

Note1: All comments of the codes are written in the cpp files.

Note2: Before start, please run below commands.

#Run matmul application.

>>> chmod +x matmul.sh

>>> ./matmul.sh -o a.out

#Enter folder to count instructions.

>>> cd source/tools/ManualExamples

>>> make all TARGET=intel64

#Run ./pin and write to note.txt file.

>>> ../../../pin -t obj-intel64/inscount0.so -o note.txt -- ./a.out

1. Task

Count:	849446
--------	--------

Note: This program counts the macro instructions, since these instructions are generally in assembly language and also Intel PIN tool find the assembly level codes. However when we look at the macro instructions, they are in more deep level which is hardware level.

Systems Software (Micro Instructions -> Macro Instructions)

2. Task

Make again to run inscount0.cpp file.
>>> make

Count Branch:	75802
Count Memory:	344554
Count Others:	429090

3. Task

Note: I just controlled registers which wrote a value by RegWContain, since we need to find destination registers. For example,

- add r1, r2, r3

In this case, r1 will be our destination register. That's why, I counted register as a destination register by using RegWContain.

Make again to run inscount0.cpp file.

>>> make

Registers	Counters
RAX	1580
RBX	387
RCX	477
RDX	774
RSI	466
RDI	592
RSP	1995
RBP	144
R8	96
R9	104
R10	142
R11	35
R12	158
R13	111
R14	105
R15	105