AMENDMENTS TO THE CLAIMS

1	1.	(Currently Amended) A method for marking one or more packets of data in a
2		packet-switched network based on achieved flow bandwidth information within
3		the network, comprising the computer-implemented steps of:
4		receiving a first group of one or more packets of a data flow from at a router in the
5		network;
6		marking the first group of one or more packets of said data flow with a first
7		behavioral treatment value, wherein the first behavioral treatment value
8		directs devices within the network to treat the first group of one or more
9		packets with a first quality of service treatment;
10		transmitting the first group of one or more packets of said data flow in the
11		network;
12		determining an achieved flow bandwidth for the data flow based on data traffic
13		within the network;
14		determining packet flow characteristics of the first group of one or more packets
15		of said data flow;
16		determining a second behavioral treatment value based on the achieved flow
17		bandwidth for the data flow within the network and on the packet flow
18		characteristics of the first group of one or more packets of the data flow;
19		receiving a second group of one or more packets of said data flow from at the
20		router in the network;

21		marking the second group of one or more packets of said data flow with said
22		second behavioral treatment value, wherein the second behavioral
23		treatment value directs devices within the network to treat the second
24		group of one or more packets with a second quality of service treatment
25		that is different than the first quality of service treatment; and
26		transmitting the second group of one or more packets of said data flow in the
27		network; and
28		repeating the preceding steps for successive groups of one or more packets of said
29		data flow, wherein each of the successive groups is dynamically marked
30		with a behavioral treatment value that is determined based at least in part
31		on a successively determined achieved flow bandwidth for the data flow.
1	2.	(Original) The method as recited in Claim 1, wherein:
2		the step of marking a first group of one or more packets includes the step of
3		storing a first differentiated services codepoint (DSCP) value in each
4		header of the first group of one or more packets of a data flow;
5		the step of determining a second behavioral treatment value includes the step of
6		determining a second DSCP value; and
7		the step of marking a second group of one or more packets includes the step of
8		storing the second DSCP value in each header of the second group of one
9		or more packets of a data flow.
1	3.	(Currently Amended) The method as recited in Claim 1, further comprising the
2		steps of wherein:

3		determining packet flow characteristics of the first group of one or more packets
4		of a data flow; and
5		determining the second behavioral treatment value is further based on the
6		available bandwidth within the network and the packet flow characteristics
7		of the first-group of one or more packets of a data flow.
1	4.	(Original) The method as recited in Claim 1, further comprising the steps of:
2		establishing a Quality of Service (QoS) policy for applying a per-hop-behavior
3		treatment for forwarding packets within a flow in said network; and
4		generating the first behavioral treatment value based on the established QoS
5		policy.
1	5.	(Currently Amended) A computer-readable medium carrying one or more
2		sequences of instructions for marking one or more packets of data in a packet-
3		switched network based on achieved flow bandwidth information within the
4		network, wherein execution of the one or more sequences of instructions by one or
5		more processors causes the one or more processors to perform the steps of:
6		receiving a first group of one or more packets of a data flow from at a router in the
7		network;
8		marking the first group of one or more packets of said data flow with a first
9		behavioral treatment value, wherein the first behavioral treatment value
10		directs devices within the network to treat the first group of one or more
11		packets with a first quality of service treatment;

12		transmitting the first group of one or more packets of said data flow in the
13		network;
14		determining an achieved flow bandwidth for the data flow based on data traffic
15		within the network;
16		determining packet flow characteristics of the first group of one or more packets
17		of said data flow;
18		determining a second behavioral treatment value based on the achieved flow
19		bandwidth for the data flow within the network and on the packet flow
20		characteristics of the first group of one or more packets of the data flow;
21		receiving a second group of one or more packets of said data flow from at the
22		router in the network;
23		marking the second group of one or more packets of said data flow with said
24		second behavioral treatment value, wherein the second behavioral
25		treatment value directs devices within the network to treat the second
26		group of one or more packets with a second quality of service treatment
27		that is different than the first quality of service treatment; and
28		transmitting the second group of one or more packets of said data flow in the
29		network; and
30		repeating the preceding steps for successive groups of one or more packets of said
31		data flow, wherein each of the successive groups is dynamically marked
32		with a behavioral treatment value that is determined based at least in part
33		on a successively determined achieved flow bandwidth for the data flow.
1	6.	(Original) The computer-readable medium as recited in Claim 5, wherein:

