汇编重点

题型:

1. 填空题: 20x2=40分

2. 定义数据段: 5分 (5个变量)

字符型变量

字变量/字节 (不同进制)

相同初值

3. 画数据段xx空间图 (5分)

不同类型变量

不同进制数赋初值

变量赋初值

4. 阅读程序: 4x7=28分: 最终结果(不同指令)

5. 编程 (22分) 两题

Hello World

第一章 汇编语言基础

● 进制转换: 10进制→2、8、16进制

书写方法: 后缀法 (P29

• 原码、反码、补码:知道补码写真值

• ASCII: 20H, 30H

	-	-			_											
	ASCII (1977/1986)															
	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_C	_D	_E	_F
0_	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	НТ	LF	VT	FF	CR	S0	SI
0	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	A000	000B	000C	000D	000E	000F
1_	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
16	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	001B	001C	001D	001E	001F
2_	SP	!	"	#	\$	%	&	,	()	*	+	,	-		/
32	0020	0021	0022	0023	0024	0025	0026	0027	0028	0029	002A	002B	002C	002D	002E	002F
3_	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
48	0030	0031	0032	0033	0034	0035	0036	0037	0038	0039	003A	003B	003C	003D	003E	003F
4_	@	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
64	0040	0041	0042	0043	0044	0045	0046	0047	0048	0049	004A	004B	004C	004D	004E	00 4 F
5_	P	Q	R	S	Т	U	V	W	X	Y	Z	[\]	^	_
80	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	005A	005B	005C	005D	005E	005F
6_	~	a	ь	С	d	е	f	g	h	i	j	k	1	m	n	0
96	0060	0061	0062	0063	0064	0065	0066	0067	0068	0069	006A	006B	006C	006D	006E	006F
7_	р	q	r	S	t	u	v	w	х	у	z	{		}	~	DEL
112	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079	007A	007B	007C	007D	007E	007F
	Letter Num			Pun	ctuatio	n :	Symbol	0	ther	Unde	efined	Ch	aracter	change	d from 1	1963 vei

第二章 8086微处理器

• 组成: EU 3部件: 寄存器组+算术逻辑部件+标志寄存器(又称程序状态寄存器 P6

• 寄存器:

- 8:(8个16位通用寄存器):包括数据寄存器(AX, BX, CX, DX)和地址寄存器(SI, DI, BP, SP)两种。各个寄存器都有自己特定的功能,在程序中常用来临时存放中间结果。P15
- 2: (2个专用寄存器):
 - IP(Instruction Pointer)为指令指针寄存器,又称指令指针,用于存放代码段中汇编指令的入口地址(即偏移地址)
 - FLAGS为标志寄存器,又称程序状态寄存器(Program Status Word, PSW),共16位,用于存放当前程序指令执行的状态和运算结果的特征。标志寄存器中的每一位又称标志位,8086使用其中的9个标志位,各标志位分布如下图所示:

标志寄存器中标志位分布图

可分为条件标志位(CF—进位标志、ZF—零标志、SF—符号标志、OF—溢出标志、PF—-一奇偶标志、AF—辅助进位标志)和控制标志位(TF—单步中断允许标志、IF—外中断 屏蔽标志、DF—方向标志)

○ 4: (4个段寄存器):

- 代码段CS,用来存放当前正在运行的程序代码。
- 数据段DS,用来存放当前运行程序所用的数据,如果程序中使用了串处理指令,则其源操作数必存放在数据段中
- 堆栈段SS,堆栈段定义了堆栈的所在区域,堆栈是一种数据结构,是一个特殊的数据存储区,并以先进后出的方式来访问数据,它常用来存放子程序的入口地址。
- 附加段ES,附加段是附加的数据段,它是一个辅助的数据存储区,也是串处理指令的目的操作数存放区。
- 存储器:字节:低字节低地址,高字节高地址 P27
- 物理地址(寻址形式):

物理地址 = 段地址×10H + 偏移地址

PA=(CS)×10H+(IP)

PA = (DS或ES)×10H十该存储单元的偏移地址

 $PA = (SS) \times 10H + (SP)$

- Debug调试工具命令:
 - o R: "R"命令后,即可显示出各寄存器的名称及内容。"R"是检查和修改寄存器内容的命令
- U: 输入D和U命令后,即可查看内存单元的内容
 - 。 E: 输入E命令后,即可修改内存单元的内容
 - T: 跟踪命令,每执行一条指令就显示运行结果,使程序员可以细致地观察程序的执行情况。 从指定地址起执行一条或数值参数指定条数的指令后停下来,每条指令执行后都要显示所有寄存器和标志位的值以及下一条指令。如未指定地址则从当前的CS:IP开始执行。注意给出的执行地址前有一个等号,否则会被认为是被跟踪指令的条数(数值)。
 - G: 运行命令, 从指定地址处开始运行程序, 直到遇到断点或者程序正常结束。程序遇到断点(实际上就是断点中断指令INT 3), 停止执行, 并显示当前所有寄存器和标志位

的内容、以及下一条将要执行的指令(显示内容同R命令),以便观察程序运行到此的情况。程序正常结束,将显示"Program terminated normally"

• 堆栈: 先讲后出/指针变化 SP栈顶指针

• 程序示例: 背下来 P48

汇编语言实现字符串显示1

DATA SEGMENT ; 数据段

BUF DB 0AH, 0DH, "HELLO WORLD!\$"

DATA ENDS

STACK SEGMENT STACK; 堆栈段

DB 200 DUP(0)

STACK ENDS

CODE SEGMENT ; 代码段

ASSUME CS:CODE, DS:DATA

START: MOV AX, DATA; 将数据段首址

DATA→AX(MOV为传送指令)

MOV DS, AX;将数据段首址DATA置入数据

段寄存器DS

汇编语言实现字符串显示2

LEA DX, BUF;将变量BUF的偏移地址传给DX

MOV AH, 9 ; 将立即数9传给AH

INT 21H ; DOS中断调用

MOV AH, 4CH; 4CH→AH

INT 21H ; DOS中断调用,这两条指令执行

完后,计算机将结

; 束本程序的运行, 返回DOS状态

CODE ENDS END START

第三章 寻址方式

• 有效地址组成: P4

EA = 基址 + (变址×比例因子) + 位移量 (X)

(除比例因子是固定值外,其他三个成分都可正可负,以保证指针移动的灵活性

- 1. 位移量(displacement)是存放在指令中的一个8位、16位和32位的数,但它不是立即数,而是一个地址。
- 2. 基址(base)是存放在基址寄存器中的内容。它是有效地址中的基址部分,通常用来指向数据段中数组或字符串的首地址。
- 3. 变址(index)是存放在变址寄存器中的内容。它通常用来访问数组中的某个元素或字符串中的某个字符。
- 4. 比例因子是386及其后继机型中新增加寻址方式中的一个术语,其值可为1,2,4或8。在寻址中,可用变址寄存器的内容乘以比例因子来取得变址值。这类寻址方式对访问元素长度为2,4,8字节的数组特别有用
- 指令寻址:

寻址方式是什么: 寻找数据和指令存放地址的方式称为寻址方式

- 。 立即寻址
- 直接寻址
- 寄存器寻址
- 。 寄存器间接寻址
- 寄存器相对寻址
- 基址加变址寻址
- 相对基址加变址寻址
- 。 相对比例变址寻址方式
- 。 相对基址比例变址寻址方式

段内直接寻址

段内间接寻址

操作数存放在哪里:物理地址是由段地址和偏移地址两部分组成,段地址存放在相应的段寄存器中,偏移地址存储在相应的地址寄存器中,偏移地址又称有效地址

物理地址计算:

寄存器与存储区数据存放位置:

CS: IP怎么变化, 值是多少

跨段的有关问题:

第四章 汇编语言程序

- 语句类型:
 - 指令语句:指令语句是可执行语句,在汇编时可产生供机器执行的二进制目标代码
 - の 伪指令语句: 伪指令语句是不可执行语句,在汇编时不产生目标代码,汇编程序主要利用它分配存储单元和定义程序段等
 - o 宏指令语句:要求先定义后使用,它是一个宏名代替宏体的过程。(后面章节详细介绍)
- 语句格式: 指令语句和伪指令语句具有相似的语句格式, 都由4部分组成, 一般格式为:

[<名字>] <操作码> [<操作数>] [;<注释>]

[]可选, <>必选, [<>]可选中的必选, |或选, 前后内容必选其一

在汇编语言中,允许使用如下语言成分:

o 字母: a~zA~Z

○ 数字: 0~9

- 字符: ?; : , @\$[]
- 常量类型:数值型常量、符号常量和字符型常量

字符型常量与数值型常量可以相互通用

• EQU "="

对经常引用的数值型常量,可以用等价伪指令EQU或等号伪指令"="给它定义一个名字,然后在语句中用这个名字来代表该常量。这个名字称为符号常量

- 变量属性: 段属性、偏移属性、类型
- 变量赋初值
 - 1. 数值表达式
 - 2. ASCII字符串 (通常选用DB类型
 - 3. 地址表达式(只适用于DW和DD两个伪指令); DW:偏移地址,DD:段首址和EA
 - 4.? (表示所定义的变量无确定初值)
 - 5. 重复子句。其格式为: n DUP (表达式)
 - 6. 可以是以上表达式组成的序列: 逗号隔开, 变量名是首地址, 表达式个数即存储单元个数
- 标号类型

NEAR类型: 只能在定义该标号的段内引用, 且可以省略

FAR类型: 标号段间引用,不可省

- 数值表达式:由各种常量与数值运算符连接而成的式子,称为数值表达式。数值表达式的计算结果 是一个数值,它只有大小而没有属性
- 地址表达式:由常量、变量、标号、寄存器和数值运算符、地址运算符组合而成的有意义的式子, 称为地址表达式,单个变量、标号是地址表达式的最简形式
- 地址运算符: 属性分离算符、属性定义算符
 - 高低? 分离 16位 定义
- 8086微处理器的指令系统大约具有100条基本指令,这些指令可以分为以下六类
 - 。 数据传送指令:

■ 数据传送指令: MOV、XCGH

■ 堆栈操作指令: PUSH、POP

■ 标志寄存器: PUSHF、POPF、LAHF、SAHF

■ 地址传送指令: LEA、LDS、LES

■ 输入输出指令: IN、OUT

除SAHF、POPF两指令外,其他均不影响标志位

- 。 算数运算指令:
 - 加法: **ADD、ADC(带进位加法)**、INC
 - 减法: DEC、SUB、CMP(很重要)、NEG(求补?)、SBB(借位减法)
 - 乘法指令: MUL、IMUL(有符号乘法) 另一个操作数
 - 除法指令: DIV 、IDIV 另一个操作数
 - 符号扩展指令: CBW、CWD、CDQ
- 。 位操作指令:
 - 逻辑运算指令: AND (屏蔽?), OR, NOT (按位取反) XOR (某些位取反), TEST (相与,结果不保存,根据其特征设置条件码)
 - 移位指令:

算数移位指令:

算数左移和逻辑左移: SAL、SHL

算数右移: SAR

逻辑右移: SHR

循环移位指令:

循环左移指令 ROL 循环右移指令 ROR

带进位的循环左移指令 RCL 带进位的循环右移指令 RCR

○ CF SAL/R SHL/R ROL/R(理解含义)

。 控制转移指令:

- 无条件转移指令: JMP <转向地址>
- 条件转移
- 循环
- 。 其他
- 。 处理机控制指令
 - 1. 标志处理指令: 设置和清除CF、DF、IF三个标志位
 - 2. 其他处理机指令
- 循环: LOOP 其他告诉意思?
- 伪指令\$

第五章 汇编语言程序设计

- 分支结构程序设计
- 循环结构程序设计
- 常用DOS中断调用
- 程序调用、返回

参数传递方法: 1、2、9、10号调用意思

第六章 汇编语言高级编程

• 宏定义:

• 结构定义

```
1 ;结构定义格式为: 2 <结构名> STRUC
```

- 3 <字段说明>
- 4 <结构名> ENDS

• 伪指令

第七章 IO程序设计

- 端口三种类型: 数据端口、控制端口和状态端口
- 4指令:
 - o IN
 - o OUT
 - o INS
 - OUTS

第八章 中断及中断系统

例8.4