Trabajo Final Integrador Visión por Computadora II

Dataset TrashNet

Tabla de contenidos

- 01 Problema y dataset TrashNet
- 02 Data augmentation
- Modelos empleados
- **Análisis y Resultados**
- Optimización Optuna
- 06 Trabajo Futuro

Presentacion del Problema

El objetivo que se aborda con este dataset es la clasificación de residuos para reciclaje.

Para resolverlo, se entrena un modelo que, a partir de imágenes, pueda identificar y clasificar distintos tipos de residuos (plástico, vidrio, papel y orgánicos), con el objetivo de optimizar los procesos de reciclaje y la gestión de residuos.

Conjunto de Datos TrashNet

El dataset está compuesto por carpetas que contienen imágenes de residuos organizadas en distintas categorías. Cada categoría incluye mayormente entre 400 y 500 imágenes en formato JPG, con una resolución de 512x384 píxeles.

Distribución por clase:

Basura: 137 imágenes

• Papel: 594 imágenes

Metal: 410 imágenes

• Plástico: 482 imágenes

• Vidrio: 501 imágenes

Cartón: 403 imágenes

Conjunto de Datos TrashNet

Este problema de clasificación presenta dos desafíos clave:

- Escasez de datos, junto con un leve desbalance en las clases.
- Alta semejanza visual entre imágenes de distintas categorías, lo que puede dificultar la correcta clasificación.

Este último punto puede observarse en los ejemplos mostrados a la derecha.

Data augmentation

El dataset presenta variaciones limitadas en fondo, iluminación y ángulo, lo que puede llevar al modelo a aprender patrones específicos en lugar de generalizar correctamente.

Para mitigar este problema, se aplicaron técnicas de *Data Augmentation* (rotaciones, variaciones, distorsiones, etc) con el objetivo de simular condiciones más realistas de descarte de residuos.

Data augmentation

Para aumentar la diversidad visual del dataset se realizaron las siguientes transformaciones:

- Rotaciones, para representar residuos en distintas orientaciones.
- Volteos horizontales y verticales, simulando cómo pueden ser depositados.
- Zoom y escalado, para reflejar diferentes tamaños y distancias respecto a la cámara.
- Ajustes de color y brillo, imitando condiciones de iluminación variables (por ejemplo, interior vs. exterior).

Estas técnicas ayudaron a **reducir el overfitting** en los modelos entrenados, al introducir variaciones visuales sin necesidad de recolectar más datos.

Data augmentation (implementación)

Ejemplos luego de la transformación

Modelos empleados - CNN Convencional

Layer (type)

Arquitectura de la Red Neuronal (CNN)

 Entrada: Imágenes de tamaño 224x224 píxeles, con 3 canales (RGB).

Capas Convolucionales:

4 bloques compuestos por:

- o Conv2D + ReLU con 32, 64, 128 y 256 filtros
- MaxPooling2D para reducción de dimensiones

• Capas Densas (Fully Connected):

- Flatten implícito para vectorizar las características
- Capa oculta con 512 neuronas, activación
 ReLU y Dropout para regularización
- Capa de salida con 6 neuronas (una por clase)

Conv2d-1	[-1, 32, 224, 224]	896	
ReLU-2	[-1, 32, 224, 224]	0	
MaxPool2d-3	[-1, 32, 112, 112]	в	
Conv2d-4	[-1, 64, 112, 112]	18,496	
ReLU-5	[-1, 64, 112, 112]	в	
MaxPool2d-6	[-1, 64, 56, 56]	Ø	
Conv2d-7	[-1, 128, 56, 56]	73,856	
ReLU-8	[-1, 128, 56, 56]	Ø	
MaxPool2d-9	[-1, 128, 28, 28]	Ø	
Conv2d-10	[-1, 256, 28, 28]	295,168	
ReLU-11	[-1, 256, 28, 28]	Ø	
MaxPool2d-12	[-1, 256, 14, 14]	Ø	
Linear-13	[-1, 512]	25,690,624	
ReLU-14	[-1, 512]	Ø	
Dropout-15	[-1, 512]	Ø	
Linear-16	[-1, 6]	3,078	
Total params: 26,082,118 Trainable params: 26,082, Non-trainable params: 0	118		
Input size (MB): 0.57 Forward/backward pass size (MB): 51.69 Params size (MB): 99.50 Estimated Total Size (MB): 151.76			

