

Primitivas y estructuras de datos

Primitivas 0D y 1D

Primitivas 2D

Primitivas 3D

Estructuras de datos

Primitvas 0D y 1D

Puntos, líneas y curvas

Puntos y líneas

Puntos

- OD
- Es la primitiva básica
- Características
 - coordenadas en un sistema de referencia
 - color
 - grosor
 - forma

Líneas

- ▶ 1D
- Delimitada por dos puntos
- Características
 - Puntos inicial y final
 - color
 - grosor
 - estilo
 - forma terminal

$$\dot{p}(t) = \dot{p}_0 + (\dot{p}_1 - \dot{p}_0)t$$
 $0 \le t \le 1$

Curvas implícitas

 Conjunto de puntos que en algún sistema de referencia cumplen

$$\dot{p}$$
 tal que $f(p_x, p_y) = 0$

Cónicas: polinomios de grado 2

$$ap_x^2 + bp_y^2 + cp_x + dp_y + e = 0$$

Isocontornos

$$\dot{p}$$
 tal que $f(p_x, p_y) = cte$

Curvas paramétricas

Sección de Computer Informática Graphics Gráfica Group POLITECNICA DE VALENCIA

Conceptos generales

Curva 3D paramétrica

- vector posición
- matriz de coeficientes
- vector tangente Q'(u)
- grado de la curva

Condiciones de contorno

- tantas como coeficientes
- matriz de geometría G
 - puntos de control
 - interpolación o aproximación
 - tangentes en extremos
- matriz característica M

$$Q(u) = \begin{bmatrix} x(u) & y(u) & z(u) \end{bmatrix} \qquad 0 \le u \le 1$$

$$Q = U \cdot C$$

$$Q' = U' \cdot C$$

$$G = M^{-1} \cdot C$$

$$Q = U \cdot M \cdot G$$

Primitivas 2D

Superficies

Polígonos

- Vértices y aristas
- **Normales**
- Ecuación implícita del plano: polinomio de grado 1
- Criterio de ordenación
 - para qué se usa
 - cómo se sabe
- Polígonos cóncavos y convexos
 - criterio de convexidad
 - teselación
- Polígonos degenerados
 - frontera múltiple
 - no planos
 - aristas secantes

Teselación

Aplanamiento

Triángulos

- Primitiva 2D básica en GPU
- Coordenadas baricéntricas α, β, γ
- Interpolación lineal de atributos
- Clasificación de puntos: interioridad

$$\dot{p} = \dot{a} + \beta (\dot{b} - \dot{a}) + \gamma (\dot{c} - \dot{a})$$

$$\downarrow$$

$$\dot{p} = \alpha \dot{a} + \beta \dot{b} + \gamma \dot{c}$$

$$1 = \alpha + \beta + \gamma$$

Superficies cuádricas

- Ecuación implícita de una cuádrica: polinomio de grado 2
- Cálculo sencillo de intersección con recta

$$ap_x^2 + bp_y^2 + cp_z^2 + dp_x p_y + ep_x p_z + fp_y p_z + gp_x + hp_y + ip_z + j = 0$$

Superficies paramétricas Conceptos generales

Superficie paramétrica

- vector posición
- matriz de coeficientes
- vectores tangentes
- vector normal
- grados de la superficie
- Condiciones de contorno
- Funciones base

$$S(u,v) = \begin{bmatrix} x(u,v) & y(u,v) & z(u,v) \end{bmatrix} \quad u,v \in [0,1]$$

$$S = U \cdot C \cdot V^T$$

$$\frac{\partial S(u,v)}{\partial u}, \frac{\partial S(u,v)}{\partial v}$$
 tangentes

$$N(u,v) = \frac{\partial S(u,v)}{\partial u} \times \frac{\partial S(u,v)}{\partial v}$$
 normal

$$S(u,v) = U \cdot C \cdot V^T = U \cdot M \cdot G \cdot M^T \cdot V^T$$

$$S(u,v) = (U \cdot M) \cdot G \cdot (M^T \cdot V^T) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_i(u) B_j(v) g_{ij}$$

Primitivas 3D

Sólidos y volúmenes

- Un modelo geométrico representa a un objeto sólido cuando es posible distinguir en él un único conjunto abierto conexo de R³ al que llamamos interior del sólido
- Propiedades deseables del modelo de un sólido
 - Precisión: aproximación a la descripción exacta del sólido
 - Dominio extenso: posibilidad de construcción de un conjunto amplio de sólidos
 - Unicidad: dos sólidos son iguales si y sólo si tienen la misma representación
 - Validez: es imposible obtener un objeto no válido mediante operaciones con el modelo
 - Compacidad: simplicidad y ahorro de memoria
 - ▶ Eficiencia: recorrido, interrogación y operación
- Formas de representar un sólido
 - Describiendo su frontera con el exterior mediante superficies (B-rep)
 - poliedros
 - superficies paramétricas
 - Describiendo su interior

Volúmenes implícitos

- Definidos por superficies implícitas cerradas o infinitas
 - Cuádricas
 - Plano
 - Isosuperficies de campos escalares
- Combinación de superficies para cerrar un volumen finito
 - Poliedros convexos, cilindro, cono, etc

\dot{p} tal que $f(\dot{p}) \leq 0$

Volúmenes por barrido

Definición geométrica

- sección (región 2D)
- trayectoria de barrido

Variantes

- Traslacional
- Rotacional
- Cilindro generalizado
- Sección variante
 - en tamaño
 - en ángulo

fuente: nendowingsmirai.yuku.com

Vóxel

- Elemento de volumen, usualmente cúbico
- Características
 - Posición
 - Tamaño
 - Atributos

Operaciones con volúmenes

- Unión
- Intersección
- Diferencia
- Regularización de operaciones

Estructuras de datos

 T_{15}

 T_5

 T_{12}

 T_0

Mallas poligonales

- Listas
 - Explícitas
 - Indexadas
- Tiras
- Abanicos

Mallas paramétricas

- Se forman con parches paramétricos
- Continuidad en las uniones
- Puntos de control
 - Muestreo de vértices a malla poligonal
 - Cálculo de normales y tangentes reales

Contenedores

- Agrupan geometría dentro de otra más simple: planos, cajas o esferas
- Aceleran el cálculo cuando el test da negativo para la intersección
 - Colisiones
 - Visibilidad
 - Área de iluminación
- Suelen organizarse de forma jerárquica (BVH)

Partición espacial Octrees

- Por simple enumeración
 - Estructura matricial de voxels ocupado/desocupado
 - Operaciones booleanas
 - Alto coste de almacenamiento
- Árboles octales
 - Subdivisión binaria dimensional en árbol octal
 - Nodos: Información de ocupación B,N,G
 - Ramas: intervalo y dimensión
 - Alivian el coste de almacenamiento: lineal con la frontera
 - Criterios de parada
 - Alcance de homogeneidad B,N
 - Nivel máximo de profundidad = dimensión mínima de voxel
 - Cálculo de propiedades físicas
 - Operaciones booleanas

Algoritmo C:= A unión B
para cada par de nodos a,b análogos
si a=N ó b=N entonces c:=N sino
si a=B y b=B entonces c:=B sino
si a=B y b=G entonces c:=b (y viceversa)
sino, descender nivel

Algoritmo C:= A intersección B
para cada par de nodos a,b análogos
si a=N y b=N entonces c:=N sino
si a=B ó b=B entonces c:=B sino
si a=N y b=G entonces c:=b (y viceversa)
sino, descender nivel

unión intersección diferencia

A OR B A AND B A XOR (A AND B)

Partición espacial BSP

 Se usan en clasificación de visibilidad, clustering, selección, ...

Partición espacial KdTrees

- Estructura: BSP de corte por planos en direcciones principales
- Construcción: Corte perpendicular a la dimensión mayor por la mediana
- Uso: Clustering rápido de vértices. Localización rápida de vecinos.

kD-Trees

Split longer dimension near data median

Geometría Sólido-Constructiva (CSG)

- Estructura de árbol binario ordenado
- Nodos internos
 - operadores booleanos
 - transformación
- Hojas: Instancias de primitivas
 - poliedros, cuádricas, semiespacios
 - transformación
- Posibilidad de clasificación de un punto respecto de una primitiva
- Modelo atractivo como método de construcción
- Almacenamiento compacto
- Cálculo de propiedades físicas mediante conversión a enumeración espacial

DAG

- Organización jerárquica de la escena
- Nodos internos
 - Agrupamiento
 - Trasformación
- Nodos hoja
 - Elementos representables
 - Atributos
 - Geometría
 - Aspecto

