

Task4:-

Objective:-

Work with a messy real-world dataset (e.g., open gov or finance CSVs) and transform it into a clean, analyzable format for statistical modeling. You'll build a regression or classification model using statsmodels or SciPy, but do all data wrangling strictly in pandas.

Project Structure:-

Step-by-Step Tasks-

◆ 1. Data Cleaning (data_prep.ipynb)

Goals-: Handle common data quality issues.

- ■Missing values:
- •Use .fillna() or .interpolate() with context (e.g., time, forward-fill).
- Document percentage of missingness per column.

_			
■ ()ı	ıtlier	dete	ction:

- IQR-based or z-score filtering.
- Optional: Visualize with boxplots or scatterplots.
- ■Type conversion:
- •Use .astype() and pd.to_datetime().
- •Detect object columns that should be numeric, datetime, or categorical.
- ■Erroneous entries:
- •Use .str.extract(), .replace(), .apply() to fix malformed strings or mixed data types.

♦ 2. Schema Inference & Normalization

Goals-: Convert raw format into structured and normalized layout.

- ■Reshape data:
- melt() / .pivot() for wide ↔ long conversions.
- .stack() / .unstack() for multi-index management.
- ■Categorical handling:
- Convert strings to pd.Categorical.
- •Sort or group by categories for optimization.
- ■Timestamp alignment (finance/time data):
- •Use merge_asof() to align time series (e.g., prices vs. Events).

3. Feature Engineering

Goals-: Prepare for modeling

■Add:

- ●Polynomial features: e.g., x**2, x**3
- Interaction terms: x1 * x2
- Lagged features (for time series)
- Group-based transformations: .groupby().transform()
- ■Encode categorical variables:
- .get_dummies()
- •Or use statsmodels C(variable) formula syntax

4. Statistical Modeling (modeling.ipynb)

- Use statsmodels for regression with inference.
- •Linear regression (continuous target):

Import statsmodels.api as sm
Model = sm.OLS(y, X).fit()
Print(model.summary())

Logistic regression (binary target):

Model = sm.Logit(y, X).fit()

- •Get:-
- Parameter estimates (β)

- •p-values, R2, confidence intervals
- Hypothesis tests for model significance

★ Use formulas:-

Import statsmodels.formula.api as smf Model = smf.ols('target $\sim x1 + x2 + x1:x2 + I(x1**2)$ ', data=df).fit()

■ 5. Final slide desk

- ●5-7 slides in PowerPoint or PDF
 - Sections:
 - 1. Problem Overview
 - 2. Data Challenges (missingness, noise, schema issues)
 - 3. Cleaning Pipeline
 - 4. Feature Engineering
 - 5. Model Results & Interpretation
 - 6. (Optional) Limitations & Next Steps

<u>Tools:-</u> PowerPoint, Canva, Google Slides, or even nbconvert export.

Required Libraries-

Pip install pandas numpy matplotlib seaborn statsmodels scipy

Optional-

Pip install jupyter pandas-profiling scikit-learn openpyxl

✓ Deliverables Recap

File	Purpose
data_prep.ipynb	Cleaning, reshaping, and feature engineering
modeling.ipynb	Statistical modeling + interpretation
cleaned_data.csv	Final dataset used for modeling
slides.pptx	Summary of challenges, pipeline, results

✓ 1. Messy Synthetic Dataset (raw_data.csv)

Theme:- Urban housing + energy usage (example use case)

Sample structure-

ID	City	Date	Energy_kWh	Temp
1	NYC	2022/01/01	120.5	3.2
2	la	Jan 5 2022		NA
3	Lon	2022-01-07	133.0	7.8
4	NYC	2022-01-08	140.1	4.1
				•••

Messiness includes:-

- ♦Inconsistent date formats
- ♦ Categorical capitalization/noise
- ♦ Missing and malformed numeric entries
- ♦Outliers (manually inserted)
- ♦Text noise in a "notes" column
- ♦Mixed case in Income_Level

2. Data_prep.ipynb Scaffold

Includes:-

- ♦Imports and loading
- ♦Missingness overview
- ♦Data cleaning (commented sections)
- ♦Schema reshaping if needed
- ♦ Feature engineering section (with stubs for interaction terms, polynomial features)
- ♦ Marked TODOs where your logic/choices go

✓ 3. Modeling.ipynb with Example Regression

- ♦Load cleaned data
- ♦Fit linear regression via statsmodels
- ♦Show parameter estimates and confidence intervals
- ◇Perform hypothesis tests
- ♦Interpret coefficients in markdown cells
- ♦Plot residuals and diagnostics

✓ 4. PowerPoint Slide Deck Template (final_summary_slides.pptx)

Sections:-

- 1. Project Introduction
- 2. Raw Data Challenges (with placeholders for screenshots)
- 3. Data Cleaning Pipeline
- 4. Feature Engineering Summary

- 5. Modeling Results + Coefficient Table
- 6. Conclusions & Future Work
- •Modern, clean, minimal style with editable text boxes and suggested chart slots.

