I

Names: $_{-}$			
NI (II)			
NetIDs:			

Discussion section: f D _____ Group number: _____

MATH 257 - WORKSHEET 14

Given a real $m \times n$ matrix A, recall we have a linear transformation $L \colon \mathbb{R}^n \to \mathbb{R}^m$ defined by $L(\mathbf{x}) = A\mathbf{x}$. When A is also square and symmetric, the Spectral Theorem assures us an orthonormal eigenbasis \mathcal{B} for A. This implies that $L_{\mathcal{B},\mathcal{B}}$ is a diagonal matrix with diagonal entries the eigenvalues of A. Note that the basis \mathcal{B} is doubly nice: (1) it is orthonormal, and (2) it is an eigenbasis for A. For general rectangular matrices, can we find nice ordered bases \mathcal{F}, \mathcal{G} for $\mathbb{R}^n, \mathbb{R}^m$ respectively so that $L_{\mathcal{G},\mathcal{F}}$ is diagonal, i.e. having non-zero entries only along the main-diagonal?

In this worksheet we will investigate how to do this by finding certain orthonormal bases (**ONB**) for each of the four fundamenatal subspaces so that they together "play well" with the matrix A to yield a coordinate matrix that is diagonal. This will lead us to the powerful **Singular Value Decomposition** (**SVD**).

Note: Occasionally we will use brackets to denote matrices but this has no additional mathematical meaning. It is for ease of typesetting.

(1) First, an example: Consider the matrix $A = \begin{pmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 1 & 1 & -1 & -1 \end{pmatrix}$ which has the following four fundamental subspaces:

$$Col(A^{T}) = span\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \right\} \qquad Nul(A) = span\left\{ \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix} \right\}$$

$$Col(A) = span\left\{ \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\-1 \end{pmatrix} \right\} \qquad Nul(A^{T}) = span\left\{ \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix} \right\}$$

where the given tuples are basis vectors for their respective subspaces. Let

$$\mathcal{F} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4) = \begin{pmatrix} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix} \end{pmatrix}$$
$$\mathcal{G} = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = \begin{pmatrix} \begin{pmatrix} 2\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\-1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix} \end{pmatrix}$$

(a) Assuming \mathcal{G}, \mathcal{F} are bases for $\mathbb{R}^m, \mathbb{R}^n$ respectively, find $L_{\mathcal{G},\mathcal{F}}$.

(b) (**Optional**, slight messy) What if we apply the Gram-Schmidt process to get orthonormal bases $\hat{\mathcal{F}}, \hat{\mathcal{G}}$? What is $L_{\hat{\mathcal{G}},\hat{\mathcal{F}}}$.

- (2) We didn't quite achieve our goal, but the preceding example(s) have been informative. Let's consider what the previous example(s) indicate.
 - (a) First, let's clear up the assumption we used earlier: Suppose rk(A) = r with $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ an ordered ONB for $Col(A^T)$ and $\mathcal{B} = (\mathbf{v}_{r+1}, \dots, \mathbf{v}_n)$ an ordered ONB for Nul(A). Explain why $\mathcal{F} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ is an ordered ONB for \mathbb{R}^n . Similarly, if $\mathcal{C} = (\mathbf{u}_1, \dots, \mathbf{u}_r)$ is an ordered ONB for Col(A) and $\mathcal{D} = (\mathbf{u}_{r+1}, \dots, \mathbf{u}_m)$ an ordered ONB for $Nul(A^T)$, then $\mathcal{G} = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ is an ordered ONB for \mathbb{R}^m .

(b) Next, notice that we could choose any ONB for each of Nul(A), $Nul(A^T)$ without changing the fact that $L_{\mathcal{G},\mathcal{F}} = \begin{bmatrix} B & 0 \\ \hline 0 & 0 \end{bmatrix}_{m \times n}$ for some matrix $B_{r \times r}$. Why is this true?

