## Learning extremal graphical models in high dimensions

Sebastian Engelke<sup>1</sup> Michaël Lalancette<sup>2</sup> Stanislav Volgushev<sup>2</sup>

<sup>1</sup>Research Center for Statistics, University of Geneva

<sup>2</sup>Department of Statistical Sciences, University of Toronto

SSC annual meeting, June 3, 2022



# Tail (or extremal) dependence

- Random vector  $\boldsymbol{X} \in \mathbb{R}^d$
- ullet Tail dependence can be defined as the dependence structure of  $oldsymbol{X}$  in extreme regions/conditional on an extreme event
- Extreme events:

$$\{X_1 > u\}$$
 or  $\{\max X_i > u\}$  or  $\{\min X_i > u\}$ 

# Tail dependence: illustration



### Multivariate Pareto distributions

Suppose that

$$\mathbb{P}ig( F(oldsymbol{X}) \leq 1 - q/oldsymbol{x} \mid \max_i F_i(X_i) > 1 - q ig) \longrightarrow \mathbb{P}ig( oldsymbol{Y} \leq oldsymbol{x} ig), \quad q \downarrow 0,$$

where 
$$F(X) := (F_1(X_1), \dots, F_d(X_d))$$

- "Given that at least one component of  ${\pmb X}$  exceeds it's (1-q)th quantile,  $q/(1-F({\pmb X})) \approx {\pmb Y}$  in distribution"
- Then the random vector  $\mathbf{Y} \in \mathbb{R}^d$  satisfies
  - 1.  $\mathbf{Y} \in \mathcal{L} := \{ \mathbf{y} \ge 0 : \|\mathbf{y}\|_{\infty} > 1 \}$
  - 2.  $\mathbb{P}(Y_1 > 1) = \cdots = \mathbb{P}(Y_d > 1)$
  - 3. For  $A\subset \mathcal{L}$  and  $t\geq 1$ ,  $\mathbb{P}(\textbf{\textit{Y}}\in tA)=t^{-1}\mathbb{P}(\textbf{\textit{Y}}\in A)$
- **Y** is multivariate Pareto (MP)
- X is in the domain of attraction of Y

# Graphical models

•  $\pmb{Z} = (Z_1, \dots, Z_d) \in \mathbb{R}^d$  a random vector indexed by  $V := \{1, \dots, d\}$ 







$$Z_i \perp Z_j \mid \mathbf{Z}_{\setminus \{i,j\}} \iff (i,j) \notin E$$

- Why this is important: if **Z** has a positive density/mass on a product space, its density/mass can be factorized over the *cliques* of *G*
- Requires knowledge of the graph ⇒ Learning graphical models

# Gaussian graphical models

• If  $oldsymbol{Z} \sim \mathcal{N}(\mu, \Sigma)$ ,  $\Theta := \Sigma^{-1}$ ,

$$Z_i \perp Z_j \mid \mathbf{Z}_{\setminus \{i,j\}} \iff \Theta_{ij} = 0$$

- ullet Graph structure is entirely encoded into the zero pattern of  $\Theta$
- Sparse estimation of  $\Theta \Longrightarrow$  Estimation of G

# Sparse estimation of precision matrices

- Easy to estimate the covariance matrix  $\Sigma$  by the sample covariance  $\widehat{\Sigma}$
- But if n < d,  $\widehat{\Sigma}^{-1}$  does not exist (certainly not sparse)
- Many algorithms turn an estimate of  $\Sigma$  into an estimate of the zero pattern of  $\Sigma^{-1}$ :

$$\mathcal{A}(\widehat{\Sigma}) = \widehat{\mathbb{1}}\{\Theta \neq 0\}$$

- Call A a base learner
- Examples:
  - Neighborhood selection (Meinshausen & Bühlmann, 2006, Ann. Stat.)
  - Graphical lasso (Yuan & Lin, 2007, Biometrika)

#### This talk

- Do graphical models make sense for MP distributions?
  Yes, but need a different notion of conditional independence
- 2. Given data from  $\boldsymbol{X}$  in the domain of attraction  $\boldsymbol{Y}$ , can we learn the graph structure of  $\boldsymbol{Y}$ ?

Yes, for a certain parametric model

# Extremal graphical models

- ullet  $oldsymbol{Y}=(Y_1,\ldots,Y_d)$  a MP indexed by  $V:=\{1,\ldots,d\}$  with positive density
- Support  $\neq$  product space
- We say that  $Y_i \perp_e Y_j \mid \mathbf{Y}_{\setminus \{i,j\}}$  if for some  $m \notin \{i,j\}$ ,

$$Y_i \perp Y_j \mid \{ \mathbf{Y}_{\setminus \{i,j\}}, Y_m > 1 \}$$

- G := (V, E) an undirected graph
- Y is an extremal graphical model on G if for each pair (i,j),

$$Y_i \perp_e Y_j \mid \mathbf{Y}_{\setminus \{i,j\}} \iff (i,j) \notin E$$

 Engelke & Hitz (2020, JRSSB) show that this definition leads to density factorization

