

#### **Secure PLC Coding Tips and Tricks**

Jacob Brodsky, PE; Jacobs Cyber Security Group

S4 Technical Branch Conference 2020



# Why Discuss This?

- Security specialists do not know how process works
- Engineers are not taught good programming habits
- Good code leads to more rapid diagnostics
  - -Can determine and isolate hacks more rapidly
  - Make working with protocol sensitive firewalls easier







## What Languages to use?

- Four Primary Languages
  - –Instruction List (IL)
  - Ladder Diagrams (LD)
  - Function Block Diagram (FBD)
  - -Structured Text (ST)
- Sequential Function Charts (SFC) for handling state changes
- IL good for speed and portability
- ST good for high level math
- LD and FBD good for permissives, interlocks, timed operations



## **Avoid Programming All Logic in One Controller**

- Keep Program segments small
  - Use more complex blocks to simplify ladder
  - Break LD or ST segments in to smaller parts
- Use peer to peer networking among other controllers
  - Code for failure of Peer Communications
  - Consider what each small controller should do if isolated
- Keep Controller close to I/O



# **Typical PLC Scan Cycle**



# HMI Reads/Writes ONLY from Designated Array/Structure

All Display Values in R/O Buffer

All Values written by HMI are Validated

Context Sensitive Firewall rules easier to handle



## **How This Keeps Attackers At Bay**

- 1. Attacker Writes to Buffer
- 2. Logic Recomputes
- 3. Overwrites Attack Data
- 4. Network Service Reports no change



**JACOBS** 

### Validate Inputs and Outputs

- Validate Counter/Timer inputs
  - -Do you WANT a value of 655.35 seconds for a 1.35 second timer?
- Debounce/Filter Inputs
- Forward & Reverse, Open & Close, Start & Stop asserted together?
- Have PLC Application Alarm points for HMI
- Limit what you can send/receive to Variable Frequency Drives
  - -Consider using 4-20 mA control lines instead of network
- Are motors/actuators being restarted or moved too frequently?



#### **Motor Restart Delay**



Motor NOT Running must Time Out before permitting Start Motor Command.

If Attempt to start Motor during this time, raise Start Fail Alarm

This is very over-simplified, please do not use for design purposes



### **Motor Restart Delay Notes**

 Goal: Inhibit restarting a motor until enough energy bleeds off to safely restart

- Note that this is NOT in the PLC
  - -Placing hardware inside motor bucket prevents stupid human tricks
  - -PLC code can be subverted, this timer prevents damage

• If "Start Fail" alarm triggered, INVESTIGATE



### **Rapid Diagnostics**

- Do not reuse registers/variables/coils
- General Rule: If PLC Cycle Time longer than AC cycle, WHY?
  - -16.67 mSec in North America
  - -20 mSec in Europe
- Allow for logic disable so inputs and outputs can be validated
- Monitor the control voltage in a motor bucket
- Monitor 4-20 mA loop current from power supply
- Latch transient events in PLC in case remote polling is not frequent enough to catch them



#### Validate Indirect Addresses

- Avoid indirect addressing if you can
  - Reasons for using them:
    - Lookup Tables for Non-linear functions
    - Sequencing & Staging many of the same assets
  - Set Hard Boundaries for Indirect addresses
- Consider using array w/ binary sizes: 8, 16, 32, etc.
- Check addresses before reading/writing them
  - -ADD offset, AND with mask to prevent anything past boundaries
  - Catch fence-post errors by poisoning ends of array
  - Alarm on poisoned values



# **Safety with Indirect Addressing**

Array Array Array Array Array Array Array Array Member 0 Member 1 Member 3 Member 4 Member 5 Member 6 Member 7 Member 2 Value= Value= Value= Value= Value= Value= Value= Value= 65535 65535 45 34 23 12 8 65535

AND

0x07

Apply



Poison

Check

14

Indirect

Address

ADD

offset

#### **Peer To Peer Automation**

- For critical PLC to PLC traffic
  - Use separate port
  - Consider using a Crossover Cable
  - -YOU STILL NEED TO VALIDATE YOUR INPUTS!
- Do Not use OPC DA through an HMI
  - This used to be popular
  - HMI would become a critical asset
  - HMI attack surface is large
- Monitor Peer to Peer with a heartbeat function
  - Validates that both PLCs are live and operating somewhat nominally



## **Using Internal Status Registers**

- Trap and report flags
  - Integer overflow
  - Divide by zero
  - -Scan Overrun
- Track communications statistics (errors, total packets received, etc.)
  - -Synchronous reporting of packets sent and received
  - Compare to Master station should match!
- Report code version with hash
- Report changes in communications port states



#### **Avoid Sets and Resets**

- Hazards similar to Goto Command
  - -Sometimes there is no substitute
  - Discourage its use
- There shall be only one Set/Reset instance per point
- Group S&R together so that you can find them both
- Do not assert a Set or Reset continuously
- Do not assert Set and Reset together
- Set up and latch alerts to let you know if this happens
- Why? It makes diagnostics easier!



## **Secure PLC Programming**

