# Лабораторная работа 3.1.1

Измерение магнитного поля Земли

Ромачевский А. Б01–404 МФТИ, Долгопрудный 2025

## Введение

**Цель работы:** определить характеристики шарообразных неодимовых магнитов и, испольщуя составляющие индукции магнитного поля Земли и магнитное наклонение.

Оборудование: 12 одинаковых неодимовыхмагнитных шариков, тонкая нить для изготовления крутильного маятника, медная проволока диаметром (0,5-0,6) мм, электронные весы, сеундомер, измеритель магнитной индукции АТЕ-8702, штангенциркуль, брусок из немагнитного материала (25Х30Х60 мм³), деревяная линейка, штатив из немагнитного материала; дополнительные неодимовые магнитны ешарики (20 шт.) и неодимовые магниты в форме параллелепипедов (2 шт.), набор гирь и разновесов.

#### Измерительные погрешности:

Погрешность электронных весов:  $\varepsilon_m = 0,001$  г Погрешность измерения времени:  $\varepsilon_t = 0,6$  с

Погрешность измерения магнитной индукции:  $\varepsilon_B =$ 

### 1. Теоретические сведения

#### Основные формулы

Магнитное поле точечного диполя определяется по формуле, анологичной формуле для поля элементарного электрического диполя:

$$\mathbf{B} = \frac{3(\mathbf{m} \cdot \mathbf{r})\mathbf{r}}{r^5} - \frac{\mathbf{m}}{r^3}$$

Во внешнем магнитном поле с индукцией  ${\bf B}$  на точеный магнитный диполь  ${\bf m}$  действует механический момент сил  ${\bf M}=[{\bf m},{\bf B}]$  При этом потенциальная энергия которой обладает диполь с постоянным  ${\bf m}$ , равна  $W=-({\bf m}\cdot{\bf B})$  Когда диполь ориентирован вдоль внешнего поля, он находится в состоянии равновесия.

В неоднородном внешнем поле выражение для энергии постоянного диполя сохраняется. При этом кроме момента сил на диполь действует ещё и сила

$$\mathbf{F} = -\nabla W = (\mathbf{m} \cdot \nabla) \mathbf{B}$$

Таким образом из вышесказанного следует, что *свободный* магнитный диполь в неоднородном магнитном поле ориентируется вдоль силовых линий магнитного поля и втягивается в область более сильного поля, поскольку это ведёт к уменьшению энергии диполя.

Выражения выше, позволяют рассчитать силу взаимодействия магнитов с моментами  $\mathfrak{m}_1$  и  $\mathfrak{m}_2$ . Когда моменты двух небольших магнитов направлены вдоль соединяющей их прямой:  $\mathfrak{m}_{1,2} \| \mathbf{r}$ , где  $\mathbf{r}$  - радиус-вектор между ними, они взаимодействуют с силой

$$F_{12}=\mathfrak{m_1}rac{\partial B_2}{\partial r}=\mathfrak{m_1}rac{\partial (2\mathfrak{m_2}/r^3)}{\partial r}=-rac{6\mathfrak{m_1}\mathfrak{m_2}}{r^4} \ (\mathrm{eд.} \ \ \mathrm{C\GammaC})$$

Если магнитные моменты направлены перпендикулярно соединяющей их прямой:  $\mathfrak{m}_{1,2} \perp \mathbf{r}$ , то нетрудно показать, что сила их взаимодействия окажется в два раза меньшей и будет иметь противоположный знак:

$$F_{12} = \frac{3\mathfrak{m}_1\mathfrak{m}_2}{r^4}$$
 (ед. СГС)

.

# Экспериментальная установка

## 2. Ход работы

Определение магнитного момента, намагниченности и остаточной магнитной индукции вещества магнитных шариков

#### Метод А

Вычсислим характеристики шаров. Взвесим их, вычислим  $r_{\rm max}$  - максимальное расстояние, на котором шарики удерживают друг друга в поле силы тяжести Земли. Для этого воспольуземся специальным стэндом (рис.2) Измерим для 4 пар и усредним. Измерим диаметры шариков.



Рис. 1: Стэнд для определения  $r_{\rm max}$ 

$$r_{\rm max} = 2,5 \, \, {\rm cm}$$

Теперь измерим диаметры шариков. Вычислим магнитный момент и намагниченность по формулам, затем вычислим их с помощью магнитометра. Результаты измерений занесем в таблицу (Таблица 1).

С помощью магнитометра изерим индукцию на полюсах и получим результат, несколько отличающийся от полученного теоретически:  $B_{\text{Avg}} = 1950\Gamma\text{c}$ . Расхождение небольшое, поэтому проводить повторные измерения момента не будем.

### Метод В

Составим цепочку из 20 шарикови и с помощью неодимовых магнитов в форме параллелепипедов, подсоединим цепочку у к гире и разновесам.

