

NATHÁLIA CRISTINA PIRES VIDAL

RA:139958

IMPLEMENTAÇÃO POR MÁQUINA DE ESTADOS MOORE: CONTADOR CRESCENTE E DECRESCENTE

SÃO JOSÉ DOS CAMPOS, DEZEMBRO 2022

IMPLEMENTAÇÃO POR MÁQUINA DE ESTADOS MOORE: CONTADOR CRESCENTE E DECRESCENTE

Relatório apresentado à Universidade Federal de São Paulo como parte dos requisitos para aprovação na disciplina de Laboratório de Sistemas Computacionais: Circuitos Digitais.

Docente: Prof. Dr. Lauro Paulo da Silva Neto
Universidade Federal de São Paulo- UNIFESP
Instituto de Ciência e Tecnologia - Campus São José dos Campos-SP

SÃO JOSÉ DOS CAMPOS, DEZEMBRO/2022

RESUMO

Máquina de estados finitos são autômatos finitos que produzem uma saída de dados baseando-se no estado em que se encontram e na entrada de dados. Neste projeto, utilizou-se uma máquina de estados finitos do tipo Moore. A máquina de estados Moore possui dez estados e alterna entre eles através de quatro funções: estado atual, próximo estado, estado anterior e display apagado, combinando o estado atual com as entradas UP e DOWN. Utilizando-se uma frequência de 1Hz e um clock de 50 MHz, a máquina percorre a sequência de números 0-8-2-4-5-4-9-0-3, a qual mostrouse no display de sete segmentos. A implementação foi feita no Software Quartus em esquemático e carregada na placa FPGA DE2-215.

Palavras-chaves: Máquina de estados, Moore, Display de Sete Segmentos, Quartus.

LISTA DE ILUSTRAÇÕES

Figura 1- Porta AND	9
Figura 2 - Porta OR	10
Figura 3 - Porta NOT	10
Figura 4 - Elementos de memória	11
Figura 5- Máquina de Estados Finitos	11
Figura 6 - Modelo Máquina Moore	12
Figura 7- Forma de onda de um Divisor de Frequência	12
Figura 8- Bloco decodificador de 7 segmentos	13
Figura 9 - Display de 7 segmentos.	13
Figura 10 - Divisor de frequência	15
Figura 11 - Representação Display de Sete Seguimentos	15
Figura 12 - Tabela verdade para o Display de 7 segmentos	15
Figura 13 - Esquemático Decodificador BCD	16
Figura 14 - Diagrama de estados	17
Figura 15- Circuito combinacional para os bits 3 e 2	18
Figura 16 - Circuito combinacional para os bits 1 e 0	18
Figura 17 - Circuito combinacional de saída	19
Figura 18 - Circuito Final do contador	19

LISTA DE TABELAS

Tabela 1 - Tabela-verdade Porta AND	9
Tabela 2 - Tabela-verdade Porta OR	10
Tabela 3 - Tabela-verdade Porta NOT	10
Tabela 4 - Tabela-verdade máquina de estados	16
Tabela 5 - Transição de estados	

SUMÁRIO

1.	INTRODUÇÃO	.7
2.	OBJETIVOS	.8
2.1	Gerais	.8
2.2	Específicos	.8
3.	FUNDAMENTAÇÃO TEORICA	.9
3.1	Elementos básicos de Circuitos Digitais	.9
	3.1.1 Portas Lógicas	
3.2	Máquina de estados finitos	11
3.3	Divisor de frequência1	12
3.4	Decodificador BCD	13
4.	DESENVOLVIMENTO DO TRABALHO	14
4.1	Divisor de frequencia1	4
4.2	Decodificador BCD	15
4.3	Máquina de Estados	16
4.4	Circuito final	19
5.	RESULTADOS OBTIDOS E DISCUSSÃO2	20
6.	CONSIDERAÇÕES FINAIS2	20
ВE	FERÊNCIAS 2)1

1. INTRODUÇÃO

Atualmente as novas tecnologias estão presentes no dia a dia de todos, sendo utilizadas para diversas funcionalidades. Partindo desse atual contexto histórico, temos os circuitos digitais, o qual possui diversas vantagens e serve como base para diversos estudos principalmente na área da computação.

