

Mohamed A. Ahmed

Universidad Técnica Federico Santa María, Chile

Abdulaziz S. Alsayyari

Shaqra University, Saudi Arabia

Young-Chon Kim

Chonbuk National University, South Korea

System Architecture based on IoT for Smart Campus Parking Lots

ICCAIS 2019

Riyadh, Saudi Arabia

Content

- ☐ Motivation & Objective
- ☐ Campus Distribution Power System
- □ IoT Architecture for Smart Campus Parking Lot
- ☐ Case Study: Chonbuk National University, Jeonju Camps
- ☐ Conclusion & Future Work

Future Trends

Motivation

- ☐ Smart grid is the future electric power system
 - ✓ Support bi-directional energy and information flow between consumers and service provider
 - ✓ Enable improved reliability, stability and efficiency.
- ☐ Internet-of-Things (IoT) technology has received significant attention in various application domains
 - ✓ Smart buildings, health care systems, agriculture, smart cities
- □ IoT technology can be used for enabling smart grid achieving their goals in monitoring, protecting and controlling
 - ✓ Incorporation of sensors, actuators and metering devices
 - ✓ Supporting various network functions and system automation
- ☐ Smart grid is now supporting many new applications in the distribution power system
 - ✓ Smart meters, distributed energy resources, electric vehicle and energy storage systems

 ⁴

Motivation

- ☐ Electric vehicles are expected to play an important role due to
 - ✓ Environmental and economic benefits
- ☐ Integration of electric vehicles in the distribution power network represents complex problems
 - ✓ Vehicles operation modes adopt a bidirectional energy flow between electric vehicles and the power grid
- ☐ With large-scale integration of electric vehicles, the charging process can overload the power system mainly during peak hours
 - ✓ Other factors that may affect the power grid may include voltage fluctuation, harmonics, frequency deviation, grid stability and power outages
- ☐ Less research work on the underline communication infrastructure for the electric vehicle system and even less for the comm. infrastructure of the distribution power system

Objective

- □ Develop a management platform for charging electric vehicles in a university campus based on IoT technology
- ☐ Proposed architecture consists of three-layers
 - ✓ Power system layer
 - ✓ Communication network layer
 - ✓ Application layer
- ☐ Consider a real case study of a parking lot in a university campus
- □ Performance analysis and practical feasibility of communication network layer are evaluated and discussed

- □ Power distribution systems represent an important part of electric power grid as it provide the final link between the transmission system and consumers where most of faults and outages occur
- □ In South Korea, the distribution system is operated and managed by Korea Electric Power Corporation (KEPCO)
 - ✓ Total distribution automation system (TDAS) is responsible for monitoring and control of all the distribution systems
- ☐ New technologies such as distributed energy resources and EVs
 - ✓ Challenging task to control center operator and monitor and operate the distribution systems efficiently
- ☐ Innovative utilization of communication network
 - ✓ Supporting real-time monitoring and operation of the power distribution grid without a need for direct human intervention

- ☐ The function of DAS can be divided into two parts:
 - ✓ management of the distribution power system
 - √ management of end-user (consumer)
- ☐ Managing the distribution power system includes
 - ✓ Monitoring and control of power quality
 - ✓ Power factor
 - ✓ Feeder status information
 - ✓ Feeder voltage quality
 - ✓ Feeder switch control
 - ✓ Recloser control
 - ✓ Fault isolation

- ☐ The function of DAS can be divided into two parts:
 - ✓ management of the distribution power system.
 - √ management of end-user (consumer)
- ☐ Consumer management includes
 - ✓ Customer power quality
 - ✓ Customer usage
 - ✓ Time-of-use (ToU)
 - ✓ Controlling of the end-user loads

☐ Smart campus parking lot

- ✓ A system in which the status of electric vehicles and charging stations are collected from various parking spots and communicated to a central controller that determines an appropriate action in the system
- ✓ It consists of five basic components: electric vehicles, charging stations, electric power network, communication network and application system

12

☐ Power System Layer

- ✓ Consists of electric vehicles, charging stations, metering devices, intelligent electronic devices, sensors and actuators
- ✓ Main objective is data collection from electric vehicle subsystem utilizing a variety of sensor nodes and measurement devices
- ✓ Measured parameters such as the energy demand, vehicles identification, chargers status, and vehicles information are transmitted to the application layer through the communication network layer

☐ Communication Network Layer

- ✓ Main function is to transmit collected data from the electric vehicle system to the application layer
- √ Various communication technologies which can be used
 - ✓ Wired: PLC, Ethernet, optical fiber, etc.
 - ✓ Wireless: WiFi, ZigBee, GPRS, 3G/4G, LTE, etc.
- ✓ Different solutions can be implemented for different design configurations (based on the system requirements)

☐ Application Layer

- ✓ Main function is real-time monitoring and control
- ✓ Data received from parking lot layer are processed for appropriate actions
- ✓ University global control center gathers all measurements from local controllers and determines the appropriate action for each charging station
- ✓ All data received are stored, processed and analyzed

Main elements of the smart campus parking lot

- □ IoT-EV and IoT-CS are defined as the main components in the smart parking lot
 - ✓ All IoT-EVs and IoT-CSs are connected as nodes in the IoT Parking Area Network (IoT-PAN)
 - ✓ Other elements including protection devices, CCTV, etc.
- □ IoT-gateway (IoT-GW) is a router that connects IoT-PANs together with IoT-Campus Area Network (IoT-CAN)
 - ✓ All IoT-PANs are aggregated and connected to IoT-CAN, which is defined as a wide area network that covers a large area

Component	Description	
IoT-EV	IoT-Electric Vehicle	
IoT-CS	IoT-Charging Station	
IoT-PAN	IoT-Parking Area Network	
IoT-GW	IoT-Gateway	
IoT-CAN	IoT-Campus Area Network	

EPON Architecture for IoT-CAN

- ☐ Ethernet Passive Optical Network (EPON) is considered for the campus distribution power system, which combines advantages of optical network technology and Ethernet
- Communication network for the distribution power system supports low voltage transformers, smart meters, charging stations and distributed energy resources
- ☐ EPON consists of an optical line terminal (OLT), passive optical splitters (POSs), optical network units (ONUs), and optical distribution network (ODN)
- ☐ A real distribution power system is considered
 - ✓ It consists of a substation, distribution lines, and loads
 - ✓ The system supports different types of protection devices such as automatic gas switches and automatic reclosers

EPON Architecture for IoT-CAN

- ☐ The electric topology consists of two feeders supplied by 22.9 kV
 - ✓ 22 protection devices and 2 reclosers
 - ✓ Power cables are concentric neutral cables and extra high voltage aluminum wire cables

EPON Architecture for IoT-CAN

Fig. 2 Proposed EPON-based architecture for Campus distribution power system

□ Optical power budget is analyzed

✓ To ensure the received signal power is enough to maintain acceptable performance

☐ IEEE 802.3ah → 26.0 dB → Upstream &Downstream

Power Budget =
$$P_{tx} - P_{rx}$$

 P_{tx} , dBm \rightarrow minimum transmitter launch power <u>at the input</u> of the optical link P_{rx} , dBm \rightarrow minimum sensitivity of the receiver <u>at the output</u> of optical link

IEEE STD 802.3 EPON Specifications

Parameter	Data rate	Standard	Power budget
EPON	1.25Gbps (D &U) 1000Base-PX20	IEEE 802.3ah	PX-20U 26dB PX-20D 26dB

☐ Sources of optical attenuation

- ✓ Splitters (Loss Pos)
- ✓ Connectors (Loss conn)
- ✓ Fiber cables (Loss fiber)

$$\Sigma Loss_{epon} = \Sigma Loss_{POS} + \Sigma Loss_{conn} + \Sigma Loss_{fiber}$$

Component insertion loss

Parameter	Attenuation	
Fiber	0.4 dB/Km	
Connector	0.2 dB	
	1×2 (5%:95%) 0.4 dB	
Splitter	1×2 (50%:50%) 3 dB	
	1×4 6 dB	

Results of power budget analysis for feeder 1

	Fiber Loss	Splitter Loss	Connector Loss	Total
F1-G1	0.4064	0.4	0.8	1.6064
F1-G2	0.8024	0.8	1.2	2.8024
F1-G3	1.0868	1.2	1.6	3.8868
F1-G4	1.1648	1.6	2.0	4.7648
F1-G5	1.3908	2.0	2.4	5.7908
F1-R1	1.6316	2.4	2.8	6.8316
F1-G6	1.7616	2.8	3.2	7.7616
F1-G7	2.0152	8.8	3.6	14.4152
F1-G8	2.3652	9.2	4.0	15.5652
F1-G9	2.6796	9.6	4.4	16.6796
F1-G10	2.0152	8.8	3.6	14.4152

