

Arquitetura de Computadores:

Arte de selecionar e conectar componentes de hardware, firmware e software para criar computadores que cumpram certas especificações funcionais relacionadas a custo e performance.

Arquitetura de Computadores:

- Implementação lógica: Como e onde é implementada a micro-arquitetura como equações lógicas.
- Design do circuíto: Onde blocos críticos, equações lógicas e portas se localizam no nível de transistores.
- Montagem física: Onde os circuitos são montados, os barramentos são impressos e portas para placas, conectores e cabos são arrumados e roteados.

Arquitetura de Computadores:

Elementos combinados para uma arquitetura de um computador.

Aplicativo

Sistema

Software

Firmware

Hardware

Arquitetura de Computadores:

Mapa de mem. de dispositivos 32 bits 0xFFFFFFF (4 GB)

Aplicativo

Sistema

Software

Firmware

Hardware

Mem. Extend.

Não usado

BIOS (ROM)

ROM dispositivos 16 bits

VGA

Memória (low)

Depende (RAM)

0x00100000 (1 MB)

0x000F0000 (960 KB)

0x000C0000 (768 KB

0x000A0000 (640 KB

0x0000000

Arquitetura de Computadores:

Mapa de mem. de dispositivos 32 bits 0xFFFFFFF (4 GB)

Aplicativo

Sistema

Software

Firmware

Hardware

Mem. Extend.

Não usado

BIOS (ROM)

ROM dispositivos 16 bits

VGA

Memória (low)

Depende (RAM)

0x00100000 (1 MB)

0x000F0000 (960 KB)

0x000C0000 (768 KB

0x000A0000 (640 KB

0x0000000

Arquitetura de Computadores:

Mapa de mem. de dispositivos 32 bits 0xFFFFFFF (4 GB)

Aplicativo

Sistema

Software

Firmware

Hardware

Mem. Extend.

Não usado

BIOS (ROM)

ROM dispositivos 16 bits

VGA

Memória (low)

Depende (RAM)

0x00100000 (1 MB)

0x000F0000 (960 KB)

0x000C0000 (768 KB

0x000A0000 (640 KB

0x00000000

Arquitetura de Computadores:

Arquitetura de von Neumann

Arquitetura de Computadores: esquema básico.

Arquitetura de Computadores:

Microprocessador Registradores e Barramento Clock Unidade de ponto flutuante (FPU) Memória Virtual Memória Cache

Arquitetura de Computadores: Registradores (8086)

	F	8 7	0	
AX	AH		AL	Accumulator
BX	ВН		BL	Base
CX	СН		CL	Counter
DX	DH		DL	Data
SP BP SI DI IP FLAGS				Stack Pointer Base Pointer Source Index Destination Index Instruction Pointer Flags
CS DS SS ES				Code Segment Data Segment Stack Segment Extra Segment

Arquitetura de Computadores: Reg. de dados

	F 8 7	0	
AX	АН	AL	Accumulator
BX	ВН	BL	Base
CX	СН	CL	Counter
DX	DH	DL	Data

8 registradores de dados de 8 bits.

4 registradores de dados de 16 bits.

Arquitetura de Computadores: Reg. de endereço

SP e BP são endereços de pilhas (topo e base)

SI e DI são usados para endereços de 'String' mas podem conter outros tipos de endereços de dados.

Arquitetura de Computadores:

IP é o apontador de instrução e o campo de 'flags' é usado para marcadores.

Arquitetura de Computadores:

O processador 8086 pode acessar até 4 segmentos de 64 Kbytes de cada vez.

CS: contém o endereço inicial do segmento de código atual

DS: contém o endereço base do segmento de dados atual

SS: contém o endereço da pilha atual

ES: contém o endereço global dos dados

Arquitetura de Computadores: (80386)

	1F	10 OF	08 07	00	
EAX			AH	AL	Accumulator
EBX			ВН	BL	Base
ECX			СН	CL	Counter
EDX			DH	DL	Data
ESP EBP ESI EDI					Stack Pointer Base Pointer Source Index Destination Index
EIP EF					Instruction Pointer Flags
		CS SS DS ES FS GS			Code Segment Stack Segment Data Segment Data Segment Data Segment Data Segment

Arquitetura de Computadores: (Pentium)

Figure 1. Pentium block diagram.

Arquitetura de Computadores: (Pentium 3)

Arquitetura de Computadores: (Pentium 4)

Arquitetura de Computadores: (Pentium Pro)

Arquitetura de Computadores: (RISC 6000)

O processador RS/6000 possui cinco unidades:

- * ICU: unidade de memória cache de instruções;
- * FXU: unidade de ponto fixo;
- * FPU: unidade de ponto flutuante;
- * DCU: memória cache de dados;
- * SCU: unidade de controle de memória.

Arquitetura de Computadores: (RISC 6000)

As funções de cada um dos quatro estágios do processador são as seguintes:

- Busca: quatro instruções são trazidas da memória cache para a janela (denominada buffer pela IBM) pela unidade ICU;
- Despacho: se apropriado, instruções para as unidades FXU e FPU são despachadas pelo processador de desvios. Além dessa função, a unidade ICU pode gerar o endereço alvo de uma instrução de desvio e executar uma outra instrução de desvio;
- Decodificação: as unidades FXU e FPU decodificam as instruções despachadas pela ICU;
- Execução: as instruções decodificadas são executadas pela FXU e pela FPU.

Arquitetura de Computadores: (RISC 6000)

Processador de Ponto Fixo r0 → r31 xer mq dar dsisr

Processador de Ponto Flutuante		
fr0 -	→ fr31	
fpscr		

Processador de Desvios		
msr ctr		
cr	1r	
srr0	srr1	

Registrado	Registradores Especiais		
sr0 -	sr0 → sr15		
eim0	eim1		
eis0	eis1		
sdr0	sdr1		
rtcu	rtc1		
tid	dec		
i	iar		

Reg. do processador de ponto fixo

r0-r31: Registradores de propósito geral: principal conjunto de registradores de 32 bits usado pelo sistema.

xer:Registrador de exceção de ponto fixo: este registrador de 32 bits indica o estado da operação de ponto fixo, por exemplo, que um overflow ou carry ocorreu.

mq: Registrador de quociente de multiplicação: fornece uma extensão de registrador de 32 bits para armazenar os resultados de operação de multiplicação ou de divisão.

dar: Registrador de endereço de dados: contém o endereço de 32 bits que ocasiona um armazenamento de dados ou uma exceção de alinhamento.

dsisr: Registrador de status de interrupção de armazenamento de dados: define a causa da interrupção cujo endereço endereço foi colocado no registrador dar.

Arquitetura de Computadores: (RISC 6000)

Processador de Ponto Fixo		
r0 -	→ r31	
xer	mq	
dar	dsisr	

Processador de Ponto Flutuante			
fr0	\rightarrow	fr31	
fpscr			

Processador de Desvios		
msr ctr		
cr	1r	
srr0	srr1	

Registradores Especiais		
sr0 -	sr0 → sr15	
eim0	eim1	
eis0	eis1	
sdr0	sdrl	
rtcu	rtc1	
tid	dec	
iar		

Reg. de ponto flutuante

fr0-fr31: Registradores de ponto flutuante: 32 registradores de ponto flutuante de 64 bits cada.

fpscr: Registrador de controle e status de ponto flutuante: controla o manuseio de exceções de ponto flutuante e dos resultados.

Arquitetura de Computadores: (RISC 6000)

Processador de Ponto Fixo

r0 → r31

xer mq

dar dsisr

Processador de Ponto Flutuante			
fr0 -	→ fr31		
fpscr			

Processador de Desvios		
msr ctr		
cr	1r	
srr0	srr 1	

Registradores Especiais	
sr0 → sr15	
eim0	eim1
eis0	eis1
sdr0	sdr1
rtcu	rtc1
tid	dec
iar	

Reg. do processador de desvios

msr: Registrador de estado de máquina: define o estado do processador (se as interrupções externas estão desabilitadas, se o processador de ponto flutuante está livre ou se um endereço incorreto foi selecionado.

cr: Registrador de condição: um registrador de 32 bits que reflete o resultado de certas operações e fornece um mecanismo para teste e desvio.

lr: Registrador de ligação: um registrador de 32 bits que contém o destino para instruções de desvio condicional ou o endereço de retorno de subrotina.

ctr: Registrador contador: um registrador de 32 bits que é automaticamente decrementado com instruções de desvio e de contagem.

srr0: Registrador 0 de salvamento/recuperação de status: registrador de 32 bits que salva o estado da máquina em interrupções e recupera o estado da máquina no retorno de uma instrução de interrupção.

srr0: contém o endereço que ocasionou a interrupção.

srr1: Registrador 1 de salvamento/recuperação de status: como srr0, entretanto srr1 contém informações específicas sobre a causa da interrupção.

Arquitetura de Computadores: (RISC 6000) Registradores especiais

Processador de Ponto Fixo r0 r31 xer mq dsisr dar

Processador de Ponto Flutuante		
fr0 -	→ fr31	
fpscr		

Processador de Desvios	
msr	ctr
cr	1r
sm0	sm1

Registradores Especiais		
s r 0 –	→ sr15	
eim0	eim1	
eis0	eis1	
sdr0	sdr1	
rtcu	rtc1	
tid	dec	
iar		

dec: Registrador de decremento: um contador que fornece o mecanismo para uma interrupção externa.

eim0, eim1: Máscara de interrupção externa, baixa e alta, e de 32 bits.

eis0, eis1: Sumário de interrupção externa, baixo e alto, de 32 bits.

iar: Registrador de endereço de instruções (contador de programa).

rtcu: Registrador upper de relógio de tempo real: tempo de 32bits em segundos.

rtcl: Registrador lower de relógio de tempo real: os 32 bits mais baixos do tempo em nanosegundos.

sr0-sr15: Registradores de segmento: 16, registradores de 32 bits usados para transformar endereços.

sdr0: Registrador 0 de descrição de armazenamento: um ponteiro para os bits de ordem mais alta do endereço.

sdr1: Registrador 1 de descrição de armazenamento: contém os bits de ordem mais alta do endereço para o hardware transformar endereços.

tid: Registrador de ID de transações: um ID de transações de 32 bits do processo executante.

Arquitetura de Computadores: (RISC)

Arquitetura de Computadores: (PPC)

Arquitetura de Computadores: (ARM)

- RISC
- 32 bits
- Alta performance
- Baixo consumo

Arquitetura de Computadores: (ARM)

- Equipamentos móveis
- Smartphones
- Tablets
- Mini computers (Raspberry Pi, Cubieboard, Beaglebone etc.)

Arquitetura de Computadores: (ARM)

31 registradores de 32 bits (16 acessíveis em qualquer estado)

Conjunto eficiente de instruções com referências condicionais na própria instrução

Arquitetura de Computadores: (ARM)

Modos:

User (usr): Estado de execução normal

FIQ (fiq): Fast interrupt (transf. rápida de dados)

IRQ (irq): Manipulação de interrupções

Supervisor (svc): Modo protegido para o SO

Abort (abt): Implementa mem. virtual ou mem. protease

Undefined (und): Emulação de hardware de coprocessamento via software.

System (sys): Roda SO em modo privilegiado.