PUITEF200 44 0 0 8719 BUNDESREPUBLIK DEUTSCHL

REC'D 15 SEP 2004 **WIPO** PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

BEST AVAILABLE COPY

Aktenzeichen:

103 36 985.6

Anmeldetag:

12. August 2003

Anmelder/Inhaber:

DaimlerChrysler AG,

70567 Stuttgart/DE

Bezeichnung:

Verfahren zur Unterstützung des Fahrers bei

Fahrmanövern

IPC:

G 08 G, G 05 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 26. August 2004 **Deutsches Patent- und Markenamt**

> > Øer Präsident

Im Auftrag

Agurks

15

20

25

30

DaimlerChrysler AG

Pfeffer 08.08.2003

Verfahren zur Unterstützung des Fahrers bei Fahrmanövern

Die Erfindung betrifft ein Verfahren zur Unterstützung des Fahrers eines Fahrzeugs bei Fahrmanövern gemäß dem Oberbegriff des Patentanspruches 1.

Ein solches Verfahren geht beispielsweise aus der DE 198 09 416 Al hervor, die ein Verfahren zur Unterstützung des Fahrers beim Einparken offenbart. Dem Fahrer wird während des Fahrmanövers die Einparkstrategie über eine optische Anzeigevorrichtung eine akustische Sprachausgabeeinrichtung oder ein haptisches Lenkrad mitgeteilt, so dass der Fahrer der Einparkstrategie folgend in die Parklücke einparken kann.

Das gattungsgemäßes Verfahren hat den Nachteil, dass die Reaktionen des Fahrers auf die Angaben der einzustellenden Lenkradstellung nicht vorhersagbar sind. Der Fahrer ist in den Regelkreis eingebunden und stellt sozusagen eine Störgröße dar. Insbesondere bei schwierigen Fahrmanövern, wie z.B. das Rückwärtseinparken in eine Parklücke am Straßenrand parallel zum Straßenrand (sogenanntes Kolonnenparken), ist es für den Fahrer schwierig, während dem Fahrmanöver die jeweils durch die Angabe angeforderte Lenkradstellung einzustellen.

Es ist daher die Aufgabe der vorliegenden Erfindung ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens der gattungsgemäßen Art derart weiterzubilden, dass dem Fahrer das Einstellen der mittels der Angabe angeforderten Lenkradstellung zu erleichtern.

20

25

30

35

Diese Aufgabe wird durch die Merkmale der Patentansprüche 1 und 14 gelöst.

5 Erfindungsgemäß wird eine Lenkwinkelabweichung zwischen dem vom Fahrer über das Lenkrad tatsächlich eingestellten Istlenkwinkel und dem der angeforderten Lenkradstellung entsprechenden Solllenkwinkel unabhängig von der Lenkradbetätigung durch den Fahrer selbsttätig korrigiert, z.B. ausgeregelt.

Ist eine Lenkwinkelabweichung gegeben, so entfernt sich das Fahrzeug während des Fahrmanövers von der durch die Referenztrajektorie vorgegebenen Ideallinie. Der Fahrer hat die Lenkaufgabe, den Istlenkwinkel gemäß der Vorgabe einzustellen, um in die gewünschte Zielposition zu gelangen. Um ihm diese Aufgabe zu erleichtern, werden Lenkwinkelabweichungen automatisch korrigiert. Für den Fahrer wird der Komfort dadurch erheblich vergrößert.

Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Vorrichtung ergeben sich aus den abhängigen Patentansprüchen.

Die Fahrer unabhängige Korrektur der Lenkwinkelabweichung (d_{LW}) nur erfolgt insbesondere nur dann, wenn die Lenkwinkelabweichung (d_{LW}) innerhalb eines vorgegebenen Lenkwinkelkorrekturbereichs liegt. Dem Fahrer wird die Lenkaufgabe dadurch nicht vollständig aus der Hand genommen, sondern es erfolgt lediglich eine Korrektur des Istlenkwinkels, falls sich eine Lenkwinkelabweichung ergibt. Der Lenkwinkelkorrekturbereich kann beispielsweise so gewählt werden, dass der Istlenkwinkel nicht über einen vorgegebenen maximalen Korrekturwert, z.B. \pm 5°, erhöht bzw. verringert wird.

Die Fahrzeuglängsgeschwindigkeit (v) kann bei einer außerhalb des Lenkwinkelkorrekturbereichs liegenden Lenkwinkelabwei-

15

20

25

30

35

chung (d_{IW}) fahrerunabhängig beeinflusst werden. Die Fahrzeuglängsgeschwindigkeit wird dann insbesondere herabgesetzt, um dem Fahrer ausreichend Zeit zur Verfügung zu stellen, das Fahrzeug wieder in eine durch die Referenztrajektorie vorgegebene Fahrzeugstellung zu lenken.

Die Beeinflussung der Fahrzeuglängsgeschwindigkeit ist vorteilhafter Weise vom Betrag der Lenkwinkelabweichung abhängig. Je größer die Lenkwinkelabweichung ist, desto stärker wird das Fahrzeug verzögert, um die Fahrzeuglängsgeschwindigkeit zu reduzieren.

Während des Fahrmanövers kann abhängig von der aktuellen Fahrzeugstellung ein die zulässigen Lenkwinkel definierender Lenkwinkel-Toleranzbereich bestimmt werden und die Beeinflussung der Fahrzeuglängsgeschwindigkeit vom Toleranzabstand zwischen dem angeforderten, vom Fahrer einzustellenden Solllenkwinkel und den Toleranzbereichsgrenzen abhängen. Je geringer der Toleranzabstand zwischen dem Solllenkwinkel und einer Toleranzbereichsgrenze ist, desto stärker muss die Fahrzeuggeschwindigkeit reduziert werden, wenn der Fahrer über die Lenkradstellung einen Istlenkwinkel einstellt, der zwischen dem Solllenkwinkel und der betreffenden Toleranzbereichsgrenze liegt.

Dabei besteht die Möglichkeit, zur Ermittlung des Lenkwinkel-Toleranzbereichs einen Drehwinkel-Toleranzbereich zu bestimmen, wobei der aktuelle Drehwinkel zwischen der Fahrzeuglängsachse und einer Koordinatenachse eines ortsfesten Koordinatensystems so lange vergrößert bzw. verkleinert wird, bis es gerade noch möglich ist, eine Trajektorie zur Zielposition rechnerisch zu bestimmen. Bei der Bestimmung der Trajektorie kann das selbe Ermittlungsverfahren herangezogen werden, wie bei der Bestimmung der Referenztrajektorie im Startpunkt des Fahrzeugs. Es würden hierbei sozusagen zwei Grenztrajektorien berechnet, die in Fahrmanöver-Fahrtrichtung gesehen ausgehend von der aktuellen Fahrzeugposition eine maximal mögliche

10

15

20

30

35

linksseitige Grenztrajektorie und eine maximal mögliche rechtsseitige Granztrajektorie darstellen, entlang derer das Fahrzeug noch zur Zielposition bewegt werden kann. Dabei hängt die Bestimmung der Grenztrajektorien auch davon ab, welcher minimale Radius aufgrund der Fahrzeuggeometrie gefahren werden kann und ob sich Hindernisse in der Fahrzeugumgebung befinden, an denen vorbeigefahren werden muss.

Je größer der Betrag der Lenkwinkelabweichung ist und/oder je kleiner der Betrag des Toleranzabstandes ist, desto geringer wird die Fahrzeuglängsgeschwindigkeit gewählt und durch entsprechende Steuer- oder Regeleingriffe eingestellt.

Vorteilhafter Weise wird das Fahrzeug bis zum Stillstand verzögert und im Stillstand gehalten, so lange aufgrund der vorhandenen Lenkwinkelabweichung das Fahrzeug bei einer Weiterfahrt eine Fahrzeugstellung einnehmen würde, aus der heraus die Zielposition ohne Rangierunterbrechung des Fahrmanövers nicht mehr erreichbar ist. Können bezogen auf die aktuelle Fahrzeugposition keine oder nur noch sehr geringe Drehwinkelanweichungen vom aktuellen Drehwinkel des Fahrzeugs zugelassen werden, so wird die Fahrzeuglängsgeschwindigkeit sehr gering vorgegeben und das Fahrzeug wird sofort zum Stillstand gebracht, wenn der Fahrer eine Lenkradstellung vorgibt, die das Fahrzeug beim Weiterfahren mit dieser vom Fahrer vorgegebenen Lenkradstellung in eine Fahrzeugstellung bringen würde, aus der keine Trajektorie mehr zur Zielposition bestimmbar ist. Dadurch wird gewährleistet, dass das Fahrmanöver nicht durch Rangiermanöver unterbrochen und von neuem gestartet werden muss. Ausgehend vom Stillstand wird das Fahrzeug wieder beschleunigt, wenn eine zulässige bzw. selbsttätig korrigierbare Lenkwinkelabweichung vorliegt und damit ein zulässiger Istlenkwinkel vom Fahrer eingestellt wurde.

Vorteilhafter Weise wird dem Fahrer die einzustellende Lenkradstellung durch eine akustische Fahrerinformation und/oder

15

20

25

30

35

eine optische Fahrerinformation und/oder einer haptische Fahrerinformation übermittelt. Zur haptischen Fahrerinformation kann beispielsweise das Lenkradmoment variiert werden. Hierbei ist es z.B. denkbar, dass das Drehen des Lenkrades zur angeforderten Lenkradstellung hin erleichtert und/oder das Drehen von der angeforderten Lenkradstellung weg erschwert wird. Zu diesem Zweck kann beispielsweise der bei einer Servolenkung ohnehin vorhandene Servomotor verwendet werden.

Bei dem durchzuführenden Fahrmanöver kann es sich beispiels-weise um ein Einparkmanöver handeln, wobei die Referenztra-jektorie den idealen Weg von der Ausgangsposition des Fahrzeugs bzw. der aktuellen Fahrzeugstellung in die gewünschte Parkposition angibt. Gerade bei Einparkmanövern ist eine Fahrerunterstützung wünschenswert, insbesondere für unerfahrene Autofahrer oder für Autofahrer, die an ein neues oder selten genutztes Fahrzeug nicht gewöhnt sind. Es handelt sich ganz allgemein um Fahrmanöver mit einer Fahrzeuglängsgeschwindigkeit unterhalb eines Geschwindigkeitsschwellenwertes von beispielsweise 10 km/h.

Es ist weiterhin von Vorteil, wenn bei einem Fahrzeug im Anhängerbetrieb jeder Fahrzeugstellung entlang der Referenztrajektorie ein Sollknickwinkel zwischen der Fahrzeuglängsachse und der Anhängerlängsachse zugeordnet wird und wenn der aktuelle Knickwinkel bestimmt und mit dem entsprechenden Sollknickwinkel verglichen wird, wobei bei einer Winkelabweichung zwischen Sollknickwinkel und aktuellem Knickwinkel die Fahrzeuglängsgeschwindigkeit fahrerunabhängig beeinflusst wird. Hier wird zusätzlich eine Winkelabweichung zwischen Sollknickwinkel und aktuellem Knickwinkel berücksichtigt. Auch bei der Winkelabweichung zwischen aktuellem Knickwinkel und Sollknickwinkel kann eine Geschwindigkeitsregelung in Abhängigkeit des Betrages der Winkelabweichung erfolgen. Weiterhin wäre es auch möglich, die fahrerunabhängige Fahrzeugverzögerung um so größer zu wählen, je größer der Betrag der Winkelabweichung ist.

Im folgenden wird die Erfindung anhand der beigefügten Zeichnung näher erläutert. Es zeigen:

- 5 Fig. 1 eine schematische Darstellung einer Solltrajektorie und der Grenztrajektorien für ein Einparkmanöver in Draufsicht,
- Fig. 2 eine blockschaltbildartige Darstellung eines Aus-10 führungsbeispiels einer Vorrichtung zur Unterstützung des Fahrers bei einem Fahrmanöver,
- Fig. 3a-3c eine erste Ausführungsform einer optischen Anzeige für die einzustellende Lenkradstellung für den Fahrer,
 - Fig. 4 eine zweite Ausführungsform einer optischen Anzeige für die einzustellende Lenkradstellung für den Fahrer,
- Fig. 5 eine dritte Ausführungsform einer optischen Anzeige für die einzustellende Lenkradstellung für den Fahrer,
- 25 Fig. 6a eine Referenztrajektorie und die Grenztrajektorien zu einem bestimmten Zeitpunkt während eines Fahrmanövers
- Fig. 6b ein Diagramm zu der in Fig. 6a dargestellten Situation, wobei die Fahrzeuglängsgeschwindigkeit v in Abhängigkeit vom Istlenkwinkel $\delta_{\rm ist}$ aufgetragen ist, und
- Fig. 7 eine schematische Darstellung eines Fahrzeugs im Anhängerbetrieb in Draufsicht.

Bei der Erfindung handelt es sich um ein Verfahren und eine Vorrichtung zur Unterstützung des Fahrers eines Fahrzeugs 10 bei bzw. während einem Fahrmanöver. Bei einem solchen Fahrmanöver kann es sich beispielsweise um ein Einparkmanöver, ein Rangiermanöver oder dergleichen handeln, wobei das Fahrzeug 10 im Solobetrieb oder im Anhängerbetrieb mit angehängtem Anhänger betrieben werden kann. Z.B. kann der Fahrer auch unterstützt werden beim Fahren im Anhängerbetrieb geradeaus rückwärts.

10

15

20

Bei Einparkmanövern wird zunächst mittels einer geeigneten Sensorik, beispielsweise mittels Ultraschallsensoreinheiten 11 während der Vorbeifahrt des Fahrzeuges 10 Parklücken vermessen und dahingehend ausgewertet, ob die Parklücke ausreichend groß ist für ein Einparkmanöver. Beim Ausführungsbeispiel nach Fig. 2 sind hierfür vier Ultraschallsensoreinheiten 11 vorgesehen, die jeweils in einem Eckbereich des Fahrzeugs 10 angeordnet sein können. Die Anzahl der vorhandenen Ultraschallsensoren 11 ist beliebig und hängt insbesondere auch davon ab, wie groß der Abstrahlwinkel α ist, unter dem die Sensorwellen abgestrahlt und die reflektierten Wellen empfangen werden. Alternativ zu den Ultraschallsensoreinheiten 11 können auch Radarsensoren oder Lasersensoren eingesetzt werden.

25

30

35

Die Auswertung der Sensordaten der Ultraschallsensoreinheiten 11 erfolgt in einer Auswerteeinrichtung 12, in der festgestellt wird, ob die ausgemessene Parklücke ausreichend groß ist zum Einparken des Fahrzeugs. Das Auswerteergebnis kann dem Fahrer durch eine Anzeigeeinrichtung 13 angezeigt werden.

