Section 2 Math 2202 Vector Addition, Dot and Cross Product

1. **Resultant Forces** (Stewart 9.2 Example 7) A 100-lb weight hangs from two wires as shown below

Find tensions (forces) T_1 and T_2 in both wires and the magnitudes of the tensions.

2. Scalar Triple Product

FIGURE 7

The product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ is called the **scalar triple product** of the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} . Its geometric significance can be seen by considering the parallelepiped determined by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} . (See Figure 7.) The area of the base parallelogram is $A = |\mathbf{b} \times \mathbf{c}|$. If θ is the angle between the vectors \mathbf{a} and $\mathbf{b} \times \mathbf{c}$, then the height h of the parallelepiped is $h = |\mathbf{a}| |\cos \theta|$. (We must use $|\cos \theta|$ instead of $\cos \theta$ in case $\theta > \pi/2$.) Thus the volume of the parallelepiped is

$$V = Ah = |\mathbf{b} \times \mathbf{c}| |\mathbf{a}| |\cos \theta| = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Therefore we have proved the following:

The volume of the parallelepiped determined by the vectors ${\bf a},\,{\bf b},$ and ${\bf c}$ is the magnitude of their scalar triple product:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Instead of thinking of the parallelepiped as having its base parallelogram determined by ${\bf b}$ and ${\bf c}$, we can think of it with base parallelogram determined by ${\bf a}$ and ${\bf b}$. In this way, we see that

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

- 3. Consider the four points in \mathbb{R}^3 , K(1,2,3), L(1,3,6), M(3,8,6) and N(3,7,3).
 - (a) Show that the vectors \overrightarrow{KL} , \overrightarrow{KM} and \overrightarrow{KN} are coplanar. Explain why this means that K, L, M and N all lie in the same plane.
 - (b) From part (a) we know that K, L, M and N are the vertices of a quadrilateral. Explain how you can tell that this quadrilateral is actually a parallelogram.
 - (c) (Stewart 9.4 #22) Find the area of the parallelogram with vertices K, L, M and N.
 - (d) What is the area of the triangle with vertices K, L, and M? How about the triangle with vertices L, M, N?
 - (e) (To think about...) How many other points N' (different from N) are there such that K, L, M and N' form a parallelogram.