- 1. Determine the splitting field and its degree over \mathbb{Q} for $x^4 + 2$. (Justify your answer.)
- 2. Determine the splitting field and its degree over \mathbb{Q} for $x^4 + x^2 + 1$. (Justify your answer.)
- 3. Determine the splitting field and its degree over $\mathbb Q$ for x^6-4 . (Justify your answer.)
- 4. Suppose m and n are relatively prime positive integers. Let ζ_m be a primitive m^{th} root of unity and let ζ_n be a primitive n^{th} root of unity. Prove that $\zeta_m \zeta_n$ is a primitive mn^{th} root of unity.
- 5. Prove there are only a finite number of roots of unity in any finite extension K of \mathbb{Q} .
- 6. For any prime p and any nonzero $a \in \mathbb{F}_p$ prove that $x^p x + a$ is irreducible and separable over \mathbb{F}_p . [Hint: One approach is to prove first that if α is a root then $\alpha + 1$ is also a root. Another approach is to suppose it's reducible and compute derivatives.]
- 7. Let k be a field and let k(x) be the field of rational functions in the variable (or transcendental element) x with coefficients from k. Let $y \in k(x)$ be a fixed, nonconstant rational function, i.e., $y = \frac{P(x)}{Q(x)}$ for some relatively prime polynomials $P(x), Q(x) \in k[x]$, with $Q(x) \neq 0$. Note that

$$k(y) \subseteq k(x)$$
 and moreover $k(x) = k(y)(x)$.

The purpose of this exercise is to compute the (finite) degree of the extension k(x)/k(y); we do so by finding an irreducible polynomial in k(y)[X] for which x is a root (here X is another variable, independent from x).

- (a) Explain why the polynomial f(X) = P(X) yQ(X) is a polynomial in the variable X with coefficients in k(y) that has x as a root.
- (b) Show that the degree of f(X), as a polynomial in X with coefficients in k(y), is the maximum of the degrees of P(x) and Q(x) as polynomials in x (in particular, $f(X) \neq 0$). (Note: This shows x is algebraic over k(y); and since $\infty = [k(x) : k] = [k(x) : k(y)][k(y) : k]$, we must have $[k(y) : k] = \infty$, i.e., y is transcendental over k too.)
- (c) Show that f(X) is irreducible over k(y). [Hint: Use (b) and Gauss' Lemma to show this polynomial is irreducible in k(y)[X] if and only if it is irreducible in k[y][X]. Then note that we may view k[y][X] = k[X][y] why does this perspective help?]
- (d) Deduce from (a) to (c) that

$$\left[k(x): k\left(\frac{P(x)}{Q(x)}\right)\right] = \max (\deg P(x), \deg Q(x)).$$

An important special consequence is that k(x) = k(y) if and only if $y \notin k$ and y is a quotient of polynomials of degree ≤ 1 . Finite extensions of k(x) are called function fields over k—they play a fundamental role in the study of curves over k, such as Riemann surfaces (when $k = \mathbb{C}$).