SPAŢII TOPOLOGICE

Din cele discutate mai sus se degajă, la un nivel de abstractizare mai ridicat, următoarele definiții:

Definiție. Fie X o mulțime nevidă. Se numește topologie pe X o familie de submulțimi ale lui X, notată cu τ , care verifică următoarele trei axiome:

- 1) \emptyset , $X \in \tau$;
- 2) dacă $D_1, D_2 \in \tau$, atunci $D_1 \cap D_2 \in \tau$;
- 3) dacă $D_i \in \tau$, pentru orice $i \in I$, atunci $\bigcup_{i \in I} D_i \in \tau$.

Se numeşte spaţiu topologic un dublet (X,τ) , unde X este o mulţime nevidă şi τ este o topologie pe mulţimea X. Elementele mulţimii τ se numesc mulţimi deschise. O submulţime F a lui X se numeşte închisă în X dacă X-F este deschisă în X.

Observație. Noțiunile de mulțime închisă, vecinătate a unui punct, punct interior al unei mulțimi, punct de acumulare al unei mulțimi, închidere a unei mulțimi, interior al unei mulțimi și cea de frontieră a unei mulțimi au sens în cadrul mai general al unui spațiu topologic.

Proprietățile mulțimilor închise

Fie (X, τ) un spațiu topologic. Atunci:

- **1**. \emptyset *și* X *sunt închise (în* X).
- ${f 2}$. Reuniunea oricăror două mulțimi închise din X este o mulțime închisă din X.
- ${f 3}.$ Intersecția unei familii arbitrare de mulțimi închise din X este o mulțime închisă din X.

Definiție. Fie (X, τ) un spațiu topologic și $x \in X$. O mulțime V se numește vecinătate a lui x dacă există $D \in \tau$ astfel încât $x \in D \subset V$. Notăm cu \mathcal{V}_x mulțimea vecinătăților lui x.

Propoziție. Fie (X, τ) un spațiu topologic, $x \in X$ și \mathcal{V}_x mulțimea vecinătăților lui x. Atunci:

- 1) Dacă $V_1, V_2 \in \mathcal{V}_x$ atunci $V_1 \cap V_2 \in \mathcal{V}_x$.
- 2) Dacă $V \in \mathcal{V}_x$ și $V \subset W$ atunci $W \in \mathcal{V}_x$.
- 3) Dacă $V \in \mathcal{V}_x$ atunci $x \in V$.
- 4) Dacă $V \in \mathcal{V}_x$ atunci $W \in \mathcal{V}_x$ există astfel încât $W \subset V$ şi pentru orice $y \in W$ rezultă că $W \in \mathcal{V}_y$.

Definiție. Fie (X,τ) un spațiu topologic și $x\in X$. Un șir $(x_n)_{n\geq 1}$ se numește convergent la x dacă pentru orice $V\in \mathcal{V}_x$ există n_ε astfel încât $x_n\in V$ pentru orice $n\geq n_\varepsilon$.

Observație. Intr-un spațiu topologic limita nu este unică.

Definiție. Fie (X, τ) un spațiu topologic și $A \subset X$. Atunci

- 1) $\overset{\circ}{A} = \{x \in X \mid există \ o \ mulțime \ deschisă \ D \ astfel încât \ x \in D \subseteq A\} = \{x \in X \mid A \in \mathcal{V}_x\} \ se \ numește \ interiorul lui \ A.$
- 2) $\overrightarrow{A} = \{x \in X \mid V \cap A \neq \emptyset \text{ pentru orice vecinătate } V \in \mathcal{V}_x\}$ se numește închiderea lui A.
- 3) $A' = \{x \in X \mid V \cap A \setminus \{x\} \neq \emptyset \text{ pentru orice vecinătate } V \in \mathcal{V}_x\}$ se numește mulțimea punctelor de acumulare a mulțimii A.
 - 4) $Fr(A) = \overline{A} \setminus \mathring{A}$ se numește frontiera lui A.
 - 5) $iz(A) = A \setminus A'$ se numește mulțimea punctelor izolate.

