1 Измерение напряжения сети

Цель: научиться измерять напряжение сети.

1.1 Задание на работу №4

Для получения информации о форме и уровне напряжения фаз сети, к которой подключен фильтр используются трансформаторы ТП-321-461P, обеспечивающие согласование уровней и гальваническую развязку сигналов. Преобразованный сигнал с трансформатора требуется снизить до уровня амплитуды не более 1,5 B и обеспечить смещение +1,5 B для корректной обработки при помощи АЦП микроконтроллера, т.к. АЦП может обрабатывать сигналы в диапазоне 0..3,3 B. Для решения этих задач применены операционные усилители OP297, имеющие диапазон питающего напряжения от ± 2 до ± 20 B, низкий уровень смещения не более 50 мкВ и проявившие стабильность свойств и надежность при использовании в аналогичных цепях.

Описание работы на примере одного канала, два других работают идентично (см. рис. 1)

Рис. 1: Принципиальная электрическая схема входного канала измерения напряжения сети.

Напряжение с трансформатора T_x поступает на резисторный делитель напряжения R_x-R_x , понижающий уровень на ..., затем на усилитель DA_x и диодами D_x , D_x , ограничивающими напряжение на дифференциальном входе усилителя при отсутствии питания схемы. Усилитель выполнен по схеме инвертирующего усилителя с коэффициентом усиления 1 (коэффициент задан резисторами R_x и R_x). Параллельно резистору R_x установлен конденсатор C_x для фильтрации высокочастотных помех.

С выхода усилителя сигнал поступает на сумматор сигналов, выполненный на операционном усилителе DA_x и резисторах R_x , R_x и R_x . Выходное напряжение сумматора является суммой (с "весом") напряжений V_{DA} и $V_{\text{offset 1}}$. Выходное напряжение сумматора (...) определяется формулой (1):

$$V_{DA} = \dots (1)$$

где V_{DA} — это напряжение на выводу усилителя

 $V_{\text{offset 1}}$ — напряжение в сети offset 1

 V_{DA} — напряжение на выводе усилителя DA_x

Сигнал для смещения (см. рис. 2) формируется источником DA_x , который имеет выходное напряжение 3 В, стабилизируется и фильтруется конденсаторами C_x и C_x , поступает на резисторный делитель $R_x - R_x$ с коэффициентом 1/2, затем, полученные 1,5 В поступают на повторитель DA_x , с которого берется сигнал для смещения.

Рис. 2: Принципиальная электрическая схема смещения сигналов

Сумматор обеспечивает сложение переменного сигнала с усилителя DA_x с сигналом смещения +1,5 В. Затем выходной сигнал сумматора фильтруется R-C фильтром низких частот R_x-C_x с частотой среза $(5+N_{\rm варианта})$ к Γ ц (см. формулу (2)) и поступает на вход АЦП микроконтроллера. Частота среза НЧ-фильтра:

$$f_c = \dots$$
 (2)

1.2 Индивидуальные задания

Собрать схему в tina и восстановить пропуски в тексте и в формулах, присвоить позиционные обозначения элементов в схеме и привести в соответствие упоминания позиционных обозначений в тексте:

- действующее напряжение сети принять равным $(110 + 10 \cdot N_{\text{варианта}})$ В;
- частоту среза принять равной $(5 + N_{\text{варианта}})$ к Γ ц;
- внимание: УГО (условное графическое обозначение) операционного усилителя может отличаться от УГО ОУ, используемого программой tina.

Примечание: выход *synch in* в текущей работе не используется, будет использован в работе \mathbb{N}^5 .