TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

CÔNG NGHỆ NANO QUANG TỬ HỌC NANO

Giáo viên hướng dẫn:

Nguyễn Việt Hưng (Viện Tiên tiến Khoa học và Công nghệ) Nguyễn Bích Huyền (Viện Điện tử-Viễn thông)

Nội dung bài giảng

- 1. Bài tập về nhà.
- 2. Lan truyền của sóng ánh sáng trong các vật liệu điện môi có cấu trúc tuần hoàn: Lý thuyết tổng quát.
- 3. Các vùng cấm quang của tinh thể quang tử: Bài toán một chiều.

The 2nd Homework

- 1. Viết ra đầy đủ các phương trình Maxwell cho các thành phần của điện trường và từ trường. Khảo sát các điều kiện biên của trường.
- 2. Dẫn ra phương trình sóng của trường điện từ trong các vật liệu điện môi.
- 3. Ôn tập kiến thức Chương IV (Các vật liệu rắn) trong sách Vật lý điện tử (Vũ Linh).
- 4. Tiếp tục đọc các file dữ liệu trong thư mục Documentations của phần mềm OptiFDTD và bước đầu làm quen với giao diện của nó.

Lý thuyết Maxwell

Maxwell's equations:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\nabla \cdot \mathbf{D} = \rho_v$$

$$\nabla \cdot \mathbf{B} = 0$$

where

E is electric field intensity [V/m]

 \mathbf{B} is magnetic flux density [T]

H is magnetic field intensity [A/m]

D is electric flux density $[C/m^2]$

J is electric current density $[A/m^2]$

 ρ_v is volume charge density $[C/m^3]$.

The operator ∇ in Cartesian coordinates is

$$\nabla = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right]$$

The above relations are supplemented with constitutive relations

$$\mathbf{D} = \varepsilon \mathbf{E}$$

$$B = \mu H$$

$$J = \sigma E$$

where $\varepsilon = \varepsilon_0 \varepsilon_r$ is the dielectric permittivity [F/m], $\mu = \mu_0 \mu_r$ is permeability [H/m], σ is electric conductivity, ε_r is the relative dielectric constant. For optical problems $\mu_r = 1$.

HOMESTA Field components General form Specifit form Tangantial E n2 x (E, -Ee) = 0 R. (P4-P2)-Se Normal Tangadial H Normal B Boundary conditions

M.S.Wartak, Computational Photonics, Cambridge University Press, 2014.

Các phương trình sóng

Biến đổi các phương trình Maxwell ta được:

$$\nabla \times \nabla \times \mathbf{E} = -\frac{\partial}{\partial t} (\nabla \times \mathbf{B}) = -\mu \frac{\partial}{\partial t} (\nabla \times \mathbf{H}) = -\mu \frac{\partial}{\partial t} \frac{\partial \mathbf{D}}{\partial t} = -\mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Chứng minh: $\nabla \times \nabla \times \mathbf{E} = \nabla(\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}$

Do do taco: $\nabla^2 \vec{E} - \nabla (\nabla \cdot \vec{E}) - \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2} = 0$. $(\Delta_{5}^{=} \nabla)$ (M=M) = AE -NE DE - V(V.E) = 0. New moi trường là đóng nhất: E thống phu thuộc vào các The photong trius: toa do thong gian. V. D' = O = V. E = O. ΔĒ - ε. μο θ²Ε = 0. Do cto: Hay la: $\Delta \vec{E} - \frac{n^2}{C^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$ philong times song. phảông trius tường từ cho H: $\Delta \vec{H} - \frac{n^2 \vec{SH}}{C^2 \vec{OT}^2} = 0$.

J.D. Joannopoulos, S. Johnson, Photonic Crystals-Molding the flow of light, 2nd Edition, Princeton University Press (2008).

The philong trins Maxwell to do rut ra:

$$\nabla_{X} (\nabla_{X} \vec{E}) = -\mu \cdot \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}$$
Hay:

$$\nabla_{X} (\nabla_{X} \vec{E}) = -\frac{n^{2}}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}$$
Philong trins cho \vec{H} :

$$\nabla_{X} \vec{H} = \frac{\partial \vec{D}}{\partial t} = \varepsilon \frac{\partial \vec{E}}{\partial t}$$

$$\Rightarrow \nabla_{X} \left(\frac{1}{\varepsilon} (\nabla_{X} \vec{H})\right) = \frac{\partial}{\partial t} (\nabla_{X} \vec{E})$$

$$\Rightarrow \nabla_{X} \left(\frac{1}{n^{2}} (\nabla_{X} \vec{H})\right) = -\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{H}}{\partial t^{2}}$$

$$\nabla_{X} \left(\frac{1}{n^{2}} (\nabla_{X} \vec{H})\right) = -\frac{1}{c^{2}} \frac{\partial^{2} \vec{H}}{\partial t^{2}}$$

