

FEDERAL PUBLIC SERVICE COMMISSION

Roll Number

(10)

(10)

COMPETITIVE EXAMINATION – 2025 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

APPLIED MATHEMATICS

TIME ALLOWED: THREE HOURS PART-I (MCQS) MAXIMUM MARKS = 20**PART-II** MAXIMUM MARKS = 80**PART-I(MCQS): MAXIMUM 30 MINUTES**

NOTE:

- (i) First attempted Part-I (MCQS) on the separate OMR Answer Book which shall be taken back after 30 minutes.
- (ii) Overwriting/cutting of the options/answers will not be given credit.
- (iii) There is no negative marking. All MCQs must be attempted.
- **Q. No. 1 (a)** Prove that $\nabla \cdot (r^n \vec{r}) = (n+3)r^n$, where $\vec{r} = xi + yj + zk$. (10)
 - If $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$, then prove that \vec{a} and \vec{c} (b) are parallel.
 - Find the area of the region that is enclosed between the curves $y = x^2$ and y = x + 6.
- Q. No. 2 (a) Find the tangential and normal components of acceleration of a point describing the ellipse $x^2/a^2 + y^2/b^2 = 1$ with uniform speed V, when the particle is at (0, b). (10)
 - Find the solution of initial value problem by separation of variables: **(b)** $\sqrt{(1-y^2)} dx - \sqrt{(1-x^2)} dy = 0$ (10)
- Find the general solution of the given differential equation by variation of parameters: Q. No. 3 (a)

 $3y'' - 6y' + 6y = e^x (10)$

- Find the power series solution of (x+1)y'' + xy' y = 0. **(b)** (10)
- Q. No. 4 (a) Forces 2BC, CA, AB act along the sides of a triangle ABC. Show that their resultant is 0. Where D bisects BC and E is a point on CE such that CE = 1/3 CA.

(10)

Find the center of mass of the surface generated by the revolution of the arc of the parabola, **(b)**

(10)

Q. No. 5 (a) Obtain the Fourier series over the indicated interval for the given function:

$$f(x) = 3\pi + 2x, -\pi < x < 0; = 2x, 0 < x < \pi$$
(10)

(b) Solve the boundary value problem:

$$\begin{aligned} u_{xx} + u_{\gamma\gamma} &= 0, \ 0 < x < a, \ 0 < y < b \\ u(x,0) &= 0, \ u(a,y) = 0, \ 0 \le y \le b \\ u(0,y) &= 0, \ u(x,b) = f(x), \ 0 \le x \le a \end{aligned} \tag{10}$$

- Q. No. 6 (a) Use Newton's Raphson method to find the solution accurate to within 10^{-4} (10) (corrected up to four decimal places) for the given problem: $x - \cos x = 0, [0, \pi/2]$
 - (b) Solve the system of linear equations using Gauss Seidel method (with three digit rounding arithmetic):

$$3x_1 + 4x_2 - x_3 = 8$$

$$5x_1 + 2x_2 + 2x_3 = 3$$

$$-x_1 + x_2 - 3x_3 = -8$$
(10)

- Q. No. 7 (a) Use Euler's method to approximate the solution of the initial value problem. (10) y' = 1 + y / x, $1 \le x \le 2$, y(1) = 2, with h = 0.25
 - (b) Using Green's theorem, evaluate $\oint F(r) \cdot dr$ counter clock wise around the boundary curve C of the region R, where $F = [1/2 \cdot xy^4, 1/2 \cdot x^2 \cdot y]$, the rectangle with vertices (0, 0), (3, 0), (3, 2), (0, 2).
- Q. No. 8 (a) Evaluate the Integral $\int_1^3 (1/x^2) dx$. Using Trapezoidal Rule for five points (10) (corrected upto two decimal places).
 - (b) Find the D'Alembert solution of the wave equation $u_{xx} = (1/c^2) \cdot u_{tt}$ subject to the Cauchy Initial conditions u(x, 0) = f(x), $u_t(x, 0) = g(x)$.