Chapter 7 Linear Discriminant Function

Definition

$$g_i: \mathbf{R}^d o \mathbf{R} \quad (1 \le i \le c)$$

- Useful way to represent classifiers
- One function per category

Decide
$$\omega_i$$
 if $g_i(\mathbf{x}) > g_j(\mathbf{x})$ for all $j \neq i$

Minimum Risk

$$g_i(\mathbf{x}) = -R(\alpha_i \mid \mathbf{x}) \quad (1 \le i \le c)$$

• Minimum

$$g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x}) \quad (1 \le i \le c)$$

Decision region

$$egin{aligned} \mathcal{R}_i = & \left\{ \mathbf{x} \mid \mathbf{x} \in \mathbf{R}^d : g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad orall j
eq i
ight\} \ & ext{where } \mathcal{R}_i \cap \mathcal{R}_j = \emptyset (i
eq j) ext{ and } igcup_{i=1}^c \mathcal{R}_i = \mathbf{R}^d \end{aligned}$$

Decision boundary

surface in feature space where ties occur among several largest discriminant functions

Linear Discriminant Functions

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

- \mathbf{w}_i : weight vector which is d-dimensional
- $w_i 0$: bias/threshold

e.g.

$$egin{array}{lll} \mathbf{x} &= (x_1, x_2, x_3)^t & d = 3, c = 3 \ g_1(\mathbf{x}) &= x_1 - 2x_2 + 4x_3 & \mathbf{w}_1 &= (1, -2, 4)^t, w_{10} &= 0 \ g_2(\mathbf{x}) &= x_1 + 3x_3 + 4 & \mathbf{w}_2 &= (1, 0, 3)^t, w_{20} &= 4 \ g_3(\mathbf{x}) &= -2 & \mathbf{w}_3 &= (0, 0, 0)^t, w_{30} &= -2 \end{array}$$

Generalized Linear Discriminant Function

Quadratic discriminant function (二次判别函数)

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j$$

Polynomial discriminant function (多项式判别函数)

• e.g. 3rd-order polynomial

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j + \sum_{i=1}^d \sum_{j=1}^d \sum_{k=1}^d w_{ijk} x_i x_j x_k$$

Nesting version

$$g(\mathbf{x}) = \sum_{i=1}^{\hat{d}} a_i y_i(\mathbf{x}) \Leftrightarrow g(\mathbf{x}) = \mathbf{a}^t \mathbf{y}$$

- **a**: the \hat{d} -dimensional weight vector $(a_1, a_2, \ldots, a_{\hat{d}})^t$
- \mathbf{y} : the \hat{d} -dimensional transformed feature vector $(y_1(\mathbf{x}), y_2(\mathbf{x}), \dots, y_{\hat{d}}(\mathbf{x}))^t$, where $y_i(\mathbf{x})$ can be viewed as as feature detecting subsystem
- The resulting discriminant function q(x) may not be linear in x, but it is linear in y.

An example (quadratic in $x \rightarrow$ linear in y)

$$g(\mathbf{x}) = a_1 + a_2 x + a_3 x^2$$

$$\mathbf{a} = (a_1, a_2, a_3)^t$$

$$\mathbf{y} = \begin{pmatrix} y_1(\mathbf{x}) \\ y_2(\mathbf{x}) \\ y_3(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix}$$

$$g(\mathbf{x}) = \mathbf{a}^t \mathbf{y}$$

$$\mathbf{a} = (-1, 1, 2)^t$$

Augmentation Representation

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i = w_0 + \mathbf{w}^t \mathbf{x} \Leftrightarrow g(\mathbf{x}) = \mathbf{a}^t \mathbf{y}$$

where the augmented weight vector a

$$\mathbf{a} = egin{pmatrix} w_0 \ w_1 \ dots \ w_d \end{pmatrix} = egin{pmatrix} w_0 \ \mathbf{w} \end{pmatrix}$$

the augmented feature vector ${f y}$

$$\mathbf{y} = egin{pmatrix} 1 \ x_1 \ dots \ x_d \end{pmatrix} = egin{pmatrix} 1 \ \mathbf{x} \end{pmatrix}$$

The Two-Category Case

Training set

$$\mathcal{D} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n\} \quad \left(\mathbf{y}_i \in \mathbf{R}^{d+1}, \Omega = \{\omega_1, \omega_2\}
ight)$$

