

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2022

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 14 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit NEGE vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae oop, bv. tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Toon ALLE formules en substitusies in ALLE berekeninge.
- 9. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 10. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 11. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 12. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Elke vraag het slegs EEN korrekte antwoord. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, bv. 1.11 E.

- 1.1 Watter EEN van die volgende terme beskryf koolwaterstowwe wat slegs enkelbindings bevat?
 - A Isomere
 - B Versadig
 - C Onversadig
 - D Homoloë reeks (2)
- 1.2 Watter EEN van die volgende kombinasies dui die STERKSTE intermolekulêre kragte korrek aan wat onderskeidelik in etanoësuur en metielpropanoaat gevind word?

	ETANOËSUUR	METIELPROPANOAAT
Α	Waterstofbindings	Waterstofbindings
В	Dipool-dipoolkragte	London-kragte
С	Waterstofbindings	London-kragte
D	Waterstofbindings	Dipool-dipoolkragte

(2)

1.3 'n Proefbuis bevat 'n vloeibare koolwaterstof.

Wanneer broomwater (Br₂) by die proefbuis gevoeg word, ontkleur die mengsel ONMIDDELLIK.

Watter EEN van die volgende kombinasies identifiseer die VERBINDING en die TIPE REAKSIE korrek wat in die proefbuis plaasvind?

	VERBINDING	TIPE REAKSIE
Α	Heksaan	Addisie
В	Heksaan	Substitusie
С	Heks-2-een	Addisie
D	Heks-2-een	Substitusie

(2)

Kopiereg voorbehou

- 1.4 Watter EEN van die volgende stellings is die KORREKTE definisie vir die tempo van 'n reaksie?
 - A Die tyd wat dit neem vir die reaksie om plaas te vind
 - B Die spoed waarteen die reaksie plaasvind
 - C Die tempo van verandering in konsentrasie van die produkte of reaktanse
 - D Die tempo van verandering in konsentrasie van die produkte of reaktanse per eenheidstyd
- 1.5 Beskou die gebalanseerde vergelyking vir die reaksie tussen magnesiumpoeier en 'n OORMAAT verdunde soutsuur, HCl(aq):

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

Watter EEN van die volgende sal NIE die tempo van hierdie reaksie verhoog NIE?

- A Verhoog die volume van HCl(aq)
- B Verhoog die temperatuur van HCl(aq)
- C Verhoog die konsentrasie van HCl(aq)
- D Voeg meer magnesiumpoeier by

1.6 Twee identiese verseëlde gassilinders, **S** en **R**, bevat aanvanklik gasse soos hieronder getoon.

Ewewig word in beide gassilinders by 500 °C volgens die volgende gebalanseerde vergelyking bereik:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

Watter EEN van die volgende stellings is WAAR by ewewig?

- A **S** sal 1 mol $I_2(g)$ bevat.
- B **R** sal 'n groter hoeveelheid $I_2(g)$ bevat as **S**.
- C R en S sal dieselfde hoeveelheid HI(g) bevat.
- D **S** sal 'n groter hoeveelheid HI(g) bevat as **R**.

Kopiereg voorbehou

(2)

(2)

(2)

1.7	Vatter EEN van die volgende soute, wanneer in water opgelos, sal NIE d	ie
	pH van die water verander NIE?	

A Na₂CO₃

B (COO)₂Na₂

C NH₄Cl

D NaCl (2)

1.8 'n Verdunde suur word teen 'n kaliumhidroksiedoplossing, KOH(aq), getitreer.

By die ekwivalensiepunt is die pH 7.

Watter EEN van die volgende kombinasies identifiseer die suur en die GESKIKSTE indikator vir hierdie titrasie korrek?

	SUUR	INDIKATOR
Α	(COOH) ₂ (aq)	Fenolftaleïen
В	(COOH) ₂ (aq)	Broomtimolblou
С	HCl(aq)	Fenolftaleïen
D	HCl(aq)	Broomtimolblou

(2)

1.9 Watter EEN van die volgende stellings is WAAR vir 'n oksideermiddel?

A Dit neem elektrone op.

B Dit veroorsaak dat 'n ander spesie in die reaksie gereduseer word.

C Die oksidasiegetal daarvan verander nie tydens 'n chemiese reaksie nie.

