

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15010001101

FCC REPORT

Applicant: Shenzhen Elink-IOT Technology Co.Ltd.

Address of Applicant: Rm 13A06, Huafeng international commercial building, No.

4018 Xixiang Bao'an Shenzhen city, China

Equipment Under Test (EUT)

Product Name: Watcher Pendant

Model No.: EK-P2001

Trade mark: Elinkiot

FCC ID: 2AD3AEKP2001

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 07 Jan., 2015

Date of Test: 08 Jan., to 26 Jan., 2015

Date of report issued: 27 Jan., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Jan., 2015	Original

Prepared by: Date: 27 Jan., 2015

Report Clerk

Reviewed by: Date: 27 Jan., 2015

Project Engineer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	
4	TEST SUMMARY	
5	GENERAL INFORMATION	5
5	5.1 CLIENT INFORMATION	-
_	5.2 GENERAL DESCRIPTION OF E.U.T	
•	5.3 TEST ENVIRONMENT AND MODE	
_	5.4 LABORATORY FACILITY	
•	5.5 LABORATORY LOCATION	
_	i.6 DESCRIPTION OF SUPPORT UNITS	
5	7.7 TEST INSTRUMENTS LIST	
6	TEST RESULTS AND MEASUREMENT DATA	10
6	5.1 ANTENNA REQUIREMENT:	10
6	5.2 CONDUCTED EMISSIONS	11
6	CONDUCTED OUTPUT POWER	14
6	6.4 OCCUPY BANDWIDTH	
6	5.5 POWER SPECTRAL DENSITY	21
6	6.6 BAND EDGE	
	6.6.1 Conducted Emission Method	
	6.6.2 Radiated Emission Method	
6	5.7 Spurious Emission	_
	6.7.1 Conducted Emission Method	
	6.7.2 Radiated Emission Method	34
7	TEST SETUP PHOTO	39
8	EUT CONSTRUCTIONAL DETAILS	41

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Elink-IOT Technology Co.,Ltd.
Address of Applicant:	Rm 13A06, Huafeng international commercial building, No. 4018 Xixiang Baoan Shenzhen city, China
Manufacturer:	Antai Electronic Technology Co.Ltd.
Address of Manufacturer:	Room 1221, Hongyu Building, Longuang East Road, Longhua New District, Shenzhen 518109, China
Factory:	Antai Electronic Technology Co.Ltd.
Address of Manufacturer:	Building E, 22, Yuhua Street, 138 Industrial Park, Tangxia Town, Dongguang 523710, China

5.2 General Description of E.U.T.

Watcher Pendant
EK-P2001
2430MHz~2460MHz
31
1MHz
GFSK
250kbps, 1Mbps, 2Mbps
Internal Antenna
1.4 dBi
Rechargeable Li-ion Battery DC3.7V-130mAh

Operation Frequency each of channel For 2.4G Transmitter							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2430MHz	9	2438MHz	17	2446MHz	25	2454MHz
2	2431MHz	10	2439MHz	18	2447MHz	26	2455MHz
3	2432MHz	11	2440MHz	19	2448MHz	27	2456MHz
4	2433MHz	12	2441MHz	20	2449MHz	28	2457MHz
5	2434MHz	13	2442MHz	21	2450MHz	29	2458MHz
6	2435MHz	14	2443MHz	22	2451MHz	30	2459MHz
7	2436MHz	15	2444MHz	23	2452MHz	31	2460MHz
8	2437MHz	16	2445MHz	24	2453MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.4G Transmitter

Channel	Frequency
The lowest channel	2430MHz
The middle channel	2445MHz
The Highest channel	2460MHz

Report No: CCIS15010001301

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 250kbps. Duty cycle setting during the transmission is 100% with maximum power setting for modulation.

Peport No: CCIS15010001301

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	Laptop	INSPIRON M4010	B1LMVP1	DoC

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	04-01-2015	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-10-2015	
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.4 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207	7		
Test Method:				
	ANSI C63.4:2003			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto		
Limit:	Frequency range (MHz)	Limit (c	lBuV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
-	* Decreases with the logarithn			
Test setup:	Reference Plane	!	-	
	AUX Equipment E.U.T EMI Receiver Remark E.U.T. Equipment Under Test LISM Line Impedence Stabilization Network Test table height=0.8m			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Bluetooth (Continuous transmitting) mode			
Test results:	Pass			
restresuits.	F 435			

Measurement Data

Line:

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE : 011RF Site Condition

: U11RF
Model : EK-P2001
Test Mode : 2.4G-Transmitter Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey
Remark :

NOMAL A	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∀	dB	<u>dB</u>	dBu₹	dBu∜	dB		
1	0.186	43.11	0.28	10.76	54.15	64.20	-10.05	QP	
2	0.186	30.26	0.28	10.76	41.30	54.20	-12.90	Average	
3	0.249	33.27	0.27	10.75	44.29	61.78	-17.49	QP	
1 2 3 4 5 6 7 8	0.258	23.30	0.27	10.75	34.32	51.51	-17.19	Average	
5	0.270	21.46	0.27	10.75	32.48	51.12	-18.64	Average	
6	0.313	31.89	0.26	10.74	42.89	59.88	-16.99	QP	
7	0.337	31.69	0.27	10.73	42.69	59.27	-16.58	QP	
8	0.337	20.75	0.27	10.73	31.75	49.27	-17.52	Average	
9	0.377	31.10	0.28	10.72	42.10	58.34	-16.24	QP	
10	0.377	18.77	0.28	10.72	29.77	48.34	-18.57	Average	
11	0.398	30.84	0.28	10.72	41.84	57.90	-16.06	QP	
12	0.398	17.60	0.28	10.72	28.60	47.90	-19.30	Average	

Neutral:

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Condition

Pro : 011RF : EK-P2001 Model

Test Mode : 2.4G-Transmitter Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey

Remark

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB	₫B	dBu₹	dBu∜	dB	
1	0.190	27.58	0.25	10.76	38.59	54.02	-15.43	Average
2	0.194	40.91	0.25	10.76	51.92	63.84	-11.92	QP
3	0.202	40.75	0.25	10.76	51.76	63.54	-11.78	QP
1 2 3 4 5 6 7 8 9	0.202	28.67	0.25	10.76	39.68	53.54	-13.86	Average
5	0.249	32.81	0.26	10.75	43.82	61.78	-17.96	QP
6	0.253	20.98	0.26	10.75	31.99	51.64	-19.65	Average
7	0.262	21.25	0.26	10.75	32.26	51.38	-19.12	Average
8	0.270	31.70	0.26	10.75	42.71	61.12	-18.41	QP
9	0.330	31.59	0.26	10.73	42.58	59.44	-16.86	QP
10	0.337	18.88	0.26	10.73	29.87	49.27	-19.40	Average
11	0.373	16.74	0.25	10.73	27.72	48.43	-20.71	Average
12	0.385	29.06	0.25	10.72	40.03	58.17	-18.14	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.60		
Middle	-0.47	30.00	Pass
Highest	-0.34		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	NSI C63.4:2003 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.54		
Middle	0.54	>500	Pass
Highest	0.58		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.69		
Middle	1.04	N/A	N/A
Highest	1.19		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-1.34		
Middle	-0.67	8.00	Pass
Highest	-0.63		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 20						
Test Frequency Range:	2.3GHz to 2.5G						
Test site:	Measurement D						
	Weasurement	istance. Sin					
Receiver setup:	Frequency Above 1GHz	Detector Peak RMS	RBW 1MHz 1MHz	VBW 3MHz 3MHz	Remark Peak Value Average Value		
Limit:		11110	1111112	OWNIE	Average value		
	Freque	ency	Limit (dBuV/	/m @3m)	Remark		
	Above 1GHz		54.0		Average Value		
Test Procedure:			74.0		Peak Value		
Test setup:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier						
Test Instruments:	Refer to section	5.6 for details					
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Watcher Card Site Condition

EUT Model : EK-P2001 Test mode : 2.4G-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜		<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
	2390.000 2390.000									

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Watcher Card Condition

watcher Carc

Model : EK-P2001

Test mode : 2.4G-L Mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C

Test Engineer: Carey

REMARK : EUT

Huni:55%

1 2

ıxı :	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level					100000000000000000000000000000000000000		Remark
MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
2390.000 2390.000	7,000,000,000	7500 (5105151)	C 5/51/5/61	0.00 0.00				Peak Average

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Watcher Card : EK-P2001 Model Test mode : 2.4G-H Mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK

	V.								
	-	Read	Intenna	Cable	Preamp		Limit	Over	B 1
	Freq	rever	Factor	Loss	ractor	Level	Line	Limit	Kemark
	MHz	dBu₹	_dB/m	₫B	₫B	dBuV/m	dBuV/m	₫₿	
1 2	2483.500 2483.500								100 LOS CONTOS CO.

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Watcher Card Condition

: Watcher Card

Model : EK-P2001

Test mode : 2.4G-H Mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
MHz	dBu₹	dB/m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		-
2483.500 2483.500									

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 15.JAN.2015 16:17:34

30MHz~25GHz

Middle channel

Date: 15.JAN.2015 16:18:03

30MHz~25GHz

Date: 15.JAN.2015 16:19:20

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4:200)3						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
·	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	30MHz-1GHz Quasi-peak 120KHz 300KHz						
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frague	no./	Limit (dDu\/	/m @ 2m \	Domark			
	Freque 30MHz-8		Limit (dBuV) 40.0		Remark Quasi-peak Value			
	88MHz-21		43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-		54.0		Quasi-peak Value			
	Above 1GHz		54.0		Average Value			
			74.0		Peak Value			
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the normal and to find the normal and the nor	at a 3 meter of the position was set 3 meter which was mount to determine to the antender and vertical the rota table maximum reacceiver system and width with sion level of the ecified, then the would be reportant and would would would would as the position of the would be reportant and would would would as the position of the would be reportant and would would and would and would wou	camber. The standard standard in the highest read on the toried from one the maximum cal polarization was turned standard was turned standard in the maximum Hamilton and the EUT in peasesting could borted. Otherwas terested	table was rost radiation. The interfer op of a variation are meter to for a value of the ons of the are to heights from 0 degreeak Detect old Mode. It is mode was the stopped arise the emit one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a			

Below 1GHz

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: Watcher Card

: Watcher Card

Model : EK-P2001

Test mode : 2.4G- Transmitter Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

Freq								Remark
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
45.217	32.00	13.54	0.56	29.86	16.24	40.00	-23.76	QP
93.768	30.71	12.58	0.93	29.56	14.66	43.50	-28.84	QP
145.351	45.74	8.23	1.29	29.24	26.02	43.50	-17.48	QP
188.413	34.53	10.40	1.37	28.91	17.39	43.50	-26.11	QP
238.310	33.33	11.99	1.57	28.60	18.29	46.00	-27.71	QP
337.216	32.34	14.05	1.90	28.53	19.76	46.00	-26.24	QP
	MHz 45. 217 93. 768 145. 351 188. 413 238. 310	MHz dBuV 45.217 32.00 93.768 30.71 145.351 45.74 188.413 34.53 238.310 33.33	######################################	MHz dBuV dB/m dB 45.217 32.00 13.54 0.56 93.768 30.71 12.58 0.93 145.351 45.74 8.23 1.29 188.413 34.53 10.40 1.37 238.310 33.33 11.99 1.57	MHz dBuV dB/m dB dB 45.217 32.00 13.54 0.56 29.86 93.768 30.71 12.58 0.93 29.56 145.351 45.74 8.23 1.29 29.24 188.413 34.53 10.40 1.37 28.91 238.310 33.33 11.99 1.57 28.60	MHz dBuV dB/m dB dB dBuV/m 45.217 32.00 13.54 0.56 29.86 16.24 93.768 30.71 12.58 0.93 29.56 14.66 145.351 45.74 8.23 1.29 29.24 26.02 188.413 34.53 10.40 1.37 28.91 17.39 238.310 33.33 11.99 1.57 28.60 18.29	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dB dBuV/m dBuV/m 45.217 32.00 13.54 0.56 29.86 16.24 40.00 93.768 30.71 12.58 0.93 29.56 14.66 43.50 145.351 45.74 8.23 1.29 29.24 26.02 43.50 188.413 34.53 10.40 1.37 28.91 17.39 43.50 238.310 33.33 11.99 1.57 28.60 18.29 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 45.217 32.00 13.54 0.56 29.86 16.24 40.00 -23.76 93.768 30.71 12.58 0.93 29.56 14.66 43.50 -28.84 145.351 45.74 8.23 1.29 29.24 26.02 43.50 -17.48 188.413 34.53 10.40 1.37 28.91 17.39 43.50 -26.11 238.310 33.33 11.99 1.57 28.60 18.29 46.00 -27.71 38.413 34.53 34.

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: Watcher Card

Model : EK-P2001
Test mode : 2.4G- Transmitter Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

THURTH			•							
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>		
1	44.120	32.60	13.56	0.55	29.87	16.84	40.00	-23.16	QP	
2	55.805	37.23	12.99	0.66	29.80	21.08	40.00	-18.92	QP	
3	74.135	42.99	7.93	0.82	29.69	22.05	40.00	-17.95	QP	
2 3 4 5	89.905	36.07	11.90	0.91	29.57	19.31	43.50	-24.19	QP	
5	99.878	34.75	13.16	0.96	29.53	19.34	43.50	-24.16	QP	
6	145.861									

Above 1GHz

		Remark: Peak							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4860.00	47.26	31.57	8.96	40.17	47.62	74.00	-26.38	Vertical	
4860.00	46.64	31.57	8.96	40.17	47.00	74.00	-27.00	Horizontal	
		Test channe	l: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4860.00	37.92	31.57	8.96	40.17	38.28	54.00	-15.72	Vertical	
4860.00	36.02	31.57	8.96	40.17	36.38	54.00	-17.62	Horizontal	

		Remark: Peak							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4890.00	47.02	31.58	8.98	40.15	47.43	74.00	-26.57	Vertical	
4890.00	45.79	31.58	8.98	40.15	46.20	74.00	-27.80	Horizontal	
		Test channe	l: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4890.00	37.54	31.58	8.98	40.15	37.95	54.00	-16.05	Vertical	
4890.00	35.86	31.58	8.98	40.15	36.27	54.00	-17.73	Horizontal	

		Remark: Peak							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4920.00	47.62	31.69	9.08	40.03	48.36	74.00	-25.64	Vertical	
4920.00	46.97	31.69	9.08	40.03	47.71	74.00	-26.29	Horizontal	
		Test channel	: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4920.00	36.85	31.69	9.08	40.03	37.59	54.00	-16.41	Vertical	
4920.00	36.62	31.69	9.08	40.03	37.36	54.00	-16.64	Horizontal	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.