

Lecture 3

Operational Amplifier I

Prepared By:

Shadman Shahid (SHD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: shadman9085@gmail.com

The Circuit Abstraction

Sequence of courses and the abstraction layers

Operational Amplifiers

Textbook

Operational Amplifier

Operational:

Mathematical Operations

Amplifier:

Amplifies input signal/voltage.

Voltage Transfer Characteristics (VTC)

Shows how the output voltage varies with the input voltage $V_{\mathrm{Out}}(V_{\mathrm{In}})$

Operational Amplifier: Amplification

Voltage Transfer Characteristics (VTC)

Shows how the output voltage varies with the input voltage $V_{\mathrm{Out}}(V_{\mathrm{In}})$

$V_{\rm In}(V)$	$V_{\text{Out}}(V)$
0.5	5
1.0	10
1.5	15
2.5	25
3.5	35

Amplification: VTC

Voltage Transfer Characteristics (VTC)

- Shows how the output voltage varies with the input voltage $V_{\mathrm{Out}}(V_{\mathrm{In}})$

LINEAR RELATION (AMPLIFICATION)

Amplification: VTC

- Linear Amplification only takes place within a valid input range.
- Otherwise output will be distorted - Saturation

The limiting factor of **linear amplification** is determined by the **power supply** to the amplifier

Amplification: VTC - Saturation

 $oxed{V_{
m Out} = m \cdot V_{
m In}: {
m When} - 50 \mu < V_{
m In} < 50 \mu} \ m
ightarrow 10^5: {
m Gain} \, / \, {
m Amplification}$

Amplification: VTC

Operational Amplifier

Analog Electronics: Deals with analog (continuous) signals.

The word operational in operational-amplifier originally stood for mathematical operations

Circuit Symbols and terminal

Circuit Symbols and Terminals

Difference Amplifier – Amplifies the voltage difference between two terminals.

 $V_{(+)}$ Non-inverting terminal voltage

 $V_{(-)}$ Inverting terminal voltage

 V_d Differential input voltage

+V_{sat} Positive Saturation Voltage

 $-V_{\rm sat}$ Negative Saturation Voltage

V₀ Output Voltage

 $+V_{\rm sat}$

Voltage Transfer Characteristics (VTC)

Circuit Symbols and Terminals

Difference Amplifier – Amplifies the voltage difference between two terminals.

Circuit symbol for the generalpurpose op amp. Pin numbering is that for an **8-pin mini-DIP package**

Circuit Symbols and Terminals

Op-Amp VTC: Modes of operation

Voltage Transfer Characteristics (VTC)

Positive saturation:

If
$$V_d > \frac{+V_{\text{sat}}}{A}$$
: Positive
$$\Rightarrow V_0 = +V_{\text{sat}}$$

Linear Region

$$egin{aligned} oldsymbol{V_0} &= A oldsymbol{V_d} : \text{When } oldsymbol{V_d} \text{ is very small} \ &- oldsymbol{V_{\text{sat}}} < oldsymbol{V_o} = A oldsymbol{V_d} < + oldsymbol{V_{\text{sat}}} \end{aligned}$$

Negative saturation:

If
$$V_d < \frac{-V_{\text{sat}}}{A}$$
: Negative $\Rightarrow V_0 = -V_{\text{sat}}$

Some op-amp circuits

Find v_0

$$A=2 imes10^5$$

$$A=2 imes 10^5$$

Example 1

• Find v_o

$$A=2\times 10^5$$

Solution:

$$V_d = V_{(+)} - V_{(-)} = (10 - 5) \,\mu\text{V} = 5 \,\mu\text{V}$$

$$AV_d = (2 \times 10^5) \times (5 \times 10^{-6}) V = 1 V$$

Since
$$-15 \text{ V} < AV_d < +15 \text{ V}$$

$$V_0 = AV_d = 1 V$$

Example 2

• Find v_o

$$A=2\times 10^5$$

Solution:

$$V_d = V_{(+)} - V_{(-)} = (0.5 - 1) \text{ mV} = -0.5 \text{ mV}$$

$$AV_d = (2 \times 10^5) \times (-0.5 \times 10^{-3}) \text{ V} = -100 \text{ V}$$

