Chapter 5 Query Operations

Motivation - Feast or famine

- Queries return either too few or too many results
- Users are generally looking for the best document with a particular piece of information
- Users don't want to look through hundreds of documents to locate the information

⇒ Rank documents according to expected relevance!

Queries

- Most queries are short
 - One to three words
- Many queries are ambiguous
 - "Saturn"
 - Saturn the planet?
 - Saturn the car?

- Two general approaches:
 - Create new queries with <u>user feedback</u> (explicit feedback)
 - Create new queries <u>automatically</u> (implicit feedback)
- Re-compute document weights with new information
- Expand or modify the query to more accurately reflect the user's desires

Explicit Feedback

(a) relevance feedback

(b) click feedback

Implicit Feedback

User Feedback

- After initial retrieval results are presented, allow the user to provide feedback on the relevance of one or more of the retrieved documents.
- Use this feedback information to reformulate the query.
- Produce new results based on reformulated query.
- Allows more interactive, multi-pass process.

User Feedback

☐ The main idea consists of

- selecting important terms from the documents that have been identified as relevant, and
- enhancing the importance of these terms in a new query formulation

User Feedback Architecture

User Feedback (concept)

- x documents identified as nonrelevant
- o documents identified as relevant
- original queryreformulated query

User Feedback (concept)

User Feedback (concept)

User Feedback: Example

 Image search engine http://nayana.ece.ucsb.edu/imsearch/imsearch.

Results for Initial Query

User Feedback

Results after User Feedback

(144538, 523493) 0.54182 0.231944 0.309876 (144538, 523835) 0.56319296 0.267304 0.295889 (144538,523529) 0.584279 0.280881 0.303398 (144456, 253569) 0.64501 0.351395 0.293615 (144456, 253568) 0.650275 0.411745 0.23853 (144538, 523799) 0.66709197 0.358033 0.309059

(144473, 16328)

She had 'top' to the hads for her hads for her hads some to the had to the hads some to the hads some to the hads some to the hadden some to the hads some to the hads some to the hads some to the hads some to the hadden some to the hadd

(144473, 16249) 0.6721 0.393922 0.278178 (144456, 249634) 0.675018 0.4639 0.211118 (144456, 253693) 0.676901 0.47645 0.200451 (144473, 16328) 0.700339 0.309002 0.391337 (144483, 265264) 0.70170796 0.36176 0.339948 (144478,512410) 0.70297 0.469111 0.233859

Query Reformulation

- Revise query to account for feedback:
 - Query Expansion: Add new terms to query from relevant documents.
 - Term Reweighting: Increase weight of terms in relevant documents and decrease weight of terms in irrelevant documents.
- Several algorithms for query reformulation.

Query Reformulation

- Change query vector using vector algebra.
- Add the vectors for the relevant documents to the query vector.
- Subtract the vectors for the irrelevant docs from the query vector.

Vector Space Re-Weighting

Rochio:

- $\mathbf{q'} = \alpha \mathbf{q} + (\beta/|\mathbf{D}_r|) \sum_{d_i \in \mathbf{D}_r} \mathbf{d}_i (\gamma/|\mathbf{D}_n|) \sum_{d_i \in \mathbf{D}_n} \mathbf{d}_i$ Ide regular
- $q' = \alpha q + \beta \sum_{d_i \in D_r} d_i \gamma \sum_{d_i \in D_n} d_i$ Ide Dec_hi
- $q' = \alpha q + \beta \sum_{d_i \in \mathbf{D}_r} d_i \gamma \max_{d_i \in \mathbf{D}_n} (d_i)$

Rocchio Method

$$Q_1 = \alpha \ Q_0 + \frac{\beta}{n_1} \sum_{\forall d_j \in D_r} \overrightarrow{d}_j - \frac{\gamma}{n_2} \sum_{\forall d_j \in D_n} \overrightarrow{d}_j$$

where

 Q_0 = the vector for the initial query

 D_r = the set of relevant documents

 D_n = the set of non - relevant documents

 n_1 = the number of relevant documents chosen

 n_2 = the number of non - relevant documents chosen

 α, β and γ tune importance of relevant and nonrelevant terms

(in some studies best to set α to 1 β to 0.75 and γ to 0.25)

Example Rocchio Calculation

$$R_1 = (0.030, 0, 0, 0.025, 0.025, 0.050, 0, 0, 0.120)$$

Relevant

$$R_2 = (0.020, 0.009, 0.020, 0.002, 0.050, 0.025, 0.100, 0.100, 0.120)$$
 docs

$$S_1 = (0.030, 0.010, 0.020, 0, 0.005, 0.025, 0, 0.020, 0)$$
 Non-rel doc

$$Q = (0,0,0,0,0.500,0,0.450,0,0.950)$$

Original Query

$$\alpha = 1$$

$$\beta = 0.75$$
 Constants

$$\gamma = 0.25$$

$$Q_{new} = \alpha \times Q + \left(\frac{\beta}{2} \times (R_1 + R_2)\right) - \left(\frac{\gamma}{1} \times S_1\right)$$
 Resulting feedback query

 $Q_{new} = (0.011, 0.000875, 0.002, 0.01, 0.527, 0.022, 0.488, 0.033, 1.04)$

Rocchio Method - summary

Rocchio automatically

- re-weights terms
- adds in new terms (from relevant docs)
 - have to be careful when dealing with negative terms
- known to significantly improve results
- Quality
 - heavily dependent on test collection
 - heavily dependent on relevance quality

Ide Regular Method

 Since more feedback should perhaps increase the degree of reformulation, do not normalize for amount of feedback:

$$\vec{q}_1 = \alpha \vec{q}_0 + \beta \sum_{\forall \vec{d}_j \in D_r} \vec{d}_j - \gamma \sum_{\forall \vec{d}_j \in D_n} \vec{d}_j$$

 α : Tunable weight for initial query.

