VASIL'KOV, I.

Coal Trade - Europe

Inter-European coal trade. Vnesh.torg. no. 4, 1952.

Monthly List of Russian Accessions, Library of Congress, June 1952. Unclassified.

VASILAL, I.

CZECHOSLOVAKIA/Cosmochemistry. Geochemistry. Hydrochemistry.

D

Abs Jour : Ref Zhur - Khimiya, No. 8, 1957, 26606 K.

Author Vasilkov, I., Cejtlin, M. Inst

Title Sunstone.

: Z. rus. Praha, Mlda fronta, 1954, 198 /6/ str., il., 25, 15 kčs. Orig Pub

Abstract : No abstract.

Card 1/1

VASIL'KOV, Igor' Afenas'vevich: TSEYTLIN, Mark Zakherovich; ABRAMOV, V.I., red.izd-va; KANASKOVA, I.R., tekhn.red.

[Biography of a machine; stories of Soviet coal cutter loaders]
Biografiia odnoi mashiny; rasskazy o sovetskikh ugol'nykh
kombainakh. Moskva, Ugletekhizdat, 1955. 97 p. (MIRA 11:6)
(Goal mining machinery)

Vasil'kov, Igori			N/5 785.2 .v3	
Ischeznuvshiy ostrov Gvardiya", 1955. 160 p. illus., map.	(Vanishing island)	Koskva, Izd-vo	[#] Molodaya	
				as to the second
		<i>I</i> •		

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

VASIL'KOV, Igor'

Treasures of the Cambrian. Vokrug sveta no.9:2-6 S'55. (MLEA 8:12)

(Petroleum geology)

VASIL'KOV. I.; ARMENGOL, L.; KUMKES, S.; KOLOSOVA, Yu.; TIKHOMIROV, V.P., otvetstvennyy red.; CHIZHOV, N.M., red.; VILMNSKAYA, E.M., tekhn. red.

[Cuba, Haiti, Dominican Republic, Puerto Rico, Jamaica] Kuba, Gaiti, Dominikanskaia respublika, Puerto-Riko, Iamaika. Moskva, Gos. isd-vo geogr. lit-ry, 1958. 23 p. (West Indies)

VASIL'KOV, I.A.; TSEYTLIN, M.Z.; TERPIGOREV, A.M., akademik, redaktor.

[Stored solar energy] Kladovye solntsa. Pod red. A.M.Terpigoreva. Moskva, Gos.izd-vo tekhniko-teoret.lit-ry, 1952. 63 p. (MIRA 6:7) (Coal)

VASIL'KOV, Ivan Semenovich; GORTINSKIY, S.M., red.; IOLITSYN, I.L., red.;

MEDVEDEV. I.Ye., tekhn.red.

[Development of electric power engineering in the U.S.S.R. during the last 40 years] Rasvitie elektroenergetiki SSSR za 40 let.

Moskve, Gos. energ. izd-vo. 1957. 79 p. (MIRA 11:3)

(Blectrification)

VASIL'KOY, Igor' Afanas'yevich; BAVINA, V.V., red.; NAZAROVA, A.S., tekhn. red.

[Logic and poetry; science and the art of motion pictures]
Logika i poeziia; nauka i kinoiskusstvo. Moskva, Izd-vo
"Znanie," 1962. 62 p. (Novoe v zhizni, nauke, tekhnike.
IV Seriia: Literatura i iskusstvo, no.19-20) (MIRA 15:10)
(Motion pictures in science)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

VASIL'KOV, Igor' Afanas'yevich; KOMOL'KOVA, T.Ye., red.; GORINA, V.A., tekhn. red.

[With a motion-picture camera in the world of insects; scenario]
S kinoapparatom v mire nasekomykh; stsenarii. Moskva, Iskusstvo,
1962. 133 p.
(Motion pictures in science) (Insects)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

USSR/Farm Animals. Herses.

Q

Abs Jour: Ref Zhur-Biol., No 20, 1956, 92560.

Author : Vasil'kov, M.

Inst

Title : Problems of Feeding Young Work Horses.

Orig Pub: Konevodstvo, 1957, No 11, 33-37.

Abstract: The degree of utilization of nutrient substances

and their activity and need was established for working horses 3-4 years old in combination with winter and summer types of feed. Certain diets

are recommended.

Card : 1/1

VASIL'KOV, M. S., Cand Agr Sci — (diss) "Utilization of nutritive Autituces of rations by young work horses in winter and summer types of feeding."

Mos, 1958. 16 pp (Min of Agriculture USSR, Mos Vet Acad), 140 copies

(KL, 15-58, 117)

-58-

VASIL'KOV, Nikolay Pavlovich; DOBRIN, K.S., red.; BELYAYEV, N.A., tekhn.red.

[Monopolistic capital in Italy; after the Second World War] Monopolistic capital Italii; posle Vtorci Mirovoi voiny. Moskva. polisticheskii kapital Italii; posle Vtorci Mirovoi voiny. Moskva. Izd-vo In-ta mezhdunarodnykh otnoshenii. 1959. 185 p. (MIRA 12:5) (Italy--Economic conditions)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

ZHAMIN, V.A., prof.; GLUKHAREV, L.I., kand. ekonom. nauk; PUCHKOV, A.N., dotsent, kand. ekonom. nauk; FAMINSKIY, I.P.; KURAKIN, N.A., kand. ekonom. nauk; IVANOV, N.N., kand. ekonom. nauk; SKIRNOV, G.V., dotsent, kand. ekonom. nauk; VASIL'KOV, N.P., kand. ekonom. nauk; VASIL'KOV, N.P., kand. ekonom. nauk; LUK'YANOVA, M.I., prof., doktor ekonom. nauk; OZIRA, V.Yu., red.; LAZAREVA, L.V., tekhn. red.

[Characteristics of developing industrial production in capitalist countries] Osobennosti razvitiia promyshlennogo proizvodstva v kapitalisticheskikh stranakh. Pod red. V.A.Zhamina. Moskva, Izd-vo Mosk. univ., 1961. 239 p. (MIRA 15:2)

1. Moscow. Universitet. Ekonomicheskiy fakulitet. Kafedra ekonomiki zarubezhnykh stran.

(Industry)

GLUSHKOV, V.P., kand. ekon. nauk; POKROVSKIY, A.I., kand. ekon. nauk; VEBER, A.B., kand. istor. nauk; VASIL'KOV, N.P., kand. ekon. nauk; ARDAYEV, G.B., kand. ekon. nauk; TIMASHKOVA, O.K., kand. ekon. nauk; KHMEL!—
NITSKAYA, Ye.L., doktor ekon. nauk, otv. red.; PANTELEYEV, V.I., red.
izd-va; RYLINA, Yu.V., tekhn. red.

[Government ownership in Western Europe] Gosudarstvennaia sobstvennost' v stranakh Zapadnoi Evropy. Moskva, Izd-vo Akad. nauk SSSR, 1961. 463 p. (MIRA 14:11)

1. Akademiya nauk SSSR Institut mirovoy ekonomiki i mezhdunarodnykh otnosheniy. 2. Sektor stran Zapadnoy Yevropy Instituta mirovoy ekonomiki i mezhdunarodnykh otnosheniy AN SSSR (for all except Panteleyev, Rylina).

(Europe, Western-Government ownership)

KHMEL'NITSKAYA, Ye.L., doktor ekon. nauk, prof.; LEMIN, I, M., doktor ist. nauk; MAKSIMOVA, M.M., kand. ekon. nauk; GONCHAROV, A.N., kand. ekon. nauk; YASIL'KOV, N.P., kand. ekon. nauk; VAL'KOV, V.V., kand. ekon. nauk; KOLLONTAY, V.M., kand. ekon. nauk; ETINGER, Ya.Ya., kand. ekon. nauk; DALIN, S.A., kand. ekon. nauk; PUSHKIN, A.A., mlad. nauchnyy sotr.; MOROZOV, V., red.; MOSKVINA, R., tekhn. red.

