

Q. Let $S = \{1, 2, 3, ..., m\}, m > 3$. Let $X_1, X_2, ..., X_n$ be subsets of S each of size

3. Define a function f from S to the set of natural numbers as, f(i) is the number of sets X_i that contains the element i. That is $f(i) = |\{j \mid i \in X_i\}|$.

Then $\sum_{i=1}^{m} f(i)$ is

a) 3m

$$X_1 = \sum_{i=1}^{n} \frac{1}{2} \frac{3}{3}$$

d)
$$2n + 1$$

$$X_1 = \frac{51,2,33}{2}$$

$$X_2 = \underbrace{51,2,49}_{1,2,53}$$

$$(2006 : 2 \text{ Marks}) / r$$

$$X_4 = \underbrace{51,3,43}_{X_5 = \underbrace{51,3,53}_{1,3,53}}$$
 $f: S \rightarrow N$
 $X_6 = \underbrace{52,3,43}_{1,3,53}$ $f(i) = \underbrace{5i: i \in X_{i,3}}_{1,3,53}$
 $f(i) = \underbrace{5i: i \in X_{i,3}}_{1,3,53}$

$$\begin{array}{lll}
(7 = 22,3,53) & f(1) = 6 \\
(8 = 22,4,53) & f(2) = 6 \\
(9 = 23,4,53) & f(3) = 6 \\
(10) = 21,4,53 & f(4) = 6 \\
(10) = 21,4,53 & f(5) = 6
\end{array}$$

$$\frac{5}{5}f(i) = f(0) + f(2) + f(3) + f(4) + f(5)$$

$$= 6 + 6 + 6 + 6 + 6$$

$$= 30$$

$$= 3 \times 10$$

$$= 371.$$

Q. The number of onto functions (surjective functions) from set $X = \{1, 2, 3, 4\}$ to

set
$$Y = \{a, b, c\}$$
 is _____.

Q. A function f : N+ → N⁺, defined on the set of positive integers N⁺, satisfies the following properties:

$$f(n) = f(n/2)$$
 if n is even

$$f(n) = f(n + 5)$$
 if n is odd

Let $R = \{i | \exists j : f(j) = i\}$ be the set of distinct values that f takes. The maximum possible size of R is 2. (2016 (Set-1): 2 Marks)

$$f(n) = f(\frac{n}{2})$$
; n is even

$$f(n) = f(n+5)$$
; n is odd

$$f(2) = f(1)$$

$$-f(3) = f(8)$$

$$f(4) = f(2)$$

$$f(5) = f(10)$$

$$-\frac{f(6)}{f(12)} = \frac{f(3)}{f(12)}$$

$$\frac{f(6)}{f(7)} = \frac{f(12)}{f(12)}$$

$$f(8) = f(4)$$

$$f(8) = f(14)$$

$$f(10) = f(5)$$

$$f(n) = f(n)$$

$$f(1) = f(6)$$

$$f(12) = f(18)$$

$$f(13) = f(7)$$

$$f(14) = f(7)$$

$$f(14) = f(26)$$
 $f(15) = f(26)$

$$f(16) = f(8)$$

$$f(17) = f(22)$$

 $f(18) = f(9)$

$$f(10) = f(10)$$

$$f(1) = f(2) = f(3) = f(4) = f(6) = f(7)$$

$$= f(8) = f(9) = f(11) = f(12) = f(13) = f(14)$$

$$= f(8) = f(17) = f(18) = f(19) = f(21) - - - -$$

$$= f(16) = f(17) = f(18) = f(20) = - - - -$$

$$f(s) = f(10) = f(10) = f(10) = ----$$

ACE

Q. How many onto (or subjective) functions are there from an n-element $(n \ge 2)$ set to a 2-element set? (GATE-12)

b)
$$2^{n}-1$$

d)
$$2(2^{n}-2)$$

$$n$$
-element 2 -element $n-2$

Q. Let R denote the set of real numbers. Let $f: (R \times R) \to R \times R$ be a bijective function defined by f(x, y) = (x + y, x - y). The inverse function of f is given by (GATE-96)

a)
$$f^{-1}(x,y) = \left(\frac{1}{x+y}, \frac{1}{x-y}\right)$$

b)
$$f^{-1}(x, y) = (x - y, x + y)$$

c)
$$f^{-1}(x,y) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right)$$

d)
$$f^{-1}(x,y) = (2(x-y), 2(x+y))$$

a)
$$f^{-1}(x,y) = \left(\frac{1}{x+y}, \frac{1}{x-y}\right)$$

 $f^{-1}(5,2) = \left(\frac{1}{7}, \frac{1}{3}\right) \times$

b)
$$f^{-1}(x,y) = (x-y, x+y)$$

 $f^{-1}(5,1) = (4,6)$

$$f^{-1}(3,1) = \left(\frac{2+4}{2}, \frac{2-4}{2}\right)$$

$$f^{-1}(5,1) = \left(\frac{5+1}{2}, \frac{5-1}{2}\right)$$

$$= \left(3, 2\right)$$

Q. Let X and Y be finite sets and $f: X \to Y$ be a function. Which one of the following statements is **TRUE?** (GATE-14-Set3)

