第1章 共形映射

1.1 单叶解析函数

引理 1.1

设函数 f(z) 在点 z_0 的一个邻域内解析,并记 $w_0=f(z_0)$ 。 假设存在一个正整数 $p\geq 1$,使得:

$$f'(z_0) = f''(z_0) = \dots = f^{(p-1)}(z_0) = 0$$

并且

$$f^{(p)}(z_0) \neq 0$$

那么,可以得到以下两个结论:

- 1. 函数 $g(z) = f(z) w_0$ 在 z_0 处有一个 p 阶零点。
- 2. 存在 z_0 的一个足够小的邻域 $D_{\rho} = \{z \in \mathbb{C} : |z z_0| < \rho\}$ 和 w_0 的一个邻域 $D_{\mu} = \{w \in \mathbb{C} : |w w_0| < \mu\}$,使得对于任意一个 $w \in D_{\mu} \setminus \{w_0\}$,方程 f(z) = w 在 $D_{\rho} \setminus \{z_0\}$ 内恰好有 p 个一阶零点.

extstyle ex

Proof 第一个结论是显然的,下面应用 Rouche 定理证明第二个. f 不恒为常数, z_0 同时是 $f-w_0$ 和 f' 的孤立零点,于是存在以 z_0 为心的圆盘 D_ρ ,使得 $f-w_0$ 在 \bar{D}_ρ 上无其它零点. 进而

$$\mu := \min_{x \in \partial D_{\rho}} |f - w_0| > 0$$

取以 w_0 为中心的圆盘 D_{μ} , 则由

$$f(z) - w = (f(z) - w_0) + (w - w_0)$$

可知

$$|f - w_0| \ge \mu > |w - w_0|, \quad \forall w \in D_\mu$$

f-w 和 $f-w_0$ 有相同的零点个数 p (记重数).

最后,只需说明零点的阶数. 显然 z_0 不是 f-w 的零点. 任取 f-w 在 D 上的零点 $z_1\in D_\rho\setminus\{z_0\}$,根据 D_ρ 的取法, $(f-w)'(z_1)\neq 0$,故 z_1 是一阶零点.

定理 1.1

设 f(z) 在区域 D 内解析, 则 f' 在 D 上无零点.

Proof 否则由引理, 存在 $w \in \mathbb{C}$, f - w 有两个一阶零点.

定理 1.2 (开映射定理)

若函数 f 在区域 D 内解析, 且不为常数, 则 f(D) 也是一个区域.

 \Diamond

 \Diamond

Proof 由于连续映射保持连通性, 只需要证明 f(D) 是一个开集. 任取 $w_0 \in f(D)$. 由上面的引理, 存在 w_0 的一个邻域 D_u , 使得对于任意的 $w \in D_u$, f-w 的零点存在. 即 $D_u \subseteq f(D)$.

定理 1.3 (反函数)

若函数 f 在区域 D 内单叶解析. 则 f 存在一个在 f(D) 上单叶解析的反函数 f^{-1} , 使得

$$(f^{-1})'(w_0) = \frac{1}{f'(z_0)}, \quad (w_0 \in f(D), z_0 = f^{-1}(w_0))$$

定理 1.4 (保角)

设 U 是复平面 $\mathbb C$ 中的一个开集,并且 $f:U\to\mathbb C$ 是一个在 U 上单叶解析的函数。那么 f 在 U 上是保角的。即,对于 U 中任意一点 z_0 ,以及通过 z_0 的任意两条光滑曲线 $\gamma_1(t)$ 和 $\gamma_2(t)$,如果它们在 z_0 处的夹角是 θ ,那么它们的像曲线 $f(\gamma_1(t))$ 和 $f(\gamma_2(t))$ 在 $f(z_0)$ 处的夹角也是 θ ,并且保持方向不变。

