Exploring Densities of Gaussian Quadratic Forms

Max Li

Department of Aeronautics and Astronautics

December 2020

Presentation outline

- 1. Airport delay motivation
- 2. Moments and densities
- 3. Saddlepoint approximations
- 4. (An attempt at) Expansion approximations

Presentation outline

1. Airport delay motivation

- 2. Moments and densities
- 3. Saddlepoint approximations
- 4. (An attempt at) Expansion approximations

Spatial distribution of airport delays

• Imagine two scenarios, both with a total delay of 180 minutes:

- Some disruption, or off-nominal event caused the delays ...
- ... but one scenario is expected given historical correlations, while the other is unexpected.
- · Operationally, the two scenarios are very different
 - What traffic management initiatives to deploy?
 - Airline recovery strategies?

Spatial distribution of airport delays (real example)

February 3, 2014

Total delay: 2.718×10^4 min

August 8, 2016

Total delay: 2.715×10^4 min

Delay network visualization courtesy of Karthik Gopalakrishnan

Airport delays as graph-supported signals

- ullet For our purposes, graph signals live on vertices ${\cal V}$
 - Formally, a graph signal is a map $f: \mathcal{V} \to \mathbb{R}$
- Given N vertices (airports), at time t, the graph signal vector x_t is of the form:

$$x_t = \begin{pmatrix} x_{1,t} \\ \vdots \\ x_{N,t} \end{pmatrix} \in \mathbb{R}_{\geq 0}^{N \times 1}.$$

• $x_{i,t}$ is the delay at airport i at time t

Airport delays as graph-supported signals

- ullet For our purposes, graph signals live on vertices ${\cal V}$
 - Formally, a graph signal is a map $f: \mathcal{V} \to \mathbb{R}$
- Given N vertices (airports), at time t, the graph signal vector x_t is of the form:

$$x_t = \begin{pmatrix} x_{1,t} \\ \vdots \\ x_{N,t} \end{pmatrix} \in \mathbb{R}_{\geq 0}^{N \times 1}.$$

- $x_{i,t}$ is the delay at airport i at time t
- Let us consider x drawn from $\mathcal{N}(\mu, \Sigma)$

4 ロ ト 4 目 ト 4 目 ト 4 目 ト 9 Q Q

Definition: Total variation (TV) of a graph signal

- Given an adjacency matrix $A = \left[\alpha_{ij}\right]$ and the corresponding degree matrix $D = \text{diag}\left(\sum_{j}\alpha_{1j},...,\sum_{j}\alpha_{ij}\right)$, compute the (combinatorial) graph Laplacian $D A = \mathcal{L} \in \mathbb{R}^{N \times N}$.
- Given \mathcal{L} and a graph signal vector $\mathbf{x}_t \in \mathbb{R}^{N \times 1}$, the total variation (TV) of \mathbf{x}_t on the graph is given by:

$$\boldsymbol{x}_t^{\top} \mathcal{L} \boldsymbol{x}_t = \frac{1}{2} \sum_{i \neq j} \alpha_{ij} \left(\boldsymbol{x}_{i,t} - \boldsymbol{x}_{j,t} \right)^2.$$

Definition: Total variation (TV) of a graph signal

- Given an adjacency matrix $A = [a_{ij}]$ and the corresponding degree matrix D = diag $(\sum_i a_{1i}, ..., \sum_i a_{ij})$, compute the (combinatorial) graph Laplacian D – A = $\mathcal{L} \in \mathbb{R}^{N \times N}$
- Given \mathcal{L} and a graph signal vector $\mathbf{x}_t \in \mathbb{R}^{N \times 1}$, the total variation (TV) of x_t on the graph is given by:

$$\boldsymbol{x}_t^{\top} \mathcal{L} \boldsymbol{x}_t = \frac{1}{2} \sum_{i \neq j} \alpha_{ij} \left(\boldsymbol{x}_{i,t} - \boldsymbol{x}_{j,t} \right)^2.$$

• With x as m.v. Gaussian, call $|Q(x) = x^T \mathcal{L}x|$ a Gaussian quadratic form.

