

PROGRAMMIERUNG

ÜBUNG 5: UNIFIKATION & INDUKTION AUF LISTEN

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 09. Mai 2022

INHALT

- 1. Funktionale Programmierung
 - 1.1 Einführung in Haskell
 - 1.2 Listen & Algebraische Datentypen
 - 1.3 Funktionen höherer Ordnung
 - 1.4 Typpolymorphie & **Unifikation**
 - 1.5 Beweis von Programmeigenschaften
 - 1.6 λ Kalkül
- 2. Logikprogrammierung
- 3. Implementierung einer imperativen Programmiersprache
- 4. Verifikation von Programmeigenschaften
- 5. H₀ ein einfacher Kern von Haskell

1

Unifikation &

Aufgabe 1

Unifikationsalgorithmus

ERINNERUNG: TYPPOLYMORPHIE

- ▶ **bisher**: Funktionen mit konkreten Datentypen
 - z.B. length :: [Int] -> Int
- Problem: Funktion würde auch auf anderen Datentypen funktionieren
 - z.B. length :: [Bool] -> Int oder length :: String -> Int
- ► Lösung: Typvariablen und polymorphe Funktionen z.B. length :: [a] -> Int

Bei konkreter Instanziierung wird Typvariable an entsprechenden Typbezeichner gebunden (z.B. a = Int oder a = Bool).

- ► Der Aufruf length [1,5,2,7] liefert für die Typvariable a = Int.
- ► Der Aufruf length [True, False, True, True, False] liefert die Belegung a = Bool.
- ▶ Der Aufruf length "hello" impliziert a = Char.

UNIFIKATION

Motivation: Typüberprüfung

```
f :: (t, Char) -> (t, [Char])
f (...) = ...

g :: (Int, [u]) -> Int
g (...) = ...
h = g . f
```

Wie müssen die Typvariablen $\mathfrak t$ und $\mathfrak u$ belegt werden, damit die Funktion $\mathfrak u$ wohldefiniert ist, d.h. damit die Ergebnisse aus $\mathfrak t$ wirklich in $\mathfrak g$ eingesetzt werden dürfen?

$TYPAUSDRUCK \rightarrow TYPTERM$

Ziel: theoretischere Form von Typausdrücken

Typausdrücke

- ▶ Int, Bool, Float, Char, String
- ► Typvariablen
- ► Listen, Tupel, Funktionen

Typterme

- ▶ Übersetzung trans: Typausdruck → Typterm
- ▶ z.B.

Beide Typausdrücke können in Übereinstimmung gebracht werden, wenn die Typterme trans((t,[Char])) und trans((Int,[u])) unifizierbar sind.

```
\rightarrow t = Int und u = Char
```

UNIFIKATIONSALGORITHMUS

- ▶ gegeben: zwei Typterme t1, t2
- ▶ **Ziel:** entscheide, ob t_1 und t_2 unifizierbar sind

Wir notieren die beiden Typterme als Spalte:

$$\begin{pmatrix} t_1 \\ t_2 \end{pmatrix} \qquad \text{bzw.} \qquad \begin{pmatrix} ()^2(t,[](\textit{Char})) \\ ()^2(\textit{Int},[](u)) \end{pmatrix}$$

Unifikationsalgorithmus erstellt eine Folge von Mengen M_i , wobei die M_{i+1} aus M_i hervorgeht, indem eine der vier Regeln angewendet wird.

$$M_1 := \left\{ egin{pmatrix} t_1 \ t_2 \end{pmatrix}
ight\} \qquad ext{bzw.} \qquad M_1 := \left\{ egin{pmatrix} ()^2(t, [](\mathit{Char})) \ ()^2(\mathit{Int}, [](u)) \end{pmatrix}
ight\}$$

UNIFIKATIONSALGORITHMUS - REGELN

▶ **Dekomposition.** Sei $\delta \in \Sigma$ ein k-stelliger Konstruktor, $s_1, \ldots, s_k, t_1, \ldots, t_k$ Terme über Konstruktoren und Variablen.

$$\begin{pmatrix} \delta(s_1,\ldots,s_k) \\ \delta(t_1,\ldots,t_k) \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} s_1 \\ t_1 \end{pmatrix},\ldots,\begin{pmatrix} s_k \\ t_k \end{pmatrix}$$

