Biological basis for managing dugongs and other large vertebrates in the Great Barrier Reef Marine Park

Final Report January 1989

VOLUME 4

Raw data tables and programmes used in the estimation of prevailing weather conditions and the calculation of population and density estimates

Note: The tables and programmes have also been supplied on a diskette in Word Perfect 4.2 format.

SECTION 1

Raw data tables for dugongs in the survey area from the tip of Cape

York south to Cape Bedford

- Section 1: Raw data tables for dugongs in the survey area from the tip of Cape York south to Cape Bedford.
- Table 1: Details of weather conditions encountered during the surveys.
- Table 2: Beaufort Sea State and glare (for the north/east and south/west side of the aircraft) for each transect.
- Table 3: Raw data for the surveys: dugong sightings.
- Table 4: Logistics of flight time for each survey.
- Table 5: Raw data used to calculate correction factors for each survey or sub-section of survey.

TABLE 1: Details of weather conditions encountered during the surveys.

	Speed (knots)	Speed Direction knots)		Cover Height oktas) (ft)	beautort sea Inshore mode(range)	a state Offshore mode(range)	North mode(range)	South mode(range)	iide lime
Blocks 1 - 4	4, November	ber 1984							
13/11/84	1 7 2 10	7 E 0 ESE	0	3000	1.0 3.0(2.0-3.0)	1.0(0.5-1.0)	1.0	-2.0)	Low 0425 ^a H1gh 1201 ^a
14/11/84	1 <5	5 NW 7 ESE	0 7	2000	1.0(0.0-1.0) 2.5(1.5-3.0)	0.5-1.0	1.0(0.0-1.0)	-1.0) -2.0)	Low 0521 ^a High 1450 ^a
15/11/84	1 13 2 13	3 ESE 3 SE	0	2500	2.0(1.0-3.0)		1.0(1.0-2.0)	-2.0) -2.0)	Low 0710 ^a High 1544 ^a
Blocks 6 - 1	13, Apr11	April 1985							
21/04/85	1 10 2 10	10 E 10-15 E	3,7	1500,3000	1.5(1.0-2.5)	2.0(1.0-2.5) 2.0(1.0-2.0)	1.5(0.0-3.0)	0.0(0.0-1.0)	High 0943 ^b Low 1558 ^b
22/04/85	1 5 2 10	S E O ENE	2,4	1500,2000 1000	2.0(1.0-2.5)	2.0(1.0-2.5) 2.0(1.0-2.0)	2.0(0.0-3.0) 1.0(0.0-2.0)	0.0	~
23/04/85	1 10	O ESE	5,4	700,20000	1.5(1.0-2.0)	1.5(1.0-2.5)	2.0(1.0-3.0)	0.5(0.0-1.0)	_
24/04/85	1 10 2 12	O SE 2 ESE	9 5	1000 1400	2.0(1.5-2.0)	3.0(2.0-3.5) 2.5(1.0-3.0)	2.0(0.0-3.5)	1.0(0.0-1.0)	High 0849 ^b Low 1649 ^b
25/04/85	1 5 2 10	ъ. В В	r 7	1000 1000	1.5(1.0-2.5)	2.0(1.5-3.0)	2.0(1.0-3.0) 2.0(2.0-3.0)	0.0(0.0-1.0)	High 0806 ^b Low 1551 ^b
26/04/85	1 10 2 10	O ESE	7 4	8000 1500	2.0(2.0-2.5) 1.5(1.0-2.0)	1.0(1.0-3.0)	2.0(1.0-3.0)	0.5(0.0-1.0)	
Blocks 1 - 7	7, Novemb	November 1985							
31/10/85	1 10 2 20	SSE SSE	ოო	1500 5000	3.0(0.0-4.0)	-4.0) -4.0)	1.0(0.0-2.0)	1.0(0.0-2.5)	High 0931 ^a Low 1605 ^a
01/11/85	1 10	я	3-8	1500	3.0(1.0-3.0)	3.0(2.0-3.0)	2.0(0.0-2.0)	1.0(1.0-2.0)	_
02/11/85	1 10	я С	2	1000	2.5(2.0-3.0)	3.0(2.0-3.0)	2.0(0.0-2.0)	1.0(0.0-2.0)	High 1120ª
03/11/85	1 10 2 10	ы ы	1-6 3,5	1500 1000,5000	2.5(1.0-3.0) 2.5(2.0-3.0)	2.5(1.0-3.0)	2.0(0.0-2.5)	2.0(0.0-2.0)	Low 0416 ^a High 1522 ^a
05/11/85	1 10 2 15	ы ы	2,2 1	1500,12000 1000	2.0(1.0-2.5)	-2.5) 2.0(1.0-2.5) 2.5(0.0-3.0)	0.0(0.0-2.5)	2.0(0.0-2.0) 1.0(0.0-2.0)	Low 0846 ^a High 1629 ^a
06/11/85	1 10 2 15	ED ED	2 -1	1500 1500	2.0(1.0-2.5)	2.5) 3.0)	1.0(0.0-2.0)	1.0(0.0-2.0)	Low 0957 ^a

TABLE 1: continued.

Date	Session (1	n Speed I (knots)	Wind Speed Direction knots)	Cloud Cover Heigh (oktas) (ft)	Cloud Cover Height oktas) (ft)	Beaufort Sea State Inshore Of: mode(range) mod	State Offshore mode(range)	Glare North mode(range)	e South mode(range)	Tide Time
Blocks 1 - 7, November 1985	- 7, N	ovember	1985							
07/11/85	7 7	10 15	ым	2-6	2000 1500,9000	1.0(0.0-2.5) 2.0(2.0-2.5)	2.5) 2.0(1.0-2.5)	1.0(0.0-2.0)	0.0(0.0-2.0)	Low 1046 ^a High 1729 ^a
08/11/85	-	10	μĵ	2-6	1000	2.5(1.0-2.5)	2.5(1.0-4.0)	1.0(0.0-2.0)	1.0(0.0-2.5)	Low 1133 ^a
Blocks 8 - 13, November 1985	- 13,	November	r 1985							:
17/11/85	7 7	5	N E	1 2	1500 1500	0.5(0.0-1.0) 2.0	0.0(0.0-1.0)	1.0(0.0-2.5) 2.0(0.0-2.0)	0.0(0.0-1.0)	Low 0700 ^b High 1517 ^b
18/11/85	7 7	00	1 1	7	2000 1500	0.0(0.0-1.0)	0.0	1.0(0-1.0)	0.0(0.0-1.0)	Low 0900 ^b High 1625 ^b
19/11/87	7 7	0 0 10	ENE	പ 1	1000	1.0(0.0-1.5) 2.0(1.0-2.5)	1.0(0.0-1.0) 2.0(1.0-3.0)	1.0(0.0-2.0) 2.0(0.0-2.0)	1.0(0.0-1.0)	Low 1025 ^b High 1717 ^b
20/11/85	7 7	∿ ∞	шZ	1,4 1,4	1500,12000 1500,12000	1.0	1.0(0.0-1.0)	1.0(0.0-2.5) 1.0(0.0-2.5)	1.0(0.0-2.0)	Low 1026 ^b High 1800 ^b
21/11/85	-	0	ı	-	1500	0.5(0.0-1.0)	0.5(0.0-0.5)	1.0(0.0-2.0)	0.5(0.0-1.0)	Low 1219 ^b

 $^{^{}m a}$ Neap tides. Times are for Cape Flattery and equal Cairns -10 mins.

Referencessions

Name of the last o

Property and Property (S)

b Tide times are for Cape Grenville and equal Cairns +40 mins.

TABLE 2: Beaufort Sea State and glare (for the north/east and south/west sides of the aircraft) for each transect.

Scale : 0 = no glare $1 = 0 \le 25\%$ field of view glare affected $2 = 25 \le 50\%$ field of view glare affected 3 = > 50% field of view glare affected

Transect	Beaufort	Sea State	G1 :	are
No.	Inshore	Offshore	North	South
	mode(range)	mode(range)	mode(range)	Mode(range)
Blocks 1	- 4, November 198	34		
1	1.0	1.0	detailed glare	data not
2	1.0	1.0(0.5-1.0)	recorded for th	
3	1.0	1.0		,
4	-	1.0		
5	2.5(2.0-3.0)	2.5(2.0-2.5)		
6	-	1.5-3.0		
7	3.0	2.5-3.0		
8	3.0	3.0(2.0-3.0)		
9		3.0		
10	1.0	0.5(0.5-1.0)		
11	0.5	0.5(0.5-1.0)		
12	0.0-1.0	1.0		
13	0.5	1.0		
14	_	0.5		
15	2.0	3.3		
16	2.5(2.0-2.5)			
17	2.0(2.0-2.5)			
18	2.0(0.0-2.5)			
19	2.0(2.0-2.5)			
20	2.0			
21	2.5			
22	2.0(2.0-2.5)			
23	2.5			
24	2.5-3.0			
25	1.5(1.0-2.0)			
26	1.0-2.0			
27	1.0-2.0			
28	2.5(2.0-3.0)			
29	2.5			
30	2.5(2.0-3.0)			
31	3.0			•
32	3.0			
33	2.5			
34	2.5			
35	2.5-3.0			
35 36				
36 37	3.0 2.0(2.0-2.5)			
38	1.5-2.0			
39 60	2.0			
40	2.0(2.0-2.5)			

Table 2: continued.

Transect		Sea State		are
No.	Inshore	Offshore	North	South
	mode(range)	mode(range)	mode(range)	Mode(range)
Blocks 6	- 13, April 1985			
1	2.0(2.0-2.5)	2.0(1.0-2.5)	2.0(1.0-2.0)	0.0
2	1.0(1.0-1.5)	1.0(1.0-2.0)	2.0(0.0-3.0)	0.0(0.0-1.0)
3	1.5(1.5-2.0)	1.5(1.0-2.0)	1.5(0.0-2.0)	0.0
4	1.5	1.0(1.0-2.0)	1.0(0.0-2.0)	0.0
5	1.5(1.5-2.0)	2.0(1.5-2.5)	1.0	0.0
6 7	1.5(1.0-2.0) 2.0	2.0(1.0-2.5)	1.5(1.0-2.0) 1.0	0.0
8	1.0	2.0(1.0-2.0) 1.5(1.0-2.0)	2.0(0.0-2.0)	0.0 0.0
9	2.0	2.0(1.5-2.0)	1.0	0.0
10	-	2.0	0.5(0.0-1.0)	0.0
11	1.5	1.5(1.5-2.0)	1.0	1.0
12	2.0	2.0	1.0	0.0
13	2.0(2.0-2.5)	2.0(2.0-2.5)	2.0	0.0
14	2.0(2.0-2.5)	2.0(2.0-2.5)	1.5(0.0-1.5)	0.0
15	2.5	2.5(2.0-2.5)	2.0(1.0-2.0)	0.0
16	2.0	2.0(2.0-2.5)	2.0	0.0
17	1.0(1.0-2.0)	2.0(1.5-2.5)	2.0	0.0
18	1.5(1.5-2.0)	1.5(1.0-2.0)	2.0(1.0-2.0)	0.0
19	2.0(1.0-2.0)	2.0(1.5-2.5)	2.0(1.0-2.0)	0.0
20	2.0	2.0(1.5-2.5)	3.0(2.0-3.0)	0.0
21 22	2.0	2.0(1.5-2.5)	2.5(2.0-3.0)	0.0 0.0
23		2.0(1.0-2.0) 1.5(1.0-1.5)	2.0(1.0-3.0) 2.5(2.0-3.0)	0.0
24	2.0	1.5(1.0-2.5)	2.0	0.0
25	2.5	2.0(2.0-2.5)	1.5(1.0-2.0)	1.0
26	2.5	2.0(1.0-2.5)	2.0	1.0
27	-	2.5(1.5-2.5)	2.0	1.0
28	2.5	2.5(1.0-3.0)	2.0	0.5(0.0-1.0)
29	2.0(2.0-2.5)	2.0(2.0-2.5)	3.0(1.0-3.0)	0.5(0.0-1.0)
30	3.0	2.5(1.0-2.5)	2.0	0.5(0.0-1.0)
31	3.0(2.5-3.0)	2.0(1.0-3.0)	2.0	0.0
32	2.5(2.0-3.0)	2.0(2.0-2.5)	2.0(2.0-3.0)	1.0(0.0-1.0)
33 34	2.0 2.5	1.0(1.0-2.0) 2.0(1.0-2.5)	3.0(2.0-3.0) 2.0	0.0 0.0
35	2.0	1.5(1.0-2.0)	2.0	1.0(0.0-1.0)
36	2.0	2.0(1.0-3.0)	2.0(1.0-2.0)	1.0
37	2.0(2.0-2.5)	1.5(1.5-2.5)	1.5(1.0-2.0)	1.0
38	- '	2.5(2.0-3.0)	3.0(0.0-3.5)	1.0
39	2.0	3.0(2.0-3.0)	3.0(1.0-3.0)	0.0
40	1.0	1.0(1.0-2.0)	2.0	0.0
41	2.0	1.5(1.0-2.0)	2.0(2.0-3.0)	2.0(1.0-2.0)
42	2.0(1.5-2.5)	2.0(2.0-3.0)	2.0(2.0-3.0)	0.0
43	2.0	3.0(2.0-3.0)	2.0(1.0-2.0)	0.0(0.0-1.0)
44 45	2.0 2.0(1.5-2.5)	2.5(2.5-3.5) 3.0(2.0-3.5)	2.0(0.0-2.5) 2.0	1.0 0.5(0.0-1.0)
46	1.5	1.0(1.0-2.0)	2.0	1.0
47	1.0(1.0-1.5)	2.0(1.0-2.0)	2.0(1.0-2.0)	0.0(0.0-1.0)
. 48	1.5	2.0(1.0-2.0)	1.0(1.0-2.0)	1.0(0.0-1.0)
49	2.0	2.0(1.0-2.0)	2.0	0.0
50	1.0(1.0-1.5)		2.0	0.0
51	1.5(1.0-2.0)		2.0	0.0
52	2.0(1.0-2.0)		2.0(0.0-2.0)	0.0
53	1.0(1.0-2.5)	•	1.5(1.0-3.0)	0.0
54	2.5(2.0-2.5)		1.5(0.0-2.5)	0.0
55	2.0(1.5-2.5)		3.0	0.0
56 57	2.5(2.0-2.5) 1.5(1.0-2.0)		3.0 3.0	0.0 0.0
1	1.0(1.0-2.0)		3.0	0.0

Table 2: continued.