β: Tunable weight for relevant documents.

 γ : Tunable weight for irrelevant documents.

$$\vec{q}_m = \vec{q} + \alpha \sum_{\forall \vec{d}_j \in D_r} \vec{d}_j - \beta \sum_{\forall \vec{d}_j \in D_n} \vec{d}_j$$

Original Query: (5,0,3,0,1)

Document D₁ Relevant : (2,1,2,0,0)

Document D₂ Nonrelevant : (1,0,0,0,2)

$$\alpha$$
 = 0.50 β = 0.25

$$q' = q + 0.5D_1 - 0.25D_2$$

= (5,0,3,0,1) + 0.5(2,1,2,0,0) - 0.25(1,0,0,0,2)
= (5.75, 0.50, 4.0, 0.0, 0.5)

How can relevance feedback save time if a person has to read documents?

Difficulties with Relevance Feedback

Vector Space Re-Weighting

- The initial query vector \mathbf{q}_0 will have non-zero weights only for terms appearing in the query
- The query vector update process can add weight to terms that don't appear in the original query
- Some terms can end up having negative weight!
 - E.g., if you want to find information on the planet
 Saturn, "car" could have a negative weight...

Automatically (Implicit)

- Automatic Global Analysis
- Automatic Local Analysis

Automatic Global Analysis

- A thesaurus-like structure
- Short history
 - Until the beginning of the 1990s, global analysis was considered to be a technique which failed to yield consistent improvements in retrieval performance with *general* collections
 - This perception has changed with the appearance of modern procedures for global analysis

Query Expansion based on a Similarity Thesaurus

Idea by Qiu and Frei [1993]

- Similarity thesaurus is based on <u>term to term relationships</u> rather than on a matrix of co-occurrence
- Terms for expansion are selected based on <u>their similarity</u> to the whole query rather than on their similarities to individual query terms

Definition

- N: total number of documents in the collection
- t: total number of terms in the collection
- $tf_{i,j}$: occurrence frequency of term k_i in the document d_i
- $-t_{j}$: the number of distinct index terms in the document d_{j}
- $-itf_j$: the inverse **term frequency** for document d_j

$$itf_{j} = \log \frac{t}{t_{i}}$$

Term weighting vs. Term concept space

$$w_{i,j} = \frac{(0.5 + 0.5 \frac{tf_{i,j}}{\max_{k} \{tf_{k,j}\}}) i df_{i}}{\sqrt{\sum_{k=1}^{t} (0.5 + 0.5 \frac{tf_{k,j}}{\max_{k} \{tf_{k,j}\}})^{2} i df_{k}^{2}}} \qquad w_{i,j} = \frac{(0.5 + 0.5 \frac{tf_{i,j}}{\max_{k} \{tf_{i,k}\}}) i t f_{j}}{\sqrt{\sum_{k=1}^{N} (0.5 + 0.5 \frac{tf_{i,k}}{\max_{k} \{tf_{i,k}\}})^{2} i t f_{k}^{2}}}}$$

$$i df_{i} = \log \frac{N}{n_{i}}$$

$$i t f_{j} = \log \frac{t}{t_{j}}$$

$$w_{i,j} = \frac{(0.5 + 0.5 \frac{tf_{i,j}}{\max_{k} \{tf_{i,k}\}}) itf_{j}}{\sqrt{\sum_{k=1}^{N} (0.5 + 0.5 \frac{tf_{i,k}}{\max_{k} \{tf_{i,k}\}})^{2} itf_{k}^{2}}}$$

$$itf_{j} = \log \frac{t}{t_{j}}$$

Similarity Thesaurus

Each term is associated with a vector

$$\overrightarrow{k}_i = (w_{i,1}, w_{i,2}, \cdots, w_{i,N})$$

 where w_{i,j} is a weight associated to the indexdocument pair

$$w_{i,j} = \frac{(0.5 + 0.5 \frac{tf_{i,j}}{\max_{k} \{tf_{i,k}\}}) itf_{j}}{\sqrt{\sum_{k=1}^{N} (0.5 + 0.5 \frac{tf_{i,k}}{\max_{k} \{tf_{i,k}\}})^{2} itf_{k}^{2}}}$$

The relationship between two terms k_u and k_v is

$$c_{u,v} = \overrightarrow{k_u} \bullet \overrightarrow{k_v} = \sum_{j=1}^{N} w_{u,j} \times w_{v,j}$$

Query Expansion Procedure with Similarity Thesaurus

- 1. Represent the query in the concept space by using the representation of the index terms $\vec{q} = \sum w_{u,q} \vec{k}_u$
- 2. Compute the similarity $sim(q, k_v)$ between each term k_v and the whole query

$$sim(q, k_v) = \overrightarrow{q} \bullet \overrightarrow{k_v} = \left(\sum_{k_u \in q} w_{u,q} \overrightarrow{k_u}\right) \bullet \overrightarrow{k_v} = \sum_{k_u \in Q} w_{u,q} \times c_{u,v}$$

