Układ m równań różniczkowych zwyczajnych z warunkami początkowymi:

$$\frac{dy_i}{dx} = f_i(x, y_1, ..., y_m), \quad x \in [a, b], \quad y_i(a) = y_{ia}, \quad i = 1, ..., m$$

W zapisie wektorowym: $\mathbf{y}'(x) = \mathbf{f}(x, \mathbf{y}), x \in [a, b], \mathbf{y}(a) = \mathbf{y}_a$

Twierdzenie (o jednoznaczności rozwiązania) Jeśli:

- 1. funkcje f_i są ciągłe na zbiorze $\mathbf{D} = \{(x, \mathbf{y}) : a \leqslant x \leqslant b, \mathbf{y} \in \mathbb{R}^m\}$
- 2. funkcje f_i spełniają warunek Lipschitza względem y, tzn.

$$\exists L > 0 \quad \forall x \in [a, b], \quad \forall \mathbf{y}, \overline{\mathbf{y}} \quad \parallel f_i(x, \mathbf{y}) - f_i(x, \overline{\mathbf{y}}) \parallel \leqslant L \parallel \mathbf{y} - \overline{\mathbf{y}} \parallel,$$

to dla każdych warunków początkowych \mathbf{y}_a istnieje dokładnie jedna funkcja $\mathbf{y}\left(x
ight)$, ciągła, różniczkowalna i spełniająca

$$\mathbf{y}'(x) = \mathbf{f}(x, \mathbf{y}(x)), \quad \mathbf{y}(a) = \mathbf{y}_a, \quad x \in [a, b].$$

Stosujemy **metody numeryczne różnicowe** – przyblizona wartość rozwiązania obliczana jest w kolejnych punktach x_n ,

$$a = x_0 \leqslant x_1 \leqslant \ldots \leqslant x_n = b,$$

gdzie $h_i = x_{i+1} - x_i$ – kolejne kroki metody.

Najpopularniejsze:

- metody jednokrokowe,
- metody wielokrokowe.

Definicia

Metoda jest zbieżna, jeśli dla każdego układu równań mającego jednoznaczne rozwiązanie $\mathbf{y}\left(x\right)$ zachodzi:

$$\lim_{h\to 0} \mathbf{y}(x_n; h) \to \mathbf{y}(x)$$

gdzie $\mathbf{y}\left(x_{n};h\right)$ – rozwiązanie przybliżone uzyskane z krokiem h.

$$y(x_{n+1}) = y(x_n) + hf(x_n, y(x_n)) + \cdots$$

Metoda Eulera:
$$y_{n+1} = y_n + hf(x_n, y_n)$$

$$|e_{n+1}| \le M_z \frac{e^{L(b-a)} - 1}{L} h = \xi_0 h, \quad \text{gdzie} \quad M_z = \frac{1}{2} \max_{\mathbf{x} \in [a,b]} |\mathbf{y''}(\mathbf{x})|,$$

$$y_{n+1} = y_n + hf(x_n + \frac{1}{2}h, \ y_n + \frac{1}{2}hf(x_n, y_n))$$

Metoda Heuna

$$y_{n+1} = y_n + h \frac{f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))}{2}$$
$$= y_n + \frac{1}{2} h \left[f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n)) \right]$$

(Interpretacje geometryczne)

$$y_{n+1} = y_n + hf(x_n + \frac{1}{2}h, \ y_n + \frac{1}{2}hf(x_n, y_n))$$

Model epidemii*:

$$y'_1(x) = -a y_1(x) y_2(x),$$

 $y'_2(x) = a y_1(x) y_2(x) - b y_2(x), (y'_3(x) = b y_2(x))$

* Kermacka-McKendricka (1972); y_1 - podatni, y_2 - chorujący,infekujący, y_3 - ozdrowieńcy

Podać równania iteracji z krokiem h_n , z punktu (x_n,y_n) , $y_n=[(y_1)_n,(y_2)_n]^T$