Since
$$-15 \text{ V} > AV_d$$

$$V_0 = AV_d = -15 \text{ V}$$

Op-Amp Internal configuration

Voltage controlled voltage Source

$$A = 2 \times 10^5$$

Important parameters of an Op-amp

• Input resistance: R_i

• Output resistance: R_O

• Voltage (Differential/OL) Gain: A/A_{OL} Slope of VTC

• Positive Saturation Voltage: $+V/V_{CC}/V_{sat}$

• Negative Saturation Voltage: $-V/V_{EE}/-V_{sat}$

Parameter	Typical Range	Ideally
A	$10^4 - 10^8$	8
R_i	$100 \ k\Omega - 10^{10} \ k\Omega$	8
R_o	$0.01 \ k\Omega - 0.1 \ k\Omega$	0

Some more circuits with OP AMP

```
Find m{i_F} and m{v_o}.
Here, m{R_i} = 200~k\Omega m{R_o} = 0.1~k\Omega m{A} = 2 \times 10^5
```


Example – Inverting Amplifier

$$v_i = -21 \, \mu V$$
 $v_o = -3.999 \, V$
 $i_F = 2 \, \text{mA}$

Characteristics of an Ideal Op-amp

Parameter	Typical Range	Ideally
A	$10^4 - 10^8$	8
R_i	$100 \ k\Omega - 10^{10} \ k\Omega$	8
R_o	$0.01 \ k\Omega - 0.1 \ k\Omega$	0

Types of Op-Amp configuration

1. Open loop configuration:

No physical connection between input and output

2. Closed loop configuration: Feedback from output terminal

Open Loop Configuration → Ideal Op Amp

Voltage Transfer Characteristics (VTC)

Positive saturation:

$$\Rightarrow V_0 = +V_{\text{sat}}$$

Negative saturation:

$$\Rightarrow V_0 = -V_{\text{sat}}$$

 $A \rightarrow \infty$: Open Loop Gain

Level Crossing Detector / Comparator

$$V_d = v_I - V_{REF} > 0 \Rightarrow v_O = V_H$$
 $v_I > V_{REF} \Rightarrow v_O = V_H$

Level Crossing Detector / Comparator

$$V_d = V_{REF} - v_I > 0 \quad \Rightarrow \quad v_O = V_H$$
 $v_I < V_{REF} \quad \Rightarrow \quad v_O = V_H$

Level Crossing Detector / Comparator

Figure 2: (1) Op-Amp Comparator (2) Noninverting Circuit (3) Inverting Circuit

Zero Crossing Detector

Compare values with a reference and pin value to $+V_{sat}$ if voltage is above or to below that.

Non-inverting configuration

(a) Noninverting: When E_t is above V_{ref} , $V_o = +V_{sat}$.

Zero Crossing Detector

Inverting configuration

(b) Inverting: When E_i is above V_{ref} , $V_o = -V_{sat}$.

Comparator Application - Smoke Detectors

Comparator Application Smoke Detectors

Input Voltage E_{in} from the light reflected off the smoke

Reference voltage V_{REF} adjusted via the variable resistor (VAR)

Comparator Application - Smoke Detectors

light from lamp is reflected from dust particles (if any) to the photoconductor. Photoconductor: Low Resistance (R3) if light incidents High Resistance (R3) if no light incidents. . i. Smoke -> light on PC -> low R3 -> high E; -> V=+V)

No Smoke -> no light on PC -> high R3 -> low E;

Comparator Application – Automatic AC

Closed Loop Configuration

Feedback

Feedback in Op-Amp circuit

Two types of feedback

1. Negative Feedback:

Output voltage is fed to the inputs negatively

The output voltage is connected to the inverting terminal

$$V_0 \uparrow \Rightarrow \frac{V_0}{k} \uparrow \Rightarrow V_{(-)} \uparrow \Rightarrow V_d \downarrow = V_{(+)} - V_{(-)} \uparrow \Rightarrow V_0 \propto V_d \downarrow$$

Positive Feedback:

