January 24, 2015 (unfinished); Comments are welcome! junyongkim@snu.ac.kr, http://www.junyongkim.com/

Campbell, John Y., Martin Lettau, Burton G. Malkiel and Yexiao Xu, 2011, "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," *Journal of Finance*, vol. 56, no. 1, pp. 1-44

Abstract

- 1. Disaggregated approach to study σ : market, industry and firm levels
- 2. Noticeable \uparrow in firm-level σ relative to market σ : 1962-1997
 - 3.1. ρ among individual stocks, explanatory power of the market model \downarrow
 - 3.2. # of stocks needed to achieve a given level of diversification ↑
- 4. σ moves counter-cyclically; helps to predict GDP growth
- 5. Market σ leads the other σ

Introduction

(PLEASE FILL THIS BLANK!)

I. Estimation of Volatility Components

A. Volatility Decomposition

Return on "typical" stock = market-wide return + industry residual + firm residual Construct time-series of volatility measures of 3 components for a typical firm Define σ w/o keeping track of covariances; w/o estimating β s for firms or industries Subscript i for industries, j for firms, t for period, R for simple excess return; T-bill rate w for weight; market value weights in this application

$$R_{it} = \sum_{j \in i} w_{jit} R_{jit}$$

$$R_{mt} = \sum_{i} w_{it} R_{it}$$

Decomposition based on CAPM; modify it for empirical implementation

$$R_{it} = \beta_{im} R_{mt} + \tilde{\epsilon}_{it}$$

$$\Rightarrow R_{jit} = \beta_{ji} R_{it} + \tilde{\eta}_{jit}$$

$$= \beta_{ji} \beta_{im} R_{mt} + \beta_{ji} \tilde{\epsilon}_{it} + \tilde{\eta}_{jit}$$

$$\sum_{i} w_{it} \beta_{im} = 1, \sum_{j \in i} w_{jit} \beta_{ji} = 1$$

By above, different components are orthogonal to one another. Hence

$$\begin{aligned} & \text{Var}(R_{it}) = \beta_{im}^2 \text{Var}(R_{mt}) + \text{Var}(\tilde{\epsilon}_{it}) \\ & \text{Var}(R_{jit}) = \beta_{jm}^2 \text{Var}(R_{mt}) + \beta_{ji}^2 \text{Var}(\tilde{\epsilon}_{it}) + \text{Var}(\tilde{\eta}_{jit}) \\ & \text{where } \beta_{jm} = \beta_{ji} \beta_{im} \end{aligned}$$

It requires knowledge of firm-specific β s that are difficult to estimate.

Simplified model that does not require any information about β s

$$R_{it} = R_{mt} + \epsilon_{it}$$
, where $\epsilon_{it} \neq \tilde{\epsilon}_{it}$

According to Campbell, Lo and MacKinlay (1997), this is "market-adjusted-return model."

$$\epsilon_{it} = \tilde{\epsilon}_{it} + (\beta_{im} - 1)R_{mt}$$

Since R_{mt} and ϵ_{it} are not orthogonal, the covariance is not ignorable.

$$Var(R_{it}) = Var(R_{mt}) + Var(\epsilon_{it}) + 2Cov(R_{mt}, \epsilon_{it})$$
$$= Var(R_{mt}) + Var(\epsilon_{it}) + 2(\beta_{im} - 1)Var(R_{mt})$$

By taking weighted average, the third term can be eliminated.

$$\begin{split} \sum_{i} w_{it} \text{Var}(R_{it}) &= \sum_{i} w_{it} [\text{Var}(R_{mt}) + \text{Var}(\epsilon_{it}) + 2(\beta_{im} - 1) \text{Var}(R_{mt})] \\ &= \sum_{i} w_{it} \text{Var}(R_{mt}) + \sum_{i} w_{it} \text{Var}(\epsilon_{it}) + \sum_{i} w_{it} [2(\beta_{im} - 1) \text{Var}(R_{mt})] \\ &= \text{Var}(R_{mt}) \sum_{i} w_{it} + \sum_{i} w_{it} \text{Var}(\epsilon_{it}) + 2 \sum_{i} w_{it} \beta_{im} \text{Var}(R_{mt}) - 2 \sum_{i} w_{it} \text{Var}(R_{mt}) \\ &= \text{Var}(R_{mt}) + \sum_{i} w_{it} \text{Var}(\epsilon_{it}) + 2 \text{Var}(R_{mt}) \sum_{i} w_{it} \beta_{im} - 2 \text{Var}(R_{mt}) \sum_{i} w_{it} \\ &= \text{Var}(R_{mt}) + \sum_{i} w_{it} \text{Var}(\epsilon_{it}) + 2 \text{Var}(R_{mt}) - 2 \text{Var}(R_{mt}) \\ &= \text{Var}(R_{mt}) + \sum_{i} w_{it} \text{Var}(\epsilon_{it}) + 2 \text{Var}(R_{mt}) - 2 \text{Var}(R_{mt}) \end{split}$$

