

ഋതുഭേദങ്ങൾ എന്തുകൊണ്ട?

്രൂമിഖിലെ രണ്ട് അർധഗോളങ്ങളിലുമുള്ള വൃത്യസ്ത പ്രദേശങ്ങളിലെ സൗരോർയു ലഭ്യതയിൽ കാലികമാഖ വ്യത്യാസം അനുഭവപ്പെടുന്നതാഖി നിങ്ങൾ പഠിച്ചിട്ടുണ്ടല്ലോ. എന്തുകൊണ്ടാണീ വൃത്യാസം?

സൗരോർജലഭ്യതയിലുള്ള ഏറ്റക്കുറച്ചിലുകളാണ് വ്യത്യസ്ത ഋതുക്കളിലെ പ്രധാന സവിശേ ഷത. ഇതിന് കാരണമാകുന്നത് ഭുമിയുടെ പരിക്രമണവും അച്ചുതണ്ടിന്റെ ചരിവുമാണ്.

ദീർഘവൃത്താകൃതിയിലുള്ള സഞ്ചാരപഥ (Elliptical orbit)ത്തിലൂടെയാണ് ഭൂമി സൂര്യനെ വലംവയ്ക്കുന്നത് എന്നു നിങ്ങൾക്കറിയാമല്ലോ. ഇതിനെയാണ് പരിക്രമണം (Revolution) എന്നു വിളിക്കുന്നത്.

ഭൂമിക്ക് ഒരു പരിക്രമണം പൂർത്തിചാക്കാൻ വേണ്ട കാലചളവ് എത്രു

മന്താണ് അധിവർഷം?

ഭൂമിയുടെ അച്ചുതണ്ടിന് പരിക്രമണതലത്തിൽ നിന്ന് $66\frac{1}{2}^{\circ}$ ചരിവുണ്ടെന്ന് നിങ്ങൾ മുൻക്ലാ സിൽ പഠിച്ചിട്ടുണ്ടല്ലോ. ലംബതലത്തിൽ നിന്നു കണക്കാക്കിയാൽ ഈ ചരിവ് $23\frac{1}{2}$ ° ആണ് (ചിത്രം 1.1). പരിക്രമണവേളയിലുടനീളം ഭുമി ഈ ചരിവ് നിലനിർത്തുന്നു. (ചിത്രം 1.2). ഇതിനെ അച്ചുതണ്ടിന്റെ സമാന്തരത (Parallelism of axis) എന്നാണ് പറയുന്നത്.

സൂര്വനും ഭൂമിയും : അടുത്തും അകന്നും

ഒരു പരിക്രമണകാലയളവിൽ ഭൂമിക്ക് സുര്യ നിൽ നിന്നുള്ള അകലത്തിൽ നിരന്തരം മാറ്റ മുണ്ടായിക്കൊണ്ടിരിക്കും. ഭുമി സുര്യനോട് ഏറ്റവും അടുത്ത് വരുന്ന ദിനവും ഏറ്റവും അകന്നുപോകുന്ന ദിനവുമാണ് ചിത്രത്തിൽ കാണിച്ചിട്ടുള്ളത്. ഈ ദിവസങ്ങളെ യഥാ ക്രമം സുര്യസമീപദിനം (Perihelion) എന്നും സൂര്യവിദൂര ദിനം (Aphelion) എന്നും വിളി ക്കുന്നു.

- 2 9 2 2

അച്ചുതണ്ടിന്റെ സമാന്തരത ചിത്രം 1.2 നിരീക്ഷിച്ച് മനസ്സിലാക്കൂ. അച്ചുതണ്ടിന്റെ ചരിവ് പരിക്രമണവേളയിലുടനീളം ഒരു പോലെ നിലനിർത്തു ന്നതിനാൽ സൂര്യന്റെ ആപേക്ഷിക സ്ഥാനം ഉത്തരായനരേഖയ്ക്കും $(23\frac{1}{2}^{\circ}$ വടക്ക്) ദക്ഷിണായനരേഖയ്ക്കും $(23\frac{1}{2}^{\circ}$ തെക്ക്) ഇടയിൽ മാറിക്കൊണ്ടിരി ക്കുന്നു. ഇതിനെ സൂര്യന്റെ അയനം (Apparent movement of the sun) എന്നു വിളിക്കുന്നു

സൂര്യന്റെ അയനമാണ് ഭൂമിയിൽ ഋതുഭേദങ്ങൾക്കു കാരണമാകുന്നത്. ചിത്രം 1.2 നോക്കൂ. ഒരു പരിക്രമണകാലത്തിൽ (ഒരു വർഷം) സൂര്യനു ചുറ്റുമുള്ള ഭൂമിയുടെ സഞ്ചാരഗതിയിലെ നാല് സ്ഥാനങ്ങളാണ് ഇതിൽ കാണിച്ചിട്ടു ള്ളത്. സൂര്യന്റെ അയനം മൂലം ഭൂമിയിൽ സൂര്യപ്രകാശം പതിക്കുന്നതിൽ ഏറ്റക്കുറച്ചിലുകൾ ഉണ്ടാകുന്നു. വർഷത്തിന്റെ ഒരു പകുതിയിൽ ഉത്തരാർധ ഗോളത്തിലും മറുപകുതിയിൽ ദക്ഷിണാർധഗോളത്തിലുമാണ് സൂര്യന്റെ ലംബരശ്മികൾ പതിക്കുന്നത്. സൂര്യരശ്മികൾ ലംബമായി പതിക്കുന്നിട ങ്ങളിൽ ചൂട് പൊതുവെ കൂടുതലായിരിക്കും. ചരിഞ്ഞു പതിക്കുന്ന ഇടങ്ങളിൽ ചൂട് കുറവായിരിക്കും.