► **Elimination.** Sei *x* eine Variable!

$$\begin{pmatrix} x \\ x \end{pmatrix} \longrightarrow \emptyset$$

▶ **Vertauschung.** Sei *t* keine Variable.

$$\begin{pmatrix} t \\ x \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} x \\ t \end{pmatrix}$$

Substitution. Sei x eine Variable, t keine Variable.
 Occur Check: x kommt nicht in t vor
 Dann ersetze in jedem anderen Term die Variable x durch t.

$$\begin{pmatrix} x \\ t \end{pmatrix}, \begin{pmatrix} y \\ s(x) \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} x \\ t \end{pmatrix}, \begin{pmatrix} y \\ s(t) \end{pmatrix}$$

UNIFIKATIONSALGORITHMUS

Ende: keine Regel mehr anwendbar – Entscheidung:

 $ightharpoonup t_1$, t_2 unifizierbar: M ist von der Form

$$\left\{ \begin{pmatrix} u_1 \\ t_1 \end{pmatrix}, \begin{pmatrix} u_2 \\ t_2 \end{pmatrix}, \dots, \begin{pmatrix} u_k \\ t_k \end{pmatrix} \right\} \qquad \text{"Variablen"} \\ \text{"Terme ohne Variablen"}$$

wobei u_1, u_2, \ldots, u_k paarweise verschiedene Variablen sind und nicht in t_1, t_2, \ldots, t_k vorkommen.

allgemeinster Unifikator φ :

$$arphi(u_i)=t_i$$
 $(i=1,\ldots,k)$ $arphi(x)=x$ für alle nicht vorkommenden Variablen

► t₁, t₂ sind **nicht unfizierbar**: *M* hat nicht diese Form und keine Regel ist anwendbar

Weitere Unifikatoren ψ erhält man durch Anwendung einer Substitution σ , sodass $\psi = \sigma \circ \varphi$.

OCCUR CHECK

Um endlose Rekursionen zu unterbinden, benötigen die Regeln zum Vertauschen und zur Substitution gewisse Einschränkungen.

Occur Check: Gegeben sei ein Termpaar $\binom{x}{t}$, wobei x eine Variable und t ein Typterm sei.

- ► Kommt x in t vor, dann schlägt der Check fehl.
- ► Kommt *x* nicht in *t* vor, dann ist der Check okay.

Beispiel:

- $\qquad \qquad \blacktriangleright \ \begin{pmatrix} x_1 \\ \gamma(x_1) \end{pmatrix} \rightsquigarrow \mathsf{Fehlschlag}, \ \mathsf{da} \ x_1 \ \mathsf{in} \ \gamma(x_1) \ \mathsf{vorkommt}$
- $\qquad \qquad \qquad \blacktriangleright \ \begin{pmatrix} x_1 \\ \gamma(x_2) \end{pmatrix} \rightsquigarrow \text{ okay, da } x_1 \text{ nicht in } \gamma(x_2) \text{ vorkommt}$

Was passiert, wenn wir substituieren obwohl der Occur Check fehlschlägt?

$$\begin{pmatrix} x_1 \\ \gamma(x_1) \end{pmatrix}, \begin{pmatrix} x_2 \\ \gamma(x_1) \end{pmatrix} \ \Rightarrow \ \begin{pmatrix} x_1 \\ \gamma(x_1) \end{pmatrix}, \begin{pmatrix} x_2 \\ \gamma(\gamma(x_1)) \end{pmatrix} \ \Rightarrow \ \begin{pmatrix} x_1 \\ \gamma(x_1) \end{pmatrix}, \begin{pmatrix} x_2 \\ \gamma(\gamma(x_1)) \end{pmatrix}$$

