Szurikáta

Innen: Algowiki

Tartalomjegyzék

1 Feladat

2 A feladat megértése és a legnaivabb megoldás

3 A megoldáshoz vezető út

4 Megoldás

4.1 Komplexitás

Feladat

Dél-Afrika egy síkságán N szurikáta él. A síkságon áll még egy P magas fa, aminek tetején egy ragadozó madár fészkel. Az i. szurikáta ürege Xi cm-re található a fától (jobbra), amiből yi cm magasra nyújtózik ki. Egy szurikáta látja a ragadozó madarat, ha az őket összekötő szakaszba (ennek a szakasznak két végpontja a madár és a szurikáta teteje) nem nyújtózik bele senki más. A szurikáták nagyon kíváncsi állatok, úgyhogy Q alkalomszor jobban kikukucskál az üregéből pár közülük. Az i. alkalomkor Dbi darab. A kikukucskálás után minden szurikáta visszatér eredeti pozíciójába. Adjuk meg minden kikukucskáláskor, hogy hányan látják a ragadozó madarat.

Bemenet:

A standard bemenet első sorában a szurikáták száma (1≤N≤100 000), a fa magassága (1≤P≤10⁶), valamint a kikukucskálások száma van (1≤Q≤100 000). A második sorban N szám szerepel, az üregek pozíciói (1≤Xi≤10⁶, különbözőek, nagyság szerint rendezve). A harmadik sorban N szám szerepel, hogy milyen magasra nyújtóznak ki a szurikáták (1≤Yi≤10⁶). Ezután a Q kukucskálás leírása szerepel. Egy ilyen alkalom leírása a következő: az i. kikukucskáláskor megkapjuk a kukucskáló szurikáták számát (1≤Dbi≤N), a rákövetkező sor pedig Dbi darab számpárt tartalmaz: hogy melyik szurikáta (index szerint növekvőben) hány cm-rel lesz magasabban (max 106-nal).

Fontos: Dbi-k összege legfeljebb 100 000.

A feladat megtalálható a Mesteren: Geometriai algoritmusok témában a 42. feladatként.

A feladat megértése és a legnaivabb megoldás

Összességében, mind a Q darab kikukucskálásra egy-egy értéket szeretnénk válaszul adni, azt, hogy hányan látják a "megnyújtózás" után a P magasan lévő ragadozó madarat.

Hogyan is számítható ki, hogy egy adott szurikáta látja-e a madarat? Kössük össze a fészket és az adott szurikáta egy képzeletbeli szakasszal. Ha van olyan szurikáta ami "bele- vagy túllóg" a szakaszba, akkor az a szurikáta takarja.

Ez azt jelenti, hogy a legnaivabb módszer szerint egy szurikátára minden előtte lévő másik szurikátát összehasonlíthatunk a szakasz adott helyen vett "magasságával" (az összehasonlítás konstans idő) ami minden lekérdezés esetén N^2 idő lenne, tehát a teljes komplexitás:

A megoldáshoz vezető út

Ahhoz hogy a megoldáshoz eljuthassunk, először vizsgáljuk csak a megnyúlás előtti szurikátákat, hátha észreveszünk valamilyen tulajdonságot!

Először is, sorban a legelső szurikáta mindig látja a madarat. A második szurikáta akkor fogja látni, ha az első nem takarja ki.

Mikor láthatja a 3. szurikáta a madarat?

Ha egy i. szurikátát nem takar egyetlen szurikáta sem (azaz látható), akkor az (i+1). szurikáta csak az i. szurikátától fog függeni (ami látható). Ha az nem takarja, akkor egyetlen előtte lévő sem takarhatja. Egy takart szurikáta lehet, hogy takarná az őt követőt, de erre a vizsgálatra sosincs szükség, mert használhatjuk a "takaró" szurikátát ennek eldöntésére.

Ez az állítás nagyban használható a feladat megoldásához.

A megnövekedések kezeléséhez szükséges azonban egy másik jó megfigyelés is. Azt szeretnénk vizsgálni, hogy ha egy szurikáta "megnő", akkor hogyan változnak az általa takart szurikáták. Világos, hogy egy szurikáta a növésével nem befolyásolja az előtte levő szurikátákat. Az is világos, hogy ha egy szurikáta kezdetben sem látta a madarat, és az adott kukucskáláskor nem nyújtózott meg, akkor ugyanúgy nem fogja látni a madarat, mint előtte. Ezek alapján, célszerű lehet a megnövekedések után csak azokkal a szurikátákkal foglalkozni, amik eredetileg látták a madarat.

A következő ábra egy egyszerű, de annál jelentősebb megfigyelést mutat. Az ábrán eredetileg minden szurikáta látható volt, mielőtt 4. szurikáta megnőtt volna. Ez után az 5. és 6. szurikáta takarásba került.

A korábbi állításon gondolkodva rájöhetünk, hogy ha egy megnövekedés (itt a 4. szurikátáé) eltakart egy eredetileg látható szurikátát (6. szurikáta) akkor muszáj eltakarnia a közöttük lévő szurikátákat (5. szurikáta) is. Ha nem így lenne, az azt jelentené, hogy van olyan szurikáta köztük, ami metszi az őket összekötő egyenest, viszont akkor az utolsó (6. a mi esetünkben) szurikáta eredeitleg sem lehetett látható.

A madarat a megnyúlások után néző szurikáták

A takarás feltételeit szemléltető ábra

A megnövekedés után a takarás ábrázolása

Ezzel a megfigyeléssel látható, hogy egy szurikáta megnövekedése egy adott szurikátáig minden addig látható szurikátát takarni fog, és az utána lévőket már nem takarja, (Persze lehet hogy a növekedéstől ugyanúgy nem fog takarni semmit, de az is lehet, hogy annyira megnő, hogy minden mögötte lévő szurikátát takarni fog.

Megoldás

Minden megnövekedésnél nézzük meg, hogy az előtte lévő legutolsó látható szurikáta takarja-e a megnőtt szurikátát. Ha takarja, nincs dolgunk, hiszen akkor nem változik mögötte semmi. Ha láthatóvá vált, akkor keressünk binárisan az adott szurikáta mögötti alapból látható szurikáták között! Azt a szurikátát keressük, amelyiket már nem takarja a megnőtt szurikáta. Ezt folytonosan haladva tudjuk vizsgálni balról jobbra, azaz, hogy hány szurikátát takarnak ki a megnövekedések. Ezzel tudjuk számolni, hogy hány kitakarás lesz, amiből azt is, hogy hányan maradnak láthatóak a növekedések végére.

Komplexitás

Ha egy q. kikukucskáláskor Dbi darab növekedés történik, akkor maximum Dbi darab bináris keresésre lesz szükségünk. Mivel a Dbi-k száma korlátozott, ezért összesen maximum 100 000 bináris keresés fog történni, azaz az algoritmus komplexitása O(N log(N)).

A lap eredeti címe: "https://algowiki.miraheze.org/w/index.php?title=Szurikáta&oldid=1285"