반도체 공정 운전조건 최적화 및 실시간 모니터링 구축을 통한 수율 향상

2024.03.22

B반1조

조한철,임수환,이광진,배소현,정유림,권보민

CONTENTS

01 비즈니스 소개

05 분석결과

02 추진배경

06 개선안

03 현황

07 과제수행모습

04 분석계획

08 소감

01 비즈니스 소개

반도체란?

전기 신호를 다양한 신호로 증폭/전환/변환 기능 데이터의 처리: 저장/기억(메모리), 연산/제어(시스템)

* IDM : Integrated Device Manufacturer
* OSAT : Outsourced Semiconductor Assembly and Test

01 비즈니스 소개

02 추진배경

IoT,AI 시장의 급격한 성장과 더불어 반도체 수요가 증가하나 당사의 매출은 지속적으로 하락함에 따라 수율 향상을 통한 경쟁력 확보 필요

03 현황

반도체 나노 기술이 지속적으로 발전함에 따라 수요가 증가하는 고성능 반도체를 생산시키기 위한 기술 경쟁력 강화활동 필요

*HKMG: High-K Metal Gate *EUV: Extreme Ultraviolet *GAA: Gate All Around

03 현황

국내 수출품목 중 반도체가 가장 높은 비율을 차지함에 따라 당사의 불량률을 줄이고 안정적 공급을 위해 수율 향상이 필요

04 분석계획

과제수행목표

측정지표(KPI)	현수준	목표수준		
		'24년	'25년	'26년
불량률(%)	5.12	4.3	3.5	2.7

Pilot test 적용결과 0.8% 감소 예상

04 분석계획

목적	분석방법	주요내용
프로세스 안전성 확인	c관리도	공정 흐름별 프로세스의 안정성 확인
그도세요 한천경 릭한	카이제곱	공정 안정화에 따른 불량률 차이 확인
생산부하별 불량률 차이 확인	카이 제곱	생산 부하에 따른 불량률 차이 확인
공정 운전 조건 최적화	box plot Mann-Whitney U test	불량에 영향을 미치는 운전인자를 선별 box plot을 통해서 최적조건을 도출
최적경로 추천 시스템	-	공정실적데이터를 통해 최대의 효율을 낼 수 있는 경로 추천
불량률 예측 모델	회귀 의사결정나무 다중회귀분석 랜덤포레스트 xgboost	불량률에 영향을 미치는 인자 확인 공정데이터를 통해 반도체 공정 불량률 예측 모델링 평가 지표를 종합적으로 고려하여 가장 높은 모형 선정

프로세스 안정성 확인

불안정 공정의 불량률이 높게 나타남에 따라 공정의 안정화 필요

X2 검정결과

귀무가설 : 공정 안정화에 따른 불량률에 차이가 없다. 대립가설 : 공정 안정화에 따른 불량률에 차이가 있다.

검정통계량	p_value
23.294	1.390e-06

생산부하별 불량률 차이 확인

생산 부하간에 불량률의 차이에 따라 적절한 부하 조절 필요

0.024

5.049

공정 운전 조건 최적화

불량과 양품의 구간에서 유의미한 차이를 보이는 운전인자의 최적 운전 조건 도출을 통한 공정 안정화 필요

맨-휘트니 검정 결과						
변수 p_value 변수 p_value						
1.508e-06	감광액량	6.436e-05				
5.570e-06	식각공정시 온도	2.298e-04				
8.915e-06	이온주입시 챔버 내 온도	5.062e-04				
	1.508e-06 5.570e-06	1.508e-06 감광액량 5.570e-06 식각공정시 온도				

최적 구간을 선정한 운전인자

- 첫 번째 회전 스핀 수
- 세 번째 회전 스핀 수
- 건식식각시 가해지는 에너지
- N2_산화물 흡착 시 온도
- 산화공정시 합성물의 량
- 열처리작업 시 챔버 내 온도

- 산화공정시 압력
- 산화공정시 챔버 내 평균온도
- softbake시 온도
- 감광액량
- 식각공정시 온도
- 이온주입시 챔버 내 온도

최적운전조건 도출 결과

변수명	기존조건	최적조건	변수명	기존조건	최적조건
산화공정시 압력	0.18~0.23	0.18~0.19	첫 번째 회전 스핀 수	492.20~509.06	492.20~494.00
산화공정시 챔버 내 평균온도	862.01~1348.47	1294.58~ 1348.47	세 번째 회전 스핀 수	4814.62~5194.13	5172.10~5194.13
Softbake시 온도	86.50~96.65	95.28 ~ 96.65	건식식각시 가해지는 에너지	49.34~53.27	49.34~49.98
감광액량량	4.77~5.24	5.14 ~ 5.24	N2_산화물 흡착시 온도	191.21~209.52	205.30~209.50
식각공정시 온도	68.15~73.08	68.15 ~ 68.92	산화공정시 합성물의 량	21.07~49.91	45.89~49.91
이온주입시 챔버 내 온도	97.74~107.38	97.74 ~ 100.25	급속열처리 작업 시 챔버 내 온도	148.00~162.00	148.00~149.00

최적경로 추천 시스템

공정흐름별 불량률의 차이가 발생됨에 따라 공정 작업 실적을 반영한 최적경로 추천 시스템 운영 필요

구분	동시 투입경로			평균불량
1	12233	21322	33111	0.039
2	11122	23311	32233	0.043
:	:	:	:	•
216	13322	22133	31211	0.215

불량률 예측 모델

최적화 후 20일 동안 감소한 불량칩 27554개 매년 495972개 X 50,000 = 약 250억원

→ 매출 향상을 통해 기업의 이익을 증대

06 개선안

06 개선안

공정 최적 경로 추천 시스템 구축 및 운영

한 사이클 공정 운전 후, 실적 데이터를 활용하여 최적 경로를 계산하여 다음 사이클 생산 스케쥴 추천

공정 최적 경로 추천 시스템

2. 공정 데이터 수집

1.공정 데이터 발생

데이터 베이스

3.평균 불량률 계산

	듣	불량률		
1	12233	21322	33111	0.0388
2	11122	23311	32233	0.0434
215	12322	23111	31233	0.2091
216	13322	22133	31211	0.2146

5.생산 스케쥴 반영

	듣	불량률			
1	12233	12233 21322 33111			

06 개선안

실시간 모니터링을 통해 공정 운전 조건 확인 및 조절을 통한 공정 운전 최적화

실시간 모니터링 시스템

실시간 측정 센서 활용 작업 현황 파악

불량 예측 시스템 활용 지속적인 데이터 업데이트

공정 실시간 현황

최적경로추천

로트1 로트2 로트3 압력 0.19

안정성확인 🔻

산화

포토베이크

포토리소

식각

PR흡착온도 88.92

파장종류 G - line

이온주입시 챔버 온도 103.1

챔버 온도 992.3°C 감광액 량 4.765

에너지노출 112.24

소스 파워 51.4

합성물 양 35.87

산화물 흡착 온도 207.18

* G-line : 포토 리소그래피 공정에서 사용되는 365nm의 파장

* RTA : 급속열처리 기술로 할로겐 혹은 나크램프가 장착된 RTP(Rapid Thermal Process)를 이용한 단시간 열처리 방법

07 과제수행모습

08 소감

조한철

안녕하세요. 힘이 든 순간이 많았지만 당신들과 함께 한 모든 순간이 찬란했습니다.

임수환

좋은 팀원들 덕분에 성공할 수 있었습니 다. 앞으로도 화이팅!

이광진

팀원들과 진행하는 첫 프 로젝트 경험이라 걱정이 많았지만 다들 열심히 참 여해줘서 좋았습니다.

배소현

매일 밤낮없이 조원들과 함께 프로젝트를 준비하 며 가까워지고 좋은 성 과를 낼 수 있었던 것 같 아요. B1사랑해♡

어려웠지만 잘맞는 팀원 들 덕분에 끝까지 해낼 수 있었던것 같습니다.

권보민

잠이 오는 날들이 계속되었지만 팀원들과 늦게까지 프로젝트를 하며 야식을 먹었던 기억은 오래 남을 것 같습니다.

~^^~

Q&A

감사합니다