Transect	Beaufort	Sea State	Gla	ire
No.	Inshore	Offshore	North	South
	mode(range)	mode(range)	mode(range)	Mode(range)
Blocks l	- 4, November 198	<u>5</u>		y,
1	2.5(1.0-3.0)	3.0	1.0-2.0	1.0
2	3.0	3.0	1.0	1.0-2.0
3 4	3.0	3.0(2.0-3.0)	1.0-2.0	1.0
4	3.0	3.0(2.0-3.0)	1.0	1.0-2.0
5	3.0	3.0(2.0-3.0)	1.0-2.0	2.0
6	3.0	3.0(2.0-3.0)	1.0-2.0	1.0-2.0
7	3.0(2.0-3.0)	2.0(2.0-3.0)	1.0-2.0	1.0
8	3.0	3.0	1.0-2.0	2.0
9	3.0	3.0(2.0-3.0)	2.0(0.0-2.0)	1.0(1.0-2.0)
10	3.0	2.5(2.0-3.0)	0.0-2.0	0.0-2.0
11	3.0	3.0(2.0-3.0)	2.0(1.0-2.0)	2.0(1.0-2.0)
12	2.0(2.0-3.0)	3.0(2.0-3.0)	1.0(0.0-1.0)	1.0(0.0-1.0)
13	2.5-3.0	3.0(2.0-3.0)	2.0(0.0-2.0)	1.0(0.0-2.0)
14	2.5	2.5(2.0-3.0)	2.0(1.0-2.0)	2.0(1.0-2.0)
15	3.0(2.5-3.0)	2.5(2.0-3.0)	1.0	2.0(1.0-2.0)
16	3.0(2.0-3.0)	3.0(2.0-3.0)	0.0(0.0-1.0)	2.0(0.0-2.0)
17	2.5(2.0-2.5)	2.5(2.0-3.0)	2.0(1.0-2.0)	2.0(1.0-2.0)
18	2.5(2.0-2.5)	3.0(2.0-3.0)	2.0(0.0-2.0)	1.0-2.0
19	2.5(2.0-3.0)	2.5(2.0-3.0)	1.0(0.0-2.0)	2.0(0.0-2.0)
20	2.5(2.0-2.5)	2.5(1.0-3.0)	2.0(0.0-2.0)	2.0(0.0-2.5)
21	3.0(2.5-3.0)	2.5(2.0-3.0)	0.0(0.0-1.5)	2.0(0.0-2.0)
22	3.0(1.0-3.0)	2.0(1.0-2.5)	1.0(0.0-2.0)	2.0(1.0-2.0)
23	2.5(2.0-3.0)	2.5(2.0-3.0)	1.0(0.0-2.0)	1.0(0.0-2.0)
24	2.0-2.5	2.0-2.5	0.0-2.0	2.0(1.0-2.0)
25	2.0(2.0-2.5)	2.0(1.0-2.5)	0.0(0.0-2.0)	0.0(0.0-2.0)
26	2.0(1.0-2.5)	2.5(1.0-2.5)	0.0-2.0	0.0(0.0-2.0)
27	2.5(2.0-2.5)	2.0(1.0-2.0)	1.0(0.0-2.0)	1.0(0.0-2.0)
28	2.5(2.5-3.0)	2.0(1.0-2.0)	1.0(0.0-2.0)	1.0(0.0-2.0)
29	3.0(2.5-3.0)		2.0	2.0
30	3.0(2.5-3.0)		1.0	1.0-2.0
31	3.0(2.5-3.0)		2.0	2.0
32	3.0(2.5-3.0)		1.0	1.0-2.0
33	2.5(2.0-3.0)		1.0(1.0-2.0)	1.0(0.0-2.0)
34	2.5(2.5-3.0)		1.0	1.0-2.0

Table 2: continued.

ransect	Beaufort	Sea State	Glare	<u> </u>
No.	<pre>Inshore mode(range)</pre>	Offshore mode(range)	North mode(range)	South Mode(range)
locks 5,	November 1985			7011 57000 711 57000 711 5700 7
1	3.0(2.	5-4.0)	1.0	1.0
	3.0(1.	0-4.0)	1.0	0.0
2 3 4 5 6 7	3.0(1.	0-4.0)	1.0	1.0
4	3.5(2.0	0-4.0)	1.0	1.0
5	3.0(0.0	0-3.0)	1.0(0.0-2.0)	1.0(0.0-2.0)
6	3.0(0.	5-3.0)	0.0-1.0	1.0(0.0-2.0)
	3.0(1.0	0-4.0)	2.0(1.0-2.0)	2.5(1.0-2.5)
8	1.0(1.0	0-4.0)	0.0-1.0	1.0
9	2.5(0.0	0-3.0)	0.0-2.0	0.0-2.0
10	2.5(1.0	0-3.0)	1.0-2.0(0.0-2.5)	2.0(0.0-2.5)
11	2.5(2.0	0-3.0)	1.0(0.0-2.0)	1.0(1.0-2.0)
12	2.0(0.0	0-3.0)	1.0(0.0-2.0)	1.0(0.0-2.0)
13	2.5(1.0	0-4.0)	2.0(0.0-2.0)	2.0(0.0-2.5)
14	2.0(1.0)-2.5)	1.0(0.0-2.0)	1.0(0.0-2.0)
15	1.0(1.0	0-2.5)	1.0(0.0-2.0)	1.0(0.0-2.0)
16	1.0(0.0)-2.5)	1.0(0.0-2.0)	0.0(0.0-2.0)
17	2.0(1.0)-2.5)	1.0(0.0-2.0)	0.0(0.0-2.0)
18	2.0(1.0	0-2.5)	0.0-1.0(0.0-2.0)	0.0-2.0
19	2.0(1.0)-2.5)	1.0-2.0(0.0-2.0)	1.0-2.0
20	1.0(1.0	0-2.5)	1.0(0.0-1.0)	0.0-2.0
21	2.0(1.0	0-2.5)	1.0-2.0	0.0-2.0
22	2.5(1.0)-2.5)	2.0(0.0-2.0)	1.0
23	2.0(1.0)-2.5)	1.0(0.0-2.0)	1.0(0.0-2.0)