D Die oksidasiegetal daarvan neem tydens 'n chemiese reaksie toe. (2)

1.10 Watter EEN van die volgende metale sal Cd²⁺(aq) tot Cd(s) reduseer, maar sal NIE Mn²⁺(aq) tot Mn(s) reduseer NIE?

A Zn

B Ag

C Ni

D Mg (2) **[201**

Blaai om asseblief

VRAAG 2 (Begin op 'n nuwe bladsy.)

A tot F in die tabel hieronder verteenwoordig ses organiese verbindings.

A	CH ₃ CH ₃ —C—CH—Br CH ₃ —CH ₂ CH ₃ —CH ₂ CH ₃	В	H H—C—H H CH ₃ —C—C≡C—C—H CH ₃ H
С	O CH ₃ —CH ₂ —CH ₂ —C H	D	O
E	CH_3 — CH_2 — CH_2 — C O	F	CH ₃ —CH ₂ —CH ₂ —CH ₂ OH

- 2.1 Skryf neer die:
 - 2.1.1 Letters wat TWEE organiese verbindings verteenwoordig wat isomere van mekaar is (1)
 - 2.1.2 Tipe isomere (KETTING-, FUNKSIONELE of POSISIONELE) wat in VRAAG 2.1.1 geïdentifiseer is (1)
 - 2.1.3 ALGEMENE FORMULE van die homoloë reeks waaraan verbinding **B** behoort (1)
 - 2.1.4 NAAM van die funksionele groep van verbinding **F** (1)
- 2.2 Skryf neer die IUPAC-naam van:
 - 2.2.1 Verbinding **A** (3)
 - 2.2.2 Verbinding **B** (2)
 - 2.2.3 Verbinding \mathbf{C} (2)
- 2.3 Verbinding **F** reageer met 'n karboksielsuur om verbinding **S** in die teenwoordigheid van 'n sterk suur te vorm.
 - 2.3.1 Skryf die tipe reaksie neer wat plaasvind. (1)

Verbinding $\bf S$ se EMPIRIESE FORMULE is C_3H_6O en die molekulêre massa is 116 g·mol⁻¹.

2.3.2 Skryf die MOLEKULÊRE FORMULE van die karboksielsuur neer.

(3) **[15]**

(1) **[14]**

VRAAG 3 (Begin op 'n nuwe bladsy.)

3.1 Die smeltpunte van 'n paar organiese verbindings word in die tabel hieronder gegee.

VERBINDING	IUPAC-NAAM	SMELTPUNTE (°C)		
Α	Propanoon	-95,4		
В	Butanoon	-86,9		
С	Pentaan-2-oon	-77,8		
D	3-metielbutanoon	-92		

3.1.1 Aan watter homoloë reeks behoort die verbindings hierbo? (1)

Die smeltpunte van verbindings A, B en C word vergelyk.

3.1.2 Skryf die gekontroleerde veranderlike vir hierdie vergelyking neer. (1)

Die smeltpunte van verbindings **C** en **D** word vergelyk.

- 3.1.3 Verduidelik die verskil in die smeltpunte van hierdie twee verbindings volledig. (4)
- 3.2 Die tabel hieronder toon die resultate wat verkry is uit 'n eksperiment om die dampdruk van verskillende REGUITKETTING- primêre alkohole by 300 K te bepaal.

ALKOHOL	DAMPDRUK (kPa)
CH₃OH	16,8
C ₂ H ₅ OH	7,88
C₃H ₇ OH	2,8
C₄H ₉ OH	0,91
C₅H₁₁OH	0,88
C ₆ H ₁₃ OH	0,124

3.2.1 Definieer die term *dampdruk*. (2)

3.2.2 Skryf 'n gepaste gevolgtrekking vir hierdie ondersoek neer. (2)

3.2.3 Skryf die IUPAC-naam van die alkohol met die HOOGSTE kookpunt neer. (3)

3.2.4 Die eksperiment word nou by 320 K herhaal.

Sal die dampdruk van elke verbinding TOENEEM, AFNEEM of DIESELFDE BLY?

(1) **[15]**

VRAAG 4 (Begin op 'n nuwe bladsy.)

Die vloeidiagram hieronder toon hoe verbinding **A** as 'n aanvangsreaktans gebruik kan word om twee verskillende verbindings te berei.

I, II en III verteenwoordig drie organiese reaksies.

