Al-based 3-Lead to 12-Lead ECG Reconstruction: Towards Smartphone-based Public Healthcare

Presenter

S.D. Neelapala IIT Hyderabad

Co-Authors: A. Mallick, Rahul L.R., A. Shaiju, L. Giri, R. Sarkar, S. Jana

Introduction

<u>Cardiovascular diseases (CVDs)</u> are a group of disorders of heart and blood vessels that can lead to heart attack and stroke

deaths worldwide are due to CVDs

deaths from CVDs occur in low- and middle-income countries

Early diagnosis of CVD is crucial to avoid catastrophic conditions

Electrocardiogram (ECG) is the most popular non-invasive method for diagnosis of CVDs

Standard 12-lead (S12L) ECG

- The clinically accepted ECG lead system
- Clinicians are trained to diagnose using S12L ECG

Provides
comprehensive 3D
information of heart
from all directions

Mobile-based public health challenges

Reduced lead (RL) ECG

- This uses a subset of S12L ECG system
- Used for specific clinical, wellness or monitoring needs

Reduced 3-lead (R3L) ECG widely used in remote cardiac monitoring, and **single lead ECGs** are used in wearable devices for wellness monitoring

Envisaged block schematic for public health

Literature review

System that employ a subset of leads (Reduced lead set) from 12-Lead ECG are only considered

Year	Author	Source leads	Synthesis method	Personalization	No. of subjects with accompanied diagnosis
1989	Scherer <i>et al</i> [3].	I, II, V2	LT	Yes	12 (UH)
2002	Wei <i>at al</i> [4].	I, II, V1, V6	LT	Yes	113 (HC)
2004	Nelwan <i>at al</i> [5].	I, II, V2, V5	LT	Yes	38 (UH)
2013	A. Acharyya et al [7].	I, II, V2	LT	Yes	PTBDB: 51 (HC), 226 (UH) INCARTDB: 32 (UH)
2019	WANG <i>et al</i> [6].	I, II, V2	CNN	Yes	PTBDB: 51 (HC), 226 (UH)
2020	Yang <i>et al</i> [8].	I, II, V2	LSTM	Yes	30 (HC), 30 (UH)
2023	Rahul <i>et al</i> [9]	I, II, V2	LSTM-UNet	Yes	PTBDB: 51 (HC), 226 (UH) INCARTDB: 32 (UH)

Methodology for Personalized setting (considered as reference)

Methodology for Public setting

Pix2pix GAN

- A type of generative adversarial network (GAN)
- It has a conditional GAN structure that uses paired training inputs to learn to find missing leads

Results (visual comparison in PTB)

Blue: Original ECG.

Green: Reference reconstruction using

LSTM-UNet in personalized setting.

Red: Proposed reconstruction using pix2pix GAN in public setting.

Results on PTB and PTBXL

(a) LSTM; (b) LSTM-UNet; (c) pix2pix GAN; (d) LSTM-UNet in personalized setting.

			PTE	BXL			PTB							
	R^2			r_x			R^2			r_x				
Lead	a	b	С	a	b	С	a	b	С	d	a	b	С	d
III	0.6050	0.6466	0.7781	0.7125	0.7442	0.9015	0.7151	0.7283	0.8878	0.9307	0.8067	0.8740	0.9508	0.9677
avR	0.8680	0.9452	0.9758	0.9317	0.9731	0.9917	0.8291	0.9479	0.9729	0.9820	0.9112	0.9739	0.9912	0.9977
avL	0.7252	0.7923	0.8311	0.8135	0.8387	0.9214	0.7119	0.8289	0.9183	0.9565	0.8605	0.9187	0.9660	0.9792
avF	0.7527	0.7976	0.9154	0.8498	0.9007	0.9685	0.7572	0.8558	0.9355	0.9645	0.8839	0.9298	0.9778	0.9831
V1	0.6067	0.6423	0.8425	0.8072	0.8498	0.9361	0.7491	0.7802	0.8221	0.9563	0.8772	0.8998	0.9258	0.9785
V3	0.6551	0.6813	0.8167	0.8276	0.8344	0.9181	0.7215	0.7412	0.8710	0.9678	0.9012	0.9078	0.9448	0.9845
V4	0.6260	0.7083	0.7808	0.7732	0.8325	0.8913	0.5408	0.5599	0.6896	0.9332	0.6922	0.7555	0.8484	0.9691
V5	0.6751	0.7266	0.8369	0.8307	0.8722	0.9210	0.6190	0.6766	0.7250	0.9273	0.7670	0.7820	0.8532	0.9661
V6	0.7276	0.7735	0.8580	0.8582	0.8921	0.9351	0.6324	0.6358	0.7763	0.9334	0.8032	0.8417	0.8877	0.9686
Avg	0.6934	0.7459	0.8484	0.8227	0.8597	0.9316	0.6973	0.7505	0.8443	0.9501	0.8336	0.8759	0.9273	0.9771

