COM120 – SISTEMAS OPERACIONAIS – EP09 MEMÓRIA VIRTUAL, GERENCIAMENTO DE MEMÓRIA E PAGINAÇÃO

Matheus Martins Batista¹ Carlos Minoru Tamaki²

1 - São 12 bits e páginas de 256 bytes, logo:

Página	Quadro da página
0	С
1	5
2	-
3	A
4	-
5	2
6	7
7	-
8	0
9	3

Log₂(256) = 8 bits de deslocamento, dos 12 bits 4 são mais significativos (indicando página) e 8 são de deslocamento.

Sublinhados os bits significativos, os endereços em hexadecimal são convertidos para binário, comparados com a tabela, devidamente substituídos e convertidos em hexadecimal novamente.

a) **9EF** em binário: 1001 1100 1111

1001 é 9 em decimal e 9 na tabela de paginação refere-se ao quadro 3

0110 é 3 em binário, logo 0110 1100 1111 resultado em **3EF**

b) **111** em binário: <u>0001</u> 0001 0001

0001 é 1 em decimal e 1 na tabela de paginação refere-se ao quadro 5

0101 é 5 em binário, logo 0101 0001 0001 resultado em **511**

c) **700** em binário: 0111 0000 0000

01111 é 7 em decimal e 7 na tabela de paginação refere-se à um quadro que não está na memória (D)

1101 é D em binário, logo 1101 0000 0000 resultado em page fault **D00**

¹ Graduando em Ciências da Computação pela Universidade Federal de Itajubá – 2019005687 – E-mail: matmb@unifei.edu.br

² Professor orientador. Mestre em Ciência e Tecnologia da Computação. Docente na Universidade Federal de Itajubá – E-mail: minoru@unifei.edu.br

d) **0FF** em binário: 0000 1111 1111

0000 é 0 em decimal e 0 na tabela de paginação refere-se ao quadro C

1100 é C em binário, logo <u>1100</u> 1111 1111 resultado em **CFF**

e) **275** em binário: <u>0010</u> 0111 0101

0010 é 2 em decimal e 2 na tabela de paginação refere-se à um quadro que não está na memória (E)

1100 é E em binário, logo <u>1100</u> 0111 0101 resultado em page fault **E75**

f) **532** em binário: 0101 0011 0010

0101 é 5 em decimal e 5 na tabela de paginação refere-se ao quadro 2

0010 é 2 em binário, logo <u>0010</u> 0011 0010 resultado em <u>232</u>

- 2 Sequência de referência: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.
 - a) LRU: Páginas que foram muito usadas nas últimas instruções serão provavelmente usadas novamente nas próximas. Ele troca a página que permaneceu em desuso pelo maior tempo, possui um alto custo e deve-se manter lista encadeada com todas as páginas que estão na memória, com as mais recentemente utilizadas no início e as menos utilizadas no final. Por fim, a lista deve ser atualizada a cada referência da memória.

Nº de Quadros	LRU
1	20
2	18
3	15
4	10
5	8
6	7
7	7

b) FIFO: SO mantém uma fila das páginas correntes na memória. A página no início da fila é a mais antiga e a página no final é a mais nova. Quando ocorre um *page fault*, a página do início é removida e a nova é inserida ao final da fila. É um

algoritmo simples, mas pode ser ineficiente, pois uma página que está em uso constante pode ser retirada.

Nº de Quadros	FIFO
1	20
2	18
3	16
4	14
5	10
6	10
7	7

c) Ótimo:

Nº de Quadros	Ótimo
1	20
2	15
3	11
4	8
5	7
6	7
7	7

3 – A tabela de páginas mostrada na tabela abaixo é para um sistema com endereços virtuais e físicos de 16 bits e páginas de 4.096 bytes.

Página	Quadro de Página	Bit de Referência
0	14	0
1	10	0
2	9	0
3	-	0
4	1	0
5	8	0
6	13	0
7	-	0
8	15	0
9	0	0
10	3	0
11	-	0
12	2	0
13	-	0
14	4	0
15	5	0

 $\log_2{}^{(4096)} = 12$ bits de deslocamento. Dos 16 bits para o endereço virtual, 12 são para deslocamento, o que significa que cada processo possui $2^4 = 16$ páginas virtuais. Cada entrada na tabela de páginas armazena o quadro correspondente que acomoda a página.

a)

1)

0xE12C em binário: 1110 0001 0010 1100

1110 é 14 em decimal e 14 na tabela de paginação refere-se ao quadro 4 **0100** é 4 em binário, logo 0100 0001 0010 1100 resultado em **0x412C**

2)

0x3A9D em binário: 0011 1010 1001 1101

0011 é 3 em decimal e 3 na tabela de paginação refere-se à um quadro que não está na memória

0100 é 4 em binário, logo <u>0100</u> 1100 1111 resultado em **page fault.**

3)

0xA9D9 em binário: <u>1010</u> 1001 1101 1001

1010 é 10 em decimal e 10 na tabela de paginação refere-se ao quadro 3

0011 é 3 em binário, logo <u>0011</u> 1001 1101 1001 resultado em <u>0x39D9</u>

4)

0x7001 em binário: 0111 0000 0000 0001

0111 é 7 em decimal e 7 na tabela de paginação refere-se à um quadro não presente na memória

0100 é 4 em binário, logo <u>0111</u> 0000 0000 0001 resultado em **page fault**.

5)

0xACA1 em binário: <u>1010</u> 1100 1010 0001

1010 é 10 em decimal e 10 na tabela de paginação refere-se ao quadro 3

0011 é 3 em binário, logo <u>0011</u> 1100 1010 0001 resultado em **0x3CA1**

b)

As únicas opções são as páginas 3, 7, 11 e 13. Assim, os endereços de exemplo incluem qualquer coisa que comece com a sequência hexadecimal: 0x3_____, 0x7_____, 0xB_____, 0xD_____. Estão grifados na tabela.

c)

Quaisquer entradas de tabela de página que tenham um bit de referência de zero. Isso inclui os seguintes quadros {9, 1, 14, 13, 8, 0, 4}

REFERÊNCIAS

SILBERSCHATZ, Abraham; GALVIN, Peter Baer; GAGNE, Greg. **Fundamentos de sistemas operacionais**. 9. ed. [*S. l.*]: Livros Técnicos e Científicos Editora, 2015. Cap. 8-9, p. 398-521, 1012 p. ISBN 978-1-1180-6333-0.

MACHADO, Francis Berenger; MAIA, Luiz Paulo. **Arquitetura de Sistemas Operacionais**. 5. ed. [*S. l.*]: Livros Técnicos e Científicos Editora, 2013. 266 p. ISBN 978-8-5216-2210-9.

CRUZ, Pedro. **Gerenciamento de memória**. [S. 1.], 28 ago. 2017. Disponível em: https://www.gta.ufrj.br/~cruz/courses/eel770/slides/9_memoria.pdf. Acesso em: 27 out. 2021.

KRUEGEL, Christopher. *Operating Systems: Virtual Memory and Paging*. UC Santa Barbara, 15 maio 2012. Disponível em:

https://web.archive.org/web/20160810021642/https://www.cs.ucsb.edu/~chris/teaching/cs170/doc/cs170-08.pdf. Acesso em: 5 nov. 2021.

GOMES, Roberta Lima. **Gerência de Memória**: Paginação. [S. l.], 21 ago. 2013. Disponível em:

http://www.inf.ufes.br/~zegonc/material/Sistemas_Operacionais/Gerencia%20de%20Memoria%20(2)%20-%20Paginacao-BETA.pdf. Acesso em: 5 nov. 2021.

GOMES, Roberta Lima. **Gerência de Memória**: Aspectos de Projeto. [*S. l.*], 21 jun. 2010. Disponível em:

 $http://www.inf.ufes.br/\sim zegonc/material/Sistemas_Operacionais/Gerencia\% 20 de\% 20 Memoria\% 20 (2)\% 20-\% 20 Paginacao-BETA.pdf. Acesso em: 5 nov. 2021.$

CUNHA, Roberto Bernandinho; PREUSS, Evandro; MACEDO, Ricardo Tombesi. **Sistemas Operacionais**. 1. ed. [*S. l.*]: Núcleo de Tecnlogia e Informação – NTE. Licenciatura Universidade Federal de Santa Maria, 2017. Cap. 3, p. 67-69, 147 p. ISBN 978-85-8341-218-2