

Finite automata with output machines do not have final state/states. Machine generates an output on every input.

Finite Automata with outputs

1) Mealy Machine

It has a 6-typle representation.

M= (Q, E, A, S, 1, 20)

Q: Finite non-empty set of states

Z: Input alphabet

A: Output alphabet

S: QXZ→Q

 $\lambda: \ \mathbb{Q} \times \Sigma \longrightarrow \Delta$

90: Initial State

Output depends on the present state & present input L) Moore Machine

 $M = (Q \Sigma, \Delta, \delta, \lambda, 20)$

Q: Z:

Δ:

90:

output depends only on the present state.

Example of a Mealy Machine

- le alati		New S	tete	
present state	State -	Output	stati	1 Output
$\rightarrow q_1$	93	0	22	0
92	91	1	24	O
23	22	1	21	1_
24	ዒጘ	1	9.3	0_

Let
$$w=0111$$

 $\rightarrow q_1 \xrightarrow{9/8} q_3 \xrightarrow{1/1} \rightarrow q_1 \xrightarrow{1/0} q_2 \xrightarrow{1/0} q_3$
 $i/4 = 0111$
 $9/9 = 0106$
 $y=0100$
 $y=0111$
 $y=0111$

Machine

present	Nen	t state	Output
State	Ó	1_	•
→9° .	9,3	91	0
91	21	92	1
92	22	9 .3	0
23	93	20	O .

Of Design a Mealy made and Moore machine to find 1's complement.

Adronal

Mealy Machine

 $\frac{1001}{90.000} = \frac{1}{100} = \frac{1}{1000} =$

Moore Machine (Another way)

$$1001$$

$$1001$$

$$1001$$

$$1001$$

$$1001$$

$$1001$$

$$1001$$

$$1001$$

$$1001$$

$$1001$$

$$1001$$

The approach goes as follows:

Start from right to left.

Ignore all 0's.

When 1 comes ignore it and then take 1's complement of every digit

Moore Machine

Mealy Machine

Design a Moore & Meely machene Q1) Fand thato Count the number of occurrences of 10 in a binary string.

yp 000110010100 9r 00001001010

i/r
000119910100100

Design a Moore machine for a binary input sequence such that if it has a substring 101, the machine output A, if the input has substring 110, it outputs B otherwise it outputs C.

2. Design a moore machine to count occurance of "ab" as substring.

Fig. 2.39 Moore M/c to count occurances of ab

3. Construct a moore machine that takes set of all strings over {0, 1} and produces 'A' if i/p ends witg '10' or produces 'B' if i/p ends with '11' otherwise produces 'C'.

Moore Machine mod 3

Mealy Machine mod 3

Of Convert the following Moore Machine to an equivalent Medy machine.

			V
present state	Nent State		Output
	O,	1-	
\rightarrow 9.0	93	21	0
21	21	22	1
9,2	92	23	<u> </u>
9,3	23	3 90	0

define The corresponding Mealy machine is

Provent State		Output	Newt	state	1	output	
<u>→</u> %	Stau.	70000			state	1	
9.1	<i>اب</i> ارا	1			٦1 ك	0	
2 2	q,1	Ø			93	Ö	
J.5	OLS.	0			9.0	D	

Present State	= Nent 9	5. Ste	output
	0	1	001601
<u>-</u> >21	91	92	O
92	21	93	0
o ₃	21	9 3	1

Ans The corresponding Mealy machine is

Next State

		NUM	24-000			
Present state	٥		_	1		
	State	output		state	output	
—————————————————————————————————————	91	0		92	O	
9,2	21	٥		923	1.	
237	U	Ö		23	1	

they are identical. We can remove one of them.

Convert the following Meany machine into its equivalent moone Machine

Present state

Then the state of the s

Here 22 × 24 are associated with moltiple outputs. Here, these states need to be partitioned. Therefore the updated transition table Mealy machine is the Nest State Present state state 0/p State 0/p O , 93 220 $\rightarrow q_1$,°91 240 0 920 21 921 240 921 941 91 93 23 940 O 241 93 Ò 241

The transition table	of the result	tant Moore	machin is
Present State	HIN	- Halt	output
fruschi 31 2000	0	1	001601
-) 91	9 ₋₃	920	1
220	21	240	O
922	91	240	1_
9.3	921	91	0
240	942	43	O
241	241	23	1

Here, the output of the initial state is 1, which needs to be 0. Therefore, the first moore machine is:

PTO

	N.	ent state	O utpu J
present	\mathcal{O}	1	0 0 7 0 7
→9°	9,3	220	0_
21	93	920	1_
920	21	940	O
221	21	240	1
93	921	21	0
240	941	93	O
241	241	23	1

Of Convert the following Mealy machine into an equivalent Moore machine:

Ans (10/0) b (12/1) a (10/1) b (01/1) a (10/1)

Mealy - Moore

If Mealy machine with has

n status and m outputs, then

the rendered machines with have machines

in the worst case the resultant place machine will have have men states.

NOTE*: 100 mxn+1 states are also possible

if an extra initial state is added with

output E.

Moore - Marly

Moone Machine has
n states, then
the resultant Mary
Mealy machine will
have at most