Alias analysis for OOP

Alias analysis for OOP

```
Overview
Context-insensitive
Andersen
Introduction
Example
Implementation
Steensgaard
Introduction
Context-sensitive
Call Strings
Object Sensitivity
Pros and Cons
Implementation
```

Overview

source: Alias Analysis for Object-Oriented Programs

Pointer Analysis is also called Alias Analysis.

We need to check whether two variable expressions point to/reference the same memory location.

A points-to analysis computes an over-approximation of the heap locations that each program pointer may point to.

We have the version of context-insensitive and context-sensitive.

Context-insensitive

We have two flow-insensitive and context-insensitive algorithms: Andersen and Steensgaard.

Since they are flow-insensitive, we can execute those algorithms on AST.

Andersen

Source: Pointer Analysis in cs252 in Havard

Introduction

Andersen algorithm is a flow-insensitive and context-insensitive algorithm. It is a constraint-based algorithm and focuses on **subset constraints** of assignment:

```
 \begin{array}{lll} \bullet & \texttt{a} = \texttt{\&b} \colon & loc(b) \in pts(a) \\ \bullet & \texttt{a} = \texttt{b} \colon & pts(b) \subseteq pts(a) \\ \bullet & \texttt{a} = \texttt{*b} \colon & \forall v \in pts(b), pts(v) \subseteq pts(a) \\ \bullet & \texttt{*a} = \texttt{b} \colon & \forall v \in pts(a), pts(b) \subseteq pts(v) \\ \end{array}
```

Or for some oop languages such as Java, we can have constraint rules:

Statement	Constraint	
i: x = new T()	$\{o_i\}\subseteq pt(x)$	[NEW]
x = y	$pt(y) \subseteq pt(x)$	[Assign]
x = y.f	$\frac{o_i \in pt(y)}{pt(o_i.\mathtt{f}) \subseteq pt(x)}$	[Load]
x.f = y	$\frac{o_i \in pt(x)}{pt(y) \subseteq pt(o_i.\mathbf{f})}$	[Store]

Example

For example, for statements in C:

```
p = &a  // 1
q = &b  // 2
*p = q;  // 3
r = &c;  // 4
s = p;  // 5
t = *p;  // 6
*s = r;  // 7
```

By Andersen, we have

- 1. $\{a\} \subseteq p$
- 2. $\{b\}\subseteq q$
- 3. $\forall v \in p, q \subseteq v$
- 4. $\{c\} \subseteq r$
- 5. $p \subseteq s$
- 6. $\forall v \in p, v \subseteq t$
- 7. $\forall v \in s, r \subseteq v$

At first round, it is

$$pts(p) = \{a\}$$

$$pts(q) = \{b\}$$

$$pts(a) = \{b,c\}$$

$$pts(r) = \{c\}$$

$$pts(s) = \{a\}$$

$$pts(t) = \{b\}$$

$$pts(b) = \emptyset$$

$$pts(c) = \emptyset$$

At second round, it is

```
pts(p) = \{a\}

pts(q) = \{b\}

pts(a) = \{b, c\}

pts(r) = \{c\}

pts(s) = \{a\}

pts(t) = \{b, c\}
```

And that's the final result.

It is more precise but less scalable.

Implementation

We can also use a workList graph algorithm to solve this problem.

The initialization of graph(based on assignment) is like this:

- a = &b, we have $\{b\} \subseteq a$.
- a = b, we have $b \subseteq a$ and we build an edge $b \to a$.
- a = *b, we have $*b \subseteq a$.
- *a = b, we have $b \subseteq *a$.

```
Initialize graph and points to sets using base and simple constraints Let W = \{ v \mid pts(v) \neq \emptyset \} (all nodes with non-empty points to sets)

While W not empty v \leftarrow select from W for each a \in pts(v) do for each constraint p \supseteq^* v add edge a \rightarrow p, and add a to W if edge is new for each constraint v \supseteq q add edge v \rightarrow a, and add v \rightarrow b to W if edge is new for each edge v \rightarrow b do v \rightarrow b pts(v \rightarrow b) v \rightarrow b
```

It is flow-insensitive because it is an **iteration** algorithm and does not care about the sequence of flow.

The complexity of Andersen algorithm is $O(n^3)$, where n is the number of nodes in graph.

We can reduce n by collapsing SCC to single node in point-to graph.

Steensgaard

Introduction

Steensgaard algorithm focuses on **equality constraints**, which means that it view assignments as being **bidirectional**.

```
 \begin{array}{lll} \bullet & \texttt{a = alloc-i} & \{alloc-i\} \in pts(a) & \texttt{set } a = \uparrow [alloc-i] \\ \bullet & \texttt{a = \&b} \colon & loc(b) \in pts(a) & \texttt{set } [a] = \uparrow [b] \\ \bullet & \texttt{a = b} \colon & pts(a) = pts(b) & \texttt{set } [a] = [b] \\ \bullet & \texttt{a = *b} \colon & \forall v \in pts(b), pts(a) = pts(v) & \texttt{if we can set } [b] = \uparrow \alpha, \texttt{then } a = \alpha \\ \bullet & \texttt{*a = b} \colon & \forall v \in pts(a), pts(b) = pts(v) & \texttt{if we can set } [b] = \alpha, \texttt{the } [a] = \uparrow \alpha \\ \end{array}
```

Context-sensitive

Context-sensitive points-to analysis analyzes a method m for each calling context that arises at call sites of m.

A calling context is some abstraction of the program states at may arise at a call site.

We assume that a method m has formal parameters m_{this} for the receiver and m_{p_1}, \ldots, m_{p_n} for the parameters, and a variable m_{ret} to hold the return value.

Here we have some data structures:

- a set contexts(m): the contexts that have risen at call sites of each method m.
- an abstract pointer < x, c> represents x's possible values when its enclosing method is invoked in context c.
- an abstract location $< o_i, c>$ represents the value of object at allocation site i when its enclosing method is invoked in context c.
- selector function: it determines what context to use for a callee at some call site.
- heapSelector function: it determines what context c to use in an abstract location $< o_i, c>$ at allocation site i.

Here we have constraints for different types of statements:

• **New** constraint for statement i: x = new T():

```
for c \in contexts(m), we have < o_i, heapSelector(c) > \in pt(< x, c >).
```

Can't we just use c instead of heapSelector(c)?

• **Assign** constraint for statement x = y

```
for c \in contexts(m), we have pt(\langle y, c \rangle) \subseteq pt(\langle x, c \rangle).
```

• Load constraint for statement x = y.f

for
$$c \in contexts(m)$$
 and $\langle o_i, c' \rangle \in pt(\langle y, c \rangle)$, we have $pt(\langle o_i, c', f \rangle) \subseteq pt(\langle x, c \rangle)$.

• **Store** constraint for statement x.f = y

for
$$c \in contexts(m)$$
 and $\langle o_i, c' \rangle \in pt(\langle x, c \rangle)$, we have $pt(\langle y, c \rangle) \subseteq pt(\langle o_i, c' \rangle, f)$.

As we can see in **Load** and **Store**, it uses a field-sensitive method. Also note that more complex field assignment can be simplified by temporary variables.

• **Invoke** constraint for statement j: x = r.g(a_1,...,a_n)

```
for c \in contexts(m) and contexts(m) = contexts(m), we get target method m' = dispatch(context), where contexts(m) is the proof of the context of contexts(m) and contexts(m) is the context of contexts(m).
```

Also, we have $argvals = [\{ < o_i, c' > \}, pt(< a_1, c), pt(< a_n, c >)]$, and we get the context $c'' \in selector(m', c, j, argvals)$ of the invoked method m'.

The conclusion is that

- \circ $c'' \in contexts(m')$
- \circ $\langle o_i, c' \rangle \in pt(\langle m'_{this}, c'' \rangle)$
- o $pt(< m'_{ret}, c'' >) \subseteq pt(< x, c >)$??? why do we need to pass return value in invoke statement?
- **Return** constraint for statement return x

That is

Statement in method m	Constraint	
i: x = new T()	$\frac{c \in contexts(m)}{\langle o_i, heapSelector(c) \rangle \in pt(\langle x, c \rangle)}$	[New]
x = y	$\frac{c \in contexts(m)}{pt(\langle y, c \rangle) \subseteq pt(\langle x, c \rangle)}$	[Assign]
x = y.f	$\frac{c \in contexts(m) \langle o_i, c' \rangle \in pt(\langle y, c \rangle)}{pt(\langle o_i, c' \rangle. \mathbf{f}) \subseteq pt(\langle x, c \rangle)}$	[LOAD]
x.f = y	$\frac{c \in contexts(m) \langle o_i, c' \rangle \in pt(\langle x, c \rangle)}{pt(\langle y, c \rangle) \subseteq pt(\langle o_i, c' \rangle. \mathbf{f})}$	[Store]
j: x = r.g(a_1,,a_n)	$c \in contexts(m) \langle o_i, c' \rangle \in pt(\langle r, c \rangle)$ $m' = dispatch(\langle o_i, c' \rangle, \mathbf{g})$ $argvals = [\{\langle o_i, c' \rangle\}, pt(\langle a_1, c \rangle), \dots, pt(\langle a_n, c \rangle)]$ $c'' \in selector(m', c, j, argvals)$ $c'' \in contexts(m')$ $\langle o_i, c' \rangle \in pt(\langle m'_{this}, c'' \rangle)$ $pt(\langle a_k, c \rangle) \subseteq pt(\langle m'_{p_k}, c'' \rangle), 1 \le k \le n$ $pt(\langle m'_{ret}, c'' \rangle) \subseteq pt(\langle x, c \rangle)$	[INVOKE]
return x	$\frac{c \in contexts(m)}{pt(\langle x, c \rangle) \subseteq pt(\langle m_{ret}, c \rangle)}$	[RETURN]

Call Strings

A standard technique to distinguish contexts is via call strings.

Call strings are typically represented as a sequence of call site identifiers, corresponding to a (partial) call stack.

In this way, we can set function selector(m', c, j, argvals) as

$$selector(_, [j_0, j_1, \dots, j_n], j, _) = \{[j, j_0, j_1, \dots, j_n]\}$$

where caller context $c = [j_0, j_1, \dots, j_n]$

Also, it is obvious to see that

$$heapSelector(c) = c$$

For example, given the program

Method f2() is analyzed in contexts [cs4] and [cs5].

Method f1() is analyzed in contexts [cs2, cs4] and [cs2, cs5].

Unfortunately, recording all call strings is not scalable, so we have a k-limiting method to bound the maximum call-string length as a constant k.

Object Sensitivity

It uses the (abstract) objects passed as the receiver argument to the method.

By using receiver objects to distinguish contexts, an object-sensitive analysis can avoid conflation of operations performed on distinct objects.

Therefore, context is a list of allocation sites of receiver objects.

Now, we can define selector function as

$$selector(_,_,_,argvals) = \cup_{< o,c> \in argvals[0]} locToContext(< o,c>)$$

where

$$locToContext(< o_i, [o_1, o_2, ...] >) = [o_i, o_1, o_2, ...]$$

For example, for the following program:

```
1 class A { B makeB() { return new B(); } }
2 class B { Object makeObj() { return new Object(); } }
3 ...
4 A a1 = new A();
5 A a2 = new A();
6 B b1 = a1.makeB();
7 B b2 = a2.makeB();
8 Object p1 = b1.makeObj();
9 Object p2 = b2.makeObj();
```

Method <code>makeB()</code> will be analyzed in contexts <code>[o4]</code> and <code>[o5]</code> , so we have $pt(b1)=\{< o1, [o4]>\}$ and $pt(b2)=\{< o1, [o5]>\}.$

Method <code>makeObj()</code> will be analyzed in context <code>[o1,o4]</code> and <code>[o1,o5]</code>, so we have $pt(p1)=\{< o2,[o1,o4]>\}$ and $pt(p2)=\{< o2,[o1,o5]>\}.$

Pros and Cons

For different call sites that pass the same receiver object, Object sensitivity may lose precision. For example:

```
class A {B makeB() { return new B();} }  // 1
class B { }  // 2
...  // 3
A a = new A();  // 4
B b1 = a.makeB();  // 5
B b2 = a.makeB();  // 6
```

Here we have $pt(b1) = \{ \langle o1, [o4] \rangle \} = pt(b2) = \{ \langle o1, [o4] \rangle \}$, which is imprecise.

However, for a single call site with possibly multiple receiver objects, Object sensitivity can gain precision by using multiple contexts. For example ???

In practice, a mix of object- and call-string sensitivity is often used, e.g., with call string sensitivity being employed only for static methods (which have no receiver argument).

Implementation

We can use an iteration implementation and reduce the problem to a graph reachability problem.

I haven't fully understood this implementation.

```
Doanalysis()
```

```
for each statement i: x = new T() do
 ^{2}
                 pt_{\Delta}(x) \leftarrow pt_{\Delta}(x) \cup \{o_i\}, o_i \text{ fresh}
 3
                 add x to worklist
 4 for each statement x = y do
 5
                 add edge y \to x to G
     while worklist \neq \emptyset do
 6
 7
                 remove n from worklist
                 for each edge n \to n' \in G do
 8
 9
                            DiffProp(pt_{\Delta}(n), n')
10
                 if n represents a local x
11
                    then for each statement x.f = y do
                                      for each o_i \in pt_{\Delta}(n) do
12
13
                                                 if y \to o_i.f \notin G
14
                                                    then add edge y \to o_i.f to G
                                                            DIFFPROP(pt(y), o_i.f)
15
16
                            for each statement y = x.f do
17
                                      for each o_i \in pt_{\Lambda}(n) do
18
                                                 if o_i.f \to y \not\in G
19
                                                    then add edge o_i.f \rightarrow y to G
20
                                                            DIFFPROP(pt(o_i, f), y)
21
                 pt(n) \leftarrow pt(n) \cup pt_{\Delta}(n)
22
                 pt_{\Lambda}(n) \leftarrow \emptyset
DiffProp(srcSet, n)
1 \quad pt_{\Delta}(n) \leftarrow pt_{\Delta}(n) \cup (srcSet - pt(n))
2 if pt_{\Delta}(n) changed then add n to worklist
```