Example 2

DA and DB are tangent to circle O at A and B, respectively. AC is the diameter of circle O. Prove: $\angle ADB = 2\angle BAC$.

Solution: Connect OB.

Since both OA and OB are radius, OA = OB and $\angle OAB$

 $= \angle OBA = \alpha.$

Since $\angle COB$ is the exterior angle of triangle ABO, $\angle COB = \beta = 2\alpha$.

In quadrilateral ADBO, $\angle ADB + \angle DBO + \angle BOA +$

 $\angle OAD = 360^{\circ} \Rightarrow \quad \angle ADB + 90^{\circ} + \angle BOA + 90^{\circ} = 360^{\circ}$

 $\Rightarrow \angle ADB + \angle BOA = 180^{\circ}$ Since $\angle BOA = 180^{\circ} - \beta$, (1) becomes $\angle ADB + 180^{\circ} - \beta = 180^{\circ}$ $\Rightarrow \angle ADB = \beta = 2\alpha.$ That is, $\angle ADB = 2\angle BAC$.