3. Expand the query with the top r ranked terms according to $sim(q,k_v)$

$$w_{v,q'} = \frac{sim(q, k_v)}{\sum_{k_u \in q} w_{u,q}}$$

Query Expansion based on a Similarity Thesaurus

- A document d_j is represented term-concept space by $\overrightarrow{d}_j = \sum_{k_v \in d_i} w_{v,j} \times \overrightarrow{k_v}$
- If the original query q is expanded to include all the t index terms, then the similarity sim(q, d_j) between the document d_j and the query q can be computed as

$$sim(\overrightarrow{q}, \overrightarrow{d_j}) = \left(\sum_{k_u \in q} w_{u,q} \times \overrightarrow{k_u}\right) \bullet \left(\sum_{k_v \in d_j} w_{v,j} \times \overrightarrow{k_v}\right)$$

$$sim(\overrightarrow{q}, \overrightarrow{d_j}) = \sum_{k_v \in d_j} \sum_{k_u \in q} w_{v,j} \times w_{u,q} \times c_{u,v}$$

which is similar to the generalized vector space model

The relationship between two terms

С	1	2	3	 m
1	C1,1	C1,2	C1,3	C1,m
2	C2,1	C2,2	C2,3	 C2,m
3	C3,1	C3,2	C3,3	 C3,m
n	Cn,1	Cn,2	Cn,3	 Cn,m

$$c_{u,v} = \overrightarrow{k_u} \bullet \overrightarrow{k_v} = \sum_{j=1}^{N} w_{u,j} \times w_{v,j}$$

Ex.

$$C_{1,3} = W_{1,1}^* W_{3,1} + W_{1,2}^* W_{3,2} + W_{1,3}^* W_{3,3} + \dots + W_{1,n}^* W_{3,n}$$

Original Query

$$q = w_{1,q}K_1 + w_{2,q}K_2 + w_{3,q}K_3 + ... + w_{n,q}K_n$$

 compute a similarity sim(q,kv) between each term kv correlated to the query terms and the whole query q

$$sim(q, k_v) = \vec{q} \cdot \vec{k}_v = \sum_{k_u \in q} w_{u,q} \times c_{u,v}$$

EX.

$$sim(q,k_3) = w_{1,q} c_{1,3} + w_{2,q} c_{2,3} + w_{3,q} c_{3,3} + ... + w_{n,q} c_{n,3}$$

Arrange sim(q,k₁)

Ex.

$$sim(q,k_1) = 0.53$$

$$sim(q,k_2) = 0.36$$

$$sim(q,k_3) = 3.98$$

$$sim(q,k_4) = 1.87$$

$$sim(q,k_3)$$

 $sim(q,k_4)$

$$sim(q,k_4)$$

$$sim(q,k_1)$$

$$sim(q,k_2)$$

$$sim(q,k_2)
sim(q,k_4)$$

$$sim(q,k_3)$$

$$sim(q,k_1)$$

Original Query

$$q = K_1 + K_4$$

$$q = K_1 + K_3 + K_4$$

New Query

$$q = K_1 + K_2 + K_3 + K_4$$

Compute new weight terms for query

Original Query

$$q = w_{1,q}K_1 + w_{2,q}K_2 + w_{3,q}K_3 + ... + w_{n,q}K_n$$

$$w_{v,q'} = \frac{sim(q,k_v)}{\sum_{k_u \in q} w_{u,q}}$$

Ex.

$$w_{3,q'} = \frac{sim(q, k_3)}{(w_{1,q} + w_{2,q} + w_{3,q} + .. + w_{n,q})}$$

New Query

$$q = 2.6K_1 + 5.4K_3 + 4.8K_4$$

$$W_{1,q} = 2.6$$

$$W_{3,q} = 5.4$$

$$W_{4,q} = 4.8$$

Compute sim(q,d_i) for new relevance document $sim(q,d_i) \propto \sum w_{i,j} \times w_{u,q} \times c_{u,v}$

$$\begin{aligned} & k_{\nu} \in d_{j} \ k_{u} \in q \\ \text{Sim}(q,d_{2}) &= W_{1,2}^{*} W_{1,q}^{*} C_{1,1} + W_{1,2}^{*} W_{1,q}^{*} C_{1,2} + W_{1,2}^{*} W_{1,q}^{*} C_{1,3} + \ldots + W_{1,2}^{*} W_{1,q}^{*} C_{1,m} + \\ & W_{2,2}^{*} W_{2,q}^{*} C_{2,1} + W_{2,2}^{*} W_{2,q}^{*} C_{2,2} + W_{2,2}^{*} W_{2,q}^{*} C_{2,3} + \ldots + W_{2,2}^{*} W_{2,q}^{*} C_{2,m} + \\ & W_{3,2}^{*} W_{3,q}^{*} C_{3,1} + W_{3,2}^{*} W_{3,q}^{*} C_{3,2} + W_{3,2}^{*} W_{3,q}^{*} C_{3,3} + \ldots + W_{3,2}^{*} W_{3,q}^{*} C_{3,m} + \\ & \dots \\ & W_{n,2}^{*} W_{n,q}^{*} C_{n,1} + W_{n,2}^{*} W_{n,q}^{*} C_{n,2} + W_{n,2}^{*} W_{n,q}^{*} C_{n,3} + \ldots + W_{n,2}^{*} W_{n,q}^{*} C_{n,m} \\ \text{Sim}(q,d_{2}) &= W_{1,2}^{*} W_{1,q}^{*} (C_{1,1} + C_{1,2} + C_{1,3} + \ldots + C_{1,m}) + \\ & W_{2,2}^{*} W_{2,q}^{*} (C_{2,1} + C_{2,2} + C_{2,3} + \ldots + C_{2,m}) + \\ & W_{3,2}^{*} W_{3,q}^{*} (C_{3,1} + C_{3,2} + C_{3,3} + \ldots + C_{3,m}) + \\ & \dots \\ & W_{n,2}^{*} W_{n,q}^{*} (C_{n,1} + C_{n,2} + C_{n,3} + \ldots + C_{n,m}) \end{aligned}$$

