Nungy - Resident Manipulation
Nungy
-Basically Matrix Manipulation
,
potox caesting ndarray
b= np. agray ([[1,2,3], [4,5,6]]) print (a.shape) # print shape of array, here
print (a. shape) # print shape of array, here
D [2,3]
2 (2,3) Rows Elumns.
>> np. zesos(2,2)
Greater & curray of all zeros in (2×2) shape
Criticis of States
\rightarrow Np. ones((1,2))
→ Array of all ones → [[1, 1.]]
$\rightarrow np \cdot full((2,2),7)$
Constant are 2002 agray with 7 as the only men
$\rightarrow np.eye(2)$
200 identity malaix = [0,1]
Boolean Indexing.
-> a=np.aesay([[1,2],[3,4],[5,6]])
-> bool_idx=(a>2)#condition checking for array
-> paint (bool_ida) -> "False False
True True
Tame Tame "

assur. -> np-add (array, array) = array + array # + print (x+y) -> mp. subtract (ass, ass) = ass-ass -> np. multiply (ase, asg.) = ase + ese # Element wise only) r np. divide (ass pas) = ass fass # Element wise only) +## For Matrix Multiplication St() i used 1° au · dot (2° acray) ≈ Dp · dot (V, W) sow & column specific sun. For mp. sum (aga, axis=0) // sum & each column -> np. sum (asa, axis=1) 1/ sum & each Transposing a Matria => aggoT // will give transpose