

Multi-Dimensional Gated Recurrent Units for the Segmentation of Biomedical 3D-Data

Simon Andermatt, Simon Pezold, and Philippe Cattin

Medical Image Analysis Center

2nd Workshop on Deep Learning in Medical Image Analysis in Conjunction with MICCAI 2016

RNN (Example)

text to text: translation

italian:

german:

RNN (Example)

unfolded

RNN (Example)

more likely setup

Vanishing Gradient Problem

TanH	LSTM	GRU
only one	• 3 gates, 1 state,	• 2 gates, 1 state
activation	1 activation	and activation

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Generalization to Multiple Dimensions

- Time is one-dimensional
- Each dimension individually as time dimension! [1]
- For each RNN layer:
 - Apply RNN along each dimension in each direction
 - Sum intermediate results

[1] Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: *Parallel Multi- Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation.* Advances in Neural Information Processing Systems 28, pp. 2998–3006. (2015)

MD-RNN Recurrent Connections (2D)

Direct predecessor only

MD-RNN Recurrent Connections (2D)

Including neighborhood of predecessor (convolution)

Convolutional Gated Recurrent Unit (C-GRU)

MD-GRU Layer: 1 C-GRU for each direction & dimension

$$egin{aligned} r^j &= \sigma \left(\sum_i^I (x^i * w_r^{i,j}) + \sum_k^J (h_{t-1}^k * u_r^{k,j}) + oldsymbol{b_r^j}
ight), \ z^j &= \sigma \left(\sum_i^I (x^i * w_z^{i,j}) + \sum_k^J (h_{t-1}^k * u_z^{k,j}) + oldsymbol{b_z^j}
ight), \ ilde{h}_t^j &= \phi \left(\sum_i^I (x^i * w^{i,j}) + oldsymbol{r^j} \odot \sum_k^J (h_{t-1}^k * u^{k,j}) + oldsymbol{b_j^j}
ight), \ h_t^j &= z^j \odot h_{t-1}^j + (1-z^j) \odot ilde{h}_t^j. \end{aligned}$$

Network

- Caffe 1.0 rc3
- Custom layers using CuDNN v5

MrBrains13 challenge

Training data (5 patients)

Training labels

Testing data (15 patients)

Estimation

MD-GRU / MD-LSTM [1]

a: MD-LSTM

b: MD-GRU

c: Training labels

[1] Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: *Parallel Multi- Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation.* Advances in Neural Information Processing Systems 28, pp. 2998–3006. (2015)

MD-GRU / MD-LSTM

	GM	WM	CSF	ICV
MD-LSTM MD-GRU		3 3 7 3 3	82.62 83.19	3,133

MD-LSTM: 12.8 s / MD-G RU: 9.1 s per iteration (volume of $192 \times 192 \times 14$)

MD-GRU Challenge Results

MD-GRU Challenge Results

Team name	Rank		$\overline{\mathrm{GM}}$			WM			CSF			ICV	
		Dice	HD	AVD	Dice	HD	AVD	Dice	HD	AVD	Dice	HD	AVD
CU_DL2	1	86.15	1.45	6.60	89.46	1.94	6.05	84.25	2.19	7.69	98.10	2.75	1.54
$\mathrm{CU}_{-}\mathrm{DL}$	2	86.12	1.47	6.42	89.39	1.94	5.84	83.96	2.28	7.44	97.99	3.16	1.83
MD-GRU [Ours]	3	85.40	1.55	6.09	88.98	2.02	7.69	84.13	2.17	7.44	98.15	2.37	0.86
PyraMiD-LSTM2	4	84.89	1.67	6.35	88.53	2.07	5.93	83.05	2.30	7.17	98.04	2.86	0.69
FBI/LMB Freiburg [2]	5	85.44	1.58	6.60	88.86	1.95	6.47	83.47	2.22	8.63	97.98	2.51	1.06
IDSIA [1]	6	84.82	1.70	6.77	88.33	2.08	7.05	83.72	2.14	7.09	98.15	2.44	0.95

[1] Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: *Parallel Multi- Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation.* Advances in Neural Information Processing Systems 28, pp. 2998–3006. (2015)

[2] Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: *3d U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation*. arXiv:1606.06650 [cs] (Jun 2016)

Acknowledgements

