# Planificación y Administración de Redes: El nivel de enlace



IES Gonzalo Nazareno
CONSEJERÍA DE EDUCACIÓN

Jesús Moreno León Raúl Ruiz Padilla

j.morenol@gmail.com

Septiembre 2010

Estas diapositivas son una obra derivada de las transparencias del Grupo de Sistemas y Comunicaciones de la Universidad Rey Juan Carlos Puede encontrarse una versión de este documento en http://gsyc.es/moodle

© Jesús Moreno León, Raúl Ruiz Padilla, Septiembre de 2010

Algunos derechos reservados.

Este artculo se distribuye bajo la licencia 
"Reconocimiento-Compartirlgual 3.0 España" de Creative 
Commons, disponible en 
http://creativecommons.org/licenses/by-sa/3.0/es/deed.es

Este documento (o uno muy similar) esta disponible en (o enlazado desde) http://informatica.gonzalonazareno.org

#### Misiones del nivel de enlace

El nivel de enlace en la arquitectura TCP/IP incluye a los niveles físico y enlace de la torre OSI

### Misiones principales:

- Emisor: transformar los bits a transmitir por el medio en una señal
- Receptor: extraer de una señal del medio los bits transmitidos
- Gestionar el acceso al medio si es compartido
- Detectar errores de transmisión
- Opcionalmente, corregir errores o retransmitir

### Medios de transmisión

- Magnéticos
- Par trenzado
- Coaxial
- Fibra óptica
- Inalámbricos

### El nivel de enlace

En terminología OSI el nivel de enlace se dividía en dos subniveles:

| Nivel de Red                                 |  |  |  |  |
|----------------------------------------------|--|--|--|--|
| LLC (Subnivel de Control del Enlace Lógico)  |  |  |  |  |
| MAC (Subnivel de Control de Acceso al Medio) |  |  |  |  |
| Nivel Físico                                 |  |  |  |  |

- MAC: Gobierna el acceso a un medio compartido de varias máquinas
- LLC: se encarga de la gestión de errores

### El problema del acceso al medio

En un medio compartido, si dos o más equipos transmiten a la vez se produce una colisión



¿Cómo y cuándo asignar el canal físico a las distintas máquinas que lo comparten y quieren acceder a él?

### El problema del acceso al medio

- Asignación estática: se reparte el canal en tiempo (TDM) o en frecuencia (FDM). Bueno para tráficos pesados o constantes, malo para ráfagas.
- Asignación dinámica: no está prefijado el reparto, trata de aprovechar mejor las LAN
  - Acceso por contienda: las máquinas compiten por usar el medio.
     Aparecen las colisiones
  - Acceso por reserva: las máquinas pueden hacer reservas para usar el canal en exclusiva durante un tiempo

### Protocolo CSMA/CD

CSMA/CD (Carrier Sense Multiple Access with Colition Detection) Acceso múltiple con detección de portadora

Es un protocolo de acceso por contienda, utilizado en las tarjetas Ethernet

- Cuando una máquina quiere transmitir escucha en el canal
- Si está ocupado, espera a que quede libre
- Si está libre, transmite
- Mientras transmite, sigue escuchando para ver si alguien transmite a la vez, en cuyo caso, aborta la transmisión

### Protocolo CSMA/CD

### ¿Cuándo se producen las colisiones?

- Cuando dos estaciones deciden transmitir simultáneamente al ver el canal libre
- Cuando el canal parece libre pero no lo está, debido al retardo de propagación de los paquetes por la red

Caso patológico: dos estaciones quieren transmitir y ven que el canal está ocupado. Esperan a que quede libre y transmiten a la vez, colisionando. Y así indefinidamente

 Para evitarlo, en caso de colisión, las estaciones esperan un tiempo aleatorio antes de reintentar

# Protocolo CSMA/CD

### Vídeo



## Juego





# Protocolos de paso de testigo

Acceso al medio por reserva: existe un testigo o *token* que circula por la red. En todo momento sólo el poseedor del *token* puede transmitir por lo que desaparecen las colisiones.

Supone que las estaciones de la red se configuran como un anillo físico o lógico.



#### Detección de errores

Se introduce redundancia en los bits a transmitir con objeto de poder detectar en el destino si una trama ha llegado con errores

- Bit de paridad
- CRC
  - El cálculo del CRC se implementa con circuitos Hardware
  - El emisor añade 4 Bytes a cada trama transmitida con el CRC correspondiente
  - En recepción se cálcula el CRC que debería tener la trama recibida y se compara con el que viene en la trama. Si no concuerda se descarta la trama.

### Corrección automática de errores

Puede incluirse aún más redundancia en la información que se envía para, en caso de error, poder suponer cuáles eran los datos originales y corregir automáticamente los errores.

Se desaprovecha mucho la capacidad del canal. Sólo se utiliza cuando el medio de transmisión es simplex (ino se puede pedir retrasmisión!)

### Retransmisión de tramas perdidas o descartadas

#### Se utiliza:

- Cuando se pierden tramas
- Cuando se detecta un error en una trama recibida y se descarta

NOTA IMPORTANTE: No es obligatorio que el nivel de enlace retransmita tramas perdidas/descartadas. EN TCP/IP las retransmisiones las hace el TCP (nivel de transporte) y no el nivel de enlace.

### Protocolos de nivel de enlace en TCP/IP

- · Los más habituales:
  - Ethernet, Fast Ethernet, Gigabit Ethernet
  - Wifi
  - PPP
  - ADSL

#### Ethernet

Norma originalmente establecida por Xerox, DEC e Intel Medios compartidos con acceso mediante CSMA/CD Medios físicos: cable coaxial, par trenzado o fibra óptica Hasta 10 Mbps



#### Ethernet

#### 10 BaseT

- Cable UTP 3 o UTP 5: cuatro pares trenzados no blindados, se usa un par para transmitir y otro para recibir (full duplex)
- Conectores RJ45
- Un concentrador (hub) hace de bus. Lo que recibe por una boca lo retransmite por todas las demás. 10 Mbps entre todas las bocas
- Longitud máxima hasta el hub 100 m.

### Ethernet

### 10 BaseT

### Formato de trama



#### Fast Ethernet

IEEE 802.3u, 1995

Compatible con Ethernet, mismo formato de trama

100 Mbps

100 BaseTX: 2 pares UTP 5

100 Base T4: 4 pares UTP 3

100 Base FX: 2 fibras ópticas

# Gigabit Ethernet

IEEE 802.3z, 1998

Compatibilidad hacia atrás

1Gbps

Comenzó a utilizarse en redes troncales, aunque en la actualidad es normal encontrarlo en PCs

Desde el año 2006, XgbE o 10GbE

# Tecnologías Ethernet

| Tecnología | Velocidad de<br>transmisión | Tipo de cable                        | Distancia<br>máxima | Topología                                 |
|------------|-----------------------------|--------------------------------------|---------------------|-------------------------------------------|
| 10Base2    | 10 Mbps                     | Coaxial                              | 185 m               | Conector T                                |
| 10BaseT    | 10 Mbps                     | Par Trenzado                         | 100 m               | Hub o Switch                              |
| 10BaseF    | 10 Mbps                     | Fibra óptica                         | 2000 m              | Hub o Switch                              |
| 100BaseT4  | 100Mbps                     | Par Trenzado (categoría 3UTP)        | 100 m               | Half Duplex(hub) y Full<br>Duplex(switch) |
| 100BaseTX  | 100Mbps                     | Par Trenzado (categoría 5UTP)        | 100 m               | Half Duplex(hub) y Full<br>Duplex(switch) |
| 100BaseFX  | 100Mbps                     | Fibra óptica                         | 2000 m              | No permite el uso de hubs                 |
| 1000BaseT  | 1000Mbps                    | 4 pares trenzado (categoría<br>5UTP) | 100 m               | Full Duplex (switch)                      |
| 1000BaseSX | 1000Mbps                    | Fibra óptica (multimodo)             | 550 m               | Full Duplex (switch)                      |
| 1000BaseLX | 1000Mbps                    | Fibra óptica (monomodo)              | 5000 m              | Full Duplex (switch)                      |

### Wifi

Wi-Fi (Wireless Fidelity): Término registrado, promulgado por la Wi-Fi Alliance, para certificar productos IEEE 802.11 {abgn} capaces de interoperar con los de otros fabricantes.

El formato de trama es compatible con 802.3, aunque no idéntico (4 direcciones)

Dado que el medio inalámbrico es mucho más propenso a errores de transmisión, en Wi-Fi cada trama que se transmite debe ser asentida, y si no, se retransmite.

#### PPP: Point to Point Protocol

Es un protocolo pensado para encapsular IP sobre una línea serie

Se utiliza fundamentalmente para conectarse a Internet a través de la red telefónica básica mediante módem

# ADSL: Asymetric Digital Subscriber Line

Se usan 0-4 kHz para transmitir voz

En el resto de ancho de banda del cable viajan los datos

La centralita separa voz de datos y los transmite por separado

Ancho de banda asimétrico

ADSL es más bien un nivel físico, como nivel de enlace se usa cualquiera de los utilizados en líneas punto a punto

# Bibliografía



 A. Tanembaum, Redes de Computadores (4a ed.): Capítulos 3 y 4

Apartados: 4.1, 4.2, 4.3 y 4.7