Nr.	Erwartungshorizont / Bewertung	AB I	AB II	AB III
1A	Beschreiben Sie den Aufbau der DNA nach dem Watson-Crick-			
	Modell.			
	Die DNA ist eine Doppelhelix, sie besteht aus zwei Einzelsträngen,	3		
	die zueinander antiparallel verlaufen.			
	Die Stränge bestehen aus vielen Nukleotiden; ein Nukleotid setzt			
	sich zusammen aus dem Zucker Desoxyribose, einer	4		
	Phosphatgruppe und einer der vier Nukleinbasen (Adenin, Thymin,			
	Guanin, Cytosin).			
	Zucker und Phosphat bilden in den Einzelsträngen das Rückgrat der			
	DNA in Form einer alternierenden Kette, die Basen sind jeweils mit	1	2	
	einem Zuckermolekül verbunden und nach innen ausgerichtet.	_	2	
	Gegenüberliegende komplementäre Basen der beiden			
	Einzelstränge paaren miteinander: Adenin paart mit Thymin über	3	2	
			_	
	zwei Wasserstoffbrücken, Guanin paart über drei			
10	Wasserstoffbrücken mit Cytosin.		2	
1B	Die angegebene Substanz ist ein Didesoxycytosintriphosphat		3	
	(ddCTP), das mit Ausnahme der fehlenden 3'-OH-Gruppe am			
	Zuckermolekül mit dem natürlichen Baustein dCTP identisch ist.			
	ddCTP wird von der DNA-Polymerase als dCTP erkannt und in die			
	neuzusynthetisierende DNA eingebaut. Die Substanz führt aber			
	zum Abbruch der Neusynthese des komplementären Strangs in der			
	Replikation, da am 3'-C-Atom die Hydroxylgruppe (OH-Gruppe)			
	fehlt und damit keine Esterbindung mit dem nächsten dNTP			
	möglich ist.			
		Aufgabe	e 1: 18 B	E
2A	Die Schmelzkurve der Hybrid-DNA von Mauersegler und	Aufgabe	2 1: 18 B	E
2A		Aufgabe		E
	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf.	Aufgabe		E
2A 2B	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa	Aufgabo		E
	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.)	Aufgabe		E
	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA	Aufgabe		E
	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge	Aufgabe		E 1
	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die	Aufgabe	2	
	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare	Aufgabe	2	
	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die	Aufgabe	2	
28	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen.	Aufgabe	2	
	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der	Aufgabe	2	1
28	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der Nektarvogel auf.	Aufgabe	2	
28	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der	Aufgabe	2	1
28	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der Nektarvogel auf. Begründung: Die Hybrid-DNA von Rauchschwalbe und Nektarvogel hat einen Schmelzpunkt von etwa 81 Grad Celsius, was höher liegt als die Schmelzpunkte anderer Hybrid-DNAs. Der Schmelzpunkt	Aufgabe	2	1
28	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der Nektarvogel auf. Begründung: Die Hybrid-DNA von Rauchschwalbe und Nektarvogel hat einen Schmelzpunkt von etwa 81 Grad Celsius, was höher liegt als die Schmelzpunkte anderer Hybrid-DNAs. Der Schmelzpunkt einer Hybrid-DNA liegt höher, je größer der Anteil an	Aufgabe	2	1
28	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der Nektarvogel auf. Begründung: Die Hybrid-DNA von Rauchschwalbe und Nektarvogel hat einen Schmelzpunkt von etwa 81 Grad Celsius, was höher liegt als die Schmelzpunkte anderer Hybrid-DNAs. Der Schmelzpunkt einer Hybrid-DNA liegt höher, je größer der Anteil an komplementären Basenpaarungen ist. Je mehr Basen in der DNA-	Aufgabe	3	2
28	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der Nektarvogel auf. Begründung: Die Hybrid-DNA von Rauchschwalbe und Nektarvogel hat einen Schmelzpunkt von etwa 81 Grad Celsius, was höher liegt als die Schmelzpunkte anderer Hybrid-DNAs. Der Schmelzpunkt einer Hybrid-DNA liegt höher, je größer der Anteil an komplementären Basenpaarungen ist. Je mehr Basen in der DNA-Sequenz zueinander komplementär sind, umso näher verwandt	Aufgabe	3	2
2B	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der Nektarvogel auf. Begründung: Die Hybrid-DNA von Rauchschwalbe und Nektarvogel hat einen Schmelzpunkt von etwa 81 Grad Celsius, was höher liegt als die Schmelzpunkte anderer Hybrid-DNAs. Der Schmelzpunkt einer Hybrid-DNA liegt höher, je größer der Anteil an komplementären Basenpaarungen ist. Je mehr Basen in der DNA-Sequenz zueinander komplementär sind, umso näher verwandt sind zwei Spezies miteinander. Aufgrund des höchsten Schmelzpunktes ist anzunehmen, dass	Aufgabe	3	2
28	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der Nektarvogel auf. Begründung: Die Hybrid-DNA von Rauchschwalbe und Nektarvogel hat einen Schmelzpunkt von etwa 81 Grad Celsius, was höher liegt als die Schmelzpunkte anderer Hybrid-DNAs. Der Schmelzpunkt einer Hybrid-DNA liegt höher, je größer der Anteil an komplementären Basenpaarungen ist. Je mehr Basen in der DNA-Sequenz zueinander komplementär sind, umso näher verwandt sind zwei Spezies miteinander. Aufgrund des höchsten Schmelzpunktes ist anzunehmen, dass Rauchschwalbe und Nektarvogel am nächsten miteinander	Aufgabe	3	2
28	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der Nektarvogel auf. Begründung: Die Hybrid-DNA von Rauchschwalbe und Nektarvogel hat einen Schmelzpunkt von etwa 81 Grad Celsius, was höher liegt als die Schmelzpunkte anderer Hybrid-DNAs. Der Schmelzpunkt einer Hybrid-DNA liegt höher, je größer der Anteil an komplementären Basenpaarungen ist. Je mehr Basen in der DNA-Sequenz zueinander komplementär sind, umso näher verwandt sind zwei Spezies miteinander. Aufgrund des höchsten Schmelzpunktes ist anzunehmen, dass	Aufgabe	3	2
2B	Die Schmelzkurve der Hybrid-DNA von Mauersegler und Rauchschwalbe weist einen T _m -Wert von etwa 74 Grad Celsius auf. (Der Schmelzpunkt der reinen Rauchschwalben-DNA liegt bei etwa 88 Grad Celsius.) Der vergleichsweise hohe Schmelzpunkt der Rauchschwalben-DNA ist darauf zurückzuführen, dass die beiden DNA-Stränge durchgängige Basenpaarungen aufweisen und damit die Wasserstoffbrückenbindungen aller komplementären Basenpaare gelöst werden müssen. Den höchsten Verwandtschaftsgrad zu Rauchschwalbe weist der Nektarvogel auf. Begründung: Die Hybrid-DNA von Rauchschwalbe und Nektarvogel hat einen Schmelzpunkt von etwa 81 Grad Celsius, was höher liegt als die Schmelzpunkte anderer Hybrid-DNAs. Der Schmelzpunkt einer Hybrid-DNA liegt höher, je größer der Anteil an komplementären Basenpaarungen ist. Je mehr Basen in der DNA-Sequenz zueinander komplementär sind, umso näher verwandt sind zwei Spezies miteinander. Aufgrund des höchsten Schmelzpunktes ist anzunehmen, dass Rauchschwalbe und Nektarvogel am nächsten miteinander		3	2

	Devalue Calconon			
3A	Der Ablauf der PCR: Zunächst wird die DNA auf 90 bis 95 Grad Celsius erwärmt. Bei	2		
	dieser Temperatur <u>lösen sich die Wasserstoffbrücken</u> , welche die	3		
	beiden Stränge der DNA zusammenhalten. Das Molekül			
	denaturiert und <u>dissoziiert</u> innerhalb weniger Minuten in			
	<u>Einzelstränge.</u> – Die Temperatur wird auf <u>50 bis 60 Grad Celsius</u> gesenkt. Unter			
	diesen Bedingungen <u>binden Primer</u> (synthetische	2		
	Oligonukleotide) mit einer Länge von 15 bis 30 Nukleotiden			
	an die einzelsträngige DNA.			
	– Im letzten Schritt wird die Temperatur auf <u>70 bis 75 Grad</u>			
	Celsius erhöht. In diesem Bereich hat die Tag-Polymerase ihr		2	
	<u>Temperaturoptimum</u> . Die Taq-Polymerase synthetisiert den	1		
	zum ursprünglichen DNA-Abschnitt komplementären Strang,			
	indem sie das 3'-Ende der Primer verlängert.			
	 So verdoppelt sich die Anzahl der DNA-Stränge in jedem 	4		
	Zyklus/Wiederholung der Zyklen 25-40 Mal, bis die	1		
	gewünschte DNA-Menge erreicht ist			
	Die PCR wird angewandt:			2
	1) Damit für die anschließende Analyse der DNA-Sequenzen			_
	durch die <u>Auswahl der Primer nur die festgelegten STRs</u>			
	<u>vermehrt werden (</u> die zum Unterscheiden von Individuen relevant sind)			
	Damit <u>ausreichend DNA-Material für Analysen vorliegt</u>		2	
	(Dies spielt besonders bei der Erstellung eines DNA-Profils eine			
	wichtige Rolle, das aus geringsten DNA-Spuren beispielsweise an			
	Tatorten erstellt werden soll.)			
3B	Stellen Sie dar, weshalb sich Mikrosatelliten-DNA zur Erstellung eines			
	genetischen Profils eignet und weshalb immer mehrere STR-Regionen			
	verglichen werden!			
	 Zur Erstellung eines DNA-Profils stützt man sich vor allem auf Bereiche nicht codierender DNA, die Introns. 		2	
	bereiche nicht coulerender biva , die introns.			
	 In den Introns sind größere Unterschiede in der 		2	
	Nukleotidabfolge zu beobachten als in den codierenden		2	
	Bereichen (Exons).			
	– In den nicht-codierenden Bereichen findet man Abschnitte, die			
	als Mikrosatelliten oder short tandem repeats, kurz STR,			
	bezeichnet werden. Es handelt sich um Sequenzen von bis zu 10		2	
	Basenpaaren Länge, die sich in der Regel fünf- bis zwanzigmal wiederholen. Die Anzahl der Wiederholungen ist von Mensch			
	zu Mensch sehr variabel (sie können sogar auf homologen		2	
	Chromosomen unterschiedlich ausfallen), weshalb bei jedem			
	Menschen ein individuelles Muster von DNA mit			
	unterschiedlicher STR-Länge entsteht.			
	Betrachtet man nur ein STR, kann man von einer Probe nicht			
	sicher auf eine bestimmte Person schließen, weil die			4
	Wahrscheinlichkeit einer Übereinstimmung relativ hoch ist (1 zu 200). Ermittlungsbehörden nutzen daher international ein			4
	Markerfeld mit 13 STRs, sodass die Wahrscheinlichkeit, dass			
	jemand dieselbe STR-Kombination aufweist, gleich Null ist.			
1				

3C	 Das Kind muss vom ersten potenziellen Vater stammen, da er die passenden heterozygoten Allele in allen drei STR-Systemen trägt: Im STR-System D16S539 ist das Kind heterozygot mit 11 und 12 Wiederholungen: Die 11 Wiederholungen stammen von der Mutter, die 12 vom ersten Vater, während der zweite Vater hier 10 und 14 Wiederholungen aufweist. Im STR-System CSF1PO ist das Kind ebenfalls heterozygot mit 10 und 11 Wiederholungen. Die Mutter hat 10 und der erste Vater 11 Wiederholungen. Der zweite potenzielle Vater hingegen 10 und 13. Im STR-System PentaD haben die Mutter dem Kind 14 Wiederholungen und der erste Vater 17 weitergegeben, wohingegen der zweite potenzielle Vater 12 und 15 Repeats trägt. 		5	3
		Aufgabe 3: 33 BE		
		18	31	13
		29%	50%	21%