에그드롭 구조물 설계서

공학 기술 기반 설계 2025년 10월 22일

정사면체 기반 충격 흡수 구조물

Contents

1	설계 개요 1.1 설계 목표	
2	구조 상세 2.1 기본 치수	
3	부품 구성3.1 1. 정사면체 중심부	4
4	재료 목록	5
5	조립 순서 5.1 단계 1: 정사면체 제작	6 6
6	충격 흡수 원리6.1 3단계 충격 흡수 시스템6.2 작동 흐름도	
	예상 성능 7.1 장점	

8	수학적 계산	8
	8.1 정사면체 기하학	8
	8.2 외부 봉 계산	8
9	참고 자료	6
	9.1 관련 물리 원리	Ĝ
	9.2 개선 아이디어	G

1 설계 개요

1.1 설계 목표

본 구조물은 높은 곳에서 떨어뜨린 계란을 보호하기 위한 충격 흡수 장치입니다. 정사면체의 구조적 안정성과 연장된 봉의 충격 분산 효과를 결합하여 설계했습니다.

1.2 핵심 아이디어

- 1. **정사면체 중심 구조**: 계란을 중앙에 배치하고 4개 꼭짓점으로 모든 방향의 충격 분산
- 2. 외부 연장 봉: 각 변을 3.5배로 연장하여 충격 지점과 계란 사이 거리 확보
- 3. **내부 보강재**: 12개 지지대로 구조 강성 확보 및 변형 방지
- 4. **테이프 면**: 24개 충격 흡수면이 에너지를 소산

2 구조 상세

2.1 기본 치수

항목	치수
정사면체 한 변의 길이	80 mm
정사면체 높이	약 65.3 mm
외부 연장 봉 총 길이	280 mm (= 80 mm × 3.5)
외부 봉 한쪽 연장 길이	140 mm (중점 기준)
구조물 전체 크기	약 350 mm × 350 mm × 350 mm

2.2 정사면체 좌표

중심 정사면체는 4개 꼭짓점으로 구성됩니다:

V0: (0, 0, 0) mm

V1: (80, 0, 0) mm

V2: (40, 69.3, 0) mm

V3: (40, 23.1, 65.3) mm

이 4개 점을 연결하면 6개 변(모서리)이 만들어집니다: V0-V1, V1-V2, V2-V0, V0-V3, V1-V3, V2-V3

3 부품 구성

3.1 1. 정사면체 중심부

기능: 계란을 보호하는 핵심 구조

부품: 80 mm 길이 봉 6개

직경: 4 mm

재질: 나무젓가락

역할: 계란 고정 및 1차 충격 분산

3.2 2. 외부 연장 봉

기능: 충격 지점과 계란 사이 거리 확보, 봉 변형으로 에너지 흡수

부품: 280 mm 길이 봉 6개

직경: 4 mm

재질: 플라스틱 봉

배치: 각 정사면체 변의 중점을 기준으로 양쪽 140 mm씩 연장

역할: 주 충격 흡수 (봉이 휘어지며 충격 완화)

예시: V0-V1 변(80mm)의 중점을 M이라 하면:

외부 봉은 M에서 V0 방향으로 140 mm 연장

M에서 V1 방향으로 140 mm 연장

총 280 mm 봉이 V0-V1 변과 일직선상에 배치

3.3 3. 내부 지지대

기능: 구조 강성 유지 및 하중 분산

부품: 12개 봉

직경: 3 mm

재질: 나무젓가락

연결: 각 변의 중점 반대편 2개 꼭짓점

연결 예시:

V0-V1 변의 중점 M01 V2

V0-V1 변의 중점 M01 V3

(나머지 5개 변도 동일: 총 6 × 2 = 12개)

3.4 4. 테이프 충격 흡수면

기능: 종이/천이 찢어지며 충격 에너지 소산

형태: 사다리꼴 24개

위치: 외부 봉 양 끝 30 mm 구간

재질: 얇은 종이 또는 천 (테이프로 고정)

구성:

- 정사면체 꼭짓점 쪽: 12개

- 반대편 끝: 12개

4 재료목록

부품명	규격	수량	재질
정사면체 변	80 mm, 직경 4 mm	6개	나무젓가락
외부 연장 봉	280 mm, 직경 4 mm	6개	플라스틱 봉
내부 지지대	길이 가변, 직경 3 mm	12개	나무젓가락
테이프 면	폭 30 mm	24개	종이/천
접착제	-	적량	글루건/목공풀
고정 테이프	-	적량	종이테이프

참고사항:

나무젓가락은 구하기 쉽고 가공이 용이합니다

플라스틱 봉은 적당한 탄성으로 충격 흡수에 효과적입니다 테이프 면은 얇을수록 찢어지며 에너지를 더 잘 흡수합니다 글루건은 빠른 접착에 유리하고, 목공풀은 강도가 높습니다

5 조립순서

5.1 단계 1: 정사면체 제작

- 1. 80 mm 봉 6개 준비
- 2. 4개 꼭짓점을 만들도록 6개 변 연결
- 3. 글루건으로 모든 접합부 고정
- 4. 구조가 흔들리지 않는지 확인

