Unique List of "Reactions"

Tim David

May 3, 2021

Todo list

Double check that all of the reaction descriptions are still correct after Robin edits	1
Fix numbering changes from Robin edits	1
For reactions 15, 16, and 17 I wasn't quite sure how to handle it. I changed them to just be a single parameter,	
but I am not sure if that parameter also effects other parts of the model	2
I changed 20 and 21 so that reaction 21 toggles whether w_k is constant or not	2
I changed 22 and 22 so that reaction 22 toggles whether h_k is constant or not	2
I changed 24 and 25 so that reaction 25 toggles whether m_k is constant or not	2
I don't know how to handle 26 and 27. 26 I could very carefully check the code for spaces where it was written	
AA_k-AA_i, but there is still a chance I would make a mistake. 27 I don't know what to do with at all	3
My changes to 50 and 51 make it so that reaction 50 turns off part of an ODE and reaction 51 turns off that same	
part of the ODE as well as the rest of it. I am not sure if we should keep this or remove (my edited) reaction	
50	3
I am not sure what to do about 54, 55, 56, and 57. I think it would be very easy for me to mess things up/create a	
division by 0 error.	4
67 is another one where I couldn't figure out a way to change it without accidentally breaking something	4
From original reaction list, needs redone	4
	8
Whole section references old results, needs redone	10
From original reaction list, needs redone	
-	

Abstract

1 Introduction

The list below is a unique list provided so as to generate a protocol for deleting "reactions". "Reactions" are defined as distinct formulae forming the RHS of the relevant o.d.e. As a way of getting to a reduced system of NVC we have not altered the neuron model nor the ??

2 Synaptic Cleft and Astrocyte

Double check that all of the reaction descriptions are still correct after Robin edits

Fix numbering changes from Robin edits

THE LIST

Table 1

Reaction	Description	
		Astrocyte and Synaptic Cleft
1	J_{K_k}	potassium (K ⁺) channel
2	J_{NaK_k}	K ⁺ sodium (Na ⁺)-ATPase pump
3	J_{NKCC1_k}	Na ⁺ , K ⁺ and Cl flux through the NKCC1 channel
4	J_{KCC1_k}	Cl and K ⁺ flux through the KCC1 channel
5	$J_{KNEtoSC}$	flux of K ⁺ into the SC based on the extracellular K ⁺
6	J_{Na_k}	Na ⁺ flux through the Na ⁺ channel
7	J_{NBC_k}	Na ⁺ and HCO3 flux through the NBC channel
8	$J_{NaNEtoSC},$	flux of Na ⁺ into the SC based on the extracellular $K^+ = J_{KNEtoSC}$
9	J_{IP3_k}	flux of calcium (Ca ²⁺) through the IP3R channel
10	J_{pump_k}	flux of Ca ²⁺ through the uptake pump
11	J_{ERleak_k}	flux of Ca ²⁺ through the leak channel
12	J_{TRPV_k}	flux of Ca ²⁺ through TRPV4 channel
13	J_{CICR_k}	flux of Ca ²⁺ through CICR into astrocytic cytosol
14	G	rate of IP3 production in astrocyte due to glutamate receptors
15	k_{deg}	Rate constant for IP3 degradation in astrocyte
		For reactions 15, 16, and 17 I wasn't quite sure how to handle it.
		I changed them to just be a single parameter, but I am not sure if
		that parameter also effects other parts of the model
16	V_{eet}	production of astrocytic epoxyeicosatrienoic acid (EET) concentration
17	k_{eet}	degredation of astrocytic epoxyeicosatrienoic acid (EET) concentration
18	J_{BK_k}	
19	J_{Cl_k}	
21	ϕ_n	
	,	I changed 20 and 21 so that reaction 21 toggles whether w_k is
		constant or not
22	k_{on}	inactivation variable h_k of the astrocytic IP_3R channel
		I changed 22 and 22 so that reaction 22 toggles whether h_k is constant or not
		Constant of not
25	$trpv_{switch}$	TRPV4 channel open probability
		I changed 24 and 25 so that reaction 25 toggles whether m_k is
		constant or not

