Course4U Build a Personalized Online Course Recommender System with Machine Learning

Presented by: Wahyu Ardhitama

Last Updated: December 1st, 2023

Table of Contents

- Business Case and Objective
- > Exploratory Data Analysis
- > Content-Based Recommender System using Unsupervised Learning
- > Content-Based Recommender System using Supervised Learning
- > Conclusion
- > Appendix

What are we talking about?

Did you complete the Introduction slide? (4 pts)

Business Case

Course4U growing, having reached ~34,000 users and over 233,000 enrollments in a year.

Opportunity/Problem Statement:

- 25,000 users (70%) who have enrolled in fewer than 10 courses.
- Among them, 8,000 users have enrolled in only a single course.
- Only **less than 45%** of the total courses have been chosen by users.
- Encourage existing users to enroll in more than 10 courses.
- Acquiring new users.

Maximize user engagement, increase revenue streams, and Goals solidify Course4U's position in the online education market. 257,500 enrollments next year.

Campaign Objective:

Conversion/Enrollments

KPI:

Number of enrollments

(Tracked via online conversions and mobile - SDK)

Primary metric:

 Increase course enrollments by 10% by identifying and offering more engaging and relevant courses to learners. (courses enrolled in the list from 45% to > 50%)

Analytics Objective

Explore and compare various machine learning models and find one with the best performance to improve learners' learning experience

C4U Recommender Systems:

- Quickly find new interested courses
- Better paving learning paths
- More learners interacting with more courses

Hypothesis:

Recommender system delivers more incremental value of enrollments relative to the current systems.

Models and Findings

Exploratory Data Analysis

Did you complete the 4 Exploratory Data Analysis slides? (8 pts)

Keywords

In general, the courses are focused on **demanding IT skills**

Course Genres

307 Total of courses offered

- Mostly related to backend
 development, machine learning,
 database and so on.
- Courses related to chatbot and blockchain are comparatively fewer.

Genres

Course Enrollment

- Over 8,000 users have enrolled in only one course.
- The enrollment distribution is continuously declining, with fewer users as the number of enrollments increases.

Top 20 Courses

- Just over 60% of enrollment
- Related to data science, python,
 machine learning and so on as depicted
 on keywords
- Only 6.5 % of total courses offered

building Javascript entropy of transport producting electric elect
a text analytic Causaug
Tracing Tunidamericals and Articles Proposition of
databasetesting big data sales or application big databasetesting
oritanetized development chatbet predictive foundation decker business bedding classification processing personnel development chatbet constitution profession decker business bedding classification processing decker business bedding classification bedd
we model build distributed analytics (by regentine build distributed analytics selected analytics) of the cloud selected analytic selected
Cloud computing Carlos Cloud computing Carlos Cloud Computing Carlos Car
bo analyzing sipiline application of the state of the sta
working restruction accelerating heat visualization language processing reactive architecture essentials hands

	TITLE	Enrolls
0	python for data science	14936.0
1	introduction to data science	14477.0
2	big data 101	13291.0
3	hadoop 101	10599.0
4	data analysis with python	8303.0
5	data science methodology	7719.0
6	machine learning with python	7644.0
7	spark fundamentals i	7551.0
8	data science hands on with open source tools	7199.0
9	blockchain essentials	6719.0
10	data visualization with python	6709.0
11	deep learning 101	6323.0
12	build your own chatbot	5512.0
13	r for data science	5237.0
14	statistics 101	5015.0
15	introduction to cloud	4983.0
16	docker essentials a developer introduction	4480.0
17	sql and relational databases 101	3697.0
18	mapreduce and yarn	3670.0
19	data privacy fundamentals	3624.0

Content-Based Recommender System using Unsupervised Learning

Models and Findings

Content-Based Recommender System using User Profile and Course Genres

Did you complete the slides related to content-based recommender system using user profile and course genres? (6 pts)

Flowchart

Recommendation Generation

Evaluation Results

score_threshold = 10

	USER	COURSE_ID	SCORE
14636	733707	RP0105EN	99.0
14655	733707	SC0103EN	90.0
14796	733707	excourse73	90.0
11608	674939	RP0105EN	90.0
11618	674939	SC0103EN	90.0
3053	435051	excourse42	10.0
2680	418401	BD0131EN	10.0
3051	435051	excourse10	10.0
3050	435051	excourse05	10.0
		GPXX0M6UEN	100

53411 recommendations for 864 users of 1,000 users(86.4%)

Top 10 recomended all users courses

	TITLE	SCORE	COURSE_ID	USER	
→ Scores >= 99	analyzing big data in rusing apache spark	99.0	RP0105EN	733707	0
	spark overview for scala analytics	90.0	SC0103EN	733707	1
	analyzing big data with sql	90.0	excourse73	733707	2
	analyzing big data in rusing apache spark	90,0	RP0105EN	674939	3
	spark overview for scala analytics	90.0	SC0103EN	674939	4
	foundations for big data analysis with sql	90.0	excourse72	674939	5
	foundations for big data analysis with sql	90.0	excourse72	733707	6
	analyzing big data with sql	90.0	excourse73	674939	7
	getting started with the data apache spark ma	90.0	TMP0105EN	733707	8
→ Scores >= 87	getting started with the data apache spark ma	87.0	TMP0105EN	1312255	9

