Class 07: Semantic roles and PropBank

Introduction

Кто?сделал что?кому?где?Машапродала книгуДашев метроMašasold the bookto Dašaon the metro

- Что кто-то сделал?
- Кто продал книгу?
- Кому продала Маша книгу?
- Где Маша продала книгу?

- · Question answering
 - · Determining if an event corresponds to a question
 - · Event extraction and ontology filling
- Machine translation
 - · Fvaluation: Text coherence
 - · Features for argument structure coherence

Syntax/1

Syntax/1

Syntax/2

Doesn't dependency parsing solve this?

/ı

Could these refer to the same event?

Shallow representation

Predicates and arguments/roles.

Predicates (like продать, купить) represent an event.

Semantic roles (like Agent, Theme) express the abstract role of the arguments of the predicate.

 $\begin{array}{cccc} \text{Buyer} & \text{Agent} & \text{Proto-Agent} \\ & \leftarrow & \rightarrow \\ \text{More specific} & & \text{More general} \end{array}$

Deep roles

Specific for a predicate,

- · Maša broke the window
- · Saša opened the door

Subjects of break and open: Breaker and Opener

The objects are: BrokenThing and OpenedThing

Hard to reason with for applications

But both Breaker and Opener have something in common:

- Volitional actors
- · Often animate
- · Direct causal responsibility for their events

Thematic roles capture this similarity,

- · Breaker and Opener are both AGENTS
 - · Volitional actors with causal responsibility for an event
- BrokenThing and OpenedThing are both THEMES
 - Inanimate objects affected in some way by an action

One of the first linguistic models:

- Introduced by the grammarian Pāṇini between the 7th and 4th centuries BCE
- · Called kāraka in Sanskrit/Indo-Aryan linguistics

Modern formulation by Fillmore (1966):

- Influenced by Tesnière (1959)'s dependency syntax
- · Called first actants (following Tesnière) and then later case

The terminology is confusing.

Role	Definition				
AGENT	The volitional causer of an event				
EXPERIENCER	The experiencer of an event				
FORCE	Non-volitional causer of an event				
THEME	Participant most directly affected by an event				
INSTRUMENT	An instrument used in an event				
BENEFICIARY	The beneficiary of an event				
SOURCE	Origin of a transfer event				
GOAL	The destination of a transfer event				

Role	Definition
AGENT	The volitional causer of an event
	Маша разбила окно
EXPERIENCER	The experiencer of an event
	Саше болеет голова
FORCE	Non-volitional causer of an event
	Ветер сдувал снег
THEME	Participant most directly affected by an event
	Маша продала книгу
INSTRUMENT	An instrument used in an event
	Она написала письмо ручкой
BENEFICIARY	The beneficiary of an event
	Я купил тебе кофе
SOURCE	Origin of a transfer event
	Ты не приехала из Кызыла?
GOAL	The destination of a transfer event
	Я хочу в Якутск

Thematic «grid»

разбить:

- · AGENT
- THEME
- INSTRUMENT

Realisations:

- · AGENT/Subject THEME/Object
- · AGENT/Subject THEME/Object INSTRUMENT/NPins
- · THEME/Subject

Thematic «grid»

разбить:

Realisations:

AGENTTHEME

- AGENT/Subject THEME/Object
- AGENT/Subject THEME/Object INSTRUMENT/NP $_{\it ins}$

INSTRUMENT

· тнеме/Subject

Маша	разбила	ОКНО	
AGENT		THEME	
Маша	разбила	ОКНО	молотком
AGENT		THEME	INSTRUMENT
[?] Молоток	разбил	ОКНО	
INSTRUMENT		THEME	
Окно	разбилось		
THEME			
Окно	было	разбито	Машей
THEME			AGENT
Окно	было	разбито	молотком
THEME			INSTRUMENT

Problems

Very hard to create a standard set of roles or formally define them.

For example for INSTRUMENT,

- intermediary instruments can appear as subjects:
 - · The cook opened the jar with the new gadget
 - · The new gadget opened the jar
- enabling instruments cannot:
 - · They ate rice with chopsticks
 - · *The chopsticks ate rice

Alternatives

PropBank:

Generalised roles defined as prototypes

FrameNet:

· Define roles specific to a group of predicates

Pause for thought:

- If we want to use this in a practical NLP system, does the label matter or does the distribution matter?
- If we can generalise over different things that look different but refer to the same event (buy, sell; kick, is kicked) does the precise formalism matter?

