CET 241: Day 11-12 DAC (Digital Analog Conversion)

Dr. Noori Kim

Objectives

- Develop a tool for a digital computer to interact with the analog world.
- Study digitization: Quantization, range, precision and resolution.
- Introduce sampling and the Nyquist Theorem.
- Study the basics of sound: electromagnets, speakers, AC vs. DC power, perception of sound.
- Understand how to create sound: loudness, pitch, envelope, and shape
- Use SysTick interrupt to create sounds by programming variable frequencies.

Agenda

- ADC, DAC general concepts
 - Quantization, Sampling
 - Range, Precision, Resolution
 - Nyquist sampling theorem
- Digital Analog Converter (hardware, circuit)
 - Binary weighted, R2R ladder
- DAC application
 - Sound, Speaker, Music
- For practical session
 - Systick periodic interrupt

Interaction of world and computers

- Needs a proper conversion technique!!!
- The world is inherently Analog (continuous)
 - In both space (x, y, z) and time (t)
- Computers are inherently Digital (discrete)
 - In both space (x, y, z) and time (t)

- Two possibilities of the conversion:
 - 1. World to Computers: A to D Conversion
 - 2. Computers to World: D to A Conversion
- Devices
 - 1. A to D converters
 - 2. D to A converters

- A to D converters: Sensors
 - Temperature
 - Sound: microphones
 - Optical
 - Pressure: sound lever meters
- D to A converters: Actuators
 - Motors
 - Sound: speakers
 - Brakes ...

F

We are going to talk about important ADC/DAC concepts including

- Quantization (digitization)
- Precision
- Range
- Resolution
- Nyquist Sampling Theorem

Quantization

Quantization (signal processing)

From Wikipedia, the free encyclopedia

Quantization, in mathematics and digital signal processing, is the process of mapping a large set of input values to a (countable) smaller set. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the

+ considering quantization errors (noise)

An example: a temperature sensor

- Input: analog, continuous, real out-world temperature
- Output: digitized numbers indicating quantized temperature
- Quantization error: real temperature-digital output temperature from the device

Digitization or Amplitude of signal (i.e., temp, voltage...)

quantization

Digitization

- Purpose: taking an analog signal and digitizing it (= storing it in a computer)
- Two concepts
 - 1. Amplitude quantization: discretizing the signal, separating the amplitude into levels.
 - 2. Time quantization: **sampling**, periodic capture of samples

- Precision: number of levels
 - i.e., four bits per sample, the precision is 16 (24)
- Range: min-max analog signal level
 - i.e., voltage
- Resolution: the smallest change that the analog signal can be captured
 - i.e., ΔV , but not rigorously defined

Textbook def.

 $-Resolution(in volt) = \frac{Range (in volt)}{Precision-1}$

Case I

 $-Resolution(in volt) = \frac{Range (in volt)}{Precision}$

Case II

http://www.edaboard.com/thread46167.html

① Precision: # of digital alternatives, # of levels

i.e., 8 bit DAC ⇒ precision is 256 or 8 bit.

② Range: | min - max voltage | of my analog signal

i,e., 5 V in the above example case.

8 bit DAC case I

- $Resolution(in\ volt) = \frac{Range\ (in\ volt)}{Precision-1}$
 - Resolution= $\frac{|3.3V-0V|}{255}$ = 0.01294 (Digital_{max}/V_{dd})
 - Vmax=resolution*max digital value
 - *3.2994V=*0.01294*V* * 255
 - $-V_{\text{max}} = V_{dd} = 3.3V$
 - The max digital output (1111.1111₂) is mapped to 3.3V

Or another resolutions

8 bit DAC case II

- $Resolution(in\ volt) = \frac{Range\ (in\ volt)}{Precision}$
 - Resolution= $\frac{|3.3V-0V|}{256}$ = 0.012890625V
 - Vmax=resolution*max digital value
 - 3.287109375V=0.012890625V*255

$$-V_{\text{max}} = \frac{Digital_{max}}{Precision} \times V_{dd} = \frac{255}{256} \times 3.3V = 3.287V$$

- -3.3V (V_{dd}) is not used for DAC output voltage
- The max digital output (1111.1111₂) is mapped to 3.287V

Conclusion for the two resolution formulas

- We have to look at the circuit implementation to calculate the exact resolution that is using for the specific case
- Example 8.2 (Vol2, page 414 or 561)

Example 8.2. Design a 2-bit binary-weighted DAC with a range of 0 to +3.3V using resistors.

