4202 Digital Multimedia

Lecture 1

Dr. Shaimaa Othman

What is Multimedia?

- "Multimedia" has no strict definition.
- Multimedia is a computer technology (multimedia computing) for more efficient utilization, communication, and use of different media types:
 - Text
 - Audio and speech
 - Images
 - Graphics
 - Video

Multimedia System

Multimedia involves more than simple addition of new data types.

• It integrates a wide range of symbol modes simultaneously into a coherent framework.

• The framework is usually denoted as a multimedia system.

Challenges of Multimedia Computing

- Developing a successful multimedia system is non-trivial.
 - Continuous media types such as video need a lot of space to store and very high bandwidth to transmit.
 - They also have tight timing constraints.
 - Automatically analyzing, indexing and organizing information in audio, image and video is much harder than from text.
 - Multimedia involves many different research areas and needs more complex and more efficient algorithms and hardware platforms.

Multimedia is Multidisciplinary Computer networks, operating system Computer vision, Multimedia Image, audio, pattern recognition computing/ speech processing Human computer Computer interaction graphics

Multimedia Computing

Multimedia systems Basic Topics Domains /(What are planed to study?):-

- Multimedia data Acquisition.
- Multimedia data representation and compression.
- Multimedia data processing and analysis.
- Transmitting multimedia data through communication networks.
- Multimedia database, indexing and retrieval.
- Water marking of multimedia files

Digital Media Capturing

- To get a digital image, an audio or a video clip, we need some media capturing device such as
 - a digital camera or a scanner,
 - a digital audio recorder,
 - or a digital camcorder.
- All these devices have to complete tasks:
 - Sampling: To convert a continuous media into discrete formats.
 - Quantization: To convert continuous samples into finite number of digital numbers.
 - There are probably some further compression process.

An Audio Signal

fs = 2f

There are infinite number of possible sin waves going through the sampling points

Sampling for an Audio Signal

Frequency Decomposition

- Any signal can be represented as the summation of sin waves (possibly infinite number of them).
- We can use "Fourier Transform" to compute these frequency components.
- We can now extend our analysis to any signals.
- If we have a signal has frequency components $\{f1 < f2 < f3 ... < fn\}$ so what is the minimum sampling frequency we should use?

Nyquist Theorem

- Nyquist theorem
 - The necessary condition of reconstructing a continuous signal from the sampling version is that the sampling frequency

$$fs > 2f_{max}$$

f_{max} is the highest frequency component in the signal.

• If a signal's frequency components are restricted in [f1, f2], we need fs >2 (f2-f1).