Let's go cisco live! #CiscoLive

IS-IS Deployment in Modern Networks

Brad Edgeworth, SD-WAN Technical Solutions Architect CCIE #31574

@BradEdgeworth

BRKENT-2007

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKENT-2007

- IS-IS Foundation
- IS-IS Configuration
- IS-IS Topology Constructs
- How a Router Builds an IS-IS Topology
- Route Advertisements and Metrics
- IPv6 Support
- Area Design

IS-IS Trivia Question

- How do you make the traffic between R1 and R4, take R5?
- How do you make the traffic between R2 and R3, take the direct link?

IS-IS Foundation

What is IS-IS?

Intermediate System-to-Intermediate System (IS-IS) Overview

- IS-IS is a link-state routing protocol;
 - Offer Fast convergence
 - Excellent scalability
 - · Flexibility in terms of tuning
- Adopted and published by International Organization for Standardization (ISO)... The guys who gave us the OSI model
- Easily extensible with Type/Length/Value (TLV) extensions;
 - IPv6 Address Family support (RFC 2308)
 - Multi-Topology support (RFC 5120)
 - MPLS Traffic Engineering (RFC 3316)

Hierarchy Levels

- IS-IS presently has a two-layer hierarchy
 - The backbone (level 2)
 - Non-backbone areas (level 1)

Routers, not interfaces are associated to an area

Hierarchy Levels

- IS-IS presently has a two-layer hierarchy
 - The backbone (level 2)
 - Formed between areas
 - Formed within an area

Hierarchy Levels

- IS-IS presently has a two-layer hierarchy
 - The backbone (level 2)
 - Non-backbone areas (level 1)
 - Formed within an area

Hierarchy Levels (Routers)

A router can be a:

- L1 only router (i.e. R1 & R5)
- L2 only router (i.e. R3)
- L1-L2 routers (i.e. R2 & R4)

The Backbone

- Connects Areas
- Responsible for taking routes from L1 routes and advertising to other domains
- Can cross multiple areas

IS-IS Communication

Based on OSI Layer 2 addresses (MAC addresses for Ethernet).

Name	Destination MAC Address			
All L1 IS Devices	0180.c200.0014			
All L2 IS Devices	0180.c200.0015			
All IS Devices	0900.2b00.0005			

- Does not work on IP based tunnels
- Does work on GRE tunnels
- Does not work on DMVPN tunnels

IS-IS Packet Types

IS-IS has three types of PDUs (packets)

- IS-IS Hello (IIH) Packets Used to establish/monitor neighbors
- Link State Packets (LSPs) used to build a topology and share routes
- Sequence Number Packets (SNPs) used to synchronize LSPs

Type, Length, Value (TLV) Tuples

- This is the true magic of IS-IS. Provides the ability to support multiple protocols in the same architecture.
- TLVs provide variable modules, and support nesting.
- A TLV is assigned a numerical value which directly correlates to a function.
- When a router receives an IS PDU and detects an unrecognizable TLV, it just skips the TLV and continues to the next TLV in that packet.
- TLVs are not modified in transit.

IS-IS Packet Structure

IIS-IS Hello (IIH), LSPs, SNPs all contain these fields in every packet:

- Protocol Descriptor 0x83 for IS-IS
- PDU Length
- PDU Type Defines if it is an IIH, LSP, or SNP
- Reserved Identifies the level of a packet (L1 or L2)
- Max Areas Maximum number of areas a router will support

#CiscoLive

```
☐ ISO 10589 ISIS InTRA Domain Routeing Information Exchange Protocol
Intra Domain Routing Protocol Discriminator: ISIS (0x83)
PDU Header Length: 27
Version (==1): 1
System ID Length: 0
PDU Type : L1 HELLO (R:000)
Version2 (==1): 1
Reserved (==0): 0
Max.AREAS: (0==3): 0
```

IS-IS LSP Structure

```
□ ISO 10589 ISIS Link State Protocol Data Unit
                                                                              Remaining Lifetime
   PDU length: 111
   Remaining lifetime: 1200
   LSP-ID: 0000.0000.0001.00-00
   Sequence number: 0x00000003.
                                                                               Sequence Number

    ⊕ Checksum: 0xcbf3 [correct]

☐ Type block(0x03): Partition Repair:0, Attached bits:0, Overload bit:0, IS type:3

     O... .... = Partition Repair: Not supported
                                                                                  Attribute Fields
   \blacksquare .000 0... = Attachment: 0
     .... .O.. = Overload bit: Not set
     .... ..11 = Type of Intermediate System: Level 2 (3)
 ■ Area address(es) (4)
    Area address (3): 47.0012
 ■ Protocols supported (1)
     NLPID(s): IP (0xcc)
 ■ Hostname (3)
     Hostname: XR1
 ■ IS Reachability (12)
    IsNotVirtual

■ IS Neighbor: 0000.0000.0002.03

 ■ IP Internal reachability (48)
                                                                           TLV#128 - IP Internal
   Reachability
```


Common LSP TLVs

TLV#	Function
1	List of area addresses on router
2	List of IS Neighbors (Narrow Metrics)
10	Authentication
22	Extended IS Neighbors (Wide Metrics)
128	IP network and metric from advertising router (Narrow Metrics)
130	External networks and metrics when redistributed
132	IP Addresses on transmitting interface (includes secondary interfaces) (Narrow Metrics)
135	IP Addresses on transmitting interface (includes secondary interfaces) (Wide Metrics)
137	Router hostname (Allows correlation of name to System ID
232	IPv6 Interface Address
236	IPv6 Reachability Information
237	Multi Topology Reachable IPv6 Prefix

IS-IS Interfaces

There are two types of interface in IS-IS:

- Broadcast This is the default. Allows for more than one neighbor to connect on this medium. Requires the election of a pseudonode called a Designated Intermediate System (DIS)
- Point-to-Point Used to reduce some of the overhead mechanisms with broadcasts networks if only 2 devices exist on a segment.

Anatomy of a NET Address

Each IS-IS router is identified with a Network Entity Title (NET)

Reading the NET Address

- Start from Right work your way back:
 - Final 8 bits zero
 - Next 48 bits router identifiter
 - Next 16 bits area
 - First 8 bits pick a number (49 is the private AFI family)

Authority and Format Identifier (AFI)	Initial Domain Identifier	HO-DSP	ID	Selector (SEL)
	Area Address	ID	Selector (SEL)	

Sample NET Addresses

49.0456.1234.1921.6800.1001.00

8-byte Area ID/System ID

10-byte Private AFI/ Area ID/System ID

OSI NSAP Format

Designated Intermediate System (DIS)

- Broadcast networks support more than two routers which could cause scalability problems with IS-IS
- IS-IS overcomes this inefficiency by creating a pseudonode to manage synchronization issues that arise on the broadcast network segment. A DIS exist for each IS-IS level (L1 and L2).
- By inserting the logical pseudonode into a broadcast segment, the multi-access network segment is converted into multiple P2P networks in the LSPDB

BRKENT-2007

IS-IS Configuration

Topology for Configuration

BRKENT-2007

IS-IS Configuration: IOS XE

- · Initialize the routing protocol router isis [process-id]
- Enable Adjacency Logging (Optional)
 log-adjacency-changes
- Define the NET Address
 net area-systemid.sel
- Enable IS-IS on the interface

interface interface-id

ip router isis [process-id]

ipv6 router isis [process-id]

IS-IS Configuration: IOS XE

```
R1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config) #router isis CISCOLIVE
R1(config-router) # log-adjacency-changes
R1(config-router) # net 49.0123.0001.0001.000
R1(config-router)#interface gi0/2
R1(config-if) # ip router isis CISCOLIVE
R1(config-if)# ipv6 router isis CISCOLIVE
R1(config-if)#interface gi0/3
R1(config-if) # ip router isis CISCOLIVE
R1(config-if)# ipv6 router isis CISCOLIVE
03:38:39.967: %CLNS-5-ADJCHANGE: ISIS: Adjacency to 0002.0002.0002 (GigabitEthernet0/2)
Up, new adjacency
03:38:41.967: %CLNS-5-ADJCHANGE: ISIS: Adjacency to 0002.0002.0002 (GigabitEthernet0/2)
Up, new adjacency
```


IS-IS Configuration: IOS XR

- Initialize the routing protocol router isis process-id
- Enable Adjacency Logging (Optional)
 log-adjacency-changes
- Define the NET Address
 net area-systemid.sel
- Initialize IPv6 Address family (optional)
 address-family ipv6 unicast
- · Enable IS-IS on the interface

interface interface-id

address-family ipv4 unicast

address-family ipv6 unicast

IS-IS Configuration: IOS XR

```
RP/0/0/CPU0:XR2#conf t
RP/0/0/CPU0:XR2(config) #router isis CISCOLIVE
RP/0/0/CPU0:XR2(config-isis) # log-adjacency-changes
RP/0/0/CPU0:XR2(config-isis)# net 49.0123.0002.0002.0002.00
RP/0/0/CPU0:XR2(config-isis)# interface qi0/0/0/1
RP/0/0/CPU0:XR2(config-isis-if) # address-family ipv4 unicast
RP/0/0/CPU0:XR2(config-isis-if) address-family ipv6 unicast
RP/0/0/CPU0:XR2(config-isis-//f)# interface gi0/0/0/3
RP/0/0/CPU0:XR2(config-isi
                            // # address-family ipv4 unicast
RP/0/0/CPU0:XR2(config-/
                          //if) # address-family ipv6 unicast
RP/0/0/CPU0:XR2(confi
                         /s-if-af)#commit
RP/0/0/CPU0:May
                        :37.226 : isis[1010]: %ROUTING-ISIS-6-INFO STARTUP START : Cold
controlled start
  Notice the config is
                          0.996 : isis[1010]: %ROUTING-ISIS-5-ADJCHANGE : Adjacency to
                          abitEthernet0/0/0/1) (L1) Up, New adjacency
  under isis process
                          2.015 : isis[1010]: %ROUTING-ISIS-5-ADJCHANGE : Adjacency to
49.0123.0001.0001.0001 (GigabitEthernet0/0/0/1) (L2) Up, New adjacency
```