Output voltage is fed to the inputs positively

The output voltage is connected to the non-inverting terminal

$$V_{o} \uparrow \Rightarrow \frac{V_{o}}{k} \uparrow \Rightarrow V_{(+)} \uparrow \Rightarrow V_{d} \uparrow = V_{(+)} \uparrow -V_{(-)} \rightarrow V_{o} \propto V_{d} \uparrow$$

Feedback in Op-Amp circuit

Two types of feedback

1. Negative Feedback:

Output voltage is fed to the inputs **negatively**The output voltage is connected to the **inverting** terminal

$$V_o \uparrow \Rightarrow V_o \propto V_d \downarrow$$

Positive Feedback:

Output voltage is fed to the inputs positively

The output voltage is connected to the non-inverting terminal

$$V_o \uparrow \Rightarrow V_o \propto V_d \uparrow$$

Feedback in Op-Amp circuit

Negative Feedback:

Output voltage is fed to the inputs negatively

The output voltage is connected to the inverting terminal

Here,
$$V_{(-)} = \frac{V_0}{k}$$

We know, $V_0 = AV_d$
 $V_0 = A(V_{(+)} - V_{(-)})$
 $= A(V_{(+)} - \frac{V_0}{k})$
 $= AV_{(+)} - \frac{A}{k}V_0$
 $\Rightarrow V_0(1 + \frac{A}{k}) = AV_{(+)}$

$$\frac{\mathbf{V_o}}{\mathbf{V_{(+)}}} = \frac{A}{1 + \frac{A}{k}} = \frac{1}{\frac{1}{A} + \frac{1}{k}}$$

$$\mathbf{V_o/k} \bullet$$

$$\mathbf{V_{(+)}} \circ$$

If
$$A \to \infty$$
 then $\frac{1}{A} \to 0$.

$$\therefore \frac{V_o}{V_{(+)}} = k$$
 This is the new amplification factor / Gain

Negative Feedback in Op-Amp circuit

The **output voltage** is transformed in the following way:

$$\mathbf{V}_{(-)} = \frac{1}{k} \cdot \mathbf{V}_{\mathbf{0}}$$

This factor of 1/k can be achieved with a voltage divider network.

A voltage divider can act as a multiplier/factor in the feedback branch

Negative Feedback in Op-Amp circuit

A voltage divider can act as a multiplier/factor in the feedback branch

If k = 10 (meaning we feed back one tenth of the output to negative input), we will get $v_0 = 10 v_i$. that is 10-fold gain.

Solving Closed Loop Op-Amp Circuit

$$Gain = \frac{v_o}{v_i} = -\frac{R_2}{R_1}$$

Since v_+ is connected to ground, $v_+ = 0 \text{ V}$

Since there is negative feedback, from virtual short, $oldsymbol{v}_- = oldsymbol{v}_+ = oldsymbol{0}$ $oldsymbol{V}$

From Ohm's law for $R_1 \Rightarrow i_1 = \frac{v_i - 0}{R_1} = \frac{v_i}{R_1}$

Since ideal op-amp, $i_- = i_+ = 0$

From KCL at v_- , $i_1=i_-+i_2\Rightarrow i_1=i_2=v_i/R_1$

From Ohm's law for $R_2 \Rightarrow i_2 = \frac{v_- - v_0}{R_2} = \frac{v_i}{R_1} \Rightarrow v_0 = -i_2 \times R_2 \Rightarrow v_0 = -\frac{R_2}{R_1} v_i$ [ANS]

Solving Closed Loop Op-Amp Circuit

- For ideal op-amp
 - Infinite input resistance, $R_i = \infty$ = open circuit
 - Zero output resistance, $R_o = 0$ = short circuit
 - $i_i = 0$ and $i_+ = 0$
- When there is negative feedback, For ideal A as is infinitely high, for a finite output voltage v_o , $\frac{v_o}{A} = v_d = 0 \Rightarrow v_+ = v_-$. This is called virtual short circuit
- Because of these, solving ideal op-amp circuit with negative feedback is very simple

Example

https://forms.gle/foiEHQvKDAh2KM3i6