FULL GOURI FRENZY

OWNERS AND SERVICE MANUAL

COPYRIGHT 1992 INNOVATIVE CONCEPTS IN **ENTERTAINMENT** INC.

LICENSED FROM C.L. TECHNOLOGY

716-853-0111 -759-0360

TABLE OF CONTENTS

INTRODUCTION		*	PAGE 3
	Game Feat Game Play	ures	
	Set-up Customizin Message C Self Test Credit Cos Game Test	g Your Game Center t Display	PAGE 5
	Quick Trou Operationa Mechanica Maintenand	ble shooting al Background I Repair	
•	SORIES*. Ticket Disp Card Dispe Dollar Bill V	enser enser	** PAGE 21
LISTINGS			PAGE 23
SCHEMATICS			PAGE 25
MONITOR SERVICE	MANUAL		PAGE 4
DIAGRAMS & ILLU	ISTRATIONS		PAGE 65
WARRANTY INFOR	MATION		PAGE 6

INTRODUCTION

GAME FEATURES

FULL COURT FRENZYTM (F.C.F.) is a revolutionary concept in Coin Operated basketball games. You will see that this game includes many features which make it the obvious choice for your location.

FULL COURT PLAY. F.C.F. incorporates a basket that rotates from side to side and moves back and forth. Depending on which game has been chosen, the basket will move to various DIFFERENT positions as the game progresses. This movement adds many shooting angles to challenge the player. The mcbanism that 0 perates this unique capability is very reliable and simple in design. Cut steel gears make the drive mechanism almost immune to wear, and a built in high tech multi-plate clutch absorbs any stresses that can be generated by even the most deliberate abuse.

A 19^a COLOR MONITOR is used to display all scoring and statistical information, and gives the game a look no other basketball can claim. A colorful attract mode rounds out the look of the monitor, and informative game play directions are just 3 push button away for the game players.

MESSAGE CENTRAL A scrolling message display option is incorporated to allow the location or operator to advertise or display messages on the display monitor. These messages are displayed along the bottom of the screen during the attract mode. They are easily programmed through the push buttons on the control panel.

SUPER TAMPER PROTECTION. F.C.F. has exceptional tamper circuitry integrated to the main P.C. Board. If the game is over, and someone attempts to open the ball gate, an alarm will sound for five seconds. If someone scores a basket when the game is not in play the basket will turn around, to prevent further attempts at ame play. If any further baskets are made 8 ue to intentional vandalism, the game will then sound an alarm. This feature can not be defeated by game players, as the game is

supported by a heavy duty rechargeable battery with a built in recharging circuit As an operator you can of course turn this option off, by disabling the alarm through programming options.

HEAW DUTY CONSTRUCTION is incorporated throughout the game by using only heavy gage metals and plastics. The game can be assembled and disassembled many times without any harm to the game. You will appreciate this feature if you move your games often.

A CUSTOM OVER UNDER CASH DOOR is used in this game. It is the only basketball game available that has a stacking dollar bill validator / over under door combination. This adds a great deal of security to the game while keeping maintenance simple. An optional custom security hasp system is available for the front panel on this oame. "MATE-LOCK" connectors are usedthroughout the game for their rugged reliability as well as making it virtually impossible to connect hamessing the wrong way. Heavy duty optical sensors are used throughout. Digital sound effects are us sed for roop timum dependability. Over twenty sound effects are incorporated into the sound effect circuits. The game electronics have been highly integrated into the Main P.C. Board assembly, making it easy to repair games. . The game has a full feature self test system to make trouble shooting easier.

OPTIONS - A ticket dispenser or card dispenwr and a dollar bill validator, can be ordered with your game.

GAMF PIAY

Full Court FrenzyTM is an electromechanical coin operated amusement game designed to be played by one to four players.

There are three different games that can be played on the game....

PACE 3

INTRODUCTION

QUICK SHOT is the last word when It comes to exciting 'Full Court' basketball action. In this exciting game, the basket and backboard move to different positions every three seconds. This means the player gets the feeling of shooting the all from all over the basketball court. But youallbetter shoot quick, 'cause that basket could move any second. In fact the ability for the basket to move to all these different positions is so unique, it's covered by United States Patents!

RUN - N - SHOOT is as exciting as QUICK SHOT with one big difference! The basket does not move until you make the shot This creates a totally different feel to the game player.

HOT SHOT is a game similar to the traditional basketball games already on the market. However, wherever madetines are even more exciting game. The net remains stationary as the player shoots over and over. Two points are awarded for each basket scored. When 10 seconds remain in the game, the hoop moves back into 'Three Point Range", and awards the player 3 points for all baskets scored.

In addition, all games feature a unique statistical information screen at the end of the game. Our optical sensing system allows us to monitor how many shots have been taken, and display the shooting percentages when the games end.

BEFORE YOU BEGIN

WARNING: WHEN INSTALLING THIS GAME, A THREE PRONG GROUNDED A.C. RECEPTACLE MUST BE USED. FAILURE TO DO THIS COULD RESULT IN SERIOUS INJURY TO YOURSELF OR OTHERS. FAILURE TO USE A GROUNDED RECEPTACLE COULD ALSO CAUSE IMPROPER GAME OPERATION, OR DAMAGE THE ELECTRONICS.

DO NOT DEFEATTHE GROUND PRONG ON THE POWER CORD FOR THE SAME REASONS AS GIVEN ABOVE. USING AN IMPROPERLY GROUNDED OUTLET COULD VOID YOUR WARRANTY.

THIS GAME USES A HIGH VOLTAGE COLOR MONITOR. OBSERVE NECESSARY PRECAUTIONS WHEN SERVICINGTHIS COMPONENT. SAFETY PROCEDURES FOR THIS CAN BE FOUND IN THE SERVICE SECTION OF THIS MANUAL UNDER MONITOR SERVICE & REPAIR.

TOOLS NEEDED: Before you start, you will want the following items:

- •7/16 Combination Wrench •7/16 Deep Well Socket
- Ratchet
- · Side Cutters
- Adjustable Pliers

If you plan on moving your game often, or would like to speed up assembly, a cordless Ratchet is a good idea.

Your game requires a MINIMUM CEILING HEIGHT of 102" (B 1/2 feet). Check clearance before proceeding.

SET-UP

1. To begin assembling your game, remove it from the shipping containers. The game can be removed by removing the 6 bolts and washers near the bottom of the boxes. Your ratchet with 7/16* deep well socket will work well for this. Lift the boxes straiging around the components.

The game is bolted to the bottoms of the containers, and the bolts must be removed at this time. Using A 7/16* deep well socket and Ratchet, remove the bolts holding the framework to the container bottom. There are four bolts located on the flat metal plates on the bottom of the frame. Remove the bolts, and slide the frame off of the container bottom. Open the access door (large door) on the game cabinet You will see two bots with large washers located on the cabinet bottom. Remove these bolts, and carefully silde the cabinet off of the container bottom.

2. The framework of the game should be opened

and set up at this tlme. Refer to the **drawings** at the rear of this manual to see how the framework should look when It Is set up correctly. It is a good idea to install all hardware cosely, until all hardware is Installed. This makes all gning of the bolt holes easier.

- 3. Until the ropes that hold the front and rear frames together.
- 4. Slide the two frames apart until the bolt holes at the bottom front of the rear frame, and the bottom rear of the front frameline up. The front frame can be identified by the hinged panel attached to it. Slide a 2-1/2" bolt with washer through the two frames at (A), and secure with a washer and nylock nut.
- 5. Slide **retaining pins** into locations (B) to prevent the tubes from **sliding** into the larger tubes when the upper frame **ls fully** extended. If these are not used the optical sensors may not work correctly.
- 6. With some help, raise the upper frame sections as far as possible for your ceiling hel ht. Install 1-3/4* bolts with washers at locations (C3. Secure with a washer and nylock nut Be sure that you count the holes on the upper pipes on both sides to be sure that the frame is being installed evenly.
- install 2-1/2"bolts with washers at location (D).
 You must line up the holes of the two frames as well as those of the upper frame. Secure with nylock nuts.
- 8. Install **the** ball return **mounting** brackets. They are long square steel tubes with five **h**oles in each of them.
- 9. Remove the 2 nuts at the bottom of the turntable guide rails at the mlddle of the game. (E) $\,$
- 10. Install the mounting brackets onto the bolts and **re-attach** the washers and nylock nuts.
- 1. Attach the front ends of the brackets to the framework with 1/4-20 x 21/2" bolts, washers, and nylock nuts. (F)
- 12. Swing the hinged ball return panels up until they meet the mounting brackets. Secure the panels to the brackets to the panels with the 21/2" bolts and large fender washers supplied. Attach the hardware from the inside out, so that any excess bolt length will be facing away from the center of the game. Secure with washers and nylock nuts.
- 13. At this **time** you will Install the Basket Assembly. Push the Frame's **netting** up and out of the way to make room for the Assembly.
- 1 4. Install the backboard post into the turntable assembly. Be sure to feed the wiring harness for the PAGE !

basket sensor up through this post line up the hole in the turntable assembly to the hole in the backboard tube. ALLIGN THE BACKBOARD and secure with 2, 1/4 - 20 x 2 1/2 bolts, 4 flat washers, and 2 nylock nuts.

- 15. Install the backboard to the backboard post.
- 16. Adjust the height to maintain approximately 1 ft between the top of the backboard, and the top of the frame. When using the lower height settings, this clearance will have to be lowered to approximately 6" to maintain clearance between the noop net, and the turntable. Try to maintain a height that allows the best an gie for shooting the ball. Secure the backboard with one 1/4 20 x 2 1/2" bolt, 2 flat washers, and a nylock nut
- 17. Connect the connectors from the backboard tube harness to the sensor wiring connectors. Push any excess wiring into the backboard tube and secure with a tie wrap as shown in the illustration.

IMPORTAM: LEAVE ENOUGH SLACK IN THE SENSOR WIRING TO ALLOW THE SENSOR RING TO SWING FREELY ON THE NETTING. FAILURE TO DO THIS COULD RESULT IN PREMATURE FAILURE OF THE SENSORS DUF TO WIRE DAMAGE.

- 18. You will now attach the cabinet to the framework of the game.
- 19. Move the framework of the game into its final position on location.
- 20. Move the cabinet to the front of the frame, and line up the four mounting holes in the frame to the mounting holes in the Cabinet. Start four 1/4-20 X 1 3/4" bolts with washers into the cabinet (G) Leave the bolts loose at this time as you will have to Install the side covers of the game into this area later.
- 21. You will now connect the harness from the turntable to the Main P.C. Board.
- 22. Open the access door on the front left hand side of the cabinet.
- 23. Feed the harness from the turntable through the 2' hole located on tie back of the cabinet.
- 24. Connect the harness to the Main P.C. Board. The mating connector- is located at the lower rear of the P.C. Board. It can only be installed one way.
- 25. You will now install the Ball sensor harness to the connector in the cabinet. The ball sensor harness hangs down from the optical RECEIVER unit located on the upper front of the framework.
- 26. Feed this harness through the 1" opening on the upper rear of the Cabinet. Through the arge

access opening In the back of the cabinet, you will see a mating connector for the receiver harness, Connect the two together.

- 27. You will now attach the frame netting to the framework of the game. A section of nylon rope is used for this process This IS used rather than tie wraps, as the rope can be USEQ over and over again, which is important if you move your game often, it also allows for easier adjustment, should it be needed later.
- 28. Starting at the rear of the game, pull the netting down securely, and lace the netting to the framework. This is accomplished by winding the rope around the framework and catching every third opening in the netting (see diagram).
- 29. Start at the rear of the game, and work forwards. When in the REAR of the game, put the rope through the bottom mesh (opening.
- 30. When you start working on the rear SIDE, put the rope through the second row of openings in the mesh.
- 31. When you get half way forwards, where the pipe gets higher, start lacing through the third row of openings In the mesh.
- NOTE: Lace about three feet at a time then go back and Pull the lacing tight one wrapping of the rope at a time. It is important to pull the netting tight.
- 32. When you have all the netting fastened, tie the rope at the front of the framework.
- 33. Using the supplied black tie wraps, fasten the cable for the ball sensor to the tube that runs down the left hand side of the upper frame. Attach it so that the cable runs down the back of the tube, where it is not noticed when playing.
- 34. You will now install the fabric slde panels. Unfold the side panels and install the supplied plastic tubing into the front Seam of the side panels. This will retain the panels to the front of the frame.
- 35. Push the panels between the cabinet and frame, so that the tubing goes inside the framework. (See illustration at the rear of the manual).
- 36. Tighten the cabinet to the frame, so the panels are pinched between the cabinet and framework.
- 37. Using the black tie wraps, securely fasten the rear edges of the panels to the framework
- 38. Using the black tie wraps, securely fasten the upper edges of the panels to the frame NETTING.
- 39. Push the lower edges of the side panels firmly to the framework to engage Me velcro strips that retain the bottoms of the panels.

