Lecture 1

Introduction

STAT 8020 Statistical Methods II August 20, 2020 Who is the instructor?
Class Policies / Schedule
Tell us about yourself
Simple Linear Regression
What is regression analysis
Regression

Notes

Whitney Huang Clemson University

Who is instruct Class F Schedt Toll us, yoursel Or? Simple Regres What is analysi Simple Regres

<u>EMS#N</u>	

Who is the instructor?

Who am I?

- Second year Assistant Professor of Applied Statistics and Data Science
- Born in Laramie, Wyoming, grew up in Taiwan

- With a B.S. in Mechanical Engineering, switched to Statistics in graduate school
- Got a Ph.D. (Statistics) in 2017 at Purdue University.

LEMST
Who is the instructor?

Notes	
Notes	

How to reach me?

• Email: wkhuang@clemson.edu

• Office: O-221 Martin Hall

• Office Hours: TR 11:00am - 12:00pm and by

appointment

Class Policies / Schedule

Notes

Notes

Logistics

- We will meet TR 12:30pm 1:45pm via Zoom
- There will be three online exams and a (comprehensive) online final. The (tentative) dates for the three exams are:
 - Exam I: Sept. 24, Thursday
 - Exam II: Oct. 20, Tuesday
 - Exam II: Nov. 12, Tuesday
 - The Final Exam will be given on Wednesday, Dec. 7, 3:00 pm -5:30 pm.
- No classes on Nov. 3 (Fall Break) & 26 (Thanksgiving)

CLEMS N	
Class Policies / Schedule	

Class Website

CANVAS and my teaching website (link:

https://whitneyhuang83.github.io/STAT8020/Fall2020/stat8020_2020Fall.html)

- Course syllabus [Link] / Announcements
- Lecture slides/notes
- Homework assignments
- Exam and homework schedule
- Data sets for lectures and homework
- R code

Notes

Recommended Textbook

An Introduction to Statistical Methods and Data Analysis, 6th Edition. Lyman Ott and Micheal T. Longnecker, Duxbury, 2010; ISBN-13: 978-1305269477

N	otes			

Evaluation

• Grade Distribution:

 Exam I:
 25%

 Exam II
 25%

 Exam III
 25%

 Final Exam
 25%

• Letter Grade:

>= 90.00	Α
$88.00\sim89.99$	A-
$85.00\sim87.99$	B+
$80.00\sim84.99$	В
$78.00\sim79.99$	B-
$75.00\sim77.99$	C+
$70.00\sim74.99$	С
$68.00\sim69.99$	C-
<= 67.99	F

CLEMS#N
Class Policies / Schedule

Notes			

Tentative Topics and Dates

Part I: Regression Analysis (August 20 – September 24)

- Review of Simple Linear Regression
- Multiple Linear Regression: Statistical Inference;
 Model Selection and Diagnostics
- Regression Models with Quantitative and Qualitative Predictors
- Nonlinear and Non-parametric Regression

Part II: Categorical Data Analysis (September 29 – October 20)

- Review of Inference for Proportions and Contingency Tables
- Relative Risk and Odds Ratio
- Logistic Regression and Poisson Regression

Who is the instructor? Class Policies / Schedule Tell us about yourself Simple Linear Regression analysis Simple Linear Regression

Notes			

Tentative Topics and Dates cont'd

Part III: Experimental Design (October 22 – November 12)

- Introduction to Experimental Design: Principles and Techniques
- Completely randomized Designs, Block Designs, Latin Square Designs, Nested and Split-Plot Designs
- Computer experiments

Part IV: Multivariate, Spatial and Time Series Analysis (November 17 – December 3)

- Discriminate Analysis, Principle Components Analysis, and Cluster Analysis
- Basic of time series and spatial data analysis

Notes

Computing

We will use software to perform statistical analyses. The recommended software for this course are ${\tt JASP}$ and ${\tt R/Rstudio}$

- JASP
 - a free/open-source graphical program for statistical analysis
 - available at https://jasp-stats.org/
- R/ R Studio
 - a free/open-source programming language for statistical analysis
 - available at https://www.r-project.org/(R); https://rstudio.com/(Rstudio)

You are welcome to use a different package (e.g. SAS, JMP, SPSS, Minitab) if you prefer

CLEMS#N	
Class Policies / Schedule	

Notes			

Tell us about yourself

CLEMS#N
Tell us about yourself
1.13

Notes			

Tell us about yourself

- Your name
- Degree program
- Your background in Statistics/Computing

CLEMS N
Tell us about yourself

Notes		

Review of Simple Linear Regression

CLEMS&N
Simple Linear Regression

Notes			

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

Notes		

Scatterplot: Is Linear Trend Reasonable?

Notes				

Simple Linear Regression (SLR)

Y: dependent (response) variable; *X*: independent (predictor) variable

• In SLR we assume there is a linear relationship between *Y* and *Y*:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- We will need to estimate β_0 (intercept) and β_1 (slope)
- Then we can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our uncertainty regarding the linear relationship

CLEMS#N
Simple Linear Regression

Notes			
-			

Regression equation: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

Assumptions about ε

In order to estimate β_0 and β_1 , we make the following assumptions about ε

- $E[\varepsilon_i] = 0$
- $\bullet \ \operatorname{Var}[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$\mathrm{E}[Y_i] = \beta_0 + \beta_1 X_i, \text{ and } \mathrm{Var}[Y_i] = \sigma^2$$

The regression line $\beta_0+\beta_1 x$ represents the **conditional expectation curve** whereas σ^2 measures the magnitude of the variation around the regression curve

	_	_	Ţ	,	٦.		Į,	ļ
ال	L,	E	Ν	43	5	ä	1	V
N.		٧	Ε	R	S	- 1	т	Y

Notes

Notes

Estimation: Method of Least Square

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

- $\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i \bar{X})(Y_i \bar{Y})}{(X_i \bar{X})^2}$
- $\hat{\beta}_0 = \bar{Y} \hat{\beta}_1 \bar{X}$

We also need to **estimate** σ^2

 $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

Properties of Least Squares Estimates

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $\bullet \ E[\hat{\beta}_1] = \beta_1; E[\hat{\beta}_0] = \beta_0$
 - $\bullet \ E[\hat{\sigma}^2] = \sigma^2$
 - Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

1

Notes		

Example: Maximum Heart Rate vs. Age

The maximum heart rate ${\tt MaxHeartRate}$ of a person is often said to be related to age ${\tt Age}$ by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http://whitneyhuang83.github.io/STAT8010/Data/maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- $\bigcirc \hspace{0.1in} \textbf{Compute the estimate for } \sigma \\$

Notes			

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

CLEMS®N
Who is the instructor?
Simple Linear Regression

Notes				

Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

- ullet e_i is NOT the error term $arepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

CLEMS#
Simple Linear Regression

Notes

Residual Analysis

Notes

Residual Analysis

Notes

Summary

In this lecture, we reviewed

- Simple Linear Regression: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Method of Least Square for parameter estimation
- Residual analysis to check model assumptions
 Next time we will talk about
- More on residual analysis
- ② Normal Error Regression Model and statistical inference for $\beta_0,\,\beta_1,\,{\rm and}\,\,\sigma^2$
- Prediction

CLEMS (*)
Simple Linear Regression

Notes Notes Notes