Table 2: continued.

Transect	Beaufort	Sea State	Gla	re
No.	Inshore	Offshore	North	South
	mode(range)	mode(range)	mode(range)	Mode(range)
Blocks 2	- 16, November 19	<u>85</u>		
1	2.0	2.0(1.0-2.5)	0.0(0.0-2.0)	0.0-2.0
2	2.0	2.5(1.0-2.5)	1.0(0.0-1.0)	1.0(0.0-2.0)
3	2.0	1.0(1.0-2.0)	0.0(0.0-2.0)	0.0(0.0-2.0)
4	1.5(1.0-2.0)	2.0(1.0-2.5)	0.0-1.0	0.0(0.0-2.0)
5	2.0	2.0(1.0-2.5)	1.0(0.0-2.0)	1.0(0.0-2.0)
6	2.0-2.5	1.0(1.0-2.5)	1.0(0.0-1.0)	0.0-2.0
7	2.5(2.0-2.5)	2.0(1.0-3.0)	1.0(1.0-2.0)	1.0(0.0-2.0)
8	2.0(1.0-2.5)	2.0(1.0-3.0)	1.0(0.0-2.0)	1.0(0.0-2.0)
9	1.0(1.0-2.5)	2.5(1.0-3.0)	1.0(0.0-2.0)	1.0(0.0-2.0)
10	-	2.5(1.0-3.0)	1.0(0.0-2.0)	2.0(0.0-2.0)
11	2.0	2.5(1.0-4.0)	0.0-2.0	0.0-2.0(0.0-2.5)
12	1.0	2.0(1.0-3.0)	0.0-1.0	0.0-2.0
13	0.5(0.0-1.0)	0.0	0.0	0.0(0.0-1.0)
14	0.0(0.0-1.0)	0.0	0.0	0.0
15	0.0	0.0(0.0-1.0)	0.0	0.0-1.0
16	_	0.0(0.0-1.0)	0.0	0.0-1.0
17	1.0	0.0(0.0-1.0)	0.0(0.0-1.0)	0.0-1.0
18	1.0-1.5	0.5(0.0-1.0)	1.0	1.0-2.0
19	1.0	1.0(0.0-1.0)	0.0-1.0	0.0-1.0
20	2.0-2.5	1.5(1.0-2.0)	1.0(0.0-1.0)	0.0-1.0(0.0-2.0)
21	2.5	2.0(0.0-2.5)	0.0-1.0	1.0-2.0
22	-	2.0(1.0-2.5)	0.0(0.0-2.0)	0.0(0.0-1.0)
23	2.0(2.0-2.5)	1.0(0.0-2.0)	0.0-1.0	2.0
24	2.0	2.0(1.0-3.0)	0.0(1.0-2.0)	0.0(0.0-2.0)
25	1.5(1.0-2.0)	2.0(0.0-3.0)	0.0-1.0	2.0
26	-	1.0(0.0-1.0)	1.0(0.0-1.0)	1.0(1.0-2.0)
27	1.0	1.0(0.5-1.0)	1.0(0.0-1.0)	0.0(0.0-1.0)
28	-	1.0(0.5-1.0)	0.0	1.0
29	1.0(1.0-2.0)	1.0(0.0-1.0)	0.0-1.0	1.0(0.0-1.0)
30	0.0	1.0(0.0-0.5)	0.0(0.0-1.0)	1.0
31	0.5-1.0	0.5	1.0(0.0-1.0)	1.0(0.0-2.0)
32	1.0	1.0(0.0-1.0)	1.0(0.0-1.0)	1.0(0.0-1.0)
33	1.0	1.0(0.0-1.0)	1.0(0.0-1.0)	2.0(0.0-2.5)
34	-	1.0(0.0-1.0)	0.0(0.0-1.0)	1.0-2.0(0.0-2.0)
35	1.0	1.0(0.0-1.0)	1.0(0.0-2.0)	2.0(0.0-2.0)
36		1.0(0.0-1.0)	0.0(0.0-1.0)	1.0-2.0
37	1.0	1.0	0.0-1.0	1.0(0.0-2.0)
38	1.0	0.0(0.0-1.0)	0.0	0.0-1.0
39	-	1.0(0.0-1.0)	1.0(0.0-1.0)	1.0(0.0-2.0)
40	1.0(0.0-1.0)	0.0(0.0-1.0)	0.0	0.0-1.0 0.0-1.0
41	1.0(0.0-1.0)	1.0(0.0-1.0)	0.0	0.0-1.0
42	1.0	0.0(0.0-1.0)	0.0-1.0	1.0(0.0-1.0)
43	0.5(0.0-1.0)	0.0	0.0(0.0-1.0)	0.0-1.0
44	0.0	0.0	0.0	1.0
45	0.0	0.0	0.0 1.0	2.0(0.0-2.0)
46	_	1.0(1.0-2.5)	1.0(0.0-1.0)	2.0(0.0-2.0)
47	2.0	1.0(1.0-2.0)	0.0-1.0	2.0(0.0-2.0)
48	0 5(0 0-1 0)	0.0(0.0-1.0) 1.0(0.0-1.0)	1.0(0.0-1.0)	1.0(0.0-2.50
49	0.5(0.0-1.0)	1.0(0.0-1.0)	0.0	1.0(0.0 2.50
50	0.5(0.0-1.0)		0.0	1.0
51 52	0.0		0.0	1.0
52 52	0.0 0.0(0.0-1.0)		0.0	1.0
53 5.4	0.0(0.0-1.0)		0.0	1.0-2.0
54 55	1.0		0.0	1.0
כנ	1.0	I		1.0
56	1.0		0.0(0.0-1.0)	1.0

TABLE 3: Raw data for the surveys: dugong sightings.

(a) Blocks 1 - 4, November 1984

Transect No.	No. of Port	observers Starboard	No. of gr Port Rear	roups of turtles Starboard Rear
001	1	1	0	1
002	1	1	1	1
003	1	1	0	1
004	1	1	0	0
005	1	1	0	0
006	1	1	0	ő
007	1	1	Ö	i
008	1	1	0	2
009	1	1	4	1
010	1	1	3	5
011	1	1	6	0
012	1	1	1	2
013	1	1	i 1	1
014	1	1	Ō	0
015	1	1	Ö	0
016	1	1	ő	0
017	1	1	ő	0
018	1	- 1	ő	0
019	1	- 1	ő	0
020	1	1	ő	0
021	1	1	ő	0
022	1	1	ŏ	0
023	1	1	ő	1
024	ī	1	ő	1
025	ī	ī	ŏ	1
026	1	1	6	4
027	1	1	ő	1
028	1	1	ŏ	2
029	1	1	ő	0
030	1	ī	ĭ	1
031	1	1	1	2
032	1	ī	2	3
033	ī	1	0	-
034	1	1	1	0
035	1	1	1	0
036	1	1	0	
037	1	1	0	0
038	1	1	0	0
039	1	1	0	0
040	1	1	0	1 1
	-			
			28	34

TABLE 3: continued.

(b) Blocks 6 - 13, April 1985

Transect No.	No. of Port	observers Starboard	No. of groups Port	of o	dugongs Starboar	d
			Rear	Mid	Rear	Tandem
001	1	2	2	0	0	0
002	1	2	1	0	1	0
003	1	2	0	0	0	0
004	1	2	1	0	0	0
005	1	2	1	6	0	5
006	1	2	1	1	0	0
007	1	2	_ 0	ō	Ö	Ö
008	1	2	1	1	0	0
009	1	2	0	0	0	1
010	1	2	0	0	0	0
011	1	2			-	
			0	0	0	0
012	1	2	2	0	0	0
013	1	2	0	0	0	0
014	1	2	2	0	0	0
015	1	2	1	0	0	0
016	1	2	0	0	0	0
017	1	2	0	1	0	0
018	1	2	0	0	0	0
019	1	2	0	0	0	0
020	1	2	0	0	0	0
021	1	2	0	Ö	0	Ö
022	1	2	Ö	0	0	ő
023	1	2	Ö	0	0	0
024	1	2				
025	1		0	0	0	0
		2	1	0	0	0
026	1	2	0	0	0	0
027	1	2	1	0	0	1
028	1	2	2	0	2	0
029	1	2	0	0	1	0
030	1	2	1	0	0	0
031	1	2	0	0	0	0
032	1	2	0	0	0	0
033	1	2	0	0	0	0
034	1	2	0	0	0	0
035	1	2	0	0	0	0
036	1	2	0	0	0	0
037	1	2	0	Ŏ	Ö	Ö
038	1	2	0	Ö	Ö	ő
039	1	2	0	0	0	ő
040	1	2	0	0	0	0
041	1	2	0	0	0	1
042	1	2	0	0		1
042	1	2			0	1
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	0	0	0
044	1	2	0	0	0	0
045	1	2	0	0	0	0
046	1	2	0	0	0	0
047	1	2	0	0	0	0
048	1	2	0	0	0	0
049	1	2	0	0	0	0
050	1	2	0	0	0	0
051	1	2	0	1	0	0
052	1	2	0	0	0	0
	_	-	Ť	v	v	•

TABLE 3: continued.

(b) Blocks 6 - 13, April 1985

-			observers Starboard		No. Port	of groups		gongs tarboar	d
					Rear		Mid	Rear	Tandem
0	053	10	2	2	2	Ę	0	1 10	0 1
	054	10	2		2		0	150	0
	055	10	2		0		0	0	0 1
	056	10	2		0		0	0	0
	057	1	2		0		0	1 20	0 1
0	007	16	1	0	21	\$	10	7	12

TABLE 3: continued.

(c) Blocks 1 - 4, November 1985

Transect No.	No. of Port	observers Starboard		No. Port	of groups		gongs tarboar	d
			Mid	Rear	Tandem	Mid	Rear	Tandem
001	2	2	0	0	0	0	0	0
002	2	2	0	0	0	0	0	0
003	2	2	0	0	0	0	0	0
004	2	2	0	0	0	0	0	0
005	2	2	0	0	0	0	0	0
006	2	2	0	0	0	0	0	0
007	2	2	0	0	0	0	0	0
800	2	2	0	0	0	0	0	0
009	2	2	0	0	0	0	0	0
010	2	2	0	0	0	0	0	0
011	2	2	1	0	5	0	0	2
012	2	2	3	1	9	0	9	6
013	2	2	2	0	2	0	0	0
014	2	2	4	1	4	2	0	1
015	2	2	0	0	0	1	Ö	2
016	2	2	0	0	0	0	Ō	ō
017	2	2	0	0	0	0	Ō	2
018	2	2	0	0	2	0	0	0
019	2	2	0	0	0	0	1	Ö
020	2	2	2	0	1	1	0	Ö
021	2	2	0	0	ō	ō	Ŏ	ő
022	2	2	0	0	1	0	í	2
023	2	2	0	Ö	Ō	Ö	ō.	0
024	2	2	Ö	Ö	Ö	ő	ŏ	ő
025	2	2	Ô	Ö	ĺ	ŏ	ő	ő
026	2	2	0	0	0	Ö	Ö	Ö
027	2	2	Ō	Ö	Ö	ŏ	ő	ő
028	2	2	2	3	4	2	ő	ő
029	2	2	$\overline{1}$	0	2	ī	í	2
030	2	2	ī	ő	1	1	0	0
031	2	2	2	2	Ō	0	. 0	1
032	2	2	0	0	Ö	0	0	0
033	2	2	Ö	0	1	0	0	0
034	2	2	0	0	0	0	1	0
			18	7	33	8	13	17

TABLE 3: continued.

(d) Block 5, November 1985

Transect No.	No. of Port	observers Starboard		No. Port	of groups		igongs tarboar	·d
			Mid	Rear	Tandem	Mid	Rear	Tandem
001	2	1	0	1	0		1	
002	2	1	1	0	2		1	
003	2	1	0	0	0		0	
004	2	1	0	1	2		1	
005	2	1	2	1	0		2	
006	2	1	1	2	1		3	
007	2	1	1	3	2		2	
800	2	1	1	1	0		0	
009	2	2	0	1	0	0	0	0
010	2	2	0	0	0	0	0	1
011	2	2	1	0	2	0	1	1
012	2	2	1	0	3	1	0	1
013	2	2	1	1	1	0	1	3
014	2	2	1	0	1	2	1	0
015	2	2	0	0	3	0	0	1
016	2	2	0	0	0	1	0	0
017	2	2	0	0	1	0	0	0
018	2	2	0	0	2	1	0	1
019	2	2	0	0	0	1	0	0
020	2	2	1	0	0	1	0	0
021	2	2	0	0	0	0	1	0
022	2	2	0	0	0	0	1	0
023	2	2	0	. 0	0	0	0	0
			11	11	20	7	15	8

TABLE 3: continued.

(e) Blocks 6 - 13, April 1985

		, <u>F</u>						
Transect		observers		No.	of groups	of du	gongs	
No.	Port	Starboard		Port		S	tarboar	:d
				Rear		Mid	Rear	Tandem
001	2	2	1	0	2	0	0	1
002	2	2	0	0	0	0	0	0
003	2	2	0	0	0	0	0	0
004	2	2	0	0	1	0	0	Ö
005	2	2	3	0	2	Ö	0	4
006	2	2	0	0	ō	Ö	Ö	0
007	2	2	0	0	Ö	ő	Ö	Ö
800	2	2	Ö	0	ő	ő	Ö	Ö
009	2	2	1	0	ő	ő	Ö	Ö
010	2	2	1	Ö	o ·	ő	ő	Ö
011	2	2	1	ő	ő	1	0	0
012	2	2	ō	ő	ő	Ō	0	0
013	2	2	Ö	1	Ö	0	0	0
014	2	2	0	1	0	0	0	1
015	2	2	0	0	0	0	0	1
016	2	2	0	0	0	0		
017	2	2	0	0	1		0	0
018	2	2	1	-		0	0	0
019	2	2		0	1	0	0	0
020	2	2	0	0	0	0	0	1
020	2		0	0	0	1	1	0
021		2	0	0	0	0	0	0
022	2	2	0	0	0	0	0	0
	2	2	0	- 0	0	0	0	0
024	2	2	0	0	0	0	0	1
025	2	2	0	0	0	0	0	0
026	2	2	1	0	0	0	0	0
027	2	2	0	0	1	0	0	0
028	2	2	0	0	0	0	0	0
029	2	2	1	0	1	0	0	0
030	2	2	0	0	4	0	0	1
031	2	2	0	0	0	0	0	0
032	2	2	0	0	0	0	0	0
033	2	2	0	0	0	0	0	0
034	2	2	0	0	0	0	0	0
035	2	2	0	0	0	0	0	0
036	2	2	0	0	1	0	0	0
037	2	2	0	0	0	0	0	0
038	2	2	0	0	0	0	0	1
039	2	2	0	0	1	0	0	0
040	2	2	0	0	2	0	0	2
041	2	2	0	0	0	1	0	0
042	2	2	0	0	0	0	0	0
043	2	2	0	0	0	0	0	0
044	2	2	0	0	0	0	0	0
045	2	2	0	0	0	0	Ö	Ö
046	2	2	0	0	0	Ö	Ö	Ö
047	2	2 2	1	Ö	Ŏ	Ö	ő	Ö
048	2	2	0	0	Ö	Ŏ	1	ő
049	1	2	-	Ö	-	Ö	ō	0
050	1	2		1		ő	1	0
051	1	2 2 2		Ō		0	0	0
052	1	2		Ö		Ö	0	0
				-		~	•	-

TABLE 3: continued.

(e) Blocks 6 - 13, April 1985

Transect No.		observers Starboard		No. Port	of group		gongs tarboar	·d
				Rear		Mid	Rear	Tandem
053	1	2		3		0	2	2
054	1	2		5		0	2	2
055	1	2		0		0	0	0
056	1	2		0		0	0	1
057	1	2		0		0	1	2
			12	12	17	3	3	20

TABLE 4: Logistics of flight time for each survey

Survey	Transit Time (hrs)	Survey Time (hrs)	Dead Time (hrs)
Blocks 1 to 4, November 1984 ^a	2.5	10.0	6.1
Blocks 6 to 13, April 1985	7.6	19.7	11.1
Blocks 1 to 7 and blocks 8 and transects 10 to 12, November		23.5	6.1
Blocks 8 and 9, transects 13 to 32 and blocks 10 to 13, November 1985	6.8	16.6	11.6

 $^{^{\}mathrm{a}}$ Extra expenses: \$286 for fuel relocation

TABLE 5: Raw data used to calculate correction factors for each survey or sub-section of survey.

(a) Correction for perception bias

Survey date	Blocks	Transects		Port	No. of groups of dugongs	f dugongs St	s Starboard	
			mid-seat	rear-seat	tandem	mid-seat	mid-seat rear-seat	tandem
November 1984 1 to 4 1 to 40	1 to 4	1 to 40	correction 1985 survey	factor based 7, blocks 8 -	correction factor based on starboard rear-seat observer, November 1985 survey, blocks 8 - 13, transects 13 - 57.	rear-seat s 13 - 57.	observer,	November
April 1985	6 to 13	1 to 57	. •	21		10	7	12
November 1985 1 to 4 5 6 and 7	1 to 4 5 6 and 7 8 and 9	1 to 34 1 to 23 1 to 9 10 to 12	36	18	58	16	18	. 30
November 1985 8 and 9 b 13 to 32 10 to 13 b 33 to 57	8 and 9 10 to 13 ^b	13 to 32 33 to 57	ſΩ	e	12	7	т	15
ac.								

a starboard perception correction factor for transects 1 to 8, block 5 is based on starboard rear-seat observer correction factor for all transects excluding 1 to 8, block 5.

port perception correction factor for transects 50 to 57, block 11 and transect 49, blocks 12 and 13 is based on port rear-seat observer correction factor for all transects excluding these.

(b) Correction for availability blas

Survey date	Blocks	Transects	Surface	No. of dugongs in groups < 8 Underwater	Total
November 1984	1 to 4	1 to 40	71	101	172
April 1985	6 to 13	1 to 57	26	54	80
November 1985	1 to 4 5 6 and 7 8 and 9	1 to 34 1 to 23 1 to 9 10 to 12	78	192	270
November 1985	8 and 9 10 to 13	13 to 32 33 to 57	18	57	75