Domácí úkol

Dan Kostiuk, Oliver Tulša, Štefan Slavkovský

$$M = 5$$

1) Pro každou skupinu zvlášť odhadněte střední hodnotu, rozptyl a medián příslušného rozdělení.

V úlohe budeme skúmať účinky iodidu strieborného pri použitý v oblakoch na celkové zrážky na plochu. Skúmané data pozostávajú z dvoch sád meraní. Prvá kontrolná sada (unseeded) obsahuje merania zrážok z dní kedy nebol použity iodid strieborný. Druha sada (seeded) obsahuje merania z dní kedy iodid strieborný bol použitý.

Pro bodový odhad střední hodnoty použijeme výběrový průměr:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Bodový odhad výběrového rozptylu spočteme následovně:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Medián odhadneme jako prostřední hodnotu v našich seřazených datech.

	Střední hodnota	Rozptyl	Median
Seeded	441.98	423523.96	221.60
Unseeded	164.59	77521.25	44.20

2) Pro každou skupinu zvlášť odhadněte hustotu pomocí histogramu a distribuční funkci pomocí empirické distribuční funkce.

Vykreslíme histogram, distribuční funkci a pomocí kernel density estimation zakreslíme i odhad hustotní funkce:

Stejně i pro distribuční funkci:

Oba grafy sú zakreslené v logaritmickom merítku pre prehľadnosť.

3) Odhadněte parametry normálního, exponenciálního a rovnoměrného rozdělení. Vysvětlete, jak jste odhady získali.

Pre získanie parametrov rozdelení využijeme maximum likelihood estimation (MLE). Budeme maximalizovať pravdepodobnosť že vzniknuté merania vznikli z rozdelenia v závislosti od parametrov rozdelenia.

Pre normálne rozdelenie sú parametre získane pomocou MLE:

$$\hat{\mu} = \frac{1}{n} \sum_{i=0}^{n} x_i, \quad \hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (x_i - \hat{\mu})^2}$$

U exponencionálního rozdělení spočteme parametr λ pomocí vztahu:

$$\hat{\lambda} = \frac{1}{\bar{x}}$$

Pre rovnomerné rozdelenie sú parametre získane pomocou MLE:

$$a = min\{x_i\}, b = max\{x_i\}$$

Pro zajímavost zkusíme vykreslit také Logaritmicko-normální rozdělení jehož parametry, μ a σ spočteme následovně:

$$\hat{\mu} = \frac{1}{n} \sum_{i=0}^{n} \ln x_i, \quad \hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (\ln x_i - \hat{\mu})^2}$$

Následně vykreslíme histogram a jednotlivá rozdělení s následujícými parametry pro seeded:

Rozdělení	Odhadnuté parametry	
Normální	$\mu = 441.98$	σ = 638.15
Exponenxionální	1 / λ = 441.98	
Rovnoměrné	a = 4.1	b = 2745.6
Logaritmicko-normální	μ = 5.13	σ = 1.23

Následně vykreslíme histogram a jednotlivá rozdělení s následujícými parametry pro unseeded:

Rozdělení	Odhadnuté parametry	
Normální	μ = 164.59	σ = 273.02
Exponenxionální	1 / λ = 164.59	
Rovnoměrné	a = 1.0	b = 1202.6
Logaritmicko-normální	μ = 4.00	σ = 1.30

3) Diskutujte, které z rozdělení odpovídá pozorovaným datům nejlépe.

Z rozdělení které máme na výběr, tak se data v obou případech nejvíce podobají Logaritmicko-normální rozdělení (nebo exponencionálnímu rozdělení). Rovnaké výsledky výchádzajú aj keď vyrátamé likelihood pozorovaných dát pre jednotlivé distribúcie.

4) Pro každou skupinu zvlášť vygenerujte náhodný výběr o 100 hodnotách z rozdělení, které jste zvolili jako nejbližší, s parametry odhadnutými v předchozím bodě.

Vykreslíme histogram náhodných dat pocházejících z Logaritmicko-normální rozdělení s MLE parametri a porovnáme je s původními daty:

A tady se můžeme utvrdit že se data nejvíce podobají datům z Logaritmicko-normální rozdělení.

5) Pro každou skupinu zvlášť spočítejte oboustranný 95% konfidenční interval pro střední hodnotu.

Z dat známe jen výběrovou směrodatnou odchylku a aritmetický průměr. A v důsledku centrální limitní věty můžeme pro velké n stejné intervaly spolehlivosti použít přibližně i pro náhodný výběr z libovolného rozdělení. A to následovně, kde použijeme studentovo rozdělení a směrodatnou odchylku s (odmocnina z výběrového rozptylu):

$$\left(\overline{x} - \frac{t_{1-\alpha/2} \cdot s}{\sqrt{n}}, \overline{x} + \frac{t_{1-\alpha/2} \cdot s}{\sqrt{n}}\right)$$

Výsledný oboustranný 95% konfidenční interval pro střední hodnotu meření:

$$CI_{seeded} = [179.13,704.84]$$

 $CI_{unseeded} = [52.13,277.05]$

6) Pro každou skupinu zvlášť otestujte na hladině významnosti 5 % hypotézu, zda je střední hodnota rovna hodnotě K, proti oboustranné alternativě.

Sestavíme nulovou a alternativní hypotézu:

- H₀: Střední hodnota je rovna K = 6
- H₁: Střední hodnota není rovna K = 6

Vytvoříme oboustranný 95% konfidenční interval pro střední hodnotu (viz úloha 5)):

- seeded: 6 ∉ (179.13, 704.84) tudíž na hladině významnosti 5% nulovou hypotézu zamítneme ve prospěch alternativy.
- unseeded: 6 ∉ (52.13, 277.05) Tudíž na hladině významnosti 5% nulovou hypotézu zamítneme ve prospěch alternativy.

7) Na hladině významnosti 5 % otestujte, jestli mají pozorované skupiny stejnou střední hodnotu. Typ testu a alternativy stanovte tak, aby vaše volba nejlépe korespondovala s povahou zkoumaného problému.

Pre test budeme predpokladať že hodnoty sledujú logoritmicko-normálne rozdelenie. Urobíme štatistický test pre silnejšie tvrdenie a otestujeme či pozorované skupiny sledujú rovnaké logaritmicko-normálne rozdelenie. Pre test použijeme likelihood ratio test:

- Null hypotéza: obe skupiny meraní sa riadia rovnakým logaritmicko-normálnym rozdelením.
- Alternatívna hypotéza: skupiny sa riadia dvomi rôznymi logaritmicko-normálnymi rozdeleniami.

Výsledná p-hodnota je 0.04, teda môžeme null hypotézu zamietnuť v prospech alternatívnej hypotézy. Na hladine významnosti 5% teda môžeme povedať že použitie iodidu strieborného má vplyv na úhrn zrážok oblakov.

Appendix A: Použité dáta

Seeded
2745.60
1697.80
1656.00
978.00
703.40
489.10
430.00
334.10
302.80
274.70
274.70
255.00
242.50
200.70
198.60
129.60
119.00
118.30
115.30
92.40
40.60
32.70
31.40
17.50
7.70
4.10

Appendix B: jupyter notebook s výpočtami

Prílohy **hw.ipynb, requirements.txt, case0301.rda**