Exact distribution of \bar{X}_n and $\hat{\sigma}_n^2$ under $N(\mu, \sigma^2)$

8.5.3 of Rice

07/06/2021

In the previous lecture,

- CR lower bound and UMVUE.
 - The estimator with minimum variance among all unbiased estimators.
- Sufficient statistics
 - $\circ \ U(- heta,\, heta)$
 - $\circ \mathbf{X}_n \mid T(\mathbf{X}_n)$ is difficult to deal with.
 - o Fisher-Neyman Factorization Theorem.
 - Exponential family.
- Rao-blackwell Theorem
 - Construct a better estimator using a sufficient statistic.

Exact sampling distribution under $N(\mu, \sigma^2)$

- $\begin{array}{c|c} & n = 2 \\ & n = 3 \end{array} \quad \bullet \quad \chi_n^2 = Z_1^2 + Z_2^2 + \ldots + Z_n^2.$
- $\begin{array}{c|c}
 & n=4 \\
 & n=6
 \end{array} \quad \bullet \quad \chi_n^2 \sim \operatorname{Gamma}(\frac{n}{2}, \frac{1}{2})$
 - Given two independent random variables $T_n \sim \chi_n^2$ and $S_m \sim \chi_m^2$, prove $T_n + S_m \sim \chi_{m+n}^2$.

Exact sampling distribution under $N(\mu, \sigma^2)$

Theorem G. Let X_1,\ldots,X_n be i.i.d $N(\mu,\,\sigma^2)$. Then $\bar{X}_n\sim N\Big(\mu,\,\frac{\sigma^2}{n}\Big),\,\sum_{i=1}^n \big(X_i-\bar{X}_n\big)^2/\sigma^2\bigvee_i\chi_{n-1}^2$ and they are *independent* of each other.

Proof*.) Fecap: 1. Orthogonal mutrix
$$Q^TQ = QQ^T = I$$
.

2. $\Sigma \sim N(\vec{M}, \Sigma)$, $\Upsilon = Q \Sigma \sim N(D \vec{M}, D \Sigma Q^T)$. 3. For dry non-zero vector \vec{V} , we can construct an orthogonal matrix

under IID assumption, a seach as the first vovo of Q is
$$\vec{U}$$
. \leftarrow Gram-Schimat Theorem.

Unday IID assumption,
$$\begin{pmatrix}
x_1 \\
\vdots \\
x_N
\end{pmatrix}
\sim N\left[M\left(\frac{1}{2}\right) \quad b^2 I
\right]$$
The overlagonal matrix we want to construct is
$$Q = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & -\frac{1}{2} & \frac{1}{2}
\end{pmatrix}$$
and $Q = QQ^T = I$

$$Y = Q\left(\frac{1}{2}\right) \sim N\left(\frac{1}{2}\right) \quad b^2 Q I Q^T$$

$$Y = Q\left(\frac{1}{2}\right) \sim N\left(\frac{1}{2}\right) \quad b^2 Q I Q^T$$

$$Y = Q\left(\frac{1}{2}\right) \sim N\left(\frac{1}{2}\right) \quad b^2 Q I Q^T$$

$$Y = Q\left(\frac{1}{2}\right) \sim N\left(\frac{1}{2}\right) \quad b^2 Q I Q^T$$

Pecall of
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

Exact sampling distribution under
$$N(\mu, \sigma^2)$$

$$S' = \frac{1}{N-1} \frac{\frac{N}{2}}{\frac{N}{2}} \frac{(N-N)^2}{(N-N)^2} \subset ML^{\epsilon}$$

Definition. A student t distributed r.v. with df=n can be generated using independent $~Z\sim N(0,1)~$ and

$$U\sim\chi_n^2:$$

$$rac{Z}{\sqrt{U/n}} \sim t_n$$

$$(n-1)S^{2} \sim \chi_{n-1}^{2}$$

Normal distribution

$$=rac{\sqrt{N}-M}{S\sqrt{Sn}}\sim t_{n-1}$$
 $f(x)=rac{\Gamma\left(rac{n+1}{2}
ight)}{\sqrt{n\pi}\,\Gamma\left(rac{n}{2}
ight)}\Big(1+rac{x^2}{n}\Big)$

