

Pad Analysis of CVD Diamond Detectors

ETH Pixel/Diamond Meeting

Michael Reichmann

9th December 2018

Table of Contents

- Introduction
- 2 Test Site
- Setup
- Conclusion

Introduction

- diamond used as beam condition monitors at LHC
- diamond as future material for tracking detectors in high radiation areas

- diamond used as beam condition monitors at LHC
- diamond as future material for tracking detectors in high radiation areas

Properties

- radiation tolerant
- isolating material
- high charge carrier mobility

- diamond used as beam condition monitors at LHC
- diamond as future material for tracking detectors in high radiation areas

Properties

- radiation tolerant
- isolating material
- high charge carrier mobility

PhD Topics

- Pad Detectors
- Pixel Detectors
- 3D Pixel Detectors
- High Resolution Studies

M. Reichmann (FIHzürich)

- diamond used as beam condition monitors at LHC
- diamond as future material for tracking detectors in high radiation areas

Properties

- radiation tolerant
- isolating material
- high charge carrier mobility

PhD Topics

- Pad Detectors → investigate behaviour at different particle rates
- Pixel Detectors
- 3D Pixel Detectors
- High Resolution Studies

M. Reichmann (all zürich) Pad Analysis 9th December 2018

several beam test starting from May 2015

Name	Nick	Туре	Irradiation [n/cm ²]
S129	S129	scCVD	0
II6-78* [♦]	poly A	pCVD	0
II6-79 ^{♦+}	poly B	pCVD	0
II6-81 [♦]	poly D	pCVD	$1\cdot 10^{14}$
116-94	94	pCVD	0
116-95	95	pCVD	$5\cdot 10^{14}$
116-97	97	pCVD	$0\sim3.5\cdot10^{15}$
II6-B2	B2	pCVD	$0\sim 8\cdot 10^{15}$

Table: Measured diamonds.

- only measured in May 2015 (bad timing)
- processed by II6 with surface issues
- reprocessed at OSU

M. Reichmann (FIHzürich) Pad Analysis 9th December 2018

Diamond Types

- diamonds artificially grown with chemical vapour deposition (CVD)
- investigation of two different diamond types:

(a) single-crystalline CVD

(b) poly-crystalline CVD (courtesy of E6)

• only small sizes (\sim 0.25 cm²)

- large wafers (5 \sim 6 $^{\prime\prime}$ \varnothing)
- pCVD signals smaller than scCVD (1:2) in planar configuration

M. Reichmann (all zürich) Pad Analysis 9th December 2018

Test Site

Test Site

- $\bullet \ \, \text{High Intensity Proton Accelerator (HIPA) at PSI (Cyclotron)} \rightarrow \text{beam line PiM1}$
- clean positive pion beam (\sim 98 % π^+) with momentum of 260 MeV/c • 3 /4 smaller signals than at CERN! (120 GeV/c)
- tunable particle fluxes from $\mathcal{O}\left(1\,\text{kHz/cm}^2\right)$ to $\mathcal{O}\left(10\,\text{MHz/cm}^2\right)$
- ullet significant multiple scattering o worsens resolution

M. Reichmann (FIHzürich)

Setup

Setup

Figure: Modular Beam Telescope

- 4 tracking planes → trigger (fast-OR) with adjustable effective area
- diamond pad detectors in between tracking planes
- low time precision of fast-OR trigger
- ullet fast scintillator for precise trigger timing $o \mathcal{O}\left(1\, ext{ns}
 ight)$

Schematic Setup

- PSI DRS4 Evaluation Board as digitiser for the pad waveforms
- Digital Test Board (DTB) and pXar software for the telescope readout
- global trigger: using coincidence of FOR 2 and FOR 3 + scintillator signal

M. Reichmann (all zürich) Pad Analysis 9th December 2018

Pad Detectors

(b) Pad Detector with Amplifier

- building the detector: cleaning, photo-lithography and Cr-Au metallisation
- gluing to PCBs in custom built amplifier boxes
- ullet connecting to low gain, fast amplifier with $\mathcal{O}\left(5\,\mathrm{ns}\right)$ rise time

Conclusion

Conclusion

empty

moreempty

moremoreempty