- a) For any subsets A and B of X, $|f(A \cup B)| = |f(A)| + |f(B)|$
- b) For any subsets A and B of X, $|f(A \cap B)| = |f(A) \cap f(B)|$
- c) For any subsets A and B of X, $|f(A \cap B)| = \min\{|f(A)|, |f(B)|\}$
- d) For any subsets \underline{S} and \underline{T} of Y, $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$

(d)
$$y = \begin{cases} 1,2,3,4 \end{cases}^{3}$$

 $s = \begin{cases} 1,2,3,4 \end{cases}^{3}$
 $y = \begin{cases} 1,2,3,4 \end{cases}^{3}$
 $f = \begin{cases} 1,2,3,4 \end{cases}^$

Q. The number of functions from an m element set to an n element set is

(GATE-98)

- a) m + n
- b) mⁿ
- c) n^m
- d) m*n

Q. Consider the binary relation:

$$S = \{(x, y) \mid y = x+1 \text{ and } x, y \in \{0, 1, 2,\}\}$$

The reflexive transitive colure of S is

a)
$$\{(x, y) | y > x \text{ and } x, y \in \{0, 1, 2, ...\}\}$$

b)
$$\{(x, y) \mid y \ge x \text{ and } x, y \in \{0, 1, 2, ...\}\}$$

c)
$$\{(x, y) | y \le x \text{ and } x, y \in \{0, 1, 2, ...\} \}$$

d)
$$\{(x, y) \mid y \le x \text{ and } x, y \in \{0, 1, 2, ...\}\}$$

(GATE-04)

 $S = \{\{1,2\}, \{1,2,3\}, \{1,3,5\}, \{1,2,4\}, \{1,2,3,4,5\}\}$ is necessary and sufficient to make S a complete lattice under the partial order defined by set containment?

- a) {1}
- b) {1}, {2,3}
- c) {1}, {1,3}
- d) {1}, {1,3}, {1,2,3,4}, {1,2,3,5}

 S_1 : Set of all $n \times n$ matrices with entries from the set (a, b, c)

 S_2 : Set of all functions from the set $\{0,1,2,\dots,n^2-1\}$ to the set $\{0,1,2\}$

Which of the following choice(s) is/are correct? (GATE-21-Set2)

- a) There exists a surjection from S_1 to S_2 .
- b) There does not exist an injection from S_1 to S_2
- c) There does not exist a bijection from S_1 to S_2
- d) There exists a bijection from S_1 to S_2

S1: Set of all nxn matrices with entries from [a,b,c]

$$a_1 = \frac{a}{b}$$

$$n=2$$
 $\begin{bmatrix} a & b \\ c & a \end{bmatrix}$

$$|S_1| = |S_2|$$

$$= n^{m} = 3^{n^{2}}$$

Algebraic Structure

Algebraic Structure: A non-empty set which is equipped with some operations and some properties is known as algebraic structure.

(S, *)

- Groupoid
- Semi-group
- Monoid
- Group /
- Abelian Group

Some Properties:

I. Closure: Let 'S' be the given algebraic structure, '*' is the binary operation and a, b are any two elements in S,

(If a * b \in S then we can say (S, *) follows closure property.

$$\forall a, b \in S, a * b \in S$$

$$2+3=5 \in \Xi$$
 $-2+5=3 \in \Xi$
 $0+(-1)=-1 \in \Xi$

IL Associative:

$$\forall a, b, c \in S,$$

$$a * (b * c) = (a * b) * c$$

III. Identity:

$$2 + (3+14) = (2+3)+4$$

$$2 + (3+14) = (5)+4$$

$$2 + (7) = (5)+4$$

$$9 = 9$$

$$\forall a \in S, \exists e \in S, \ni For every$$

$$a * e = e * a = a$$
Such that

a*e=e*a=a such that a*e=a 2+0=2

ACE

IV. Inverse:

$$\frac{\forall \ a \in S, \quad \exists \ b \in S, \quad \ni}{a * b = b * a = e}$$

$$a \times b = e$$
 $-2 + (2) = 0$
 $-5 + (5) = 0$
 $9 + (-9) = 0$
 $0 + 0 = 0$

V. Commutative:

$$\forall a, b \in S$$

$$\boxed{a * b = b * a}$$

$$2+3=3+2$$

$$(\mathcal{Z},+) \subseteq (\mathcal{R},+)$$

$$\mathcal{Z} \subseteq \mathcal{R}$$

$$(\mathcal{H},*) \subseteq (\mathcal{G},*)$$

Classification of Algebraic Structure

Semi-group (2)	Monoid (3)	Group *	Sub-Group	Abelian (5)
1) Closure 🖊	1) Closure	1) Closure	1) Closure	1) Closure
2) Associative	2) Associative	2) Associative	2) Associative	2) Associative
	3) Identity	3) Identity	3) Identity	3) Identity
		4) Inverse	4) Inverse	4) Inverse
				5) Commutative
	1) Closure / 2) Associative/	1) Closure / 2) Associative / 3) Identity	1) Closure / 1) Closure / 2) Associative / 2) Associative / 3) Identity / 3) Identity	1) Closure 1) Closure 2) Associative 2) Associative 3) Identity 3) Identity 4) Inverse 4) Inverse

Sub-Group:

Let (G, *) be a group, H is a subset of 'G' and (H, *) is also group then we can say (H, *) is a subgroup of (G, *)

$$(H, *) \subseteq (G, *)$$

$$\not\exists \subseteq R$$

$$(\not\exists, +) \subseteq (R, +)$$

Q. Check the properties of commutative and associative on binary operation '*' is defined by a * $b = a^b$, \forall a, $b \in N$

even binary operation
$$*$$
 defined by

Associative:

Take $2,3,4$

Commutative:

 $2 \times 3 = 2 = 3$

consider $2 \times 3 = 2 = 3$
 $2 \times 3 \times 2 = 3 = 3$
 $2 \times 3 \times 2 = 3 \times 2 = 9$
 $2 \times 3 \times 2 = 3 \times 2 = 3$
 $2 \times 3 \times 2 = 3 \times 2 = 3$
 $2 \times 3 \times 2 = 3 \times 2 = 3$
 $2 \times 3 \times 2 = 3 \times 2 = 3$
 $2 \times 3 \times 2 = 3 \times 2 = 3 \times 3 \times 4 = 3 \times 4 =$

Q. Show that the set of all rational number
$$Q - \{0\}$$
 forms an abelian group under composition '*' defined by a * b = $\frac{ab}{2}$

Sol cliven Set =
$$0 - 203 = 5$$
 (say)

Binary operation $a \times b = \frac{ab}{2}$

$$=\frac{\chi(\frac{43}{2})}{2}=\frac{\chi y}{4}$$

$$(\chi * y) * 3 = (\frac{\chi y}{2}) * 3$$

I. closure:
$$x, y$$
.

 $x + y = \frac{x \cdot y}{2} \in S$
 $(S, *)$ is closed.

II. Associative:
$$\chi_1 y_1 y_2$$
.
 $\chi_* (y * y) = \chi_* (y y_3)$

$$(x*y)*s = (xy)*s$$

$$= xys$$

$$: (S,*) \text{ is associative}$$

$$III. Identity: Let $e \in S$ such that
$$a*e = a$$

$$\underline{ae} = a$$

$$\underline{ce} = 2$$$$

Inverse: Let us suppose there is some b ES

such that

$$a + b = e$$

$$ab = 2$$

$$b = 4$$

$$c = 4$$

$$c = 4$$

Commutative: 工

Take
$$x \times y = \frac{xy}{2}$$

$$=y*x$$

$$= \frac{g\pi}{2}$$

$$= y + \pi$$

$$(s, *) is commutative$$

$$(s, *) is an abelian group$$

$$(s, *) is an abelian group$$

S.T. Set of trational numbers undsome conditions with binary operation *X' defined by [a+b=a+b-ab] is an abelian group

closure:

Associative:

Identity: eES

a * e = ag(1-a) = 0 e(1-a) = 0

le = 0

Inverse:

$$a+b-ab=0$$

$$b = \frac{a}{1-a} = \frac{a}{a-1}$$

commutative: axb = a+b-ab

Q. Show that $[G, +_6]$ is a group where $G = \{0, 1, 2, 3, 4, 5\}$

