Network Layer

Goals

Understand principles behind network layer services:

- network layer service models
- forwarding versus routing
- how a router works
- routing (path selection)
- dealing with scale
- advanced topics: IPv6, mobility

Network layer

- -transport segment from sending to receiving host
- -on sending side encapsulates segments into datagrams
- -on rcving side, delivers segments to transport layer

-network layer protocols in every host, route application

-Router examines header fields in all IP datagrams passing through it

Two Key Network-Layer Functions

forwarding: move packets from router's input to appropriate router output

routing: determine route taken by packets from source to dest.

routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

Interplay between routing and forwarding

Connection setup

Important function in *some* network architectures:

ATM, frame relay, X.25

before datagrams flow, two end hosts and intervening routers establish virtual connection

routers get involved

network vs transport layer connection service:

- network: between two hosts (may also involve intervening routers in case of VCs)
- transport: between two processes

Network layer service models:

	Network Service	Service	Guarantees ?				Congestion
Α	rchitecture	Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
•	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Network layer connection and connection-less service

Datagram network provides network-layer connectionless service

VC network provides network-layer connection service analogous to the transport-layer services, but:

service: host-to-host

no choice: network provides one or the other

implementation: in network core

Virtual circuits

"source-to-dest path behaves much like telephone circuit"

performance-wise network actions along source-to-dest path

- call setup, teardown for each call before data can flow
- >each packet carries VC identifier (not destination host address)
- *every router on source-dest path maintains "state" for each passing connection
- >link, router resources (bandwidth, buffers) may be allocated
 to VC (dedicated resources = predictable service)

VC implementation

a VC consists of:

- path from source to destination
- VC numbers, one number for each link along path
- entries in forwarding tables in routers along path
- packet belonging to VC carries VC number (rather than dest address)
- VC number can be changed on each link.
 - New VC number comes from forwarding table

Forwarding table vc number

Forwarding table in northwest router:

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1 2 3	12 63 7	3 1 2	22 18 17
1	97	3	87
•••			•••

Routers maintain connection state information!

Virtual circuits: signaling protocols

used to setup, maintain teardown VC used in ATM, frame-relay, X.25 not used in today's Internet

Datagram networks

- -no call setup at network layer
- -routers: no state about end-to-end connections
 - no network-level concept of "connection"
- -packets forwarded using destination host address
 - packets between same source-dest pair may take different paths

Forwarding table

4 billion possible entries

Destination Address Range	<u>Link Interface</u>
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111	2
otherwise	3

Longest prefix matching

<u>Prefix Match</u>	Link Interface
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
otherwise	3

Examples

DA: 11001000 00010111 00010110 10100001 Which interface?

DA: 11001000 00010111 00011000 10101010 Which interface?

Refer the research paper uploaded in photon for more details

Datagram or VC network: why?

Internet (datagram)

data exchange among computers

"elastic" service, no strict timing req.

"smart" end systems (computers)

can adapt, perform control, error recovery simple inside network, complexity at "edge" many link types different characteristics uniform service difficult

ATM (VC)

evolved from telephony
human conversation:
strict timing, reliability
requirements
need for guaranteed service
"dumb" end systems
telephones
complexity inside network

The Internet Network layer

Host, router network layer functions:

IP datagram format

IP protocol version number header length (bytes) "type" of data

> max number remaining hops (decremented at each router)

upper layer protocof to deliver payload to

how much overhead with TCP?

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

32 bits total datagram length (bytes) head type of length ten Iservicel for fragment 16-bit identifier | flgs | fragmentation/ offset reassembly time to upper header live layer <u>checksum</u> 32 bit source IP address 32 bit destination IP address E.g. timestamp, Options (if any) record route data taken, specify (variable length, list of routers typically a TCP to visit. or UDP segment)

IP Fragmentation & Reassembly

Network links have MTU (max.transfer size) - largest possible link-level frame.

-different link types, different MTUs

Large IP datagram divided ("fragmented") within net

- one datagram becomes several datagrams
- "reassembled" only at final destination
- •IP header bits used to identify, order related fragments

IP Fragmentation and Reassembly

Example

- 4000 byte datagram
- MTU = 1500 bytes

1480 bytes in data field

offset = _____ 1480/8

One large datagram becomes several smaller datagrams

length	ID	fragflag	offset	
		<u>=</u> 1	=185	

length	ID	fragflag	offset
=1040	=x	=0	=370