Projected Barcodes: A New Approach to Multi-parameter Persistent Homology

Author: Luca Nyckees Supervisors: Nicolas Berkouk 1 , Prof. Kathryn Hess Bellwald 1

¹Laboratory of Topology and Neuroscience at EPFL

Notation and Mathematical Framework

- lacktriangle Let K detote a simplicial complex, X a topological space and consider a fixed field $oldsymbol{k}$.
- Write $\operatorname{Lip}_C(\mathbb{R}^d) = \{p : \mathbb{R}^d \to \mathbb{R} \mid p \text{ C-Lipschitz}\}$
- $lackbox{Vect}_{\mathbf{k}}$ is the category of \mathbf{k} -vector spaces, and \mathbb{R}^d is the category induced by the poset (\mathbb{R}^d, \preceq)
- $\blacksquare S_i(f): \mathbb{R}^d \to \mathbf{Vect_k}: a \mapsto H_i(x \mid f(x) \leq a) \text{ for a map } f: K \to \mathbb{R}^d$
- Persistence modules can be seen as sheaves for the euclidean topology.
- lacksquare $\mathrm{D}^b(\mathrm{Pers}(\mathbb{R}^d))$ denotes its bounded derived category of n-persistence modules.
- \blacksquare A 1-Lipschitz map $p: \mathbb{R}^d \to \mathbb{R}$ induces a pushforward functor $Rp_*: \mathrm{D}^b(\mathrm{Pers}(\mathbb{R}^d)) \to \mathrm{D}^b(\mathrm{Pers}(\mathbb{R}))$.
- lacktriangle Key-point : for a d-persistence module M, one obtains a 1-persistence module Rp_*M .

Introduction

In topological data analysis (TDA), the algebraic framework used for multi-parameter persistent homology presents complex challenges for the community. The so-called class of projected barcodes, originally introduced in the language of sheaf theory, tackles common issues encountered in multi-persistence, presents nice theoretical properties and generalizes the fibered barcode. In this work, we concentrate on the linear projected barcode in the language of multi-parameter persistence modules. We propose an efficient way of computing the linear integral sheaf metric between two multi-parameter persistence modules, through topological optimization. Furthermore, we show how the linear projected barcode can integrate standard TDA pipelines and present a feature extraction application for MNIST classification. The complete implementation, together with different notebooks and visual features, are avaible at this GitHub account in the repository called sheafmetric |.

The Fibered Barcode

In general, multi-parameter persistence modules do not admit well-defined barcode decompositions. The quest for other computational invariants remains a central task in computational topology. In dimension $d \geq 2$, the interleaving distance is NP-hard to compute (Bjerkevik et al. 2019). The fibered barcode of a multi-parameter persistence module $M:\mathbb{R}^d o \mathbf{Vect_k}$ is defined as the collection

$$Fib(M) = \{ \mathcal{B}(M_{\mathcal{L}}) \}_{\mathcal{L} \in \Lambda},$$

where Λ is the set of lines in \mathbb{R}^d with positive coefficients, and $M_{\mathcal{L}}$ is, intuitively, the restriction of M to the line \mathcal{L} . The matching distance between two persistence modules $M,N:\mathbb{R}^d o \mathbf{Vect_k}$ is defined as

$$d_{\text{match}}(M, N) = \sup_{\mathcal{L} \in \Lambda} w(\mathcal{L}) \cdot d_B(M_{\mathcal{L}}, N_{\mathcal{N}}),$$

where $w(\cdot)$ is a weight function that ensures the stability condition with respect to the interleaving distance : $d_{\mathrm{match}} \leq d_I$. In Lesnick and Wright 2019, M. Lesnick and M. Wright introduce the RIVET software, which computes the matching distance for sublevel set homology of functions $f,g:K o\mathbb{R}^2$ in complexity $\mathcal{O}(|K|^{11})$.

Figure 1. Restriction of a 2-parameter persistence module M to a line \mathcal{L} .

The Projected Barcode

In Berkouk and Petit 2022, N. Berkouk and F. Petit introduce a new class of invariants called projected barcodes, that successfully generalize the fibered barcode construction and present nice theoretical properties. Consider a class $\mathfrak{F}\subseteq\mathcal{C}^0(\mathbb{R}^d)$. The \mathfrak{F} -projected barcode of a continuous map $f:K o\mathbb{R}^d$ is defined as

 $\operatorname{Proj}_{\mathfrak{F}}(f) = \{ \mathcal{B}(Rp_*S(f)) \}_{p \in \mathfrak{F}}.$ The \mathfrak{F} -integral sheaf metric (ISM) between two continuous maps $f:K_1 o\mathbb{R}^d$ and $g:K_2 o\mathbb{R}^d$ is

Theoretical Properties

 $d_{\mathfrak{F}}(f,g) = \sup_{p \in \mathfrak{F}} \sup_{i \in \mathbb{N}} d_B(R^j p_* S(f), R^j p_* S(g)).$

Consider continuous maps $f:X o\mathbb{R}^d$ and $g:Y o\mathbb{R}^d$. N. Berkouk and F. Petit show the following.

Theorem 1: Stability

Let $\mathfrak{F} \subseteq \operatorname{Lip}_C(\mathbb{R}^d)$ with $C \leq 1$. One has

 $d_{\mathfrak{F}}(f,g) \leq d_I(S(f),S(g)).$

Theorem 2: Lower bound d_{match}

Let $\mathfrak{F}\subseteq \operatorname{Lip}_1(\mathbb{R}^d)$, with $\{\operatorname{push}_{\mathcal{L}}/w(\mathcal{L})\}\subseteq \mathfrak{F}$. One has

 $d_{\text{match}}(S_j(f), S_j(g)) \le d_{\mathfrak{F}}(f, g).$

Theorem 3

If X is compact and $p \in \operatorname{Lip}_C(\mathbb{R}^d)$ is a linear form with positive coefficients, then $Rp_*S_{\bullet}(f) = S_{\bullet}(p \circ f)$.

Figure 2. Auto-differentiation tree for LISM computation.

Topological Optimization

Provided that \mathfrak{F} is compact, one may wish to maximize the functional

$$\mathcal{T}_{f,q}^j: \mathfrak{F} \to \mathbb{R}: p \mapsto d_B(\mathcal{B}(S_j(p \circ f)), \mathcal{B}(S_j(p \circ g)))$$

in order to compute $d_{\mathfrak{F}}(f,g)$.

Theorem 4: Differentiability

Let $f:K_1\to\mathbb{R}^d$ and $g:K_2\to\mathbb{R}^d$ be continuous. Let $\mathfrak{F}=\{p\in\mathbb{R}^d_+\mid \|p\|_1=1\}$. Then the functional $\mathcal{T}_{f,g}^j: \mathfrak{F} \to \mathbb{R}: p \mapsto d_B(\mathcal{B}(S_j(p \circ f)), \mathcal{B}(S_j(p \circ g)))$

is differentiable Lebesgue almost everywhere.

Hence, one can use a subgradient algorithm with iterations of the form

$$p_{t+1} = p_t - \eta_t(y_t + \zeta_t),$$

where $y_t \in \partial \mathcal{T}_{f,q}^{\jmath}(p_t)$ ($\partial \mathcal{T}_{f,q}^{\jmath}$ is the Clarke subdifferential of $\mathcal{T}_{f,q}^{\jmath}$). Now, following the ideas of Theorem 4.2 in Carrière et al. 2021, one has the following convergence result.

Theorem 5: Convergence of subgradient algorithm

Let $\eta_t = \frac{1}{t}$ and $\zeta_t \sim \mathcal{N}(0,\sigma^2)$ with $\sigma \ll 1$. Then the sequence of projections $(p_t)_t$ in the subgradient algorithm above converges almost surely to a critical point of $\mathcal{T}_{f,a}^{\jmath}$, and the sequence $(\mathcal{T}_{f,a}^{\jmath}(p_t))_t$ converges.

Applications

Implementation

In the implementation, we look at the class $\mathfrak{F}=\{p\in\mathbb{R}^d_+\mid \|p\|_1=1\}$, seen as a subset of $\mathcal{C}^0(\mathbb{R}^d)$ through the projection action $p(x_1,x_2)=p_1x_1+p_2x_2$ for $(x_1,x_2)\in\mathbb{R}^2$. The optimization objective is implemented by considering the automatic-differentiation tree shown in Figure 2 (part of the code is built on top of Mathieu Carrière's topological optimization framework). Moreover, we consider a 2-Wasserstein version of the problem :

$$d_{\mathfrak{F}}(f,g) = \max_{p \in \mathfrak{F}} \max_{i \in \mathbb{N}} d_W(S_i(p \circ f), S_i(p \circ g)).$$

Image Analysis Pipeline

There are several ways to integrate the \mathfrak{F} -projected barcode to a machine learning pipeline. We focus on MNIST classification. For a choice of N images $\{I_k\}_{k=1}^N\subset\mathbb{R}^{n imes n}$ to classify and a family of image-induced multi-filtrations $\{f^k:[n] imes[n] o\mathbb{R}^d\}_{k=1}^N$, one can compute a distance matrix $D=(d_{kl})_{k,l=1}^N$ with

$$d_{kl} = d_{\mathfrak{F}}(f^k, f^l).$$

By considering this matrix as input for a clustering algorithm, one may perform unsupervised learning (Fig. 3). We report some MNIST classification experiments below, where $R_c, H_v : \mathbb{R}^{n \times n} \to \mathbb{R}$ are c-radial and v-height filtrations (see Garin and Tauzin 2019 for more details). In brief, we compare multi-parameter persistence with single-parameter persistence. Figure 4 reports the clustering of three distance matrices for classifying N=100 images with four labels : the $2 ext{-Wasserstein}$ distance matrices of $1 ext{D}$ sub-problems and the linear integral sheaf distance matrix.

metric	multi-filtration	$\mid N \mid$	digits	dimension	accuracy
d_W	$R_{(6,20)}$	100	(0, 2, 8, 9)	0, 1	56%
d_W	$H_{(0,1)}$	100	(0, 2, 8, 9)	0,1	65%
$d\mathfrak{L}$	$(R_{(6,20)}, H_{(0,1)})$	100	(0, 2, 8, 9)	0, 1	74%
d_W	$R_{(13,13)}$	100	(3, 6, 8, 9)	0, 1	60%
d_W	$H_{(0,1)}$	100	(3,6,8,9)	0,1	73%
$d\mathfrak{L}$	$(R_{(13,13)}, H_{(0,1)})$	100	(3, 6, 8, 9)	0, 1	81%

N digit images $I^k:K^0\to\mathbb{R}$

LISM matrix

K-means algorithm

Figure 3. Projected barcode integrated to TDA pipeline.

Figure 4. Multi-dimensional embedding of distance matrices (last experiment in the table above.)

References

- Berkouk, N. and F. Petit (2022). Projected distances for multi-parameter persistence modules. DOI: 10. 48550/ARXIV.2206.08818. URL: https://arxiv.org/abs/2206.08818.
- Carrière, M., F. Chazal, M. Glisse, Y. Ike, and H. Kannan (2021). Optimizing persistent homology based functions. arXiv: 2010.08356 [cs.CG].
- Bjerkevik, H., M. Botnan, and M. Kerber (Nov. 2019). "Computing the Interleaving Distance is NP-Hard". In: Foundations of Computational Mathematics 20. DOI: 10.1007/s10208-019-09442-y.
 - Garin, A. and G. Tauzin (2019). "A Topological "Reading" Lesson: Classification of MNIST using TDA". In: CoRR abs/1910.08345. arXiv: 1910.08345. URL: http://arxiv.org/abs/1910.08345.
- Lesnick, M. and M. Wright (2019). Computing Minimal Presentations and Bigraded Betti Numbers of 2-Parameter Persistent Homology. DOI: 10.48550/ARXIV.1902.05708. URL: https://arxiv.org/abs/ 1902.05708.