

Curso de Engenharia de Computação

Disciplina: Inteligência Artificial Professora: Alexandra Zimpeck

Prova – Valor: 5 pontos

Data de realização: 14 de abril de 2021. Entrega: Google *Classroom* até às 22h00 em formato PDF.

- 1) (1,0 ponto) Suponha que temos um **agente** que é um robô jogador de futebol.
 - a) Defina os componentes de especificação desse agente (sensores, atuadores, objetivos, ambiente).
 - b) Marque o "X" nas propriedades do **ambiente** que este agente está inserido, justificando as suas respostas:

() Completamente observáve	el () Parcialmente observável
() Determinístico	() Estocástico
() Episódico	() Sequencial
() Estático	() Dinâmico
() Contínuo	() Discreto
() Agente único	() Multiagentes

- 2) (1,0 ponto) Simule e mostre as etapas da execução dos algoritmos de **busca sem informação** denominados de busca em largura, busca em profundidade e busca de custo uniforme na árvore abaixo. Após, responda as seguintes perguntas:
 - a) A busca em profundidade possui um ganho de tempo de execução quando comparado a busca em largura e de custo uniforme? Justifique sua resposta.
 - b) Se trocarmos o destino para o nó H, qual desses algoritmos encontraria a solução de forma mais rápida? Justifique a sua resposta.

- 3) (1,0 ponto) Simule a execução dos algoritmos guloso e A* baseados em busca com informação no grafo abaixo. Para cada algoritmo, apresente as seguintes informações:
 - a) A árvore de busca que é produzida, mostrando a função custo em cada nó.
 - b) A ordem em que os nós serão expandidos.
 - c) A rota que será tomada e o custo total.

Estado	Н			
Α	30			
В	26			
С	21			
D	7			
E	22			
F	36			
G	0			

- 4) (1,0 ponto) Podemos modelar o problema do Sudoku em forma de cromossomos para um algoritmo genético. Uma das formas é criar uma *string* contendo as 81 casas do tabuleiro. Fale sobre a estrutura do algoritmo genético para o Sudoku e dê exemplos (conforme os slides 39-43 da aula 5) em termos de:
 - a) Inicialização da população.
 - b) Avaliação de cada indivíduo (função fitness).
 - c) Seleção de alguns indivíduos.
 - d) Crossover.
 - e) Mutação.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- 5) (1,0 ponto) A figura abaixo representa uma árvore de **busca MINIMAX**, onde os valores de utilidade estão indicados nos nós que são folhas.
 - a) Explique detalhadamente o funcionamento do algoritmo MINIMAX.
 - b) Complete a árvore de acordo com os valores MIN e MAX de cada nível.
 - c) Indique quais seriam os movimentos corretos pelo algoritmo.
 - d) Indique quais as arestas que seriam cortadas, se utilizarmos a poda alfa-beta.

