Name: Shourya Shrivastava

Roll no.: 0157CS181151

Q1. Design a Moorey machine and mealy machine for mod 3 over the string a & b

Solution:

Mod of 3 means the remainder comes out to be $\{0,1,2\}$ as an output when the binary number is divided by 3.

$$\Sigma = \{a,b\}$$
 o/p= $\{0,1,2\}$

State	transitio	1	ο/p (λ)	
	a	b		
q0	q1	q1	0	
q1	q2	q2	1	
q2	q0	q0	2	

Equivalent equation of mealy machine is the output of moorey machine λ o/p of mealy λ ' o/p for q0 :

$$\lambda'(q0,a) = \lambda(\delta(q0,a))$$
 $= \lambda(q1)$
 $= 1$
 $\lambda'(q0,b) = \lambda(\delta(q0,b))$
 $= \lambda(q1)$
 $= 1$
 $o/p \text{ for } q1:$
 $\lambda'(q1,a) = \lambda(\delta(q1,a))$
 $= \lambda(q2)$
 $= 2$
 $\lambda'(q1,b) = \lambda(\delta(q1,b))$
 $= \lambda(q2)$
 $= 2$
 $o/p \text{ for } q2:$
 $\lambda'(q2,a) = \lambda(\delta(q2,a))$
 $= \lambda(q0)$
 $= 0$
 $\lambda'(q2,b) = \lambda(\delta(q2,b))$
 $= \lambda(q0)$
 $= 0$