3 users 5 courses 733707, 674939,1312255

- Big data (data analysis) sql
- Foundation
- Apache spark

Recommendation based on users and courses

User profile 1078030

TITLE	COURSE_ID	rating	item	user	
data analysis with python	DA0101EN	3.0	DA0101EN	1078030	0
statistics 101	ST0101EN	3.0	ST0101EN	1078030	1
accelerating deep learning with gpu	ML0122ENv1	3.0	ML0122ENv1	1078030	2
deep learning with tensorflow	ML0120ENv2	3.0	ML0120ENv2	1078030	3
data visualization with python	DV0101EN	3.0	DV0101EN	1078030	4
deep learning 101	ML0115EN	3.0	ML0115EN	1078030	5
machine learning with python	ML0101ENv3	3.0	ML0101ENv3	1078030	6
python for data science	PY0101EN	3.0	PY0101EN	1078030	7

Participate in 8 courses

- Data analysis
- Deep learning
- Python

Evaluation Results

Top 10 recomended score's for 1078030

	TITLE	SCORE	COURSE_ID	
→ Score	accelerating deep learning with gpu	30.0	ML0122EN	0
	applied machine learning in python	30.0	excourse21	1
	introduction to data science in python	30.0	excourse22	2
	machine learning with python	30.0	ML0101EN	3
	data science in insurance basic statistical a	27.0	GPXX0IBEN	4
	applied machine learning in python	24.0	excourse49	5
	build a personal movie recommender with django	24.0	GPXX0D14EN	6
	launch an ai hotdog detector as a serverless p	24.0	GPXX0YMEEN	7
	exploratory data analysis for machine learning	21.0	excourse54	8
→ Score	python and statistics for financial analysis	21.0	excourse20	9

Participate in 8 courses

- **Data analysis**
- **Deep learning**
- **Python**

10 recommended courses

- Machine learning
- **Deep learning**
- Python
- Data analysis
- **Data science**

85 recommendations lowest score 12

Recommendation based on users and courses

User profile 733707

s p	user	item	rating	COURSE_ID	TITLE
0	733707	RP0103	3.0	RP0103	using r with databases
1	733707	BD0212EN	3.0	BD0212EN	spark fundamentals ii
2	733707	BD0211EN	3.0	BD0211EN	spark fundamentals i
3	733707	ST0101EN	3.0	ST0101EN	statistics 101
4	733707	BD0115EN	3.0	BD0115EN	mapreduce and yarn
18	733707	DV0101EN	3.0	DV0101EN	data visualization with python
19	733707	SC0105EN	3.0	SC0105EN	data science with scala
20	733707	BD0145EN	3.0	BD0145EN	sql access for hadoop
21	733707	DB0151EN	3.0	DB0151EN	nosql and dbaas 101
22	733707	BD0131EN	3.0	BD0131EN	moving data into hadoop

Participate in 23 courses

- Spark
- Sql
- Python

Evaluation Results

Top 10 recomended courses for 733707

	TITLE	SCORE	COURSE_ID	
→ Scores 99	analyzing big data in rusing apache spark	99.0	RP0105EN	0
	spark overview for scala analytics	90.0	SC0103EN	1
	getting started with the data apache spark ma	90.0	TMP0105EN	2
	analyzing big data with sql	90.0	excourse73	3
	foundations for big data analysis with sql	90.0	excourse72	4
	excourse31 69.0 cloud computing applications part 2 big data		5	
	big data essentials hdfs mapreduce and spark	69.0	excourse71	6
	\r\ndistributed computing with spark sql	69.0	excourse05	7
	nosql systems	69.0	excourse03	8
→ Scores 69	using hbase for real time access to your big data	69.0	BD0143EN	9

Participate in 23 courses

- Spark
- Sql
- Python

10 recommended courses

- Big data (data analysis) sql
- Apache spark
- Foundation

172 recommendations lowest score 12

Recommendation based on users and courses

User profile 674939

	user	item	rating	COURSE_ID	TITLE
0	674939	BD0111EN	3.0	BD0111EN	hadoop 101
1	674939	BD0211EN	3.0	BD0211EN	spark fundamentals i
2	674939	BD0101EN	3.0	BD0101EN	big data 101
3	674939	BD0135EN	3.0	BD0135EN	developing distributed applications using zook
4	674939	BD0143EN	3.0	BD0143EN	using hbase for real time access to your big data
5	674939	BD0121EN	3.0	BD0121EN	apache pig 101
6	674939	BD0131EN	3.0	BD0131EN	moving data into hadoop
7	674939	BD0221EN	3.0	BD0221EN	spark milib
8	674939	BD0115EN	3.0	BD0115EN	mapreduce and yarn
9	674939	BD0212EN	3.0	BD0212EN	spark fundamentals ii
10	674939	TMP0105EN	3.0	TMP0105EN	getting started with the data apache spark ma
11	674939	BD0133EN	3.0	BD0133EN	controlling hadoop jobs using oozie
12	674939	BD0223EN	3.0	BD0223EN	exploring spark s graphx
13	674939	BD0141EN	3.0	BD0141EN	accessing hadoop data using hive
14	674939	BD0145EN	3.0	BD0145EN	sql access for hadoop

