Analysis III

Homework

Exercises (homework) can be found in the script at the end of each Chapter.

Chapter I: #3 (only for convex sets), #4 due Th 4-25

Chapter II: # 2,4,5,6 due Th 5-2 Chapter III: # 3c, 4 due Th 5-9 Chapter IV: # 2b, 3, 4, 6 due Th 5-16 Chapter V: # 2,4,6 due Th 5-25 Chapter VI: # 2,3,4 due Th 6-1

Key Dates

Instruction begins: Mo, April 1
Instruction ends: Fr, June 7
Final's week: June 10, 12 (Mo Th

Final's week: June 10-13 (Mo-Th)

Holiday: Mo, May 27

April 2, 2024

No class Thursday, April 04. Makeup class (tentatively) on Friday, April 12 at 10:30. Discussion sections on Fridays (tentatively) at 11:40.

Topological Vector Spaces

Definition: Vector Spaces

V over a field \mathbb{F} (\mathbb{R} or \mathbb{C}).

Definition: Topological Spaces

 (X, τ) where $\tau \subseteq \mathcal{P}(X)$ satisfying

- 1. $\emptyset, X \in \tau$
- 2. $A, B \in \tau \implies A \cap B \in \tau$
- 3. $A_{\omega} \in \tau \implies \bigcup_{\omega} A_{\omega} \in \tau$

Recall: $A \in \tau \iff A \text{ open } \iff X \setminus A \text{ closed.}$

 $A^{\circ} = \bigcup_{\substack{U \subseteq A \\ U \text{ open}}} U$ the set of interior points of A.

 $\overline{A} = \bigcap_{\substack{F \supseteq A \\ F \text{ closed}}} \text{ the closure of } A.$

A' limit points of A.

Compact sets.

Locally compact sets.

Recall: *X* is Hausdorff iff $\forall x, y \in X$, $\exists U, V \in \tau$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Definition: Bases for Topological Spaces

Definition: Let (X, τ) be a topological space. $\sigma \subseteq \tau$ is called a base for topology τ if $\forall x \in X, \ \forall U \in \tau, \ x \in U, \ \exists W \in \sigma$ such that $x \in W \subseteq U$.

Proposition

 $\sigma \subseteq \tau$ is a base for τ if and only if every $U \in \tau$ is the union of certain sets taken from σ .

$$(*) \quad \tau = \left\{ \bigcup_{\omega \in \Omega} W_{\omega} : \{W_{\omega}\}_{\omega \in \Omega} \subseteq \sigma, \Omega \right\}$$

Proof

(⇐=) ✓

 (\Longrightarrow) Take $U \in \tau$ and let $x \in U$, \leadsto find $W_x \in \sigma$, $x \in W_x \subseteq U$.

$$U = \bigcup_{x \in U} \{x\} \subseteq \bigcup_{x \in U} W_x \subseteq U$$

Therefore $\bigcup_{x \in U} W_x = U$.

Proposition

If σ is a base for some topology τ on X, then

- 1. $\forall x \in X, \exists W \in \sigma \text{ such that } x \in W.$
- 2. $\forall U, V \in \sigma$, $\forall x \in U \cap V$, $\exists W \in \sigma$ such that $x \in W \subseteq U \cap V$.

Conversely, if $\sigma \in \mathcal{P}(X)$ ($\varnothing \notin \sigma$) satisfies (1) and (2), then σ is the base for a topology τ (and τ is given by (*)). Note that $U, V \in \tau \implies U \cap V \in \tau$ (requires (2)). If $U = \bigcup U_{\alpha}$ and $V = \bigcup V_{\beta}$, then $U \cap V = \bigcup_{\alpha,\beta} (U_{\alpha} \cap V_{\beta}) = \bigcup_{\alpha,\beta} \bigcup_{x \in U} W_{\alpha,\beta,x}$.

Example: Metric Spaces

(X, d) is a metric space if $d: X \times X \to [0, +\infty)$ satisfies

- 1. d(x, y) = 0 if and only if x = y.
- 2. d(x, y) = d(y, x).
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

Definition: Epsilon Neighborhoods

$$B_{\varepsilon}(x) = \{ y \in x : d(x, y) < \varepsilon \}$$

 $A \subseteq X$ is open if and only if $\forall x \in A, \exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A. \ x \in B_{\varepsilon}(x)$.

 τ = set of all open sets.

$$\sigma_1 = \{B_{\varepsilon}(x) : x \in X, ; \varepsilon > 0\}$$

is a base for the topology τ .

$$\sigma_2 = \left\{ B_{1/n}(x) : x \in X, \ n \in \mathbb{N} \right\}$$

is also a base for τ .

Definition: Direct Product - Product Topology

Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Consider $X = X_1 \times X_2$. The product topology τ on X is given by the base

$$\sigma = \{U_1 \times U_2 : U_1 \in \tau_1, U_2 \in \tau_2\}$$

More explicitly,

$$\tau = \left\{ \bigcup_{\omega} U_{1,\omega} \times U_{2,\omega} : U_{i,\omega} \in \tau_i \right\}$$

 $(X_{\omega}, \tau_{\omega})$ topological spaces $(\omega \in \Omega)$

$$X = \prod_{\omega \in \Omega} = \{(x_{\omega})_{\omega \in \Omega} : x_{\omega} \in X_{\omega}\}$$

Formally, $f \cong (x_{\omega})_{\omega \in \Omega}$, $x_{\omega} = f(\omega)$, $f : \Omega \to \bigcup_{\omega \in \Omega} X_{\omega}$ such that $f(\omega) \in X_{\omega}$. $[x \neq \emptyset \longleftarrow X_{\omega} \neq \emptyset \text{ axiom of choice}]$

$$\sigma = \left\{ \prod_{\omega \in \Omega} U_{\omega} \, : \, U_{\omega} \in \tau_{\omega} \text{ and all but finitely many } U_{\omega} = X_{\omega} \right\}$$

Definition: Subspace Topology

Given (X, τ) and $Y \subseteq X$, then (Y, τ_Y) is also a topological space where

$$\tau_Y\{U\cap Y:U\in\tau\}$$

Definition: Local Bases for Topological Spaces

A collection $\gamma \subseteq \tau$ is called a local base at $x \in X$ if

- 1. $\forall U \in \tau$, $x \in U$, $\exists W \in \gamma$ such that $x \in W \subseteq U$.
- 2. $\forall W \in \gamma, x \in W$

Example

Let (X, d) be a metric space.

$$\gamma_x = \{B_{\varepsilon}(x) : \varepsilon > 0\}$$

is a local base at x. Similarly,

$$\tilde{\gamma}_x = \{B_{1/n} : n \in \mathbb{N}\}$$

is a countable local base.

Proposition

If γ_x ($x \in X$) are local bases for τ at X, then

$$\sigma = \bigcup_{x \in X} \gamma_x$$

is a bse for τ .

Proposition

 $\{\gamma_x\}_{x\in X}$ are local bases at x for some topology τ if and only if

- 1. $\forall x \in X$, γ_x is a non-empty collection of subsets containing x.
- 2. If $U \in \gamma_x$, $V \in \gamma_y$, and $z \in U \cap V$, then $\exists W \in \gamma_z$ such that $z \in W \subseteq U \cap V$.

Definition: Topological Vector Spaces

Suppose V is a vector space over $\mathbb{F} = \mathbb{R}$, \mathbb{C} and let τ be a topology on V. Then V is a topological vector space (TVS) if

- 1. $\forall x \in V$, $\{x\}$ is closed.
- 2. The functions f, g (i.e. algebraic operations) are continuous.

$$f: V \times V \to V, f(x, y) = x + y$$

 $g: \mathbb{F} \times V \to V, g(\lambda, x) = \lambda \cdot x$

Notation

For $A_1, A_2 \subseteq V$ and $B \subseteq \mathbb{F}$,

$$A_1 + A_2 = \{ a_1 + a_2 : a_1 \in A_1, a_2 \in A_2 \}$$

$$a + A_1 = \{ a + \alpha : \alpha \in A \}$$

$$B \cdot A = \{ \beta \cdot a : \beta \in B, a \in A \}$$

$$\alpha \cdot A = \{ \alpha \cdot a : a \in A \}$$

Lemma

Let V be a TVS. Then

- 1. $\forall x, y \in V$, \forall open $U_{x+y} \ni x + y$, \exists open $U_x \ni x$, open $U_y \ni y$ such that $U_x + U_y \subseteq U_{x+y}$.
- 2. $\forall x \in V, \alpha \in \mathbb{F}, \forall \text{ open } U_{\alpha x} \ni \alpha x, \exists \text{ open } U_x \ni x, U_\alpha \ni \alpha \text{ such that } U_\alpha \cdot U_x \subseteq U_{\alpha x}.$

Proof of 1

Given $x, y \in X$, $x + y \in U_{x+y}$ open.

$$f(x,y) = x + y \in U_{x+y}$$

and $(x,y) \in f^{-1}(U_{x+y})$ open. In the product topology

$$(x,y) \in U_x \times U_y \subseteq f^{-1}(U_{x+y})$$

which implies $x \in U_x$ and $y \in U_y$, both open, and $U_x + U_y \le U_{x+y}$.

April 9, 2024

Office Hours: Th 11:30 AM - 1:00 PM

Makeup Class: Friday, April 12 at 11:00 AM.

Lemma 1

Let V be a TVS

- 1. $\forall x, y \in V, \ \forall U_{x+y} \ni x+y \ \text{open}, \ \exists U_x \ni x, U_y \ni y \ \text{such that} \ U_x + U_y \subseteq U_{x+y}.$
- 2. $\forall \alpha \in F, \forall U_{\alpha x} \ni \alpha x \text{ open, } \exists U_{\alpha} \ni \alpha \text{ open in } F, U_{x} \ni x \text{ such that } U_{\alpha} \cdot U_{x} \subseteq U_{\alpha x}.$

For 2. with $\alpha = 0$, $\forall x \in X$, $\forall U \ni 0$ open, $\exists \delta > 0$, $U_x \ni x$ open such that $B_\delta(0) \cdot U_x \subseteq U$. That is, $\beta U_x \subseteq U$, $\forall |\beta| < \delta$.

Proposition

In a TVS, the maps

- 1. Translation: $T_a: x \in V \mapsto X + a \in V \ (a \in V)$
- 2. Multiplication: $M_{\lambda}: x \in V \mapsto \lambda \cdot x \in V \ (\lambda \in \mathbb{F}, \ \lambda \neq 0)$

are continuous (in fact, homeomorphic).

Proof

We know $(x, y) \mapsto x + y$ and $(\lambda, x) \mapsto \lambda \cdot x$ are continuous.

Inversions

 $T_a \circ T_{-a} = \mathrm{id}, \ T_{-a} \circ T_a = \mathrm{id}, \ M_\lambda \circ M_{1/\lambda} = \mathrm{id}, \ \mathrm{and} \ M_{1/\lambda} \circ M_\lambda = \mathrm{id}.$

Therefore they are bijective and the inverses are continuous.

Remark

If U is open, then a + U is also open.

If γ_0 is a local base at 0, then $\gamma_x = \{x + U : U \in \gamma_0\} = x + \gamma_0$ is a local base at x.

Recall that γ_x is a local base at x if $\forall W \ni x$ open, $\exists U \in \gamma_x$ such that $x \in U \subseteq W$.

That is, in a TVS only local base at 0 are needed. We may interpret "local base" as "local base at 0".

$$\sigma = \bigcup_{x \in V} (x + \gamma_0)$$

is a base for the TVS.

Types of Topologial Vector Spaces

Normed Spaces / Banach Spaces

A normed space is a vector space over \mathbb{F} together with a norm $||\cdot||$, i.e. a map $||\cdot||: x \in V \mapsto ||x|| \in [0, \infty)$ such that

- 1. $||x|| = 0 \iff x = 0$.
- 2. $||x + y|| \le ||x|| + ||y||$.
- 3. $||\lambda x|| = |\lambda| \cdot ||x||$.

Remarks

A normed space is a metric space with d(x, y) = ||x - y||.

A local base (at 0) is given by ε -neighborhoods:

$$\gamma_0 = \{B_{\varepsilon}(0) : \varepsilon > 0\}$$

where

$$B_{\varepsilon}(0) = \{ x \in V : ||x|| < \varepsilon \}$$

(open ball with radius $\varepsilon > 0$).

Convergence in Normed Space

A sequence $\{x_n\}$ $(x_n \in V)$ converges to $\lambda \in V$ if $\lim_{n\to\infty} ||x_n - x|| = 0$.

A sequence $\{x_n\}$ is Cauchy if $\forall \varepsilon > 0$, $\exists N$ such that $\forall j, k \ge N$, $||x_j - x_k|| < \varepsilon$.

A normed space is complete if $\{x_n\}$ Cauchy implies $\exists x \in V$ such that $x_n \to x$.

Complete normed spaces are called Banach spaces.

Example 1

 $\ell^p(\mathbb{N})$, $1 \le p < \infty$, the set of all sequences $\{x_n\}_{n=1}^{\infty} = x$ such that

$$||x|| = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} < +\infty$$

Recall $\{x_n\}+\{y_n\}=\{x_n+y_n\}$ and $\lambda\{x_n\}=\{\lambda x_n\}$. ℓ^p spaces are complete and therefore Banach. If $\{x_n\}\in\ell^p$ and $\{y_n\}\in\ell^q$, then $\{x_ny_n\}\in\ell^r$, $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}\in[0,1]$ (e.g. $\ell^2\cdot\ell^2\leq\ell^1$)

Example 2

 $\ell^{\infty}(\mathbb{N})$, the set of all bounded sequences

$$||x|| = \sup_{n \in \mathbb{N}} |x_n| < +\infty$$

Example 3

 $C_0(\mathbb{N}) \subseteq \ell^p(\mathbb{N})$, the set of all sequences $\{x_n\}$

$$\lim_{n\to\infty} x_n = 0$$

 C_0 is a closed subspace, and both are Banach.

Example 4

 $L^p(\Omega)$, $1 \le p < \infty$, $\Omega \subseteq \mathbb{R}^d$ a Lebesgue measurable set with $m(\Omega) > 0$, the space of all equivalence classes of Lebesgue measurable functions $f: \Omega \to \mathbb{F}$ such that

$$||f|| = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p} < +\infty$$

Example 5

 $L^{\infty}(\Omega)$, the measurable and essentially bounded functions

$$\begin{split} ||f|| &= \inf_{\substack{N \subseteq \Omega \\ m(N) = 0}} \sup_{x \in \Omega \backslash N} |f(x)| < + \infty \\ &= \operatorname{ess\ sup}_{x \in \Omega} |f(x)| \end{split}$$

 $L^p(\Omega)$ spaces, $1 \le p \le \infty$, are Banach.

Example 6

For $\Omega \neq \emptyset$, let $B(\Omega)$ the set of all bounded functions $f: \Omega \to \mathbb{F}$ with

$$||f|| = \sup_{x \in \Omega} |f(x)|$$

is a Banach space.

 $f_n \to f$ in $B(\Omega)$ if and only if f_n converges uniformly on Ω to f.

Example 7

Let Ω be a topological space and $BC(\Omega)$ the set of all bounded, continuous functions $f:\Omega\to\mathbb{F}$.

Then $BC(\Omega) \subseteq B(\Omega)$ is a closed Banach subspace under the same norm.

That is, the uniform limit of continuous functions is a continuous function.

$$f_n \to f \Longrightarrow f \in B(\Omega)$$

Example 8

Let K be a compact, Hausdorff space.

Then C(K) is the set of all continous functions $f: K \to \mathbb{F}$ and C(K) = BC(K).

F Spaces / pre-F Spaces

A pre-*F*-space is a TVS where the topology is given by some invariant metric d(x+z,y+z)=d(x,y) or d(x,y)=d(x-y,0).

An *F*-space is a complete pre-*F*-space.

A local base (at 0) is given by

$$\gamma_0 = \{B_{\varepsilon}(0) : \varepsilon > 0\}, \quad B_{\varepsilon}(x) = \{y \in V : d(x, y) < \varepsilon\}$$

Example 1

 $\ell^p(\mathbb{N}), 0 , the set of all <math>\{x_n\}_{n=1}^{\infty}$ such that

$$\sum_{n=1}^{\infty} |x_n|^p < +\infty$$

with

$$d(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|^p$$

Note that this obeys the triangle inequality specifically because it has not been raised to 1/p.

$$d(\lambda x, \lambda y) = |\lambda|^p \cdot d(x, y)$$

means that d(z,0) is not a norm.

Here, $B_{\varepsilon}(x)$ are not convex sets.

Side Remark

Given \mathbb{R}^2 , the ℓ^p norm for $1 \le p \le \infty$ is given by

$$||(x_1, x_2)|| = (|x_1|^p + |x_2|^p)^{1/p}$$

and the distance for 0 by

$$d((x_1, x_2))) = |x_1|^p + |x_2|^p$$

The ε neighborhoods for p=1 are diamonds, p=2 circles, $p=\infty$ squares with smooth transition between them. However, for 0 , we have concave diamond shapes.

These norms and metrics are all equivalent on \mathbb{R}^2 in the sense that they give the same topology.

Locally Convex TVS

A TVS which has a local base γ at 0 consisting of open neighborhoods of 0 which are all convex.

Definition: Convex Set

A set $A \subseteq V$ is convex if $\forall x, y \in A, \lambda \in [0,1]$, then $\lambda x + (1-\lambda)y \in A$ Alternatively, the line segment between x and y is contained in A ($[x, y] \subseteq A$).

Fréchet Spaces and pre-Fréchet Spaces

A pre-Fréchet space is locally convex. A Fréchet space is a locally convex *F*-space.

April 11, 2024

Fréchet Spaces

Example

 $S = \{\{\{x_n\}_{n=1}^{\infty} \text{ the space of all sequences } x_n \in \mathbb{F}.$

$$d(\{x_n\},\{y_n\}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{|x_n - y_n|}{1 + |x_n - y_n|} < +\infty$$

Triangle inequality:

$$\frac{a+b}{1+a+b} \le \frac{a}{1+a} + \frac{b}{1+b}, \quad a, b \ge 0$$

invariant metric, complete.

 $\gamma_0 = \{B_{\varepsilon}(0) : \varepsilon > 0 \text{ is a local base.}$

 $\hat{\gamma}_0 = \{U_{\varepsilon,N} : \varepsilon > 0, N \in \mathbb{N}\}.$

 $U_{\varepsilon,N} = \{\{x_n\}_{n=1}^{\infty} : |x|_n < \varepsilon, \forall n = 1, \dots, n\}.$

 $\forall \varepsilon > 0, \exists \hat{\varepsilon} > 0, N \text{ such that } U_{\hat{\varepsilon},N} \subseteq B_{\varepsilon}(0).$

 $\forall \hat{\varepsilon} > 0, N, \exists \varepsilon > 0 \text{ such that } B_{\varepsilon}(0) \subseteq U_{\hat{\varepsilon},N}.$

 $x^{(m)} \to x \text{ in metric of } \mathcal{S} \text{ as } m \to \infty.$ $x^{(m)} = \{x_n^{(m)}\}_{n=1}^{\infty}, \ x = \{x_n\}_{n=1}^{\infty} \text{ if and only if } \forall n \in \mathbb{N}, \ x_n^{(m)} \to x_n \text{ as } m \to \infty \text{ (pointwise, componentwise convergence)}.$

Example

 $C(\mathbb{R}^d)$, the set of continuous functions $f:\mathbb{R}^d\to\mathbb{F}$.

$$|||f|||_N = \sup_{\substack{x \in \mathbb{R}^d \\ ||x|| \le N}} |f(x)|$$

$$d(f,g) = \sum_{N=1}^{\infty} \frac{1}{2^N} \cdot \frac{|||f - g|||_N}{1 + |||f - g|||_N}$$

Complete Fréchet space.

"Locally uniform congergence" such that $f_n \to f$ in metric of $C(\mathbb{R}^d)$ if and only if \forall compact set $K \subseteq \mathbb{R}^d$, f_n converges to f uniformly on K.

Example

 $C^{\infty}[0,1]$ the set of infinitely differentiable functions $f:[0,1] \to \mathbb{F}$.

$$|||f|||_n = \sup_{x \in [0,1]} |f^{(n)}(x)|$$

$$d(f,g) = \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \frac{|||f - g|||_n}{1 - |||f - g|||_n}$$

Fréchet space.

 $f_m \to f$ in $C^{\infty}[0,1]$ as $m \to \infty$ if and only if for every $m \in \{0,1,\ldots\}, f_m^{(n)} \to f^{(n)}$ uniformly on [0,1] as $m \to \infty$.

Proposition

Every TVS is Huasdorff.

Proof

Let $x, y \in V$, $x \neq y$.

For $U = V \setminus \{0\}$, and open set, $x - y \in U$. Using the continuity of $(x^2, y^2) \mapsto x^2 - y^2$ and Lemma 1, there exist $U_x \ni x$ and $U_y \ni y$ open such that $U_x - U_y \subseteq U$. Note that $U_x \cap U_y = \emptyset$, otherwise there would exist $z \in U_x \cap U_y$ such that $0 = z - z \in U_x - U_y \subseteq U$ a contradiction.

Definition: Balancedness

A subset *U* of a vector space *V* is called balanced if $\forall \lambda \in \mathbb{F}$, $|\lambda| \le 1$, $\lambda U \subseteq U$.

Example

For $V = \mathbb{R}^2$, $\mathbb{F} = \mathbb{R}$, an ellipse is convex and balanced.

Note that since $\lambda = 0$ is a valid choice, 0 is always in a balanced set.

A retangle, offset from the origin, is convex but not balanced.

A concave diamond centered at 0 may be balanced.

An annulus is neither.

Exercise

Show that for $V = \mathbb{C}$, $\mathbb{F} = \mathbb{C}$, the balanced, convex sets are the open and closed disks along with the entire plane.

Proposition

- 1. Every TVS has a balanced, local base.
- 2. Every locally convex TVS has a balanced and convex local base.

Proof of A

e.g. $\gamma = \{U : U \text{ open, } 0 \in U\}.$

For every $U \in \gamma$, construct another \hat{U} open, $0 \in \hat{U} \subseteq U$ balanced.

Then $\hat{\gamma} = {\hat{U} : U \text{ taken from } \gamma}$ is a local base.

Use Lemma 1 again and the continuity of $(\lambda, x') \mapsto \lambda \cdot x'$ at $\lambda = 0$, x' = 0.

Given open $U \ni 0$, find $\delta > 0$ and open $U_0 \ni 0$ such that $B_{2\delta}(0) \cdot U_0 \subseteq U$.

Then for $\alpha \in \mathbb{F}$, $|\alpha| \leq \delta$, $\alpha \cdot U_0 \subseteq U$. Take

$$\hat{U} = \bigcup_{\substack{\alpha \in \mathbb{F} \\ |\alpha| \le \delta}} \alpha \cdot U_0$$

Therefore \hat{U} is a union of open sets and $0 \in \hat{U} \subseteq U$. Finally, for $|\lambda| \le 1$,

$$\lambda \cdot \hat{U} = \bigcup_{\substack{\alpha \in \mathbb{F} \\ |\alpha| < \delta}} \lambda \cdot \alpha \cdot U_0 = \bigcup_{\substack{\beta \\ |\beta| \le |\lambda| \cdot \delta \le \delta}} \beta U_0 = \hat{U}$$

Proof of B

We have a local base $\gamma=\{U_\omega\},\ U_\omega\ni 0$ open and convex. We want to construct $\hat{\gamma}=\{\hat{U}_\omega\},\ \hat{U}_\omega\ni 0$ open, convex and balanced. Given U convex, define

$$\hat{U} = \bigcap_{|\alpha| \le \delta} \alpha U$$

convex and balanced.

Need to show that $\hat{U} \ni 0$ is an open neighbrhood.

Rest of the owl left to the reader.

Recall

The intrinsic characterization of a base for a topological space or a local base for a topological space X, $\{\gamma_x\}_{x\in X}$.

- $\forall x \in X, U \in \gamma_x, x \in U$
- $\forall x, y \in X, U \in \gamma_x, V \in \gamma_y, z \in U \cap V, \exists W \in \gamma_z, W \subseteq U \cap V.$

Proposition

A balanced, local base γ (at 0) of a TVS V has the following properties:

- 1. γ is a nonempty collection of subsets of V containing 0.
- 2. $\forall U_1, U_2 \in \gamma$, $\exists U \in \gamma$ such that $U \subseteq U_1 \cap U_2$.
- 3. $\forall U \in \gamma, x \in U, \exists W \in \gamma \text{ such that } x + W \subseteq U.$

- 4. $\forall U \in \gamma$, $\exists W \in \gamma$ such that $W + W \subseteq U$ (continuity of $(x, y) \mapsto x + y$ at (x = y = 0).
- 5. $\forall U \in \gamma, \ \forall x \in V, \ \exists t > 0, \ x \in t \cdot U$ (continuty of scalar multiplication $(\lambda, x') \mapsto \lambda x'$ at $\lambda = 0, \ x' = x$).

$$\frac{1}{t} \cdot x \in U, \ \frac{\delta}{2} \cdot x \subset B_{\delta}(0) \cdot \hat{U} \subseteq U.$$

6. $\forall x \in V, x \neq 0, \exists U \in \gamma, x \notin U (\{x\} \text{ closed}; 0 \in V \setminus \{x\} \text{ open}; 0 \in U \subseteq V \setminus \{x\}).$ (Hausdorff)

Converse

Conversely, if γ satisfies properties 1-6, then there exists a unique topology on V such that γ is a balanced, local base for V and V with this topology is a TVS.

Theorem:

Any two TVS of finite dimension d (over $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) are homeomorphic to eachother.

Proof

Let V be a TVS with $\dim(V) = d$. We want to show that $V \cong \mathbb{F}^d$. We have

$$V = \lim\{v_1, \dots, v_d\}$$

a basis and

$$f:(\lambda_1,\ldots,\lambda_n)\in\mathbb{F}^d\mapsto\sum_{i=1}^d\lambda_i\nu_i\in V$$

an isomorphism between \mathbb{F}^d and V as vector spaces. Further, f is continuous. Consider \mathbb{F}^d equipped with the product topology and the continuity of addition and scalar multiplication.

We need only that f^{-1} is continuous at 0 which is equivalent to $\forall U \ni 0$ open in \mathbb{F}^d , $\exists W \ni 0$ open in V such that $W \subseteq f(U)$ $((f^{-1})^{-1}(U))$.

April 12, 2024

Lemma

 $\forall U \ni 0$ open in \mathbb{F}^d , $\exists W \ni 0$ open such that $f(U) \supseteq W$. That is, 0 is an interior point of f(U).

Proof

 $f: \mathbb{F}^d \to V$, continuous.

We may assume without loss of generality that $U = B_1(0)$.

Let $S = \{\lambda \in \mathbb{F}^d : ||\lambda|| = 1\}$, a compact set.

Since f continuous, f(S) is compact in V. Since V is Hausdorff, f(S) is closed.

Take $\hat{U} = V \setminus f(S) \ni 0$ open (because $0 \notin f(S)$ else $f(\lambda) = 0$ would imply $||\lambda|| = 1$)

Now, there exists a balanced, open set $0 \in W \subseteq \hat{U}$. Therefore, $W \subseteq f(U)$.

Otherwise, $x \in W$, $x \notin f(U)$, $x = f(\lambda)$, $\lambda \notin U$, $||\lambda|| \ge 1$ would give $\frac{\hat{x}}{||\lambda||} = \frac{1}{||\lambda||} \cdot f(\lambda) = f\left(\frac{\lambda}{||\lambda||}\right) \in f(S)$.

But, $\frac{x}{||\lambda||} \in W \subseteq \hat{U}$ because $x \in W$, $\frac{1}{||\lambda|} \in [0,1]$ and W is balanced shows a contradiction.

Theorem

Any finite-dimensional subspace in a TVS is closed.

Theorem

Every locally compact TVS is finite-dimensional.

Definition: Locally Compact

V is locally compact if $\forall x \in V$, $\exists U \ni x$ open and $K \subseteq V$ such that $U \subseteq K$. For Hausdorff spaces, $\forall x \in V$, $\exists U \ni x$ open such that \overline{U} compact.

Example

Let V be a normed space, $\dim(V) = +\infty$. Then $\overline{B_1(0)}\{x \in V : ||x|| \le 1\}$ is not compact.

Definition: Semi-norm

A semi-norm on a metric space V (over $\mathbb{F} = \mathbb{R}$, \mathbb{C}) is a map

$$p: V \to [0, +\infty)$$

such that

1.
$$p(x+y) \le p(x) + p(y)$$

2.
$$p(\lambda x) = |\lambda| \cdot p(x)$$
.

Note that p(0) = 0 and $(p(x - y) \ge |p(x) - p(y)|$.

$$N_p = \{x \in V : p(x) = 0\}$$

is a linear subspace of $V: x, y \in N$ such that $p(x+y) \le p(x) + p(y) = 0$, $p(\lambda x) = 0$. A semi-norm on V induces a norm on the quotient space V/N_p .

$$||[x]_{N_p}|| = p(x) \quad [x]_N = \{x + z : z \in N\} = x + N$$

Definition: Absorbing

A set $A \subseteq V$ is called absorbing if $\forall x \in V$, $\exists \lambda > 0$ such that $\lambda x \in A$. Equivalently, $\bigcup_{\lambda > 0} \frac{1}{\lambda} A = V$.

There is a relationhip between semi-norms on V and balanced, convex and absorbing subsets of V.

Proposition

If p is a semi-norm on a vector space V, then

$$A = \{x \in V : p(x) < 1\}$$

is balanced, convex and absorbing.

Proof

Convex: $x, y \in A, p(x) < 1, p(y) < 1,$

$$p(\lambda x + (1 - \lambda)y) \le \lambda \cdot p(x) + (1 - \lambda)p(y) < 1$$

Balanced: $x \in A$, $|\lambda| \le 1$, p(x) < 1,

$$p(\lambda x) = |\lambda| \cdot p(x) < 1$$

Absorbing: $x \in V$. If p(x) = 0, then $x \in A$ $(\lambda = 1)$. If p(x) > 0, $\lambda = \frac{1}{2p(x)}$ gives $p(\lambda x) = |\lambda| \cdot p(x) = \frac{1}{2} < 1$.

Example

Let $V = \mathbb{R}^2$ and $\mathbb{F} = \mathbb{R}$.

An ellipse is balanced, convex and absorbing.

A band is also balanced, convex and absorbing.

An open interval along the axis is balanced and convex, but it is not absorbing.

Proposition

Each open neighborhood of 0 in a TVS is absorbing.

Proof

Continuity of the map $(\lambda, x) \mapsto \lambda x'$ at $\lambda = 0$ and x' = x. Given $x \in V$, $U \ni 0$ open, $\exists \delta > 0$, $W \ni x$ such that $B_r(0) \cdot W \subseteq U$ and $\frac{\delta}{2} \cdot x \in U$.

Definition: Minkowski Functional

Let A be a subset in a vector space V.

If A is absorbing, one can define the Minkowski functional

$$\mu_A(x) = \inf\left\{\lambda > 0 \ : \ \frac{x}{\lambda} \in A\right\} = \inf\{\lambda > 0 \ : \ x \in \lambda \cdot A\}$$

Proposition

If A is convex, balanced and absorbing, then μ_A is a semi-norm.

Proof

Absorbing $\rightarrow \mu_A$ is well defined, $\mu_A(x) \in [0, +\infty)$. For $\alpha \neq 0$,

$$\begin{split} \mu_A(\lambda x) &= \inf \left\{ \lambda > 0 \ : \ \frac{\alpha \cdot x}{\lambda} \in A \right\} \\ &= \inf \left\{ |\alpha| \cdot \lambda > 0 \ : \ \frac{\alpha \cdot x}{|\alpha| \cdot \lambda} \in A \right\} \quad (\lambda \mapsto |\alpha| \cdot \lambda) \\ &= |\alpha| \cdot \inf \left\{ \lambda > 0 \ : \ \frac{x}{\lambda} \in \frac{|\alpha|}{\alpha} A \right\} \\ &= |\alpha| \cdot \inf \left\{ \lambda > 0 \ : \ \frac{x}{\lambda} \in A \right\} \\ &= |\alpha| \cdot \mu_A(x) \end{split}$$

since A is balanced, $\frac{\alpha}{|\alpha|}A = A$.

Note that $\mu_A(0) = 0$ since $0 \in A$ balanced.

Given $x, y \in V$ and $\varepsilon > 0$, let $s = \mu_A(x) + \varepsilon$ and $t = \mu_A(y) + \varepsilon$. Then, since A is balanced, $\frac{x}{s}, \frac{y}{t} \in A$. By convexity,

$$\frac{x+y}{t+s} = \underbrace{\frac{s}{t+s}}_{(1-\sigma)} \cdot \underbrace{\frac{\epsilon A}{s}}_{s} + \underbrace{\frac{t}{t+s}}_{\sigma} \cdot \underbrace{\frac{\epsilon A}{y}}_{t} \in A$$

Therefore, $\mu_A(x+y) \le t+s$ which implies $\mu_A(x+y) \le \mu_A(x) + \mu_A(y) + 2\varepsilon$ for all $\varepsilon > 0$.

Equivalence between Semi-norm and ABC Sets

 $p \rightsquigarrow A = \{x : p(x) < 1\} \rightsquigarrow \mu_a = p.$

A bounded, convex, absorbing $\rightarrow \mu_A \rightarrow \tilde{A} = \{x : \mu_A(x) < 1\}$ where $\tilde{A} \subseteq A$ differing possibly by the boundary.

Question: which TVS are normable?

That is a norm such that the topology is vien by this norm.

Definition: Bounded Sets

A subset *A* in a TVS is bounded if $\forall U \ni 0$ open, $\exists \delta > 0$ such that $A \subseteq t \cdot U$, $\forall t > \delta$.

Theorem:

A TVS is normable if and only if there exists a bounded, convex, balanced, open neighborhood of 0.

Proof (Sketch)

Suppose V is a normed space with norm $||\cdot||$.

$$B = \{x \in V : ||x|| < 1\} = B_1(0)$$

is convex, balanced, and an open neighborhood of 0.

B is bounded, since given $U \ni 0$ open, $B_{\varepsilon}(0) \subseteq U$, so $B = \frac{1}{\varepsilon} \cdot B_{\varepsilon}(0) \subseteq \lambda B_{\varepsilon}(0) \subseteq \lambda \cdot U$ for $\lambda \ge \frac{1}{\varepsilon}$.

Now, let *B* be a bounded, convex, balanced, open neighborhood of 0 in a TVS.

Therefore B is absorbing (as an open neighborhood of 0).

It follows that the semi-norm $\mu_B(x)$ may be defined.

Then $\mu_B(x) = 0 \implies x = 0$ since B is bounded, otherwise $0 \in U = V \setminus \{x\}$ open gives $B \subseteq t \cdot U$, $\forall t > \delta$ and $\frac{1}{t}B \subseteq U$, $\forall t > \delta$.

Thus, $||x|| = \mu_B(x)$ is a norm on V.

One need only demonstrate that the norm topology is the same as the original topology on V.

That is, $\forall U \ni 0$ open, $\exists \varepsilon > 0$ such that $\varepsilon \cdot B \subseteq U$.

 $\forall \varepsilon > 0, \exists \hat{U} \ni 0$ open such that $\hat{U} \subseteq \varepsilon B$.

April 16, 2024

Recall

Given p a semi-norm,

$$A = \{x \in V : p(x) < 1\}$$

a convex, balanced absorbing set gives the Minkowski formula for a seminorm μ_a . The TVS V is normable if and only if there exist bounded, convex, balanced, open $U \ni 0$.

Definition: Separating Family of Semi-norms

Let V be a vector space.

A family of semi-norms $\{p_{\omega}\}_{{\omega}\in\Omega}$ is called separating if $\forall x\in V, x\neq 0, \exists {\omega}\in\Omega$ such that $p_{\omega}(x)\neq 0$. Equivalently,

$$\{x \in V : \forall \omega \in \Omega, \ p_{\omega}(x) = 0\} = \{0\}$$

or

$$\bigcap_{\omega\in\Omega}N_{p_\omega}=\bigcap_{\omega\in\Omega}\{x\in V\,:\,p(x)=0\}=\{0\}.$$

For a given separating family of semi-norms, define

$$U_{n,\omega} = \left\{ x \in V : p_{\omega}(x) < \frac{1}{n} \right\}$$

$$U_{n,\omega_1,\dots,\omega_N} = \left\{ x \in V : p_{\omega_i}(x) < \frac{1}{n \ i = 1,\dots,N} \right\} = \bigcap_{i=1}^N U_{n,\omega_i}$$

and put

$$\gamma = \{U_{n,\omega_1,\dots,\omega_N} : n \in \mathbb{N}, \omega_1,\dots,\omega_N \in \Omega, N \in \mathbb{N}\}.$$

One can show by earlier propositions that γ is a local base at at 0 for some topology τ . Perhaps unsurprisingly, if $\{p_\omega\}$ is separating, then this locally convex TVS is Hausdorff.

Theorem:

Let $\{p_{\omega}\}$ be a separating family of semi-norms on a vector space V. Then with local base γ defined above, V becomes a locally convex TVS, and all $p_{\omega}: V \to [0, +\infty)$ continuous.

Example

$$S = \{\{x_n\}_{n=1}^{\infty} \text{ all sequences}\}\$$

with
$$p_n(x) = |x_n|, x = \{x_n\}_{n=1}^{\infty}, d(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

Remark

Local base at x

$$\gamma_x = x + \gamma = \{U_{n,\omega_1,\dots,\omega_N}[x] : n, N \in \mathbb{N}, \, \omega_1,\dots,\omega_N \in \Omega\}$$

$$U_{n,\omega_1,...,\omega_N}[x] = \left\{ y \in V : p_{\omega_i}(x-y) < \frac{1}{n}, \ i = 1,...,N \right\}$$

Theorem:

Let V be a locally convex TVS. Then there exists a separating family of semi-norms $\{p_{\omega}\}_{{\omega}\in\Omega}$ on V such that the topology defined by $\{p_{\omega}\}$ coincides with the original toplogy.

Proof (Sketch)

V is locally convex, so it has a convex, balanced, local base at 0

$$\hat{\gamma} = \{U_{\omega}\}_{\omega \in \Omega}$$

where $U_{\omega} \ni 0$ are open, convex, balanced, and absorbing.

Put $p_{\omega} = \mu_{U_{\omega}}$ (i.e. set the Minkowski functional to be the semi-norm).

Then we need to show that these are separating.

Then define $U_{n,\omega_1,...,\omega_N}$, $\gamma = \{U_{n,\omega_1,...,\omega_N}\}$, $U_\omega = U_{1,\omega}$, $\hat{\gamma} \subseteq \gamma$ and show that γ and $\hat{\gamma}$ induce the same topology.

Theorem:

A TVS V is a pre-Fréchet space if and only if V has a countable, convex, balanced local base.

Proof

 (\Longrightarrow) Assume that V is a pre-Fréchet space.

Then we have an invariant metric d and

$$B_{\varepsilon}(x) = \{ y \in V : d(x, y) < \varepsilon \}.$$

It follows that $\gamma_1 = \{B_{1/n}(0) : n \in \mathbb{N}\}$ is a local base.

The fact that V is locally convex means that $\gamma_2 = \{U_\omega : \omega \in \Omega\}$ with $U_\omega \ni 0$ open, convex and balanced is a convex, balanced local base.

To every $n \in \mathbb{N}$, $B_{1/n}(0)$ is an open neighborhood of 0, and there exists $\omega_n \in \Omega$, $0 \in U_{\omega_n} \subseteq B_{1/n}(0)$. Put

$$\gamma_3 = \{U_{\omega_n} : n \in \mathbb{N}\}$$

a countable, convex, balanced collection.

Then, for any $U \ni 0$ open, $\exists n$ such that $U_{\omega_n} \subseteq B_{1/n}(0) \subseteq U$. So γ_3 is a local base.

 (\longleftarrow) Assume a TVS V has a countable, convex, balanced local base:

$$\gamma = \{U_n : n \in \mathbb{N}\}$$

Without loss of generality, we may assume that $U_{n+1} \subseteq U_n$. Otherwise, we may take $\hat{U}_n = U_1 \cap \cdots \cap U_n \subseteq U_n$ such that $\{\hat{U}_n : n \in \mathbb{N}\}$ is also a local base where $\hat{U}_{n+1} \subseteq \hat{U}_n$.

Then, since U_n are open, they are absorbing and $p_n = \mu_{U_n}$ gives a separating semi-norm from the Minkowski functional. Define a metric

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{p_n(x-y)}{1 + p_n(x-y)}$$

where $d(x, y) = 0 \implies x = y$ since $\{p_n\}$ are separating.

Claim: the metric topology (local base $\tilde{\gamma}$) is the same as the original topology (local base γ). Write

$$\tilde{\gamma} = \{B_{1/2^m}(0) : m \in \mathbb{N}\}$$

Then for all $m \in \mathbb{N}$,

$$\frac{1}{2^{m+1}}U_{m+1}\subseteq B_{1/2^m}(0)$$

there exists $n \in \mathbb{N}$ such that $U_n \subseteq \frac{1}{2^{m+1}}U_{m+1}$.

Also, $\forall n, B_{1/2^{n+1}}(0) \subseteq U_n$. Then \tilde{V} is locally convex (γ) and has an invariant metric $(\tilde{\gamma})$. That is, V is pre-Fréchet space.

Corollary

In a pre-Fréchet space, the metric can always be defined by

$$\forall n, \quad B_{1/2^{n+1}}(0) \subseteq U_n$$

where $\{p_n\}$ are separating family of semi-norms.

A separating family of semi-norms leads to a locally convex TVS.

A countable, separating family of semi-norms leads to a pre-Fréchet space.

A finite, separating family of semi-norms leads to a normed space.

Quotient Spaces

For a vector space X and a linear subspace $N \subseteq X$, $X/N = \{[x]_N : x \in X\}$, $[x]_N = x + N$. $\pi: X \to X/N$ is the quotient map to the vector space X/N.

For a TVS $X, N \subseteq X$ a subspace, $\pi: X \to X/N$ where τ is the topology of X and $\hat{\tau}$ is the topology of X/N given by

$$\hat{\tau} = \{ \pi(U) : U \in \tau \}.$$

N is closed if and only if X/N is Hausdorff.

Thoerem:

For *X* a TVS and $N \subseteq X$ a linear subspace, X/N is a TVS and $\pi: X \to X/N$ is open and continuous.

Normed / Banach

For X a normed (Banach) space, X/N is a normed (Banach) space where $||[x]||_{X/N} = \inf_{z \in N} ||x + z||$.

Pre-Fréchet / Fréchet

For X a (pre-)Fréchet space, X/N is a (pre-)Fréchet space where $d_{X/N}(x,y) = \inf_{z \in N} d(x+z,y) = \inf_{z_1,z_2} d(x+z_1,y+z_2)$.

Definition: Linear Operator

A map $T: V \to W$ between vector spaces V, W is linear (or a linear operator) if

$$T(x+y) = Tx + Ty$$
 and $T(\alpha x) = \alpha(Tx)$

Notation

M(V, W) is the set of all linear operators.

$$M(V,V)=M(V).$$

 $V' = M(V, \mathbb{F})$ (linear functionals) is the algebraic dual of V.

Note that M(V, W) is a vector space.

$$(T_1 + T_2)(x) := T_1 x + T_2 x$$
 and $(\lambda T)(x) := \lambda (Tx)$

If T_1 , T_2 are linear, then $T_1 + T_2$ is linear; likewise, λT is linear precisely when T is linear.

Definition: Continuous Linear Operator

For V, W TVS, T is a continuous linear operator if $T \in M(V, W)$ and T is continuous with respect to the topologies.

Notation

L(V, W) is the set of all continuous linear operators.

$$L(V,V) = L(V).$$

 $V^* = L(V, \mathbb{F})$, the set of continuous linear functionals on V, is the dual space of V.

Example

Let $V = \mathbb{R}^n$, $W = \mathbb{R}^m$.

$$M(V,W) = L(V,W).$$

To an $m \times n$ matrix $A = (a_{ij})_{i=1,j=1}^{m,n}$, one associates the linear operator T_A

$$T_A: (x_j)_{j=1}^n \mapsto (y_i)_{i=1}^m, \quad y_i = \sum_{j=1}^n a_{ij} x_j$$

 $V' = V^*$. Given $\phi = (\phi_1, \dots, \phi_n) \in \mathbb{R}^n$ (a row vector),

$$\phi(x) = \phi \cdot x = \sum_{j=1}^{n} \phi_j x_j$$

In this case, $V^* \cong \mathbb{R}^n$.

Defiition: Image or Range

For $T \in M(V, W)$, $T: V \to W$,

$$\operatorname{im} T = R(t) = \{Tx : x \in V\}$$

Definition: Kernel or Nullspace

$$\ker T = N(T) = \{x \in V : Tx = 0\}$$

19

Remarks

R(T) is a linear subspace of W while N(T) is a linear subspace of V.

T is injective if and only if $N(t) = \{0\}$.

If T is inective, then one has an inverse map $T^{-1}: R(T) \to V$. T^{-1} is linear.

T is invertible if and only if T is injective and surjective if and only if $N(T) = \{0\}$ and R(T) = W.

April 18, 2024

Proposition

Let V, W be TVS.

- 1. a linear operator $T: V \to W$ is continuous if and only if T is continuous at some $x_0 \in V$.
- 2. if T is a continuous linear operator, then $N(T) = \ker(T)$ is a closed, linear subspace of V.

Proof of A

 (\Longrightarrow) continuous at all points imply continuous at x_0 .

(\iff) Write $f(x) = T(x + x_0 - x_1) - T(x_0 - x_1)$ and assume T is continuous at $x = x_0$.

Then $T(x + x_0 - x_1)$ is continuous at $x = x_1$.

Proof of B

We have that $ker(T) = \{x \in V : Tx = 0\} = T^{-1}(\{0\})$ where $\{0\}$ is closed and so must be its preimage.

Definition: Bounded Linear Operator

Let V, W be normed spaces with norms $||\cdot||_V$, $||\cdot||_W$.

A linear operator $T: V \to W$ is called bounded if there exists some $c \ge 0$ such that

$$||Tx||_W < c \cdot ||x||_V, \quad \forall x \in V$$

Proposition:

A linear operator $T: V \to W$ (V, W normed spaces) is continuous if and only if it is bounded.

Proof

(\iff) We know that $||Tx||_W \le c \cdot ||x||_V$, $\forall x$. Consider $\{x_n\}$, $x_n \to a$ in V. Then

$$\lim_{n\to\infty} ||x_n - a|| = 0$$

so $||Tx_n - Ta||_W \le c \cdot ||x_n - a||_V$, $||Tx_n - Ta||_W = 0$, and $Tx_n \to Ta$ in W. (\Longrightarrow) For every $n \in \mathbb{N}$, find $x_n \in W$ such that

$$||Tx_n||_W > n \cdot ||x_n||_V$$

Then $y_n = \frac{x_n}{||Tx_n||}$, since $||y_n|| = \frac{||x_n||}{||Tx_n||} < \frac{1}{n}$ it must be $y_n \to 0$. Hence, $Ty_n \to T0 = 0$ (*T* continuous) $\Longrightarrow Ty_n = \frac{Tx_n}{||Tx_n||}$. But $||Ty_n|| = 1$, so $Ty_n \rightarrow 0$ a contradiction.

Remark

The following statements are equivalent

- *T* is continuous.
- T is bounded.
- $Tx_n \to 0$ whenever $x_n \to 0$.
- $\{Tx_n\}$ is bounded whenever $\{x_n\}$ is bounded.

Definition: Operator Norm

For V, W normed spaces.

For $T:V\to W$ a bounded linear operator, we define

$$||T|| = \sup_{\substack{x \in V \\ x \neq 0}} \frac{||Tx||_W}{||x||_V}$$

the operator norm of T.

Remark

 $||T|| \in [0, +\infty)$ and it is equal to the smallest $c \ge 0$ such that $||Tx||_W \le c \cdot ||x||_V$, $\forall x \in V$. Indeed, if this holds for some $c \ge 0$, then $||T|| \le c$.

Conversely, from the definition $||Tx||_W \le ||T|| \cdot ||x||_V$.

That is, $||T|| = \min\{c \ge 0 : ||Tx||_W \le c \cdot ||x||_V, \forall x\}.$

Remark

$$||T|| = \sup_{\substack{x \in V \\ ||x|| = 1}} ||Tx|| = \sup_{\substack{x \in V \\ ||x|| \le 1}} ||Tx||$$

Note that

$$\sup_{x \neq 0} \frac{||Tx||_{W}}{||x||_{V}} = \sup_{x \neq 0} \left| \left| T\left(\frac{x}{||x||_{V}}\right) \right| \right|_{W} = \sup_{||z||_{V} = 1} \left| |Tz||_{W}$$

Remark

M(V, W) and L(V, W) are linear spaces,

$$(T+S)(x) = Tx + TS$$
$$(\lambda T)(x) = \lambda (Tx)$$

If T, S are continuous, linear operators, then T + S and λT are continuous linear operators.

Further Properties

- ||T|| = 0 if and only if T = 0 (i.e. $Tx = 0, \forall x \in V$).
- $||T + S|| \le ||T|| + ||S||$, because

$$||(T+S)x||_{W} = ||Tx+Ts||_{W} \leq ||Tx||_{W} + ||Sx||_{W} \leq ||T|| \cdot ||x||_{V} + ||S|| \cdot ||x||_{V} \leq (\underbrace{||T|| + ||S||}_{c}) \cdot ||x||_{V}$$

Since T + S is bounded. $\frac{||(T+S)x||_W}{||x||_V} \le ||T|| + ||S||$, etc.

- $||\alpha T|| = |\alpha| \cdot ||T||$.
- if $T \in L(U, V)$ and $S \in L(V, W)$, then $ST \in L(U, W)$ and

$$||ST|| \le ||S|| \cdot ||T||$$

Proposition

Let *V*, *W* be normed spaces.

Then L(V, W) is a normed space with the operator norm. If, in addition, W is Banach, then L(V, W) is also Banach.

Proof

Part A

 $||\cdot||$ is a norm.

Part B

Let W be a Banach space, and let $T_n \in L(V,W)$ be such that $\{T_n\}$ is a Cauchy sequence in the operator norm. Then, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall j,k \geq N, ||T_j - T_k|| < \varepsilon$. So $\forall x \in V, \{T_n x\}$ is Cauchy in W.

$$||T_j x - T_k x|| = ||(T_j - T_k)x|| \le ||T_j - T_k|| \cdot ||x|| \le \varepsilon \cdot ||x||$$

By completeness, for every $x \in V$, $T_n x$ converges in W. Define

$$Tx = \lim_{n \to \infty} T_n x$$

such that $||Tx - T_nx|| \to 0$ as $n \to \infty$.

We need to show that T is a linear operator:

$$T(x+y) = \lim_{n\to\infty} T_n(x+y) = \lim_{n\to\infty} T_n x + \lim_{n\to\infty} T_n y = Tx + Ty.$$

 $T(\lambda x) = \lambda \cdot Tx.$

We need also show that T is bounded:

$$\frac{||Tx||_W}{||x||_V} = \lim_{n \to \infty} \frac{||T_nx||_W}{||x||_V} = \liminf_{n \to \infty} ||T_n||$$

Since $\{T_n\}$ is Cauchy, it is bounded and $\liminf_{n\to\infty}||T_n||\leq c$ for some c.

We have that $\lim_{n\to\infty} ||Tx - T_nx|| = 0$ such that T_n converges pointwise.

We need that $\lim_{n\to\infty} ||T-T_n|| = 0$.

For given $\varepsilon > 0$, we find N such that $\forall j, k \ge N, x \in V$:

$$||T_i x - T_k x|| \le \varepsilon \cdot ||x||$$

Then

$$||T_{i}x - Tx|| = ||T_{i}x - T_{k}x + T_{k}x - Tx|| \le \varepsilon \cdot ||x|| + ||T_{k}x - Tx||$$

and sending $k \to 0$ sends $T_k x - Tx$ to 0.

Therefore, $||T_j x - Tx|| \le \varepsilon \cdot ||x||$, $\forall j \ge N$, $\forall x \in V$. It follows that

$$\frac{||T_j x - Tx||}{||x||} \le \varepsilon$$

and, taking the supremum over x, that $||T_j - T|| \le \varepsilon$, $\forall j \ge N$, $\forall x \in V$.

Hence, $\lim_{n\to\infty} ||T_n - T|| = 0$.

That is, L(V, W) is complete.

Corollary

The dual space of a normed space is a Banach space. Recall $V^* = L(V, \mathbb{F})$, and both \mathbb{R} and \mathbb{C} are complete.

Notation

Read $\dot{+}$ as a direct sum implied to be between components of a larger space.

Read $lin\{v_1,...,v_n\}$ as the linear combinations of $v_1,...,v_n$.

Definition: Codimension

If V is a vector space and W is a subspace, we say that W has codimension n in V if there exists a subspace $\hat{W} \subseteq V$ such that

$$V = W + \hat{W}$$

and dim(\hat{W}) = n.

Equivalently, $\dim(V/W) = n$, $V/W = \inf\{[e_1], \dots [e_n]\}$ basis and $\hat{W} = \inf\{e_1, \dots, e_n\}$ implies $V = W \dotplus \hat{W}$.

Proposition:

Let *V* be a vector space and $\phi \neq V'$, $\phi \neq 0$. Then $\ker(\phi)$ is a subspace of *V* of codimension 1.

Proof

 $\phi \neq 0$. Find $x_0 \in V$ such that $\phi(x_0) = 1$.

Claim: $V = \ker(\phi) + \lim\{x_0\}.$

Indeed, for $x \in V$ write

$$x = \underbrace{x - \phi(x) \cdot x_0}_{ker(\phi)} + \underbrace{\phi(x)}_{\in lin\{x_0\}} \cdot x_0$$

SO

$$\phi(x - \phi(x) \cdot x_0) = \phi(x) - \phi(\phi(x) \cdot x_0) = \phi(x) - \phi(x) \cdot \phi(x_0) = 0$$

and

 $\ker(\phi) \cap \lim\{x_0\} = \{0\}$ which means $z = \lambda \cdot x_0 \in \ker(\phi)$. Therefore

$$0 = \phi(\lambda x_0) = \lambda \cdot 1$$

so $\lambda = 0$ and z = 0.

Proposition:

Let V be a normed space and $\phi \in V'$.

Then ϕ is bounded if and only if $\ker(\phi)$ is closed in V.

Proof

- $(\Longrightarrow) \phi$ continuous, as a linear operator, implies $\ker(\phi) = \phi^{-1}(\{0\})$ is closed.
- (\longleftarrow) assume that $\ker(\phi)$ is closed. Then

$$V = \ker(\phi) + \lim\{x_0\}$$

for some $x_0 \in V$ and $x_0 \notin \ker(\phi)$.

Without loss of generality, we may assume $\phi(x_0) = 1$.

Claim: $\inf_{x \in \ker(\phi)} ||x_0 - x|| = \operatorname{dist}(\ker(\phi), x_0) > 0.$

Otherwise, there would exist some sequence $\{x_n\} \subseteq \ker(\phi)$ such that $||x_0 - x_n|| \to 0$.

From the assumption of closure, this would mean $x_0 \in \ker(\phi)$ a contradiction.

Therefore, $\exists c > 0$ such that $||x_0 - x|| \ge c$, $\forall x \in \ker(\phi)$. So

$$\begin{aligned} ||\lambda x_0 - \lambda x|| &\ge c \cdot |\lambda| \\ ||\lambda x_0 - u|| &\ge c \cdot |\lambda|, \quad \forall u \in \ker(\phi) \end{aligned}$$

Write
$$y \in V$$
 as $y = \underbrace{-u}_{\in \ker(\phi)} + \underbrace{\lambda x_0}_{\in \lim\{x_0\}}$. So $\phi(y) = 0 + \lambda \cdot \phi(x_0) = \lambda$.

Thus, $\forall x \in V$, $||x|| \ge c \cdot |\phi(x)|$ and $|\phi(x)| \le \frac{1}{c} \cdot ||x||$ and ϕ is bounded.

April 23, 2024

Proposition:

A linear functional ϕ on a TVS V is continuous if and only if $\ker(\phi)$ is closed in V.

Proof

$$(\Longrightarrow)$$
 ker $(\phi) = \phi^{-1}(\{0\})$.

Recall:

V' is the set of linear functionals on $V \phi : V \to \mathbb{F}$ linear.

 V^* is the set of continuous linear functionals on $V \phi : V \to \mathbb{F}$ linear and continuous.

On a normed V, continuous and bounded are equivalent.

Zorn's Lemma

A non-empty partially ordered set (S, \leq) has a maximal element if every totally ordered subset has an upper bound.

- (S, \leq) reflexive, transitive and anti-symmetric.
- $S_0 \subseteq S$ is totally (or linearly) ordered if $\forall a, b \in S$ either $a \le b$ or $b \le a$.
- S_0 has an upper bound if $\exists b \in S$ such that $\forall x \in S_0, x \leq b$.
- m is a maximal element of S is $\forall x \ge m, x = m$.

Theorem:

Let V be a vector space, $W_0 \subseteq V$ a subspace, and a linear functional ϕ_0 on W_0 (i.e. $\phi_0 \in W_0'$). Then there exists an extension, i.e. a linear functional, $\phi \in V'$ such that $\phi|_{W_0} = \phi_0$.

Proof

Let S be the set of all pairs (W, ϕ) such that

- $W_0 \subseteq W \subseteq V$ is a linear subspace and
- $\phi \in W'$, $\phi|_{W_0} = \phi_0$.

Say that $(W_1, \phi_1) \le (W_2, \phi_2)$ if and only if $W_1 \subseteq W_2$ and $\phi_2|_{W_1} = \phi_1$. Since \le is reflexive, transitive and anti-symmetric, it is an order relation. A totally ordered subset has an upper bound. Given

$$S_0 = \{(W_{\omega}, \phi_{\omega})\}$$

totally ordered, the upper bound is given by (W, ϕ) where

$$W = \bigcup_{\omega} W_{\omega}$$

$$\phi(x) = \phi_{\omega}(x) \quad \text{if } x \in W_{\omega}$$

such that for $x \in W_{\omega_1} \cap W_{\omega_2}$ we have $\phi_{\omega_1}(x) = \phi_{\omega_2}(x)$ and consequently $(W_{\omega_1}, \phi_{\omega_1}) \le (W_{\omega_2}, \phi_{\omega_2})$.

Then, by Zorn's Lemma, we have that S has a maximal element $(\hat{W}, \hat{\phi})$.

Claim: $\hat{W} = V$, $\hat{\phi} \in V'$, and $\hat{\phi}|_{W_0} = \phi_0$.

Otherwise, there exists $(\hat{W}, \hat{\phi}) > (\hat{W}, \hat{V})$.

Namely, $\hat{\hat{W}} = \hat{W} \dotplus \lim\{x_0\} = \{\hat{w} + \lambda x_0 : \hat{w} \in \hat{W}, \lambda \in \mathbb{F}\}, x_0 \in V \setminus \hat{W} \text{ with } \hat{W} \subseteq V.$

Then $\hat{W} \subseteq \hat{W} \subseteq V$.

Define $\hat{\hat{\phi}}$ on $\hat{\hat{W}}$ as

$$\hat{\hat{\phi}}(\hat{W} + \lambda x_0) = \hat{\phi}(\hat{W}) + \lambda \cdot \hat{\phi}(x_0) = \hat{\phi}(\hat{W}) + \lambda \cdot c$$

with c an arbitrary choice. Then $\hat{\hat{\phi}}$ is linear.

Conclusion

Each infinite dimensional, normed space has an unbounded linear functional. For $(V, ||\cdot||)$ a normed space, there exist $\{e_1, e_2, ...\}$ linearly independent and

$$W_0 = \lim\{e_1, e_2, \ldots\}$$

is the set of all finite linear combinations. So

$$\phi_0\left(\sum \lambda_k e_k\right) = \sum \lambda_k \cdot k \cdot ||e_k||$$

where $\phi_0 \in W_0'$ and ϕ_0 is unbounded. Take $\phi_0(e_k) = k \cdot ||e_k||$. Then

$$\sup_{x \in W_0} \frac{|\phi_0(x)|}{||x||} \ge \sup \frac{k||e_k||}{||e_k||} = +\infty$$

Then extend ϕ_0 to a linear functional on V, $\phi|_{W_0} = \phi_0$, $\phi \in V'$, ϕ unbounded.

Preliminaries: Hahn-Banach

On normed space, given $\phi_0 \in W_0^*$ bounded we have a bounded extension $\phi \in V^*$ where $||\phi|| = ||\phi - 0||$. On locally convex TVS, continuous $\phi_0 \in W^*$ implies a continuous extension $\phi \in V^*$. Equivalently, given p(x) a seminorm, $|\phi_0(x)| \le p(x)$ implies $|\phi(x)| \le p(x)$.

Lemma:

Let V be a vector space and p a seminorm on V. Let W be a subspace of codimension 1,

$$V = W + \lim\{x_0\}$$

Let ϕ be a real linear functional on W such that

$$\phi(x) \le p(x) \quad \forall x \in W$$

Then there exists an extension $\hat{\phi}$ (a real linear functional on V) such that

$$\hat{\phi}(x) \le p(x) \quad \forall x \in V$$

Proof

Write $V = W + \ln\{x_0\}$ such that

$$\hat{\phi}(W + \lambda x_0) := \phi(W) + \lambda \cdot c$$

with a suitable choice c.

We know already that $\hat{\phi} \in V'$. For $u, v \in W$,

$$\phi(u) - \phi(v) = \phi(u - v)$$

$$\leq p(u - v)$$

$$= p((u + x_0) - (v + x_0))$$

$$\leq p(u + x_0) + p(v + x_0)$$

Therefore

$$-p(v+x_0)-\phi(v)\leq p(u+x_0)-\phi(u)$$

and $\exists c \in \mathbb{R}$ such that

$$-p(v+x_0)-\phi(v)\leq c\leq p(u+x_0)-\phi(u)$$

(e.g. take inf or sup). So

$$-p(v+x_0) \le \phi(v) + c \qquad \qquad \phi(u) + c \le p(u+x_0)$$

$$-p(v+x_0) \le \hat{\phi}(v+x_0) \qquad \qquad \hat{\phi}(u+x_0) \le p(u+x_0)$$

$$v = \frac{w}{\lambda}, \ \lambda < 0 \qquad \qquad u = \frac{w}{\lambda}, \ \lambda > 0$$

$$p(w+\lambda x_0) \ge \hat{\phi}(w+\lambda x_0) \qquad \qquad \hat{\phi}(w+\lambda x_0) \le p(w+\lambda x_0)$$

and

$$\hat{\phi}(w + \lambda x_0) \le p(w + \lambda x_0) \quad \forall \lambda \in \mathbb{R}, \ w \in W$$

Lemma

Take $\mathbb{F} = \mathbb{C}$, let W be a subspace of V and

$$V = W + \lim\{e_0\}$$

such that $\phi \in W'$

$$|\phi(x)| \le p(x) \quad \forall x \in W$$

Then there exists an extension $\hat{\phi} \in V^I$ on, $\hat{\phi}|_W = \phi$ such that

$$|\hat{\phi}(x)| \le p(x) \quad \forall x \in V$$

Proof

Given ϕ on W, define the real linear functional

$$\psi(x) = \Re(\phi(x))$$

Note that

$$\psi(ix) = \Re(i\phi(x)) = -\Im(\phi(x))$$

Therefore

$$\phi(x) = \psi(x) - i\psi(ix)$$

So by extending $\hat{\psi}$ on V we can construct an extension $\hat{\phi}$ on V. We know

$$\psi(x) = |\phi(x)| \le p(x) \quad \forall x \in W$$

therefore $\hat{\psi}(x) \le p(x)$ for all $x \in V$. Now define $\hat{\phi}$ on V by

$$\hat{\phi}(x) := \hat{\psi}(x) - i\hat{\psi}(ix)$$

1. $\hat{\phi}$ is a real linear functional on V

$$\hat{\phi}|_{W} = \phi$$

1. $\hat{\phi}$ is a complex linear functional on V

$$\hat{\phi}(\alpha x) = \alpha \hat{\phi}(x)$$

$$\alpha = \alpha_1 + i\alpha_2$$

$$\hat{\phi}(ix) = i\hat{\phi}(x)$$

$$\hat{\psi}(ix) - i\hat{\psi}(i^2 x) = i(\hat{\psi}(x) - i\hat{\psi}(ix))$$

1. $|\hat{\phi}(x)| \le p(x), \forall \lambda \in V$

We know that $\hat{\psi}(x) \leq p(x)$.

For any $x \in V$, find $\alpha \in \mathbb{C}$, $|\alpha| = 1$ such that $0 \le \alpha \hat{\phi}(x)$. Then

$$0 \le \alpha \hat{\phi}(x) = \hat{\phi}(\alpha x)$$

$$= \underbrace{\hat{\psi}(\alpha x)}_{\text{real}} - \underbrace{i\hat{\psi}(i\alpha x)}_{\text{imaginary}}$$

$$= \hat{\psi}(\alpha x) \le p(\alpha x) = |\alpha| p(x) = p(x)$$

Therefore $0 \le \alpha \hat{\phi}(x) \le p(x)$ and $|\hat{\phi}(x)| \le p(x)$.

Corollary

Let V be a normed space with the seminorm p and $W_0 \subseteq V$ a subspace with $\phi_0 \in W_0^I$ such that

$$|\phi_0(x)| \le p(x), \quad x \in W_0$$

Then there exists $\hat{\phi} \in V'$ such that $\hat{\phi}|_{W_0} = \phi_0$ and

$$|\hat{\phi}(x)| \le p(x), \quad x \in V$$

Proof

Apply the two lemmas and Zorn's lemma.

April 25, 2024

Recall:

Take $W_0 \subseteq V$, p a seminorm, and $\phi_0 \in W_0'$ such that

$$|\phi_0(x)| \le p(x), x \in W$$

Then there exists an extension $\hat{\phi} \in {\scriptscriptstyle V}^{\prime}$, $\hat{\phi}|_{{\scriptscriptstyle W_0}} = \phi_0$ where

$$|\hat{\phi}(x)| \le p(x), d \in V$$

Theorem: Hahn-Banach for Normed Spaces

Let V be a normed space, $W_0 \subseteq V$ a linear subspace, and $\phi_0 \in (W_0)^*$. Then there exist $\hat{\phi} \in (V)^*$ such that $\hat{\phi}|_{W_0} = \phi_0$ and

$$||\hat{\phi}|| = ||\phi_0||$$

Proof:

From the previous result with

$$p(x) = ||x|| \cdot ||\phi_0||$$

it is obvious that $|\phi_0(x)| \le p(x)$, $x \in W_0$. Then there is an extension $\hat{\phi} \in V'$ where

$$|\hat{\phi}(x)| \le p(x) = ||x|| \cdot ||\phi_0||, x \in V$$

It follows that $\hat{\phi} \in V^*$ is bounded and

$$\sup \frac{|\hat{\phi}(x)|}{||x||} \le ||\phi_0||$$

Consequently $||\hat{\phi}|| \le ||\phi_0||$.

We have also that $||\hat{\phi}|| \ge ||\phi_0||$ because $\hat{\phi}$ is an extension of ϕ_0 .

Corollary

 $\forall x_0 \in V, V \text{ a normed space, } x_0 = 0, \exists \hat{\phi} \in V^* \text{ such that } \hat{\phi}(x_0) = ||x_0|| \text{ and } ||\hat{\phi}|| = 1.$

Definition:

For $\mathcal{F} \subseteq V'$, we say that \mathcal{F} separates the points of V is

$$\forall x_0 \in V, x_0 \neq 0, \exists \phi \in \mathcal{F} : \phi(x_0) \neq 0$$

Remark

- V' separates the points of V on any vector space V.
- V^* separates the points of V on any normed space.

Theorem: Hahn-Banach for Locally Convex TVS

Let V be a locally convex TVS, $W_0 \subseteq V$ a linear subspace, and $\phi_0 \in (W_0)^*$ a continuous linear functional. Then there exist $\hat{\phi} \in V^*$ continuous linear functionals such that $\hat{\phi}|_{W_0} = \phi_0$. Consequently, V^* separates the points of V.

Proof

 $\phi_0:W_0\to\mathbb{F}$ continuous gives

$$U = \{x \in W_0 : |\phi_0(x)| < 1\}$$

open with respect to the subspace topology in W_0 .

That is, $U = \hat{U} \cap W_0$ with \hat{U} open in V and $0 \in \hat{U}$.

Therefore, there exists some \tilde{U} convex, balanced, and open such that $0 \in \tilde{U} \subseteq \hat{U}$.

Let $p(x) = \mu_{\tilde{H}}(x)$, the Minkowski Functional and a seminorm on V.

It follows that $|\phi_0(x)| \le p(x)$, $x \in W_0$.

Equivalently, $p(x) < 1 \implies |\phi_0(x)| < 1, x \in W_0$.

$$\begin{array}{ccc}
p(x) < 1 & \longrightarrow & |\phi_0| < 1 \\
\downarrow & & \uparrow \\
x \in \tilde{U} & \longrightarrow & x \in \hat{U} & \longrightarrow & x \in U
\end{array}$$

Therefore there exists an extension $\hat{\phi} \in V'$ such that

$$|\hat{\phi}(x)| \le p(x), x \in V$$

We have

$$\underbrace{\{x \in V : p(x) < 1\}}_{\tilde{U} \ni 0 \text{ open}} \subseteq \underbrace{\{x \in V : |\hat{\phi}(x)| < 1\}}_{\hat{\phi}^{-1}(B,(0))}$$

Therefore $\hat{\phi}$ is continuous at $x_0 = 0$ and $\hat{\phi}$ is continuous.

Theorem:

Let $0 , <math>V = L^p[0,1]$. Then $V^* = \{0\}$.

Remark

The *F*-space $L^p[0,1]$ is not a locally convex TVS.

Definition: (Nowhere) Dense Subset

Let X be a topological space and $A \subseteq X$. Then A is called dense in X if $\operatorname{clos}(A) = X$. A is called nowhere dense in X if $\operatorname{int}(\operatorname{clos}(A)) = \emptyset$. One can say A is dense at $x_0 \in X$ if $x_0 \in \operatorname{int}(\operatorname{clos}(A))$.

Examples

 $X=\mathbb{R}$ and $A=\mathbb{Q}$, then A is dense in \mathbb{R} . $X=\mathbb{R}^n$ and A a proper linear subspace, then A is nowhere dense. $X=\mathbb{R}$ and $A=\begin{bmatrix}0,1\end{bmatrix}\cap\mathbb{Q}$, then A is dense at points in (0,1).

Lemma:

If *A* is open: *A* is dense if and only if $X \setminus A$ is nowhere dense. If *B* is closed: $X \setminus B$ is dense if and only if *B* is nowhere dense.

$$B$$
 nowhere dense \iff $\operatorname{int}(\operatorname{clos}(B)) = \emptyset$
 \iff $\operatorname{int}(B) = \emptyset$
 \iff $X \setminus \operatorname{int}(B) = \emptyset$
 \iff $\operatorname{clos}(X \setminus B) = \emptyset$
 \iff $X \setminus B$ dense in X

Proposition:

Any closed proper linear subspace W of a TVS V is nowhere dense in V.

Proof

Let
$$\operatorname{clos}(W) = W, \ W \subset V$$
.
Find $x_0 \in V, \ x_0 \neq 0$

$$V \supseteq V_1 = W \dotplus \lim\{x_0\}$$

To show: $int(W) = \emptyset$.

Otherwise, $v \in \text{int}(W)$, U open, $V \in U \subseteq W$.

Now $\lambda \in \mathbb{F} \mapsto \nu + \lambda x_0$ continuous, $\lambda = 0 \mapsto \nu \in U$.

Then there exists some $\delta > 0$ such that $|\lambda| < \delta \implies \nu + \lambda x_0 \in U$.

For some $\lambda \neq 0$, $\nu + \lambda x_0 \in U \subseteq W$, $\nu \in U \subseteq W$ linear.

Then $\lambda x_0 \in W$ and $x_0 \in W$ a contradiction.

Definition: First and Second Category (Meager)

A topological space X is called of

- first category (meager) if *X* is the countable union of nowhere dense subsets.
- · second category (nonmeager) otherwise.

Examples

 $X=\mathbb{Q}$ is first category. $\mathbb{Q}=\bigcup_{q\in\mathbb{Q}}\{q\}.$ $X=\ell^1=\{\{x_k\}_{k=1}^\infty:\sum |x_k|<+\infty\}$ is Banach of second category. $X_n=\{\{x_k\}_{k=1}^\infty=x:x=\{x_1,x_2,\ldots,x_n,0,0,\ldots\}\}\subseteq X$ an n-dimensional subspace. Take

$$\hat{X} = \bigcup_{n=1}^{\infty} X_{nj}$$

Then \hat{X} is of first category. $X_n \subseteq \hat{X}$ a closed, proper subspace which is nowhere dense.

Theorem: Baire Category Theorem

Every complete metric space is of second category.

All Banach spaces or *F*-spaces (Fréchet spaces) are of second category.

Remark: Uniform Bounded Principle

For normed spaces / Banach spaces (more general; see notes for *F*-spaces).

Theorem: (Uniform Bounded Norm)

Let X, Y be normed spaces and let $\{T_{\omega}\}_{{\omega}\in\Omega}$ be a collection of bounded linear operators $T_{\omega}\in L(X,Y)$. Suppose that the set E of all $X\in X$ such that

1. $\sup_{\omega \in \Omega} ||T_{\omega}x|| < +\infty$ is of second category.

Then

2. $\sup_{\omega \in \Omega} ||T_{\omega}|| < +\infty$.

Remark

If (2) holds, then (1) holds for all $x \in X$.

$$||T_{\omega}x|| \leq ||T_{\omega}|| \cdot ||x||$$

so $\sup ||T_{\omega}x|| \le \sup ||T_{\omega}|| \cdot ||x||$ and E = X.

Proof

Define

$$E_n := \{ x \in X : \sup_{\omega \in \Omega} ||T_{\omega}x|| \le n \}$$

Then $E = \bigcup_{n=1}^{\infty} E_n$.

If E is of second category, then there exists n_0 such that E_{n_0} is not nowhere dense.

We know that E_n is closed since

$$E_n = \bigcap_{\omega \in \Omega} \{ x \in X : ||T_{\omega}x|| \le n \}$$

which are preimages with respect to T_{ω} of closed balls $\overline{B_n(0)} \subseteq Y$ and therefore closed in X. Then $\operatorname{int}(\operatorname{clos}(E_n)) = \operatorname{int}(E_n) \neq \emptyset$, so there exists $x_0 \in X$, $\varepsilon > 0$ such that

$$B_{\varepsilon}(x_0) \subseteq E_{n_0}$$

Consider $x \in X$, $||x|| \le 1$. Then $x_0 + \frac{\varepsilon}{2}x \in B_{\varepsilon}(x_0) \subseteq E_{n_0}$ and $x_0 \in B_{\varepsilon}(x_0) \subseteq E_{n_0}$. It follows that

$$\left| \left| T_{\omega} \left(x_0 + \frac{\varepsilon}{2} x \right) \right| \right| \le n, \ \forall \omega$$
$$\left| \left| T_{\omega} \left(x_0 \right) \right| \right| \le n, \ \forall \omega$$

and

$$\left| \left| T_{\omega} \left(\frac{\varepsilon}{2} x \right) \right| \right| \le \left| \left| T_{\omega} \left(x_0 + \frac{\varepsilon}{2} x \right) \right| \right| + \left| \left| T_{\omega} x_0 \right| \right|$$
$$\left| \left| T_{\omega} x \right| \right| \le \frac{4n_0}{\varepsilon} = C$$

holds for all x with ||x|| < 1. Therefore

$$||T_{\omega}|| = \sup_{x \neq 0} \frac{||T_{\omega}x||}{||x||} = \sup_{x \neq 0} \left| \left| T_{\omega} \frac{x}{||x||} \right| \right| = \sup_{||x||=1} \left| \left| T_{\omega}x \right| \right| \le C$$

April 30, 2024

Recall: Uniform Boundedness Principle

X, Y normed spaces.

 $\{T_{\omega}\}, T_{\omega} \in L(X, Y)$ bounded.

If the set E of all $x \in X$

- 1. $\sup ||T_{\omega}x|| < +\infty$ is of second category, then
- 2. sup $||T_{\omega}|| < +\infty$.

Theorem: Banach-Steinhaus

Let X, Y be Banach spaces and $\{T_{\omega}\}$ a collection of bounded linear operators $(T_{\omega} \in L(X, Y))$. If

- 1. $\forall x \in X$: $\sup_{\omega} ||T_{\omega}x|| < +\infty$, then
- 2. $\sup_{\omega} ||T_{\omega}|| < +\infty$.

Proof

E = X a Banach space, which is complete and therefore second category by Baire Category Theorem.

Remark

If X is not complete, then the conclusion may fail.

Example

Let $\hat{X} = \ell^1(\mathbb{N})$ (sequences $\{x_n\}_{n=1}^{\infty}$ such that $\sum |x_n| < +\infty$). Take $X = \{x \in \{x_n\}_{n=1}^{\infty} \in \hat{X} : \exists N, \forall n \geq N, x_n = 0\}$.

$$X = \bigcup_{N=1}^{\infty} X_N \quad \text{and} \quad X_N = \{\{x_1, \dots, x_N, 0, 0 \dots\}\}$$

Then for $T_n \in L(X, \mathbb{F}) = X^*$, $T_n x = n \cdot x_n$ for $x = \{x_n\}$. T_n linear and bounded, since

$$|T_n x| = n \cdot |x_n| \le n \cdot \sum_{k=1}^{\infty} |x_k| = n \cdot ||x||$$

and therefore $||T_n|| \le n$. In fact $||T_n|| = n$ because $x = \{0, \dots, 0, \underbrace{1}_{n \text{th}}, 0, \dots\}$ gives $T_n x = n$, ||x|| = 1.

Therefore, 2 fails $\sup_n ||T_n|| = +\infty$.

However, 1 holds for all $x \in X$. For $x = \{x_1, ..., x_N, 0, ...\}$ take

$$\sup_{n} |T_n x| = \sup_{n} n \cdot |x_n| = \max_{1 \le n \le N} n \cdot |x_n| < +\infty$$

Definition: Strong Convergence

Let *X* and *Y* be normed spaces and $T_n, T \in L(X, Y)$.

- 1. T_n is said to converge strongly on X to T if $\forall x \in X$: $\lim_{n \to \infty} ||T_n x Tx|| = 0$.
- 2. T_n is said to be strongly convergent on X if $\forall x \in X$, $\exists y \in Y$: $\lim_{n \to \infty} ||T_n x y|| = 0$.

Obviously $(1) \Longrightarrow (2)$.

Suppose (2) holds. Then one can define

$$Tx := \lim_{n \to \infty} T_n x$$

such that $||T_nx - Tx|| \to 0$.

One can show that T is a linear operator, but T does not need to be bounded.

Example

$$\hat{X} \subseteq \ell^1, \ X = \{x \in \{x_n\}_{n=1}^{\infty} \in \hat{X} : \exists N, \forall n \ge N, x_n = 0\}.$$
 Take

$$S_n x = \{1 \cdot x_1, 2 \cdot x_2, 3 \cdot x_3, \dots, n \cdot x_n, 0, 0, \dots\}$$

then $S_n: X \to X$ is linear, and bounded where

$$||S_n x|| = \sum_{k=1}^n k \cdot |x_k| = n \cdot \sum_{k=1}^n |x_k| \le n \cdot ||x||_{\ell^1}$$

implies $||S_n|| = n$. Define

$$Sx = \{1 \cdot x_1, 2 \cdot x_2, \dots, k \cdot x_k, \dots\}$$

which is a linear operator $S: X \to X$ but is not bounded since

$$x = e_k = \{0, \dots, \underbrace{1}_{k\text{th}}, 0, \dots\}$$

gives $Se_k = k \cdot e_k$ implies $\frac{||Se_k||}{||e_k||} = k$ so $\sup \frac{||Sx||}{||x||} = +\infty$. Yet $||S_n x - Sx|| \to 0$, $\forall x \in X$ since for

$$x = \{x_1, \dots, x_N, 0, 0, \dots\}$$

we have that $S_n x = Sx$ for $n \ge N$.

We conclude that S_n is strongly convergent on X; it converges to S but S is not bounded. Note X not of second category.

Theorem:

Let X and Y be Banach spaces and $T_n \in L(X,Y)$. If T_n converges strongly on X, then

$$\sup_{n}||T_n||<+\infty$$

and there exists an operator $T \in L(X,Y)$ such that $Tx = \lim_{n \to \infty} T_n x$ (i.e. $\lim_{n \to \infty} ||T_n x - Tx|| = 0$, $\forall x \in X$). Moreover,

$$||T|| \le \liminf_{n \to \infty} ||T_n|| \le \sup_n ||T_n|| < +\infty$$

Proof

For all $x \in X$, $T_n x$ converges to some $y \in Y$.

Since convergent sequences are bounded in normed spaces, this implies $\sup_n ||T_n x|| < +\infty$.

By the Banach-Steinhaus theorem, $C = \sup_n ||T_n|| < +\infty$.

Now define $Tx = \lim_{n \to \infty} T_n x = y$. So $T: X \to Y$ is a linear map

$$\lim_{n\to\infty} ||T_n x - Tx|| = 0, \ \forall x \in X$$

Then T is bounded since

$$||T_n x|| \le ||T_n|| \cdot ||x|| \le C||x||$$

or equivalently, taking the limit,

$$\lim_{n\to\infty} ||Tx|| \le \lim_{n\to\infty} ||-T_nx + Tx|| + ||T_nx|| \le \lim_{n\to\infty} ||Tx - T_nx|| + C||x||$$

implies that ||Tx|| < C||x||.

Take $\alpha = \liminf_{n \to \infty} (||T_n||)$ and find $\{T_{n_k}\}$ such that $\alpha = \lim_{k \to \infty} T_{n_k}$. Then

$$||Tx|| \le \underbrace{||Tx - T_{n_k}x||}_{\to 0} + \underbrace{||T_{n_k}||}_{\to \alpha} \cdot ||x||$$

implies that $||Tx|| \le \alpha \cdot ||x||$ and $||T|| \le \alpha$.

Remark

For *X* and *Y* normed spaces and $T_n \in L(X, Y)$,

Convergence in the operator norm: $||T_n - T||_{L(X,Y)} \to 0$.

Strong convergence of operators: $\forall x \in X : ||T_n x - Tx||_Y \to 0$.

The former implies the latter, but not vice versa.

Strong convergence of operators is analogous to pointwise convergence.

Example

$$Q_n: \ell^p \to \ell^p, \ 1 \le p < \infty.$$
 $Q_n: \{x_k\} \mapsto \{0, \dots, 0, x_{n+1}, x_{n+2}, \dots\}.$
 $||Q_n x|| \le ||x|| \text{ implies that } ||Q_n|| \le 1 \text{ and, for }$

$$e_{n+1} = \{0, \dots, 0, \underbrace{1}_{n+1}, 0, \dots\}$$

we have $||Q_ne_{n+1}|| = 1$ and $||e_{n+1}|| = 1$ which implies $||Q_n|| = 1$.

Therefore $Q_n \not\to 0$ in operator norm. But $Q_n \to 0$ strongly.

For $x \in \ell^p$,

$$||Q_n x|| = \left(\sum_{k=n+1}^{\infty} |x_k|^p\right)^{1/p} \underset{n \to \infty}{\longrightarrow} 0$$

because $\sum_{k=1}^{\infty} |x_k|^p < +\infty$.

Divergence of Fourier Series

 $X = C_{\mathrm{per}}[-\pi,\pi] \ni f$ (continuous, periodic functions) $f:[-\pi,\pi] \to \mathbb{C}$ continuous, $f(-\pi) = f(\pi)$. Define Fourier coefficients

$$f_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx, n \in \mathbb{Z}$$

and consider the formal Fourier series

$$\sum_{n=-\infty}^{\infty} f_n e^{inx}$$

Consider the partial sums

$$F_n(x) = \sum_{k=-n}^n f_k e^{-ikx}$$

Theorem

There exists an $f \in X = C_{per}[-\pi, \pi]$ such that $f_n(0)$ does not converge (i.e. we do not even have pointwise convergence).

Proof

Write

$$F_n(x) = \sum_{k=-n}^{n} f_k e^{ikx}$$

$$= \sum_{k=-n}^{n} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikx} f(t) e^{-itx} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{k=-n}^{n} e^{i(x-t)k} \right) f(t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(x-t) f(t) dt$$

where

$$D_n(t) = \sum_{k=-n}^{n} e^{itx} = \frac{\sin(n+1/2)t}{\sin(t/2)}$$

is the Dirichlet kernel. Note that $D_n(t) = D_n(-t)$. Define a map $L_n : f \in X \to \mathbb{C}$ as

$$L_n(f) = F_n(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t) f(t) dt$$

By contradiction, assume that $F_n(0) = L_n(f)$ converges for every $f \in X$.

We have that L_n is a linear operator (as an integral).

Then given

$$|L_n(f)| \le \sup_{t \in [-\pi,\pi)} |f(t)| \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt \le ||D_n||_{L^1} \cdot ||f||_X$$

since $D_n(t)$ is continuous on $[-\pi,\pi]$ we have that L_n is bounded and $||L_n||_{X^*} \le ||D_n||_{L^1}$.

Therefore, L_n is strongly convergent on X and $L_n \in L(X,\mathbb{C}) = X^{*j}$.

So, by Banach-Steinhaus $\sup_{n\in\mathbb{N}}||L_n||<+\infty$.

But $||L_n||_{X^*} = ||D_n||_{L^1}$ and $||D_n||_{L^1} \to +\infty$. (See below)

We have that $D_n(0) = 2n + 1$ and that the Dirichlet kernel oscillates as a sinusoidal. We want to find $f \in C_{per}[-\pi, \pi]$ such that

$$|L_n(f)| = ||D_n||_{L^1} \cdot ||f||_{C(-\pi,\pi)}$$

That is

$$\left| \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t) f(t) \, dt \right| = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| \, dt \cdot \sup_{t} |f(t)|$$

which is satisfied by

$$g = \begin{cases} +1 & \text{if } D_n(t) > 0 \\ -1 & \text{if } D_n(t) < 0 \end{cases}.$$

If we approximate g(t) by suitable continuous functions, calling that function f_{ε} , then

$$|L_n(g-f_{\varepsilon})| = \left|\frac{1}{2\pi}\int_{-\pi}^{\pi} D_n(t)(g-f_{\varepsilon}) dt\right| \leq ||D_n||_{C[-\pi,\pi]} \cdot ||g-f_{\varepsilon}||_{L^1}$$

We can show (see lecture notes) that

$$\int_{-\pi}^{\pi} \left| \frac{\sin(n+1/2)t}{\sin(t/2)} \right| \ge \alpha_n$$

where $\alpha_n \to +\infty$.

May 2, 2024

Recall:

$$f \in C_{per}[-\pi, \pi]$$

$$f_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

$$F_n(x) = \sum_{k=-n}^n f_k e^{ikx} \xrightarrow{?} f(x)$$

$$F_n(x) = \int_{-\pi}^{\pi} f(x-t)D_n(t) dt$$

with

$$D_n(t) = \sum_{k=-n}^{n} e^{-nt} = \frac{\sin(n+1/2)t}{\sin(t/2)}$$

the Dirichlet kernel.

Fejér-Cesàro Means

$$\sigma_n = \frac{1}{n} \sum_{k=0}^{n-1} F_k(x) = \sum_{k=-n}^n \left(1 - \frac{|k|}{n} \right) f_k e^{ikx}$$
$$= \int_{-\pi}^{\pi} f(x - t) s_n(t) dA$$

with

$$s_n(t) = \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n}\right) e^{ikt} \frac{1}{n} \left(\frac{\sin(nt/2)}{\sin(t/2)}\right)^2$$

the Fejér kernel.

Note that $\int_{-\pi}^{\pi} s_n(t) dt = 1$ and $s_n(t) \Rightarrow 0$ for $\delta \leq |t| \leq \pi$.

Theorem

For $f \in C_{per}[-\pi, \pi]$, $\sigma_n(x) \Rightarrow f(x)$ uniformly on $[-\pi, \pi]$ as $n \to \infty$.

Proof (Sketch)

$$\sigma_{n}(x) - f(x) = \int_{-\pi}^{\pi} (f(x-t) - f(x)) s_{n}(t) dt$$

$$= \int_{|t| < \delta} (f(x-t) - f(x)) s_{n}(t) dt + \int_{\pi \ge |t| \ge \delta} (f(x-t) - f(x)) s_{n}(t) dt$$

$$|\sigma_{n}(x) - f(x)| = \sup_{|t| \le \delta} |f(x-t) - f(x)| \cdot ||s_{n}||_{L^{1}} + 2||f||_{\infty} \cdot 2\pi \cdot \sup_{\pi \ge |t| \ge \delta} |s_{n}(t)|$$

Given ε , by the uniform continuity of f, find $\delta > 0$ such that

$$\sup_{x} \sup_{|t| \le \delta} |f(x-t) - f(x)| < \varepsilon$$

Then $||s_n||_{L^1} = 1$, $s_n(t) \ge 0$, $\int_{-\pi}^{\pi} s_n(t) dt = 1$ and, for fixed δ ,

$$\lim_{n\to\infty} \sup_{n\geq |t|\geq \delta} |s_n(t)| = 0$$

It follows that

$$\sup_{x} |\sigma_n(x) - f(x)| \le \varepsilon + c \cdot \sup_{|t| \ge \delta} |s_n(t)|$$

Taking $n \to \infty$,

$$\limsup_{n\to\infty} \sup |\sigma_n(x) - f(x)| \le \varepsilon, \ \forall \varepsilon > 0$$

and

$$\lim_{n\to\infty} \sup_{x} |\sigma_n(x) - f(x)| = 0$$

Operator Interpretation

One can define $A_n: f \in C_{\text{per}}[-\pi,\pi] \to \sigma_n(x) \in C_{\text{per}}[-\pi,\pi]$ where $\sigma_n \rightrightarrows f$ means $A_n \to I$ strongly on $C_{\text{per}}[-\pi,\pi]$. Since $\forall f \in C_{\text{per}}[-\pi,\pi]$, we have $\sigma_n = A_n f \to f$ in the norm of $C_{\text{per}}[-\pi,\pi]$.

Theorem: Open Mapping Theorem

Let V be an F-space, W be a TVS, and let $T:V\to W$ be a continuous linear operator such that $\operatorname{im} V$ is of 2nd category in W.

Then T is open, im T = W and W is an F-space.

Remark

im T is of 2nd category in W means im T is not a countable union of nowhere dense subsets in W.

Definition: Open Map

T open means T maps open sets into open sets.

Proof

Have to show: for each open neighborhood $U \ni 0$ in V, T(U) contains an open neighborhood of 0.

Consider $V_n = \{x \in V : d(x,0) < r/2^n\}$ and r > 0 such that $V_0 \subseteq U$. Idea: $\overline{TV_1} \subseteq TV_0 \subseteq TU$ and $\overline{TV_1}$ contains an open neighborhood of 0.

Step 1

 $\overline{TV_n}$ contains an open neighborhood of 0. Note that $d(x,0) < r/2^{n+1}$ and $d(y,0) < r/2^{n+1}$ implies

$$d(x-y,0) = d(x,y) \le d(x,0) + d(0,y) < 2 \cdot r/2^{n+1}$$

Take $V_n \supseteq V_{n+1} - V_{n+1}$ such that $TV_n \subseteq T(V_{n+1} - V_{n+1}) = TV_{n+1} - TV_{n+1}$. Then

$$\overline{TV_{n+1}} \supseteq \overline{TV_{n+1} - TV_{n+1}} \supseteq \overline{TV_{n+1}} - \overline{TV_{n+1}}$$

Obviously,

$$V = \bigcup_{k=1}^{\infty} k \cdot V_{n+1}$$

because V_{n+1} is an open neighborhood of zero and absorbing. Hence

$$TV = \bigcup_{k=1}^{\infty} kTv_{n+1}$$
 and $TV \subseteq \bigcup_{k=1}^{\infty} k\overline{TV_{n+1}}$

Since TV is of second category, there exists some k such that kTV_{n+1} is not nowhere dense.

Then $\operatorname{int}(k\overline{TV_{n+1}}) \neq \emptyset$ which implies $\operatorname{int}(\overline{TV_{n+1}}) \neq \emptyset$. That is, $\overline{TV_{n+1}}$ contains an interior point, say x_0 .

Then there exists an open neighborhood $\hat{U} \ni 0$ such that $x_0 + \hat{U} \subseteq \overline{TV_{n+1}}$.

$$\hat{U} = (x_0 + \hat{U}) - x_0 \subseteq \overline{TV_{n+1}} - \overline{TV_{n+1}} \subseteq \overline{TV_n}$$

Step 2

 $\overline{TV_1} \subseteq TV_0$.

Let $y_1 \in \overline{TV_1}$, $y_1 - \overline{TV_2}$ contains some neighborhood of y_1 .

Then $(y_1 - \overline{TV_2}) \cap TV_1 \neq \emptyset$. Choose $w_1 = y_1 - y_2, y_2 \in \overline{TV_2}, w_1 = Tx_1, x_1 \in V_1$.

By the same argument, choose $w_2 = y_2 - y_3$, $y_3 \in \overline{TV_3}$, $w_2 = Tx_2$, $x_2 \in V_2$.

Continuing gives $y_1, y_2, y_3, ..., x_1, x_2, x_3, ..., w_1, w_2, w_3, ...$

Where $x_n \in V_n$, $y_n \in \overline{TV_n}$, $w_n = y_n - y_{n+1} = Tx_n$ or, equivalently, $y_{n+1} = y_n - Tx_n$.

It follows that $y_{n+1} = y_1 - T(x_1 + \cdots + x_n)$.

Because $x_n \in V_n$ $(d(x_n, 0) < r/2^n)$, $x_1 + \dots + x_n$ is a Cauchy sequence. That is, by completeness, $v = \sum_{n=1}^{\infty} x_n$ with $d(V, 0) \le \sum_{k=1}^{\infty} d(x_k, 0) < r$ and $v \in V_0 \subseteq V$.

Taking $n \to \infty$, $\lim_{n \to \infty} y_n = y_1 - Tv$.

Claim: $y := \lim_{n \to \infty} y_n = 0$. Otherwise, $y \ne 0$, $y \in W$ where W is Hausdorff, there exists open neighborhoods of 0 and y where

$$W_0 \cap W_v = \emptyset$$

But as a continuous linear operator, $T^{-1}(W_0)$ has an open neighborhood of 0.

So there exists some n such that $V_n \subseteq T^{-1}(W_0)$ which implies that $TV_n \subseteq W_0 \subseteq W \setminus W_v$ closed.

Then $\overline{TV_n} \subseteq W \setminus W_v$ but $W \setminus W_v$ which implies $y \notin \overline{TV_n}$.

For $N \ge n$, $y_n \in \overline{TV_N} \subseteq \overline{TV_n}$. So $y_n \to y$, $y_n \in \overline{TV_n}$ $(N \ge n)$, $y \notin \overline{TV_n}$ a contradiction.

Therefore y = 0, $y_1 = TV$, $v \in V_0$, $y_1 \in TV_0$ and finally $\overline{TV_1} \subseteq TV_0$.

To Show

The above demonsrates that T is open.

We still need that im T = W and W is an F-space.

Part 3

We have that

$$im T = T(V)$$

open in W. Since open neighborhoods of 0 are absorbing,

$$\bigcup_{k=1}^{\infty} kTV = W = \bigcup_{k=1}^{\infty} T(kV) = \bigcup_{k=1}^{\infty} TV = TV$$

so TV = W.

Part 4 (Sketch)

We have that $T: V \to W$ open, surjective, and continuous.

Define $\hat{T}: V/\ker(T) \to W$ as

$$\hat{T}:[x] \to Tx$$
$$[x] = x + \ker(T)$$

a continuous linear operator with ker(T) a closed subspace. Then

We have that $V/\ker(T) = F$ -space, $\hat{d}([x],[y]) = \inf_{z \in \ker(T)} d(x+z,y)$.

Per the commutative diagram, \hat{T} is open and continuous (a linear homeomorphism). Take

$$\hat{T}: V/\ker(T) \to W$$

$$\hat{d} \leadsto d_W$$

With $d_W(Tx_1, Tx_2) = \hat{d}([x_1], [x_2]) = \inf_z d(x_1 + z, x_2)$.

Then \hat{T} is an isometry and, with d_W , an F-space.

The topology induced by d_W is equivalent to the original topology.

May 7, 2024

Theorem: Open Mapping Theorem

Let V and W be F-spaces, and let $T:V\to W$ be a continuous linear operator which is surjective. Then T is open.

Proof

 $\operatorname{im} T = W$ is of second category since it is an *F*-space.

Corollary: Banach's Theorem About the Inverse Operator

Let V, W be F-spaces, and let $T: V \to W$ be a continuous linear operator which is bijective (invertible). Then the inverse $T^{-1}: W \to V$ is continuous.

Remark

This result implies:

• Each (pre-)F-space of dimension n is topologically isomorphic to \mathbb{F}^n .

Proof

For V a pre-F-space, $T: \mathbb{F}^n \to V$ a linear bijection and V complete, T^{-1} is continuous.

Corollary

Let V be a vector space with two topologies τ_1 , τ_2 such taht (V, τ_1) and (V, τ_2) become F-spaces. If $\tau_1 \subseteq \tau_2$, then $\tau_1 = \tau_2$.

Proof

For $I: V \to V$ the identity map Ix = x, T is continuous. Then $I^{-1}: V \to V$ is continuous and $\tau_2 \subseteq \tau_1$.

Corollary

Let V, W be Banach spaces and $T:V\to W$ be a bounded linear operator which is bijective (invertible). Then $\exists a,b>0$ such that

$$a \cdot ||x||_V \le ||Tx||_W \le b \cdot ||x||_V$$

Proof

Since $T: V \to W$ is bounded (continuous),

$$||Tx|| \le \underbrace{||T||_{L(V,W)}}_{h} \cdot ||x||$$

and since $T^{-1}: W \to V$ is bounded

$$||x|| = ||T^{-1}Tx|| \le \underbrace{||T_{L(W,V)}^{-1}|}_{1/a} \cdot ||Tx||$$

Corollary

Let V be a vector space with two norms $||\cdot||_1$ and $||\cdot||_2$ such that both $(V,||\cdot||_1)$ and $(V,||\cdot||_2)$ are Banach spaces. Assume that there exists some M such that (1) $||x||_1 \le M \cdot ||x||_2$, $\forall x \in V$. Then both norms are equivalent, and there exists m > 0 such that

(2)
$$||x||_2 \le m \cdot ||x||_1$$
, $\forall x \in V$

Proof

For I the identity operator, $I: (V, ||\cdot||_2) \to (V, ||\cdot||_1)$, (1) implies that I is bounded which implies I^{-1} is bounded which finally implies (2).

Examples

Counter-Example 1

For $\ell^1 \subseteq \ell^\infty$, take $I: \ell^1 \to \ell^\infty$ the identity map Ix = x. Take $V = (\ell^1, ||\cdot||_1)$ where $||x||_1 = \sum_{n=1}^\infty |x_n|$ and $W = (\ell^1, ||\cdot||_\infty)$ where $||x||_\infty = \sup_{n \ge 1} ||x_n||$. V is complete while W is not complete (completion $c_0 = \{x \in \ell^\infty : \lim_{n \to \infty} x_n = 0\}$. I is bounded, so

$$||Ix||_{\infty} = ||x||_{\infty} = \sup_{n \ge 1} |x_n| \le \sum_{n=1}^{\infty} |x_n| = ||x||_1$$

However, I^{-1} is not bounded otherwise for some constant b > 0,

$$||x||_1 \le b||x||_{\infty}, \quad \forall x \in \ell^1$$

and

$$\sum_{n=1}^{\infty} |x_n| \le b \cdot \sup_{n \ge 1} |x_n|$$

If we choose

$$x = (\underbrace{1, 1, \dots, 1}_{n \text{ times}}, 0, 0, 0, \dots)$$

Then $n \ge b \cdot 1$ and sending $n \to \infty$ causes a contradiction.

Counter-Example 2

Let V be an infinite dimensional Banach space with norm $||\cdot||$. Choose an unbounded linear functional $\phi \in V'$ $(\phi \notin V^*), \phi : V \to \mathbb{F}$. Define a new norm $||x||_* = ||x|| + |\phi(x)|$. Then take the identity map

$$I: (V, ||\cdot||_*) \rightarrow (V, ||\cdot||)$$
 not complete complete

Obviously $||x|| \le ||x||_*$, so I is bounded. But it is not true that $||x||_* \le C \cdot ||x||$, $\forall x \in V$. Otherwise we would have that $|\phi(x)| \le C||x||$ which would make ϕ bounded, a contradiction. By previous corollary, this implies that $(V, ||\cdot||_*)$ is not complete.

Definition: Graph of a Function

Given $f: X \to Y$, the graph of $f: G(f) = \{(x, f(x)) : x \in X\} \subseteq X \times Y$. Simetimes, $f: D(f) \subseteq X \to Y$ where D(f) is the domain and $G(f) = \{(x, f(x)) : x \in D(f)\} \subseteq X \times Y$.

Definition: Closed Graph of a Function

Let x, Y be topological spaces and f be a function from X (or $D(f) \subseteq X$) into Y. Then f is of closed graph if G(f) is a closed subset in $X \times Y$.

Examples

 $f(x) = \frac{1}{x}$, $D = \mathbb{R} \setminus \{0\}$, $X = Y = \mathbb{R}$ is continuous on D and has a closed graph. Contrarily

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $D(f) = X = Y = \mathbb{R}$ is of closed graph but not continuous. Finally

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

is neither continuous nor of closed graph.

Lemma:

Let X, Y be metric spaces and $f: D(f) \subseteq X \to Y$.

Then f is of closed graph if and only if whenever $x_n \to x$ with $x_n \in D(f)$ and $f(x_n) \to y$, $x \in x$, $y \in y$, then f(x) = y and $x \in D(f)$.

Proof

For G(f) closed in $X \times Y$, we have that whenever $(x_n, f(x_n)) \in G(f)$ converges $(x_n, f(x_n)) \to (x, y)$, then $(x, y) \in G(f)$.

Then whenever $x_n \in D(f)$ converges $x_n \to x$ and $f(x_n) \to y$, then $x \in D(f)$ and y = f(x).

Proposition:

If $f: X \to Y$ is continuous, X a topological space and Y Hausdorff, then f is of closed graph.

Proof

Take $U = (X \times Y) \setminus G(f)$, $(x_0, y_0) \in U$.

Then $(x_0, y_0) \notin G(f)$, so $y_0 \neq f(x_0)$. Since Y is Hausdorff, there exist open sets $U_{f(x_0)} \ni f(x_0)$ and $U_{y_0} \ni y_0$ with $U_{y_0} \cap U_{f(x_0)} = \emptyset$.

 $U_{x_0} = f^{-1}(U_{f(x_0)})$ is open in X with $x_0 \in U_{x_0}$.

Claim: $U_{x_0} \times U_{y_0} \subseteq U$ a neighborhood of (x_0, y_0) so (x_0, y_0) is an interior point of U.

We have that $(U_{x_0} \times U_{y_0}) \cap G(f) = \emptyset$ with $(x, y) \in G(f)$.

But $y = f(x) \in U_{y_0}$, $x \in U_{x_0} = f^{-1}(U_{f(x_0)})$, and $f(x) \in U_{f(x_0)}$ contradicts the fact that they are disjoint.

Theorem: Closed Graph Theorem

Let X, Y be F-spaces and $A: X \to Y$ be a linear operator which is of closed graph. Then A is continuous.

Proof

 $X \times Y$ is an F-spaces equipped with a metric $d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$. Then $\{(x, Ax) : x \in X\} = G(A) \subseteq X \times Y$ is a linear subspace and closed by assumption.

$$(x_1, Ax_1) + (x_2, Ax_2) = (x_1 + x_2, A(x_1 + x_2))$$

 $\lambda(x, Ax) = (\lambda x, A(\lambda x))$

Further, G(A) is an F-space (complete). Take the projection

$$\pi: G(A) \to X$$
$$(x, Ax) \mapsto X$$

a continuous linear operator since

$$(x_n, Ax_n) \rightarrow (x, Ax) \implies x_n \rightarrow x$$

We have also that π is bijective, since

$$\pi((x, Ax)) = x$$
 and $\pi(x, Ax) = 0 \Longrightarrow x = 0 \Longrightarrow Ax = 0$

Applying the open mapping theorem and the Banach theorem for inverse operators,

$$\pi^{-1}: X \to G(A)$$
$$x \mapsto (x, Ax)$$

is also continuous. If $x_n \to x$, then $\pi^{-1}(x_n) \to \pi^{-1}(x)$ $((x_n, Ax_n) \to (x, Ax))$ gives $Ax_n \to Ax$ and A is continuous.

For Banach Spaces

X, ||x||.

$$||x||_* = ||\pi^{-1}(x)|| = ||x|| + ||Ax||$$

 $||x|| \neq |\phi(x)|$.

May 9, 2024

Example

Consider $X = C^1[0,1] \subseteq C[0,1]$ and Y = C[0,1] both with the norm $||f|| = \sup_{x \in [0,1]} |f(x)|$. Note that X is not complete but Y is complete. Take

$$T: f \mapsto f'$$

where $T: X \to Y$ is closed but not bounded.

Given $f_n = \sin(nt)$, for n sufficiently large, $||f_n|| = 1$. However, $Tf_n = f_n' = n \cdot \cos(nt)$ and $||Tf_n|| = n$. Therefore $||Tf|| \le C||f||$ cannot hold for all $f \in X$.

Now, given $f_n \in C^1[0,1]$ where $f_n \to f \in C[0,1]$ and, consequently, that $Tf_n \to g \in C[0,1]$.

Since $f_n \Rightarrow f$ and $f'_n \Rightarrow g$ uniformly on [0,1]. Then

$$\int_0^x f_n(t) dt \Rightarrow \int_0^x g(t) dt$$

unfiromly on $x \in [0,1]$. So

$$f_n(x) - f_n(0) \Rightarrow f(x) - f(0) = \int_0^x g(t) dt$$

and $\frac{d}{dx} \int_0^x g(t) dt = g(x)$ so f is differentiable. It follows that f' = Tf = g.

Example

Take $X = Y = L^{1}[0,1]$ and $D(T) = \{ f \in L^{1}[0,1] : f = c + \int_{0}^{x} g(t) dt, g \in L^{1}[0,1] \}$ with $T : f \to f'$. T is closed graph $(T : D(T) \subseteq X \to Y)$; T is not bounded.

Proposition:

Let X, Y be pre-F-spaces (or even TVS), and let $T:D(T) \subseteq X \to R(T) \subseteq Y$ be a linear operator which has an inverse. Then $T^{-1}:R(T) \subseteq Y \to D(T) \subseteq X$ and T is closed graph if and only if T^{-1} is closed graph.

Proof

$$G(T) = \{(x, Tx) : x \in D(T)\} \subseteq X \times Y.$$

$$G(T^{-1}) = \{(y, T^{-1}y) : y \in R(T)\} = \{(Tx, x) : x \in D(T)\} \subseteq Y \times X.$$

Remark

The inverse of a bijective continuous operator between two TVS is closed graph.

Proof

 $T: X \to Y$ bijective, linear and continuous is of closed graph. Then $T^{-1}: Y \to X$ is of closed graph.

Definition: Closable Operator

Let X, Y be F-spaces, $X_0 \subseteq X$ a subspace. $T: X_0 \subseteq X \to Y$ is closed graph if G(T) is closed in $X \times Y$. $T: X_0 \subseteq X \to Y$ is closable if there exists an operator $\hat{T}: X_1 \subseteq X \to Y$ such that $G(\hat{T}) = \overline{G(T)}$ where $x_1 \supseteq x_0$.

Remark

T is closed if and only if $x_n \in X_0$, $x_n \to x$, $Tx_n \to y$ implies that $x \in X$ and Tx = y. T is closable if and only if $x_n \in X_0$, $x_n \to x$, $Tx_n \to y$ implies that y = 0.

Construction

Take
$$X_1 = \{x \in D(T) : \exists \{x_n\} \subseteq X_0, x_n \to x, Tx_n \text{ converges}\}.$$
 $\hat{T}x = \lim_{n \to \infty} Tx_n \text{ where } x_n \to x \text{ and } Tx_n \text{ also converges}.$

Example

Take
$$X = Y = L^2[0,1]$$
.
For $X_0 = D(T) = C^1[0,1]$, $T: f \to f'$ is a closable (but not closed) operator.

Applications of Closed Graph Theorem

Projections and Direct Sums

Given a direct sum $X = X_1 + X_2$ where every $x \in X$ is the sum $x = x_1 + x_2$ with $x_1 \in X_1$ and $x_2 \in X_2$. One can define

 $P_1: x = x_1 + x_2 \in X \mapsto x_1$ the projection of X onto X_1 along X_2 $P_2: x = x_1 + x_2 \in X \mapsto x_2$ the projection of X onto X_2 along X_1

Then $P_1P_1 = P_1$, $P_2P_2 = P_2$, and $I = P_1 + P_2$.

$$x = x_1 + x_2 \stackrel{P_1}{\mapsto} x_1 = x_1 + 0 \stackrel{P_1}{\mapsto} x_1$$

Note that $R(P_1) = X_1$, $N(P_1) = X_2$, $N(P_2) = X_1$ and $R(P_2) = X_2$.

Conversely, given $P: X \to X$ a linear operator sastisfying $P^2 = P$, we can define $X_1 := R(P) = N(I - P)$ and $X_2 := N(P) = R(I - P)$.

Then $X = X_1 + X_2$ and $P : x = x_1 + x_2 \mapsto x_1$.

Theorem

Let X be an F-space, $X = X_1 \dotplus X_2$ and P be the projection of X onto X_1 along X_2 . Then P is continuous if and only if X_1 , X_2 are closed.

Proof

 (\Longrightarrow) For P continuous, $X_1 = N(I - P)$ and $X_2 = N(P)$ are both closed (as they are the preimage of $\{0\}$).

 (\longleftarrow) By the closed graph theorem, if P is of closed graph then P is continuous.

Take $x_n \to x$, $Px_n \to y$. We want to show that Px = y.

Then $x_n = x_n^{(1)} + x_n^{(2)} \rightarrow x$, $Px_n = x_n^{(1)} \rightarrow y$. Since X_1 is closed, $y \in X_1$. It follows that

$$x_n^{(2)} \to (x^{(1)} - y) + x^{(2)}$$

and, since X_2 is closed, $(x^{(1)} - y) + x^{(2)} \in X_2$ which implies that $x^{(1)} - y = 0$. Therefore $y = x^{(1)} = Px$.

Alternative Proof (Sketch)

Consider a linear map $\pi: X_1 \times X_2 \rightarrow X_1 + X_2 = X$ $((x_1, x_2) \mapsto x_1 + x_2)$.

Then $X_1, X_2 \subseteq X$ a complete space. It follows that X_1, X_2 , and importantly $X_1 \times X_2$ are F-spaces.

Then π is continuous, since

$$||x_1 + x_2|| \le ||x_1|| + ||x_2|| = ||(x_1, x_2)||_{X \times Y}$$

or for F-spaces

$$(x_1^{(n)}, x_2^{(n)}) \mapsto (x_1, x_2)$$

implies that $x_1^{(n)} + x_2^{(n)} \to x_1 + x_2$.

Since π is bijective, Banachs' theorem about inverse operators states that

$$\pi^{-1}: X = X_1 + X_2 \to X_1 \times X_2$$

is continuous. Then

$$x_1 + x_2 \in X \xrightarrow{\pi^{-1}} X_1 \times X_2 \ni (x_1, x_2)$$

$$\downarrow^{p} \qquad \downarrow^{\pi_1} X_1$$

So $P = \pi_1 \circ \pi^{-1}$ is continuous.

Applications Continued

Fourier Series

Consider the Fourier coefficients on $L^1[-\pi,\pi]$ -functions. Take

$$T: f \in L^1 \mapsto \{f_n\}_{n=-\infty}^{\infty} \in \ell^{\infty}(\mathbb{Z})$$

where $f_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt$ for $n \in \mathbb{Z}$. We have that $|f_n| \le ||f||_{L^{-1}}$ and

$$||\{f_n\}||_{\ell^{\infty}} = \sup_{n} |f_n| \le ||f||_{L^1}$$

Actually,

$$\lim_{|n|\to\infty} |f_n| = 0$$

so $T: f \in L^1 \to C_0(\mathbb{Z}) \subseteq \ell^\infty(\mathbb{Z})$ where $C_0(\mathbb{Z})$ is the set of all $\{f_n\}_{n=-\infty}^\infty$ such that $\lim_{|n| \to +\infty} |f_n| = 0$.

Claim: im T is of first category in C_0 . In particular, im $T \neq C_0$.

Otherwise, $T:L^1 \to C_0$ is open. We state without proof that N(T)=0 (Fourier coefficients of L^1 -functions are unique). This would imply that T^{-1} is continuous. However

$$f^{(N)} = \sum_{n=-N}^{N} e^{inx}$$

where

$$Tf^{(N)} = \{\dots, 0, 0, \underbrace{1}_{-N}, 1, \dots, 1, \underbrace{1}_{N}, 0, 0, \dots\} = \{f_n^{(N)}\}$$

with $||Tf^{(N)}|| = 1$, $||f^{(N)}||_{L^1} \to +\infty$ as $N \to \infty$. This would mean

$$||f^{(N)}|| \le ||T^{-1}|| \cdot ||Tf^{(N)}|| \le ||T^{-1}|| \cdot 1$$

which is a contradiction.

Reflexive Spaces

Consider V a normed space.

 $V^* = L(V, \mathbb{F})$, the dual space, is Banach.

$$||f||_{V^*} = \sup_{\substack{x \in V \\ x \neq 0}} \frac{|f(x)|}{||x||_V}$$

 $(f_1+f_2)(x) := f_1(x)+f_2(x)$ and $(\lambda f)(x) := \lambda f(x)$. $(V^*)^* = L(V^*,\mathbb{F})$, the bidual or second dual of V. V can be identified with a subset of $(V^*)^* = V^{**}$. Define

$$\tau: x \in V \mapsto \phi_x \in V^{**}$$

where $\phi_x(f) = f(x)$, $f \in V^*$.

Proposition

 $\phi_{x} \in V^{**}$.

Proof

 $\phi_x: V^* \to \mathbb{F}$ a map. Linearity:

$$\phi_x(f_1 + f_2) = (f_1 + f_2)(x) = f_1(x) + f_2(x) = \phi_x(f_1) + \phi_x(f_2)$$

$$\phi_X(\lambda f) = (\lambda f)(x) = \lambda f(x) = \lambda \phi_X(f)$$

Boundedness:

$$|\phi_x(f)| = |f(x)| \le ||f||_{V^*} ||x||_V, \quad \forall f \in V^*$$

so ϕ_x is bounded and

$$\frac{|\phi_x(f)|}{||f||_{V^*}} \le ||x||$$

Taking the supremum over $f \in V^*$ gives

$$||\phi_x|| \le ||x||$$

May 14, 2024

Recall: Reflexive Banach Spaces

For V a normed space, take V^* the dual, and V^{**} the bidual. We have $\tau: x \in V \mapsto \phi_x \in V^{**}$ with $\phi_x(f) = f(x), f \in V^*$.

Theorem:

 τ is an isometric isomorphism from V onto im $\tau \subseteq V^{**}$.

Proof

 τ is linear, since $\tau(x+y) = \phi_{x+y}$ and

$$\phi_{x+y}(f) = f(x+y) \qquad f \in V^*$$

$$= f(x) + f(y)$$

$$= \phi_x(f) + \phi_y(f) \qquad \text{addition in } V^{**}$$

$$= (\phi_x + \phi_y)(f)$$

$$\phi_{x+y} = \phi_x + \phi_y = \tau(x) + \tau(y)$$

Isometric means $||\tau(x)|| = ||x||$, $||\phi_x|| = ||x||$.

We know that $||\phi_x|| \le ||x||$. For $x \ne 0$, define $f_0 \in (\ln\{x\})^*$ by $f_0(\lambda x) = \lambda ||x||$. Then

$$||f_0|| = \sup_{\lambda \neq 0} \frac{|f(\lambda x)|}{||\lambda x||} = 1$$

and we may extend f_0 by Hahn-Banach to $\hat{f} \in V^*$ with the same norm $||\hat{f}|| = 1$. We have that

$$||\phi_x|| = \sup_{\substack{f \in V^* \\ f \neq 0}} \frac{|\phi_x(f)|}{||f||} \ge \frac{|\phi_x(\hat{f})|}{||\hat{f}||} = \frac{|\hat{f}(x)|}{1} = |f_0(x)| = ||x||$$

 τ is injective (because it is isometric).

We see, since $\tau(x) = 0 \Longrightarrow ||\tau(x)|| = 0 = ||x|| \Longrightarrow x = 0$, the kernel is trivial.

Therefore we conclude that τ is an isomorphism $\tau: V \to \operatorname{im}(\tau) \subseteq V^{**}$.

Remark

 τ need not be surjective $(\operatorname{im}(\tau) \subset V^{**})$.

Definition: Reflexive Space

V is called reflexive if τ is surjective (i.e. $\operatorname{im}(\tau) = V^{**}$)

Proposition:

A reflexive normed space is Banach.

Proof

Assume $\tau: V \to V^{**}$ is a surjective isometry.

V is complete, since $V^{**} = (V^*)^*$ is complete.

Take $\{x_n\}$ Cauchy in V, then $\tau(x_n)$ is Cauchy in V^{**} hence $\tau(x_n) \to y$.

Since τ is surjective, $y = \tau(x)$, for some $x \in V$. Then

$$||x_n - x|| = ||\tau(x_n) - \tau(x)|| = ||\tau(x_n) - y||$$

so $x_n \to x$.

Remark:

 τ can be used to construct a completion of a normed space.

$$\tau: V \to \operatorname{im}(\tau) \subseteq \overline{\operatorname{im}(\tau)} = W \subseteq V^{**}.$$

Then W is complete and $\operatorname{im}(\tau)$ is dense in W.

Remark:

For reflexive space V, $V \cong V^{**}$ (isomorphically isometric).

Converse is not true. There exist examples where $V \cong V^{**}$ but τ is not surjective.

Theorem:

Let V be a Banach space.

Then V is reflexive if and only if V^* is reflexive.

Proof

Informally, $V \cong V^{**}$ if and only if $V^* \cong V^{3*}$.

$$\tau: V \to V^{**} \qquad \tau(x) = \phi_x \qquad \phi_x(f) = f(x) \qquad f \in V^*$$

$$\hat{\tau}: V^* \to V^{3*} \qquad \hat{\tau}(x) = \psi_x \qquad \psi_x(f) = \phi(f) \qquad \phi \in V^{**}$$

Then (\Longrightarrow)

$$\tau: V \to V^{**}$$
 $\tau^{-1}: V^{**} \to V$ $\tau^{*}: V^{3*} \to V^{*}$ $(\tau^{*})^{-1}: V^{*} \to V^{3*}$

 $V \cong V^{**} \Longrightarrow V^* \cong V^{3*}$

Taking the adjoint, $\hat{\tau} = (\tau^*)^{-1} = (\tau^{-1})^*$ is bijective.

 (\longleftarrow) Assume taht $\hat{\tau}$ is surjective and V Banach.

For a contradiction, assume that τ is not surjective. Then $\operatorname{im}(\tau) \subset V^{**}$.

But $\operatorname{im}(\tau)$ is complete and closed $(\operatorname{im}(\tau) \cong V \text{ an isometry})$.

Then there exists some $\phi_0 \notin \operatorname{im}(\tau)$. By Hahn-Banach (and the closer of the image) this means there exists some $\psi_0 \in (V^{**})^*$ where

$$\psi_0(\phi_0) = 1 \qquad \qquad \psi_0|_{\operatorname{im}(\tau)} = 0$$

By assumption, V^* is reflexive so $\hat{\tau}: V^* \to V^{3*}$ is surjective.

Then there exists some $f_0 \in V^*$ where $\hat{\tau}(f_0) = \psi_0$. But $\psi_0 \neq 0$ implies that $f_0 \neq 0$.

Now $0 = \psi_0(\tau(x)) = \psi_0(\phi_x) = (\hat{\tau}(f_0))(\phi_x) = \phi_x(f_0) = f_0(x)$, so $f_0(x) \equiv 0$ for any x which is a contradiction.

Theorem:

A closed subspace of a reflexive space is reflexive.

Remark

For V reflexive, $V\cong V^{**}\cong V^{4*}\cong \cdots$ and $V^{*}\cong V^{3*}\cong V^{5*}\cdots$. For V Banach but not reflexive, $V\subsetneq V^{**}\subsetneq V^{4*}\subsetneq \cdots$ and $V^{*}\subsetneq V^{3*}\subsetneq V^{5*}\subsetneq \cdots$.

Examples

$$\begin{split} &\ell^p \left\{ \{x_n\}_{n=1}^{\infty} \, : \, ||x||_p = \left(\sum |x_n|^p\right)^{1/p} < \infty \right\}, \, 1 \leq p < \infty. \\ &\ell^\infty \left\{ \{x_n\}_{n=1}^{\infty} \, : \, ||x||_\infty = \sup_n |x_n| \right\} \\ &C_0 \left\{ \{x_n\}_{n=1}^{\infty} \in \ell^\infty \, : \, \lim x_n = 0 \right\} \\ &C_0 \text{ is a closed subspace of } \ell^\infty. \end{split}$$

Example 1

For
$$1 , $\frac{1}{p} + \frac{1}{q} = 1$$$

$$(\ell^p)^* \cong \ell^q$$

These spaces are reflexive.

Example 2

$$(C_0)^* \cong \ell^1$$
, $(\ell^1)^* \cong \ell^\infty$, $(\ell^\infty)^* \cong ?$.
 $(C_0)^{**} \cong \ell^\infty$ and $C_0 \subseteq \ell^\infty$.

These spaces are not reflexive.

Theorem:

Take $1 \le p < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$ and

$$\Lambda : \ell^q \to (\ell^p)^*$$
$$y = \{y_n\}_{n=1}^{\infty} \mapsto \phi_{\gamma}$$

with
$$\phi_{\mathcal{V}}(\{x_n\}) = \sum_{n=1}^{\infty} y_n x_n$$
.

with $\phi_y(\{x_n\}) = \sum_{n=1}^{\infty} y_n x_n$. Then $\Lambda : \ell^q \to (\ell^p)^*$ is an isometric isomorphism.

Hölder's Inequality

$$\sum \left| \left| x_n y_n \right| \leq \left(\sum \left| \left| x_n \right|^p \right)^{1/p} \left(\sum \left| \left| y_n \right|^q \right)^{1/q}$$

Prooof (Sketch)

If $x \in \ell^p$ and $y \in \ell^q$, then $\phi_v(x)$ is well defined, and $|\phi_v(x)| \le ||x||_p \cdot ||y||_q$. We have also that ϕ_{ν} is linear in x_n and bounded, since

$$||\phi_y|| = \sup \frac{|\phi_y(x)|}{||x||_p} \le ||y||_q$$

It follows that $\phi_y \in (\ell^p)^*$, $\forall y \in \ell^q$.

 $\Lambda: y \to \phi_y$ is linear in y_n and bounded, since

$$||\phi_y|| \le ||y||, \ \forall y \in \ell^q$$

Now, given $y = \{y_n\}$, put $x_n = \frac{\overline{y}_n}{|y_n|} \cdot |y_n|^{q/p}$. Then $|x_n|^p = |y_n|^q$ and $x_n y_n = |y_n|^{1+q/p} = |y_n|^q$. Therefore

$$\phi_{y}(x) = \left(\sum x_{n} y_{n}\right)^{1/p} \left(\sum x_{n} y_{n}\right)^{1/q} = ||x||_{p} \cdot ||y||_{q}$$

If y = 0, we simply set $\phi_0(x) = 0$. So

$$||\phi_y|| = \sup_{x \neq 0} \frac{|\phi_y(x')|}{||x'||} \ge \frac{|\phi_y(x)|}{||x||} = ||y||$$

and Λ is an isometry.

Note that for $p = \infty$ and q = 1, we may define $\Lambda : \ell^1 \to (\ell^\infty)^*$ but it is not surjective.

Instead, we have that $\Lambda: \ell^1 \to (C_0)^*$ as surjective. For $1 \le p < \infty$, for $\phi \in (\ell^p)^*$ find $y \in \ell^q$ such that $\phi = \phi_y$. Take

$$e_n = \{0, \dots, 0, \underbrace{1}_n, 0, \dots\}$$

and put $y_n = \phi(e_n)$. Now, we want to show that $y = \{y_n\}_{n=1}^{\infty} \in \ell^q$ and that $\phi = \phi_y$.

Define x and $x_n = \frac{\overline{y}_n}{|y_n|} \cdot |y_n|^{q/p}$ where $|x_n y_n| = |y_n|^q$. Then

$$\left(\sum_{n=1}^{N}|x_{n}|^{p}\right)^{1/p}\left(\sum_{n=1}^{N}|y_{n}|^{q}\right)^{1/q} = \sum_{n=1}^{N}|y_{n}|^{q} = \sum_{n=1}^{N}|x_{n}y_{n}| = \sum_{n=1}^{N}|x_{n}\phi(e_{n})| = \phi\left(\sum_{n=1}^{N}|x_{n}e_{n}\right) \leq ||\phi|| \cdot ||\sum_{n=1}^{N}|x_{n}e_{n}||_{p} = ||\phi||\left(\sum_{n=1}^{N}|x_{n}|^{p}\right)^{1/p} = \sum_{n=1}^{N}|y_{n}||_{p} = \sum_{n=1}^{N}|y_{n}|$$

Finally, we want to show that $\phi = \phi_y$. By density, we can restrict to $x = \sum_{n=1}^N x_n e_n$ (except in ℓ^∞ . Take

$$\phi(x) = \sum_{n=1}^{N} \phi(x_n e_n) = \sum_{n=1}^{N} x_n \phi(e_n) = \sum_{n=1}^{N} x_n y_n = \phi_y(x)$$

where $x = \{x_1, x_2, ..., x_N, 0, 0, ...\}.$

By continuity, this caries to the closure and then the whole space so $\phi(x) = \phi_v(x)$, $\forall x \in \ell^p$.

Therefore $\phi = \phi_{\nu}$.

May 16, 2024

Recall

$$(\ell^p)^* \cong \ell^q$$
, $\frac{1}{p} + \frac{1}{q} = 1$, $1 reflexive.$

$$(C_0)^* \cong \ell^1, (\ell^1)^* \cong \ell^\infty, \tau : C_0 \to \ell^\infty = (C_0)^{**}$$

$$C_1 = \{\{x_n\}_{n=1}^{\infty} : \lim x_n = x \in \mathbb{F}\} \subseteq \ell^{\infty}.$$

$$\begin{split} &(\ell^p)^* \cong \ell^q, \, \tfrac{1}{p} + \tfrac{1}{q} = 1, \, 1$$

Proposition

Let V be a reflexive Banach space.

Then for every $\phi \in V^*$ ($\phi \neq 0$), there exists some $x \in V$ such that

$$||x|| = 1$$
 and $\phi(x) = ||\phi||$

Proof

 $\tau: V \to V^{**}$ is surjective.

Applying Hahn-Banach to $\phi \in V^*$, we find $\psi \in V^{**}$ $\psi(\phi) = ||\phi||, ||\psi|| = 1$. Then there exists $x \in V$ such that $\psi = \tau(x)$.

$$\phi(x) = \tau(x)(\phi) = ||\phi||$$

and $||x|| = ||\psi|| = 1$.

Remark

 $||\phi|| = \sup_{||x||=1} |\phi(x)|.$

For reflexive Banach spaces, $||\phi|| = \max_{||x||=1} |\phi(x)|$.

Example

 ℓ^1 is not reflexive.

Take $\phi \in (\ell^1)^*$, $\phi(x) = \sum_{n=1}^{\infty} x_n \left(1 - \frac{1}{2n}\right)$ and $x = \{x_n\} \in \ell^1$. Then

$$|\phi(x)| \leq \sum |x_n| = ||x||_{\ell^1}$$

so $||\phi|| \le 1$. Now take $x = \{0, \dots, 0, \underbrace{1}_{n \text{th}}, 0, \dots\}$. Then

$$\frac{|\phi(x)|}{||x||} = 1 - \frac{1}{2n} \Longrightarrow ||\phi|| = 1$$

but

$$|\phi(x)| = \left|\sum x_n \left(1 - \frac{1}{2n}\right)\right| < \sum |x_n| = ||x|| = ||x|| \cdot ||\phi||$$

It is impossible that ||x|| = 1, $\phi(x) = ||\phi|| = 1$.

Example

$$C_0$$
 is not finite. $\phi \in (C_0)^* \cong \ell^1$, $\phi(\{x_n\}) = \sum_{n=1}^{\infty} x_n \cdot \frac{1}{2^n}$.

$$|\phi(x)| = \left|\sum x_n \frac{1}{2^n}\right| \le \sum |x_n| \cdot \frac{1}{2^n} \leqslant \sup_{x \ne 0} \left(\sup_n |x_n|\right) \left(\sum \frac{1}{2^n}\right)$$

so $||x|| = ||\phi||$.

Definition: Uniform Convexity

A normed space *V* is called uniformly convex if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\forall x, y \in V$

$$\left| \left| \left| x \right| \right| \leq 1, \; \left| \left| y \right| \right| \leq 1, \; \left| \left| x - y \right| \right| \geq \varepsilon \implies \left| \left| \frac{x + y}{2} \right| \right| < 1 - \delta$$

Example

One can show directly that ℓ^p and L^p (1) are uniformly convex.

Theorem: (Milamn)

Any uniformly convex Banach space is reflexive.

Consequence

For ℓ^p , L^p , $(1 are reflexive Banach spaces. <math>\Lambda: L^q \to (L^p)^*$ surjectivity can be shown using reflexivity.

Definition: F-Topology on V

Let *V* be a vector space and let $\mathcal{F} \subseteq V'$ be a separating family of linear functionals.

$$\mathcal{F} = \{\phi_{\omega}\}_{\omega \in \Omega}$$

 $x \neq 0 \implies \exists \omega \in \Omega \text{ such that } \phi_{\omega}(x) \neq 0.$ Now define a separating family of seminorms

$$p_{\omega}(x) = |\phi_{\omega}(x)|$$

We have a local basis γ_x (at x) for a toplogy

$$\gamma_x = \{U_{\omega_1,\dots,\omega_N;\varepsilon}(x) : \omega_1,\dots,\omega_N \in \Omega, \ \varepsilon > 0\}$$

where

$$U_{\omega_1,\dots,\omega_N;\varepsilon}(x) = \{y \in V \,:\, |\phi_\omega(y) - \phi_\omega(x)| < \varepsilon\}$$

Then this induces a topology on V, so we have a topological vector space. We call this topology the \mathcal{F} -topology.

Definition: Weak Topology

Let V be a locally convex TVS.

Then the weak topology on V is an \mathcal{F} -topology with $\mathcal{F} = V^*$.

Definition: Weak-* Topology

Let V be a locally convex TVS.

Then the weak-* topology on V^* is an \mathcal{F} topology with $\mathcal{F} = \operatorname{im} \tau$ where

$$\tau: V \to (V^*)'$$
$$x \mapsto \phi_x$$

with
$$\phi_x(f) = f(x)$$
, $f \in V^*$.
Then $\mathcal{F} = \{\phi_x : x \in V\}$.

Remark

- $\mathcal{F} = V^*$ separating (V locally convex).
- $\mathcal{F} = \operatorname{im} \tau \cong V$ separating.

 $\forall f \in V^*$, $f \neq 0$ this implies trivially that $\exists x \in V$, $f(x) \neq 0$, $\phi_x(f) \neq 0$.

Remark: Open Neighborhoods (for local bases)

•
$$\mathcal{F} = V^*, f_1, ..., f_N \in V^*.$$

$$U_{f_1,\dots,f_N;\varepsilon}[x] = \{y \in V \,:\, \big|f_i(x) - f_i(y)\big| < \varepsilon, \; \forall \, i=1,\dots,N\}$$

• $\mathcal{F} = \operatorname{im} \tau \ (\cong V), \ x_1, \dots, x_N \in V, \ f \in V^*$

$$U_{x_1,...,x_N;\varepsilon}[f] = \{g \in V^* : |g_i(x) - g_i(y)| < \varepsilon, \forall i = 1,..., N\}$$

Then $|\phi_{x_i}(f) - \phi_{x_i}(g)| < \varepsilon$.

Remark: Notions of Convergence

Generally, in the weak/weak-* topologies, $x_n \to x$ if $\forall U \ni x$ open, $\exists N$ such that $\forall n \ge N, x_n \in U$. For $\mathcal{F} = V^*$ (weak topology), $x_n \to x$ if and only if $\forall f \in V^*, f(x_n) \to f(x)$ (weak convergence). For $\mathcal{F} = \operatorname{im} \tau$ (weak-* topology), $f_n \to f$ if and only if $\forall x \in V, f_n(x) \to f(x)$ (weak-* convergence).

Applications to Banach Spaces

Then

- $x_n \to x$ in norm implies $x_n \to x$ weakly.
- $f_n \to f$ in norm implies $f_n \to f$ weakly
- $f_n \to f$ in norm implies $f_n \to f$ weakly*.

Proposition

Let V be a Banach space, $x_n, x \in V$ $f_n, f \in V^*$.

1. if $x_n \to x$ weakly, then

$$\sup ||x_n|| < +\infty$$
 and $||x|| \le \liminf ||x_n||$

1. if $f_n \to f$ weakly*, then

$$\sup ||f_n|| < +\infty$$
 and $||f|| \le \liminf ||f_n||$

Proof of B

By Banach-Steinhaus (uniform boundedness), $f_n(x) \to f(x)$, $\forall x$ implies that $\forall x$, $\sup_n |f_n(x)| < +\infty$.

This further implies that $\sup_n ||f_n|| < +\infty$.

Then if $||f_{n_k}||$ converges to $c = \liminf ||x_n||$, $|f_{n_k}(x) \le ||f_{n_k}|| \cdot ||x||$.

Therefore $|f(x)| \le \lim ||f_{n_k}|| \cdot ||x||$, $\forall x$.

$$\frac{|f(x)|}{||x||} \le \lim ||f_{n_k}|| = c$$

for every x. Therefore, $||f|| \le c$.

Proof of A

$$\begin{split} &x_n \to x \text{ weakly, } f(x_n) \to f, \ \forall \, f \in V^*. \\ &\text{Then } \phi_{x_n}(f) \to \phi_x(f), \, \phi_{x_n} \in V^{**}. \\ &\text{Therefore } \sup_n ||\phi_{x_n}|| < +\infty \text{ where } ||\phi_{x_n}|| = ||x_n||. \end{split}$$

Examples

$$V = \ell^2$$
,

$$x_n = \{0, \dots, 0, \underbrace{1}_{n \text{th}}, 0, \dots\}$$

$$||x_n|| = 1.$$

We have that $x_n \not\to 0$ in norm, but $x_n \to 0$ weakly. $\forall f \in (\ell^2)^* \cong \ell^2 \ni \{f_k\}_{k=1}^{\infty}, f(x_n) \to 0$. So

$$\forall f \in (\ell^2)^* \cong \ell^2 \ni \{f_k\}_{k=1}^{\infty}, f(x_n) \to 0. \text{ So}$$

$$f(x_n) = \sum_{k=1}^{\infty} f_k(x_n)_k = f_n$$

Therefore $f(x_n) = f_n \to 0$.

Example

$$V=C_0,\ V^*\cong \ell^1.$$

$$f_n \cong e_n = \{0, \dots, 0, \underbrace{1}_{n \text{th}}, 0, \dots\} \in \ell^1$$

$$f_n(x) = x_n \text{ and } x = \{x_k\} \in C_0.$$

For $x \in C_0$, $\lim_{k \to \infty} x_k = 0$ which implies $\lim_{n \to \infty} f_n(x) = 0$.

So $f_n \to 0$ in the weak-* topology, but $f_n \not\to 0$ in the weak tpology. Take $\phi \in V^{**} \cong (\ell^1)^* \cong \ell^{\infty}$.

$$\phi \cong \{1, 1, 1, 1, \dots\}$$

Then $\phi(f) = \sum_{k=1}^{\infty} f^{(k)}$ where $\{f^{(k)}\} \in \ell^1$. So $f_n = \{0, ..., 0, 1, 0, ...\}$ gives $\phi(f_n) = 1 \not\rightarrow 0$.

That is, $f_n \not\to 0$ in the weak topology.

Definition: Sequential Completness

 V^* is sequentially complete in the weak-* topology if $\{f_n\}$ a sequence and $f_n(x)$ converges $\forall x \in V$, then there should exist $f \in V^*$ such that $f_n(x) \to f(x)$, $\forall x \in V$.

V is sequentially complete in the weak topology if $\{x_n\}$ a sequence and $f(x_n)$ converges $\forall f \in V^*$, then there should exist $x \in V$ such that $f(x_n) \to f(x)$, $\forall f \in V^*$.

Theorem:

- 1. Let V be a Banach space. Then V^* is sequentially complete in the weak-* topology.
- 2. Let V be a reflexive Banach space. Then V is sequentially complete in the weak topology.

May 28, 2024

Definition: Annihilator

Let X be a Banach space, $M \subseteq X$, $N \subseteq X^*$.

$$M^{\perp} := \{ f \in X^* : f(x) = 0, \forall x \in M \}.$$

 $^{\perp}N := \{ x \in X : f(x) = 0, \forall f \in N \}.$

Proposition:

 M^{\perp} is a closed linear subspace of X^* and $^{\perp}N$ is a closed linear subspace of X.

Proposition:

Let $M \subseteq X$, $N \subseteq X^*$ be linear subspaces. Then

$$^{\perp}(M^{\perp}) = \operatorname{clos}(M)$$

and $({}^{\perp}N)^{\perp} \supseteq \operatorname{clos}(M)$ (with equality if X is reflexive).

Proof

 $M\subseteq {}^\perp(M^\perp)$ and $N\subseteq ({}^\perp N)^\perp$. If $x\in M$, then f(x)=0, $\forall f\in M^\perp$ so $x\in {}^\perp(M^\perp)$. If $f\in N$, then f(x)=0, $\forall f\in {}^\perp N$ so $f\in ({}^\perp N)^\perp$. Since ${}^\perp(M^\perp)$ and $({}^\perp N)^\perp$ are closed, $\operatorname{clos}(M)\subseteq {}^\perp(M^\perp)$ and $\operatorname{clos}(N)\subseteq ({}^\perp N)^\perp$. Then, by Hahn-Banach, $\exists f\in X^*$ such that $f|_M=0$ while $f(x_0)\neq 0$ for some $x_0\in {}^\perp(M^\perp)$. Therefore, f(x)=0, $\forall x\in M$ which would imply $f\in M^\perp$ so $f(x_0)=0$ a contradiction.

Example: Non-Reflexive

$$\operatorname{clos}(N) \subset (^{\perp}N)^{\perp}$$
 can be proper.
Take $X = \ell^1$, $X^* = \ell^{\infty}$ with $N = C_0 \subseteq \ell^{\infty}$.
Then $^{\perp}N = \{0\}$ while $(^{\perp}N)^{\perp} = X^* = \ell^{\infty}$.

Remark:

One can show that

$$\operatorname{clos}_{\mathsf{weak}^*} N = (^{\perp} N)^{\perp}$$

Closure in weak-* topology of N.

Proposition:

Let
$$T \in L(X, Y)$$
 with X, Y Banach.
Then $N(T^*) = R(T)^{\perp}$ and $N(T) = {}^{\perp}R(T^*)$.

Proof

$$T^* \in L(Y^*, X^*)$$
.
Then $f \in N(T^*)$ if and only if $T^*f = 0$ if and only if $(T^*f)(x) = 0$, $\forall x \in X$.
Then we may write $f(Tx) = 0$, $\forall x \in X$ and see that $f(y) = 0$, $\forall y \in R(T)$.
That is, $f \in R(T)^{\perp}$.

Similarly, for $x \in N(T)$ we know Tx = 0 and, by Hahan-Banach, that f(Tx) = 0, $\forall f \in Y^*$. Then $(T^*f)(x) = 0$, $\forall f \in Y^*$ and g(x) = 0, $\forall g \in R(T^*)$. We conclude that $x \in {}^{\perp}R(T^*)$.

Remark

 $N(T^*) = R(T)^{\perp}$ implies that

$$^{\perp}N(T^*) = ^{\perp}(R(T)^{\perp}) = \operatorname{clos} R(T)$$

 $N(T) = {}^{\perp}R(T^*)$ implies that

$$N(T)^{\perp} = (^{\perp}R(T^*))^{\perp} \supseteq \operatorname{clos} R(T)$$

Theorem: Banach's Closed Range Theorem

For Banach spaces X, Y and $T \in L(X, Y)$, the following are equivalent

- 1. R(T) is closed in Y.
- 2. $R(T^*)$ is closed in X^* .
- 3. $R(T) = {}^{\perp}N(T^*)$.
- 4. $R(T^*) = N(T)^{\perp}$.

Proof: 1 Equivalent to 2

See Yosida's Functional Analysis.

Proof: 1 Equivalent to 3

Easy (see previous proposition).

Proof: 2 Equivalent to 4

Technical (not that easy).

Definitions:

For X, Y Banach, $T \in L(X, Y)$.

Definition: Normally Solvable

T is called normally solvable or said to satisfy the Fredholm alternative principle) if R(T) is closed.

Definition: Fredholm Operator

T is called a Fredholm operator if R(T) is closed and $\alpha(T) = \dim N(T) < +\infty$ and $\beta(T) = \dim N(T^*) < +\infty$. α and β are called the defect numbers.

Definition: Fredholm Index

$$\operatorname{ind}(T) = \alpha(T) - \beta(T) \in \mathbb{Z}$$

Remark:

For X, Y Banach.

If R(T) is closed, then $N(T^*)$ is finite dimensional if and only if Y/R(T) is finite dimensional. There exists a natural isomorphism

$$(Y/R(T))^* \cong N(T^*) = R(T)$$

We have that $(Y/R(T))^*$ and Y/R(T) are either both of finite dimension or both of infinite dimension. For every closed subspace $M \subseteq Y$, $(Y/M)^* \cong M^{\perp}$.

So $\hat{f}(Y/M)^*$ implies $f = \hat{f} \circ \pi \in Y^*$ and $f \in M^{\perp}$. Then

$$0 = f(\underbrace{x}_{x \in M}) = \hat{f}(\underbrace{\pi(x)}_{=0}) = 0$$

Conversely for $f \in M^{\perp} \subseteq Y^*$, $f|_{M} = 0$ and $\hat{f}([x]_{M}) = f(x)$ independent of choice of x. So

$$[x_1] = [x_2] \Longrightarrow x_1 - x_2 \in M \Longrightarrow f(x_1 - x_2) = 0 \Longrightarrow f(x_1) = f(x_2)$$

Remark

If R(T) is not closed, then Y/R(T) is infinite dimensional (not trivial).

Remark

It can happen that Y/Z is finite dimensional for Z non-closed. Take $Z=N(\phi)$ for ϕ and unbounded linear functional. Then

$$\dim(Y/N(\phi))=1$$

R(T) closed and $\dim N(T^*) < +\infty$ is equivalent to $\dim(Y/R(T)) < +\infty$.

Remark

$$A \in L(\mathbb{F}^m, F^n) = \mathbb{F}^{n \times m}$$
.
 $Ax = y$
 $A^* = A^T$ (transpose) $A^t f = g$.
Every $A \in L(\mathbb{F}^m, \mathbb{F}^n)$ is a Fredholm operator.
 $\operatorname{ind}(A) = \dim N(A) - \dim N(A^T)$ and

$$\operatorname{rank} A = m - \dim N(A)$$

$$\operatorname{rank} A^{T} = n - \dim N(A^{T})$$

$$\operatorname{rank} A = \operatorname{rank} A^{T}$$

implies that ind(A) = m - n.

Example

Take $X = Y = \ell^2(\mathbb{N})$ and

$$T = \begin{pmatrix} 0 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & \ddots \end{pmatrix}$$

 $\{x_n\}_{n=1}^{\infty} \mapsto \{0, x_1, x_2, \ldots\}, \text{ ind } T = -1 = -\text{ ind } T^*.$

$$T^* = \begin{pmatrix} 0 & 1 & & & & \\ & 0 & 1 & & & & \\ & & 0 & 1 & & & \\ & & & 0 & 1 & & \\ & & & & \ddots & \ddots \end{pmatrix}$$

$$\{x_n\}_{n=1}^{\infty} \mapsto \{x_2, x_3, \ldots\}$$

 $\lambda I + K, \ \lambda \neq 0$, is a Fredholm operator.
 $f(t) \mapsto \int_0^1 k(s, t) f(t) \ dt$ is a compact operator.

Note: Compact Operators

Generalizations of finite rank operator K

$$\dim R(T) < +\infty$$

Closure of finite rank operator are subsets of compact operators.

Definition: Compact Operators

A linear operator $T: X \to Y$ (X, Y Banach) is called compact (or completely continuous) if it maps bounded sets into relatively compact sets.

Definition: Bounded Subset

 $M \subseteq X$ is bounded if $\exists R > 0$ such that $M \subseteq \{x \in X : ||x|| \le R\}$.

Definition: Relatively Compact Set

 $N \subseteq Y$ is relatively compact (pre-compact) if the norm closure of N is compact.

Lemma:

For a metric space X and a set M, the following are equivalent

- 1. *M* is relatively compact.
- 2. Each sequence $\{x_n\}$, $x_n \in M$ has a convergent subsequence $x_{n_k} \to x \in X$.
- 3. Each infinite subset $S \subseteq M$ has an accumulation point in X (i.e. $LS(S) \neq \emptyset$).
- 4. (Totally Bounded) $\forall \varepsilon > 0$, there exist finitely many $x_1, \dots, x_N \in X$ such that

$$M\subseteq\bigcup_{i=1}^N B_{\varepsilon}(x_i)$$

Requiring closure and total boundedness makes a pre-compact set compact.

Remark:

Every subset of a relatively compact set is relatively compact. A relatively compact set is bounded.

Proposition:

- 1. Each compact operator $T: X \to Y$ is bounded.
- 2. *T* is compact as an operator if and only if $\{Tx: ||x|| \le 1\}$ is relatively comapct.

Proof of A

For $B = \{x \in X : ||x|| \le 1\}$, T(B) is bounded in Y. That is, $T(B) \subseteq B_R(0)$ for some R > 0. So $||Tx|| \le R$, $\forall x$ with $||x|| \le 1$. Then

$$\left| \left| T \frac{x}{||x||} \right| \right| \le R \iff ||Tx|| \le R \cdot ||x||, \quad \forall x$$

Proof of B

 (\Longrightarrow) Trivial.

 $(\longleftarrow) M \text{ bounded, } M \subseteq \overline{B_R(0)}.$

$$T(M) \subseteq T(\overline{B_R(0)}) = R \cdot \underbrace{T(\overline{B_1(0)})}_{\text{relatively compact}}$$

and the subset of a relatively compact set is also relatively compact.

Theorem:

The set of all compact operators in L(X,Y) is a closed linear subspace. The product of a bounded operator and a compact operator is also compact.

Proof

If T is compact, then $\lambda \cdot T$ is compact.

If T_1 and T_2 are compact, then T_1+T_2 is compact. We want to show that

$$\{T_1x + T_2x : x \in X, ||x|| \le 1\}$$

is relatively comapct. Take $y_n = (T_1 + T_2)(x_n), ||x_n|| \le 1$. By assumption, $\{T_1x_n\}$ has a convergent subsequence. $T_1x_{n_k} \to y_1$.

Similarly, $\{T_2x_{n_k}\}$ has a convergent subsequence. $T_2x_{n_{k_l}} \to y_2$.

So
$$y_{n_{k_l}} = T_1 x_{n_{k_l}} + T_2 x_{n_{k_l}} \rightarrow y_1 + y_2$$
.