2		the step of marking a first group of one or more packets includes the step of
3		storing a first differentiated services codepoint (DSCP) value in each
4		header of the first group of one or more packets of a data flow;
5		the step of determining a second behavioral treatment value includes the step of
6		determining a second DSCP value; and
7		the step of marking a second group of one or more packets includes the step of
8		storing the second DSCP value in each header of the second group of one
9		or more packets of a data flow.
1	7.	(Currently Amended) The computer-readable medium as recited in Claim 5,
2		further comprising instructions for performing the steps of wherein:
3		determining packet flow characteristics of the first group of one or more packets
4		of a data flow; and
5		determining the second behavioral treatment value is further based on the
6		available bandwidth within the network and the packet flow characteristics
7		of the first group of one or more packets of a data flow.
1	8.	(Original) The computer-readable medium as recited in Claim 5, further
2		comprising instructions for performing the steps of:
3		establishing a Quality of Service (QoS) policy for applying a per-hop-behavior
4		treatment for forwarding packets within a flow in said network; and
5		generating the first behavioral treatment value based on the established QoS
6		policy.
1	9.	(Currently Amended) A computer apparatus comprising:

2	a processor; and
3	a memory coupled to the processor, the memory containing one or more
4	sequences of instructions for marking one or more packets of data in a
5	packet-switched network based on achieved flow bandwidth information
6	within the network, wherein execution of the one or more sequences of
7	instructions by the processor causes the processor to perform the steps of:
8	receiving a first group of one or more packets of a data flow from the
9	network;
10	marking the first group of one or more packets of said data flow with a
11	first behavioral treatment value, wherein the first behavioral
12	treatment value directs devices within the network to treat the first
13	group of one or more packets with a first quality of service treatment;
14	transmitting the first group of one or more packets of said data flow in the
15	network;
16	determining an achieved flow bandwidth for the data flow based on data
17	traffic within the network;
18	determining packet flow characteristics of the first group of one or more
19	packets of said data flow;
20	determining a second behavioral treatment value based on the achieved
21	flow bandwidth for the data flow within the network and on the
22	packet flow characteristics of the first group of one or more packets
23	of the data flow;

24	receiving a second group of one or more packets of said data flow from the
25	network;
26	marking the second group of one or more packets of said data flow with
27	said second behavioral treatment value, wherein the second
28	behavioral treatment value directs devices within the network to treat
29	the second group of one or more packets with a second quality of
30	service treatment that is different than the first quality of service
31	treatment; and
32	transmitting the second group of one or more packets of said data flow in
33	the network; and
34	repeating the preceding steps for successive groups of one or more packets
35	of said data flow, wherein each of the successive groups is
36	dynamically marked with a behavioral treatment value that is
37	determined based at least in part on a successively determined
38	achieved flow bandwidth for the data flow;
39	wherein the computer apparatus is any one of a bridge, a switch, and a router.
1	10. (Original) The computer apparatus as recited in Claim 9, wherein:
2	the step of marking a first group of one or more packets includes the step of
3	storing a first differentiated services codepoint (DSCP) value in each
4	header of the first group of one or more packets of a data flow;
5	the step of determining a second behavioral treatment value includes the step of
6	determining a second DSCP value; and
~	actorium 5 a second 2501 value, and

7		the step of marking a second group of one or more packets includes the step of
8		storing the second DSCP value in each header of the second group of one
9		or more packets of a data flow.
1	11.	(Currently Amended) The computer apparatus as recited in Claim 9, further
2		comprising instructions for performing the steps of wherein:
3		determining packet flow characteristics of the first group of one or more packets
4		of a data flow; and
5		determining the second behavioral treatment value is further based on the
6		available bandwidth within the network and the packet flow characteristic
7		of the first group of one or more packets of a data flow.
1	12.	(Original) The computer apparatus as recited in Claim 9, further comprising
2		instructions for performing the steps of:
3		establishing a Quality of Service (QoS) policy for applying a per-hop-behavior
4		treatment for forwarding packets within a flow in said network; and
5		generating the first behavioral treatment value based on the established QoS
6		policy.
1	13.	(Currently Amended) A network device configured for marking one or more
2		packets of data in a packet-switched network based on achieved flow bandwidth
3		information within the network, comprising:
4		means for receiving a first group of one or more packets of a data flow from the
5		network;

0	means for marking the first group of one or more packets of said data flow with a
7	first behavioral treatment value, wherein the first behavioral treatment
8	value directs devices within the network to treat the first group of one or
9	more packets with a first quality of service treatment;
10	means for transmitting the first group of one or more packets of said data flow in
11	the network;
12	means for determining an achieved flow bandwidth for the data flow based on
13	data traffic within the network;
14	means for determining packet flow characteristics of the first group of one or
15	more packets of said data flow;
16	means for determining a second behavioral treatment value based on the achieved
17	flow bandwidth for the data flow within the network and on the packet
18	flow characteristics of the first group of one or more packets of the data
19	flow;
20	means for receiving a second group of one or more packets of said data flow from
21	the network;
22	means for marking the second group of one or more packets of said data flow with
23	said second behavioral treatment value, wherein the second behavioral
24	treatment value directs devices within the network to treat the second
25	group of one or more packets with a second quality of service treatment
26	that is different than the first quality of service treatment; and

27		means for transmitting the second group of one or more packets of said data flow
28		in the network; and
29		means for repeating the preceding steps for successive groups of one or more
30		packets of said data flow, wherein each of the successive groups is
31		dynamically marked with a behavioral treatment value that is determined
32		based at least in part on a successively determined achieved flow
33		bandwidth for the data flow;
34		wherein the network device is any one of a bridge, a switch, and a router.
1	14.	(Currently Amended) A method for marking one or more packets of data in a
2		packet-switched network based on achieved flow bandwidth information
3		within the network, comprising the computer-implemented steps of:
4		causing one or more network devices to receive a first group of one or more
5		packets of a data flow from the network;
6		causing the one or more network devices to mark the first group of one or
7		more packets of said data flow with a first behavioral treatment value,
8		wherein the first behavioral treatment value directs devices within the
9		network to treat the first group of one or more packets with a first
10		quality of service treatment;
11		causing the one or more network devices to transmit the first group of one or
12		more packets of said data flow in the network;
13		determining an achieved flow bandwidth for the data flow based on data
14		traffic within the network;

15	determining packet flow characteristics of the first group of one or more
16	packets of said data flow;
17	determining a second behavioral treatment value based on the achieved flow
18	bandwidth for the data flow within the network and on the packet flow
19	characteristics of the first group of one or more packets of the data
20	flow;
21	causing the one or more network devices to receive a second group of one or
22	more packets of said data flow from the network;
23	causing the one or more network devices to mark the second group of one or
24	more packets of said data flow with said second behavioral treatment
25	value, wherein the second behavioral treatment value directs devices
26	within the network to treat the second group of one or more packets
27	with a second quality of service treatment that is different than the first
28	quality of service treatment; and
29	causing the one or more network devices to transmit the second group of one
30	or more packets of said data flow in the network; and
31	causing the one or more network devices to repeat the preceding steps for
32	successive groups of one or more packets of said data flow, wherein
33	each of the successive groups is dynamically marked with a behavioral
34	treatment value that is determined based at least in part on a
35	successively determined achieved flow bandwidth for the data flow.
15.	(Previously Presented) The method as in claim 1, wherein the first behavioral
	treatment is determined without regard to the achieved flow bandwidth.

Docket No.: 50325-0106

1

2

1	16.	(Previously Presented) The method as in claim 1, wherein the second behavioral
2		treatment is a behavioral treatment that provides a lower level of service than
3		other available choices of behavioral treatments; and
4		wherein the second behavioral treatment provides a high enough level of service
5		to accommodate the achieved flow bandwidth.
1	17.	(Previously Presented) The method as in claim 1, wherein the second behavioral
2		treatment is a behavioral treatment that provides a minimum level of service that
3		is a sufficient level of service to accommodate the achieved flow bandwidth.
1	18.	(Previously Presented) The method as in claim 1, wherein the step of marking the
2		first group is performed by at least communicating the first behavioral treatment
3		to a differentiated services node located at a border of a differentiated services
4		domain; and
5		wherein the step of marking the second group is performed by at least
5		communicating the second behavioral treatment to the differentiated
7		services node.
1	19.	(Canceled)
1	20.	(Canceled)
l	21.	(Previously Presented) The method as in claim 1, wherein the step of determining
2		the achieved flow bandwidth is performed by at least estimating the achieved flow
3		bandwidth based on Management Information Base (MIB) variables.