Metoda Eulera z krokiem $rac{1}{2}h_n$:

$$(y_1)_{n+\frac{1}{2}} = (y_1)_n + \frac{1}{2}h_n[-a(y_1)_n(y_2)_n],$$

$$(y_2)_{n+\frac{1}{2}} = (y_2)_n + \frac{1}{2}h_n[a(y_1)_n(y_2)_n - b(y_2)_n]$$

Równania iteracji:

$$(y_1)_{n+1} = (y_1)_n + h_n \left(-a(y_1)_{n+\frac{1}{2}} (y_2)_{n+\frac{1}{2}} \right),$$

$$(y_2)_{n+1} = (y_2)_n + h_n \left(a(y_1)_{n+\frac{1}{2}} (y_2)_{n+\frac{1}{2}} - b(y_2)_{n+\frac{1}{2}} \right)$$

ZMODYFIKOWANA METODA EULERA – Przykład c.d.

P. Tatjewski: MNUM – Równania różniczkowe zwyczajne 1 (metody jednokrokowe)

Metody jednokrokowe:

$$y_{n+1} = y_n + h \Phi_f(x_n, y_n; h), \quad y_0 = y_a, \quad (x_n = x_0 + nh, \quad n = 0, 1, ...)$$

$$\Phi_f(x_n, y_n; h) = \frac{y_{n+1} - y_n}{h} \qquad (h \neq 0)$$

Metoda jest zbieżna, gdy $y(x_n;h) \xrightarrow{h \to 0} y(x)$, tzn. gdy

$$y_n \xrightarrow{h \to 0} y(x_n), \quad y_{n+1} \xrightarrow{h \to 0} y(x_n + h),$$

CZ

$$\Phi_f(x_n, y_n; h) \xrightarrow[h \to 0]{} \frac{y(x_{n+1}) - y(x_n)}{h} \xrightarrow[h \to 0]{} y'(x_n) = f(x_n, y(x_n)),$$

stąd warunek aproksymacji (warunek zgodności):

$$\Phi_{f}\left(x,y;0\right)=f\left(x,y\right)$$

Jest to warunek konieczny i dostateczny zbieżności.

Błąd aproksymacji (lokalny) – błąd powstały w jednym kroku, tj. przy założeniu $y_n = y\left(x_n\right)$ (zerowy błąd w punkcie x_n):

$$r_n(h) \triangleq y(x_n + h) - y_{n+1}$$

= $y(x_n + h) - [y_n + h\Phi_f(x_n, y_n; h)]$
= $y(x_n + h) - [y(x_n) + h\Phi_f(x_n, y(x_n); h)]$

Rozwinięcie funkcji $r_n\left(h\right)$ w szereg Taylora:

$$r_n(h) = r_n(0) + r'_n(0)h + \frac{1}{2}r_n^{(2)}(0)h^2 + \cdots$$

Metoda jest rzędu p, jeśli zachodzą równości:

$$r_n(0) = 0, \quad r'_n(0) = 0, \quad \dots, \quad r_n^{(p)}(0) = 0, \quad r_n^{(p+1)}(0) \neq 0$$

$$r_n(0) = 0, \quad r'_n(0) = 0, \quad \dots, \quad r_n^{(p)}(0) = 0, \quad r_n^{(p+1)}(0) \neq 0$$

Wtedy

$$r_n(h) = \frac{r_n^{(p+1)}(0)}{(p+1)!} h^{p+1} + O(h^{p+2}),$$

$$\frac{r_n^{(p+1)}(0)}{(p+1)!}h^{p+1} - \operatorname{część} \text{ główna błędu aproksymacji},$$

 $O\left(h^{p+2}
ight)-$ funkcja rzędu nie niższego niż $h^{p+2}\left(rac{O\left(h^{p+2}
ight)}{h^{p+2}}
ight)$ jest ograniczone w otoczeniu zera)

$$r_{n}(h) = y(x_{n} + h) - [y_{n} + hf(x_{n}, y_{n})]$$

Rozwinięcie w szereg Taylora:

$$y(x_n + h) = y(x_n) + y'(x_n)h + \frac{1}{2}y''(x_n)h^2 + \dots$$

Z definicji błędu aproksymacji $y_n = y\left(x_n\right)$, ponadto $y'(x_n) = f\left(x_n, y_n\right)$, stąd

$$y(x_n + h) = y_n + hf(x_n, y_n) + \frac{1}{2}y''(x_n)h^2 + \dots$$

$$y(x_n + h) - [y_n + hf(x_n, y_n)] = \frac{1}{2}y''(x_n)h^2 + \dots$$
$$r_n(h) = \frac{1}{2}y''(x_n)h^2 + O(h^3)$$

