Digital Image Processing

Lecture #1 (a): Introduction

Course Information

- Books
 - Digital Image Processing, Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley

Second Edition

Third Edition

Image Processing & Machine Vision

- Continuum from Image Processing to Machine Vision:
 - low, mid and high-level processes

Low Level Process

Input: Image

Output: Image

Examples: Noise

removal, image

sharpening

Image Processing

Example: Low Level Processing

Photo restoration

Damaged Image

Restored Image

Image Processing & Machine Vision

- Continuum from Image Processing to Machine Vision:
 - low, mid and high-level processes

Low Level Process	Mid Level Process	
Input: Image Output: Image	Input: Image Output: Attributes	
Examples: Noise removal, image sharpening	Examples: Object recognition, segmentation	
or on p or ming	g	

Image Processing

Example: Mid Level Processing

Segmentation of image into regions

Image Processing & Machine Vision

- Continuum from Image Processing to Machine Vision:
 - low, mid and high-level processes

Low Level Process	Mid Level Process	High Level Process
Input: Image Output: Image	Input: Image Output: Attributes	Input: Attributes/Image Output: Understanding
Examples: Noise	Examples: Object	Examples: Scene
removal, image sharpening	recognition, segmentation	understanding, autonomous navigation

Image Processing Machine Vision

Example: High Level Processing

Robot Navigation

Image Processing & Machine Vision

Continuum from Image Processing to Machine Vision:

In this course

low, mid and high-level processes

Low Level Process
Input: Image Output: Image
Examples: Noise
removal, image sharpening

Mid Level Process	
Input: Image Output: Attributes	
Examples: Object	
1 recognition	
recognition, segmentation	

Ī	High Level Process	
	Input: Attributes/Image Output: Understanding	
	Examples: Scene	
I	understanding, autonomous navigation	

Image Processing

Machine Vision

Pattern Recognition

A pattern is the opposite of a chaos, it is an entity that can be given a name

Recognition

- Identification of a pattern as a member of a category
 - Classification (Supervised: known categories)
 - Clustering (Unsupervised: learning categories)

Supervised Classification

Labeled training Samples

Recognition (Classification)

Unsupervised Classification

Un-labeled training Samples

Classification vs. Clustering

Classification

Pattern Recognition

Given an input pattern, make a decision about the "category" or "class" of the pattern

Pattern Class

- A collection of similar (not necessarily identical) objects
- Intra-class variability
- Inter-class similarity

Pattern Class

Intra-class variability

Same face under different expression, pose, illumination

Pattern Class

Inter-class similarity

Characters that look similar

Examples: Image Enhancement

Examples: The Hubble Telescope

- ◆ Launched in 1990 the Hubble telescope can take images of very distant objects
- ◆ However, an incorrect mirror made many of Hubble's images useless
- ◆ Image processing techniques were used to fix this

Examples: The Hubble Telescope

Engr. Afzal Ahmed

Examples: Medicine

Examples: Medicine

Microscopic tissue data - Cancer Detection

Examples: GIS

- Geographic Information Systems
 - Manipulation of Satellite Imagery
 - Terrain Classification, Meteorology

Examples: Industrial Inspection

- Human operators are expensive, slow and unreliable
- Make machines do the job instead

Examples: HCI

- Try to make human computer interfaces more natural
 - Gesture recognition
 - Facial Expression Recognition
 - Lip reading

Examples: Sign Language/Gesture Recognition

Examples: Facial Expression Recognition

Implicit customer feedback

Examples: Facial Expression Recognition

Implicit customer feedback

AU4	AUI+4	AU1+2	
3 6	-	6	
Brows lowered and drawn together	Medial portion of the brows is raised and pulled together	Inner and outer portions of the brows are raised	
AU5	AU6	AU7	
0 0		0 6	
Upper eyelids are raised	Cheeks are raised and eye opening is narrowed	Lower eyelids are raised	

Examples: Facial Expression Recognition

Implicit customer feedback

Examples: Biometrics

- Biometrics Authentication techniques
- Physiological Biometrics
 - Face, IRIS, DNA, Finger Prints
- Behavioral Biometrics
 - Typing Rhythm, Handwriting, Gait

Examples: Biometrics – Face Recognition

Examples: Biometrics – Finger Print Recognition

Examples: Biometrics – Signature Verification

Examples: Robotics

Examples: Robotics

AIBO

 Convert document image into text (CAMScanner)

The text was scanned at

The text was scanned at

Indexing and Retrieval

Image Source: CEDAR

License Plate Recognition

Automatic Mail Sorting

Summary of Applications

Problem Domain	Application	Input Pattern	Output Class
Document Image Analysis	Optical Character Recognition	Document Image	Characters/words
Document Classification	Internet search	Text Document	Semantic categories
Document Classification	Junk mail filtering	Email	Junk/Non-Junk
Multimedia retrieval	Internet search	Video clip	Video genres
Speech Recognition	Telephone directory assistance	Speech waveform	Spoken words
Natural Language Processing	Information extraction	Sentence	Parts of Speech
Biometric Recognition	Personal identification	Face, finger print, Iris	Authorized users for access control
Medical	Computer aided diagnosis	Microscopic Image	Healthy/cancerous cell
Military	Automatic target recognition	Infrared image	Target type
Industrial automation	Fruit sorting	Images taken on conveyor belt	Grade of quality
Bioinformatics	Sequence analysis	DNA sequence	Known types of genes

Acknowledgements

- ◆ Statistical Pattern Recognition: A Review A.K Jain et al., PAMI (22) 2000
- ◆ Pattern Recognition and Analysis Course A.K. Jain, MSU
- Pattern Classification" by Duda et al., John Wiley & Sons.
- Digital Image Processing", Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2002
- Machine Vision: Automated Visual Inspection and Robot Vision", David Vernon, Prentice Hall,
 1991
- www.eu.aibo.com/
- Advances in Human Computer Interaction, Shane Pinder, InTech, Austria, October 2008