Study of Rigid Body Models in the PySPH Framework

Mid-Semester Review

Anirudh Jonnalagadda ¹

Internal Guide: Dr. Sukratu Barve ¹

External Guide: Dr. Prabhu Ramachandran ²

¹Center for Modeling and Simulation Savitribai Phule Pune University

²Department of Aerospace Engineering Indian Institute of Technology, Bombay

March 14, 2016

- Work done during Pre-Project:
 - Establish proficiency Python programming
 - Identify Potential Topics
 - Obtain (beginner's) understanding of the pySPH framework

- Work done during Pre-Project:
 - Establish proficiency Python programming
 - Identify Potential Topics
 - Obtain (beginner's) understanding of the pySPH framework
- Objectives and Tentative Roadmap

- Work done during Pre-Project:
 - Establish proficiency Python programming
 - Identify Potential Topics
 - Obtain (beginner's) understanding of the pySPH framework
- Objectives and Tentative Roadmap
 - Understand the Smoothed Particle Hydrodynamics (SPH) methodology
 - Understand implementation of the SPH method in pySPH

- Work done during Pre-Project:
 - Establish proficiency Python programming
 - Identify Potential Topics
 - Obtain (beginner's) understanding of the pySPH framework
- Objectives and Tentative Roadmap
 - Understand the Smoothed Particle Hydrodynamics (SPH) methodology
 - Understand implementation of the SPH method in pySPH
 - Understand the Discrete Element Method for modelling Rigid Body Interactions
 - Validate current Proof of Concept Rigid Body Collision Model

- Work done during Pre-Project:
 - Establish proficiency Python programming
 - Identify Potential Topics
 - Obtain (beginner's) understanding of the pySPH framework
- Objectives and Tentative Roadmap
 - Understand the Smoothed Particle Hydrodynamics (SPH) methodology
 - Understand implementation of the SPH method in pySPH
 - Understand the Discrete Element Method for modelling Rigid Body Interactions
 - Validate current Proof of Concept Rigid Body Collision Model
 - Understand mechanism of Rigid Body Fluid Coupling (currently done using WCSPH)
 - Validate current Proof of Concept Rigid Body-Fluid Coupled Model

- Work done during Pre-Project:
 - Establish proficiency Python programming
 - Identify Potential Topics
 - Obtain (beginner's) understanding of the pySPH framework
- Objectives and Tentative Roadmap
 - Understand the Smoothed Particle Hydrodynamics (SPH) methodology
 - Understand implementation of the SPH method in pySPH
 - Understand the Discrete Element Method for modelling Rigid Body Interactions
 - Validate current Proof of Concept Rigid Body Collision Model
 - Understand mechanism of Rigid Body Fluid Coupling (currently done using WCSPH)
 - Validate current Proof of Concept Rigid Body-Fluid Coupled Model
 - Implement physically consistent models

- Work done during Pre-Project:
 - Establish proficiency Python programming
 - Identify Potential Topics
 - Obtain (beginner's) understanding of the pySPH framework
- Objectives and Tentative Roadmap
 - Understand the Smoothed Particle Hydrodynamics (SPH) methodology
 - Understand implementation of the SPH method in pySPH
 - Understand the Discrete Element Method for modelling Rigid Body Interactions
 - Validate current Proof of Concept Rigid Body Collision Model
 - Understand mechanism of Rigid Body Fluid Coupling (currently done using WCSPH)
 - Validate current Proof of Concept Rigid Body-Fluid Coupled Model
 - Implement physically consistent models
 - Implement Solid-Fluid coupling using IISPH technique

• SPH is a numerical method developed for problems pertaining to Astrophysics.

- SPH is a numerical method developed for problems pertaining to Astrophysics.
- It is a Meshfree Particle Method where the domain discretization is performed as:
 - Spatial Discretization with Particle Representation : Domain representation with particles
 - Numerical Discretization with Particle Approximation : Operators and functions of the governing equations are approximated using the particles.