Results of power budget analysis for feeder 2

	Fiber Loss	Splitter Loss	Connector Loss	Total
F2-G1	0.8624	0.4	0.8	2.0624
F2-G2	1.0624	0.8	1.2	3.0624
F2-G3	1.2624	1.2	1.6	4.0624
F2-G4	1.454	1.6	2.0	5.054
F2-R1	1.816	7.6	2.4	11.816
F2-G5	1.816	8.0	2.8	12.616
F2-G6	1.9672	8.4	3.2	13.5672
F2-G7	2.4384	8.8	3.6	14.8384
F2-G8	2.6096	9.2	4.0	15.8096
F2-G9	1.9204	8.0	2.8	12.7204
F2-G10	2.026	8.4	3.2	13.626
F2-G11	2.426	8.8	3.6	14.826
F2-G12	2.666	9.2	4.0	15.866

- □ A simulation model is developed for a smart parking lot based on the real dimension of Engineering building (2-7) parking lot, Chonbuk National University, South Korea
 - √ 100 parking spots
- ☐ The communication network has been divided into seven subnets.
 - ✓ Six charging stations subnets
 - ✓ One local parking lot controller (PLCC) subnet
 - ✓ Communication network is configured with
 - ✓ Fast Ethernet (100 Mbps)
 - ✓ Gigabit Ethernet (1 Gbps)

Simulation model of parking lot 3 (Engineering building 2-7).

☐ Data transmitted through the communication network

- ✓ Charging stations information
 - ✓ station ID, charger ID, meter status and circuit breaker status
- ✓ Electric vehicle information
 - ✓ vehicle ID, charging type, voltage, current, frequency, and power

Generated traffic for electric vehicle and charging station based on IEC 61850

Data Type	Data Direction	Explanation	
Analogue Measurements	IoT-CS→PLLC	Charging Voltage Charging Current Grid Frequency Active Power	
Status Information	IoT-CS →PLLC IoT-EV→ PLLC	Meter Status Breaker Status	
Control Information	PLCC→IoT-CS	Switch ON/OFF Immediate/Economy Charging	
Protection Information	IoT-CS → PLLC CB-IED P&C IED		
Video Surveillance	IoT-CS → PLLC	CCTV	
Internet	Internet → IoT-CS	Internet connection	

Classification of EVCS data types based on operation modes

Measuring requirements for devices and sensors

Data Type	Idle Mode	Charging Mode
Station ID	٧	٧
Charger ID	٧	٧
Meter status	٧	٧
Circuit Breaker Status	٧	٧
Vehicle ID	Х	٧
Charging Type	Х	٧
Voltage	Х	٧
Current	Х	٧
Frequency	Х	٧
Power	Χ	٧

Measurement	Sampling Frequency	Data Rate (Bytes/s)	Direction
Status Information	1 Hz	2	
Power	5 Hz	10	PLLC/
Frequency	10 Hz	20	Control
Voltage	360 Hz	720	Center
Current	360 Hz	720	

(c)

☐ Received traffic from IoT-CS at the parking lot control center with 10 charging stations (a) Current (b) Voltage (c) CB status (d) Meter status

(d)

Communication Timing Requirements

End-to-end delay for Ethernet-based architecture in a smart parking lot with 1, 5 and 10 charging stations

Communication Timing Requirements

☐ Latency requirements based on electric power system

- ✓ AM and SI are mapped for monitoring and control information
- ✓ PCI from IED are mapped for protection information

Communication timing requirements based on IEEE 1646 standard

Information types	Delay Requirements
Protection Information	4 ms
Monitoring and Control Information	16 ms
Operation and Maintenance Information	1 s
Image files	10 s
Audio and Video data streams	1 s

A real vehicle arrival time is considered at engineering parking lot during a working day on 15 May, 2018

Typical parking utilization during weekdays (CBNU-PL3), 15 May 2018

□ End-to-end delay for a smart parking lot with 50 & 100 charging stations

Conclusion & Future Work

- ☐ Proposed a system architecture for monitoring electric vehicles charging system based on IoT in a university campus
 - ✓ power system, communication network and application
- ☐ Developed EPON-based communication network architecture for campus power network in order to monitor feeders, transformers and protection devices
 - ✓ Optical power budget is analyzed showed that the proposed architecture is sufficient for operation
- □ Built a communication network model for a smart parking lot based on OPNET
 - ✓ A channel capacity with 1 Gbps was sufficient to ensure amount of latency required by electric power system
- ☐ The work will be extended to support multiple parking lots of the university campus

Questions/Comments

Thank you

Mohamed A. Ahmed

Universidad Técnica Federico Santa María, Chile

mohamed.abdelhamid@usm.cl

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA