Espérance, écart-type d'une variable aléatoire.

SPÉ MATHS 1ÈRE - JB DUTHOIT

-ò-Découvrir l'espérance mathématique

Utiliser le programme python précédent pour construire une fonction Python qui simule 100 000 tirages de cartes et qui retourne le gain moyen obtenu.

```
def gain moyen():
g = \dots
for i in range (...):
    gain_partie = gain()
```

L'espérance mathématique d'une variable aléatoire correspond à ce gain moyen.

8.2.1 **Définitions**

On considère dans ce paragraphe la variable aléatoire X dont la loi de probabilité est donnée par:

Valeurs prises par X	x_1	x_2	 x_n
$p(X = x_i)$	p_1	p_2	 p_n

Définition 8.17

L'espérance de X est le nombre réel noté E(X) défini par :

$$E(X) = p_1 x_1 + p_2 x_2 + \dots + p_n x_n$$

Savoir-Faire 8.26

SAVOIR CALCULER L'ESPÉRANCE D'UNE VARIABLE ALÉATOIRE On reprend le problème du SF1 : calculer l'espérance mathématique de X.

Remarque

- Lorsque X est une variable aléatoire qui correspond au gain algébrique d'une partie à un jeu, E(X) est le gain moyen que l'on peut espérer sur un grand nombre de parties.
- Un jeu est équitable si l'espérance de la variable aléatoire donnant le gain algébrique est nulle.

Définition 8.18

La variance de X est le nombre réel noté V(X) définie par

$$V(X) = p_1(x_1 - E(X))^2 + p_2(x_2 - E(X))^2 + \dots + p_n(x_n - E(X))^2$$

Définition 8.19

L'écart-type de X est le nombre réel noté $\sigma(X)$ défini par $\sigma(X) = \sqrt{V(X)}$

Remarque

- L'écart-type sert pour se donner une idée de la répartition des valeurs prises par une variable aléatoire autour de son espérance.
- Plus l'écart-type est grand, plus les valeurs prises par la variable sont "éloignés" de l'espérance.
- Plus l'écart-type est proche de zéro, plus les valeurs prises par la variables sont resserrées autour de l'espérance.

8.2.2 Propriété

Propriété 8. 22

On a $V(X) = p_1 x_1^2 + p_2 x_2^2 + \dots + p_n x_n^2 - (E(X))^2$

Savoir-Faire 8.27

SAVOIR CALCULER L'ÉCART-TYPE D'UNE VARIABLE ALÉATOIRE On reprend le problème du SF1. Calculer l'écart-type de X de deux façons différentes.