		check the code for spaces where it was written AA_k-AA_i, but
		there is still a chance I would make a mistake. 27 I don't know
		what to do with at all.
	4.4.4.4	
27	$\frac{AA_mAA_{max}}{(AA_m + max(Ca_k - Ca_0))^2 \frac{dCa_k}{dt}}$	concentration of arachidonic acid in the astrocyte AA_k .
PVS		
28	J_{BK_k}	K ⁺ concentration in the perivascular space (PVS)
29	J_{KIR_i}	K ⁺ concentration in the PVS
30	K_{decay_p}	K ⁺ concentration in the PVS
31	J_{TRPV_k}	Ca ²⁺ concentration in the PVS
32	J_{VOCC_i}	Ca ²⁺ concentration in the PVS
33	Ca_{decay_p}	Ca ²⁺ concentration in the PVS
SMC		
36	$J_{IP_{3i}}$	Cytosolic Ca ²⁺ in the smooth muscle cell (SMC)
37	$J_{SR_{uptake_i}}$	Cytosolic Ca ²⁺ in the SMC
38	J_{CICR_i}	Cytosolic Ca ²⁺ in the SMC
39	$J_{extrusion_i}$	Cytosolic Ca ²⁺ in the SMC
40	$J_{SR_{leak_i}}$	Cytosolic Ca ²⁺ in the SMC
42	J_{Na/Ca_i}	Cytosolic Ca ²⁺ in the SMC
43	$J_{stretch_i}$	Cytosolic Ca ²⁺ in the SMC
44	$J_{Ca^{2+}-coupling_i}^{SMC-EC}$	Cytosolic Ca ²⁺ in the SMC
45	J_{NaK_i}	Membrane potential of the SMC
46	J_{Cl_i}	Membrane potential of the SMC
47	J_{K_i}	Membrane potential of the SMC
48	J_{KIR_i}	Membrane potential of the SMC
49	$V_{coupling_i}^{SMC-EC}$	Membrane potential of the SMC
50	K_{act_i}	Open state probability of Ca ²⁺ -activated K ⁺ channels
51	λ_i	Open state probability of Ca ²⁺ -activated K ⁺ channels
		My changes to 50 and 51 make it so that reaction 50 turns off part
		of an ODE and reaction 51 turns off that same part of the ODE
		as well as the rest of it. I am not sure if we should keep this or
		remove (my edited) reaction 50
		fluxes for K $^+$ in SMC are 45, 47, 48 divided by γ_v
52	J_{degrad_i}	inositol trisphosphate (IP ₃) concentration in the SMC
	acg. aa,	1 1 0
53	$J_{IP_3-coupling_i}^{SMC-EC}$	IP ₃ concentration in the SMC
54	$\underline{AA_k}$	Arachidonic acid in the SMC
	$ au_{AA}$	
55	$rac{-AA_i}{ au_{AA}}$	Arachidonic acid in the SMC
56	$\frac{\tau_{AA}}{1 + exp(\frac{(NO_i - NO_{rest})}{R_{NO}})} \frac{V_a A A_i}{K_a + A A_i}$	20-HETE in the SMC
	$1+exp(\frac{\cdots e_i - \cdots e_{rest}}{R_{NO}}) \Lambda_a + AA_i$	

concentration of arachidonic acid in the astrocyte AA_k .