40. Install the rebound guard. This is a clear plastic panel with bent flanges. Attach the guard to the upper front frame. (Thats the frame with the optical receiver mounted to it.) Install where the lowes: visible adjusting holes are located. Install with tie bent flanges facing inward. Insert the 1 1/2 bolts and washers from the outside. Secure ith washers and nylock nuts.

The coin mechanisms have Individual inputs for each mech. Enter the "tame Options" mode to adjust this setting. The coin 1 input controls how mamycoins it takes to receive 1 credit. The number for the coin 2 input is the TOTAL of the coin 1 input. Examps: If coin 1 was set for 2 coins per credit, a "1" being set on coin 2 would equa 22corns. If coin 1 was set for 4 coins per credit, a "1" being set on coin 2 would equal 4 coins.

CUSTOMIZING YOUR GAME

This section will discuss areas such as setting up credits, time per game, awards, etc. The tab $\frac{1}{16}$ 0 below will show how to enter into the game programming mode and how to adjust many of the game's operating parameters.

ENTERING SET-UP MODE

You must enter set-up mode to adjust all of the game features. This can be accomplished in the following manner..

- 1. Open the game access door. This is the door located on the left hand side of the game.
- Locate the set-up button on the main P.C. Board. It is located at the bottom left hand portion of he board. An illustration on the "programming" decal on the inside of the access door can help you locate the button.
- 3. Press the set-up button.
- 4. Programming modes can now be accessed by pushing the basketball buttons on the face panel next to the monitor.

CHANGING GAME SETTINGS

The numbers for each option can be changed by using the various buttons on the face panel.

- 1. Push the "option' button until the arrow is by the setting you wish to change.
- 2. Press the "up" or "down" button to change "hat setting.
- 3. Press the "exit" button when finished.

COIN MECHANISMS

FREE PLAY

You can set your game up for free play by adjusting the coins per credit for coin 1 to "0"

CREDITS PER BILL

This option controls how many credits you will receive for each bill inserted.

CURRENT CREDITS

This displays the credits currently in the game. You can manually remove or add credits to the game by changing the value of this number.

TIME PER CREDIT

This adjusts, in seconds, how long each game will last. The game can be adjusted from 20 45 seconds. The recommended time for all games is 40 seconds.

GAME 1 POINTS PER AWARD

This adjusts how many tickets Or cards are iven away for the "Quick Shot" game. The num%er displayed is how many points must be scored for BACH ticket or card awarded. Setting this number to "0" will turn off the dispenser.

GAME 2 POINTS PER AWARD

This adjusts how many tickets or cards are given away for the "Run -n - Shoot" game. The number displayed is how many points must be scored for EACH ticker or CATD awarded. Setting this number 10 "0" will turn off the dispenser.

GAME 3 POINTS PER AWARD

This adjusts how many tickets or cards are given away for the "Hot Shot" game. The number displayed is how many points must be scored for EACH ticket or card awarded. Setting this number to "0" will turn off the dispenser.

JUST FOR PLAYING

This feature is valuable in 2 respects......

- 1. This can be set to any value desired, sothat if a player, especially a young child can not get the minimum points required to earn awards through the above settings, awards can still be dispensed.
- 2. This setting can give a predetermined amount of tickets or cards per game, REGARDLESS of points scored, if the "points per award" and "winner" settings are set to "0".

WINNER AWARDS

This setting is used by itself if you want the WINNER ONLY to get **awards** in a multiple player game. The number of awards dispensed is determined by the number selected. Asetting of "0" will turn off this option. The winner awards are in addition to any other awards **being** dispensed.

ALARM MODE

This feature is a great deterrent to tampering. The alarm will sound under the following conditions:

- 1. If the ball gate is forced open when a game is no: in progress, or wedged open by bottles, cue sticks, etc.
- 2. If the game is over, or turned off, and 4 cr more balls are thrown through the hoop, the game will consider this a tamper condition. This prevents players from continuing to play, even if they cut the game mesh and remove the balls in an attempt to play for free.
- 3. If the game is powered down during a game. (Someone trying to keep the bail gate open. The bail gate will also automatically close at this time.
- 4. If the ball gate is open when the game is powered up. (This indicates a problem with the bail

gate.)
A setting of "1" enables the alarm. A setting of "0" turns the alarm mode off.

ATTRACT INTERVAL

This determines the length of time between attract modes. Changethis number to chance the amount of time in MINUTES between attract modes. Setting this number to "0" turns this option off.

MESSAGE CENTER

The MESSAGE CENTER is a feature that can help you or your location by displaying important information that you want your customers to read, such as daily specials, special events, etc. It can be programmed as follows

- 1. Enter the "Scrolling Message" option.
- 2. Push the "Left" or *Right" button to to go forwards or backwards through the letters, numbers. and characters that are available.
- 3. Push the "Next" button to enter that character into game memory, and advance to the next space.
- 4. Push the "Exit" button when done.

HINTS: You can not go back a single letter if you make a mistake. You must push the "Next" button until you scroll around to the beginning of the message. A faster way to get backtotthe beginning of the message, is to exil, and reenter the option.

You can clear the message **in** one of two ways. **First**, either enter a new message over the old one, or enter all biank spaces, to erase the old message. Second, you can remove battery power to the **Main P.C.** Board and shut game power off. This **will** remove the entire message at once. However, if you do this, any accounting **information** or custom setups you have in game memory will be erased, and must be reentered.

SFLF TEST

A se'f test option is included with the game programming to assist in game manufacturing at the factor. This option is however very useful for diagnosing problems which may arise in the field.

- 1. Enter this option through the options **menu** screen by pressing the set-up button on the Main P.C. Board.
- 2. Once in the test mode! you can do the fdbwing:
 - a) Push the face panel push buttons to check for their proper operation. An audible sound will be heard if working properly.
 - b) The face panel push buttons should light in turn if they are working correctly.
 - c) Move the coin mech, mkm switch wim. An audible sound will be heard if they are working correctly.
 - d) Pass your hand through the ball in play sensor. An audible sound will be heard if working properly.
 - Shoot a ball into the basket. If the sensor is working correctly, an audible sound will be heard.
 - f) Notice that there are 2 sets of numbers that appear on the monitor. If the encoder sensors are working properly, of of the sets of numbers will scroll up or down when the basket moves.

To exit the self test mode, press the "set-up" button on the Main P.C. Board.

CREDIT COST DISPLAY

The credit cost screen is displayed at the end of the instruction screen. This is used to display how much each game costs to play in easy to understand language. After deciding how much each game should cost to play, set the coins per credit, as described previously. After this has been done, enter the "Credit Cost Display" mode through the programming mode. Once in this mode, follow the directions on the screen to program the proper information onto the screen. This info must be entered manually, as it does NOT automatically change when coins per credit are set. This is to

allow extra fiexibility when deciding on how YOU want to MI your customers about game cost

GAME TESTING

It is easy and advisable to test your game after installation. After the game k sat up and all options have been set up correctly, perform the following tests:

- 1. Test for proper acceptance of money.
- Test for proper dispensing of cards or tickets, if you have set that option.
- Test for proper game play, including proper scoring.
- Test for proper retention of game memory, when the game power is shut off, and turned back on.
- 5. Be sure to check your electronic game counter, and write down any info you may wish to record from the permanent column on the left hand side. Press the "Clear" button on the face panel to reset all numbers in the resettable column on the right hand side.

ELECTRONIC GAME COUNTER

Your game is provided with an innovative game counter. By simply pushing the counter button inside the collinech door, or entering the accounting mode through the programming screen, you have access to accounting information that can earn you more money with your game. In addition to counting games played and awards given, you get information on how many single or multiple player games have been played. How many games of "Quick shot",

of "Quick shot",
"Run-n-Shoot", and "Hot Shot" that have been played is also displayed.

To exit the game counter, press the "Exit" button on the face panel.

QUICK TROUBLE SHOOTING

PROBLEM	PROBABLE CAUSE	SOLUTION
NO SPOTLIGHT OR MONITOR	BAD FUSE AT POWER MODULE GAME UNPLUGGED	INSPECT MAIN FUSES CHECK POWER CORD
NO SPOTLIGHT	BAD LIGHT BULB BAD MAIN FUSE	REPLACE BULB INSPECT MAIN FUSES
NO MONITOR	BAD MAIN FUSE BAD FUSE ON MAIN P.C.B BAD FUSE CN MONITOR P.C.B.	INSPECT & REPLACE FUSES AS NECESSARY
BALL GATE WILL NOT OPEN OR CLOSE	BAD MICRC SWITCH BROKEN WIRING TO SWITCHES BAD GEAR MOTOR	CHECK SWITCHES AND WIRES FOR CONTINUITY CHECK GEAR MOTOR FOR PROPER MOVEMENT (perform self test)
PUSH BUTTONS DO NOT LIGHT OR WORK PROPERLY	BAD LIGHT BULBS BAD MICRC SWITCHES BAD WIRING	REPLACE LIGHT BULBS CHECK SWITCHES AND WIRING FOR CONTINUITY
BALLS DO NOT SCORE CORRECTLY	BAD OR IMPROPERLY ADJUSTED EALL SENSOR BAD WIRING	READ SERVICE PROCEDURES FOR REPLACEMENT OR REPAIR OF SENSOR CHECK WIRING FOR CONTINUITY ESPECIALLY THROUGH ROTARY MOTOR SHAFT
BASKET DOES NOT MOVE BACK AND FORTH CORRECTLY	BASKETBALL. DUST ON RAILS BAD GEAR MOTOR BAD WIRING OF TURNIABLE PLATFORM BAD OR DIRTY OPTICAL DECAL BAD OPTICAL SENSOR	CLEAN AND RE LUBRICATE RAILS CHECK OPTICAL SENSOR CHECK CONTINUITY OF WIRING TEST & REPLACE SENSOR
BASKET DOES NOT ROTATE FROM SIDE TO SIDE CORRECTLY	BAD GEAR MOTOR BAD CLUTCH LOOSE CLUTCH SET SCREWS BAD WIRING DIRTY OR BINDING BALL BEARINGS BAD OPTICAL SENSOR BAD OR DIRTY OPTICAL DECAL	CHECK GEAR MOTOR (perform self test) REPLACE CLUTCH TIGHTEN SCREWS USING LOCK-TITE CLEAN & RELUBE BEARING TEST & REPLACE SENSOR CLEAN OR REPLACE DECAL
GAME DOES NOT TAKE OR ADD MONEY CORRECTLY	IMPROPER OPTION SETTINGS BAD MICRO SWITCH BAD WIRING BAD DOLLAR BILL VALIDATOR	CHECK SERVICE MANUAL FOR PROPER GAME SETTINGS REPLACE MICRO SWITCH CHECK WIRING FOR CONTINUITY REPAIR BILL VALIDATOR PAGE 11

PROBLEM	PROBABLE CAUSE	SOLUTION .
GAME DOES NOT DISPENSE TICKETS OR CARDS CORRECTLY	GAME OPTIONS SET IMPROPERLY BAD WIRING DIP SWITCHES SET IMPROPERLY ON DISPENSERS BAD DISFENSER	RESET GAME OPTIONS CHECK WIRING FOR CONTINUITY REFER TO DISPENSER SERVICE MANUALS & SET DISPENSERS TO EMULATE DELTRONICS #1275 DISPENSER
NO OR LOW CAME: SOUND	BAD SPEAKER BAD WIRING BAD MAIN P.C. BOARD	C:HECKSPEAKER W/OHMETER CHECK WIRING FOR CONTINUITY TEST & REPLACE MAIN P.C.B.
PICTURE ON MONITOR DIM OR WASHED OUT	IMPROPER ADJUSTMENTS BAD MONITOR	REFER TO MANUAL FOR SPECIFIC ADJUSTMENT PROCEDURES REPLACE MONITOR
GAME DOES NOT DISPENSE BALLS QUICKLY ENOUGH	NOT ENOUGH BALLS IN GAME	GAME REQUIRES 7 BALLS

OPERATIONAL BACKGROUND

The following will outline the basic operating principals of the FULL COURT FRENZY" basketball game.

