Benchmarking the SMS-EMOA with Self-adaptation on the bbob-biobj Test Suite

Simon Wessing

Chair of Algorithm Engineering Computer Science Department Technische Universität Dortmund

16 July 2017

Introduction

- Evolutionary multiobjective optimization
- Continuous decision variables
- (1+1)-SMS-EMOA is algorithmically equivalent to single-objective (1+1)-EA
- ⇒ Theory about optimal step size from single-objective optimization applies

Introduction

- Evolutionary multiobjective optimization
- Continuous decision variables
- (1+1)-SMS-EMOA is algorithmically equivalent to single-objective (1+1)-EA
- ⇒ Theory about optimal step size from single-objective optimization applies
 - ▶ Situation for $(\mu + 1)$, $(\mu + \lambda)$ unknown
 - How to define step size optimality?
 - How to adapt step size if not with very sophisticated MO-CMA-ES?

Development of Control Mechanism

▶ Idea: use self-adaptation from single-objective optimization

Development of Control Mechanism

- ▶ Idea: use self-adaptation from single-objective optimization
- Mutation of genome: $\mathbf{y} = \mathbf{x} + \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Mutation of step size: $\sigma = \tilde{\sigma} \cdot \exp(\tau \mathcal{N}(0,1))$
- lacktriangle Learning parameter $au \propto 1/\sqrt{n}$

Development of Control Mechanism

- Idea: use self-adaptation from single-objective optimization
- Mutation of genome: $\mathbf{y} = \mathbf{x} + \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
- ▶ Mutation of step size: $\sigma = \tilde{\sigma} \cdot \exp(\tau \mathcal{N}(0,1))$
- Learning parameter $au \propto 1/\sqrt{n}$
- Not state of the art any more
- ► Behavior is **emergent**
- Theoretical analysis is difficult
- Application to multiobjective optimization is scarce
- ⇒ Experiment to find good parameter configurations

Experimental Setup

Factor	Туре	Symbol	Levels
Number variables	observable	n	$\{2, 3, 5, 10, 20\}$ $\{2^{-2}, 2^{-1}, \mathbf{2^0}, 2^1, 2^2, 2^3\}$
Learning param. constant	control	С	{2 -, 2 -, 2 -, 2 -, 2 -, 2 -}
Population size	control	μ	$\{10, 50\}$
Number offspring	control	λ	$\{1,\mu,5\mu\}$
Recombination	control		{discrete,
			intermediate,
			$arithmetic, \ none \}$

- Full factorial design
- ➤ 15 unimodal problems of BBOB-BIOBJ 2016 (only first instance)
- ▶ Budget: $10^4 n$ function evaluations
- Assessment: rank-transformed HV values of whole EA runs

Other Factors Held Constant

- ▶ Initial mutation strength $\sigma_{\text{init}} = 0.025$
- Repair method for bound violations: Lamarckian reflection (search space $[-100, 100]^n$, scaled to unit hypercube)
- ightharpoonup Selection: iteratively removes worst individual, until μ reached (backward elimination)

→ Might have to reconsider in the future

Pseudocode

```
Input: population size \mu, initial population P_0, number of
     offspring \lambda
 1: t \leftarrow 0
 2: while stopping criterion not fulfilled do
 3:
      O_t \leftarrow \text{createOffspring}(P_t)
                                                               // create \lambda offspring
                                                    // calculate objective values
     evaluate(O_t)
 4:
 5: Q_t \leftarrow P_t \cup O_t
 6: r \leftarrow \text{createReferencePoint}(Q_t)
 7:
     while |Q_t| > \mu do
           \{F_1, \dots, F_w\} \leftarrow \text{nondominatedSort}(Q_t) // sort in fronts
 8.
           \mathbf{x}^* \leftarrow \operatorname{argmin}_{\mathbf{x} \in F_w}(\Delta_s(\mathbf{x}, F_w, \mathbf{r})) // \mathbf{x}^* with smallest contr.
 9:
           Q_t \leftarrow Q_t \setminus \{\boldsymbol{x}^*\}
                                   // remove worst individual
10.
     end while
11.
12: P_{t+1} \leftarrow Q_t
13: t \leftarrow t + 1
14: end while
```

Main Effect: Learning Parameters $au=c/\sqrt{n}$

- $ightharpoonup c = 2^{-2}$ is always the worst choice
- \Rightarrow Exclude $c = 2^{-2}$ from further analysis

Mutation Strength vs. Generation

(a)
$$\tau = 2^{-2}/\sqrt{n}$$
.

(c)
$$\tau = 2^2/\sqrt{n}$$
.

(b)
$$\tau = 2^0 / \sqrt{n}$$
.

(d)
$$\tau = 2^3 / \sqrt{n}$$
.

Main Effect: Selection Variants

Main and Interaction Effects: Recombination & Selection

Interaction Effect: Learning Parameter vs. Recombination

	arithmetic	discrete	intermediate	none
$2^{-1}/\sqrt{n}$	49.96	66.60	79.90	40.82
$2^0/\sqrt{n}$	57.01	53.97	83.87	44.49
$2^1/\sqrt{n}$	55.65	65.43	82.33	52.42
$2^2/\sqrt{n}$	48.70	66.57	80.38	50.98
$2^3/\sqrt{n}$	55.25	73.53	86.90	51.54

Comparison with (50 + 250) SBX on bbob-biobj 2016

Comparison with (50 + 250) SBX on bbob-biobj 2016

▶ SBX is better/competitive on separable problems

Discussion

- Self-adaptive step size adaptation works in both directions (increasing/decreasing)
- ▶ Best configuration for budget of $10^4 n$:
 - ► No recombination
 - $\tau = 2^{0}/\sqrt{n}$
 - ▶ (50 + 250)-selection
- Surprisingly similar to single-objective case
- Only arithmetic and no recombination seem to be worth investigating further

Application to bbob-biobj 2017

Modifications to previous experiments:

- ▶ Initialization in $[0.475, 0.525]^n$ (normalized), corresponding to $[-5, 5]^n$ in original problem space
- ▶ Budget of 10⁵ n
- \blacktriangleright Comparison to $(\mu + 1)$ -SMS-EMOA from bbob-biobj 2016
 - DE variation
 - SBX/PM variation

Some Results 5-D

separable-separable

multimodal-multimodal

separable-moderate

multimodal-weakstructure

All 55 Functions

Conclusions and Outlook

Conclusions:

- Self-adaptive variation better than SBX in all tested dimensions, also on multimodal problems
- But not better than DE on multimodal problems
- Not a good anytime algorithm
- Restarts?

Outlook:

- Separate step size for each decision variable?
- Exploit knowledge that dominated solutions need higher mutation strength?
- More sophisticated recombination variants?
- Does variation interact with backward/forward greedy selection?