Análise da utilização da Inteligência Artificial no ensino da programação: Uma Revisão Sistemática da Literatura

As seções a seguir listam todos os artigos selecionados na Revisão Sistemática da Literatura. Cada seção contém os trabalhos mapeados para o tópico correspondente: QP - Como a IA está sendo abordada no ensino de programação? (Seção 1), QS1 - Qual o público-alvo presente nas pesquisas que utilizam a IA como ferramenta do ensino de programação? (Seção 2), QS2 - Quais as contribuições mencionadas na utilização da IA no ensino de programação? (Seção 3), QS3 - Qual foi o método de validação? (Seção 4). Para cada artigo selecionado, indicamos o ID do estudo, o ano de publicação, a base de publicação, o título e um campo relacionado à solução de cada questionamento.

1 QP - Como a Inteligência Artificial está sendo abordada no ensino de programação?

Nesta seção, será apresentada a relação dos estudos selecionados com suas respectivas metodologias de abordagem, sendo esta disposta na Tabela 1 abaixo.

Tabela 1: Metodologia de abordagem por estudo selecionado

ID	Ano	Base	Título	Ferramenta
1	2021	IEEE	Interactive ChatBots for Software Engineering: A Case Study of Code Reviewer Recommendation Chatbot	
2	2023	ACM	Programming Is Hard – Or at Least It Used to Be: Educational Opportunities and Challenges of AI Code Generation	Assistente inteligente
<u>3</u>	2019	IEEE	An educational tool for visualizing actor programs	Sistemas de Tutoria Inteligente (STI)
4	2023	ACM	Conversing with Copilot: Exploring prompt engineering for solving CS1 problems using natural language	Assistente inteligente
<u>5</u>	2020	ACM	Intelligent tutoring systems approach to introductory programming courses Sistemas de Inteligente (S	
<u>6</u>	2021	IEEE	Teaching and learning tools for introductory programming in university courses Sistemas de Tourist Inteligente (ST	
7	2022	CAPES	Improving engagement in program construction examples for learning Python programming Sistemas de Tu Inteligente (ST	
8	2020	IEEE	Design and Implementation of Student Programming Profile-based Teaching Aids Solution in Introductory Programming Course Sistemas de Tutor Inteligente (STI)	
9	2018	ACM	Robot tutoring: On the feasibility of using cognitive systems as tutors in introductory	Sistemas de Tutoria Inteligente (STI)

			programming education: A teaching experiment	
<u>10</u>	2019	ACM	CLS-PROG: an intelligent tool for classifying programs in online judge systems Juiz online	
11	2021	CAPES	A gamified web based system for computer programming learning Games inteligen	
<u>12</u>	2022	ACM	Programming Pedagogy and Assessment in the Era of AI/ML: A Position Paper	Sistemas de Tutoria Inteligente (STI)
<u>13</u>	2021	IEEE	Personalized Engineering Education Model Based on Artificial Intelligence for Learning Programming Sistemas de Tu Inteligente (ST	
14	2021	IEEE	Adaptive User Interface for Smart Programming Exercise	Sistemas de Tutoria Inteligente (STI)
<u>15</u>	2022	CAPES The effectiveness of gamification in programming education: Evidence from a meta-analysis Games inteligentes		Games inteligentes

2 QS1 - Qual o público-alvo presente nas pesquisas que utilizam a Inteligência Artificial como ferramenta do ensino de programação?

Na Tabela 2, pode-se ver dispostos os estudos selecionados em relação ao seu respectivo público-alvo.

Tabela 2: Público-alvo de cada estudo selecionado

ID	Ano	Base	Público alvo
1	2021	IEEE	Estudantes de disciplinas intermediárias ou avançadas de programação
2	2023	ACM	Estudantes de disciplinas introdutórias de programação
<u>3</u>	2019	IEEE	Estudantes de disciplinas intermediárias ou avançadas de programação
4	2023	ACM	Estudantes de disciplinas introdutórias de programação
<u>5</u>	2020	ACM	Estudantes de disciplinas introdutórias de programação
<u>6</u>	2021	IEEE	Estudantes de disciplinas introdutórias de programação
7	2022	CAPES	Estudantes de disciplinas introdutórias de programação
8	2020	IEEE	Estudantes de disciplinas introdutórias de programação
9	2018	ACM	Estudantes de disciplinas introdutórias de programação
<u>10</u>	2019	ACM	Estudantes de disciplinas introdutórias de programação
<u>11</u>	2021	CAPES	Estudantes de disciplinas intermediárias ou avançadas de programação

<u>12</u>	2022	ACM	Estudantes de disciplinas introdutórias de programação	
<u>13</u>	2021	IEEE	Estudantes de disciplinas introdutórias de programação	
<u>14</u>	2021	IEEE	Estudantes de disciplinas intermediárias ou avançadas de programação	
<u>15</u>	2022	CAPES	Estudantes de disciplinas introdutórias de programação	

3 QS2 - Quais as contribuições mencionadas na utilização da Inteligência Artificial no ensino de programação?

Na Tabela 3, expõe os artigos relacionados com os benefícios oferecidos pelo sistema apresentado em cada estudo, os quais estão listados na Tabela 1.

Tabela 3: Benefícios oferecidos por estudo selecionado

ID	Ano	Base	Benefícios	
1	2021	IEEE	Material didático e esclarecimento de dúvidas	
2	2023	ACM	Material didático e esclarecimento de dúvidas	
<u>3</u>	2019	IEEE	Ensino adaptado	
<u>4</u>	2023	ACM	Material didático e esclarecimento de dúvidas	
<u>5</u>	2020	ACM	Ensino adaptado	
<u>6</u>	2021	IEEE	Ensino adaptado	
7	2022	CAPES	Material didático e esclarecimento de dúvidas	
<u>8</u>	2020	IEEE	Ensino adaptado	
9	2018	ACM	Ensino adaptado e esclarecimento de dúvidas	
<u>10</u>	2019	ACM	Ensino adaptado	
<u>11</u>	2021	CAPES	Ensino adaptado e esclarecimento de dúvidas	
<u>12</u>	2022	ACM	Ensino adaptado e esclarecimento de dúvidas	
<u>13</u>	2021	IEEE	Ensino adaptado	
<u>14</u>	2021	IEEE	Ensino adaptado e esclarecimento de dúvidas	
<u>15</u>	2022	CAPES	Ensino adaptado	

4 QS3 - Qual foi o método de validação?

A Tabela 4 exibe os estudos selecionados com base em seu respectivo método de validação, a qual comprova as conclusões acerca dos benefícios do ensino de programação com o auxílio da Inteligência Artificial.

Tabela 4: Método de comprovação por estudo selecionado

ID	Ano	Base	Método de comprovação
1	2021	IEEE	Busca bibliográfica
2	2023	ACM	Busca bibliográfica
<u>3</u>	2019	IEEE	Experimento empírico
4	2023	ACM	Experimento empírico
<u>5</u>	2020	ACM	Experimento empírico
<u>6</u>	2021	IEEE	Experimento empírico
7	2022	CAPES	Busca bibliográfica
8	2020	IEEE	Experimento empírico
9	2018	ACM	Busca bibliográfica
<u>10</u>	2019	ACM	Experimento empírico
11	2021	CAPES	Busca bibliográfica
12	2022	ACM	Experimento empírico
13	2021	IEEE	Experimento empírico
<u>14</u>	2021	IEEE	Experimento empírico
<u>15</u>	2022	CAPES	Busca bibliográfica

5 Referências

Assavakamhaenghan, N., Kula, R. G., & Matsumoto, K. (2021). Interactive ChatBots for Software Engineering: A Case Study of Code Reviewer Recommendation. In 2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp. 262-266). IEEE.

Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., & Santos, E. A. (2023). Programming Is Hard-Or at Least It Used to Be: Educational

- Opportunities and Challenges of AI Code Generation. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 (pp. 500-506).
- Čolak, A., & Čuvić, M. A. (2019). An educational tool for visualizing actor programs. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 605-610). IEEE.
- Denny, P., Kumar, V., & Giacaman, N. (2023). Conversing with Copilot: Exploring prompt engineering for solving CS1 problems using natural language. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 (pp. 1136-1142).
- Figueiredo, J., & García-Peñalvo, F. J. (2020). Intelligent tutoring systems approach to introductory programming courses. In Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 34-39).
- Figueiredo, J., & García-Peñalvo, F. (2021). Teaching and learning tools for introductory programming in university courses. In 2021 International Symposium on Computers in Education (SIIE) (pp. 1-6). IEEE.
- Hosseini, R., Akhuseyinoglu, K., Brusilovsky, P., Malmi, L., Pollari-Malmi, K., Schunn, C., & Sirkiä, T. (2020). Improving engagement in program construction examples for learning Python programming. International Journal of Artificial Intelligence in Education, 30(2), 299-336.
- Li, Z., Jie, Z., & Daming, H. (2020). Design and Implementation of Student Programming Profile-based Teaching Aids Solution in Introductory Programming Course. In 2020 15th International Conference on Computer Science & Education (ICCSE) (pp. 383-390). IEEE.
- Müller, S., Bergande, B., & Brune, P. (2018). Robot tutoring: On the feasibility of using cognitive systems as tutors in introductory programming education: A teaching experiment. In Proceedings of the 3rd European Conference of Software Engineering Education (pp. 45-49).
- Pan, Y., & Sun, G. (2019). CLS-PROG: an intelligent tool for classifying programs in online judge systems. In Proceedings of the ACM Turing Celebration Conference-China (pp. 1-6).
- Polito, G., & Temperini, M. (2021). A gamified web based system for computer programming learning. Computers and Education: Artificial Intelligence, 2, 100029.
- Raman, A., & Kumar, V. (2022). Programming Pedagogy and Assessment in the Era of AI/ML: A Position Paper. In Proceedings of the 15th Annual ACM India Compute Conference (pp. 29-34).
- Rathore, A. S., Sharma, A., & Massoudi, M. (2021). Personalized Engineering Education Model Based on Artificial Intelligence for Learning Programming. In 2021 6th International Conference on Computing, Communication and Security (ICCCS) (pp. 1-10). IEEE.

- Watanobe, Y., Rahman, M. M., Vazhenin, A., & Suzuki, J. (2021). Adaptive User Interface for Smart Programming Exercise. In 2021 IEEE International Conference on Engineering, Technology & Education (TALE) (pp. 01-07). IEEE.
- Zhan, Z., He, L., Tong, Y., Liang, X., Guo, S., & Lan, X. (2022). The effectiveness of gamification in programming education: Evidence from a meta-analysis. *Computers and Education: Artificial Intelligence*, 100096.