G183012 1.a Série Química

Beth Pontes/Carol/Franco/Mariana/Wanda

14/9/2018

Parte I: Testes (valor: 3,0)

1. a	6. b	11. e
2. e	7. b	12. c
3. e	8. a	13. a
4. b	9. c	14. d
5. e	10. a	15. d

Parte II: Questões (valor: 5,0)

1.

a. 0,1 para cada linha completa correta.

Substâncias	Função inorgânica	Nomenclatura
Na ₂ CO ₃	Sal	Carbonato de sódio
NaOH	Base	Hidróxido de sódio
CaO	Óxido	Óxido de cálcio
CaCO ₃	Sal	Carbonato de cálcio

- b. $\mathrm{NO_2}\,\mathrm{e}\,\mathrm{SO_2}\,\mathrm{est\~ao}$ associados à chuva ácida.
- c. Possíveis respostas:

Gás	Filtro	Reação
SO ₂	CaO	$SO_2 + CaO \rightarrow CaSO_3$
SO ₂	NaOH	$SO_2 + NaOH \rightarrow Na_2SO_3 + H_2O$
CO ₂	CaO	$CO_2 + CaO \rightarrow CaCO_3$
CO ₂	NaOH	$CO_2 + NaOH \rightarrow Na_2CO_3 + H_2O$
NO ₂	NaOH	$2NO_2 + 2NaOH \rightarrow NaNO_2 + NaNO_2 + H_2O$

2.

a. Na reação apresentada, foi utilizada a fórmula de bastão. Lembrando que cada carbono deve compartilhar 4 pares de elétrons para atingir a estabilidade, a fórmula estrutural simplificada do éster que apresenta odor de banana é:

Contato os átomos de carbono, hidrogênio e oxigênio, é possível determinar a fórmula molecular do éster: $C_7H_{14}O_2$

b. Conforme a equação fornecida, a proporção de ácido acético e de éster é, em mol, 1:1.

3.

- a. Como a solução de NaOH é básica, ao adicionarmos o indicador azul de bromotimol, a solução adquirirá coloração azul.
- b. No ar expirado, há a presença de CO_2 , óxido ácido que tem a capacidade de reagir com o NaOH, neutralizando a base e, em caso de excesso de CO_2 , acidificando o meio. Assim, o caráter da solução final pode ser neutro ou básico. Portanto, podemos obter uma solução com coloração verde ou amarela dependendo da quantidade de CO_2 expirado. A reação que representa a reação entre CO_2 e NaOH pode ser representada por:

$$CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O$$
 ou $CO_2 + NaOH \rightarrow NaHCO_3 + H_2O$

c. Para o suco gástrico, temos que $[H^+] = 3 \cdot 10^{-2}$ mol/L.

Sabendo que pH =
$$-\log$$
 [H $^+$], vem que:
$$pH_{suco\ g\acute{a}strico} = -\log{(3\cdot10^{-2})} = -\log{3} - \log{10^{-2}} = -0.5 + 2 = 1.5$$

Portanto, precisamos diferenciar uma solução de pH igual a 1,5 (suco gástrico) de uma solução com pH igual a 5,0 (guaraná diet). Dentre as opções possíveis, a mais adequada é o **alaranjado de metila**, que apresenta faixa de viragem entre 3,1 e 4,4. Assim, usando esse indicador, a solução de suco gástrico adquirirá coloração **vermelha** e a de guaraná diet, coloração **amarela**.

4.

a. Fe (s) + 2HCl (aq)
$$\rightarrow$$
 FeCl₂ (aq) + H₂ (g)

b. Cálculo da quantidade em mol de HCl consumida:

Cálculo do volume, em litros, de solução de HCl consumida:

c. Do item (b), sabemos que $V_1 = 2L$.

No experimento 2, a amostra metálica contém magnésio e ferro. Como a massa molar do magnésio é menor que a do ferro, pode-se afirmar que a quantidade de matéria (em mol) presente na amostra 2 é maior que a do experimento 1. Desta forma, a quantidade de matéria necessária do ácido clorídrico será maior, e o volume também. Portanto, $V_2 > V_1$.

A equação da reação com magnésio é: $Mg + 2HCl \rightarrow MgCl_2 + H_2$

No experimento 3, a amostra metálica contém estanho e ferro. Como a massa molar do estanho é maior que a do ferro, pode-se afirmar que a quantidade de matéria presente na amostra é menor que a do experimento 1. Desta forma, a quantidade de matéria necessária do ácido clorídrico será menor, e o volume também. Portanto, $V_3 < V_1$.

Assim,
$$V_2 > V_1 > V_3$$
.

5.

Nome	Fórmula estrutural
butano	a. $\operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_3}$
propan-2-ol	b. CH ₃ H ₃ C — C — CH ₃ H
c. ácido metanoico	нсоон
d. butan-2-ona	$H_3C - C - C - C - CH_3$ $H_2 H_2$ O
e. ácido hexanoico	$H_3C - C - C - C - C - C - C - C - C - C -$