- **1.** Given that $A = \begin{bmatrix} 1 & 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$
- [4 pts] (a) Solve the system $A\mathbf{x} = \mathbf{b}$
- [1 pt] (b) Write \mathbf{b} as a linear combination of columns of A.
- [1 pt] (c) What is rank(A)?
- [1 pt] (d) What is the dimension of $Nul(A^T)$?
- $[1 \text{ pt}] \qquad \text{ (e) Is } \mathbf{u} = \left[\begin{array}{c} -1 \\ 1 \\ 0 \end{array} \right] \text{ in Nul}(A^T)? \text{ Justify.}$
 - **2.** Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 1 \\ k^2 5 \end{bmatrix}$ and $\mathbf{v}_4 = \begin{bmatrix} 2 \\ 3 \\ k \end{bmatrix}$.
- [4 pts] (a) For what values of k is \mathbf{v}_4 in Span($\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$)?
- [2 pts] (b) For what values of k is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly independent?
- [4 pts] 3. Set up an augmented matrix for finding the loop currents of the following electrical circuit. Do not solve the system

- [5 pts] **4.** Find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ -1 & -1 & -3 \end{bmatrix}$.
 - 5. Let $A = \begin{bmatrix} 2 & 4 & 6 \\ 3 & 3 & 12 \\ 1 & 8 & 5 \end{bmatrix}$.
- [4 pts] (a) Find an LU-factorization of A.
- [4 pts] (b) Write L as a product of elementary matrices.
 - **6.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ denote the horizontal expansion (stretching) by a factor of 2, and let $S: \mathbb{R}^2 \to \mathbb{R}^2$ denote the vertical shear that transforms (1,0) to (1,2).
- [2 pts] (a) Find the standard matrix for S.

- [2 pts] (b) Find the standard matrix for T.
- [2 pts] (c) Find the standard matrix for the composition $S \circ T$.
- [1 pt] (d) Let \mathcal{R} denote the triangle in \mathbb{R}^2 whose vertices are (-2,0),(2,0), and (0,4). In the space provided sketch \mathcal{R} .

- [1 pt] (e) In the same graph sketch the image $(S \circ T)(\mathcal{R})$.
- [3 pts] (f) Compute the area of the image $(S \circ T)(\mathcal{R})$.
 - 7. Let $A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$, and let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $T(\mathbf{x}) = A\mathbf{x}$.
- [3 pts] (a) Let \mathcal{P} be the plane given by the parametric-vector equation $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + s \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$. Is the image $T(\mathcal{P})$ a plane, a line, or a point? Justify.
- [2 pts] (b) Is T one-to-one? Justify.
 - 8. Let A, B, and C be 3×3 matrices. If $\det(A) = 10$, $\det(B) = -2$ and C is non-invertible, evaluate the following determinants. Show your work.
- [2 pts] (a) $\det(3B^2A^{-1})$
- [2 pts] (b) $\det(C^T A + C^T B)$
- [2 pts] (c) $\det((3A)^{-1}B^2)$
 - **9.** Given det $\begin{bmatrix} a & b & c \\ d & e & f \\ 1 & 1 & 1 \end{bmatrix} = 3$, compute the following determinants.

- [3 pts] (a) $\det \begin{bmatrix} 2 & 2 & 2 \\ a & b & c \\ d-3 & e-3 & f-3 \end{bmatrix}$
- [3 pts] (b) det $\begin{bmatrix} 0 & 0 & 5 & 10 \\ a & d & 2 & 5 \\ b & e & 2 & 5 \\ c & f & 2 & 5 \end{bmatrix}$
 - **10.** Consider the block matrices $M = \begin{bmatrix} I & A \\ A & I \end{bmatrix}$ and $N = \begin{bmatrix} I & 0 \\ -A & I \end{bmatrix}$, where A is an $n \times n$ matrix such that $A^2 = I$.
- [2 pts] (a) Compute MN and simplify.
- [1 pt] (b) Is M invertible? Justify.
 - 11. Let **u** and **v** be two unit vectors in \mathbb{R}^n which are orthogonal to each other. Compute the following.
- [2 pts] (a) $(2\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} 5\mathbf{v})$
- [2 pts] (b) $\|\mathbf{u} + 4\mathbf{v}\|$
- [3 pts] 12. Find the point between the points P(6, -2, 5) and Q(10, 2, 7) whose distance from P is 2 units.
- [2 pts] 13. Find the values of h and k for which the line $\mathbf{x} = \begin{bmatrix} h \\ 2 \\ -1 \end{bmatrix} + t \begin{bmatrix} 1 \\ k \\ 3 \end{bmatrix}$ lies in the plane x 2y + z = 5.
 - **14.** You are given the following points: A(1,2,3), B(2,2,4), and C(-5,3,1).
- [3 pts] (a) Give a parametric-vector equation for the line containing A and B.
- [4 pts] (b) Find the point on the line from part (a) that is closest to the point C.
- [3 pts] (c) Find the area of the triangle whose vertices are the points A, B, and C.
 - **15.** Let $H = \left\{ \left[\begin{array}{cc} x & y \\ 0 & z \end{array} \right] : x^2 + y^2 = z^2 \right\}.$
- [2 pts] (a) List two matrices that belong to H which are not scalar multiples of each other.
- [2 pts] (b) Is H closed under scalar multiplication? Justify.
- [2 pts] (c) Is H closed under addition? Justify.
- [5 pts] **16.** Given $A = \begin{bmatrix} -1 & -1 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & -2 \end{bmatrix}$, consider the subspace W of \mathbb{R}^3 given by $W = \{\mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = -2\mathbf{x}\}$. Find a basis for W.

17. Complete the following statements with "must", "might", or "cannot", as appropriate.

[1 pt] (a) If $T: \mathbb{R}^6 \to \mathbb{R}^8$ is a linear transformation, then T ______ be onto.

[1 pt] (b) If A is row equivalent to B, then Col(A) _____ equal Col(B).

[1 pt] (c) If \mathbf{u} and \mathbf{v} are nonzero vectors and $\operatorname{Proj}_{\mathbf{v}}\mathbf{u} = \mathbf{u}$, then \mathbf{u} ______ be parallel to \mathbf{v} .

[1 pt] (d) If \mathbf{u} and \mathbf{v} are nonzero vectors in \mathbb{R}^3 , then $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}$ be equal to 0.

[2 pts] (e) Let A be a 3×3 matrix, and let B be a 4×4 matrix. If $\operatorname{rank}(A) = \operatorname{rank}(B)$, then $\det(A)$ _____ equal zero and $\det(B)$ ____ equal zero.

[2 pts] 18. Give an example of a 3×5 matrix $B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & \mathbf{b}_4 & \mathbf{b}_5 \end{bmatrix}$ that satisfies all four of the following conditions.

- (i) B is in reduced row echelon form.
- (ii) \mathbf{b}_1 and \mathbf{b}_3 are pivot columns.
- (iii) $\{\mathbf{b}_2, \mathbf{b}_4\}$ is a basis for $\operatorname{Col}(B)$.
- (iv) $\{\mathbf{b}_2, \mathbf{b}_5\}$ is not a basis for Col(B).

Answers

1.
$$\begin{bmatrix} A & \mathbf{b} \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 & 0 & 7 \\ 0 & 1 & -2 & -3 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & -5 \end{bmatrix}$$
.

(a)
$$\mathbf{x} = \begin{bmatrix} 7 \\ -3 \\ 0 \\ 0 \\ -5 \end{bmatrix} + s \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

(b)
$$\mathbf{b} = 7 \operatorname{col}_1(A) - 3 \operatorname{col}_2(A) - 5 \operatorname{col}_5(A) = 7 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 5 \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

- (c) rank(A) = 3
- (d) dim Nul $(A^T) = 3 \text{rank}(A^T) = 3 \text{rank} A = 0$
- (e) No, since dim Nul $(A^T) = 0$ implies Nul $(A^T) = \{\mathbf{0}\}$. (Alternatively, note $A^T \mathbf{u} = (\mathbf{u}^T A)^T = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}^T \neq \mathbf{0}$.)