The task is determine the (augmented) weight vector $\mathbf{a} \in \mathbf{R}^{d+1}$ where $g(\mathbf{x}) = \mathbf{a}^t \mathbf{y}$ can classify all training samples in \mathcal{D} correctly, which is

$$\mathbf{a}^t \mathbf{y}_i > 0 \text{ if } \mathbf{y}_i \text{ is labeled } \omega_1$$

 $\mathbf{a}^t \mathbf{y}_i < 0 \text{ if } \mathbf{y}_i \text{ is labeled } \omega_2$

Simplified treatment: "normalization", i.e. replace \mathbf{y}_i with $-\mathbf{y}_i$ if it is labeled ω_2 , that is

$$\mathbf{a}^t \mathbf{y}_i > 0$$
 for all (normalized) \mathbf{y}

a should be on the positive side of the hyperplane defined by $\mathbf{a}^t\mathbf{y}_i=0$ with \mathbf{y}_i being the norm vector

the **Solution Region** is the intersection of n half-spaces yielded by the n training samples,

Gradient Descent

Minimize a criterion/objective function (准则函数) $J(\mathbf{a})$ based on the normalized training samples $\{\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_n\}$ using Gradient Descent

Basic strategy

$$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) - \eta \cdot \nabla f(\mathbf{x})^t \cdot \nabla f(\mathbf{x}) + O\left(\Delta \mathbf{x}^t \cdot \Delta \mathbf{x}\right)$$

 $\mathbf{a}(k+1) = \mathbf{a}(k) - \eta(k) \nabla J(\mathbf{a}(k))$

1. **begin initialize** a, threshold θ , $\eta(\cdot)$, $k \leftarrow 0$

2. **do**
$$k \leftarrow k+1$$

3.
$$\mathbf{a} \leftarrow \mathbf{a} - \eta(k) \nabla J(\mathbf{a})$$

4. **until**
$$\|\eta(k)\nabla J(\mathbf{a})\| < \theta$$

5. <u>return</u> a

Basic Gradient

Descent

6. <u>end</u>

• Newton's Algorithm

$$egin{aligned} J(\mathbf{a}) &\simeq J(\mathbf{a}(k)) +
abla J^t(\mathbf{a} - \mathbf{a}(k)) + rac{1}{2}(\mathbf{a} - \mathbf{a}(k))^t \mathbf{H}(\mathbf{a} - \mathbf{a}(k)) \ \mathbf{a}(k+1) &= \mathbf{a}(k) - \mathbf{H}^{-1}
abla J \end{aligned}$$

1. **begin initialize a**, threshold θ

- 2. **do**
- 3. $\mathbf{a} \leftarrow \mathbf{a} \mathbf{H}^{-1} \nabla J(\mathbf{a})$
- 4. $\underline{\mathbf{until}} \| \mathbf{H}^{-1} \nabla J(\mathbf{a}) \| < \theta$
- 5. <u>return</u> a
- 6. **end**
- Advantage: better step size than simple gradient descent
- Disadvantage: $O\left(d^3\right)$ complexity for matrix inversion; even not applicable if $m{H}$ is singular

Perceptron Criterion Function

Given the **normalized** training samples $\{\mathbf y_1, \mathbf y_2, \dots, \mathbf y_n\}$, set the criterion function $J(\mathbf a)$ as the **number of examples misclassified by** a

$$J(\mathbf{a}) = \sum_{i=1}^n 1_{\mathbf{a}^t \mathbf{y}_i \leq 0}$$

which is a Piecewise constant function (分段常数函数)

Drawback

- Not compatible with the gradient descent procedure for function minimization
 - The gradient is almost 0 (except on the boundary of piecewise region)

A better choice

Define

$$\mathcal{Y} = \left\{ \mathbf{y}_i \mid \mathbf{a}^t \mathbf{y}_i \leq 0, 1 \leq i \leq n
ight\}$$

which is the set of samples misclassified by $oldsymbol{a}$

then define criterion function as

$$J_p(\mathbf{a}) = \sum_{\mathbf{y} \in \mathcal{Y}} \left(-\mathbf{a}^t \mathbf{y}
ight)$$

• The gradient

$$abla J_p = \sum_{\mathbf{y} \in \mathcal{Y}} (-\mathbf{y})$$

• The iterative update rule

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_k} \mathbf{y}$$

where \mathcal{Y}_k is the set of samples misclassified by $\mathbf{a}(k)$

Batch Perception Algorithm

- The next weight vector is obtained by adding some multiple of the sum of the misclassified samples to the present weight vector
- Update (correct) a based on a **set** of misclassified samples

