Introduction to Data Science

Last Update: 7 July 2021

Chapter 3 Descriptive Analysis

Outline

Descriptive Analysis

- 1. Descriptive Statistics with Pivot Tables
 - Mean, Median and Mode
 - Variance and Standard Deviation
 - Skewness and Kurtosis
 - Covariance Matrix
- 2. Cluster Analysis
 - Distances
 - K-means Clustering
 - Hierarchical Clustering
 - Density-based Spatial Clustering
- 3. Association Analysis
 - Itemset Mining
 - Association Rules

Descriptive Statistics with Pivot Tables

Descriptive Statistics with Pivot Tables

A distribution in statistics is a function that shows:

- the possible values for a variable (x-axis)
- how often they occur (yaxis).

Descriptive Statistics with Pivot Tables

Mean

- A measure of a central or typical value for a probability distribution.
- The sum of all measurements divided by the number of observations in the data set.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Example:

Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12

Mean of job performance:

$$\bar{x} = \frac{7+10+11+15+10+10+12+14+16+12}{10} = \frac{117}{10} = 11.7$$

Descriptive Statistics with Pivot Tables

Median

- Reflect the central tendency of the sample in such a way that it is uninfluenced by extreme values or outliners.
- The middle value that separates the higher half from the lower half of the data set.
- To compute the middle value, we need to arrange all the numbers from smallest to greatest.
- Then,

$$\tilde{x} = \begin{cases} \frac{x_{(n+1)}}{2}, & \text{if } n \text{ is odd,} \\ \frac{\left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2} + 1\right)}\right)}{2}, & \text{if } n \text{ is even,} \end{cases}$$

Example:

Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12

Median of job performance:

n = 10. So, n is even

7	10	10	10	11	12	12	14	15	16
				x_5	χ_6				

11.5

Descriptive Statistics with Pivot Tables

Mode

• The most frequent value in the data set.

Example:

Job performance: 7, 10, 11, 15, 10, 10, 12, 14, 16, 12

Mode of job performance:

Descriptive Statistics with Pivot Tables

Geometric visualization of the mode, median and mean of an arbitrary probability density function

Source: https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa

Descriptive Statistics with Pivot Tables

Recall:

Provides	Categorica	l Attribute	Numerical Attribute		
	Nominal	Ordinal	Interval-scaled	Ratio-scaled	
Mode	/	/	/	/	
Median		/	/	/	
Mean			/	/	

Descriptive Statistics with Pivot Tables

	IQ <i>X</i> ₁	Job performance X_2
$\overline{\mathbf{x}_1}$	99	7
\mathbf{x}_2	105	10
\mathbf{x}_3	105	11
\mathbf{x}_4	106	15
\mathbf{x}_5	108	10
\mathbf{x}_6	112	10
\mathbf{x}_7	113	12
\mathbf{x}_8	115	14
\mathbf{x}_9	118	16
\mathbf{x}_{10}	134	12
Mean		11.7
Median		11.5
Mode		10

Quiz:

Find the mean, median and mode of IQ.

Descriptive Statistics with Pivot Tables

Standard Deviation (SD, s)

- A measure that is used to quantify the amount of variation or dispersion of a set of data values.
- A <u>low</u> standard deviation indicates that the data points <u>tend to be close to the mean</u>.
- A <u>high</u> standard deviation indicates that <u>the data points are spread out over a wider range of values.
 </u>

Source:

https://en.wikipedia.org/wiki/Standard_deviation#/media/File:Comparison_standard_deviations.svg

Descriptive Statistics with Pivot Tables

Standard Deviation (SD, s)

The formula for the sample standard deviation is

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Source:

https://en.wikipedia.org/wiki/Standard deviation#/media/ File:Standard deviation diagram.svg

Descriptive Statistics with Pivot Tables

Variance (σ)

- How far a set of numbers are spread out from their average value.
- It is the square of the standard deviation

$$var(X) = s^2 = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Source:

https://en.wikipedia.org/wiki/Standard deviation#/media/ File:Standard deviation diagram.svg

Descriptive Statistics with Pivot Tables

Example

- Job performance; X={7, 10, 11, 15, 10, 10, 12, 14, 16, 12}
- Mean of job performance \bar{x} : 11.7
- Standard Deviation; $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i \bar{x})^2} = 2.71$
- Variance; $var(X) = SD^2 = 2.71^2 = 7.34$

Job performance x_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
7	-4.7	22.09
10	-1.7	2.89
11	-0.7	0.49
15	3.3	10.89
10	-1.7	2.89
10	-1.7	2.89
12	0.3	0.09
14	2.3	5.29
16	4.3	18.49
12	0.3	0.09
$\sum_{i=1}^{n} (x_i - \bar{x})$	66.1	
$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-x_{i})}$	2.71	

Descriptive Statistics with Pivot Tables

	$egin{array}{c} {\sf IQ} \ X_1 \end{array}$	Job performance X_2
\mathbf{x}_1	99	7
\mathbf{x}_2	105	10
\mathbf{x}_3	105	11
\mathbf{x}_4	106	15
\mathbf{x}_5	108	10
\mathbf{x}_6	112	10
\mathbf{x}_7	113	12
\mathbf{x}_8	115	14
\mathbf{x}_9	118	16
\mathbf{x}_{10}	134	12
Mean	111.5	11.7
SD		2.71
Variance		7.34

$$var(X) = s^2 = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Quiz: Find the SD and variance of IQ.

Skewness and Kurtosis

Descriptive Statistics with Pivot Tables

Skewness

- Skewness is usually described as a measure of a dataset's symmetry or lack of symmetry.
- The normal distribution has a skewness of 0.

Source: https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa

Skewness and Kurtosis

Descriptive Statistics with Pivot Tables

Kurtosis

- Measures the tail-heaviness of the distribution.
- The excess kurtosis for a standard normal distribution is 0.

Source: https://www.statext.com/android/kurtosis.html

Descriptive Statistics with Pivot Tables

The joint variability of two random variables can be described by **covariance**

We can slice any variables/features and display them as a scatter plot

 X_2

Descriptive Statistics with Pivot Tables

Covariance

- How much two random variables vary together.
- The covariance of random variables X and Y, denoted by cov(X,Y) can be computed by:

$$cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

• The value of covariance lies between $-\infty$ and $+\infty$.

Descriptive Statistics with Pivot Tables

Example

	IQ X	Job performance Y	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$
\mathbf{x}_1	99	7	-12.5	-4.7	58.75
\mathbf{x}_2	105	10	-6.5	-1.7	11.05
\mathbf{x}_3	105	11	-6.5	-0.7	4.55
\mathbf{x}_4	106	15	-5.5	3.3	-18.15
\mathbf{x}_5	108	10	-3.5	-1.7	5.95
\mathbf{x}_6	112	10	0.5	-1.7	-0.85
\mathbf{x}_7	113	12	1.5	0.3	0.45
\mathbf{x}_8	115	14	3.5	2.3	8.05
X 9	118	16	6.5	4.3	27.95
\mathbf{x}_{10}	134	12	22.5	0.3	6.75
Mean	111.5	11.7		SUM	104.5

$$cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
$$cov(X,Y) = \frac{104.5}{9} = 11.61$$

What dose it mean?

Descriptive Statistics with Pivot Tables

Covariance

Source:

https://acadgild.com/ blog/covariance-andcorrelation

A positive covariance

means both variables tend to move upward or downward in value at the same time. A **negative covariance** means the variables

will move away from each other.

A zero covariance means there is no relationship.

Descriptive Statistics with Pivot Tables

Correlation

- Unit measure of change between two variables change with respect to each other.
- A normalized form of covariance.

$$corr(X,Y) = \frac{cov(X,Y)}{s_X s_Y}$$

- The value of correlation lies between -1 and +1.
 - If the correlation coefficient is <u>one</u>, it means that if one variable moves a given amount, the second moves proportionally in the same direction.
 - If correlation coefficient is <u>zero</u>, <u>no relationship</u> exists between the variables.
 - If correlation coefficient is $\underline{-1}$, it means that one variable increases, the other variable decreases proportionally.

Descriptive Statistics with Pivot Tables

The value of covariance lies between -1 and +1.

- If the correlation coefficient is <u>one</u>, it means that if one variable moves a given amount, the second moves proportionally in the same direction.
- If correlation coefficient is zero, no relationship exists between the variables.
- If correlation coefficient is $\underline{-1}$, it means that one variable increases, the other variable decreases proportionally.

Descriptive Statistics with Pivot Tables

Example

	I Q X	Job performance Y
\mathbf{x}_1	99	7
\mathbf{x}_2	105	10
\mathbf{x}_3	105	11
\mathbf{x}_4	106	15
X ₅	108	10
\mathbf{x}_6	112	10
\mathbf{x}_7	113	12
X 8	115	14
X 9	118	16
\mathbf{x}_{10}	134	12
Mean	111.5	11.7
SD	9.70	2.71

$$cov(X, Y) = 11.61$$

$$corr(X,Y) = \frac{cov(X,Y)}{s_X s_Y} = \frac{11.61}{9.70 \times 2.71} = \frac{11.61}{26.287} = 0.44$$

Descriptive Statistics with Pivot Tables

Example

	IQ X	Job performance Y
\mathbf{x}_1	99	7
\mathbf{x}_2	105	10
\mathbf{x}_3	105	11
\mathbf{x}_4	106	15
\mathbf{x}_5	108	10
\mathbf{x}_6	112	10
\mathbf{x}_7	113	12
\mathbf{x}_8	115	14
X 9	118	16
\mathbf{x}_{10}	134	12
Mean	111.5	11.7
SD	9.70	2.71

Quiz:

What do the covariance and correlation tell about the relation between IQ and job performance?

Descriptive Statistics with Pivot Tables

Covariance Matrix

• A matrix whose element in the *i*, *j* position is the covariance between the *i*-th and *j*-th features.

	X_1	X_2	 X ₁₀
$\mathbf{x_1}$			
\mathbf{x}_n			

$$C = \begin{bmatrix} X_1 & X_2 & X_{10} \\ X_2 & \cos(X_1, X_1) & \cos(X_1, X_2) & \cdots & \cos(X_1, X_{10}) \\ \cos(X_2, X_1) & \cos(X_2, X_2) & \cdots & \cos(X_2, X_{10}) \\ \vdots & \vdots & \ddots & \vdots \\ \cos(X_{10}, X_1) & \cos(X_{10}, X_2) & \cdots & \cos(X_{10}, X_{10}) \end{bmatrix}$$

Data Matrix

Covariance Matrix

Cluster Analysis

Finding groups of datapoints such that:

- The datapoints in the same group will be like one another.
- The datapoints in a group are different from the datapoints in other groups.
- The group of similar data points is called a **Cluster**.

Distances and Similarity

Cluster Analysis

Euclidean distance

$$d_{euc}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{p} (x_i - y_i)^2}$$

Manhattan distance

$$d_{manh}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{p} |x_i - y_i|$$

Commonly used to measure distance between two numerical datapoints.

Hamming distance

$$d_{hamm}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{p} (x_i \neq y_i)$$

The number of mismatched values

Commonly used for categorical datapoints.

If it is 0, it means that both objects are identical.

Distances and Similarity

Cluster Analysis

$$s_{cos}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{p} x_i y_i}{\sqrt{\sum_{i=1}^{p} x_i^2} \sqrt{\sum_{i=1}^{y} y_i^2}}$$

Commonly used for numerical datapoints.

$$s_{jacc}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{p} \min(x_i, y_i)}{\sum_{i=1}^{p} \max(x_i, y_i)}$$

Commonly used for categorical datapoints.

The range of score varies between 0 and 1. If score is 1, it means that they are same.

Distances and Similarity

Cluster Analysis

Distance Matrix

K-means Clustering

Cluster Analysis

K-means

Every data point is allocated to each of the clusters through <u>reducing the sum of squared error</u>.

♣ - Centroid of each cluster

A centroid is the imaginary or real location

representing the <u>center of the cluster</u>.

Intra-cluster sum of squared error for a cluster:

$$\sum_{\mathbf{x}_j \in C_i} d(\mathbf{x}_j, \boldsymbol{\mu}_i)^2$$

 C_i - set of datapoints in cluster j

Sum of squared error:

$$\sum_{i=1}^k \sum_{\mathbf{x}_j \in C_i} d(\mathbf{x}_j, \boldsymbol{\mu}_i)^2$$

k – number of clusters

K-means Clustering

Cluster Analysis

How the k-means works

STEP 1: Identifies *k* number of centroids

(k is a parameter of the k-means)

STEP 2: Randomly initialize *k* centroids

STEP 3: Allocates every data point to the nearest cluster

STEP 4: Update each centroid (mean)

STEP 5: Go to STEP 3 until centroids have stabilized

Source:

https://commons.wikimedia.org/wiki/File:K-means convergence.gif

Hierarchical Clustering

Cluster Analysis

Agglomerative Hierarchical clustering

Iteratively merge the two closest clusters until only a single cluster remains.

Hierarchical Clustering

Cluster Analysis

How the agglomerative hierarchical clustering works

STEP 1: Compute the proximity matrix (distance or similarity matrix)

STEP 2: Let each data point be a cluster

STEP 3: Merge the two closest clusters

STEP 4: Update the proximity matrix

STEP 5: Go to STEP 3 until only a single cluster remains

Source:

https://towardsdatascience.com/the-5clustering-algorithms-data-scientists-need-toknow-a36d136ef68

Hierarchical Clustering

Cluster Analysis

Agglomerative hierarchical clustering

STEP 1: Compute the proximity matrix

STEP 2: Let each data point be a cluster

STEP 3: Merge the two closest clusters

STEP 4: Update the proximity matrix

STEP 5: Go to STEP 3 until only a single cluster remains

As we merge datapoints to form a cluster (set of datapoints)

How can we measure the distance/similarity between two sets?

Linkage Criteria: Distance between sets of observations

- 1. Minimum of the distance between points x_i and x_j such that x_i belongs to C1 and x_j belongs to C2
- 2. Maximum of the distance between points x_i and x_i such that x_i belongs to C1 and x_i belongs to C2
- 3. <u>Average distance of all-pair data points</u>
- 4. Distance Between Centroids
- 5. and etc.

Minimum (single-linkage clustering): 0.5 Maximum (complete-linkage clustering): 0.95 Average linkage clustering: 0.77

Density-based Spatial Clustering Cluster Analysis

Use the local density of points to determine the clusters.

- Groups together points that are closely packed together (point in high-density regions).
- Marking points that lie alone in <u>low-density regions</u> as outliers.

Density-based Spatial Clustering Cluster Analysis

How do we measure density of a region?

• **Density at a point** - Number of points within a circle of Radius Eps (ϵ) from point \mathbf{p} .

$$\epsilon$$
-neighborhood: $N_{\epsilon}(\mathbf{p}) = {\mathbf{q} \in \mathbf{D} | d(\mathbf{p}, \mathbf{q}) \leq \epsilon}$

• **Dense Region** - For each point in the cluster, the circle with radius ϵ contains at least minimum number of points (*MinPts*).

Density-based Spatial Clustering

Cluster Analysis

How do we measure density of a region?

• **Density at a point** - Number of points within a circle of Radius Eps (ϵ) from point \mathbf{p} .

$$\epsilon$$
-neighborhood: $N_{\epsilon}(\mathbf{p}) = \{\mathbf{q} \in \mathbf{D} | d(\mathbf{p}, \mathbf{q}) \leq \epsilon\}$

• **Dense Region** - For each point in the cluster, the circle with radius ϵ contains at least minimum number of points (*MinPts*).

A point p can be classified as:

- Core point if $|N_{\epsilon}(\mathbf{p})| \ge MinPts$
- Border point if $|N_{\epsilon}(\mathbf{p})| < MinPts$ and \mathbf{p} belong to ϵ -neighborhood of some core point
- Noise point if p is neither a core nor a border point

Density-based Spatial Clustering

Cluster Analysis

How the DBSCAN works

STEP 1: Find ϵ -neighborhood of every point, and identify the core points

STEP 2: Find the connected components of core points on the neighbor graph, ignoring all non-core points.

STEP 3: Assign each non-core point to a nearby cluster if the cluster is an ϵ - neighbor, otherwise assign it to

noise.

MinPts = 4

core points

Connected Components -

There exists an edge between two core points

Association Analysis

Uncover associations between items (attributes)

- How likely are two sets of items to co-occur.
- How likely are two sets of items to conditionally occur.

A prototypical application of association analysis is

Market Basket Analysis

Frequent Item Sets: (Milk, Bread), (Banana, Apple)

Association Rules: (Bread → Milk)

Association Analysis

	Banana	Milk	 Bread
\mathbf{x}_1			
\mathbf{x}_n			

Frequent Item Sets

Association Analysis

Items

All possible things that can be put into the basket

Example:

Items $I = \{Banana, Milk, Apple, Bread\}$

Item Set

- A possible combinations of elements in the baskets
- Possible things that can be bought together

	Banana	Milk	Apple	Bread		
x ₁	0	1	1	0		
\mathbf{x}_2	1	1	0	0		
\mathbf{x}_3	0	1	0	1		
\mathbf{x}_n	1	0	1	0		

Items

Market baskets

For example: 15 possible item sets {Banana}, {Milk}, {Apple}, {Bread} {Banana, Milk}, {Banana, Apple}, {Banana, Bread}, {Milk, Apple}, {Milk, Bread}, {Apple, Bread} {Banana, Milk, Apple}, {Banana, Milk, Apple}, {Banana, Milk, Apple, Bread} {Banana, Milk, Apple, Bread}

Frequent Item Sets

Association Analysis

Support

- an indication of how frequently the itemset appears in the dataset.
- The proportion of transactions in the dataset \mathbf{D} that contain an item set X, denoted $sup(X, \mathbf{D})$

Example

$$sup(\{Milk\}, \mathbf{D}) = \frac{7}{10} = 0.7$$

$$sup(\{Banana, Apple\}, \mathbf{D}) = \frac{2}{10} = 0.2$$

$$sup(\{Milk, Apple, Bread\}, \mathbf{D}) = \frac{2}{10} = 0.2$$

D Banana Milk Apple Bread X1 0 1 1 0

Transection

X	ζ ₁	0	1	1	0
X	4 2	1	1	0	0
X	۲ ₃	0	1	0	1
X	۲ ₄	1	0	1	0
X	ζ ₅	0	1	1	1
X	ζ ₆	1	1	0	1
X	ζ ₇	0	1	1	1
X	ζ ₈	0	0	1	0
X	K 9	0	1	0	1
X	10	1	0	1	1

Frequent Item Sets

Association Analysis

An item set X is said to be frequent in D if $sup(X, D) \ge minsup$

where *minsup* is a user defined *minimum support threshold*

sup	Item Set
7	$\{Milk\}$
6	$\{Apple\}\ and \{Bread\}$
5	$\{Milk, Bread\}$
4	$\{Banana\}$
3	{Milk, Apple} and {Apple, Bread}
2	{Banana, Milk} and {Banana, Apple} and {Banana, Bread} and {Milk, Apple, Bread}
1	{Banana, Milk, Bread} and {Banana, Apple, Bread}

	Items				
	Banana	Milk	Apple	Bread	
\mathbf{x}_1	0	1	1	0	
\mathbf{x}_2	1	1	0	0	
X ₃	0	1	0	1	
X ₄	1	0	1	0	
\mathbf{x}_5	0	1	1	1	
x ₆	1	1	0	1	
x ₇	0	1	1	1	
x ₈	0	0	1	0	
X 9	0	1	0	1	
x ₁₀	1	0	1	1	

Items

Association Analysis

Association Rule

- An expression X → Y where X and Y are item sets and they are <u>disjoint</u>.
- The customer has purchased items in the set X then he is likely to purchase items in the set Y.

Example

$$\{Milk\} \rightarrow \{Bread\}$$

The customer has purchased *milk* then he is likely to purchase *bread*.

Please note that association rules are not commutative, i.e. $\{Milk\} \rightarrow \{Bread\}$ does not equal $\{Bread\} \rightarrow \{Milk\}$.

Association Analysis

Support of Association Rule

• The number of transaction in which both X and Y co-occur as subsets, where X and Y are item sets $sup(X \rightarrow Y) = sup(X \cup Y)$

Example

$$sup(\{Milk\} \rightarrow \{Bread\}) = sup(\{Milk, Bread\})$$
$$= \frac{5}{10} = 0.5$$

Items Milk Apple Banana Bread 0 1 1 0 \mathbf{X}_1 0 \mathbf{X}_2 1 0 0 1 0 \mathbf{X}_3 0 0 \mathbf{X}_4 \mathbf{X}_{5} 0 1 1 1 0 1 \mathbf{x}_6 0 1 1 \mathbf{X}_7 0 0 0 \mathbf{X}_{8} 1 0 1 \mathbf{X}_{9} 0

Market baskets

Association Analysis

Confident of Association Rule

- Measures how much the consequent (item) is dependent on the antecedent (item)
- The conditional probability that a transaction contains Y given that it contains X

$$conf(X \to Y) = \frac{sup(X \cup Y)}{sup(X)}$$

Example

$$conf(\{Milk\} \rightarrow \{Bread\}) = \frac{sup(\{Milk, Bread\})}{sup(\{Milk\})}$$
$$= \frac{0.5}{0.7} = 0.71$$

Banana Milk Apple Bread

	Banana	Milk	Apple	Bread
\mathbf{x}_1	0	1	1	0
\mathbf{x}_2	1	1	0	0
\mathbf{x}_3	0	1	0	1
\mathbf{x}_4	1	0	1	0
X ₅	0	1	1	1
x ₆	1	1	0	1
X ₇	0	1	1	1
x ₈	0	0	1	0
X 9	0	1	0	1
X ₁₀	1	0	1	1

Association Analysis

A rule
$$X \rightarrow Y$$
 is said to be frequent if $sup(X \rightarrow Y) \geq minsup$

A rule
$$X \rightarrow Y$$
 is said to be strong if $conf(X \rightarrow Y) \geq minconf$

where **minsup** is a user defined *minimum support threshold* **minconf** is a user-specified *minimum confidence threshold*

Example

Given minsup = 0.3 and minconf = 0.5The rule $\{Milk\} \rightarrow \{Bread\}$ is

- Frequent because $sup(\{Milk, Bread\}) = 0.5 \ge 0.3$
- Strong because $conf(\{Milk\} \rightarrow \{Bread\}) = 0.71 \ge 0.5$

	Banana	Milk	Apple	Bread	
\mathbf{x}_1	0	1	1	0	
\mathbf{x}_2	1	1	0	0	
\mathbf{x}_3	0	1	0	1	
\mathbf{x}_4	1	0	1	0	
x ₅	0	1	1	1	
\mathbf{x}_6	1	1	0	1	
X ₇	0	1	1	1	
x ₈	0	0	1	0	
X 9	0	1	0	1	
X ₁₀	1	0	1	1	

Items

Association Analysis

Lift

- Called improvement or impact
- Measure the difference measured in ratio between the confidence of a rule and the expected confidence.
- Lift of a rule $X \to Y$ is defined as

$$Lift(X \to Y) = \frac{sup(X \cup Y)}{sup(X) \times sup(Y)}$$

- $Lift(X \rightarrow Y) = 1$ means that there is no correlation within the itemset.
- $Lift(X \to Y) > 1$ means that products in the itemset, **X**, and **Y**, are more likely to be bought together.
- $Lift(X \rightarrow Y) < 1$ means that products in itemset, **X**, and **Y**, are unlikely to be bought together.

Example

$$Lift(\{Milk\} \rightarrow \{Bread\}) = \frac{sup(\{Milk\} \cup \{Bread\})}{sup(\{Milk\}) \times sup(\{Bread\})}$$
$$= \frac{0.5}{0.7 \times 0.6} = 1.19$$

Reference and Further Study

- Bishop, Christopher M. (2006). *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Berlin, Heidelberg: Springer-Verlag.
- Joanes, D. N. and C. A. Gill (1998). "Comparing measures of sample skewness and kurtosis." In: *Journal of the Royal Statistical Society: Series D* (The Statistician) 47.1, pp. 183–189.
- Raymond H. Meyers, Ronald E. Walpole and, Sharon L. Meyers, and Keying E. Ye (2012). Probability & Statistics for Engineers & Scientists. 9th. USA: Prentice Hall.
- Theodoridis, Sergios and Konstantinos Koutroumbas (2008). *Pattern Recognition*. 4th. USA: Academic Press, Inc.
- Westfall, Peter H. (2014). "Kurtosis as Peakedness" In: *The American Statistician* 68.3, pp. 191–195.
- Zaki, Mohammed J. and Wagner Meira Jr (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. USA: Cambridge University Press.