Graafien automorfismiryhmä

Juuso Valli

24. 9. 2017

Tiivistelmä

Sisältö

1	Määritelmiä ja merkintöjä	2
2	Automorfismiryhmä	3
3	Fruchtin teoreema	6

1 Määritelmiä ja merkintöjä

Olkoon V äärellinen joukko. Olkoon $E(V) = \{\{u,v\}|u,v \in V, u \neq v\}$ joukon V alijoukkojen joukko, jonka jäsenet sisältävät täsmälleen kaksi eri solmua. Olkoon $graafi\ G = (V,E), E \subseteq E(V)$. Joukkoa V kutsutaan $graafin\ G$ solmuiksi, ja joukkoa E kutsutaan kaariksi. Annetun graafin solmujoukosta kätetään merkintää G_V , ja kaarijoukosta merkintää G_E . Kaaresta $\{u,v\}$ käytetään merkintää uv. Huomaa että näillä merkinnöillä uv = vu. Yksinkertaisuuden vuoksi solmuista käytetään myös merkintää $v \in G$ merkinnän $v \in G_V$ sijaan.

Olkoon G ja H graafeja. Graafit G ja H ovat isomorfiset $G\cong H$ mikäli on olemassa bijektio $f:V_G\to V_H$ siten, että

$$uv \in E_G \iff f(u)f(v) \in E_H$$

kaikilla $u, v \in G$.

Tällaisia bijektioita kutsutaan isomorfismeiksi.

Graafin *G automorfismit* ovat sen isomorfismeja itsensä kanssa. Triviaalisti nähdään että identiteettikuvaus on kaikkien graafien automorfismi, mutta graafeilla voi olla myös muita automorfismeja.

Esimerkki 1. Olkoon graafi $G = (\{v_1, v_2, v_3, v_4\}, \{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}).$

Olkoon kuvaus $f: V_G \to V_G$, $f(v_1) = v_2$, $f(v_2) = v_3$, $f(v_3) = v_4$, $f(v_4) = v_1$. Kuvaus f on selvästi bijektio. Se, että kuvaus f on automorfismi voidaan tarkistaa suoraan määritelmästä.

G_E	f(u)f(v)	$f^{-1}(u)f^{-1}(v)$
v_1v_2	v_2v_3	v_4v_1
v_2v_3	v_3v_4	v_1v_2
v_3v_4	v_4v_1	v_2v_3
v_4v_1	v_1v_2	v_3v_4

2 Automorfismiryhmä

Olkoon G_S graafin G automorfismien joukko.

Lemma 1. Kuvausten kompositio on binäärirelaatio $\circ: G_S \times G_S \to G_S$.

Todistus. Olkoon $u, v \in G$. Olkoon $f, g \in G_S$.

$$uv \in E_G \stackrel{g \in G_S}{\Longleftrightarrow} g(u)g(v) \in E_G \stackrel{f \in G_S}{\Longleftrightarrow} f(g(u))f(g(v)) \in E_G$$
 joten $f \circ g \in G_S$.

Lemma 2. Jokaisella graafilla on identiteettikuvaus, joka on automorfismi.

Todistus. Olkoon $u, v \in G$. Olkoon $id: G_V \to G_V, id(x) = x \forall x \in G_V$.

$$uv \in E_G \stackrel{id(x)=x}{\longleftrightarrow} id(u)id(v) \in E_G$$

joten $id \in G_S$.

Lemma 3. Automorfismin f käänteiskuvaus f^{-1} on automorfismi.

Todistus. Olkoon $u, v \in G$.

$$f^{-1}(u)f^{-1}(v) \in E_G \stackrel{f \in G_S}{\longleftrightarrow} f(f^{-1}(u))f(f^{-1}(v)) \in E_G \Leftrightarrow uv \in E_G$$
 joten $f^{-1} \in G_S$.

Lause 2. Pari (G_S, \circ) on ryhmä.

Todistus. Lemman 1 mukaan \circ on G_S :n binäärirelaatio. Assosiatiivisuus on selvä kuvausten komposition assosiatiivisuuden perusteella. Lemman 2 mukaan jokainen G_S sisältää identiteettikuvauksen id, joka on ryhmän neutraalialkio. Lemman 3 mukaan jokaisella automorfismilla f on vasta-alkio $f^{-1} \in G_S$ siten, että $f \circ f^{-1} = id$.

Graafin automorfismiryhmää kutsutaan myös graafin symmetriaryhmäksi.

Huomautus 1. Graafien automorfismiryhmät eivät yleisesti ole kommutatiivisia.

Tämä nähdään helposti vastaesimerkin kautta. Tarkastellaan esimerkin 1 mukaista graafia. Olkoon f esimerkissä esitetty automorfismi. Olkoon kuvaus $g: V_G \to V_G, g(v_1) = v_1, g(v_2) = v_4, g(v_3) = v_3, g(v_4) = v_2$. Kuvaus g on selvästi myös graafin G automorfismi. Mikäli automorfismiryhmä olisi kommutatiiviinen, olisi $f \circ g = g \circ f$. Kirjoittamalla kuvaukset auki nähdään että

 $f \circ g(v_1) = f(g(v_1)) = f(v_1) = v_2$, mutta toisaalta $g \circ f(v_1) = g(f(v_1)) = g(v_2) = v_4$, mistä seuraa ristiriita.

Esimerkki 3. Esimerkin 1 mukaisen graafin symmetriaryhmä G_S on isomorfinen diedriryhmän D_4 kanssa. Yleisemmin n:n alkion rengasgraafi on isomorfinen diedriryhmän D_n kanssa. Tämä nähdään helposti tarkastelemalla G_S :n ryhmätaulua. Otetaan G_S :n alkioille käyttöön seuraavat merkinnät: $\alpha_{i,j} \in G_S, 0 < 0i \le n, j \in \{0,1\}$, siten että $\alpha_{i,j}$ kuvaa alkion v_1 alkioksi v_i ja kääntää rengasgraafin suunnan mikäli j=1. Tällä tavoin määriteltyjen isomorfismien lisäksi G_S :llä ei ole muita isomorfismeja.

Näitä merkintöjä käyttäen G_S :n symmeriaryhmän ryhmätaulu on seuraavanlainen tapauksessa n=4:

	$\alpha_{1,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$	$\alpha_{4,0}$	$\alpha_{1,1}$	$\alpha_{2,1}$	$\alpha_{3,1}$	$\alpha_{4,1}$
$\alpha_{1,0}$	$\alpha_{1,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$	$\alpha_{4,0}$	$\alpha_{1,1}$	$\alpha_{2,1}$	$\alpha_{3,1}$	$\alpha_{4,1}$
$\alpha_{2,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$	$\alpha_{4,0}$	$\alpha_{1,0}$	$\alpha_{2,1}$	$\alpha_{3,1}$	$\alpha_{4,1}$	$\alpha_{1,1}$
$\alpha_{3,0}$	$\alpha_{3,0}$	$\alpha_{4,0}$	$\alpha_{1,0}$	$\alpha_{2,0}$	$\alpha_{3,1}$	$\alpha_{4,1}$	$\alpha_{1,1}$	$\alpha_{2,1}$
$\alpha_{4,0}$	$\alpha_{4,0}$	$\alpha_{1,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$	$\alpha_{4,1}$	$\alpha_{1,1}$	$\alpha_{2,1}$	$\alpha_{3,1}$
$\alpha_{1,1}$	$\alpha_{1,1}$	$\alpha_{4,1}$	$\alpha_{3,1}$	$\alpha_{2,1}$	$\alpha_{1,0}$	$\alpha_{4,0}$	$\alpha_{3,0}$	$\alpha_{2,0}$
$\alpha_{2,1}$	$\alpha_{2,1}$	$\alpha_{1,1}$	$\alpha_{4,1}$	$\alpha_{1,1}$	$\alpha_{2,0}$	$\alpha_{1,0}$	$\alpha_{4,0}$	$\alpha_{1,0}$
$\alpha_{3,1}$	$\alpha_{3,1}$	$\alpha_{2,1}$	$\alpha_{1,1}$	$\alpha_{4,1}$	$\alpha_{3,0}$	$\alpha_{2,0}$	$\alpha_{1,0}$	$\alpha_{4,0}$
$\alpha_{4,1}$	$\alpha_{4,1}$	$\alpha_{3,1}$	$\alpha_{2,1}$	$\alpha_{3,1}$	$\alpha_{4,0}$	$\alpha_{3,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$

Esimerkki 4. Suoran graafin symmetriaryhmä on C_2 .

Suoran graafin päädyissä olevilla alkioiden aste on 1, ja kaikkien muiden alkoiden aste on 2. Tästä seuraa se, että graafin päätyalkioit voidaan kuvata vain päätyalkoihin, sillä isomorfismit säilyttävät alkioiden asteen. Yhden päätyalkion kuvan määrääminen riittää määräämään koko graafin kuvan, joten mahdollisia kuvauksia on vain kaksi: id ja kuvaus f, joka vaihtaa päätyalkioit keskenään. Koska $f \circ f = id$, graafin automorfismiryhmä on C_2

Esimerkki 5. Hamming-graafi on graafi, jonka alkiot vastaavat n:n merkin pituisia binäärijonoja. Kahden alkion välillä on kaari mikäli alkioita vastaavat binäärijonot poikkeavat yhdellä merkillä. Hamming-graafin voidaan ajatella kuvaavan n-ulotteisen hyperkuution kulmia.

Olkoon H hamming-graafi ja f sen automorfismi. Olkoon $u \in \mathbb{Z}_2^n$ ja v = f(u). Koska jokainen u:n naapuri kuvatuu v:n naapuriksi, yhden merkin muuttaminen u:ssa muuttaa yhden merkin v:ssä. Toisaalta koska sekä

u:n että v:n naapurustossa on n alkiota, f kuvaa i:nnen merkin muutoksen $\alpha(i)$:nnen merkin muutokseksi u:n naapurustossa, missä α on permutaatio joukossa \mathbb{Z}_n .

Olkoon u_1 , u_2 u:n naapureita, ja u' u_1 :n ja u_2 :n yhteinen naapuri $u \neq u''$. Käytetään merkintöjä v_1 , v_2 , v' näiden kuvista. Alkiot v_1 ja v' eroavat toisistaan yhdellä merkillä (jonka täytyy olla eri merkki kuin v_1 :n ja v:n välillä), ja koska alkiot v_2 ja v' eroavat myös toisistaan yhdellä merkillä tulee v_1 :n ja v':n välisen eron olla sama kuin v:n ja v_2 :n. Tästä seuraa se, että permutaatio α on voimassa koko automorfismissa f.

Automorfismista f ja sen merkkipermutaatiosta α saadaan kuvaus $h:G_S\to S_n$. Kuvaus h on selvästi homomorfismi, sillä yhdistetyt automorfismit yhdistävät myös merkkipermutaatiot. Tämän homorfismin kerneli koostuu kaikista automorfismeista, jotka eivät permutoi merkkejä, tarkoittaen että mikäli alkiot u ja v poikkeavat i:nnessä merkissä, myös niiden kuvat u' ja v' poikkeavat i:nnessä merkissä. Tällaiset automorfismit joko vaihtavat merkin annetulla paikalla tai eivät. Ne muodostavat siis ryhmän C_2^n . Toisaalta ryhmä S_n muodostaa myös G_S :n aliryhmän, sillä pelkät merkkipermutaatiot ovat myös automorfismeja. Koska S_n ei muuta merkkejä, ja C_n^2 ei permutoi merkkien paikkoja, $S_n \cap C_2^n = \{1\}$. Koska C_2^n on h:n kerneli, $C_2^n \subseteq G_S$, joten $G = C_2^n \rtimes S_n$.

3 Fruchtin teoreema

Lause 6. Olkoon R äärellinen ryhmä. Silloin on olemassa äärellinen graafi G siten, että graafin G automorfismiryhmä on isomorfinen R:n kanssa.

Todistus. Tarkastellaan R:n Caleyn graafia. TBW