RNA-Seq

Dr. Barbara Hutter
Division of Applied Bioinformatics (B330)
Team Leader Clinical Bioinformatics

Gene Expression

http://upload.wikimedia.org/wikipedia/commons/2/20/Eukariotische_Genexpression.png

Most Common Use of RNA-Seq

- Quantification of transcripts: "digital gene expression"
 - Classification of transcriptomes for different cell types, developmental stages, conditions
 - Differential expression
 - over- and underexpression
 - clustering and classification
- Fusion genes
- Alternative splicing

RNA-Seq vs. Microarrays

- Microarrays
 - only known transcripts and isoforms
 - intensities, have to be normalized to be comparable between different experiments
 - limitations known, established protocols
- RNA-Seq
 - good correlation with array data
 - improved identification of lowly expressed genes
 - many proprietary approaches

RNA-Seq

- Library preparation
- Sequencing
- Read mapping
- Read counting

RNA fragments cDNA EST library with adaptors ATCACAGTGGGACTCCATAAATTTTTCT CGAAGGACCAGCAGAAACGAGAGAAAAA Short sequence reads GGACAGAGTCCCCAGCGGGCTGAAGGGG ATGAAACATTAAAGTCAAACAATATGAA Coding sequence Exonic reads AAAAAAAA. Junction read poly(A) end reads Mapped sequence reads Base-resolution expression profile RNA expression level Nucleotide position Expression profile in base resolution for a yeast gene with one intron Nature Reviews | Genetics

Z. Wang et al. 2009

Nature Reviews Genetics 10:57-63

mRNA

RNA-Seq Library Preparation

- cDNA library
 - poly-A tail of mature mRNA => oligo-T primer for reverse transcription
- RNA fragmentation
 - add DNase
 - get also unspliced RNAs
 - ribosomal RNA (rRNA) depletion
- barcodes for multiplexing
- specialized protocols for strandspecific reads (=> identify antisense transcripts)
- small RNAs (miRNA , ...) different

Pease & Sooknanan Nature Methods 2012 9, 310

Systematic Errors by Fragmentation Method

Fragmentation into pieces of 200-500 bp

- Oligo-T cDNA
 - with DNAse I or sonication (ultrasound)
 - the more 5', the fewer fragments
- RNA
 - by hydrolysis or nebulization
 - 5' and 3' ends underrepresented

Tag count: average values for 5099 yeast genes

Yeast gene SES1 (Seryl-tRNA Synthetase)

Z. Wang et al. 2009, Nature Reviews Genetics 10:57-63

Mapping RNA-Seq Reads I

- To genome
 - Disadvantages:
 - reads that span exon-exon junctions (splice sites) are not or wrongly aligned
 - the longer the reads, the higher the probability
 - isolated exons shorter than the read size are not covered
 - distances for paired end reads are incorrect if there is an intron in between
 - Advantages:
 - new genes, exons, splice variants, noncoding transcripts (e.g. of repetitive elements) can be detected

Mapping RNA-Seq Reads II

- To transcriptome
 - Advantage:
 - reads that span exon-exon junctions are aligned correctly
 - Disadvantages:
 - restriction to known transcripts => artifacts in mapping
- Solution:
 - split read approach ____ ___
 - map to transcriptome, genome and collection of splice sites simultaneously or successively
 - include annotations of exons and splice sites for genome mapping

Most Popular Mapping Tools

- TopHat http://tophat.cbcb.umd.edu/
 - Method has changed twice since publication, now split read mapping (TopHat with Bowtie allows no gaps in alignment)
 - TopHat2 optionally aligns to transcriptome first, remaining reads to genome, uses Bowtie2 => allows gaps in alignment
- GSNAP http://research-pub.gene.com/gmap/
 - allows indels, long-distance splicing, and translocations
 - SNP and RNA editing tolerant alignment
 - very slow
- STAR http://code.google.com/p/rna-star/
 - extremely fast and memory-consuming (<30 min, 30 GB RAM)
 - very well suited for fusion gene detection (chimeric alignments)

Duplicate Reads in RNA-Seq

Duplicates have identical start coordinate(s)

- PCR duplicate: not necessarily same length or same sequence
 - depending on library complexity (initial number of DNA/RNA fragments)
- Optical duplicate: one cluster on the image is identified as multiple adjacent clusters
- are usually not removed for RNA-Seq:
 - PCR duplicates cannot be distinguished from saturation due to high expression
 - highly expressed gene => large amount of the same mRNA => high probability to map reads at the same position
 - removing duplicates underestimates expression of highly expressed genes
 - low library complexity can be an issue nevertheless
 - estimated library size < 30 Mio reads is potentially problematic, < 20 Mio mostly unusable
 - try to get as high RNA concentration for sequencing as possible
 - biological reasons e.g. in multiple myeloma (Ig genes)

