Języki formalne i złożoność obliczeniowa.

Na podstawie wykładu profesora Macieja Kandulskiego semestr zimowy 2019/2020

Uniwersytet Adama Mickiewicza wydział Matematyki i Informatyki

Wykład 12.10.2019

1 Złożoność obliczeniowa

Zagadnienia złożoności obliczeniowej - jakie sa koszty prowadzenia obliczeń czasowe i pamięciowe:

- Złożoność wykładnicza
- Nierozsądne gospodarowanie czasem
- Nierozsądne gospodarowanie pamięciową ...

2 Gramatyka

Gramatyka. Jak poprawnie budować wyrażenia danego języka (zbiór zasad). Gramatyka inaczej jest nazywana syntaktyką albo składnią.

Między innymi kompilator posiada w sobie element rozpoznający gramatykę.

3 Symbol a znaczenie symbolu

3.1 Abstrakcyjne pojęcie liczby

Warto odróżnić symbol od jego znaczenia. Np. liczbę dwa można zapisywac w postaci symoblu cyfry arabskiej **2** lub rzymskiej **II**. To samo dotyczy słowa **słoń** - słowo oznacza wielkie kilkutonowe zwierze ale nim nie jest (nie jest bytem materialnym).

Abstrahować. Abstrachować znacyz pomijać. Np.: abstrakcyjna liczba dwa powstała z pominięciem takich cech jak wielkość, pochodzenie.

3.2 Przykład powstania liczby

Różna materialne nośniki niosące te same liczby obiektów o różnych cechach. Opisanie wspólnej cechy obiektów - ${\bf liczebności}$.

- (i) **couple** of people (para ludzi 2)
- (ii) **pair** of pistols (para pistoletów 2)
- (iii) yoke of oxen (zaprzeg dwa zwięrzęta)

Abstakcyjna liczba ${\bf 2}$ powstała abstrahując od pochodzenia (np. zwierzęcia), wielkości (np. broni) czy płci (para ludzi) pozostawiając tylko jedną wspólną cechę, którą jest liczebność .

4 Języki formalne

4.1 Pojęcia

Ciągi i zbiory ciągów traktowane są jako obiekty materialne a **nie** abstrakycjne. **Skończoność** - ważna cecha alfabetu/zbioru ponieważ tylko skończone zbiory danych można przechowywać w **fizycznym urządzeniu**.

Alfabet V. Alfabet V to: dowolny, niepusty, skończony zbior znaków $np.: V = \{I\}$, $V' = \{a,b\}$.

Słowo nad alfabetem V. Słowo nad alfabetem V to dowolny, skończony ciąg znkaów z V. np.: IIII (słowo nad alfabete $V = \{I\}$) czy abba (słowo nad alfabetem $V = \{a,b\}$)

Słowo puste ϵ . Słowo puste ϵ - słowo o 0 (zerowym) wystąpieniu symboli. Uwaga! Spacja NIE jest słowem pustym.

 \mathbf{V}^* . Zbiór wszsytkich słów nad alfabetem V. Łącznie z pustym słowem ϵ .

 $\mathbf{V}^* \setminus \{\epsilon\} = \mathbf{V} + .$ Zbiór wszsytkich niepustych słów. (ŁWyłączenie ze zbioru pustego słowa ϵ)

Oznaczenie słów. Słowa oznaczane są wielkimi literami z końca alfabetu łacińskiego, np.: P,Q,R.

4.2 Operacja konkatenacji

Konkatenacja dwóch słów. Konkatenacją dwóch słów P i Q nazywamy słowo PQ zdefiniowane w następujący sposób:

(i)
$$je\dot{z}eli \ \mathbf{P}=a_1,...,a_n \ gdzie \ \mathbf{a}=b_1,...,b_n \ n,m \geqslant 0 \ to \ \mathbf{PQ}=a_1,...,a_nb_1,...,b_n$$

(ii) Jeżeli
$$\mathbf{P} = \epsilon$$
, to $\mathbf{PQ} = Q$.
Alternatywnie to $\mathbf{Q} = \epsilon$ i wtedy $\mathbf{PQ} = P$.
 $Gdy \ \mathbf{P} = \mathbf{Q} = \epsilon$ to $\mathbf{PQ} = \epsilon \epsilon = \epsilon$.

Własności konkatenacji

- Konkatenacja jest działaniem łacznym w zbiorze słów
- Konkatenacja w ogólnoście **NIE** jest przemienna (bywa przemienna dla tyh samych słów **ab ab**) lub jeśli alfabet skada sie tylko z jednego znaku np $V = \{a\}$
- ϵ słowo puste zachowje się jak element neutralny dla operacji konkatenacji: $\epsilon P \subset P \epsilon = P$.

4.3 Konkatenacja NIE jest grupą algebraiczną ♡

Pomimo abstrakcyjnego znaczenia liczb, ich mentalna reprezentacja jest jednak w urządzeniu czymś materialnym (stanami wysokich i niskich napięć).

 V^* - zbiór wszystkich elementow (słów) nad alfabatem $\mathbf V$ (łącznie z elementem pustym ϵ)

- o oznacza działanie w grupie
- e litera e jest symbolem elementu neutralnego

Przykład łączności: a) dodawanie np. : 2 + (3 + 5) = (2 + 3) + 5 b) mnożenie np.: 2 * (3 * 5) = (2 * 3) * 5

Konkatenacja jest grupą (z algebry) jeśli spełnia warunki na bycie grupą:

- (i) operacja ∘ jest łączna w grupie;
- (ii) $\exists e, \forall x$ Istnieje element neutralny dal każdego x, taki że $x \circ e = e \circ x = x$;
- (iii) Dla każdego x $\forall x$ Istnieje element odwrotny $\exists x^{-1}$, taki, że $x \circ x^{-1} = x^{-1} \circ x = e$. Warunek nie spełniony przez konkatenację nie istnieje w ogólności takie słowo gdzie: słowo + słowo⁻¹ = ϵ (szczególny przypadek spełnienia to $\epsilon + \epsilon = \epsilon$, bo element neutralny jest sam do siebie odwrotny $\epsilon^{-1} = \epsilon$)
 - \Rightarrow WARUNEK NIE JEST W OGÓLNOŚCI SPEŁNIONY konkatenacja NIE jest grupą!

4.4 Podsłowo słowa

Zbiór $\mathbf{A} \subset \mathbf{A}$ i analogicznie $\mathbf{abca} \subset \mathbf{abca}$ (Znak \subset to taka kanciasta inkluzja oznaczenie używane przy słowach)

Podsłowo. Mówimy, że słowo \mathbf{Q} jest podsłowem słowa \mathbf{P} wtedy i tylko wtedy gdy, istnieją słowa Q_1 i Q_2 takie, że:

$$P = Q_1 \mathbf{Q} Q_2.$$

Np:. słowo bc jest podsłowem słowa abcd

Widać, tutaj, zę Q to słowo ab, $Q_1 = a$, $Q_2 = d$

Prefix słowa. Słowo Q jest prefixem słowa P jeśli $P = QQ_1$.

Suffix słowa. Słowo Q jest suffixem słowa P jeśli $P = Q_1Q$.

Infix słowa. Słowo Q jest infixem słowa P jeśli $P = Q_1QQ_2$ gdzie $Q_1 \neq \epsilon$ i gdzie $Q_2 \neq \epsilon$.

4.5 Długość słowa

Długość słowa $\mid P \mid$. Długością słowa $P \subset V^*$ nazywamy liczbę naturalną $\mid P \mid$ definiujemy w sposób indukcyjny:

- (i) $|\epsilon| = 0$
- (ii) $|P\mathbf{a}| = |P| + 1$; gdzie P to ciąg (słowo) a **a** to symbol (dodatkowa litera w słowie).

Przykład 1. Długość słowa abc

$$\mid abc \mid = \mid ab \mid +1 = (\mid a \mid +1) + 1 = (\mid \epsilon a \mid +1) + 1 = ((\mid \epsilon \mid +1) + 1) + 1 = ((0+1)+1) + 1 = 3$$

Przykład 2. Obliczyć ilość wszystkich podsłów słowa **P** gdy dana jest długość słowa | $P \mid = 4$

Odp: **NIE WIĘCEJ NIŻ** 11.

Rozwiazanie a):

Weźmy dla przykładu słowo abcd.

Podsłowo **abcd** \subset **abcd** - jedno podsłowo długości 4. (Słowo jest samo swoim podsłowem; kolejnosć znaków też ma znaczenie np słowo **bcda** $\not\subset$ **abcd**).

Podsłowa długości 3 (2 takie słowa) $abc \subset abcd$, $bcd \subset abcd$;

Podsłowa długości 3 (2 takie słowa) $ab \subset abcd$, $bc \subset abcd$, $cd \subset abcd$;

Podsłowa długości 1 (4 takie słowa) $\mathbf{a} \subset \mathbf{abcd}, \mathbf{b} \subset \mathbf{abcd}, \mathbf{c} \subset \mathbf{abcd}, \mathbf{d} \subset \mathbf{abcd};$

Odp a) Dla słowa **abcd** mamy (1+2+3+4) + 1 (dodajemy jeden bo znak pusty ϵ)

Rozwiązanie b): Załóżmy, że szukamy wszystkich podsłów słowa P = aaaa. aaaa \subset aaaa (1 podsłowo) aa \subset aaaa (1 podsłowo) a \subset aaaa (1 podsłowo) a \subset aaaa (1 podsłowo)

Odp a) Dla słowa aaaa mamy (1+1+1+1) + 1 (dodajemy jeden bo znak pusty ϵ), ponieważ **NIE ROZRÓŻNIAMY ZNAKÓW MIĘDZY SOBĄ tzn.: zawsze a** == **a** (nie rozróżniamy permutacji tych samych elementów)

Zadanie Domowe na ćwiczenia Napisać procedurę w pseudokodzie: Dla zadanego słowa długośc \mathbf{n} napisac procedurę, które pokaże liczbę \mathbf{k} podsłów oraz wypisze całą listę konkretnych podsłów.

4.6 Długość konktatenacji słów

Długość konktatenacji słów. |PQ| = |P| + |Q|

Dowód (indukcja matematyczna):

 $\forall P, Q : \mid PQ \mid = \mid P \mid + \mid Q \mid (Indukcja po długości \mid Q \mid)$

(i) $\mid Q \mid = \epsilon$

 $LewaStrona: \mid PQ \mid = \mid P\epsilon \mid = \mid P \mid$

PrawaStrona: | P | + | Q |=| P | + | ϵ |=| P | +0 =| P | = LewaStrona

c.n.d (co należało dowieść)

 $(ii) \mid PQ \mid = \mid P \mid + \mid Q \mid$

 $PrawaStrona: \mid P(Qa) \mid = \mid P\epsilon \mid = \mid P \mid$

 $LewaStrona: \mid P\mid +\mid Q\mid =\mid P\mid +\mid \epsilon\mid =\mid P\mid +0 =\mid P\mid =$ LewaStrona c.n.d (co należało dowieść)

Brudnopis

And I want to get it like this:

$$\{x \in \mathbb{Z} \mid -1 \leqslant x \leqslant 2\},\$$

where the \overbrace doesn't wait till the \underbrace is going to have the work done.