2023 级《线性代数 I》期末考试卷(A)

班级	学号	姓名

请将答案写在答题纸上!

一、单选题(1-5,每小题4分,共20分)

- **1.** 设 A 为 n 阶矩阵, $A^2 = A$,则下列成立的是【】
- (A) A = O (B) A = E (C) 若 A 不可逆,则 A = O (D) 若 A 可逆,则 A = E
- **(A)** | A |=| B |
- **(B)** $|A| \neq |B|$
- (C) 若 |A| = 0, 则 |B| = 0
- **(D)** 若 | *A* |> 0, 则 | *B* |> 0
- 3. 下列矩阵中不能相似于对角矩阵的是【】

(A)
$$\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
(B) $\begin{pmatrix} 1 & 1 & a \\ 1 & 2 & 0 \\ a & 0 & 3 \end{pmatrix}$
(C) $\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
(D) $\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$

- **4.** 若 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关,则【】
- (A) α_1 可由 α_2 , α_3 线性表示
- **(B)** α_4 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示
- (C) α_4 可由 α_1, α_3 线性表示
- **(D)** α_4 可由 α_1,α_2 线性表示
- **5.** 设 α_1,α_2 是齐次方程组Ax=0的基础解系, β_1,β_2 是非齐次方程组Ax=b的两个不同解,则方程组Ax=b的通解为【】

(A)
$$k_1\alpha_1 + k_2(\alpha_1 - \alpha_2) + \frac{\beta_1 - \beta_2}{2}$$
 (B) $k_1\alpha_1 + k_2(\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$

(C)
$$k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$$
 (D) $k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + \frac{\beta_1 + \beta_2}{2}$

二、填空题(6-11,每小题 5分,共30分)

6. 行列式
$$\begin{vmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{vmatrix} =$$
 . **7.** 设 $\alpha = (1, -1, 2)^T$, $\beta = (2, 1, 1)^T$, $A = \alpha \beta^T$, 则 $A^n =$. .

8. 设
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ 和 $\beta_1 = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$ 是向量空间 V 的两组基,则从 α_1, α_2 到

 β_1, β_2 的过渡矩阵为

- 9. 设 $A = \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$, $\alpha = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, 则向量 $A^2 \alpha$ 的模 $||A^2 \alpha|| = \underline{\qquad}$.
- **10.** 设 A , B 都是三阶矩阵, A 相似于 B , 且 |E-A|=|E-2A|=|E-3A|=0 ,则 $|B^{-1}+2E|=$.
- **11.** 二次型 $f(x_1,x_2,x_3) = (x_1 + x_2 x_3)^2 + (x_2 + x_3)^2$ 是否正定 . (填"是"或"否")
- 三、解答题(12-14小题,每小题12分,共36分)
- **12.** 讨论含参数 a 的线性方程组 $\begin{cases} ax_1 + (a+3)x_2 + x_3 = -2 \\ x_1 + ax_2 + x_3 = a \end{cases}$ 解的情况,在有无穷多解时求出 $\begin{cases} x_1 + x_2 + x_3 = -2 \\ x_1 + x_2 + x_3 = a^2 \end{cases}$

结构式通解。

13. 求向量组 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 0 \\ 3 \\ -1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 3 \\ 3 \\ 7 \end{pmatrix}$ 的秩和一个极大线性无关组,并将其

余向量用此极大线性无关组表示。

14. 设
$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{pmatrix}$$
, 求正交矩阵 Q 使得 $Q^T A Q$ 为对角矩阵。

- 四、证明题(15-16小题,每小题7分,共14分)
- **15.** 设 λ_1 , λ_2 , λ_3 是 A 的三个不同的特征值,对应的特征向量为 α_1 , α_2 , α_3 , 令 $\beta = \alpha_1 + \alpha_2 + \alpha_3$. 证明:向量组 β , $A\beta$, $A^2\beta$ 线性无关.
- **16.** 设A,B 为n阶正定矩阵,证明: A+B为正定矩阵。

江 南 大 学 考 试 卷 专 用 纸

江 南 大 学 考 试 卷 专 用 纸

