

Network Layer Part 8

Mark Allman mallman@case.edu

Fall 2018

"my, my, my, ... these are lawless times ..."

These slides are more-or-less directly from the slide set developed by Jim Kurose and Keith Ross for their book "Computer Networking: A Top Down Approach, 5th edition".

The slides have been lightly adapted for Mark Allman's EECS 325/425 Computer Networks class at Case Western Reserve University.

All material copyright 1996-2010 J.F Kurose and K.W. Ross, All Rights Reserved

Reading Along ...

- Network layer is chapters 4 & 5
 - Hierarchical Routing

Interconnected ASes

- *forwarding table configured by both intra- and inter-AS routing algorithm
 - intra-AS sets entries for internal dests
 - inter-AS & intra-As sets entries for external dests

Inter-AS tasks

- *suppose router in AS1 receives datagram destined outside of AS1:
 - router should forward packet to gateway router, but which one?

Inter-AS tasks

- *suppose router in AS1 receives datagram destined outside of AS1:
 - router should forward packet to gateway router, but which one?

AS1 must:

- 1. learn which dests are reachable through AS2, which through *AS*3
- 2. propagate this reachability info to all routers in AS1

job of inter-AS routing!

Example: Setting forwarding table in router 1d

Example: Setting forwarding table in router 1d

- *suppose AS1 learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway 1c) but not via AS2.
 - inter-AS protocol propagates reachability info to all internal routers

Example: Setting forwarding table in router 1d

- *suppose AS1 learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway 1c) but not via AS2.
 - inter-AS protocol propagates reachability info to all internal routers
- *router 1d determines from intra-AS routing info that its interface \mathbf{I} is on the least cost path to 1c.

other networks

Installs forwarding table entry (x,I)

Other networks

Example: Choosing among multiple ASes

- *now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- *to configure forwarding table, router 1d must determine which gateway it should forward packets towards for dest x
 - this is also job of inter-AS routing protocol!

Example: Choosing among multiple ASes

- *now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine which gateway it should forward packets towards for dest x
 - this is also job of inter-AS routing protocol!
- *hot potato routing: send packet towards closest of two routers.

Intra-AS Routing

- *also known as Interior Gateway Protocols (IGP)
- *most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

Reading Along ...

- Network layer is chapters 4 & 5
 - Routing Among ISPs

- * BGP (Border Gateway Protocol): the de facto interdomain routing protocol
 - "glue that holds the Internet together"

- * BGP (Border Gateway Protocol): the de facto interdomain routing protocol
 - "glue that holds the Internet together"
- * allows subnet to advertise its existence to rest of Internet: "I am here"

- * BGP (Border Gateway Protocol): the de facto interdomain routing protocol
 - "glue that holds the Internet together"
- * allows subnet to advertise its existence to rest of Internet: "I am here"
- * BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs.
 - iBGP: propagate reachability information to all AS-internal routers.
 - determine "good" routes to other networks based on reachability information and policy.

BGP basics

- *BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections

BGP basics

- * BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections
- *when AS3 advertises a prefix to AS1:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

*using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.

- *using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP to distribute new prefix info to all routers in AS1

- *using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP to distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session

- *using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP to distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- *when router learns of new prefix, it creates entry for prefix in its forwarding table.

- *advertised prefix includes BGP attributes
 - prefix + attributes = "route"
- *two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)

Prefix: 129.22/16 AS-PATH: AS3

Prefix: 129.22/16 AS-PATH: AS3 NEXT-HOP: 1c

Route Import

- *gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - policy-based routing

BGP route selection

- * router may learn about more than 1 route to destination AS, selects route based on:
 - 1. local preference value attribute: policy decision
 - 2. shortest AS-PATH
 - 3. closest NEXT-HOP router: hot potato routing
 - 4. additional criteria

- * A,B,C are provider networks
- *X,W,Y are customers (of provider networks)

- * A,B,C are provider networks
- *X,W,Y are customers (of provider networks)
- *X is dual-homed: attached to two networks

- * A,B,C are provider networks
- *X,W,Y are customers (of provider networks)
- *X is dual-homed: attached to two networks
 - X does not want to route traffic from B to C

- * A,B,C are provider networks
- *X,W,Y are customers (of provider networks)
- *X is dual-homed: attached to two networks
 - X does not want to route traffic from B to C
 - ullet .. so X will not advertise a route to $\mathcal C$ in messages to

B

BGP routing policy (2)

BGP routing policy (2)

- * A advertises path AW to B
- *B advertises path BAW to X

BGP routing policy (2)

- * A advertises path AW to B
- *B advertises path BAW to X
- Should B advertise path BAW to C?

BGP routing policy (2)

- * A advertises path AW to B
- *B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Reading Along ...

- Network layer is chapters 4 & 5
 - Transmission Classes

- Unicast
 - send message to a single recipient

- *Unicast
 - send message to a single recipient

- *Broadcast
 - send same message to everyone

*Multicast

- *Multicast
 - when sending the same content to multiple destinations
 - ... but not everyone!
 - e.g., radio station broadcast

*Anycast

- *Anycast
 - for replication of services, any one of which will work
 - e.g., root DNS servers