Sequencing Depth and Coverage

Wang et al. 2009

- a) 80% of known yeast genes could be found with 4 million uniquely mapped, nonduplicate RNA-Seq reads. Despite increasing sequencing depth, coverage reaches a plateau. Expressed genes: at least 4 independent reads in a 50 bp window at the 3' end.
- b) Number of unique transcriptional start sites reaches a plateau at **80 million reads** in 2 mouse transcriptomes: ES, embryonal stem cells; EB, embryonic body.

What "Coverage" is Sufficient?

ENCODE recommendations

http://genome.ucsc.edu/ENCODE/protocols/dataStandards/RNA_standards_v1_2011_May.pdf

- for transcript quantification, 10-30 Mio reads
- for transcript reconstruction, up to 200 Mio reads
- own experience:
 - 50 Mio 36 bp single end reads are sufficient for differential expression
 - at least 100 Mio reads (1/3 HiSeq2500 lane) paired end 100 bp needed for detection of fusion genes

Quality Control and Issues I

- QC: base quality, number of reads, mapping rate (>80%), percent mapped (uniquely) to known exons (>90% for polyT); coverage of housekeeping genes
- RNASeqQC https://github.com/SamuelHLewis/RNASeqQC
 - estimated library size (> 30 Mio), duplication rate (< 80%), genes detected (> 22.000), intergenic rate (<5%), rRNA (ribosomal RNA) (<2%)
- Problems on library level:
 - RNA degradation
 - RIN value does not correlate with usability of RNA-Seq data
 - ribosomal RNA, DNA contamination
 - adapters: fragments are shorter than the read length; trim adapters

Quality Control and Issues II

- Problems on bioinformatics level:
 - repetitive regions, paralogs => some exons not mappable even with paired end reads and splice awareness
 - long exons get more reads even (even when read counts are normalized by total exon length)
 - mapping artifacts
 - for statistical evaluation: batch effects

Alignment Artifacts

- Upper panel: correct alignment considering spliced reads reverals truncating mutation
- Middle panel: alignment to genome introduces false positive SNVs and misses the truncation
- Figure by courtesy of Marc Zapatka, DKFZ

Read Counts

htseq-count from the HTSeq Python package

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html

- different ways of handling overlaps
- requires BAM to be name sorted for paired end reads
- featureCounts from the R package subread (Liao et al. 2014)
 http://subread.sourceforge.net/
 - much faster, internal sorting
 - coverageBed from the BEDtools package (Quinlan et al. 2010) https://github.com/arq5x/bedtools2
- Kallisto (Bray et al. 2016) https://pachterlab.github.io/kallisto/about
 - pseudoalignment of reads to reference transcriptome
 - very memory demanding, very fast

Fold Change

Matrix of read counts

gene	s1 (basis)	s2	s3	s4	s5	s6
Α	1359	1433	3509	660	1410	3229
В	223	566	3496	273	3222	3207
С	237	241	1184	152	764	1295
D	25	265	2266	50	1599	2379
Е	4	13	119	3	166	140

Fold Change

Activation / repression of genes judged by fold change

-2fold 0	2fold	5fold	10fold	50fold	
----------	-------	-------	--------	--------	--

gene	s1 (basis)	s2	s3	s4	s5	s6
Α	1359	1433	3509	660	1410	3229
В	223	566	3496	273	3222	3207
С	237	241	1184	152	764	1295
D	25	265	2266	50	1599	2379
Е	4	13	119	3	166	140

Fold Change

- fold change often given as logarithm: log fold change
 - makes distribution of expression values more symmetrical

-2fold	0	2fold	5fold	10fold	50fold			
gene	s1 (b	asis)	s2	s3	s4		s5	s6
А		1359	1433	350	9	660	1410	3229
В		223	566	349	6	273	3222	3207
С		237	241	118	4	152	764	1295
D		25	265	226	6	50	1599	2379
Е		4	13	11	9	3	166	140

- Expression changes of one gene
- Correlations and anticorrelations of expression levels across genes

Significance of Expression Changes

RNA-Seq	mapped reads	gene A	gene B
sample 1	16 000 000	2000 (0.01%)	2000 (0.01%)
sample 2	17 000 000	2100 (0.01%)	3000 (0.02%)

contingency table (cross tabulation)

gene	sample 1	sample 2	sample 2
mapped to gene	2000	2100	3000
mapped elsewhere	15 998 000	16 997 900	16 997 000

Fisher's exact test or Chi square test => p value

- Gene A: p = 0.71 => no significant difference between samples
- Gene B: $p = 2.2e^{-16}$ (= 2.2*10⁻¹⁶) => expression is significantly higher in sample 2 than in sample 1

Differential Expression

- A simple test for differential expression would be simply the **fold change**, i.e. $avg(r_{q,A})$ / $avg(r_{q,B})$ if comparing conditions A and B
- This doesn't account for variance, i.e. the scatter around the expected value
- This is what statistical tests have been made for

Slide by courtesy of Benedikt Brors, DKFZ

Analysis of Read Counts

- Read count 0 => fold change ∞
 - add a pseudocount of 1
- Type 1 error
 - too many false positives
- => need to be conservative
 - But: type II error
 - false negatives
- => Statistical modelling of read count distribution

Anders & Huber 2010, Genome Biology 11:R106

Tools for Differential Expression from RNA-Seq

- **cuffdiff / cufflinks** http://cufflinks.cbcb.umd.edu/index.html
 - Fisher's exact test
- DESeq http://www-huber.embl.de/users/anders/DESeq/
 - Differential Expression analysis for Sequence count data
 - package in R Bioconductor
 - also suited for ChIP-Seq analysis
- **DESeq2** (Love at el. 2014)
 - improved statistical models
- EdgeR http://bioconductor.org/packages/release/bioc/html/edgeR.html
 - Empirical analysis of digital gene expression data in R
 - similar to DESeq

Replicates

- To distinguish noise (random variance) from real (biological) differences
- Technical replicates
 - different libraries from same sample
 - does not mean running the same library on different lanes or just using different barcodes for multiplexing!
- Biological replicates
 - different samples
 - recommended: at least 6 samples per condition
- No biological replicates:
 - only for exploration and hypothesis generation
 - overestimating variance
 - only a fraction of the hits obtained with replicates is recovered

Poisson Distribution

- Assumption: read counts follow a multinomial distribution
- Poisson distribution = "distribution of rare events"

•
$$P_{\lambda}$$
 (X=k) = $\lambda^k/k!$ *e- λ

• λ = mean = expectation value = variance

http://de.wikipedia.org/w/index.php?title=Datei:Poisson-Verteilung.PNG

DESeq

- Poisson distribution fits for shot noise between technical replicates
- But there is extra (biological) variation in biological replicates: overdispersion => negative binomial distribution
 - variance is not identical to mean but larger
 - broader, allows for greater variance
 - 2 parameters

Wahrscheinlichkei

0.25

0.2

0.15

- r: number of successful trials
- p: probability of success in a single trial

http://upload.wikimedia.org/wikipedia/commons/2/2c/Negativ Binomial Distribution.PNG

False Negatives

- Noise between replicates must be lower than that between different conditions
- Genes with low counts
 - shot noise "overwhelms" real differences
 - need to sequence deeper, or leave these genes out of the analysis
- For high counts, false negatives due to conservativeness
 - more replicates needed
- Big fold changes may mask smaller ones
 - do a second DEG analysis after removing genes identified as differentially expressed in first round
 - DEseq2 has improved models

Drawbacks of Read Count Data

- High read counts != highly expressed
 - long genes get more reads
- Number of reads and those that are aligned can be very variable depending on experiment or sequencing method
 - sophisticated scaling by DESeq(2)
- Only pairwise comparisons between conditions
- No time courses
- Different genes cannot be compared to each other

RPKM and FPKM

- Normalisization of read counts by length of the transcript (or single exon) => compare expression levels of different genes
- RPKM: **R**eads **P**er **K**ilobase of exon per **M**illion mapped reads
- Often refered to as "mRNA copies per cell"
- RPKM = (ReadsA_{sx}/ ExonsumA / 1000) / (allReads_{sx} / 1 000 000)
- FPKM: Fragments Per Kilobase of exon per Million mapped reads

Transcripts per Million

$$TPM_g = \frac{r_g \cdot l_r \cdot 10^6}{L_g \cdot T} \qquad T = \sum_{g \in G} \frac{r_g l_r}{L_g}$$

- r_q : number of reads for gene g
- *I_r*: read length
- L_g : length of gene/transcript/exon
- *T*: number of transcripts
- Proportional to RPKM, but with a sample-specific scaling factor
 Slide by courtesy of Benedikt Brors, DKFZ

Expression judged by RPKM

• Rule of thumb:

< 1 very	< 10	10 - 30	30 - 70	70 - 100	>> 100 over-
low	low	moderate	quite high	high	expressed

• RPKM > 100: housekeeping genes such as Actin; oncogenes in amplifications

gene	s1	s2	s3	s4	s5	s6
Α	61.26	61.52	150.78	29.8	59.85	131.61
В	6.58	15.33	99.17	7.33	88.45	85.51
С	5.61	5.60	26.67	3.44	16.94	27.72
D	0.52	6.79	63.95	1.19	41.73	62.82
Е	0.23	0.89	7.51	0.21	10.29	8.41

Other Applications of RNA-Seq

- Identification of novel transcripts and genes
 - new exons, isoforms, and alternative transcription start sites
 - novel protein-coding and noncoding mRNA
- Variant calling
- Allele-specific gene expression
- RNA editing
- Reflexion of DNA changes in RNA
 - are mutated alleles expressed at all?
 - do SNVs change splicing?
 - do mutations in promoter regions influence transcription?

Reflexion of SNVs in RNA

- samtools mpileup at positions of SNVs detected in genome
- RPKM threshold to distinguish between low / absent expression of the gene and lack of coverage at the SNV position

Isoforms and Alternative Splicing

- Tissue-specific usage of alternative isoforms and promotors
- noncoding RNAs

http://de.wikipedia.org/w/index.php?title=Datei:DNA_alternative_splicing.gif

DEXSeq

- Similar to DESeq
- Comparison of all exons over a gene (based on fixed gene model)
- Exon skipping
- Alternative exon usage
- Alternative splice sites

Anders S, Reyes A & Huber W (2012)

untreated

Cufflinks

- Assemby of reads into transcripts
- At the same time calculate FPKM
- Estimate probability how many reads belong to which transcript
- But: transcripts detected by cufflinks often do not fit well with known

Trapnell et al. 2010

Fusion Gene Detection

- SOAPfuse (Jia et al. 2013) https://sourceforge.net/projects/soapfuse/
- deFuse (McPherson et al. 2011) https://sourceforge.net/projects/defuse/
- STAR-Fusion https://github.com/STAR-Fusion/STAR-Fusion
- arriba https://github.com/suhrig/arriba
 - in-house tool based on STAR chimeric alignments
 - short runtime and high sensitivity for clinical applications
 - can detect breakpoints in introns and intergenic regions

Other Applications

- Expression during time course
- Clustering of RPKM values analogous to microarray expression data
- New alternative promoters
 - high read coverage 5' of known promoters
 - CAGE / TSS (RNA-Seq of 5' ends, mapping to transcriptional start sites)
- Small-RNA sequencing (miRNA etc.)
 - need trimming of adapters
 - usually mapped to sequence database of known RNAs
 - if mapping to genome, high preference for certain classes (e.g. snoRNAs)
- single cell RNA-Seq
- long read sequencing

RNA-Seq Workflow

- offered by the DKFZ Omics IT and Data Management Core Facility (ODCF) for human and mouse
- aligment with STAR
- featureCounts for read counts
- RNASeqQC for quality control
 - automated blocking of data that does not reach the standard thresholds
- fusion genes from arriba (only for human)

References I

- Anders S & Huber W (2010) Differential expression analysis for sequence count data. Genome Biol.11(10):R106 (DESeq)
- Anders S, Reyes A & Huber W (2012) Detecting differential usage of exons from RNA-seq data.
 Genome Res. 22(10):2008 (DEXSeq)
- Bray et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nature Biotech. 34:525 (Kallisto)
- Dobin A et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15
- Jia W. et al (2103) SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol.14:R12
- Kim D et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol.14(4):R36
- Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923

References II

- Love MI, Huber W & Anders S (2014) Moderated estimation of fold change and dispersion for RNAseq data with DESeq2. Genome Biol. 15:550
- McPherson A et al. (2011) deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data.
 PLOS Comp.Biol. 7(5): e1001138.
- Pease J & Sooknanan R. (2012) A rapid, directional RNA-seq library preparation workflow for Illumina® sequencing. Nature Methods 9:310
- Quinlan AR & Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features.
 Bioinformatics 26(6):841
- Trapnell C et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28:511 (Cufflinks)
- Wang Z, Gerstein M & Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10:57-63
- Wu TD & Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873 (GSNAP)