സൂര്വന്റെ അയനവും ഋതുക്കളും

സൂര്യന്റെ അയനം മൂലം വസന്തകാലം, ഗ്രീഷ്മകാലം, ഹേമന്തകാലം, ശൈത്യകാലം എന്നിങ്ങനെ വ്യത്യസ്ത ഋതുക്കൾ ചാക്രികമായി ആവർത്തി ക്കുന്നു.

വർഷം മുഴുവൻ ഉയർന്ന തോതിൽ സൂര്യപ്രകാശം ലഭിക്കുന്നതിനാൽ ഉഷ്ണമേഖലാപ്രദേശങ്ങളിൽ പൊതുവെ ഋതുഭേദങ്ങൾ പ്രകടമായി അനു ഭവപ്പെടാറില്ല.

കേരളത്തിൽ ടതുഭേദങ്ങൾ വൃക്തമാചി അനുഭവപ്പെടാത്ത തിനുള്ള കാരണം എന്ത്?

മിതോഷ്ണമേഖലാ പ്രദേശങ്ങൾ അഥവാ മധ്യ അക്ഷാംശമേഖലയിലാണ് എല്ലാ ഋതുക്കളുടെയും സവിശേഷതകൾ വ്യക്തമായി അനുഭവപ്പെടുന്നത്.

🎎 ശൈത്യമേഖലാ പ്രദേശങ്ങളിൽ എല്ലാ ഋതുക്കളും വ്യക്തമായി അനു 🎉 ഭവപ്പെടുന്നില്ല. ക്ലാസിൽ ചർച്ച ചെയ്ത് കാരണം കണ്ടെത്തു.

സൂര്യൻ ഭൂമധ്യരേഖയ്ക്ക് നേർമുകളിലായിരിക്കു മ്പോൾ ഉത്തരാർധഗോള ത്തിലും ദക്ഷിണാർധഗോ ളത്തിലും തുല്യ അളവിൽ സൂര്യപ്രകാശം ലഭിക്കുന്നു. പരിക്രമണ വേള യിൽ സൂര്യന്റെ ആപേക്ഷിക സ്ഥാനം മധ്യരേഖയ്ക്ക് നേർമുകളിലാകുന്നത് മാർച്ച് 21, സെപ്തംബർ 23 എന്നീ ദിനങ്ങളിലാണ്. അതുകൊണ്ടുതന്നെ ഈ

ദിനങ്ങളിൽ രണ്ട് അർധഗോളങ്ങളിലും രാത്രിയുടെയും പകലിന്റെയും ദൈർഘ്യം തുല്യമായിരിക്കും (ചിത്രം 1.3). ഈ ദിനങ്ങളെ സമരാത്രദിനങ്ങൾ അഥവാ വിഷുവങ്ങൾ (Equinoxes) എന്ന് വിളിക്കുന്നു.

മാർച്ച് 21 മുതൽ മധ്യരേഖയിൽ നിന്നും വടക്കോട്ട് അയനം ചെയ്ത് ജൂൺ 21 ന് സൂര്യൻ ഉത്തരായന രേഖയ്ക്ക് (23½° വടക്ക്) നേർമുകളിലെത്തുന്നു. ഈ ദിനത്തെ ഉത്തരാർദ്ധഗോള ത്തിൽ ഗ്രീഷ്മ അയനാന്തദിനം (Summer solstice) എന്ന് വിളിക്കുന്നു. ഉത്തരാർദ്ധഗോളത്തിൽ ഏറ്റവും ദൈർഘ്യമുള്ള പകലും, ഏറ്റവും ഹ്രസ്വമായ രാത്രിയും അനുഭവപ്പെടുന്നത് ഈ ദിനത്തിലാണ്.

ചിത്രം 1.4

ുൺ 21 ന് ദക്ഷിണാർദ്ധഗോളര്തിൽ രാത്രി പകലുകൾക്ക് എന്താണ് പ്രത്യേകത?

മാർച്ച് 21 മുതൽ ജൂൺ 21 വരെ ഉത്തരാർദ്ധഗോളത്തിൽ പൊതുവെ വസന്തകാലമായിരിക്കും (Spring season). ശൈതൃ കാലത്തിൽ നിന്നും വേനൽക്കാലത്തിലേക്കുള്ള മാറ്റത്തിന്റെ കാലമാണിത്. ചെടികൾ തളിർക്കുന്നതും, പുഷ്പിക്കുന്നതും,

മാവുപൂക്കുന്നതും, പ്ലാവുകളിൽ ചക്കയുണ്ടാകുന്നതു മൊക്കെ നിങ്ങൾ ശ്രദ്ധിച്ചിട്ടില്ലേ. ഇത് വസന്തകാല ത്തിന്റെ സവിശേഷതയാണ്. ഉത്തരാർദ്ധഗോളത്തിൽ വസന്തകാലമായിരിക്കുമ്പോൾ ദക്ഷിണാർദ്ധഗോള ത്തിൽ ഏത് കാലമായിരിക്കുമെന്ന് പട്ടിക 1.1 നോക്കി മനസ്സിലാക്കുക.

ജൂൺ 21 മുതൽ ഉത്തരായനരേഖയിൽ നിന്നും തെക്കോട്ട് അയനം ആരംഭിക്കുന്ന സൂര്യൻ സെപ്റ്റം

ചിത്രം 1.5

ബർ 23 ന് വീണ്ടും ഭൂമധ്യരേഖയ്ക്ക് നേർമുകളിലെത്തുന്നു. ഈ കാലയ ളവിലാണ് ഉത്തരാർദ്ധഗോളത്തിൽ വേനൽക്കാലം (Summer season).

