Statistical Inference with Linear & Logistic Regression

•••

GW Libraries Workshop
Dan Kerchner ~ February 19, 2021

go.gwu.edu/rstats

Logistics

- Just speak up OR use the Zoom chat
- Kiri can provide individual help
- Plan for 1 brief break

Super-Brief Review of Inference for Regression

High-Level Objective

Regression Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n$$

(and an interaction term might look like $oldsymbol{eta}_{12} X_1 X_2$)

<u>Interpretation</u>

$$\beta_0$$
 = Mean Y when X_i values are 0

 β_i = Mean change in Y for a 1-point increase in X_i , adjusting for other X variables

Correlation between dependent & independent variables

Pearson correlation (ϱ) measures strength and direction (+/-) of linear association between X_i and Y. Ranges from -1 to 1.

If relationship looks non-linear (but monotonic) then **Spearman** correlation should be considered.

$$H_0: \varrho = 0$$

$$H_1: \varrho \neq 0$$

Valid if joint distribution of X, Y is bivariate normal

Linear Regression Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n$$

where Y is a <u>continuous</u> outcome

<u>Interpretation</u>

$$\beta_0$$
 = Mean Y when X_i values are 0

 β_i = Mean change in Y for a 1-point increase in X_i , adjusting for other X variables

Linear Regression Assumptions

- Observations are independent
- Linearity
- Homoscedasticity
- Normality

GLMs - Generalized Linear Models

$$g(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n$$

where $\mu = E(Y)$

Common link functions

$$g(\mu) = \mu$$

$$g(\mu) = \log(\mu)$$

$$g(\mu) = \log(\mu / (1 - \mu))$$

GLMs: Logistic Regression Model

odds
$$log(\frac{p}{1-p}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n$$
 where p = Probability of Y = 1 1-p = Probability of Y = 0

Interpretation

 β_i = log OR (Odds Ratio) for having Y = 1 for a 1-point increase in X_i , adjusting for other predictors

 e^{β_i} = OR for having Y = 1 for a 1-point increase in X_i

Logistic Regression Assumptions

- Binary outcome (0, 1)
- Each predictor is linearly related to the <u>log odds</u> of the outcome

Inference for Regression Modeling

Confidence Interval

95%CI for
$$\beta$$
 = (0.44, 0.49)

Hypothesis Testing

$$H_0$$
: $\beta = \beta_0 \leftarrow \text{Null Hypothesis}$

$$H_A: \beta \neq \beta_0 \leftarrow Alternative Hypothesis$$

p-value: Chance that we are rejecting H₀ when we should not be

Today's Goal

- Learn to use R to read in data and conduct regression analysis and associated inference tests
 - Checking assumptions
 - Visualizing
 - Computing p-values, regression coefficients, confidence intervals, and odds ratios (for logistic models)

Today: 2 Scenarios

- Linear Regression (continuous outcome)
 - Single variable (1 continuous)
 - Multivariable (1 continuous, 1 categorical)
- Logistic Regression (categorical outcome)
 - Multivariable (continuous and categorical)

Today's Data Set: Framingham Heart Study

- framinghamheartstudy.org
- Long-term prospective study of the etiology of cardiovascular disease among a population of subjects in Framingham, MA
- Began in 1948 with 5,209 subjects
- Is the source of the term "risk factor"
- Over 3,000 peer-reviewed papers published based on this study
- Participants were each followed for a total of 24 years for cardiovascular events (heart attack, stroke, death, etc.)

Some Handy R Links

Tutorials

- RStudio R paths: <u>education.rstudio.com/learn/</u>
- Data Carpentry & Software Carpentry:
 - o datacarpentry.org and software-carpentry.org
- Linkedin Learning @ GW: go.gwu.edu/linkedinlearning
- <u>r-tutor.com/r-introduction</u> & <u>r-tutor.com/elementary-statistics</u>
- UCLA Data Analysis Examples: <u>stats.idre.ucla.edu/other/dae/</u>
- Visualizing regression results: worldbank.github.io/r-econ-visual-library/RegressionCoef.html
- R Graph Gallery (w/code): r-graph-gallery.com

Books you can access for free

- Free books online Hadley Wickham:
 - R for Data Science <u>r4ds.had.co.nz</u>
 - Advanced R <u>adv-r.hadley.nz/</u>
- Through your GW library privileges:

Reference Links

- R language (CRAN): <u>r-project.org</u>
- R search engine: <u>rseek.org</u>
- <u>rstudio.com</u>
 - Cheat Sheets! <u>rstudio.com/resources/cheatsheets</u>
- stackoverflow.com

Statistics+R help @ GW

R-Statistics Appointments: calendly.com/statistical-consulting-gw

Also...

Appointments with me: <u>calendly.com/kerchner</u>

Coding consultations (Python, git, etc.): calendly.com/gwul-coding/

Statistical Consulting

Choose your software to pick an appointment with a statistical consultant. Please come with your software installed!

General Statistics- Next
Available Consultant

Please book appointments using your GW email.

Questions asked during consultation should be
led to the specific subject matter you are
afor. An...

Python - Next Available Consultant

Please book appointments using your GW email. Questions asked during consultation should be related to the specific subject matter you are currently booking for. An...

SAS - Next Available Consultant

Please book appointments using your GW email.

Questions asked during consultation should be related to the specific subject matter you are currently booking for An...

SQL - Next Available Consultant >

Please book appointments using your GW email. Questions asked during consultation should be related to the specific subject matter you are currently booking for. An... Excel - Next Available
Consultant

Please book appointments using your GW ema Questions asked during consultation should be related to the specific subject matter you are currently booking for. An...

R - Next Available Consultant

Please book appointments using your GW email Questions asked during consultation should be related to the specific subject matter you are currently booking for. An...

SPSS - Next Available

You can book with one stat consultant once a week. Cancellations must be 24 hrs in advance. You can book up to 2 weeks in advance. Please book using your GW email.

STATA - Next Available
Consultant

Please book appointments using your GW email. Questions asked during consultation should be related to the specific subject matter you are currently booking for. An...

wallable cancultant?back-1

Thanks!

Dan Kerchner <u>kerchner@gwu.edu</u>

Disovankiri Boung <u>dboung@gwu.edu</u>