Protection circuit for output stages of a stepping-motor drive circuit

Patent number:

DE3436433

Also published as:

Publication date:

1986-04-10

🔁 JP61116998 (/

Inventor:

AUGESKY CHRISTIAN DIPL ING (AT)

Applicant:

VOEST ALPINE FRIEDMANN (AT)

Classification:

- international:

H02P8/00; H02P8/00; (IPC1-7): H02H7/12; H02H3/20

- european:

H02P8/00

Application number: DE19843436433 19841004 Priority number(s): DE19843436433 19841004

Report a data error he

Abstract of **DE3436433**

This protection circuit is provided for output stages of a stepping-motor drive circuit, in the case of which the windings L1, L2 of the stepping motor are in each case connected to the motor supply voltage via a controlled switch S1, S2. In order to protect the output stages of the stepping-motor drive circuit against destruction resulting from voltage spikes, the ends of the motor windings L1, L2 which are connected to the controlled switches S1, S2 are connected via diodes D1, D2 to a series circuit, which is connected to earth and consists of a reference-voltage source UR1, preferably a Zener diode D3, and of a measurement resistor RM, the measurement signal UM of the measurement resistor RM being supplied to one input of a comparator K3, to whose other input a reference voltage UR2 is applied, and the output signal of the comparator K3 being supplied as a blocking signal Usp to blocking inputs E1, E2 of the driv circuits A1, A2 of the output-stage switches S1, S2.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTC)

(19) BUNDESREPUBLIK DEUTSCHLAND

© Offenlegungsschrift DE 3436433 A1

(51) Int. Cl. 4: H 02 H 7/12 H 02 H 3/20

DEUTSCHES PATENTAMT (21) Aktenzeichen: P 34 36 433.1
(22) Anmeldetag: 4. 10. 84
(43) Offenlegungstag: 10. 4. 86

71) Anmelder:

Voest-Alpine Friedmann GmbH, Linz, AT

74 Vertreter:

Kuhnen, R., Dipl.-Ing.; Wacker, P., Dipl.-Ing. Dipl.-Wirtsch.-Ing., 8050 Freising; Luderschmidt, W., Dipl.-Chem. Dr.phil.nat., Pat.-Anw., 6200 Wiesbaden

(72) Erfinder:

Augesky, Christian, Dipl.-Ing., Wien, AT

(56) Recherchenergebnisse nach § 43 Abs. 1 PatG:

DE-OS 29 24 390 DE-Z: Feinwerktechnik und Meßtechnik, 90, 1982, 4, S.161-163;

(54) Schutzschaltung für Endstufen einer Schrittmotor-Ansteuerschaltung

Diese Schutzschaftung ist für Endstufen einer Schrittmotor-Ansteuerschaltung vorgesehen, bei der die Wicklungen L₁, L₂ des Schrittmotors je über einen gesteuerten Schalter S₁, S₂ an der Motor-Speisespannung liegen. Um die Endstufen der Schrittmotor-Ansteuerschaltung vor Zerstörung durch Überspannungen zu schützen, sind die an den gesteuerten Schaltern S₁, S₂ liegenden Enden der Motorwicklungen L₁, L₂ über Dioden D₁, D₂ an eine gegen Masse geschaltete Serienschaltung einer Referenzspannungsquelle U_{R1}, vorzugsweise einer Zenerdiode D₃, und eines Meßwiderstandes $R_{\rm M}$ gelegt, wobei das Meßsignal $U_{\rm M}$ des Meßwiderstandes R_M einem Eingang eines Komperators K₃ zugeführt ist, an dessen anderen Eingang eine Bezugsspannung U_{R2} gelegt ist, und das Ausgangssignal des Komparators K₃ als Sperrsignal U_{sp} Sperreingängen E₁, E₂ der Ansteuerschaltungen A₁, A₂ der Endstufenschalter S₁, S₂ zugeführt ist.