Student's t distribution

$$f(x)=rac{\Gamma(rac{n+1}{2})}{\sqrt{n\pi}\,\Gamma(rac{n}{2})}\Big(1+rac{x^2}{n}\Big)^{-rac{n+1}{2}}$$

2~

Exact confidence intervals under $N(\mu, \sigma^2)$

Theorem A. Suppose X_1,\ldots,X_n are i.i.d $N(\mu,\,\sigma^2)$. Then

$$P\left(-t_{n-1}(\alpha/2) \le \frac{\sqrt{n}(\overline{X}_n - \mu)}{S} \le t_{n-1}(\alpha/2)\right) = 1 - \alpha$$

 $(1-\alpha) \times 100\%$ exact CI for μ :

$$P\left(\overline{X}_n - \frac{S}{\sqrt{n}}t_{n-1}(\alpha/2) \le \mu \le \overline{X}_n + \frac{S}{\sqrt{n}}t_{n-1}(\alpha/2)\right) = 1 - \alpha$$

$\frac{h6n^2}{6^2}$ ~ $\chi_{n_1}^2$

Exact confidence intervals under $N(\mu, \sigma^2)$

Theorem B. Suppose X_1,\ldots,X_n are i.i.d $N(\mu,\sigma^2)$. Then

$$P\left(\chi_{n-1}^2(1-\alpha/2) \le \frac{n\hat{\sigma}_n^2}{\sigma^2} \le \chi_{n-1}^2(\alpha/2)\right) = 1 - \alpha$$

$$(1-lpha) imes 100\,\%$$
 exact CI for σ^2 :

$$P\left(\frac{n\hat{\sigma}_{n}^{2}}{\chi_{n-1}^{2}(\alpha/2)} \le \sigma^{2} \le \frac{n\hat{\sigma}_{n}^{2}}{\chi_{n-1}^{2}(1-\alpha/2)}\right) = 1 - \alpha$$

qchisq(p = alpha/2, df = n-1, lower.tail = FALSE)
qchisq(p = 1-alpha/2, df = n-1, lower.tail = FALSE)

Exact confidence intervals under $N(\mu, \sigma^2)$

Example 1. Let's say we observed 12 i.i.d Normal samples: $\{6.749,\ 6.658,\ 3.966,\ 8.359,\ 4.043,\ 5.245,\ 3.375,\ 6.621,\ 5.216,\ 10.945,\ 2.260,\ 2.015\}$ Find 95% exact confidence intervals for μ and σ^2 .

```
ar{X}_{12}=5.454 S^2=6.703 \hat{\sigma}_n^2=6.145
```

```
> alpha=0.05
> qt(p = alpha/2, df = 11, lower.tail = FALSE)
[1] 2.200985
> qchisq(p = alpha/2, df = 11, lower.tail = FALSE)
[1] 21.92005
> qchisq(p = 1-alpha/2, df = 11, lower.tail = FALSE)
[1] 3.815748
```

$$\frac{95\% \ CI \ for \ M:}{Xn \ t} \frac{S}{Jn} \frac{t}{(1-\sqrt{2})}$$

$$= 5.454 \ t \frac{6.703}{12} \ t_{11} \left(\frac{0.05}{2} \right) = 5.454 \ t \frac{6.703}{12} \times 2.209$$

$$= \left[3.900, 7.190 \right].$$

$$\frac{95\% \ CI \ for \ 6^{2}:}{X_{n-1}^{2}(\sqrt{2})} \frac{n \ 6^{3}}{X_{n-1}^{2}(1-\sqrt{2})} = \frac{12 \times b.145}{21.92005}, \frac{12 \times 6.165}{3.81576}$$

$$= \left[3.364, 19.325 \right].$$

Bootstrap confidence intervals under $N(\mu, \sigma^2)$

Example 1 *cont'd.* Let's say we observed 12 i.i.d Normal samples: $\{6.749,\ 6.658,\ 3.966,\ 8.359,\ 4.043,\ 5.245,\ 3.375,\ 6.621,\ 5.216,\ 10.945,\ 2.260,\ 2.015\}$ Find 95% bootstrap confidence intervals for μ and σ^2 .

