目 录

一、实验要求	2
二、实验原理	2
1.AD/DA 模块	2
2.顶层设计原理框图	6
三、DE0 外接引脚说明	错误!未定义书签。

基于 FPGA 的模数转换电路

一、实验要求

1. 使用 FPGA 开发板及高速 A/D 模块实现模数的转换。利用信号源输出频率为 1HZ 的方波信号,将方波信号输出连接至 A/D 模块的模拟电压输入端,A/D 模块将模拟信号转换成数字信号,依次记录以下变化数据:

频率 1Hz 方波信号	模拟信号	数字信号输出 8 位 LED[70]
<u> </u>	大沙百子	实测值
幅度+5 至-5V 变化	电压为+5V 时	
™及13 生-3 ▼ 文和	电压为-5V 时	
幅度+4 至-4V 变化	电压为+4V 时	
	电压为-4V 时	
幅度+3 至-3V 变化	电压为+3V 时	
和汉13 上 3 4 久间	电压为-3V 时	
幅度+2 至-2V 变化	电压为+2V 时	
	电压为-2V 时	
幅度+1 至-1V 变化	电压为+1V 时	
	电压为-1V 时	

2. 利用信号源产生频率 1Hz 方波,调节幅度旋钮,信号源输出信号幅度为 +5 至-5V 变化的信号时,当信号是+5V 输出时,2 位数码管输出显示组里同学学 号后 2 位,当信号是-5V 输出时,2 位数码管输出显示组里另一位同学学号后 2 位;当信号源输出信号幅度为其他值时2 位数码管灭灯(不显示)。

二、实验原理

- 1. AD/DA **模块**
- 1.1 AD/DA 模块

1.2 A/D 芯片

1.2.1 AD9280 芯片

AD9280 是 ADI 公司生产的一款单芯片、8 位、32MSPS (Million Samples Per Second,每秒采样百万次)模数转换器,具有高性能、低功耗的特点。

AD9280 的内部功能框图如下图所示:

AD9280 内部功能框图

AD9280 在时钟(CLK)的驱动下工作,用于控制所有内部转换的周期; AD9280 内置片内采样保持放大器(SHA),同时采用多级差分流水线架构,保证了32MSPS的数据转换速率下全温度范围内无失码;AD9280内部集成了可编程的基准源,根据系统需要也可以选择外部高精度基准满足系统的要求。

AD9280 输出的数据以二进制格式表示,当输入的模拟电压超出量程时,会拉高 OTR(out-of-range)信号;当输入的模拟电压在量程范围内时,OTR 信号为低电平,因此可以通过 OTR 信号来判断输入的模拟电压是否在测量范围内。AD9280 的时序图如下图所示:

AD9280 时序图

模拟信号转换成数字信号并不是当前周期就能转换完成,从采集模拟信号开始到输出数据需要经过3个时钟周期。比如上图中在时钟 CLK 的上升沿沿采集的模拟电压信号 S1,经过3个时钟周期后(实际上再加上25ns的时间延时),输出转换后的数据 DATA1。需要注意的是,AD9280 芯片的最大转换速度是32MSPS,即输入的时钟最大频率为32MHz。

AD9280 支持输入的模拟电压范围是 0V 至 2V, 0V 对应输出的数字信号为 0, 2V 对应输出的数字信号为 255。输出的电压范围是-5V~+5V,需要在 AD9280 的模拟输入端增加电压衰减电路,使-5V~+5V 之间的电压转换成 0V 至 2V 之间。那么实际上对我们用户使用来说,当 AD9280 的模拟输入接口连接-5V 电压时,AD 输出的数据为 0; 当 AD9280 的模拟输入接口连接+5V 电压时,AD 输出的数据为 255。

当 AD9280 模拟输入端接-5V 至+5V 之间变化的正弦波电压信号时, 其转换后的数据也是成正弦波波形变化, 转换波形如下图所示:

AD9280 正弦波模拟电压值(左)、数据(右)

由上图可知,输入的模拟电压范围在-5V至5V之间,按照正弦波波形变化,最终得到的数据也是按照正弦波波形变化。

1.2.2 AD9280 电路原理图

AD9280 电路原理图

1.2.3 工作原理

上图中输入的模拟信号 SMA_IN 经过衰减电路后得到 AD_IN2 信号,两个模拟电压信号之间的关系是 AD_IN2=SMA_IN/5+1,即当 SMA_IN=5V 时, AD_IN2=2V; SMA_IN=-5V 时, AD_IN2=0V。

1.3 引脚配置

1.3.1 模数模块外接引脚

					_
VCC 5V		1	2		GND
		_	4		GND
AD D0		3	4		AD D1
AD D2		5	6		AD D3
AD D4		7	8		AD D5
AD D6		9	10		AD D7
AD OTR		11	12		AD CLK
TID OTK		13	14		DA CLK
DA D7		15	16		DA D6
DA D7	_	17	18		DA D4
		19	20		
DA D3		21	22		DA D2
DA D1	_	23	24		DA D0
		25	26		
		27	28		
		29	30		
		31	32		
		33	34		
		35	36		
		37	38		
		39	40		
		12		J	
		J2			

1.3.2 FPGA 外接引脚

1.3.3 模数模块引脚说明

信号名	端口说明
ad_data[0]	AD 输入数据
ad_data[1]	AD 输入数据
ad_data[2]	AD 输入数据
ad_data[3]	AD 输入数据
ad_data[4]	AD 输入数据
ad_data[5]	AD 输入数据
ad_data[6]	AD 输入数据
ad_data[7]	AD 输入数据
ad_otr	模拟输入电压超出量程标志 (0:量程范围内 1:超过量程)
ad_clk	AD9280 驱动时钟

2. 顶层设计原理框图

2.1 原理框图

由于 AD9280 转换芯片支持的最大时钟频率为 32Mhz,而 FPGA 的系统时钟 频率为 50Mhz, 所以需要先对时钟进行分频, 将分频后的时钟作为 AD9280 转换 芯片的驱动时钟。

DE0CV 引脚

外接引脚:

LED 引脚:

Signal Name	FPGA Pin No.	Description
LEDR0	PIN_AA2	LED [0]
LEDR1	PIN_AA1	LED [1]
LEDR2	PIN_W2	LED [2]
LEDR3	PIN_Y3	LED [3]
LEDR4	PIN_N2	LED [4]
LEDR5	PIN_N1	LED [5]
LEDR6	PIN_U2	LED [6]
LEDR7	PIN_U1	LED [7]
LEDR8	PIN_L2	LED [8]
LEDR9	PIN_L1	LED [9]

七段数码管引脚:

Signal Name	FPGA Pin No.	Description
HEX00	PIN_U21	Seven Segment Digit 0[0]
HEX01	PIN_V21	Seven Segment Digit 0[1]

	<u> </u>	
HEX02	PIN_W22	Seven Segment Digit 0[2]
HEX03	PIN_W21	Seven Segment Digit 0[3]
HEX04	PIN_Y22	Seven Segment Digit 0[4]
HEX05	PIN_Y21	Seven Segment Digit 0[5]
HEX06	PIN_AA22	Seven Segment Digit 0[6]
HEX10	PIN_AA20	Seven Segment Digit 1[0]
HEX11	PIN_AB20	Seven Segment Digit 1[1]
HEX12	PIN_AA19	Seven Segment Digit 1[2]
HEX13	PIN_AA18	Seven Segment Digit 1[3]
HEX14	PIN_AB18	Seven Segment Digit 1[4]
HEX15	PIN_AA17	Seven Segment Digit 1[5]
HEX16	PIN_U22	Seven Segment Digit 1[6]
HEX20	PIN_Y19	Seven Segment Digit 2[0]
HEX21	PIN_AB17	Seven Segment Digit 2[1]
HEX22	PIN_AA10	Seven Segment Digit 2[2]
HEX23	PIN_Y14	Seven Segment Digit 2[3]
HEX24	PIN_V14	Seven Segment Digit 2[4]
HEX25	PIN_AB22	Seven Segment Digit 2[5]
HEX26	PIN_AB21	Seven Segment Digit 2[6]
		•

HEX30	PIN_Y16	Seven Segment Digit 3[0
HEX31	PIN_W16	Seven Segment Digit 3[1
HEX32	PIN_Y17	Seven Segment Digit 3[2
HEX33	PIN_V16	Seven Segment Digit 3[3
HEX34	PIN_U17	Seven Segment Digit 3[4
HEX35	PIN_V18	Seven Segment Digit 3[5]
HEX36	PIN_V19	Seven Segment Digit 3[6]
HEX40	PIN_U20	Seven Segment Digit 4[0]
HEX41	PIN_Y20	Seven Segment Digit 4[1]
HEX42	PIN_V20	Seven Segment Digit 4[2]
HEX43	PIN_U16	Seven Segment Digit 4[3]
HEX44	PIN_U15	Seven Segment Digit 4[4]
HEX45	PIN_Y15	Seven Segment Digit 4[5]
HEX46	PIN_P9	Seven Segment Digit 4[6]
HEX50	PIN_N9	Seven Segment Digit 5[0]
HEX51	PIN_M8	Seven Segment Digit 5[1]
HEX52	PIN_T14	Seven Segment Digit 5[2]
HEX53	PIN_P14	Seven Segment Digit 5[3]
HEX54	PIN_C1	Seven Segment Digit 5[4]
HEX55	PIN_C2	Seven Segment Digit 5[5]
HEX56	PIN_W19	Seven Segment Digit 5[6]