Max Li (maxli@mit.edu)

TV as a metric

February 3, 2014

Total delay: 2.718×10^4 min Total variation: 2.07×10^8 min²

August 8, 2016

Total delay: 2.715×10^4 min Total variation: 0.89×10^8 min²

Delay network visualization courtesy of Karthik Gopalakrishnan

Presentation outline

- 1. Airport delay motivation
- 2. Moments and densities
- 3. Saddlepoint approximations
- 4. (An attempt at) Expansion approximations

Moments of $Q(x) = x^T \mathcal{L}x$

Theorem (Theorem 3.2b.2 of Mathai & Provost (1992))

For $x \sim \mathcal{N}(\mu, \Sigma)$ with valid $m \times m$ covariance matrix Σ , denote by $Q(x) = x^{T}Ax$ where A is a m × m symmetric, real matrix. The r^{th} moment of Q(x) is given by

$$\mathbb{E}\left[Q(\mathbf{x})^{r}\right] = \sum_{r_{1}=0}^{r-1} {r-1 \choose r_{1}} g\left(r-1-r_{1}\right) \sum_{r_{2}=0}^{r_{1}-1} {r_{1}-1 \choose r_{2}} g\left(r_{1}-1-r_{2}\right) \cdots$$

where $g(k) = 2^k k! \left(tr(A\Sigma)^{k+1} + (k+1)\mu^T (A\Sigma)^k A\mu \right)$ for $k \in \mathbb{N}_{>0}$.

Moments of $Q(x) = x^T \mathcal{L}x$

Theorem (Theorem 3.2b.2 of Mathai & Provost (1992))

For $x \sim \mathcal{N}(\mu, \Sigma)$ with valid $m \times m$ covariance matrix Σ , denote by $Q(x) = x^{T}Ax$ where A is a m × m symmetric, real matrix. The r^{th} moment of Q(x) is given by

$$\mathbb{E}\left[Q(\mathbf{x})^{r}\right] = \sum_{r_{1}=0}^{r-1} {r-1 \choose r_{1}} g\left(r-1-r_{1}\right) \sum_{r_{2}=0}^{r_{1}-1} {r_{1}-1 \choose r_{2}} g\left(r_{1}-1-r_{2}\right) \cdots$$

where $q(k) = 2^k k! \left(\operatorname{tr}(A\Sigma)^{k+1} + (k+1) \mu^{\mathsf{T}}(A\Sigma)^k A \mu \right)$ for $k \in \mathbb{N}_{>0}$.

Of practical interest: Mean and variance

$$\begin{split} \mathbb{E}\left[Q(x)\right] &= \mathsf{tr}(A\Sigma) + \mu^{\mathsf{T}}A\mu, \\ \mathsf{Var}\left[Q(x)\right] &= 2\,\mathsf{tr}(A\Sigma)^2 + 4\mu^{\mathsf{T}}A\Sigma A\mu. \end{split}$$

Yay! But what about the density for Q(x)?

- Only series expansions, unfortunately. No general closed form ...
- Expansions: Power series; Laguerre series; Central χ^2 densities; Confluent Hypergeometric functions; Zonal polynomials; Densities of Gamma variates

- Only series expansions, unfortunately. No general closed form ...
- Expansions: Power series; Laguerre series; Central χ^2 densities; Confluent Hypergeometric functions; Zonal polynomials; Densities of Gamma variates

- Only series expansions, unfortunately. No general closed form ...
- Expansions: Power series; Laguerre series; Central χ^2 densities; Confluent Hypergeometric functions; Zonal polynomials; Densities of Gamma variates
- (Generalized) Laguerre polynomials $L_k^{(\alpha)}(x)$, Rodrigues formula:

$$L_{k}^{(\alpha)}(x) = \frac{1}{x!} e^{x} x^{-\alpha} \left(\frac{d^{k}}{dx^{k}} e^{-x} x^{k+\alpha} \right)$$

with $\alpha > -1$ and k = 0, 1, ...

• And the density of Q(x) is ...

... not very fun to look at, or easy to poke around:

$$f_{Q(x)}\left(\lambda;b;q\right) = \sum_{k=0}^{\infty} c_k^{\lambda,b} \frac{k!}{2\beta\Gamma\left(\frac{m}{2} + k\right)} \left(\frac{q}{2\beta}\right)^{\frac{m}{2} - 1} e^{-\frac{q}{2\beta}} L_k^{\left(\frac{m}{2} - 1\right)} \left(\frac{q}{2\beta}\right),$$

for $q \in (0, \infty)$.