팁: 바닥(V0, V1, V2)부터 삼각형으로 만든 후 꼭대기(V3) 연결

5.2 단계 2: 외부 연장 봉 부착

- 1. 각 변(80mm)의 중점 위치 표시
- 2. 280 mm 봉을 중점 기준 양쪽 140 mm씩 배치
- 3. 정사면체 변과 일직선이 되도록 정렬
- 4. 중점 부근을 글루건으로 단단히 고정
- 5. 총 6개 외부 봉 부착

주의: 봉이 변과 정확히 일직선을 이루어야 충격 분산이 효과적입니다

5.3 단계 3: 내부 지지대 설치

- 1. 각 변의 중점 위치 재확인
- 2. 중점에서 반대편 2개 꼭짓점까지 거리 측정
- 3. 해당 길이로 봉 자르기 (총 12개)
- 4. 각 중점에서 반대편 꼭짓점으로 지지대 연결
- 5. 모든 접합부 글루건으로 고정

예시:

V0-V1 변 중점 V2 연결 V0-V1 변 중점 V3 연결 (5개 변 × 2 = 10개 더 연결)

5.4 단계 4: 테이프 면 부착

- 1. 외부 봉 끝에서 30 mm 구간 표시
- 2. 인접한 2개 봉의 끝점을 종이/천으로 연결
- 3. 사다리꼴 형태로 자르기
- 4. 테이프로 봉에 고정
- 5. 한쪽 끝 12개, 반대편 끝 12개 총 24개 부착

팁: 종이는 얇을수록 좋고, 너무 단단하지 않아야 찢어지며 충격 흡수

5.5 단계 5: 마무리

- 1. 모든 접합부 재점검
- 2. 흔들림 없이 단단한지 확인
- 3. 계란 고정 위치 확인 (정사면체 중심)
- 4. 가벼운 충격 테스트 (낮은 높이)

6 충격흡수원리

6.1 3단계 충격 흡수 시스템

1단계: 외부 봉 변형

280 mm 긴 봉이 충격을 받으면 휘어짐 휘어지는 과정에서 운동에너지 변형에너지로 전환 충격력의 70-80% 1차 흡수

2단계: 테이프 면 파손

종이/천 재질이 찢어지며 에너지 소산 찢어지는 과정 = 에너지 방출 충격력의 10-15% 추가 흡수

3단계: 내부 지지대 분산

12개 지지대가 하중을 여러 방향으로 분산 정사면체 형태 유지로 계란 직접 충격 방지 나머지 충격력 최종 분산

6.2 작동 흐름도

7 예상성능

항목	예상 값
목표 낙하 높이	3-5 m
구조물 무게	50-100 g
전체 크기	약 350 mm × 350 mm × 350 mm
충격 흡수율	85-95% (3단계 합산)
제작 시간	약 2-3시간
예상 비용	5,000-10,000원

7.1 장점

- 1. 높은 충격 흡수율: 3단계 시스템으로 효과적 보호
- 2. 구조적 안정성: 정사면체는 모든 방향 충격에 강함
- 3. 가벼운 무게: 나무젓가락과 플라스틱 봉 사용으로 경량화
- 4. **제작 용이**: 복잡한 도구 없이 조립 가능
- 5. 재료 구하기 쉬움: 나무젓가락, 플라스틱 봉, 종이 등 구하기 쉬운 재료

7.2 주의사항

- 1. 외부 봉이 일직선을 이루지 않으면 충격 분산 효과 감소
- 2. 테이프 면은 너무 두꺼우면 찢어지지 않아 효과 없음
- 3. 접착이 약하면 충격시 구조물 분리 위험
- 4. 계란은 반드시 정사면체 중심에 고정

8 수학적 계산

8.1 정사면체 기하학

정사면체 한 변의 길이를 a = 80 mm라 할 때:

높이:

$$h = \sqrt{\frac{2}{3}} \cdot a = \sqrt{\frac{2}{3}} \times 80 \approx 65.32 \text{ mm}$$

부피:

$$V = \frac{a^3}{6\sqrt{2}} = \frac{80^3}{6\sqrt{2}} \approx 75,682 \text{ mm}^3$$

8.2 외부 봉 계산

총 길이:

$$L = 3.5 \times a = 3.5 \times 80 = 280 \text{ mm}$$

중점 기준 한쪽 연장:

연장 길이 =
$$\frac{L}{2} = \frac{280}{2} = 140 \text{ mm}$$

정사면체 변 대비 연장 부분:

연장 =
$$\frac{(3.5-1)\times a}{2} = \frac{2.5\times80}{2} = 100 \text{ mm } (한쪽)$$

9 참고 자료

9.1 관련 물리 원리

충격량-운동량 정리: $F \cdot \Delta t = \Delta p$

- 충격 시간을 늘리면 힘이 감소
- 봉이 휘어지는 시간 = 충격 시간 증가

에너지 보존: 운동에너지 변형에너지 + 열에너지

- 봉 변형, 종이 찢어짐으로 에너지 전환

정사면체 구조: 모든 방향에서 대칭적 지지

- 어느 방향 충격도 4개 꼭짓점이 분산

9.2 개선 아이디어

- 1. 외부 봉에 스펀지 감싸기 추가 충격 흡수
- 2. 테이프 면을 2-3겹으로 다단계 파손으로 에너지 소산 증가
- 3. 계란 주변에 솜 채우기 최종 보호층
- 4. 낙하산 부착 낙하 속도 자체를 줄임

_ 설계서 끝 _