IS-IS Configuration: NX-OS

- Enable the IS-IS feature feature isis
- Initialize the routing protocol
 router isis process-id
- Enable Adjacency Logging (Optional)
 log-adjacency
- Define the NET Address
 net area-systemid.sel
- · Enable IS-IS on the interface

interface interface-id

ip router isis process-id

ipv6 router isis process-id

IS-IS Configuration: NX-OS

```
NX-3(config) # feature isis
NX-3 (config) # router isis CISCOLIVE
NX-3 (config-router) # net 49.0123.0003.0003.0003.00
NX-3 (config-router) # log-adjacency
NX-3(config-router) # interface ethernet2/1
NX-3(config-if) # ip router isis CISCOLIVE
NX-3(config-if) # ipv6 router isis CISCOLIVE
NX-3(config-if) # interface ethernet2/2
NX-3(config-if) # ip router isis CISCOLIVE
NX-3(config-if) # ipv6 router isis CISCOLIVE
03:55:40 NX-3 %ISIS-5-ADJCHANGE: isis-CISCOLIVE [9333] LAN adj L1 0001.0001.0001 over
Ethernet2/1 - INIT (New) on MT--1
03:55:41 NX-3 %ISIS-5-ADJCHANGE: isis-CISCOLIVE [9333] LAN adj L2 0001.0001.0001 over
Ethernet2/1 - INIT (New) on MT--1
03:55:41 NX-3 %ISIS-5-ADJCHANGE: isis-CISCOLIVE [9333] LAN adj L2 0001.0001.0001 over
Ethernet2/1 - UP on MT-0
03:55:41 NX-3 %ISIS-5-ADJCHANGE: isis-CISCOLIVE [9333] LAN adj L1 0001.0001.0001 over
Ethernet2/1 - UP on MT-0
```


Trivia Question Hint

How do you make the traffic between R1 and R4, take R5?

How do HINT!
 link?
 One command on Four Routers

Checking for Neighbor Adjacencies

BRKENT-2007

Viewing IS-IS Neighbors

IOS XE

R1#show isis neighbors

Tag CISCOLIVE:

System Id	Туре	Interface	IP Address	State	Holdtime	Circuit Id
XR2	L1	Gi0/2	10.12.1.2	UP	22	R1.02
XR2	L2	Gi0/2	10.12.1.2	UP	26	R1.02
NX-3	L1	Gi0/3	10.13.1.3	UP	26	R1.01
NX-3	L2	Gi0/3	10.13.1.3	UP	27	R1.01

Viewing IS-IS Neighbors

IOS XE R1#show isis neighbors Tag CISCOLIVE: State Holdtime Circuit Id System Id Type Interface IP Address XR2 Gi0/210.12.1.2 22 R1.02 L1UP Gi0/2 10.12.1.2 XR2 L2 IJP 2.6 R1.02 ci0/3 10.13.1.3 2.6 NX-3UP R1.01 NX-3T₁2. 10.13.1.3 UP R1.01

How did R1 find out the system ID for XR2 and NX-3?

Was it CDP?

Is it DNS?

Viewing IS-IS Neighbors

```
IOS XE
                 No! It is TLV#137
R1#show
Tag CISCOLIVE:

☐ ISO 10589 ISIS InTRA Domain Routeing Information Exchange Protocol

System Id
                Intra Domain Routing Protocol Discriminator: ISIS (0x83)
                PDU Header Length: 27
XR2
                Version (==1): 1
                System ID Length: 0
XR2
                PDU Type
                                  : L1 LSP (R:000)
                Version2 (==1): 1
NX-3
                Reserved (==0): 0
NX-3
                Max. AREAs: (0==3): 0

■ ISO 10589 ISIS Link State Protocol Data Unit

                  PDU length: 97
                  Remaining lifetime: 1199
                  LSP-ID: 0001.0001.0001.00-00
                  Sequence number: 0x0000000b

    ⊕ Checksum: 0xec74 [correct]

                Type block(0x03): Partition Repair: 0. Attached bits: 0. Overload bit: 0. IS type: 3

⊕ Area address(es) (4)

⊕ Protocols supported (1)

∃ Hostname (2)

                    Hostname: R1

    ∃ IS Reachability (23)
```

Hostname to LSP ID Conversion Can Be Disabled

IOS XE and NX-OS

no hostname dynamic

IOS XR

hostname dynamic disable

IOS XE						
R1#show isis neighbors						
Tag CISCOLIVE:						
System Id	Туре	Interface	IP Address	State	Holdtime	Circuit Id
0002.0002.0002	L1	Gi0/2	10.12.1.2	UP	22	R1.02
0002.0002.0002	L2	Gi0/2	10.12.1.2	UP	26	R1.02
0003.0003.0003	L1	Gi0/3	10.13.1.3	UP	26	R1.01
0003.0003.0003	L2	Gi0/3	10.13.1.3	UP	27	R1.01

Viewing IS-IS Neighbors

IOS XE

R1#show isis neighbors

Tag CISCOLIVE:

System Id	Type	Interface	IP Address	State	Holdtime	Circuit Id
XR2	L1	Gi0/2	10.12.1.2	UP	22	R1.02
XR2	L2	Gi0/2	10.12.1.2	UP	26	R1.02
NX-3	L1	Gi0/3	10.13.1.3	UP	26	R1.01
NX-3	L2	Gi0/3	10.13.1.3	UP	27	R1.01

IOS XR

RP/0/0/CPU0:XR2#show isis neighbors

IS-IS CISCOLIVE neighbors:

System Id Interface SNPA State Holdtime Type IETF-NSF R1 Gi0/0/0/1 fa16.3eac.7a9b Up 9 L1L2 Capable NX-3 Gi0/0/0/3 fa16.3e00.0002 Up 21 L1L2 Capable

Viewing IS-IS Neighbors

NX-OS NX-3# show isis adjacency IS-IS process: CISCOLIVE VRF: default IS-IS adjacency database: Legend: '!': No AF level connectivity in given topology Level State Hold Time Interface System ID SNPA fa16.3e69.d5fc 1 Ethernet2/1 R1 IJP 00:00:10 R1 fa16.3e69.d5fc 2 IJP 00:00:10 Ethernet2/1 fa16.3e1f.787e 1 00:00:08 Ethernet2/2 XR2 UP XR2 fa16.3e1f.787e 2 00:00:07 Ethernet2/2 UP

Settings that are required for an IS-IS Adjacency

- IS-IS Interface is Active
- IS-IS Interface shares a common subnet
- Protocols match (IPv4, IPv6) per topology
- Circuit types match (General or Point to Point)
- Router levels are compatible
 - L1 adjacencies require the area address to matches
 - The system ID must be unique within the same area address
- IS-IS Hello Authentication matches
- MTU Matches

IS-IS Topology Constructs

IS-IS Topologies

IS-IS maintains a copy of all the LSPs in a database for a Level An LSP database per Level can be thought of as a topology. How many topologies do you see?

IS-IS Topologies

IS-IS maintains a copy of all the LSPs in a database for an Level An LSP database per Level can be thought of as a topology. How many topologies do you see?

IS-IS Topologies

IS-IS maintains a copy of all the LSPs in a database for an Level An LSP database per Level can be thought of as a topology. How many topologies do you see?

BRKENT-2007

Viewing an IS-IS Topology (IOS XE)

R1#show isis topology

Tag CISCOLIVE:

IS-IS TID 0 paths to level-1 routers						
System Id	Metric	Next-Hop	Interface	SNPA		
R1						
R2	10	R2	Gi0/2	fa16.3ed4.04f5		

IS-IS TID 0 paths to level-2 routers						
System Id	Metric	Next-Hop	Interface	SNPA		
R1						
R2	10	R2	Gi0/2	fa16.3ed4.04f5		
R3	20	R2	Gi0/2	fa16.3ed4.04f5		
R4	30	R2	Gi0/2	fa16.3ed4.04f5		
R5	40	R2	Gi0/2	fa16.3ed4.04f5		

Viewing an IS-IS Topology (IOS XR)

RP/0/0/CPU0:XR1#show isis topology IS-IS CISCOLIVE paths to IPv4 Unicast (Level-1) routers System Id Metric Next-Hop Interface SNPA XR1 XR2 10 XR2 Gi0/0/0/2*PtoP* IS-IS CISCOLIVE paths to IPv4 Unicast (Level-2) routers Metric Next-Hop Interface System Id SNPA XR1 XR2 10 XR2 Gi0/0/0/2 *PtoP* XR3 20 XR2 Gi0/0/0/2 *PtoP* 30 R4-XRXR2 Gi0/0/0/2 *PtoP* R5-XR 40 XR2 Gi0/0/0/2*PtoP*

Viewing an IS-IS Topology (NX-OS)

```
NX-1# show isis topology
IS-IS process: CISCOLIVE
VRF: default.
IS-IS Level-1 IS routing table
NX-2.00, Instance 0x0000006
   *via NX-2, Ethernet2/2, metric 40
IS-IS Level-2 IS routing table
NX-2.00, Instance 0x00000009
   *via NX-2, Ethernet2/2, metric 40
NX-3.00, Instance 0x00000009
   *via NX-2, Ethernet2/2, metric 80
R4-NX.00, Instance 0x00000009
   *via NX-2, Ethernet2/2, metric 120
R4-NX.01, Instance 0x00000009
   *via NX-2, Ethernet2/2, metric 120
R5-NX.00, Instance 0x0000009
   *via NX-2, Ethernet2/2, metric 130
```

Optimizing an Area

So currently R1 can reach R5 using just the L2 Backbone

What happens when the backbone shrinks between to R2 to R4?

