Introducción a la Lógica y la Computación, 06/12/2007.

Apellido y Nombre

- nota	1.0	1 \ 2	15	KT	L.
		1 1 1			

- (1) M(a) Defina L(r), el lenguaje denotado por una expresión regular, y L(M), el lenguaje aceptado por un NFA con mov. ϵ .
 - (b) Enuncie Teorema de Kleene.
 - $\mathfrak{F}(c)$ Considere el siguiente autómata, con estados finales q_0, q_2 :

Utilice el método de la prueba del Teorema de Kleene para encontrar una expresión regular que denote el lenguaje aceptado por el autómata.

- (2) Considere la gramática $S \to aS \mid bB \mid a$, $B \to bB \mid \epsilon$. Pruebe por inducción que w es generada por la gramática sii $w = a^n b^m$, para ciertos n, m tales que $n \ge 1$ o $m \ge 1$.
 - (3) (a) Sean $(P, \leq), (Q, \leq')$ dos posets (conjuntos parcialmente ordenados), y sea $f: P \to Q$ un isomorfismos de posets. Pruebe que si $S \subseteq P$ tiene supremo a entonces f(S) tiene supremo, y concide con f(a).
 - $\mathfrak{S}(b)$ Pruebe que todo reticulado satisface $(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z)$.
 - $\mathcal{W}(c)$ Pruebe si B es un álgebra de Boole y P es un filtro, entonces P es primo si y sólo si P es maximal.
- $\sqrt{(4)}$ Hallar derivaciones que muestren:
 - \checkmark (a) $\vdash p \lor q \to ((p \leftrightarrow q) \to p \land q)$
 - v (b) $\vdash p \lor q \to (\neg p \to q)$
- (5) Suponga T consistente. Pruebe

 Γ es consistente maximal si y sólo si para toda $\varphi \in PROP$, $[\varphi \in \Gamma \circ \neg \varphi \in \Gamma]$.

Ejercicios para alumnos libres: (1) Sea el NFA $M=(\{q_0,q_1,q_2,q_1\},\{0,1\},\delta,q_0,\{q_2\})$ donde δ viene dada por la siguiente tabla de transición:

	0	1	E
q_0	$\{q_0,q_1,q_2\}$	$\{q_3,q_2\}$	Ø
q_1	Ø	$\{q_0, q_1\}$	Ø
q_2	$\{q_1\}$	Ø	$\{q_1\}$
q_3	$\{q_0, q_2\}$	Ø	Ø

- (1) Hacer el diagrama de transición de M.
- (2) Determine cuales de las siguientes palabras son aceptadas: 001, 0011, 11, 1111.
- (3) Definir una gramática (no necesariamente regular) que genere L(M). Hacerlo a partir del autómata original.