Solution: We begin by specifying the desired input/output relationship of the 2-bit DAC. There are two possible solutions depending upon whether we want a resolution of 0.825 V or 1.1 V, as shown as V_1 and V_2 in Table 8.6. Both solutions are presented in Figure 8.30.

N	Q_1 Q_0	$V_{1}(V)$	V ₂ (V)
0	0 0	0.000	0.0
1	0 3.3	0.825	1.1
2	3.3 0	1.650	2.2
3	3.3 3.3	2.475	3.3

Figure 8.30. Two solutions for a 2-bit DAC.

Table 8.6. Specifications of the 2-bit DAC.

Assume the output high voltage (V_{OH}) of the microcontroller is 3.3 V, and its output low voltage (V_{OL}) is 0. With a binary-weighted DAC, we choose the resistor ratio to be 2/1 so Q_1 bit is twice as significant as the Q_0 bit, as shown in Figure 8.30. Considering the circuit on the right, if both Q_1 and Q_0 are 0, the output V_2 is zero. If Q_1 is 0 and Q_0 is +3.3V, the output V_2 is determine by the resistor divider network

which is 1.1V. If Q_1 is +3.3V and Q_0 is 0, the output V_2 is determine by the network

which is 2.2V. If both $\rm Q_1$ and $\rm Q_0$ are +3.3V, the output $\rm V_2$ is +3.3V. The output impedance of this DAC is approximately 20 k , which means it cannot source or sink much current.

Resolution(in volt)
$$= \frac{Range (in volt)}{Precision - 1}$$

$$= \frac{3.3V}{2^2 - 1} = 1.1V$$

Resolution(in volt)
$$= \frac{Range (in volt)}{Precision}$$

$$= \frac{3.3V}{2^2} = 0.825V$$

Resolution: the amount of variance in output voltage for every change of the LSB in the digital input.

We will take case this for our DAC lab (piano)

$$Resolution(in\ volt) = \frac{Range\ (in\ volt)}{Precision-1}$$

• For your test (Quiz or exam) refer to specific circuits to compute V_{max} and resolution

Why we call this as DAC?

- Each pin can either output 0 (0V, low) or 1 (3.3V, high)

 Digital
- But having parallel digital outputs with extra components (resistors) we can represent <u>various voltage levels</u> → Analog

Trade-offs

	A computing standpoint	An analog standpoint
More levels (i.e. 16 levels, y axis, voltage)	Need more bits per sample (16 levels : 2 ⁴ , 4 bits/sample)	Better precision (16 levels , precision is 16)
More samples (the rate of capture is high, x axis, time)	Need faster processing. (more processing per unit time)	More faithful the digital representation is w.r.t. the analog signal Sampling data more frequently

Nyquist theorem: how many samples per second is the best to capture the essence of the analog signal

523 Hz sine wave output

12-bit DAC

Case I) capturing 32 samples

More sampling

- Faster processing required
- More faithful representation

Let's talk about a big theorem

Recall: PLL

- What is phase?
 - The position of a point in time (an instant) on a waveform cycle (wiki)

- 1. T=period=clock period=cycle
- 2. F=1/T (frequency)
 - Measured in cycles per second
 - Ex:1 kHz = 1 000 cycles / s
 - 1 MHz = 1 000 000 cycles / s
- 3. A=amplitude
- 4. Ts=1/fs: Sampling time

Ex) CPU operates at 100 Hz, its "clock cycle" is 0.01 second = 10 ms;

Nyquist Sampling Theorem (NST)

A band-limited signal of finite energy, which has no frequency components higher than W Hertz, may be completely recovered from a knowledge of its samples taken at a rate greater than 2W samples per second.

2W: 400 samples/sec 400 cycles/sec

The highest frequency, i.e., W=200Hz (200 samples per second)

Harry Nyquist (Also from Bell lab.)

General description: NST

- If the signal is sampled with a frequency of f_s , then the digital samples only contain frequency components from 0 to ½ f_s .
- If the analog signal does contain frequency components larger than $\frac{1}{2} f_s$, then there will be an aliasing error during the sampling process

 Proving the Nyquist Theorem mathematically is beyond the scope of this course (FFT)

Experiments

8 secs for one cycle When I say "start"

- Sample (look at) the needle in every XX seconds
- After 24 seconds tell me how many cycles does the needle turn around
- 1. Every 2 sec
- 2. Every 4 sec
- 3. Every 8 sec
- 4. Every 16 sec

This clocks Freq: 1/8=0.125Hz

Need to sample it at leastevery 4 secs → NTS Fs=0.25Hz

30

The Nyquist Theorem says that if a signal is oscillating (or cycling) at frequency of F, in order to capture it faithfully, we must sample at a frequency that is strictly larger than two times of F.

Technical description: NST

- A bandlimited analog signal that has been sampled can be perfectly reconstructed from an infinite sequence of samples
 - The sampling rate f_s exceeds $2f_{max}$ samples per second, where f_{max} is the highest frequency in the original signal.

- If the analog signal does contain frequency components larger than $(1/2)f_s$, then there will be an aliasing error.
 - Aliasing is when the digital signal appears to have a different frequency than the original analog signal.

- If the analog signal does contain frequency components larger than $(1/2)f_s$, then there will be an aliasing error.
 - Aliasing is when the digital signal appears to have a different frequency than the original analog signal.

200Hz signal sampled at 2000Hz

http://www.ece.utexas.edu/~valvano/Volume1/Nyquist.xls

f f_s

100Hz signal sampled at 1600Hz

http://www.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/FFT16.xls

$f=(1/2)f_s$

f_s: minimum fs to reconstruct f

1000Hz signal sampled at 2000Hz

http://www.ece.utexas.edu/~valvano/Volume1/Nyquist.xls

2200Hz signal sampled at 2000Hz

http://www.ece.utexas.edu/~valvano/Volume1/Nyquist.xls

Freq of aliased result?

1500Hz signal sampled at 1600Hz

This is aliasing

http://www.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/FFT16.xls

A signal with DC, 100Hz and 400Hz sampled at 1600Hz = 0.625ms interval

http://www.ece.htexas.edu/~valyano/EE345L/Labs/Fall2011/FFT16.xls

DC (zero freq component)

0 Hz+ 100Hz+400Hz; obey superposition

Theories for both ADC/DAC DAC Hardware implementation

Types of DAC

- Binary Weighted DAC
 - One resistor for each bit of output
- R-2R Ladder DAC
 - Binary weighted cascading ladder
 - Improved precision by selecting resistors of equal value
- Thermometer coded DAC
 - Resistor for each possible output value controlled by a switch (resistor string)
- Segmented DAC
 - Thermometer for most significant bits and binary weighted for least significant bits
- Hybrid DAC
 - Any combination of the techniques

Binary Weighted DAC

Binary Weighted DAC

- Binary Weighted DAC
 - One resistor for each bit of output
 - Resistor values in powers of 2

Voltage divider rule

 The voltage divider rule in node methods (KCL, KVL)

n	Q1	Q0	V2
0	0	0	0
1	0	1	1.1
2	1	0	?
3	1	1	3.3

- Based on the simplest 2 bit case exercise, you try this later at home
- 3 bit Binary weighted DAC analysis

k Ω

R-2R Ladder DAC

- R-2R Ladder DAC
 - Binary weighted cascading ladder
 - Improved precision owing to ability to select resistors of equal value

Final reduced form

If R=11k then I =0.1mA

Compute lout

$$I=3.3V/(2R+R)$$
 If R=11k then I = 0.1mA

Final reduced form

3.3V
$$\stackrel{1\rightarrow}{\longrightarrow}$$
 $\stackrel{R}{\longrightarrow}$

$$I=3.3V/(2R+R)$$

If R=11k then I =0.1mA

3 bit case

N	Q_2	Q_1	Q_0	I _{out} (μΑ)
0	0	0	0	0.0
1	0	0	3.3V	12.5
2	0	3.3V	0	?
3	0	3.3V	3.3V	
4	3.3V	0	0	?
5	3.3V	0	3.3V	
6	3.3V	3.3V	0	
7	3.3V	3.3V	3.3V	?

