

CyberRookie CSX Fundamentals - Section 3: Security Architecture Principles

Study online at quizlet.com/_7r6gi0

Defense in depth	the practice of layering defenses to provide added protection		Focus of cybersecurity is	for platforms, storage infrastructure and cloud-based data repositories
2. Perimeter	a well-defined (if mostly virtual) boundary between the organization and the outside world		shifting toward contracts and service level agreements	
3. Network or System- centric	the emphasis is on placing controls at the network and system levels to protect the information stored within		(SLAs) Cybercrime and	continue to aim at "weak spots" in
4. Data-centric	which emphasizes the protection of data regardless of its location		cyberwarfare perpetrators	architectural elements and systems
5. The perimeter	is an important line of defense that protects the enterprise against external threats, and its design should reflect a proactive stance toward preventing potential risk.	15	5. 3rd party cloud providers	are facing an increased risk of attacks and breaches due to the agglomeration and clustering of sensitive data and information
6. Internet Perimeter	An important component of the security perimeter which ensures secure access to the Internet for enterprise employees and guest users residing at all locations, including	16	16. APTs and cybercrime	always rely on preparatory research and insight into the target enterprise which raises the level of exposure for weak or unsecured parts of the overall architecture.
7. Internet	those involved in telecommuting or remote work. should route traffic between enterprise and		Vulnerable spots include	legacy systems, unpatched parts of the architecture, "dual persona" use of mobile devices and many others.
Perimeter	Internet, no exes, monitor network ports, detect/block traffic from infected internal computers, control outbound traffic, identify/block anomalous traffic, eliminate	18	Architectural approaches	articulate the organization, roles, entities and relationships that exist or should exist to perform a set of business processes.
	threats like malware, enforce filtering policies.		Process models and framework	two models of security architecture
8. Internet Perimeter	should always provide protection for VPNs, WANs, and WLANs	20	models D. Framework	describe the elements of architecture and
9. VPN protection should	Terminating VPN traffic from remote users, provide a hub for terminating VPN traffic from remote sites, terminate traditional dial in		security architecture models	how they relate to one another
include 10. VPN Traffic	users. First filtered at the egress point to the specific IP addresses and protocols that are	21	Process security architecture modules	is more directive in its approach to the processes used for the various elements.
	part of the VPN service. A remote user can only gain access after being authenticated.	22	2. Zachman Framework	developing a who, what, where, when and how matrix which contains columns
11. WAN traffic	security is provided by input/output system (IOS) features. Unwanted traffic can be blocked from the remote branch using input access lists, and IP spoofing can be			showing aspects of the enterprise that can be described or modeled. Rouser various viewpoints from which those aspects can be considered.
12. In distributed and decentralized	mitigated through L3 filtering. the third-party risk is likely to increase, often as a function of moving critical applications, platforms and infrastructure elements into the	23	3. Zachman Framework	This approach provides a logical structure for classifying and organizing design elements, which improves the completeness of security architecture.
IT architectures	cloud.	24. SABSA	4. SABSA	Sherwood Applied Business Security Architecture

