Compresión de Imágenes

Definición

- Formas de disminuir el área de almacenamiento de datos,
- Reducir el número de bits para representar los datos (imagen, texto o cualquier archivo).
- En la compresión de imágenes se define como la forma (algoritmos y métodos) para almacenar información visual más compacta.

Redundancia en la imagen

- Codificación de tonos o color : Cuando los niveles de gris o color son codificados con mas símbolos de codificación de los necesario.
- Inter-pixel: Resultante de las relaciones geométricas o estructurales entre los objetos en la imagen.
- Espectral: Ocurre en imágenes con mas de una faja espectral, cuando los valores espectrales para una misma posición en la matriz de pixeles de cada banda son correlacionados.
- Psicovisuales: Relacionadas al acto del sistema visual humano, no responde con la misma sensibilidad a todas las informaciones visuales.

Compresión de imágenes e modelos de colores

- YIQ, Para transmisión de televisión
- RGB, para monitores de computador
- CMY, para impresoras
- YCBCR, compresión de imágenes (JPEG)

Medición de desempeño

- Medida de desempeño, tasa de compresión (razón entre el tamaño del dato original y el tamaño después de la compresión)
- Técnicas sin perdida: cuanto mayor es la tasa de compresión mejor es la técnica de compresión
- Técnica con perdida: se debe considerar tambien la calidad del señal o dato reconstruido.
- Criterios de fidelidad : se la remoción de datos causan perdida de la información visual.

Criterios de fidelidad- Función de validación

Error total

$$e_t = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} |G(x,y) - F(x,y)|$$

Root Mean Square Error

$$e_{rms} = \sqrt{\left[\frac{1}{MN}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}\left[G(x,y) - F(x,y)\right]^{2}\right]}$$

Relación Señal Ruido (SNR – Signal to Noise Ratio)

$$SNR_{rms} = \sqrt{\frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} G(x,y)^{2}}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} e(x,y)^{2}}} = \sqrt{\frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} G(x,y)^{2}}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[G(x,y) - F(x,y) \right]^{2}}}$$

Relación Señal Ruido de Pico (PSNR – Peak Signal to Noise Ratio)

$$PSNR = 20 \log_{10} \left(\frac{2^n - 1}{e_{rms}} \right)$$

Ejemplo

- (a) Imagem Lena original;
- (b) Imagem comprimida y reconstruída usando compresión fractal
- (c) Imagem de diferencia absoluta ampliada
- (d) Imagem de diferencia relativa ampliada

Erro rms= 9,7622

SNR rms 10,4823

PSNR (dB)28,3398

Modelo de compresión de imágenes

DECODIFICADOR

Modelo de compresión de imágenes

Codificador:

Decodificador

Métodos de compresión de imagen

Compresión sin pérdida o codificación de redundancia

Compresión con pérdida

Compresión sin pérdida

- Explora la redundancia entre pixeles en la codificación
- Ningun dato es perdido durante el proceso de compresión
- Preserva todas las informaciones que permitirán la reconstrucción exacta de la imagen.
- Ejemplo:
 - RLE (Run Lenght Encoding)
 - LZ (Lempel Ziv)
 - LZW (Lempel Ziv Wech)
 - Algoritmo de Huffman (PCX, PNG, GIFF, TIFF)

Compresión con pérdida

- Es mas eficiente en relación al área final de almacenamiento debido a la razón de la compresión es mayor que sin la perdida.
- En aplicaciones de señales de satélite, imágenes médicas u otras no es admisible compresión sin perdida.
- Diferentes formas de compresión con pérdida causan visualmente diferentes degradaciones en las imágenes.

Por que?

- Métodos y algoritmos eficientes deben tener en cuenta las características de visión humana
- Archivo de menor dimensión
- Errores o fallas (artefactos) perceptibles al sistema visual humano

Compresión simétrica vs asimétrica

- Clasificación de acuerdo al tiempo de compresión y descompresión
- Simétrica: Transformada de Wavelets, Transformada de cosenos, tiempo de compresión es el mismo que el de compresión
- Asimétrica, fractal, tiempo de compresión es mayor que el de descompresión.

