# Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

# Лабораторная работа №2 «Численное решение нелинейных уравнений и систем»

по дисциплине «Вычислительная математика»

Вариант: 5

**Преподаватель:** Машина Екатерина Алексеевна

Выполнил: Конкин Вадим Вадимович Группа: Р3210 <u>Цель работы</u>: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

### 1. Вычислительная реализация задачи

#### 1. Решение нелинейного уравнения

#### 1. $-2.7x^3-1.48x^2+19.23x+6.35$



2.

Для определения интервалов изоляции корней данного уравнения, можно воспользоваться методом интервалов знакопеременности. Для этого нужно найти значения функции на различных интервалах и определить знак функции на каждом из них.

Получим приближенные значения корней:

$$x \approx -2.8$$
,  $x \approx -0.3$ ,  $x \approx 2.6$ 

Теперь нужно разбить ось х на 4 интервала:  $(-\infty, -2.8)$ , (-2.8, -0.3), (-0.3, 2.6) и  $(2.6, +\infty)$ . На каждом из этих интервалов нужно определить знак функции.

Для этого можем вычислить значения функции в произвольной точке каждого интервала. Например, для интервала ( $-\infty$ , -2.8) можно выбрать x = -3, для интервала (-2.8, -0.3) x = -2, для интервала (-0.3, -0.3) x = 0, и для интервала (-0.3, -0.3) x = 3.

Таким образом, получим следующие значения функции:

для 
$$x = -3$$
:  $f(-3) = 8.24$ 

для 
$$x = -2$$
:  $f(-2) = -16.43$ 

для 
$$x = 0$$
:  $f(0) = 6.35$ 

для 
$$x = 3$$
:  $f(3) = -22.18$ 

Знаки функции на каждом интервале будут соответственно:

| $(-\infty, -2.8)$ | (-2.8, -0.3) | (-0.3, 2.6) | $(2.6,+\infty)$ |
|-------------------|--------------|-------------|-----------------|
| +                 | -            | +           | -               |

Таким образом, мы получаем два интервала изоляции корней уравнения:

3.

$$x_1 \approx - 2.80$$

$$x_2 \approx -0.33$$

$$x_3 \approx 2.57$$

4.

#### Крайний левый корень – Метод простой итерации

|   |             | l .           |               |                   |
|---|-------------|---------------|---------------|-------------------|
| № | $X_k$       | $X_{k+1}$     | $f(x_{k+1})$  | $X_{k+1}$ - $X_k$ |
| 1 | -4          | -3.2027862    | 18.2837188443 | 0.7972138         |
| 2 | -3.2027862  | -3.0172250819 | 9.01829598995 | 0.1855611181      |
| 3 | -3.01722508 | -2.9257002325 | 5.03698275268 | 0.0915248493824   |
|   | 19          |               |               |                   |
| 4 | -2.92570023 | -2.8745823582 | 2.97616647852 | 0.0511178742729   |
|   | 25          |               |               |                   |
| 5 | -2.87458235 | -2.8443800284 | 1.81225095259 | 0.0302023298164   |
|   | 82          |               |               |                   |
| 6 | -2.84438002 | -2.8259904565 | 1.12286065174 | 0.0183895719141   |
|   | 84          |               |               |                   |
| 7 | -2.82599045 | -2.8145976123 | 0.70303558891 | 0.0113928441851   |
|   | 65          |               |               |                   |
| 8 | -2.81459761 | -2.8074656367 | 0.44304112326 | 0.0071319755896   |
|   | 23          |               |               |                   |

#### Крайний правый корень – Метод хорд

| № | a     | b | X     | f(a)   | f(b)   | f(x)     | $ \mathbf{X}_{k+1} - \mathbf{X}_k $ |
|---|-------|---|-------|--------|--------|----------|-------------------------------------|
| 1 | 1     | 3 | 1.982 | 21.4   | -22.18 | 16.74295 | 0.982                               |
| 2 | 1.982 | 3 | 2.433 | 17.626 | -22.18 | 5.496313 | 0.4507                              |
| 3 | 2.433 | 3 | 2.545 | 5.496  | -22.18 | 1.178641 | 0.1126                              |
| 4 | 2.545 | 3 | 2.568 | 1.179  | -22.18 | 0.231510 | 0.0229                              |
| 5 | 2.568 | 3 | 2.573 | 0.232  | -22.18 | 0.044679 | 0.0045                              |

| - |   |       |   |       | i     |        |          |        |   |
|---|---|-------|---|-------|-------|--------|----------|--------|---|
|   | 6 | 2.573 | 3 | 2.574 | 0.045 | -22.18 | 0.008593 | 0.0008 | ĺ |

# Центральный корень – **Метод секущих**

| <u>№</u> | $X_{k-1}$ | $X_k$     | $X_{k+1}$ | $f(x_{k+1})$ | $ \mathbf{X}_{k-1} - \mathbf{X}_k $ |
|----------|-----------|-----------|-----------|--------------|-------------------------------------|
| 1        | -1        | -0.7      | -0.263563 | 1.228299     | 0.4364                              |
| 2        | -0.7      | -0.263563 | -0.32943  | -0.04908     | 0.06586                             |
| 3        | -0.263563 | -0.32943  | -0.32690  | -0.00016     | 0.0025                              |

#### 2. Решение системы нелинейных уравнений

1. 
$$tg(xy + 0.3) = x^2$$
; 0.  $9x^2 + 2y^2 = 1$ , Метод Ньютона



**2.** (-0.306, 0.677) (0.306, -0.677) (0.870, 0.400) (-0.870, -0.400)

Построим матрицу Якоби:

$$\frac{\partial f}{\partial x} = y \sec(xy + 0.3) - 2, \frac{\partial f}{\partial y} = x \sec^2(xy + 0.3), \frac{\partial g}{\partial x} = 1.8x, \frac{\partial g}{\partial y} = 4y$$

$$\left| \frac{\partial f(x,y)}{\partial x} \right| \frac{\partial f(x,y)}{\partial y} \left| \frac{\partial g(x,y)}{\partial x} \right| \frac{\partial g(x,y)}{\partial y} \left| (\Delta x \, \Delta y) \right| = - \left( f(x,y) \, g(x,y) \right)$$

$$\left| y \sec(xy + 0.3) - 2 x \sec^2(xy + 0.3) \cdot 1.8x \cdot 4y \right| (\Delta x \Delta y) = \left( x^2 - tg(xy + 0.3) \cdot 1 - 0.9 \cdot x^2 - 2y^2 \right)$$

$$\{ysec(xy + 0.3)\Delta x - 2\Delta x + x sec^{2}(xy + 0.3)\Delta y = x^{2} - tg(xy + 0.3) \cdot 1.8x\Delta x + 4y\Delta y = 1 - tg(xy + 0.3) \cdot 2x\Delta x + tg(xy + 0.3) \cdot$$

**Корень 1:** Шаг 1: Выбираем  $x_0 = -0.3$ ;  $y_0 = 0.7$ 

Шаг 2. Решаем полученную систему.

$$\Delta x = 0.000184818; \ \Delta y = -0.0217501$$

Шаг 3. Вычисляем очередные приближения:

$$x_1 = x_0 + \Delta x = -0.299815182$$

$$y_1 = y_0 + \Delta y = 0.400184818$$

$$\left|x_1 - x_0\right| \le \varepsilon, \left|y_1 - y_0\right| \le \varepsilon$$

## 2. Программная реализация задачи

#### Вывод

В ходе выполнения лабораторной работы были изучены численные методы решения нелинейных уравнений и систем нелинейных уравнений с использованием Python. В результате работы были найдены корни заданных уравнений и систем с использованием различных численных методов, а также были построены графики функций для полного представления исследуемых интервалов.