#### Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Chapitre 1 - Modélisation multiphysique

**Sciences** Industrielles de l'Ingénieur

PSI<sub>\*</sub> – MP

**Application 01 -**Corrigé



#### Mise à l'eau d'un robot sous-marin

Concours Centrale - MP 2019

Savoirs et compétences :

Question 1 À partir des figures précédentes, relier les composants du modèle de simulation multiphysique de la grue portique. Quel(s) ensemble(s) n'ont pas été modélisés?



Exercice 1 - Moteur à courant continux B2-07

**Question 1** Réaliser le schéma-blocs.



Question 2 Mettre le schéma-blocs sous la forme suivante.



En utilisant le schéma-blocs proposé, on a 
$$\Omega(p) = \left(C_r(p)A(p) + U(p)B(p)\right)C(p)$$
. D'autre part,  $\Omega(p) = \left(C_r(p) + \frac{K}{R + Lp}\left(U(p) - K\Omega(p)\right)\right)\frac{1}{f + Jp}$ . On a donc  $\left(f + Jp\right)\Omega(p) = C_r(p) + U(p)\frac{K}{R + Lp}$  
$$\Leftrightarrow \left(f + Jp\right)\Omega(p) + \frac{K^2}{R + Lp}\Omega(p) = C_r(p) + U(p)\frac{K}{R + Lp}$$
 
$$\Leftrightarrow \left(\left(f + Jp\right) + \frac{K^2}{R + Lp}\right)\Omega(p) = C_r(p) + U(p)\frac{K}{R + Lp}$$
 
$$\Leftrightarrow \frac{K^2 + \left(f + Jp\right)\left(R + Lp\right)}{R + Lp}\Omega(p) = C_r(p) + U(p)\frac{K}{R + Lp}$$
 
$$\Leftrightarrow \Omega(p) = \left(C_r(p) + U(p)\frac{K}{R + Lp}\right)\frac{R + Lp}{K^2 + \left(f + Jp\right)\left(R + Lp\right)}.$$

Dés lors plusieurs schéma-blocs peuvent répondre à la question. Par exemple, A(p) = 1,  $B(p) = \frac{K}{R + Lp}$ ,

$$C(p) = \frac{R + Lp}{K^2 + (f + Jp)(R + Lp)}.$$
 En poursuivant, on a aussi :  $\Omega(p) = \left(C_r(p)(R + Lp) + U(p)K\right) \frac{1}{K^2 + (f + Jp)(R + Lp)}.$  On a donc aussi,  $A(p) = R + Lp$ ,  $B(p) = K$ ,  $C(p) = \frac{1}{K^2 + (f + Jp)(R + Lp)}$ 

**Sciences** 

Chapitre 1 - Modélisation multiphysique

### **Application 02 -**Corrigé



#### La Seine Musicale

Concours Centrale - MP 2020

Savoirs et compétences :

#### **Question 1** Sur la figure suivante, compléter les liens du modèle proposé pour prendre en compte les deux capteurs.



#### Exercice 2 - Vérin\*

B2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le schéma-blocs.

On a:

• 
$$U_c(p) = \frac{1}{K_a}I(p) + U_s(p)$$
  
•  $Q(p) = SpX(p)$ 

•  $U_S(p) = K_C \cdot X(p)$ •  $F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + Tp}$ 



l'Ingénieur

# Application 03 – Corrigé



#### Direction automatique découplée

Banque PT - SI A 2017

Savoirs et compétences :

ons et compet -

**Question** 1 Compléter ce modèle en traçant les liens manquants qui donneraient un modèle équivalent au schéma bloc de la **??**.



## Exercice 3 - Banc d'épreuve hydraulique \* B2-07 Pas de corrigé pour cet exercice.

**Question** 1 Déduire de la relation précédente l'équation reliant Z(p),  $P_e(p)$ ,  $P_h(p)$ , et Poids(p) = Mg/p, transformées de Laplace de z(t),  $P_e(t)$ ,  $P_h(t)$  et du poids perçu comme une perturbation. Les conditions initiales sont supposées nulles.

$$Mp^2Z(p)$$
 =  $S_h P_h(p) - S_e P_e(pt) - \frac{Mg}{p} - fpZ(p)$ 

**Question 2** En déduire, en tenant compte de l'équation du débit, deux équations liant L(p),  $P_e(p)$  et  $Q_e(p)$ , transformées de Laplace de L(t),  $P_e(t)$  et  $Q_e(t)$ . Les conditions initiales sont supposées nulles.

$$Q_e(p) = (S_a - S_b)pL(p) + \frac{V_t}{B_e}pP_e(p) \text{ et } mp^2L(p) = -rL(p) + (S_a - S_b)P_e(p) - f'pL(p).$$

**Question 3** Compléter le schéma-blocs de l'ensemble (sans le distributeur hydraulique), l'entrée étant la pression d'huile régulée  $P_r(p)$  et la sortie la pression d'épreuve dans le tube  $P_e(p)$ .