Participate in 15 courses

- Spark
- Hadoop
- Big data

Evaluation Results

Top 10 recomended courses for 674939

	USER	COURSE_ID	SCORE	TITLE	
3	674939	RP0105EN	90.0	analyzing big data in rusing apache spark	→ Scores 90
4	674939	SC0103EN	90.0	spark overview for scala analytics	
5	674939	excourse72	90.0	foundations for big data analysis with sql	
7	674939	excourse73	90.0	analyzing big data with sql	
30	674939	excourse10	78.0	database architecture scale and nosql with e	
34	674939	excourse05	78.0	\r\ndistributed computing with spark sql	
36	674939	excourse03	78.0	nosql systems	
39	674939	DB0151EN	78.0	nosql and dbaas 101	
41	674939	GPXX0M6UEN	78.0	using the cql shell to execute keyspace operat	
42	674939	GPXX097UEN	78.0	performing table and crud operations with cass	→ Scores 78

→ Scores 90 · Spark

- Participate in 15 courses
- Hadoop
- Big data

10 recommended courses

- Big data (data analysis) sql
- Nosql
- Spark

101 recommendations lowest score 12

Rating 2 Users

User 2057052 courses enrollment

	TITLE	COURSE_ID	rating	item	user	
1	data ai jumpstart your journey	DS0132EN	2.0	DS0132EN	2057052	0
	introduction to data science	DS0101EN	3,0	DS0101EN	2057052	1
	machine learning with python	ML0101ENv3	3.0	ML0101ENv3	2057052	2
	python for data science	PY0101EN	3.0	PY0101EN	2057052	3
	sgl and relational databases 101	DB0101EN	3.0	DB0101EN	2057052	4

Participate in 5 courses

Recomended courses for 2057052 & 1871627

USER COURSE_ID SCORE TITLE

No recommendations; their highest scores are 2

User 1871627 courses enrollment

	user	item	rating	COURSE_ID	TITLE
0	1871627	CC0103EN	3.0	CC0103EN	ibm cloud essentials v3
1	1871627	ML0101ENv3	3.0	ML0101ENv3	machine learning with python
2	1871627	ML0103EN	3.0	ML0103EN	digital analytics regression
3	1871627	ST0101EN	3.0	ST0101EN	statistics 101
4	1871627	PY0101EN	3.0	PY0101EN	python for data science
5	1871627	DV0151EN	3.0	DV0151EN	data visualization with r
6	1871627	DS0101EN	3.0	DS0101EN	introduction to data science
7	1871627	DS0103EN	3.0	DS0103EN	data science methodology
8	1871627	CC0101EN	3.0	CC0101EN	introduction to cloud
9	1871627	ML0115EN	3.0	ML0115EN	deep learning 101
10	1871627	DB0101EN	3.0	DB0101EN	sql and relational databases 101
11	1871627	OS0101EN	3.0	OS0101EN	introduction to open source
12	1871627	CB0103EN	3.0	CB0103EN	build your own chatbot
13	1871627	DS0132EN	2.0	DS0132EN	data ai jumpstart your journey

Participate in 14 courses

Summary

The idea

☐ Interested in certain topics ☐ a course has a similar topics

Past interactions

- ☐ User-item similarity (a dot product) capture it
- 1. Personalized suggestions based on a user's preferences and past interactions.
- 2. Has insights into a user's preferences and can recommend courses that align with their interests.
- 3. Can make recommendations even for new users with limited interaction history.
- 4. Based on explicit features (e.g., genres) that users can understand.
- 5. Adjust the threshold for users who have courses with a rating of 2.

Models and Findings

Content-Based Recommender System using Course Similarity

Did you complete the slides related to content-based recommender system using course similarity? (6 pts)

Flowchart

Files

sim_df.head()

Course Similarity

0	1	2	•••	305	306
1.000000	0.088889	0.088475		0.039276	0.121113

bow_df.head()

course_df.head()

Bag of Words

doc_index	doc_id	token	bow
0	ML0201EN	ai	2

Course 1

Course_ID	Title	Description
ML0151EN	machine learning	this machine learning

Recommendation Generation

User andCourse Data

Textprocessing

Recommendation generation

Course 1(index=200)

Course_ID	Title	Description
MI 0151FN		this machine learning

Course 2(index=158)

Course_ID	Title	Description
ML0101ENv3	machine learning with	machine learning can be

Similarity matrix

Similiraty calculation:

Cosine, Euclidean, Jaccard index,..

	USER	COURSE_ID	SCORE
0	37465	ML0120EN	1.000000
1	37465	ML0120ENv3	1.000000
2	37465	excourse36	0.739704
3	37465	excourse23	0.739704
4	37465	DV0151EN	0.723536
5995	2087663	excourse62	0.647502
	3	excourse47	0.634755
75	5% 3	excourse60	0.615568
5998	2087663	excourse46	0.612054
15999	2087663	excourse09	0.608330

Similarity matrix

Hot spots shown.
Possible to build a recommender system based on course similarities.

