Методы искусственного интеллекта

Лекция 5. Компьютерное зрение

Тема 11. Компьютерное зрение

Основные разновидности задач компьютерного зрения

Image Recognition

Object Detection

Semantic Segmentation

Instance Segmentation

Линейный фильтр — матрица размером $r \times c$.

• Как правило, квадратная, но не обязательно.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3 x 3

1	1	1	1	1
1	2	2	2	1
1	2	4	2	1
1	2	2	2	1
1	1	1	1	1

5 x 5

Исходное изображение

90	90	0	0	0	0
0	90	0	0	0	0
0	0	90	90	0	0
0	0	90	90	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Фильтр (kernel)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3 x 3

Исходное изображение

90	90	0	0	0	0
0	90	0	0	0	0
0	0	90	90	0	0
0	0	90	90	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Фильтр (kernel)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3 x 3

40	40	

Исходное изображение

90	90	0	0	0	0
0	90	0	0	0	0
0	0	90	90	0	0
0	0	90	90	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Фильтр (kernel)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3 x 3

40	40	20	

Исходное изображение

90	90	0	0	0	0
0	90	0	0	0	0
0	0	90	90	0	0
0	0	90	90	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Фильтр (kernel)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3 x 3

40	40	20	10

Исходное изображение

90	90	0	0	0	0
0	90	0	0	0	0
0	0	90	90	0	0
0	0	90	90	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Фильтр (kernel)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3 x 3

40	40	20	10
30			

Примеры фильтров. Размытие (blur)

Примеры фильтров. Тиснение (emboss)

Исходное изображение

Тиснение (emboss)

Примеры фильтров. Выделение границ

Исходное изображение

Выделение контура

-1 -1 -1 -1 8 -1 -1 -1 -1 Фильтр Собеля (снизу)

 -1
 -2
 -1

 0
 0
 0

 1
 2
 1

Фильтр Собеля (слева)

1	0	-1
2	0	-2
1	0	1

Пример задачи. Подсчет прямоугольников

0	0	0	0	0	0
0	1	1	0	0	0
0	1	1	0	0	0
0	0	0	0	1	1
0	0	0	0	1	1
0	0	0	0	1	1

Пример задачи. Подсчет прямоугольников. Свёртка

0	0	0	0	0	0
0	1	1	0	0	0
0	1	1	0	0	0
0	О	0	0	1	1
0	0	0	0	1	1
0	0	0	0	1	1

***** -1 -1 -1 3

3	2	-1	0	0
2	0	-2	0	0
-1	-2	-1	3	2
0	0	0	2	0
0	0	0	2	0

Пример задачи. Подсчет прямоугольников. Свёртка + активация

$$\begin{vmatrix} -1 & -1 \\ -1 & 3 \end{vmatrix}$$
) =

*

1	0	0	0	0
0	0	0	0	0
0	0	0	1	0
0	0	0	0	0
0	0	0	0	0

Пример задачи. Подсчет прямоугольников. Свёртка + активация + сумма

Пример задачи. Подсчет прямоугольников

Итоговый алгоритм:

- 1. Осуществить свёртку с определенным фильтром.
- 2. Применить пороговую функцию активации.
- 3. Осуществить суммирование.

-1	-1
-1	3

Плюсы:

• Задача может быть сведена к последовательности свёрток, применений активации и арифметических операций (суммирование)

Проблемы:

- Как выбирать эти фильтры, пороги активации?
- А если задача сложнее и предполагает длинную цепочку преобразований?

Обучаемые фильтры

- **Идея**. Почему бы не сделать элементы фильтра *настраиваемыми*, чтобы они *автоматически* подбирались таким образом, чтобы добиться наилучшего результата на заданном *наборе данных*?
 - Сверточные (конволюционные) слои (convolutional layers) основа современных сетей для обработки изображений

W ₁₁	W ₁₂	<i>W</i> ₁₃
<i>w</i> ₂₁	W ₂₂	W ₂₃
<i>W</i> ₃₁	W ₃₂	W ₃₃

Свёрточные слои (Conv2D)

 k^2c_{in} параметров

Свёрточные слои (Conv2D)

Свёрточные слои (Conv2D). Размер шага (stride)

			_		
90	90	0	0	0	0
0	90	0	0	0	0
0	0	90	90	0	0
0	0	90	90	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Свёрточные слои (Conv2D). Дополнение (padding)

Valid padding

Используются только «настоящие» значения входного изображения

42	13	10	8
14	3	11	43
5	7	12	42
7	11	42	1

Размер выходного изображения:

- при шаге 1: 2 х 2

- при шаге 2 и больше: 1 x 1

$$O = \left| \frac{I - K}{S} \right| + 1$$

Same padding

Дополняется нулями так, чтобы при шаге 1 выходной размер был такой же, как и входной

0	0	0	0	0	0
0	42	13	10	8	0
0	14	3	11	43	0
0	5	7	12	42	0
0	7	11	42	1	0
0	0	0	0	0	0

Размер выходного изображения:

- при шаге 1: 4 х 4

- при шаге 2: 2 х 2

$$O = \left| \frac{I + P_L + P_R - K}{S} \right| + 1$$

Свёрточные слои. Оценка размера выходного изображения

- Пусть:
 - С количество каналов
 - *W* ширина
 - *H* высота
 - Индексы:
 - I вход, O выход, K фильтр, S шаг, P выравнивание (суммарное, с <u>двух</u> сторон)
- Количество параметров слоя:

$$W_K * H_K * C_I * C_O$$

• Размер выходного изображения:

$$W_O = \left| \frac{W_I + W_P - W_K}{W_S} \right| + 1$$

$$H_O = \left| \frac{H_I + H_P - H_K}{H_S} \right| + 1$$

Свёрточные слои. Вопрос 1

- Входное изображение 100 х 100 х 3, свёртка с ядром размера 3 (valid padding, шаг 1), на выходе должно быть 10 каналов.
 - Сколько параметров?
 - Какой будет размер выходного изображения?

