Wyliad 4.

Ostatnio:

Def. 4.1 (sprøjemie i grupie G)
conjugation
(1) G driata na sobie pren sprøjemie:

g • x = g x g = x g

G X=G

(2) Outry tego driatania zwię się klasami sprziemia wasa sprziemia elementu $x \in G$: Conjugacy classes. $x^G := \{x^g : g \in G\}$

Uwaga 4.2. Zat, ie ge G @ X oraz z e X i y = g.n. dla person personeso g e G. Weely

(1) $G_y = g G_x g' = (G_x)^g$

(2) 10(x) = [G: Gx] = jui Bylo, lest: Évricienie

D-d (1)
$$h \in G_y \subseteq h \cdot y = y$$
 $g : \chi = g \cdot \chi$
 $g : \chi =$

wsc Gy = g Gzg

Def. 4.3. Driatanie G QX jest tranzytyvne, gdy

w X jest tylho jedna orbita, ten:

 $(\forall x, y \in X) (\exists g \in G) g \cdot x = y$

Zatoinny, ic G QX. Whedy $X/G:=\{O(x): x \in X\}$ Dla $g \in G$ Fix, $(g) = \{x \in X: g \cdot x = n\}$ (zbión punlitdu statych $g \cup X$)

Lemat 4.4 (Burnside)

$$|G| \cdot |X/G| = \sum_{g \in G} |Fix_X(g)|,$$

 $|X/G| = \frac{1}{|G|} \sum_{g \in G} |Fix_X(g)|$

David (gdy G: skon vona)

Nied
$$U = \{(g,x) \in G \times X : g \cdot x = x\} \subseteq G \times X$$

$$\frac{\sum_{g \in G} |Fix_{\chi}(g)|}{|Fix_{\chi}(g)|} = |U| = \frac{\sum_{x \in X} |G_{x}|}{|G_{x}|} = \frac{\sum_{x \in X} |G_{x}|}{|O(x)|} = \frac{\sum_{x \in X}$$

$$z = 4.2(2) \text{ lub } 3.14(3):$$

$$|O(x)| = |G/G_x| = [G:G_x]$$

$$|O(x)| \cdot |G_x| = |G|$$

$$= |G| \cdot \sum_{G \in X_G} \frac{1}{G} = |G| \cdot \sum_{G \in X_G} 1 = |G| \cdot |X_G|$$

$$06X_G \times 0$$
"

des. Udewarnie to de Gr meskanning.

Z 3 crarnych i 6 biatych karalików twonymy naszyjnuk.

Na ile sposobbli moina to znobić zalitadej que, re ma szymili moina obracać i od wracać?

Rozurgzannie.

kolonyemy te werchetter na lub

· koralli litaremy is vierchotkach? - kata foremnego

X = { usysthe mailieux hadorowania virienchathous na 6 B i 3 C 4

 $|X| = {9 \choose 3} = \frac{9 \cdot 8 \cdot 7}{2 \cdot 3} = 3 \cdot 4 \cdot 7 = 84$

Danx

Lienba sposebøber utwormen mastyjnele =

 $N = |X/D_g|$

2 lematu Burnside a!

 $N = \frac{1}{|D_9|} \sum_{g \in D_9} |Fix_{\chi}(g)|$

Dlagh & Dg, grh = AII.4 (5)

(Curuence) sprassome | Fix(g)| = | Fax(h)|

Ogalmej:

W doudnes grupie G:

g n h & g i h sa u tej samej lelasir sa mnejene

sa sprisione $\exists u \in G \quad g = h^u$

€ Ju ∈ Gg= ju(h)

Tabellia:

rodzaj g EDg	ralg	licabas elementurg teso nodzaju	Fix (9)	·
i Q	1	1	84	84
mast strong (*) odlice	2	9	4	36
O hat 21 lub	3	2	3	6
pozostale Dorsty	9	6	6	SIFix (9/= 126

 $N = \frac{1}{18} \cdot 126 = 7$

(P. |Fixx(g)|=4, soly geDg addicae

Odbicie 9:

kolonowanie

Fix (g)

- te same ledony \$ 3C i 6B.

OF odbicia Jah vortosyi 3C?

4 Sposoby

Wszystke naszyjnihi:

· pewna para C sgstaduje:

· zadna para c me sysiaduje:


```
Projetad Grupy permutagi Sm, n 71, 15 m = n!
 : n-ta grupa
                                              alternujsca
                              [S_n:A_n]=2
And Sm
                                |A_n| = \frac{n!}{2}
 S_m/A_m \cong (\{\pm 1\}, \cdot)
           rozlitad na cyhle rostganych
               (jednoznacimy z dolit, do ledejnosci
                          crynnikow)
  J = { dydz...dk : cylle vortgane, komutują
                        di eyel dtugorii li
                             ord (xi)= l;
   ord (0) = NWW (l1/..., lk)

\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 7 & 3 & 5 & 4 & 1 & 6 \end{pmatrix} = 

 Nota ya:
              =(1,2,7,6)(4,5)
                      I I cylile
```

Konstrulije grup. AII.4 (8

(a) produkt grup

G, H: grupy ~ G × H produkt kartezjanski driatarise: <g,,h, > · <gz,hz > = <9,9z,h,hz> po osiadn

G×H2 tym dreatamem: grupa, produkt grup GiH

· e = <eg, eH)

· (g, h) = (g-1, h-1)

TT: G×H -> G, TT: G×H -> H rutowania na wspitnodne

Uwaga 4.5.

(G×H, T1, T12) pest procladitem is kategorii grup, ten. V(K, J1, T12) Figh na nysankii: grup- homomorfizmiy

 $\frac{D-8}{f(k)} = \frac{1}{k}$ $(\pi_{h}(k), \pi_{h}(k))$ $G \times H$

AlgIT.4 (2) Kategoria: (Ob, Mar, o) · 06: lulasa drielitak Mor: lelasa monfirmou (strather mosday objetitemi) · · · Tosemoe monfizmou (o zgodnych droedrinach i hodrædrinah. de A, B∈Ob Mor(A, B) = {morfizmy z A do B } And f: A -> B Domf Codom(f) Mor = () Mor(A, B), Mor(A, A) > idA assame martirmy (A (B) & Ob 2 o: Mor × Mor - Mor - Stadence: Dom g = Codomf $A \xrightarrow{\downarrow} B$ g° f' 'y (fo(goh) = (fog) oh (pal warmben - Tannofi: re De strong = oline Floria) · masnocia idA: idA of = idf, goidA = g

 $B \xrightarrow{f} A \qquad S$

Sets (strong) Obselity: strong
Morfizmy: funlige migdry strevami. Projetcy hatesoni: · Groups (grupy): mostirmy: homematirmy grup. , Netypour prujutod: G = (G,) grupa. Katesome 9: 06 = {*9 Mov(*,*) = GA: hategoria Def. Prodult direlita A, BE Ob(A) to: direct ulital (C), T1, T2) tali, ic Ob(A) $T_1: C \longrightarrow A$ maximy $T_2: C \longrightarrow B$ Zadredni warunele

2 universalmy 2 Uwagi 4.5.

EW. Ten warunde definique C z dolitadmostis de izomonfermu.

co- med

prodult: AiBw A

ko-produlit AiBur A

w hategorii Sets: produkt AiB to (A+B, T7, T2) ko-produkt A iB to same roitgune: (AUB, i, iz)

is hatesonic Vect: prodult = ko-prodult

Pytanie: Cry w kategori, grup istniege ko-produkt?

Problem: Jah vorpornai, cry dana grapa jest = G×H dla pewmyd G,H?

TW 4.6. (0 produdence wewingtrym)

Zatie H, H2 < G oven:

(1) H, n Hz = {e } (2) \tag{h_1 \in H_2 \in H_2 \in H_2 = h_2 h_1} (H1: Hz komutuja)

(3) H₁H₂ = G.

Where $f: H_1 \times H_2 \longrightarrow G$ dans where $f(h_1, h_2) = h_1 h_2$ jest isomorpismen grup.

Def. 4.7. W sytuagi jak er tw. 4.6 mouriny, ie Gjert produktem wewnstrongem grap H, i Hz.

D-8. f homomorfizm + "na": Ew.

· f: 1-1 Bo: kerf = 5e9

bo: zal. že f(h, h2) = e, tzn:

 $H_{1} H_{2}$ $h_{1} h_{2} = e \Leftrightarrow h_{1} = h_{2}' \in H_{1} \cap H_{2}$ $\Leftrightarrow h_{2} = h_{3} = h_{4}$

€ h_=hz=e.

Prystoly (0) Abstrakcyjmy.

GXH > GX 104

GxH>GxfeHq, EegxH

Osse produktu

6 × H jest produlitem

wednetrym grup

G x {e, 9, {e, 9 x H

(1)
$$K_4 = Z_2 \times Z_2$$
 $D - k$
 $K_4 = \{e_1 a_1 b_1 c_1 y_1 a_2 = b_2 = c_2 = e_1$
 $AII.4$
 $AII.4$

TG: = { \qi\iet : \tiel g: \tel produkt

grup{Gi\iet

driatania po ostadi:

Ky = HxHz=ZzxZz.

Zad: Sformutowai odpomednik tw. 4.6.

Projected Sab : hategoric grup abelevyth All, 4

tu: $(G_1 * G_2)$, T_1 , T_2) put produktem grup G_1 i G_2 ,

ale lei $(G_1 * G_2)$, $i_{11}i_{2}$) pert ko-produktem grup G_1 i G_2 $i_1: G_1 \longrightarrow G_1 * G_2$ $i_1(g_1) = (g_1)e_{G_2}$ $i_2: G_2 \longrightarrow G_1 * G_2$ $i_2: G_2 \longrightarrow G_1 * G_2$ $i_2: G_2 \longrightarrow G_1 * G_2$

 $G_1 \times G_2$ $G_1 \times G_2$ $G_1 + \frac{1}{4} \operatorname{Fl}_1 + G_2$ $G_1 + \frac{1}{4} \operatorname{Fl}_2 + G_2$ $G_1 + \frac{1}{4} \operatorname{Fl}_2 + G_2$ $G_1 + \frac{1}{4} \operatorname{Fl}_2 + G_2$

$$f((g_{1},g_{2})) =$$
 $= i_{1}(g_{1}) \cdot i_{2}(g_{2})$

to me driata w hategorii Groups Deal Dlacreso?