5th Marathon of Parallel Programming ERAD/RS 2022

April 19th, 2022

Problem A

Transferência de Calor + Gradiente Conjugado

Um problema clássico de aplicação de métodos numéricos em fenômenos físicos é a transferência de calor em uma placa plana homogênea. Considerando que todos os pontos internos da placa estejam a uma temperatura inicial diferente das temperaturas das bordas (temperatura fixa), o problema consiste em determinar a temperatura em nos pontos internos da placa em um dado instante de tempo.

Na implementação sequencial fornecida, após a leitura da entrada, gera-se o sistema de equações do tipo Ax = b, onde A é uma matriz pentadiagonal, x é o vetor de incógnitas e b é o vetor dos termos independentes. Para cada ponto interno da placa, gera-se uma linha no sistema.

Na sequência, inicia-se o laço de iteração do tempo da simulação, onde resolve-se T passos de tempo da simulação de transferência de calor usando o método do Gradiente Conjugado na solução dos sistemas de equações. Após a resolução no passo de tempo t, atualiza-se o valor das temperaturas. Ao final temos como saída o vetor x no passo temporal T.

O objetivo deste problema é apresentar uma versão paralela da simulação de transferência de calor.

Entrada

A entrada consiste da quantidade de passos de tempo a ser simulado T, seguido das dimensões m e n da placa retangular a ser simulada. Na sequência, encontram-se os valores de temperatura inicial dos $m \times n$ pontos.

A entrada deve ser lido da entrada padrão.

Saída

A saida é vetor x, apresentando as $(m-2) \times (n-2)$ temperatudas do interior da placa (desconta-se as bordas) no tempo T de simulação. A temperatura de cada ponto é separada por uma quebra de linha.

A saída deve ser escrita da saída padrão.

Exemplo

Entrada	Saída
	5.8
5	4.7
5 5	5.8
10.0 10.0 10.0 10.0 10.0	4.7
10.0 1.0 1.0 1.0 10.0	3.3
10.0 1.0 1.0 1.0 10.0	4.7
10.0 1.0 1.0 1.0 10.0	5.8
10.0 10.0 10.0 10.0 10.0	4.7
	5.8