- SPH is a numerical method developed for problems pertaining to Astrophysics.
- It is a Meshfree Particle Method where the domain discretization is performed as:
 - Spatial Discretization with Particle Representation : Domain representation with particles
 - Numerical Discretization with Particle Approximation : Operators and functions of the governing equations are approximated using the particles.
- The SPH methodology uses the Lagrangian Formulation of the governing equations (i.e. all the governing equations are expressed in terms of the Substantial Derivative)

The SPH Method: Spatial Discretization

Figure: Discretization in Meshfree and Grid Based Methods

The SPH Method: Spatial Discretization

Figure: Discretization in Meshfree and Grid Based Methods

- Particle Distribution can be completely arbitrary
- No explicit interconnectivity between particles

• Consider a Scalar Field A(r,t),

$$A(\mathbf{r},t) = (A * \delta)(\mathbf{r},t)$$

• Consider a Scalar Field A(r,t),

$$A(\mathbf{r},t) = (A*\delta)(\mathbf{r},t) = \int_{\Omega} A(\mathbf{r'},t)\delta(\mathbf{r}-\mathbf{r'})d^3\mathbf{r'}$$

Consider a Scalar Field A(r,t),

$$A(\mathbf{r},t) = (A*\delta)(\mathbf{r},t) = \int_{\Omega} A(\mathbf{r'},t)\delta(\mathbf{r}-\mathbf{r'})d^3\mathbf{r'}$$

• This δ is approached through an Interpolation Kernel $w_h(\mathbf{r} - \mathbf{r'})$.

Consider a Scalar Field A(r,t),

$$A(\mathbf{r},t) = (A*\delta)(\mathbf{r},t) = \int_{\Omega} A(\mathbf{r'},t)\delta(\mathbf{r}-\mathbf{r'})d^3\mathbf{r'}$$

- This δ is approached through an Interpolation Kernel $w_h(\mathbf{r} \mathbf{r'})$.
- Kernel/Continuous Approximation of A is,

$$A(\mathbf{r},t) \approx [A]_c(\mathbf{r},t) = \int_{\Omega} A(\mathbf{r'},t) w_h(\mathbf{r} - \mathbf{r'}) d^3 \mathbf{r'}$$

Consider a Scalar Field A(r,t),

$$A(\mathbf{r},t) = (A*\delta)(\mathbf{r},t) = \int_{\Omega} A(\mathbf{r'},t)\delta(\mathbf{r}-\mathbf{r'})d^3\mathbf{r'}$$

- This δ is approached through an Interpolation Kernel $w_h(\mathbf{r} \mathbf{r'})$.
- Kernel/Continuous Approximation of A is,

$$A(\mathbf{r},t) \approx [A]_c(\mathbf{r},t) = \int_{\Omega} A(\mathbf{r'},t) w_h(\mathbf{r-r'}) d^3\mathbf{r'}$$

- The Kernel is a Real function and has non-zero values on a compact/infinite sized support
- The support depends on the **Smoothing Length**, h.

- Kernel Properties (for $[A]_c$ to be First Order Accurate)
 - It's integral over the domain should be 1
 - It's first moment should be 0;

- Kernel Properties (for $[A]_c$ to be First Order Accurate)
 - It's integral over the domain should be 1
 - It's first moment should be 0; satisfied by taking a symmetrical Kernel

- Kernel Properties (for $[A]_c$ to be First Order Accurate)
 - It's integral over the domain should be 1
 - It's first moment should be 0; satisfied by taking a symmetrical Kernel
- Particle Approximation of A: $[A]_c$ approximated by a Riemann Sum

$$[A]_c(\mathbf{r},t) = \int_{\Omega} A(\mathbf{r'},t) w_h(\mathbf{r} - \mathbf{r'}) d^3 \mathbf{r'}$$

 $\approx \sum_b A(\mathbf{r_b},t) w_h(|\mathbf{r} - \mathbf{r_b}|) V_b$

- Kernel Properties (for $[A]_c$ to be First Order Accurate)
 - It's integral over the domain should be 1
 - It's first moment should be 0; satisfied by taking a symmetrical Kernel
- Particle Approximation of A: $[A]_c$ approximated by a Riemann Sum

$$[A]_c(\mathbf{r},t) = \int_{\Omega} A(\mathbf{r'},t) w_h(\mathbf{r} - \mathbf{r'}) d^3 \mathbf{r'}$$

$$\approx \sum_b A(\mathbf{r_b},t) \ w_h(|\mathbf{r} - \mathbf{r_b}|) \ V_b = [A]_d$$

- Kernel Properties (for $[A]_c$ to be First Order Accurate)
 - It's integral over the domain should be 1
 - It's first moment should be 0; satisfied by taking a symmetrical Kernel
- Particle Approximation of A: $[A]_c$ approximated by a Riemann Sum

$$[A]_{c}(\mathbf{r},t) = \int_{\Omega} A(\mathbf{r'},t) w_{h}(\mathbf{r} - \mathbf{r'}) d^{3}\mathbf{r'}$$

$$\approx \sum_{b} A(\mathbf{r_{b}},t) w_{h}(|\mathbf{r} - \mathbf{r_{b}}|) V_{b} = [A]_{d}$$

$$\therefore [A]_{d} = \sum_{b} A(\mathbf{r_{b}},t) w_{h}(|\mathbf{r_{ab}}|) V_{b},$$

$$\forall a \in \Omega, \mathbf{r_{ab}} = \mathbf{r_{a}} - \mathbf{r_{b}}$$

• The properties of each particle 'a' depends on the 'b' particles in its neighbourhood defined by the Smoothing Length 'h'

- The properties of each particle 'a' depends on the 'b' particles in its neighbourhood defined by the Smoothing Length 'h'
- A Nearest Neighbour Particle Search (NNPS) algorithm takes care of which particles **'b'** influence the properties of **'a'**

- The properties of each particle 'a' depends on the 'b' particles in its neighbourhood defined by the Smoothing Length 'h'
- A Nearest Neighbour Particle Search (NNPS) algorithm takes care of which particles **'b'** influence the properties of **'a'**
 - pySPH implements a Linked List NNPS algorithm by default

- The properties of each particle 'a' depends on the 'b' particles in its neighbourhood defined by the Smoothing Length 'h'
- A Nearest Neighbour Particle Search (NNPS) algorithm takes care of which particles **'b'** influence the properties of **'a'**
 - pySPH implements a Linked List NNPS algorithm by default
- The Finite Element Method and SPH
 - Both Methods represent the field variables as linear combinations of basis functions

- The properties of each particle 'a' depends on the 'b' particles in its neighbourhood defined by the Smoothing Length 'h'
- A Nearest Neighbour Particle Search (NNPS) algorithm takes care of which particles **'b'** influence the properties of **'a'**
 - pySPH implements a Linked List NNPS algorithm by default
- The Finite Element Method and SPH
 - Both Methods represent the field variables as linear combinations of basis functions
 - FEM constructs these basis functions from the grid and SPH constructs them based on the kernel

- The properties of each particle 'a' depends on the 'b' particles in its neighbourhood defined by the Smoothing Length 'h'
- A Nearest Neighbour Particle Search (NNPS) algorithm takes care of which particles **'b'** influence the properties of **'a'**
 - pySPH implements a Linked List NNPS algorithm by default
- The Finite Element Method and SPH
 - Both Methods represent the field variables as linear combinations of basis functions
 - FEM constructs these basis functions from the grid and SPH constructs them based on the kernel
 - The FEM basis functions are stationary, while those of SPH move along with the particles.
 - i.e. if 'B' are the SPH Basis functions then $\frac{D\mathbf{B}}{Dt}=0$

The Discrete Element Method

• It is a numerical scheme which allows finite rotations and displacements of discrete bodies

The Discrete Element Method

- It is a numerical scheme which allows finite rotations and displacements of discrete bodies
- The bodies interact with their nearest neighbours through Contact Laws; the interactions create new or destroy earlier contacts.

The Discrete Element Method

- It is a numerical scheme which allows finite rotations and displacements of discrete bodies
- The bodies interact with their nearest neighbours through Contact Laws; the interactions create new or destroy earlier contacts.
- Soft Contact Method
 - The bodies are allowed to "overlap"
 - The amount and rate of the overlap gives incremental contact forces
 - These contact forces are applied to Newton's laws to obtain new out of balance forces and moments
 - From the forces and moments, the velocities and displacements are evaluated

DEM and pySPH

- DEM terminology:
 - Contact Search: The procedure of keeping track of the bodies that are in contact with a given body in a time-step
 - Boxing: Time saving mechanism wherein the working area is divided into squares/cubes (for 2D or 3D)

DEM and pySPH

- DEM terminology:
 - Contact Search: The procedure of keeping track of the bodies that are in contact with a given body in a time-step
 - Boxing: Time saving mechanism wherein the working area is divided into squares/cubes (for 2D or 3D)
- Calculation of Contact Force
 - Ascertain if contact is present
 - Calculate the amount of overlap
 - Use the overlap in the contact model and compute the contact force

- DEM terminology:
 - Contact Search: The procedure of keeping track of the bodies that are in contact with a given body in a time-step
 - Boxing: Time saving mechanism wherein the working area is divided into squares/cubes (for 2D or 3D)
- Calculation of Contact Force
 - Ascertain if contact is present
 - Calculate the amount of overlap
 - Use the overlap in the contact model and compute the contact force
- Since the bodies are represented as collections of particles in pySPH, explicit Boxing and Contact Search is not needed
- the NNPS keeps track of all those elements which are in contact and the smoothing length effectively computes the amount of overlap

RigidBodyCollision Model

• Models the contacts as a Spring and Dashpot system

RigidBodyCollision Model

- Models the contacts as a Spring and Dashpot system
- Current PoC model implementation Repulsive Force, $f_{i,s} = -k(d |\mathbf{r}_{ij}|) \frac{\mathbf{r}_{ij}}{|\mathbf{r}_{ij}|}$ Damping Force, $f_{i,d} = \eta \ \mathbf{v}_{ij}$ Shear Force, $f_{i,t} = k_t \ \mathbf{v}_{ij,t}$ where, k = Spring Coefficient, $k_t = \text{Coefficient of Shear}$, $\eta = \text{Damping Coefficient}$, d = diameter of elements comprising the body $\mathbf{r}_{ij} = \mathbf{r}_i \mathbf{r}_j$,

 $\mathbf{v_{ii}} = \mathbf{v}_i - \mathbf{v}_i$

Relative Tangential Velocity,

$$\mathbf{v}_{\mathbf{ij},t} = \mathbf{v}_{\mathbf{ij}} - \left(\mathbf{v}_{\mathbf{ij}} \cdot \frac{\mathbf{r}_{\mathbf{ij}}}{|\mathbf{r}_{\mathbf{ij}}|}\right) \frac{\mathbf{r}_{\mathbf{ij}}}{|\mathbf{r}_{\mathbf{ij}}|}$$

RigidBodyCollision Model

Total Contact Force,

$$F_c = \sum_{i \in RigidBody} (f_{i,s} + f_{i,d} + f_{i,t})$$

• Total Torque due to contact,

$$T_C = \sum_{i \in RigidBody} [r_i \times (f_{i,s} + f_{i,d} + f_{i,t})]$$

Newton's Equations for Rigid Body Dynamics

Rigid Body "I" = {particles : $r_{ij} = 0, \forall t, i, j \in I$ }

Newton's Equations for Rigid Body Dynamics

Rigid Body "I" = {particles :
$$r_{ij} = 0, \ \forall t, i, j \in I$$
}
$$M_{I} \frac{d\mathbf{V_{I}}}{dt} = \sum_{k \in I} m_{k} \frac{d\mathbf{v_{k}}}{dt}$$

$$I_{I} \frac{d\Omega_{I}}{dt} = \sum_{k \in I} m_{k} (\mathbf{r_{k}} - \mathbf{R_{I}}) \times \frac{d\mathbf{v_{k}}}{dt}$$

where,

 M_I , $\mathbf{V_I}$, $\mathbf{R_I}$ = Mass, Velocity and Center of Gravity of "I", I_I , Ω_I =Inertial Tensor(MoI), Angular Velocity of "I" m_k , $\mathbf{v_k}$, $\mathbf{r_k}$ = Mass, Velocity and Position of k^{th} particle

 Test Cases: Zhang et.al¹ performed experimental studies to validate a coupled Finite Volume Particle (FVP) DEM to simulate interactions between fluids and solid bodies

Figure: Experimental Setup

- Tank Dimensions: I = h = 26 cm, w = 10 cm
- Cylinder Properties: $I=9.9 {\rm cm}$, $d=1 {\rm cm}$, $\rho=2.7 \times 10^3 \frac{{\rm kg}}{m^3}$

¹Zhang et.al, Simulation of solid-fluid mixture flow using moving particle methods, J. Comput.Phys. 228 (2009) 25522565, http://dx.doi.org/10.1016/j.jcp.2008.12.005

Validation of RigidBodyCollision model: Expected Profiles

Figure: Evolution of the system at various times (6 Cylinder stack)

Validation of RigidBodyCollision model: Expected Profiles

Figure: 6 Cylinder System Center of Mass

• Tweaking Standard Examples

- Tweaking Standard Examples
- Diving-in example: Simple Pendulum

- Tweaking Standard Examples
- Diving-in example: Simple Pendulum
- Case Setup
 - Setup is done in pure Python, using Numpy, and PySPH libraries
 - Particles are created using the "collapsing_cylinder_2d.py" program
 - Simulation is run using the "rigid.py" program

- Tweaking Standard Examples
- Diving-in example: Simple Pendulum
- Case Setup
 - Setup is done in pure Python, using Numpy, and PySPH libraries
 - Particles are created using the "collapsing_cylinder_2d.py" program
 - Simulation is run using the "rigid.py" program
- Current Model results (Best outcome)
 - k=8, d=2.5, η =0.01, k_t =0.1

- Tweaking Standard Examples
- Diving-in example: Simple Pendulum
- Case Setup
 - Setup is done in pure Python, using Numpy, and PySPH libraries
 - Particles are created using the "collapsing_cylinder_2d.py" program
 - Simulation is run using the "rigid.py" program
- Current Model results (Best outcome)
 - k=8, d=2.5, η =0.01, k_t =0.1
- Conclusion: The current PoC model is not physically consistent

Making RogidBodyCollision model Physically Consistent

 Current Model implements a simple Linear Spring and Dashpot Collision Model

Making RogidBodyCollision model Physically Consistent

- Current Model implements a simple Linear Spring and Dashpot Collision Model
- Canelas,et.al.²implemented a Modified, Non-Linear Hertzian model in their recently published work (Feb 2016)

²R.B.Canelas, et.al., SPH-DCDEM model for Arbitrary geometries in free surface solid-fluid flows, Computer Physics Communications (2016), http://dx.doi.org/10.1016/j.cpc.2016.01.006

PoA for Remaining Semester

- Implement the Non-Linear Hertzian model in pySPH
- Validate the Model

PoA for Remaining Semester

- Implement the Non-Linear Hertzian model in pySPH
- Validate the Model
- Perform Validation Study for the Solid-Fluid Coupled Model

PoA for Remaining Semester

- Implement the Non-Linear Hertzian model in pySPH
- Validate the Model
- Perform Validation Study for the Solid-Fluid Coupled Model
- Perform Validation Study for the Solid-Fluid Coupled Model with Fluid equations solved with the IISPH formulation

Thank you!

Questions?