PropBank and FrameNet

A **PropBank**¹ is a corpus annotated with predicates and arguments The English PropBank:

- · Annotated on top of the Penn Treebank
- · Not freely available

Uses numbered arguments:

- · Arg0: PROTO-AGENT
- Arg1: PROTO-PATIENT
- · Arg2: BENEFACTIVE, INSTRUMENT, ATTRIBUTE END STATE
- ...

PropBanks exist for: English*, Chinese*, Arabic*, Finnish, Russian?

¹Martha Palmer, Daniel Gildea and Paul Kingsbury (2005) "The Proposition Bank: An Annotated Corpus of Semantic Roles". *Computational Linguistics* 31(1):71–106

Proto-Agent:2

- · Volitional involvement in event or state
- Sentience (and/or perception)
- · Causes an event or change of state in another participant
- Movement (relative to position of another participant)

Proto-Patient:

- Undergoes change of state
- · Causally affected by another participant
- · Stationary relative to movement of another participant

²David Dowty (1991) "Thematic Proto-Roles and Argument Selection". *Language*, 67(3) pp. 547–619.

There is a special prefix, ArgM-, for modifiers of the predicate:

```
ArgM-TMP
           Когда ?
                          yesterday evening, now
    -LOC Где?
                          in the metro, in Moscow
    -DIR Куда?
                          down, to Kyzyl
           Как?
   -MNR
                          clearly, enthusiastically
    -PRP
           Почему?
                          because, in response to the ruling
    -ADV
           Miscellaneous
           II-predication
                          painted the room naked
    -PRD
```

PropBank comes with **frame files** which contain predicates and their argument structure.

- · Finnish PropBank is freely available
- https://github.com/TurkuNLP/Finnish_PropBank (data branch)

PropBank comes with **frame files** which contain predicates and their argument structure.

- · Finnish PropBank is freely available
- https://github.com/TurkuNLP/Finnish_PropBank (data branch)

PropBank-style annotation allows us to see commonalities:

Summary:

- A propbank is a corpus annotated with predicate–argument structure
- · Predicate-argument structure generalises over syntax
- There is a free PropBank for Finnish

But how about Russian?

- There is a semantically-annotated corpus based on FrameNet
- It could be converted into a PropBank
- · For more info ask Olya Lyashevskaya

FrameNet/1

FrameNet is very popular:

· Semantically-annotated database/electronic resource

It contains (for English):

- · 1,200 frames
- 13,000 lexical units (word–meaning correspondence)
- · 202,000 example sentences

FrameNet/2

Frames:

- Conceptual structure involving participants, events and background knowledge
- · Extremely specific, e.g.
 - · Commerce_goods-transfer
 - Being_born
 - Criminal_process

Frame elements:

- · Core: essential to the meaning of the Frame
 - Seller, Buyer, Goods
- · Non-core: descriptive, e.g. time, place, manner
 - · Place, Purpose

vs. PropBank

PropBank:

FrameNet:

Semantic role labelling

A generic algorithm:

```
function SEMANTICROLELABEL(words) returns labeled tree

parse ← PARSE(words)

for each predicate in parse do

for each node in parse do

featurevector ← EXTRACTFEATURES(node, predicate, parse)

CLASSIFYNODE(node, featurevector, parse)
```

How do we decide what is a predicate?

- PropBank: Use the verbs
- FrameNet: Use what was labelled as such in the training data

Features

Features

Headword of constituent	Rippeitä
Headword POS	NOUN
Headword Morph. features	Case=Par
Voice of clause	Active
Linear position (wrt. predicate)	before
Path features	
First and last words in constituent	

One step or three step

One step:

Classify argument type

Three step:

- Prune unlikely nodes
- · Identify if a node is an argument or not
- · Classify argument type

Why add pruning and identification steps?

Why add pruning and identification steps?

- · Algorithm is looking at one predicate at a time
- Very few of the nodes in the tree could possible be arguments of that one predicate
- · Imbalance between:
 - (+) positive samples (constituents/nodes that are arguments of predicate)
 - (-) negative samples (constituents/nodes that are not arguments of predicate)
- · Imbalanced data can be hard for many classifiers
- So we prune the very unlikely constituents first, and then use a classifier to get rid of the rest.

