Minh Hang Chu - 30074056 Design and Analysis of Algorithms CPSC 413 Winter 2020 Department of Computer Science University of Calgary

October 20, 2020

PROBLEM SET #[1]

GROUP MEMBERS:

Minh Hang Chu

SOURCES USED:

Lecture Notes 1

Notes from Tutorial

Problem 1. Give a precise definition of the Stable Matching Problem as described on p.3-4 of the textbook.

Answer:

The Stable Matching Problem is the problem of finding a stable matching between two equalsized sets of elements M and W, given preference list for each man and woman. The result of the problem is a perfect match (everyone is in a pair) and does not have stability, does not exist (m, w')(m', w) in the result such that m prefers w and w prefers w.

Problem 2. True or false? In every instance of the Stable Matching Problem, there is a stable matching containing a pair (m, w) such that m is ranked first on the preference list of w and w is ranked first on the preference list of m.

False. We have counterexample:

We have $M = \{m_1, m_2\}, W = \{w_1, w_2\}$ with preference lists:

 $m_1: w_1, w_2 \ m_2: w_2, w_1 \ w_1: m_2, m_1 \ w_2: m_1, w_2$

Consider stable matching cases:

If m_1 was paired with the first ranked w on the preference list, then m_1 would be pair with w_1 . However, m_1 is not ranked first on w_1 's preference list.

If m_2 was paired with the first ranked w on the preference list, then m_2 would be pair with w_2 . However, m_2 is not ranked first on w_2 's preference list.

For this instance, there is no case (m, w) such that m is ranked first on the preference list of w and w is ranked first on the preference list of m.

Therefore, the statement is false.

Problem 3. True or false? Consider an instance of the Stable Matching Problem in which there exists a man m and a woman w such that m is ranked first on the preference list of w and w is ranked first on the preference list of m. Then in every stable matching S for this instance, the pair (m, w) belongs to S.

True.

We prove by contradiction. Suppose that for the instance that m is ranked first on the preference list of w and w is ranked first on the preference list of m, there is a stable matching with the pairs (m, w') and (m', w).

However, w is ranked first on m's preference list, m prefers w than w'. And m is ranked first on w's preference list, w prefers m than m'.

This is an instability, because m and w prefer each other, they will leave their current partners. Therefore, (m, w) must belong to S.

Problem 4. How many times will the while loop in the Stable Matching algorithm as presented on page 6 of the text be executed? Assume that set M contains n men and W contains n women.

Lower bound - Best case: We have n men and n women, and each man likes different woman. In this case, every man will find a free woman on the first proposal, then the while loop will be executed n times, equal numbers of men/women.

Upper bound - Worst case: We have n men and n women, and every man get matched with his last choice of woman which results in all n men have to propose to n women. In this worst case, the while loop has to iterate through all possible pairs of man and woman. Since we have n men and n women, the total possible pairs is n^2 . Therefore, the while loop will be executed at most n^2 times.

Problem 5. Exercise 3 on pages 22/23

There is not always a stable pairs of schedules for every set of TV shows and ratings. Consider the following counterexample:

Network A has ShowA1 and ShowA2. Network B has ShowB1 and ShowB2.

Timeslot 1: ShowA1 - 20, ShowB2 - 5

Timeslot 2: ShowA2 - 10, ShowB2 - 15

This set cannot have a stable pair of schedules because Network A can switch ShowA1 and ShowA2 to win more slots. That means there exists a schedule such that Network A wins more time slots than the schedule above. Therefore, there is no stable pair of schedules for this set of TV shows and ratings.

Submitted by Minh Hang Chu - 30074056 on October 20, 2020.