Numerical Analysis Ex1

王惠恒 3200300395

25-09-2022

I: (a) The width of the interval at the n^{th} step is $\frac{1}{2^{n-1}}$. (b) Let the midpoint be $c_n = \frac{1}{2}(b_n + a_n)$. The distance between the root r and the midpoint can be expressed as

$$|c_n - r| \le 2^{-(n+1)}(b_0 - a_0) = 2^{-(n+1)}(2) = 2^{-n}$$

Thus, the maximum possible distance is 2^{-n} .

II: As the relative error is not greater than ϵ , we know that

$$\frac{|x_n - r|}{r} \le \frac{|b_n - a_n|}{r} = \frac{1}{2^n r} (b_0 - a_0)$$

where r is the true solution and x_n is the approximate value. Here we take $\frac{1}{2^n r}(b_0 - a_0)$ as ϵ . Since $r \ge a_0$, we have

$$\frac{1}{2^n a_0} (b_0 - a_0) \le \epsilon$$

$$-nlog 2 - log a_0 + log (b_0 - a_0) \le log \epsilon$$

$$n \ge \frac{log (b_0 - a_0) - log \epsilon - log a_0}{log 2}$$

Proven.

III:Given that $p(x) = 4x^3 - 2x^2 + 3 = 0$ with the starting point $x_0 = -1$. We use the Newton's method stated below to get the approximate answer for 4 times. By hand calculate, $p'(x) = 12x^2 - 4x$.

$$x_{n+1} = x_n - \frac{p(x_n)}{p'(x_n)}, n \in N$$

functions	x_n	$p(x_n)$	$p'(x_n)$
n = 0	-1	-3	16
n = 1	-0.812500	-0.465820	11.171875
n=2	-0.770804	-0.020136	10.212882
n=3	-0.768832	-0.000040	10.168560
n=4	-0.768828	_	_

IV:First let the true solution be r, and naturally we know f(r) = 0.As the given function f is differentiable, use Taylor's expansion at r, then we get

$$f(x) = f(r) + f'(\xi)(x - r), \xi = r + \theta(x - r), 0 < \theta < 1$$

$$f(x_n) = f'(\xi)(x_n - r), \xi = r + \theta(x_n - r), 0 < \theta < 1$$

Let the error of Newton's method at step n be e_n , $x_n = r + e_n$ and substitute in $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

$$f(x_n) = f'(\xi)(e_n) , \xi = r + \theta(x_n - r), 0 < \theta < 1$$
$$r + e_{n+1} = r + e_n - \frac{f'(\xi)(e_n)}{f'(x_0)}$$
$$e_{n+1} = e_n \left[1 - \frac{f'(\xi)}{f'(x_0)}\right]$$

Thus, by comparing to $e_{n+1} = Ce_n^s$, $C = 1 - \frac{f'(\xi)}{f'(x_0)}, \xi = r + \theta(x_n - r), 0 < \theta < 1, s = 1$

V:By comparing to the fixed-point iteration method, take $g(x_n) = tan^{-1}x_n$. As we know $g(x_n)$ is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, now we prove the contraction on it. $\forall x, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we have

$$|g(x) - g(y)| = |tan^{-1}x - tan^{-1}y| = |(tan^{-1}\xi)'(x - y)| \le \lambda |x - y|$$

where λ satisfies $0 < \lambda = \frac{1}{1+(\xi)^2} < 1$.By Theorem 1.38, there is a unique fixed point and the iteration will converge to it.

VI:Let
$$x_{n+1} = g(x_n) = \frac{1}{p+x_n}$$
. As $p > 1$, $\forall n \in N$, $0 < x_n < 1$, thus $g(x_n)$ is continuous. $\forall x, y = |g(x) - g(y)| = |\frac{1}{p+x} - \frac{1}{p+y}| = |\frac{x-y}{(p-x)(p-y)}| \le \lambda |x-y|$

where λ satisfies $0 < \lambda = \frac{1}{(p-x)(p-y)} < 1$. By Theorem 1.38, there is a unique fixed point and the iteration will converge to it. Now we start to find the value of the fixed point. As $\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n := x$,

$$x = \frac{1}{p+x}$$

$$\frac{1}{x} = p+x$$

$$x^2 + px - 1 = 0$$

$$x = \frac{-p \pm \sqrt{p^2 + 4}}{2}$$

VII: The relative error is not an appropriate measure method. By Theorem 1.13, $c_n = \frac{1}{2^{n-1}}(b_0 + a_0)$, let α be the true solution.

When $\alpha \neq 0$

$$|c_n - \alpha| = \left| \frac{1}{2^{n-1}} (b_0 + a_0) - \alpha \right| \le 2^{-(n+1)} (b_0 - a_0)$$

$$\frac{2}{2^n} (b_0 + a_0) - |\alpha| \le \frac{1}{2} \cdot \frac{1}{2^n} (b_0 - a_0)$$

$$|\alpha| \ge \frac{1}{2^n} (\frac{3}{2} b_0 + \frac{5}{2} a_0)$$

$$n \ge \frac{\log(\frac{3}{2} b_0 + \frac{5}{2} a_0) - \log|\alpha|}{\log 2}$$

When $\alpha = 0$, we may consider it independently by setting a condition in the program. The condition could be

```
if(r==0&&f(r)==0){
return r;
}
else
(The recurrence of bisection)
```