PENERAPAN K-MEANS DAN ALGORITMA GENETIKA UNTUK MENYELESAIKAN MTSP

(Studi Kasus Pada Perjalanan Menuju Seluruh SMA di Kabupaten Probolinggo)

Muhammad Faiz Nailun Ni'am

Pendidikan Matematika Universitas Nurul Jadid

27 Juli 2022

Daftar Isi

- Latar Belakang
- 2 Tujuan Penelitian
- Batasan Masalah
- Metode Penelitian
- 5 Jarak Euclidean distance
- 6 Alur K-means dan Algoritma Genetika
- Masil
- 8 Kesimpulan dan Saran

Latar Belakang Beberapa lembaga di Kabupaten Probolinggo mengadakan acara seperti olimpiade, kompetisi, dan lain-lain

Latar Belakang Beberapa lembaga di Dibutuhkan penyebaran Permasalahan Dibutuhkan pencarian Kabupaten Probolinggo barang berupa poster, pencarian rute rute terdekat mengadakan acara undangan, dan tersebut disebut untuk menuju ke seperti olimpiade. surat selebaran ke Traveling Salesman lokasi-lokasi tersebut Problem (TSP) kompetisi, dan lain-lain beberapa sekolah Dalam penelitian Gabungan dari Menurut beberapa ini akan digunakan dan algoritma k-means beberapa permasalahan peneliti sebelumnya algoritma genetika dapat digunakan TSP disebut Multiple algoritma genetika dan k-means untuk untuk mengklaster Traveling Salesman cukup efektif untuk Problem (MTSP) menyelesaikan MTSP skala kota kecil

Tujuan Penelitian

Tujuan Penelitian

- Mengetahui cara menemukan solusi *Multiple Travelling Salesman Problem* menggunakan algoritma genetika dan *k*-means.
- Menemukan solusi pembagian klaster dan urutan jalur terdekat menuju seluruh SMA di Kabupaten Probolinggo.

Batasan Masalah

Batasan Masalah

- Menggunakan 1 titik asal dan setiap *salesman* akan berangkat dan kembali pada titik kota yang sama.
- 2 Titik-titik tujuan adalah koordinat lokasi 75 SMA di Kabupaten Probolinggo baik negeri maupun swasta.
- Tidak ada prioritas sekolah mana saja yang dilalui terlebih dahulu.

Batasan Masalah

Batasan Masalah

- Menggunakan 1 titik asal dan setiap salesman akan berangkat dan kembali pada titik kota yang sama.
- Titik-titik tujuan adalah koordinat lokasi 75 SMA di Kabupaten Probolinggo baik negeri maupun swasta.
- Tidak ada prioritas sekolah mana saja yang dilalui terlebih dahulu.

Asumsi

- Setiap titik tujuan diasumsikan selalu terhubung dan berjalan lurus.
- Titik kumpul menggunakan koordinat rata-rata dari semua
- 3 Jarak yang digunakan adalah jarak Euclidean distance (Jarak garis lurus antara 2 titik)

Penelitian Terdahulu

Applying K-means and Genetic Algorithm for Solving MTSP

Membahas tentang persilangan jalur antara tiap salesman yang dapat dihindari dengan menggunakan algoritma genetika dan k-means yang dapat meminimalisir terjadinya tabrakan antara salesman.

Penelitian Terdahulu

Applying K-means and Genetic Algorithm for Solving MTSP

Membahas tentang persilangan jalur antara tiap *salesman* yang dapat dihindari dengan menggunakan algoritma genetika dan *k*-means yang dapat meminimalisir terjadinya tabrakan antara *salesman*.

Optimasi Multiple Travelling Salesman Problem (M-TSP) pada Penentuan Rute Optimal Penjemputan Penumpang Travel Menggunakan Algoritme Genetika

Membahas permasalahan salesman yang akan berangkat dari kantor travel menuju ke alamat penjemputan masing-masing penumpang. Pada permasalahan tersebut menggunakan representasi permutasi, proses reproduksi crossover, mutasi, dan seleksi.

Penelitian Terdahulu

Applying K-means and Genetic Algorithm for Solving MTSP

Membahas tentang persilangan jalur antara tiap *salesman* yang dapat dihindari dengan menggunakan algoritma genetika dan *k*-means yang dapat meminimalisir terjadinya tabrakan antara *salesman*.

Optimasi Multiple Travelling Salesman Problem (M-TSP) pada Penentuan Rute Optimal Penjemputan Penumpang Travel Menggunakan Algoritme Genetika

Membahas permasalahan salesman yang akan berangkat dari kantor travel menuju ke alamat penjemputan masing-masing penumpang. Pada permasalahan tersebut menggunakan representasi permutasi, proses reproduksi crossover, mutasi, dan seleksi.

Penyelesaian Multitraveling Salesman Problem dengan Algoritma Genetika

Membahas kinerja algoritma genetika berdasarkan jarak minimum dan waktu pemrosesan yang diperlukan untuk 10 kali pengulangan untuk setiap kombinasi kota penjual.

Tahapan Penelitian Pengumpulan Data Pengolahan Data Analisis Implementasi

Data Penelitian

Dalam penelitian ini data yang digunakan adalah nama dan koordinat lokasi dari seluruh SMA di Kabupaten Probolinggo yang dikumpulkan dari:

- 1 https://referensi.data.kemdikbud.go.id/
- ② https://earth.google.com/.

SMA di Kabupaten Probolinggo

Gambar: 75 SMA Negeri dan Swasta di Kabupaten Probolinggo

Euclidean distance

Definisi

Euclidean distance adalah jarak garis lurus antara dua titik.

Euclidean distance

Definisi

Euclidean distance adalah jarak garis lurus antara dua titik.

Persamaan Euclidean distance

$$d_{ij} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$$
 (1)

Keterangan:

- \bullet d_{ii} adalah nilai jarak pada titik i ke titik j
- ullet x_i dan y_i adalah nilai koordinat x dan y pada titik i
- x_i dan y_i adalah nilai koordinat x dan y pada titik j

Algoritma *k*-means

Algoritma *k*-means

Algoritma *k*-means

Algoritma *k*-means Mulai Dataset. tentukan n klaster Pilih centroid Hitung fitness secara acak

Algoritma k-means Mulai Pengelompokan berdasarkan fitness terkecil Dataset, tentukan n klaster

Hitung fitness

Pilih centroid

secara acak

Total jarak dari tiap pembagian klaster

Banyak Klaster Total Jarak Peringkat Latitude (X) Longitude (Y)

Danuak Klaston	Total Javols	de Dowlandest	Titik Asal	
Banyak Klaster	Total Jarak	Peringkat	Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412

Danuel Klaston	Klastov Total lavak	Dowlandest	Titik Asal	
Banyak Klaster	Total Jarak	Peringkat	Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903

Danual Klaston	Total Javok	Dowlandsot	Titik Asal	
Banyak Klaster	Total Jarak	Peringkat	Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877

Panyak Klastor	anyak Klaster Total Jarak	Peringkat	Titik Asal	
Daliyak Klaster			Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877
4	5,010994	7	-7,8215022	113,3644199

Danuel Klaston	Banyak Klaster Total Jarak	Peringkat	Titik Asal	
Danyak Klaster			Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877
4	5,010994	7	-7,8215022	113,3644199
5	4,805015	6	-7,828521	113,3744846

Danuak Klaston	Banyak Klaster Total Jarak	Peringkat	Titik Asal	
Danyak Klaster			Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877
4	5,010994	7	-7,8215022	113,3644199
5	4,805015	6	-7,828521	113,3744846
6	4,43132	3	-7,8265701	113,3475373

Danuak Klaston	anyak Klaster Total Jarak	Peringkat	Titik Asal	
Banyak Klaster			Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877
4	5,010994	7	-7,8215022	113,3644199
5	4,805015	6	-7,828521	113,3744846
6	4,43132	3	-7,8265701	113,3475373
7	4,353295	1	-7,8331118	113,3721289

Danuels Klaston	Banyak Klaster Total Jarak	Peringkat	Titik Asal	
Danyak Klaster			Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877
4	5,010994	7	-7,8215022	113,3644199
5	4,805015	6	-7,828521	113,3744846
6	4,43132	3	-7,8265701	113,3475373
7	4,353295	1	-7,8331118	113,3721289
8	4,398984	2	-7,8358502	113,3704048

Panyak Klastor	nyak Klaster Total Jarak	Peringkat	Titik Asal	
Banyak Klaster			Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877
4	5,010994	7	-7,8215022	113,3644199
5	4,805015	6	-7,828521	113,3744846
6	4,43132	3	-7,8265701	113,3475373
7	4,353295	1	-7,8331118	113,3721289
8	4,398984	2	-7,8358502	113,3704048
9	4,48243	4	-7,8321462	113,356253

Panyak Klastor	anyak Klaster Total Jarak Peringk	Davingkat	Titik Asal	
Banyak Klaster		Peringkat	Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877
4	5,010994	7	-7,8215022	113,3644199
5	4,805015	6	-7,828521	113,3744846
6	4,43132	3	-7,8265701	113,3475373
7	4,353295	1	-7,8331118	113,3721289
8	4,398984	2	-7,8358502	113,3704048
9	4,48243	4	-7,8321462	113,356253
10	4,780413	5	-7,8406976	113,3665328

Kesimpulan dan Saran

Kesimpulan

- **1** Jalur terpendek menuju seluruh SMA di Kabupaten Probolinggo dapat menggunakan algoritma genetika dan k-means dengan pembagian 7 klaster.
- Jarak yang dihasilkan dengan pembagian klaster tersebut adalah 4,353294644 satuan koordinat dengan urutan perjalanan sebagaimana tertera pada naskah skripsi.

Kesimpulan dan Saran

Kesimpulan

- Jalur terpendek menuju seluruh SMA di Kabupaten Probolinggo dapat menggunakan algoritma genetika dan k-means dengan pembagian 7 klaster.
- Jarak yang dihasilkan dengan pembagian klaster tersebut adalah 4,353294644 satuan koordinat dengan urutan perjalanan sebagaimana tertera pada naskah skripsi.

Saran

- Mencoba algoritma lain untuk mengetahui metode yang lebih efektif dan untuk mengurangi persilangan antar tiap salesman.
- Menambahkan variabel waktu tempuh, karena dalam penelitian ini hanya variabel jarak saja.
- 3 Jarak dapat menggunakan jarak asli bukan dengan Euclidean distance