2019CCF 非专业级别软件能力认证第一轮

(CSP-J) 入门级 C++语言试题 A 卷

认证时间: 2019 年 10 月 19 日 14:30~16:30

考:	生	注	音	重	而	
/4	$\overline{}$	√ T	A	#	ואוע	•

•	试题纸共有9页,	答题纸共有1页,	满分 100 分。	请在答题纸上作答,	当
	在试题纸上的一律	圭无效 。			

- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍 资料。 一、单项选择题(共 15 题, 每题 2 分, 共计 30 分; 每题有且仅有一个正确选 项) 1. 中国的国家顶级域名是() A. . cn B. . ch C. . chn D. . china 2. 二进制数 11 1011 1001 0111 和 01 0110 1110 1011 进行逻辑与运算的结果 是()。 A. 01 0010 1000 1011 B. 01 0010 1001 0011 C. 01 0010 1000 0001 D. 01 0010 1000 0011 3. 一个 32 位整型变量占用() 个字节。 C. 4 D. 8 A. 32 B. 128 4. 若有如下程序段,其中 s、a、b、c 均已定义为整型变量,且 a、c 均已赋值(c 大于 0) s = a: for $(b = 1: b \le c: b++) s = s - 1:$ 则与上述程序段功能等价的赋值语句是() A. s = a - c; B. s = a - b; C. s = s - c; D. s = b - c; 5. 设有 100 个已排好序的数据元素,采用折半查找时,最大比较次数为() B. 10 C. 6 D. 8 6. 链表不具有的特点是() A. 插入删除不需要移动元素 B. 不必事先估计存储空间 C. 所需空间与线性表长度成正比 D. 可随机访问任一元素
- 少种不同的分法? ()提示:如果8个球都放在一个袋子里,无论是哪个袋子,都只算同一种分法
 A. 22 B. 24 C. 18 D. 20

7. 把8个同样的球放在5个同样的袋子里,允许有的袋子空着不放,问共有多

CCF CSP-J 2019 第一轮 C++语言试题 A 卷 第1页,共9页

8.	数组元 某结点	元素存储该二叉标 底的下标为 i ,	对中! 则其	告采用顺序存储统的结点(根结点 方孩子位于下标	的下。 2i 如	标为1, 若 ○		
	A. A.	6 6		数组的最大下标 10	、主少 C.		D.	12
9.	100 以 A.	内最大的素数是 89	를 (B.) 。 97	С.	91	D.	93
10.	319 和 A.	377 的最大公约 27	为数是 B.		С.	29	D.	31
11.	每次连 5 公里 时 公里步 公里步	該跑3公里可可以消耗600 →,周五到周日否则会损伤膝	以千 能 盖 多	巴, 健身教练给小耗 300 千卡(耗 耗 300 千卡(耗 (耗时 1 小时) 出一小时跑步。 请问如果小胖想 过跑步消耗多少 2500	时。另严千	小时);方案二胖每周周一到局,教练建议小朋执行教练的训练?()	二: 每 哥四 章 每 局	手次连续跑 ^{比抽出半小} 最多跑 21
12.		直机抽取 13 张绰	氏牌.	张牌,四种花色 ,则至少() 2		的花色一致。	假设.	
13.	9,9 章 位数也 由 5 位	顾倒过来看还是 2可以颠倒过来	6, 看,「 一位 的车」	,例如 0、1、8 其他数字颠倒过 比如 106 颠倒过 都可以取 0 到 9 牌? () 125	来都 t来是)。请	不构成数字。 : 901。假设某 [/]	类似的 个城市 多有多	的,一些多 5的车牌只
14.	则其前	 方序遍历序列为	(
15.	以下哪	『个奖项是计算	<u></u> 乳科	ABDEGHJCFI 学领域的最高奖 鲁班奖	? ()		ABDEGHJFIC 普利策奖
		-						

二、阅读程序(程序输入不超过数组或字符串定义的范围:判断题正确填√, 错误填×;除特殊说明外,判断题 1.5分,选择题 3分,共计 40分)

1 #include <cstdio> 2 #include <cstring> 3 using namespace std;

4 char st[100]; 5 int main() {

6 scanf("%s", st); 7 int n = strlen(st); 8 for (int i = 1; i <= n; ++i) {

if (n % i == 0) { 9 10 char c = st[i - 1];

if (c >= 'a') 11 st[i - 1] = c - 'a' + 'A';12

13 } 14

15 printf("%s", st);

return 0; 16 17 }

判断题

- 1) 输入的字符串只能由小写字母或大写字母组成。()
- 2) 若将第 8 行的 "i = 1" 改为 "i = 0",程序运行时会发生错误。 ()
- 3) 若将第8行的 "i <= n" 改为 "i * i <= n",程序运行结果不会改 变。()
- 4) 若输入的字符串全部由大写字母组成,那么输出的字符串就跟输入的字 符串一样。()