്യ വേനൽക്കാലരത് പരിസ്ഥിതിചിൽ എന്തെല്ലാം മാറ്റങ്ങളാണ് ു ദൃശ്യമാകുകു

സെപ്റ്റാബർ 23 മുതൽ മധ്യരേഖയിൽ നിന്നും തെക്കോട്ട് അയനം തുടരു ന്ന സൂര്യൻ ഡിസംബർ 22 ന് ദക്ഷിണായനരേഖയ്ക്ക് ($23\frac{1}{2}$ ° തെക്ക്) നേർമുകളിലെത്തുന്നു. ഈ ദിനത്തെ ഉത്തരാർദ്ധഗോളത്തിൽ ശൈത്യ അയനാന്തദിനം (Winter solstice) എന്ന് വിളിക്കുന്നു. ഈ ദിവസം ഉത്തരാർദ്ധ ഗോളത്തിൽ ഏറ്റവും ഹ്രസ്ഥമായ പകലും ഏറ്റവും ദൈർഘ്യമുള്ള രാത്രിയും അനുഭവപ്പെടുന്നു.

ു ഡിസംബർ 22 ന് ഭക്ഷിണാർദ്ധഗോളര്തിലെ രാത്രി പകലുകൾക്ക് എന്ത് പ്രത്യേകതമാണുള്ളത്?

സെപ്റ്റംബർ 23 മുതൽ ഡിസംബർ 22 വരെ ഉത്തരാർദ്ധഗോള ത്തിൽ ഹേമന്തകാലമാണ് (Autumn season).

വേനൽക്കാലത്തിന്റെ തീക്ഷ്ണതയിൽ നിന്ന് ശൈതൃകാലത്തി ലേക്കുള്ള മാറ്റത്തിന്റെ കാലമാണ് ഹേമന്തകാലം. ഈ കാലയള വിൽ അന്തരീക്ഷ ഊഷ്മാവ് ഗണ്യമായി കുറയുന്നു. പകലിന്റെ ദൈർഘ്യം കുറഞ്ഞ് വരികയും രാത്രിയുടെ ദൈർഘ്യം കൂടുകയും ചെയ്യുന്നു. മരങ്ങൾ പൊതുവെ ഇലപൊഴിക്കുന്ന കാലമാണിത്. വരാ നിരിക്കുന്ന വരണ്ടശൈത്യകാലത്തെ അതിജീവിക്കാനുള്ള തയാറെടു പ്പാണ് ഈ ഇലപൊഴിക്കൽ.

ചിത്രം 1.6

ഉത്തരാർദ്ധഗോളത്തിൽ ഹേമന്തകാലമാ മിരിക്കുമ്പോൾ ദക്ഷിണാർദ്ധഗോള ത്തിൽ ഏതുകാലമാഖിരിക്കും? (പട്ടിക 1.1 നോക്കുക)

ഡിസംബർ 22 ന് ദക്ഷിണായന രേഖയിൽ നിന്നും വടക്കോട്ട് അയനമാരംഭിക്കുന്ന സൂരൃൻ മാർച്ച് 21 ന് വീണ്ടും മധ്യരേഖയ്ക്ക് നേർമുകളിലെത്തുന്നു. ഈ കാലയളവാണ് ഉത്തരാർദ്ധഗോളത്തിലെ ശൈത്യകാലം (Winter season).

ചിത്രം 1.7

		ഋതുക്കൾ	
മാസങ്ങൾ	സൂര്യന്റെ അയനം	ഉത്തരാർധ	ദക്ഷിണാർധ
		ഗോളം	ഗോളം
മാർച്ച് 21 മുതൽ	ഭൂമധ്യരേഖയിൽനിന്ന്	വസന്തം	ഹേമന്തം
ജൂൺ 21 വരെ	ഉത്തരായനരേഖയിലേക്ക്		
ജൂൺ 21 മുതൽ	ഉത്തരായനരേഖയിൽനിന്ന്	ഗ്രീഷ്മം	ശൈത്യം
സെപ്തംബർ 23 വരെ	ഭൂമധ്യരേഖയിലേക്ക്		
സെപ്തംബർ 23 മുതൽ	ഭൂമധ്യരേഖയിൽനിന്ന്	ഹേമന്തം	വസന്തം
ഡിസംബർ 22 വരെ	ദക്ഷിണായനരേഖയിലേക്ക്		
ഡിസംബർ 22 മുതൽ	ദക്ഷിണായനരേഖയിൽനിന്ന്	ശൈത്യം	ഗ്രീഷ്മം
മാർച്ച് 21 വരെ	ഭൂമധ്യരേഖയിലേക്ക്		

ഇന്ത്യയിലെ

പരമ്പരാഗത ഋതുക്കൾ

പൊതുവെ ഋതുക്കളെ നാലായി തിരിച്ചിട്ടുണ്ടെങ്കിലും ഇന്ത്യയിൽ അന്നരീക്ഷസ്ഥിതിയിലെ മാറ്റ ങ്ങൾ അടിസ്ഥാനമാക്കി ആറ് വ്യത്യസ്ത ഋതുക്കൾ ഉള്ളതായി കണക്കാക്കുന്നു.

- വസന്തകാലം മാർച്ച് -ഏപ്രിൽ മാസങ്ങളിൽ
- ഗ്രീഷ്മകാലം മേയ് ജൂൺ മാസങ്ങളിൽ
- വർഷകാലം ജൂലൈ -ആഗസ്റ്റ് മാസങ്ങളിൽ
- ശരത്കാലം സെപ്തംബർ ഒക്ടോബർ മാസങ്ങളിൽ
- ഹേമന്തകാലം നവംബർ -ഡിസംബർ മാസങ്ങളിൽ
- ശിശിരകാലം ജനുവരി -ഫെബ്രുവരി മാസങ്ങളിൽ

പട്ടിക 1.1

ം ശൈത്യകാലത്തിന്റെ സവിശേഷതകൾ . എന്തെല്ലാമാണ്?

ഉത്തരാർദ്ധഗോളത്തിൽ ശൈതൃകാലമായിരിക്കുമ്പോൾ ദക്ഷിണാർദ്ധഗോളത്തിൽ ഏത് കാലമായിരിക്കും അനു ഭവപ്പെടുകയെന്ന് പട്ടിക 1.1 നോക്കി മനസ്സിലാക്കൂ.

ഉത്തരായനവും ദക്ഷിണായനവും

സൂര്യന്റെ അയനവും അതിനനുസ്യതമായി ഇരു അർദ്ധഗോളങ്ങളിലുമുള്ള ഋതുക്കളുടെ ആവർത്തനക്ര മവും മനസ്സിലായില്ലേ. ശൈത്യ അയനാന്തദിനത്തെ തുടർന്ന് സൂര്യൻ ദക്ഷിണായനരേഖയിൽ നിന്നും ഉത്ത രായന രേഖയിലേക്കുള്ള അയനം ആരംഭിക്കുകയും ജൂൺ 21 ന് ഉത്തരായന രേഖയ്ക്ക് നേർമുകളിലെത്തുകയും ചെയ്യുന്നു. ദക്ഷിണായന രേഖയിൽ നിന്നും ഉത്തരായന രേഖയിലേക്കുള്ള സൂര്യന്റെ അയനത്തെ 'ഉത്തരായനം' എന്ന് വിളിക്കുന്നു.

ഉത്തരായന കാലത്ത് ഉത്തരാർദ്ധഗോളത്തിൽ പകലിന്റെ ദൈർഘ്യം ക്രമേണ കൂടിവരുന്നു.

ഗ്രീഷ്മ അയനാന്തദിനത്തെ തുടർന്ന് ഉത്തരായന രേഖയിൽ നിന്നും ദക്ഷി ണായന രേഖയിലേക്ക് അയനം ആരംഭിക്കുകയും ഡിസംബർ 22 ന് ദക്ഷി ണായന രേഖയ്ക്ക് നേർമുകളിലെത്തുകയും ചെയ്യുന്നു. ഉത്തരായനരേഖ യിൽ നിന്നും ദക്ഷിണായന രേഖയിലേക്കുള്ള സൂര്യന്റെ അയനത്തെ 'ദക്ഷി ണായനം' എന്ന് വിളിക്കുന്നു.

്റ്റു പക്ഷിണാഖന കാലത്ത് ഉത്തരാർദ്ധഗോളത്തിലെ പകലു ചെയ്യു പുൻക്ക് എന്ത് മാറ്റമാണ് ഉണ്ടാവുകു മാർച്ച് മുതൽ സെപ്റ്റംബർ വരെയുള്ള ആറ് മാസക്കാലം സൂര്യൻ ഉത്ത രാർദ്ധഗോളത്തിലായതിനാൽ ഈ കാലയളവിൽ ഉത്തരധ്രുവ പ്രദേശങ്ങ ളിൽ ആറുമാസക്കാലം തുടർച്ചയായി പകലായിരിക്കും. സെപ്റ്റംബർ മുതൽ മാർച്ച് വരെ നീളുന്ന ആറുമാസക്കാലം സൂര്യൻ ദക്ഷിണാർദ്ധഗോളത്തി നായതിനാൽ ഉത്തര ധ്രുവ പ്രദേശങ്ങളിൽ ആറുമാസക്കാലം തുടർച്ചയായി രാത്രിയായിരിക്കും.

രാത്രിപകലുകളുടെ ശൈർഘ്യം എപ്രകാരമാഖിരിക്കാം? സൂര്യൻ ഖധാക്രമം ഉരതരാർദ്ധഗോളരുതിലും ഭക്ഷിണാർദ്ധ

ഭ്രമണവും സമയനിർണയവും

ക്കോക്ക് നോക്കിയപ്പോൾ മണി പന്ത്രണ്ടുതന്നെ. വാച്ചിലെ സമയം അഞ്ചര മണിക്കൂർ പിന്നോട്ടു തിരിച്ചു വയ്ക്കുണമെന്ന് എയർ ഹോസ്സസ് അറിവു തന്നു. അപോൾ ത്തങ്ങളുടെ വാച്ചിലെ ഇന്ത്യൻ സമയം 5.30 ആയിട്ടുണ്ടായിരുന്നു - ഇന്ത്യൻ സ്കാൻക്ഡേർഡ് സമ യാത്ത വിഴുത്തിമക്കാണ്ടാണു വിമാനം പടിത്തൊറോട്ടു പറക്കുന്നത്. അതിനനുസരിച്ച് കൂമടക്കുടെ ത്തങ്ങളുടെ വാച്ചിലെ സൂചിയും പിന്നോക്കം തിരിച്ചുവയ്ക്കേണ്ടിവന്നു.

> പാതിരാസൂര്യന്റെ നാട്ടിൽ എസ്.കെ. പൊറ്റെക്കാട്ട്

പ്രശസ്ത സഞ്ചാരസാഹിതൃകാരനായ എസ്.കെ. പൊറ്റെക്കാടിന്റെ "പാതിരാസൂര്യന്റെ നാട്ടിൽ" എന്ന യാത്രാവിവരണത്തിലെ ഒരു ഭാഗം വായി ച്ചല്ലോ. വിവിധ രാജ്യങ്ങളിലെ സമയം ഇന്ത്യൻ സമയത്തിൽ നിന്ന് വ്യത്യാസപ്പെട്ടിരിക്കുന്നു എന്ന് ഇതിൽ നിന്ന് ബോധ്യമായല്ലോ. സമയനിർണയ ത്തിലെ വ്യത്യാസം എന്തുകൊണ്ടെന്ന് പരിശോധിക്കാം.