The positioning system of the FULL COURT FRENZY™ basketball game is operated by gear motors that control both the linear and rotary action of the game, and an optical tracking system to control the actual positioning of the basket assembly.

The linear (back and forth) motor, Is a 60 R.P.M. motor with heavy duty gearing incorporated into the gear box itself. The motor is a 6-24 voit D.C. motor, operated at 12 voits D.C. This gear motor is attached to the side of the chassis mechanism, and its output gear mates with a rack gear attached to one of the side rails. When the motor is activated, this moves the basket mechanism back and forth.

The rotary (side to side!) gear motor is also a 6-24 volt D.C. motor, opera ted at 12 volts D.C. This motor operates at 15 R.P.M., as this motor is connected straight up through the chassis and into the turntable assembly. Since the gear motor turns slowly, and is connected directly, this could Cause a high amount of stress from the constant changing of direction, as well as someone rotating the turntable by hand.

To counter the stress levels imposed on the rotary gear motor, we have incorporated a heavy duty, compact friction clutch assembly to counter ANY stresses or shocks the gear motor might incur. This clutch is rated to last over 20 million revolutions. Because of its design, the clutch actually gets stronger after this time. As the average game played will turn the clutch less than 1 revolution, it is easy to see why the clutch will last a long time.

The actual positioning of the turntable and chassis is controlled by 2 identical optical encoder P.C. Boards located on and In the chassis. These optical encoders look at decals, one of which is located on me of the guide rails, and the other, on the bottom of the turntable. These decals have a series of bars, or black and reflective silver stripes on them. When the gear motors move the basket mechanism back and forth, the sensors see the bars go by them. As the bars go by, they reflect light to the sensors, creating pulses that the microprocessor on the main P.C. Board counts. The game programming counts the pulses, and converts these into numbers which are used to position the chassis and turn the motors on or off. When the game is first powered up, there is no way for the sensors to know where the chassis or turntable is positioned. For this reason there are

black areas at the limits of travel on both the linear and rotary decals. When the game is first powered up, the gear motors will run until the chassis and turntable move to a position where the sensors see the black areas. This lets the microprocessor get a "homing" position for both linear and rotary positioning. The game then "knows" where it is.

The game Incorporates a through beam infra-red optical detection system for counting balls that go through the hoop. The system uses pulse technology to reject ANY light that does not conform to the requirements set forth by the electronics contained within the sensors. This eliminates annoying problems that can sometimes affect optical sensing systems.

The game also uses a 'Ball in Play' transmitter and receiver located at the front of the frame to sense balls as they are thrown into the game. This is used to help determine the percentages that are displayed on the statistics screen at the end or the game. This optical sensor also uses pulse technology to ensure reliable operation.

The ball gate uses micro switches to determine positioning of the gate, which are activated by the cam on the ball gate shaft

All of the gear motors use a combination of hardware and software control to protect against OVER current damage. When an over current condition is detected, the motors will shut off automatically. The game microprocessor will than decide whether or not the motor should be turned on. It will also determine at that Ume which way the motor should run.

MECHANICAL REPAIR

IMPORTANT: USE ONLY I.C.E. REPLACEMENT PARTS WHEN SERVICING YOUR GAME. USING NON-I.C.E. APPROVED PARTS COULD VOUR WARRANTY, AND COULD CAUSE SERIOUS DAMAGE TO THE GAME,OR INJURY TO OTHERS.

IF YOU HAVE ANY QUESTIOND REGARDING REPAIR AFTER READING THIS SECTION, CALL OUR SERVICE DEPARTMENT BEFORE PROCEEDING AT 1-800-342-3433

WARNING: OBSERVE ALL SAFETY PRECAUTIONS WHEN WORKING ON THE COLOR MONITOR. DISCHARGE CURRENT FROM THE MONITOR IN ACCORDANCE WITH PROCEDURES WHICH CAN BE FOUND IN THE MONITOR SERVICE MANUAL.

WHEN WORKING ON THE MOVING BASKET DEVICE OR BALL GATE MECHANISM, IT IS EXTREMELY IMPORTANT TO REMOVE BATTERY POWER FROM THE GAME, AS WELL AS A.C. POWER. THE BATTERY POWER CAN BE REMOVED EITHER BY DISCONNECTING 1 LEAD FROM THE BATTERY, OR REMOVING THE 2 PIN MATE-N-LOCK CONNECTOR FROM THE MAIN P.C. BOARD.

BALL GATE SERVICE.

- · Re- both battery and A.C. power
- Cut all the tie wraps that hold the fabric side panels to the game.
- Remove the 4 bolts that hold the frame to the cabinet.
- Move the cabinet away from the frame.
- Remove the two bolts that hold the front of the bell gate bearing in place. (HINT: a long extension on a ratchet can be helpful for this operation.)
- Pull the ball gate from the end by the bearing towards you (the rear of the game).
- The gear motor can now be pulled away from the retaining bracket
- Unplug the mate-n-lock connector from the game harness, and removethe ball gate assembly.
- Remove the 2 allen head set screws, to remove the ball gate from the gear motor.
- Remove the 41 screws and star washers to **PETROVE** the micro switch mounting bracket from the gear motor.
- NOTE: When removing wires from the micro switches or motor, it is VERY important to make sure all wires are returned to their proper terminals. Failure to do this will result in improper operation of the balli gate, and could damage the game. The wires are color coded, so it will be easy to document where each wire goes.
- IMPORTANT: Mark the position of the micro switch mounting bracket so the switch actuators will line up correctly with the cam on the ball gate when the unit is re-assembled.

- Use thread locking corn pound on the allen head set screws when re-assembling the ball gate to the gear motor.
- . Assemble in reverse order of disassembly. Tighten all hardware securely.
- Be sure to test the ball gate unit, BEFORE Installing the gide panels.
- * Fasten the side panels to the front of the frame, using the Velcro strips provided.
- Bolt the **cabinet and** frame together and tighten securely.
- The wrap the side panels into position, and cut off any excess.
- · RE test for proper operation.
- Temporarily shut off A.C. Power, reconnect Battery, and turn A.C. Power
 back on.

SERVICING FOR:

ROTARY & LINEAR GEAR MOTORS
FRICTION CLUTCH
ROTARY - LINEAR SENSORS (ENCODERS)

- · Remove both battery and A.C. power.
- If the linear (back and forth) motor requires service, the left side panel (as viewed from the front) must be partially removed.
 Cut the tie-wraps off on the rear and top

Cut the tie-wraps off on the rear and top of the side panel. The front edge should be left attached to the frame. It is not necessary to separate the cabinet from the frame.

 The turntable which supports the basket must be removed to gain access to the gear motors.

IMPORTAM: USE THE EXACT SAME SPACER ARRANGEMENT WHEN REPLACING THE ENCODER SENSORS. FAILURE TO MAINTAIN PROPER SPACING COULD RESULT IN THE INABILITY OF THE SENSORS TO READ THE ENCODER DECALS.

- Remove 'the backboard & basket by removing the bolt that holds the post to the turntable.
- b) Disconnect the harness from the optical sensor.

ELECTRONIC AND ELECTRICAL REPAIR

The following section will describe repair procedures and trouble shooting hints for the game electronics.

Please read the section "Operational Background" in the beginning of Maintenance and Trouble Shooting to get a good understanding of the games basic operating parameters.

WARNING: EXERCISE CAUTION WHENEVER WORKING WITH ELECTRONICS, THEY CAN BE VERY SUSCEPTIBLE TO DAMAGE FROM SEORT CIRCUITING, OR PHYSICAL ABUSE. ALWAYS UNPLUG THE GAME WHEN WORKING ON HIGH VOLTAGE AREAS OF THE GAME, SUCH AS THE TRANSFORMER OR MONITOR.

USE EXTREME CAUTION WHEN USING VOLT METERS TO DO **CIRCUIT** CHECKS IF THE GAME POWER HAS BEEN LEFT ON.

ALWAYS REMOVE THE BATTERY BACK-UP POWER WHEN WORKING ON THE GAME. THIS IS NECESSARY, AS SOME CIRCUITS ARE CONSTANTLY UNDER POWER FROM THE BATTERY.

IF YOU MUST HAVE POWER ON WHEN TESTING THE MONITOR, SHUT OFF POWER, UNFASTEN THE MONITOR, AND SET IT UP WHERE IT WILL BE TESTED, EITHER ON THE CABINET OR A TEST BENCH, THEN TURN POWER BACK ON. THIS WILL ELIMINATE THE POSSIBILITY OF ACCIDENTAL DAMAGE OR A SHOCK HAZARD WHEN REMOVING THE MONITOR.

REFER TO THE MONITOR SERVICE MANUAL FOR SPECIFIC INFORMATION ON MONITOR SET-UP, ADJUSTMENT, OR REPAIR.

WHEN USING A VOLT METER, BE SURE IT IS SET TO THE CORRECT VOLTAGE OR RESISTANCE RANGE, <u>BEFORE</u> USING. THIS CAN PREVENT POSSIBLE DAMAGE TO THE P.C. BOARD OR MISDIAGNOSIS.

ALWAYS REMOVE POWER TO THE GAME WHEN PLUGGING OR UNPLUGGING P.C. BOARDS.

IT IS NECESSARY TO USE I.C.E. REPLACEMENT PARTS TO CONTINUE WARRANTY COVERAGE. USE OF NON-I.C.E.. APPROVED PARTS WILL NOT ONLY VOID YOUR WARRANTY, BUT COULD CAUSE SERIOUS HARM TO THE GAME, OR CAUSE SERIOUS BODILY INJURY.

IF YOU HAVE ANY QUESTIONS REGARDING REPAIR AFTER READING THIS SECTION, CALL OUR SERVICE DEPARTMENT AT 1-800-342-3433 BEFORE PROCEEDING.

FUSES

Fuses are the first thing that should be checked when the game either appears not to work, or to work incorrectly.

There are 4 fuses in the game. 2 of them are located in the power entry module, where the power cord enters the game.

To check or service the fuses in the power module, first remove the power cord. Then, using a small flat blade screwdriver, pry the fuse block from the power module. Pull the fuse holder from the fuse block, and test the fuses. Be sure to replace the fuses with the same value.

There are 2 fuses located on the main P.C. Board. These protect the low voltage sides of the game, the 5 volt and 12 volt sides. Be sure game power Is off when checking or replacing these fuses.

Replace the Main P.C. Board fuses with the original value.

TRANSFORMER

YOU MUST REMOVE ALL A.C. POWER FROM THE GAME WHEN SERVICING THIS COMPONENT. IT IS A GOOD IDEA TO ACTUALLY REMOVE THE POWER CORD FROM THE WALL OR FLOOR OUTLET WHEN CHANGING THE TRANSFORMER.

CAREFULLY document where each color wire goes, BEFORE removing any wires.

Remove the 4 screws that hold the transformer to the cabinet bottom.

Replace and reconnect the transformer.

TAKE ANY FAST-ONS THAT WERE ON THE OLD TRANSFORMER TO COVER THE UNUSED A.C. TERMINALS OFF, AND TRANSFER THEM TO THE NEW TRANSFORMER. THIS IS NECESSARY, AS THE LEADS ON THE TRANSFORMER. HAVE POWER ON THEM.

CHANCING A.C., VOLTAGES

When you receive your game from the factory, it should already be set to the proper A.C. voltage. If for some reason however, it needs to be set to a different A.C. voltage, follow these directions.

Unplug the game from the A.C. outlet.

The A.C. input taps for the transformer are located on the front left hand side of the transformer, as viewed from the opening of the access door.

The A.C. taps can be further Identified by the fact that there are 5 taps in a row. (The only p ace on the transformer where there are 5 taps in a row.)

The bottom tap is the 0 volt tap. One side of the A.C. **line** should always be left attached to this terminal

The 5 taps FROM THE BOTTOM OF THE TRANSFORMER UP are as follows:

240 V.A.C. 210 V.A.C. 115 V.A.C. 90 V.A.C. 0 V.A.C.

These numbers are also indicated on the transformer itself

The A.C. wire that is on one of the above taps, is the only wireyou should move. Please use a blank fast-on, on any open terminals, to protect against shock hazards.