Das Ausmessen der Parklücken und das Auswerten der Messergebnisse kann entweder unterhalb einer vorgebbaren Geschwindigkeitsschwelle ständig erfolgen oder alternativ erst dann, wenn der Fahrer eine entsprechende Anforderung eingegeben hat, beispielsweise über das Kombiinstrument.

30

35

Wurde eine ausreichend große Parklücke ermittelt, so kann der Fahrer das erfindungsgemäße Unterstützungsverfahren durch eine entsprechende Bedienanforderung einleiten. Eine Möglichkeit besteht darin, den Fahrer nach dem Auffinden einer geeigneten Parklücke automatisch – beispielsweise über das Kombinstrument – zu fragen, ob er eine Einparkunterstützung wünscht. Der Fahrer braucht dann lediglich die Frage zu bestätigen, um das erfindungsgemäße Unterstützungsverfahren zu aktivieren. Eine andere Möglichkeit besteht darin, dass nach dem Auffinden einer geeigneten Parklücke, das Unterstützungsverfahren automatisch dann aktiviert wird, wenn das Fahrzeug innerhalb einer vorgebbaren Zeitspanne angehalten und der Rückwärtsgang eingelegt wird.

Fig. 1 zeigt eine typische Situation für ein Einparkmanöver eines Fahrzeugs 10 am Straßenrand einer Straße 20 zwischen anderen geparkten Fahrzeugen 21. Das Fahrzeug 10 ist auf der Strasse 20 entlang der Reihe parkender Fahrzeuge 21 gefahren und hat im Vorbeifahren mittels der Ultraschallsensoreinheiten 11 und der Auswerteeinrichtung 12 eine ausreichend große Parklücke 22 ermittelt. Dies wurde dem Fahrer über die Anzeigeeinrichtung 13 mitgeteilt und er hat das Fahrzeug angehalten.

In Abhängigkeit von zu Beginn des Fahrmanövers eingenommenen Startposition 15 des Fahrzeugs 10 wird in der Auswerteeinrichtung 12 eine Referenztrajektorie 16 ermittelt, die die Ideallinie darstellt, um das Fahrzeug ausgehend von seiner Startposition 15 in eine Ziel- oder Parkposition 17 zu bewegen. Die Referenztrajektorie 16 stellt somit den idealen zurückzulegenden Weg dar, der von der Startposition 15 in die Zielposition 17 führt.

Verfahren zur Bestimmung der Referenztrajektorie 16 sind beispielsweise aus der DE 29 01 504 B1, der DE 38 13 083 A1 oder der DE 199 40 007 A1 bekannt. Auf die bekannten Verfahren zur

15

20

25

Bestimmung der Referenztrajektorie 16 wird an dieser Stelle ausdrücklich Bezug genommen.

Bei der Bestimmung der Referenztrajektorie können die Mindestabstände (wie Mindestabstand in Fahrzeuglängsrichtung, Mindestabstand in Fahrzeugquerrichtung), die das entlang der Referenztrajektorie zu bewegenden Fahrzeug zu Hindernissen einzuhalten hat, in Abhängigkeit von der Länge der gefundenen Parklücke variiert werden. Das heißt z.B., dass die Mindestabstände zu Hindernissen umso größer gewählt werden können, je länger die Parklücke ist. Dadurch kann dem Fahrer beim Einparken ein möglichst großer Spielraum gewährleistet werden, um die tolerierbaren Abweichungen der tatsächlichen Fahrzeugposition von der Referenztrajektorie so groß wie möglich zu machen. Dies erhöht den Komfort für den Fahrer.

Vor Beginn des Fahrmanövers mit in Startposition 15 befindlichen Fahrzeug 10 wird der Fahrer automatisch gefragt, ob er für das folgende Einparkmanöver eine Unterstützung wünscht, wobei der Fahrer durch eine entsprechende Eingabe die Unterstützung ablehnen oder annehmen kann.

Fordert der Fahrer für das Fahrmanöver die automatische Unterstützung nach dem erfindungsgemäßen Verfahren an, so wird ihm über die Anzeigeeinrichtung 13 die einzustellende Lenkradstellung bzw. der einzustellende Lenkradwinkel angezeigt, der das Fahrzeug entlang der aktuellen Referenztrajektorie 16 bewegen würde.

In den Fig. 3 - 5 sind verschiedene Beispiele von optischen Darstellungen angegeben, die dem Fahrer über die Anzeigeeinrichtung 13 angezeigt werden können. Das erste Ausführungsbeispiel einer optischen Anzeige gemäß der Fig. 3a - 3c ist eine Art Balkenanzeige. Ein linker Balken 25 gibt an, wenn das Lenkrad nach links zu drehen ist und ein rechter Balken 26 gibt an, wenn der Fahrer das Lenkrad nach rechts drehen soll. Je größer der Lenkradwinkel ist, den der Fahrer einzu-

15

20

25

30

stellen hat, desto größer ist auch der angezeigte linke Balken 25 bzw. der rechte Balken 26. Beim Ausführungsbeispiel sind die beiden Balken 25, 26 von mehreren horizontal nebeneinander liegenden Leuchtmitteln, wie z.B. Leuchtdioden gebildet. Je mehr Leuchtdioden eines Balkens 25, 26 leuchten, desto größer ist der angeforderte Lenkradwinkel. Es versteht sich, dass alternativ die Art der Balkendarstellung auch mittels eines nicht näher dargestellten LC-Displays der Anzeigeeinrichtung 13 dargestellt werden könnte. Es wäre auch möglich, die in heutigen Fahrzeugen bereits vorhandene Balkenanzeige, die den Abstand zu einem Hindernis beim Einparken anzeigt, als Anzeigeeinrichtung 13 zu verwenden.

In Fig. 3a leuchtet die jeweils erste Leuchtdiode 27 der beiden Balken 25, 26, die zum jeweils anderen Balken 26 bzw. 25 benachbart angeordnet ist. Die leuchtenden Leuchtdioden 27 sind in Fig. 3 schematisch durch ein Punktmuster dargestellt. Leuchtet jeweils die erste Leuchtdiode 27 beider Balken 25, 26 wird dem Fahrer dadurch signalisiert, dass er den momentan eingestellten Lenkradwinkel unverändert beibehalten soll. Alternativ hierzu könnte auch eine einzelne, zwischen den beiden Balken 25, 26 angeordnete Nullstellungsleuchtdiode vorgesehen sein, die leuchtet, wenn die Lenkradposition unverändert bleiben soll.

In Fig. 3b wird dem Fahrer durch zwei leuchtende Leuchtdioden des linken Balkens 25 angezeigt, dass er das Lenkrad leicht nach links drehen soll. Sobald die angeforderte Lenkradstellung erreicht ist, erscheint wieder die in Fig. 3a dargestellte und oben beschriebene Anzeige. In Fig. 3c wird durch vier leuchtende Leuchtdioden des rechten Balkens 26 ein starker Lenkradeinschlag nach rechts vom Fahrer angefordert.

Die Anzahl der Leuchtdioden 27, die einen Balken 25, 26 bil-35 den ist grundsätzlich beliebig wählbar und wird derart abgestimmt, dass dem Fahrer eine ausreichend feine Unterteilung in der Anforderung der einzustellenden Lenkradstellung angegeben werden kann. Beispielsgemäß enthält jeder Balken 25, 26 fünf Leuchtdioden 27.

