Задание

DONE

- 1) Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного наб
- 2) Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структур
- 3) Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масшт
- 4) Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности пос
- 5) Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и
- 6) Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо ис
- 7) Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8) Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Произ
- 9) Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации
- 10) Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества пол
- 11) Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сра

1. Выбор и подготовка набора данных

Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных я должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.

В качестве набора данных мы будем использовать набор данных по прогнозирование сердечной недостаточности https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data

Эта задача является очень актуальной для создания т.к. сердечной недостаточности являются причиной смерти номер 1 в мире, унося, по оценкам, 17,9 миллиона жизней каждый год, что составляет 31% всех смертей в мире.

Датасет состоит из файла:

```
heart_failure_clinical_records_dataset.txt - выборка
```

Каждый файл содержит следующие колонки:

```
age - возраст (года)
```

Стр. 1 из 29 02.06.2022, 18:58

X

```
creatinine_phosphokinase - Уровень фермента КФК в крови (мкг/л)
diabetes - Если у пациента диабет (логическое значение)
ejection_fraction - Процент крови, покидающей сердце при каждом сокращении (в процентах)
high_blood_pressure - Если у пациента гипертония (логическое значение)
platelets - Тромбоциты в крови (килограмм тромбоцитов/мл)
serum_creatinine - Уровень сывороточного креатинина в крови (мг/дл)
serum_sodium - Уровень натрия в сыворотке крови (мэкв/л)
sex - Woman or man (binary)
smoking - Если пациент курит или нет (логическое значение)
time - Период наблюдения (дни)

DEATH_EVENT - Если пациент умер в течение периода наблюдения (логическое значение)
```

В рассматриваемом примере будем решать обе задачу классификации:

Для решения задачи классификации в качестве целевого признака будем использовать "DEATH_EVENT". По

Импорт библиотек

Импортируем библиотеки с помощью команды import. Как правило, все команды import размещают в первых ячейках ноутбука.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.io as pio
import plotly.express as px
import plotly.figure_factory as ff
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
from sklearn.metrics import roc_curve, roc_auc_score, accuracy_score, confusion_matrix, plo
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from scipy.stats import randint, uniform
```

Стр. 2 из 29 02.06.2022, 18:58

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score, ConfusionMatri

скроем предупреждения о возможных ошибках для лучшей читаемости import warnings warnings ('ignore')

Дополнительные библиотеки для дополнения отчета

Голова таблицы

data = pd.read_csv('./heart_failure_clinical_records_dataset.csv')
data.head()

	age	anaemia	<pre>creatinine_phosphokinase</pre>	diabetes	ejection_fraction	high_blood_p
0	75.0	0	582	0	20	
1	55.0	0	7861	0	38	
2	65.0	0	146	0	20	
3	50.0	1	111	0	20	
4	65.0	1	160	1	20	

data.describe()

	age	anaemia	<pre>creatinine_phosphokinase</pre>	diabetes	ejection_fraction
count	299.000000	299.000000	299.000000	299.000000	299.000000
mean	60.833893	0.431438	581.839465	0.418060	38.083612
std	11.894809	0.496107	970.287881	0.494067	11.834841
min	40.000000	0.000000	23.000000	0.000000	14.000000
25%	51.000000	0.000000	116.500000	0.000000	30.000000
50%	60.000000	0.000000	250.000000	0.000000	38.000000
75%	70.000000	1.000000	582.000000	1.000000	45.000000
max	95.000000	1.000000	7861.000000	1.000000	80.000000

print("Pasmep нaбopa:")
print(f'B датасете {data.shape[0]} строк и {data.shape[1]} колонок.')

Стр. 3 из 29 02.06.2022, 18:58

```
Размер набора:
В датасете 299 строк и 13 колонок.
```

Проведем удаление лишних столбцов. Просмотрев все столбцы, оказалось, что они все нужны.

2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.

Проверим пропуски:

```
data.isnull().sum()
```

age	0
anaemia	0
creatinine_phosphokinase	0
diabetes	0
ejection_fraction	0
high_blood_pressure	0
platelets	0
serum_creatinine	0
serum_sodium	0
sex	0
smoking	0
time	0
DEATH_EVENT	0
dtype: int64	

Как видим, пропуски отсутствуют

Проверим датасет на сбалансированность.

```
data['DEATH_EVENT'].value_counts()

0 203
1 96
Name: DEATH_EVENT, dtype: int64

total = data.shape[0]
class_0, class_1 = data['DEATH_EVENT'].value_counts()
print('Сердечная недостаточность v {}%. a ee отсутствие составляет {}% в представленной выб
```

Стр. 4 из 29 02.06.2022, 18:58

.format(round(class_1 / total, 4)*100, round(class_0 / total, 4)*100))

Сердечная недостаточность у 32.11%, а ее отсутствие составляет 67.89% в представленно

Вывод. Дисбаланс классов присутствует, но является приемлемым.

Построение графиков для понимания структуры данных

sns.pairplot(data, hue="DEATH_EVENT")

Стр. 5 из 29 02.06.2022, 18:58

Убедимся, что целевой признак для задачи бинарной классификации содержит только 0 и 1

Скрипичные диаграммы для числовых колонок

```
for col in ['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_cre
    fig, ax = plt.subplots(2, 1, figsize=(10,10))
    sns.violinplot(ax=ax[0], x=data[col])
    sns.distplot(data[col], ax=ax[1])
```


Стр. 6 из 29 02.06.2022, 18:58

4. (Перед пунктом 3) Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения.

fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(20,10))

Стр. 7 из 29 02.06.2022, 18:58

sns.heatmap(data.corr(), annot=True, fmt='.2f')

<AxesSubplot:>

Стр. 8 из 29

fig2.show()

Мы не удалили некоторые категориальные параметры, которые могут влиять на общую картину.

Проверим их корелляцию с другими параметрами.

```
fig2 = px.violin(data, y="age", x="sex", color="DEATH_EVENT", box=True, points="all", hover fig2.update_layout(title_text="Analysis in Age and Sex on Survival Status")

fig2.show()

fig2 = px.violin(data, y="age", x="smoking", color="DEATH_EVENT", box=True, points="all", fig2.update_layout(title_text="Analysis in Age and Smoking on Survival Status")

fig2.show()

Чтобы изменить содержимое ячейки, дважды нажмите на нее (или выберите "Ввод")

fig2 = px.violin(data, y="age", x="diabetes", color="DEATH_EVENT", box=True, points="all", fig2.update_layout(title_text="Analysis in Age and Diabetes on Survival Status")
```

На основе корреляционной матрицы и других графиков можно сделать следующие выводы:

- 1) Целевой признак классификации "DEATH_EVENT" наиболее сильно коррелирует с возрастом (0,25); про
- 2) У нас нет признаков которые имеют корреляцию, близкую по модулю к 1, поэтому никакие признаки н
- 3) Однако у нас существуют признаки, которые близки по модулю к 0 по отношению к целевому параметр

 а) diabetes Если у пациента диабет (0.00)

Стр. 9 из 29 02.06.2022, 18:58

```
ט) sex - woman or man (בוחמרy) (טיט.ט)
```

- c) smoking Если пациент курит или нет (логическое значение) (0.01)
- 4) Большие по модулю значения коэффициентов корреляции свидетельствуют о значимой корреляции между
- 5) В исследовании учавствовало меньше женщин, чем мужчин.
- 3. (После пункта 4) Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.

data.dtypes

```
float64
age
                             int64
anaemia
creatinine_phosphokinase
                             int64
diabetes
                            int64
ejection_fraction
                            int64
high_blood_pressure
                            int64
platelets
                           float64
                         float64
serum_creatinine
                             int64
serum_sodium
                             int64
sex
smoking
                             int64
time
                             int64
DEATH_EVENT
                             int64
dtype: object
```

Вспомогательные признаки для улучшения качества моделей мы строить не будем.

```
# Числовые колонки для масштабирования
scale_cols = ['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_c

data_scaled = data

sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data_scaled[scale_cols])

# Добавим масштабированные данные в набор данных
```

Стр. 10 из 29 02.06.2022, 18:58

```
for i in range(len(scale_cols)):
    col = scale_cols[i]
    new_col_name = col + '_scaled'
    data_scaled[new_col_name] = sc1_data[:,i]
```

data_scaled.head()

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_p
0	75.0	0	582	0	20	
1	55.0	0	7861	0	38	
2	65.0	0	146	0	20	
3	50.0	1	111	0	20	
4	65.0	1	160	1	20	

Теперь удалим ненормализованные колонки

data_scaled = data_scaled.drop(scale_cols, axis=1)
data_scaled.head()

	anaemia	diabetes	high_blood_pressure	sex	smoking	DEATH_EVENT	age_scaled	cre
0	0	0	1	1	0	1	0.636364	
1	0	0	0	1	0	1	0.272727	
2	0	0	0	1	1	1	0.454545	
3	1	0	0	1	0	1	0.181818	
4	1	1	0	0	0	1	0.454545	

data_scaled = data_scaled.reindex(columns=['age_scaled', 'anaemia', 'creatinine_phosphokinase

fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(20,10))
sns.heatmap(data_scaled.corr(), annot=True, fmt='.2f')

<AxesSubplot:>

Стр. 11 из 29 02.06.2022, 18:58

Так как таблица корелляции не была изменена после нормализации, мы можем продолжить работу.

Стр. 12 из 29 02.06.2022, 18:58

p - 1 1 - p - 2 - 2

5. Выбор метрик для последующей оценки качества моделей.

В качестве метрик для решения задачи классификации будем использовать:

Метрики, формируемые на основе матрицы ошибок:

Метрика precision:

Можно переводить как точность, но такой перевод совпадает с переводом метрики "accuracy".

$$precision = rac{TP}{TP+FP}$$

Доля верно предсказанных классификатором положительных объектов, из всех объектов, которые классификатор верно или неверно определил как положительные.

Используется функция <u>precision_score.</u>

Метрика recall (полнота):

$$recall = rac{TP}{TP+FN}$$

Доля верно предсказанных классификатором положительных объектов, из всех действительно положительных объектов.

Используется функция <u>recall_score.</u>

Метрика F_1 -мера

Для того, чтобы объединить precision и recall в единую метрику используется F_{eta} -мера, которая вычисляется как среднее гармоническое от precision и recall:

$$F_{eta} = (1+eta^2) \cdot rac{precision \cdot recall}{precision + recall}$$

где eta определяет вес точности в метрике.

На практике чаще всего используют вариант F1-меры (которую часто называют F-мерой) при $\beta=1$:

$$F_1 = 2 \cdot rac{precision \cdot recall}{precision + recall}$$

Для вычисления используется функция <u>f1_score.</u>

MATDIAKA ROC ALIC

Стр. 13 из 29 02.06.2022, 18:58

MICI PRING NOO AOO

Основана на вычислении следующих характеристик:

 $TPR = rac{TP}{TP+FN}$ - True Positive Rate, откладывается по оси ординат. Совпадает с recall.

 $FPR=rac{FP}{FP+TN}$ - False Positive Rate, откладывается по оси абсцисс. Показывает какую долю из объектов отрицательного класса алгоритм предсказал неверно.

Идеальная ROC-кривая проходит через точки (0,0)-(0,1)-(1,1), то есть через верхний левый угол графика.

Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации.

В качестве количественной метрики используется площадь под кривой - ROC AUC (Area Under the Receiver Operating Characteristic Curve). Чем ниже проходит кривая тем меньше ее площадь и тем хуже качество классификатора.

Для получения ROC AUC используется функция roc_auc_score.

Сохранение и визуализация метрик

Разработаем класс, который позволит сохранять метрики качества построенных моделей и реализует визуализацию метрик качества.

class MetricLogger:

Стр. 14 из 29 02.06.2022, 18:58

```
temp_data = self.df[self.df['metric']==metric]
    temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
    return temp_data_2['alg'].values, temp_data_2['value'].values
def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
    Вывод графика
    array_labels, array_metric = self.get_data_for_metric(metric, ascending)
    fig, ax1 = plt.subplots(figsize=figsize)
    pos = np.arange(len(array_metric))
    rects = ax1.barh(pos, array_metric,
                     align='center',
                     height=0.5,
                     tick_label=array_labels)
    ax1.set_title(str_header)
    for a,b in zip(pos, array_metric):
        plt.text(0.5, a-0.05, str(round(b,3)), color='white')
    plt.show()
```

6. Выбор наиболее подходящих моделей для решения задачи классификации

Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.

Для задачи классификации будем использовать следующие модели:

- Логистическая регрессия
- Метод ближайших соседей
- Решающее дерево
- Случайный лес (ансамблевая)
- Градиентный бустинг (ансамблевая)

7. Формирование обучающей и тестовой выборок на основе исходного набора данных.

```
X = data_scaled.drop('DEATH_EVENT', axis=1)
Y = data_scaled['DEATH_EVENT']
```

Стр. 15 из 29 02.06.2022, 18:58

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=2)
print('{}, {}'.format(X_train.shape, X_test.shape))
print('{}, {}'.format(Y_train.shape, Y_test.shape))

(209, 12), (90, 12)
 (209,), (90,)
```

8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.

```
models =
            {'LogR': LogisticRegression(),
            'KNN_3':KNeighborsClassifier(n_neighbors=3),
            'Tree':DecisionTreeClassifier(),
            'RF':RandomForestClassifier(),
            'GB':GradientBoostingClassifier()}
clasMetricLogger = MetricLogger()
accuracies = {}
# Отрисовка ROC-кривой
def draw_roc_curve(y_true, y_score, ax, pos_label=1, average='micro'):
    fpr, tpr, thresholds = roc_curve(y_true, y_score,
                                     pos_label=pos_label)
    roc_auc_value = roc_auc_score(y_true, y_score, average=average)
   #plt.figure()
   lw = 2
    ax.plot(fpr, tpr, color='darkorange',
             lw=lw, label='ROC curve (area = %0.2f)' % roc_auc_value)
    ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
    ax.set_xlim([0.0, 1.0])
    ax.set_xlim([0.0, 1.05])
    ax.set_xlabel('False Positive Rate')
    ax.set_ylabel('True Positive Rate')
    ax.set_title('Receiver operating characteristic')
    ax.legend(loc="lower right")
clas_X_train = X_train
clas_Y_train = Y_train
```

Стр. 16 из 29 02.06.2022, 18:58

```
clas_X_test = X_test
clas_Y_test = Y_test
def clas train model(model name, model, clasMetricLogger):
    model.fit(clas_X_train, clas_Y_train)
    # Предсказание значений
   Y_pred = model.predict(clas_X_test)
   # Предсказание вероятности класса "1" для roc auc
    Y_pred_proba_temp = model.predict_proba(clas_X_test)
   Y_pred_proba = Y_pred_proba_temp[:,1]
   precision = precision_score(clas_Y_test.values, Y_pred)
    recall = recall_score(clas_Y_test.values, Y_pred)
    f1 = f1_score(clas_Y_test.values, Y_pred)
    roc_auc = roc_auc_score(clas_Y_test.values, Y_pred_proba)
    clasMetricLogger.add('precision', model_name, precision)
    clasMetricLogger.add('recall', model_name, recall)
    clasMetricLogger.add('f1', model_name, f1)
    clasMetricLogger.add('roc_auc', model_name, roc_auc)
   fig, ax = plt.subplots(ncols=2, figsize=(10,5))
    draw_roc_curve(clas_Y_test.values, Y_pred_proba, ax[0])
    plot_confusion_matrix(model, clas_X_test, clas_Y_test.values, ax=ax[1],
                      display_labels=['0','1'],
                      cmap=plt.cm.Blues, normalize='true')
   fig.suptitle(model_name)
    plt.show()
for model name, model in models.items():
   model.fit(X_train,Y_train)
   y pred = model.predict(X test)
   y_prob = model.predict_proba(X_test)[:,1]
    cm = confusion_matrix(Y_test, y_pred)
    clas train model(model name, model, clasMetricLogger)
    print(classification_report(Y_test, y_pred))
    print(f'ROC AUC score: {roc_auc_score(Y_test, y_prob)}')
    print('Accuracy Score: ',accuracy_score(Y_test, y_pred))
    acc = accuracy_score(Y_test, y_pred)*100
    accuracies[model name] = acc
```

LogR

Receiver operating characteristic

Стр. 17 из 29 02.06.2022, 18:58

Стр. 18 из 29 02.06.2022, 18:58

9. Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.

Подбор по примеру курса

first_grid = GridSearchCV(LogisticRegression(),param_grid = [{'C':[0.25,0.5,0.75,1], 'randor
first_grid.fit(clas_X_train, clas_Y_train)

```
► GridSearchCV
► estimator: LogisticRegression

► LogisticRegression
```

first_grid.best_estimator_

```
    LogisticRegression

LogisticRegression(C=1, random_state=0)
```

Стр. 19 из 29 02.06.2022, 18:58

```
first_grid.best_score_
     0.789198606271777
second_grid = GridSearchCV(KNeighborsClassifier(),param_grid = [{'n_neighbors':KN_range_lighter}]
second_grid.fit(clas_X_train, clas_Y_train)
               GridSearchCV
      ▶ estimator: KNeighborsClassifier
            ▶ KNeighborsClassifier
second_grid.best_estimator_
              KNeighborsClassifier
     KNeighborsClassifier(n_neighbors=11)
second_grid.best_score_
     0.7227642276422765
third_grid = GridSearchCV(DecisionTreeClassifier(),param_grid = [{'criterion':['gini','entr
third_grid.fit(clas_X_train, clas_Y_train)
            GridSearchCV
      ▶ estimator: DecisionTreeClassifier
            ▶ DecisionTreeClassifier
third_grid.best_estimator_
              DecisionTreeClassifier
     DecisionTreeClassifier(random_state=0)
third_grid.best_score_
     0.770267131242741
fourth_grid = GridSearchCV(RandomForestClassifier(),param_grid = [{'n_estimators':thirty_randomForestClassifier()}
```

Стр. 20 из 29 02.06.2022, 18:58

```
tourth_grid.tit(clas_X_train, clas_Y_train)
            GridSearchCV
      ▶ estimator: RandomForestClassifier
           ▶ RandomForestClassifier
fourth_grid.best_estimator_
                      RandomForestClassifier
     RandomForestClassifier(n_estimators=33, random_state=0)
fourth_grid.best_score_
     0.851800232288037
# GradientBoostingClassifier(),[{'n_estimators':n_range_list,'criterion':['friedman_mse','n
fifth_grid = GridSearchCV(GradientBoostingClassifier(),param_grid = [{'n_estimators':thirty
fifth_grid.fit(clas_X_train, clas_Y_train)
                  GridSearchCV
      ▶ estimator: GradientBoostingClassifier
           ▶ GradientBoostingClassifier
fifth_grid.best_estimator_
                             GradientBoostingClassifier
     GradientBoostingClassifier(learning_rate=1, loss='deviance', n_estimators=25,
                               random state=0)
fifth_grid.best_score_
     0.827526132404181
Продолжим поиск по моему методу (через цикл)
for i,j in grid_models:
```

Стр. 21 из 29 02.06.2022, 18:58

grid = GridSearchCV(estimator=i,param_grid = j, scoring = 'accuracy',cv=5)

grid.fit(X_train, Y_train)

```
best_accuracy = grid.best_score_
best_param = grid.best_params_
print('{}:\nBest Accuracy : {:.2f}%'.format(i,best_accuracy*100))
print('Best Parameters : ',best_param)
print('')
print('----')
print('')
 LogisticRegression():
 Best Accuracy: 78.92%
 Best Parameters : {'C': 1, 'random_state': 0}
 -----
 KNeighborsClassifier():
 Best Accuracy: 72.28%
 Best Parameters : {'n_neighbors': 11}
 DecisionTreeClassifier():
 Best Accuracy : 77.03%
 Best Parameters : {'criterion': 'gini', 'random_state': 0}
 -----
 RandomForestClassifier():
 Best Accuracy: 84.22%
 Best Parameters : {'criterion': 'gini', 'n_estimators': 30, 'random_state': 0}
 GradientBoostingClassifier():
 Best Accuracy: 82.28%
 Best Parameters : {'criterion': 'friedman_mse', 'learning_rate': 1, 'loss': 'exponen
```

10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров.

Сравнение качества полученных моделей с качеством baseline-моделей.

Стр. 22 из 29 02.06.2022, 18:58

```
'GB25':GradientBoostingClassifier(criterion = 'friedman_mse', learning
params_accuracies = {}

for model_name, model in models_params.items():
    model.fit(X_train,Y_train)
    y_pred = model.predict(X_test)
    y_prob = model.predict_proba(X_test)[:,1]
    cm = confusion_matrix(Y_test, y_pred)

    clas_train_model(model_name, model, clasMetricLogger)

    print(classification_report(Y_test, y_pred))
    print(f'ROC AUC score: {roc_auc_score(Y_test, y_pred)})
    print('Accuracy Score: ',accuracy_score(Y_test, y_pred))

    param_acc = accuracy_score(Y_test, y_pred)*100
    params_accuracies[model_name] = param_acc
```


Стр. 23 из 29 02.06.2022, 18:58

for model_name, model in clas_models_grid.items():
 clas_train_model(model_name, model, clasMetricLogger)

Стр. 24 из 29 02.06.2022, 18:58

models_params =

{'LogR2': LogisticRegression(C = 1, random_state = 0),

Стр. 25 из 29 02.06.2022, 18:58

```
cm = contusion_matrix(Y_test, y_prea)
```

clas_train_model(model_name, model, clasMetricLogger_params)

print(classification_report(Y_test, y_pred))
print(f'ROC AUC score: {roc_auc_score(Y_test, y_prob)}')
print('Accuracy Score: ',accuracy_score(Y_test, y_pred))

param_acc = accuracy_score(Y_test, y_pred)*100
params_accuracies[model_name] = param_acc

KNN_14

Стр. 26 из 29 02.06.2022, 18:58

11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

```
# Метрики качества модели

clas_metrics = clasMetricLogger_params.df['metric'].unique()

clas_metrics

array(['precision', 'recall', 'f1', 'roc_auc'], dtype=object)

# Построим графики метрик качества модели

for metric in clas_metrics:

    clasMetricLogger_params.plot('Метрика: ' + metric, metric, figsize=(7, 6))
```


Стр. 27 из 29 02.06.2022, 18:58

Вывод: на основании трех метрик из четырех используемых, лучшей оказалась модель "Случайный лес".

Стр. 28 из 29

Стр. 29 из 29