Evaluation Results

Machine learning courses ML0151EN & ML0101ENv3

score_threshold = 0.6

	USER	COURSE_ID	SCORE
0	37465	ML0120EN	1.000000
1	37465	ML0120ENv3	1.000000
2	37465	excourse36	0.739704
3	37465	excourse23	0.739704
4	37465	DV0151EN	0.723536
15995	2087663	excourse62	0.647502
15996	2087663	excourse47	0.634755
15997	2087663	excourse60	0.615568
15998	2087663	excourse46	0.612054
15999	2087663	excourse09	0.608330

16000 rows × 3 columns

16000 recommendations for 1000 users of 1,000 users (100%)

Top 10 recomended all users courses

	TITLE	SCORE	COURSE_ID	USER	
→ Scores >= 100%	deep learning with tensorflow	1.000000	ML0120EN	37465	0
	deep learning with tensorflow	1.000000	ML0120ENv3	37465	1
	data analysis using python	0.739704	excourse36	37465	2
	data analysis using python	0.739704	excourse23	37465	3
	data visualization with r	0.723536	DV0151EN	37465	4
	introduction to data analytics	0.722018	excourse32	37465	5
	accelerating deep learning with gpus	0.707107	ML0122ENv3	37465	6
	data analysis with python	0.681638	excourse38	37465	7
	excel basics for data analysis	0.664509	excourse33	37465	8
→ Scores >= 66%	machine learning with r	0.662622	ML0151EN	37465	9

1 users 10 courses User 37465

- Data analysis
- Deep learning
- Python

Recommendation based course similarity

User profile 1078030

	COURSE_ID	rating	item	user	
data analysis with python	DA0101EN	3.0	DA0101EN	1078030	0
statistics 101	ST0101EN	3.0	ST0101EN	1078030	1
accelerating deep learning with gpu	ML0122ENv1	3.0	ML0122ENv1	1078030	2
deep learning with tensorflow	ML0120ENv2	3.0	ML0120ENv2	1078030	3
data visualization with python	DV0101EN	3.0	DV0101EN	1078030	4
deep learning 101	ML0115EN	3.0	ML0115EN	1078030	5
machine learning with python	ML0101ENv3	3.0	ML0101ENv3	1078030	6
l python for data science	PY0101EN	3.0	PY0101EN	1078030	7

Participate in 8 courses

- Data analysis
- Deep learning
- Python

Recommendation based on course similarity

User profile 733707

TITLE	COURSE_ID	rating	item	user	
using r with databases	RP0103	3.0	RP0103	733707	0
spark fundamentals ii	BD0212EN	3.0	BD0212EN	733707	1
spark fundamentals i	BD0211EN	3.0	BD0211EN	733707	2
statistics 101	ST0101EN	3.0	ST0101EN	733707	3
mapreduce and yarn	BD0115EN	3.0	BD0115EN	733707	4
data visualization with python	DV0101EN	3.0	DV0101EN	733707	18
data science with scala	SC0105EN	3.0	SC0105EN	733707	19
sql access for hadoop	BD0145EN	3.0	BD0145EN	733707	20
nosql and dbaas 101	DB0151EN	3.0	DB0151EN	733707	21
moving data into hadoop	BD0131EN	3.0	BD0131EN	733707	22

Participate in 23 courses

- Spark
- Sql
- Python

Recommendation based on users and courses

User profile 674939

	user	item	rating	COURSE_ID	TITLE
0	674939	BD0111EN	3.0	BD0111EN	hadoop 101
1	674939	BD0211EN	3.0	BD0211EN	spark fundamentals i
2	674939	BD0101EN	3.0	BD0101EN	big data 101
3	674939	BD0135EN	3.0	BD0135EN	developing distributed applications using zook
4	674939	BD0143EN	3.0	BD0143EN	using hbase for real time access to your big data
5	674939	BD0121EN	3.0	BD0121EN	apache pig 101
6	674939	BD0131EN	3.0	BD0131EN	moving data into hadoop
7	674939	BD0221EN	3.0	BD0221EN	spark milib
8	674939	BD0115EN	3.0	BD0115EN	mapreduce and yarn
9	674939	BD0212EN	3.0	BD0212EN	spark fundamentals ii
10	674939	TMP0105EN	3.0	TMP0105EN	getting started with the data apache spark ma
11	674939	BD0133EN	3.0	BD0133EN	controlling hadoop jobs using oozie
12	674939	BD0223EN	3.0	BD0223EN	exploring spark s graphx
13	674939	BD0141EN	3.0	BD0141EN	accessing hadoop data using hive
14	674939	BD0145EN	3.0	BD0145EN	sql access for hadoop

Participate in 15 courses

- Spark
- Hadoop
- Big data

Recommendation based on users and courses

User profile 1078030

User profile 733707

User profile 674939

Participate in 8 courses

- Data analysis
- Deep learning
- Python

Participate in 23 courses

- Spark
- Sql
- Python

Participate in 15 courses

- Spark
- Hadoop
- Big data

Evaluation Results

SCORE

Machine learning courses ML0151EN & ML0101ENv3

Top 10 recomended score's for 1078030

Score 100%

TITLE

10 recommended courses

- **Data analysis**
- **Deep learning**
- **Python**

For user 733707 & 674939

deep learning with tensorflow 7984 1078030 ML0120EN 1.000000 7985 1078030 ML0120ENv3 1,000000 deep learning with tensorflow excourse36 0.739704 1078030 data analysis using python 7987 1078030 excourse23 0.739704 data analysis using python 1078030 DV0151EN 0.723536 data visualization with r 7989 1078030 excourse32 0.722018 introduction to data analytics 1078030 ML0122ENv3 0.707107 accelerating deep learning with gpus 7991 1078030 excourse38 0.681638 data analysis with python 1078030 excourse33 0.664509 excel basics for data analysis machine learning with r

Score 66% 1078030 ML0151EN 0.662622

16 recommendations lowest score 60%

COURSE ID

USER

Evaluation Results

Machine learning courses ML0151EN & ML0101ENv3

Top 10 recomended score's for 733707

	TITLE	SCORE	COURSE_ID	USER	
	deep learning with tensorflow	1.000000	ML0120ENv3	733707	3870
Score 100	deep learning with tensorflow	1.000000	ML0120ENv2	733707	3871
Score 100	accelerating deep learning with gpu	0.982873	ML0122ENv1	733707	3872
	data science with open data	0.732941	DS0110EN	733707	3873
	introduction to big data	0.708214	excourse67	733707	3874
	foundations for big data analysis with sql	0.703648	excourse72	733707	3875
	a crash course in data science	0.694563	excourse63	733707	3876
	machine learning	0.689253	excourse46	733707	3877
	machine learning for all	0.680065	excourse47	733707	3878
core 66%	machine learning with python	0.662622	ML0101ENv3	733707	3879

15 recommendations lowest score 60%

10 recommended courses

- Deep learning
- Data science
- Big data
- **Machine learning**

Evaluation Results

Machine learning courses ML0151EN & ML0101ENv3

Top 10 recomended score's for 674939

4 recommended course

• Big data

	TITLE	SCORE	COURSE_ID	USER	
0	introduction to big data	0.708214	excourse67	674939	832
Score 70%	introduction to big data foundations for big data analysis with sql	0.703648	excourse72	674939	833
	fundamentals of big data	0.650071	excourse74	674939	834
→ Score 61%	big data modeling and management systems	0.616759	excourse68	674939	835

4 recommendations lowest score 61%

Recommendation based on users and courses

User profile 1078030

User profile 733707

User profile 674939

Participate in 8 courses

Participate in 23 courses

Participate in 15 courses

- Data analysis
- Deep learning
- Python

- Spark
- Sql
- Python

- Spark
- Hadoop
- Big data

10 recommended courses (16)

- Data analysis
- Deep learning
- Python

10 recommended courses (15)

- Deep learning
- Data science
- Big data
- Machine learning

4 recommended courses

Big data

Evaluation Results

Machine learning courses ML0151EN & ML0101ENv3

Top 10 recomended score's for 2057052 (rating 2)

12	USER	COURSE_ID	SCORE	TITLE	
8946	2057052	DS0110EN	0.732941	data science with open data	Score 73%
8947	2057052	excourse63	0.694563	a crash course in data science	Score 73%
8948	2057052	DAI101EN	0.668994	data ai essentials	
8949	2057052	ML0151EN	0.662622	machine learning with r	
8950	2057052	excourse22	0.647502	introduction to data science in python	
8951	2057052	excourse62	0.647502	introduction to data science in python	
8952	2057052	excourse65	0.638641	data science fundamentals for data analysts	
8953	2057052	excourse47	0.634755	machine learning for all	
8954	2057052	excourse46	0.612054	machine learning	→ Score 61%

9 recommendations lowest score 61%

9 recommended courses

- Data science
- Data ai
- Machine learning

Summary

The idea

- Interested in certain topics
 Feature vector
- Feature vectors

 a course has a similar topics
 - ☐ Similarity matrix capture it
- 1. Offer personalized suggestions based on the intrinsic characteristics of courses.
- 2. Based on explicit features (e.g., genres) that users can understand.
- 3. Can make recommendations even for new users with limited interaction history.
- 4. Based on <u>specific features of courses</u>, allowing users to interpret and understand the reasons behind each recommendation.

Models and Findings

Clustering-Based Recommender System

Did you complete the slides related to content-based recommender system using user profile clustering? (6 pts)

Flowchart

Recommendation Generation

☐ Create user profile vector

- ☐ Cluster data processing
- User and Genre

User	Python	Database	•••	ML	Blockchain
1		52.00		33.0	6.0
•••					

User profile standard scaler

User	Python	Database	•••	ML	Blockchain
1	-0.3533	4.52998		2.3685	0.519419
•••					

- ☐ Cluster assignment and profiles
- ☐ Recommendation generation

Machine learning (ML) learners:

- ML 101
- ML with python

Database learners:

- SQL 101
- SQL with python

Python:

- Python 101
- Python for analysis

Covariance matrix of the user profile feature vectors with 14 features

Hot spots shown.

Possible to build a recommender system based on cluster.

Evaluation Results

Top 20 recomended course based on cluster user profiler feature vectors **PCA** 27 21 19 2€ luster 16⁷
20
17 26

Recommendation based on users and courses

User profile 1078030

User profile 733707

User profile 674939

Participate in 8 courses

- Data analysis
- Deep learning
- Python

Participate in 23 courses

- Spark
- Sql
- Python

Participate in 15 courses

- Spark
- Hadoop
- Big data

Course recommendations based on the popular courses in the same cluster

	user	cluster	rec_1	rec_2	rec_3	title_1	title_2	title_3
102	1078030	1	PY0101EN	DA0101EN	DV0101EN	python for data science	data analysis with python	data visualization with python
151	674939	28	BD0111EN	BD0115EN	BD0211EN	hadoop 101	mapreduce and yarn	spark fundamentals i
221	2057052	16	DS0101EN	BD0101EN	PY0101EN	introduction to data science	big data 101	python for data science
298	733707	9	BD0111EN	PY0101EN	BD0211EN	hadoop 101	python for data science	spark fundamentals i

Recommendation based on users and courses

User profile 1078030

User profile 733707

User profile 674939

Participate in 8 courses

- Data analysis
- Deep learning
- Python

- Python
- Data analysis
- Data science
- Data visualization

Participate in 23 courses

- Spark
- Sql
- Python

3 recommended courses

- Python
- Data science
- Hadoop
- Spark

Participate in 15 courses

- Spark
- Hadoop
- Big data

- Hadoop
- Maproduce
- Spark

Summary

- 1. Identify groups of users with similar preferences within the same cluster.
- 2. Users within the same cluster typically share common characteristics or preferences.
- 3. The system focuses on clusters, reducing the complexity from considering every user.
- 4. Recommendations remain relevant from changes.

Collaborative-Filtering Recommender System using Supervised Learning

Models and Findings

KKN-Based Collaborative Filtering

Did you complete the slide related to KNN-based collaborative filtering slide? (6 pts)

Flowchart

Matrix

Collaborative filtering is probably the most commonly used recommendation algorithm, there are two main types of methods:

User-based collaborative filtering is based on the **user similarity or neighborhood Item-based** collaborative filtering is based on **similarity among items**

User-item matrix

	Machine Learning with Python	Machine Learning 101	Machine Learning Capstone	SQL with Python	Python 101
•••					•••
user2	3.0	3.0	3.0	3.0	3.0
user3	2.0	3.0	3.0	2.0	
user4	3.0	3.0	2.0	2.0	3.0
user5	2.0	3.0	3.0		
user6	3.0	3.0	?		3.0
•••				•••	•••

Predict the rating of the user user6 to item Machine Learning Capstone

Evaluation Results (display 15)

	User	Item	Predicted Rating	TITLE
0	1078030	ML0122ENv1	2.900	accelerating deep learning with gpu
1	1078030	DV0101EN	3.000	data visualization with python
2	733707	DS0101EN	3.000	introduction to data science
3	733707	ML0120EN	3.000	deep learning with tensorflow
4	733707	BD0101EN	3.000	big data 101
5	733707	BD0115EN	3.000	mapreduce and yarn
6	733707	ST0101EN	2.975	statistics 101
7	733707	DB0151EN	2.975	nosql and dbaas 101
8	733707	BD0212EN	3.000	spark fundamentals ii
9	733707	DV0151EN	3.000	data visualization with r
10	733707	ML0101EN	3.000	machine learning with python
11	733707	BD0135EN	3.000	developing distributed applications using zook
12	674939	BD0141EN	3.000	accessing hadoop data using hive
13	674939	TMP0105EN	2.800	getting started with the data apache spark ma
14	674939	BD0223EN	3.000	exploring spark s graphx
15	674939	BD0133EN	3.000	controlling hadoop jobs using oozie
16	674939	BD0115EN	3.000	mapreduce and yarn
17	674939	BD0145EN	3.000	sql access for hadoop

User profile 1078030

Participate in 8 courses

- Data analysis
- Deep learning
- Python
- User profile 733707

Participate in 23 courses

- Spark
- Sql
- Python
- User profile 674939

Participate in 15 courses

- Spark
- Hadoop
- Big data

Evaluation Results

Recommendation based on users and courses

User profile 1078030

User profile 733707

User profile 674939

Participate in 8 courses

- Data analysis
- Deep learning
- Python

- Python
- Data visualization

Participate in 23 courses

- Spark
- Sql
- Python

Recommended courses

- Data science
- Deep learning
- Big data
- Spark
- Data visualization
- Machine learning
- Statistics
- Nosql

Participate in 15 courses

- Spark
- Hadoop
- Big data

- Spark
- Hadoop

Evaluation Results (binary labels)

Summary

The idea

Create user profile

Neighborhood selection

User-item matrix

- 1. Personalized recommendations by considering the preferences of similar users or items.
- 2. The similarity between users or items, using a straightforward nearest-neighbor approach.
- 3. New users or items based on the preferences of similar entities. Similar users or items are used to infer preferences for new entities.
- 4. Relies on the local neighborhood of users or items, and it can find meaningful connections.

Models and Findings

NMF-Based Collaborative Filtering

Did you complete the slide related to NMF-based collaborative filtering slide? (6 pts)

Flowchart

Matrix

- Non-negative matrix factorization (NMF), decomposes a big sparse matrix into two smaller and dense
 matrices.
- User features and another represents the transformed item features.
- Non-negative matrix factorization can be one solution to big matrix issues.

Non-negative Matrix Factorization

User-item matrix: A 1000 x 100 User matrix: U 1000 x 16 Item matrix: I 16 x 100

	Item1	ML101	•••	Item100	
•••	•••	•••	•••	•••	
user2	3.0	3.0	3.0	3.0	=
user3	2.0	3.0	2.0		
user4	3.0	3.0	2.0	3.0	
user5	2.0	3.0			
user6	3.0	3.0		3.0	
•••	•••	•••			

		Feature1	Feature2	 Feature16	
	•••		•••	 	
=	user2	••••		 	X
	user3	••••	••••	 ••••	
	user4		••••	 	
	user5		••••	 	
	user6			 	
	•••	•••	•••	 •••	

		Item1	ML101	•••	Item100
	•••	•••	•••	•••	•••
,	Feature1	••••	••••		••••
	Feature2	••••	••••		••••
	Feature3		••••		••••
	••••	••••	••••		••••
	Feature16	••••			
	•••	•••	•••	•••	•••

Evaluation Results

	User	Item	Predicted_Rating	TITLE	User profile 1078030
0	1078030	ML0122ENv1	2.798383	accelerating deep learning with gpu	Participate in 8 courses
1	1078030	DV0101EN	2.982449	data visualization with python	• Data analysis
2	733707	DS0101EN	2.998862	introduction to data science	• Deep learning
3	733707	ML0120EN	3.000000	deep learning with tensorflow	·
4	733707	BD0101EN	2.975825	big data 101	• Python
5	733707	BD0115EN	2.975243	mapreduce and yarn	User profile 733707
6	733707	ST0101EN	2.963512	statistics 101	
7	733707	DB0151EN	3.000000	nosql and dbaas 101	Participate in 23 courses
8	733707	BD0212EN	2.982911	spark fundamentals ii	• Spark
9	733707	DV0151EN	2.896570	data visualization with r	• Sql
10	733707	ML0101EN	2.898463	machine learning with python	• Python
11	733707	BD0135EN	2.979971	developing distributed applications using zook	
12	674939	BD0141EN	3.000000	accessing hadoop data using hive	
13	674939	TMP0105EN	2.956095	getting started with the data apache spark ma	User profile 674939
14	674939	BD0223EN	2.965433	exploring spark s graphx	Participate in 15 courses
15	674939	BD0133EN	2.851486	controlling hadoop jobs using oozie	
16	674939	BD0115EN	3.000000	mapreduce and yarn	• Spark
17	674939	BD0145EN	3.000000	sql access for hadoop	HadoopBig data

Evaluation Results

Recommendation based on users and courses

User profile 1078030

User profile 733707

User profile 674939

Participate in 8 courses

- Data analysis
- Deep learning
- Python

- Data visualization
- Deep learning

Participate in 23 courses

- Spark
- Sql
- Python

Recommended courses

- Data science
- Deep learning
- Big data
- Spark
- Data visualization
- Machine learning
- Statistics
- Nosql

Participate in 15 courses

- Spark
- Hadoop
- Big data

- Spark
- Hadoop
- Apache
- Sql

Evaluation Results (binary labels)

Summary

The idea

- ☐ Create user profile Matrix Factorization ☐ Matrix data processing vector ☐ Matrices U and V usage (Predict missing values)
- 1. Factorized matrices with non-negative values, providing an interpretable representation of users and items.
- 2. Relies on the underlying patterns and features present in the user-item interaction matrix.
- 3. New users or items based on the preferences of similar entities. Similar users or items are used to infer preferences for new entities.
- 4. Relies on the local neighborhood of users or items, and it can find meaningful connections.

Models and Findings

Neural Network Embedding-Based Collaborative Filtering

Did you complete the slide related to Neural Network Embedding based collaborative filtering slide? (6 pts)

Flowchart

Matrix

- Neural networks are very good at learning patterns from data and are widely used to extract latent features.
- Gradually captures and stores the features within its hidden layers as weight matrices and can be extracted to represent the original data.

Explicit User and Item Feature Engineering

Latent feature vectors

Predict the user-item interactions while simultaneously extracting the user and item embedding features.

Evaluation Results

Layer (type)	Output Shape	Param #
user_embedding_layer (Emb	oed multiple	542416
user_bias (Embedding)	multiple	33901
<pre>item_embedding_layer (Emb ding)</pre>	oed multiple	2016
item_bias (Embedding)	multiple	126
Total params: 578,459		
Trainable params: 578,459		
Non-trainable params: 0		

Evaluation Results (Improve performance)

Layer (type)	Output Shape	Param #
user_embedding_layer (Emb	ped multiple	339010
user_bias (Embedding)	multiple	33901
<pre>item_embedding_layer (Emb ding)</pre>	ped multiple	1260
item_bias (Embedding)	multiple	126
Total params: 374,297		
Trainable params: 374,297		

Evaluation Results (3rd)

(Improve performance)

The idea

Create user and item profile

□ Embedding vectors

1. Capture complex, non-linear relationships in course-rating data, allowing for more accurate modeling of user preferences.