- 4.1 Is verbinding **A** 'n PRIMÊRE, SEKONDÊRE of TERSIÊRE haloalkaan? Gee 'n rede vir die antwoord. (2)
- 4.2 Beskou reaksie I.
 - 4.2.1 Behalwe hitte, skryf die ander reaksietoestand neer wat benodig word. (1)
 - 4.2.2 Skryf die tipe reaksie neer wat plaasvind. (1)
 - 4.2.3 Gebruik STRUKTUURFORMULES vir die organiese verbindings en skryf die gebalanseerde vergelyking vir die reaksie neer. (5)
- 4.3 Beskou reaksie II.

Skryf neer die:

- 4.3.1 STRUKTUURFORMULE van verbinding **C** (2)
- 4.3.2 NAAM of FORMULE van die anorganiese reagens wat benodig word (1)
- 4.3.3 Tipe addisiereaksie wat plaasvind (1)
- 4.4 Beskou reaksie III.
 - 4.4.1 Skryf die tipe reaksie neer wat plaasvind. (1)
 - 4.4.2 Behalwe hitte, skryf die ander reaksietoestand neer wat benodig word.

(4)

(2)

VRAAG 5 (Begin op 'n nuwe bladsy.)

Drie eksperimente, **A**, **B** en **C**, word uitgevoer om van die faktore te ondersoek wat die tempo van ontbinding van waterstofperoksied, $H_2O_2(\ell)$, beïnvloed.

Die gebalanseerde vergelyking vir die reaksie is:

$$2H_2O_2(\ell) \rightarrow 2H_2O(\ell) + O_2(g)$$

Identiese monsters van waterstofperoksied word in elke eksperiment gebruik.

Die toestande wat in elke eksperiment gebruik word, word in die tabel hieronder opgesom.

EKSPERIMENT	TEMPERATUUR (°C)	
Α	25	Sonder katalisator
В	25	Met katalisator
С	35	Sonder katalisator

- 5.1 In watter eksperiment, **A** of **B**, is die reaksietempo die hoogste? Gebruik die botsingsteorie om die antwoord te verduidelik.
- 5.2 Die Maxwell-Boltzmann-verspreidingskurwes, **X** en **Y**, vir twee van die bogenoemde eksperimente word hieronder getoon.

Identifiseer die kurwe (X of Y) wat eksperiment C verteenwoordig.

Kopiereg voorbehou

(2)

(4)

5.3 Die volume suurstofgas, $O_2(g)$, wat in eksperiment **B** gedurende die eerste 3,6 s geproduseer word, word in 'n gasspuit versamel, soos hieronder getoon.

5.3.1 Skryf die volume $O_2(g)$ neer wat in die gasspuit versamel is.

Die gebalanseerde vergelyking vir die reaksie is:

$$2H_2O_2(\ell) \ \to \ 2H_2O(\ell) \ + \ O_2(g)$$

- 5.3.2 Bereken die massa water, $H_2O(\ell)$, wat gedurende die eerste 3,6 s gevorm is. Neem die molêre gasvolume as 24 000 cm³·mol⁻¹ by 25 °C.
- 5.4 Die grafiek hieronder, NIE volgens skaal geteken NIE, word verkry vir die massa suurstofgas wat oor 'n periode van tyd in eksperiment **A** geproduseer is.

Gebruik die inligting in die grafiek om die volgende vrae te beantwoord:

- 5.4.1 Skryf die tempo van produksie van suurstofgas vir die interval 30 s tot 36 s neer. (1)
- 5.4.2 Sal die tempo van die reaksie in die interval 3 s tot 9 s GROTER AS, KLEINER AS of GELYK AAN die tempo van die reaksie in die interval 9 s tot 20 s wees? (1)
- 5.4.3 Die gemiddelde tempo van ontbinding van waterstofperoksied is $2.1 \times 10^{-3} \text{ mol} \cdot \text{s}^{-1}$.

Bereken die waarde van tyd t op die grafiek.

(5) **[19]**

VRAAG 6 (Begin op 'n nuwe bladsy.)

Koolstof, C(s), reageer met swawel, S(g), volgens die volgende gebalanseerde vergelyking:

$$C(s) + 2S(g) \rightleftharpoons CS_2(g)$$
 $\Delta H > 0$

Die sisteem bereik ewewig by temperatuur T in 'n verseëlde 2 dm³-houer.