10 / 24

December 2020

$\mathrm{Q}(x)$'s messy density

... not very fun to look at, or easy to poke around:

$$f_{Q\left(\boldsymbol{x}\right)}\left(\boldsymbol{\lambda};\boldsymbol{b};\boldsymbol{q}\right) = \sum_{k=0}^{\infty} c_{k}^{\boldsymbol{\lambda},\boldsymbol{b}} \frac{k!}{2\beta\Gamma\left(\frac{m}{2}+k\right)} \left(\frac{\boldsymbol{q}}{2\beta}\right)^{\frac{m}{2}-1} e^{-\frac{\boldsymbol{q}}{2\beta}} L_{k}^{\left(\frac{m}{2}-1\right)} \left(\frac{\boldsymbol{q}}{2\beta}\right),$$

for $q \in (0, \infty)$.

- β is an arbitrary positive constant
- $c_k^{\lambda,b}$ are power series expansion coefficients with $c_0 = 1$, dependent on $\lambda = (\lambda_1, ..., \lambda_m)$ and $b = (b_1, ..., b_m)$
- $diag(\lambda) = P^{T}(\Sigma^{1/2}A\Sigma^{1/2})P$ for an orthogonal P
- Centrality parameter $b^{T} = P^{T} \Sigma^{-1/2} \mu$

Presentation outline

- 1. Airport delay motivation
- 2. Moments and densities

3. Saddlepoint approximations

4. (An attempt at) Expansion approximations

Saddlepoint approximations to the rescue (?)

- Unknown (univariate) density $f_X(x)$, known moment and cumulant generating functions $M_X(s)$, $K_X(s) = \ln M_X(s)$
- Saddlepoint approximation (Daniels, 1954) provide extremely accurate, closed-form approximation to $f_X(x)$, has advantages over:
 - Enumerating exact probabilities (⇒ intractability issues)
 - Normal density approximation (\Rightarrow may be inaccurate)
 - Brute force simulation with kernel density estimation (⇒ time consuming, KDE may be inaccurate)

Saddlepoint approximations to the rescue (?)

- Unknown (univariate) density $f_X(x)$, known moment and cumulant generating functions $M_X(s)$, $K_X(s) = \ln M_X(s)$
- Saddlepoint approximation (Daniels, 1954) provide extremely accurate, closed-form approximation to $f_X(x)$, has advantages over:
 - Enumerating exact probabilities (⇒ intractability issues)
 - Normal density approximation (⇒ may be inaccurate)
 - Brute force simulation with kernel density estimation (⇒ time consuming, KDE may be inaccurate)
- The saddlepoint equation $\widehat{f}_X(x)$ approximates $f_X(x)$ on its support \mathcal{X} , given the saddlepoint $\hat{s} \stackrel{\Delta}{=} \hat{s}(x)$ associated with $x \in \mathcal{X}$, where \hat{s} is the solution to $dK(\hat{s})/ds = x$.

$$\widehat{f}_X(x) = \frac{1}{\sqrt{2\pi \frac{d^2}{ds^2} K_X(\hat{s})}} \exp(K(\hat{s}) - \hat{s}x).$$

The MGF for Q(x)

Theorem (Theorems 3.2a.1, 3.2a.2, and Corollary 3.2a.1 of Mathai & Provost (1992))

Let A be a real, symmetric $m \times m$ matrix, and $x \in \mathbb{R}^{m \times 1}$ with $x \sim \mathcal{N}(\mu, \Sigma)$. The MGF $M_{Q(x)}(s)$ of $Q(x) = x^{T}Ax$ can be written in a scalar form involving the eigenvalues of $\Sigma^{1/2}A\Sigma^{1/2}$ and constants that depend on the mean μ .

Specifically, let $\lambda_1,...,\lambda_m$ be eigenvalues of $\Sigma^{1/2}A\Sigma^{1/2}$, and define the vector of constants $b=(b_1,...,b_m)^\top=P^\top\Sigma^{-1/2}\mu$, where P is any $m\times m$ orthogonal matrix that diagonalizes $\Sigma^{1/2}A\Sigma^{1/2}$. Then, $M_{Q(x)}(s)$ can be rewritten as follows:

$$\label{eq:mass_equation} \begin{split} M_{Q(x)}(s) = \begin{cases} \exp\left(s\sum_{j=1}^{m}\frac{b_{j}^{2}\lambda_{j}}{1-2s\lambda_{j}}\right)\prod_{j=1}^{m}\left(1-2s\lambda_{j}\right)^{-\frac{1}{2}}, & \textit{if } \mu\neq0,\\ \prod_{j=1}^{m}\left(1-2s\lambda_{j}\right)^{-\frac{1}{2}}, & \textit{if } \mu=0. \end{cases} \end{split}$$

