

VIDY Reading Group 3-D Molecule: SchNet & SphereNet

Jianpeng Chen
CS, Virginia Tech
02/14/2024

About Me

- ■My previous works mainly focus on **unsupervised multi-view graph clustering**, wherein six works are
 proposed to extract structural **consensus** and **completeness** inherent in different graphs by
 proposing the techniques of **pseudo-label self- supervision** (ICONIP), **graph refinement** (AAAI), **graph generation** (under review), **heterophilous graph mining** (AAAI), etc.
- □Currently, my research interests primarily lie in the realm of **3D graph** modeling, particularly its application in 3D molecules, such as **molecular dynamic simulation** and 3D GNN for **material design**, etc.

Multi-View Graph Clustering
Identify a person from their social network and interaction network.

Potential Energy Predictionmolecular dynamic simulation via PES prediction

Roadmap

I. Background

- ➤ Molecular graph modeling
- > 3D Graph

II. Spherical Message Passing for 3D Molecular Graphs

- **➤** Background & Motivation
- > Spherical Message Passing Scheme & Completeness
- > SphereNet

III. Experiments & Analysis

- > Ablation Study
- Completeness VS Efficiency

IV. Conclusion

■Molecular graphs: Applications

Small molecules => Property predictions

Crystals => Material design

Proteins => Protein discovery

□Molecules as graphs:

2D Topology information

Basic information, only contains connectivity.

3D Position information

Identify a conformation.

3D graph: 3D coordinates & Connectivity information

□Molecules as graphs:

2D Topology information

Basic information, only contains connectivity.

3D Position information

Identify a conformation.

3D graph: 3D coordinates & Connectivity information

How to conduct message passing on 3D graphs?

Roadmap

I. Background

- ➤ Message Passing Scheme
- > 3D Graph

II. Spherical Message Passing for 3D Molecular Graphs

- **➤** Background & Motivation
- > Spherical Message Passing Scheme & Completeness
- > SphereNet

III. Experiments & Analysis

- > Ablation Study
- **➤** Completeness VS Efficiency

IV. Conclusion

□3D graph GNNs: SE(3) **Equivariant** & **Invariant** to translations and rotations.

Equivariant

The prediction will be **transformed** according to the transformation of input graph.

$$f(g \cdot x) = r(g) \cdot f(x)$$

Example: Force direction

Invariant

The prediction will stay **unchanged** regardless of the SE(3) transformation of input graph.

$$f(g \cdot x) = f(x)$$

Example: Graph energy

□Invariant Models

- Extracting geometric information from CCS as model input, but previous works cannot achieve molecular **completeness**.

SchNet: distance

SchNet: distance

atom positions R

DimeNet: angle

Completeness

The structure is determined by all the **distance**, **angle**, and **torsion** information to achieve completeness.

□Equivariant Models

Using raw coordinate representation in cartesian coordinate system (CCS) as input, so that each
 layer has to be designed to be equivariant to capture the geometric information.

□Equivariant Models

- Using raw coordinate representation in cartesian coordinate system (CCS) as input, so that **each** layer has to be designed to be equivariant to capture the geometric information.
- To achieve completeness, equivariant models require to aggregate edge-based 2-hop information, resulting in complexity of $O(nk^3)$, where n is the number of nodes, k is the average number of neighbors.

Figure 1: The chemical structure of the H_2O_2 .

□Equivariant Models

- Using raw coordinate representation in cartesian coordinate system (CCS) as input, so that **each** layer has to be designed to be equivariant to capture the geometric information.
- To achieve completeness, equivariant models require to aggregate edge-based 2-hop information, resulting in complexity of $O(nk^3)$, where n is the number of nodes, k is the average number of neighbors.
- Most properties are SE(3) invariant.

□ Equivariant Models

- Using raw coordinate representation in cartesian coordinate system (CCS) as input, so that **each layer has to be designed to be equivariant** to capture the geometric information.
- To achieve completeness, equivariant models require to aggregate edge-based 2-hop information, resulting in complexity of $O(nk^3)$, where n is the number of nodes, k is the average number of neighbors.
- Most properties are SE(3) invariant.

☐ Invariant Models

- Extracting geometric information from CCS as model input, but previous works cannot achieve molecular **completeness**.
- Only need to aggregate 1-hop, but receive 2-hop information.
- Distance (e.g., SchNet, PhysNet), Direction (DimeNet)

Problem Definition

☐ Research Goal

- Propose a 3D message passing scheme that can completely efficiently identify a molecule graph.

☐ Spherical Message Passing

- Consider all the distance, angle, and torsion information
- A novel strategy for computing torsion
 - Approximately complete can identify chirality
 - Efficient $O(nk^2)$
- Naturally invariant

Roadmap

I. Background

- **➤** Message Passing Scheme
- > 3D Graph

II. Spherical Message Passing for 3D Molecular Graphs

- **➤** Background & Motivation
- > Spherical Message Passing Scheme & Completeness
- > SphereNet

III. Experiments & Analysis

- > Ablation Study
- **➤** Completeness VS Efficiency

IV. Conclusion

☐ Invariant representation of molecules in SCS

Relative information is invariant to transitions and rotations.

Figure 1: The chemical structure of the H_2O_2 .

Atoms in molecule

bond length (d)

bonds angle (θ)

torsion angle (φ)

☐ Invariant representation of molecules in SCS

- Relative information is invariant to transitions and rotations.
- Represent relative information in Spherical coordinate system (SCS)

Points in SCS

radial distance (d)

polar angle (θ)

azimuthal angle (φ)

☐ Invariant representation of molecules in SCS

- Relative information is invariant to transitions and rotations.
- Represent relative information in Spherical coordinate system (SCS)

Points in SCS

radial distance (d)

polar angle (θ)

azimuthal angle (φ)

Atoms in molecule

bond length (d)

bonds angle (θ)

torsion angle (φ)

☐ Invariant representation of molecules in SCS

- Relative information is invariant to transitions and rotations.
- Represent relative information in Spherical coordinate system (SCS)

Points in SCS

radial distance (d)

polar angle (θ)

azimuthal angle (φ)

Atoms in molecule

bond length (d)

bonds angle (θ)

torsion angle (φ)

□ Notations

- 3D molecule graph: $G = (\mathbf{u}, V, E, P)$
- Global graph features: **u**
- Atom features: $V = \{\mathbf{v}_i\}_{i=1:n}$
- Edges: $E = \{(\mathbf{e}_k, r_k, \mathbf{s}_k)\}_{k=1:m}$, feature vector: \mathbf{e}_k , index: r_k , \mathbf{s}_k
- Edge set pointing to *i*-th atom: $E_i = \{(\mathbf{e}_k, r_k, s_k)\}_{r_k=i, k=1:m}$
- Positions in CCS: $P = \{\mathbf{r}_h\}_{h=1:n}$

☐ Notations

- 3D molecule graph: $G = (\mathbf{u}, V, E, P)$
- Global graph features: **u**
- Atom features: $V = \{\mathbf{v}_i\}_{i=1:n}$
- Edges: $E = \{(\mathbf{e}_k, r_k, s_k)\}_{k=1:m}$, feature vector: \mathbf{e}_k , index: r_k , s_k
- Edge set pointing to *i*-th atom: $E_i = \{(\mathbf{e}_k, r_k, s_k)\}_{r_k=i, k=1:m}$
- Positions in CCS: $P = \{\mathbf{r}_h\}_{h=1:n}$

☐ Constructing Spherical coordinate system (SCS)

- Origin: s_k
- Z-axis: e_k
- Reference plane: Reference atom O, and r_k , s_k
- Locate any neighbor atom q via 3-tuple (d, θ, φ)

☐ Notations

- 3D molecule graph: $G = (\mathbf{u}, V, E, P)$
- Global graph features: u
- Atom features: $V = \{\mathbf{v}_i\}_{i=1:n}$
- Edges: $E = \{(\mathbf{e}_k, r_k, s_k)\}_{k=1:m}$, feature vector: \mathbf{e}_k , index: r_k , s_k
- Edge set pointing to *i*-th atom: $E_i = \{(\mathbf{e}_k, r_k, s_k)\}_{r_k=i, k=1:m}$
- Positions in CCS: $P = \{\mathbf{r}_h\}_{h=1:n}$

☐ Constructing Spherical coordinate system (SCS)

- Origin: s_k
- Z-axis: e_k
- Reference plane: Reference atom O, and r_k , s_k
- Locate any neighbor atom q via 3-tuple (d, θ, φ)

How to define torsion angle for any atom *q*?