Unidad de información: proceso probabilístico siendo tratada como un evento aleatorio (E) – tono o color de la imagen -, ocurrencia p(E)- probabilidad.

$$I(E) = \log \frac{1}{p(E)} = -\log p(E)$$

Unidad de información es el bit (base 2)

Canal de información

Elementos del canal de información:

- Responsables por la transmisión y recepción de la información
- Conjunto de símbolos de entrada
- Probabilidad de los elementos pertenecientes al conjunto transmitido

Elementos de transmisión:

Entropía de la Fuente (Incerteza): cantidad media de la información perdida.

$$H(Pa) = -\sum_{i=1}^{J} p(a_j) \log p(a_j)$$

- Probabilidad del recibimiento, de bj dado aj $p(b_k) = \sum_{i=1}^{j} p(b_k \mid a_i) p(a_i)$
- Matriz del canal

$$Q = \begin{bmatrix} p(b_1 | a_1) & p(b_1 | a_2) & \cdots & p(b_1 | a_J) \\ p(b_2 | a_1) & p(b_2 | a_2) & \cdots & p(b_2 | a_J) \\ \vdots & \vdots & \vdots & \vdots \\ p(b_K | a_1) & p(b_K | a_2) & \cdots & p(b_K | a_J) \end{bmatrix} = [q_{kj}]$$

Elementos de transmisión:

Error de los conjuntos Pa con relación de Pb

$$H(P_a | P_b) = -\sum_{j=1}^{J} \sum_{k=1}^{K} p(a_j, b_k) \log p(a_j | b_k)$$

Autoinformación mutua

$$I(P_a, P_b) = \sum_{j=1}^{J} \sum_{k=1}^{K} p(a_j, b_k) \log \frac{p(a_j, b_k)}{p(a_j) p(b_k)}$$

Capacidad del canal:

$$C = \max[I(P_a, P_b)]$$

Entropía

$$H(z) = -\sum_{j=1}^{J} P(a_j) \cdot \log P(a_j)$$

4	4	4	4	64	64	128	128
4	4	4	4	64	64	128	128
4	4	16	16	128	128	128	128
4	4	16	16	128	128	128	128

Tam= 4x8

Cor:	Total:	Probabilidade:
4	12	12 / 32 = 3 / 8
16	4	4/32=1/8
64	4	4/32=1/8
128	12	12 / 32 = 3 / 8

$$H(z) = -P(4) * log_{2}(P(4)) - P(16) * log_{2}(P(16)) - P(64) * log_{2}(P(64)) - P(128) * log_{2}(P(128))$$

$$H(z) = -[3/8 * log_{2}(3/8) + 1/8 * log_{2}(1/8) + 1/8 * log_{2}(1/8) + 3/8 * log_{2}(3/8)] = 1.81 \text{ bits/pixel}$$

Teoremas fundamentales de la codificación

- Codificación sin ruido
- Codificación con ruido
- Codificación de la fuente

También denominados como primero y segundo teorema de Shannon.

Codificación sin perdida

- Codificación de Huffman
- Codificación por LZW
- Codificación por LZ77
- Codificación por códigos de Tonos corridos (RLE)

Codificación Huffman

La redundancia de la codificación se elimina sobre la base de un codificación que produce un tamaño de código variable, asignando los tamaños de código más pequeños a los niveles de niveles de gris más probables.

Tiene 2 etapas:

- 1. Se crea una serie de reducciones de símbolos uniendo los dos con menores probabilidades en cada iteración.
- 2. Todos los símbolos reducidos están codificados empezando por el símbolo de mayor probabilidad que será asociados al código más pequeño y volviendo a los originales.

Codificación Huffman - Ejemplo

Se tiene una imagen de 10x10 y con 6 tonos de grises (a1, a2, a3, a4, a5, a6) y se tiene las siguientes probabilidades:

$$a1 = 5/8$$

$$a2=a3=3/32$$

$$a5 = 1/8$$

Tasa media de transmisión =

$$(5/8)*1+(3/32)*3+(3/32)*3+(4/32)*3+(1/32)*4+(1/32)*4=$$
1,813 bits/información

Codificación LZW

Hace uso de un diccionario de palabras que contiene los símbolos que son codificados

39	39	126	126
39	39	126	126
39	39	126	126
39	39	126	126

