Exercises. Distributions

Spring 2023

1. Let $T \in \mathcal{S}'$. Show that

(a)
$$\widehat{T}^{(k)} = [(-2\pi i t)^k T]^{\wedge}$$
.

(b)
$$\widehat{T^{(k)}} = (2\pi i \xi)^k \widehat{T}$$
.

2. Given $a \in \mathbb{R}$ let $\tau_a T$ be defined by $\langle \tau_a T, \varphi \rangle = \langle T, \tau_{-a} \varphi \rangle$, $\varphi \in \mathcal{S}$, and let $M_a T = e^{2\pi i a t} T$. Show that

$$\widehat{\tau_a T} = M_{-a} \widehat{T} , \qquad [M_a T]^{\wedge} = \tau_a \widehat{T} .$$

3. Let $H(x) = \chi_{(0,+\infty)}(x)$ (Heaviside function). Prove that $H' = \delta_0$.

4. Let T be a distribution with $T' \equiv 0$. Show that there exists a constant C such that

$$\langle T,\varphi\rangle=C\,\int\varphi\quad\text{for all }\varphi\in\mathbb{C}_c^\infty.$$

(Hint: notice that $\phi \in \mathcal{C}_c^{\infty}(\mathbb{R})$ is of the form $\phi = \varphi', \varphi \in \mathcal{C}_c^{\infty}(\mathbb{R})$, if and only if $\int \psi = 0$).

- 5. (a) Let $f \in \mathcal{C}^1(\mathbb{R} \setminus \{a\})$ be such that $f(a^+) f(a^-) = s$. Prove that $T_f' = T_{f'} + s\delta_a$.
 - (b) More generally, if $f \in \mathcal{C}^1(\mathbb{R} \setminus \{a_n\}_n)$, with $\lim_n |a_n| = \infty$, and each a_n is a jump discontinuty of size s_n , then $T'_f = T_{f'} + \sum_n s_n \delta_{a_n}$.
 - (c) Let f be the T-periodic function with value f(x)=x/T in [0,T). Prove that, in the sense of distributions $f'=1/T-\sum_{n\in\mathbb{Z}}\delta_{nT}$.
 - (d) Let $\{\alpha_n\}_n$ be such that $\lim_n |\alpha_n| = \infty$ slowly, meaning that $|\alpha_n| = O(|n|^k)$, for some $k \geq 1$. Let $a \in \mathbb{R}$. Prove that $\sum_n \alpha_n \delta_{na}$ is a tempered distribution and that its Fourier transform is $\sum_n \alpha_n e^{-2\pi i a n t}$.
- 6. Given a tempered distribution $T \in \mathcal{S}^*$ and $f \in \mathcal{S}$, define the convolution T * f = f * T as

$$(T * f)(t) = \langle T, \tau_t \tilde{f} \rangle,$$

where $\tilde{f}(s) = f(-s)$. Prove that:

(a)
$$(\delta_a * f)(t) = \tau_a f(t)$$
.

(b)
$$(\delta'_0 * f)(t) = f'(t)$$
.

(c)
$$\widehat{(T*f)} = \widehat{T} \cdot \widehat{f}$$
.