

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS

INGENIERÍA MATEMÁTICA

FORMULARIO JESÚS ALAN ESPINOSA GARCÍA

PROFESOR:

MENDEL ESQUIVEL RICARDO

MATERIA:

MÉTODOS NUMÉRICOS I

CIUDAD DE MÉXICO, 2023

Índice general

1.	Unidad 1	5
	1.1. Teoremas y resultados de continuidad	5
2.		9

4 Índice general

Capítulo 1

Unidad 1

1.1. Teoremas y resultados de continuidad

Definición.

Sea $\{x_n\}_{n=1}^{\infty}$ una sucesión de números reales. La sucesión **converge** a un número x(el límite) si

 $\forall \epsilon > 0$ un N_{ϵ} tal que $n > N_{\epsilon}$ implica $|x_n - x| < \epsilon$

Teorema del Valor extremo

Si $f \in C[a, b]$ entonces existirá $c_1, c_2 \in [a, b]$ con $f(c_1) \leq f(x) \leq f(c_2)$ para cada $x \in [a, b]$. Si además f es diferenciable en (a,b), los numeros c_1 y c_2 estarán ya en los extremos de [a,b] o donde f' sea cero.

Figura 1.1: Teorema del valor extremo

Teorema del valor intermedio

Si $f \in C[a, b]$ y k es un numero cualquiera entre f(a) y f(b), existirá un número c entre (a,b) para el cual: f(c)=k.

Figura 1.2: Teorema del valor intermedio

Teorema Generalizado de Rolle

Supongamos que $f \in C[a, b]$ es n veces difernciable en (a,b). Si f(x) es cero en n+1 puntos distintos $x_0, x_1, ..., x_n \in [a, b]$, entonces existirá un número c en (a,b) con $f^{(n)}(c) = 0$

NOTA:

$$|cos(x)| \le 1$$

 $|sen(x)| \le |x|$

Verifiquemos lo segundo.

Inmediatamente se puede inferir que para cualquier x tal que $1 \le |x|$

. Ahora bien para el intervalo [-1,1] y para $x \in [-1,1]$ se tiene que por TVM :

$$f'(c) = cos(c) = \frac{sen(x) - sen(0)}{x - 0} = \frac{sen(x)}{x}$$
Como $|cos(c)| \le 1$ entonces:
$$\left|\frac{sen(x)}{x}\right| \le 1 \Rightarrow |sen(x)| \le |x|$$

Teorema de Taylor

Supongamos que $f \in C^n[a, b]$ tal que f^{n+1} existe en [a,b] y que $x_0 \in [a, b]$.Para toda $x \in [a, b]$ habrá un numero $\xi(x)$ entre x_0 y x tal que:

$$f(x) = P_n(x) + R_n(x)$$

donde:

$$P_n(x) = \sum_{k=0}^n \frac{f^k}{k!} (x_0)(x - x_0)^k$$

y
$$R_n(x) = \frac{f^{n+1}}{(n+1)!} (\xi(x)) (x - x_0)^{k+1}$$

Ejercicio usando el Teorema de Taylor

Determine el polinomio de Taylor de tercer grado para f(x) = Cos(x) respecto a $x_0 = 0$

Solucion:

Sean:

$$f(x) = cos(x) f(x_0) = 1$$

$$f^1(x) = -sen(x) f^1(x_0) = 0$$

$$f^2(x) = -cos(x) f^2(x_0) = 1$$

$$f^3(x) = sen(x) f^3(x_0) = 0$$

$$f^4(x) = cos(x) f^4(x_0) = 1$$

De donde el polinomio de Taylor nos queda:

$$f(x) = P_n(x) + R_n(x)$$

Con:

$$P_n(x) = 1 - \frac{(x)^2}{2!}$$

 $R_n(x) = \frac{Cos(\xi(x))(x)^4}{4!}$

Use el polinomio de Taylor para aproximar Cos(0.01)

Solucion:

Sea
$$Cos(x) = 1 - \frac{(x)^2}{2!} + \frac{Cos(\xi(x))(x)^4}{4!}$$

 $Cos(0,01) = 1 - \frac{(0,01)^2}{2!} + \frac{Cos(\xi(0,01))(0,01)^4}{4!} \approx 0,99995$

Capítulo 2