# Laplacian Coordinates based Seeded Image Segmentation

Gourab Ghosh Roy, Raabid Hussain and Mohammad Koujan

January 11, 2016

#### Outline

- Introduction
- Algorithm
- Implementation
- Results
- Conclusion

#### Seeded Segmentation

- Segmentation
  - Dividing an image into meaningful segments
- Seeded Segmentation
  - Seeds (labels) for some pixels known
- Existing methods mostly involve heavy computation.

# Laplacian Coordinates for Seeded Segmentation

- Proposed by Casaca et al.
- Minimization of quadratic Energy functional
- Similar pixels grouped together, region boundaries are highlighted

#### Algorithm

Pixel weights defined as

$$w_{ij} = e^{(-\beta \|(I_i - I_j)\|_{\infty}^2 / \sigma)}$$
 (1)

Graph Laplacian L

$$L = D - W \tag{2}$$

Energy functional to be minimized

$$E(x) = x^{t}(I_{s} + L^{2})x - 2x^{t}b + c$$
(3)

Solution to the linear system

$$(I_s + L^2)x = b (4)$$



5/37

#### **Properties**

- ullet  $I_s+L^2$  is symmetric, positive definite and sparse
- Unique solution guaranteed
- Solving linear system of equations easy for implementation

#### Implementation

- ullet C++ Programming Language in Qt
- Use of OpenCV and Eigen Libraries

### Use of Eigen Library

- OpenCV Mat objects did not work
- SparseMatrix class in Eigen Library
- Use of triplets
- SimplicialLDLT linear solver

### Object Oriented Programming

- Initial procedural way optimized through use of OOP. Make the code modular and reusable.
- Class SeededImgSeg is defined.
- Private data members of SeededImgSeg class are parameters used in solving the linear equation system. Getter and setter methods are defined.

### **Object Oriented Programming**

- SeededImgSeg class has methods for -
  - Computing seed independent variables
  - Computing seed dependent variables
  - Solve linear system of equations for segmentation
- It also has constructors and destructors. Assignment operator overloaded.

## **Object Oriented Programming**

#### **Benefits**

- Code modular and reusable.
- Implementing Multi Region Segmentation was just modifying some methods.
- Linking with GUI was easier.









#### Use of cmake

- Build Portability
- Link Dependencies
- Unit Test

#### Results

- Two-region Segmentation
- Multi-region Segmentation

# Comparison

- A subset of "Grabcut" Dataset from Microsoft Cambridge.
- Compared with Random Walker method proposed by Grady.



From left to right : Original Image, Given Seed Map, Ground Truth, RW Output, LC Output



From left to right: Original Image, Given Seed Map, Ground Truth, RW Output, LC Output



From left to right: Original Image, Given Seed Map, Ground Truth, RW Output, LC Output



From left to right: Original Image, Given Seed Map, Ground Truth, RW Output, LC Output

• Rand Index (RI) values are compared.

RI = (Number of pixels in output with same label as ground truth image) / (Total Number of pixels)

• Higher RI values are better.

| Image    | RI Value for RW | RI Value for LC |
|----------|-----------------|-----------------|
| Elefant  | 0.9565          | 0.9589          |
| Memorial | 0.9525          | 0.9324          |
| Person2  | 0.8848          | 0.8900          |
| Person7  | 0.9459          | 0.9817          |
| Person8  | 0.9565          | 0.9589          |
| Music    | 0.9830          | 0.9859          |
| Person3  | 0.9436          | 0.9527          |
| Average  | 0.9462          | 0.9516          |



Comparison of RI Values for LC and RW methods

#### Effect of Parameters

- Size of pixel neighborhood
- ullet  $\sigma$  in pixelwise weight calculation
- ullet  $\beta$  in pixelwise weight calculation

#### Effect of $\beta$



From left to right - Ground Truth, LC Segmentation with  $\beta=0.0025$  (RI = 0.9817),  $\beta=0.00025$  (RI = 0.9386),  $\beta=0.025$  (RI = 0.9230)

#### **Execution Time**





Execution Time versus number of image pixels



### Multi-Region Segmentation

- Consider all seeds as foregrounds
- Best weighted result
- Repetion of code
- Minimizing

$$(I_s + L^2)x = b (5)$$



#### Multi-Region Execution Time



Bar chart showing Execution Time changes with Number of Segmentations

#### Results



# Project Management

- Github
- Microsoft Project

#### Timeline

| Task Name                       | Start Date | End Date   |
|---------------------------------|------------|------------|
| Reading the research paper      | 27/09/2015 | 08/10/2015 |
| Writing first version           | 10/10/2015 | 30/10/2015 |
| Modifications and Optimizations | 01/11/2015 | 12/11/2015 |
| Testing                         | 15/11/2015 | 18/11/2015 |
| GUI Implementation              | 20/11/2015 | 03/12/2015 |
| OOP implementation              | 22/11/2015 | 30/11/2015 |
| GUI Integration                 | 01/12/2015 | 03/12/2015 |
| Multi-region Segmentation       | 05/12/2015 | 14/12/2015 |
| Further Optimization            | 15/12/2015 | 21/12/2015 |
| Testing and Comparisons         | 28/12/2015 | 30/12/2015 |
| CMake Test                      | 06/01/2015 | 08/01/2016 |
| Writing the Report              | 15/12/2015 | 08/01/2016 |
| Writing the Presentation        | 08/01/2016 | 10/01/2015 |

Table : Duration of Project tasks  $\bigcirc$ 

#### Conclusions

- Algorithm based on Linear Algebra
- Implementation of the technique
- Optimization of code
- CMake and Unit test
- Comparison with state of the art methods
- Multi-region Segmentaion

#### References

- Casaca, W., Nonato, L. G., and Taubin, G. (2014, June).
   Laplacian Coordinates for Seeded Image Segmentation. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on (pp. 384-391). IEEE.
- L. Grady. Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):1768-1783, 2006.
- R. Unnikrishnan, C. Pantofaru, and M. Hebert. Toward objective evaluation of image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):929-944, 2007
- V. Jankovic. Quadratic functions in several variables. The Teaching of Mathematics, VIII:53-60, 2005

#### References

- http://opencv.org/
- http:
  //eigen.tuxfamily.org/index.php?title=Main\_Page
- http://eigen.tuxfamily.org/dox/group\_ \_TutorialSparse.html
- http://eigen.tuxfamily.org/dox/group\_ \_TutorialSparse.html
- http://research.microsoft.com/en-us/um/cambridge/ projects/visionimagevideoediting/segmentation/ grabcut.htm
- http://scikit-image.org/docs/0.10.x/auto\_ examples/plot\_random\_walker\_segmentation.html

# Thank You