W_{d0} W_{c0} $\sigma(y) = \frac{1}{1 + e^{-y}}$ W_{dc} c

The network and the sigmoid activation function sigmoid function are as follows:

Training example 1:

The outputs of the two neurons, noting that a=1 and b=0:

$$o_c = \sigma(0.1 \times 1 + 0.1 \times 0 + 0.1 \times 1) = \sigma(0.2) = 0.5498$$

 $o_d = \sigma(0.1 \times 0.5498 + 0.1 \times 1) = \sigma(0.15498) = 0.53867$

The error terms for the two neurons, noting that d=1:

$$\delta_d = 0.53867 \times (1 - 0.53867) \times (1 - 0.53867) = 0.1146$$

$$\delta_d = 0.53807 \times (1 - 0.53807) \times (1 - 0.53807) = 0.1140$$

 $\delta_c = 0.5498 \times (1 - 0.5498) \times 0.1 \times 0.1146 = 0.002836$

Compute the correction terms as follows, noting that
$$a=1$$
, $b=0$ and $\eta=0.3$:

$$\Delta w_{d0} = 0.3 \times 0.1146 \times 1 = 0.0342$$

$$\Delta w_{dc} = 0.3 \times 0.1146 \times 0.5498 = 0.0189$$

$$\Delta w_{c0} = 0.3 \times 0.002836 \times 1 = 0.000849$$

$$\Delta w_{c0} = 0.3 \times 0.002836 \times 1 = 0.000849$$

$$\Delta w_{ca} = 0.3 \times 0.002836 \times 1 = 0.000849$$

$$\Delta w_{ca} = 0.3 \times 0.002836 \times 1 = 0.00084$$

$$\Delta w_{cb} = 0.3 \times 0.002836 \times 0 = 0$$

and the new weights become:

$$w_{d0} = 0.1 + 0.0342 = 0.1342$$

$$w_{dc} = 0.1 + 0.0189 = 0.1189$$

 $w_{c0} = 0.1 + 0.000849 = 0.100849$
 $w_{ca} = 0.1 + 0.000849 = 0.100849$

$$w_{cb} = 0.1 + 0 = 0.1$$

Training example 2:

The outputs of the two neurons, noting that a=0 and b=1:

$$o_c = \sigma(0.100849 \times 0 + 0.1 \times 1 + 0.100849 \times 1) = \sigma(0.200849) = 0.55$$

 $o_d = \sigma(0.1189 \times 0.55 + 0.1342 \times 1) = \sigma(0.1996) = 0.5497$

The error terms for the two neurons, noting that d=0:

$$\delta_d = 0.5497 \times (1 - 0.5497) \times (0 - 0.5497) = -0.1361$$

 $\delta_c = 0.55 \times (1 - 0.55) \times 0.1189 \times (-0.1361) = -0.004$

Compute the correction terms as follows, noting that
$$a=0, b=1, \eta=0.3$$
 and $\alpha=0.9$:

 $\Delta w_{d0} = 0.3 \times (-0.1361) \times 1 + 0.9 \times 0.0342 = -0.01$ $\Delta w_{dc} = 0.3 \times (-0.1361) \times 0.55 + 0.9 \times 0.0189 = -0.0055$

$$\Delta w_{c0} = 0.3 \times (-0.004) \times 1 + 0.9 \times 0.000849 = -0.0004$$

$$\Delta w_{ca} = 0.3 \times (-0.004) \times 0 + 0.9 \times 0.000849 = 0.00086$$

$$\Delta w_{cb} = 0.3 \times (-0.004) \times 1 + 0.9 \times 0 = -0.0012$$

and the new weights become:

$$w_{d0} = 0.1342 - 0.01 = 0.1242$$

 $w_{dc} = 0.1189 - 0.0055 = 0.1134$

$$w_{c0} = 0.100849 - 0.0004 = 0.100849$$

 $w_{c0} = 0.100849 + 0.00086 - 0.1016$

$$w_{ca} = 0.100849 + 0.00086 = 0.1016$$

 $W_{ch} = 0.1 - 0.0012 = 0.0988$