1. Недолго думая, храбрый исследователь Василий сказал «Эх, была не была!», бросил шапку оземь и оценил с помощью statsmodels ARMA(1,1) модель.

Аккуратно опишите все предпосылки, которые используются для оценки параметров модели.

2. Величины X_1, X_2, X_3 независимы и равномерны на [0;1]. Определим $M_2 = \max\{X_1, X_2\}$ и $M_3 = \max\{X_1, X_2, X_3\}$.

Найдите копулу величин M_2 , M_3 и схематично нарисуйте любую её линию уровня.

3. По народным приметам определите, имеет ли стационарное решение уравнение

$$\begin{pmatrix} a_t \\ b_t \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix} + \begin{pmatrix} -3 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a_{t-1} \\ b_{t-1} \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix} \begin{pmatrix} a_{t-2} \\ b_{t-2} \end{pmatrix} + \begin{pmatrix} u_t^a \\ u_t^b \end{pmatrix},$$

где (u_t) — многомерный белый шум.

- 4. Стационарный в сильном смысле белый шум (u_t) описывается GARCH(1,0) моделью: $u_t = \nu_t \sigma_t$, $\nu_t \sim \mathcal{N}(0;1), \, \sigma_t^2 = 3 + 0.1 \sigma_{t-1}^2$. Помимо уравнений предполагают, что ν_t не зависит от $u_{t-1}, \, \nu_{t-1}, \, u_{t-2}, \, \nu_{t-2}, \, \dots$
 - а) Найдите безусловную дисперсию u_t .
 - б) Докажите, что u_t^2 это некий ARMA-процесс и выпишите его уравнение.
- 5. Перепишите стационарную ARMA(1,1) модель с уравнением $y_t=0.2y_{t-1}+u_t+0.5u_{t-1}$, где (u_t) белый шум, в виде модели пространства состояний

$$\begin{cases} x_t = Fx_{t-1} + v_t \\ y_t = Gx_t + w_t, \end{cases}$$

где величины x_0 , (v_1, w_1) , (v_2, w_2) , ... некоррелированы.

Нужно явно выписать, как устроен вектор x_t , матрицы F и G, как связаны v_t и w_t с исходным шумом u_t .

6. Возможны ли значения автокорреляционной функции, равные $\rho_1=0,\,\rho_2=0.9?$ Возможны ли значения частной автокорреляционной функции, равные $\phi_{11}=0,\,\phi_{22}=0.9?$

Для каждого случая докажите невозможность или предъявите явный контр-пример процесса.