count 440.000000 440.00 mean 1.322727 2.54 std 0.468052 0.77 min 1.000000 1.00 25% 1.000000 2.00	43182 12000.297727 5796.265909 74272 12647.328865 7380.377175 00000 3.000000 55.000000 00000 3127.750000 1533.000000	7951.277273 3071.931818 28 9503.162829 4854.673333 47 3.000000 25.000000 2153.000000 742.250000 2	40.000000 440.000000 81.493182 1524.870455 67.854448 2820.105937 3.000000 3.000000 56.750000 408.250000		
75% 2.000000 3.00 max 2.000000 3.00 sns.displot(df.melt(value_var	00000 8504.00000 3627.000000 00000 16933.750000 7190.250000 1 00000 112151.000000 73498.000000 9 s=df.columns[2:]), # reshape to ariable", kde=True, x": False, "sharey": False}, binstarting from the 3rd one (ignoriated) setGrid at 0x7cfdca8e5f90> variable = Milk	0655.750000 3554.250000 39. 2780.000000 60869.000000 408. long format s=30		Frozen variable = Deterg	gents_Paper variable = Delicasse
plt.figure(figsize=(1 for col in df.columns	value 0,6))	125 - 100 - 75 - 50 - 25 - 25 - 25 - 25 - 25 - 25 - 2	200 - 150 - 100 - 50 -		
plt.title("Overlayed plt.show() 0.00030 -	Overlayed [Distributions of Features	Fresh Milk Grocery Frozen Detergents_Paper Delicassen		
0.00020 - Sharp on the state of the state o					
MinMaxScaler → squ	ardScaler/MinMax). akes features have mean = 0 and standa ashes all values into a fixed range, usual		100000 120000 -scores).		
<pre>In short:</pre>	the the effect of very large values so the original dataframe	data looks more balanced.	er to normal.		
df[cols] = df[cols].a Since logs can't handle 0 df.head() Channel Region 0 2 3 9.4 1 2 3 8.86	values, we usually add 1 (np.log1p) to b				
<pre>plt.figure(figsize=(1 for col in df.columns</pre>	<pre>[2:]: 1], label=col, fill=True, alpha= Distributions of Features")</pre>	6.230481 7.489412 7.483244 8.553718			
0.35 - 0.30 - 0.25 -			Fresh Milk Grocery Frozen Detergents_Paper Delicassen		
0.15 - 0.10 - 0.05 - 0.00	2 4	6 8 10 Fresh	12		
<pre>2. Hierarchical → dendro 3. DBSCAN → tune eps 4. Meanshift Algorithm KMeans # K-Means → try diffe # Columns to use (num cols = ["Fresh", "Mil X = df[cols].values</pre>	erent k, use Elbow/Silhouette. eric features only, after log-trok", "Grocery", "Frozen", "Detergo				
<pre>inertia = [] silhouette_scores = [for k in k_values: kmeans = KMeans(n labels = kmeans.f inertia.append(km silhouette_scores # Plot Elbow Curv plt.figure(figsize=(1</pre>	<pre># from 2 to 10 clusters # for Elbow method # for Silhouette method _clusters=k, random_state=42, n_ it_predict(X) eans.inertia_) .append(silhouette_score(X, labeled)) e</pre>				
plt.subplot(1,2,1) plt.plot(k_values, in plt.xlabel("Number of plt.ylabel("Inertia (plt.title("Elbow Meth # Plot Silhouette plt.subplot(1,2,2) plt.plot(k_values, si plt.xlabel("Number of plt.ylabel("Silhouett plt.title("Silhouett plt.tight_layout() plt.show()	<pre>clusters (k)") SSE)") od") Scores lhouette_scores, marker='o', colo clusters (k)") e Score") Method")</pre>	or='orange')			
3200 - 3000 - 2800 - 2600 -	Elbow Method	0.30 - 0.28 - 0.26 -	Silhou	ette Method	
2200 - 2000 - 1800 - 1600 - 2 3	4 5 6 7 Number of clusters (k)	0.22 - 0.20 -	2 3 4 5 Number	6 7 8 9 r of clusters (k)	10
<pre>df["Cluster"] = final df.head() Channel Region 0 2 3 9.4 1 2 3 8.8 2 2 3 8.7 3 1 3 9.4 </pre>	46992 9.175438 8.930891 5.370638 51917 9.191259 9.166284 7.474772 56840 9.083529 8.947026 7.785721 92960 7.087574 8.348064 8.764834	Detergents_Paper Delicassen Cluster 7.891705 7.199678 3 8.099858 7.482682 1 8.165364 8.967632 1 6.230481 7.489412 0			
