt	60
tctgtttttt ttttacatta gtcattggac cacagccatt caggaactac cccctgcccc	120
acaaagaaat gaacagtgtt agggagaccc agcagcacct ttcctccaca caccttcatt	180
ttgaagttcg gttttttgtt ttaagttaat ctgtacattc tggatgttgc tggatgttgc	240
actatacattc tgtatatagt gtacggcaaa agagtattaa tccactatct ctgtgttttgc	300
actttaaatc agtacagtac ctgtacattc acggtcaccc gctccgtgtg tggccctata	360
ttgagggctc aagtttccc ttgttttttgc aaaggggtttt a	401

<210> 37

<211> 401

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(401)

<223> n = A,T,C or G

<400> 37

cnnctntgna atggantnnnt tgnctaaaan ganttgafga tggatgaaat ccctangang	60
antaaggatg ganctngatc nttnctnnng cactccttta cgacacggaa acangnatca	120
ncatgtgtt accaganacc ttatcacccna cgccgcacngt nctgactnat tccaaagagt	180
tgnngttacg gncatcccggt cattgtctgtt gcccattgtt gcagggctga tnctactgtt	240
gcttattatgt ntggccctga ggatgctcca caatgaatat aagcatgtgtt catgtatcagc	300
ggcaacananat gctctgcccgt ttgcactaca tctttcacgg acacnatntc gaanacggc	360
acnttgcana gtttagacttg gaatgcatgg ngccggncan n	401

<210> 38

<211> 401

<212> DNA

<213> Homo sapien

<400> 38

aattggctca ctctctcaag gcaaggactg tctcaaggca gtctcaaggc agagatgaca	60
cagcaaaaaaa cagaggggga gaaaaaaaaatc tattattggc ttgtgattt caaaaagccaa	120
agtccttttag ataaaaaggcc aggatgtcgta ccaacataga taccaaatcc aggagaacac	180
agaccagcga taagaggggac gttcccccattt gacccagacc agctttaaagc ccctgtgggg	240

gcagccagtg	gggagctgtc	agacatttggca	catgggtggtc	tttggaaatgt	ggtctgcct	300
tctctccctg	accagggtggg	atagacacct	gactggaaatc	cttgacactg	gcaggtgttt	360
ctatgaacag	agaggactgt	gcctgtcttc	ctgaatccca	a		401

<210> 39
<211> 401
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(401)
<223> n = A,T,C or G

<400> 39

tctggtang	agcaatttcta	ttattttggca	tttgcattggct	gggttgaatt	aaaacaggga	60
gtgagaacag	gttagtctag	aagtccaaact	ctgaaaaggga	ccactgtaca	tttgaacaca	120
cggctgtgtt	aaagatgtctg	ctaatgtcag	tcactgggtg	cactaaaggga	tctcttattt	180
tatgtaaaac	gttgggaatgt	acaagatana	actgtatactc	tggtaagttt	ccctctgaag	240
ctacttcttg	tgaaataacta	atgacagcat	catcctgccca	agcgaaagag	gcaggcataa	300
gcaaggacaa	attaaaaagggg	gtttaagagcc	ttatcatgtat	gaggagtctt	gttttgacat	360
cttggggaaaa	gctgtccata	gtgtgaagtc	gtcaattttct	c		401

<210> 40
<211> 401
<212> DNA
<213> Homo sapien

<400> 40

tctggtcacc	caactcttgt	ggaagagggg	aatttggatc	gagttactgaa	tatctggcag	60
agaggcttgg	atccttcagc	cccagagccc	agggaccact	ccagtagatg	cagagagggg	120
cctgcccagg	ggtcaggggca	gtgggtatca	ctggtgacat	caagaatatac	agggctgggg	180
aggcatctt	gtttcttgtt	gccttcctca	aagttgtcga	cactttgggg	acgggaaggg	240
gttagaagtag	ggctgtctct	tttggagctg	gagggaatag	acctggagac	agagttgagg	300
cagtccggct	gtccagggttc	taagcatcac	agcttctgca	ctgggtctgt	aggagattct	360
cagccagagg	atccccagct	cctcctccct	caaattgtcaa	g		401

<210> 41
<211> 401
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(401)
<223> n = A,T,C or G

<400> 41

ctggactaaa	aatgtccact	atggggtgca	ctctacagtt	tttggaaatgc	taggaggcag	60
aaggggcaga	gagtaaaaaaa	catgacctgg	tagaagggaaag	agaggcaaag	gaaacttaggt	120
gggggaggatc	aatttagagag	gaggcacctg	ggatccacct	tcttccttan	gtccctctct	180
ccatcagcaa	aggagcacctt	ctctaatcat	gcctcccgaa	agactggctg	ggagaagggt	240
taaaaaacaaa	aaatccagga	gtttaggcct	taggtcagtt	tgaaatttggaa	gacaaaactgt	300
ctggcaaagg	gtgcganagg	gagtttgc	tcangagtcc	agcccggtcca	gcctcggggt	360
gtangttct	gaagtgtgcc	attggggcct	cacccctct	g		401

<210> 42
<211> 310

<212> DNA
 <213> Homo sapien

<400> 42

gttgcacaa atccccaaaa atggcaaatt aagccctgtg acaaataag ttattggatc	60
atacagaaaat agcccaaatac tgaaaatttt gaattaaaat ttaatcctg taaaacaagt	120
tttggggta atggatttct ttaataccaa taatatttt aattcccacc acagatggat	180
ttgctgaata tgctaattgt gtgaatgaga aaacaatttt gggtagta tacccacaag	240
taatctgatg acaaaataaa ccacagactg atgtcaaattg gacaaaaaac tgaaaatcg	300
ctgtgagaaa	310

<210> 43

<211> 401

<212> DNA

<213> Homo sapien

<400> 43

aggtaactta cacttgtgac cagtgtgggg cagagaccta ccagccgatc cagtctccca	60
ctttcatgcc tctgatcatg tgcccaagcc aggagtgc aaccaaccgc tcaggagggc	120
ggctgtatct gcagacacgg ggctccagat tcataccattt ccaggagatg aagatgcaag	180
aacatagtga tcaggtgcct gtggaaata tccctctgt tatcacggtg ctggtagaaag	240
gagagaacac aaggattgcc cagcctggag accacgtcag cgtactggat atttcttc	300
caatcctgcg cactgggttc cgacaggtgg tacagggttt acttcagaa acctacctgg	360
aagcccatcg gattgtgaag atgaacaaga gtgaggatga t	401

<210> 44

<211> 401

<212> DNA

<213> Homo sapien

<400> 44

atccctgttaa gtctattaaa tggaaataat acataacttta caacttcttct tagtcggccc	60
ttggcagatt aaatcttgc aaaattccat atgtgctattt gaaaaatgaa ataaaacctc	120
agatgtctga attcttattt caaaatacagt tatataatta tttttttttttaa caatatacaa	180
tttctgttaa atacaactgt taaggattc tgagaacaat tataagatta taataatata	240
tacaaactaa cttctgaaat gacatgggtt gtttccttcc caccctccta ccctctcaa	300
gagtttttgc atttctgtttt cctgggttgc aaaggcaaa gaaaatctaa aaatgtctg	360
tgtgtgtcca cgacatgtc gtccttttgc gatctcaaa c	401

<210> 45

<211> 401

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(401)

<223> n = A,T,C or G

<400> 45

gtgcctgctg cctggcagcc tggccctgcc gctgcctcag gaggcgggag gcatgagtga	60
gctacagtgg gaacaggctc aggactatctt caagagattt tatctctatg actcagaaac	120
aaaaaatgcc aacagtttag aagccaaactt caaggagatg caaaaaattt ttggcctac	180
ctatactggta atggtaaaactt cccgcgtcat anaataatg caanaagccc agatgtggag	240
tgccagatgt tgcagaatac tcaatatttc caaatggccc aaaatggact tccaaagtgg	300
tcacctacag gatcgatca tataactcgag acttaccgca tattacagtg gatcgattag	360
tgtcaaaggc tttaaacatg tggggcaaaag agatccccctt g	401

<210> 46
<211> 401
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(401)
<223> n = A,T,C or G

<400> 46

gtcagaattt	tctttctgaa	aggaaggact	cggaatccctt	ccgaactttc	caagtccatc	60
catgattcan	agataactgcc	ttctctctct	ctgggatttt	atgtgtttct	gatagtgaat	120
tgttgatgta	tttgctactt	tgcttccttt	ctcttcaag	acttgatcat	tttatatgct	180
gnttggagaa	aaaaagaact	tttggtagca	aggaggttcc	aagaatgat	tttggatttt	240
ctgctgcgga	atttctcgcc	acctacctgt	agtatggggc	acttggtttgc	gttgcagagt	300
aagaaggtgg	aagaatgagc	tgtacttggt	taagcagtttgc	aaacctttttt	tgagcaggat	360
ctgtaaaagc	ataattgaat	ttgtttcacc	cccggtggatt	c		401

<210> 47

<211> 401
<212> DNA
<213> Homo sapien

<400> 47

ggtctgcagc	aatgcacttc	aaccatacat	actgcttcca	ctagctaata	ccaaatgcag	60
gttctcagat	ccagacaat	ggaggaaaag	aacattttag	cttcgttcc	agaaagccaa	120
gtcgtagttt	tggcccttcc	tttctctaaa	gtttattccc	aaaaacaggt	agcattcctg	180
attgggcaga	gaagaggata	tttctcgccc	acatctgctg	caggatgtc	attttctccc	240
atcttcactg	tgactagtaa	agatctcacc	acttctcttt	ggaatttcca	actttgcttg	300
tgatttgaatg	tcacttcgtg	aatttgtatt	atgtcagatc	acttggcatt	gctcttccat	360
atgcatcaag	ttgccaggca	ctaaacccaa	tgttcatgaa	c		401

<210> 48

<211> 430
<212> DNA
<213> Homo sapien

<400> 48

acataactttt	ttaacttttt	ctgcttgggg	gctgttaacag	acagaagagt	aaagactaca	60
aggattttct	gaagatgctt	caatgaaaat	catcatttcc	tcttttagtca	tcccaagtct	120
tggtttggaaa	aacttggggca	tggacttata	cagaccttga	accaccactg	acttattcatt	180
gggtggcaga	ccttggaaacc	aagctctctg	tgttacttct	gaaagtgcatt	caattctgtat	240
ttggcttaaga	acagaagaca	aatactggga	tcgtgattct	gtgttatact	ctagccacag	300
catagcagct	tctcgAACGG	tttcttcctt	ttctacatTTT	aaattgtcac	tactgagaat	360
atctatcagt	aggcatgtg	acagacctgc	ccccggggccg	gcccgctcga	tgcttggccga	420
atatcatgtt						430

<210> 49

<211> 57
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(57)
<223> n = A,T,C or G

<400> 49
 ggtattaaca atatcangca ctcattcttc ccctcttatg aaanggatna attttta 57

<210> 50
 <211> 327
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(327)
 <223> n = A,T,C or G

<400> 50
 gatggnggtn tccacaagan tnaangtnm tattaantan nncttgtaga nccacttnna 60
 ttaattgnmn tatgnntgnnc cttctggtgg ntgtngaagc ttcatatnn ntggacat 120
 cattacacgt cttagctt tnaagnacaa cttaatgtt atatgaattt tgccattnn 180
 gctaacaactg gtatgtccn ngcatccacc atnccacntg gaatttattt ttnccnttcat 240
 attaatnttt tgtttaccaa atctnacttg acccgaacga aactttctgn gtattnnang 300
 gccccccat tcttactttt caaggct 327

<210> 51
 <211> 236
 <212> DNA
 <213> Homo sapien

<400> 51
 cgtctcgaaag aagcgtcgca ggccgatgat ggactgcacg tctgccttgt cctcagttaa 60
 cttgttgaat tgcttgaaca tgccggccac atcctggca aactcctgtg gggagctgt 120
 gggaggtgac aacttctct ggaggcgggc acggatcagg gtcagatcca gggtgccacc 180
 gggctggtcc agggagaagg tggagtcgta gccagacctg cccggcggc cgctcg 236

<210> 52
 <211> 291
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(291)
 <223> n = A,T,C or G

<400> 52
 ctcacatccgt gggtccggct gttagagctgc accatggtgc tgagcgcggcc ctccagctcc 60
 ttgttagatgt aaaggacggc gaaggagctg tagtctgtgt ccacgatgcg cacgtccagg 120
 tagcccaagg cccggactct gaagttgtcc ctccggagccc accttcangt actcgggcat 180
 ccacctgggtt acagccnttc gncctcggnna actccatntg gactttacag gccggccctcc 240
 tctgtgggcc ttagtggncct tgaggacat nggaacacgg gagctcnctt t 291

<210> 53
 <211> 95
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(95)
 <223> n = A,T,C or G

<400> 53		
gtctgtcag tttctgacac ttgttgtga acatggntaa atacaatggg tatcgctgan	60	
cactaagttg tanaanttaa caaatgtgct gnttg	95	
<210> 54		
<211> 66		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1)...(66)		
<223> n = A,T,C or G		
<400> 54		
cctnaatnat nttaatggta tcaatnnccc tgaangangg gancggngga agccggnttt	60	
gtccgg	66	
<210> 55		
<211> 265		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1)...(265)		
<223> n = A,T,C or G		
<400> 55		
atctttcttc tcagtgcctt ggcctgttg agtctatctg gtaacactgg agctgactcc	60	
ctggaaagag aggccaaatg ttacaatgaa cttaatggat gcaccaagat atatgaccct	120	
gtctgtggga ctgtatggaaa tacttatccc aatgaatgcc gtgttatgtt tttgaaaatc	180	
ggaaacgcaca gacttctatc ctcattcaaa aatctgggcc ttntgaaaa ccagggtttt	240	
naaaatcccc ttcnngtcnc cgcg	265	
<210> 56		
<211> 420		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1)...(420)		
<223> n = A,T,C or G		
<400> 56		
gagcggccgc ccgggcaggc cctcgccgtg acctgatggg atttcaaaac cttggttctc	60	
agcaaggccc agattttga atgangatag aagtctggcg tttccgattt tcaaaacata	120	
acacgcattc attggatata gtatccat cagtcacaca gacnggtca tatatcttg	180	
gtgcattccat taagttcatt tggtaacatt tgggccttc tttcccangg gaattcagct	240	
cccagttgtt taccaanatt naactccacc ggggccaaag gcnttgaaa aaaaaaanaa	300	
ttccttgttt accttccttg ggcttnaagt tctggcgtcc aaaagttcaa tttgaaaact	360	
gcaccgcact taccacgtct cttcnagaan cctggggaca cctcgccgc gaccacgcta	420	
<210> 57		
<211> 170		
<212> DNA		

<213> Homo sapien

<400> 57

gaagcggagt tgcagcgctt ggtggccgccc gagcagcaga aggcgcagtt tactgcacag	60
gtgcataact tcatggagtt atgttggat aaatgtgtgg agaagccagg gaatgccta	120
gactctcgca ctgaaaattt tctctccaga cctcgccgc gaccacgcta	170

<210> 58

<211> 193

<212> DNA

<213> Homo sapien

<400> 58

attttcagtg cgagagtctta ggcgattccc tggcttctcc acacatttat cccaacataa	60
ctccatgaag ttagtgcacct gtgcagtaaa ctgcgccttc tgctgctcg cgccaccag	120
gcgcgtcaac tccgcttcat cggttcgccc cagtcgcgc attgttcgccc acctgcccgg	180
gcggccgctc gaa	193

<210> 59

<211> 229

<212> DNA

<213> Homo sapien

<400> 59

cgcaactctc gaggatttat atacaatagc aaatcatcca gtgtgttgta cagtctataa	60
tactccaaca gtctcccatc tgtattcaat ggccgcacccc aatacagtcc ttgttttggaa	120
tgctggggag agtaatccct accccaagca ccatataagat aagaaaaaccc tctccagttt	180
agctgaacca cagacgggtt gctgataacct gccccggccgg ccgtcgaa	229

<210> 60

<211> 340

<212> DNA

<213> Homo sapien

<400> 60

tcgagcggcc gcccgggcag gtcctctaaa gatcaaaaca cccctgtcgcc ccaccctcct	60
cccaactccag ggaagctgtg gtcatggtgg tgtggtaaac atcagcaaac cgtctgtgt	120
tcaagtcac tggagagggt ttttttatct atatggtct tggggtaggg attactctcc	180
ccagcatcca aacaaaggac tgtattgggt ggcccatcg aatacagatg ggaaactgtt	240
ggagtattat aaactgtac aacacactgg atgatttctt attgtatata aatgctcgag	300
aattgcggat cacctatgga cctcgccgc gaccacgctg	340

<210> 61

<211> 179

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(179)

<223> n = A,T,C or G

<400> 61

tttttgcac ggacgnttgg agtacatgtc ccaggatcac atccagcgc tagagtggct	60
gggacaagct ggcggngggcc aagcactgtt gaaacnatag gggcttgggn gnactcggt	120
tnaagtgggtt ggtccganntn tttnataacct tgcncgaacc nancatctcg gttgncaang	179

<210> 62

<211> 78
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(78)
 <223> n = A,T,C or G

<400> 62
 agggcgttcg taacggaaat gccgaagcgt gggaaaaagg gagcggtggc nggaagacgg 60
 ggatgagctt angacaga 78

<210> 63
 <211> 410
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(410)
 <223> n = A,T,C or G

<400> 63
 cccagttact tggggaggct gaggcagggg gaatcctttg aaccggngg gtgggagggtt 60
 gcagttagcc cgagatagca ccattgcact tccancatgg ggtggacaga gtgagactct 120
 atctcaaaaaaaa aaaagaaaaag aaaagggaaag agatttagatt aagattaagt acctacttcc 180
 tntcccattt caagtccctga aaatagagga tcagaaatgt tgaggaattc ttttaggatag 240
 aaagggagat gggattttac ttatgggaa agacccgaaaa taaagactgn aacttaacca 300
 cattccccaa gtgnaagtg ttacccaaga agtaggaacc ctttggctn ttaccttacc 360
 ttccngaaaaaa aaacttattt ctaaaaatgg aaacccttaa agccgggca 410

<210> 64
 <211> 199
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(199)
 <223> n = A,T,C or G

<400> 64
 ctgtttctca aaaaggtcaa agggagcccg acgaggaata aatagcaatg ccctgaattc 60
 caactgacct tctacagaaa atgtcttgac tgccaagtgg tcttcccagt cattagttag 120
 gctctttag aattctccat actcctttg ggngangnca tnagggtttt nggcccaaat 180
 aggntggcc tngttaagt 199

<210> 65
 <211> 125
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(125)
 <223> n = A,T,C or G

<400> 65
 agcggtagacag ttctgtcctg gcatcatcat tcattgtagt atggtaata ggtgccatga 60
 aactcagtag cttgctaagg acatgaaacc gaagttcct gccttgctg gcctngtngn 120
 gggta 125

<210> 66
 <211> 204
 <212> DNA
 <213> Homo sapien

<400> 66
 attcagaatt ctggcatcg tatttctata aagtccatca gtttagagcg gagcaggccc 60
 ggagggacgc cctgaagcg cgggcgaaac agagcatctc tgaagagccc ggctgggagg 120
 aggaggaaga ggagctcatg ggcatttcac ccatatctcc aaaagaggca aaggttcctg 180
 tggacctcg ccgcgaccac gcta 204

<210> 67
 <211> 383
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(383)
 <223> n = A,T,C or G

<400> 67
 tcagggcctc caggcagcca gtttgcagg anattcagca cctagngtct tcctgcctna 60
 cgctcccaag aacctgctcc tgcaggggga acatcagaac tcgtccttga tgtcaaaatg 120
 gggctggtot tnaggttga atgcccagggtt agggctgcca tcctcattga gaattctccg 180
 ggcagtgtan ccgacatgg ggtatggc tttgtacact ttgtaaaa cctnatccag 240
 ggcctccagt tccttggccg tganaccgt antgtcatgg gtgaggctg caggatccaa 300
 gacatcttgcgttcc tagtggagtc cttccccgtc aaggcattgt aaggggctcc 360
 tcgtccataaa aactctttt cgg 383

<210> 68
 <211> 99
 <212> DNA
 <213> Homo sapien

<400> 68
 tcacatctcc tttttttttt aactttttca aatttttgtg taaaatagaa ggctaaaggg 60
 ttagattnaa gtttctgcta cattgaccct atttaccta 99

<210> 69
 <211> 37
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(37)
 <223> n = A,T,C or G

<400> 69
 gagaaggacn tacggncctg ntantanang aatctcc 37

<210> 70

<211> 222
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(222)
<223> n = A,T,C or G

<400> 70

gtgggtcatt tttgctgtca ccagcaacgt tgccacgacg aacatccttg acagacacat	60
tcttgacatt gaagcccaca ttgtccccag gaagagcttc actcaaagct tcatggcga	120
tttcgacaga ttttacttcc gttgtaacgt tgactggagc aaaggtgacc accataccgg	180
gtttgagaac acccantcac ctgccccggg cggccgctcg aa	222

<210> 71
<211> 428
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(428)
<223> n = A,T,C or G

<400> 71

caggagtatt ttgttagaaaa gccagaagag cattagtaga tgtatggaaa tatacggtag	60
gcacacgct gacagtactt ttcccaagcc acgcccgtatt tcttcttaca gtggtaactcg	120
tcacgagctt ctcgggtggac aagcaacatg gtgaaataaa ttatgttagaa ataaggcaga	180
atgtggttaa aaccacatgg gagggaccac gccaaggcca ttagatggatc acccaagtaa	240
ttgggggtggc gaacaaagcc ccaccatcca gaaactagaa naatttttcc cggtgaaata	300
tgaatggntt ttaaatgtgc aagctttgga tcactggaa ttttccgaa tgccttttc	360
tganaattgc accttnggaa gantccttac cccaaagnncc agaccattat tttnaaagcn	420
ttggaact	428

<210> 72
<211> 264
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(264)
<223> n = A,T,C or G

<400> 72

gaataaaagag cttactggaa tccagcaggg ttttctgcc aaggatttgc aagctgaagc	60
tctctgcaaa cttgatagga gataaaaag ccacaataga gcagtttatg aagatcttgg	120
aggagattga cacacttgat cctgccagaa aatttcaag acatgttggattt gaaaaggaaa	180
gcctttggta aaaaaagggtt caggcattcc tagccgantg tgacacagtg gagcanaaca	240
tctgcangag actganeggc tgca	264

<210> 73
<211> 442
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(442)
 <223> n = A,T,C or G

<400> 73

ggcgaatccg	gccccatca	gagccatca	aaccgcacc	atgacggtgg	gcaagagcag	60
caagatgtcg	cagcatattg	attacaggat	gagggtcattc	ctgcaggacg	gccggatctt	120
cattggcacc	ttcaaggctt	ttgacaagca	catgaatttg	atccctgtg	actgtatgt	180
gttcagaaag	atcaagccaa	agaacttcaa	acaaggcagaa	agggaaagaga	agcgagtctt	240
cggtctggng	ctgctgcca	gggagaatct	ggtctcaatg	acngtagaa	gaccttcttc	300
caaagatact	gnattgcctc	gagttccact	tgcttggact	tcccggggcc	caaggatcgc	360
aaggcttctg	gcaaaagaaa	tccanacttn	ggccgggacc	acctaanc	attcacacac	420
tggccggcgt	actagtggat	cc				442

<210> 74

<211> 337

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(337)

<223> n = A,T,C or G

<400> 74

gttagcagcg	tctccagagc	ctgatctggg	gtcccagata	cccaggcagc	agcagccctg	60
gaggtaaagg	gcaagctccc	caatgtgagg	ggagacccca	ttcctggtca	gccaggcttt	120
cagaggagat	agcaggtcga	gggagccaa	gaagaagaga	ctgccancag	gggaaggact	180
gtcccgc	ggacagaact	gattcagggg	ggtcaatgt	cctctagaga	agagccacac	240
agaactgggg	ggtccaggaa	ccatgaanc	tggctgttgt	ctaaggagcc	aggaatctgg	300
acagtgttct	gggtcatacc	aggattctgg	aattgt			337

<210> 75

<211> 588

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(588)

<223> n = A,T,C or G

<400> 75

catgatgagt	tctgagctac	ggaggaaccc	tcatttcctc	aaaagtaatt	tat	60
gtttctgggt	tcacatgaaa	ttgttgcgc	tactgagact	gttactacaa	actttttaa	120
acatgaaaag	gcgtaatgaa	aaccatcccg	tccccatcc	tcctccttc	tgagggactg	180
gagggaaagcc	gtgtttctga	ggaacaactc	taatttagac	acttgtgtt	gtagattac	240
actttgtatt	atgtatcaa	atggcgtgtt	tat	ttttctctg	gttgggagta	300
tgatatgaag	gatcaagatc	ctcaactcac	acatgttagac	aaacatttagc	tctttactct	360
ttctcaaccc	cttttatgt	tttataatt	ctcaactaac	taat	tttataattta	420
caataagaaa	tgttcaaggag	agangaaaga	aaaaaaat	atgtcccca	tttatattta	480
gagagagacc	cttanta	cttgc	aaaaaa	gtccaccc	catagtagta	540
attacattca	gttgctatag	gn	cagactg	aactgcatta	cctgggca	588

<210> 76

<211> 196

<212> DNA

<213> Homo sapien

<400> 76

gcggtatcac agcctggccc ccatgtacta tcggggggcc caggctgcc tcgtggctca	60
tgacatcacc aacacagata catttgcacg ggccaagaac tgggtgaagg agctacagag	120
gcaggccagc cccaaacatcg tcattgcact cgcggttaac aaggcagacc tggacctgcc	180
cggggggccc ctcgaa	196

<210> 77

<211> 458

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(458)

<223> n = A,T,C or G

<400> 77

agttagagatg gggtttcaact gtgttaacca ggatggtctt gatctcctgg cctcgtgatc	60
tgcggccctc ggcctcccaa agtgttggg ttacaggcgt gaaccaccgc acccgccag	120
aatatgttagt ttttccctat tctctctctt ttttcctatt atatacttgg tcaaccagac	180
agccatccta cccccanaatg gtaatgcctc ttcatctctc atatgaggaa ataaaagaga	240
aaaaagcttt tggaaaaacat ccacttatct aatcatccca aatatgtaat caaaaagtata	300
caactctatgt gaagaataaca ctggtaaaat gttantatag gccaaggat tttgaattcc	360
tatataaaaaa gctggtaaaat gcccttttgg ctggAACCGC catcttccnn taattcnccc	420
aaaatgacca aacacaaaagg gnaagangan aagccccc	458

<210> 78

<211> 464

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(464)

<223> n = A,T,C or G

<400> 78

tccgcaaatt tcctgcggc aaggcccag catttgggg tgatgtatgg ttctgtgtgt	60
ttgagagcaa cggcattgcc tactatgtga gcaatggg gctgcgggaa agtactccag	120
aggcagcagc ccagggtgtg cagtgggtg gctttgtca ttccgatata gtgccccccag	180
ccagtagctg ggtgtcccc accttggca tcatgcacca caacaaacag gccactgaga	240
atgcaaagga ggaagtgggg cgaattctgg ggctgtggg tgcttacttg aagacgagga	300
cttttctgtt gggcgaacga gtgacattgg ctgacatcac agttgtctgc accctgttgt	360
ggctctataa gcaggmtcta gaaccttctt ttgcangac cttcgccgg accacgctta	420
acccaaattt cacacacttg cngecgtag taanggaatc ccac	464

<210> 79

<211> 380

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(380)

<223> n = A,T,C or G

<400> 79

ctgtatgacc agttttcca ttccttac ttctacccgg atcagctcg agtccagg	60
agtgtaaatggatcgatcttccatgtatcgatgtcaattcg acagtttaggtttaacagtt	120
cttttcatac aactaatta attggacata ttcccteact ttanaaaagtt ctttctcaa	180
cttctgaaaaa aagaacatga actgtgaatt ccaagcggtc ccactctgtc cacgggaaa	240
ggtgtgtct ggcaggaaaa cagaacactg gcaggtccac ggtcatccac ggagccgg	300
aaattggaaa aacaactggg acacagaacc tccgctgct aagctgcgn tggagctt	360
gaacccgacc tggactgga	380

<210> 80
<211> 360
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(360)
<223> n = A,T,C or G

<400> 80

tcgagcggcc gcccggcag gtcctcagag agctgtttgt tncgcttctt caaaaactcc	60
tattctccac ttctgtaaa ggactggatg acatcaattt tgatagcaat atttgggt	120
gttctgtcan ncancatcgc actcctgaac aaagtagatg ttggatttga tcagtcttt	180
tccacccaga tgactcctan atggtgatn atttcaaattt catcantcag tacctgcatt	240
cnggtccgc ctgtgtntt tgcctgcag gangggcnct actacacttcc ttccnagg	300
canaacatgg tgtgcngcgg ccatggctg gcaacantga ttcnctgtg cacccanatn	360

<210> 81
<211> 440
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(440)
<223> n = A,T,C or G

<400> 81

acgtggtccg gcgagtctga cctgcagata tgaactcctt gggaaaccta cattctgcct	60
cagacataact gggggcaaat ggctttaaaaa gtctggotca gggagccaag attacagaaa	120
nccgttgagt cnccatatacat ggacactgac aaaggaactt aagatatcca aacaaggcct	180
cctggtccccg nccctgcata aagatcgga ncggAACGGT accmgacgtc tgtggtcagg	240
gtttgtggaa aattggaaaa aaccgtctt gcccacattt acagggaaacg ctcacggaa	300
attgaacaga tngtcttacc accagtctcc cctcctggat cttgtctcg ctcnngggan	360
tcagtgtatca gtcctttcag gtggagaag caaagaagat caacaanaag cngatcctt	420
cacctgtac cagcatatgg	440

<210> 82
<211> 264
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(264)
<223> n = A,T,C or G

<400> 82

agcgtggtcg cggccgangt cctgacattt ctgccttctt atattaatta tacnaataaa	60
---	----

acaaaatagt gttgaagtgt tggagcggcg aaaattttg ggggtggta tggacagaga	120
atgggcgatn ttctcanggc tgcttcaagt gggattgggg cngcgtggga tcatncagtg	180
gananagattn cnctgaccgg antctnttgg tanggatnat ctgtgggga tgtgcaagag	240
ncattcgtct cctgaatgan tgg	264
<210> 83	
<211> 410	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(410)	
<223> n = A,T,C or G	
<400> 83	
ancgtggtcg cggccgangt ccacagttgt gggagagcca gccattgtgg gggcagctcc	60
acaggttaga ctcgtgtcct gagcagcgca catcatccag gacaatgggt cctgagccct	120
gaccaaaccg ggcatttcct ggggctgaca tggcccagcc acagcccant tgcctgcaga	180
cggaaattggc atcattggtg tcccaagtant catcacacac ggtccccag gaacctccgg	240
tatangaact ccactcggcc tcananacctg tgcctccat tccnccgct cagggggcaa	300
actgggatttcc agatcccttct gtgggtacag gtgggtatat cctgacagggc caactttctg	360
gcctgagtgt tgactgango tggcagacc tggccggcgc gcccgtcgaa	410
<210> 84	
<211> 320	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(320)	
<223> n = A,T,C or G	
<400> 84	
tcgaacggcc gcccgggcag gtctgccccca ggtgtatcca tttgccggc atctctatca	60
naaggagctg gctaccctgc nnacgaaan tcctgaanat aatctcaccc ncccgatct	120
ctctgtcgca atggagatgt cgtcatcggt ggncctgatc acagggcatt ggactcagag	180
anangtnanc acagtgnnga agcgattgan nnagttcaagt tgctggtctt acccgatntt	240
gaaaggaaagg aaaacgtgtt angacgtatc tcgatgnant tgaccaaanc tgaangctnc	300
agggggcattc gcaaaganan	320
<210> 85	
<211> 218	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(218)	
<223> n = A,T,C or G	
<400> 85	
tcgagcggcc gcccgggcag gtctgtgtcc cgtgtgtggcc ccattgcccc atgtgaagtc	60
actgtgcccag cccagaacac tggctctggg cccgagaaga ctcctttctc caggctntan	120
gtatcaccac taaaatctcc agggcacca tnganatctt ggggtccgc aatgttgc	180
atgtctgtcc gcnnattggc taccactg ttgcata	218

<210> 86
<211> 283
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(283)
<223> n = A,T,C or G

<400> 86

tcgacttctt gtgaaggttt tgganaaaata tgtatcagt cgttttattt gggtattcaa	60
taatatcctt ggtgataatg ctgactccat ggcttctgac cccaaaaatt gaccctgtg	120
ccactggttt tagcccttag attgattttt gtatccacga ttgtttccctc gtccctgtaa	180
gtntctggttt tanttccctc tgnngggcat tcccctctgt tgtaanttccc tctgtttgan	240
taactaccac ggccagggaaa aacaggggca cgaaggtatg gat	283

<210> 87
<211> 179
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(179)
<223> n = A,T,C or G

<400> 87

agcggtggtcc cggcccgatgt ctgtctgtgt aagtgcataa cactccacat acttgacatc	60
cttcangtca cgggcccagct nttagtca ctctggagtg ataggctact gtntgttctn	120
ggcaagtgtc tcaanaatac aggggtcncc tctgagatga nttagtcc cgaaccctc	179

<210> 88
<211> 512
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(512)
<223> n = A,T,C or G

<400> 88

tcgagcggcc gccccggcag gtcctancan agaatcacca aatttatgga gagttaacag	60
gggttaaca ggaangaagt gccttagta agttctcaag ccagangctg gaggcagcag	120
cttaatcaga ggacaggatc ctcagtgaaa gtgagccatt cgggtggca tgtcactcca	180
ggaataagca caacttanaa acaaattgatt tcgtangata gcacagtgac attggtgac	240
ttgtgaacct gaggccactg tgtcaaactg tgcaactgggtt gtgaataggg aganccaaaa	300
attatgtctt actgggtat gagtttcaa tgggctcgat ccttcacnc tgaaagctct	360
gttagagcagc tcagaaccac aaccactccc aacattgacc ttctgggg tactgtctgt	420
ggcacccaca ggaaggagct ggagatcccc attaggactg tccacccaca cttgaagccca	480
caaaaactgca cctcgccgc gaccacccgt ta	512

<210> 89
<211> 358
<212> DNA
<213> Homo sapien

```

<220>
<221> misc_feature
<222> (1)...(358)
<223> n = A,T,C or G

<400> 89
tcgagcgggc cccccggca ggtctgccag tccccatccc agacatttt tgcatctaag      60
ctgangtctg aactgagtgg ggtgggctgg tgtttccatc ctcacaactc cagttagccg      120
ggtgtggccg tggcctgcgt ctctctggcg gttatgtatg ttggcatcat ccacctttt      180
aaaaacaaaaa gcaactggact gaagaanaat cccnccctgt ntccacccag tccatggtt      240
ttaataaaag gtttatnnaa gttgancaag ncacaccac acacaancct aagaacntt      300
ttcatcnntc cccaaaacaa accncaccc tgggaactcc gggcgcgaac cacgccta      358

<210> 90
<211> 250
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(250)
<223> n = A,T,C or G

<400> 90
cgagcggccg cccgggcagg tctggatggg gagacggact ggaactgcgg cttcccgtag      60
cctgcacgc caaggctccc cacggccgccc gaccccttc agattcgatc gtatgtgtac      120
gcacnaagag ccaaataattt acattcacaa cttcgtggga atnttacccc anaagactgc      180
gaccccccga tcagggcana gcctgagcat agaagaacac cgctgtggc ttggcactgt      240
gggncccatac      250

<210> 91
<211> 133
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(133)
<223> n = A,T,C or G

<400> 91
tcgagcggcc gnccgggcag gtccgggtg gttgtttgcc gaaatggca agttcntnaa      60
ncctggaaag gtggtgcntg tnctggctgg acgtactcc ggacgcnaag ctgtcnttgt      120
gangancatt gat      133

<210> 92
<211> 232
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(232)
<223> n = A,T,C or G

<400> 92
agcgtggtcg cggccgangt ctgtcaattt gcgggggttag cggtaattc cagccaccag      60
agcatggctg tagggcgat ctgaggtgcc atcatcaatg ttcttcacga tgacaagctt      120

```

tgcgtccgga gtagcgtcca gccaggacaa gcaccacctt cccacgtntt cangaactng	180
cccatttcgg cataaccacc cgggacctgc ccggccggnc gctcgaaaag cc	232

<210> 93
<211> 480
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(480)
<223> n = A,T,C or G

<400> 93

agcgtgggtc gcggccgang tctgtangct caccggccag agaagaccac tgtgagcatt	60
ttgccgtata tcctgccctg ccattttgttc actttttaaa ctAAAatagg aacatccgac	120
acacaccgtt tgcacatgtct tctcccttga tatttttaagc attttcccat gtcgtgagtt	180
tctcagaaac atgttttaaa caattgtact atttagtcat ngtccattta ctataattta	240
tctgaccatt tccctactgt taaaatactt aagacggttt ctgattttc cactatttaa	300
ataatgtgt gatgaatac ttAAAaatct tctgattttct tactttttc ccccttagat	360
gccttggaaagt ggtattttga ggtgaaagag ttgttccatt ttgaanatat ttctgtct	420
ctctcgacct gatgtgtana cgctcacttc cagtttagcag aaccaccta gtttgtgtct	480

<210> 94
<211> 472
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(472)
<223> n = A,T,C or G

<400> 94

tcgagcggnc gcccggcag ggtctgatgt cantcacaac ttgaaggat gccaatgatg	60
taccaatccn atgtgaaatc tctcccttta tctcctatgc tgganaaggg attacaaagt	120
tatgtggcng ataannaatt ccatgcacct ctantcatcg atgagaatgg agttcatgan	180
ctggtaacn atggtatctg aacccgatac cangtttgc ttgccacgt angantagct	240
tttatttttg atagaccaac tggaaaccta ccacacgtct tggacnactg anntctaact	300
atccncaggg ttttatTTG ctgttgaac tcttncagct ntgcAAact tcccaagatc	360
canatgactg anttcagat agcattttta tgattcccan ctcattgaag gtcttatnta	420
tntcnTTTT tccaagccaa ggagaccatt ggacctcgcc cgcgaccacc tn	472

<210> 95
<211> 309
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(309)
<223> n = A,T,C or G

<400> 95

tcgagcggcc gcccggcag agtgtcgagc cagcgtcgcc gcgatgggtg tggggagag	60
cggcagttc ctgacggAAC tgaccagact ttccanaag tgccggacgt cggcancgt	120
ctatatcacc ttgaagaant atgacggtcg aaccaaACCC attccaaaga aangtactgt	180
gganggctt gancccgac acaacnagtg tctgttaaga actaccgatn gggaaaana	240

anatcagcac tgtgggtgag ctccnaggga agttaataan ttcggatgg gcttattcna	300
acctcccta	309

<210> 96
 <211> 371
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(371)
 <223> n = A,T,C or G

<400> 96

tcgagcggcc gcccgggcag gtccaccact cacctactcc cccgtcttat agatttgcc	60
gttctggca gttctcagca atggaatcc actgtgtatc tttttgtgac tggttcttta	120
actcagcattc acatttcaa ggttcatcca tgctgcagcc tggcccgta ctggtgacag	180
tacttcattt ctctctccct ttgttcaga ccaaggcttc cctctgtccc caaggctaaa	240
gtgcagttgg tgtgatcatg gtcactgca gcctcaaact cctggactca aacagtcc	300
ccatctcagc ctcccaaagt gctgatntt taagttgcaa gccctgcacc cagcctgtat	360
ctccagttt g	371

<210> 97
 <211> 430
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(430)
 <223> n = A,T,C or G

<400> 97

tcgancggcc gcccgggcag gtttntttt tttttttttt nnnngntagt atttaaagan	60
attttattaaa tcatcttatac accaaaatgg aaacatnttca caactagaaa catgcnacca	120
tcatcttccc cagtcagtc ncaangtcca atattttntc tgcctctgca gataaaaagt	180
tcnnattttt ataccactc ttactcccccc cccaaaattttt aattcnngtcc tnccctaaaa	240
tnncncggg taacaantta cccaaaatggc naaccaatta ttttaananaa aagttgcncn	300
ttnaaaangg aaactttntg gcaanttanc ctcttttccc ttcccacccc ccantttaaag	360
ggggaaaacaa tggcactttg ctcttgctt aacccaaaat tgtcttccaa aaactattaa	420
aaatgttnaa	430

<210> 98
 <211> 307
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(307)
 <223> n = A,T,C or G

<400> 98

tcnaacggcc gcccnggcnn gtctngcngc acctgtgcct canccgtcga tacctggtcg	60
attgggacan ggaanacaat ntggtttca gggaggccac anatttggag aaacggatga	120
attctcctttt attccgaant cagctccttg gtctcegtag anggtgatct taaaattctc	180
ctgttttga aactttcttg aanaaacctt acctgtgtt gttatggc tcccaactcg	240
gacaagtact cgttatccnn ggtacttta atgtgccac gttaactccc cgggnntggca	300

actggaa	307
<210> 99	
<211> 207	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(207)	
<223> n = A,T,C or G	
<400> 99	
gtccnnggacc gatgttgcna aganntttct tggccanta gggtcnaaaa aatgataanc naggtnntanc acgtgaagat ntntatanag tcttntanaa aacncntaga tctgnatgac gataantcga anacnggggg aggggntgag gngaggtggn gtganggaag anntgttcat aaaagannna gntgataaga annagc	60 120 180 207
<210> 100	
<211> 200	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(200)	
<223> n = A,T,C or G	
<400> 100	
acntnnacta gaantaacag ncnttctang aacactacca tctgtnttca catgaaatgc cacacacata naaactccaa catcaatttc attgcacaga ctgactgtaa ttaattttgt cacaggaatc tatggactga atctaattgcn nccccaaatg ttgttngttt gcaatntcaa acatnnttat tccancagat	60 120 180 200
<210> 101	
<211> 51	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(51)	
<223> n = A,T,C or G	
<400> 101	
tcgagcggcc gccccggcag gtctgaccag tgganaaatg cccagttatt g	51
<210> 102	
<211> 385	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(385)	
<223> n = A,T,C or G	
<400> 102	

aacgtggtcg cggccgaagt ccatggtgc gggattaatc cactgtgacn gtgactctga .	60
gtttagttgt ttttcaatct tctccaagcc tgtggactca tcctccacat ccttgggtag	120
taggatgaac atgctgaaga tgctnatttt gaaaaggAAC tctatgaatc ttacaattga	180
atactgtcaa tgTTTCCCCA tnacagaacg tggncCCCCA aggttccatc atctgcactg	240
ggtttgggtg ttctgtcttg gtgactctt gaaaaggAC atttttttt gttttcttga	300
attcanggaa attttcttca tcactttgc ccacaaaAGT taggcagcat ttaacCCCCA	360
anggattttg ggtctgggtc ctccc	385
<210> 103	
<211> 189	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(189)	
<223> n = A,T,C or G	
<400> 103	
agcgtggtcg cggccgaagt ctgcagcctg ggactgaccg ggaagctctg attatttacc	60
caccacaggt angttgttt ctgaatctca agttcacagg ttaaggctac agcatcctca	120
tcctccacgg ggttggantt gtgctggtg atgaangtt tgggggtggct ctgcataact	180
gttgatctc	189
<210> 104	
<211> 181	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(181)	
<223> n = A,T,C or G	
<400> 104	
tcgagcggcc gcccgggcag gtccaggctc ccaccaangc accaccgtgg gaagctggta	60
attgatgccc accttgaagc cmntgggcA ccattcnccA actggatgtc gcgcttggtt	120
ttgatggtgG caatggcaca ttgactcttt tgggaaccac ttcaccacgg tacaacagc	180
a	181
<210> 105	
<211> 327	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(327)	
<223> n = A,T,C or G	
<400> 105	
tcgagcggcc gcccgggcag gtcttctgtg gagtctgcgt gggcatcggt ggcagtgggg	60
ctgcccgtgc cgatgtcan aaccccagec tctttgtaaa gattctcatc gtgganatct	120
ttggcagcgc cattggcctc tttggggta tcgtcgcaat tcttcanacc tccanaatga	180
anatgggtga ctanataata tgggtgggtt gggccgtgccc tcaactttat ttattgtgg	240
ttttcctggg acagaactcg ggcgcgaaca cgcttancgg aattccaaca cactggcggg	300
cgttactagt ggatccgagc tcggtagc	327

<210> 106
<211> 268
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(268)
<223> n = A,T,C or G

<400> 106

agcgtggtcg cggccgangt ctggcgtgtg ccacatcggt cccacctcgc tttacaaaac	60
agtccctgaac ttnatctaattaaatttttacacnacat ttacatttaga aaaaganagc	120
tgggtgtang aaaccggggcc tgggtttccc tttaaggcga ngtggctcca cagttgggc	180
atcgtcgctt cctcnaagca aaaacgccaa tgaacccna agggggaaaa aggaatgaag	240
gaactgnccn gggangnccg ctccgaaa	268

<210> 107
<211> 353
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(353)
<223> n = A,T,C or G

<400> 107

tcgagcggcc gcccgggcag gtggccaggc catgttatgg gatctcaacg aaggcaaaca	60
cctttacacn ctagatggtg gggacatcat caacgcccgt tgcttcagcc ctaaccgcta	120
ctggctgtgt gctgcggcag gccccagcat caagatctgg gatttanagg gaaagatcnt	180
tgttnatgaa ctgaancnta aattatcgt tccannacca ngcaaaaacc acccnngtca	240
ctccctggcc tggctctgtg atgggacctc gggcgcgaac acgctnanc caattccanc	300
acactggcg gncgttacta ntggatccga actcnggtac caancttggc gtt	353

<210> 108
<211> 360
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(360)
<223> n = A,T,C or G

<400> 108

agcgtggtcg cggccgaagt cctggcctca catgaccctg ctccagcaac ttgaacagga	60
naagcagcag ctacatcctt aaggtccgga aagtttagatg aagattttggatcctgcattt	120
ncctgcctcc cacctatctc tcccnatta taaacagct ccttgggaag cagcagaatt	180
taaaaaactct cccnctgccc tnttgaacta cacaccnacc gggaaaacct tttcanaat	240
ggcacaaaaaa tncnagggaa tgcatttcca tgaangaana aactgggtta cccaaaattt	300
ttgggttggg gaaatccnngg ggggttttn aaaaaaggc aancnccaa anaaaaaaac	360

<210> 109
<211> 101
<212> DNA
<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(101)
 <223> n = A,T,C or G

<400> 109

atcgtggtcn cggccgaagt cctgtgtcct ggatgggccc tgtgcancga atccgttggc	60
gactcctaac taccaanaaa angactctcg gaagaaaattt c	101

<210> 110

<211> 300

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(300)

<223> n = A,T,C or G

<400> 110

ccangaaac ccagagtcaat atgagatagg gtggctttcg ggacaggggg tcagangaat	60
ggtacatgga tctcagcccc ttagtgacac ggaacagggtg tggtcagaac tcccanatt	120
ctgcattccan gatccagtct ctatagaagt tatggatcat tccttcattt cattcccccc	180
ttcatgaaaaa aacttctgaa caagcctttt ttctcaactt gggccctgt ttggcncaag	240
gtnttnantt ggggaaaaaaaaa aaacaaatcc ntccnttan ccctccgtgg ggaatgacct	300

<210> 111

<211> 366

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(366)

<223> n = A,T,C or G

<400> 111

cgagcggccg cccgggcagg tccttgtt gccatctgtt ancattgatt tctggaatgg	60
aacanatttc tcaaagtgg gtcttgctan tcatgaagtc atgtcagtgt cttaagtcac	120
tgcgtctcac ttcccttaccc agggatata ctgcataagt ttctgaacac ctgtttcan	180
tattcaactgt tcctctctcg cccaaaattt gaaggacact cattaaaaaa tcaaatttga	240
atcctgaaan aaaaacmgga aatntttctc ttggaaatttgaatagaatt attcanttga	300
ataacatgtt tttccctt gccttgctct tcncaanaac atctggacct cggccgcac	360
acctta	366

<210> 112

<211> 405

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(405)

<223> n = A,T,C or G

<400> 112

ctgactncta aacttctaat tcnatcaana taactactct ccttccgtct tncagagtgt	60
tcacaataaa tctgtgaatc tggcatacac agttgttct tcctccacna	120

aaaggtaat tgcccccnc atgaaaanaag ataaattgtt catccatcac tnctgaacca	180
tccaaaacgc cggcggatt attccccgt tattatgggg aacggaattt tnaataaaatt	240
tggaaangaa tggggctttt attgtttgt ttccccctt tcttggcatt gattggccg	300
caatggccccc cctcgctcan aanntgcccc ggggcccccc gctccaaaac cgaaattccc	360
anccacactt ggcggccgt tactanttgg atccgaactc ggtta	405

<210> 113

<211> 401

<212> DNA

<213> Homo sapien

<400> 113

ggatagaaga gtatatgggt ttggcaccac ggggtggata ggcaaaacat ttggttgata	60
aggcgcatat tctgaactaa ctgttaaggc ttgtctgggtt ttaggacagg taaaatgggg	120
aatggtaag gagagtttat aggttttagg agcccatgtt gtagcaggca agtgataaca	180
ggcttaatc ctttcaaagc atgctgtggg atgagatatt ggcattttagg cgggtaagg	240
gtgatttaggt ttaatgaga tggtaagggg tgcatgatcc ggtccgcca ggaagggaag	300
tagaggtatc ttatacttgtt ggggttaagg tggggggat ataagaggga ggacgcca	360
ggaggcttg gattaggaat aggggccgc aatgagatgc a	401

<210> 114

<211> 401

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(401)

<223> n = A,T,C or G

<400> 114

angtccacag gangcangag gccaggctcc gtcccancca gtccatgatg ttgaagagga	60
gaaaggcaca catggggtt aagaactgac tccacttccc aggactgggt gagctggtca	120
ccatggctgt ggtggccggg aagacggaca gggtgacttc tggaaagacag tgaagactga	180
aggttttctt ggtttctggg gctcatctgg ctctgatcc ggctccttct ccaggtcaag	240
atccagggtt cagagctact ttcttgggg actactnngg aatcccttcc tcatctggg	300
gtngaggggg gacggggnaa gggncatgtt tggaccagg gtttcccacc tcggcccg	360
accacgctaa gggccgaaatt ncagcacact tggccggcccg t	401

<210> 115

<211> 401

<212> DNA

<213> Homo sapien

<400> 115

atccctgttaa gtcttataaa tggtaataat acatacttta caacttctt tagtcggccc	60
ttggcagatt aaatcttgc aaaattccat atgtgttatt gaaaaatgaa ataaaaccc	120
agatgtctga attcttattt caaatacagt tatataatta ttttaatatta caataataca	180
tttctgttaa atacaactgt taagggattc tgagaacaat tataagatta taataatata	240
tacaaactaa cttctgaaat gacatgggtt gtttccctcc caccctccta ccctctcaa	300
gagttttgc atttgcgtt cctgggttca aaaggcaaaa gaaaatctaa aaatagtctg	360
tgtgtgtcca cgacatgctc gtcctttaa gaatctcaa c	401

<210> 116

<211> 301

<212> DNA

<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(301)
<223> n = A, T, C or G

<400> 116

```

ngatctaatt gnnagcttct ttttaatgga athnttgct aaaatgaatt gatgattatg 60
aatatcccta ggaggagttt qcatggannn tgatcatttt cttngnactc ctttangaca 120
ngggaaacagg natcagcatg anggtancan aaaccttata accnangcgc acganctgac 180
ttcttccaaa gagttgnggt tccggcagc ggtcattgcc gtgcccattg ctggagggt 240
gattcttagtg ntgcttatta tgctggccct gaggatgctt ccaanatgaa aataagangc 300
t

```

<210> 117

<211> 383

<212> DNA

<213> Homo sapien

<220>

<221> misc feature

<222> (1) ... (383)

<223> B = A.T.C OF G

<400> 117

aattgcaact ggacttttat tgggcaggtt cnacaacnaa ttgtttcana aaaatatttg	/ 60
gaaaaaaatat accacttcat agctaagtct tacagagaan aggatttgct aataaaaact	120
aagtttgaa aattaagatg cnggtanagc ttctgaacta atgcccacag ctccaaaggaa	180
nacatgtcct atttagttat tcaaataccca gttgagggca ttgtgattaa gcaaacaata	240
tatttgttan aactttgnntt ttaaaattact gntncttgac attacttata aaggagnctc	300
taactttcga ttctaaaac tatgtataac aaaagtatan nttccccat ttgtataaaa	360
gggcnnqnga tactqantag qaa	383

<210> 118

<211> 301

<212> DNA

<213> Homo sapien

<400> 118

ctgctagaat	caactggcgct	gtgcgttgcgt	ggaaatgaca	gttccttggtt	ttttttgttt	60
ctgtttttgt	tttacatttag	tcattggacc	acagccattc	agaactacc	ccctgccccca	120
caaagaatag	aacagttgtt	gggagaccca	gcagcacctt	tccctccacac	accttcattt	180
tgaagtccg	gtttttgtgt	taagtttataatc	tgtacattct	gtttggccatt	gttacttgta	240
ctatacatct	gtatatagtg	tacggcaaaa	gagtattaaat	ccactatctc	tagtgcttga	300
c						301

<210> 119

<211> 401

<212> DNA

<213> Homo sapien

<400> 119

<210> 120
<211> 301
<212> DNA
<213> Homo sapien

<400> 120

tccagagata ccacagtcaa acctggagcc	aaaaaggaca caaaggactc	tcgaccggaaa	60
ctgccccaga ccctctccag agttggggt	gaccaactca tctggactca	gacatatgaa	120
gaagctctat ataaatccaa gacaagcaac	aaacccttga tgattattca	tcacttgggt	180
gagtgcacac acagtcAACG	tttAAAGAAA	gtgttgctg	240
ttggcagagc agttgtcct	cctcaatctg	gtttatgaaa	300
c		caactgacaa	301

<210> 121

<211> 2691
<212> DNA
<213> Homo sapien

<400> 121

gttgtccccgt cggtcgttag ctgcgtcggt	gcgcgtcgtc	ccgcctccatg	gwgctttcg	60
tgccgtgtgt ggctctcgcc	ctggctctgg	ccctggggccc	cgccgcgacc	120
ccgccaagtc gcccattaccag	ctgggtgtgc	agcacagcag	gtccggggc	180
gcccccaacgt gtgtgtgtgt	cagaagggtta	ttggcactaa	tagaagtac	240
gcaaggcgtg gtaccaaagg	aaaatctgtg	gcaaatcaac	agtcatcagc	300
gtcctggata tggaaagggtc	cctggggaga	agggctgtcc	agcagcccta	360
acctttacgaa gaccctggga	gtcggtggat	ccaccaccac	tcagctgtac	420
cgggagaagct gaggcgttag	atggaggggc	ccggcagctt	caccatctc	480
acgaggcctg ggcctcttg	ccagctgaag	tgctggactc	cctggtcage	540
ttgagctgtgt	caatgcctc	cgttaccata	tggtggcag	600
tggaaacacgg catgaccctc	acctctatgt	accagaattc	caacatccag	660
atcctaattgg gattgtact	gtgaactgtg	cccggtctct	gaaagccgac	720
ccaaacgggggt ggtgcaccc	atcgataagg	tcatctccac	catcacaac	780
agatcattgt gatcgaggac	acctttgaga	cccttcgggc	tgctgtggct	840
tcaacacgat gcttgaaggt	aacggccagt	acacgctttt	ggcccccggacc	900
tcgagaagat ccctagttag	actttgaacc	gtatcctggg	cgaccggagaa	960
acctgtctgaa caaccacatc	ttgaagttag	ctatgtgtc	tgaagccatc	1020
tgtctgttaga gaccctggag	ggcacgacac	tggaggtggg	ctgcagcggg	1080
ctatcaacgg gaaggcgatc	atctccaata	aagacatctt	agccaccaac	1140
actacattgt tgagctactc	atccccagact	cagccaaagac	actatttga	1200
agtctgtatgt gtccacagcc	attgaccttt	tcagacaagc	cgccctcgcc	1260
ctggaaagtgt gcggttgacc	ctcttggctc	ccctgaattt	tgtattcaaa	1320
ctccaattgt tgccccatata	aggatttgc	ttcggaaacc	cataattaaa	1380
cctctaagtgt tctgttacccat	ggacagaccc	tggaaactct	ggggggccaaa	1440
tttttgggtt tcgtaatatgc	ctctgttatt	agaacagctg	catcggggcc	1500
gggggagggtt cgggaccctg	ttcacgtatgg	accgggtgt	gaccccccata	1560
tcatggatgt cctgaagggtt	gacaatcgct	tttagcatgt	ggtagctgcc	1620
caggactgac ggagaccctc	aaccggggaaag	gagtcttacac	atccagtctg	1680
aaggcttcgg	agccctgcctc	ccaaagagaac	ggagcagact	1740
ttgccaacat cctgaaatac	cacattgggt	atgaaatctt	gtttagcgga	1800
ccctgggtcg gctaaagtct	ctccaagggt	acaagcttga	agtcagctt	1860
tggtgagtgtt caacaaggag	cctgttgcgg	agcctgacat	catggccaca	1920
tccatgtcat caccaatgtt	ctgcagccctc	cagccaaacag	acctcaggaa	1980
aacttgcaga ctctgtgtt	gagatcttca	aacaaggatc	agcttttcc	2040
agaggtctgtt gcgacttagcc	cctgtcttata	aaaagtattt	agagaggatg	2100
ttgaaaggactt acaggaggaa	tgcacccacgg	cagctctccg	ccaatttctc	2160
acagagactgt ttgtaaatgtt	ttcaaaaacca	agtatcacac	ttaatgtac	2220
ccataatgag atgtgagcct	tgtgcgtgt	ggggaggagg	gagagagatg	2280

atcatgttcc	ccctaaacat	ggctgttaac	ccactgcattg	cagaaaacttg	gatgtcactg	2340
cctgacattc	acttccagag	aggacctatc	ccaaatgtgg	aattgactgc	ctatgccaag	2400
tccctggaaa	aggagcttca	gtattgtggg	gctcataaaa	catgaatcaa	gcaatccagc	2460
ctcatggaaa	gtcctggcac	agttttgtta	aagcccttgc	acagctggag	aatggcatc	2520
attataagct	atgagttgaa	atgttctgtc	aatgtgtct	cacatctaca	cgtggcttgg	2580
aggcttttat	ggggccctgt	ccaggtagaa	aagaaatggt	atgtagagct	tagatttccc	2640
tattgtgaca	gagccatggt	gtgttgtaa	taataaaacc	aaagaaaacat	a	2691

<210> 122

<211> 683

<212> PRT

<213> Homo sapien

<400> 122

Met Ala Leu Phe Val Arg Leu Leu Ala Leu Ala Leu Ala Leu			
1	5	10	15
Gly Pro Ala Ala Thr Leu Ala Gly Pro Ala Lys Ser Pro Tyr Gln Leu			
20	25	30	
Val Leu Gln His Ser Arg Leu Arg Gly Arg Gln His Gly Pro Asn Val			
35	40	45	
Cys Ala Val Gln Lys Val Ile Gly Thr Asn Arg Lys Tyr Phe Thr Asn			
50	55	60	
Cys Lys Gln Trp Tyr Gln Arg Lys Ile Cys Gly Lys Ser Thr Val Ile			
65	70	75	80
Ser Tyr Glu Cys Cys Pro Gly Tyr Glu Lys Val Pro Gly Glu Lys Gly			
85	90	95	
Cys Pro Ala Ala Leu Pro Leu Ser Asn Leu Tyr Glu Thr Leu Gly Val			
100	105	110	
Val Gly Ser Thr Thr Thr Gln Leu Tyr Thr Asp Arg Thr Glu Lys Leu			
115	120	125	
Arg Pro Glu Met Glu Gly Pro Gly Ser Phe Thr Ile Phe Ala Pro Ser			
130	135	140	
Asn Glu Ala Trp Ala Ser Leu Pro Ala Glu Val Leu Asp Ser Leu Val			
145	150	155	160
Ser Asn Val Asn Ile Glu Leu Leu Asn Ala Leu Arg Tyr His Met Val			
165	170	175	
Gly Arg Arg Val Leu Thr Asp Glu Leu Lys His Gly Met Thr Leu Thr			
180	185	190	
Ser Met Tyr Gln Asn Ser Asn Ile Gln Ile His His Tyr Pro Asn Gly			
195	200	205	
Ile Val Thr Val Asn Cys Ala Arg Leu Leu Lys Ala Asp His His Ala			
210	215	220	
Thr Asn Gly Val Val His Leu Ile Asp Lys Val Ile Ser Thr Ile Thr			
225	230	235	240
Asn Asn Ile Gln Gln Ile Ile Glu Ile Glu Asp Thr Phe Glu Thr Leu			
245	250	255	
Arg Ala Ala Val Ala Ala Ser Gly Leu Asn Thr Met Leu Glu Gly Asn			
260	265	270	
Gly Gln Tyr Thr Leu Leu Ala Pro Thr Asn Glu Ala Phe Glu Lys Ile			
275	280	285	
Pro Ser Glu Thr Leu Asn Arg Ile Leu Gly Asp Pro Glu Ala Leu Arg			
290	295	300	
Asp Leu Leu Asn Asn His Ile Leu Lys Ser Ala Met Cys Ala Glu Ala			
305	310	315	320
Ile Val Ala Gly Leu Ser Val Glu Thr Leu Glu Gly Thr Thr Leu Glu			
325	330	335	
Val Gly Cys Ser Gly Asp Met Leu Thr Ile Asn Gly Lys Ala Ile Ile			
340	345	350	

Ser Asn Lys Asp Ile Leu Ala Thr Asn Gly Val Ile His Tyr Ile Asp
 355 360 365
 Glu Leu Leu Ile Pro Asp Ser Ala Lys Thr Leu Phe Glu Leu Ala Ala
 370 375 380
 Glu Ser Asp Val Ser Thr Ala Ile Asp Leu Phe Arg Gln Ala Gly Leu
 385 390 395 400
 Gly Asn His Leu Ser Gly Ser Glu Arg Leu Thr Leu Leu Ala Pro Leu
 405 410 415
 Asn Ser Val Phe Lys Asp Gly Thr Pro Pro Ile Asp Ala His Thr Arg
 420 425 430
 Asn Leu Leu Arg Asn His Ile Ile Lys Asp Gln Leu Ala Ser Lys Tyr
 435 440 445
 Leu Tyr His Gly Gln Thr Leu Glu Thr Leu Gly Gly Lys Lys Leu Arg
 450 455 460
 Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala
 465 470 475 480
 Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg
 485 490 495
 Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp
 500 505 510
 Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr
 515 520 525
 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn
 530 535 540
 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly
 545 550 555 560
 Asp Ala Lys Glu Leu Ala Asn Ile Leu Lys Tyr His Ile Gly Asp Glu
 565 570 575
 Ile Leu Val Ser Gly Gly Ile Gly Ala Leu Val Arg Leu Lys Ser Leu
 580 585 590
 Gln Gly Asp Lys Leu Glu Val Ser Leu Lys Asn Asn Val Val Ser Val
 595 600 605
 Asn Lys Glu Pro Val Ala Glu Pro Asp Ile Met Ala Thr Asn Gly Val
 610 615 620
 Val His Val Ile Thr Asn Val Leu Gln Pro Pro Ala Asn Arg Pro Gln
 625 630 635 640
 Glu Arg Gly Asp Glu Leu Ala Asp Ser Ala Leu Glu Ile Phe Lys Gln
 645 650 655
 Ala Ser Ala Phe Ser Arg Ala Ser Gln Arg Ser Val Arg Leu Ala Pro
 660 665 670
 Val Tyr Gln Lys Leu Leu Glu Arg Met Lys His
 675 680

<210> 123

<211> 1205

<212> DNA

<213> Homo sapien

<400> 123

ccagtccagca gagggacagg aatcattcg	ccactgttca gacgggagcc acacccttct	60
ccaatccaag cctggccca gaagatcaca aagagccaaa gaaactggca ggtgtccacg		120
cgctccaggg cagttagttt gttgtcaactt actttttctg tgggaagaa attcataacc		180
ggaggatgtc gaaggctcag agttgaccc tggccactt taaagagcag ctcagcaaaa		240
aggaaaaatta taggttattac ttcaaaaaag caagcgatga gttgcctgt ggagcggtgt		300
ttgaggagat ctgggaggat gagacggtgc tcccgtatg tgaaggccgg attctggca		360
aagtggagcg gatcgattga gcctgcggc ctggctttgg tgaactgtt gagccccaaag		420
ctcttgcata ctgtcttggc tggatgttgc tgcgacaaaa cattttgaag gaaaattaaa		480
ccaatgaaga agacaaagtgc taaggaagaa tcggccagtg ggccttcggg agggcgggg		540

gaggttgatt	ttcatgattc	atgagctggg	tactgactga	gataagaaaa	gcctgaacta	600
tttattaaaa	acatgaccac	tcttggctat	tgaagatgt	gcctgtat	gagagactgc	660
catacataat	atatgacttc	ctaggatct	gaaatccata	aactaagaga	aactgtgtat	720
agcttacctg	aacaggaatc	cttactgata	tttatagaac	agttgatttc	ccccatcccc	780
agtttatgga	tatgtcgctt	taaacttggg	agggggagac	aggaagtttt	aattgttctg	840
actaaactta	ggagttgagc	taggagtgcg	ttcatgtttt	cttcactaac	agaggaatta	900
tgctttgcac	tacgtccctc	caagtgaaga	cagactgttt	tagacagact	ttttaaaatg	960
gtgccctacc	attgacacat	gcagaaaattg	gtgcgtttt	tttttttttc	ctatgctgt	1020
ctgttttgtc	ttaaaaggct	tgaggattga	ccatgttgcg	tcatcatcaa	cattttgggg	1080
gttgtgttgg	atgggatgtat	ctgttgcaga	gggagaggca	gggaaccctg	ctccttcggg	1140
ccccaggttg	atccgtgac	tgaggctccc	cctcatgtag	cctccccagg	cccagggccc	1200
tgagg						1205

<210> 124

<211> 583

<212> DNA

<213> *Homo sapien*

<400> 124

ccaagaagca	gtggccttat	tgcacccaa	accacgcctc	ttgaccaggc	tgccctccctt	60
gtggcagcaa	cggcacagct	aattctactc	acagtgcctt	taagtgaaaa	tggtcgagaa	120
agaggcacc	ggaagccgtc	ctggcgccctg	gcagtcgtg	ggacgggatg	gttctggctg	180
ttttagattc	tcaaaggagc	gagcatgtcg	tggacacaca	cagactat	tttagatttc	240
ttttgccttt	tgcaaccagg	aacagcaaat	gcaaaaactc	tttgagaggg	taggagggtg	300
ggaaggaaac	aaccatgtca	tttcagaagt	tagttgtat	atattattat	aatcttataa	360
tttgtctcag	aatcccttaa	cagttgtatt	taacagaaat	tgtatattgt	aatttaaaat	420
aattatataa	ctgtatttga	aataagaatt	cagacatctg	agttttattt	tcattttca	480
atagcacata	tggaaatttg	caaagattt	atctgccaag	ggccgactaa	gagaagttgt	540
aaagtatgt	ttatttacat	ttaataqact	tacagqqata	agg		583

<210> 125

<211> 783

<212> DNA

<213> Homo_sapien

<400> 125

tcaaccatac atatgcgttc	cactagctaa	taccaaattgc	agtttctcag	atccagacaa	60
atggaggaaaa	agaacattta	tgcttccgtt	tcagaaagcc	aagtctgtt	120
cctttctcta	aatgttatttc	ccaaaaacag	gttagcatttc	tgtattggca	180
tatTTcagc	ccacatctgc	tgcaaggatgt	tcattttctc	ccatcttcac	240
aaagatctca	ccacttctct	tttggaaatttc	caactttgtt	tgtgattgaa	300
tgaatttga	ttatgtcaga	tcacttggca	ttgtcttcc	ataatgcata	360
cacttgtcg	ctgtcgggccc	cacttggaaatc	cacgggggtt	aaacaaaattc	420
ttacagatcc	tgctcaaaaaa	agggttcaac	tgcttaacc	agtagcgtc	480
tttcttactc	tgcaacccaa	ccaagtgc	catactacag	gttagtgc	540
cagcagaaaa	tccaaaatca	tttctgttac	ctcccttgct	acaaaatgtt	600
caaacaatcat	ataaaaatgtat	caagtcttgc	aagagaaaaag	aagcaaaatgt	660
caacaattca	ctatcagaaaa	cacataaaat	ccccagagaga	gagaaggcag	720
tcatggatgg	acttggaaag	ttcggaaagga	ttccggatgtc	ttcccttctc	780
ctg					783

<210> 126

<211> 604

<212> DNA

<213> Homo sapien

<400> 126

tctgttttg ttttacatta gtcattggac cacagccatt caggaactac cccctgccc	120
acaagaat gaacagggtgt agggagaccc agcagcacct ttccctccaca caccttatt	180
ttgaagttcg ggaaaaatgg ttaaaggtaa tctgtacatt ctgttgcata ttgttacttg	240
tactatacat ctgtatatacg tgcacggcaa aagagtatta atccactatc tctagtgc	300
gactttaaat cagtagtacgt cctgttgcata cacggtcacc cgccgtgtgt gtcgccttat	360
atttggggct caagcttcc ttgtttttt gaaagggtt tatgtataaa tatattttat	420
gccttttat tacaagtctt gtactcaatg acttttgcata tgacattttgc ttctacttat	480
actgtaaaatt atgcattata aagagttcat ttaaggaaaa ttacttgcata caataattat	540
tgtatataav agatgttagcc tttatataaa ttatattttt ttcaaaaaaaaaaaaaaaa	600
aaaa	604

<210> 127

<211> 417

<212> DNA

<213> Homo sapien

<400> 127

ctgaggcctct gtcaccagag aaggctgagg ccccaatggc acacccatcaga aacccatcacc	60
ccggggctgg acggctggac tcctgagcac aagctccctc tcgcacccctt tgccagacag	120
tttgtctcca atttcaact gacctaaggc tcttactctt ggattttttgc tttttaaacc	180
ttctcccaac cagtcctcgg gagggcatga tttagagaatg gtcctttgc tgatggagga	240
ggggacctaa ggaagaaggt ggatcccagg tgcctccctt ctaattgtac ctccccacct	300
agtttcctt gcctcttcc ttcttaccag gtcatgtttt ttactctctg ccccttcgtc	360
tccttagcat ttcaaaaaact gtagagtgca ccccatagtg gacatttttgc ttccagg	417

<210> 128

<211> 657

<212> DNA

<213> Homo sapien

<400> 128

ccacactgaa atgcagtttta atgtggaaac ttttctaaat acatattgtt gcatctttgg	60
acatcaacgt gtggcctgaa atttttttta ttgttccctc ttctccctca ttaaaaaaaaaa	120
aatctccctt tggttatttag tcatttacca ttaacacata ttatggctta aaaaggccca	180
tcccttcctt ttctgagctg gagtttctca cgctcacctt tgatgtatgg ctttagctgg	240
ttactttgcc ttgggttggc catgaacattt ggggttagtg gcctggcaac ttgaatgtat	300
atggaaagaa caatgccaag tgatctgaca taatacaat tccgaagtga cattcaatca	360
caagcaaaat tggaaattcc aaagagaatg ggtgagatct ttacttagtca cagtgaaat	420
ggggaaaaat gacataccctg cagcagatgt gggctaaaaa tatcccttcc tctgccccat	480
caggaatgtt acctgtttt gggataaaac tttagagaaaa ggaaggccca aaactacgac	540
ttggctttct gaaacggaag cataaatgtt ctttcccttcc atttgtctgg atctgagaac	600
ctgcattttgg tattagctg tggaaagcagt atgtatgtt gaagtgcat gctgcag	657

<210> 129

<211> 1220

<212> DNA

<213> Homo sapien

<400> 129

cgctgtctcg gtcacacca acaaggcaag ccaaaggcgcc ccctccccag agggatccct	60
aacgtgcccc gcatgttagat tctggactaa cagacaacat acattcaccc ctggtcaccc	120
agatccctcat tcaaaccacat tgctggcaca tcccttcctt tacttgcctt tggctacca	180
gccacggaaat gggctctct tgggttttttctt ataaaaatggg taggcaggag aaaaggcagg	240
gccctaaatg tgctctaaagg cccagcatgt ggttacatgt ctctgacttg cagaacactgc	300
cagggtgtatg gtcacaaatgtt atccctgtgc tgatgttctt cattactaag ttaatggaga	360
agacagaaatg gtaaaaatca cgtgttagcaa gaacaactct tatttcacaa actcaggat	420
gaaacgaaac gcctgtccctt catggaaactg cttttatgttc ctgttttc aaaatggcag	480
aggggagtcc tacacacact tttccctgg aggccaaggctt ctagggtag aaaggggagg	540

ggtggggcta ccaggttagca gttgacaacc caaggcaga ggagtggccc tcagtgtcat	600
ctgtccacag tgataccctgc caagatgacc actgaccac atctggctt agtcatttgt	660
ctcctcgat ttctgggccc acctgcaago cccattccat tcctacagat ctctcagcca	720
cctgttaagtc ctttgtgaag atgtgggtga cacaggggaa cagggaaaacc catttctcaa	780
cccagatcca tgcgtccact gcttctactc tgggttggga ttcaggaaga cagggcacagt	840
cctctctgtt catagaaaaca cctgccagtg tcaaggattc cagtcaggtg tctatccccaa	900
ctggtcaggg agagaaggc agacccattc tcaaagacca ccatgtccaa ggtctgacag	960
ctccccactg gctgccccca caggggctt aggctggctt gggcatggg gaagcgtccc	1020
tcttatcgct ggtctgtttt ctctctggatt tggtatctat gttgtacga ctctggctt	1080
tttatctaaa ggactttggc ttttgtaaaat cacaagccaa taatagactt ttttctcccc	1140
ctctgttttt tgctgtgtca tctctgcctt gagactgcct tgagacagtg cttgccttga	1200
gagagtgagc caattaacag	1220

<210> 130

<211> 1274

<212> DNA

<213> Homo sapien

<400> 130

ccatatgagt ttgccatctc catggatgcc atttcaatgc cttcaggta atcattctct	60
ccccaagac tgcccaacggg gtcataactc ctgtgacgaa atgaggcgtt gattgaagat	120
gttctgctga gcaccccccctt ggtcatctttt ggggtctcag aagagccata atcatgacca	180
ttctcagcat ctgaataatc agttctctc caagtgcctt gcaagttctg attgtcctca	240
gcactggat agtctggctc cccaaaaaaag ggtggagagt taggttgaat gtcagcgcct	300
ggataatcag gctttccag agagtctgcg tatggattga ttctaaaact tttatgttcc	360
agattctttc tggatcctgg atggttcaaa ttggctctgg gtccaggatg atcagagttt	420
ctctgagctc caggtagtc cggttctaag gagccaaaat gatctggatg ttttctggag	480
cctgcatagt ttccactgct gctggagcct gcaaaatcag gatttcgtt agatccagg	540
tagtctgggtt gtctggatga tgcctgggtt tagggatgac tctgaaattc actataatct	600
ggctctggta gagaggtagg atggctctggg cttgttctag aggtgcaga gtatgcattt	660
tttctgggtc cagaatagtc tggattactc agagatctag gataatttggtt ttctgccaaga	720
gacccaggat agtctggacg ttttctggag gctacagagt atggattgtt cctgggtccg	780
gggttaatctg gattgttcag aggacctgga acatctggat aaccttgagt tttcaaaatc	840
ccctgcgtac ggttctgaga ccctgaatag tcaggtaat ctgggtcttc ctcagaccag	900
ttattcctgt agtaggcaga catgttggta tggactcttc accctggagt ggtaaactgt	960
cccagcattt gcaattactc agggatctttt tttttttcac ttttttgcctt ttattgttct	1020
tgctttgtcc caagtagatg caaatgttgc gcaaaaccaac ttgatcttta gatgttgc	1080
agaacactgg agtcacgtgtt ccatgggtcc ttcaaggctgg cttttgttgg gagctggat	1140
gcagatgatt tacggagggt tataatctgt gatgtgttgc tgaagtctga atattccaa	1200
ttgtctactg cagggcagagc ctcatgtctt cctggcgctc ctgttgccgc tgcttgcgt	1260
ggccctcggtt tcgaa	1274

<210> 131

<211> 554

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(554)

<223> n = A,T,C or G

<400> 131

ctgttaattcttgcctttcttca ctttcattcc atccttcctc tgcccgatataa aagkccagca	60
gaaatcttccttcttcttacat ctttcttactt ctgtggact ctgagacagg aaatcttcaa ggaggagttt	120
ttccctcccccactattctta ttctcaaccc ccagaggaac caaggctgtt gtacccacct	180
cagggacaga actccacact atagtggaa agtttcaggg acccccttctt ttgtgtctca	240
gggctcacct atgtactgg tccttttggc aaaaaaggaa aatgtatagag ccagggttgc	300

ccctgatgt	gcagcattac	tgtggagggg	ccaaagctgg	tgttcagagc	tcacccaagg	360
agggaggtga	taagggtgtca	tgcgttctgc	tgaaccact	ggntggtatg	aacatgaggc	420
ttggggtag	ggaaaaccaag	taggggttgg	agaaggagca	gcaccttgc	macacctggc	480
tacccatagc	tagcttctg	ccctcaaaaa	ctcagcattc	aaggatcca	gcccacacac	540
gccacaggca	gcag					554

<210> 132
<211> 787
<212> DNA
<213> Homo sapien

<400> 132

ctggtcaccc	aactcttgc	gaagagggga	attgagatcg	agtactgaat	atctggcaga	60
gaggctggaa	tccttcagcc	ccagagccca	gggaccactc	cagtagatgc	agagagggc	120
ctgcccaggg	gtcaggcag	tgggtatcac	tggtgacate	aagaatatca	gggctgggaa	180
ggcatcttt	tttccctgggt	ccctcctcaa	agttgctgac	actttgggg	cgggaagggg	240
tagaagttag	gctgetcctt	ttggagctgg	agggaaataga	cctggagaca	gagttgaggc	300
agtcgggctg	tccagttct	aagcatcaca	gcttctgcac	tggctctga	ggagattctc	360
agccagaggg	tcccagccctc	ctccctccctc	aatgtcagt	ccaagcaa	accaaagcaa	420
cgcacatcgatt	tttgtgaagt	caatttagaga	tgtggggagc	tatcggagac	aagcactatt	480
gtaccttttc	acctccacac	ttgtcacaag	cagggactgt	ctcctcccc	ctttgcttgc	540
cacgcctgccc	atggcgtttag	ctgggggtgag	gagttgtctt	tatcttcttt	gggagatcct	600
gactgggtgc	gcacttgcata	agggcaggaa	gtctggaggg	ctgcaggaat	ggtgccgtt	660
ataaacaggt	ggacttataa	tcatcatgca	ctgcaattgt	agaaacatagt	ctcctgcctt	720
ttctcatttt	tataattgtc	tgggtcaata	ttctcccaat	attgggaggg	gctctgcagc	780
cctccag						787

<210> 133
<211> 219
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(219)
<223> n = A,T,C or G

<400> 133

tactgctcta	agttttgttna	aatttttcat	attttaatit	caagcttatt	ttggagagat	60
aggaaaggctea	tttccatgt	tgcataataa	tcctgc	aaaag	tacaggtaact	120
acatggaa	gcaggtaaaa	tgtttgtaa	actttgaat	atatggct	atgtttaagc	180
agaatggaa	nagactaata	tcggtaaca	aataacaac			219

<210> 134
<211> 234
<212> DNA
<213> Homo sapien

<400> 134

gattttaaaaa	acatcatgac	tttgaactga	aaaacataca	cgtttagcac	acaaatattg	60
taatatgaat	gaactccaa	tcatttgaa	aacatgtgaa	tcaaagtaca	gttttagaa	120
ttagtaattc	acatthaagc	aatgttagcgc	cttgctgaat	acagcatttgc	taaaaaagag	180
acttagtgca	tatTTTATG	gtacatttg	tggtttacc	atttggttga	gttg	234

<210> 135
<211> 414
<212> DNA
<213> Homo sapien

<400> 135

ctccagcctg	gctatatccg	gtcccgctat	aacctggca	tcaagtgcac	caacctcg	60
gctcacccgg	aggctgtgga	gcacttctg	gaggccctg	acatgcagag	aaaaagccgg	120
ggccccccgg	gtgaaggagg	tgccatgtcg	gagaacatct	ggagcaccc	gcgttggca	180
ttgtctatgt	taggcagag	cgtgcctat	ggggcagccg	acgcgccc	tctgtccacc	240
ctcctaacta	tgttggct	gccccagtga	cagtggacg	ggctgccc	tgagtgtcca	300
cctggggatt	aaatatgtct	tcaacaagg	aggcctggct	tctacaatgg	tttaggtaaa	360
ggggcctttg	aagtagttct	ggccaggctt	gcaatacaca	caacacaaga	gcc	414

<210> 136

<211> 461

<212> DNA

<213> Homo sapien

<400> 136

gaagtgatta	atagtttat	ttgcata	acagagaaga	gtcagcattt	ttgggtgaga	60
agaggcaggc	tgtgaggagg	taaggcttca	gcagaggaag	gcacccgtac	agacaacacg	120
agactcctat	taaatcagca	cagttgc	ttcaccc	ctcaagccaa	cagctcattt	180
aactcatatg	tcgattgaga	atcatttaca	aaaccaggag	agaaacaatg	ggaagagcaa	240
cggctctca	tccctggacc	tgacactcaa	aacattatgt	acaggatgc	ggaacaaaat	300
ctgtctgatc	agtgcctct	cctgctgg	aaaacaccc	tcacggaa	atttgggat	360
taaatatgtc	ttcaacaagg	gggcctggc	ttctacaatg	tttaggtaa	agggccttt	420
gaagtagttc	tggccaggct	tgcaatac	acaacacaag	a		461

<210> 137

<211> 269

<212> DNA

<213> Homo sapien

<400> 137

atagcaaatg	gacacaaaatt	acaatgtgt	gtgcgtgg	cgaagacatc	tttgaagg	60
atgagttgt	tagtttaca	tcata	taatagtga	aacctgtact	aaaaatataa	120
gcagcttga	actggctt	ccaatcttga	aatttgc	caagtgtctt	atata	180
atcta	aatccagaa	cttggactcc	atcg	ttat	ttatgt	240
aatgtgt	taaatatgc	tccac	atcg	ttat	ttatgt	269

<210> 138

<211> 452

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(452)

<223> n = A,T,C or G

<400> 138

ctccatggg	ggcaaaaat	agagaattt	tggtgc	ctctt	atca	60
taatcttccc	tggtaactat	gcaacat	tttgc	tttgc	tttgc	120
tttcatgtgc	caatctgg	aaaaataatt	taatca	aaac	aaac	180
caatgagga	aagcagaaaa	gatac	cattt	ctc	tttgc	240
caatgtctaa	gtaaaatgtat	taacatttgg	aaaataca	aca	tttttttt	300
caat	atgtat	atgtat	atgtat	atgtat	atgtat	360
aaaacaaaaac	aaaaaaggag	ttcaggactt	gttata	gttata	gttata	420
ttcccataac	aagcattgaa	agttaaaggcc	cc	cc	cc	452

<210> 139

<211> 474
<212> DNA
<213> *Homo sapien*

<400> 139

tgtgcctcat	tgaggttaca	attgaaacag	atgtgacac	ctgagagact	ttccctgatt	60
atattccccc	acaaaacct	gtaccatatt	accttatttt	atcttcttga	aattcttatt	120
cattggctt	tttgggtct	cttgcatta	gatataatgt	agtccttgg	cataaatttg	180
acattggtag	gggactgaca	ttctaaccctg	gcccgaggccc	taggagagag	ataactccac	240
aaagcagcac	atactatctt	aggtagcgag	ggagctaact	caccatgtag	cagataaaa	300
aaaccaaacc	cagcaactgt	cataaataacc	acttgccttgg	aagtccggc	ctcgccaaacc	360
gagaatcaac	ctcagcacaa	acgcaggtgg	ctgggtctg	ttccccctta	gccaccaccc	420
cagcctctcc	cctccccctgc	cccaagtgc	caagagettg	gtctctgtg	cttt	474

<210> 140

<211> 487

<212> DNA

<213> Homo sapien

<400> 140

ctccccgtcc tcgtgtttcct gagaaacgga ttaatagccc tttatcccccc tgccaccctcc 60
tgcaggggat ggcactttga gcccctctggg gcccctccct tgctgagcct tactctcttc 120
agactttctg aatgtacagt gccgttgggtt gggattttggg gacttggaaagg gaccaaggac 180
actgacccca agctgtcctg cctagcgtcc agcgtcttct aggaggggtgg ggtctgcctg 240
tcctggtgtg gttggtttgg ccctgtttgc tgtgactacc cccccccctc cccgaaccga 300
gggacgggtg ccttgtctc tgccctcagat gccacctgcc ccgcggatgc tccccatcatcg 360
cagcatccag actttcagga agggcaggggc cagccagtcc agaaccgcattt ccctcagcag 420
ggactgataa gccatctctc ggagggcccc ctaataccca atggagttctt ggttcacacc 480
ctgggggg 487

<210> 141

<211> 248

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) . . . (248)

<223> n = A, T, C or G

<400> 141

ttaaagatgg	ggaaatgagg	cctgnaata	gaaaagattt	gccttagagtc	acacacactg	60
tcaggtcagg	tagagtcaaa	atcaggcacc	ccgactcaca	gactgcttca	cattgccatc	120
agagattgtc	ctgcaacaat	attatgttta	gttctactgc	agaatgataa	ctggatctta	180
cccccttgc	ctgatctgge	cacaaacttg	tttttcaggt	ctttccattt	ggctcttcc	240
agctaatt						248

<210> 142

<211> 173

<212> DNA

<213> Homo sapien

<400> 142

tactaaggatt	gtccaaaggct	ccctttaaaa	actttctttc	ccttagagg	aatcattact	60
tcgttataaa	agtttctact	tccttgaga	atatctacat	ccaatgggcc	atggcacaaa	120
attnaagtct	agaaaagaatc	ttaaaggctc	atcttatagt	aaccagaggc	agg	173

<210> 143

<211> 511
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(511)
 <223> n = A,T,C or G

<400> 143

cctcgtcaga ggggtggggtc ctggtnacct gtactccacg gacctcggtg aagcaaaagc	60
ttcagggcag agggaatgag gcaacccagt ggcagccccg ctgggccccg tggctcctgc	120
tctccttattg gacgttagagg caggggagag acttcttat acaaataattc tcacatcacaga	180
aggggatgatc cttgctgctc tgccgttaggg tttttgtatgc ttagctatgc tgcacatgac	240
gttaaacctaa agaacttggg cttagctttt aaaaaaggac agcaaacaat ttataatcc	300
ttaaaagtgtt atagacggtt acactagtgc agggtattgg ggaggctt tgggtgtgga	360
ggctgtcact tgtattttt gtgactctaa atctttgata gtaaaaacaaa tgtaaaaaga	420
aatgtttgcc accagatggg aatagaagtt ccaataagca ggctggaatg ggtggctata	480
cgttgtatca cgaggaagtt ttagactctg a	511

<210> 144

<211> 190
 <212> DNA
 <213> Homo sapien

<400> 144

cattcttcgt tcacatgcca attcagttgt caatcccatt gtctatgttt accggaaaccg	60
agacttccgc tacacttttc acaaaaattat ctccaggtat ctctctgc aagcagatgt	120
caagagtggtt aatggtcagg ctgggttaca gcctgctctc ggtgtggcc tatgtatctag	180
gctctcgcct	190

<210> 145

<211> 169
 <212> DNA
 <213> Homo sapien

<400> 145

gatgtgggta tctcgtcaga tggccagttt gccctctcag gctcctggga tggAACCCG	60
cgccctctggg atctcacaac gggcaccacc acgaggcgat ttgtgggcca taccaggat	120
gtgctgatgt tggcctctc ctctgacaac cggcagattt tctctggat	169

<210> 146

<211> 511
 <212> DNA
 <213> Homo sapien

<400> 146

atcttagagaa gatttggaa acacatgata gctatggta aataacttaac agggcaatca	60
cagggagat gactagattt cctaacatcc atgagtggaa ttatagaag tataactctt	120
gacttgcattt aaaggaagat tttaaaaaac atgactgttc aggagtgtt aagtagggtc	180
agatgaccag tgattggaa tacttcgtaa gcaggagca gtaagatctg agccactgtt	240
ctatcggtat ggtgtctgtt gtattccctt gtcaaagaag tactctaagc aacttcagtc	300
tcacgaattt ctatcacccct cgtgggcata catgatggtt accctaaaga ggaagttca	360
gaaggcagta atattggatc ctggaaatgt cagacaggag ccttcatgca gatacccttt	420
tcagttctcc atacacccat tcacaaagtgg tcacaaaaac acccagttacc ttacttgcc	480
tttacccact taacaatatg a	511

<210> 147

<211> 421	60
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(421)	
<223> n = A,T,C or G	
<400> 147	
gaccagtta gtttccctg gctattgtat aatccacagc cacactgtga aagcaaatct	120
ggccaggtag caacacaggg agaatctgcc tgaactgacc aaaggtgtcc atacttcatg	
tcaagtggaa ttccacctcc atcatgttct aaagagccaa caacagattc tagggactg	
caaaatgcct cagcaattaa ttgaagttct gttttagtac attcatcatc tttgagaatg	
ctttctgggt cgttgtgagt cttgtgtctg atatatgcag ccaaattgagt ttcaatcag	
ccacacctcc acaaagccca tggttcctt agtgttaact gcaggacatg cagtccgtc	
tgacacgtga gcttcagctc atcccangca gtgtcatttc tggtgcagag aagccaagct	
g	421
<210> 148	
<211> 237	
<212> DNA	
<213> Homo sapien	
<400> 148	
acacaccact gttggccttc catctgggtt aagtcaactg ttagtagaaaa ccgaagataaa	120
cagtttgta ttccataatgg ctttttcata ctccaaatgtac tttttagcac agagctctt	
gcttctgacc tggacttgg aacacagata tatatatctt ttgttctgtc cctggaaac	
tgtatattgt gtaagacaac caccagatata tttctctaataaaaatcttctt aaaaatta	
	237
<210> 149	
<211> 168	
<212> DNA	
<213> Homo sapien	
<400> 149	
agagaaagtt aaagtgcataatgtttgaa gacaataagt ggtgggttat cttgtttctat	168
ataagataaaa cttttttgtc tttgttttat cttatttaggg agttgttatgt cagtgtataaa	
aacatactgt gtggtataac aggcttaataa aattctttaa aaggagag	
	60
<210> 150	
<211> 68	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(68)	
<223> n = A,T,C or G	
<400> 150	
ggtgggggttt ggcagagatg anttaagtg ctgtggccag aagcggggggg ggggtttgggt	68
ggaaattt	
	60
<210> 151	
<211> 421	
<212> DNA	
<213> Homo sapien	

<400> 151
 aggtgacacg tattcggat gaaagtataa tagtcattcc ttcaaccctt gcatttatgg 60
 actctggaaa tcgaagatcc acagttagta aagatgttcg tccaaagaca aaaaataga 120
 acagctcaac aaagcgagag aaaaaaaaaac aaaatggcac tggctctg ccttgaagt 180
 ctgggctcca gcagagggtc gatcttccc caggagacga gacggctat gacactctcc 240
 agaactgttg tcagtgcga attttacttc ctttgcctat tctaaatgag caccaggaga 300
 agtgcagag gttagctcac caaaaagaaac tccagtgggg ctggtagat ggctcagcgg 360
 gtaagagcac ccgactgctc ttccgaaggt ccggagttca aatccagca accacatgt 420
 g 421

<210> 152
 <211> 507
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(507)
 <223> n = A,T,C or G

<400> 152
 gaattcggca cnagctcgta ccggcagggt ngtccnntt tttgtccgc ctcgccanga 60
 cttectacag ctatcgccag tgcgtccca cgtcntctt cngaggctg ggcggcggct 120
 ccgtgcgtt tggccgggg gtgcgtttc nctcnccag cattcacggg ggctccggcg 180
 gccgcggcgt atccgtgtcc tccggccgct ntgtgtctc gtcctctcn ggggctacg 240
 gctngctgtc acngcggctt cctgaccgct tccnacgggc tgctggcngg caacgagaag 300
 ctaaccatgc agaacatnaa cnaccgcctg gcttcctacc tgnacaaggt ggcgcncctg 360
 taggcggcca acggcnagct agaggtgaag atccnctact ggttaccaga agcaggggcc 420
 tggccctgc ccgactacag ccactnctnc acnaccatgc agtacactgcn ggganaagat 480
 tntnggngc caccatngag aactgca 507

<210> 153
 <211> 513
 <212> DNA
 <213> Homo sapien

<400> 153
 gaattcggca cgagggtggct cagatgtcca ctactggag tatggtcga ttgggaattt 60
 tattgtgaaa aagcccatgg tgctggaca tgaagcttcg ggaacagtgc aaaaagtgg 120
 atcatcggt aagcaccta aaccaggta tcgtgttgc atcgagcctg gtgctcccg 180
 agaaaaatgt gaattctgca agatggccg atacaatctg tcacccctca tcttcttctg 240
 tgccgcggcc cccgatgacg ggaacctctg ccggttctat aagcacaatg cagcctttg 300
 ttacaagctt cctgacatg tcaccccttga ggaaggcggcc ctgatcgac cactttctgt 360
 ggggatccat gcctgcagga gaggcggagt taccctggga cacaaggccc ttgtgtgtgg 420
 agctgggcca atcggatgg tcaactttgtc cgtggccaaa gcaatgggag cagctcaagt 480
 agtggtagact gatctgtctg ctacccgatt gtc 513

<210> 154
 <211> 507
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(507)
 <223> n = A,T,C or G

<400> 154

ggcacgagct	cgtgccgaat	tcggcncgag	cagacacaat	ggtaagaatg	gtgcctgtcc	60
tgctgtctct	gctgctgctt	ctgggtcctg	ctgtccccca	ggagaaccaa	gatggtcgtt	120
actctctgac	ctatatctac	actgggctgt	ccaagcatgt	tgaagacgtc	cccgcgtttc	180
aggcccttgg	ctcactcaat	gacctccagt	tcttagata	caacagtaaa	gacaggaagt	240
ctcagcccat	gggactctgg	agacaggtgg	aaggaatgga	ggatttggaaag	caggacagcc	300
aacttcagaa	ggccaggggag	gacatcttta	tggagaccct	aaaagacatc	gtggagtatt	360
acaacgcacag	taacgggtct	cacgtattgc	agggaaaggtt	tgggtgttag	atcgagaata	420
acagaagcag	cggagcattc	tgaaaatatt	actatgatgg	aaaggactac	attgaattca	480
acaaagaaaat	cccaagctgg	gtccccct				507

<210> 155

<211> 507

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(507)

<223> n = A,T,C or G

<400> 155

ggcacgagga	gacctaaagg	ctgagtntcg	ggaacaggag	aaagctctgt	tggccctcca	60
gcagcagtgt	gctgagcagg	cacaggagca	tgaggtggag	accaggccc	tgcaaggacag	120
ctggctgca	gcccaggcag	tgc当地caagga	acgggaccag	gagcttggaa	ctctgcgggc	180
agaaagtca	tcctccggc	atcaggagga	ggctgcccgg	gcccgggttg	aggctctgca	240
ggaggccctt	ggcaaggctc	atgctgcct	gcagggaaa	gagcagcatc	tcctcgagca	300
ggcagaattt	agccgcagtc	tggaggccag	cactgcaacc	ctgcaagct	ccctggatgc	360
ctgccaggca	cacagtccgc	agctggagga	ggctctgagg	atacaagaag	gtgagatcca	420
ggaccaggat	ctccgatacc	aggaggatgt	gcagcagctg	cagcaggcac	ttgcccagag	480
ggatgaagag	ctgagacatc	agcagga				507

<210> 156

<211> 509

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(509)

<223> n = A,T,C or G

<400> 156

ggcacgagga	cagagagaac	cctgtngaaa	gagcgttacc	aggaggctt	ggacaaacag	60
aggcaagtgg	agaatcagct	ccaagtgc	ttaaaggcagc	ttcagcaaag	gagagaagag	120
gaaatgaaga	atcaccagga	gatattaaag	gctattcagg	atgtgacaat	aaagcgggaa	180
gaaacaaaga	agaagataga	gaaagagaag	aaggagttt	tgcagaagga	gcaggatctg	240
aaagctgaaa	ttgagaagct	ttgtgagaag	ggcagaagag	aggtgtggga	aatggaaactg	300
gatagactca	agaatcagga	tggcgaata	aataggaca	ttatggaga	gactgaacgg	360
gccttggaaagg	cagagatctt	atcactagag	agccggaaag	agttacttgt	actgaaacta	420
gaagaagcag	aaaaagaggc	agaattgcac	cttacttacc	tcaagtcaac	tcccccaaca	480
ctggagacag	ttcggtccaa	acaggagt				509

<210> 157

<211> 507

<212> DNA

<213> Homo sapien

<400> 157

ggcacgaggg cagccctcct accggcgac	gtggtggcgc cgctgctgcc	tcccgcgc	60			
cctgaaccctt	gtgcctgcag	ccatggctcc	cggccagctc	gccttattta	gtgtctctga	120
caaaaccggc	cttggaaat	ttgcaagaaa	cctgaccgct	cttgggttga	atctggtcgc	180
ttccggaggg	actgcaaaag	ctctcaggga	tgctggctg	gcagtcagag	atgtctctga	240
gttgcgggaa	tttctgaaa	tgttgggggg	acgtgtaaa	actttgcattc	ctgcagtc	300
tgctggaaatc	ctagctcgta	atattccaga	agataatgct	gacatggcca	gacttgattt	360
caatcttata	agagttgtt	cctgcaatct	ctatccctt	gtaaagacag	tggcttctcc	420
aggtgtaagt	gttggaggagg	ctgtggagca	aattgacatt	ggtggagtaa	ccttactgag	480
agctgcagcc	aaaaaccacg	ctcgagt				507

<210> 158

<211> 507

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(507)

<223> n = A,T,C or G

<400> 158

ggcacgagtc gagctgtgcc	tattcgnngtc	aatccaagag	ttagtaatgt	gaagtctgtc	60
tacaaaacccc	acattgtatgt	cattcattat	cgaaaaacgg	atgaaaaacg	120
cttgatgaag	aaggcagaaca	gaaactttt	tcaagaaaaac	gtgtggatt	180
cttccagga	aaccagacat	ttatgagagg	cttgcttcag	ccttggctcc	240
gaacatgaag	atataaaagaa	ggaattttt	cttcagctct	ttggcgggac	300
tttagtcaca	ctggagggg	caaatttcgg	gctgagatca	acatcttgc	360
cctggatcca	gcaagtccca	gctgctgcag	tacgtgtaca	acctcgcccc	420
tacacgtntg	ggaagggctc	cagtgcannnt	ggcctnactg	caagggccag	480
gagacaaggn	anctggnnc	gnnacag			507

<210> 159

<211> 508

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(508)

<223> n = A,T,C or G

<400> 159

ggcacnanaa accaggattta	tggtnnggat	ccaaagattt	ctaattgtca	aatgaaggca	60
gcagatgagg	tagctgaagg	taaattttat	gatcattttc	ctctcggt	120
ggatcaggaa	ctcagacaaa	tatgaatgtt	aatgaagtca	ttagcaatag	180
atgttaggag	gtgaaacttgg	cagcaagata	cctgtgcate	ccaaacgtca	240
agccagagct	caaattgtata	ttttccaca	gcaatgcaca	ttgtgtgtgc	300
catgaagtac	tgttaccagg	actacagaag	ttacatgtat	ctcttgatgc	360
gagtttgcac	agatcatcaa	gattggacgt	actcatactc	aggatgtgt	420
cttggccagg	aatttagtgg	ttatgttcaa	caagtaaaaat	tccacttact	480
gctgccatgc	caagaatcta	ttagctcg			508

<210> 160

<211> 508

<212> DNA

<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(508)
 <223> n = A,T,C or G

<400> 160

ggcacgagct	tggagcaaag	tcatctnaag	gaatttagagg	acacacttca	ggtaggcac	60
atacaagagt	ttgagaaggt	tatgacagac	cacagagt	tttggagga	attaaaaaaag	120
gaaaaccaac	aaataattaa	tcaaatacaa	aatctcatg	ctgaaattat	ccagaaaaaa	180
aaaaaacagt	tacagaatt	aaaactcaag	gtttctgatt	tgtcagacac	gagatgcaag	240
ttagaggtt	aacttcgtt	gaaggaagca	gaaactgtat	aaataaaaaat	tttgcgtggaa	300
gaaagcagag	cccagcagaa	ggagacctt	aaatcttcc	ttgaacaaga	gacagaaaaat	360
ttgagaacag	aaatttagtaa	actcaaccaa	aagattcagg	ataataatga	aaatttatcg	420
gtggccttag	cagagctaag	aactttatg	acaattgaaa	aagatcagt	tatttccgag	480
ttaatttagta	gacatgaaga	agaatcta				508

<210> 161

<211> 507

<212> DNA

<213> Homo sapien

<400> 161

ggcacgagcg	ctaccggcgc	ctccctctgog	gccactgagc	cgagccggc	ctgagcagcg	60
ctctcggtt	cagtacccac	tggaggact	taggcgtcg	cgtggacacc	gcaagccct	120
cagttagcctc	ggcccaagag	gcctgtt	cactcgtag	ccccccggg	ggccgtgtc	180
ctgtctcggt	ggccgaccc	ggcccgagc	ccgagcagta	gcccgcgca	tgtcggttgt	240
ggccatagac	ctgggttcc	agagctgcta	cgtcgctgt	gcccgcgcc	gcccgcgtcg	300
gactatcgct	aatgagtata	gcaaggctg	cacgcggct	tgcatttctt	ttggtcctaa	360
gaatcgttca	attggagcag	cagctaaaag	ccaggttaatt	tctaattgca	agaacacagt	420
ccaaggattt	aaaagattcc	atggccgagc	attctctgtat	ccatttgtgg	aggcagaaaa	480
atctaaccctt	gcatatgata	tttgca				507

<210> 162

<211> 507

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(507)

<223> n = A,T,C or G

<400> 162

ggcacgagca	gctgtgcacc	gacatgntct	cagtgtcctg	agtaagacca	aagaagctgg	60
caagatccctc	tctaataatc	ccagcaaggg	actggccctg	gaaattgcca	aagcctggga	120
gctctacggc	tcacccaatg	ctctggtgct	actgattgt	caagagaagg	aaagaaacat	180
atttgaccag	cgtgcacatg	agaatgagct	actggccagg	aacatccatg	tgatccgacg	240
acatttgaa	gatatctctg	aaaaggggtc	tctggaccaa	gaccgaaggc	tgtttgtgg	300
tggccaggaa	attgctgtgg	ttacttccg	ggatggctac	atgcctcgtc	agtacagct	360
acagaattgg	gaagcacgtc	tactgctgg	gaggtcacat	gctgccaagt	gcccagacat	420
tgcacccca	ctggctggga	ctaagaaggt	gcagcaggag	ctaagcaggc	cgccgcgtct	480
ggagatgttg	ctccctggcc	agcctga				507

<210> 163

<211> 460

<212> DNA

<213> Homo sapien

<400> 163

ggcacgagaa ataaactttat ttcatgttgg gtcgcgggtc ttgtttgtgg atcgctgtga	60
tctgtacttg acaatgcaga tttcgtgaa gactctgact ggtaagacca tcaccctcga	120
gtttgagccc agtgacacca tcgagaatgt caaggcaaag atccaagata aggaaggcat	180
ccctcctgac cagcagaggc tatatcttgc tggaaaacag ctgaaagatg ggcgcaccct	240
gtctgactac aacatccaga aagagtccac cctgcacctg gtgtccgtc tcagaggtgg	300
gatgcaaattc ttctgtgaaaga cactctactgg caagaccatc acccttgagg tggagccccag	360
tgacaccatc gagaacgtca aagcaaagat ccaggacaag gaaggcattc ctcctgacca	420
cgagaggttg atctttcccg gaaagcagct ggaagatggg	460

<210> 164

<211> 462

<212> DNA

<213> Homo sapien

<400> 164

ggcacgagcc ggatctcatt gccacgcgcc cccgacgacc gcccacgtg cattcccgat	60
tccttttgtt tccaagtcca atatggcaac tctaaaggat cagctgattt ataatcttct	120
aaaggaagaa cagacccccc agaataagat tacagttgtt ggggttgtg ctgttgttgc	180
ggcctgtgcc atcagtatct taatgaagga ctggcagat gaacttgctc ttgttgtatgt	240
catcgaaagac aaattgaagg gagagatgtt ggatctccaa catggcagcc ttttccttag	300
aacaccaaag attgtctctg gcaaagacta taatgttaact gcaaactcca agctggtcat	360
tatcacggct ggggcacgtc agcaagaggg agaaaggcgt cttaatttgg tccagcgtaa	420
cgtgaacatc tttaattca tcattcctaa tggtgtaaaa ta	462

<210> 165

<211> 462

<212> DNA

<213> Homo sapien

<400> 165

ggcacgagga agccatgagc agcaaagtct ctcgcacac cctgtacgag gcgggtgcggg	60
aagtccctgca cgggaaccag cgcaagcgcc gcaaggccct ggagacggtg gagttgcaga	120
tctgttgcgaa gaactatgtat ccccagaagg acaaaggcgtt ctcgggcacc gtcaggctta	180
agtccactcc cggccctaag tctctgtgt gtgtccctggg ggaccacggc cactgtgacg	240
aggctaaggc cgtggatatac ccccacatgg acatcgaggg gctgaaaaaaaaa ctcaacaaga	300
ataaaaaact ggtcaagaag ctggccaaga agtatgtgc ttgttgttgc tcagagtctc	360
tgatcaagca gattccacga atccctcgcc caggttaaa taaggcagga aagttccctt	420
ccctgctcac acacaacgaa aacatggtgg ccaaagtggta tg	462

<210> 166

<211> 459

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(459)

<223> n = A,T,C or G

<400> 166

ggcacgagaa ggacctgtnt gaatggntcc actagggttn anntgncctt tacttttaac	60
cantnaaatn gacctgccccg tgaanangcg ggcntgacac annaanacga gaagacccta	120
tggagcttta atttataat gcanacagna cctaacaac ccacangtcc taaactacca	180
agcctgcat taaaatttcg gntggggcna cctcnagca naacccaacc tccgagcaac	240
tcatgctaag acttcaccag tcaaagctga actactatac tcaattgtac caataacttg	300
accaacagan caagnatcccc tagggataac ancacaatcc tattctagac cccttatnac	360
caatangntt tacacctcna tngnggaacc aggacatccg atggggcagn cgttattaaa	420

gttngttgnt aacnataaaag tctacgtgat ctgagttag 459

<210> 167
<211> 464
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(464)
<223> n = A,T,C or G

<400> 167

gaattgggac caacganaan cntgcggntc ttntttgcn tccanngccc agctnattgc	60
ttagacacac atggggagg tnaaggtcg gagtcaacng atttggtngt attgnagcgt	120
ttggtcacca gngctgctt taactctggn aaagtggata ttgtgtcat naatgacc	180
tncattgacc tnaactacat gtttacatg ttccaatatg attccaccca tggcaaattc	240
catngcaccc tnaaggctga gaacgggaag cttgtnatca atggaaatcc catcaccatc	300
tttcangaac ganatccntn caaaaatcaa anttggggc gatgcttgcc cncttgaagt	360
accgttcaan gggannnncc ccactttggc cgntnttnc aanccaccc caatttgggn	420
aaaaaaaaaaag gggnnnttgg gggggggcct tttanntttt tttt	464

<210> 168

<211> 462
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(462)
<223> n = A,T,C or G

<400> 168

ggcacgaggn nnaacctncg gggctggggc agcacgcctt gngcaancct gcactgcact	60
gaagaccccg tgccggaagc cgmnngcncc nacatgcagn aactgaacca gctggcgcg	120
cancagtctc cagacctgac agagggtctt ttacacttcc taactgatcc anantangtg	180
aaaatattnt tngttnatnt catntgaatn atccancncc aatcatanca nnnttnattn	240
cctcataanc nttgagaana gcmccctnt gnttncanan ggtgctntga anangagct	300
cacangcaan caggtccaag cggatttnt aactntgggt cttantgang agaaagnac	360
ttactttct gaaancnnga agcagaatgc tcccaccctt gctcgatggg ccatacgtca	420
agactctgat gattaaccag cttanatata ggacngggaa tt	462

<210> 169

<211> 460
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(460)
<223> n = A,T,C or G

<400> 169

ggcacgaggg acagcagacn agacagtac agcagcctt aaaaaacgtt cctggaactc	60
aagnntctnt ncncaaagga ggacagagca nacagcagag accatggant ctnccctcg	120
ccctccccac agatggtgc tcccctggca naggctcctg ctcacagcct cacttcta	180
cttctggAAC ccgccccacca ctgccaagct cactattgaa tccacgcccgt tcaatgnntc	240
ntaggggaag gagggngctt ctactnttnc acaatctgan ccccttcttn tttggttact	300

ancatggctc tncatgtcaa aatactggna tggntaacct gtcaaattta taggnantnt	360
gctaattggg aaactnccnn tnktctaccc caggggnccc agattcctnn gttcncataa	420
cnattaattt aaccctaat gncaancctt tngttaaaga	460

<210> 170
<211> 508
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(508)
<223> n = A,T,C or G

<400> 170

ggcacgagg ggatttttag gtggtcnggt gtggtatcag gaataatgtg ggaggccaga	60
ttgaagtcca ggccaggaac aatggtaatt gtgggactta agaaagtgtg agtacagctg	120
aatgagccgg ggagcagaaa gtatatgcgt caggtatgag gaagaaaata gatttggaa	180
gttatgagaa atgttagagag ttagttgagc atagtttgat attttgaggg cctctaacag	240
tattaaagca gcccacgcgg ctgcacacag acatgatggc taggctaaaa caggaaggc	300
aagttgttt gacagaaaagg ctacagggtg cagtccttgc tcttgtttaa gaattctgac	360
cacactaacc atgccttagga aggaaaggag ttgttctttt gtaaggatt gaggtttggg	420
agattaatcg gacacgatca gcagggagag cacctgtgtt tttatgagaa ttatgctgag	480
ataggttaaca gatgaggatg aaatttgg	508

<210> 171
<211> 507
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(507)
<223> n = A,T,C or G

<400> 171

ggcacgagac cagccactag cgagnctcg agcgatggcc tatgtccccg caccggctt	60
ccagcccacc tacaacccga cgctgccttta ctaccagccc atccgggcg ggctcaacgt	120
ggaaatgtct gtttacatcc aaggagtggc cagcgagcac atgaagcggt tcttcgtgaa	180
ctttgtggtt gggcaggatc cgggctcaga cgtcgccttc cacttcaatc cgcggtttga	240
cggctgggac aaggtgtct tcaacacgtt gcagggcggg aagtgggca gcgaggagag	300
gaagaggagc atgccttca aaaagggtgc cgccttgc tggcttca tagtcttgc	360
tgagcaactac aaggtgttgg taaatggaaa tcccttcat gatcgggc accggcttcc	420
cctacagatg gtcacccacc tgcacgttga tgggatctg caactcaat caatcaactt	480
catcgaggc cagcccctcc ggcccca	507

<210> 172
<211> 409
<212> DNA
<213> Homo sapien

<400> 172

ggcagcgact ggagtgtctg ctgccacccctc ctgcgttgcgc gcaaaatgt ctgtcaccta	60
cgatgactct gtgggagtgg aagtgtccag cgacagcttc tgggagggtt ggaactacaa	120
acggactgtt aagcgattt acgtggccca ccgcctgtgt ggtgacctca tgaactgtct	180
gcatgagcgg gcacgcacatcg agaaggcgta tgcacagcag ctcactgagt gggcccgacg	240
ctggaggcag ctggtagaga agggaccaca gtatgggacc gtggagaagg cctggatagc	300
tgtcatgtct gaagcagaga gggtgagtga actgcacatcg gaagtgaagg catcaactat	360

gaatgaagac tttgagaaga tcaagaactg gcagaaggaa gccttcac	409
<210> 173	
<211> 409	
<212> DNA	
<213> Homo sapien	
<400> 173	
ggcacgaggg cagctagagg aagagtccaa ggccaagaac gcactggccc acgcctgca	60
gtcagctcgcatgactgtg acctgctgca ggaacagtat gaagaggagc aggaagccaa	120
ggctgagctg cagagggcca tgtccaaggc caacagcgag gtatcccagt ggaggacgaa	180
atatgagacg gatgccatcc agcgacaga ggagctggaa gaggccaaga agaagctggc	240
tcagcgtctg caggatgctg aggaacatgt agaagctgt aattccaaat ggccttctt	300
tgaaaagacg aagcagcgac ttcaaatga agtggaggac ctatgattt acgtggagag	360
gtctaatacgccctg cgcttgataa gaagcagagg aactttgac	409
<210> 174	
<211> 407	
<212> DNA	
<213> Homo sapien	
<400> 174	
ggcacgagcc gggggggggc gggggcgctcc ggctcgaggc attcgagct gccccggccg	60
ggctggcagg agcaggatgg cgccggcgcc ggctgcaggc gaggcgcggc ggggtctgg	120
gtacggcgcc agggggcgctc tgggttctcg atgcgtgcag gctttcgaa cccgcactg	180
gtgggttgcg acggtttagt tggtggagaa tgaagaggcc agcgttagca tcattgttaa	240
aatgacagac tcgttactg acaggctga ccaggactg gctgagggtt gaaagctt	300
gggtgaagag aagggtggatg caattctttt cgttgttggaa ggatggccg gggcaatgc	360
caaatccaag tctcttttta agaactgtga cctgtatgtt aagcaga	407
<210> 175	
<211> 407	
<212> DNA	
<213> Homo sapien	
<400> 175	
ggcacgagct tgcccgctgg tcgttagctc gtcgggtgcg cgtegtcccg ctccatggcg	60
ctttctgtgc ggctgtggc ttcgtccctg gctctggccc tggggcccg cgccaccctg	120
gccccgtcccg ccaagtgcgc ctaccagctg gtgtgcgc acaggactg ccggggccgc	180
cagcacggcc ccaacgtgtg tgcgtgtgcg aaggttattt gcaactaatag gaagtacttc	240
accaactgca agcagtggta ccaaaggaaa atctgtggca aatcaacagt catcagctac	300
gagtgtgtc ctggatatga aaaggccctt ggggagaagg gctgtccgc agccctacca	360
ctctcaaaacc ttacgagac cctgggagtc gttggatcca ccaccac	407
<210> 176	
<211> 409	
<212> DNA	
<213> Homo sapien	
<400> 176	
ggcacgagtg gtgccaaaac gggaccatgc ctcctggag gagcagagca agcagcagtc	60
caacgagcac ctgcggcgcc agttcgccag ccaggccaaat gttgtggggc cctggatcca	120
gaccaagatg gaggagatcg ggcgcatttc cattgagatg aacgggaccc tggaggacca	180
gctgagccac ctgaagcagt atgaacgcag catcgtggac tacaagccca acctggaccc	240
gctggagcag cagcacccage tcatccagga ggccctcata ttcgacaaca agcacaccaa	300
ctataccatg gaggcacatcc gctgtggctg ggagcagctg ctcaccacca ttgcccccac	360
catcaacgag gtggagaacc agatcctcac ccgcgcaccc aaggcattc	409

