N = 64, Length = 16

Frequency interval between successive samples for the plot in part a is $\frac{2pi}{64}$.. At w = 0, the value is 16 Interval between null samples is $\frac{64}{16}$

The null sample interval is always $\frac{N}{L}$

N=128, Length = 16

Frequency interval between successive samples for the plot in part a is $\frac{2pi}{128}$. At w = 0, the value is 16 Interval between null samples is $\frac{128}{16}$. The null sample interval is always $\frac{N}{L}$.

The one with greater N has a faster sampling rate than the smaller N, the one with higher N look closer to the continuous time signal.

N = 64, Length = 8

Frequency interval between successive samples for the plot in part a is $\frac{2pi}{64}$ At w = 0, the value is 8 Interval between null samples is $\frac{64}{8}$ The null sample interval is always $\frac{N}{1}$ N = 64, Length = 64

Frequency interval between successive samples for the plot in part a is $\frac{2pi}{64}$ At w = 0, the value is $\sum_{n=0}^{N-1} x(n) = -8.3489e^{-14} - 4.085e^{j-14}$ Interval between null samples is $\frac{64}{64}$ The null sample interval is always $\frac{N}{I}$