Title

Text

David Bachmann | 5/7/19 |

Exercise 10: Numerical Integration III

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Goals
- 3. Theory/ Recap
- 4. Exercises

David Bachmann | 5/7

Information

David Bachmann | 5/7/19 | 4

General

- Lecture material & problem sets available here
- Tutorial material available here

David Bachmann | 5/7/19

Goals

David Bachmann | 5/7/19 | 6

Goals of Today

- Recap Richardson's Extrapolation
- Understand how Richardson's Extrapolation can be used to estimate an error
- Understand recursion in programming
- **Understand Adaptive Quadrature**
- Be able to derive Gauss Quadrature
- Be able to use Gauss Quadrature with tables

Theory / Recap

David Bachmann | 5/7/19

Adaptive Quadrature

- Use adaptive stepsize
- Decrease stepsize in specific region until desired accuracy is achieved

https://www.cs.uic.edu/~hogand/cs107/notes-numerical.html

Reminder: Error Estimate with Richardson's Extrapolation

We can write a Taylor Series expansion of a numerical method:

$$G(h) = G(0) + c_1 h + c_2 h^2 + \cdots$$

Hence the error generated by the stepsize h/2:

$$\epsilon(h/2) = |G(0) - G(h/2)| = \left| -\frac{c_1}{2}h - \frac{c_2}{4}h^2 + \cdots \right|$$

On the other hand:

$$G(h/2) - G(h) = -\frac{c_1}{2} h - \frac{3c_2}{4} h^2 + \cdots$$

Hence:

$$\epsilon(h/2) \approx |G(h/2) - G(h)|$$

Example 1: Error estimate

• Approximate the error $\epsilon\left(\frac{h}{2}\right)$ of the Euler Forward method and compare it to the true error:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

- Given:
 - x = 0
 - h = 0.2
 - $f(x) = x^2$
- Remember:
 - $\epsilon(h/2) \approx |G(h/2) G(h)|$

Reminder: Recursion

The function calls itself

```
function f(x)
    if base case then
        Return base value
    else
        Return recursive value
    end if
end function
```


https://stackoverflow.com/questions/8183426/factorial-using-recursion-in-java

Example 2: Recursion for gcd

Write pseudo-code for a function that finds the greatest common divisor, using Euclid's algorithm:

$$\gcd(x,y) = \begin{cases} x & \text{if } y = 0\\ \gcd(y, x \bmod y) & \text{if } y > 0 \end{cases}$$

Calculate the gcd of 8 and 12 with the algorithms, draw a diagram emphasizing the calls to the functions and the return values

Solution 2

```
function gcd(x, y)
     if y is 0 then
          Return x
     else
          Return gcd(y, x mod y)
     end if
end function
```

Adaptive Quadrature Algorithm

```
function ADAPTIVESIMPSON(a, b)
     Apply Simpson's rule in [a, b]
     Split interval into [a, m] \& [m, b]; with m = (a + b)/2
     Apply Simpson's rule on [a, m] & [m, b]
     Estimate Error with Richardson's extrapolation
     if error > \epsilon then
          Return ADAPTIVESIMPSON(a, m) + ADAPTIVESIMPSON(m, b)
     else
          Return value of Simpson's rule (accurate one)
     end if
end function
```

Gauss Quadrature

- n weights + n abscissas = 2n parameters
- Integrate $P_{2n-1}(x)$ exactly (integral increases order by one):

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{2n-1}(x)dx = \sum_{i=1}^{n} \alpha_{i} \cdot f(x_{i})$$

Note

Transform integral to be in the interval [-1, 1] in order to use lookup-tables:

$$z = \frac{2x - (a+b)}{b - a}$$

We then have:

$$\int_{-1}^{1} f(z)dz \approx \sum_{i=1}^{n} \alpha_i \cdot f(z_i)$$

- You can now look up z_i and α_i in tables
- Method is exact for polynomials of degree 2n-1

Example 3: Gauss Quadrature with lookup tables

Find – by Gauss Quadrature - the exact integral value:

$$I = \int_0^2 x^3 dx$$

- Tipps:
 - Exact for order 2n-1

$$z = \frac{2x - (a+b)}{b-a}$$

37454
62546
62546
37454

Exercises

David Bachmann | 5/7/19 | 19

Exercise 1

Use AQ to integrate "batman function"

Exercise 2

• Use various integration schemes – think why some work better than others!

Questions?

David Bachmann

5/7/19