Observations in PTBXL:

- Proposed GAN model has high performance compared to other models
- Lead-wise statistics: avR fairly accurate but V4 less satisfactory

Observations in PTB:

- Significant gap with the personalized setting (84.43 vs 95.01)
- For leads such as avR gap is vey less (97.29 vs 98.20)
- For lead such as V4 gap is significant (68.96 vs 93.32)

Conclusion

- Pix2pix GAN shows improved performance compared to LSTM and LSTM-UNet in the public setting
- There is still scope of improvement especially in the V1-V6 leads
- Continued research in this direction is encouraged, as minor inaccuracies in lead reconstruction would lead to misdiagnosis, potentially endangering human lives

Future work

- Explore the performance of lead reconstruction using variants of GAN models such as time-series GAN and LSTM-GAN
- Cost function can be made dependent on known lead information for better contextualization and potentially improved efficacy
- Explore whether the use of side information such as a (cheaply acquired) photoplethysmograph (PPG) channel alongside the 3-lead ECG data enhances robustness.
- Generating health alerts based on 3-lead ECG data and undertaking the present lead reconstruction task only upon alert, thus saving resources.

References

- A.H. Ribeiro et al., "Automatic diagnosis of the 12-lead ECG using a deep neural network," Nat. Commun., vol. 11, no. 1, p. 1760, 2020.
- J.A. Scherer, J. M. Jenkins, and J. M. Nicklas, "Synthesis of the 12- lead electrocardiogram from a 3-lead subset using patient-specific transformation vectors—An algorithmic approach to computerized signal synthesis," J. Electrocardiol., vol. 22, Suppl, pp. 128-128, 1989.
- G.E. Dower., "A lead synthesizer for the Frank system to simulate the standard 12-lead electrocardiogram." J. Electrocardiol., vol. 1, no. 1, pp. 101–116, 1968
- D. Dawson, H. Yang, M. Malshe, ST Bukkapatnam, B. Benjamin and R. Komanduri., "Linear affine transformations between 3-lead (Frank XYZ leads) vectorcardiogram and 12-lead electrocardiogram signals," J. Electrocardiol., vol. 42, no. 6, pp. 622–630, 2009.
- S. Maheshwari, A. Acharyya, P. Rajalakshmi, P.E. Puddu, M. Schiariti., "Accurate and reliable 3-lead to 12-lead ECG reconstruction methodology for remote health monitoring applications," IRBM, vol. 35, no. 6, pp. 341–350, 2014.
- J. Sohn, S. Yang, J. Lee, Y. Ku, H.C. Kim., "Reconstruction of 12-lead electrocardiogram from a three-lead patch-type device using a LSTM network," Sensors, vol. 20, no. 11, pp. 3278, 2020
- L.R. Rahul, A. Shaiju and S. Jana., "3-Lead to 12-Lead ECG Reconstruction: A Novel AI-based Spatio-Temporal Method," 20th INDICON, pp. 957–962, 2023.