Exp 4

Aim:Implementation of Statistical Hypothesis Test using Scipy and Sci-kit learn.

Theory and Output:

1.Loading dataset:

Data loading is the first step in data analysis. The dataset is stored in a CSV file and read using pandas.read_csv().

The first few rows are displayed to understand the dataset structure

2.Pearson's Correlation Coefficient:

Pearson's Correlation Coefficient (denoted as \mathbf{r}) measures the **linear** relationship between two continuous variables.

Values range from -1 to +1:

- +1: Perfect positive correlation
- 0: No correlation
- -1: Perfect negative correlation

The formula for Pearson's Correlation Coefficient is:

$$r = rac{\sum (X_i - ar{X})(Y_i - ar{Y})}{\sqrt{\sum (X_i - ar{X})^2 \sum (Y_i - ar{Y})^2}}$$

```
pearson_corr, pearson_p = stats.pearsonr(df['Age'], df['Monthly_Salary'])
print(f"Pearson's Correlation Coefficient: {pearson_corr}")
print(f"P-value: {pearson_p}")
```

Pearson's Correlation Coefficient: 0.04287327221666302 P-value: 0.4239519272951198

3. Spearman's Rank Correlation

- Spearman's Rank Correlation (denoted as ρ , rho) measures the monotonic relationship between two variables.
- It does not require normally distributed data.
- If ranks of two variables are related, it indicates correlation.
- The formula is:

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$

```
spearman_corr, spearman_p = stats.spearmanr(df['Experience_Years'], df['Performance_Score'])
print(f"Spearman's Rank Correlation: {spearman_corr}")
print(f"P-value: {spearman_p}")
```

Spearman's Rank Correlation: 0.02681458037717826
P-value: 0.6171101462207367

4. Kendall's Rank Correlation

Theory:

- Kendall's Tau (τ) measures the **ordinal association** between two variables.
- It counts concordant and discordant pairs:
 - o Concordant pairs: If one variable increases, the other also increases.
 - o **Discordant pairs**: One increases while the other decreases.
- The formula is:

$$\tau = \frac{(C-D)}{\frac{1}{2}n(n-1)}$$

```
kendall_corr, kendall_p = stats.kendalltau(df['Hours_Worked_Week'], df['Projects_Completed'])
print(f"Kendall's Rank Correlation: {kendall_corr}")
print(f"P-value: {kendall_p}")
```

Evendall's Rank Correlation: -0.013818340859064245 P-value: 0.7135602814495787

5. Chi-Squared Test

- The **Chi-Squared Test** is used for **categorical data** to check if two variables are independent.
- It compares **observed** and **expected** frequencies.
- The formula is:

$$\chi^2 = \sum rac{(O_i - E_i)^2}{E_i}$$

```
### Description of the image o
```

Conclusion

- 1. **Pearson's Correlation**: Measures **linear relationship** between numerical variables. If **p < 0.05**, the correlation is significant.
- 2. **Spearman's Correlation**: Checks for **monotonic relationship**. If **p < 0.05**, variables move together in a ranked order.
- 3. **Kendall's Correlation**: Identifies **ordinal association**. A small **p-value** means a strong relationship.
- Chi-Square Test: Determines independence of categorical variables. If p <
 0.05, variables are dependent; otherwise, they are independent.

Final Summary:

- If **p < 0.05**, the test indicates a significant relationship.
- If **p > 0.05**, no strong relationship exists.

These tests help understand **associations** in the dataset for data-driven decisions.