Nesse projeto trabalhamos com o conceito de máquina de estados, nesse caso, a máquina de estados Moore, a qual possui dez estados. Para esse projeto, utilizaremos: Um divisor de frequência e um decodificador BCD os quais serão explicadas ao decorrer deste relatório, formando-se assim um contador crescente e decrescente.

2. OBJETIVOS

2.1 Gerais:

Desenvolver um contador para a sequência 0-8-2-4-5-4-9-0-3 através de uma máquina de estados do tipo Moore, com um tempo de transição de um segundo, que possua três sinais de entrada *up, down e reset*. Utilizando um desses sinais, ou a combinação deles devemos fazer com que a sequência seja apresentada em um display de sete segmentos, podendo manter o estado, ir para o estado seguinte, ir para o estado anterior e display desligado.

2.2 Específicos:

- Implementar um divisor de frequências responsável por converter o sinal do clock de 50,0 MHz para 1,0 Hz, fazendo com que um ciclo ocorra a cada um segundo;
- Desenvolver um diagrama de estados;
- Projetar o circuito da Máquina de Estados;
- Implementar um decodificador de saída BCD responsável por transformar o sinal obtido do circuito combinacional de saída em um número que será representado em um display de sete segmentos;
- Projetar o circuito da Máquina de Estados;
- Combinar os circuitos produzidos;
- Analisar os resultados.

3. FUNDAMENTAÇÃO TEORICA

3.1 Elementos básicos de Circuitos Digitais

3.1.1 Portas Lógicas

Portas lógicas são dispositivos que trabalham com um ou mais sinais de entrada e o transformam em um único sinal de saída. Combinados dão origem aos circuitos lógicos, tornando possível realizar diversas operações. Cada uma possui suas características, mas o que difere um do outro é que dados armazenados de saídas anteriores podem alterar as próximas.

Dentro das portas lógicas fundamentais, existem os principais operadores: AND, OR e NOT.

• **Porta AND:** Consiste em valores de saída com nível lógico alto sempre que qualquer uma das variáveis de entrada apresentar nível lógico alto.

Figura 1- Porta AND

Fonte: Sistemas Digitais (1).

Como podemos observar na tabela verdade abaixo, a saída (S) apresenta o valor "1" apenas se as duas entradas (x1 e x2) apresentarem o valor "1".

Tabela 1 - Tabela-verdade Porta AND

AND						
x1	x2	S				
0	0	0				
0	1	0				
1	0	0				
1	1	1				

Fonte: Autor

 Porta OR: Consiste em valores de saída com nível lógico alto sempre que qualquer uma das variáveis de entrada apresentarem nível alto.

Figura 2 - Porta OR

Fonte: Sistemas Digitais (1).

• Como podemos observar na tabela verdade abaixo, a saída (S) apresenta o valor "1" se qualquer uma das as duas entradas (x1 e x2) apresentarem o valor "1".

Tabela 2 - Tabela-verdade Porta OR

OR						
x1	x2	S				
0	0	0				
0	1	1				
1	0	1				
1	1	1				

Fonte: Autor

• **Porta NOT:** A saída corresponde ao valor oposto ao valor de entrada. Ou seja, a Porta NOT inverte o valor da entrada.

Figura 3 - Porta NOT

Tabela 3 - Tabela-verdade Porta NOT

NOT						
x1 S						
1	0					
0	1					

Fonte: Autor.

3.1.2 Elementos de Memória

Um *flip-flop* é um circuito lógico com dois estados estáveis, armazena um bit de cada vez, podendo ser 1 ou 0. A saída de um *flip-flop* indica qual bit está armazenado. Um nível ALTO na saída indica que um 1 está armazenado e um

nível BAIXO na saída indica que um 0 está armazenado. Seu funcionamento é sensível a uma entrada que chamamos de clock, que nada mais é uma onda que assume valores altos e baixos determinados por uma frequência que o mesmo possui.