- 《 ㅁ 》 《 @ 》 《 돌 》 《 돌 》 이 오 i

Saddlepoint approximation ingredients

Start with central case $\mu = 0$, we have:

$$\begin{split} K_Q(s) &= \sum_{j=1}^m \ln\left(\left(1-2s\lambda_j\right)^{-\frac{1}{2}}\right),\\ &\frac{d}{ds} K_Q(s) = \sum_{j=1}^m \frac{\lambda_j}{1-2s\lambda_j},\\ &\frac{d^2}{ds^2} K_Q(s) = \sum_{j=1}^m \frac{2\lambda_j^2}{\left(1-2s\lambda_j\right)^2}. \end{split}$$

Problem: m = 1 and m = 2 are fine, m = 3 gets sketchy, $m \ge 4$ untenable ...

The problem is solving for the saddlepoint $\frac{d}{ds}K(\hat{s}) = x$.

⇒ Possibly tenable (visually) in Maple via implicit function evaluation (Butler, 2007)

Saddlepoint approximation ingredients

Non-central case is even worse in terms of solving for the saddlepoint. First derive the ingredients:

$$\begin{split} K_Q(s) &= s \sum_{j=1}^m \frac{b_j^2 \lambda_j}{1 - 2s \lambda_j} + \sum_{j=1}^m \ln \left(\left(1 - 2s \lambda_j \right)^{-1/2} \right), \\ \frac{d}{ds} K_Q(s) &= \sum_{j=1}^m \frac{\lambda_j \left(1 + b_j^2 - 2s \lambda_j \right)}{\left(1 - 2s \lambda_j \right)^2}, \\ \frac{d^2}{ds^2} K_Q(s) &= 2 \sum_{j=1}^m \frac{\lambda_j^2 \left(-1 - 2b_j^2 + 2s \lambda_j \right)}{\left(-1 + 2s \lambda_j \right)^2}. \end{split}$$

Problem: m = 1 is "fine", $m \ge 2$ untenable ...

Let's look back at the central case.

14 / 24

Max Li (maxli@mit.edu) 18.338 Final Project December 2020

(Central case) Saddlepoints for m = 1, 2

Recall that $\lambda_1,...,\lambda_m$ are eigenvalues of $\Sigma^{1/2}A\Sigma^{1/2}$ (known)

• For m = 1, the saddlepoint is

$$\hat{\mathbf{s}} = \frac{1}{2} \left(\frac{1}{\lambda_1} - \frac{1}{\chi} \right)$$

• For m = 2, the saddlepoint(s) is

$$\hat{s} = \frac{1}{4\lambda_1\lambda_2x}\left(\pm\sqrt{\lambda_1^2x^2-2\lambda_1\lambda_2x^2+\lambda_2^2\left(4\lambda_1^2+x^2\right)}+\lambda_2x+\lambda_1\left(x-2\lambda_2\right)\right)$$

• For m = 3 ...