Proof 设 $z_0\in U$ 是两条光滑曲线 $\gamma_1(t)$ 和 $\gamma_2(t)$ 的交点,即 $\gamma_1(t_0)=\gamma_2(t_0)=z_0$ 。这两条曲线在 z_0 处的切向量分别为 $\gamma_1'(t_0)$ 和 $\gamma_2'(t_0)$ 。它们之间的夹角 θ 等于 $\arg(\gamma_2'(t_0))-\arg(\gamma_1'(t_0))$ 。通过函数 f 映射后,得到新的曲线 $\Gamma_1(t)=f(\gamma_1(t))$ 和 $\Gamma_2(t)=f(\gamma_2(t))$ 。它们在 $w_0=f(z_0)$ 处的切向量,根据链式法则,为:

1.
$$\Gamma'_1(t_0) = f'(\gamma_1(t_0))\gamma'_1(t_0) = f'(z_0)\gamma'_1(t_0)$$

2.
$$\Gamma'_2(t_0) = f'(\gamma_2(t_0))\gamma'_2(t_0) = f'(z_0)\gamma'_2(t_0)$$

其中 $f'(z_0) \neq 0$. 曲线切向量之间的夹角是 $\arg(\Gamma_2'(t_0)) - \arg(\Gamma_1'(t_0))$, 计算

$$\arg(\Gamma'_2(t_0)) - \arg(\Gamma'_1(t_0)) = \arg(f'(z_0)\gamma'_2(t_0)) - \arg(f'(z_0)\gamma'_1(t_0))$$

$$= (\arg(f'(z_0)) + \arg(\gamma'_2(t_0))) - (\arg(f'(z_0)) + \arg(\gamma'_1(t_0)))$$

$$= \arg(\gamma'_2(t_0)) - \arg(\gamma'_1(t_0))$$

$$= \theta$$

就完成了说明.

定义 1.1 (伸缩率)

设 $f:U\to\mathbb{C}$ 是一个在开集 U 上解析的函数。对于 U 中任意一点 z_0 , 函数 f 在 z_0 处的 伸缩率 (magnification factor) 或尺度因子 (scale factor) 定义为其导数在 z_0 处的模 $|f'(z_0)|$

定义 1.2

一个分式线性变换 (Fractional Linear Transformation, FLT) 是一个函数 $f:\mathbb{C}_{\infty}\to\mathbb{C}_{\infty}$,其形式为: $f(z)=\frac{az+b}{cz+d}$ 其中 $a,b,c,d\in\mathbb{C}$ 且 $ad-bc\neq0$ 。这里的 \mathbb{C}_{∞} 表示扩展复平面或黎曼球面. 约定:

- 1. 若 c=0,则 $f(z)=\frac{az+b}{d}$ 。此时 $f(\infty)=\infty$ 。
- 2. 若 $c \neq 0$, 则 $f(-d/c) = \infty$ 且 $f(\infty) = a/c$.

定义 1.3

- 1. 定义 $\operatorname{GL}_2(\mathbb{C})$: 是所有二阶可逆复数矩阵的集合,在矩阵乘法下构成一个群。 $\operatorname{GL}_2(\mathbb{C}) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in \mathbb{C}, \det(A) = ad bc \neq 0 \right\}$
- 2. 定义 $Z(\mathrm{GL}_2(\mathbb{C}))$: 是形如 $kI=\begin{pmatrix}k&0\\0&k\end{pmatrix}$ 的矩阵,其中 $k\in\mathbb{C}, k\neq 0$,且 I 是单位矩阵。这些矩阵在矩阵乘法下构成 $\mathrm{GL}_2(\mathbb{C})$ 的一个正规子群,记作 $Z(\mathrm{GL}_2(\mathbb{C}))$ (这是它的中心)。
- 3. 定义 $PGL_2(\mathbb{C})$: 是商群 $GL_2(\mathbb{C})/Z(GL_2(\mathbb{C}))$ 。它的元素是 $GL_2(\mathbb{C})$ 中矩阵的等价类,其中如果 A=kB 对于某个 $k\neq 0$,则 A 和 B 属于同一个等价类。

