电子科技大学 UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA

模式识别第一次作业 实验报告

专	业	控制工程					
学	号	202422280516					
姓	名	陈劭杰					
承担内容		报告撰写					
专	业	控制工程					
学	号	202422280540					
姓	名	郭 昊					
承担内容		代码编写					

目录

一 、	实验目的1-	_
二、	实验原理1-	_
	2.1 最大似然估计 1 -	_
	2.2 贝叶斯决策1	_
三、	实验过程1-	_
	3.1 数据处理1 -	_
	3.2 画图 2 -	_
	3.3 求最大似然估计参数 3 -	_
	3.4 求被贝叶斯估计参数3 -	_
	3.5 决策3 -	_
四、	实验结论5 -	_
五、	实验总结5 -	_
附录	₹ 5 -	_
	①main.m5 -	_
	②process_data.m 6 -	_
	③plot_weight.m 7 -	_
	(4) max_estimate.m. - 8 -	_
	(6)plot decision.m 10 -	

一、实验目的

本实验旨在学习和应用最大似然估计和贝叶斯决策方法,通过具体的数据分析任务,理解这些统计方法在实际问题中的应用。

二、实验原理

2.1 最大似然估计

最大似然估计(Maximum Likelihood Estimation, MLE)是一种用于估计统计模型参数的方法。其基本思想是通过最大化样本数据的似然函数,找到最有可能产生观测数据的参数值。在本实验中,我们假设男生和女生的体重服从正态分布,通过最大似然估计方法求出其均值和方差。

2.2 贝叶斯决策

贝叶斯决策(Bayesian Decision Theory)是一种基于概率论的决策方法。它通过结合先验概率和样本数据,计算后验概率,并基于最小化期望损失的原则进行决策。在本实验中,我们将使用贝叶斯估计方法求出男女生体重的分布参数,并基于这些参数进行分类决策。

三、实验过程

3.1 数据处理

首先,对原始数据进行处理,去除异常值和噪声数据,以确保数据的准确 性和可靠性。

- ①读取数据:使用 readtable 函数读取 Excel 文件中的数据,并确认数据集的列数是否为预期的 11 列。如果列数不匹配,则抛出错误。
- ②修改列名:将数据集的列名修改为更具描述性的名称,包括编号、性别、来源地、身高、体重、鞋码、50米成绩、肺活量、颜色、喜欢运动和喜欢文学。
- ③过滤数据: 只保留性别为0或1的数据(即合法值),并对喜欢运动和喜欢文学的数据进行类似的过滤(代码中已注释掉)。
- ④设定异常值过滤阈值: 计算身高和体重的均值和标准差,设定3个标准差为过滤阈值,保留在此范围内的数据。
 - ⑤过滤异常值:过滤掉超出3个标准差范围的异常值,确保合理性。
 - ⑥保存数据:处理后的数据保存在 filtered data.xlsx 文件中。

	Α	В	С	D	Е	F	G	Н	1	J	К
			C	D		filtereddata	J			,	IX.
	Num	Gender	Origin	Height		Size	m	Lungs	Color	Sport	Art
	数值	数值	_	_	_			_		•	▼数值
1	Num	Gender	Origin			Size	50m		Color	Sport	Art
2	1	1	湖北	163	51	41	7.5000	2500	蓝		1
3	2	1	河南	171	64	41	7.5000	3500	蓝		0
4	3	1	云南	182	68	45	7.8000	4900	蓝		1
5	4	1	广西	172	66	42	8.2000	4800	绿		0
6	5	1	四川	185	80	44	8.5000	5100	蓝		0
7	6	(河北	164	47	38	9	2500	紫		1
8	7	' (河南	160	46	38	9	2500	白		1
9	8	1	重庆	170	46	41	7	3000	蓝		1
10	9	1	重亲	178	60	41	7	4200	绿		0
11	10	1	江苏	180	71	43	7.5000	3500	紫		0
12	11	1	四川	185	90	45	7.5000	4500	黑		0
13	12	! 1	四川	170	60	41	7.5000	3000	橙		1
14	13	1	四川	181	72	44	8	4500	蓝		0
15	14	1	广东	174	58	43	7	3500	蓝		1
16	15	1	四川	180	70	42	7	4000	蓝		1
17	16	1	江西	175	65	42	7	3000	红		0
18	17	1	江西	165	50	41	7.5000	3500	蓝		1
19	18	1	四川	180	75	42	6.8700	4000	白		0
20	19	1	四川	177	80	44.5000	8.5200	3700	里		1

图 1: 数据处理结果(仅展示前 20 行)

3.2 画图

在数据处理完成后,绘制男女生体重的直方图,直观展示数据的分布情况。

读取数据: 使用 readtable 函数读取处理后的 Excel 文件中的数据。

- ①获取体重数据:分别提取男生和女生的体重数据,便于后续绘图。
- ②绘制直方图:使用 histogram 函数分别绘制男生和女生的体重直方图,并设置不同的颜色和透明度,以便于对比。
- ③设置图表属性:添加图表标题、坐标轴标签和图例,确保图表信息清晰易读。

图 2: 男女生体重的直方图

3.3 求最大似然估计参数

使用最大似然估计方法,计算男女生体重的均值和方差。

在数据处理和绘图之后,我们使用最大似然估计(MLE)方法来计算男女生体重的分布参数。具体步骤如下:

- ①读取数据: 使用 readtable 函数读取处理后的 Excel 文件中的数据。
- ②获取体重数据:分别提取男生和女生的体重数据,便于后续计算。
- ③计算最大似然估计参数:假设体重数据服从正态分布,分别计算男生和 女生体重数据的均值和标准差,作为最大似然估计的参数。
- ④显示结果:使用 fprintf 函数输出计算结果,显示男生和女生体重的均值和标准差。

命令行窗口

男生总体的最大似然估计 (MLE): 均值 = 67.97, 方差 = 10.03 女生总体的最大似然估计 (MLE): 均值 = 51.45, 方差 = 6.66 图 3: 男生和女生体重的均值和标准差。

3.4 求被贝叶斯估计参数

在已知方差的情况下,使用贝叶斯估计方法计算男女生体重的均值和方差。

- ①读取数据: 使用 readtable 函数读取处理后的 Excel 文件中的数据。
- ②获取体重数据:分别提取男生和女生的体重数据,便于后续计算。
- ③设定先验参数:假设先验方差为1,女生的先验均值为59,男生的先验均值为69.6。
- ④计算贝叶斯估计参数:对男生、女生分别进行:计算样本数量、样本均值和样本方差;使用先验均值和样本数据,计算后验均值和方差。并显示结果,使用 fprintf 函数输出计算结果,显示男生和女生体重的后验均值和方差。

命令行窗口

选取男生先验均值: 69.60, 方差: 1.00, 女生先验均值: 59.00, 方差: 1.00 男生的贝叶斯后验估计:均值: 68.17, 方差: 0.12 女生的贝叶斯后验估计:均值: 52.91, 方差: 0.19

图 4: 男牛和女牛体重的后验均值和方差。

3.5 决策

在求得最大似然估计和贝叶斯估计参数后,使用最小错误率贝叶斯决策方法,基于身高和体重数据,绘制决策面并进行分类决策。

- ①读取数据: 使用 readtable 函数读取处理后的 Excel 文件中的数据。
- ②获取身高和体重数据:分别提取男生和女生的身高和体重数据,便于后续计算。
- ③计算均值向量和协方差矩阵:分别计算男生和女生的均值向量和协方差矩阵,用于多元正态分布的概率密度函数计算。
- ④定义多元正态分布 PDF 函数: 手动定义一个函数 my_mvnpdf, 用于计算 多元正态分布的概率密度函数值。

⑤绘制决策面:

生成网格数据, 计算网格上男生和女生的判别值;

计算决策面,并绘制等高线决策面,决策面为等高线值为0的位置;

绘制男生和女生的散点图,添加标题和图例;

图 5: 男生和女生的散点图以及决策面

⑥样本分类:

输入样本的身高和体重,计算样本属于男生和女生的概率,根据概率大小进行分类决策,判断样本属于男生还是女生。

命今行窗口

选择身高为167.00cm,体重为52.00kg的测试集 分类结果为女生

 $f_{x} >>$

图 6: 分类决策结果

四、实验结论

通过最大似然估计和贝叶斯估计方法,我们成功地求出了男女生体重的分布参数。基于这些参数,我们能够有效地进行分类决策,并判断样本(167,52)属于女生。

五、实验总结

本实验通过具体的数据分析任务,深入理解了最大似然估计和贝叶斯决策 方法的应用。实验结果表明,这些方法在处理实际问题时具有较高的准确性和 可靠性。未来的工作可以进一步优化数据处理和模型参数,以提高分类决策的 精度。

附录

代码:

①main.m

```
1. clear; clc;
2. %% 处理异常数据
3. process_data('data.xlsx', 'filtered_data.xlsx');
4.
5. %% 重新加载
6. data = readtable('filtered_data.xlsx');
7.
8. %% 画图
9. plot_weight('filtered_data.xlsx');
10.
11.%% 求最大似然估计参数
12. [max_male_params, max_female_params] = max_estimate('filtered_data.xlsx');
13.
14.%% 求贝叶斯估计参数 选定方差为 1,先验均值,女生 59 男生 69.6
```

```
15.% 参数设置
        16. female xy u0 = 59; % kg
        17. \text{male}_{xy}_{u0} = 69.6; \% \text{ kg}
        18.% 计算
        19. [bys male mean, bys male variance, bys female mean, bys fem
           ale_variance] = bayesian_estimate('filtered_data.xlsx', fem
           ale_xy_u0, male_xy_u0);
        20.
        21.%% 决策
        22.height = 167;
        23.weight = 52;
        24.plot_decision('filtered_data.xlsx', height, weight);
        25.
        26.%% 清理
        27.clear;
②process_data.m
        1. function process_data(input_filename, output_filename)
               % 读取 Excel 文件
        2.
         3.
               data_l = readtable(input_filename);
        4.
        5.
               % 确认列的数量
        6.
               num columns = width(data 1); % 获取数据集列数
        7.
        8.
               if num columns == 11
        9.
                   % 修改所有列名
        10.
                   data l.Properties.VariableNames(1:11) = {'Num', 'Gen
           der', 'Origin', 'Height', 'Weight', 'Size', '50m', 'Lungs', 'Color
            ', 'Sport', 'Art'};
        11.
              else
                   error('Number of new column names does not match th
        12.
           e number of columns in the dataset.');
        13.
               end
        14.
        15.
               % 过滤性别、喜欢运动和喜欢文学的数据(只保留合法值 0 和 1)
        16.
               data = data_l(data_l.Gender == 0 | data_l.Gender == 1,
            :);
        17.
               % data = data(data.Sport == 0 | data.Sport == 1, :);
               % data = data(data.Art == 0 | data.Art == 1, :);
        18.
        19.
        20.
               % 设定异常值的过滤阈值(对身高和体重的异常值进行过滤)
        21.
        22.
               % 计算身高的均值和标准差
        23.
               height_mean = mean(data.Height, 'omitnan');
               height_std = std(data.Height, 'omitnan');
        24.
```

```
25.
        26.
               % 计算体重的均值和标准差
               weight_mean = mean(data.Weight, 'omitnan');
        27.
               weight std = std(data.Weight, 'omitnan');
        28.
        29.
        30.
               % 设置过滤条件,保留在3个标准差范围内的数据
        31.
              height threshold = 3;
        32.
               weight_threshold = 3;
        33.
               % 过滤掉超出范围的异常值
        34.
               data = data(abs(data.Height - height_mean) <= height_th</pre>
           reshold * height_std & ...
        36.
                          abs(data.Weight - weight_mean) <= weight_th</pre>
           reshold * weight std, :);
        37.
               % 显示过滤后的数据
        39.
               disp(data);
        40.
               % 保存过滤后的数据到新的 Excel 文件
        41.
        42.
               writetable(data, output_filename);
        43.end
3plot weight.m
        1. function plot_weight(input_filename)
        2.
        3.
               data = readtable(input filename);
        4.
               % 分别获取男生和女生的体重数据
        5.
               male_weight = data.Weight(data.Gender == 1);
        6.
               female_weight = data.Weight(data.Gender == 0);
        7.
               % 绘制直方图
        8.
        9.
               figure;
        10.
               hold on;
        11.
               % 男生体重直方图
        12.
        13.
               histogram(male_weight, 'FaceColor', 'b', 'EdgeColor',
           k', 'FaceAlpha', 0.5);
        14.
        15.
              % 女生体重直方图
               histogram(female_weight, 'FaceColor', 'r', 'EdgeColor',
        16.
            'k', 'FaceAlpha', 0.5);
        17.
        18.
               % 图表标题和标签
        19.
             title('男女生体重直方图');
              xlabel('体重(kg)');
        20.
```

```
21. ylabel('频数');
22.
23. %添加图例
24. legend('男生', '女生');
25.
26. %显示网格
27. grid on;
28. hold off;
29.end
```

4 max estimate.m

```
1. function [male_params, female_params] = max_estimate(input_
   filename)
2.
      % 读取 Excel 文件
3.
      data = readtable(input_filename);
4.
5.
      % 分别获取男生和女生的体重数据
6.
      male_weight = data.Weight(data.Gender == 1);
      female_weight = data.Weight(data.Gender == 0);
7.
8.
      % 对男生体重进行最大似然估计(假设为正态分布)
9.
10.
      male_mean = mean(male_weight);
11.
      male std = std(male weight);
12.
      male_params = [male_mean, male_std];
13.
14.
      % 对女生体重进行最大似然估计(假设为正态分布)
15.
      female mean = mean(female weight);
      female_std = std(female_weight);
16.
17.
      female_params = [female_mean, female_std];
18.
19.
      % 显示结果
      fprintf('男生总体的最大似然估计(MLE):均值 = %.2f,方
   差 = %.2f\n', male mean, male std);
      fprintf('女生总体的最大似然估计(MLE): 均值 = %.2f, 方
   差 = %.2f\n', female_mean, female_std);
22.end
```

⑤bayesian estimate.m

```
    function [bys_male_mean, bys_male_variance, bys_female_mean, bys_female_variance] = bayesian_estimate(input_filename, female_u0, male_u0)
    % 读取 Excel 文件中的数据
    data = readtable(input_filename);
    % 分别提取男生和女生的体重数据
```

```
6.
      male_weights = data.Weight(data.Gender == 1);
7.
      female weights = data.Weight(data.Gender == 0);
8.
9.
      % 贝叶斯估计的固定先验方差为1
10.
      prior variance = 1;
11.
12.
      %% 男生的贝叶斯参数估计
      % 男生样本数量
13.
      n male = length(male weights);
14.
15.
      % 男生样本均值和方差
16.
17.
      male_mean_sample = mean(male_weights);
      male variance_sample = var(male_weights);
18.
19.
20.
      % 先验均值 (假设为固定值或输入参数)
21.
      mu0 male prior = male u0;
22.
23.
      % 计算男生的后验均值和方差
      bys_male_mean = (mu0_male_prior / prior_variance + n_ma
24.
  le * male_mean_sample / male_variance_sample) / ...
25.
                      (1 / prior variance + n male / male var
  iance_sample);
26.
      bys_male_variance = 1 / (1 / prior_variance + n_male /
  male_variance_sample);
27.
      %% 女生的贝叶斯参数估计
28.
      % 女生样本数量
29.
30.
      n_female = length(female_weights);
31.
32.
      % 女生样本均值和方差
      female_mean_sample = mean(female_weights);
33.
34.
      female_variance_sample = var(female_weights);
35.
36.
      % 先验均值 (假设为固定值或输入参数)
37.
      mu0_female_prior = female_u0;
38.
      % 计算女生的后验均值和方差
39.
40.
      bys_female_mean = (mu0_female_prior / prior_variance +
  n_female * female_mean_sample / female_variance_sample) / .
41.
                        (1 / prior variance + n female / fema
  le variance sample);
      bys_female_variance = 1 / (1 / prior_variance + n_femal
42.
  e / female_variance_sample);
```

```
43.
        44.
              % 显示计算结果
            fprintf('选取男生先验均值: %.2f, 方差: %.2f, 女生先验均
        45.
           值: %.2f, 方
           差: %.2f\n', mu0_male_prior, prior_variance,mu0_female_prior
          ,prior_variance);
              fprintf('男生的贝叶斯后验估计:均值: %.2f,方
           差: %.2f\n', bys_male_mean, bys_male_variance);
             fprintf('女生的贝叶斯后验估计:均值: %.2f,方
           差: %.2f\n', bys_female_mean, bys_female_variance);
        48.End
6 plot_decision.m

    function plot decision(input filename, s hight, s weight)

        2.
        3. data = readtable(input filename);
        4.
        5. % 分别获取男生和女生的身高和体重数据
        6. male_data = data(data.Gender == 1, {'Height', 'Weight'});
        7. female_data = data(data.Gender == 0, {'Height', 'Weight'});
        8.
        9. % 计算男生和女生的均值向量和协方差矩阵
        10.mu male = mean(male data{:,:}); % 男生均值向量
        11.mu_female = mean(female_data{:,:}); % 女生均值向量
        12.
        13.sigma_male = cov(male_data{:,:}); % 男生协方差矩阵
        14.sigma_female = cov(female_data{:,:}); % 女生协方差矩阵
        15.
        16.% 手动计算多元正态分布 PDF
        17. function p = my mvnpdf(x, mu, sigma)
        18.
              d = length(mu); % 维度 (2 维)
             x mu = x - mu; % (x - mu)
        19.
              p = (1 / ((2*pi)^(d/2) * sqrt(det(sigma)))) * exp(-
          0.5 * (x_mu / sigma) * x_mu');
        21.end
        22.
        23.% 绘制决策面
        24. figure;
        25.hold on;
        26.
        27.% 生成网格数据
        28. [x1Grid, x2Grid] = meshgrid(150:1:190, 40:1:80);
        29.XGrid = [x1Grid(:), x2Grid(:)]; % 网格点
        30.
        31.% 计算网格上男生和女生的判别值
```

```
32.g_male = arrayfun(@(i) my_mvnpdf(XGrid(i, :), mu_male, sigm
   a_male), 1:size(XGrid, 1)); % 男生联合概率密度
33.g_female = arrayfun(@(i) my_mvnpdf(XGrid(i, :), mu_female,
  sigma_female), 1:size(XGrid, 1)); % 女生联合概率密度
34.
35.% 计算决策面
36.decision_surface = reshape(g_male - g_female, size(x1Grid))
37.
38.% 绘制等高线决策面,决策面为等高线值为 0 的位置
39.contour(x1Grid, x2Grid, decision surface, [0 0], 'k', 'Line
  Width', 2);
40.
41.% 绘制男生和女生的散点图
42.scatter(male_data.Height, male_data.Weight, 'b', 'filled');
43.scatter(female data.Height, female data.Weight, 'r', 'fille
  d');
44.
45.% 添加标题和图例
46.title('性别判定的决策面');
47.xlabel('身高 (cm)');
48.ylabel('体重 (kg)');
49.legend('决策分支', '男生', '女生', 'Location', 'best');
50.
51.hold off;
52.
53.% 样本身高体重的分类
54.sample = [s_hight, s_weight];
55.fprintf('选择身高为%.2fcm, 体重为%.2fkg 的测试集
  \n',s hight,s weight);
56.
57.% 计算样本属于男生和女生的概率
58.p_male = my_mvnpdf(sample, mu_male, sigma_male); % 男生概率
59.p_female = my_mvnpdf(sample, mu_female, sigma_female); % 女
  生概率
60.
61.% 分类决策
62.if p_male > p_female
63.
     fprintf('分类结果为男生\n');
64.else
65. fprintf('分类结果为女生\n');
66.end
67.
68.end
```