[Economic problems of the "Common Market."] Ekonomicheskie problemy "Obshchego rynka." Moskva, Sotsekgiz, 1962. 510 p.
(MIRA 16:3)

1. Akademiya nauk SSSR. Institut mirovoy ekonomiki i mezhdunarodnykh otnosheniy. 2. Institut mirovoy ekonomiki i mezhdunarodnykh otnosheniy Akademii nauk SSSR (for all except Morozov, Moskvina).

(European Economic Community)

BESSONOV, S.A.; VASIL'KOV, N.P., kand. ekon. nauk; VLASOV, V.A., kand. ekon. nauk; GLUKHAREV, L.I., kand. ekon. nauk; DANILEVICH, M.V., doktor ekon. nauk; ZHAMIN, V.A., doktor ekon. nauk, prof.; ZAKHMATOV, M.I., kand. ekon. nauk; KURAKIN, N.A., kand. ekon. nauk; PANOV. V.P.; SMIRNOV, G.V., kand. ekon. nauk, dots.; TRIFONOV, V.I., kand. ekon. nauk; TYAGAY, Ye. Ya.; FAMINSKIY, I.P.; KHODOV, L.G.; SHMIDT, G.A., kand. ekon. nauk, dots.; SHMIGOL', N.N., kand. ekon. nauk, dots.; MATSUK, R.V., red.; GARINA, T.D., tekhn. red.

[The economy of foreign countries; the capitalistic system of the world economy after the Second World War]Ekonomika zarubezhnykh stran; kapitalisticheskaia sistema mirovogo khoziaistva posle Vtoroi Mirovoi voiny. Ped red. V.A.Zhamina. Moskva, Vysshaia shkola, 1962. 632 p. (MIRA 16:1) (Economic history)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

KHMEL'NITSKAYA, Ye.L., prof., doktor ekon. nauk; VOLKOV, M.Ya., kand. ekon. nauk; BEL'CHUK, A.I., kand. ekon. nauk; IORDANSKAYA, E.N., ml. nauchn. sotr.; MENZHINSKIY, Ye.A.; PAVLOVA, M.A., kand. ekon. nauk; VASIL'KOV, N.P., kand. ekon. nauk; ARDAYEV, G.B., kand. ekon. nauk; VAL'KOV, V.A., kand. ekon. nauk; TIMASHKOVA, O.K., kand. ekon. nauk; ANDREYEV, Yu.K., ml. nauchn. sotr.; PUSHKIN, A.A., ml. nauchn. sotr.; MAKSIMOVA, M.M., kand. ekon. nauk; KIRSANOV, A.V., kand. ekon. nauk; SHEBANOV, A.N., ml. nauchn. sotr.

[Changes in the economic structure of the countries of Western Europe] Izmenemida v ekonomicheskoi strukture stran Zapadnoi Evropy. Moskva, Nauka, 1965. 433 p. (MIRA 18:9)

1. Akademiya nauk SSSR. Institut mirovoy ekonomiki i mezhdu-narodnykh otnosheniy.

VASIL'KOV, P.V., master mekhanicheskikh masterskikh

Improve the quality of track maintenance equipment. Put'i
put.khoz. 6 no.12:20-21 '62.

(Hydraulic jacks)

(Hydraulic jacks)

21(7)

AUTHORS: Vasilikov, R. C., Govorkov, B. B., SOV/56-37-1-2/64

Gol'danskiy, V. I.

TITLE: The Photoproduction of Neutral x-Mesons on Hydrogen at Energies

of γ-Quanta From Threshold to 240 Mev (Fotorozhdeniye neytral'-nykh π-mezonov na vodorode pri energiyakh γ-kvantov ot poroga

do 240 MeV)

PERIODICAL: Zhurnal eksperimental'noy i teoreticheskoy fiziki, 1959,

Vol 37, Nr 1, pp 11-22 (USSR)

ABSTRACT: The authors describe investigations of the angular distribu-

tion and the energy dependence of the reaction (1):

 γ + p \rightarrow π^{o} + p for E $_{\gamma}$ between the threshold of the photoproduction (145 Mev) of the neutral pions and 240 Mev; the

production (145 Mev) of the neutral pions and 240 Mev; the angular distribution at energies near threshold (asymmetric because of interference between S- and P-wave) is described

by the formula do/de= A + Bcosθ + Ccos²θ; the coefficients A, B, and C correspond to the contributions of the Ei-, M1-, and E2-absorption of γ-quanta. The energy dependence of A, B, and C near the threshold of pion-photoproduction is investigated. Experiments were carried out on the synchrotron of the

Card 1/4

The Photoproduction of Neutral m-Mesons on Hydrogen

SOV/56-37-1-2/64

at Energies of y-Quanta From Threshold to 240 Mey FIAN (265 Mev); Figure 1 gives a schematical representation of the experimental arrangement. The first of the five discussed possibilities of observing pion-photoproduction (i.e. recording of the single y-quanta of mo-decay) is selected. Recording is carried out by means of two telescopes (90 and 135° or 45 and 90°) consisting of 4 scintillation counters. Measurements were carried out for seven values of the maximum energy of bremsstrahlung in the channels: 130, 150, 170, 190, 210, 230, and 250 Mev. The examination results are shown by diagrams and tables. Figure 2 shows the energy dependence of the γ -quanta originating from π^0 -decay for the angles 45, 90, and 1350 in the laboratory system (exponential increase of the y-yield with increasing energy); figure 3 shows the dependence of the coefficients a, b, c, of formula (3) $N(\theta_{\gamma}) = a(\theta_{\gamma})A + b(\theta_{\gamma})B + c(\theta_{\gamma})C$ upon E_{γ} , and in table 1 the values of A, B, C, and σ_{tot} are given for E_{γ} = 160, 180, 200, 220, and 240 Mev. Thus the following was measured for 240 Mev: $A = 8.4\pm0.2$, $B = 0.9\pm0.2$, $C = 6.0\pm0.6$ $(10^{-30} \text{cm}^2/\text{steradian})$ and $\sigma_{\text{tot}} = (8.1\pm0.3).10^{-29} \text{cm}^2$.

Card 2/4

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2" The Photoproduction of Neutral π -Mesons on Hydrogen at Energies of γ -Quanta From Threshold to 240 MeV

Figure 4 shows A, B, and C as functions of E $_{\gamma}$. For higher energies (of up to 450 Mev) the data were obtained from the papers of references 3 and 4. A has a maximum at about 320 Mev, C is entirely in the negative and has a minimum at the same place; B, at about 260 Mev, goes over from the negative to the positive. Figure 5 shows the energy dependence of the total cross sections of the xo-mesons on protons (part of the data was obtained from references 2 and 4); the curve has a maximum at about 325 Mev; figure 6 shows the shape of the angular distribution of pions for Ey between 160 and 450 Mev. In conclusion, the results obtained are discussed (comparison of the data relating to π^+ - and π^0 -photoproduction near threshold, phenomenological analysis - table 2 -, ratio B/A - figure 7, ratio C/A - figure 8; comparison of the results with those obtained by other authors); in an appendix the authors describe a kinematic treatment of the method of recording (1) according to the results obtained by investigating the individual decay proton. The authors finally thank V. V. Pavlovskaya, O. A. Karpukhin, A. V. Kutsenko, and I. A. Yerofeyev for

Card 3/4

The Photoproduction of Neutral π -Mesons on Hydrogen at Energies of γ -Quanta From Threshold to 240 MeV

their assistance in carrying out experiments as well as for their advice and discussions. There are 9 figures, 2 tables, and 22 references, 4 of which are Soviet.

ASSOCIATION:

Fizicheskiy institut im. P. N. Lebedeva Akademii nauk SSSR (Physics Institute imeni P. N. Lebedev of the Academy of Sciences, USSR)

SUBMITTED:

January 23, 1959

Card 4/4

121 (7)

AUTHORS: Vasil'kov. R.

Vasil'kov, R. G. Govorkov, B. B.

是一个人,我们也是一个人的人,我们也是一个人的人,我们也是一个人的人,我们也不是一个人的人的人,我们也没有一个人的人的人,我们也没有一个人的人的人,我们也没有一

SOV/56-37-1-57/64

TITLE:

Total Photoproduction Cross Section of mo-Mesons on Protons

at Low Energies (Polnoye secheniye fotorozhdeniya xomezonov

na protonakh pri nizkikh energiyakh)

PERIODICAL:

Zhurnal eksperimental'noy i teoreticheskoy fiziki, 1959, Vol 37,

Nr 1, pp 317 - 318 (USSR)

ABSTRACT:

In continuation of two earlier papers, the total photoproduction cross section of neutral pions of the threshold energy of primary f-quanta up to 245 Mev were measured; the experiments took place at the synchrotron (265 Mev) of the FIAN USSR; liquid hydrogen served as a target. The method was described by reference 1. The authors used a telescope, which is arranged at an angle of 90° to the primary photon beam; it simultaneously measured the yield curve of the decay quanta of the threshold energy up to 250 Mev (above 10 Mev). The widening of the maximum energy of the spectrum of bremsstrahlung was + 1 Mev; measurement of the yield curve was carried out with a statistical error of 2-3%, the background is given as 8-10%. The dependence of the production cross section of the decay quanta on photon energy and on the yield curve was measured by means of the meth-

Card 1/2

Total Photoproduction Cross Section of x0-Mesons on S07/56-37-1-57/64 Protons at Low Energies

od of the "difference of photons" (Ref 3). The experimental σ_{ξ} -values obtained by the authors are compared with those obtained theoretically by Chew et al. (Ref 4) (drawn-out curve); agreement is very good. The slight deviations within threshold range (up to 180 Mev) are indicative of a contribution made by E1-transitions to σ_{ξ} . The course taken by the curve $\sigma_{\xi}(h\nu)$ ob-

tained by the authors also agrees well with that obtained in reference 3, with the exception that the latter is lower by about 30%. The authors finally thank I. A. Yerofeyev for his assistance in carrying out measurements and dealing with experimental data, and they also thank V. I. Gol'danskiy and A. M. Baldin for their valuable advice. There are 1 figure and 5 references, 2 of which are Soviet.

ASSOCIATION:

Fizicheskiy institut im. P. N. Lebedeva Akademii nauk SSSR (Physics Institute imeni P. N. Lebedev of the Academy of

Sciences, USSR)

SUBMITTED:

April 17, 1959

Card 2/2

VASIL'KOV, R.G.; GOVORKOV, B.B.; GOL'DANSKIY, V.I.

Photogenesis of # _mesons on carbon near the threshold. Zhur. eksp.i terof.fiz. 37 no.4:1149-1151 0 159.

(MIRA 13:5)

1. Fizicheskiy institut im. P.H.Lebedeva Akademii nauk SSSR. (Mesons) (Carbon)

82871

S/120/60/000/02/005/052 E032/E414

21,2300

Vasil'kov, R.G., Govorkov, B.B. and Kutsenko, A.V.

AUTHORS: Vasil'kov, R.G., Govorkov, B.B. and Recommons.

TITLE: A Method for Studying the Energy Dependence of

Photonuclear Reaction Cross-Sections on a Synchrotron

PERIODICAL: Pribory i tekhnika eksperimenta, 1960, Nr 2,

pp 23-26 (USSR)

ABSTRACT: In synchrotron experiments in which various counters or pulse ionization chambers are employed, it is necessary, in order to prevent over-loading, that the accelerator

should work under the so-called "stretched" conditions under which the radiation pulse is lengthened ("stretched")

to a few microseconds. Under these conditions, the gamma-ray spectrum differs appreciably from the Schiff spectrum and turns out to be altogether indeterminate, since the intensity distribution depends on the degree of "stretching". This leads to serious difficulties in studies of the energy dependence of photonuclear reaction

cross-sections. The problem can be tackled in two ways. The first of these is based on varying the instant of time at which the accelerating voltage is cut off, and is

Card 1/7 subject to all the difficulties mentioned above. The

82874

S/120/60/000/02/005/052 E032/E414

A Method for Studying the Energy Dependence of Photonuclear Reaction Cross-Sections on a Synchrotron

second approach is based on the use of "stretching" during that part of the acceleration cycle when the magnetic field is almost constant. It is then necessary to vary the magnitude of the maximum magnetic field. The common disadvantage of these methods is that they involve an alteration in the accelerator working conditions during the actual measurements. Moreover, the energy dependence of the cross-sections is deduced from a large number of different experiments carried out under different conditions, and this complicates the interpretation of the results and reduces their accuracy. The method described in the present paper can be used to obtain in a single experiment with "stretched" radiation pulses, the dependence of the integral reaction yield on the maximum energy of the gamma-rays from a synchrotron. It is well-known that the maximum energy of synchrotron radiation is determined by the quantity Hp, where is the magnetic field in the gap of the magnet at the instant when the accelerated electrons strike the target,

Card 2/7

82874 s/120/60/000/02/005/052 E032/E414

A Method for Studying the Energy Dependence of Photonuclear Reaction Cross-Sections on a Synchrotron

> and ρ is the radial position of the target. electrons are made to strike the target at low magnetic field, and this is continued until the field reaches its maximum value, one can obtain a "stretched" radiation pulse whose energy increases throughout the process. The radiation pulse obtained in this way can be used to study the energy dependence of photonuclear reaction cross-sections. Pulses from the output of the circuit recording a given reaction must then be sorted out by a suitable kicksorter into groups corresponding to different energies. Each of the channels of the pulse height analyser should open when the field reaches the value corresponding to the energy recorded by the given The method can be used provided the intensity distribution in the radiation pulse is strictly uniform. In practice, this condition is not satisfied and the form of the pulse varies during the experiment. to exclude these changes it is necessary to have an intensity monitor whose output can be continuously

Card 3/7

82874 S/120/60/000/02/005/052 E032/E414

A Method for Studying the Energy Dependence of Photonuclear Reaction Cross-Sections on a Synchrotron

compared with the counter output with the aid of the In this way one can determine the output commutator. of each channel per unit incident intensity, and the ratio is then independent of the magnitude of the incident intensity or the form of the pulse. the method is based on the unambiguous relation between the energy of the gamma-rays and the magnetic field in the gap of the synchrotron magnet, and the continuous comparison of the kicksorter and monitor pulses as a The simplest way in function of the magnetic field. which this method can be realized in practice involves the use of time analysers. However, this has two important disadvantages. Firstly, usual time analysers have a uniform time scale and this means that the channels cannot be distributed uniformly along the energy scale, and the energy equivalence is lost since the field in the gap of the synchrotron magnet varies Secondly, the use of a time scale sinusoidally. instead of a magnetic field scale pre-supposes an

Card 4/7

82874 S/120/60/000/02/005/052 E032/E414

A Method for Studying the Energy Dependence of Photonuclear Reaction Cross-Sections on a Synchrotron

> unambiguous relation between them. However, this relation can be upset by instabilities in the working These and similar conditions of the accelerator. disadvantages were excluded in the present work by using a magnetic field scale, i.e. with the aid of commutating elements controlled by pulses which are directly related to given values of the magnetic field in the gap of the In the set-up described in the accelerator magnet. present paper, the disadvantages of the time analysers The particular were, in fact, only partially removed. apparatus employed makes use of a combination of a time scale and a magnetic field scale, namely, the commutating devices are controlled by pulses from the timing circuit, while the position of these pulses is made to depend on A block diagram of the circuit is shown in The apparatus consists of a gamma-ray telescope, Fig 1. a differential monitor and a 10-channel time analyser. The time analyser incorporates a time scale pulse generator, which produces pulses at a variable distance

Card 5/7

THE PART OF THE PROPERTY OF TH

82874

S/120/60/000/02/005/052 E032/E414

A Method for Studying the Energy Dependence of Photonuclear Reaction Cross-Sections on a Synchrotron

from each other, two synchronized electronic commutators and two 10-channel recording devices. The channels are distributed along the energy scale by a special coupling circuit which produces a pulse when the field in the gap of the accelerator magnet passes through a pre-determined value. The apparatus can be used to obtain energy calibrations to an accuracy of + 2%, the main error being in the measurement of the field. The method requires the monitoring of the intensity in the expanded gamma-ray pulse and this was carried out with the aid of a scintillation counter incorporating a stilbene crystal. The method was checked by measurements on the gamma-ray yield due to the disintegration of π° -mesons from hydrogen and carbon targets, at 90° to the primary photon beam. results obtained are in good agreement with those reported by Koester and Mills (Ref 5). Fig 5 shows the dependence of the gamma-ray yield at 90° for hydrogen on the maximum energy in the gamma-ray spectrum.