Свёрточные слои. Вопрос 2

- Входное изображение 100 х 100 х 3, свёртка с ядром размера 3 (valid padding, шаг 3), на выходе должно быть 10 каналов.
 - Сколько параметров?
 - Какой будет размер выходного изображения?

Почему нельзя просто обычный полносвязный слой?

Подвыборка (пулинг). Max pooling, average pooling

С каждым каналом:

Размер фильтра (ядра) и шаг тоже могут быть определены, но, обычно, размер фильтра совпадает с шагом, а выравнивание valid.

1998 год ~60 тыс. параметров

Активация: tanh

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. (1998). "Gradient-based learning applied to document recognition". Proceedings of the IEEE. 86 (11): 2278–2324. doi:10.1109/5.726791. S2CID 14542261. Картинка: https://www.philschmid.de/getting-started-with-cnn-by-calculating-lenet-layer-manually

AlexNet (и ImageNet)

2012 год ~62 млн. параметров

Активация: ReLU

Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-24). "ImageNet classification with deep convolutional neural networks" (PDF). Communications of the ACM. 60 (6): 84–90.

Картинка: https://www.oreilly.com/library/view/advanced-deep-learning/9781789956177/b2258aa6-2c18-449c-ac00-939e812f5a4a.xhtml

AlexNet

Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images.

Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-24). "ImageNet classification with deep convolutional neural networks" (PDF). Communications of the ACM. 60 (6): 84–90.

ResNet. «Остаточные» сети

- Проблемы с обучением очень глубоких сетей
- Предлагаемое решение:
 - Skip-connections («обходные» связи)
- Семейство: ResNet-18, ResNet-35, ResNet-50, ...

Другие направления улучшения

- Зачем выбирать размер фильтра давайте сразу все!
 - Inception
- Упрощенные свёртки (depth-wise separable convolutions):
 - MobileNet, EfficientNet
- Пакетная нормализация:
 - Много где (те же ResNet, EfficientNet, MobileNet)

Краткая эволюция нейронных сетей для компьютерного зрения

Nain, Megha & Sharma, Shilpa & Sandeep, Chaurasia. (2021). Safety and Compliance Management System Using Computer Vision and Deep Learning. IOP Conference Series: Materials Science and Engineering. 1099. 012013. 10.1088/1757-899X/1099/1/012013...

Основные архитектуры по качеству и сложности (на 2019 год)

«Тонкости обучения». Аугментации

• Проблема:

- Данных, как правило, мало
- Модели сложно отличить важное от неважного (особенно, когда данных мало)
 - Шумы камеры, цветовая температура, наклон объекта и т.п.

• Потенциальное решение:

• Расширять обучающую выборку с помощью преобразований, изменяющих внешний вид распознаваемых объектов, но не изменяющих их «суть»

«Тонкости обучения». Примеры аугментаций

- Геометрические:
 - Вращение (rotate)
 - Отражение (flip)
 - Обрезка (сгор)
- Изменение гаммы (grayscale, color jitter)
- Шумы (noise)

«Тонкости обучения». Обучение с переносом (transfer learning)

- Ситуация:
 - Задача 1: Много данных, есть хорошие модели и архитектуры
 - Задача 2: Мало данных, задача специфична, но (в определенном смысле) близка задаче 1
- Общая идея решения:
 - 1. Обучить модель на данных задачи 1
 - 2. Зафиксировать («заморозить») веса части слоев (в начале сети)
 - 3. Обучить оставшиеся веса (и «голову» сети) для решения задачи 2

Специфичная для задачи «голова»

Сегментация. U-Net

Рисунок: Livne, M., Rieger, J., Aydin, O. и др. (2019). A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients With Cerebrovascular Disease. Frontiers in Neuroscience. 13. 10.3389/fnins.2019.00097

Резюме

- Свёртка с фильтром важный строительный блок цифровой обработки изображений, в том числе, компьютерного зрения
 - Идея свёрточных нейронных сетей обучаемые фильтры
- Основные строительные блоки свёрточных нейронных сетей:
 - Свёрточные слои:
 - Размер фильтра, количество выходных каналов, шаг, дополнение
 - Подвыборка (pooling)
 - Пакетная нормализация
 - ReLU активация
- Обучение:
 - Аугментации
 - Обучение с переносом (transfer learning)
- Архитектуры:
 - Классификация:
 - LeNet-5, AlexNet, ResNet
 - Сегментация:
 - U-Net

Литература

- Основное:
 - Dive into Deep Learning: http://d2l.ai
- Дополнительно:
 - Рассел С., Норвиг П. Искусственный интеллект. Современный подход. 4-е издание
 - Coursera/DeepLearning.AI: Deep Learning Specialization (Andrew Ng)
 - Масса источников, только вводи ключевые слова