Enhancing pathogenicity prediction from structure

(with machine learning)

Introduction

Data

- 187 structures with 3454 variants of known significance
 - 2346 expected to be pathogenic (clinvar)
 - 1108 expected to be benign (gnomad)
- Collected from the pdbmap database with:
 - Crystal structure has to be available with resolution <2.5Å and length between 100 and 450
 - At least 3 different benign and 3 different pathogenic variants
 - Benign variants need to have maf>0.0001
 - Conflict between variants: benign if maf>0.05, pathogenic otherwise
 - Only 1 chain per structure is used and only 1 structure per uniprot

Feature – $\Delta\Delta G$

Feature – $\Delta\Delta G$

Feature – Pathprox

Feature – Pathprox

Molecule processing	Binding region	Amino acid modification	Covelant bonding	Sites
Transit peptide	Nucleotide binding	Modified residue	Disulfide bond	Binding site
Signal	Zinc finger	Lipidation	Cross-link	Metal binding
Initiator methionine	Calcium binding	Glycosylation		Active site
Propeptide	DNA binding			Site
	Motif			

- Helix
- Turn
- Beta strand
- Transmembrane regions
- 2838 annotations were suitable, 922 variants have none, 2230 have one, 298 have two and 4 have three

Molecule processing	Binding region	Amino acid modification	Covelant bonding	Sites
Transit peptide	Nucleotide binding	Modified residue	Disulfide bond	Binding site
Signal	Zinc finger	Lipidation	Cross-link	Metal binding
Initiator methionine	Calcium binding	Glycosylation		Active site
Propeptide	DNA binding			Site
	Motif			

- Helix
- Turn
- Beta strand
- Transmembrane regions
- 2838 annotations were suitable, 922 variants have none, 2230 have one, 298 have two and 4 have three

Molecule processing	Binding region	Amino acid modification	Covelant bonding	Sites
Transit peptide	Nucleotide binding	Modified residue	Disulfide bond	Binding site
Signal	Zinc finger	Lipidation	Cross-link	Metal binding
Initiator methionine	Calcium binding	Glycosylation		Active site
Propeptide	DNA binding			Site
	Motif			

- Helix
- Turn
- Beta strand
- Transmembrane regions

Molecule processing	Binding region	Amino acid modification	Covelant bonding	Sites
Transit peptide	Nucleotide binding	Modified residue	Disulfide bond	Binding site
Signal	Zinc finger	Lipidation	Cross-link	Metal binding
Initiator methionine	Calcium binding	Glycosylation		Active site
Propeptide	DNA binding			Site
	Motif			

- Helix
- Turn
- Beta strand
- Transmembrane regions
- Added instead: Resolution and length of structure

Classifier

- Basic Function: $f(\cdot): \mathbb{R}^m \to \mathbb{R}^o$
- Data: $X = x_1, x_2, ..., x_m, y$
- Input Layer: $\{x_i | x_1, x_2, ..., x_m\}$
- Value at node i in layer j: $w_{j,i,1}a_{j-1,i,1} + w_{j,i,2}a_{j-1,i,2} + \dots + w_{j,i,m}a_{j-1,i,m}$ $+ Bias_{i,i}$
- Activation function: $g(\cdot): R \to R$

(X)

Classifier

• Input needs to be scaled!

Classifier

Classifier Training

Classifier Training

Classifier Training

Classifier 100_100_100_100_21000

Classifier 100_100_100_100_21000

Resolution	Length	ddG	pathprox	Beta strand	Binding region	Covalent bonding	Helix	Turn
0.464	0.347	0.535	0.579	0.502	0.506	0.485	0.579	0.503
0.585	0.805	0.44	0.333	0.503	0.497	0.535	0.333	0.491

Classifier 100_100_100_100_21000

Resolution	Length	ddG	pathprox	Beta strand	Binding region	Covalent bonding	Helix	Turn
0.464	0.347	0.535	0.579	0.502	0.506	0.485	0.579	0.503
0.585	0.805	0.44	0.333	0.503	0.497	0.535	0.333	0.491

Resolution	Length	ddG	pathprox	Beta strand	Binding region	Covalent bonding	Helix	Turn
0.313	0.24	0.359	0.39	0.339	0.339	0.328	0.39	0.34
0.363	0.436	0.317	0.286	0.337	0.338	0.348	0.286	0.336

Conclusion and discussion