Paměti

rozdělení

- dělíme je podle toho, zda po vypnutí napájení se uchovají data či nikoliv
 - volatilní
 - při vypnutí se informace smaže
 - RAM
 - o nevolatilní
 - informace vydrží i po vypnutí
 - magnetické pásky
 - feritové a bubnové paměti

Čtení z paměti

- Vystavení adresy na adresovou sběrnici (s časovým předstihem access time – tac, doba od změny adresy do platnosti dat na datové sběrnici)
- Aktivace čtecího impulsu (připojení výstupních budičů na datovou sběrnici)
- Na datové sběrnici se objeví data
- Ukončení čtecího impulsu (odpojení od datové sběrnice, předtím se musí zajistit přečtení dat ze sběrnice)

t_{rc} – read cycle time (celková přístupová doba do paměti) t_{ac} – přístupová doba od změny adresy

Zápis do paměti

Druhy pamětí

Paměť RAM

- Random access memory
- označení pro polovodičové paměti s přímým přístupem umožňující čtení a zápis
- poskytuje téměr okamžitý zápis i čtení z jakékoliv jednotlivé paměťové buňky
 - o díky této vlastnosti se používají jako operační paměti v PC
 - jsou zde uloženy běžící programy a jejich data a jsou rychle přístupná
- RAM po odpojení ztratí všechny data
- Cena za bit je dražší než pevný disk

Elektrotechnické vlastnosti

- Díky nízké ceně a vyšší kapacitě se používají dynamické paměti
 - o informace je uchována v podobě elektrického náboje v kondenzátoru
 - o je nutné je kvůli tomu obnovovat
- Pamět musí být neustále napájena a musí být neustále v činnosti obvod, který ji pravidelně obnovuje

rozdělení

- dělí se podle technologie, kterou používáme
 - Statické
 - paměťová buňka je realizována jako bistabilní klopný obvod
 - CMOS technologie má téměř ideální vlastnosti
 - minimální příkon
 - velkou šumovou odolnost
 - krátkou přístupovou dobu
 - paměťová buňka se ale skládá z 6 tranzistorů
 - vyšší cena za bit než dynamická

- o Dynamické
- o je levnější a mnohem jednodušší
- o buňky jsou realizovány jedním tranzistorem
- o musí se ale často obnovovat
 - obnova probíhá po celých řádcích
 - pokles výkonu je minimální
 - při obnově je paměť nedostupná
- o při čtení dochází k vymazání buňky
 - obnova musí probíhat při každém čtení
 - čtení je 1,5x delší než zápis
- o uchování informace probíhá v nabíjení kondenzátoru
 - Mullerova kapacita

dělení modulů

- SDR
 - o single data rate
 - o jedna hrana clock signalu
- DDR
 - o double data rate
 - o DDR2, DDR3, DDR4

- 2 krát rychlejší
- double protože bere obě hrany clock signalu

Paměť ROM

- tato paměť je pouze čitelná ale nelze do ní zapisovat
- je nevolatilní
- používá se pro uložení firmware
 - o dříve používano pro bios
 - dnes výjímečně protože nelze bios aktualizovat
- Obsah je do paměti uložen při výrobě
 - o buď maskou nebo jednorázově naprogramovat
 - přepálení propojek
 - o pokud je v paměti chyba je nepoužitelná

Paměť PROM

- programmable read only
- elektricky jednorázově programovatelná
- pokud jsme chtěli zápis 0 do buňky, museli jsme přepálit pojistku NiCr

Paměť EPROM

- Erasable Programmable read only
- historicky první semipermanentní typ paměti typu ROM
- obsah je mazatelný UV zářením
- k programování se používá většinou několikanásobně vyšší napětí než ke čtení

o typicky 12V nebo 25V proti 5V napájecího napětí

Paměť EEPROM

- electrically erasable programmable read only
- elektricky mazatelnou nevolatilní paměť typu ROM
- omezenější počet zápisů než paměť typu FLASH
- před novým naprogramováním je nutné smazat elektrickým signálem celý obsah
- zapis
 - o na adresový vodič se přivede záporné napětí
 - o datový vodič buňěk, do niž se zaznaménává hodnota 1 se uzemní
 - o tranzistor se otevře a vznikne náboj, který vytvoří velké prahové napětí
 - o smazaní proběhne když na adresový vodič se přívede +U

Flash paměť

- nevolatilní
- elektricky programovatelná s libovolným přístupem
- organizována po blocích
- narozdíl od EEPROM lze programovat každý blok samostatně
 - o ostatní bloky jsou zachovány

Elektrotechnika

- data jsou ukládána pomocí unipolárních tranzistorů s plovoucími hradly
- každý z nich obvykle uchovává 1 bit