$$=\sigma_{mt}^2+\sigma_{\epsilon t}^2$$

Similarly,

$$R_{jit} = R_{it} + \eta_{jit}, \text{ where } \eta_{jit} \neq \tilde{\eta}_{jit}$$

$$\eta_{jit} = \tilde{\eta}_{jit} + (\beta_{ji} - 1)R_{it}$$

$$\Rightarrow \text{Var}(R_{jit}) = \text{Var}(R_{it}) + \text{Var}(\eta_{jit}) + 2\text{Cov}(R_{it}, \eta_{jit})$$

$$= \text{Var}(R_{it}) + \text{Var}(\eta_{jit}) + 2(\beta_{ji} - 1)\text{Var}(R_{it})$$

$$\Rightarrow \sum_{j \in i} w_{jit} \text{Var}(R_{jit}) = \sum_{j \in i} w_{jit} [\text{Var}(R_{it}) + \text{Var}(\eta_{jit}) + 2\text{Cov}(R_{it}, \eta_{jit})]$$

$$= \text{Var}(R_{it}) + \sum_{j \in i} w_{jit} \text{Var}(\eta_{it})$$

$$= \text{Var}(R_{it}) + \sigma_{\eta it}^{2}$$

$$\Rightarrow \sum_{i} w_{it} \left[\sum_{j \in i} w_{jit} \text{Var}(R_{jit}) \right] = \sum_{i} w_{it} \text{Var}(R_{it}) + \sum_{i} w_{it} \left[\sum_{j \in i} w_{jit} \text{Var}(\eta_{jit}) \right]$$

$$= \sigma_{mt}^{2} + \sigma_{\epsilon t}^{2} + \sum_{i} w_{it} \sigma_{\eta it}^{2}$$

$$= \sigma_{mt}^{2} + \sigma_{\epsilon t}^{2} + \sigma_{\eta t}^{2}$$

Further insight

$$\epsilon_{it} = \tilde{\epsilon}_{it} + (\beta_{im} - 1)R_{mt}$$

$$\Rightarrow \operatorname{Var}(\epsilon_{it}) = \operatorname{Var}[\tilde{\epsilon}_{it} + (\beta_{im} - 1)R_{mt}]$$

$$= \operatorname{Var}(\tilde{\epsilon}_{it}) + (\beta_{im} - 1)^{2}\operatorname{Var}(R_{mt})$$

$$\Rightarrow \sum_{i} w_{it}\operatorname{Var}(\epsilon_{it}) = \sigma_{\epsilon t}^{2}$$

$$= \sum_{i} w_{it}[\operatorname{Var}(\tilde{\epsilon}_{it}) + (\beta_{im} - 1)^{2}\operatorname{Var}(R_{mt})]$$

$$= \sum_{i} w_{it}\operatorname{Var}(\tilde{\epsilon}_{it}) + \sum_{i} w_{it}(\beta_{im} - 1)^{2}\operatorname{Var}(R_{mt})$$

$$= \tilde{\sigma}_{\epsilon t}^{2} + \operatorname{CSV}_{t}(\beta_{im})\sigma_{mt}^{2}$$

$$\Rightarrow \sum_{i} w_{it} \sum_{j \in i} w_{jit}\operatorname{Var}(\eta_{jit}) = \sigma_{\eta t}^{2}$$

$$= \tilde{\sigma}_{nt}^{2} + \operatorname{CSV}_{t}(\beta_{im})\sigma_{mt}^{2} + \operatorname{CSV}_{t}(\beta_{ji})\tilde{\sigma}_{\epsilon t}^{2}$$

 $CSV_t(\beta_{im}) = \sum_i w_{it}(\beta_{im}-1)^2$ is the cross-sectional variance of industry β s across industries.

 $CSV_t(\beta_{jm}) = \sum_i w_{it} \sum_{j \in i} w_{jit} (\beta_{jm} - 1)^2$ is the cross-sectional variance of firm β s on the market across

all firms in all industries.

 $\text{CSV}_t(\beta_{ji}) = \sum_i w_{ii} \sum_{j \in i} w_{jit} (\beta_{ji} - 1)^2$ is the cross-sectional variance of firm β s on industry shocks across all firms in all industries.

Common movements in σ_{mt}^2 , $\sigma_{\epsilon t}^2$ and $\sigma_{\eta t}^2$ by cross-sectional variation in β s

B. Estimation

Firm-level return data in the CRSP data set; NYSE, AMEX and NASDAQ

49 industries according to the classification scheme in Fama and French (1997)

July 1962 (2,047 firms) to December 1997 (8,927 firms)

Most firms on average: Financial Services with 628 firms (from 43 to 1,525)

Fewest firms on average: Defense with 8 firms (from 3 to 12)

3 largest industries based on average market capitalization: Petroleum/Gas (11%), Financial Services (7.8%) and Utilities (7.4%)

30-day T-bill return divided by the # of trading days in a month

Subscript s (not s for plural!): the interval of Rs measurement

Daily Rs in this paper, but weekly and monthly Rs are considered as well

Subscript t: the interval of volatility construction, monthly in this paper

$$MKT_t = \hat{\sigma}_{mt}^2 = \sum_{s \in t} (R_{ms} - \mu_m)^2$$

 μ_m : the average of R_{ms}

 R_{ms} : the weighted (t-1 market capitalization) average using all firms

$$\hat{\sigma}_{\epsilon it}^2 = \sum_{s \in t} \epsilon_{is}^2$$

$$\Rightarrow \text{IND}_t = \sum_i w_{it} \hat{\sigma}_{\epsilon it}^2$$

$$\hat{\sigma}_{\eta j it}^2 = \sum_{s \in t} \eta_{j is}^2$$

$$\hat{\sigma}_{\eta it}^2 = \sum_{j \in i} w_{j it} \hat{\sigma}_{\eta j it}^2$$

$$\Rightarrow \text{FIRM}_t = \sum_i w_{it} \hat{\sigma}_{\eta it}^2$$

 $\frac{1}{i}$

MKT, IND, FIRM: market σ , industry σ , firm σ , respectively

II. Measuring Trends in Volatility

A. Graphical Analysis

Figure 1. Yearly standard deviation of value-weighted stock index based on monthly data

Figure 2. $\{MKT_t\}$, annualized (×12), Panel B. (Moving Average) is omitted.

Shade: NBER Recession

Casually, market volatility increases in recessions.

Figure 3. $\{IND_t\}$

Panel A. Industry volatility

Lower than market volatility on average

Figure 4. $\{FIRM_t\}$

Much higher than MKT and IND on average—the largest component of the total σ

MKT and IND: no visible upward slope

Stock market has become more volatile—on a firm level instead of a market or industry level

The different σ measures tend to move together, particularly at lower frequencies

The crash in October1987: a significant effect on all three σ series

October 1987 observation is winsorized (down-weighted) by the second largest observation

B. Stochastic versus Deterministic Trends

Whether such a trend is stochastic or deterministic in nature

Table 1. Auto- ρ ?

		Raw Data		Dov	vnweighted C	rash
Autocorrelation	MKT	IND	FIRM	MKT	IND	FIRM
$ ho_1$	0.149	0.529	0.591	0.494	0.591	0.776
$ ho_2$	0.115	0.419	0.560	0.383	0.463	0.727
$ ho_3$	0.113	0.393	0.514	0.313	0.438	0.686
$ ho_4$	0.020	0.364	0.418	0.160	0.415	0.584
$ ho_6$	0.069	0.339	0.414	0.183	0.384	0.572
$ ho_{12}$	0.004	0.275	0.340	0.087	0.316	0.471

The enormous and short-lived effect of the 1987 crash

 \exists unit roots?

Table 2. Dickey–Fuller Test

	Raw Data			Down	nweighted C	rash
	MKT	IND	FIRM	MKT	IND	FIRM
Constant						
ρ -test	-328	-103	-80.3	-175	-88.5	-46.5
t-test	-12.17	-4.59	-3.98	-8.55	-4.28	-3.29
Lag order	2	5	5	1	4	5
Constant & trend						
ρ -test	-330	-125	-145	-177	-91.7	-79.1
t-test	-12.24	-5.60	-6.35	-8.60	-4.36	-4.34
Lag order	1	3	2	1	4	5

[&]quot;Yes. There exist unit-roots in MKT, IND and FIRM."

Table 3. Statistics

	Raw Data			Downweighted Crash			
	MKT	IND	FIRM	MKT	IND	FIRM	
Daily							
$Mean * 10^2$	1.542	1.032	6.436	1.409	1.027	6.383	
Std. dev. * 10 ²	3.500	0.663	2.912	1.469	0.623	2.446	
Std. dev. $*10^2$ detrended	3.488	0.663	2.536	1.463	0.619	2.013	
Linear trend $*10^5$	0.156	0.062	0.965	0.090	0.060	0.939	
PS-statistic	0.261	0.086	1.005	0.144	0.082	0.958	
Confidence interval	(-0.07, 0.60)	(-0.10, 0.27)	(0.55, 1.47)	(-0.12, 0.41)	(-0.10, 0.27)	(0.49, 1.42)	
Weekly							
$Mean * 10^2$	1.897	1.218	5.842	1.858	1.218	5.842	
Std. dev. $*10^2$	2.522	0.727	2.210	2.158	0.727	2.210	
Std. dev. $*10^2$ detrended	2.522	0.724	1.923	2.158	0.721	1.919	
Linear trend $*10^5$	0.003	0.053	0.737	-0.017	0.053	0.737	
PS-statistic	0.116	0.096	0.410	0.082	0.096	0.410	
Confidence interval	(-0.33, 0.56)	(-0.13, 0.32)	(0.13, 0.69)	(-0.36, 0.52)	(-0.13, 0.32)	(0.13, 0.69)	
Monthly							
$mean * 10^2$	N/A	1.269	5.039	N/A	1.269	5.039	
Std. dev. $* 10^2$	N/A	1.032	2.203	N/A	1.032	2.203	
Std. dev. $*10^2$ detrended	N/A	1.032	1.930	N/A	1.032	1.929	
Linear trend $*10^5$	N/A	0.026	0.720	N/A	0.026	0.720	
PS-statistic	N/A	0.094	0.780	N/A	0.093	0.780	
Confidence interval	N/A	(-0.20, 0.39)	(0.28, 1.28)	N/A	(-0.20, 0.39)	(0.28, 1.28)	
Daily—large firms							
$Mean * 10^2$	1.599	1.090	5.877	1.145	1.086	5.828	
Std. dev. $*10^{2}$	3.675	0.744	2.671	1.507	0.675	2.210	
Std. dev. $*10^2$ detrended	3.464	0.693	2.557	1.498	0.658	2.080	
Linear trend * 10 ⁵	0.185	0.087	0.524	0.116	0.085	0.499	
PS-statistic	0.296	0.111	0.590	0.172	0.107	0.055	
Confidence interval	(-0.06, 0.65)	(-0.08, 0.31)	(0.03, 1.15)	(-0.10, 0.45)	(-0.09, 0.30)	(-0.02, 1.11)	
Daily—EW							
$Mean * 10^2$	1.211	1.251	33.903	1.149	1.251	33.903	
Std. dev. $*10^{2}$	2.619	0.554	23.112	1.718	0.412	23.112	
Std. dev. $*10^2$ detrended	2.612	0.554	14.116	1.704	0.554	14.116	
Linear trend * 10 ⁵	-0.114	0.022	12.386	-0.145	0.022	12.386	
PS-statistic	-0.076	-0.004	11.231	-0.132	-0.004	11.219	
Confidence interval	(-0.33, 0.17)	(-0.15, 0.14)	(5.29, 17.17)	(-0.38, 0.11)	(-0.15, 0.14)	(5.30, 17.14)	

 $Annually, MKT^{1/2} = 12.3\%/year(0.015), IND^{1/2} = 10\%/year(0.010), FIRM^{1/2} = 25\%/year(0.064)$

Market model R²=0.015/0.089=17%

Down-weight: Std. dev. for daily MKT __from 3.500 to 1.469

PS-statistic for FIRM: positive and statistically significant—for all three horizons

Effects of de-trend: FIRM __from 2.912 (2.446) to 2.536 (2.013)

PS-statistic: large firms↓, equally weighted series↑ (the effect of firm size)