☐ Message Passing Scheme

- Update edges $E = \{(\mathbf{e}_k, r_k, \mathbf{s}_k)\}_{k=1:m}$ from position

$$\mathbf{e}'_{k} = \phi^{e} \left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, E_{s_{k}}, \rho^{p \to e} \left(\{ \mathbf{r}_{h} \}_{h = r_{k} \cup s_{k} \cup \mathcal{N}_{s_{k}}} \right) \right),$$

– Update atoms $V = \{\mathbf{v}_i\}_{i=1:n}$ from updated edges.

$$\mathbf{v}_{i}' = \phi^{v} \left(\mathbf{v}_{i}, \rho^{e \to v} \left(E_{i}' \right) \right),$$

- Update molecule feature **u** from atoms

$$\mathbf{u}' = \phi^{u} \left(\mathbf{u}, \rho^{v \to u} \left(V' \right) \right),$$

☐ Completeness vs. Efficiency

- Efficiency:

 \bullet Previous complete representation (equivariant GNNs) requires edge-based 2-hop information, so it's time complexity is: $O(nk^3)$. They cannot scale to large molecules.

Figure 1: The chemical structure of the H_2O_2 .

☐ Completeness vs. Efficiency

- Efficiency:

- Previous complete representation (equivariant GNNs) requires edge-based 2-hop information, so it's time complexity is: $O(nk^3)$. They cannot scale to large molecules.
- SMP only involves edge-based 1-hop information, thus the time complexity is reduced to $O(nk^2)$

Figure 1: The chemical structure of the H_2O_2 .

☐ Completeness vs. Efficiency

- Efficiency:

- Previous complete representation: O(nk³).
- SMP: $O(nk^2)$.

Completeness:

- $\sqrt{\text{SMP}}$ can distinguish even complex geometric properties such as **chirality**, (a) and (b).
- * SMP does not consider absolute orders of torsion angles,
 (b) and (c), But this may not exit in nature.
- SMP achieves approximate completeness

(a) $q_1'(90^\circ)$, $q_2'(60^\circ)$, $q_3'(120^\circ)$, $q_4'(90^\circ)$

(b) (c) $q_1'(60^\circ), q_2'(120^\circ), q_3'(90^\circ), q_4'(90^\circ)$

\Box Physically-based representation of (d, θ, φ)

– The obtained 3-tuple (d, θ, ϕ) indicates the relative location of any atom in a 3D molecular graph. However, it cannot serve as the direct input to neural networks, as it lacks meaningful representations.

How to transform 3-tuple (d, θ , ϕ) to meaningful representations?

- Molecules are quantum systems thus the representation design needs to follow physics laws.

\Box Physically-based representation of (d, θ, φ)

– The obtained 3-tuple (d, θ, ϕ) indicates the relative location of any atom in a 3D molecular graph. However, it cannot serve as the direct input to neural networks, as it lacks meaningful representations.

How to transform 3-tuple (d, θ , ϕ) to meaningful representations?

- Molecules are quantum systems thus the representation design needs to follow physics laws.

Spherical Bessel function

Spherical Harmonic function

$$\Psi(d, \theta, \varphi) = j_{\ell} \left(\frac{\beta_{\ell n}}{c} d \right) Y_{\ell}^{m}(\theta, \varphi)$$

\Box Physically-based representation of (d, θ, φ)

– The obtained 3-tuple (d, θ, ϕ) indicates the relative location of any atom in a 3D molecular graph. However, it cannot serve as the direct input to neural networks, as it lacks meaningful representations.

How to transform 3-tuple (d, θ , ϕ) to meaningful representations?

- Molecules are quantum systems thus the representation design needs to follow physics laws.

Spherical Bessel function

Spherical Harmonic function

$$\Psi(d,\theta,\varphi) = j_{\ell} \left(\frac{\beta_{\ell n}}{c} d \right) Y_{\ell}^{m}(\theta,\varphi)$$

\Box Physically-based representation of (d, θ, φ)

– The obtained 3-tuple (d, θ, ϕ) indicates the relative location of any atom in a 3D molecular graph. However, it cannot serve as the direct input to neural networks, as it lacks meaningful representations.

How to transform 3-tuple (d, θ , ϕ) to meaningful representations?

- Molecules are quantum systems thus the representation design needs to follow physics laws.