I	22.	(Previously Presented) The method as in claim 1, wherein the step of determining
2		the achieved flow bandwidth is performed by at least checking a Transfer Control
3		Protocol/ Internet Protocol (TCP/IP) window size and determining a value for the
4		achieved flow bandwidth based on the TCP/IP window size.
1	23.	(Previously Presented) The method as in claim 1, wherein the step of determining
2		the achieved flow bandwidth is based on reception quality feedback from a Real-
3		Time Transport Protocol (RTP) receiver.
1	24.	(Currently Amended) A method for marking one or more packets of data in a
2		packet-switched network based on achieved flow bandwidth information within
3		the network, comprising the computer-implemented steps of:
4		receiving a first group of packets of a plurality of data flows from at a router in the
5		network;
6		marking the first group of packets of said plurality of data flows with an initial set
7		of behavioral treatment values, wherein the first initial set of behavioral
8		treatment values direct devices within the network to treat the first group
9		of packets with an initial set of quality of service treatments;
10		transmitting the first group of packets of said plurality of data flows in the
11		network;
12		determining achieved flow bandwidths, wherein an achieved flow bandwidth is
13		determined for each of the plurality of data flows based on data traffic
14		within the network;

15		determining packet flow characteristics of the first group of packets of said
16		plurality of data flows;
17		determining an updated set of behavioral treatment values based on the achieved
18		flow bandwidths within the network and on the packet flow characteristics
19		of the first group of packets;
20		receiving a second group of packets of said plurality of data flows from at the
21		router in the network;
22		after the steps of marking the first group and determining the updated set of
23		behavioral treatment values, marking the second group packets of said
24		plurality of data flows with said updated set of behavioral treatment
25		values, wherein the updated set of behavioral treatment values direct
26		devices within the network to treat the second group of packets with an
27		updated set of quality of service treatments that is different than the initial
28		set of quality of service treatments; and
29		transmitting the second group of packets of said plurality of data flows in the
30		network; and
31		repeating the preceding steps for successive groups of packets of said plurality of
32		data flows, wherein each of the successive groups is dynamically marked
33		with a set of behavioral treatment values that is determined based at least
34		in part on successively determined achieved flow bandwidths for said
35		plurality of data flows.
1	25.	(Currently Amended) A method for performing packet marking comprising the
2		computer-implemented steps of:

3	defining an initial set of Quality of Service (QoS) values for coloring packets
4	within a plurality of data flows, wherein each of the QoS values indicates
5	an allocation of bandwidth;
6	coloring a first group of one or more packets of a given data flow selected from
7	the plurality of data flows, without regard to an achieved flow bandwidth,
8	by at least:
9	communicating the initial set of QoS values to each of one or more edge
10	differentiated services domain nodes that are located at one or
11	more edges of a differentiated services domain, and
12	the one or more edge differentiated services domain nodes using one or
13	more of the initial set of QoS values to color the first group;
14	estimating traffic bandwidth within the network based on bandwidth information
15	corresponding to a current traffic pattern of the network, wherein the
16	traffic bandwidth estimated includes an achieved flow bandwidth for the
17	given data flow;
18	determining packet flow characteristics of the first group of one or more packets
19	of the given data flow;
20	determining an updated set of QoS values for coloring packets within the plurality
21	of data flows, based on the traffic bandwidth estimated and on the packet
22	flow characteristics of the first group of one or more packets,
23	wherein the updated set of QoS values provide lower levels of service than
24	other available choices of QoS values, and

25	wherein the updated set of QoS values provide a high enough level of
26	service to accommodate the traffic bandwidth estimated;
27	coloring a subsequent group of one or more packets of the given data flow with
28	the one or more of updated set of QoS values by at least:
29	communicating the updated set of QoS values to each of one or more edge
30	differentiated services domain nodes, and
31	the one or more edge differentiated services domain nodes using one or
32	more of the updated set of QoS values to color the subsequent
33	group; and
34	repeating the steps of estimating traffic bandwidth, determining packet flow
35	characteristics, determining an updated set of QoS values, and coloring a
36	subsequent group multiple times, therein tuning the network on an
37	ongoing basis.
1	26. (Previously Presented) The method as in claim 24, wherein the initial set of QoS
2	values is an initial set of Differentiated Services Codepoint (DSCP) values;
3	wherein the updated set of QoS values is an updated set of DSCP values;
4	wherein the step of estimating traffic bandwidth further comprises the steps of:
5	defining one or more QoS policies that specify target bandwidth values
6	and a range of possible services for each the plurality of data
7	flows, wherein a given target bandwidth value is specified for the
8	given data flow, and wherein the given target bandwidth identifies
9	a specific bandwidth that is desirous or required by the given data
10	flow;

11		gathering information about the traffic bandwidth; and
12		determining the traffic bandwidth based on the information gathered.
1	27.	(Previously Presented) The method of claim 1, wherein the data flow is
2		associated with only one behavioral treatment at any given time.
1	28.	(Previously Presented) The method of claim 24, wherein each data flow is
2		associated with only one behavioral treatment at any given time.
1	29.	(Previously Presented) The method of claim 1, wherein the achieved flow
2		bandwidth is a percentage of the network bandwidth.
1	30.	(Previously Presented) The method claim 29, wherein the second behavioral
2		treatment results in the data flow having a different achieved flow bandwidth,
3		which is a different percentage of the network bandwidth.
1	31.	(Previously Presented) The method of claim 1, wherein the determining of the
2		second behavioral treatment is in response to a determination of achieved flow
3		bandwidth resulting form the determining of the achieved flow bandwidth.
1	32.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2	32.	first behavioral treatment is determined without regard to the achieved flow
3		bandwidth.
1	33.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		second behavioral treatment is a behavioral treatment that provides a lower level
3		of service than other available choices of behavioral treatments; and

4		wherein the second behavioral treatment provides a high enough level of service
5		to accommodate the achieved flow bandwidth.
1	34.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		second behavioral treatment is a behavioral treatment that provides a minimum
3		level of service that is a sufficient level of service to accommodate the achieved
4		flow bandwidth.
1	35.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		step of marking the first group is performed by at least communicating the first
3		behavioral treatment to a differentiated services node located at a border of a
4		differentiated services domain; and
5		wherein the step of marking the second group is performed by at least
6		communicating the second behavioral treatment to the differentiated
7		services node.
1	36.	(Canceled)
1	37.	(Canceled)
1	38.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		step of determining the achieved flow bandwidth is performed by at least
3		estimating the achieved flow bandwidth based on Management Information Base
4		(MIB) variables.
1	39.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		step of determining the achieved flow bandwidth is performed by at least

3		checking a Transfer Control Protocol/ Internet Protocol (TCP/IP) window size
4		and determining a value for the achieved flow bandwidth based on the TCP/IP
5		window size.
1	40.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		step of determining the achieved flow bandwidth is based on reception quality
3		feedback from a Real-Time Transport Protocol (RTP) receiver.
1	41.	(Currently Amended) A computer-readable medium carrying one or more
2		sequences of instructions for marking one or more packets of data in a packet-
3		switched network based on achieved flow bandwidth information within the
4		network, wherein execution of the one or more sequences of instructions by one or
5		more processors causes the one or more processors to perform the method
6		comprising steps of:
7		receiving a first group of packets of a plurality of data flows from at a router in the
8		network;
9		marking the first group of packets of said plurality of data flows with an initial set
10		of behavioral treatment values, wherein the first initial set of behavioral
11		treatment values direct devices within the network to treat the first group
12		of packets with an initial set of quality of service treatments;
13		transmitting the first group of packets of said plurality of data flows in the
14		network;

15	determining achieved flow bandwidths, wherein an achieved flow bandwidth is
16	determined for each of the plurality of data flows based on data traffic
17	within the network;
18	determining packet flow characteristics of the first group of packets of said
19	plurality of data flows;
20	determining an updated set of behavioral treatment values based on the achieved
21	flow bandwidths within the network and on the packet flow characteristics
22	of the first group of packets;
23	receiving a second group of packets of said plurality of data flows from at the
24	router in the network;
25	after the steps of marking the first group and determining the updated set of
26	behavioral treatment values, marking the second group packets of said
27	plurality of data flows with said updated set of behavioral treatment
28	values, wherein the updated set of behavioral treatment values direct
29	devices within the network to treat the second group of packets with an
30	updated set of quality of service treatments that is different than the initial
31	set of quality of service treatments; and
32	transmitting the second group of packets of said plurality of data flows in the
33	network; and
34	repeating the preceding steps for successive groups of packets of said plurality of
35	data flows, wherein each of the successive groups is dynamically marked
36	with a set of behavioral treatment values that is determined based at least

in part on successively determined achieved flow bandwidths for said 37 plurality of data flows. 38 1 42. (Currently Amended) A computer-readable medium carrying one or more 2 sequences of instructions for marking one or more packets of data in a packetswitched network based on achieved flow bandwidth information within the 3 network, wherein execution of the one or more sequences of instructions by one 4 or more processors causes the one or more processors to perform the method 5 comprising steps of: 6 defining an initial set of Quality of Service (QoS) values for coloring packets 7 8 within a plurality of data flows, wherein each of the QoS values indicates 9 an allocation of bandwidth; 10 coloring a first group of one or more packets of a given data flow selected from 11 the plurality of data flows, without regard to an achieved flow bandwidth, 12 by at least: 13 communicating the initial set of QoS values to each of one or more edge differentiated services domain nodes that are located at one or 14 15 more edges of a differentiated services domain, and 16 the one or more edge differentiated services domain nodes using one or 17 more of the initial set of QoS values to color the first group; 18 estimating traffic bandwidth within the network based on bandwidth information 19 corresponding to a current traffic pattern of the network, wherein the 20 traffic bandwidth estimated includes an achieved flow bandwidth for the

given data flow;

21

22		determining packet flow characteristics of the first group of one or more packets
23		of the given data flow;
24		determining an updated set of QoS values for coloring packets within the plurality
25		of data flows, based on the traffic bandwidth estimated and on the packet
26	•	flow characteristics of the first group of one or more packets,
27		wherein the updated set of QoS values provide lower levels of service than
28		other available choices of QoS values, and
29		wherein the updated set of QoS values provide a high enough level of
30		service to accommodate the traffic bandwidth estimated;
31		coloring a subsequent group of one or more packets of the given data flow with
32		the one or more of updated set of QoS values by at least:
33		communicating the updated set of QoS values to each of one or more edge
34		differentiated services domain nodes, and
35		the one or more edge differentiated services domain nodes using one or
36		more of the updated set of QoS values to color the subsequent
37		group; and
38		repeating the steps of estimating traffic bandwidth, determining packet flow
39		characteristics, determining an updated set of QoS values, and coloring a
40		subsequent group multiple times, therein tuning the network on an
41		ongoing basis.
1	43.	(Previously Presented) The computer-readable medium as in claim 41, wherein
2		the initial set of QoS values is an initial set of Differentiated Services Codepoint
3		(DSCP) values;

4		wherein the updated set of QoS values is an updated set of DSCP values;
5		wherein the step of estimating traffic bandwidth further comprises the steps of:
6		defining one or more QoS policies that specify target bandwidth values
7		and a range of possible services for each the plurality of data
8		flows, wherein a given target bandwidth value is specified for the
9		given data flow, and wherein the given target bandwidth identifies
10		a specific bandwidth that is desirous or required by the given data
11		flow;
12		gathering information about the traffic bandwidth; and
13		determining the traffic bandwidth based on the information gathered.
1 2	44.	(Previously Presented) The computer-readable medium of claim 5, wherein the data flow is associated with only one behavioral treatment at any given time.
-		data now is associated with only one continent treatment at any given time.
1	45.	(Previously Presented) The computer readable medium of claim 41, wherein each
2		data flow is associated with only one behavioral treatment at any given time.
1	46.	(Previously Presented) The computer-readable medium of claim 5, wherein the
2		achieved flow bandwidth is a percentage of the network bandwidth.
1	47.	(Previously Presented) The computer-readable medium claim 46, wherein the
2		second behavioral treatment results in the data flow having a different achieved
3		flow bandwidth, which is a different percentage of the network bandwidth.
1	48.	(Previously Presented) The computer-readable medium of claim 5, wherein the
2		determining of the second behavioral treatment is in response to a determination

3	*	of achieved flow bandwidth resulting form the determining of the achieved flow
4		bandwidth.
1	49.	(Previously Presented) The computer apparatus as in claim 9, wherein the first
2		behavioral treatment is determined without regard to the achieved flow
3		bandwidth.
1	50.	(Previously Presented) The computer apparatus as in claim 9, wherein the second
2		behavioral treatment is a behavioral treatment that provides a lower level of
3		service than other available choices of behavioral treatments; and
4		wherein the second behavioral treatment provides a high enough level of service
5		to accommodate the achieved flow bandwidth.
1	51.	(Previously Presented) The computer apparatus as in claim 9, wherein the second
2		behavioral treatment is a behavioral treatment that provides a minimum level of
3		service that is a sufficient level of service to accommodate the achieved flow
4		bandwidth.
1	52.	(Previously Presented) The computer apparatus as in claim 9, wherein the step of
2		marking the first group is performed by at least communicating the first
3		behavioral treatment to a differentiated services node located at a border of a
4		differentiated services domain; and
5		wherein the step of marking the second group is performed by at least
6		communicating the second behavioral treatment to the differentiated
7		services node.

1	53.	(Canceled)
1	54.	(Canceled)
1	55.	(Previously Presented) The computer apparatus as in claim 9, wherein the step of
2		determining the achieved flow bandwidth is performed by at least estimating the
3		achieved flow bandwidth based on Management Information Base (MIB)
4		variables.
1	56.	(Previously Presented) The computer apparatus as in claim 9, wherein the step of
2		determining the achieved flow bandwidth is performed by at least checking a
3		Transfer Control Protocol/ Internet Protocol (TCP/IP) window size and
4		determining a value for the achieved flow bandwidth based on the TCP/IP
5		window size.
1	57.	(Previously Presented) The computer apparatus as in claim 9, wherein the step of
2		determining the achieved flow bandwidth is based on reception quality feedback
3		from a Real-Time Transport Protocol (RTP) receiver.
1	58.	(Currently Amended) A computer apparatus comprising:
2		a processor; and
3		a memory coupled to the processor, the memory containing one or more
4		sequences of instructions for marking one or more packets of data in a
5		packet-switched network based on achieved flow bandwidth information
6		within the network, wherein execution of the one or more sequences of

7	instructions by the processor causes the processor to perform the method
8	including at least steps of:
9	receiving a first group of packets of a plurality of data flows from the network;
10	marking the first group of packets of said plurality of data flows with an initial set
11	of behavioral treatment values, wherein the first initial set of behavioral
12	treatment values direct devices within the network to treat the first group
13	of packets with an initial set of quality of service treatments;
14	transmitting the first group of packets of said plurality of data flows in the
15	network;
16	determining achieved flow bandwidths, wherein an achieved flow bandwidth is
17	determined for each of the plurality of data flows based on data traffic
18	within the network;
19	determining packet flow characteristics of the first group of packets of said
20	plurality of data flows;
21	determining an updated set of behavioral treatment values based on the achieved
22	flow bandwidths within the network and on the packet flow characteristics
23	of the first group of packets;
24	receiving a second group of packets of said plurality of data flows from the
25	network;
26	after the steps of marking the first group and determining the updated set of
27	behavioral treatment values, marking the second group packets of said
28	plurality of data flows with said updated set of behavioral treatment
29	values, wherein the updated set of behavioral treatment values direct

30		devices within the network to treat the second group of packets with an
31		updated set of quality of service treatments that is different than the initial
32		set of quality of service treatments; and
33		transmitting the second group of packets of said plurality of data flows in the
34		network; and
35		repeating the preceding steps for successive groups of packets of said plurality of
36		data flows, wherein each of the successive groups is dynamically marked
37		with a set of behavioral treatment values that is determined based at least
38		in part on successively determined achieved flow bandwidths for said
39		plurality of data flows;
40		wherein the computer apparatus is any one of a bridge, a switch, and a router.
1	59.	(Currently Amended) A computer apparatus comprising:
2		a processor; and
3		a memory coupled to the processor, the memory containing one or more
4		sequences of instructions for marking one or more packets of data in a
5		packet-switched network based on achieved flow bandwidth information
6		within the network, wherein execution of the one or more sequences of
7		instructions by the processor causes the processor to perform the method
8		including at least steps of:
9		defining an initial set of Quality of Service (QoS) values for coloring packets
10		within a plurality of data flows, wherein each of the QoS values indicates
11		an allocation of bandwidth;

12	coloring a first group of one or more packets of a given data flow selected from
13	the plurality of data flows, without regard to an achieved flow bandwidth,
14	by at least:
15	communicating the initial set of QoS values to each of one or more edge
16	differentiated services domain nodes that are located at one or
17	more edges of a differentiated services domain, and
18	the one or more edge differentiated services domain nodes using one or
19	more of the initial set of QoS values to color the first group;
20	estimating traffic bandwidth within the network based on bandwidth information
21	corresponding to a current traffic pattern of the network, wherein the
22	traffic bandwidth estimated includes an achieved flow bandwidth for the
23	given data flow;
24	determining packet flow characteristics of the first group of one or more packets
25	of the given data flow;
26	determining an updated set of QoS values for coloring packets within the plurality
27	of data flows, based on the traffic bandwidth estimated and on the packet
28	flow characteristics of the first group of one or more packets,
29	wherein the updated set of QoS values provide lower levels of service than
30	other available choices of QoS values, and
31	wherein the updated set of QoS values provide a high enough level of
32	service to accommodate the traffic bandwidth estimated;
33	coloring a subsequent group of one or more packets of the given data flow with
34	the one or more of updated set of QoS values by at least:

35		communicating the updated set of QoS values to each of one or more edge
36		differentiated services domain nodes, and
37		the one or more edge differentiated services domain nodes using one or
38		more of the updated set of QoS values to color the subsequent
39		group; and
40		repeating the steps of estimating traffic bandwidth, determining packet flow
41		characteristics, determining an updated set of QoS values, and coloring a
42		subsequent group multiple times, therein tuning the network on an
43		ongoing basis;
44	,	wherein the computer apparatus is any one of a bridge, a switch, and a router.
1	60.	(Previously Presented) The computer apparatus as in claim 58, wherein the initial
2		set of QoS values is an initial set of Differentiated Services Codepoint (DSCP)
3		values;
4		wherein the updated set of QoS values is an updated set of DSCP values;
5		wherein the step of estimating traffic bandwidth further comprises the steps of:
6		defining one or more QoS policies that specify target bandwidth values
7		and a range of possible services for each the plurality of data
8		flows, wherein a given target bandwidth value is specified for the
9		given data flow, and wherein the given target bandwidth identifies
10		a specific bandwidth that is desirous or required by the given data
11		flow;
12		gathering information about the traffic bandwidth; and
13		determining the traffic bandwidth based on the information gathered.

- 1 61. (Previously Presented) The computer apparatus of claim 9, wherein the data flow is associated with only one behavioral treatment at any given time.
- 1 62. (Previously Presented) The computer apparatus of claim 58, wherein each data 2 flow is associated with only one behavioral treatment at any given time.
- 1 63. (Previously Presented) The computer apparatus of claim 9, wherein the achieved flow bandwidth is a percentage of the network bandwidth.
- 1 64. (Previously Presented) The computer apparatus claim 63, wherein the second
 2 behavioral treatment results in the dataflow having a different achieved flow
 3 bandwidth, which is a different percentage of the network bandwidth.
- 1 65. (Previously Presented) The computer apparatus of claim 9, wherein the
 2 determining of the second behavioral treatment is in response to a determination
 3 of achieved flow bandwidth resulting form the determining of the achieved flow bandwidth.

31