- 1 Types
- **Definition 1.** For a theory T, and variables x, a partial type P is a set of formulas where $T \cup P$ is
- 3 consistent
- **Example 2.** For $T = \text{Th}(\langle \mathbb{Z}, +, -, 0, 1 \rangle)$, $P(x) = \{\exists y(y+y...+y=x)\} \cup \{x \neq 0\}$, is a partial type.
- 5 This can be proven by compactness.
- **Definition 3.** For a theory T, a type P is principal if for some $\theta(\mathbf{x})$, $T \cup \theta(\mathbf{x}) \models P$ and $T \cup \theta$ is consistent.
- **Theorem 4.** If P is not principal it is omitted in some model of T. If P is principal and T is complete
- 8 then every model of T realises P.

9 Embeddings

Theorem 5. If $A \leq B$ then for every quantifier free $\varphi(x_1, \dots x_n)$,

$$\varphi^{\underline{B}} \cap A^k = \varphi^{\underline{A}}.$$

If $A \leq B$ then this is true for all formulas φ .

12 Preservation Theorems

- **Theorem 6.** For a theory $T, \underline{A} \models T_{\forall}$ if and only if there exists $\underline{B} \models T$ with $\underline{A} \leqslant \underline{B}$.
- Corollary 7. The theory of fields is not universal as, $\underline{Z} \leqslant Q$ but Q is a field and \underline{Z} is not.
- **Theorem 8.** Sentence σ is universal if and only if for all $B \models \sigma$ and $A \leqslant B$, $A \models \sigma$.
- Example 9. For F the theory of fields, F_{\forall} is the theory of integral domains. That is because every integral domain can be embedded in a field.
- Theorem 10. For a chain $\underline{A_1} \leqslant \underline{A_2} \leqslant \dots$, let $\underline{A^*}$ be the limit of the chain. Then every AE sentence σ which holds for all A_i , holds for $\underline{A^*}$.

20 Quantifier elimination

Definition 11. Theory T admits quantifier elimination if for any formula $\theta(\mathbf{x})$, there exists a quantifier free formula $\tilde{\theta}(\mathbf{x})$ such that:

$$T \models \forall \mathbf{x}(\theta \leftrightarrow \tilde{\theta})$$

- Theorem 12. If L has no constant or function symbols and T admits Q.E. then T is complete.
- **Example 13.** Th($\langle \mathbb{Q}, < \rangle$) admits QE and so is complete.
- ACF admits QE. But, the only thing ACF does not decide is the field characteristic. Hence, ACF_p for p prime or zero is complete.
- Th($\langle \mathbb{R}, +, -, \times, 0, 1 \rangle$) does not admit Q.E. Atomic sentences with one variable define only, finite and cofinite sets. But $\varphi(x) = \exists y(y^2 = x)$ defines the positive numbers.
- Th($\langle \mathbb{R}, +, -, \times, 0, 1, < \rangle$) admits Q.E. by Tarski. It is complete because the order is complete and so determines equality.
- Remark. If T admits Q.E. and $\underline{A_1} \models T$, $\underline{A_2} \models T$ then $\underline{A_1} \preceq \underline{A_2}$.
- Theorem 14. If it exists, there is only one way to extend a universal theory to a Q.E. theory. Prove by taking $S \models \underline{A_1}$ and $\underline{A_1} \leqslant \underline{B_1} \models T$ and build chains. The limits are equal and $\underline{A_1} \preceq A_2 \preceq C$.