

Каталитическая графитизация микрокристаллической целлюлозы

Кореневский Алексей

Источники неграфитизируемого углерода для натрий-ионных аккумуляторов

Углеводы

Hard Carbon

Биополимеры

300мАч/г

Синтетические полимеры

Биомасса

Недостатки материала из биомассы

Состав лигноцеллюлозной биомассы

Лигнин

Целлюлоза

Гемицеллюлоза

Неорганические примеси

Фосфаты, нитраты, хлориды, гидроксиды щелочных/щелочноземельных металлов, а также переходных металлов

Gomez-Martin et al 'Structural Evolution in Iron-Catalyzed Graphitization of Hard Carbons'

DOI: 10.1021/acs.chemmater.0c04385

Синтез

МКЦ

Пиролиз при 1300°C в атмосфере Ar

Выпаривание при постоянном перемешивании

Допированный неграфитизируемый углерод

Морфология материалов

Допирование FeCl₃. Степень упорядоченности материалов

С увеличением концентрации Fe из хлорида интенсивность G-пика растет, следовательно, уменьшается I_D/I_G , что свидетельствует о повышении упорядоченности в структуре материала. Однако разница незначительна

Допирование $Fe_2(C_2O_4)_3$. Степень упорядоченности

С увеличением концентрации Fe интенсивность G-пика растет, следовательно, уменьшается I_D/I_C , что свидетельствует о повышении упорядоченности в структуре материала.

Приготовление электродной пасты и электродов

Сушка при 70°С, прокатка на вальцах, вырезание электродов диаметром 15мм

Электрохимический эксперимент

Электролит: 1 M NaPF₆ в смеси растворителей этиленкарбоната и диэтиленкарбоната (1:1)

> Сборка производилась в перчаточном боксе с атмосферой Ar

Электрохимические характеристики

При увеличении концентрации железа материалы демонстрируют существенное ухудшение электрохимических характеристик. Материалы, допированные железом с концентрацией до 0,05% показывают характеристики выше недопированных образцов

Взаимосвязь площади поверхности и кулоновской

Увеличение удельной площади поверхности материала приводит к уменьшению кулоновской эффективности на первом цикле.

Заключение

- 1. Установлена корреляция между содержанием Fe³⁺, удельной площадью поверхности и электрохимическими характеристиками. Увеличение содержания Fe³⁺ в источнике ухудшает электрохимические характеристики полученных материалов.
- 2. Показано улучшение электрохимических характеристик при добавлении низких концентраций железа (III) к МКЦ, что представляет интерес и требует дальнейшего изучения.
- 3. Выявлено различие в микроструктуре и эх свойствах образцов НС, полученными допированием хлоридом и оксалатом. Источник, допированный оксалатом более подвержен активации поверхности и каталитической графитизации, что существеннее ухудшило электрохимические характеристики.
- 4. Большинство полученных материалов могут быть охарактеризованы как «композитные» (неоднородные) материалы, состоящие из фрагментов с разной степенью упорядоченности, определенной из КР-спектров, что доказывает явление локальной каталитической

12

Спасибо за внимание!

План работы

Концентрация $FeCl_3$ и $Fe_2(C_2O_4)_3$ отн. Fe

0,005% 0,05% 0,5% 1% 1,5%

Приготовление электродов и сборка полуячеек

Неграфитизируемый углерод

- КР спектроскопия
- Растровая электронная микроскопия
- Энергодисперсионная рентгеновская спектроскопия
- Низкотемпературная сорбция/десорбция азота
- Рентгенофазовый анализ

Гальваностатическое циклирование

+ FeCl₃

+ Fe₂(Ox)₃

1400

1600

Среди КР-спектров материала были участки с типичными спектрами НС, так участки с типичными спектрами, характерными для упорядоченной формы углерода, что свидетельствует о локальной графитизации материала

Среди КР-спектров материала были участки с типичными спектрами НС, так участки с типичными спектрами, характерными для упорядоченной формы углерода, что свидетельствует о локальной графитизации материала

МКЦ + $Fe_2(Ox)_3$ 1%

Spectrum	In stats.	C	O	Al	Si	Ca	Fe	Cu	Total
Spectrum 1	Yes	56.04	5.51	0.27	0.09	0.10	37.75	0.24	100.00
Spectrum 2	Yes	88.46	3.18	0.11			8.01	0.23	100.00
Spectrum 3	Yes	63.15		0.24		0.10	36.31	0.20	100.00
Max.		88.46	5.51	0.27	0.09	0.10	37.75	0.24	
Min.		56.04	3.18	0.11	0.09	0.10	8.01	0.20	

МКЦ + FeCl₃ 1.5%

Spectrum	In stats.	C	O	Na	Al	Si	S	Cl	Ca	Cr	Mn	Fe	Cu	Zr
Spectrum 1	Yes	52.30	13.30		0.21	0.63	0.23	1.38	0.14	0.09	0.06	31.60	0.08	
Spectrum 2	Yes	79.52	19.67	0.06		0.05	0.09	0.05	0.03			0.48	0.01	0.03
Spectrum 3	Yes	62.79	-0.25		0.29	0.16	0.04			0.09		36.79	0.11	
Max.		79.52	19.67	0.06	0.29	0.63	0.23	1.38	0.14	0.09	0.06	36.79	0.11	0.03
Min.		52.30	-0.25	0.06	0.21	0.05	0.04	0.05	0.03	0.09	0.06	0.48	0.01	0.03