### Hüsler-Reiss distributions

- A family of MP distributions, parametrized by an extremal variogram matrix  $\Gamma \in \mathbb{R}^{d \times d}$
- If  $\mathbf{Y} \sim \mathsf{HR}(\Gamma)$ ,

$$\Gamma_{ij} = \mathbb{V}$$
ar $(\log Y_i - \log Y_j \mid Y_m > 1)$ 

Density: complicated function of Γ

# Estimating Hüsler–Reiss distributions: the empirical variogram

- **X** in the domain of attraction of **Y**  $\sim$  HR( $\Gamma$ ), iid data  $X_1, \ldots, X_n \sim X$
- For  $m \in V$ , estimate  $\Gamma_{ii}$  by

$$\widehat{\Gamma}_{ij}^{(m)} := \widehat{\mathbb{V}\mathsf{ar}}\Big(\log(1-\widetilde{F}_i(X_{ti})) - \log(1-\widetilde{F}_j(X_{tj})) \mid \widetilde{F}_m(X_{tm}) > 1-k/n\Big),$$

where k large, k/n small,  $\widetilde{F}_i$  are empirical df

• 
$$\widehat{\Gamma} := d^{-1} \sum_{m=1}^d \widehat{\Gamma}^{(m)}$$

## Theorem (Engelke, L. & Volgushev, 2021)

Under (mild) assumptions, with probability at least  $1 - \delta$ ,

$$\|\widehat{\Gamma} - \Gamma\|_{\infty} \lesssim \left(\frac{k}{n}\right)^{\xi} (\log(n/k))^2 + \sqrt{\frac{\log d + \log \frac{1}{\delta}}{k}}.$$

# HR graphical models

• If  $Y \sim HR(\Gamma)$ , Engelke & Hitz (2020, JRSSB) find that for  $m \notin \{i, j\}$ ,

$$Y_i \perp_e Y_j \mid \mathbf{Y}_{\setminus \{i,j\}} \Longleftrightarrow \Theta_{ij}^{(m)} = 0,$$

where  $\Theta^{(m)}$  is the (pseudo)inverse of

$$\Sigma^{(m)} := (\Gamma_{im} + \Gamma_{jm} - \Gamma_{ij})_{i,j \in V}, \quad m \in V$$

- Extremal graph structure is encoded into the zero pattern of the matrices  $\Theta^{(m)}$
- Estimate the sparsity pattern of the  $\Theta^{(m)}$  and combine them through majority voting

# EGlearn: learning HR graphical models

- For  $m \in V$ ,
  - 1. Compute

$$\widehat{\Sigma}^{(m)} := (\widehat{\Gamma}_{im} + \widehat{\Gamma}_{jm} - \widehat{\Gamma}_{ij})_{i,j \in V}, \quad m \in V$$

- 2. Throw  $\widehat{\Sigma}^{(m)}$  into a base learner  ${\cal A}$  to obtain a sparse estimate  $\widehat{\mathbb{1}}\{\Theta^{(m)}\neq 0\}$
- For each pair (i,j), add an edge to  $\widehat{E}$  if and only if

$$\frac{1}{d-2}\#\Big\{m\in V\setminus\{i,j\}: \widehat{\mathbb{1}}\{\Theta_{ij}^{(m)}\neq 0\}=1\Big\} > \frac{1}{2}$$

• Graph estimate  $\widehat{G} := (V, \widehat{E})$ 

#### EGlearn: illustration

$$egin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & 1 \\ \cdot & 0 & \cdot & 1 \\ \cdot & 1 & 1 & \cdot \end{pmatrix} \quad egin{pmatrix} \cdot & \cdot & 1 & 1 \\ \cdot & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & 1 \\ 1 & \cdot & 1 & \cdot \end{pmatrix} \quad egin{pmatrix} \cdot & 1 & \cdot & 0 \\ 1 & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 1 & \cdot & \cdot \end{pmatrix} \quad egin{pmatrix} \cdot & 1 & 1 & \cdot \\ 1 & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

Figure: Estimated sparsity pattern of  $\Theta^{(m)}$ , m=1,2,3,4



Figure: Corresponding votes

## EGlearn: model selection consistency

### Theorem (Engelke, L. & Volgushev, 2022+)

If  ${\mathcal A}$  is neighborhood selection or graphical lasso, under assumptions,

$$\mathbb{P}(\widehat{G}=G)\longrightarrow 1$$

as long as  $\log d = o(k/(\log k)^8)$ .

#### Selected references

#### **Extremal graphical models**

- Engelke, S. and A. S. Hitz (2020). Graphical models for extremes (with discussion). *J. R. Stat. Soc. Ser. B Stat. Methodol. 82*, 871–932.
- Engelke, S. and S. Volgushev (2021). Structure learning for extremal tree models. arXiv preprint arXiv:2012.06179.
- Engelke, S., M. Lalancette and S. Volgushev (2022+). Learning extremal graphical models in high dimensions. *In preparation*.

#### Gaussian graphical models and sparse precision matrix estimation

- Meinshausen, N. and P. Bühlmann (2006). High-dimensional graphs and variable selection with the lasso. *The Annals of Statistics* 34(3), 1436–1462.
- Yuan, M. and Y. Lin (2007). Model selection and estimation in the Gaussian graphical model. *Biometrika 94(1)*, 19–35.

# Summary

- Extremal graphical models allow lower dimensional representation of extremal dependence structure
- In the HR parametric family, they can be learned from data even in exponentially high dimension
- We do so using majority voting combined with Gaussian graphical modeling tools
- Preprint out very soon
  - Complete methodology + extensions
  - Theoretical justifications + proofs
  - Simulation studies
  - Application
- mic-lalancette.github.io

#### Thank you for your attention!