Understanding Route Advertisement

- IS-IS builds the topology using TLV#2.
- Routes are built using TLV#128 and/or TLV#135
- All routers in the same L1/L2 area have the same LSPDBs for that Level

Setting IS-IS Adjacencies with Hierarchy Levels

Checking Interface IS-Setting

```
Router Level Commands
IOS XE, IOS XR
is-type {level-1 | level-1-2 | level-2-only}
NX-OS
is-type {level-1 | level-1-2 | level-2}
```

```
Interface Level Commands
IOS XE
is-type {level-1 | level-1-2 | level-2-only}
IOS XR
circuit-type {level-1 | level-1-2 | level-2-only}
NX-OS
```

Isis circuit-type {level-1 | level-1-2 | level-2}

Viewing an IS-IS Topology (IOS XE)

```
R1#show isis topology
Tag CISCOLIVE:

IS-IS TID 0 paths to level-1 routers
System Id Metric Next-Hop Interface SNPA
R1 ---
R2 10 R2 Gi0/2 fa16.3ed4.04f5
```

R2#show isis topology Tag CISCOLIVE: IS-IS TID 0 paths to level-1 routers System Id Metric Next-1			R1 is no longer present in L2 Topology/Database			
R1	10	NI	Gi0/1	fa16.3e5c.91c1		
IS-IS TID 0 paths to level-2 routers						
System Id R2	Metric	Next-Hop	Interface	SNPA		
R3	10	R3	Gi0/3	fa16.3e94.673d		
R4	20	R3	Gi0/3	fa16.3e94.673d		
R5	30	R3	Gi0/3	fa16.3e94.673d		

How a Router Builds an IS-IS Topology

Understanding How the Topology is Built

- Topology is built off of TLV#2 (IS-Neighbors) and the LSP-ID
- LSP-IDs that end with 00 are those of routers themselves
 - Remember the SEL being set to 00 back from the NET addressing?
- LSP-IDs that DO NOT end with 00 are those of DIS (pseudonode)

Understanding How the Topology is Built

show isis database [LSP-ID] [level-1|level-2] [detail]

 Displays all the LSPs from a specific router (or DIS), Sequence Number, Holdtime, Attribute fields (Partition, Attached/Overload/Router Type)

```
R1#show isis database
Tag CISCOLIVE:
IS-IS Level-1 Link State Database:
                       LSP Seg Num LSP Checksum LSP Holdtime/Rcvd
LSPID
                                                                             ATT/P/OL
R1.00-00
                     * 0×00000007
                                     0 \times 3 E7A
                                                              757/*
                                                                             0/0/0
R2.00-00
                       0x0000000A
                                                                             0/0/0
                                     0x40A6
                                                              576/1199
```


Understanding How the Topology is Built (P2P)

show isis database [LSP-ID] [level-1|level-2] [detail]

```
R1#show isis database detail
Tag CISCOLIVE:
IS-IS Level-1 Link State Database:
                    LSP Seq Num LSP Checksum LSP Holdtime/Rcvd ATT/P/OL
LSPID
R1.00-00
                   * 0×00000007
                                                                     0/0/0
                                 0 \times 3 E7A
                                                        335/*
  Area Address: 49.1234
         0xCC 0x8E
 NLPID:
 Hostname: R1
  Metric: 10
                    IS R2.00
 IP Address: 192.168.1.1
 Metric: 10 IP 10.12.1.0 255.255.255.0
 Metric: 10
                    TP 10.1.1.0 255.255.255.0
R2.00-00
                     0x000000C
                                  0 \times F0BB
                                                        939/1199
                                                                      0/0/0
```


Understanding How the Topology is Built (P2P)

BRKENT-2007

R2#show isis database detail exclude IP PID Area					
R2.00-00	0x0000017E	0x52E6	1130/1199	0/0/0	
Hostname: R2					
Metric: 10	IS R4.01				
R3.00-00	0x00000173	0xE6AF	1121/1198	0/0/0	
Hostname: R3					
Metric: 10	IS R4.01				
R4.00-00	0x0000017D	0x823F	1120/1198	0/0/0	
Hostname: R4					
Metric: 10	IS R4.01				
R4.01-00	0x00000172	0xB040	1130/1198	0/0/0	
Metric: 0	IS R4.00				
Metric: 0	IS R2.00				
Metric: 0	IS R3.00				

Route Advertisements

Understanding Route Advertisement

- IS-IS builds the topology using TLV#2.
- Routes are built using TLV#128 and/or TLV#135
- All routers in the same L1/L2 area have the same LSPDBs for that Level

Viewing Routes in the LSPDB

Understanding Route Advertisement

- L1 advertises the router 192.168.1.1 within Area 49.0012 via L1
- R2 takes the L1 route and places it into the L2 router as its own
- R2's L2 LSP is Forwarded to R3 and R4
- Does R4 advertise 192.168.1.1 into Area 49.0045?
- No, it does not!