Mittels der Anzeigeeinrichtung 13 können zusätzlich oder alternativ auch weitere Darstellungen angezeigt werden, die dem Fahrer die einzustellende Lenkradstellung angeben. Fig. 4 zeigt beispielsweise eine stilisierte Lenkraddarstellung 30 in Kombination mit einem Richtungspfeil 31, die dem Fahrer über ein LC-Display der Anzeigeeinrichtung 13 übermittelt werden kann, wobei die Lenkraddarstellung 30 und der Richtungspfeil 31 die angeforderte Drehrichtung bzw. den angeforderten Lenkradwinkel angeben. In Fig. 4 wird über die Lenkraddarstellung 30 und den Richtungspfeil 31 vom Fahrer ein leichter Lenkradeinschlag nach rechts angefordert.

15

10

Eine weitere Ausführung einer optischen Darstellung zur Anforderung einer einzustellenden Lenkradstellung ist in Fig. 5 gezeigt. Dort sind schematisch die Fahrzeugräder 34 der lenkbaren Vorderachse 35 dargestellt. Die durch die ausgezogenen Linien dargestellte Radstellung ist die aktuelle Radstellung 36 der Fahrzeugräder 34, während die gestrichelte Darstellung die angeforderte Sollstellung 37 der gelenkten Fahrzeugräder 34 angibt. Der Fahrer muss demnach das Lenkrad in eine Stellung verlagern, in der die Sollstellung 37 der Fahrzeugräder 34 mit der aktuellen Radstellung 36 übereinstimmt.

25

30

35

20

Es versteht sich, dass anstatt der unterschiedlichen Liniendarstellung von Sollstellung 37 und aktueller Radstellung 36 der Fahrzeugräder 34 auch unterschiedliche Farben gewählt werden können, sofern die Anzeigeeinrichtung 13 über ein Farb-LC-Display verfügt.

Es ist nicht nur möglich, eine oder mehrere der beschriebenen optischen Anzeigemöglichkeiten zu verwenden, um dem Fahrer die einzustellende Lenkradstellung anzugeben, sondern es kann des weiteren alternativ oder zusätzlich eine akustische Fah-

15

20

30

rerinformation und/oder eine haptische Fahrerinformation erfolgen, die den einzustellenden Lenkradwinkel angeben.

Die akustische Fahrerinformation kann beispielsweise über nicht näher dargestellte Lautsprecher im Fahrzeug durch eine Sprachausgabe erfolgen. Die haptische Fahrerinformation kann über das Lenkrad vermittelt werden. Es ist dabei möglich, das vom Fahrer aufzubringende Lenkradmoment für eine Drehrichtung von der angeforderten Lenkradstellung weg zu erhöhen und/oder das vom Fahrer aufzubringende Lenkradmoment in eine Drehstellung zur angeforderten Lenkradstellung hin zu verringern. Mithin kann der Fahrer durch das aufzubringende Lenkradmoment erfahren, in welche Drehrichtung er das Lenkrad bewegen muss, um die angeforderte Lenkradstellung einzustellen, wodurch eine haptische Fahrerinformation zur Angabe der einzustellenden Lenkradstellung realisiert ist.

Zur selbsttätigen Korrektur des Istlenkwinkels δ_{ist} , ist die Auswerteeinrichtung 12 mit einem Servomotor 41 der Servolenkung 42 zur dessen Ansteuerung verbunden, wie dies in Fig. 2 durch die strichpunktierte Verbindungslinie 43 angedeutet ist. Somit kann der Istlenkwinkel δ_{ist} von der Auswerteeinrichtung 12 durch Ansteuerung des Servomotors 41 über die Lenksäule 44 korrigiert werden. In Abwandlung zum dargestellten Ausführungsbeispiel können der Servomotor 41 und der mit dem Lenkrad 40 verbundene Teil der Lenksäule 44 mit den Eingängen eines Überlagerungsgetriebes der Servolenkung 42 verbunden sein, wobei die Eingangsgrößen des Servomotors 41 und des Lenkrades 40 im Überlagerungsgetriebe zu einer Ausgangsgröße summiert werden. Diese Ausgangsgröße wird über den mit dem gelenkten Fahrzeugrädern 34 verbundenen Teil der Lenksäule 44 an den gelenkten Fahrzeugrädern 34 eingestellt.

Beispielsgemäß erfolgt diese Fahrer unabhängige Korrektur des Lenkwinkels anhand des Servomotors 41 nur dann, wenn die Lenkwinkelabweichung d_{LW} innerhalb eines Lenkwinkelkorrekturbereiches K liegt, so dass kein vollautomatisches Lenken ent-

20

25

30

35

lang der Referenztrajektorie 16 erfolgt, sondern lediglich kleine Lenkwinkelabweichungen d_{LW} korrigiert werden, um den Komfort für den Fahrer zu erhöhen.

Während des Fahrmanövers wird in Abhängigkeit der jeweils aktuellen Fahrzeugstellung x_{F,akt}/y_{F,akt}/Ψ_{F,akt} die Stellungsabweichung des Fahrzeugs 10 von der durch die Referenztrajektorie 16 ermittelt und dem Fahrer mittels der Anzeigeeinrichtung 13 die einzustellende Lekradstellung angezeigt, der die Stellungsabweichung reduziert, so dass das Fahrzeug wieder auf eine der Referenztrajektorie entsprechende Fahrtroute gebracht wird. Alternativ hierzu ist es grundsätzlich auch möglich die Stellungsabweichung automatisch auszuregeln.

Unter der aktuellen Fahrzeugstellung $x_{F,akt}/y_{F,akt}/\Psi_{F,akt}$ des Fahrzeugs 10 ist nicht nur die Fahrzeugposition $x_{F,akt}/y_{F,akt}$ in der Koordinatenebene in Bezug auf ein ortsfestes Koordinatensystem 22 der Straße 20 zu verstehen, sondern die Fahrzeugstellung beinhaltet auch die Ausrichtung der Fahrzeuglängsachse 71 bezogen auf das Koordinatensystem 22. Beispielsgemäß ist der Drehwinkel Ψ_F zwischen der y-Achse des Koordinatensystems 22 und der Fahrzeuglängsachse 71 eingeschlossen. Der Solldrehwinkel entspricht mithin der Tangenten an die Referenztrajektorie 16.

Zu Beginn und während des Fahrmanövers wird zudem in Fahrmanöver-Fahrtrichtung 18 eine rechtsseitige Grenztrajektorie 23 und eine linksseitige Grenztrajektorie 24 in der Auswerteeinrichtung 12 berechnet. Die Grenztrajektorien 23, 24 hängen von der aktuellen Fahrzeugstellung $x_{\text{F,akt}}/y_{\text{F,akt}}/\Psi_{\text{F,akt}}$ ab. Sie geben in Fahrmanöver-Fahrtrichtung 18 gesehen die beiden Trajektorien an, entlang derer das Fahrzeug 10 aus der aktuellen Fahrzeugposition $x_{\text{F,akt}}/y_{\text{F,akt}}$ heraus gerade noch zur Zielposition 17 gelenkt werden kann. Die rechtsseitige Grenztrajektorie 23 erhält man durch das sukzessive Erhöhen des aktuellen Drehwinkels $\Psi_{\text{F,akt}}$ – im mathematisch positiven Sinn – bis zu einem oberen Grenzdrehwinkel $\Psi_{\text{F,max}}$, mit dem gerade noch eine

Trajektorie, die rechtsseitige Grenztrajektorie 23, zur Zielposition 17 berechnet werden kann. Dabei bleiben die Werte der aktuellen Fahrzeugposition $x_{F,akt}/y_{F,akt}$ unverändert.