Joint inference/1

$\textbf{function} \ \ \textbf{SEMANTICROLELABEL} (words) \ \textbf{returns} \ \ \textbf{labeled tree}$

parse ← PARSE(words)

for each predicate in parse do

for each node in parse do

featurevector ← EXTRACTFEATURES(node, predicate, parse)

CLASSIFYNODE(node, featurevector, parse)

- The algorithm so far classifies everything locally each decision about a constituent is made independently of all others
- But: Lots of global or joint interactions between arguments and constraints
 - · e.g. PropBank does not allow multiple identical arguments, so
 - Labelling one constituent as Arg0 should increase the probability of another being Arg1

Joint inference/2

Reranking:

- The first stage SRL system produces multiple possible labels for each constituent
 - The second stage classifier the best global label for all constituents
 - Often a classifier that takes all the inputs along with other features (sequences of labels)

Summary

Semantic Role Labelling:

- A level of shallow semantics for representing events and their participants
- · Intermediate between parses and full semantics
- Two common architectures, for various languages
 - · FrameNet: frame-specific roles
 - · PropBank: Proto-roles
- Current systems extract by
 - · parsing sentence
 - · Finding predicates in the sentence
 - · For each one, classify each parse tree constituent

Practical

Option 1:

- Download Finnish PropBank
 - https://github.com/TurkuNLP/Finnish_PropBank
 - https://github.com/TurkuNLP/Finnish_PropBank/tree/data
 - · https:

```
// github.com/TurkuNLP/Finnish\_PropBank/tree/data/gen\_lemmas
```

- · Write a semantic role labeller
- Train on train, find good feature combination on dev and test on test.

Option 2:

- Olya Lyaševskaya has given me a file with semantically annotated sentences for Russian
- Combination of TSV + XML
- Produce something approximating the PropBank style annotation.

Data format

Uusi elämä myös tuoksuu uudelta! :)

'New life also smells fresh! :)'

.conllu file:

ID	TOKEN	LEM	POS		FEATS	HEAD	DEPREL	DEPRELS	MISC
1	Uusi	_	_	_	_	2	amod	_	_
2	elämä	_	_	_	_	4	nsubj	4:PBArg_1	_
3	myös	_	_	_	_	4	advmod	4:PBArgM_dis	_
4	tuoksuu	_	_	_	_	0	root	_	PBSENSE=tuoksua.1
5	uudelta	_	_	_	_	4	xcomp	4:PBArg_2	_
6	!	_	_	_	_	4	punct	_	_
7	:)	_	_	_	_	4	discourse	_	_

.tsv file:

base|number|argnum|definition|note|definition_fin|note_fin
tuoksua|1|1|Stinky thing|NULL|Tuoksuva asia|NULL
tuoksua|1|2|Attribute of arg1|NULL|Mille tuoksuu|NULL

Combination of TSV + XML

new FrameAnno

к чернилам"<hr /><hr /><hr />

```
# FrameAnchor = беречься<br />
# ConstrID = 11655<br />
# ConstrName = 1.5 Берегись, чтобы не vnacть.<br />
# ConstrPattern = Snom V чтобы + CL<br />
# FxampleTD = 43401<br />
# SentType = sn<hr />
# SentXml = <se><w><ana lex="плакать" gr="V,2p,act,imper,ipf,norm,sq" sem="ca:noncaus t:physiol d:root" sem2="ca:noncaus
d:root"/>Плачь</w>, <w><ana lex="ho" gr="CONJ.norm"/>но</w> <w><ana lex="беречься" gr="V.2p.act.imper.ipf.norm.sg" sem="ca:noncaus"
sem2="ca:noncaus"/>6eperucь</w>. <w><ana lex="uto6w" gr="CONJ.norm"/>uto6w</w> <w><ana lex="xotb" gr="PART.norm"/>xotb</w>
lex="один" gr="APRO.f.nom.norm.sg" sem2="r:indet"/>одна</w> <w><ana lex="твой" gr="APRO.f.nom.norm.sg" sem="r:poss"/>твоя</w> ...
# SentText = <u>Плачь, но <b>берегись</b>, чтобы хоть одна твоя слеза скатилась по острию пера и примешалась к чернилам. </u>
<hr />
# FEtable:FE ID "Word" Role FE Status SyntRank Morph LexClass "Group" <br/> />
21184 "" агенс Core Не выражен ""<br />
21185 "берегись" - Соге Предикат беречься - "-"<br />
21186 "что / скатилась" потенциальная угроза Соге Клауза чтобы + СL - "чтобы хоть одна твоя слеза скатилась по острию пера и примешалась
```

Ženva: "How was it born like that?"