<210> 177
<211> 408
<212> DNA
<213> Homo sapien

<400> 177

ggcacgaggc ccaggttaact gcaaaaacaa tggctcagca tgaagaactg atgaagaaaa	60
ctgaaacaat gaatgttagtt atggagacca ataaaatgct aagagaagag aaggaggcagg	120
tttcaaaaat ggcatcagtc cgtcagcatt tggaaaac acacagaaaa gcagaatcac	180
agtgttggaa gtgttaagca tcttggagg aaagagagag aatgtttaag gatgaagttt	240
ccaaatgtgt atgtcgctgt gaagatctgg agaaaacaaa cagattactt catgatcaga	300
tgcggaaaatt aagtgacaag gtcgttgccct ctgtgaagga aggtgtacaa ggtccactga	360
atgtatctct cagtgaagaa gggaaatctc aagaacaaat tttggaaa	408

<210> 178

<211> 92
<212> DNA
<213> Homo sapien

<400> 178

ggcacgagaa gaaattaaga gctaaagaca aggagaatga aaatatggtt gcaaagctga	60
acaaaaaaaaagt taaagagcta gaagaggaga tg	92

<210> 179

<211> 411

<212> DNA

<213> Homo sapien

<400> 179

ggcacgagga gacacgccac ctataccaca gttctcagaa tgaatttagct aagttggaaat	60
cagaacttaa gagtctcaaa gaccagttaa ctgatttaag taactcttta gaaaaatgta	120
aggaacaaaaa agggaaacttg gaagggtatca taaggcagca agaggctgat attcaaaatt	180
ctaagttcag ttatgaacaa ctggagactg atcttcaggc ctccagagaa ctgaccagta	240
ggctgcatgaa agaaataaat atgaaagagc aaaagattat aagcctgctt tctggcaagg	300
aagaggcaat ccaagtatgtt attgctgaac tgcgtcagca acatgataaa gaaattaaag	360
agctggaaaaa cctgctgtcc caggaggaag aggagaatat tgtttttagaa g	411

<210> 180

<211> 411

<212> DNA

<213> Homo sapien

<400> 180

ggcacgagggt tggccggcgg gggcgagcgg agtttagcagg gctttactgc agagcgcc	60
gggcactcca ggcacgtgg ggatcagcgt aggtgagctg tggcccttttgcgagggtgt	120
cagccatagc tacgtcggtt cgctacgagg attgagctc tccacccatc ttctgtgttt	180
caccatctac ataatgaaatc ccagtatgaa gcagaaacaa gaagaatca aagagaatat	240
aaagactgt tctgtcccaaa gaagaactt gaagatgtt cagccttctg catctggatc	300
tcttggggaa agagaaaatg agctgtccgc aggcttgc aaaaaggaaac atcggaatga	360
ccacttaaca tctacaactt ccagccctgg ggttattgtc ccagaatcta g	411

<210> 181

<211> 411

<212> DNA

<213> Homo sapien

<400> 181

ggcacgaggc gggacaggcct gcccacgg agcgcgcac actgccccggaa	60
--	----

agggaccgccc acccttgccc cctcagctgc ccactcgta tttccagcg g ctcgcgcg	120
cgcacgatgc cctegccac cagccacagc gggagcggca gcaagtgc tc cggaccgcca	180
ccggccgtcg gttccctccg gagtggcg gcccggag ccggggccgc cgccggct	240
tctcagcacc cgcacccgg caccggcgct gtccagaccg agggcatgaa gcagatttc	300
gggggtatcg acaagaaaact tcggaacctg gagaagaaaa aggttaagct tgatgattac	360
caggaacgaa tgaacaaaagg gaaaaggctt aatcaagatc agctggatgc c	411

<210> 182

<211> 411

<212> DNA

<213> Homo sapien

<400> 182

ggcacgagcc gacatgggc tttccctgc gggccggcgg gtgtggtca cggggcagg	60
caaaggata gggcgccgca cggccaggc gctgcaegcg acggcgccg ggggtggc	120
tgtgagccgg actcaggccg atcttgcac gcttgcgcg gatggccgg ggatagaacc	180
cgtgtcgctg gacctgggtg actgggaggc caccgagcgg gcgtggcgc gcgtggccc	240
cgtggacctg ctggtaaca acggcgctgt cgcctgctg cagcccttcc tggaggtcac	300
caaggaggcc ttgacagat cttttgaggt gaacctgcgt gcgtcatcc aggtgtcgca	360
gattgtggcc agggcttaa tagccccggg agtcccaggc gcatcgta a	411

<210> 183

<211> 409

<212> DNA

<213> Homo sapien

<400> 183

ggcacgagcc tacactctgg ccagagatac cacagtcaaa cctggagcc aaaaggacac	60
aaaggactct cgacccaaac tggcccaagac cctctccaga ggtgggtg accaactcat	120
ctggactctg acatatgaag aagctctata taaatccaag acaagcaaca aacccttgc	180
gattattcat cacttggatg agtgcacaca cagtcaagct taaagaaaat tggatgtcg	240
aaataaaagaa atccagaaat tggcagagca gtttgcctc ctcaatctgg ttatgaac	300
aactgacaaa caccttctc ctgatggccca gtatgtcccc aggattatgt ttgttgaccc	360
atctctgaca gtttagagcc atatcactgg aagatattca aatcgcttc	409

<210> 184

<211> 410

<212> DNA

<213> Homo sapien

<400> 184

ggcacgaggc cattccagca ccaacaggat ccaagccaga ttgattggc tgcattggcc	60
caagcttggta ttgccccaaag agaagcttca ggacagcaaa gcatggtaga acaaccacca	120
gaaatgtatgc caaatggaca agatatgtct acaatggaaat ctggccaaa caatcatgg	180
aatttccaaag gggattcaaa cttaacaga atgtggcaac cagaatgggg aatgcacatcg	240
caaccccccac accccctcc agatcggca tggatggccac caacaccagg cccaatggac	300
attgttcctc cttctgaaga cagcaacagt caggacagt gggatttgc ccctgacaac	360
aggcatatat ttaaccagaa caatcacaac ttgtggac caccgataaa	410

<210> 185

<211> 411

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(411)

<223> n = A,T,C or G

<400> 185

ggcacgagca cagatgtagt tttctctgcg cgtgtcggtt ttccctcctc ccccgcctc	60
agggtccacg gcccacatgg cgtattaggg gcagcagtgc ctgcggcagc attggcctt	120
gcagcggcgg cagcagcacc aggtctgcg cggcaaccc ccagcggctt aagccatggc	180
gttttcacgc gcatccatca gcaagcgttgc tgtaaccgac aaagacacact tcgaattaag	240
cacattcctc gattccatca aagcaccgca acatgaccga aatgaccctc ctgagcagcg	300
aggtgttgtt gggggacttg atgtccccct tcgaccctgc gggttgggg gctgaagaaa	360
gcctangtct ctttagatgt tacctggagg tggccaagca cttaaacact c	411

<210> 186

<211> 410

<212> DNA

<213> Homo sapien

<400> 186

ggcacgagct tctagtcggc ccatggccgc tctcacccgg gaccccaagt tccagaagct	60
gcagcaatgg taccgcggc accgctccga gctgaacctg cgccgcctct tcgatgc当地	120
caaggaccgc ttcaaccact tcagcttgac cctcaacacc aaccatggc atatcctggt	180
ggattactcc aagaacctgg tgacggagga cgtgatgcgg atgtgttgg acttggccaa	240
gtccagggggc gtggaggccg cccgggagcg gatgttcaat ggtgagaaga tcaactacac	300
cgagggtcga gccgtctgc acgtggctct gcggaaacccg tcaaacaac ccatacctggt	360
agacggcaag gatgtatgc cagaggtcaa caagggtctg gacaagatga	410

<210> 187

<211> 506

<212> DNA

<213> Homo sapien

<400> 187

ctttcgtggc tcactccctt tcctctgtcc cgcgtcggtc acgttgtgc ccgaaggagg	60
aaacagtgcg agacctggag actgcgttcc tctatccctc acacagctct ttcaccatgc	120
ctggatcaact tcctttgaat gcagaagctt gctggccaaa agatgtggg attgttgccc	180
ttgagatcta tttccctctt caaatatgtt atcaagcaga gttggaaaaa tatgtatggg	240
tagatgttgg aaagtatacc attggcttgg gccaggccaa gatgggcttc tgcacagata	300
gagaagatata taactcttcc tgcgtactg tgggtcaaa tcttatggag agaaataacc	360
tttccatgttgc ttgcatttggg cggttggaaat ttggaaacaga gacaatcatc gacaaatcaa	420
agtctgttgg gactaatttg atgcgttgc ttgaagatgc tggaaatata gatataagaag	480
gaatcgacac aactaatgtca tgcata	506

<210> 188

<211> 506

<212> DNA

<213> Homo sapien

<400> 188

gccacagagg cggcgagag atggccttca gcggttccca ggctccctac ctgagtccag	60
ctgtccccctt ttctggactt atcaaggag gtctccagga cggacttcag atcaactgtca	120
atgggaccgt tctcagctcc agtggaaacca ggtttgtgtt gaactttcag actggcttca	180
gtggaaatgtt cattgccttc cacttcaacc ctcgggttga agatggagg tacgtgttgg	240
gcaacacgag gcagaacggg agetggggcc cggaggagag gaagacacac atgcctttcc	300
agaagggat gccccttgac ctctgttcc tgggtcagag ctcagatttc aaggtgtatgg	360
tgaacggat ccttctgtt cagttacttcc accgcgttgc cttccaccgt gtggacacca	420
tctccgttca tggctctgtt cagttgttcc acatcgttcc ctggccccc ggcgttggc	480
ctgccaaccc ggctccattt acceag	506

<210> 189

<211> 399

<212> DNA
 <213> Homo sapien

<400> 189

ctggacagga gaagagcctg gctgctgaag gcaggcgtga caccgaccacg ggcagcattg	60
ctggagcccc agaggatgaa agatcgacaga gcacagcccc ccaggccca gagtgcctcg	120
accctgcgg accggctggg ctgcgtgaggc cgacatctgg ccttcccag ggcccaggaa	180
agaaaacctt ggaaagtct ctaatcgctc tagactctga aaaacccaag aaacctcgct	240
tccacccaaa gcagctgtac ttctctgcca ggcagggtga gctgcagaag gtgcattctca	300
tgctggttga tggattgtatcccaacttca aaatggagca ccaaagtaag cgttccccat	360
tacatgctgc tgccgaggct gcccacgtgg acatctgcc	399

<210> 190

<211> 401

<212> DNA

<213> Homo sapien

<400> 190

cggcgacgggt ggtggact gagcgaggcc cggtgacagg atgttggtgt tggatttagg	60
agatctgcac atcccacacc ggtgcaacag tttgcacact aaattcaaaa aactctgtgt	120
gccaggaaaa attcagcaca ttctctgcac aggaaaacctt tgccaccaag agagttatga	180
ctatctcaag actctggctg gtgtatgtca tattgtgaga ggagacttcg atgagaatct	240
gaattatcca gaacagaaaag ttgtgactgt tggacagttc aaaattggtc tgatccatgg	300
acatcaagg attccatggg gagatatggc cagcttagcc ctgttgcaga ggcaatttga	360
tgtggacatt ctatctcgg gacacacacaca caaatttga g	401

<210> 191

<211> 406

<212> DNA

<213> Homo sapien

<400> 191

tggcagecta agccgtggga gggttccagt cgagaatggg aagatgaaag acttcagatg	60
gaacagaaaat aaatgccttt ttgcacaaac gcagcagtgc. gtgcctctag cttgcaagag	120
cgttactccc cttcatagct tttaaagggtt ttgcactgc gtgcagtttag agtagctaaa	180
tcttgtgtga cgctccacaa acacttgtaa gaatttgca gagaagata accgttgcca	240
cccaatgccc cccacaggca ttctactccc cagttactct tagggtggga gaaatgggtga	300
agagttgttc ctacaacttg ctaaccttagt ggacaggta gtagattgc atcatccgga	360
tagatgtgaa gaggacggct gtttgataaa taattaagga taaaat	406

<210> 192

<211> 316

<212> DNA

<213> Homo sapien

<400> 192

cccgggggagg ccctggcat aaaactttaa attttactag tggactttaa tggatattct	60
aaaaagagaaa tgcgtact aatgccttaa atgtttgatc tctgtttgtc attacttttt	120
caaaaattttt tttttctgtt aagtataata tataaaaactt cttgtttaaa ttgaattttct	180
atattatgtgg ttaattgcag ttataaaag ggatcattat cagtaatttc atagcaactg	240
ttcttagtgg tttgtttttt aaaacagaat taggaatttg agatatctga ttatattttt	300
catatgaatc acagac	316

<210> 193

<211> 146

<212> DNA

<213> Homo sapien

<400> 193
gaaacatgga ctgccccta aattttgact gtcctaaaaa cctatttctg atttataata 60
tgctgcctga taaagtgaca ctagatgtac cagctgagtg tttaatctc ccatcacaga 120
tcagatttga gcattaacag gtattt 146

<210> 194
<211> 405
<212> DNA
<213> Homo sapien

<400> 194
cgatgtgct cactgacatt ctactccaag tcggagatgc agatccactc caagtcacac 60
accgagacca agccccacaa gtgcccacat tgctccaaga cttcgccaa cagctcctac 120
ctggcccagc acatccgtat acactcaggg gctaagccct acagttgtaa ttctgttag 180
aaatcctcc gccagcttc ccaccttcag cagcacaccc gaatccacac tggtgataga 240
ccatacaaat gtgcacaccc agctgttag aaagccttca cacaactctc caatctgcag 300
tcccacagac ggcaacacaa caaagataaa cccttcaagt gccacaactg tcatcgccg 360
tacacggatg cagcctcaact agaggtgac ctgtctacgc acaca 405

<210> 195
<211> 421
<212> DNA
<213> Homo sapien

<400> 195
agaattcggc acgagctact ctttgcgcgc tggcactccg cagccttaa gtttgcgcg 60
ggggccaggc aagagttgc catgaagagc ctcaagttcc gcctgaggag gcaggacgtg 120
cccgcccccg cgctgtctgg cccgcgcgc gccagcgcgc atgcagcaga ttggaaataaa 180
tatgtgacc gattgtgaa agcagcagaa agggggatg tagaaaaagt gacgtcaatc 240
cttgctaaaaa agggggtcaa tccaggcaaa ctagatgtgg aaggcagatc tgtcttccat 300
gttgcacccaa ttttgcgtgt ttgtatgcctt tccttataca tggatgttgc 360
attacaacca gtgacactgc agggagaaat gcttccacc tggctgctaa gtatggacat 420
g 421

<210> 196
<211> 476
<212> DNA
<213> Homo sapien

<400> 196
agaattgatc tatagattta atgcaatgcc tactaaaatc ccagtagat tttttacagg 60
catagacaat agacatagcc aaaacttatt ctaaaataca tatgaagatg cacaggccct 120
agttatacaa tcttgacaaa gaagaataaa gtggaaagaa tcttattgtt tttttaggttt 180
accatgtaac tacagtcatc aagagatgtt ggtatcgccca gacgggtcaga catacagatc 240
aatggaatgt aacagaggac ccagaaaatag gcccacacag atatgtcaa tggatatttgc 300
acaagcgtgc aaaacaattc aatggaaagaa taagcttca aaaaaatggc gttggagcaa 360
ccggacatcc ataggaaaaa atgaacccat acctaaacca taaaaccttat aaaaaataaa 420
acacaaaatg aatcatagtc tttaatgtaa gctataaaac ttttagagaa aaacac 476

<210> 197
<211> 503
<212> DNA
<213> Homo sapien

<400> 197
tagccctcg tgaagccca gaccacagct atgagtcctc tctgtgtacg tctgcgcaga 60
aacatgttct gcatgtccag ctcacccgc ccaacaagag gaatgccatg aacaaggct 120
tctggagaga gatggtagag tcttcaaca agatttcgag agacgctgac tgcggccgg 180

tggatctc tggcagga aaaatgttca ctgcaggat tgacctgatg gacatggctt	240
cgacatcc gcagccaaa ggagatgtg tggccggat cagctgtac ctccgtgaca	300
tcatcactcg ataccaggag acttcaacg tcatacgag gtgccccaaag cccgtgattg	360
ctgccgtcca tggggctgc attggcggag gtgtggacct tgcaccgccc tggacatcc	420
gttactgtgc ccaggatgt ttcttccagg tgaaggaggt ggacgtgggt ttggctgccc	480
atgttaggaac actcagcgc ctg	503

<210> 198

<211> 168

<212> PRT

<213> Homo sapien

<400> 198

Phe Val Ala His Ser Leu Ser Ser Ala Ala Ala Arg Ser Arg Leu Cys	
1 5 10 15	
Pro Lys Glu Glu Thr Val Thr Asp Leu Glu Thr Ala Val Leu Tyr Pro	
20 25 30	
Ser His Ser Ser Phe Thr Met Pro Gly Ser Leu Pro Leu Asn Ala Glu	
35 40 45	
Ala Cys Trp Pro Lys Asp Val Gly Ile Val Ala Leu Glu Ile Tyr Phe	
50 55 60	
Pro Ser Gln Tyr Val Asp Gln Ala Glu Leu Glu Lys Tyr Asp Gly Val	
65 70 75 80	
Asp Ala Gly Lys Tyr Thr Ile Gly Leu Gly Gln Ala Lys Met Gly Phe	
85 90 95	
Cys Thr Asp Arg Glu Asp Ile Asn Ser Leu Cys Met Thr Val Val Gln	
100 105 110	
Asn Leu Met Glu Arg Asn Asn Leu Ser Tyr Asp Cys Ile Gly Arg Leu	
115 120 125	
Glu Val Gly Thr Glu Thr Ile Ile Asp Lys Ser Lys Ser Val Lys Thr	
130 135 140	
Asn Leu Met Gln Leu Phe Glu Glu Ser Gly Asn Thr Asp Ile Glu Gly	
145 150 155 160	
Ile Asp Thr Thr Asn Ala Cys Tyr	
165	

<210> 199

<211> 168

<212> PRT

<213> Homo sapien

<400> 199

His Arg Gly Gly Glu Met Ala Phe Ser Gly Ser Gln Ala Pro Tyr	
1 5 10 15	
Leu Ser Pro Ala Val Pro Phe Ser Gly Thr Ile Gln Gly Leu Gln	
20 25 30	
Asp Gly Leu Gln Ile Thr Val Asn Gly Thr Val Leu Ser Ser Ser Gly	
35 40 45	
Thr Arg Phe Ala Val Asn Phe Gln Thr Gly Phe Ser Gly Asn Asp Ile	
50 55 60	
Ala Phe His Phe Asn Pro Arg Phe Glu Asp Gly Gly Tyr Val Val Cys	
65 70 75 80	
Asn Thr Arg Gln Asn Gly Ser Trp Gly Pro Glu Glu Arg Lys Thr His	
85 90 95	
Met Pro Phe Gln Lys Gly Met Pro Phe Asp Leu Cys Phe Leu Val Gln	
100 105 110	
Ser Ser Asp Phe Lys Val Met Val Asn Gly Ile Leu Phe Val Gln Tyr	
115 120 125	

Phe His Arg Val Pro Phe His Arg Val Asp Thr Ile Ser Val Asn Gly
 130 135 140
 Ser Val Gln Leu Ser Tyr Ile Ser Phe Gln Pro Pro Gly Val Trp Pro
 145 150 155 160
 Ala Asn Pro Ala Pro Ile Thr Gln
 165

<210> 200
<211> 132
<212> PRT
<213> Homo sapien

<400> 200
Gly Gln Glu Lys Ser Leu Ala Ala Glu Gly Arg Ala Asp Thr Thr Thr
 1 5 10 15
 Gly Ser Ile Ala Gly Ala Pro Glu Asp Glu Arg Ser Gln Ser Thr Ala
 20 25 30
 Pro Gln Ala Pro Glu Cys Phe Asp Pro Ala Gly Pro Ala Gly Leu Val
 35 40 45
 Arg Pro Thr Ser Gly Leu Ser Gln Gly Pro Gly Lys Glu Thr Leu Glu
 50 55 60
 Ser Ala Leu Ile Ala Leu Asp Ser Glu Lys Pro Lys Lys Leu Arg Phe
 65 70 75 80
 His Pro Lys Gln Leu Tyr Phe Ser Ala Arg Gln Gly Glu Leu Gln Lys
 85 90 95
 Val Leu Leu Met Leu Val Asp Gly Ile Asp Pro Asn Phe Lys Met Glu
 100 105 110
 His Gln Ser Lys Arg Ser Pro Leu His Ala Ala Ala Glu Ala Gly His
 115 120 125
 Val Asp Ile Cys
 130

<210> 201
<211> 120
<212> PRT
<213> Homo sapien

<400> 201
Met Leu Val Leu Val Leu Gly Asp Leu His Ile Pro His Arg Cys Asn
 1 5 10 15
 Ser Leu Pro Ala Lys Phe Lys Lys Leu Leu Val Pro Gly Lys Ile Gln
 20 25 30
 His Ile Leu Cys Thr Gly Asn Leu Cys Thr Lys Glu Ser Tyr Asp Tyr
 35 40 45
 Leu Lys Thr Leu Ala Gly Asp Val His Ile Val Arg Gly Asp Phe Asp
 50 55 60
 Glu Asn Leu Asn Tyr Pro Glu Gln Lys Val Val Thr Val Gly Gln Phe
 65 70 75 80
 Lys Ile Gly Leu Ile His Gly His Gln Val Ile Pro Trp Gly Asp Met
 85 90 95
 Ala Ser Leu Ala Leu Leu Gln Arg Gln Phe Asp Val Asp Ile Leu Ile
 100 105 110
 Ser Gly His Thr His Lys Phe Glu
 115 120

<210> 202
<211> 135
<212> PRT

<213> Homo sapien.

<400> 202

Arg	Met	Cys	Ser	Leu	Thr	Phe	Tyr	Ser	Lys	Ser	Glu	Met	Gln	Ile	His
1				5				10						15	
Ser	Lys	Ser	His	Thr	Glu	Thr	Lys	Pro	His	Lys	Cys	Pro	His	Cys	Ser
				20			25						30		
Lys	Thr	Phe	Ala	Asn	Ser	Ser	Tyr	Leu	Ala	Gln	His	Ile	Arg	Ile	His
		35				40						45			
Ser	Gly	Ala	Lys	Pro	Tyr	Ser	Cys	Asn	Phe	Cys	Glu	Lys	Ser	Phe	Arg
	50				55			60							
Gln	Leu	Ser	His	Leu	Gln	Gln	His	Thr	Arg	Ile	His	Thr	Gly	Asp	Arg
65					70			75					80		
Pro	Tyr	Lys	Cys	Ala	His	Pro	Gly	Cys	Glu	Lys	Ala	Phe	Thr	Gln	Leu
	85					90						95			
Ser	Asn	Leu	Gln	Ser	His	Arg	Arg	Gln	His	Asn	Lys	Asp	Lys	Pro	Phe
	100					105			110						
Lys	Cys	His	Asn	Cys	His	Arg	Ala	Tyr	Thr	Asp	Ala	Ala	Ser	Leu	Glu
	115				120							125			
Val	His	Leu	Ser	Thr	His	Thr									
	130				135										

<210> 203

<211> 135

<212> PRT

<213> Homo sapien

<400> 203

Leu	Leu	Leu	Ala	Arg	Trp	His	Ser	Ala	Ala	Phe	Lys	Val	Arg	Ala	Gly
1				5				10					15		
Ala	Arg	Gln	Glu	Leu	Ala	Met	Lys	Ser	Leu	Lys	Ser	Arg	Leu	Arg	Arg
				20			25					30			
Gln	Asp	Val	Pro	Gly	Pro	Ala	Ser	Ser	Gly	Ala	Ala	Ala	Ser	Ala	
	35				40			45							
His	Ala	Ala	Asp	Trp	Asn	Lys	Tyr	Asp	Asp	Arg	Leu	Met	Lys	Ala	Ala
	50				55			60							
Glu	Arg	Gly	Asp	Val	Glu	Lys	Val	Thr	Ser	Ile	Leu	Ala	Lys	Gly	
65					70			75					80		
Val	Asn	Pro	Gly	Lys	Leu	Asp	Val	Glu	Gly	Arg	Ser	Val	Phe	His	Val
	85					90			95						
Val	Thr	Ser	Lys	Gly	Asn	Leu	Glu	Cys	Leu	Asn	Ala	Ile	Leu	Ile	His
	100				105			110							
Gly	Val	Asp	Ile	Thr	Thr	Ser	Asp	Thr	Ala	Gly	Arg	Asn	Ala	Leu	His
	115				120			125							
Leu	Ala	Ala	Lys	Tyr	Gly	His									
	130			135											

<210> 204

<211> 167

<212> PRT

<213> Homo sapien

<400> 204

Ala	Leu	Gly	Glu	Ala	Pro	Asp	His	Ser	Tyr	Glu	Ser	Leu	Arg	Val	Thr
1				5				10					15		
Ser	Ala	Gln	Lys	His	Val	Leu	His	Val	Gln	Leu	Asn	Arg	Pro	Asn	Lys
				20			25					30			
Arg	Asn	Ala	Met	Asn	Lys	Val	Phe	Trp	Arg	Glu	Met	Val	Glu	Cys	Phe

35	40	45
Asn Lys Ile Ser Arg Asp Ala Asp Cys Arg Ala Val Val Ile Ser Gly		
50	55	60
Ala Gly Lys Met Phe Thr Ala Gly Ile Asp Leu Met Asp Met Ala Ser		
65	70	75
Asp Ile Leu Gln Pro Lys Gly Asp Asp Val Ala Arg Ile Ser Trp Tyr		
85	90	95
Leu Arg Asp Ile Ile Thr Arg Tyr Gln Glu Thr Phe Asn Val Ile Glu		
100	105	110
Arg Cys Pro Lys Pro Val Ile Ala Ala Val His Gly Gly Cys Ile Gly		
115	120	125
Gly Gly Val Asp Leu Val Thr Ala Cys Asp Ile Arg Tyr Cys Ala Gln		
130	135	140
Asp Ala Phe Phe Gln Val Lys Glu Val Asp Val Gly Leu Ala Ala His		
145	150	155
Val Gly Thr Leu Gln Arg Leu		
165		

<210> 205

<211> 381

<212> DNA

<213> Homo sapien

<400> 205

aaatttggga tcatcgctg ttctgaaaac tagatgcacc aaccgtatca ttatggttt	60
gaggaaaaaa agaaatctgc attttatc atgtggtca aagtgcatt actatctatt	120
tatcttatat ctagatctg ataaccctat ctaaaagaaa gtcacacgct aaatgtattc	180
ttacatagtg ctgtatcg tgcattgtt ttaattgtg gaaaagtatt gtatctaact	240
tgtattactt tggtagttc atctttatgt attattgata ttgttaattt tctcaactat	300
aacaatgttag ttacgctaca acttgcctaa aacattcaaa ctgttttct tttttctgtt	360
gttttctttt ttaattcatt t	381

<210> 206

<211> 514

<212> DNA

<213> Homo sapien

<400> 206

aaaagtaaat tgcataaaat tacatccaat ttctttctt aaaccaacat attcttcacc	60
ttcacaaagc aaacacatgg tgcaactgaaa ccgagggttt accagctta catactgttc	120
tgccattttgt ggggggtgca accacaacat aagtcaaaaa aaaagctatc cagctttcg	180
tggaaatctgg tgaagtttac acttagcgat aagcctctaa gcctgaactt agcaggggcta	240
gaaaaactt attttatc taactcttat tatttttagaa tggtttcaa aataatactg	300
caagttccta attgaaatac aaaacagaac aaaaagctgt gagaaatctt tttttttctt	360
tggcttccta aagacttggg ataatttata ttagtgtgc atacatttta ccttctacat	420
tttgatgtac ttgcttttga aagcactaga acaaattaat tgaataaaaa cctctctgaa	480
accatttgaa tcttttgcattt taccatagag tttt	514

<210> 207

<211> 522

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(522)

<223> n = A,T,C or G

<400> 207
 caagcttttg gtgcatacgca gccngcctgg aagcattctg agtgctctgt ctgcccttgt 60
 gggtttcatt atccgtctg tcaaacaggc caccttaaat cctgcctcac tgcaagtgtga 120
 gttggacaaa aataatatac caacaagaag ttatgttct tacttttacatgattcact 180
 ttataccacg gactgtata cagccaaagc cagtcggct ggaactctct ctctgtatgt 240
 gatttgcact ctgttggaaat tctgccttagc tgtgtctact gctgtgtgc ggtggaaaca 300
 ggcttactct gacttccctg ggagtgtact ttcctgcct cacagttaca ttggtaattc 360
 tggcatgtcc tcaaaaaatga ctcatgactg tggatatgaa gaactattga cttcttaaga 420
 aaaaaggag aaatattaat cagaaagttt attcttatga taatatgaa aagttAACCA 480
 ttatagaaaaa gcaagcttgc agtttccctaa atgttaagctt tt 522

<210> 208
 <211> 278
 <212> DNA
 <213> Homo sapien

<400> 208
 aaaatgcact accccttttt tccaacacgg agcttaaaaac aaattaatga aagagtggaa 60
 aattcaaaaat aaggccaaga gataagggtt ttttttttt tcctttaaga tagactcagg 120
 ataggttagat agcttcact gatgttagatg tggatataat tattacttca ggaaaaaaaaat 180
 tcccaaaacat cttatgaaaa agtatacaac tctacttcaa aatatgttat ttactcactg 240
 ccaaagagacat ttttatttga aatcttggttt ctgttattt 278

<210> 209
 <211> 234
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(234)
 <223> n = A,T,C or G

<400> 209
 cctcccaaat ttagcaggc ctgggnagga ccctaggag tggtttatgg gggctagctg 60
 gtgaaactgc cctttccccc ctgttctatg agtgtgtatgg tggatggaa aatgtggggc 120
 tatggttcag ggcacttca catgtgcaaa gatggagaaaa gcactcacct acacgttttag 180
 gctcagaatgtt gatcaaaaat aatgttttat tttt 234

<210> 210
 <211> 186
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(186)
 <223> n = A,T,C or G

<400> 210
 aaaataactg atggcaaaaat aaaanattt catcacatca tactgtgtaa acatgtaaagg 60
 tctctgtaca aagaaatata catgcaaaaat aatgtaaaaaa tttaactgaa ataataaaaag 120
 aaacaataaca caaataaaaaa ttatgagggtt acgaatacac atccagtttc gaatccaatt 180
 tctttt 186

<210> 211
 <211> 403
 <212> DNA

<213> Homo sapien

<400> 211

aaaaatttgtt	aaaatattta	agtacaaaaat	aagtagcttc	cagcgagggtt	tttataccat	60
agtaagagca	cacaatagat	attactagca	cacatgggtt	atctgggagc	gctatagcta	120
caataaaacct	aattatggaa	cagaaatttg	cattctgttt	ccagtgcata	tacactccata	180
ctttctcaaa	agtctgctct	attaatatca	gctcagtgcata	gtttaactatg	aatagtttat	240
gtctgtgatg	caaagcatta	attgttctct	ttttacaac	atacatttt	ttcataaggaa	300
agactggggg	aaaacccaga	aacatacaga	gaaaaggaaa	gcatcatcaa	atatatgtta	360
aaaattaaga	tgatgtttac	tactagtcat	cctacaacaa	ttt		403

<210> 212

<211> 345

<212> DNA

<213> Homo sapien

<400> 212

cctctttatg	agttcattac	tgctgttcag	tctcggcaca	cagacacccc	tgtgcacccgg	60
ggtgtacttt	ctactctgat	cgctgggcct	gtgggtgaga	taagtccacca	gctacggaaag	120
gtttctga	ctg	tagaagagct	tacccctcca	gagcatctt	ctgatcttcc	180
aggtgtttaa	taggaataat	aataaaagtct	tcgaatgtgg	tcaggtcatt	tttggatgaa	240
ttaaaggcat	gtgtggcttc	taatgatatt	gaaggcattt	tgtcctcac	ggctgctgtg	300
catattatcc	tggttattaa	tgcaggtaaa	cataaaagct	caaaa		345

<210> 213

<211> 318

<212> DNA

<213> Homo sapien

<400> 213

aaaatgtttt	attattttga	aaataatgtt	gtaattcatg	ccagggactg	acaaaagact	60
tgagacagga	tggttattct	tgtcagctaa	ggtcacattt	tgccttttg	accttttctt	120
cctggactat	tgaaatcaag	cttattggat	taagtgtat	ttctatagcg	attgaaaggg	180
caatagttaa	agtaatgagc	atgatgagag	tttctgttaa	tcatgttta	aaactgattt	240
ttagctttac	aaatatgtca	gtttgcagtt	atgcagaatc	caaagtaaat	gtcctgctag	300
ctagtttaagg	attgtttt					318

<210> 214

<211> 462

<212> DNA

<213> Homo sapien

<400> 214

aaacacatct	ggttctggca	gcaagttata	ttatgcattt	agacaaatag	gtgccctgaa	60
agttattgtt	gctttttttt	tttttttttt	cagtttggtc	gtgtcactt	aatcagaaac	120
caaacacatg	taaaaaata	tcatcctcaa	tgcctccat	taactctctc	tccagaaggt	180
gacaatgtt	gtgaactcaa	gactctca	gatgtatgtt	tttacaatg	aaaacacaag	240
gaaacccttt	gaggtccaaat	ttcacatca	tattctccaa	atagaaaaat	agcagctcta	300
catgttgatg	aaaagaaaatt	tcaattttt	cctatttttt	tttactcata	tcaacattaa	360
tatgtatctg	gatttattaa	tttccaaaaa	gaaaatttt	gttaccaaat	atttcagaaa	420
ttaataaaag	cattatatat	atgtaaattag	cacttatcta	cc		462

<210> 215

<211> 280

<212> DNA

<213> Homo sapien

<400> 215

aaactttctt gaaacgatta gctgtagcca aattatgtgg ttacgaaaaat gcaatatgtg tgtaaatct actgtttgaa attataatg gtctctgata tgattcgaaat ttggtaact ttgaaagtt atttcccccc ttagtcatg gatttctatt tgtttttaa tgtaatttt tctagaaagc atctgaattt actaggcttt tccttatataa aaaactcaaa acttgttac acgttacttt aataaaaattt	60 120 180 240 280
<210> 216	
<211> 210	
<212> DNA	
<213> Homo sapien	
<400> 216	
aaaatctctg gcttcaaagt ttcttgaaa aaggtcggt tacctcacat tttttgttc cattagtaat attcttagta cctcacaaaa tgtattatgg tgccatggct gttagttttt agttagtgcgtt gtaggattaa ttcgaaaata ggcagaattt cattctccc aaggtggcaa aaattagcta tactgatgtt attgtcattt	60 120 180 210
<210> 217	
<211> 398	
<212> DNA	
<213> Homo sapien	
<400> 217	
ctggagctgc tagaacttga gatgagggca agagcgatta aagccctaat gaaagctggt gatataaaaaa agccagccta ggtatttaac ttgattttga atttttaggtt tggttgaaca aagccacatc atttaattttt gtatctaaaa ttatatttggg gtcttataatg ttatttctca tgtaaccctt atttagactc atttttagccc taaattacct gtggctgttt ctttttattt ttgttactac ttatattataa taaatgtgtt ttactgtctt atgaattcat ggcaatataag ttggatagcc tggatactttt gtagatgag tatttagctg tgctctgaaa ctctaaaagc cattagcaaa gagtcgtgtt atttttttct ttatatttt	60 120 180 240 300 360 398
<210> 218	
<211> 487	
<212> DNA	
<213> Homo sapien	
<400> 218	
ctggccgcgg tcaggctggtaaagatcag gtcccccagg accttgcgtt ttatgtcgcc attctccagc aagacccatcg tgccgaagac ctctacgttgc cgccgggtggg cagggttatcc tggctgcacg acgtggccggg ccatcacgttgc cacgtcaatc accgcacagc ccagtttcaag tggttttaca cattatattt ttataatctc acaataacta taaatttaggtt agaacagggaa atgagggtttt gagaagataat ttgacttatac cgaccatcttgc taattgtccc atagtaaggaa ggctcaagca gagacaaaagg aggaagttgc ctatgtgtt tggtttacag gcccataaaatg aatgtcatct ttttctccc ctggggaaaaa atgtctcaaa aatcccacca taggacatga catctccaga acctcttataa caaaatacac atttctgtt gagggttacaa aaatttgggtt taacctgtt	60 120 180 240 300 360 420 480 487
<210> 219	
<211> 390	
<212> DNA	
<213> Homo sapien	
<400> 219	
aaaaaaataca ccacacgata caactcaata caggagtatt ttcttctcaaa ttcttcttagt accatcaaca ttcttcaagt atctgaaata ctattaatta gcaccccttgc attatgttcaaa aacaaaaaca aggacccatcg ttcatctctg tctaggtcag caccaacaa tggatcac actcatggga aagtgtttt agttagttt aacctttggaa agttgggtt taaaacttcc ctctgtggaa gatattcaaa agccacaatgtt ggtcaaaatgtt ttatgttttca	60 120 180 240 300

attttttattt tggttttctt acaaagggttg acatttcca taacaggtgt aagagtgtt	360
aaaaaaaaagt tcaaattttt gggggagcgg	390
<210> 220	
<211> 341	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(341)	
<223> n = A,T,C or G	
<400> 220	
aaaacaggca aagttttaca gagaggatac atttaataaa actgcgagga catcaaagt	60
gttaataactg tgaaatacct tttctnnnca aaaggcaaattt attgaagttt tttatcaact	120
tcgctagaaa aaaaaaaaaaca ctggcatac aaaatattt agtgaaggag aagtctaacg	180
ctgaactnnn aatgaaggga aatttgtttat gtgttatgaa catccaaatgc tttcttctt	240
ttaaagtgtt caaagaagct tccacaaaaat tagaaaggac aacagttctg agctgttaatt	300
tcgccttaaa ctctggcacac tctatatgtt gtgcattttt a	341
<210> 221	
<211> 234	
<212> DNA	
<213> Homo sapien	
<400> 221	
ccagggggaa ttgagggagg ctctaagcta ggggcaactgc atgggtggac aggatggccc	60
cttggggact gaaccctggg gagaagacaa acagtaataa taaaaacaaa taacaagtac	120
ttaagaatg gattgtatga cctatagtga cagatgacat cactaatact gaaagcttct	180
tatattaata attttggcaa aatgtcattt tgtaatatacg tatatgcttt ccag	234
<210> 222	
<211> 186	
<212> DNA	
<213> Homo sapien	
<400> 222	
aaattttcat tgagtgtcc atctccagca tataggcatt caggagcaga gcagaccctg	60
tttttagtgg ttccatggga taaaatggg ttggaggagc tagaagaatt cagggtctgg	120
tccaatctgc cagtcttcct gaaatatcga aaatacacca gggctgctat atcagagcca	180
ccctgg	186
<210> 223	
<211> 486	
<212> DNA	
<213> Homo sapien	
<400> 223	
ccataagcag ataagtagca gttcaactgg atgtctctt tctccaaatg ctacagtaca	60
aaggccctaag catgagtggaa aatcgttgc ttcagaaaaag acttcaaata acacttactt	120
gtgcctggct gtgcggatg gtatattctg tgcattttt cttcatggga gaaacagccc	180
acagagctca ccaacaagta ctccaaaact aagtaagagt ttaagcttgc agatgcaaca	240
agatgagcta atcgaaaaagc ccatgtctcc tatgcagttac gcacgatctg gtctggaaac	300
agcagagatg aatggcaaac tcatagctgc aggtggctat aacagagagg aatgtcttcg	360
aacagtcgaa tgctataatc cacatacaga tcactggtcc tttttgtctc ccatgagaac	420
accaagagcc cgatttcaaa tggctgtact catggggccag ctctatgtgg taggtggatc	480
aatgg	486

<210> 224
<211> 322
<212> DNA
<213> Homo sapien

<400> 224
aatgttcac tatgtcattt agtgtccaac tttacggata ggttgactat ctaaataggc 60
attttttagtc attaaaaaaa aatctagtc ccaggaggat ccctataact caaaataact 120
tggttgtaaa agaaaattt tttacttacc cattagtaag ttccctgcata ttcatataa 180
gatggcaaat caaactttc taggatgaag acagtttatt ttttagttgt atagtcttag 240
ttggttttagg gtctcaattt taattaataa aatacttggt ttttatttgc ttgtccttt 300
gaattcctgt tttataattt tt 322

<210> 225
<211> 489
<212> DNA
<213> Homo sapien

<400> 225
aatgttagga ataaaatggc tggcatctaa gcactttagt aaaagagggtt tttacaata 60
actaaggatt gtagagttc ctctctttt tttttctttt tctttctttt gttttacatg 120
aactcaacctt attcctaaca tttgtctacc tcaaagaaat ttcaagattt ttttagataac 180
atggatatgt gccaaatctt tttagctgtt aagatgataa tttcctgcctt tcctcctaca 240
tcttcctcctt ccactccctc ctttgggtgtt aatattggct tcccaattaa gacctttttt 300
ttttttttcc agttgtttt agtttattt aggttttggg ggaactttgc cattttgtaa 360
tctttcaaat cattcttcac ctttcctcac atcagttcc tgcctttccc agtgttttac 420
tgtaaattgtt gtagcatatg acaaattttt agctgactttt ccttttcaact gatgtcatct 480
tgagctctt 489

<210> 226
<211> 398
<212> DNA
<213> Homo sapien

<400> 226
caagggccca ccgcagagca cacctatgct atggggagcc ctgctggcag ccccgagagc 60
catgccatgg cctgcaggag ccaggctcctt gtgtggatga agtccctttt cctctgtgcc 120
ttgatccctt ggggggcctt ttggtcatctt cttctgtcctt ttccctgtc taaaatagtc 180
atcactcccc ttgactctt ctgttcacgtt cttctcgtt tgcaagatgtt acttctgtaa 240
ggagtttaat ctggggttcc aagaaaacaa gttccctgtt aacatagcac tgactttgca 300
acaatagaaa actaacaaat gagcaacaat ataaagatgtt gaggtagttc tcattgggtg 360
taacttcaac ccattctgtt tgggtttaga atttataaa 398

<210> 227
<211> 535
<212> DNA
<213> Homo sapien

<400> 227
ctgctgcata gaaaatatgc taacatacaa cagtcaagtt taagcctgtt ctatagagaag 60
ataaaggact tatggtaact gcaaattggta acggatccctt aagtttgtt caaccttagta 120
tgggtccata aggaaaaactt gtatgtggaa tggtaggac aaacaataaa gtagaaacag 180
ggggggaaactt tgagaagaga agaaaagaagc aaaaaaaaaa gactttcaat tgtataaaat 240
tcacaaacca gtaaaatata aagacaccat ggagaaatgg ttaactctgc cccaaacacc 300
caacagcaaa caaaaccaga atgaataagc ctttggcaga caatttttaga aatttgaatg 360
ttacatttctt caataattca caaacaatattt attatatgtt atatttat taaatattgg 420
gaaaccaatgtt gatgcttata atgctttgc caatgagagc acaatgat 480

caatcaagct aaatgaatgc tgggtttatc acaacagtgc tcatttatga aacaa 535

<210> 228
<211> 301
<212> DNA
<213> Homo sapien

<400> 228

aaacaataaaa caccatcaac ctatttgcact ttattgtccc ttaaattata ttgactgttg	60
tgattccatc aagtttgtac actcttttctt ctccctgttt tgcatcaaca aattgcgaag	120
tgcttttgtt tgtttgtttt cgtttggta aagcttattt ccattgtgtt gcccgtatgg	180
agactgtctg gaaggcttgg aatggtttat tgcttatgtt aaaatttgc tgatttctt	240
caggcagcgt ttggaaacct ttatttatat agttgtttac atacttataa gtctatcatt	300
t	301

<210> 229
<211> 420
<212> DNA
<213> Homo sapien

<400> 229

aaagttgctt tgcttggaaat ttttataagg aatctcagat taaaaccttta gaagtttaat	60
tgacactagg aaggccaaacc aaggctgact tcagactttt tttgttagtac ctgtgggttt	120
attacctatg ggtttatatac ctcaaatacg acattctatg caaatgtttt gtaatataac	180
caatgttttc aaatgttattt tgcatacataa agagcagatt tttatttgaac ttgtgcaata	240
actatatttac catacaatataa aatatttcat gaatagtttcccaatgttgc agcgaccaca	300
tagggagaaaa atgcaatgtt ctcattttt gttcacaaaa gatattttcaaaatttgc	360
gtaagctgtt gatagttttaa aagaaaaaaaaa gtttcctgaa atctggaaaa caagacattt	420

<210> 230
<211> 419
<212> DNA
<213> Homo sapien

<400> 230

gtgaagtcct aaagcttgc ttccaccagc ttctacaata gccggctt tactagagca	60
gacagatagc accttcagca ctctgcttgc ggtccacagt agttttcgt aagtataggt	120
cctcattata ttactaaag ctggggtcc accactagcc agtatgtga gcttgcttcc	180
ttgggttgc taagctaaaa ttgttggca gtctgtcgta atagccaaga atttaacattt	240
tgttttgc agcaaggca ccattttctg cagccccacca gctaaacgcg ctgccatttt	300
agctcccttc tgcatttttttgc gatgttgc aatggatgttgc atgcataaaa acaacacaga	360
atccactgtt gatgttgc ttccaccag ggcaggaaatg cttccagact taaagatgg	419

<210> 231
<211> 389
<212> DNA
<213> Homo sapien

<400> 231

ttgttcagag cccttgggaa ttgttgcatac cagtgcccta caaaggcttag aacactacag	60
gggatgaatt cttcaaatag gagccgatgg atctgttgc ctttggact catcaaagcc	120
ttggttttagc attttgc tttatcttca agaaatttctc tgcatgttgc aagataattt	180
ataaaagggtt gtccttcata cctctgttgc gatgttgcg cacacagctt agaagtgcata	240
taaaaaaggaa aagagctcca aatttgcata ctttataat ttaccattt ctatataaca	300
ggcagggtggaa gcaggatccatc agaactttt gcatgttgc ggttgcata gttttttttttt	360
atgttacatgtt aacaataaaa gtcaggatccatc	389

<210> 232

<211> 397
<212> DNA
<213> *Homo sapien*

<400> 232

ccaggataat	atacacaggt	ttgcagctaa	aactgtgcac	agtgggtcat	tgtatgctagt	60
cacagtggaa	ctgaaggaag	gtctcacagc	ccagcttatac	ataaaacactg	agaaaaactgt	120
gattggctct	gttctgctgc	gggaaactgaa	gcctgtcttg	tctcagggggt	aacctgttta	180
catctggact	ttagaatctg	gcacacaaca	aaagtgcctg	qcatccacta	ctgctgcctt	240
tcatttataa	taatacgccct	tccatctggc	agtgggggaa	gaatacactc	ttgacattct	300
tgtctcctgc	tttagaatgc	tagtgtgtat	ctatcatgtt	tgcaataactt	tccccctttt	360
tgctttgtta	accaaaagagc	atatatttta	ctgttcag			397

<210> 233

<211> 508

<212> DNA

<213> Homo sapien

<400> 233

cgaggagtgc	cttaagtgcg	aggacctcaa	agtgggacaa	tatatttgta	aagatccaa	60
aataaatgac	gctacgcaag	aaccagttaa	ctgtacaac	tacacagctc	atgtttcctg	120
tttccagca	cccaacataa	cttgtaaggaa	ttccagtggc	aatgaaaacac	attttactgg	180
gaacgaagtt	ggtttttca	agccccatatac	ttgcccaaata	gtaaaatggct	attcctacaa	240
agtggcagtc	gcattgtctc	tttttcttgg	atggttggga	gcagatcgat	tttaccttgg	300
ataccctgt	ttggggttgt	taaagttttt	cactgttaggg	ttttgtggaa	ttgggagcct	360
aattgatttc	atttttattt	caatgcagat	tgttggacct	tcagatggaa	gtagttacat	420
tatagattac	tatgaaacca	gacttacaag	actgagtatt	actaatgaaa	catttagaaa	480
aacgcaatta	tatccataaaa	tatttttt				508

<210> 234

<211> 358

<212> DNA

<213> Homo sapien

<400> 234

```

aatgttggt attcaaaacc aaagatataa ccgaaaggaa aaacagatga gacataaaa 60
gatttgcaga atggaaaata tagtagttt tgaatgtaaa ttaaattcca gttataatag 120
tggctacaca ctctcaactac acacacagac cccacagtcc tatatgccac aaacacatt 180
ccataacttg aaaatgagta ttttgcataat ctcaggtag gatatgtttt ttacaagtt 240
atcctaaaagt cataaaagcaa gaagctattc atagtacaag attttatttg ctaagcttta 300
caaattaaac tctaaaaaat tattacaatq atactqaaag atattttattt qgcctttt 358

```

<210> 235

<211> 482

<212> DNA

<213> Homo sapien

<400> 235

gaagaaaagt	agatttacgc	cgatgaatat	gatagtgaaa	tggattttgg	cgtaggtttg	60
gtcttagggtg	tagcctgaga	ataggggaaa	tcagtgaaatg	aagcctctta	tgatggcaaa	120
tacagctctt	attgatagga	catagtggaa	gtgagctaca	acgttagtacg	tgtcgtgtag	180
ta	catgtgtct	agtgtatgagt	ttgctaatac	aatgccagtc	aggccaccta	240
aaagatgaat	ccttagggctc	agagcactgc	agcagatcat	ttccatattgc	ttccgtggag	300
tgtggcgagt	cagctaaata	ctttgacgc	ggggggata	gcgtatgatta	tggtagcgga	360
ggtaaatat	gctcggtgt	ctacgtctat	tcctactgt	aatatatggt	gtgctcacac	420
gataaacct	aggaagccaa	ttgatatatcat	agctcagacc	atacctatgt	atccaaatgg	480
tt						482

<210> 236
<211> 149
<212> DNA
<213> Homo sapien

<400> 236

ccttttcatt gttcacatgt cacaggagga ggctctgagc aaaggccact ggcaagttag	60
ggcaacaccca agaaggctct gcccggagagac tccctgtggg ttggggcctg gcaggaacgg	120
tgcctgtggaa ctgttatgg tctgtccag	149

<210> 237

<211> 391

<212> DNA

<213> Homo sapien

<400> 237

gaagcttaaat ccaaagaataat atgaagggtgg ccgtgaatta agtGattttt ttagctatct	60
acaaagagaaa gctacaaaacc cccctgtataat tcaagaagaa aaaccccaaga agaagaagaa	120
ggcacaggag gatctctaaa gcagttagcca aacaccactt tgtaaaagga ctcttccatc	180
agagatgggg aaaccattgg ggaggactag gacccatatg ggaattattttt cctctcaggg	240
ccgagaggac agaatggata taatctgaat cctgttaaat ttctctaaa ctgtttctta	300
gctgcactgt ttatggaaat accaggacca gtttatgtttt gtgggtttgg gaaaaattat	360
ttgtgttggg gaaaaatgttg tggtttttgg g	391

<210> 238

<211> 374

<212> DNA

<213> Homo sapien

<400> 238

aaaaaacaaa acaatgttaag taaaggatat ttctgaatct taaaattcat cccatgttg	60
atcataaaact cataaaaaata atttttaagat gcccggaaaag gatactttga ttaaataaaa	120
acactcatgg atatgtaaaaa actgtcaaga ttaaaattta atagtttcat ttattttgttta	180
ttttattttgtt aagaaatagt gatgaacaaa gatcctttt catactgata cctgggttgta	240
tattattttga tgcaacagtt ttctgaaatg atatttcaaa ttgcataag aaattaaaat	300
catctatctg agtagtcaaa atacaagtaa aggagagcaa ataaacaaca tttggaaaaaa	360
aaaaaaaaaaaaaaa aaaa	374

<210> 239

<211> 200

<212> DNA

<213> Homo sapien

<400> 239

aaagatgtct ttgaccgcat atgtactggaa aatttcaaaac gtggatcttc ccagggttga	60
gtctttgtgt tatgtcaat gaagaaggc cggccgtttt ggcgtatctt cattttccag	120
ccgggtggca agaagctctg tttttttt tttttttt tttttttt tttttttt tttttttt	180
gtctgtgggg actgtgggtt	200

<210> 240

<211> 314

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(314)

<223> n = A,T,C or G

<400> 240
 ctggtaaact gtccaaaaca aggttccaaa taacacctct tactgattta ccctaccat 60
 acatathnca natagnttt gatcaaaaac atgaaatana tccacctgct tattttaaagc 120
 atattaaaaaa ggaaactaat tgaccattt tctatttgc tattttatac aaaaaggcta 180
 cacaatttat acactctatt cagataacaa tcaatttagag tgantatgaa ttactggcg 240
 caccatcaact caattcttaa aaatttagaaa ttgctgtac agtattcaact ataacttaac 300
 actaccgaga gact 314

<210> 241
 <211> 375
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(375)
 <223> n = A,T,C or G

<400> 241
 ccaagtccctt ggagttatacgatattcatt acttcctctc attgtatag cccctgtact 60
 tttgggtgtt ggatcatttg aagtgggtgc tacacttata aaactgtttg gtgtgtttg 120
 ggctgcctac agtgctgctt cattgttagt gggtaagaa ttcaagacca aaaagccct 180
 tctgatattat ccaatctttt tattatacat ttatctttt tcgttatata ctgggtgtg 240
 atccaagttt tacatgaata gaaaaagatg gtgttaatt tgggtgttagg ctgggaattc 300
 tngctaaagg aatggaaaaa aacctgttnnt tgnaaaattn acntgtccca aagnnaagga 360
 anctaaacgc ttttt 375

<210> 242
 <211> 387
 <212> DNA
 <213> Homo sapien

<400> 242
 aaaggccatc tctgatattac atgagaattt agaaactgag atgtatgatt tggctgttag 60
 tcaatttcac acccttcac ttcataagc cccaaatttt gctcagttaa ggagcttgct 120
 tttaggccccac ctatgtaaatg ctgttataact agctaattgtg cccatttggaa tagttcaagg 180
 gtcagctaat gctctgagct tcatggctcc agtataaaga acaaattttaa caaaattaag 240
 ctgttactgt agccgagttt cccttctgtt ccacacatat gtgtgggat cttgcaggat 300
 ttccatagtg ccaattatca aaggcccttga ctacttagca ttgctgtatt acagatgtgc 360
 aaactgaggc actgaaaagt caaattt 387

<210> 243
 <211> 536
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(536)
 <223> n = A,T,C or G

<400> 243
 aaacccaaaag gacgaagaaa aaacactttt aaaaaaaaaa aaaaaaaaaa aaaaaccaaac 60
 catattttgc cacatgttag agtacggtca agcagtattt acaaaaaaggtaa acggaaaca 120
 acactctgac acatgtctg agaaatactgg gactgtgtt tcaaaaaaaaaa aggttcaaac 180
 ttatttgtcac agcatcatca caaaatagag gatcaccatt ggttgtctt gctttctt 240
 tttttttcc cccaaatgttag gacctaactc caaataatac aatagaatat gcaaaattatc 300

ttcacatcaa gagtacccca agaaaaacga aatccatggc acanacactg tacaagggtg	360
cagggcaggg ctctgagggg cccaaacccc attttccaa ctcgatttc tagcattgaa	420
gggagcaagg ggtcaggcat atgatggaga tgatactgaa atgatttatac caaaatccat	480
gcaaatcaag ttcttggat agaggtgaan aacttgaca tggctgttc aggcag	536

<210> 244
<211> 397
<212> DNA
<213> Homo sapien

<400> 244	
ccaggataat atacacaggt ttgcagctaa aactgtgcac agtgggtcat tgatgctagt	60
cacagtggaa ctgaaggaag gctctacagc ccagcttatac ataaacactg agaaaactgt	120
gattggctct gttctgtgc gggactgaa gcctgtccctg tctcagggtt aacctgtta	180
catctggact ttagaatctg gcacacaaca aaagtgcctg gcatccacta ctgctgcctt	240
tcatttataaa taatagccct tccatctggc agtggggaa gaatacactc ttgacattt	300
tgtctctgc tttagaatgc tagtgtgtat ctatcatgta tgcaatactt tcccccttt	360
tgcttgcta accaaagagc atatattttta ctgtca	397

<210> 245
<211> 508
<212> DNA
<213> Homo sapien

<400> 245	
cgaggagtcg cttaaagtgcg aggacctcaa agtggacaa tatatttcta aagatccaaa	60
aataaatgac gctacgcaag aaccagttaa ctgtacaaac tacacagctc atgtttctg	120
ttttccagca cccaaacataa ctgtaaagga ttccagtgcc aatgaaacac attttactgg	180
gaacgaagtt gggttttca accccatatac ttgccgaaat gtaaatggct attcctacaa	240
agtggcagtc gcattgtctc tttttcttgg atgggtggga gcagatcgat ttaccttgg	300
ataccctgtt tttttttgt taaagttttt cactgttaggg ttttgtggaa ttggggacct	360
aattgatttc attcttattt caatgcagat tttttttttt tcagatggaa gtatgttacat	420
tatagattac tatggAACCA gacttacaag actgagtatt actaatgaaa catttagaaa	480
aacgcaatta tatccataaa tattttttt	508

<210> 246
<211> 358
<212> DNA
<213> Homo sapien

<400> 246	
aaatgttggt attcaaaaacc aaagatataa ccgaaaggaa aaacagatga gacataaaaat	60
gatttgcag atggaaaata tagtagttt tgaatgtaaa tttaattcca gttataatag	120
tggctacaca ctctcaactac acacacagac cccacagtcc tataatgccac aaacacattt	180
ccataacttggaaatgatgttttgcataat ctcagttcag gatatgtttt ttacaaggta	240
atcctaaatgttataaaccatggatggactt atactacaag attttatttgcataatgatgtttt	300
caaattaaac tctaaaaat tattacaatgttataactgaaag atatttttatttgcataatgatgtttt	358

<210> 247
<211> 673
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(673)
<223> n = A,T,C or G

<400> 247	
gaagaaaatg agatttacgc cgatgaatat gatagtggaa tggatttgg ctaggtttg gtctagggtg tagcctgaga atagggaaa tcagtgaatg aagcctccta tgatgcaaa tacagctcct attgatagga catagtggaa gtgagctaca acgttagtacg tgcgtgtag tacgatgtct agtgatgagt ttgctaatac aatgccagtc aggccaccta cggtaaaag aaagatgaat cctagggctc agagcactgc agcagatcat ttcataattgc ttccgtggag tgtggcgagt cagctaaata ctttgacgccc ggtggggata gcgatgatta tggtagcgg ggtaaatat gctcgtgtgt ctacgtctat tcctactgta aatatatggt gtgctcacac gataaacctt aggaagccaa ttgatatcat agctcagacc atacctatgt atccaaatgg ttctttttt ccggagtagt aagttacaat atggagatt attccgaagc ctggtaggat aagaataaa acttcagggt gaccgaaaaaa tcagaatagg tggtaggtata gaatgggtc tcctnctccg cggggtcnaa gaaggtggtg ttgangttgc cggncgttta ntatgtatgn gatgccanca gct	60 120 180 240 300 360 420 480 540 600 660 673
<210> 248	
<211> 149	
<212> DNA	
<213> Homo sapien	
<400> 248	
cctcttcatt gttcacatgt cacaggagga ggctctgagc aaaggccact ggcaagttag ggcaacaccca agaaggctct gcggagagac tccctgtggg ttggggcctg gcaggaacgg tgcctgtgga ctgttatgg tctgtccag	60 120 149
<210> 249	
<211> 458	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(458)	
<223> n = A,T,C or G	
<400> 249	
gaagcttaat ccaaagaaat atgaagggtgg ccgtgaatta agtgatTTTA ttagctatct acaaagagaa gctacaaaacc cccctgtaat tcaagaagaa aaacccaaga agaagaagaa ggcacaggag gatctctaaa gcagtagcca aacaccactt tgtaaaagga ctctccatc agagatggga aaaccattgg ggaggactag gacccatatg ggaatttatta cctctcaggg ccgagaggac agaatggata taatctgaat cctgttaaat ttctctaaa ctgtttctta gctgcactgt ttatggaaat accaggacca gttatgttt gtgggttgg gaaaaattat ttgtgttggg gaaaatgttgg tgggggtggg gttgagtgg ggttattttc taatttttt tgtacatTTG gaacagtgc aataaatgan acccccttt	60 120 180 240 300 360 420 458
<210> 250	
<211> 374	
<212> DNA	
<213> Homo sapien	
<400> 250	
aaaaaaaaaaa acaatgtaaat taaaaggatat ttctgaatct taaaattcat cccatgtgtg atcataaaact cataaaaata attttaagat gcccggaaaag gatactttga taaaataaaa acactcatgg atatgtaaaa actgtcaaga taaaattta atagtttcat ttatttttta ttttattttgt aagaaatagt gatgaacaaa gatcctttt catactgata cctgggtgt tatttttta tgcaacagtt ttctgaaatg atatttcaaa ttgcataag aaatttttt catctatctg agtagtcaaa atacaagtaa aggagagcaa ataaacaaca tttggaaaaaa aaaaaaaaaaa aaaa	60 120 180 240 300 360 374

<210> 251
<211> 356
<212> DNA
<213> Homo sapien

<400> 251

aaagatcttc tctaacaagg	tatgggaatt tggcttcata	ctctttcttt gcaacagcag	60
tgttctgggt gataattttg	aattgataacc tggccctttt	tctgggtttt gttggcttt	120
tgaaaaatttgc	tctttcccta tcattgggtgg	gaggcttggt agcaaagtaa	180
aaaagaggac agaaaaatttgc	aactacagct tgagaacgta	ttcttttttt cctactttgt	240
tattgcaaat tgaggaatca	cttttaactg ttttaggtgt	gtgtgtccag agtgagcaag	300
gattatgttt ttggattgtc	aaagaggatg cttagctta	aaataaaaat aaatttgc	356

<210> 252

<211> 484

<212> DNA

<213> Homo sapien

<400> 252

ctggtaaact gtccaaaaca	aggttccaaa taacacctct	tactgattta ccctaccat	60
acatatccca aataggaaaa	gatcaaaaac atgaaataga	tccacctgct tattttaa	120
atattaaaaaa ggaaactaaat	tggaccattt tctatttgc	tattttatac aaaaaggctt	180
cacaatttgtt acactttatt	cagattacaa ttaatttagag	tgattatgaa ttatgttct	240
acaccattac tcaattctta	aaaatttagaa attgctgttag	cagtattcac tataacttaa	300
cactacgaga gactttaaaaa	acagttactg caaaaaaaaaa	aaagagctac ttcaaagcaa	360
gcaaagtca	taccattaca gatattctta	aaaaaaaaaaa aaaatttaac aagcaaggct	420
agggtttgtat aaattccatc	ttgtgatcca ttcttgatcg	ttcttcactt cttgagtcac	480
tccc			484

<210> 253

<211> 379

<212> DNA

<213> Homo sapien

<400> 253

aaaaagcgct tagacttccc	tttccatctg gaacatgtaa	aattttgcag caacagggtt	60
tctccaaattt cttcagcaag	aattttccagc ctacacacaa	atthaacacc atctttttct	120
attcatgtat aacttggatc	acacaccagt atataacgc	aaaagataaa tgtataataa	180
aaagatttggaa taaatccagaa	gaggctttttt ggtcttgaat	tcttcaccca ctaacaatga	240
agcagcactg taggcagccc	aaaacacaccc aaacagtttt	ataagtgttag acaccacttc	300
aatgatcca accacaaaaa	gtacaggggc tattacaatg	agaggaagta atgaatatcc	360
tataactcca aggacttgg			379

<210> 254

<211> 387

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(387)

<223> n = A,T,C or G

<400> 254

aaatttgact tttcagtgc	tcaagtggca catctgtaat	acagcaatgc taagtagtca	60
aggccnttga taatttggcac	tatggaaatc ctgcaagatc	ccactacata tttttggagc	120
agaagggttaa ctggctaca	gtAACAGCTT aattttgtta	aatttgcatt ttataactgg	180
gccatgaagc tcagagcatt	agctgaccct tgaactattc	aaatgggcac attagctagt	240

ataaacagact tacataggta ggcctaaagc aagctcctt actgagcaaa atttgggct	300
tatgagaatg aaagggtgt aattgacta acagacaaat catacatctc agtttctcaa	360
ttctcatgt aatcagagaa tgccctt	387

<210> 255
<211> 225
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(225)
<223> n = A,T,C or G

<400> 255

aatgtcttg ttcccagat ttcaggaaan ttttttctt ttaagctatc cacagcttac	60
agcacccctt ataaaatata ctttgtgaa caaaaattga gacattaca ttttctccct	120
atgtggtcgc tccagacttg ggaaactatt catgaatatt tatattgtat ggtaatata	180
ttattgcaca agtcaataa aatctgctc tttgtatgac agaat	225

<210> 256
<211> 544
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(544)
<223> n = A,T,C or G

<400> 256

ccttgcttaa agcccagaag tggtaggc ntggaaaaa tctggttcac atcataaaga	60
acttgatttt .aatgttttc tatagaaaca agtgctaagt gtaccgtatt atacttgat	120
ttggtcattt ctcagtcata ttctcagtt ctattatTTT agaacctagt cagttctta	180
agattataac tggctctaca tttaaaataat gcttctcgat gtcagattt acctgttgc	240
tgctgagaac atctctgcct aatttaccaa agccagacct tcagttcaac atgcttccct	300
agcttttcat agttgtctga catttccatg aaaacaaagg accaacttt gttttaaacca	360
aactttgttt gtttacagtt ttcaggggag cgtttcttcc atgacacacaca gcaacatccc	420
aaagaaataaa acaagtgtga caaanaaaaa aacaaaccta aatgctactg ttccaaagag	480
caacttgcattt gttttttta atactgagtg caaaaggnc cccaaattcc tatgtatgaaa	540
tttt	544

<210> 257
<211> 420
<212> DNA
<213> Homo sapien

<400> 257

aatgtcttg ttcccagat ttcaggaaac ttttttctt ttaagctatc cacagcttac	60
agcaatttga taaaatatac ttttgtgaaac aaaaatttag acatttacat ttttctccct	120
tgtggtcgtt ccagacttgg gaaacttac atgaatattt atattgtatg gtaatata	180
tattgcacaa gttcaataaa aatctgctct ttgtatgaca gaatacattt gaaaacattg	240
gttatattac caagactttg actagaatgt cgtatttgag gatataaacc cataggtat	300
aaacccacag gtactacaaa caaagtgtga agtcagccctt ggtttggctt ccttagtgc	360
attaaacttc taaaagtta atctgagatt ccttataaaaa acttccagca aagcaactt	420

<210> 258
<211> 736

<212> DNA
 <213> Homo sapien

<400> 258

aaacaaaatg ctaaacctaa aaacattgtt ctgtcagttc ccaaattaaa tctacttaga	60
acaaaaaacaa aaatttatag ctcggtcaca tactacttaa ataataattgt tcaggcatct	120
ctaaaatcct ccatgtttc aagtatggaa atagaactca aatattccac aatacagttac	180
taaacagatg gagtatttag gaaagacttt gtgtcatat ggacacaaatataatattttg	240
ttgcctcaat acgttttgaa ataaatatca gatTTTGTt ttttttccct aaaagaccaa	300
aattataatc tacattaaga taattctgac tgggttaag acttaagagt gtaaaataca	360
acatcaatat ttatcacaa aagtaaaagct ggtacaaaat tataaaagga gccagtaactc	420
tactgagaca ggctcgagaa taaaagctca tcatgataga aatagtcatc atggagctgt	480
ctgccataat ctgtggcttc actggtgaga aacaagtccg ggtttccag aatctttct	540
tcagagagct tttgtcacc attcaaattcc atttcatcaa tttagatgaag cgccctctt	600
tgtcaatgc cctgattatt aggtctaccc aaggtAACAG ctctgggaa tcaaggctgc	660
catcgttatc ttgtcataa tcattcaccc aatctgtctt tctcacaagt atcccattct	720
ggatcttcat ttgcag	736

<210> 259

<211> 437

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(437)

<223> n = A,T,C or G

<400> 259

aaaaccatac tgaaatcatt taccaaataa cnaagatctt aatctaaaag atagtgaata	60
catcatcatc atgaaatctg gtttatgtg ctctatgaag tacttgaga attgcTTTT	120
tatTTTCTT ttgcTTTATT agtgcacaca aaacagaatg aattagcaga aaaatgtatg	180
ttataaaaaca gcattacta ctcaattta atttttta ctaacaatttgg tggaccttt	240
tgtgacact tatgtatgtt ttataataat tatgtactta tttagtactta atgagccctt	300
cctgcctcaa tataaaatta ctaaacttgg agaattacag attttattgt aggccctgtat	360
tttagtcaat ttggagaagc taaaatttgg gaaatgtatg aattccact gtaatagcat	420
agggatttttgg gaagcag	437

<210> 260

<211> 592

<212> DNA

<213> Homo sapien

<400> 260

ttttttttt gaaaatata aaattttat aaaggctaca tctcttaatt acaaataatta	60
ttgtaccaag taatTTCTT taaatgaact ctTTATAATG cataatttac agtataagta	120
gaacaaaatg tcatgacaaa agtcatttag tacaagactt gtaataaaaaa ggcataaaaat	180
atatttatac ataaacccct tcaaaaaaac aaggggaaagc ttgagccctc aatatagggc	240
gacacacggg gccccgtgacc gtgcaggtagt aggtactgtt ctgatTTAA gtcaggact	300
agagatagtg gattaatact ctTTGCCGT acactatata cagatgtata gtacaagtaa	360
caatggcaaa cagaatgtac agatTTAACTT aacacaaaaa cccgaacatc aaaatgaagg	420
tgtgtggagg aaaggctgt ctgggtctcc ctacaactgt tcatttctt gtggggcagg	480
gggttagttcc tgaatggctg tggcataatg actaatgtaa aacaaaaaca gaaacaaaaaa	540
aaacaaggaa ctgtcatttc cacgaaagca cagcggcagt gattctagca gg	592

<210> 261

<211> 450

<212> DNA

<213> Homo sapien

<400> 261

gtggcagggc ccagccccga accagacaag ggacccctca aggagcttca ttcttagcatg	60
agaaaaattga gaagtaaaacc agaaaagttac agaatgtctg aaggggacag tggggagaa	120
tccgtccatg ggaaaccttc ggtgggtgac agattttca caagacttgg acagatttat	180
cagtcctggc tagacaagtc cacaccctac acggctgtgc gatgggtcgat gacactggc	240
ctgagctttg tctacatgat tcgagttac ctgctgcagg gttggtacat tggacat	300
gccttgggaa tctaccatct aaattttc atagctttc ttctcccaa agtgatcc	360
tccttaatgg aagactcaga tgacggtcct tcgctaccca ccaaacagaa cgaggaattc	420
cgccccctca ttcgaaggct cccagagttt	450

<210> 262

<211> 239

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(239)

<223> n = A,T,C or G

<400> 262

taactttgat gacaaaatct aaaattaaag anttagtctt aaaagcctat agtgacttgt	60
ttacttgcat aaataatatt ttcaacttagt acaggctatt aatataagta atgagaattt	120
aagtattaaac taaaaaaaaag atagaggctc caaactttc taagaaatta atgcattttc	180
aaagtaataa tataatcaat ctgtaagtca aaagtaattt catattcatt gccaaattt	239

<210> 263

<211> 376

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(376)

<223> n = A,T,C or G

<400> 263

aaaaaaaaaaaaatt ccttgtngtt nttagagga aaaaaagaaaa aaccccaact	60
tttancactg atactacata ttgtctgtt aaagaatttt ctctgccaaa aaaaagaaaa	120
aacaaaaaaaaa cgcttaaagc tggagtttga cattctgctt tcagatgctg tctttttatt	180
agtgagtgtat gatgggttgc taataatcaa tagtaataa tttttgtaa tcccatcaag	240
tggctccata tggttctgtt ctctcggtac tgggttaatg ttttaactgtt gtaccttaaa	300
gccgaaatca gtaactatgc atactgtaac caaggtattt ggcttacaga gttgtttgtt	360
gnataaaagaa aattttt	376

<210> 264

<211> 207

<212> DNA

<213> Homo sapien

<400> 264

aaatttagcat tccacaaaata tacaggtaat ttaataatca ttgtgcata atacatacac	60
atgtttata tatacaaattt ccagtttggtt ttcatgtgtt ggcaaggat ttgtatacaa	120
tcataagctg tggcatattt ggtcccattt aatattcaca atacaaaagc acaaaaagaac	180
cattgatttta caaaaaggaaa tctattt	207

<210> 265
<211> 388
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(388)
<223> n = A,T,C or G

<400> 265

naactgcact ttatttgtta ctgtaacatt nttttttaac ttagtcaaccca taagcatgca	60
aaggncnct gaaaactgttt ccactgcctg ttgtatagaa atgggttaaat tataaaagggtg	120
attcaatttg gagctccctc ctttttataa gcacttctaa gctgtgtgcg cgacacacac	180
cacagaggta ggaaggacca cctttaataa attatcttct taatcgaga gaatttctga	240
agataaaaact gacaaaatgc taaaccaagg ctttgatgag tcccaaagga ccacagatcc	300
atcggctcct atttgaagaa ttcatccccct gtagtgttct agccttgta gggcactgga	360
ttacaagatc caccagggtct ctgaacaa	388

<210> 266
<211> 616
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(616)
<223> n = A,T,C or G

<400> 266

aaatacagag tcaaaagatg atttataaaa tntaaaacat ttctgtcttg gccgtatttg	60
aagacaagct gaatacatat ctatgttctg aataagtcca ctatggatat atataggaag	120
agatatacat atatccatcc acagatacac acacacat atatttctgc atgtatatat	180
acataattct ttctatagtt acaggaaata cttcttctat aattctgatt ttgactccca	240
tcctccacca tttactccat cactcattac ctaaatcttg gctttcttc ctatattgt	300
aataatccat ccaaacttct agccagttact gtcaggaggg ttcttgctcg agtgagctgt	360
taatactatt ttccactgac aacttctgca catcgaggac acagtgttac tgaagactcc	420
gctgtatact tccaacaacg gggcatttt tcttcgttag tcggcatgac aattacttta	480
taggaagact cttcacgaat atcaccacct tctaagtga tgaggaattt ccctttaagc	540
tcgattacat ctgcagtcat ctctcgtggc tcctgaccag taaagttgac tcagaagcca	600
tcattaatttc attcaa	616

<210> 267
<211> 341
<212> DNA
<213> Homo sapien

<400> 267

ccattatgtt tttttttttt taaaaataac ttatcccagc tacttatttt' taatagttac	60
ttattcttg tttttttttt gtatataattt ttgtatattaa ccccttgc	120
catgtataat ttgcaaatat ttctccctt ttttttagtt tcacattctg ttcatgtat	180
cagattctgt gcagcagtt tttaaatttga agtgatctga ctgacttgg tttcccttttgc	240
tgtcctggga ttttttagtt aaatcaaaaaa acttgctgcc cagaccaatg ttatgggct	300
ttcactctat tttttggtag tagtagtttta agagtttttag g	341

<210> 268
<211> 367
<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(367)

<223> n = A,T,C or G

<400> 268

ttgttagattt gaatagcaaa agtgaatgct ntgacccaaa ttttgcctt cctaaataaa	60
gacgtnccct tctagagagc aaatctatca taaaatgtca aaactagaag agaataaaaat	120
gaaaggaaaaa aacctagaaa aatatcctaa aatatcaaataat gcagtcattt ctaaatataa	180
gccataatta tagcttacc tattgttctt attgttcta tgctgcttacaatgttac	240
atcaactata cttagctta ctctcccaaatacttggta tgaaggcttc tgagtgtct	300
ttccaatgtg ccagaaccag aaggcattc caaggcttcc cacatttcc tccatttacg	360
gagacag	367

<210> 269

<211> 270

<212> DNA

<213> Homo sapien.

<220>

<221> misc_feature

<222> (1)...(270)

<223> n = A,T,C or G

<400> 269

caaattctctc cctcaactaga cgtaagccnt ttntctactc tctcaatctt atgcatcata	60
gnaangcngn tgaggtggat taaacccaaac ccagctacgc aaaatcttag catactcetc	120
aattacccac ataggatgaa taatagcagt tctaccgtac aaccctaaca taaccattct	180
taattnaact atttatatta tcctaactac taccgcatcc ctactactca acttaaactc	240
cagcaccacg accctactac tatntcgac	270

<210> 270

<211> 368

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(368)

<223> n = A,T,C or G

<400> 270

ctgaatcatg aataacacta tataatagag tntaaggAAC acaaggcatta gatgtgatcc	60
ttggccccata cccttagatt atgtcagact aaagctgaca attctgccag gctctgaacc	120
cctagtgcCc ccaacccaaa tcttggaaagc aaagaatatg ccctgtcata caactttgt	180
caagttgttag taaaacaaag cttaaagttt ctcattttc tacagcaaataat ggtcagttat	240
ttaataaaaca cttaaaatgtt cttaaagaaatc cattttgagt ttgtttacca aacacattgt	300
gcaagaactg actacacaaa aagttccctt gaaatttggt ccacaaaattc acttaaggtt	360
ggaaattt	368

<210> 271

<211> 313

<212> DNA

<213> Homo sapien

<220>

```

<221> misc_feature
<222> (1)...(313)
<223> n = A,T,C or G

<400> 271
aaatttatat aaaactctgt acatgttac tttattattg cataaacagc ataatctca      60
agacaanngt ttgcaaacac atgtccaatt cagaaaaaaa aatttcacgt ttctcgctg      120
gtttttct cttttttat ttgtttggga gattccagc tagttcaga cttggctgt      180
gaaggaggca cactatttg ctggtattt gacttgatt tatctgtctc ttgttagatt      240
ggcggcactt gggaaagact ctgtcagaa tcacttttg ataagattac agatggctg      300
gtagaagttag cag      313

<210> 272
<211> 462
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(462)
<223> n = A,T,C or G

<400> 272
aaaaaaacatt tatttaata agactattgc naacacatta aaaaaactaa atagtaatat      60
tacaaaatct atataacttgc acattnaga tttgtcaatg tgccagaggt tttcttcatg      120
aaatttgact cttttgaagt gaaggctttt ttctatcatc tcttatacgct ctgactgaat      180
aagtcttaat gctttctca tttttctat caatagggt aaatcccag gctcatatgt      240
gtacaatctg ttagagtatc ttccagctat gtcagctcta actgttaaag aagggtctac      300
aaacatgatt ctggcacat attgcccattc aggtgataaa ttcttatacg tggtttcatg      360
cataaggttt agcatgatga acttattctg agccatttct tgtatttctt cattttggc      420
aaatacttcc tttagtgctt gagagtattt acaatccctcc ag      462

<210> 273
<211> 282
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(282)
<223> n = A,T,C or G

<400> 273
ctgatcaaag catggatatt ttaatagtn ttatacataa tattttaca tagaaaactt      60
tacatnnccat ttcatattat ataattctgc ttattcttc aaaaatttt acatccattg      120
ggcaaggaat ggtttcatt aaattaccaa tattaaatgc acttaatcat tgtgtatagg      180
ttaaacccaaa gtaacttata actaactttt aggcattttta aggaggtaaa acatacattt      240
tacacataag tatttgatgc aaatatgcag ataaaatttt tt      282

<210> 274
<211> 125
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(125)
<223> n = A,T,C or G

```

<400> 274
 cagccctaga cctcaactac ctaaccaacn ttnctaaaaaa taaaatcccc actatgcaca 60
 tttaatcnct ccaacatact cgattctac cctagcatca cacaccgcac aatcccstat 120
 ctagg 125

<210> 275
 <211> 528
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(528)
 <223> n = A,T,C or G

<400> 275
 aaagctgtgg aaaagcttta ttatagattt ttntacagaa ttaaaaaagt tcaaacaata 60
 ataagccngg aaccacaaat aattaaaagg aaacacagca atcccataaa caagcattct 120
 ggcattctgtt agaaaatttc cctcaaatta taaaaatgttag ctctccatgc tttccaatga 180
 ttgttataat acccacaaat atctgtgatt tcagtggaat actttaacaa aagttttctt 240
 ttaaggcat gatcctgatt catttttct tcaatatctc agtcatttca ggaactacct 300
 taaataaaatc tgcaactatt ccataatctg ccacttgaa aattggagct tctgggtctt 360
 tattaattgc cacaattgtc ttgctgtctt tcatcccagc taaatgttgg atggctccag 420
 atattccaac agcaatataa agttctgtgt ctactattti tcccgctctgn ccaacttgca 480
 tgtcattggg aacaaagcca gcatcaacag cagcacggga agcaccaa 528

<210> 276
 <211> 420
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(420)
 <223> n = A,T,C or G

<400> 276
 aaatgtcttg ttcccagat ttccaggaaan tttttttctt ttaagctatc cacagcttac 60
 agaaaacctga taaaatatac ttttgtgaac aaaaatttag acatttacat tttctccota 120
 ttttgtcgct ccagacttgg gaaactattc atgaatattt atattgtatg gtaatatagt 180
 tattgcacaa gttcaataaa aatctgtctt ttgttatgaca gaatacattt gaaaacattg 240
 gttatattac caagactttg actagaatgt cgtattttag gatataaacc cataggtat 300
 aaacccacag gtactacaaa caaagtctga agtcagccctt ggtttggctt ccttagtgca 360
 attaaacttc taaaagttt atctgagatt cttataaaaa acttccagca aagcaacttt 420

<210> 277
 <211> 668
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(668)
 <223> n = A,T,C or G

<400> 277
 ccaggggtggc tctgatatacg cagccctggc ntattttcga tatttcagga agactggcag 60

atngcaccag	accctgaatt	cttcttagctc	ctccaaatccc	attttatccc	atggaaccac	120
taaaaacaag	gtctgctctg	ctcctgaagc	cctatatgct	ggagatggac	aactcaatga	180
aaatttaaag	ggaaaaccct	caggcctgag	gtgtgtgcca	ctcagagact	tcacctaact	240
agagacaggc	aaactgc当地	ccatggtagag	aaattgacga	cttcacacta	tggacagctt	300
ttcccaagat	gtcaaaaacaa	gactcctcat	catgataagg	ctcttacccc	cttttaattt	360
gtccttgctt	atgcctgctt	ctttcgcttg	gcaggatgat	gctgtcatta	gtatttcaca	420
agaagttagct	tcagagggta	acttaacaga	gtatccagatc	tatcttgtca	atccccacgt	480
tttacataaa	ataagagatc	ctttagtgc当地	cccagtgact	gacatttagca	gcatctttaa	540
cacagccgtg	tgttcaaattg	tacagnggtc	cttttcagag	ttggacttct	agactcacct	600
gttctcaetc	cctgttttaa	ttcaacccag	ccatgcaatg	ccaaaataata	gaaattgctc	660
cctaccag						668

<210> 278
<211> 202
<212> DNA
<213> Homo sapi

```
<220>
<221> misc_feature
<222> (1)...(202)
<223> n = A,T,C or G
```

<400> 278

```

aaattggat cgacggcaac cagggaaagn tnctaaaactc ctaatctatt ctggatccaa 60
ttngcnaagt ggggtccccat caaggttcaag tggcagtgga tctggacacag atttcactct 120
cacgatcagc agtctgcaac ccgaagattt tgcaacttac tactgtcaac agagttacat 180
gtccccgtac acttttggac cc 202

```

<210> 279
<211> 694
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<222> (1)...(694)
<223> n = A, T, C or G

<400> 279

ctgtacttgg	acaaaataag	ttaattctat	ttgggtgtcc	attaaagttt	tatgtggcta	60
tgnaccact	ggagctaaaa	attggcttt	aactgttcc	aatcagaac	tagcagagga	120
gagaagtaaa	taaagccat	ggcactccct	tcagaggctc	aaaatggta	gatttgatg	180
cagatttaac	cttagcgagt	ttcagtcagt	ccatttagat	gatcctgtag	gttcatacaa	240
atacactgaa	ccgttggttt	aacttcttt	ctttcctcaa	agtttatgtat	aaagagactc	300
atccctgtat	tgggagtgac	tgacataagt	tcagatctgc	ttagagtggc	tggtaaggaa	360
cacttaaggt	cagtcagaaa	ataatcaaac	agacttctca	tgtaagcacc	gtgactcaca	420
actaagacac	tggctgtcaa	tcctggaaa	ccgctgtctg	attaacttt	agagctgtga	480
ttttttccta	aaggaaatat	ctctgccaaa	gaagtttcca	gacagntgct	tgggagatcc	540
ttggggaaaa	ctggctttt	tgatccgggt	ctttcangan	taggtngaca	aaagaaatnc	600
aaaaaagnct	atcccacgcn	ttntcacct	gggcccagcg	gnnctcctcc	nggggggggn	660
aaacacangg	gacttcccc	ngggctngct	tnng			694

<210> 280
<211> 441
<212> DNA
<213> *Homo sapien*

<400> 280

aaaaaaacttc catgcaactt ctggtttatt gtttggcaac tccacatgat aaaaaaataa	60
aaacagcccc accgagtttc ggaattaagt attcttctag taagtgattc aaacttgtaa	120
tatTTGCCAC aggactgact tatTTATTTA ctagctagaa gctcttaagt tcacttgcTT	180
atcaggGCAT atacagaagg gTTTGTAAA actcgatgtt aactttacAA cTTTCTGACC	240
TGGTGCATGA attCTCAAGT actgtattTC actgtgtgg TGTGTCGTG gGAAATTTCG	300
aggTGGTCCC acaaaaataat ttatgttagt gtgcCTCAA agagaaccat ttatttCTCT	360
tcacttatcg tcccacaAAAG tcacatttgg tggTGGTCAg ccaagtCGCA tctggTCTAG	420
ttttactctt gtcccaattt t	441

<210> 281

<211> 398

<212> DNA

<213> Homo sapien

<400> 281

aaatttGTTT ggtctgaaga atctaaaact gTTAATTAA ccCTTAACtt gtgcCTAGAA	60
actacagcac atataaaata tGTTAACACCC AGCCTGTTGC tGTACTTTTC TGCTTATTT	120
acAGCCTCAA atatttCTCA ttATCTTGTC acttagTTCT tCATGTTCT CTTCTGACT	180
ttaataatG gtaatAGGAA aacaaaACCC AAAGCTTTC AGAACTTCAG TGTGAGGTTT	240
cCTATTTGA caAGTTAACT tGTTAAACT CAGGTTTAC GATGTATAAT TTACCTAATA	300
gaccaaACTA ACTCATGGAG ATATTTGAA CTATTATTA ggtacAAACT TTATAAAGAA	360
TGTTAGTATG TcataAAATA TAACATTACA GCTTATT	398

<210> 282

<211> 226

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(226)

<223> n = A,T,C or G

<400> 282

aaaacaataat tCTCTTTG AAAATAGTAT naacaggCCA TGCATATAAT GTACAGTGTa	60
ttacnccaat atgtAAAGAT tCTTCAAGGT aacaAGGGTT TGGTTTGA aataAAACATC	120
TGGATCTTAT AGACCGTCA TACAATGGTT TTAGCAAGTt CATAGTAAGA CAAACAAGTC	180
CTATCTTTT TTtTGGCTGG GGTGGGGCG CCCAGGCCGA GGCTGG	226

<210> 283

<211> 358

<212> DNA

<213> Homo sapien

<400> 283

aaacaaaaat actcaagatC ATTATATTT TTTGGAGAG AAAACTGTCC TAATTTAGAA	60
tttCCCTCAA ATCTGAGGGA CTTTAAAGAA ATGCTAACAG ATTtTCTGG AGGAAATTAA	120
GACAAAACAA TGTCAATTAG TAGAATATTt CAGTATTAA GTGGAATTtC AGTATAACTGT	180
ACTATCCTTt ATAAGTCATT AAAATAATGT TtCATCAAAT GGTAAATGG ACCACTGGTT	240
TCTTAGAGAA ATGTTTTAG GCTTAATTCA TTCAATTGTC AAGTACACTT AGTCTTAATA	300
CACTCAGGTT TGAACAGATT ATTCTGAATA TAAATTTA ATCCATTCTT AATATTTT	358

<210> 284

<211> 288

<212> DNA

<213> Homo sapien

<400> 284

aaaacttttgc ttaagaaaaaa ctgccagttt gtgctttga aatgtctgtt ttgacatcat	60
agtctagtaa aattttgaca gtgcataatgt actgttacta aaagctttat atgaaattat	120
taatgtgaag ttttcattt ataattcaag gaaggatttc ctgaaaacat ttcaaggat	180
ttatgtctac atatttgtt gtgtgtgtgt gtatatatat gtaatatgca tacacagatq	240
cataatgtgtatataatga aatttatgtt gctggtattt tgcat	288
<210> 285	
<211> 629	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (629)	
<223> n = A,T,C or G	
<400> 285	
cctaaaagca gccaccaatt aacaaagcgt ncannctcaa caccactac ctaaaaaatc	60
ccaaacatata aactgaactc ctcacaccca attggaccaa tctatcaccc tatanaagaa	120
ctaatgttag tataagtaac atgaaaacat ttcctctgc ataaggctgc gtcagattaa	180
aacactgaac tgacaattaa cagcccaata tctacaatca accaacaagt cattattacc	240
ctcactgtca acccaacaca ggcacgtctca taaggaaagg taaaaaaag taaaaggAAC	300
tcggcaaattc ttaccccgc ttgttaccaa aaacatcacc tctagcatca ccagtattag	360
aggcaccgccc tgcccagtga cacatgttta acggcccgccg tacccctacc gtgcaaaggt	420
agcataatca cttgntcattt aattaggac ctgtatgaat gggtcacga gggttcagct	480
gtctcttaact tttaccatgt gaaatttgacc tgccctgaa gagcngcga tgacacagca	540
agacgagaag accctatgga gctttatattt attaatgcaa acagnaccta acaaacccca	600
caggtcctaa acttacccaa accctggca	629
<210> 286	
<211> 485	
<212> DNA	
<213> Homo sapien	
<400> 286	
aatgtactt gtcagctca actgcatttc agttgtatta tagtccagtt cttatcaaca	60
ttaaaaaccta tagcaatcat ttcaaatcta ttctgcaaattt tgtataagaa taaagttaga	120
attaacaatt ttatTTGTA caacagtggaa attttctgtc atggataatg tgcttgagtc	180
cctataatct atagacatgt gatagcaaaa gaaacaaaca aaagccagga aaacactcat	240
tttcgccttg aatatgtaaa tggattaat ttgtccctgt gccttatgt gaaaggaact	300
tctttggttt tccttttttgc ttctgggtggaa agcatgtca ggagacatata catccaaaca	360
taaaccattta aatatgttgc gtttgcttg gctgtatattt tcaaagtatgt taattgagga	420
caaagggtaa tgcagaagtgc atagcttgc tttgtcgtatgt ctgtttttaa gtggccttgc	480
tattt	485
<210> 287	
<211> 340	
<212> DNA	
<213> Homo sapien	
<400> 287	
cctggagtcc aataaccacc ccctcataacc acaccctgtg catacaccag ccaaggcttt	60
cctggctgg gaagggaga gaaaaaaagac gcaggccacc tgggggttgc gcatctttg	120
gtcagtccag ctttctatct tagctgcattt tggcttccgc agttaaacc ttgcctgccc	180
ggaggcagga ggcccaatgt gacccatccggag ggcacatggc aggccatcgc catcttggcc	240
tcaagcttgc ctttcccttg agtcccttc tccctctggc tctagccaga ggtgttagcct	300
gcagatctag gaagagaaga gctggggagg aggtatggaa	340

<210> 288
 <211> 290
 <212> DNA
 <213> Homo sapien

<400> 288
 aaacagtctc tcctcggtgt tctccttgto aaactgttca tcccagtttc ctctgaaata 60
 gacagcattc accagaacca gccttgcata tggatccact gagccccggag agagcaactc 120
 cgcaattttt ccttctgtct tttcagctac ccaggtgttt atgtgtttc tggacttctc 180
 tacggcgctg ataaaagtcua gctcctccat ctctgcttgg tagaattttt ggcaggaatc 240
 tctaaaagat gagaggaaat cacaagactt ttccccaaag agcctgttgg 290

<210> 289
 <211> 404
 <212> DNA
 <213> Homo sapien

<400> 289
 ccacccacgc ttaggttccc atcacactga tgactccggg tttggcgagc acaggagcgc 60
 aaaccttttc acatttttc tggatccaa atttggtttc gttccacca caacctccat 120
 accagaatct tgcacagtt ttgggtttt gatcatagta ccattttat atgaaatccc 180
 tgcaagttcc ttcgttccc gccaacttgc atatatctgt ttcaagtgaga gccaatggtt 240
 ctgtgctcac cattagattt atgggttgaac tagaagctga cttgttggc tggaggggtg 300
 ggggctgaga ttctttgtt ctagaaacttc cgtgttaggt ggctctgacc tgagaccta 360
 gtagcagac cacagccaca tggtatgtct gcccagcag cagg 404

<210> 290
 <211> 384
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(384)
 <223> n = A,T,C or G

<400> 290
 ccaggcgctc cttgtcgca tcagggaggg tggccttgaa ctgctcatgg gctgtggtca 60
 gtccctggat ctcctcaatg gtgtgcacaa tgaagggtgc ctgcagggtcc tccatggccc 120
 cttccatccca gttgttgaag ggtgcagccc gcttggcata ctccaagtac agctggtcaa 180
 tggtctccag cagtttctcg tcccgctcca gagcttccct tcgttctga gttagggccc 240
 ccagattgtc ccactggtca cagatctttt ggcaacgggc gttgacactg ggtgagtcat 300
 atantccag ctcatttgc tccgtgtcga tggcggcaat ctgtccaca cggtctgtt 360
 gggcagccag gccactctcg aagg 384

<210> 291
 <211> 278
 <212> DNA
 <213> Homo sapien

<400> 291
 aaagtttatt ttactatattt ctttatact ttattgtatc atcaccatgg gtttcataat 60
 gtaataacta tatgttgaac aaattaaatg tcaaaatttt ttattaccat agtccatgtt 120
 aatagtgggg ctttcagggtg tttagagatt ttttttgtt tggtaacat tcattgcaaa 180
 agtactagat ggtgtataac tctagagttt aatttttaagg gattccctaa tatgtataact 240
 atctttttat ctgaagtaat aaataaaacaa tcatcttg 278

<210> 292

<211> 177
 <212> DNA
 <213> Homo sapien

<400> 292
 cttggcccg gtcattcttgc tccagtttga taggttcagg aaattcggtt tacagctcca 60
 cctccgtttc ctgcttaagt gcattccgtg caatcgctg gaacgcctgc tccacgttga 120
 tggcctcctt ggcactggc tcaaagtagg gaatgttgg tttgctgttag caccagg 177

<210> 293
 <211> 403
 <212> DNA
 <213> Homo sapien

<400> 293
 aaaaagaagg acttagggtg tcgtttcac atatgacaat gttgcattta tgatgcagtt 60
 tcaagtacca aaacgttcaa ttgatgatgc agttttcata tattcgatgtt ttcgctcg 120
 cagtactgtt ggttaaatga caatttatgt ggattttgc tgtaatacac agtgagacac 180
 agtaattttt tctaaattac agtgcagttt agttaatcta ttaatactga ctcagtgct 240
 gcctttaaat ataaatgata tggtaaaaac ttaaggaagc aaatgctaca tatatgcaat 300
 ataaaaatagt aatgtgatgc tgatgctgtt aaccaaaagg cagaataaat aagcaaaatg 360
 cccaaaaggccc tcttaattga aatgaaaatt taattttgg ttt 403

<210> 294
 <211> 305
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(305)
 <223> n = A,T,C or G

<400> 294
 aaagcaatct ggcattttgtt cctgttgttga agcagaggat cataacataa gtaaactctc 60
 tatgggttgg a gttggagag aaggacattt tggctttgtt catgaaaaga ctctccagat 120
 agaaaacagat tctgccccata agtggaaataa aatgctttgtt ggggttaatg agtgacttat 180
 agtattcagg cagatgttac ataactgtca attaagtttc cctggattga nttnnncaaa 240
 anaattgaaa gtngatttttgc tcaatgttgc agnnaactac tgccataaaa cccatatcnt 300
 accca 305

<210> 295
 <211> 397
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(397)
 <223> n = A,T,C or G

<400> 295
 cctatctgggt tggcctttttt gaagacacca acctgtgtgc tatccatgcc aaacgtgtaa 60
 caattatgccc aaaagacatc cagcttagcac gcccatacg tggagaacgt gcttaagaat 120
 ccactatgtt gggaaacatt tcatatccaa aaaaaaaaaa aaaaaaaaaat ttcttctttt 180
 cctgttattt gtagttcttgc acgttagata tttttttcc atggggtaaa aaggtaccta 240
 agtataatgtt tgccgagtgg aaaaataggg gacagaaatc aggtattggc agttttccca 300
 ttncatttttggggngaaatt tttaatataa atgcggagac gtaaagcatt aatgcnagtt 360

aaaatgttc agtgaacaag tttcagcggt tcaactt

397

<210> 296

<211> 447

<212> DNA

<213> Homo sapien

<400> 296

ccatcctcga	tgttgaaagt	gtcgtggggc	ccgaagacgt	tggtgaaaat	gacagcggt	60
aaggtagcgc	cgtactgctg	gaagttagggc	ctgttctgca	cgtcgatcat	cctcttgca	120
tacggatacc	aaaaattgt	gttgtgggg	ggcccatgt	ggatcatgtt	ctcatctatc	180
gggttagtcg	tcttgcagg	gaagatacag	gtggacaggc	aggacaccac	tttgcggcg	240
cccacctcga	aggccgatgt	caggacgtt	tcgttcatgt	gcacgtttt	cctccagaag	300
tccaaattgt	atttgatatt	ccggaacacgg	ccccccacca	ttgcagcaag	atggatgacg	360
tgtgtgagg	ggaccctc	aaacaggggc	cgggtctgt	ctgtatccgt	gagatcgccg	420
tcttttagagg	agacaaacac	ccagttcc				447

<210> 297

<211> 681

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(681)

<223> n = A,T,C or G

<400> 297

aaataacagc	atgtaaaata	ttaaaataca	agctttcaaa	aataaataca	taaataagta	60
gaaccctcg	aagaatagt	caaacacatt	aagtccttc	cagctgtccc	tagaaagctg	120
ctgttctctt	tttcattttc	agctctggta	agggcaggga	ccaccctgc	ggaagtgtca	180
atgatacgt	gataagcttc	ttacttctct	cctgtcagtt	gggtctcccc	ctgtgtatgag	240
aaaagggtta	ctgttgccagg	tgttaaggaa	ggctgtctt	ctgtcaactt	gaagttgtt	300
ggaggatgt	ccccatgcag	actctctccc	agccctccac	tcagggaaagg	tctgtctgt	360
cccaactgcct	tctatagcag	aaaacttgca	ctccctgaatg	ctttttttt	ttttcaagaa	420
agaagnggt	gnngactcaa	ctagattctt	ggtttggaaa	agccaaaaca	tattggtcac	480
tgattgtcac	attgggttag	aatgtccat	tcatgatctc	ccttaagctg	cacacaaccc	540
tatgaaataa	ctaccattat	ctaccctatt	ttgctaaagc	tcaaagagat	taaataatgt	600
tgacagggat	cttagcctt	aactcaactga	aggngttact	gcaaagttct	gctcttcacc	660
aagaaggntt	acaggccaaa	g				681

<210> 298

<211> 353

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(353)

<223> n = A,T,C or G

<400> 298

cctggcttaa	gaccagacat	ttgaagaagg	ctccaggcag	ggaaaggaaa	ggagaggcca	60
cccccacnct	gnccctccc	tgccccccacg	tctccagcaa	cacaaggcgg	ccagtggacc	120
gtgaaccatt	tatccaaa	ctataaagaa	acctgtctc	tgagaaaana	cactgccag	180
ngatgaagc	tccagccct	ggaggtccaa	aaccctgtcc	aaactcagtc	ccttttagaaa	240
gctgtgtgc	ttggaaatg	annntcggt	gtcanagct	ggaaagtgtt	ggaaagaacc	300
agcccactcc	cctctcctgc	tgcgttcca	gcccncgtt	gnccagatc	tgg	353

<210> 299
<211> 560
<212> DNA
<213> Homo sapien

<400> 299

aaagttcaag gactaacctt atttatttgg gaaaggggag gaggaggaa atgatatggt	60
acccagacac tggcttaggc tcgaacttta tctcattaa tactcccagc tgcgtatgtga	120
gaaagaaaagc aggctaggca tggaaatca ctttcatttgg ttattaatgg atttaagagg	180
gcatcaatca gtcacaata agatttccata atcatttttta gtattttagat tgcctcaa	240
agttgtatgtat cttccacaata cttccactgg tttcccttgg taaaaacctt cagttagtt	300
gaccatttgtt ctcttggtct ttggcttggaa gtaccgtggt gagggagttt acactagaag	360
tctttatgtac aaaactgctc tagggacacc tgggtattcc tacacaatgt atgttttat	420
ttctcataaaa gagtcttccc tatcccaagg tcttcattgtat gccagtagcc atatatgata	480
aattatgttc agtgataact tagttatcag aaatcagctc agtggcttc cccgccccatga	540
ttcacattttt atgagttttt	560

<210> 300

<211> 165

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(165)

<223> n = A,T,C or G

<400> 300

aaaaactaca taggggtgtg tgggtgtgtg tatgtttattt ttatacacac atatgttat	60
attctaataat attactaagg caattttaaat gaattaccat gtatataaaa aaatatctgn	120
cacttggcac acagggttgt atgtatgtat atatataat gtatg	165

<210> 301

<211> 438

<212> DNA

<213> Homo sapien

<400> 301

aaaatataatg tattttaaaaaa caaaaagcaa cagtaatcta tgggtttctg taacaaatttgc	60
ggatctgtct tggcattttttt ccacatcatg gaccaatgtt gccataactaa tgatggcat	120
tttagcacaat ttggactgtt aattttatgtac actatgttctt aggtcgtct aacagtttgc	180
ctgctgtat tatagtaacc attttccctt ggactgttca agcaaaaaag gtaactaact	240
gtttcatctc cttttgcgtt tattttggaaat tttagttat agtggtttac tggcatggat	300
taatagagtt ggagttttat tttaagaaaa aattcacaag ctaacttcca ctaatccatt	360
atcctttattt ttatttggaaat gtataattaa ctttaactgaa gaaaagggttc ttcttgggat	420
tatgttgcata taacattt	438

<210> 302

<211> 172

<212> DNA

<213> Homo sapien

<400> 302

ccaaaacagg agtccctgggt gatatcatca tgagacccag ctgtgtctt ggtgggtttt	60
accacaagtc caatttgcattt ggttacttca ggaagctgag gaactggctt gatgccgagc	120
tcgagtgtca gtcttacgga aacggagccc acctggcattt tttttttttt	172

<210> 303
<211> 552
<212> DNA
<213> Homo sapien

<400> 303

ccagcctgtt	gcaggctgt	tctgttagcg	cgtcggctgc	ggacttccct	tcccgggtct	60
ggatcttttc	atcctaccag	atgagaaaagg	aatgagtga	atggagtgc	cccgaccc	120
gtcactttcc	tgagacatga	ctgccaggaa	gaagagctgc	tctggctcc	atcagggctg	180
gcaggacaaa	ctgaccatgt	agtca	cagagttcac	actgaaaaag	ggcacaagg	240
ctgtcccaca	atgggaggaa	atgggtctc	agaacttcta	cttctctgaa	aactaagaca	300
caattgggac	aaccaccacc	cccggtgag	atttctcacc	tgcgagacagg	acaagatgaa	360
gttcacggct	tcttctgggg	taaagacctt	gaagagccca	tcacaggcca	acaaaatgaa	420
cctacaacac	cagggagaaa	tataaacggg	ttttaggccc	aaccaaaaaaaa	taaaaaataaa	480
aaaaagggcc	tggagatgga	gataaaataa	atatttgc	aactattcaa	aggctaaggt	540
ttttttttct	tt					552

<210> 304

<211> 601

<212> DNA

<213> Homo sapien

<400> 304

cctttgattt	ttggtagtac	attgcatgt	aatgtttat	aagaagctac	ttttccttca	60
tgggaagaaa	ttcccacat	agattcataa	attcttagac	tccgtggctt	ctttggctcg	120
gaatgc	actcatatga	gtgttctg	tccagtgta	tccaaatcata	attcacat	180
tcaccc	gaaccacata	cttgc	ggtgaaatac	gatacaagat	ctctccg	240
ttactagtaa	taactac	taatttggat	ccatgaggca	cgagtacaga	tttattctgc	300
tttggtggg	tatacag	ccat	taatccagtt	ttttgtatgg	gtacgaaaat	360
ggattccaa	cattaaaatc	tccagtaa	aaaactc	ctgtcccgg	ggcccattct	420
ttgcagtata	aaccaccatc	agcacat	tggacg	gcctctggaa	480	
aacttatca	taccac	at	tttgc	aaatttggct	aaactgctt	540
tac	gatcc	g	ttca	ggcgtatc	caggagtctg	600
g						601

<210> 305

<211> 401

<212> DNA

<213> Homo sapien

<400> 305

aaataacagc	atgtaaaata	ttaaaataca	agcttca	aataaataca	taaataagta	60
gaacc	ctcg	aagaatagt	caa	acat	aa	120
ctgtt	ctt	ttc	atc	tgc	gtccc	180
atgatac	gc	tta	act	tc	ta	240
aaaagg	gtt	atc	tc	tc	tttgc	300
ggagg	tc	atc	tc	tc	atc	360
ccact	act	atc	tc	tc	atc	401

<210> 306

<211> 313

<212> DNA

<213> Homo sapien

<400> 306

aaactgacta	tggat	ttt	gaagg	tctgg	cagttgttga	tgatggcgat	catgtactga	60
acgt	act	ttt	gggt	ctg	tttgc	tctt	ctgc	120
tctt	ttat	atc	gggt	ctg	tata	acag	ctgc	180

tttcaaattgc cacgctgacg tcacgcctgg cctgaaattt cacatcaact acatctgacc	240
ggatgagcct ctaaaaataa aacaatctt agacgatcca gactaatgga aggacagaga	300
gtttgattac ttt	313

<210> 307
<211> 366
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(366)
<223> n = A,T,C or G

<400> 307

aagatgctt ntaatgaaca ttacggacaa ttcatggtgt ggcttagttgg taacacttca	60
gctgattttt cttatgagat gaaaaaaaaa aatcagccaa gtaaggcac atcttcactt	120
catttataag tcagcatcca agtaaaaga attctctgtt ggacttgaca tcactccat	180
cctctgatac tcgcctactc tcttctcaaa gaagtttagt ctttccttcc antgaaatat	240
tctcataaaaa gtcaaattggg ttctctactc tgaaaacctt gctaaaaccc aattccagca	300
taagtttgc tgnccacaaac ncaatgnatt gtttcattaa antgcaattc atcccaatga	360
gettcc	366

<210> 308
<211> 534
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(534)
<223> n = A,T,C or G

<400> 308

ccagcttatca gctgatcgtc ttctgtctgg acgctcgccc tgcttctgac atcaaaatct	60
tctgtctcaa agtcagagtc atccaaactcc tcaggggtcc ttatcatcg cactgcttcc	120
ctgatgtccc ggatgccccatc atataccagg cgggaagcat cgataaaactc attctcatcc	180
atgggctggg cagggtccga gctgagggtt tccacggctg cttctacttg ctcagtaaaa	240
cgtggcatga ctgtgttggg gagcagctt gtggcttccaa gaaccccttc tgtagact	300
cctggctcat agtcgtccat ctctgaggtt actacgtgaa tgacccgggc tgcccgccct	360
cgaattgcac cagctgtgcg gcaggccat ccacatccctt ctcttggaga gcaatgacac	420
atttggtcac atcttccaaa atgtgattct ctgagacago caagaagtca tcaatggaa	480
taatgnacatc gacagcatct gtgagaacac cgacttggttt ttccattgnt cttt	534

<210> 309
<211> 164
<212> DNA
<213> Homo sapien

<400> 309

cataactcctt acactattcc tcatcaccca actaaaaata ttaaacacaa actaccacct	60
acctccctca ccaaagccca taaaaataaa aaattataac aaaccctgag aacccaaaatg	120
aacgaaaatc tgttcgttcc attcattgcc cccacaatcc tagg	164

<210> 310
<211> 131
<212> DNA
<213> Homo sapien

<p><400> 310 aaaaatcatt tatcttcgg tgcttcaaca ttagtccaaa caaaaatcta ctgaataaaa atagcaagga aggaaatcaa acatttataa gatatatattt ttattttct gaccaaagtg caatgatttt t</p> <p><210> 311 <211> 626 <212> DNA <213> Homo sapien</p> <p><400> 311 cctatgtgcg ccagtttcag gtcatcgaca accagaacct cctttcgag ctctcctaca agctggaggc aaacagtca tgagagtgg ggctccagtc agacccgcca gatccttggg cacctggcac tcaagactt tgacatgt ctcaaccaac atctgacate tttccctgtgg agcaacttcc tgctccacgg gaaagagggtc gatggattta cccctggacc cataagtctg ttcatcttcg tgaagtcccc tcccccattgc tccttcaage caaaactaca ctttgctgtt tcctgtcccc tctgagaaag gggatagaaa gtccttcct ctatgtccct ccatcgagat ctgttctggg gatggagctt ccaacttcct cttgcagcag gaaagaatgc tgctcaccc tctgttgc agagtggat tggggaggg attggcagcc ttcttctcca ccacctgtcc agcttccccc tggtcaggc tgggacccccc aggaatatta tggccgtg tgggtgttg tgggtgttg tcttcttta gggagcagga gtgcacatgg taattgaggg tagatgttgt gtgtgctggg gagggtcct tctgtt</p> <p><210> 312 <211> 616 <212> DNA <213> Homo sapien</p> <p><400> 312 aaacccaaaga aattaagaaa aaagacttca ttgcttgaat gacgcgaaca gctgtctgag tcaccttagac ttaacacca cctggggccc tgggaatgac gctgacgaga gatctgcaca tagtaggcgt gggctccaaa tggctcatc agctgacttc acatcttcac aagtcaagcc cagatatgac ccaaggata cgtaccatct ttcttgcattt cagcgtgtca aatttatata atgtatgca aaaaagatggaa tggactaagc aaaccaagtt tgcgtttttt cttctgaatc tggtttaat gtgacctgtc atccccatct ttgcatttgcattt tgagctccat cttctctaga ctgttaactt cttgagaaaa acatgttatt ttaccaccc tcaactgtgtca atccctagcc cttaaagcaca gtctctggca cagaataaat acgaaatgaa tgagtgtatg aatggatgaa tgggtgaaga gaaaaggcaa tgcacaagat ttacctatca aaatccacca atggccctta aaaatggttt tggctgttgcattt gatgtgttgcattt atattcatat aatacattt tttcaataact attaagaatt ctatgtt</p> <p><210> 313 <211> 553 <212> DNA <213> Homo sapien</p> <p><400> 313 aaaaaatggc agcattgtac ttgaatcaga aagcttactg ggatttcctc atcgaaagta gagattgcag ctaatcttag tacctttgt tagtaattac ttaaggcaca gtgcaaaagtt gaaggactgt tttggtacaa actcaagcc gctacatgtt tgcttgcctt ggtatcttg cttagcaca tgcgggtata ataccgtatt atacacaaca aggccaccc tgggtatctg tggtaattt aaacatcgtt cccagaaaatg gaaccctgtt catttattt aggtgcccac ctctgacttg gaacaaaatg ccactccatt catgttcatc tttgtcctgg agaggattta tttcttaaaa gatttgcataa gccaacaaat caatgtgtt ttccatagag aacttaagag taaggctcaa aatggcctca aaatggcctt cttggatgac ttccaacagt gactggccctt ctcaacactg cagatgtctg agcactacca taacctaacg aagtggagaa ggaggaggca aattggattttttt</p>	60 120 131 60 120 180 240 300 360 420 480 540 600 626 60 120 180 240 300 360 420 480 540 600 616 60 120 180 240 300 360 420 480 540 600 616 60 120 180 240 300 360 420 480 540 553
--	---

<210> 314
<211> 330
<212> DNA
<213> Homo sapien

<400> 314

ccagcgactc	cagcggtggc	agcaggcagt	gcacgtactc	tggcctccc	accaggtag	60
tgaaggttcc	cagctgttct	gccaggggca	ggaggacctc	atcttcatca	tagatggtat	120
ctgttaaggaa	aggcagaagc	tcacttcggg	tccttcaac	cccaaggggcc	aaggcgatgg	180
tggacagctt	cttgatgctg	ttgaggcgaa	gctgaacgtc	ctcattcggt	agttcgctca	240
tgagcacccgc	gatggggta	agcgagtctg	cgccgtcgcc	cgccgccccatc	ttggctccgt	300
cccttcctg	tcagactcg	gccagcgctg				330

<210> 315

<211> 380
<212> DNA
<213> Homo sapien

<400> 315

aaaaatgaca	ttgcgtttag	cttattgtaa	gagggttgaac	ttttgttattt	tgtaactatc	60
ttaagccct	tcagttata	attcatataa	aatgccttt	gtatTTaaaa	taatcctatt	120
ttaatcgtg	catgaaattt	gttttttaa	agttcatttg	aatgattatt	ccttccctct	180
aaagaaaatga	ttttgttaat	gttgagaggt	accttaccac	aaatccta	tgttaagtgt	240
ttcatggtta	ttttcaaaag	aattatgact	cttccccaaa	agaatcctaa	aaaacttgt	300
ataaacctat	aaagctgatt	tgcatattta	caaaaattttg	aatagcaa	ataggcaact	360
catatatgt	tataattttt					380

<210> 316

<211> 222
<212> DNA
<213> Homo sapien

<400> 316

aaactacaga	gggtttcca	gctatttattt	ccttttagttt	ctaaaagtaa	cgacttata	60
taatgttttta	taaaagatag	tgtatggaaaaa	aaggtaatgc	tgaataaaag	gcgcttttag	120
aaatattttaa	ggacaacata	agtttataat	atggaaaaa	aactgtacat	attttcaagc	180
acaacactga	aatattgcag	cagtgtttaa	ctgaatttgtt	tt		222

<210> 317

<211> 490
<212> DNA
<213> Homo sapien

<400> 317

ccttgaatga	gcgtggagag	cgattaggcc	gagcagagga	gaagacagaa	gacctgaaga	60
acagcgccca	gcagtttgc	gaaactgcgc	acaagcttgc	catgaagcac	aatgtttag	120
aaactgccta	tcctggtgac	tcttcttaag	agaaaactgaa	gagtttggtc	agcagttttt	180
acaagaattt	gggacettccg	cttgcttctt	tttttccaaat	atttggacac	ttagagtgg	240
ttttgttttt	tcttttcaga	tgttaatgt	aaagaaaagg	tgttgcat	ttacattttcc	300
ctaattgtat	tgctataaaa	tgttacaata	gcattcggtt	cattttgggt	ttttgcctcc	360
tcccactgtg	tgtatgtgt	tatatgtat	ttttgaat	ttttcttta	ttaaaaaaata	420
ttttttgtat	tttgaat	aaatttggac	caaataatgataa	actgcgtga	gtctaaactg	480
gcaacatgt						490

<210> 318

<211> 340
<212> DNA

<213> Homo sapien

<400> 318

cctggagtcc aataaccacc ccctcatacc acaccctgtg catacaccag ccaagcctt	60
cctggctgg gaagggaaga gaaaaaaagac gcaggccacc tgggggttct gcagtcttg	120
gtcagtccag ctttctatct tagctgcctt tggttccgc agttaaacc ttgcctgccc	180
ggaggcagga ggcccaagctg gacctccgag ggccatgagc aggccagcagc catctggcc	240
tcaagcttc cttcccttg atccctctc tccctcgcc tctagccaga ggttagct	300
gcagatctag gaagagaaga gctggggagg aggtgaagg	340.

