Thesis - Camera Calibration Instructions

Launch: code/catkin_ws/src/camera_calibration/launch/external.launch

Node: code/catkin_ws/src/camera_calibration/nodes/eye_to_hand_calibration.py

Settings

Config files can be found at

code/catkin_ws/src/camera_calibration/config/

Default Camera Configs

Eye-in-Hand Camera @ default_eye_in_hand.json with large calibration board Top Camera @ cam_top_default.json with small board board Front Camera @ cam_front_default.json with small board board

Example:

```
"board_name": "large", // boards in boards.json
    "camera_name": "cam_front_default", // cameras in cameras.json
    "mode": "eye_to_hand", // or eye_to_hand
    "camera_topic": "/camera_front/color/image_raw", //
camera/cam_top/cam_front
    "memory_size": 50, // max limit of camera transforms
    "load_data_directory": null, // name of file in
external_calibration_data
    "save_data_directory": "cam_top" // stored in calibration_results
}
```

Start Everything

- 1. Attach ChArUco in robot hand
- 2. Start Camera
- 3. Start Arm
- 4. Start Rviz
- 5. Start Calibration

roslaunch camera_calibration external.launch config=cam_front_default

Calibrate

Controls Overview

```
q = quit
c = collect transform
u = undo last transform
r = estimate pose
p = plot and publish pose estimation
s = save camera estimation
```

Collect Transforms

- 1. Move arm so that ChArUco is visible to the camera
- 2. Check quality
 - More blue dots = more stable estimation
 - The axis align with the board
- 3. Press the C key to collect transforms
- 4. repeat for 3 to N times

Publish Estimation

Press the P key to publish the estimation in the TF Tree

Save

Press 5 to save the pose estimation to :

camera_calibration/calibration_resuslts/eye_{to/in}_hand/{camera}/{filenam
e}