

BUSINESS ANALYTICS

Analysis Of Variance (ANOVA)

- Compares multiple independent variable with a continuous variable
 - Dependent Vs Independent Variables
 - Continuous Vs Category (2 or more groups)
 - Continuous Vs Category + Continuous+....(many Independent variable)
- Extension of the independent t-tests

Example - One Way ANOVA

- Marks obtained in the same subject by 3 students belonging to three different schools are given below
- Does the data suggest any association between schools and marks?

SCHOOL	Α	В	С
Marks	82	83	38
	83	78	59
	97	68	55

Steps

1. Calculate the means

- School A: mean(82,83,97) = 87.3
- School B : mean(83,78,68) = 76.3
- School C: mean(38,59,55) = 50.6

2. Calculate the grand mean

- Grand mean \bar{X} = mean(82,83,97,83,78,68,39,59,55)/9 = 71.4

Calculating the variations

 Sum of Squared Deviations about the grand mean, across all observed values

ie.
$$(X-\overline{X})^2 = (82-71.44)^2 + (83-71.44)^2 + \dots$$

SS_{Total} = 2630.2

 Sum of Squared Deviations of group mean about the grand mean – three group means against the grand mean

ie.
$$n(X-\overline{X})^2 = 3\{(87.3-71.4)^2+(76.3-71.4)^2+(50.6-71.4)^2\}$$

 $SS_{Between} = 2124.2$

 Sum of Squared Deviations of observations within a group about their group mean, added across all groups

ie.
$$SS_{Within} = 506$$

Calculate the degrees of freedom for every variance

- $-df_{Total} = Number of observations 1 = 9 1 = 8$
- $-df_{Between} = Number of groups -1 = 3-1 = 2$
- $-df_{Within} = Number of observations number of groups = 9-3 = 6$

Calculate the Mean Squared Variances

- Mean Squared variance between groups
 MS_{Between} = SS_{Between} /df_{Between} = 2124.2/2 = 1062.1
- Mean Squared variance within groups
 MS_{Within} = SS_{Within} /df_{Within} = 506/6 = 84.3

- Calculate the f-statistic
 - F-value: $MS_{Between}/MS_{Within} = 1062.1/84.3 = 12.59$
- Calculate the p-value from the F-table
 - p-value for given f-value 12.59 and degrees of freedom 2 and 6 is 0.007

Type of ANOVA

One way ANOVA

- Compare the means of two or more independent (unrelated) groups
- E.g. Is there a difference in student's scores based on the row he is seated front/middle/back?

Two way ANOVA

- Examines the influence of two category independent variables on one continuous dependent variable
- E.g. Does the race and gender affect a person's yearly income?

Note: Can use ANOVA, when there is more than 2 groups in Category variable and sample size is more than 30

Chi-Square Test (X2)

- Determine whether there is a significant difference between the expected frequencies and the observed frequencies in one or more category variables
- Dependent Vs Independent
- Category (multiple groups) Vs Category (multiple groups)
- Hypothesis:
 - Null hypothesis states Variable A and Variable B are independent
- Alternate hypothesis states Variable A and Variable B are not independent

Note: If both the variables are category variable, can use chi-square test

Example on Chi-Square Test

Ice-cream flavours survey taken based on gender

	Choco	Vanilla	Strawberry	Total
Men	100	120	60	280
Women	350	200	90	640
Total	450	320	150	920

- Proportion of population Men = 280/920 = 0.3043
- Proportion of population Women = 640/920 = 0.6957

Thus, expected values:

Population with Choco = 450

Choco Men: 450 * 0.3043 = 136.935

Choco Women: 450 * 0.6957 = 313.065

Population with Vanilla = 320

Vanilla Men: 320 * 0.3043 = 97.376

Vanilla Women: 320 * 0.6957 = 222.624

Population with Strawberry = 150

Strawberry Men: 150 * 0.3043 = 45.645

Strawberry Women: 150 * 0.6957 = 104.355

Calculate the Chi-squared statistic

•
$$X^2 = \sum \frac{(observerd\ frequency - expected\ frequency)^2}{expected\ frequency}$$

$$=\frac{(100-136.935)^{2}}{136.935}+\frac{(350-313.065)^{2}}{313.065}+\frac{(120-97.376)^{2}}{97.376}+\frac{(200-222.624)^{2}}{222.624}\\+\frac{(60-45.645)^{2}}{45.645}+\frac{(90-104.355)^{2}}{104.355}$$

• $X^2 = 28.362$

Note: From Chi-square table corresponding p-value will be calculated

- ANOVA and Chi-Square analysis in R & SAS
- CASE STUDY Internet Survey in R & SAS