Die K_c-waarde is 9,4 by temperatuur T.

By ewewig is 1 mol koolstofdisulfied, CS₂(g), in die houer teenwoordig.

Die volume van die houer word nou VERDUBBEL by temperatuur T. Na 'n rukkie word 'n NUWE ewewig ingestel.

- 6.3 Hoe sal die hoeveelheid S(g) verander soos wat hierdie nuwe ewewig ingestel word? Kies uit TOENEEM, AFNEEM of BLY DIESELFDE. (1)
- 6.4 Verduidelik die antwoord op VRAAG 6.3 in terme van Le Chatelier se beginsel. (3)
- Indien die konsentrasie van $CS_2(g)$ met **x** mol·dm⁻³ VERANDER, skryf 'n uitdrukking neer vir die ewewigskonstante, K_c , in terme van **x**.

Toon AL jou bewerkings. GEEN vereenvoudiging of oplos vir **x** word verwag NIE. (5)

6.6 Die reaksietempo-tydgrafiek hieronder verteenwoordig verdere veranderinge wat aan die ewewigsmengsel gemaak is. Die volume van die houer word konstant gehou.

- 6.6.1 Wat stel die parallelle lyne tussen t_A en t_B voor? (1)
- 6.6.2 Watter verandering is by t_B aan die ewewigsmengsel gemaak? (1)
- 6.6.3 Gee 'n rede vir die skielike verandering in die reaksietempo by t_c . (1)
- 6.6.4 Verduidelik die antwoord op VRAAG 6.6.3 volledig. (3) [21]

Kopiereg voorbehou

VRAAG 7 (Begin op 'n nuwe bladsy.)

7.1 Etanoësuur is 'n swak suur wat volgens die volgende gebalanseerde vergelyking met water reageer:

$$CH_3COOH(aq) + H_2O(\ell) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$$

- 7.1.1 Definieer 'n *suur* in terme van die Lowry-Brønsted-teorie. (2)
- 7.1.2 Gee 'n rede waarom etanoësuur as 'n SWAK suur geklassifiseer word. (1)
- 7.1.3 Skryf die formule van TWEE basisse in die vergelyking hierbo neer. (2)
- 7.2 'n Fles bevat 300 cm³ verdunde natriumhidroksied, NaOH(aq), van konsentrasie 0,167 mol·dm⁻³.
 - 7.2.1 Bereken die aantal mol van natriumhidroksied in die fles. (3)

Etanoësuur van volume 500 cm³ en van onbekende konsentrasie, **X**, word by hierdie fles gevoeg om 'n oplossing van volume 800 cm³ te gee.

Daar word gevind dat die pH van die mengsel 11,4 is.

Die gebalanseerde vergelyking vir die reaksie is:

NaOH(aq) + CH₃COOH(aq)
$$\rightarrow$$
 CH₃COONa(aq) + H₂O(ℓ)

Bereken die:

- 7.2.2 Konsentrasie van die OH⁻(aq) in die mengsel (4)
- 7.2.3 Aanvanklike konsentrasie, **X**, van die etanoësuur-oplossing (6) [18]

VRAAG 8 (Begin op 'n nuwe bladsy.)

'n Stukkie sink (Zn) word in 'n proefbuis met 'n aangesuurde permanganaatoplossing, MnO₄ (aq), geplaas. Na 'n sekere tyd word gevind dat daar 'n redoksreaksie plaasgevind het.

Gebruik die Tabel van Standaard-reduksiepotensiale om die volgende vrae te beantwoord:

- 8.1.1 Skryf die NAAM of FORMULE van die reduseermiddel neer. (1)
- 8.1.2 Verwys na die relatiewe sterktes van die OKSIDEERMIDDELS om te verduidelik waarom 'n redoksreaksie plaasgevind het. (3)
- 8.2 'n Standaard elektrochemiese sel word opgestel soos hieronder getoon.

- 8.2.1 Skryf die funksie van komponent **Y** neer. (1)
- 8.2.2 In watter rigting sal elektrone in die eksterne stroombaan vloei?

