

YANGON TECHNOLOGICAL UNIVERSITY Department of Mechatronic Engineering

Efficient foreground analysis for real-time surveillance & self driving cars using Transfer Learning

Coding Report Presentation

9-9-2020

Wednesday

Supervised by

Dr. Phyu Phyu Htun

Presented by

Aw Thura (VI-McE-11)

Coding Aspects

- Dataset Preparation & Adjustments
- Model configuration & Training
- Evaluation & Testing
- Additional Functions

Dataset Preparation & Adjustments

Version	Classes	Dataset Used	Number of Images
1	Person	Google's Open Images v4	4000
1	Car	Google's Open Images v4	4000
2	Person, Car	Google's Open Images v4	8000
3	Person, Car, Bus	Ms Coco	68338
4	Person, Car, Bus, Truck, Bicycle, Motorcycle, Trishaw	Hybrid (Ms Coco + Custom)	70948

Table 1: Datasets used for different versions

Dataset Preparation & Adjustments (Continued)

Google OpenImages dataset v6 -

https://storage.googleapis.com/openimages/web/index.html

OIDv4 toolkit -

https://github.com/EscVM/OIDv4 ToolKit

Convert annotations -

https://github.com/theAIGuysCode/OIDv4 ToolKit

Dataset Preparation & Adjustments (Continued)

MS COCO Dataset -

https://cocodataset.org/#download

YOLO Utils Github -

https://github.com/holger-prause/yolo utils

Download bulk images from Google Images -

https://www.pyimagesearch.com/2017/12/04/how-to-create-a-deep-learning-dataset-using-google-images/

LabelImg -

https://github.com/tzutalin/labelImg

Model Configuration & Training

Darknet Framework -

https://github.com/AlexeyAB/darknet

Colab Notebook Reference -

https://colab.research.google.com/drive/1 GdoqCJWXsChrOiY8sZMr zbr f H-0Fg?usp=sharing

Google Colab Notebook -

https://colab.research.google.com/drive/18M_7jwlYi01yl6z8kHmI5OGASiY9 l1JD?usp=sharing

Mounted Google Drive -

https://drive.google.com/drive/folders/1coAKIAE85UOPIqNcA6rq6A2f-Q-au Fqs?usp=sharing

Model Configuration & Training (Continued)

Version	Number of classes	Number of Images	Number of max batches	Approximate Training Time
1	Person	4000	4000	12 hours
1	Car	4000	4000	12 hours
2	Person, Car	8000	4000	24 hours
3	Person, Car, Bus	68338	6000	48 hours
4	Person, Car, Bus, Truck, Bicycle, Motorcycle, Trishaw	70948	14000	72 hours

Table 2: Training time for different versions

Model Configuration & Training (Continued)

Configuration parameter	Setting
Classes	7
Batches	64
Subdivisions	32
Max batches	14000
Augmentation type	mosaic
Learning rate	0.001
Randomize image size	True
Filters for Conv layers 138,149 & 160	36

Table 3: Training configuration for final version

Evaluation & Testing

Class	Mean Average Precision (mAP)	TP	FP
Person	69.31%	117	40
Car	72.17%	89	34
Bus	93.78%	74	8
Average	78.42%		

Table 4: Evaluation results for three class detector

Evaluation & Testing (Continued)

Class	Mean Average Precision (mAP)	TP	FP
Person	79.00%	20344	6846
Car	70.76%	3050	1318
Bus	85.58%	491	74
Truck	65.47%	607	367
Bicycle	60.03%	464	222
Motorcycle	75.05%	587	164
Trishaw	72.64%	88	26
Average	72.65%		

Table 5: Evaluation results for seven class detector

Evaluation & Testing (Continued)

Converting to tensorflow model for real time testing - https://github.com/theAIGuysCode/tensorflow-yolov4-tflite

Additional Functions

Counting Objects -

https://github.com/theAIGuysCode/yolov4-custom-functions

Object Tracking -

https://github.com/theAIGuysCode/yolov4-deepsort

End

Thank You For Your Attention.