Package 'nmslibR'

February 1, 2023

```
Type Package
Title Non Metric Space (Approximate) Library
Version 1.0.7
Date 2023-02-01
BugReports https://github.com/mlampros/nmslibR/issues
URL https://github.com/mlampros/nmslibR
Description A Non-Metric Space Library ('NM-
      SLIB' <a href="https://github.com/nmslib/nmslib">https://github.com/nmslib/nmslib</a>) wrapper, which according to the au-
      thors "is an efficient cross-platform similarity search library and a toolkit for evaluation of simi-
      larity search methods. The goal of the 'NMSLIB' <a href="https://github.com/nmslib/nmslib">https://github.com/nmslib/nmslib</a> Li-
      brary is to create an effective and comprehensive toolkit for searching in generic non-
      metric spaces. Being comprehensive is important, because no single method is likely to be suffi-
      cient in all cases. Also note that exact solutions are hardly efficient in high dimen-
      sions and/or non-metric spaces. Hence, the main focus is on approximate methods". The wrap-
      per also includes Approximate Kernel k-Nearest-Neighbor functions based on the 'NM-
      SLIB' <a href="https://github.com/nmslib/nmslib">https://github.com/nmslib/nmslib</a> 'Python' Library.
License Apache License (>= 2.0)
SystemRequirements python3-dev: apt-get install -y python3-dev (deb),
      python3-pip: apt-get install -y python3-pip (deb), numpy: pip3
      install numpy (deb), scipy: pip3 install scipy (deb), nmslib:
      pip3 install --no-binary :all: nmslib (deb)
Encoding UTF-8
Depends R(>= 3.2.3)
Imports Rcpp (>= 0.12.7), reticulate, R6, Matrix, KernelKnn, utils,
      lifecycle
LinkingTo Rcpp, RcppArmadillo (>= 0.8.0)
Suggests testthat, covr, knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.2.3
Config/reticulate list( packages = list( list(package = ``nmslib", pip
      = TRUE), list(package = ``scipy", pip = TRUE) ))
```

NeedsCompilation yes

Author Lampros Mouselimis [aut, cre] (https://orcid.org/0000-0002-8024-1546),
B. Naidan [cph] (Author of the Non-Metric Space Library (NMSLIB)),
L. Boytsov [cph] (Author of the Non-Metric Space Library (NMSLIB)),
Yu. Malkov [cph] (Author of the Non-Metric Space Library (NMSLIB)),
B. Frederickson [cph] (Author of the Non-Metric Space Library (NMSLIB)),
D. Novak [cph] (Author of the Non-Metric Space Library (NMSLIB))

Maintainer Lampros Mouselimis <mouselimislampros@gmail.com>

Repository CRAN

Date/Publication 2023-02-01 19:20:02 UTC

R topics documented:

Kerne	elKnnCV_nmslib		pro ısli			ern	el	k .	ne	ar	est	n	eig	ζhi	bo.	rs	(c	ro.	SS-	va	ılid	la	tec	l)	us	sin	g	the	?
Index																													13
	TO_scipy_sparse .			٠				٠	•				٠			•	•	•			•					•	•		10
	NMSlib																												•
	mat_2scipy_sparse																												
KernelKnn nmslib																													2
	KernelKnnCV_nms	lib																											2

Description

Approximate Kernel k nearest neighbors (cross-validated) using the nmslib library

Usage

```
KernelKnnCV_nmslib(
  data,
  y,
  k = 5,
  folds = 5,
  h = 1,
  weights_function = NULL,
  Levels = NULL,
  Index_Params = NULL,
  Time_Params = NULL,
  space = "11",
  space_params = NULL,
  method = "hnsw",
  data_type = "DENSE_VECTOR",
  dtype = "FLOAT",
```

KernelKnnCV_nmslib 3

```
index_filepath = NULL,
print_progress = FALSE,
num_threads = 1,
seed_num = 1
)
```

