Lab 4

Maria Barouti 2/3/2020

Based on Applied Statistics with R (appliedstats) by David Dalpiaz (https://github.com/daviddalpiaz/appliedstats)

cars Example

We use a simple example of how the speed of a car affects its stopping distance, that is, how far it travels before it comes to a stop. To examine this relationship, we will use the cars dataset which, is a default R dataset. Thus, we don't need to load a package first; it is immediately available.

```
View(cars)
```

Reading the documentation we learn that this is data gathered during the 1920s about the speed of cars and the resulting distance it takes for the car to come to a stop. The interesting task here is to determine how far a car travels before stopping, when traveling at a certain speed. So, we will first plot the stopping distance against the speed.

Stopping Distance vs Speed

The line on the plot below seems to summarize the relationship between stopping distance and speed quite well. As speed increases, the distance required to come to a stop increases. There is still some variation about this line, but it seems to capture the overall trend.

Stopping Distance vs Speed

Fit the model

Fit the model using lm() then use summary() to view the results in greater detail.

```
stop_dist_model = lm(dist ~ speed, data = cars)
summary(stop_dist_model)
```

```
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
##
  Residuals:
##
       Min
                1Q
                   Median
                                3Q
                                       Max
  -29.069 -9.525
                    -2.272
                             9.215
                                    43.201
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                    -2.601
                                             0.0123 *
## (Intercept) -17.5791
                            6.7584
## speed
                 3.9324
                            0.4155
                                     9.464 1.49e-12 ***
##
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```

Tests in R

We will now discuss the results displayed called Coefficients. First recall that we can extract this information directly.

names(summary(stop_dist_model))

```
## [1] "call" "terms" "residuals" "coefficients"
## [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"
```

summary(stop_dist_model)\$coefficients

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.579095 6.7584402 -2.601058 1.231882e-02
## speed 3.932409 0.4155128 9.463990 1.489836e-12
```

The names() function tells us what information is available, and then we use the \$ operator and coefficients to extract the information we are interested in. Two values here should be immediately familiar.

$$b_0 = -17.5790949$$

and

$$b_1 = 3.9324088$$

which are our estimates for the model parameters β_0 and β_1 .

Let's now focus on the second row of output, which is relevant to β_1 .

```
summary(stop_dist_model)$coefficients[2,]
```

```
## Estimate Std. Error t value Pr(>|t|)
## 3.932409e+00 4.155128e-01 9.463990e+00 1.489836e-12
```

Again, the first value, Estimate is

$$b_1 = 3.9324088.$$

The second value, Std. Error, is the square root of the estimated variance (standard error) of b_1 ,

$$s\{b_1\} = \frac{\sqrt{\text{MSE}}}{\sqrt{\sum (X_i - \bar{X})}} = 0.4155128.$$

The third value, t value, is the value of the test statistic for testing $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$,

$$t = \frac{b_1 - 0}{s\{b_1\}} = 9.46399.$$

Lastly, Pr(>|t|), gives us the p-value of that test.

p-value =
$$1.4898365 \times 10^{-12}$$

Note here, we are specifically testing whether or not $\beta_1 = 0$.

The first row of output reports the same values, but for β_0 .

```
summary(stop_dist_model)$coefficients[1,]
```

```
## Estimate Std. Error t value Pr(>|t|)
## -17.57909489 6.75844017 -2.60105800 0.01231882
```

In summary, the following code stores the information of summary(stop_dist_model)\$coefficients in a new variable stop_dist_model_test_info, then extracts each element into a new variable which describes the information it contains.

```
stop_dist_model_test_info = summary(stop_dist_model)$coefficients

b_0 = stop_dist_model_test_info[1, 1] # Estimate

b_0_se = stop_dist_model_test_info[1, 2] # Std. Error

b_0_t = stop_dist_model_test_info[1, 3] # t value

b_0_pval = stop_dist_model_test_info[1, 4] # Pr(>/t/)

b_1 = stop_dist_model_test_info[2, 1] # Estimate

b_1_se = stop_dist_model_test_info[2, 2] # Std. Error

b_1_t = stop_dist_model_test_info[2, 3] # t value

b_1_pval = stop_dist_model_test_info[2, 4] # Pr(>/t/)
```

Task

Verify some equivalent expressions: the t test statistic for b_1 and the two-sided p-value associated with that test statistic.

```
(b_1 - 0) / b_1_se

## [1] 9.46399

b_1_t

## [1] 9.46399

2 * pt(abs(b_1_t), df = length(resid(stop_dist_model)) - 2, lower.tail = FALSE)

## [1] 1.489836e-12

b_1_pval

## [1] 1.489836e-12
```

Significance of Regression, t-Test

We pause to discuss the **significance of regression** test. First, note that based on the above distributional results, we could test β_0 and β_1 against any particular value, and perform both one and two-sided tests.

However, one very specific test,

$$H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$$

is used most often. Let's think about this test in terms of the simple linear regression model,

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i.$$

If we assume the null hypothesis is true, then $\beta_1 = 0$ and we have the model,

$$Y_i = \beta_0 + \epsilon_i$$
.

In this model, the response does **not** depend on the predictor. So then we could think of this test in the following way,

- Under H_0 there is not a significant linear relationship between X and Y.
- Under H_1 there is a significance linear relationship between Y and Y.

For the cars example,

- Under H_0 there is not a significant linear relationship between speed and stopping distance.
- Under H_1 there is a significant linear relationship between speed and stopping distance.

Again, that test is seen in the output from summary(),

p-value =
$$1.4898365 \times 10^{-12}$$
.

With this extremely low p-value, we would reject the null hypothesis at any reasonable α level, say for example $\alpha = 0.01$. So we say there is a significant **linear** relationship between speed and stopping distance. Notice that we emphasize **linear**.

```
set.seed(42)
x = seq(-1, 1, 0.01)
y = 5 + 4 * x ^ 2 + rnorm(length(x), 0, 0.5)
plot(x, y, pch = 20, cex = 2, col = "grey")
abline(lm(y ~ x), lwd = 3, col = "darkorange")
```


In this plot of simulated data, we see a clear relationship between x and y, however it is not a linear relationship. If we fit a line to this data, it is very flat. The resulting test for $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ gives a large p-value, in this case 0.7564548, so we would fail to reject and say that there is no significant linear relationship between x and y. We will see later how to fit a curve to this data using a "linear" model, but for now, realize that testing $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ can only detect straight line relationships.

Confidence Intervals in R

Using R we can very easily obtain the confidence intervals for β_0 and β_1 .

This automatically calculates 99% confidence intervals for both β_0 and β_1 , the first row for β_0 , the second row for β_1 .

For the cars example when interpreting these intervals, we say, we are 99% confident that for an increase in speed of 1 mile per hour, the average increase in stopping distance is between 2.8179187 and 5.0468988 feet, which is the interval for β_1 .

Note that this 99% confidence interval does **not** contain the hypothesized value of 0. Since it does not contain 0, it is equivalent to rejecting the test of $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ at $\alpha = 0.01$, which we had seen previously.

You should be somewhat suspicious of the confidence interval for β_0 , as it covers negative values, which correspond to negative stopping distances. Technically the interpretation would be that we are 99% confident that the average stopping distance of a car traveling 0 miles per hour is between -35.7066103 and 0.5484205 feet, but we don't really believe that, since we are actually certain that it would be non-negative.

Note, we can extract specific values from this output a number of ways.

```
confint(stop_dist_model, level = 0.99)[1,]
##
         0.5 %
                    99.5 %
## -35.7066103
                 0.5484205
confint(stop_dist_model, level = 0.99)[1, 1]
## [1] -35.70661
confint(stop_dist_model, level = 0.99)[1, 2]
## [1] 0.5484205
confint(stop_dist_model, parm = "(Intercept)", level = 0.99)
                            99.5 %
                   0.5 %
## (Intercept) -35.70661 0.5484205
confint(stop dist model, level = 0.99)[2,]
##
      0.5 %
              99.5 %
## 2.817919 5.046899
confint(stop_dist_model, level = 0.99)[2, 1]
## [1] 2.817919
```

Task

Verify that calculations that R is performing for the β_1 interval.

```
# store estimate
b_1 = coef(stop_dist_model)[2]

# store standard error
b_1_se = summary(stop_dist_model)$coefficients[2, 2]

# calculate critical value for two-sided 99% CI
crit = qt(0.995, df = length(resid(stop_dist_model)) - 2)

# est - margin, est + margin
c(b_1 - crit * b_1_se, b_1 + crit * b_1_se)
```

speed speed ## 2.817919 5.046899