Output Shape

Param #

• Parámetros entrenables: ~ 26 millones

CNN sin data augmentation

Reporte de Cl	asificación:			
	precision		f1-score	support
metal	0.64	0.56	0.60	82
cardboard	0.82	0.81	0.82	81
paper	0.71	0.89	0.79	119
trash	0.65	0.74	0.69	27
glass	0.66	0.56	0.61	100
plastic	0.72	0.65	0.68	97
accuracy			0.71	506
macro avg	0.70	0.70	0.70	506
weighted avg	0.70	0.71	0.70	506

CNN sin data augmentation

- El desempeño fue aceptable, con métricas globales relativamente buenas (accuracy ~ 0,71 | weighted avg ~ 0,70), aunque se observó confusión en la clasificación de ciertos tipos de residuos.
- No hay una separación abrupta entre ambas curvas (tanto en loss como en accuracy), se mantienen estables, por lo que el modelo no parece sobreajustar.
- Glass, plastic y metal siguen son las clases más confusas entre sí:
 - Características visuales similares (reflejos, bordes brillantes).
 - Falta de información de textura o contexto que distinga mejor estos materiales.
 - Poca variabilidad en los ejemplos de entrenamiento.

CNN con data augmentation

Reporte de Cl	asificación:			
170	precision	recall	f1-score	support
metal	0.69	0.74	0.72	82
cardboard	0.88	0.81	0.85	81
paper	0.80	0.85	0.82	119
trash	0.67	0.44	0.53	27
glass	0.64	0.72	0.68	100
plastic	0.72	0.64	0.68	97
accuracy			0.74	506
macro avg	0.73	0.70	0.71	506
weighted avg	0.74	0.74	0.74	506

CNN con data augmentation

Impacto del Data Augmentation:

- Tanto el loss como el accuracy mejoran con respecto al modelo anterior, aunque hay más oscilaciones en la validación (de ambas curvas).
- Es esperable con data augmentation, ya que introduce variabilidad que actúa como una forma de regularización, haciendo el entrenamiento más robusto pero también más ruidoso.
- Las métricas generales también aumentan con respecto al modelo sin augmentation (accuracy ~0.74 | weigthed ~0,74).
- Clases complicadas de detectar anteriormente como metal, mejora su predicción con este modelo (aún no puede clasificar del todo bien plastic y glass).

Modelos empleados - ResNet50

Arquitectura de la Red Neuronal (ResNet50)

• Entrada: imágenes de tamaño 224x224 píxeles, con 3 canales (RGB).

Preprocesamiento:

- Capa de entrada con padding cero (Zero Padding)
- Procesamiento inicial (Shape 1-5)

Bloques Convolucionales:

4 bloques compuestos por:

- Capa CONV (Convolución)
- Batch Normalization (Normalización)
- ReLU (Función de activación)
- MaxPooling (Reducción dimensional)

Capas Finales:

- Average Pooling (Agrupamiento promedio)
- Flattening (Aplanamiento)
- Fully Connected (Capa densa final)
- Salida (Output)
- Parámetros entrenables: ~25 millones

Capa final adaptada al problema:

model.fc = torch.nn.Sequential(
Linear(2048, 512),
ReLU(),
Dropout(0.5),
Linear(512, 6)

ResNet50 con fine-tuning parcial

Reporte de Clasificación:					
	precision		f1-score	support	
metal	0.68	0.99	0.80	82	
cardboard	0.99	0.85	0.91	81	
paper	0.86	0.85	0.85	119	
trash	0.75	0.33	0.46	27	
glass	0.90	0.70	0.79	100	
plastic	0.75	0.84	0.79	97	
accuracy			0.81	506	
macro avg	0.82	0.76	0.77	506	
weighted avg	0.83	0.81	0.81	506	

ResNet50 con fine-tuning parcial

- El modelo obtuvo un **buen rendimiento general**, especialmente destacable considerando que se entrenó con **solo 20 epochs**.
- Al utilizar pesos preentrenados (IMAGENET1K_V1), el modelo parte de una base sólida de representación de características, lo que permite una rápida mejora en el aprendizaje.
- Presenta un excelente equilibrio entre costo computacional y desempeño, lo cual lo convierte en una opción eficiente para entornos con recursos limitados.

ResNet50 con fine-tuning completo

Reporte de Clasificación:					
	precision	recall	f1-score	support	
metal	0.93	0.95	0.94	82	
cardboard	0.97	0.96	0.97	81	
paper	0.98	0.92	0.95	119	
trash	0.79	0.85	0.82	27	
glass	0.93	0.99	0.96	100	
plastic	0.96	0.93	0.94	97	
accuracy			0.94	506	
macro avg	0.93	0.93	0.93	506	
weighted avg	0.95	0.94	0.94	506	

ResNet50 con fine-tuning completo

- Es el modelo con mejor desempeño entre todos los evaluados.
- Se observó una alta precisión en validación, pérdida baja y curvas de aprendizaje estables, lo que indica un entrenamiento sólido.
- El ajuste completo de los pesos permitió una adaptación total al dominio del problema, maximizando la capacidad predictiva del modelo.

Discusión y Análisis

Optimización y ajuste de hiperparámetros

Para el ajuste de hiperparámetros se hizo uso de Optuna (búsqueda bayesiana) en 20 trials.

- Búsqueda más inteligente que random/grid search.
- Más rápido: menos modelos entrenados, pero más efectivos.
- Podado temprano (pruning): evita perder tiempo en combinaciones malas.

Hiperparámetro	Tipo de Búsqueda	Rango / Valores	Descripción	Valores óptimos
Ir	Float (log)	1e-5 – 1e-3	Tasa de aprendizaje.	0.000590221941118705 9
optimizer	Categorical	'Adam', 'SGD'	Tipo de optimizador.	Adam
Weight decay	Float (log)	1e-6 – 1e-2	Regularización L2.	0.0001252367872397
dropout rate	Float	0.1 – 0.5	Dropout en la cabeza del modelo.	0.28355204189043265
Batch size	Categorical	16, 32, 64	Tamaño de mini-batch.	32
scheduler	Categorical	'ReduceLROnPlateau', 'CosineAnnealing', None	Tipo de scheduler.	CosineAnnealing

ResNet50 con Optuna (20 trials)

Reporte de Cl	asificación:			
	precision	recall	f1-score	support
metal	0.97	0.94	0.96	82
cardboard	0.92	0.96	0.94	81
paper	0.93	0.94	0.94	119
trash	0.93	0.48	0.63	27
glass	0.90	0.98	0.94	100
plastic	0.91	0.93	0.92	97
accuracy			0.92	506
macro avg	0.93	0.87	0.89	506
weighted avg	0.93	0.92	0.92	506

Trabajo futuro

Próximos Pasos:

- Continuar con el ajuste de hiperparámetros utilizando Optuna, enfocándose en otras arquitecturas, como por ejemplo, la tasa de aprendizaje (lr) en la CNN con data augmentation.
- Probar distintas estrategias de Data Augmentation para balancear las clases
- Explorar nuevos datasets y probar arquitecturas más avanzadas, con el fin de mejorar la precisión y generalización del modelo.

Gracias!

CREDITS: This presentation template was created by Slidesgo, and includes icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution

