"蒸汽发生器" 课程设计指导书

孙中宁 编

哈尔滨工程大学 2016年

目 录

第一章	這一绪论	1
一、	目的和要求	1
<u> </u>	任务	1
三、	时间分配	1
第二章	。课程设计的具体内容	3
一、	给定条件	3
=,	蒸汽发生器的热力计算	3
三、	蒸汽发生器的水动力计算	4
四、	蒸汽发生器的强度计算	7
五、	蒸汽发生器的结构设计说明	8
六、	图纸要求	9
七、	设计说明书要求	9
附录 1	蒸汽发生器热力计算表	. 10
附录 2	蒸汽发生器水动力计算表	. 14
附录 3	蒸汽发生器强度计算表	. 24

第一章 绪论

一、目的和要求

- 1、运用、巩固、充实和提高"核动力设备"课中所学的知识,掌握蒸汽发生 器设计计算的基本方法;
- 2、具备蒸汽发生器方案设计、结构设计、热设计和水动力设计及计算的能力,并能够在设计中综合考虑安全、法规、环境等因素;
- 3、具备工程制图的相关基础知识并能将其运用于工程设计的能力;
- 4、具备撰写蒸汽发生器设计说明书和绘制图纸等书面方式呈现设计成果的 能力,并能够体现分析数据、分析问题,评价设计方案及其结果合理性 的能力:
- 6、能够就蒸汽发生器设计进行陈述发言、答辩,能够清晰表达观点,与答 辩教师(工程技术同行)进行有效沟通和交流:
- 7、能够在团队合作中与各成员进行有效沟通,共享信息,合作共事,在多 学科背景下的团队中发挥团队协作精神;能够倾听和综合团队成员意见, 合理决策。

二、任务

在课程设计中学生独立完成如下任务:

- 1、完成蒸汽发生器的方案设计与论证
- 2、完成蒸汽发生器的热力计算
- 3、完成蒸汽发生器的水动力计算
- 4、完成蒸汽发生器的强度计算
- 5、完成蒸汽发生器的结构设计
- 6、绘制蒸汽发生器的总图
- 7、编写设计说明书。

三、时间分配

1

课程设计共安排三周,其具体时间安排如下:

1,	蒸汽发生器及其设计理论指导	0.5 天
2、	蒸汽发生器方案设计及结构设计论证	1.5 天
3、	蒸汽发生器的热力计算	1.5 天
4、	蒸汽发生器的水动力计算	3 天
5、	蒸汽发生器的强度计算	0.5 天
6,	蒸汽发生器的总图绘制	5 天
7、	编写设计说明书	2 天
8,	答辩	1天

第二章 课程设计的具体内容

一、给定条件

- 1、蒸汽产量: D=126kg/s;
- 2、蒸汽干度: x=0.99;
- 3、蒸汽发生器的热效率: $\eta = 0.99$;
- 4、一回路侧额定工作压力: $p_1 = 15.0 \, \text{MPa}$;
- 5、一回路侧设计压力: $p_{\psi_1} = 1.25 p_1$
- 6、一回路侧冷却剂入口温度; $t_1' = 310$ ℃
- 7、一回路侧冷却剂出口温度; $t_1'' = 290$ ℃;
- 8、二回路侧给水温度: $t_f = 220$ ℃
- 9、二回路侧额定工作压力: $p_s = 5 \,\mathrm{MPa}$;
- 10、二回路侧设计压力: $p_{\theta_2} = 1.25 p_s$
- 11、传热管壁导热系数: λ_w = 17.4 W/m℃
- 12、传热管壁许用应力: $[\sigma_1] = 18 \text{ kg/mm}^2$;
- 13、下筒体许用应力: $[\sigma_2] = 18 \text{ kg/mm}^2$;
- 14、上筒体许用应力: $[\sigma_3] = 18 \text{ kg/mm}^2$;
- 15、球形下封头许用应力: $[\sigma_4] = 14.5 \text{ kg/mm}^2$;
- 16、管板许用应力: $[\sigma_5] = 1800 \text{ kg/mm}^2$;
- 17、传热管最小节距: $t = 1.25d_a$, 一般取为 $1.35 \sim 1.45d_a$;
- 18、上筒体内径 3200 mm, 高度 4000 mm。
- 19、下降空间: (1)入口阻力系数=1; (2)出口阻力系数=1; (3)定位装置阻力系数=1; (4)绝对粗糙度 Δ =0.15 mm。
- 20、流量分配管板: 单元面积=533 mm²; (2)单元开孔面积=216 mm²。

二、蒸汽发生器的热力计算

1、完成一回路冷却剂对传热管内壁的强迫对流放热计算,确定 a_1 值:

$$\alpha_1 = 0.023 \frac{\lambda}{d_i} \operatorname{Re}_f^{0.8} \cdot \operatorname{Pr}_f^{0.4}$$

2、完成传热管壁的导热计算,确定管壁热阻 R_w 值:

$$R_W = \frac{d_o}{2\lambda_w} \ln \frac{d_o}{d_i}$$

3、确定污垢热阻 R_f 值:

