# Tutorial 4: Summary of Proof Methods

MATH 1200A02: Problems, Conjectures, and Proofs

Joe Tran (jtran0@yorku.ca)

York University

October 3, 2023

### Summary of Proof Methods

To prove an assertion with propositions P and Q that translates to  $P \to Q$ . We can either proceed by directly proving the assertion or by taking an indirect approach, including contradiction or contrapositive.

#### Direct Proof

Assume P holds true, then proceed to show Q holds true. It is because for the conditional  $\rightarrow$ , with P true, only the truth value true for Q makes the conditional valid.

#### Proof by Contraposition

As the word contraposition conveys "taking a contrary position", we assume the "contrary of Q" to be true, i.e. assume  $\neg Q$  true, and proceed to show that the "contrary of P", i.e.  $\neg P$  is true, we show

$$\neg Q \rightarrow \neg P$$



### Summary of Proof Methods

#### Proof by Contradiction

We aim to get a contradiction of the original assumption, by assuming the hypothesis and the contrary of the conclusion. So we assume  $P \land \neg Q$  to be true, i.e. P and the contrary of Q to be true. We proceed to find that  $\neg P$  to be true, that is,

$$(P \land \neg Q) \to \neg P$$

| Р | Q | $\neg P$ | $\neg Q$ | $P \wedge \neg Q$ | $\neg Q \rightarrow \neg P$ | $(P \wedge \neg Q) \rightarrow \neg P$ | P 	o Q |
|---|---|----------|----------|-------------------|-----------------------------|----------------------------------------|--------|
| Т | Т | F        | F        | F                 | Т                           | Т                                      | Т      |
| T | F | F        | Т        | Т                 | F                           | F                                      | F      |
| F | Т | Т        | F        | F                 | Т                           | Т                                      | Т      |
| F | F | Т        | Т        | F                 | Т                           | T                                      | Т      |

The last three columns are identical in truth values, hence their logical equivalences:

$$P \rightarrow Q \equiv \neg Q \rightarrow \neg P \equiv (P \land \neg Q) \rightarrow \neg P$$

## Tutorial Groups For Today

#### Group A

Lizhi, Ananya, David, Nicholas, Christian, Zakariya

#### Group B

Alysa, Sarah, Tong, Giuseppina, Caitlyn, Oliver

#### Group C

Taya, Stefania, Tyandy, Emily, Huiru

#### Tutorial Problems

#### Exercise 1 (Group A)

Prove the following

- **1** Show that for each integer a, if  $a \not\equiv 0 \pmod{3}$ , then  $a^2 \equiv 1 \pmod{3}$ .
- ② Using (1) show that for each natural number n,  $\sqrt{3n+2}$  is not a natural number.

### Exercise 2 (Group B)

Prove that the product of three consecutive integers is divisible by 3.

### Exercise 3 (Group C)

Prove that the difference of a rational number and an irrational number is irrational.