Полиномиальная и логистическая регрессия

Гончаров Павел Нестереня Игорь

kaliostrogoblin3@gmail.com nesterione@gmail.com

План занятия

- Повторение
- Полиномиальная регрессия
- Переобучение и регуляризация
- Задача классификации/ Логистическая регрессия
- Оценка качества модели (основы)
- Категориальные признаки

Основные термины

Регрессия [h(x)] — это математическое выражение, отражающее зависимость целевой переменной y от независимых переменных x при условии статистической значимости.

Функция потерь (Lost function) [$L(y^*,y)$]— функция определяющая величину ошибки предсказания и настоящего значения (одни пример)

Целевая функция (Cost function)[J(w)] — агрегированная оценка ошибки на всей обучающей выборке (обычно представляется собой как усреднённое значение функций потерь).

Математическая постановка задачи регрессии — найти такие параметры w гипотезы $h_w(x)$, при которых значение целевой функции минимально.

$$J(w) \rightarrow min$$

Линейная регрессия

Гипотеза:

$$h(x)=w_0 + w_1x_1 + ... + w_nx_n = w^Tx$$

Функция потерь:

$$L(y*,y) = \frac{1}{2} (y*-y)^2 = \frac{1}{2} (h(x) - y)^2$$

Целевая функция:

$$J(w) = \frac{1}{m} \sum_{i} (h_{w}(x^{(i)}) - y^{(i)})^{2}$$

Одномерная и многомерная оптимизация

Задача оптимизации сводится к задаче поиска экстремума (максимума или минимума) функции ошибки (*cost function*). Cost для регрессии – это, как правило, среднеквадратичное отклонение (MSE).

Алгоритм градиентного спуска

Цель: изменять значение параметров w модели $h_w(x)$ «шагая» в направлении к локальному минимуму функции ошибки (J(w)). В случае регрессии $J(w) = \mathsf{MSE}$.

Алгоритм:

- задать начальное значение параметров w, например $w_0 = w_1 = \dots = w_n = 0$
- определить точность ε , например $\varepsilon = 0.001$
- задать скорость обучения α
- повторять до сходимости $J(w)_i J(w)_{i-1} < \varepsilon$:
 - для всех параметров w найти смещение:

$$temp0 = w_0 - \alpha \frac{\partial}{\partial w_0} J(w_0, w_1, \dots, w_n);$$

$$tempN = w_n - \alpha \frac{\partial}{\partial w_n} J(w_0, w_1, ..., w_n).$$

• обновить все веса w_i , где i = 0,1,...,n: $w_n = tempN$

До тех пор, пока ошибка уменьшается больше, чем на epsilon

Частная производная cost function по параметру w_n

Обновление параметров модели

Для того, чтобы обновить параметр, нужно от текущего значения параметра w_i отнять производную функции ошибки J(w) по параметру $w_i - \frac{\partial J(w)}{\partial w_i}$, умноженную на скорость обучения α :

$$w_i = w_i - \alpha \frac{\partial}{\partial w_i} J(w)$$

Например:

$$h_w(x) = w_0 x_0 + w_1 x_1 + \dots + w_n x_n = w^T x$$
, где $x_0 = 1$ (1)

- 1) Модель линейной регрессии
- 2) Функция ошибки, cost function
- 3) Частная производная функции ошибки по параметру w_i

$$J(w) = \frac{1}{2m} \sum_{j=1}^{m} \left(h_w(x^{(j)}) - y^{(j)} \right)^2$$
 (2)

$$\frac{\partial}{\partial w_i} J(w) = \frac{1}{m} \sum_{j=1}^m \left(h_w(x^{(j)}) - y^{(j)} \right) x_i^{(j)} \tag{3}$$

Нормализация и стандартизация данных

Как правило, каждый признак имеет свой диапазон значений. Например, если мы говорим об оценке стоимости жилья по каким-то критериям, то параметр «число комнат» будет иметь значение от 1-10, а параметр «размер жилой площади» может измеряться сотнями квадратных метров. Важно привести все параметры к виду:

$$-1 \le x \le 1$$

1) МіпМах масштабирование:

$$\frac{x - x_{min}}{x_{max} - x_{min}} \Rightarrow 0 \le x \le 1$$

2) Z-score стандартизация:

$$\frac{x-\mu}{\sigma} \Rightarrow -1 \le x \le 1$$

$$\mu$$
 — среднее, $\sigma = x_{max} - x_{min}$

Полиномиальная регрессия

• Что делать если признаки зависят нелинейно?

Исходные признаки можно дополнять

- Например для предыдущего пример можно добавить ещё один признак
- $h_w(x) = w_0 x_0 + w_1 x_1 + w_1 x_1^2$ или
- $h_w(x) = w_0 x_0 + w_1 x_1 + w_1 x_1^2 + w_1 x_1^3$ или
- $h_w(x) = w_0 x_0 + w_1 x_1 + w_1 \sqrt{x_1}$

Алгоритм регрессии останется неизменным, вводится только дополнительная обработка параметров.

$$h_w(x) = w_0 x_0 + w_1 x_1 + w_1 x_1^2$$

 $h_w(x) = w_0 x_0 + w_1 x_1 + w_1 x_1^2 + w_1 x_1^3$

Переобучение

Регуляризация

$$J(w) = \frac{1}{2m} \sum_{i} (h_w(x^{(i)}) - y^{(i)})^2 - C \sum_{i} w_{i}^{2}$$

С — параметр регуляризации

$$\frac{\partial}{\partial w_i} J(w) = \frac{1}{m} \sum_{j=1}^m \left(h_w(x^{(j)}) - y^{(j)} \right) x_i^{(j)} + \frac{C}{m} w_i$$

$$w_i = w_i(1 - \alpha \frac{C}{m}) - \alpha \frac{\partial}{\partial w_i} J(w)$$

http://www.chioka.in/differences-between-l1-and-l2-as-loss-function-and-regularization/

https://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization-How-does-it-solve-the-problem-of-overfitting-Which-regularizer-to-use-and-when

$$L2 = C \sum w_j^2$$

$$L1 = C \sum |w_j|$$

Задача классификации

Алгоритм регрессии останется неизменным, вводится только дополнительная обработка параметров.

Линейной регрессии недостаточно!

Логистическая регрессия

$$y^* = P(y=1|x)$$

$$\sigma(z) = \frac{1}{1 - e^{-z}}$$

$$h_w(x) = a = \sigma(w_0 x_0 + w_1 x_1 + \dots + w_n x_n) = \sigma(w^T x)$$

$$L(a,y) = -(y * log(a) + (1 - y)log(1 - a))$$

$$J(w) = \frac{1}{m} \sum_{i} L(h_{w}(x), y)$$

Алгоритм градиентного спуска

<u>Цель</u>: изменять значение параметров w модели $h_w(x)$ «шагая» в направлении к локальному минимуму функции ошибки (J(w)). В случае логистической регрессии $J(w) = \log_{loss}$.

Алгоритм:

- задать начальное значение параметров w, например $w_0 = w_1 = \dots = w_n = 0$
- определить точность ε , например $\varepsilon = 0.001$
- задать скорость обучения α
- повторять до сходимости $J(w)_i J(w)_{i-1} < \varepsilon$:
 - для всех параметров w найти смещение:

$$temp0 = w_0 - \alpha \frac{\partial}{\partial w_0} J(w_0, w_1, \dots, w_n);$$

 $tempN = w_n - \left(\alpha \frac{\partial}{\partial w_n} J(w_0, w_1, \dots, w_n)\right) - \frac{\partial}{\partial w_n} J(w_0, w_1, \dots, w_n)$

• обновить все веса w_i , где i = 0,1,...,n: $w_n = tempN$

До тех пор, пока ошибка уменьшается больше, чем на epsilon

Частная производная cost function по параметру w_n

Используем градиентный спуск