选择题

5) 若输入的字符串长度为18,那么输入的字符串跟输出的字符串相比, 至多有())个字符不同。

A. 18

В. 6

C. 10 D. 1

6) 若输入的字符串长度为(),那么输入的字符串跟输出的字符串相 比,至多有36个字符不同。

A. 36

В. 100000

C. 1 D. 128

2.

```
1 #include <cstdio>
2 using namespace std;
3 int n, m;
  int a[100], b[100];
5
6 int main() {
7
    scanf("%d%d", &n, &m);
8
    for (int i = 1; i <= n; ++i)
9
      a[i] = b[i] = 0;
    for (int i = 1; i <= m; ++i) {
10
11
      int x, y;
12
      scanf("%d%d", &x, &y);
13
      if (a[x] < y \&\& b[y] < x) {
        if (a[x] > 0)
14
15
          b[a[x]] = 0;
16
        if (b[y] > 0)
17
          a[b[y]] = 0;
18
        a[x] = y;
19
        b[y] = x;
20
      }
21
    }
22
    int ans = 0;
23
    for (int i = 1; i <= n; ++i) {
24
      if (a[i] == 0)
25
        ++ans;
26
      if (b[i] == 0)
27
        ++ans;
28
    }
29
    printf("%d\n", ans);
    return 0;
30
31 }
```

假设输入的 n 和 m 都是正整数, x 和 y 都是在[1, n]的范围内的整数, 完成下面的判断题和单选题:

● 判断题

- 1) 当 m>0 时,输出的值一定小于 2n。()
- 2) 执行完第 27 行的 "++ans"时, ans 一定是偶数。()
- 3) a[i]和 b[i]不可能同时大于 0。()

4) 若程序执行到第 13 行时, x 总是小于 y, 那么第 15 行不会被执行。
()

● 选择题

- 5) 若 m 个 x 两两不同,且 m 个 y 两两不同,则输出的值为 () A. 2n-2m B. 2n+2 C. 2n-2 D. 2n
- **6)** 若 m 个 x 两两不同,且 m 个 y 都相等,则输出的值为() A. 2n-2 B. 2n C. 2m D. 2n-2m

```
3.
   1 #include <iostream>
   2 using namespace std;
   3 const int maxn = 10000;
   4 int n;
   5 int a[maxn];
   6 int b[maxn];
     int f(int 1, int r, int depth) {
   8
       if (1 > r)
   9
         return 0;
       int min = maxn, mink;
   10
   11
       for (int i = 1; i <= r; ++i) {
   12
         if (min > a[i]) {
   13
           min = a[i];
   14
           mink = i;
   15
        }
   16
        }
   17
        int lres = f(1, mink - 1, depth + 1);
        int rres = f(mink + 1, r, depth + 1);
   18
        return lres + rres + depth * b[mink];
   19
   20 }
   21 int main() {
   22
       cin >> n;
   23
       for (int i = 0; i < n; ++i)
   24
        cin >> a[i];
   25
       for (int i = 0; i < n; ++i)
   26
        cin >> b[i];
        cout << f(0, n - 1, 1) << endl;
   27
   28
       return 0;
   29 }
```

● 判断题

1) 如果 a 数组有重复的数字,则程序运行时会发生错误。()

た: ()。 A. 5000	В.	600	C	. 6	D.	100
4) 当 n=100 时,最好 是: ()。						
	В.				D.	
5) 当 n=10 时, 若 b 输出最大为()		l满足,对任意	$0 \leq i$	i < n,都有 $b[i]$	= i +	- 1,那么
A. 386	В.	383	С.	384	D.	385
6) (4分)当 n=100 1,那么输出最小			2,对	什任意 $0 \le i < n$,	都有	$\vec{b}[i] =$
A. 582			С.	579	D.	581
、完善程序(单选题, (矩阵变幻)有一个成矩阵[0 0], 数字: 次后, 矩阵会 初为: 例如,矩阵最初为: [0 0 0 1 0 1 0 1 1 0]。 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1	奇幻 1变成 么样 [0];	的矩阵,在不 ^找 矩阵 $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ 。 ? 矩阵变幻 1 次 勺正整数 n。输	停 最初 后 出 如 (11	变幻,其变幻方式 该矩阵只有一个 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$; 矩阵变然 3×1 公 n 次后的矩阵 3×1 3×1 4×1	元素 幻2; 。 0) ₂ ;	0 ,变幻 r 次后:

3) 当 n=100 时,最坏情况下,与第 12 行的比较运算执行的次数最接近的

2) 如果 b 数组全为 0,则输出为 0。()