Understanding Route Advertisement

- L1 advertises the router 192.168.1.1 within Area 49.0012 via L1
- R2 takes the L1 route and places it into the L2 router as its own
- R2's L2 LSP is Forwarded to R3 and R4
- Does R4 advertise 192.168.1.1 into Area 49.0045?
- No, it does not!

- L1 routers use the attach bit to locate their nearest L1-L2 router
 - That L1-L2 router must contain LSPs from a different area.
- The L1-L2 router acts as a gateway
- L1 routers translate the Attach bit as the default gateway

Can be viewed by looking examining Attribute fields

Can be seen by viewing an explicit router's LSP too

```
R1#show isis database detail R2.00-00
TS-TS Level-1 LSP R2.00-00
                      LSP Seg Num LSP Checksum LSP Holdtime/Rcvd
                                                                          ATT/P/OL
LSPID
R2.00-00
                      0 \times 0000002E
                                   0 \times F2E0
                                                           725/1199
  Area Address: 49.0012
  NLPID: 0xCC 0x8E
  Hostname: R2
  Metric: 10
                     TS R1.00
  IP Address: 192.168.2.2
  Metric: 10
                     IP 10.12.1.0 255.255.255.0
  Metric: 10
                     TP 10.23.1.0 255.255.255.0
  Metric: 10
                     TP 192.168.2.2 255.255.255.255
```


Translating it to the Routing Table

```
R1#show ip route isis
    0.0.0.0/0 [115/10] via 10.12.1.2, 00:03:18, GigabitEthernet0/2
i * T.1
      10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
         10.23.1.0/24 [115/20] via 10.12.1.2, 00:03:18, GigabitEthernet0/2
      192.168.2.0/32 is subnetted, 1 subnets
         192.168.2.2 [115/20] via 10.12.1.2, 00:03:18, GigabitEthernet0/2
i L1
            Area
                                        Area
                                                                      Area
          49.0012
                                       49.0003
                                                                     49.0045
```

Viewing the Backbone Routing Table

```
R2#show ip route isis | ex subnet
i L2
         10.34.1.0/24 [115/20] via 10.23.1.3, 00:18:41, GigabitEthernet0/3
         10.45.1.0/24 [115/30] via 10.23.1.3, 00:18:41, GigabitEthernet0/3
         192.168.1.1 [115/20] via 10.12.1.1, 07:54:35, GigabitEthernet0/1
i L2
         192.168.3.3 [115/20] via 10.23.1.3, 00:18:41, GigabitEthernet0/3
 L2
         192.168.4.4 [115/30] via 10.23.1.3, 00:18:41, GigabitEthernet0/3
         192.168.5.5 [115/40] via 10.23.1.3, 00:18:41, GigabitEthernet0/3
           Area
                                       Area
                                                                     Area
          49.0012
                                      49.0003
                                                                    49.0045
```

Normal traffic flow between XR1 and R4 would be between XR2 and R5 based on metric calculations

Traffic flow taken across links that have higher metric are not normal.

- The overload bit indicates a router in an overloaded condition.
- Routers avoid sending traffic through routers that set the overload bit.
- Upon recovery, the router advertises a new LSP without the overload bit, and the SPF calculation occurs normally without avoiding routes through the previously overloaded node.

RP/0/0/CPU0:XR1#show isis database				
IS-IS ISIS (Level-1) Link State Database				
LSPID	LSP Seq Num	LSP Checksum	LSP Holdtime	ATT/P/OL
XR1.00-00	* 0x00000007	0x71d6	1046	0/0/0
XR2.00-00	0x000000c	0x2557	1124	0/0/1
R3.00-00	0x0000009	0x5564	1031	0/0/0
R4.00-00	0x000000c	0x8baa	1065	0/0/0
R5.00-00	0x0000009	0xa406	1155	0/0/1
R5.03-00	0x0000003	0x7ccc	1124	0/0/0

- Originally, the overload bit signified memory exhaustion, but current routers have a significant amount of memory making those situations very rare.
- Setting the overload bit on a router during maintenance windows is a common technique to route traffic around the nodes being worked on.
- Newer IS-IS functionality allows a router to set the overload bit when it first starts up for a specific amount of time, or until BGP sessions have stabilized.