 Kies uit 'Ni tot Mn' OF 'Mn tot Ni'. (2)
- 8.2.3 Bereken die aanvanklike emk van hierdie sel. (4)
- 8.2.4 Skryf die gebalanseerde vergelyking neer vir die netto selreaksie wat plaasvind. (3)
- 8.2.5 Die konsentrasie van Ni²⁺(aq) word nou verhoog.
 - Sal die lesing op die voltmeter TOENEEM, AFNEEM of DIESELFDE BLY? (1)

 [15]

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die diagram hieronder verteenwoordig 'n vereenvoudigde sel wat gebruik word vir die elektrolise van GEKONSENTREERDE chroom(III)chloried, $CrC\ell_3(aq)$. Elektrodes **R** en **T** is van koolstof gemaak.

Die netto selreaksie is: $2CrCl_3(aq) \rightarrow 2Cr(s) + 3Cl_2(g)$

- 9.1 Definieer die term *elektrolise*.
- 9.2 Die grafiek hieronder, NIE volgens skaal geteken NIE, verteenwoordig die veranderinge in die massa van elektrode **T** gedurende elektrolise.

9.2.1 Skryf die halfreaksie neer wat by elektrode **T** plaasvind.

'n Stroom van 2,5 A vloei vir 10 ure deur die sel.

Bereken die:

9.2.2 Totale lading wat gedurende hierdie tyd deur die sel vloei

9.2.3 Waarde van **X** soos op die grafiek getoon (6)

TOTAAL: 150

(2)

(2)

(3)

[13]

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τθ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	$pH = -log[H_3O^+]$

$$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$$

$$\mathsf{E}^{\theta}_{\mathsf{cell}} = \mathsf{E}^{\theta}_{\mathsf{cathode}} - \mathsf{E}^{\theta}_{\mathsf{anode}} / \mathsf{E}^{\theta}_{\mathsf{sel}} = \mathsf{E}^{\theta}_{\mathsf{katode}} - \mathsf{E}^{\theta}_{\mathsf{anode}}$$

or/of

$$E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{reduksie}}^{\theta} - E_{\text{oksidasie}}^{\theta}$$

or/of

$$\mathsf{E}_{\mathsf{cell}}^{\theta} = \mathsf{E}_{\mathsf{oxidisingagent}}^{\theta} - \mathsf{E}_{\mathsf{reducingagent}}^{\theta} / \mathsf{E}_{\mathsf{sel}}^{\theta} = \mathsf{E}_{\mathsf{oksideemiddel}}^{\theta} - \mathsf{E}_{\mathsf{reduseemiddel}}^{\theta}$$

 $q = I\Delta t$

$$n = \frac{Q}{e}$$
 or/of $n = \frac{Q}{q_e}$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
		1	` ,							Α	tomic n	umber				` ,	` ,	• •	` ,	` ,	
	1							KEY/SL	EUTEL		Atoom	getal									2
2,1	Н										1	•									He
	1										20										4
	3		4	1				Flectr	onegati	vitv	29	Sv	mbol			5	6	7	8	9	10
1,0	Li	1,5	Be						onegativ		ರ್. Cn		nbool			0,2 B	2,5 C	ဗို N	3,5	0, F	Ne
<u> </u>		τ.						LICKII	Jiiegaliv	VILEIL	63,5	5 3"	IIDOOI			` `				•	
	7		9													11	12	14	16	19	20
	11		12								T __					13	14	15	16	17	18
6,0	Na	1,2	Mg									e atomic				² Αδ	[∞] Si	2, P	S,5	% Cf	Ar
	23		24						Bena	derde r	elatiewe	e atoom	massa			27	28	31	32	35,5	40
	19		20		21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
8,0	K	1,0	Ca	1,3	Sc	1,5	Ti	6, A	ç Cr	₹, Mu			∞ Ni	င့် Cu		پ Ga			² , Se		Kr
0		۲,		۲,		L ,							_								
	39		40		45		48	51	52	55	56	59	59	63,5		70	73	75	79	80	84
	37		38		39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
8,0	Rb	1,0	Sr	1,2	Υ	4,1	Zr	Nb	² Mo	್ಲ್ Tc	₹ Ru	₹ Rh	² Pd	ੂੰ Ag	Cd	L' In	[∞] Sn	್ಲ್ Sb	₹ Te	2,5	Xe
	86		88		89		91	92	96		101	103	106	108	112	115	119		128	127	131
	55		56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
2,0		6,0	Ba		La	9	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	_	∞. Pb		o Po	5,5 At	Rn
0		0				_													4 FO	9. At	KII
	133		137		139		179	181	184	186	190	192	195	197	201	204	207	209			
	87		88		89																
0,7	Fr	6,0	Ra		Ac			58	59	60	61	62	63	64	65	66	67	68	69	70	71
			226					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb		Ho	Ēr	Tm	Yb	
						_					FIII					Dy					Lu
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232	١. ۵	238	٦.٠٢	. ~	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	O		<u> </u>		• • • •	1110	110	
								232		230											

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

SEL 4A: STANDAARD-REDUKSIEPUTENSIA									
Half-reactions	/Hal	freaksies	Ε ^θ (V)						
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87						
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81						
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77						
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51						
$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36						
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	$2Cr^{3+} + 7H_2O$	+ 1,33						
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23						
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23						
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20						
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07						
$NO_3^- + 4H^+ + 3e^-$	=	$NO(g) + 2H_2O$	+ 0,96						
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85						
$Ag^+ + e^-$	=	Ag	+ 0,80						
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80						
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77						
$O_2(g) + 2H^+ + 2e^-$	\Rightarrow	H_2O_2	+ 0,68						
l ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+ 0,54						
Cu⁺ + e⁻	\Rightarrow	Cu	+ 0,52						
$SO_2 + 4H^+ + 4e^-$	\Rightarrow	$S + 2H_2O$	+ 0,45						
$2H_2O + O_2 + 4e^-$	\Rightarrow	40H ⁻	+ 0,40						
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34						
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17						
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16						
$Sn^{4+} + 2e^{-}$	=	Sn ²⁺	+ 0,15						
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14						
2H ⁺ + 2e [−]	=	H ₂ (g)	0,00						
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06						
Pb ²⁺ + 2e ⁻	\Rightarrow	Pb	- 0,13						
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14						
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27						
Co ²⁺ + 2e ⁻	\Rightarrow	Co	- 0,28						
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40						
Cr ³⁺ + e ⁻	\Rightarrow	Cr ²⁺	- 0,41						
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44						
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74						
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76						
2H ₂ O + 2e [−]	=	$H_2(g) + 2OH^-$	- 0,83						
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91						
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	- 1,18						
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Αℓ	- 1,66						
$Mg^{2+} + 2e^{-}$	=	Mg	- 2,36						
Na ⁺ + e ⁻	=	Na	- 2,71						
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87						
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89						
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90						
Cs ⁺ + e ⁻	=	Cs	- 2,92						
K ⁺ + e ⁻	=	K	- 2,93						

Li⁺ + e⁻

Li

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

-3,05

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/Halfreaksies			Ε ^θ (V)
Li ⁺ + e⁻	=	Li	- 3,05
$K^+ + e^-$	=	K	- 2,93
Cs ⁺ + e ⁻	=	Cs	- 2,92
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
$Na^+ + e^-$	=	Na	- 2,71
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
$Al^{3+} + 3e^{-}$	\Rightarrow	Αℓ	- 1,66
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91
$2H_2O + 2e^-$	\rightleftharpoons	$H_2(g) + 2OH^-$	- 0,83
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74
Fe ²⁺ + 2e ⁻	\Rightarrow	Fe	- 0,44
Cr ³⁺ + e ⁻	\Rightarrow	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Co ²⁺ + 2e ⁻	=	Co	- 0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27
Sn ²⁺ + 2e ⁻	\Rightarrow	Sn	- 0,14
Pb ²⁺ + 2e ⁻	\Rightarrow	Pb	- 0,13
Fe ³⁺ + 3e ⁻	\Rightarrow	Fe	- 0,06
2H ⁺ + 2e ⁻	=	H₂(g)	0,00
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14
Sn ⁴⁺ + 2e ⁻	\Rightarrow	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu [⁺]	+ 0,16
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40
$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H ₂ O	+ 0,45
Cu⁺ + e⁻	\rightleftharpoons	Cu	+ 0,52
I ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+ 0,54
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+ 0,68
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80
$Ag^+ + e^-$	=	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	=	$NO(g) + 2H_2O$	+ 0,96
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	$2Cr^{3+} + 7H_2O$	+ 1,33
$Cl_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
$F_2(g) + 2e^-$	=	2F ⁻	+ 2,87

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels