Théorie de Teichmüller

Approfondissements sur les surfaces de Riemann 1

Surfaces de type fini 1.1

Définition. Une surface de type fini est une surface compacte privée d'un nombre fini de points.

Théorème. (Classification des surfaces à bord) Toute surface à bord de type fini est isomorphe à $\Sigma_{a,n,b}$:=

 $\Sigma_g \setminus \{p_1,...,p_n\}, \bigcup D_i$ où les D_i sont des disques ouverts. g est le genre, n le nombre de pointages et b le nombre

de composantes de la frontière. Le triplet (g,n,b) est la signature de la surface. En particulier, les surfaces fermées sont entièrement déterminées par leur genre.

Définition. (Triangulation faible) Soit S une surface. Une triangulation (faible) est un triplet (S,V,F) où $V \subseteq S$ est fini, E est une collection fini d'arcs à extrémités dans S, et $S \setminus (V \cup E)$ est une réunion disjointe finie $F = \{f_1, ..., f_k\}$ de disques dont chacun est incident à trois éléments de E en comptant les multiplicités.

Exemple. Le tore se triangule par un sommet, trois arêtes et deux faces.

Définition. (Caractéristique généralisée) Un lemme facile donne que $\chi(\Sigma_g) = 2 - 2g$ (en triangulant le polygone fondamental, par exemple). On pose pour une surface non fermée $S:\chi(S)=2-2g-n-b$. Remarque : cette définition coïncide avec 1) la définition homologique 2) la généralisation des triangulations aux surfaces trouées.

1.2Automorphismes des surfaces de Riemann

Théorème. (Uniformisation, admis) Toute surface de Riemann simplement connexe X est biholomorphe à $\mathbb{C}, \hat{\mathbb{C}}$ où $\mathbb{H} = \mathbb{H}^2 = \{z \in \mathbb{C}, \mathfrak{Im}(z) > 0\} \simeq \mathring{D^1}$. En particulier, tout domaine simplement connexe strict du plan complexe est biholomorphe au disque de Poincaré.

Lemme. Soit $D \subseteq \hat{\mathbb{C}}$ un domaine (= ouvert connexe) et $G < PSL_2(\mathbb{C})$ tel que G fixe D et agit librement sur D, i.e. pour tout $g \in G$ g(D) = D et pour tout $g \neq e$ les points fixes de g sont hors de D. Si de plus l'action de G est proprement discontinue (pour tout compact $K \subseteq D$, $\{g \in G \mid g(K) \cap K \neq \emptyset\}$ est fini, le quotient D/G est une surface de Riemann.

Corollaire. Toute surface de Riemann X est un quotient de $D = \mathbb{C}$, $\hat{\mathbb{C}}$ ou \mathbb{H} : il existe $G < \operatorname{Aut}(D)$ tel que $G \supseteq D$ librement et proprement discontinûment et X = D/G. En effet, $X = \tilde{X}/\pi_1(X)$ où \tilde{X} est le revêtement universel de X.

Exemples.

- 1. (Plan complexe) $\operatorname{Aut}(\mathbb{C}) = \operatorname{Aff}(\mathbb{C}) = \mathbb{C} \rtimes \mathbb{C}^*$.
- **2.** (Sphère de Riemann) $\operatorname{Aut}(\mathbb{P}^1\mathbb{C}) = PGL_2(\mathbb{C}) = PSL_2(\mathbb{C})$. En effet, $PGL_2(\mathbb{C})$ agit sur $\mathbb{P}^1\mathbb{C}$ par multiplication matricielle. L'action sur $\hat{\mathbb{C}}$ est explicitement :

$$\begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & : z = \begin{cases} \frac{az+b}{cz+d} \text{ si } z \neq -\frac{d}{c} \\ \infty \text{ sinon} \end{cases}$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} & : \infty = \begin{cases} \frac{a}{c} \text{ si } c \neq 0 \\ \infty \text{ sinon.} \end{cases}$$

On les appelle transformations de Möbius.

3. (Tores) On prend $g_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $g_{\tau} = \begin{pmatrix} 1 & \tau \\ 0 & 1 \end{pmatrix}$ où $\mathfrak{Im}(\tau) > 0$. Alors $\Lambda_{\tau} = \langle g_1, g_{\tau} \rangle = \{z \mapsto z + m + n\tau, n, m \in \mathbb{Z}\} = \{\begin{pmatrix} 1 & m + n\tau \\ 0 & 1 \end{pmatrix}, n, m \in \mathbb{Z}\} < PSL_2(\mathbb{C})$ vérifie les hypothèses précédentes sur $D = \mathbb{C}$.

Vérifions la discontinuité propre. La distance de translation de $g \in \Lambda_{\tau}$ sur \mathbb{C} est $T_g = \inf\{|g \cdot z - z|, Z \in \mathbb{C}\}$. (Dans ce cas, elle est réalisée en tout point de \mathbb{C} .) Soit $K \subseteq \mathbb{C}$ compact. On observe que si $T_g > 2diam(K)$, $g(K) \cap K) = \emptyset.$

Cè quotient est un tore : tout point de \mathbb{C} s'écrit $x+y\tau$ de manière unique d'où une application bijection $[x+y\tau] \in \mathbb{C}/\Lambda_{\tau} \mapsto (e^{2i\pi x}, e^{2i\pi y}) \in S^1 \times S^1$.

4. (Surfaces hyperboliques) $\operatorname{Aut}(\mathbb{H}) = PSL_2(\mathbb{R})$ (\mathbb{R} et non \mathbb{C}) qui agit par homographies.

