Teo. de Ponto Fijo

14. Sea $E = \mathbb{R} \setminus \{0\}$, con la distancia usual de \mathbb{R} . Sea $f : E \to E$ dada por $f(x) = \frac{1}{3}x$. Probar que f es una contracción pero no tiene punto fijo. ¿Qué falla del Teorema de Banach?

$$d(f(x), f(y)) \stackrel{?}{\leqslant} \alpha \cdot d(x, y) \quad \text{con } \alpha \in (0, 1)$$

$$|f(x) - f(y)| = |\frac{x}{3} - \frac{y}{3}| = \frac{1}{3} |x - y|$$

$$= \frac{1}{3} \cdot d(x, y)$$

Ser Ê=R

Por T. Le Pto Fijo de Benach,

Preg. sied

3) I únio ponto Rijo en É

deb por
$$x=0$$
,

puer $f(0) = 0$.

Ahore, or quito este $x=0$ de \hat{E} ,

termino con el E del enunciado,

(que no es completo puer $f_0 \to 0$ de $R(0)$)

... f no pue de tener punto f_0 , puer de tener f_0 , serie f_0 .

W

Otra for mo:

$$5: tovies p.f.$$

$$f(x) = \frac{1}{3} \times = \times (=) \times = 0$$

$$y listo U$$

15. Sea $f: \mathbb{R} \to \mathbb{R}$ una función derivable. Supongamos que existe $k \in (0,1)$ tal que $|f'(x)| \leq k$ para todo $x \in \mathbb{R}$. Probar que f es una contracción.

29 pour dro 2,

=> f er lipohitz con constante K

$$|f(x) - f(y)| \leq |K| \cdot |x - y|$$

Como
$$k \in (0,1)$$

Tu

- **16.** Sea (E,d) un espacio métrico y sea $f:E\to E$ una función. Para $n\in\mathbb{N}$ denotemos por $f^n:E\to E$ a la función $f\circ f\circ\cdots\circ f$ (n veces). Probar:
 - (a) Si $x \in E$ es punto fijo de f, entonces es punto fijo de f^n .
 - (b) Si E es completo y existe $n \in \mathbb{N}$ tal que f^n es una contracción, entonces existe un único punto fijo de f en E.

Sugerencia: probar que si $x \in E$ es punto fijo de f^n , entonces f(x) también lo es.

(c) Deducir que existe un único $x \in \mathbb{R}$ tal que $\cos(x) = x$.

a)
$$f'(x) : f(x) = x$$

 $f^{2}(x) : f(f(x)) = f(x) = x$

$$f(f'(x)) = f(f(x)) = f(x) = x$$

$$f^{3}(x) : f(f^{2}(x)) = \cdots$$

CB:
$$n=1$$
) $f(x): f(x)=x$

$$\mathcal{P}I$$
Seo $f^{n}(x) = x$

$$q^{n} f^{n+1}(x) = x$$

$$\int_{0}^{n+1} (x) = \int_{0}^{n} (f^{n}(x)) = \int_{0}^{n} (x) = x$$

$$\int_{0}^{n+1} (x) = \int_{0}^{n} (x) = x$$

Por a)
$$5i$$
 $f''(x) = x$
 $\Rightarrow f^{m}(x) = x$ $\forall m \in \mathbb{N}$

$$\Rightarrow f'(x) = f(x) = x$$

Por Teorena

Como E er completo
$$y \exists n / f^n(x)$$
 er contre acción

$$\exists ! x \in E / f^{n}(x) = x$$

$$f'(x) = x \Rightarrow f(x) = x$$

$$f(x) = cos(x)$$

$$f(x) = -sin(x)$$

$$|f'(x)| \leq k \in (0,1)$$

$$|sin(x)| \leq$$

```
Sea f(x) = \cos(x) \cos x \in \mathbb{R}. Probar que f tiene un único
     punto fijo.
                      |f(x)-f(y)|= |Su(z)|(x-y)
    E=12 completo
    g(x) = f(f(x)) = cos(cos(x)). Veaus g contrac
    gi(x) = Seu(cos(x)). Seu(x) <1
                                        > 000(x)=0 =0
         Si g'(x)=1 = 0 Sen(x) = 1 (6-1) Sen(cor(x)) = 0
                                                             => |g'(x)|< 1
                          Sen (cox(x1) =1 (6-1)
   => geocontractor; |g(x)-g(x)|=|g(z)||x-x| < x |x-y|
   Afirmo: Xo es fundo hijo de ass(x)=f(x).

a (con(x)) - con(x)
afieue un panto fijo, 20012.
   q (000(x0)) = (000 (000) (000) (000) = (000) (000) (000) (000)
                                          m pantofilo.
                       g(x0)= 20
```

17. Probar el Teorema de Bolzano: "Dada $f:[a,b]\to\mathbb{R}$ continua con f(a)<0 y f(b) > 0 (o viceversa), existe $c \in [a, b]$ tal que f(c) = 0".

Sugerencia: Considerar $A=\{x\in[a,b]\ /\ f(x)\leq 0\},$ y ver que es no vacío y acotado superiormente.

· Tip: No se usa punto fijo.

Bolzano se usa más abajo.

$$A = \left\{ x \in [a,b] / f(x) \leq 0 \right\}$$

Tambien podría ser

$$A = \bigcup_{i \in [i,n]} \{(x_i,y_i) \in O \ \forall x_i,y_i \in [a,b] \}$$

Suger enciss:

$$\Rightarrow$$
 $a \in A = \{x \in [a,b] : f(x) \in o\}$

=> A time al monos 1 elemento: a ... es no vacío.

Yapa: mús aun:

Cono f es contínua de $[a,b] \rightarrow \mathbb{R}$, f(a) < 0,

=> f(a) no es punto sista do

=> YUE[a,b] entorno de a, => YUE[a,b], y # a / y & U°

(a, b) sionpre hay otro elonoto en cualqui or ontorno de a

on bolzo V rzo / B(a,r) n [a,b] er infinito.

.. A es infinito,

· Es A soots do sup?

[a,b]=: E er compacto

=> E time cots superior (time méx = b)

... Si ACE => A time cots superior

Pruebo el Teo:

$$P \ge dz f: [a,b] \rightarrow \mathbb{R}$$
 continue
con $f(a) < 0$
 $y f(b) > 0$

$$\Rightarrow \exists c \in [a, b] / f(c) = 0$$

Notar que

ter que
$$A = \left\{ x \in [a,b] / f(x) \le 0 \right\}$$
Rehago doajo

$$A = \left\{ x \in [a,b] / f(x) \le 0 \right\}$$

$$\Rightarrow$$
 como $f(b) > 0$

$$f(x_0) = 0$$

$$\vdots$$

De nuevo:

Llemo $c = \sup A$,

el ad existe pues $A \neq p$ g $A \subseteq [a, b]$ existe

Hay 3 posibilidades:

· f(c) < 0:

⇒ C ∈ A

y como fer contínuo en c

 $\exists r>0 / B(c,r) \cap A = \{todos con el mismo \\ signo f(x) < 0 \}$ $\forall x \in J$

Pero entorcer hay elementor en la bola que son más grander que C

C C+r

y c es supre mo

Abs.

.. f(c) ¢ 0

Caro f(c) > 0:

Similarmente, como f er contínua en c

hay to do un entorno a f (c) también positivo

Entoncer hay valorer monor er a C con inagen pariti

$$f(x)$$
 70 $\forall x \in B(c,r)$

Abourdo, puer los x < c pertonecon a A

$$\therefore$$
 $f(c) \neq 0$

Finalmente

•
$$f(c) = 0$$

M

18. Sea $f:[a,b] \to [a,b]$ continua. Probar que f tiene un punto fijo.

$$5\acute{e}$$
 que \exists $f(a) \in [a,b]$

y como fer contino, el gráfico

de la función irsí de fla) a flb)

cruzando la rede y= x pas algun

•
$$\leq i + (a) = a$$

· 5: no, f(a) + a y f(b) + b

Bolzeno!

Primero, defino

$$g(x) = f(x) - x$$
 (continue)

Como
$$f(a) > a$$
 — y $f(b) < b$,

$$\Rightarrow g(\alpha) = f(\alpha) - \alpha > 0$$

$$g(b) = f(b) - b < 0$$

$$=> g(c) = f(c) - c = 0$$

$$f(x) = \cos 3x + 3$$

$$y = x$$

$$g(x) = f(x) - x$$

$$\cos 3x + 3 = x$$

19. Sea (E,d) un espacio métrico y sea $f:E\to E$ continua. Probar que el conjunto de puntos fijos de f es cerrado.

$$A = \left\{ x \in E / f(x) = x \right\}$$

· Se a e Ā

$$y \quad \alpha \longrightarrow \alpha \stackrel{?}{\Rightarrow} \alpha \in A$$

· Adenés sé que como

$$\Rightarrow$$
 $f(a_n) = a_n = :1$

y como f er contínua

$$\Rightarrow f(an) \longrightarrow f(a)$$

$$\Rightarrow f(a) \Rightarrow f(a) = a$$

$$\Rightarrow a \in A$$

Tinal mate

$$A = \overline{A}$$

W

20. Sea $f:[a,b] \to [a,b]$ una función creciente. Probar que f tiene un punto fijo.

Como f es crecionte

Pero no sé si es continua

· Sifer continua

. Si no er continua:

Si cruza X = y donde er contínua

=> Si cruza x=y en un punto donde f es discontinua

=> ese punto no er PF

y como f siempre suments o se mentiene, y esta ecotado

tol que tro, B(c,r) n [a,b] es infinito.

note que: no prede serpento aislado, ya que

f(x) sob prede montenerse o amentar

y en ningún caso prede cruzar y = x

sin anter haberla cruzado con una porción

de f continua:

creciente creciente y = x y = x y = x

on one modifice en nada el resultado cambiar función continua (ej 18) por oreciónte (ej 20)

: f time punto hijo.

Hola! Esta buenísimo todo lo que pensaste. Pero estoy de acuerdo en que falta formalidad.

Va una sugerencia:

Consideremos el conjunto

 $\{x\in[a,b]:x\leq f(x)\}$. Seguro que es un conjunto no vacío (a pertenece) y es acotado porque está contenido en [a,b]. Yo diría que el supremo tiene que se un punto fijo.

$$A = \left\{ x \in [a, b] : x \leq f(x) \right\}$$

• $A \neq \emptyset$ puer $a \in A$ puer $f(a) \leq f(x)$ $\forall x \in [a,b]$ puer f es creciente

superinf.

A er extends
$$f(a) \leq f(x)$$
 $f(x) \leq f(a)$

$$f(x) \leq f(b) \qquad \forall x \in [a,b]$$

$$f(a) \leq f(x) \leq f(b)$$

Armo succioner que converjon a
$$C = \sup A$$

Como

$$X_0 \longrightarrow C$$

y Cono f creciente

$$\cdots \leqslant f(x_{n-1}) \leqslant f(x_n) \leqslant \cdots \leqslant f(c)$$

· Caro f continue on c

$$\Rightarrow f(x_0) \rightarrow f(c)$$

• Veamos que
$$C \not= f(c)$$

50 $C < f(c) \Rightarrow joindusion$
 $\Rightarrow \exists r > 0 \mid \mathcal{B}(c,r) \in A$

Pero C era supremo, y
$$C+\frac{\pi}{2}$$
; C

Abol

i. $C \notin f(c)$

• Vermos que
$$C \not> f(c)$$

 $5: c > f(c)$

Paro
$$C - \frac{\Gamma}{E} \in \mathbb{B}(c,r)$$
 y no er > $f(c)$

puer ext en A, puer C era suprano

: o $C \nmid f(c)$

Final marte:

$$C = f(c)$$

· Caro P dis continue en C

Caro
$$f(c) > c$$

 $C < f(c) < f(f(c))$

$$\forall \epsilon_{70}, f(c) \leq f(c+\epsilon)$$

$$c < f(c)$$

$$c_{+}\epsilon < f(c) + \epsilon$$

$$f(c+\epsilon) < f(f(c) + \epsilon)$$

para concluir que c+arepsilon está en A, y llegar a un absurdo

Como foreciente

$$\forall \varepsilon, \tilde{\varepsilon} > 0$$
, $f(c-\varepsilon) \leq f(c) \leq f(c+\tilde{\varepsilon})$

Daniel Carando

Hola! Si tenemos los x_n en A que tienden a c, como f es creciente podemos afirmar lo siguiente: $x_n \leq f(x_n) \leq f(c)$.

Fijate si a partir de esto podés demostrar una de las desigualdades. Ah, no hacía falta pedir que los x_n formen una sucesión creciente.

Como verás, acá no importa si la f es continua o no en c (ni qué tipo de discontinuidad tiene)

Con respecto a si A es unión de intervalos, no es necesariamente cierto aunque f fuera continua. Por ejemplo, f podrá estar siempre por abajo de la recta y=x y tocarla sólo en contables puntos, pero sin cruzarla (podés pensar en una función tipo serrucho). En ese caso A estaría formado por esos puntos de contacto y no sería unión de intervalos.

shore sign

. Si c < f(c):

$$f(c) \langle f(f(c)) \Rightarrow f(c) \in A$$

$$Pro par H:$$

$$c \langle f(c)$$

$$g c es supremo.$$

$$Abs!$$

$$c \not f(c)$$

$$(c \not f(c))$$

$$\vdots \quad (c \not f(c))$$

$$\vdots \quad (c \not f(c))$$

$$f(x) \not f(c) \quad \forall x \in A$$

$$Si splico f (creciate)$$

$$f(x) \not f(c) \quad \forall x \in A$$

$$Cono \quad x \in A \quad \text{er cats sup.}$$

$$x \not f(x) \not f(c) \quad \forall x \in A$$

$$g cono \quad c = sup A \quad (la nonor debar)$$

$$\Rightarrow c \not f(c)$$

$$\Rightarrow c \not f(c)$$

Abs! Puer por
$$\mathcal{H}_{c}: C > f(c)$$

$$\therefore C \neq f(c)$$

Findmente

$$\begin{array}{c} \cdot \quad C \not\downarrow f(c) \\ \cdot \quad C \not\uparrow f(c) \end{array} \right) \implies C = f(c)$$

W

Ao = { ne N :
$$q_n \leq 0$$
 }

Ao = { 1 }

A1 = { indicar de Todor los recionder } \leq 1 }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A1 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A2 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A2 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A2 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A2 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A2 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A2 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A2 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A3 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A3 = { indicar de Todor los recionder } \leq \frac{1}{2} }

A3 = { indicar de Todor los recionder } \leq \frac{1}{2} }

