CS747 - Assignment 1

Kalpesh Krishna 140070017 kalpeshk2011@gmail.com

1 Implementation

All algorithms were implemented in C++ building upon the basecode provided. An initial class BaseAlgorithm has been created in algorithm-data.h. Each algorithm inherits from this class. The main implementations are located in algorithm-data.cpp.

1.1 Epsilon Greedy

Using gsl_rng_uniform, an initial Bernoulli distribution for ϵ is sampled. For the first pull, this choice is ignored and the system explores randomly. For the exploration step, gsl_rng_uniform has been used again. 10 values of $\epsilon \in \{0.1, 0.2, ...1.0\}$ were tried, and the best value $\epsilon = 0.1$ was chosen. Further reduction of ϵ should reduce long term regret.

1.2 UCB

The UCB implementation exactly follows Auer et al. 2002 implementation with a initial round robin sampling round and subsequent maximization of the UCB objective.

1.3 KL-UCB

As outlined in the *Garivier et al. 2011* paper, I've taken c=0. Taking c=3 resulted in worse long term regret. To approximate the value of q, a binary search in $q_a \in [\hat{p}_a, 1]$ (where KL-Divergence a strictly increasing function) was conducted. This search concluded when

$$0 \le \frac{1}{N_c} (\log T + c \log \log T) - KL(\hat{p}_a, q) \le 10^{-6}$$

The threshold value and c can be adjusted in algorithm-data.h

1.4 Thompson Sampling

The gsl_ran_beta function in the GSL was used to sample from the beta distribution.

2 Results

Each of the curves below consist of 37 horizon points.

 $h = \{10, 20, ...90, 100, 200, ...900, 1000, 2000, ...9000, 10000, 20000, ...90000, 100000\}$. For each horizon point, 100 different random seeds were taken. The curves represent an average across these runs.

The results are consistent with the discussed theory. Since the epsilon-greedy algorithm has a linear regret, it's seen as an exponentially increasing function in a logarithmic scale. The other algorithms enjoy a roughly linear curve (logarithmic regret), with optimal results seen in the order, Thompson-Sampling > KL-UCB > UCB as we had initially expected. As expected, the regret is larger in the 25-arms case, since it's harder for the system to find the optimal arm.

It was surprising to see the zoomed in curve for a horizon upto 2000, with UCB and KL-UCB doing worse than epsilon-greedy, indicating larger constants with $O(\log(T))$ than O(T). It was also surprising to see occasional dips in regret, which I later realized are possible stochastically.

2.1 5 Arms

2.2 25 Arms