定理 1.5

分式线性变换的集合(在复合运算下)与投影线性群 $PGL_2(\mathbb{C})$ 是同构的。

Proof 我们定义一个映射 $\Phi:GL_2(\mathbb{C}) \to {\sf FLT}$,它将矩阵 $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 映射到对应的分式线性变换 $f_A(z)=\frac{az+b}{cz+d}$. 由于 $\det(A)=ad-bc\neq 0$,所以 $f_A(z)$ 是一个有效的 FLT.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

则

$$AB = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$$

。所以

$$\Phi(AB)(z) = \frac{(ae + bg)z + (af + bh)}{(ce + dg)z + (cf + dh)}$$

. 另一方面,

$$\Phi(B)(z) = \frac{ez + f}{qz + h}$$

.

$$\Phi(A)(\Phi(B)(z)) = \frac{a(\frac{ez+f}{gz+h}) + b}{c(\frac{ez+f}{gz+h}) + d} = \frac{a(ez+f) + b(gz+h)}{c(ez+f) + d(gz+h)} = \frac{(ae+bg)z + (af+bh)}{(ce+dg)z + (cf+dh)}$$

由此可见 $\Phi(AB)(z)=\Phi(A)(\Phi(B)(z))$,即 $\Phi(AB)=\Phi(A)\circ\Phi(B)$ 。因此, Φ 是一个群同态。此外,不难验证

$$\operatorname{Ker}(\Phi) = Z(GL_2(\mathbb{C})), \quad \operatorname{Im}(\Phi) = \operatorname{LFT}$$

由群同构定理

$$PGL_2(\mathbb{C}) \cong GL_2(\mathbb{C})/Z(GL_2(\mathbb{C})) \cong \mathsf{FLT}$$

定义 1.4

定义 \mathbb{C}^{∞} 上的广义圆为全体的圆或直线, 以下都简称为圆.

定理 1.6

球面投影将复平面上的圆映射到黎曼球上的圆。反之,黎曼球上的圆在球面投影下映射为复平面上的圆。

 \Diamond

Proof 复平面上的广义圆可以表示为形式:

$$A(x^2 + y^2) + Bx + Cy + D = 0$$

其中

$$A, B, C, D \in \mathbb{R}$$

,且 $A\neq 0$ 表示一个圆,A=0 且 $B^2+C^2\neq 0$ 表示一条直线。现在,我们用球面投影的逆映射来代换 x,y 和 $|z|^2$:

$$x = \operatorname{Re}(z) = \frac{x_1}{1 - x_3}$$

$$y = \operatorname{Im}(z) = \frac{x_2}{1 - x_3}$$

$$|z|^2 = \frac{x_1^2 + x_2^2}{(1 - x_3)^2} = \frac{1 - x_3^2}{(1 - x_3)^2} = \frac{1 + x_3}{1 - x_3}$$

将这些代入广义圆的方程:

$$A\left(\frac{1+x_3}{1-x_3}\right) + B\left(\frac{x_1}{1-x_3}\right) + C\left(\frac{x_2}{1-x_3}\right) + D = 0$$

乘以 $(1-x_3)$ (由于 $x_3 \neq 1$, 即不考虑北极点的情况):

$$A(1+x_3) + Bx_1 + Cx_2 + D(1-x_3) = 0$$

重新整理,得到一个关于 x_1, x_2, x_3 的线性方程:

$$Bx_1 + Cx_2 + (A - D)x_3 + (A + D) = 0$$

这是一个平面方程, 平面与球面相交必然上一个圆.

定义 1.5

分式线性变换把圆变为圆.

4

Proof

1. 整线性变换 w=az+b 把圆周变为圆周: 若记 $a=re^{i\theta}$, 则 $w=re^{i\theta}z+b$. 容易看出, 它可由下列三个简单的变换复合而成:

$$z' = e^{i\theta}z,$$

$$z'' = rz',$$

w = z'' + b.

第一个是旋转变换, 第二个是伸缩变换, 第三个是平移变换. 这里, 每一个变换都把圆周变为圆周, 因此整线性变换把圆周变为圆周.

2. 变为圆周, 因此整线性变换把圆周变为圆周. 对于一般的分式线性变换, 不妨设 $c \neq 0$, 于是

$$w = \frac{az+b}{cz+d} = \frac{a}{c} + \frac{bc-ad}{c(cz+d)}.$$

若记 $\alpha=rac{a}{c}, \beta=rac{bc-ad}{c}$,则上式可写为 $w=\alpha+rac{\beta}{cz+d}$. 它由下列三个变换复合而成:

$$z' = cz + d,$$

$$z'' = \frac{1}{z'},$$

$$w = \alpha + \beta z''.$$

其中,有两个变换是整线性变换,它们都把圆周变为圆周. 如果能证明 $w=\frac{1}{z}$ 也把圆周变为圆周, 就完成了说明. 平面上圆周的方程写作

$$az\bar{z} + \bar{\beta}z + \beta\bar{z} + d = 0, \quad (|z - \beta| = -\frac{d}{a}, \text{ or } \operatorname{Re} (\bar{\beta}z) = \frac{d}{2})$$

令 $w=\frac{1}{z}$, 方程化为

$$\bar{dww} + \bar{\beta}\bar{w} + \beta w + a = 0$$

也是一个圆周

命题 1.1

分式线性变换 T 若不是恒等变换,则最多只有两个不动点.

Proof 设

$$T(z) = \frac{az+b}{cz+d}$$

则 T(z) = z 可以写作一个二次方程

$$cz^2 + (d-a)z - b = 0$$

最多只有两个根, 除非 $T(z) \equiv z$.

定义 1.6 (交比)

设 z_1, z_2, z_3, z_4 是给定的四个点, 至少有三个点不同, 称比值

$$\frac{z_1 - z_3}{z_1 - z_4} / \frac{z_2 - z_3}{z_2 - z_4}$$

为这四个点的交比, 记作 (z_1,z_2,z_3,z_4)

约定:

$$(\infty, z_2, z_3, z_4) = \frac{z_2 - z_4}{z_2 - z_3}, \quad (z_1, \infty, z_3, z_4) = \frac{z_1 - z_3}{z_1 - z_4},$$
$$(z_1, z_2, \infty, z_4) = \frac{z_2 - z_4}{z_1 - z_4}, \quad (z_1, z_2, z_3, \infty) = \frac{z_1 - z_3}{z_2 - z_3}.$$

命题 1.2

定义 $L(z) = (z, z_2, z_3, z_4)$ 则

$$L(z_2) = 1$$
, $L(z_3) = 0$, $L(z_4) = \infty$

定理 1.7

对于 \mathbb{C}_{∞} 上三个不同的点 z_2,z_3,z_4 , 以及 \mathbb{C}_{∞} 上另一组三个不同的点 w_2,w_3,w_4 , 存在唯一的分式线性变换 T, 使得

$$T(z_i) = w_i, \quad i = 2, 3, 4$$

Remark 下面给出一个构造性的证明,可以用于寻找具体的分式线性变换.

Proof $\diamondsuit L(z) = (z, z_2, z_3, z_4)$, N

$$L(z_2) = 1$$
, $L(z_3) = 0$, $L(z_4) = \infty$.

 \S $S(w) = (w, w_2, w_3, w_4)$, N

$$S(w_2) = 1$$
, $S(w_3) = 0$, $S(w_4) = \infty$

令 $M = S^{-1} \circ L$,则

$$M(z_2) = S^{-1}(L(z_2)) = S^{-1}(1) = w_2$$

类似地, $M(z_3) = w_3, M(z_4) = w_4.$

若存在另一个分式线性变换 M_1 满足条件, 则 $M^{-1}\circ M_1$ 有三个不动点, 矛盾.

