# Algorithmique (AL5)

# TD n° 5 : plus courts chemins, algorithme de Dijkstra, algorithme de Bellman-Ford

#### Exercice 1: Plus courts chemins

Pour chacun des graphes ci-dessous, donner la longueur des plus courts chemins du sommet  $q_0$  à tous les autres sommets du graphe. Vous pouvez simplement faire ce calcul à la main, sans utiliser d'algorithme particulier. Dessiner l'arbre des plus courts chemins issus de  $q_0$ .



## Exercice 2 : Algorithme de Dijkstra

Appliquer l'algorithme de Dijkstra au premier graphe ci-dessus pour calculer les plus courts chemins. Détailler l'exécution. Que se passe-t-il si on exécute l'algorithme de Dijkstra sur le deuxième graphe?

#### Exercice 3: Algorithme de Bellman-Ford

Appliquer l'algorithme de Bellman-Ford au deuxième graphe ci-dessus pour calculer les plus courts chemins d'origine  $q_0$ . Que se passe-t-il si on exécute l'algorithme de Bellman-Ford sur le premier graphe?

### Exercice 4 : Variante de Dijkstra

Supposons que le graphe non-orienté donné en entrée soit pondéré non pas sur les arêtes mais sur les sommets. La longueur d'un chemin est la somme des poids des sommets traversés. Concevoir un algorithme pour résoudre le problème des plus courts chemins issus d'un sommet s quand tous les poids sont supérieurs ou égaux à zéro. Justifier.

#### Exercice 5 : itérations de Bellman-Ford

- 1. Montrer que Bellman-Ford peut dans certains cas de graphes obtenir un résultat correct dès le premier tour de la boucle principale.
- 2. Alors, pourquoi en faire d'autres?
- 3. Modifier l'algorithme de Bellman-Ford pour qu'il s'arrête avant n-1 itérations, si l'on peut.

L3 Informatique Année 2022-2023

# Utiliser des graphes pour résoudre des problèmes

#### Exercice 6:

On souhaite convertir de l'argent d'une devise dans une autre. Le problème est que toutes les conversions ne sont pas possibles : pour deux monnaies A et B, on peut parfois convertir de l'argent de A en B, parfois non. On considère donc un graphe de change G = (V, E) entre monnaies donnant les conversions possibles. Ce graphe est orienté (parfois on peut convertir A en B mais pas B en A).

La  $fonction\ de\ change\ est\ une\ fonction\ c$  telle que

- une somme S en monnaie A vaut  $S \cdot c(A, B)$  en monnaie B (taxes éventuelles incluses).
- -c(A,B) est défini si et seulement si (A,B) est un arc du graphe de change.
- $-\operatorname{si} c(A,B)$  est défini, c(A,B)>0

Le graphe de change étendu est le graphe G' = (V, E, c) pondéré par la fonction de change. Une séquence de change S est la conversion d'une monnaie  $A_1$  en monnaie  $A_k$  en passant par les monnaies intermédiaires  $A_2...A_{k-1}$  (en supposant bien sûr toutes ces conversions possibles). Il lui correspond un chemin dans le graphe de change.

- 1. Quel est le taux de change de  $A_1$  en  $A_k$  dans une séquence de change  $A_1, A_2, \ldots, A_k$ ?
- **2.** Dans quelle condition (exprimée sur G') quelqu'un peut-il devenir *infiniment riche* en changeant de l'argent?

Étant donné deux séquences de change différentes de la monnaie A en la monnaie B, la meilleure des deux est celle qui a le taux le plus élevé.

- 3. Supposons que l'on connaisse une séquence de change  $S_1$  de la monnaie A en la monnaie B, d'une part, et une séquence  $S_2$  de la monnaie A en la monnaie C d'autre part. Supposons que l'arc (C,B) existe, dans le graphe de change. Écrire une condition de relâchement en comparant les taux des séquences  $S_1$  d'une part,  $S_2$  puis (C,B) d'autre part, et gardant la meilleure.
- **4.** Écrire une version modifiée de l'algorithme de Bellman-Ford, utilisant cette condition de relâchement modifiée, donnant les meilleurs taux de change d'une monnaie A vers toutes les autres.

Pourquoi est-ce correct?