Python for Data Science

Kylie A. Bemis

Northeastern University
Khoury College of Computer Sciences

Goals for today

- Data frames with pandas
- Visualization with matplotlib
- Modeling with statsmodels and sklearn
- Review (Q&A)

SERIES AND DATA FRAMES

Working with data in pandas

- Structures for representing tabular data
 - Series represent homogenous data attributes (vectors)
 - DataFrames represent tabular data (rows and columns)
- Methods for manipulating data tables
 - Subsetting, grouping, and summarization
 - Joining and organizing multiple tables
- Built on top of NumPy

A Series represents a data vector

- Homogenous vector consisting of:
 - Values in the data series
 - Index of labels for each data element
 - Data type (dtype) of the values
- Built from a numpy.ndarray

A DataFrame represents tabular data

- Data table made of rows and columns
 - Each column is represented by a **Series**
 - Columns may have different data types (dtype)
 - Columns must share the same index labels
 - Each row is identified by an index label
- Similar to a dict of data columns

Creating a DataFrame from a dict

```
In: import pandas as pd
In : A = pd.DataFrame(
       {'x': [100, 200, 300, 400],
        'y': [1.11, 2.22, 3.33, 4.44],
        'z': ['foo', 'bar', 'baz', 'qux']},
       index=['a', 'b', 'c', 'd'])
In : A
Out:
a 100 1.11 foo
  200 2.22 bar
  300 3.33 baz
  400 4.44 qux
```

Advanced pandas

- Grouping and aggregation
 - Summary statistics over rows or columns
 - Aggregation over categories in a column
- Merging and other relational operations
 - Join two or more tables based on common rows
 - Similar to SQL operations on a database
- Input to other data science libraries

VISUALIZATION

Visualization with matplotlib

- Provides MATLAB-like plotting interface
 - Flexible object-oriented plotting
 - Figures organized into hierarchical structure
 - Support for different GUI backends
- Export to many formats (PDF, PNG, etc.)

Plotting a basic scatter plot

```
import matplotlib.pyplot as plt
cars = pd.read csv("mtcars.csv", index col=0)
xs = cars['disp']
ys = cars['mpg']
plt.scatter(xs, ys)
plt.title("Larger car engines are less efficient")
plt.xlabel("Engine size (liters)")
plt.ylabel("Fuel economy (miles per gallon)")
plt.show()
```

Plotting a basic scatter plot (2)

Hierarchy of a figure

- A Figure is container for other graphics
 - Outermost layer of a matplotlib graphic
 - Contains one or more Axes objects
- Axes objects contain subplots
 - Contains an individual plot or graphic
 - Does not refer to a traditional plot "axis"

Figures and Axes

https://towardsdatascience.com/what-are-the-plt-and-ax-in-matplotlib-exactly-d2cf4bf164a9

Plotting a figure with subplots

```
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
ax1.scatter('disp', 'mpg', data=cars, color='tab:blue')
ax1.set_title("Mileage vs. engine size")
ax1.set xlabel("Engine size (liters)")
ax1.set ylabel("Fuel economy (mpg)")
ax4.scatter('qsec', 'mpg', data=cars, color='tab:red')
ax4.set title("Mileage vs. acceleration")
ax4.set xlabel("Time to 1/4 mile (sec)")
ax4.set ylabel("Fuel economy (mpg)")
fig.show()
```

Plotting a figure with subplots (2)

Figure components

- Title
- Labels
- Axes
- Ticks
- Legend
- Grid
- Spines
- Markers

More on visualization

• Always label your figures!!!

- Label the axes (include units)
- Provide useful and informative titles
- Include a legend whenever necessary
- Consider higher-level libraries
 - Seaborn provides higher-level plotting interface
 - Most built on top of matplotlib

MODELING

Modeling in Python

- statsmodels provides statistical models
 - More focus on <u>statistical inference</u>
 - More similar to other statistical software (R, Stata, etc.)
- scikit-learn performs machine learning
 - More focus on <u>predictive performance</u>
 - Defaults may differ from statistics-focused alternatives
 - Very mature platform for machine learning
- Consider primary goals of analysis

Regression with statsmodels

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations:		mpg OLS Least Squares Tue, 13 Apr 2021 17:21:57		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:):	0.718 0.709 76.51 9.38e-10 -82.105 168.2
Df Residuals	Df Co ======	Model: variance Type	30 e: =====	BIC: ====================================	1 nonrobust =======	=======	171.1 ==================================
 Intercept disp	coef 29.5999 -0.0412	std err 1.230 0.005		t . 070 . 747	P> t 0.000 0.000	[0.025 27.088 -0.051	0.975] 32.111 -0.032
Omnibus: Prob(Omnibus Skew: Kurtosis:): 	3.3 0.1 0.7 2.5	19		•		0.986 3.049 0.218 558.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression with statsmodels (2)

Classification with sklearn

```
In : from sklearn.model_selection import train test split
In : sonar = pd.read csv("sonar.csv")
In : sonar X = sonar.iloc[:,0:60]
In : sonar y = sonar["Class"]
In : part = train test split(sonar X, sonar y, test size=0.2)
In : X train, X test, y train, y test = part
In : model2.score(X_train, y train) # accuracy (training)
Out: 0.8975903614457831
In : model2.score(X_test, y test) # accuracy (testing)
Out: 0.8333333333333334
```

Classification with sklearn (2)

```
In: from sklearn.metrics import classification report
In : classification_report(y_test, model2.predict(X_test))
Out:
              precision recall f1-score
                                               support
                                       0.85
        Mine
                   0.80
                             0.91
                                                    22
                                                    20
        Rock
                                       0.81
                   0.88
                             0.75
                                        0.83
                                                    42
    accuracy
                                                    42
                             0.83
                                       0.83
                   0.84
   macro avg
                                                    42
weighted avg
                   0.84
                                       0.83
                             0.83
```

Modeling considerations

- "All models are wrong, but some are useful."
 - Consider what is the goal of the analysis
 - Evaluate a model by how useful it is for the goal
- Don't use a model you don't understand
 - Understand modeling assumptions
 - What kinds of models are appropriate?
- Follow best practices for model evaluation

REVIEW