Exam 1 Review

Slope

M=
$$y_2 - y_1$$
 $X_2 - X_1$
 $= \sqrt{(5+4)^2 + (b-9)^2}$
 $= \sqrt{6+9}$
 $= \sqrt{81+9}$
 $= \sqrt{3}$
 $= \sqrt{3}$

(2)
$$X^2 + lox + y^2 + 8y = 0$$
 Center? radius? Graph it? $(x^2 + lox + y) + (y^2 + 8y + y) = 0$ $(x^2 + lox + y) + (y^2 + 8y + y) = 9 + 16$ $(x + 3)^2 + (y + 4)^2 = 85$ Center radius

Center radius
$$(-3,-4)$$
 $r^2=25$ $r=5$

$$x+8 = 2y$$

 $\frac{1}{2}x+4=y$

$$-1 = 1/2$$
 * has same slope
 $-1 = 1/2(6) + 6$
 $-1 = 3 + 6$

perpendicular

$$m=-2$$
 * nugative reciprocal of original $y=-2x+b$ $|-1=-2(6)+b$ $|-1=-12+b|$

$$|y=-2x+11|$$

$$(4)(2,\frac{2}{3})$$
 and $(-\frac{1}{2},\frac{-2}{2})$

$$M = \frac{5lope}{y' - y^2} = \frac{2/3 - (-2)}{2 - (-1/2)}$$

$$y = \frac{1b}{15} \times + b$$

$$-2 = \frac{1b}{(-\frac{1}{2})}$$

$$-2 = \frac{16}{15} \left(-\frac{1}{2}\right) + 6$$

$$-2 = -\frac{8}{15} + 6$$

$$-\frac{22}{15} = 6$$

$$y = \frac{16}{15}x - \frac{22}{15}$$

(3) a.
$$y-3x=5$$

 $y=3(x+1)=y-2 \Rightarrow 3x+3=y-2 \Rightarrow y=3x+5$

$$(3x+5)-3x=5$$
 $5=5$ & solutions

b.
$$(\frac{x}{2} + \frac{y}{2} = 5) \cdot 3 = \frac{3x}{2} + \frac{3y}{2} = 15$$

 $\frac{3x}{2} - \frac{2y}{3} = 2$ $-\frac{(3x}{2} - \frac{2y}{3} = 2)$
 $0x + \frac{13}{6}y = 13$

Dependent

$$\frac{x}{2} + \frac{6}{2} = 5$$

$$\frac{x}{2} + 3 = 5$$

$$\frac{x}{2} = 2$$

$$x = 4$$
Independent

solution (4,6)

$$x-(5+x)=7$$

 $x-5-x=7$
 $-5 \neq 7$

-5 #7 NO solution

(10) $y = -\frac{1}{2}|x - 4| + 3$ graph

domain: (-0, 3)
range: (-0, 0)

increase: (-00, 4)

decrease: (4,00)

transformations:

- · reflect over x-axis
- · stretched by a factor of 2
- · moved right 4 and up 3

symmetry on the line x=4

square root function

domain: y<0 range : x> -3 decrease: (-3, 00)

transformations:

- · reflect across x-axis
- · Stretched by a factor of 2
- · moved left 3

NO symmetry

(2) a.
$$f(x) = x^4 - 9x^2 = 7 \times^2 (x^2 - 9)$$

graph

symmetry w

to the y-ax

$$=/X^{-}(X^{-q})$$

symmetry wil respect to the y-axis

$$6.f(x) = -x^3 - 5x = 7 - x(x^2 - 5)$$

symmetry w/ respect to the origin

$$C.f(x) = -x+1$$

$$\frac{d}{dx}$$

no symmetry

2.4

(3)
$$f(x) = x^2 + 3$$
 $g(x) = 2x - 7$

$$=2(x^2+3)-7$$
 $g(2)=2(2)-7$

$$=2x^2+10-7$$

$$\alpha(2) = 2(2) - 7$$

$$=2x^2+10-7$$
 $g(2)=4-7=-3$

$$f(g(z)) = (-3)^2 + 3$$

$$C \cdot \frac{f(x)}{g(x)} = \frac{x^2 + 3}{2x + 7}$$

$$(f+g) = x^2+3+2x-7$$

= x^2+2x-4
 $(f+g)(2)=(2)^2+2(2)-4$

2.5 (13) a. invertible f(x) = 3x - 21 x = 3y - 21 x + 21 = 3y $\frac{1}{3}x + 7 = y$ Domain 3 range:
all real numbers

b. Invertible $y = \sqrt{9 - x^2}$ $x = \sqrt{9 - y^2}$ $x^2 = 9 - y^2$ $x^2 - 9 = -y^2$ $y = \sqrt{9 - x^2}$ $y = \sqrt{9 - x^2}$

range: (-3,3) domain: (0,3)

c. On invertible

.