Route Metrics

Path Computation

After a router has built a topology of routers and their connecting interfaces, it runs a Shortest Path First Computation

The local router is the top of SPF Tree. All other routers are a branch. Calculations are made based off of interface cost

Interface Metrics

RFC 1195 provides a 6-bit field supporting values 1-63

- Stored in TLV# 128
- Industry standard is that all interfaces are statically set to 10 by default

Interface Metrics

RFC 1195 provides a 6-bit field supporting values 1-63

- Stored in TLV# 128
- Industry standard is that all interfaces are statically set to 10 by default
 - Value are changed as needed statically as needed
 - Except Nexus uses a reference bandwidth of 40 Gbps by default
 - 10-Gigabit Interfaces are set to 4
 - Gigabit Interfaces are set to 40

Interface Wide Metrics

Some network engineers thought that 6-bits is not enough to tune a network

- RFC 5305 introduced a new TLV# 135 that supported 32-bit values
- Allows for wide scale of metrics to reflect values from T1 interfaces to 100Gb interfaces
- Does not impact the way a topology is built, using TLV #2

What's Wrong?

R1#show isis topology level-2 IS-IS TID 0 paths to level-2 routers System Id Metric Interface SNPA Next-Hop R1 R2 10 R2 Gi0/2 fa16.3ed4.04f5 * * R3 * * R4 IS-IS builds the topology on TLV #2. R5 * *

Mismatch Metric Types

- TLVs are transmitted as long as they are recognized
- When a router does not recognize a TLV it drops it.

IOS XE and IOS XR use Narrow Metrics by Default NX-OS uses Wide Metrics by default

Checking Metric Style

IOS XE

```
R1#show isis protocol | i narrow|wide

Generate narrow metrics: level-1-2

Accept narrow metrics: level-1-2

Generate wide metrics: none

Accept wide metrics: none

Generate narrow metrics: level-1-2

Accept narrow metrics: level-1-2

Generate wide metrics: none

Accept wide metrics: none
```


Checking Metric Style

IOS XR

NX-OS

```
NX-1# show isis protocol | i Metric
Metric-style : advertise(wide), accept(narrow, wide)
```


Narrow vs. Wide Metrics

A router can use Narrow, Wide, or Transition Metrics (Both)

IOS XE

router isis CISCOLIVE

metric-style {narrow | transition | wide}

IOS XR

router isis CISCOLIVE

address-family ipv4 unicast

metric-style {narrow | transition | wide}

NX-OS

router isis CISCOLIVE

metric-style transition

Needs to be consistently Narrow or Wide (Exception is Transition)

Trivia Question Hint

- How do you make the traffic between R1 and R4, take R5?
- How do you make the traffic between R2 and R3, take the direct link?

IPv6 Support

- IPv6 Address Family support (RFC 2308)
- 2 new Tag/Length/Values added to introduce IPv6 routing
 - IPv6 Reachability TLV#236:
 - Equivalent to IP Internal/External Reachability TLV's
 - IPv6 Interface Address TLV #232
 - For Hello PDUs, must contain the link-local address
 - For LSP, must contain the non-link local address
- IPv6 NLPID (Network Layer Protocol Identifier) TLV#232 is advertised by IPv6 enabled routers

Restrictions with Single Topology

- In Single topology IS-IS for IPv6 uses the same SPF for both IPv4 and IPv6.
 - Remember that the protocol must match for an adjacency to form?
 IPv4 and IPv6 topologies MUST match exactly
 - Cannot run IS-IS IPv6 on some interfaces, IS-IS IPv4 on others.
 - An IS-IS IPv6-only router will not form an adjacency with an IS-IS IPv4/IPv6 router (Exception is over L2-only interface)

Multi-Topology IS-IS extensions

- Multi-Topology IS-IS solves the restrictions of Single topology
 - Two independent topology databases maintained
 - IPv4 uses Multi-Topology ID (MTID) zero(0)
 - New Multi-Topology ID (MTID #2) for IPv6
- Multi-Topology IS-IS has updated packets
 - Hello packets marked with MTID #0 or MTID #2
 - New TLV attributes introduced
 - Each LSP is marked with the corresponding MTID
- Miss-Matched MTID values
 - No effect on broadcast segments, adjacency will form
 - Point-to-point segments, adjacency will not form

BRKENT-2007

Choosing Single or Multi-Topology IS-IS

Use Single-Topology for:

- No planned differences in topology between IPv4 and IPv6
- Each interface has the same IPv4 and IPv6 router Level

Use Multi-Topology for:

- Incremental roll-out of IPv6 on an IPv4 topology
- If you plan for differences in topology between IPv4 and IPv6

The optional keyword transition may be used for transitioning existing IS-IS IPv6 single Topology mode to Multi-Topology IS-IS

Transition to Multi-Topology IS-IS - Wide Metrics

- Ensure "Wide metric" is enabled
 - Mandatory for Multi-Topology to work
 - When migrating from narrow to wide metrics, care is required
 - Narrow and wide metrics are NOT compatible with each other

