Signals & Systems

Irvin Avalos

irvin.l@berkeley.edu

CONTENTS

1	Discrete Time Systems		2
	1.1	Introduction	2
	1.2	LTI Systems & Impulse Response	3
	1.3	BIBO Stability, Causality, & Periodicity	6
	1.4	Discrete Time Difference Equations	7
	1.5	Discrete Time State Space Representation	7
2	Continuous Time Systems		
	2.1	Continuous Time Convolution	8
	2.2	Continuous Time BIBO Stability & Causality	8
	2.3	Continuous Time State Space Representation & Feedback	8
3	Frequency Analysis		
	3.1	Discrete Time Fourier Series	9
	3.2	Continuous Time Fourer Series	9
	3.3	Discrete Time Fourier Transform	9
	3.4	Continuous Time Fourier Transform	9
4	Sampling and Modulation		10
	4.1	Modulation	10
	4.2	Sampling Theorem	10
	4.3	Z-Transform	10
	4.4	Laplace Transform	10

DISCRETE TIME SYSTEMS

1.1 Introduction

Definition 1.1 (Signal).

A signal is a function. That is, for some signal x we take as input an element from \mathbb{R} or \mathbb{Z} and output either a \mathbb{R} or \mathbb{C} number.

- Put simply, signals follow the function rule that tells us what mapping the function in question should follow.
- From this, we abide by the convention that whenever the domain of our signal is \mathbb{Z} we are working in discrete time. Conversely, if the domain is \mathbb{R} we will be in continuous time.

Definition 1.2 (Kronecker Delta a.k.a. Discrete Time Impulse).

$$\delta(n) = \begin{cases} 1, & \text{if } n = 0 \\ 1, & \text{if } n < 0 \end{cases}.$$

Definition 1.3 (Discrete Time Unit Step).

$$u(n) = \begin{cases} 1, & \text{if } n \ge 0 \\ 0, & \text{if } n < 0 \end{cases}.$$

Definition 1.4 (Continuous Time Unit Step).

$$u(t) = \begin{cases} 1, & \text{if } t \ge 0 \\ 0, & \text{if } t < 0 \end{cases}.$$

Theorem 1.1. Any discrete time signal can be decomposed into a linear combination of shifted impulses. It follows that, the unit step function can be reinterpreted as

$$u(n) = \sum_{k=0}^{\infty} \delta(n-k).$$

Theorem 1.2. Immediately from above, we say that any discrete time signal can be expressed as a linear combination of shifted impulses.

$$u(n) = \sum_{k=0}^{\infty} \delta(n-k) = \sum_{m=-\infty}^{n} \delta(m).$$

- In discrete time, the unit step is the cumulative sum of Kronecker deltas. A similar concept to that of the integral.
- We can represent $\delta(n)$ in terms of shifted u(n)'s as

$$\delta(n) = u(n) - u(n-1).$$

Note that

$$\delta(n) = \frac{u(n) - u(n-1)}{n - (n-1)} = u(n) - u(n-1).$$

It suffices to say that this is similar to the derivative.

• Therefore, in discrete time $\delta(n)$ is known as the discrete time derivative of the impulse signal and u(n) is it's integral.

1.2 LTI Systems & Impulse Response

Definition 1.5 (Systems).

Similar to signals we say that systems are functions. That is, $x \longrightarrow H \longrightarrow y$ where x is our input signal and y is the corresponding output signal after x "passes" through the system H.

More formally, we define \mathbb{X} to be the input signal space and \mathbb{Y} to be the output signal space. Thus, y = H(x) where $x \in \mathbb{X}$, $y \in \mathbb{Y}$.

- Systems Properties: (1) Linearity (or Superposition) and (2) Time Invariance.
- Linearity: System *H* is said to be linear if it satisfies both the scaling and additivity property.
 - 1. Scaling: The output of a weighted input must be scaled by the weight of that input, i.e., $\alpha x \longrightarrow H \longrightarrow \alpha y, \ \forall x \in \mathbb{X}, \ \forall \alpha \in \mathbb{R}/\mathbb{C}.$
 - 2. Additivity: The system is additive if it satisfies the below,

$$x_1 \longrightarrow H \longrightarrow y_1$$
 and $x_2 \longrightarrow H \longrightarrow y_1$ then $x_1 + x_2 \longrightarrow H \longrightarrow y_1 + y_2$

for all $x_1, x_2 \in \mathbb{X}$.

The notion of **superposition** occurs when the scaling and additive properties are combined in one step, i.e.,

$$\alpha x_1 + \beta x_2 \longrightarrow H \longrightarrow \alpha y_1 + \beta y_2$$

for all $\alpha, \beta \in \mathbb{R}/\mathbb{C}$ and for all $x_1, x_2 \in \mathbb{X}$.

- Time Invariance: If input $\hat{x}(n) = x(n-N)$ for $N \in \mathbb{Z}$, then if $\hat{y}(n) = y(n-N), \ \forall x \in \mathbb{X}$ and $\forall N \in \mathbb{Z}$, the system H is time invariant.
- **Zero Input Zero Output (ZIZO):** If our input is zero then the output must be zero, and if this does not hold then the system is nonlinear.
- LTI Systems: Are systems that possess both linearity and time invariance.

• If the input signal $x(n) = \delta(n)$, then $y(n) \triangleq h(n)$ where h(n) is called the **impulse response** of the system.

Theorem 1.3. Given that we now the impulse response of an LTI system, we then know the system response to any arbitrary input x.

Proof.

$$\delta(n) \longrightarrow H \longrightarrow h(n)$$

$$\delta(n-k) \longrightarrow H \longrightarrow h(n-k)$$

$$x(k)\delta(n-k) \longrightarrow H \longrightarrow x(k)h(n-k)$$

$$\sum_{k=-\infty}^{\infty} x(k)\delta(n-k) \longrightarrow H \longrightarrow \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

where
$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$
 and $y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$.

• DT-LTI Systems: Are a result of the above proof,

$$x(n) \longrightarrow H \longrightarrow y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

where we define y to be the convolution between x and h,

(1.1)
$$y(n) = (x * h)(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k).$$

• Convolution is commutative:

$$y(n) = (x * h)(n)$$

$$= \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$= \sum_{m=-\infty}^{\infty} x(n-m)h(m)$$

$$= (h * x)(n)$$

- If $x(n) \longrightarrow F \longrightarrow G \longrightarrow y(n)$, then we define an intermediate signal q(n) = (x * f)(n). Then, y(n) = (q * g)(n) = (x * f * g)(n) = (x * h)(n) where h(n) = (f * g)(n) is the impulse response of a "bigger" system H.
- Two systems in series (cascaded) is an LTI system.
- $\delta(n)$ also referred as the identity element in discrete time, and $(\delta * h)(n) = (h * \delta)(n) = h(n)$.
- Euler's Formula: $e^{i\theta} = \cos \theta + i \sin \theta$.

• Inverse Euler's Formula:

$$\cos \theta = \frac{e^{i\theta} + e^{i\theta}}{2}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

• **Frequency Response of an LTI System:** From previous observations we know the following two facts:

$$x(n) = \delta(n) \longrightarrow H \longrightarrow y(n) = h(n)$$

where x(n) is "activated" only when n=0 and more generally,

$$x(n) \longrightarrow H \longrightarrow y(n) = (x * h)(n).$$

If x(n) were to be "active" for every time value of n, then

$$x(n) = e^{i\omega n} \longrightarrow H \longrightarrow y(n)$$

where

$$y(n) = (x * h)(n)$$

$$= \sum_{k=-\infty}^{\infty} e^{i\omega k} h(n-k)$$

$$= e^{i\omega n} \sum_{m=-\infty}^{\infty} h(m)e^{-i\omega m}.$$

The term $\sum_{m=-\infty}^{\infty} h(m)e^{-i\omega m}$ is a constant that only depends on ω . Thus, the frequency response of the system is,

(1.4)
$$H(\omega) \triangleq \sum_{m=-\infty}^{\infty} h(m)e^{-i\omega m}.$$

- Similar idea to eigenvalues, $A\vec{x} = \lambda \vec{x}$, where A is the system response, $H(\omega)$ is the eigenvalue, and our complex exponential is \vec{x} .
- Think of $H(\omega)$ as a scaling object.
- Eigenfunction Property: Denote our input signal as the complex exponential $e^{i\omega n}$ which is the eigenfunction with respect to the DT-LTI system. It follows that,

$$e^{i\omega n} \longrightarrow H \longrightarrow H(\omega)e^{i\omega n}$$
.

• Note that a large class of signals of interest can be written as a linear combination of complex exponentials (Fourier Analysis).

• The frequency response of a DT-LTI system is 2π periodic,

$$H(\omega + 2\pi) = \sum_{n = -\infty}^{\infty} h(n)e^{-i(\omega + 2\pi)n} = \sum_{n = -\infty}^{\infty} h(n)e^{-i\omega n}.$$

When analyzing the frequency response of a system only focus on $\omega \in (0, 2\pi)$ or $\omega \in (-\pi, \pi)$.

- More generally, $H(\omega)$ is $2\pi n$ periodic $\forall n \in \mathbb{Z}$.
- From above, $H(\omega)$ has fundamental period 2π .

1.3 BIBO STABILITY, CAUSALITY, & PERIODICITY

• Periodicity of Complex Exponentials: For a given continuous time signal $e^{i\omega t}$, it experiences $\frac{2\pi}{\omega}$ revolutions per second, then ω denotes the radians per second of the signal.

Theorem 1.4 (Continuous Time Periodicity).

We say that, $x : \mathbb{R} \to \mathbb{R}$ is T periodic if $\exists T \text{ s.t. } x(t+T) = x(t), \ \forall t \in \mathbb{R}$.

- Smallest such positive t is called the **fundamental period** in continuous time.
- The fundamental frequency is given by $f_0 = \frac{1}{T}$ and $\omega = \frac{2\pi}{T}$ has units of fundamental frequency, i.e., $\omega_0 = 2\pi f_0$.
- $e^{i\omega t}$ is periodic in t with fundamental period $T = \frac{2\pi}{\omega}$, thus it is not periodic in ω .

Theorem 1.5 (Discrete Time Periodicity).

Say that $x: \mathbb{Z} \to \mathbb{R}$ is N periodic if $\exists N \text{ s.t. } x(n+N) = x(n), \ \forall \ n \in \mathbb{Z}$.

- Small such positive N is the fundamental period in discrete time.
- $f_0 = \frac{1}{N}$ is the fundamental frequency in discrete time and $\omega = \frac{2\pi}{N}$ has units of fundamental frequency, i.e., $\omega_0 = w\pi f_0$.
- $e^{i\omega n}$ is periodic in ω with fundamental period 2π , i.e., it is only periodic in n if ω is a rational multiple of π :

$$e^{i\omega(n+N)} = e^{i\omega n}$$

$$e^{i\omega N} = 1$$

$$\omega N = 2\pi k$$

$$\omega = \frac{2\pi k}{N}$$

$$= (\frac{2\pi}{N})k$$

therefore ω must be a rational multiple.

1.4 DISCRETE TIME DIFFERENCE EQUATIONS

• Finite Impulse Response: Example is the two point moving average filter,

$$y(n) = \frac{1}{2}x(n) + \frac{1}{2}x(n-1)$$

with corresponding impulse response $h(n) = \frac{\delta(n) + \delta(n-1)}{2}.$

• Infinite Impulse Response: Example is the exponentially weighted average filter,

$$y(n) = x(n) + \alpha y(n-1)$$

with impulse response $h(n) = \alpha^n u(n)$.

1.5 DISCRETE TIME STATE SPACE REPRESENTATION

CONTINUOUS TIME SYSTEMS

- 2.1 Continuous Time Convolution
- 2.2 CONTINUOUS TIME BIBO STABILITY & CAUSALITY
- 2.3 CONTINUOUS TIME STATE SPACE REPRESENTATION & FEEDBACK

FREQUENCY ANALYSIS

- 3.1 DISCRETE TIME FOURIER SERIES
- 3.2 Continuous Time Fourer Series
- 3.3 DISCRETE TIME FOURIER TRANSFORM
- 3.4 Continuous Time Fourier Transform

SAMPLING AND MODULATION

- 4.1 MODULATION
- 4.2 Sampling Theorem
- 4.3 Z-Transform
- 4.4 LAPLACE TRANSFORM