O do tipo D conduz a entrada para saída, ou seja, quando a entrada for 0 teremos esse valor na saída e o mesmo acontece para o bit 1,

Já o JK, é mais completo, possuindo as funções de manter, setar e resetar

Figura 4 - Elementos de memória

Fonte: Sistemas Digitais (1).

3.2 Máquina de estados finitos

Máquina de Estados Finitos é uma maquina abstrata que possui um número finito de estados. A máquina está em apenas um estado por vez, chamado de estado atual, podendo fazer transições. Essas transições são mudanças de estado, armazenando sempre informações de entrada e saída. A máquina é formada por um circuito combinacional de entrada, que definirá o próximo estado, um conjunto de Flip-Flops para armazenar o estado atual, e outro circuito combinacional que diz a lógica da saída que pode ou não depender da entrada. A máquina de estados pode ser do tipo Moore ou Mealy, sendo que a diferença entre elas é que na máquina Mealy a entrada também influencia o valor de saída.

W Combinational circuit Flip-flops Q Combinational circuit

Figura 5- Máquina de Estados Finitos

Fonte: Fundamentals of Digital Logic with VHDL Desgin (2)

A Máquina de Moore gera uma saída enquanto o circuito está em um estado ao invés de uma transição, isto é, a saída depende apenas do estado atual.

Figura 6 - Modelo Máquina Moore

Fonte: Autor

3.3 Divisor de frequência

Um divisor de frequência é um contador com unidades de memória conhecidos como *Flip-Flops* ordenados em sequência. Possuem a função de dividir a frequência fundamental de entrada por dois, ou seja, a cada *Flip-Flop*, a frequência cai pela metade, como podemos observar na figura:

Figura 7- Forma de onda de um Divisor de Frequência

Fonte: Sistemas Digitais: Fundamentos e Aplicações, p. 473 (1)

O divisor de frequência é um contador binário, onde o bit mais significativo é o que possui o maior tempo de mudança de estado.

Assim, para descobrirmos a quantidade necessária de Flip-Flops temos as equações:

$$T = \frac{1}{f} \tag{3.1}$$

onde, f é a frequência do Clock e T o tempo de ciclo do Clock.

Através do tempo de ciclo T devemos descobrir quantos ciclos de clock, X, precisamos para atingir a frequência desejada F, temos que:

$$X = \frac{F}{T} \tag{3.2}$$

Assim, para determinar a quantidade de Flip-Flops, N, temos:

$$2^{N} = X \Rightarrow N = \frac{\log_{10} X}{\log_{10} 2}$$
 (3.3)

3.4 Decodificador bcd

Decodificador bcd é um decodificador que transforma um número binário que representa um certo estado, em um número decimal a ser projetado no display de sete segmentos, como mostrado na Figura 3 a seguir:

Figura 8- Bloco decodificador de 7 segmentos

Fonte: João Marcos de Aguiar

Esse decodificador é ligado ao display de 7 segmentos, o qual é um grupo de LEDs que em conjunto são capazes de formar letras e números de acordo com as entradas. O display pode ser do tipo cátodo ou ânodo comum, o que significa que ou os LEDs estão com os terminais positivos em comum ou os negativos, portanto para cada tipo, o valor de entrada para ligá-los é diferente.

Figura 9 - Display de 7 segmentos.

Fonte: Sistemas Digitais (1)

4. DESENVOLVIMENTO DO TRABALHO

A proposta do projeto é construir um contador que funciona de forma crescente e decrescente e percorresse por uma sequência destinada a cada aluno, de forma individual, através de uma Máquina de Estados Finitos desenvolvido no software Quartus Prime.

A sequência a ser percorrida é 0-8-2-4-5-4-9-0-3 e o tipo de máquina de estados é a Moore. Para melhor compreensão e entendimento, o projeto foi dividido em: Projetar um divisor de frequência para a contagem de 1 segundo, projetar uma Máquina de Estados e projetar um decodificador BCD para o Display de 7 segmentos.

4.1 Divisor de frequência

O divisor de frequência deverá alterar a contagem, atrasar o sinal do clock recebido, a cada segundo, ou seja, a cada 1 hertz, possibilitando assim, a manipulação do tempo da troca de estados. A saída terá o nível alto "1" após 1 segundo ou 1 Hz, portanto é necessário que se utilize um divisor de frequências.

