Conjugate Functions

Tuesday, February 2, 2021

aka Fenchel-Legendre conjugate

"conjugate", and vice-versa. They are distinct, though related ... Sorry in advance.

or, Fenchel-Legendre Transform, which reduces to the Legendre-Transform when you're differentiable.

Def The F.-L.- conjugate of f is

$$f^*(y) = \sup_{x} \langle y, x \rangle - f(x)$$

BV'04 says y x but that's just specializing to Encl. space For, e.g., matrices, use tr (YTX)

Prop f is convex (whether f is or not) Proof y -> (y,x> -f(x) is convex & y, and arbitrary supremen preserve convexity [

When f is differentrable and full domain, the supremum occurs when \(\forall y, x > -f(x) \) = 0 i.e., $y = \nabla f(x)$, so $x^* = (\nabla f)^{-1}(y)$

$$f^{+}(y) = \langle y, x^{+} \rangle - f(x^{+})$$

$$= \langle \mathcal{V}f(x^{+}), x^{+} \rangle - f(x^{+}) \quad \omega_{f} \quad x^{+} = (\mathcal{V}f)^{-1}(y)$$
legardre Transform

Legandre Transform in 1D ... to give us intuition.

Assume f is strictly convex (so f' is strictly monotone, ie., invertible) $f^*(y) = \sup_{x \in Y} x_x - f(x)$, maximized where o = y - f'(x), f'(x) = ya point x that x=(f')-1(y) interpret as slope

has slope y What is $f^*(\frac{1}{2}) = ?$ y = 1/2 is the slope Find the point x that has this slope lovil be unique if f strictly convers)

-- slape = 1/2 Now that we have x, evaluate x y -f(x)

Equation for red line: mx+b d line: $M \times + b$ (algebra notation)
also, slope $(x-x_0) + f(x_0)$ where slope = y, $x_0 = x$... so, intercept = $f(x_0) - slope \cdot x_0$

point x to maximize the (signed)

separation of $\langle y, x \rangle$ and f(x)

(want <y,x7 on top of fixs)

Ex: f(x)= |x|

What is f + (1/2)?
A:

The x to make

<y,x7-f(x) biggest</pre>
(in this case, least negative) is at x=0. Gap is0.

So... f*(1/2) = 0

= f(*) - y ×

(a) What is f+(2)?

stru f(x) = (x)

RULES

No horseplay:
No children under 5

Affine transfermations: let
$$g(x) = f(Ax+b)$$
, assuming A invertible

 $g^{+}(y) := \sup_{x} \langle y, x \rangle - f(Ax+b)$, let $z = Ax+b$
 $x = A^{-1}(z-b)$
 $= \sup_{z} \langle y, A^{-1}(z-b) \rangle - f(z)$
 $= -\langle y, b \rangle + \sup_{z} \langle A^{-x}y, z \rangle - f(z)$
 $= \langle -y, b \rangle + f^{+}(A^{-x}y)$ and $dom(g^{+}) = A^{-1}(dom(f^{+}))$

Sums of functions

|e+
$$f(x) = f_1(x) + f_2(x)$$
.
Is $f^{*}(x) = f_1^{*}(x) + f_2^{*}(x)$? NO

But... if "independent" (i.e., separable), in the sense (w) $x = \begin{bmatrix} u \\ v \end{bmatrix}$ $u \in \mathbb{R}^{n_1}, v \in \mathbb{R}^{n_2}$ $if f(u,v) = f_1(u) + f_2(v)$ $v_1+v_2=v$ then $f^{+}(w,z) = f_1^{+}(w) + f_2^{+}(z)$

Ex. Indicator Function of a set,
$$f(x) = I_c$$

$$f^{+}(y) = \sup_{x} \langle x, y \rangle - I_c(x) = \sup_{x \in C} \langle x, y \rangle$$
This is called the support function of the set C

Let $C = \{x : \|x\|_p \le 1\}$, what is this set's support freetien
i.e., if $f(x) = I_e(x)$, what is f^* ?

IAZ)
$$f^{*}(y) := \sup_{\|x\|_{p} \le 1} \langle x, y \rangle$$

By Hölder's ineq., $\langle x, y \rangle \le \|x\|_{p} \cdot \|y\|_{q}$
 $f^{*}(y) := \sup_{\|x\|_{p} \le 1} \langle x, y \rangle \le \|x\|_{p} \cdot \|y\|_{q}$
 $f^{*}(y) \le \|y\|_{q}$
 $f^{*}(y) \le \|y\|_{q}$

So $f^{*}(y) \le \|y\|_{q}$
 $f^{*}(y) \le \|y\|_{q}$

Also, there is an x to always make Hölder's tight i'e., $f^{*}(y) \le \|y\|_{q}$
 f

 $\begin{aligned} &\|x\|_{p} \leq 1, \ g = \infty \\ &\|x\|_{p} \leq 1, \ \text{chanse all } x_{i} = \text{sign}(y_{i}) \ \text{for } y_{i}| = \|y\|_{p} \ \text{so } \langle x, y \rangle = \text{sign}(y_{i}) \cdot y_{i} \\ &= \|y_{i}\| = \|y\|_{p} \\ &\|x\|_{p} \leq 1, \ \text{chanse all } x_{i} = \text{sign}(y_{i}) \ \text{So } \langle x, y \rangle = \sum_{i} \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|x\|_{p} \leq 1, \ \text{chanse all } x_{i} = \text{sign}(y_{i}) \ \text{So } \langle x, y \rangle = \sum_{i} \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|x\|_{p} \leq 1, \ \text{chanse all } x_{i} = \text{sign}(y_{i}) \ \text{So } \langle x, y \rangle = \sum_{i} \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{chanse all } x_{i} = \text{sign}(y_{i}) \ \text{So } \langle x, y \rangle = \sum_{i} \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text{sign}(y_{i}) \cdot y_{i} = \sum_{i} \|y\|_{p} \\ &\|y\|_{p} \leq 1, \ \text$

So, the conjugate of the indicator function of a norm ball is the dual norm
$$C = \frac{1}{2} \|x\| \le 1$$
, $f(x) = T_c \Rightarrow f^*(y) = \|y\|_{\frac{1}{2}} \|y\|_{\frac{1}{2}} = \sup_{\|x\| \le 1} \frac{2x_1y_2}{\|x\| \le 1}$

What about dual of g(x) = ||x||? $g^{+}(y) = \sup_{x} \langle x,y \rangle - ||x||$ $\langle x,y \rangle \leq ||x|| \cdot ||y||_{+}$ $\sup_{x} g^{+}(y) \leq \sup_{x} ||x|| \cdot ||y||_{+} - ||x||$ $\inf_{x} ||y||_{+} \leq 1, \quad \text{is maximized at } x = 0.$ $\inf_{x} ||y||_{+} \geq 1, \quad \dots \text{ is maximized as } ||x|| \rightarrow \infty$ $= \begin{cases} 0 & ||y||_{+} \leq 1 \\ + \infty & ||y||_{+} > 1 \end{cases}$

So, $g^{+}(y) = I_{C}(y)$, $C = \{x: ||x||_{y} \le 1\}$ Converse to what we saw!

So, since (fact) $(||\cdot||_{+})_{+} = ||\cdot||_{+}$ if f(x) = ||x||, then $f^{*}(y) = I$ Sy: $||y||_{+} \le 1$, and $f^{*+}(z) = ||z||$ 1'c., $f = f^{*+}$ in this case

in general, true if f is convex and nice

BTW, is it possible for $f = f^+$? Yes, for exactly 1 function, $f(x) = \frac{1}{2} \|x\|^2$

we'll revisit the conjugate when we cover non-convex optimization