TLP521, TLP521-2, TLP521-4

HIGH DENSITY MOUNTING PHOTOTRANSISTOR OPTICALLY COUPLED ISOLATORS

APPROVALS

• UL recognised, File No. E91231

DESCRIPTION

The TLP521, TLP521-2, TLP521-4 series of optically coupled isolators consist of infrared light emitting diodes and NPN silicon photo transistors in space efficient dual in line plastic packages.

FEATURES

- Options :-
 - 10mm lead spread add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- High Current Transfer Ratio (50% min)
- High Isolation Voltage (5.3kV_{RMS},7.5kV_{PK})
- High BV_{CEO} (55Vmin)
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road
Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax: (01429) 863581

ISOCOM INC

0.26

720 E., Park Boulevard, Suite 104, Plano, TX 75074 USA Tel: (972) 423-5521 Fax: (972) 422-4549

DB92546-AAS/A1

ABSOLUTE MAXIMUM RATINGS (25°C unless otherwise specified)

Storage Temperature55°C to Operating Temperature55°C to	+ 125°C + 100°C
Lead Soldering Temperature	
(1/16 inch (1.6mm) from case for 10 secs)	260°C

INPUT DIODE

Forward Current	 50mA
Reverse Voltage	 5V
Power Dissipation	 70mW

OUTPUT TRANSISTOR

Collector-emitter Voltage BV _{CEO}	55V
Emitter-collector Voltage BV	6V
Power Dissipation	150mW

POWER DISSIPATION

Total Power Dissipation	200mW
(derate linearly 2.67mW/°C above 25°C)	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F) Reverse Voltage (V_R) Reverse Current (I_R)	1.0	1.15	1.3 10	V V μA	$I_{F} = 10\text{mA}$ $I_{R} = 10\mu\text{A}$ $V_{R} = 5\text{V}$
Output	$ \begin{array}{c} \text{Collector-emitter Breakdown (BV}_{\text{CEO}}) \\ \text{(Note 2)} \\ \text{Emitter-collector Breakdown (BV}_{\text{ECO}}) \\ \text{Collector-emitter Dark Current (I}_{\text{CEO}}) \end{array} $	55 6		100	V V nA	$I_{C} = 0.5 \text{mA}$ $I_{E} = 100 \mu \text{A}$ $V_{CE} = 24 \text{V}$
Coupled	Current Transfer Ratio (CTR) (Note 2) TLP521, TLP521-2, TLP521-4 CTR selection available BL GB GB Collector-emitter Saturation Voltage $V_{\text{CE (SAT)}}$ -GB Input to Output Isolation Voltage V_{ISO} Input-output Isolation Resistance R_{ISO} Rise Time tr Fall Time tf	50 200 100 30	2 3	600 600 600 0.4 0.4	% % % V V V V RMS V PK Ω μs	$5\text{mA I}_{\text{F}}, 5\text{V V}_{\text{CE}}$ $1\text{mA I}_{\text{F}}, 0.4\text{V V}_{\text{CE}}$ $8\text{mA I}_{\text{F}}, 2.4\text{mA I}_{\text{C}}$ $1\text{mA I}_{\text{F}}, 0.2\text{mA I}_{\text{C}}$ See note 1 See note 1 $V_{\text{IO}} = 500\text{V (note 1)}$ $V_{\text{CC}} = 10\text{V},$ $I_{\text{C}} = 2\text{mA}, R_{\text{L}} = 100\Omega$
	Turn-on Time ton Turn-off Time toff		3 3		μs μs μs	_C = 2mrs, N _L = 10032

Note 1 Measured with input leads shorted together and output leads shorted together.

Note 2 Special Selections are available on request. Please consult the factory.

31*7*/97 DB92546-AAS/A1

Collector Power Dissipation vs. Ambient Temperature

Collector Current vs. Low Collector-emitter Voltage

Forward Current vs. Ambient Temperature

Collector Current vs. Collector-emitter Voltage

Collector-emitter Saturation

Current Transfer Ratio vs. Forward Current