Propoziție. Fie (X,τ) un spațiu topologic și $A\subset X$. Atunci

- 1) $\overset{\circ}{A} \subset A \subset \overline{A} = A' \cup A$.
- 2) Dacă $A \subset B$ atunci $\overset{\circ}{A} \subset \overset{\circ}{B}$, $A' \subset B'$ și $\overline{A} \subset \overline{B}$.
- 3) $(A \cup B)' = A' \cup B'$, $\overline{A} \cup \overline{B} = \overline{A \cup B}$ și $\overset{\circ}{A} \cap \overset{\circ}{B} = A \overset{\circ}{\cap} B$.
- 4) $Fr(A) = Fr(X A) = \overline{A} \cap \overline{X A} = \overline{A} \overset{\circ}{A};$
- 5) \overline{A} este o mulțime închisă și $\overset{\circ}{A}$ este o mulțime deschisă.

Observație. Într-un spațiu topologic este posibil ca A' să nu fiie închisă.

Structura topologică a lui $\overline{\mathbb{R}}$

Propoziție. Mulțimea $\tau = \{D \mid D \text{ este deschisă } \hat{n} \mathbb{R}\} \cup \{D \cup [-\infty, y) \mid D \text{ este deschisă } \hat{n} \mathbb{R} \text{ si } y \in \mathbb{R}\} \cup \{D \cup (x, \infty] \mid D \text{ este deschisă } \hat{n} \mathbb{R} \text{ si } x \in \mathbb{R}\} \cup \{D \cup (x, \infty] \cup [-\infty, y) \mid D \text{ este deschisă } \hat{n} \mathbb{R} \text{ si } x, y \in \mathbb{R}\} \text{ este o topologie } pe \overline{\mathbb{R}}, numită topologia uzuală pe \overline{\mathbb{R}}.$

Observație. Toate noțiunile topologice descrise mai sus au sens în $\overline{\mathbb{R}}$.

Exemple. Să se arate că următoarele structuri sunt spații topologice:

- 1) (X, τ) unde $\tau = P(X)$.
- 2) (X, τ) unde $\tau = \{\emptyset, X\}.$
- 3) (X,τ) unde $\tau=\{\emptyset,A,X\}$ și A este o mulțime cu propritatea că $\emptyset\neq A\neq X$.
- 4) (X,τ) unde $\tau=\{\emptyset,A,X\setminus A,X\}$ și A este o mulțime cu propritatea că $\emptyset\neq A\neq X.$
 - 5) (\mathbb{R}, τ) unde $\tau = \{(a, \infty) \mid a \in \overline{\mathbb{R}}\}.$

Să se determine mulțimile închise, șirurile convergente și familia vecinătăților pentru un element din spațiile topologice de mai sus.

Exemplu. Fie (X, τ) un spațiu topologic și $A \subset X$. Atunci mulțimea $\tau_A = \{A \cap D \mid D \in \tau\}$ formează o topologie, numită topologia indusă.

- 1) $\emptyset = \emptyset \cap A$ și $A = X \cap A$.
- 2) Fie $G_1,G_2\in\tau_A$. Atunci există $D_1,D_2\in\tau$ astfel încât $G_1=A\cap D_1$ și
- $G_2=A\cap D_2$. Rezultă că $G_1\cap G_2=(A\cap D_1)\cap (A\cap D_2)=A\cap (D_1\cap D_2)\in \tau_A$. 3) Fie $(G_i)_{i\in I}\subset \tau_A$. Atunci pentru orice $i\in I$ există $D_i\in \tau$ astfel încât

$$G_i = A \cap D_i$$
. Rezultă că $\bigcup_{i \in I} G_i = \bigcup_{i \in I} (A \cap D_i) = A \cap \left(\bigcup_{i \in I} D_i\right) \in \tau_A$.