Добавляя или удаляя шарики, подберем минимальный вес F системы цепочки с гирей, при котором она отрывается от верхнего шарика:



Рис. 2: Определение магнитного момента методом В

Получаем F=2.3Н.  $F_0=F/1.08=2.1$ Н. Магнитный момент получим из формулы  $P_m=d^2\sqrt{\frac{F_0}{6}}$ :  $P_m=1983$ Гс ( $\varepsilon_{P_m}=0.04$ ).

Этот результат совпадает со снятым магнитометром значением, погрешность метода меньше в 2 раза, поэтому метод В можно считать лучшим способом определения магнитного момента шаров.

| N   | т, г  | $\varepsilon_m$ | d, см | $\varepsilon_d$ | $P_m, \frac{\text{spr}}{\Gamma c}$ | $\varepsilon_p$ | $p, \frac{\Gamma c}{c_M^3}$ | $\varepsilon_p$ | $B_p$ , $\Gamma c$ | $\varepsilon_{B_p}$ |
|-----|-------|-----------------|-------|-----------------|------------------------------------|-----------------|-----------------------------|-----------------|--------------------|---------------------|
| 1   | 0.831 | 0.001           | 0.58  | 0.01            | 72.3                               | 0.06            | 354.0                       | 0.07            | 2223.3             | 0.07                |
| 2   | 0.846 | 0.001           | 0.59  | 0.01            | 72.1                               | 0.06            | 335.4                       | 0.07            | 2106.3             | 0.07                |
| 3   | 0.844 | 0.001           | 0.58  | 0.01            | 72.4                               | 0.06            | 354.5                       | 0.07            | 2226.4             | 0.07                |
| 4   | 0.869 | 0.001           | 0.59  | 0.01            | 72.1                               | 0.06            | 335.4                       | 0.07            | 2106.3             | 0.07                |
| 5   | 0.818 | 0.001           | 0.57  | 0.01            | 72.3                               | 0.06            | 373.0                       | 0.07            | 2342.4             | 0.07                |
| 6   | 0.834 | 0.001           | 0.58  | 0.01            | 72.2                               | 0.06            | 353.5                       | 0.07            | 2220.3             | 0.07                |
| 7   | 0.843 | 0.001           | 0.59  | 0.01            | 72.2                               | 0.06            | 335.9                       | 0.07            | 2109.3             | 0.07                |
| 8   | 0.835 | 0.001           | 0.58  | 0.01            | 72.1                               | 0.06            | 353.1                       | 0.07            | 2217.2             | 0.07                |
| 9   | 0.793 | 0.001           | 0.55  | 0.01            | 72.3                               | 0.06            | 415.2                       | 0.07            | 2607.4             | 0.07                |
| 10  | 0.846 | 0.001           | 0.59  | 0.01            | 72.3                               | 0.06            | 336.3                       | 0.07            | 2112.2             | 0.07                |
| 11  | 0.846 | 0.001           | 0.58  | 0.01            | 72.3                               | 0.06            | 354.0                       | 0.07            | 2223.3             | 0.07                |
| 12  | 0.838 | 0.001           | 0.57  | 0.01            | 72.4                               | 0.06            | 373.5                       | 0.07            | 2345.7             | 0.07                |
| Avg | 0.837 | -               | 0.58  | -               | 72.25                              | -               | 355.3                       | -               | 2236.7             | -                   |

Таблица 1: Результаты измерений параметров шаров методом А

## Определение горизонтальной составляющей магнитного поля Земли

Соберем установку: крутильный маятник из шариков.



Рис. 3: Схема установки для определения горизонтальной составляющей поля Земли.

Будем исследовать зависимость периода колебаний от количества шаров в магнитной стрелке.

Построим график зависимости T(n), аппроксимируем прямой T = kn:

Из него по формуле  $B_h = \pi^2 m d^2/3 k^2 P_m$  найдем величину горизонтальной составляющей магнитного поля.

 $k = 0.38 \pm 0.02$ 

 $B_h = 0.11 \pm 0.1\Gamma c$ 

Проведем так же эксперимент для замкнутого кольца из шариков: T=2.4c





Рис. 4: магнитная стрелка, свернутая в кольцо

## Определение вертикальной составляющей магнитного поля Земли

Снова изготовим стрелку из шаров, подвесим ее за середину на нить. С помощью весов будем определять массу уравновешивающего груза. Таким образом, измерим M, действующий со стороны Земли на стрелку для четных размеров стрелки в шариках.



Рис. 5: Способ определения момента, действующего со стороны Земли

Построим график M(n), аппроксимируем его прямой M(n) = An:



Получаем  $B_v = \frac{M}{nm} = (0.37 \pm 0.3) \Gamma c$  Сравним значения с табличными:  $B_e = 0.38 \Gamma c, \ B_t = 0.5 \Gamma c.$ 

## 3. Выводы

Получились результаты, отличающиеся от табличных на 1-2 погрешности, поэтому эксперимент можно считать успешным.

Большую вклад в погрешность измерений второй и третьей части лабораторной внесла погрешность, возникающая из-за человеческой реакции (при измерении периода с таймером), поэтому в третьей части полученное значение поля Земли входит лишь в двойную погрешность от табличного.