1) Soit $P(z) = 2z^3 - (5-6i)z^2 + 6(1+3i)z - 99 + 18i$. Notons $z_0 = bi$ avec $b \in \mathbb{R}$ la racine imaginaire pure.

On a:
$$P(z_0) = 0 \Leftrightarrow 2(bi)^3 - (5-6i)(bi)^2 + 6(1+3i)bi - 99 + 18i = 0$$

$$\Leftrightarrow$$
 $-2b^3i + (5-6i)b^2 + 6bi - 18b - 99 + 18i = 0$

$$\Leftrightarrow -2b^3i + 5b^2 - 6b^2i + 6bi - 18b - 99 + 18i = 0$$

$$\Leftrightarrow 5b^2 - 18b - 99 + (-2b^3 - 6b^2 + 6b + 18) i =$$

$$\Leftrightarrow \begin{cases} 5b^2 - 18b - 99 = 0 \\ -2b^3 - 6b^2 + 6b + 18 = 0 \end{cases} (E_1)$$

 $\Leftrightarrow 5b^2 - 18b - 99 + (-2b^3 - 6b^2 + 6b + 18) i = 0$ $\Leftrightarrow \begin{cases} 5b^2 - 18b - 99 = 0 & (E_1) \\ -2b^3 - 6b^2 + 6b + 18 = 0 & (E_2) \end{cases}$ On résout (E_1) par $\Delta = \ldots = 48^2$ et $b = \frac{18 \pm 48}{10} \Rightarrow (b = -3 \text{ ou } b = \frac{33}{5})$

On vérifie dans
$$(E_2)$$
: $-2(-3)^3 - 6(-3)^2 + 6(-3) + 18 = \dots = 0$, et $-2\left(\frac{33}{5}\right)^3 - 6\left(\frac{33}{5}\right)^2 + 6\frac{33}{5} + 18 = -\frac{100719}{125} \neq 0$

Donc
$$z_0 = -3i$$
. Horner: $\begin{vmatrix} 2 & -5 + 6i & 6 + 18i & -99 + 18i \\ \hline -3i & -6i & 15i & 99 - 18i \\ \hline 2 & -5 & 6 + 33i \parallel 0 \end{vmatrix}$

Donc $P(z) = (z+3i)(2z^2-5z+6+33i)$. Il reste à résoudre $2z^2-5z+6+33i=0$

discriminant $\Delta = (-5)^2 - 4 \cdot 2(6+33i) = -23 - 264i = (a+bi)^2$ avec $(a;b) \in \mathbb{R}^2$ vérifiant

$$\begin{cases} a^2 - b^2 = -23 \\ 2ab = -264 \\ a^2 + b^2 = \sqrt{(-23)^2 + (-264)^2} = 265 \end{cases} \text{ et donc } \begin{cases} a^2 = \frac{-23 + 265}{2} = 121 \\ a \text{ et } b \text{ de signes contraires} \\ b^2 = \frac{-23 - 265}{-2} = 144 \end{cases}$$

Donc Δ admet les deux racines carrées complexes opposées $\delta_1=11-12i$ et $\delta_2=-11+12i$

Donc P admet en plus les racines $z_1 = \frac{5+11-12i}{4} = 4-3i$ et $z_1 = \frac{5-11+12i}{4} = -\frac{3}{2}+3i$.

Conclusion : P(z) = 0 admet l'ens des sol. $S = \{-3i; 4-3i; -\frac{3}{2}+3i\}$

2) $z = \operatorname{cis} \frac{\pi}{4}$ admet les racines carrées $z_k = \sqrt{1} \operatorname{cis} \frac{\frac{\pi}{4} + 2k\pi}{2}$ pour $k \in \{0; 1\}$, c.-à-d. $\begin{cases} z_0 = \operatorname{cis} \frac{\pi}{8} \\ z_1 = -\operatorname{cis} \frac{\pi}{n} \end{cases}$ (f. trig.)