In analoger Weise wird der untere Grenzdrehwinkel $\Psi_{F,min}$ bestimmt, indem der aktuelle Drehwinkels $\Psi_{F,akt}$ sukzessive verringert wird, bis gerade noch die linsseitige Grenztrajektorie 24 zur Zielposition 17 bestimmt werden kann.

10

Daraus ergeben sich die folgenden Gleichungen:

$$\Psi_{\text{F,max}} = \Psi_{\text{F,akt}} + \Delta \Psi_{\text{L}}$$
 und $\Psi_{\text{F,min}} = \Psi_{\text{F,akt}} - \Delta \Psi_{\text{R}}$,

15

wobei $\Delta\Psi_L$ den Wert angibt, um den der aktuelle Drehwinkel erhöht wurde und $\Delta\Psi_R$ den Wert angibt, um den der aktuelle Drehwinkel verringert wurde, um die betreffenden Grenzderhwinkel zu erhalten.

20

25

Diese Grenztrajektorien 23, 24 werden beispielsweise mit dem für die Berechnung der Referenztrajektorie 16 verwendeten Algorithmus bestimmt. Beispielsgemäß werden die Grenztrajektorien 23, 24 während des Fahrmanövers zyklisch ermittelt. Um den Rechenaufwand zu verringern, wird bei einem Rechenzyklus die eine Grenztrajektorie 23 oder 24 und beim darauffolgenden Rechenzyklus die jeweils andere Grenztrajektorie 24 bzw. 23 berechnet. Die Genauigkeit bei dieser Vorgehensweise ist völlig ausreichend. Im vergleich zu dem zur Bestimmung der Referenztrajektorie verwendeten Algorithmus können zur Reduzierung des Rechenaufwandes weitere Vereinfachungen zugelassen werden. Z.B. können sich die Grenztrajektorien lediglich aus weniger Rechenaufwand erfordernden Bahnkurven wie Kreisabschnitten zusammensetzen.

35

30

Anhand der Figuren 6a und 6b wird im folgenden erläutert, wie die Beeinflussung des Istlenkwinkels $\delta_{\rm ist}$ und der Fahrzeug-

längsgeschwindigkeit v erfolgt, wenn eine Lenkwinkelabweichung d_{LW} zwischen dem vom Fahrer tatsächlich eingestellten Istlenkwinkel δ_{ist} und dem der angeforderten, einzustellenden Lenkradstellung entsprechenden Solllenkwinkel δ_{soll} vorliegt.

5

10

Das Fahrzeug 10 befindet sich zum Betrachtungszeitpunkt in der aktuellen Fahrzeugstellung, die durch die Werte $x_{F,akt}/y_{F,akt}/\Psi_{F,akt}$ in Bezug auf das Koordinatensystem 22, dessen Nullpunkt in der Startposition 15 liegt, beschrieben ist. Anhand dieser aktuellen Fahrzeugstellung $x_{F,akt}/Y_{F,akt}/\Psi_{F,akt}$ wird die Bestimmung des oberen Grenzdrehwinkels $\Psi_{F,max}$ und des unteren Grenzdrehwinkels $\Psi_{F,min}$ erläutert.

15

Die aktuelle Fahrzeugposition $x_{F,akt}/y_{F,akt}$ bleibt bei der Bestimmung der beiden Grenzdrehwinkel $\Psi_{F,max}$, $\Psi_{F,min}$ unverändert. Das Fahrzeug 10 wird quasi virtuell in dieser Position so lange um seine Hochachse gedreht, bis der betreffende Grenzdrehwinkel erreicht ist, aus dem es gerade noch möglich ist, eine Trajektorie – das heißt eine mögliche Fahrstrecke des Fahrzeugs 10 – nämlich die betreffende Grenztrajektorie 23 bzw. 24 zur Zielposition 17 zu ermitteln.

2

30

20

Zunächst sei das Fahrzeug um seine Hochachse so lange nach rechts gedreht (mathematisch negativer Sinn), bis der aktuelle Drehwinkel $\Psi_{F,akt}$ um $\Delta\Psi_R$ verringert ist, so dass die Fahrzeuglängsachse die in Figur 6a mit 71´ bezeichnete Stellung einnimmt. Die Fahrzeuglängsachse 71´ schließt mit der y-Achse des Koordinatensystems 22 dabei den unteren Grenzdrehwinkel $\Psi_{F,min}$ ein. Die sich in dieser Fahrzeugstellung ergebende in Fahrmanöver-Fahrtrichtung 18 gesehen rechtsseitige Grenztrajektorie 23 ist in Figur 61 dargestellt.

Gleichermaßen kann das Fahrzeug 10 in seiner aktuellen Fahrzeugposition virtuell um seine Hochachse nach links gedreht werden (mathematisch positiver Sinn), solange, bis gerade noch die linksseitige Grenztrajektorie 24 zur Zielposition 17 möglich ist. Der aktuelle Drehwinkel $\Psi_{\rm F,akt}$ wurde dabei um $\Delta\Psi_{\rm L}$

15

20

25

30

35

vergrößert, so dass sich zwischen der in dieser Drehstellung mit 71° bezeichneten Fahrzeuglängsachse und der y-Achse des Koordinatensystems 22 der obere Grenzdrehwinkel $\Psi_{\text{F,max}}$ ergibt. Auf dieser Weise wird ein Drehwinkel-Toleranzbereich zwischen dem unteren Grenzdrehwinkel $\Psi_{\text{F,min}}$ und dem oberen Grenzdrehwinkel $\Psi_{\text{F,max}}$ berechnet.

Dieser Drehwinkel-Toleranzbereich wird dann unter Verwendung einer grundsätzlich beliebig wählbaren Funktion f zur Bestimmung der Fahrzeuglängsgeschwindigkeit v verwendet. Die Fahrzeuglängsgeschwindigkeit v hängt dabei von der Lenkwinkelabweichung d_{LW} ab. Liegt der Wert der Lenkwinkelabweichung d_{LW} innerhalb des Lenkwinkelkorrekturbereiches K wird der Istlenkwinkel δ_{ist} selbsttätig korrigiert und die Fahrzeuglängsgeschwindigkeit v bleibt unverändert. Liegt die Lenkwinkelabweichung d_{LW} allerdings außerhalb des Lenkwinkelkorrekturbereiches K, wird die Fahrzeuglängsgeschwindigkeit verringert, um dem Fahrer ausreichend Zeit zu geben, wieder einen zulässigen Istlenkwinkel δ_{ist} über die Lenkradstellung vorzugeben.

In Fig. 6b ist ein Beispiel einer Abhängigkeit der Fahrzeuglängsgeschwindigkeit v vom Istlenkwinkel δ_{ist} aufgetragen. Stellt der Fahrzeugführer über die Lenkradstellung einen Istlenkwinkel δ_{ist} ein, der mit dem einzustellenden Solllenkwinkel δ_{soll} übereinstimmt, so beträgt die Fahrzeuglängsgeschwindigkeit v=v_0. Um den Solllenkwinkel δ_{soll} ist der Lenkwinkelkorrekturbereich K vorgegeben. Stellt der Fahrer einen Istlenkwinkel δ_{ist} ein, der innerhalb der Lenkwinkelkorrekturbereiches K liegt und daher nur wenig vom Solllenkwinkel δ_{soll} abweicht, so bleibt die Fahrzeuglängsgeschwindigkeit v unverändert. Bei Lenkwinkelabweichungen $d_{ t LW}$ die innerhalb des Lemkwinkelkorrekturbereiches K liegen, findet eine Fahrer unabhängige Lenkwinkelkorrektur des Istlenkwinkels $\delta_{ ext{ist}}$ statt, so dass keine Beeinflussung der Fahrzeug-Längsdynamik notwendig ist. Innerhalb der Lenkwinkelkorrekturbereiches K beträgt die Fahrzeuglängsgeschwindigkeit v daher $v = v_0$.

15

30

Dieser Lenkwinkelkorrekturbereich K stellt beim Beispiel nach Figur 6b den Scheitelbereich einer Gauß ähnlichen Kurve dar, wobei der Scheitelpunkt beim Wertepaar δ_{soll}/v_0 liegt. Der Lenkwinkelkorrekturbereich K ist beispielsgemäß symmetrisch zum Lenkwinkelsollwert $\delta_{ exttt{soll}}$ vorgegeben, könnte aber alternativ auch unsymmetrisch gewählt werden.

Bezüglich einer parallelen zur v-Achse durch den Scheitelpunkt ist diese Kurve unsymmetrisch ausgebildet. Beispielsgemäß ist jeder der beiden sich durch Teilung der Kurve im Scheitelpunkt ergebenden Kurvenabschnitte 80 bzw. 81 abhängig von der Drehwinkeldifferenz $\Delta\Psi_R$ bzw. $\Delta\Psi_L$ zwischen dem aktuellen Drehwinkel $\Psi_{\text{F,akt}}$ und dem entsprechenden oberen bzw. unteren Grenzdrehwinkel $\Psi_{\text{F,max}}$ bzw. $\Psi_{\text{F,min}}.$ Der erste Kurvenabschnitt 80 zwischen dem Solllenkwinkel δ_{Soll} hin zu kleineren Istlenkwinkeln δ_{ist} ist so bestimmt, dass die Standardabweichung der Drehwinkeldifferenz $\Delta\Psi_R$ zwischen dem unteren Grenzdrehwinkel $\Psi_{ t F,min}$ und dem aktuellen Fahrzeugdrehwinkel $\Psi_{ t F,akt}$ entspricht. Analog ist der zweite Kurvenabschnitt 81 ausge-20 hend vom Solllenkwinkel δ_{soll} zu größeren Istlenkwinkeln δ_{ist} hin so bestimmt, dass die Standortabweichung dieses zweiten Kurvenabschnitts 81 der Drehwinkeldifferenz $\Delta\Psi_{\text{L}}$ zwischen dem oberen Grenzdrehwinkel $\Psi_{\text{F,max}}$ und dem aktuellen Fahrzeugdrehwinkel $\Psi_{F,akt}$ entspricht.

Aus diesen beiden Kurvenabschnitten 80, 81 ergeben sich dann ein minimal zulässiger Istlenkwinkel $\delta_{ exttt{min}}$ und ein maximal zulässiger Istlenkwinkel $\delta_{\text{max}}.$ Wie man aus Fig. 6b erkennt, ist die Differenz zwischen dem Solllenkwinkel δ_{Soll} und dem minimal zulässigen Istlenkwinkel δ_{min} kleiner als die Differenz zwischen dem maximal zulässigen Istlenkwinkel $\delta_{ exttt{max}}$ und dem Solllenkwinkel $\delta_{ ext{soll}}$. Entsprechend wird die Fahrzeuglängsgeschwindigkeit v bei einem abweichenden Istlenkwinkel $\delta_{ ext{ist}}$, der kleiner ist als der Solllenkwinkel δ_{Soll} stärker verringert als dies bei einer entsprechenden Abweichung vom Solllenkwinkel $\delta_{ ext{soll}}$ zu größeren Istlenkwinkeln $\delta_{ ext{ist}}$ hin der Fall wäre.

15

20

25

30

Dies ist anschaulich so zu erklären, dass bei einer Änderung des Fahrzeugdrehwinkels in mathematisch positivem Sinn ein größerer Toleranzbereich zur Verfügung steht, als bei Änderungen des aktuellen Fahrzeugdrehwinkels in mathematisch negativem Sinn (vgl. Fig. 6a).

Sobald der Fahrer einen Istlenkwinkel δ_{ist} einstellt, der beim Weiterfahren des Fahrzeugs 10 dazu führen würde, dass das Fahrzeug 10 eine Fahrzeugposition einnimmt, aus der heraus keine Trajektorie zur Zielposition 17 gefunden werden kann, so wird das Fahrzeug zum Stillstand gebracht. Das Fahrzeug wird dann fahrerunabhängig erst wieder beschleunigt, wenn der Fahrer einen Istlenkwinkel δ_{ist} einstellt, der zwischen den minimal zulässigen Istlenkwinkel δ_{min} und dem maximal zulässigen Istlenkwinkel δ_{max} liegt.

Bei eiener besonders vorteilhaften Ausgestaltung wird immer dann, wenn das Fahrzeug automatisch bis zum Stillstand verzögert wurde, eine erneute Berechnung der Referenztrajektorie durchgeführt.

Alternativ zur Verwendung einer Gauß ähnlichen Kurve könnte auch eine Dreiecksfunktion oder eine beliebige andere Kurvenform mit dem Scheitelpunkt δ_{soll}/v_0 verwendet werden. Diese Funktion kann insbesondere empirisch in Fahrversuchen ermittelt werden, um das gewünschte Fahrgefühl einzustellen.

Beim Ausführungsbeispiel wird die Fahrzeuglängsgeschwindigkeit v in Abhängigkeit des Istlenkwinkels $\delta_{\rm ist}$ bzw. der Lenkwinkelabweichung $d_{\rm LW}$ geregelt. Dies erfolgt durch Ansteuerung von Verzögerungsmittel 50 und/oder Vortriebsmitteln 51 des Fahrzeugs 10.

Die Verzögerungsmittel 50 sind beim Ausführungsbeispiel gemäß 35 Fig. 2 von einer Bremsvorrichtung 52 gebildet, die eine Bremssteuereinheit 53 und von dieser Bremssteuereinheit 53 angesteuerte Radbremseinrichtungen 54, die den Fahrzeugrädern

55 der Hinterachse des Fahrzeugs zugeordnet sind und Radbremseinrichtungen 56, die den Fahrzeugrädern 34 der Vorderachse 35 des Fahrzeugs 10 zugeordnet sind. Zur Ansteuerung der Bremsvorrichtung 52 ist die Auswerteeinrichtung 12 mit der Bremssteuereinheit 53 verbunden. Liegt mithin eine Annäherung der aktuellen Solltrajektorie 19 an eine der Grenztrajektorien 23, 24 vor, so steuert die Auswerteeinrichtung 12 die Bremssteuereinheit 53 an, die wiederum eine oder mehrere der Radbremseinrichtungen 54, 56 beaufschlagt.

10

15

Alternativ zur Geschwindigkeitsregelung kann die Fahrzeuglängsgeschwindigkeit v ausgehend von der Maximalgeschwindigkeit v_0 , die etwa 5 km/h betragen kann, bei einer vorliegenden Lenkwinkelabweichung d_{LW} , die außerhalb des Lenkwinkelkorrekturbereiches K liegt, durch das Hervorrufen eines Bremsdruckes oder einer Bremskraft lediglich mittels einer Steuerung verringert werden, ohne die Geschwindigkeit auf einen Sollwert zu regeln.

25

20

Zur Fahrzeugverzögerung erfolgt alternativ oder gleichzeitig zur Ansteuerung der Bremsvorrichtung 52 eine Ansteuerung der Vortriebsmittel 51. Hierfür ist die Auswerteeinrichtung 12 mit dem in Fig. 2 schematisch dargestellten Motorsteuergerät 60 verbunden, dass hier die Vortriebsmittel 51 symbolisiert. Aus Gründen der Übersichtlichkeit wurde der komplette Antriebsstrang mit Motorsteuergerät 60, dem Fahrzeugmotor, dem Getriebe, der Antriebswelle, usw. nicht dargestellt.

Das erfindungsgemäße Verfahren kann in einer abgewandelten Form auch für Fahrmanöver des Fahrzeugs 10 mit einem Anhänger 70 eingesetzt werden. Dabei kann alternativ oder zusätzlich zur Beeinflussung der Fahrzeuglängsgeschwindigkeit v in Abhängigkeit von der außerhalb des Lenkwinkelkorrekturbereiches K liegenden Lenkwinkelabweichung d_{LW} auch eine Beeinflussung der Fahrzeuglängsgeschwindigkeit v in Abhängigkeit von der Knickwinkelabweichung zwischen einem Sollknickwinkel β_{Soll} und einem aktuellen Knickwinkel β_{akt} erfolgen. Wie beim Lenkwinkel

30

35

wird auch bei der Knickwinkelabweichung erst dann in die Längsdynamik des Fahrzeugs 10 eingegriffen, wenn der Wert der Knickwinkelabweichung außerhalb eines vorgegebenen Knickwinkelkorrekturbereiches liegt. Innerhalb dieses Knickwinkelkorrekturbereiches wird die Knickwinkelabweichung durch selbsttätige, Fahrer unabhängige Lenkungseingriffe korrigiert bzw. ausgeregelt.

Der Knickwinkel β ist zwischen der Fahrzeuglängsachse 71 und der Anhängerlängsachse 72 gebildet (siehe Fig. 7). Wegen der besseren Übersichtlichkeit ist in Fig. 7 die Anhängerkupplung und die Anhängerdeichsel zur Verbindung des Fahrzeugs 10 mit dem Anhänger 70 nicht dargestellt.

Beim Anhängerbetrieb wird jeder zur durchfahrenden Fahrzeugstellung des Fahrzeugs 10 entlang der Referenztrajektorie 16 ein entsprechender Sollknickwinkel $\beta_{\rm soll}$ zugeordnet. Das einfachste Beispiel wäre das gerade Rückwärtsfahren des Fahrzeugs 10 mit dem Anhänger 70, so dass der Sollknickwinkel $\beta_{\rm soll}$ während des gesamten Fahrmanövers gleich Null beträgt.

Das Fahrzeug 10 weist Mittel zur Bestimmung des Sollknickwinkels $\beta_{\rm Soll}$ auf, die beispielsgemäß in der Auswerteeinrichtung 12 enthalten sind. Des weiteren verfügt das Fahrzeug 10 und/oder der Anhänger 70 über Mittel zur Bestimmung des aktuellen Knickwinkels $\beta_{\rm akt}$, die hier nicht näher dargestellt sind. Beispielsweise kann der Knickwinkel zwischen Fahrzeug 10 und Anhänger 70 durch an sich bekannte Knickwinkelsensoren erfasst werden.

Während des Fahrmanövers wird dem Fahrer nunmehr angezeigt, welche Lenkradstellung er einzustellen hat, damit der aktuell erfasste Knickwinkel β_{akt} dem Sollknickwinkel β_{soll} entspricht. Weicht der aktuelle Knickwinkel β_{akt} vom Sollknickwinkel β_{soll} ab, so werden zunächst Lenkeingriffe vorgenommen, um die Abweichung zu korrigieren. Liegt die Knickwinkelabweichung außerhalb des vorgegebenen Knickwinkelkorrekturbereiches, dann

25

30

werden die Verzögerungsmittel 50 und/oder die Vortriebsmittel 51 des Fahrzeugs 10 fahrerunabhängig zur Reduzierung der Fahrzeuglängsgeschwindigkeit v angesteuert. Je größer die Knickwinkelabweichung zwischen dem aktuellen Knickwinkel β_{akt} und dem Sollknickwinkel β_{soll} ist, desto größer ist die automatisch hervorgerufene Bremskraft bzw. der Bremsdruck p bzw. die Fahrzeugverzögerung. Es ist auch möglich, die Längsgeschwindigkeit des Fahrzeugs v in Abhängigkeit von der Knickwinkelabweichung zwischen dem Sollknickwinkel β_{soll} und dem aktuellen Knickwinkel β_{akt} zu regeln, wobei die Sollgeschwindigkeit v $_{soll}$ umso geringer ist, je größer die Knickwinkelabweichung zwischen aktuellem Knickwinkel β_{akt} und Sollknickwinkelabweichung zwischen aktuellem Knickwinkel β_{akt} und Sollknickwinkel β_{soll} ist.

15 Das Unterstützungsverfahren für Fahrmanöver im Anhängerbetrieb in Abhängigkeit vom Knickwinkel β ist auch unabhängig von der Bestimmung einer Referenztrajektorie ausführbar. Zum Beispiel kann bei einem Fahrmanöver geradeaus rückwärts mit Anhänger 70 lediglich die Knickwinkelabweichung zwischen dem Sollknickwinkel β_{Boll} und dem aktuellen Knickwinkel β_{akt} berücksichtigt werden zur Bestimmung des einzustellenden Lenkradwinkels.

Wird bei komplexeren Fahrmanövern im Anhängerbetrieb, entlang der Referenztrajektorie, jeder Position des Fahrzeugs 10 und des Anhängers 70 ein entsprechender Sollknickwinkel $\beta_{\rm soll}$ zugeordnet, so berücksichtigt die Rückmeldung für den Fahrer über den einzustellenden Lenkradwinkel und die automatische Ansteuerung der Verzögerungsmittel 50 und/oder Vortriebsmittel 51 sowohl die Lenkwinkelabweichung $d_{\rm LW}$, als auch die Knickwinkelabweichung.

DaimlerChrysler AG

Pfeffer 08.08.2003

Patentansprüche

- 1. Verfahren zur Unterstützung des Fahrers eines Fahrzeugs (10) bei einem Fahrmanöver, wobei eine dem Fahrmanöver entsprechende Referenztrajektorie (16) bestimmt wird, entlang der das Fahrzeug (19) bewegt werden soll, und wobei dem Fahrer während des Fahrmanövers die jeweils einzustellende, das Fahrzeug (10) entlang der Referenztrajektorie (16, 19) steuernde Lenkradstellung angegeben wird,
- 10 wird, dadurch gekennzeichnet, dass eine Lenkwinkelabweichung (d_{LW}) zwischen dem vom Fahrer tatsächlich eingestellten Istlenkwinkel (δ_{ist}) und dem der angeforderten Lenkradstellung entsprechenden Solllenkwinkel (δ_{soll}) Fahrer unabhängig korrigiert wird.
- Verfahren nach Anspruch 1,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die Fahrer unabhängige Korrektur der Lenkwinkelab weichung (d_{LW}) nur erfolgt, wenn die Lenkwinkelabweichung
 (d_{LW}) innerhalb eines vorgegebenen Lenkwinkelkorrekturbereichs (K) liegt.
- 3. Verfahren nach Anspruch 1 oder 2,
 da durch gekennzeichnet,
 dass die Fahrzeuglängsgeschwindigkeit (v) bei einer außerhalb des Lenkwinkelkorrekturbereichs (K) liegenden
 Lenkwinkelabweichung (d_{LW}) fahrerunabhängig beeinflusst
 wird.

5

10

15

30

- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Beeinflussung der Fahrzeuggeschwindigkeit abhängig ist vom Betrag der Lenkwinkelabweichung (d_{LW}) .
- 5. Verfahren nach Anspruch 3 oder 4, da durch gekennzeich net, dass während des Fahrmanövers, abhängig von der aktuellen Fahrzeugstellung $(x_{F,akt}/y_{F,akt}/\Psi_{F,akt})$ ein die zulässigen Lenkwinkel definierender Lenkwinkel-Toleranzbereich $(\delta_{min}$ bis $\delta_{max})$ bestimmt wird und die Beeinflussung der Fahrzeuglängsgeschwindigkeit (v) vom Toleranzabstand $(\delta_{soll}-\delta_{min}$ bzw. $\delta_{max}-\delta_{soll})$ zwischen dem Solllenkwinkel (δ_{soll}) und den Toleranzbereichsgrenzen $(\delta_{min}$ bzw. $\delta_{max})$ abhängt.
- Verfahren nach Anspruch 5,
 d a d u r c h g e k e n n z e i c h n e t,
 dass zur Ermittlung des Lenkwinkel-Toleranzbereichs ein
 Drehwinkel-Toleranzbereich bestimmt wird, wobei der aktu elle Drehwinkel (Ψ_{F,akt}) zwischen der Fahrzeuglängsachse
 (71) und einer Koordinatenachse (y) eines ortsfesten Ko ordinatensystems (22) so lange vergrößert bzw. verklei nert wird, bis es gerade noch möglich ist eine Trajekto rie zur Zielposition (17) zu bestimmen.
 - 7. Verfahren nach einem der Ansprüche 4 bis 6, dad urch gekennzeich ich net, dass die Fahrzeuglängsgeschwindigkeit (v) um so geringer gewählt wird, je größer der Betrag der Lenkwinkelabweichung (d_{LW}) ist und/oder je kleiner der Betrag des Toleranzabstandes (δ_{soll} - δ_{min} bzw. δ_{max} - δ_{soll}) ist.
 - 8. Verfahren nach einem der Ansprüche 3 bis 6,
 d a d u r c h g e k e n n z e i c h n e t,
 dass das Fahrzeug (10) bis zum Stillstand verzögert und
 im Stillstand gehalten wird, solange aufgrund der vorhandenen Lenkwinkelabweichung (d_{LW}) das Fahrzeug (10) bei

einer Weiterfahrt eine Fahrzeugstellung einnehmen würde, aus der heraus die Zielposition (17) ohne Rangierunterbrechung des Fahrmanövers nicht mehr erreichbar ist.

- 5 9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass das Fahrzeug (10) fahrerunabhängig wieder beschleunigt wird, wenn der Fahrer eine Lenkradstellung einstellt, die zu einer zulässigen und/oder Fahrer unabhängig korrigierbaren Lenkwinkelabweichung (d_{LW}) führt.
- 10. Verfahren nach einem der Ansprüche 1 bis 9,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die Angabe der einzustellenden Lenkradstellung durch
 Mittel zur akustischen Fahrerinformation und/oder Mittel
 zur optischen Fahrerinformation (13) und/oder Mittel zur
 haptischen Fahrerinformation (40 und 41) erfolgt.
- 11. Verfahren nach Anspruch 10,
 20 dadurch gekennzeichnet,
 dass die Mittel zur haptischen Fahrerinformation (40 und
 41) Mittel zur Veränderung des vom Fahrer aufzubringenden
 Lenkradmomentes aufweisen.
- 12. Verfahren nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t, dass das Fahrmanöver ein Einparkmanöver ist und die Referenztrajektorie (16) den idealen Weg von der aktuellen Fahrzeugstellung (x_{F,akt}/y_{F,akt}/Ψ_{F,akt}) in die Parkposition (17) angibt.
 - 13. Verfahren nach einem der Ansprüche 1 bis 12,
 d a d u r c h g e k e n n z e i c h n e t,
 dass bei einem Fahrzeug (10) im Anhängerbetrieb jeder
 Fahrzeugstellung entlang der aktuellen Referenztrajektorie (19) ein Sollknickwinkel (β_{soll}) zwischen der Fahrzeuglängsachse (71) und der Anhängerlängsachse (72) zuge-

ordnet wird und dass der aktuelle Knickwinkel (β_{akt}) bestimmt und mit dem entsprechenden Sollknickwinkel (β_{soll}) verglichen wird, wobei bei einer Winkelabweichung zwischen Sollknickwinkel (β_{soll}) und aktuellem Knickwinkel (β_{akt}) die Fahrzeuglängsgeschwindigkeit (v) fahrerunabhängig beeinflusst wird.

14. Vorrichtung zur Durchführung eines Verfahrens zur Unterstützung des Fahrers bei einem Fahrmanöver nach einem der Ansprüche 1 bis 13, mit Mitteln (12) zur Bestimmung einer dem Fahrmanöver entsprechenden Referenztrajektorie (16) und Mitteln (13; 40 und 41) zur Angabe der vom Fahrer einzustellenden, das Fahrzeug (10) entlang der Referenztrajektorie (19) steuernden Lenkradstellung, dad urch geken nzeich net, dass eine mittels einer Auswerteeinrichtung (12) festgestellte Lenkwinkelabweichung (d_{LW}) zwischen dem vom Fahrer tatsächlich eingestellten Istlenkwinkel (δ_{ist}) und dem der angeforderten Lenkradstellung entsprechenden Solllenkwinkel (δ_{soll}) durch Fahrer unabhängig ansteuerbare Lenkkorrekturmittel korrigiert wird.

Fig. 1

Fig. 2

Fig. 3a

Fig. 3b

Fig. 3c

Fig. 4

Fig. 5

Fig. 6a

Fig. 6b

Fig. 7

DaimlerChrysler AG

Zusammenfassung

1

Die Erfindung betrifft ein Verfahren zur Unterstützung des Fahrers eines Fahrzeugs (10) bei einem Fahrmanöver, wie z.B. Park- oder Rangiermanöver. Dabei wird eine Referenztrajektorie (16) bestimmt, entlang der das Fahrzeug (10) bewegt werden soll. Dem Fahrer wird während des Fahrmanövers eine einzustellende, das Fahrzeug entlang der Referenztrajektorie (16) steuernde Lenkradstellung angegeben. Eine Lenkwinkelabweichung zwischen dem vom Fahrer tatsächlich eingestellten Istlenkwinkel und dem der angeforderten Lenkradstellung entsprechenden Solllenkwinkel Fahrer unabhängig korrigiert wird.

15

10

Fig. 1

Fig. 1

20 -

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

<i>6</i>
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.