A Slide hided

	Binary Weighted	R-2R
Pros	Easily understood	Only 2 resistor values Easier implementation Easier to manufacture Faster response time
Cons	Limited to ~ 8 bits Large # of resistors Susceptible to noise Expensive Greater Error	More confusing analysis

Practical session

 Having this knowledge, you should be able to generate a sine wave

- We will implement 4 bit binary weighed DAC with 4-key piano
 - Do not use port E as your input piano keys
 - Do not use Port B as your 4-bit DAC
 - If you use port E and port B, the maximum score you can get is 80/100.

Resistor Network for 4-bit DAC

- DAC hardware
 - Employ least significant four bits of a GPIO port
 - Arrange resistor network in 1, 2, 4, 8 sequence
 - Each port bit can assume digital levels of 0 and 3.3 V
 - Ports are current limited max 8 mA

OK, I can make a sine wave using parallel digital outputs, but

How do we control frequencies?

→ We will use Systick interrupt!

A simple concept is described next page, more will come next week.

Interesting questions!

- What will happen I remove one of the resistors?
- Why we do not set AMSEL register for this lab?
- Where is the place for converting digital to analog?
- Is the BitO always LSB?
- Why do we increase resistance s (R0-R3) in twice manner?

what would happen if you keep the period, change the shape of your wave?

Other Instruments (diff. shape)

```
// 6-bit 64-element bassoon wave
const uint8_t Bassoon[64] = {
    33,37,37,36,35,34,34,33,31,30,29,
    30,33,43,58,63,52,31,13,4,5,10,16,
    23,32,40,46,48,44,38,30,23,17,12,11,
    15,23,32,40,42,39,32,26,23,23,24,25,
    25,26,29,30,31,32,34,37,39,37,35,34,
    34,34,33,31,30};
```



```
// 6-bit 64-element guitar wave
const uint8_t Guitar[64] = {
   20,20,20,19,16,12,8,4,3,5,10,17,
   26,33,38,41,42,40,36,29,21,13,9,
   9,14,23,34,45,52,54,51,45,38,31,
   26,23,21,20,20,20,22,25,27,29,
   30,29,27,22,18,13,11,10,11,13,13,
   13,13,13,14,16,18,20,20,20);
```


Musical Notes

T (milli s) f (Hz) Note 523 1.91 B 494 2.02 B^{b} 466 2.15 440 2.27 A A^{b} 415 2.41 G 392 2.55 G^{b} 370 2.70 F 349 2.87 3.03 E 330 E^{b} 311 3.22 D 294 3.40 D_{p} 277 3.61 262 3.82

i.e.)
Two octave up: Freq*(2)²

One octave up: double up freq

One octave down: half of freq down

i.e.)

Two octave down: $Freq*(1/2)^2$

Tone Generation

- Picturizing the followings and computing sampling intervals
 - 440 Hz tone
 - 64 samples per a sinusoid period
 - 80 MHz clock (12.5 ns interval)
 - (80Mcounts/s/440Hz)/64 points = 2841 counts = 355.1 μs/point
- If 256 points/period?
 - 89 μs/point (you try)

Tone Generation

```
// 11-bit outputs 64-element sine wave
const uint16_t Wave[64] = {
    1024,1122,1219,1314,1407,1495,1580,1658,1731,1797,1855,
    1906,1948,1981,2005,2019,2024,2019,2005,1981,1948,1906,
    1855,1797,1731,1658,1580,1495,1407,1314,1219,1122,1024,
    926,829,734,641,553,468,390,317,251,193,142,
    100,67,43,29,24,29,43,67,100,142,193,
    251,317,390,468,553,641,734,829,926
};
```

- Why 11 bits?
- What is the max value of 11 bit binary?

Tone generated from 256 discrete 12-bit outputs

Reading for two weeks

Vol.1	Vol.2
Ch.8	Ch.6
(8.1)	(6.4)
Ch.10	Ch.8
(10.1,	(8.4,
10.2,	8.5)
10.3, 10.4)	Ch.10
	(10.2)