

26 fevereiro 2022 Lic. Engenharia Informática

Duração: 2h15min (+ 15 minutos de tolerância)	RECURSO	FSIAI
Nome:	Turma: Nº	
Parte teórica (5,0val) - Assinale a <u>resposta corre</u> correspondente.	ta, colocando um <u>círculo em tor</u>	no da letra

QUESTÕES de ESCOLHA MULTIPLA

Parte Prática na página seguinte

Parte Prática – Responda às questões apresentando os cálculos correspondentes nas questões solicitadas.

P.1 – (3,0val) Duas cargas puntiformes $Q_1 = 1 \mu \text{C}$ e $Q_2 = 4 \mu \text{C}$ estão fixas nos pontos A e B e separadas pela distância d = 30 cm no vácuo. Sendo a constante eletrostática do vácuo

 $k = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$, determine:

- a) (25%) a intensidade da força elétrica entre duas cargas;
- **b**) (35%) a intensidade e o sentido da força resultante sobre uma terceira carga $Q_3 = 2 \mu C$, colocado no ponto médio do segmente que une Q_1 e Q_2 ;
- c) (40%) a posição entre as cargas, em que Q_3 deve ser colocada para ficar em equilíbrio sob a ação de forças elétricas.
- **P.2** (**3,0val**) Suponha U_1 =10V; U_2 =30V; R_1 =10kΩ; R_2 =1kΩ; R_3 =10kΩ; R_4 =100kΩ; R_5 =10kΩ; R_6 =10kΩ. Obtenha:

c) (35%) Suponha que coloca um condensador entre os terminais A e B, de capacidade $2 \mu F$. Quanto tempo demora este a carregar?

- **P.3** (3,0val) Um experimentalista injetou uma partícula negativa num solenóide para observar a sua trajetória, como mostra a figura. Sabendo que o solenóide tem de comprimento, l = 50 cm e possui 500 espiras, sendo depois conectado a uma fonte de corrente com intensidade, i = 20 A. A partícula sente o efeito da gravidade. Calcule:
- a) (30%) A magnitude da resultante das forças, F_R , que atuam sobre a partícula se esta for injetada no solenóide com uma velocidade, v = 6500 m/s, tiver uma carga, q = -3·e, e possuir o dobro da massa do protão ($m_p = 1.673 \times 10^{-27}$ kg).
- **b**) (35%) A magnitude da aceleração, a, da partícula quando esta estiver num ponto da sua trajetória em que $\theta = 20^{\circ}$, como mostra a figura?
- c) (35%) Qual o raio da trajetória no mesmo instante da alinha anterior?

- **P.4** (3,0val) O comprimento de onda de um feixe laser no ar é de 750 nm, e quando passa para uma solução aquosa é de 450 nm ($n_{ar} = 1$). Determine:
- a) (30%) O índice de refração da solução aquosa e a velocidade do feixe nesse meio.
- **b**) (35%) Sabendo que o índice de refração do vidro que contem a solução aquosa é de n_v =1,454, qual o ângulo mínimo de incidência do feixe de forma a não se propagar no interior do vidro.
- c) (35%) A intensidade do feixe laser dentro da solução aquosa é de 0,2 W/m², qual a intensidade do campo elétrico e do campo magnético, na solução aquosa?

- **P.5** (3,0val) Uma caixa, cujas arestas são todas iguais, tem uma área superficial total de 1,25 m², encontra-se pousada no solo, e é usada para manter bebidas frias. As superfícies exteriores da caixa são de plástico com uma espessura de 7,5 mm, e internamente revestidas com esferovite (poliestireno expandido) com uma espessura de 2,5 cm. A caixa está cheia com gelo, água e latas de refrigerante, mantidas a 0 °C.
- O calor de fusão do gelo é de 3.34×10^5 J/kg. A condutividade térmica do plástico é de 0.17 W/(m·K).

A condutividade térmica da esferovite é de 0,04 W/(m·K).

- a) (35%) Qual o fluxo de calor, <u>através das faces expostas ao ar</u>, sabendo que a temperatura exterior se mantém a 300 K?
- **b)** (30%) Qual a temperatura na zona de interface plástico/esferovite?
- c) (35%) Admitindo que só coloca 2,75 Kg de gelo na caixa, durante quanto tempo (em horas), o gelo mantém aquela diferença de temperatura?