43

Example

$$D_1 = A,B,B,A,A,C$$

$$D_2 = D,D,C$$

$$D_3 = B,E,E$$

$$D_4 = D,E,A$$

Query =
$$2.3A + C$$

$$w_{i,j} = \frac{\left(0.5 + 0.5 \frac{f_{i,j}}{\max_{j}(f_{i,j})}\right) itf_{j}}{\sqrt{\sum_{l=1}^{N} \left(0.5 + 0.5 \frac{f_{i,j}}{\max_{l}(f_{i,l})}\right)^{2} itf_{l}^{2}}}$$

$$itf_j = \log \frac{t}{t_j}$$

Example

$$D_1 = A,B,B,A,A,C$$

$$D_2 = D,D,C$$

$$D_3 = B,E,E$$

$$D_4 = A, D, E$$

Query =
$$2.3A + C$$

$$Term = 5$$

$$itf_j = \log \frac{t}{t_j}$$

$$itf_4 = \log \frac{5}{3} = 0.222$$

Key/Doc	D1	D2	D3	D4
Α	3	0	0	1
В	2	0	1	0
С	1	1	0	0
D	0	2	0	1
E	0	0	2	1
Max	3	2	2	1
t _j	3	2	2	3
itf(Doc)	0.222	0.398	0.398	0.222

	D1	D2	D3	D4
Α	3	0	0	1
В	2	0	1	0
С	1	1	0	0
D	0	2	0	1
E	0	0	2	1
Max	3	2	2	1
tj	3	2	2	3
itf	0.222	0.398	0.398	0.222

$$w_{i,j} = \frac{\left(0.5 + 0.5 \frac{f_{i,j}}{\max_{j}(f_{i,j})}\right) itf_{j}}{\sqrt{\sum_{l=1}^{N} \left(0.5 + 0.5 \frac{f_{i,j}}{\max_{l}(f_{i,l})}\right)^{2} itf_{l}^{2}}}$$

$$\begin{split} w_{1,3} &= \frac{\left(0.5 + 0.5 \frac{f_{1,3}}{\max(f_{d3})}\right) i t f_{3}}{\sqrt{\left(0.5 + 0.5 \frac{f_{1,1}}{\max(f_{d1})}\right)^{2} i t f_{1}^{2} + \left(0.5 + 0.5 \frac{f_{1,2}}{\max(f_{d2})}\right)^{2} i t f_{2}^{2} + \left(0.5 + 0.5 \frac{f_{1,3}}{\max(f_{d3})}\right)^{2} i t f_{3}^{2} + \left(0.5 + 0.5 \frac{f_{1,4}}{\max(f_{d4})}\right)^{2} i t f_{4}^{2}}}\\ w_{1,3} &= \frac{\left(0.5 + 0.5 * \frac{0}{2}\right) 0.398}{\sqrt{\left(0.5 + 0.5 * \frac{3}{3}\right)^{2} 0.222^{2} + \left(0.5 + 0.5 * \frac{0}{2}\right)^{2} 0.398^{2} + \left(0.5 + 0.5 * \frac{1}{2}\right)^{2} 0.398^{2} + \left(0.5 + 0.5 * \frac{1}{2}\right)^{2} 0.222^{2}}} \end{split}$$

 $W_{1.3} = 1.509$

Term Weight

=7.987

W	D ₁	D_2	D_3	D ₄	
Α	1.683	1.509	1.509	1.683	
В	1.228	1.322	1.983	0.737	
С	0.996	2.010	1.340	0.747	
D	0.598	2.146	1.073	1.197	
Е	0.598	1.073	2.146	1.197	

$$c_{u,v} = \overrightarrow{k_u} \bullet \overrightarrow{k_v} = \sum_{j=1}^{N} w_{u,j} \times w_{v,j}$$

$$C_{1,3} = w_{1,1} * w_{3,1} + w_{1,2} * w_{3,2} + w_{1,3} * w_{3,3} + w_{1,4} * w_{3,4}$$

$$= 1.683*0.996 + 1.509*2.010 + 1.509*1.340 + 1.683*0.747$$

The relationship between two terms

С	A	В	С	D	E
A	10.218	8.293	7.987	7.879	7.879
В	8.293	7.728	7.085	6.581	7.290
С	7.987	7.085	7.383	7.241	6.522
D	7.879	6.581	7.241	7.548	6.397
E	7.879	7.290	6.522	6.397	7.548

term similarity

С	Α	В	С	D	Е	Sim(q,K _i)	
Α	10.218	8.293	7.987	7.879	7.879	31.487	
В	8.293	7.728	7.085	6.581	7.290	26.159	
С	7.987	7.085	7.383	7.241	6.522	25.753	
D	7.879	6.581	7.241	7.548	6.397	25.362	
E	7.879	7.290	6.522	6.397	7.548	24.643	
q	2.3	0	1	0	0		W (a 0

$$sim(q, k_v) = \vec{q} \cdot \vec{k}_v = \sum_{k_u \in q} w_{u,q} \times c_{u,v}$$

ADD K₂ to Query

$$sim(q,k_3) = w_{1,q} * c_{1,3} + w_{2,q} * c_{2,3} + w_{3,q} * c_{3,3} + w_{4,q} * c_{4,3} + w_{5,q} * c_{5,3}$$

= 2.3*7.987 + 1*7.383 = 25.753

Recompute term similarity

С	Α	В	С	D	Е	Sim(q,K _i)
Α	10.218	8.293	7.987	7.879	7.879	39.780
В	8.293	7.728	7.085	6.581	7.290	33.887
С	7.987	7.085	7.383	7.241	6.522	32.838
D	7.879	6.581	7.241	7.548	6.397	31.942
E	7.879	7.290	6.522	6.397	7.548	31.933
q	2.3	1	1	0	0	

$$sim(q,k_3) = w_{1,q} * c_{1,3} + w_{2,q} * c_{2,3} + w_{3,q} * c_{3,3} + w_{4,q} * c_{4,3} + w_{5,q} * c_{5,3}$$

= 2.3*7.987 + 1*7.085+1*7.383 = 32.838

Compute new weight terms for query

Original Query

$$q = 2.3K_1 + K_2 + K_3$$
 Sum query weight = 2.3+1+1 = 4.3

$$w_{v,q'} = \frac{sim(q,k_v)}{\sum_{k_u \in q} w_{u,q}}$$

$$W_{1,q'} = 39.780/4.3 = 9.251$$

 $W_{2,q'} = 33.887/4.3 = 7.881$
 $W_{3,q'} = 32.838/4.3 = 7.637$

	A	В	С	D	E
q'	9.251	7.881	7.637	1	ı

Arrange Relevance

q'=9.251A+7.881B+7.637C

W	D1	D2	D3	D4
Α	1.683	1.509	1.509	1.683
В	1.228	1.322	1.983	0.737
С	0.996	2.010	1.340	0.747
D	0.598	2.146	1.073	1.197
Ē	0.598	1.073	2.146	1.197

С	Α	В	С	D	Е
Α	10.22	8.293	7.987	7.879	7.879
В	8.293	7.728	7.085	6.581	7.290
С	7.987	7.085	7.383	7.241	6.522
D	7.879	6.581	7.241	7.548	6.397
E	7.879	7.290	6.522	6.397	7.548

$$sim(q,d_j) \propto \sum_{k_v \in d_j} \sum_{k_u \in q} w_{i,j} \times w_{u,q} \times c_{u,v}$$

$$W_{1,2} = 1.509 \quad W_{1,q} = 9.251$$

$$W_{2,2} = 1.322 \quad W_{2,q} = 7.881$$

$$W_{3,2} = 2.010 \quad W_{3,q} = 7.637$$

$$W_{4,2} = 2.146 \quad W_{4,q} = 0$$

$$W_{5,2} = 1.073 \quad W_{5,q} = 0$$

$$sim(q,d_{2}) = W_{1,2}^{*}W_{1,q}^{*}(C_{1,1} + C_{1,2} + C_{1,3} + C_{1,4} + C_{1,5}) + W_{2,2}^{*}W_{2,q}^{*}(C_{2,1} + C_{2,2} + C_{2,3} + C_{2,4} + C_{2,5}) + W_{3,2}^{*}W_{3,q}^{*}(C_{3,1} + C_{3,2} + C_{3,3} + C_{3,4} + C_{3,5}) + W_{4,2}^{*}W_{4,q}^{*}(C_{4,1} + C_{4,2} + C_{4,3} + C_{4,4} + C_{4,5}) + W_{5,2}^{*}W_{5,q}^{*}(C_{5,1} + C_{5,2} + C_{5,3} + C_{5,4} + C_{5,5})$$

Arrange Relevance

q'=9.251A+7.881B+7.637C

	D ₁	D_2	D_3	D_4
Sim(q,d _j)	1,291.282	1,531.123	1,538.429	1,079.324

Answer = D_3, D_2, D_1, D_4

Automatic Local analysis

Basic concept

- Expanding the query with terms correlated to the query terms
- The correlated terms are presented in the local clusters built from the local document set

Automatic Local Analysis

Definition

- local document set $D_{\underline{l}}$: the set of *documents retrieved* by a query
- local vocabulary V_l : the set of *all distinct words* in D_l
- stemed vocabulary $S_{\underline{l}}$: the set of all distinct stems derived from V_1

Building local clusters

- association clusters
- metric clusters
- scalar clusters

Association Clusters

- idea
 - Based on the co-occurrence of stems (or terms)
 inside documents
- association matrix
 - $-\underline{f_{si,j}}$: the frequency of a **stem** s_i in a document d_j ($\in D_l$)
 - $-m=(f_{si,j})$: an association matrix with $|S_i|$ rows and $|D_i|$ columns
 - -s = mm: a local **stem-stem** association matrix