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_k} \mathbf{y}$$

1. **begin initialize** a, threshold θ , $\eta(\cdot)$, $k \leftarrow 0$

2. **do**
$$k \leftarrow k+1$$

3.
$$\mathcal{Y}_k = \{ \mathbf{y}_i \mid \mathbf{a}^t \mathbf{y}_i \le 0, 1 \le i \le n \}$$

4.
$$\mathbf{a} \leftarrow \mathbf{a} + \eta(k) \sum_{\mathbf{y} \in \mathcal{V}_k} \mathbf{y}$$

5.
$$\underline{\mathbf{until}} \| \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_k} \mathbf{y} \| < \theta$$

- 6. <u>return</u> a
- 7. **end**

Batch Perceptron

Single-Sample Correction

- Update (correct) a sequentially whenever it misclassifies a **single sample**
- Consider all training examples cyclically
- mark the misclassified samples in sequence

Fixed Increment

Setting learning rate $\eta(k)=1$

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \mathbf{y}^k$$

- 1. <u>begin initialize</u> a, $j \leftarrow 0, k \leftarrow 0$
- 2. **do** $j \leftarrow j + 1$
- 3. $i = ((j-1) \mod n) + 1$
- 4. $\underline{\mathbf{if}} \mathbf{y}_i$ is misclassified by \mathbf{a}
- 5. **then** $k \leftarrow k+1$; $\mathbf{y}^k = \mathbf{y}_i$; $\mathbf{a} \leftarrow \mathbf{a} + \mathbf{y}^k$
- 6. **until** k is kept unchanged for n consecutive rounds
- 7. <u>return</u> a

Fixed-Increment

Single-Sample Perceptron

8. **end**

We can prove the fact that

- If all training samples are linearly separable
- then the single-sample perception converges to a solution vector

Variable Increment

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \mathbf{y}^k$$

```
1. <u>begin initialize</u> a, margin b, \eta(\cdot), j \leftarrow 0, k \leftarrow 0
2. <u>do</u> j \leftarrow j + 1
```

3.
$$i = ((j-1) \mod n) + 1$$

4.
$$\underline{\mathbf{if}} \ \mathbf{a}^t \mathbf{y}_i \le b$$

5. **then**
$$k \leftarrow k+1$$
; $\mathbf{y}^k = \mathbf{y}_i$; $\mathbf{a} \leftarrow \mathbf{a} + \eta(k)\mathbf{y}^k$

6. **until**
$$k$$
 is kept unchanged for n consecutive rounds

Variable-Increment Perceptron with Margin

8. **end**

where we required $\eta(k)$ that

$$\begin{split} & \eta(k) \geq 0 \\ & \lim_{m \to \infty} \sum_{k=1}^m \eta(k) = \infty \\ & \lim_{m \to \infty} \frac{\sum_{k=1}^m \eta^2(k)}{\left(\sum_{k=1}^m \eta(k)\right)^2} = 0 \end{split}$$

so that it could converges with linearly separable training samples

Other Criterion Functions

Quadratic Form

$$egin{aligned} J_q(\mathbf{a}) &= \sum_{\mathbf{y} \in \mathcal{Y}} \left(\mathbf{a}^t \mathbf{y}
ight)^2 \ \mathcal{Y} &= \left\{ \mathbf{y}_i \mid \mathbf{a}^t \mathbf{y}_i \leq 0, 1 \leq i \leq n
ight\} \
abla J_q &= 2 \sum_{y \in \mathcal{Y}} \left(\mathbf{a}^t \mathbf{y}
ight) \mathbf{y} \end{aligned}$$

Distance Form

$$egin{aligned} J_r(\mathbf{a}) &= rac{1}{2} \sum_{\mathbf{y} \in \mathcal{Y}} rac{\left(\mathbf{a}^t \mathbf{y} - b
ight)^2}{\|\mathbf{y}\|^2} \ \mathcal{Y} &= \{\mathbf{y}_i \mid \mathbf{a}^t \mathbf{y}_i \leq 0, 1 \leq i \leq n\} \
abla J_r &= \sum_{\mathbf{y} \in \mathcal{Y}} rac{\mathbf{a}^t \mathbf{y} - b}{\|\mathbf{y}\|^2} \mathbf{y} \end{aligned}$$

Minimum Squared Error (MSE)

$$\mathbf{a}^t\mathbf{y}_i=b_i$$

where

- b_i is some **arbitrarily** chosen **positive** constant
- updating for all samples