Para sabermos o tempo de ciclo do Clock, T, da FPGA, para isso, utilizamos a equação 3.1:

$$T = 150 * 106 = 20 * 10^{-9} s \tag{4.1}$$

Portanto, temos que o tempo do ciclo de Clock da FPGA é de 20ns. Como a frequência desejada, F, é 1Hz, utilizamos a equação 3.2 para descobrir em quantos ciclos de clock, X, atingimos em 1s:

$$X = 120 * 10^{-9} = 50 * 106 ciclos$$
 (4.2)

Sabendo que precisamos de 50 milhões de ciclo de clock, utilizamos a equação 3.4 para encontrarmos quantos Flip-Flops, N, precisamos:

$$N = \frac{\log_{10} 50*10^6}{\log_{10} 2} = 25,57 \tag{4.3}$$

Assim, chegamos ao número de 26 Flip-Flops , temos o circuito resultante abaixo:

Figura 10 - Divisor de frequência

Fonte: Autor.

4.2 Decodificador BCD

Para esse projeto, devemos projetar um circuito que satisfaça a projeção de números de 0 a 9 no Display de 7 segmentos, transformando assim, os 4 bits provenientes do circuito combinacional de saída em um número decimal a ser representado. Assim como representado na Figura 11, a seguir:

Figura 11 - Representação Display de Sete Seguimentos

Fonte: Manual DE2-115 (3).

Assim, teremos a segunte tabela verdade:

Figura 12 - Tabela verdade para o Display de 7 segmentos

	ENTRADAS SAÍDA DISPLAY 7 SEGMENTOS						NÚMERO				
w	X	Y	Z	а	b	С	d	е	f	g	-
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	0	1	1	1	1	1	6
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	1	0	1	1	9

Fonte: Autor.

Através de um mapa de Karnaugh para cada saída de a a g, que foi resolvido através do website 32x8.com (5), o circuito resultante é:

Figura 13 - Esquemático Decodificador BCD

Fonte: Autor

4.3 Máquina de Estados

A máquina de estados deve conter dez estados, onde nove serão representados por números decimais, e o décimo estado será o display apagado. A mudança de

estados é coordenada por duas entradas denominadas UP e DOWN, como mostrado a seguir:

Tabela 4 - Tabela-verdade máquina de estados

UP	DOWN	SAÍDA
0	0	MANTER
		ESTADO
0	1	DECRESCENTE
1	0	CRESCENTE
1	1	APAGAR
		DISPLAY

Fonte: Autor

Com os dados da tabela verdade podemos montar um diagrama de estados para compreender e analisar todas as utilidades. Usando o software chamado de JFLAP (4) podemos gerar o diagrama da Figura 14:

Figura 14 - Diagrama de estados

Fonte: Autor.

Baseado no diagrama de estados, temos que gerar uma tabela que abranja todas as possibilidades de transição.

	ESTADO ATUAL				PRÓXIMO ESTADO				SAÍDA
ESTADO	E3	E2	E1	E0	U,D = 0,0	U,D = 0,1	U,D = 1,0	U,D = 1,1	-
Α	0	0	0	0	0,0,0,0	1,0,0,0	0,0,0,1	1,0,0,1	0
В	0	0	0	1	0,0,0,1	0,0,0,0	0,0,1,0	1,0,0,1	8
С	0	0	1	0	0,0,1,0	0,0,0,1	0,0,1,1	1,0,0,1	2
D	0	0	1	1	0,0,1,1	0,0,1,0	0,1,0,0	1,0,0,1	4
E	0	1	0	0	0,1,0,0	0,0,1,1	0,1,0,1	1,0,0,1	5
F	0	1	0	1	0,1,0,1	0,1,0,0	0,1,1,0	1,0,0,1	4
G	0	1	1	0	0,1,1,0	0,1,0,1	0,1,1,1	1,0,0,1	9
Н	0	1	1	1	0,1,1,1	0,1,1,0	1,0,0,0	1,0,0,1	0
1	1	0	0	0	1,0,0,0	0,1,1,1	0,0,0,0	1,0,0,1	3
APAGADO	1	0	0	1	1,0,0,1	0,0,0,0	0,0,0,0	1,0,0,1	OFF

Tabela 5 - Transição de estados

Fonte: Autor.