22 The Open Group Architecture Framework	25. TOGAF	The Open Group Architecture Framework	43. Equipment for	Layer 2 swtich, bridge, Wireless AP, NIC
27 The Open Group Architecture A	Architecture	level an holistic approach addresses security as an essential component of		Hub, Repeater, NIC
A presentation Layer functions Layer function Layer fu		objective is to ensure that architectural		message, database and application
Session Layer Physical Layer Divides data into frames that can be transmitted by the physical tare memoriate dotted work systems Provided the physical tare memoriate dotted by the contection Provided the physical tare memoriate dotted by the physical tare memoria	Framework			
Purctions Separate Dialog control Standardize the development of actual Standardize the development of protocol for its functionality required for network computers into layers, with each layer implementing a standardize protocol for its functionality; Standardize the development of protocol for its interest includes both pr	28. OSI Model	Open Systems Interconnect model		·
Provide Read Provides Read Provided Read Provided Read Provided Read Provided Read Provided Read Read Provided Read Provided Read Read Read Read Read Read Read R	29. OSI Model	and considered a reference to	_	
Section Layer Coordinates and manages user connections Protection Protectio		networks. OSI was the first		-
Solitary	30. OSI Model			routers use for path determination.
Solitary Physical Layer Session, Presentation, Application. Session, Presentation, Application Session, Presentation, Application Supplication, Presentation Session Session Session, Presentation Session Session Session, Presentation Session Session, Presentation Session Session, Presentation Session Ses		each layer implementing a standard		combines packets into bytes and bytes into frames. Provides access to media
Physical Layer Manages signals among network systems Function Voltage, wire speed and pin-out of cables. Physical topography	31. OSI Layers	-		detection, not error correction. Framing
transmitted by the physical layer for application, presentation and session layer Transport Layer Transport L	32. Physical Layer			voltage, wire speed and pin-out of
Session Layer Ensures that data are transferred reliably in the correct sequence Session Layer Coordinates and manages user connections Session Layer Septimbry Sep	33. Data Link Layer		-	
In the correct sequence Coordinates and manages user connections Session Layer Coordinates and compresses data layer Coordinates between software applications and other layers of network services for Defense in depth, security in depth, security in depth. **Equipment for Application, Presentation and Session Layer Coordinates and provided in the security strategy of a function of asset value, criticality, the reliability of each control and the degree of exposure.	34. Network Layer		-	
Connections Termation Layer Mediates between software applications and other layers of network services Transmission Control Protocol/Internet Protocol (TCP/IP) Application, Presentation and Session Layer Equipment for Application, Presentation and Session Layer Layer Application, Presentation and Session Layer Layer Tansport Layer Control Protocol (TCP/IP) Pro	35. Transport Layer	-	for transport	TCP and UDP
Layer 38. Application Layer Mediates between software applications and other layers of network services 39. Transmission Control Protocol/Internet Protocol (TCP/IP) application support 40. Equipment for Application, Presentation and Session Layer 41. Equipment for Transport Layer 42. Equipment for Router, Layer 3 switch Pointate, encrypts and compresses data Layer St. TCP/IP protocols for Data link layer So. Defense in depth, security in depth or protection in depth. So. Defense in depth. S	36. Session Layer	_	54. TCP/IP protocols	ICMP, ARP, RARP, and IP
for Data link layer 39. Transmission Control standard for the Internet includes both Protocol/Internet Protocol (TCP/IP) 40. Equipment for Application, Presentation and Session Layer 41. Equipment for Transport Layer 42. Equipment for Router, Layer 3 switch Mediates between software applications applications applications and and other layers of network services for Data link layer 54. Defense in depth, security in depth or protection in depth. 55. Defense in depth or protection in depth. 57. Defense in important concept in designing an effective information security strategy or architecture. 58. The number of types of layers reliability of each control and the degree reliability of each control and the degree of exposure.		Formats, encrypts and compresses data	_	
Transmission Control Standard for the Internet includes both Protocol/Internet Protocol (TCP/IP) Protocol (TCP/IP) 40. Equipment for Application, Presentation and Session Layer 41. Equipment for Transport Layer 42. Equipment for Network-Layer Router, Layer 3 switch Application support 54. Defense in depth, security in depth or protection in depth. 55. Defense in depth or protection in depth. 57. Defense in depth 58. The number of types of layers needed in 58. The number of types of layers needed in 59. Defense in depth	38. Application Layer		for Data link	_
40. Equipment for Application, Presentation and Session Layer 41. Equipment for Transport Layer 42. Equipment for Notice Process of Layer 4 Switch 43. Router, Layer 3 switch 44. Router Layer 3 switch 45. Router, Layer 3 switch 46. Equipment for Layer 3 switch 46. Equipment for Transport Layer 47. Router, Layer 3 switch 48. The number of types of layers reliability of each control and the degree of exposure.	Control Protocol/Internet	standard for the Internet includes both network-oriented protocols and	56. Defense in depth, security in depth or	using several controls to protect an asset
Presentation and Session Layer 41. Equipment for Transport Layer 42. Equipment for Notice Provided the Provided House of Equipment for Transport Layer 43. Router, Layer 3 switch 44. Equipment for Transport Layer 45. The number of types of layers reliability of each control and the degree of exposure.		Gateway	•	
Transport Layer 58. The number of types of layers reliability of each control and the degree needed in representation of exposure.	Presentation and			effective information security strategy or
42. Equipment for Router, Layer 3 switch needed in of exposure.		Layer 4 Switch		
		Router, Layer 3 switch	needed in	_