(Central case) Saddlepoint for m = 3

 $\hat{s} =$

$$\begin{split} \frac{1}{12\,x\,\lambda_1\,\lambda_2\,\lambda_3} \left\{ 2\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right) + \\ \left(2 \cdot 2^{1/3}\,\left(9\,\lambda_1^2\,\lambda_2^2\,\lambda_3^2 + x^2\,\left(\lambda_2^2\,\lambda_3^2 - \lambda_2\,\lambda_3\,\left(\lambda_2 + \lambda_3\right) + \lambda_1^2\,\left(\lambda_2^2 - \lambda_2\,\lambda_3 + \lambda_3^2\right)\right)\right)\right)\right/ \\ \left(2\,x^3\,\lambda_2^3\,\lambda_3^3 - 3\,x^3\,\lambda_1\,\lambda_2^2\,\lambda_3^2\,\left(\lambda_2 + \lambda_3\right) - 3\,x^3\,\lambda_1^2\,\lambda_2\,\lambda_3\,\left(\lambda_2^2 - 4\,\lambda_2\,\lambda_3 + \lambda_3^2\right)\right) + \\ \lambda_1^3\,\left(- 54\,\lambda_3^2\,\lambda_3^3 + x^3\,\left(\lambda_2 - 2\,\lambda_3\right)\,\left(2\,\lambda_2 - \lambda_3\right)\,\left(\lambda_2 + \lambda_3\right)\right) + \\ \frac{164}{44}\,\sqrt{\left(4096\,\left(- 54\,\lambda_1^3\,\lambda_2^2\,\lambda_3^2 + x^3\,\left(\lambda_1\,\left(\lambda_2 - 2\,\lambda_3\right) + \lambda_2\,\lambda_3\right)\,\left(2\,\lambda_1\,\lambda_2 - \left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)\,\left(- 2\,\lambda_2\,\lambda_3 + \lambda_1\,\left(\lambda_2 + \lambda_3\right)\right)\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 48\,x\,\lambda_1\,\lambda_2\,\lambda_3\,\left(x\,\left(\lambda_1 + \lambda_2 + \lambda_3\right) - 2\,\left(\lambda_2\,\lambda_3 + \lambda_1\,\left(\lambda_2 + \lambda_3\right)\right)\right)\right)^3\right)\right)^{1/3} + \\ 2^{2/3}\,\left(2\,x^3\,\lambda_2^3\,\lambda_3^2 - 3\,x^3\,\lambda_1\,\lambda_2^2\,\lambda_3^2\,\left(\lambda_2 + \lambda_3\right) - 3\,x^3\,\lambda_1^2\,\lambda_2\,\lambda_3\,\left(\lambda_2^2 - 4\,\lambda_2\,\lambda_3 + \lambda_3^2\right) + \\ \lambda_1^3\,\left(- 54\,\lambda_3^2\,\lambda_3^3 + x^3\,\left(\lambda_2 - 2\,\lambda_3\right)\,\left(2\,\lambda_2 - \lambda_3\right)\,\left(\lambda_2 + \lambda_3\right)\right) + \\ \frac{164}{4}\,\sqrt{\left(4096\,\left(- 54\,\lambda_1^3\,\lambda_3^3\,\lambda_3^3 + x^3\,\left(\lambda_1\,\left(\lambda_2 - 2\,\lambda_3\right) + \lambda_2\,\lambda_3\right)\,\left(2\,\lambda_1\,\lambda_2 - \left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)\,\left(- 2\,\lambda_2\,\lambda_3 + \lambda_1\,\left(\lambda_2 + \lambda_3\right)\right)\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1 + \lambda_2\right)\,\lambda_3\right)^2 + \\ 4\,\left(- 16\,\left(x\,\lambda_1\,\lambda_2 - 3\,\lambda_1\,\lambda_2\,\lambda_3 + x\,\left(\lambda_1$$

Reduce $\left[\sum_{j=1}^{3} \frac{\lambda_{j}}{1-2s\lambda_{j}} == x, t, \text{ Cubics } \rightarrow \text{ True } \right]$

16 / 24

Max Li (maxli@mit.edu) 18.338 Final Project December 2020

(Non-central case) Saddlepoint for m = 1

Recall that $\lambda_1,...,\lambda_m$ are eigenvalues of $\Sigma^{1/2}A\Sigma^{1/2}$ and $b_1,...,b_m$ elements of row vector $\Sigma^{-1/2}\mu$ (both known),

• For m = 1, the saddlepoint is

$$\hat{s} = \frac{\pm \sqrt{4b_1^2 \lambda_1^3 x + \lambda_1^4} - \lambda_1^2 + 2\lambda_1 x}{4\lambda_1^2 x}$$

- For m = 2, the saddlepoint(s) does not fit my screen
- For m = 3, no thanks.

Max Li (maxli@mit.edu)

Saddlepoint approximation (m = 2)

Implemented in Julia 2 node, central, with $\Sigma = I_{2\times 2}$

Approximation also decent for random $\Sigma = \text{randn}(2, 2)$, then $\Sigma = \Sigma^{T}\Sigma$.

Saddlepoint approximation (m = 2), "randomized"

2 node, central, with $\Sigma = \text{randn}(2, 2)$, then $\Sigma = \Sigma^T \Sigma$ Repeat T times (including drawing Q(x) samples), take *average* eigenvalues of $\Sigma^{1/2} \mathcal{L} \Sigma^{1/2}$, fit one saddlepoint approx. to entire histogram over T trials ...

