

Développer un algorithme capable de détecter des faux billets

Sommaire

- Contexte
- Traitement et analyse des données
 - Modèles de prédiction
 - Choix du modèle final
 - Mise en application

Contexte

L'ONCFM souhaite automatiser la détection de faux billets

Analyser chaque billet selon ses caractéristiques géométriques

- Développer des algorithmes des prédiction efficaces
- Choisir le plus efficace et le livrer dans un notebook

Importation des données

- 1500 billets scannés (1000 vrais et 500 faux)
- 7 variables
- is_genuine
- length
- height_left
- height_right
- margin_up
- margin_low
- diagonal

Analyse exploratoire globale

	Authenticite	Diagonale	Hauteur_gauche	Hauteur_droite	Marge_basse	Marge_haute	Longueur
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.46	103.36	103.66	3.77	2.99	113.09
2	True	172.69	104.48	103.50	4.40	2.94	113.16
3	True	171.36	103.91	103.94	3.62	3.01	113.51
4	True	171.73	104.28	103.46	4.04	3.48	112.54

Nature des	données dans	chacune	des	colonnes	:
is_genuine	bool				
diagonal	float64				
height_left	float64				
height_righ	it float64				
margin_low	float64				
margin_up	float64				
length	float64				

	Authenticite	Diagonale	Hauteur_gauche	Hauteur_droite	Marge_basse	Marge_haute	Longueur
count	1500.000000	1500.000000	1500.000000	1500.000000	1463.000000	1500.000000	1500.00000
mean	0.666667	171.958440	104.029533	103.920307	4.485967	3.151473	112.67850
std	0.471562	0.305195	0.299462	0.325627	0.663813	0.231813	0.87273
min	0.000000	171.040000	103.140000	102.820000	2.980000	2.270000	109.49000
25%	0.000000	171.750000	103.820000	103.710000	4.015000	2.990000	112.03000
50%	1.000000	171.960000	104.040000	103.920000	4.310000	3.140000	112.96000
75%	1.000000	172.170000	104.230000	104.150000	4.870000	3.310000	113.34000
max	1.000000	173.010000	104.880000	104.950000	6.900000	3.910000	114.44000

Nombre de valeu	rs présentes	dans	chacune	des	colonnes	:
is_genuine	1500					
diagonal	1500					
height_left	1500					
height_right	1500					
margin_low	1463					
margin_up	1500					
length	1500					

Régression linéaire

		ULS Regre	ssion Resul	.ts		
Dep. Variable:		Marge_basse	R-square	ed:		0.618
Model:		0LS	Adj. R-s	quared:		0.617
Method:	L	east Squares	F-statis	tic:		942.0
Date:	Tue,	01 Apr 2025	Prob (F-	-statistic):	:	2.89e-244
Time:		00:03:32	Log-Like	elihood:		-606.17
No. Observation	s:	1170	AIC:			1218.
Df Residuals:		1167	BIC:			1234.
Df Model:		2				
Covariance Type	:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975
const	5.6622	0.220	25.769	0.000	5.231	6.09
Authenticite	-1.1373	0.032	-35.354	0.000	-1.200	-1.07
Marge_haute	-0.1337	0.065	-2.051	0.040	-0.262	-0.00
Omnibus:		21.780	Durbin-V	/atson:		1.948
Prob(Omnibus):		0.000	Jarque-E	Bera (JB):		41.200
Skew:		0.034	Prob(JB)	:		1.13e-09
Kurtosis:		3.917	Cond. No			65.4

Tests de validité

- Colinéarité des variables
- Homoscédasticité des résidus
- Normalité des résidus

Analyse de chaque variable

Comment entraîner un modèle?

```
# Affecter les bonnes données et retirer les variables non significatives
X = billets.drop(["Authenticite","Diagonale","Hauteur_gauche"], axis=1)
y = billets["Authenticite"]
```

```
# Définir le train set et le test set
X_train ,X_test, y_train, y_test = train_test_split(X,y, train_size=0.8, random_state=0)
```

```
# Définir notre modèle
modele_RL = LogisticRegression(max_iter=1000)
```

```
# Entraîner le modèle
model_marge_basse = sm.OLS(y_train, X_train).fit()
```

```
# Enregistrer les prédictions dans une variable y_pred
y_pred = modele_RL.predict(X_test)
```


Régression logistique – Définition et mise en place

Principe

Cherche à estimer la probabilité qu'un événement se produise.

```
Authenticite ~ Marge_basse + Marge_haute + Longueur + Hauteur_droite + Diagonale + Hauteur_gauche + 1
Optimization terminated successfully.

Current function value: 0.026765
Iterations 12
remove Diagonale (p-value: 0.728 )

Authenticite ~ Marge_basse + Marge_haute + Longueur + Hauteur_droite + Hauteur_gauche + 1
Optimization terminated successfully.

Current function value: 0.026807
Iterations 13
remove Hauteur_gauche (p-value: 0.294 )

Authenticite ~ Marge_basse + Marge_haute + Longueur + Hauteur_droite + 1
Optimization terminated successfully.

Current function value: 0.027189
Iterations 13
is the final model!
```

Logit Regression Results							
Dep. Variable:		uthenticite	No. Observ	ations:		1463	
Model:		Logit	Df Residua	ıls:		1458	
Method:		MLE	Df Model:			4	
Date:	Tue,	01 Apr 2025	Pseudo R-s	qu.:		0.9574	
Time:		15:26:23	Log-Likelihood:		-39.777		
converged:	onverged:		LL-Null:		-934.20		
Covariance Type	Covariance Type:		LLR p-value:		0.000		
	coef	std err	z	P> z	[0.025	0.975]	
Intercept	-258.7502	143.318	-1.805	0.071	-539 . 649	22.148	
Marge_basse	-6.1958	0.959	-6.461	0.000	-8.075	-4.316	
Marge_haute	-10.3632	2.189	-4.735	0.000	-14.653	-6.074	
Longueur	6.1300	0.886	6.917	0.000	4.393	7.867	
Hauteur_droite	-3.5542	1.189	-2.990	0.003	-5.884	-1.225	

Régression logistique - Résultats

Performance globale

Précision (Accuracy): 0.99
Précision (Precision): 0.99
Rappel (Recall): 0.98
Spécificité (Specificity): 0.99
Score F1: 0.99
Le modèle a une erreur de 0.014%.

K-means - Définition et mise en place

Principe

L'algorithme cherche à minimiser la variance intra-cluster.

K-means - Résultats

Stabilité et cohérence des clusters

ARI (Adjusted Rand Index) pour train: 0.94

NMI (Normalized Mutual Information) pour train: 0.90

ARI (Adjusted Rand Index) pour test: 0.95

NMI (Normalized Mutual Information) pour test: 0.89

Performance globale

Précision (Accuracy): 0.99 Précision (Precision): 0.98

Rappel (Recall): 1.00

Spécificité (Specificity): 0.96

Score F1: 0.99

Le modèle a une erreur de 0.014%.

KNN - Définition et mise en place

Principe

Un point est classé selon la majorité des classes de ses k voisins les plus proches dans l'espace des données.

Meilleur k : 8

Meilleure accuracy moyenne: 0.994017094017094

KNN - Résultats

Performance globale

Précision (Accuracy): 0.98 Précision (Precision): 0.98 Rappel (Recall): 0.99 Spécificité (Specificity): 0.97 Score F1: 0.99 Le modèle a une erreur de 0.017%.

Random Forest - Définition et mise en place

Principe

Fonctionne en construisant plusieurs arbres de décision à partir de sous-échantillons aléatoires du jeu de données.

```
# Définir le modèle Random Forest
modele RF = RandomForestClassifier(
     n_estimators=100,
     criterion='gini',
     max depth=None.
     min_samples_split=2,
     min samples leaf=1.
     min_weight_fraction_leaf=0.0.
     max_features='sqrt',
     max_leaf_nodes=None,
     min_impurity_decrease=0.0,
     bootstrap=True,
     oob_score=False,
     n_jobs=None,
     random_state=None,
     verbose=0.
     warm_start=False,
     class weight=None,
     ccp alpha=0.0,
     max_samples=None,)
```

	importance
Longueur	0.460755
Marge_basse	0.319074
Marge_haute	0.110672
Hauteur_droite	0.061562
Hauteur_gauche	0.038114
Diagonale	0.009824

Random Forest – Arbre de décision

Random Forest - Résultats

Performance globale

Précision (Accuracy): 1.00
Précision (Precision): 1.00
Rappel (Recall): 0.99
Spécificité (Specificity): 1.00
Score F1: 1.00
Le modèle a une erreur de 0.003%.

Choix du modèle final

	Modèle	Modèle	f1_score
0	Régression Logistique	LogisticRegression(max_iter=1000)	0.989247
1	KMeans	KMeans(n_clusters=2, n_init=10, random_state=42)	0.989280
2	KNN	KNeighborsClassifier(n_neighbors=8)	0.986667
3	Random Forest	(DecisionTreeClassifier(max_features='sqrt', r	0.997455

CHOIX : RANDOM FOREST

Il présente les meilleurs résultats en termes de précision, de rappel et de score F1, tout en étant le plus stable et le plus robuste.

Mise en application


```
# Importation du fichier billets_production.csv
chemin_nouveau_fichier = '/Users/adrianaguilera/Desktop/P12/Inputs/billets_production.csv'
nv_billets = pd.read_csv(chemin_nouveau_fichier)
```

```
# Importation du modèle
modele = joblib.load('modele_RF.joblib')
```

Appliquer la prédiction sur les données corrigées
y_pred = modele.predict(nv_billets_clean)

	id	Authenticite	Diagonale	Hauteur_gauche	Hauteur_droite	Marge_basse	Marge_haute	Longueur
0	A_1	0	171.76	104.01	103.54	5.21	3.30	111.42
1	A_2	0	171.87	104.17	104.13	6.00	3.31	112.09
2	A_3	0	172.00	104.58	104.29	4.99	3.39	111.57
3	A_4	1	172.49	104.55	104.34	4.44	3.03	113.20
4	A_5	1	171.65	103.63	103.56	3.77	3.16	113.33

Nombre total de billets : 5 Nombre de billets authentiques : 2 Nombre de billets contrefaits : 3 Pourcentage de billets authentiques : 40.00%

Merci pour votre attention