Summer Online Course

Digital Logic Design

Latches

Flip Flops

Sequential Logic Circuit Design Module III (Lec-2)

SR Latch

Digital Logic Design

Latches

Flip Flops

Figure: SR Latches using NOR and NAND Gates

SR Latch is a circuit with:

■ Two cross-coupled NOR gate or 2 cross-coupled NAND gate.

SR Latch

Digital Logic Design

Latches

Flip Flops

Figure: SR Latches using NOR and NAND Gates

SR Latch is a circuit with:

- Two cross-coupled NOR gate or 2 cross-coupled NAND gate.
- Two inputs S for SET and R for RESET.

SR Latch

Digital Logic Design

Latches

Flip Flops

Figure: SR Latches using NOR and NAND Gates

SR Latch is a circuit with:

- Two cross-coupled NOR gate or 2 cross-coupled NAND gate.
- Two inputs S for SET and R for RESET.
- Two outputs Q, Q'. Both outputs are complement to each other.

SR Latch using NAND Gates

Digital Logic Design

Latches

Flip Flops

Table: Truth Table for SR Latch

S	R	Q
0	0	Invalid state
0	1	1
1	0	0
1	1	Previous state

Figure: Logic Diagram of SR Latch

SR Latch using NAND Gates

Digital Logic Design

Latches

Flip Flops

Table: Truth Table for SR Latch

S	R	Q
0	0	Invalid state
0	1	1
1	0	0
1	1	Previous state

Figure: Logic Diagram of SR Latch

• When both inputs S=R=0, the outputs Q and Q'=1.

SR Latch using NAND Gates

Digital Logic Design

Latches

Flip Flops

Table: Truth Table for SR Latch

S	R	Q
0	0	Invalid state
0	1	1
1	0	0
1	1	Previous state

Figure: Logic Diagram of SR Latch

- When both inputs S = R = 0, the outputs Q and Q' = 1.
- The valid states only when (Q=0, and Q'=1) or (Q=1, and Q'=0).

SR Latch using NOR Gates

Digital Logic Design

Latches

Flip Flops

Figure: Logic Diagram of SR Latch

Table: Truth Table for SR Latch

S	R	Q
0	0	Previous state
0	1	0
1	0	1
1	1	Invalid state

SR Latch using NOR Gates

Digital Logic Design

Latches

Flip Flops

Table: Truth Table for SR Latch

S	R	Q
0	0	Previous state
0	1	0
1	0	1
1	1	Invalid state

Figure: Logic Diagram of SR Latch

■ When both inputs S = R = 1, the outputs Q and Q' = 0.

SR Latch using NOR Gates

Digital Logic Design

Latches

Flip Flops

Table: Truth Table for SR Latch

S	R	Q
0	0	Previous state
0	1	0
1	0	1
1	1	Invalid state

Figure: Logic Diagram of SR Latch

- When both inputs S = R = 1, the outputs Q and Q' = 0.
- The truth table of NOR latch is opposite to the NAND latch.

Digital Logic Design

Latches

Flip Flops

• Flip flop is a basic memory element, which can store one bit of data.

Flip Flop

Digital Logic Design

Latches

Flip Flops

- Flip flop is a basic memory element, which can store one bit of data.
- Flip flop have two stable states, that's why it is called ad bistable multivibrator.

Latches

Flip Flops

- Flip flop is a basic memory element, which can store one bit of data.
- Flip flop have two stable states, that's why it is called ad bistable multivibrator.
- Flip flop is an edge triggered circuit.

Latches

Flip Flops

- Flip flop is a basic memory element, which can store one bit of data.
- Flip flop have two stable states, that's why it is called ad bistable multivibrator.
- Flip flop is an edge triggered circuit.

Flip Flops Classification

- [1] SR Flip Flop
- [3] D Flip Flop

- [2] JK Flip Flop
- [4] T Flip Flop

Flip Flop

Digital Logic Design

Flip Flops

- Flip flop is a basic memory element, which can store one bit of data.
- Flip flop have two stable states, that's why it is called ad bistable multivibrator.
- Flip flop is an edge triggered circuit.

Flip Flops Classification

- [1] SR Flip Flop
- [3] D Flip Flop

- [2] JK Flip Flop
- [4] T Flip Flop

Procedure for Designing of Flip Flops

- [1] Truth Table
- [3] Characteristic Equation
- [2] Characteristic Table
- [4] Excitation Table

Digital Logic Design

Flip Flops

Table: Truth Table for SR Flip Flop

Clk	S	R	Q
0	×	×	Previous state
1	0	0	Previous state
1	0	1	0 (Reset State)
1	1	0	1 (Set State)
1	1	1	Invalid state

Digital Logic Design

Latches Flip Flops

Table: Truth Table for SR Flip Flop

Clk	: S	R	Q
0	×	×	Previous state
1	0	0	Previous state
1	0	1	0 (Reset State)
1	1	0	1 (Set State)
1	1	1	Invalid state

■ The control input (E or Clk) acts as an enable signal or clocked pulse for the two inputs.

Digital Logic Design

Latches Flip Flops

Table: Truth Table for SR Flip Flop

Clk	S	R	Q
0	×	×	Previous state
1	0	0	Previous state
1	0	1	0 (Reset State)
1	1	0	1 (Set State)
1	1	1	Invalid state

- The control input (E or Clk) acts as an enable signal or clocked pulse for the two inputs.
- When **E=0**, the circuit remains in the previous state.
- When **E** goes to **1**, information from the S or R input is allowed to get the output.

Latches

Flip Flops

Table: Characteristic Table for SR Flip Flop

S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

Digital Logic Design

atches

Flip Flops

Table: Characteristic Table for SR Flip Flop

S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

Table: **Excitation Table** for SR Flip Flop

Q_n	Q_{n+1}	S	R
0	0	0	×
0	1	1	0
1	0	0	1
1	1	×	0

Digital Logic Design

Latches

Flip Flops

Table: Characteristic Table for SR Flip Flop

S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

Table: **Excitation Table** for SR Flip Flop

Q_n	Q_{n+1}	S	R
0	0	0	×
0	1	1	0
1	0	0	1
1	1	×	0

K Map

Digital Logic Design

Latches

Flip Flops

Table: Characteristic Table for SR Flip Flop

S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1 1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

Characteristic Equation

$$Q_{n+1} = S + \bar{R}Q_n$$

Table: **Excitation Table** for SR Flip Flop

Q_n	Q_{n+1}	S	R
0	0	0	×
0	1	1	0
1	0	0	1
1	1	×	0

