[70240413 Statistical Machine Learning, Spring, 2018]

Statistical Machine Learning Theory and Applications

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://ml.cs.Tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

February 27, 2018

A bit about the Instructor

- Jun Zhu, Associate Professor, Depart. of Computer Science. I received Ph.D. in 2009. My research interest includes machine learning, Bayesian methods, and data mining
- ♦ I did post-doc at the Machine Learning Department in CMU with Prof. Eric P. Xing. Before that I was invited to visit CMU for twice. I was also invited to visit Stanford for joint research (with Prof. Li Fei-Fei)
- 2015: Adjunct Associate Professor at CMU

- Served as Area Chairs for ICML, NIPS, UAI, AAAI, IJCAI; Associate Editor for PAMI, AI Journal
- ♦ Research is supported by National 973, NSFC, "Tsinghua 221 Basic Research Plan for Young Talents".
- ♦ IEEE AI's 10 to Watch; MITTR35 China (pioneers)
- ♦ Homepage: http://ml.cs.tsinghua.edu.cn/~jun

Contact Information

- Jun Zhu
 - State Key Lab of Intelligent Technology and Systems,
 Department of Computer Science, Tsinghua U.
 - □ Office: Rm 4-513, FIT Building
 - E-mail: dcszj@tsinghua.edu.cn
 - □ Phone: 62772322, 18810502646
 - □ Office hours: Thursday afternoon 3:00pm-5:00pm
 - Better to make an appointment in advance

Teaching Assistants

Jiaxin Shi (Head TA)

□ E-mail: ishijiaxin@126.com

□ Phone: 62795869, 18810690095

Bayesian methods, Deep learning

Publish at VAST, NIPS, ICLR

Yucen Luo (Head TA)

□ E-mail: <u>luoyucencen@163.com</u>

□ Phone: 62795869, 18810301080

Deep learning, Latent variable models

Publish at ICML, CVPR.

Teaching Assistants

Jialian Li

• E-mail: lijialian7@163.com

Phone: 18510243737

Reinforcement learning

Kun Xu

E-mail: vofhqn@gmail.com

Phone: 15701006589

Bayesian methods, Bandits

Yichi Zhou

E-mail: vofhqn@gmail.com

Phone: 15701006589

Bayesian methods, Bandits

Haosheng Zou

E-mail: <u>zouhs16@mails.tsinghua.edu.cn</u>

□ Phone: 18800120568

Reinforcement learning

TA office hours: Wed afternoon 3:00pm-5:00pm

• Office: Rm 1-508/509, FIT Building; 62795869

Resources

- Mainly class slides/notes
- Recommended text books
 - □ Christopher M. Bishop. *Pattern Recognition and Machine Learning*, Springer, 2007.
 - Trevor Hastie, Robert Tibshirani, Jerome Friedman. Elements of Statistical Learning. 2nd Edition, Springer, 2009.
- Further readings:
 - Conferences:
 - Theory: ICML, NIPS, UAI, COLT, AISTATS, AAAI, IJCAI
 - App: KDD, SIGIR, WWW, ACL
 - Journals:
 - JMLR, PAMI, MLJ

Prerequisites

- Knowledge of probability, linear algebra, statistics and algorithms
 - Calculus:
 - Derivative, integral of multivariate functions
 - Linear Algebra
 - Matrix inversion, eigen-decomposition, ...
 - Basic Probability and Statistics
 - Probability distributions, Mean, Variance, Conditional probabilities, Bayes rule, ...
- Knowledge of programming languages, e.g., C/C++, Java, matlab, Python
- ♦ **Homework 0**: take the Self-Evaluation
 - Minimum & modest background tests (available at course webpage)

Overview of Class

- Introduction
- Unsupervised learning
- Supervised learning
- Learning theory
- Probabilistic graphical models
- Bayesian methods
- Sparse learning
- Deep learning
- Reinforcement Learning

3 units

6 units

6 units

3 units

6 units

3 units

3 units

6 units

6 units

HW1 out

HW1 due HW2 out

HW2 due HW3 out

HW3 due HW4 out

HW4 due June 7

Grading

- ♦ Participation (10%)
 - □ 1 mid-term quiz (10 points each time)
- Homeworks (40%)
 - □ 4 homeworks (10 points each time)
- ♦ Project (50%)
 - □ 2~4 students to form a team
 - Apply machine learning to solve a real problem
 - Choose one task at Kaggle (http://www.kaggle.com/competitions)
 - Submit materials:
 - a proposal (6th week), a mid-term report (9th week), a final report (18th week), and the implementation code (18th week)
 - All reports should be in NIPS format, written in English: (http://nips.cc/Conferences/2014/PaperInformation/StyleFiles)
 - □ Poster presentation (16th or 17th week)

Some example Kaggle tasks

2018 Data Science Bowl

\$100,000 1.743 teams

Find the nuclei in divergent images to advance medical discovery

Featured ⋅ 2 months to go ⋅ ♦ biology

Google Landmark Recognition Challenge

\$2,500 81 teams

Label famous (and not-so-famous) landmarks in images
Research ⋅ 3 months to go ⋅ ♠ image data

Digit Recognizer

Classify handwritten digits using the famous MNIST data Getting Started · 3 years to go · 2,361 kernels 1,422 teams

Titanic: Machine Learning from Disaster

Predict survival on the Titanic using Excel, Python, R & Random Forests Getting Started • 3 years to go • 6,074 kernels 5,864 teams

Other Projects

- Self-defined topics
 - Need to propose as early as possible to filter out improper ones
- Other candidates
 - Chinese handwritten characters generation and recognition
 - Adversarial attacks and defense of deep learning
 - Reinforcement learning
 - More to come

- If the end date is later than June 12, report the position in the leaderboard;
- Otherwise, ask TAs to define a train/test split and compare your methods with 1 or 2 baselines.

About final report

- We expect to see
 - Problems (what?)
 - Motivations (why?)
 - Techniques (how?)
 - □ Results & Analysis (did you verify what you claimed above?)
 - Conclusions
- The final report should look like a NIPS technical paper

