

成绩构成:

平时30% (平时作业10%, 两次报告20%) 期末70%

教材:

肖军. DCS及现场总线技术. 清华大学出版社, 2011.10

参考资料:

- 1. 李占英. 分散控制系统(DCS)和现场总线控制系统(FCS)及其工程设计. 电子工业出版社, 2015.7
- 2. 雷霖. 现场总线控制网络技术(第2版). 电子工业出版社, 2015.1
- 3. 张帆. 工业控制网络技术(第2版). 机械工业出版社, 2016.2
- 4. 谢昊飞 等.网络控制技术.机械工业出版社, 2009.6

计算机控制系统工作过程

计算机控制系统的工作过程是一个<mark>测、算、控、</mark> 管不断重复的过程。

- ◆ 实时数据采集: 检测被控量的瞬时值,将采样结果输到计算机中。
- ◆ 实时决策: 给定值与被控量的数值处理后,按照预定的控制规律进行控制运算—实时决策。
- ◆ 实时控制:将实时决策结果转化为控制信号适时地送给执行装置——实现过程控制。
- ◆ 信息管理: 随着网络技术和控制策略的发展,信息共享及管理 在控制系统得到了充分的应用。

机械与电气工程学院

机械与电气工程学院

计算机控制系统具有精度高、速度快、存储容量大和有逻辑判断功能等特点,而且能够进一步把过程控制和生产管理有机结合起来,从而实现全面的自动化管理。

▶强调

计算机控制系统是以<mark>分时方式</mark>对控制对象进行控制的,它以 定时采样和<mark>阶段控制</mark>来代替常规调节装置的连续检测和连续控 制。

机械与电气工程学院

1. 按照系统的功能分类

- F BRE 1
- ❖ 巡回检测和操作指导系统
- ❖ 直接数字控制系统
- ❖ 计算机监督控制系统
- ❖ 集散控制系统
- 现场总线控制系统
- ❖ 工业过程计算机集成制造系统(流程CIMS)

工业控制网络技术

1) 巡回检测和操作指导系统

——主要对过程参数进行定时巡回检测、数据记录、数据计算、数据统计和处理、参数的越限报警以及对数据进行积累和实时分析。

- ❖ 计算机不直接参与生产过程的控制。
- 代替大量的常规显示和记录仪表,对整个生产过程进行集中 监视。
- > 数据采集系统(Data Acquisition System, DAS)

※监视控制与数据采集系统

(Supervisory Control And Data Acquisition, SCADA)

流程CIMS是工程大系统,它所要解决的不是局部 优化问题,而是工厂、公司乃至一个区域的总目标或 总任务的最优化问题。 最优化的目标函数包括产量最高、质量最好、原 料和能耗最小、成本最低、可靠性最高、环境污染最 小等指标,它反映了技术、经济、环境等多方面的综 合性要求。

机械与电气工程学院

工业控制网络技术

DCS是一个分布式系统, 其基本构成包括三个部分:

- ▶集中显示管理
 - 工程师站——组态和维护
 - 操作站——监视和操作
 - 管理计算机——系统的信息管理和部分优化控制任务
- > 分散控制监测
 - 控制站——实时控制
 - 监测站——实时监测
- ▶ 通信──实现各个部分的数据、指令及其它信息的传递

机械与电气工程学院

DCS的主要特点:

- ▶ 自治性:控制站能独立地完成规定任务,操作站能自主地实现监控和管理。
- ▶ 协调性: 各部分通过信息传递,协调工作。
- > 灵活性: 系统为积木式结构, 可以灵活配置。
- 分散性:控制分散、地域分散、设备分散、功能分散……分 散的最终目的是将危险分散。
 - ——DCS硬件积木化和软件模块化是分散性的具体体现。
- ▶便捷性:操作方便,显示直观。
- 可靠性:采用容错设计、冗余设计等技术提高系统可靠性, 且可在线快速排除故障。

机械与电气工程学院

机械与电气工程学院

工业控制网络技术

组态软件

组态软件,上位机软件的一种,又称组态监控软件系统软件,是指一些<mark>数据采集与过程控制</mark>的专用软件。

它们处在自动控制系统监控层一级的软件平台和开发环境, 使用灵活的组态方式,为用户提供快速构建工业自动控制系统监 控功能的、通用层次的软件工具

"组态(Configure)"的含义是"配置"、"设定"、 "设置"等意思,是指用户通过类似"<mark>搭积木</mark>"的简单方式来完 成自己所需要的软件功能,而不需要编写计算机程序,也就是所 谓的"组态"。

常见的组态软件有: InTouch、iFix、Citech、WinCC、组态王、Controx开物、ForceControl、GE的Cimplicity、RSView Supervisory Edition、Lookout、Wizcon、MCGS等。

机械与电气工程学院

5. 可组态性

所有厂商的现场仪表引入功能块概念,统一组态方法。使得组态方法非常简单,不会因为现场设备或仪表种类不同带来组态方法的不同,从而,给组态编程带来了很大方便。

6 开放性

通信标准的公开、一致,使系统具备开放性。实现网络数据 库的共享。

7. 可控性

操作员在控制室即可了解现场设备或现场仪表的工作状况, 也能对其参数进行调整,还可预测或寻找故障,系统始终处于操 作员的远程监控和可控状态,提高了系统的可靠性、可控性和可 维护性。

机械与电气工程学院

工业控制网络技术

1.3.2 FCS的本质特征

1. FCS的核心是总线协议

总线协议一经确定,相关的关键技术和有关的设备也就被 确定。

目前国际标准的现场总线有8种。

2. FCS的基础是数字智能现场装置

数字智能现场装置是FCS的硬件支撑,实现现场设备的通信及现场级控制。

3. FCS的本质是信息处理现场化

减少信息往返是网络设计和系统组态的一条重要原则, FCS让大量信息在现场就完成处理。

机械与电气工程学院

2. 发展趋势

现场总线技术是控制、计算机和通信技术的交叉 与集成,它的出现和快速发展体现了控制领域对增强 可维护性、提高可靠性、提高数据采集智能化和降低 成本的要求,其发展趋势主要体现在以下几个方面:

- 统一的技术规范与组态技术
- 现场总线自身的技术水平将不断提高
- 应用将越来越广泛
- 工业以太网将逐步成为现场总线技术的主流

机械与电气工程学院

1. 4 DCS、PLC及FCS之间的差异 1. 4. 1 PLC的基本概念

PLC——可编程逻辑控制器(programmable logic controller)

PLC是一种执行数字运算操作的电子系统,其实质是一种专用于工业控制的计算机。

PLC的工作过程一般分为三个阶段:

输入采样: 依次读入所有输入状态和数据

用户程序执行:由上而下顺序扫描用户程序(梯形图)

输出刷新:刷新所有输出锁存电路,再经输出电路驱动外设。

三个阶段为一个扫描周期,循环执行。

机械与电气工程学院

工业控制网络技术

1. 4. 2 DCS和PLC之间的差异

PLC系统与DCS系统的结构差异不大,只是DCS着重于闭环控制及数据处理,PLC着重于逻辑控制及开关量的控制。

PLC网络既可以作为独立的DCS网络,也可作为DCS的子系统。如监督控制与数据采集(SCADA)系统多以PLC作为现场控制站,称为PLC-SCADA系统,它具有和DCS几乎相同的网络结构。

PLC更适用于小工程, DCS则适用于大工程。

