

session 12 24.01.2018

Exercise 12.1 - Structures and cell arrays

Write a function

function net=make_ffnet (Nlayers, Nneurons, hasBiasNeuron) That creates and initializes a feed-forward neural network with Nlayers layers. The number of (non-bias) neurons in each layer is given by the vector Nneurons and whether a layer has a bias neuron or not is determined by the logical vector hasBiasNeuron. These two vectors must be of size Nlayers×1. The output of the function is a structure with the fields

Nlayers	the number of layers
Nneurons	the vector with the number of neurons in each layer
hasBiasNeuron	the vector determining whether a layer has a bias neuron
0	a cell array such that net.O{l}(j) is the value of the
	neuron output for neuron j in layer l . Neuron number
	Nneurons (1) +1 is the bias neuron (if there is any)
I	a cell array such that net.I{l} (j) is the weighted sum
	of inputs to neuron j in layer l
factiv	a cell array such that net.factiv{l} is a function han-
	dle to the activation function used in layer l . Use tanh for
	the output layer and ReLU for all other layers
dfactiv	$\frac{d}{dx}$ factiv(x)
W	cell array such that net.w{l}(j,k) is the weight be-
	tween neuron j of layer l and neuron k of layer $l+1$. The
	weights should be initialized to normally distributed ran-
	dom numbers with variance $2/(M+N)$, where M is the
	number of neurons in layer l , and N is the number of neu-
	rons in layer $l+1$
E	a function handle to a function $E(y, \hat{y})$, that computes how
	well the objective was achieved, if the output vector is y and
	the true result \hat{y} . Use by default the least squares function
	$E(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$
dE	a function handle to a function that computes the partial
	derivatives of E with respect to y_1, \ldots, y_N

Exercise 12.2 - Evaluating feed-forward networks

Write a function

function net_out=ffnet_eval(net_in, input_layer)
that sets the input neurons in net_in to the values in the vector input_layer,
and evaluates the neural network (i.e. computes all values net_out.I and
net_out.O.)

Exercise 12.2 - Text recognition

It is time for an application! We want to use a (already trained) neural network to recognize hand-written digits.

- Create a network with 3 layers. The input layer has 784 neurons, corresponding to the pixel values of a 28 × 28 image. The values encode shades of gray ranging from white (0) to black (1). The hidden layer shall have 800 neurons and the output layer 10 neurons. The first two layers have an additional bias neuron.
- The training train set and a second set test (not used for training) can be loaded from the file digits.mat. Both are cell arrays with ten cells, corresponding to digits 0 to 9. Each cell is a $N \times 784$ matrix that contains N different handwritten digits. For instance test {1} (3,:) would be a valid vector for the input_layer. It corresponds to the third image of digit 0 from the test set.
- Plot a few of the test digits. Use them as inputs to your neural network and compute the outputs. Are the digits recognized correctly?
- Test your network with the complete test set. What are the recognition rates for each digit?