Neural network processing

- 2. The learned embeddings can capture latent factors and provide insights into the underlying features influencing course ratings.
- 3. Handling implicit feedback, such as user interactions and engagement, which may not be explicitly rated.

Flowchart Regression Based

Neural Networks using Embedding Features

In the neural network, extends this by using two embedding vectors as an input into a Neural Network to predict the rating.

Evaluation Results (3rd)

MAE: 0.41428838083033687 MSE: 0.9932500760760065 RMSE: 0.9966193235513781

The idea

Create user and item profile Build regression model

- Neural network processing
- ☐ Embedding vectors
- 1. Capture latent factors and relationships that contribute to the prediction of rating scores.
- 2. The embedding features implicitly learn latent factors without the need for explicit feature engineering. A more accurate representations of complex relationships in the data.
- 3. The learned embeddings enable the model to understand underlying patterns that contribute to rating scores.
- 4. Provide a dense representation that captures similarities between courses and users.
- 5. Users and courses with similar embeddings share common features, aiding interpretability.

Models and Findings

Collaborative Filtering Algorithms Evaluation

Did you complete the slide comparing the performance of the collaborative filtering models? (6 points)?

Flowchart Classification Based

Neural Networks using Embedding Features

The prediction problem as a classification problem as rating only has two categorical values (Aduit vs. Completion)

Evaluation Results

	Model	Accuracy	Precision	Recall	F1-Score	AUC
0	LogisticRegression	0.954503	0.954503	1.000000	0.976722	0.500000
1	DecisionTreeClassifier	0.961253	0.981454	0.977885	0.979666	0.795113
2	SVC	0.954503	0.954503	1.000000	0.976722	0.500000
3	BaggingClassifier	0.983713	0.986596	0.996475	0.991511	0.856221
4	GradientBoostingClassifier	0.974990	0.978129	0.996071	0.987018	0.764404

The idea

Create user and item profile Build classification model

Neural network processing

☐ Embedding vectors

- 1. Provide insights into which features contribute to a specific rating class.
- 2. Easier to understand the distinctions between various user preferences.
- 3. Classification is well-suited for scenarios where the ratings are discrete and categorical, such as a system where users provide ratings on a scale (e.g., 1 to 5 stars).

	Model	RMSE
0	KNN	0.194618
1	KNN_clf	0.241409
2	NMF	0.203553
3	NMF_clf	0.241409
4	NN	0.511761
5	NN_1	0.511761
6	Regression	0.996619
7	LogisticRegression	0.213301
8	DecisionTreeClassifier	0.196842
9	SVC	0.213301
10	BaggingClassifier	0.127622
11	GradientBoostingClassifier	0.158144

Conclusion

Did you complete the conclusion slide? (6 pts)

Did you apply your creativity to improve the presentation beyond the template? (4 pts)

Did you provide any innovative insights beyond the required tasks (in addition to the requirements in the slide template)? (4 pts)

Conclussion

- 1. The BaggingClassifier has the lowest RMSE (0.127622), indicating better performance in predicting ratings or recommendations among the provided models.
- 2. From the provided list, models such as DecisionTreeClassifier (RMSE: 0.196842) and BaggingClassifier (RMSE: 0.127622) are typically less computationally expensive compared to neural network models like NN and NN_1 (RMSE: 0.534776).
- 3. If you're exploring the structure or patterns within the data without labeled examples, unsupervised learning is more appropriate. It can help in understanding the underlying structure of the data and finding hidden patterns.
- 4. Unsupervised learning algorithms like k-means clustering can be useful for segmenting data into distinct groups based on similarities.
- 5. Techniques like Principal Component Analysis (PCA) or t-distributed Stochastic Neighbor Embedding (t-SNE) are used for dimensionality reduction and visualization, which can be valuable for understanding high-dimensional data.
- 6. Unsupervised learning is often used for anomaly detection where the goal is to identify rare events or outliers in the data.
- 7. If you have a sufficient amount of labeled data, supervised learning models can be a good choice. For example, in classification or regression tasks where you have labeled examples of input-output pairs, supervised learning can be effective.
- 8. When the objective is well-defined and can be framed as predicting an outcome based on input features, supervised learning is suitable. For example, predicting customer churn, spam detection, sentiment analysis, etc.
- 9. Supervised learning models are evaluated based on metrics like accuracy, precision, recall, F1-score, etc., which make it easier to assess model performance.
- 10. Sometimes, a combination of supervised and unsupervised learning techniques is used, known as semi-supervised learning. This can be beneficial when labeled data is limited but unlabeled data is abundant.

Appendix

Appendix

Documents:

- https://www.kaggle.com/code/wahyuardhitama/task003-p001-ml-dl-rec-sys-course-20231025
- https://www.kaggle.com/code/wahyuardhitama/task003-p002-ml-dl-rec-sys-course-20231029
- https://www.kaggle.com/code/wahyuardhitama/task003-p003-ml-dl-rec-sys-course-20231101
- https://github.com/whyzie/Task003-ML-DL-Rec-Sys-Course-20231201