Chapitre 1 - Feuille d'exercices n°3 : opérations sur les vecteurs

Exercice 1:

Dans chacun des cas suivants, donner le résultat de la somme des vecteurs sous la forme d'un seul vecteur :

$$\Rightarrow \overrightarrow{AE} + \overrightarrow{EG}$$
;

$$\diamond -\overrightarrow{RS} + \overrightarrow{RT};$$

$$\diamond \overrightarrow{CM} - \overrightarrow{CN};$$

$$\Rightarrow \overrightarrow{BF} + \overrightarrow{AB}$$
;

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BA};$$

$$\diamond \overrightarrow{EB} + \overrightarrow{BP} + \overrightarrow{PL}.$$

Exercice 2:

Les segments [KL] et [RJ] ont le même milieu I.

Pour chaque proposition, dire si elle est vraie ou fausse ou si on ne peut pas savoir.

$$\diamond RL = KJ$$
;

$$\diamond R$$
 est l'image de L par la translation de vecteur \overrightarrow{KJ} ;

$$\diamond \ \overrightarrow{RL} = \overrightarrow{KJ};$$

$$\diamond \overrightarrow{RK} + \overrightarrow{JI} = \overrightarrow{IK};$$

$$\diamond RJ = KL;$$

$$\diamond \ \overrightarrow{RI} = \frac{1}{2}\overrightarrow{KL};$$

$$\diamond \overrightarrow{LJ} = \overrightarrow{KR};$$

$$\diamond \overrightarrow{LK} = -2\overrightarrow{KI}.$$

Exercice 3:

ABCD est un parallélogramme. Calculer :

$$\overrightarrow{CD} + \overrightarrow{AB} + \overrightarrow{DA} + \overrightarrow{DC}$$

Quelle remarque peut-on faire?

Exercice 4:

On donne la figure ci-dessous :

- 1. Construire le point D tel que $\overrightarrow{CD} = \overrightarrow{AB}$.
- 2. Justifier que $\overrightarrow{CA} = \overrightarrow{DB}$.
- 3. Construire le point E tel que ABCE soit un parallélogramme.
- 4. Que dire des points C, D et E. Justifier.
- 5. F est l'image de A par la translation de vecteur \overrightarrow{CB} . Justifier que $\overrightarrow{AC} = \overrightarrow{FB}$.

Exercice 5: Vrai ou faux?

Pour chaque proposition, dire si elle est vraie ou fausse.

- 1. Si QFKG est un parallélogramme, alors G est l'image de Q par la translation de vecteur \overrightarrow{KF} .
- 2. Si $\overrightarrow{CH} = \overrightarrow{RA}$, alors le quadrilatère CHRA est un parallélogramme.
- 3. Si S est l'image de B par la translation de vecteur \overrightarrow{NG} , alors $\overrightarrow{NB} = \overrightarrow{GS}$.
- 4. Si $\overrightarrow{KM} = \overrightarrow{MD}$, alors M est le milieu du segment [KD].
- 5. Si P a pour image T par la translation de vecteur \overrightarrow{XW} , alors WPTX est un parallélogramme.
- 6. Si C a pour image D par la translation qui transforme A en B, alors [AD] et [BC] ont le même milieu.

Exercice 6:

ABCD est un rectangle. I est le milieu de [AB] et E est le symétrique de I par rapport à B.

- 1. Placer le point F tel que $\overrightarrow{AF} = 3\overrightarrow{AD}$.
- 2. Que peut-on dire des points C, E et F? Le démontrer.

Exercice 7:

ABCD est un parallélogramme. Les points K et L sont tels que $\overrightarrow{BK} = -\frac{1}{2}\overrightarrow{BA}$ et $\overrightarrow{AL} = 3\overrightarrow{AD}$.

- 1. Réaliser une figure.
- 2. Que dire des points K, C et L? Le démontrer.

Exercice 8:

ABC est un triangle quelconque.

- 1. Construire le point D tel que $\overrightarrow{CD} = \overrightarrow{CB} 2\overrightarrow{AC}$.
- 2. Démontrer que $\overrightarrow{BD} = 2\overrightarrow{CA}$.
- 3. Que peut-on en déduire?

Exercice 9:

Soit ABCD un quadrilatère et M et N les points définis par $\overrightarrow{BM} = \frac{1}{2}\overrightarrow{AB}$ et $\overrightarrow{AN} = 3\overrightarrow{AD}$.

- 1. Démontrer que :
 - $a. \ \overrightarrow{CM} = \frac{1}{2}\overrightarrow{AB} \overrightarrow{BC};$
 - b. $\overrightarrow{CN} = 2\overrightarrow{AD} \overrightarrow{DC}$.
- 2. En déduire que si ABCD est un parallélogramme, alors les points $C,\,M$ et N sont alignés.

Exercice 10:

Soient MNP et MPC deux triangles équilatéraux.

- 1. Démontrer que $\overrightarrow{MN} = \overrightarrow{CP}$.
- 2. Construire les points D, E et F symétriques respectifs de N, P et C par rapport à M.
- 3. Démontrer que $\overrightarrow{CP} = \overrightarrow{EF}$.
- 4. Compléter les égalités suivantes en n'utilisant que des noms de points présents sur la figure :
 - $a. \overrightarrow{MN} + \overrightarrow{MP} = \dots;$
 - $b. \ \overrightarrow{MN} + \overrightarrow{MC} = \dots;$
 - c. $\overrightarrow{MN} + \overrightarrow{MC} + \overrightarrow{ME} = \dots;$
 - $d. \ \overrightarrow{MC} \overrightarrow{EM} = \dots .$
- 5. Exprimer \overrightarrow{ED} en fonction des vecteurs \overrightarrow{MN} et \overrightarrow{MP} .