定理 1.8

交比是分式线性变换下的不变量. 即若 T 是分式线性变换, 则

$$(z_1, z_2, z_3, z_4) = (T(z_1), T(z_2), T(z_3), T(z_4))$$

Remark 对于上一个定理中分式线性变换的构造, 可以通过

$$(w, w_2, w_3, w_4) = (z, z_2, z_3, z_4)$$

将 w 解出.

Proof 不妨设 z_2, z_3, z_4 是三个不同的点,令 $T(z_j) = w_j, j = 2, 3, 4$,则上面定理中的分式线性变换的唯一性表明

$$(z, z_2, z_3, z_4) = (T(z), w_2, w_3, w_4)$$

带入 $z=z_1$ 即可.

命题 1.3

 z_1, z_2, z_3, z_4 四点共圆, 当且仅当

$$Im (z_1, z_2, z_3, z_4) = 0$$

Proof 若该四点共圆,令 $L(z)=(z,z_2,z_3,z_4)$,则 L 把该圆周变味实轴. 从而 $L(z_1)$ 为实数. 反之,若 $\mathrm{Im}\;(z_1,z_2,z_3,z_4)=0$,则交比等于某个实数 t, L^{-1} 把实轴变为 z_2,z_3,z_4 确定的圆 周 γ . $t\in\mathbb{R}$, $z_1=L^{-1}(t)\in\gamma$. 故四点共圆.

定义 1.7

设 \mathbb{C}_{∞} 上的圆周 γ 把平面分成 g_1 和 g_2 两个域, z_1, z_2, z_3 是 γ 上有序的三个点. 如果当我 Π 从 z_1 走到 z_2 再走到 z_3 时, g_1 和 g_2 分别在我们的左边和右边, 就分别称 g_1 和 g_2 为 γ 关于走向 z_1, z_2, z_3 的左边和右边.

命题 1.4

设 z_1, z_2, z_3 是 \mathbb{C}_{∞} 中的圆周 γ 上有序的三个点, 那么 γ 关于走向 z_1, z_2, z_3 右边和左边的点 z 分别满足 $\mathrm{Im}(z, z_1, z_2, z_3) > 0$ 和 $\mathrm{Im}(z, z_1, z_2, z_3) < 0$.

Remark 可以通过观察 $z_1=1, z_2=0, z_3=\infty$, 此时这三个点确定的是从方往左方向的实轴. 交比 $(z,z_1,z_2,z_3)=z$. Im $(z,z_1,z_2,z_3)>0$ 对应于上半平面 Im z>0,是方侧.

Remark 换言之, 交比映射 $L\left(z\right)=\mathrm{Im}\left(z,z_{1},z_{2},z_{3}\right)$ 把这三点确定圆周的左侧区域映成下半平面, 右侧区域映成上半平面

 \Diamond

定理 1.9

设 γ_1 和 γ_2 是 \mathbb{C}_∞ 中的两个圆周, z_1,z_2,z_3 是 γ_1 上有序的三个点. 如果分式线性变换 T 把 γ_1 映为 γ_2 ,那么它一定把 γ_1 关于走向 z_1,z_2,z_3 的右边和左边分别变为 γ_2 关于走向 $T(z_1),T(z_2),T(z_3)$ 的右边和左边.