Spherical Bessel function

Spherical Harmonic function

Torsion angle
$$\Psi(d,\theta,\varphi)=j_\ell\Big(\frac{\beta_{\ell n}}{c}d\Big)Y_\ell^m(\theta,\varphi)$$
 Bond angle
$$\Psi(d,\theta)$$
 Bond distance
$$\Psi(d)$$

SphereNet: Framework

Spherical message passing (approximately complete) + Physically based representation (meaningful)

Initialization Input Block Distance $\Psi(d)$ ψ_{r_k} ψ_{s_k} LB2 ψ ϕ (LB) ψ

Relation to SchNet

SchNet can be derived from the proposed Spherical Message Passing scheme.

1. Update edge feature

$$\begin{aligned} \mathbf{e}_{k}' &= \phi^{e} \left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, E_{s_{k}}, \rho^{p \to e} \left(\{ \mathbf{r}_{h} \}_{h = r_{k} \cup s_{k} \cup \mathcal{N}_{s_{k}}} \right) \right), \\ \mathbf{e}_{k}' &= \phi^{e} \left(\mathbf{v}_{r_{k}}, \rho^{p \to e} \left(\{ \mathbf{r}_{h} \}_{h = r_{k} \cup s_{k}} \right) \right) \\ &= \phi^{e} \left(\mathbf{v}_{r_{k}}, \Psi \left(\| \mathbf{r}_{s_{k}} - \mathbf{r}_{r_{k}} \| \right) \right) \\ &= \mathrm{NN} \left(\mathrm{NN} \left(\mathbf{v}_{r_{k}} \right) \odot \mathrm{NN} \left(\Psi \left(\| \mathbf{r}_{r_{k}} - \mathbf{r}_{s_{k}} \| \right) \right) \right), \end{aligned}$$

$$\mathbf{u}' = \phi^{u} \left(\mathbf{u}, \rho^{v \to u} \left(V' \right) \right),$$

$$\mathbf{u} = \phi^{u} \left(\rho^{v \to u} \left(V^{T} \right) \right)$$

$$= \sum_{i=1:n} \text{NN} \left(\mathbf{v}_{i}^{T} \right).$$

3. Update graph feature

2. Update atom feature

$$\mathbf{v}_{i}' = \phi^{v} \left(\mathbf{v}_{i}, \rho^{e \to v} \left(E_{i}' \right) \right),$$

$$\mathbf{v}_{i}' = \phi^{v} \left(\mathbf{v}_{i}, \rho^{e \to v} \left(E_{i}' \right) \right)$$

$$= \phi^{v} \left(\mathbf{v}_{i}, \sum_{\left(\mathbf{e}_{k}', r_{k}, s_{k} \right) \in E_{i}'} \mathbf{e}_{k}' \right)$$

$$= \mathbf{v}_{i} + \sum_{\left(\mathbf{e}_{k}', r_{k}, s_{k} \right) \in E_{i}'} \mathbf{e}_{k}',$$

$$\left(\mathbf{e}_{k}', r_{k}, s_{k} \right) \in E_{i}'$$

Roadmap

I. Background

- **➤** Message Passing Scheme
- > 3D Graph

II. Spherical Message Passing for 3D Molecular Graphs

- **➤** Background & Motivation
- > Spherical Message Passing Scheme & Completeness
- > SphereNet

III. Experiments & Analysis

- Datasets & Tasks
- ➤ Completeness vs. Efficiency
- > Ablation Study

IV. Conclusion

- □OC20: Tasks: S2EF, **IS2RS**, and IS2RE. IS2RS predicts structure's energy in the relaxed state.
 - Training set: 4630,318 sctructures
 - Evaluation set: In Domain (ID), Out of Domain Adsorbates (OOD Ads), Out of Domain catalysts (OOD cat), and Out of Domain Adsorbates and catalysts (OOD Both), where numbers of structures are 24,943, 24,961, 24,963, 24,987, respectively.
 - Energy MAE and the percentage of Energies within a Threshold (EwT) of the ground truth energy
- **QM9**: Task: Property prediction. Consists organic molecules composed of up to 9 heavy atoms
 - Training set: 110,000
 - Validation and Test set: 10,000 & 10831 structures.
- **■MD17**: Task: Molecular dynamic simulation.
 - Training: 1000 for training.