MAIN P.C. BOARD

IMPORTANT: BEFORE REMOVING THE MAIN P.C. BOARD OR CHANCING THE MEMORY BATTERY, GO INTO THE CAME OPTIONS SCREENS, AND RECORD ALL CUSTOM GAME **SETTINGS**, SO THEY CAN BE RE-ENTERED AFTER SERVICING HAS BEEN COMPLETED.

Remove all A.C. power before removing the Main P.C. Board.

Disconnect all Mate-lock connectors from the P.C.. Board.

Remove the four retaining fasteners, and remove the **P.C.** Board.

Install in the reverse order.

If installing a new memory battery or new P.C. Board, after **installation**, reset all custom game **programming into** system memory.

B.I.P. SENSORS

The B.I.P. (ball in play) sensors, are actually a pair of 2 different types of sensor. One is an Infra red transmitter, and the other a receiver.

The transmitter has a power L.E.D. mounted on the end of the P.C. Board, opposite the end that the harness is attached to. If that L.E.D. Is IIt, there Is a very good chance that the circuit is working properly. If you need to be sure, you can purchase an i.R. detector card from Radio Shack Part No. 276-099. Follow the Instructions on the back of the card. You will only see the reflection dimly, however it will prove that the transmitter is working properly.

The receiver has a test L.E.D. located on one end of the P.C. Board. Once you have determined that the transmitter works properly, you can test the receiver. If you wave your hand between the sensors, the LED. should go out for **as** long as the beam is broken.

If either of the sensors do not appear to be working properly, do the following

Remove the mate-lock connectors that connect the sensor harnesses to the game.

Unbolt the sensors from **either** the back of the **cabinet**, or the top of the **framework**.

The sensors are both mounted in 1 * X 2^{*} black tubular steel enclosures, and can be removed from the enclosures by removing the five screws that hold them in place.

Replace the **defective** sensor with a new **part** and reassemble the unit

NOTE: WHEN INSTALLING THE RECEIVER P.C. BOARD, MAKE SURE IT IS TIE-WRAPPED TO THE PIPE SECURELY. TIE-WRAP THE WIRING TO THE REAR SIDE OF THE PIPE WHERE IT IS NOT VISIBLE, OR PRONE TO BE HIT BY THE BALL

BALL SENSORS

The ball sensors are a through beam infrared pair. To test, walk into the game, and pass a ball through the hoop when a game of "HOT SHOT" is being played. (Choose HOT SHOT because the basket will only move once during the course of the game.)

When you pass the ball through the hoop, you should hear the swish sound from the game. If you hear the sound, the sensors are good.

If you do not hear the sound, check the transmitter sensor with an i.R. Detector card (Radio Shack Part no. 276499). The transmitter is the Unit with the little.d. In it. If you do not see any reflected I.R. light, do a voltage check to be sure the sensors are receiving power. If the sensors are not receiving power, fly the power problem and proceed.

If you see reflected i.R. light perform a continuity check to make sure the signal from the i.R. receiver is getting back to the main P.C. Board.

If you have no reflected light when It has been established that there is power, you have a defective TRANSMITTER.

If you have r-effected light, and have established that the wiring between the receiver and Main P.C. Board Is good, there Is a high probability that the receiver is bad.

There is one final check you can make to be sure the problem is not in the Main P.C. Board. Use a Wire jumper or paper clip and jump between pins 12 &-14 on the P5 connector of the Main P.C. Board. If you do this when a game is in progress, a "swish" sound should be heard each time you MOMENTARILY jump those terminals. If the sound is heard, and the wiring to the sensor is goad, and the transmitter works correctly, then the receiver is definitely bad.

If you need to replace either of the sensors, refer to the "Hoop Sensor Replacement" section in the mechanical repair area for directions on how to replace the sensors.

ROTARY / LINEAR SENSORS

The Rotary / Linear sensors can be checked easily, Put the game Into the options mode (as described earlier In this manual), and enter the 'Bum In Self Test" mode. You will notice 2 sets of numbers on the monitor screen. These numbers should change when the basket charges position. You will notice a correlation between the number-s and which axis is moving (rotary or linear). If either set of numbers do not move when the basket moves this will prove there is a problem with one of the sensors. This should however be obvious as to which sensor is bad however, because that narticular axis should not be working correctly. Example: If the numbers are not moving for the linear drive, the linear drive itself should also be a) not moving correctly or b) not moving at all. If not moving at all, see if the numbers change if you move the chassis or turntable- by hand (you could have a bad gear

MONITOR

Refer to the monitor service manual at the rear of this manual for Information on service and repair.

OPTIONALACCESSORIES

OVFRVIFW

IF YOU DO NOT FIND ANSWERS TO YOUR QUESTIONS IN THIS SECTION, REFER TO THE ACCOMPANYING MANUAL FOR YOUR PARTICULAR PRODUCT, FOR CALL OUR SERVICE DEPARTMENT AT 1-800-342-3433

CARD DISPENSER

Refer to the supplied manual for all Information, other than software settings.

The card dispenser software is set up at the factory to dispense 1 card for each game p layed. You can however change this by entering the "GAME OPTIONS" screen and adjusting the award parameters. If you set the winner option, only the winner of MULTIPLE PLAYER games will get an award, if the other award options are set to "0" You can in addition set the threshold option which means a playe would had to get XX points before a card would be given.

To dispense 1 card per player per game, set the "JUST FOR PLAYING" option to '1", and all other award options to '0".

The *GAME POINTS PER AWARD' option should be kept at "0" at all times, unless you want to dispense a card for every XX points scored.

Your card dispenser should be cleaned every time you put more cards In It. This is because the cards lawe debris on the rollers, which will make them slippery, and not dispense properly.

Blow out as much of the paper dust as possible. Use a rubber rejuvenator on a clean cloth, and wipe all the rubber roller contact surfaces.

If the cards have a bend to them, the bend should face the rollers, so there is maximum contact being made.

If the unit does not work at all, be sure the game software options are set correctly, and that the dispenser is receiving 12 volts D.C.

TICKET' DISPENSER

Refer to the supplied service manual for all information, other than software settings.

The ticket dispenser comes pre-set from the factory to dispense 1 ticket for every 5 points scored. In addition to this, if the game player did not score enough points to get 1 ticket, the game is preset to give the player 1 ticket 'just for playing'.

These settings can be adjusted try changing the ticket options in the "GAME OFFIONS" mode. If you change the memory battery or main P.C. Board, you may have to reset the values for these options.

You can dispense a different amount of tickets for each gameby adjusting the "GAME XX POINTS PER AWARD" setting. For Instance, since It is easier to score playing 'HOT SHOT' than it Is playing "QUICK SHOT", you may wish to give out less tickets per point on 'HOT SHOT" thanon 'QUICK SHOT". Example 1 ticket per 5 points on 'QUICK SHOT', and 1 ticket per 8 points on 'HOT SHOT'

You can also set the game up so that the winner of MULTIPLE player games ONLY, wins tickets, or that a certain amount of poink must be scored BEFORE ANY tickets will be dispensed. This is the threshold option.

BILL VALIDATOR

Refer to the supplied manual for all information other than software settings.

The validator normally requires no adjustments other than checking to see that the proper voltage is present This validator runs on 12 volt D.C. power, with a minimum of 11.5 vdk D.C. The validator will not work correctly with voltages below that specified.

The validator may work strangely, or not at all if it is grounded Improperly.

The unit should be cleaned periodically to ensure proper operation. Blow out as much dirt as possible, then use a cotton swab (q-tip) to get into the front opening to remove any remaining dirt or debris.

Clean the stacker belts with a rubber rejuvenator. Clean any other dirt from the unit with isopropyl alcohol.

The game comes from the factory pre-set at 2 credits per bill. You can change this by entering the 'GAME OPTIONS' screen. (see GAME OPTIONS settings section for more information.)

PARTS LISTINGS

MECHANICAL PARTS LISTINGS

BB1000	DRIVE RAIL WITH RACK GEAR
881001	CHASSIS SLIDE RAIL
BB1002	TURNTABLE (WITH POLE)
881003	BACKBOARD MOUNTING BRACKET
881004	TURNTABLE CHASSIS
BB1005	COIN DOOR PANEL FRAME
BB1007	ACCESSORY DOOR
BE1008	CASH BOX DOOR
BB1013	CABINET TOP PANEL
881016	MONITOR MOUNTING BRACKET
BB1017	MONITOR ADAPTER BRACKET
BE1018	SENSOR HOUSING
BB1020	BALL RETURN MOUNTING EKT.
BB1022 BE1023	BALL GATE
	BALL GATE MOTOR MTC. BKT.
BB1024	MICRO SWITCH MOUNTING BKT.
BB1025	EXTENSION POLE
EB1034	CLUTCH (XIC-1803)
BB1036	TURNTABLE STOP BRACKET
881037	RACK GEAR GUARD
BB1039	HOOP (2043-0) 3/8 X 13"
BB1041	CABLE SUPPORT CHANNEL
BB3001	7" BASKETBALL
BB3002B	
BE3003	TURNTABLE COVER
BB3004	NET SENSOR RING
BB3005B	MONITOR FACE PLATE
	RAIL BEARING
883007	RAIL BEARING PLATES
BB3008	HOOP NET 13.
BB3009	FRAME NETTING
BB3012	VINYL SIDE COVER, LEFT
BB3012A	VINYL SIDE COVER, RIGHT
BB3013 BB3014	REBOUND GUARD CABINET SIDE PANEL
BB3014	BALL GATE BEARING MTG. PLATE
BE301 a	BALL GATE BEARING MIG. PLATE
EB3019	MOTOR NOISE COVER
BE3020	MAGNETIC STRIP
BE4001	VELCRO (HOOK)
BB5001	SYSTEM4 CASH BOX
5014	DOOR LOCKS
3014	DOOK LOOKS

352 T! E WRAP, 8 * BLACK SK403 BUMPER STOP BB6001 BALL TRANSFERS (M-2200) PC60601 FACE PANEL BOLT 1/4-20 X 5/8 BE9004 BOELUBE PUSH STICK RAIL LUBRICANT

DECALS

887001 BE7002 BB7004 BB7005 BB7006 8B7007	PROGRAMMING DECAL MONITOR BEZEL POWER DISCONNECT WARNING F.C.FRENZY CABINET SIDE DECAL LINEAR TRACK ENCODER DECAL ROTARY ENCODER DECAL
BB7006	LINEAR TRACK ENCODER DECAL
BB7010 BB9001	MONITOR WARNING LABEL OPERATORS SERVICE MANUAL

ELECTRICAL PARTS

BE2002	TRANSFORMER
BB2004	BASKETBALL PUSH BUTTON
BB2005	MICRO SWITCH (CHERRY D-44)
BB2006	POWER ENTRY MODULE
BE2007	SPEAKER
BB2008	BALL GATE MOTOR
BB2009	ROTARY GEAR MOTOR
BE2010	LINEAR GEAR MOTOR
BB2016	BATTERY, 12 VOLT (PS1242)
BB2018X	CHASSIS HARNESS
BB2019X	MAIN CABINET HARNESS
BB2020X	MOTOR SHAFT HARNESS
BB2021X	BACKBOARD HARNESS
BB2022	FLOOD LAMP SOCKET
BB2023	FLOOD LAMP BULB 150WATT
BB2025X	TRANSFORMER HARNESS
BB2026X	PANEL SELECT HARNESS
BB2027X	BALL IN PLAY RECEIVER HARNESS
BB2028X	BALL IN PLAY TRANSMITTER HARN.
BB2029X	GATE ASSEMBLY HARNESS

HARDWARE

ELECTRONIC PARTS

BE2001	MAIN P.C. BOARD
BB2003	19" COLOR MONITOR
BE201 1X	NET SENSOR RECEIVER
BE201 1 x	NET SENSOR, TRANSMITTER
BB2012	BALL IN PLAY TRANSMITTER P.C.B.
BB2013	BALL IN PLAY RECEIVER P.C.B.
BB2014	POSITION ENCODER P.C.B.