Example 1.1 月牙区域变带状 求一分式线性变换, 把月牙形域 $D = \{z: |z| > 1, |z-1| < 2\}$ 变为带状域 $G = \{w: 0 < \text{Re}w < 1\}$

Solution 设变换为 T, 则一定有 $T(-1) = \infty$. 再考虑让 T(1) = 0, 则此时 T 形如

$$T(z) = \lambda \frac{w-1}{w+1}$$

再让 T(3) = 1, 取 $\lambda = 2$ 得到

$$T\left(z\right) = 2\frac{z-1}{z+1}$$

此时发现 T(i)=2i, T 将 -1, i, 1 映到 ∞ , 2i, 0, 将圆的外部 (左侧), 映到直线实部大的一侧. 此外, T 将 -1, 1+2i, 3 分别映到 ∞ , 1+i, 1. 将大圆的内部 (右侧) 映到对应直线实部小的一侧 (右侧). 故 T 恰为符合条件的一个.

定义 1.8

 γ 是以 a 为中心、以 R 为半径的圆周, 如果点 z,z^* 在从 a 出发的射线上, 且满足

$$|z - a||z^* - a| = R^2, (1.1)$$

则称 z,z^* 关于 γ 是对称的. 如果 γ 是直线, 则当 γ 是线段 $[z,z^*]$ 的垂直平分线时, 称 z,z^* 关于 γ 是对称的.

命题 1.5

设 γ 是 \mathbb{C}_{∞} 中的圆周, 那么 z,z^* 关于 γ 对称, 当且仅当对 γ 上任意三点 z_1,z_2,z_3 , 有

$$(z^*, z_1, z_2, z_3) = \overline{(z, z_1, z_2, z_3)}$$

定理 1.10

对称点在分式线性变换下不变. 这就是说, 设分式线性变换 T 把圆周变为 Γ , 如果 z,z^* 是 关于 γ 的对称点, 那么 $T(z),T(z^*)$ 是关于 Γ 的对称点.

Example 1.2 设 a 是上半平面中的一点, 则分式线性变换

$$w = e^{i\theta} \frac{z - a}{z + \bar{a}}$$

把上半平面变为单位圆的内部, a 变为圆心

Proof a 映到 0, 对称点 \bar{a} 映到对称点 ∞ , 于是变换形如

$$w = \lambda \frac{z - a}{z - \bar{a}}$$

当 z=0 时, |w|=1, 于是 $\lambda=e^{i\theta}$.

Example 1.3 单叶函数 $w=e^z$ 将带状区域 $0<\operatorname{Im}\,z<\pi$ 映到上半平面.

$$\left\{e^a e^{i\theta}: a \in \mathbb{R}, 0 < \theta < \pi\right\} = \left\{z: \text{Im } z > 0\right\}$$

Example 1.4 单叶函数

$$w = \left(\frac{z+1}{z-1}\right)^2$$

把单位半圆盘 |z| < 1, Im z > 0 保形映射到上半平面.

Proof

$$T_1\left(z\right) = \frac{z+1}{z-1}$$

把 -1 和 1 分别映到 0 和 ∞ . 故它把圆周 |z|=1 和直线 ${\rm Im}\ z=0$ 分别映到两条在原点处垂直相交的直线. 由于 $T_1(i)=-i$,故 T_1 将半圆弧映到下半虚轴. $T_1(0)=-1$ 故 T_1 将半圆的直边映到坐半实轴.

由 T_1 的保定向性,它将半圆盘映到第三象限. 映射 $T_2\left(w\right)=w^2$ 将第三象限映到上半平面,故令

$$T = T_2 \circ T_1 = \left(\frac{z+1}{z-1}\right)^2$$

即为所需单叶函数.

Example 1.5 单叶函数

$$T(z) = \frac{e^z - i}{e^z + i}$$

将带状区域 $0<{
m Im}\;z<\pi$ 保形映射到单位圆盘 |w|<1

定理 1.11

设 $D=\{z\in\mathbb{C}:|z|<1\}$ 是复平面上的开单位圆盘。从 D 到 D 的任意一个全纯自同构 (即双射的全纯函数) $f:D\to D$ 都可以表示为以下形式:

$$f(z) = e^{i\theta} \frac{z - a}{1 - \bar{a}z}$$

其中:

a 是一个复数,且满足 |a|<1 (即 $a\in D$)。 θ 是一个实数 ($e^{i\theta}$ 代表一个旋转因子)。这个函数族构成了单位圆盘的自同构群,记作 Aut(D)。

Remark $f(a) = 0, f'(0) = e^{i\theta}(1 - |a|^2)$

1.3 Riemann 映照

定理 1.12

若 $w=f\left(z\right)$ 在区域 D 内解析, 且 $|f\left(z\right)|$ 在 D 内某一点达到最大值, 则 $f\left(z\right)$ 在 D 内恒为常数.

定理 1.13 (最大模原理)

设 D 是一有界区域, 边界为有限条简单闭曲线 C. 设 f 在 \bar{D} 上连续, D 上解析, 且不恒为常数. 记 $M:=\max_{x\in \bar{D}}|f(z)|$, 则

$$\max_{x\in\bar{D}}\left|f\left(z\right)\right|=\max_{x\in\partial D}\left|f\left(z\right)\right|$$

定理 1.14 (Schwartz 引理)

设 f 是在开圆盘 |z| < 1 内的解析函数, 若 f 满足以下两条:

- 1. f(0) = 0;
- 2. 当 |z| < 1 时, |f(z)| < 1.即 $f(B) \subseteq B$

则以下三条成立

- 1. 当 |z| < 1 时, $|f(z)| \le |z|$
- 2. $|f'(0)| \le 1$
- 3. 若以下两条成立其一
 - (a). 对于任意的 $0 < |z_0| < 1$, 都有 $|f(z_0)| = |z_0|$;
 - (b). |f'(0)| = 1.

即上两条结论中的等号成立一个. 则

$$f(z) = \lambda z, \quad \forall |z| < 1$$

其中 λ 是复常数, 且 $|\lambda|=1$

定理 1.15 (Riemann)

设 G 是 $\mathbb C$ 中的单连通区域, $G \neq \mathbb C$. 对于 G 中任意点 a, 存在唯一的函数 $f: G \to \mathbb C$, 使得

- 1. f 在 G 中单叶全纯;
- 2. f(a) = 0, f'(a) > 0;
- 3. f(G) = B(0,1)

 \Diamond

ldea 意义在于,它表明在相差一个共形映射的意义下,几乎所有(除 C)单连通开区域都是"等价"的. 并且两区域的对应在一个标准化后 (平移和旋转) 是唯一的.

Proof 唯一性部分:

若存在两个这样的函数 f_1,f_2 . 令 $g=f_2\circ f_1^{-1}$. g 是 $B\left(0,1\right)$ 的全纯自同构.

 $g\left(0\right)=f_{2}\left(a\right)=0$. 故 g 符合 Schwartz 引理的条件. 从而

$$1 \ge \left| g'(0) \right| = \left| f_2'(f^{-1}(0))(f^{-1})'(0) \right| = \frac{\left| f_2'(a) \right|}{\left| f_1'(a) \right|}$$

这表明

$$\left| f_2'\left(a\right) \right| \le \left| f_1'\left(a\right) \right|$$

令 $h=f_1\circ f_2^{-1}$, 可以类似地得到

$$\left| f_1'\left(a\right) \right| \le \left| f_2'\left(a\right) \right|$$

因此

$$\left|f_2'\left(a\right)\right| = \left|f_1'\left(a\right)\right|$$

进而

$$\left|g'\left(0\right)\right| = 1$$

再由 Schwartz 引理, 存在 $\lambda \in \mathbb{C}, |\lambda| = 1$, 使得

$$g(z) = \lambda z$$

由于

$$g'(0) = \frac{f_2'(0)}{f_1'(0)} > 0$$

$$\lambda = g'(0) > 0, \implies \lambda = 1$$

于是

$$f_2\left(f_1^{-1}\left(z\right)\right) = z$$

得到 $f_1(z) = f_2(z)$.