ML & Advanced Analytics For Biomedicine

Ishanu Chattopadhyay Department of Medicine University of Chicago

CCTS 40500 / CCTS 20500 / BIOS 29208 Winter 2019

- Probability Theory
- Bayesian Statistics
- Naive Bayes Classifier
- Bias vs Variance

Probability Theory

- Probability Theory is the cornerstone of ML. Almost all arguments are probabilistic.
 - when event A occurs, B generally follows
 - complicated model of a million possible events, and wish to simplify the model by allowing it to neglect the least likely events

Possible Outcomes: H, T

Probabilities: Pr(H) = Pr(T) = 0.5

$$\frac{\#H}{\#Tosses} = \frac{\#H}{\#H + \#T} \longrightarrow 0.5 \tag{1}$$

Probability Theory

- Probability Theory is the cornerstone of ML. Almost all arguments are probabilistic.
 - when event A occurs, B generally follows
 - complicated model of a million possible events, and wish to simplify the model by allowing it to neglect the least likely events

Possible Outcomes: H, T (Sample Space)

Probabilities: Pr(H) = Pr(T) = 0.5

$$\frac{\#H}{\#Tosses} = \frac{\#H}{\#H + \#T} \longrightarrow 0.5 \tag{1}$$

- Notion of Independence
- General Notion of Probability Measure

Notion of Independence

Possible Outcomes: 1, 2, 3, 4, 5, 6

Probabilities:
$$Pr(1) = Pr(2) = Pr(3) = Pr(4) = Pr(5) =$$

$$Pr(6) = \frac{1}{6}$$

$$\forall i, \frac{\#i}{\sum_{i=1}^{i=6} \#i} \longrightarrow \frac{1}{6} \tag{2}$$

Possible Outcomes: $(1, 1), (1, 2), (1, 3), \dots, (6, 6)$ Probabilities: $\forall i, j, Pr((i, j)) = \frac{1}{36}$

$$\forall i, \frac{\#i}{\sum_{i=1}^{i=6} \#i} \longrightarrow \frac{1}{6} \times \frac{1}{6} \tag{3}$$

Notion of Independence

Possible Outcomes: 1, 2, 3, 4, 5, 6 (Sample Space) Probabilities: $Pr(1) = Pr(2) = Pr(3) = Pr(4) = Pr(5) = Pr(6) = \frac{1}{6}$

$$\forall i, \frac{\#i}{\sum_{i=1}^{i=6} \#i} \longrightarrow \frac{1}{6} \tag{2}$$

Possible Outcomes: $(1, 1), (1, 2), (1, 3), \dots, (6, 6)$ Probabilities: $\forall i, j, Pr((i, j)) = \frac{1}{36}$

$$\forall i, \frac{\#i}{\sum_{i=6}^{i=6} \#i} \longrightarrow \frac{1}{6} \times \frac{1}{6} \tag{3}$$

Combining Events

What is the probability distribution of the sum of the rolls?


```
1 + 1 = 2
          2 + 1 = 3
                     3 + 1 = 4
                                4 + 1 = 5
                                            5 + 1 = 6
                                                        6 + 1 = 7
          2 + 2 = 4
                     3 + 2 = 5
                               4+2=6 5+2=7
                                                        6 + 2 = 8
1 + 2 = 3
1 + 3 = 4
          2 + 3 = 5
                     3 + 3 = 6
                               4 + 3 = 7
                                           5 + 3 = 8
                                                        6 + 3 = 9
1 + 4 = 5
          2 + 4 = 6
                     3 + 4 = 7
                              4+4=8 5+4=9
                                                       6 + 4 = 10
1 + 5 = 6
         2 + 5 = 7
                     3 + 5 = 8
                              4 + 5 = 9
                                            5 + 5 = 10
                                                       6 + 5 = 11
1 + 6 = 7
          2 + 6 = 8
                     3 + 6 = 9
                                4 + 6 = 10
                                            5 + 6 = 11
                                                       6 + 6 = 12
```


Combining Events

- what is the probability that either a 1 or 6 come up on any particular toss?
 - \bullet Pr(1) + Pr(6) = (0+5)/36 = 5/36
- what is the probability that the outcome is prime?
 - Pr(2) + Pr(3) + Pr(5) + Pr(7) + Pr(11) = (1+2+4+6+2)/36 = 15/36 = 5/12

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B) \tag{4}$$

A and B are independent \Leftrightarrow :

$$Pr(A \cap B) = Pr(A)Pr(B) \tag{5}$$

Combining Events

- what is the probability that either a 1 or 6 come up on any particular toss?
 - \bullet Pr(1) + Pr(6) = (0+5)/36 = 5/36
- what is the probability that the outcome is prime?
 - Pr(2) + Pr(3)+Pr(5)+Pr(7)+Pr(11) = (1+2+4+6+2)/36 = 15/36 = 5/12

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

A and B are independent \Leftrightarrow :

$$Pr(A \cap B) = Pr(A)Pr(B) \tag{5}$$

Q. What happens to the equality when A and B are not independent? It is possible that $Pr(A \cap B) < Pr(A)Pr(B)$?

Can you give an example?

(6)

(4)

Random Variables & Probability Distributions

What is the connection between sample space, event probabilities, and random variables?

Define variable X : Sum of Dice Throws

Then X is a function that maps the sample space to the space of integers.

$$X: \Omega \to \mathbb{N} \tag{7}$$

Here
$$\mathcal{S} = (1, 1), (1, 2), (1, 3), \cdots, (6, 6)$$

Then, we can ask:

What is the probability that X takes the value 4?
What is the probability that X takes the value between 4 and 6?

Random Variables & Probability Distributions

A random variable $X:\Omega\to E$ is a measurable function from a set of possible outcomes Ω to a measurable space E

Let Ω be the sample space. In the example of 2 dice, the sample space is the set of all possible outcomes $(1, 1), (1, 2), \dots, (6, 6)$.

Then $X: \Omega \to E$ is a function on the sample space.

For some subset $S \subset E$, we can then calculate:

$$Pr(X \in S) = Pr(\{\omega \in \Omega : X(\omega) \in S\})$$
 (8)

Example of Dice:

Random Variable
$$U = \{(1, 1), (1, 2), \dots, (6, 6)\}$$
 (9)
 $\Omega = 2^{U}$ (Sample space)
 $\mu: \Omega \to [0, 1]$ (Prob. Measure)
 $\mu(\emptyset) = 0$ (10)
 $\forall a \in U, \mu(\{a\}) = 1/36$ (11)
 $\forall a, b \in U, \mu(\{a, b\}) = \mu(a) + \mu(b)$ (12)
 $X: \Omega \to \mathbb{N}$ (13)

$$\mu(\emptyset) = 0$$
 (10)
 $\forall a \in U, u(\{a\}) = 1/36$ (11)

$$\forall a, b \in U, \mu(\{a, b\}) = \mu(a) + \mu(b)$$
 (12)

$$X: \Omega \to \mathbb{N}$$
 (13)

(9)

$$\forall (i,j) \in U, X((i,j)) = i+j \tag{14}$$

Random Variables & Probability Distributions

- Random variables can be discrete or continuous.
- O For any discrete random variable, we can define a corresponding discrete distribution.
- O We also can define the cumulative distribution, which is $Pr(X \le x)$

- O CDFs are always monotonicaly non-decreasing
- $^{\rm O}$ In the continuous domain, the analogous notion to "probability distribution" in the discrete case is "probability density function".
- O Loosely speaking the density function is the derivative of the distribution. You have to be careful about the differentiation.

Joint Distributions

Marginal Distributions

Conditional Probability

Incorporating knowledge of events

The Chain Rule

$$P(A,B) = \frac{P(A,B)}{P(B)}P(B) = P(A|B)P(B)$$
 (17)

This generalizes to n variables:

$$P(X_1, \dots, X_n) = \prod_{i=1}^{N} P(X_n | X_1, \dots, X_{i-1})$$
(18)

Bayes Rule

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS $\frac{1}{36}$ =0027. SINCE $\rho < 0.05$, I conclude. THAT THE SUN HAS EXPLODED.

BAYESIAN STATISTICIAN:

BET YOU \$50 IT HASN'T

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{\sum P(B|A)P(A)}$$
(19)

O Why is this advantageous?

Example (Chance of rare disease given positive test)

A blood test for a rare disease correctly returns positive 99% of the time if the subject indeed has the disease. And falsely indicates a positive result in 1% of subjects who do not have the disease. The prevalence of the disease in the population is 0.1%.

What is the probability that you have the disease if you test positive?

$$Pr(H|E) = \frac{Pr(E|H)Pr(H)}{Pr(E|H)Pr(H) + Pr(E|\neg H)Pr(\neg H)}$$

$$= \frac{0.99 \times 0.001}{0.99 \times 0.001 + 0.01 \times 0.999} = 0.0902 \approx 9\%$$
(21)

Independence and Conditional Independence

O Independence $(X \perp Y)$

$$P(XY) = P(X)P(Y) \tag{22}$$

$$P(X|Y) = \frac{P(X|Y)}{P(Y)} = P(X) \tag{23}$$

$$P(Y|X) = P(Y) \tag{24}$$

O Conditional Independence $((X \perp Y)|Z)$

$$P(X|ZY) = P(X|Z) \tag{25}$$

$$P(Y|ZX) = P(Y|Z) \tag{26}$$

$$P(XY|Z) = P(X|Z)P(Y|Z)$$
(27)

Example 2

Example (Chance of rare disease given mutiple positive tests)

A blood test for a rare disease correctly returns positive 99% of the time if the subject indeed has the disease. And falsely indicates a positive result in 1% of subjects who do not have the disease. The prevalence of the disease in the population is 0.1%.

What is the probability that you have the disease if you test positive twice?

$$Pr(H|E) = \frac{Pr(E|H)Pr(H)}{Pr(E|H)Pr(H) + Pr(E|\neg H)Pr(\neg H)}$$
(28)

$$= \frac{0.99 \times 0.001}{0.99 \times 0.001 + 0.01 \times 0.999} = 0.0902 \approx 9\%$$
 (29)

$$Pr(H|E) = \frac{Pr(E|H)Pr(H)}{Pr(E|H)Pr(H) + Pr(E|\neg H)Pr(\neg H)}$$
(30)

$$= \frac{0.99 \times 0.0902}{0.99 \times 0.0902 + 0.01 \times (1 - 0.0902)} = 0.908 \approx 91\%$$
 (31)

Bayesian Mechanics

Bayesian Inference
$$x \sim P(x|\theta)$$
 $\theta \sim P(\theta|x)$
Sampling $P(x|\theta)$
or Linelihood $L(\theta|x)$
Marginal $P(x|x)$
Likelihood $P(x|x)$

$$P(x|x) = \int P(x|\theta) P(\theta|x) d\theta$$

$$P(\theta|x,x) = \frac{P(\theta,x,x)}{P(x,x)} = \frac{P(x|\theta,x) P(\theta|x)}{P(x|x) P(x)}$$

$$= \frac{P(x|\theta,x) P(\theta|x)}{P(x|x)}$$

$$P(\widetilde{x}|x,x) = \int P(\widetilde{x}|\theta)P(\theta|x,x)d\theta$$
$$P(\widetilde{x}|x) = \int P(\widetilde{x}|\theta)P(\theta|x)d\theta$$

Conjugate Priors.

$$P(\theta|x) \qquad f(\alpha_1, ..., \alpha_K)$$

$$\downarrow \qquad \qquad \downarrow$$

$$P(\theta|x,\alpha) \qquad f(\alpha'_1, ..., \alpha'_K)$$
where $\alpha'_1 = f(\alpha_1, ..., \alpha_K)$

Example 2: The Monty Hall Problem

Example (Two Child Problem)

The two child problem asks the following question: I have two children, and at least one of them is a son. What is the probability that both children are boys?

Hint: It is not 1/2.

Here is a table of the possible family makeups:

First child	Second child	, 1
Boy	Boy	
Boy	Girl	
Girl	Boy	
Girl	Girl	Not possible

The probability that both children are boys is actually 1/3.

Q. Show this using Bayes Theorem

Q. I have two children, and at least one is a son born on a Tuesday. What is the probability that I have two boys?