C. Individual Industries

$$\begin{split} R_{it} &= \beta_{im} R_{mt} + \tilde{\epsilon}_{it}, \text{where } \text{Cov}(R_{mt}, \tilde{\epsilon}_{it}) = 0 \\ R_{jit} &= \beta_{im} R_{mt} + \tilde{\epsilon}_{it} + \eta_{jit} \\ \Rightarrow \text{Var}(R_{it}) &= \beta_{im}^2 \text{Var}(R_{mt}) + \tilde{\sigma}_{it}^2 \\ \Rightarrow \text{Var}(R_{jit}) &= \text{Var}(R_{it}) + \text{Var}(\eta_{jit}) + 2\text{Cov}(R_{it}, \eta_{jit}) \\ &= \text{Var}(R_{it}) + \text{Var}(\eta_{jit}) + 2(\beta_{ji} - 1) \text{Var}(R_{it}) \\ \Rightarrow \sum_{j \in i} w_{jit} \text{Var}(R_{jit}) &= \sum_{j \in i} w_{jit} \left[\text{Var}(R_{it}) + \text{Var}(\eta_{jit}) + 2(\beta_{ji} - 1) \text{Var}(R_{it}) \right] \end{split}$$

$$= \operatorname{Var}(R_{it}) + \sum_{j \in i} w_{jit} \operatorname{Var}(\eta_{jit}) + 2\operatorname{Var}(R_{it}) \sum_{j \in i} w_{jit} (\beta_{ji} - 1)$$

$$= \operatorname{Var}(R_{it}) + \sum_{j \in i} w_{jit} \operatorname{Var}(\eta_{jit})$$

$$= \beta_{im}^{2} \operatorname{Var}(R_{mt}) + \tilde{\sigma}_{it}^{2} + \sigma_{\eta it}^{2}$$

Table 4. Industries (OLS full-sample β with monthly data)

			IND			FIRM				
Industry	Weight	β	Mean	s.d.	Trend	PS-stat	Mean	s.d.	Trend	PS-stat
Petroleum/Gas	11.031	0.86	1.013	0.302	0.249	0.334	5.498	0.774	0.583	0.946
Fin. Services	7.833	0.97	0.362	0.102	-0.125	-0.158	6.361	0.871	0.224	0.484
Utilities	7.446	0.66	0.311	0.097	0.033	0.030	4.032	0.500	0.125	0.228
Consumer Goods	6.117	1.02	0.562	0.122	0.016	0.026	4.590	0.598	-0.006	0.157
Telecomm.	5.699	0.70	0.811	0.176	-0.065	-0.067	3.729	0.826	1.555	1.334
Computer	4.995	1.06	1.654	0.398	0.070	-0.001	6.123	1.536	2.867	2.311
Retail	4.596	1.09	0.586	0.132	0.049	0.028	7.332	0.919	1.367	1.465
Auto	4.295	1.02	1.115	0.231	0.138	0.117	4.862	0.695	0.754	0.922
Pharmaceutical	4.206	1.00	0.792	0.228	0.167	0.133	6.126	0.745	0.780	0.578
Chemical	3.812	1.05	0.517	0.103	0.077	0.064	5.281	0.618	0.448	0.655

FIRM>IND on average—IND substantially varies across industries; FIRM does not $\rho(\text{IND}_i,\text{FIRM}_i)>0$, $\rho(\text{Weight}_i,\text{IND}_i)<0$, $\rho(\text{Weight}_i,\text{FIRM}_i)<0$

Shocks to large industries→move the market?

Unit-root tests on all IND and FIRM series—reject the null hypothesis $\forall i$

III. Portfolio Implications of the Increase in Idiosyncratic Volatility

Figure 5. Decline of the market model

Panel B: Average \mathbb{R}^2 statistics of market model for individual stocks

$\rho\downarrow$ \Rightarrow the benefits of diversification \uparrow

Figure 6. Diversification benefits

Figure 6. (Continued)

Idiosyncratic $\sigma \uparrow \Rightarrow \#$ of stocks to reduce excess $\sigma \uparrow$

IV. Short-Run Volatility Dynamics

A. Covariation and Lead-Lag Relationships

Table 6. Mean decomposition + variance decomposition

	MKT	IND	FIRM
Mean			
7/62–12/97	0.160	0.116	0.724
7/62-6/71	0.162	0.126	0.712
1/88-12/97	0.134	0.097	0.769
Variance			
Raw series			
MKT	0.149	0.081	0.328
IND		0.027	0.133
FIRM			0.282
Conditional means			
MKT	0.099	0.067	0.334
IND		0.026	0.137
FIRM			0.337

$$\begin{split} 1 = & E(MKT_t)/E\sigma_{rt}^2 + E(IND_t)/E\sigma_{rt}^2 + E(FIRM_t)/E\sigma_{rt}^2 \\ 1 = & Var(MKT_t)/Var(\sigma_{rt}^2) + Var(IND_t)/Var(\sigma_{rt}^2) + Var(FIRM_t)/Var(\sigma_{rt}^2) \\ + & 2Cov(MKT_t,IND_t)/Var(\sigma_{rt}^2) + 2Cov(MKT_t,FIRM_t)/Var(\sigma_{rt}^2) + 2Cov(IND_t,FIRM_t)/Var(\sigma_{rt}^2) \end{split}$$

Mean: linear trend decomposition X, variance linear trend decomposition O Conditional means: VAR(4) model— $v_t = E_{t-1}v_t + \xi_t$, $v \in \{MKT, IND, FIRM\}$ $\sigma(FIRM,MKT)$, $\sigma(FIRM IND)$, $\sigma(FIRM,FIRM)$ account for about 80% of the total variation Table 7. Granger causality?

	Bivaria	te VAR	
	MKT_t	IND_t	FIRM_t
$\overline{ ext{MKT}_{t-l}}$	_	0.000	0.000
		(5)	(4)
IND_{t-l}	0.548		0.472
	(5)		(5)
FIRM_{t-l}	0.008	0.002	
· ·	(2)	(5)	
	Trivaria	te VAR	
	MKT_t	IND_t	FIRM_t
$\overline{ ext{MKT}_{t-l}}$	_	0.027	0.004
IND_{t-l}	0.416	_	0.155
FIRM_{t-l}	0.016	0.108	_
ı ı	(4)	(5)	(5)

2-variable and 3-variable VAR, p-values, lags in parentheses determined by AIC

2-variable: $MKT_{t-l} \rightarrow IND_t$, $MKT_{t-l} \rightarrow FIRM_t$, $FIRM_{t-l} \rightarrow MKT_t$, $FIRM_{t-l} \rightarrow IND_t$

3-variable: $MKT_{t-l} \rightarrow IND_t$, $MKT_{t-l} \rightarrow FIRM_t$, $FIRM_{t-l} \rightarrow MKT_t$

B. Cyclical Behavior of Aggregate Volatility Measures

Table 8. Cyclical behavior? $\sigma \leftrightarrow NBER$ recession? $\sigma \leftrightarrow GDP$ growth?

	Correlation with NBER Dates										
Volatility Lead		MKT			IND			FIRM			
(Months)	v_t	$E_{t-1}v_t$	ξ_t	v_t	$E_{t-1}v_t$	ξ_t	v_t	$E_{t-1}v_t$	ξ_t		
+12	-0.091	-0.075	-0.063	-0.208	-0.178	-0.120	-0.125	-0.080	-0.098		
+6	-0.162	-0.149	-0.098	-0.320	-0.310	-0.155	-0.230	-0.196	-0.126		
+3	-0.354	-0.346	-0.198	-0.436	-0.454	-0.182	-0.434	-0.363	-0.246		
+1	-0.413	-0.466	-0.192	-0.461	-0.518	-0.159	-0.515	-0.487	-0.230		
0	-0.420	-0.498	-0.178	-0.472	-0.529	-0.164	-0.508	-0.525	-0.180		
-1	-0.381	-0.498	-0.131	-0.438	-0.533	-0.116	-0.477	-0.529	-0.129		
-3	-0.316	-0.417	-0.099	-0.328	-0.425	-0.094	-0.399	-0.452	-0.098		
-6	-0.248	-0.322	-0.085	-0.280	-0.335	-0.076	-0.330	-0.368	-0.085		
-12	-0.083	-0.135	-0.008	-0.163	-0.170	-0.066	-0.175	-0.192	-0.046		

