Recall last week we introduced coordinate mapping, and we found a matrix that transformed vectors from the standard basis into terms of a basis of our choice. If you don't remember, that's okay too, because we're basically going to do a more general version of it this week. First, let's try and get a better idea what we're actually doing by stealing an example from the textbook (page 241). They suppose $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for \mathbb{R}^2 and that $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ is another basis. Let \mathbf{x} be a vector in \mathbb{R}^2 such that $\mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$. Then we said that \mathbf{x} in terms of \mathcal{B} is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\1 \end{bmatrix}$. If we also have $\mathbf{x} = 6\mathbf{c}_1 + 4\mathbf{c}_2$ then \mathbf{x} in terms of \mathcal{C} is

$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}.$$

The vector \mathbf{x} appears in both figures below, note that indeed in figure (a) $\mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$ while in figure (b) we see $\mathbf{x} = 6\mathbf{c}_1 + 4\mathbf{c}_2$.

FIGURE 1 Two coordinate systems for the same vector space.

So in the above example b_1 , b_2 are one basis for \mathbb{R}^2 and c_1 , c_2 are another.

1. What do the standard basis e_1 , e_2 look like in these pictures? roughly:

Note that the notation we've been using all along for \mathbf{x} as a column vector was secretly \mathbf{x} written in terms of the standard basis.

Problems

1. We denote by $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ the change of basis matrix (or "change of coordinates" matrix) transforming vectors in terms of basis \mathcal{B} to basis \mathcal{C} . So with the

notation $[\mathbf{x}]_{\mathcal{B}}$, $[\mathbf{x}]_{\mathcal{C}}$ as above we have $[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}[\mathbf{x}]_{\mathcal{B}}$. Find the following:

- (a) Let \mathcal{E} be the standard basis of \mathbb{R}^3 . Let $\mathcal{B} = \left\{ \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix} \right\}$. What is $P ? \rightarrow H'_{S}$ just $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$ calculate $P \times B$ ($\mathbb{X} \times B$)

 (b) Use $P \times B$ to find \mathbf{x} given that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 4 & -2 & 1 \end{bmatrix}^{t}$. $P \times B$
- (c) Recall that for any 2 bases \mathcal{B} and \mathcal{C} , $P^{-1} = P$ (or see the textbook page 242). What is P? we must the above matrix to get: $\begin{pmatrix} -\frac{9}{2} & 7 & -\frac{3}{2} \\ -2 & 4 & -1 \\ 362 & -2 & 16 \end{pmatrix}$ (d) Using the matrix you found in the previous part, find $[y]_{\mathcal{B}}$ for y =
- $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^t$. I found $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- 2. Let $\mathcal{D} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ be bases for a vector space V and suppose $\mathbf{f}_1 = 2\mathbf{d}_1 - \mathbf{d}_2 + \mathbf{d}_3$, $\mathbf{f}_2 = 3\mathbf{d}_2 + \mathbf{d}_3$ and $\mathbf{f}_3 = -3\mathbf{d}_1 + 2\mathbf{b}_3$. Find the change See chapter of coordinates matrix from \mathcal{F} to \mathcal{D} , $\underset{\mathcal{D}}{P}$. Also find $[\mathbf{x}]_{\mathcal{D}}$ for $\mathbf{x} = \mathbf{f}_1 - 2\mathbf{f}_2 + 2\mathbf{f}_3$. 4.7 for a
- 3. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$, $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ and $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$ be bases for \mathbb{R}^2 . Write an equation that relates P, P and P. Why does it hold? P = P of this, but equations of P. Okay lets switch gears. Let P be an P and P. Why does it hold? P and P are the definitions
- of the Row space of A and the Column space of A? Which is a subspace of \mathbb{R}^n or \mathbb{R}^m ? \mathcal{Y} Row $A = \text{span of the rows and is inside in <math>\mathbb{R}^n$ of d you
- Col $A = \text{span of the columns and is inside } \mathbb{R}^m$ see posted \mathbb{R}^m see posted \mathbb{R}^m see posted \mathbb{R}^m which is obtained from A by row operations. Answer the following true or \mathbb{R}^m false. Explain your reasoning, or give a counterexample. (a) Row A = Row U (b) Col A = Col U (c) dim Row A = dim Row U (d) dim Col A = dim Row U V (e) dim Row V (d) dim Col V (e) dim Row V (d) and (d) remember our algorithm false, think of a non-square matrix.
- 6. Suppose A is an invertible $n \times n$ matrix. What is the rank of A? What is the dimension of the Null space? 3 equations
- ce the 3 columns

 The this became EF(t) is always t in the transform of the trunspace: t in the t is always t in the t in the t in tFree the 3 columns this became EF(1) it $\begin{bmatrix} t & 1 & 1 \\ t & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} t & t & 1 \\ t & t & 1 \end{bmatrix}$ vank is 8. Bonus: What does it mean for a vector to be in the left nullspace of a matrix
 - A? Can you rewrite this condition to involve only A? (and not A transpose).

I see the posted reading for F20 Sept. The alternative condition is x in LNUI A if XA = o (ie multiplication on the left!)