

Machine Learning

Large scale machine Leeaningg with large datasets

Machine learning and data

Classify between confusable words.

E.g., {to, two, too}, {then, than}.

For breakfast I ate _____eggs.

"It's not who has the best algorithm that wins.

It's who has the most data."

Learning with large datasets

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Andrew No

Suppose you are facing a supervised learning problem and have a very large dataset (m = 100,000,000). How can you tell if using all of the data is likely to perform much better than using a small subset of the data (say m = 1,000)?

- There is no need to verify this; using a larger dataset always gives much better performance.
- lacktriangle Plot $J_{\mathrm{train}}(\theta)$ as a function of the number of iterations of the optimization algorithm (such as gradient descent).
- Plot a learning curve ($J_{\text{train}}(\theta)$ and $J_{\text{CV}}(\theta)$, plotted as a function of m) for some range of values of m (say up to m = 1,000) and verify that the algorithm has bias when m is small.
- Plot a learning curve for a range of values of m and verify that the algorithm has high variance when m is small.

Correct Response

Machine Learning

Large scale machine Starriagtic gradient descent

Linear regression with gradient descent

$$h_{\theta}(x) = \sum_{j=0}^{n} \theta_{j} x_{j}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

Linear regression with gradient descent

$$h_{\theta}(x) = \sum_{j=0}^{n} \theta_{j} x_{j}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \xrightarrow[-0.3]{0.3}$$

$$\text{(for every } 0, \dots, n \text{)}$$

$$\theta_{0}$$

When m is large then computing the derivative becomes very difficult

Batch gradient descent

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(for every=
$$0,\ldots,$$
) n

Stochastic gradient

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \begin{vmatrix} \mathbf{descent} \\ cost(\theta, (x^{(i)}, y^{(i)})) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \end{vmatrix}$$

$$J_{train}(\theta) = \frac{1}{2} \sum_{i=1}^{m} cost(\theta, (x^{(i)}, y^{(i)}))$$

 $J_{train}(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(\theta, (x^{(i)}, y^{(i)}))$ (Pre-processing step)

ep 1: we modify parameters and try to fit 1^{st} training example. ep 1: we modify parameters and try to fit 2nd training example. on c

Stochastic gradient descent

- 1. Randomly shuffle (reorder) training
- - 2. Repeat $\{\ldots, m\}$ for $j := \theta_j \alpha(h_{\theta}(x^{(i)}) \{-y^{(i)}\} x_j^{(i)} \}$ for $j := 0, \ldots, n$ for j := 0,
 - (for every

Which of the following statements about stochastic gradient descent are true? Check all that apply.

When the training set size m is very large, stochastic gradient descent can be much faster than gradient descent.

Correct Response

■ The cost function $J_{\text{train}}(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)} - y^{(i)})^2$ should go down with every iteration of batch gradient descent (assuming a well-tuned learning rate α) but not necessarily with stochastic gradient descent.

Correct Response

Stochastic gradient descent is applicable only to linear regression but not to other models (such as logistic regression or neural networks).

Correct Response

Before beginning the main loop of stochastic gradient descent, it is a good idea to "shuffle" your training data into a random order.

Correct Response

Machine Learning

Large scale machine **Marinbatch** gradient descent

Mini-batch gradient descent

Batch gradient descent: Use all examples in each iteration

Stochastic gradient descent; Use 1 example in each iteration

Mini-batch gradient descent: Use examples in each iteration

Mini-batch gradient descent

```
Sayb = 10, m = 1000
Repeat {
    for = 1, 11, 21, 31, ... { 991
    \theta_j := \theta_j - \alpha \frac{1}{10} \sum_{k=0}^{i+9} (h_\theta(x^{(k)}) - y^{(k)}) x_j^{(k)}
         (for every j = 0, \dots, n)
```

Suppose you use mini-batch gradient descent on a training set of size m, and you use a mini-batch size of b. The algorithm becomes the same as batch gradient descent if:

- b = 1
- \bigcirc b = m / 2
- b = m

Correct Response

None of the above

Machine Learning

Large scale machine Stowniastic gradient descent convergence

Checking for convergence

Batch gradient descent:

 $Plot J_{train}(\theta)$ as a function of the number of iterations of gradient descent.

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Stochastic gradient descent:
$$cost(\theta,(x^{(i)},y^{(i)})) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^2$$
 During learning, compate $(x^{(i)},y^{(i)})$

before 'up'dating

ይዩትያ 1000 iterations (say)qsp $(x^{(i)}, y^{(i)})$) averaged over the last 1000 examples processed by algorithm.