Heuristique. Ainsi $\mathbb{C}/\Lambda_{\tau}$ est un tore. Mais pour quels τ,τ' ces quotients sont-ils biholomorphes? La théorie de Teichmüller y répond.

Propriété. (Quotients de $\hat{\mathbb{C}}$) Toute surface de Riemann de revêtement universel $\hat{\mathbb{C}}$ est biholomorphe à $\hat{\mathbb{C}}$ (les transformations de Möbius ont toujours des points fixes).

Propriété. (Quotients de $\mathbb C$) Si X est une surface de Riemann de revêtement universel $\mathbb C$, elle est biholomorphe à \mathbb{C} , \mathbb{C}^* ou à un $\mathbb{C}/\Lambda_{\lambda,\mu}$ où λ,μ sont \mathbb{R} -linéairement indépendants. Si X est une surface de Riemann difféomorphe à \mathbb{T}^2 , alors le revêtement universel de X est biholomorphe à \mathbb{C} . La preuve est formatrice. On utilise :

- 1. Il n'existe pas de sous-groupe strict de $PSL_2(\mathbb{R})$ tel que \mathbb{H}/G existe et soit un tore.
- **2**. Si G existe, $G \simeq \mathbb{Z}^2$.
- 3. Si $G < PSL_2(\mathbb{R})$ et G agit proprement discontinûment sur \mathbb{H} , si G est abélien, alors $G = \mathbb{Z}$ ou un $\mathbb{Z}/n\mathbb{Z}$.
- 4. (Classification des éléments de $PSL_2(\mathbb{R})$) Si $g \in PSL_2(\mathbb{R}), g \neq e$ alors
 - \star soit $\exists ! z \in \mathbb{H}$ g(z) = z auquel cas g peut être conjugué dans SO(2). On dit que g est elliptique ;
 - * soit $\exists ! x \in \partial \mathbb{H} = \mathbb{R} \cup \{\infty\}$ g(x) = x auquel gas g peut être conjugué dans $\{\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, t \in \mathbb{R}\}$. On dit que g est parabolique;
 - $\forall x \text{ soit } \exists x_1 \neq x_2 \in \mathbb{R} \cup \{\infty\} \quad g(x_i) = x_i \text{ auquel cas } g \text{ est conjugu\'e à } \begin{pmatrix} e^{-\frac{t}{2}} & 0 \\ 0 & e^{\frac{t}{2}} \end{pmatrix} \text{ pour un } t \in \mathbb{R}. \text{ On dit } que g \text{ est } hyperbolique \text{ ou } loxodromique.}$

Corollaire. Toute surface de genre $\geqslant 2$ n'est pas d'un des genres précédents. On dit qu'elle est hyperelliptique. Exemples. (Quotients de \mathbb{H}) Il y a donc beaucoup de quotients de \mathbb{H} , car tous les précédents sont S^2 ou \mathbb{T}^2 . On dispose par exemple des surfaces hyperlliptiques $X = \mathring{X} \cup \{(\infty, \infty)\}$ où $a_1, ..., a_{2g+1} \in \mathbb{C}$ sont distincts et $\mathring{X} = \{(z, w) \in \mathbb{C}^2 \mid w^2 = (z - a_1)...(z - a_{2g+1})\}$. On montre qu'elle a une structure complexe, compacte et connexe. De plus, elle est de genre g. Pour $g \geqslant 2$ c'est donc un quotient de \mathbb{H} . Par conséquent, toute surface compacte orientable a une structure de surface de Riemann.

Définition. (Involution hyperlliptique)
$$\iota \colon X \longrightarrow X$$
 est un automorphisme $(z,w) \longmapsto \begin{cases} (z,-w) & (z,w) \neq (\infty,\infty) \\ (\infty,\infty) & \text{sinon} \end{cases}$

de X. π est alors l'application quotient $X \to X/\iota$ qui est le revêtement branché $X \to \hat{\mathbb{C}}$ permettant le calcul de Riemann-Hurwitz.

1.3 Géométrie riemanienne sur les surfaces orientables

Fait. Toute surface de Riemann est équipée d'une métrique riemanienne de courbure constante 1, 0 ou -1. Ces dernières sont dites *hyperboliques*.

Théorème. Les structures complexes sur une surface fermée orientable de type fini à biholomorphisme près sont en correspondance bijective avec les métriques complètes de courbure constante 1, 0 ou -1 à isométrie près et homothétie près dans le cas euclidien.

Théorème. (Killing-Hopf, admis) Toute 2-variété riemannienne complète simplement connexe de courbure constante 1, 0 ou -1 est isométrique à S^2 , \mathbb{R}^2 ou \mathbb{H} .

Propriété. Les isométries préservant l'orientation sont :

- $\star \text{ Isom}^+(S^2) = SO(3).$
- $\star \operatorname{Isom}^+(\mathbb{R}^2) = SO(2) \rtimes \mathbb{R}^2.$
- $\star \operatorname{Isom}^+(\mathbb{H}) = PSL_2(\mathbb{R}).$

Propriété. Si $\Sigma_{g,n,b}$ est hyperbolique, $aire(\Sigma_{g,n,b}) = 2\pi(2g+b+n)$.

Théorème. Les structures complexes sur une surface fermée orientable de type fini à biholomorphisme près sont en correspondance bijective avec ses classes de métriques riemaniennes conformes à difféomorphisme près.