● 选择题

制位为0,反之为1。

而 "^"表示二进制异或运算符,它将两个参与运算的数中的每个对应的二进制位一一进行比较,若两个二进制位相同,则运算结果的对应二进

```
1 #include <cstdio>
2 using namespace std;
3 int n;
4 const int max size = 1 << 10;
5
6
  int res[max_size][max_size];
7
8 void recursive(int x, int y, int n, int t) {
9
    if (n == 0) {
10
      res[x][y] = 1;
11
      return;
12
    }
13
    int step = 1 << (n - 1);
   recursive(2, n - 1, t);
    recursive(x, y + step, n - 1, t);
15
    recursive(x + step, y, n - 1, t);
17
    recursive((3), n - 1, !t);
18 }
19
20 int main() {
    scanf("%d", &n);
22
    recursive(0, 0, 4);
23
    int size = 5;
24
    for (int i = 0; i < size; ++i) {
25
      for (int j = 0; j < size; ++j)
       printf("%d", res[i][j]);
26
27
      puts("");
28
    }
29
    return 0;
30 }
1) ①处应填( )
A. n % 2
                             C. t D. 1
            В. 0
2) ②处应填()
 A. x - step, y - step
                            B. x, y - step
 C. x - step, y
                             D. x, y
3) ③处应填()
 A. x - step, y - step
                           B. x + step, y + step
 C. x - step, y
                             D. x, y - step
4) ④处应填()
```

```
A. n - 1, n % 2
C. n, n % 2
D. n - 1, 0

5) ⑤处应填()
A. 1 << (n + 1)
C. n + 1
B. 1 << n
D. 1 << (n - 1)
```

2. (计数排序) 计数排序是一个广泛使用的排序方法。下面的程序使用双关键字计数排序,将 n 对 10000 以内的整数,从小到大排序。

例如有三对整数(3,4)、(2,4)、(3,3),那么排序之后应该是(2,4)、(3,3)、(3,4)。

输入第一行为 n,接下来 n 行,第 i 行有两个数 a[i]和 b[i],分别表示第 i 对整数的第一关键字和第二关键字。

从小到大排序后输出。

数据范围 $1 \le n \le 10^7, 1 \le a[i], b[i] \le 10^4$ 。

提示: 应先对第二关键字排序,再对第一关键字排序。数组 ord[]存储第二关键字排序的结果,数组 res[]存储双关键字排序的结果。 试补全程序。

```
1 #include <cstdio>
2 #include <cstring>
3 using namespace std;
4 const int maxn = 10000000;
5 const int maxs = 10000;
6
7 int n;
8 unsigned a[maxn], b[maxn], res[maxn], ord[maxn];
9 unsigned cnt[maxs + 1];
10
11 int main() {
    scanf("%d", &n);
    for (int i = 0; i < n; ++i)
13
    scanf("%d%d", &a[i], &b[i]);
14
15
    memset(cnt, 0, sizeof(cnt));
    for (int i = 0; i < n; ++i)
16
    ①; // 利用 cnt 数组统计数量
17
    for (int i = 0; i < maxs; ++i)
18
    cnt[i + 1] += cnt[i];
19
20
    for (int i = 0; i < n; ++i)
21
   ②; // 记录初步排序结果
```

```
memset(cnt, 0, sizeof(cnt));
22
    for (int i = 0; i < n; ++i)
23
24
    ③; // 利用 cnt 数组统计数量
    for (int i = 0; i < maxs; ++i)
25
26
      cnt[i + 1] += cnt[i];
27
    for (int i = n - 1; i >= 0; --i)
     ④; // 记录最终排序结果
28
29
    for (int i = 0; i < n; ++i)
30
      printf("%d %d\n", ⑤);
31
    return 0;
32 }
1) ①处应填( )
 A. ++cnt[i]
 B. ++cnt[b[i]]
 C. ++cnt[a[i] * maxs + b[i]]
 D. ++cnt[a[i]]
2) ②处应填()
 A. ord[--cnt[a[i]]] = i
 B. ord[--cnt[b[i]]] = a[i]
 C. ord[--cnt[a[i]]] = b[i]
 D. ord[--cnt[b[i]]] = i
3) ③处应填()
 A. ++cnt[b[i]]
 B. ++cnt[a[i] * maxs + b[i]]
 C. ++cnt[a[i]]
 D. ++cnt[i]
4) ④处应填()
 A. res[--cnt[a[ord[i]]]] = ord[i]
 B. res[--cnt[b[ord[i]]]] = ord[i]
 C. res[--cnt[b[i]]] = ord[i]
 D. res[--cnt[a[i]]] = ord[i]
5) ⑤处应填()
 A. a[i], b[i]
 B. a[res[i]], b[res[i]]
 C. a[ord[res[i]]], b[ord[res[i]]]
 D. a[res[ord[i]]], b[res[ord[i]]]
```