

APPLIED ELECTONICS

Part D:

Class exercises 3

Analog-Digital and Digital-Analog conversion systems

Problem 1 – Assignment A/D conversion

- a) Plot the block diagram of a system for A/D conversion of signals from 4 channels. The input signals have dynamics [1 V 2 V] and bandwidth 0 15 kHz. The system must use one A/D converter (dynamics [0 5 V] and $T_c = 500 \text{ ns}$) and one S/H with acquisition time $T_{acq} = 700 \text{ ns}$.
- b) Determine the maximum and minimum sampling frequency.
- c) Draw the circuit of the conditioning amplifier (if it is necessary) and calculate the value of the resistors of the circuit.
- d) If the input signals are sine waves with dynamics [1 V 2 V], calculate the minimum number of bit to guarantee SNR_q > 35 dB.
- e) If the input sine wave has amplitude V_P variable in the range between 0.5 V and 2.5 V (i.e: $V_{Pmin} = 0.5$ V and $V_{Pmax} = 2.5$ V) and average value equal to 1.5 V, calculate the minimum number of bits of the A/D to guarantee $SNR_a > 35$ dB.

Problem 2 – Assignment D/A conversion (NOTE: circuit of LAB 3)

Given the circuit shown in the figure where the CD4029 is a counter with $V_{CC} = 5$ V and OA is an operational amplifier with $V_{CC} = \pm 10$ V, calculate the resistors to satisfy the following conditions:

- a) Full scale output voltage $V_{fs} = -5V$
- b) Error in the MSB output voltage due to the "equivalent resistance of the switches" less than ½ LSB.