对于不锈钢: $R_f = (0.52 \sim 0.69) \times 10^{-4} \cdot m^2 \cdot \text{C/W}$

对于镍基合金: $R_f = 0.26 \times 10^{-4} \cdot m^2 \cdot \text{C/W}$

- 一般污垢层厚度为 0.05mm。
- 4、完成传热管外壁对二回路工质的沸腾换热计算,确定a,值

$$\alpha_2 = 0.557 p^{0.15} q^{0.7}$$

式中: *p*—Pa; *q*— w/m²

5、完成传热系数 k 值的计算:

$$\frac{1}{k} = \frac{d_o}{d_i} \cdot \frac{1}{\alpha_i} + R_w + \frac{1}{\alpha_o} + R_f$$

6、确定传热面积 F 值:

$$F = \frac{Q}{k \cdot \Delta t}$$

式中: Q—传热量; Δt —传热温差。

设计传热面积 $F_{\rm g} = C \cdot F$

式中: C—设计储备系数,一般取 C=1.1。

三、蒸汽发生器的水动力计算

水动力计算主要包括: 1、一回路侧水动力计算; 2、二回路侧循环倍率的计算。

1、一回路侧水动力计算

计算的具体步骤:

(1) 传热管内的摩擦阻力(ΔP_f)

$$\Delta P_f = \lambda \cdot \frac{H}{d_i} \cdot \frac{\rho_1 u_1^2}{2}$$

式中: λ—摩擦阻力系数,按有关公式或图表求取;

H—管子长度, m;

 d_i —管子内直径,(m);

 ρ_1 — 一回侧路冷却剂的平均密度, kg/m^3 ;

 u_1 — 一回侧路冷却剂的平均流速,m/s;

图 1 一回路侧水力计算简图

(2)、局部阻力: (ΔP₁)

$$\Delta P_l = \xi \frac{\rho_1 u_1^2}{2}$$

式中: ξ —局部阻力系数。 ξ 值主要取决于通道的结构型式,通过实验求得,属于经验数据。

一回路侧总的局部阻力:

$$\Delta P = \Delta P_A + \Delta P_B + \Delta P_C + \Delta P_D + \Delta P_E + \Delta P_E + \Delta P_G$$

其中:

①由进口管至进口水室,通道截然突然扩大的局部阻力— $\Delta P_{\scriptscriptstyle A}$

$$\Delta P_A = \xi_A \cdot \frac{\rho_A \cdot u_A^2}{2}$$

②在进口水室内转弯的局部阻力— ΔP_{R}

$$\Delta P_{\scriptscriptstyle B} = \xi_{\scriptscriptstyle B} \cdot \frac{\rho_{\scriptscriptstyle B} \cdot u_{\scriptscriptstyle B}^2}{2}$$

③由进口水室至传热管束,通道截面突然缩少的局部阻力— ΔP_c

$$\Delta P_C = \xi_C \cdot \frac{\rho_C \cdot u_C^2}{2}$$

④在 U 型管弯头内转弯 180° 的局部阻力— ΔP_D

$$\Delta P_D = \xi_D \cdot \frac{\rho_D \cdot u_D^2}{2}$$

⑤由传热管束至出口水室,通道截面突然扩大的局部阻力— ΔP_F

$$\Delta P_E = \xi_E \cdot \frac{\rho_E \cdot u_E^2}{2}$$

⑥在出口水室内转弯的局部阻力— ΔP_F

$$\Delta P_F = \xi_F \cdot \frac{\rho_F \cdot u_F^2}{2}$$

⑦由出口水室至出口接管,通道截面突然缩小的局部阻力— ΔP_G

$$\Delta P_G = \xi_G \cdot \frac{\rho_G \cdot u_G^2}{2}$$

一回路侧的水阻力: $\Delta P_H = \Delta P_f + \Delta P_l$

考虑贮备系数。其值为计算阻力的10%

因此:
$$\Delta P = 1.1 \Delta P_H$$

2、二回路侧循环倍率的计算:

在设计中,常用图解法来确定循环倍率 C_R 值和循环速度 u_o 值。即先假定几个不同的循环倍率 C_{R1} 、 C_{R2} 、 C_{R3} ……值。分别计算其运动压头 P_m 和总阻力 ΔP ,在直角坐标系里做出相应的曲线,二根曲线的交点即为稳定工况时的 C_R 值,同时也可求出 u_o 值。

(1) 运动压头 $P_{\rm m}$ 的计算:

$$P_m = (\rho_l - \rho_g) g \varphi H_r$$

式中: H_r—上升空间含汽段高度。

 ρ_{l} , ρ_{g} —分别表示饱和水和饱和汽的密度;

 φ —表示上升空间平均截面含汽率。

图 2 用图解法计算循环倍率的曲线

(2) 水循环总阻力 ΔP 的计算:

总阻力 $\Delta P = \Delta P_d + \Delta P_r + \Delta P_c$

其中: ΔP_{d} , ΔP_{r} 和 ΔP_{s} —分别表示下降空间、上升空间和分离器的阻力。

一般 ΔP_d ≈ 10% ΔP , ΔP_s 由实验确定

$$\overline{\Pi} \Delta P_r = \Delta P_f + \Delta P_l + \Delta P_b + \Delta P_a$$

式中: ΔP_f , ΔP_l , ΔP_b 和 ΔP_a 分别表示摩擦阻力、局部阻力、弯头区阻力和加速度阻力,可按相应的公式进行计算。

四、蒸汽发生器的强度计算

主要内容有: 1、传热管的强度计算; 2、简体的强度计算; 3、封头的强度计算; 4、管板的强度计算。

1、传热管的强度计算:

计算管壁厚度
$$S' = \frac{P_{ix} \cdot d_0}{200[\sigma] + 0.8P_{ix}} \cdot \varphi \cdot \phi_R$$
 (mm)

式中: P _设—设计压力 (kg/cm²) *d*₀—管子外径 (mm)

 $[\sigma]$ —许用应力。

 φ —负公差修正系数,一般取 φ =1.102

 ϕ_R —弯曲减薄系数

$$\varphi_R = 1 + \frac{d_o}{4R}$$

式中: R—弯曲半径, 取最小节圆半径。

2. 简体的强度计算:

计算简体厚度
$$S' = \frac{P_{ix} \cdot D_i}{200[\sigma] - 1 \cdot 2P_{ix}}$$
 (mm)

式中: Di---筒体内径 (mm)

3、球型封头的强度计算:

计算壁厚
$$S' = \frac{P_{\text{th}} \cdot D_o}{400[\sigma] + 1 \cdot 6P_{\text{th}}}$$
 (mm)

式中: D_0 —球型封头外径 (mm)

4、管板的强度计算:

计算壁厚
$$S' = \frac{1}{2} \cdot F \cdot D \sqrt{\frac{P_{ix}}{|\sigma|}}$$
 (mm)

式中: F—系数,查 TEMA 标准 F=1.04 D—水压部分直径 (mm)

五、蒸汽发生器的结构设计

主要完成下列工作:

1、管束组件的结构设计:

确定流程数,完成传热管的排列,确定管束直径及高度,最佳高-径比一般取为3;确定管子的固定支撑,确定隔板的数目和结构。

2、衬筒的结构设计:

确定衬筒的几何形状和尺寸。

衬筒内径: $D_{wi} = D_{\text{管東}} + 2\delta_t$

式中: δ , 为装配间隙, 约 $10\sim20$ mm。

衬筒外径: $D_{wo} = D_{wi} + 2\delta$

式中: δ 为衬筒壁厚, 取为 12 mm。

3、下筒体结构设计:

下筒体内径 $D_{i,\top} = D_{wo} + 2B$

式中: B为下降流道宽度,取为88 mm。

4、管板:

确定开孔数及有关几何尺寸,确定堆焊层与筒体的连接。

5、分离器组件:

采用三级汽水分离方式,但不做详细设计,其相应于循环倍率为 3、4、5 时的流动阻力人为设定为 12600Pa、14900Pa、17090Pa。

6、给水管装置:

确定给水管的结构,布置及有关几何尺寸。

7、排污装置:

确定排污管的结构、布置及有关几何尺寸。

六、图纸要求

按着国家标准和制图要求,绘制蒸发器总图 1 张和部件图 1~2 张。

七、课程设计说明书要求

课程设计说明书须包含以下主要内容:

封面

目录

第一章 绪 论

第二章 课程设计内容

第三章 结论与评价

第四章 参考文献

附录 1 蒸汽发生器热力计算表

一、热平衡

序号	项 目	符号	单 位	公式及来源	数 值
1	一回路放热量	Q	kW	给定	
2	一回路工作压力	p_1	Pa	给定	
3	一回路水进口温度	t_1	$^{\circ}$	给定	
4	一回路水出口温度	$t_1^{"}$	$^{\circ}$	给定	
5	一回路水平均温度	t _a	$^{\circ}$	$\frac{1}{2} \left(t_1' + t_1'' \right)$	
6	一回路水进口焓	i_1'	kJ/Kg	查表	
7	一回路水出口焓	$i_1^{"}$	kJ/Kg	查表	
8	蒸发器热效率	η		给定	
9	一回路水流量	G_1	kg/s	$Q/\eta \cdot (i_1'-i_1'')$	
10	二回路工作压力	p_{s}	Pa	给定	
11	二回路饱和温度	$t_{\rm s}$	$^{\circ}$ C	查表	
12	二回路水饱和焓	i_s	kJ/kg	查表	
13	二回路给水温度	t_{f}	$^{\circ}$ C	给定	
14	二回路给水焓	$i_{ m f}$	KJ/Kg	查表	
15	汽化潜热	r	kJ/Kg	查表	
16	蒸汽干度	x		给定	
17	排放系数	C_{s}		给定	
18	二回路蒸汽产量	D	kg/s	$\frac{Q}{rx+1.01(i_s-i_f)}$	
19	二回路排污量	D_{bd}	kg/s	$C_{\rm s}$ D	

二、传热计算

序号	项目	符号	单 位	公式及来源	数	值		
20	传热管外径	d _o	m	m 选定				
21	传热管内径	d _i	m	选定				
22	单管流通面积	a	m ²	$\frac{1}{4}\pi d_i^2$				
23	U型管数目	n		结构设计定				
24	一回路流通面积	A	m ²	$n \cdot a$				
25	一回路水平均比容	$\overline{ u}_1$	m ³ /Kg	查 表				
26	一回路水流速	\mathbf{u}_1	m/s	$G_{_1}\overline{ u}_{_1}/A$				
27	一回路水导热系数	λ_1	W/m·℃	查 表				
28	一回路水动力粘度	$oldsymbol{\eta}_1$	kg/m·s	查 表		kg/m·s 查表		
29	一回路水普朗特数	Pr_f		查 表				
30	一回路水雷诺数	Re_{f}		$\mathrm{u}_1\mathrm{d}_{\mathrm{i}}/oldsymbol{\eta}_1\overline{ u}_1$				
31	一回路侧放热系数	$\alpha_{_1}$	W/m ² ·℃	$0.023 \frac{\lambda_1}{d_i} \text{Re}_f^{0.8} \text{Pr}_f^{0.4}$				
32	传热管导热系数	$\lambda_{_w}$	W/m ² ·℃	给定				
33	传热管壁热阻	$R_{ m w}$	m ² ·°C/W	$R_W = \frac{d_o}{2\lambda_w} \ln \frac{d_o}{d_i}$				
34	污垢热阻	$R_{ m f}$	m²·°C/W	按 Inconel—600 选定				
35	二回路侧放热系数	$lpha_{\scriptscriptstyle 2}$	W/m ² ·°C	$\alpha_2 = 0.557 p_s^{0.15} q^{0.7}$				
36	传热系数	k	W/m ² ·℃	$\frac{1}{k} = \frac{d_o}{d_i} \cdot \frac{1}{\alpha_i} + R_w + \frac{1}{\alpha_o} + R_f$				
37	大端温差	$\Delta t_{\rm max}$	$^{\circ}$	$t_1'-t_s$				
38	小端温差	$\Delta t_{\rm min}$	$^{\circ}$	$t_1''-t_s$				
39	对数平均温差	$\Delta t_{ m ln}$	$^{\circ}$	$\frac{\Delta t_{\max} - \Delta t_{\min}}{\ln(\Delta t_{\max}/\Delta t_{\min})}$				

序号	项目	符号	单 位	公式与来源	数 值
40	热负荷	q	W/m^2	$q\cdot \Delta t_{ m ln}$	
41	计算传热面积	F	m^2	$Q/(10^{-3}q)$	
42	传热裕度系数		选定		
43	设计传热面积	$F_{rak{t}{2}}$	m ²	$C \cdot F$	

三、管束结构

序号	项目	符号	单 位	公式及来源	数	值
1	传热管总长	$L_{f eta}$	m	$F_{rak{w}}/\pi d_o$		
2	排列方式			正方形		
3	节 距	t	m	选定		
4	最小 U 型管节园直 径	$D_{\dagger\!$	m	4t		
5	实际布管数	n	根	根 结构设计定		
6	管束直径	$D_{ m tb}$	m	m 结构设计定		
7	弯管总长	L $^{\circ}$	m 结构设计定			
8	直管总长	L ந	m	L 点——L 弯		
9	管束直段高	Ні	m	L 直/2n		
10	管束弯段高	H 弯	m	R _{max}		
11	管束总高	$H_{ m tb}$	m	H _直 +H 弯		
12	传热管实际平均长 度	l	m	(L ½/n) +2 管板厚		
13	最长管子长	l _{max}	m πR _{max} +2H _i +2 管板厚			
14	最短管子长	l _{min}	m	πR _{min} +2H _± +2 管板厚		

四、主要管道内径

序号	项目	符号	单 位	公式与来源	数值
1	冷却剂平均比容	$\overline{ u}_1$	m ³ /Kg	查 表	
2	主管道计算流速	u_{10}^{\prime}	m/s	选取: 8~12 m/s	
3	主管道计算内径	d_{1i}'	m	$\sqrt{4G_1\overline{v}_1/\pi u'_{10}}$	
4	主管道设计内径	d_{1i}	m	选取	
5	主管道设计流速	u ₁₀	m/s	$4G_{1}\overline{ u}_{1}/\pi d_{1i}^{2}$	
6	新蒸汽比容	ν_2	m ³ /Kg	$\nu''x + \nu'(1-x)$	
7	蒸汽管计算流速	u_2'	m/s	选取: 30~40 m/s	
8	蒸汽管计算内径	d_{2i}'	m	$\sqrt{4G_2 v_2/\pi u_2'}$	
9	蒸汽管设计内径	d_{2i}	m	选取	
10	蒸汽管设计流速	u_2	m/s	$4G_2 v_2/\pi d_{2i}^2$	
11	二回路给水比容	ν_3	m ³ /Kg	査 表	
12	给水管计算流速	u_3'	m/s	选取: 2~5 m/s	
13	给水管计算内径	d_{3i}'	m	$\sqrt{4G_3 v_3/\pi u_3'}$	
14	给水管设计内径	d_{3i}	m	选取	
15	给水管设计流速	u_3	m/s	$4G_3 v_3/\pi \cdot d_{3i}^2$	