Association Clusters

Idea

 co-occurrence of stems (or terms) inside documents (frequency of stems in doc)

$$c(k_u, k_v) = \sum_{j=1}^{|D|} f_{u,j} \times f_{v,j}$$

- $f_{u,j}$: the frequency of a stem k_u in a document d_j
- local association cluster for a stem k_u
 - the set of k largest values $c(k_u, k_v)$
- given a query q, find clusters for the |q| query terms

- normalized form
$$s(k_u, k_v) = \frac{c(k_u, k_v)}{c(k_u, k_u) + c(k_v, k_v) - c(k_u, k_v)}$$

Metric Clusters

Idea

 consider the distance between two terms in the same cluster

Definition

- $-V(k_u)$: the set of keywords which have the same stem form as k_u
- distance $r(k_i, k_j)$ =the number of words between term k_i and k_j

$$c(k_u, k_v) = \sum_{i \in V(k_u)} \sum_{j \in V(k_v)} \frac{1}{r(k_i, k_j)}$$

normalized form

$$s(k_u, k_v) = \frac{c(k_u, k_v)}{|V(k_u)| \times |V(k_v)|}$$

- Idea
 - two stems with similar neighborhoods have some synonymity relationships
- Definition
 - $-c_{u,v}=c(k_u, k_v)$
 - vectors of correlation values for stem k_u and k_v

$$\vec{s}_{u} = (c_{u,1}, c_{u,2}, \dots, c_{u,t})$$
 $\vec{s}_{v} = (c_{v,1}, c_{v,2}, \dots, c_{v,t})$

scalar association matrix

$$S_{u,v} = \frac{S_u \bullet S_v}{|\overrightarrow{S_u}| \times |\overrightarrow{S_v}|}$$

- scalar clusters
 - the set of k largest values of scalar association

Association Clusters

Idea

 co-occurrence of stems (or terms) inside documents (frequency of stems in doc)

$$c(k_u, k_v) = \sum_{j=1}^{|D|} f_{u,j} \times f_{v,j}$$

- $f_{u,j}$: the frequency of a stem k_u in a document d_j
- local association cluster for a stem k_u
 - the set of k largest values $c(k_u, k_v)$
- given a query q, find clusters for the |q| query terms

- normalized form
$$s(k_u, k_v) = \frac{c(k_u, k_v)}{c(k_u, k_u) + c(k_v, k_v) - c(k_u, k_v)}$$

Association Clusters

$$c_{u,v} = \sum_{dj \in Dl} f_{su,j} \times f_{sv,j}$$
: a correlation between the stems s_u and s_v an element in \overrightarrow{mm}

$$s_{u,v} = \frac{c_{u,v}}{c_{u,u} + c_{v,v} - c_{u,v}} : \textbf{normalized matrix}$$

 $s_{\mu}(n)$: local association cluster around the stem s_{μ}

 $\begin{cases} \text{Take u-th row} \\ \text{Return the set of n largest values } s_{u,v} \ (u \neq v) \end{cases}$

$$c_{u,v} = \sum_{dj \in Dl} f_{s_u,j} \times f_{s_v,j}$$

$$C_{1,4} = (f_{1,1} * f_{4,1}) + (f_{1,2} * f_{4,2}) + (f_{1,3} * f_{4,3}) + (f_{1,4} * f_{4,4}) + (f_{1,5} * f_{4,5}) + (f_{1,6} * f_{4,6}) + (f_{1,7} * f_{4,7})$$

$$= 2*1 + 1*1 + 1*0 + 0*1 + 0*1 + 1*1 + 1*0$$

$$= 4$$

Correlation Matrix (C)

	A	В	C	D
A	8	7	2	4
В	7	9	3	4
C	2	3	5	3
D	4	4	3	5

Other way to compute the Correlation Matrix

$$c = \overrightarrow{mm}$$

	d_1	d_2	d ₃	d_4	d ₅	d_6	d ₇
A	2	1	1	0	0	1	1
B	1	1	1	1	0	1	2
C	0	2	0	1	0	0	0
D	1	1	0	1	1	1	0

m

	A	B	C	D
d_1	2	1	0	1
d_2	1	1	2	1
d_3	1	1	0	0
d_4	0	1	1	1
d_5	0	0	0	1
d_6	1	1	0	1
d ₇	1	2	0	0

$$m^t$$

$$C_{1,4} = (m_{1,1} * m_{1,4}^t) + (m_{1,2} * m_{2,4}^t) + (m_{1,3} * m_{3,4}^t) + (m_{1,4} * m_{4,4}^t) + (m_{1,5} * m_{5,4}^t) + (m_{1,6} * m_{6,4}^t) + (m_{1,7} * m_{7,4}^t)$$

$$= 2*1 + 1*1 + 1*0 + 0*1 + 0*1 + 1*1 + 1*0$$

Correlation Matrix (C)

	A	B	C	D
A	8	7	2	4
B	7	9	3	4
C	2	3	5	3
D	4	4	3	5

Normalized Correlation Matrix (S)

$$S_{u,v} = \frac{c_{u,v}}{c_{u,u} + c_{v,v} - c_{u,v}}$$

$$s_{1,2} = \frac{c_{1,2}}{c_{1,1} + c_{2,2} - c_{1,2}} = \frac{7}{8 + 9 - 7} = 0.70$$

	A	B	C	D
A	8	7	2	4
В	7	9	3	4
C	2	3	5	3
D	4	4	3	5

Normalized Correlation Matrix

	A	В	C	D
A	1	0.70	0.18	0.44
В	0.70	1	0.27	0.40
<i>C</i>	0.18	0.27	1	0.43
D	0.44	0.40	0.43	1

Take u-th row Return the set of n largest values s_{uv} ($u\neq v$)

Term Relation

- $1. \quad \{A,B\}$
- {B,A}
 {C,D}
 {D,A}

Original Query

$$q = A + B$$

New Query

$$q' = (A + 0.7B) + (0.7A + B)$$

= 1.7A + 1.7B
= A + B

Association Clusters Example (other case)

Normalized Correlation Matrix

	A	В	C	D
A	1	0.70	0.18	0.44
В	0.70	1	0.85	0.63
C	0.18	0.85	1	0.63
D	0.44	0.63	0.63	1

Term Relation

- $1. \quad \{A,B\}$
- $2. \quad \{B,C\}$
- 3. {C,B}
- 4. $\{D,B,C\}$

Original Query

$$q = A + B$$

$$q' = (A+0.7B)+(B+0.85C)$$

= A+1.7B+0.85C

Original Query

$$q = C+2D$$

$$q' = (0.85B+C)+2*(0.63B+0.63C+D)$$

=2.11B+2.26C+2D

New Query

New Query

Metric Clusters

Idea

 consider the distance between two terms in the same cluster

Definition

- $-V(k_u)$: the set of keywords which have the same stem form as k_u
- distance $r(k_i, k_j)$ =the number of words between term k_i and k_j

$$c(k_u, k_v) = \sum_{i \in V(k_u)} \sum_{j \in V(k_v)} \frac{1}{r(k_i, k_j)}$$

normalized form

$$s(k_u, k_v) = \frac{c(k_u, k_v)}{|V(k_u)| \times |V(k_v)|}$$

Metric Clusters

 $s_{u,v}=c_{u,v}$: unnormalized matrix

$$s_{u,v} = \frac{c_{u,v}}{|V(s_u)| \times |V(s_v)|}$$
: normalized matrix

 $s_u(n)$: local metric cluster around the stem s_u

Take u-th row Return the set of n largest values $s_{u,v}$ ($u\neq v$)

```
q = A+2D

k_n = A,B,C,D,E,F
```

```
A,B,C base on S<sub>1</sub> stem
D,E base on S<sub>2</sub> stem
base on S<sub>3</sub> stem
```

<u>Then</u>

$$V(S_1) = \{A,B,C\}$$

 $V(S_2) = \{D,E\}$
 $V(S_3) = \{F\}$

ระยะ ห่าง	A	В	C	D	E	F
A	0	5	8	8	1	2
B	5	0	3	2	1	1
C	8	3	0	3	4	8
D	8	2	3	0	8	5
E	1	1	4	8	0	1
F	2	1	8	5	1	0

ระยะ ห่าง	A	В	C	D	E	F
A	0	5	∞	8	1	2
B	5	0	3	2	1	1
C	8	3	0	3	4	8
D	8	2	3	0	8	5
E	1	1	4	8	0	1
F	2	1	∞	5	1	0

		A	В	C	D	E	F
Ī	A	-	0.20	0	0	1	0.50
Ī	В	0.20	-	0.33	0.50	1	1
	<i>C</i>	0	0.33	_	0.33	0.25	0
	D	0	0.50	0.33	-	0	0.20
	E	1	1	0.25	0	-	1
	F	0.50	1	0	0.20	1	-

$$V(S_1) = \{A,B,C\}$$

 $V(S_2) = \{D,E\}$
 $V(S_3) = \{F\}$

	A	В	C	D	E	F
$oldsymbol{A}$	-	0.20	0	0	1	0.50
В	0.20	-	0.33	0.50	1	1
C	0	0.33	_	0.33	0.25	0
D	0	0.50	0.33	-	0	0.20
E	1	1	0.25	0	-	1
F	0.50	1	0	0.20	1	-

$$c_{u,v} = \sum_{ki \in V(su)kj \in V(sv)} \frac{1}{r(k_i, k_j)}$$

$$c_{1,2} = c(A, D) + c(A, E) + c(B, D) + c(B, E) + c(C, D) + c(C, E)$$

= 0 + 1 + 0.50 + 1 + 0.33 + 0.25
= 3.08

Correlation Matrix (C)

	S_{I}	S_2	S_3
S_{I}	0	3.08	1.50
S_2	3.08	0	1.20
S_3	1.50	1.20	0

Normalized Correlation Matrix (S)

	S_1	S_2	S_3
S_{1}	0	3.08	1.50
S_2	3.08	0	1.20
S_3	1.50	1.20	0

$$s_{u,v} = \frac{c_{u,v}}{|V(s_u)| \times |V(s_v)|}$$

$$s_{2,3} = \frac{c_{2,3}}{|V(s_2)| \times |V(s_3)|} = \frac{1.2}{2x1} = 0.6$$

$$V(S_1) = \{A,B,C\} = 3$$

 $V(S_2) = \{D,E\} = 2$
 $V(S_3) = \{F\} = 1$

Normalized Correlation Matrix (S)

	S_1	S_2	S_3
S_{1}	0	0.51	0.50
S_2	0.51	0	0.60
S_3	0.50	0.60	0

Stem Relation

1.
$$\{S_1, S_2\}$$

2.
$$\{S_2, S_3\}$$

3.
$$\{S_3, S_2\}$$

Original Query

$$q = A+2D$$

New Query

$$q' = (S_1 + 0.51S_2) + 2*(S_2 + 0.60S_3)$$

= $S_1 + 2.51S_2 + 1.2S_3$

- Idea
 - two stems with similar neighborhoods have some synonymity relationships
- Definition
 - $-c_{u,v}=c(k_u, k_v)$
 - vectors of correlation values for stem k_u and k_v

$$\overrightarrow{s}_{u} = (c_{u,1}, c_{u,2}, \dots, c_{u,t})$$
 $\overrightarrow{s}_{v} = (c_{v,1}, c_{v,2}, \dots, c_{v,t})$

scalar association matrix

$$S_{u,v} = \frac{\overrightarrow{S_u} \bullet \overrightarrow{S_v}}{|\overrightarrow{S_u}| \times |\overrightarrow{S_v}|}$$

Database, Math, Set

Tree, Water, Fertilizer

Flower, Letter, Lover

- scalar clusters
 - the set of k largest values of scalar association

$$\overrightarrow{s_{u}} = (c_{u,1}, c_{u,2}, \cdots, c_{u,t}) \qquad \overrightarrow{s_{v}} = (c_{v,1}, c_{v,2}, \cdots, c_{v,t})$$

$$\overrightarrow{s_{1}} = (c_{1,1}, c_{1,2}, \cdots, c_{1,t}) \qquad \overrightarrow{s_{3}} = (c_{3,1}, c_{3,2}, \cdots, c_{3,t})$$

$$\overrightarrow{s_{1}} = (c_{1,1}, c_{1,2}, c_{1,3}) = (5,6,1) \Rightarrow C_{\text{Database, Algebra}}, C_{\text{Database, Math}}, C_{\text{Database, Set}}$$

$$\overrightarrow{s_{2}} = (c_{2,1}, c_{2,2}, c_{2,3}) = (6,9,0) \Rightarrow C_{\text{Al, Algebra}}, C_{\text{Al,Math}}, C_{\text{Al,Set}}$$

$$\overrightarrow{s_{3}} = (c_{3,1}, c_{3,2}, c_{3,3}) = (1,0,2) \Rightarrow C_{\text{Network, Algebra}}, C_{\text{Network, Math}}, C_{\text{Network, Set}}$$

$$\overrightarrow{s_{3}} = (c_{3,1}, c_{3,2}, c_{3,3}) = (1,0,2) \Rightarrow C_{\text{Network, Algebra}}, C_{\text{Network, Math}}, C_{\text{Network, Set}}$$

$$\overrightarrow{S_{u}} = (c_{u,1}, c_{u,2}, \dots, c_{u,t})$$

$$\overrightarrow{S_{1}} = (c_{1,1}, c_{1,2}, \dots, c_{1,t})$$

$$\overrightarrow{s_1} = (c_{1,1}, c_{1,2}, c_{1,3}) = (5,6,1)$$

$$\overrightarrow{s_2} = (c_{2,1}, c_{2,2}, c_{2,3}) = (6,9,0)$$

$$\overrightarrow{s_3} = (c_{3,1}, c_{3,2}, c_{3,3}) = (1,0,2)$$

$$|S_1| = \sqrt{25 + 36 + 1} = 7.874$$

 $|S_2| = \sqrt{36 + 81 + 0} = 10.817$
 $|S_3| = \sqrt{1 + 0 + 4} = 2.236$

$$\overrightarrow{S}_{v} = (c_{v,1}, c_{v,2}, \dots, c_{v,t})$$

$$\overrightarrow{S}_{3} = (c_{3,1}, c_{3,2}, \dots, c_{3,t})$$

$$S_{u,v} = \frac{\overrightarrow{S}_{u} \cdot \overrightarrow{S}_{v}}{|\overrightarrow{S}_{u}| \times |\overrightarrow{S}_{v}|}$$

$$S_{1,3} = \frac{\overrightarrow{S}_{1} \cdot \overrightarrow{S}_{3}}{|\overrightarrow{S}_{1}| \times |\overrightarrow{S}_{3}|}$$

$$S_{1,3} = \frac{7}{7.874 \times 2.236} = 0.398$$

Normalized Correlation Matrix (S)

S	S_{I}	S_2	S_3
S_1	1	0.986	0.398
S_2	0.986	1	0.248
S_3	0.398	0.248	1

Stem Relation

- 1. $\{S_1, S_2\}$
- 2. $\{S_2, S_1\}$
- 3. $\{S_3, S_1\}$

Original Query

$$q = 3S_1 + S_3$$

Database Network

New Query

$$q' = 3*(S_1 + 0.986S_2) + (0.398S_1 + S_3)$$

= 3.398S₁ + 2.958S₂ + S₃

Discussion

- Query expansion
 - useful
 - little explored technique
- Trends and research issues
 - The combination of local analysis, global analysis, visual displays, and interactive interfaces is also a current and important research problem