D'autre part, $z = \operatorname{cis} \frac{\pi}{4} = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} = (a+bi)^2$ avec $(a;b) \in \mathbb{R}^2$ vérifiant

$$\begin{cases} a^2 - b^2 = \frac{\sqrt{2}}{2} \\ 2ab = \frac{\sqrt{2}}{2} \\ a^2 + b^2 = 1 \end{cases} \text{ et donc} \begin{cases} 2a^2 = \frac{\sqrt{2}}{2} + 1 = \frac{2+\sqrt{2}}{2} \\ a \text{ et } b \text{ de même signe} \\ -2b^2 = \frac{\sqrt{2}}{2} - 1 \end{cases} \text{ et donc} \begin{cases} a^2 = \frac{2+\sqrt{2}}{4} \\ a \text{ et } b \text{ de même signe} \\ b^2 = \frac{2-\sqrt{2}}{4} \end{cases}$$

Donc $a=\pm \frac{\sqrt{2+\sqrt{2}}}{2}$ et $b=\pm \frac{\sqrt{2-\sqrt{2}}}{2}$ et z admet les deux racines carrées complexes opposées

$$z_0=rac{\sqrt{2+\sqrt{2}}}{2}+irac{\sqrt{2-\sqrt{2}}}{2}$$
 et $z_1=-rac{\sqrt{2+\sqrt{2}}}{2}-irac{\sqrt{2-\sqrt{2}}}{2}$ (formes algébriques).

En identifiant formes trig. et alg., on obtient $\cos \frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}$ et $\sin \frac{\pi}{8} = \frac{\sqrt{2-\sqrt{2}}}{2}$

1) $\left(\frac{2}{3x} - \frac{x^3}{4}\right)^{10} = \sum_{k=0}^{10} (-1)^k C_{10}^k \left(\frac{2}{3x}\right)^{10-k} \left(\frac{x^3}{4}\right)^k$

Pour le terme en x^{18} on a $(x^{-1})^{10-k} \cdot (x^3)^k = x^{18} \Rightarrow k - 10 + 3k = 18 \Rightarrow \boxed{k=7}$

Il s'agit donc de $(-1)^7 C_{10}^7 \left(\frac{2}{3x}\right)^3 \left(\frac{x^3}{4}\right)^7 = -120 \left(\frac{2}{3}\right)^3 \left(\frac{1}{4}\right)^7 x^{18} = -\frac{5}{2304} x^{18}$

- 2) a) On tire trois boules successivement avec remise. Il y a $B_{32}^3 = 32^3 = 32768$ tirages possibles. Il y a 3 boules de la même couleur ssi. toutes 3 sont rouges ou bien vertes ou bien bleues, c.-à-d. dans $B_{16}^3 + B_{12}^3 + B_4^3 = 16^3 + 12^3 + 4^3 = 5888$ tirages favorables. Donc $p(3 \text{ b. } \hat{m} \text{ coul.}) = \frac{5888}{32768} \approx 17,97\%$
 - b) On tire simultanément 4 boules. Il y a $C_{32} = 35\,960$ tirages possibles. Il y a au moins une boule bleue dans tous ces tirages, sauf dans ceux qui ne comportent aucune bleue, c.-à-d. dans $C_{32}^4 - C_{28}^4 = 35\,960 - 20\,475 = 10\,10$ 15 485 tirages.

Donc p (aucune b. bl.) = $\frac{15\,485}{35\,960} \approx 43,06\%$

c) On tire deux boules successivement sans remise.

Il y a deux boules de couleurs différentes dans tous les tirages possibles, sauf dans ceux à 2 boules de même couleur, c.-à-d. dans $A_{32}^2 - (A_{16}^2 + A_{12}^2 + A_4^2) = 32 \cdot 31 - (16 \cdot 15 + 12 \cdot 11 + 4 \cdot 3) = 608$ tirages

• autrement :

Il y a deux boules de couleurs différentes dans les tirages de la forme

((rv) ou bien (rb) ou bien (vb)) à permutation de l'ordre près

c.-à-d. dans $(16 \cdot 12 + 16 \cdot 4 + 12 \cdot 4) \cdot 2! = 608$ tirages

d) On tire trois boules successivement sans remise. Il y a exactement 1 boule verte dans les tirages de la forme

(1ère verte puis 2 non-vertes) à la position de la verte près

c.-à-d. dans
$$\left(A_{12}^1 \cdot A_{20}^2\right) \cdot 3 = \left(12 \cdot 20 \cdot 19\right) \cdot 3 = \boxed{13\,680 \text{ tirages}}$$

• autrement :

Il y a exactement 1 boule verte dans les tirages de la forme

(1 verte et 2 non-vertes) à permutation de l'ordre près

c.-à-d. dans $(C_{12}^1 \cdot C_{20}^2) \cdot 3! = (12 \cdot \frac{20 \cdot 19}{2}) \cdot 6 = 13680$ tirages.

1) a) Le déterminant du système est $\begin{vmatrix} -m & 2 & -3 \\ 2 & -5m & -8 \\ -3 & 8m & 13 \end{vmatrix} = \cdots = m^2 - 3m - 4 = (m+1)(m-4)$

Donc le système admet une solution unique pour
$$m \in \mathbb{R} \setminus \{-1; 4\}$$
 b) Si $m = -1$, le système devient
$$\begin{cases} x + 2y - 3z = 1 \\ 2x + 5y - 8z = 4 \\ -3x - 8y + 13z = -7 \end{cases}$$
 et on résout
$$\begin{cases} x + 2y - 3z = 1 \\ 2x + 5y - 8z = 4 \end{cases}$$

$$\begin{cases} x + 2y - 3z = 1 \\ 2x + 5y - 8z = 4 \end{cases}$$

$$\begin{cases} x + 2y - 3z = 1 \\ (E_3)/(E_3) + 3(E_1) \\ (E_3)/(E_3) + 3(E_1) \end{cases}$$

$$\begin{cases} x + 2y - 3z = 1 \\ y - 2z = 2 \\ -2y + 4z = -4 \end{cases}$$
 Le système est simplement indéterminé.
$$\begin{cases} x - 1 - 2(2x + 2) + 3x = -2x - 3 \\ (x - 1) - 2(2x + 2) + 3x = -2x - 3 \end{cases}$$

Posons $z = \alpha$ paramètre réel et le système devient $\begin{cases} x = 1 - 2(2\alpha + 2) + 3\alpha = -\alpha - 3 \\ y = 2\alpha + 2 \end{cases}$

et donc $S = \{(-\alpha - 3; 2\alpha + 2; \alpha) / \alpha \in \mathbb{R}\}$.

Donc le système correspond à 3 équations cartésiennes de plans de l'espace se coupant en une seule droite
$$d \equiv \begin{cases} x = -\alpha - 3 \\ y = 2\alpha + 2 \\ z = \alpha \end{cases} = \begin{cases} x + 3 = -\alpha \\ y - 2 = 2\alpha \text{ passant par } M(-3; 2; 0) \text{ et de v.dir. } \overrightarrow{v}(-1; 2; 1). \end{cases}$$

- 2) a) $M(x; y; z) \in \pi \Leftrightarrow \begin{vmatrix} x+3 & 2 & 4 \\ y-2 & 1 & -3 \\ z-1 & -2 & -1 \end{vmatrix} = 0 \Leftrightarrow \cdots \Leftrightarrow -7x 6y 10z + 1 = 0$ Donc $\pi \equiv 7x + 6y + 10z 1 = 0$.

Donc
$$\boxed{\pi \equiv 7x + 6y + 10z - 1 = 0}$$
.

b) Le vecteur normal \vec{u} $\begin{pmatrix} 7 \\ 6 \\ 10 \end{pmatrix}$ étant vecteur directeur pour d , on a
$$M\left(x;y;z\right) \in d \Leftrightarrow \exists k \in \mathbb{R}: \begin{cases} x+3=7k \\ y-2=6k \\ z-1=10k \end{cases} \Leftrightarrow \exists k \in \mathbb{R}: \begin{cases} x+3=7\frac{y-2}{6} \\ \frac{y-2}{6}=k \\ z-1=10\frac{y-2}{6} \end{cases} \Leftrightarrow \begin{cases} 6x+18=7y-14 \\ 3z-3=5y-10 \end{cases}$$
Donc $\boxed{d \equiv \begin{cases} 6x+18-7y+14=0 \\ 3z-3-5y+10=0 \end{cases}}$