附录 2 蒸汽发生器水力计算表

序号	项 目	符号	单 位	公式及来源	数	值				
I 、一回路水阻力计算										
一、U 型管内摩擦阻力计算										
1	传热管实际平均长度	l	m	结构设计						
2	当量直径	d_{i}	m	结构设计						
3	一回路水流量	G_1	kg/s	热工计算定						
4	一回路水平均比容	$\overline{ u}_1$	m ³ /kg	查 表						
5	一回路水流速	u_1	m/s	热工计算定						
6	考虑堵管后流速	u_1'	m/s	1.05u ₁						
7	一回路水雷诺数	Re	$\frac{u_1'd_i}{\eta_1\overline{v}_1}$	热工计算定						
8	摩擦阻力系数	λ		0.3164Re ^{-0.25}						
9	平均温度下动力粘度	$\eta_{_1}$	kg/m⋅s	查 表						
10	壁温下动力粘度	η_1'	kg/m⋅s	按 $\frac{1}{2}(t_a + t_s)$ 查表						
11	温度修正系数	φ		$(\eta_{\scriptscriptstyle 1}/\eta_{\scriptscriptstyle 1}')^{\scriptscriptstyle 0.14}$						
12	摩擦阻力	ΔP_f	Pa	$\lambda \cdot \frac{H_{\pm}}{de} \cdot \frac{{u'_1}^2}{\varphi \overline{v}_1}$						
		二、馬	局部阻力计算	[
13	下封头内径	D_1	m	结构设计定						
14	水室截面积	F _c	m ²	$\frac{\pi}{8}D_1^2$						
15	进口管内径	d_{1i}	m	选定						
16	进口管截面积	A_1	m^2	$\frac{\pi}{4} \cdot d_{1i}^2$						

序号	项目	符号	单 位	公式及来源	数 值
17	比值			A_1/F_c	
18	突扩阻力系数	ξ_1		查 表	
19	一回路水入口处比容	ν_{1i}	m ³ /kg	查 表	
20	一回路水入口处密度	$ ho_{1i}$	kg/m ³	$1/ u_{1i}$	
21	入口管内流速	u_{1i}	m/s	热工计算定	
22	从入口管至水室阻力	ΔP_1	Pa	$\xi_1 \cdot \frac{u_{1i}^2 \cdot \rho_{1i}}{2}$	
23	水室转弯 45°阻力系数	ξ_2		查 表	
24	水室转弯 45°阻力	ΔP_2	Pa	$\xi_2 \cdot \frac{u_{1i}^2 \cdot \rho_{1i}}{2}$	
25	传热管流道截面	A	m ²	热工计算定	
26	考虑有堵管后截面	A'	m ²	A/1.05	
27	系 数			A'/F_c	
28	传热管入口阻力系数	ξ_3		查 表	
29	传热管入口阻力	ΔP_3	Pa	$\xi_3 \cdot \frac{{u_1'}^2 \cdot \rho_{1i}}{2}$	
30	U型管转180°阻力系数	ξ_4		查 表	
31	U 型管转 180°阻力	ΔP_4	Pa	$\xi_4 \cdot \frac{{u_1'}^2 \cdot \overline{ ho}_1}{2}$	
32	传热管出口阻力系数	ξ ₅		查 表	
33	出口处水比容	ν_2	m ³ /kg	查 表	
34	出口处水密度	$ ho_2$	kg/m ³	1/v2	
35	传热管出口阻力	ΔP_5	Pa	$\xi_5 \cdot \frac{{u_1'}^2 \cdot \rho_2}{2}$	

序号	项目		符号	单位	公	式及来	源	数值		
36	出口管内流速		u_2	m/s	1	$G_1 v_2 / A_1$				
37	水室转弯阻力系统	数	ξ ₆			查 表				
38	水室转弯阻力		ΔP_6	Pa	ξ	$\frac{1}{56} \cdot \frac{u_2 \rho_2}{2}$	-			
39	出口管突缩阻力系	数	ξ ₇			查 表				
40	出口管突缩阻力	1	ΔP_7	Pa	Ę	$\frac{u_2^2 \rho_2}{2}$				
			三、总图	阻力						
41	总阻力		ΔΡ	Pa	ΔΕ	$P_f + \sum_{i=1}^{7} \Delta$	ΔP_i			
42	设计阻力		ΔP _设	Pa		1·1∆P				
	II、二回路水循环阻力计算									
		– ,	下降空	间阻力						
1	循环倍率	C_{R}		假定		3	4	5		
2	给水温度	t_{f}	$^{\circ}$ C	给定						
3	二回路饱和温度	$t_{\rm S}$	$^{\circ}\!\mathbb{C}$	查表						
4	下降空间水比容	$v_{\rm d}$	m ³ /kg	近似取饱和	比容					
5	下降空间水密度	$ ho_d$	kg/m ³	$\frac{1}{v_d}$						
6	入口阻力系数	ξin		选取						
7	出口阻力系数	ξout		选取						
8	定位装置阻力系数	ξ _f		选取						
9	下降空间高度	H_0	m	结构设计	一定					

序号	项目	符号	単位	公式及来源	数值				
10	套筒外径	D_{w0}	m	结构设计定					
11	下筒体内径	D_{si}	m	结构设计定					
12	下降空间当量直径	De	m	D _{si} —D _{wo}					
13	绝对粗糙度	Δ	m	选定					
14	摩擦系数	λ_d		$\frac{1}{(1.74 + 21g\frac{De}{2\Delta})^2}$					
15	下降空间截面积	F_d	m ²	$\frac{\pi}{4} \left(D_{si}^2 - D_{wo}^2 \right)$					
16	下降空间水流速	$u_{\rm d}$	m/s	$C_R \cdot D \cdot v_d / F_d$					
17	下降空间阻力	ΔP_d	Pa	$(\lambda \frac{H_o}{de} + \sum \xi) \frac{u_d^2 \cdot \rho_o}{2}$	<u></u>				
	二、上升空间阻力								
		1	1、摩擦	阻力					
1	饱和水比容	v'	m ³ /kg	查 表					
2	饱和水密度	ho'	kg/m ³	1/v′					
3	饱和蒸汽比容	v"	m ³ /kg	查表					
4	饱和蒸汽密度	ho''	kg/m ³	1/v′					
5	套筒内径	D_{w1}	m	结构设计定					
6	传热管外径	d_0	m	热工计算定					
7	支撑板定位拉杆数量	n'	根	结构设计定					
8	上升空间流通面积	$F_{ m u}$	m ²	$\frac{\pi}{4} [D_{w_1}^2 - (2n + n')d_o^2)]$					
9	上升空间当量直径	de	m	$\frac{4F_u}{\pi[D_{wi} + (2n + n')d_o]}$					
10	循环速度	u_o	m/s	$\frac{C_R D v'}{F_u}$					

序号	项目	符号	单位	公式及来源	数值
11	出口水相折算速度	u'_{o2}	m/s	$\frac{(C_R - 1)Dv'}{F_u}$	
12	水相平均折算速度	\overline{u}'_o	m/s	$\frac{1}{2}\big(u_o + u'_{o2}\big)$	
13	出口汽相折算速度	u_{o2}''	m/s	$Dv"/F_u$	
14	汽相平均折算速度	\overline{u}_o''		$\frac{1}{2}u_{o2}''$	
15	水相运动粘度	v_l	m ² /s	查 表	
16	汽相运动粘度	v_g	m ² /s	查 表	
17	水相雷诺数	Re _{lo}		$\overline{u}_o'de/v_l$	
18	汽相雷诺数	Re_{go}		$\overline{u}_{o}^{"}de/v_{g}$	
19	判别流态			临界值:1000	
20	管束直段高	H_{s}	m	结构设计定	
21	水相摩阻系数	λ_{lo}		$0.3164\mathrm{Re}_{lo}^{-0.25}$	
22	汽相摩阻系数	λ_{go}		$0.3164\mathrm{Re}_{go}^{-0.25}$	
23	按折算速度计算的水 相摩擦阻力	$\left(\Delta P_f\right)_{lo}$	Pa	$\lambda_{lo} \frac{H_s}{de} \frac{\overline{u'_o}^2 \cdot \rho'}{2}$	
24	按折算速度计算的汽 相摩擦阻力	$\left(\Delta P_f\right)_{go}$	Pa	$\frac{1}{3}\lambda_{go}\frac{H_s}{de}\frac{\overline{u}_o''^2\cdot\rho''}{2}$	
25	参 量 X			$\sqrt{\left(\Delta P_f\right)_{lo}/\left(\Delta P_f\right)_{go}}$	
26	Φ_l^2			查图或计算	
27	Φ_g^2		_	查图或计算	
28	水相摩擦阻力	$\left(\Delta P_f\right)_l$	Pa	$\Phi_l^2 \cdot \left(\Delta P_f\right)_{lo}$	
29	汽相摩擦阻力	$\left(\Delta P_f\right)_g$	Pa	$\Phi_g^2 \cdot \left(\Delta P_f\right)_{go}$	
30	摩擦阻力	ΔP_f	Pa	$\left[\left(\Delta P_f\right)_l + \left(\Delta P_f\right)_g\right]/2$	

序号	项目	符号	单位	公式及来源	数值		
2、局 部 阻 力							
1	支撑板数目	N	个	结构设计定			
2	上升流道单元面积	A_{u}	mm ²	结构设计定			
3	支撑板单元开孔面 积	a_{u}	mm ²	结构设计定			
4	面积比			$a_{ m u}/A_{ m u}$			
5	局部阻力系数	ξ_l		查 图			
6	按折算速度计算的 水相局部阻力	$\left(\Delta P_l ight)_{lo}$	Pa	$N\xi_l \frac{\overline{u_o'^2 \cdot \rho'}}{2}$			
7	按折算速度计算的 汽相局部阻力	$\left(\Delta P_l\right)_{go}$	Pa	$N\xi_{l} \frac{\overline{u}_{o}^{\prime 2} \cdot \rho'}{2}$ $\frac{1}{3}N\xi_{l} \frac{\overline{u}_{o}^{\prime 2} \cdot \rho''}{2}$			
8	参 量 X			$\sqrt{\left(\Delta P_l ight)_{lo}/\left(\Delta P_l ight)_{go}}$			
9	二回路工作压力	p_s	Pa	给定			
10	临界压力	p_c	Pa	查水蒸汽表			
11	参数 Z_R			$\left(0.19 + 0.92 \frac{p_s}{p_c}\right)^{-1}$			
12	参数 K			$\left(0.19 + 0.92 \frac{p_s}{p_c}\right)^{-1}$ $Z_R + \frac{1}{Z_R}$ $1 + \frac{K}{X} + \frac{1}{X^2}$			
13	Φ_l^2			$1 + \frac{K}{X} + \frac{1}{X^2}$			
14	Φ_g^2			$1+KX+X^2$			
15	水相局部阻力	$(\Delta P_l)_l$	Pa	$\Phi_l^2 \cdot (\Delta P_l)_{lo}$			
16	汽相局部阻力	$\left(\Delta P_l\right)_g$	Pa	$\Phi_g^2 \cdot (\Delta P_l)_{go}$			
17	局部阻力	ΔP_l	Pa	$\left[\left(\Delta P_{l}\right)_{l}+\left(\Delta P_{l}\right)_{g}\right]/2$			

序号	项目	符号	单位	公式及来源	数值		
3、弯管区阻力							
1	管束弯头最大节园直 径	d_{b}	m	结构设计定			
2	弯管区重心至园心距 离	y _s	m	0.2122 <i>d</i> _{<i>b</i>}			
3	节 距	t	m	结构设计定			
4	计算冲刷排数	N'		$\frac{y_s}{t}$ -1(取整数)			
5	系数	$x_1=x_2$		$t/d_{ m o}$			
6	系数	n		$0.43 + \frac{1.13}{x_1}$			
7	水相雷诺数	Re _{lo}		$u'_{o2}de/v_{l}$			
8	汽相雷诺数	Re go		$u_{o2}^{"}de/v_{g}$			
9	水相磨擦阻力系数	λ_{lo}	$x_1 = x_2$	$4 \left[0.044 + \frac{0.08x_2}{(x_1 - 1)^n} \right] \operatorname{Re}_{lo}^{-0.15}$			
10	汽相磨擦阻力系数	λ_{go}	$x_1 = x_2$	$4 \left[0.044 + \frac{0.08x_2}{(x_1 - 1)^n} \right] \operatorname{Re}_{go}^{-0.15}$			
11	水相阻力	$\left(\Delta P_{b}\right)_{lo}$	Pa	$N'\lambda_{lo}\cdot \frac{u'_{o2} ho'}{2}$			
12	汽 相 阻 力	$\left(\Delta P_{b}\right)_{go}$	Pa	$\frac{1}{3}N'\lambda_{go}\frac{u_{o2}''\rho''}{2}$			
13	参量 X			$\sqrt{\left(\Delta P_b\right)_{lo}/\left(\Delta P_b\right)_{go}}$			
14	Φ_{lo}^2			查图或计算(同摩 擦阻力)			
15	Φ_{go}^2			查图或计算(同摩 擦阻力)			
16	水相阻力	$\left(\Delta P_{b}\right)_{l}$	Pa	$\Phi_{lo}^2 \cdot (\Delta P_b)_l$			
17	汽相阻力	$\left(\Delta P_{b}\right)_{g}$	Pa	$\Phi_{go}^2 \cdot (\Delta P_b)_g$			
18	弯管区阻力	ΔP_b	Pa	$\left[\left(\Delta P_{b}\right)_{l}+\left(\Delta P_{b}\right)_{g}\right]/2$			

序号	项目	符号	单位	公式及来源	数值			
4、加速阻力								
1	管東出口质量含汽 率	x_2		$1/C_R$				
2	管東出口体积含汽 率	$oldsymbol{eta}_2$		$\frac{x_2/\rho"}{x_2/\rho" + (1-x_2)/\rho'}$				
3	系数	С		$0.833 + 0.05 \ln \left(\frac{p_s}{10^6} \right)$				
4	管東出口截面含汽 率	$arphi_2$		$Ceta_2$				
5	质量流速	\dot{G}	kg/m ² s	$u_{o}\rho'$				
6	加速阻力	Δp_a	Pa	$\dot{G}^{2} \begin{bmatrix} \frac{(1-x_{2})^{2}}{\rho'(1-\varphi_{2})} + \frac{x_{2}^{2}}{\rho''\varphi_{2}} \\ -\frac{1}{\rho'} \end{bmatrix}$				
5、流量分配孔阻力								
1	单元面积	A'_u	mm ²	结构设计定				
2	单元开孔面积	a'_u	mm ²	结构设计定				
3	系 数			a'_u/A'_u				
4	阻力系数	ξ_{h}		查文献				
5	孔板局部阻力	ΔP_h	Pa	$\xi_h \frac{u_0^2 \rho'}{2}$				
		6,	上升空	间阻力				
1	上开空间阻力	ΔP_r	Pa	$\Delta P_f + \Delta P_l + \Delta P_b + \Delta P_a + \Delta P_h$				
	三、汽水分离器阻力							
1	汽水分离器阻力	ΔP_{s}	Pa					
	四、循环总阻力							
1	循环总阻力	$\Delta P_{f eta}$	Pa	$\Delta P_d + \Delta P_r + \Delta P_s$				

序号	项目	符号	单位	. 公式及来源	数	值				
III、运动压头计算										
	一、予热段高度计算									
1	循环倍率	C_{R}		假定	3	4	5			
2	二回路给水焓	$i_{ m f}$	J/kg	查 表						
3	二回路饱和水焓	$\dot{l}_{ ext{S}}$	J/kg	查 表						
4	液面高度	$H_{\rm o}$	m	结构设计定						
5	下降空间水密度	$ ho_d$	kg/m^3	取 $ ho_d = ho'$						
6	下降空间下端压 力	p_{low}	Pa	$p_s + g\rho_d H_o$						
7	<i>p_{low}</i> 压力下的饱 和水焓	i_{sl}	J/kg	查 表						
8	$\Delta i/\Delta P$		$\frac{J}{kg \cdot Pa}$	$(i_{sl}-i_s)/(p_{low}-p_s)$						
9	热负荷	q	w/m ²	热工计算定						
10	循环水量	G	kg/s	$C_R \cdot D$						
11	予热段高度	$H_{ m P}$	m	$\frac{\frac{i_s - i_f}{C_R} + \frac{\Delta i}{\Delta P} (\rho_d g H_o - \Delta P_d)}{\frac{2\pi d_o nq}{G} + \frac{\Delta i}{\Delta P} \rho_d g}$						
		=	.、运动	压头计算						
1	蒸发段高度	H_{r1}	m	$H_{ m tb} ext{-}H_{ m P}$						
2	管束上方区段高度	H_{r2}	m	$H_{ m o}$ - $H_{ m tb}$						
3	蒸发段平均质量含 汽率	\overline{x}_1		$x_{2}/2$						
4	蒸发段平均体积含 汽率	$\overline{oldsymbol{eta}}_1$		$\frac{\overline{x}_1/\rho"}{\overline{x}_1/\rho"+(1-\overline{x}_1)/\rho'}$						
5	蒸发段平均截面含 汽率	\overline{arphi}_1		$C\overline{eta}_1$						
6	管束上方区段平均 截面含汽率	\overline{arphi}_2		$\overline{arphi}_2=arphi_2$						

序号	项目	符号	单位	公式及来源	数值
7	蒸发段运动压头	P_{ml}	Pa	$(\rho'-\rho'')g\overline{\varphi}_1H_{r_1}$	
8	管束上方区段压头	P_{m2}	Pa	$(\rho'-\rho'')g\overline{\varphi}_2H_{r2}$	
9	运动压头	P_{m}	Pa	$P_{\rm ml}$ + $P_{\rm m2}$	

附录 3 蒸汽发生器强度计算表

序号	项目	符号	单位	公式及来源	数 值				
	一、传热管								
1	设计压力	P & 1	kg/cm ²	选定					
2	许用应力	[<i>σ</i>]	kg/mm ²	查 表					
3	管子外径	$d_{ m o}$	mm	选定					
4	直管计算壁厚	S"	mm	$rac{P_{latheta_1} \cdot d_o}{200[\sigma] + 0.8 P_{latheta_1}}$					
5	负公差修正系数	φ		技术条件测定					
6	弯曲减薄系数	ϕ_R		$1+d_{\rm o}/4R$					
7	计算壁厚	S'	mm	$S'' \cdot \varphi \cdot \varphi_R$					
8	设计壁厚	S	mm	选取					
		-	二、下(筒 体					
1	设计压力	p _{设,2}	kg/cm ²	选定					
2	许用应力	[σ]	kg/mm ²	查 表					
3	筒体内径	D_{i} $ au$	mm	结构设计定					
4	设计壁厚	S'	mm	$\frac{P_{\text{\mathcal{B}}2} \cdot D_{i\text{\mathcal{F}}}}{200[\sigma] - 1.2 P_{\text{\mathcal{B}}2}}$					
5	设计壁厚	S	mm	选定					
6	筒体外径	$D_{ m o}$ F	mm	D _i F+2S					
7	与管板连接壁厚	S _I	mm	选定					
	三、上 筒 体								
1	设计压力	P 设 2	Kg/cm ²	选定					

序号	项目	符号	单位	公式及来源	数值
2	许用应力	$[\sigma]$	kg/mm ²	查 表	
3	筒体内径	Di上	mm	结构设计定	
4	计算壁厚	S'	mm	$rac{P_{\eth 2} \cdot D_{i \pm}}{200 [\sigma] - 1.2 P_{\eth 2}}$	
5	设计壁厚	S	mm	选取	
		四、	球形	下 封 头	
1	设计压力	P 设 1	kg/cm ²	选定	
2	许用压力	[σ]	kg/mm ²	查 表	
3	球形封头外径	D_0	mm	结构设计定	
4	计算壁厚	S'	mm	$\frac{p_{\&1}D_0}{(400[\sigma]+1.6P_{\&1})}$	
5	设计壁厚	S	mm	选 取	
			五、管	板	
1	设计压力	P 设 1	kg/cm ²	选定	
2	许用应力	$[\sigma]$	kg/mm ²	查 表	
3	承压部分直径	D	mm	结构设计定	
4	筒体根部壁厚与直径比			S/D	
5	系数	F		查 TEMA 标准	
6	计算壁厚	S'	mm	$\frac{1}{2}FD\sqrt{P_{rak{t}^{2}}/[\sigma]}$	
7	设计壁厚	S	mm	选取	
8	堆焊层厚度	S'	mm	选 取	