Cae' phương trinh này cơ caé nghiệm riếng dang: $\xi \stackrel{\text{H}}{\text{H}}(\vec{x},t) = \vec{H}(x) \cdot \vec{e}^{i\omega t}$ $\vec{E}(\vec{x},t) = \vec{E}(x) \cdot \vec{e}^{i\omega t}$ tan 86 rieng.Voi w la Suy ra: $\nabla \times (\nabla \times \vec{E} \vec{x}) = \frac{n \vec{x}_1 \vec{w}^2}{C^2} \vec{E} \vec{x}$ Và liên hiệ: $S \left[\vec{E}(\vec{x}) = \frac{i}{\omega n_{G}^2} \cdot \nabla_X \vec{H}(\vec{x}) \right]$ $\overrightarrow{H}(\overrightarrow{r}) = -\frac{i}{\omega \mu_0} \nabla_{x} \overrightarrow{E}(\overrightarrow{r})$ Tor liep cur các nghiệm riếng. Nghiêm tong quat:

Sự tương tự giữa bài toán lan truyền sóng điện từ và Cơ học lượng tử

	Quantum Mechanics	Electrodynamics
Field	$\Psi(\mathbf{r},t) = \Psi(\mathbf{r})e^{-iEt/\hbar}$	$\mathbf{H}(\mathbf{r},t) = \mathbf{H}(\mathbf{r})e^{-i\omega t}$
Eigenvalue problem	$\hat{H}\Psi = E\Psi$	$\hat{\Theta}\mathbf{H} = \left(\frac{\omega}{c}\right)^2 \mathbf{H}$
Hermitian operator	$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r})$	$\hat{\Theta} = \nabla \times \tfrac{1}{\varepsilon(\mathbf{r})} \nabla \times$

Lưu ý: Những nghiệm riêng nào của trường điện từ ứng với năng lượng trường lớn hơn thì các vectơ trường sẽ tập trung định xứ ở các vùng có chiết suất bé hơn.

Doi voi trường lượp caế vật liên tiên môi co cấu truế tuẩn hoàn: $\left| \mathcal{E}(\vec{x}) = \mathcal{E}(\vec{x} + \mathbf{m}.\hat{a}) \right|$ m: Số nguyên, à: chu ký (ô cò số²) > Caế trùs thể quang tuổ. Tường từ với bài toàn chuyển đồng cur điển từ tương trùng thiếz, cac nghiêm riêng H(x) và E(x) là các hàm bloch: $SH_{\mathcal{R}}(\vec{x}) = e^{i\vec{k}\cdot\vec{x}} \vec{u}_{\mathcal{R}}(\vec{x})$ $(\vec{E}_{\mathcal{R}}(\vec{x})) = e^{i\vec{k}\cdot\vec{x}} \vec{u}_{\mathcal{R}}(\vec{x})$ (R: vecto song.) $V\delta: \left(\vec{u}_{K}(\vec{n}) = \vec{u}(\vec{n} + m.\vec{a})\right)$ Tan 85 rieng plu Hunce vects song: w(k)

Sự tương tự với chuyển động của điện tử trong mạng tinh thể

	Quantum Mechanics	Electrodynamics
Discrete translational symmetry	$V(\mathbf{r}) = V(\mathbf{r} + \mathbf{m.a})$	$\varepsilon(\mathbf{r}) = \varepsilon(\mathbf{r} + \mathbf{m.a})$
Bloch's theorem	$\Psi_{\mathbf{k}n}(\mathbf{r}) = u_{\mathbf{k}n}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$	$\mathbf{H}_{\mathbf{k}n}(\mathbf{r}) = \mathbf{u}_{\mathbf{k}n}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$

Xuất hiện các vùng cấm quang (Photonic Band Gaps)

Các vùng cấm quang của tinh thể quang tử một chiều

Tính toán độ rộng vùng cấm quang cho một số trường hợp

Định xứ của các cường độ trường (Hình giữa)

(a) E-field for mode at top of band 1

(b) E-field for mode at bottom of band 2

Định xứ của các cường độ trường (Hình bên phải)

(a) E-field for mode at top of band 1

(b) E-field for mode at bottom of band 2

Homework

- 1. Tìm hiểu các tài liệu đã được dẫn trong bài giảng.
- 2. Thực hành mô phỏng tính toán vùng cấm quang của tinh thể quang tử một chiều trên phần mềm OptiFDTD.

Tài liệu học tập

- Lâm Hồng Thạch, Hoàng Phương Chi, Nguyễn Khuyến, Vũ Văn Yêm, Trường điện từ-Kiến thức căn bản và bài tập. NXB ĐHBKHN.
- Vũ Linh, Vật lý điện tử. NXBĐHBKHN.
- GS.TSKH. Phan Anh, Trường điện từ và truyền sóng. NXBKH-KT.
- S.P. Gaponenko, Introduction to Nanophotonics, C.U.P. (Cambridge University Press)
- M.S.Wartak, Computational Photonics, C.U.P.
- J.D. Joannopoulos, S. Johnson, Photonic Crystals-Molding the flow of light, 2nd Edition, Princeton University Press.
- K.Y. Kim, Plasmonics Principles and Applications, InTech.
- Software: **OptiFDTD** http://optiwave.com/category/products/component-design/optifdtd/
- Scientific articles: Optics Express

https://www.osapublishing.org/oe/home.cfm

- Arxiv

http://arxiv.org/

Wikipedia, ...