

US006675106B1

(12) **United States Patent**
Keenan et al.

(10) **Patent No.:** US 6,675,106 B1
(45) **Date of Patent:** *Jan. 6, 2004

(54) **METHOD OF MULTIVARIATE SPECTRAL ANALYSIS**

(75) Inventors: **Michael R. Keenan**, Albuquerque, NM (US); **Paul G. Kotula**, Albuquerque, NM (US)

(73) Assignee: **Sandia Corporation**, Albuquerque, NM (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 227 days.

This patent is subject to a terminal disclaimer.

(21) Appl. No.: **09/873,078**

(22) Filed: **Jun. 1, 2001**

(51) Int. Cl.⁷ **G06F 19/00; G06F 17/16**

(52) U.S. Cl. **702/28; 702/194; 702/196**

(58) Field of Search **702/27, 28, 189, 702/194, 196, 197; G06F 19/00, 17/16**

(56) **References Cited**

U.S. PATENT DOCUMENTS

4,660,151 A	4/1987	Chipman et al. 364/498
5,357,110 A	10/1994	Statham 250/307
5,379,352 A	1/1995	Sirat et al. 382/41
5,583,951 A	12/1996	Sirat et al. 382/232
5,596,195 A	1/1997	Obori et al. 250/310
5,610,836 A	3/1997	Alsmeyer et al. 364/498
5,701,074 A	* 12/1997	Zhu 324/307
5,866,903 A	2/1999	Morita et al. 250/310
5,982,486 A	* 11/1999	Wang 356/346

OTHER PUBLICATIONS

Co-pending US patent application claims "Apparatus and System for Multivariate Spectral Analysis", M. R. Keenan, et al, commonly assigned to Sandia Corporation, Albuquerque, New Mexico.

B. Cross, "Scanning X-Ray Fluorescence Microscopy and Principal Component Analysis", Proc. 50th Annual Meeting of the Electron Microscopy Society of American Held jointly with the 27th Annual Meeting of the Microbeam Analysis Society and the 19th Annual Meeting of the Microscopical Society of Canada/Societe de microscopie du Canada(1992) pp. 1752-1753.

D. M. Hawkins and D. J. Olive, "Improved feasible solution algorithms for high breakdown estimation", Elsevier Computational Statistics & Data Analysis 30 (1999) pp. 1-11.

P. G. Kotula and M. R. Keenan, "Automated unbiased information extraction of STEM-EDS spectrum images," Paper presented at 2nd Conf. Int. Union Microbeam Analysis societies, Kailua-Kona. Hawaii, Jul. 9-13, 2000 pp. 147-148.

P. G. Kotula and M. R. Keenan, "Information Extraction: Statistical Analysis to get the most from Spectrum Images" Microsc. Microanal. 6 (Suppl 2: Proceedings). Aug. 2000, pp. 1052-1053.

(List continued on next page.)

Primary Examiner—Stephen D. Meier

Assistant Examiner—Blaise Mouttet

(74) Attorney, Agent, or Firm—Robert D. Watson

(57) **ABSTRACT**

A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S^T, by performing a constrained alternating least-squares analysis of D=CS^T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

106 Claims, 21 Drawing Sheets

