

M2608.001300 Machine Learning Fundamentals & Applications

[0: Class Introduction]

Electrical and Computer Engineering Seoul National University

© 2018 Sungroh Yoon

Class logistics

- * time and place
 - ▶ 11:00am−12:15pm, Mon/Wed
 - ▶ Room 201, Bldg. 301
- * instructor: Prof. Sungroh Yoon
 - sryoon@snu.ac.kr
 - office hours (@301-908): TBA
- ★ teaching assistants:

Heonseok Ha (head), Seil Lee, Jangho Lee, Jeonghee Jo & HyeMi Jang

- ml.class.snu@gmail.com
- ▶ office hours & place: TBA

Class objectives

- ⋆ main objectives:
 - understand fundamentals of machine learning
 - ▶ learn state-of-the-art AI techniques such as deep learning
 - ▶ have hands-on experience using Python and other ML tools
 - ▶ learn AI & ML applications in ECE

Prerequisites

- * this class:
 - ▶ intended to be the first course in machine learning
- ★ strongly recommended (although not required)
 - understanding of data structure and algorithm analysis
 - knowledge on basic probability & linear algebra
 - programming ability

Additional notes

- ★ approximately five programming assignments + one final project
- * official programming language: Python
 - ▶ no need to know Python in advance (we'll cover it)
- * weekly TA session
 - when? (don't leave early today; TAs will run a poll)
 - attendance: optional but highly recommended

References

- * Learning from Data
 - by Abu-Mostafa, Magdon-Ismail, Lin
 - ▶ ML basics & fundamental models
 - supporting website: Link
- * Deep Learning
 - by Goodfellow, Bengio, Courville
 - neural networks & deep learning
 - ▶ available at: ► Link

- * Pattern Recognition and Machine Learning
 - by Bishop
 - ▶ Bayesian ML, general reference
- ⋆ Hands-On Machine Learning
 - by Géron
 - Python for ML, TensorFlow
- * An Introduction to Statistical Learning
 - by James, Witten, Hastie, Tibshirani
 - statistical perspectives

Syllabus (tentative)

Part I: foundations

- 1 introduction
 - the learning problem
 - Python
 - ▶ elements of MI
- 2 fundamental models
 - linear classification
 - ▶ linear regression
 - ▶ logistic regression
 - artificial neural networks

Part II: learning machines

- 3 Bayesian methods
 - Bayes net
 - naïve Bayes classifier
 - expectation maximization
 - Gaussian mixture models
 - § midterm

Part II: learning machines (cont'd)

- 4 support vector machines
 - linear discriminant
 - kernel trick
- 5 hidden Markov models

Part III: deep learning

- 6 motivation and overview
- 7 deep architecture
 - convolutional neural networks
 - recurrent neural networks
 - § final project

Performance evaluation

- ★ midterm exam (30%)
 - ▶ tentatively 11:00am on 4/25 (Wed) or 4/30 (Mon)
- * assignments (40%): done individually
 - ▶ 5 programming assignments
 - ▶ IPython notebook will be given
- * final project (25%): team of two students
 - paper-style writeup + poster presentation
 - challenging projects are welcome
- ★ class attendance (5+%)

Final remarks

- ★ pick a partner for the final project not too late
 - let the teaching staff know if you need help
- * absolutely no negotiation for your final grades!
- * any questions?