I don't know how to handle 26 and 27. 26 I could very carefully

 $\frac{(AA_i - AA_k)}{\tau_{AA}}$

26

57	$\frac{V_f A A_i}{K_f + A A_i}$	20-HETE in the SMC I am not sure what to do about 54, 55, 56, and 57. I think it would be very easy for me to mess things up/create a division by 0 error.
58	λ_h	20-HETE in the SMC
EC		
59	$J_{IP_{3j}}$	Cytosolic Ca ²⁺ concentration in the endothelial cell (EC)
60	$J_{ER_{uptake_{j}}}$	Cytosolic Ca ²⁺ concentration in the EC
61	J_{CICR_j}	Cytosolic Ca ²⁺ concentration in the EC
62	$J_{extrusion_j}$	Cytosolic Ca ²⁺ concentration in the EC
63	$J_{ER_{leak_{i}}}$	Cytosolic Ca ²⁺ concentration in the EC
64	J_{cation_j}	Cytosolic Ca ²⁺ concentration in the EC
65	J_{0_j}	Cytosolic Ca ²⁺ concentration in the EC
66	$J_{stretch_j}$	Cytosolic Ca ²⁺ concentration in the EC
67	$-rac{1}{C_{m_j}}(I_{K_j}+I_{R_j})$	Membrane potential of the EC
		67 is another one where I couldn't figure out a way to change it
		without accidentally breaking something
69	J_{PLC}	IP ₃ concentration of the EC
70	J_{degrad_j}	IP ₃ concentration of the EC
71	$J_{IP_3-coupling_j}^{SMC-EC}$	IP ₃ concentration of the EC

Table 2
From original reaction list, needs redone

Rctn	Reaction name	1-norm	2-norm	inf-norm	(location of	equation
no.					max)	
0	N/A	0	0	0	E_t	
1	potassium (K ⁺) channel	53.4665	12.0407	11.5731	v_i	
2	K ⁺ sodium (Na ⁺)- ATPase pump	NaN	NaN	NaN	NaN	
3		1.8031	1.17673	1.14719	w_k	
4	Cl and K^+ flux through the KCC1 channel J_{KCC1_k}	0.0213536	0.00855816	0.00916892	w_k	$G_{KCC1_k}\phi \ln \left(\frac{K_sCl_s}{K_kCl_k}\right)$
5	flux of K ⁺ into the SC based on the extracellular K ⁺	0.232818	0.921282	0.912761	w_k	
6	Na ⁺ flux through the Na ⁺ channel	6.69095	2.28405	5.53287	v_k	

7	${ m Na^+}$ and HCO3 flux through the NBC channel J_{NBC_k}	3.04E-01	0.56255	0.501727	w_k	$G_{NBC_k}\left(v_k - E_{NBC_k}\right)$
8	flux of K^+ into the SC based on the extracellular $K^+ = JKNEtoSC$	2.37E-02	1.17E-01	1.77E-01	w_k	
9	flux of Ca ²⁺ through the IP3R channel	5.63E+00	2.09388	1.00846	h_k	
10	flux of Ca ²⁺ through the uptake pump	3179.47	2068.65	260.773	ee_t	
11	flux of Ca^{2+} through the leak channel J_{ERleak_k}	0.098875	0.0412828	0.0276192	w_k	$P_L\left(1 - \frac{Ca_k}{s_k}\right)$
12	flux of Ca ²⁺ through TRPV4 channel	1.34165	0.590297	0.539168	w_k	
13	flux of Ca^{2+} through CICR into astrocytic cytosol J_{CICR_k}	0.0422956	0.0752756	0.111209	ee_t	$C_k \frac{s_k^4}{sc_k^4 + s_k^4} \frac{Ca_k^4}{cc_k^4 + Ca_k^4}$
14	rate of IP3 production in astrocyte due to glutamate receptors	6.62065	2.3194	$1.00846 \; h_k$		
15	Rate constant for IP3 degradation in astrocyte	357.233	391.514	129.627	I_k	
16	production of astrocytic epoxyeicosatrienoic acid (EET) concentra- tion	1.25478	1.10137	1	ee_t	
17	degredation of astrocytic epoxye-icosatrienoic acid	2444.74	2033.68	420.738	ee_t	
18	K ⁺ flux through the big potassium (BK) channel (μ M s ⁻¹): J_{BK_k}	0.246612	0.194939	0.669853	K_p	$G_{BK_k}w_k\left(v_k - E_{BK_k}\right)$
19	chlorine (Cl ⁻) flux through the Cl ⁻ chan- nel (μ M s ⁻¹):	4.60284	1.91901	1.15891	Cl_k	
20	The time constant associated with the opening of the BK channel (s^{-1})	1.24139	1.01878	1	w_k	
21	The time constant associated with the opening of the BK channel (s^{-1})	1616.18	506.339	37.5492	w_k	
22	inactivation variable hk of the astrocytic IP3R channel	6.03146	2.24241	1	h_k	

