Experiment No. 7 c)	CHARACTERISTICS OF BJT (CE CONFIGURATION)
Date:	

Aim

To plot the transistor (BJT) characteristics of CE configuration.

Apparatus Required

Components Required

S.No.	Name	Range	Qty	S.No.	Name	Range	Qty
1	R.P.S	(0-30)V	2	1	Transistor	BC 107	1
2 Ammeter	(0–30) mA MC	1	2	Resistor	10 ΚΩ	1	
	7 mineter	(0–250) μA MC	1		Resistor	1 ΚΩ	1
3 Voltmeter	(0–30)V MC	1	3	Bread Board		1	
		(0–1)V MC	1	4	Wires		

Theory

A BJT is a three terminal two – junction semiconductor device in which the conduction is due to both the charge carrier. Hence it is a bipolar device. BJT is classified into two types – NPN & PNP. A NPN transistor consists of two N types in between which a layer of P is sandwiched. The transistor consists of three terminal emitter, collector and base. The emitter layer is the source of the charge carriers and it is heavily doped with a moderate cross sectional area. The collector collects the charge carries and hence moderate doping and large cross sectional area. The base region acts a path for the movement of the charge carriers. In order to reduce the recombination of holes and electrons the base region is lightly doped and is of hollow cross sectional area. Normally the transistor operates with the EB (emitter-base) junction forward biased.

Procedure

Input Characteristics

- 1. Connect the circuit as per the circuit diagram.
- 2. Set V_{CE} , vary V_{BE} in regular interval of steps and note down the corresponding I_B reading. Repeat the above procedure for different values of V_{CE} .
- 3. Plot the graph: V_{BE} Vs I_{B} for a constant V_{CE} .

Output Characteristics

- 1. Connect the circuit as per the circuit diagram.
- 2. Set I_B , Vary V_{CE} in regular interval of steps and note down the corresponding I_C reading. Repeat the above procedure for different values of I_B .
- 3. Plot the graph: V_{CE} Vs I_{C} for a constant I_{B} .

Pin Diagram

Specification: BC107/50V/0.1A,0.3W,300 MH

Circuit Diagram

Model Graph

Input Characteristics

Output Characteristics

Tabular Column Input Characteristics

$V_{CE} = 0 V$		$V_{CE} = 2V$	
V _{BE} (V)	$I_B(\mu A)$	V _{BE} (V)	$I_B(\mu A)$

${\bf 18EES101J\text{-}BASIC\ ELECTRICAL\ AND\ ELECTRONICS\ ENGINEERING\ (LABORATORY)}$

Output Characteristics

I_B =20 μA		I_{B} =40 μA	

GRAPH:

Result

POST LAB QUESTIONS

1	What is Punch through voltage?
2	What is early effect?
3	What are the differences between NPN and PNP transistors?
4.	What is leakage current and mention its range?
5.	What is base – width modulation?