$$\bar{X}_{12} = 5.454$$

$$S^{2} = 6.703 \in$$

$$\hat{\sigma}_{n}^{2} = 6.145$$

$$|-4/1/2| \bar{X}_{n} \pm \frac{\sqrt[3]{4}}{\sqrt{nI(\mu)}} = 5.454 \pm \frac{2.241}{\sqrt[3]{12}} + \frac{5.454}{\sqrt[3]{12}} + \frac{2.241}{\sqrt[3]{12}} + \frac{5.454}{\sqrt[3]{12}} + \frac{2.241}{\sqrt[3]{12}} +$$

Bootstrap confidence intervals under $N(\mu, \sigma^2)$

Example 1 *cont'd.* Let's say we observed 12 i.i.d Normal samples: $\{6.749,\ 6.658,\ 3.966,\ 8.359,\ 4.043,\ 5.245,\ 3.375,\ 6.621,\ 5.216,\ 10.945,\ 2.260,\ 2.015\}$ Find 95% bootstrap confidence intervals for μ and σ^2 .

Density

$$(1-\alpha) imes 100\,\%$$
 exact CI for σ^2 :
$$[3.364,\ 16.325]$$
 $(1-\alpha) imes 100\,\%$ bootstrap CI for σ^2 :
$$[1.809,\ 13.053]$$
 Seemingly more accurate CI

around the mode

Short summary of CI

Sampling distribution of an estimator

- \bar{X}_n and $\hat{\sigma}_n^2$ for population mean and variance;
- MM estimators:
- Maximum likelihood estimators.
 - 1. Exact sampling distribution; e.g. MLE for $U(-\theta, \theta)$, $\leftarrow \overline{X}$ \bar{X}_n for $Gamma(\alpha, \beta)$ and $N(\mu, \sigma^2)$ $\hat{\sigma}_n^2$ for $N(\mu, \sigma^2)$
 - 2. Asymptotic normality (Lecture 5); \bar{X}_n , $g(\bar{X}_n)$, MLE
 - 3. Parametric or non-parametric bootstrapping (Page 10, Lecture 3 & Lab 3).

Hypothesis testing

9.2 of Rice

07/06/2021

Hypothesis testing

Definition. A hypothesis is a statement about a population parameter.

Income population:
$$\mu > 50,000$$

Youtube A/B testing:
$$\alpha_1/\beta_1 < \alpha_2/\beta_2$$

Definition. The goal of testing hypotheses is to decide, based on a sample from the population, which of two complementary hypotheses is true:

$$H_0$$
: null hypothesis

 H_0 : null hypothesis \longleftrightarrow H_1 : alternative hypothesis

- De facto
- Accepted fact
- Popular conception
- Ineffective

- Surprising
- Unorthodox
- *Effective*

We are trying to **reject** a conventional idea to establish something new.

Hypothesis testing

Galileo Galilei

 H_0 : Geocentrism (Earth is the center of the universe) $\longleftrightarrow H_1$: Heliocentrism (Earth rotating daily and revolving around the sun)

Courtroom trial

 H_0 : The defendant is not guilty \longleftrightarrow H_1 : The defendant is guilty

The hypothesis of innocence is rejected only when an error is very <u>unlikely</u>.

Efficacy of vaccines

 H_0 : The new vaccine is not effective \longleftrightarrow H_1 : The new vaccine is effective

The hypothesis of ineffectiveness is rejected only when there is <u>strong evidence</u> that the vaccine prevents infection.

Type I error

Definition. The H_0 is rejected when it is actually true.

The occurrence of type I error should be controlled to be <u>rare</u>.

Courtroom trial

 H_0 : The defendant is not guilty \longleftrightarrow H_1 : The defendant is guilty

The conviction of an innocent defendant.

Efficacy of vaccines

 H_0 : The new vaccine is not effective \longleftrightarrow H_1 : The new vaccine is effective

The approval of an ineffective vaccine.

Definition. The *significance level* of test $\alpha = P(Type\ I\ error)$.

Type II error

Definition. The H_0 is not rejected when H_1 is actually true.

The consequence of type II error is <u>less severe</u>.

Courtroom trial

 H_0 : The defendant is not guilty \longleftrightarrow H_1 : The defendant is guilty

Acquitting a person who committed the crime.

Efficacy of vaccines

 H_0 : The new vaccine is not effective H_1 : The new vaccine is effective

Discarding a vaccine which is life-saving.

Definition. The *power* of test $\beta = P(\text{Correctly reject } H_0) = 1 - P(\text{Type II error})$

The asymmetric nature of HT

To make the testing result more convincing, we should make it more difficult to reject the null hypothesis H_0 .

	H ₀ is true Truly not guilty	H ₁ is true Truly guilty
Accept null hypothesis Acquittal	Right decision	Wrong decision Type II Error
Reject null hypothesis Conviction	Wrong decision Type I Error	Right decision

Mis-stating the hypotheses will muddy the rest of the testing process.

Test statistic & rejection region

For notational simplicity, denote $\mathbf{X}_n = (X_1, \dots, X_n)$.

Definition. A statistic $T(\mathbf{X}_n)$ is the test statistic if it is used to decide whether to reject H_n .

All possible values of $T(\mathbf{X}_n)$

Definition. Rejection region is the subset of test statistic values that leads to the rejection of H_0 .

Test statistic & rejection region

For notational simplicity, denote $\mathbf{X}_n = (X_1, \dots, X_n)$.

Definition. A statistic $T(\mathbf{X}_n)$ is the test statistic if it is used to decide whether to reject H_0 .

Definition. Rejection region is the subset of test statistic values that leads to the rejection of H_0 .

To mitigate type I error

 $R = \{ \text{Unlikely } T(\mathbf{X}_n) \text{ values under } H_0 \}$

How to find rejection region?

 $R = \{ \text{Unlikely } T(\mathbf{X}_n) \text{ values under } H_0 \}$

Likelihood ratio test (LRT)

 $R = \{ \text{Unlikely } T(\mathbf{X}_n) \text{ values under } H_0 \}$

$$L(\theta|\mathbf{X}_n) = \prod_{i=1}^n f(X_i \mid \theta) =$$
 The likelihood of observing X_1, \dots, X_n under θ .

Definition. A likelihood ratio test statistic is/defined as

$$\lambda(\mathbf{X}_n) = \frac{\sup_{\Theta_n} L(\theta \mid \mathbf{X}_n)}{\sup_{\Theta} L(\theta \mid \mathbf{X}_n)}$$
 restricted

The rejection region of a LRT should be

$$\{\lambda(\mathbf{X}_n) \leq c\}$$

in which $0 \le c \le 1$.

Likelihood ratio test (LRT)

$$R = \{\hat{p}_n > c\}$$
 $\max\{a,b\}$

Example 2. Let X_1, \ldots, X_n be i.i.d Bernoulli(p). Consider testing

Find the LRT statistic and a rejection region.

$$\lambda(\mathbf{X}_{n}) = \frac{\sup_{\Theta_{0}} L(\theta | \mathbf{X}_{n})}{\sup_{\Theta} L(\theta | \mathbf{X}_{n})} \qquad \lambda(\overline{X}_{n}) = \frac{\sup_{\Theta_{0}} L(\theta | \mathbf{X}_{n})}{\sup_{\Theta} L(\theta | \mathbf{X}_{n})} \qquad \lambda(\overline{X}_{n}) = \frac{\sup_{\Theta_{0}} L(\theta | \overline{X}_{n})}{\sup_{\Theta} L(\theta | \overline{X}_{n})} = \frac{L(0.49 | \overline{X}_{n})}{\sup_{\Theta} L(0.49 | \overline{X}_{n})} = \frac{L(0.49 | \overline{X}_{n})}{\max_{\Theta} \sum_{\Theta} L(0.49 | \overline{X}_{n})} = \frac{L(0.49 | \overline{X}_{n})}{\max_{\Theta} L(0.49 | \overline{X}_{n})} = \frac{L(0.49 | \overline{X}_{n})}{\min_{\Theta} L(0.49$$

$$P = \begin{cases} 1(8n) \le C \end{cases} = \begin{cases} min \frac{1}{3}, (\frac{0.49}{0.51}) \ge xi - n \end{cases} \le C$$

$$= \begin{cases} (\frac{0.49}{0.51}) \ge xi - n \\ (2xi - n) \log \frac{0.49}{0.51} \le \log C \end{cases}$$

$$= \begin{cases} 2xi - n \ge \log C \end{cases} \log \frac{0.49}{0.51} = \begin{cases} xn \ge C \end{cases}$$

$$= \begin{cases} 2xi - n \ge \log C \end{cases} \log \frac{0.49}{0.51} = \begin{cases} xn \ge C \end{cases}$$

$$= \begin{cases} 2xi - n \ge \log C \end{cases} \log \frac{0.49}{0.51} = \begin{cases} xn \ge C \end{cases}$$

$$= \begin{cases} xn \ge C \end{cases}$$

By definition of LRT,

Likelihood ratio test (LRT)

Example 2. Let X_1, \ldots, X_n be i.i.d $N(\mu, 1)$. Consider testing

$$H_0: \mu = \widehat{\mu_0} \quad \leftrightarrow \quad H_1: \mu
eq \mu_0.
onumber$$

Find the LRT statistic and a rejection region.

$$\lambda(\mathbf{X}_{n}) = \frac{\sup_{\Theta_{0}} L(\theta \mid \mathbf{X}_{n})}{\sup_{\Theta} L(\theta \mid \mathbf{X}_{n})}$$

$$\Rightarrow \sup_{\Theta_{0}} L(\theta \mid \mathbf{X}_{n})$$

$$\Rightarrow \sup_{\Theta_{0}} L(\theta \mid \mathbf{X}_{n})$$

$$= \left(\frac{1}{\sqrt{2\pi i}}\right)^{n} e^{-\frac{2\pi i}{12\pi i}} \left(\frac{x_{i} - u_{i}}{2}\right)^{2}$$

$$\Rightarrow \sup_{\Theta_{0}} L(\theta \mid \mathbf{X}_{n})$$

$$= \left(\frac{1}{\sqrt{2\pi i}}\right)^{n} e^{-\frac{2\pi i}{12\pi i}} \left(\frac{x_{i} - u_{i}}{2}\right)^{2}$$

$$\Rightarrow \sup_{\Theta_{0}} L(\theta \mid \mathbf{X}_{n}) = \left(\frac{1}{\sqrt{2\pi i}}\right)^{n} e^{-\frac{2\pi i}{12\pi i}} \left(\frac{x_{i} - u_{i}}{2}\right)^{2}$$

$$\Rightarrow \sup_{\Theta_{0}} L(\theta \mid \mathbf{X}_{n}) = \left(\frac{1}{\sqrt{2\pi i}}\right)^{n} e^{-\frac{2\pi i}{12\pi i}} \left(\frac{x_{i} - u_{i}}{2}\right)^{2}$$

$$\Rightarrow \sup_{\Theta_{0}} L(\theta \mid \mathbf{X}_{n}) = \left(\frac{1}{\sqrt{2\pi i}}\right)^{n} e^{-\frac{2\pi i}{12\pi i}} \left(\frac{x_{i} - u_{i}}{2}\right)^{2}$$

Thus
$$\lambda(X_n) = \frac{1}{\sqrt{|x_n|^2}} e^{-\frac{1}{2}(X_n^2 - |x_0|^2)^2}$$

$$= e^{-\frac{1}{2} \left\{ \frac{1}{\sqrt{|x_n|^2}} e^{-\frac{1}{2}(X_n^2 - |x_0|^2)^2} - \frac{1}{\sqrt{|x_n|^2}} \frac{1}{\sqrt{|x_n|^2}} e^{-\frac{1}{2}(X_n^2 - |x_0|^2)^2} \right\}}$$

$$= e^{-\frac{1}{2} \left\{ \frac{1}{\sqrt{|x_n|^2}} e^{-\frac{1}{2}(X_n^2 - |x_0|^2)^2} - \frac{1}{\sqrt{|x_n|^2}} \frac{1}{\sqrt{|x_n|^2}} e^{-\frac{1}{2}(X_n^2 - |x_0|^2)^2} - \frac{1}{\sqrt{|x_n|^2}} \frac{1}{\sqrt{|x_n|^2}} e^{-\frac{1}{2}(X_n^2 - |x_0|^2)^2} - \frac{1$$

Tomorrow ...

- Prescribe a significance level α for a test;
- P-value; Uniformly most powerful test.