Scientific Computing HW 7

Ryan Chen

October 16, 2024

- 1. Code: https://github.com/RokettoJanpu/scientific-computing-1-redux/blob/main/hw7p1.ipynb
 - (a) The low rank factorization is as follows. To update row i of X, find x_i^T as given in the lecture notes. To update column j of Y^T , i.e. row j of Y,

$$y_j = \operatorname{argmin}_y \left(\frac{1}{2} \| X_{\Omega^j} y - a_{\Omega^j} \|_2^2 + \frac{\lambda}{2} \| y \|_2^2 \right)$$

where $\Omega^j := \{i : (i, j) \in \Omega\}$ and X_{Ω^j} is the set of rows of X with indices in Ω^j , and a_{Ω^j} is the set of known entries of A in column j.

We see that larger k results in larger fluctuations in the residual norm, while larger λ tends to dampen the fluctuations. The smallest average error between the given data and the prediction is 0.39 which occurs at $\lambda=0.1$ and k=6, although there is lots of noise in the residual norm and this error is significant with respect to the rating system of 1–5.

(b) Penalizing nuclear norm:

Penalizing the nuclear norm seems to give more sensible results, is easier to implement, and is faster than low rank factorization. For $\lambda=0.5$, there is a much smaller average error of 0.04 between the given data and the prediction.

2. Code: https://github.com/RokettoJanpu/scientific-computing-1-redux/blob/main/hw7p2.ipynb The level curve $\det A=0$ is colored red, and the level curve $\|A\|_*=a$ is colored purple. The curves indeed intersect at the corners of $\|A\|_*=a$.

3. We will use the "direct" definition of linear independence. Let $c_0, \ldots, c_{n-1} \in \mathbb{R}$ satisfy

$$\sum_{k=0}^{n-1} c_k p_k = 0$$

Left multiply both sides by A.

$$\sum_{k=0}^{n-1} c_k A p_k = 0$$

Fix j and left multply both sides by p_j^T . Since $p_j^TAp_k=0$ for all $k\neq j,$

$$c_j p_j^T A p_j = 0$$

Since A is SPD and $p_j \neq 0$, we have $p_j^T A p_j > 0$, hence $c_j = 0$.