23	inactivation variable hk of the astrocytic IP3R channel	3175.03	1886.23	269.894	h_k	
24	TRPV4 channel open probability	2.38878	1.16172	0.999886	m_k	
25	TRPV4 channel open probability	6643.8	5033.35	927.663	ee_t	
26	concentration of arachidonic acid in the astrocyte AAk.	0.0316276	0.0429046	0.150997	AA_k	$\frac{(AA_i - AA_k)}{\tau_{AA}}$
27	concentration of arachidonic acid in the astrocyte AA	0.0457825	0.138873	0.654171	AA_k	$\frac{AA_mAA_{max}}{(AA_m + max(Ca_k - Ca_0))^2 \frac{dCa_k}{dt}}$
28	K ⁺ concentration in the perivascular space (PVS)	0.248199	0.195333	0.669853	K_p	possible repetition of reaction 18
29	K ⁺ concentration in the PVS	0.00463886	0.0034176	0.00140806	K_p	this is a repetition of reaction 48 see below in SMC
30	K ⁺ concentration in the PVS	0.374649	0.270297	0.111932	K_p	$K_{decay_p}(K_p - K_{min_p})$
31	calcium (Ca ²⁺) concentration in the PVS	0.0609743	0.0530334	0.0578325	Ca_p	repetition of reaction 12 see above
32	Ca ²⁺ concentration in the PVS	0.0211558	0.0183736	0.0235179	Ca_p	repetition of reaction 41 see below in SMC
33	Ca ²⁺ concentration in the PVS	NaN	NaN	NaN	NaN	
34	N/A	0	0	0	E_t	
35	N/A	0	0	0	E_t	
36	Cytosolic Ca ²⁺ in the smooth muscle cell (SMC)	2.03695	0.619121	0.243314	AMp	
37	Cytosolic Ca ²⁺ in the SMC	1.41071	1.76962	9.76799	AMp	
38	Cytosolic Ca ²⁺ in the SMC	1.95459	1.43214	1.65995	s_i	
39	Cytosolic Ca ²⁺ in the SMC	29.1442	16.4226	10.3864	AMp	
40	Cytosolic Ca ²⁺ in the SMC	5.34223	4.79812	10.7775	AMp	
41	Cytosolic Ca ²⁺ in the SMC	3.84721	1.15592	0.385505	AM	
42	Cytosolic Ca ²⁺ in the SMC	1.37241	0.42607	0.328498	AMp	
43	Cytosolic Ca ²⁺ in the SMC	4.73275	1.4221	0.477013	w_i	