59. Advantages of using a defense in depth strategy	increasing the effort required for a successful attack and creating additional opportunities to detect or delay an attacker	70. Firewalls	should allow individuals on the corporate network to access the Internet and simultaneously prevent others on the Internet from gaining access to the corporate network to cause damage.
60. Types of Defense	Concentric Rings (nested layering), overlapping redundancy, segregation or compartmentalization	71. Deny-all philosophy	which means that access to a given resource will be denied unless a user can provide a specific business reason or need for access
61. Concentric Rings	tings Creates a series of nested layers that must be bypassed in order to complete an attack. Each layer delays the attacker and provides	72. Accept-all philosophy	to the information resource. under which everyone is allowed access unless someone can provide areas for denying access.
62. Overlapping	opportunities to detect the attack. Two or more controls that work in	73. Firewalls	separate networks from one another and screen the traffic between them.
Redundancy	parallel to protect an asset Provides multiple, overlapping points of detection. This is most effective when each control is different	74. Firewalls	control the most vulnerable point between a corporate network and the Internet, and they can be as simple or complex as the corporate information security policy
63. Segregation or compartmentalization	Compartmentalizes access to an asset, requiring two or more processes, controls or individuals to access or use the asset This is effective in protecting very high value assets or in environments	75. Firewalls	demands. Block, limit, prevent monitor and encrypt
			access
		76. Network firewall types	Packet filtering Application firewall systems, Stateful inspection
64. Horizontal defense in depth		77. Packet filtering firewalls	a screening router examines the header of every packet of data traveling between the Internet and the corporate network
	asset, which is functionally equivalent to concentric ring model above	78. Packet filtering firewalls	are best suited for smaller networks. Organizations with many routers may face difficulties in designing, coding and maintaining the rule base.
65. Vertical defense in depth	where controls are placed at different system layers—hardware, operating system, application, database or user levels	79. packet filtering firewalls	filtering rules are performed at the network layer
66. Defense in depth questions	What vulnerabilities are addressed by each layer or control? How does the layer mitigate the vulnerability? How does each control interact with or depend on the other controls?	80. Packet Filtering Firewalls Advantages	Simplicity of one network "choke point", Minimal impact on network performance, Inexpensive or free
67. Firewall	a system or combination of systems that enforces a boundary between two or more networks, typically forming a barrier between a secure and an open environment such as	81. Packet Filtering Firewalls Disadvantages	Vulnerable to attacks from improperly configured filters, Vulnerable to attacks tunneled over permitted services, All private network systems vulnerable when a single packet filtering router is compromised
68. Firewalls	the Internet Companies should build these as one means of perimeter security for their networks.	82. Common attacks against packet filter firewalls	IP spoofing, Source routing specification, Miniature fragment attack.
69. Firewall	It applies rules to control the type of networking traffic flowing in and out	are:	

83. IP spoofing	the attacker fakes the IP address of either an internal network host or a trusted network host. This enables the packet being sent to pass the rule base of the firewall and penetrate the system perimeter.	94. Application- level gateways and Circuit-level gateways	systems employ the concept of bastion hosting in that they handle all incoming requests from the Internet to the corporate network, such as FTP or web requests.
84. Source	centers around the routing that an IP packet	95. Bastion hosts	are heavily fortified against attack.
routing specification	3	96. application- based firewall systems	are set up as proxy servers to act on the behalf of someone inside an organization's private network
85. Miniature fragment attack	an attacker fragments the IP packet into smaller ones and pushes it through the firewall. Only the first sequence of fragmented packets will be examined, allowing the others	97. proxy server	acting as a go between. Contacts the Internet server, and then this server sends the information from the Internet server to the computer inside the corporate network
86. application- and circuit- level gateways	to pass without review allow information to flow between systems but do not allow the direct exchange of packets. Therefore, application firewall systems provide greater protection capabilities than packet filtering routers.	98. proxy server	can maintain security by examining the program code of a given service (e.g., FTP, Telnet). It then modifies and secures it to eliminate known vulnerabilities and also log all traffic between the Internet and the network.
87. Two types	Windows NT and Unix. They work at the	99. NAT capability	feature available on both types of firewall systems
application firewall systems	application level of the OSI model.	100. Application Firewalls Advantages	Provide security for commonly used protocols, Generally hide the network from outside untrusted networks, Ability to protect the entire network by limiting
88. Two types of	Application-level gateways and Circuit-level gateways		breakins to the firewall itself, Ability to examine and secure program code
application firewall systems		101. Application Firewalls Disadvantages	Poor performance and scalability as Internet usage grows
89. Application- level gateways	systems that analyze packets through a set of proxies—one for each service. HTTP Proxy	102. Stateful inspection firewall or	tracks the destination IP address of each packet that leaves the organization's internal network
90. Circuit-level gateways	Commercially, these are quite rare. Because they use one proxy server for all services, they are more efficient and also operate at the application level	dynamic packet filtering	internat network
91. Circuit-level gateway may be a better choice	When network performance is a concern	103. Stateful inspection firewall	Whenever a response to a packet is received, its record is referenced to ascertain whether the incoming message was made in response to a request that the organization sent out
92. Circuit-level gateways	TCP and UDP sessions are validated, typically through a single, general-purpose proxy before opening a connection.	104. Stateful inspection firewall	This is done by mapping the source IP address of an incoming packet with the list of destination IP addresses that is maintained and updated. This approach prevents any attack initiated and originated
93. application- level gateways,	which require a special proxy for each application-level service	105. stateful inspection firewalls	by an outsider. provide control over the flow of IP traffic.

