Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Spring 2011)

Problem Set 10 Due: May 4, 2011

- 1. A storm warning model is 95% accurate. We want to find the probability that out of 50 predictions, at least 45 will be correct.
 - (a) Find the above probability by using the normal approximation to the binomial.
 - (b) Repeat part (a) this time using the Poisson approximation to the binomial and briefly discuss which one of the answers above you feel to be more accurate, and why.
- 2. Let $X_1, X_2, ...$ be independent, identically distributed, continuous random variables with $\mathbf{E}[X] = 2$ and var(X) = 9. Define $Y_i = (0.5)^i X_i$, i = 1, 2, ... Also define T_n and A_n to be the sum and the average, respectively, of the terms $Y_1, Y_2, ..., Y_n$.
 - (a) Is Y_n convergent in probability? If so, to what value? Explain.
 - (b) Is T_n convergent in probability? If so, to what value? Explain.
 - (c) Is A_n convergent in probability? If so, to what value? Explain.
- 3. Let X_1, \dots, X_{10} be independent random variables, uniformly distributed over the unit interval [0,1].
 - (a) Bound $P(X_1 + \cdots + X_{10} \ge 7)$ using the Markov inequality.
 - (b) Bound the expression in part (a) using the Chebyshev inequality.
 - (c) Estimate the expression in part (a) using the Central Limit Theorem.
- 4. Based on Example 8.2, page 414 in the text.

Sasha just got a new puppy when they moved into a new home. As it turns out, the puppy destroys a random amount X square meters of the lawn every day. X is uniformly distributed over the interval $[0, \theta]$. At the end of each day, annoyed gardeners fix the damage wrought by the puppy. Sasha, a budding Bayesian statistician, chooses to model the destruction of the lawn. She treats the parameter θ as an unknown value of a random variable Θ , which is uniformly distributed between zero and one square meter. She further assumes that given Θ , the amount of lawn destroyed by the puppy on any given day is independent of what happened on all other days.

- (a) On one day, Sasha observes that the puppy destroyed x m². How should Sasha use this information to update the distribution of Θ ?
- (b) Let $X_1, ..., X_n$ be the amounts of lawn destroyed by the puppy on n consecutive days. Sasha keeps careful measurements over the n days, and records $X_1 = x_1, ..., X_n = x_n$. How should Sasha use this information to update the distribution of Θ ?
- $G1^{\dagger}$. In this problem you will use the central limit theorem to "derive" (but not rigorously prove) the Stirling approximation for the factorial for large n:

$$n! \approx \sqrt{2\pi n} (n/e)^n$$

Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Spring 2011)

(a) Gaussian approximation to the Poisson distribution. Recall that in Problem G1) of problem Set 8 you found that the family of Poisson distributions is stable, i.e., closed under addition of independent random variables. Use this fact to show that, if $N^{(m)}$ is a discrete random variable having a Poisson distribution with integer-valued mean $\lambda = m \geq 1$, then

$$\lim_{m \to \infty} \mathbf{P}(N^{(m)} \le m + a\sqrt{m}) = \Phi(a), \text{ for all a},$$

where Φ is the CDF of the standard N(0,1) normal random variable.

(b) Use the conclusion above to show that, for n sufficiently large,

$$\mathbf{P}(N^{(n)} = n) = e^{-n} \frac{n^n}{n!} \approx \frac{1}{\sqrt{2\pi n}}.$$

(c) Use the result of part b) to derive the Stirling approximation above.