Card 6/7

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

82874 S/120/60/000/02/005/052 E032/E414

A Method for Studying the Energy Dependence of Photonuclear Reaction Cross-Sections on a Synchrotron

represent the results of present measurements, and the crosses the results taken from Ref 5. There are 5 figures and 5 references, 4 of which are Soviet and 1 English.

THE STATE OF THE PROPERTY OF T

ASSOCIATION: Fizicheskiy institut AN SSSR

(Physics Institute AS USSR)

SUBMITTED: February 20, 1959

Card 7/7

VASIL KOV, S.G. Cand Tech Sci -- (diss) "Extraction of artificial porous fillers from clayey raw material on agglomerated grids."

Mos, 1958. 20 pp. (Acad of Construction and Architecture USSR.)

Sci Res Inst of New Building Materials, Fundamental and Equipment of Buildings. Lab of Slags and Agglomerates). 160 copies.

(KL, 8-58, 105)

-22-

ELINZON, M.P., kand.tekin.nauk; VASIL'KOV, S.G., kand.tekhn.nauk

Using agglomeration in producing lightweight aggregates. Stroi.
mat. 5 no.2:11-14 F '59.

(Lightweight concrete)

MIRA 12:2)

ELINZON, M., kand.tekhn.nauk; VASIL'ZOV, S., kand.tekhn.nauk

Agloporite, a lightweight concrete aggregate. Stroitel' no.7:26

J1 '59. (AIRA 12:10)

(Lightweight concrete)

ELINZON, M.P., kand.tekhn.nauk; VASIL'KOV, S.G., kand.tekhn.nauk

Method of testing raw material for the production of agloporite.

Stroi.mat. 7 no.8:33-35 Ag '61. (MIRA 14:8)

(Aggregates (Building materials)—Testing)

ELINZON, M.P.; VASIL'KOV, S.G.; POPOV, L.N.; HIKOLAYEVA, N.M., red.

izd-va; SHERSTNEVA, N.V., tekhn. red.

[Principles of the production of agloporite] Osnovy proizvodstva
agloporita. Moskva, Gosstroiizdat, 1962. 136 p. (MIRA 15:6)
(Aggregates (Building materials))
(Lightweight concrete)

GAK, B.N., kand.tekhn. nauk; GERVIDS, I.A., kand. tekhn. nauk; GCNCHAR, P.D., inzh.; VASIL!KOV, S.G., kand. tekhn. nauk; YEVNEVICH, A.V., kand. tekhn.nauk; KIPTENKO, A.K., inzh.; LUNDINA, M.G., kand. tekhn.nauk; NAUMCV, M.M., kand. tekhn. nauk; PATRIK, S.A., inzh.; POPOV, L.N., kand. tekhn. nauk; ROGOVOY, M.I., inzh.; SEDOV, V.G., inzh.; SOKOLOV, Yu.B., inzh.; FRANCHUK, K.O., inzh.; KHAYKIN, V.Ya., inzh., nauchnyy red.; CHIBUNOVSKIY, N.G., inzh., nauchnyy red.; NOKHRATYAN, K.A., red. [deceased]; GUZMAN, M.A., red.; GURVICH, E.A., red.; BOROVNEV, N.K., tekhn. red.

[Handbook on the production of structural ceramics]Spravochnik po proizvodstvu stroitel'noi keramiki. Moskva, Gosstroiizdat. Vol.3.[Wall and roofing ceramics]Stenovaia i krovel'naia keramika. Pod red. M.M.Naumova i K.A.Nokhratiana. 1962. 699 p. (MIRA 16:1)

(Ceramics) (Building materials industry)

VASIL'KOV, S.G., kand.tekhn.nauk; ELINZON, M.P., kand.tekhn.nauk

The problem of the method of testing and choosing raw material for the production of agloporite. Sbor.trud.VNIINSM no.6:5-17 '62. (MIRA 15:12)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut novykh stroitel'nykh materialov Akademii stroitel'stva i arkhitektury SSSR.

(Aggregates (Building materials))

ELINZON, M.P., kand.tekhn.nauk; VASIL'KOV, S.G., kand.tekhn.nauk; SHTEYN, Ya.S., kand.tekhn.nauk

Industrial mastering of the production of agloporite in Electrostal'. Sbor.trud.VNIINSM no.6:110-135 '62. (MIRA 15:12)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut novykh stroitel'nykh materialov Akademii stroitel'stva i arkhitektury SSSR.

(Electrostal'—Aggregates (Building materials))
(Lightweight concrete)

VANILLACY, S.G., kand. tekhn. nauk

Producing agleporite from boiler slags. Stroi. mst. 11 no.1:

31-32 Ja 165. (MIRA 1836)

1. Vsesoyuznyy gosmiarstvennyy nauchno-issledovateliskiy institut struitelinykh materialov i konstruktsiy.

BOGUSLAVSKIY, Ya.M.; VASILOV, S.I., dots.

[Bibliographic handbook on luminescent analysis in medicine and biology] Bibliograficheskii spravochnik literatury po

liuminestsentnomu analizu v meditsine i biologii; s 1947 g. po iiumi 1961 g. Chita, Chitinskii gos. med. in-t, 1961. 66 p. (MIRA 15:10)

(Bibliography-Luminescence)

VASILOV, S.I.; LOBOVIKOV, G.K.; PUDCV, V.F.

lamp of shortwave ultraviolet rays fed from a battery. Vop. kur. fizioter. i lech. fiz. kul't. 28 no.3:264 My-Je 163.

1. Iz kafedry fiziki (zav.-dotsent S.I. Vasilov) Ghitinskogo meditsinskogo Instituta (dir.-dotsent Yu.D. Ryzhkov).

GOVOROV, Nikolay Alekseyevich; PONCHAREV, N.A., kandidat tekhnicheskikh nauk, redaktor; GEL'MAN. D.Ya., redaktor; YASIL'KOV, V.A., glavnyy redaktor izdatel'stva; GOLUBKOVA, L.A., tekhnicheskiy redaktor

[Mechanization of labor-consuming processes of sacking in mills and groats plants] Mekhanizatsiis trudoemkikh rabot v vyboinykh otdeleniiskh mel'nits i kruposovodov. Pod red. N.A.Ponomareva. Moskva, Izd-vo tekhn. i ekon. lit-ry po voprosam mukomol'no-krupianoi. kombikormovoi promyshl. i elevatorno-skladskogo khosisistva Ehleboisdat, 1956. 91 p. (NLRA 10:2) (Flour mills-Equipment and supplies)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

VASIL'KOV, V. G.

"Improve Methods of Operating Radioi Station Equipment," Vest. Svyazi, No.6, pp 24-26, 1953.

Translation M-630, 13 Jul 55

VASIL'KOY, V.G.

Important date in the history of Soviet radio engineering. Vest. sviasi 18 no.6:29-30 Je '58. (MIRA 11:6)

1. Nachal'nik radiotsentra 500-kilovatnoy radiostantsii imeni Kominterna.
(Radio stations)

111-58-6-20/25

AUTHOR:

Vasil'kov, V.G., Chief of the Radio Center

TITLE:

An Important Date in the History of Soviet Radio Engineering (Znamenatel'naya data v istorii sovetskoy radiotekhniki) On the 25th Anniversary of the Putting Into Operation of the 500 kw Radio Station imeni Komintern (K 25-letiyu so dnya puska 500-kilovattnoy radiostantsii imeni Kominterna)

PERIODICAL:

Vestnik Svyazi, Nr 6, 1958, pp 29-30 (USSR)

ABSTRACT:

The above anniversary took place on May 1st, 1958. The broadcasting station imeni Komintern was constructed during the first 5-year plan according to the project of the following group of Soviet engineers: G.A. Zeytlenok; V.D. Selivokhin; Z.I. Model'; N.I. Oganov; S.I. Itin; V.A. Sharshavin; and supervised by the A.L. Mints, who is now Corresponding Member of Akademiya nauk SSSR (The USSR Academy of Sciences). All these engineers were rewarded with orders and diplomas by the "TSIK SSSR". When the feedback coupling system was introduced into this station, the work was under the supervision of Engineer V.N. Aksency. New highstability oscillators were introduced and the power supply

Card 1/2

111-58-6-20, 25

An Important Date in the History of Soviet Radio Engineering. On the 25th Anniversary of the Putting Into Operation of the 500 kw Radio Station imeni

equipment partly replaced. It is now planned to adapt modern power tubes with activated cathodes, in order to utilize a new modulation circuit highly increase the commercial efficiency factor and improve the quality characteristics until they meet modern requirements. It is also planned to automate the system of switching over to the reserve units, the starting and maintaining of operation conditions.