AUFGABE 1

$$\begin{cases} \begin{pmatrix} \sigma(\sigma(& x_1 & , \alpha), & \sigma(& \gamma(x_3) & , x_3)) \\ \sigma(\sigma(& \gamma(x_2) & , \alpha), & \sigma(& x_2 & , x_3)) \end{pmatrix} \end{pmatrix}$$

$$\xrightarrow{\text{Dek.}} \begin{cases} \begin{pmatrix} \sigma(& x_1 & , \alpha) \\ \sigma(& \gamma(x_2) & , \alpha) \end{pmatrix}, \begin{pmatrix} \sigma(& \gamma(x_3) & , x_3)) \\ \sigma(& x_2 & , x_3)) \end{pmatrix} \end{pmatrix}$$

$$\xrightarrow{\text{Dek.}} \begin{cases} \begin{pmatrix} x_1 \\ \gamma(x_2) \end{pmatrix}, \begin{pmatrix} \alpha \\ \alpha \end{pmatrix}, \begin{pmatrix} \gamma(x_3) \\ x_2 \end{pmatrix}, \begin{pmatrix} x_3 \\ x_3 \end{pmatrix} \end{pmatrix}$$

$$\xrightarrow{\text{EI.}} \begin{cases} \begin{pmatrix} x_1 \\ \gamma(x_2) \end{pmatrix}, \begin{pmatrix} \alpha \\ \alpha \end{pmatrix}, \begin{pmatrix} \gamma(x_3) \\ x_2 \end{pmatrix} \end{pmatrix}$$

$$\xrightarrow{\text{Dek.}} \begin{cases} \begin{pmatrix} x_1 \\ \gamma(x_2) \end{pmatrix}, \begin{pmatrix} \gamma(x_3) \\ \alpha \end{pmatrix}, \begin{pmatrix} \gamma(x_3) \\ x_2 \end{pmatrix} \end{pmatrix}$$

$$\xrightarrow{\text{Vert.}} \begin{cases} \begin{pmatrix} x_1 \\ \gamma(x_2) \end{pmatrix}, \begin{pmatrix} x_2 \\ \gamma(x_3) \end{pmatrix} \end{pmatrix}$$

$$\xrightarrow{\text{Subst.}} \begin{cases} \begin{pmatrix} x_1 \\ \gamma(\gamma(x_3)) \end{pmatrix}, \begin{pmatrix} x_2 \\ \gamma(x_3) \end{pmatrix} \end{pmatrix}$$

$$\xrightarrow{\text{Subst.}} \begin{cases} \begin{pmatrix} x_1 \\ \gamma(\gamma(x_3)) \end{pmatrix}, \begin{pmatrix} x_2 \\ \gamma(x_3) \end{pmatrix} \end{pmatrix}$$

AUFGABE 1

(a) allgemeinster Unifikator:

$$x_1 \mapsto \gamma(\gamma(x_3))$$
 $x_2 \mapsto \gamma(x_3)$ $x_3 \mapsto x_3$

(b) weitere Unifikatoren:

$$x_1 \mapsto \gamma(\gamma(\alpha))$$
 $x_2 \mapsto \gamma(\alpha)$ $x_3 \mapsto \alpha$
 $x_1 \mapsto \gamma(\gamma(\gamma(\alpha)))$ $x_2 \mapsto \gamma(\gamma(\alpha))$ $x_3 \mapsto \gamma(\alpha)$

- (c) Fehlschlag beim occur-check:
- (c) Alphabet: $\Sigma = \left\{ \gamma^{(1)} \right\}$

$$t_1 = x_1$$

$$t_2=\gamma(x_1)$$

AUFGABE 1 — TEIL (D)

$$t_1 = (a , [a])$$

 $t_2 = (Int , [Double])$
 $t_3 = (b , c)$

- $ightharpoonup t_1$ und t_2 sind *nicht* unifizierbar
- ▶ t_1 und t_3 sind unifizierbar mit $a \mapsto a$, $b \mapsto a$, $c \mapsto [a]$
- ▶ t_2 und t_3 sind unifizierbar mit $b \mapsto Int$, $c \mapsto [Double]$

Induktionsbeweise

Aufgaben 1 und 2

VOLLSTÄNDIGE INDUKTION AUF N

Definition: natürliche Zahlen $\mathbb{N} := \{0, 1, \ldots\}$

Basisfall: $0 \in \mathbb{N}$

Rekursionsfall: $x + 1 \in \mathbb{N}$ für $x \in \mathbb{N}$

Beweis von Eigenschaften: Eigenschaft = Prädikat *P*

zu zeigen: für alle $x \in \mathbb{N}$ gilt P(x)

vollständige Induktion:

- ► Induktionsanfang: zeige P(x) für x = 0
- ► Induktionsvoraussetzung: Sei $x \in \mathbb{N}$, sodass P(x) gilt. P(x) gilt noch nicht für alle $x \in \mathbb{N}$
- ► Induktionsschritt: zeige *P*(*x* + 1) unter Nutzung der Induktionsvoraussetzung

INDUKTION AUF LISTEN

Erinnerung: Rekursion über Listen xs

Basisfall: xs = []

Rekursionsfall: xs = (y:ys) für ys :: [a]

Beweis von Programmeigenschaften: Eigenschaft = Pr \ddot{a} dikat P

```
zu zeigen: für alle xs :: [a] gilt P(xs)
```

Induktion auf Listen:

- ► Induktionsanfang: zeige P(xs) für xs == []
- ► Induktionsvoraussetzung:
 Sei xs :: [a] eine Liste für die P(xs) gilt.
- ► Induktionsschritt: zeige P(x:xs) für alle x :: a unter Nutzung der Induktionsvoraussetzung

STRUKTURELLE INDUKTION

Erinnerung: Rekursion über Bäume

```
Basisfall: Nil oder Leaf x für x :: a
```

Rekursionsfall: Branch x 1 r für x :: a und 1,r :: BinTree a

```
zu zeigen: für alle t :: BinTree a gilt P(t)
```

strukturelle Induktion:

- ► Induktionsanfang: zeige P(t) für t == Nil oder t == Leaf x für alle x :: a
- ► Induktionsvoraussetzung: Seien 1, r :: BinTree a zwei Bäume, sodass P(1) und P(r) gilt.
- ► Induktionsschritt: zeige P(Branch x 1 r) für alle x :: a unter Nutzung der Induktionsvoraussetzung

Allgemeiner Hinweis: Es müssen immer alle Variablen quantifiziert werden!

FEHLERQUELLEN

- ► kein Induktionsprinzip
- ► IV wird im Induktionsschritt nicht verwendet
- ► fehlende Quantifizierung (nur Gleichungen bringen kaum Punkte)
- Missachtung freier Variablen
- zu beweisende Eigenschaft P wird für xs angenommen, um sie dann im Induktionsschritt nochmal für xs zu beweisen — eine Tautologie
- ► Annahme, dass *P* bereits für alle Listen gilt, um es dann für x:xs nochmal zu zeigen

AUFGABE 2

Zu zeigen ist die Gleichung

mittels Induktion über Listen.

Induktionsanfang: Sei xs == [].

linke Seite:

sum (foo [])
$$\stackrel{(2)}{=}$$
 sum [] $\stackrel{(6)}{=}$ 0

rechte Seite:

2 * sum [] - length []
$$\stackrel{(10)}{=}$$
 2 * sum [] - 0 $\stackrel{(6)}{=}$ 2 * 0 - 0 = 0

 $\textbf{Induktionsvoraussetzung:} \ \mathsf{Sei} \ \mathtt{xs} \ :: \ [\mathtt{Int}], \ \mathsf{sodass}$

$$sum (foo xs) = 2 * sum xs - length xs$$

gilt.

AUFGABE 2 (FORTSETZUNG)

Induktionsschritt: Sei x :: Int. Es gilt

sum (foo (x:xs))
$$\stackrel{(3)}{=}$$
 sum (x : x : (-1) : foo xs)
$$\stackrel{3\cdot(7)}{=} x + x + (-1) + \text{sum (foo xs)}$$

$$\stackrel{(|V)}{=} x + x + (-1) + 2 * \text{sum xs - length xs}$$

$$\stackrel{(Komm.)}{=} 2 * x + 2 * \text{sum xs - 1 - length xs}$$

$$\stackrel{(Dist.)}{=} 2 * (x + \text{sum xs}) - (1 + \text{length xs})$$

$$\stackrel{(7)}{=} 2 * \text{sum (x:xs)} - (1 + \text{length xs})$$

$$\stackrel{(11)}{=} 2 * \text{sum (x:xs)} - \text{length (x:xs)}$$

ENDE

Fragen?