Arguments

data	a numeric matrix								
У	a numeric vector specifying the response variable (in classification the labels must be numeric from 1:Inf). The length of y must equal the rows of the $data$ parameter								
k	an integer. The number of neighbours to return								
folds	the number of cross validation folds (must be greater than 1)								
h	the bandwidth (applicable if the weights_function is not NULL, defaults to 1.0								
weights_functi	on								
	there are various ways of specifying the kernel function. See the details section.								
Levels	a numeric vector. In case of classification the unique levels of the response variable are necessary								
Index_Params	a list of (optional) parameters to use in indexing (when creating the index)								
Time_Params	a list of parameters to use in querying. Setting <i>Time_Params</i> to NULL will reset								
space	a character string (optional). The metric space to create for this index. Page 31 of the manual (see <i>references</i>) explains all available inputs								
space_params	a list of (optional) parameters for configuring the space. See the <i>references</i> manual for more details.								
method	a character string specifying the index method to use								
data_type	a character string. One of 'DENSE_UINT8_VECTOR', 'DENSE_VECTOR', 'OBJECT_AS_STRING' or 'SPARSE_VECTOR'								
dtype	a character string. Either 'FLOAT' or 'INT'								
index_filepath	a character string specifying the path to a file, where an existing index is saved								
print_progress	a boolean (either TRUE or FALSE). Whether or not to display progress bar								
num_threads	an integer. The number of threads to use								
seed_num	a numeric value specifying the seed of the random number generator								

Details

There are three possible ways to specify the *weights function*, 1st option: if the weights_function is NULL then a simple k-nearest-neighbor is performed. 2nd option: the weights_function is one of 'uniform', 'triangular', 'epanechnikov', 'biweight', 'triweight', 'tricube', 'gaussian', 'cosine', 'logistic', 'gaussianSimple', 'silverman', 'inverse', 'exponential'. The 2nd option can be extended by combining kernels from the existing ones (adding or multiplying). For instance, I can multiply the tricube with the gaussian kernel by giving 'tricube_gaussian_MULT' or I can add the previously mentioned kernels by giving 'tricube_gaussian_ADD'. 3rd option: a user defined kernel function

4 KernelKnn_nmslib

Examples

```
## Not run:
x = matrix(runif(1000), nrow = 100, ncol = 10)
y = runif(100)
out = KernelKnnCV_nmslib(x, y, k = 5, folds = 5)
## End(Not run)
```

KernelKnn_nmslib

Approximate Kernel k nearest neighbors using the nmslib library

Description

Approximate Kernel k nearest neighbors using the nmslib library

Usage

```
KernelKnn_nmslib(
  data,
  TEST_data = NULL,
  k = 5,
  h = 1,
 weights_function = NULL,
  Levels = NULL,
  Index_Params = NULL,
  Time_Params = NULL,
  space = "11",
  space_params = NULL,
  method = "hnsw",
  data_type = "DENSE_VECTOR",
  dtype = "FLOAT",
  index_filepath = NULL,
  print_progress = FALSE,
  num\_threads = 1
)
```

Arguments

data either a matrix or a scipy sparse matrix a numeric vector specifying the response variable (in classification the labels у

must be numeric from 1:Inf). The length of y must equal the rows of the data

parameter

KernelKnn_nmslib 5

TEST_data	a test dataset (in case of a matrix the <i>TEST_data</i> should have equal number of columns with the <i>data</i>). It is assumed that the <i>TEST_data</i> is an unlabeled dataset										
k	an integer. The number of neighbours to return										
h	the bandwidth (applicable if the weights_function is not NULL, defaults to 1.0)										
weights_function											
	there are various ways of specifying the kernel function. See the details section.										
Levels	a numeric vector. In case of classification the unique levels of the response variable are necessary										
Index_Params	a list of (optional) parameters to use in indexing (when creating the index)										
Time_Params	a list of parameters to use in querying. Setting <i>Time_Params</i> to NULL will reset										
space	a character string (optional). The metric space to create for this index. Page 31 of the manual (see <i>references</i>) explains all available inputs										
space_params	a list of (optional) parameters for configuring the space. See the <i>references</i> manual for more details.										
method	a character string specifying the index method to use										
data_type	a character string. One of 'DENSE_UINT8_VECTOR', 'DENSE_VECTOR', 'OBJECT_AS_STRING' or 'SPARSE_VECTOR'										
dtype	a character string. Either 'FLOAT' or 'INT'										
<pre>index_filepath</pre>	a character string specifying the path to a file, where an existing index is saved										
print_progress	a boolean (either TRUE or FALSE). Whether or not to display progress bar										
num_threads	an integer. The number of threads to use										

Details

There are three possible ways to specify the *weights function*, 1st option: if the weights_function is NULL then a simple k-nearest-neighbor is performed. 2nd option: the weights_function is one of 'uniform', 'triangular', 'epanechnikov', 'biweight', 'triweight', 'tricube', 'gaussian', 'cosine', 'logistic', 'gaussianSimple', 'silverman', 'inverse', 'exponential'. The 2nd option can be extended by combining kernels from the existing ones (adding or multiplying). For instance, I can multiply the tricube with the gaussian kernel by giving 'tricube_gaussian_MULT' or I can add the previously mentioned kernels by giving 'tricube_gaussian_ADD'. 3rd option: a user defined kernel function

