DATA STRUCTURES AND ALGORITHMS SYLLABUS

Module 1: Algorithm Analysis

- Importance of algorithms and data structures
- Fundamentals of algorithm analysis
 - Space and time complexity
 - Asymptotic notations and orders of growth
 - Algorithm efficiency: Best case, worst case, average case
 - Analysis of non-recursive and recursive algorithms
 - Asymptotic analysis for recurrence relations
 - Iteration Method
 - Substitution Method
 - Master Method
 - Recursive Tree Method

Module 2: Linear Data Structures

- Arrays: 1D and 2D
- Stack
 - Applications: Expression Evaluation, Conversion of Infix to Postfix and Prefix, Tower of Hanoi
- Queue
 - Types: Circular Queue, Double Ended Queue (deQueue)
 - Applications
- List
 - Singly Linked Lists, Doubly Linked Lists, Circular Linked Lists
 - o Applications: Polynomial Manipulation

Module 3: Searching and Sorting

- Searching
 - Linear Search, Binary Search
 - Applications
- Sorting
 - Insertion Sort, Selection Sort, Bubble Sort, Counting Sort, Quick Sort, Merge Sort
 - Analysis of sorting algorithms

Module 4: Trees

- Binary Tree
 - Definition and Properties
 - Tree Traversals
 - Expression Trees
- Binary Search Trees (BST)
 - Operations: Insertion, Deletion, Finding Min and Max, Finding the kth Minimum Element

Module 5: Graphs

- Terminology
- Representation of Graphs
- Graph Traversal
 - Breadth First Search (BFS)
 - Depth First Search (DFS)
- Minimum Spanning Tree
 - Prim's Algorithm
 - Kruskal's Algorithm
 - Single Source Shortest Path

 O Dijkstra's Algorithm

Module 6: Hashing

- Hash Functions
- Separate Chaining
- Open Hashing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- Closed Hashing
 - Random Probing
 - o Rehashing
 - Extendible Hashing

Module 7: Heaps and AVL Trees

- Heaps
 - Heap Sort
 - Applications
 - Priority Queue using Heaps
- AVL Trees
 - Terminology
 - o Basic Operations: Rotation, Insertion, Deletion

PAJAMA PADHAI