<210> 319

<211> 373

<212> DNA

<213> Homo sapien

<400> 319

aaagatgct ttaatgaaca ttacggacaa ttcatggtgt ggctagttgg taacacttca	60
gctgattttt ctatgagat gaaaaaaaaa atcagccaag taagggcaca tcttcagttc	120
atttagaagt cagcatccaa ggtaaaagaa ttctctgtt gacttgacat cactccatc	180
ctctgatact cgccctactct ctctcaaag aagttatctt ttccttccag taaaatattc	240
tccataaagt caaatgggtt ctctactctg aaaaccttgc taaaacccag ttccagcata	300
agtctgtctg ccacaaactc aatgtattgc ttcatagag tgcaattcat gccaatgagc	360
ttcacaggca agg	373

<210> 320

<211> 509

<212> DNA

<213> Homo sapien

<400> 320

aaaaacaaaaa ttaaatttc atttcaatta agacccctt tggcattttt ctacttatt	60
ctgccctttt gttAACAGCA tcagcatcac attactattt tatattgtat atatgttagca	120
tttgcttcct taagtttca acatattattt tatattttaa ggcagacact gagtcagttat	180
taatagatta actaaactgc actgtatattt agataaaatt actgtgtctc actgtgtatt	240
acatgaaaaa tccacataaa ttgtcatatca accaacagta ctgcacgagc gaacatctcg	300
atatatgaaa actgcatcat caattcaacg ttttggtaact taaaactgca tcataaatgc	360
aacattgtca tatgtaaaaa cgacacccta agtccttctt tttaaaaatg acattgcgtt	420
tagcttattt taagaggttg aacttttgc ttttgcact atcttaagc tcttcagttt	480
ataattcata taaaatgcct ttttattt	509

<210> 321

<211> 617

<212> DNA

<213> Homo sapien

<400> 321

ccaaggcccc ttttgagcc caeggctatg gtgccttcact gactctcagt atccctcgacc	60
gatactacac accgactatc tcacgtgaga ggcagtgga actccttagg aaatgtctgg	120
aggagctcca gaaacgcttc atcctgaatc tgccaaacctt cagtttgcgca atcattgaca	180
aaaatggcat ccatgacctg gataacattt ctttccccaa acagggtctc taacatcatg	240
tcctccctcc cacttgcag ggaacttttt tttgatggc tcctttattt ttttctactc	300
ttttcaggcg cactcttgat aaatggtaa ttcaaaaaa aggtgactat ggatataatt	360
gagccctctg gtccaggctc cagtttacct aatattacct cagaaaggat atggagggaa	420
gatgtcttt ttggcaggctc tgactttct tcctgcctcg ccctccattt acgctcagta	480
cccttttagca gctgacggcc caacgttcta ctccatgtttt ggcttcctt ccaactagct	540
ctttcatata ttttacttgc tagtatctcc attctctcta aagtagtggt tctttttgcc	600
cttaaactta aattttt	617

<210> 322
<211> 403
<212> DNA
<213> Homo sapien

<400> 322

aaaaagaagg acttagggtg tcgtttcac atatgacaat gttgcattt tcatgcagg	60
tcaagtacca aaacgtgaa ttgtatgtgc agttttcata tatcgagatg ttgcgtcg	120
cagtactgtt ggtaaatga caatttatgt ggattttca tgtaatacac agtgagacac	180
agtaattttt tctaaattac agtgcagttt agttaatcta ttaatactga ctcatgtct	240
gcctttaaat ataaatgata tttttaaaac ttaaggaagc aaatgtaca tatatgcaat	300
ataaaatagt aatgtatgc tcatgcgtt aaccggcagaataaat aagcaaaatg	360
ccaaaagggg tcttaattga aatgaaaatt taattttgtt ttt	403

<210> 323

<211> 298

<212> DNA

<213> Homo sapien

<400> 323

ccagaattag ggaatcagaa tcaaaccagt gtaaggcagt gctggctgcc attgcctgg	60
cacattgaaa ttggtggctt cattctagat gtagcttgcg cagatgtgc aggaaaatag	120
aaaaacctac catctcagtg agcaccagct gcctccaaa ggagggcag ccgtgcttat	180
atttttatgg ttacaatggc aaaaaattat tatcaaccta actaaaacat tccttttc	240
tttttcctg aattatcatg gagtttcta attctctctt ttggatgta gatttttt	298

<210> 324

<211> 78

<212> DNA

<213> Homo sapien

<400> 324

ccatggaaat gtttaccagt agaatccttg ctaggttgat gtggccata cattcctta	60
ataaaccatt gtgtacat	78

<210> 325

<211> 174

<212> DNA

<213> Homo sapien

<400> 325

ccatcatggc caggaactcc gggaaatcaa tggcccgtt cccatctgc tccacccat	60
tgtatcatatc ctgcagctct gcttcagtg ggttctgtcc caggatctc atcaactgtcc	120
ccaaactcctt ggtgggtata gtgccatctc catccttgtc aaagaggag aagg	174

<210> 326

<211> 679

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(679)

<223> n = A,T,C or G

<400> 326

aaaactgaaa tacctcttaa aataatttga tccccagcgt ttgtctttt tgaagtaacc	60
aacttactct taaaaaggat ggntgccaag atggaaatgc ttactgggtt ttcatgttaa	120

cctattcttt ggacataact atgaattttg tatacatgc acttcatgaa aagttgtggc	180
tcccccagat tgccacaaag tgtgatctt aagtctaaa catttgtcca tgtaagctc	240
aaaacacgt taacttagtt attcaagtag cagtagctaa agatacaatt ctgttgacag	300
tttcaatggt ttctgatcca aataatcgt ttctgaacat tactacttc cataatagag	360
ttccatcttca gtttcttctc actttcttcc tccctttgg gttcctttt tggtggcctga	420
ggccacccagt tctttggta ctatcaagat acttccatca tggtagactt ggagagcata	480
gtgggtggga ttgactggcc taccttggtc atctcttaat ctactaaaa tatcatgata	540
aaggcatgc agtttctgtt tcattatgtt aatagcttt gtacattgtt cttgctct	600
cttaanagtt tccttcttgc ctgcagtt acatacatca tcttcttaat tcaaaattat	660
gtccattttt gctttacc	679

<210> 327
<211> 619
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(619)
<223> n = A,T,C or G

<400> 327 aaaataagtt actggtaaat ggagttgcattctatagtc cttataaaat attaaca tatttataac tggAACCTTA atgaaatgtt tcatcaaattc aggtaaaagc aacttgc cagttaccaa agcctanata cgcgttagat ggccttttc cggcctgtgc gtctgctcg gttcctctca ggcagaaaag ctggggaaagg aagtcaggc aggacgc aacggcacaa gcagcagcta aagcaccgc a ctttgcctta ctaacctttt acttaaatga gttttgcctt aatccacatc tggacccgc tcacacccat ttgcaaggat gtttgc tgatgaaact gcatctctac tgcacatgag ggcttcattt gtaggacaag aggagagttc gtttatTTTT gtaactgttt tacatgttcc gattagttaa tcgtagctt atgtcatttgc ctatgcctgn agncttctaa tctctccctt ctaaaacatt acttcaaatt tgaattgacc cttggttata atttatttttgc ccgggattttg tttttttttt tagagcaact ctaattcaag aatagtgaca acttttaa	60 120 180 240 300 360 420 480 540 600 679
--	--

<210> 328
<211> 132
<212> DNA
<213> Homo sapien

<400> 328 aaatccaaat acaaaagcat agtctctgca agatTTTGTt cttgaattt cttgatattt taattgatta ttgataactg tcatcatgaa attatcttc aataataaga taaataaaact agcatatgaa tc	60 120 132
---	------------------

<210> 329
<211> 854
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(854)
<223> n = A,T,C or G

<400> 329 ccttgaggta actattgcaa aatatacagt gtaagttcag tctgtggaa accccagatt catcaaggat acaaattctac agtagccaa tggcggttc atagtgtata atttatttac aataaaaatttta actccgttac aatcagcatt catttcctcc aataaaattt aagcataaaac	60 120 180
--	------------------

cctaggtagt	aacccctgc	acatatgtat	agctccgaat	ttcctcaactg	ttcgctctgg	240
gcaaaaacaa	tattcaagct	tgtctgatta	tgcataattt	cttaaatcat	atagattata	300
tataacaatag	acaagacagg	actatataga	taatggacag	acttaaatgc	ccgcatttt	360
aagggtggaga	aaatgatgaa	tctatgcate	cccgagaaca	ctaaaaattt	ttttttttt	420
cactggaaaa	ttcttacagc	tactttacaa	tcataggtta	acagcctagt	tatacagaag	480
acatattcca	ctacagagct	atactctatg	caactgttt	ttccccctcat	aaacaacctg	540
agttcaaatt	gaattcttac	ttccacaatc	acaatgggtg	catcacccag	tacacagaag	600
tttgaatcac	aaaacataat	taccacaata	aaacacagt	ttcaagtatc	ttggcagagc	660
aatctccgc	acaaactgca	aattaaattt	actacacaga	ctaaaaacta	tacagcctac	720
catcacagtt	gtgcattata	aaaaagggag	tttcttcct	ttggttttaa	gtcaggaaca	780
gggttaggatt	ttttaccctc	nngccgggga	ccacgctaaa	ggggcgaaat	ttcttgccan	840
natattccnt	tcac					854

<210> 330

<211> 299

<212> DNA

<213> Homo sapien

<400> 330

ccaaatgaata	actgacttta	taatcctggg	caatcagctt	ttggcggtt	gtaaagtgc tt	60
ctcgacactt	ttcactcatg	gattcttcaa	atttatggtt	aaagaggcac	ttatacactc	120
tgccttcacc	agcttgtta	ttttcacaaa	aacgctcccg	atcatctcg	caagcaaaat	180
ataaaatggcg	gtctaagtga	aagtcatccg	atgacagctc	agccacccgg	agaatggc tt	240
tcttgcaag	ttcagaaaact	tgaatcttgg	gttctctttc	ttctgc ttct	ttcaccagg	299

<210> 331

<211> 573

<212> DNA

<213> Homo sapien

<400> 331

aagatatatga	acagcttaat	tttccgttg	attatcta	taaaaaagaa	aaacaaaaca	60
agcaaatgt	tcaagttaaa	aaaaaaacat	accgggttag	caatgcacta	aaatttatcca	120
catgaaaaca	aatggctgt	aatcttataa	accaacatag	catttcactg	tcaacaatgt	180
gaaaatttaa	tatcttctca	aacaggcata	agatgaagaa	gtgctatttt	ttaattgtaa	240
aggaactta	tgtaatgtaa	aattacatta	taattttca	ttccgaattt	acaaatgatt	300
tcaaaaacaa	ggatcaaagt	ttgactgcaa	atagtaatgc	aatataattt	cataaaaatc	360
cttcaatttc	tattttttcc	cttttctgtt	gttgacatat	gaagaccact	tcaatttcta	420
aaaaagggaa	ccattccaaat	tttccctccc	caagaaaaatg	tctcacaattt	acaaagtata	480
aaaacagccg	ttcataaaatg	caaaaaaaaaatt	ctgatttata	tatgaaataa	tttcttagatc	540
aattcaacat	atttggatgac	atttggtagag	ttt			573

<210> 332

<211> 555

<212> DNA

<213> Homo sapien

<400> 332

<210> 333
<211> 460
<212> DNA
<213> Homo sapien

<400> 333

aaatttctt caacagtcta ttgggtcca aaaagcatat atcaaaacaa aaataacaaa	60
agcaaaacaa aatgctacat gtaaaagcta aagaaagaaa atgcagcata ttcaggttct	120
ttttctttag gtacctatat aaatttaatc acctgccccca aagtcccttc gttaggttaa	180
aaacacaatg cgtcctgggg agccaaattgc ccggcacgct ttattactga gaaagtgc当地	240
gaatgctgat catcttatgc agcatactaa aggatgattt actcttaca aaatagact	300
taagtatcaa cctgatggaa gttagaaaat taaaacatt taagtagaaat catctcttc	360
tctatTTTt agatctgca gcaaaaaagcc tcccaaatac acttcaag ttctgccatt	420
aaggaatgtt gttctcttg taaaattcag agatctctt	460

<210> 334

<211> 190

<212> DNA

<213> Homo sapien

<400> 334

ccaaggaagg ctgtgtctta gcccatctga ccctgtctgc aaaccacctg ggggacaagg	60
ctgatagaga cctgtcaga tgtctcttc tgtcccctc actcatctca ctggatctgt	120
ctgccaaccc tgagatcgc tgtgccagct tggaaagagct cctgtccacc ctccaaaagc	180
ggcccccaagg	190

<210> 335

<211> 394

<212> DNA

<213> Homo sapien

<400> 335

aaatTTggac agacttctag cgacagatTA cttctcaaga attttctata caaaagctgt	60
gccaggcata tattttctca ccaggacaca tggggcagcg gacccctgggt gtcagtaaga	120
acacacccag aatgatataa ccagatattt ttcaGTTTCTC aaattaaggc atattcaaaa	180
aattccatgt acaagtttac accactttc taagttactc accaggtaat taaAGCAGAT	240
tcacagatga attactctca gTTTAACTAT atgcaacaac catgccaata actttcttc	300
taaattttgc ataataatgg taaaaaaaag tggtagttt actatcatgt tcacaattgt	360
catttttcaa ggcagttagaa gaccaagaca tttt	394

<210> 336

<211> 429

<212> DNA

<213> Homo sapien

<400> 336

aaaagctatc accattgttag tagaatcatc cttttttttt gaaatttggaa gcatcccagg	60
ctaaaaatct tggTTTTCAG aaagacagtT tataccatga ctgCTTAATT atccccccaa	120
agaccttctg attgaagtca tgacatTTc agtggctaa attctctgCC ttttttaactt	180
gctttgcaag cttactctga aaataagtta tttagtcaag ttatTTCTCA agatgtccc当地	240
tttgcctaga aaggatcaa tggAACATTt gacacacata ctccaaaaaa tgtaactgac	300
tataaacact ttaacctaatt catctgttac aaactttctta aaaatcaaat ctcaggattt	360
ttccacttta gagattctat gtaaaagtta tataactata cttgtcaaat agcacctatc	420
tatgcattt	429

<210> 337

<211> 373

<212> DNA

<213> Homo sapien

<400> 337

aaagatgctg ttaatgaaca ttacggacaa ttcatggtgt ggctagttgg taacacttca	60
gctgatTTTT cttatgagat gggaaaaaaa atcagccaaG taagggcaca tcttcagttc	120
atTTAGAAGT cagcatccaa ggtAAAAGAA ttctctgttg gacttgacat cactcccattc	180
ctctgatact cgcctactct ctTCTCAAAG aagttagtct ttccTTCCAG tGAAATATTc	240
tccataaaAGT caaatGGGTT ctctactctg aaaacCTTGC taaaACCCAG ttccAGCATA	300
agtctgtctg ccacaaACTC aatgtattgo ttcatcAGAG tgcaattCAT CCCAATGAGT	360
ttcacaggca agg	373

<210> 338

<211> 366

<212> DNA

<213> Homo sapien

<400> 338

ccatccccCTT atgagcgggc gcagtgatta taggctttcg ctctaAGATT AAAAATGCC	60
tagcccactt cttaccacaa ggcacaccta caccCCTTAT CCCCATACTA gtttattatcg	120
aaaccatcaG cctactcatt caaccaatAG ccctggccgt acgcctaacc gctaACATTA	180
ctgcaggCCA cctactcatG cacctaattG gaagcGCCAC CCTAGCAATA tcaACATTA	240
accttccCTC tacacttATC atttcacAA ttcttaATTCT actgactATC ctAGAAATCG	300
ctgtcgccTT aatccaAGCC tacgtttca cacttctAGT aagcctctac ctgcacgaca	360
acacat	366

<210> 339

<211> 319

<212> DNA

<213> Homo sapien

<400> 339

cTTCCCTCC ccaccaccaT caacCTCTTC aaaacCTACT ccTCCCTCT aagtatCTCT	60
caacacAGTA TGTCTGGGC tagatttcaa aacCCACGTA atgaaaaAGT cAGTTTACA	120
AGCCTAAATT TGTGTGTTT TTttttatAT caattaACGT taaaaATTGC ATCAACTATT	180
taatttcatGA gGATCTTCA tattttAAATT TAACCTTAAG ATTCAACCGC CATGTGCTT	240
tataaaggAA acatTTTTA gagacgtctG agctcactTT tacatggTGG tgcctactGC	300
cgttaatGTT TGTGATTT	319

<210> 340

<211> 278

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(278)

<223> n = A,T,C or G

<400> 340

ctaataaaAT gaattaacca ctcattcatn natctaccca cccnatecaa catctccnca	60
tGATGAAACN ncggctcaCT cttggcgcc tgcctgatcc tccaaNTCAC cacaggacta	120
ttccttagccA tgcactactn accagacncc tcaacngcct tttnatcaat nggnCACATn	180
actcGANACN taaatnatgg ctGAATCATC CGCTACCTNC acgccaatgg cAGCCTCAAT	240
attctttatG ctgccttTC ctacacatGc gggcgagg	278

<210> 341

<211> 400

<212> DNA
 <213> Homo sapien

<400> 341

ccagcatggg gctgcagctg aacctcacct atgagaggaa ggacaacacg acggtgacaa	60
ggcttctcaa catcaacccc aacaagacct cggccagcgg gagctgcggc gcccacctgg	120
tgactctgga gctgcacagc gagggcacca ccgtcctgtc ttccagttc gggatgaatg	180
caagttctag ccggttttc ctacaaggaa ttcaaggtaa tacaattttt cctgacgcca	240
gagaccctgc cttaaagct gccaacggct ccctgcgagc gctgcaggcc acagtccgca	300
attcctacaaa gtgcaacgct gaggagcacg tccgtgtcac gaaggcggtt tcagtcaata	360
tattcaaaagt gtgggtccag gcttcaagg tggaagggtgg	400

<210> 342

<211> 536

<212> DNA

<213> Homo sapien

<400> 342

aaagaacaat gggaaaaaca agtccgtgtt ctcacagatg ctgtcgatga cattacttcc	60
attgatgact tcttggctgt ctcagagaat cacatttgg aagatgtgaa caaatgtgtc	120
attgctctcc aagagaagga tggatggc ctggaccgca cagctgggtc aattcgaggc	180
cgggcagccc gggtcattca cgtagtcacc tcagagatgg acaactatga gccaggagtc	240
tacacagaga aggttctgga agccactaag ctgctctcca acacagtcat gcccacgttt	300
actgagcaag tagaagcgc cgtggaaagcc ctcagctcg accctgccc gccccatggat	360
gagaatgagt ttatcgatgc ttccgcctg gtatatgatg gcattccggaa catcaggaaa	420
gcagtgtcgtc tgataaggac ccctgaggag ttggatgact ctgactttga gacagaagat	480
tttgcgtca gaagcaggac gagcgtccag acagaagacg atcagctgat agctgg	536

<210> 343

<211> 646

<212> DNA

<213> Homo sapien

<400> 343

aaaacttcta ttcatcaaaa gacataaaga aaacagtcaa gccacagact aggtgtata	60
tctcaataca tatatccgac aagagaattt catctagaat gtataaaagaa ttcttatgac	120
ccaattatacg ctatcaggaa tatacaaaatt aaaaccaaaa tgaacatca ctacacaccc	180
attggaatgg tttaaaagga aaaatactga caacaccaat attgtaaag acaggaggtt	240
ccagaactct cattcattt attcataaat tgacaaatat aaaaactgtt atagtagggc	300
agtcttcctt agaaaaggat tggatggcatg acagagaaca atattaatct gtccattata	360
ttccttaact gtaaaatggaa gaccatatgt tccaccagct tcacttggta attatgatac	420
atggcttattt agagactcaa atgactccat ttcatcaact aatatgccct gtcatttca	480
tttctaaagt atccccatgtt ctatccaatg tcataccact atcataattt aagtgttcat	540
aactctctat aatatttcaa taatctaaact ggtctcaatg cctgttagtag aaattgcaga	600
ttgggctccc caatttctgt tccctaggaa ggctgagaaa gctttt	646

<210> 344

<211> 383

<212> DNA

<213> Homo sapien

<400> 344

cctgcacccc agtataaggc cttcccccagc ttagtaagaa gctgtttccc ctctctcat	60
aggccaaagcc tattgtgtga aaccatctca tggcttttgt gacgttagacc atttttgaaa	120
ccgtctcatg gtcttgggtga cgtagaccgt ttgtttttt aactccagcc gccggatgac	180
attagtggaa ccgggtttagg gaactgtgg aagttcagga tggccaccacc ttgaacaccc	240
aggccaggaa tccccacccat gtcccggtt tctttctcg agagtataga accgttcatt	300
cttgctttgt gtcccttcc atctcttggaa aaaaatgtgt ctgtttttt gtggaaatct	360

agggacattc aatctagtct ttt	383
<210> 345	
<211> 263	
<212> DNA	
<213> Homo sapien	
 <400> 345	
cctccccc ttcc ccctttgctg gtgggaggag ctcgtgtgct ccttggccgc ttactggaag	60
ggcggttttc agagctgcag ggacagggtg agcagctgaa gggcttagag ggaagccggc	120
ccccgctctg cagaagctgc atttcagctg aatctgtt tcagcctcag ttgggtgcac	180
cgtagcccc tctccccc gatggtcatg ttttgtcac attagagaat aaacagccac	240
acacacattt tttttttcc ttt	263
 <210> 346	
<211> 132	
<212> DNA	
<213> Homo sapien	
 <400> 346	
aaatccaaat acaaaaagcat agtctctgca agattttgtt ctttgaattt cttgatattt	60
taatttgatta ttgataactg tcatacatgaa attatcttc aataataaga taaataaaact	120
agcatatgaa tc	132
 <210> 347	
<211> 564	
<212> DNA	
<213> Homo sapien	
 <220>	
<221> misc_feature	
<222> (1)...(564)	
<223> n = A,T,C or G	
 <400> 347	
cctgggtatc cagggaggct ctgcagccct gctgaagggc cctaactaga gttctagagt	60
ttctgatttcttccgt agtccttttta gaggcttgct atacttggtc tgcttcaagg	120
aggtcgacct tctaattgtat gaagaatggg atgcatttga tctcaagacc aaagacagat	180
gtcagtgggc tgctctggcc ctgggtgtgca cggctgtggc agctgttgcat gccagtgtcc	240
tctaactcat gctgtccctt tgattaaaca cctctatctc ccttggaaat aagcacatac	300
aggcttaagc tctaagatag atagggtttt gtccttttac catcgagcta cttcccataa	360
taaccactt gcatccaaca ctcttcaccc acctccatata cgcaaggggta tgggataact	420
tggcccaaag taactggtgg taggaatctt agaaacaaga ccacttatac tgcgtgtctg	480
aggnagaaga taacagcagc atctcgacca gcctctgcct taaaggaaat ctttattaaat	540
cacgtatgtt tcacaagata attc	564
 <210> 348	
<211> 321	
<212> DNA	
<213> Homo sapien	
 <220>	
<221> misc_feature	
<222> (1)...(321)	
<223> n = A,T,C or G	
 <400> 348	
gcncatgaac anggagcaac ganaagagat gtcgggtctaa gggccgggaa cgggcggcac	60

ccatcctgcn acggaacacm ttccggttnt gggtttgatt ngttcacctc tgtttatatg	120
canctatttg ntccctcctcc cccaccccaag nccccaaactt catgcttntc ttccgcnc	180
agccenccctg ccctgtcctc ggggtgagtc antgaccacm gmttcccctg cangagccgc	240
cggggcgttag acmcngaccc tcnnntgcata caccaggccg ggcccnngct ggctccccn	300
gnngccctgt gaaanagctg g	321
<210> 349	
<211> 255	
<212> DNA	
<213> Homo sapien	
<400> 349	
ccatgacagt gaaggggctg ttaggaatat caacaccacca gaagcgcaca tagatcacat	60
atgtgcccgg cttggcagct gtgtagaaga tgcataagg tccatcttca ttctcaatga	120
catggccctc ggcctcagtg ccatctgggg tcagaaccgt gcaggtcaact ttacccttcc	180
cggcagtctt ggcatacaacc acaaaggcta cttctcgcc agtttcaca gtggaggcga	240
ttccaggacc cgtag	255
<210> 350	
<211> 496	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(496)	
<223> n = A,T,C or G	
<400> 350	
gggcttattt gctcacaaaa tcattcnctt ttggaaactat ggccaattga agctacacac	60
tgaattttt aatacagcat taagtttctt tggtnaaaa aatctttgtt cncagtaata	120
aaaaaagata aggcaagatg cattaaacat gaaaccttct ggctttttc ctctgcgtt	180
ttacagagcc actgatgact atctgcaaca aaagagttaa gtttctgatt ttccgtatca	240
agcatcttgc gcctttgtg tggtaagaat tctggccaag cacccctgaag gacagatgt	300
ggtgatggnc tttggcaactt atgctggcaa actgagcttcc ttcccttga gtactttgn	360
aatgtacaag tagaagaagt cacaagtata ggatggcttg gactacgccc gccaccacag	420
caatgaggtc aaagaagccc tcaaagnaga agcgncnaga tccagttgac aagataaaaa	480
gcacgataga gggccca	496
<210> 351	
<211> 109	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(109)	
<223> n = A,T,C or G	
<400> 351	
ccatagtgaa gcctggaaat gagtgtaact gcagcatctg ggctgccanc cacagggaaag	60
ggccaaagccc catgtagccc cagtcatectt gcccagcccc ggctctgg	109
<210> 352	
<211> 384	
<212> DNA	
<213> Homo sapien	

<400> 352

ctttcgagag tgacctggct gcccaccagg accgtgtgga gcagattgcc	60
aggagctcaa ttagctggac tattatgact caccctgtt caacgcccgt tgccaaaaga	120
tctgtgacca gtgggacaat ctggggggcc taactcgaa gccaaggaa gctctggagc	180
ggaccggagaa actgtgtgg accattgacc agctgtactt ggagtatgcc aagcgggctg	240
cacccttcaa caactggatg gagggggcca tggaggaccc tcattgtgc	300
acaccattga ggagatccag ggactgacca cagccatga gcagttcaag gccaccctcc	360
ctgatgccga caaggagcgc ctgg	384

<210> 353

<211> 345

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(345)

<223> n = A,T,C or G

<400> 353

ctttgtcaag gatgaagtng gctgacacac cttagcttg ntttgcttat tcaaaagana	60
aaataactac acatggaaat gaaactagct gaagcctttt cttgttttan caactgaaaa	120
ttgnacttgg ncactttgt gcttgaggag gcccattttc tgcttggcag ggggcaggta	180
tgtgcctcc cgctgactcc tgcgtgttcc tgaggtgcatt ttctgttgn ncacacaang	240
gccangntcc attctccctc ccttttccacc agngccacan cctnntctgg aaaaangacc	300
agnggtcccg gaggaaccca ttngtgcctt gcttggacag canag	345

<210> 354

<211> 712

<212> DNA

<213> Homo sapien

<400> 354

ccatctacaa tagcatcaat ggtgccatca cccagttctc ttgaacatc tcccacctca	60
gcagcctgat cgctcagcta gaagagaagc agcagcagcc caccaggag ctccctgcagg	120
acattgggg cacattggc aggctgaaa gaatcaggat tcctgaacct tggatcacac	180
ctccagattt gcaagagaaa atccacattt ttgccccaaa atgtctattt ttgacggaga	240
gtctaaagca gttcacagaa aaaatgcagt cagatatgga gaaaatccaa gaattaagag	300
aggctcagtt atactctgtt gacgtgtactc tggacccaga cacggcttac cccagectga	360
tcctctctgtt taatctgcgg caagtgcggt acagttacct ccaacaggac ctgcctgaca	420
accccgagag gttcaatctg ttccctgtt tcttgggctc tccatgttcc atcgcgggaa	480
gacattattt ggaggttagag gtgggagata aagccaagtg gaccataggt gtctgtgaag	540
actcagtgtt cagaaaaggt ggagtaacct cagccccca gaatggatc tggcagtgt	600
ctttgtgtt tggggaaagaa tattgggctc ttacctccca atgactgtcc tacccctgcg	660
gaccggcgtc cagcggttgg gggattttct tggactatga tgctggggaa gg	712

<210> 355

<211> 385

<212> DNA

<213> Homo sapien

<400> 355

cctcatagcc gtttgcaca gttacagaat gtctgaaggg gacagtgtgg gagaatccgt	60
ccatggaaa ctttcgggtgg ttttgcattt ttttcaacaaga cttggacaga tttatcgtc	120
ctggcttagac aagtccacac ctttccacggc ttttgcgttgg gtctgtacac tggggcttgc	180
ttttgttctac atgattcgat ttttgcatttgc ttttgcgttgg tacattgttgc cttatgttgc	240
ggggatctac catctaaatc ttttgcatttgc ttttgcatttgc cttatgttgc atccttcctt	300
aatgaaagac tcagatgacg gtttgcatttgc accccacaaaa cagaacgagg aattccggcc	360

cttcattcga aggctccag agttt	385
<210> 356	
<211> 347	
<212> DNA	
<213> Homo sapien	
 aatgagata aagaaagtct cctttgttt ttagatggaa aagaaagcac aagtttttc tacctgtgaa tgaactttgg tgacctatat gtgcattca tgcagcattt ttgttcata tggcttagaa ttcatgtcat gaataatcatt acattcttat atctaaccatt cctagttgc tttgattcaa aataataaaa atctgataca tgaataacttt gctagattaa tgacttgatc atctttggaa tgagttaggca agacgatttt tacctattat ttctatgtt tggtaatgt taaaaactaaa tacagatgt aataattgtt atttcacagt gatgttt	60 120 180 240 300 347
<210> 357	
<211> 313	
<212> DNA	
<213> Homo sapien	
 <400> 357	
aaagtaatca acctctctgt cttccatta gtctggatcg tctaaagatt gttttatttt tagaggctca tccggcaga tggtagtgcgtat gtgaaatttc aggccaggcg tgacgtc gtggcatttg aaacagctcc atgttgcct tagtgcgtc tgaccgaagc ctgtctgtcc tcagatataaa agatgaagcg cagctgtata aagaagagca cctgaggaat cggcagcacc ctcaactgcta cggtcaatgc atgatgc tcatcaacaa ctgcacagacc ttcaaggaa ccatagtcag ttt	60 120 180 240 300 313
<210> 358	
<211> 403	
<212> DNA	
<213> Homo sapien	
 <400> 358	
aaaaagaagg acttagggtg tcgtttcac atatgacaat gttgcattta tgatgcagg tcaagtacca aaacgtgaa ttgtatgtgc agttttcata tattcgatg ttcgctcg cagtaactgtt ggttaaatga caattttatgt ggattttgc tgtaataacac agttagac agtaattttt tctaaattac agtgcagttt agttaactta ttaatactga ctcagtgtct gcctttaaat ataaatgata tggtaaaaac ttaaggaagc aaatgctaca tatatgcaat ataaaatagt aatgtatgc ttagtgcgtt aaccaaaaggc cagaataaat aagcaaaaatg ccaaaagggg tcttaattga aatgaaaatt taattttgtt ttt	60 120 180 240 300 360 403
<210> 359	
<211> 411	
<212> DNA	
<213> Homo sapien	
 <400> 359	
aaataaaatac ttagaacacg acttggctcc tacaagcattc tggactctag gtctca tggagtgtct cacccatggg cccccacgcgg ggacgccacg gttccctccc accccgtat caagacacgg aatcggtc cgtatggatgg atcgcaatgc gcccctttc tagagc ccggccatc tacaggccagg atgcggctgg gaaaaagaca actgaaattt ctcgaagg gatggtccgc acgggttggagg attctacgtg gttctctgg ttccctgggt gtgtgtgt gtggaggagg ccgcggccct tagatcacct tcttgatgc gtcgtacagg accagcac aggcgcccccc catgccccgc aggacgttgg accacgcacc cttgaagaag g	60 120 180 240 300 360 411
<210> 360	
<211> 378	

<212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(378)
 <223> n = A,T,C or G

<400> 360

cctcttcagg ggcccgagcc agggacaggg ctttggtttc ctttccctg gcttctgcct	60
cagctctgtc cctctcatcc ggttatgg aagagatgtt tttccctcg gctaacaact	120
gatcaaattt cctctgttc tttccaggt tggacacagag ttgcgcgtgg ttgtccaaat	180
caacaaccag gtgcgtccagc tcctgtctaa gcctgttctt ggtctttcc agtttatcat	240
aagcggccgc ctttccctcg tactgtctgg tgaggntctc gatctccctc tggAACCTCT	300
tcttcccttc ttccagagct tccacggngc tggcaaagtc ctgcagcttc ttcttcgagt	360
cgagagctg gatgttga	378

<210> 361

<211> 372

<212> DNA

<213> Homo sapien

<400> 361

aaataactggg ggcattaaag agtggatgtc gctaaagact tagctaacaat tgcctttca	60
ctctatTTTT ctcagatatt gtaagcattc tgTTTTCAA tattgttagtt aattttttgg	120
ctttcaacag cagccctagt aatggggag ttgttaatta atgtgtatat tgtactgaat	180
ttctgtcagt taagggggtc actgttttggtt tgaaaattgg tgaaaattgc tagcagggtc	240
cacgatgttt atttttttctt ccatgtttgtt tatcattacc atttcacata cgcgtttctt	300
tttttcttcc tctcctccgt attccttaaa aaatgaatct agagttgggt gctttttccc	360
cctcctcttt gg	372

<210> 362

<211> 544

<212> DNA

<213> Homo sapien

<400> 362

cctgagtcac ctgcataagg gttgcagcaa gccctggatt cagagtgtt aacagaggct	60
tgcctcttc aggacaacag ttccaattcc aaggagccta cctgagggtcc ctactctcac	120
tgggttcccc aggtgaaaaa cgacaatgtg ctttttattt attattttt tgggttgtct	180
gtgttattttt agagatcaaa tgatataacca cctagctttt ttcacctgtac ttgttaataa	240
ctcatactaa ctgggttggg tgcttgggtt gtgacttcta ctgcacgcata gataaacgtg	300
tgcctgtccc ccagggtgtt ggaataattt acaatctgtc caaccagaaa agaatgtgt	360
tgtttgagca gcattgacac atatctactt tgataagaga cttctgttattt ctcttaggtcg	420
gttcgtgtttt atccattgtt ggaatttcat cttgaatccc attgtccttat agtccctagca	480
ataagagaaa ttccctcaag ttccatgtt cggttctctt agtgcagca atacttttgc	540
attt	544

<210> 363

<211> 328

<212> DNA

<213> Homo sapien

<400> 363

aaactgggtt tgacaaaagc ctttagttgt gtttcttggaa ctataaaagaa aacaaaatttt	60
ggcagtctttt aagtatatat agctttaaaat ataattttta gcatttggca ccatatgtat	120
gccattatata ttgatTTTGC attactgttt cacaatgaag ctttctttaa ggctttgatt	180
tttatgatta tggaaagaaaat aaggcacaac cacagttttt ctttcttaaa ttccatact	240

gttgatgtgg ttctttgtg taaaaaaaaaa aaagtcaac tatcaaaact aaaaaattat	300
agagtaatat tgccgttctg ctgatttt	328

<210> 364

<211> 569

<212> DNA

<213> Homo sapien

<400> 364

cctgggcacc tctttgcttg aaatatggca agacttggaa aaatgtttgc ccttagaatc	60
tatctcacta cttagtttag ttgtctcctt tgggcctggg cacagtctg gcccgtatct	120
gaaacagact ccctttcta aaactgaact tgaccacatc aaaagtttgt aaaacaatct	180
ccatggtaat taaaacttgc tccaacacca tatggtaaca gaagatggca aaggataaga	240
ttcagatctt agatcttcc aagttagggca tgtagatga tagaaggatt agttqcaagc	300
tggatctgag ctcaggcttg ggcattgaagg aaactgtctc ccatgtggtt tggaaagagtt	360
aggggctccc tgagctctat tggtaactat acgggttca tccaaggaat ggtatgtatgt	420
gggcataaaaa ccattttca gacaactgaa gatggcccccc ttctgttagcc agaaaacacta	480
gctgtctgtc attgtccatt tccttagcc ccaggcggtc ctgtgtgtac agggagggtct	540
cctgttaaggg aatgggttcc ttggcttgg	569

<210> 365

<211> 151

<212> DNA

<213> Homo sapien

<400> 365

aaaaaaaaaa atccttttat tatggattt gtcaaacaca cacacaagca taacaaaccc	60
ctaggtaccc atctccaagt ttgaccctt attataattt catcttcaatgt gttttattat	120
ccacttcctc tctctctatc tttagtattt t	151

<210> 366

<211> 508

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(508)

<223> n = A,T,C or G

<400> 366

agtataaaga tatattccat aaaagagttt ggcagtcaaa ganaagcata gcacttccga	60
aaaacacaaag cattcttctc cttagtctaca gagaatttng taaaaaaaaaa aaaaaatcat	120
catcaacagc cnccantnta cnccacacta gaatgtcac tccggcaagt aaattaaggn	180
tgcagtccat ccctgtacga tggaaagngg tctgagctat ggcaagngt tanaaagttag	240
cccaagctana caaatgcccc agtatcccc aggggagttt ttcagttactt aanacttcat	300
ttccaananc agccccggaa aagccctgac aggaaggggg gaccagngat caccgatntc	360
ccattagggg cggnccaccaa aaacaaaatg cctggagctt ntgagcagct gcagcctggg	420
gttgtggcta ggcncnnggn gnggttgcaa aaaaacggct gtntccgggg agaggcaaat	480
ggcaggccag ccaggccctgg gtacatgg	508

<210> 367

<211> 382

<212> DNA

<213> Homo sapien

<400> 367

cctgagcgcc tagtcttaa gatgcgttgc tatcgatccg agcagaagcc	60
---	----

ctcctggcgg caggcagcca tgtgatcatt ctgggtgacc tgaatacagc ccaccgc(cc attgaccact gggatgcagt caacctggaa tgctttgaag aggacccagg ggcgaagtgg atggacagct tgctcagtaa ctgggggtgc cagtcgcct ctcatgtagg gccccttcatc gatagctacc gctgcttcca accaaagcag gagggggcct tcacctgctg gtcagcagtc actggcgcccc gccatctcaa ctatggctcc cggttact atgtgctggg ggacaggacc ctggtcatag acaccttca gg	120 180 240 300 360 382
<210> 368	
<211> 174	
<212> DNA	
<213> Homo sapien	
<400> 368	
ccttcctccct ctttgacaag gatggagatg gcactatcac caccaaggag ttggggacag tgatgagatc cttggacacg aaccccactg aacccactg aacccactg gcaatgagg tggatgcaga tggaaacggg accattgact tcccgagtt cctgaccatg atgg	60 120 174
<210> 369	
<211> 216	
<212> DNA	
<213> Homo sapien	
<400> 369	
aaatctcatg ggttctatta aaaaatata tatataggc cccaatccat tgccatcaa ttgcccttgg acttttccaa ggtatattat ggggtttat gcaaaattcc aagctaccat gtaaacctttt ttaaccattt aacaaggagg gggaaactgtt tcctaccttc tttacatgtt gtgcattgtt gtgtccaga aatgccaaac cttttt	60 120 180 216
<210> 370	
<211> 344	
<212> DNA	
<213> Homo sapien	
<400> 370	
ccttggtcag gatgaagttg gctgacacag cttagcttgg ttttgccttat tcaaaagaga aaataactac acatggaaat gaaacttagct gaagcctttt cttgttttag caactgaaaa ttgtacttgg tcacttttg ctttgccttgc gcccatttc tgcttgcag ggggcaggtc tgtgcctcc cgctgactcc tgcttgccttgc tgaggtgcatt ttcctgttgc acacacaagg ggcaggctcc attctccctc ctttccacc agtgcacacg cttcgcttgc aaaaaggacc aggggtcccg gaggaaccca tttgtgccttgc tttttttttt ctttgcacacg cagg	60 120 180 240 300 344
<210> 371	
<211> 741	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(741)	
<223> n = A,T,C or G	
<400> 371	
aaattacata tctaattgtg tgatttggta aatgcccatt ttttcatttca agtgctaaat gctaagtgtt gcatggatcc ccttgcata ctccaaaggca caaaggatgtt caaggaatgt gcaatggaaa tcagtttagat gaatgtgtt ggaaccttcc ctttataaaa gctggatccc acactagccc ctacaccctc tcatcacca atattccctgc ttcctctcac ctgcacttgc tggttctcc tctggccacac aaatctaccc tcaaggcttca ggtccaccc gcttcatgac aactttccag actattccag aacctttaac catctctgac ctctcatcag atctatgttgc	60 120 180 240 300 360

tacataaacac caattaatga gatcattact gctttatgct ctaattgctt cctgtattca	420
aatcttcctc tccaaaccaca taatgactcc ctaaaacttct cttgtatTTT ccaatgcctt	480
gtacaaggcac agaactggc aatcaataaaa tactcaetgg ttatTTTgagg aaaaaatgtt	540
gccaaggcacc atctttatca gaaaataaaat caattcttct aaacttggag aaatcaccct	600
attccttagta tgtgatctta attagaacaa ttcaGATTGA gaangngaca gcatgctggc	660
agtccctcaga gccctcgctt gctctcgna cctccctgccc tggctccc ctttgggtggc	720
atttgaggag cccttcagcc t	741

<210> 372
<211> 218
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(218)
<223> n = A,T,C or G

<400> 372

ccggccagtgt gctggaaattc gcccttggcc gcccgggcag gtaccacaac agcaggncgt	60
agtgagaaat ctaccacattt ctacagttagc cccagatcac cggacacaac actctcacct	120
gccagcacga caagctcagg cgtagtggaa gaatccacca cctcccacag ccgaccaggc	180
tcaacgcaca caacagcatt ccctggcagt accttggg	218

<210> 373
<211> 168
<212> DNA
<213> Homo sapien

<400> 373

actgcttaggg aatgctgttg tgtgcattga gcctggcgg ctgtgggagg tggtggattc	60
ttcactgacg cctgagctt tcgtgtggc aggtgagagt gttgtgtccg gtatctggg	120
gctactgttag aagggtggtag atttctact caggcctgct gttgtgtt	168

<210> 374
<211> 154
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(154)
<223> n = A,T,C or G

<400> 374

tgagaaatct accacettct acagngagcc ccanatcacc ggacacaaca ctctcacctg	60
ccagcacgac aagctcaggc gtcaGAGTGAAG aatccacccac ctcccacagc cgaccaggct	120
caacgcacac aacagcattc cctggcagta cctc	154

<210> 375
<211> 275
<212> DNA
<213> Homo sapien

<400> 375

actgccagg gacagtgtgttga acctgggctg ctgtgggaa ttgttgattc	60
ctgactgggg cctgagggtgg tggcgtggc aggtAACAGT gttgtatccg ttgagcctgg	120

gctgctgtgg gaagttttag aatgccgact gaggcctggc gtgggtgtgc tgtcaggaa	180
tgctgttgtg tgcgttggc ctggtcggct gtgggagggtg gtggattctt cactgacgcc	240
ttagcttgcgt gtgctggcag gtgagagtgt tgtgg	275

<210> 376

<211> 191

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(191)

<223> n = A,T,C or G

<400> 376

actgccagg gacagtgcgt tgcgttgtga acctgagctg ctgtgggaag ttgttgattc	60
ctgactggag cctgagggtgg tgggtgtggc agtaacagt gttgtatccg ttgagcctgg	120
gctgctgtgg gaagttttag aatgccgact gaggcctggc gtgggtgtgc tgnttagggaa	180
tgctgcttagc g	191

<210> 377

<211> 476

<212> DNA

<213> Homo sapien

<400> 377

cgcggcgtgt gctggaaattc gcccttggcc gcccggcag gtacatttcc ttgttagactc	60
tgttaatttc ctgcagctcc tgggtgttcc tggagcagat gatctcaatg agagagtcct	120
cgtcggttcc cagcccccttc atgaaagctt ttagctcaga agcgtcatac tgagcagggt	180
tcttcaatag gcccaaatac accgtctcca ggtggccaga taaggctgac ttcaagtgtctg	240
atgcaagttc cttttttgtc cttctctgggt aggcaaggc aatatcctgt ctctgtgcat	300
tgctgcgggtt ggtcaaaatg ttgacaatgg tgacctcatc cacacctttg gtcttgatgg	360
ctgtttcaat gttcaaaagca tcccgctcag catcaaagtt agtataaggtt ttgacagacc	420
catatgcact tgggggtgtc gagtgatcac cctccaagcc gagttgcac aggatt	476

<210> 378

<211> 455

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(455)

<223> n = A,T,C or G

<400> 378

agtgtgtgg aattcgcctt tggccggccg ggcaggtaaca catcccatct tcaaatttaa	60
aatcatatttgc tcaagggtcc aaagcagctt gaatttaaag tttgtctat aaaattgtgc	120
aaatatgtta aggatttggaa cccaccaatg caactactgtt atatccgtct tcctaaattt	180
cttccaccta cagataatag acaacaagtc tgagaaaacta aggctaacca aacttagata	240
taaatcctac caataaaaatt tttcgtttt aagttttaca gtttgattta aaaacaaaaac	300
agaaaacaaat ttcaaaaataa atcacatctt ctcttaaaac ttggcaaaccc cttccctaaac	360
tgtccaaagtn tgagcataca ctggcactgg ctttagatac tccaattaaa tgcactactc	420
tttcactggt ctgaatgaag tatggtaaaa caagc	455

<210> 379

<211> 297

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(297)

<223> n = A,T,C or G

<400> 379

agctcgatc cctagnacgg ccgccagtgt gctgaaattc gcccttagcg	60
caggtaaaa gaatcccttag acgcataact gagtttaag ttcttaatt cctaatttaa	120
gccttctagt gaagccctcacatggc ttcaacttaggc ccacagtgc	180
tgacaatccc accctagaca gactttattt caaatgcgc ctgaagaggc agatgattcc	240
caagagaact caccaaataca agacaaatgt cctagatctc tagtgtggna gaactat	297

<210> 380

<211> 144

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(144)

<223> n = A,T,C or G

<400> 380

actttgctga aaattttttt tcccaagggtc tataaaacat taatttgttt ttatattttt	60
ctatttttttt gngttttttt gttttaaat caataagtaa tctaggacta gcattatgtt	120
tgcttagacctt ggcatttgct cgcc	144

<210> 381

<211> 424

<212> DNA

<213> Homo sapien

<400> 381

actcttgaat acaagtttct gataccactg cactgtctga gaatttccaa aactttatg	60
aactaactga cagcttcatg aaactgtcca ccaagatcaa gcagagaaaa taattaattt	120
catgggacta aatgaactaa tgaggataat atttcataaa ttttttattt gaaattttgc	180
tgatttttttta aatgttttgc ttcccaaggatt tcaggaaact ttttttcttt taagctatcc	240
acagcttaca gcaatttgat aaaatataact ttgtgaaca aaaattgaga catttacatt	300
ttctccctat gtggtcgctc cagacttggg aaactattca tgaatattta tattgtatgg	360
taatatagtt attgcacaag ttcaataaaaa atctgctctt tgtataacag aatacatttgc	420
aaaa	424

<210> 382

<211> 408

<212> DNA

<213> Homo sapien

<400> 382

actcttgaat acaagtttct gataccactg cactgtctga gaatttccaa aactttatg	60
aactaactga cagcttcatg aaactgtcca ccaagatcaa gcagagaaaa taattaattt	120
catgggacta aatgaactaa tgaggataat atttcataaa ttttttattt gaaattttgc	180
tgatttttttta aatgttttgc ttcccaaggatt tcaggaaact ttttttcttt taagctatcc	240
acagcttaca gcaatttgat aaaatataact ttgtgaaca aaaattgaga catttacatt	300
ttctccctat gtggtcgctc cagacttggg aaactattca tgaatattta tattgtatgg	360
taatatagtt attgcacaag ttcaataaaaa atctgctctt tgtatgac	408

<210> 383
<211> 455
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(455)
<223> n = A,T,C or G

<400> 383

actcttgaat acaagttct gataccactg cactgtctga gaatttccaa aactttaatg	60
aactaactgn cnncnttcatg aaactgtcca ccaagatcaa gcagagaaaa taattaattt	120
catgggacta aatgaactaa tgaggataat attttcataa ttttttattt gaaattttgc	180
tgannnctta aatgtcttgt ttcccagatt tcagggaaact ttttttctt taagctatcc	240
acagcttata gcaatttgcataaaaatatact tttgtgaaca aaaattgaga catttacatt	300
ttctccctat gtggtcgctc cagacttggnaacttca tgaatattta tattgtatgg	360
taatatagtt attgcacaag ttcaataaaaa atctgctctt tgtataacag aatacatttg	420
aaaacattgg ttatattacc aagactttga ctaga	455

<210> 384

<211> 376
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(376)
<223> n = A,T,C or G

<400> 384

actcttgaat acaagggtct gatatcaactg cactgtctga gaatttccaa aactttaatg	60
aactaactga cagcttcatg aaactgtcca ccaagatcaa gcagagaaaa taattaattt	120
catgggacta aatgaactaa tgaggataat attttcataa ttttttattt gaaattttgc	180
tgatttctta aatgtcttgtt ttcccagatt tcagggaaact ttttttctt ttaagctatc	240
cacagcttac agcaatttgcataaaaatatact ttttgngaac aaaattgag acatttacat	300
tttctccctat gtggcgcctc cagacttggnaacttca tgaatattta atattgnatg	360
gaaatatacg attgcc	376

<210> 385

<211> 422
<212> DNA
<213> Homo sapien

<400> 385

acctgtgggt ttattaccta tgggttata tcctcaaata cgacattcta gtcaaagtct	60
tggtaatata accaatgttt tcaaattgtat tctgtcatac aaagagcaga ttttttattga	120
acttgtgcaa taactatatt accatacaat ataaatattc atgaatagtt tcccaagtct	180
ggagcgcacca catagggaga aaatgtaaat gtctcaattt ttgttcacaa aagtatattt	240
tatcaaattt ctgttaagctg tggatagctt aaaagaaaaaa aagtttctg aaatctggga	300
acaagagacat ttaaagaatc agcaaaaattt caaataaaaa attatgaaaa tattatccctc	360
attagttcat tttagtccccat gaaattaattt attttctctg cttgatcttg gtggacagtt	420
tc	422

<210> 386

<211> 313
<212> DNA
<213> Homo sapien

<400> 386	60
caagtaggtc tacaagacgc tacttccct atcatagaag agcttatcac ctttcatgat	120
cacgcctca taatcattt ctttatctgc ttccctagtcc tttatgcctt ttccctaaca	180
ctcacaacaa aactaactaa tactaacatc tcagacgctc agaaaataga aaccgtctga	240
actatccctgc ccgcctatcat cctagtcctc atgccttcc catccctacg catccttac	300
ataacagacg aggtcaacga tccctccctt accatcaa attaatggcca ccaatggtagt	313
tgaacctacg agt	
<210> 387	
<211> 236	
<212> DNA	
<213> Homo sapien	
<400> 387	
cgccctcata atcattttcc ttatctgctt cctagtcctg tatgccctt tcctaacact	60
cacaacaaaa ctaactaata ctaacatctc agacgcttag gaaatagaaa ccgtctgaac	120
tatcctgccc gccatcatcc tagtcctcat cgcctccca tccctacgca tcctttacat	180
aacagacgag gtcaacgatc ctccttacat ctcataatca attggccacc aatgg	236
<210> 388	
<211> 195	
<212> DNA	
<213> Homo sapien	
<400> 388	
acgcctttt cctaaacactc acaacaaaaac taactaatac taacatctca gacgctcagg	60
aaatagaaaa acgtctgaact atcctgccc ccatcatct agtcctcatc gcccctccat	120
ccctacgcat cctttacata acagacgagg tcaacgatcc ctcccttacc atcaaataa	180
ttggccacca atgg	195
<210> 389	
<211> 183	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(183)	
<223> n = A,T,C or G	
<400> 389	
taacactcac aacaaaaacta actaataacta nnatctcaga cgctcaggaa atagaaacnn	60
cctgaactat cctggccgccc atcatcttag tcctcatacg cctcccatcc ctacncatcc	120
tttacataac agacgaggta aacgatccct cccttaccat caaatcaatt ggccaccaat	180
ggt	183
<210> 390	
<211> 473	
<212> DNA	
<213> Homo sapien	
<400> 390	
acaacaggc aactgcaata ctcaaggta aaacattaga aaagcatttg tttgacaggt	60
atattacagt attatcaaaa tattacattt tcagacttac ttgcagata atcatccacc	120
agagcttaaa tctttaaattt atttccatag tcttaaaaaat tatgtatgt cagaatgcatt	180
ataaaaaagaa tgtaaaaagga aacctaaaat acaaatggaa taatgtaa aataaaatatt	240
tgtatccatg aactgttaat aatcgctca acaccacat tctctctaaa ctcaattaa	300

ttcttatagg aataatgaac tgtcaaatgc catggcataa ttattttattt ccaagctatc	360
atcaatgatt agaactaaaa aaaatttggc ataaaaaaaaat cacaatttcag cataaataaa	420
gctatttta gcttcaacac tagctagcat ctctaaagaat tgttgaaata agt	473

<210> 391
<211> 216
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<222> (1)...(216)
<223> n = A,T,C or G

<400> 391

atttgtatTT	taggtttcct	tttacattct	ttttatatgc	nnntctgacat	tacatatTTT	60
ttaagactat	ggaaaataatt	taaagattta	agctctggtg	gatgattatc	tgctaagtaa	120
gtctgaaaat	gtaatatTTT	gataatactg	taatataacct	gtcacacaaa	tgctttcta	180
atgttttaac	cttgagtatt	gcagttgcgt	ctttgt			216

<210> 392
<211> 98
<212> DNA
<213> *Homo sapien*

<400> 392

acttatttca acaaattctta gagatgctag ctagtgttga agctaaaaat agctttattt 60
atgctgaatt gtgatTTTT tatqccaaat ttttttaa 98

<210> 393
<211> 397
<212> DNA
<213> *Homo sapien*

<400> 393

tgccgatata	ctcttagatga	agttttacat	tgtttagacta	ttgctgttct	cttgggaact	60
gaactcaatt	tcctccctgag	gctttggatt	tgacattgca	tttgacacctt	tatgttagtaa	120
ttgacatgtt	ccagggcaat	gatgaatgag	aatctacccc	cagatccaag	catcctgagc	180
aactcttgcatt	tatccatatt	gagtcaaatg	gtaggcattt	cctatcacct	gtttccattc	240
aacaagagca	ctacattcat	ttagctaaac	ggattccaaa	gagtagaatt	gcattgaccg	300
cgactaattt	caaaaatgtt	tttattattta	ttatTTTTA	gacagtctca	ctttgtcgcc	360
caggccggag	tgcagtggtg	cgatctcaga	tcagtgt			397

<210> 394
<211> 373
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(373)
<223> n = A,T,C or G

<400> 394

ttacattgtt gagcttattgc tggatctcttg ggaactgaac tcactttcct cctgaggctt	60
tggatccat attgcatttg acctttatg tagtaattga catgtgccag ggcaatgtat	120
aatgagaatc tacccccaga tccaagcatc ctgagcaact ttgattatc catatttagt	180
caaatggtag gcatttctta tcacctgttt ccattcaaca aqaqcactac attcatttaq	240

ctaaacggat tccaaagagt agaattgcat tgaccacgac tantttcaaa atgctttta	300
tttattattat ttttagaca gtctcactt gtcgccccagg ccggagtgcgat	360
ctcagatcag tgt	373

<210> 395
<211> 411
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(411)
<223> n = A,T,C or G

<400> 395

actgatcatt ctatcccctt ctctattgtat ccccacctcc aaatatctca tcaacaaccg	60
actaatcacc acccaacaat gactaatcaa actaacctca aaacaaatga taaccataca	120
caacactaaa ggacgaacct gatctttat actagtatcc ttaatcattt ttattgccac	180
aactaacctc ctcggactcc tgccctcaactc atttacacca accacccaat tatctataaa	240
cctagccatg gccatcccct tatgagcgaaa cgcaagtgatt ataggcttc gctctaagat	300
taaaaatgcc ctggccact tcttacngca aggcacaccc acacccctt tccccataact	360
agtattattatc gaaaccatca gcctactcat tcaaccaata gcctggccg t	411

<210> 396
<211> 411
<212> DNA
<213> Homo sapien

<400> 396

actgatcatt ctatcccctt ctctattgtat ccccacctcc aaatatctca tcaacaaccg	60
actaattacc acccaacaat gactaatcaa actaacctca aaacaaatga tagccataca	120
caacactaaa ggacgaacct gatctttat actagtatcc ttaatcattt ttattgccac	180
aactaacctc ctcggactcc tgccctcaactc atttacacca accacccaac tatctataaa	240
cctagccatg gccatcccct tatgagcgaaa cgcaagtgatt ataggcttc gctctaagat	300
taaaaatgcc ctggccact tcttacngca aggcacaccc acacccctt tccccataact	360
agtattattatc gaaaccatca gcctactcat tcaaccaata gcctggccg t	411

<210> 397
<211> 351
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(351)
<223> n = A,T,C or G

<400> 397

ngccgangta caaaaaaaaaaag cacattccta gaaaaaggta ttggcaaata gtaaaaaatgg	60
gaggtcaaaa naaaaaaaaaaa aaaaaacaaa acnaaaaaaaaa gaaaaaaacca acaattctc	120
aattcagtgt gcaaacatta tataaaaaata gaaatactaa ctctacaggc agtatttct	180
gataaatttat ttaaatagca tatctacnca atctgagata tctattccaa tggcaatgag	240
aaaataattt ataaaaataaa agcaatggta taccanatga tagaaaaaaa cataacttc	300
agaaattgtat ttaacattt caatgttatt tccttattgn gaatncttc c	351

<210> 398
<211> 363
<212> DNA

<213> Homo sapien

<400> 398

acaaaaaaaaaa	gcacattcct	agaaaaaagg	attggcaa	atgtaaaaatg	ggaggtcaaa	60
acaaaaaaaaaa	aaaaaaacaa	aacaaaaaaaaa	agaaaaaacc	aacaattctt	caattcagt	120
tgcaaacatt	atataaaaat	agaaaatacta	actctacagg	cagtattcc	tgataaaatta	180
ttaaatagc	atatctacac	aatctgagat	atctattcca	atggcaatga	gaaaataatt	240
tataaaaata	aagcaatgt	ataccagatg	atagaaaaaa	acataacttt	cagaaattgt	300
attnaacatt	tcaatgctat	ttccttattt	ggaatacttc	tctgcagagt	tttatgcta	360
tgt						363

<210> 399

<211> 360

<212> DNA

<213> Homo sapien

<400> 399

actgtttcct	cgtggttcag	gggtgtgcat	gaaggctt	aggagagcaa	acacctgttc	60
ctattctgt	tgtccctccc	tcatttcaaa	tgagagtaac	caattgagta	aaataaccaa	120
ataaccattt	ccccaccatg	aacatggggc	ttgggaagac	agtccctacaa	tcttcatcat	180
atatttaggt	ttttaggcca	gccagcttt	tttttccaaa	gctttttttt	gaataccgc	240
ccgggcggcc	cctaagggcg	aattctgcag	atatccatca	cactggcgcc	cgctcgagca	300
tgcatactaga	gggccaatt	cgccctatag	tgagtcgtat	tacaattcac	tggccgtcgt	360

<210> 400

<211> 87

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(87)

<223> n = A,T,C or G

<400> 400

ctgcacatat	cnattacact	ggcgcccgct	cgagcatgca	tgnagagggc	ccaattctcc	60
ctatattttag	tggaatttaca	atncnct				87

<210> 401

<211> 328

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(328)

<223> n = A,T,C or G

<400> 401

acccagggac	acaaacactc	tgcctaggaa	aaccagagac	ctttgttac	ttgtttatct	60
gctgaccttc	cttccactat	tgtcctatga	ccctgcoaaa	tccccctctg	cgagaaacac	120
ccaagaatga	tcaataaaaa	ataaaaataaa	attaaattaa	aaaaaaaaaa	agagaggaac	180
ccacaaaaaa	aaaaaaaaaa	aaagtntata	aaataaaaata	ttgaagtct	ttccctattaa	240
aaaaaaaaaa	aagaaaaaaagc	acggactctt	tcatccagtt	ctgatgtgat	tatctctgga	300
aggcattttc	tcctcctctt	ccctcccc				328

<210> 402

<211> 268

<212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(268)
 <223> n = A,T,C or G

<400> 402

nacataatga caacatcttc actagactga gtgttcaagg atttgagatg attcgctatt	60
catcacaccc cgaagattga gatccactgt atttacacaa agcaaagcca tgcagcaag	120
ggactgtcaa cctgattctg agaacataaa cattcaaaa ttatttcca gtgttcctt	180
ttggaaaccca acaacacatc ttaataacct acacacacac acatctntac ctttaaaaaa	240
aaaaaaaaaaag tgnaacttca cagatagt	268

<210> 403

<211> 538

<212> DNA

<213> Homo sapien

<400> 403

acagttagat ctccccctgg gcaataacaat acaagaacag tggttttgt caaattggaa	60
caaggaaaca gaaccacaga aataaaataca ttgguttaaca tcagattagt tcagggtact	120
tttttgtaaa agttaaagta gaggggactt ctgttattatg ctaactcaag tagactggaa	180
tccctgtgt tctttttttt ttaaaattgg ttttaatttt ttttaattgg atcttatcttc	240
tcccttaaca tttcagttgg agtatgttagc atttagcacc actggctcaa tgcgctcacc	300
taggtgagag tggacccaaa tcttaaagca ttagtgcata tatcagttac caccattgg	360
ggcttttatac cttcatgggt tatgtatgttcc tctgtatgc acatttctct gagttttgt	420
attccagcca aagagagacc attcactatt tggatggctgg ctgcattgcag acatttaaag	480
cttttagaga atacactaca ccagggagta tgactactag tatgactatt aggagggt	538

<210> 404

<211> 310

<212> DNA

<213> Homo sapien

<400> 404

tttttttata gatacaattt gcttttattt gtgattcatg agtcaggca gtttccattc	60
tgcaaaatat agtgatagct cctactggc aataacaacag tagaacatgt ggttttgtaa	120
aatgggaatc caggaacaga agaatataaa taaatttatt taaataaaact gattggtaa	180
tttcagaata cttcatattt ctttttcttta agatttaaag cagaaaggac tttcttactg	240
tgctgactca gacagcctgg actctcatgt ttttagaaaa attttgtctg ttctggatc	300
tacctgcttc	310

<210> 405

<211> 559

<212> DNA

<213> Homo sapien

<400> 405

acaaatcaca attattaact cactggtaagg gcagttagatga tcaaaccat tgcattcatc	60
catgctgtaa tggctctctc tgcaactaaa ggctgactgc agccggcaaa aaagaatgt	120
agtatgaatt tataaaaaaca ttttagatgg ctgacaacgg atcttatttt taaagaatat	180
gtctaattca gaggatcgac aactaatcca ttcaataaa acaatggga atttttatt	240
gaataaaaaat gtaatatca taaaaactca agaaggctt taaaaatac ttctccccca	300
atcattatcc catacttcat gctaattttt aaaagaatct tggaaatcttgg aaaacaagat	360
gaagagaatc ttgttttaag tgacaagttt acattattcc tatattaaat gtcaaactgc	420
tattaatgag tagaagtagg aacaaacccg gatcttagga tcctgtccag ggctcattcc	480

ataactccta tatcacaaag acaagatctg gaaccagaaa acagtcatca tccaatgtgc	540
atcagccttg cggcaacag	559
<210> 406	
<211> 427	
<212> DNA	
<213> Homo sapien	
<400> 406	
acaacagaat atctcgaa tgactcaga agtatgccat gtgatgctac cttaaagtca	60
gaataacctg cattatacg ggaataaaact ttaaattact gttccctttt tgattttctt	120
atccggctgc tcccctatca gacctcatct ttttaattt tattttttgt ttacccct	180
ccattcattc acatgtcat ctgagaagac ttaagttctt ccagcttgg acaataactg	240
cttttagaaa ctgtaaagta gttacaagag aacagtggc caagactcag aatttttaaa	300
aaaaaaaaatg gagcatgtgt attatgtggc caatgtttc actctaactt ggttatgaga	360
ctaaaaccat tcctcactgc tctaacatgc tgaagaaatc atctgagggg gagggagatg	420
gatgctc	427
<210> 407	
<211> 419	
<212> DNA	
<213> Homo sapien	
<400> 407	
acaatttcta gttgtttcca gttttggcta ataatcattc cttaacctag aattcagatg	60
atcctgaaat taaggcaggc cagaggactg taatgataga attaaattag tgtcaactaa	120
aactgtccca aagtgcgtct tcctaataagg aattcataa cctaaaacaa gatgttacta	180
ttatatcgat agactatgaa tgcttatttct agaaaaatgc tagtgccaaa tttgttttat	240
taaataaaaaa caatgttagga gcagctttc ttctagtttgc atgtcatttt agaattacta	300
acacagtggc agtgttaat gaagatgtgt tctacaaggt agataatata ctgtttgata	360
ctcaaaacat ttttcatttt gtttaaagta gaagttacat aattctatat ttttaagtct	419
<210> 408	
<211> 523	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(523)	
<223> n = A,T,C or G	
<400> 408	
acatttgcgtt ttatgtgaat gttgagttt tttttcttaa ttttcacttc agcagtgttt	60
agggccttca gatgccttat tccagtgtga acagaaaaag ttcatatttt atgtggtaa	120
tgccttgcgtt tgcacataa agatgtttt gtagaaaaatg ttggcacaat tttaacttct	180
tagtggcttg tgacattata tattatata atatgttat atatctttt aacattccctg	240
tgttttagtag tgtaaatgtt ctgggcaagt tttaatattt tgaatgcctt tggatattcc	300
agcaataaaag gcatcatgtt ctgcaatagg atttcttact cattaccta tttaacact	360
aaaatagacc acaaactgacg acaaattctt tttataaaatg ttatagaagc agggaaagat	420
aataaaacaca ttgtgtgaatt gtggttcagt ttatattatct ttagggagg ctgatcattt	480
atcttatagc acataaacccc agccttttat tcattatggg taa	523
<210> 409	
<211> 191	
<212> DNA	
<213> Homo sapien	

<220>
 <221> misc_feature
 <222> (1)...(191)
 <223> n = A,T,C or G

<400> 409
 acccccgtag t gatgagca ct gactggttca ctggccacat tttagttctt cataataata 60
 gcccacaaaaa gggctctgtg gttgcctcc atgtgcactg gcccctcccc acccctagg 120
 ggcactcagt agctgtgag aaggcctgtc cacgangctg ttgaaacccc ttcaataaat 180
 acttagaagn a 191

<210> 410
 <211> 403
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(403)
 <223> n = A,T,C or G

<400> 410
 acactggcca gtgtgtttt ggcgattaaa cataatcctg tgaatcagat taattcactt 60
 gctgagtgtt catttgcggc atcccttgtt tgggtcttgg gggccctcca cgacccctgtg 120
 gggctccccc tggtccactc tgcccagagc ctgcgttcaa attctgctga tatccatccc 180
 gttgatagcc agagtaatcc cggggagcac tgaactgaga ctgtgtataa ccactgtttg 240
 gagtgatgaa gaatgaaggg cggttaaccat catatcctcc tctgaatcca ttggcagggc 300
 cccggtatcc attcatcaag cctctagcac cacgggagcc tccacagac acaccacgac 360
 tattgtataa gggctgattt ctacgtggaa atccagtgn t ctg 403

<210> 411
 <211> 384
 <212> DNA
 <213> Homo sapien

<400> 411
 acgtgaaatc ataacaacat gttctcttgc gtttggcttc tcttgctcag catgatattt 60
 ttacgggttca cccataatgc atgtatcagg aatataatcc tttttattat tgagttagt 120
 tcttattgtat gtatataccca cagtttattt ctcccttcat cctttgttag attttgggt 180
 tttttcacat tgcgttccat aagtataaac ctgctctcaa cattcatgtg caagtctttg 240
 agtggacata tatttgcgtt ttctcttgag tgaatgcacc ttgttgggtc acgtggctta 300
 atttaaaaaa atttaatca ctgtggtgca tatgtatgat ttatttagtga ttatctcata 360
 attttatattt ctgtatgact aatg 384

<210> 412
 <211> 315
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(315)
 <223> n = A,T,C or G

<400> 412
 acaatatttc tcctttgaga agataggata tatgattttc caaaaatca caactttgaa 60
 ggaagactta ntgcgtact tcaattatat cctggaaactg gcaacttgc cccttcctt 120
 gttcaaaaaa aagtgttaaga aagagtgata agatcaactt taatcattct tggatctca 180

gcaaattcag gatcaatgt aaaaaacact ggcatatcta cttcccttgg gggattaagc	240
ctttgttctt caaaaacagaa gcactgtatt ttattgaaat actgtccacc ttcaaattgga	300
acaatattgt atgma	315
<210> 413	
<211> 554	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(554)	
<223> n = A,T,C or G	
<400> 413	
acagggttca ctattacaaa tatatgatgt taaactaaca aactcatgac cttcaaagat	60
gtcttcgtcc cacgcacaca catttgtaat ttgtgtccat ttgttatttc ccttcttota	120
taatcttcaa attatatagt tatgcattga gttccctatg catctcaccc atctccttta	180
tctcagcctt ctcatacttt gccattctct tctttcttggaa aataaccagc acacaattc	240
cagcaacaac tgctatcacc acaaccacaa taacagcaat aacaccagct ttttagaccct	300
gcatttgagaa ttccagggtct ttttcatcaa cataataaaat taaagtttga ccaggatcca	360
gatccagttt ttccccattt actgtcaggt gccattttct tagaatgaaa caaggattca	420
cctttaacat ctttttcaaa ataataagcc acatcagcta tgtccacatc attctgagnt	480
ttttgagaag aattttgaac cagatcaata gtgataacat tattctcata caaaataactc	540
ngnataaaatt ntgg	554
<210> 414	
<211> 267	
<212> DNA	
<213> Homo sapien	
<400> 414	
accagaaaagg cacacgattt tacaatattt gttggaaatta cttactttt taacccctc	60
atagcagttt tggtttgagt atattgatga aagccaaagt ctgttatcta aaacttggc	120
caatgtttcc caactggat atgtcaggct ttcccaatag cttaaactgtg accctatacg	180
gatggctttt tagatagttc tatactgtg tattgttta gcactttct ttgtcattaa	240
caacacactt taaatgacat ttggta	267
<210> 415	
<211> 454	
<212> DNA	
<213> Homo sapien	
<400> 415	
accggAACCT gcagaaaacag tttggaaaat taagtcctgg ttcaactgcgc agtagcaaag	60
atggtcaagg ccatggaaaa agcagaaatt taccaagaaa gctgataccc atgtatagtt	120
cccactcattt tcaaatacat ctgttatctt tttaagctaa gtcttagaca tatcgggat	180
aacatggggg ttgatttagt accacagttt tcagaagcag agaaatgtaa ttccatattt	240
tatTTGAAAC ttattccata tttaattgg atattgatgt attgggttat caaacaccca	300
caaactttaa ttttgtaaa ttatatggc ttgaaatag aagatataatg tgcattaccatt	360
ttttgataac attgaaatgt agtattttac catcttaat catcttggaa aataacaagtc	420
ctgtgaacaa ccacttttc accttagagt atga	454
<210> 416	
<211> 370	
<212> DNA	
<213> Homo sapien	

<400> 416

ccgacacggt	gccagcccc	tgctgcgtgc	ccgcccagcta	caatccccatg	gtgctcattc	60
aaaagaccga	taccggggt	tcgctccaga	cctatgatga	ttgttagcc	aaagactgcc	120
actgcata	atg	cgactcctg	gtccttccac	tgtgcacctg	cgccgaggac	180
ttgtcctgcc	ctgtggaa	atgttgc	ggctcaaggt	tcctgagaca	cccgattct	240
ctgtat	tttat	ataagtctgt	tat	taatttattt	taatttattt	300
cgggggctgg	tctgtatggaa	ctgtgtat	ttt	atttaaaact	ctgtgtataa	360
gtctgaactg					aaataaaagct	370

<210> 417

<211> 463

<212> DNA

<213> Homo sapien

<400> 417

acactttata	tattccaaat	tgatcagata	tatggtttgc	aaattcatct	caatctgtag	60	
cttatctttt	cctcttctta	aatcacaagt	ttttaaattt	tgaagaagtc	caatataatca	120	
gattttgtct	tttatggatg	tgctttcggg	gcaaagtcca	agaacttgc	acctagccca	180	
agatcctgaa	gat	tttttctc	ctgtggctt	tttcaagtt	atctagttt	atgtatcaca	240
ttaagtccg	ttatacattt	tga	tttataa	atgtgagg	taagttagagg	300	
ttcttttttc	tcctcgccat	gggtgtctaa	ttgctctagc	ataatttgc	agaaaggcta	360	
ttcttcctcc	attgaattgc	ttttcactt	tttcaaaatc	agctgagcat	atttataatgg	420	
gtttat	tttctc	atctgttcca	ttgacgtatg	tgt		463	

<210> 418

<211> 334

<212> DNA

<213> Homo sapien

<400> 418

ttagcatttt	cttttatttt	tttactttga	tgcctttca	aattggcatg	tctttaaagt	60
atttttcttc	ctgattaaaa	atgtgtgtgt	atgtgtgtgt	gtgtgtgtat	atataatattt	120
ttttaaatca	cattaat	acc	acc	actgttttgc	agccaattaa	180
gaaaatttgc	at	ttttaaag	tgt	gatttgcattt	cagggtaaag	240
tattctagac	tactgaaaga	aaaccacttc	aaagattttg	ttgaaagttt	tagtgttgc	300
tgaaatgca	gagg	gagg	gagg	gagg	gagg	334

<210> 419

<211> 297

<212> DNA

<213> Homo sapien

<400> 419

acttctttga	ccaaggaaata	ccacagacac	cctaccgata	gaacagtggc	tcagatctta	60
cttgcctcg	cttacga	at	ccaaatc	actgg	tatc	120
tgaacagtca	tgtttttaa	aat	ttccctt	tat	caagt	180
at	ttcaactca	tggatgttag	gaaatctagt	cat	ttccct	240
ttaaccatag	ctatcatgt	tttccaaat	tttctctaga	ttaaataatct	tcagtta	297

<210> 420

<211> 418

<212> DNA

<213> Homo sapien

<400> 420

acgagaggaa	ccgcagg	ttc	agacatttg	tgtatgtc	atcaatagga	60
ccatcatagg	agg	ctt	catt	cactgat	ttc	120
cctacgccaa	aat	ccat	ttc	gtatcatat	tcatcg	180

aacactttct cggcctatcc ggaatcccc gacgttactc ggactacccc gatacataca	240
ccacatgaaa tatttatca tctgtaggct cattcattc tctaaccgca gtaatattaa	300
taattttcat gatggagaa gccttcgctt cgaaggaaa agtccataa gttagaagaac	360
cctccataaa cctggagtga ctatatggat gccccccacc ctaccacaca ttcgaaga	418

<210> 421
<211> 304
<212> DNA
<213> Homo sapien

<400> 421	
acgcctggac ccctgtgact tgcagcctat ctttgatgac atgctccact ttctaaatcc	60
tgaggagctg cgggtgattt aagagattcc ccaggctgag gacaaaactag accggctatt	120
cgaaaattatt ggagtcaga gccaaggaa cagccagacc ctcctggact ctgtttatag	180
ccatcttcctt gacctgtgtt agaacatagg gatactgcatt tctggaaattt actcaattt	240
gtggcagggtt ggtttttaa tttcttctg tttctgattt ttgttgtttt gggtgtgtgt	300
gtgt	304

<210> 422
<211> 578
<212> DNA
<213> Homo sapien

<400> 422	
actgtgcagg cagattcaca ggggggtgg aaagcatcca caatggctt ggcagcatca	60
ggatcacact tgaaggggct ctcagacaaa gttgtatcca tgcaactgtat tcctttcca	120
tgcgtttct tagtcaacta tgcttccaa tggcatgag tgctttat aatatcaatg	180
gcaaaatgcct tatctttaaa ttctgcatta aacgcacact cattttctgg tttccatca	240
gaaaccttat accttctaaa ccagtccaca gtagcttcta agtagccagg tttcagccgt	300
ttgacatcat tgatatcatt ataattggct gcatcaggat catccacatt aatggcaatg	360
actttccagt cggtttcccc ttctgtcaatc atagccaata tgcctagaac ttcaattat	420
ttatccacc tcttgcacat accttgcattt caatttcaca cacatcaattt gggtcattgt	480
caccacaaca gccagtatgt ttatcattgt gcccgggtc ttcccaagtc tgaggatgg	540
caccatagtt ccagatatac cctttatac ggaacaaa	578

<210> 423
<211> 327
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(327)
<223> n = A,T,C or G

<400> 423	
acagttatattttttagaaact cattttctt ctaaaacaaa cacagtttac tttagagaga	60
ctgcaataga ataaaaattt gaaactgaaa tctttgttta aaagggttaa gttgaggcaa	120
gaggaaagcc ctttctctt cttataaaaaa ggcacaaacct cattggggag ctaagctagg	180
tcatgtcat ggtgaagaag agaagcatcg tttttatatt tagggaaattt taaaatgtga	240
tggaaagcac atttagctt gtcgtaggca gtttctgtt gggcagtgtt aatggaaagg	300
gctcactgnt gntactacta gaaaaat	327

<210> 424
<211> 384
<212> DNA
<213> Homo sapien

<400> 424
acgaaaaata aatctcctta aaaactaaat aaaatgcact gtattcttac agttaatgtt 60
tataactata gtaaaaaatt aatatataatc ctattacata aatgttattt cttaggtgtt 120
ccattaagaa gagcaataga ataatgctaa aaaataatgc ctataaatct tcagagtata 180
aagacatcca ttcagaaaaca aaaatttagca ctaaattttt tataaaatag accagatgac 240
aaaattttt ttatTTTaa acagtggtt tgacacaaat tatgttattt aaaaGcatTA 300
ttaatgttta atttatttaa aattttggaa tttgccattt ctcagagaat gatcaggcct 360
taggaaatta atacagtat agta 384

<210> 425
<211> 255
<212> DNA
<213> Homo sapien

<400> 425
actatcaggc tttgtgctga tttcctgaac aaactgcatt atattatgaa aacaaaagga 60
aaagaagaaa taataaaaac tatactccc tatttcattt acagtgttg agttcctgga 120
aggacctata taatggagggc agcattcaaa caagaaatta tgccaaatcaa ctgtcaattt 180
ttcactataa ttttccctaaa aaggcgTTT tcccccaata tctattaatc tcaaagaaac 240
ataagttgtg aatgt 255

<210> 426
<211> 196
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(196)
<223> n = A,T,C or G

<400> 426
acatgaantn nccaggccca cacagccaga cagcaacaga accaagacct agggctcttc 60
actcctgtta catcacacca tggcaatgtat tttacattct ccaactgatt caaatcatat 120
ggcagctagg gattttggggg ctccatgttt tatttcaattt gcaagttcaa gattttttt 180
tatctttgtg ggctga 196

<210> 427
<211> 163
<212> DNA
<213> Homo sapien

<400> 427
acagaagatc catggaggca agtgctgtca ggaaggacac tgcctccctc caccctccca 60
aatgtcacca ccaagttcct tcaggtgaga cctcacacaa tgtcaagtgc tttcttagaa 120
atactaagat caggttgaga gattctgctt ggtctagtca atc 163

<210> 428
<211> 315
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(315)
<223> n = A,T,C or G

<400> 428

<400> 432

aaaaaaaagta atggaaaaat ggtgcaggt ttaatcncaa aangaactta attttngtng	60
attttgtttt atctgctaaa acactaatat ctataaaatat gaactgacag catcgttcta	120
aatttacttc tgaagagctg tggagacttc aataaaaatat aagaaggta ctggatcata	180
tttatggact gctgaattaa ctacccgaaa agtacgtt acttcaaag aacacaaaac	240
aaagtgaacg tggaaaaaaag ccttcttgc aaaagtccct ttatttagtcc tatcctctaa	300
aattccaagg cacagagcct tgatattcct ggattctgtt ttaagtaacc ttatgtttaa	360
atatgacact tgggatatgc acaatggaa aggtaggat atgtgaacaa aatttaattt	420
cttttttcca aaggagnca ttttctttaa atncatccta tccacttttgc cccacttccc	480
catgt	485

<210> 433

<211> 280

<212> DNA

<213> Homo sapien

<400> 433

actgtcaacta caatattaca ttctgcaaat gttattctgt tgcatacgat acaaaaatttt	60
agtggatcat ctctaaaggca catatgtgaa aacaaaatttgc tttaattact caagttcctt	120
tcaactgtat ttggaaatga tttaatctttt atagaatggaa aacctttttt ggacttagtt	180
tttttattaaa atggctcaat ttgtgttgat aaggatttgc ttaatattta atatgtcttgc	240
cttttcctct gggcacacca ttttgatcat taaccagagt	280

<210> 434

<211> 234

<212> DNA

<213> Homo sapien

<400> 434

ctttgctgcg catcagggtgc tttaagcttc ggaacaactg tgccaggattc tatttttagta	60
ttcttggaaatc atcattgggg aagtgttca gtgaagtttag ctctaaaaaaa actctttact	120
ctaaacaattt aaagaaaatat gccaaaggat ccataaggga tgaataaaattt attaaactat	180
taagaagttt ctataaaatat gcagtgtttaa ttcaataattt cataacggac tggt	234

<210> 435

<211> 330

<212> DNA

<213> Homo sapien

<400> 435

accccccgtg tcaccaggttc ccacagaagc actgcaaaaac tccacatgtc tgctgagcgt	60
ctgtttgtgt cttcaggctt cttctgcaga gcttcgggg ctacccagggc aggtgcatac	120
atgcgaccag gacattggaa agagaacttg acatcagccca tgctaaattcg ggcagtcatg	180
tcctcatcaa tcattacact acggctattt agtgcatgtc gtggatgag gggctctatg	240
gtgtgttagga aagccatgcc ccttgccatg tccaaagcaa acttcacagc ctggctctgg	300
tccacgacga aattttgttcc ttcatgtatg	330

<210> 436

<211> 311

<212> DNA

<213> Homo sapien

<400> 436

acaactttac aatggaaattt tatttcaatg attattttta tatcagatta aaccttccaa	60
aaagttacac ataatttcaagg tctatTTTTT ctaccatggaa gagttctgtt aaatttacaa	120
accccataat cacagtgttc agttttttaaa aaatttacaa cacagtaatc ctgtcaatgt	180
taatcaaaaat caaaaacttcg gaatggccgtg gcatttatgt gaccaatctg agtttttagat	240

acaaataccca gctgtttatc ccatgaacca ttttcctag gctgaggctg tgaaaaatcg aaagtccggcg t	300 311
 <210> 437	
<211> 355	
<212> DNA	
<213> Homo sapien	
 <400> 437	
actagtggat gggggtcagg gtgtcactcc aaggccctct acagacccag agaagagggaa agtcaaaaaa gccagatatg agactgctga agtggtgta agaaatatacg gcaaggtaaa gggaacaaga tctgggctcc ctccctacttg tgccctcac tggacctcg acaccctacc tctaagactg gttcttagaa ggctgaacag taaggagcat tccaatagct tctgaaactc ccaaggctgt ttcaagtagt cgaaagccat ccctggactg tttaggtgcc tttctattt cccacctgag ctctctgccc tttctttgag cctcacaggt ttccagaatt acagt	60 120 180 240 300 355
 <210> 438	
<211> 431	
<212> DNA	
<213> Homo sapien	
 <400> 438	
acagtaactt taactttaca tagagctgag ataaaaataa agctttctta caaattacat tttttttcca gtgaattact ttgcagtaa aaatagctgc tacataaatac cctcctgatc tctgaaaagg agttgcataat ttccaaaaat aatattctta ttttaatcac acagaagaac gtggagcaca ggaaggaaat ggctgggtgg tcagagagag gtgagctgtc ggagaaacac agttaaacta aaaaataaaa tccattttgt gtataaactg actttaaacgc atgcaaagaa gtggaaaaca tatgccattt gtcaagaaaa atactgcttt atagtttttta ctttacaatt aaaggagaaa gcagaggcca gatataagcc cagataataa cattaagtt tctcataaaa ctcccaaatg t	60 120 180 240 300 360 420 431
 <210> 439	
<211> 170	
<212> DNA	
<213> Homo sapien	
 <400> 439	
actgtcataaa aaaacagtgg agctctgtat tagaaagccc ctcagaactg ggaaggccag gttaactctag ttacacagaa actgtgacta aagtctatga aactgattac aacagactgt aagaatcaa gtcaactgac atctatgcta catattatta tatagtttgt	60 120 170
 <210> 440	
<211> 400	
<212> DNA	
<213> Homo sapien	
 <400> 440	
acgtaaaaag aacatccttc ccatcttcaa ggtcaagatt gaacgctgac tcctgcagga agtcttccag gattccccagg caggaatgtat ggctccctgt ccctgttagct ccaggagttc ttgcttccag cacgcctcac ataccagact gaatgttggc aggaggagtg accaggtcg tcatctgtgt ccctaccacc tacaacagggc cagcaatcta cccgtgtgtg tttgttggac agaattaacc atgatgggcg gccgaggccg cctggagcta tttgggggtt tggagagaac ctcttaggag agtgcagcc tctaggccag tgcaccaga ggaggtcagt ctcagtcctt ggagtgggtgg gatggaaacc agacgggact ggcattggcc	60 120 180 240 300 360 400
 <210> 441	
<211> 204	
<212> DNA	

<213> Homo sapien

<400> 441

accttagttac ttcttaagat caggtgtata aaactgtgga gtggagcggt atggtatgga	60
atgacttggaa atgtaagctg tcagggagaa aatgttggta cactttgtc aagatctggg	120
gttttctca tattcctgtc gtttggaaagca gttgaccaga aatgcttgcc agtactgc当地	180
aaggactgct gtgaaatgtg aagt	204

<210> 442

<211> 649

<212> DNA

<213> Homo sapien

<400> 442

acatthaatt ttttacaaca ttttctccct agagatataa ttttagatatt cctatctca	60
aagtaaaaat caaaatagga aataagcata gaaacagcct attggcagtg gttacacctg	120
catggtattt atgagtcctc aaactattgg aaatttattt caaccaaggt tctcttaagt	180
tttcattact tgggtgtaac tcgagagaaa actaatttat atcaatttac agtttagtgg	240
tcatgatcg gggaaagtga tactcttcca ctgactacaa gtcattgcag aggcagttt	300
gaacttttcc tttattccta atatacagga caaaccttcg cgacatctca ctacctcaaa	360
aatcaaattt aaatgaagta tccaggagta gcctaaagaa tgagtgtaat ctggatggat	420
tttagtctaa atttatgcct tgcttccatg taaagtatag taactccaga tatatgttcc	480
acagatgcaaa taatttctgt tcottgttcg gtgcagaata taatttatac ttccctgaaat	540
caactttgtc tattcatgaa aatagctgtc ttttatttgc ctttgtctca ctttgaatat	600
atatgatcca caggttacag acttttccaa taactacatt tcaacttgt	649

<210> 443

<211> 346

<212> DNA

<213> Homo sapien

<400> 443

acgtgggatt gaaatgcaca tacatgttt tgctaagagc acatacattt cattctccctc	60
actttgtca taacctcagc attgtcagat aacctcagtg agttaactca aagcctttta	120
ttatggaaag aactggcaca gttacatttg ccagtggcaa catcttaaa attaataac	180
tgatgggtca cggacagatt tttgacctag ttcccttttc tttagagca aaaagaactt	240
ttacctcgcc atccagccccca accccttaaaag actgacaata tccttcaage tcctttgaaa	300
gcaccctaaa cagccatttc cattttaata gttggatgcg gattgt	346

<210> 444

<211> 425

<212> DNA

<213> Homo sapien

<400> 444

accaatttcc ttttacagta aaggggcttt tcctgttgct tggtaaccg gttcccagct	60
gccattacc accaagccccca aaagagtaaa ttctgtctga tgaaggaaca aaagcagaag	120
tgtgctgccc tccacaagca atctcagtgta caatgttcc cataagttca aaaactttcc	180
ttgggtttat ttcatgactg gttagattat gcccactg accataccctt ccagctccaa	240
aagtaaacac tccacccccc ttgggttagag cagcagtatg atcttctcca caacaaatat	300
aaactatttt ctgagatctt agtgacttta gtaaatttagg aacataccta tcattttcat	360
cattaagacc tagctgacca aacttggcgtc gtcccccattcc aaagatagct ccagaaagg	420
tgagt	425

<210> 445

<211> 210

<212> DNA

<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(210)
 <223> n = A,T,C or G

<400> 445
 nactgtccca atataaaaca gtaattatTTT gacTTTgca ctgtttgtct ggtcTTTTc 60
 agTTTgattt catataaaatg tggAAacttga tagatctcta tatttttaat gcacttggta 120
 taaaactggca gcagggttag acattacttt caaagcttga ggttagaccga gtcagcatgc 180
 tagacaggct tctctctcta accaaaactg 210

<210> 446
 <211> 326
 <212> DNA
 <213> Homo sapien

<400> 446
 tcgaaagacc cctgtaaaag agcccaacag tgaaaatgtt gatatcagca gtggaggagg 60
 cgtgacagggc tggaaagagca aatgtctgtg agcattctcc ttggccatca gttggccatcc 120
 actaccccgt ttTctttct tgcgtcaaaa taaaccactc tgcccatTTT taactctaaa 180
 cagatatttt tggTTctcat ctttactatc caagccacct attttatTTt ttctttcatc 240
 tggactgtgtc tgcgtactttt atcataattt ttccaaaca aaaaaatgtt tagaaaaatc 300
 atgtctgtga gttcattttt aaatgt 326

<210> 447
 <211> 304
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(304)
 <223> n = A,T,C or G

<400> 447
 ncntcnaggt acatgtttaga agtctgtatgt ntgnngtaac acagaaacat acacagtctt 60
 catattcaaa gtcttcacng ggatgtcgTT ctgttaatttc ctgcgtttgg gtctttccca 120
 gaaacagctt tagtttctg ctccgaaaggc caaacacctt gggtgttca tacagaagac 180
 cttggTgggt gagtccattc tgcccaagtg ggtttcaag caggagatg cccactgtcc 240
 ccattaaaca ctcttgTggc ttgcattca ggagctgttag gttgtatatac tgacaaggaa 300
 gagt 304

<210> 448
 <211> 203
 <212> DNA
 <213> Homo sapien

<400> 448
 acatgaaagc ggcaatgcgg taaaaagcgA attcttaccc aaggTCAGAA ttttttatta 60
 agcgcattttt cattagtgg acaaacaacc ttataaaaccc ttatgtcaaa ccatataatg 120
 tgaagaatct ccatgggaga gatTTTTTTT cacccttcag aattatctt ttcccctaag 180
 accttcataat gaatcttcct tgt 203

<210> 449
 <211> 481
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(481)
 <223> n = A,T,C or G

<400> 449

acttgttcta taatactctg atgttcctt aaattcctga acaacattct gtttactaaa	60
tttctttct tcctttatc acaccaaatt ccaccctata atagaagcta attatttcag	120
aagcttttt agtgatcatt tattactttg tgtttactag atattaattc taagatgaat	180
tccttttagaa tttagaaaa aattattcta gacaacaatc aaagtaaagg atacatccag	240
cattgaaacc ataagccgge aagtctccag gttaaaaggt ttgtatcctc cagcaatgcc	300
agactgtgtc agacatctct gcaattcatc agcatctatc tgccatcct gtccagctac	360
agcagcaaag taaccataca gggatcctg agtttgtccg gaaaaacgcag gccctccggg	420
agccccctcca tactgcatct tgagttgaag tcttatangt agaagctggt gatccttaga	480
g	481

<210> 450

<211> 296

<212> DNA

<213> Homo sapien

<400> 450

acatggttta atacaacaac aaaaaaattt aatcaagtga aacgtaataa actgaacaat	60
aaacactcaa aacattttcc attggaaaca tggaaagaca atatgagggtt ttgttaccat	120
cttactgcaa ttttcttatg tgtaactagt ctacataccc catgtttct gtaatcatgc	180
agatgtgaat ggaagtttga atgattaaat aaatgaaaag tccgttact gcagggaaatc	240
atttcacaag gcagccaaac cgggtttaga gaacaaaact attcaagaaa ttctcc	296

<210> 451

<211> 294

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(294)

<223> n = A,T,C or G

<400> 451

acatgntcca aggcacgcgn ctgtgaactt cctctgagtg aaggcatccc ctccagcacc	60
tttcagcctg ctgttagga cgaccgcgg ccaccctcca ggacctccag ccctgcactg	120
cttttcctct cttttaaata atttttcatt gagttctaat atgaaaaaaaaaa agtttact	180
gtaaagtttgc caaataanga aattttttt aaaagtcttc agtaatctt ccagtaacaa	240
ttgttatggg cacatttgct ttggaaagat ttctttgtt tgcatggat aagt	294

<210> 452

<211> 129

<212> DNA

<213> Homo sapien

<400> 452

acttttagat cacaatttg ctttaagta acacataata cacttaaggc agatttgct	60
tacagggtgc ctcagttct aaacaccact acactgctt atataaaaaaa caaaaatcac	120
atagaagag	129

<210> 453

<211> 151

<212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(151)
 <223> n = A,T,C or G

<400> 453

actctcaann t	tgtattttagg	tgccaaacaca	tttaggatca	ttgngnnttc	tcagtgaatt	60
gacctttta	tgagaataaa	atgtctattt	ctgaaatgtc	cctatttctg	gaaatgttcc	120
ttatactaaa	gtccaaacttg	tgtggattan	t			151

<210> 454

<211> 119
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(119)
 <223> n = A,T,C or G

<400> 454

tgctgatgna	gcatgctttt	taaatccttt	aaaaacactc	accatataaa	cttgcatttg	60
acgttgtgtg	ttctttgtt	aatgtgtaga	gttctccttt	ctcgaaatttg	ccagtgtgt	119

<210> 455

<211> 515
 <212> DNA
 <213> Homo sapien

<400> 455

accttataaa	gttccttttc	atccttctct	gtcttcaact	gacattcaag	ttgttctctt	60
tcatgttgtg	ccttcttgag	tttggccctt	aaactgtcta	attcggtttc	tttttcaatt	120
gctttatgtg	ttactgacac	aatatcttcc	tcaagctgat	gggctttgga	tgttagcatca	180
ctgaacctct	tcttaaactc	ttcattttcc	atttttaagc	tttgtgttac	ttcagtaaga	240
cccttttgtt	ctgcttgag	ttggtcacat	ctttcttct	catggtaag	ttctctttcc	300
attctcccaa	tttgttctcg	aagtgtgtct	gtttcttttt	ccagaacggc	aattaacttt	360
aacagtctt	ctttttcttt	catggttttc	tcaatttca	actcaagaag	gcctgcttt	420
gtggtcacca	ctaacatgtc	agaatttctt	tcatcttcca	tagtaagcag	ctcttcaact	480
ggagaagaag	ctcgaaactg	gaaagggtgta	cctgc			515

<210> 456

<211> 350
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(350)
 <223> n = A,T,C or G

<400> 456

actccccctcc	ccaaatagaa	acctcaaaga	ctgatccatt	tcccctaggg	cctggggccag	60
gagtagctca	ctgctcaactg	ctgaggagaa	aggcacaaga	tataatgtca	taagagcagg	120
acagtggctc	agectacaga	gttccctata	ggggaaagaa	ggcaggaaat	aggcgccagg	180
tctggctctg	tccctgcacc	accctgagca	gctagtcttg	ggaagggatt	acaggccctg	240

ggccataggc tgctgccat tctgcttcc tatcctgttt ctctccctgt gctgctccct	300
tttagccagn gctgagaaat gttcancacc tgaggaaaaa ctgccccatgt	350
<210> 457	
<211> 293	
<212> DNA	
<213> Homo sapien	
<400> 457	
gcagggccaa cagtcacagc agccctgacc agagcattcc tggagctcaa gctcctctac	60
aaagaggtgg acagagaaga cagcagagac catgggacccc ccctcagccc ctccctgcag	120
attgcattgtc ccctggagg aggctctgtc cacagccctca cttctaacct tctggAACCC	180
acccaccact gccaagctca ctattgaatc cacGCCATTc aatgtcgag agggaaagga	240
ggttcttctta ctcgccccaca acctgccccca gaatcgatt ggttacaget ggt	293
<210> 458	
<211> 500	
<212> DNA	
<213> Homo sapien	
<400> 458	
actagactcc agattaccct ttcttaataa atatctcagg gtaaggaaag aaagaaaactg	60
tatagatata tttaaaatag agaatacttt ccaagcaata catgtatgcct ttccctaaaag	120
actctaaaag aaaaagattc tgtaactctc ttttagcacc aaattattgtt ttatcttgc	180
ggatattttt tatgaacagt gttaatttag atgcactaaa gcaaaggtag gcaaactaca	240
accatgatgc aaacatggcc acacccatc atttgcattt gtctaaatgt gtttgact	300
acaactgcag agttgaatag atgcagcaga tcctttacag aaaaagttt ctgacctcaa	360
ttctaaagta attgttagtag ggagctggag gactttctt ccctttatgg taattttttt	420
agctacaaaaa agacccctgc agaaatgggt gaagggatta atctttaaa aataaatgt	480
atataatttagg aaaataaaaaa	500
<210> 459	
<211> 394	
<212> DNA	
<213> Homo sapien	
<400> 459	
ggtaaaaaga cttgattttt tgaaaggatt gtttatcaaa cacaattcta atctcttctc	60
ttatgttattt ttgtgacta gggcgagggt tgtagcagtt gagtaatgtt gtttagctgt	120
taaggtggcg ttgtgcaggc cagagtgc ttggcttcc ttgtttctcc cgattgc	180
tgtgtaaaga tgccttgtcg tgcagaaaca aatggctgtc cagtttattaa aatgcctga	240
caactgcact tccagtcacc cgggccttgc atataaataa cggagcatac agtggcaca	300
tctagctgat gataaaataca ctttttttc cctcttcccc ctaaaaatgg taaaatctgat	360
cataatctaca tgtatgact taacatggaa aatg	394
<210> 460	
<211> 279	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(279)	
<223> n = A,T,C or G	
<400> 460	
actnccgatt gaagccccca ttctgtataat aattacatca caagacgtct tgcactcatg	60
agctgtcccc acattaggct taaaaacaga tgcaattccc ggacgtctaa accaaaccac	120

tttcaccgct acacgaccgg ggtatacta cggtaatgc tctgaaatct gtggagcaaa	180
ccacagttc atgcccattcg tcctagaatt aattccctta aaaatcttgc aaataggccc	240
cgtatttacc ctatagcacc ccctcttagag caaaaaaaaaa	279

<210> 461

<211> 278

<212> DNA

<213> Homo sapien

<400> 461

tttggacact aggaaaaaac ctgttagaga gagtaaaaaa tttaacaccc atagtagggc	60
taaaagcagg caccaattaa gaaagcggtc aagctcaaca cccactaccc aaaaaatccc	120
aaacatataaa ctgaactcct cacacccaat tggaccaatc tatcacccta tagaagaact	180
aatgttagta taaagtaaca tgaaaacatt ctccctccgca taagctgctg tcagattaaa	240
acactggact gacaattaac agccaatatc tacaatca	278

<210> 462

<211> 556

<212> DNA

<213> Homo sapiens

<400> 462

aacgtccaag gggccacat cgatgatggg cagggggag gtcttgggt ttttgtattc	60
aatcaactgtc ttgccccagg ctccgggttg actcggtcag ccatcgacag tgacgctgt	120
ggtaagcgg ctgttgcctt cggcgccgt ctgcgtctcg ttggagccct ggaggagcag	180
ggccttcgtt aggttgcagg tctgtgttgc catgtaggcc acgctgttct tgcaagtggta	240
ggtgatgttc tgggaggcct cggtgacat caggcgccagg aaggctcagct ggatggccac	300
atcgccaggc tcggagccct ggccgcata ctgcgaactgg aatccatcg tcatgctctc	360
gccgaaccccg acatgcctt tgccttggg gttctgttgc atgtaccagt tcttctggc	420
caactgggc tgagtgggtt acacgcaggc ttcaccatgc tccatgttgc agaagacttt	480
gatggcatcc aggttgcaggc tttgggttggg gtcataatccag tactctccac tcttccagtc	540
agagtggcac atcttg	556

<210> 463

<211> 659

<212> DNA

<213> Homo sapiens

<400> 463

cacactgtgc cttccagggt gctggcccg tacaaggccc tgaacctcac cgaggatacc	60
tacaagecccc ggatttacac ctgcggccacc tggagtgcct ttgtgacaga cagttcctgg	120
agtgcacgga agtcacaact ggttatcatcg tccagacggg ggccttggt caaatattct	180
tctgattact tccaaaggccc ctctgactac agataactacc cttaccatgc cttccagact	240
ccacaacacc ccagcttccct cttccaggac aagagggtgt cctggccctt ggtctacctc	300
ccacccatcc agagctgttgc gaactacggc ttctctgttgc cttcgacgc gtcctctgtc	360
ctggggctca ccaagtctgg cggctcagat cgcaccatgg cttacggaaa caaagccctg	420
atgctctgcg aagggtcttt ctgtggcagac gtcaccggatt tggaggctgtt gaggctgc	480
attcccaggc ccctggacac caacagctcg aagagcacct cttccctccctt ctgcccggca	540
gggcacttca acggcttcccg cacggtcatc cggcccttctt acctgaccaa ctccctcagg	600
gtggactaga cggcgtggcc caagggtgtt gagaaccggaa gaaccccttca	659

<210> 464

<211> 695

<212> DNA

<213> Homo sapiens

<400> 464

acccatcattt gacccatca gcttcaggc cttcttaca tttccactgg cctgatccat 60

gtatgcaatg ctattttgc agtgatatgt gatgttctgg gaagctcggc tggagagaag 120
 tcgaaggaat gccagctgca catcaaggac atcttcagga agttcaggat tgcccttagct 180
 aaactgaaaa ccaccatcca tggactctcc aaaccaaacg tggttcttct cagcactaga 240
 atctgtccac cagtgttcc gtgaaacatt caaaggattg gcacttatgc atgtttcccc 300
 agttccata ttacagaata ctttgatagc atccaatttgc catccttggta tagggtcaac 360
 ccagtattct ccacttttgc gttcaggatg gcagaatttc aggtctctgc agtttctagc 420
 ggggtttta cgagaaccat cagactaat gaggcttct atttgtccat taacagactt 480
 gagtgaagtc ataatctcat cgggtttgtat ttgaaatcc attgttcat ctccataata 540
 cggggcaaaa ccgcagctt ttcacactcc aatcccagca atggcagcgg ctccaacacc 600
 accacagcaa ggaccagggg caccaggagg tccaggaggg cctggttgccttgggtggcc 660
 tggggagccc tcagatcctc tttcacactctt gttac 695

<210> 465

<211> 73

<212> DNA

<213> Homo sapiens

<400> 465

cagggtccaga gctcccaagggt ttccagggttg cagtcctcc agtcccagag ctcccagggt	60
ttcggtttcc agt	73

<210> 466

<211> 507

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(507)

<223> n = A,T,C or G

<400> 466

agcaactggca gaggnagcca aatatagtga tgtgcgccag agataagtat tctcctctcc 60
 aagcatatttgc ctataacaaga ctttaaagac ttcataaaag ccaaacttgc agagtcctgt 120
 catggagtag ccaagggaaag tcggagccca tccttttagcc aaaccacgaa caccatcctc 180
 tttaagtgttactgagaatc cgttaaatat gcccttgcattttgggtt ccacactgcatt 240
 acggcatttc actaaatcca ggggaaccac agcagtgtgt gtcagaccac aacttaagac 300
 cccaccaaaag ccacacagtgc cataataactt cgcggagccaa aattcacaac tgtactcttc 360
 cacggccggcg gtcggcagggt tgcgaggcg gccccctgg cccgtggcccttggggagct 420
 gtcggcggagg tccccgagac catcgtgcac canctgcaga tgtggcgtgt tgaagggggtt 480
 cggccggccca aggtgcgcca cggacga 507

<210> 467

<211> 183

<212> DNA

<213> Homo sapiens

<400> 467

cctcatgagc taccgggcca gctctgtact gagggtcacc gtctttag gggcctacac	60
cttctgagga gcaggaggga gccacccctcc ctgcagctac cctagctgag gagectgttg	120
tgagggcag aatgagaaaag gcaataaaagg gagaaagaaa aaaaaaaaaa aaaaggcgg	180
ccg	183

<210> 468

<211> 129

<212> DNA

<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(129)
<223> n = A,T,C or G

<400> 468
gccccgcgt cgacccgcgc cgtcggcnc cggccggc catggagctg tggacgtgtc 60
tgcgcggc gctgttgt ntntgctgn tggtcagtt gagccgcncn gccgagttct 120
acnccaang 129

<210> 469
<211> 243
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(243)
<223> n = A,T,C or G

<400> 469
gccccgcgt cgacngcca tggagactgt ggcacagtag actgtagtgt gaggctcg 60
gggcagtgg ccatggaggc cgtctgaac gagctgggt ctgtggagga cctgctgaag 120
tttggaaaaga aatttcagtc tgagaaggca gcaggctcg tgtccaagag cacgcagttt 180
gagtacgcct ggtgccttgt gcggagcaag tacaatgtt acatccgtaa aggcatgtg 240
ctg 243

<210> 470
<211> 452
<212> DNA
<213> Homo sapiens

<400> 470
cctcaagtac gtccggcctg gtggtggtt cgagccaaac ttcatgtct tcgagaagt 60
cgaggtgaac ggtgcggggg cgeaccctct ttgcgccttc ctgcgggagg ccctgccagc 120
tcccagcgcac gacgcaccccg cgcttatgac cgaccccaag ctcatcacct ggtctccgg 180
gtgtcgcaac gatgttgtcct ggaactttga gaagttccctg gtggccctg aeggtgtg 240
cctacgcagg tacagccgccc gttccagac cattgacatc gagectgaca tegaagecc 300
gctgtctcaa gggctcaget gtgcctaggc cgeccctctt accccggctg cttggcagtt 360
gcagtgtcgc tgcgttgttcat ctatgagggt gtttccctcta aacctacgag 420
ggaggaacac ctgatcttac agaaaatacc ac 452

<210> 471
<211> 168
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(168)
<223> n = A,T,C or G

<400> 471
cttctccgct cttcttanga tctccgcctg gttcggnccg cctgcctcca ctccctgcctc 60
taccatgtcc atcagggtga cccagaagtc ctacaagggtg tccacccctgt gccccggggc 120
cttcagcagc cgctcctaca cgagtgggcc cggttcccgcc atcagctc 168

<210> 472

<211> 479
<212> DNA
<213> Homo sapiens

<220>
<221> misc feature
<222> (1)...(479)
<223> n = A,T,C or G

<400> 472
gcaggcgctc cctctgtctg cccactcagt ggcaacaccc gggagctgg ttttcctttt 60
tggagcctca ncagtccct ctttcanaac tcactgccaa gagccctgaa caggagccac 120
catgcagtgc ttcaagatcc ttaagaccat gatgatcc tcataatttc tcattttct 180
gnntggcgca gcccgttgg cagcgggcat ctgggtgnca atcgatgggg catcctttct 240
gaagatctt gggccactgt cggtccactgc catgcagtgc ttcaacgngg gctacttcct 300
catcgccggc ggcgttgg tntttctt tggttccctt ggctgctatg gtgctaanan 360
tgagagcaag ttttgcctcg tgacgntttt ctteatccctt ctcctcntct tcatttgcgt 420
ggntgcagnt gctgagggtcc gccttgggtgt acaccacaat ggctgagccc ttntctgacn 479

<210> 473
<211> 69
<212> DNA
<213> Homo sapiens

<400> 473
gagcgatgga gctgtggtag ggagggtcca cagtgtccac tcgcccgtgtg cgaagggttga 60
ctcggtagt 69

<210> 474
<211> 155
<212> DNA
<213> Homo sapiens

<400> 474
gccgccactg ccgggagagc tcgtatggct tctcctgcgc gccgccccgt gtctggccga 60
gtccagagag ccgcggcgcc tcgttccgag gagccatgc cgaagccccga ggccgggtcc 120
cggttgggg actgcaggaa aaggcagcgg tggcg 155

<210> 475
<211> 282
<212> DNA
<213> Homo sapiens

<400> 475
ggtttcgacg ttggccctgt ctgtttccct taaaactccct ccattccaaac ctggctccct 60
cccacccaaac caactttccc cccaaacccgg aaacagacaa gcaacccaaa ctgaaccccc 120
tcaaaagcca aaaaatggga gacaatttca catggactt ggaaaatatt tttttccctt 180
gcattcatct ctcaaactt gtttttatct ttgaccaacc gaacatgacc aaaaacccaa 240
agtgcattca accttaccaa aaaaaaaaaa aaaggcggc cg 282

<210> 476
<211> 434
<212> DNA
<213> Homo sapiens

<400> 476
ctccaggaca gctgtccagct tgggtgcgtt gaagacgaag tggagcggat ggttgttagaa 60
acgagtgtatg gtgtcgacg gctgtcagtc ttccggatcc acgaaggcca agtccttgag 120

gtagagcatg tccacgatgt tggagcgctc ctcctcgta accgggatgc gcgtgtggcc 180
 gctctgcata atgctggcca ggacgcccga gtccagcacg gtgtggcgt ccagcatgaa 240
 gcagtcttcg agggggcgtga gcacgccctc cacggtccgg cagecagca cggcccttgc 300
 gagatcgctg taggggtcgc cgccgcccgcg cgccagctcc agcaccgcgt cccgcagccg 360
 cccggggccgc gcccgcagct ccagcagctg cccccacgggc agcgcgacgg gcagagttag 420
 caggacggcc aggc 434

<210> 477

<211> 314

<212> DNA

<213> Homo sapiens

<400> 477

ggcggggcgct agctggctcc gggcagctcg gccttggggcc ctteggggcc ccgagacgcg 60
 gggcgatga gtggggcgta cgctccacgc ggaagtcgga gcctcctccc ctggataggg 120
 tgtacgagat ccctggactg gageccatca ctttgcggg gaagatgcac ttctgtccct 180
 ggctggcgcg gccgatcttt ccgccttgcg accgcggcta caaggaccca aggttctacc 240
 gctcgcggcc tcttcacgag catccgctgt acaaagacca ggcctgttat atctttcacc 300
 accgttgccg cctt 314

<210> 478

<211> 317

<212> DNA

<213> Homo sapiens

<400> 478

aacagagtga tcattccagt taagcggggc gaagagaata cagactatgt gaacgcaccc 60
 tttattgtat gctaccggca gaaggactcc tatatacgcca gccaggggccc tcttctccac 120
 acaatttgggg acttctggcg aatgatctgg gatgtggaaat cctgctctat cgtgtatgtca 180
 acagaactgg aggagagagg ccaggagaag tttgtcccagt actggccatc tgatggactg 240
 gtgtcctatg gagatattac agtggaaactg aagaaggagg aggaatgtga gagctacacc 300
 gtcggagacc tcctggt 317

<210> 479

<211> 171

<212> DNA

<213> Homo sapiens

<400> 479

agtgcctttg ctagatgtcg tgacaggtat gccaccaaca ctgctcacag ctttcttag 60
 gacaccagtg aaagaaagcca cagctttct tggcgtatatt atactcaact agtcttaact 120
 tttcaccagg ggtgctcacc tctgccccta ttgggagagg tcataaaaatg t 171

<210> 480

<211> 65

<212> DNA

<213> Homo sapiens

<400> 480

cccccagtgg aaggctccca ccctggtaga tgaacagccc ctggagaact acctggatata 60
 ggagt 65

<210> 481

<211> 207

<212> DNA

<213> Homo sapiens

<400> 481

cacagcgtgc tctgcggggt cactccact ttgttagtga tgtggttatc tcctcagatg 60
gcagtttgc cctctcaggc tcctggatg gaaccctgcg cctctggat ctcacaacgg 120
gcaccaccac gagggcattt gtggccata ccaaggatgt gctgagtgtg gccttctcct 180
ctgacaaccg gcagattgtc tctggat 207

<210> 482
<211> 319
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(319)
<223> n = A,T,C or G

<400> 482
cacactgtgc cttccagtt gctggccgg tacaaaggcc tgaacctcac cgaggatacc 60
tacaagcccc ggatttacac ctgcgccacc tggagtgcct ttgtgacaga cagttcctgg 120
agtgcacgga agtcacaact ggtctatcg tccagacggg ggccttggg caaatattct 180
tctgattact tccaagcccc ctctgactac agatactacc cctaccatgt cttccaaact 240
gcacaacacc cnagcttnct cttccagnac aagagggtgt cctggccct gcctacctc 300
cccaccatcc agagctgt 319

<210> 483
<211> 233
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(279)
<223> n = A,T,C or G

<400> 483
acaggcccaag tggcgccctag cttcagctg ctgggctctc ccgagcctgc cttagcccat 60
acaaccactt gatcacgcgg gcattgcgt ccaccacccga cacccatag gaaacgcgt 120
cccgcccccgg ctcccaaca gtcaccgagc tgcggcggga gcagcccccgt tcagagctgc 180
ccggcccaagc actggccct gccaggagaca cnatatccga gctggccctg gcc 233

<210> 484
<211> 194
<212> DNA
<213> Homo sapiens

<400> 484
agagcccttg ctgggggggtg cttggagat gggtaagaa gagctttcat ttgtctggta 60
gatagatagc atgttaaggggg gtgttgtcc caggaggcag ctgtgtacag gtttgtaca 120
cacagcccccgg gactgtgttg cttgggtgtc cattcagaga gggctatca tctgggagcc 180
tgtgccccctg ggtc 194

<210> 485
<211> 67
<212> DNA
<213> Homo sapiens

<400> 485
tccatatcca ggtagttctc cagggctgt tcatctacca ggggtggagc ctcccactgg 60
ggaaagt 67

<210> 486
<211> 70
<212> DNA
<213> Homo sapiens

<400> 486
taccgagtca actttcgcac acggcgagtg gacactgtgg accctcccta cccacgtcc 60
atcgctcagt 70

<210> 487
<211> 257
<212> DNA
<213> Homo sapien

<400> 487
actcccgatt gaagccccca ttctgtataat aattacatca caagacgtct tgcactcatg 60
agctgtcccc acattaggct taaaaacaga tgcaattccc ggacgtctaa accaaaccac 120
tttcacccgct acacgaccgg gggtatacta cggtaatgc tctgaaatct gtggagcaaa 180
ccacagtttc atgccccatcg tcctagaatt aattccctta aaaatcttg aaatagggcc 240
cgtatTTacc ctatagt 257

<210> 488
<211> 378
<212> DNA
<213> Homo sapien

<400> 488
actctgtat ggtgtggct tcctttaaac tcaggataga tgccaggtgg gctccgtttc 60
cgtaagactg acactcgacg tcggcatcag accagttct cagcttcctg aagtaaccat 120
agcaatttggaa ctttgtgtaa aaccatccag gggcacagct gggtctcatg atgatatcac 180
ccaggactcc tggggcc aggcagctca gcaataggag cagccgcattt cttctggaaag 240
ccatcttcctt cctaccctga ggtatgttagt agtgcagagac tctctagagac cttactagcg 300
cttctttgaa actccctgggt tctccttgat ctgcaaattt gtytggcaac caagactcta 360
agggcccccctg ctttccttc 378

<210> 489
<211> 429
<212> DNA
<213> Homo sapien

<400> 489
ccgaggtaca cagaagttt aatcacaaaa cataattacc acaataaaac acagtgttca 60
agtatcttgg cagacaatc tgccgcacaa actgcaattt aaattaacta cacagactaa 120
aaactataca gcctaccatc aacagttgtg cattataaaa aggttagttc ttccctttt 180
tttttaagtca ggaacaggta gatTTTTaaa aatatatata caagctaaca cacacrgcta 240
tcagcactaa tgcccccccc tcaactttt ctttttctta tagaaaaatgg aaagcttaca 300
atacctcttc srtymwrgmr scagrcctwc gagccwgct grasagggtk wgcmtkggar 360
magmtstgkc ctgagggtta gagccgcctt gtgcggggat ggtggaggct agggtggggg 420
tgagaaaaag 429

<210> 490
<211> 532
<212> DNA
<213> Homo sapien

<400> 490

ttggattgcc acacggctca cattgcatgc aagtttgcgt agctgaagga aaagattgat	60
cgcgcgttctg gtaaaaaagct ggaagatggc cctaaattct tgaagtctgg tgatgctgcc	120
attgttata tggttccctgg caagccccatg tgggttgaga gcttctcaga ctatccacct	180
ttgggtcgct ttgmkgktgt atatgagaca gacagytgcg gtgggtgtca tcaaaggagt	240
ggacaagaag gctgctggag cccgcaaggt caccaggact gcccagaaaag ctcagaaggc	300
taaatgaata ttatccctaa tacctgccac cccactcta atcagtgggt gaagaacggt	360
ctcagaactg tttgttcaa ttggccattt aagtttagta gtaaaaagact ggtaatgat	420
aacaatgcat cgtaaaaacct tcagaaggaa aggagaatgt ttttgtggacc actttggtt	480
tcttttttgc gtgtggcagt tttaagttat tagttttaa aatcagtacc tc	532

<210> 491

<211> 567

<212> DNA

<213> Homo sapien

<400> 491

tcgaggtaaa cccatccatc aaaaggagtt cagcttttat aaacacccaaa acactctctg	60
cctgtaaaat gtttttgcgt aaatttgtat cattaactct caaaatttaca tcttcatgtt	120
tgagatacgc ttttaggact gcttatgcgt gtagactttg gtcaactctc tcctcctccc	180
tcaataaaatc agttaactta aaaaatatat ttttataaaaat acatgttcat	240
aaaacagatc aacatattta gcttatacag aaataaaatt aagtcaatcc actcacaag	300
aatttctatt ttgtaaaaat gtagcttgcgt tttcagtata ataaaatctg atgcaaaaaa	360
cctggccggg cggcaagtgt gctggattc tgcakatatc catcacactg gcgscgctc	420
gagcatgcat cttaggggc caattsgccc tatagcggcg cattaagcgc ggcgggkgtg	480
gtggwtacgc gcasygtgac cgmtacactt gccarcgccc tagmgcmgc tccttcgcw	540
ttcttcctt cctytcgc cacgttc	567

<210> 492

<211> 422

<212> DNA

<213> Homo sapien

<400> 492

agtgtgctgg aattcgccct tggccgccccg ggcaggtaaa agactcaata atcacctgac	60
ttagctccaa ttaactgagg agaaaacgggg tggaggaggg ggctgggtgc tattcagact	120
tgataatgag attgatctgt cccatggaga gtgaaagttc agttccactt ctgcctcett	180
ctttccatgc tggcctcatg ctctttatcc tcacttcctc agtcccttca acactcaaaa	240
tctgatttta ttctctctc acacgtatca gggcagttt ctgaagttgc tgaggttggaa	300
ttttcttcac aaacctctat aaaacatcag cagagaacat ataaaatcat ttgtattagc	360
atacattgca aaatttctcc cacaatgtca gggatgaaa gcaggtggc cccactgaga	420
gt	422

<210> 493

<211> 318

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(318)

<223> n = A,T,C or G

<400> 493

agtgtgctgg aattcgccct tagcggccgc cctggcaggt aagctttttt tttttttttt	60
ttttttttgtt gattaacatc tttaattcaa atgkaaaagt tcaataacaag ccatttatacg	120
ggcttgagat ttgttggctt tttaaaaaca araaatgggg aaatgcaaca aaatgacctt	180
tccacttttc aaaagcttcc aagtaaaagga tagatcatag gcccataaaa gatccattta	240
atsaaaccca cttyaccc cttaccaattt gtcttacacc cantccacaa tcttaataca	300

tattcctgaa	natttaca	318				
<210>	494					
<211>	360					
<212>	DNA					
<213>	Homo sapien					
<400>	494					
accttttact	acaacaagta	aacatgcata	ataaaagttagg	attcatccaa	tgtctgacct	60
ttctttgcat	caaaaagaaca	tttccggcca	ggcacgggtgg	ctcacgcctg	taatcccagc	120
actttgggag	gcccggccag	gtggatcacg	aggtcaggag	atcgagacca	gcctggctaa	180
catggtgaaa	ccctgtctct	actaaaaata	caaaaatgag	ccgggcatgg	tgggggggca	240
ccgttagtccc	agctacttga	gaggctgaga	caggagaatg	gcgtgaaccc	ggggggcgga	300
gctttagtgc	agccgagatc	gcgccactgc	actccagctc	gggtgacaga	gtgagactcc	360
<210>	495					
<211>	329					
<212>	DNA					
<213>	Homo sapien					
<220>						
<221>	misc_feature					
<222>	(1)...(329)					
<223>	n = A,T,C or G					
<400>	495					
gaggtctggg	atggggcttc	actgctgtga	cttcctcctg	ccaggggatt	tggggcttgc	60
ttgaaagaca	gtccaaagccc	tggataatgc	tttactttct	gtgttgaagc	actgttgggt	120
gtttggtag	tgactgtatgt	aaaacggttt	tcttgtgggg	aggttacaga	ggctgacttc	180
agagtggact	tgtgtttttt	cttttaaag	aggcaagttt	ggctgggtgc	tcacagctgt	240
aatcccaagca	ctttgagggtt	ggctgggant	tcaagaccag	cctggccaac	atgtcagaac	300
tactaaaaat	aaagaaatca	gccatgaaa				329
<210>	496					
<211>	292					
<212>	DNA					
<213>	Homo sapien					
<220>						
<221>	misc_feature					
<222>	(1)...(292)					
<223>	n = A,T,C or G					
<400>	496					
acctgggatg	agggtgggtgg	agctttgaat	ctaccactat	ccagggccaca	cacctagaag	60
ctctggtttc	attgtttcat	tgatttcatt	gttttGattG	atgtgcac	taggcagcag	120
agttttcaat	gtctccagg	tgtttctaaa	gtgcagacaa	gtttangacc	gtgtttgggg	180
gtgaaggggca	ggactgtatgt	ggggaggggc	aaatatgggg	cccttgggtt	gcaggcaatg	240
gttttccttg	acctgaatgg	gggtctcaca	gggttgcata	atacatatac	gt	292
<210>	497					
<211>	549					
<212>	DNA					
<213>	Homo sapien					
<400>	497					
tcgaggtacc	gaccatagag	caagaatcaa	gattctgcta	actcctgcac	agccccgtcc	60
tcttccttcc	tgctagctg	gtctaaatctg	ctcattattt	cagagggaa	gcctagcaaa	120

ctaagagtga taagggccct actacactgg cttttttagg cttagagaca gaaactttag	180
cattggccca gtagtggttt ctatctctaa atgtttgccc cgccatccct ttccacagta	240
tgcttccttcc ctccctccct gtctctggct gtctcgagca gtctagaaga gtgcacatcc	300
agcctatgaa acagctgggt ctttggccat aagaagataaa gatttgaaga cagaaggaag	360
aaactcagga gtaagcttct agcccccttc agcttctaca cccttcggcc ctctctccat	420
tgcctgcacc ccaccccagc cactcaactc ctgcttggtt ttcccttggc catggaaagg	480
tttaccagta gaatccctgc taggttgatg tggccatatac attccctttaa taaaccattg	540
tgtacctgc	549

<210> 498

<211> 412

<212> DNA

<213> Homo sapien

<400> 498

cttgaagctg ggagggtggag gttgcagtga gccgagatca caccactgta ctccagcctg	60
ggcaagagaaa tgaaactctg tctcaaaaac aaaaataaaa aaaaaaaaaa aactcttgc	120
attctggaaa tgtccacaat tcagtcttca cctgcctcca tcctcatgaa ggcaccagg	180
gagcgggggt ggctcacctg atttcttgggt taggtctgtt ctgttccctt tttatgcggg	240
gtctgtcggt gggcaactgtc ccaatgtgag gggccaggc tccatcgtag cctcttaacc	300
agctcagtgc caggaagggt ggactttgac aaaaacccac ctcaaatactg cactcccaa	360
cctggagtgc aacctgtggc aagctcccta ggctctctgg gcctcagttt cc	412

<210> 499

<211> 447

<212> DNA

<213> Homo sapien

<400> 499

acttttaaga atataactttg atattaatatg tatgttagta aaactccacg tgggtgtacc	60
attatttatgt ttttgtttt aaaaatggggta tgtaatacta ataaccata cctataaaat	120
aaagcacaca attgttccgg cgattttaca aatctttttt tccagggtgtaa aagtctacaa	180
aaattccaaa aaattttagaga acactgaaaa catattaaag tttgacatcc aactttatag	240
tatccatgt ttaccctgaa agataactta aaaaatatgg ctttctttaga acaggccact	300
ctgttattat aaaaatattgg tgacagcaag aaattgtatc actgtatgtt ggaatttttg	360
taaatagttt tctctccaaa tcattagaaa aatgttcaaaa aataaaaaca aaataaaaata	420
tgggtgggtt ccctaaacta ttttgaa	447

<210> 500

<211> 527

<212> DNA

<213> Homo sapien

<400> 500

gtttgcttct tgcatactgtat taactagaat atttctcttt cccctttta atttgtatg	60
tcacttgacc ccatttatgt gttaggagcac tacaccattt gtttccaata ctgcacacat	120
aagatacata cttgtgtgca gaaagtatct tcctccaggc ttgtataacc cttcacatgg	180
agatataatg agggaaatct ttagtattctg tataaaaaca aaagcaaatt tataactaa	240
aatcattttgt ctaaaaatttt aagttgtttt caaaaaaaa taaaatgtca tttctgtat	300
gcactgttgg tgggtccctcc agctttttt gctctctatg agtactact taagtcaactt	360
gttggagggg attattttact aattatatac ttctcattcc tggtaactcca ttccctttaa	420
acagtgggtga tatcaaataat acttccatcc attgaatggg gtatTTTaa caacaacaaa	480
agtatatac taaaaatgt attgtttaag gcttattgaa tcatttt	527

<210> 501

<211> 304

<212> DNA

<213> Homo sapien

<400> 501

gagggtggcc accaaagaga ccattgagca ggagaagcgg agtggaaattt cctaagatcc	60
tggaggatt cctaccccg tcctcttcga gaccccagtc gtgatgtgga ggaagagcca	120
cctgc当地 ggacacgagc cacaagctgc actgtgaacc tggcactcc gcgccatgc	180
cacccggctg tgggtctctg aaggggacccc cccccaatcg gactgccaaa ttctccggtt	240
tgc当地ggga tattatagaa aattattttgt atgaataatg aaaataaaac acacctcgta	300
gcaa	304

<210> 502

<211> 425

<212> DNA

<213> Homo sapien

<400> 502

actgattgtc atcctgactt tggcattggc agctcttata ttccgacgaa tataatctggc	60
aaacgaataac atatttgact tttaggttata atatggtttt gtgactttag agctgtgact	120
caactgcttc attaaacatt ctgcattggg tataatctaa gaattgttta caaaaagatt	180
attttgtatt taccccttcat tcctttttt gatccttgta agtttagtat aaatataatct	240
agacattcag actgtgtcta gcagttacgt cctgcttaaa gggactagaa gtcaaaggtc	300
tttgtctcac tatttgatct gcttgcagg gaaataactt gtttttctc atgtttcatc	360
ttctttttat gtaaattttgt aatactttcc tatattgccc tttgaaattt ttggataaaaa	420
gatga	425

<210> 503

<211> 256

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(256)

<223> n = A,T,C or G

<400> 503

accagcagtg tgtcaggtgc tgcaagcgt tcttggagaa ggcccactga ggcagggtcg	60
tgc当地ctgctg cgcccaagccct gactagaccc caccctgagg tcctgcattt ctcagtcggt	120
gtgtaatcac gttccaggc ccaaagccca gctctttgtt cagttgactt actgtttctt	180
accttaaaaa gtaattgttag atggaaatca gttgtgtttg gcangagaat caataaaaaat	240
ctttgattca gacagc	256

<210> 504

<211> 255

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(255)

<223> n = A,T,C or G

<400> 504

actgttaatg atgttaatga tttttttta aactcatata ttgggatttt cacccaaaata	60
atgcttttga aaaaaagaaa aaaaaacggg tatattgaga atcaaagttag aagtttttagg	120
aatgc当地aaat aagtcatctt gcatacaggg agtggtaag taaggnttca tcacccattt	180
agcactgctt ttctgaagac ttcagttttg ytaaggagat ttaggatkta ctgctttgac	240
tggtggccct ctasa	255

<210> 505
<211> 485
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(485)
<223> n = A,T,C or G

<400> 505

agcttgggcc	gagctckgat	cccctagwaa	cggccca	gtgtggaga	attccccctt	60
agcgtggcn	ttgcccggagg	tacagaaaac	ccaaaggcaa	ccacatagca	tatgtaaaat	120
gtgcaaatca	ctttaaaatg	caagttatc	tatagcattt	gcaagataga	atttcactgn	180
aatttagggaa	tctagttcat	cctaacttaa	tagtctttt	catgtataga	caatgcattt	240
ctacaaggca	caactcagcg	ttgatgctaa	agtatgaaac	acatcctcg	attattttatt	300
tgaaaatatt	aaaatagcat	cgttatttat	tttttaatga	gtcatgagct	catttctaaa	360
gcttcataaa	gcattacact	gataacatat	gtgtggtcag	gacaaactgt	tccctgaact	420
taagaggtga	aggacaagac	cccatattat	tatcctgtat	taaaaaagga	aatatacata	480
tatgt						485

<210> 506

<211> 230

<212> DNA

<213> Homo sapien

<400> 506

acaactccaa	aaggagacat	tggagaagaa	ccaagctggg	tctataagga	attgcacatg	60
agatggcaca	catatttatg	ctgtctgaag	gtcacatca	tgttaccata	tcaagctgaa	120
aatgtcacca	ctatctggag	atttcgacgt	gttttccctt	ctgaatctgt	tatgaacacg	180
ttggttggct	ggattcagta	ataaaatatgt	aaggcctttc	tttttaaaaaa		230

<210> 507

<211> 179

<212> DNA

<213> Homo sapien

<400> 507

acctacttot	ccacacccgt	gttgcttggg	aaaaaggcga	tcgagaagaa	cctgggcac	60
gcacaaactct	cctcttttga	ggagaagatg	atctcgatg	ccatccccga	gctgaaggcc	120
tccatcaaga	agggggamta	tccsgtgaac	accctgaaaa	gakccgctgt	gacgggtgg	179

<210> 508

<211> 321

<212> DNA

<213> Homo sapien

<400> 508

acagagtttt	ataaaaaattt	aaaccaattt	ttaaaaacaaa	actgcggaca	ccaccataaa	60
aatggaatca	aaagaaaatgt	aattttatgaa	attaagaggt	cagcagaata	tactcagtga	120
tggaaagacac	ttgggaaatgt	cttttaataa	gaacaagaac	gatcttaattt	taagaatatt	180
atcctggttt	aacaacagt	cctgtttac	aacagattgt	gccttatctc	atctgcagcc	240
gaggaataaa	ggattctgtat	tagaaagagg	gttgccatac	gatttagtaag	caattcccttg	300
gatcttatgc	acagaacttg	t				321

<210> 509

<211> 176

<212> DNA

<213> Homo sapien

<400> 509

acgtgggata cgggtcatgg	gcagagctcc	tggcctca	gtgcctcct	gatctatcca	60
taggcctgga	agatcagcac	tggatgacg	atgagcagaa	tggcatgag	120
atcaggccc	acatgttca	gcacttgcc	ggtggatgc	targctggg	176

<210> 510

<211> 298

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(298)

<223> n = A,T,C or G

<400> 510

accaacttta tatcatatgt	ttataacaatt	taatttaaaa	attcatttta	aggaagacag	60
ataatggaa agactttgt	ttttcttgac	taattcatg	aagtatcatt	ttttgactga	120
gtctccattt acttcattct	taatgattat	tgtcatccct	ttaaatctgt	gcctttttct	180
tcttgagcga agctgttga	gtaaaacctgt	tgaagagtgt	tttgttcttt	tgtgtttttt	240
tgttgntatt aaaacaccaa	ctaaacccta	tagtcaagac	aaggctctat	gtttctgt	298

<210> 511

<211> 345

<212> DNA

<213> Homo sapien

<400> 511

acagattttt gtatacgctga	taagattctc	tgttagagaaa	atacttttaa	aaaatgcagg	60
ttttagcttt ttgtatggct	actcatacag	tttagattta	cagcttctga	tgttgaatgt	120
tcctaaatat ttaatggttt	ttttaatttc	ttgtgtatgg	tagcacagca	aacttgttagg	180
aatttagtac aatagtaaat	tttgggtttt	tttaggatgtt	gcatttcgtt	ttttaaaaaa	240
aaattttcta ataaaattat	gtatattatt	tctattgtct	ttgtcttaat	atgctaagtt	300
aattttcact ttaaaaaaagc	catttgaaga	cctaaaaaaaaa	aaaaaa		345

<210> 512

<211> 459

<212> DNA

<213> Homo sapien

<400> 512

acttattttca acaatttctta	gagatgctag	ctagtgttga	agctaaaaat	agcttttattt	60
atgtctgaatt gtgatttttt	tatgcAAAAAA	tttttttagt	tctaattcatt	gatgatagct	120
tggaaaataaa taattatgcc	atggcatttg	acagttcatt	attcctataa	gaattaaattt	180
gagtttagag agaatgggg	tgttagctg	attattaaca	gttactgaaa	tcaaatattt	240
atttgttaca ttattccatt	tgtatttttag	gtttcctttt	acattttttt	tatatgcatt	300
ctgacattac atattttta	agactatgga	aataatttaa	agatthaagc	tctggtgat	360
gattatctgc taagtaagtc	tgaaaatgta	atattttgtat	aatactgtaa	tataccgttc	420
acacaaatgc ttttctaatg	ttttaacctt	gagtattgc			459

<210> 513

<211> 422

<212> DNA

<213> Homo sapien

<400> 513

gccccgtagt gatgagcaact gactggttca ctggccacat ttttagttctt cataataata	60
ggccacaaaa gggctctgtg gtttgcctcc atgtgcactg gcccctcccc acccctagg	120
ggcactcagt agctgctgag aaggcctgtc cacgaggctg ttgaaacccc tccaataaat	180
acttagaggt agtgatctg atgcttgttt tcgtggagaa aattgtattt gagaacttaa	240
aacatcacga atattttaa taggatccgc agacacccaa aggagaagct tggcttttc	300
caggtatttc caacttgagt tcagcccaa gccttgaaa ggaatgcatt accacatgac	360
cacatgctga gacccatgg ggtctaacac gggacctaag aaagtctctg cagccagata	420
gt	422

<210> 514

<211> 326

<212> DNA

<213> Homo sapien

<400> 514

accagtatag taatatctgt atactaacta gggcttgcata ttgtcaataaa ttttttaata	60
attttttaat gaggtattta ccactgaaga aatatgataa tataaaacca tcaaatttttta	120
taatttagat gatactctgg aaaaacatgt catttcattt tcagaaaaact cttaaagctct	180
cttcagtctc tgtaatgttt ctgattgcat gtttctcat gaaaagtatg ttgttgtttt	240
gatagaata ataataaatg taggctcagt tctttccag gattttcatc aaaaagcttt	300
aagtgcctaa ccctgttgt ctctgt	326

<210> 515

<211> 323

<212> DNA

<213> Homo sapien

<400> 515

accagatgta gcttagaaaa cccaaacgtt cttggatcc tgagacagct ggtaaggcacc	60
caggccggct agactgccaa agagcagccc tgcagccagg gacggcacgc tgcctgctt	120
tacatagcca atgatcccac cagaagcaac cagtgctcg tagccaaagc caaaccatg	180
caagggcact actgagccag tgcctgcattttcttc tctgtccaga caggagacta	240
ccccaggcct gcacccgtct cacgaaggcc cccgtgtct acaaggcgc gcaagccca	300
ggaatgactg cgagggtgtcg ccg	323

<210> 516

<211> 403

<212> DNA

<213> Homo sapien

<400> 516

accccggtgg ggttcatatc ctgccccaga agctggatga ggcagtggct gaagcccacc	60
tggcaagct gaatgtgaag ttgaccaage taactgagaa gcaagcccag tacttctaaa	120
tactgagtga atacatcaca gattgcataa agtgcattatg tgcaagttgt tgcattccat	180
tcaatcttc ctgtctgtt ttctggcaat ttcatattgt caaagattt gaaaacaatt	240
ctaaataaat cctgcacca gtgtttctca taagtgtggc cataatgtttt cattatttca	300
aacattactg ttaaaccctt ggttcttaca tctaatttgc atctatttgc gatacaggat	360
aactcaaaga gaattggaa ccacccatcc acccacaccc tgt	403

<210> 517

<211> 360

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(360)

<223> n = A,T,C or G

<400> 517		
acctgaacga agtcgcgggc aagcatggcg tggccgtat tgacatcgta gagaaccgt tcattggaat gaagtcccga ggtatctacg agaccccagc agcaccatc ctttaccatc ctcatttaga catcaggccc ttcaccatgg accggaaagt gcacaaaato maacaaggcc tggcttgaa atttgcgtag ctggtgtata ccggcttctg gcacagccct gactgtgaat ttgtccggca ctacatcgcc aagtcccagg agcgagtggg agggaaagtg catgtgtccg tcctcagggg ccaggtgtac ctgmccgggc ggcnctaac ggcgaattmt gcagatatcc	60 120 180 240 300 360	
<210> 518		
<211> 255		
<212> DNA		
<213> Homo sapien		
<400> 518		
cataaatatt atactagcat ttaccatctc acttcttagga atactagtat atcgctcaca cctcatatcc tccctactat gcctagaagg aataatacta tcgctgttca ttatagctac tctcataacc ctcaacaccc actcccttctt agccaatatt gtgcctattg ccatactagt cttgccgcc tgcgaagcag cggtggccct agccctacta gtctcaatct ccaacacata tggcttagac tacgt	60 120 180 240 300 360	
<210> 519		
<211> 449		
<212> DNA		
<213> Homo sapien		
<400> 519		
acccctctt caattttgtt gtgaacctga aatggctta aattaatact cttatTTTT atTTAATTAA attacataaa ttaaacctta ccatgaccaa attgtgttag gacggcctgc tatctacagc acagtgtgtc atttgcagat ttgtgttac ctataccacg ctaggtgttt tgacatgttt agtatttctg ctttacagtg ctgaattcca tatttttagaa gctatgaaag tccTTTATG AAAAAGTTAC tgattgcttc tcagttatta ggaaaacagt tgTTTcacaa ttattatgtt gatatgtatgc ccaaataatca tttttgtat atcttgcga tcttaagtt gttactattt tgTTTattcat gtctttaaat cagataccaa atatTTTTA ggaaagaaaa atgttattac tgTCatttagg ttggctttt	60 120 180 240 300 360 420 449	
<210> 520		
<211> 92		
<212> DNA		
<213> Homo sapien		
<400> 520		
acccccatca cagcagtcaa acagcctgag aaagtggcag ctaccaggca ggagatctc caggagcagt yggcaryagg gccagagatc cg	60 92	
<210> 521		
<211> 123		
<212> DNA		
<213> Homo sapien		
<400> 521		
acagagggga caacaatgaa tcagaacaga tgctgagcca taggtctaaa taggatctg gaggctgeet gctgtgtgg gaggatagg ggtcctgggg gcaggccagg gcagttgaca ggt	60 120 123	
<210> 522		
<211> 303		
<212> DNA		

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(303)

<223> n = A,T,C or G

<400> 522

acaaaaaaaaat	aatgttaca	aaaatcacgt	aaaaaaaact	aggctcaagg	aagcagccgc	60
ctttgcaga	gggctcaagg	cacctgagag	gctgagaaga	ggccaacctg	gccatggcg	120
tggctgcatt	gacagtctt	cccttcgtcc	tttccccaga	tgcccttccc	tcctgccccg	180
aggggcacac	tccctctccc	caattacagg	tgctacaaaa	ctgccttcaa	taccaccgaa	240
aaggcactgc	cagagatgaa	atgggcctg	agcagangcc	tcangctctc	cctccccctg	300
agc						303

<210> 523

<211> 424

<212> DNA

<213> Homo sapien

<400> 523

acagtgcatt	gtgctgtcac	ttggaaagcc	tttcaatgtt	gttttcagat	tgttgtatg	60
aatatgaaac	atgcagaccc	tcctttataa	agaaaaagac	cttaaaactt	gaatatgaga	120
taattttaca	ttttaaaagt	ttatggatt	ttcatattat	tcactttcaa	agccctttca	180
aatagaaaaag	gtatgaactt	ttggggggat	aatttatgtt	tcgtaaactt	attagaacaa	240
aatattcctt	atgtataatg	agttgttttta	tttataacaac	tttttcaatg	gtagtttgca	300
ctattcttta	ttatgtaca	gttttattta	ttatgaaaca	aaggaatatg	tattttatgt	360
attttaccat	gcataggta	actctttgcc	acagatttat	tggcttgc	acacctaataaa	420
taaaa						424

<210> 524

<211> 172

<212> DNA

<213> Homo sapien

<400> 524

acaatttcat	tgcagacaca	aagacttaag	agtttcaaag	aattttttaa	aataaaaaaaa	60
aaatttgcac	ttatttcctca	caaaatcttc	acttttgaa	ctatccaaat	tgaagctaca	120
cactgaattt	attaatacag	cattaagttt	ctttgtgtaa	aaaaatcttt	gt	172

<210> 525

<211> 256

<212> DNA

<213> Homo sapien

<400> 525

actccctccc	agttttttct	ttatactgag	ctttcaggaa	cagtaagcat	tctacagctt	60
catttatttt	agccttaggg	gatttttcag	cttttagctt	acgaaccacc	tccccttgc	120
cagcaacttc	atcatacaga	gatttacttt	ccagaatact	tgctgaggaa	ttagaagaaa	180
tattctgtcc	tatttcagca	ggagggttcc	caggttata	ttcctggcca	gttttctcct	240
tatattcaag	ctttca					256

<210> 526

<211> 479

<212> DNA

<213> Homo sapien

<400> 526

actggagatg tatttgataa ccaagggttt aggtaaattt tcaccagtat tagttctatt	60
tgcaaactga aaaatgttgt aggcttaata taaaataacc acatttagtga acattatatc	120
tcttagaaga aaggccatat ttgcctctg ctctgtaaa aatattattt gtttgaaggg	180
gaaataatgg tagtgtgacc ttcacttaa ttccctactcc ctaaatgtga gagagacaaa	240
atgagctgaa gaaggaaaaat tctggagttt cactccacaa ccttgaacat actgacggac	300
atctctgttt tgacaacgat ttctccatgc cacccatgtc ctaatgcctt gtggatcacg	360
gacaaccctc tttgcacaag ctacagcatc agcgatgtta tcttgcageca aagcactgca	420
ggataaatga caggcattaa ctgctctgg gttttgcca tcattacacc agtagcggc	479

<210> 527

<211> 220

<212> DNA

<213> Homo sapien

<400> 527

acccaaatgt	agggtttaga	ggccctcaa	tgggcatcac	tcataaaggc	aattttcatg	60
gtttaatata	gaaattactc	taatgtgaga	acacaacatg	ggaactattc	aaaatacac	120
tttctatgca	aaattgagtt	tgyatctatt	ttagcattt	aatgagcac	tctgcaactg	180
agaccdaata	tcaatcatct	cttgaggttt	tctactatgt			220

<210> 528

<211> 373

<212> DNA

<213> Homo sapien

<400> 528

acamcatcgatgaaattcagacataacaatgtaaaggtaaatcccaaattatttac	60
attatttatgtatactttacaaataacacaatatggaaa tggtttcttgaaagctgtt	120
ggaactgttaagcactgcacagtatgaaagaaacatatttgcacaaaaatttaataat	180
atccctacaaatgaaatttagttgcataatttataccattcaaaatcttgattttAACCTCATT	240
cactccttggaaaatacattcctcttttgttctttaaa tgcaaaaatttggtggcagttg	300
cagaaaaaacgccgaaattctataagaaaaaaactgatttaccccaaaacatacattcag	360
cacaaaactgc ggt	373

<210> 529

<211> 344

<212> DNA

<213> Homo sapien

<400> 529

acatttctaa	gtcaaacact	tgtgactttt	gctttaattc	catgaatgtt	cctgcctcct	60
tgtatattgt	atttattctt	tttttcctcta	gagtagaggt	ataattgtgt	gatatttcag	120
aaatacagat	aatgattca	aaaagtccaa	gttaaggaga	atcatgtttc	tttgatcatg	180
aataactgtat	tagtaagtct	tgccttatatt	ttcctgtatag	catatgacaa	atgtttctaa	240
ggtaacaaga	tgagaacaga	taaagattgt	gtggtgtttt	ggatttggag	agaaatattt	300
taatttttaa	atgcagtta	aaattataat	gtattccatat	ttgt		344

<210> 530

<211> 354

<212> DNA

<213> Homo sapien

<400> 530

```

accattgtct tttccttagct aacccttagat atggcagtc ttaaatgtac ctgagatcc 60
ggtcacaaac atagtatct tcatgcgaac ttcaagtgaag atttcataca ttggcctcat
gaccaggagc tccttggaga cacatcaacta tgtggattgt ggaggaaatt ccacagctat 180
ttaacaactg ctattggttc ttccacacag cgcctgtaga agagagcaca gcatatgttc 240
ccaaggcctg agttctggac ctacccccac gtggtgaag cagaggagga attggttcac 300

```

ttaactccca gcaaacatcc tcctgccact taggaggaaa caccccta tggt 354

<210> 531
<211> 418
<212> DNA
<213> Homo sapien

<400> 531

acacatccca tcttcaaatt	aaaaatcata ttgtcagtt	tccaaagcag cttgaattt	60
aagtttgtgc tataaaaattt	tgcaaatatg ttaaggattt	agacccacca atgcactact	120
gtaatatttc gtttccctaaa	tttcttccac ctacagataa	tagacaacaa gtctgagaaa	180
ctaaggctaa ccaaacttag	atataaatcc taccataaaa	attttcagt ttaagttt	240
acagtttcat	ttaaaaacaa aacagaaaaca	aatttcaaaa taaatcacat	300
aacttggcaa acccttccct	aactgtccaa gtatgagcat	acactgccac tggctttaga	360
tactccaatt aaatgcacta	ctcttcact ggtctgaatg	aagtatggtg aaacaagt	418

<210> 532
<211> 583
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(583)
<223> n = A,T,C or G

<400> 532

cgtccccaca attatattac	taccactgac atgacccccc	aaaaaacaca taatttgaat	60
caacacaacc acccacagcc	taattttag catcatccct	ctactatttt ttaaccaaat	120
caacaacaac ctattnagct	gttcccccaac cttttccccc	gaccctctaa caacccccc	180
cctaatacta actacccgt	tcctaccctt cacaatcatg	gcaagccaaac gccacttac	240
cagtgaacca ctatcacgaa	aaaaactcta cctctctata	ctaatctccc tacaatctc	300
cttaattata acattcacag	ccacagaact aatcatat	tatacttct tcgaaaccac	360
acttatcccc accttggctt	tcatcacccg atgaggcaac	cagccagaac gcctgaacgc	420
aggcacatac ttccattct	acaccctagt aggctccctt	ccccttacca tcgcgactga	480
tttcaactcac aacaccnnta	ggctcaactaa acattctact	actcaactctc actgcccac	540
aactatcaaa cttcctggcc	aacaacttat atgactagct	tac	583

<210> 533
<211> 529
<212> DNA
<213> Homo sapien

<400> 533

gaggtactta ataaccaagt	ctcggaacac tgagccatca	cctgcaatgt ttccttagagc	60
ccagacagct tggtaactga	tgtgagcatg gggagatgcc	aacagagaaa tgaatgctgg	120
gatggcacct ccatctacca	cagccttgggt ttgttctgt	gtccccagaag caatgttagt	180
gagtgcacca gcagattcaa	actgaatggg actacaatca	gttctgccc agaaggacac	240
aaatttcggg atccaaaccag	cccggttattt gttgtctatg	ggggctgtt ttctctgg	300
aagtagtttc ctggcagctt	gagtagctt gactgttattt	tccacattgc tgctatttt	360
gcctttgaca atgtcatca	cagaccaatt tacagtcccc	tgggtgttgc ggttttctg	420
cagcggagaa gttagcatcat	caggaaatga gcttacattt	ctccttctca gcatctggc	480
atccttctta gcttccat	gacccttattt ctgcgacgc		529

<210> 534
<211> 297
<212> DNA
<213> Homo sapien

<400> 534

actcattaat	attatttgt	tttgagaaaag	ccagaaaatga	ttctaagaaa	taaacaataa	60
taataaaaaga	tgtaattaat	atactgtatc	ccttttaagc	caaagcacac	tttttaccc	120
aagactgttc	tgacttttac	attcttaatt	tcctttgtcc	aaaataggac	cccatttaa	180
atagagtta	tttgaattga	gttcataatc	taaagtca	tttccccaca	agatgtttc	240
atttcagtat	ataaaactgct	aagcggcaaa	tgactaagtc	agttataaag	aatttgt	297

<210> 535
<211> 373
<212> DNA
<213> Homo sapien

<400> 535

actttccagg	gcacagcctg	gacgaatgat	gccaaacttt	ccgggcacag	acaaatcaac	60
cacagtttag	ccaaggcgac	actcgcccgt	ctggccatcc	ccaatttgc	ccccatcaat	120
aaccaaggac	aactgaggcc	agagatcctg	gaactcctcg	acattcagag	aactggcctg	180
ggagctgagg	ttggcactag	tgagagcaag	cggaccctca	aacatcttag	ccaagtctt	240
cataaaagca	tgatcaggaa	tccgaatgcc	tacaagaggc	gtaaaagggt	ttaggtcctt	300
gtttagctcc	tccgagcgtt	ccatcaccag	ggtcactggt	cctggcagta	ggtctttcag	360
gagccctca	ggt					373

<210> 536
<211> 254
<212> DNA
<213> Homo sapien

<400> 536

acatgctcca	ttaaattaaa	tgtcatccaa	catttatcaa	atattgtctt	agttacaget	60
tgataccat	ctaaattcat	attcgagcaa	aactaggccc	cgaaagtgcg	tttgggtc	120
tgcaccccca	gaagttagtt	caaaaaacct	cgagctcatc	agaactgcaa	caataactct	180
taatatittc	ttgtgacaaa	aaaaaaaaatc	aagttactt	caatataattt	tcaaataattt	240
actggaagta	atgt					254

<210> 537
<211> 449
<212> DNA
<213> Homo sapien

<400> 537

acagacttgt	tttttagtgt	tgtagtagcag	ggacaaaata	agggaatgtt	attttttaag	60
aaaattccat	ttcatttgtt	tctccttcct	tttctgtaa	agtccctata	ctgagaaaatt	120
tgtatatttt	atattaaatc	acttactatt	gatttttgtt	gtgattttca	aaggtggatt	180
cccacagata	aatcttggc	tattgcccua	aacatagtaa	aggtcacgt	tgacttttt	240
ataatagggaa	gaaaattctg	cctttgttag	tgcacatgtc	cacatttcat	ccctccttcc	300
ctcaaaaccc	tagaggggg	cattaaagaa	ttgtttagt	atatgcaatg	tctgttaagc	360
atgcactatg	tatttcatcc	tcattttattt	ggtctgggac	tgaagttttt	agccagcatg	420
gacctaacct	actttttggg	ataaaaattc				449

<210> 538
<211> 328
<212> DNA
<213> Homo sapien

<400> 538

actcagcgcc	agcatcgccc	cacttgattt	tggagggtac	tcgtctctgg	aagatggta	60
tgggatttcc	attgtatgaca	agttcccgt	tctcagccct	gacggtgcca	tggaaatttgc	120
catgggtgga	atcatattgg	aacatgtaaa	ccatgttagtt	gaggtcaatg	aaggggtcat	180

tgatggcaac aatatccact ttaccagagt taaaagcage cctggtgacc aggcgc当地 tacgaccaaaa tccgtgact ccgacttca cttccccat ggtgtctgag cgatgtggct cggtggcga cgcaaaagaa gatgcggc	240 300 328
---	-------------------

<210> 539

<211> 506

<212> DNA

<213> Homo sapien

<400> 539

tcgaggtact ttggcctctc tggatagaa gttattcagc aggcacacaa cagaggcagt tccagatttc aactgtcat cagatggcgg gaagatgaag acagatggtg cagccacagt tcttttgcgt tccaccccttggc cttccctggcc gaacgtccag cgagagact gttggcagta ataaatggca aaatcatcg gctgcaggct gctgtatggt agagtgaatt ctgtcccaga tccactgcgg ctgaaccccttggc atgggacccc actatgtaaa gtagacgcct tataatgtcag gagatttaggg gctttcccttgc tttctgtc ataccaggcc accaatttat taatattctg actggcccccgg caagtgtatgg tgactctgtc tcctacagat gcagacaggg tggaggaga ttgggtcattc tggatgtcac atttggcacc tggagccag agcaagcagg agccccagga gctgagcggg gaccctcatg tccatg	60 120 180 240 300 360 420 480 506
--	--

<210> 540

<211> 519

<212> DNA

<213> Homo sapien

<400> 540

tcgaggtacc ttccctgtt tcctagaatt cctaaggagg aacaacaaca aaatcggtt ttgttcagca attgcaccac atctctaaaa attaaaacat tattcagtaa gtgaagggtt ctgataaaca agtggatcaa actgaatatt tccaattaag aaagttcaca ataatacagt agtgtattat taccaatagg aaggcctaatt agtcgactat tatttttaa ggcaagaaaa aagaaaacaa gtcaagctt tgccaaagctt tggtaatgc tggcttggc attgcaagta taaagtttgtt taaaaagaa aaggaaaaaa ttaaactaat gctcaacaa ccacagaata aggttttagga ctgaaagaa agaggaaaaaa aagaaacatt attcctctcc aattatactg ccaaggattt cacaatgtgac tagggatcat aaggttaatt atacattaa taaggtgtca gggagataac tgctcatttc ttataaaaaa ttaaaatgt	60 120 180 240 300 360 420 480 519
--	--

<210> 541

<211> 431

<212> DNA

<213> Homo sapien

<400> 541

acttgaggct tttttttttt aattgagaaaa agactttgca atttttttt aggatgagcc tctcttagac ttgacctaga atattacata ttcctccagt aagtaatact gaagagcaaa agagaggcaag gattgggtc acagccgctt cttcagcatg gaccaagtgg gccttggg ttcagcggtt ctcgaatgg ctgttagact cgaatttaca gaaagccaca gaggtgcaac ttgaggctctt gctagaagc caccagttagt gctattgggt aaccacccctt ctatacagga gatttggaaatc tactttgtca ttatccacc acatgtacaa aggaaaaatgt gtgcgttat gcaatccatt taactcataa acatattact ctgagtaact ggcagccat tcacatggatc tttcatttggg t	60 120 180 240 300 360 420 480 431
--	--

<210> 542

<211> 502

<212> DNA

<213> Homo sapien

<400> 542

acaaaaaaaaagg aaataagaaa gtagtgacag cctatccata caaaaatcaa aaagacacaa	60
--	----

aggaagatag aatgagaaaac agacctacaa gaatcattaa acaataaaat aacagtaatc	120
tttgtcttca gaaaataaaat atttaaaaaa tagacttgcc aatcaataca catacattga	180
atagagggat tatataaaat tttatatacc aagatccaac ttgcctctc tcaagagtca	240
ctttagatct agtagtgaaa tcagcctgaa agtggcaagt ggaagaagac attttaggca	300
aacatcaacc aaacgagagc agaagagatc aaaattgtat tataaaaaat acatcgtaag	360
tcaacaactc tcttattttt taaaatatac tttatgtcaa aattcacaag agaaaaaaagg	420
tcattaaaca ataataaaga tatcatttat tgaaaatgt a tgacaaatat gtgcatacat	480
atatttatat gtttgtct gt	502

<210> 543

<211> 452

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(452)

<223> n = A,T,C or G

<400> 543

actacaagg cagtaaaaca atgatacact ggaaaaaaaaaa aaatgcagca ataaacattt	60
gttaaaaaga ctgatagaat aaataaaaact acaaaaaaaaaa aaaaatcata caaacccatt	120
ctgaaacccc aagaagtctt ggaatacaga aatgccctcc tccttcacta tttcacagga	180
agcactgcag gctatttgc taatattgtc ctgggattac attctaaaat tagtaactgg	240
ttacagctcg gttgtatgc acaattaaaaa tcacactaac ttcatctgaa gtgtcattct	300
acagttttat ttacacaacc agtgaaggc atgttctaga ataccagctt taatccttt	360
caaacattaa tataagaagc caaattgtaa tgatacagca aantgaggcc actggattta	420
atacaggttag caaagtcca catccaggtg gt	452

<210> 544

<211> 472

<212> DNA

<213> Homo sapien

<400> 544

caatcattta taatagaaaac accttgacca caagcccttg attgaacatt ttataatatt	60
tcatctactt attaaaaacaa ataatttccc ttgggttggg gggaggtga tttcataaat	120
taatttagaaa gccatcttta gcatattgtc tatgtctggg tccatgttcc tgaggaaaaa	180
gacattctca ggtgatgtat ttttttcatg cattagatg cattttaaa aaataatgca	240
tgtttcttta ataattaatt ttcatcttct ataagatgcc atgtgaagaa gttgtggaaa	300
tgtagaataa aaagctaaag ctgccaaatt tctgttgaac tctaaaaac agctcatgtt	360
tgtttgtctt ctcgggttgc ggcctagecct atttgcataatg taatgaagct gcagggttct	420
tgtatagcta aagcgttcaa tgcatttcac gtgtgtgggt ggatgtgggt gc	472

<210> 545

<211> 281

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(281)

<223> n = A,T,C or G

<400> 545

acttaagcat ttccactttt ggaagaaaaag tgtatttagta ttttatattt catttcattt	60
aaaaggacag tttttttttt ttttgtaaat ccattcattt aatggtttc taaaactgtat	120
aatgtatattt ggagcttatt tagtaatatg aattaaatgt cctatgtatg gctacaattn	180

tygaattaga aagtgatcaa atgtmasaaa aaaattyaaa aattcagccc agaaaacaaa	240
atagggtatt aaattagttt aatgtaaaag gaattwataa g	281
<210> 546	
<211> 423	
<212> DNA	
<213> Homo sapien	
<400> 546	
tcgaggtaact gagacagaag attgtgtcta cataaggcaca agttgtaaaca tttcacaact	60
tctaaaagga atgtcaacaa ttacaacgat catgcatacc atggcgata atcacattt	120
agaagcatt tcaaccattt ctaaagaaat gcttataaca ttgttatata tagaactact	180
ttcaataaaac tgcaaaacat tgatcgactt ttccagttatg agctacagtg tcaacacaaaa	240
agggaggcat aaatgtttaa ttatgaaat cagaatggaa tatttactgt aaagaaaaat	300
taaaaagctt tcaaataaaag gccattatcg aaccaacgtg aagagcacaa ctgcactt	360
tgagttcatt catctttaa agctgtcctc tcaataactt cagttctaag cactgaattc	420
agt	423
<210> 547	
<211> 399	
<212> DNA	
<213> Homo sapien	
<400> 547	
gaggctttt agcaggtctc aaaagttttc ttctaatara ywtcttggtg ttctatcatt	60
cgttaggtttt gaatttacca aactttttctt atttcaatta ttacattttt actttgttca	120
agtaatattt tatcatattt aatgaacatt gcattgtgaa aataccctgc ttatgtatgg	180
tatgtatca tccttatacc tttttgtatt cttttttaa atatttctga gaatttctgt	240
gtctaaattt aaataggatg ttgtttgtt atcatcttgc gatttttttgc ttcctttgg	300
gtattattgg ccaatagatg aattaagaaa ttttacctct tctactgcgtt gaagtttttgc	360
tgagaattt atgttttca ttaagtgttg atgaaatgt	399
<210> 548	
<211> 246	
<212> DNA	
<213> Homo sapien	
<400> 548	
aatgcattt taaaatgtttt taatttgtttt ctgttttttgc cagttttttaa gtgccatgcc	60
aattgttctt atattctata gaagttcgct caaaatactc aacaggggaa taggcagcgg	120
acagtcagaa tggtttggaaat tttggcttttca taagaaaaac ttttattttgc ataagcatgt	180
ggtcagatca ttttgtgcatt atgcagcctg gattggatgt taagtaatgc ttttgtcgtt	240
ggcggt	246
<210> 549	
<211> 413	
<212> DNA	
<213> Homo sapien	
<400> 549	
acaaactggt attttataact gttccaatgc cagtaatcaa ttttattttct tcattaaaaat	60
aatatacaca gaatgtattt ttagttcgat tccttcaaat ttttatacata ttttactttct	120
gttaaagaga aaaggataaaa atggtataaaa aaaagataaaa gcttataatt aagcacgaga	180
gagaagataaa atggatattt tccctgtgtg aggctaagac agaagcaaat ctgcgttaaga	240
aaaatgccac ccacacaaca gggaaatttttgc cccaaacaaa acaaaaggcag ttatagaacc	300
ctttctctac catcagaatg aatttcacag caataaactt attggttaca acagacatac	360
ttgaacagtt aaggatggaa agaaaggcgtt aagatatcacaataaaac cgt	413

<210> 550
 <211> 215
 <212> DNA
 <213> Homo sapien

<400> 550
 acataagggtt caaaggttcc ttcccttttt ttatatttattt tatattttgc aatgtttttt
 ttccataata ttttaagtttt tcgatgttta gatattttc ttccgtgaag cacaagtwtc 60
 ttttcatggg ccctgakcaa ttttaaacag ttggaacacc ggtggcactg ataactgcty 120
 tctgggcage ctcttagct tggggggctb gtagg 180
 215

<210> 551
 <211> 175
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(175)
 <223> n = A,T,C or G

<400> 551
 ggccggaggag cggttaactac cccggctgcg cacagctcg cgctccttcc cgctccctca 60
 cacaccggcc tcagcccgca cccgcgtas aagatggtga aaaaacaac ttactacat 120
 gttttggggg tyaaacccaa tgctactcat gaanaattga aaaayctta tmmga 175

<210> 552
 <211> 298
 <212> DNA
 <213> Homo sapien

<400> 552
 acagtgtata ctatccccac caaaggaaaa aaacattaag agcaaaacaa ggggtggggg 60
 gtggaaatat tgctaaagaa aattctaata agagttatct ataatttatag cttttattta 120
 ttatatcttc attcaatcat ttattcacaa ttagtctaatt tgattcttg atgaataact 180
 gacttcagca aaggagtcaa tccactaagc aaagttcatt tattttcat gatgttcttc 240
 ttccgatctt gagtctttac tctcctggat tcccaagaga actgcattag cctctagt 298

<210> 553
 <211> 437
 <212> DNA
 <213> Homo sapien

<400> 553
 yacaatggct taagcaaatc gcttttagttt tttttctatt taagatttag gacagactac 60
 tcgtctaaaa ttcaattt acagagaagg tcctaggaa cagataact tatttagtt 120
 tagctctcat aataacaatccataatggc tttagaagaa tgtaaataaa taacatttgt 180
 aaacagcgta tactgatatt ttctgacaaa ctcatttac taacatcatg ctgagcaatc 240
 aagaggattc ctctatatat tttaaatttt aattttatct attcctgtat tcacaaaactc 300
 ttgctccatg tttaaagcagt tatcaccaat agaacctatg agaaccagtg cccatggaaa 360
 cctaacagct tggtttta atccccattt aaaaactcggt tgaacttgat atatgcattg 420
 ttgaaatatg cgtgggt 437

<210> 554
 <211> 575
 <212> DNA
 <213> Homo sapien

<400> 554
 ycgaggtact tttgacaaca tttatctgca tgtccagatc agcaatgagt cggcaattga 60
 cttctacagg aagttggct tttagattat tgagacaaag aagaactact ataagaggat 120
 agagccccca gatgctcatg tgctgcagaa aaacctcaa gttccttctg gtcagaatgc 180
 agatgtgcaa aagacagaca actgaacaaa ttacaatga actttcttgc acttgcttgt 240
 cgccaaataa aagagaggcc cattgattcc tcccccaccc caacactttt ctttaaagc 300
 ttttctccct ccttggctt gttttctt cttccttcc ttttctctga gagtttaat 360
 actttcaagg actttaaaaa aataatcatg tttagattgt ttctcttat ttttgtgagg 420
 tggtttgaag gaaggacaag gttagatctgt tttagtttgc agttgaagtt agatggcct 480
 aaacatttaa ttgtcaaata atttcaaatt taatgtctg ctttcacatt gaagggcaga 540
 gcctacaaaaa cattgtatat ttcaaaagac aaaaa 575

<210> 555
 <211> 226
 <212> DNA
 <213> Homo sapien

<400> 555
 accgaaccat gaccacccct ggcaggagcc ttcatgcacc tagcaagtag tcacagcatg 60
 catgtgccta gaattttac gggttcaaat tatattattt tttttccca ccaacatgt 120
 gagaagggtcc acttctccat acctccacaa ctctggcat cttaaacttt taaaatcctg 180
 gaatcatagg caaaaaaaaaaaa aaaaattcacc catatttcc tcttagt 226

<210> 556
 <211> 298
 <212> DNA
 <213> Homo sapien

<400> 556
 acttcatata agtggaaatca tatagttattt gtcctttct gtctggctt tttcacatata 60
 aatgtcttcc aggttcatca tattgttagca catgtcagaa tttcatttcc ttttaaggct 120
 gaataatatt ccattatgt tataccacat ttgtttatc cattcatcca tcaatagaca 180
 tttgggtatt tccagacaa tatattctt attaatccc acattttaag acttacaggt 240
 aatttaaatt caattcaact tactgagttt ttactaaggg taactacta tgggaagt 298

<210> 557
 <211> 166
 <212> DNA
 <213> Homo sapien

<400> 557
 actaatggtc tacatccgat tcaaaaccac atagttcatt gatcacagat gcatggatt 60
 agtcacgaa gtttcagaac acattgtgtt gatttgaaa ggtcatttgc atcttctatg 120
 atttcaactt tatctccatt taacttgctt gtaaaagtatg tatgtat 166

<210> 558
 <211> 461
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(461)
 <223> n = A,T,C or G

<400> 558
 actccctgtt ttgagaaact ttcttgaaga acaccatagc atgctggttg tagttggc 60
 tcaccactcg gacgaggtaa ctcgttaatc caggtaact cttaatgtt cccagcgtga 120

actcgccggg ctggcaacct ggaacaaaag tcctgatcca gtgtcacac ttcttttcc	180
taaacaggac ggaggtgaca tttagctct tgccttctt cagtcatac atggggcat	240
acatctttt cgggttttgc tcttctctga gaattgcatt ccctgccagg cctaccacat	300
accacttccc ctggaaattgg ttgccttgg agttctgtc cagaggacc ttgcctcagag	360
gtggggctgg gatcaggtct gaggtggagt cctggccctg ggcatgcaga gcccccaaca	420
ggcttagggc cagccacagg agacctangg gcatgatttc a	461

<210> 559

<211> 193

<212> DNA

<213> Homo sapien

<400> 559

accagacaga atcagaaaa aaaaattgaa aataagcata acactataaa gaaaacttgg	60
aaaagtgaaa cacttctaaa taaaaaatat acacctggcc tggcacccat tacatatata	120
cataatacat gttataaaca tatatacagt aaatgtttt gtagcaatac agaccatgca	180
ttggtctttg tgt	193

<210> 560

<211> 125

<212> DNA

<213> Homo sapien

<400> 560

acacaattat tctcactctc cacagaaagg ctgcttaact tctcatctgg wggwggssaa	60
cactaaaatc ctgatTTAA cagaatagta gkaaaaatgc ctcaagtatt taagttgaaa	120
gcagt	125

<210> 561

<211> 325

<212> DNA

<213> Homo sapien

<400> 561

cggaggtaacc acggcctcag agtcacagct ttgtgacatt agggggcaat ctccagctt	60
acgtttttaga agacagtttgg ttttttgatg tatattttta atatccccag attaaagaaa	120
actcaggcca agtaacacac taaaaggccc tttacaattt ttttttgc ttatTTGA	180
gatgcattctg ttgaaaata tgcataatgtt agaaatcaag ctccattata tagggataaa	240
tcatttgaaa tagatttctc tcaagaataa tccaattatt acttttttgtt gtttgcataa	300
attcactcca gaagtcattt acagt	325

<210> 562

<211> 303

<212> DNA

<213> Homo sapien

<400> 562

accagatgga aatgatattt gtttactcc attttgaatt tctgcctgaa ttatgtcttg	60
tttcaggttt tcaatttctt ttttgcattt agcattttca actcgaatgt ttttctttc	120
cctcaaaatg gcctgaaaa ttgcatttctc cttaaatgtt gaaacttgc gcttaagata	180
tcaatgttt tgatctgcct ctgcaccctt ctgcattttt cttttcagaa cagcatcatt	240
atttggcatt ttgcataaga gacggcagaa aatcatgtt gggaggacca cgggttccga	300
gac	303

<210> 563

<211> 279

<212> DNA

<213> Homo sapien

<400> 563

tcgaggta	cagtcat	ttga	aaccat	atattatctt	60
cattgcaccc	ccttca	aaagactt	ggcattatt	gccaagaag	120
aaaggctgaa	gagttgag	aatcatt	gaagacaaga	gagatggagc	180
ccactactt	gatacggca	ttgtgaat	cgatcttgat	agaacaatgg	240
tagtttaatt	aacaactt	atactgaacc	tcagtgggt		279

<210> 564

<211> 427

<212> DNA

<213> Homo sapien

<400> 564

ccgaggta	gtgttagt	atcagtgtt	aaaatg	gaag	atcattat	ga	agaaacaatt	60
tgtcattt	gg	gtatatctgt	ttctatag	caaggattt	tgtctaaata	ttccttactt		120
gtatctcaga	ggactatctg	ttaaataatt	gatcttaat	ccagcataa	aaatcaaggg		180	
aactatttct	cagacattt	tttctctaaa	ttaagttag	tttcagg	ttc	caagtttaca	240	
ttgagagaac	tatgttac	ctt	ggagagaat	gtaaattt	ttt	ctaattccca	300	
ctaatttcta	ggaaacattt	attgttata	tgcagatc	cct	agagactt	tctt	360	
ggatcaacaa	cttcaaaaat	atacagc	c	ctat	tattt	acaataat	420	
atgaagt						ttacatacaa		

<210> 565

<211> 214

<212> DNA

<213> Homo sapien

<400> 565

tcgaggta	gggtcttt	cagccagg	tgcaacgg	accttaat	cagctcg	c	60
catgacat	actt	acaggat	ccgtct	ttcctct	cctt	gcca	120
agctctttt	gaagcattt	ttatgttata	tgttaca	ccccacac	cc	ggctgaaaat	180
gaacgcac	gcac	gcacgcac	g	gcgcgc	cg	cg	214

<210> 566

<211> 382

<212> DNA

<213> Homo sapien

<400> 566

ccgaggta	tttagttt	tcacataact	ctctaaagg	ctttcaaaa	agtctctt	tc	60
actggcate	tctact	aa	caatttctt	tatcatgt	tttgtg	gagc	120
actatggaca	gttgcagaa	gtgtgc	ccat	tggaaaacaa	tcaccac	act	180
tgttgttag	agattatctg	gatacac	tttttac	ccttctaa	taacatct	gg	240
taaagatctg	ttgagt	tcatctact	tgccatt	aaa	ttgaact	tgat	300
catcttctt	atctttctt	gatcctt	ttt	aggaat	gacg	actgg	360
aggac	ttca	tgagg	ttt			tcc	
							382

<210> 567

<211> 271

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(271)

<223> n = A,T,C or G

<400> 567

cgaggtacaa ttaccacca ctggaggta ctcagagagg acccccagag ggtgtctcca	60
tcttccctat ttattttcag cccttgaggg cttcattgta gatcaaagcc aaggccccca	120
ggaagggtgac atactcctgg aagttcacct cctggccctt gttccgncc aagtcttcca	180
tcagccttgc aatttcagca tcctgcagct tcgagccaat ggtgagctcc ttctggatca	240
gtcccttcag ctcccttcttgc tcaggggtgt g	271

<210> 568

<211> 340

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(340)

<223> n = A,T,C or G

<400> 568

cgaggtgcag tgtatattcc tttgttgtga atccaaatct tttcatagg taatgacaga	60
tgccttaatg tgaagtttat ttataatagc aataaaccta actggatttg gatgaagaag	120
tcttaatact gacatactgg atttttaatg cactggtttgc ttatggta ttctatctt	180
ttttccagtc ctccaggttgc cacatttatt tattatgttc aatactttgg ttcttagttc	240
ttaaagaatc aagaagttgt gtaatctttt aaaaatatta tcttgcagat aaagaaaaaa	300
attaagatgt tgtttacaac tgtnctct ttttacagt	340

<210> 569

<211> 156

<212> DNA

<213> Homo sapien

<400> 569

gccaggtaaa ccaagacttg gtctcagtga agaaattcca gaggtcacccg gcaaagaagt	60
tcccttctca tcatcttcat ctcagctatt aaagatatat acagttgtac agtttgctt	120
gatgttggca ttttatgaag agacctttgc agatac	156

<210> 570

<211> 216

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(216)

<223> n = A,T,C or G

<400> 570

acagtactca gtatatctga gataaaactct ataatgtttt ggataaaaat aacattccaa	60
tcactattgtt atatatgtgc atgtatTTT taaataaaag atgtctagtt gcttttata	120
agaccaagaa ggagaaaatc cgacaacctg gaaagaattt tggttcaact gcttgnatga	180
tggttcccat tcatacccta taaatctcta acaaga	216

<210> 571

<211> 163

<212> DNA

<213> Homo sapien

<400> 571

tcgagggttt	gtaatccaag	gttctgacta	aaagcaaaaa	tacacggcat	agattgcaac	60
agcaaagaag	tgtccaaatta	aaactagagg	gttaggagac	aatacagaaa	gcagccaaac	120
aggaccgcga	acacattcgc	caccaagttt	tgaataaaag	aaa		163

<210> 572
<211> 156
<212> DNA
<213> *Homo sapien*

<400> 572

```

gccaacgtgc agcggctgaa ggagtaccgc tccaaactca tcctcttccc caggaagccc   60
tcggccccca agaagggaga cagttctgtc gaagaactga aactggccac ccagctgacc 120
ggaccqgtca tgcccgatccq qaacqtctat tagaaq                                156

```

<210> 573
<211> 414
<212> DNA
<213> *Homo sapien*

<400> 573

ctggagccgc	tgtggttgct	gtccgcggag	tggaaagcgcg	tgcttttgg	tgtgtccctg	60
gccatggcgc	tgcagcttc	ccgggagcag	ggaatcaccc	tgcgccggag	cggccaaatc	120
gtggccgagt	tcttctcatt	cggcataaac	agcattttat	atcagcgtgg	catatatcca	180
tctgaaacct	ttactcgagt	gcagaaaatac	ggactcacct	tgcttgtAAC	tactgatctt	240
gagctcataa	aatacctaaa	taatgtggtg	gaacaattga	aagattgggt	atacaagtgt	300
tcagttcaga	aactggttgt	agttatctca	aatattgaaa	gtggtgagggt	cctggaaaga	360
tggcagtttgc	atattgagtg	tgacaaqact	gcaaaaqatq	acagtgcacc	caga	414

<210> 574
<211> 414
<212> DNA
<213> *Homo sapien*

<400> 574

ctggagcgc	tgtggttgct	gtcccgagg	tggaaagcgc	tgcttttgg	tgtgtccctg	60
gccatggcg	tgcagtc	ccgggagcag	ggaatcaccc	tgcggggag	cggccaaatc	120
gtggccgag	tcttctcatt	cgcatcaac	agcattttat	atcagcgtgg	cataatatcca	180
tctgaaacct	ttactcgagt	gcagaaaatac	ggactcacct	tgcttgtAAC	tactgatctt	240
gagctcataa	aatacctaaa	taatgtggtg	gaacaattga	agattgggt	atacaagtgt	300
tcagttcaga	aactgggtgt	agtttatctca	aatattgaaa	gtggtgaggt	cctggaaaga	360
tggcagttt	atattgagtg	tgacaagact	gcaaaagatg	acagtgcacc	caga	414

<210> 575
<211> 417
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<222> (1)...(417)
<223> n = A, T, C or G

<400> 575

tggatgggt	catatagtt	cggtacaaca	tgaagccatg	gtcctggta	tggaaagaatg	60
agtacttcag	acaaaacagaa	ataaaagagg	acactgtgac	tatagccaag	gaactttgc	120
gtatacgctgt	taagggaggt	tgtcatctcc	accagatgtg	gttttatgcc	ttacctgctt	180
gacagcctca	aaggtcattg	gcaagattga	atgaatggc	ccacgggggc	aaagcaagtc	240
taggaaagcc	agtaaatgcc	caacctattt	gaataaggga	gaagaattag	aatatcaggg	300

aagtttctgg atagaggaca agaaaagaata ggctatttag aaaaaaaaaag gtgtggtccc	360
attattttca ggcttcaccc tanatgacac atgagaaaaa gcccaacttcg ccatcat	417

<210> 576
<211> 245
<212> DNA
<213> Homo sapien

<400> 576

ggaagggggg accctgc当地 agatgaggct ccagctgccc tggggggagg gtggggc当地	60
ttactagagg gggctgggt ctctccccca gggctgcca gc当地caggc caggaaggc当地	120
ggagccaaga accttctggc tctgagggag caagagctgg caggcggc当地 ggctggcaca当地	180
gacagacgga agcagaaaagg acagtttggc tgctgtgtct gctgc当地cagc cccccc当地	240
ggaca	245

<210> 577
<211> 418
<212> DNA
<213> Homo sapien

<400> 577

aaaaaccctt taatgttggg ctttctttaa ataaaacaga aaggttgc当地 ctttccccatg	60
gtggctgttaa ggcaagaaca gc当地tgaggc cgggc当地gtt ctatcgcc当地 gt当地ctgc当地cagc	120
cctt当地actct ggctcaaggt gggcttctgg gaggc当地ggc当地 caaggaggc当地 gttctggat当地	180
tgc当地ggc当地 gatgttagggg aacaggc当地ag cgggc当地cacagg gccctgagct gacaaggc当地gt	240
gaccaccctgca cccagctaga tggggc当地accc cctctctggg agctgaggc当地 atc当地agctgga当地	300
gc当地tc当地aggct gggaccaggc ccaacttgc cttggt当地act ctggcc当地att ccaggc当地ctca当地	360
gtttccccac tgtaaggtga ggc当地ttaggc aggagggggt ggccccaggc agtgtc当地ct	418

<210> 578
<211> 363
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(363)
<223> n = A,T,C or G

<400> 578

aaagccc当地aga aggcaactta ttggaggct ctgc当地ccat tc当地acaggaga aaggagctgg	60
gagccccc当地atc ct当地gggtccc agcatc当地gccc cactggaggc cctgga当地acag tccagc当地actc	120
tgtggg当地agag gagtggggag gggatgttt taaa当地aaaat agatctctat gt当地acatctga当地	180
catat当地tata tagcacataa attaggaggat gctctgaccc ctgccc当地gtgg agccca当地agca当地	240
ctgagcaggg aggtgaaacgc cagtc当地cagaa agaaggctgct ggagccccc当地tgg ctctgtt当地tcc	300
tccatc当地cgg ggctccctta gggc当地tcccccc aggc当地ctccctt ggctc当地agtcc aggtt当地gtct当地	360
gca	363

<210> 579
<211> 403
<212> DNA
<213> Homo sapien

<400> 579

ggaataatca gctctctgg cccacaagta ggaatgatca atgagaactt aacttagtcc	60
tttatttggg gat当地tttca tcaaaca当地aaa atttctt当地gaa ttggggagac cacttccctg当地	120
taactcc当地agt attgccccct ctc当地actt当地tag catat当地tataa tt当地agc当地agggtt gggct当地agaga当地	180
aatc当地agctgc tatgc当地gggtt gattt当地tattt当地tca atc当地ctt当地tcc tt当地attt当地gtct	240

tctactcccc ttaatcta at ctaaaagctc tggtccatgc aactggagtt ccttataccct ctcttccct tcccttatat attgaggcta tggggtagga gaaaagtgc caacccacca cccccttac tcgtgcatta aaatttctta tttaccctt tcc	300 360 403
---	-------------------

<210> 580
<211> 403
<212> DNA
<213> Homo sapien

<400> 580 ggaataatca gctctctgg cccacaagta ggaatgatca atgagaactt aacttagtcc tttatttggg gatTTTca tcaaacaaaa atttctttag ttggggagac cacttccctg taactccagt attgccccct ctcaactttag catatattaa ttagcaggtt gggctagaga aatcagctgc tatgcgggtt gattattatt attatttcta atcctttcc ttatttgct tctactcccc ttaatcta at ctaaaagctc tggtccatgc aactggagtt ccttataccct ctcttccct tcccttatat attgaggcta tggggtagga gaaaagtgc caacccacca cccccttac tcgtgcatta aaatttctta tttaccctt tcc	60 120 180 240 300 360 403
--	--

<210> 581
<211> 432
<212> DNA
<213> Homo sapien

<400> 581 acctgataaa agttaataat ctcttggtag gaaagctgtc cattaataag gccagtc agcaaaacta aaaccatttt gtcgtttag ctttcctagt ctgacaacgc aataactgtt aaccacagtc aaatataatg acaacattgg atggatagat cagtaaccatt ggtagact gttaaacagg ttcgttcttg gcgccacata aaaacaagcc aataacatcg aataaaatcat ggcttttttt ttctttatca caattcactt aagtgtatgtt aattatggtc cttgtcaaa acgtttggta aaggcttattt acagtgtaca tggctgagca tgcacttattt atagttacaa agataacctgc cagtttatta caatagaata cacagtgcg aaatggtgaa ctctccatc ttaatatata tt	60 120 180 240 300 360 420 432
--	---

<210> 582
<211> 215
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(215)
<223> n = A,T,C or G

<400> 582 gtttatttca gctttactta aaatttttgtt ttc当地atgaa atgaaatgtg acactgaagc ataagaacac aactgaagac tgc当地acaac ctaatttcat ttcccaggtt gcttaagc ncaaggaccca nt当地atate gnantcnattt aaaagnagn ctttccatt tgc当地ccngc tgc当地atgg aacnttatttta aaccnctcaa ttctt	60 120 180 215
---	-------------------------

<210> 583
<211> 426
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(426)
<223> n = A,T,C or G

<400> 583

tgggcgcctg	tggactggg	tgcctctggc	gtgcagaagc	ttctctcttg	gtgtgcctag	60
attgatcggt	ataaggctca	cctcccccgc	ccccaaagtg	tttgcgtt	ggaacgagaa	120
aagggccatg	ttcggagtgt	atgacaacat	cgggatctg	ggaaactttg	aaaagcaccc	180
caaagaactg	atcagggggc	ccatatggct	tcgaggttgg	aaaggaaatg	aattgcaacg	240
ttgtatccga	aagagaaaaa	tgttgttggag	tagaatttc	gctgtatgacc	tgcacaacct	300
taataaacgc	atccgctatc	tctacaaaca	ctttaaccga	catggaaagt	ttcgatagaa	360
gagaaagctg	agaacttcgg	aaaaggctca	tctgtcaccc	tggagaangg	aaactgtact	420
tttccc						426

<210> 584

<211> 431

<212> DNA

<213> Homo sapien

<400> 584

cactgttgc	ttttcagat	acaccagaag	agggcatcag	atctcattat	gggtgggtgt	60
gagccacca	gtgggtgctg	ggatttgaac	tcaggacctt	cggagaaca	gtcagtgtc	120
ttaaccactg	agccatctct	ccagccca	tttccctttt	atggtaagc	attttaattt	180
taccatttt	ctttaaaagg	gcactgctct	atgttctggc	actatcggt	ttctggactc	240
ctcttcgtaa	aacatttctt	tataacaaaa	ggtgcactt	cttttatttc	ggtgtgtt	300
ttgcctgcat	gaacgacttg	acatctcaag	cctacctgg	gtctggagag	gccccaaacag	360
gatgtcagat	gccctagaac	tagagatacc	gaccgttgg	cgctaccatc	tgggtgctgg	420
gaatttgaact	a					431

<210> 585

<211> 412

<212> DNA

<213> Homo sapien

<400> 585

aagagagaaa	gagaacat	ttataccaag	gagggattga	cttcagaaa	agagtagact	60
tctctctcc	cccttcctcc	aaaaaaagaa	gttggaaacc	ttctgtttt	gtgtgtgt	120
ttttgggtgt	tcttgc	ttttgtttt	ttagatggag	tctactctg	tcacccacgc	180
tactgcagtc	agcctgggt	acagagtaag	attctgtctc	aaaagaaaaa	aaaagacaga	240
aaagaaaatgg	actctgatgg	aaaagatgtg	tacaaggctg	attataactaa	gcagaggat	300
attnaaataa	atgctaagaa	gagaggcagg	tgaagctcca	gggagccat	ccttccaaa	360
tgttcactt	aattttcagc	ggtttggta	tgccagatgg	tgaacctagg	ta	412

<210> 586

<211> 431

<212> DNA

<213> Homo sapien

<400> 586

aagaaaagg	agccaagaag	aaagtgggt	atccattt	taagaaagat	tggtatgt	60
tgaaagcacc	tgcataatgtt	aatataagaa	atattggaaa	gacgctcg	accaggaccc	120
aaggaaccaa	aattgcatct	gatggctca	agggtcg	gttgaagtg	agtcttgc	180
atttgcagaa	tgtgaagtt	gcatttagaa	aattcaagct	gattactgaa	gatgttcagg	240
gtaaaaaaactg	cctgactaac	ttccatggca	tggatcttac	ccgtgacaaa	atgtgttcca	300
tggtaaaaaaa	atggcagaca	atgattgaag	ctcacgtt	tgtcaagact	accgatggtt	360
acttgc	tctgttctgt	gttggtttta	ctaaaaaacg	caacaatcag	atacgaaaga	420
cctcttatgc	t					431

<210> 587

<211> 132

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(132)

<223> n = A,T,C or G

<400> 587

aactttccca tggtaaaagg aaaaacaagg aggagtttag tggctgggt ggggtgcagg	60
caatggagag agggcataag ggtgtagaan ctgaaggggg ctagaagctt actcctgagc	120
ttcttacntc cg	132

<210> 588

<211> 425

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(425)

<223> n = A,T,C or G

<400> 588

gggcttcttc aangaaccc agctgaaacc tntggggat tactganttg atntgnccac	60
cagaacaggn gngctcgctt ttgttctgaa atcaaattctt cnaaagaccg ggagaagggg	120
tcacccannc gtggatcggtt gcattgtgg gaaaaggaa accgnaacgg cccggateat	180
tgacaagccn cgaatttatt gaagtccctgc ctcgtgggc cacagctgt tttttttgt	240
cctgacagttt caaatgcctc ctttgcgcctt agctcgtagt atgaaagaac agaagttgtt	300
tggacacctt tagtgcatttcc cacaatcacg gatggttctc aagagtttatgt tgtaagaaat	360
ttccaaagaaa ggctgcctgc atagtggtttcccgcttcccttcttaggttgat ttggaaatcan	420
cccat	425

<210> 589

<211> 425

<212> DNA

<213> Homo sapien

<400> 589

caacagtttat tttttagga tgtcagccct gggtccagag tgagagatag ggacagggga	60
cagcccacgg aggctgggtc gggggtcaact ccaggatgtt ccaaccacag gggcagcatc	120
tcctccactc cacatgtctgg ccaagggcac agagctgccc tatcgctgc caaggggggtg	180
gtctcaatgtt gctgcctgttgc tcctgtatgg gccccgggtg ccgagaacag acagcaagcc	240
tcaggcgccg gtcctttgag ctttttgtat ttcttcagag agcgcctctt tcagctctgc	300
gttaggcctgg tccaggctgtt cttaatgtt gaccacatca aacaggccgg gtcctttgtt	360
gtctccatgtt ctcggctggg ctcggccatgg ctcggccatgg ccgcatttcacc aggtctctt ctcgggttcatgtt	420
gttgc	425

<210> 590

<211> 425

<212> DNA

<213> Homo sapien

<400> 590

acaagtatac atataatcta gataaggct gtaatgtttc ctaatattaa ttactgtact	60
aaaaatttttta caggacatga acataaataa agctgtttaa aactggcaaa cgttagtaata	120
gtctgtcatt cagtacaagg tatattttatg ttatattccaa agccatcacc ctaaaatcct	180
aagttgccac tcttaaaaacc taaaaataat gtcgaaaact aaagtctataa atacatgtat	240
acatacatttgc atttatgcag aaatcatcaa tataactagag cccagcttta	300

acactgtcct tcagttcac acagaaggac ccctaataac tgtaaatata taaatatgc	360
aggttaaagg gaaaagggtgt tcagggcact tcttgccctc tctgtcccat aacctaccc	420
caccc	425

<210> 591
<211> 425
<212> DNA
<213> Homo sapien

<400> 591

aagtatgtat gtacaagact caagtaaataa gaaaggcagc ttcaatcac aaatcagttt	60
ttcagattt actgtggaag catatthaat gcacacattt gaatgttaca cataaataat	120
ttaaacatgt gagtcgaatg tctggatattt acatttagtc tgcatatata agacacttgt	180
ggtcaaaattt caagattgtt aaagccagtt tcaagctgt tatattttga gtacagggtt	240
cactattaca aatatatgtat gttaaactaa caaactcatg accttcaaag atgtcttcgt	300
ccccacgcaca cacatttgcata atttgcgttcc atttgcatttcc tcccttcc tataatcttc	360
aaattatataa gttatgcatt gagttcccta tgcatttcac ccatctcattt tatctcagcc	420
ttctc	425

<210> 592
<211> 299
<212> DNA
<213> Homo sapien

<400> 592

agtaaaaatg ggttgggtttt tgcatttcgac gtcagggtc tggcgccctc gcatttgac	60
tctgtgtga cagacacggg gagctccgcg tgccagctg tggctggccct gctgtgggg	120
tcctggggcc ggcgagggccc cttagtctt gttctgggg gacggccac tccggggagg	180
gggtgtgtcg tgctgagcgc tgatccctg aatatagtttt atttttcta catttgaatt	240
ctgttgtaga ttatgtaaa aatacattct ttttggaaaat aaaaattttc atgtttct	299

<210> 593
<211> 425
<212> DNA
<213> Homo sapien

<400> 593

tttttttttc tttttccag gaggcgccga cggcgccgc ggggggagag gaagagaaaag	60
aagcgctctcc agctgaagcc aatgcagccc tccggctctc cgcaagaag ttccctgccc	120
cgatgagccc ccgcgtcg tccccacta tccccagggc ggcgtggggc accggggccca	180
gcgcgcacga tcgctgcgt tttgccttgg gtagtggat gtgtgaaag gatggggctt	240
ctcccttaacg gggctacaa tggccagaaa agattccgtg aagtgtctgc gtcgcctgt	300
ctacgccttc aatctgtctt tttggaaatca tcacattcca ctctaaaag gagctttaaa	360
gatggcctgg ttgaacgtcc ttcccttggt agtgaggaaa ttaagtgcag attaagtgac	420
ttgcc	425

<210> 594
<211> 425
<212> DNA
<213> Homo sapien

<400> 594

gtcacttagct ggctaaaggct taaagcagag acgtgtgact gggctctcg ggagggccctc	60
tggttcttcc cgggctcagg ctgtgtgggg gctgggggccc aggctctgg cgacctagag	120
gtgtggacgg cacagtcga ggaggccttc tcttaaccct cccagggatgg gactgggaga	180
tttcctctgtg agtccaaag aggcctgtg cccagggac ctcttcctcg gctcccagg	240
tggtgtgtgc aagctggttc ttggccatgc tccaggctcg ggtggcaca ggcgtccact	300
ccagtgtgtc gctgtgtgtt gtagactgcctt gttctgggac cagccccctgg gtccttccac	360

caagatttgg tgagggtccc cctctgcctc tcacagaagc ccctggccct ggactgtcct	420
gggggg	425
<210> 595	
<211> 162	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(162)	
<223> n = A,T,C or G	
<400> 595	
ctttacatta tttttttcc aaaaagacta gtatttatac aangggcaat agaaacaaaa	60
acaaaaaaccc ttccgactgc cacctggaag gggctggctg gnctgctccc tctcccacct	120
ggaacngggg ggggcaactgg gcaggaggga atgnngangn gg	162
<210> 596	
<211> 283	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(283)	
<223> n = A,T,C or G	
<400> 596	
aaggtgactc aacaccntct tcctcaagga cttcttggtg atactctttt gtctttcca	60
gttaccctct tcctcccttg tcctctgtgc ttgggctcac aacttnatgg nctgnacttn	120
ataaaaanaac natggcaact ttgnccctgan tgncncctn cccaanctga nctggmtgga	180
anaagaaaact tggaaactat ntanccatg gntttggan nctnccccct tncccatgnc	240
tnctaataaaa accatgcant gcctttggag agaagagacc ccc	283
<210> 597	
<211> 426	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(426)	
<223> n = A,T,C or G	
<400> 597	
gaaatacaaa tgtggattct catcaactgaa aaatcttga ngntngttt attccttca	60
tcattttta aatatttttt ttactgccta tgggctgtga tgtatataga agttgtacat	120
taaacatacc ctcatttttt tctttttttt tttttttttt ttttagccc aaagttttag	180
tttctttttc atgatgnggn acctccnaag ngatggnaga tttaaataat tttttatttt	240
tattttatat atttttcat tagggccttt tctccnaaa acgaaanaaa aantccnaaa	300
aacnaaaaccc aaaaaaanag aggtantgt ccnagttct gtatgtataa agtcntncnc	360
gatttcagga gagcnctgnn cccaaattgc tccntgaatc aaggngngna aatggttttt	420
ttggcg	426
<210> 598	
<211> 412	
<212> DNA	

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(412)

<223> n = A,T,C or G

<400> 598

tttttttttt tttttttttt ccaccttagag atgataattt attgttttac catgactcag	60
aagagaaaaca acataaaagag aatatttcaa atccccacaa ttcccttcctc aacctcacta	120
ctcttaacat ttctttatca gacgccactg gcttcctaaa atggaccctg gactatgtat	180
ggggaccaca ttcatatgc tgcccttcctt cttatgatta aaacttttagc cctcattcga	240
nggttccaat ggtactttta gnggaggagt ccctagctt taaaaaaaaacc acttttctn	300
taaaaatccnt ntnttatnga aaaaaancnt ttttaaaaat gttaaggagg attttaatg	360
accatattca attaaaaaaaaaa aaatnccttn tggAACATNT tngcagaaac ct	412

<210> 599

<211> 415

<212> DNA

<213> Homo sapien

<400> 599

ccaagatgac aaagaaaaaga aggaacaatg gtcgtGCCAA aaaggGCCGc ggccacgtgc	60
agcctattcg ctgcactaac tggcccgat gctgtcccaa ggacaaggcc attaagaaat	120
tctgtatccg aaacatagtg gaggccgcag cagtcaggaa catttctgaa gcgagcgct	180
tctgtatccg aagctgtatg tgaagctaca ttactgtgtg agttgtgca	240
ttcacagcaa agtagtcagg aatcgatctc gtgaagcccg caaggaccga acaccccac	300
cccgatttag acctgcgggt gctgccccac gtcccccacc aaagcccatg taaggagctg	360
agttcttaaa gactgaagac aggctattct ctggagaaaa ataaaatgga aattg	415

<210> 600

<211> 208

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(208)

<223> n = A,T,C or G

<400> 600

aaaccgcctt tttttttttt ttttttttaa tatgcagttt gtaanaacaa aactggatgg	60
catcanaatt gtctgaaagt ttgtcttgg gcagtatggg ctggccaaa taaaatgatt	120
tttataattc taaacaggtt accaaatgaa atgtcatggc ttactttgg caattaaagg	180
ggggaaatttt tttttttttt aaaaaaaaaa	208

<210> 601

<211> 165

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(165)

<223> n = A,T,C or G

<400> 601

tgcaggctcgactagtgnatccaaagaaa gtaacctaaa cttgacctgc ttaatacatt	60
--	----

ctaggggcaga gaacccaggä tgggacacta aaaaaatgtg ttatattcat tatctgcttg 120
gatttatttg tgttttgtta acacaaaaaaaaaaa taaatgtttt gatat 165

<210> 602
<211> 416
<212> DNA
<213> Homo sapien

<400> 602

aaaacgggtt	tgccgagttg	ggacgtccac	tgctgtcaag	tcaaccagag	atttgaactg	60
tgcattggtg	tgatccctga	gaaaggatcag	cactggatg	acgccccatcag	gatggataca	120
gacctctaac	tcattgaagc	aggacacctg	aacttgttgg	acataacttgg	gcaagatttc	180
agccacatac	tctccaaaag	ctgagagctg	tttgtgggcc	acatcattcc	gtggtctgac	240
agtggggcgc	gtgtcgcccc	cgcgctctc	ccgcctcacc	ggcagcaaca	gaacggaggg	300
tgccccagtc	ccccctggtca	gccccggagcc	cccccaagatc	ccgcgcacc	acagcctggc	360
taccggccgc	cgcgactt	ctagagcggc	cgcgggccca	tcgattttcc	accccgq	416

<210> 603
<211> 416
<212> DNA
<213> *Homo sapien*

```
<220>
<221> misc_feature
<222> (1)...(416)
<223> n = A,T,C or
```

<400> 603

catggcata	aaaaaaaaac	ccaaacctgt	ncatcccc	tcccactcat	gaaaacagct	60
cttaaaatga	agaattcttt	aaaaatttta	cgttttnc	atcttggtct	caattcttt	120
gcttcctca	tcatcagaat	tcaaactttg	ggcaaacatg	ggttttggc	tgantcttg	180
gaatatgtg	aaaaaacccc	aatatgggt	gtttctgttt	gtttggcatg	acgaaaatg	240
gnittccang	atactgcata	gtcttgccaa	aatgttcca	ttagaaaaag	gccccgggtcc	300
tcgccccact	ggctggcctc	tgctgggtgc	ntctagagta	tatcggtc	acctcagtgc	360
atctgtccat	aatttttttg	aaaaaaaaaa	ctcaatctta	acgcgggcat	attcnc	416

<210> 604
<211> 414
<212> DNA
<213> *Homo sapien*

```
<220>
<221> misc_feature
<222> (1)...(414)
<223> n = A,T,C or G
```

<400> 604

aaaatttatg agctttatta aagcggtta tcacaaagat gggaaacgtac aaatgagaag	60
catgcaacca tcatcttcca cagtcaagtc aaactgctat ttctctctct ctccctgtttc	120
atagagctgg aaactgcagg tggttatacc aaccttattca tcctcaacac tggtagtcacg	180
ccccggaaac tactcaggc accaaacatc caaaaacataa actattatttatacaaaagaaaa	240
gtgcaaagtt aaaaaagaaaa acatggagac ccctcccccc cataccctca nctaaaggct	300
aacaatggca cttgggctct tgcttaatct agattgtctt caaaaagtct ctaaaaatgng	360
atactgngng nggnnggggg ngngaanggt cccaaagctn cttagtgttt gaaa	414

<210> 605
<211> 417
<212> DNA

<213> Homo sapien

<400> 605

tcctttca caatcaactca acaaacaggc cacacatccc ctaggtccac gaactcatct	60
tctcgttgg ccaaatacgctc ttcatctccc aaagcttcc agccactggc gggtaagacg	120
ggcttagagg aatgtcgctg gagcagagcg aaaggaaaca aagacgagag gcgggcagag	180
ttcctcaga ca ggcaggggc ctcagcctgg gggcctgct ggctgtggc tctctcg	240
atcttctctt gtaaaactctg gacttctcc atcattcca agatttgtc cagagtggcc	300
acttggcac cacctaggat ttgggcttctt ggaatccaac gtaggttagcg ctggggccag	360
actttgatt cggcccccctc gatatgcggg aacaacaaac catggtagtc agtggac	417

<210> 606

<211> 413

<212> DNA

<213> Homo sapien

<400> 606

ctgaattctt taatttaaaa aaatcataacc taggagggtgt gctataaggaa ttcagataca	60
ataagttgca tataaaaccc gacctcattt ctcatttggtt taaagcaagg atgtatggaa	120
aatgcaccc agggacaaaa acacgcttta cgggcactcc gggacccaag tcccgagaca	180
tttccacgtg accttcttgg aagacacacc gcccacctga ctgcacgacg ggactggcc	240
agcctcccg ctcctcaggaa aggagatgag tttcttacaa agtgagtgcc cacagctcca	300
ggacaggccg tccacatgtc gttgtgggtc tggctggatt ttgaggtgcc gaggaaactgg	360
tcggtgtctt gatcgattt tacgtgggtc tctcgatctc ccaactgcca taa	413

<210> 607

<211> 414

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(414)

<223> n = A,T,C or G

<400> 607

attttcattt aaactgtcag aatttgctta ctataattat gatacagtcc aaagaatgca	60
gtcactttttt atcatgttaa ctaattgttc tcttttgaag atctatggtt gactaattaa	120
acaataattt aagttaggtg tcggcagaaaa aaacccacttgg ggtccctgt ttggagtctg	180
gctggctctg agcattgcca atggccctcta ctcacctgac tttgtatcctt ctccttttag	240
aggctttgca ttctgcaccc agcttcacta acagtggctt gaaaacatcc ttgggttgag	300
tgtttcattt gggaggattt tggccaggcc cttttgaaca gtaagtgtcc ccatgaagtg	360
ctagataata tatggngtaa agangtcago tttttttttt ttttaactc taac	414

<210> 608

<211> 415

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(415)

<223> n = A,T,C or G

<400> 608

gcagtggctt gatctaagg gncttatatat ttgcacctcc tcattcaaca cagggctgg	60
ggttctacaa cagggaaatca ggcctacagc atcctgtgtt tcttcgtt gggatttta	120
aacataactat aaagtctgtt ttggtagatgt acccttcata agaaaaaaat gaagtaatgc	180

ctataagtag caggccttg tacctcagtg tgaagagaaa tcaagagatg ctaaaagtt	240
tacaatggaa gtggcctcat ggtatgaatcc ggggtatgag cccagganaa cgtgctgctt	300
tttggtnacn tatccctttt tntctaaga aagcanggtt ctncttatt annaaatatg	360
ttaaaaaatg gnaagcaaac nacaggtgcc tttanaaatt accaattttt aactt	415

<210> 609

<211> 420

<212> DNA

<213> Homo sapien

<400> 609

ggttttaaaa ttatttcttg aatctctcca tacacaggca aaaataagt tgttacttaa	60
catactggaa attgcctaa ttaatcattt cctaaagaag agaaaattat ccccaaaacg	120
tgcttaacca ggaggccaaat gcatttgcgg acctccaaga acatggagat gaacgtata	180
gacagactgt ccaccatctg aaccttcatt caccaccatt cgataaccct tattcaggcc	240
cagatcagca gcacatttct tgccaacaat cattaagtgt ccaagaagac tttcatcatc	300
atcttctgcc acagaaatct gggatatatg tttctgggt atcaccagaa aatgtgttgg	360
tgcttgaggaa gaaatgtcat gggaaagcaag gcaccgtca tcctaaaaaa tgatttggc	420

<210> 610

<211> 158

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(158)

<223> n = A,T,C or G

<400> 610

caactttaaaa aaaaaggggg cggttnaana nccaaanata aaaaggtccc tttggtgat	60
aaaggncctt ttccggacc ggnccnggac ccaccttgg gcccaaagg ggatttaccg	120
ggttaaaccaa gcctttaaag cggtgggggt taaatttc	158

<210> 611

<211> 159

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(159)

<223> n = A,T,C or G

<400> 611

tcgacactag tggatccaaa ggaagatggc ggacatttcag actgagcggt cctaccaaaa	60
gcagccgacc atctttcaaa acaagaagag ggtctgtctg ggagaaactg gcaaggagaa	120
gtccccgggg tnctacaaga acatcgntct gngnttcaa	159

<210> 612

<211> 419

<212> DNA

<213> Homo sapien

<400> 612

gcatttttta ttaagacatt tggggcccgaa gtttcctctc ctctccctt ccatcctgt	60
ctctctaaat tcagctttt gaaacctaag tggccacc ttccccagca ggtagccaga	120
gcctccgggg tcccttctcc ttcccttctt ctccccagat actgcaagag acacccaagt	180

ctgctgtcag cagagggtga agcgctggc actgatgtt atgcgcgtga gtcccagatg ccgcagegtt gggccagag gcaagccagt cccagactct aactccatct ccagctcagc ctcatccaga agtccttgtt gcaggtgaca gacttgtcc actttcagtc tgcgcagg ggccgcagc ctgacgact gcccgtcc tgagccgca ttcctgca	240 300 360 419
<210> 613	
<211> 419	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(419)	
<223> n = A,T,C or G	
<400> 613	
ccccatactg aggcatataaa agtttgcaaa accaaggggc ctgtttccc aaggctttac tataaaatct gggtaggct aaaacttatt atgttagacca gagaggcggtt gatTTAAAC caatcatcct gtctcatctt cattatttct ggcttatga gcagaatgtc ctgctacatt tggcttctta taaagatctt taatggagta tttaaacat tgaaaatcc atgagtttga gcttattttgg agaatgtgc taagaatggg attgactgac ataacttact agcctttc ctgcttgagg tacagcagtt ttcataatccca atgttaaag tgcttagaaag ttatcactcc ccaccttaga gaaaaacact tcagagaact tcagnactc caccaggcaa atagcacct	60 120 180 240 300 360 419
<210> 614	
<211> 123	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(123)	
<223> n = A,T,C or G	
<400> 614	
gnngtatgga ctagaaaact tgaaatgact catgaanaaa ctttggatg acacatgaag catgataggg aaantnattc tgaggcnnga ngcttnactg aatttttcc anccagnggt ntt	60 120 123
<210> 615	
<211> 362	
<212> DNA	
<213> Homo sapien	
<400> 615	
gactttggg tttcatcggt tgatttccct tgatttctta ggctttggct tcagtgacaa accgagacca catcaatttccatatttga gcaggccagc atcgatggaaag cgctttgcg gcatctgggg ctccagaacc gcaggatcaa ctttcttct catgactatg gagatattgt tgctcaggag cttctctaca ggtacaagca gaatcgatct ggtcggtta ccataaaagag tctctgtctg tcaaatggag gtatcttcc tgagactcac cgtccactcc ttctccaaa gtactcaaa gatggagggtg tgctgtcacc catcctcaca cgactgatga acttctttgt at	60 120 180 240 300 360 362
<210> 616	
<211> 210	
<212> DNA	
<213> Homo sapien	

<220>
 <221> misc_feature
 <222> (1)...(210)
 <223> n = A,T,C or G

<400> 616

tgtatgccacc	ccgtcaccccc	tcccctcctg	agcagggatc	caagaatgtg	ccaagagtcc	60
cgcccgccctc	agccagggtgg	gcctgtatat	agggtccatg	tgcaataggg	agggacgtct	120
tctatttttt	gctgccccct	ccccgccccac	tgtctngggg	cagggggaga	aggtatttc	180
nagataaaagc	acangcacca	caaataaaaag				210

<210> 617

<211> 511
 <212> DNA
 <213> Homo sapien

<400> 617

acgagctttc	gtggctcaet	ccctttcctc	tgctgcccgt	cggtcacgct	tgtgcccggaa	60
ggaggaaaca	gtgacagacc	tggagactgc	agttctctat	ccttcacaca	gctctttcac	120
catgccttgg	tcacttcctt	tgaatgcaga	agcttgcgtgg	ccaaaagatg	tgggaatttgt	180
tgcctttag	atctattttc	cttctcaata	tgttgatcaa	gcagagttgg	aaaaaatatga	240
tggtagat	gctggaaagt	ataccattgg	cttggccag	gccaaagatgg	gcttctgcac	300
agatagagaa	gatattaact	ctctttgcat	gactgtggtt	cagaatctta	tggagagaaaa	360
taaccttcc	tatgatttgc	ttgggcggct	ggaagttgg	acagagacaa	tcatcgacaa	420
atcaaagtct	gtgaagacta	atttgatgca	gctgtttgaa	gagtctgg	atacagatata	480
agaaggaatc	gacacaacta	atgcatgcta	t			511

<210> 618

<211> 511
 <212> DNA
 <213> Homo sapien

<400> 618

acgaggccac	agaggccgc	gagagatggc	cttcagcggt	tccaggctc	cctacactgag	60
tccagctgtc	cccttttctg	ggactattca	aggaggtctc	caggacggac	ttcagatcac	120
tgtcaatggg	accgttctca	gctccagtgg	aaccaggttt	gctgtgaact	ttcagactgg	180
cttcagtgga	aatgacattt	cttccactt	caaccctcg	tttgaagatg	gagggtacgt	240
gtgtgtcaac	acgaggcaga	acgaaagctg	ggggcccgag	gagaggaaga	cacacatgcc	300
tttccagaag	gggatgccc	ttgacctctg	cttcctgtgt	cagagcttag	atttcaaggt	360
gatggtgaac	gggatctct	tgtgcagta	cttccacccg	gtgcccttcc	accgtgtgaa	420
caccatctcc	gtcaatggct	ctgtgcagct	gtcctacatc	agttccagc	ctcccgccgt	480
tggeectgcc	aacccggctc	ccattaccca	g			511

<210> 619

<211> 413
 <212> DNA
 <213> Homo sapien

<400> 619

gaattcggca	cgagctggac	aggagaagag	cctggctgct	gaaggcagg	ctgacacgac	60
cacgggcagc	attgctggag	ccccagagga	tggaaatcg	cagacacag	ccccccaggg	120
accagagtgc	ttcgaccctg	ceggaccggc	tgggctcg	aggccgacat	ctggccttcc	180
ccagggccca	ggaaaggaaa	ccttggaaag	tgtcttaatc	gtcttagact	ctaaaaacc	240
caagaaaactt	cgtttccacc	caaagcagct	gtacttotct	gccaggcagg	gtgagctgca	300
gaaggtgctt	ctcatgctgg	ttgatggat	tgatccaaac	ttcaaaatgg	agcaccaaaag	360
taagcgttcc	ccattacatg	ctgctgcgga	ggctggccac	gtggacatct	gcc	413

<210> 620
 <211> 415
 <212> DNA
 <213> Homo sapien

<400> 620
 gaattcggca cgagccgcga cgggtgggt gactgagcgg agcccggtga caggatgtt 60
 gtgttgtat taggagatct gcacatccca cacccgtgca acagtttgcc agctaaattc 120
 aaaaaactcc tggtgccagg aaaaattcag cacattctt gcacaggaaa cctttgcacc 180
 aaagagaggtt atgactatct caagactctg gctggtgatg ttcatattgt gagaggagac 240
 ttcgtatgaga atctgaatta tccagaacag aaagttgtga ctgttgaca gttcaaaattt 300
 ggtctgtatcc atggacatca agtttattcca tggggagata tggccagctt agccctgtt 360
 cagaggcaat ttgtatgttga catttttatac tcgggacaca cacacaatt tgaag 415

<210> 621
 <211> 421
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(421)
 <223> n = A,T,C or G

<400> 621
 agaattcngc acgagtggca gcctaagccg tgggagggtt ccagtcgaga atggaaagat 60
 gaaagacttc agatggaca gaaataaaatg cttttttga caaacgcagc agtgcgtgcc 120
 tctagcttgc aagagcgtta ctcccccttca tagctttaaa agttttcgc actgcgtgca 180
 gtttagatgtt ctaaatcttgc tggacgctc cacaaacact tgtaagaatt ttgcagagaa 240
 agataaccgt tgccacccaa tgccccccac aggcatcttca ctccccagta cctctttaggg 300
 tgggagaaat ggtgaagagt tggccttaca acttgctaac ctgttgaca gggtagttaga 360
 ttagcatcat cggatagat gtgaagagga cggctgtttt gataataatt aaggataaaa 420
 t 421

<210> 622
 <211> 431
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(431)
 <223> n = A,T,C or G

<400> 622
 cccggggnggg ncctggncat aaaactttaa attttactag ttttacttaa ttttatattct 60
 aaaaagagaa tgcgttact aatgcctttaa atgtttgttgc tctgtttgtc attactttttt 120
 caaaaattttt tttttcttgc aagtataata tataaaaactt cttgtttttttt ttgaattttct 180
 atattatgtgg ttaatttgcgttgg ttttattaaag ggatcattat cgtttttttt atagcaactg 240
 ttcttagtgg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 300
 catatgaatc acagacctcg gcccgcacca cgcttgggc gttttttttt tttttttttt 360
 ccgttacttag tggatcccgag ctcgttacca agcttgggc gttttttttt tttttttttt 420
 ttcctgtgtt a 431

<210> 623
 <211> 421
 <212> DNA
 <213> Homo sapien

<220>

<221> misc feature

<222> (1)...(421)

<223> n = A, T, C or G

<400> 623

agaattccgc acgaggaaac atggactgcc ccttaaattt tgactgtcct aaaaacctat	60
ttctgattta taatatgctg nctgataaag tgacactaga ngnaccnact nnatggtta	120
aatcttccca ttccccagaat ccagaatttt ggaagccatt ttaaccaggg gtatttttn	180
caccatttacc ttttggaaact ttccaaatta atggcctttt aaaaagggtt gaaaaaggaaa	240
accaaaaaggc caaaaattta aaaaggttgg gggggggaaac cttaaaaaaaaaaa aaaatgggtt	300
ttggggccnc ctttttttaa aaggccaaaa nttttttggg ttccaattaa aaaaatttcc	360
tttttccaaac cccaaattaa gaaaaggnaa aattaaaaaaaaa attncaaaaaa ttggnnnnnn	420
t	421

<210> 624

<211> 421

<212> DNA

<213> Homo sapien

<400> 624

aagaattcgg	cacgagcgg	tgtgctca	gacattctac	tccaaagt	cgaggatgc	60
ccactccaag	tcacacaccg	agaccaagcc	ccacaagtgc	ccacattgc	ccaagac	120
cgcacacagc	tcctacatgg	cccagcacat	ccgtatacac	tcaggggcta	agccctacag	180
ttgttaactt	tgtgagaaat	ccttccgc	gctctccac	cttcagcagc	acacccgaat	240
ccacacttgtt	gatagaccat	acaaaatgtgc	acacccaggc	tgtgagaaag	ccttcacaca	300
actctccaaat	ctgcagtcccc	acagacggca	acacaacaaa	gataaaccc	tcaagtgc	360
caactgtcat	cggcgtaca	cggatgcagc	ctcactagag	gtgcac	ctacgcacac	420
a						421

<210> 625

<211> 421

<212> DNA

<213> Homo sapien

<400> 625

agaattccgc acgagctact ccttgcgcgc tggcaactccg cagcctttaa ggttcgcgcg 60
ggggccaggc aagagtttagc catgaagagc ctcaagtccc gcctgaggag gcaggacgtg 120
cccgcccccg cgtcgctctgg cgccgcgcgc gccagcgcgc atgcagcaga ttggaaaaaa 180
tatgtatgacc qatttgatgaa agcagcagaa aggggggatg tagaaaaaaagt gacgtcaatc 240
cttgctaaaa agggggtcaa tccaggcaaa ctagatgtgg aaggcagatc tgtctccat 300
gttgtgacct caaaggggaa tcttgatgtt ttgaatgcca tccttataaca tggaggatgt 360
attacaacca gtgacactgc agggagaaat gctttcacc tggctgctaa gtatggacat 420
g 421

<210> 626

<211> 476

<212> DNA

<213> Homo sapien

<400> 626

```

agaattgtatatacatttttacagg 60
catagacaat agacatagcc aaaacttatt ctaaaaataca tatgaagatg cacagggcct 120
agttatacaa tcttgacaaa gaagaataaa gtgggaagaa tctatttgc tttaaggcct 180
accatgttaac tacagtcatc aagagagtgt ggtatcgca gacggtcaga catacagatc 240
aatggaatgt aacagaggac ccagaaaatag gcccacacag atatgctcaa tggatattg 300
acaagcgtagtcaaaaatc aatggaaagaa taagtttca aaaaaatggc gttggagcaa 360

```

ccggacatcc atagaaaaaa atgaacccat acctaaacca taaaacctat ataaaaataa acacaaaatg aatcatagc tttaatgtaa gctataaaac ttttagagaa aaacac	420 476
<210> 627	
<211> 503	
<212> DNA	
<213> Homo sapien	
<400> 627	
tagccctcg gtaagcccc gaccacagct atgagtcct tcgtgtgacg tctgcgcaga aacatgttct gcatgtccag ctcAACCGGc ccaacaagag gaatgccatg aacaaggct tctggagaga gatggtagag tgcttcaaca agatttcgag agacgctgac tgcggccgg tggtgatctc tggcagga aaaatgttca ctgcaggat tgacctgtg gacatggctt cggacatctc gcagcccaa ggagatgatg tggcccgat cagctggatc ctccgtgaca tcatcactcg ataccaggag accttcaacg tcatcgagag gtgccccaaag cccgtgattg ctgccgtcca tggggctgc attggcgag gtgtgacct tgcaccgccc tgcacatcc ggtaactgtgc ccaggatgt ttcttccagg tgaaggaggt ggacgtgggt tggctgccc attaggaac actgcagcgc ctg	60 120 180 240 300 360 420 480 503
<210> 628	
<211> 248	
<212> DNA	
<213> Homo sapien	
<400> 628	
taagtccagg gggataact gtaggcattc ctggaatcac tgcgttctgt tccattgtgt cttggttcca ggggttcctc ttccgttct tacttggaa gtccaaacggc gtggcggtcg ctccggtcgc catggcgccc cgggggacag gcaccggcac ctgcgttcc tctgcggcg cttcttcctc gcaaggctcc cggggggagg ggacccgaat ggcgtccgg agcgcgcgg gccccgtcc	60 120 180 240 248
<210> 629	
<211> 99	
<212> DNA	
<213> Homo sapien	
<400> 629	
actgccagtc caaaggcattc gtggtgaccg cctacagccc cctcggtct cctgacaggg cctggccaa gcccggggac cttctctcc tggaggatc	60 99
<210> 630	
<211> 640	
<212> DNA	
<213> Homo sapien	
<400> 630	
gaagacatga tgctacactc agctttgggt ctctgcctct tactcgtaac agtttcttcc aaccttgcctt ttgcaataaa aaaggaaaaag aggccctctc agacactctc aagaggatgg ggagatgaca tcacttgggt acaaacttat gaagaaggc tctttatgc taaaaaaaaat aagaaggccat taatgtttt tcatcactcg gaggattgtc aatactctca agcactaaag aaagtattt cccaaatga agaaatacaa gaaatggc agaataagtt catcatgta aaccttatgc atgaaaccac tgataagaat ttatcactcg atgggcaata tgcctaga atcatgttt tagacccttc tttaacagtt agagctgaca tagctggaaat atactcta agattgtaca catatgagcc tcgggattta cccctattga tagaaaaacat gaagaaagca ttaagactt ttcagtcaga gctataagag atgatgaaa aaagccttca cttcaaagaa gtcaaatttc atgaaaaaa cctctggcac attgacaaat actaaatgtg caagtatata gattttgtaa tattactatt tagttttttt aatgttttg	60 120 180 240 300 360 420 480 540 600 640

<210> 631
<211> 168
<212> PRT
<213> Homo sapien

<400> 631

Glu	Asp	Met	Met	Leu	His	Ser	Ala	Leu	Gly	Leu	Cys	Leu	Leu	Leu	Val
1				5				10						15	
Thr	Val	Ser	Ser	Asn	Leu	Ala	Ile	Ala	Ile	Lys	Lys	Glu	Lys	Arg	Pro
					20				25					30	
Pro	Gln	Thr	Leu	Ser	Arg	Gly	Trp	Gly	Asp	Asp	Ile	Thr	Trp	Val	Gln
					35			40				45			
Thr	Tyr	Glu	Glu	Gly	Leu	Phe	Tyr	Ala	Gln	Lys	Ser	Lys	Lys	Pro	Leu
					50			55			60				
Met	Val	Ile	His	His	Leu	Glu	Asp	Cys	Gln	Tyr	Ser	Gln	Ala	Leu	Lys
					65			70		75			80		
Lys	Val	Phe	Ala	Gln	Asn	Glu	Glu	Ile	Gln	Glu	Met	Ala	Gln	Asn	Lys
					85				90			95			
Phe	Ile	Met	Leu	Asn	Leu	Met	His	Glu	Thr	Thr	Asp	Lys	Asn	Leu	Ser
					100			105			110				
Pro	Asp	Gly	Gln	Tyr	Val	Pro	Arg	Ile	Met	Phe	Val	Asp	Pro	Ser	Leu
					115			120			125				
Thr	Val	Arg	Ala	Asp	Ile	Ala	Gly	Arg	Tyr	Ser	Asn	Arg	Leu	Tyr	Thr
					130			135			140				
Tyr	Glu	Pro	Arg	Asp	Leu	Pro	Leu	Leu	Ile	Glu	Asn	Met	Lys	Lys	Ala
					145			150			155			160	
Leu	Arg	Leu	Ile	Gln	Ser	Glu	Leu								
					165										

<210> 632
<211> 402
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(402)
<223> n = A,T,C or G

<400> 632

gccccggacgt	aggtagttt	ttggggccgg	ttcttgaggcc	ttgtttctct	ttacttttcc	60
actcttaggcc	acgtatggcc	agtaccagac	ctggggaggag	ttcagccgcg	ctggccgagaa	120
gctttaccttc	gctgacccta	tgaaggcacg	tgtggttctc	aaatataggc	attctgtatgg	180
gaaccttgtt	gttaaagataa	cagatgttt	agtttggttt	gtgtataaaa	cagacccaagc	240
tcaagatgtt	aagaaaaattt	agaaaattcca	cagtcaacta	atgcnactta	tggtacccaa	300
ggaagcccg	aatgttacca	tggaaactga	gtgaatggtt	tggaaatgaaa	ctttgtcg	360
tacttaggaa	gtaaatatct	tttgaattan	aaaaagtgtt	gg		402

<210> 633
<211> 402
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(402)
<223> n = A,T,C or G

<400> 633

gcggagtcgg	gtgggttggc	ggctataaaag	ctggtagcga	aggggaggcg	ccgcggactg	60
tccttcgtg	gctcaactccc	tttcctctgc	tgccgctcgg	tcacgcttgc	tctttcacca	120
tgccctggatc	acttcctttg	aatgcagaag	cttgctggcc	aaaagatgtg	ggaatttgtt	180
ccctttagat	ctatttctt	tctcaaatatg	ttgatcaagc	agagttggaa	aaatatgatg	240
gtgttagatgc	tggaaagtat	accattggct	tggccangc	caagatgggc	ttctgcacag	300
atagagaaga	tattaactct	cttgcattga	ctgtggttca	gaatcttatg	gagagaaaata	360
acctttccta	tgattgcatt	ggcggnntgg	aagttggAAC	ag		402

<210> 634

<211> 386

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(386)

<223> n = A,T,C or G

<400> 634

tgcaggtcga	cactagtgg	tccaaanaat	tcggcacgag	gctggcaaga	agagacgagg	60
cccggtctgt	gagcaactga	accgggtgac	tgttccaagc	tggactccct	gggtggcccaag	120
cagctgcaga	gcaagaatga	gtgttgaatc	cttgcgcacc	ccaaggggcc	cttccgggag	180
tgccatagcga	agctggaccc	ccagggtgcc	gtgcgcact	gtgtctatga	ccgctgcctg	240
ctgcccaggcc	agtctgggccc	actgtgtgac	gcactggcca	cctatgctgc	tgcatgtccag	300
gctgctggag	ccacagtgc	cccttggagg	agtgaagaac	tttgcccact	tganctgc	360
ccncacannc	ctatnaggcg	tgttct				386

<210> 635

<211> 404

<212> DNA

<213> Homo sapien

<400> 635

gccaccactt	cgttagtgttt	tggAACAAAC	caagttaaag	aaagaagata	tttatgcagt	60
ggagatagtt	gggtgggtcta	cacgaatccc	tgccgtaaaa	gagaagatca	gcaaattttt	120
cggtaaagaa	cttagtacaa	cattaaatgc	tgtgaagct	gtcaactcgag	gtgtgcatt	180
gcaggtgtgcc	atcttacgc	ctgttcaa	agtcagagaa	ttttctatca	ctgtatgtat	240
accatatcca	atatctctga	gatggattc	tccagctgaa	gaagggtcaa	gtgactgtga	300
agtctttcc	aaaaatcatg	ctgtccctt	ctctaaagtt	tttacatttt	atagaaaggaa	360
acctttcaact	tttgaggcct	actacagctc	tcctcagat	ttgc		404

<210> 636

<211> 403

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(403)

<223> n = A,T,C or G

<400> 636

gctcaactgg	ccccagtgcc	ctgtggagc	aaggctatgc	tgtcagatg	gacttcaacc	60
tgcttagtgg	tgctgtcagc	cagaacgctg	ctttccttgg	gcaaaacttt	tccagcacca	120
tcaaacagga	tgactttacc	gtctgtctct	ttgacatcca	caagcaagtc	ctaaaagagg	180
gcattgcccc	gactgtgttc	ctgggcctga	atcgctcaga	ctacatgttc	cagcgcagcg	240

cagatggctc cccagccctg aaacagatcg aatcaacac catctctgcc agctttgggg	300
gcctggctc ccggacccca nctgtgcacc gacatttct cagtgtcctg agtaagacca	360
aagaagctgg caagatcctc tctaataatc ccagcaaggg act	403

<210> 637
<211> 441
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(441)
<223> n = A,T,C or G

<400> 637

aggtcgacac tagtggatcc aaanaattcg gcacgaggag agagacccta aaagcaaaaa	60
tagaaggat gacccaaagt ctgagaggc tggattaga tggattact ataaggtag	120
aaaaagaaaaa tctgacaaat gaattacaaa aagagcaaga gcgaatatct gaattagaaa	180
taataaaattc atcatttcaa atattttgc aagaaaaaga gcaagagaaa gtacagatga	240
aagaaaaatc aagcactgccc atggagatgc ttcaaaca attaaaagag ctcataatgaga	300
gagtggcagc cctgcataat gaccaagaag cctgttaaggc caaagagcag aatcttagta	360
gtcaagtaga gtgtttgaa ctgttggagg ctcagtgtt acaaggccctt gatgaggcca	420
aaaataatta tattttgc a	441

<210> 638
<211> 404
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(404)
<223> n = A,T,C or G

<400> 638

gcgctgccgc cgattccgga tctcattgcc acgcgcffff gacgaccgcc cgacgtgcatt	60
tcccgattcc ttttggttcc aagtccataa tggcaactct aaaggatcag ctgattttata	120
atcttctaaa ggaagaacac accccccaga ataagattac agtgggggg gttgggtctg	180
ttggcatggc ctgtgcacat agtatcttaa tgaaggactt ggcagatgaa cttgctcttg	240
ttgatgtcat cgaagacaaa ttgaaggggag agatgtatgaa tctccaaat ggcagecctt	300
tcttagaaca ccaaagattt tctntggcaaa agactataat gtaactgaa ctncagctgg	360
cattatcaeg ntggggacgt cagaagaagg agaaagccgc ttat	404

<210> 639
<211> 404
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(404)
<223> n = A,T,C or G

<400> 639

gcatgttaccc agcacttccgg ctccctcgccg gctcgctcc ccttgtgggg gctccagccg	60
cagccttgc ttcgggtccc ggcttgggtg ggcggccgt gcctcggtt tggcctccga	120
acgcggctcg aatggcaagc caaaaatttcc tccggataga atatgatacc tttgggtgaac	180
taaagggtgcc aatgataag tattatggcg cccagaccgt gagatctacg atgaacttta	240

agattggagg tgcacagaa cgcatgccaa ccccagttaaaaat ggcatcttga	300
aacgagcggc cgctgaagta accaggatt atggcttga tccaaaaatt gctaatacgaa	360
taatgaangc agcanatgaa gnanctgaag gtaaataaaa tgat	404

<210> 640

<211> 401

<212> DNA

<213> Homo sapien

<400> 640

ggccaagtca gcttcttctg agagagtctc tagaagacat gatgctacac tcagctttgg	60
gtctctgcct cttaactcgtc acagtttctt ccaaccttgc cattgcaata aaaaaggaaa	120
agaggcctcc tcagacactc tcaagaggat ggggagatga catcaacttgg gtacaaactt	180
atgaagaagg tctcttttat getcaaaaaaa gtaagaagcc attaatggtt attcatcacc	240
tggaggattt gcaataactct caagcactaa agaaagtatt tgccaaaaat gaagaaatac	300
aagaaatggc tcagaataag ttcatcatgc taaaccttgc gcatgaaacc actgataaga	360
atttatcacc ttagggcaa tatgtgccta gaatcatgtt t	401

<210> 641

<211> 404

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(404)

<223> n = A,T,C or G

<400> 641

ggctcatcgca gagacaccaggc cgacaccttgc gctttcgacatggccaaac ctcgagcgta	60
ccttcattgc catcaagcca gatggcggtgc agcgcggcct ggtggggcagatcatcaa	120
gattcgagca gaagggggttc cgctgggtggc catgaagttc cttcgggctn ttgaagaaca	180
cctgaacagc attacatcgca ccctgaacgaa accgtcctt cttccnggg gctgggtgaaa	240
tacatgaact tngggccat ngtgggcattt ggcttggaa gggntcaat ggtgggtggaa	300
aaccggcccg aatgattttt ggggggaaana acaaattccaa nttagttaa aaaccaggca	360
nccattnccg ggggggattt nttnnttt naaanttggg nagg	404

<210> 642

<211> 366

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(366)

<223> n = A,T,C or G

<400> 642

tgcaggctca cacttgttca tccaantaat tcggcacgag gagcaaaaggc acatcttaaa	60
tggcaggggactacccttg atacaaccat cagatctcat gagactcaact gtcatgagaa	120
cagcagcatggggtaacgg ccccatgatt caattacctc ccactgagtc cctccacga	180
catatggggat ttagggagc tacaattcaa gatgagattt aggtggggac acagccaaac	240
catttcaata gcataacacc aaaaaagggtt atagagcattt aaaaagggtt atggaccatg	300
catcgtataatataataattataagtatctttaaac attcatcagg tgccaaaggct	360
cgtgcc	366

<210> 643

<211> 403

<212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(403)
 <223> n = A,T,C or G

<400> 643

gtgacctgat gagacagtta attatggcca atccacaat gcagcagttg atacagagaa	60
atccagaaaat tagtcatatg ttgaataato cagatataat gagacaaaacg ttggaacttg	120
ccaggaatcc acaatgatgc agganaagat gaagaaccaa gaccaacct tnancacac	180
aaaaannntt ccnagggnnn ttnanngttt nanggnntt ntcccccaant tttnagganc	240
cattgttnat ngntgncaa aannagttng gnngaaatcc ttttgttcc ttgggganca	300
atacatcctt tggngaaggt agtcaacctt cccgtncana aattagaaaat cccctnccca	360
atccntgggn tccacaaaact tcccaaagtt antnagttc cac	403

<210> 644

<211> 403
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(403)
 <223> n = A,T,C or G

<400> 644

ggggatgaca gcccataacaa gaactgtttt tgaatcggtg tgcaagctcca ggcaatagag	60
tatgtgaagc gatttcagta gaatcaactt ctcatcctaa aagaaaaacat tattccnnt	120
accntcctt nnattnccnt ntnttaannnn aaacntanng ntnnntgnnt gttnannggn	180
atnancttta aanntgcant ntntntttant cctccaaatn ttttcggtt tcntntgaga	240
ancaccanaa nctttcttcc ccttntcttc agtanttgca anagganacc tccnttnagg	300
actggcntag ngaacgtaat ccatgcttta actgccattt aacagccccca tggttggatt	360
ttttttttttt ttngagtgng ctttccaaaa ctttgtcaaaa aac	403

<210> 645

<211> 405
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(405)
 <223> n = A,T,C or G

<400> 645

gegccttcca ggccgcactc cagagccaaa agagctccat ggccggcgccg gccaaagccca	60
acaaccccttc cctgggttg cacggaccgg gggacttgcg cctggagaac tatecttatcc	120
ctgaaccagg cccaaatgag gtcttgctga ggatgcattc tggtaatc ttgtggctta	180
aatgtcaactt ctgggagttt gggcnaattt ggaattttat tgngaaaaac ccatggggtt	240
ggacatgaag ttccggacagt cnaaaaaagtgg gatcatcg naaagaccta aaaccaggtg	300
atcggttgca tcacctgggc tcccggaaaa tgataattnt gaagatggcc atacatntgt	360
acccatntt tttntggcac ccccccnata cggaacttgcggtt	405

<210> 646

<211> 412
 <212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(412)

<223> n = A,T,C or G

<400> 646

ggaacccagt gcctgcagcc atggctcccg gccagctcgc cttatTTAGT gtctctgaca	60
aaacccggcct tgtggattt gcaagaaaacc tgaccgtct tggTTGAAT ctggtcgctt	120
ccggaggggac tgcaaaagct cttagggatg ctggctcggc agtcagagat gtctctgagt	180
tgacgggatt tcctgaaatg ttggggggac gtgtgaaaac tttgcattct gcagtccatg	240
ctggaaatcct agctcgtaat attccagaag ataatgctga catggccaga cttgatttca	300
atcttataag agttttgcc tccaatctct atccctttgt aaagacaagt ggcttctcca	360
ggtgtaaactg ttgaggangc tgtggagca aattgacatt ggtggagta ac	412

<210> 647

<211> 412

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(412)

<223> n = A,T,C or G

<400> 647

ggtcgcccgg cgccccagcc cgccgcggc gctccccgcc tcccgctag cgccanncggc	60
ngntctgnnc ggctgattnc cagctatgan acaaggagaa tgaaaatatg aaaaaaaagc	120
tgaacaaaaa agttanntag ctaaaacagg acttgcagnn ttnaaaacag gtccttgatg	180
gaaaagaaga ggttggaaaa caacntagag aaaatattna aantctaaat tccatggtag	240
aacgccaaga gaaagatctt gggcgcttcc aggttagacat ggatgaactt gaagaaaaaga	300
accgaagtat tcangctgcc tggatagtgc atacaaagaa cttaactgatc tttacaaagc	360
caatgctgca aangatagtg aggnacanga agctgctcn accgtgaaat ga	412

<210> 648

<211> 413

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(413)

<223> n = A,T,C or G

<400> 648

ggtcgcccgg cgccccagcc cgccgcggc gctccccgcc tcccgctag cgccagccccgg	60
cggctctgcc cggtgcgc cggcatgaa catcatggat ttcaacgtga agaaaacttgg	120
cgggccgacc gggcacctt tcttaagccg gcccgtgnaa ttanaaaaaaa aaaaacttgg	180
ncaagaaaaa aaaaanaaaa ttggncctta nctgaaaan cttcttaaca aaacttaatg	240
gtccaaaata ttgaccgaaa aaaaatgna ncaaaccnna ntgnnttgc acccaatncn	300
aatnccnnga nnaaaaaat tgnattaa aaacntgaat aaaaancccc aannctatna	360
acaaccccgaa acttttggaa cnatntntna ntgatnnnng aacntaattt ggc	413

<210> 649

<211> 409

<212> DNA

<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(409)
 <223> n = A,T,C or G

<400> 649

actagtggat ccaaagantt	cggcacgagg	gcanggtgn	cggcgaaa	ggggcacggg	60
caccccccgcg	gtcctcggga	ggcttagagat	catggaaagg	aagtggttgc	120
actggtgctt	ggaactgcta	tttgtgagge	tcatgatgga	catgatgatg	180
tattgaggat	gaccttgacg	atgtcattga	agaggtagaa	gactcaaaac	240
tgctcctcct	tcatctccca	agtttactta	caaagctcca	nttccaacag	300
ttttgctgat	tctttgaca	gaggaactct	gtcagggtgg	attttatnca	360
agacnatccn	atgataaaaa	ttgccnaata	tatggaaaaa	ntagccaanaa	409

<210> 650
 <211> 413
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(413)
 <223> n = A,T,C or G

<400> 650

ggcctgagga	ccggcaacat	ggtgcggtcg	gggaataagg	cagctgttgc	60
gacgtgggc	ttaccatgag	taactccatt	cctggtatag	aatccccatt	120
agaaggta	taaccatgtt	tgtacagcga	caggtgtttg	ctgagaacaa	180
gctttagtcc	tgtttggtag	agatggact	gacaatcccc	tttctgggtgg	240
cagaacatca	cagtgcacag	acatctgttgc	ctaccagatt	ttgatttgc	300
gaaagcaaaa	tccaaaccagg	ttctcaacag	gctgacttcc	tggatgcact	360
atggatgtga	ttcacatgaa	acaataggaa	agaagttga	gaanaagcat	413

<210> 651
 <211> 441
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(441)
 <223> n = A,T,C or G

<400> 651

ctagtggatc	caaagantic	ggcacgaggc	aaccagtgc	actgcaggga	60
tcacctggct	gctaagtatg	gacatgcatt	gtgcctacaa	aaacttctac	120
tcccaactgag	catgcagacc	tgcaaggaaag	aactgcactt	cacgatgccg	180
ttgtccttct	agcatacagc	tgccttgc	ccatggggcc	tctgtgaatg	240
agacgggcgg	acaccacttg	ttctggctac	tcatgtgatg	ccaaagatgt	300
gctgatagat	agaggagcgg	atgttaattc	cagagacaaa	caaaacagaa	360
gctaggttgc	aatatgggtt	gcagagatgc	agttagaagtc	ttaattaaaa	420
atataagctt	gctggatgcg	c			441

<210> 652
 <211> 412
 <212> DNA
 <213> Homo sapien

<400> 652

gcttctctct	cctgtcaaa	atggcaactc	ttaaggaaaa	actcattgca	ccagttcg	60
aagaagagggc	aacagtcc	aacaataaga	tcactgttagt	gggtgttg	caagttgg	120
tggcgtgtgc	tatcagcatt	ctggaaaagt	ctctggctga	tgaacttgct	tttgtggatg	180
tttttggaaaga	taagctaaa	ggagaaaatga	tggatctgca	gcatgggagc	ttat	240
agacaccta	aattgtggca	gataaaagatt	attctgtgac	cgccaattct	aagattgtag	300
tggtaactgc	aggagtccc	tcagcaagaa	ggggagagtc	ggctcaatct	ggtgcagaga	360
aatggtaatg	tcttcaaatt	cattattcct	cagatccgca	agtacagtcc	tg	412

<210> 653

<211> 414

<212> DNA

<213> Homo sapien

<400> 653

gccagttcaa	gtccaccctg	ccggacgccc	ataggagcg	cgaggccatc	ctggccatcc	60
acaaggagggc	ccagaggatc	gctgagagca	accacatcaa	gctgtcgggc	agcaaccct	120
acaccaccgt	caccccgaa	atcatcaact	ccaaagtgg	gaaggtgcag	cagctgg	180
caaaacggga	ccatgccctc	ctggaggagc	agacaagca	gcagtccaa	gagcacctgc	240
ggcccgagg	cgccagccag	gccaatgtt	tggggccctg	gatccagacc	aagatggagg	300
agatcgggcg	catctccatt	gagatgaacg	ggaccctt	ggaccagctg	agccacctga	360
agcagtatga	acgcagcata	gtggactaca	aagccaaacc	tggacctt	tg	414

<210> 654

<211> 404

<212> DNA

<213> Homo sapien

<400> 654

gcatggcg	gctgacgg	gagggtcg	gctccaa	ggcttctac	aaggattta	60
tcaaaagatgt	ccacaa	gac	tc	cc	tttttga	120
gcccagg	gtttaatgaa	gtgcgattac	caccacc	tgatataaa	aaagaaatta	180
gtgaaggaga	tgaagttag	gtatattca	gagcaa	atgca	tgtggatg	240
ggctggctaa	agttcgat	atgaaaggcg	agttttatgt	cattgaat	gctgcttg	300
atgccactt	caatgaaata	gtcacat	tttgc	aacgactt	gcctgtca	360
ctgtcaaaaa	aaatacctt	tttaagt	gca	cagtggat	tc	404

<210> 655

<211> 402

<212> DNA

<213> Homo sapien

<400> 655

ggcaagatc	accattagca	aatggaaatt	acat	ttat	agggtg	60
tgcaagoatc	taagagag	gttaatcaca	ctat	agg	gtt	120
tttttctaat	tgtttaact	gtt	tttata	ccag	gtt	180
tgagatgg	ttt	aaagggt	gggtt	caag	tttgc	240
gtttccaa	act	ccgctgaaat	gtt	gtt	tttgc	300
gtggctgctc	attcttg	cct	actt	tact	ccact	360
gtatggaaa	cct	gtatg	ccat	tttgc	tttgc	402

<210> 656

<211> 416

<212> DNA

<213> Homo sapien

<400> 656

gaatcggcac gaggtcagcc gcgagggtgtc cgccatcaag gccgcctacg aggccgagct	60
cggggatgcc cgcaagaccc ttgactcagt agccaaggag cgcccccggc tgcagctgga	120
gctgagcaaa gtgcgtgagg agtttaagga gctgaaagcg cgcaatacca agaaggaggg	180
tgacctgata gctgctcagg ctcggctgaa ggacctggag gctctgctga actccaaggaa	240
ggccgcactg agcaactgctc tcagtgagaa ggcacgcgtg gagggcgagc tgcatgatct	300
gcggggccag gtggccaagc ttgaggcagc cctaggtgag gccaagaagc aacttcagga	360
ttagatgctg cggcggtgg atgctgagaa caggctgcag accatgaagg aggaac	416
<210> 657	
<211> 402	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(402)	
<223> n = A,T,C or G	
<400> 657	
gctccaagca gacacaatgg taagaatggt gcctgtcctg ctgtctctgc tgctgcttct	60
gggtcctgtcgt gtcctccagg agaaccaaga tggtcgttac tctctgacct atatctacac	120
tgggctgtcc aagcatgttg aagacgtccn cgnnttcag gcccttggct cactcaatga	180
cctccagttc tttagataca acagtaaaaaga caggaagtct cagcccatgg gactctggag	240
acaggtggaa ggaatggagg attggaaagca ggacagccaa cttcagaagg ccagggagga	300
catctttatg gagaccctga aagacattgt ggagtattac aacgacagta acgggtctca	360
cgtattgcag ggaaggtttgcgttgcgatca tcgagaataa ca	402
<210> 658	
<211> 404	
<212> DNA	
<213> Homo sapien	
<400> 658	
gcaagacgcc acttcccccta tcatagaaga gcttatcacc ttcatgatc acgcctcat	60
aatcatttttc cttatctgtc tcttagtctt gtatgccctt ttcctaacac tcacaacaaa	120
actaactaat actaacatct cagacgtca ggaaatagaa accgttgaac tattctgccc	180
gccatcatcc tagtcctcat cgcctccca tccctacga tcctttacat aacagacgag	240
gtcaacgatc ctccttcatc catcaaatca attggccacc aatggtaactg aacctacgag	300
tacaccgact acggcggact aatcttcaac tcctacatac ttccccatt attcctagaa	360
ccaaggcggc cctgcgactc cttgacgttg acaatcgagt agta	404
<210> 659	
<211> 411	
<212> DNA	
<213> Homo sapien	
<400> 659	
ggcacgaggc tcgcccgttac tccgaggaga taccagtcgg tagaggagaa gtcgaggta	60
gagggaaactg ggaggcaatt tgctgtctgc aatcgaagtt gagggtgcaa aaatgcag	120
taataaaaact tttaacttgg agaagcaaaa ccatctccaa gaaaagcata atcaacatca	180
ccaccagcag cagcacccacc agcagcaaca gcagcagccg ccaccacgc caataccgtc	240
aaatggcaca caggccagca gccaaaaatga aggcttgaact attgacctga agaattttag	300
aaaaccagga gagaagacct tcacccaacg aagccgttt tttgtggaa atcttcctcc	360
cgacatcact gaggaagaaa tgaggaaact atttgagaaa tatggaaagg c	411
<210> 660	
<211> 412	
<212> DNA	

<213> Homo sapien

<400> 660

ggcacgaggg ggatttgggt	cgca	gtttgtggat	cgctgtgatc	gtcacttaac	60
aatgcagatc	ttegtgaaga	ctctgactgg	taagaccatc	accctcgagg	120
tgacaccatc	gagaatgtca	aggcaaagat	ccaagataag	gaaggcatcc	180
cgagaggctg	atcttgctg	gaaaacagct	ggaagatggg	cgcacccctgt	240
catccagaaa	gagtccaccc	tgcacctgg	gctccgtctc	agaggtggga	300
cgtgaagaca	ctca	ctgaggtc	gagcccagt	acaccatcga	360
gaacgtcaaa	gcaa	aggatcc	aggcattct	cctgaccagc	412

<210> 661

<211> 411

<212> DNA

<213> Homo sapien

<400> 661

ggcacgaggg gagatcgatg	atcttgccag	taatgttagag	acagtgtcta	aggccaaggg	60
aaacctcgag	aagatgtgcc	gcaccctgga	ggaccagg	agttagctga	120
ggaggaacag	cagcgactga	tcaacgac	gacaacccag	agaggacgac	180
atccggtaa	ttttccag	acgtttagtga	gaaggaagcg	ctgttatctc	240
ggccaaacag	gcattca	aacagattga	ggagctaaag	aggcaactt	300
aaaggccaag	aacgcgtgg	cccacgcct	gcagtcetcc	cgccatgact	360
gcgggaa	acag	taaggctgaa	ctgcagagg	gtgacactgt	411

<210> 662

<211> 414

<212> DNA

<213> Homo sapien

<400> 662

ggcacgaggc tcacaggacc	agccactagc	gcagcctcg	gcgatggct	atgtccccgc	60
accgggctac	cagccac	acaacccgac	gctgccttac	taccagcc	120
gctcaacgtg	ggaatgtctg	tttacatcc	aggagtggcc	agcagcaca	180
cttcgtgaac	tttgggtt	ggcaggatcc	gggctcaag	gtgccttcc	240
cggtttgac	ggctggaca	agggtgtt	caacacgtt	caggcgg	300
cgaggagagg	aagaggagca	tgcccttcaa	aaagggtg	gccttgg	360
agtcc	tgactaca	agggtgtt	aatggaaat	cccttctat	414

<210> 663

<211> 414

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (414)

<223> n = A,T,C or G

<400> 663

gcggcgctcc ttctctcg	gtcg	ctcgatgt	acettctagt	cccgccatgg	60
ccgctctcac	ccgggacccc	cgttccaga	agctgcagca	atggtaccgc	120
ccgagctgaa	cctgcgcgn	ctttcgatg	ccaacaagga	ccgtttaac	180
tgaccctcaa	caccaaccat	ggcatatcc	tggnggatta	ctccaagaac	240
aggacgtat	gcccgtgt	gtggacttgg	ccaagtccag	ggcgtggag	300
agcggatgtt	caatgtgan	aagatcaact	acacccgang	gtcgagccgt	360
gctctgcgga	accggtcaa	acacacccat	nctgggagac	gcaangatg	414

<210> 664
<211> 411
<212> DNA
<213> Homo sapien

<400> 664

ggcacgaggc ttagatgccg tgccatgctc cacaaccatc aacaggaacc gcatggccg	60
agacaagaag agaaccttcc ccctttgttt tgatgaccat gaccagctg tgatccatga	120
gaacgcacatc cagcccgagg tgctggtccc catccgtgg acatggagat cgatggcag	180
aagctgegag acgccttcac ctggaacatg aatgagaagt tgatgacgc tgagatgtt	240
tcagaaatcc tctgtgacga tctggattt aaccgcgtga cgtttgcgc agccatgcc	300
tctgccccatca gacagcagat cgagtccatc cccacggaca gcattcgttgc ggaccagtca	360
gaccagcgcg tcatcatcaa gctgaacatc catgtggaa acatttccct g	411

<210> 665

<211> 409

<212> DNA

<213> Homo sapien

<400> 665

ggcacgaggc cgaatcgac cttctgagac cagggttgtc cctgtccgtgc tccgcctcgc	60
catgacttcc tacagctatc gccagtcgtc ggccacgtcg tccttcggag gcctggccgg	120
cggctccgtg cggtttggc cgggggtcgc ttttcgtcg cccagcatc acggggggcgc	180
cgccggccgc ggcgtatccg tgccttcgc cccgtttgtg tcctcgtcct cctcgggggg	240
ctacggccgc ggctacggcg gcgtcctgac cgcgtccgac ggctgtctgg cgggcaacga	300
gaagctaacc atgcagaacc tcaacgaccg cctggcctcc tacctggaca aggtgcgcgc	360
cctggaggcg gccaacggcg agctagaggt gaagatccgc gactggta	409

<210> 666

<211> 411

<212> DNA

<213> Homo sapien

<400> 666

ggcacgaggc gagctgaacc aagaaggagg aggggggtcgg gcctccgagg aaggcctagc	60
tgctgtgtc gccaggatt ccagggttggg gggggcgccaa cctccctgcca gccttcaggc	120
cactctctcg tgcctgtcccg aagagacaga gcttgaggag agcttgagga gagcaggaaa	180
gcagcctccc ccggttcccc tctggatcca ctgtttaaat acggacgagg acaggggccct	240
gtctctctcg cttcaggcac caccactgac ctgggacagt gaatgcacaa tgccgtcttc	300
tgtctctgtgg ggcattctcc tgcgtggcagg cctgtgtctgc ctggccctg tctccctggc	360
tgaggatccc cagggagatg ctgcccagaa gacagatata tcccaccatg a	411

<210> 667

<211> 412

<212> DNA

<213> Homo sapien

<400> 667

ggcacgaggc ttatccgaaa ctttgagaaa gacagacaaa aattggtcag cagccaggag	60
caagacagag aacagttat tcagaagctt aattgtggaa aagatgaagc tattcagact	120
gccctaaaaa aattttaaatt ggagagagaa gttgttggaa aagagtatt agaaaaagg	180
aaacatcttg agaatcaaatt agaaaaaaagt cctgcattt acttaccag aggagattct	240
tcaagcttag ttgtctgaact tcaagaaaaag cttcaggaaag aaaaagctaa gtttcttagaa	300
caacttgaag agcaagaaaa aagaaaagaat gaagaaaatgc aaaatgttcg aacatcttg	360
attgcggAAC aacagaccaa tttaaacact gtttaaccaa gagagaaaaat ga	412

<210> 668

<211> 411.

<212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(411)
 <223> n = A,T,C or G

<400> 668

ggcacgaggg tctngggcgc	gtcananna gatnatcaac ctgcgagagg	tcagcacng	60
cttccnctg ncaccgggg	agtannntt aattgtaan aagatgaaag	ctattcagac	120
ttgnctnnn ataatttna	ttggngagga gaanntttn tnatcaaag	ttntttana	180
aaaagntann ncattttnn	ntaatnaaag tattacanna ntactgcn	attgactta	240
ccanaagaga angctcnng	gcttggtgc tgaancttaa tnaaaaggnt	atggggantn	300
nanaaaantn aantnnntn	ganntaatct ttgnttgcag cttatcatnn	ttngntatna	360
aannaganaa tanttcta	nnntgtttc gaatctatna nnctnntt t		411

<210> 669

<211> 412
 <212> DNA
 <213> Homo sapien

<400> 669

ggcacgaggg cagagaaacc agattctctc	tcagcagttt cagcagatgg aagctgagca		60
taataacttg aggaacactg	tggaaacaga aagagaggag	tccaaagattc tactggaaaa	120
gatggaaactt gaagtggcag	agagaaaatt atccttccat	aatctgcagg aagaaatgca	180
tcatctttta gaacagttt	agcaaggcagg ccaagcccag	gctgaacttag agtctcggt	240
tagtgctttg gagcagaagc	acaaaggcaga aatggaagag	aagacctctc atatttttag	300
tcttcaaaaag actggacaag	agctgcagtc tgcctgtat	gctctaaagg atcaaaaattc	360
aaagctctc caagataaga	atgaacaggc agttcagtc	gcccgaccca tt	412

<210> 670

<211> 411
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(411)
 <223> n = A,T,C or G

<400> 670

ggcacgagga gaggacttc	cagagaagct ggtataaaaa aaccagcaat	ttcacaagga	60
acgagagcag ccaccaggat	ttgcacagcc tggctcttt	gagttatgaat atgcctatgcg	120
ctggaaaggca ctcattgaga	tggagaagca gcancaggac	caagtggacc gcaacatcaa	180
ggaggctctg gagaagctgg	agatggagat ggaagctgca	cgccatgagc accaggtcat	240
gtaatgaga caggattga	tgaggcgcca agaagaactt	cgaggatgg aagagctgca	300
caaccaagag gtgaaaaac	gaaagcaact ggagctcagg	caggaggaag ancgcaggcg	360
ccgtgaagaa ganatgcggc	ggcagcaaga agaaatgtat	cgccgacagc a	411

<210> 671

<211> 411
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(411)

<223> n = A,T,C or G

<400> 671

ggcacgaggg caacatccag cctcctgaca aggtgatecg ggccccccc gcaggaattt	60
tatccctca ccggcctcac actagtatcg catgtccact atccagaacc tccaatctt	120
cgacccttt gctgatgcaa ctaagggtga cgacttactn ccggcaggga ctgaggatta	180
cattcatata agaatccage aacggAACGG cagaaagaca ctgactactg ttcaagggat	240
tgcagatgat tatgacaaaa agaaaacttgt gaaagcttca aaaaagaaaat ttgcctgtaa	300
tggtaactgtg attgaacate ctgaatacgg agaggattt cagcttcaag gtgaccaaaag	360
aaaaaacatc tgccagtttc tcttggaggt tggcattgt aaggaggaac a	411

<210> 672

<211> 409

<212> DNA

<213> Homo sapien

<400> 672

ggcacgaggg ccactccacc ttactaccag acaacccttag ccaaaccatt tacccaaata	60
aagtataggc gatagaaaatt gaaacctggc gcaatagata tagtaccgca agggaaagat	120
aaaaaaattat aaccaagcat aatatagcaa ggactaaccctt catabcttc tgcataatga	180
attaactaga aataactttg caaggagagc caaagctaag acccccggaa ccagacgagc	240
tacctaagaa cagctaaaag agcacaccccg tctatgtgc aaaatagtgg gaagatttat	300
aggtagaggg gacaaaccta ccgagcctgg tgatagctgg ttgtccaaga tagaatctta	360
tttcaacttt aaatttgcac acagaaccct ctaaatcccc ttgtaaatt	409

<210> 673

<211> 412

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(412)

<223> n = A,T,C or G

<400> 673

ggcacgaggg gaaaanctgg gccccntctn cacagccgac caanggcagc gggctctgcc	60
cgccgcgcgt ttctgcgacc tgccgtcag ccccacgtcg ccggcctgg ggggcaaaaga	120
ggacgagggg gcccgggtt cctccggggc ccttggcttg cctggattgc caggagctgg	180
aagttgacat tgagtctagg ctgaggatgg aagggtgtgg gctgaaggaa gaatggcagg	240
atgaagattt tccaataacet ttaccagaag atgacagcat tgaagcagat acactagatg	300
gaactgtatcc agacagacag cctggctct tagaagttaa tggaaacaaa gtaaggaaga	360
aactgtggc cccagacate agcctgaccc tggatcctgg tgaagactct ct	412

<210> 674

<211> 413

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(413)

<223> n = A,T,C or G

<400> 674

gcacagcctc acttctaacc ttctggAACCC caccCACAC tgccaagctc actattgaat	60
ccacgcgtt caatgtcgca gggggAAAGC aggttcttct actcgccac aacctgcccc	120
agaatcgat tggtaacAGC tggtaacaaAGT gcgaaagagt ggtggcaac agtctaattg	180

taggatatgt aataggaaact caacaagcta ccccagggcc cgcatacagt ggtcgagaga	240
caataatacc caatgcattcc ctgctgatcc agaacgtcac ccagaatgac acaggattct	300
ataccctaca agtcataaag tcagatctt gtaatgaaga agcaaccggc cagttccatg	360
tataccggc gctgcccag ccctccatct ncagcaacaa ctccaacccc gtg	413
<210> 675	
<211> 411	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(411)	
<223> n = A,T,C or G	
<400> 675	
ggcacgaggt attgttgcgc cagacacagt gatccactgt gagggggagc caatcaagcg	60
agaggatgag gaggaaatcc tgaatgaagt aggctatgt gacatcggtg gttgcaggaa	120
gcagcttagct caaataaaagg agatggtgga gctgccactg agacatnctg cgctctttaa	180
gnngatttgt gtaaaggcctc ctcgggaaat ttgttgtat gggccttctg ggacaggaa	240
gaccctgatt gctcgagctg tggcaaatga aactggagcc ttcttcttc tgatcaatgg	300
tcctgaaatc attgancaaaa ttggctggtg agtctgagag caaccttctg aaaggctttg	360
aggaagctga aaagaatgct nctgctatca tcttcatcga tgaacttgat g	411
<210> 676	
<211> 413	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(413)	
<223> n = A,T,C or G	
<400> 676	
ggcacgaggc gggagcggcg caggcgcccg agcgggactg gctgggtcg ctgggntgct	60
ggtgcggagg gcccgggggc tttgttgcgc ggccaaagggg acagcgctg ggtggccgag	120
gtatgtcgcc ggcggtagct ccggcgcccc ttcttggtga ctgttgcgc cggcctcac	180
acagccgaag gggggctcg ggcacagtcn gctgtcccgc gctcgccccc ggcggcgctc	240
cagggtctga cagcgcgaga gaggcgncggc cctcaggagc aaggcgaatg tatgacaaca	300
tgtccacaat ggtgtacata aaggaagaca agttggagaa gtttacacan gatgaaattt	360
ttttctaaaga caaaagcnag taaattcang gggcctggga aagctttgaa gaa	413
<210> 677	
<211> 410	
<212> DNA	
<213> Homo sapien	
<400> 677	
ggcacgaggc ccaagtcagc ttcttctgag agagtctcta gaagacatga tgctacactc	60
agctttgggt ctctgcctct tactcgatcc agtttcttcc aaccttgcca ttgcaataaa	120
aaaggaaaaag aggccttc agacactctc aagaggatgg gggagatgac atacttggg	180
tacaaaactta tgaagaaggt ctctttatg ctcaaaaaag taagaagcca ttatgggtt	240
ttcatcacct ggaggattgt caatactctc aagactaaaa gaaagtattt gccccaaatg	300
aagaaaataca agaaatggct cagaataagt tcatcatgtt aaacctttagt catgaaacca	360
ctgataagaa ttatcacct gatggcaat atgtgcctag aatcatgttt	410

<210> 678

<211> 410
 <212> DNA
 <213> Homo sapien

<400> 678

ggcacgagga attaatgaag tcttaatga acttatattt gatgtgttaa agcagggtta	60
catgtgaaa aaggcccaca gacggaaaaa ctggactgaa agatggttt tactaaaacc	120
caacataatt tcttactatg tgagtgagga tctgaaagga taagaaagga gacattctt	180
tggatgaaaa ttgctgtta gagtccttgc ctgacaaaga tggaaagaaa tgccctttc	240
tcgtaaaatg ttttgataag acttttggaaa tcagtgcctc agataagaag aagaaacagg	300
agtggattca agccattcat tctactattt atctgttcaa gctggcagc cctccaccac	360
acaaagaagc cgcgcagcgt cgaaaagaac tccggaaagaa gcagctggct	410

<210> 679

<211> 410
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(410)
 <223> n = A,T,C or G

<400> 679

ggcacgaggg agagagaata gttcgagttt tttttttttt ttattgcaag cataattttt	60
ttaatgactc cagtaaaattt aagcatcaag taaacaatg gaaagtgacc tacactttt	120
acttgtctca ctatgccta aatgttagtaa aggctgccta agttttgtat gtatggat	180
tttttggagt ccgaaggtat ccatctgcag aaattgtatgc ccaaatttggaa ttggattca	240
agtggattct aaatactttt ctatcttga agagagaagc ttcatatggg ataaacaatg	300
tgaatagaga aaacactgtat tgataatagg cattttagtgg cttttttttaa tgnnttctgc	360
tgtgaaacat ttcaagattt attgattttt ttttttcaact ttccccatca	410

<210> 680

<211> 410
 <212> DNA
 <213> Homo sapien

<400> 680

ggcacgaggc aattctggaa acaatggaa caatggaaaa gagagagagg actcctggaa	60
aggagcttct gttcagaaat caactgggtc aaaaaatgac tcttggaca acaataacag	120
gtctacgggt gggtccttggaa actttggccc ccaggactct aatgacaaca aatgggggtga	180
agggAACAAA atgacatctg gggctctca gggagaatgg aaacagccga ctgggtctga	240
tgagttgaaa attggagaat ggagtggtcc aaaccaacca aattcttagca ctggagcatg	300
ggacaatcaa aaggcccacc ccctccctga aaaccaaggc aatgcccagg ctccctgttgc	360
ggaaagatct tccagctcca caggaagtga agttggaggt caaagcactg	410

<210> 681

<211> 402
 <212> DNA
 <213> Homo sapien

<400> 681

ggcgagcct accctggccac tggcccctat ggcggccctg ctggccact gattgtgcct	60
tataacctgc ctttgcctgg gggagtggtg cctcgcatgc tgataacaat tctgggcacg	120
gtgaagccca atgcaaacag aattgttttta gatttccaaa gagggatga tggcttc	180
cactttaacc cacgcttcaa tgagaacaac aggagagtca tttttgc当地 tacaagctg	240
gataataact ggggaaggaa agaaaagacag tcggtttcc catttggaaat tggaaacca	300
ttcaaaatac atgtactggt tgaacctgac cacttcaagg ttgcagtgaa tggatgc当地	360

ttgttgca gt acaatcatcg gttaaaaaa ctcaatgaaa tc

402

<210> 682

<211> 401

<212> DNA

<213> Homo sapien

<400> 682

gggcgagcgg agttacgagg	gctttactgc agagcgcgcc	gggcactcca ggcaccgtgg	60
ggatcagcgt aggtgagctg	tggcccttttgc cgggtgtctg	cagccatagc tacgtgcgtt	120
cgctacgagg attgagcgtc	tccacccatc ttcttgtct	tcacccatcta cataatgaat	180
cccagtatga agcagaaaaca	agaagaaaatc aaagagaata	taaagaatag ttctgtccca	240
agaagaactc tgaagatgtat	tcagccttct gcattctggat	ctcttgttgg aagagaaaat	300
gagctgtccg caggcttgc	caaaaggaaa catcgaaatg	accacttaac atctacaact	360
tccagccctg gggttattgt	cccagaatct agtggaaaata	a	401

<210> 683

<211> 3255

<212> DNA

<213> Homo sapien

<400> 683

accgttgcgg ccgcagggt	ctgggcaggg ctgggcagtg	ctgcggagc aaaagcggta	60
cgccggagccc ggccggagct	gggtctggag acgcgtggc	agcctgaacg ggtgtgcga	120
cgatttggga ggtttgtcta	cagatttga cggttcgaag	ttgacccctg actaagtata	180
ctttgtctgt	ccctcagcct ttggaaaat	gtctgtcaca tatgatgatt	240
agaagtgtcc agcgacagct	tctggaggt cgggaactac	aagcggactg tgaagcggat	300
cgacgtggc caccgcctgt	cgacgtggc acgtcactgc	catgaactgc ctgcgtggc	360
cgagaaggcg tatgcgcage	agtcactga gtggggcccg	cgctggaggc agcttgtgga	420
gaaaggggccc cagtagggc	ccgtggagaa ggcctggatg	gccttcatgt ccgaggcaga	480
gagggtgagc gagctgcacc	tcgaggtgaa ggcctcaactg	atgaacgtatg acttcgagaa	540
gatcaagaac tggcagaagg	aaggctttca caagcagatg	atggggcgct tcaaggagac	600
caaggaagct gaggacggct	tgcgaaggc acagaagccc	tggggcaaga agctgaaaga	660
gttagaagca gcaaaggaaag	cccaccatgc agcgtgcaaa	gaggagaagc tggctatctc	720
acgagaagcc aacagcaagg	cagacccatc ttcaacct	gaacagctca agaaattgca	780
agacaaaata gaaaagtgc	agcaagatgt tcttaagacc	aaagagaagt atgagaagtc	840
cctcaagggaa ctcgaccagg	gcacacccca gtacatggag	aacatggagc aggtgtttga	900
gcagtgtccag cagttcgagg	agaaacgcct tcgccttc	cgggagggtc tgctggaggt	960
tcaagaagcac	ctaaacctgt ccaatgttgc	tgttacaaa gccatttacc atgaccttgg	1020
gcagagcatc agagcagctg	atgcagtgaa ggacctgagg	tggtccgag ccaatcacgg	1080
gcaggcatg gccatgaact	ggccgcagtt tgaggagtt	tcccgagacc tgattcgaa	1140
cctcagccgg agagagaaga	agaaggccac tgacggcttc	accctgacgg gcatcaacca	1200
gacaggcgac	cattttgc cgagtaagcc	cagcagcacc cttaatgtcc	1260
cgcgcgtct	cgccgcgtc agtccagcta	caaccccttc gaggatgagg	1320
cagcaccgtc	agtggaaagg aggacattaa	ggccaaaaat gtgagcagct	1380
ccagagctat	cccaccgact ggtcagacga	tgagtctaa aacccttct	1440
tggcaatggg	gactcgaatc cattcgacga	cgaccccaac tcgggacgg	1500
ccggccctg	tatgactatg agggcgagga	aatgtcgagtg	1560
tgagctgacc	aagatggagg acgaggatga	ctgagcttca aggctgggg	1620
cggcaagtt	ggcctataacc cggcaaaatta	tgcaggaccc gcttggacaa	1680
caggccagcg	gggggacgga ggccggggc	ttccgttgcg atccagtgtat	1740
cactcctttt	cctgcagatc atgatggtc	cgaccccaac tcgggacgg	1800
aggcagatga	gctggtcatt tcgcctggga	aatgtcgatc ttccgttgc	1860
atctgagcgc	aggaagacgc agaacaacag	ccctcccccgc ccactgtgcc	1920
tgttggctta	tcatagatct ctatgttct	ttccgttgcg agtcaatgg	1980
ggtttacact	gatcttgcact cactgattac	ttccgttgcg agtcaatgg	2040
aaatgaacaa	gcttacatcc cattttgagt	ttccgttgcg agtcaatgg	2100
gtgtacagtt	atactttt atacacctgt	ttccgttgcg agtcaatgg	2160

atgcgcacca gtcttggaga aacgatctcc ctattccctt accctgttac tcagccacgc 2220
 cgtgtgttagg cttagcctca ggtggcagat gtttgaggaa aggaattatg ccaggaaggt 2280
 gggaccgggt tatggtcggg ttcttattgg gaatgtctt tttgttttgc ggcattctaaa 2340
 tgaagcttt acatagaacc ttaggttagaa ctccccaaa tcgcattatattaaat 2400
 tttcactcta ttcttgctta aaactgtact cttttgcaaa ttaacaatattt tattactgt 2460
 tcagagttaa aaagaagact aactttcaa gcaaatgcattt ctgtttaagat gtttagatt 2520
 agactgtcat gtctcagtgt ctatctgtat atattattt atattcagag aatctaaagc 2580
 actcgctcac ttttttaatg agattnaaca gtttttaaca gtgagtttcg tttgttaaact 2640
 gcttgaagtc tttggcattc aggcacacgt ctggctggcc ggctgggtct cttccgggc 2700
 tcagtgggc tggggcctct ctgacgttgtt gctgttggg gggaggctcg tctgttcc 2760
 ctgactgtgt gtccggcttc tgaccggcctt ttgtccctggc tccgttagcag aacactgtaa 2820
 aagtgcggc gtctttgcag tagttgcaga tttcagtcgt cgtttactt gtgcacaaac 2880
 agaagctggg tcttaccgc agcacgagtg tctcgggtcg cccggagtcg cccggggagca 2940
 ggtgctgcag ccagattac gcggggggcca cggggccgg cgggggtggg gggAACGTGG 3000
 gggAACCTGT gtttacgtg actcagcagt gcccggcc gtcaccagct atgcattcac 3060
 tccgttcca gtgagcagat gtcttgcctt gaaagtggac ctgtgtctgt gtctgttcc 3120
 agaacttacc agcagaaatc ctcatatctg tgctacggat ttacaaaaaa ttgtcaagtc 3180
 tttttcagtt taacaggatcc tttacatgtg tagtatttga gggaaaaaaat caataaaacag 3240
 ttgatctcgat gcata 3255

<210> 684

<211> 2993

<212> DNA

<213> Mus musculus

<400> 684

ctggagtgtc tgctgcaccc ccctcgctct ctgcagaaat gtctgtcacc tacgtatgt 60
 ctgtgggagt ggaagtgtcc agcgcacagct tctggggaggt tggaaactac aaacggactg 120
 tgaagcggtat tgacgtatggc caccgcctgt gtgggtaccc catgaactgt ctgcattgagc 180
 gggcacgcattt cgagaaggcg tatgcacagc agtcactga gtggggccga cgctggaggc 240
 agctggtaga gaagggacca cagttatgggaa cctgtggagaa ggcctggata gttgttcatgt 300
 ctgaagcaga gagggttagt gaactgcacc tggaaagtggaa ggcattcaactg atgaatgaag 360
 actttttagaa gatcaagaac tggcagaagg aagccttca caagcagatg atggggaggct 420
 tcaaggagac caaagaagca gaggatggct ttcggaaaggc ccagaagcccc tggggccaaga 480
 agctgaaaga ggtggaaagcg gcaaaaaggc cgcaccacac agcgtgcggaa gaggagaagc 540
 tggccatctc ccggggaaagcc aacagcaagg cagatccatc cctcaaccctt gggcggctgt 600
 agaaaactgca agacaagata gaaaatgc aacaggacgt tctaaagacc aaggacaagt 660
 atgagaagtc cctgaaggag ctgtatcaga ccacacccca gtacatggag aacatggagc 720
 aggtgttgcg cagtttgcag cagtttgcag agaagcgctt ggcgttcttc cggggaggttc 780
 tgctggaggt tcagaagcac ttgtatctgtt ccaatgttgc tagtataaa accatttacc 840
 gggagcttgcg cgcagacatc aaacgcaggc atgcgttgc ggcaccttggg tgggtccggg 900
 ctaaccatgg gccaggcatg gctatgcactt ggccacagt tgaggatgtt tctgcagatc 960
 tgaatcgaaat tctcggccgg agagagaaga agaaggctgt tgacgggtgc acccttaacac 1020
 ggtatcaacca gacagggtgac cagtttgcac cattttgcata ggcacacgacc tcagggaaacac 1080
 cgagcaaccc cggcccgatcc acgcaggatcc agtcccgatca caacccttc gggacggagg 1140
 acgacacccggg cagcagacatc agtgcggaaagg aggacattaa ggccaaaaat gtcaggatgt 1200
 atgagaagac tcaagacttac cccactgtact ggtctgtatgc tgatgttcaac acccttttct 1260
 cctccacggc tgccaaacggg gatttgcacc cattttgcata ggcacacgacc tcagggaaacac 1320
 aagtgcgtat tggggccctc tatgtactatg agggggcaggaa acatgtatgc ctgagcttca 1380
 aggtgtgggt tgaactgtacc aagatagagg atgaagatgc acgggttgg tgcaggggac 1440
 gtttagacag cggcccgatcc ggcttataacc cagccaaacta tggttgcaggctt atccaggatgc 1500
 agcccatggg caggctggcg gagagacggaa aatggggcagt tcaggagctc ctggggcctt 1560
 ggcctggcgtt gtgcacaccc ttttttttttgc agcagccatc taggcattca ctccacccctgc 1620
 aaaagacgtt ggctctgtt ttcttgcctt cctgggttgc ttttttttttgc gatggatgtt 1680
 tgatgttcatc gggcacttgg cccttttca agcacaatctg ggcagatata gacacaggaa 1740
 gatgggtcc aacagcggaga gccaggcccc tcccccacccca caccatctt ctcttatcatg 1800
 gatgtgcacc ttctcgccct ttttttttttgc gatgtatgc gggcataactt gatttttttttgc 1860
 ccactgtatgc ttttttttttgc tggttgcataactt caatggcggc accatcatgc 1920

catcttctga gtaaaagagt tgagggttta atttaaaggc aatgtacagc tatactttt 1980
 tatatgctct tccagtcagt taaaattatgg cctacactga tctgagatgt tctccacgtg 2040
 agctgtcttc atttctctgt gctatgtcca gatgtgggt tgctgcagcc ggggttctat 2100
 ggcagaatgcc agttgcaggg ctaaccttgc gcaacgttcc ccaacacttc cacatacaga 2160
 aattattttc actctatccc tgcttcagtt tttgcagatt aacagttcta tttagtgattt 2220
 ggaaaggtaa cagtaagaag actaactttt caaaaacagtt gcacatctgttag attaagatgc 2280
 ttttacatta gaccgggtgt gtctcgatgt atatctgtat atattatgg ataatcagaa 2340
 aatctataga gttcacccac tggtaatga gagctgggtt ctctgcacag cagatctgg 2400
 caactgcttgc aagcccatgg cattgaagca caggcacggc tggtaacgg tgcccaccca 2460
 gtaggatgt ggctctggcc tctgagtgaa gctgctggga agactgattc tcattggcct 2520
 gggctccaag ctcatgaccg agcaactggaa aagctccttag gacttggtag taatcgtaga 2580
 ctccacagtc cctgtgtcac tcactggaga gctagagggg ggggttcgac accctccacc 2640
 acacacacac acacacacac acacacacac acaagttctt ccagttcccc ttgtcctcag 2700
 gtgcagtggg actgttgta gcccagggg tgggcacaaa gaggactttt attttgttag 2760
 ctccggacagt gcagtgggtc acatcagcaa ctgttatttc ttccgggttt ggcacgagca 2820
 ctgtctcgct gtggctgtgt gtcatgagaa cttaaccagca gaaatccttg ttccctaagct 2880
 acagaatgac caaaaagctgt caagtcctta atgtttagaa actccttaaa atgtatagta 2940
 ttttagaaca acaacaacaa aactcaataa acagttgatc ttgtgtgttt gac 2993

<210> 685

<211> 486

<212> PRT

<213> Homo sapien

<400> 685

Met	Ser	Val	Thr	Tyr	Asp	Asp	Ser	Val	Gly	Val	Glu	Val	Ser	Ser	Asp
5								10					15		

Ser	Phe	Trp	Glu	Val	Gly	Asn	Tyr	Lys	Arg	Thr	Val	Lys	Arg	Ile	Asp
20						25						30			

Asp	Gly	His	Arg	Leu	Cys	Ser	Asp	Leu	Met	Asn	Cys	Leu	His	Glu	Arg
35						40						45			

Ala	Arg	Ile	Glu	Lys	Ala	Tyr	Ala	Gln	Gln	Leu	Thr	Glu	Trp	Ala	Arg
50					55					60					

Arg	Trp	Arg	Gln	Leu	Val	Glu	Lys	Gly	Pro	Gln	Tyr	Gly	Thr	Val	Glu
65					70				75			80			

Lys	Ala	Trp	Met	Ala	Phe	Met	Ser	Glu	Ala	Glu	Arg	Val	Ser	Glu	Leu
85							90					95			

His	Leu	Glu	Val	Lys	Ala	Ser	Leu	Met	Asn	Asp	Asp	Phe	Glu	Lys	Ile
100					105							110			

Lys	Asn	Trp	Gln	Lys	Glu	Ala	Phe	His	Lys	Gln	Met	Met	Gly	Gly	Phe
115					120						125				

Lys	Glu	Thr	Lys	Glu	Ala	Glu	Asp	Gly	Phe	Arg	Lys	Ala	Gln	Lys	Pro
130					135					140					

Trp	Ala	Lys	Lys	Leu	Lys	Glu	Val	Glu	Ala	Ala	Lys	Lys	Ala	His	His
145				150				155				160			

Ala	Ala	Cys	Lys	Glu	Glu	Lys	Leu	Ala	Ile	Ser	Arg	Glu	Ala	Asn	Ser
165							170				175				

Lys Ala Asp Pro Ser Phe Asn Pro Glu Gln Leu Lys Lys Leu Gln Asp
180 185 190

Lys Ile Glu Lys Cys Lys Gln Asp Val Leu Lys Thr Lys Glu Lys Tyr
195 200 205

Glu Lys Ser Leu Lys Glu Leu Asp Gln Gly Thr Pro Gln Tyr Met Glu
210 215 220

Asn Met Glu Gln Val Phe Glu Gln Cys Gln Gln Phe Glu Glu Lys Arg
225 230 235 240

Leu Arg Phe Phe Arg Glu Val Leu Leu Glu Val Gln Lys His Leu Asn
245 250 255

Leu Ser Asn Val Ala Gly Tyr Lys Ala Ile Tyr His Asp Leu Glu Gln
260 265 270

Ser Ile Arg Ala Ala Asp Ala Val Glu Asp Leu Arg Trp Phe Arg Ala
275 280 285

Asn His Gly Pro Gly Met Ala Met Asn Trp Pro Gln Phe Glu Glu Trp
290 295 300

Ser Ala Asp Leu Ile Arg Thr Leu Ser Arg Arg Glu Lys Lys Ala
305 310 315 320

Thr Asp Gly Phe Thr Leu Thr Gly Ile Asn Gln Thr Gly Asp Gln Phe
325 330 335

Leu Pro Ser Lys Pro Ser Ser Thr Leu Asn Val Pro Ser Asn Pro Ala
340 345 350

Gln Ser Ala Gln Ser Gln Ser Ser Tyr Asn Pro Phe Glu Asp Glu Asp
355 360 365

Asp Thr Gly Ser Thr Val Ser Glu Lys Glu Asp Ile Lys Ala Lys Asn
370 375 380

Val Ser Ser Tyr Glu Lys Thr Gln Ser Tyr Pro Thr Asp Trp Ser Asp
385 390 395 400

Asp Glu Ser Asn Asn Pro Phe Ser Ser Thr Asp Ala Asn Gly Asp Ser
405 410 415

Asn Pro Phe Asp Asp Asp Ala Thr Ser Gly Thr Glu Val Arg Val Arg
420 425 430

Ala Leu Tyr Asp Tyr Glu Gly Gln Glu His Asp Glu Leu Ser Phe Lys
435 440 445

Ala Gly Asp Glu Leu Thr Lys Met Glu Asp Glu Asp Glu Gln Gly Trp
450 455 460

Cys Lys Gly Arg Leu Asp Asn Gly Gln Val Gly Leu Tyr Pro Ala Asn
465 470 475 480

Tyr Val Glu Ala Ile Gln

485

<210> 686
<211> 1571
<212> DNA
<213> *Homo sapiens*

<400>	686					
tgttaggttt	tatttaagt	agaaaataagt	gtttgcataat	aggaaaagttt	gttttcactt	60
gtgttattc	ttctgtttt	aggatgccat	tggaggagaa	tctatgccta	ttccaactat	120
tgatacatca	cgcaaaaaga	gactaccagg	taaagaacta	ccagattcat	catctccagt	180
tccagcaaac	aacatccgt	tcataaaaaa	ttccattcga	ctgaccctta	atcggtaaaa	240
gcagtgcctc	ctcacttaag	tgaacaagca	atcatttagt	gcatagatg	cagccacttg	300
tttttaaat	agaagtggct	gtcatacgtg	aaataaggtg	aaagtgcacag	ccttcagttc	360
aataacctt	aagtggttt	tgaactgtca	aactttgacc	tgttagatgt	gtagcattct	420
ctcactgatt	gctacatatac	cttctctgag	gatcacctgc	tgtcaatttgc	ccatctacag	480
tattacagct	ttgcattttgg	gggttttact	gccttaactt	tcaatgttttgc	ttatggaaac	540
cagttcttag	ccacttggac	actgataaca	agtcctgaac	tcctttttttt	ttttttttt	600
tgtgttttc	ttttttgtc	ttatgttgc	atcattgtat	agagctaaaa	aaattgaaaa	660
caaacaaaaa	aattgtcttg	tatttccaa	atgttaatac	atttacttta	gcattgaagc	720
cactttgaaa	cctgagataa	atgaatgtga	ggtatctttt	ctgctttctt	catttgttgc	780
gatgtactgt	ctgttctgtt	gattttaaatt	atttttttcc	agattggcac	atgaaatatt	840
taaactttt	tgtgtccctt	tctgtccaaa	tgttgcata	ttaccaggga	agatttagtcc	900
agtgattaca	taagagttgg	gcaccataaa	ttctctatata	tttgcctccc	atggaggcct	960
ttgaaatgca	tcttttattaa	aaatcaaaaat	ataaccagg	tactgaaagt	cagtatatga	1020
atggtaaaat	tgttacatata	cctatttcat	gccattcttgc	ttagttgact	ggtatttttt	1080
actgaggagc	aactcattcc	agcatcaaca	ataagataac	ctttaagtat	ggcacacttg	1140
tatTTTtag	gtgtaaaatt	aacttggcat	gataattcc	gatcattatt	taccccacaa	1200
cttcaaatag	tttcttcacg	gactaggcat	gcagaaaataa	gcagttggatt	ttattgaaac	1260
ctaaaggccat	tttgaatgac	attgttacca	accattaatt	ggctcaggac	ctttgttaatt	1320
tttatttaac	tatatgtgtt	gtttttttt	acgctgcctt	tttcaatgc	tttcttaataa	1380
tttttaagt	ttcatgaatg	catgctca	tttattaaat	ccataaccat	gtaattcttg	1440
taatatgtt	attcagtgtt	ttgtaaaatga	agtcgtatgt	attttcagag	tatTTTgtt	1500
tgtactgtaa	gataccatct	tttcaaagag	aaacgtttaa	accctttaaa	aaaaaaaaaa	1560
aaaaaaaaaa	a					1571

<210> 687
<211> 73
<212> PRT
<213> *Homo sapiens*

<400> 687
Leu Gly Phe Ile Leu Ser Arg Asn Lys Cys Leu His Ile Gly Lys Leu
5 10 15

Val Phe Thr Cys Val Asp Ser Ser Val Phe Arg Met Pro Leu Glu Glu
20 25 30

Asn Leu Cys Leu Phe Gln Leu Leu Ile His His Ala Lys Arg Asp Tyr
35 40 45

Pro Val Lys Asn Tyr Gln Ile His His Leu Gln Phe Gln Gln Thr Thr
50 55 60

Ser Val Ser Ser Lys Ile Pro Phe Asp
65 70

<210> 688
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 688
cacgacgttg taaaaacgacg g

21

<210> 689
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 689
cacaggaaac agctatgacc

20

<210> 690
<211> 5160
<212> DNA
<213> Homo sapiens

<400> 690
atggtgtcccc ctgggtgtcta catgagaaaat gccagctgtc atttccggaa ggtcctgaac 60
aagggttttc aaagctccca agctctcagg gtctgcaca actactggat tggggagaac 120
cccaatctga acagtaccca ggaggtgaat gagctgtgc tgggaatggc ctcccagatt 180
tcggagttgg aggacaacat agtgggtgaa gatctgaggg attactggcc tggccctggc 240
aaattctccc gtacagacta tggggccagc agcatccaac gtggccgaga tatggggctg 300
cccaagctata gccaggccct gctggcctt gggctggaca tcccaaggaa ctggagtgt 360
ctcaacccta atgtggaccc ccaggtgtcg gaggccacag ctgcctgtc caaccaggac 420
ctatcccagc tagagctgtc ctttggcggg ctctggaga gccatggggc ccctggacc 480
ctgttcagtg ccattgtcct cgaccagttt gtacggctgc gggatggta ccgctactgg 540
tttgagaaca ccaggaatgg gctgttctcc aagaaggaga ttgaagacat ccgaaataacc 600
accctgcggg acgtgtcggt cgctgttattc aacattgacc ccagtgcct gcagcccaat 660
gtctttgtct ggcataaaagg tgccacctgc cctcaaccta agcagctcac aactgacggc 720
ctgccccagt gtgcacccct gactgtgtt gacttcttg aaggcagcag ccctggttt 780
gcacatcacca tcattgtct ctgtgcctt cccttagtga gtctgttct ctctggagt 840
gtggcctatt tccggggccg agaacacaag aagctacaaa agaaactcaa agagagcgtg 900
aagaaggaag cagccaaaga tggagtgcct gcatggagt ggcaggccc caaggagagg 960
acgagtccca tcattcatcca gctgtgtca gacaggtgtc tgcaggtcct gaacaggcat 1020
ctcaactgtgc tccgtgttgt ccagctgcag cctctgcac aggtcaaccc catcctgtcc 1080
aacaaccgag gatgccgcac cctgtgtc aagatcccta aggagtatga cctgggtgt 1140
ctgttttagtt ctgaagagga acggggcgcc ttgtgcacg agctatggc cttctgcgt 1200
cgctgggcgc tgggcctcca tgggtgttagt atgagcgaga aggagctatt taggaaggct 1260
gtgacaaago agcagggcggc accatccctg gagatcttct tcagacaccc ttttgcctc 1320
gtgctggaca tcaaccaggc cgacgcaggg accctgcctt tggactcctc ccagaagggt 1380
cgggaggccc tgacactgcg a gctgagcagg gcccggatgg ccgagtcctt gggcctcaag 1440
cccccaggaca tgggtgtggc gtcacatgttc tctctggctg acaaggatgg caatggctac 1500
ctgtccttc gaggatccct ggacatccctg gtgggtttca tggatgaga cccagaggat 1560
aagtcccgta taatgtttac catgtatgac ctggatgaga atggcttccct ctccaaggac 1620
gaattctca ccatgtatgcg atccatccatc gagatctcca acaactgcctt gtcacaggcc 1680

<210> 691
<211> 2265
<212> DNA
<213> *Homo sapiens*

<400> 691
atttgcctgt gtttagaagg gtattactac aactcttcta catgtaagaa agggaaaggta 60
ttccctggga agatttcagt gacagtatca gaaacattt acccagaaga gaaaacattcc 120
atggccatac aagacttgca tagtggaaatt actagcttgt ttaaagatgt atttggcaca 180
tctgttatg gacagactgt aattcttact gtaagcacat ctctgtcacc aagatctgaa 240
atgcgtgctg atgacaagtt tgtaatgta acaatagtaa caattttggc agaaaaccaca 300
agtgacaatg agaagactgt gactgagaaa attaataaag caatttagaa tagctcaagc 360
aactttctaa actatgattt gacccttcgg tgtgattatt atggctgtaa ccagactgcg 420
gatgactgccc tcaatgggtt agcatgcgt tgcaaatctg acctgcaag gcctaaccct 480
cagagccctt tctgcgttgc ttccagtctc aagtgtcctg atgcctgca cgcacagcac 540
aagcaatgt taataaagaa gagtggtggg gcccctgagt gtgcgtgcgt gccccggctac 600
caggaagatg ctaatggaa ctgccaaaag tgtgcattt gctacagtgg actcgactgt 660
aaggacaat ttcaagctgt cctcactatt gtgggcacca tcgctggcat tgtcattctc 720
agcatgataa ttgcattgtat tgtacacagca agatcaaata acaaaaacgaa gcatattgaa 780
gaagagaact tgattgacga agactttcaa aatctaaaac tgcggtgcac aggcttcacc 840
aatcttgagc cagaagggag cgtctttctt aaggtcagga taacggccctc cagagacagc 900
cagatgcaaa atccctatttca aagacacagc agcatgcccc gcccgtacta ttagaatcat 960
aagaatgtgg aaccggccat ggcccccaac caatgtacaa gctattattt agagtgttta 1020
gaaagactga tggagaagtg agcaccagta aagatctggc ctccggggtt tttcttccat 1080
ctgacatctg ccagctctc tgaatggaaag ttgtgaatgt ttgcaacgaa tccagctcac 1140
ttgctaaata agaatctatg acattaaatg tagtagatgc tattagcgct tgtcagagag 1200
gtggttttct tcaatcagta caaagtactg agacaatggt taggggttgg ttcttaattc 1260
ttttccctgggt agggcaacaa gaaccatttc caatctagag gaaagctccc cagcattgt 1320
tgcctctggg caaacattgc tcttgagtt agtgcacctaa ttcccctggg agacatacgc 1380
atcaactgtg gaggtcccgag gggatgagaa gggataccctt ccatctttca agggtcacaa 1440
gctcactctc tgacaagtca gaataggggac actgcttcta tccctccaat ggagagattc 1500
tggcaacctt tgaacagccc agagcttgc acctagectc acccaagaag actggaaaaga 1560
gacatatctc tcagctttt caggaggcgt gcctggaaat ccaggaactt tttgatgcta 1620
attagaaggc ctggactaaa aatgtccact atggggtgca ctctacagtt tttgaaatgc 1680
taggaggccag aaggggcaga gactaaaaaa catgacactgg tagaaggaag agaggccaaag 1740
gaaactgggt ggggaggatc aattagagag gaggcacctg ggatccacct tcttccttag 1800
gtccccctctt ccattcagcaaa aggagcacctt ctctaatcat gcccctcccgaa agactggctg 1860
ggagaagggt taaaaacaaa aatccagga gtaagacgt taggtcagtt taaaatttgg 1920
gacaaactgt ctggcaaaagg gtgcgagagg gagcttgc tcaggagtcc agccgtcccg 1980
cctcggggtg taggtttctg aggtgtgcac ttggggcctc agccttctct ggtgacagag 2040
gctcagctgt ggccaccaac acacaaccac acacacacaa ccacacacac aaatggggc 2100
aaccacatcc agtacaagct ttacaaaatg ttattagtgatc cttttttat ttctaatgcc 2160
ttgtcccttt aaaagttatt ttattttgtt ttattatttg ttcttgactg ttaatttgtga 2220
atggtaatgc aataaaagtgc ctttggtaaa aaaaaaaaaa aaaaaa 2265

<210> 692
<211> 1210
<212> PRT
<213> *Homo sapiens*

<400> 692
Met Val Pro Pro Gly Val Tyr Met Arg Asn Ala Ser Cys His Phe Arg
5 10 15

Lys Val Leu Asn Lys Gly Phe Gln Ser Ser Gln Ala Leu Arg Val Cys
20 25 30

Asn Asn Tyr Trp Ile Arg Glu Asn Pro Asn Leu Asn Ser Thr Gln Glu
 35 40 45

 Val Asn Glu Leu Leu Leu Gly Met Ala Ser Gln Ile Ser Glu Leu Glu
 50 55 60

 Asp Asn Ile Val Val Glu Asp Leu Arg Asp Tyr Trp Pro Gly Pro Gly
 65 70 75 80

 Lys Phe Ser Arg Thr Asp Tyr Val Ala Ser Ser Ile Gln Arg Gly Arg
 85 90 95

 Asp Met Gly Leu Pro Ser Tyr Ser Gln Ala Leu Leu Ala Phe Gly Leu
 100 105 110

 Asp Ile Pro Arg Asn Trp Ser Asp Leu Asn Pro Asn Val Asp Pro Gln
 115 120 125

 Val Leu Glu Ala Thr Ala Ala Leu Tyr Asn Gln Asp Leu Ser Gln Leu
 130 135 140

 Glu Leu Leu Leu Gly Gly Leu Leu Glu Ser His Gly Asp Pro Gly Pro
 145 150 155 160

 Leu Phe Ser Ala Ile Val Leu Asp Gln Phe Val Arg Leu Arg Asp Gly
 165 170 175

 Asp Arg Tyr Trp Phe Glu Asn Thr Arg Asn Gly Leu Phe Ser Lys Lys
 180 185 190

 Glu Ile Glu Asp Ile Arg Asn Thr Thr Leu Arg Asp Val Leu Val Ala
 195 200 205

 Val Ile Asn Ile Asp Pro Ser Ala Leu Gln Pro Asn Val Phe Val Trp
 210 215 220

 His Lys Gly Ala Pro Cys Pro Gln Pro Lys Gln Leu Thr Thr Asp Gly
 225 230 235 240

 Leu Pro Gln Cys Ala Pro Leu Thr Val Leu Asp Phe Phe Glu Gly Ser
 245 250 255

 Ser Pro Gly Phe Ala Ile Thr Ile Ile Ala Leu Cys Cys Leu Pro Leu
 260 265 270

 Val Ser Leu Leu Leu Ser Gly Val Val Ala Tyr Phe Arg Gly Arg Glu
 275 280 285

 His Lys Lys Leu Gln Lys Lys Leu Lys Glu Ser Val Lys Lys Glu Ala
 290 295 300

 Ala Lys Asp Gly Val Pro Ala Met Glu Trp Pro Gly Pro Lys Glu Arg
 305 310 315 320

 Ser Ser Pro Ile Ile Ile Gln Leu Leu Ser Asp Arg Cys Leu Gln Val
 325 330 335

 Leu Asn Arg His Leu Thr Val Leu Arg Val Val Gln Leu Gln Pro Leu

340	345	350
Gln Gln Val Asn Leu Ile Leu Ser Asn Asn Arg Gly Cys Arg Thr Leu		
355	360	365
Leu Leu Lys Ile Pro Lys Glu Tyr Asp Leu Val Leu Leu Phe Ser Ser		
370	375	380
Glu Glu Glu Arg Gly Ala Phe Val Gln Gln Leu Trp Asp Phe Cys Val		
385	390	395
Arg Trp Ala Leu Gly Leu His Val Ala Glu Met Ser Glu Lys Glu Leu		
405	410	415
Phe Arg Lys Ala Val Thr Lys Gln Gln Arg Glu Arg Ile Leu Glu Ile		
420	425	430
Phe Phe Arg His Leu Phe Ala Gln Val Leu Asp Ile Asn Gln Ala Asp		
435	440	445
Ala Gly Thr Leu Pro Leu Asp Ser Ser Gln Lys Val Arg Glu Ala Leu		
450	455	460
Thr Cys Glu Leu Ser Arg Ala Glu Phe Ala Glu Ser Leu Gly Leu Lys		
465	470	475
480		
Pro Gln Asp Met Phe Val Glu Ser Met Phe Ser Leu Ala Asp Lys Asp		
485	490	495
Gly Asn Gly Tyr Leu Ser Phe Arg Glu Phe Leu Asp Ile Leu Val Val		
500	505	510
Phe Met Lys Gly Ser Pro Glu Asp Lys Ser Arg Leu Met Phe Thr Met		
515	520	525
Tyr Asp Leu Asp Glu Asn Gly Phe Leu Ser Lys Asp Glu Phe Phe Thr		
530	535	540
Met Met Arg Ser Phe Ile Glu Ile Ser Asn Asn Cys Leu Ser Lys Ala		
545	550	555
560		
Gln Leu Ala Glu Val Val Glu Ser Met Phe Arg Glu Ser Gly Phe Gln		
565	570	575
Asp Lys Glu Glu Leu Thr Trp Glu Asp Phe His Phe Met Leu Arg Asp		
580	585	590
His Asp Ser Glu Leu Arg Phe Thr Gln Leu Cys Val Lys Gly Gly Gly		
595	600	605
Gly Gly Gly Asn Gly Ile Arg Asp Ile Phe Lys Gln Asn Ile Ser Cys		
610	615	620
Arg Val Ser Phe Ile Thr Arg Thr Pro Gly Glu Arg Ser His Pro Gln		
625	630	635
640		
Gly Leu Gly Pro Pro Ala Pro Glu Ala Pro Glu Leu Gly Gly Pro Gly		
645	650	655

Leu Lys Lys Arg Phe Gly Lys Lys Ala Ala Val Pro Thr Pro Arg Leu
 660 665 670
 Tyr Thr Glu Ala Leu Gln Glu Lys Met Gln Arg Gly Phe Leu Ala Gln
 675 680 685
 Lys Leu Gln Gln Tyr Lys Arg Phe Val Glu Asn Tyr Arg Arg His Ile
 690 695 700
 Val Cys Val Ala Ile Phe Ser Ala Ile Cys Val Gly Val Phe Ala Asp
 705 710 715 720
 Arg Ala Tyr Tyr Tyr Gly Phe Ala Leu Pro Pro Ser Asp Ile Ala Gln
 725 730 735
 Thr Thr Leu Val Gly Ile Ile Leu Ser Arg Gly Thr Ala Ala Ser Val
 740 745 750
 Ser Phe Met Phe Ser Tyr Ile Leu Leu Thr Met Cys Arg Asn Leu Ile
 755 760 765
 Thr Phe Leu Arg Glu Thr Phe Leu Asn Arg Tyr Val Pro Phe Asp Ala
 770 775 780
 Ala Val Asp Phe His Arg Trp Ile Ala Met Ala Ala Val Val Leu Ala
 785 790 795 800
 Ile Leu His Ser Ala Gly His Ala Val Asn Val Tyr Ile Phe Ser Val
 805 810 815
 Ser Pro Leu Ser Leu Leu Ala Cys Ile Phe Pro Asn Val Phe Val Asn
 820 825 830
 Asp Gly Ser Lys Leu Pro Gln Lys Phe Tyr Trp Trp Phe Phe Gln Thr
 835 840 845
 Val Pro Gly Met Thr Gly Val Leu Leu Leu Val Leu Ala Ile Met
 850 855 860
 Tyr Val Phe Ala Ser His His Phe Arg Arg Arg Ser Phe Arg Gly Phe
 865 870 875 880
 Trp Leu Thr His His Leu Tyr Ile Leu Leu Tyr Ala Leu Leu Ile Ile
 885 890 895
 His Gly Ser Tyr Ala Leu Ile Gln Leu Pro Thr Phe His Ile Tyr Phe
 900 905 910
 Leu Val Pro Ala Ile Ile Tyr Gly Gly Asp Lys Leu Val Ser Leu Ser
 915 920 925
 Arg Lys Lys Val Glu Ile Ser Val Val Lys Ala Glu Leu Leu Pro Ser
 930 935 940
 Gly Val Thr Tyr Leu Gln Phe Gln Arg Pro Gln Gly Phe Glu Tyr Lys
 945 950 955 960

Ser Gly Gln Trp Val Arg Ile Ala Cys Leu Ala Leu Gly Thr Thr Glu
 965 970 975
 Tyr His Pro Phe Thr Leu Thr Ser Ala Pro His Glu Asp Thr Leu Ser
 980 985 990
 Leu His Ile Arg Ala Val Gly Pro Trp Thr Thr Arg Leu Arg Glu Ile
 995 1000 1005
 Tyr Ser Ser Pro Lys Gly Asn Gly Cys Ala Gly Tyr Pro Lys Leu Tyr
 1010 1015 1020
 Leu Asp Gly Pro Phe Gly Glu Gly His Gln Glu Trp His Lys Phe Glu
 1025 1030 1035 1040
 Val Ser Val Leu Val Gly Gly Ile Gly Val Thr Pro Phe Ala Ser
 1045 1050 1055
 Ile Leu Lys Asp Leu Val Phe Lys Ser Ser Leu Gly Ser Gln Met Leu
 1060 1065 1070
 Cys Lys Lys Ile Tyr Phe Ile Trp Val Thr Arg Thr Gln Arg Gln Phe
 1075 1080 1085
 Glu Trp Leu Ala Asp Ile Ile Gln Glu Val Glu Glu Asn Asp His Gln
 1090 1095 1100
 Asp Leu Val Ser Val His Ile Tyr Val Thr Gln Leu Ala Glu Lys Phe
 1105 1110 1115 1120
 Asp Leu Arg Thr Thr Met Leu Tyr Ile Cys Glu Arg His Phe Gln Lys
 1125 1130 1135
 Val Leu Asn Arg Ser Leu Phe Thr Gly Leu Arg Ser Ile Thr His Phe
 1140 1145 1150
 Gly Arg Pro Pro Phe Glu Pro Phe Phe Asn Ser Leu Gln Glu Val His
 1155 1160 1165
 Pro Gln Val Arg Lys Ile Gly Val Phe Ser Cys Gly Pro Pro Gly Met
 1170 1175 1180
 Thr Lys Asn Val Glu Lys Ala Cys Gln Leu Val Asn Arg Gln Asp Arg
 1185 1190 1195 1200
 Ala His Phe Met His His Tyr Glu Asn Phe
 1205 1210

<210> 693
 <211> 277
 <212> PRT
 <213> Homo sapiens

<400> 693
 Met Ala Tyr Gln Asp Leu His Ser Glu Ile Thr Ser Leu Phe Lys Asp
 5 10 15

200

Val Phe Gly Thr Ser Val Tyr Gly Gln Thr Val Ile Leu Thr Val Ser
 20 25 30

Thr Ser Leu Ser Pro Arg Ser Glu Met Arg Ala Asp Asp Lys Phe Val
 35 40 45

Asn Val Thr Ile Val Thr Ile Leu Ala Glu Thr Thr Ser Asp Asn Glu
 50 55 60

Lys Thr Val Thr Glu Lys Ile Asn Lys Ala Ile Arg Ser Ser Ser Ser
 65 70 75 80

Asn Phe Leu Asn Tyr Asp Leu Thr Leu Arg Cys Asp Tyr Tyr Gly Cys
 85 90 95

Asn Gln Thr Ala Asp Asp Cys Leu Asn Gly Leu Ala Cys Asp Cys Lys
 100 105 110

Ser Asp Leu Gln Arg Pro Asn Pro Gln Ser Pro Phe Cys Val Ala Ser
 115 120 125

Ser Leu Lys Cys Pro Asp Ala Cys Asn Ala Gln His Lys Gln Cys Leu
 130 135 140

Ile Lys Lys Ser Gly Gly Ala Pro Glu Cys Ala Cys Val Pro Gly Tyr
 145 150 155 160

Gln Glu Asp Ala Asn Gly Asn Cys Gln Lys Cys Ala Phe Gly Tyr Ser
 165 170 175

Gly Leu Asp Cys Lys Asp Lys Phe Gln Leu Ile Leu Thr Ile Val Gly
 180 185 190

Thr Ile Ala Gly Ile Val Ile Leu Ser Met Ile Ile Ala Leu Ile Val
 195 200 205

Thr Ala Arg Ser Asn Asn Lys Thr Lys His Ile Glu Glu Glu Asn Leu
 210 215 220

Ile Asp Glu Asp Phe Gln Asn Leu Lys Leu Arg Ser Thr Gly Phe Thr
 225 230 235 240

Asn Leu Gly Ala Glu Gly Ser Val Phe Pro Lys Val Arg Ile Thr Ala
 245 250 255

Ser Arg Asp Ser Gln Met Gln Asn Pro Tyr Ser Arg His Ser Ser Met
 260 265 270

Pro Arg Pro Asp Tyr
 275

<210> 694
 <211> 157
 <212> DNA
 <213> Homo sapien

<400> 694
 aaatataaat gatatgttga aaacttaagg aagcaaatgc tacatatatg caatataaaa 60
 tagtaatgtg atgctgatgc tgttaaccaa agggcagaat aaataagcaa aatgccaaaa
 ggggtcttaa ttgaaatgaa aatthaattt tgtttt 120
 120
 157

<210> 695
 <211> 241
 <212> DNA
 <213> Homo sapien

<400> 695
 ctggcccgac ctctggcctc ctctccctg gctgaatgta aatatttacc agcatttaga 60
 aaaaaggaga aaaaagacag aactaaaccc gtttagaaaa aagggaccga gggacacgac 120
 tggtaagta atccactgag gacctgaagg gggaaatgga cttaccttgc tcataatactt 180
 ggccctggcta ggacactggg tgccagacag cttctgagg ggattttctt tctaaatgag 240
 g 241

<210> 696
 <211> 188
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(188)
 <223> n = A,T,C or G

<400> 696
 gcccatgatg ncagagctgg aagagagggn acgtcagcac aggggccacc tccatttgmt 60
 gnagacaagc atagatggga ttctggctga tgtgaagaac ttggagaaca ttagggacaa 120
 cctgccccca ggctgctaca ataccaggc tcttgagcaa cagtnaagct gccataaata 180
 tttctcaa 188

<210> 697
 <211> 289
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(289)
 <223> n = A,T,C or G

<400> 697
 ctgcttggac ttcaaagccc tccgcctagc catctcagcc aggctcaggn tccttctccc 60
 acccatcagg ccaagcagga ctgttnaac atacacattc aagttcctag cacacagttag 120
 gtgctaagtg ggaatttgatt ataaacttga attcttccat caacaaatat ctaccttc 180
 tgccagctt gcctcagatc ttcaagntct ctcttctgt aggcagctaa gcttctacat 240
 cttcatgaa gtttccttta cttctcgaca gaagacagtt ccctttagg 289

<210> 698
 <211> 193
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(193)

<223> n = A,T,C or G

<400> 698

aaagtttgtg ctataaaaatt gtgc当地at gtttaaggatt gagacccacc aatgcactac	60
tgtatattt cgcttc当地aa atttcttcca cctacagata atagacaaca agtctgagaa	120
actaaggcta accaaactta gatataaatac ctaccaataa aatttttagt nttaagtt	180
tacagtttga ttt	193

<210> 699

<211> 279

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(279)

<223> n = A,T,C or G

<400> 699

ccttcccccc ctttc当地tat gagttctaac ttagtaattt caaatgtgac cttttatatn	60
taagaccagt atagtaaact tagccc当地ag tggcaaataa tgagtaatat tgtaatatgt	120
tccagnggga taccctc当地t gtcttgaatt ttggcttga catttcaat ggtgtcaactg	180
ggctcgacct caagggtgat ggtttgcca gtgagggtct tcacaaagat ctgcatgtt	240
gcgtccgcac gaccgccgccc accaaccaggc tcggccgccc	279

<210> 700

<211> 340

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(340)

<223> n = A,T,C or G

<400> 700

ctgtccaaatg acaacaggac cctc当地tcta ctc当地gtca caaggaatga tgttaggacc	60
tatgagtgta gaatccagaa caaattaatg gttgaccaca gc当地ccagg catcctgaat	120
gtc当地tcatatg gccc当地acga cccaccatt tccccctcat acacatttta cgnccagg	180
gtgaacctca gc当地tctctg ccatgc当地cc tctaaacccac ctgc当地acta ttcttggctg	240
attgatggga acatccagca acacacacaa gagcttta tctccaaatcat cactgagaag	300
aacagccgac tctataccctg ccaggccat aactcagcaca	340

<210> 701

<211> 277

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(277)

<223> n = A,T,C or G

<400> 701

ccactggctg agntattggc ctggcaggna tagagtc当地c tgttcttctc agt当地gtt	60
gagataaaaga gctt当地gtgt gt当地tgc当地tgg atgtaaccat caatcagcna agaataatgt	120
gc当地ggggt tagaggctgc atggcaggag aggctgaggat tc当地ccctgg acggtataag	180
gngt当地tggagg gggaaatggt gggctgtct gggccataga ggacatttag gatgactgg	240

tcgctgtggt caacacttaa tttgttctgg attccac 277

<210> 702
<211> 255
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(255)
<223> n = A,T,C or G

<400> 702
ctgcgcgtcg ccaaagtgac aggcggngcg gcctccaagc tntctaagat ccgagtcgtc 60
cgaaatcca ttggccgtgt tctcanagtt attaaccaga ctcagaaaaga aaacctcagg 120
aaattctaca agggcaagaa gtacaagccc ctggacctgc ggcctaagaa gacacgtgcc 180
atgcgccgccc ggctcaacaa gcacgaggag aacctgaaga ccaagaagca gcagcggaaag 240
gagcggctgt acccg 255

<210> 703
<211> 224
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(224)
<223> n = A,T,C or G

<400> 703
cctgttttggaa ggngctgctc gaaagggttt gccctgagac tnnaagaaga agctgcggga 60
aggacagcag gggncctggg gtttagcnt ctggcccagg agttatgtgt ccataaccaa 120
aggagacaca gtctgcaccc agctctcatc ccatacgagc tgctgcgact cccgcaggnt 180
cttccggaaac tggtttagct tgccgcagn atcagnaaag ttt 224

<210> 704
<211> 445
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(445)
<223> n = A,T,C or G

<400> 704
agtaaaaaag cagcctggc aagagaagtg ggtgggtta ggagaatccc tttcgaaaaaa 60
ttcagagcat tattattaaat ccttcttaaa ttaaatgcag ggccaaagcat gctgcacgtg 120
gaatctggac aattttttga taaactttaa ggctgctaaa taatttacag aaactgtgaa 180
tgcattttca ttttacgagg caaaagagaa aatattcaag attgcatacg aatttttattt 240
tttgaatgg ntatcctaaa gaatttcctt aaattcagat tttgaaaaat tcctactctc 300
caagtcatca agngaacact aaaagcaact ttactcgta atacagggga ctctttacga 360
ggcatgcatt ttctcataaat cttaggccaaa gngaactaat tgagattaa ttctaaattc 420
atcctgngat ttctgcataat aatat 445

<210> 705
<211> 107
<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(107)

<223> n = A,T,C or G

<400> 705

atcacccnat ttaattaaaa atccctggnc tnaggaccta cagcanngta ctgnagaact	60
tnagaacctn aattagccat ttgccatctt nagagagtct tnnccat	107

<210> 706

<211> 113

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(113)

<223> n = A,T,C or G

<400> 706

aaatagttc taaaggaag gncttgctat gttgcttagg ctgggtttga aaagtccctt	60
ttggggggat gctttcaactg cttcaacttcc tttctatgac agctnaggga atc	113

<210> 707

<211> 283

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(283)

<223> n = A,T,C or G

<400> 707

ctgctccaag gccatcaaga tcttcatggg gaggacggag ctgaagntgg aagacaagca	60
ccgtgtggtg atccagcgtg atgagggtca ccacgtggcc tacaccacgc gggaggtggg	120
ccagtanctg gnggnggagt ccagcacggg catcatcgncc atctgggaca agaggaccac	180
cgtgttcatac aagctggctc cctcctanaa gggcacctg nnggcctgt gtgggnactt	240
tgaccaccgc tccaacaacg acttcaccac gcgggnccac atg	283

<210> 708

<211> 341

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(341)

<223> n = A,T,C or G

<400> 708

ctgtccaatg acaacaggac cctcaactcta ctcagtgtca caaggaatga tgtaggaccc	60
tatgagtgtg gaatccagaa caaattaagt gttgaccaca gcgacccagt catcctgaat	120
gtccctctatg gcccagacga ccccaccatt tccccctcat acacctatta ccgtccaggg	180
gngaacctca gcctctcctg ccatgcagcc tctaaccac ctgcacagta ttcttgctg	240
attgatggga acatccagca acacacacaa gagctctta tctccaacat cactgagaag	300

aacagcggac tctataacctg ccaggccaat aactcagcca g	341
<210> 709	
<211> 376	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(376)	
<223> n = A,T,C or G	
<400> 709	
ccaagtccag gggcgtggag gccgcccggg agcgatgtt caatggtag aagatcaact	60
anaccgaggg tcgagccgtg ctgcacgtgg ctctgcggaa ccgtcaan acacnnatcc	120
tggtagacgg caaggatgtg atgccagagg tcaanaaggt tctgganaag atgaagtctt	180
tctgccagcg tgtccggage ggngactgga aggggtanac aggcaagacc atcacggacg	240
tcatcaacat tggcattggc ggctccgacc tgggaccct catggngact gaagccctta	300
atgcataactc ttcaaggaggn ccccgcnct gggatgnctc caacattgtat ggaactcaca	360
ttgccaataac cctggc	376
<210> 710	
<211> 232	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(232)	
<223> n = A,T,C or G	
<400> 710	
ctgctgtata ttcaaggattt tgggaggagc tgtgaaagac anagaacagt anagggtgtg	60
gnccctgccc tcgagaggnt tanagtctag gtggagaaac gggancagg acacatgggg	120
agccgagaga aaanagtcca gcccagtatg ttacaggagc tggaaagggtgt ttggggtcag	180
accccaataac tccaagtaca ctaagcactt cagtgcctcc agggctcaa cg	232
<210> 711	
<211> 317	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(317)	
<223> n = A,T,C or G	
<400> 711	
caggtaaaat agatTTAATT taggaaagct cattttatat gagTTTccaa ctaatttatta	60
gagtcaaaaa caaagaaaaat aaaatcagag aaaatcctct gtaaaaaaaa tacacaaaaga	120
acatttctac atgtaaaaaa acagtaaacat gtgttaacat ccaagttatt agtctcaatt	180
ccacgtctcc tagtgaacac cactatcaac cttgagatct gatttntct tgcattctt	240
cactgagtag atgaaatatg ttaaggtgtc ttttcattc actgaaatag acctaaatgt	300
gcaaccaact atctcaa	317
<210> 712	
<211> 154	
<212> DNA	

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (154)

<223> n = A,T,C or G

<400> 712

tntgttagaaa aaatanacaa agaacattn tanatgtgaa aaaacagtaa acagngttaa	60
catccaagtt attagtctca attccacgtc tccttagtgaa caccactntc aaccttgaga	120
tctgatttgn tcttgtcatt cttcaactgag taga	154

<210> 713

<211> 177

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (177)

<223> n = A,T,C or G

<400> 713

ccatttcagag gtagaaagatg gaggggcggc agattctggc agggcagcag agggctctat	60
gcacgggttt caaacctgtt ttccacactc tgtcttgca gnttggtaa ttctgtggc	120
tatttatana gatattaaaaa tcttgtttat aaaaaaaaaa aaaaaaaaaa aaaaaaaaa	177

<210> 714

<211> 216

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (216)

<223> n = A,T,C or G

<400> 714

ctgtgtttcg gctataaaaaa ggccgctgaa agaagggaa aattantta gacttaattg	60
gaagtttcat atggcacaca ttaccagnag agaaaaagat ataaacggca ataaatatta	120
ggctcgattt gagaaactct ccccacctca atgctttctt ttcccttgct attaagggt	180
ctactttgca acccggtgn gtgtttgtgt gtgtgt	216

<210> 715

<211> 376

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (376)

<223> n = A,T,C or G

<400> 715

ctgtgcgagt gtaccggatg ctcccacctc tcacccaagaa ccagagaaaa gaaagaaaagt	60
cgaagtccag ccgagatgct aagagcaagg ccaagaggaa gtcatgtggg gattccagcc	120
ctgtatacctt ctctgtatgga ctcagcagct ccactctgcc tgatgaccac aqcgactaca	180
cagtccagg ctacatgcgacttggagg nggagcaggc cctgactcca gctacaacag	240

atgaggatga ggaaggaaaa ttacctgagg acatcatgaa gctcttggag cagnccggagt	300
ggcagccaac aagcggtggat gggaaagggtt acntactcaa tgaacctgga gnccagccca	360
cctctgtcta tggaga	376
<210> 716	
<211> 96	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(96)	
<223> n = A,T,C or G	
<400> 716	
aaacttttta tttgcattttt aaaaaaatttgcatttccaa taattttttt catttgaana	60
aaaaaaaaat ggcnctntga tttaaaactgca ttacag	96
<210> 717	
<211> 366	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(366)	
<223> n = A,T,C or G	
<400> 717	
gatggaaaagg atacagatga catcaagatc cccatgctgt tcatttttcag caaagaagga	60
atgtatcacatc tggatgccat ccggaaatat gaggaggtag aagnngctctt ctctgtataaa	120
gcaaaagatc gagatcctga aatggaaaat gaagaacaac catcctctga aatgtattct	180
cagaatcaga gtggtaaca gatttcatca agtttctcagg aggntgattt ggntgatcaa	240
gagtcttcgttgg aggaaaatttc tctaaatttc cacccttcaat cattatcttctt agcagatatg	300
gacaatgtgttcaagcatttc cccttctgaa cagacttcttca atnccacaga aaaccatgag	360
actaca	366
<210> 718	
<211> 200	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(200)	
<223> n = A,T,C or G	
<400> 718	
aaacatctca catatanaaa ataggtacaa tttaattttt ctgcttgccc aagaaaacaaa	60
gcttcgttgg aaccatggaa gaagatgaaa atgagactgg caaagaacaa atgctgaatc	120
tgaagaagat ttgggcaaat aatctgcata cttttaattt ggaataagat ggaaaatatg	180
aatgctaaat caaattttttt	200
<210> 719	
<211> 336	
<212> DNA	
<213> Homo sapien	

```

<220>
<221> misc_feature
<222> (1)...(336)
<223> n = A,T,C or G

<400> 719
ctgtctcaca ctttcaaga tcgtgagagac acatcagagc cctgggcaact gtcactgctt      60
gcagccttagt ngttaactccc tcctttcta tctgagctct tcctcctcca catcacggca      120
gcgaccacag ctccagtgtat cacagctcca aggagaacca ggccagcaat gatgcccacg      180
atggggatgg tgggctggaa agacagctcc catctcaggg tgaggggctt gggcagaccc      240
tcatgctgca catggcaggm gtatctctgc tcctctccag aaggcaccac cacagccgcc      300
cacttctgga aggntccatc cccttgcagg ccttgg                                336

<210> 720
<211> 167
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(167)
<223> n = A,T,C or G

<400> 720
ggagagtgtc agtgaggcgg ccaagaagta natggaggag aatgannagc tcaagaaggg      60
agctgctgtt gacggaggca agttggatgt cgggaatgct gaggtgaagt tggaggaaga      120
gaacaggaggc ctgaaggctg acctgcagaa gctaaaggac gagctgg                                167

<210> 721
<211> 134
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(134)
<223> n = A,T,C or G

<400> 721
cctagtatga ggagcggtat ggagtggaaag tgaaatcana tggctaggcc ggaggncatt      60
aggagggctg agaggcccc tggtaggggt catggctgg gntttacgtg cgtgaggagg      120
ggcggagctt gcag                                134

<210> 722
<211> 353
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(353)
<223> n = A,T,C or G

<400> 722
aaaaatataata acaactatga tggtaaaata tgtattctga gccattatgt tcaaacataa      60
atatctggaa aattcaact gctgcaacaa gttagggaaag gattaaggaa aaatgtgag      120
ctacaaaattt tggtagttgaa ggaagaaaaa aatgttactt agcatttatg tctggataagg      180
tatgtattti ctaatttaca tacacatatc cagntgagta tagacaacca tcaaaatgt      240

```

accagttaca cagagactag actaaggca aactatttc tataacaggn aacagtagn	300
atttcaaaaa tttaataatc tcaatagttt caccaaaaat tatttatggg aat	353
<210> 723	
<211> 268	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(268)	
<223> n = A,T,C or G	
<400> 723	
ctgagaagag cgccaggaag ccctgggtgc gagagttgat gacgtcgatc tcgtgcaggg	60
acacggngtg caccacctcc ttgcgttct ggagctccc atctggcac tgcaacgaact	120
tggncatggg gccccatagcg tcttagtcgc gggcgngtgt gaaggagcgg cccaaacttgg	180
agatcttgcc ctgcgccttg tcgatggngt aatcgatccc ggcctggacc ttgccttgg	240
ncaggagactc aatcatcttgc ntgcctcag	268
<210> 724	
<211> 344	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(344)	
<223> n = A,T,C or G	
<400> 724	
aaaatcg caaaatttca aataaaaaat tatgaaaata ttatcctcat tagttcattt	60
agnccatga aattaattat ttctctgtc cgatcttgc ggacagttc atgaagctgt	120
cagttagttc attaaagttt tgaaaattct cagacagtgc agtggatca gaaacttgtt	180
ttcaagatgtt naggtcagag ncttctttt ttttctttt gagatggagt cttgctctgt	240
tgccagactg gatgtcagtg gtgcgtctg ggctcaactgc aatctccacc tcccggttc	300
aagcgattct cctgcctcag cctcccgagt aactggact acag	344
<210> 725	
<211> 345	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(345)	
<223> n = A,T,C or G	
<400> 725	
aaacaagaga aagttagacag atacatgtt gnnaatgcta actgtccata ttcacataga	60
gacacagtgt actctctgag cccaatatan agagaaaagga ggaaaaaagc tagaattcta	120
tgcactacta cacaggggcc tagcaccctc cagcttccag cagacgaaag ggagcaggnt	180
tttctttttt cccacacagc tcgggggggtt gattccatac agntttgtt cagacagggaa	240
gggataaaaaa tgaacttcga acagaaaaggg gtagagactc ttttccatt gtattctgt	300
caaggmattt ccccccaat aaattgagaa ccatggagnn gagaa	345
<210> 726	
<211> 305	

<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(305)
<223> n = A,T,C or G

<400> 726

ttgcctgatg tcagagcccc tccacacatg aqctgctcc ctactgcaa caccgtggcc	60
cagacagaga cgctttccga ggaagagggtg aagctcctgc agtcgctgaa gnaagganag	120
cagatcgtga ggaaaaaggg cgccgagggtt gggggcatgt ctctttctt accaagctag	180
actgggntgc ctttctaac tattccagcc ctacagggcg aggcccata atggagtatc	240
ccgccccttt agaccccagg cgctcacccgg cagggcaaga agggaaaatc cagcagccgc	300
gcccag	305

<210> 727
<211> 387
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(387)
<223> n = A,T,C or G

<400> 727

ccaacgaggc atcacctctg acgggtcag tcatcgatga ccggctcaag gagaagatgg	60
tggtgagggtt ccgccacatg aggaaccatg cctatgagcc actcgccagc ttccttagact	120
tcattactta nagttacatg atcgacaacg ngatcctgtt catcacaggc acgctgcacc	180
agcgctccat cgctgagctc gtgccaagt gccaccact aggagctc gagcagatgg	240
aggccgtgaa cattgctcag acacctgctg agctctacaa tgccattctg gtggacacgc	300
ctcttgcgc tttttccag gactgcattt cagagcagga ccttaacgag atgaacatcg	360
agatcatccg caacaccctc tacaagg	387

<210> 728
<211> 109
<212> DNA
<213> Homo sapien

<400> 728

ctgactgaca gccagattgc agatgtggct cgctttgtt accgctaccc taatatcgaa	60
ctatctttagt aggtggtaga taaggacagc atccgcagtg gcggggccag	109

<210> 729
<211> 329
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(329)
<223> n = A,T,C or G

<400> 729

aaagcatagg actatagtca gcatgctaga ctgagaggtt aacactgatg caattagaac	60
aggtaactgtatgtttaacacta tgtttagctg tgtttatgtc ataaaaagtgc	120
aatatttagac actagctagt actgctgcct catgtaaatc caaagaaaac aggatttcat	180

taagtgcatt	aatgtggct	atttctctaa	gttactcata	ttgtcccttg	cttgaatgca	240
atgcccngca	gatttatgtg	gctgtatattt	ttatttctg	ngcattactt	taacacctta	300
aagnngagaag	caaacatttc	cttcttcag				329

<210> 730

<211> 238

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(238)

<223> n = A,T,C or G

<400> 730

aaaaaggc	agagtgactt	aactgatcat	gcatgatccc	tcatccctga	aattgagttt	60
atgtagncat	tttacttatt	ttattcatta	gctaactttg	tctatgtata	tttcttagata	120
ttgatttagt	taatcgatta	taaaggatat	ttatcaaattc	caggattgc	attttgaat	180
tataattatt	ttcttgctg	aagnattcat	tgtaaaacat	acaaaataaa	catatttt	238

<210> 731

<211> 297

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(297)

<223> n = A,T,C or G

<400> 731

aaactgaatt	ttttgacctt	ggaaaatatt	tttcttactt	taccaagggt	aagttccctt	60
aattagacta	attattttat	ccccatccca	gggtataaac	aggaattgtt	ttgatagtg	120
tggagttatt	caactgcaaca	aagcaacaat	gttgtccatg	attcaaaatc	taagcagt	180
cgattttgcc	tgtgaatatg	gngtctgtca	ttcagggcat	agctcactgt	aggctagct	240
ctgcttactt	aagnctcttc	tctgacatac	tcaatggaa	aatattttaga	tttattt	297

<210> 732

<211> 370

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(370)

<223> n = A,T,C or G

<400> 732

ctgtcagtct	tcctgaaatg	aagaaaactac	accaggcgt	ctatatcaga	gcaaccccaa	60
ccagcaactc	aatcatgatg	ccgacagngg	ccccaaattag	aagncaaaa	acaaaaattt	120
attaggtat	ncagacatct	ataaatacta	gtatccgtat	gaatggaaac	accctggctt	180
tgnatggct	acagaatcc	atctggaaat	tattcaaaag	gacgtggttc	aggaaaaagg	240
gggtaggcag	ggcatgggg	gagggaaaca	cacaaaaccc	ccaagcagag	gtaaaatgaa	300
tattgaaaca	cacccgcagc	aaacactgt	catagacttg	aggcagatgc	ctctaacaca	360
acacatatac						370

<210> 733

<211> 242

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(242)

<223> n = A,T,C or G

<400> 733

cctccttattt attctagcca cctctagcct agccgtttac tcaatcctct gatcagggtg	60
agcatcaaac tcaaactacg ccctgatcg cgcaactgcga gcagtagccc aagcaatctc	120
atatgaagnc accctagcca tcattctact atcaacatta ctaataagtg gtcctttaa	180
cctctccacc cttatcacaa cacaagaaca cctctgatta ctcctgccat catgaccctt	240
gg	242

<210> 734

<211> 368

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(368)

<223> n = A,T,C or G

<400> 734

cctttcttgt aagtgaagaa aaaggaatgc agcaaagaag agttcgacat tggagtcctt	60
agttccatca ggatccatt cgcagccctt agcatcatgt agaagcaaac tgcacctatg	120
gctgagatag gtycaatgac ctacaagatt ttngtttc tagctgtcca ggaaaagCCA	180
tcttcagnct tgctgacagt caaagagcaa gtgaaaccat ttccagccctaa aactacataa	240
aagcagccga accaatgatt aaagacctct aaggctccat aatcatcatt aaatatGCC	300
aaactcattt ngactttta ttttatatac aggattaaaa tcaacattaa atcatcttat	360
ttacatgg	368

<210> 735

<211> 308

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(308)

<223> n = A,T,C or G

<400> 735

ctgtccaata ggcgtagcta tccggacaga gcacgtttgc agaaggggga ctcttcttcc	60
agtagctga aaggggaaga cctgacgtac tntggtagg nttaggacttg ccctcggtgn	120
ggaaactttt cttaaaaagt tataaccaac ttttcttta aaagtggaa ttaggagaga	180
agtaggggt tgggaatcag agagaatggc tttggncctt tgcttgcgg actagcctgg	240
cttggacta aatgccctgc tctgaacacg aagcttagna taaactgtat gatatcccta	300
ccttgaaa	308

<210> 736

<211> 354

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(354)

<223> n = A,T,C or G

<400> 736

ccttctgtca	cgtagtcata	aacagaagga	ttcaggcaat	tacctctgcc	atgcggngga	60
acatgggttc	atacaaactc	ttcttaagg	aaccctggaa	gtcattgaca	cagagcattt	120
ggaagaactt	tttcataaaag	atgatgatgg	agatggctct	aagaccaaag	aatgtccaa	180
tagcatgaca	cctagccaga	aggctggta	cagagacttc	atgcagctca	tcaaccaccc	240
caatctcaac	acgatggatg	agttctgtga	acaagttgg	aaaagggacc	aaaaacaacg	300
tccggcaaaagg	ccaggacata	ccccaggaa	cagtaacaaa	tggaaagcact	taca	354

<210> 737

<211> 198

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(198)

<223> n = A,T,C or G

<400> 737

ctgcccgtgc	acacgtcg	tcttctcg	ctcagtatg	cgcttctct	cattgcggnc	60
atccccggatg	ccctcaactag	acagctccgc	gctgtagccc	gtgggctctg	cgccctcatc	120
ctgcaagctc	tcttgacat	gttagctcac	cggctcgatc	acggggggtg	gtggggcgg	180
gggnngctgtc	atcaccag					198

<210> 738

<211> 228

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(228)

<223> n = A,T,C or G

<400> 738

gtgccatggc	acacagctg	ggtgcacacc	cagcgnctc	tcttcagg	gcaggtattg	60
cagtccaccc	tgtatctggc	ccggaaagaa	tanaggctgt	tgttatggac	gcaaggcat	120
tccttctcca	ccacgcagcc	acccggcccg	tcatccatca	gcccgctggg	gcacacacag	180
ccactgacac	actctgtgt	gnaatagccg	gcggccagcg	nctggcag		228

<210> 739

<211> 378

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(378)

<223> n = A,T,C or G

<400> 739

aaaaaaataca	ggagtgcata	gcagcagttg	gtgacgagat	ggcactcaga	aacggcggt	60
acgttaattta	ggacgtggaa	tcataaagcga	aacagcacac	tgtttgaata	aagagcgaat	120
cggnatttat	atttgnttt	cttttgtcat	gattatttga	tttttaagnt	gctccagcta	180

aggcattttt ttgttattagn atttctatta gggAACCTTT cttattaggn ggnttgtatt	240
gtctggnttc taacatgcag qtagctgttt ggcagttaaa cacgtttaga gtaatttgag	300
ttacaacgtg taaaactgag caaaaaagca gngataagnt tgggttacca taccaaatat	360
ttgtttccccc actggaaa	378

<210> 740

<211> 200

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(200)

<223> n = A,T,C or G

<400> 740

ccactttagt ggntcctggc tgcttctgtg attgttaggt cttgagagat tatggaccgg	60
aggcattctg ggtaccccat caattggctg atggncttct atttggctg cgcttcttct	120
aaaaagggga gctcaaaggt cttttttcc cccactgcag agctaaaaaaaaa gtcctgtac	180
gccccatcttct cccagtttgg	200

<210> 741

<211> 273

<212> DNA

<213> Homo sapien

<400> 741

ctgcttggca tcgtaatggg ccgggtggcat catgagcccc agaatcagcc ttgccaggc	60
tccagagatc tcagacttca ggtcagtcat taagtcccg cccaaagttagt acttgaaggt	120
ctgcccggatc tgctgcccgt ggacatttgc gcgggtgcgtg atgatatcga tgattgtgtc	180
ttcgtcagtc ccgagttccct tcatggctt ccgcagcgct ttggcatctg cgtcagggtt	240
gaagtcatttgc tggggcgca caggcccctt cag	273

<210> 742

<211> 297

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(297)

<223> n = A,T,C or G

<400> 742

ctgcagttgc tccctttagg gttataaaaat aatgacccaa atgttacatg tggatattt	60
ataacttgcg agttactgtat gtctgtggna tcctaccctc atctctgaaa gggataatac	120
tgaataatta tttagaaaactt ataaaacttc acactttgtt ccattaaaac cttaaaatttt	180
aatcttgncc ttttttacta tggatcagtc ggcaactcggtt aacagcagca aggaaaagag	240
gcaaaatttca ttcacatgtt ctgnngntcat accttcttctc tacctaattt ttcattt	297

<210> 743

<211> 381

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(381)

<223> n = A,T,C or G

<400> 743

ctgcacacctcc acctccttga agttgaagat actattgccat tcaaagccag cagccagctc	60
tggacagtat gcctgcaggaa acctccatg ccggctca gacacactct ctgcagccag	120
gttaatgaac ttgtccttcag ctacaaaagc tgtgagctt gctgtgtca cctccaggg	180
taggttttagc agccgccttg gggtaatgg ctcaaggggca cggccttcta gctcagaagn	240
agntcctgaa gnctctagtg caagggatgg tacagtctca ggaaacacag nggcttttag	300
taggnctcggtactgttagag ngnggnatcccagactg gngatgattt ggttgtcatc	360
caggaagcgg caacacgaca g	381

<210> 744

<211> 167

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(167)

<223> n = A,T,C or G

<400> 744

cagcgngggg ctcggagagg tgctcggtt ctcgtagctg tgccggact taaccaccac	60
catgtcgagc aaaagaanaa agaccaagac caagaagcgc cctcagcgtg caacatccaa	120
tgtgtttgct atgttgacc agtcacagat tcaggagttc aaagagg	167

<210> 745

<211> 96

<212> DNA

<213> Homo sapien

<400> 745

ccacaaaactc ctctggctgt actccctct gcaggagacc ggcctcaactg cactcagcag	60
gctcttctcc ctgcgattca cttctggac agtcac	96

<210> 746

<211> 391

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(391)

<223> n = A,T,C or G

<400> 746

ccattacgca gcccgttcag caaacagggc tcctccccgc ccgagggcgg gaccacagtg	60
gccgtcagca ggctgagatc cgctctctgat atgttgatgg ggatgtcgcc agcagagccg	120
accttttagt gggacatatacg catggagtcg tcacctgtga cccggcagt gaaggggctg	180
cctggggacgt gttttcatt gtactgtact agaatgtgt agtccccgg cagcacaggc	240
aagttaggaca cgctgcnatg tcccatctg gttgtcaatgt cagttttgtt tttttttttt	300
ctcaagccca gaaagatgaa ttaatccttg aaggaaatgt aattttttttt gtttcaaatt	360
cagcggtttt gattcagca gcccacaaacag t	391

<210> 747

<211> 408

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(408)

<223> n = A,T,C or G

<400> 747

aaagggtgtt	gtgcctttt	attttgttt	ttaatgctt	gatattcaa	tgttagcctc	60
aatttcgtaa	naccataagg	agaatgtaaa	gcttgtctga	tcgttcaaag	catgaaaatgg	120
atacttatat	ggaaattctg	ctcagataga	atgacagtcc	gtcaaaacag	attgcttgca	180
aaggggaggg	atcagtgtcc	ttggcaggct	gatttcttagg	taggaaatgt	ggnagcctca	240
cttttaatga	acaaaatggcc	tttattaaaa	actgagtgac	tctatatagc	tgatcagtt	300
tttcacacctg	aagcatttgc	ttctactttt	atatgactgt	ttttcgaca	gtttatttgc	360
tgagagngt	acccaaaagtt	acatgttgc	acctttctag	gtgaaaat		408

<210> 748

<211> 337

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(337)

<223> n = A,T,C or G

<400> 748

ggcgaggaga	ggcgagcacc	ggaaaggggg	gcgnngggcc	gctgaaatgg	gtgaatttaa	60
ggmccatcga	gtacgttct	ttaattatgt	tccatcagga	atccgctgtg	tggcttacaa	120
taaccagtca	aacagattgg	ctgtttcacg	aacagatggc	actgtggaaa	tttataactt	180
gtcagcaaac	tactttcagg	agaaattttt	cccaggtcat	gagnctcggg	ctacagaagc	240
tttgcgttgg	gcagaaggac	agcgactctt	tagtgcgtgg	ctcaatggcg	agattatgga	300
gnatgattt	caggcgttta	acatcaagta	tgctatg			337

<210> 749

<211> 261

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(261)

<223> n = A,T,C or G

<400> 749

ccggggaggct	ctgattattt	acccaccaca	ggtaggttgt	gttctgaatc	tcaggttcac	60
agtttaaggc	tacagcatcc	tcatcctcca	cggggtttgg	gttgggtctg	gnatgaaagg	120
gtttgggtgg	ctctgcata	actgtgatcg	ncgtactgt	gnncatattg	aggccagtgt	180
ctgagttatg	ggcttgcac	gtataggatc	cactattatt	cacagngatg	ttggggataaa	240
agagcttgc	ggnggattgc	t				261

<210> 750

<211> 150

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(150)

<223> n = A,T,C or G

<400> 750

aacgctgang acatgacatc caaaagattac tactttgact cctacgcaca cttnnnatc	60
cacgaggaga tgctgaagga cgaggtgcgc accctcaatt accgcaactc catgttcat	120
aaccggcacc tcttcaagga caaggnngnng	150

<210> 751

<211> 288

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(288)

<223> n = A,T,C or G

<400> 751

aaaacttttg ttaagaaaaa ctgccagttt gtgccttta aatgtctgtt ttgacatcat	60
agtctagtaa aattttgaca gtgcataatgt actgttacta aaagctttat atgaaattat	120
taatgtgaag nttttcattt ataattcaag gaaggattt ctgaaaacat ttcaaggat	180
ttatgtctac atatttgtgt gtgtgtgtgt gatatatatat gtaatatgca tacacagatg	240
catatgtgta tatataatga aatttatgtt gctgnattt tgcatttt	288

<210> 752

<211> 248

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(248)

<223> n = A,T,C or G

<400> 752

ctggcactga ggatttatatac catataagaa ttcaacagag aaacggcagg aagacccta	60
ctactgtcca agggatcgct gatgattacg ataaaaagaa actagtgaag gcgttaaga	120
aaaagtttgc ctgcaatggt actgtaattt agcatccgga atatggagaa gtaattcagc	180
tacagggnga ccaacgcaag aacatatgcc agttcctcg agagatttga ctggctaagg	240
acgatcag	248

<210> 753

<211> 346

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(346)

<223> n = A,T,C or G

<400> 753

ctgctagaaaa acagggaaaga tattagccaa tatggattt ccaggttctt cactgaatat	60
tttaacagtg tatgccaggg aacacacatt ctctttcgag aattcagtt cgtccaagcc	120
acccccccaca atagggnatc attttacgg geccctcgga gatgttccg aactgtggc	180
aaaaatggcg atttgcgtac catgaaaagaa tatcactgtt tgctgcaatt actgtgtcct	240
gatttcccgc tggagctcac tcagaaagca gccaggattt tgctcatgga cgtatgccatg	300
gactgcttga tgncttttc agatttccctc tttgccttcc agatcc	346

<210> 754
<211> 100
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(100)
<223> n = A,T,C or G

<400> 754

gtgccacagg cagccctggg anataggaag ctgggagcaa ggaaagggtc ttagtcactg	60
cctccccagaag ntgcggaaa gcactcgag aattgtgcag	100

<210> 755
<211> 405
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(405)
<223> n = A,T,C or G

<400> 755

tgtggggcca cttcccaa at ctctggagga tctgcagctt actcataaca agatcacaaa	60
gctgggctct tttgaaggat tggtaaacct gaccttcatt catctccagc acaatcggt	120
gaaagaggat gctgttcag ctgctttaa aggtctaaa tcactcgaat accttgactt	180
gagcttcaat cagatagcca gactgccttc tggncctccgt ctctcttc taactctcta	240
cttagacaac aataagatca gcaacatccc tgatgatgtt ttcaagcgtt ttaatgcatt	300
gcagnatctg cgtttatctc acaacgaact ggctgatagt ggaatacctg gaaattctt	360
caatgnncat tccctgntg agctggatct gtccataaac aagct	405

<210> 756
<211> 306
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(306)
<223> n = A,T,C or G

<400> 756

ccttggggaaa ttacctggaa atgcgactga aatcttcctt cctgaggggt ctgggctctt	60
ggaaatcaaa cccttcagg ttgggtggct ggacgatct cctcacactt anaatggac	120
aaggggaaacc aggaggcccc caaggggatc cctgggncc acacgaactc ctcctaccct	180
cattgngtga cagcagccat gcctcctctt ggggatcagg atctattacc tgcctggaa	240
gaggagggaa ctcctcttctt caccggatgg nctctggaca catactgtcc aattccccctg	300
tggcag	306

<210> 757
<211> 321
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(321)
 <223> n = A,T,C or G

<400> 757

ctggagggag: gntccctggg aggttttgc ggattcccttc tgcagngact cccctggtt	60
ctggntctgg ggaccacng tccaggcgca gncttttagc acttctcagt gtagacgttg	120
acagggnctc ttcccgcgtt gaatcctgtc gagtccccaa atctcttgc ttgtcttggn	180
tacagnncacc accagagctg ctncnagntt tgacaaaage agttgtctgt gaagngatcg	240
ttttgaatcc tatcatagca ctggcagggtc ccggnaaatt cttacagtca gcaggcggac	300
ctcggtgtgag ttgaatattc c	321

<210> 758

<211> 278

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(278)

<223> n = A,T,C or G

<400> 758

cgctcgccaa gntctcccaag gagaaagcca tggtcagttc gagcgccaaag atcntgaagc	60
ccaaatggcgaa gaagccggac gagttcgagt ccggcatctc ccaggctt ntggagctgg	120
agatgaactc ggacctcaag gtcagctna gggagctgaa tattacggca gctaaggaaa	180
ttgaagttgg tgggtgtcgg aaagctatca taatcttgn tcccnctct caaacctgcc	240
cgggcggccg cttcgagccc tatagtgagg cgnattag	278

<210> 759

<211> 401

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(401)

<223> n = A,T,C or G

<400> 759

gaaaactgca aaccatggtg agaaaattgac gacttcacac tatggacagc ttttcccaag	60
atgtcaaaac aagactccctc atcatgataa ggctcttacc cccttttaat ttgtccttgc	120
ttatgcctgc ctctttcgct tggcaggatg atgctgtcat tagtatttca caagaagttag	180
cttcagaggg taacttaaca gagtatcaga tctatcttgt caatcccaac gttttacata	240
aaataaagaga tccttttagtgc caccacngna ctgacattag cagcatctt aacacagccg	300
ngtgttcaaa tgtacagngg nccttttcag agntggactt ctagactcac ctgttctcac	360
tccctgnttt aattcaaccc agccatgcaa tgccaaataa t	401

<210> 760

<211> 346

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(346)

<223> n = A,T,C or G

<400> 760

ccgagggtttg gatcatggga gaacagcaga aaggggttat tgagggacc tacactgttc	60
tagctgcacc ccatgcctt ctcagaggaa agcctggcat tgattagata ctggccaga	120
ctaatactgg cagcagagcc agtgatagta acctgcctac cagaggagcc ttccactgg	180
ttggcaattt ttagtctggc cccggacatc tggcgatct cattaatgtt ggcccttgg	240
cggccgatta tgcagccaat taagttttt ggaatggng aatggggat gttcatgggt gttttgagta	300
gatgcattca aacttgcctt atagccttc acctntggag agacct	346

<210> 761

<211> 256

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(256)

<223> n = A,T,C or G

<400> 761

gagacagact ggggtatgac gctgaatctg cagagggtct ggtgaccaat tcccctaag	60
catctacttg ttcctctaaa ctgtgtaaag tggccctctgt ctgccccttt ctttaatta	120
atacttctgc ttgttggac atacagtgtc ggagttggnc ctgaaaagtg tgataagact	180
taggntttt cacagnaaga aatgtaccag aactgtgtc cagtttcctc acatacattt	240
gataggcaaa tctagc	256

<210> 762

<211> 321

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(321)

<223> n = A,T,C or G

<400> 762

tggactctgg antgatgtc gaagtagata cgaaaatng aagaacaatg gaacagcaca	60
ctttctggag catatggctt tcaagggcac caagaagaga tcccaagttt atctggact	120
ttagattgaa aatatgggtg ctcatctaa tgcctatacc tncagagagc agactgtata	180
ctatgccaaa gcattctctt aagacttgcc aagagctgtt gaaattcttgc ctgatataat	240
acaaaacagc acattgggg aagcagagat tgaacgtgag cgtggagtaa tccttagaga	300
gatgcaggaa gttgaaacca a	321

<210> 763

<211> 348

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(348)

<223> n = A,T,C or G

<400> 763

tggaaaaaca taaaatgttacc agcagatttc aatattaaaa agaagtgggtt ctttctaaaa	60
aaggtnnttag atcatagagt tgggattagg gttagggat ccttataatc tggntctggaa	120
aaaaagngtg tggagaaggg gagntgtt gntttctcac aagaggcaaa cttcagncaa	180
acaatgttacc aggttggatgtt gtgttttttcc tgattgtca	240

taataacaaa tttagcagct ntctacaagt caattaaaat accattctct gagacatttt	300
cagagaggag ctaactaaca cccacccagg ngggaaaaatc attctaca	348

<210> 764
<211> 374
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(374)
<223> n = A,T,C or G

<400> 764	
agcnaagaag gaagctcctg cccctcctaa agctgaagcc aaagcgaagg cttaaagn	60
caagaaggca gcgttcaaag gtgtccacag ccacaaaaag aagaagatcc ncacgtcacc	120
caccccccng cngccgaaga cactgcact ccggagacag cccaaatatc ctggaaagag	180
cgtccccagg agaaaacangc ttgnccacta tgctatcatc aagttccgc tgaccactga	240
gnctgccatg aagaagatag aagacaacaa cacacttg ttcattgnng atgttaaagc	300
caacaagcac cagattaaac aggctngaa gaagctgtat gacattgatg tggccaaggt	360
caacaccctg attc	374

<210> 765
<211> 288
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(288)
<223> n = A,T,C or G

<400> 765	
aaataacaata attctgttat tgataaaatt taaggcattt tcattgcctt ttgcagattt	60
actcataact acctaacaag gaaagaaggt ataattatit cagattggat tatattatct	120
aaaattaaat tcttcactaa ttattctaa gatgaattta atagtccatc agggaaattgg	180
nttttataaa gcttattttt tggcataaa atacaggaaa aggtataaat aaatgccaaa	240
ccgtctcttt actttatgaa gccaaatatt tcctcagact tggttttt	288

<210> 766
<211> 424
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(424)
<223> n = A,T,C or G

<400> 766	
tttgtgttgttgc tctgtttccg acactcatga acaggctatc ttgcgggttc	60
aagtccacaa tggctgtct cagccctctga ctcaggccac tgtaaacta gaacatgtca	120
aatctgttgc ttccagagcc actgtctcc agaagacatc ctccacccctt gtaggggatg	180
tttttgtaact aaatttcatg aacgtcaat ttccagttt ttattatgac ttcccttgc	240
aagtgttgc tgacaaccgg tatattgcaat ataccgttga gtcagatc aagatctcca	300
ctgaagttgg catcacaaat gttgatcttt ccacccngga taagatcag agcattgcac	360
ccaaaactac ccgggtgaca tacgcagcca aagccaaaggg cacattcatc gcagacagcc	420
acca	424

<210> 767
<211> 302
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(302)
<223> n = A,T,C or G

<400> 767
ggctttctca ataaggcctca gctttctaag atctaacaag atagccaccg agatccttat 60
cgaaactcat tttaggcaaa tatgagttt attgtccgtt tacttgttc agagtttgta 120
tttgtattat caattaccac accatctccc atgaagaaa ggaacgggtga agtactaagc 180
gctagaggaa gcagccaagt cgnttagtgg aagcatgatt ggtgcccaagt tagcctctgc 240
aggatgtgga aaccccttc caggggaggt tcagtgaatt gtgtaggaga gtttgtctgt 300
gg 302

<210> 768
<211> 94
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(94)
<223> n = A,T,C or G

<400> 768
ctgatctaaa agaagttaact gaggaagatt tgaataatca cttaagtct ttgggaagca 60
gnnatttcaa atnttgaggt gacagnctt taag 94

<210> 769
<211> 69
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(69)
<223> n = A,T,C or G

<400> 769
ctgcaagacg actccaaaccc aacaacaacc agatngctn cagccagcc ggncttcagt 60
tccatattt 69

<210> 770
<211> 222
<212> DNA
<213> Homo sapien

<400> 770
ctgaacgcaa acca'ccact ttaattaagc taagccctta ctagaccaat gggacttaaa 60
ccccacaaaca cttagttaac agctaagcac cctaatecaac tggttcaat ctacttctcc 120
cgccgcccggg aaaaaaggcg ggagaagccc cgccaggtt gaagctgctt cttcgaattt 180
gcaattcaat atgaaaatca cctcggagct ggtaaaaaga gg 222

<210> 771
<211> 332
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(332)
<223> n = A,T,C or G

<400> 771

ctgtttccc tcctatggct cccctggAAC aggagggaga gccaaggGGG cggcccAGCC	60
tggacagcgc ccgctcctgc ctgggtgcac acacggcGGG cctgagctcc agcatctgag	120
tttgggggta tgagaaacag gggagcagaa ggagaagaaa actgcctgtg ctgcaacacg	180
tttcctcatt tatttttct ttcttttctt ttttttctt ttttggaggg agaggtccct	240
gcaaggccc ttcccggca gnggaggat ggaaatgccg tcacagtatg aggactgga	300
gcgtctacaa gcatggaggg gagctactca gg	332

<210> 772

<211> 194

<212> DNA

<213> Homo sapien

<400> 772

aaaagaaaaga tcaatttatccatgcttaa caggatcagc aggagctta taaatgactt	60
tacagagact aataaggat ttgatcttc tttttttttt atcgaggctt ttgaaatgtg	120
gaacttgtgt gttctgcttt atatgttata ttcaatatct tttcagatgc agtctatatt	180
ttatgctgag tttt	194

<210> 773

<211> 272

<212> DNA

<213> Homo sapien

<400> 773

ccaatttattt tgatggtaag ggaggatcg ttgacctcgctt ctgttatgtt aaggatgcgt	60
agggatggga gggcgatgag gactaggatg atggcgggca ggatgttca gacggtttct	120
atttccttagt cgtctgagat gtttagtattt gtttagtttgc ttgtgagtgt tagaaaaagg	180
gcatacagga ctaggaagca gataaggaaa atgattatgtt gggcgatgc atgaaagggtg	240
ataagctctt ctagatagg ggaagttagcg tc	272

<210> 774

<211> 314

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(314)

<223> n = A,T,C or G

<400> 774

gtgtcttgta cagttagnata tattagcagc cctctgagat gncgnatcta tcggaaggat	60
ttcaaaacacc aattgcttta cctgaacaaa tggnncttac cctttgaaca gcanagngac	120
cacgnagaag gaaggaaaag ggnaaaatcg cttnagttaa actgaaatta aatgaacaat	180
aaggcaacta tataagtnac ttctagnagc attgcctgag anacaaatta ttgtttgata	240
atttncattt tgaatagnaa tccaatagat catattgctt actttgntct ttttatacta	300
tagaataata tttt	314

<210> 775
<211> 207
<212> DNA
<213> Homo sapien

<400> 775
cctgacagag ctcagctcac actggaaagt gtggatgcag ggtgcccttc cctaccccg 60
tgagaaggaa gattccttac ccatcttgc tcccccccg ggaagatcat catgcacgac 120
ccatttgcca tgcggccctt ttttggctac aacttcggc actacctgga acactggctg 180
agcatggaag ggcgcaaggg ggcccg 207

<210> 776
<211> 196
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(196)
<223> n = A,T,C or G

<400> 776
gtgaacggag gcactgtggc cgagaagctg gactggncgc gcgagaggct tgagcagcag 60
gtacntgtga accaagtgtt tggcaggat gagatgatcn acgtcatacg ggtgaccaag 120
ggcaaagnct acaaagggnn caccagtcgt tggcacacca agaagctgcc ccgcaagacc 180
caccgaggac ctggc 196

<210> 777
<211> 325
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(325)
<223> n = A,T,C or G

<400> 777
aaagttgaac taagattcta tcttggacaa ccagctatca ccaggctcgg taggnttgc 60
gcctctaccc ataaaatcttcc caactatccc gctacataga cgggtgtgct ctttagctg 120
ttcttagtta gctcgctcgg ttccgggggt cttagtttgc gctcccttgc caaagttatt 180
tctagttaat tcattatgca gaaggtatag gggtagnc ttgttatatt atgtttggnt 240
ataatttttc atctttccct tgcggtaacta tatctattgc gccaggtttc aatttctatc 300
gcctataactt tatttggta aatgg 325

<210> 778
<211> 421
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(421)
<223> n = A,T,C or G

<400> 778
ccaaaagaag taagacagct tgctgaagat ttccctgaaag actatattca tataaacatt 60

ggtgcaacttgc	aactgagtgc	aaaccacaac	attcttcaga	ttgtggatgt	gtgtcatgac	120
gtagaaaagg	atgaaaaact	tattcgncata	atggaagaga	tcatgagtga	gaaggagaat	180
aaaaccatttgc	tttttgttgc	aacccaaaaga	agatgtgatg	agtttacnca	nanaaatgag	240
gagagatgggg	tggcctgc	tgggtatcca	tggtgacaan	agtcaacaag	agcgtgactg	300
ggttctaaat	gaattcaaac	atgaaaagc	tcctattctg	attgtcacag	atgtggcc	360
cagagngcta	gatgtggaag	atgngaaatt	tgtcatcaat	tatgactacc	ctaactcc	420
a						421

<210> 779

<211> 330

<212> DNA

<213> Homo sapien

<400> 779

ctgaactttc	cgcttacgct	gcccgagact	gccagggtgt	gactgagaat	tcgagttttg	60
tttcttcctt	ggggttgtat	ctgcagcctt	ttctccctgg	gactccctgt	ctgctgccaa	120
tggagttgaa	gaactgaaat	gatgacacag	ctcctcttct	tttattttct	ttgctggcct	180
ctccgggtgc	tgggagccgg	aggaggcttg	ggctagagaa	gggtgatgaa	ctggggccat	240
ttctcttccaa	gagctgtgag	atgcctcgag	tggagctgt	ggaactggta	atggcattgc	300
ggctggagct	agggatgcca	cttgcgtaa				330

<210> 780

<211> 279

<212> DNA

<213> Homo sapien

<400> 780

gagaggtaga	tttttttcg	tgatagtgg	tcactggata	agtggcg	gcttgccatg	60
attgtgaggg	taggagtca	ggtagttgt	attaggaggg	gggttgg	gggtcgag	120
gaaaagggttgc	gggaacagct	aaataggttgc	ttgttggattt	ggttaaaaaaa	tagtagaggg	180
atgatgctaa	taattaggct	gtgggtgg	gtgttggattc	aaattatgt	ttttttggaa	240
agtcatgtca	gtggtagtaa	tataattgtt	gggacgatt			279

<210> 781

<211> 323

<212> DNA

<213> Homo sapien

<400> 781

ttgatcttct	gcaggaaggt	gcagctttc	catacgt	caaccacgccc	gccagtc	60
tcttaaggaa	ctgcccacta	ggactgatga	tgcattttag	ctttgagctt	ttgggggtt	120
ttctaccaac	aaacagtccaa	ttggaaagaa	aacagtccct	ggaattaaca	gattagaatg	180
ttcacactgg	ttaatctttt	ttaacaatgt	agcatgaagg	tagcagaagc	tggtgtgtt	240
ccagatggtt	tttctaaacca	aactaatttt	tcactgttga	caagcgagc	aagggttgca	300
ctggaccaaa	ggctgaggct	tgg				323

<210> 782

<211> 264

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(264)

<223> n = A,T,C or G

<400> 782

ttctagcttt	gcctcaactc	ccccggaaaaaa	ctgacactga	cacagggct	ctttcc	60
------------	------------	--------------	------------	-----------	--------	----

cccttagt ggtacccat	tggggaggct tccttacca	gaatgagttc ctgaaacc	120
ggccagaga caaggaca	ac ttaggggaag acggggttt	cggggagcc agggcaat	180
cttaatggg	ccagngggg ataccccaga	gcccatgcc tgactgcaca	240
aggatgggt	cgcagtctg cnct		264

<210> 783

<211> 159

<212> DNA

<213> Homo sapien

<400> 783

ctgtgtgaag gcgacagtgg	tgcaggtctt cctgtggact	agacgtccc gtctgcctt	60
tcccttgata atgcaga	ggaccccccattttacgacac	agggcaggca agaagacaac	120
cagctcgatggatccacgt	cgtgtgcaat caccaccag		159

<210> 784

<211> 128

<212> DNA

<213> Homo sapien

<400> 784

ctcgcccttc ttacaccatt	ttgtttgatt gtctagttcc	tgtttctttt tctttcta	60
ccttatttcat ttaagcaaaa	ccatacatta tctttccag	tcctttcttg tattcttact	120
gttttttt			128

<210> 785

<211> 346

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(346)

<223> n = A,T,C or G

<400> 785

ctgggctgat gctggaaactc	gtagaagtac acagggcccc	gggaacactg aaaatgtgt	60
acttggagtgc	caggatcac aaacatggag	tccgcata tctcggaa ctgcgttgg	120
agggtctggg	gtatcccatt gnccccaatg	tactcctccc tcagcaggc accaaatgt	180
ggaggcaaca	tcagcagcgt taacatttc	tgcagagcag cctggggagc ctctctgtcc	240
atttccttct	ggtatcata gatcctcatg	accttggga tgagccagcc gaattcat	300
ttgttgacac	caacaatgtc agnacagn	ctgaaagtgc gcagag	346

<210> 786

<211> 118

<212> DNA

<213> Homo sapien

<400> 786

ctgcactgat ctgtggggag	agttttacag acttttattt ccagcctctt	ccattgacag	60
ttaggtcttc attcaatcct	gaagaaacct gaagtgtaga	atctcctttt ccagattt	118

<210> 787

<211> 257

<212> DNA

<213> Homo sapien

<400> 787

cactcattca tcgacctccc caccccatcc aacatctccg catgatgaaa cttcggtca	60
ctccttggcg cctgcctgat cctccaaatc accacaggac tattcttagc catgcactac	120
tcaccagacg cctcaaccgc ctttcatca atcgccccaca tcactcgaga cgtaaattat	180
ggctgaatca tccgctacct tcacgc当地 ggccctcaa tattcttat ctgcctttc	240
ctacacatcg ggcgagg	257

<210> 788

<211> 155

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(155)

<223> n = A,T,C or G

<400> 788

cgcaagagcc tatgnatgtg gnatccagaa ctcngtgngc gcaanccgca gagacccagt	60
caccctggnt gtnctctatg ggcggacac ccccatcatt tccccccag actcgctta	120
cctttcngga gcgaacctca acctctctg ccact	155

<210> 789

<211> 382

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(382)

<223> n = A,T,C or G

<400> 789

cctaagtaaa tgaagagctg taccatattc atgtatttga agacaacatt gttaagatga	60
catggtttac cagattaatc tataaattca atacaatcc aatcaaaatt tcaatgtct	120
tgggttttgt tgatttataa attgttggtc taattctaga agtaatatgg aggaacagtt	180
ggctaagaat agccaagaca ctnaaggaa gaacaatttt gtggngatac tggagacaga	240
ggtaaattt gttacaatta tgacaaaaatg tggaggcatc ttggtttttca gagacctt	300
tcctaaagtt gcaataatca ggactgtact gtactgtac aagatttagac aaattgtat	360
cagtcagaat agaaatcatc aa	382

<210> 790

<211> 273

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(273)

<223> n = A,T,C or G

<400> 790

ggatccgcta cacagttct gccagtcctt gagttgtgc ctttcggct aactcgccag	60
nttatcaatc tggatgttacc aatgaaaagaa acggtnctta tgtacagnat catggcac	120
gcactccgnn cttccgctc agaccctggc ctgctcacca acaccatgg tggatgttgc	180
aagnagccct ctttgattt gaaaaattttt gaacanaaaa tgctgaaaaa aggagggtca	240
tggattcaag aaataaatgt tgctgaaaaa aat	273

<210> 791

<211> 344
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(344)
<223> n = A,T,C or G

<400> 791
aaagaatcag caaaaattca aataaaaaat tatgaaaata ttatccat tagttcattt 60
agtccccatga aattaattat tttctctgt tgatcttggg ggacagtttc atgaagctgt 120
cagtttagttc attaaagttt tggaaattct cagacagtgc agtggtatca gaaacttgta 180
ttcaagagta caggtcagag ccttcttttc ttttctttt gagatggagt ctgtctgt 240
tgccagactg gagtgcagt gtgcgatctg ggctcaactgc aatctccacc tcccggttc 300
aagcgattct cctgcctcag cctcccgagt aactggact acag 344

<210> 792
<211> 227
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(227)
<223> n = A,T,C or G

<400> 792
gacaaacctg aaattgaaga tgggtttct gatgaggaag aaaaaagaa ggtatggcac 60
aagaagaaga agaagattaa ggaaaagtac atcgatnaag aagagctcaa caaaacaag 120
cccatcttggc ccagaaatcc cgacgatatt actaatgagg agtacggaga attctataag 180
agtttgacca atgactggga agatcaacttg gcagnngaagc atttttc 227

<210> 793
<211> 328
<212> DNA
<213> Homo sapien

<400> 793
aaacaagtca tttttcttgc tcgttggga aggtttggag ccttagaggt atgtcagaa 60
aaatatgttg gtattctccc ttgggttaggg ggaaatgacc ttttacaag agagtgaat 120
ttaggtcagg gaaaagacca agggccagca ttgtacttt tttgtgtgtg tttgggttt 180
gttttgtttt ttgggttggc cggttgggg cgttgggtt aacaaaggaa tgagaatatg 240
taatacttaa ataaacatga ccacgaagaa tttttttttt atttactaga gaatgttccc 300
aatttgaatt tagggatt ttacctgc 328

<210> 794
<211> 290
<212> DNA
<213> Homo sapien

<400> 794
ccagcgagca catgaagcgg ttcttcatga actttgtgtt tggggcaggat ccgggctcag 60
acgcccctt ccacttcaat ccgcggttt acggctggg caaggtggc ttcaacacgt 120
tgcaggcggg gaagtggggc agcgaggaga ggaagaggag catccccttc aaaaagggtg 180
ccgccttgc gctggcttc atagtcctgg ctgagacta caaggtggc gtaaatggaa 240
atcccttcta tgatcaggc caccggcttc ccctacagat ggtcacccac 290

<210> 795
<211> 343
<212> DNA
<213> Homo sapien

<400> 795
aaaatcaaag aaatccttgt tttaaaaatt ggatcttaat ctcaaaattg tagaacttgg 60
ctgagaccat tgctttcatt ttgaaaatga acttcaactc cagaaagacc agtgtgtgct 120
ctgccaaata aatttctgag tcacagtctc actaggaatg tgcaaatcaa agcatatgtt 180
ggtgtaaatt ctttgaaatg ctttgccaag ataatcaatg gcatttacat ttgtttttt 240
ctttaataaa aattccacca ttttcaactt tcttcgactc acagcaagta acagtggctg 300
atattcattc ttgctgcatt cttcaatatt tgtaccatgt gaa 343

<210> 796
<211> 354
<212> DNA
<213> Homo sapien

<400> 796
tggcgcccg ctgaataagc ttccaaaatg atgcccacac cagttattct attgaaagag 60
gggactgata gctcccaagg catccccagg cttgtgagta acatcagtgc ctgccagg 120
attgctgagg ctgtaaagAAC tacccctgggt cccctgtgca tggacaagct tattgtat 180
ggcagaggca aagcaacaat ttctaattgtat gggccacaa ttctgaaact tcttgatgtt 240
gtccatcctg cagcaaagac ttggtagac attgccaat cccaaatgc tgagggtgggt 300
gatggcacca ctcagtgac ttgctggct gcagagttc tgaaggcagac ctgc 354

<210> 797
<211> 309
<212> DNA
<213> Homo sapien

<400> 797
ctgtgccgtc tgcctgagcc catggatgt ttctcaatcc taggctgggtt actgtgttaag 60
cggtttggag tacggggcct tgagcgggtg ggagctgtgt gttgaagtac agagggagg 120
tgggggtgggt cagagccgag ttaagagatt ttctttttt ctggaccctt tcttgaaggt 180
agacgtcccc cacccggaga gacgtcgccg tctggccctga agtggcgaa gttgtttt 240
taaatatctg tggcccgtat gtatgtccca gaacgtttgt gcgaggcagc tctgccccg 300
gttccaccc 309

<210> 798
<211> 315
<212> DNA
<213> Homo sapien

<400> 798
ccaccagcat tgacgttctt gccatccaga agagctgaca gtgtcagttt aatacctggc 60
tttagagtct gagtgatcc taaacctatc aggctggagt tgttcacttt agccgagaag 120
caggcgtcag ggtcaatctg atactggct gctattccga agcgcgtgtt actgtttct 180
gtgtccagg caagattgac agcggcttcc aacttctgt tcactttctg gtaaatggag 240
ccgcaccaact ctgtcccgat attcacatta gtgtgaagct ggaattcatc agtctttag 300
ccaaactgcaaa agttg 315

<210> 799
<211> 157
<212> DNA
<213> Homo sapien

<400> 799

ctgtgatttc ctccatagtt ggcttctggg tcaggccata ggcaatattt tcttgaagac	60
ttcttccaaa tacctgtggc tcttgccca ctgcagccac ctgcgtgtgc aggttagcggt	120
gctcatattt gggaaaggggc ttccccatcca acagcag	157

<210> 800

<211> 357

<212> DNA

<213> Homo sapien

<400> 800

aaactcagtg aacccaaacc tattttttt aatctgaata ttgctgcage aaaaccaact	60
ccaccaaaaa gcccggtaac attaacaaaa gaattccctg tatcatctgg atctcaacat	120
cggaaaaaaag aagcggatag tgtttatgga gaatgggttc ctgtcgagaa aaatggtgaa	180
gaaaacaaag atgatgataa tgttttcage agcaatttgc cctcagagcc tggacatc	240
tctacagcaa tgagtgaacg ggcacttgc cagaaaagac tcagtgagaa tgcatttgat	300
cttgaagcca tgagcatgtt aaatagagct cagggaaagga ttgatgcctg ggctcag	357

<210> 801

<211> 359

<212> DNA

<213> Homo sapien

<400> 801

ccttagggggc atatcaaggg tttaatagac tgggggaatg ggcaacagaa ctggctacct	60
tagaggctct ggaatcccccc ccacccatcc acccacaat ggaaggaaag tcaggcatcg	120
cctaaaagga gtggcccta tctagccca agtctggagc agaaaggcga ggtccattct	180
ggcccaagtg acatttttag atcctgtccc ctcccccaat cactgtgtc tgccagggtg	240
cctcttcaca gttcccatgt ggcagcagta gtggcagagg cagaagtggc ttatttgtag	300
attgcagtac agatacatgg acacaatcat ggcagccagc tcgaggcccc caattccag	359

<210> 802

<211> 207

<212> DNA

<213> Homo sapien

<400> 802

ccaggctcgg gcaccaccc tc aatcacatcc atgatcaaga tccgccctcg gcacgtgacc	60
tcctccccc gcatgaggca ggtcccgccg gccacgtac ctttggggcc cgacacggc	120
tctcaactgc gcagagacac tgtcttcatg caggtcacat gctccactc ctgcagctcg	180
atcctggcat tggaaatgc ctcccg	207

<210> 803

<211> 311

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(311)

<223> n = A,T,C or G

<400> 803

cctatttcac tgctgtgttag cctcagtgcc taacatgggt gccaaataaa tattcgtaga	60
attacactga attgtaaaaa ccattcgntt ttgnntacaa ttgccaaaaa tctcaaaagg	120
ccctgtatcc atgttaattct ttgaaattat tattttttt tgatttctca gttattgact	180
ggctggggngt gacttagtac ataagtactc aatattatna aaacctcaaa taattgactt	240
gattttacac aacatccctc cctttctac aagnataattt ttacaaat catttgggtt	300
atctcctaaa t	311

<210> 804
<211> 202
<212> DNA
<213> Homo sapien

<400> 804
ctgttcggat ttaacttcat cttctggctt gccgggattt ctgtccttgc cattggacta 60
tggctccat tcgactctca gaccaagagc atcttcgagc aagaaactaa taataataat 120
tccagcttct acacaggagt ctatattctg atcggagccg ggcgcctcat gatgctggtg 180
ggcttcctgg gctgctgcgg gg 202

<210> 805
<211> 238
<212> DNA
<213> Homo sapien

<400> 805
ccaaccagtc tggctggagt gatgcattcc tggcccagca cacgatgctt accctggatc 60
ccaacgtcac cgggtcttc ctgggaccctt accccttgg catgatcctt atttggagcc 120
tggctgccaa ccacttggc ttctcaact cttcaagat gaagatgtcc gtcatcctgg 180
ggctcggtca catggccttt ggggtggtcc tcggagtctt caaccacgtg cactttgg 238

<210> 806
<211> 325
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(325)
<223> n = A,T,C or G

<400> 806
cctgagggtc gcggaaagggtg ggaggaggca gacgcctgc gtggccatg gtcggggcgt 60
ccacgcggag gccggcaaca aacgacagta ttcggattc cttttttttt taattttttta 120
tactttggmg tttcaactcg ngctctgaat actgataaac catgaatgac tgaatagttt 180
agtccagatt ttacagagg atacatctat ttttatcatt atttgggtt tgaaaaatttt 240
ttttttacac cttctaattt ctttatttctt caaagcagat aattttctg ngtgaaaatg 300
ttttctttttt ttaatttaag gttta 325

<210> 807
<211> 289
<212> DNA
<213> Homo sapien

<400> 807
cctaaaggga actgtcttct gtcgagaagt aaaggaaact tcatgaagga tgtagaagct 60
tagctgcctc agagaagaga gaaacctgaag atctgaggca agctggacag gagaggtaga 120
tattttgttga tggagaattt caagttata atcaattcccc acttagcacc tactgtgtgc 180
taggaacttgc aatgtgtatg tttgacaagt cctgcttggc ctgtatgggtg ggagaaggaa 240
cctgagcctg gctgagatgg ctaggcggag ggcttgaag tccaagcag 289

<210> 808
<211> 376
<212> DNA
<213> Homo sapien

<400> 808

aaacttaatt aaagagcttg acaagctctg catattcatg tgtcataagc agtatgtgac	60
aaaaaaaaact gtgcagtatg taccccccta cggaaatttag tttggcaggg aaaacaagat	120
gcacatgtta ttataaatta gaaaatggaa gagaagtaga aataaaatccca tgagtattat	180
atataagtaa cagaacaaaa acaaacaggat aatgtatccc ccccaaaggc ccagtagaga	240
ccatcaaagc tcattctggg ggtagtcaag gagggagtg aggagaaaa agaacgcaga	300
ccttcaacca ctaatgaaag aactgaaaca tctgtatgt aaaaaaaggt aaaatcaact	360
cactatcatc ttcatc	376

<210> 809

<211> 243

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> {1}...{(243)}

<223> n = A,T,C or G

<400> 809

ccatctcatt ttcaaagtnc agagctacat aacacagttt ctccttgatg tcccgacaa	60
tctcacgctc agcagtagta acgaaggaat agccacgctc agtcaggatc ttcatgaggt	120
agtcagttag atctcgcca gccagatcca gacgcatgtat gncatggggc aagnnatagc	180
cncatagat ggngacantg tgggtgacac catctccaga gtccagcacg atgccagttg	240
tgc	243

<210> 810

<211> 274

<212> DNA

<213> Homo sapien

<400> 810

aaaaaacacg tttgttatta ccaaaaagag acgtctttag gtaaaaataa taaaaacccc	60
atgctgcatt gataatgcag atagttctat ttatctgttc aacgggcaaa aagcaagcac	120
tttaggtctt cagctcaat cttttgttca tttcttattt ctggatattc atatitcttc	180
ttgttggatg actaaacccg atgatggtag agatggtaag ccggcattta ctcagcccc	240
ccctgctcag ctcgggagc ggacgaattc tcag	274

<210> 811

<211> 205

<212> DNA

<213> Homo sapien

<400> 811

ctgggtggaga tcatcaaggt gctggaaaca ccaacccggg aacaaatccg agagatgaac	60
cccaactaca cggagttcaa gttccctcag attaaagetc acccctggac aaaggtgttc	120
aaatctegaa cgccgcaga ggcacatcgcg ctctgtctta gcctgcttga gtacacccca	180
tcctcaaggc tctcccaact agagg	205

<210> 812

<211> 199

<212> DNA

<213> Homo sapien

<400> 812

aaatatttgtt gctgtttgtt agatgtatgg aagaaatgtt aaagtgtttt ctaaaaggaa	60
atttttcac ctttggagga gaatatatta gagttgtggg taattttca cagccaccta	120
tgtacatact aattaccat tggatactta tatctaaaag tctcatgctg aagtatagtt	180

tttggaaag aatgattt	199
<210> 813	
<211> 334	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(334)	
<223> n = A,T,C or G	
 <400> 813	
cctcaccgcc gatgcaagga tagtcatcaa cagggccgn gtggagtgcc agagccacg	60
gttgactgtg gaggaccgg tcactgtgga gtacatcacc cgctacatcg ccagtctgaa	120
gcagcggtat acgcagagca atggcgca gccgttgc atctctgccc tcatcggtgg	180
tttcgacttt gatggcactc cttagctcta tcagactgac ccctcggca cataccatgc	240
cttggaggcc aatgccatag gccccgtgc caagtcaatgc tggagaagaa	300
ctatactgac gaagccattt ctctgcgacc tgcc	334
 <210> 814	
<211> 358	
<212> DNA	
<213> Homo sapien	
 <400> 814	
ctgaagcttg gaacttctgg acaagaaaag gcctggttc tggggcctc tatgaatccc	60
atgtagggtg cagaccgtac tccatccctc cctgtgagca ccacgtcaac ggctcccgcc	120
cccccgtcac gggggaggaa gataccccc agtgtgacaa gatctgtgag cctggctaca	180
gcccggaccta caaacaggac aaggactacg gatacaattc ctacagcgtc tccaatagcg	240
agaaggacat catggccgag atctacaaaa acggcccggt ggagggagct ttctctgtgt	300
attcggactt cctgctctac aagtcaaggag tgtaccaaca cgtcaccggaa gagatgtat	358
 <210> 815	
<211> 203	
<212> DNA	
<213> Homo sapien	
 <400> 815	
cttggaaagccg gactcagccca ggggtcgctta ctaccagacg ctgcaggctc atctcaaggt	60
ggacgtgtac agacgctccc acaagcctct gccccaggaa accatgtgg agacgctgtc	120
cccggtacaaag ttctacctgg ccttcgagaa ctccctgcac cccgactaca tcaccggaa	180
gttgtggagg aacggccctgg agg	203
 <210> 816	
<211> 92	
<212> DNA	
<213> Homo sapien	
 <400> 816	
cggccgcaga agcgagatga cgaagggAAC gtcatcgTTT ggaaAGCGTC gcaataAGAC	60
gcacacgttg tgccgcgtt gtggctctaa gg	92
 <210> 817	
<211> 367	
<212> DNA	
<213> Homo sapien	

<400> 817

ttggaggact atttgaattt tgcaaactat ctcttggtggg tttttacacc actaataactt	60
ttaatacttc cttactttac tttttttttt ctctacccca ctattatttt cttacacatt	120
tataagagaa agaatgtatt gaaaagaagcc tactctcata atttatggga tggtgcaagg	180
aaaacagtgg caactctgtg ggatggacat gcagccgtt ggcattgtt aactgttcat	240
ggaatggaaa aaataccaga agatggacca gcacttataa ttttttatca tggagctatt	300
ccttagatt ttacttattt catggctaaa atatttatac acaaaggcag aacttgccga	360
gtatgt	367

<210> 818

<211> 381

<212> DNA

<213> Homo sapien

<400> 818

aaataaaaagt attacgtaac ttgtttttt gtataaaatt aaaagatgt aaaaacaact	60
attctaacag aattcaaaac ctgtttatgct tcagtggaga gattattcaa gataagtccg	120
tggaaatttggg gtagtacatt tctactggca aagttatgtt taactatgca cttctgacaa	180
aatgtgaaat ggggggtatg ggcgtgtcat atcatcatgg tgcagatacg tggatgttg	240
cttccaaaca atggcaacct aactgactgc tggaccata caaaataacct gaaactactc	300
agaaaagaagg tggaaaatttgc atgcaaaaat tatttggaaa atattgagct aacacaacat	360
gaatttggaa ttataagtga g	381

<210> 819

<211> 109

<212> DNA

<213> Homo sapien

<400> 819

ccatggccgc ttccagacca tggaggagaa gaaagcattt atgggaccac tgaagaaaaga	60
ccgaatttgc aaggaagaag gagcttaatg ccaggaacag attttgcag	109

<210> 820

<211> 309

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(309)

<223> n = A,T,C or G

<400> 820

ctggaaaaac ctttcagcga accatttcag ctcaggacac gtttgcgtat gccacagctt	60
tgttgaatga aaaagagcaa tcagggaaagca gtaatgggtc ggagagtagt cctgccaatg	120
agaacggaga cagncatcta cagcagggtt cagaatctcc catnatgatt ggtgatgttga	180
gaagngacct tggatgtt gatccctaga ggaacatgcc cagcctgaga ggagncaaga	240
cacaatactg gatgttcagc accttcttttgaatcagaat ctcgaaccct ntggaaagac	300
ctgnagatt	309

<210> 821

<211> 236

<212> DNA

<213> Homo sapien

<400> 821

catccgcttc ctgttttttttccatcata gaaattcaaa acaaaggttt aagaatgcag	60
gaaagagatc gaagagagag aaaagaaagc aggttcaggc aaaaatgtatc atgcccggaaa	120

agtggcggaa aagctagaag ctcttcgtt gaaggaggag accaaggagg atgctgagga	180
gaagcaataa atcgttttat tttatTTTCT ttccctctt ttcctttctt tttttt	236

<210> 822

<211> 388

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(388)

<223> n = A,T,C or G

<400> 822

gcgaggcaag atggaggtag tgcaGGTcct gaaacgcggg ctgcagcaga tcaccggcca	60
cggcggtctc cgaggctatc tacgggtttt ttTCAGGACA aatgatgcga aggttgntac	120
attagtgggg gaagacaat atggaaacaa atactatgaa gacaacaagc aattttttgg	180
ccgtcaccga tgggttgtat atactactga aatgaatggc aaaaacacat tctggatgt	240
ggatggaagc atgggcctc ctgaatggca tcgttggctt cacagtatga ctgatgatcc	300
tccaacaaca aaaccactta ctgctcgtaa attcatttgg acgaaccata aattcaacgn	360
gactggcacc ccagaacaat atgtacct	388

<210> 823

<211> 353

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(353)

<223> n = A,T,C or G

<400> 823

aaaaagtttgg atcttttct cagcaggat cagttgtaaa taatgaatta ggggcaaaa	60
tgaaaaacga aaaatgaagc agtacatgt agtttagtaat ttcttagttt aactgttaatt	120
gaatattgtg gcttcatatg tattttta tattgtactt ttttcattat tgatggnttg	180
gactttataa agagaattc catagtttt aatatcccag aagttagaca atttgaacag	240
tgtattctag aaaacaatac actaactgaa cagaagtcaa tgcttatata tattatnata	300
gccttaaacc ttttcctct aatgcottaa ctgtcaaata attataacct ttt	353

<210> 824

<211> 264

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(264)

<223> n = A,T,C or G

<400> 824

ctgggtgcag gcgggctgag tccaaaaga gagtcagcaa agggagatgg ggtggggccg	60
ttttatagga tttaggaaagg taatggaaa ttacagtcaa aggggtttt ttctctggtg	120
ggcagggtgtg gatctcacaa agtacactct caagggtggg gagaattaca aaggaccttc	180
ttaagngtgg gggagattac aaagtacatt tatcagttag ggngngcag gaacaaatca	240
caatgttgnatgtcatcg ttaa	264

<210> 825

<211> 361
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(361)
<223> n = A,T,C or G

<400> 825
aaaatccagt ttgttgttaa caaaacctac tgctgggtgg ttttgaatat attactttta 60
ggcatgatct ccccaatgtg ttttactcc ttttccggct tctaggacag aggttatgttag 120
tcaaagaatc ctatggtgga tctgaattgg gtttcagcta ctgtacctgg tccttgtgaa 180
ttaaaaaaaaat aaagtccacaa aaaccattn acaaaaacaaa ttaaaaataaa tagacaaaaat 240
gaagctgtct ccagaccttc tgcatggaca cacaggttg aagtcaacca aagcactcat 300
gctaattctgg atggaaacac tagggagaca gaaaccccgat tatgaaacca tgtacttgag 360
c 361

<210> 826
<211> 195
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(195)
<223> n = A,T,C or G

<400> 826
ccccagaagn gacgcagccc tctatnggcc cnaatcttct tcantcgctc caggtcttca 60
cgagcttgt tgcaggcacc attggctagg acctggctgt atttccatc cttagatcc 120
ttctgtctgt tcaagaacca gtctggatc ttgtactggc gnggattctg cataatggng 180
atcacacgtt ccacc 195

<210> 827
<211> 227
<212> DNA
<213> Homo sapien

<400> 827
caacggctct tcacagacca cctccttttc taaggaaaaat ggctggatag acgtgatgag 60
tgatacatat ttgtatttag gttttgtctc taaagtagca cttcttacca cagagatcaa 120
ggacttgggt aatattatgc tttttccatt caatggatta atttcttaa tataaaaaaca 180
gatgaatacc aggctaagca ctagaaagag tagtaaagca gcaacaa 227

<210> 828
<211> 242
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(242)
<223> n = A,T,C or G

<400> 828
atgtccgggg agtcagccag gagcttgggg aagggaaagcg cgccccccggg gccggtcccg 60
gaggntcgat ccgcattctac agcatgaggt tctgccccgtt tgctgagagg acgcgtctag 120

tcctgaaggc caaggaaatc aggcatgaag tcatcaatat caacctgaaa aataagcctg	180
agtggttctt taagaaaaat cccttggtc tggngccagt tntggaaaac agtcagggtc	240
ag	242

<210> 829

<211> 374

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (374)

<223> n = A,T,C or G

<400> 829

gagggtcctga aaaggaatac acttccatat catgccatct cttacactgg cattccttgc	60
ctatgcgtgt gcatggcttg ccctggttta gcttggaaac tgattgaaag tcagagagat	120
cactggcttt gagacttgtt tgccccactt ggtagcgtc agaggagtct tccttcttac	180
tctctgatgg gaggccttggaa acagaagttc tcaaaggctc aacgactgcc cctgcgttat	240
tagcatcgag agaagtagag ctttcttgc cactgaactc ttttagggat gaaattccca	300
gcccactgtt gccatcagggt gaggcgtct ggcttttngn cttgagttga ctgctggaaag	360
aagacgctat tgta	374

<210> 830

<211> 325

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (325)

<223> n = A,T,C or G

<400> 830

gttcaaagca gaaaatccgt agctctagt gtttgggttg aagtacaatg caagttcttt	60
tgcctaaggctt acgcttattt tgacagatgt gaatgaagca cctcaattct cccaaacacgt	120
atcccaagcg aaagtcaagtggc aggtatgtc tataggcact aaagtggca atgtgactgc	180
caaggatccca gaaggctctgg acataaggta ttcaactgagg ggagacacaa gaggttggmt	240
taaaatttgc cacgtgactg gtgagatctt tagtgtggct ccattggaca gagaagccgg	300
aagtccatata cgngtacaag tggtg	325

<210> 831

<211> 85

<212> DNA

<213> Homo sapien

<400> 831

tgttaccgggg ccccccctt gagcgatggc gcgtgggtgg ggagggtcca cagtgtccac	60
tcgcgtgtc cgaagggttga ctccgg	85

<210> 832

<211> 202

<212> DNA

<213> Homo sapien

<400> 832

aggcggagag gatcatgtcc gggactgcg ggtagtagc gatctgggtt acccagccgt	60
tgtggccctt gagggtgcca cgaagggtca tctgctcagt catggccgcg gcgagagcgt	120

gtgtcgctgc	agcgacgagg	atggcactgg	atggcttaga	gaaactagca	ccacaacctc	180
tcctgccgtc	gacgcggccc	cg				202
<210> 833						
<211> 503						
<212> DNA						
<213> Homo sapien						
<220>						
<221> misc_feature						
<222> (1)...(503)						
<223> n = A,T,C or G						
<400> 833						
ccggctggtc	ctgcatcgcc	atctgctggc	cgcgcggcac	ggccggttcc	tggagccagc	60
aggagtccgga	ggctgcaggc	cttgaaggcc	tcttcaccgt	gcctccagg	gagccttagct	120
gccgaagtat	tcctgttggaa	acttctggaa	gttttccctcg	gtgaacacgg	tgccctcagc	180
cttcttccttc	ttggctttgg	ccacaggccg	gtcacagggc	ttggggcccc	gtttctggcg	240
caaataatctgc	tggctcacag	actcagccac	gttgcttctc	gtccctggta	aaaacttcag	300
gtttactctg	aggtgttctc	gacactctcg	cttccggtagc	tcgtccagtg	ccgacttggg	360
cacccccc	ttggccgagt	tccgcagttt	ctgggcctga	attgccttcg	tctccgggg	420
ccgtttcacc	gganccctc	tcggcttggc	ctgacctgga	gggtccccggg	ggccctngga	480
cccccggcage	agctnacagge	ccc				503
<210> 834						
<211> 208						
<212> DNA						
<213> Homo sapien						
<400> 834						
atccagagac	aatctgccgg	ttgtcagagg	agaaggccac	actcagcaca	tccttggtat	60
ggcccaaaaa	tcgcctctgt	gtgtgccccg	ttgtgagatc	ccagaggcgc	agggttccat	120
ccaggagcc	tgagagggca	aactggccat	ctgaggagat	aaccacatca	ctaacaaagt	180
gggagtgacc	ccgcagagca	cgctgtgg				208
<210> 835						
<211> 210						
<212> DNA						
<213> Homo sapien						
<220>						
<221> misc_feature						
<222> (1)...(210)						
<223> n = A,T,C or G						
<400> 835						
tgtatgtggc	gattgatgaa	aaggcggttg	aggcgctctgg	ttagttagtgc	atggcttagga	60
atagtccctgt	ggtgattttgg	aggatcangc	aggcgccaag	gagttagccg	aagtttcatc	120
atgcggagat	gttggatggg	gtggggaggt	cgtatgaatga	gtggtaatt	aatttttatta	180
gggggttaat	tttgcggctc	acgcggccgc				210
<210> 836						
<211> 426						
<212> DNA						
<213> Homo sapien						
<400> 836						
cggccggccac	gctggtttttg	catttcagg	agacgctctgt	agccctcgcg	tttctcctcg	60

gccaattcgc ggaagaagtg gctcacgcct tccagagcca catcatcgcg gtcgaaataag	120
aaggcccagag agaggttagt gtaggaggcc tgcaggataca aattgaccag gctgttgacg	180
gctgcctcca cgtcggtgga ataattctga cgaatctggg agctcatggg tggttggcaa	240
gaaggagacta accacaaaaa cggtgctggc aggtcccaga agcaggagat ggccgagaag	300
atggtccccgg aggttcaag cggagaggaa atcggaggcc ggtcgagggc tggaaagagag	360
tccccggatc tgccgttcc aaacactgtt gaagcaagag acagacccgc ggtcgacgcg	420
gcccgcg	426
<210> 837	
<211> 134	
<212> DNA	
<213> Homo sapien	
<400> 837	
ccagggccgt gggccgaccc cggcggggcc gatccgaggg cctcaactaa ccatccaatc	60
ggtagtageg acggggcggtg tgtacaaagg gcagggactt aatcaacgca agcttatgac	120
ccgcacttac tggg	134
<210> 838	
<211> 538	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(538)	
<223> n = A,T,C or G	
<400> 838	
ggcgctctgg tgcttaccac ctggaaactg gtgagggtgt gggagaactc ctgggtggacc	60
ctagtggaaag ctttccagta atttcttgcgaa gctgagcgct caggtgagta gggcgacatc	120
tggtggccgg ttgttgcagg tcattgcaga gaggaaggaa gccgaggagg ggagccctgca	180
gtgaggggcggt cctgggttcc accacccttg ggccacgcgg tctagttccac	240
acctgaggag ttggtcaggta agaaggggcg gatgaccgtg cggaaagccgt tgaagtgc	300
tggcggggca gggaaaggagg aggtgcttcc cgagctgtt gtgtccaggg cactggaaat	360
cgcagcccttc cagccctcga aatcggtgac gtctgccac aagagccctt cgcagagcat	420
cagggttttgc ttgcgttgcg atctgagccg ccagacttgg tgaggcccan	480
gacagggagc tcgtccgagg agcaggagaa gccgtagttc cagcagctct ggatggtg	538
<210> 839	
<211> 351	
<212> DNA	
<213> Homo sapien	
<400> 839	
aaggcggcaa cgggtgtgaa agatatacgca ggcctggct ttgtacagcg gatgctcg	60
aagggggggc gagcggtaga accttgggtc cttgtacccg cgggtccagg gcgaaaagat	120
cgcgcgcgc agccaggcgca cgaagtgcac ttcccccgcgaa aaggtgatgg gtcgcgtcc	180
aggatctcg tacccttat ccagggagg aggctccgac ttccgcgtgg agcgcacgc	240
ccactcatac gccccgcgtc tcggggccccc gaagccccca agggcggact gcccggagcc	300
acttagcgcc cgccttgcgg gcccggacgc caatgccata ccgcgttgc a	351
<210> 840	
<211> 574	
<212> DNA	
<213> Homo sapien	
<400> 840	

tggcctgcaa	ggccgcggac	aggcgagca	ccgagtcgta	cattttcgag	ctcatcatcc	60
ccgtgctctg	cgtacgcag	tccatccaca	gcccttgc	catggcctgg	ggcgtatga	120
tgttgtcacc	cgcataggag	ctcatctgc	actgcggat	ggcgtgcag	gccaccagac	180
ccaccccgcc	cagcaggggcc	atggagaagc	ccagcaactg	caggcccggaa	ttggccattt	240
ccgccttcag	aaaacactgg	gggcgcgggg	cgggagaccc	tacagtaaaa	caaacgacac	300
ttggggggca	gccccacaaa	agaaaaacttg	aggtgtagtt	ttccggtcac	ccaaagagac	360
aaaaagggtt	tgggccaggt	aatgc当地	cttgc当地	aactacacac	aatgc当地	420
ctccagtcaa	gcatggcct	cgccgc当地	ggagtaggat	acgccc当地	gtgggttcca	480
gacaaaattg	gtggccccgg	aaggccaggc	ggttccctcc	ggcgtctcg	gcgaccctag	540
gcaaaacaaa	ggtggagggg	ccgtctgggc	cgct			574

<210> 841
<211> 195
<212> DNA
<213> *Homo sapien*

<400> 841
gaccgcgggg cacaggctcc cagatgatacg cccctctctg aatgagcacc cagggcaacac 60
agtccggggc tgtgtgttagc aaacctgtca gcagctgcct cctgggacaa ccacccccctt 120
acatgtatc tatctaccag acaaattaaaa gcttttctta ccccatctcc caggcaccccc 180
ccaqcaagggtt ctctgtt 195

<210> 842
<211> 207
<212> DNA
<213> *Homo sapien*

```
<220>
<221> misc_feature
<222> (1)...(207)
<223> n = A,T,C or G
```

<400> 842
cgggccgcct tttttttt ttttcgttga aaaccaataa tttatcaaaa cgctgcgtgt 60
gtatgtgggg gggagggtgt cacancncnc agggcagcgg ngggcggacg cacaggcagg 120
aaacggngcc cggaaaagnng gggcggmann ttgcactgg ctggccatgc gggcggcag 180
qctaaacatt nttagccacqca aqgcqca 207

<210> 843
<211> 62
<212> DNA
<213> Homo sapien

<400> 843
cgatggagcg tggtaggga gggccacag tgtccactcg ccgtgtgcga aggttgactc 60
gg 62

<210> 844
<211> 118
<212> DNA
<213> *Homo sapien*

<400> 844
ttgggtacac tccctggtag cggggcccccc cgatccggct gccagccctg aggccaagca 60
ccacctggaga cccacggacgt ggatctggatc tggatctggaa tggaggcttcg gggggagg 118

<210> 845
<211> 89

<212> DNA

<213> Homo sapien

<400> 845

gtacactccc ctggtaccgg gccccccac taccgagtca accttcgcac acggcgagtg	60
gacactgtgg accctcccta cccacgctcc atcgctcag	99

<210> 846

<211> 559

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(559)

<223> n = A,T,C or G

<400> 846

cggccgcctt tttttttttt ttttgttggt ggctganaat gctggagatg ctcagttctc	60
tccctcacaa ggtaggccac aaattcttgg tggtgccctc acatctgggg ttttcaggca	120
ccagccatgc ctggcgagga gtgtgttcag gacagaccat gtccgtcta ggcccaggca	180
cagcccaacc acttctcatc caagtcttc ccaggtttct ggtcccgatg ggcaaggatg	240
accctccag tggctgttac cccaccatcc cactaccct cacatgtctt cactctccat	300
caggtccccca atcctggctt cccttccac gaactctcaa agaaaaggaa ggataaaacc	360
taaataaaacc agacagaagc agctctggaa caaaaagtagc aaaaagacag ccagaggtgt	420
gcccggaggg tgaggtggcc gcgtggacgt gggtagataa tcgcatgcag cactggaaact	480
cctgtatgagg ggtggggtcc ccacttctcc tcaaggtttgg agggatttggg gggaggggggt	540
cagctgactc ananaagta	559

<210> 847

<211> 430

<212> DNA

<213> Homo sapien

<400> 847

cggccgcac gctggttttt cattttcagg agacgctcgat ggcctcgat cttctccatcg	60
gccagttcgc ggaagaatg gctcacgcct tccagagcca catcatcgat gtcgaaatag	120
aagcccagag agaggttagt ttaggaggcc tgcaggataca aatttgcggc gctgttgacg	180
gctgcctcca cgtcggttggataattctga cgaatctggg agctcatggt tggttggcaa	240
gaaggagcta accacaaaaa cggctgtggc aggtcccaga agcaggagat ggccgagaag	300
atggtcccgg aggttgcag cggagaggaa atcggaggcc ggtcgaggcc tggaaagag	360
tccccggatc tggccgttcc aaacactgtt gaagcaagag acagacccgc gggacgtcga	420
cggggccgcgc	430

<210> 848

<211> 546

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(546)

<223> n = A,T,C or G

<400> 848

agatcaaagt gcagcctctc cagacactgg ggccccagtg ggcgtggcg aagttgttgg	60
taggaggagt tggcgaaagc acttggaaact cctttataag tgtcagctgt gagatttaa	120
tttgatttga aatgatgtt gtcgcanaaag acaccaggatc ancagctagc aagtccgcg	180

tcattcagcc cagatattct tgctgacatt tttgaactct ttgccaagaa cttttcttat	240
ggcaagccac ttaataatga gtggcagttt ccagatccca gtgagatccc caccgtgac	300
cacactgaat ttaatgcatt tcttgattt aagaactccc taaatgaagt aaaaaaccta	360
ctgagtgata agaaactgga tgagtggcat gagcacactg ctttcaactaa taaagcgaaa	420
aaaatcattt ctcatgttag aaaatctgt aatgctgaac tttgtactca agcatgggt	480
aagttccatg agattttgt cagcttcca cttattccac aggaagcttt tcagaatggaa	540
aaactg	546

<210> 849
<211> 196
<212> DNA
<213> Homo sapien

<400> 849

gaagtcccttc agcaggccac gctcgacag ggtgcgcctc aaggacttct ttctgatgag	60
ggggaccttgc tacatgtgc actcagagag cgccaccaga cccagcagca gcagccactt	120
catggttctt cccgggtccc aactcgaggg agaaggcgtc gacgccccg cgaattccac	180
cacactggac tagtgg	196

<210> 850
<211> 543
<212> DNA
<213> Homo sapien

<400> 850

cactgatatt ggagaaaaagc acatccggca taaagtgtaa accagtgtct caaacactgg	60
aagaaccggg agagcaaaca tgattttct tatttcctct aagtaatctt tcttttagaa	120
aacaacaagt gatctttggc atagattcat actttaaagg cattaatatt gcattttatat	180
caggcaagca actatacaaa tatgctgagg gccttgaaaa taatcatcct cattttaaag	240
gaaatagtga aagcctgagt gtaaaaggacc aacttaagggt gtacacattc gatgttggga	300
actaacacac agcgatgggt gggaaaggaaag gatgttcaagg caaggttctt actcctttac	360
tcatctgtttt ctggcttgg gaaaaaataa ggtttcatgt gctggaaaat acttagcagt	420
aataagtacc aaaaaggaaa caactgcctc tcattttgcc tagtaggaac ttactgtgg	480
gataagaaat atgaaaaccca ttactctttt gaacccata cttggagta gatgcagaga	540
gct	543

<210> 851
<211> 190
<212> DNA
<213> Homo sapien

<400> 851

aggcgagag gatcatgtcc gggactgct gggtagtagc gatctgggtt acccagccgt	60
tgtggccctt gagggtgccca cgaagggtca tctgctcagt catggccgc gcgagagcgt	120
gtgtcgctgc agcgacgagg atggcactgg atggcttaga gaaactagca ccacaaccc	180
tcctggccccc	190

<210> 852
<211> 407
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(407)
<223> n = A,T,C or G

<400> 852

aggcctcaca	gaggcgaaaa	cagaaggcg	cgacccanag	ccgccacatc	ccccgccttg	60
ggcgccgtca	cagtcccc	acgccttgg	ctcctgcagt	ctacaagac	gcgcggggga	120
cggcgtggtt	ccgagagagg	gcgccaaagg	cgacgtgcg	gccgccagct	ccaggccgag	180
cccccggcgc	ctgcaggaaac	agggcccttc	accggcg	ggacgcagag	ctgcgagaga	240
atcttgttca	gcgcggactc	aacgcaggg	cgccgcctag	aggttgttct	ctgtctcgcc	300
ctcacccggcc	gggagaccac	agagctgctt	ccccagccgc	ccgcccggcag	aaattggaaa	360
aaaaaaaaatc	cagctgggt	ctaggaactc	ggcttctggc	acctctg		407

<210> 853

<211> 626

<212> DNA

<213> Homo sapien

<400> 853

acagtccccag	tactctttgc	tcagctttcg	ggggccggct	cgttccgc	tcccgtgctt	60
gggatcccccc	ttcttgca	cacaaaacc	atcgctgggg	aagagettgc	catcagtggg	120
atccagggtcc	acgtcaacttc	caccggagtc	tgaggagatgg	gagetccgag	aagcaccagt	180
ccctgcggtg	gagacgtcag	agtcgcggg	ggagggggct	cctgcgcac	agctgcccgg	240
gtggtaggggg	ctggcttgc	gaccgtcg	cagcagctcc	tggcaaaagg	ggctgcccctg	300
gtcaaaggcc	cctgggtcta	gggcctctg	gaaggccatg	ccatccttct	ccagcagctc	360
aatgatccaa	ctgagctcat	cagaagagct	ggaagtggagg	tctcgagct	gggcatggag	420
ttgggtcccccc	agaggcccaa	agaccagacg	cagctcctca	agggcacaat	tgcagagggt	480
ggcgccatcc	atgtcacatc	gtgagaagtc	aatggcgctt	gcgtcgact	tgttcttctc	540
cacttggtag	ctgatccagt	ccagaacctg	cgtcttcgac	cagaactggg	gtgttcccc	600
caaccagctg	gccttctctg	taccct				626

<210> 854

<211> 218

<212> DNA

<213> Homo sapien

<400> 854

atgacggctg	cccgaaagccc	cccgagattt	cacatggcta	tgtggagcac	tcgggtcgct	60
accagtgtaa	gaactactac	aaactgcgc	cagaaggaga	tggagtatac	accttaaatg	120
ataagaagca	gtggataaat	aaggctgtt	gagataaact	tcctgaatgt	gaagcagtat	180
gtgggaagcc	caagaatccg	gcaaacccag	tgcagcgg			218

<210> 855

<211> 50

<212> DNA

<213> Homo sapien

<400> 855

gaggaacgaa	gaataaagga	gattgtgaag	aaacattctc	agtttattgg		50
------------	------------	------------	------------	------------	--	----

<210> 856

<211> 116

<212> DNA

<213> Homo sapien

<400> 856

tccactagtgc	cagtgtgg	gaattcg	ccgcgtcgac	ccccgcgag	cacagagcct	60
cgcccttgc	gatccggcc	ccgtccacac	ccgccc	ccag	ctcaccatgg	116

<210> 857

<211> 402

<212> DNA

<213> Homo sapien

<400> 857

ggcgacgacc ccaagagggaa ggtggccac gatttctact tctttttca ccattcgaca	60
gttccactct tacacggcag ccacatagtg ttcttccatc tagtctcg actgcacatcg	120
ctgcacatcg gggatctca aattcaacaa aagcaaagcc ggggggtt ctagcaaccc	180
acacacttcg gagtggcca tagtagccaa aagcccgttc caatccgtc ttgttgcatt	240
tgttccaag attgcctaca taaaccttac agtcaatgg acaggaatca cgatgcattt	300
cgagatctag ggttaaaaaa tgccggcgct caaatccaca cgctccgatg agtctcccg	360
cttcctccg gcccaacacc aaccaacgtc gacgcggccg cg	402

<210> 858

<211> 172

<212> DNA

<213> Homo sapien

<400> 858

acattttatg acctctccca atagggcag aggtgagcac ccctggtaa aagttaagac	60
tcaatgtatgata taaatacgcc aagaagatct gtggcttctt tcactgggtt cctcagaaa	120
gtgtgagca gtgttgttgc catacgttc acagcatcta gcaaaggcacc tg	172

<210> 859

<211> 196

<212> DNA

<213> Homo sapien

<400> 859

aggcggagag gatcatgtcc ggaaactgca gggtagtagc gatctgggtt acccagccgt	60
tgtggccctt gagggtgccca cgaagggtca tctgctcaat catggccggcg gcgagagcg	120
gtgtcgctgc agcgacgagg atggcactgg atggcttgc gaaactagca ccacaaccc	180
tccctggccgc ggtcgaa	196

<210> 860

<211> 538

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(538)

<223> n = A,T,C or G

<400> 860

ggcgctctgg tgcttaccac ctggaaactg gtgagggtgt gggagaactc ctggtgacc	60
ctagtggaaag cttccatgtt atttcttgc gctgagcgct caggtgagta gggcgacatc	120
tggggccgg ttgttgcagg tcattgcaga gaggaaggaa gcccaggagg ggagccgtca	180
gtgaggggcgat cctgggttcc tccgggttc accacccttgc ggcacaccccg tctatgtccac	240
acctgaggag ttggtcaggat agaaggggcgat gatgaccgtcg gggaaaggcgat tgaagtgc	300
tgcggggcag gggaaaggagg aggtgcctt cggactgttgc gtgtccagggg cactggaaat	360
cgcagccccc cagccctcgaa aatcggtgac gtctccacccg aagacccctt cgcagacat	420
cagggttttgc ttgtcgatgg caatgggtcgat atctgaggccg ccagacttgc tgaggccan	480
gacaggggatc tggccaggagg agcaggagaa gcccgtatcc cagcagatctt ggtgggt	538

<210> 861

<211> 204

<212> DNA

<213> Homo sapien

<400> 861

aggcggagag gatcatgtcc ggaaactgcg gggtagtagc gatctgggtt acccagccgt	60
tgtggccctt gaggggtcca cgaagggtca tctgctcagt catggccgc acgagagcgt	120
gtgtcgctgc agcgcacgagg atggcactgg atggcttaga gaaactagca ccacaacctc	180
tcctgccgcg tcgacgcggc cgcg	204

<210> 862

<211> 217

<212> DNA

<213> Homo sapien

<400> 862

aatgtcaggg gtgttggggg ctttggtcgg gtcctgggtc ttctgttaga gacctggagg	60
cgttgggttc ttggggttct ccaggattcc agcctcgtag ctgtatgtca tgagggtctc	120
atccatgtctc cacgggttct tggaggtgac cgggatggga atccctgttt gctttgcgtt	180
ctccatcagg tcattgcggc ctttgaaccg gttgttag	217

<210> 863

<211> 192

<212> DNA

<213> Homo sapien

<400> 863

aggcggagag gatcatgtcc ggaaactgcg gggtagtagc gatctgggtt acccagccgt	60
tgtggccctt gaggggtcca cgaagggtca tctgctcagt catggccgc gcgagagcgt	120
gtgtcgctgc agcgcacgagg atggcactgg atggcttaga gaaactagca ccacaacgtc	180
gacgcggccg cg	192

<210> 864

<211> 147

<212> DNA

<213> Homo sapien

<400> 864

tttccccctt aagaagtata cccgcgtcccg gccactgttag ctatggcag ggagggccaa	60
ggctgcatecc acgttgtccg ggatgccatc gaagccgtca gagatatttc gggggtaatc	120
agggtccagg acaccatctt caaaacgc	147

<210> 865

<211> 446

<212> DNA

<213> Homo sapien

<400> 865

cggccgtctt acttggcttg agctgtgagg ggtgggaggg gaggatagca ccggaagatg	60
ctgtctccggg cccaaacacca gcccgtggccca ggtctccccc tcccaggggc agcgcggcagt	120
ccccaggggc tgccagagcc ctgtgtgcct tgccgcattc ccctgtatgc gctttggca	180
actgaaaaggc agggctctcg ctgagtgcac ctggggcttc ctgagcccat ctggggccgc	240
cccacccctgg cctagggtct gaggcgtact gctgcagaca gcccctccct ctttagtgg	300
gcttggaggg tgggggtctc gggatgcag gcagggccag gggctccaga gccacaggtc	360
agaagcaggg ctgggggagg ggtggagcca ttcaagcctca ggcacccctca cagctaggtg	420
actaggggca gggacagaat ggggtg	446

<210> 866

<211> 87

<212> DNA

<213> Homo sapien

<400> 866

tccctcaact ggaccatggg cctgccacc gacaatggcc acgacagcga ccaggtgtt	60
gagttcaacg gcacccaggc agtgagg	87
<210> 867	
<211> 123	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(123)	
<223> n = A,T,C or G	
<400> 867	
cncctggta cggccccccc cactttaaa tcttttgtt agaaata tagga aagatttagga	60
aatatcatac tgcacctgaa atgctgcagc aggggtttt gtttgcgtt ttttgtcctt	120
cag	123
<210> 868	
<211> 634	
<212> DNA	
<213> Homo sapien	
<400> 868	
caggctgcgg taggtggcaa tctctgtctc cagccgcac ttgtatgtcca tgagccgctg	60
gtactctga ttctgccgt cactatcagc tcgcacatcg cccagctggg cttaataacc	120
gtgtatcagc gcctggatat gcgcgcagctg ggctccaaag cgccgcctccg tttctgcctt	180
tgtgtcttcc aaggcagctt tcgtatgttcg ctgtgactgc agctcaatctt caagaccctgt	240
aagggtgcgc cgcaggctcgt taacctcgga cctgtatcatc tggagctgtt cctgtgtggcc	300
acgcacccctcc cgggtcaattt cttcgtatccg gctggtaaac caggcttcag catccttcgt	360
gttctgtctcg gccatgtatcatattggct tcgtatgttca ctcaggatct tggcgagatc	420
gggtggccggaa gggaaatcca cctccacactt gacctggctt cccacttggc ccctcagcgt	480
actgtatcc tcttcatgtt tcttcttcgtt gtggccgtt ctttccttca ggccttcgtat	540
ctgcatctcc aggtcggtcc tggccagggtt cagctatcc agcaccctgc gcaggccgtt	600
gtatgtggcc tccacgttca tgccgcagatc ctgt	634
<210> 869	
<211> 197	
<212> DNA	
<213> Homo sapien	
<400> 869	
aggcggagag gatcatgtcc gggaaactgcg gggtagtagc gatctgggtt acccagccgt	60
tgtggccctt gaggggtcca cgaagggtca tctgtctagt catggccgcg gcgagagcgt	120
gtgtcgctgc agcgacgagg atggcactgg atggctttaga gaaacttagca ccacaacctc	180
tcttgcgcgc gtcgacgt	197
<210> 870	
<211> 579	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(579)	
<223> n = A,T,C or G	
<400> 870	

cggccgccc	tttttttt	ttttttttt	tttttatgg	ccaattta	aatagttt	60
ttaagacat	tgcatttcc	acttacaata	cagtgttat	aaagtgc	aat	120
tcccctgtgc	atatgttcca	tattcaagta	ttganaatgc	ccagtaactt	actatagcag	180
ctaactttt	aaaactgcc	acagaattt	ctacnaattt	aggnccttca	aatgtttttaa	240
atgtngggaa	caatgtaca	tntacactt	gntggettaa	tcaaccttntt	caatgggggg	300
ccctgaggaa	gcnccnccag	aggaggagc	tccaccacca	gaaatcccc	caggcattcc	360
tcctggcatg	cctcctgcac	tntggtacag	cttggtgatg	atgggttgc	aaactttctc	420
cagctntttc	tgntgatgtt	caaattcttc	cttctcagca	gtctgattnt	tatcaagcca	480
gnngataatt	tcattacact	tgtccanaat	cttctgtntg	ncctcatcgn	taatcttgc	540
ttgaagttt	tcatctcaa	cagn	tgcttt	catgtt	gaa	579

<210> 871

<211> 518

<212> DNA

<213> Homo sapien

<400> 871

cttctcctt	cttata	tgacg	ttccggacgg	gcatgac	ccgg	tccgg	tgc	tggtggcca	60
gtt	tcgtt	tc	tc	tc	gg	tc	gg	gg	120
gtt	ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	180
ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	240
ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	300
ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	360
ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	420
ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	480
ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	518

<210> 872

<211> 404

<212> DNA

<213> Homo sapien

<400> 872

ctaaacactg	tccagcgcag	gggggtgcta	gggaggt	gtgaca	acac	gatgg	ctgc	60
atgcctgaag	tgt	gac	cc	atggc	ggaa	gtg	ac	120
atgcctgaag	tgt	gac	cc	atggc	ggaa	gtg	ac	180
atgcctgaag	tgt	gac	cc	atggc	ggaa	gtg	ac	240
atgcctgaag	tgt	gac	cc	atggc	ggaa	gtg	ac	300
atgcctgaag	tgt	gac	cc	atggc	ggaa	gtg	ac	360
atgcctgaag	tgt	gac	cc	atggc	ggaa	gtg	ac	420
atgcctgaag	tgt	gac	cc	atggc	ggaa	gtg	ac	480
atgcctgaag	tgt	gac	cc	atggc	ggaa	gtg	ac	518

<210> 873

<211> 175

<212> DNA

<213> Homo sapien

<400> 873

ggctgcc	gc	ctt	ta	cc	cgt	gtgc	ag	ca	ccgc	ccgc	60
ggctgcc	gc	ctt	ta	cc	cgt	gtgc	ag	ca	ccgc	ccgc	120
ggctgcc	gc	ctt	ta	cc	cgt	gtgc	ag	ca	ccgc	ccgc	175

<210> 874

<211> 215

<212> DNA

<213> Homo sapien

<400> 874

ggtagagaac	cct	gc	gg	ct	cg	gt	cc	cc	gg	cc	60
------------	-----	----	----	----	----	----	----	----	----	----	----

ggcccgctgc	gggctccggg	agagggtcga	aggtaagat	ctcaggaccg	gagccccgcc	120
ggggtcccg	gatggttggag	ggggccgggg	tcggggcctg	caggatggtc	atggtcgggt	180
gcagctgcg	agagtacac	atggtgagcc	gagcg			215

<210> 875

<211> 208

<212> DNA

<213> Homo sapien

<400> 875

atccagagac	aatctccgg	ttgtcagagg	agaaggcac	actcagcaca	tccttggtat	60
ggcccaaaa	tcgcctcg	gtggtcccc	ttgtgagatc	ccagaggcgc	agggttccat	120
cccaggagcc	ttagaggggca	aactggccat	ctgaggagat	aaccacatca	ctaacaagg	180
gggagtgacc	ccgcagagca	cgctgtgg				208

<210> 876

<211> 484

<212> DNA

<213> Homo sapien

<400> 876

gagcagctgg	tttctcctgg	acagcagcat	ctggctccgc	tcccttcgga	actccaggt	60
ctccttattt	ttttttagct	tgttcatgca	gtccatgagg	gctgggttagc	cacctgagaa	120
tcgcccacagg	tgcactgcct	ggtcctgctc	cccataccac	gtgttccagt	tgeccacacgag	180
tgagcatggg	tagtcctcat	ccaggtgaag	cttgggcagc	acagcctccg	tgaggctgtt	240
gtaggcatcc	agtttacatt	gtgaaactgg	atcttataga	gttgtctgtt		300
ttccttcttig	gacagcaggg	tggagtgggc	atccttcgg	ggatccactt	tgtgaacaaa	360
gaggggcgg	aaccagctgc	cttcattgtc	cttggaaatag	aaacgcgcgg	cagctgcaga	420
cgcaacgtcc	ccagcgcgag	ccccggggcc	ccccagcagc	cgccgcgcgg	tcacagagat	480
gctg						484

<210> 877

<211> 558

<212> DNA

<213> Homo sapien

<400> 877

ggcgtcctgg	tgcttaccac	ctggaaactg	gtgaggtgg	gggagaactc	ctggtgacc	60
ctagtggaa	ccttccagta	atttcttcaa	gctgagcgct	caggtgagta	gggcgcacatc	120
tgtggccgg	ttgttgaagg	tcattgcaga	gaggaaggaa	gccgaggagg	ggagcctgca	180
gtgagggcgt	cctgggttc	tccggttctc	accaccctt	ggccacgcgg	tctagtcac	240
acctgaggag	ttggtcaggt	agaagggcgc	gatgaccgt	cggaagccgt	tgaagtgc	300
tgccgggcag	gggaaggagg	aggtgcttt	cgagcttt	gtgtccaggg	cactggat	360
cgcagccctc	cagccctcga	aatcggtgac	gtctgccacg	aagagccctt	cgcagagcat	420
cagggttttgc	tttgcgttgc	atctgaccgc	ccagacttgg	tgaggcccg		480
gacagggcgc	tgcgtccgagg	agcaggagaa	gccgtat	cagcagctt	ggatgggtgg	540
gaggtagacc	aggacca					558

<210> 878

<211> 503

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(503)

<223> n = A,T,C or G

<400> 878

cggccgcAAC	cgcgcGAACC	cgaagtCGAT	gattttCACC	ggggccccGG	gcgtgtCGTC	60
ggcgtacagg	atgttctCCG	gcttgaggTC	gcggtgCACC	acgcccGCCT	cctcgTCat	120
gaagctcacG	gnCGACACGA	ggctgcgcAG	gatctggCTT	gcttccgACT	cgctgaAGTG	180
ccgcntctTG	cggatgtGCT	ccagcagCTC	cccgccccGC	acgacGCTCA	ggaccAGGTA	240
cgtgtgcAGC	tggtcgtGAT	gcacctCGTg	cagattCACC	acgttgggGT	gtactGGCA	300
caggcgcAGG	gcagccACTT	cgcgcgtGCT	gttcgcCTCC	agcctgcGAC	tgaggatCTT	360
gactgcgaAC	tcctggCCGc	tctggcgCTG	gcggcAGCGG	cgacacACAG	aaaagctGCC	420
ctggcccaGC	gcaggctccc	gcaggTCCAG	ctcgtaCTGC	tggaagaAGG	gcgagtCCtG	480
catcatagCG	ctccTggCCA	ccg				503

<210> 879

<211> 78

<212> DNA

<213> Homo sapien

<400> 879

ctgcctcgGC	tggcgggcGG	ggggaggcGG	agagctcGGG	gcacgcGCTG	ccgtccggAC	60
cgcgTCgAcG	cggccGCG					78

<210> 880

<211> 211

<212> DNA

<213> Homo sapien

<400> 880

tgtatgtggc	gattgtgaa	aaggcggTTG	aggcgtCTGG	tgagtagtGC	atggctAGGA	60
atagtccTGT	ggtgatttgg	aggatcAGGC	aggcGCCAAG	gagttagcGG	aagtttCATC	120
atgcggagat	gttggatggg	gtggggaggt	cgatgaatGA	gtggtaatt	aattttatta	180
gggggttaat	tttgcgtG	acggggccGc	g			211

<210> 881

<211> 373

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(373)

<223> n = A,T,C or G

<400> 881

cccacagtgg	tttgttCCG	cagtgcgcGG	ccgtcannAC	ccaactCTGG	tccaccAGGA	60
cacccgcgcA	gtggAACGAG	aggccgtNGA	agagcGAGAC	ctgcccAGGGC	tgcgAGCCG	120
gcccgcacGG	ggcGCCATAG	gcttcgggGT	ccaaGcGCGT	gtcgTTTGG	gggAGcAGCG	180
ccgcctCTGc	ggcccAGAGT	tgcGCCATCA	gcagcGGCAG	cagCTTCGCC	agAGCCCAGG	240
cggcAGAGGc	ggcGGAGAGG	tggaggtGCG	gagctCTCAT	ggccAGGATC	tgggAGtGCG	300
cgtatAGGAAG	gaggGAGGGG	accCAGACGT	gcctNTGCC	tgcctgtGgt	ctgcccGCGTC	360
cgacacGggcC	gcG					373

<210> 882

<211> 300

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(300)

<223> n = A,T,C or G

<400> 882

cgccgcgtt tttttttttt tttcagaca attcagcctt tattttanaa aataattctg	60
tagcttccac tttctttcat gaaactgagg tcaggcaaga aacaaaaatc caccaagtcc	120
tctccatcct gccatggcgt cctggcctgt gaggacatgg ggcgcctggg agcgggcggg	180
gaggctgggc agcactgggc cagaggcgtc ctggtcactg ctccacctgg tcactgtcc	240
acctcatgct gagaggagcc tgtgtgtcaa accccagggg aaaaaggac aggcagatcg	300

<210> 883

<211> 230
<212> DNA
<213> Homo sapien

<400> 883

ggtagagaac cctgcggctg cgctttcggt gcccgcgaga ggcgcgtggg cgccccggcag	60
gggccgctgc gggctccggg agagggtcga aggtgaagat ctcaggaccg gagccccggc	120
ggggtcccggt gatggtgag gggccgggg tcggggcctg caggatggtc atggtcgggt	180
ggcagctgcg agagtgcac acatggtagcc gagcggtcga cgcggccgcg	230

<210> 884

<211> 601
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(601)
<223> n = A,T,C or G

<400> 884

gcccccaatt ccagctgcca caccacccac ggtgactgca ttagttcgga tgcatacaa	60
aagctgattt aagcaacctt ctacttttg gtcgtgagcc ttttgcgtgg tgccaggttc	120
atggctgtg ttgggtgacgt tgcattgca acagaatggg gaaaggcac tggctctttt	180
gaagtaggggt gatgcctcaa aatccgtata gttggtaag ccacagcaact tgccctttt	240
catgggtgtg ttccacactt gatgtgatc ttccctggaa ccataatctt tcttgatggc	300
aggcactacc agcaacgtca ggaagtgctc agccattgtg gtgtacacca aggccaccac	360
agcagctgca acctcagcaa tgaagatgag gaggaggatg aagaagaacg tcacgagggc	420
acacttgctc tcagtcttag caccatagca gcccaggaaa ccaagagcaa agaccacaa	480
gcccggctgcg atgaggaagt agcccacgtt gacaaactgc atggacttgg acgacagtgg	540
cccgaaagatc ttcanaaagg atgccccatc gattgacacc cagatgcacca ctgccaacag	600
g	601

<210> 885

<211> 207
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(207)
<223> n = A,T,C or G

<400> 885

caggcggaga ggatcatgtc cgggaactgc ggggttagtag cgatctgggt taccgcgcg	60
ttgtggccct tgagggtgcc annaagggtc atctgctcag ncacggcggc ggcgagagcg	120
tgtgtcnntg cagcgcacgag gatggactg gatggcttag agaaaacttagc accacaacct	180
ctcctggcgc cggtcgacgc gggcg	207

<210> 886
<211> 442
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(442)
<223> n = A,T,C or G

<400> 886

cancttatan aaangnaaa ggaaacccca acatgcntgc nctgccttgg tgaccaggga	60
agtcaaaaaa cggctatggg gaaattancc cgaggcttag ctttcattat cactgtctcc	120
cnnngtgtgc ttgtcaaaaga gatattccgc cnagccanat tcggcgctc ccatcttgcg	180
caagttggtc acgtggcac ccaattcttt gatggcttc acctgctcat tcaggtaatg	240
tgtctcaatg aagtacacaca aatgggggtc atttttgtca gnngccagtt tgtgcagttc	300
cagtagtgac tgattcacat tttttccaa atgtaatgca cactccattg cattcagccc	360
gctctcccaag tcatacacagt ctggtttttntt gatatcctga aggaagattc ggccacctcg	420
tnggttctgc agttcatca gt	442

<210> 887

<211> 222
<212> DNA
<213> Homo sapien

<400> 887

gctcaggctc caaagccagc agggaaagagg tagctcgga cgtggagccg ccgcccaggt	60
gcccaggac cacctcgcc gtcaccttag ccaggtggct gcttaggtcc actgtgcgt	120
tcaacgtcctc attgatcagc ggccgtgcct cggaggaggc gctgcccgcc gccggggccc	180
aagtcccaag caacaggagc agaaacaagc cggcggctgg cg	222

<210> 888

<211> 89
<212> DNA
<213> Homo sapien

<400> 888

ggtggcgtag cccccgctta taaaagccgca acaccttttgc ctgatgggtc aggttagggtc	60
ccgacgccaa gaacgcccatt acggcccg	89

<210> 889

<211> 451
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(451)
<223> n = A,T,C or G

<400> 889

gcggncgtg gacttggctt gagctgtgag gggtgggagg ggaggatagc accggaagat	60
gctgctccgg gcccaacacc agccctggcc aggctctccc ctcccaaggc cagcgcccg	120
tccccagggg ctgcccagac cctgtgtgcc ttggccatt cccctgatgc agcttttgc	180
aactgaaagg caggctctc gctgagtgca cctggggctt cctgagccca tctgcggcgg	240
ccccaccctg gccttaggtgc tgagtgcagc tgctgcagac agccctccc tccttagtgg	300
agcctggagg gtgggggtctt cggggatgca ggcaggggca gggctccag agccacaggt	360

cagaaggcagg gctggggag gggtggagcc attcagcctc aggcaccctc acagcttaggt	420
gactagggc agggacagaa tgggtgaat t	451

<210> 890

<211> 66

<212> DNA

<213> Homo sapien

<400> 890

tccactagtc cagtgttgtg gaattcgccg ccgcgtcgac ctgctgcctc acccacagct	60
tttgat	66

<210> 891

<211> 599

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(599)

<223> n = A,T,C or G

<400> 891

ggcggtcctg gtgcttacca cctggaaact ggtgagggtgg tgggagaact cctgggtggac	60
ccttagtggaa gccttcagt aatttcttga agctgagcgc tcaggtgagt agggcgacat	120
ctgggtggccg gttgttgtaag gtcattgcag agaggaagga agccgaggag gggagcctgc	180
atgtgaggcgcc ttctgggggtt ctcgggttct caccacccctt gggccacgcg gtctagtcca	240
cacctgagga gttggtcagg tagaaggggc ggtgaccgt gccgaagccg ttgaagtgcc	300
ctggccggca ggggaaggag gaggtgtct tcgagctgtt ggtgtccagg gcaactggaa	360
tgcagccctt ccagccctcg aaatcggtga cgtctgcac gaagagccct tcgcagagca	420
tcagggtttt gtttctgtg gcaatgggtgc gatctgagcc gccagacttg gtgaggccca	480
ggacaggggag ctgcgtccgag gaggcaggaga agccgtagtt ccagcagctc tggatggtgg	540
ggaggtagac cagggaccacg gacaccctct tgcctgaa gangaagctg ggggtgtgt	599

<210> 892

<211> 113

<212> DNA

<213> Homo sapien

<400> 892

gtctcaaaca ggaccgcatt tccggcattt cggctgggtt ccgtgttagt ggccacctgg	60
gccagcaagt cattcatggt ctcaactgctc tccctgtgtt tccggcccag gat	113

<210> 893

<211> 208

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(208)

<223> n = A,T,C or G

<400> 893

gaggcggaga ggatcatgtc cgggaactgc gggtagtag cgatctgggt tacccagccg	60
ttgtggccct tgagggtgcc acgaagggtc atctgctcag tcatggccgc ggcgagagcg	120
tgtgtcgctg cagcgacgag gatggcactg gatggcttan agaaaactagc accacaacct	180
tcctgcggc tcgacgcggc cgcaatt	208

<210> 894
<211> 67
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(67)
<223> n = A,T,C or G

<400> 894
gcatgganc gtggtaggg aggtccaca gtgtccactc ggcgtgtcg aaggttgact 60
cggtagt 67

<210> 895
<211> 58
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(58)
<223> n = A,T,C or G

<400> 895
gcggccgccc tttttttt tttttttt tttttttt ttttttcccn cnctaaaa 58

<210> 896
<211> 177
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(177)
<223> n = A,T,C or G

<400> 896
gacattttat gacctctccc aatngggca gaggtgagca cccctggta aaagttaaa 60
ctnagtgagt ataaataacgc caanaanagc tgtggcttct ttcaactggtg tcctcagaaa 120
ggctgtgagc agtgggtgt gcataacctt cacagcatct agcaaagcac ctgaatt 177

<210> 897
<211> 542
<212> DNA
<213> Homo sapien

<400> 897
gcttcicctt tcttataagac gttccggacg ggcattaccg gtccggtcag ctgggtggcc 60
agtttcagtt ctccagcaga actgtctccc ttcttgggg ccgagggttt ctggggaaag 120
agatgagtt tggagcggtt ctccctcagc cgctgcacgt tggtctgcag ggactccgt 180
gacttgttcc gcttcctcgg atccacagaa atgccatggtgg tccggggccac ttcttigtga 240
atgcggccca ccctgagctc ctccaggctg aagccgcggc cggccgcac ctgcgtgtgg 300
taccgaaccg tggggcagcg cacatgggc cggatggac ccgacgcggg gggggggcg 360
atgcggcccg ctgggtttt ccgggcctt cgtctgcgg tcttacggc cggctgggg 420
aaccacgtgg ccacgcgcgg ctggcagttt ttgtggaaat ggggttcaa gaccatgc 480
ttccggctgg ggcattggc tgctacggc cctgcggcgtc ctggtcgacg cggccgcgaa 540

tt

542

<210> 898
<211> 165
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(165)
<223> n = A,T,C or G

<400> 898
tancnatctg ggttacccag ccgttgtggc ctttgagggn gccacqaagg gtcatctgct 60
cagtcatggc ggcggcnana gcgtgtgtng ctgcancgac gaggatggca ctggatggct 120
tanagaaaact agcaccacaa cctctcgctg acgcggccgc gaatt 165

<210> 899
<211> 67
<212> DNA
<213> Homo sapien

<400> 899
tccactagtc cagtgtggtg gaattcgcgg ccgcgtcgac gctgctgcct cacccacagc 60
ttttgat 67

<210> 900
<211> 77
<212> DNA
<213> Homo sapien

<400> 900
cttccaggta cagagctccc aggttccag gttgcagtcc ctccagtccc agagctccca 60
gggtttcggt ttccagt 77

<210> 901
<211> 114
<212> DNA
<213> Homo sapien

<400> 901
ggccggggga ggacggctgg gggctccggg gtgcgtcgca caattgcctg agcaggaggc 60
gcaagtggga gatgacgata aaggcggggg ccagcgeggg ccgagagtgg aatt 114

<210> 902
<211> 64
<212> DNA
<213> Homo sapien

<400> 902
tacactactc ctgaggatgc tactcccgag cccggagagg acccacgcgt gacccggggcc 60
aagt 64

<210> 903
<211> 63
<212> DNA
<213> Homo sapien

<400> 903
tcaaaagctg tgggtgaggc aggtcgacgc ggccgcaat tccaccacac tggacttagtg 60
gat 63

<210> 904
<211> 142
<212> DNA
<213> Homo sapien

<400> 904
tcctcagcca gggagacagg gaccaggcag cacaggcctg ccagcaggag gatgccccac 60
gagacagaag acggcatgt cgattcaactg tcccaggta ggtcgacgca gccgcgaatt 120
ccaccacact ggacttagtgg at 142

<210> 905
<211> 101
<212> DNA
<213> Homo sapien

<400> 905
tccactagtc cagtgtggtg gaattcgcgg ccgcgtcgac gccacctccg agagcctgga 60
tgtgatggcg tcacagaaga gaccctccca gaggcacgga t 101

<210> 906
<211> 506
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(506)
<223> n = A,T,C or G

<400> 906
gccccgcac acacagccag gcgcctaggct ccctgcggga cctcgaaaag gggaaagagc 60
gtcaacaatt tacggagggt ccagccgctg ggtcagattt agacaaaacca ttgtgtggtt 120
gggttgggt cagcaggctg gagagggtt tttttt gatcattttt gtttggggcc 180
ccaaaggagg gtcttggag ccacctgagc cccaaagctg gaaaattctt canagctgt 240
catgtcagga gccttctcac tgctgtggc ggnccaggtt gcttccgc 300
tntggaaagggt gccttggcct cttcgtgtgc tgggggtttt atgtataacct gcagcgcc 360
actgtccacc acgtcageta ggtattccct ctccagattt aggatgtggt cgatggctt 420
ctccacattc tctgggagcc ccgtcacagt gacgcaggatg ggtcttgggg ctccgtctg 480
tggaaagcga atgtccacct tgaatt 506

<210> 907
<211> 93
<212> DNA
<213> Homo sapien

<400> 907
tcccgctgca caagttcacg tccatccgcc ggaccatgtc ggaggttggg ggctctgtgg 60
agacacctat tgccaaaggc cccgtctcaa agt 93

<210> 908
<211> 238
<212> DNA
<213> Homo sapien

<400> 908

gggttagagaaa ccctgcggct gcgccttcgg tgccccgcag aggcgctggg gcgcccccga	60
ggggccgcctg cgggcctccgg gagagggtcg aaggtaaga tctcaggacc ggagccccgc	120
cggggtcccg ggtatggtgg gggggccggg gtcggggcct gcaggatggt catggtcggg	180
tggcagctgc gagagtgaca catggtgagc cgagcggagg tcgacgcggc cgcgaatt	238

<210> 909

<211> 190

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(190)

<223> n = A,T,C or G

<400> 909

gggcgtcctg gtgcttacca cctgnaaact ggtgagggtgg tggagaact cctggnggac	60
cctagtggaa gccttcagg aatttcttga anctgancgc tcaggtgagt agggcgacat	120
ctggnggccc gntgttnaan gtcattgcnn anaggaagga agccgaggag gggancctgc	180
ngtgaggcg	190

<210> 910

<211> 93

<212> DNA

<213> Homo sapien

<400> 910

tcccegtgc caagttcacg tccatccgcc ggaccatgtc ggaggttggg ggctctgtgg	60
aggacctgat tgccaaaggc cccgtctcaa agt	93

<210> 911

<211> 261

<212> DNA

<213> Homo sapien

<400> 911

gggtccgtca gggctgaaga cctgcccagg cacacaactc accacggccg gtagcccatt	60
ctcgcaggta acattttca tgggtccag tgacacotgg gggcccagct tgcagctgg	120
gtatgtggcc tctgtccgg tgcatgtccat ggagaatggc cagtagcgc tcttcctccg	180
tgaggcaaac attttgtaca ctttggatt gtatgtcctc tccccaggga agccaaacat	240
ccgcagacc acgcggaaat t	261

<210> 912

<211> 67

<212> DNA

<213> Homo sapien

<400> 912

gcgtatggcgc gtgggttaggg agggtccaca gtgtccactc gccgtgtcg aaggttgact	60
cggtagt	67

<210> 913

<211> 545

<212> DNA

<213> Homo sapien

<400> 913

gctttctcct	tcttatagac	gttccggacg	ggcatgaccg	gtccggtcag	ctgggtggcc	60
agtttcagtt	cttcagcaga	actgtctccc	ttcttgggg	ccgaggggctt	cctggggaaag	120
aggatgagtt	tggagcggt	ctccttcagc	cgctgcacgt	tggcctgcag	ggactccgtg	180
gacttgttcc	gcctcctcgg	atccacagaa	atgccatgg	tccgggcccc	cttcttgtga	240
atgcgggcca	ccctgagctc	ctccaggctg	aagccgcggc	cggcgcgcac	cttcgtgtgg	300
taccegaaccg	tggggcagcg	cacgatgggc	cgatgggac	ccgacgcggg	gegcggggcg	360
atgcggcgcg	ccttggcttg	ccgggcctta	cgtctgcgga	tcttacgggc	cggctggttg	420
aaccacgtgg	ccacgcgcgg	ctgccagttc	ttgtggaaat	ggggcttcaa	gaccatgcca	480
ttccggctgg	gcccattggc	tgccctacggc	cctgcggctc	ctgcgcgtcg	acgcggccgc	540
gaatt						545

<210> 914

<211> 295

<212> DNA

<213> Homo sapien

<400> 914

gtcggcatac	agaccagttc	ctcagttcc	tgaagtaacc	atacaattt	gacttgtgg	60
aaaaccatcc	aggagcacag	ctgggtctca	tgtatgatatc	acccaggact	ccttttttgg	120
ccaggcagct	cagcaatagg	agcagccca	tgcttcttga	agccatcttc	ctcctaccct	180
gaggatgttag	ctagtcaag	gatctcagag	accttactag	cgcttctttt	aaactcctgg	240
gttctccttg	atctgcaaat	ctgtttggca	accaaggctg	acgcggccgc	gaatt	295

<210> 915

<211> 391

<212> DNA

<213> Homo sapien

<400> 915

gttaaacact	gtccagcgca	gggggggtgct	agggaggtag	cgtgacaaca	cgatggctgc	60
gtatgcctgaa	gtatgtgatcca	cgatggcgga	agtgcacagag	aggatgttga	ccacgcacgtt	120
ctgcagagcc	accgcatttt	gagggggtgcc	cacgttagcgc	agcactgtgc	catggaaacag	180
ggcagctgtg	atgaagctca	catggccca	caccaccgc	accaggcctg	tcttcatcag	240
caccttccgg	aatgcggcca	cactcaggcc	tccgaggcg	agacacatgt	cggtcccg	300
ctggtccccc	ccccggcttc	agcgcggctc	ccgaggtgc	ggccgcgg	gggaccctgc	360
tcccatcccg	ctgtcgacgc	ggccgcgaat	t			391

<210> 916

<211> 559

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(559)

<223> n = A,T,C or G

<400> 916

gggcgtccctg	gtgcttacca	cctggaaact	ggtgaggtag	tgggagaact	cctgggtggac	60
cctagtggaa	gccttcagt	aatttcttga	agctgagcgc	tcaaggtgat	agggcgacat	120
ctgggtggccg	gttggtaag	gtcattgcag	agaggaagga	agccaggag	gggagccctgc	180
agtgaggcg	tcctgggtt	tcgcgttct	caccaccctt	gggcacgc	gtctagtcca	240
cacctgagga	gttggtcagg	tagaaggggc	ggatgacgt	gccaaggccg	ttgaagtgcc	300
ctggccggca	ggggaaaggag	gagggtctt	tcgagcttt	ggtgtccagg	gcactggaa	360
tgcagccctt	ccagccctcg	aaatcggtga	cgtctgcac	gaagagccct	tcgcagagca	420
tcagggtttt	gttttctgt	gcaatggtgc	gatctgagcc	gccagactt	gtgaggccca	480
ggacaggggag	ctcgccgag	gacgaggaga	agccgttagt	ccagcagctc	tggatggng	540
ggangtagac	cagggacca					559

<210> 917
<211> 447
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(447)
<223> n = A,T,C or G

<400> 917

gctccttggc gagcacgtga cccggcgaaa cacgcaggag ggcaggcagg cccctgcgc	60
ggcgctgggt ggactgtttc cagggtgtcat atttggaaagaa cttggcccacg ggttatctgg	120
ggaagttgtc cggaagcacg gtccggagggg tcgcacacgtc cctctcgac ttggcgaaaa	180
tagcacatgt cgtctccagg agggccaggt cacagctgcg gaaacagcac tccctcaacga	240
tggccacggct gcgacggctc acacggcttg cgggcctgtc gaantanaag cgcgggtccc	300
cacagacgaa ctggagggtt tccaccagct cccccgnncgca cagggtctca ctggggcggn	360
aaggcagcaat gcancacgag gcaaggcca anaaggngan aagcaccanc atcgacttcc	420
ccattggat tcccttgggt gtctggaa	447

<210> 918
<211> 574
<212> DNA
<213> Homo sapien

<400> 918

gctccttggc gagcacgtga cccggcgaaa cacgcaggag ggcaggcagg cccctgcgc	60
ggcgctgggt ggactgtttc cagggtgtcat atttggaaagaa cttggcccacg ggttatctgg	120
ggaagttgtc cggaagcacg gtccggagggg tcgcacacgtc cctctcgac ttggcgaaaa	180
tagcacatgt cgtctccagg agggccaggt cacagctgcg gaaacagcac tccctcaacga	240
tggccacggct gcgacggctc acacggcttg cgggcctgtc gaagtagaaag cgcgggtccc	300
cacagacgaa ctggagggtt tccaccagct cccccgnncgca cagggtctca ctggggcggt	360
aaggcagcaat gcacacgag gcaaggcca agaagggtgag aagcaccagc atcgacttcc	420
ccattggat tcccttgggt gtctggaaac cggcgacgtt gcccggccac tccctgtc	480
gtgtcgaaaa ccgaacacgcg ggcgttggcc ctccctggcc acactcttctt gccagcgccg	540
ctctggccga gtccgggggg ccgaatgtgc gacg	574

<210> 919
<211> 139
<212> DNA
<213> Homo sapien

<400> 919

gccgcgttcg tcgtcgacaa cggctccggc atgtgcaagg cgggttcgc gggcgacgt	60
gccccccggg ccgtttccc ctccatgtg gggcgccca ggcaccaggc cgtatgggt	120
ggcatgggtc agaaggatt	139

<210> 920
<211> 576
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(576)
<223> n = A,T,C or G

<400> 920

ggggacacc accctaaga gcctgagcca gcagatcgag aacatccgga gcccagagg	60
cagcccaag aacccgcggc gcacctgccc tgacctcaag atgtccact ctgactggaa	120
gagtggagag tactggattt accccaacca aggctcaac ctggatgccca tcaaagtctt	180
ctgcaacatg gagactggtg agacctgcgt gtacccact cagcccagtg tggcccagaa	240
gaactggta atcagaaca accccaagga caagaggcat gtctggttcg gcgagagcat	300
gaccgatggta ttccagttcg agtatggcg ccagggctcc gaccctgccc atgtggccat	360
ccagctgacc ttctgcgccc tgatgtccac cgaggctcc cagaacatca cctaccactg	420
caagaacagc gtggctaca tggaccagca gactggcaac ctcaagaagg ccctgtctt	480
ccagggctcc aacgagatcg agatccgcgc cgagggcaac agccgnttca cctacagegt	540
cactgtcgat ggntgnacga gtcacaccgg nacgt	576

<210> 921

<211> 421

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(421)

<223> n = A,T,C or G

<400> 921

gcccacatcgcc cggccctagt cggggaaagag caggaagccg gagaagacgc tgtcagagcc	60
ctggatgccc accatgtcgat agtagtcatt gacagccgc cacacccctt cgcacccaccc	120
caacccatcgac agcacccgc cccggatgtac ctgattgtt ttggacgtgt ggccacagaa	180
ggtagccact ttgacccgc tcgggtacag cggccacgc acgggtggctg tatgcacgc	240
gtggtagaca aagttagata ggccggggac tttgcaggatg aacttgcac tgctcggtgc	300
ataatctccc tgggggttgg tgaggaccgc gttaatctg atcaggctgt tgggtgcagg	360
gggctgggtgg gtctgcgcg tgaccngaa cactgactgg aatttctnnn tgnatctgnc	420
c	421

<210> 922

<211> 177

<212> DNA

<213> Homo sapien

<400> 922

gacattttat gacctctccc aataggggca gaggtgagca cccctggta aaagttaaga	60
ctcagtgtgt ataaaataacgc caagaagagc tgggtttctt ttcactgggtg tcctcagaaa	120
ggctgtgagc agtgggtgt gcatacctgt cacagcatct agcaaagcac ctgaatt	177

<210> 923

<211> 133

<212> DNA

<213> Homo sapien

<400> 923

tccactagtc cagtgtgggtg gaattcgccg cccgtcgac gcgagcagcg gggccggcgc	60
ggagagacgc agccggagggtt ttccctggttt cggaccccg cggccggatg gtggaaatcct	120
ccctgcagcg gat	133

<210> 924

<211> 216

<212> DNA

<213> Homo sapien

<400> 924

ggtagagaga ccctgcggct gcgtttcg tccccgcag aggcgctgg gcccggca	60
ggggccgctg cggcctccgg gagagggtcg aaggtaaga tctcaggacc ggagcccccgc	120
cggggtcccg gatggtgg aggggccgg gtcgggct gcaggatgg catggtcgg	180
tggcagctgc gagagtaca catggtgagc cgacgc	216

<210> 925

<211> 649

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(649)

<223> n = A,T,C or G

<400> 925

ggccccaat tccagctgcc acaccaccca cggtaactgc attagttcg atgtcataca	60
aaagctgatt gaagcaaccc tctactttt ggtcgtagc ctttgctt gtcaggtt	120
cattggctgt gttggtagc ttgtcattgc aacagaatgg gggaaaggca ctgttctt	180
tgaagtaggg tgagtctca aaatccgtat agttggtaa gccacagcac ttgagccctt	240
tcatgggtgt gttccacact tgaatggat cttcctggg accataatct ttcttgatgg	300
caggcaactac cagcaacgta aggaatgtct cagccattgt ggttacacc aaggcgacca	360
cagcagctgc aacctcagca atgaagatga ggaggagat gaagaagaac gtcacgagg	420
cacacttgtc tcagttca ncaccatgc agcccagaa accaagagca aagaccacaa	480
cgcggctgc gatggagaag tagccacgn tgacaaactg catggactg gacgacagt	540
gcccgaagat cttcagaaag gatccccat cgattgacac ccagatgccc actgccaaca	600
gnctgcacc acacagaaag atgagcaa at tgaagaggat catcatgg	649

<210> 926

<211> 341

<212> DNA

<213> Homo sapien

<400> 926

gggtcctcaa actctcgaaat gtacggcgca atgccacaat aagggtgatt gtgggtttt	60
tcatgtggca gtttctccag gggggcagg tatggatag ggtcacgggg gccaagagg	120
gccagaaggat tggcgccag gaactgggtc atcttgc当地 gtcggctagc gcccctctcg	180
ctctggctgc tgccggagg ctgcggcgg ctgcggcagc ccctcagcaa caacaactcc	240
tgttccggct tccactccgg gggcgccac gtcggctgat ttcggctgccc cgctaagcga	300
gcgcaccaga ccgctgtca gcgtcgacgc ggccgcaat t	341

<210> 927

<211> 431

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(431)

<223> n = A,T,C or G

<400> 927

gcggccgcca cgctggttt gcatcttcag gagacgctcg tagccctcgc gtttctcctc	60
ggccaattcg cggaaaagt ggctcacgcc ttccagagcc acatcatcgc ggctgaaata	120
gaagcccaaga gagaggtagg tggaggaggc ctgcaggatc aaatggacca ggctgttgc	180
ggctgcctcc acgtcggtgg aataattctg acgaatctgg gagctcatgg ttgggtggca	240
agaaggagct aaccacaaaa acggngctgg caggcccag aaggcaggaga tggccganaa	300
gatggtcccg gagttgcaa gcggagagga aatcgaggagg cggtcgagg ctggaaagaga	360

gtccccggat ctgttccgtc caaacactgt tgaagcaaga gacagacccg cggtcgacgc	420
ggccgcgaat t	431
<210> 928	
<211> 538	
<212> DNA	
<213> Homo sapien	
<400> 928	
gtggcctgca aggccgcgga cagggcgagc accgagtcgt acatttgca gtcatcatc	60
cccggtgtct gcgtgacgca gtccatccac agcccctgt acatggcctg ggccgtgtat	120
atgttgtcac ccgcatacga gctcatctgc cactgcggta tggcgtgcga ggccaccaga	180
cccacccaggc ccagcaggc catggagaag cccagcaact gcagggccga attggccatt	240
tccgcctca gaaaacactg gggcgcggg gcgggagacc ctacagtaaa acaaacgaca	300
cttggggggc agccccacaa aaaaaactt gaggtggagt tttccgtca cccaaagaga	360
aaaaaagggt ttgggcagg tgaatgcaaa tcttgtcacc aaactacaca caaatcgacc	420
cctccagtga agcgatggcc tcgcggcaca gggagtagga tacggcggga gggtggttc	480
agacaaaatt ggtgtcccc gaaggccagg cggttccctc cggcgctct cggcgacc	538
<210> 929	
<211> 69	
<212> DNA	
<213> Homo sapien	
<400> 929	
ctcctcgacc accagcttgc actggcagta gttgagcagc agcggcgtga tctgcttgc	60
cagctggat	69
<210> 930	
<211> 544	
<212> DNA	
<213> Homo sapien	
<400> 930	
gctttcttc tcttatagac gttccggacg ggcatacgg gtccggtcag ctgggtggcc	60
agtttcagtt cttcagcaga actgtctccc ttcttgggg ccgagggctt cctggggaaag	120
agatgagtt tggagcgtt ctccttcage cgctgcacgt tggcgtcag ggactccgt	180
gacttgttcc gcctcctcggt atccacagaa atgcccgttgc tccggccac ttcttgtga	240
atgcccggca ccctgagctc ctccaggctg aagccgcggc cggcgccac ttctgtgtgg	300
taccegaaccg tggggcagcg cacatgggc cggatggac ccgacgcggg gcgcggggcg	360
atgcggcgcg ctttggcttgc ccgggcctta cgtctgcggta tcttacgggc cggctggttg	420
aaccacgtgg ccacgcgcgc ctgccagtc ttgttggaaat ggggcttcaa gaccatgcera	480
ttccggcttgg ggcacatggc tgctacggc cctgcggcgtc ctgcggcgtga cggcgccgc	540
aatt	544
<210> 931	
<211> 596	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(596)	
<223> n = A,T,C or G	
<400> 931	
gttgctgcag tggcttggc gtcaaggaggc tcactgaggg ggcacatga ccccaagccag	60
tgacagtgcgtca gtggaggccg ttggggagg aggcttggc tgcaggagg cagatggcc	120

ggatgttagcg ggagaagggt atgggtctgc tgagttggag gagtgcaatg tgccttggg	180
acccctcctg gaggtagctg gggggggga tggatgcctt caggtgctg accttggcgt	240
cctcggagta ggagtcttagc tggggggccc ccagcttgcac ctcataggct tccttgggt	300
gctcgctggg gaagcagtga gcagctgaca gcacccactg ctcagacacg agagagccac	360
cacacacatg gacgccttca taggtgatgc tgacctgcca gggccactga cccggactg	420
cactgctgcc acctgtgatg cgtcttggg gggccacacc gcagggagct tctccccctt	480
ccgctcctgt ccccgaccgg agtaatccaa gatagagcag aatggccaca gcccccanct	540
gcccaggccc caggaccccc ttctggcca tggcccagga caagggcccc tggggc	596

<210> 932
<211> 153
<212> DNA
<213> Homo sapien

<400> 932	
tctgtgctgg ggtctgggtt ccgtggagag atgtgtaggg gtaatgagaa attgatcagc	60
aatgagaggt ggactctgag ccacccctt gaccctaat cattcaagcg aggagcagag	120
gagctcttga ctgggggacg gggatgtgag gat	153

<210> 933
<211> 112
<212> DNA
<213> Homo sapien

<400> 933	
tcaaacttgc cattgttaaa agcagccaca ttttggacct gcagtttctt cagaaatagt	60
taggattctg tgtcgacgcg gccgcattt ccaccacact ggactagtgg at	112

<210> 934
<211> 74
<212> DNA
<213> Homo sapien

<400> 934	
gtggccatcg agtccccatc ctggtcggcc acccgaaac gccgcgcgtc ccgaggcgtcg	60
cgcggccgcg aatt	74

<210> 935
<211> 380
<212> DNA
<213> Homo sapien

<400> 935	
gccccccca tcttggtctt ttccacat tttcagcccc tccagggtt ggaggacccg	60
gccccccca ctcttggagc ctccgcgtaa gtggctggc atgacgcgt ttctctgacg	120
tccccccatag atcttggtca tggagccaa cccagccca ccccgaggt acaggtgcgg	180
cgtctgtggaa gcagctcgcg tggatggccaa gtttcatcg tagggagcaa gcttttgcg	240
cttggccagc ttgacggtat ccacccatc ggggactttc agttcccg actttttag	300
gaaggctgcc agagctctga cgaactcctg ctggttcacg tctttacag taactccagg	360
catcgctcgcc cctccgcgcg	380

<210> 936
<211> 155
<212> DNA
<213> Homo sapien

<400> 936	
ctggcgcttt gaggatggtg tcctggaccc tgattacccc cgaaatatct ctgacggctt	60

cgatggcata ccggacaacg tggatgcagc cttggccctc cctgccata gctacagtgg	120
ccggggaggcggtt ctacttct tcaggggaa acagt	155
<210> 937	
<211> 213	
<212> DNA	
<213> Homo sapien	
<400> 937	
gaggcggaga ggatcatgtc cgaaaactgc gggtagtag cgatctgggt tacccagccg	60
ttgtggccct tgagggtgcc acgaagggtc atctgcttag tcatggccgc ggcgagacg	120
tgtgtcgctg cagcgcacgag gatggactgt gatggcttag agaaaacttagc accacaacct	180
ctctgtccgc gcggcgtcgac gcggccgcga att	213
<210> 938	
<211> 261	
<212> DNA	
<213> Homo sapien	
<400> 938	
gggtccgtca gggctgaaga cctgcccagg cacacaactc accacggccg gtagcccatt	60
ctccgcagggtg acattttca tggggtcccg tgacacctgg gggcccagct tgcagctgaa	120
gatgtggggcc tctgtgccgg tgcaagtccat ggagaatggc cagtagcgct gtttcctccg	180
tgaggcaaac attttgtaca ctttgttatt gtatgtcctc tccccaggaa agccaaacat	240
cccgccagacc acgcggaaat t	261
<210> 939	
<211> 228	
<212> DNA	
<213> Homo sapien	
<400> 939	
gctcaggcgtc caaagccgcg aggaaagagg tagctcgga cgtggagccg ccgcccagg	60
gcgcgcaggac cacctcgccg gtcaccttag ccaggtggct gcttaggtcc actgtgcgt	120
tcacgctc attgatecgc ggcgggtgcct cggaggaggc gctggccggc gccggggccc	180
aagtcccaag caacaggagc agaaaacaagc cggcggtcgcc cgctcgaa	228
<210> 940	
<211> 97	
<212> DNA	
<213> Homo sapien	
<400> 940	
tctttcaagt atgcctgggt gctggacaag ctgaaggccg agcgtgagcg cggcatcacc	60
atcgacatct ccctctggaa gttcgagacc accaagt	97
<210> 941	
<211> 200	
<212> DNA	
<213> Homo sapien	
<400> 941	
ggacccaggg gcacaggctc ccagatgata gcccctctt gaatgagcac ccaggcaaca	60
cagtccgggg ctgtgtgttag caaacatgtc agcagctgcc tcctggaca accacccct	120
tacatgttat ctatctacca gacaaatgaa agctttttt accccatctc ccaggcaccc	180
cccgcaagg gctctgaatt	200
<210> 942	

<211> 209
<212> DNA
<213> Homo sapien

<400> 942
gaggcggaga ggatcatgtc cggaaactgc gggtagtag cgatctgggt taccagccg 60
tttgtggccct tgagggtgcc acgaagggtc atctgtccag tcatggcgcc ggcgagacg 120
tgtgtcgctg cagcgcacgag gatggactg gatggcttag agaaaacttagc accacaacct 180
ctctgcccgc gtcgacgcgg ccgcgaatt 209

<210> 943
<211> 130
<212> DNA
<213> Homo sapien

<400> 943
gtaaggagcc caagaaaaag ttagtgcgc tggcagactc gecatcccc aacgacacag 60
ggcaggacag cagaggacgt gctgggatta aacacattcc ccctcaaaaa aaaaaaaaaa 120
aaaaaaaaaa 130

<210> 944
<211> 563
<212> DNA
<213> Homo sapien

<400> 944
gacagtccca gtacttttgc ttcagctttc gggccggcc tcgtttccgc ttcccggt 60
tggatcccc ctcttgccag tcacgaaaac catcgctgg gaagagcttgc ccatcagtgg 120
gatccagggtc cacgtcaactt ccaccggagt ctgaggagtg ggagctccga gaagcaccag 180
tccctgcgggt ggagacgtca gagctgcggg gggagggggc tcctgcgcga cagctgcgg 240
ggtggtaggg gctgggttgc tgaccgtcgcc ctggcggccaaag gggctgcctt 300
ggtaaaaggcc ccctgggtct agggccttcc ggaaggccat gccatcccttc tccagcaget 360
caatgttcca actgagatca tcagaagagc tggaaagttagtgc tggcgcagc tggcatgga 420
gttggtcccc cagaggccca aagaccgacat gcagtcctc aaggccacaa ttgcagaggg 480
tggcccatc catgttccat cgtgagaagt caatggcgct tgcgtcgatc ttgttctt 540
ccacttggta gctgatccag tcc 563

<210> 945
<211> 637
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(637)
<223> n = A,T,C or G

<400> 945
gctgagccccc ttactgtcc tcccaccaat gggctccctc acaccaggaa caggactaag 60
aggagctgg cggagaatgg aggtgtccctg cagctgggg gcccagagga gaagatgggc 120
ctcccccggct cagactcaca gaaagagctg gcctgaccac caggcacctc actggcactg 180
ctgacccttc ccagaaaacac aatctcaggc acccgagcag ctccaaaggac gagaggatac 240
acgagacaca acctaatacgtt gaggccctgc gcagcctaa cctccacggc cttcgatact 300
tatgttccatc tgggtttgtct cctgtccctca gatgtccatc ggcgtcatgc cttttcccg 360
atgggttccatc ctctggcagt tgccgcttca gtcttggcct tagcctcatc ttgttgggg 420
tagctggccgg gagaggggtgg ctgcgcggcc tgcgtggccct gaggctgcag agttggggagc 480
aggacacactc acctgatgttt cattttttt catgtccaaa ccatgcacat actatgtcc 540
agaatcaaag cacttttgc aagtggctgc atggccatcc tccaggccccc aggaagttgc 600

attccaaggg cctgtttaca tggcagcana atccatc	637
<210> 946	
<211> 306	
<212> DNA	
<213> Homo sapien	
<400> 946	
ggcgccccgt cctctccctt cggtgtccccg gatgcggagc aagcggtcc cggggaaagct	60
ggcgcgtcgg cccgctaccg cggcgagcac ttaggaaggc gcgggggtggc cagttcacag	120
ctgcccgtc caagtgggg gaggcaatt ggagaggagg aggaggggag gaaaaagagc	180
aaaagtgggg gcgcttgcac cccttcttctt ctccctctgc aaagaaaaat ttccggggtt	240
gaaactggcg agtctcccgcg ccactgaagt ttccagtcag ttccgaggc gacgcggccg	300
cgaatt	306
<210> 947	
<211> 71	
<212> DNA	
<213> Homo sapien	
<400> 947	
ggtccagcgc tcccaggttt ccaggttgca gtccctccag tcccagagct cccagggttt	60
cgggttccag t	71
<210> 948	
<211> 575	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(575)	
<223> n = A,T,C or G	
<400> 948	
gcggccggcc tttttttttt tttttgtcag caaaaatctt tttaataaga gagtaggatc	60
cagggttagt ttttgtagcc tcggctggcc cgtcggcetc tggcacgttc gaacttccgg	120
cccttggagc ggacgttaggg ttttgtgtgg ctgtgcgggg ttccctggggc ttgccgaaa	180
tgcgggtaca cctctccggcc cttagcggagga ccggagagca ggacagtggc acagcccta	240
ggggagtcga gggccagctg gtcnaaaatgtt aggtatcttc cccctggccctt gaggatgcgg	300
ctgcggggccc ggctggtcac ggcgcgtgc cataccttca gttngggta ctcctgaacc	360
cgcacatcat cagttatgtt cccacaacc acggccgtct tgtttcccg gccaggaagc	420
ttcatcttcc ggtatcatccg gaaagggac agaggcgcc ggttgggtcg actcataaac	480
aacctcttca acacaacccgtt gttaatgtt gagttgggttc ttctggccag aaacctgttat	540
aaccttgcacca acagcctcag gtagatatcc tggct	575
<210> 949	
<211> 294	
<212> DNA	
<213> Homo sapien	
<400> 949	
ggggtttcca cgtagccac aatgcccaca accaccatgg gtgggtgtc tacaatggc	60
acagcctcca ccacccctt ttgtttcacc ttggatcccg gcctgtcgac ttcccgac	120
atgtgagtca tgccagccctt gtatcccagg aaggctgtga ggtggaccgg cttggacgg	180
tcatccttag ggaagctctt cacccatccca cgtgcctgc tgctgcgtt ccgaggcagg	240
aagccgaggg acccatgtct gggagcggag aactttctgt gagacatcac gcca	294

<210> 950
<211> 693
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...{693}
<223> n = A,T,C or G

<400> 950

ggcccccata	tccagctgcc	acaccaccca	cggtgactgc	attagttcgg	atgtcataca	60
aaagctgatt	gaagcaaccc	tctacttttt	gttctgtgac	ctttgtctt	gtcgaggtt	120
cattggctgt	gttgggtacg	ttgtcattgc	aacagaatgg	gggaaaggca	ctgttcttt	180
tgaagttaggg	tgagtctca	aaatccgtat	agttggtaa	gccacagcac	ttgagccctt	240
tcatgggtgt	gttccacact	ttagtgaagt	tttcctggg	accataatct	ttttgtatgg	300
caggcaactac	cagcaacgtc	aggaagtgt	cageccattgt	ggtgtacacc	aaggcgacca	360
cagcagctgc	aacctcagca	atgaagatga	ggaggagat	gaagaagaac	gtcacgaggg	420
cacacttgt	ctcagtccta	gcaccatagc	agcccagaa	accaagagca	aagaccacaa	480
cgcggctgc	gatgagaag	tagccacgt	tgacaaaactg	catggcaactg	gacgacagt	540
gccccgaagat	tttcanaaaag	gatgccccat	cgattgacac	ccagatgccc	actgccaaca	600
gggctgcacc	acacagaaag	atgagcaaat	tgaagagat	catcatggtc	ttaatgaadc	660
tgaagcactg	catggnggct	cctgttcagg	gct			693

<210> 951
<211> 607
<212> DNA
<213> Homo sapien

<400> 951

gtggcctgca	aggccgcgga	cagggcgagc	accgagtcgt	acatttgca	gtcctatcatc	60
cccggtctct	gcgtgacgca	gtccatccac	agccccttgt	acatggcctg	ggccgtgtatg	120
atgttgtcac	ccgcatagga	gctcatctgc	cactgcggg	tggcggtgca	ggccaccaga	180
cccacccca	ccagcaggc	catggagaag	cccagcaact	gcaggccccg	attggccatt	240
tccggccctca	aaaaacactg	ggggcgccgg	gccccggacc	ctacagtaaa	acaaacgaca	300
cttggggggc	agccccacaa	aagaaaactt	gaggtggagt	tttccggtca	cccaaagaga	360
caaaaagggt	ttggccagg	tgaatgcaaa	tcttgtcacc	aaactacaca	caaatcgacc	420
cctccagtga	agcgatggcc	tcgcggcaca	gggagtagga	tacggccggg	gggtggttcc	480
agacaaaatt	ggtggtcccc	gaaggccagg	cggttccetc	cgggcgct	cggcgaccc	540
aggcaaaaca	aaggtgagg	ggccgtctgg	gcccgtttct	gagcggccggc	aagtccccaa	600
gtatcct						607

<210> 952
<211> 372
<212> DNA
<213> Homo sapien

<400> 952

ggatgaggtc	aacccgaagg	ggtttcttga	gaagcagtga	cttcttctgg	actttggttc	60
tcttcttctt	cagccctttt	tccttggagc	cagtgtccac	gaagaagagt	ttttcattt	120
ggccctctga	caacaagcca	ccgctctgtc	gctcctgtag	ccgcacgtct	tccaggaact	180
ggtcaacctc	cagccccagc	ggctcctgag	caagccggc	ccagccccgc	ttcttatttc	240
ttggggctcg	ccgcccggc	ctcagcgctg	ggtccacca	agtggccgc	agccccagga	300
aaccagaatc	ggcategctt	ttcgagctgc	gcttcccacc	aaccccactg	cctgtcgacg	360
cgcccgcgaa	tt					372

<210> 953
<211> 275

<212> DNA

<213> Homo sapien

<400> 953

gccccatctgtct	gttttttctc	agcacccccc	gtcttttgtt	caataacttga	gacgaccctc	60
caagatgacc	tacgggttcc	tacaacattt	ttataaagaa	ctgagagaag	attccctctcc	120
tcattggata	attcagctcc	ttgtcttagtt	acagacttca	tgcaggctgc	catgtcatca	180
tatcgctcag	cctgctccgc	cagtttggcc	ttctgaacca	gctcattttt	atccatgact	240
ggatgttctg	tgtccggctcg	acgcggccgc	gaatt			275

<210> 954

<211> 189

<212> DNA

<213> Homo sapien

<400> 954

ggctcccaact	tccctgttcc	gatggagaag	gcgagggtgt	ccagcagggt	ccgttaggtcc	60
ctgaccccgac	tgaccaccac	cctggggccag	tttctgacag	tcccacctcc	cagttgctgg	120
aggggttagtg	gcctcacaga	cggccctctt	ctagatgcag	tggggccaga	gtcgacgcgg	180
ccgcgaatt						189

<210> 955

<211> 189

<212> DNA

<213> Homo sapien

<400> 955

gaggcggaga	ggatcatgtc	cgggaactgc	ggggtagtag	cgatctgggt	tacccagccg	60
ttgtggccct	tgagggtgcc	acgaagggtc	atctgtctag	tcatggcgcc	ggcgagagcg	120
tgtgtcgctg	cagcgaacgag	gatggcaactg	gatggcttag	agaaaactagc	gtcgacgcgg	180
ccgcgaatt						189

<210> 956

<211> 216

<212> DNA

<213> Homo sapien

<400> 956

ggggccgcac	gtgttagcaa	agaaggctgt	gtccggcctc	cagaccatgt	tggcccgccc	60
atccccgtg	taaccgacga	cagcccttcag	acgcagccac	ccaccgctgg	cgggaggccg	120
gcaagtgccc	ttggcagagt	gggggctgca	gctgaccctg	gcaggcgtga	aggccttgc	180
ggaagccagg	tagtgttgc	gtggggccccc	cgaatt			216

<210> 957

<211> 62

<212> DNA

<213> Homo sapien

<400> 957

ccagtggag	gctccaccc	tggtagatga	acagccctg	gagaactacc	tggatatgga	60
gt						62

<210> 958

<211> 199

<212> DNA

<213> Homo sapien

<400> 958

ggattcggtc atattggaat tgctgttcct gatgtataca gtgcttgtaa aaggtttcaa	60
gaactggag tcaaatttgt gaagaaaacct gatgtatgtta aaatgaaagg cctggcattt	120
attcaagatc ctgatggcta ctggattgaa attttgaatc ctaacaaaat ggcaaccctta	180
atgtatgtct gtgagaatt	199

<210> 959
<211> 212
<212> DNA
<213> Homo sapien

<400> 959	
ggggcggaga ggcgcgtgtc cgccaaactgc ggggttagtag cgatctgggt tacccagccg	60
ttgtggccct tgagggtgcc acgaagggtc atctgcttag tcatggcgcc ggcgagagcg	120
tgtgtcgctg cagcgcacgag gatggcactg gatggcttag agaaaactagc accacaacct	180
ctccgtccgc cgcgtcgacg cggccgcgaa tt	212

<210> 960
<211> 177
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(177)
<223> n = A,T,C or G

<400> 960	
gacattttat gacctctccc aataggggca gaggtgagca cccctggtaaa aagtttaaa	60
ctcagtgtatc ataaataacnc caagaagagc tgtggcttct ttcactgggtg tcctcagaaa	120
ggctgtgagc agtgggttg gcataccctgt cacagcatct agcaaaagcac ctgaatt	177

<210> 961
<211> 490
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(490)
<223> n = A,T,C or G

<400> 961	
ggcggtccgt gtgtttacca cctggaaact ggtgagggtgg tgggagaact cctgggtggac	60
ccttagtggaa gccttcagg aatttcttgc agctgagcgc tcaggtgagt agggcgacat	120
ctgggtggccg gttgttgcgt gtcatgtcag agagggaa agccggaggag gggagccctgc	180
agtggggcg tcctgggtt ctnccgttct caccaccctt gggccacgccc gtctagtc	240
cacctgagga gttggtcagg tagaaggggc ggtgtacgt gccaaggccg ttgaantgcc	300
ctggccggca gggaaaggag gaggtgtct tcgagctttt ggtgtccagg gcaactggaa	360
tcgcaggccctt ccagccctcg aaatcggtga cgtctccac gaagagccct tcgcagagca	420
tcagggcttt gtttgcgtat gcaatggtgc gatctgagcc gccagacttg gtgaggccca	480
ggacaggggag	490

<210> 962
<211> 159
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(159)
<223> n = A,T,C or G

<400> 962
gggtcgccccc gggtggttgc ggccacagcg cagcggccga gagcggccgc cancatgacg 60
gcatggcg cgccggcn gnngacagan agaagccgt gtaagctcgc gggttgctcc 120
ggagcggc gggccggac gtcgacgcgg ccgcgaatt 159

<210> 963
<211> 217
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(217)
<223> n = A,T,C or G

<400> 963
ggtagagaa ccctcgccgt gcgcgttcgg tgcccgag aggcgtggg ggcggccggca 60
ggggccgtcg cgggctccnn gagagggtcg aaggtgaaga tctcaggacc ggagccccgc 120
cggttcccg gatggtggaa gggggccggg gtcggggcct gcaggatggt catggtcggg 180
tggcagctgc gagagtaca catggtgagc cgagcgt 217

<210> 964
<211> 540
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(540)
<223> n = A,T,C or G

<400> 964
gtggcctgca aggcccgga cagggcgagc accgagtcgt acatggca gctcatcatc 60
cccggtctct gctgacgca gtccatccac agcccttgt acatggctg ggccgtatg 120
atgttgtcac cccatagga gtcatactgc cactgcggg tggcggtca ggccaccaga 180
cccaccacgc ccagcaggc catggagaag cccagcaact gcaggcccg attggccatt 240
tccgcctca gaaaacactg gggcgccgg gcgggagacc ctacagtaaa acaaacgaca 300
cttggggggc agccccacaa aaaaaactt gaggtggagt ttccggtca cccaaagaga 360
caaaaaagggt ttggccagg tgaatgcaaa tcttgtcacc aaactacaca caaatcgacc 420
cctccagtga agcgatggcc tcgcccaca gggagtagga tacgcggga ggggtttcc 480
agaaaaatt ggtggccccc gaaggccagg cggtccctc cggcgctct cggcgacct 540

<210> 965
<211> 321
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(321)
<223> n = A,T,C or G

<400> 965
gccccacagtgcgttgc gcaatgcgcg gccgtcagca cccaaactctg gtccaccagg 60

acacccgcgc	agtggAACGA	gaggccgttg	aagAGCAGA	cctGCCAGGG	ctGCAGCCG	120
cgCGCGCACG	ggGCGCCATA	ggCTTGGGGG	tCCAAGCGCG	tGTGTTTG	ggGGAGCAGC	180
gcccCTCTG	cgGCCCAGAG	ttGCGCCATC	AGCAGCGCA	gcAGCTCGC	cAGAGCCGG	240
gGCCAGAGG	cgGCAGAGG	gtGGAGGTGC	ggAGCTCTCA	tGGCCAGGAT	ctGGGAGTNG	300
ccGATANGAA	ggAGGGAGGG	G				321

<210> 966

<211> 642

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(642)

<223> n = A,T,C or G

<400> 966

ggTGGACACC	accCTCAAGA	gcCTGAGCCA	gcAGATCGAG	aACATCCGGA	gCCCAGAGGG	60
cAGCCGCAAG	aACCCCGCCC	gcACCTGCCG	tgACCTCAAG	atGTGCCACT	ctGACTGGAA	120
gAGTGGAGAG	tACTGGATTG	ACCCCAACCA	aggCTGCAAC	ctGGATGCCA	tCAAAGTCTT	180
ctGCAACATG	gAGACTGGTG	AGACCTGCGT	gtACCCCACT	cAGCCCAGTG	tGGCCCANAA	240
gaACTGGTAC	ATCAGCAAGA	ACCCCAAGGA	caAGAGGCA	gtCTGGTTCG	gcGAGAGCAT	300
gACCGATGGA	ttCCAGTTCG	AGTATGGCGG	ccAGGGCTCC	gACCTGCCG	atGTGGCCAT	360
ccAGCTGACC	ttCCTGCGCC	TGATGTCCAC	cgAGGCCTCC	cAGAACATCA	cCTACCACTG	420
caAGAACAGC	gtGGCCTACA	TGGACCAGCA	gACTGGCAAC	ctCAAGAAGG	CCCTGCTCCT	480
ccAGGGCTCC	AACGAGATCG	AGATCCGCGC	cgAGGGCAAC	agCCGCTTC	cCTACAGCGT	540
cACTGTCGAT	ggCTGACCGA	gtCACACCGG	agCCTGGGC	aAGACAGTGA	ttGAATAACAA	600
aaACCAACAA	ACCTCCGCC	TGCCCCATCAT	cgATGTGCC	CC		642

<210> 967

<211> 650

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(650)

<223> n = A,T,C or G

<400> 967

ggTGGACACC	accCTCAAGA	gcCTGAGCCA	gcAGATCGAG	aACATCCGGA	gCCCAGAGGG	60
cAGCCGCAAG	aACCCCGCCC	gcACCTGCCG	tgACCTCAAG	atGTGCCACT	ctGACTGGAA	120
gAGTGGAGAG	tACTGGATTG	ACCCCAACCA	aggCTGCAAC	ctGGATGCCA	tCAAAGTCTT	180
ctGCAACATG	gAGACTGGTG	AGACCTGCGT	gtACCCCACT	cAGCCCAGTG	tGGCCAGAA	240
gaACTGGTAC	ATCAGCAAGA	ACCCCAAGGA	caAGAGGCA	gtCTGGTTCG	gcGAGAGCAT	300
gACCGATGGA	ttCCAGTTCG	AGTATGGCGG	ccAGGGCTCC	gACCTGCCG	atGTGGCCAT	360
ccAGCTGACC	ttCCTGCGCC	TGATGTCCAC	cgAGGCCTCC	cAGAACATCA	cCTACCACTG	420
caAGAACAGC	gtGGCCTACA	TGGACCAGCA	gACTGGCAAC	ctCAAGAAGG	CCCTGCTCCT	480
ccAGGGCTCC	AACGAGATCG	AGATCCGCGC	cgAGGGCAAC	agCCGCTTC	cCTACAGCGT	540
cACTGTCGAT	ggCTGACCGA	gtCACACCGG	nAGCCTGGGG	caAGACAGTG	ttGAATAACA	600
aaACCAACAA	ACCTCCGCG	TGCCCCATCA	tcGATGTGGC	ccccCTGGAC		650

<210> 968

<211> 629

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(629)

<223> n = A,T,C or G

<400> 968

ggtgtgacacc accctaaga gcctgagcca gcagatcgag aacatccgga gcccagagg	60
cacccgcgaa aaccccccgcgacactgccc tgacctaag atgtgccact ctgactggaa	120
gagtggagag tactggattt accccaacca aggctgcaac ctggatgcca tcaaagtctt	180
ctgcaacatg gagactggtg agacactgcgt gtacccact cagcccaactg tggcccagaa	240
gaactggtaa atcagaaca accccaaggaa caagaggcat gtctggttcg gcgagagcat	300
gaccgatgga ttccaggatcg agtatggcg ccagggctcc gacocctgccc atgtggccat	360
ccagctgacc ttccctgcgc tgatgtccac cgaggcctcc cagaacatca cctaccactg	420
caagaacacgc gtggcctaca tggaccagca gactggcaac ctcaagaagg ccctgctct	480
ccagggctcc aacgagatcg agatccgcgc cgagggcaac agccgcttca cctacagcgt	540
cactgtcgat ggctgcacga gtcacacccgg nagcctgggg caagacagtg attgaataca	600
aaaccaccaa gacctccgc ctgccccatc	629

<210> 969

<211> 222

<212> DNA

<213> Homo sapien

<400> 969

gaatgtcagg ggtgtgggg gctttggctg ggtcctgggt cttcgtgtag agacctggag	60
ggcgttgggtt cttgggggttc tccaggattc cagcctcgta gctgatgtgc atgagggtct	120
catccatgct ccacgggttc ttgggagtga ccgggatggg aatccctgtgt tgctttgcgt	180
actccatcag gtcattgcgg cccttgaacc ggtttagaa tt	222

<210> 970

<211> 79

<212> DNA

<213> Homo sapien

<400> 970

gcagggggccg cctggccttg ctccgctcca cgaggaggcc gccaaaccgca gggccggcgac	60
acggacggga agcaacacgaa	79

<210> 971

<211> 111

<212> DNA

<213> Homo sapien

<400> 971

ggaaaatgca tctacccac ccaaccagca gcctcacttt aggctgcctt gtcccccggcg	60
ccccattcgt cagccccacg cctcctccag gatccgggcc cagctcaat t	111

<210> 972

<211> 609

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(609)

<223> n = A,T,C or G

<400> 972

ggtgtgacacc accctaaga gcctgagcca gcagatcgag aacatccgga gcccagagg	60
--	----

cagccgcaag aaccccggcc gcacctgccc tgacctcaag atgtgccact ctgactggaa	120
gagtggagag tactggattt accccaacca aggctgcaac ctggatgcca tcaaagtctt	180
ctgcaacatg gagactgggt agacccctgcgt gtacccact cagcccaactg tggcccagaa	240
gaactgggtac atcagcaaga accccaaggaa caagaggcat gtctggttcg gcgagagcat	300
gaccgtatggaa ttccagggtcg agtatggcg ccagggtctcc gaccctgccc atgtggccat	360
ccagctgacc ttccctgcgc tgatgtccac cgaggctcc cagaacatca cctaccactg	420
caagaacaggc gtggcctaca tggaccagca gactggcaac ctcaagaagg ccctgctct	480
ccagggtctcc aacgagatcg agatccgcgc cgagggcaac agccgcttca cctacagcgt	540
cactgtcgat ggctgcacga gtcacacccgg naggctgggg caagacagtg attgaataca	600
aaaccacca	609

<210> 973

<211> 311

<212> DNA

<213> Homo sapien

<400> 973

ggggtttcca ctagccccac aatgcccaca accaccatgg gtgggtgttc tacaatggtc	60
acagccctcca ccacccctttt ctgtttcacc ttggatcccg gcctgtcgac ttcccgac	120
atgtgagtca tgccaggctt gtatcccagg aaggctgtga ggtggaccgg ctggacggg	180
tcatccttag ggaagcttcc cacttccca cgatgcgtc tgctgcgtt ccgaggcagg	240
aagccgaggg acccatgtct gggagcggag aactttctgt gagacatcac gcgtcgac	300
ggccgcgaat t	311

<210> 974

<211> 180

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(180)

<223> n = A,T,C or G

<400> 974

gaggcggaga ggatcatgtc cgggaactgc ggggttagtag cgatctgggt taccctggcg	60
tttgtggccct tgagggtgcc acgaagggtc atctgcttag tcatggcgcc ggcnagagcg	120
tgtgtcnctg cancgacnag gatggactg gatggcttag anaaactagc accacgtcga	180

<210> 975

<211> 187

<212> DNA

<213> Homo sapien

<400> 975

gcaccagcccc cggggactat gtgctcagcg tctcagagaa ctcgcgcgtc tcccactaca	60
tcatcaacag cagcggcccc cgccccccgg tgccaccgtc gcccccccg cctccgcccc	120
gggtgagcccc ctccagactc cgaataggag atcaagagtt tgattcatttgc cctgcatttac	180
tggaaatt	187

<210> 976

<211> 59

<212> DNA

<213> Homo sapien

<400> 976

ctgggtccgc tgcattggacc tggacgggaa cggcgccctg tccatgttcg agctcgagt	59
---	----

<210> 977

<211> 66

<212> DNA

<213> Homo sapien

<400> 977

ggtccagacg tcccagggttt ccaggttgca gtccctccag tcccagagct cccagggttt
cggttt

60

66

<210> 978

<211> 114

<212> DNA

<213> Homo sapien

<400> 978

ggagctgatg cgggAACCGG GCCCACTCGT GTAGGAGCGG CTGCTGAAGG CCCGGGGGCC
AGAGGTGGAC ACCTTGTAGG ACTTCTGGGT CACCCGTGCA CGCGGCCGCG AATT

60

114

<210> 979

<211> 177

<212> DNA

<213> Homo sapien

<400> 979

gacatTTTAT gacctctccc aataggggca gaggtgagca cccctggta aaagttaaga
ctcagttagt ataaataacgc caagaagagc tgtggctct ttcactgggt tcctcagaaa
ggctgtgagc agtgttgggt gcataacctgt cacagcatct agcaaagcac ctgaatt

60

120

177

<210> 980

<211> 188

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(188)

<223> n = A,T,C or G

<400> 980

ggagctgatg cgggAACCGG GCCCACTCGT GTAGGAGCGG NTGCTGAAGG CCCGGGGGCC
AGAGGTGGAC ACCTTGTAGG ACTTCTGGGT CACCCGTATG GACATGGTAG AGGCTGGAGT
GGAGGCAGGC GGGCGAACCG AGGCGGAGAT CCTAGAAGGA GCGGAGAAGG TCGACCGCGC
CGCGAATT

60

120

180

188

<210> 981

<211> 184

<212> DNA

<213> Homo sapien

<220>

<221> misc feature

<222> (1)...(184)

<223> n = A,T,C or G

<400> 981

ggggccccagg aggccgggtg ggcacaggcc atggcgaggg tggggcacaa gagccccaga
ccccggcgcc tttgcactga tgggctgcgg ntgggcacag gccatagtga ggggggcatg
agagccccag accggccggc tttgcactga tgagctgcag ggcaggtcga cgccggccgc

60

120

180

aatt	184
<210> 982	
<211> 98	
<212> DNA	
<213> Homo sapien	
<400> 982	
tccactagtc cagtgtggtg gaattcgcgg ccgcgtcgac cgaaccctga accctacggt	60
cccgacccgc gggcgaggcc gggtacctgg gctggat	98
<210> 983	
<211> 425	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(425)	
<223> n = A,T,C or G	
<400> 983	
gccggatata gtcctgccgg tggcagccata tgggctgate ctgatggcca tgctgtggcg	60
cggcctggcc cagggcgaaa gtggcgctg gggcgcgctg ctcttcacgc tctctgtatgg	120
cgtgctggcc tgggacaccc tcgcccagcc cctgccccat gcccncctgg tgatcatgac	180
cacctactat gctgcccagc tcctcatcac actgtcagcc ctcaggagcc cggtgccccaa	240
gactgactga cttagggagct tgaaggggccg gtgttcaggc ccttcctcc tgcaaggacc	300
tgggcctccc agcccagccc agcctgagaa ataccctcag cagcgaagct tcctgacgcc	360
tgtctgcagg cgccgctgccc gccgtcgctt ctggctgaag acgtttgagg acgatttgcg	420
gaatt	425
<210> 984	
<211> 148	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(148)	
<223> n = A,T,C or G	
<400> 984	
tcttnagcca gggagacagg gaccaggcag cacaggcctg ccagcaggag gatgccccac	60
gagacagaag acggcattgt cgattcaactg tcccaggta gtggtgggtc gacgcggccg	120
cgaattccac cacactggac tagtggat	148
<210> 985	
<211> 461	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(461)	
<223> n = A,T,C or G	
<400> 985	
ggtggacacc accctaaga gcctgagcca gcagatcgag aacatccgga gcccagaggg	60

cagccgcgaag	aaccccggcc	gcacacctggcg	tgacacctcaag	atgtgccact	ctgactggaa	120
gagtggagag	tactggattg	accccaacca	aggctgcaac	ctggatgcga	tcaaagtctt	180
ctgcaacatg	gagactggtg	agacacctgcgt	gtaccccaact	cagccccatg	tggcccanaa	240
gaactggtagc	atcancaaga	accccaagga	caagaggcat	gtctggttcg	gcgagagcat	300
gaccgatgga	ttccagttcg	agtatggcg	ccagggtctcc	gaccctgccc	atgtggccat	360
ccagctgacc	ttcttgcgccc	tgatgtccac	cgaggtctcc	canaacatca	cctaccactg	420
caagaacagc	gtggcctaca	tggaccanca	nactggcaac	c		461

<210> 986

<211> 138

<212> DNA

<213> Homo sapien

<220>

<221> misc feature

<222> (1) ... (138)

<223> n = A-T-S or S

<400> 986

gagcggctgc tgaaggcccg ggggccagag gtggacacct tgtangactt ctgggtcacc	60
ctgtggaca tggtagaggc aggagtggag gcaggcgggc cgaaccaggc ggagatccta	120
qaaggqagcqg agqtcnqc	138

<210> 987

<211> 555

<212> DNA

<213> Homo sapien

<220>

<221> misc feature

<222> (1)...(555)

<223> n = A, T, S or G

<400> 987

gcggccgccc	ttttttttt	tttttttag	tggtataact	atatttattg	tgcctgagag	60
gcaagggttag	ggaaaaatct	caacagaagc	aagtgggg	aaaatctgga	gtccccagta	120
aaaagcgaga	aggctctgc	tgtactcatc	acagaatggg	agagagggct	ctcaatagat	180
cattccctt	gtttctcccc	tgggcttctt	gagcttctcg	aagtcttc	ggatgatgtc	240
atataacaca	gcataagcat	tgcgatctc	catgaccatc	agccggatgt	cccggtactc	300
tgcctcatcc	agctcggtca	ccagctggcg	ataatcaccc	acatggggct	gcttgctgc	360
tttagtca	gcatcaccac	gctcagagaa	atacttagag	atttgagtg	ggaaggcttc	420
tancttgt	tggaggctgg	tcatcagctc	aaacaccc	tcctggacag	ccactccaaa	480
attgttacca	tcctcaatcc	gaggtatctg	cagctgcaac	caggtgggtga	ccaggttgag	540
ctqctcaatq	acatc					555

<210> 988

<211> 318

<212> DNA

<213> Homo sapien

<400> 988

gacggcgcgg	gcgacacctag	aacagctttag	aggaagcccc	gacagtggcg	.gcgtccatgt	60
cctccgaggg	cggcgaccgc	ggctccgcag	cctctcccag	ccgctccgcc	cggttccggg	120
gagtcggtcg	ggacaaaatg	gcctcccttc	ccccctcagg	gttctcggc	cgggacgcctc	180
ccacgggcga	gcaaggctgc	tctgccgtcg	aggaggcgca	gccccgcgtga	ggacagtctc	240
tctcccgagc	ggaaactccc	tgctagcacg	cggcgaggc	agcgaagaag	gacccttaag	300
tcqacqaqct	caqtataca	.				318

<210> 989
<211> 177
<212> DNA
<213> Homo sapien

<400> 989
gacattttat gacctctccc aataggggca gaggtgagca cccctggtga aaagttaaga 60
ctcagttagt ataaatacgc caagaagagc tgtggctct ttcactggtg tcctcagaaa 120
ggctgtgagc agtgttggtg gcatacctgt cacagcatct agcaaagcac ctgaatt 177

<210> 990
<211> 144
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(144)
<223> n = A,T,C or G

<400> 990
gtgaggcaccc ntggtaaaaa gttaagactc agttagtata aatacgccaa gaagagctgt 60
ggcttctttc actgggttcc tcagaaaggc tgtgagcgt gttggggca tacctgtcac 120
agcatcttagc aaagcacctg aatt 144

<210> 991
<211> 659
<212> DNA
<213> Homo sapien

<400> 991
ggggcacacc accctaaga gcctgagcca gcagatcgag aacatccgg accccagaggg 60
cagccgcaag aaccccccgc gcacctgccc tgacctcaag atgtgccact ctgactggaa 120
gagtggagag tactggattt accccaacca aggctcaac ctggatgcca tcaaagtctt 180
ctgcaacatcg gagactggtg agacactcggt gtaccccaact cagcccagtg tggcccagaa 240
gaactggtagt atcagcaaga accccaagga caagaggcat gtctggttcg gcgagagcat 300
gaccgatggta ttccaggatcg agtatggcg ccagggctcc gaccctgccc atgtggccat 360
ccagctgacc ttccctgcgc tgatgtccac cgaggccctcc cagaacatca cttaccactg 420
caagaacagc gtggcttaca tggaccagca gactggcaac ctcaagaagg ccctgtct 480
ccagggtcc aacgagatcg agatccgcgc cgagggcaac agccgttca cttacagcgt 540
cactgtcgat ggctgcacga gtcacacccgg agcctggggc aagacagtga ttgaatacaa 600
aaccaccaag acctccggcc tgcccatcat cgatgtggcc cccttggacg ttggtgccc 659

<210> 992
<211> 226
<212> DNA
<213> Homo sapien

<400> 992
tccgctgcac tggtttgcc ggattcttgg gcttcccaca tactgcttca cattcagggaa 60
gtttatctcc aacagccttta ttatccact gcttcttatac atttaaagggtg tataactccat 120
ctccttctgt ggcagtttg tagtagttct tacactgttgc gcaaccgag tgctccacat 180
agccatgtgc aatctcgggg ggcttcgggc agccgtcattc tgcgt 226

<210> 993
<211> 160
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(160)

<223> n = A,T,C or G

<400> 993

ctcggttnng	agcgnctgct	gaaggcccgg	ggccanagg	nggacacctt	gtacgacttc	60
tgggtcaccc	tgtatggacat	ggtanangct	ggagtggagg	caggcgggcc	gaaccaggcg	120
gagatcctag	aaggagcgg	ggtcgacgcg	gcccgcatt			160

<210> 994

<211> 622

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(622)

<223> n = A,T,C or G

<400> 994

naggctganc	cagcagatcg	agaacatccg	gagcccagag	ggcagccgca	agaaccccgc	60
ccgcacctgc	cgtgacctca	agatgtgcca	ctctgactgg	aagagtggag	agtactggat	120
tgaccccaac	caaggctgca	acctggatgc	catcaaagtc	ttctgcaca	tggagactgg	180
tgagacctgc	gtgtacccca	ctcagcccg	tgtggcccg	aagaactgg	acatcagcaa	240
gaaccccaag	gacaagaggc	atgtctgg	cggcgagagc	atgaccgatg	gattccagg	300
cggatatggc	ggccagggct	ccgacccctgc	cgatgtgcc	atccagctga	ccttcctgcg	360
cctgtatgtcc	accggaggc	cccagaacat	cacctaccac	tgcaagaaca	gcgtggccta	420
catggaccag	cagactggca	acctcaagaa	ggccctgctc	ctccagggct	ccaaacgagat	480
cgagatccgc	gccgagggca	acagccgctt	cacctacagc	gtcactgtcg	atggctgcac	540
gagtacaccc	ggagcctgg	gcaagacagt	gattgaatac	aaaaccacca	agacccccc	600
cctgccccatc	atcgatgtgg	cc				622

<210> 995

<211> 158

<212> DNA

<213> Homo sapien

<400> 995

aataagattt	tgccagaggg	gaaggctcg	ttgtgctgtt	aataacttaa	taatgacaaa	60
ataatgagggt	gtatatgctt	tacatgca	gttatatagt	gaattgttct	gattcttaat	120
tgttaagtctg	gttttttat	ctgttaagata	attgtgt			158

<210> 996

<211> 295

<212> DNA

<213> Homo sapien

<400> 996

cggccgcgtc	gactctcgga	gcccggacgg	caaatggcgg	acttcgacac	ctacgacat	60
cgggcctaca	gcagcttcgg	cgccggcaga	gggtcccg	gcagtgcgtt	tggccatgt	120
tcccgtagcc	agaaggagtt	gcccacagag	ccccctaca	cagcatacgt	aggaaatcta	180
cctttaata	cggttcagg	cgacatagat	gctatctta	aggatctcg	cataaggagt	240
gtacggctag	tcaagagacaa	agacacagat	aaatttaaag	gattctgct	tgttag	295

<210> 997

<211> 125

<212> DNA
<213> Homo sapien

<400> 997
cgccgcgcctt tttttttttt tttaagg tttttggct gtaagtttat tcaatgcaa 60
agaatcctct ccaattttac tgaggtggct gaccacgtcc acgaccaaat ccgcctctaa 120
actgg 125

<210> 998
<211> 152
<212> DNA
<213> Homo sapien

<400> 998
gagctgatgc gggAACCGGG cccactcggt taggagccgc tgctgaaggc ccggggggcca 60
gaggtggaca ctttgttagga ctctgggtc accctgtatgg acatggtaga ggctggagt 120
gaggcaggcg gcccgaacca ggccggagatc ct 152

<210> 999
<211> 119
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(119)
<223> n = A,T,C or G

<400> 999
taaAGCAACC actaaaccac ctncagcang agaaAGCAGC agagagctct tcanacagct 60
cagactctga cagctnngag gatgatgaag ctccctctaa gccagctgg accaccaag 119

<210> 1000
<211> 209
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(209)
<223> n = A,T,C or G

<400> 1000
ccctcnngag gcggagagga tcatgtccgg gaactgcggg gtagtagcga tctgggttac 60
ccagccgttg tggcccttga ggggccacg aagggtcatc tgctcagtca tggccggcgc 120
gagagcgtgt gtgcgtcag cgacgaggat ggcactggat ggcttagaga aactagcacc 180
acaaccccttc ctgcgtcgac gcggccgcg 209

<210> 1001
<211> 390
<212> DNA
<213> Homo sapien

<400> 1001
gtggacacca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc 60
agccgcaaga accccgcccc cacctgcccgt gacctcaaga tgtgccactc tgactggaa 120
agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgccat caaatcttc 180
tgcaacatgg agactggta gacctgcgtg taccctactc agcccagtgt ggcccagaag 240

aactggtaca tcagcaagaa ccccaaggac aagaggcatg tctggttcgg cgagagcatg	300
accgatggat tccagttcga gtatggcgcc cagggtctccg accctgccga tgtggccatc	360
cagctgacct tcctgcgcct gatgtccacc	390

<210> 1002

<211> 613

<212> DNA

<213> Homo sapien

<400> 1002

gtggacaccca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc	60
agccgcaaga acccccggccg cacctgcgt gacctcaaga tgtgccactc tgactggaaag	120
agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgccccat caaagtcttc	180
tgcacatgg agactggtga gacctgcgtg tacccactc agcccaagtgt ggccccagaag	240
aactggtaca tcagcaagaa ccccaaggac aagaggcatg tctggttcgg cgagagcatg	300
accgatggat tccagttcga gtatggcgcc cagggtctccg accctgccga tgtggccatc	360
cagctgacct tcctgcgcct gatgtccacc gaggcctccc agaacatcac ctaccactgc	420
aagaacagcg tggcctacat ggaccaggac actggcaacc tcaagaaggc cctgctcc	480
cagggtctcca acgagatcga gatccgcgc gaggggcaaca gccgcttcac ctacagcgtc	540
actgtcgatg gctgcacgag tcacacccga gcctggggca agacagtgtat tgaataaaaa	600
accaccaaga cct	613

<210> 1003

<211> 639

<212> DNA

<213> Homo sapien

<400> 1003

gtggacaccca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc	60
agccgcaaga acccccggccg cacctgcgt gacctcaaga tgtgccactc tgactggaaag	120
agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgccccat caaagtcttc	180
tgcacatgg agactggtga gacctgcgtg tacccactc agcccaagtgt ggccccagaag	240
aactggtaca tcagcaagaa ccccaaggac aagaggcatg tctggttcgg cgagagcatg	300
accgatggat tccagttcga gtatggcgcc cagggtctccg accctgccga tgtggccatc	360
cagctgacct tcctgcgcct gatgtccacc gaggcctccc agaacatcac ctaccactgc	420
aagaacagcg tggcctacat ggaccaggac actggcaacc tcaagaaggc cctgctcc	480
cagggtctcca acgagatcga gatccgcgc gaggggcaaca gccgcttcac ctacagcgtc	540
actgtcgatg gctgcacgag tcacacccga gcctggggca agacagtgtat tgaataaaaa	600
accaccaaga cctecccgt gccccatc	639

<210> 1004

<211> 85

<212> DNA

<213> Homo sapien

<400> 1004

ccgttattcg tcgtggctca agccggccca cgccgccccca agggctcc tc cgacctccc	60
ggcctgccc tccggccact gcggg	85

<210> 1005

<211> 636

<212> DNA

<213> Homo sapien

<400> 1005

gtggacaccca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc	60
agccgcaaga acccccggccg cacctgcgt gacctcaaga tgtgccactc tgactggaaag	120
agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgccccat caaagtcttc	180

tgeaacatgg agactggtga gacctgcgtg taccccactc agcccagtgt ggcccagaag	240
aactggtaca tcagcaagaa ccccaaggac aagaggcatg tctggttcgg cgagagcatq	300
accgatggat tccagttcga gtatggcgcc cagggctccg accctgccga tgtggccatc	360
cagctgacct tcctgcgcct gatgtccacc gaggcctccc agaacatcac ctaccactgc	420
aagaacagcg tggcctacat ggaccagcag actggcaacc tcaagaaggc cctgtcctc	480
cagggctcca acgagatcga gatccgcgcc gagggcaaca gccgcttcac ctacagcgtc	540
actgtcgatg gctgcacgag tcacacccgga gcctggggca agacagtgtat tgaataaaaa	600
accaccaaga cctccgcct gcccatcatc gatgtg	636

<210> 1006

<211> 629

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(629)

<223> n = A,T,C or G

<400> 1006

gtggacacca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc	60
agccgcaaga accccccccg cacctgcgt gacccatggaa tgtgccactc tgactggaa	120
agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgcccataaagtcttc	180
tgcacatgg agactggtga gacctgcgtg taccccactc agcccagtgt ggcccagaag	240
aactggtaca tcagcaagaa ccccaaggac aagaggcatg tctggttcgg cgagagcatg	300
accgatggat tccagttcga gtatggcgcc cagggctccg accctgccga tgtggccatc	360
cagctgacct tcctgcgcct gatgtccacc gaggcctccc agaacatcac ctaccactgc	420
aagaacagcg tggcctacat ggaccagcag actggcaacc tcaagaangc cctgtcctc	480
cagggctcca acgagatcga gatccgcgcc gagggcaaca gccgcttcac ctacagcgtc	540
actgtcgatg gctgcacgag tcacacccgga gcctggggca agacagtgtat tgaataaaaa	600
accaccaaga cctccgcct gcccatcatc gatgtg	629

<210> 1007

<211> 575

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(575)

<223> n = A,T,C or G

<400> 1007

gtggacacca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc	60
agccgcaaga accccccccg cacctgcgt gacccatggaa tgtgccactc tgactggaa	120
agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgcccataaagtcttc	180
tgcacatgg agactggtga gacctgcgtg taccccactc agcccagtgt ggcccagaag	240
aactggtnca tcagcaagaa ccccaaggac aagaggcatg tctggttcgg cgagagcatg	300
accgatggat tccagttcga gtatggcgcc cagggctccg accctgccga tgtggccatc	360
cagctgacct tnctgcgcct gatgtccacc gaggcctccc agaacatcac ctaccactgc	420
aagaacagcg tggcctacat ggaccagcag actggcaacc tcaagaaggc cctgtcctc	480
cagggctcca acgagatcga gatccgcgcc gagggcaaca gccgcttcac ctacagcgtc	540
actgtcgatg gctgcacgag tcacacccgga gcctg	575

<210> 1008

<211> 62

<212> DNA

<213> Homo sapien

<400> 1008
 cgatggagcg tggtaggga gggccacag tgtccactcg ccgtgtgcga aggttgactc 60
 gg 62

<210> 1009
<211> 180
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(180)
<223> n = A,T,C or G

<400> 1009
 gagctgatgc gggAACCGGG cccactcgtaggagcggc tgctgaaggc cggggggcca 60
 gaggtggaca ctttgttagga cttctgggtc accctgatgg acatggtaga ggcaggagtg 120
 gaggcaggcg ggccgaacca ggccggagatc ctanaaggag cggaggtcga cgccggcccg 180

<210> 1010
<211> 169
<212> DNA
<213> Homo sapien

<400> 1010
 gaggcggcac aggtcacgca tggccagcac ggccatgc ggcgtgcgtc cgctcatgtt 60
 ttcgcggagg taggtctggg ccaggttctt gagtttgaag ctgtggccc cgggcacacg 120
 ctcccgatgc agaggcaggcg cagccaggaa gcccggatgc gcctcctgg 169

<210> 1011
<211> 170
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(170)
<223> n = A,T,C or G

<400> 1011
 gagctgatgc gggAACCGGG cccactcgtaggagcggc tgctgaaggc cggggggcca 60
 gaggtggaca ctttgttanna cttctgggtc accctgatgg acatggtaga ggctggagtg 120
 gaggcaggcg ggccgaacca ggccggagatc ctagaaggag cggaggtcga 170

<210> 1012
<211> 344
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(344)
<223> n = A,T,C or G

<400> 1012
 gtggacacca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc 60
 agccgcaaga accccggcccg cacctgccgt gacctcaaga tgtgccactc tgactggaa 120

agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgccat caaagtcttc	180
tgcacacatgg agactggtga gacctgcgtg taccccactc agcccagtgg nccanaanaa	240
ctggnnncatc ngcangaacc ccnnggacan gaggcnntgc tggttcgccg agagcatgac	300
cnatggattc cantnnnagt atggnggcca gggctccgac cctg	344

<210> 1013

<211> 157

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(157)

<223> n = A,T,C or G

<400> 1013

atagaacccc gcccccacct nncgtgacct caagatgtgc cactctgact ggaagagtgg	60
agagtactgg attgacccca accaaggctg caacctggat gccatcaaag tcttctgcaa	120
catgganact ggtgannctt gcgtgtaccc cactcag	157

<210> 1014

<211> 621

<212> DNA

<213> Homo sapien

<400> 1014

gtggacacca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc	60
agccgcaaga accccccccg cacctgcccgt gacctcaaga tgtgccactc tgactggaa	120
agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgccat caaagtcttc	180
tgcacacatgg agactggtga gacctgcgtg taccccactc agcccagtgt gccccagaag	240
aactggtaaca tcagcaagaa ccccaaggac aagaggcatg tctgttcgg cgagagcatg	300
accgatggat tccagttcga gtatggcgcc cagggctccg accctgcccga tgtggccatc	360
cagctgaccc ttctgcgcct gatgtccacc gaggcctccc agaacatcac ctaccactgc	420
aagaacagcg tggcctacat ggaccagcag actggcaacc tcaagaaggc cctgctcc	480
cagggttcca acgagatcga gatccgcgc gaggcaaca gccgcttcac ctacagcgtc	540
actgtcgatg gtcgtacgag tcacacccgga gcctggggca agacagtgtat tgaataaaaa	600
accaccaaga cctccggcct g	621

<210> 1015

<211> 104

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(104)

<223> n = A,T,C or G

<400> 1015

gtggacacca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc	60
agccgcaaga accccccccg cacctgcccgt nctcnagatg tgcc	104

<210> 1016

<211> 101

<212> DNA

<213> Homo sapien

<400> 1016

gctgaccagg cgaaaagagg agctgccat gaagggggc accctggcg gatatccctgg 60
 ggagccgcgtt gttggaccacc gácatgttgg tgatgtctg g 101

<210> 1017

<211> 172

<212> DNA

<213> Homo sapien

<400> 1017

acattttagt acctctccca atagggcag aggtgagcac ccctggtgaa aagttaagac 60
 tcagttagta taaatacgcc aagaagagct gtggcttctt tcactgggtgt cctcagaaag 120
 gctgtgagca gtgttggtgg catacctgtc acagcatcta gcaaaggcacc tg 172

<210> 1018

<211> 637

<212> DNA

<213> Homo sapien

<400> 1018

gtggacaccca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc 60
 agccgcaaga accccccccg cacctgcgtt gacctcaaga tgtgccactc tgactggaaag 120
 agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgcccataaagtcttc 180
 tgcaacatgg agactgttga gacctgcgtt taccccaactc agcccaactgttggccagaag 240
 aactggtaca tcagcaagaa ccccaaggac aagaggcatg tctgggttccgg cgagagcatg 300
 accgatggat tccagttcga gtatggccgc cagggctcccg accctgcccataaactgc 360
 cagctgaccc tacctgcgcct gatgtccacc gaggcctcccg agaacaatcac ctaccactgc 420
 aagaacagcg tggcctacat ggaccagcag actggcaacc tcaagaaggc cctgctcctc 480
 cagggctcca acgagatcga gatccgcgc gaggcacaaca gcccgttccac ctacagcgtc 540
 actgtcgatg gctgcacgag tcaacaccggc gcctggggca agacagtgtat tgaataaaaa 600
 accaccaaga cctccgcct gcccatac gatgttgg 637

<210> 1019

<211> 623

<212> DNA

<213> Homo sapien

<400> 1019

gtggacaccca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc 60
 agccgcaaga accccccccg cacctgcgtt gacctcaaga tgtgccactc tgactggaaag 120
 agtggagagt actggattga ccccaaccaa ggctgcaacc tggatgcccataaagtcttc 180
 tgcaacatgg agactgttga gacctgcgtt taccccaactc agcccaactgttggccagaag 240
 aactggtaca tcagcaagaa ccccaaggac aagaggcatg tctgggttccgg cgagagcatg 300
 accgatggat tccagttcga gtatggccgc cagggctcccg accctgcccataaactgc 360
 cagctgaccc tacctgcgcct gatgtccacc gaggcctcccg agaacaatcac ctaccactgc 420
 aagaacagcg tggcctacat ggaccagcag actggcaacc tcaagaaggc cctgctcctc 480
 cagggctcca acgagatcga gatccgcgc gaggcacaaca gcccgttccac ctacagcgtc 540
 actgtcgatg gctgcacgag tcaacaccggc gcctggggca agacagtgtat tgaataaaaa 600
 accaccaaga cctccgcct gcccatac gatgttgg 623

<210> 1020

<211> 233

<212> DNA

<213> Homo sapien

<400> 1020

ggtagagaaac cctgcggctg cgctttcggt gcccgcgaga ggcgcgtgggg cgcccgccag 60
 gggccgcgtc gggctccggg agagggtcga aggtgaagat ctcaggaccg gagcccccggc 120
 ggggtcccg gatgttggag gggccgggg tcggggcctg caggatggtc atggcgggt 180

ggcagctgcg agagtgacac atggtaggcc gagcggaggt cgacgcggcc gcg	233
<210> 1021	
<211> 180	
<212> DNA	
<213> Homo sapien	
<400> 1021	
gagctgatgc gggAACCGGG cccactcggt taggagcggc tgctgaaggc ccggggggcca	60
gaggtggaca ctttgttagga cttctgggtc accctgtatgg acatggtaga ggcaggagtg	120
gaggcaggcg ggccgaacca ggccggagatc ctagaaggag cggaggtcga cgccggcccg	180
<210> 1022	
<211> 636	
<212> DNA	
<213> Homo sapien	
<400> 1022	
gtggacacca ccctcaagag cctgagccag cagatcgaga acatccggag cccagagggc	60
agccgcaga accccggccg caccgtccgt gacctcaaga tgtgccactc tgactggaa	120
atggagagt actggattga ccccaaccaa ggctgcaacc tggatgcccataaaatgttcc	180
tgcacatgg agactgggtga gacctcggtg taccctactc agcccaatgttggccaga	240
aactggtaca tcagcaagaa ccccaaggac aagaggcatg tctgttcgg cgagagcatg	300
accgatggat tccagttcga gtatggcgcc cagggctccg accctgcccataccactgc	360
cagctgaccc ttctgcgcct gatgtccacc gaggcctccc agaacatcac ctaccactgc	420
aagaacagcg tggcctacat ggaccagcag actggcaacc tcaagaaggc cttgtccctc	480
cagggctcca acgagatcga gatccgcgc gaggcaaca gccgccttacatcgtc	540
actgtcgatg gtcacacggc tcaacccggc gcctggggca agacagtgtat tgaataaaaa	600
accaccaaga cttccgcct gcccatcatac gatgtg	636
<210> 1023	
<211> 162	
<212> DNA	
<213> Homo sapien	
<400> 1023	
aggcggagag gatcatgtcc gggactcgcg gggtagtagc gatctgggtt acccagccgt	60
tgtggccctt gagggtgcca cgaagggtca tctgtctagt catggcgccg gcgagagcgt	120
gtgtcgctgc agcgacgagg atggcacgtc gacgcccccg cg	162
<210> 1024	
<211> 124	
<212> DNA	
<213> Homo sapien	
<400> 1024	
tccactagt cagtgtggtg gaattcgccgg ccgcgtcgac gccgagcagg aggccatc	60
atgggagtgg acatccgcca taacaaggac cgaaagggtc ggcgcagggc gcccagac	120
cagg	124
<210> 1025	
<211> 635	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(635)	

<223> n = A,T,C or G

<400> 1025

ccccccaatt	ccagctgcca	caccacccac	ggtgactgca	ttagttcgga	tgtcatacaa	60
aagctgattt	aagcaacccct	ctactttttt	gtcgtgagcc	ttttgcgg	tgcagggttc	120
attggctgtt	tttgtgacgt	tgtcattgca	acagaatggg	ggaaaggcac	tgttctctt	180
gaagtaggggt	gagtcctcaa	aatccgtata	gttggtaag	ccacagcac	tgagccctt	240
catgggtgg	ttccacactt	gagtgaagtc	ttccctggaa	ccataatctt	tcttgatggc	300
aggcactacc	agcaacgtca	ggaagtgc	agccattgtg	gtgtacacca	aggcgaccac	360
agcagctgca	acctcagcaa	tgaagatgag	gaggaggatg	aagaagaacg	tcacgaggc	420
acacttgc	tcagtcttag	cacca	gcccaggaaa	ccaagagcaa	agaccacaac	480
gcccgtcg	atgaggaagt	agcccacgtt	gacaaactgc	atggacttgg	acgacagtgg	540
cccgaa	ttcagaaagg	atgccccatc	gattgacacc	cagatgccc	ctgccaacag	600
ggtgcacca	cacagaanga	tgacaaatt	gaaga			635

<210> 1026

<211> 355

<212> DNA

<213> Homo sapien

<400> 1026

ccatctgctg	tttttctca	gcacettccg	tctttgttc	aataactttag	acgaccctcc	60
aagatgacct	acgggctct	acaacattti	tataagcaac	tgagagaaga	ttccctctct	120
cattggataa	ttcagctct	tgctcagtt	cagacttcat	gcaggtgccc	atgtcatcat	180
atcgctc	ctgctcggcc	agtttggc	tctgaaccag	ctcattttt	tccatgactg	240
gatgttctgt	gtccggagt	ggtgggtggc	gcggacggac	gggctcagca	gtctctggc	300
ggcgccggcg	gcagcagcgg	cgaggctgag	actctgtccc	gtcgacgcgg	ccgcg	355

<210> 1027

<211> 148

<212> DNA

<213> Homo sapien

<400> 1027

tgcacccctg	gtgcccatt	ctgtggc	ggtgcccagg	aggggccaga	gctgggtgg	60
gctggctgtt	tttctccctc	ttggccctgag	cccctggctc	tggagctgccc	tgttagggct	120
gaaggggccat	cccactgcca	tttcccg				148

<210> 1028

<211> 479

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(479)

<223> n = A,T,C or G

<400> 1028

ggcgccctgg	tgcttaccac	ctggaaactg	gtgagggt	gggagaactc	ctgggtggacc	60
ctagtggaa	cattccagta	atttctt	gtcgtgc	caggtgagta	gggcgacatc	120
tgtggccgg	tttgtgaa	tcattgcaga	gaggaaggaa	gccgaggagg	ggagcctgca	180
gtgagggtgt	cctgggttcc	tccgg	accaccctt	ggccacgccc	tctagtccac	240
acctgaggag	tttgtcaggt	agaaggggcg	gatgacc	cggaagccgt	tgaagtgc	300
tgcggggc	gggaaggagg	agg	cgagctt	gtgtccagg	cactggaa	360
cgcaccc	cagccctc	aatcggt	gtctgccc	aagagcc	cgcagagcat	420
cagggtttt	tttctgt	aatgg	atctgac	ccagacttgg	tgaggccc	479

<210> 1029
 <211> 64
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(64)
 <223> n = A,T,C or G

<400> 1029

gcgttnatgt agttctttag cacctcggga atggcccccct cggcacggc tggcaccggc
 tggg 60
 64

<210> 1030
 <211> 531
 <212> DNA
 <213> Homo sapien

<400> 1030

cctgtcagag tggcaactggt agaagttcca ggaacctgta actgtaaagg ttcttcattca
 gtgcacacag gatgacatga aatgatgtat tcagaagtgt cctggaatgg ggcccatgag 60
 120
 atggttgtct gagagagagc ttcttgctt acattcgccg ggtatggct tggccttatgc
 180
 cttatggggg tggccgttgt gggccgtgt gtcgcctaa aaccatgttc ctcaaagatc
 240
 atttgggcc caacactggg ttgctgacca gaagtgcacag gaagctgaat accattcca
 300
 gtgtcatacc cagggtgggt gacgaaagggt gtctttgaa ctgtggaaagg aacatccaag
 360
 atctctggc catgaagatt ggggtgtgga agggttacca gttggggaaag ctcgtctgtc
 420
 ttttccttc caatcagggg ctcgtcttc tgattattct tcagggcaat gacataaatt
 480
 gtatattcgg ttcccggttc caggccagta atagtagcct ctgtgacacc a 531

<210> 1031
 <211> 518
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(518)
 <223> n = A,T,C or G

<400> 1031

cctgggttgtt ggagcgaatg ggccgattcc accggatcct ggagcctggt ttgaacatcc
 tcateccctgtt gtttagaccgg atccgatatg tgcagagtctt caaggaaattt gtcataacg 60
 120
 tgcctgagca gtcggctgtt actctcgaca atgtaactctt gcaaatcgat ggagtccttt
 180
 acctgcgcattt catggaccct tacaaggcaaa gctacgggtt ggaggaccctt gagtatgcgg
 240
 tcaccccaactt agctcaaaca accatgagat cagagctcgg caaactctt ctggacaaag
 300
 tcttccggaa acgggatcc ctgaatgcca gcattgtggta tgccatcaac caagctgctg
 360
 actgctgggg tatccgttc ctccgttatg agataaaggat tatccatgtg ccaccccggg
 420
 tgaaagagtc tatcgatgtt cangtggagg cagagcggcg gaaacggggcc acagttcttag
 480
 agtctgaggg gacccgagag tcggccatca atgtggca 518

<210> 1032
 <211> 116
 <212> DNA
 <213> Homo sapien

<400> 1032

aaaaattttttt gtggaaattaa ttaaaggtag ttggctatat cgctatcatt tcattttttt 60

gacattatgt	aatattttta	ctggaaaata	agactaataa	attgttaaaa	gttttt	116
<210>	1033					
<211>	241					
<212>	DNA					
<213>	Homo sapien					
<400>	1033					
caagggtcat	gatggcagga	gtaatcagag	gtgttcttgt	gttgtataa	gggtggagag	60
gttaaaggag	ccacttatta	gtaatgttga	tagtagaaatg	atggcttaggg	tgacttcata	120
ttagattgtt	tgggctactg	ctcgcaagtgc	gccgatcagg	gcgttagttt	agttttagtc	180
tcaccctgtat	caggaggattt	agtaaacggc	taggctagag	gtggctagaa	taaataggag	240
g						241
<210>	1034					
<211>	234					
<212>	DNA					
<213>	Homo sapien					
<400>	1034					
ccacagctgg	gcgcttcacc	cagtggtaact	ttgggtgccta	ctccatttgt	gcgggcgtgt	60
ttgtgtgcct	gctggagtaac	ccccggggga	agaggaagaa	gggctccacc	atggagcgt	120
ggggacagaa	gcacatgacc	gccgtggta	agctgttcgg	gcctttacc	aggaattact	180
atgttcgggc	cgtcctgcat	ctccctgtct	cggtccccgc	cggcttcctg	ctgg	234
<210>	1035					
<211>	434					
<212>	DNA					
<213>	Homo sapien					
<220>						
<221>	misc_feature					
<222>	(1)...(434)					
<223>	n = A,T,C or G					
<400>	1035					
gtacaagctt	tttttttttt	tttttttttt	ttttttttng	gntacggnnag	cacttttatt	60
tttccttaca	caatgacgtg	ttgctggggc	ctaatgttct	cacataacag	tanaaaaacca	120
aaatttggtt	tcatntnttc	aaagaatcga	naattgcgt	aaaaaaaaac	cttacataaa	180
ttaanaaatga	atacatttac	aggcgtaaat	gcaaaccgnt	tccaactnaa	agcaagtaac	240
agccccacggn	gttntggcca	aagacatnag	ntaanaaaaagg	aaaactgggtc	ctacggcttg	300
gactttncaa	ccctgacaga	cccgcaagac	aaaacaactg	gttnttgccca	gcctntanag	360
aaatcccana	acactnagcc	ctgacacgtt	aataccctgc	acanatcana	ggctgntgac	420
cacacanact	cacc					434
<210>	1036					
<211>	294					
<212>	DNA					
<213>	Homo sapien					
<400>	1036					
aaagccatgg	gaacccagat	caccagatcc	ggagcctgac	tctageccct	gagccacctg	60
ttggccctaac	accctgtctg	actctctccc	gctgcagcag	ccagtccttc	ctgcactcca	120
gcaactccag	ccatcagtca	tctccagat	ccttggaaag	tccagccaac	tcttcctcca	180
gcctccacag	ccttggctca	gtgtccctgt	gtacaagacc	cagtgaattc	caggctccca	240
gaaaccccccac	cctaaccatg	ggccaaccca	gaacacccca	ctctccacca	ctgg	294
<210>	1037					

<211> 547
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(547)
<223> n = A,T,C or G

<400> 1037

aaagatataat ttccgtgt	attatctaataaaaaagaa	aaacnnaaca	60
agcnnaatgt tcaagtaaa	aaaaaaacat	accgggttag	120
cataaaaaca aatggctgt	aatcttataa	caatgcacta	180
aaaaatttaa tatcttc	catacata	accacatag	240
aaggaaactt	ttatgtaa	catttcactg	300
tgtaatgnta aaattacatt	ataattttc	tcaacaatgt	360
ttcaaaaaca aggnatcaa	gtgctat	ttattgtaa	420
tccttcatt tctat	tttgcatt	gacaaatgtat	480
taaaaaaggg aaccatcca	tttgcata	ttcaatttc	540
aaaaaacagc cgttcata	tttgcata	ttacaaga	547
atgtcaaaaaa	aanttctgat	tttatacatg	
tagatca			

<210> 1038

<211> 451
<212> DNA
<213> Homo sapien

<400> 1038

ccactctgcc caggagctgc	cgaccatcag	gacgcctgca	gacatttaca	gagccttgt	60
tgtgttgt	aatggagaat	atgtccctcg	caaattccatc	ctgaagtctc	120
gaatagtgt	tgttagcaca	ctagtggaa	cagtgcgt	gaatttgatg	180
agttttgagg	agttatcgt	gccaagaagc	cacttgca	gacaccgtg	240
ggaagaggaa	ccacaagaaa	atccaaagaa	acttttgc	agagcattt	300
tttttctgga	actgttatag	aaaaagaatt	ttatcgat	ttatcgat	360
cattgtcat	cccccaactac	ccacttac	ttcttaacac	caccccccac	420
tgaagaaact	ggaaagaggg	tttcaaaagt	t	tttcaaaagt	451

<210> 1039

<211> 533
<212> DNA
<213> Homo sapien

<400> 1039

ccaagcccg	gcaccgtttt	ttgttaaggta	tctcttaag	cgccctggac	ccccagcgag	60
agtccgaaat	tagcagagcg	ctaaaaggag	gggccccaa	gcagtgggc	tttgagctag	120
aaggcctttt	ttacctgttt	gacaggtat	ttctgtattt	ggttgtgatt	gaatttgata	180
gggttagagaa	ttaaatgagg	gaagctgtgt	atacttcct	gtaaagacta	ttatatgact	240
gattacatta	acatcatatg	aaaaaaaatt	gtcaaaagta	ctccggaaa	ccccctaaat	300
agttgtaaa	gtacagaaca	catgattgtc	aatatatgt	aatacaggat	gagctaggac	360
agaggggccc	ttctttcaca	ccacttaaat	tagtcccac	tttaacctt	tttgagatt	420
acttctggag	agttaaatgc	agatagactt	aacttcct	agtcaggtg	gactgagac	480
tgactgtac	aataattacg	gagccaaat	gcagtaaaac	agcctgtttt	tca	533

<210> 1040

<211> 317
<212> DNA
<213> Homo sapien

<220>

<221> misc_feature
<222> (1)...(317)
<223> n = A,T,C or G

<400> 1040

tgcctgctgg ggattactcg atcaaaaacct tccttcctg gctacttccc ttccctccgg	60
gccttcctt ttgaggagct ggaggggtgg ggagctagag gccacctatg ccagtgctca	120
aggtaactgg gagtgtggc tgcccttgnt gcctgcaccc ttcctcttc cctctccctc	180
tctctggac caactgggtac aagagatggg atgctccgac agcgtctnca attatgaaac	240
taatcttaac ccctgtctg tcagataccc tgtttctgga gtcacatcag tgaggagggta	300
tgtggtaag aggagca	317

<210> 1041
<211> 407
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(407)
<223> n = A,T,C or G

<400> 1041

ccaagacagt ccacttacat ggatcggtgc ttcaagcaat ttgttncaagc catggtttag	60
catggacatg aactctctta acatgtantt ctttgggggc attttgtctg aaccacaatt	120
gtgaaggcag ctcagcttag tgcaccaaatt ttaactgttg tatataaaagc aaataagtca	180
gcanatgggt gaagagggtcc agaatgatgat gaaaaacta ctttttagag aaacananca	240
actttgttagc aacaaattaa atatagtatt agattgttac ttacgttagat tttatttta	300
ctatgcctt ccaagtacat ccttaaacaa agtagtatgt acatgaaatt gcacttaacc	360
aaaactattt tgtaaaaacaa attttaattt cctcagggtt ttaattt	407

<210> 1042
<211> 519
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(519)
<223> n = A,T,C or G

<400> 1042

ccaccacacc caattccttg ctggtatcat ggcagccgcc acgtgccagg attaccggct	60
acatcatcaa gtatgagaag cctgggtctc ctccccagaga agtggccct cggccccggc	120
ctgggtgtcac agaggctact attactggcc tggaaacccggg aacccaatat acaatttatg	180
tcattgccct gaagaataat cagaagagcg agcccctgat tggaaaggaaa aagacagacg	240
agcttccccca actggtaacc cttccacacc ccaatcttca tggaccagag atcttggatg	300
ttcccttccac agttcaaaag acccccttgc tcacccaccc tgggtatgac actggaaatg	360
gtattecagct tcctggact tctggtcagc aacccagtgt tggcaacaa atgatcttg	420
aggaacatgg ttttagcgg accacacccgg cccacaacgg ncaccccat aaaggcatacg	480
gccaagacc atacccggc aatgtaggac aagaaagt	519

<210> 1043
<211> 294
<212> DNA
<213> Homo sapien

<400> 1043

ccatgacagc agctactgct tcacatagca gcatacgcca catgttcacc ttcaatattt	60
ttccagtctg tctatcttcc tccacacagt agcagctatc atagaactct gtgaaagcag	120
ttgccagtc atatatataa tcacagagag tgtggagaaa taagtcatct aaaatcttt	180
gcagaatctc agggAACCGT aaaatgcacc ggcctagttt ccattccttc tcatgatcca	240
aaagaatctt gtttctcga gcagctttt ggagcatttc ttcatcaata ttgg	294

<210> 1044

<211> 384

<212> DNA

<213> Homo sapien

<400> 1044

ccaggcgtcttgcggca tcagggaggg tggccttcaa ctgctcatgg gctgtggtca	60
gtccctggat ctccctcaatg gtgtgcacaa tgaagggtgc ctgcagggtcc tccatggccc	120
cctccatcca gttgttgaag ggtgcagccc gcttggcata ctccaaagtac agctggtcaa	180
tggtctccag cagtttctcg gtcgcgttcca gagettccct tcgcttctga gtttagggccc	240
ccagattgtc ccactgttca cagatctttt ggcaacgggc gttgacactg ggtgagtcat	300
aataagtccag ctcatttgc tcctgtgaga tggcggcaat ctgctccaca cggtcctgtt	360
gggcagccag gtcactctcg aagg	384

<210> 1045

<211> 456

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(456)

<223> n = A,T,C or G

<400> 1045

aaaactaatgttataatct gtattatcac ttgttatataa atagtatata gctgtatcatt	60
aataagggtgtataagtacaa tttttttctaa aactgttaag caaaaaaaaaaa aaacaaan	120
aaaatccaaatgttccctc caccactcac gctgggtatc actgtgtct ctgcagctg	180
cgtggagtga cggggaggagg gaatcaactgt gtgtgcgaga gtgcctcaga ctcaattttcc	240
aaaataatttc tccccctctt aagcatgtaa atataccaaat atggatcctt catagaaatt	300
aaaaaaatcaa tttgagctca ttcaataac agaacaagta tggcacagat ggaagtccctg	360
ccacgtttcc tttaatgtatc ctgactcttg tatcacacag gccagcatga agtttcttac	420
tcagacttttta caggcattttt ccttaattca atcgt	456

<210> 1046

<211> 136

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(136)

<223> n = A,T,C or G

<400> 1046

atnatctgtttctaaacgaa agctgcngcg gaatgagagt gagccttcag agatgaaagc	60
catggctctg aaagggtggcn gggcagaagg aaccctncgt tcanctaaaaa gtgaggagtc	120
tcttacatcttccat	136

<210> 1047

<211> 453

<212> DNA

<213> Homo sapien

<400> 1047

aaaaaaaaatcc	aatatgtggc	attgtccaga	aaaatctaac	aggtttattt	ataattatta	60
taaagtggaa	ccgctgaaac	ttgttcactg	aaacatTTTA	acttgtcatTA	atgctttacg	120
tctccgcatt	tatattaaaa	attcacacac	aaatgaaaaat	ggaaaaaactg	ccaatacacTG	180
atttctgtcc	cctatTTTC	cactcgcaat	cataataCTTA	ggTACCTTT	gaccCCatgg	240
aaaaaaaaata	tctaacgttc	agaactacca	ataacaggaa	gaagagaaaat	ttttttttttt	300
tttttgggaa	tgaaatgttt	cccatcatag	tggattCTTA	agcACGTtct	ccacgtatgc	360
ggcgtgttag	ctggatgtct	tttggcataa	ttgttacacg	tttggcatgg	atagcacaca	420
ggttgggtgc	ttcaaaaaagg	ccaaaccagat	agg			453

<210> 1048

<211> 219

<212> DNA

<213> Homo sapien

<220>

<221> misc feature

<222> (1) . . . (219)

<223> B = A, T, C or G

<400> 1048

aaaatcacaa acnttaacgg	cagtaggcac caccatgtaa	aagtgagctc agacgtctct	60
aaaaaatgtt tcctttataa	aagcacatgg cggttgaatc	ttaaggtaa attttaatat	120
gaaagatctt catgaattaa	atagttgatg caattttaa	cgttaattga tataaaaaaa	180
aacaacaaaa tttagqcttqt	aaaactqact ttttcatta		219

<210> 1049

<211> 2465

<212> DNA

<213> *Homo sapiens*

<400> 1049

agcaaataat caatttagca ttacaaaaaaaa cagggatggt agggaaaata gaaggagaaaa 60
actctaaat aggtgatgt aatgaaaatt taaccttaa attagaagta aatgagctga 120
gtggtaaatt agacaacact aacgaataca atagtaatga tggtaagaaa ttaccccgagg 180
gtgaatcacg aagttagcga gtcattggaa gtatgaaaga aaccttatgc aatatacatg 240
acagagatgg aaatcgcaat gtccatttag aatttacaga aagagagat aggaaggatg 300
gagaggatga atttgtcaaa gaaatgagag aggaagaaaa atttcagaaa ttgaagaata 360
aagaggaggt tttaaaagcc tccagagaag aaaaagtgtt gatggatgaa ggagcgtac 420
ttaccctggc agccgacctt tcatcagcaa cactggatat tagtaagcaa tggagtaatg 480
tcttcaacat tctgagagaa aatgatttg aacctaattt tctgtgtgaa gttaaattag 540
catttaaatg tgatggtgaa ataaagacat ttccagatct gcaaagcctt agaaaatttg 600
ccagccaaaa atcttctatg aaagaattac tgaaagatgt actcccacaa aaggaagaaa 660
taaatcaagg aggaagaaaa tatggaattc aagaaaaaag ggataaaaacc ctaatagact 720
caaagcatag agctggagaa ataaccagtg atggcttgag ctcccttattt cttaaagaag 780
taaaagtgc taagccagag gagatgaaaa acttagagac tcaagaggaa gagtttccg 840
agcttagagga gctggatgaa gaggcctcag ggatggagga tgatgaagat acctcaggc 900
tggaggagga ggaggaagag ccctcaggc tggaggagga agaagaagaaa gaggcttcag 960
ggttggagga ggatggaggcc tcagggctag aggaggaaga ggaacagact tcagaacagg 1020
actcaacctt tcagggtcat actttggtag atgcaaagca tgaagttgag ataaccagtg 1080
atggcatgga aactacttgc attgactctg tagaggattc tgaatcagag gaggaagaag 1140
aaggaaaagag ctctgaaaca ggaaaggtaa agactacctc cctgactgag aaaaaagcct 1200
cacgtagaca aaaagaaatt ccctttagtt atttggttgg ggactctggg aaaaaaaagt 1260
tggtaaaca ccaggtggtg cacaaaaacc aggaggaaga ggaaacagct gtccccacaa 1320
gtcaaggaac tggcacaccc tgtctgaccc tatgttaggc ctctccctca aagtcaactg 1380
agatgagtc tgatgagcat aaaaagcatt cacatacaa tttgagtatt tcaacaggag 1440

tcaccaaact taagaaaaca gaagaaaaaga aacacagaac tctgcacaca gaagaactaa 1500
 catccaaaga agcagactta acagaggaaa cagaagaaaa cttgagaagt agtgtgatta 1560
 atagcatcg agagataaaa gaggagattt gaaatttga aagtcccat tcaggtgtct 1620
 tggaaattga aaattcgta gatgatctga gtagcagaat ggacatactt gaagaaagaaa 1680
 tagacagtct agaagatcaa attgaagaat tctctaagga tacaatgca atgaccaa 1740
 agataattag taaagaaaagg caaagagata tagaggagag atctagaagt tgcaacattc 1800
 gtttgatagg aattccagaa aaggagagtt atgagaatag ggcagaggac ataattaaag 1860
 aaataattga tggaaacttt gcagaactaa agaaaggttc aagtctttagg attgtcagt 1920
 ctgtcgagt acctagtaaa attgatgaaa agagactgac tcctagacac atcttggta 1980
 aattttggaa ttctagtgtaaagagaaaa taataaggc ttctagagag agaagagaaa 2040
 ttacctacca aggaacaaga atcagggttga cagcagactt atcactggac acactggatg 2100
 cttagagtaa atggagcaat gtcttcaaag ttctgttga aaaaggctt aatcctagaa 2160
 tcctatatcc agccaaatg gcatttgatt tttagggtaa aacaaaggta tttcttagta 2220
 ttgaagaatt tagagattat gtttgcata tgcccaccc gagagaatta ctggggata 2280
 atatacccttgcacgcccagg gtgactacaa acaatatgtt ttcctcccccc agcatgcac 2340
 caaaaatcaa caagtaaac gaaaatacac ttctaccagg aaggatggac agctaata 2400
 gtacttgggg atgaggagca aggaatatta cagatattac cttagatgttataaaggta 2460
 tgttt 2465

<210> 1050

<211> 3120

<212> DNA

<213> Homo sapiens

<400> 1050

aaaggaaaca caagttgtt ttgataaacat atgatgcaaa gaaagaattha gaaagaatga 60
 gcaatgaagc cggtataaaat gacaaacaag tggccaaagg cccagaagt tactacaaa 120
 agctttcaaa caatatttgtt ttatctttaa agacacatcc atagcatact taaaaataa 180
 ggaacttggaa caaggagaac cacaagaaaa actaaatctt agaggctgca aagttgtgcc 240
 cgatgtaaat gtagcaggaa gaaaatttgg aatcaaggta ctaatccctg ttgcccgttgg 300
 tatgaatgaa atgtatttga gatgtgacca tgagaatcaa tacgcccattt ggatggctgc 360
 ctgcatgttgc gcatcgaaagg gcaaaaccat ggcagacagc tccttaccagc cagaggctt 420
 caacatccctt tcattttctga ggatgaaaaa caggaactt gcatctcagg tggcttccag 480
 ttcggaaaac atggatatga acccagaatg ttttgtgtca ccacgggtgtg caaaaagaca 540
 caaatccaaa cagctggccg cccggatctt ggaggcgcac cagaacgtgg cccagatgcc 600
 cctggctgaa gccaagctgc ggttcatcca ggcgtggcag tcactgcctg agtttggct 660
 cacctactac ttgtcagat taaaaggaaag caaaaagat gacattctgg gagtttcata 720
 taacagggtt attaaaatttgc atgcagccac cgggatttca gtgacaacat ggagattcac 780
 aaatatcaaa cagtggaaat taaaactggaa aacccggcag tgggtcatcg agtttgcacca 840
 aaacgtcttt actgtttca cctgcctgag tgcagattgc aagattgtgc acgagttacat 900
 tggcggttac atttttttgtt ccacccgctc caaggaccat aatggaaacac tgcattggaa 960
 ctgttccac aaatttgcac gcggtcaggat ttgaaacaacg cacgcgtgtc cggctcacac 1020
 caacaaggca agccaaaggc gcccctcccc agaggatcc ctaacgtgc cagcatgtt 1080
 attctggact aacagacaac atacatttca cgttgcgttcc ccaagatccctt attcaaaaccc 1140
 actgtgttgc catcccttcc ctttactttgc cctgtgttcc cagccacggc aggaggctt 1200
 ctgtttttt ctataaaatgtt ggttggcagg agaaaaggcag tggccctaaatggcttctaa 1260
 gggccagcat gtgggttacat ttctgtact tgcagaaacct gccaggtgttgc tggctaca 1320
 ttatctctgt gctgatctgt ttcattacta agtcaatgaa gaagacagaa agttaaaaat 1380
 cacgtgttgc aagaacaact ctttatttcaaaatcttgc aatggatgtt atgaaacggaa acgcctgtcc 1440
 ttcatggaaac tgcttttagc ttctgttcc tcaaaaatggc agaggagtt ctttacacaca 1500
 ctttttccctt ggaggcacaag gtcttgggtt agaaaaggga ggggtggggc taccaggtag 1560
 cagttgacaa cccaaaggtaa gaggagtttgc cctcgtgtc atctgtccac agtgcata 1620
 gccaagatgtt gcaactgaccc acatctggtc tttagtcatgc gtctcttgc atttctgggg 1680
 ccacctgcaaa gccccattcc atttcttacat atctcttgc caccgttcaat tcccttgc 1740
 agatgtgggtt gacacagggg gacaggaaaa cccatttttc aacccttgc catgtcttca 1800
 ctgttttttttcttgc gtttgggttgg gattcaggaa gacaggcaca gtcctcttgc ttcattagaaa 1860
 cacctgcccac tgcgttgcgtt tccatgttcc aacttggtgc gggagagaagg 1920
 gcaagacccat tctcaaaatggc caccatgttgc aagggttgcac agtccccac tggcttcc 1980

cacaggggct ttaggcgtgt ctgggtcatg gggaaagcgtc cctcttatcg ctggtctgtg 2040
 ttctccttggaa tttggtatct atgttggtac gactccttgc cttttatcta aaggactttg 2100
 gcttttgtaa atcacaagcc aataatagac ttttttcctt ccctctgttt tttgtgtgt 2160
 catctctgccc ttgagactgc cttgagacag tgcttgcctt gagagagtga gccaaattaac 2220
 agctgcctga attgtcattt tccattttgg tttgttagag gtgggggggg tgggttttga 2280
 gaaggtaaaa agcaataacca gaagtaaaagg gaaatatcg acaatattttt attatttttt 2340
 catagatgtt ctgccacaca aagaacctgg ggtgtaaagga taaggcaaaa gctccaatcc 2400
 catttttcag ttctcctttagg atgcacccctt cagggagctt ggccagagtt ccgaggcccg 2460
 tgagcgtcag ctgttgcctt attttccatc aaagccctt gagaagttag acctcagcaa 2520
 ttccggggc cacatagaga cagacttggc aaggggaccc ctgggtctga gccagtaget 2580
 gccatcttggaa aattccttctt ttagccttc ctttagaggtt aatgtgaatg aagcctccca 2640
 ggcaccccgctt gaatttctga ggccttgcctt aaagctcaga agtgggttag gcattttggaa 2700
 aatctgggttca acatcataaaa gaacttgatt tggaaatgttt tctatagaaaa caagtgttaa 2760
 gtgtaccgtttaatacttga tgggtgtcat ttctcagtttcc tatttctcag ttcttattttt 2820
 tttagaaccta gtcagttttt taagattata actggtccta cattaaaata atgcttctcg 2880
 atgtcagatt ttacctgttt gctgtgttca acatcttc ctaattttacc aaagccagac 2940
 cttcagttca acatgtttcc ttagcttttca atagttgtt gacatttcca tggaaaacaaa 3000
 ggaaccaact ttgttttaac caaactttgtt ttggttacag tttttagggg agcgtttctt 3060
 ccatgacaca cagcaacatc ccaaagaaat aaacaagtgt gacaaaaaaaaaaaaaaa 3120

<210> 1051

<211> 1745

<212> DNA

<213> Homo sapiens

<400> 1051

gcccccttgg cagccttcaa cgtcggtccc caggcagcat ggtgaggtct gctccggac 60
 cctcgccacc atgtacgtt gctaccttctt ggacaaggac gtgagcatgt accctagctc 120
 cgtcgccac tctggggcc tcaaccttgc gcccagaac ttcgtcagcc ccccgccaga 180
 cccggactac ggcggttacc acgtggcgcc cgcaagtcgca ggcgcagaact tggacagcgc 240
 gcaagtccccc gggccatctt ggcggccagc gtatggcc ccaactccggg aggactggaa 300
 tggctacgcg cccggaggcg cggccggccgc caacggcggt gctcacgc tcaacgggtgg 360
 ctcccccggcc gcaagccatgg gctacagcg ccccgccagac taccatccgc accaccaccc 420
 gcatcaccac cccgaccacc cggccggccgc gcttccgtc gcttctggc tgctgcaaac 480
 gtcacacccccc ggccttctgtt ggcggccgc caccgtgtcc gccgagcagc tggctccccc 540
 cggccagccgg cggaaactgtt gcaagtttgc gggaaagccg ggcgcagactt ccctcgccag 600
 ccaagtgaaa accaggacga aagacaataa tggatgtt gtttgc tacacggacc accagccggct 660
 ggagctggag aaggatgttca actacagtcg ctatcatacc atccggagga aagccgagct 720
 aacccggccacg ctggggctctt ctggaggagca gttttaaatc tgggttccaga accgcagagc 780
 aaaggagagg aaaatcaaca agaagaagttt gcaagccacca cagcagccgc agccaccaca 840
 gcccctccgg ccccccaccac agcctccccc gcttccgtt ggttccgttga gaagtgtccc 900
 agagcccttg agtccgtgtt cttccctgtca agcctcaatc tgggttccgttccctgggtt 960
 tctggggccca actgggggggg tgcctaaacc caccgttccacc cagtgaccca cgggggtctg 1020
 cagcggcaga gcaattccat gctggccat gaggagcggt gactctgtt gacttctcag 1080
 gagagacccc tcccctccca cccacagccca tagacctaca gacctggctc tccagggaaaa 1140
 aatggggaccc aggatgttca acaatggat tggggcttc aagaaatata ctctccca 1200
 ttttactttt ttcacatgtt cttttcttc cactgaggag acagaaaagcc tccgtggc 1260
 ttcattccgg actggcagaa gcatgttccat gactgaccac accaaccagc ttcacatctatc 1320
 cgaacttcttctt ttccttagat ctgcaggctt cacccttgc tagagccgag gggagagagg 1380
 gactcaaggaa aaggccatc ttggggccaa gatggctgtt gctgttccat gcccctccgg 1440
 ggtccagctt ggcctctgc ctccggccagc caaggtttac actgcggac gcaaaaggcag 1500
 ctaagataga aagctggact gaccaaaagac tgcagaaacc ccaggtggcc ctgcgttctt 1560
 ttctcttcc ctttccca gcaaggaaagg ctgggtgtt gatgttccat ggtgtggat 1620
 gaggggggtgg ttatggact ccaggccatc ccaggggcc cgaacaggac ttgttagaga 1680
 gctgttccacc agacttctc tgggttccat gatgttccat gctataatg ccagagccaa 1740
 cctgg 1745

<210> 1052

<211> 1104
<212> DNA
<213> Homo sapiens

<400> 1052

ctctagagtc gagatccatt gtgtctaaa gtggatacag aaatctctgc aggcaagttg 60
ctccagagca tattgcagga caagcctgtat acgaatagt aaattcacgg catctggatt 120
cctaattcctt ttccgaaatg gcaggtgtga gtgcctgtat aaaatattct atgtttaccc 180
tcaacttctt gttctggcta tggatgtatct tgatccttagc attagcaata tgggtacgag 240
taagcaatga ctctcaagca atttttggtt ctgaagatgt aggetcttagc tcctacgtt 300
ctgtggacat attgattgtt gtaggtgcca tcatcatgtat tctgggttc ctgggatgt 360
gcgggtctat aaaagaaaatg cgctgcattgc ttctgttgc ttcataggc ttgcttctga 420
tcctgctcct gcaggtggcg acaggtatcc taggagctgt ttcaaatct aagtctgatc 480
gcattgtgaa tggaaactctc tatgaaaaca caaagctttt gagegccaca ggggaaagtg 540
aaaaacaattt ccaggaagcc ataattgtgt ttcaagaaga gtttaaatgc tgcgggttgg 600
tcaatggagc tgctgattgg ggaaataattt ttcaacacta tcctgaatta tgcctgtc 660
tagataagca gagaccatgc caaagctata atggaaaaca agttacaaa gagacctgta 720
tttctttcat aaaagacttc ttggcaaaaa atttgattat agttattgga atatcatttt 780
gactggcagt tattgagata ctgggttgg tggatgtat ggtctgtat tgccagatcg 840
ggaacaaaatg aatctgtgga tgcattcaacc tattcgtcattt cttttttttt taaaatgtt 900
ctttggcttt gtaaattttaa atatgttaatg gctataataag tcagagcag ctgtctttt 960
aaaatgtctc ggctagctg accacagata tcttctagac atattgaaca catttaagat 1020
ttgagggata taagggaaaa tggatgtat gttttttt actcaaaaata aaagtaactg 1080
tttaaaaaaaaaaaaaaaa aaaaaaaa 1104

<210> 1053

<211> 480
<212> DNA
<213> Homo sapiens

<400> 1053

cagtcctgag ctgcgtcccc gagcccacgg tggtcatggc tgccagagcg ctctgcattgc 60
tggggcttgtt ctggccttgc ctgtcctcca gctctgtat gggatgtgt ggcctgtctg 120
caaaccatgt tgccgtgcca gccaaggaca ggggtggactg cggctacccc catgtcaccc 180
ccaaggatgt caacaacccgg ggctgtctgtt gatcctccag gatccctggat tgccttgg 240
gtttcaagcc cctgcaggaa gcaaatgc eattctgttgc cacccctccgc tgccccccgc 300
cggggatgc gaggctcgga gcaccccttgc cccggctgtat ttgtcccgag gcactgttca 360
tctcagcttt tctgtccctt tgcctccggc aagegtctt gctgaaagtat cttatctgaa 420
gctctatgttc ttaacgaata aaggccccat gttccacccgg aggacagttc ttctgtccctg 480

<210> 1054

<211> 1078
<212> DNA
<213> Homo sapiens

<400> 1054

cagccacttag cgcagctcgaa gcgatggcct atgtccccgc accgggtac cagcccacct 60
acaaccccgac gctgccttac taccagccca tcccccggc gctcaacgtg ggaatgtctg 120
tttacatcca aggatggcc aegcagacca tgaagcggtt ctgcgtgtac tttgtgggtt 180
ggcaggatcc gggctcagac gtcgccttcc acttcaatcc gccgtttgac ggctgggaca 240
aggtggctt caacacgtt caggccgggaa agtggggcag cgaggagagg aagaggagca 300
tgccttcaaa aagggtgtcc gcttttgc tggatgtat gtcctgtgtt gggactaca 360
aggtgggtgtt aatggaaat cccttctatg agtacggca cccggcttccc ctacagatgg 420
tcacccaccc gcaagtggat gggatctgc aacttcaatc aatcaacttc atcgagggc 480
agccctccggc gccccccgggaa ccccccgtatga tgccacccatcc cccctggccccc ggacattggc 540
atcaacagct gaacagccgtt cccacccatgg aaggacccccc aacccatcaac cccgcctgtc 600
catatttcgg gaggctgaa ggagggtctca cagctcgaa aaccatcatc atcaagggt 660
atgtgcctcc cacaggcaag agctttgtatcaacttcaaa ggtgggtcc tcaggggaca 720

tagctctgca cattaatccc cgcatggca acggtaccgt ggtccggaaac agccttctga 780
 atggctcgta gggatccgag gagaagaaga tcacccacaa cccatttggt cccggacagt 840
 tctttatct gtccattcgc tgggttttgg atcgcttcaa ggttacgcc aatggccagc 900
 acctcttga ctgtccccat cgctctcg ccttccagag ggtggacaca ttggaaatcc 960
 agggtgatgt caccttgtcc tatgtccaga tctaatttat tcctggcata actcatggga 1020
 aaacagaatt atccccataga ctcccttcta agccccataa aaaatgtctg agggtgtc 1078

<210> 1055

<211> 2872

<212> DNA

<213> Homo sapiens

<400> 1055

aggaacaggc cgcacacaac agcattccct ggcagtacca ccatgccagg cgtcagtcag 60
 gaatctacag ctcccacag cagccaggc tccacagaca caacactgtc ccctggcaagt 120
 accacagcat catcccttgg tccagaatct actaccttcc acagcggccc aggetccact 180
 gaaacaacac tcttacctga caacaccaca gcctccggcc tecttgaagc atctacgccc 240
 gtccacagca gcactggatc gccacacaca aactgtccc ctgccccgtc tacaacccgt 300
 cagggagaat ctaccaccc tccagactgg ccttaactcga aggacactac ccctgcacct 360
 cctactacca catcaggcctt tggttagcta tctacaacct cccacggcag cccgagctca 420
 actccaacaa cccactttc tgccagctcc acaaccttgg gccgttagtga ggaatcgaca 480
 acagtccaca gcagcccaat tgcaactgca acaacaccc tccctgcccc ctccacaacc 540
 tcaggcctcg ttgaagaatc tacgacactac cacagcagcc cgggctcaac tcaaacaatg 600
 cacttccctg aaagcgacac aacttcaggc agcacaacac acacaatatc ttcaacttcc 660
 accagctacc acagcaggccc gggctcaact tccacccat ctgccccgt tgaagaacct 720
 acctcaggcc gtatgtgagga atcaacacgca tcccacagca accaagacgc aacggaaaca 840
 atagtcttac ctggccgctc cacaacccatc gtttttcttgg gagaatctac gacccatccc 900
 atcagttcag gctcaatggaa aacgacagcgc agttagaaat ctaccactt ccacagtagc 960
 gccagcacga caagctcagg cgtcagtgaa gaatccacca cctccacag cccgaccaggc 1080
 tcaacgcaca caacagcatt ccctgacagc accaccacgc caggcctcag tcggcattct 1140
 acaacttccc acagcaggccc aggtcaacgc gatacaacac tgtagccatc cagcaccacc 1200
 acctcaggcc ccagtcaggaa atcaacaaact tccacccatc gccagggttc aactgacaca 1260
 gcaactgtccc ctggcgtatc cacacccatc tcctttgtc aagaatctac aacccatccc 1320
 agcagcccaag gtcactca cacaacactc ttccctgaca gcacccacaag ctcaggcata 1380
 gttgaagcat ctacacccgt ccacagcaggc actggctcactc caccacaaac actgtccct 1440
 gccagctcca caagccctgg acttcaggga gaatctaccg ccttccagac ccacccagcc 1500
 tcaactcaca cgacgccttc aactcttagc acggcaacag cccctgttga agaatctaca 1560
 acctcaggacc gcagcccaag ctgcactcca acaacacactc tccctgccag ctccacaact 1620
 tcggggccaca gtgagaaatc aacaatattc cacagcagcc catgtcaagc tggaacaaca 1680
 ccctcatctg cccactccac aacccatccgt cgtggagaat ctacaaccc acgcatacg 1740
 ccaggctcaa ctgaaaataac aacccatccgt ggcaacttccca caacaccagg cctcagttag 1800
 gcatctacca ctttctacag cagccccaga tcaccaacca caacactctc acctgcccagc 1860
 atgacaagcc taggcgttgg tgaagaatcc accacccatc gttagccaaacc aggttctact 1920
 cactcaacag tgtcacctgc cagcaccacc acgcccaggcc tcagttagga atctaccacc 1980
 gttcacatcgca gcagcccaagg ctcaactgaa accacatgtt tccctgccag caccacaacc 2040
 tcagttcgta gtgagagcc tacaacccatc cacagccggc cagccatcaac tcacacaaca 2100
 ctgttactg aggacagcac cacccatccgt ctcaactgaa aatctacgc ctccccggc 2160
 agcccaagcc ctacccaaac aggttacccat cccacactca caacccgaga cctcggttag 2220
 gaatcaacta ctttcccaag cagctcaggc tcaactgaa caacactctc acctgccccgc 2280
 tccaccaccc tggccctcgat tggagaatcc acaccctcac gcctcagtc aagctcaacc 2340
 gaaacaacaa ctgtccccgg cagtcaccaaa acaccaagcc tcagttagaa atcaaccacc 2400
 ttctacacta gccccagatc accagatgca acactctcac ctgcaaccac aacaagctca 2460
 ggcgtcagcg aagaatccag cacatcccaat agtcaaccag gtcacccatc cacaacagcg 2520
 ttccctgaca gcaccaccac ctcaagccctc agtcaacccatc ctcacccatc ccaacccagc 2580
 caaggctcaa cagaggcaac actgtccctt ggcacttccca cagccatcactc cttggtaaa 2640
 caatctacaa cttccacag cagccccaggc gacactgaaa ccacactctt acctgatgac 2700

```

accataacct caggcctcggt ggaggcatct acacccaccc acagcagcac tggctcgcta 2760
cacacaacac tgacccctgc cagctccaca agcgctggcc ttcaagaaaga atctactact 2820
ttccqaqact ggccaagactc aagtqacaca acaccttcac ctccccqccc gg .2872

```

<210> 1056

<211> 3311

<212> DNA

<213> Homo sapiens

<400> 1056

tgctaatgtc ttgggtacaa atggatgtgg aatataattg aatattttct tggtaaggg 60
gaggatcgaa aggtgtttag gttatgtcaa gcattggca cagctgaagg cagatggaaa 120
tatttacaag tacgcaattt gagactaaga tattgttata attctccat tgaagacaag 180
agcaataga aaacacatca ggtcaggggg taaaagacct gtgataaac acttccgata 240
agttggaaac gtgtgtctat atttcataat ctgtatataat ataatggta agaaagacac 300
cttcgttaacc cgcatttcc aaagagagga atcacaggga gatgtacagc aatggggcca 360
ttaagagtt ctgtgttcat cttgattctt caccttctag aaggggcctt gagtaattca 420
ctcattcagc tgaacaacaa tggctatgaa ggcattgtcg ttgcaatcg ccccaatgtg 480
ccagaagatg aaacactcat tcaacaaata aaggacatgg tgacccaggc atctctgtat 540
ctgtttgaag ctacagggaa gcgattttat ttcaaaaatg ttgcccattt gattcctgaa 600
acatggaaaga caaaggctga ctatgtgaga caaaaacttg agacctacaa aatgtgat 660
gttctgggtt ctgagtctac tcctccaggt aatgtgaaac cttacactga gcagatggc 720
aactgtggag agaagggtga aaggatccac ctcactcctg atttcattgc aggaaaaaaag 780
ttagctgaat atggaccaca aggttaaggca ttgtccatg agtgggctca tctacgtgg 840
ggagtattt acgagttacaa taatgtgag aaattctact tatccaatgg aagaatacaa 900
gcagtaagat gttcagcagg tattacttgt acaaattgt tagaaagggt tcagggaggc 960
agctgttaca ccaaaaatgtg cacattcaat aaagttacag gactctatga aaaaggatgt 1020
gagtttggc tccaaatcccg ccagacggag aaggcttcta taatgtttgc acaacatgtt 1080
gattctatag ttgaattctg tacagaacaa aaccacaaca aagaagctcc aacaacgaa 1140
aatcaaaaat gcaatctccg aagcacaatgg gaagtgtatcc gtgattctga ggactttaag 1200
aaaaccactc ctatgacaac acagccacca aatccccactt tctcattgc gcagattgg 1260
caaagaattt tggttttagt ctttgacaaa tctggaaagca tggcgactgg taaccgcctc 1320
aatcgactga atcaaggcagg ccagctttc ctgctgcaga cagttgagct ggggtcctgg 1380
gttgggatgg tgacatttga cagtgtgtcc catgtacaaa gtgaactcat acagataaac 1440
agtggcagtg acagggacac actcgccaaa agattacctg cagcagcttc aggagggacg 1500
tccatctgca gggggcttcg atcggcattt actgtgttta ggaagaaaata tccaactgtat 1560
ggatctgaaa ttgtgtctgt gacggatggg gaagacaaca ctataagtgg gtgtttaac 1620
gaggtaaac aaagtgggtgc catcatccac acagtcgtt tggggccctc tgcagctcaa 1680
gaactagagg agctgtccaa aatgacagga gtttacaga catatgtctt agatcaagtt 1740
cagaacaatg gcctcattga tgctttggg gcccttcat caggaaatgg agtctgtct 1800
cagcgctcca tccagcttga gagaatggg ttaaccctcc agaacagccca gtggatgaat 1860
ggcacagtga tcgtggacag caccgtggg aaggacactt tttttctt caccgtggaca 1920
acgcagcctc cccaaatccct tctctggat cccagtgac agaagcaagg tggcttggta 1980
gtggacaaaaa acaccaaaaat ggcctaccc caaatcccag gcattgttcaaa ggttggact 2040
tggaaataca gtctgtcaagc aagctcacaac accttgaccc tgactgtcact gtcggctg 2100
tccaatgtca ccctgcctcc aattacagtq acttccaaaa cgaacaaggg caccagcaaa 2160
ttccccagcc ctctggtagt ttatgtcaat attcgccaaag gggctccccc aattctcagg 2220
gccagtgtca cagccctgtat tgaatctgt aatggaaaaa cagttacctt ggaactactg 2280
gataatggag caggtgttga tgctactaaag gatgtacggg tctactcaag gtatccaca 2340
actttagaca cgaatggtag atacagtgt aagtgccggg ctctgggagg agttaacgca 2400
gccagacgga gaggatgttcc ccagcagagt ggagactgt acataccctgg ctggattgag 2460
aatgtgaaa tacaatggaa tccaccaaga cctggaaatta ataaggatgt tggtcaacac 2520
aagcaagtgt gtttcagcag aacatctccg ggaggctcat ttgtggcttc tgatgtccca 2580
aatgtctcca tacctgtatct ttcccaccc ggcctaaatca cccacccgtt ggcggaaatt 2640
cacggggcga gtctcattaa tctgacttgg acagtcctg gggatgatta tgaccatgg 2700
acagctcaca agtataatcat tcgaataagt acaagtattt ttgtatctca agacaagttc 2760
aatgaatctc ttcaagtgtt tactactgt ctcatcccaa aggaagccaa ctctggagaa 2820
gtctttttgt taaaaccaga aaacattact ttgaaaatg gcacagatct tttcattgtct 2880

attcaggctg ttgataaggt cgatctgaaa tcagaaatat ccaacattgc acgagtatct 2940
 ttgttatttc ctccacagac tccgccagag acacctagtc ctgatgaaac gtctgctcct 3000
 tgcctaata ttcatatcaa cagcaccatt cctggcattc acattttaaa aattatgtgg 3060
 aagtggatag gagaactgca gctgtcaata gcctagggtc gaattttgt cagataaata 3120
 aaataaatca ttcatcctt tttgatttat aaaatttct aaaatgtatt ttagacttcc 3180
 tgtagggggc gatatactaa atgtatatacg tacattata ctaaatgtat tcctgttaggg 3240
 ggcgatatac taaatgtatt ttagacttcc tgtagggggc gataaaataa aatgctaaac 3300
 aactggtaa a 3311

<210> 1057
<211> 2095
<212> DNA
<213> Homo sapiens

<400> 1057
 aaacactctc acctgcgcagc atgagaagct ccagcatcag tggagaaccc accagttgt 60
 atagccaago agagtcaaca cacacaacag cgttccctgc cagcaccacc acctcaggcc 120
 tcagtcagga atcaacaact ttccacagta agccaggctc aactgagaca acactgtccc 180
 ctggcagcat cacaacttca tcttttgctc aagaatttac caccctcat agccaaccag 240
 gctcagctct gtcaacagtg tcacctgcca gcaccacagt gccaggccctt agtgaggaat 300
 ctaccacctt ctacagcagc ccaggctcaa ctgaaaccac agcgtttct cacagcaaca 360
 caatgtccat tcatacgtaa caatctacac cttccctga cagcccaggc ttcaactcaca 420
 cagtgttacc tgccaccctc acaaccacag acattggtca ggaatcaaca gccttccaca 480
 gcagctcaga cgcaactgga acaacaccct tacctgcccc ctccacagcc ttagaccttg 540
 ttggagaacc tacaacttcc tacatcagcc catccccctac ttacacaaca ctctttcctg 600
 cgagttccag cacatcaggc ctcaactgagg aatctaccac cttccacacc agtccaagct 660
 tcacttctac aattgtgtct actgaaagcc tggaaacctt agcaccaggg ttgtgccagg 720
 aaggacaaat ttggaaatgga aaacaatcgcg tctgtcccca aggctacgtt ggttaccagt 780
 gcttgcctcc tctgaaatcc ttccctgttag aaaccccgga aaaactcaac gccacttttag 840
 gtatgacagt gaaagtgact tacagaaatt tcacagaaaa gatgaatgac gcatcctccc 900
 agaataatcca gaacttcagt accctttca agaatcggtt ggatgtcggt ttgaagggcg 960
 acaatcttcc tcagtataga ggggtgaaca ttccggagatt gctcaacgggt agcatcgtgg 1020
 tcaagaacgca tgcatacttgc gaggcagact acactttaga gtatgaggaa ctgtttgaaa 1080
 acctggcaga gattgtaaag gccaagatta tgaatgaaac tagacaactt cttcttgatc 1140
 ctgatcttcg cagaaaggcc atactgtgtc atagtgaaaga ggacacttgc gtggattcat 1200
 cggtgactcc gggctttgc ttccaggcgc aatgcaccca gaagctgcc gaaggatata 1260
 cccagttcta ctatgtggat gtcttggat ggaagctggc ctgtgtgaac aagtgcacca 1320
 aaggaacgaa gtcgcaatgc aactgttaacc tgggcacatg tcagtcgaa cgcaactggcc 1380
 cccgctgcct gtgccccaaat acgaacacac actggtaactg gggagagacc tttgtttca 1440
 acatcgccaa gagcctcgat tatggatcg tggggctgt gatggcggtg ctgtgtctcg 1500
 cattgatcat ctaatcatac ttattcagcc tatecccgag aaaacggcac agggaaacagt 1560
 atgatgtgcc tcaagagtgg cgaaagggaaag gcaacccctgg catcttccag aagacggcca 1620
 tctggaaaga ccagaatctg agggagagca gattcggcct tgagaacgccc tacaacaact 1680
 tccggcccaac cctggagact gttgactctg gcacagagct ccacatccag agggccggaga 1740
 tggtagcatc cactgtgtga gccaacgggg gcctccacc ctcatctagc tctgttcagg 1800
 agagctgcaaa acacagagcc caccacaagc ctccggggcg ggtcaagagg agaccgaagt 1860
 caggccctga agccggctt gctctgatct gacagacttg gccagtccttcc tgcctgtgt 1920
 cctgctgggg aaggctgggg gctgtaaagcc tctccatccg ggagcttcca gactcccaga 1980
 agcctcggca cccctgtctc ctctgggtg gctccccact ctggaaatttc cttaccaata 2040
 aaagcaaato tggaaagctca aaaaaaaaaa aaaaaaaaaa aaaaaaaa aaaaa 2095

