EE 343 Problem Set 6

1. 9.4-1 Two independent random voltage processes $x_1(t)$ and $x_2(t)$ are applied to an RC network, as shown in figure 9.14. The two random noise processes have the following PSD:

$$S_{x_1}=rac{2lpha}{lpha^2+(\it{j}2\pi\it{f})^2} \qquad S_{x_2}=K$$

Find the PSD and the power P_y of the output random process y(t).

• 11.1-4 An alternative to the optimum filter is a suboptimum filter, where we assume a particular filter form and adjust its parameters to maximize ρ . Such filters are inferior to the optimum filter but may be simpler to design.

For a rectangular pulse p(t) of height A and width T_b at the input, determine ρ_{max} if, instead of the matched filter, a one-stage RC filter with $H(\omega)=1/(1+j\omega Rc)$ is used. Assume a white Gaussian noise of PSD $\mathcal{N}/2$. Show that the optimum performance is achieved when $1/RC=1.26/T_b$.

Hint: Set $d
ho^2/dx=0(x=T_b/RC)$.

- 2. Let X1 and X2 be iid Gaussian random variables with mean 0 and variance 1. (a) Let $Y_1 = X_1 - 2X_2 + 1$ and $Y_2 = 2X_1 + X_2 - 1$. Find the E(Y1), E(Y2), VAR(Y1)
 - (a) Let $Y_1=X_1-2X_2+1$ and $Y_2=2X_1+X_2-1.$ Find the E(Y1), E(Y2), VAR(Y1), VAR(Y2),

and the COV(Y1,Y2).

- (b) Find the joint pdf of Y_1 and Y_2 . What type of random vector is this?
- (c) Find a linear transformation of Y_1 and Y_2 to produce Z_1 and Z_2 that are iid

Gaussian random variables with mean 0 and variance 1.

(d) Implement the random variables in a) -c) on MATLAB. Find the sample means, variances, and covariances. Is the transformation unique?

3.