Metoda Eulera jest rzędu pierwszego.

$$y_{n+1} = y_n + h \cdot \sum_{i=1}^{n} w_i k_i,$$

gdzie

$$k_1 = f(x_n, y_n),$$

$$k_2 = f(x_n + c_2h, y_n + ha_{21}k_1),$$

$$k_i = f(x_n + c_i h, y_n + h \cdot \sum_{j=1} a_{ij} k_j), \quad i = 2, 3, ..., m,$$

$$\left(\sum_{j=1}^{i-1} a_{ij} = c_i, \quad i = 2, 3, ..., m\right)$$

Maksymalny możliwy rząd metody p(m):

$$p(m) = m$$
 dla $m = 1, 2, 3, 4$

$$p(m) = m - 1$$
 dla $m = 5, 6, 7$

$$p(m) \leqslant m - 2$$
 dla $m \geqslant 8$

Metoda RK 3-go rzędu (RK3):

$$y_{n+1} = y_n + \frac{1}{6}h(k_1 + 4k_2 + k_3)$$

$$k_1 = f(x_n, y_n)$$

$$k_2 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1)$$

$$k_3 = f(x_n + h, y_n + h(-k_1 + 2k_2))$$

Metoda RK 4-tego rzędu (RK4 "klasyczna"):

$$y_{n+1} = y_n + \frac{1}{6}h (k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = f (x_n, y_n)$$

$$k_2 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1)$$

$$k_3 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_2)$$

$$k_4 = f (x_n + h, y_n + hk_3)$$

P. Tatjewski: MNUM – Równania różniczkowe zwyczajne 1 (metody jednokrokowe)

Model epidemii:

$$y'_1(x) = -2y_1(x)y_2(x),$$

 $y'_2(x) = 2y_1(x)y_2(x) - y_2(x).$

Krok metody RK4, z punktu (x_n, y_n) , $y_n = [(y_1)_n, (y_2)_n]^T$, z długością h_n :

$$k_{1,1} = -2(y_1)_n \cdot (y_2)_n, \quad k_{1,2} = 2(y_1)_n \cdot (y_2)_n - (y_2)_n$$

$$k_{2,1} = -2[(y_1)_n + \frac{1}{2}h_nk_{1,1}] \cdot [(y_2)_n + \frac{1}{2}h_nk_{1,2}]$$

$$k_{2,2} = 2[(y_1)_n + \frac{1}{2}h_nk_{1,1}] \cdot [(y_2)_n + \frac{1}{2}h_nk_{1,2}] - [(y_2)_n + \frac{1}{2}h_nk_{1,2}]$$

$$k_{3,1} = -2[(y_1)_n + \frac{1}{2}h_nk_{2,1}] \cdot [(y_2)_n + \frac{1}{2}h_nk_{2,2}]$$

$$k_{3,2} = 2[(y_1)_n + \frac{1}{2}h_nk_{2,1}] \cdot [(y_2)_n + \frac{1}{2}h_nk_{2,2}]$$

$$k_{4,1} = -2[(y_1)_n + h_nk_{3,1}] \cdot [(y_2)_n + h_nk_{3,2}]$$

$$k_{4,2} = 2[(y_1)_n + h_nk_{3,1}] \cdot [(y_2)_n + h_nk_{3,2}] - [(y_2)_n + h_nk_{3,2}]$$

$$(y_1)_{n+1} = (y_1)_n + \frac{1}{6}h_n(k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1})$$

$$(y_2)_{n+1} = (y_2)_n + \frac{1}{6}h_n(k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2})$$

Startujemy dwa razy z punktu x_n , wykonując (metoda rzęd p):

1. Jeden krok o długości h – uzyskując punkt $y_n^{(1)}$,

$$y(x_n + h) = y_n^{(1)} + \underbrace{\frac{r_n^{(p+1)}(0)}{(p+1)!} \cdot h^{p+1}}_{\text{część główna błędu}} \cdot h^{p+1} + O(h^{p+2})$$

