Motion in Different Reference Frames

Edward Murphy Ian Costley May 4, 2018

Introduction

- ullet Same angular velocity ω in different reference frames
- Rotating Reference Frame: Non-Inertial Reference Frame (NIRF)
- Stationary Reference Frame: Inertial Reference Frame (IRF)
- Fictitious/Pseudo Forces in NIRF
- Astronomical measurements

Goal

- Have a rotating and non-rotating frame of reference
- Rotate at different angular velocities
- ullet Find angular velocity ω in different reference frames
- Find v_0 in IRF and NIRF, then:
 - Transform v_0 in NIRF to IRF
 - ullet Compare transformed v_0 and IRF v_0
- Compare NIRF theory and data paths

Setup

Setup

Rotating **NIRF Camera Table View** Hover **Puck**

Tracking Puck - Inertial Reference Frame

Finding ω - Inertial Reference Frame

Tracking Puck - Non-Inertial Reference Frame

Non-Inertial Reference Frame

Inertial Reference Frame

Data Analysis

- Fit a frictionless pseudo force model to NIRF data
- Obtain best fit parameters: ω and v_0
- Compare best fit parameters with IRF

Theory

Centrifugal Force

 $a_r = a - \ddot{R}_r - \dot{\omega} \times r - \omega \times (\omega \times r) - 2(\omega \times v_r)$

- a_r = Acceleration in Rotating Frame (NIRF)
- α = Acceleration in Non-Rotating Frame (IRF)
- \ddot{R}_r = Acceleration of Moving Origin
- ω = Angular Velocity
- r = Position in Rotating Frame
- v_r = Velocity in Rotation Frame

Coriolis Force

Theory

Centrifugal Coriolis Force Force $a_r = a - \omega \times (\omega \times r) - 2(\omega \times v_r)$

Theory Model:

- a_r = Acceleration in Rotating Frame (NIRF)
- a = Acceleration in Non-Rotating Frame (IRF)
- ω = Angular Velocity
- r = Position in Rotating Frame
- v_r = Velocity in Rotation Frame

Theory

$$\left(\frac{d\vec{r}}{dt}\right)_{IRF} = \left(\frac{d\vec{r}}{dt}\right)_{NIRF} + \omega \times \vec{r}$$

Translation of NIRF Velocity

Results: Trial One

- Overall Trend
- 20% Increase and Decrease in ω
- $\omega_{NIRF} = (2.514 \pm 0.064) \frac{rad}{s}$

Results: Trial One

$$\omega_{NIRF}$$
 = (2.514 ± 0.064) $\frac{rad}{s}$ ω_{IRF} = (2.501 ± 0.057) $\frac{rad}{s}$

$$\omega_{IRF}$$
= (2.501 ± 0.057) $\frac{rad}{s}$

$$v_0$$
= (81.9 ± 6.1) $\frac{cm}{s}$

Transformation to IRF

$$v_0$$
 = (114.5 ± 1.4) $\frac{cm}{s}$

From IRF Data

Results: Trial Two

- Overall Trend
- 20% Increase and Decrease in ω

•
$$\omega_{NIRF} = (1.807 \pm 0.062) \frac{rad}{s}$$

Results: Trial Two

$$\omega_{NIRF}$$
 = (1.807 ± 0.062) $\frac{rad}{s}$ ω_{IRF} = (2.041 ± 0.045) $\frac{rad}{s}$

$$\omega_{IRF}$$
= (2.041 ± 0.045) $\frac{rad}{s}$

$$v_0$$
= (74.7± 6.1) $\frac{cm}{s}$

$$v_0$$
= (88.7 ± 1.5) $\frac{cm}{s}$

Transformation to IRF

From IRF Data

Results

Possible Sources of Error

- Unleveled Rotating Platform
- Vibrations in NIRF Camera
- Uneven Surface
- Parallax of Camera Lens
- Uneven Weighting of Hockey Puck

Summary

- Should see same angular velocities
- IRF velocities should match
- Theory and observed paths
- Improvements