In other words, we need to solve

$$Ya = b$$

where

- \mathbf{Y} is a n imes (d+1) matrix
- ${f a}$ is a d+1 dimensional weight vector
- \mathbf{b} is a n dimensional column vector

Usually $n \geq d+1$, which means there is no exact solution for ${f a}$

Sum-of-squared-error criterion function

$$J_s(\mathbf{a}) = \|\mathbf{Y}\mathbf{a} - \mathbf{b}\|^2 = \sum_{i=1}^n \left(\mathbf{a}^t\mathbf{y}_i - b_i
ight)^2$$

$$abla J_s = \sum_{i=1}^n 2\left(\mathbf{a}^t\mathbf{y}_i - b_i
ight)\mathbf{y}_i = 2\mathbf{Y}^t(\mathbf{Y}\mathbf{a} - \mathbf{b})$$

Let $abla J_s = 0$, we have

$$\mathbf{a} = \left(\mathbf{Y}^t \mathbf{Y}\right)^{-1} \mathbf{Y}^t \mathbf{b} = \mathbf{Y}^\dagger \mathbf{b}$$

The Widrow-Hoff rule or LMS (least-mean-squared) rule

For Batch mode

$$\mathbf{a}(k+1) = \mathbf{a}(k) - \eta(k)\mathbf{Y}^t(\mathbf{Y}\mathbf{a}(k) - \mathbf{b})$$

For Single-sample mode

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \left(b_k - \mathbf{a}^t(k)\mathbf{y}^k\right)\mathbf{y}^k$$

Algorithm

- 1. **begin initialize a**, **b**, threshold θ , $\eta(\cdot)$, $k \leftarrow 0$
- 2. **do** $k \leftarrow k+1$

3.
$$i = ((k-1) \mod n) + 1$$

4.
$$\mathbf{y}^k \leftarrow \mathbf{y}_i; \ b_k \leftarrow b_i; \ \mathbf{a} \leftarrow \mathbf{a} + \eta(k)(b_k - \mathbf{a}^t \mathbf{y}^k) \mathbf{y}^k$$

5. **until**
$$\|\eta(k)(b_k - \mathbf{a}^t \mathbf{y}^k)\mathbf{y}^k\| < \theta$$

6. <u>return</u> a

LMS

7. **end**

(least-mean-squared)

- ullet A common choice of $\eta(k)$ for LMS: $\eta(k)=rac{1}{k}$
- The LMS solution minimizes the sum of squared errors
 - o i.e. the (squared) distance of the training samples to the decision hyperplane
 - LMS solution may not be a separating hyperplane

Multi-Category Generalization

$$\mathcal{D} = \left\{ \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n
ight\} \left(\mathbf{y}_k \in \mathbf{R}^{d+1}, \Omega = \left\{ \omega_1, \dots, \omega_c
ight\}
ight)$$

Task

Determine the set of (augmented) weight vectors $\left\{\mathbf{a}_i \in \mathbf{R}^{d+1} \mid 1 \leq i \leq c
ight\}$ where $g_i(\mathbf{x}) = \mathbf{a}_i^t \mathbf{y} (1 \leq i \leq c)$ can classify all training samples in $\mathcal D$ correctly if $\mathbf{y}_k (1 \leq k \leq n)$ is labeled ω_i

$$orall j
eq i: \mathbf{a}_i^t \mathbf{y}_k > \mathbf{a}_j^t \mathbf{y}_k$$

Keslar's Construction

Transform the **multi-category** classification problem into the **binary** classification problem

binary classification model: c(d+1)-dimensional weight vector

$$\hat{\boldsymbol{\alpha}} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_c \end{bmatrix} \quad \text{if } \mathbf{y}_k \ (1 \le k \le n) \text{ is labeled } \omega_i$$

$$\hat{\boldsymbol{\alpha}} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_c \end{bmatrix} \quad \boldsymbol{\eta}_{i1}^k = \begin{bmatrix} -\mathbf{y}_k \\ \vdots \\ \mathbf{y}_k \\ \vdots \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} \quad \boldsymbol{\eta}_{ij}^k = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{y}_k \\ \vdots \\ -\mathbf{y}_k \\ \vdots \\ \mathbf{0} \end{bmatrix} \quad \boldsymbol{\eta}_{in}^k = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{y}_k \\ \vdots \\ \mathbf{0} \\ \vdots \\ -\mathbf{y}_k \end{bmatrix}$$

binary (normalized) training set: n(c-1) training samples each being c(d+1)-dimensional