TEAM ID: PNT2022TMID47211

PROJECT NAME: AI-Powered Nutrition Analyzer For Fitness Enthusiasts

Project Report

1. INTRODUCTION

1.1 Project Overview

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

1.2 Purpose

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

2. LITERATURE SURVEY

2.1 Existing problem

Neutrino delivers nutrition-based data services and analytics to its users and wants to turn into a leading source of the nutrition-related platform. The platform employs NLP and mathematical models from the optimization theory as well as predictive analysis to enable individualized data compilation. The application relies on Artificial Intelligence to produce custom data related to smart calorie counter powered by AI. Their artificial intelligence learns an individual's tastes, preferences, and body type. All of this is packaged in a comprehensive nutrition and activity tracker.

2.2 References

https://www.nutrinohealth.com/

2.3 Problem Statement Definition

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorm

GANGA '	Ţ	ABIRA	AMI R	ELAK	KKIYADEVI K		MARIA SI	VEH	IA J
Asks to enter he weight and height to calculate BMI	Calculate the nutrient content in their food by uploading images	Tracking Food Consumption	Nutrition Facts	Measuring the physical and chemical components in the food	Check the quantity of food	Estimate the nutrition level	Tracking health care plan of an individual		Tracking calories in th food by uploading images
Assists nutrient- rich foods based on their health conditions	Awards the user who takes balanced nutrient-food on daily basis	Calories estimation	FAQs	Indicates calories content of daily taken food	Remember the diet plans and BMI of the body	Maintain the daily food habits and menus	Suggests food based on their health conditions		Suggests regular physic activities for good health

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.
2.	Idea / Solution description	The idea of the project is to building a model which is used for classifying the fruit depends on the different characteristics like color, shape, texture etc.
3.	Novelty / Uniqueness	Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

4.	Social Impact / Customer Satisfaction	This project is very helpful to People. Everyone Maintaining their own diet, to manage the time.
5.	Business Model (Revenue Model)	By using this system, the users can predict and analyze the picture of the fruits and foods. In which it results to the visualizing the description of the foods taken as input.
6.	Scalability of the Solution	By implementing this system, the people can efficiently and effectively to gain knowledge about the fitness. They want and they wish to use at anytime. This system can also be integrated with the future technologies.

3.4 Problem Solution fit

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns

Purpose:

- Solve complex problems in a way that fits the state of your customers.
- Succeed faster and increase your solution adoption by tapping into existing mediums and channels of behavior.
- Sharpen your communication and marketing strategy with the right triggers and messaging.
- Increase touch-points with your company by finding the right problem-behavior fit and building trust by solving frequent annoyances, or urgent or costly problems.

4.1 Functional requirement

- It will generate the diet plan as well as monitor the user's health to classify the category of the disease and to create the diet plan. It will also reduce the cost of consulting the personnutritionist.
- The task of food detection/classification is not easy as it seems. All possible options related to the given Image.
- Image classification, object detection, segmentation, face recognition.
- Classification of crystal structure using a convolutional neural network
- Nutrition is vital to the growth of the human body. Nutritional analysis guarantees
 that themeal meets the appropriate vitamin and mineral requirements, and the
 examination of nutrition in food aids in understanding the fat proportion,
 carbohydrate dilution, proteins, fiber, sugar, and so on. Another thing to keep in
 mind is not to exceed our daily calorie requirements
- Computer-Assisted Nutritional Recognize Food Images In order to solve this issue, a brand-new Convolutional Neural Network (CNN)- based food picture identification system was

- created, as described in this study. We utilized our suggested strategy on two sets of actual food picture data.
- Here the user can capture the images of different fruits and then the image will be sent to
 the trained model. The model analyzes the image and detects the nutrition based on the
 fruits like (Sugar, Fiber, Protein, Calories, etc.)
- The Ultimate Workout at Home Solution This fitness AI software is designed with
 personalized training regimens for each individual. It began as "gym only software," but has
 now improved its system to satisfy "at home fitness" expectations.
- You take a picture, dial in data such as whether you are eating breakfast or lunch and add a
 quick text label, and the app estimates the calorie content.
- This software collaborated with IBM's natural language capability to provide 24-hour assistance and dietary recommendations.

For Example:

- The comparison of the proposed model with the conventional models shows that the resultsof this model are exceptionally good and promising to use in real-world applications.
- This sort of higher accuracy and precision will work to boost the machine's general efficiency in fruit recognition more appropriately.
- A generic model for the dietary protein requirement (as with any nutrient) defines the requirement in terms of the needs of the organism,
- i.e. metabolic demands, and the dietary amount which will satisfy those needs, i.e. efficiency of utilization, thus: dietary requirement = metabolic demand/efficiency of utilization.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub- Task)
FR-1	User Registration	Users can create an account to use the application. This can be done by creating a persona on the application with a username and password or by making use of an existing email ID.
FR-2	User Confirmation	Once a user registers onto the application, they receive a confirmation to their email id which they provide for registration. OTP authentication is integrated to ensure identity theft does not occur.
FR-3	Calorie Calendar Creation	On creation of a user profile, a calendar is generated in association with the account. This calendar is private to the user and keeps track of the calories consumed in a day and related statistics.
FR-4	Image Capturing and Processing	The application allows users to capture images of the ingredients they consume. These are given to the model for predicting their labels, i.e. identify the fruits. Further, the quantity of the fruits should be

		discerned. The application should be able to work with images of low quality and low resolution as well.
FR-5	Calorie Value Computation	Once the labels of the ingredients and their quantity have been found, the net calorie value of the meal is calculated by summing up the calories of each ingredient in their respective amounts. The calorie values are fetched from the internet while that of frequently used items are fetched from a database.
FR-6	Storage of Data	Data about the user and their log in details are stored in a backend database. Apart from these, calorific information of frequently consumed ingredients are also stored to minimize overhead and complexity.
FR-7	Calorie Over- ConsumptionNotification	When a user exceeds their permissible calorie consumption amount for the day, the application issues a notification for the same. The application then suggests low-calorie diets to ensure minimum over-consumption.

\mathbf{L}	D	0
г	ĸ	-0

Diet Plan Specification

Users can select the kind of diet plan they want to follow with a target in mind such as weight loss, muscle building, etc. The application sources diet plans and food items that supplement their goals from the internet to help them achieve their goal.

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The users should be able to use
		the application without any
		difficulties. The interface
		should be easy to use and
		understand. The image capture
		process should be smooth and
		not tedious.
NFR-2	Security	Details of the users and their
	·	personal calories calendar
		should not be disclosed or
		shared to other
		users. Privacy of data should be
		ensured.
NFR-3	Reliability	The application should
		correctly identify the fruits
		from the captured image and
		fetch its nutritional value. The
		count and calculation of the

calories should be done accurately. NFR-4 **Performance** The application should be built on a highly efficient prediction model such that the results are accurate. It should keep in mind time and space complexity. NFR-5 The application should be Availability available to its users at all times and should work efficiently. It should not

NFR-6 Scalability The application should be able

to support updates in terms of features and functionality. The system should be built such that it can upgrade using the

suffer from issues such as

application crashes.

existing underlying

architecture.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

Data FIUW Diagram.

5.2 Solution & Technical Architecture

S.No	Component	Description	Technology
1.	App	User interacts with application	Python, Java, HTML,
		for the prediction of Nutrition	SQLite, Android studio
2.	Database	Data Type, Configurations and	MySQL, JS
		data will be stored	
3.	Cloud Database	Database Service on Cloud	IBM DB2, IBM
			Cloudant etc.
4.	File Storage	File storage requirements	Cloud > drive
5.	Machine Learning	Purpose of Machine Learning	ANN, CNN, RNN
	Model	Model	
6.	Notification	Notification will be sent from	SendGrid
		the server	

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	Open-source frameworks used	SendGrid, Python,
	Frameworks		JQuery
2.	Security	Request authentication using	Encryptions, SSL certs
	Implementations	encryption	
3.	Scalable	The scalability of architecture	Web Server –
	Architecture	consists of 3 tiers	HTML,CSS
			,Javascript
			Application Server –
			Python Flask
			Database Server – IBM
			Cloud
4.	Availability	Availability is increased by loads	IBM Cloud hosting
		balancers in cloud VPS	
5.	Performance	The application is expected to	IBM Load Balance
		handle up to 4000 predications	
		per second	

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Web user)	Upload	USN-1	As a user, I can upload the image by gallery I can uploaded the image H		High	Sprit-1
Customer (Web User)	Upload	USN-2	As a user, I can upload the image by take image using camera	I can upload the image	Low	Sprit-2
Customer (Web User)	Registration	USN-3	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account	High	Sprit-1
Customer (Web User)	Login	USN-4	As a user, I can log into the application by entering email & password	I can access my account	High	Sprit-1
Customer Care Executive	Enquiry/Customer services	USN-1	As a customer care executive, I can get the feedback and make report	I can interact with user	Medium	Sprit-1
Administrator	update	USN-1	As a administrator, I can update the performance	I can update and give more functionality	Medium	Sprit-1
Administrator	Add information	USN-2	As a administrator, I can add some extra information about the services	I can improve the access	Low	Sprit-2
Maintenance Team	Maintenance	USN-1	As a member, maintain the any technical problems or the any other issues in the system	I can maintaining the services	High	Sprit-1

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement(Epic)	User Story Number	User Story/Task	Story Point	Priority	Team Members
Sprint-1	Data Collection	US1	Dataset - Collecting images of food items apples, banana, orange, pineapple, watermelon for analysis	5	High	Abirami R
Sprint-1	Image Preprocessing	US2	Import the Image Data generate or library.	4	Medium	Ganga T
Sprint-1		US3	Configure image Data generate or class.	4	Medium	Elakkiyadevi K
Sprint-1		US4	Apply image Data generate functionally to trainset and testset.	4	Medium	Maria Sneha J
Sprint -2	Model Building	USN-5	Importing the build	4	High	Ganga T

			building libraries.			
Sprint-2		USN-6				Abirami R
			Initializing the model.	5	High	
Sprint-2		USN-7				Maria Sneha J
			Adding CNN	4	High	
			Layers.			
Sprint-2		USN-8	Adding Dense			Elakkiyadevi K
			Layers.	3	High	
Sprint-2		USN-9	Configure the			Abirami R
			learning	2	Medium	
			process.			
Sprint-2		USN-10	Train the	2		Ganga T
			model		Low	
Sprint-3	Application	USN-11	Test the			Elakkiyadevi K
	Building		model	2	Low	
Sprint-3		USN-12	Create HTML			Maria Sneha J
			Pages	4	Medium	
Sprint-3		USN-13	Build Python Code	4	Medium	Ganga T
Sprint-3		USN-14	Creating our platform	4	Medium	Abirami R
Sprint-4	Development Phase	USN-15	Routing to the HTML Page	6	High	Abirami R
Sprint-4		USN-16	Run the application	5	High	Ganga T

6.2 Sprint Delivery Schedule

Sprint	Total	Duration	Sprint	Sprint End	Story Points	Sprint
	Story		Start Date	Date(planned)	Completed(as	Release
	Points				on Planned	Date(Actual)
					End Date)	
Sprint-1	17	5 days	20 Oct	02 Nov 2022	20	3 Nov 2022
			2022			
Sprint-2	20	5 days	29 Oct	05 Nov 2022	20	07 Nov
			2022			2022
Sprint-3	14	5 days	02 Nov	13 Nov 2022	20	17 Nov
			2022			2022
Sprint-4	11	5 days	08 Nov	21 Nov 2022	20	23 Nov
			2022			2022

Velocity:

Average Velocity=12/4=3

3. CODING & SOLUTIONING (Explain the features added in the project along with code)

3.1 Feature 1

Data Collection	
Download the dataset <u>here</u>	
[] from google.colab import drive drive.mount('/content/drive')	
Mounted at /content/drive	
[] cd/content/drive/MyDrive/Colab	Notebooks
/content/drive/MyDrive/Colab Note	books
[] # Unzipping the dataset !unzip 'Dataset.zip'	

Model Building

1. Importing The Model Building Libraries

```
[ ] import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense,Flatten
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout
```

2. Initializing The Model

```
[ ] classifier = Sequential()
```

```
3. Adding CNN Layers
   classifier = Sequential()
    classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
    classifier.add(MaxPooling2D(pool_size=(2, 2)))
    classifier.add(Conv2D(32, (3, 3), activation='relu'))
    classifier.add(MaxPooling2D(pool_size=(2, 2)))
    classifier.add(Flatten())
4. Adding Dense Layers
    classifier.add(Dense(units=128, activation='relu'))
    classifier.add(Dense(units=5, activation='softmax'))
    classifier.summary()
  Model: "sequential_1"
                               Output Shape
  Layer (type)
                                                         Param #
                               (None, 62, 62, 32)
                                                         896
```

```
8. Testing The Model

[ ] from tensorflow.keras.models import load_model from keras.preprocessing import image model = load_model("nutrition.h5")

↑ ↓ ♥

from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image model = load_model("nutrition.h5")

img = image.load_img(r'/content/drive/MyDrive/Colab Notebooks/Sample_Images/Test Image1.jpg',grayscale=False,target_size= (64,64))

x = ing_to_array(img)
x = np.expand_dims(x,axis = 0)
predict_x=model.predict(x)
classes_x=np.argmax(predict_x,axis=-1)
classes_x=np.argmax(predic
```

SOURCE CODE:

 $\underline{https://colab.research.google.com/drive/1Imkyvkf1NO2FqW3_EvLSNUeL_o5zBJBN?usp=share_link}$

Feature 2

4. TESTING

4.1 Test Case

4.2 User Acceptance Testing

Purpose of User Acceptance Testing

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Severity 5	Subtotal
By Design	2	2	1	1	1	7
Duplicate	1	0	1	0	0	2
External	2	0	0	2	0	4

Fixed	3	2	1	1	0	7
Not Reproduced	0	0	1	1	0	2
Skipped	0	0	0	0	0	0
Won't Fix	0	0	0	0	0	0
Totals	8	4	4	5	1	22

Test Case Analysis

Shows the number of test cases that have passed, failed, and untested

Section	Total cases	Not Tested	Fail	Pass
Home page	6	0	0	6
Image Page	5	0	0	5

Prediction Page	3	0	0	3
Report Page	3	0	0	3

5. RESULTS

5.1 Performance Metrics

5.2 Output

6. ADVANTAGES & DISADVANTAGES

ADVANTAGES

- The new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits
- It help in exploring the nutrition patterns in their daily routines and this is very useful for people to maintain a healthy diet balances.
- The nutritional analysis is used to determine the nutritional content of food.
- This application eliminates the travelling cost in visiting a dietician.
- The usage of this application greatly reduces the time required to get the best diet plan

DISADVANTAGES

- The android mobile user will not be able to insert or view details if the server goes down.
- Thus there is disadvantage of single point failure.

7. CONCLUSION

By the end of this project we will

- know fundamental concepts and techniques of Convolutional Neural Network.
- gain a broad understanding of image data
- know how to build a web application using the Flask framework.
- know how to pre-process data and
- know how to clean the data using different data preprocessing techniques.

8. FUTURE SCOPE

- AI is revolutionizing the health industry.
- It is majorly used in improving marketing and sales decisions, AI is now also being used to reshape individual habits.
- In future we don't want to go to gym and do any diets. By using this nutrition fitness analyzer we can maintain our diet plans without any help from others and we can lead a happy and healthy life with good wealth.
- AI can easily track health behaviors and repetitive exercise patterns and use the data to guide you
 towards your fitness journey and diet plans.

9. APPENDIX

Source Code - https://drive.google.com/drive/folders/1iwG36Xsq02xwL1tyVNlCgNc1Ov21KKYZ?usp=share_link

GitHub - https://github.com/IBM-EPBL/IBM-Project-50752-1660923418