Exemplu. Fie (X,τ) un spațiu topologic și $A \subset P(X)$, $A \neq \emptyset$. Atunci $\tau_{\mathcal{A}} = \underset{\mathcal{A} \subset \tau \subset P(X); \tau \text{ topologie}}{\cap \tau} \textit{formează o topologie} \left(\tau_{\mathcal{A}} \text{ -este cea mai mică topologie} \right)$ care conține mulțimea \mathcal{A}).

PROPRIETĂŢI LOCALE ALE FUNCŢIILOR CONTINUE

Continuitatea unei funcții într-un punct Operații algebrice cu funcții continue Continuitatea aplicațiilor liniare între spații vectoriale finit dimensionale

Definiția continuității unei funcții într-un punct; formulări echivalente

Definiție. Fie (X, τ_X) și (Y, τ_Y) spații topologice, $a \in X$ și $f : X \to Y$. $Spunem\ că\ funcția\ f\ este\ continuă\ în\ a\ dacă\ pentru\ orice\ vecinătate\ V\ a\ lui$ $f(a), f^{-1}(V)$ este o vecinătate a lui a. Dacă $D \subseteq X$, atunci spunem că f este continuă pe D dacă f este continuă în orice punct din D.

Observații. Fie (X, τ_X) și (Y, τ_Y) spații topologice, $a \in X$ și $f : X \to Y$.

- 1) Atunci funcția f este continuă în a dacă pentru orice vecinătate V a lui f(a) există W o vecinătate a lui a astfel încât $W \subset f^{-1}(V)$, echivalent cu pentru orice $x \in W$ rezultă că $f(x) \in V$.
- 2) Din definiția de mai sus decurge faptul că dacă $a \in X \setminus X'$ (i.e. a este un punct izolat al lui X, adică există o vecinătate X a lui a cu proprietatea că $U \cap X = \{a\}$), atunci f este continuă în a.

Definiție. Fie $f:D\subseteq\mathbb{R}^p\to\mathbb{R}^q$ și $a\in D$. Spunem că funcția f este continuă în a dacă pentru orice vecinătate V a lui f(a) există o vecinătate Ua lui a (care depinde de V) astfel încât $f(x) \in V$ pentru orice $x \in D \cap U$, i.e. $f(D \cap U) \subseteq V$. Dacă $D_1 \subseteq D$, atunci spunem că f este continuă pe D_1 dacă f este continuă în orice punct din D_1 .

Teoremă. Fie (X, τ_X) , (Y, τ_Y) și (Z, τ_Z) spații topologice, $a \in X$, $f: X \to X$ Y și $g:Y\to Z$. Dacă funcția f este continuă în a și funcția g este continuă \hat{n} f(a) atunci funcția $g \circ f$ este continuă \hat{n} a. Demonstrație.

Fie $V \in \mathcal{V}_{g \circ f(a)}$. Deoarece funcția g este continuă în f(a) rezultă că $g^{-1}(V) \in \mathcal{V}_{f(a)}$. Deoarece funcția f este continuă în a rezultă că $(g \circ f)^{-1}(V) = f^{-1} \circ g^{-1}(V) = f^{-1}(g^{-1}(V)) \in \mathcal{V}_a$.

Prezentăm acum o propoziție care furnizează condiții echivalente pentru continuitate. Ea se va dovedi utilă în cadrul demonstrațiilor rezultatelor următoare.

Teorema de caracterizare a continuității într-un punct. Pentru $f: D \subseteq \mathbb{R}^p \to \mathbb{R}^q$ și $a \in D$, următoarele afirmații sunt echivalente:

- i) f este continuă în a.
- ii) Pentru orice $\varepsilon > 0$ există $\delta_{\varepsilon} > 0$ astfel încât $||f(x) f(a)|| < \varepsilon$ pentru orice $x \in D$ cu proprietatea că $||x a|| < \delta_{\varepsilon}$.
- iii) Pentru orice şir $(x_n)_{n\in\mathbb{N}}$, de elemente din D, care converge către a, şirul $(f(x_n))_{n\in\mathbb{N}}$ converge către f(a).

Demonstrație.

- i) \Rightarrow ii) Cum $B(f(a), \varepsilon) \in \mathcal{V}_{f(a)}$, există $U \in \mathcal{V}_a$ astfel încât $f(U \cap D) \subseteq B(f(a), \varepsilon)$. Deoarece $U \in \mathcal{V}_a$, există $\delta_{\varepsilon} > 0$ cu proprietatea că $B(a, \delta_{\varepsilon}) \subseteq U$, deci $f(B(a, \delta_{\varepsilon}) \cap D) \subseteq B(f(a), \varepsilon)$, i.e. pentru orice $x \in D$ cu proprietatea că $||x a|| < \delta_{\varepsilon}$ avem $||f(x) f(a)|| < \varepsilon$.
- ii) \Rightarrow iii) Fie $\varepsilon > 0$ arbitrar, dar fixat. Atunci, conform ipotezei, există $\delta_{\varepsilon} > 0$ cu proprietatea că $f(B(a, \delta_{\varepsilon}) \cap D) \subseteq B(f(a), \varepsilon)$ și există $n_{\varepsilon} \in \mathbb{N}$ astfel încât $||x_n a|| < \delta_{\varepsilon}$, i.e. $x_n \in B(a, \delta_{\varepsilon})$, pentru orice $n \in \mathbb{N}$, $n \ge n_{\varepsilon}$. Prin urmare, cum $x_n \in D$, pentru orice $n \in \mathbb{N}$, deducem că $||f(x_n) f(a)|| < \varepsilon$ pentru orice $n \in \mathbb{N}$, $n \ge n_{\varepsilon}$, deci $(f(x_n))_{n \in \mathbb{N}}$ converge către f(a).
- iii) \Rightarrow i) Să presupunem, prin reducere la absurd, că i) este falsă. Atunci există $V_0 \in \mathcal{V}_{f(a)}$ astfel încât pentru orice $U \in \mathcal{V}_a$ există $x_U \in D \cap U$ cu proprietatea că $f(x_U) \notin V_0$. În particular, obținem că pentru orice $n \in \mathbb{N}$, există $x_n \in D \cap B(a, \frac{1}{n})$ astfel încât $f(x_n) \notin V_0$, fapt care contrazice iii). \square

Notă. Rezultatul este valabil în spații metrice.

Următorul rezultat se dovedește a fi util atunci când dorim să arătăm că o funcție nu este continuă într-un punct.

Criteriu de discontinuitate. Pentru $f:D\subseteq\mathbb{R}^p\to\mathbb{R}^q$ și $a\in D,$ următoarele afirmații sunt echivalente:

- i) f nu este continuă în a.
- ii) Există un şir $(x_n)_{n\in\mathbb{N}}$, de elemente din D, care converge către a, pentru care şirul $(f(x_n))_{n\in\mathbb{N}}$ nu converge către f(a).

Observație. Funcțiile polinomiale, raționale (i.e. cele care sunt cât de funcții polinomiale), putere, exponențială, logaritmică, sin, cos, tg, ctg sunt continue.

Exerciții

1. Să se studieze continuitatea următoarelor funcții:

- a) $f: \mathbb{R} \to \mathbb{R}$ dată de f(x) = c pentru orice $x \in \mathbb{R}$, unde $c \in \mathbb{R}$;
- a) $f: \mathbb{R} \to \mathbb{R}$ data de $f(x) = \{ \begin{array}{l} 1, & x \in [0,1] \\ 7, & x = \frac{3}{2} \\ 2, & x \in [2,3] \end{array} \}$;
- c) $f: \mathbb{R} \to \mathbb{R}$ dată de $f(x) = x^2$ pentru orice $x \in \mathbb{R}$;
- d) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dată de $f(x) = \frac{1}{x}$ pentru orice $x \in \mathbb{R} \setminus \{0\}$;
- e) $f: \mathbb{R} \to \mathbb{R}$ dată de $f(x) = \{ \begin{array}{ll} 0, & x \leq 0 \\ 1, & x > 0; \end{array} \}$

