Cálculo I - agr. 4 2022/23

 $\mathbf{2.0}$ teste Duração: 1h30

• Este teste continua no verso e termina com a palavra FIM. No verso encontras também a cotação e formulários.

- Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas.
- 1. Seja $\mathcal{A} = \{(x,y) \in \mathbb{R}^2 : \frac{y^2}{2} 3 \le x \le y + 1\}.$
 - (a) Calcula os pontos de interseção dos gráficos de $x = \frac{y^2}{2} 3$ e x = y + 1. Nota: Para efeitos da resolução das alíneas seguintes informa-se que a solução é (-1, -2) e (5, 4), mas nenhuma cotação terás na presente alínea se apenas verificares que estes pontos satisfazem as duas equações.
 - (b) Representa geometricamente a região A.
 - (c) Calcula a área da região A.
- 2. Considera os seguintes integrais impróprios. Determina a natureza de cada um e, no caso de convergência, o seu valor.

(a)
$$\int_1^{+\infty} \frac{1}{\sqrt{x^3}} \cos\left(\frac{1}{\sqrt{x}}\right) dx;$$

(b)
$$\int_{-1}^{1} \frac{x}{\sqrt[3]{1-x^2}} dx$$
.

[Nota: Não compliques: em ambas as alíneas as primitivas envolvidas são quase imediatas após eventual ajuste com constantes multiplicativas adequadas.]

3. (a) Estuda a natureza das seguintes séries numéricas. Em caso de convergência indica se é simples ou absoluta.

(i)
$$\sum_{n=1}^{+\infty} \frac{\sqrt{n} \cos(n\pi)}{2n^2 + 3n}$$
; (ii) $\sum_{n=0}^{+\infty} \frac{n! (n+1)!}{(3n)!}$.

(b) Determina a soma da seguinte série numérica convergente:

$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n^2 - 1}.$$

[Sugestão: Para o caso de ser útil, observa que $(-1)^n = (-1)^{n+2}$.]

- 4. Seja $f:[0,+\infty[\longrightarrow \mathbb{R}$ uma função contínua, crescente e estritamente positiva.
 - (a) Por que é que o $\lim_{x\to+\infty} f(x)$ existe de certeza, finito ou $+\infty$?

(b) Mostra que

$$\lim_{x \to +\infty} \frac{\int_x^{2x} f(t) dt}{f(x)} = +\infty.$$

[Sugestão: Tira partido do Teorema da média para integrais ou da chamada propriedade da limitação do integral para encontrares um minorante para o numerador da fração tal que, com esse minorante, a nova fração tenda para $+\infty$ quando $x \to +\infty$. Mas não te esqueças de justificar os teus argumentos — a sugestão aqui dada não serve de justificação.]

FIM

Cotação:

1. 6; 2.(a) 2; 2.(b) 3; 3.(a) 4; 3.(b) 2; 4.(a) 1; 4.(b) 2.

Algumas fórmulas de derivação

função de x	$\frac{d}{dx}$
$m u(x), m \in \mathbb{R}$	m u'(x)
$u(x)^n, n \in \mathbb{R}$	$n u(x)^{n-1} u'(x)$
$\log_a u(x) , \ a \in \mathbb{R}^+ \setminus \{1\}$	$\frac{u'(x)}{u(x)\ln a}$
$a^{u(x)}, \ a \in \mathbb{R}^+$	$\frac{\overline{u(x)\ln a}}{a^{u(x)}u'(x)\ln a}$
$\sin u(x)$	$\cos u(x) u'(x)$
$\cos u(x)$	$-\sin u(x)u'(x)$
$\tan u(x)$	$\sec^2 u(x) u'(x)$
$\cot u(x)$	$-\csc^2 u(x) u'(x)$
$\sec u(x)$	$\tan u(x) \sec u(x) u'(x)$
$\csc u(x)$	$-\cot u(x) \csc u(x) u'(x)$
$\sinh u(x)$	$\cosh u(x) u'(x)$
$ \cosh u(x) $	$\sinh u(x) u'(x)$
$\arcsin u(x)$	$\frac{u'(x)}{\sqrt{1-u(x)^2}}$
$\arccos u(x)$	$-\frac{u'(x)}{\sqrt{1-u(x)^2}}$
$\arctan u(x)$	$\frac{u'(x)}{1+u(x)^2}$
$\operatorname{arccot} u(x)$	$-\frac{u'(x)}{1+u(x)^2}$

Algumas fórmulas trigonométricas

$\sec u = \frac{1}{\cos u}$	$\csc u = \frac{1}{\sin u}$
$\cot u = \frac{\cos u}{\sin u}$	
$\cos^2 u = \frac{1 + \cos(2u)}{2}$	$\sin^2 u = \frac{1 - \cos(2u)}{2}$
$1 + \tan^2 u = \sec^2 u$	$1 + \cot^2 u = \csc^2 u$
$\cos^2(\arcsin u) = 1 - u^2$	$\sin^2(\arccos u) = 1 - u^2$

Algumas fórmulas hiperbólicas

$\sinh u = \frac{e^u - e^{-u}}{2}$	$ \cosh u = \frac{e^u + e^{-u}}{2} $
$\cosh^2 u - \sinh^2 u = 1$	