C-through

혁주팀

Jeong HJ / Min SK / Jeong YJ Cho GH / Ju GY / Song YJ

Motivation & Problem Definition

Existing Method vs Our Method

Ultrasonic Testing

2 Advantages

Our Own Data Generation

- -Box = room
- Phone = Acoustic sensor
- Use Different Objects
 → Train / Test data
- Pendulum-like structure→ constant impact

Our Own Data Generation

label	object location	0/1/2 : empty/near/far	
experimental variable	impact height	0/1: higher/lower	
# of experiments		100 times per same condition	
data augmentation	add random noise	x 2	
total # of dataset		3x2x100x2 = 1200	

Our Own Dataset

Train Set

- 1200 m4a file
- Sound Feature(csv)
- information(label, impact)

Test Set

- 384 m4a file
- Sound Feature(csv)
- information(label, impact)

Feature Extraction

Feature Extraction 1: Top 20 Peaks

Top 20 peak = (f1, m1), ..., (f20, m20) Feature = [f1, m1, f2, m2, ... f20, m20]

Feature Extraction 1: Top 20 Peak Result

Feature Extraction 2: Clipping result

0~1000 Hz = (1Hz, m1), (2Hz, m2),..., (1000Hz, m20) Feature =[m1, m2, m3, ..., m1000]

Feature Extraction 2: Clip 0~1000 Hz

Classification

Classification methods (and principles)

- 1) kNN w/o Training (Like our Time Attack)
- 2) SVM Nonlinear, High Dimension
- 3) RandomForest Ensemble(bagging)
- 4) Naïve Bayes i.i.d independency assuption
- 5) XGboost Ensemble(boosting)

Test Result & Evaluation

<cli>pping result >

Hyper Parameter Tuning

Hyper Parameter Tuning

Discussion

Best Accuracy with

Clipping feature extraction SVM w/ C=0.4, kernel trick

Why??

- 1. SVM is strong to nonlinear data
- 2. Clipping method can preserve more information(1000-dim) than peak method(40-dim)

Future Work & Expectation

Role Distribution

Name	Data generation	Pre-processing (file conversion, fft, augmentation)	Feature extraction	Classification
Jeong HJ *Presenter				
Min SK				
Jeong YJ				
Cho GH				
Ju GY				
Song YJ				

Thank You