

Computation for Inference

f.... at: a... a a a a a a

Increased computation has revolutionized our ability to fit

runctions to data

- It has also profoundly influenced inference
- The bootstrap is one important reflection of this

Algorithms vs. Inference

- Algorithms help you construct useful reductions of data (for knowledge or decision making).
- Inference helps you gauge how reliable your reductions are

"It is a surprising, and crucial, aspect of statistical theory that the same data that supplies an estimate can also be used to assess it's accuracy."

Example: Sample Mean

There is a closed-form formula for the standard error of the sample mean. Suppose $x_i \stackrel{i.i.d.}{\sim} F$, a distribution with variance σ^2 . Then,

$$egin{aligned} \operatorname{Var}\left[ar{x}
ight] &= \operatorname{Var}\left[rac{1}{n}\sum_{i=1}^{n}x_{i}
ight] \ &= rac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}\left[x_{i}
ight] \ &= rac{1}{n}\sum_{i=1}^{n}\operatorname{Var}\left[x_{i}
ight] \end{aligned}$$

$$=rac{\overline{n^2}}{n^2}n\sigma^2 \ =rac{\sigma^2}{n}$$

Estimated Standard Error

Therefore, if we had a way of estimating σ^2 , then we can estimate the standard error of the mean by plugging this estimate in.

$$ext{Var}\left[ar{x}
ight]pproxrac{\hat{\sigma}^2}{n}$$

This would us a way of understanding to what degree we can trust our estimate of the mean, computed entirely from the raw data.

Estimated Standard Error

Of course, if $x_i \overset{i.i.d.}{\sim} F$, then a reasonable estimate for σ^2 is

$$\hat{\sigma}^2 := rac{1}{n} \sum_{i=1}^n \left(x_i - ar{x}
ight)^2$$

So in summary, to estimate the variance of the mean, we

- 1. Compute an estimate of σ^2
- 2. Plug that the true expression for $\mathrm{Var}\left[\bar{x}\right]$

Abstraction

This is a more abstract way of describing this process.

- 1. Define a statistic $\hat{\theta}\left(x_1,\ldots,x_n\right)$ of the data
- 2. Do math to get an expression for $\operatorname{Var}\left[\hat{\theta}\right]$
- 3. Replace unknowns in the expression with estimates, and argue that the result is $\approx \mathrm{Var}\left[\hat{\theta}\right]$.
 - \circ If you want to be precise, you could call this new estimator $\widehat{\mathrm{Var}} \, \Big[\hat{\theta} \Big]$

Goals

In a lot of cases, step (2) is intractable.

- $\hat{ heta}$ is a more complex function of the x_i
 - Ratio between eigenvalues in your PCA
 - \circ Derived statistics, like $\log \mu$ or $\frac{\alpha}{\beta}$ in some model
- You ran some iterative algorithm to compute $\hat{ heta}$
 - Robust regression
 - Random forests

We'd like a recipe that works even then, and which doesn't have to be rederived for every single problem.

Example: Portfolio Optimization

+

- Two assets that you can invest in, X and Y.
- Distribute α fraction of funds to X, and the rest to Y, i.e., invest

$$\alpha X + (1 - \alpha) Y$$

• The best strategy (in the sense of minimizing variance) can be shown to be

$$lpha = rac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

Example: Portfolio Optimization

• α is unknown in practice, so we estimate it,

$$\hat{lpha}\left(x_{1},\ldots,x_{n},y_{1},\ldots,y_{n}
ight)=rac{\hat{\sigma}_{Y}^{2}-\hat{\sigma}_{XY}}{\hat{\sigma}_{X}^{2}+\hat{\sigma}_{Y}^{2}-2\hat{\sigma}_{XY}}$$

• Now we want to know, how variable is this estimator?

A Thought Experiment

- Suppose you had a window into parallel universes
- How much does the estimator change across different samples?

FIGURE 5.9. Each panel displays 100 simulated returns for investments X and Y. From left to right and top to bottom, the resulting estimates for α are 0.576, 0.532, 0.657, and 0.651.

Χ

Χ

Thought Experiment

If you simulate 1000 datasets in this way, you can get a different $\hat{\alpha}_r$, for $r=1,2,\ldots,1000$. From the book's example,

+

$$ar{lpha} = rac{1}{1000} \sum_{r=1}^{1000} \hat{lpha}_r = 0.5996$$

which (unsurprisingly) is very close to the underlying 0.6.

To get a sense of the variability across datasets, we can use

$$\widehat{ ext{Var}} \left[\hat{lpha}
ight] = rac{1}{999} \sum_{r=1}^{1000} \left(\hat{lpha}_r - ar{lpha}
ight)^2 pprox 0.083^2,$$

Bootstrap Idea

- In our simulation, we were able to sample as many new datasets F as we wanted. In reality, we see only one.
- But we can simulate as many datasets from the empirical distribution \hat{F} as we want
- It turns out that if you use \tilde{F} in place of F, the approach from the thought experiment *still works*

Sampling from F

In our ideal simulation world, we're able to generate many

datasets from F and see now our estimator θ changes.

Sampling from F

In our ideal simulation world, we're able to generate many datasets from F and see how our estimator $\hat{\theta}$ changes.

Sampling from F

The properties of the final sampling distribution for $\hat{\theta}$ can be used to guide inference.

Distribution of x[i]

Distribution of $\theta[x[1], ..., x[n]]$

Sampling from \hat{F}

In reality, we can't just generate new datasets. We *can* draw samples from the empirical distribution, however.

+

Distribution of x[i]

Distribution of $\theta[x[1], ..., x[n]]$

Sampling from \hat{F}

In reality, we can't just generate new datasets. We *can* draw samples from the empirical distribution, however.

Distribution of x[i]

Distribution of $\theta[x[1], ..., x[n]]$

Sampling from \hat{F}

In reality, we can't just generate new datasets. We *can* draw samples from the empirical distribution, however.

Distribution of x[i]

Distribution of $\theta[x[1], ..., x[n]]$

+

Bootstrap vs. Simulation Estimates

- The left are estimates $\hat{\alpha}_r$ when you simulate from F (impossible in practice), while the right are when you simulate from \hat{F} (possible in practice).
- The estimated variances are very similar

FIGURE 5.10. Left: A histogram of the estimates of α obtained by generating 1.000 simulated data sets from the true population. Center: A histogram of the

estimates of α obtained from 1,000 bootstrap samples from a single data set. Right: The estimates of α displayed in the left and center panels are shown as boxplots. In each panel, the pink line indicates the true value of α .

The Bootstrap

- Input: A statistic $\hat{\theta}$, number of desired simulations B
- For b = 1, ..., B,
 - \circ Simulate $x_1^b,\ldots,x_n^b \overset{i.i.d.}{\sim} \hat{F}$
 - $\circ \,$ Compute $\hat{ heta}^b := \hat{ heta}\left(x_1^b, \dots, x_n^b
 ight)$
- Estimate the variance of the original $\hat{\theta}$ by looking at the variance in the simulation output,

$$ext{Var}\left[\hat{ heta}\left(x_{1},\ldots,x_{n}
ight)
ight]pproxrac{1}{2}\sum_{a}^{B}\left(\hat{ heta}^{b}-ar{ heta}
ight)^{2},$$

where $\bar{\theta}$ is the average of all the $\hat{\theta}^b$.

Plug-in Principle

The original estimator is constructed according to

$$F \stackrel{sample}{\longrightarrow} x_1, \ldots, x_n \stackrel{estimate}{\longrightarrow} \hat{ heta} \left(x_1, \ldots, x_n
ight)$$

This is only done once, so you can't estimate the standard error from it alone.

+

Plug-In Principle

If we plug in \hat{F} for F, we get

$$\hat{F} \xrightarrow{resample} x_1^b, \dots, x_n^b \xrightarrow{estimate} \hat{ heta} \left(x_1^b, \dots, x_n^b
ight) := \hat{ heta}^b$$

This can be done as much as we want, so we can estimate the variance across $\hat{\theta}^b$.

+

The Resampling Perspective

- Draws from \hat{F} : up or downweight original samples.
 - \circ Some x_i may not be included, other might be included multiple times
 - \circ View this as points on the simplex (space of weights that sum to n)

The Resampling Perspective

• The bootstrap measures the sensitivity of $\hat{\theta}$ to different weightings of the original points

Bootstrap Confidence Intervals

• A lot of times, we use estimates of the variance to build confidence intervals

all weights on sample j

all weights on sample i

• If $\hat{\theta}$ is approximately normal, it can be shown that

$$\hat{ heta} \pm 1.96 \sqrt{\mathrm{Var}\left(\hat{ heta}
ight)}$$

is a valid confidence interval

+

Approach 1

Therefore, if we can use the bootstrap to estimate the variance, we can directly use it to make a confidence interval

$$\hat{ heta} \pm 1.96 \sqrt{\widehat{ ext{Var}}\left(\hat{ heta}
ight)}$$

Distribution of x[i]

Distribution of $\theta[x[1], ..., x[n]]$

Approach 2

- What if $\hat{\theta}$ isn't approximately normal?
- In classical stats, you'd need new theory to find an alternative confidence interval
- However, the bootstrap gives us access to something close

to the distribution of θ

Distribution of x[i]

Distribution of $\theta[x[1], ..., x[n]]$

+

Approach 2

- Main idea is to directly use quantiles of the simulated $\hat{\theta}^b$
- No longer requires normality (or even symmetry)
- However, requires more simulation samples, since quantiles are harder to estimate than variances

+

Approach 2

- Main idea is to directly use quantiles of the simulated $\hat{\theta}^b$
- No longer requires normality (or even symmetry)
- However, requires more simulation samples, since quantiles are harder to estimate than variances

Figure 11.3 Histogram of B=2000 nonparametric bootstrap replications $\hat{\theta}^*$ for the student score sample correlation; the solid curve is the ideal parametric bootstrap distribution $f_{\hat{\theta}}(r)$ as in Figure 11.1. Observed correlation $\hat{\theta}=0.498$. Small triangles show histogram's 0.025 and 0.975 quantiles.

Extra Examples: Difference in Means

- Suppose we want to test the difference in means between two groups.
- We can define a reference distribution using the bootstrap
- Idea is to sample repeatedly from \hat{F}_1 and \hat{F}_2 , and look at the distribution in the difference in means

+

Extra Examples: Difference in Means

- Suppose we want to test the difference in means between two groups.
- We can define a reference distribution using the bootstrap
- Idea is to sample repeatedly from \hat{F}_1 and \hat{F}_2 , and look at the distribution in the difference in means

Figure 10.4 B = 500 bootstrap replications for the median difference between the **AML** and **ALL** scores in Figure 1.4, giving $\widehat{se}_{boot} = 0.074$. The observed value **mediff** = 0.235 (vertical black line) is more than 3 standard errors above zero.

Extra Examples: Regression

- You can bootstrap regression models as well
- Fit the regression many times, across resampled versions of the data
- Works for variants of regression with no analytical s.e. formula

Example robust regression bootstrap from Bootstrapping Regression Models

Extra Examples: Regression

It can even be applied to nonparametric regression models, e.g., lowess regressions,

alla evell mallaolli i orests.

```
import {slide} from @mbostock/slide
+

* <style>

mtex_block = f()

mtex = f()
```

000

© 2020 Observable, Inc.

About Jobs Contact Terms