Examen: Programarea Algoritmilor Eficienti

4 iunie 2022

Alexandru Popa

In primul rand, va rog sa va scrieti NUMELE si GRUPA pe foaia de examen, la fiecare subject! Timpul de lucru este de 120 de minute. Link-ul de upload il veti primi pe Gmeet.

1 Demonstratii de NP-Completitudine: 3 puncte

Se dau urmatoarele probleme.

Problema 1 (Problema 1). Se da un graf neorientat G = (V, E) si un intreg k. Sa se determine daca exista o submultime $X \subseteq V$, cu $|X| \le k$ astfel incat pentru orice $(a,b) \in E$ sa avem fie $a \in X$, $b \in X$ sau $a,b \in X$.

Problema 2 (Problema 2). Se da un graf neorientat G = (V, E) si un intreg k. Sa se determine daca exista o submultime $X \subseteq V$, cu $|X| \ge k$ astfel incat pentru orice $a, b \in X$ sa NU avem $(a,b) \in E$.

Cerinte:

- 1. Construiti o reductie polinomiala de la Problema 1 la Problema 2.
- 2. Construiti o reductie polinomiala de la Problema 2 la Problema 1.

2 Algoritmi de aproximare: 4 puncte

Problema 3. Se da un graf neorientat G = (V, E). O colorare a nodurilor lui G cu k culori este o functie $c: V \to \{1, 2, ..., k\}$ such that for any two adjacent vertices a, b, we have $c(a) \neq c(b)$.

Cerinte:

- 1. Construiti un algoritm care primeste ca input un graf G si returneaza o colorare cu $\Delta + 1$ culori unde Δ este gradul maxim al lui G.
- 2. Se da un graf care admite o 3 colorare (vi se da doar graful, fara sa stiti si colorarea). Sa se gaseasca o colorare a acestui graf cu $O(\sqrt{|V|})$ culori.

3 Algoritmi fixed parameter: 3 puncte

Problema 4. Se dau n puncte in plan si un numar k. Sa se determine daca pot trasa k linii drepte astfel incat fiecare din cele n puncte sa se afle pe cel putin o dreapta.

Sa se gaseasca un algoritm fixed parameter pentru problema de mai sus. Demonstrati corectitudinea algoritmului si timpul de rulare al acestuia.