THE PRISMATIC *

DV WELLS-GARDNER

COLOR SPECIFICATIONS

CRT

- . From 9" to 25" diagonal measure
- . P22 phosphor
- . Polished faceplate standard: variety of optional faceplates and transmittances available.
- Stripe trio spacings (standard): 0.62 mm (9") 0.66 mm (13"), 0.82 mm (19"), 0.82 mm (25").
- · Optional finer pitches available.

INPUT SIGNALS

. Video: RGE analog, 1v to 5v peak-to-pea, (adjustable with contrast control), 4.7k ohm input impedance, 40 usec to 50 usec active video.

Optional inputs available:

- Negative video
- . RGB analog 0-0.75v, 75 ohm input impedance
- Composite video (NTSC)
- . Both composite video and RGB analog Both signal sources can be connected to the monitor at the same time Monitor display can be switched from one to the other, at anytime at pixel or vertical frame rate.
- · Sync: TTL positive or negative going, separate or composite Input Impedance: 20K ohms for posit ve going sync: 12K ohms for negative going sync.

HORIZONTAL SCAN

- Width: Adjustable with just one coil to accommodate active video from 40 usec to 50 usec.
- Frequency: 15.1 kHz to 16.8 kHz standard: higher scan frequencies avaliable.
- Linearity: † 5%

PICTURE SIZE REGULATION

. 2%

VERTICAL SCAN

• Frequency: 47 Hz to 63 Hz

Linearity: ± 5%

GEOMETRIC DISTORTION

± 2% (max).

VIDEO CHARACTERISTICS

- Bandwidth (-3 db): 12 MHz typical
- · Rise Time: Less than 50 nanoseconds
- Overshoot (max): 5%

MECHANICAL

- The 19" monitor is also available in universal mount brackets. The monitor can be mounted in the user's cabinet horizontally or vertically. Contact your sales representative for details.
- The standard Prismatic-25" 25" monitor is available as a ki: without a frame. Custom frames can be furnished.
- The standard Prismatic-9¹⁸ 9" monitor is available as a kit without a frame: Also available in chassis form adaptable to individual customer requirements.
- Contact your sales representative for details.

USER ADJUSTABLE CONTROLS AND ADJUSTMENTS

. Brightness, Contrast, Horizontal Hold, Horizontal Size, Horizontal Raster Position, Horizontal Video Position, Vertical Hold, Vertical Size, Vertical Raster Position, Focus Custom Control Location available.

POWER INPUT

 120 VAC +10% -15%, 50-60 Hz, 85W (max). Isolation transformer required; furnished with monitor as an option.

ENVIRONMENTAL CONDITIONS

• Operating temperature 0° to 55°C. Complies with U.L., C S A., and D.H.H.S. radiation performance standard (composite video).

RESOLUTIONS

Standard CRT

9" 280 Pixels x 240 Lines 410 Pixels x 240 Lines

13" 400 Pixels X 240 Lines 19" 400 Pixels x 240 Lines

25" 560 Pixels x 240 Lines

· Fine Pitch CRT

640 Pixels x 240 Lines 640 Pixels x 240 Lines

N. A.

Copyright © 1987. Wells Gardner Electronics Corporation. All fights reserved.

**** SPECIFICATIONS ARE SUBJECT TO CHANGE IN ORDER TO ASSURE: YOU THE LATEST IN DISPLAY TECHNOLOGY.""

THIS MANUAL APPLIES TO THOSE MONITORS WITH SERIAL NUMBERS OF 576001 AND ABOVE. WARNINGS

1. Power Up Warning-

An isolation transformer must be used between the AC supply and the AC plug of the monitor before servicing, testing, or operating the monitor since the chassis and the heat sink are directly connected to one side of the AC line which could present a shock hazard.

Before servicing is performed, read all the precautions labelled on the CRT and chassis.

2. X-RAY RADIATION WARNING NOTICE

WARNING: PARTS WHICH INFLUENCE X-RAY RADIATION IN HORIZONTAL DEFLECTION, HIGH VOLTAGE CIRCUITS AND PICTURE TUBE ETC. ARE INDICATED BY (★) IN THE PARTS LIST FOR REPLACEMENT PURPOSES. USE ONLY THE TYPE SHOWN IN THE PARTS LIST.

3. High Voltage-

This monitor contains HIGH VOLTAGES derived from power supplies capable of delivering LETHAL quantities of energy Do not attempt to service until all precautions necessary for working on HIGH VOLTAGE equipment have been observed.

4. CRT Handling-

Care must be taken not to bump or scratch the picture tube as this may cause the picture tube to implode resulting in personal injury. Shatter proof goggles must be worn when handling the CRT. High voltage must be completely discharged before handling. Do not handle the CRT by the neck.

5. PRODUCT SAFETY NOTICE

W A R N IN G : FOR CONTINUED SAFE" REPLACE SAFEN CRITICAL COMPONENTS ONLY WITH MANUFACTURER RECOM-MENDED PARTS THESE PARTS ARE IDENTIFIED BY SHADING AND BY (A) ON THE SCHEMAIC DIAGRAM

AVERTISSEMENT: POUR MAINTENIALE DEGREDE SECURITE DE L'APPAREIL NE REMPLACER LES COMPOSANTS DONT LE FONCTIONNEMENT EST CRITIQUE POUR LA SECURITE QUE PAR DES PIECES RECOMMANDEES PAR LE FABRICANT

For replacement purposes, use the Same type or specified type or wire and cable, assuring the positioning of the wires is followed (especially for H V and power supply circuits) Use of alternative wiring or positioning could result in damage to the monitor or in a shock or fire hazard

AC CONNECTORS AND TERMINALS

ALL MONITORS EXCEPT THOSE WITH MODEL NUMBERS ENDING WITH 2 OR 6: WELLS-GARDNER END Molex Part No W.G Part No. Plug 6A0396-001 19-09-2029 Pins Male 30x0759-003 02-09-2101 USERS' END Receptacle 19-09-1029 Fins Female 02-09-1101* or 02-09-1116* MODEL NUMBERS ENDING W TH 2: WELLS-GARDNER W.G Part No. Molex Part No. 6A0376-002 03-09-2022 Plug 30X0759-001 02-09-2101 Pins. Male USERS' END Receptacle 03-09-1022 Pins. Female 02-09-1101* Of 02-09-I 116' MODELS NUMBERS ENDING WITH 6: WELLS-GARDNER END W.G. Part No. AMP Part No. 6A0402-001 350778-I Receptacle 30X0761-001 350538-I Pins, Male USERS' END 350777-I Pins. Female 350537-L ** 350851-I **

^{*-1101} is used for 20-14 AWG wire and insulation diameter range 0065 -0 160" 11 16 is used for 22-18 AWG wire and insulation diameter range 3 060" -0 120

^{** 350537-}I IS used for 20-14 AWC wire and insulation diameter range 0 130"-0 200 3508511 is used for 24-18 AWC wire and insulation diameter range 0 040"-0 1 0 0

1 BRIGHTNESS CONTROL VR6

This control has been preset at the factory. However, when the video signal is applied to the monitor, a slight adjustment may be desired. Adjust this control such that the illumination is just barely extinguished from portions of the display which should be black.

2. CONTRAST CONTROL VR7

Adjust the contrast control for the desired picture intensity.

3. FOCUS CONTROL

Adjust the focus central, located on the high voitage unit (T1), for maximum over-all definition and fine picture detail

4. HORIZONTAL HOLD CONTROL VR2

With the monitor being driven with the display signal, connectione jumper between TP1 and TP2 and another jumper between TP3 and TP4. Adjust the horizontal hold control until the picture stops sliding horizontally. Remove the jumpers. Do not use the horizontal hold control for horizontal centering (See #5)

NOTE: If the sync signal is composite, use the horizontal sync input of the same polarity as the composite sync signal.

5. HORIZONTAL VIDEO SHIFT CONTROL VR1

Use this control to center the picture nonzontally,

6. HORIZONTAL RASTER POSITION ADJUSTMENT

If the picture is officenter horizontally (long dimension of picture tube), some compensation can be made by moving the horizontal raster position adjustment jumper either to positions "R" or "L"

7. HORIZONTAL SIZE COIL L1

The horizontal size coil is a hexagonal tuning tool adjust ment. This control must be adjusted slowly, if necessary, until the picture or test pattern attains the correct horizontal proportions.

8. VERTICAL HOLD CONTROL VR5

Adjust this control until the picture stops rolling and it locks in vertically

9, 50-60 Hz CONTROL VR9

This control is used to limit the range of vertical size. This control is preset at the factory and should not require readjustment unless the vertical size control or vertical hold control are readjusted from their original factory settings in order to set this control, first adjust the vertical size control so that the protere is slightly larger than desired. Turn VR9 so that any vertical follower which may be present will disappear if the monitor is to be operated alternately at more than one vertical frequency, then perform this adjustment at the higher frequency.

10. VERTICAL SIZE CONTROL

This control must be adjusted slowly, if necessary, uptil the picture or test pattern attains the correct vertical proportions.

11. VERTICAL RASTER POSITION CONTROL VR3

If the video is officenter vertically, (short dimension of poture tube) some compensation can be made by turning the vertical raster position control.

12. CUT OFF AND DRIVE CONTROLS ON NECK BOARD VR201, VR202, VR203, VR204, VR205, VR206.

These controls have been preset at the proper gray scale. Before adjusting any of these controls, refer to Troub'e-shooting Note 4 and to the White Balance procedure.

FIG. 1A

FIG. 1B

INSTALLATION AND SERVICE INSTRUCTIONS

NOTE:

All of the following procedures have been performed at the factory and should require no further attention. If the monitor is serviced for any reason, it should be observed afterward to determine whether any of these procedures need to be performed again.

OUTLINE OF CONVERGENCE AND SET-UP PROCEDURE

DEGAUSSING: Demagnetize the shadow mask and all surrounding metal parts with an external degaussing coil

PURITY: Adjust the purity magnets and the voke position.

STATIC CONVERGENCE: Converge Red and Blue on Green in the center of the screen

DYNAMIC CONVERGENCE: Converge Red and Blue at the edges of the screen

WHITE BALANCE: Set Gray and White brightness tracking

NOTE: Purity and convergence adjustment interact

DEGAUSSING

The monitor is equipped with an automatic degaussing circuit. However, if the CRT shadow mask has become excessively magnetized it may be necessary to degauss it with a manual coll. Do not switch the coll OFF while the raster shows any effect from the coil.

COLOR PURITY ADJUSTMENT

- 1 For best results, it is recommended that the purity adjustment be made in the final monitor location. If the monitor well be moved, perform this adjustment with it facing west or east. The monitor must have been operating 15 minutes prior to this procedure.
- 2 On picture tubes with a 22.5 mm neck diameter set the ring assembly on the CRT neck with the center line of the purity ring-pair over the gap between grids No. 5 and 6. See Fig. 2A [For picture tubes with a 29 mm neck, use the gap between grids No. 3 and 4 Fig. 2B].
- 3 Make cortain that the magnetic ring-pairs are in their correct starting positions before beginning this procedure. The correct starting position for the purity ring-pair is not necessarily the one shown in Figure 2. The correct starting position will vary from ring assembles from one manufacturer to another If will be necessary to determine the correct starting position-also known (3), the zero correction position.

Figure 2 shows a ring assembly in which each of the rings of the purity ring pair has two tabs—one long and one short. With some ring assemblies of this type, the zero correction position is with the long tab of one ring aligned with the short tab of the other ring. Or other ring assemblies of this type, the zero correction position is with the long tab of one ring aligned with the long tab of the other ring. The way to determine which is which is by trying one of these orientations and then rotating the two rings together as a part without changing their orientation with respect to each other if this rotation of the ring-pair causes no change in the purity, then it is the zero correction position. If the purity does change then try the other orientation.

A third type of ring assembly has only one tablor each of the two purity rings. The zero correction position for this type of assembly it with the tabs of the two purity rings aligned with each other and pointing up toward the anode contact of the CRT.

The correct starting positions for the other ring pairs are as shown in Figure 2. For the other type of ring assembly tinn's shown, the correct starting position for the other two ring pairs is with all of the labs aligned with each other and pointing up it toward the anode contact of the CRT.

- 4 Vertical raster position control must be at the center of its rotation
- 5 Remove the R-G-B signal from the monitor
- 6 Turn the Green Out off Control (VR203) on thr Neck Board fully OW (See Fig. 1)
- 7 Turn the Red and Blue Out off Controls (VR 201 A VR 205) fully COW
- 8 Pull the Deflection Yoke backward so that the Green beit will appear (See Fig. 4).