Card 2/2 Communications - USSR 2. Radio engineering

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

VASIL KOV V.P.

Method of preparation of plastmass from ARR-7 in repair of defects of the exterior part of the nose. Vest. otoNinolar., Moskva 15 no.3:72-73 May-June 1953. (CIML 25:1)

1. Of the Clinic for Diseases of the Ear, Throat, and Nose imeni Prof. V. I. Voyachek, Leningrad.

VASILIKOV, V.P.

Universal dismountable cast for making V-type laryngostomic rubber prostheses-dilators. Vest. oto-rin. 16 no.4:77-78 J1-Ag '54. (MIRA 7:8)

1. Iz oto-laringologicheskoy kliniki imeni V.I.Voyacheka (Leningrad)
(LARYNX, stenosis,

*caustic, casts for prep. of V-type of resin dilatators)
(OTORHINOLARYNGOLOGY, apparatus and instruments,

*casts for prep. of V-type of resin dilatators of larynx
in stenosis)

29622 S/142/61/004/003/003/016 E192/E382

9,4220 (1052)

AUTHOR: Vasil'kov, V.Ye.

TITLE: Use of reflex klystrons for the detection and

measurement of power

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy, Radiotekhnika, v. 4, no. 3, 1961, pp. 262 - 269

TEXT: The use of reflex klystrons as high-frequency detectors has been known for a long time (Ref. 1 - Grekhova, M.T., Averkov, S.I., Grigorash, D.I. and Anikin, V.I. - Izv. AN SSSR, 1947, 11, no. 2, 183) but, in recent years, this method of detection has become important (Ref. 2 - S.A. Kornilov, O.N. Kazbekova, Radiotekhnika i elektronika, 1959, 4, no. 3, 475; Ref. 3 - Kostienko, A.I., Devyatkov, M.N. and Lebed', A.A. - Radiotekhnika i elektronika, 1959, 4, no. 3, 482; Ref. 4 - Dr. Koryn Ishii - Electronic Industries, 1959, November, No. 11, 77). In the following, attention is paid to the possibility of employing the klystrons for measuring the high-frequency power by employing their detection characteristics. In order to employ a klystron as a detector, Card 1/8/7

ıX

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

29622 S/142/61/004/003/003/016 E192/E382

Use of reflex klystrons

it is necessary to determine the DC component of the reflector current or voltage across the load as a function of the high-frequency power applied to the resonator. For the purpose of calculating the characteristics, the following assumptions are made: 1) the initial thermal velocities of the electrons are zero; 2) the electrons in the bunching space move along straight lines, perpendicularly to the reflector surface; 3) the influence of the space charge is neglected and 4) the resonator is tuned to the frequency of the received signal. Under the above conditions the expression for the maximum distance from the resonator which the velocity-modulated electrons can traverse is given by (Ref. 5 - S.D. Gvozdover - Theory of electronic devices for ultrahigh frequencies, GITTL [1956]

 $x_{m} = d_{o} \begin{bmatrix} 1956 \\ 1 + M & \frac{U_{m}}{U_{o}} \end{bmatrix}$ (1)

X

Card 2/8/7

Use of reflex klystrons

29622 S/142/61/004/003/003/016 E192/E382

which is valid for $U_m \ll U_0$, where U_m is the amplitude of the high-frequency voltage in the interaction space, U_0 is the accelerating potential applied to the resonator, d_0 is the maximum distance which can be covered by the electrons whose velocity is not changed during transit through the gap, ω is the power-signal frequency, t_0 is the transit time of the electrons and φ is the transit angle of the electrons in the interaction space. The DC component of the collector current can be expressed by:

$$\cos \frac{i}{i}_{0} \mathcal{W} = -\frac{U}{MU_{m}}$$
 (2)

where U is the voltage of the reflector with respect to the cathode and i is the DC component of the resonator current. If a resistance R is connected in series with a reflector, Card 3/8/

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

29622 \$/142/61/004/003/003/016 E192/E382

Use of reflex klystrons

the reflector current can be expressed by:

$$\frac{i}{i_0}U_H - U_3 \cos \frac{i}{i_0}W = U$$
 (3)

where $U_{3} = MU_{m}$, $U_{H} = i_{0}R$. By using the above equations a graph was constructed (Fig. 1) which shows the dependence of the relative magnitude of the reflector current i/i_{0} as a function of U_{3} for the case of $U_{H} = 0$ and $U_{H} = 1.5$. The upper curves of Fig. 1 corresponds to a positive reflector voltage, while the lower curves illustrate the situation in the case of negative reflector potentials. The direct-voltage component across the reflector load can be determined from:

 $U_R - U_{\stackrel{>}{\rightarrow}} \cos \frac{U_R}{U_H} \mathcal{T} = U$ (4).

Card 4/8/

29622 \$/142/61/004/005/005/016 E192/E582

Use of reflex klystrons

By using this equation it is possible to determine the dependence of the pulse voltage across the reflector load on the reflector voltage when a pulse signal is applied to the klystron. It is also possible to take into account the initial thermal velocities of the electrons. In this case, the overall reflector current is given by:

$$i = i_{\text{M}} + i_0 \cdot \frac{\Theta}{2\pi} = i_0 \exp\left(\frac{eU'}{kT}\right) \cdot \frac{1}{\pi} \int_{\Theta/2}^{\pi} \exp\left(\frac{cU_3}{kT} \cdot \cos\omega t_0\right) d\omega t_0 + i_0 \cdot \frac{\Theta}{2\pi}.$$
(5)

where $U' = U - V_m$, where V_m is the minimum potential of the cathode, k is the Boltzmann constant and T is the absolute temperature of the cathode. The detection characteristics of the klystrons were investigated experimentally. Some of these are illustrated in Fig. 4, which gives the dependence of the reflector current on the reflector voltage; Curves 1, 2, 3 and 4 Card 5/ μ

29622 5/142/61/004/003/003/016 E192/E382

Use of reflex klystrons

correspond to high-frequency powers of 0.4, 0.8, 1.6 and 3.2 mW. In the measurement of power, it is possible to use the following two methods: the magnitude of the reflector current or voltage is measured directly, the reflector voltage being kept constant; the reflector current is kept constant by adjusting the negative reflector potential. The calibration curves for the first method of measurement are shown in Fig. 6, where the axis of the ordinates shows the magnitude of the pulse voltage and the axis of the abscissaegives the corresponding high-frequency power; Curve 1 of Fig. 6 was taken for the optimum reflector voltage, while Curve 2 was taken for U = -5 V. From the above investigation, it is concluded that a klystron can be used successfully for the measurement of pulse powers and that the error of measurement is of the same order as that encountered in instruments with crystal diodes. However, the klystron method has the advantage of greater stability than the diode method. It is also less sensitive to overloads.

X

Card 6/87

29622 S/142/61/004/003/003/016 E192/E382

Use of reflex klystrons

There are 7 figures and 5 references: 4 Soviet-bloc and 1 non-Soviet-bloc. The English-language reference is quoted in the text.

ASSOCIATION: Kafedra spetsfiziki Leningradskogo elektro-

tekhnicheskogo instituta im. V.I. Ul'yanova (Lenina) (Department of Specialised Physics of Leningrad Electrotechnical Institute im.

V.I. Ul'yanov (Lenin)

SUBMITTED: July 11, 1960

X

Card 7/8 7

÷ ;			
- 11 + 3.1	the state of the s		A PLANT A
Albin elui Rust - r Shen - ris	By of the peta	radiation of the ego	The states for the average of the state of t
SOCIATION	I _b , s		e dan e and e table
BMI TUTE	Paris .	. 42.	75 CODE: TO X
REFEREN			The state of the s

VASIL KOV YE K. USSR/ Engineering - Crankshaft production Card 1/1 Authors Samoylovich, G. S., Engineer; Vasil'kov, E. M., Engineer Title On the effect of the intrinsic weight of a multiple-bearing crankshaft in the determination of the magnitude of pulsation of the shaft journal and the plane of the residual sagging of its axis Periodical Vest. Mash., 34, Ed. 6, 96 - 99, June 1954 Abstract The effect of crankshaft weight (internal combustion engines) on journal vibration and the plane of residual sagging of its axis is dealt with. Methods were developed for the exact computation of this effect. Graphs; Institution : ... Submitted

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

SAMOYLOVICH, G.S., inshener; VASIL'KOV, Ye.M., inshener.

Straightening multiple-bearing crankshafts by surface cold-hardening. Vest.mash. 35 no.10:25-29 0 '55. (MLRA 9:1)

(Cranks and crankshafts) (Steel--Hardening)

CHUKALOV, N.N., prof., doktor med.nauk; VASIL'KOVA, A.A., dotsent, kand.med.

Extending indications for cesarean section. Trudy Izhev.gos.med.inst. 13:226-229 151. (MIRA 13:2)

l. Iz kafedry akusherstva i ginekologii Izhevskogo meditsinskogo instituta. Zaveduyushchiy kafedroy - prof. N.N. Chukalov. (CESAREAN SECTION)

CHUKALOV, N.N., dotsent, prof.med.nauk; VASIL'KOVA, A.A., dotsent, kand.med.

Protection of the perineum in the management of normal labor. Trudy Izhev..gos.med.inst. 13:230-235 51. (MIRA 13:2)

1. Iz kafedry akusherstva i ginekologii Izhevskogo meditsinskogo (IABOR (OBSTETRICS)) — prof. N.N. Chukalov. (PERINEUM)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

VASIL'KOVA, A. K.

"Monilial Scald (Monilia laxa) of Apricots and Control Mensures,"

Sad 1 Ogorod, no. 9, 1947, pp. 32-34, 80 Sal3

So: SIRA S1-90-53, 15 Dec 1953

VASIL'KOVA, A. K.

"Bacteriosis of Cabrage Seed Plants in Donbass," Sad i Ogorod, no. 8, 1948, pp.62-63. 80 Sel3

So: SIRA-S1-90-53, 15 Dec. 1953

COLUMN : USBR CATAGORY : FLANT OF CASE Diserses of Cultivated Plants. ABS. JOhn : def dara machigiya, bo. 2, 1959, No. 6619 Vesil kova . Z., AUTHOR walltopel done cultural Station THEA. : Bacterial Canker in Stone Fruit Tracs TITLE Zoshonita rest. of vrc6it. 1 bolezney, 1958, onian, Pud.: No. 2. 39-40 BETT Of : Premature quath of stone Truit tree species f is widesprend in the south of the Ukraine, incurring a large annual loss. Research conducted for three years at Melitapol' borticultural Harion has shown that the discase causal agod in Passidomonas syringae van Halli-The trees west insceptible to the canker are apricul, or town who mawzord cherry, plent, sour charact and . Cassity, the pasch. Tears, also are wardetar differences. All of the

CALD

1/5

WILLIAM + FLANT DILLASES 2015. 2019 at all the second of type, then 2, 1 39, No. 9615 met our IN JE. 11163 Office PUB.: abstract : plant organs are attacked, root infaction being the most dangerous. The bacteria enter: the bark through buds which blacken and die, . as well as through wounds. Depressed sores are formed on the back where the backeria have penatrated, gem is not always exuded; the bark legas brown, emits an acrid odor, dries out on died. The Isaves wither and the branches desincate. Characteristic of chronic forms of the disease are cankerous CARD: 2./ 5

COUNTRY : CATEGORY : PLANT CATEGORY

ASS, JOOR: An area of oil, you in. 2, 1959, So. 6640

GONTOR : INST. : TITLE :

ORIG. PUB .:

deaf blade, leaf perforation (in sour cherry and plum), retardation in development, leaf stunting, chlorosis and dying of twigs. The bacteria panoluating the vescels destroy these and form characteristic holes or "rindews" in the joung wood of the branches on trunk. Experiments with artificial contamination have shown that if the bacteria

CARD: 3/g

STATE OF PERMISSIONS Nas. 3000at | Nes dish - Brologiya, No. 2, 1979, No. 6610 はいていつご INST. TITLE okla. Pus.: ABSTRACT : penetrate the plant which is in the restang stage (in early spring or fall), their rapid multiplication takes over. During the period of active tree growth the bacteria develop slowly and the chronic form of the disease occurs. This explains the high percentage of transmissions of the disease in trimming : which should be deferred to number. Systemtion, rubbing carbolinaum into wornds, the 3 4/5 CARD : 10

COUNTRY:
CATEGORY: FLANT DISPASES.

ABS. JOUR: def on m -diologica, here 2, 1950, No. 66):
A JUNCE:
ENST.

TITLE:

ORIG. PUB.:

DEFINICE: disinfection of instruments in formalin
Solution, and keeping the orchard fallow
soil in the condition of a black fallow are
recommended. When the disease is discovered
in the nursery, all infected seplings should
be removed, the soil disinfected with calcium
bypochlories (200 g/m²) and redug.

--G.A. Divinive

VASIL'KOVA, A.K., starshiy nauchnyy sotrudnik

Chemotherapeutic method for controlling the bacterial blight of stone fruits. Zashch. rast. ot vred. i bol. 6 no.8:57
Ag '61. (MIRA 15:12)

1. Melitopoliskaya opytnaya stantsiya sadovodstva. (Stone fruit—Diseases and pests) (Bactericides)

SAVKOVSKIY, P.P., nauchn. sotr.; ISAYEVA, Ye.V., nauchn. sotr.; OLIFER,
A.V., nauchn. sotr.; SHCHERBAKOV, V.V., nauchn. sotr.; POVZUN,
I.D., nauchn. sotr.; MASLO, Ye.M., nauchn. sotr.; KRYLOVA,
A.S., nauchn. sotr.; MATVIYEVSKIY, A.S., nauchn. sotr.;

VASIL'KOVA, A.K., nauchn. sotr.; VOVCHENKO, D.P., nauchn. sotr.;
BOGDAN, L.I., nauchn. sotr.; GROTTE, G.M., nauchn. sotr.;
SKUTSKAYA, N.P., red.; DAKHNO, Yu.B., tekhn. red.

[Pests and diseases of fruit and berry crops] Vrediteli i bolezni plodovo-iagodnykh kul*tur; spravochnik. Kiev, Izd-vo AN Ukr.SSR, 1962. 275 p. (MIRA 16:7) (Fruit—Diseases and pests)

SAVKOVSKIY, P.P., nauchn. sotr.; ISAYEVA, Ye.V., nauchn. sotr.; OLIFER, A.V., nauchn. sotr.; SHCHERBAKCV, V.V., nauchn. sotr.; FOVZUN, I.D., nauchn. sotr.; MASLO, Ye.M., nauchn. sotr.; KRYLOVA, A.S., nauchn. sotr.; MATVIYEVSKIY, A.S., nauchn. sotr.; VASIL! KOVA, A.K., nauchn. sotr.; VOVCHENKO. D.P., nauchn. sotr.; BOGDAN, L.I., nauchn. sotr.; GROTTE M.G., nauchn. sotr.; CHEFUR, N.D., red.

[Pests and diseases of fruit and berry plants; a manual] Vrediteli i bolezni plodovo-iagodnykh kul'tur; spravochnik. Kiev, Naukova dumka, 1965. 287 p. (MIRA 18:9)

VASIL-KOVA

D. A

HILLE, Binar, 1894
[Functional analysis and semi-groups] Funktsional nyi analiz i

polugruppy. Moskva, Izd. inostrannoi lit-ry, 1951. 635 p.(MLRA 7:11)

(Topology) (Functional analysis)

Phenomenon of secondary periodicity as examplified by ragnesiu:
compounds with the elements of the main subgroup of the fourth
group of D.I. Mendeleev's periodic system. West. LGU 8 no.2:
group of D.I. Mendeleev's periodic system. West. LGU 8 no.2:
(NIRA 12:7)

115-120 F '53.
(Periodic law) (Magnesium compounds)

"APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2

VASIL FOUR I.V.

USSR/Thermodynamics. Thermochemistry. Equilibria. Physico-Chemical

Analysis. Phase Transitions

CONTRACTOR OF THE PROPERTY OF

Abs Jour : Ref Zhur - Khimiya, No 8, 1957, 26101

: S.A. Shchukarev, I.V. Vasil'kova, B.N. Sharupin

: To the Study of Molybdenum Halide. I. Evaporation and Dis-Author Title

sociation Pressure of Molybdenum Pentachloride.

Orig Pub : Zh. obshch. khimii, 1956, 26, No 8, 2093-2097

Abstract : The pressure of the saturated vapor and of dissociation of

 $MoCl_5$ (I) was determined by the flow method in a flow of N_2 and in the range from 70 to 1600. The following was found from the obtained data: $log p I = 10.623 - 3991/T; \Delta H^O =$ 18.3 kcal per mol, \triangle S° = 35.6 entr. units, \triangle F° = 7.7 kcal per mol. The same for the reaction 2MoCl₁ (solid) = 2MoCl₁ (solid) + Cl₂ were: $\log k_p = 14.143 - 5412/T$ \triangle H° = 24.5 kcal per mol, \triangle S° = 49.2 rntr. units, \triangle F° = 9.9 kcal per mol: and for the reaction 2 MoCl₂ (solid) = 2MoCl₂ (solid) = 2MoCl mol; and for the reaction 2 MoCl₅ (gas) = 2MoCl₄ (solid) + Cl₂: log $K_p = -6.753 + 2448/T$; \triangle H° = -12.3 kcal per mol; \triangle S° = 50.2 entr. units; \triangle F° = 2.6 kcal per mol. The heat of formation of I \triangle H° (form.) = -78.5 kcal per mol.

: 1/1 Card

sov/78-3-12-8/36

. AUTHORS:

Shchukarev, S. A., Vasilikova, I. V., Nevikov, G. I.

TITLE:

III. The Determination of the Heat of Formation of Chlorine Derivatives of Hexavalent Tungsten (III. Opredeleniye teplot obrazovaniya khlorproizvodnykh shestivalentnogo vol'frama)

PERIODICAL:

Zhurnal neorganicheskoy khimii, 1958, Vol 3, Nr 12,

solution of WOCl4, WO2Cl2, and WCl6 in 12% NaOH pp 2642-2646 (USSR)

ABSTRACT:

and at 25°C was determined. The production of the initial The heat of

materials was carried out by chlorinating WO3 with CCl4 ac-

c ording to the following reactions:

 $WO_3 + CGI_4 = WO_2GI_2 + GOCI_2$ $WO_3 + 2GGI_4 = WOCI_4 + 2GOGI_2$

In all the compounds investigated the tungsten is hexavalent.

The oxychlorides WOCl4 and WO2Cl2 dissolve more quickly than

WCl6 in the 12% NaOH solution. The following values were found

Card 1/2

SUV/78-3-12-8/36 III. The Determination of the Heat of Formation of Chlorine Derivatives of Hexavalent Tungsten

for the respective heats of formation of WCl_6 , $WOCl_4$, and WO_2Cl_2 : -163.1, - 177.5 and -199 kcal/mole. The heats of formation of the chlorides and oxides of the elements of the fifth group in the periodic system were compared and for chromium, molybdenum, tungsten, and uranium almost equal values were found for the $\Delta H_{formation}$ for MeO_2Cl_2 and corresponding oxides MeO_3 . There are 1 figure, 4 tables, and 12 references, 6 of which are Soviet.

SUBMITTED:

August 5, 1957

Card 2/2

SOV/78-3-12-9/36

Shehukarev, S. A., Vasil'kova, I. V., Martynova, N. S.,

AUTHORS: Mal'tsev, Yu. G.

Concerning the Heat of Formation of Uranyl Chloride and Mono-Oxyuranyl Trichloride (O teplete obrazovaniya uranilkhlorida i TITLE:

monooksitrikhlorida urana)

Zhurnal neorganicheskoy khimii, 1958, Vol 3, Nr 12, PERIODICAL:

pp 2647-2650 (USSR)

The heat of solution of UCl4, UCl2, and UCCl3 in a 0.5% ABSTRACT:

FeCl, and 2% HCl solution was determined. The synthesis of the

starting materials is described. The results for the heats of

dissolution are given in table 2: AH for FeCl₃ in 2% HCl = -30.75 ± 0.27 kcal/mole

... AH for 00_2 C1₂ in 0.5% FeCl₃ in 2% HCl = -25.44±0.07 kcal/mole

ΔH for UCl₄ in 0.5% FeCl₃ in 2% HCl = -45.50+0.10 kcal/mole

ΔH for $UOCl_3$ in 0.5% $FeCl_3$ in 2% $HCl = -28.55 \pm 0.13$ kcal/mole.

The standard heat of formation for UQ2Cl2 and UOCl3 was

Card 1/2

CIA-RDP86-00513R001858810017-2"

APPROVED FOR RELEASE: 08/31/2001

SOV/78-3-12-9/36 Concerning the Heat of Formation of Uranyl Chloride and Mono-Oxyuranyl Tricalculated: $\Delta H_{formation}UO_2Ol_2 = -301.9$ kcal/mole and chloride

 $\Delta H_{\text{formation}}$ uocl₃ = -283.4 kcal/mole.

There are 2 tables and 9 references, 4 of which are Soviet.

September 5, 1957 SUBMITTED:

Card 2/2

SOV/78-3-12-10/36

AUTHORS:

Shchukarev, S. A., Vasil'kova, I. V., Drozdova, V. M.

TITLE:

The Heat of Formation of Uranyl Bromide and Mono-Oxy Uranyl Tribromide (Teplota obrazovaniya uranilbromida i

monooksitribromida urana)

PERIODICAL:

Zhurnal neorganicheskoy khimii, 1958, Vol 3, Nr 12,

pp 2651-2653 (USSR)

ABSTRACT:

solution was determined for UO2Br2 and UOBr3 The heat of

in a 0.5% FeCl3 and 2% HCl solution. The synthesis of the

UO2Br2 and UOBr3 is described. The UO2Br2 was produced by the oxidation of UBr4 in anoxygen stream at 160-1650, and the UOBr3

was produced by reacting water-free uranium trioxide with CBr4. The heat of formation for UO2Br2 and UOBr3 is determined by

taking the difference between the heats of dissolution of the compounds under investigation. At 25° the heat of formation

of uranyl bromide $\Delta H = -31.23\pm0.20$ kcal/mole, of UOBr₃

 $\Delta H = -45.42\pm0.21$ kcal/mole. For the heat of formation at 298°K

Card 1/2

SOV/78-3-12-10/36

The Heat of Formation of Uranyl Bromide and Mono-Oxy Uranyl Tribromide

for mono-oxy uranyl tribromide ∆H was found to be -233.8 kcal/mole and for UOBr AH was found to be 254.2 kcal/mole.

From the heats of formation so obtained for UOBr3 and UOBr2

the ΔH for the dissociation reaction

UOBr_{3(solid)}-9.4 = UOBr_{2(solid)} + 1/2 Br_{2(gas)}

was calculated.

There are 1 table and 8 references, 3 of which are Soviet.

September 5, 1957 SUBMITTED:

Card 2/2

SOV/54-59-1-9/25 5(2), 5(3)Vasil kova. I. V., Sharupin, B. N. AUTHORS: Shchukarev S. A. II. On the Investigation of Molybdenum Haloids. Determination TITLE: of the Formation Enthalpy of Some Chlorine Derivatives of Pentavalent and Hexavalent Molybdenum (II. K issledovaniyu galidov molibdena. Opredeleniye ental'pii obrazovaniya nekotorykh proizvodnykh pyati- i shestivalentnogo molibdena) PERIODICAL: Vestnik Leningradskogo universiteta. Seriya fiziki i khimil. 1959, Nr 1, pp 73~77 (USSR) In this paper the authors determined the formation enthalpy ABSTRACT: MoO2Cl2 and MoOCl4 according to the difference of MoCl₅, in enthalpy of the reactions of these compounds and MoOz with 0.718 n NaOH. The reaction enthalpy of the following four reactions was determined by means of a calorimeter with an isothermal shell: (1) $MoO_3 + 2NaOH = 18.60 \text{ kcal} = Na_2MoO_A + H_2O$ $MoCl_5 + 1/2H_2O_2 + 7NaOH-179.01 kcal=Na_2MoO_4+5NaCl+4H_2O_3$ (2) MoO2Cl2+4NaOH-62.64 kcal=Na2MoO4+2NaCl+2H2O (3) Card 1/3

SOV/54 59-1 9/25

II. On the Investigation of Molybdenum Haloids Determination of the Formation Enthalpy of Some Chlorine Derivatives of Pentavalent and Hexavalent Molybdenum

MoOCl₄+6NaOH 121.26 kcal = Na₂MoO₄+4NaCl + 3H₂O (4)
The data obtained were evaluated according to the formula by
Renault (Ren'o) Pfaundler Usov. The calculation of the forma
tion enthalpy presupposes that all solutions synthesized from
these four reactions contain the same products. This was checked
by determining the optical density of the solutions. The re
sults of this investigation indicated a uniform final product
of all four reactions. The course of calculating the formation
enthalpy of McCl₂ is given. Table 3 contains the values of
formation enthalpy of the individual compounds under investi
gation. The following values hold for MoCl₅. MoOCl₄ and MoO₂Cl₂:

126.56. 153.48 and 173.08 kcal/moles. Further the authors
determined the reaction enthalpy of MoCl₅. MoOCl₄ and MoO₂Cl₂:
with solutions containing 0.02 n KMnO₄ and 2 n H₂SO₄. The cal
culation was made at 25°. All values obtained for the formation
enthalpy are much larger than those computed by Brewer on the
basis of the value AH_{MoCl₅}. Which was found by Van Liempt

Card 2/3

507/54-59-1-9/25

II. On the Investigation of Molybdenum Haloids. Determination of the Formation Enthalpy of Some Chlorine Derivatives of Pentavalent and Hexavalent Molybdenum

in 1931. The value of ΛH_{MOO_3} which was found in this

paper and forms the basis of the respective calculations, amounts to -18.60 kcal/moles. There are 2 figures, 3 tables, and !!

references, 3 of which are Soviet.

SUBMITTED: March 24, 1958

Card 3/3

SOV/54-59-2-10/24 5(4) Tr, Sharupin, B. N. Shchukarev, S. A., Vaailikowa AUTHORS: On the Investigation of Molybdenum Halides. Synthesis and Determination of Formation Enthalpy of Molybdenum Tetrachloride TITLE: (K issledovaniyu galidov molibdena. Sintez i opredeleniye ental'pii obrazovaniya tetrakhlorida molibdena) Vestnik Leningradskogo universiteta. Seriya fiziki i khimii, PERIODICAL: 1959, Nr 2, pp 72-77 (USSR) In this paper, which represents part of the dissertation by ABSTRACT: B. N. Sharupin, a checking of the value of the formation enthalpy of the molybdenum tetrachloride was carried cut. In a previous paper (Ref 4), the dissociation enthalpy of the MoCl, had been computed by use of tensimetrical data from the reaction: $\left[\text{MoCl}_{5}\right]$ + 12.2 kcal = $\left[\text{MoCl}_{4}\right]$ + 1/2 Cl₂ (1). The formation enthalpy AH of the MoCl, was assumed with -90.8kcal/mol according to references 5,1,2. The value obtained for AH of the MoCl agreed with the corresponding values of the mentioned papers. A new measurement by the authors (Ref 6), how-Card 1/4

SOV/54-59-2-10/24

On the Investigation of Molybdenum Halides. Synthesis and Determination of Formation Enthalpy of Molybdenum Tetrachloride

ever, yielded the value: -126 kcal/mol for the ΔH_{form} of the MoCl₅. In order to discover the clases of this discrepancy, the formation enthalpy was computed from the data of a method principally different from reference 6, and checked in this way. ΔH was determined by the difference of the reaction enthalpies of MoCl₅ and MoCl₄ with solutions containing 0.5% FeCl₅ and 2% HCl. The investigations were carried out at 25°C. To investigate a possible disproportionation of MoCl₄ in the presence of trivalent iron in MoCl₃ and MoCl₅, and a further oxidation of the ion Mo³⁺ to Mo⁵⁺, the optic density of the solution obtained in the calorimeter was determined (Fig 1). This showed that in this solution only the pentavalent molybdenion was present. (For the synthesis of MoCl₅, see reference 4.) The synthesis of MoCl₄ was carried out on the plant represented in figure 2. The best conditions for the synthesis

Card 2/4

507/54-59-2-10/24

On the Investigation of Molybdenum Halides. Synthesis and Determination of Formation Enthalpy of Molybdenum Tetrachloride

proceeding according to the reaction: Mo+0₂+2CCl₄=MoCl₄+2COCl₂ are: temperature of furnace 300°, temperature of the saturator 25°, and velocity of nitrogen 5-6 l/hour. 5-6 g MoCl₄ were obtained in this way in 8 hours. The determination of the enthalpy is described in the papers (Refs 6,12). The values of the reaction enthalpies of MoCl₄ and MoCl₅ with the mentioned solution are compiled in tables 1,2. The computation of the formation enthalpy of MoCl₄ was carried out on the basis of the following reactions: MoCl₅+H₂O(0.5% FeCl₃, 2% HCl)=MoOCl₃+2HCl; MoCl₄+FeCl₃+H₂O=MoOCl₃+HCl+FeCl₂. The formation enthalpy of the components of this reaction is indicated in table 3, taken from the papers (Refs 6,12,2). The formation enthalpy for MoCl₄ was determined at -(114±3) kcal/mol. This value coincides with the value obtained in the paper (Ref 6) from tensimetric data for the dissociation reaction of MoCl₅ and its formation enthalpy.

Card 3/4

SOV/54-59-2-10/24

On the Investigation of Molybdenum Halides. Synthesis and Determination of Formation Enthalpy of Molybdenum Tetrachloride

There are 2 figures, 3 tables, and 12 references, 5 of which

are Soviet.

SUBMITTED:

April 5, 1958

Card 4/4

Card 1/2

507/78-4-1-7/48 Shchukarev, S. A., Vasil'kova, I. V., Drozdova, 7. K., 5(2), 21(1) · AUTHORS: Martynova, N. S. III. The Energetics of Solid Uranium Oxyhalides in the Light of the Substitution Principle (III. Energetika tverdykh oksi-TITLE: galidov urana v svete printsipa zameshcheniya) Zhurnal neorganicheskoy khimii, 1959, Vol 4, Nr 1, pp 33-38 PERIODICAL: (USSR) The $\Delta \mathtt{H}$ value for the formation of \mathtt{UBr}_4 was determined and it was found that this value is -214.9 kcal/g-atom in contrast ABSTRACT: to the value -211.3 kcal suggested by D. Kats and Ye. Rabinovich (Ref 6). This value was found by determining the solution heat of UBr4 and UCl4 in hydrochloric acid solutions of iron chloride. The value $\Delta \mathtt{H}$ for the formation of \mathtt{UBr}_4 was determined

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858810017-2"

according to the reaction U solid + 2Br 2gas = UBr 4solid* Figure 1 shows the formation enthalpies of the chlorides,

bromides, oxides, oxychlorides, and oxybromides of uranium. The figure shows that the curves of the solid oxides are lower than