CS 446: Machine Learning Homework 1

Due on Tuesday, January 23, 2018, 11:59 a.m. Central Time

1	[4	noints	Intro	to	Machine	Learning
Ι.	4±	pomis	HILLO	υO	wacmne	Learning

Consider the task of classifying an image as one of a set of objects. Suppose we use a convolutional neural network to do so (you will learn what this is later in the semester).

(a) 1	For this setup, what is the data (often referred to as $x^{(i)}$)?
	Your answer: The data will be the image to be classfied.
(b)]	For this setup, what is the label (often referred to as $y^{(i)}$)?
	Your answer: The label will be the class which the image belongs to.
() 1	
(c) 1	For this setup, what is the model?
	Your answer: The model we used is Convolutional Neural Network.
(1)	
(d)]	What is the distinction between inference and learning for this task?
	Your answer: Learning is associated with parameter estimation. After "learning", some parameters will be optimized. Inference is thought of as making some sort of prediction directly.

2. [8 points] K-Nearest Neighbors

K-Nearest Neighbors is an extension of the Nearest-Neighbor classification algorithm. Given a set of points with assigned labels, a new point is classified by considering the K points

closest to it (according to some metric) and selecting the most common label among these points. One common metric to use for KNN is the squared euclidean distance, i.e.

$$d(x^{(1)}, x^{(2)}) = ||x^{(1)} - x^{(2)}||_2^2$$
(1)

For this problem, consider the following set of points in \mathbb{R}^2 , each of which is assigned with a label $y \in \{1, 2\}$:

x_1	x_2	y
1	1	2
0.4	5.2	1
-2.8	-1.1	2
3.2	1.4	1
-1.3	3.2	1
-3	3.1	2

(a) Classify each of the following points using the Nearest Neighbor rule (i.e. K=1) with the squared euclidean distance metric.

ine squared euci	idean d	istant	, C 111	.corre.
	x_1	x_2	y	
Your answer:	-2.6	6.6	1	
Tour answer.	1.4	1.6	$\mid 2 \mid$	
	-2.5	1.2	2	

(b) Classify each of the following points using the 3-Nearest Neighbor rule with the squared euclidean distance metric.

euchdean distan	<u>ce metr</u>	<u>1C. </u>	
	x_1	x_2	21
	<i>x</i> ₁	<i>x</i> 2	y
Varm angreem	-2.6	6.6	1
Your answer:	1.4	1.6	1
	-2.5	1.2	2
	`		

(c) Given a dataset containing n points, what is the outcome of classifying any additional point using the n-Nearest Neighbors algorithm?

Your answer: In this case $\mathbf{k}=\mathbf{n}$, the smoothing effect decreased variance which will effect overall performance negatively. It will result in underfitting.

(d) How many parameters are learned when applying K-nearest neighbors?

2

Your answer: None. There are zero parameters being learned when applying K-nearest neighbors.