SYNTHESIS OF DIGITAL ARCHITECTURES

SULUTIONS 2008

Ne score	Coreyor & wy.	etheduling,
ALAP TIMES SOURCE 13 10 10 10 10 10 10 10 10 10	(for Charles) - 1919 9 1920 8 1921 6 1922 9 1923 9 1924 8 1926 7 1928 5 1929 4 1930 4 1930 4 1931 2 1932 1 1935 1 1935 1 1935 1 1935 1	- coded in reverse, i e O is high ALAP, gre -> more congent.
FIME O:	E CANOTORTES VI, V2, V4, V5, V6, V7, V18, V19, V23, V24	14, VS, V6, J7, V1
1:	V2, V18, V19, V28, V2	4 18, 19, 12, 110
2:	V18, V19, V23, V24, V11, V3	V11, V3, V18, V19,
3:	V12, 120, J25	V12, V20, V2S
۴ ٠.	V134	N13
5:	v21, v14, v16, v26	v21, v14, v16, v26
6 '.	122, VIS, VI7, 127	V22, V15, V17, V27
7 =	128, 129	V28, V29

		CANO.	CHOSEN	
TIME	8.	V30	v30	
	9:	121	V30 V31	
	10:	V32, V34	135, 134	
	11:	VII, VIS	V33, V35	

[5]

c) Courider each role i.d. as the Caled pr its output register. Then

TIME	Rea Rea'D
0	A / A >
1	1 1 1 1 4 1 v5 1 v6 1 v7
2 3	JV2 JV8 JV9 / VIO
3	1 JUII JUIB JUIG 1 23 1 224
4	JV12 JV20 JV25
5	1v13 1
6	v3 1 v14 1 v16 1 v21 1 v26
7	
8	VIS VI7 122 127 128 129
9	
	Ju30
10	Ju31
	\$ V32 1 V34 E
12	1 V33 1 1 1 1 1 3 5

 $\chi(a) = \kappa(a) = 7.$

[4][5]

d)	Node	Bending	Pode	Beiding
	Vi	(*,1)	Viq	(*,2)
	V ₂	(4,4)	V20	(+,2)
	V3	(+,1)	Vzi	(*, 1)
	V4	(*,2)	VZZ	(+, 1)
	V _s	(+,1)	V23	(*,3)
	N _C	(4,3)	V24	(4,4)
		(*,4)	VZS	(+,3)
	VZ		V26	(4,4)
	Ng	(2,1)	V27	(+, 4)
	Vq	(4,2)	V28	(4,1)
	V10	(4,3)	V29	(*,2)
	V ,,	(+, 2)	V30	(+,1)
	V12	(+,1)	V31	(/, 1)
	V ₁₃	(/,1)	V32	(*, \)
	Viv	(4,2)	V33	(+,1)
	VIS	(+, 2)	V34	(1,2)
	V16	(4,3)	V ₃ s	(+,2)
	VIA	(43)		
	Via	(4,1)	/	

[4] (5] 2. a) Min. Zt. xvzt

5/8

S.t. TVEV: Z XVt = 1 t-ASAPV

H(u,v) EE: Zt.xut + du t-ASATV t= ASAFU

treR, YteEo, ..., 33

Z Zvt1 < ar VEV:T(V)=r t'rEt-dv+1,...,t3n {ADAPV,...,ALAPV}

Z Crar & A

[10]

2. b) Min : 2 2 t · x yztq, t= ASAPvz q=1 S.t. HVEY DALAPY To XVtg = 1 t = ASAP, q=1 H(u,v)EE Zt.xvtq 7, t=ASAPv q=1 Z Zt. Jutq + du + Euv t=ASABu q=1 YVEV Myg = ALAPV Z XVtq, +=ASAPV Placement variable H(u,v) EE tq. Euv >, yvq. - yuq. || Ensure Euv >, 1
q in degrent
quadrants. Arek, 4+ € (0, ..., 1), 42 VEV.T(N)=r t'e(t-dv11,...,t) n (ASATV,..., ALARV) Z Cragr & A14

[10]

3. a) Need to jird an appropriate initial thate or regites, e.g. If this register is initialised to -1, there so no converporting initial the begre the squarer (thing the donked line as endoing Min: L+ x Zrv = # regs of of rode v -> USU CONSTRAINT. r, 7, wr (v, u) CAN RE-USE Y(u,v) € E Sv > Su + d(a) + Wr(u, v) N. YNEN Su +d(v) < L

¥(a,v)∈€ Wr(a,v) = w(a,v)+r(v)-r(a) >,0 | nte. r(v) EZ for all VEV.

while (tue)

begin read x;

y = x2 + 21;q = y * 3;

2 = 5/9,1;

write q'i

x2 = x1;

x = 1x

5/=5,

91=91

end

Code for (6):

while (true)

begin read x;

4-21

Z=5/q/;

y=x1+z;

9=41*3;

write q;

9/=9;

21=2,

y1=y:

end

for (a), N=4. for (b), N=3.

For (a), Telh ? 3 (limited by divider)

For (b), Teh 7, 4 (divider - adder chain)

> X2 Fittin I is dear that \$\alpha_2 > \alpha_1

A. 3+4x>

CS]