(c) If we want B diagonal, we need ONB $(\mathbf{v}_1, \dots, \mathbf{v}_r)$ for $Col(A^T)$ and ONB $(\mathbf{u}_1, \dots, \mathbf{u}_r)$ for Col(A) compatible in the sense that for each $i = 1, \dots, r$ the tuple $A\mathbf{v}_i$ is a multiple of \mathbf{u}_i . Show that this implies the collection $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is orthogonal.

- (3) The preceding result implies for $i \neq j$ we have $0 = (A\mathbf{v}_i) \cdot (A\mathbf{v}_j) = \mathbf{v}_i^T(A^TA)\mathbf{v}_j$ so that we want to choose ONB $(\mathbf{v}_1, \dots, \mathbf{v}_r)$ for $Col(A^T)$ with the property that $0 = \mathbf{v}_i \cdot (A^TA)\mathbf{v}_j$ whenever $i \neq j$.
 - (a) Show that this condition implies that the \mathbf{v}_i are eigenvectors of A^TA .

(b) This directs our attention to the matrix A^TA . Recall from the lecture modules that $Nul(A^TA) = Nul(A)$. Explain why an ONB for the 0-eigenspace of A^TA is an ONB for Nul(A) and why $rk(A^TA) = r$

(c) Since $A^T A$ is symmetric, the Spectral Theorem yields an orthonormal eigenbasis $(\mathbf{v}_1, \dots, \mathbf{v}_n)$. Suppose $\mathcal{B} = (\mathbf{v}_{r+1}, \dots, \mathbf{v}_n)$ is an ONB for $Nul(A^T A)$. Why is $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ an ONB for $Col(A^T)$?

- (4) Let $\mathcal{F} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ orthonormal eigenbasis for $A^T A$, which we now recognize as merging ONB for each of $Col(A^T)$ and Nul(A).
 - (a) By our earlier work, we know that $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is an orthogonal collection in Col(A). Show that the collection is actually an orthogonal basis for Col(A).

(b) Find the lengths $||A\mathbf{v}_i||$ and so obtain an ONB $\mathcal{C} = (\mathbf{w}_1, \dots, \mathbf{w}_r)$ for Col(A).

(c) Pick any ONB $\mathcal{D} = (\mathbf{u}_{r+1}, \dots, \mathbf{u}_n)$ for $Nul(A^T)$. Let $\mathcal{G} = (\mathbf{u}_1, \dots, \mathbf{u}_n)$. Find $L_{\mathcal{G}, \mathcal{F}}$.

(d) Let \mathcal{E}_n , \mathcal{E}_m denote the standard bases in \mathbb{R}^n , \mathbb{R}^m respectively. Since $L_{\mathcal{E}_m,\mathcal{E}_n} = A$, use the change of coordinates formula $L_{\mathcal{E}_m,\mathcal{E}_n} = I_{\mathcal{E}_m,\mathcal{G}}L_{\mathcal{G},\mathcal{F}}I_{\mathcal{F},\mathcal{E}_n}$ to write A as a product of three matrices.

(5) Congratulations! You've just rediscovered Singular Value Decomposition (SVD). The positive values $\sigma_i = \sqrt{\lambda_i}$ are called **singular values** and we usually order the basis for $Col(A^T)$ so that the singular values will be arranged in non-increasing order $\sigma_1 \geq \ldots \geq \sigma_r$ within the diagonal block D. We often write $\Sigma = L_{\mathcal{G},\mathcal{F}}$ so that SVD is written $A = U\Sigma V^T$. Is SVD unique, i.e. given A are there unique U, V such that $A = U\Sigma V^T$ with the diagonal entries of Σ in non-increasing order?

Epilogue: We see that Singular Value Decomposition of real matrices is not magic but rather the nigh inexorable conclusion of a specific goal and specific approach:

- Goal: Find bases \mathcal{F}, \mathcal{G} of $\mathbb{R}^n, \mathbb{R}^m$ respectively such that $L_{\mathcal{G},\mathcal{F}}$ is diagonal.
- Approach: choose appropriate ONB for each of the four fundamental subspaces to obtain the goal.

These observations support SVD's claim as a beautiful and significant result of linear algebra.