Andrew No

 θ

Checking for convergence

Plot $cost(\theta, (x^{(i)}, y^{(i)}))$ averaged over the last 1000 (say)

Andrew No

Stochastic gradient descent

$$cost(\theta, (x^{(i)}, y^{(i)})) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} cost(\theta, (x^{(i)}, y^{(i)}))$$

- 1. Randomly shuffle dataset.

$$0.5$$
 0.4
 0.3
 0.2
 0.1
 0.0
 0.1
 0.2
 0.3
 0.2
 0.1
 0.3
 0.2
 0.1
 0.3
 0.2
 0.1
 0.3
 0.2
 0.1
 0.3
 0.4
 0.5
 0.4
 0.5
 0.4
 0.5
 0.5
 0.6
 0.7
 0.7
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9

Learning rate is typically held constant. Can slowly decrease θ $\alpha = \frac{\text{const1}}{\text{iterationNumber + const2}}$ over time if we want to converge (F α

Andrew No

 α

Stochastic gradient descent

$$cost(\theta, (x^{(i)}, y^{(i)})) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} cost(\theta, (x^{(i)}, y^{(i)}))$$

- 1. Randomly shuffle dataset.

$$0.5$$
 0.4
 0.3
 0.2
 0.1
 0.0
 0.1
 0.2
 0.3
 0.2
 0.1
 0.3
 0.2
 0.1
 0.3
 0.2
 0.1
 0.3
 0.2
 0.1
 0.3
 0.4
 0.5
 0.4
 0.5
 0.4
 0.5
 0.5
 0.6
 0.7
 0.7
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9

Learning rate is typically held constant. Can slowly decrease θ $\alpha = \frac{\text{const1}}{\text{iterationNumber + const2}}$ over time if we want to converge (F α

Andrew No

 α

Which of the following statements about stochastic gradient descent are true? Check all that apply. Picking a learning rate α that is very small has no disadvantage and can only speed up learning. **Correct Response** $\overline{\mathbb{Y}}$ If we reduce the learning rate α (and run stochastic gradient descent long enough), it's possible that we may find a set of better parameters than with larger α . **Correct Response** If we want stochastic gradient descent to converge to a (local) minimum rather than wander of "oscillate" around it, we should slowly increase α over time. **Correct Response** gradient descent does not seem to be reducing the cost, one possible problem may be that the learning rate α is poorly tuned.

Correct Response

Machine Learning

Large scale machine **GATHE9** learning

Online learning

Shipping service website where user comes, specifies origin and destination, you offer to ship their package for some asking price, and users y=1 sometimes choose to use your shipping service (Festures imesapptule properties of user, of origin/destination and asking price. We want to learn to optimize price.

Other online learning example:

Product search (learning to search)

User searches for "Android phone 1080p camera" Have 100 phones in store. Will return 10 results.

 $x = \frac{1}{2}$ features of phone, how many words in user query match name of phone, how many words in query match description of phone, etc.

y = 1 if user clicks on with the otherwise.

 $\operatorname{Learm}(y=1|x;\theta)$ Click through rate

Use to show user the 10 phones they're most Othere to show user; customized selection of news articles; product recommendation; ...

Andrew No

It can adapt to changing user tastes (i.e., if $p(y x;\theta)$ changes over time). Correct Response There is no need to pick a learning rate α .	Some of the advantages of using an online learning algorithm are:
\square There is no need to pick a learning rate $lpha$.	ightharpoonup It can adapt to changing user tastes (i.e., if $p(y x; heta)$ changes over time).
	Correct Response
Correct Response	\square There is no need to pick a learning rate $lpha$.
	Correct Response

✓ It allows us to learn from a continuous stream of data, since we use each example once then no longer need to process it again.

Correct Response

It does not require that good features be chosen for the learning task.

Correct Response

Machine Learning

Large scale machine Mapreduce and data parallelism

Map-reduce

Batch gradient descent $\theta_j - \alpha \frac{1}{400} \sum_{i=1}^{400} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$

Machine 1:
$$U(se^{(1)}, y^{(1)}), \dots, (x^{(100)}, y^{(100)}).$$

Machine 2: Use⁽¹⁰¹⁾,
$$y^{(101)}$$
),..., $(x^{(200)}, y^{(200)})$.

$$temp_j^{(2)} = \sum_{i=101}^{200} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$

Machine 3: Use⁽²⁰¹⁾, $y^{(201)}$), ..., $(x^{(300)}, y^{(300)})$.

$$temp_j^{(3)} = \sum_{i=201}^{300} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$

Machine 4: Use⁽³⁰¹⁾,
$$y^{(301)}$$
), ..., $(x^{(400)}, y^{(400)})$.

$$temp_j^{(4)} = \sum_{i=301}^{400} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$

Map-reduce

Map-reduce and summation over the training Map-reduce and summation over the training set.

E.g. for advanced optimization, with logistic regression, next $y^{(i)} \log h_{\theta}(x^{(i)}) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$

$$\frac{\partial}{\partial \theta_j} J_{train}(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$

Multi-core machines Network latency is not an issue Core 1 Training set Core 2 Combine results Core 3 [http://openclipart.org/detail/100267/c Core 4 pu-(central-processing-unit)-by-ivak-

Suppose you apply the map-reduce method to train a neural network on ten machines. In each iteration, what will each of the machines do?

- Omputer either forward propagation or back propagation on 1/5 of the data.
- Compute forward propagation and back propagation on 1/10 of the data to compute the derivative with respect to that 1/10 of the data.

Correct Response

- Compute only forward propagation on 1/10 of the data. (The centralized machine then performs back propagation on all the data).
- Compute back propagation on 1/10 of the data (after the centralized machine has computed forward propagation on all of the data).