106. Advantages of Stateful Inspection Firewalls 107. Disadvantages of Stateful	Provide greater control over the flow of IP traffic, Greater efficiency in comparison to CPU-intensive, full-time application firewall systems Complex to administer	116. Problems faced by organizations that have implemented firewalls	Configuration errors, Monitoring demands, Policy maintenance, Vulnerability to application- and input-based attacks.
Inspection Firewalls		117. Firewalls	may be implemented using hardware or software platforms.
108. Stateless filtering	does not keep the state of ongoing TCP connection sessions. it has no memory of what source port numbers the sessions' client selected	118. Hardware Firewall	will provide performance with minimal system overhead. Although hardware-based firewall platforms are faster, they are not as flexible or scalable as software-based
109. Stateful firewalls	keep track of TCP connections. The firewall keeps an entry in a cache for each open TCP connection.	119. Software- based	firewalls are generally slower with significant systems overhead
110. Stateless firewalls	perform more quickly than stateful firewalls, but they are not as sophisticated.	firewalls 120. For the firewall it's	Applications rather than normal servers
III. Examples of Firewall Implementations	Screened-host firewall, Dual-homed firewall, Demilitarized zone (DMZ) or screened-subnet firewall.	better to use 121. Virtual local area	groups of devices on one or more logically segmented LAN.
112. Screened-host firewall	Utilizing a packet filtering router and a bastion host, this approach implements basic network layer security (packet filtering) and application server security	networks (VLANs) 122. Common technique for	is to segment an organization's network so that each segment can be separately
113. Screened-host firewall	(proxy services). An intruder in this configuration must penetrate two separate systems before the security of the private network can be	implementing network security	is set up by configuring ports on a switch,
	compromised. This firewall system is configured with the bastion host connected to the private network with a packet filtering router between the Internet and the bastion host		so devices attached to these ports may communicate as if they were attached to the same physical network segment, although the devices are actually located on different LAN segments.
114. Dual-homed firewall	This is a firewall system that has two or more network interfaces, each of which is connected to a different network. Usually acts to block or filter some or all of the traffic trying to pass between the networks	124. VLAN	based on logical rather than physical connections and, thus, it allows great flexibility. Enables administrators to segment network resources for optimal performance by restricting users' access of network resources to the necessary individuals only.
115. Demilitarized zone (DMZ) or screened-	This is a small, isolated network for an organization's public servers, bastion host information servers and modem	separate zones	controls can be applied at a more granular level based on the systems, information and applications in each area.
subnet firewall	pools. Connects the untrusted network to the trusted network, but it exists in its own independent space to limit access	126. separate zones	can create defense in depth where additional layers of authentication, access control and monitoring can take place.
	and availability of resources.	127. Demilitarized zone (DMZ)	which places limited systems, applications and data in a public-facing segment

128. DMZ	Utilizing two packet filtering routers and a bastion host, this approach creates the most secure firewall system because it supports network- and application-level security while defining a separate DMZ network.	144. An IDS	works in conjunction with routers and firewalls by monitoring network usage anomalies
		145. Network- based IDSs	identify attacks within the monitored network and issue a warning to the operator.
129. DMZ	functions as a small, isolated network for an organization's public servers, bastion host information servers and modem pools.	146. Host-based IDSs	are configured for a specific environment and will monitor various internal resources of the operating system to warn of a possible attack. Can detect the modification of executable programs, detect the deletion of
of a DMZ are	An intruder must penetrate three separate devices, Private network addresses are not disclosed to the Internet, Internal		files and issue a warning when an attempt is made to use a privileged command
	systems do not have direct access to the Internet	of an IDS	Sensors responsible for collecting data in the form of network packets, log files, system call traces, Analyzers that receive input from
131. Integral parts of cybersecurity	Monitoring, detection and logging		sensors, an administration console, a user interface
132. Two types of attack vectors	ingress and egress	148. Types of IDSs include	Signature-based, Statistical-based, Neural networks
133. Ingress	network communications coming in	149. Broad	Network-based IDSs and Host-based IDSs
134. Egress	network communications going out	categories of IDSs	
135. data loss prevention program	helps an organization protect its information and prevent the exfiltration of sensitive data.	150. Signature- based	These IDS systems protect against detected intrusion patterns. The intrusive patterns they can identify are stored in the form of
136. DLP solutions cover three	Data at rest, Data in motion, data in use	151. Statistical- based	signatures.
primary states of information			These systems need a comprehensive definition of the known and expected behavior of systems.
•	stored data		definition of the known and expected behavior of systems.
information	stored data to data traveling through the network	based	definition of the known and expected behavior of systems. An IDS with this feature monitors the general patterns of activity and traffic on the network
information 137. Data at rest		based	definition of the known and expected behavior of systems. An IDS with this feature monitors the general patterns of activity and traffic on the network and creates a database. It is similar to the statistical model but with added self-learning
information 137. Data at rest 138. Data in motion	to data traveling through the network data movement at the user workstation	based	definition of the known and expected behavior of systems. An IDS with this feature monitors the general patterns of activity and traffic on the network and creates a database. It is similar to the
information 137. Data at rest 138. Data in motion 139. Data in use 140. Malicious	to data traveling through the network data movement at the user workstation level is one of the most common attack vectors used by adversaries to	based 152. Neural networks	definition of the known and expected behavior of systems. An IDS with this feature monitors the general patterns of activity and traffic on the network and creates a database. It is similar to the statistical model but with added self-learning functionality. are not able to detect all types of intrusions
information 137. Data at rest 138. Data in motion 139. Data in use 140. Malicious software 141. Heuristic-based methods of	to data traveling through the network data movement at the user workstation level is one of the most common attack vectors used by adversaries to compromise systems. use specific techniques to identify common malicious code behaviors and	based 152. Neural networks 153. Signature-based IDSs 154. statistical-based IDS systems 155. signature and	definition of the known and expected behavior of systems. An IDS with this feature monitors the general patterns of activity and traffic on the network and creates a database. It is similar to the statistical model but with added self-learning functionality. are not able to detect all types of intrusions due to the limitations of their detection rules. may report many events outside of the defined normal activity that are still normal
information 137. Data at rest 138. Data in motion 139. Data in use 140. Malicious software 141. Heuristic-based methods of detecting unknown malware 142. Anti-malware can be	to data traveling through the network data movement at the user workstation level is one of the most common attack vectors used by adversaries to compromise systems. use specific techniques to identify common malicious code behaviors and flag them as suspicious. Restriction of outbound traffic, Policies and awareness training, Multiple layers of	based 152. Neural networks 153. Signature-based IDSs 154. statistical-based IDS systems 155. signature	definition of the known and expected behavior of systems. An IDS with this feature monitors the general patterns of activity and traffic on the network and creates a database. It is similar to the statistical model but with added self-learning functionality. are not able to detect all types of intrusions due to the limitations of their detection rules. may report many events outside of the defined normal activity that are still normal activities on the network A combination of these models provides
information 137. Data at rest 138. Data in motion 139. Data in use 140. Malicious software 141. Heuristic-based methods of detecting unknown malware 142. Anti-malware	to data traveling through the network data movement at the user workstation level is one of the most common attack vectors used by adversaries to compromise systems. use specific techniques to identify common malicious code behaviors and flag them as suspicious. Restriction of outbound traffic, Policies	based 152. Neural networks 153. Signature-based IDSs 154. statistical-based IDS systems 155. signature and statistical-	definition of the known and expected behavior of systems. An IDS with this feature monitors the general patterns of activity and traffic on the network and creates a database. It is similar to the statistical model but with added self-learning functionality. are not able to detect all types of intrusions due to the limitations of their detection rules. may report many events outside of the defined normal activity that are still normal activities on the network A combination of these models provides

system

157. IDS cannot help with the	Weaknesses in the policy definition (see Policy section), Application-level vulnerabilities, Back doors into applications, Weaknesses in	171. Encryption	is the process of converting a plaintext message into a secure-coded form of text, called ciphertext
following weaknesses	predicts an attack before it occurs.	172. ciphertext	cannot be understood without converting back, via decryption—the reverse process—to plaintext
prevention		173. a key	special encryption/decryption password
system (IPS)		174. encryption	is subject to governmental laws and
159. intrusion prevention	monitoring key areas of a computer system and looking for "bad behavior," such as		regulations that limit the key size or define what may not be encrypted.
system (IPS)	worms, Trojans, spyware, malware and hackers.	175. cryptography	Encryption is part of a broader science of secret languages
prevention system (IPS)	complements firewall, antivirus and antispyware tools to provide complete protection from emerging threats.	176. cryptography	Protect information stored on computers from unauthorized viewing and manipulation, Protect data in transit over networks from unauthorized interception and
161. intrusion prevention system	able to block new (zero-day) threats that bypass traditional security measures since it does not rely on identifying and distributing		manipulation, Deter and detect accidental or intentional alterations of data, Verify authenticity of a transaction or document
(IPS)	threat signatures or patches.	177. encryption	is limited in that it cannot prevent the loss of data.
162. IDS policy	should establish the action to be taken by security personnel in the event that an intruder is detected.	178. encryption	should be regarded as an essential, but incomplete, form of access control that should be incorporated into an organization's overall computer security program.
163. IDS policy actions	Terminate the access and Trace the access		
164. Terminate the access	If there is a significant risk to the organization's data or systems, immediate termination is the usual procedure.	of cyptographic	Encryption algorithm, Encryption key, Key length
165. Trace the access	If the risk to the data is low, the activity is not immediately threatening, or analysis of the	systems include	
	entry point and attack method is desirable, the IDS can be used to trace the origin of the intrusion.	180. Encryption algorithm	Mathematically based function or calculation that encrypts or decrypts data.
166. IDS and IPS	can be directly integrated so that one product sends alert data to another	181. Encryption key	Piece of information similar to a password that makes the encryption or decryption process unique. A user needs the correct
167. IPSs	designed to not only detect attacks, but also to prevent the intended victim hosts from being affected by the attacks		key to access or decipher a message, as the wrong key converts the message into an unreadable form.
168. IPS	should prevent malicious programs from causing a system to delete all the files in a system directory	182. Key length	Predetermined length for the key. The longer the key, the more difficult it is to compromise in a brute force attack where all
of IPSs include	Protection at the application layer, Prevention of attacks rather than simply reacting to them, Defense in depth, Real-time event correlation	183. Effective cryptographic	possible key combinations are tried. Algorithm strength, Secrecy and difficulty of compromising a key, Nonexistence of back
170. IPSs	can generate false positives that can create serious problems if automated responses are used.	systems depend upon a variety of factors	doors, Inability to decrypt parts of a ciphertext message and prevent known plaintext attacks, Properties of the plaintext known by a perpetrator

184. There are two types of cryptographic systems	Symmetric Key Systems and Asymmetric Key Systems	s) cı sı	isadvantages to ymmetric key ryptosystems uch as DES or ES	Difficulty distributing keys and Limitations of shared secret
185. Symmetric Key Systems	These use single, secret, bidirectional keys that encrypt and decrypt	200. Tr	riple DES or DES	One form of advanced encryption algorithm
186. Asymmetric Key Systems	These use pairs of unidirectional, complementary keys that only encrypt or decrypt Typically, one of these keys is secret, and the other is publicly known.		riple DES	provides a relatively simple method of increasing the key size of DES to protect information without the need to design a
187. Public key systems	are asymmetric cryptographic systems.	202. as	symmetric	completely new block cipher algorithm. two keys work together as a pair. One
188. keys and hash values	are used to transform a string of characters into a shorter or fixed-length value or key		ncryption rocess	key is used to encrypt data; the other is used to decrypt data.
189. Symmetric key cryptographic	that represents the original string are based on a symmetric encryption algorithm, which uses a secret key to encrypt the plaintext to the ciphertext and		203. asymmetric encryption 204. asymmetric encryption	Either key can be used to encrypt or decrypt, but once the key has been used to encrypt data, only its partner can be used to decrypt the data
systems 190. Symmetric	the same key to decrypt the ciphertext to the corresponding plaintext the key is said to be symmetric because the			The key that was used to encrypt the data cannot be used to decrypt it. Thus, the keys are asymmetric in that they are
key	encryption key is the same as the decryption key	205. asymmetric keys	inversely related to each other. generate a single product from two large	
191. Data Encryption Standard	most common symmetric key cryptographic system		prime numbers, making it impractical to factor the number and recover the two factors	
(DES) 192. DES	is based on a public algorithm that operates on plaintext in blocks (strings or	206. as	symmetric keys	often used for short messages such as encrypting DES symmetric keys or creating digital signatures
	groups) of bits		symmetric ncryption	one key—the secret or private key—is known only to one person.
193. DES	this type of algorithm is known as a block cipher.	208. as	symmetric	a message that has been sent encrypted
194. DES	uses blocks of 64 bits. is no longer considered a strong	e	ncryption	by the secret (private) key of the sender can be deciphered by anyone with the corresponding public key
	cryptographic solution because its entire key space can be forced when every key is tried by large computer systems within a relatively short period of time.		symmetric ncryption	A message that has been sent encrypted using the public key of the receiver can be generated by anyone, but can only be read by the receiver.
196. DES	is being replaced with AES	210. E l	lliptical Curve	a variant and more efficient form of
197. AES	public algorithm that supports keys from 128 bits to 256 bits.	С	210. Elliptical Curve Cryptography (ECC)	public key cryptography and is gaining prominence as a method for increasing
advantages to symmetric key cryptosystems	The user only has to remember/know one key for both encryption and decryption, Symmetric key cryptosystems are generally less complicated and, therefore, use up less	С	lliptical Curve ryptography ECC)	security while using minimum resources. demands less computational power and therefore offers more security per bit
such as DES or AES	processing power than asymmetric techniques. They are ideally suited for bulk data encryption.	ly suited for bulk 212. Elliptic	lliptical Curve ryptography ECC)	works well on networked computers requiring strong cryptography. However, it has some limitations such as bandwidth and processing power.