- Migration is a two stage process
 - Step 1: make use of the transition keyword

 Step 2: Once the whole network is changed to transition support, the metric style can be changed to wide

Trivia Question: ANSWER

Trivia Question Answer

 How do you make the traffic between R1 and R4, take R5? • How do you make the One command on R2 d R3, take the direct link? or R3 One One command command on R4 on R1 L1 Only Link #CiscoLive

Area Design

Area Design

Sup-Optimal IS-IS Routing

- Area design

Areas and Suboptimal Routing

Areas and Suboptimal Routing

Areas and Suboptimal Routing

Overcoming Areas and Suboptimal Routing

- All the L1-routers in a given pop will receive the ATT bit set by the L1L2 router at the edge of the POP
 - L1 routers install a default route based on the ATT bit
 - This will cause sub-optimal routing in reaching the prefixes outside the POP by the local routers
- This can be overcome by Leaking more explicit L2 routes into the L1 area

L2 → L1 Leaking Configuration

IOS XE

```
R1#conf t
R1(config)#router isis CISCOLIVE
R1(config)#redistribute isis ip level-2 into level-1
```

IOS XR

RP/0/0/CPU0:XR2#conf t

RP/0/0/CPU0:XR2(config) #router isis CISCOLIVE

RP/0/0/CPU0:XR2(config-isis) #address-family ipv4 unicast

RP/0/0/CPU0:XR2(config-isis-af)# propagate level 2 into level 1

NX-OS

R1#conf t

NX-3(config) # router isis CISCOLIVE

NX-3(config-router) # distribute level-2 into level-1 all

L2 → L1 Leaking Configuration (Conditions)

IOS XF

R1#conf t

R1(config)#router isis CISCOLIVE

R1(config)#redistribute isis ip level-2 into level-1 route-map CONDITIONAL

IOS XR

RP/0/0/CPU0:XR2#conf t

RP/0/0/CPU0:XR2(config)#router isis CISCOLIVE

RP/0/0/CPU0:XR2(config-isis)#address-family ipv4 unicast

RP/0/0/CPU0:XR2(config-isis-af)# propagate level 2 into level 1 route-policy CONDITIONAL

NX-OS

R1#conf t

NX-3(config)# router isis CISCOLIVE

NX-3(config-router)# distribute level-2 into level-1 route-map CONDITIONAL

Area and Scaling

Areas vs. single area

- ISIS supports a large number of routers in a single area
 - More than 400 routers in the backbone is possible
- Starting with L2-only everywhere is a good choice
 - Backbone continuity is ensured from the start
 - Future implementation of level-1 areas will be easier
- Use areas in places where sub-optimal routing is acceptable
 - areas with a single exit point is a better choice from an optimal routing standpoint

- In this design, all the routers will be running in one area and are all doing L1only routing
- This design is flat with a single L1-only database running on all the routers
- If you have a change in the topology, the SPF computation will be done in all the routers as they are in the L1-only domain
- SPs picked L1-only to avoid sub-optimal routing problems

- In this design, all the routers will be running L2-Only in the network
 - With the <u>same</u> Area in all the POPs
- Optimal routing with L2-only database
- Traffic-engineering support with no restrictions, just like L1-only

- In this design, all the routers will be running L2-Only in the network
 - With the <u>different</u> Area in all the POPs
 - No summarization and No route-leaking
- All the routers in L2 will share all the LSPs and provides optimal routing (similar to L1-Only POPs)
- As the network grows, easy to bring the L1-only POPs/sub-networks for easy migration

Area Design

- Within a given local pop—all the routers will be in a separate area
- The L1-L2 routers at the edge of the POPs will be running
 - L1-adj going into the POP
 - L2-adj into the core with the rest of the L1-L2 routers
- The SPF computations will be limited to the respective L1-areas only

Area Design

L1 in the POP and L2 in the Core

 All the L1-routers in a given pop will receive the ATT bit set by the L1L2 router at the edge of the POP

L1 routers install a default route based on the ATT bit

 This will cause sub-optimal routing in reaching the prefixes outside the POP by the local routers

Summarization at the L1L2 boundary

 potential sub-optimal inter-area routing in certain failure conditions

- potential black-holing of traffic
- potential breaking of MPLS LSP among PEs

L1-L2 Router at Edge of POP

Route-Leaking

- It is recommended to configure the L1-L2 routers at the edge of the pop with route-leaking capabilities
- Leak BGP next-hops and summarize physical link
- Hence the L1 routers will be able to take the right exit/entry router based on the metric of the leaked IP-prefix
 - Optimal Inter-Area Routing
- Ensure 'metric-style wide' is configured when leaking routes e.g. MPLS-VPN (PEs Loopback Reachability and LSP binding)

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge

Gamify your Cisco Live experience! Get points for attending this session!

How:

- Open the Cisco Events App.
- 2 Click on 'Cisco Live Challenge' in the side menu.
- 3 Click on View Your Badges at the top.
- 4 Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive