HYBRID ANT COLONY

GENETI C

COURSE TIMETABLE

GENERATOR

Guided By Biju Abraham N Done by Akhila Joseph Anchu R S

OUTLINE:

- Introduction
- Need for Timetable Generator
- Phases for Computation
- Input and Output Formats
- About timetabling problem
- Algorithm used
 - ➤ Ant Colony algorithm
 - ➤ Genetic algorithm
- Hybrid ant colony genetic algorithm
- Conclusion
- •References

OBJECTIVE:

The main objective of this projective

tis develop a course timetable for B.Tech in Rajagiri

School of Engineering and Technology satisfying all the constraints specific to the institution.

INPUT AND OUTPUT FORMATS:

Input

- •Teacher-Subject-Class allocation's excel file
- Syllabus details specification's excel file
- Prealloted lab hours' excel file

Output

•Timetable for a week for all classes generated in an excel sheet

ABOUT THE PROBLEM:

HOW TO COMPUTE IN A POLYNOMIAL TIME?

Some Approaches

- -Tabu Search
- -Ant Colony Based Approach

-Genetic Algorithm

A solution close to optimal is obtained

ALGORITHM USED:

HYBRID ANT-COLONY GENETIC

ALGORITHM

Ant colony generates inputs for optimisation

Genetic optimises and fixes the solution

ANT COLONY ALGORTHM

- Ants are agents that start from nodes of graph
- Each ant deposits pheromone along the edges of particle.
 it chooses
- •Ants are more likely to take path with more pheromones

EVENTUALLY FOLLOWS THE OPTIMAL PATH

NATURAL BEHAVIOUR OF

ANT COLONY ALGORITHM:

- 1.Initialise ants to the nodes of the graph
- 2.For each ants do
- 2.1Select next node for the ants to move with a good probability value
- 3. Repeat step 2 until the stopping criterion for an ant is met
- 4. Increment pheromones for the edges taken by the ant
- 5.Evaporate pheromones of all edges by an evaporation

tacto

ANT COLONY ALGORITHM:

PROBABILITY(i,j)=PHEROMONE(i,j) α *VISIBILITY(i,j) β

Σ PHEROMONE(i,j)α*VISIBILITY(i,j)β

GENETIC

ALGORITHM

- •Search algorithm using process of natural selection.
 - •Major components are:

Population

Fitness Function

Individual element of the population

Chromosome

The Chromosome represents a potential solution and is divided into multiple genes.

GENETIC

ALGORITHM

Genome - Collection of all chromosomes

Selection

Crossover

Mutation

<u>Selection</u>:

selects the chromosome with maximum fitness for evolution

Crossover:

- Choose a random point on 2 chromosomes
- Split parents at this crossover point
- Create children by exchanging gene

parents

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

children

Mutation:

- Mutation is fairly simple
- •just change the selected genes

parent	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

child 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1

Evaluate fitness of each individual

Repeat

Select best-ranking individuals to reproduce

Breed new generation through crossover and mutation (genetic operations)

Evaluate the individual fitness of the offspring

Replace worst ranked part of population with offspring

Until <terminating condition>

ANT COLONY INDETAIL:

- CLASS
- SUBJECT
 - ROOM
- TEACHER
 - DAY
 - HOUR

ANT COLONY INDETAIL:

ANT

1:

TSCD1 TSCD0 TSCD4 TSCD3 TSCD2 TSCD0 TSCD5

GRAPHICAL REPRESENTATION:

of an hour to TSCD of next hour

- •Two data structures:
- >> Pheromone
- ➤ Distance

GRAPHICAL REPRESENTATION:

- Distance is inversely proportional to visibility
- Distance gives a measure of possibility of a subject following other
- Pheromone gives the possibility of a subject being allotted to a particular time

GENETIC OPERATIONS: Cross Over: 6 3 6

GENETIC OPERATIONS:

1 3 5 7 2 6 4

HYBRID ANT COLONY GA ALGORITHM

- 1. For each day of the week repeat the following steps
- 2. For each class repeat steps 3-10
- 3.Initialise pheromone and distance for each edge
- 4. Initialise initial position of 7 ants for 7 hours
- 5. Move all ants 7 times and initialise

chromocomoc for gonotic

HYBRID ANT COLONY GA ALGORITHM

- 6. Update pheromone levels and evaporate pheromones
- 7.Repeat steps 4 to 6, n times(n chosen by the programmer)
- 8. Evaluate fitness of each chromosome
- 9. Repeat until fitness value reaches target

YBRID ANT COLONY GA ALGORITHM

- 9.1.Choose chromosomes with maximum fitness,n1,n2
- 9.2.Apply crossover on n1,n2
- 9.3.Evaluate fitness if meeting target exit
- 9.4. Mutate n1 and n2
- 9.5.Evaluate fitness if meeting target exit, Else add to pool if it meets validating criteria
- 10. Fix the chromosome as solution

CONCLUSION

The implemented system for

Timetable generation automates the task of timetable generation. It is scalable to add new constraints and for further future modifications.

REFERENCES:

- NguyenBa Phuc, Tran Thi Hue Nuon
 . "A New Hybrid GA-Bees Algorithm for a Real-world University Timetabling Problem" 2011
 International Conference on Intelligent Computation and Bio-Medical Instrumentation
- •K.Socha, J.Knowles and M.Samples. "A max-min ant system for the university course timetabling problem". In Proceedings of Ants 2002 Third International Workshop on Ant Algorithms (Ants'2002), vol 2463, pp. 1-13, Springer-Verlag, Berlin, 2002.

REFERENCES:

- •H.Arntzen and A.Lkketangen. "A tabu search heuristic for a university timetabling problem". Metaheuristics: Progress as Real Problem Solvers, vol. 32, pp. 65-86, Springer-Verlag, Berlin, 2005.
- https://github.com/ameya005/
 AntColonyAlgorithms
- http://www.codeproject.com/Articles/644067/Applying
 -Ant-Colony-Optimization-Algorithms-to-Sol

REFERENCES:

http://www.ai-junkie.com/ga/intro/gat1.html

http://insightforfuture.blogspot.in/2012/04/creating-timetable-using-genetic.html

http://jgap.sourceforge.net/doc/tutorial.html