2.
$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & k^2 - 4 & k - 2 \end{bmatrix} = R$$

- (a) $\mathbf{v}_4 \in \mathrm{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) \Leftrightarrow \mathrm{col}_4(R)$ is not a pivot column $\Leftrightarrow k \neq -2$
- (b) $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \Leftrightarrow \operatorname{col}_3(R)$ is a pivot column $\Leftrightarrow k \in \mathbb{R} \setminus \{-2, 2\}$

3. Loop 1:
$$6I_1 + 4(I_1 - I_2) = 10 \Longrightarrow 10I_1 - 4I_2 = 10$$

Loop 2:
$$4(I_2 - I_1) + 3(I_2 - I_3) + 3I_2 = -25 \Longrightarrow -4I_1 + 10I_2 - 3I_3 = -25$$

Loop 2:
$$3(I_3 - I_2) + 5I_3 = 15 \Longrightarrow -3I_2 + 8I_3 = 15$$

Augmented matrix is
$$\begin{bmatrix} 10 & -4 & 0 & 10 \\ -4 & 10 & -3 & -25 \\ 0 & -3 & 8 & 15 \end{bmatrix}$$

4.
$$A^{-1} = \begin{bmatrix} 5 & -3 & -2 \\ 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix}$$
.

5. (a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 3/2 & 1 & 0 \\ 1/2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 6 \\ 0 & -3 & 3 \\ 0 & 0 & 8 \end{bmatrix}$$

(b)
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 3/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

6. (a)
$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix}$$

- (d) The isosceles triangle.
- (e) The scalene triangle.

(f) Area of
$$(S \circ T)(\mathcal{R}) = \left| \det \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \right|$$
 (Area of \mathcal{R}) = 16

- 7. (a) $T(\mathcal{P}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \operatorname{Span} \left(\left\{ \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\} \right) = \operatorname{Span} \left(\left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\} \right).$
 - (b) T is not one-to-one since T transforms both $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 3\\3\\2 \end{bmatrix}$ to $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$.
- **8.** (a) 54/5
 - (b) 0
 - (c) $\frac{2}{135}$
- **9.** (a) 6
 - (b) 15
- **10.** (a) $MN = \begin{bmatrix} 0 & A \\ 0 & I \end{bmatrix}$
 - (b) Note that MN has a column of zeros, and thus det(MN) = 0. Also, N is a unit lower triangular matrix, and thus det N = 1. Therefore

$$\det M = \det M \det N = \det(MN) = 0.$$

Since $\det M = 0$ we have that M is non-invertible.

- **11.** (a) -3
 - (b) $\sqrt{17}$
- **12.** (22/3, -2/3, 17/3)
- **13.** h = 10, k = 2
- **14.** (a) $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 - (b) (-3, 2, -1)
 - (c) $\frac{3\sqrt{2}}{2}$
- **15.** Let $H = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} : x^2 + y^2 = z^2 \right\}.$
 - (a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

(b) Yes. (Suppose that $A=\left[\begin{array}{cc} x & y \\ 0 & z \end{array}\right]\in H$ and $c\in\mathbb{R}.$ Then $cA=\left[\begin{array}{cc} cx & cy \\ 0 & cz \end{array}\right],$ and

$$(cx)^{2} + (cy)^{2} = c^{2}x^{2} + c^{2}y^{2}$$

$$= c^{2}(x^{2} + y^{2})$$

$$= c^{2}(z^{2}) \text{ (since } A \in H)$$

$$= (cz)^{2}.$$

This shows that $cA \in H$, therefore H is closed under scalar multiplication.)

- (c) No. (Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$. Then A and B are in H, but $A + B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \notin H$.)
- **16.** A basis is $\left\{ \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \right\}$.
- **17.** (a) cannot
 - (b) might
 - (c) must
 - (d) must
 - (e) might, must

$$\begin{bmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$