FIG 4

- 9 Decrease the horizontal width of the raster, if necessary, in order to be able to see the right and left edges of the raster.
- 10 Move the two Purity Magnets with respect to each other in order to center the Green belt on the raster horizontally.
- 11 Push the Deflection Yoke forward gradually and fix it at the place where the Green screen becomes uniform throughout
- 12 Turn the cut off and Drive Controls and confirm that each color is uniform.
- 13 If the color is not uniform, re-adjust it, moving the Purity Magnets slightly.
- 14 Turn all three cut off controls fully counterclockwise (CCW). Slowly turn up (CW) the Red cutoff control until a Red raster is just barely vis p.e.
- 15 Slowly turn up the Green and Blue cutoff controls such that their associated colors, mixing with the Red, results in a White or Gray raster.
- 16 Confirm that the white or gray color is uniform throughout the screen.
- 17 Insert a wedge temporarily as shown in Fig. 4 and adjust the angle of the Deflection Yoke.

STATIC CONVERGENCE ADJUSTMENT

- 4-Pole Magnets and 6-Pole Magnets are for static convergence
- 1 A cross hatch signal should be connected to the monitor.
- 2 A pair of 4-Pole Convergence Magnets is provided and adjusted to converge the blue and red beams (See Fig. 6). When the Pole opens to the lett and right 45° symmetrically, the magnetic field maximizes. Red and blue beams move to the left and right (See Fig. 5). Variation of the large between the tabs adjusts the convergence of red and blue vertical lines.
- 3 When both 4-Pote Convergence Magnet Tabs are rotated as a pair, the convergence of the red and blue horizontal lines is adjusted.
- 4 A pair of 6-Pole Convergence Magnets is also provided and adjusted to converge the magenta (red + blue) to green beams (See Fig. 6). When the Pole opens to the left and right 30° symmetrically, the magnetic field is maximized. Red and blue beams both move to the left and right (See Fig. 5). Variation of the opening angle adjusts the convergence of magenta to green vortical lines.
- 5 When both 6-Pole Convergence Magnet Tabs are rotated as a pair, the convergence of magenta to green horizontal lines is adjusted.

GREEN GUN IS THE CENTER GUN CONVERGE THE RED AND BLUE. THEN CONVERGE RED AND BLUE ON GREEN.

REPEAT 3.2 8 3.5 IF ALL LINES ARE NOT CONVERGED AT CENTER

FIG. 5

PRECISE ADJUSTMENT OF DYNAMIC CONVERGENCE

- I Feed a cross hatch signal to the monitor
- 2 Insert wedge temporarily and fix the Deflection Yoke so as to obtain the best circumference convergence (See Fig. 8 and 91

NOTE:

The wedges may need to be moved during adjustments

- 3 Insert three rubber wedges to the position as shown in NOTE
- 1) Tilting the angle of the yoke up and dowr adjusts the crossover of both vertical and horizontal red and blue lines See Fig 8 (a) and (b)
- 2) Tilting the angle of the yoke sideways adjusts the parallel convergence of both horizontal and vertical lines at the edges of the screen See Fig 9 (a) and (b)
- 3) Use three rubber wedges (tapered rubber wedges are used for a purpose).
- 4) The position of each rubber wedge is shown in Fig 7.
- 5) Do NOT force the permanent wedges in They are to be inserted until they just make contact with the yoke-after the yoke has been positioned
- 6) Fix the three permanent rubber wedges with chloroprene rubber adhesive
- 7) After the adhesive has dried enough to hold the wedges in place carefully remove the temporarily installed wedge

FIG. 7

FROM UPPER SIDE

INSERT RUBBER WEDGE

SIDE

FROM LOWER

FIG. 8

(a) CRT SCREEN

NSERT RUBBER WEDGE FROM LEFT SIDE

INSERT RUBBER WEDGE FROM RIGHT SIDE

WHITE BALANCE

- † Equipment Required An oscilloscope with a DC coupled mode in the vertical amplifier.
- 2 Referring to Fig 1 and 3, do the following adjustments in subdued light after degaussing and setting the purity of the CKT
- 3 Ground the R/G/B video inputs Apply sync signals to the sync inputs
- 4 Set all three drive controls, VR202, VR204 & VR206, to their midpoints of rotation
- 5 Set the screen and R/G/B cutoff controls to thelminimum (fully CCW) positions.
- 6 Connect the oscilloscope to the collector of a video output transistor Q201, Q202, or Q203 or to the end of R207 R208, or R209 indicated on Figure 3 as Red, Green or Blue
- 7 If this white balance procedure is required because the CRT or neck board was replaced, then leave the contrast CONTrol at its original setting if the contrast CONTrol is known to be grossly out of adjustment, then Set it is its center of rotation Adjust the brightness control VR6 to obtain the waveform shown in Figure 10 Now remove the SCOPE probe

- Slowly turn the screen control CW until the raster is just visible. The color of this raster is called the lead color gun. DO NOT adjust its associated cutoff control. It must remain fully CCW.
- Adjust the screen control CCW until the raster is just extinguished
- 10 Adjust the longhtness contion for a diminaster Adjust the two remaining cutoff controls (NOT the lead color gun cutoff control) for best gray uniformity.
- 11 Adjust the brightness control for a bright raster but not maximum brightness Adjust the R/G drive controls, it necessary for best neutral white Try no: to adjust the blue drive control
- 12 Repeat steps 13 and 1T until good tracking of White balance is achieved End with step 10
- 13. With the oscilloscope connected to the collector or the lead color video output transistor (See Fig. 3), adjust the brightness control to obtain the waveform in Fig 10

FIG. 10

TYPICAL OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms shown below were observed on a wide band oscilloscope. The input signal was from a crosshatch generator with a horizontal sync frequency of 15.73-Hz and a vertical frequency of 60 Hz. If the waveforms are observed on an oscilloscope with a limited high frequency response, the corners of the pulses will rend to be more rounded than those shown and the amplitude of any high frequency bulse will tend to be less.

Each photograph is numbered. These numbers correspond to the circled numbers on the schematic diagrams.

Photographs 12, 13, 14, 15 and 16 are of the red signal at various points along the red video change. The waveforms at corresponding points along the green and blue video changes with oak similar

TROUBLESHOOTING NOTES

- 1 The troubleshooting chart mentions specific components to be checked. It is intended that the entire circuit associated with these Components be checked.
- 2 This chart is a guide to servicing rather than a complete list of each component that could fail. Therefore, troubleshooting should not be limited only to those components mentioned in the chart.
- 3 It is always useful to pegin checking a circuit by measuring the DC voltages and then comparing the measurements to those listed in the Typical DC Voltages chart
- 4.1 he cutoff controls and drive controls on the neck board and the screen control at the bottom of the flyback transformer have been preset at the factory. When servicing the monitor for a lack of video, do not adjust any of these controls unless it is suspected that the problem is a result of these controls having been tampered with Otherwise do not adjust these controls; if they are so severely out of adjustment that there is a lack of video, then there is something malfunctioning
- 5 The Wells-Gardner Service Department goes accept telephone calls for servicing assistance. Call 1-312-252-8220, between 7 00am and 3 30pm Central Time Ask for the Service Department is closed during the first two weeks of July Telephone assistance is not available during this period. Before calling, be sure to have available the model number of the monitor being serviced and the schematic diagram of the monitor being serviced.
- 6 Replacement parts may be ordered from the Service Department between 7 00am and 4:30pm Central Time
- 7 All monitors are equipped with automatic degaussing coils which demagnetize the picture tube every time the monitor is turned on after being off for a minimum of 20 minutes. Should any part of the chassis become magnetized it will be necessary to degauss the affected area with a manual degaussing coil. Move the poilstowly around the CRT face area and all surrounding metal parts. Then stowly withdraw for a distance of 6 feet before turning off.
- 8. Horizontal vs. Vertical:

Some models have the picture tube mounted vertically rather than horizontally. That is, the picture tube is mounted in the frame such that the long dimension of the tube is up and down. Examples of this Include (but are not limited to) Models 13K7851 and 19K7951. Other than the physical orientation of the picture tube, there is no electrical difference between these models and their horizontal counterparts. The same circuits, the vertical circuits, produce and control deflection along the short dimension of the tube in all models

The same circuits, the horizontal circuits, produce and control deflection along tht? long dimension of the tube in all models Therefore, wherever "vertical" appears in this manual or on the monitor, it refers to the short dimension of the picture tube, wherever "horizontal" appears, it refers to the long dimension of the picture tube.

TROUBLES: HOOTING CHART

VIDEO INTERFACE AND OUTPUT

The red, green, and blue video inputs come into the monitor at Pt. Isolation and attenuation is provided by emitter followers Q1, Q2 and Q3. Forced blanking of the video signals is provided by the circuit of Q4, D5, D6, and D7. The forced blanking causes there to be an interruption in the video signal before it goes to the inputs of IC1. This interruption occurs between scan periods, while retrace is taking place, it is required by IC1. The forced blanking is not necessary for most video signals since they already have an interruption of video (blanking) between scan periods. Some do not, it is to administration of the provided blanking circuit is included.

The red, green, and blue signals go into IC1 at pins 2, 4, and 6. Their levels are controlled by the gain of separate channels of the contrast amplifier. The gain is controlled by a DC voltage input to pin 11, which varies with the setting of the contrast control.

IC1 provides blanking of the video during retrace in response to blanking pulses at pin 13, derived from the horizontal and vertical sweep circuits. IC1 also requires a gating signal at pin 12 in order to provide red, green, and blue outputs at pins 21, 19, and 17. If the gating signal is not present, IC1 will not provide video output signals. The gating signal comes from IC2, pin 12 and is derived from horizontal sync.

The brightness is varied by varying the DC level of the outputs at pins 17, 19, and 21. This is accomplished by varying the DC voltage input to pin 14.

The video outputs from IC1 are provided via R30, R31, and R32 to the neck board where they are amplified by the video output stages Q201, Q202, and Q203 before being applied to the cathodes of the CRT through R10, R11, and R12.

SYNC

Sync is applied at P1 (positive sync) or at P2 (negative sync) Composite sync should be applied only to the horizontal sync input of the appropriate polarity. Positive sync is inverted by Q5 and Q6 then applied through D3, D4 and R51 to the sync amplifier Q7.

The sync amplifier output is applied through C22, R53, and R55 to pin 14 of IC2. Pin 14 is the sync separation input

The sync separator extracts the horizontal and vertical sync from each other-providing horizontal sync to the horizontal AFC circuit in the IC. A composite sync output is provided at pin 12. This output signal is used for gating IC1 the video interface IC and for friggering the vertical oscillator.

HORIZONTAL OSCILLATOR AND OUTPUT

The horizontal AFC directly of IC2 received a horizontal synchinput from the syncheparator and a feedback signal at pin 1, derived from the horizontal output. Slight differences in frequency and prices of the two signals will cause the AFC to generate a correction voltage at pin 2.

The horizontal oscillator in IC2 has its free running frequency determined by the RC time constant of C19, R56, R57, R58 and VR2, the horizontal hold control. The horizontal hold control varies the horizontal frequency by varying the RC time constant. Sight correction in frequency is provided by a correction visitage at IC2, pin 3 which comes from pin 2 through R60.

The oscillator output at pin 4 is amplified and shaped by the horizontal drive stage Q10. The drive signal is then coupled to the base or coult of the horizontal output transistor Q11 by the horizontal drive transformer T2 T2 is used for impedance transformation to provide the Q11 base circuit with the low impedance source that it requires.

The horizontal output transistor Q11 is operated as a switch. It is either on or off. It is turned on and off at the scan rate which is determined by the norizontal oscillator frequency. which is ultimately determined by the incoming horizontal sync frequency. A yoke current with a sawtooth waveform is needed to deflect the beam linearly across the CRT. The beam begins at the center of the CRT and is deflected from center to right. This center-to-right deflection occurs when Q11 is turned on The deflection yoke coupling capacitor C38, also known as the S-shaping capacitor begins to discharge through the yoke; the discharge current causes the beam to be deflected to the right CRT edge. At this time, Q11 is turned off, and the current provided by C38 stops. As the current falls to zero, a voltage is induced across the voke windings as the magnetic field collapses; an oscillation is produced by the yoke windings and C36, the retrace tuning capacitor During the first half cycle of oscillation, the induced voltage is impressed on the collector of Q11, C36 and the primary of they flyback transformer T1. This induced voltage is stepped up by the flyback transformer's secondary winding. This high voltage is then rectified and applied to the high voltage anode of the CRT. When this induced voltage occurs, the electron beam is deflected from the right edge of the CRT face to the left edge. This is called retrace. During the second half cycle of the oscillation (of C36 and the yoke windings), the voltage at the Q11 collector tries to go negative or below ground. When this happens, the damper diode (include in same package with Q11) becomes forward. biased. The conduction of the damper diode allows energy. stored in the honzontal system to decay linearly to zero, thus allowing the beam to return to the center of the CRT

The focus v_0 tage and the screen, G2, voltage are obtained from the anode voltage with a resistor divider network with in the T1 assembly. An auxiliary winding (p.n.10) provides feedback to the horizontal AFC through R71 R70 and C29. This signal is also used to furnish the horizontal blanking input to IC1 v.a. C28, R69, and R68 The signal from the auxiliary winding at pin.5 of T1 is rectified by D14 and filtered to provide the ± 12 VDC supply for the video interface and sync circuits. The auxiliary winding of pins.3 and 4 produces a signal which is rectified by D13 and filtered to produce the ± 24 VDC supply for the vertical output circuit.

The horizontal linearity coil L2 is a magnetically blased coil which shapes the yoke current for optimum linearity. The horizontal size coil L1 is a variable series inductor which is used to vary the horizontal size of the display.

HIGH VOLTAGE HOLD-DOWN CIRCUIT

The high voltage hold down circuit is part of the main PC board P447 of this monitor. The +12V DC supply is sensed via D10 Since the +12V DC supply is flyback bulse dewed. The +12V DC supply will rise as the high voltage rises if the +12V DC exceeds a threshold which is set with VR8 then D12 will conduct, thereby providing drive to IC2, pin 5-holdown input of deflection oscillator IC The crive being applied to pin 5 causes the horizontal oscillator within the IC to shut down-thus preventing the generation of high voltage.

The horizontal oscillator will remain IN 12s OFF state, even if the input to IC2, pin 5 is removed. Unless and until AC power is removed from the monitor input The power may then be reapplied.

VERTICAL OSCILLATOR AND OUTPUT

The composite sync ouput of IC2 pin 12 is fittered through the network of R65, C25. C24, and R66 so that only vertical sync is applied to the vertical trigger input at pin 11. The vertical oscillator frequency is controlled by the vertical hold control and its nput to pin 10.

The vertical drive output at IC2 pin 7 is applied to pin 4 of IC3, the vertical output IC. Output current from IC3, pin 2 flows through the yoke to cause vertical defection During upward deflection, current flows out of pin 2, through the yoke, and into IC50 to charge it. Downward defection is caused by IC50 discharging through the yoke in the opposite direction and back into IC3, pin 2. AC feedback is provided through the wiper of the vertical size control VR4 to IC2, pin 18 in order to control the drive amplitude ICC feedback at IC2 pin 19 maintains good vertical linearity at all sizes.

DC current from the ±24V supply flows through R83 and through the yoke to provide downward raster shift. Some of this DC current is diverted from the yoke through the collector of Q9. The amount of this current which is diverted from the yoke can be varied by varying the base drive to Q9 by adjusting VR3, the vertical position control, thus providing manual adjustment of the vertical position of the display. The drive signal at IC3, pin 2 is also used to furnish the vertical blanking input to IC1, pin 13 via R63 and C14.

AUTOMATIC DEGAUSSING ADG

The ADG circuit automatically demagnetizes the CRT This circuit is activated only when the monitor is initially powered up after having been off for at least 20 minutes.

R105 is a positive temperature coefficient device. When it is cold, it has a very low resistance. As it gets warm, its resistance increases. If the monitor is cold when AC power is applied, then R105 with a low resistance allows current to pass through it, D23, D24, and the dogaussing colf. As current flows through R105, it heats up and eventually has a very high resistance, allowing very little current to flow through it. The residual current now flowing through R105 produces a voltage drop across R104 of less than 0.6 volts. This is not enough to forward bias D23 and D24, so there is no current through the decaussing coil.

The process of initially having a large current through the degaussing coil and then having the current decay to zero is what produces the degaussing action. The degaussing current decays to zero before the CRT warms up. so the degaussing is completed before the picture comes on.

K7000 € LOR MONITOR SCHEMATIC DIAGRAM

GENERAL REPLACEMENT PARTS LIST

For all K7000 models except where noted.

This monitor contains circuits and components included specifically for safety purposes

For continued protection no changes should De made to the original design, and components \$hown In shaded areas of schematic, $0r \triangle \bigstar = 0$ n parts lists hould be replaced with exact factory replacement parts.

The use of substitute parts may create a shock, fire, radiation or other hazard Service should be performed by qualified personnel only

P447 MAIN BOARD

Ref. No	Part No	Description	Ref No	Part No	Description
	RESISTO	RS		RESISTORS	(Cont.)
81	340×2562-934	5 6K Ohm 5% 0 25W	R59	340X2103-934	10K Ohm 5% 0 25W
82	340X2562-934	5 6K Ohm 5% 0.25W	C6A	340X2563-934	56K Ohm 5% 0 25W
R3	340X2562-934	5 6K Orm 5% 0 25W	R61	340X2332-934	3 3K Ohm 5% 0 25W
R4	340X2472-934	4.7K Ohm 5% 0.26W	R62	340X2122-934	1 2K Ohm 5% 0 25W
R5	340X2472-934	4.7K Ohm 5% 0.25W	Hd3	340X2563-934	56K Ohm 5% 0.25W
Re	340X2472-934	4.7K Ohm 5% 0.25W	R84	340X2184-934	180K Ohm 5% 0 25W
R7	340×2333-934	33K Ohm 5-6 0 25	∺85	340X2123-934	12K Ohm 5% 0.25W
R8	340X2333-934	33K Omn 5% 0.25	R66	340×2224-934	220K Ohm 5% 0 25W
89	340X2333-934	33k Ohm 5's, 0.25	R67	340×2623-934	62K Ohm 5% 0 25W
810	340X2151-934	150 Onm 5% 0 25W	F-68	340X2223-934	22K Ohm 5% 0 25W
B11	340X2151-934	150 Orm 5% 0 25W	R69	340X3663-231	68K 5% 0 5W CAR
H12	340X2151-934	150 Ot m 5% 0 25W	R70	340×2682-934	6 8K Ohm 5% 3 25
H13	340×2102-934	1 0K Olim 5~c 0 25Vc	F(7.1	340X3473-234	47K 5% 0 5W
R14	340X2102-934	1 0K Onm 5% 0 25W	R72	340X2101-934	100 Ohm 5% 0 25W
R15	340X2102-934	1.0K Ohin 5% 0.25W	R73	340X2103-934	10K Ohm 5% 0.25W
R16	340X2822-934	8.2K Ohm 5% 0.25W	F(74	340X2220-934	22 Ohm 5% 0 25W
R17	340X2822:934	8.2k Ohm 5% 0.25W	R75	340X2222-934	2.2K Onm. 5% 0.25W
R18	340X2152-934	1.5K Ohm 5% 0.25W	B76	340X2473-934	42K Onm 5% 0.25W
R19	340X2103-934	10K Ohin 5va 0 25W	877	340X2333-934	33K Ohm 5% 0.25
R20	340X2102-934	1.0K Onm 5% 0.25W	R78	340X2102-934	1.0K Ohm 5% 0 25W
R21	340X2563-934	56K Ohin 5to 0 25W	R80	340X3056-934	5.6 5% 0.5W
R22	340X2562-934	5.6K Ohm 5% 0.25W	681	340X2150-934	15 Ohm 5% 0 25W
R23	340X2102-934	1 CK Ohm 5% 0 25W	R62	340X3821-934	820 Ohm 5% 0.5W
R24	340X2224-934	220K Onm 5% 0.25W	R83	340X3681-934	680 Ohm 5% 0 5W
R25	340X2273-934	27K Ohm 5% 0.25W	R84	340X2682-934	6.8K Ohm 5% 0.25
R26	340X2822-934	8 2K Ohm 5% 0 25W	R85	340X2332-934	3.3K Ohm 5% 0 25W
R27	340X2223-934	22K Ohm 5% 0 25W	R86	340X2224-934	220K Ohm 5% 0 25W
R28	340X2332-934	3 3K Ohm 5% 0 25W	R87	340X3334-844	330K 10% 0.5W
R29	340X2103-934	10K Ohm 5 5 0 25W	R88	340X4182-633	1.8K 5% 1W
R30	340X2101-934	100 Onm 5% 0.25W	★R89	043X0476-002	3.9K 5% 5W MO
R31	340X2101-934	100 Ohm 5% 0.25W	R90	043X0486-002	1.2 5% 2W MF
R32	340×2101-934	100 Ohm 5% 0.25W	R91	043X0486-002	1.2.5% 2W MF
R33	340X2102-934	1 0K Ohm 5% 0 25W	R92	043X0486-002	1.2.5% 2W MF
₹34	340X2102 934	1 0K Ohm 5% 0 25W	R93	420X5102-324	1.0K 5% 2W
R35	340X2102-934	1 0K Onm 5% 0 25W	R94	340X24 73 -934	47K Ohm 5% 0.25W
R36	340X2122-934	1.2K Ohm 5% 0.25W	R95	340X2473-934	47K Ohm 5% 0.25W
R37	340X2822-934	8 2K Orm 5% 0 25W	R96	420×6182-325	1.8K Ohm 5% 3W, WW
R38	340X2122-934	1.2K Chm 5% 0.25W	R97	420X6271-325	270 5% 3W
R39	340X2122-934	1.2K Onm 5% 0.25W	R98	340X4222-633	2 2K Ohm 5% 1W
R40	340 K2102-934	1 0K Onm 5% 0 25W	R99	340X4222 633	2 2K Ohm 5% 1W
H41	340X2102-934	1.0k Ohm 5‰ 0.25W	R100	340X4271-633	270 5% 1W
E42	340 X2473-934	47 f. Ohm 5% 6: 25W	R101	420X6682-325	6 8K 5% 3W
R43	540 K2222-934	2 2K Ohni 5% 0 25W	R102	340X4470 633	47 5%n 1W
H44	340.K2104-934	100K Ohm 5% 0.25W	<u> </u>	043X0483-001	2.7 Ohm 5% 7W
H-45	540.K2104-934	100K Ohm 5% 0 25W	#104	043X0484-001	15 Onm 5% 5W
H46	340.82101-934	100 Omni Srii. 0.25W	R105	043X0485-001	Thermister
H4 '	540.K2101-934	100 Onm 5% 0.25W	R106	340X2273-934	27k Ohm 5% 0 25√
Ĥ∔d	340 K2102:934	1 0K Ohm 5% 0 25W	R107	340X2102-934	1 0K Onm 5% 0 25W
R49	340X21G2-934	1 0H Ohm 5% 0 25W	R301	043x0481-003	220 Onm 15W WW
F.50	340.K2103-934	10K Orm 5% 0 25W	VR1	040X0653-002	CIRL 500
R51	340X2103-934	10ri Ohm 5m 0.25W	VR2	040X0653-005	CTRL 10K
R52	340X2102-934	1 0K Ohm 5% 6 25W	VR3	040×0653-005	CTRL 10K
R53	340X2151-934	150 Onm 5% 0 25W	VR4	040X0653-001	CTRL 200
R54	340X2224-934	220K Ohm 5% 0 25W	VR5	040X0653-006	CTRL 200K
R55	34532101-934	100 Ohm 5% 0.25W	VR6	040X0653-003	CTRL 2K
R56	340×2472-934	4.7h. Onin 5% 0.25W	VR7	040X 0653-0 05	CTRL 10K
R57	340 (2182 934	1.8K Ohm 5% 0.25W	★ VRS	040×0639·006	Trim Pot 2K Ohm 0.3W
R58	340X2123 934	12k Onm 5% 5 26%	VR9	040×0655-001	Irim Pot 200 Ohm

REPLACEMENT PARTS LIST

P447 MAIN BOARD (CONT.)

Ref. No.	Part No	Description	Fef No.	Part No	Description
	CAPACITO	DRS _		SEMICOND	JCTORS
C1	080X0099-671	Disc 22PF for NPO		06680070-001	Diode 169145
C2	080X0099-671	Disc 2015 101 NPO	Ē.2 E.3	*66×0070.001	Digge 11.3149
Č3	08030099-671	Disc 22PF 10% NPO	E 3	066X0070-001	Diode 15/3145
Č4	045X0577-501	Elect 10Mf NP 35V	⊜4	966X3070-031	Diode 159148
Ç5	045X0577-501	Elect MMF NF 25V	25	066K0070-001	Sloge 152145
Č6	045X0577-501	Fract title NP 259	⊅ê © r	±966×0070€01	Digge 159448
čř	647X0786-502	\$45/21 0000 FO 1 2/000	0.1	066X0070-001	Diode 1/19145
Č8	047X0786-502	V06 4101 900 BYM V06 4101 900 BYM	ಲಕ	066X0070-001	Diode 15,914F
C9	047X0786 502	MAD 500 100 NOA	09	-066X0070-001	Diode 109149
čio	045X0560 531	Fent 20VE 16V	ărs	066X0070 001	Diode 15(914F)
C11	045X0560-534	Erect 22MF 25V	011	066X0040-628	Zener Dodde 5 1V 51 (15)
Č12	945X0560-514	LYT + CUF 50V	D12	066X0040 005	Zener Biode 10V 51 0 57
C13	045X0560-534	Elect 22MF 25V	5) 13	066X0090-001	D1 Fast SW PU-2
C14	(147X0786-502	MYR 022 101: 50V	Ena	066X0090-001	D1 Fast SW RU 2
C15	047X0786-502		★ Ê15	066X0090-001	Di Fasi S과 만난길
		MYP 022 10% 50V		065X0C90-001	Ōt Fasi ŠV. AJ Ž
C16	047X0786-511	MYR 1101 507	Ĕ+i	066X00904001	D1 Fast SV, HU-2
C17	047X0786-501	010UF 101- 507 P-Estr	č18	066X0084-001	Diode Sanyo GFE10H
C18	045X0560-514	LYT 1 QUE ECV	A D19	056X3091-001	Diode St 14 600V
C19	(146X0550-502	PR_0056_21 - AVVS 50V	_\$D19 /\$D29	066X2091-001	Diode Stite 600v
C 20	045X0560-518	\$YI 10 5 05v	15. 62÷	06680001-001	010-16-51-16-600V
C21	045X0560.519	EYO TOUE ZEV	A 522	066820091-001	Diode St 14 500V
C22 C23	045X0560-514	FALL CALL CON	923	066X2091-001	Diode S: 14 600V
C 23 C 24	045X0560-517	LYT 47UF 10V	524 524	066X0091-001	Diode StirlA 600V
	047X0786-503	MYR OSS 101-50V	028	066X:089-001	D1 Boost
C25	047X0786-512	P-Ester 015 10 -: 50V	อ้า	086X0113-501	188 FB NPt. 2N0904
C26	047X0786-511	Myr. 1, 10% 50V	Ő2	086XJ112-501	TRSTR NPN 2N2904
C27	080X0099-557	Disc 220 101 - Z5F	Ŏ.ã	096×0113-501	TRSTR NPN 2N3904
C28	080X0098-648	5PF 201 - 2P + NPQ _	04	086X0113.501	TESTR NPN, 2N0904
C29	047X0786-501	010UF 101 50V P-Estr	0.5	086X6:13 501	TRSTR NPN 21/3904
C30	080X0093-505	Disc J01 201 25F 500V	äë	096×0113.501	TRSTR NPN 2N3904
C31	047X3786-501	010UF 101 507 P-Estr	Ğ7	096×0113-501	TRSTR NP1, 210904
C32	080X0099-580	Disc 100 101 Z5F 500V	Ğe	986X0113-501	TRSTR NPN 2N2904
C33	080X0099 722	Disc 0033 101; Y5P 500V	Ğ9	086X0113-501	7831R NPN 2N3904
C 34	080X0099-221	Disc. 91 10% YSP 500V	Q10	086X0185-501	TRSTR NPN CC
C35	047X0786-501	010UF 101: 50 / P Estr	315	086X0190-001	TRSTR 2SC 1398
∆ ★ 036	046XC551-003	PP 6100 21- 1500V	ic t	086X0185.001	
C37	046X0544-005	15 100V PF	102	086X0187-001	IC Video UPC 1397 NEC IC Honz Ven LATS23
★C38	046X0536+046	BâUF 5 - 200V PP	103	086X0189-001	
C40	045X0560+033	Elect 22.00 G5V			IC Vert Output UPC 1375
C41	080X0099-505	0 sc 001 20 : 25F 500V	.% ★ +C4	086×0188-001	Regulator 0.8183123
C42	045X0560-006	187 *2000 TY3			
C43	080X0099-505	Disc 001 209 25F 50CV			
C44	046X0544-009	1 101 100V P⊸rop	TF	RANSFORMERS	AND COILS
C45	045×0560 029	LYT 470-JF 16V		009A2B54-001	Corl Width-10D4-
C46	045X0560 020	EYT 470UF 16V	*1.		
C47	080X0099-580	Disc 101 101 75F 500V	* 2 * * 1	009 A2855- 001	00 (Lin = 10 DA)
C48	045×0560-532	Erect 100MF 35V	* <u>`</u>]	053X0528-001	Transf F vback
V49	047X0786-501	01GUF 10" 507 P Est	**	052X0131-001	Transf-Horiz Driver
0.50	045×0560-023	EYT 1000UF 257			
C51	045×0525-512	Tan 68 101 35V			
C52	04780786-501	010UF 104 50V PiEstr			
C53	047X0786-514	033UF 5 50V P(Est)		MISCELLAN	EOUS
C54	047X0786-515	MYB 020 51 50V			
C55	045X0578-001	Elect 563 200V	± ++	016X0176-001	Fuse 1.5A.SB
C56	C45XC569+003	LYT 22UF 160V		016X0182-001	Fuse Cho
0.57	045X0569-011	Flect 47, 160V	P.	006A0428 001	Piug Header
A, c so	080X0099-724	ก็เค้าการ เกา. VSP 5000	P2	006A0428-001	Plug Head≃r
Z čšč	080X0099-723	0.56 0015 10% Y5P 500V 0.86 0022 10% Y5P 500V	P3	006A0427-001	Plug 2 Per
Z 061	080X0099-723	Disc 9022 1005 Y5P 500V	24	006A0405-001	Prug 4-Prn CSHIMA
五 060 五 061 五 062	030X00991723 046X0552-001	1.20% 125VAC	Pē	006AJ429-005	Plug Header
C53	047 X0786 501	010UF 101- 507 P-Estr	J202	013X1243-001	Cable Assy 4 Wire 350mm
	541 NC / C J DO 1	5 5 50 F . E			<u> </u>

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Description	Ret No.	Fart No	Description	
_						

P456 NECK BOARD (used with CRT's with a 22.5mm neck diameter)

	RESISTO	DRS		CAPACIT	ORS
R201 R202 R203 R204 R205 R206	340X2272-934 540X2151-934 340X2272-934 540X2271-954 540X2151-954 340X2151-954	Pes 2 TA (2hm 5) (128)/ Res 150 (2hm 54) (128)/ Res 2 TA (2hm 5) (128)/ Hull 150 (2hm 5) (128)/ Res 2 TA (2hm 5) (128)/ Res 150 (2hm 5), (128)/	0201 0302 0203 0204 0205	090X0090-006 080X0099-006 080X0099-006 080X0099-221 080X0099-225	Cap 470PF 10% ZEF CBR Cap 470PF 10% ZEF CBR Cap 470PF 10% ZEF CBR C Disc 01 10% YEP 500 C Disc 0015 1 6KV
R207 R208 R209 R210 R211 R212 R213	340X5682-633 340X5682-633 340X5682-633 340X3272-244 340X3272-244 340X5272-244	Res 55 & 2W MO Res 56 & 2W MO Res 5 & X 2W MO Res 2 / K Ohm 1045 0 5 V Res 2 / K Ohm 1045 0 5 V Res 50 Ohm 50 x 0 5 V Res 50 Ohm 50 x 2 V	Q201 Q202 Q203	SEMICONDL 086X0184-001 086X0184-001 086X0184-001	JCTORS TRSTR 2SC2068LB/LBS/L TRSTR 2SC2068LB/LBS/L TRSTR 2SC2068LB/LBS/L
VR201 VR202	040X0653-003 040X0653-001 040X0653-003	CTBL 2K CTBL 200 CTBL 2H	P202	MISCELLAI	NEOUS Plug Header
VR203 VR204 VR205 VR206	040X0653-003 040X0653-001 040X0653-003 040X0653-001	OTRL 200 OTRL 2K OTRL 2K OTRL 200	SKT201 36	003A0636-001 013X1243-001 030X0797-001	Pix Socket Cable Assy 4 Wire Soumin Plug V Pin

P448 NECK BOARD (Used with CRT's with a 29mm neck diameter) Same as PC56 NECK BOARD except:

SKT201 003A065 001 SOC ORT

FINAL. ASSEMBLY PARTS

Ref No	Part No	Description
△ • *	9K7700 88X0218-506 9A2865-001 2A0690-001	SERIES (9") CRT Tashiba A23JAN99X Deflection Yoke Punty & Convergence Ring
	9A 2854-001 8X0378-001	Assembly Degaussing Coil Assembly Aubber Wedge
	13K7800	SERIES (13")
△* *	88X0236-506 9A2860-001 2A0690-001	CRT Orion A34JEL90X Deflection Yoke Punty & Convergence Ring Assembly
	9A2856-001 6X0378-001	Degaussing Coll Assembly Rubber Wadge
	19K7600 and 1	9K7900 SERIES (19")
△ * *	88X0231-506 9A2862-001 2A3690-001	CRT Philips MVA4SABKŐ5X Deflection Yoke Purity & Convergence Aing Assembly
	9A 2857-001 208 X 2400-901	Degaussing Coil Assembly Rubber Wedge

TYPICAL DC VOLTAGES WITH INPUT SIGNAL

Voltages shown below are for reference only Voltages may vary with input signal and with control adjustment.

TRANSISTOR NUMBER	Q1	Ω2	Q3	Q4	Ω5	Ω6	Ω7	Ω8	Q 9	Q10	Q11	Q201	Q202	Q203
COLLECTOR	12.0	12.0	12.0	10.7	11.0	11.0	12.0	12.0	12.3	40.6	•	107.8	107.8	107.8
BASE	1.7	1.7	1.7	C.1	0.2	0.2	6.0	12.8	3.3	0.4	0.03	1.7	17	1.7
EMITTER	1.0	1.0	1.0	0	0.01	0.01	5.4	12.0	2.6	0	0	1.4	1.4	1.4

^{*} DO NOT MEASURE

DIODE NO	ANODE	CATHODE	C NO	1 2	2	3	4
D1	a.5	31	TERMINA		T	T	
D2	a. 5	9.1	NUMBER	` <u></u>	L		
D3	8.5	11.0		3 3	4 3	0	163. 5
D4	a. 5	1: 0	2	2.0	6. 8	12. 2	125. 2
35	0.9	10 7	3	2.7	67	23. 6	0
36	0.9	10.7	4	2.0	0 6	0.8	1230
D7	0. 9	10.7	5	2.7	05	0	
D8	0 55	26	6	2.0	0 3	24 0	İ
D9	7.7	12.0	7	27	09	22	
D10	120	114	8	2.7	3.5		
D1 1	0	26	9	1.3	0. 3		
D12	0. 05	9.8	10	10.4	62		
D13		24. 0	11	7.9	0. 6		
D14	0 17	12.2	12	0	1.3		
D15	3	8.0	13	0 55	120		
C16		123	14	2.1	13.7		
D17	123		15	10 5	08		
D18	8	•	16	12.0	12.8		
D19		64.3	17	ח		•	
D20	0		18	3.0			
D21	0		19	1.7			
D22		164 3	20	3.0	ı		Ī
D23			2 1	1.7			
D24			2 2	0			
D25	24 0	23 6					

DO NOT MEASURE

FIG. 11

FIG. 12

MAIN PC BOARD LAYOUT

FIG. 14

FRONT CONTROL BOARD P485

FIG. 15

COLLAPSED FRAME

ASSEMBLED FRAME

CHASSIS, TURNTABLE & BACKBOARD ASSEMBLY