213. Quantum cryptography	is the next generation of cryptography that may solve some of the existing problems associated with current cryptographic systems, specifically the random generation and secure distribution of symmetric cryptographic keys	algorithms	meant for digital signature applications where a large electronic document or string of characters, such as word processor text, a spreadsheet, a database record, the content of a hard disk or a JPEG image has to be compressed in a secure manner before being signed
214. Quantum cryptography	based on a practical application of the characteristics of the smallest "grains" of	229. MD2	optimized for 8-bit machines
	light (photons) and the physical laws	230. MD4 and MD5	32-bit machines
	governing their generation, propagation and detection.	231. verifies the	is to encrypt the message digest using the
215. AES	has replaced the DES as the cryptographic algorithm standard	identity of the sender	sender's private key, which "signs" the document with the sender's digital signature for message authenticity
216. Rijndael	is a symmetric block cipher with variable block and key length	232. To decipher a message digest	the receiver would use the sender's public key, proving that the message could only
217. Rijndael	as the algorithm for the AES.		have come from the sender
218. AES	the block length was fixed to 128 bits, and three different key sizes (128, 192 and 256 bits) were specified	233. Once the message digest is decrypted	the receiver will recompute the hash using the same hashing algorithm on the electronic document and compare the results with what was sent, to ensure the
219. three different	AES-128, AES-192 and AES-256		integrity of the message
versions of AES		234. digital signature is a cryptographic method that ensures	Data integrity, Authentication, Nonrepudiation
220. AES	cipher is based on substitution bytes, shifting rows, mixing columns and adding round keys that are repeated for 10 rounds		
221. Decryption	is computed by applying inverse functions of the round operations.	235. Data integrity	Any change to the plaintext message would result in the recipient failing to compute the same message hash.
222. digital signature	is an electronic identification of a person or entity created by using a public key algorithm.	236. Authentication	The recipient can ensure that the message has been sent by the claimed sender since only the claimed sender has the secret
223. checksum or digital	To verify the integrity of the data, a		key.
signature algorithm	cryptographic hashing algorithm is computed against the entire message or electronic document, which generates a	237. Nonrepudiation	The claimed sender cannot later deny generating and sending the message.
	small fixed string message, usually about 128 bits in length	238. Digital signatures and	are vulnerable to man-in-the-middle attacks wherein the sender's digital
224. message digest	which generates a small fixed string message, usually about 128 bits in length	public key encryption	signature private key and public key may be faked
225. Common types of message	SHA1, SHA2, MD2, MD4 and MD5	239. PKI	performs the function of independently authenticating the validity of senders' digital signatures and public keys.
digest algorithms	igest 240. VPN	240. VPN	is an example of applied cryptography that typically exchanges secure data over
226. message digest	algorithms are one-way functions, unlike private and public key encryption		the Internet Encryption is needed to make the connection virtually private.
algorithms	algorithms	241. IPSec	popular VPN technology
227. cannot be reversed	process of creating message digests	242. IPSec	which commonly uses the DES, Triple DES or AES encryption algorithms.

243. DES	uses 56-bit keys	259. Key	Digital certificates, Certificate authority, Registration authority
244. Triple DES	applies the (56-bit) key three times to achieve an effective key length of 168	elements of the PKI infrastructure	
245. AES	is a new standard adopted in 2001 that uses keys that can be 128, 192 or 256 bits long and a block size of 128 bits	are	is composed of a public key and identifying
246. Wired Equivalency Protocol - WEP	most commonly used method for wireless local area networks	certificates	information about the owner of the public key. Purpose is to associate a public key with the individual's identity in order to prov the sender's authenticity.
247. WPA and WPA2	increasing number of organizations and vendors are replacing WEP with this	261. Certificate authority or CA	is an authority in a network that issues and manages security credentials and public keys for message signature verification or
248. WPA and WPA2	which uses dynamic keys and an authentication server with credentials to		encryption. Attests to the authenticity of the owner of a public key
249. WEP and WPA	increase protection against hackers. comply with the evolving versions of the 802.11 wireless standard specified by the	262. Registration authority or RA	is an authority in a network that verifies use requests for a digital certificate and tells th CA to issue it
	Institute of Electrical and Electronics Engineers (IEEE),	263. The status and values of	A distinguishing username, An actual publifickey, The algorithm used to compute the
250. WPA	key is protected with a passphrase that does not have a rigorously enforced length	a current user's	digital signature inside the certificate, A certificate validity period
251. WPA	is a subset of the developing 802.11i standard	certificate should	
252. ECC	suited for small devices because the algorithm, by combining plane geometry with algebra, can achieve stronger authentication with smaller keys compared to traditional methods, such as RSA, which primarily use algebraic factoring	include 264. Digital certificate process	requires the sender to "sign" a document by attaching a digital certificate issued by a trusted entity. The receiver of the message and accompanying digital certificate relies on the public key of the trusted third-party certificate authority (CA) to authenticate the message. The receiver can link the message to a person, not simply to a public key,
253. ECC	is not as rigorous as traditional public key algorithms because it has a shorter history than algorithms like RSA		
254. ACLs	cannot prevent improper use of information by systems administrators, as the latter can have total control of a computer	265. Types of CAs	because of their trust in this third party. Organizationally empowered, which have authoritative control over those individuals
255. Encryption	can fill the security gap, and it can also protect data from hackers who, by means of malicious software, can obtain systems administration rights		in their name space, Liability empowered, for example, choosing commercially available options (such as VeriSign) in obtaining a digital certificate
256. Encryption	also helps to protect data when a computer or a disk falls into the wrong hands	266. CA	is responsible for managing the certificate throughout its life cycle.
257. PKI	allows a trusted party to issue, maintain and revoke public key certificates	267. RA functions	subject, Verifying the right of the subject to
258. PKI	allows users to interact with other users and applications to obtain and verify identities and keys from trusted sources.		requested certificate attributes, Verifying the subject actually possesses the private key being registered and that it matches the public key requested for a certificate

268. RA functions	cases where revocation is required, Assigning names for identification purposes, Generating shared secrets for use during the initialization and certificate pick-up phases of registration, Initiating the		is a session- or connection-layered protocol widely used on the Internet for communication between browsers and web servers, in which any amount of data is securely transmitted while a session is established.
	registration process with the CA on behalf of the subject end entity, Initiating the key recovery processing	280. SSL	provides end-point authentication and communications privacy over the Internet using cryptography
269. RA functions	Distributing the physical tokens (such as smart cards) containing the private keys and Certification practice statement	281. SSL	only the server is authenticated while the client remains unauthenticated.
270. Certification	is a detailed set of rules governing the CA's	282. Mutual authentication	requires PKI deployment to clients.
practice statement	operations. It provides an understanding of the value and trustworthiness of certificates issued by a given CA is an instrument for checking the continued	283. SSL involves a number of basic phases	Peer negotiation for algorithm support, Public key, encryption-based key exchange and certificate-based authentication,
revocation list — CRL	validity of the certificates for which the CA has responsibility.	284. HTTPS	Symmetric cipher-based traffic encryption uses public key certificates to verify the identity of end points
272. Use of cryptosystems by applications	generally involves a combination of private/public key pairs, secret keys, hash functions and digital certificates.	285. SSL	uses a hybrid of hashed, private and public key cryptographic processes to secure transactions over the Internet through PKI
273. cryptosystems	3. cryptosystems purpose of applying these combinations is	286. SSL	Confidentiality, Integrity, Authentication (e.g., between client and server)
applications		287. SSL handshake protocol	based on the application layer but also provides for the security of the communication sessions
by		288. SSL handshake protocol	Multiple connections can belong to one SSL session and the parties participating in one session can take part in multiple simultaneous sessions.
275. Sender encrypts	non-repudiation using his/her secret key	289. S/HTTP	transmits individual messages or pages securely between a web client and server by establishing an SSL-type connection
message 276. the secret key	is encrypted with the recipient's public key, which has been validated through the recipient's digital certificate and provides message confidentiality	290. S/HTTP	directs the message to a secure port number rather than the default web port address. This protocol utilizes SSL secure features but does so as a message rather than as a session-oriented protocol.
277. recipient decrypts message	using his/her private key to decrypt the senders secret key	291. IPSec	is used for communication among two or more hosts, two or more subnets, or hosts and subnets.
278. uses senders secret key	to decrypt the message, to expose it	292. IPSec transport method	the data portion of each packet—referred to as the encapsulation security payload (ESP) —is encrypted to achieve confidentiality
		293. IPSec tunnel method	the ESP payload and its header are encrypted

294. IPSec nonrepudiation	an additional authentication header (AH) is applied.
295. security associations - SAs	define which security parameters should be applied between the communicating parties as encryption algorithms, keys, initialization vectors, life span of keys, etc.
296. Either IPSec Mode	security associations (SAs) are established.
297. To increase IPSec security	use asymmetric encryption via Internet Security Association and Key Management Protocol/Oakley (ISAKMP/Oakley), which allows the key management, use of public keys, negotiation, establishment, modification and deletion of SAs and attributes
298. SSH	is a client-server program that opens a secure, encrypted command-line shell session from the Internet for remote logon
299. SSH	uses strong cryptography to protect data, including passwords, binary files and administrative commands, transmitted between systems on a network
300. SSH	typically implemented by validating both parties' credentials via digital certificates
301. SSH	is useful in securing Telnet and FTP services. It is implemented at the application layer, as opposed to operating at the network layer (IPSec implementation).
302. Secure Multipurpose Internet Mail Extensions (S/MIME)	a standard secure email protocol that authenticates the identity of the sender and receiver, verifies message integrity, and ensures the privacy of a message's contents, including attachments.
303. Secure Electronic Transactions (SET)	is a protocol developed jointly by VISA and MasterCard to secure payment transactions among all parties involved in credit card transactions
304. Secure Electronic Transactions (SET)	an application-oriented protocol that uses trusted third parties' encryption and digital signature processes, via a PKI of trusted third-party institutions, to address confidentiality of information, integrity of data, cardholder authentication, merchant authentication and interoperability
305. secrecy of keys	what the security of encryption methods relies mainly on
306. randomness of key generation	also a significant factor in the ability to compromise a key

307. IPSec	establishes VPNs via transport and tunnel mode encryption methods
308. The number and types of layers needed is a function of	asset value, criticality, the reliability of each control and the degree of exposure
benefits of the DMZ system	An intruder must penetrate three separate devices, Private network addresses are not disclosed to the Internet, Internal systems do not have direct access to the Internet
310. Internet perimeter should	Detect and block traffic from infected internal end points, Eliminate threats such as email spam, viruses and worms, Control user traffic bound toward the Internet, Monitor and detect network ports for rogue activity