Patentansprüche

- 1. -

- 1. Schutzschaltung für Endstufen einer Schrittmotor-Ansteuerschaltung, bei der die Wicklungen des Schrittmotors je über einen gesteuerten Schalter an der Motor-Speisespannung liegen, dadurch gekennzeichnet, daß die an den gesteuerten Schaltern (S_1, S_2) liegenden Enden der Motorwicklungen (L_1, L_2) über Dioden (D_1, D_2) an eine gegen Masse geschaltete Serienschaltung einer Referenzspannungsquelle (U_{R1}) , vorzugsweise einer Zenerdiode (D_3) , und eines Meßwiderstandes (R_M) gelegt sind, wobei das Meßsignal (U_M) des Meßwiderstandes (R_M) einem Eingang eines Komparators (K_3) zugeführt ist, an dessen anderen Eingang eine Bezugsspannung (U_{R2}) gelegt ist, und daß das Ausgangssignal des Komparators (K_3) als Sperrsignal (U_{SP}) Sperreingängen (E_1, E_2) der Ansteuerschaltungen (A_1, A_2) der Endstufenschalter (S_1, S_2) zugeführt ist.
- 2. Schutzschaltung nach Anspruch 1, dadurch gekennzeichnet, daß ein zweiter Komparator (K₄) vorgesehen ist, dessen einem (nicht invertierenden) Eingang die Ausgangsspannung (U_{sp}) des ersten Komparators (K₃) zugeführt ist, wobei dieser Eingang über die Serienschaltung eines Widerstandes (R₂₆₈) und eines Kondensators (C₂₂₈) an Masse liegt, sowie über einen Widerstand (R₂₆₅) an die Betriebsspannung (+U_b) gelegt ist, wogegen an dem anderen (invertierenden) Eingang des zweiten Komparators (K₄) eine Bezugsspannung (U_{R3}) gelegt ist und daß die Ausgangsspannung (U'_{sp}) des ersten Komparators (K₃) und die Ausgangsspannung (U''_{sp}) des zweiten Komparators (K₄) einer ODER-Schaltung (R₂₇₀, R₂₇₁, T₂₀₉) zugeführt sind, deren Ausgangssignal (U_{sp}) den Ansteuerschaltungen (T₂₀₁, T₂₀₂, INV₁,; T₂₀₃, T₂₀₄, INV₂,.....) als Sperrsignal (U_{sp}) zugeführt ist.

- 3. Schutzschaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der erste Komparator (K_3) in seinem Gegenkopplungszweig ein Serien-RC-Glied $(R_{262},\ R_{225})$ aufweist.
- 4. Schutzschaltung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Zeitkonstante des mit der Betriebsspannung verbundenen, an dem nicht invertierenden Eingang des zweiten Komparators (K_4) liegenden Widerstandes (R_{265}) und des Kondensators (C_{228}) groß ist gegen die Zeitkonstante des ersten Komparators (K_3) .
- 5. Schutzschaltung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß der Wert des Widerstandes (R_{268}) der Serienschaltung (R_{268}, C_{228}) am nicht invertierenden Eingang des zweiten Komparators (K_4) klein ist gegen den Wert des zur Betriebsspannung führenden Widerstandes (R_{265}) an diesem Eingang.
- 6. Schutzschaltung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Bezugsspannung (U_{R2}) des ersten Komparators (K_3) von einem Spannungsteiler (R_{263}, R_{264}) gebildet ist, der an Masse bzw. über eine Zenerdiode (D_{210}) an der Betriebsspannung $(+U_B)$ liegt, wobei diese Zenerdiode (D_{210}) überdies mit einem die Bezugsspannung (U_{R3}) des zweiten Komparators (K_4) bildenden Spannungsteiler (R_{266}, R_{267}) und mit dem zum nicht invertierenden Eingang dieses Komparators führenden Widerstand (R_{265}) verbunden ist.

Schutzschaltung für Endstufen einer Schrittmotor-Ansteuerschaltung

Die Erfindung bezieht sich auf eine Schutzschaltung für Endstufen einer Schrittmotor-Ansteuerschaltung, bei der die Wicklungen des Schrittmotors je über einen gesteuerten Schalter an der Motor-Speisespannung liegen.

Schaltungsanordnungen zur Ansteuerung von Schrittmotoren weisen in ihren Endstufen üblicherweise Halbleiter-Leistungs-schalter auf, die bei Auftreten von Überspannungen an den Motorwicklungen, wie sie beispielsweise bei Leitungssunterbrechungen auftreten können, leicht zerstört werden. In der österreichischen Patentanmeldung A 938/84 (Patent Nr.