Zakładając identyczny błąd aproksymacji w każdym z tych kroków: Dwa kroki o długości $rac{h}{2}$ — uzyskując punkt $y_n^{(2)}$. Ċ.

$$y(x_n + h) \simeq y_n^{(2)} + 2 \cdot \frac{r_n^{(p+1)}(0)}{(p+1)!} \left(\frac{h}{2}\right)^{p+1} + O(h^{p+2})$$
część główna błędu

Wyznaczając $\gamma=rac{r_n^{(p+1)}(0)}{(p+1)!}$ z pierwszego równania i wstawiając do drugiego:

$$y(x_n + h) = y_n^{(2)} + \frac{h^{p+1}}{2^p} \frac{y(x_n + h) - y_n^{(1)}}{h^{p+1}} + O(h^{p+2})$$

Przekształcamy:

$$y(x_n + h)(1 - \frac{1}{2p}) = y_n^{(2)} - \frac{y_n^{(1)}}{2p} + O(h^{p+2})$$

$$= y_n^{(2)}(1 - \frac{1}{2p}) + \frac{y_n^{(2)}}{2p} - \frac{y_n^{(1)}}{2p} + O(h^{p+2})$$

$$= y_n^{(2)}(\frac{2^p - 1}{2^p}) + \frac{y_n^{(2)} - y_n^{(1)}}{2^p} + O(h^{p+2})$$

Mnożąc stronami przez $\frac{2^p}{2^p-1}$, dostajemy dla dwóch kroków h/2:

$$y(x_n + h) = y_n^{(2)} + \frac{y_n^{(2)} - y_n^{(1)}}{2^p - 1} + O(h^{p+2})$$

Przekształcając podobnie uzyskujemy dla jednego kroku o długości h:

$$y(x_n + h) = y_n^{(1)} + 2p \frac{y_n^{(2)} - y_n^{(1)}}{2p - 1} + O(h^{p+2})$$

Porównanie:

Oszacowanie błędu po pojedynczym kroku o długości h (część główna):

$$\delta_n(h) = 2^p \frac{(y_n^{(2)} - y_n^{(1)})}{2^p - 1} \quad \left(\begin{array}{c} = \\ p = 4 \end{array} \frac{16}{15} \left(y_n^{(2)} - y_n^{(1)} \right) \end{array} \right)$$

Oszacowanie błędu po dwóch kolejnych krokach o długości h/2:

$$\delta_n \left(2 \times \frac{h}{2} \right) = \frac{y_n^{(2)} - y_n^{(1)}}{2^p - 1} \quad \left(\begin{array}{c} = \\ p = 4 \end{array} \right. \frac{1}{15} \left(y_n^{(2)} - y_n^{(1)} \right) \right)$$

Dwie metody RK, m-etapowa rzędu p i m+1-etapowa rzędu p+1:

Metoda RK rzędu p:

$$y_{n+1} = y_n + h \cdot \sum_{i=1}^m w_i^* k_i$$
 $k_1 = f(x_n, y_n)$
 $k_i = f(x_n + c_i h, y_n + h \cdot \sum_{j=1}^{i-1} a_{ij} k_j), \quad i = 2, 3, ..., m$

Metoda RK rzędu p+1:

$$y_{n+1} = y_n + h \cdot \sum_{i=1}^{m+1} w_i k_i$$

 $k_1 = f(x_n, y_n)$
 $k_i = f(x_n + c_i h, y_n + h \cdot \sum_{j=1}^{i-1} a_{ij} k_j), \quad i = 2, 3, ..., m+1$

Współczynniki w_i^* i w_i są różne, ale współczynniki c_i i a_{ij} są równe dla i=2,...,m , tzn. współczynniki k_i są równe dla i=1,...,m.

– dla metody rzędu p:

$$y(x_n + h) = y_n + h \cdot \sum_{i=1}^m w_i^* k_i(h) + \frac{r_n^{(p+1)}(0)}{(p+1)!} h^{p+1} + O(h^{p+2})$$

część główna błędu

- dla metody rzędu p+1:

$$y(x_n + h) = y_n + h \cdot \sum_{i=1}^{m+1} w_i k_i(h) + \frac{r_n^{(p+2)}(0)}{(p+2)!} h^{p+2} + O(h^{p+3})$$

$$y_{n+1}^{(1)} O(h^{p+2})$$

Odejmując stronami i pomijając "ogon" składający sie z wyrażeń $O\left(h^{p+2}
ight)$:

$$\frac{r_n^{(p+1)}(0)}{(p+1)!}h^{p+1} = h\left[\sum_{i=1}^{m} (w_i - w_i^*) \cdot k_i(h) + w_{m+1} \cdot k_{m+1}(h)\right] = y_{n+1}^{(1)} - y_{n+1}^{(0)}$$

Metody RKF (Rungego-Kutty-Fehlberga) – pary metod włożonych.

Zwięzły zapis współczynników metody m-etapowej (tablica Butchera):

Dla pary metod włożonych, m i m+1 etapowej, mamy jedną tablicę:

w_1	w_2		w_m	w_{m+1}
w_1^*	w_2^*		w_m^*	
				$a_{m+1,m}$
			$a_{m,m-1}$	$a_{m+1,m-1}$
				•
	a_{21}	•••	a_{m1}	$a_{m+1,1}$
0	C_2		c_m	Cm+1

Parametry pary metod włożonych 1 i 2 rzędu (RKF12):

w_i	$\frac{1}{512}$	$\frac{255}{256}$	$\frac{1}{512}$
w_i^*	$\frac{1}{256}$	$\frac{255}{256}$	
			$\frac{255}{256}$
a_{ij}		-1 2	$\frac{1}{256}$
C_i	0	12	

Parametry pary metod włożonych 2 i 3 rzędu (RKF23):

w_i	$\frac{533}{2106}$	0	$\frac{800}{1053}$	$-\frac{1}{78}$
w_i^*	$\frac{214}{891}$	$\frac{1}{33}$	$\frac{650}{891}$	
				$\frac{650}{891}$
			$\frac{729}{800}$	$\frac{1}{33}$
a_{ij}		□ 4	$-\frac{189}{800}$	$\frac{214}{891}$
C_i	0	14	$\frac{27}{40}$	\vdash
	•			

Parametry pary metod włożonych 4 i 5 rzędu (RKF45):

C_i			a_{ij}			w_i^*	w_i
0						$\frac{25}{216}$	$\frac{16}{135}$
114	니4					0	0
∞	$\frac{3}{32}$	$\frac{9}{32}$				$\frac{1408}{2565}$	$\frac{6656}{12825}$
12 13	$\frac{1932}{2197}$	$-\frac{7200}{2197}$	$\frac{7296}{2197}$			$\frac{2197}{4104}$	$\frac{28561}{56430}$
\vdash	$\frac{439}{216}$	∞	$\frac{3680}{513}$	$-\frac{845}{4104}$		 - D	8 <u>9</u> <u>9</u>
7	$-\frac{8}{27}$	2	$-\frac{3544}{2565}$	$\frac{1859}{4104}$	$-\frac{11}{40}$		222
	$k_1 =$	$f(x_n, y_n),$					
•	$k_2 =$	$f(x_n + \frac{1}{4}h, \ y_n + \frac{1}{4}k_1),$	$i_{1},\ y_{n}+\frac{1}{4}$	$k_1),$			
	$k_3 =$	$f(x_n + \frac{3}{8}h, \ y_n + \frac{3}{32}k_1 + \frac{9}{32}k_2),$	$i_{1}, y_{n} + \frac{3}{3}$	$\frac{5}{2}k_1 + \frac{9}{32}k_1$	$\langle c_2 \rangle, \ldots$. itd. do k_6	k_6
y_{n+1}	+1	$y_n + \frac{25}{216}k_1$	$c_1 + \frac{1408}{2565}$	$\frac{1408}{2565}k_3 + \frac{2197}{4104}k_4$		$\frac{1}{5}k_5, \ y_{n+1}^{(1)} =$:

METODA RK4(5) Dormand-Prince'a*

Matlab solver "ode45" – metody włożone Dormand-Prince'a rzędu 4,5:

c_i a_ij a_ij a_ii								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	w_i	$\frac{5179}{57600}$	0	$\frac{7571}{16695}$	$\frac{393}{640}$	$-rac{92097}{339200}$	$\frac{187}{2100}$	$\frac{1}{40}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	w_i^*	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								111 84
$\frac{1}{\frac{1}{5}}$ $\frac{3}{40}$ $\frac{9}{45}$ $\frac{44}{45}$ $-\frac{56}{15}$ $\frac{32}{9}$ $\frac{19372}{6561}$ $-\frac{25360}{2187}$ $\frac{64448}{6561}$ $\frac{9017}{3168}$ $-\frac{355}{33}$ $\frac{46732}{5247}$ $\frac{35}{384}$ 0 $\frac{500}{1113}$							$-\frac{5103}{18656}$	$-\frac{2187}{6784}$
$ \frac{1}{5} $ $ \frac{3}{40} $ $ \frac{9}{40} $ $ \frac{44}{45} $ $ \frac{-56}{15} $ $ \frac{19372}{6561} $ $ \frac{9017}{2187} $ $ \frac{9017}{3384} $ $ -\frac{355}{3384} $						$-\frac{212}{729}$	$\frac{49}{176}$	$\frac{125}{192}$
$ \frac{1}{5} $ $ \frac{3}{40} $ $ \frac{44}{45} $ $ \frac{19372}{6561} $ $ \frac{9017}{3168} $ $ \frac{35}{384} $	a_{ij}				$\frac{32}{9}$	$\frac{64448}{6561}$	$\frac{46732}{5247}$	$\frac{500}{1113}$
				$\frac{9}{40}$	$-\frac{56}{15}$	$-rac{25360}{2187}$	$-\frac{355}{33}$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			HIV	$\frac{3}{40}$	<u>44</u> <u>45</u>	$\frac{19372}{6561}$	$\frac{9017}{3168}$	$\frac{35}{384}$
	Ci	0	10	$\frac{3}{10}$	4 10	∞ o	\vdash	———

*) J.R. Dormand, P.J. Prince: A family of embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics (6), 1980.

$$\delta_n(h) = \gamma \cdot h^{p+1}, \quad \gamma = \frac{r_n^{(p+1)}(0)}{(p+1)!}$$

Zmieniając krok na αh :

$$\delta_n \left(\alpha h \right) = \gamma \cdot (\alpha h)^{p+1}$$

$$\delta_n(\alpha h) = \alpha^{p+1} \cdot \gamma h^{p+1} = \alpha^{p+1} \cdot \delta_n(h)$$

Zakładając dokładność ε :

$$\left|\delta_n\left(\alpha h\right)\right|=\varepsilon$$

$$\alpha^{p+1}|\delta_n(h)| = \varepsilon$$

stąd współczynnik modyfikacji kroku lpha:

$$\alpha = \left(\frac{\varepsilon}{\left|\delta_n\left(h\right)\right|}\right)^{\frac{1}{p+1}}$$

Wzór słuszny dla dowolnej metody z oszacowaniem błędu $\delta_n\left(h
ight)$.

Ze względu na niedokładne szacowanie błędu, współczynnik bezpieczeństwa s:

$$h_{n+1} = s \cdot \alpha \cdot h_n$$
, gdzie $s < 1$

np. dla RKF45: s=0.9.

Parametry dokładności (parametry użytkownika):

$$\varepsilon = |y_n| \cdot \varepsilon_w + \varepsilon_b,$$

 $arepsilon_w$ – dokładność względna, $arepsilon_b$ – dokładność bezwzględna.

Dla układu m równań długość kroku określa równanie z największym błędem, np. dla szacowania błędu wg zasady podwójnego kroku:

 $\delta_n(h)_i = \frac{(y_i)_n^{(2)} - (y_i)_n^{(1)}}{2^p - 1}, \quad \varepsilon_i = \left| (y_i)_n^{(2)} \right| \cdot \varepsilon_w + \varepsilon_b, \quad i = 1, \dots, m$

$$\alpha = \min_{1 \leqslant i \leqslant m} \left(\frac{\varepsilon_i}{\left| \delta_n \left(h \right)_i \right|} \right) \frac{\frac{1}{p+1}}{}$$

