

Received Dataset

Coolant T Fuel P LOG(Engine rpm) LOG(Lub oil P) LOG(Coolant P) lub oil T Engine Condition

-0.7727	0.3442	0.4828	-0.2438	0.2430	0.5634	1
						•••
			1200 rows			
			•••	•••	•••	•••
-0.0863	-0.0622	-0.3165	-0.2442	0.5177	0.0347	0

Objectives

- Classify engine condition
- Use SVM for classification
- Compare QSVM with classical SVM

Kernel Machine

We want a more accurate curvy line for which we need to transform the feature space. This is where the kernel trick comes in.

- Go to a higher dimension
- Find a linear separator
- Project back to original space

More mathematically

- Find a feature map ϕ such that $\phi(x_i) \cdot \phi(x_j) = K(x_i, x_j)$
- Generate a kernel matrix K such that $K_{ij} = K(x_i, x_j)$
- Find all support vectors i.e $\alpha_i :: \sum \alpha_i y_i = 0$
- Find the bias b such that $y_i(\sum \alpha_i y_i K(x_i, x_j) + b) = 1$
- We can now predict $Y_{OUT} = \text{sign}(\sum \alpha_i y_i K(X_{IN}, x_j) + b)$

Two Approaches

Quantum Precomputed + Classical SGD

- * Quantum precomputed kernel
 - Classical SGD
 Advantages
- Better feature space
- More noise resistant

Classical RBF + Annealing

- More feasible on current hardware
- Faster

Quantum Precomputed Kernel Mechanism

• Each Pair of rows ${}^{N}C_{2}$ of 6 features each is fed to a quantum circuit as 12 parameters