- □OC20: Tasks: S2EF, IS2RS, and IS2RE. IS2RS predicts structure's energy in relaxed state.
 - Energy MAE and the percentage of Energies within a Threshold (EwT) of the ground truth energy
 - Training set: 4630,318 sctructures
 - Evaluation set: In Domain (ID), Out of Domain Adsorbates (OOD Ads), Out of Domain catalysts (OOD cat), and Out of Domain Adsorbates and catalysts (OOD Both).

Energy MAE: the best performance on 3 out of 4 splits, reduces the average energy MAE by 0.019, which is 3.10% of the second best model.

EwT: the best on all the 4 splits. it improves the average EwT from 3.42% to 3.64%, which is a large margin considering the inherently low EwT values.

	Energy MAE [eV] ↓					EwT↑				
Model	ID	OOD Ads	OOD Cat	OOD Both	Average	ID	OOD Ads	OOD Cat	OOD Both	Average
CGCNN	0.6203	0.7426	0.6001	0.6708	0.6585	3.36%	2.11%	3.53%	2.29%	2.82%
SchNet	0.6465	0.7074	0.6475	0.6626	0.6660	2.96%	2.22%	3.03%	2.38%	2.65%
DimeNet++	0.5636	0.7127	0.5612	0.6492	0.6217	4.25%	2.48%	4.40%	2.56%	3.42%
GemNet-T	0.5561	0.7342	0.5659	0.6964	0.6382	4.51%	2.24%	4.37%	2.38%	3.38%
SphereNet	0.5632	0.6682	0.5590	0.6190	0.6024	4.56%	2.70%	4.59%	2.70%	3.64%

QM9: Task: Property prediction. Consists organic molecules composed of up to 9 heavy atoms

- Training set: 110,000

- Validation and Test set: 10,000 & 10831 structures.

Property	Unit	PPGN	SchNet	PhysNet	Cormorant	MGCN	DimeNet	DimeNet++	PaiNN	SphereNet
$\overline{\mu}$	D	0.047	0.033	0.0529	0.13	0.0560	0.0286	0.0297	0.012	0.0245
lpha	$a_0{}^3$	0.131	0.235	0.0615	0.092	0.0300	0.0469	0.0435	0.045	0.0449
$\epsilon_{ ext{HOMO}}$	meV	40.3	41	32.9	36	42.1	27.8	<u>24.6</u>	27.6	22.8
$\epsilon_{ m LUMO}$	meV	32.7	34	24.7	36	57.4	19.7	<u>19.5</u>	20.4	18.9
$\Delta\epsilon$	meV	60.0	63	42.5	60	64.2	34.8	<u>32.6</u>	45.7	31.1
$\langle R^2 \rangle$	$a_0{}^2$	0.592	0.073	0.765	0.673	0.110	0.331	0.331	0.066	0.268
ŻΡVE	meV	3.12	1.7	1.39	1.98	1.12	1.29	<u>1.21</u>	1.28	1.12
U_0	meV	36.8	14	8.15	28	12.9	8.02	6.32	5.85	6.26
U	meV	36.8	19	8.34	-	14.4	7.89	<u>6.28</u>	5.83	6.36
H	meV	36.3	14	8.42	-	14.6	8.11	6.53	5.98	<u>6.33</u>
G	meV	36.4	14	9.40	-	16.2	8.98	<u>7.56</u>	7.35	7.78
c_{v}	<u>cal</u> mol K	0.055	0.033	0.0280	0.031	0.0380	0.0249	0.0230	0.024	0.0215
std. MAE	%	1.84	1.76	1.37	2.14	1.86	1.05	<u>0.98</u>	1.01	0.91

SphereNets achieves best performance on 5 properties and the second best performance on 3 properties.

- **■MD17**: Task: Molecular dynamic simulation.
 - Training: 1000 for training. WoFE: weight of force
 - sGDML is one of the original work that created the MD17 dataset with carefully-designed features.

	WoFE = 100			WoFE = 1000				
Molecule	sGDML	SchNet	DimeNet	SphereNet	NequIP	GemNet-T	GemNet-Q	SphereNet
Aspirin	0.68	1.35	0.499	0.430	0.353	0.220	0.217	0.209
Benzene	0.20	0.31	0.187	0.178	0.186	0.145	0.145	0.147
Ethanol	0.33	0.39	0.230	0.208	0.204	0.086	0.088	0.091
Malonaldehyde	0.41	0.66	0.383	0.340	0.328	0.155	0.160	0.172
Naphthalene	0.11	0.58	0.215	0.178	0.105	0.055	0.051	0.048
Salicylic acid	0.28	0.85	0.374	0.360	0.242	0.127	0.125	0.113
Toluene	0.14	0.57	0.216	0.155	0.102	0.060	0.060	0.054
Uracil	0.24	0.56	0.301	0.267	0.173	0.097	0.104	0.106
std. MAE	1.11	2.38	<u>1.10</u>	0.97	0.79	0.45	0.45	0.44

WoFE = 100: SphereNet achieves best except comparing to sGDML.

WoFE = 1000: SphereNet achieves similar results with GemNet in spite of that GemNet-T is of high complexity and contains carefully designed network components for performance boost.

Experiments: Completeness vs. Efficiency

Q-MP: Q-MP in GemNet represents the edge-based 2-hop geometric message passing and can generate **complete representations** of 3D molecular graphs.

SMP performs similarly with Q-MP even though the latter is complete theoretically but not scalable in practice.

Table 4: Comparisons bewtween SMP and Q-MP on MD17 using two backbone networks.

	Sphere	Net Backbor	ne GemNe	t Backbone
Molecule	SMP	Q-MP	SMP	Q-MP
Aspirin	0.209	0.247	0.225	0.231
Benzene	0.147	0.153	0.144	0.149
Ethanol	0.091	0.102	0.089	0.083
Malonaldehyde	e 0.172	0.168	0.169	0.176
Naphthalene	0.048	0.057	0.063	0.062
Salicylic acid	0.113	0.125	0.111	0.114
Toluene	0.054	0.043	0.052	0.063
Uracil	0.106	0.106	0.098	0.113
Time/Epoch (s	324	1270	295	1185

Experiments: Completeness vs. Efficiency

SphereNet uses similar computational resources as DimeNet++ and GemNet-T, and is much more efficient than DimeNet. The main reason could be sphereNet developed an efficient way to compute torsion

Table 9: Efficiency comparisons between SphereNet and other models in terms of number of parameters and time cost per epoch using the same infrastructure.

	SchNet	DimeNet	DimeNet++	GemNet-T	SphereNet
#Param.	185,153	2100,070	1887,110	2040,194	1898,566
Time (s)	100	840	240	290	340

Experiments: Completeness vs. Efficiency

☐ Ablation Study

- MD17: Task: Molecular dynamic simulation.
 - Training: 1000 for training.
 - MAE of forces.

Table 5: Comparisons among three message passing strategies on the same SphereNet architecture on the partial MD17 dataset.

These results demonstrate the effectiveness of angle and torsion information used in the SMP. The best performance of SMP further reveals that SMP represents an accurate scheme for 3D graphs.

Molecule	SMP w/o (θ, φ)	SMP w/o φ	SMP
Ethanol	0.249	0.22	0.208
Malonaldehyde	0.550	0.360	0.340
Naphthalene	0.372	0.205	0.178
Toluene	0.446	0.182	0.155

Roadmap

I. Background

- Message Passing Scheme
- > 3D Graph

II. Spherical Message Passing for 3D Molecular Graphs

- > Background & Motivation
- > Spherical Message Passing Scheme & Completeness
- > SphereNet

III. Experiments & Analysis

- > Ablation Study
- Completeness VS Efficiency

IV. Conclusion

Conclusion

☐ Solved Problems

- How to represent a 3D molecule in Spherical coordinate system?
- How to integrate completeness and efficiency into one SE(3) invariant GNN?

☐ Framework: SphereNet

- Proposed a 3D molecule message passing scheme, Spherical Message Passing, which achieves $O(nk^2)$ efficiency and approximate completeness.
- Further proposed SphereNet based on the SMP (approximately complete) and physical-based representation (meaningful).
- Theoretically analyzed the relation with prior works (SchNet)

□ Experiments

- Achieves best or second performance on 3 datasets and tasks.
- Efficiency & Scalability: SMP achieves similar performance with Q-MP on MD17, even though the latter is complete theoretically but not scalable in practice.

Thanks!

Jianpeng Chen
CS, Virginia Tech
02/14/2024

