Типовой расчёт №2 по теме:

Теория функций комплексного переменного

Петров Вячеслав Маркович Поток 22.3, ису 409331 НИУ ИТМО

1 Вычислить интеграл $\oint_L f(z)dz$ от функции комплексного аргумента f(z) по указанному замкнутому кусочно-гладкому контуру L при помощи вычетов. $f(z) = \frac{z+1}{(z-1)(z-2)(z-3)}, L=z: |z|=5/2$

Для вычисления контура интеграла $\oint_L f(z)\,dz$ с помощью вычетов нам необходимо сначала определить полюса функции $f(z)=\frac{z+1}{(z-1)(z-2)(z-3)}$ и затем найти, какие из них находятся внутри контура $L=\{z:|z|=\frac{5}{2}\}.$

Полюса функции f(z) находятся в точках, где знаменатель равен нулю:

- -z = 1
- -z = 2
- -z = 3

Теперь оценим радиус $\frac{5}{2}$: - Полюсы z=1 и z=2 находятся внутри круга радиуса $\frac{5}{2}$ (так как $1<\frac{5}{2}$ и $2<\frac{5}{2}$), - Полюс z=3 находится за пределами круга (так как $3>\frac{5}{2}$).

Следовательно, вписываются только два полюса: z=1 и z=2.

Далее, нам необходимо найти вычеты функции f(z) в этих точках.

1. Вычет в точке z = 1:

Вычет f(z) в точке z = 1 находится по формуле:

$$\operatorname{Res}(f,1) = \lim_{z \to 1} (z-1)f(z) = \lim_{z \to 1} (z-1)\frac{z+1}{(z-1)(z-2)(z-3)} = \lim_{z \to 1} \frac{z+1}{(z-2)(z-3)}$$

Подставим z=1:

$$\operatorname{Res}(f,1) = \frac{1+1}{(1-2)(1-3)} = \frac{2}{(-1)(-2)} = \frac{2}{2} = 1.$$

2. Вычет в точке z = 2:

Аналогично, находим вычет в z = 2:

$$\operatorname{Res}(f,2) = \lim_{z \to 2} (z-2)f(z) = \lim_{z \to 2} (z-2) \frac{z+1}{(z-1)(z-2)(z-3)} = \lim_{z \to 2} \frac{z+1}{(z-1)(z-3)}.$$

Подставим z=2:

$$\operatorname{Res}(f,2) = \frac{2+1}{(2-1)(2-3)} = \frac{3}{1 \cdot (-1)} = -3.$$

Теперь мы можем использовать формулу для вычисления интеграла по контуру:

$$\oint_L f(z) dz = 2\pi i \left(\text{Res}(f, 1) + \text{Res}(f, 2) \right) = 2\pi i \left(1 - 3 \right) = 2\pi i (-2) = -4\pi i.$$

Таким образом, ответ:

$$\oint_L f(z) \, dz = -4\pi i$$

2 Вычислить несобственный интеграл $\int_0^{+\infty} \frac{x \sin(\alpha x)}{x^2 + 8} dx$, $\alpha < 0$

Будем использовать метод комплексного анализа. Рассмотрим интеграл

$$I = \int_0^{+\infty} \frac{xe^{i\alpha x}}{x^2 + 8} \, dx,$$

где $e^{i\alpha x} = \cos(\alpha x) + i\sin(\alpha x)$. Таким образом, мы имеем

$$I = \int_0^{+\infty} \frac{x \cos(\alpha x)}{x^2 + 8} dx + i \int_0^{+\infty} \frac{x \sin(\alpha x)}{x^2 + 8} dx.$$

Мы знаем, что

$$Re(I) = \int_0^{+\infty} \frac{x \cos(\alpha x)}{x^2 + 8} dx,$$

$$\operatorname{Im}(I) = \int_0^{+\infty} \frac{x \sin(\alpha x)}{x^2 + 8} \, dx.$$

Обозначим

$$I(\alpha) = \int_0^{+\infty} \frac{xe^{i\alpha x}}{x^2 + 8} \, dx,$$

где $\alpha < 0$. Данный интеграл можно вычислить с использованием теоремы о вычетах. Рассмотрим функцию

$$f(z) = \frac{ze^{i\alpha z}}{z^2 + 8},$$

которая имеет два полюса в точках $z=2i\sqrt{2}$ и $z=-2i\sqrt{2}$. Для вычисления интеграла мы будем интегрировать по полуокружности в верхней полуплоскости радиуса R, а затем будем брать предел при $R\to\infty$.

Поля второго рода $z=2i\sqrt{2}$ и $z=-2i\sqrt{2}$ — это простые полюса.

Выбор контура в верхней полуплоскости позволяет учесть только полюс $z=2i\sqrt{2}$. Вычислим вычет функции f(z) в этой точке:

$$f(z) = \frac{ze^{i\alpha z}}{z^2 + 8},$$

$$\lim z \to 2i\sqrt{2}(z - 2i\sqrt{2})f(z) = \lim z \to 2i\sqrt{2}\frac{ze^{i\alpha z}}{z + 2i\sqrt{2}}$$

Подставляя $z = 2i\sqrt{2}$:

$$= \frac{2i\sqrt{2}e^{i\alpha(2i\sqrt{2})}}{2i\sqrt{2} + 2i\sqrt{2}} = \frac{2i\sqrt{2}e^{-2\alpha\sqrt{2}}}{4i\sqrt{2}} = \frac{1}{2}e^{-2\alpha\sqrt{2}}$$

По теореме о вычетах интеграл по замкнутому контуру равен $2\pi i$ умноженному на вычет в полюсе:

$$I(\alpha) = 2\pi i \cdot \frac{1}{2}e^{-2\alpha\sqrt{2}} = \pi i e^{-2\alpha\sqrt{2}}.$$

Теперь выделим действительную и мнимую части:

$$I(\alpha) = \pi i e^{-2\alpha\sqrt{2}}$$

Так как ${\rm Im}(I)=\int 0^{+\infty}\frac{x\sin(\alpha x)}{x^2+8}\,dx,$ мы получаем:

$$\int 0^{+\infty} \frac{x \sin(\alpha x)}{x^2 + 8} dx = \operatorname{Im}(I) = \pi e^{-2\alpha\sqrt{2}}$$

Следовательно, искомый интеграл равен:

$$\int 0^{+\infty} \frac{x \sin(\alpha x)}{x^2 + 8} dx = \frac{\pi}{2} e^{-2\alpha\sqrt{2}}$$

Таким образом, результат вычисления интеграла:

$$\boxed{\frac{\pi}{2}e^{-2\alpha\sqrt{2}}}$$