Examples

```
try({
  if (reticulate::py_available(initialize = FALSE)) {
   if (reticulate::py_module_available("nmslib")) {
    library(nmslibR)

    x = matrix(runif(1000), nrow = 100, ncol = 10)

    y = runif(100)

  out = KernelKnn_nmslib(data = x, y = y, k = 5)
```

6 mat_2scipy_sparse

```
}
}, silent=TRUE)
```

mat_2scipy_sparse

conversion of an R matrix to a scipy sparse matrix

Description

conversion of an R matrix to a scipy sparse matrix

Usage

```
mat_2scipy_sparse(x, format = "sparse_row_matrix")
```

Arguments

```
x a data matrix
format a character string. Either "sparse_row_matrix" or "sparse_column_matrix"
```

Details

This function allows the user to convert an R matrix to a scipy sparse matrix. This is useful because the *nmslibR* package accepts only *python* sparse matrices as input.

References

https://docs.scipy.org/doc/scipy/reference/sparse.html

Examples

```
try({
   if (reticulate::py_available(initialize = FALSE)) {
     if (reticulate::py_module_available("scipy")) {
        library(nmslibR)
        set.seed(1)
        x = matrix(runif(1000), nrow = 100, ncol = 10)
        res = mat_2scipy_sparse(x)
        print(dim(x))
        print(res$shape)
     }
   }
}, silent=TRUE)
```

NMSlib 7

NMSlib

Non metric space library

Description

Non metric space library

Non metric space library

Usage

```
# init <- NMSlib$new(input_data, Index_Params = NULL, Time_Params = NULL,

# space='l1', space_params = NULL, method = 'hnsw',

# data_type = 'DENSE_VECTOR', dtype = 'FLOAT',

index_filepath = NULL, load_data = FALSE,

# print_progress = FALSE)</pre>
```

Details

input_data parameter: In case of numeric data the input_data parameter should be either an R matrix object or a scipy sparse matrix. Additionally, the input_data parameter can be a list including more than one matrices / sparse-matrices having the same number of columns (this is ideal for instance if the user wants to include both a train and a test dataset in the created index)

the Knn_Query function finds the approximate K nearest neighbours of a vector in the index

the *knn_Query_Batch* Performs multiple queries on the index, distributing the work over a thread pool

the save_Index function saves the index to disk

save_Index(filename, save_data = FALSE)

If the *index_filepath* parameter is not NULL then an existing index will be loaded

Incrementally updating an already saved (and loaded) index is not possible (see: https://github.com/nmslib/nmslib/issues/73)

Methods

8 NMSlib

Methods

```
Public methods:
```

```
• NMSlib$new()
  • NMSlib$Knn_Query()
  • NMSlib$knn_Query_Batch()
  • NMSlib$save_Index()
  • NMSlib$clone()
Method new():
 Usage:
 NMSlib$new(
   input_data,
   Index_Params = NULL,
   Time_Params = NULL,
   space = "11",
   space_params = NULL,
   method = "hnsw",
   data_type = "DENSE_VECTOR",
   dtype = "FLOAT",
```

index_filepath = NULL, load_data = FALSE, print_progress = FALSE

Arguments:

)

input_data the input data. See details for more information

Index_Params a list of (optional) parameters to use in indexing (when creating the index)

Time_Params a list of parameters to use in querying. Setting *Time_Params* to NULL will reset space a character string (optional). The metric space to create for this index. Page 31 of the manual (see *references*) explains all available inputs

space_params a list of (optional) parameters for configuring the space. See the *references* manual for more details.

method a character string specifying the index method to use

data_type a character string. One of 'DENSE_UINT8_VECTOR', 'DENSE_VECTOR', 'OBJECT_AS_STRING' or 'SPARSE_VECTOR'

dtype a character string. Either 'FLOAT' or 'INT'

index_filepath a character string specifying the path to a file, where an existing index is saved

load_data a boolean. If TRUE then besides the index also the saved data will be loaded. This parameter is used when the <code>index_filepath</code> parameter is not NULL (see the web links in the <code>references</code> section for more details). The user might also have to specify the <code>skip_optimized_index</code> parameter of the <code>Index_Params</code> in the "init" method

print_progress a boolean (either TRUE or FALSE). Whether or not to display progress bar

Method Knn_Query():

Usage:

NMSlib 9

NMSlib\$Knn_Query(query_data_row, k = 5, include_query_data_row_index = FALSE)

```
Arguments:
       query_data_row a vector to query for
       k an integer. The number of neighbours to return
       include_query_data_row_index a boolean. If TRUE then the index of the query data row
           will be returned as well. It currently defaults to FALSE which means the first matched
           index is excluded from the results (this parameter will be removed in version 1.1.0 and the
           output behavior of the function will be changed too - see the deprecation warning)
     Method knn_Query_Batch():
       Usage:
       NMSlib$knn_Query_Batch(query_data, k = 5, num_threads = 1)
       Arguments:
       query_data the query_data parameter should be of the same type with the input_data param-
           eter. Queries to query for
       k an integer. The number of neighbours to return
       num_threads an integer. The number of threads to use
     Method save_Index():
       Usage:
       NMSlib$save_Index(filename, save_data = FALSE)
       Arguments:
       filename a character string specifying the path. The filename to save (in case of the save Index
           method ) or the filename to load ( in case of the load_Index method )
       save_data a boolean. If TRUE then besides the index also the data will be saved (see the web
           links in the references section for more details)
     Method clone(): The objects of this class are cloneable with this method.
       NMSlib$clone(deep = FALSE)
       Arguments:
       deep Whether to make a deep clone.
References
    https://github.com/nmslib/nmslib/blob/master/manual/latex/manual.pdf
    https://github.com/nmslib/nmslib/blob/master/python_bindings/notebooks/search_vector_dense_optim.ipynb
    https://github.com/nmslib/nmslib/blob/master/python_bindings/notebooks/search_vector_dense_nonoptim.ipynb
```

https://github.com/nmslib/nmslib/issues/356

https://github.com/nmslib/nmslib/blob/master/manual/methods.md https://github.com/nmslib/nmslib/blob/master/manual/spaces.md TO_scipy_sparse

Examples

TO_scipy_sparse

conversion of an R sparse matrix to a scipy sparse matrix

Description

conversion of an R sparse matrix to a scipy sparse matrix

Usage

```
TO_scipy_sparse(R_sparse_matrix)
```

Arguments

```
R_sparse_matrix
```

an R sparse matrix. Acceptable input objects are either a dgCMatrix or a dgR-Matrix.

TO_scipy_sparse

Details

This function allows the user to convert either an R dgCMatrix or a dgRMatrix to a scipy sparse matrix (scipy.sparse.csc_matrix or scipy.sparse.csr_matrix). This is useful because the nmslibR package accepts besides an R dense matrix also python sparse matrices as input.

The *dgCMatrix* class is a class of sparse numeric matrices in the compressed, sparse, *column-oriented format*. The *dgRMatrix* class is a class of sparse numeric matrices in the compressed, sparse, *column-oriented format*.

References

https://stat.ethz.ch/R-manual/R-devel/library/Matrix/html/dgCMatrix-class.html, https://stat.ethz.ch/R-manual/R-devel/library/Matrix/html/dgRMatrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix/html/dgRMatrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix/html/dgRMatrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix/html/dgRMatrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparsetyles/library/Matrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy-sparsetyles/library/Matrix-class.html, https://docs.scipy.org/doc/scipy-reference/generated/scipy-sparsetyles/library/Matrix-class.html, https://docs.scipy-reference/generated/scipy-sparsetyles/library/Matrix-class.html, https://docs.scipy-reference/generated/scipy-scipy-reference/generated/scipy-scipy-scipy-reference/generated/scipy-scipy-scipy-reference/generated/scipy-

Examples

```
try({
 if (reticulate::py_available(initialize = FALSE)) {
   if (reticulate::py_module_available("scipy")) {
     if (Sys.info()["sysname"] != 'Darwin') {
       library(nmslibR)
       # 'dgCMatrix' sparse matrix
       data = c(1, 0, 2, 0, 0, 3, 4, 5, 6)
       dgcM = Matrix::Matrix(data = data, nrow = 3,
                             ncol = 3, byrow = TRUE,
                             sparse = TRUE)
       print(dim(dgcM))
       res = T0_scipy_sparse(dgcM)
       print(res$shape)
       # 'dgRMatrix' sparse matrix
       #-----
       dgrM = as(dgcM, "RsparseMatrix")
       print(dim(dgrM))
       res_dgr = T0_scipy_sparse(dgrM)
```

TO_scipy_sparse

```
print(res_dgr$shape)
    }
}
silent=TRUE)
```

Index

```
KernelKnn_nmslib, 4
KernelKnnCV_nmslib, 2
mat_2scipy_sparse, 6
NMSlib, 7
TO_scipy_sparse, 10
```