MANSOURA UNIVERSITY FACULTY OF ENGINEERING DEPT. OF ELECT. & COMM. ENG.

Jan. 2009 Prof. F.W.Zaki Total Mark 80

2nd. YEAR COMM. ENG. LOGIC CIRCUITS (2) TIME ALLOWED = 3 HRS

Answer ALL Questions

I-a) A sequential circuit has one J-K flip flop with output A and one D-flip flop with output B, one input Y, and one output Z. The flip flops and output equations are as follows:

$$J_A = BY + \overline{B}$$
 , $K_A = \overline{B}Y$, $D_B = \overline{A}Y$, $Z = AY + B\overline{Y}$

i- Draw the logic diagram of the circuit, ii- Derive the state table, iii- Draw the state diagram.

b) Given the state diagram shown in Fig.1, design and implement the corresponding sequential circuit using J-K flip flops.

II-a) Excess-3 code is generated by adding 3 to the BCD code. State a truth table showing the decimal digits 1, 2, 3,......9, the corresponding BCD code, and the corresponding excess-3 code.

i-Design a combinational logic circuit that converts a 4-bit BCD input to its corresponding 4bit excess-3 output. Implement your design using discrete AND, OR, XOR, and INVERTER gates.

ii-Implement the BCD-to-Excess-3 code converter in part (i) using programmable logic array (PLA) with 4-inputs and 4-outputs.

b)A BCD-to-Seven segment decoder is a combinational circuit that accepts a decimal digit in BCD and generates the appropriate outputs for selection of segments in a display indicator displaying the decimal digit as shown in Fig.2. State a truth table for BCD-to-Seven segment decoder. Design and implement the corresponding combinational circuit using: i- A 16x7 ROM

ii- A programmable array logic (PAL) consisting of 4-inputs, 7-outputs, 7-sections each consisting of four-wide AND-OR array. One of the outputs is feed back to input.

III-a)Derive the synchronous input equations of a 4-bit synchronous binary counter based on D-type flip flops. Draw the corresponding counter circuit with the provision of Count Enable connection.

b)Design a combinational circuit that compares two 4-bit numbers A and B to check if they are equal. The circuit has one output Y so that Y=1 if A=B and Y=0 if A is not equal to B. Implement your design using discrete logic gates.

IV-a)Some microprocessor's do not provide a separate address bus, instead they use the data bus for address transmission by multiplexing. With the aid of graphical illustration explain the multiplexed bus configuration system.

b) In a certain µP, the main program runs from address D110 to D193. Four nested

subroutine A→ A200 to A235

subroutine B→ A239 to A258

subroutine C→ C1A1 to C1A9

subroutine $D \rightarrow C239$ to C258

The BRANCH instructions are at the following addresses:

subroutines have their start and end addresses as:

subroutine $A \rightarrow D122$

subroutine B→ A232

subroutine C→ A249

subroutine $D \rightarrow C1A4$

i-If the CPU internal stack registers are used, graphically show what the stack registers will contain after each push and pop operation.

ii-If a memory type stack whose addresses run from B138 to B13D (6-deep stack) is used. Graphically show the contents of the stack, the stack pointer, and program counter after all branches and returns for all four subroutines.

V-a)In a certain µP the effective addresses of some locations in data memory are pre-stored in

scratch pad locations as follows:

Memory address	Scratch pad address		
112B	02		
13AC	03		
146E	04		
003A	05		
003B	06		
003C	07		

The data for operands A, B, and C are stored in the locations: A in location 112B, B in location 13AC, and C in location 146E. Write a program using the codes given in the tables attached to first clear the accumulator, then perform the following operations using the previously cleared accumulator, and Indirect addressing Mode:

- 1. A+B=W, and W to be stored in the memory location 003A
- 2. W-C=X, and X to be stored in the memory location 003B
- 3. X+W=Z, and Z to be stored in the memory location 003C

b) The accumulator of a certain μ P contains 35_H. The location to be accessed in the data memory contains 54_H. The instruction which uses the program counter relative addressing mode, is fetched from address 0554_H of the program memory. The A field of the instruction contains 81_H . The O field of the instruction commands the μP to transfer the contents of the accessed data memory location into the accumulator and add it to the previous contents. i- Determine the contents of instruction register, the program counter after the instruction is fetched, the MAR, and the accumulator after the instruction is executed.

ii- If the programmer by mistake inserted 71_H in the A field of the instruction instead of 81_H . Repeat part (i) showing the effect of this error.

GOOD LUCK

Binary	HEX	Instructions	Binary	HEX	Instruction
_0000	0	Direct addressing	0001	1	Store, (ACC) → MEM
0001	1	Indirect addressing through scratch pad	0010	- 4	Load, (MEM) \rightarrow ACC and add (MEM) + (ACC) \rightarrow ACC
0010		Indirect addressing through base page (Page 0) Page relative addressing (current page)	0011	3	Load. (MEM) \rightarrow ACC and subtract (ACC) \rightarrow (MEM) \rightarrow ACC
0100		- Base page relative addressing	0100	4	Clear ACC
0101 0110	-	 Program counter relative addressing Immediate addressing (2-word instruction) 	0101	5	Load index register (if the M code is the immediate address mod second word of that instruction will be loaded into the index register.)
0111 1000	8	Direct index addressing (2-word instruction) Indirect indexed addressing	0110	6	Load scratch pad immediately. The address of the scratch-pad re
1001 1111	9 F	Indexed indirect addressing Nonmemory reference instruction—A field of the instruction i	0111	7	will be given in the A field of the instruction, and the operand to loaded will be in the second word of the instruction. JUMP, unconditional