		Correlation with GDP Growth										
Volatility Lead		MKT			IND			FIRM				
(Quarters)	v_t	$E_{t-1}v_t$	ξt	v_t	$E_{t-1}v_t$	ξt	v_t	$E_{t-1}v_t$	ξt			
+4	-0.021	-0.022	-0.001	-0.060	-0.003	-0.059	-0.023	0.033	-0.037			
+2	-0.226	-0.023	-0.260	-0.262	-0.103	-0.260	-0.223	-0.048	-0.253			
+1	-0.359	-0.208	-0.289	-0.399	-0.227	-0.328	-0.381	-0.180	-0.345			
0	-0.321	-0.335	-0.162	-0.412	-0.368	-0.214	-0.342	-0.341	-0.146			
-1	-0.258	-0.369	-0.073	-0.328	-0.369	-0.102	-0.297	-0.312	-0.114			
-2	-0.216	-0.352	-0.038	-0.214	-0.324	0.006	-0.235	-0.292	-0.053			
-4	-0.151	-0.278	0.033	-0.254	-0.285	-0.073	-0.195	-0.262	-0.018			

All (–) sign: high σ with downturns

Particularly, recession \rightarrow MKT \uparrow —even well diversified portfolio is exposed to more σ

Table 9. $\sigma_{t-1}\uparrow \rightarrow GDP \text{ growth}_t \updownarrow ?$

$\overline{\mathrm{GDP}_{t-1}}$	RVW_{t-1}	MKT_{t-1}	IND_{t-1}	FIRM_{t-1}	R^2 (p-value)
0.330 (4.200)	0.020 (2.548)				0.143
0.251 (2.947)	0.012 (1.367)	(-0.701) (-2.383)			0.190
0.211 (2.270)	0.015 (1.762)		(-1.841) (-2.432)		0.213
0.238 (2.536)	0.014 (1.583)			(-2.999)	0.206
0.199 (2.308)	0.013 (1.415)	-0.314 (-0.883)	$-1.470 \\ (-1.625)$		0.219 (0.002)
0.236 (2.561)	0.013 (1.659)	-0.073 (-0.180)		-0.441 (-1.710)	0.206 (0.008)
0.201 (2.339)	0.013 (1.481)		-1.239 (-1.184)	-0.250 (-0.997)	0.222 (0.002)
0.200 (2.135)	0.013 (1.532)	-0.058 (-0.138)	-1.237 (-1.249)	-0.222 (-0.735)	0.222 (0.006)

RVW=quarterly return on CRSP value-weighted portfolio

Coefficients for MKT, IND and FIRM are significant when they are separately included.

Together, individuals are not significant, but they are jointly significant— R^2 and F-test

C. Cyclical Behavior of Volatility Measures in Individual Industries

Table 10. Correlation between volatility measures and industry output?

All negative signs	IND		FIRM		
Industry	Contemporaneous	Lagged	Contemporaneous	Lagged	
Petroleum/gas	-0.297	-0.132	-0.165	-0.270	
Fin. services	-0.153	0.090	-0.332	-0.042	
Utilities	-0.153	-0.032	-0.094	0.020	
Consumer goods	-0.290	-0.308	-0.201	-0.272	
Telecomm.	-0.142	-0.124	-0.457	-0.176	
Computer	-0.021	0.109	0.162	0.303	
Retail	-0.287	-0.212	-0.215	-0.305	
Auto	-0.272	0.245	-0.308	0.133	
Pharmaceutical	-0.045	-0.108	0.281	-0.054	
Chemical	0.101	-0.002	-0.139	0.018	

Almost all estimates are negative—countercyclical.

(29) Regression: 'the only significant variable is firm-specific σ '

V. What Might Explain Increasing Idiosyncratic Volatility?

(PLEASE FILL THIS BLANK!)

VI. Concluding Comments

Characterize the behavior of stock market σ

Using daily data to construct realized monthly σ

Define volatility components \rightarrow construct total σ of typical firm by adding up components

Positive deterministic trend in idiosyncratic firm-level σ

Not because of # of firms or changes in the serial ρ of daily data

The ρ among individual returns \downarrow ; R^2 of the market model \downarrow ; # of stocks to diversify \uparrow

Firm-level σ explains the most; market-level σ mostly varies over time and leads the others

 σ s are countercyclical; tend to lead GDP variations

 σ s forecast GDP growth; diminish the predictability of stock index return

Similar results for individual industries; using industry β s on the aggregate market

Presents statistical descriptions rather than structural economic models

Asking 'why?' will be fascinating; but possible answers may be just tentative now.

(Ex. changes in corporate governance? institutionalization of equity ownership?)