Name – Akshay Kumar Chaluvadi (200107610) Unity Id - achaluv

IoT Analytics Project 3 – Forecasting

1) Simple moving average model

- 1.1.) I have applied simple moving average model for particular m value = 1 and continued
- 1.2.) Computed the RMSE as mentioned in the document. For m=1 I got the RMSE = 24.1158545897
- 1.3.) If m is varied above 30 the RMSE kept on increasing. Hence, calculated RMSE by varying m from 1-30 which are the following:

```
[24.11585458970253, 23.452436793708323, 23.860545605788513, 24.75165697763714, 25.58301342270184, 26.503951579391753, 27.317820356543436, 27.98033338626437, 28.685323958452205, 29.310114759821435, 29.823187274752097, 30.325866164563475, 30.76932288465112, 31.108497254817777, 31.39082307949699, 31.688296406914855, 31.95602952924296, 32.15937265645, 32.35854997825146, 32.537158148413695, 32.6865499360016, 32.789177851084084, 32.88334965685646, 32.976475331134864, 33.07056774745335, 33.13858788490296, 33.25278791834793, 33.34178821850649, 33.44428354497997]
```

1.4) RMSE vs m graph

RMSE values - Simple average

I got the least RMSE value for m = 2

Simple average model - Predicted values for best M value vs Actual data

2) Exponential smoothing model

- 2.1) I applied the exponential smoothing algorithm for the training data set as mentioned in the document for alpha = 0.2
- 2.2) I also calculated the RMSE value for the above prediction which is 25.7141816753 when alpha = 0.2

By varying alpha value over 0-1 and taking the alpha value with the least RMSE I got alpha = 0.609 for least RMSE

Graph of RMSE vs alpha value

RMSE values - Exponential smoothing

2.3) Since alpha = 0.609 for best RMSE value, I plotted the predicted values against original values as the follows:

Exponential smoothing - Predicted values for best M value vs Actual data

3) *AR*(*q*)

- 3.1.) I have applied the autoregressive algorithm AR(p) to the training data set for a given value p = 5
- 3.2.) Following is the PACF I got:

Series train

The plot is only until 20 since the autocorrelation values are below threshold after 20. The significant values lie in the range(1,20)

The sharp cutoff is occurring at p=3 and the value at p=3 is positive, hence 3 is the best value to use as p.

3.3.)

The parameters of AR(3) are

ar1 = Coefficient at lag 1

ar2 = Coefficient at lag 2

ar3 = Coefficient at lag 3

ar1 ar2 ar3 intercept 0.5850 0.1548 0.0993 359.9316

RMSE value = 22.64485

Plot of predicted values(red) against the original test data(blue)

4) Run all three models on the test data, and chose the best one

After running all the models on the test data following are the RMSE values that I have got for $\,$

Simple moving average : 23.79207 Exponential smoothing : 23.25000 AR(q) : 22.64485

Hence the best model is AR(p) where p = 3