4 2 3 10.03 Hierarchical Clustering Dendrogram with different • The linkage method to • single → based on the • complete → based on • average → based on	linkages ells how to measure distance between cle closest pair of points (can cause "chain the farthest pair of points (tighter cluster average distance between points. riance within clusters (most common).	7.483244 8.553718 0 lusters when merging: ning").			
<pre>X = df[["Fresh", "Mil # Dendrogram plt.figure(figsize=(1 dendrogram = sch.dend plt.title("Hierarchic plt.xlabel("Samples") plt.ylabel("Distance" plt.show() # Try Agglomerati</pre>	k", "Grocery", "Frozen", "Deterge 2,6)) rogram(sch.linkage(X, method='wa: al Clustering Dendrogram (Ward l.)) ve Clustering with Ward linkage stering(n_clusters=3, metric='euc. fit_predict(X)	rd')) inkage)")			
50 - 40 -	Hierarchical Cl	ustering Dendrogram (Ward	linkage)		
20 - 10 -					
Unlike K-Means, youIt also automatically d	sed Spatial Clustering of Applications widon't need to choose k in advance. Tetects outliers (noise points). The ance between two points to be considered.		e together into clusters.		
<pre># Features for cluste X = df[["Channel", "Re # Scale data (importa X_scaled = StandardSc # Try DBSCAN dbscan = DBSCAN(eps=1 labels = dbscan.fit_p</pre>	<pre>gion","Fresh", "Milk", "Grocery" nt for DBSCAN distance calculation aler().fit_transform(X) .5, min_samples=5) # tune eps & redict(X_scaled) (note: -1 means noise/outliers)</pre>	, "Frozen", "Detergents_Paper"	, "Delicassen"]]		
<pre>print(df["DBSCAN_Clus" # 2D PCA visualiz pca = PCA(n_component X_pca = pca.fit_trans plt.figure(figsize=(8 plt.scatter(</pre>	ation s=2) form(X_scaled) ,6)) [:,1], ab10", s=50, alpha=0.7				
DBSCAN_Cluster 1	DBSCAN Clusters (with	n Noise)			
2 - C V O - -2 -					
 What is Mean Shift? Mean Shift is a cluste It works by sliding a v Finally, the densest and 	PCA 1 ring algorithm that does not require you window (a "kernel") across the data poin reas become cluster centers. If the window (how far it looks to find near	ts and shifting it toward the densest	region.		
<pre>X = df[cols] # use d # Estimate good bandw bandwidth = estimate_ # Apply MeanShift ms = MeanShift(bandwi labels = ms.fit_predi # Add cluster labels df["MeanShift_Cluster"]</pre>	<pre>k", "Grocery", "Frozen", "Detergo ata as-is idth bandwidth(X, quantile=0.5, n_sam) dth=bandwidth, bin_seeding=True) ct(X) to dataframe "] = labels</pre>				
<pre># 2D PCA visualizatio pca = PCA(n_component X_pca = pca.fit_trans plt.figure(figsize=(8 plt.scatter(</pre>	s=2) form(X) ,6)) [:,1], ab10", s=50, alpha=0.7				
MeanShift_Cluster 0 432 1 5 2 3 Name: count, dtype: in 4-	Mean Shift Cluste	ers			
-2 - -4 - -6 -					
2. Compare between me Silhouette Score	PCA 1 buldin, Calinski–Harabasz.	2 4 6	5		
 Range: -1 to 1 1 → perfectly clustere 0 → overlapping clust Negative → probably Higher is better. from sklearn.metrics	<pre>import silhouette_score e_score(X, df["Cluster"]) re:", sil_score)</pre>				
 Measures the average Lower is better → me from sklearn.metrics db_score = davies_bouprint("Davies-Bouldin Davies-Bouldin Index: Calinski-Harabasz Index Measures variance ra 		most similar cluster.			
from sklearn.metrics ch_score = calinski_h print("Calinski-Harab Calinski-Harabasz Index Visualization 1. PCA / t-SNE for 2D p 2. Show how clusters se	<pre>import calinski_harabasz_score arabasz_score(X, df["Cluster"]) asz Index:", ch_score) x: 113.09769471584652 dots. eparate.</pre>				
<pre>pca = PCA(n_component X_pca = pca.fit_trans # Add PCA results to # We save them in df df["PCA1"] = X_pca[:, df["PCA2"] = X_pca[:, df["PCA3"] = X_pca[:, df["PCA3"] = x_pca[:, # 3D scatter plot fig = plt.figure(figs ax = fig.add_subplot(scatter = ax.scatter(</pre>	<pre>form(df[cols]) DataFrame (optional) so we can plot them easily. 0] # means first column (PCA1) 1] # second column (PCA2) 2] # third column (PCA3) ize=(10,7)) 111, projection='3d')</pre>	z coordinates			
<pre>c=df["Cluster"],) # Labels ax.set_xlabel("PCA 1" ax.set_ylabel("PCA 2" ax.set_zlabel("PCA 3" ax.set_title("3D PCA # Legend legend1 = ax.legend(* ax.add_artist(legend1) plt.show()</pre>	cmap="tab10", s=50, alpha=0.7))) Visualization of K-Means Clusters scatter.legend_elements(), titles	s") ="Clusters")			
		Clusters			
-8 -6 -4 -2 PCA	0 7 -4	-2 -4 -6 6 2 0 -2 QCP			
<pre>plt.xlabel("PCA 1") plt.ylabel("PCA 2") plt.title("2D PCA Vis # Legend for clusters</pre>	ca2"], cmap="tab10", s=50, alpha=0.7 ualization of K-Means Clusters")), title="Clusters")			
Clusters 0 1 2 3 4 5	2D PCA Visualization of K-Me	eans Clusters			
		2 4	5		
df.head() Channel Region 0 2 3 9.4 1 2 3 8.8 2 2 3 8.7 3 1 3 9.4	PCA 1	Detergents_Paper Delicassen Cluster 7.891705 7.199678 3 8.099858 7.482682 1 8.165364 8.967632 1 6.230481 7.489412 0	T HC_Cluster DBSCAN_Cluster Mea 1 2 0 1 2 0 1 1 2 0 1 1 0 1		.297679 .539310
Interpretation 1. Describe customer set # the average spending cluster_summary_log = cluster_summary_log Fresh M Cluster	gments in plain words (e.g. high Grocery g per product category for each of groupby ("Cluster") [["Fresh", ilk Grocery Frozen Detergents_Page	y & Milk = retailers). cluster. "Milk", "Grocery", "Frozen", per Delicassen			
 0 9.576697 8.2164 1 9.010294 9.2118 2 9.178045 7.1964 3 8.851209 8.1547 4 6.350919 8.9154 5 5.653356 7.0430 	27 7.435917 7.517002 5.0906 13 8.494879 6.480139 7.2222 56 9.585153 5.751892 8.8073 41 7.583527 6.096944 5.0890 from transformed df to original	33 7.515059 13 6.268230 49 6.080108 20 6.377906 56 4.824471			
# Group by cluster on cluster_summary = df_ cluster_summary Fresh Cluster 0 20715.220930 5 1 12013.761364 12 2 12777.634921 1	the original data original.groupby("Cluster")[["Free Milk Grocery Frozer 5267.662791 5008.767442 8349.267442 2751.340909 18169.636364 2169.227273 798.103175 2144.547619 2530.365079	Detergents_Paper Delicassen 755.046512 2883.337209 8084.454545 2486.477273 236.134921 746.492063	en", "Detergents_Paper", "Deli	cassen"]].mean()	
	.368.166667 6070.320513 968.02564 .3785.439024 16116.268293 530.195122 .273.285714 3067.380952 1269.095238	2 7557.780488 1109.146341			

Focused almost entirely on Fresh — may buy other items elsewhere or run a produce-focused business.

Moderate on groceries, highest on Detergents_Paper — typical household prioritizing cleaning supplies.

Cluster 3: "Household Essentials"

Cluster 4: "Grocery & Milk"

Konecta Internship Task 4 (Customer Segmentation)

Repository Link: https://github.com/AhmedAyman4/konecta-internship/tree/main/Task-4

Name: Ahmed Ayman Ahmed Alhofy

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

Load & Explore

import seaborn as sns
import pandas as pd

In [1]: import numpy as np

Track: Artificial Intelligence & Machine Learning

1. Import dataset, do summary stats & distributions.

from sklearn.cluster import AgglomerativeClustering