(T = 1000 trials)

Presentation outline

- 1. Airport delay motivation
- 2. Moments and densities
- 3. Saddlepoint approximations
- 4. (An attempt at) Expansion approximations

Numerical attempt at other expansions

Expansions: Power series; Laguerre series; Central χ^2 densities; Confluent Hypergeometric functions; Zonal polynomials; Densities of Gamma variates

Density:
$$f_{Q(x)}(\lambda; b; q) = \sum_{k=0}^{\infty} \frac{c_k^{\lambda, b}}{\beta} \underbrace{f_{\chi^2}\left(m + 2k; \frac{q}{\beta}\right)}_{\chi^2 \text{ density}}$$

Expansion constant $c_{\nu}^{\lambda,b}$ computed from:

$$c_k^{\lambda,b} = \begin{cases} \exp\left(-\frac{1}{2}\sum_{j=1}^m b_j^2\right) \prod_{j=1}^m \left(\frac{\beta}{\lambda_j}\right)^{1/2}, & \text{if } k=0, \\ \\ \frac{1}{2k}\sum_{r=0}^{k-1} \frac{d_{k-r}c_r}{}, & \text{if } k=1,2,\dots \end{cases}$$

$$\frac{\boldsymbol{d_{k-r}}}{\boldsymbol{d_{k-r}}} = \sum_{j=1}^m \left(1 - \frac{\beta}{\lambda_j}\right)^{k-r} \\ + \beta \left(k-r\right) \sum_{j=1}^m \left(\frac{b_j^2}{\lambda_j}\right) \left(1 - \frac{\beta}{\lambda_j}\right)^{k-r-1} \\ \text{ICHT}$$

χ^2 density expansion

m=10 node case (cycle), non-central ($\mu=\text{randn}(m)$), $\Sigma=\text{randn}(m,m)$, then $\Sigma=\Sigma^{\top}\Sigma$, expansion k=10, take $\beta=\min_{j=1,\ldots,m}\lambda_i+\varepsilon$

For smaller m, seems to do ... "better", but the scaling is usually off on the value Q(x). Numerical issue? My abilities at coding? Jury is still out!

Numerical attempt at other expansions

Expansions: Power series; Laguerre series; Central χ^2 densities; Confluent Hypergeometric functions; Zonal polynomials; Densities of Gamma variates

$$f_{Q\left(\boldsymbol{x}\right)}\left(\boldsymbol{\lambda};\boldsymbol{b};\boldsymbol{q}\right) = \sum_{k=0}^{\infty} c_{k}^{\boldsymbol{\lambda},\boldsymbol{b}} \frac{k!}{2\beta\Gamma\left(\frac{m}{2}+k\right)} \left(\frac{\boldsymbol{q}}{2\beta}\right)^{\frac{m}{2}-1} e^{-\frac{\boldsymbol{q}}{2\beta}} L_{k}^{\left(\frac{m}{2}-1\right)} \left(\frac{\boldsymbol{q}}{2\beta}\right)$$

Expansion constant $c_{\nu}^{\lambda,b}$ (slightly different from χ^2 expansion) computed from:

$$c_k^{\pmb{\lambda},\pmb{b}} = \begin{cases} \exp\left(-\frac{1}{2}\sum_{j=1}^m b_j^2\right) \prod_{j=1}^m \left(2\lambda_j\right)^{-1/2}, & \text{if } k = 0, \\ \\ \frac{1}{k}\sum_{r=0}^{k-1} d_{k-r}c_r, & \text{if } k = 1,2,... \end{cases}$$

$$\frac{d_{k-r}}{d_{k-r}} = \frac{1}{2} \sum_{j=1}^m \left(1 - \frac{\lambda_j}{\beta}\right)^{k-r} - \frac{k}{2\beta} \sum_{j=1}^m \lambda_j b_j^2 \left(1 - \frac{\lambda_j}{\beta}\right)^{k-r-1}.$$

Laguerre series expansion

m=10 node case (cycle), non-central ($\mu=\texttt{randn}(m)$), $\Sigma=\texttt{randn}(m,m)$, then $\Sigma=\Sigma^{\top}\Sigma,$ expansion k=10, take $\beta=\mathsf{min}_{j=1,\ldots,m}\,\lambda_i+\varepsilon$

A little disappointing, but the debugging continues ...

Thank you for a great semester!

December 2020