<210> 1058
<211> 15720
<212> DNA
<213> Homo sapiens

<400> 1058
 caacccacac cggccctgcc agccaccatg gggctgccac tagccgcctt ggcggctgtg 60

tgcctggccc tgtctttggc agggggctcg gagctccaga cagagggcag aacccgatac 120
 cacggccgca acgtctgcag caccctgggc aacttccact acaagacctt cgacggggac 180
 gtcttcgcgt tccccggcct ctgcgactac aacttcgcct ccgactgccc aggctcctac 240
 aaggaaattt ctgtgcaccc gaagegggtt ccggggcagg ctgaggcccc cgggggggtg 300
 gagtccatcc tgctgaccat caaggatgac accatctacc tcaccggca cctggctgtg 360
 cttAACGGGG ccgtggtcag caccggcac tacagccccg ggctgctcat tgagaagagc 420
 gatgcctaca ccaaagtcta ctccccggcc ggcctcaccc tcatgtggaa ccgggaggat 480
 gcactctatgc tggagctgga cactaagttc cggaaaccaca cctgtggcct ctggggggac 540
 tacaacggcc tgcagagcta ttcaaaaa tcctctgacg gcgtgcctt cagccccctg 600
 gagtttggga acatgcagaa gatcaaccag cccgatgtgg tttgtgagga tcccgaggag 660
 gaggtggccc ccgcattctg ctccgagcac cgcggcggagt gtgagaggct gctgaccgcc 720
 gaggccttcg cggactgtca ggacctggg cgcgtggcgc cgtatctgcg cgcctgccc 780
 caggaccgct gccgggtggcc gggcggtgac acctgcgtct gcagcaccgt ggccgagttc 840
 tccccggcagt gtcggccacgc cggcgccggg cccgggaact ggaggaccgc cacgtctgc 900
 cccaagaccc gccccggaa cctgggtgtac ctggagagcg gctgcctcg catggacacc 960
 tgctcacacc tggaggtgag cagcctgtgc gaggagcacc gcattggacgg ctgtttctgc 1020
 ccagaaggca ccgtatatga cgacatcggtt gacagtggct gcgttccctgt gagccagttc 1080
 cactgcaggg tgcacggaca cctgtacaca ccggggcagg agatcaccaa tgactgcgag 1140
 cagtgtgtct gtaacgctgg ccgtctgggtg tgcaaaagacc tgccctgccc cggcacctgt 1200
 gcccggaaag gggctccca catcaccacc ttcgatggg agacgtacac cttccacggg 1260
 gactgtact atgtcttgcg caagggtgac cacaacgatt cctacgctct cctggcggag 1320
 ctggccccct gtggccctac agacaaggcag acctgcctga agacgggtgg gctgtggct 1380
 gacaagaaga agaatgcggt ggtttcaag tccgatggca gtgtactgct caaccagctg 1440
 caggtgaacc tgcggccacgt gaccggcagc ttctctgtct tccggccgtc ttcctaccac 1500
 atcatggtgta gcatggccat tggcgccggg ctgcagggtgc agctggcccc agtcatgcaa 1560
 ctcttigtga cactggacca ggcctccca gggcagggtgc agggccctgt cgggaaacttc 1620
 aacggccctgg aaggtgacga cttcaagacg gccaggggc tggtgaggc cacggggggcc 1680
 ggctttggca acacctggaa ggcacagtca acctgcctatg acaagctgga ctgggtggac 1740
 gatccctgtct ccctgaacat cgagagccgc aactacggcg agcactgggtg ctccctcctg 1800
 aagaagacag agacccctt tggcagggtgc cactcggtg tggaccctgtc tgagtattac 1860
 aagagggtca aatatgacac gtgttaactgt cagaacaatg aggactgcct gtgcggccccc 1920
 ctgtcttctt acgcgcgcgc ctgcaccggc aagggtgtca tgctgtgggg ctggcggggag 1980
 catgtctgca acaaggatgt gggctctgtc cccaactcgc aggttcttct gtacaacctg 2040
 accacccgtcc acgagacccgt ccgtctccctc tccgaggccg acaggccactg tctcgagggc 2100
 ttgtgeccctg tggacggctg cggctgcctt gaccacaccc tcctggacga gaaggggccgc 2160
 tgcgttaeccctt tggccaagtg ctctgtttac caccgggtc tctacctggaa ggccggggat 2220
 gtggctgtca ggcaggaaga acgtgtgtg tgccggatg ggcggctgca ctgttaggcag 2280
 atccggctgtca tggcccaagag ctgcacggcc ccaaagatcc acatggactg cagcaacctg 2340
 actgcactgg ccacccctgaa gccccggacc ctcagctggc agacgctggc cggccgttat 2400
 taccacacag agtgtgtcag tggctgtgtg tgccccggacg ggctgtatggaa tgacggccgg 2460
 ggtggctgtcg tggggagaa ggaatggccct tgcttccata acaacgaccc gtattcttcc 2520
 ggcccaaga tcaagggtgg ctgcaatacc tgcacctgtca agagaggacg ctgggtgtgc 2580
 acccaggctg tggccatgg cactgtctcc atttacggg gtggccacta catcacctt 2640
 gatgggaagt actacgactt tgacggacac tgctcttacg tggctgttca ggactactgc 2700
 ggccagaact ctcacttggg ctcattcage atcatccacgg agaacgtccc ctgtggcaet 2760
 acggggcgtca cttgtccaa ggcacatcaag atttcatgg ggaggacggaa gctgaagttg 2820
 gaagacaage accgtgttgtt gatccagctg gatggggtc accacgtggc ctacaccacg 2880
 cggggagggtgg gccagttactt ggtgggtggag tccagcacgg gcatccatgtt catctgggac 2940
 aagaggacca ccgtgttcat caagctggct cccttctaca agggccacgt gtgtggcctg 3000
 tggggaaact ttgaccaccgg ctccaacaac gacttcacca cgcggggacca catgggttgt 3060
 agcagcgagc tggacttcgg gaacagctgg aaggaggccc ccacccctggcc agatgtgagc 3120
 accaaccctccg agccctgcag cctgtaccccg caccggccgtt cctggggccga gaagcagtgc 3180
 agcatcttca aaaggcagctg gttcagcatc tgccacagca aggtggaccc caagcccttc 3240
 tacaggccct gtgtgcacga ctgtgtctcc tggtacacgg gtggggactg tgagtgtctc 3300
 tgcgtctggcc tggcccttca cggccaggag tggatccaaag agggggctgt cgtttctgg 3360
 aggacggccgg acctgtcccc catattctgc gactactaca accctccgca tgagtgtgag 3420
 tggcactatg agccatgtgg gaaccggagc ttccgagaccc gcaaggaccat caacggcatc 3480
 cactccaaca tctccgttc ctacccgtgg ggcgtctacc cccgggtggcc caaggacagg 3540

cccatctatg aggaggatct gaagaagtgt gtcactgcag acaagtgtgg ctgctatgtc 3600
 gaggacaccc actaccacc tggagcatcg gttcccaccc agagacacctg caagtccctgc 3660
 gtgtgtacca actcctccca agtcgtctgc aggccggagg aaggaaagat tcttaaccag 3720
 acccaggatg ggccttctg ctactggag atctgtggcc ccaacgggac ggtggagaag 3780
 cacttcaaca tctgttccat taegacacgc cggccaccc tgaccaccc caccaccatc 3840
 accctcccca ccaccaccc ctccttacc actaccacca ccaccaccc cccgacctcc 3900
 agcacagttt tatcaacaac tccgaagctg tgctgcctct ggtctgactg gatcaatgag 3960
 gaccacccca gcagtggcag cgacgacggg gaccgagaac catttgcattt ggtctgcggg 4020
 gcccctgagg acatcgagtg caggteggc aaggatcccc acctcagctt ggagcagcat 4080
 ggcagaagg tgcagtgtga tggctctgtt gggccatcc gcaagaatga agaccagtt 4140
 gaaatggac catttggact gtgttacgac tacaagatac gtgtcaattt ttgctggccc 4200
 atggataagt gtatcaccac tcccgccct ccaactacca ctcggccccc tccaccaacc 4260
 acgacgacca cccttccacc aaccaccacc cccagccctc caaccaccc cacaaccacc 4320
 cctccaccaa ccaccaccc cagccctcca ataaccacca cgaccacccc tctaccaacc 4380
 accactccca gccctccaat aagcaccaca accacccttc caccaaccac cactccagc 4440
 cctccacca ccactcccg ccctccaaacc accactccca gccctccaaac aaccaccaca 4500
 accacccttc caccaaccac cactcccagc cctccaaatga ctacgcccatt cactccacca 4560
 gccagacta ccacccttcc accaaccacc actccctggc ctccaaacac caccacaacc 4620
 accccctccac caaccaccc tccctggact ccaacgacta cgcccatcac tccaccaacc 4680
 agcactacta cccttccacc aaccaccact cccagccctc caccaaccac cacaaccacc 4740
 cctccaccaa ccaccactcc cagccctcca acaaccacca ctccctggact tccaacaaatc 4800
 accacaacca cccttccacc aaccaccact cccagccctc caacaacac cacaaccacc 4860
 cctccaccaa ccaccactcc cagccctcca aacccatcc accaccatcc accaaccac 4920
 actaccaccc ttccaccaac caccactccc agccctccac caaccaccac aaccaccct 4980
 ccaccaacca ccactcccg ccctccaaac accaccactc ccagccctcc aataaccacc 5040
 acaaccaccc ctccaccaac caccactccc agctctccaa taaccaccc tcccagccct 5100
 ccaacaacca ccacgaccac cccttccacca accaccaccc ccagctctcc aataaccacc 5160
 acaaccaccc ttccctcaac taccactccc agccctccac caaccacccat gaccaccct 5220
 tcaccaacca ccactcccg ccctccaaac accaccatga ccacccttcc accaaccacc 5280
 acttccagcc ctctaaacac tactctcta cctccatcaa taactctcc tacatttca 5340
 ccattctcaa cgacaaacccc tactacccca tgcgtgcctc tctgcaattt gactggctgg 5400
 ctggattctg gaaaacccaa ctttcacaaa ccaggtggag acacagaattt gattggagac 5460
 gtctgtggac caggctggc agctaacatc tcttgcagag ccaccatgtt tcttgatgtt 5520
 cccattggac agcttggaca aacagtgggt tggatgtct ctgtggggtt gatatgcaaa 5580
 aatgaagacc aaaagccagg tgggttcac cccaccacca tgacaacccac caccacagag 5640
 aacgttcaatc gctgtggatg tggatgttccaa cccaccacca tgacaacccac caccacagag 5700
 aacccaaact cggcaacccac gacaccatc accaccacca ctacgggtac cccaaacccca 5760
 acacccaccc gCACACAGAC cccaaacccac acacccatca ccaccaccc tacgggtacc 5820
 ccaaccccaac caccaccccg cacacacgacc ccaaccacga caccatcac caccacccact 5880
 acggtgaccc caaccccaac accccacccggc acacagaccc caaccacccg accccatcac 5940
 accaccacta cggtgacccccc aaccccaacca cccaccggca cacacacccca aaccacgaca 6000
 cccatccacca ccaccactac ggtgacccca accccaaacac ccaccggcac acagacccca 6060
 accacgacac ccacccaccc caccactacg gtgacccca accccaaacac caccggcacaca 6120
 cagaccccaac ccacgacacc catcaccacc accactacgg tgaccccaac cccaaaccc 6180
 accggcacac agaccccaac caccacaccc atcaccacca ccactacggt gaccccaacc 6240
 ccaacacccca ccggcacaca gaccccaacc acgacacccac tcaccaccc cactacggt 6300
 accccaaaccc caacacccac cggcacaccc accccaaacca cggacacccac caccaccc 6360
 actacggtgaccc cccaaacccca aacccacccac ggcacacaga cccaaacccac gacacccatc 6420
 accaccacca ctacggtgac cccaaacccca acacccacccg gcacacacac cccaaacccac 6480
 acacccatca ccaccacccac tgggtgacc ccaaccccaac caccacccgg cacacagacc 6540
 ccaacccacca caccatcac caccacccact acggtgaccc cccaaacccac accccacccgg 6600
 acacagaccc caaccacccg accccatcac accaccacta cggtgacccca aaccccaaca 6660
 cccaccggca cacaccccaac aaccacccgac cccatccacca ccaccactac ggtgacccca 6720
 accccaaaccc ccaccggcac acagacccca accacgacac ccacccaccc caccactacg 6780
 gtgaccccaac cccaaaccccaac caccggcacac cggacacccac catcaccacc 6840
 accactacgg tgaccccaac cccaaaccccaac accggcacac agaccccaac cggacaccc 6900
 atcaccacca ccactacggt gaccccaaccc ccaacacccca ccggcacaca gaccccaacc 6960
 acgacacccca tcaccacccac cactacggtg accccaaaccc caacacccac cggcacacag 7020

accccaacca cgacacccat caccaccacc actacggta ccccaacccc aacacccacc 7080
 ggcacacaga ccccaaccac gacacccatc accaccacca ctacggtgac cccaaacccc 7140
 acacccaccc gcacacagac cccaaaccacg acacccatca ccaccaccc tacggtgacc 7200
 ccaaccccaa cacccacccg cacacagacc ccaaccacga caccatcac caccacact 7260
 acggtgaccc caacccaaac acccaccggc acacagaccc caaccacgac acccatcacc 7320
 accaccacta cggtgacccc aaccccaaca cccaccggc acagaccccc aaccacgaca 7380
 cccatcacca ccaccactac ggtgacccc aacccaaac acaccggcac acagacccc 7440
 accacgacac ccatcaccac caccactacg gtgacccc acccaacacc caccggcac 7500
 cagaccccaa ccacgcaccc catcaccacc accactacgg tgacccc aaccaacacc 7560
 accggcacac agacccaaac cagacacccc atcaccacca ccactacggt gacccc aacc 7620
 ccaacacccca cgggcacaca gaccccaacc acgacacccca tcaccaccc tacacggtg 7680
 aaccccaaccc caacacccac cggcacacag aacccaaacca cgacacccat caccaccc 7740
 actacggta ccccaacccc aacacccacc ggcacacaga ccccaacccac gacacccatc 7800
 accaccacca ctacggtgac cccaaacccc acacccaccc gcacacagac cccaaaccacg 7860
 acacccatca ccaccaccc tacggtgacc ccaaccccaa caccacccgg cacacagacc 7920
 ccaaccacga cacccatcac caccacccat acggtgaccc caaccccaac acccaccggc 7980
 acacagaccc caaccacgac acccatcacc accaccacta cggtgacccc aaccccaaca 8040
 cccacccggca cacagaccccc aaccacgaca cccatcacca ccaccactac ggtgacccc 8100
 aacccaaacac ccacccggcac acagaccccc accacgacac ccatcaccac caccactacg 8160
 gtgacccc aacccaaaccc caccggcac aacccaaaccc cccacccaccc catcaccacc 8220
 accactacgg tgacccc aaccaacacc accggcacac agacccaaac cacgacaccc 8280
 atcaccacca ccactacggt gacccc aacccaaacca ccaacacccca cgggcacacca gacccc aacc 8340
 acgacacccca tcaccaccc cactacggtg aacccaaaccc caacacccac cggcacacag 8400
 aacccaaacca cgacacccat caccacccac actacggta ccccaacccc aacacccacc 8460
 ggcacacaga ccccaacccac gacacccatc accaccacca ctacggtgac cccaaacccc 8520
 acacccaccc gcacacagac cccaaaccacg acacccatca ccaccaccc tacggtgacc 8580
 ccaaccccaa cacccacccg cacacagacc ccaaccacga caccatcac caccacccat 8640
 acggtgaccc caacccaaac acccaccggc acacagaccc caaccacgac acccatcacc 8700
 accaccacta cggtgacccc aaccccaaca cccacccggca cacagaccccc aaccacgaca 8760
 cccatcacca ccaccactac ggtgacccc aacccaaaccc cccacccggcac acagaccccc 8820
 accacgacac ccatcaccac caccactacg gtgacccc aacccaaaccc caccggcac 8880
 cagaccccaa ccacgcaccc catcaccacc accactacgg tgacccc aaccaacacc 8940
 accggcacac agacccaaac cagacacccc atcaccacca ccactacggt gacccc aacc 9000
 ccaacacccca cgggcacaca gaccccaacc acgacacccca tcaccaccc tacacggtg 9060
 aacccaaaccc caacacccac cggcacacag aacccaaacca cgacacccat caccaccc 9120
 actacggta ccccaacccc aacacccacc ggcacacaga ccccaacccac gacacccatc 9180
 accaccacca ctacggtgac cccaaacccc acacccaccc gacacacagac cccaaaccacg 9240
 acacccatca ccaccaccc tacggtgacc ccaaccccaa caccacccgg cacacagacc 9300
 ccaaccacga cacccatcac caccacccat acggtgaccc caaccccaac acccaccggc 9360
 acacagaccc caaccacgac acccatcacc accaccacta eggtgacccc aaccccaaca 9420
 cccacccggca cacagaccccc aaccacgaca cccatcacca ccactacccat ggtgacccc 9480
 aacccaaacac ccacccggcac acagaccccc accacgacac ccacccatcac caccactacg 9540
 gtgacccc aacccaaaccc caccggcac aacccaaaccc cccacccatcac gaccccaacc 9600
 accactacgg tgacccc aaccaacacc accggcacac agacccaaac cacgacaccc 9660
 atcaccacca ccactacggt gacccc aacccaaacca ccaacacccca cccggcacaca gacccc aacc 9720
 acgacacccca tcaccacccac cactacggtg aacccaaaccc caacacccac cggcacacag 9780
 aacccaaacca cgacacccat caccacccat actacggta ccccaacccc aacacccacc 9840
 ggcacacaga ccccaacccac gacacccatc accaccacca ctacggtgac cccaaacccc 9900
 acacccaccc gcacacagac cccaaaccacg acacccatca ccaccaccc tacggtgacc 9960
 ccaaccccaa cacccacccg cacacagacc ccaaccacga caccatcac caccacccat 10020
 acggtgaccc caacccaaac acccaccggc acacagaccc caaccacgac acccatcacc 10080
 accaccacta cggtgacccc aaccccaaca cccacccggca cacagaccccc aaccacgaca 10140
 cccatcacca ccaccactac ggtgacccc aacccaaaccc cccacccggcac acagacccc 10200
 accacgacac ccatcaccac caccactacg gtgacccc aaccaacacc caccggcac 10260
 cagaccccaa ccacgcaccc catcaccacc accactacgg tgacccc aaccaacacc 10320
 accggcacac agacccaaac cagacacccc atcaccacca ccactacggt gacccc aacc 10380
 ccaacacccca cgggcacaca gaccccaacc acgacacccca tcaccaccc cactacggtg 10440
 aacccaaaccc caacacccac cggcacacag aacccaaacca cgacacccat caccaccc 10500

actacggta ccccaacccc aacacccacc ggcacacaga ccccaaccac gacacccatc 10560
 accaccacca ctacggtgac cccaaacccca acacccaccg gcacacagac cccaaaccacg 10620
 acacccatca ccaccaccac tacggtgacc ccaaccccaa caccacccgg cacacagacc 10680
 ccaaccacga caccatcac caccaccact acggtgacc cAACCCAAAC acccaccggc 10740
 acacagaccc caaccacgac acccatcacc accaccacta cggtgacccc aaccccaaca 10800
 cccacccggca cacagacccc aaccacgaca cccatcacca ccaccactac ggtgacccc 10860
 accccaacac ccacccggcac acagacccc accacgacac ccatcaccac caccactacg 10920
 gtgaccccaa ccccaacacc caccggcaca cAGACCCCAA CCACGACACC CATCACCAC 10980
 accactacgg tgaccccaac cccaaacaccc accggcacac agacccaaac cacgacaccc 11040
 atcaccacca ccactacggt gaccccaacc ccaacacca ccggcacacca gaccccaacc 11100
 acgacacccca tcaccacccac cactacggtg accccaaccc caacacccac cggcacacag 11160
 accccaacca cgacacccat caccacccac actacggtg ccccaacccca aacacccacc 11220
 ggcacacaga ccccaacccac gacacccatc accaccacca ctacggtgac cccaaacccca 11280
 acacccacccg gcacacagac cccaaacccacg acacccatca ccaccaccac tacggtgacc 11340
 ccaaccccaa caccacccgg cacacagacc ccaacccacga caccatcac caccaccact 11400
 acggtgaccc caaccccaac acccaccggc acacagaccc caaccacgac acccatcacc 11460
 accaccacta cggtgacccc aaccccaaca cccaccggca cacagacccc aaccacgaca 11520
 cccatcacca ccaccactac ggtgacccca accccaaacac ccaccggcac acagacccca 11580
 accacgacac ccacccacccac caccactacg gtgaccccaa ccccaacacc caccggcaca 11640
 cagaccccaa ccacccaccc catcaccacc accactacgg tgaccccaac cccaaacaccc 11700
 accggcacac agaccccaac caccacaccc atcaccacca ccactacggt gaccccaacc 11760
 ccaacacccca cgggcacaca gaccccaacc accccaaacca tcaccacccac cactacggtg 11820
 accccaacccca caacacccac cgggcacacag accccaacca cgacacccat caccaccacc 11880
 actacggtgac ccccaacccca aacacccacc ggcacacaga ccccaacccac gacacccatc 11940
 accaccacca ctacggtgac cccaaacccca acacccatcg gcacacagac cccaaacccacg 12000
 acacccatca ccaccacccac tacggtgacc ccaaccccaa caccacccgg cacacagacc 12060
 ccaaccacga caccatcac caccaccact acggtgaccc caaccccaac acccaccggc 12120
 acacagaccc caacccatcg acccatcacc accaccacta cggtgacccc aaccccaaca 12180
 cccacccggca cacagacccc aaccacgaca cccatcacca ccaccactac ggtgacccca 12240
 accccaacac ccacccggcac acagacccca accacgacac ccacccacccac caccactacg 12300
 gtgaccccaa ccccaacacc caccggcaca cAGACCCCAA CCACGACACC CATCACCAC 12360
 accactacgg tgaccccaac cccaaacaccc accggcacac agacccaaac cacgacaccc 12420
 atcaccacca ccactacggt gaccccaacc ccaacacca ccggcacacca gaccccaacc 12480
 acgacacccca tcaccacccac cactacggtg accccaaccc caacacccac cggcacacag 12540
 accccaacccca cgacacccat caccacccac actacggtgac ccccaacccca aacacccacc 12600
 ggcacacaga cccggcccccc caccacccac accacgacac cgattgctga gttgaccaca 12660
 tccaatctc cgcctgatc ctcacccctc cagaccttc ggtccacctc ttccctctc 12720
 acggagtcaa ccaccccttc gagtacccta ccacctggca tttagatgac cagcacggcc 12780
 cccacccctca caccacccggc accacccgacc acggcgagg gccacacact gtctccacccg 12840
 cccagcacca ccacgcccccc tccaggcacc cccactcgcc gtacccacgac cgggtcatct 12900
 tcagccccca ccccccggcac tggcagacg accaccacca gtgcctggac cccaaacccggc 12960
 acccccacttcc acacccatcg catcatcagg accacccggc tgaggcccta cccttcctct 13020
 gtgcttatct getgttctt gaaegacacc tactacgac caggtgagga ggtgtacaac 13080
 ggcacatacg gagacacctg ttatccgtc aactgctcac tgagtgatc gttggagttc 13140
 tataactggt cctgccccat caccacccctcc ccaacacccca cccctcccaa gtgcacggccc 13200
 acgccttcca agccatcgcc caccacccctcc aagccgacgc cccggccacca gccccccggag 13260
 tggccagact ttgatccctcc caccacggag aacccggactt ggtggctgtg cgactgttcc 13320
 atggccacgt gcaagtacaa caacccggtg gagatcgta aggtggatg tgagccgcgg 13380
 cccatccca cctgctccaa cccggctccaa cccgtcgccg tcggagaccc cgacggctgc 13440
 tggctggact gggagtgccg ctgtactgc acgggctggg gccggccggca etatgtcacc 13500
 ttccgacggac tctactacag ctaccacggc aactgcaccc acgtgctgtt ggaggagatc 13560
 agccctcccg tggacaactt cggagttac atcgacaact accactgcga tcccaacgac 13620
 aagggtgtctt gtcccccgcac cctcatcgat cggccacgaga cccaggaggt gctgtatcaag 13680
 accgtgcata tgatgccccat gcaagggtgcag gtgcagggtga acaggcaggc ggtggactg 13740
 cccatacaaga agtacggct ggaggtgtac cagtctggca tcaactacgt ggtggacatc 13800
 cccggactgg gtgtccctgt ctccatcaat ggcctgtct tctccgtcag gtcggccctac 13860
 caccggtttgc gcaacaacac caaggccggc tggcaccct gcaccaacac cacctccgac 13920
 gactgcattc tgcccaacttccgg ggagatcgatc tccaaactgtg aggctgcggc tgaccagtgg 13980

ctggtaacg accctccaa gccacactgc ccccacagca gtcacgac caagccccg 14040
 gccgtactg tgccggggg cgtaaaacg accccacaca aggactgcac cccatctccc 14100
 ctctgccagc tcatcaagga cagctgttt gcccagtgc acgactggt gcccccgag 14160
 cactactacg atgcctgcgt gtgcacagc tgcttcatgc cggctcgag cttggagtgc 14220
 gccagtcgc aggcctacgc agccctctgt gcccagcaga acatctgcct cactggcgg 14280
 aaccacacgc atgggcttg ctgggtggag tgcccatctc acaggagta ccaggctgt 14340
 ggccctgcag aagagccac gtgcataatcc agctccccc agcagaacaa cacagtctg 14400
 gtggaaaggct gttctgtcc tgagggcacc atgaactacg ctccctggctt tgatgtctgc 14460
 gtgaagacct gcccgtgtt gggacctgac aatgtgcca gagagttgg ggagcacttc 14520
 gagttcgact gcaagaactg tgtctgcctg gagggtgaa gtggcatcat ctgccaaccc 14580
 aagagggtca gccagaagcc cgttacccac tgcgtggaa acggcaccta cctegccacg 14640
 gaggtcaacc ctgcccacac ctgctgcaac attaccgtct gcaagtgc aaaccagcctg 14700
 tgcaaagaga agccctccgt gtgcccgtt ggattcgaag tgaagagcaa gatggtgct 14760
 ggaagggtct gtccttcta ctgggtgtgag tccaaggggg tttgtgttca cgggaatgt 14820
 gagtaccagc cgggtctcc agtttattcc tccaagtgc aggactgcgt gtgcacggac 14880
 aagggtggaca acaacacccct gtcacacgtc atgcctgtca cccacgtgc ctgcaacacc 14940
 tcctgcagcc ctggctcga actcatggag gccccgggg agtgcgttaa gaagtgtgaa 15000
 cagacgcact gtatcatcaa acggcccgac aaccagcagc tcatctgaa gccccgggac 15060
 ttcaagagcg acccgaaagaa caactgcaca ttcttcagct gctgtgaagat ccacaaccag 15120
 ctatctcgat ccgtctccaa catcacctgc cccaaactttg atgcctgtca ttgcacccctg 15180
 ggctccatca cattcatgcc caatggatgc tgcaagacct gcacccctcg caatgagacc 15240
 aggggtccct gtcacccgtt cccctgcacc acggagggtt cgtacgcggg ctgcaccaag 15300
 acggctctca tgaatcattt ctccgggtcc tgccggacat ttgtcatgtt ctcggccaag 15360
 gccccggccc tggaccacag ctgtctctgc tgcaaaaggagg agaaaaccag ccagcgttag 15420
 gtggctctga gtcgccccaa tggcggtcg ctgacacaca cctacaccca catcgagac 15480
 tgccagtgcc aggacaccgt ctgcgggtcc cccaccggca cctccggccg gccccggcgc 15540
 tccccctaggc atctggggag cgggtgagcg gggtgggcac agcccccttc actgcctcg 15600
 acagtttac ctccccggc ccctctgac ctccctaagct cggcttcctc ttttcagata 15660
 ttatttgttct gacttcttgc ttttccaata ataaactcag ggggacatgc 15720

<210> 1059

<211> 440

<212> PRT

<213> Homo sapiens

<400> 1059

Met	Val	Gly	Lys	Ile	Glu	Gly	Glu	Asn	Ser	Lys	Ile	Gly	Asp	Asp	Asn

5	10	15
---	----	----

Glu	Asn	Leu	Thr	Phe	Lys	Leu	Glu	Val	Asn	Glu	Leu	Ser	Gly	Lys	Leu

20	25	30
----	----	----

Asp	Asn	Thr	Asn	Glu	Tyr	Asn	Ser	Asn	Asp	Gly	Lys	Lys	Leu	Pro	Gln

35	40	45
----	----	----

Gly	Glu	Ser	Arg	Ser	Tyr	Glu	Val	Met	Gly	Ser	Met	Glu	Glu	Thr	Leu

50	55	60
----	----	----

Cys	Asn	Ile	Asp	Asp	Arg	Asp	Gly	Asn	Arg	Asn	Val	His	Leu	Glu	Phe

65	70	75	80
----	----	----	----

Thr	Glu	Arg	Glu	Ser	Arg	Lys	Asp	Gly	Glu	Asp	Glu	Phe	Val	Lys	Glu

85	90	95
----	----	----

Met	Arg	Glu	Glu	Arg	Lys	Phe	Gln	Lys	Leu	Lys	Asn	Lys	Glu	Glu	Val

100	105	110
-----	-----	-----

Leu Lys Ala Ser Arg Glu Glu Lys Val Leu Met Asp Glu Gly Ala Val
115 120 125

Leu Thr Leu Ala Ala Asp Leu Ser Ser Ala Thr Leu Asp Ile Ser Lys
130 135 140

Gln Trp Ser Asn Val Phe Asn Ile Leu Arg Glu Asn Asp Phe Glu Pro
145 150 155 160

Lys Phe Leu Cys Glu Val Lys Leu Ala Phe Lys Cys Asp Gly Glu Ile
165 170 175

Lys Thr Phe Ser Asp Leu Gln Ser Leu Arg Lys Phe Ala Ser Gln Lys
180 185 190

Ser Ser Met Lys Glu Leu Leu Lys Asp Val Leu Pro Gln Lys Glu Glu
195 200 205

Ile Asn Gln Gly Gly Arg Lys Tyr Gly Ile Gln Glu Lys Arg Asp Lys
210 215 220

Thr Leu Ile Asp Ser Lys His Arg Ala Gly Glu Ile Thr Ser Asp Gly
225 230 235 240

Leu Ser Phe Leu Phe Leu Lys Glu Val Lys Val Ala Lys Pro Glu Glu
245 250 255

Met Lys Asn Leu Glu Thr Gln Glu Glu Phe Ser Glu Leu Glu Glu
260 265 270

Leu Asp Glu Glu Ala Ser Gly Met Glu Asp Asp Glu Asp Thr Ser Gly
275 280 285

Leu Glu Glu Glu Glu Glu Pro Ser Gly Leu Glu Glu Glu Glu
290 295 300

Glu Glu Ala Ser Gly Leu Glu Glu Asp Glu Ala Ser Gly Leu Glu Glu
305 310 315 320

Glu Glu Glu Gln Thr Ser Glu Gln Asp Ser Thr Phe Gln Gly His Thr
325 330 335

Leu Val Asp Ala Lys His Glu Val Glu Ile Thr Ser Asp Gly Met Glu
340 345 350

Thr Thr Phe Ile Asp Ser Val Glu Asp Ser Glu Ser Glu Glu Glu
355 360 365

Glu Gly Lys Ser Ser Glu Thr Gly Lys Val Lys Thr Thr Ser Leu Thr
370 375 380

Glu Lys Lys Ala Ser Arg Arg Gln Lys Glu Ile Pro Phe Ser Tyr Leu
385 390 395 400

Val Gly Asp Ser Gly Lys Lys Lys Leu Val Lys His Gln Val Val His
405 410 415

Lys Thr Gln Glu Glu Glu Glu Thr Ala Val Pro Thr Ser Gln Gly Thr
 420 425 430

Gly Thr Pro Cys Leu Thr Leu Cys
 435 440

<210> 1060
<211> 230
<212> PRT
<213> Homo sapiens

<400> 1060
Met Asn Glu Met Tyr Leu Arg Cys Asp His Glu Asn Gln Tyr Ala Gln
 5 10 15

Trp Met Ala Ala Cys Met Leu Ala Ser Lys Gly Lys Thr Met Ala Asp
 20 25 30

Ser Ser Tyr Gln Pro Glu Val Leu Asn Ile Leu Ser Phe Leu Arg Met
 35 40 45

Lys Asn Arg Asn Ser Ala Ser Gln Val Ala Ser Ser Leu Glu Asn Met
 50 55 60

Asp Met Asn Pro Glu Cys Phe Val Ser Pro Arg Cys Ala Lys Arg His
 65 70 75 80

Lys Ser Lys Gln Leu Ala Ala Arg Ile Leu Glu Ala His Gln Asn Val
 85 90 95

Ala Gln Met Pro Leu Val Glu Ala Lys Leu Arg Phe Ile Gln Ala Trp
 100 105 110

Gln Ser Leu Pro Glu Phe Gly Leu Thr Tyr Tyr Leu Val Arg Phe Lys
 115 120 125

Gly Ser Lys Lys Asp Asp Ile Leu Gly Val Ser Tyr Asn Arg Leu Ile
 130 135 140

Lys Ile Asp Ala Ala Thr Gly Ile Pro Val Thr Thr Trp Arg Phe Thr
 145 150 155 160

Asn Ile Lys Gln Trp Asn Val Asn Trp Glu Thr Arg Gln Val Val Ile
 165 170 175

Glu Phe Asp Gln Asn Val Phe Thr Ala Phe Thr Cys Leu Ser Ala Asp
 180 185 190

Cys Lys Ile Val His Glu Tyr Ile Gly Gly Tyr Ile Phe Leu Ser Thr
 195 200 205

Arg Ser Lys Asp Gln Asn Glu Thr Leu Asp Glu Asp Leu Phe His Lys
 210 215 220

Leu Thr Gly Gly Gln Asp
 225 230

<210> 1061
<211> 311
<212> PRT
<213> Homo sapiens

<400> 1061
Met Tyr Val Ser Tyr Leu Leu Asp Lys Asp Val Ser Met Tyr Pro Ser
5 10 15

Ser Val Arg His Ser Gly Gly Leu Asn Leu Ala Pro Gln Asn Phe Val
20 25 30

Ser Pro Pro Gln Tyr Pro Asp Tyr Gly Gly Tyr His Val Ala Ala Ala
35 40 45

Ala Ala Ala Gln Asn Leu Asp Ser Ala Gln Ser Pro Gly Pro Ser Trp
50 55 60

Pro Ala Ala Tyr Gly Ala Pro Leu Arg Glu Asp Trp Asn Gly Tyr Ala
65 70 75 80

Pro Gly Gly Ala Ala Ala Asn Ala Val Ala His Ala Leu Asn Gly
85 90 95

Gly Ser Pro Ala Ala Ala Met Gly Tyr Ser Ser Pro Ala Asp Tyr His
100 105 110

Pro His His His Pro His His Pro Ala Ala Ala Pro
115 120 125

Ser Cys Ala Ser Gly Leu Leu Gln Thr Leu Asn Pro Gly Pro Pro Gly
130 135 140

Pro Ala Ala Thr Ala Ala Ala Glu Gln Leu Ser Pro Gly Gly Gln Arg
145 150 155 160

Arg Asn Leu Cys Glu Trp Met Arg Lys Pro Ala Gln Gln Ser Leu Gly
165 170 175

Ser Gln Val Lys Thr Arg Thr Lys Asp Lys Tyr Arg Val Val Tyr Thr
180 185 190

Asp His Gln Arg Leu Glu Leu Glu Lys Glu Phe His Tyr Ser Arg Tyr
195 200 205

Ile Thr Ile Arg Arg Lys Ala Glu Leu Ala Ala Thr Leu Gly Leu Ser
210 215 220

Glu Arg Gln Val Lys Ile Trp Phe Gln Asn Arg Arg Ala Lys Glu Arg
225 230 235 240

Lys Ile Asn Lys Lys Lys Leu Gln Gln Gln Gln Gln Pro Pro
245 250 255

Gln Pro Pro Pro Pro Pro Gln Pro Pro Gln Pro Gln Pro Gly Pro
260 265 270

Leu Arg Ser Val Pro Glu Pro Leu Ser Pro Val Ser Ser Leu Gln Ala
275 280 285

Ser Val Ser Gly Ser Val Pro Gly Val Leu Gly Pro Thr Gly Gly Val
290 295 300

Leu Asn Pro Thr Val Thr Gln
305 310

<210> 1062

<211> 237

<212> PRT

<213>- Homo sapiens

<400> 1062

Met Ala Gly Val Ser Ala Cys Ile Lys Tyr Ser Met Phe Thr Phe Asn
5 10 15

Phe Leu Phe Trp Leu Cys Gly Ile Leu Ile Leu Ala Leu Ala Ile Trp
20 25 30

Val Arg Val Ser Asn Asp Ser Gln Ala Ile Phe Gly Ser Glu Asp Val
35 40 45

Gly Ser Ser Ser Tyr Val Ala Val Asp Ile Leu Ile Ala Val Gly Ala
50 55 60

Ile Ile Met Ile Leu Gly Phe Leu Gly Cys Cys Gly Ala Ile Lys Glu
65 70 75 80

Ser Arg Cys Met Leu Leu Leu Phe Phe Ile Gly Leu Leu Leu Ile Leu
85 90 95

Leu Leu Gln Val Ala Thr Gly Ile Leu Gly Ala Val Phe Lys Ser Lys
100 105 110

Ser Asp Arg Ile Val Asn Glu Thr Leu Tyr Glu Asn Thr Lys Leu Leu
115 120 125

Ser Ala Thr Gly Glu Ser Glu Lys Gln Phe Gln Glu Ala Ile Ile Val
130 135 140

Phe Gln Glu Glu Phe Lys Cys Cys Gly Leu Val Asn Gly Ala Ala Asp
145 150 155 160

Trp Gly Asn Asn Phe Gln His Tyr Pro Glu Leu Cys Ala Cys Leu Asp
165 170 175

Lys Gln Arg Pro Cys Gln Ser Tyr Asn Gly Lys Gln Val Tyr Lys Glu
180 185 190

Thr Cys Ile Ser Phe Ile Lys Asp Phe Leu Ala Lys Asn Leu Ile Ile
195 200 205

Val Ile Gly Ile Ser Phe Gly Leu Ala Val Ile Glu Ile Leu Gly Leu
210 215 220

Val Phe Ser Met Val Leu Tyr Cys Gln Ile Gly Asn Lys
225 230 235

<210> 1063

<211> 80

<212> PRT

<213> Homo sapiens

<400> 1063

Met Ala Ala Arg Ala Leu Cys Met Leu Gly Leu Val Ala Leu Leu
5 10 15

Ser Ser Ser Ser Ala Glu Glu Tyr Val Gly Leu Ser Ala Asn Gln Cys
20 25 30

Ala Val Pro Ala Lys Asp Arg Val Asp Cys Gly Tyr Pro His Val Thr
35 40 45

Pro Lys Glu Cys Asn Asn Arg Gly Cys Cys Phe Asp Ser Arg Ile Pro
50 55 60

Gly Val Pro Trp Cys Phe Lys Pro Leu Gln Glu Ala Glu Cys Thr Phe
65 70 75 80

<210> 1064

<211> 323

<212> PRT

<213> Homo sapiens

<400> 1064

Met Ala Tyr Val Pro Ala Pro Gly Tyr Gln Pro Thr Tyr Asn Pro Thr
5 10 15

Leu Pro Tyr Tyr Gln Pro Ile Pro Gly Gly Leu Asn Val Gly Met Ser
20 25 30

Val Tyr Ile Gln Gly Val Ala Ser Glu His Met Lys Arg Phe Phe Val
35 40 45

Asn Phe Val Val Gly Gln Asp Pro Gly Ser Asp Val Ala Phe His Phe
50 55 60

Asn Pro Arg Phe Asp Gly Trp Asp Lys Val Val Phe Asn Thr Leu Gln
65 70 75 80

Gly Gly Lys Trp Gly Ser Glu Glu Arg Lys Arg Ser Met Pro Phe Lys
85 90 95

Lys Gly Ala Ala Phe Glu Leu Val Phe Ile Val Leu Ala Glu His Tyr
100 105 110

Lys Val Val Val Asn Gly Asn Pro Phe Tyr Glu Tyr Gly His Arg Leu
115 120 125

Pro Leu Gln Met Val Thr His Leu Gln Val Asp Gly Asp Leu Gln Leu
130 135 140

Gln Ser Ile Asn Phe Ile Gly Gly Gln Pro Leu Arg Pro Gln Gly Pro
 145 150 155 160
 Pro Met Met Pro Pro Tyr Pro Gly Pro Gly His Cys His Gln Gln Leu
 165 170 175
 Asn Ser Leu Pro Thr Met Glu Gly Pro Pro Thr Phe Asn Pro Pro Val
 180 185 190
 Pro Tyr Phe Gly Arg Leu Gln Gly Gly Leu Thr Ala Arg Arg Thr Ile
 195 200 205
 Ile Ile Lys Gly Tyr Val Pro Pro Thr Gly Lys Ser Phe Ala Ile Asn
 210 215 220
 Phe Lys Val Gly Ser Ser Gly Asp Ile Ala Leu His Ile Asn Pro Arg
 225 230 235 240
 Met Gly Asn Gly Thr Val Val Arg Asn Ser Leu Leu Asn Gly Ser Trp
 245 250 255
 Gly Ser Glu Glu Lys Lys Ile Thr His Asn Pro Phe Gly Pro Gly Gln
 260 265 270
 Phe Phe Asp Leu Ser Ile Arg Cys Gly Leu Asp Arg Phe Lys Val Tyr
 275 280 285
 Ala Asn Gly Gln His Leu Phe Asp Phe Ala His Arg Leu Ser Ala Phe
 290 295 300
 Gln Arg Val Asp Thr Leu Glu Ile Gln Gly Asp Val Thr Leu Ser Tyr
 305 310 315 320
 Val Gln Ile

<210> 1065
 <211> 957
 <212> PRT
 <213> Homo sapiens

<400> 1065
 Arg Asn Arg Pro His Thr Thr Ala Phe Pro Gly Ser Thr Thr Met Pro
 5 10 15
 Gly Val Ser Gln Glu Ser Thr Ala Ser His Ser Ser Pro Gly Ser Thr
 20 25 30
 Asp Thr Thr Leu Ser Pro Gly Ser Thr Thr Ala Ser Ser Leu Gly Pro
 35 40 45
 Glu Ser Thr Thr Phe His Ser Gly Pro Gly Ser Thr Glu Thr Thr Leu
 50 55 60
 Leu Pro Asp Asn Thr Thr Ala Ser Gly Leu Leu Glu Ala Ser Thr Pro
 65 70 75 80

Val His Ser Ser Thr Gly Ser Pro His Thr Thr Leu Ser Pro Ala Gly
85 90 95

Ser Thr Thr Arg Gln Gly Glu Ser Thr Thr Phe Gln Ser Trp Pro Asn
100 105 110

Ser Lys Asp Thr Thr Pro Ala Pro Pro Thr Thr Ser Ala Phe Val
115 120 125

Glu Leu Ser Thr Thr Ser His Gly Ser Pro Ser Ser Thr Pro Thr Thr
130 135 140

His Phe Ser Ala Ser Ser Thr Thr Leu Gly Arg Ser Glu Glu Ser Thr
145 150 155 160

Thr Val His Ser Ser Pro Val Ala Thr Ala Thr Thr Pro Ser Pro Ala
165 170 175

Arg Ser Thr Thr Ser Gly Leu Val Glu Glu Ser Thr Thr Tyr His Ser
180 185 190

Ser Pro Gly Ser Thr Gln Thr Met His Phe Pro Glu Ser Asp Thr Thr
195 200 205

Ser Gly Arg Gly Glu Glu Ser Thr Thr Ser His Ser Ser Thr Thr His
210 215 220

Thr Ile Ser Ser Ala Pro Ser Thr Thr Ser Ala Leu Val Glu Glu Pro
225 230 235 240

Thr Ser Tyr His Ser Ser Pro Gly Ser Thr Ala Thr Thr His Phe Pro
245 250 255

Asp Ser Ser Thr Thr Ser Gly Arg Ser Glu Glu Ser Thr Ala Ser His
260 265 270

Ser Asn Gln Asp Ala Thr Gly Thr Ile Val Leu Pro Ala Arg Ser Thr
275 280 285

Thr Ser Val Leu Leu Gly Glu Ser Thr Thr Ser Pro Ile Ser Ser Gly
290 295 300

Ser Met Glu Thr Thr Ala Leu Pro Gly Ser Thr Thr Pro Gly Leu
305 310 315 320

Ser Glu Lys Ser Thr Thr Phe His Ser Ser Pro Arg Ser Pro Ala Thr
325 330 335

Thr Leu Ser Pro Ala Ser Thr Thr Ser Ser Gly Val Ser Glu Glu Ser
340 345 350

Thr Thr Ser His Ser Arg Pro Gly Ser Thr His Thr Thr Ala Phe Pro
355 360 365

Asp Ser Thr Thr Thr Pro Gly Leu Ser Arg His Ser Thr Thr Ser His
370 375 380

Ser Ser Pro Gly Ser Thr Asp Thr Thr Leu Leu Pro Ala Ser Thr Thr
385 390 395 400

Thr Ser Gly Pro Ser Gln Glu Ser Thr Thr Ser His Ser Ser Pro Gly
405 410 415

Ser Thr Asp Thr Ala Leu Ser Pro Gly Ser Thr Thr Ala Leu Ser Phe
420 425 430

Gly Gln Glu Ser Thr Thr Phe His Ser Ser Pro Gly Ser Thr His Thr
435 440 445

Thr Leu Phe Pro Asp Ser Thr Thr Ser Ser Gly Ile Val Glu Ala Ser
450 455 460

Thr Arg Val His Ser Ser Thr Gly Ser Pro Arg Thr Thr Leu Ser Pro
465 470 475 480

Ala Ser Ser Thr Ser Pro Gly Leu Gln Gly Glu Ser Thr Ala Phe Gln
485 490 495

Thr His Pro Ala Ser Thr His Thr Thr Pro Ser Thr Pro Ser Thr Ala
500 505 510

Thr Ala Pro Val Glu Glu Ser Thr Thr Tyr His Arg Ser Pro Ser Ser
515 520 525

Thr Pro Thr Thr His Phe Pro Ala Ser Ser Thr Thr Ser Gly His Ser
530 535 540

Glu Lys Ser Thr Ile Phe His Ser Ser Pro Asp Ala Ser Gly Thr Thr
545 550 555 560

Pro Ser Ser Ala His Ser Thr Thr Ser Gly Arg Gly Glu Ser Thr Thr
565 570 575

Ser Arg Ile Ser Pro Gly Ser Thr Glu Ile Thr Thr Leu Pro Gly Ser
580 585 590

Thr Thr Thr Pro Gly Leu Ser Glu Ala Ser Thr Thr Phe Tyr Ser Ser
595 600 605

Pro Arg Ser Pro Thr Thr Leu Ser Pro Ala Ser Met Thr Ser Leu
610 615 620

Gly Val Gly Glu Glu Ser Thr Thr Ser Arg Ser Gln Pro Gly Ser Thr
625 630 635 640

His Ser Thr Val Ser Pro Ala Ser Thr Thr Pro Gly Leu Ser Glu
645 650 655

Glu Ser Thr Thr Val Tyr Ser Ser Ser Pro Gly Ser Thr Glu Thr Thr
660 665 670

Val Phe Pro Arg Ser Thr Thr Ser Val Arg Gly Glu Glu Pro Thr
675 680 685

Thr Phe His Ser Arg Pro Ala Ser Thr His Thr Leu Phe Thr Glu

690	695	700
Asp Ser Thr Thr Ser Gly Leu Thr Glu Glu		Ser Thr Ala Phe Pro Gly
705	710	715
720		
Ser Pro Ala Ser Thr Gln Thr Gly Leu Pro Ala Thr Leu Thr Thr Ala		
725	730	735
Asp Leu Gly Glu Glu Ser Thr Thr Phe Pro Ser Ser Ser Gly Ser Thr		
740	745	750
Gly Thr Thr Leu Ser Pro Ala Arg Ser Thr Thr Ser Gly Leu Val Gly		
755	760	765
Glu Ser Thr Pro Ser Arg Leu Ser Pro Ser Ser Thr Glu Thr Thr Thr		
770	775	780
Leu Pro Gly Ser Pro Thr Thr Pro Ser Leu Ser Glu Lys Ser Thr Thr		
785	790	795
800		
Phe Tyr Thr Ser Pro Arg Ser Pro Asp Ala Thr Leu Ser Pro Ala Thr		
805	810	815
Thr Thr Ser Ser Gly Val Ser Glu Ser Ser Thr Ser His Ser Gln		
820	825	830
Pro Gly Ser Thr His Thr Thr Ala Phe Pro Asp Ser Thr Thr Thr Ser		
835	840	845
Gly Leu Ser Gln Glu Pro Lys Thr Ser His Ser Ser Gln Gly Ser Thr		
850	855	860
Glu Ala Thr Leu Ser Pro Gly Ser Thr Thr Ala Ser Ser Leu Gly Gln		
865	870	875
880		
Gln Ser Thr Thr Phe His Ser Ser Pro Gly Asp Thr Glu Thr Thr Leu		
885	890	895
Leu Pro Asp Asp Thr Ile Thr Ser Gly Leu Val Glu Ala Ser Thr Pro		
900	905	910
Thr His Ser Ser Thr Gly Ser Leu His Thr Thr Leu Thr Pro Ala Ser		
915	920	925
Ser Thr Ser Ala Gly Leu Gln Glu Glu Ser Thr Thr Phe Gln Ser Trp		
930	935	940
Pro Ser Ser Ser Asp Thr Thr Pro Ser Pro Pro Gly Pro		
945	950	955
<210> 1066		
<211> 914		
<212> PRT		
<213> Homo sapiens		
<400> 1066		
Met Gly Pro Phe Lys Ser Ser Val Phe Ile Leu Ile Leu His Leu Leu		

5	10	15
---	----	----

Glu Gly Ala Leu Ser Asn Ser Leu Ile Gln Leu Asn Asn Asn Gly Tyr
 20 25 30

Glu Gly Ile Val Val Ala Ile Asp Pro Asn Val Pro Glu Asp Glu Thr
 35 40 45

Leu Ile Gln Gln Ile Lys Asp Met Val Thr Gln Ala Ser Leu Tyr Leu
 50 55 60

Phe Glu Ala Thr Gly Lys Arg Phe Tyr Phe Lys Asn Val Ala Ile Leu
 65 70 75 80

Ile Pro Glu Thr Trp Lys Thr Lys Ala Asp Tyr Val Arg Pro Lys Leu
 85 90 95

Glu Thr Tyr Lys Asn Ala Asp Val Leu Val Ala Glu Ser Thr Pro Pro
 100 105 110

Gly Asn Asp Glu Pro Tyr Thr Glu Gln Met Gly Asn Cys Gly Glu Lys
 115 120 125

Gly Glu Arg Ile His Leu Thr Pro Asp Phe Ile Ala Gly Lys Lys Leu
 130 135 140

Ala Glu Tyr Gly Pro Gln Gly Lys Ala Phe Val His Glu Trp Ala His
 145 150 155 160

Leu Arg Trp Gly Val Phe Asp Glu Tyr Asn Asn Asp Glu Lys Phe Tyr
 165 170 175

Leu Ser Asn Gly Arg Ile Gln Ala Val Arg Cys Ser Ala Gly Ile Thr
 180 185 190

Gly Thr Asn Val Val Lys Lys Cys Gln Gly Gly Ser Cys Tyr Thr Lys
 195 200 205

Arg Cys Thr Phe Asn Lys Val Thr Gly Leu Tyr Glu Lys Gly Cys Glu
 210 215 220

Phe Val Leu Gln Ser Arg Gln Thr Glu Lys Ala Ser Ile Met Phe Ala
 225 230 235 240

Gln His Val Asp Ser Ile Val Glu Phe Cys Thr Glu Gln Asn His Asn
 245 250 255

Lys Glu Ala Pro Asn Lys Gln Asn Gln Lys Cys Asn Leu Arg Ser Thr
 260 265 270

Trp Glu Val Ile Arg Asp Ser Glu Asp Phe Lys Lys Thr Thr Pro Met
 275 280 285

Thr Thr Gln Pro Pro Asn Pro Thr Phe Ser Leu Leu Gln Ile Gly Gln
 290 295 300

Arg Ile Val Cys Leu Val Leu Asp Lys Ser Gly Ser Met Ala Thr Gly
 305 310 315 320

Asn Arg Leu Asn Arg Leu Asn Gln Ala Gly Gln Leu Phe Leu Leu Gln
325 330 335

Thr Val Glu Leu Gly Ser Trp Val Gly Met Val Thr Phe Asp Ser Ala
340 345 350

Ala His Val Gln Ser Glu Leu Ile Gln Ile Asn Ser Gly Ser Asp Arg
355 360 365

Asp Thr Leu Ala Lys Arg Leu Pro Ala Ala Ser Gly Gly Thr Ser
370 375 380

Ile Cys Ser Gly Leu Arg Ser Ala Phe Thr Val Ile Arg Lys Lys Tyr
385 390 395 400

Pro Thr Asp Gly Ser Glu Ile Val Leu Leu Thr Asp Gly Glu Asp Asn
405 410 415

Thr Ile Ser Gly Cys Phe Asn Glu Val Lys Gln Ser Gly Ala Ile Ile
420 425 430

His Thr Val Ala Leu Gly Pro Ser Ala Ala Gln Glu Leu Glu Glu Leu
435 440 445

Ser Lys Met Thr Gly Gly Leu Gln Thr Tyr Ala Ser Asp Gln Val Gln
450 455 460

Asn Asn Gly Leu Ile Asp Ala Phe Gly Ala Leu Ser Ser Gly Asn Gly
465 470 475 480

Ala Val Ser Gln Arg Ser Ile Gln Leu Glu Ser Lys Gly Leu Thr Leu
485 490 495

Gln Asn Ser Gln Trp Met Asn Gly Thr Val Ile Val Asp Ser Thr Val
500 505 510

Gly Lys Asp Thr Leu Phe Leu Ile Thr Trp Thr Thr Gln Pro Pro Gln
515 520 525

Ile Leu Leu Trp Asp Pro Ser Gly Gln Lys Gln Gly Gly Phe Val Val
530 535 540

Asp Lys Asn Thr Lys Met Ala Tyr Leu Gln Ile Pro Gly Ile Ala Lys
545 550 555 560

Val Gly Thr Trp Lys Tyr Ser Leu Gln Ala Ser Ser Gln Thr Leu Thr
565 570 575

Leu Thr Val Thr Ser Arg Ala Ser Asn Ala Thr Leu Pro Pro Ile Thr
580 585 590

Val Thr Ser Lys Thr Asn Lys Asp Thr Ser Lys Phe Pro Ser Pro Leu
595 600 605

Val Val Tyr Ala Asn Ile Arg Gln Gly Ala Ser Pro Ile Leu Arg Ala
610 615 620

Ser Val Thr Ala Leu Ile Glu Ser Val Asn Gly Lys Thr Val Thr Leu
625 630 635 640

Glu Leu Leu Asp Asn Gly Ala Gly Ala Asp Ala Thr Lys Asp Asp Gly
645 650 655

Val Tyr Ser Arg Tyr Phe Thr Thr Tyr Asp Thr Asn Gly Arg Tyr Ser
660 665 670

Val Lys Val Arg Ala Leu Gly Gly Val Asn Ala Ala Arg Arg Arg Val
675 680 685

Ile Pro Gln Gln Ser Gly Ala Leu Tyr Ile Pro Gly Trp Ile Glu Asn
690 695 700

Asp Glu Ile Gln Trp Asn Pro Pro Arg Pro Glu Ile Asn Lys Asp Asp
705 710 715 720

Val Gln His Lys Gln Val Cys Phe Ser Arg Thr Ser Ser Gly Gly Ser
725 730 735

Phe Val Ala Ser Asp Val Pro Asn Ala Pro Ile Pro Asp Leu Phe Pro
740 745 750

Pro Gly Gln Ile Thr Asp Leu Lys Ala Glu Ile His Gly Gly Ser Leu
755 760 765

Ile Asn Leu Thr Trp Thr Ala Pro Gly Asp Asp Tyr Asp His Gly Thr
770 775 780

Ala His Lys Tyr Ile Ile Arg Ile Ser Thr Ser Ile Leu Asp Leu Arg
785 790 795 800

Asp Lys Phe Asn Glu Ser Leu Gln Val Asn Thr Thr Ala Leu Ile Pro
805 810 815

Lys Glu Ala Asn Ser Glu Glu Val Phe Leu Phe Lys Pro Glu Asn Ile
820 825 830

Thr Phe Glu Asn Gly Thr Asp Leu Phe Ile Ala Ile Gln Ala Val Asp
835 840 845

Lys Val Asp Leu Lys Ser Glu Ile Ser Asn Ile Ala Arg Val Ser Leu
850 855 860

Phe Ile Pro Pro Gln Thr Pro Pro Glu Thr Pro Ser Pro Asp Glu Thr
865 870 875 880

Ser Ala Pro Cys Pro Asn Ile His Ile Asn Ser Thr Ile Pro Gly Ile
885 890 895

His Ile Leu Lys Ile Met Trp. Lys Trp Ile Gly Glu Leu Gln Leu Ser
900 905 910

Ile Ala

<210> 1067
<211> 585
<212> PRT
<213> Homo sapiens

<400> 1067
Thr Leu Ser Pro Ala Ser Met Arg Ser Ser Ser Ile Ser Gly Glu Pro
5 10 15

Thr Ser Leu Tyr Ser Gln Ala Glu Ser Thr His Thr Thr Ala Phe Pro
20 25 30

Ala Ser Thr Thr Ser Gly Leu Ser Gln Glu Ser Thr Thr Phe His
35 40 45

Ser Lys Pro Gly Ser Thr Glu Thr Thr Leu Ser Pro Gly Ser Ile Thr
50 55 60

Thr Ser Ser Phe Ala Gln Glu Phe Thr Thr Pro His Ser Gln Pro Gly
65 70 75 80

Ser Ala Leu Ser Thr Val Ser Pro Ala Ser Thr Thr Val Pro Gly Leu
85 90 95

Ser Glu Glu Ser Thr Thr Phe Tyr Ser Ser Pro Gly Ser Thr Glu Thr
100 105 110

Thr Ala Phe Ser His Ser Asn Thr Met Ser Ile His Ser Gln Gln Ser
115 120 125

Thr Pro Phe Pro Asp Ser Pro Gly Phe Thr His Thr Val Leu Pro Ala
130 135 140

Thr Leu Thr Thr Thr Asp Ile Gly Gln Glu Ser Thr Ala Phe His Ser
145 150 155 160

Ser Ser Asp Ala Thr Gly Thr Thr Pro Leu Pro Ala Arg Ser Thr Ala
165 170 175

Ser Asp Leu Val Gly Glu Pro Thr Thr Phe Tyr Ile Ser Pro Ser Pro
180 185 190

Thr Tyr Thr Thr Leu Phe Pro Ala Ser Ser Ser Thr Ser Gly Leu Thr
195 200 205

Glu Glu Ser Thr Thr Phe His Thr Ser Pro Ser Phe Thr Ser Thr Ile
210 215 220

Val Ser Thr Glu Ser Leu Glu Thr Leu Ala Pro Gly Leu Cys Gln Glu
225 230 235 240

Gly Gln Ile Trp Asn Gly Lys Gln Cys Val Cys Pro Gln Gly Tyr Val
245 250 255

Gly Tyr Gln Cys Leu Ser Pro Leu Glu Ser Phe Pro Val Glu Thr Pro
260 265 270

Glu Lys Leu Asn Ala Thr Leu Gly Met Thr Val Lys Val Thr Tyr Arg

275	280	285
Asn Phe Thr Glu Lys Met Asn Asp Ala Ser Ser Gln Glu Tyr Gln Asn		
290	295	300
Phe Ser Thr Leu Phe Lys Asn Arg Met Asp Val Val Leu Lys Gly Asp		
305	310	315
Asn Leu Pro Gln Tyr Arg Gly Val Asn Ile Arg Arg Leu Leu Asn Gly		
325	330	335
Ser Ile Val Val Lys Asn Asp Val Ile Leu Glu Ala Asp Tyr Thr Leu		
340	345	350
Glu Tyr Glu Glu Leu Phe Glu Asn Ile Ala Glu Ile Val Lys Ala Lys		
355	360	365
Ile Met Asn Glu Thr Arg Thr Thr Leu Leu Asp Pro Asp Ser Cys Arg		
370	375	380
Lys Ala Ile Leu Cys Tyr Ser Glu Glu Asp Thr Phe Val Asp Ser Ser		
385	390	395
Val Thr Pro Gly Phe Asp Phe Gln Glu Gln Cys Thr Gln Lys Ala Ala		
405	410	415
Glu Gly Tyr Thr Gln Phe Tyr Tyr Val Asp Val Leu Asp Gly Lys Leu		
420	425	430
Ala Cys Val Asn Lys Cys Thr Lys Gly Thr Lys Ser Gln Met Asn Cys		
435	440	445
Asn Leu Gly Thr Cys Gln Leu Gln Arg Ser Gly Pro Arg Cys Leu Cys		
450	455	460
Pro Asn Thr Asn Thr His Trp Tyr Trp Gly Glu Thr Cys Glu Phe Asn		
465	470	475
Ile Ala Lys Ser Leu Val Tyr Gly Ile Val Gly Ala Val Met Ala Val		
485	490	495
Leu Leu Leu Ala Leu Ile Ile Leu Ile Ile Leu Phe Ser Leu Ser Gln		
500	505	510
Arg Lys Arg His Arg Glu Gln Tyr Asp Val Pro Gln Glu Trp Arg Lys		
515	520	525
Glu Gly Thr Pro Gly Ile Phe Gln Lys Thr Ala Ile Trp Glu Asp Gln		
530	535	540
Asn Leu Arg Glu Ser Arg Phe Gly Leu Glu Asn Ala Tyr Asn Asn Phe		
545	550	555
Arg Pro Thr Leu Glu Thr Val Asp Ser Gly Thr Glu Leu His Ile Gln		
565	570	575
Arg Pro Glu Met Val Ala Ser Thr Val		
580	585	

<210> 1068
<211> 5179
<212> PRT
<213> Homo sapiens

<400> 1068
Met Gly Leu Pro Leu Ala Arg Leu Ala Ala Val Cys Leu Ala Leu Ser
5 10 15

Leu Ala Gly Gly Ser Glu Leu Gln Thr Glu Gly Arg Thr Arg Tyr His
20 25 30

Gly Arg Asn Val Cys Ser Thr Trp Gly Asn Phe His Tyr Lys Thr Phe
35 40 45

Asp Gly Asp Val Phe Arg Phe Pro Gly Leu Cys Asp Tyr Asn Phe Ala
50 55 60

Ser Asp Cys Arg Gly Ser Tyr Lys Glu Phe Ala Val His Leu Lys Arg
65 70 75 80

Gly Pro Gly Gln Ala Glu Ala Pro Ala Gly Val Glu Ser Ile Leu Leu
85 90 95

Thr Ile Lys Asp Asp Thr Ile Tyr Leu Thr Arg His Leu Ala Val Leu
100 105 110

Asn Gly Ala Val Val Ser Thr Pro His Tyr Ser Pro Gly Leu Leu Ile
115 120 125

Glu Lys Ser Asp Ala Tyr Thr Lys Val Tyr Ser Arg Ala Gly Leu Thr
130 135 140

Leu Met Trp Asn Arg Glu Asp Ala Leu Met Leu Glu Leu Asp Thr Lys
145 150 155 160

Phe Arg Asn His Thr Cys Gly Leu Cys Gly Asp Tyr Asn Gly Leu Gln
165 170 175

Ser Tyr Ser Glu Phe Leu Ser Asp Gly Val Leu Phe Ser Pro Leu Glu
180 185 190

Phe Gly Asn Met Gln Lys Ile Asn Gln Pro Asp Val Val Cys Glu Asp
195 200 205

Pro Glu Glu Glu Val Ala Pro Ala Ser Cys Ser Glu His Arg Ala Glu
210 215 220

Cys Glu Arg Leu Leu Thr Ala Glu Ala Phe Ala Asp Cys Gln Asp Leu
225 230 235 240

Val Pro Leu Glu Pro Tyr Leu Arg Ala Cys Gln Gln Asp Arg Cys Arg
245 250 255

Cys Pro Gly Gly Asp Thr Cys Val Cys Ser Thr Val Ala Glu Phe Ser
260 265 270

Arg Gln Cys Ser His Ala Gly Gly Arg Pro Gly Asn Trp Arg Thr Ala
275 280 285

Thr Leu Cys Pro Lys Thr Cys Pro Gly Asn Leu Val Tyr Leu Glu Ser
290 295 300

Gly Ser Pro Cys Met Asp Thr Cys Ser His Leu Glu Val Ser Ser Leu
305 310 315 320

Cys Glu Glu His Arg Met Asp Gly Cys Phe Cys Pro Glu Gly Thr Val
325 330 335

Tyr Asp Asp Ile Gly Asp Ser Gly Cys Val Pro Val Ser Gln Cys His
340 345 350

Cys Arg Leu His Gly His Leu Tyr Thr Pro Gly Gln Glu Ile Thr Asn
355 360 365

Asp Cys Glu Gln Cys Val Cys Asn Ala Gly Arg Trp Val Cys Lys Asp
370 375 380

Leu Pro Cys Pro Gly Thr Cys Ala Leu Glu Gly Ser His Ile Thr
385 390 395 400

Thr Phe Asp Gly Lys Thr Tyr Thr Phe His Gly Asp Cys Tyr Tyr Val
405 410 415

Leu Ala Lys Gly Asp His Asn Asp Ser Tyr Ala Leu Leu Glu Leu
420 425 430

Ala Pro Cys Gly Ser Thr Asp Lys Gln Thr Cys Leu Lys Thr Val Val
435 440 445

Leu Leu Ala Asp Lys Lys Asn Ala Val Val Phe Lys Ser Asp Gly
450 455 460

Ser Val Leu Leu Asn Gln Leu Gln Val Asn Leu Pro His Val Thr Ala
465 470 475 480

Ser Phe Ser Val Phe Arg Pro Ser Ser Tyr His Ile Met Val Ser Met
485 490 495

Ala Ile Gly Val Arg Leu Gln Val Gln Leu Ala Pro Val Met Gln Leu
500 505 510

Phe Val Thr Leu Asp Gln Ala Ser Gln Gly Gln Val Gln Gly Leu Cys
515 520 525

Gly Asn Phe Asn Gly Leu Glu Gly Asp Asp Phe Lys Thr Ala Ser Gly
530 535 540

Leu Val Glu Ala Thr Gly Ala Gly Phe Ala Asn Thr Trp Lys Ala Gln
545 550 555 560

Ser Thr Cys His Asp Lys Leu Asp Trp Leu Asp Asp Pro Cys Ser Leu
565 570 575

Asn Ile Glu Ser Ala Asn Tyr Ala Glu His Trp Cys Ser Leu Leu Lys
580 585 590

Lys Thr Glu Thr Pro Phe Gly Arg Cys His Ser Ala Val Asp Pro Ala
595 600 605

Glu Tyr Tyr Lys Arg Cys Lys Tyr Asp Thr Cys Asn Cys Gln Asn Asn
610 615 620

Glu Asp Cys Leu Cys Ala Ala Leu Ser Ser Tyr Ala Arg Ala Cys Thr
625 630 635 640

Ala Lys Gly Val Met Leu Trp Gly Trp Arg Glu His Val Cys Asn Lys
645 650 655

Asp Val Gly Ser Cys Pro Asn Ser Gln Val Phe Leu Tyr Asn Leu Thr
660 665 670

Thr Cys Gln Gln Thr Cys Arg Ser Leu Ser Glu Ala Asp Ser His Cys
675 680 685

Leu Glu Gly Phe Ala Pro Val Asp Gly Cys Gly Cys Pro Asp His Thr
690 695 700

Phe Leu Asp Glu Lys Gly Arg Cys Val Pro Leu Ala Lys Cys Ser Cys
705 710 715 720

Tyr His Arg Gly Leu Tyr Leu Glu Ala Gly Asp Val Val Val Arg Gln
725 730 735

Glu Glu Arg Cys Val Cys Arg Asp Gly Arg Leu His Cys Arg Gln Ile
740 745 750

Arg Leu Ile Gly Gln Ser Cys Thr Ala Pro Lys Ile His Met Asp Cys
755 760 765

Ser Asn Leu Thr Ala Leu Ala Thr Ser Lys Pro Arg Ala Leu Ser Cys
770 775 780

Gln Thr Leu Ala Ala Gly Tyr Tyr His Thr Glu Cys Val Ser Gly Cys
785 790 795 800

Val Cys Pro Asp Gly Leu Met Asp Asp Gly Arg Gly Gly Cys Val Val
805 810 815

Glu Lys Glu Cys Pro Cys Val His Asn Asn Asp Leu Tyr Ser Ser Gly
820 825 830

Ala Lys Ile Lys Val Asp Cys Asn Thr Cys Thr Cys Lys Arg Gly Arg
835 840 845

Trp Val Cys Thr Gln Ala Val Cys His Gly Thr Cys Ser Ile Tyr Gly
850 855 860

Ser Gly His Tyr Ile Thr Phe Asp Gly Lys Tyr Tyr Asp Phe Asp Gly
865 870 875 880

His Cys Ser Tyr Val Ala Val Gln Asp Tyr Cys Gly Gln Asn Ser Ser

885	890	895
Leu Gly Ser Phe Ser Ile Ile Thr Glu Asn Val Pro Cys Gly Thr Thr		
900	905	910
Gly Val Thr Cys Ser Lys Ala Ile Lys Ile Phe Met Gly Arg Thr Glu		
915	920	925
Leu Lys Leu Glu Asp Lys His Arg Val Val Ile Gln Arg Asp Glu Gly		
930	935	940
His His Val Ala Tyr Thr Arg Glu Val Gly Gln Tyr Leu Val Val		
945	950	955
Glu Ser Ser Thr Gly Ile Ile Val Ile Trp Asp Lys Arg Thr Thr Val		
965	970	975
Phe Ile Lys Leu Ala Pro Ser Tyr Lys Gly Thr Val Cys Gly Leu Cys		
980	985	990
Gly Asn Phe Asp His Arg Ser Asn Asn Asp Phe Thr Thr Arg Asp His		
995	1000	1005
Met Val Val Ser Ser Glu Leu Asp Phe Gly Asn Ser Trp Lys Glu Ala		
1010	1015	1020
Pro Thr Cys Pro Asp Val Ser Thr Asn Pro Glu Pro Cys Ser Leu Asn		
1025	1030	1035
Pro His Arg Arg Ser Trp Ala Glu Lys Gln Cys Ser Ile Leu Lys Ser		
1045	1050	1055
Ser Val Phe Ser Ile Cys His Ser Lys Val Asp Pro Lys Pro Phe Tyr		
1060	1065	1070
Glu Ala Cys Val His Asp Ser Cys Ser Cys Asp Thr Gly Gly Asp Cys		
1075	1080	1085
Glu Cys Phe Cys Ser Ala Val Ala Ser Tyr Ala Gln Glu Cys Thr Lys		
1090	1095	1100
Glu Gly Ala Cys Val Phe Trp Arg Thr Pro Asp Leu Cys Pro Ile Phe		
1105	1110	1115
Cys Asp Tyr Tyr Asn Pro Pro His Glu Cys Glu Trp His Tyr Glu Pro		
1125	1130	1135
Cys Gly Asn Arg Ser Phe Glu Thr Cys Arg Thr Ile Asn Gly Ile His		
1140	1145	1150
Ser Asn Ile Ser Val Ser Tyr Leu Glu Gly Cys Tyr Pro Arg Cys Pro		
1155	1160	1165
Lys Asp Arg Pro Ile Tyr Glu Glu Asp Leu Lys Lys Cys Val Thr Ala		
1170	1175	1180
Asp Lys Cys Gly Cys Tyr Val Glu Asp Thr His Tyr Pro Pro Gly Ala		
1185	1190	1195
		1200

Ser Val Pro Thr Glu Glu Thr Cys Lys Ser Cys Val Cys Thr Asn Ser
1205 1210 1215

Ser Gln Val Val Cys Arg Pro Glu Glu Gly Lys Ile Leu Asn Gln Thr
1220 1225 1230

Gln Asp Gly Ala Phe Cys Tyr Trp Glu Ile Cys Gly Pro Asn Gly Thr
1235 1240 1245

Val Glu Lys His Phe Asn Ile Cys Ser Ile Thr Thr Arg Pro Ser Thr
1250 1255 1260

Leu Thr Thr Phe Thr Thr Ile Thr Leu Pro Thr Thr Pro Thr Ser Phe
1265 1270 1275 1280

Thr Thr Thr Thr Thr Pro Thr Ser Ser Thr Val Leu Ser
1285 1290 1295

Thr Thr Pro Lys Leu Cys Cys Leu Trp Ser Asp Trp Ile Asn Glu Asp
1300 1305 1310

His Pro Ser Ser Gly Ser Asp Asp Gly Asp Arg Glu Pro Phe Asp Gly
1315 1320 1325

Val Cys Gly Ala Pro Glu Asp Ile Glu Cys Arg Ser Val Lys Asp Pro
1330 1335 1340

His Leu Ser Leu Glu Gln His Gly Gln Lys Val Gln Cys Asp Val Ser
1345 1350 1355 1360

Val Gly Phe Ile Cys Lys Asn Glu Asp Gln Phe Gly Asn Gly Pro Phe
1365 1370 1375

Gly Leu Cys Tyr Asp Tyr Lys Ile Arg Val Asn Cys Cys Trp Pro Met
1380 1385 1390

Asp Lys Cys Ile Thr Thr Pro Ser Pro Pro Thr Thr Pro Ser Pro
1395 1400 1405

Pro Pro Thr Thr Thr Thr Leu Pro Pro Thr Thr Pro Ser Pro
1410 1415 1420

Pro Thr Thr Thr Thr Pro Pro Pro Thr Thr Pro Ser Pro
1425 1430 1435 1440

Pro Ile Thr Thr Thr Pro Leu Pro Thr Thr Pro Ser Pro
1445 1450 1455

Pro Ile Ser Thr Thr Pro Pro Pro Thr Thr Pro Ser Pro
1460 1465 1470

Pro Thr Thr Thr Pro Ser Pro Pro Thr Thr Pro Ser Pro Pro Thr
1475 1480 1485

Thr Thr Thr Thr Pro Pro Pro Thr Thr Pro Ser Pro Pro Met
1490 1495 1500

Thr Thr Pro Ile Thr Pro Pro Ala Ser Thr Thr Thr Leu Pro Pro Thr
1505 1510 1515 1520

Thr Thr Pro Ser Pro Pro Thr Thr Thr Thr Pro Pro Pro Pro Thr
1525 1530 1535

Thr Thr Pro Ser Pro Pro Thr Thr Thr Pro Ile Thr Pro Pro Pro Thr Ser
1540 1545 1550

Thr Thr Thr Leu Pro Pro Thr Thr Thr Pro Ser Pro Pro Pro Thr Thr
1555 1560 1565

Thr Thr Thr Pro Pro Pro Thr Thr Thr Pro Ser Pro Pro Pro Thr Thr
1570 1575 1580

Thr Pro Ser Pro Pro Thr Ile Thr Thr Thr Pro Pro Pro Pro Thr Thr
1585 1590 1595 1600

Thr Pro Ser Pro Pro Thr Thr Thr Thr Pro Pro Pro Pro Thr Thr
1605 1610 1615

Thr Pro Ser Pro Pro Thr Thr Thr Pro Ile Thr Pro Pro Thr Ser Thr
1620 1625 1630

Thr Thr Leu Pro Pro Thr Thr Thr Pro Ser Pro Pro Pro Thr Thr Thr
1635 1640 1645

Thr Thr Pro Pro Pro Thr Thr Thr Pro Ser Pro Pro Thr Thr Thr
1650 1655 1660

Pro Ser Pro Pro Ile Thr Thr Thr Thr Pro Pro Pro Pro Thr Thr Thr
1665 1670 1675 1680

Pro Ser Ser Pro Ile Thr Thr Pro Ser Pro Pro Thr Thr Met
1685 1690 1695

Thr Thr Pro Ser Pro Thr Thr Pro Ser Ser Pro Ile Thr Thr Thr
1700 1705 1710

Thr Thr Pro Ser Ser Thr Thr Pro Ser Pro Pro Pro Thr Thr Met
1715 1720 1725

Thr Thr Pro Ser Pro Thr Thr Pro Ser Pro Pro Pro Thr Thr Met
1730 1735 1740

Thr Thr Leu Pro Pro Thr Thr Thr Ser Ser Pro Leu Thr Thr Thr Pro
1745 1750 1755 1760

Leu Pro Pro Ser Ile Thr Pro Pro Thr Phe Ser Pro Phe Ser Thr Thr
1765 1770 1775

Thr Pro Thr Thr Pro Cys Val Pro Leu Cys Asn Trp Thr Gly Trp Leu
1780 1785 1790

Asp Ser Gly Lys Pro Asn Phe His Lys Pro Gly Gly Asp Thr Glu Leu
1795 1800 1805

Ile Gly Asp Val Cys Gly Pro Gly Trp Ala Ala Asn Ile Ser Cys Arg

1810

1815

1820

Ala Thr Met Tyr Pro Asp Val Pro Ile Gly Gln Leu Gly Gln Thr Val
 1825 1830 1835 1840

 Val Cys Asp Val Ser Val Gly Leu Ile Cys Lys Asn Glu Asp Gln Lys
 1845 1850 1855

 Pro Gly Gly Val Ile Pro Met Ala Phe Cys Leu Asn Tyr Glu Ile Asn
 1860 1865 1870

 Val Gln Cys Cys Glu Cys Val Thr Gln Pro Thr Thr Met Thr Thr Thr
 1875 1880 1885

 Thr Thr Glu Asn Pro Thr Pro Pro Thr Thr Pro Ile Thr Thr Thr
 1890 1895 1900

 Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Pro Thr
 1905 1910 1915 1920

 Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro
 1925 1930 1935

 Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr Thr Thr Thr
 1940 1945 1950

 Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr
 1955 1960 1965

 Pro Ile Thr Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly
 1970 1975 1980

 Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr Val Thr
 1985 1990 1995 2000

 Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile
 2005 2010 2015

 Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln
 2020 2025 2030

 Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr
 2035 2040 2045

 Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr
 2050 2055 2060

 Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro
 2065 2070 2075 2080

 Thr Thr Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro Thr
 2085 2090 2095

 Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
 2100 2105 2110

 Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
 2115 2120 2125

Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr
2130 2135 2140

Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val
2145 2150 2155 2160

Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro
2165 2170 2175

Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr
2180 2185 2190

Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro
2195 2200 2205

Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr
2210 2215 2220

Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr
2225 2230 2235 2240

Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro
2245 2250 2255

Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr
2260 2265 2270

Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr
2275 2280 2285

Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro
2290 2295 2300

Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr
2305 2310 2315 2320

Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr
2325 2330 2335

Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly
2340 2345 2350

Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr Val Thr
2355 2360 2365

Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile
2370 2375 2380

Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln
2385 2390 2395 2400

Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr
2405 2410 2415

Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr
2420 2425 2430

Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro
2435 2440 2445

Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr
2450 2455 2460

Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
2465 2470 2475 2480

Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
2485 2490 2495

Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr
2500 2505 2510

Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val
2515 2520 2525

Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro
2530 2535 2540

Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr
2545 2550 2555 2560

Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro
2565 2570 2575

Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr
2580 2585 2590

Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr
2595 2600 2605

Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro
2610 2615 2620

Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr
2625 2630 2635 2640

Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr
2645 2650 2655

Thr Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro Thr Pro
2660 2665 2670

Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
2675 2680 2685

Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
2690 2695 2700

Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly
2705 2710 2715 2720

Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr
2725 2730 2735

Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile

2740

2745

2750

Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln
2755 2760 2765

Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr
2770 2775 2780

Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr
2785 2790 2795 2800

Thr Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro
2805 2810 2815

Thr Thr Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro Thr
2820 2825 2830

Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
2835 2840 2845

Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
2850 2855 2860

Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr
2865 2870 2875 2880

Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr Val
2885 2890 2895

Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro
2900 2905 2910

Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr
2915 2920 2925

Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro
2930 2935 2940

Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr
2945 2950 2955 2960

Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr
2965 2970 2975

Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro
2980 2985 2990

Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr
2995 3000 3005

Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr
3010 3015 3020

Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro
3025 3030 3035 3040

Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
3045 3050 3055

Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr
3060 3065 3070

Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly
3075 3080 3085

Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr
3090 3095 3100

Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile
3105 3110 3115 3120

Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln
3125 3130 3135

Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr
3140 3145 3150

Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr
3155 3160 3165

Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro
3170 3175 3180

Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr
3185 3190 3195 3200

Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
3205 3210 3215

Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
3220 3225 3230

Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr
3235 3240 3245

Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr Val
3250 3255 3260

Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro
3265 3270 3275 3280

Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr
3285 3290 3295

Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro
3300 3305 3310

Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr
3315 3320 3325

Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr
3330 3335 3340

Pro Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro
3345 3350 3355 3360

Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr Thr
3365 3370 3375

Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr
3380 3385 3390

Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro
3395 3400 3405

Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr
3410 3415 3420

Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr
3425 3430 3435 3440

Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly
3445 3450 3455

Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr
3460 3465 3470

Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile
3475 3480 3485

Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln
3490 3495 3500

Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr
3505 3510 3515 3520

Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr Thr
3525 3530 3535

Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro
3540 3545 3550

Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr
3555 3560 3565

Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
3570 3575 3580

Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
3585 3590 3595 3600

Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr
3605 3610 3615

Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Thr Val
3620 3625 3630

Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro
3635 3640 3645

Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr
3650 3655 3660

Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro

3665	3670	3675	3680
Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile Thr			
3685	3690	3695	
Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr			
3700	3705	3710	
Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro			
3715	3720	3725	
Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr			
3730	3735	3740	
Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr			
3745	3750	3755	3760
Thr Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro Thr Pro			
3765	3770	3775	
Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr			
3780	3785	3790	
Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr			
3795	3800	3805	
Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly			
3810	3815	3820	
Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr			
3825	3830	3835	3840
Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Thr Pro Ile			
3845	3850	3855	
Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln			
3860	3865	3870	
Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr			
3875	3880	3885	
Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr			
3890	3895	3900	
Thr Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro			
3905	3910	3915	3920
Thr Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr			
3925	3930	3935	
Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr			
3940	3945	3950	
Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr			
3955	3960	3965	
Thr Pro Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr			
3970	3975	3980	

Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val
3985 3990 3995 4000

Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro
4005 4010 4015

Ile Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr
4020 4025 4030

Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr Val Thr Pro
4035 4040 4045

Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr
4050 4055 4060

Thr Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly Thr Gln Thr
4065 4070 4075 4080

Pro Thr Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro
4085 4090 4095

Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr
4100 4105 4110

Thr Thr Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr
4115 4120 4125

Thr Thr Pro Ile Thr Thr Thr Val Thr Pro Thr Pro Thr Pro
4130 4135 4140

Thr Gly Thr Gln Thr Pro Thr Thr Pro Ile Thr Thr Thr Thr
4145 4150 4155 4160

Val Thr Pro Thr Pro Thr Gly Thr Gln Thr Pro Thr Thr
4165 4170 4175

Pro Ile Thr Thr Thr Val Thr Pro Thr Pro Thr Pro Thr Gly
4180 4185 4190

Thr Gln Thr Gly Pro Pro Thr His Thr Ser Thr Ala Pro Ile Ala Glu
4195 4200 4205

Leu Thr Thr Ser Asn Pro Pro Pro Glu Ser Ser Thr Pro Gln Thr Ser
4210 4215 4220

Arg Ser Thr Ser Ser Pro Leu Thr Glu Ser Thr Thr Leu Leu Ser Thr
4225 4230 4235 4240

Leu Pro Pro Ala Ile Glu Met Thr Ser Thr Ala Pro Pro Ser Thr Pro
4245 4250 4255

Thr Ala Pro Thr Thr Ser Gly Gly His Thr Leu Ser Pro Pro Pro
4260 4265 4270

Ser Thr Thr Thr Ser Pro Pro Gly Thr Pro Thr Arg Gly Thr Thr Thr
4275 4280 4285

Gly Ser Ser Ser Ala Pro Thr Pro Ser Thr Val Gln Thr Thr Thr Thr
4290 4295 4300

Ser Ala Trp Thr Pro Thr Pro Leu Ser Thr Pro Ser Ile Ile
4305 4310 4315 4320

Arg Thr Thr Gly Leu Arg Pro Tyr Pro Ser Ser Val Leu Ile Cys Cys
4325 4330 4335

Val Leu Asn Asp Thr Tyr Tyr Ala Pro Gly Glu Glu Val Tyr Asn Gly
4340 4345 4350

Thr Tyr Gly Asp Thr Cys Tyr Phe Val Asn Cys Ser Leu Ser Cys Thr
4355 4360 4365

Leu Glu Phe Tyr Asn Trp Ser Cys Pro Ser Thr Pro Ser Pro Thr Pro
4370 4375 4380

Thr Pro Ser Lys Ser Thr Pro Thr Pro Ser Lys Pro Ser Ser Thr Pro
4385 4390 4395 4400

Ser Lys Pro Thr Pro Gly Thr Lys Pro Pro Glu Cys Pro Asp Phe Asp
4405 4410 4415

Pro Pro Arg Gln Glu Asn Glu Thr Trp Trp Leu Cys Asp Cys Phe Met
4420 4425 4430

Ala Thr Cys Lys Tyr Asn Asn Thr Val Glu Ile Val Lys Val Glu Cys
4435 4440 4445

Glu Pro Pro Pro Met Pro Thr Cys Ser Asn Gly Leu Gln Pro Val Arg
4450 4455 4460

Val Glu Asp Pro Asp Gly Cys Cys Trp His Trp Glu Cys Asp Cys Tyr
4465 4470 4475 4480

Cys Thr Gly Trp Gly Asp Pro His Tyr Val Thr Phe Asp Gly Leu Tyr
4485 4490 4495

Tyr Ser Tyr Gln Gly Asn Cys Thr Tyr Val Leu Val Glu Glu Ile Ser
4500 4505 4510

Pro Ser Val Asp Asn Phe Gly Val Tyr Ile Asp Asn Tyr His Cys Asp
4515 4520 4525

Pro Asn Asp Lys Val Ser Cys Pro Arg Thr Leu Ile Val Arg His Glu
4530 4535 4540

Thr Gln Glu Val Leu Ile Lys Thr Val His Met Met Pro Met Gln Val
4545 4550 4555 4560

Gln Val Gln Val Asn Arg Gln Ala Val Ala Leu Pro Tyr Lys Lys Tyr
4565 4570 4575

Gly Leu Glu Val Tyr Gln Ser Gly Ile Asn Tyr Val Val Asp Ile Pro
4580 4585 4590

Glu Leu Gly Val Leu Val Ser Tyr Asn Gly Leu Ser Phe Ser Val Arg

4595	4600	4605
Leu Pro Tyr His Arg Phe Gly Asn Asn Thr Lys Gly Gln Cys Gly Thr		
4610	4615	4620
Cys Thr Asn Thr Thr Ser Asp Asp Cys Ile Leu Pro Ser Gly Glu Ile		
4625	4630	4635
Val Ser Asn Cys Glu Ala Ala Asp Gln Trp Leu Val Asn Asp Pro		
4645	4650	4655
Ser Lys Pro His Cys Pro His Ser Ser Thr Thr Lys Arg Pro Ala		
4660	4665	4670
Val Thr Val Pro Gly Gly Lys Thr Thr Pro His Lys Asp Cys Thr		
4675	4680	4685
Pro Ser Pro Leu Cys Gln Leu Ile Lys Asp Ser Leu Phe Ala Gln Cys		
4690	4695	4700
His Ala Leu Val Pro Pro Gln His Tyr Tyr Asp Ala Cys Val Phe Asp		
4705	4710	4715
4720		
Ser Cys Phe Met Pro Gly Ser Ser Leu Glu Cys Ala Ser Leu Gln Ala		
4725	4730	4735
Tyr Ala Ala Leu Cys Ala Gln Gln Asn Ile Cys Leu Asp Trp Arg Asn		
4740	4745	4750
His Thr His Gly Ala Cys Leu Val Glu Cys Pro Ser His Arg Glu Tyr		
4755	4760	4765
Gln Ala Cys Gly Pro Ala Glu Glu Pro Thr Cys Lys Ser Ser Ser		
4770	4775	4780
Gln Gln Asn Asn Thr Val Leu Val Glu Gly Cys Phe Cys Pro Glu Gly		
4785	4790	4795
4800		
Thr Met Asn Tyr Ala Pro Gly Phe Asp Val Cys Val Lys Thr Cys Gly		
4805	4810	4815
Cys Val Gly Pro Asp Asn Val Pro Arg Glu Phe Gly Glu His Phe Glu.		
4820	4825	4830
Phe Asp Cys Lys Asn Cys Val Cys Leu Glu Gly Ser Gly Ile Ile		
4835	4840	4845
Cys Gln Pro Lys Arg Cys Ser Gln Lys Pro Val Thr His Cys Val Glu		
4850	4855	4860
Asp Gly Thr Tyr Leu Ala Thr Glu Val Asn Pro Ala Asp Thr Cys Cys		
4865	4870	4875
4880		
Asn Ile Thr Val Cys Lys Cys Asn Thr Ser Leu Cys Lys Glu Lys Pro		
4885	4890	4895
Ser Val Cys Pro Leu Gly Phe Glu Val Lys Ser Lys Met Val Pro Gly		
4900	4905	4910

Arg Cys Cys Pro Phe Tyr Trp Cys Glu Ser Lys Gly Val Cys Val His
4915 4920 4925

Gly Asn Ala Glu Tyr Gln Pro Gly Ser Pro Val Tyr Ser Ser Lys Cys
4930 4935 4940

Gln Asp Cys Val Cys Thr Asp Lys Val Asp Asn Asn Thr Leu Leu Asn
4945 4950 4955 4960

Val Ile Ala Cys Thr His Val Pro Cys Asn Thr Ser Cys Ser Pro Gly
4965 4970 4975

Phe Glu Leu Met Glu Ala Pro Gly Glu Cys Cys Lys Lys Cys Glu Gln
4980 4985 4990

Thr His Cys Ile Ile Lys Arg Pro Asp Asn Gln His Val Ile Leu Lys
4995 5000 5005

Pro Gly Asp Phe Lys Ser Asp Pro Lys Asn Asn Cys Thr Phe Phe Ser
5010 5015 5020

Cys Val Lys Ile His Asn Gln Leu Ile Ser Ser Val Ser Asn Ile Thr
5025 5030 5035 5040

Cys Pro Asn Phe Asp Ala Ser Ile Cys Ile Pro Gly Ser Ile Thr Phe
5045 5050 5055

Met Pro Asn Gly Cys Cys Lys Thr Cys Thr Pro Arg Asn Glu Thr Arg
5060 5065 5070

Val Pro Cys Ser Thr Val Pro Val Thr Thr Glu Val Ser Tyr Ala Gly
5075 5080 5085

Cys Thr Lys Thr Val Leu Met Asn His Cys Ser Gly Ser Cys Gly Thr
5090 5095 5100

Phe Val Met Tyr Ser Ala Lys Ala Gln Ala Leu Asp His Ser Cys Ser
5105 5110 5115 5120

Cys Cys Lys Glu Glu Lys Thr Ser Gln Arg Glu Val Val Leu Ser Cys
5125 5130 5135

Pro Asn Gly Gly Ser Leu Thr His Thr Tyr Thr His Ile Glu Ser Cys
5140 5145 5150

Gln Cys Gln Asp Thr Val Cys Gly Leu Pro Thr Gly Thr Ser Arg Arg
5155 5160 5165

Ala Arg Arg Ser Pro Arg His Leu Gly Ser Gly
5170 5175

<210> 1069

<211> 1173

<212> DNA

<213> Homo sapiens

<400> 1069

cagccagaga caggggagga gggagaagg atactgtgga aaggatggc gggcaaaca 60
 ttttagagcta gaagccacga ctgggaccac tggagacact gaagaaggca gggccctta 120
 gagtcttggc tgccaaacag atttcagat caaggagaac ccaggagttt caaaagaagcg 180
 ctagtaaggt ctctgagatc cttgcactag ctacatccctc agggtaggag gaagatggct 240
 tccagaagca tgcggctgtc cctattgtc agtgcctgg cccaaacagg agtctgggt 300
 gatatacatca ttagacccag ctgtgtctt ggtgggtt accacaagtc caattgttat 360
 ggttacttca ggaagctgag gaactggctt gatgccgagc tggagtgtca gtcttacgga 420
 aacggagccc acctggatc tattctgagt taaaaggaag ccagaccat agcagagtac 480
 ataagtggtc atcagagaag ccagccata tggattggcc tgcacgaccc acagaagagg 540
 cagcagtggc agtggattga tggggccatg tatctgtaca gatctggtc tggcaagtcc 600
 atgggtgggaca acaagcaactg tgctgagatg agtccaata acaactttt aacttggagc 660
 agcaacgaat gcaacaagcg ccaacacttc ctgtcaagt accgaccata gagcaagaat 720
 caagattctg ctaactctg cacagccccg tcccttctt ttctgttagc ctggctaaat 780
 ctgctcatta ttcagaggg gaaacctagc aaactaagag tgataaggc cctactacac 840
 tggttttt aggcttagag acagaaactt tagcattggc ccagtagtgg ctcttagctc 900
 taaatgtttt cccgcacatc cttccaca gtatcttct tccctctcc cctgtctctg 960
 gctgtctcga gcagtctaga agagtgcac tccagctat gaaacagctg ggttttggc 1020
 cataagaagt aaagatttga agacagaagg aagaaactca ggagtaagct tctagcccc 1080
 ttcagcttct acacccttct gcctctctc cattgcctgc accccacccc agccactcaa 1140
 ctccctgttgggaa aag 1173

<210> 1070

<211> 158
<212> PRT
<213> Homo sapiens

<400> 1070

Met	Ala	Ser	Arg	Ser	Met	Arg	Leu	Leu	Leu	Leu	Leu	Ser	Cys	Leu	Ala
5							10							15	

Lys	Thr	Gly	Val	Leu	Gly	Asp	Ile	Ile	Met	Arg	Pro	Ser	Cys	Ala	Pro
20							25						30		

Gly	Trp	Phe	Tyr	His	Lys	Ser	Asn	Cys	Tyr	Gly	Tyr	Phe	Arg	Lys	Leu
35							40						45		

Arg	Asn	Trp	Ser	Asp	Ala	Glu	Leu	Glu	Cys	Gln	Ser	Tyr	Gly	Asn	Gly
50						55				60					

Ala	His	Leu	Ala	Ser	Ile	Leu	Ser	Leu	Lys	Glu	Ala	Ser	Thr	Ile	Ala
65						70				75			80		

Glu	Tyr	Ile	Ser	Gly	Tyr	Gln	Arg	Ser	Gln	Pro	Ile	Trp	Ile	Gly	Leu
85						90							95		

His	Asp	Pro	Gln	Lys	Arg	Gln	Gln	Trp	Gln	Trp	Ile	Asp	Gly	Ala	Met
100						105						110			

Tyr	Leu	Tyr	Arg	Ser	Trp	Ser	Gly	Lys	Ser	Met	Gly	Gly	Asn	Lys	His
115						120						125			

Cys	Ala	Glu	Met	Ser	Ser	Asn	Asn	Asn	Phe	Leu	Thr	Trp	Ser	Ser	Asn
130						135						140			

Glu	Cys	Asn	Lys	Arg	Gln	His	Phe	Leu	Cys	Lys	Tyr	Arg	Pro	
145						150					155			

<210> 1071
<211> 1114
<212> DNA
<213> Homo sapiens

<400> 1071
gcacgaggcc aaacagatTT gcaagatcaag gagaaccAG gagTTTcaaa gaagcgctag 60
taaggTctct gagatcTTg cactagctac atcctcaggG taggagGAAG atggcttcca 120
gaagcatgcg gctgtcTcta ttgtcgatC gcTggccaa aacaggAGtc ctgggtgata 180
tcatcatgag acccagtGT gctcTggat ggTTTaccA caagtccaaT tgctatggTT 240
actTCaggAA gctgaggAAC tggTctgatG ccgagctcgA gtgtcagtct tacggAAAC 300
gagcccacCT ggcATctatC ctgagTTaa aggaaggCCAG caccatAGCA gagTacaTAA 360
gtggctatca gagaaggCCAG ccgatATggA ttggctgca cgaccacAG aagaggcAGc 420
atggcagtG gattgatGGG gccatgtatC tgcacAGatC ctggctggc aagtccatgg 480
gtgggaacAA gcaCTgtgtC gagatgagCT ccaataacAA ctTTTaaCT tggagcagca 540
acaatgcaa caagcGCCAA cactTCCTGT gcaagTaccG accatAGAGC aagaatcaag 600
attctgctaa ctccTgcaca gcccgtct cttccTTTCT gctagcTgg ctaaatctgc 660
tcattatTTc agaggggaaa ctagcaAAc taagagtgt aaggcccta ctacactggc 720
tttttaggc ttagagacag aaactttAGC attggcccAG tagTggCTTC tagctctAAA 780
tgTTTgcccc gccatcCTT cccacagtat cttcttccc tcctccCTG tctctggCTG 840
tctcgagcag tctagaagAG tgcATctcca gcttatgaaa cagctggTC tttggccata 900
agaagtAAAG atttgaagAC agaaggAAAG aactcaggAG taagcttcta gaccCCTtca 960
gcttctacac cttctgccc tctctccatt gctgcacCC caccCAGCC actcaactCC 1020
tgcttggTTT tcctttggcc ataggaaggt ttaccAGtag aatccttgct aggttgatgt 1080
ggccatatacA ttccTTtaat aaaccattgt gtac 1114

<210> 1072
<211> 1152
<212> DNA
<213> Homo sapiens

<400> 1072
actggagaca ctgaaAGAAGG cagggccCT tagagtCTT gttGCCAAAC agatttgcAG 60
atcaaggaga acccaggAGt ttcaaAGAAG cgctagtaAG gtctCTgaga tccttgcact 120
actacatcc tcagggTAGG aggaAGatgg ctTCCAGAAG catgcggCTG ctccTATTgc 180
tgagctgcct ggccAAAACA ggagtCTTgg gtgatATcat catgagACCC agctgtgCTC 240
ctggatggTT ttaccACAAAG tccaATTGCT atggTTACTT caggaAGCTG aggaACTGGT 300
ctgatGCCGA gctcgAGTGT cagtCTTACG gaaACCGGAGC ccacctGGCA tctatCCTGA 360
gtttaaAGGA agccAGCACC atAGCAGAGT acataAGTGG ctatCAGAGA agccAGCCGA 420
tatggattgg cctgcaCGAC ccACAGAAGA ggcAGCAGTG gcAGTGGATT gatggggCCA 480
tgtatCTGTA cagatCCTGG tctggcaAGT ccatgggtgg gaacaAGCAC tgcTGTgaga 540
tgagctccaa taacaACTT ttaactTggA gcagcaACGA atgcaacaAG cgccaaACACT 600
tcctgtgcaA gtaccGACCA tagAGCAAGA atcaAGATTC tgctAACTCC tgcACAGCCC 660
cgtccTCTTC ctttCTGTCA gcctggCTAA atctgCTCAT tattTCAGAG gggAAACCTA 720
gcaaACTAAG agtGATAAGG gCcCTACTAC actggCTTT tttaggCTTAG agacAGAAAC 780
tttagcattg gcccAGTAGT ggTTCTAGC tctaaATGTT tgccccGCCA tccCTTCCa 840
cagtATCCTT ctTCCCTCTT cccCTGTCTC tggCTGTCTC gagcAGTCTA gaAGAGTgCA 900
tctccAGCCT atgaaACAGC tggTCTTGT gccataAGAA gtAAAGATT gaAGACAGAA 960
ggaAGAAACt caggAGTAAG ctTCTAGCCC cttcAGCTT ctacACCCTT ctGCCCTCTC 1020
tccattgCCT gcACCCACC CCAGCCACTC aactCTGTCT tgcTTTCTC ttggCCATGG 1080
gaaggTTTAC cagtAGAAATC ctTGTCTAGGT tgatgtggc catacattCC ttaataAAAC 1140
cattgtgtac at 1152

<210> 1073
<211> 474

<212> DNA

<213> Homo sapiens

<400> 1073

atggcttcca gaagcatgcg gctgctccta ttgctgagct gcctggccaa aacaggagtc 60
 ctgggtgata tcatacatgag acccagctgt gctcctggat gttttacca caagtccaat 120
 tgctatggtt acttcaggaa gctgaggaac tggctctgat ccgagctcgta gtgtcagtct 180
 tacggaaacg gagcccacct ggcatactatc ctgagttaa aggaagccag caccatagca 240
 gactacataa gtggctatca gagaagccag ccgatatgga ttggctgca cgaccacac 300
 aagaggcagc agtggcagt gattgatggg gccatgtatc tgtacagatc ctggctggc 360
 aagtccatgg gtggaaacaa gcactgtgct gagatgagct ccaataacaa ctttttaact 420
 tggagcagca acgaatgcaa caagcgcacaa cacttcgtt gcaagtaccg acca 474

<210> 1074

<211> 1114

<212> DNA

<213> Homo sapiens

<400> 1074

gcacgaggcc aaacagattt gcagatcaag gagaacccag gagttcaaa gaagcgctag 60
 taaggtctct gagatccctg cactagctac atcctcaggg taggaggaag atggcttcca 120
 gaagcatgcg gctgctccta ttgctgagct gcctggccaa aacaggagtc ctgggtgata 180
 tcatacatgag acccagctgt gctcctggat gttttacca caagtccaat tgctatggtt 240
 acttcaggaa gctgaggaac tggctctgat ccgagctcgta gtgtcagtct tacggaaacg 300
 gagcccacct ggcatactatc ctgagttaa aggaagccag caccatagca gactacataa 360
 gtggctatca gagaagccag ccgatatgga ttggctgca cgaccacac 420
 agtggcagt gattgatggg gccatgtatc tgtacagatc ctggctggc aagtccatgg 480
 gtggaaacaa gcactgtgct gagatgagct ccaataacaa ctttttaact tggagcagca 540
 acgaatgcaa caagcgcacaa cacttcgtt gcaagtaccg accatagac aagaatcaag 600
 attctgctaa ctccctgcaca gcccgttct ctcccttttct getacctgg ctaaatctgc 660
 tcattatttc agagggaaaa cctagcaaaac taagagtat aaggcccta ctacactggc 720
 ttttttaggc ttagagacaa aacttttagc attggccctag tagtgcttc tagctctaaa 780
 tggggcccccc gccatccctt tccacagttt cttctttccc tcctccctg tctctggctg 840
 tctcgagcag tctagaagag tgcatactcca gctatgaaa cagctggtc tttggccata 900
 agaagtaaaag atttgaagac agaaggaaga aactcaggag taagetctta gacccttca 960
 gcttctacac cttctggccc tctctccatt gctgcaccc cacccagcc actcaactcc 1020
 tcttggtttt tccttggcc ataggaaggt ttaccagtag aatccttgct aggttgatgt 1080
 gggccataca tcctttaat aaaccattgt gtac 1114

<210> 1075

<211> 614

<212> DNA

<213> Homo sapiens

<400> 1075

tgaagaaggc agggccctt agagtcttgg ttgccaacaa gatttgcaga tcaaggagaa 60
 cccaggagtt tcaaagaagc gctagtaagg tctctgagat cttgcacta gctacatcc 120
 cagggttagga ggaagatggc ttccagaagc atgcggctgc tcctattgtt gagctgcctg 180
 gccaaaacag gagtcctggg tggatcatc atgagaccca gctgtgcctc tggatggttt 240
 taccacaagt ccaattgtca tggtaacttc aggaagctga ggaactggc tgatgccag 300
 ctgcagtgta agtcttacgg aaacggagcc cacctggcat ctatctgag tttaaaggaa 360
 gccagcacca tagcagatcataatggc tatcagagaa gccagccgat atggattggc 420
 ctgcacgacc cacagaagag gcagcagtgg cagtggattt atggggccat gtatctgtac 480
 agatcctgggt ctggcaagtc catgggtggg aacaagcact gtgtcgat gagctccaat 540
 aacaactttt taacttggag cagcaacgaa tgcaacaacg gccaacactt cctgtgcaag 600
 taccgaccat agag 614

<210> 1076

<211> 3345
<212> DNA
<213> Homo sapiens

<400> 1076

gaattccgtc tcgaccactg aatggaagaa aaggacttt aaccaccatt ttgtgactta 60
cagaaaaggaa tttgaataaa gaaaactatg atacttcagg cccatcttca ctccctgtgt 120
cttcttatgc ttatggatc aactggatat ggccaagagg ggaagtttag tggacccctg 180
aaacccatga cattttctat ttatgaaggc caagaaccga gtcaaattat attccagtt 240
aaggccaatc ctccctgtgt gactttgaa ctaactgggg agacagacaa cataatttgt 300
atagaacggg agggacttct gtattacaac agagccttg acagggaaac aagatctact 360
cacaatctcc aggttgcagc cctggacgt aatggaatta tagtggaggg tccagtccct 420
atcaccatag aagtgaagga catcaacgc aatcgaccca cgtttctcca gtcaaagtac 480
gaaggctcag taaggcagaa ctctgccc ggaaaggccct tcttgatgt caatgccaca 540
gacctggatg atccggccac tcccaatggc cagctttatt accagattgt catccagctt 600
cccatgatca acaatgtcat gtacttcag atcaacaaca aaacgggagc catctctctt 660
acccgagagg gatctcgaga attgaatct gctaagaatc cttccatataa tctggtgatc 720
tcagtgaagg acatgggagg ccagagttag aattccctca gtgataccac atctgtggat 780
atcatagtga cagagaatat ttgaaagca cccaaacctg tggagatggg gaaaaactca 840
actgatcctc accccatcaa aatcaactcg gtgcgggtga atgatccccg tgcacaatata 900
tccttagttg acaaagagaa gtcgccaaga ttcccattt caatttgacca ggaaggagat 960
attacgtga ctccagccctt ggaccgagaa gaaaaggatg catatgtttt ttatgcagtt 1020
gcaaaggatg agtacggaaa accacttca tatccgtcg aaattccatgt aaaagttaaa 1080
gatattaaatg ataatccacc tacatgtccg tcaccagtaa cctgtttaa ggtccaggag 1140
aatgaacgac tggtaacag ttcgggacc cttaactgcac atgacaggga tgaagaaaat 1200
actgccaaca gtttctaaa ctacaggatt gtggagcaaa ctcccaaact tcccatggat 1260
ggactcttcc taatccaaac ctatgttgc atgttacatg tagctaaaca gtccttgaag 1320
aagcaagata ctccctcgta caacttaacg atagagggtgt ctgacaaaaga tttcaagacc 1380
ctttgttttgc caaaatcaa cgttattgtatca atcaatgtac agatccccat ctttggaaaa 1440
tcagattatg gaaacctgac tcttgctgaa gacacaaaca ttgggcccac catcttaacc 1500
atccaggcca ctgatgtca tgagccattt actgggagggt cttaaattct gtatcatatc 1560
ataaaaggggag acagtggaggg acgcctgggg gttgacacag atccccatac caacaccgga 1620
tatgtcataa taaaaaagcc tcttgattttt gaaacagcag ctgttccaa cattgtgttc 1680
aaagcagaaaa atccctgagcc tcttagtgtttt ggtgtgaatg acaatgcaag ttctttgc 1740
aagttcacgc ttattgtgac agatgtgaat gaagcacctc aattttccca acacgtattc 1800
caagcggaaag tcagtgagga tcttagctata ggcactaaag tgggcaatgt gactgccaag 1860
gatcccgaaag gtctggacat aagcttattca ctgagggggag acacaagagg ttggcttaaa 1920
attgaccacg tgactggatc gatctttatgt gtggctccat tggacagaga agccggaaatg 1980
ccatatcggtg tacaagtggt ggccacagaa gttaggggggt ctcccttaag ctctgtgtca 2040
gagttccacc tgatccttat ggttgtaaat gacaaccctc ccaggcttagc caaggactac 2100
acgggcttgt tcttctgcca tccctcttgcgt gcacccctggaa gtctcattttt cgaggctact 2160
gatgtatgtc agcactttattt tccgggtccc cattttacat tttccctcggt cagtggaaac 2220
ttacaaaacg actgggaaatgt ttccaaatc aatggtactc atgcccact gtctaccagg 2280
cacacagact ttgaggagag ggcgtatgtc gtcttgatcc gcatcaatgt tgggggtcg 2340
ccaccccttgg aaggcattgt ttctttacca gttacattttt gcagttgtgt ggaagggaaatg 2400
tggggccggc cagcagggtca ccagactggg atacccactg tgggcatggc agttggatata 2460
ctgtgtacca cccttctgtt gattggatata attttacatgt ttgtgtttat ccgcataaaag 2520
aaggataaaag gcaaaagataa tggtaatgt gctcaagcat ctgaagtcaa acctctgaga 2580
agctgaattt gaaaaggaat gtttgaatattt atatagcaag tgcttatttca gcaacaacca 2640
tctcatctta ttactttca tctaaccgtgc attataattt tttaaaacaga tattccctct 2700
tgccttttaa tatttgctaa atatttctttt tttgagggtgg agtcttgctc tgcgtcccaag 2760
gctggagttac agtgggtgtca tccctcgta ctgcaaccctc cgcctctgg gttcacatgt 2820
ttctctgtcc tcaatgttccctt aatgttgcgtt gtttacaggc acccaccacc atgcccagtt 2880
aattttgttta ttttaatag agacgggggtt tgccttgcgtt gccaggctgg tcttgaactc 2940
ctgacgtcaa gtgtatctgccc tgccttgcgtt tcccaataca ggcgtatgttactc 3000
cctacttaga tatttcatgt gctatagaca ttagagagat ttttctttt tccatgacat 3060
ttttctcttc tgccttgcgtt ttagtactt gttttttcc cttttggggc aagacagact 3120
cattaaatat tctgtacatt ttttctttat caaggagata tatcagtgtt gtctcataga 3180

```
actgccttga ttccatttat gtttttcgtt attccatcct gtgtccccctt catccttgac 3240  
tcctttggta tttcaactgaa tttcaaaacat ttgtcagaga agaaaaaaaagt gaggactcg 3300  
gaaaaataaa taaataaaaag aacagccttt tgccggcccg aattc 3345
```

<210> 1077
<211> 158
<212> PRT
<213> *Homo sapiens*

<400> 1077
Met Ala Ser Arg Ser Met Arg Leu Leu Leu Leu Leu Ser Cys Leu Ala
5 10 15

Lys Thr Gly Val Leu Gly Asp Ile Ile Met Arg Pro Ser Cys Ala Pro
20 25 30

Gly Trp Phe Tyr His Lys Ser Asn Cys Tyr Gly Tyr Phe Arg Lys Leu
35 40 45

Arg Asn Trp Ser Asp Ala Glu Leu Glu Cys Gln Ser Tyr Gly Asn Gly
50 55 60

Ala His Leu Ala Ser Ile Leu Ser Leu Lys Glu Ala Ser Thr Ile Ala
65 70 75 80

Glu Tyr Ile Ser Gly Tyr Gln Arg Ser Gln Pro Ile Trp Ile Gly Leu
85 90 95

His Asp Pro Gln Lys Arg Gln Gln Trp Gln Trp Ile Asp Gly Ala Met
100 105 110

Tyr Leu Tyr Arg Ser Trp Ser Gly Lys Ser Met Gly Gly Asn Lys His
115 120 125

Cys Ala Glu Met Ser Ser Asn Asn Asn Phe Leu Thr Trp Ser Ser Asn
 130 135 140

Glu Cys Asn Lys Arg Gln His Phe Leu Cys Lys Tyr Arg Pro
145 150 155

<210> 1078
<211> 158
<212> PRT
<213> *Homo sapiens*

<400> 1078

Met Ala Ser Arg Ser Met Arg Leu Leu Leu Leu Leu Ser Cys Leu Ala
5 10 15

Lys Thr Gly Val Leu Gly Asp Ile Ile Met Arg Pro Ser Cys Ala Pro
20 25 30

Gly Trp Phe Tyr His Lys Ser Asn Cys Tyr Gly Tyr Phe Arg Lys Leu
35 40 45

Arg Asn Trp Ser Asp Ala Glu Leu Glu Cys Gln Ser Tyr Gly Asn Gly
50 55 60

Ala His Leu Ala Ser Ile. Leu Ser Leu Lys Glu Ala Ser Thr Ile Ala
 65 70 75 80

Glu Tyr Ile Ser Gly Tyr Gln Arg Ser Gln Pro Ile Trp Ile Gly Leu
 85 90 95

His Asp Pro Gln Lys Arg Gln Gln Trp Gln Trp Ile Asp Gly Ala Met
 100 105 110

Tyr Leu Tyr Arg Ser Trp Ser Gly Lys Ser Met Gly Gly Asn Lys His
 115 120 125

Cys Ala Glu Met Ser Ser Asn Asn Asn Phe Leu Thr Trp Ser Ser Asn
 130 135 140

Glu Cys Asn Lys Arg Gln His Phe Leu Cys Lys Tyr Arg Pro
 145 150 155

<210> 1079

<211> 158

<212> PRT

<213> Homo sapiens

<400> 1079

Met Ala Ser Arg Ser Met Arg Leu Leu Leu Leu Ser Cys Leu Ala
 5 10 15

Lys Thr Gly Val Leu Gly Asp Ile Ile Met Arg Pro Ser Cys Ala Pro
 20 25 30

Gly Trp Phe Tyr His Lys Ser Asn Cys Tyr Gly Tyr Phe Arg Lys Leu
 35 40 45

Arg Asn Trp Ser Asp Ala Glu Leu Glu Cys Gln Ser Tyr Gly Asn Gly
 50 55 60

Ala His Leu Ala Ser Ile Leu Ser Leu Lys Glu Ala Ser Thr Ile Ala
 65 70 75 80

Glu Tyr Ile Ser Gly Tyr Gln Arg Ser Gln Pro Ile Trp Ile Gly Leu
 85 90 95

His Asp Pro Gln Lys Arg Gln Gln Trp Gln Trp Ile Asp Gly Ala Met
 100 105 110

Tyr Leu Tyr Arg Ser Trp Ser Gly Lys Ser Met Gly Gly Asn Lys His
 115 120 125

Cys Ala Glu Met Ser Ser Asn Asn Asn Phe Leu Thr Trp Ser Ser Asn
 130 135 140

Glu Cys Asn Lys Arg Gln His Phe Leu Cys Lys Tyr Arg Pro
 145 150 155

<210> 1080

<211> 158
<212> PRT
<213> Homo sapiens

<400> 1080
Met Ala Ser Arg Ser Met Arg Leu Leu Leu Leu Ser Cys Leu Ala
5 10 15

Lys Thr Gly Val Leu Gly Asp Ile Ile Met Arg Pro Ser Cys Ala Pro
20 25 30

Gly Trp Phe Tyr His Lys Ser Asn Cys Tyr Gly Tyr Phe Arg Lys Leu
35 40 45

Arg Asn Trp Ser Asp Ala Glu Leu Glu Cys Gln Ser Tyr Gly Asn Gly
50 55 60

Ala His Leu Ala Ser Ile Leu Ser Leu Lys Glu Ala Ser Thr Ile Ala
65 70 75 80

Glu Tyr Ile Ser Gly Tyr Gln Arg Ser Gln Pro Ile Trp Ile Gly Leu
85 90 95

His Asp Pro Gln Lys Arg Gln Gln Trp Gln Trp Ile Asp Gly Ala Met
100 105 110

Tyr Leu Tyr Arg Ser Trp Ser Gly Lys Ser Met Gly Gly Asn Lys His
115 120 125

Cys Ala Glu Met Ser Ser Asn Asn Asn Phe Leu Thr Trp Ser Ser Asn
130 135 140

Glu Cys Asn Lys Arg Gln His Phe Leu Cys Lys Tyr Arg Pro
145 150 155

<210> 1081
<211> 832
<212> PRT
<213> Homo sapiens

<400> 1081
Met Ile Leu Gln Ala His Leu His Ser Leu Cys Leu Leu Met Leu Tyr
5 10 15

Leu Ala Thr Gly Tyr Gly Gln Glu Gly Lys Phe Ser Gly Pro Leu Lys
20 25 30

Pro Met Thr Phe Ser Ile Tyr Glu Gly Gln Glu Pro Ser Gln Ile Ile
35 40 45

Phe Gln Phe Lys Ala Asn Pro Pro Ala Val Thr Phe Glu Leu Thr Gly
50 55 60

Glu Thr Asp Asn Ile Phe Val Ile Glu Arg Glu Gly Leu Leu Tyr Tyr
65 70 75 80

Asn Arg Ala Leu Asp Arg Glu Thr Arg Ser Thr His Asn Leu Gln Val

85	90	95
Ala Ala Leu Asp Ala Asn Gly Ile Ile Val Glu Gly Pro Val Pro Ile		
100	105	110
Thr Ile Glu Val Lys Asp Ile Asn Asp Asn Arg Pro Thr Phe Leu Gln		
115	120	125
Ser Lys Tyr Glu Gly Ser Val Arg Gln Asn Ser Arg Pro Gly Lys Pro		
130	135	140
Phe Leu Tyr Val Asn Ala Thr Asp Leu Asp Asp Pro Ala Thr Pro Asn		
145	150	155
Gly Gln Leu Tyr Tyr Gln Ile Val Ile Gln Leu Pro Met Ile Asn Asn		
165	170	175
Val Met Tyr Phe Gln Ile Asn Asn Lys Thr Gly Ala Ile Ser Leu Thr		
180	185	190
Arg Glu Gly Ser Gln Glu Leu Asn Pro Ala Lys Asn Pro Ser Tyr Asn		
195	200	205
Leu Val Ile Ser Val Lys Asp Met Gly Gly Gln Ser Glu Asn Ser Phe		
210	215	220
Ser Asp Thr Thr Ser Val Asp Ile Ile Val Thr Glu Asn Ile Trp Lys		
225	230	235
240		
Ala Pro Lys Pro Val Glu Met Val Glu Asn Ser Thr Asp Pro His Pro		
245	250	255
Ile Lys Ile Thr Gln Val Arg Trp Asn Asp Pro Gly Ala Gln Tyr Ser		
260	265	270
Leu Val Asp Lys Glu Lys Leu Pro Arg Phe Pro Phe Ser Ile Asp Gln		
275	280	285
Glu Gly Asp Ile Tyr Val Thr Gln Pro Leu Asp Arg Glu Glu Lys Asp		
290	295	300
Ala Tyr Val Phe Tyr Ala Val Ala Lys Asp Glu Tyr Gly Lys Pro Leu		
305	310	315
320		
Ser Tyr Pro Leu Glu Ile His Val Lys Val Lys Asp Ile Asn Asp Asn		
325	330	335
Pro Pro Thr Cys Pro Ser Pro Val Thr Val Phe Glu Val Gln Glu Asn		
340	345	350
Glu Arg Leu Gly Asn Ser Ile Gly Thr Leu Thr Ala His Asp Arg Asp		
355	360	365
Glu Glu Asn Thr Ala Asn Ser Phe Leu Asn Tyr Arg Ile Val Glu Gln		
370	375	380
Thr Pro Lys Leu Pro Met Asp Gly Leu Phe Leu Ile Gln Thr Tyr Ala		
385	390	395
400		

Gly Met Leu Gln Leu Ala Lys Gln Ser Leu Lys Lys Gln Asp Thr Pro
405 410 415

Gln Tyr Asn Leu Thr Ile Glu Val Ser Asp Lys Asp Phe Lys Thr Leu
420 425 430

Cys Phe Val Gln Ile Asn Val Ile Asp Ile Asn Asp Gln Ile Pro Ile
435 440 445

Phe Glu Lys Ser Asp Tyr Gly Asn Leu Thr Leu Ala Glu Asp Thr Asn
450 455 460

Ile Gly Ser Thr Ile Leu Thr Ile Gln Ala Thr Asp Ala Asp Glu Pro
465 470 475 480

Phe Thr Gly Ser Ser Lys Ile Leu Tyr His Ile Ile Lys Gly Asp Ser
485 490 495

Glu Gly Arg Leu Gly Val Asp Thr Asp Pro His Thr Asn Thr Gly Tyr
500 505 510

Val Ile Ile Lys Lys Pro Leu Asp Phe Glu Thr Ala Ala Val Ser Asn
515 520 525

Ile Val Phe Lys Ala Glu Asn Pro Glu Pro Leu Val Phe Gly Val Lys
530 535 540

Tyr Asn Ala Ser Ser Phe Ala Lys Phe Thr Leu Ile Val Thr Asp Val
545 550 555 560

Asn Glu Ala Pro Gln Phe Ser Gln His Val Phe Gln Ala Lys Val Ser
565 570 575

Glu Asp Val Ala Ile Gly Thr Lys Val Gly Asn Val Thr Ala Lys Asp
580 585 590

Pro Glu Gly Leu Asp Ile Ser Tyr Ser Leu Arg Gly Asp Thr Arg Gly
595 600 605

Trp Leu Lys Ile Asp His Val Thr Gly Glu Ile Phe Ser Val Ala Pro
610 615 620

Leu Asp Arg Glu Ala Gly Ser Pro Tyr Arg Val Gln Val Val Ala Thr
625 630 635 640

Glu Val Gly Gly Ser Ser Leu Ser Ser Val Ser Glu Phe His Leu Ile
645 650 655

Leu Met Asp Val Asn Asp Asn Pro Pro Arg Leu Ala Lys Asp Tyr Thr
660 665 670

Gly Leu Phe Phe Cys His Pro Leu Ser Ala Pro Gly Ser Leu Ile Phe
675 680 685

Glu Ala Thr Asp Asp Asp Gln His Leu Phe Arg Gly Pro His Phe Thr
690 695 700

Phe Ser Leu Gly Ser Gly Ser Leu Gln Asn Asp Trp Glu Val Ser Lys
705 710 715 720

Ile Asn Gly Thr His Ala Arg Leu Ser Thr Arg His Thr Asp Phe Glu
725 730 735

Glu Arg Ala Tyr Val Val Leu Ile Arg Ile Asn Asp Gly Gly Arg Pro
740 745 750

Pro Leu Glu Gly Ile Val Ser Leu Pro Val Thr Phe Cys Ser Cys Val
755 760 765

Glu Gly Ser Cys Phe Arg Pro Ala Gly His Gln Thr Gly Ile Pro Thr
770 775 780

Val Gly Met Ala Val Gly Ile Leu Leu Thr Thr Leu Leu Val Ile Gly
785 790 795 800

Ile Ile Leu Ala Val Val Phe Ile Arg Ile Lys Lys Asp Lys Gly Lys
805 810 815

Asp Asn Val Glu Ser Ala Gln Ala Ser Glu Val Lys Pro Leu Arg Ser
820 825 830

<210> 1082
<211> 265
<212> DNA
<213> Homo sapiens

<400> 1082
gaaacatgga ctgcccccta aatttgact gtcctaaaaa cctatttctg atttataata 60
tgcgcctga taaagtaca ctagatgtac cagctgagtg ttatcatctc ccatcacaga 120
tcagatttga gcattaacag gtatttcac atacttgact tcaatatgct taaaagtgggg 180
aacaaggcaat taagtgggga ctaaaaatgt tggccttaa gcaatttgtc ataaatcttc 240
acaataaaga ataaatcaat gttt 265

<210> 1083
<211> 44
<212> PRT
<213> Homo sapiens

<400> 1083
Asn Met Asp Cys Pro Leu Asn Phe Asp Cys Pro Lys Asn Leu Phe Leu
5 10 15

Ile Tyr Asn Met Leu Pro Asp Lys Val Thr Leu Asp Val Pro Ala Glu
20 25 30

Cys Leu Ile Phe Pro Ser Gln Ile Arg Phe Glu His
35 40