ഒരു പ്രദേശത്തെ സൂര്യന്റെ ഉച്ചസ്ഥാനം, സൂര്യപ്ര കാശം സൃഷ്ടിക്കുന്ന നിഴൽ എന്നിവയെ അടി സ്ഥാനമാക്കിയായിരുന്നു ആദ്യകാലങ്ങളിൽ സമയം നിർണയിച്ചിരുന്നത്. തലയ്ക്കു മുകളി ലായി സൂര്യൻ എത്തുന്നത് ഉച്ചയ്ക്ക് 12 മണി യെന്ന് കണക്കാക്കുന്നു. ഓരോ സ്ഥലത്തും ഇപ്രകാരം സൂര്യന്റെ സ്ഥാനത്തെ ആധാരമാക്കി നിർണയിക്കുന്ന സമയത്തെയാണ് പ്രാദേശിക സമയം (Local time) എന്നു പറയുന്നത്.

ങരേ പ്രാദേശിയ സമഖം ആഖിരി ഇന്ത്യഖിൽ എല്ലാ സംസ്ഥാനങ്ങളിലും

പാതിരാസൂര്വൻ

അർധരാത്രിയിലും സൂര്യൻ! ഒരു ദിവ സമല്ല ആറുമാസക്കാലത്തോളം ആർട്ടിക് വൃത്തത്തിലും അന്റാർട്ടിക് വൃത്തത്തിലും ഇതാണു സ്ഥിതി. പകലെന്നു പറയുമ്പോൾ സൂര്യൻ തലയ്ക്കുമുകളിലാണെന്നു കരുത രുത്. ഇക്കാലത്ത് പകൽവെളിച്ചം ഏറിയാൽ ഒന്നോ രണ്ടോ മണിക്കൂർ മാത്രം. നിലത്തെ മ്പാടും മഞ്ഞുമൂടിയ അവസ്ഥയാണ്. ഇവി ടത്തെ ജനജീവിതവും പരിമിതമായ കൃഷി യുമെല്ലാം ഈ കാലാവസ്ഥാ പ്രത്യേകത യ്ക്കനുസരിച്ച് ക്രമപ്പെടുത്തിയിരിക്കുന്നു.

്റ ഒരു രാജ്യത്ത് നിരവധി പ്രാദേശിക സമയങ്ങൾ ഉണ്ടായാൽ അത് സൃഷ്ടി ക്കുന്ന പ്രയാസങ്ങൾ എന്തെല്ലാമായിരിക്കും? നിഗമനങ്ങൾ കൂട്ടിചേർക്കൂ.

- രാജ്യത്ത് ഉടനീളം ബാധകമാകുന്ന തീവണ്ടിസമയക്രമം തയാറാക്കാൻ കഴിയില്ല.
- റേഡിയോ പരിപാടികളെക്കുറിച്ചുള്ള അറിയിപ്പ് നൽകാൻ കഴിയില്ല.

പിൽക്കാലത്ത് സമയനിർണയം കൂടുതൽ ശാസ്ത്രീയവും കൃത്യവുമായി. സമയനിർണയത്തിനു പിന്നിലെ വസ്തുതകളിലേക്ക് നമുക്ക് കടന്നുചെ ല്ലാം.

പരിക്രമണത്തോടൊപ്പം ഭൂമി സ്വന്തം അച്ചുതണ്ടിനെ ആധാ രമാക്കി ഭ്രമണം ചെയ്യുന്നുവെന്ന് നിങ്ങൾക്കറിയാമല്ലോ. ഭ്രമ ണഫലമായാണ് രാത്രിയും പകലും ഉണ്ടാകുന്നത് എന്നു നിങ്ങൾ പഠിച്ചിട്ടുണ്ട്. ഭ്രമണവുമായി ബന്ധപ്പെട്ട ചില വസ്തു തകൾ നോക്കൂ.

- ഭൂമി ഭ്രമണം ചെയ്യുന്നത് പടിഞ്ഞാറുനിന്നു കിഴക്കോട്ടാ ണ് (ചിത്രം 1.10).
- ഒരു ഭ്രമണം പൂർത്തിയാക്കാൻ 24 മണിക്കൂർ എടുക്കുന്നു.
- ഭ്രമണം പടിഞ്ഞാറുനിന്നു കിഴക്കോട്ടായതിനാൽ സൂര്യോ ദയം കിഴക്കു നിന്നായിരിക്കും.

ഇന്ത്യചിൽ ഉദചയുരുനെ ആദ്യം കാണുന്നത് ഏതു സംസ്ഥാനക്കുള്ളവരാചിരിക്കും?

ഭൂമിയുടെ കോണളവ് 360° യാണല്ലോ. ഓരോ ഡിഗ്രി കോണളവിലും ഒരു രേഖാംശം വീതം വരച്ചാൽ 360 രേഖാംശരേഖകൾ ലഭിക്കും. 360° തിരിയാൻ ഭൂമിക്ക് വേണ്ടത് 24 മണിക്കൂറാണ്.

- ullet 24 മണിക്കൂറിനെ മിനിറ്റിലേക്ക് മാറ്റിയാൽ $24 \times 60 = 1440$ മിനിറ്റ്.
- അതായത് 360° തിരിയാൻ വേണ്ട സമയം
 1440 മിനിറ്റ്.
- ullet ഒരു ഡിഗ്രി രേഖാംശപ്രദേശം തിരിയാൻ ഭൂമിക്ക് വേണ്ട സമയം $rac{1440}{360}=4$ മിനിറ്റാണ്.
- 15° രേഖാംശപ്രദേശം തിരിയുമ്പോൾ ഒരു മണിക്കൂർ സമയവ്യ ത്യാസമുണ്ടാകുന്നു.

 15×4 മിനിറ്റ് = 60 മിനിറ്റ് (1 മണിക്കൂർ).

അതായത് ഒരു മണിക്കൂറിൽ ഭൂമിയുടെ 15 ഡിഗ്രി രേഖാംശരേഖാ പ്രദേശമാണ് സൂരുന് മുന്നിലൂടെ കടന്നുപോകുന്നത്.

ഭൂമിയുടെ ഭ്രമണം പടിഞ്ഞാറുനിന്നു കിഴക്കോട്ടായതിനാൽ സമയക്കൂടു തൽ രേഖപ്പെടുത്തുന്നത് കിഴക്കോട്ടും സമയക്കുറവ് രേഖപ്പെടുത്തുന്നത് പടിഞ്ഞാറോട്ടും ആയിരിക്കും. ചിത്രീകരണം ശ്രദ്ധിക്കൂ. ഒരു നിശ്ചിത രേഖാംശത്തിൽ നിന്നു കിഴക്കോട്ട് ഓരോ ഡിഗ്രി രേഖാംശത്തിനും സമയം നാല് മിനിറ്റ് കൂടിയും പടിഞ്ഞാറോട്ട് ഇത് നാല് മിനിറ്റ് കുറഞ്ഞും വരുന്നു.

ഗ്രീനിച്ച് സമയവും (GMT) സമയമേഖലയും (Time zone)

പൂജ്യം ഡിഗ്രി രേഖാംശരേഖ ഗ്രീനിച്ച് രേഖയെന്നറിയപ്പെടുന്നു. ഇംഗ്ലണ്ടിലെ റോയൽ ബ്രിട്ടീഷ് വാനനിരീക്ഷണശാല സ്ഥിതിചെയ്യുന്ന ഗ്രീനിച്ച് എന്ന സ്ഥലത്തുകൂടി കടന്നുപോകുന്നതിനാലാണ് ഈ രേഖയ്ക്ക് ഗ്രീനിച്ച് രേഖ എന്ന പേര് നൽകപ്പെട്ടത് (ചിത്രം 1.9). ഗ്രീനിച്ച് രേഖയെ അടിസ്ഥാനമാക്കിയാണ് ലോകത്ത് എവിടെയുമുള്ള സമയം നിർണയിക്കപ്പെടുന്നത് എന്ന തിനാൽ ഈ രേഖ പ്രൈം മെറീഡിയൻ (Prime Meridian) എന്നും വിളിക്കപ്പെടുന്നു. ഗ്രീനിച്ച് രേഖയിലെ പ്രാദേശികസമയത്തെ ഗ്രീനിച്ച് സമയം (Greenwich Mean Time) എന്നു പറയുന്നു. ഗ്രീനിച്ച് രേഖയെ അടിസ്ഥാന മാക്കി ഒരുമണിക്കൂർ വീതം സമയവ്യത്യാസമുള്ള 24 മേഖലകളായി ലോകത്തെ തിരിച്ചിരിക്കുന്നു. ഇവ സമയമേഖലകൾ എന്ന് അറിയപ്പെടുന്നു.

ഓരോ സമഖമേഖലഖും എത്ര ഡിഗ്രി രേഖാംശ വ്യാപ്തിഖിലാ ഖിരിക്കും സ്ഥിതിചെയ്യുന്നത്?

സ്റ്റാൻഡേർഡ് സമയം

ഓരോ രേഖാംശത്തിലെയും പ്രാദേശികസമയത്തിൽ വ്യത്യാസം ഉണ്ടാ യിരിക്കും. വിവിധ രേഖാംശങ്ങളിൽ ഉൾപ്പെട്ട പ്രദേശങ്ങൾ അതാതിടങ്ങളിലെ പ്രാദേശികസമയം പരിഗണിച്ചാൽ അത് പല അവസരങ്ങളിലും ആശയക്കുഴപ്പം സൃഷ്ടിക്കും. ഈ പ്രതിസന്ധി മറികടക്കാൻ രാജ്യങ്ങളുടെ കേന്ദ്രഭാഗത്തുകൂടി കടന്നുപോകുന്ന രേഖാംശത്തിലെ പ്രാദേശികസമ യത്തെ രാജ്യത്ത് മുഴുവൻ പൊതുസമയമായാണ് സാധാരണ കണക്കാക്കുന്നത്. എന്നാൽ രേഖാംശവ്യാപ്തി കൂടിയ രാജ്യങ്ങളിൽ ഒന്നിലേറെ രേഖാം ശങ്ങളെ മാനകരേഖാംശമായി പരിഗണിച്ച് ഒന്നിലധികം മാനകസമയങ്ങൾ നിർണയിച്ചിട്ടുണ്ട്. ലോകത്തിലെ ഓരോ രാജ്യവും ഇത്തരത്തിൽ ഏറക്കുറേ മധ്യത്തിലൂടെ കടന്നുപോകുന്ന രേഖാംശരേഖയെ മാനകരേഖാംശമായി (Standard Meridian) പരിഗണിക്കുന്നു. മാനകരേഖാംശത്തിലെ പ്രാദേ ശികസമയമാണ് ആ രാജ്യത്തിന്റെ മാനകസമയം (Standard Time).

ചിത്രം 1.9

രേഖാംശവ്യാപ്തി കൂടിച വലിച രാജ്യങ്ങളിൽ ഒന്നിലേറെ മാനകുരേഖാംശങ്ങൾ അടിസ്ഥാനമാക്കി സമഖനിർണഖം നട ഭരതണ്ടി വരുന്നു. എന്തുകൊണ്ട്?

ഇന്ത്യൻ സ്റ്റാൻഡേർഡ് സമയം (IST)

പൂർവരേഖാംശം 68° മുതൽ 97° വരെയാണല്ലോ ഇന്ത്യയുടെ രേഖാംശീയ വ്യാപ്തി. ഇവയുടെ ഏകദേശം മധ്യത്തായി സ്ഥിതി ചെയ്യുന്ന $82^{1}\!\!/\!\!2^{
m o}$ പൂർവരേഖാംശത്തെയാണ് ഇന്ത്യയുടെ മാനകരേഖാംശമായി കണക്കാ ക്കുന്നത്.

ഈ രേഖാംശത്തിലെ പ്രാദേശികസമയമാണ് ഇന്ത്യയുടെ പൊതുവായ സമയമായി അംഗീകരിച്ചിട്ടുള്ളത്. ഇതിനെ ഇന്ത്യൻ സ്റ്റാൻഡേർഡ് സമയം (Indian Standard Time) എന്നു വിളിക്കുന്നു.

🕵 ഇന്ത്യൻ സ്റ്റാൻഡേർഡ് സമയം ഗ്രീനിച്ച് സമയത്തിൽനിന്ന് എത്ര വ്യത്യാ സത്തിലാണെന്ന് കണക്കാക്കൂ.

അന്താരാഷ്ട്രദിനാങ്കരേഖ (International Date Line)

ഗ്രീനിച്ച് രേഖയിൽനിന്നു കിഴക്കോട്ടോ പടിഞ്ഞാറോട്ടോ 180° രേഖാം ശം വരെ ഓരോ 15° യിലെയും സമയം കണക്കാക്കി പട്ടിക പൂർത്തി യാക്കൂ.

ഗ്രീനിച്ച് രേഖയിലെ സമയം – വെള്ളിയാഴ്ച രാവിലെ 10 മണി						
ഗ്രീനിച്ചിൽനിന്നു പടിഞ്ഞാറോട്ട്		ഗ്രീനിച്ചിൽനിന്നു കിഴക്കോട്ട്				
രേഖാംശം	ദിവസം	സമയം	രേഖാംശം	ദിവസം	സമയം	
15°	വെള്ളി	രാവിലെ 9 മണി	15°	വെള്ളി	രാവിലെ 11 മണി	
30^{0}	വെള്ളി	രാവിലെ 8 മണി	30^{0}	വെള്ളി	ഉച്ചയ്ക്ക് 12 മണി	
450			45°			
600			600			
750			75°			
900			900			
105°			105°			
1200			1200			
135°			135°			
1500			150°			
165°			165°			
1800			1800			

പട്ടിക 1.2

കിഴക്കോട്ടും പടിഞ്ഞാറോട്ടും 180° രേഖാംശത്തിൽ എത്തിയപ്പോൾ 24 മണി ക്കൂറിന്റെ സമയവ്യത്യാസം കാണാൻ കഴിഞ്ഞില്ലേ. നൽകിയിട്ടുള്ള ചിത്രത്തിൽ (ചിത്രം 1.10) 'A' എന്ന സ്ഥലം സ്ഥിതിചെയ്യുന്നത് 180° രേഖാംശരേഖ യിലാണ്. ഈ സ്ഥലത്ത് താമസിക്കുന്ന വർ പട്ടികയിൽ രേഖപ്പെടുത്തിയിട്ടുള്ള ഏതു ദിവസമായിരിക്കും പരിഗണി ക്കുക?

ഒരു രാജ്യത്തിലൂടെ 180° രേഖാംശരേഖ കടന്നുപോവുകയാണെങ്കിൽ ഈ രേഖയ്ക്ക് കിഴക്കും പടിഞ്ഞാറും

ചിത്രം 1.10

വ്യത്യസ്ത ദിനങ്ങളായിരിക്കുമല്ലോ. ഇത് സൃഷ്ടിച്ചേക്കാവുന്ന പ്രായോഗിക പ്രശ്നങ്ങളെ കുറിച്ച് ചിന്തിച്ചു നോക്കൂ. ഈ ബുദ്ധിമുട്ട് ഒഴിവാക്കുന്നതിനായി കരഭാഗങ്ങളിൽ കൂടി കടന്നുപോകാത്തവിധം ഈ രേഖയിൽ ചില ക്രമീകരണങ്ങൾ വരുത്തിയിട്ടുണ്ട്. ചിത്രത്തിൽ മുറിഞ്ഞവരകൾ ഉപയോ ഗിച്ച് ഈ രേഖാംശരേഖയെ ക്രമീകരിച്ചിരിക്കുന്നത് ശ്രദ്ധിക്കൂ. പസഫിക് സമുദ്രത്തിലെ ബെറിങ് കടലിടുക്കിലൂടെ കടന്നുപോകും വിധവും ജനവാസമുള്ള ചില ദ്വീപുകളെ ഒഴിവാക്കിയുമാണ് ഈ രേഖ ക്രമീകരിച്ചി രിക്കുന്നത്. ഈ രേഖ മുറിച്ചുകടന്ന് പടിഞ്ഞാറോട്ട് പോകുന്ന സഞ്ചാരി കൾ കലണ്ടറിൽ ഒരുദിവസം കൂട്ടിയും കിഴക്കോട്ട് പോകുന്നവർ ഒരു ദിവസം കുറച്ചും സമയം കണക്കാക്കുന്നു. ഈ സാങ്കൽപ്പികരേഖ അന്താരാഷ്ട്ര ദിനാങ്കരേഖ (International Date Line) എന്നറിയപ്പെടുന്നു.

ഗ്ലോബിൽ അന്താരാഷ്ട്ര ദിനാങ്കുരേഖ ചിത്രീകരിച്ചിരിക്കു ന്നത് നിരീക്ഷിക്കുക. അന്താരാഷ്ട്ര ദിനാങ്കുരേഖഖുടെ കിഴുക്കും പടിഞ്ഞാറും സ്ഥിതിചെച്ചുന്ന വൻകുരകൾ ഏതൊക്കെവെന്ന് കുണ്ടെത്തു. ഇതിൽ അന്താരാഷ്ട്ര ദിനാ ങ്കുരേഖ കുടന്ന് ഏതു വൻകുരവിലേക്ക് പോകുന്നവർക്കാണ് ഒരു ദിവസത്തിന്റെ ലാഭം ഉണ്ടാകുന്നത്?

സമയം കണക്കാക്കാം ഉദാഹരണം: 1 ഗ്രീനിച്ച് സമയം ഉച്ചയ്ക്ക് 12 മണിയായിരിക്കുമ്പോൾ ഇന്ത്യയിലെ സമയം എത്രയായിരിക്കും? ഇന്ത്യയിലെ സമയം നിർണയിക്കുന്നത് ഏതുവിധമാ ന്നെന്നാക്കൂ.

- ഗ്രീനിച്ച്, ഇന്ത്യ എന്നീ രണ്ടു സ്ഥലങ്ങൾ തമ്മിലുള്ള രേഖാംശീയ വ്യത്യാസം = 82½° അഥവാ 82°30 മിനിട്ട്.
- 15° രേഖാംശത്തിന് സമയവ്യത്യാസം 1 മണിക്കൂർ
- ullet 82½° രേഖാംശത്തിലെ സമയവ്യത്യാസം = $\dfrac{82^\circ 30'}{15}$ = $5\frac{1}{2}$ മണിക്കൂർ
 = 5 മണിക്കൂർ 30 മിനിറ്റ്
- ഗ്രീനിച്ചിന്റെ കിഴക്കായി ഇന്ത്യ സ്ഥിതിചെയ്യുന്നതിനാൽ ഗ്രീനിച്ചിലെ സമയത്തേക്കാൾ 5 മണിക്കൂർ 30 മിനിറ്റ് കൂടുതലായിരിക്കും ഇന്ത്യയിലെ സമയം.
 - ∴ ഇന്ത്യയിലെ സമയം = ഗ്രീനിച്ച് സമയം + സമയവ്യത്യാസം
 = 12 മണി + 5 മണിക്കൂർ 30 മിനിറ്റ്
 = 5.30 pm

ഉദാഹരണം : 2

ഇന്ത്യയിൽ തിങ്കളാഴ്ച രാത്രി 11 മണി ആയിരിക്കുമ്പോൾ, ജപ്പാനിലെ (135° കിഴക്ക്) സമയം എത്രയായിരിക്കും?

- ഇന്ത്യയിൽനിന്നും ജപ്പാൻ വരെ രേഖാംശവ്യാപ്തി = 135 82°30′ = 52°30′
- 1° രേഖാംശത്തിന് സമയവ്യത്യാസം 4 മിനിറ്റ്.
- ullet 52°30' രേഖാംശത്തിന് സമയവ്യത്യാസം = $52lac{1}{2} imes 4$ = 210 മിനിറ്റ് = 3 മണിക്കൂർ 30 മിനിറ്റ്

- ജപ്പാൻ സ്ഥിതിചെയ്യുന്നത് ഇന്ത്യയിൽ നിന്ന് 52°30' കിഴക്കായതിനാൽ ഇന്ത്യയുടെ സമയത്തേക്കാൾ 3 മണിക്കൂർ 30 മിനിറ്റ് മുന്നിലായിരി ക്കും ജപ്പാനിലെ സമയം.
- ഇന്ത്യയിൽ സമയം തിങ്കളാഴ്ച രാത്രി 11 ആയിരിക്കുമ്പോൾ ജപ്പാനിലെ സമയം = തിങ്കൾ 11.00 pm + 3.30 = ചൊവ്വ 2.30 am.

വിലയിരുത്താം

- ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഋതുഭേദങ്ങൾക്ക് കാരണമാകാത്ത ഘടകം തിരിച്ചറിഞ്ഞെഴുതുക.
 - a. ഭൂമിയുടെ പരിക്രമണം
 - b. അച്ചുതണ്ടിന്റെ ചരിവ്
 - c. അച്ചുതണ്ടിന്റെ സമാന്തരത
 - d. ഭൂമിയുടെ ഭ്രമണം
- സൂര്യത്ശ്മികൾ ലംബമായി പതിക്കുന്നത് ഉത്തരായനരേഖയ്ക്കും ദക്ഷിണായനരേഖയ്ക്കും ഇടയിലാണ്. എന്തുകൊണ്ട്?
- മാർച്ച് 21, ജൂൺ 21, സെപ്തംബർ 23, ഡിസംബർ 22 എന്നീ ദിവസങ്ങളുടെ പ്രാധാന്യം വിശദമാക്കുക.
- കിഴക്കോട്ട് സമയക്കൂടുതലും പടിഞ്ഞാറോട്ട് സമയക്കുറവും രേഖ പ്പെടുത്തുന്നത് എന്തുകൊണ്ടാണ്?

തുടർപ്രവർത്തനങ്ങൾ

- വിവിധ ഋതുക്കളിൽ പ്രകൃതിയിലുണ്ടാകുന്ന മാറ്റങ്ങൾ വൃക്തമാ ക്കുന്ന ചിത്രങ്ങൾ ശേഖരിച്ച് അടിക്കുറിപ്പുകളോടെ ക്ലാസിൽ പ്രദർശിപ്പിക്കുക.
- ഓരോ ഋതുവിലും പ്രകൃതിയിലുണ്ടാകുന്ന മാറ്റങ്ങൾ നേരിട്ടു നിരീ ക്ഷിച്ച് കാലാവസ്ഥാ നിരീക്ഷണ ഡയറി തയാറാക്കുക.
- വിവിധ രാജ്യങ്ങളുടെ മാനക രേഖാംശങ്ങൾ അറ്റ്ലസിന്റെ സഹാ യത്തോടെ കണ്ടെത്തി അവിടത്തെ പ്രാദേശികസമയം കണക്കാ ക്കുക.