Fonaments de Computadors

Índex

1. Estudi preliminar	3
1.1 Registre PC	3
1.2 Banc registre	
2. Disseny	
2.1 Registre PC	
2.2 Banc registre	
3. Implementació	5
3.1 Registre PC	
3.2 Banc registre	
4. Joc de proves	7
4.1 Registre PC	
4.2 Banc registre	
5. Conclusió	

1. Estudi preliminar

1.1 Registre PC

Per començar, hem decidit utilitzar una porta OR amb la qual l'usuari ha d'utilitzar una de les dues opcions que li donem, pot utilitzar el Load per a recarregar el registre o implementar l'Inc, aquest incrementa el registre amb els dígits introduïts per NewPC.

A continuació afegim un Multiplexor per a agafar les dades introduïdes pel NewPC y la recàrrega dels registres, afegint el càlcul de la suma si és que en aquest cas tenim algun valor a suma.

Seguidament, hem afegit el Sinc per a sincronitzar les dades dins del Registre8bits, també hem connectat el Reset perquè l'usuari pugui reinicialitzar les dades de dins del registre, i per últim mostrem les dades al PCout i els valor que obtenim al Cout, els sumem amb un sumador aritmètic, d'aquesta manera agafem els números que introdueix l'usuari i els sumem. Un cop sumats els mostrem al PCout.

1.2 Banc registre

En aquest apartat hem decidit connectar el Registre d'entrada (RegIn) a totes les dades d'entrada (Din) de cada un dels registres de 8 bits, ja que per aquí afegim els bits d'entrada.

Seguidament, connectarem el nombre de registres d'entrada (NumRegIn) a un demultiplexor (DMX) connectant prèviament totes les entrades d'informació (Wr) de cadascun dels registres de 8 bits. Aquest DMX estarà connectat també a una entrada de control d'escriptura (Wr).

A continuació connectarem el botó de sincronització (Sinc) a totes les entrades dels registres de 8 bits per a poder sincronitzar les dades. Per a la restauració de les dades utilitzarem el botó de reset, que estarà connectat a cadascuna de les sortides reset dels registres de 8 bits.

Per acabar, connectarem les dades de sortida de cadascun dels registres (Dout) mitjançant un multiplexor connectat a la sortida de dades del circuit (RegOut1 i RegOut2). I com tenim un nombre de registres d'entrada, afegirem també un nombre de registres de sortida (NumRegOut1 i NumRegOut2).

2. Disseny

2.1 Registre PC

En la dada de registre el que hem decidit és que es modifiqués si el bit de càrrega o increment està a 1, per aquesta raó hem posat una porta lògica OR. El multiplexor l'hem usat per si la càrrega està a 1, la dada d'entrada sigui NewPC, si aquest és 1 es realitzés d'una forma implícita l'increment sempre que el bit sigui 1, usant l'operador de la suma.

2.2 Banc registre

En el cas del banc de registre hem decidit implementar demultiplexor per a l'escriptura, El demultiplexor per al bit de Write al registre indicat per NumReg mentre la resta tendra 0. A part, hem unit el bit de sincronia a tots els registres.

Quant a la lectura del registre hem usat dos multiplexor que mostra la sortida de dades del registre indicat per NumRegOut1 i RegOut2. En aquest cas no hem acabat d'entendre com hauríem que implementar els dues RegOut.

3. Implementació

3.1 Registre PC

3.2 Banc registre

4. Joc de proves

4.1 Registre PC

Prova	Descripció	Resultat esperat	OK?
1	Din: 123 / Op: 01 / Activar Sincro	Dout: 123	SI
2	(No op) Din: 255 / Op: 00 / Activar Sincro	Dout no canvia	SI
3	(Reset) Pitjar botó "Reset"	Dout: 0	SI
4	(LSL) Carregar valor 30. Posar Op=10 + pitjar Sincro 3 vegades	Dout: 30>60>120>240	SI
5	(LSR) Carregar valor 200. Posar Op=11 + pitjar Sincro 5 vegades	Dout: 200>100>50>25>12>6	SI

4.2 Banc registre

Malauradament, no hem pogut assolir aquesta part de la pràctica pel fet de manca de coneixements i temps.

5. Conclusió

Malgrat de la falta de contingut d'aquesta pràctica, ens sentim satisfets per la feina i l'esforç que hem aplicat.

Vam tindre problemes desde el començament de la práctica pero gracies al profesor de teoria i laboratori vam conseguir dur a terme bona part de la pràctica.