44	Cytosolic Ca ²⁺ in the SMC	4.20672	1.16217	0.383345	AM	
45	Membrane potential of the SMC	NaN	NaN	NaN	NaN	
46	Membrane potential of the SMC	2.50098	0.781827	0.302132	w_i	
47	Membrane potential of the SMC	30.6122	15.183	10.0965	AMp	
48	Membrane potential of the SMC J_{KIR_i}	0.334658	0.108702	0.124455	w_i	$G_{KIR_i}(v_i - v_{KIR_i})$
49	Membrane potential of the SMC $V_{coupling_i}^{SMC-EC}$	0.794953	0.258294	0.123328	w_i	$-G_{coup}(v_i - v_j)$
50	Open state probability of Ca ²⁺ -activated K ⁺ channels	26.051	14.1635	10.102	AMp	
51	Open state probability of Ca ²⁺ -activated K ⁺ channels	70.4464	68.3471	61.955	w_i	
52	inositol trisphosphate (IP3) concentration in the SMC	20.9808	10.6533	10.1006	AMp	
53	IP3 concentration in the SMC	2.92977	1.12559	1	I_i	
54	Arachidonic acid in the SMC	3.40E+00	1.70348	1	AA_i	
55	Arachidonic acid in the SMC	2.03E+14	6.22E+14	3.16E+15	AA_i	
56 57	20-HETE in the SMC 20-HETE in the SMC	5.07E+01 0.998665	7.1214 0.675777	1 0.599416	E_t H_i	$\frac{1}{1+exp(\frac{(NO_i-NO_{rest})}{R_{NO}})}\frac{V_aAA_i}{K_a+AA_i}$
58	20-HETE in the SMC	536.714	589.716	725.883	H_i	R_{NO}
59	Cytosolic Ca ²⁺ con-	4.31153	1.22434	0.725525	s_{j}	
	centration in the en-					
60	dothelial cell (EC) Cytosolic Ca ²⁺ con-	1.01901	0.990576	0.918791	s_j	
	centration in the EC					
61	Cytosolic Ca ²⁺ concentration in the EC	12.5428	12.495	13.2761	s_j	
62	Cytosolic Ca ²⁺ concentration in the EC	37.3107	19.2012	10.1376	AMp	
63	Cytosolic Ca^{2+} concentration in the $ECJ_{ER_{leak_i}}$	0.0380883	0.0370073	0.0406557	s_j	$L_j s_j$
64	Cytosolic Ca ²⁺ concentration in the EC	1.63543	0.466454	0.223622	Ca_j	
65	Cytosolic Ca ²⁺ concentration in the EC	1.11102	0.321257	0.147914	Ca_j	

66	Cytosolic Ca ²⁺ con-	3.01928	0.848642	0.446334	s_{j}
	centration in the EC				
67	Membrane potential of	2.35771	0.703111	0.512982	v_{j}
	the EC				
68	N/A	0	0	0	E_t
69	IP3 concentration of the	6.9521	1.98954	1	I_i
	EC				
70	IP3 concentration of the	49.3683	7.14973	10.1178	AMp
	EC				

Table 3 lists the reaction along with the error associated with the removal of that specific reaction when compared to the experiments of Berwick et al.

From original reaction list, needs redone

Table 3

Rctn	Reaction name	normalized HBO Error; 2-norm	normalized HBR Error; 2-norm
no.			
0	N/A	0.000468269	0.000871442
1	potassium (K+) channel	NaN	NaN
2	K+ sodium (Na+)-ATPase pump	NaN	NaN
3	Na+, K+ and Cl flux through the NKCC1 channel	0.00195538	0.000500168
4	Cl and K+ flux through the KCC1 channel	0.000466595	0.000875713
5	flux of K+ into the SC based on the extracellular K+	0.0135393	0.00639256
6	Na+ flux through the Na+ channel	0.017721	0.0073648
7	Na+ and HCO3 flux through the NBC channel	0.0014388	0.000539501
8	flux of K+ into the SC based on the extracellular $K+ = JKNEtoSC$	NaN	NaN
9	flux of Ca2+ through the IP3R channel	0.029407	0.0101798
10	flux of Ca2+ through the uptake pump	0.00780579	0.00267052
11	flux of Ca2+ through the leak chan- nel	0.000475598	0.000864279
12	flux of Ca2+ through TRPV4 channel	0.00196372	0.00117208
13	flux of Ca2+ through CICR into astrocytic cytosol	0.000512237	0.000949758
14	rate of IP3 production in astrocyte due to glutamate receptors	0.029407	0.0101798
15	Rate constant for IP3 degradation in astrocyte	0.0158477	0.00536754

16	production of astrocytic epoxye-	0.00566864	0.00263931
	icosatrienoic acid (EET) concentra-		
	tion		
17	degredation of astrocytic epoxye-	0.00201507	0.000941013
	icosatrienoic acid (EET) concentra-		
	tion		
18		0.0191554	0.0077376
19		0.0125768	0.00589543
20		0.0191554	0.00773761
21		NaN	NaN
22	inactivation variable hk of the astro-	0.029407	0.0101798
22	cytic IP3R channel	0.00777447	0.000
23	inactivation variable hk of the astro-	0.00777447	0.00266655
24	cytic IP3R channel	0.00106278	0.00117212
	TRPV4 channel open probability	0.00196378	0.00117213
25	TRPV4 channel open probability concentration of arachidonic acid in	0.0082669 0.00261581	0.00272957
26		0.00261381	0.00123312
27	the astrocyte AAk. concentration of arachidonic acid in	0.00696495	0.00326088
21		0.00090493	0.00320088
28	the astrocyte AA K+ concentration in the perivascu-	0.0191541 0.00773728	
20	lar space (PVS)	0.0191341 0.00773728	
29	K+ concentration in the PVS	0.000469189	0.000871822
29	0.00463886	0.000409189	0.000871822
30	K+ concentration in the PVS	0.00242898	0.00132313
31	calcium (Ca2+) concentration in the	NaN	0.00132313 NaN
51	PVS	11411	11411
32	Ca2+ concentration in the PVS	0.000468217	0.000871653
33	Ca2+ concentration in the PVS	NaN	NaN
34	N/A	0.000468269	0.000871442
35	N/A	0.000468269	0.000871442
36	Cytosolic Ca2+ in the smooth mus-	0.00212447	0.00102861
	cle cell (SMC)		
37	Cytosolic Ca2+ in the SMC	0.00268971	0.00203337
38	Cytosolic Ca2+ in the SMC	0.00875328	0.00455686
39	Cytosolic Ca2+ in the SMC	0.0144208	0.00701218
40	Cytosolic Ca2+ in the SMC	NaN	NaN
41	Cytosolic Ca2+ in the SMC	0.0116207	0.00582014
42	Cytosolic Ca2+ in the SMC	0.00583438	0.00390169
43	Cytosolic Ca2+ in the SMC	0.00364038	0.002412
44	Cytosolic Ca2+ in the SMC	0.00611134	0.00166663
45	Membrane potential of the SMC	NaN	NaN
46	Membrane potential of the SMC	0.00287015	0.00153477
47	Membrane potential of the SMC	0.0149869	0.00710705
48	Membrane potential of the SMC	0.0199942	0.00790603
49	Membrane potential of the SMC	0.00193546	0.000823211

50	Open state probability of Ca2+-activated K+ channels	0.0149869	0.00710705
51	Open state probability of Ca2+-activated K+ channels	0.0190485	0.00847316
52	inositol trisphosphate (IP3) concentration in the SMC	NaN	NaN
53	IP3 concentration in the SMC	0.00120016	0.000903448
54	Arachidonic acid in the SMC	0.00429406	0.00277598
55	Arachidonic acid in the SMC	5.60641	0.82813
56	20-HETE in the SMC	0.00560948	0.00282501
57	20-HETE in the SMC	0.00240002	0.00195237
58	20-HETE in the SMC	0.0149869	0.00710705
59	Cytosolic Ca2+ concentration in the endothelial cell (EC)	0.00410624	0.001356
60	Cytosolic Ca2+ concentration in the EC	0.000479328	0.000871541
61	Cytosolic Ca2+ concentration in the EC	0.00047282	0.000860244
62	Cytosolic Ca2+ concentration in the EC	0.0155095	0.00716025
63	Cytosolic Ca2+ concentration in the EC	0.000465781	0.000871406
64	Cytosolic Ca2+ concentration in the EC	0.00147519	0.00094885
65	Cytosolic Ca2+ concentration in the EC	0.00104536	0.000894999
66	Cytosolic Ca2+ concentration in the EC	0.00268227	0.00112258
67	Membrane potential of the EC	0.00348108	0.00112305
68	N/A	0.000468269 0.000871442	
69	IP3 concentration of the EC	0.00757592	0.00210779
70	IP3 concentration of the EC	NaN	NaN

3 Notes on Table 3 above

Whole section references old results, needs redone

We should note that removing reaction 7 given by the Na $^+$ and HCO $_3^-$ flux through the NBC channel (μ M s $^{-1}$):

$$J_{NBC_k} = G_{NBC_k} \left(v_k - E_{NBC_k} \right) \tag{1}$$

means the NBC flux is zero. \mbox{HCO}_3^- concentration in the synaptic cleft (SC) ($\mu\mbox{M}$):

$$\frac{dHCO_{3_s}}{dt} = \frac{1}{VR_{sk}} \left(-2J_{NBC_k} \right) \tag{2}$$

 HCO_3^- concentration in the astrocyte (μ M):

$$\frac{dHCO_{3_k}}{dt} = 2J_{NBC_k} \tag{3}$$

Hence on the basis of the two equations defined above we can eliminate HCO_3^- from both the SC and Astrocyte. This removes 2 equations from the ode set. However this must be accompanied by the elimination of the definition of the Nernst potential for the NBC channel (mV):

$$E_{NBC_k} = \frac{\phi}{z_{NBC}} \ln \left(\frac{Na_s HCO_{3_s}^2}{Na_k HCO_{3_k}^2} \right) \tag{4}$$

since HCO_3^- is now effectively zero in both the synaptic cleft and the astrocyte.

Reaction 49 is a membrane voltage coupling equation between SMC and EC given by heterocellular electrical coupling between SMCs and ECs :

$$V_{coupling_i}^{SMC-EC} = -G_{coup}(v_i - v_j)$$
 (5)

This does not seem to have any effect on the profiles for HbO and HbR.

Reaction 61 defines the Ca²⁺ induced Ca²⁺ release (CICR) mechanism in the EC given by:

$$J_{CICR_j} = C_j \frac{s_j^2}{s_{cj}^2 + s_j^2} \frac{Ca_j^4}{c_{cj}^4 + Ca_j^4}$$
 (6)

Table 4 shows the reactions ranked from smallest to largest for the error between the numerical output and the experiment for HbR.

Table 4.

From original reaction list, needs redone

Rctn	normalized HBO Error; 2-norm	normalized HBR Error; 2-norm
no		
3	0.00195538	0.000500168
7	0.0014388	0.000539501
49	0.00193546	0.000823211
61	0.00047282	0.000860244
11	0.000475598	0.000864279
63	0.000465781	0.000871406
0	0.000468269	0.000871442
34	0.000468269	0.000871442
35	0.000468269	0.000871442
68	0.000468269	0.000871442
60	0.000479328	0.000871541
32	0.000468217	0.000871653
29	0.000469189	0.000871822
4	0.000466595	0.000875713
65	0.00104536	0.000894999
53	0.00120016	0.000903448
17	0.00201507	0.000941013
64	0.00147519	0.00094885
13	0.000512237	0.000949758
36	0.00212447	0.00102861

66	0.00268227	0.00112258
67	0.00348108	0.00112305
12	0.00196372	0.00117208
24	0.00196378	0.00117213
26	0.00261581	0.00123312
30	0.00242898	0.00132313
59	0.00410624	0.001356
46	0.00287015	0.00153477
44	0.00611134	0.00166663
57	0.00240002	0.00195237
37	0.00268971	0.00203337
69	0.00757592	0.00210779
43	0.00364038	0.002412
16	0.00566864	0.00263931
23	0.00777447	0.00266655
10	0.00780579	0.00267052
25	0.0082669	0.00272957
54	0.00429406	0.00277598
56	0.00560948	0.00282501
27	0.00696495	0.00326088
42	0.00583438	0.00390169
38	0.00875328	0.00455686
15	0.0158477	0.00536754

41

Cy-

toso-

lic

Ca2+

in the

SMC

0.0116207

0.00582014

19

0.0125768

0.00589543

5 flux

of K+

into

the

SC

based

on

the

extra-

cel-

lular

K+

0.0135393

0.00639256

39

Cy-

toso-

lic

Ca2+

in the

SMC

0.0144208

0.00701218

47

Mem-

brane

po-

ten-

tial

of the

SMC

0.0149869

0.00710705

50

Open

state

prob-

. . . .

abil-