

Laboratory practice 4

Sequential 4x4-bit multiplier

Objective

- Implement an iterative 4x4-bit multiplier:
 - To introduce the two operands we will use the switch bank.
 - We will use a 'Start' button and a 'Done' signal
 - The result of the multiplication will be shown in two 7-segment displays.

ASM diagram

ASM multiplier:

```
a = a_{in};
b = b_{in};
n = 4;
acc = 0;
while (n > 0)
  if(b(0) == 1)
    acc = acc + a;
  a << 1;
  b >> 1;
  n --;
```


Template for code

- I'm so generous that you can start the lab with a template available in the Campus Virtual.
- Files:
 - adder_std.vhd → Adder
 - adder_sub_std.vhd → Adder/subtractor
 - asynch_reg.vhd → PIPO register
 - definitions.vhd → Package with constants with indexes for accessing the control and status vectors
 - left_right_shift_reg.vhd → Shift register to the left/right
 - data_path.vhd → Datapath. To be completed
 - controller.vhd → Control unit. To be completed
 - multiplier.vhd → Top entity that instantiates datapath and controller
 - tb_mult.vhd → Testbench
- Only data_path.vhd and controller.vhd should be modified. The rest of the files must remain unchanged.
 - If you change the other files, the lab will not be valid.
- An additional Vivado project is available for displaying 4 values in the 47segment displays, alternatively with low speed.
 - The 4 digits are entered by means of the 16 switches.
 - The reset is the central button (keep it pressed to make the system work).
 - You can adapt this to make the refresh faster (by considering contador_refresco (1 downto 0)) in order to make believe that the 4 displays are lit simultaneously.

Grading

- Multiplier implemented and simulated as homework (use the test bench in the VC, no modifications allowed, even the UUT name and interface).
- Students must come to the laboratory with the Data Path drawn (manuscript) indicating clearly which are the control, state and intermediate signals 0.15 pts
- Students must show the multiplier working, and have to understand the implementation and functionality:
 - If it works properly in the FPGA, 0.15 pts
 - In case of just simulation working, 0.10 pts
- Advanced part 0.35 pts
 - If it works OK on the FPGA but the result is just shown in the LEDs, 0.2 pts
 - Additionally, if you use (and adapt) the module for using 2 7segment displays to display the result, +0.15 pts
- Lab 4 is **NOT** recoverable