) ist z.B. eine Schaltungsanordnung zur Ansteuerung eines Unipolar-Schrittmotors beschrieben, ebenso ist dort auf den Stand der Technik zu solchen Ansteuerschaltungen verwiesen.

Ziel der Erfindung ist die Schaffung einer Schutzschaltung, die Endstufen einer Schrittmotor-Ansteuerschaltung vor Zerstörung durch Überspannungen schützt.

Dieses Ziel läßt sich mit einer Schutzschaltung der eingangs genannten Art erreichen, bei welcher erfindungsgemäß die an den gesteuerten Schaltern liegenden Enden der Motorwicklungen über Dioden an eine gegen Masse geschaltete Serienschaltung einer Referenzspannungsquelle, vorzugsweise einer Zenerdiode, und eines Meßwiderstandes gelegt sind, wobei das Meßsignal des Meßwiderstandes einem Eingang eines Komparators zugeführt ist, an dessen anderen Eingang eine Bezugsspannung gelegt ist, und das Ausgangssignal des Komparators als Sperrsignal Sperreingängen der Ansteuerschaltungen der Endstufenschalter zugeführt ist. Eine derartige Schaltung ermöglicht bei geringem Schaltungsaufwand ein zuverlässiges Sperren der Endstufen.

Eine zweckmäßige Weiterbildung der Erfindung zeichnet sich dadurch aus, daß ein zweiter Komparator vorgesehen ist, dessen einem (nicht invertierenden) Eingang die Ausgangsspannung des ersten Komparators zugeführt ist, wobei dieser Eingang über die Serienschaltung eines Widerstandes und eines Kondensators an Masse liegt, sowie über einen Widerstand an die Betriebsspannung gelegt ist, wogegen an dem anderen (invertierenden) Eingang des zweiten Komparators eine Bezugsspannung gelegt ist und die Ausgangsspannung des ersten Komparators und die Ausgangsspannung des zweiten Komparators einer ODER-Schaltung zugeführt sind, deren Ausgangssignal den Ansteuerschaltungen als Sperrsignal zugeführt ist. Die Verwendung eines zweiten Komparators ermöglicht die Einführung einer längeren Zeitkonstante für den Abfall des Sperrsignales.

Die Zeitkonstante des ersten Komparators kann in einfacher Weise dadurch realisiert werden, daß der erste Komparator in seinem Gegenkopplungszweig ein Serien-RC-Glied aufweist.

Es trägt zur Erhöhung der Sicherheit bei, wenn die Zeitkonstante des mit der Betriebsspannung verbundenen, an dem nicht invertierenden Eingang des zweiten Komparators liegenden Widerstandes und des Kondensators groß ist gegen die Zeitkonstante des ersten Komparators.

Um ein rasches Entladen und langsames Laden des die Zeitkonstante des zweiten Komparators mitbestimmenden Kondensators zu ermöglichen, empfiehlt es sich, wenn der Wert des Widerstandes der Serienschaltung am nicht invertierenden Eingang des zweiten Komparators klein ist gegen den Wert des zur Betriebsspannung führenden Widerstandes an diesem Eingang.

Ein Sperren der Endstufen bei zu großem Abfall der Betriebsspannung läßt sich dadurch erreichen, daß die Bezugsspannung

des ersten Komparators von einem Spannungsteiler gebildet ist, der an Masse bzw. über eine Zenerdiode an der Betriebsspannung liegt, wobei diese Zenerdiode überdies mit einem die Bezugsspannung des zweiten Komparators bildenden Spannungsteiler und mit dem zum nicht invertierenden Eingang dieses Komparators führenden Widerstand verbunden ist.

Die Erfindung samt ihren weiteren Vorteilen und Merkmalen ist im folgenden an Hand beispielsweiser Ausführungsformen näher erläutert, die in der Zeichnung veranschaulicht sind. In dieser zeigen Fig. 1 die Schutzschaltung nach der Erfindung in einem Prinzipschaltbild und Fig. 2 eine im Detail ausgeführte Schutzschaltung nach der Erfindung im Zusammenhang mit einer Ansteuerschaltung für unipolare Schrittmotoren.

Fig. 1 erläutert das Prinzip der Schutzschaltung nach der Erfindung. Die Halbwicklungen L_1 , L_2 einer Phase eines Schrittmotors liegen je über einen gesteuerten Schalter S_1 , S_2 , z.B. über je einen Feldeffekttransistor, an der Motor-Speisespannung $+U_b$. Die Ansteuerung der gesteuerten Schalter erfolgt über Ansteuerschaltungen A_1 , A_2 , die entsprechend dem Stand der Technik oder entsprechend der eingangs genannten Patentanmeldung aufgebaut sein können. Den Ansteuerschaltungen können z.B. mittels eines nicht dargestellten Mikroprozessors dargestellte Bezugssignale $U_{\rm St1}$, $U_{\rm St2}$ zugeführt werden.

Die mit den Endstufenschaltern S_1 , S_2 verbundenen Enden der Motorwicklungen L_1 , L_2 sind je über eine Diode D_1 , D_2 mit der gegen Masse (bzw. den anderen Pol der Motor-Speisespannung) geschalteten Serienschaltung einer Zenerdiode D_3 (U_{R1}) und eines Meßwiderstandes R_M verbunden. Das an dem Meßwiderstander R_M gegen Masse anfallende Meßsignal U_M ist einem Eingang, bei der gewählten Spannungspolarität dem invertierenden Eingang, eines Komparators K_3 zugeführt. An dem anderen, nicht invertierenden Eingang des Komparators K_3 liegt eine

Bezugsspannung U_{R2} , die z.B. in einfacher Weise mittels eines Spannungsteilers von der Betriebsspannung U_B abgeleitet sein kann. Das Ausgangssignal des Komparators K_3 ist als Sperrsignal U_{SP} Sperreingängen E_1 bzw. E_2 der Ansteuerschaltungen A_1 bzw. A_2 zugeführt.

Die Schaltung nach Fig. 1 arbeitet in folgender Weise. Im normalen Betrieb treten an den Wicklungen L_1 , L_2 Spannungen auf, die keine Gefährd ung für die Schalter S_1 , S_2 darstellen. Die Zenerdiode D_3 ist so dimensioniert, daß sie bei Vorliegen solcher Spannungen gesperrt bleibt.

Anormale Betriebszustände, wie z.B. Unterbrechungen in den Wicklungen L_1 oder L_2 , können jedoch zu Überspannungen führen, die eine Zerstörung der Endstufenschalter S_1 , S_2 zur Folge hätten. Treten derartige Überspannungen an einem der Schalter S_1 , S_2 auf, so wird die Zenerdiode D_3 über eine der Dioden D_1 , D_2 leitend und an dem Meßwiderstand R_M entsteht ein Spannungsabfall, hier als Meßsignal U_m bezeichnet, wodurch die Spannung am invertierenden Eingang des Komparators K_3 steigt. Sobald an diesem Eingang die Bezugsspannung U_{R2} am nicht invertierenden Eingang überschritten wird, ändert sich die Ausgangsspannung des Komparators sprunghaft. Die Ausgangsspannung wird als Sperrsignal U_{sp} den Sperreingängen E_1 , E_2 der Ansteuerschaltungen A_1 , A_2 zugeführt, wodurch beide Schalter S_1 , S_2 gesperrt werden.

Zu der beschriebenen Prinzipschaltung ist anzumerken, daß sie aus Gründen der Übersichtlichkeit auf die im Zusammenhang mit der Erfindung wesentlichen Schaltelemente beschränkt ist und auch nur die Hälfte der Ansteuerschaltung eines zweiphasigen Unipolar-Schrittmotors darstellt. Um die Sperre der Schalter S₁, S₂ genügen lange aufrecht zu erhalten,kann der Signalweg der Sperrspannung in bekannter Weise mit zeitbestimmenden RC-Gliedern versehen sein oder über ein durch ein äußeres Rückstellsignal ansteuerbares Flip-Flop od.dgl. geführt sein.

Nähere Details einer praktisch ausgeführten Schaltung, die auch in besonderer Weise für eine genügend lang dauernde Aufrechterhaltung des Sperrzustandes ausgelegt ist, sind in Fig. 2 dargelegt.

Eine Schaltungsanordnung wie in Fig. 2 dargestellt, entspricht - abgesehen von der erfindungsgemäßen Schutzschaltung - im wesentlichen der in der österreichischen Patentanmeldung A 938/84 (Patent Nr.) beschriebenen Schaltung, deren Funktion in der genannten Anmeldung auch näher erläutert ist. Die Schaltung ist zur sinusförmigen, um 90° verschobenen Ansteuerung der beiden, je aus zwei Halbwicklungen bestehenden Phasen eines 2-Phasen-Unipolar-Schrittmotors gedacht. Der Schaltungsteil zur Ansteuerung der zweiten Phase ist jedoch aus Gründen der Vereinfachung nicht gezeigt, da die Schaltung hinsichtlich der beiden Phasen völlig symmetrisch aufgebaut ist.

Als gesteuerte Schalter dienen zwei MOSFET-Transistoren S_1 , S_2 . Die beiden Halbwicklungen L_1 , L_2 einer Motorphase liegen mit ihren einen Wicklungsenden über eine Diode D $_{280}$ und eine Drossel L_{201} an der Betriebsspannung + U_B ; die anderen Wicklungsenden sind über die Transistorschalter S_1 , S_2 und je einen Stromfühler-Widerstand R_{281} , R_{282} an Masse GND gelegt. Ein der Diode D $_{280}$ nachgeschalteter Kondensator C_{280} erhöht den Wirkungsgrad der Schaltung.

Das an den Widerständen R_{281} , R_{282} auftretende Differenzsignal wird über RC-Glieder R_{217} , C_{210} bzw. R_{218} , C_{211} und Entkopplungswiderstände R_{228} , R_{229} den Eingängen eines Komparators K_1 zugeführt, dessen Ausgangssignal über einen Inverter INV₁ und eine komplementäre Treiberstufe T_{201} , T_{202} dem Transistorschalter S_1 bzw. über einen Inverter INV₃, einen Inverter INV₂ und eine komplementäre Treiberstufe T_{203} , T_{204} dem Transistorschalter S_2 zugeführt wird.

Wie bereits erwähnt erfolgt die Vorgabe des Bezugssignals, dem letztlich der Magnetisierungsstrom in den Motorwicklungen folgen soll, mittels eines nicht dargestellten Mikroprozessors, der über binär gewichtete Widerstände R_{245} bis R_{248} den Arbeitspunkt an den Eingängen des Komparators K_1 einstellt.

Die Widerstände R_{241} bis R_{245} sind sogenannte "Pull-Up" Widerstände, die den Ausgang des Mikroprozessors entlasten. Der mit SMA bezeichnete Ausgang signalisiert dem Mikroprozessor den Status der Endstufe (ein- oder ausgeschaltet).

Im folgenden wird der erfindungsgemäße Teil der Schaltung nach Fig. 2 näher erläutert. Das Potential an den mit den Schaltern S_1 , S_2 verbundenen Enden der Wicklungen L_1 , L_2 wird über Trenndioden D_1 , D_2 der gegen Masse geschalteten Serienschaltung einer Zenerdiode D_3 (U_{R1}) und eines Meßwiderstandes R_M zugeführt. Die mit a bezeichnete Leitung führt in nicht gezeigter Weise gleichfalls über Dioden zu den Wicklungsenden der zweiten Motorphase (nicht dargestellt). Bei einer Motor-Speisespannung von U_B =12 V wird beispielsweise eine Diode D_3 mit einer Zenerspannung von 64 V und ein Widerstandswert für R_M von 500 mOhm gewählt.

Das an $R_{\rm M}$ anfallende Meßsignal $U_{\rm M}$ wird über einen Widerstand R_{261} dem invertierenden Eingang eines Komparators K_3 zugeführt. Dieser Eingang liegt überdies über einen Widerstand R_{259} an der Betriebsspannung + $U_{\rm B}$ und über einen Kondensator C_{224} an Masse. Über einen Widerstand R_{260} erhält der Komparator K_3 seine Speisespannung, wobei ein Siebkondensator C_{223} vorgesehen ist. Der nicht invertierende Eingang des Komparators liegt über den Spannungsteiler R_{263} , R_{264} an der über die Zenerdiode D_{210} verminderten Betriebsspannung + $U_{\rm B}$. Hiedurch ist an dem nicht invertierenden Eingang des Komparators K_3 eine Bezugsspannung $U_{\rm R2}$ vorgegeben. Als beispielsweise Dimensionierung sei angegeben: $R_{259} = 33$ kOhm, $R_{261} = 1$ kOhm, $R_{263} = 12$ kOhm, $R_{264} = 1$ kOhm, $U_{\rm Z}(D_{210}) = 5$,6 V, $C_{224} = 4$,7 nF, $R_{260} = 15$ Ohm, $C_{223} = 100$ nF. Im Gegenkopplungszweig des Komparators K_3 liegt ein Serien-RC-Glied R_{262} , C_{225} (22 kOhm, 470 nF).

Es ist weiters ein zweiter Komparator K₄ vorgesehen, von dessen invertierenden Eingang ein Widerstand R₂₆₇ eines gleichfalls über die Zenerdiode D₂₁₀ an der Betriebsspannung liegenden Spannungsteilers R₂₆₆, R₂₆₇ gegen Masse gelegt ist. Parallel zum Widerstand R₂₆₇ liegt ein Kondensator C₂₂₇. Hiedurch ist an diesem Eingang eine Bezugsspannung UR3 gebildet. Der nicht invertierende Eingang des Komparators K4 liegt einerseits über einen Widerstand R₂₆₅ und die Zenerdiode D_{210} an der Betriebsspannung + U_{B} und andererseits über die Serienschaltung eines Widerstandes R₂₆₈ und eines Kondensators c_{228} an Masse. Ober eine Diode c_{209} ist der nicht invertierende Eingang des Komparators K_4 mit dem Ausgang des Komparators K_3 verbunden. Im Gegenkopplungszweig des Komparators K₄ liegt ein Kondensator C₂₂₆. Zur beispielsweisen Dimensionierung sei angegeben: $R_{266} = 1.2 \text{ kOhm}$, $R_{267} = 12 \text{ kOhm}$, $C_{227} = 47 \text{ nF}$, $R_{265} = 56 \text{ kOhm}, R_{268} = 680 \text{ Ohm}, C_{228} = 4,7 \mu F, C_{226} = 47 pF.$

Die Ausgangssignale U'sp des Komparators K₃ bzw. U"sp des Komparators K₄ werden über Widerstände R₂₇₀ bzw. R₂₇₁ der Basis eines p-n-p Transistors T₂₀₉ zugeführt. Im Kollektorkreis dieses Transistors liegen in Serie zwei Widerstände R₂₅₇ und R₂₅₈, wobei der letztgenannte Widerstand von einem Kondensator C₂₂₁ überbrückt ist. Zwischen Basis und Emitter liegt ein Widerstand R₂₆₉. Der Kollektor ist über Dioden D₂₀₂ bzw. D₂₀₄ an die Eingänge der Inverter INV₁ bzw. INV₂ gelegt. Die mit b bezeichnete Leitung führt in analoger Weise zu Invertereingängen der nicht gezeigten Ansteuerschaltung der zweiten Motorphase. Der Transistor T₂₀₉ dient als Schaltstufe mit einer ODER-Verknüpfung der beiden Signale U'sp und U"sp am Eingang. Am Ausgang tritt das Signal U_{sp} auf. Eine beispielsweise Dimensionierung der hier verwendeten Schaltelemente lautet: $R_{269} = R_{270} = R_{271} = 33 \text{ kOhm}, R_{257} = 6,2 \text{ kOhm},$ $R_{258} = 3,6 \text{ kOhm}, C_{221} = 220 \text{ pF}.$

Die beschriebene Schutzschaltung arbeitet folgendermaßen:

Bei Auftreten einer Überspannung an einer der Wicklungen L₁, L₂, bzw. der nicht dargestellten Wicklungen der zweiten Motorphase wird die Zenerdiode D_3 über eine der Trenndioden D_1 , D_2 leitend und an dem Meßwiderstand R_M tritt eine positive Meßspannung U_{M} auf, wodurch das Potential am invertierenden Eingang des Komparators K3, an dessen nicht invertierenden Eingang eine Spannung von etwa +0,5 V liegt, ansteigt und der bis dahin auf positivem Potential gelegene Ausgang des Komparators gegen Null absinkt, was dem Auftreten des Sperrsignales U'sp entspricht. Der Transistorschalter T209 wird leitend, wodurch die Eingänge aller Inverter INV₁, INV₂ (und der beiden nicht dargestellten Inverter der zweiten Schaltunghälfte) annähernd auf das Potential der Betriebsspannung +UB gehoben werden, wodurch alle Leistungsschalter S₁, S₂ etc. der Endstufen abschalten. Nach Fortfall der Überspannung nimmt der Ausgang des Komparators K3 in einem durch die Zeitkonstante des RC-Gliedes R₂₆₂, C₂₂₅ (etwa 25 ms) und die Schaltschwellen des Komparators (Umschwingzeit etwa 10 ms) bestimmten Verlauf wieder positives Potential an.

Da Überspannungen üblicherweise nur kurzzeitig auftreten, würden nach Wegfall einer Spannungsspitze entsprechend der Zeitkonstanten $R_{262} \cdot C_{225}$ rasch sämtliche Schaltstufen wieder betriebsbereit sein, was aus Sicherheitsgründen jedoch unerwünscht ist. Aus diesem Grund ist der Komparator K_4 vorgesehen, der zusammen mit seiner Beschaltung für eine weitere Verzögerung des Sperrsignales sorgt.

Sobald der Ausgang des Komparators K_3 gegen Null geht, wird auch der nicht invertierende Eingang des Komparators K_4 gegen das Nullpotential gezogen, sodaß auch der Ausgang des Komparators K_4 das Nullpotential annimmt. Gleichzeitig wird der zuvor aufgeladen gewesene Kondensator C_{228} über R_{268} und die Diode D_{209} entladen.

Wenn nach Wegfall einer Überspannung der erste Komparator K_3 wieder seinen Ausgangszustand einnimmt, wird der Kondensator C_{228}

über die Widerstände $R_{268} + R_{265}$ wieder aufgeladen. Da der Wert des Widerstandes R_{268} wesentlich größer ist als jener des Widerstandes R_{268} , erfolgt das Aufladen entsprechend langsamer als das Entladen, bis die Schaltschwelle des zweiten Komparators K_4 wieder erreicht ist. Die Zeitkonstante von K_4 beträgt etwa 260 ms, die zugehörige Aufladezeit etwa 600 ms. Für die Entladung wirksam ist eine Entladezeitkonstante von etwa 3 ms (ca 1/3 der Umschwingzeit von K_3). Nun steigt das Potential am Ausgang des zweiten Komparators K_4 wieder gegen $^{+}U_B$ und der Transistor T_{209} sperrt. Die Endstufen können wieder arbeiten, solange nicht erneut eine Überspannung auftritt.

Die Schaltung weist als weitere Besonderheit auch einen Schutz gegen einen unzulässigen Abfall der Betriebsspannung auf, was im folgenden erläutert wird.

Am invertierenden Eingang des ersten Komparators K_3 liegt, definiert durch $R_{259} + R_{261}$ (R_{280} ist klein gegen R_{259} und R_{261}), ein Bruchteil der Betriebsspannung + U_B . Die Zenerdiode D_{210} versorgt den Spannungsteiler R_{263} , R_{264} , welcher die Spannung am nicht invertierenden Eingang des Komparators K_3 festlegt. Bei der beispielsweisen Dimensionierung liegt am invertierenden Eingang bei normaler Betriebsspannung + U_B = 12 V eine Spannung von 12/(33 + 1) $\stackrel{.}{=}$ 0,35 V und am nicht invertierenden Eingang eine Spannung von $(U_B - U_Z)/(1 + 12) = (12 - 5,6)/13 \stackrel{.}{=}$ 0,5

Daraus ergibt sich, daß bei einem Abfall von U_B auf z.B. 6 V die Spannung am invertierenden Eingang auf etwa 0,18 V und jene am nicht invertierenden Eingang auf etwa 30 mV absinkt, was jedoch eine Umkehr der Polarität an den beiden Eingängen des ersten Komparators K_3 - bezogen auf normale Betriebsspannung - bedeutet. Das Potential am Ausgang des Komparators K_3 sinkt gegen Null und über den Schalttransistor T_{209} werden die Endstufen abgeschaltet. Der zweite Komparator K_4 erfüllt hier die gleiche Funktion, wie im Zusammenhang mit dem Abschalten bei Überspannung beschrieben. Auf diese Weise wird bei zu starkem Absinken der Betriebsspannung ein undefiniertes Schalten des Schrittmotors vermieden.

- 13 -

Nummer: Int. Cl.⁴: Anmeldetag: Offenlegungstag:

34 36 433 H 02 H 7/12 4. Oktober 1984 10. April 1986

Fig.1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTC)