Mathe 1 Cheatsheet

Für erstes Mathemodul (Ganter, Noack)

LAG

Vollständige Induktion

Beweis erfolgt für $n \geq 1, n \in \mathbb{N}$ mittels vollständiger Induktion.

IV für
$$n = 1$$
: $\sum_{k=1}^{N} (4k - 3) = n(2n - 1) \iff (4 * 1 - 3) = 1 * (2 - 1) \iff 1 = 1\sqrt{2n + 2}$

IA für
$$n \ge 1$$
: $\sum_{k=1}^{N} (4k - 3) = n(2n - 1)$

IS für
$$n = n + 1$$
:

$$\sum_{k=1}^{N+1} (4k-3) = (n+1)(2(n+1)-1) \iff \sum_{k=1}^{N} (4k-3) + (4*(n+1)-3) = (n+1)(2n+1)$$

nach IA ailt:

$$n(2n-1) + (4*(n+1)-3) = (n+1)(2n+1) \iff 2n^2 - n + 4n + 4 - 3 = (n+1)(2n+1) \iff (2n^2 + 3n + 1 = 2n^2 + n + 2n + 1 \iff 2n^2 + 3n + 1 = 2n^2 + 3n + 1\sqrt{n^2 + n^2 + 2n^2 + 3n^2 + 3n^2$$

Ebenengleichungen

In \mathbb{R}_3 kann es Ebenen der folgenden Formen geben:

1.
$$E: \vec{x} = ToDo$$

Lineare Gleichungssysteme

Lösen von linearem Gleichungssystem $A\vec{x} = \vec{b}$ mit Gauss durch elementare Zeilenumformungen (Addieren eines Vielfachen von anderen Gleichungen, Umtauschen von Gleichungen und Skalierung). Erw. Koeffizietenmatrix:

$$\left(egin{array}{cc|c} A_{1,1} & A_{1,2} & A_{1,3} & ec{b}_1 \ A_{2,1} & A_{2,2} & A_{2,3} & ec{b}_2 \end{array}
ight)$$

Inverse zu Matrizen

Es existiert ein A_{-1} zu einer Matrix A, wenn Aquadratisch ist und das homogene LGS $A * \vec{x} = \vec{0}$ nur die triviale Lösung hat. Dann gilt $A_{-1} \times A = E$. Pivotspalten sind Spalten, in denen nur in einer Zeile eine 1 steht. Gibt es nach Vor- und Rückwärtsphase noch Nicht-Pivotspalten, hat das LGS unendlich viele Lösungen. Gibt es eine Zeile (0,0,0,c) mit $c \neq 0$, gibt es keine Lösung.

LU-Faktorisierung

- Soll A als untere Dreickecksmatrix L und obere Dreieckmatrix U faktorisiert werden, gilt A = $L \times U$
- U ist die erste durch elementare Zeilenumformungen erreichte Matrix in Zeilenstufenform (ZSF) (**nicht** reduziert). Vertauschungen und Skalierungen sind zwecks Eindeutigkeit nicht erlaubt!
- L ist das Produkt der invertierten Elementarmatrizen $L = E_1^{-1} \times E_2^{-1} \times E_n^{-1}$ bis zum Erreichen von U
- Lösung von $L \times U = \vec{b}$, wenn L und U bekannt sind durch $L \times \vec{y} = \vec{b}$. Dann $U \times \vec{x} = \vec{y}$ lösen.

Diskrete Strukturen

Begriffsverbände

- ullet Formaler Kontext G, M, I in Tabelle: Merkmale ${f Restklassenringe}$ oben, Gegenstände links.
- Lesen von Begriffsverband: Von oben nach unten

Kanonische Darstellung und Teiler

- Primfaktorzerlegung ist kanonische Darstellung, bswp. 22: $22 = 2^1 * 11^1$. 3 teilt $n \in \mathbb{N}$, wenn Quersumme durch 3 teilbar ist. 11 teilt $n \in \mathbb{N}$, wenn alternierende Quersumme durch 11 teilbar ist. Bspw. 61259: $6 - 1 + 2 - 5 + 9 = 11\sqrt{}$
- Anzahl Teiler von n: Summe der Exponenten der Primfaktoren, jeweils + 1, bspw. 22: teilerzahl(22) = (1+1)*(1+1) = 4 (nämlich 2, 11, 1, 22
- Anzahl teilerfremder Zahlen zu n: Eulersche φ -Funktion. Für $n \in \mathbb{N}$ mit den Primfaktoren $p_1^a \dots p_k^l : \varphi(n) = n * (1 - \frac{1}{p_1}) * (1 - \frac{2}{p_2}) * \dots * (1 - \frac{k}{p_k})$ (p sind also immer die Basen)
- Primzahlen 1-100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

ggT und euklidischer Algorithmus

ggT wird mit euklidischem Algorithmus bestimmt. In erweiterter Form:

i	n_i	n_{i+1}	r	q_i	a_{i+1}	a_i
1.	238	154	84	1	2	-3
2.	154	84	70	1	-1	2
3.	84	70	14	1	1	-1
4.	70	14	0	5	0	1
5.	14	0	ggT: 14		1	0

$$a_i = a_{i+2} - q_i * a_{i+1}$$
$$q_i = n_i div n_{i+1}$$

- In \mathbb{Z}_{22} sind 0-21 drin, negative Zahlen: Solange $22 \equiv 0 \pmod{n}$ addieren, bis Ergebnis in \mathbb{Z}_n liegt
- Einheit: Zahl $a \in \mathbb{Z}_n$ ist Einheit, wenn $a * b \equiv 1$ (mod n). Das gilt dann, wenn qqT(a,n)=1.
- Nullteiler: Zahl $a \in \mathbb{Z}_n$ ist Nullteiler, wenn $a * b \equiv 0 \pmod{n}$
- Division nur für Einheiten. Ist a Einheit in \mathbb{Z}_n , dann wird inverses Element n^{-1} durch erw. euklidischen Algorithmus bestimmt (mit n als erstem Wert und a als zweitem). Inverses zu n ist dann der Wert, der als a_1 oben rechts rauskommt.
- Rechnen mit Potenzen: $a^m * a^n = a^{m+n}, a^n =$ $a^{n \mod (p-1)}$
- Lemma von Euler-Fermat: $a^{\varphi(n)} \mod n = 1$, falls a zu n teilerfremd ist (qqT(a, n) = 1)

Gebaut mit LATEX