Assim, com a tabela montada, utilizamos mapa de Karnaugh para gerar o circuito combinacional de entrada, o mapa de Karnaugh foi resolvido utilizando o website 32x8.com (2).

As equações obtidas para as entradas dos registradores são:

$$Y3 = UD + U'D'y3 + Uy2y1y0 + Dy3'y2'y1'y0'$$
 (4.4)

$$Y2 = D'y2y1' + D'y2y0' + U'y2y0 + U'y2y1 + U'Dy3y0' + UD'y2'y1y0$$
 (4.5)

$$Y1 = D'y1y0' + U'y1y0 + U'Dy3y0' + UD'y3'y1'y0 + U'Dy2y1'y0'$$
 (4.6)

$$Y0 = UD + Uy3'y0' + U'D'y0 + Dy1'y0' + Dy2y0' + Dy3y0'$$
(4.7)

Onde Y3,Y2,Y1,Y0 são as entradas dos registradores, y3,y2,y1,y0 são as saídas dos registradores, U,D são as entradas Up e Down, respectivamente.

Com essas expressões podemos reproduzi-las no esquemático e fazer um circuito de transição de estados e circuito de saída. Figura 15 para os bits 3 e 2 de próximo estado, para os bits 1 e 0 temos a figura 16. Na figura 17 temos circuito combinacional de saída.

Figura 15- Circuito combinacional para os bits 3 e 2

Figura 16 - Circuito combinacional para os bits 1 e 0

Fonte: Autor.

Figura 17 - Circuito combinacional de saída.

Fonte: Autor.

Para finalizar a máquina de estados foi necessário um banco de registrador que será usado para armazenar o estado atual. Foi usado 4 *Flip-Flops* do tipo D pois temos 4 bits de estados. Os flip-flops terão o clock de um segundo e a chave *reset* para voltarmos ao estado inicial 000, que é o primeiro número da sequencia.

4.4 Circuito Final

Logo, a circuito final será:

Figura 18 - Circuito Final do contador

Fonte: Autor.

As entradas UP e Down será conectada apenas no circuito combinacional de transição de estados, que será conectada ao banco de registradores. A saída do circuito de estado atual será conectada ao circuito combinacional de saída que será ligado ao Decodificado BCD para Display de 7 segmentos.

5.RESULTADOS OBTIDOS E DISCUSSÃO

As etapas durante o projeto foram testadas no ambiente virtual fornecido pela UNIFESP. Podemos observar que os resultados ocorreram como o esperado em todas as contagens, além de manter um número e apagar o display. Porém, por algum erro a sequência mostrada no display não foi a sequência pré definida pelo professor.

O contador implementado pela máquina de estados Moore funcionou fazendo a contagem em um segundo tanto na interação crescer e decrescer, demonstrando a sequencia no display HEX 0, seguindo o planejado para o projeto.

6.CONSIDERAÇÕES FINAIS

Com o término do trabalho podemos observar que o conceito de máquina de estados pode ser muito útil na resolução de alguns problemas. Porém, sua implementação através do esquemático é complexa por conta da grande quantidade de informações e muitas ligações de fios o que pode gerar diversos erros.

O projeto foi descarregado na placa Intel FPGA e mostrado ao professor na bancada.

REFERÊNCIAS

- 1. FLOYD, T. L. (s.d.). Sistemas Digitais: Fundamentos e Aplicações. 9a.
- **2.** BROWN, S. D., & VRANESIC, Z. (2009). *Fundamentals of Digital Logic with VHDL Desgin.* New York: McGraw-Hill.
- 3. DE2-115. (s.d.). Fonte: User Manual: https://grad.sead.unifesp.br/pluginfile.php/371633/mod_resource/content/1/DE2-115%20Manual.pdf
- **4.** *32x8.com.* (s.d.). Fonte: ONLINE Karnaugh map solver with circuit for up to 8 variables.2014: 32x8.com