- f) $f: \mathbb{R}^2 \to \mathbb{R}^2$ dată de f(x,y) = (2x+y,x-3y) pentru orice $(x,y) \in \mathbb{R}^2$; g) $f: \mathbb{R}^2 \to \mathbb{R}^2$ dată de $f(x,y) = (x^2+y^2,2xy)$ pentru orice $(x,y) \in \mathbb{R}^2$. 2. Pentru o funcție continuă $f: \mathbb{R}^2 \to \mathbb{R}$, fie $g_1: \mathbb{R} \to \mathbb{R}$ și $g_2: \mathbb{R} \to \mathbb{R}$ date de $g_1(x)=f(x,0)$ și $g_2(x)=f(0,x)$ pentru orice $x\in\mathbb{R}$. Să se arate că g_1 și g_2 sunt continue. Să se arate că dacă g_1 și g_2 sunt continue în 0, nu rezultă, în general, că f este continuă în 0.
 - 3. Să se studieze continuitatea funcției $f: \mathbb{R} \to \mathbb{R}$ dată de

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{q}, & x = \frac{p}{q}, \text{ unde } p, q \in \mathbb{Z}, \, q > 0, \, (|p|\,, q) = 1, \\ 0, & x \notin \mathbb{Q} \text{ sau } x = 0 \end{array} \right..$$

Funcția descrisă mai sus poartă numele de funcția lui Riemann.

- 4. Fie $x_0 \in \mathbb{R}, f, g : \mathbb{R} \to \mathbb{R}$ două funcții continue și $h : \mathbb{R} \to \mathbb{R}$ dată de $h(x) = \{ \begin{array}{ll} f(x), & x \in \mathbb{Q} \\ g(x), & x \notin \mathbb{Q} \end{array} \}$. Să se arate că heste continuă în x_0 dacă și numai dacă $f(x_0) = g(x_0)$.
- **5**. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție continuă pentru care există un şir $(x_n)_{n\in\mathbb{N}}$ de numere reale nenule având următoarele proprietăți:
 - i) $\lim_{n \to \infty} x_n = 0$;
 - ii) $f(x+x_n) = f(x)$ pentru orice $x \in \mathbb{R}$ și orice $n \in \mathbb{N}$.

Să se arate că f este constantă.

Operații algebrice cu funcții continue

Rezultatele de mai jos (ale căror demonstrații sunt lăsate pe seama cititorului) arată că familia funcțiilor continue are un comportament "bun" la operațiile algebrice.

Teoremă. Fie $D \subseteq \mathbb{R}^p$, $f: D \to \mathbb{R}^q$, şi $a \in D$. Dacă f este continuă în a, atunci f este local mărginită.

Teoremă. Fie $D \subseteq \mathbb{R}^p$, $f,g:D \to \mathbb{R}^q$, $\varphi:D \to \mathbb{R}$ şi $a \in D$. Dacă f,g şi φ sunt continue în a, atunci f+g, f-g, fg, φf şi $\frac{f}{\varphi}$ (dacă $\varphi(x) \neq 0$ pentru orice $x \in D$) sunt continue în a.

Teoremă. Fie $D \subseteq \mathbb{R}^p$ și $f: D \to \mathbb{R}^q$. Dacă f este continuă în a, atunci ||f|| este continuă în a.

Teoremă. Fie $D_1 \subseteq \mathbb{R}^p$, $D_2 \subseteq \mathbb{R}^q$, $f: D_1 \to D_2$ și $g: D_2 \to \mathbb{R}^r$. Dacă feste continuă în a, iar g este continuă în f(a), atunci $g \circ f$ este continuă în a.

LIMITA UNUI FUNCȚII DE MAI MULTE VARIABILE

Definiție. Fie $D \subseteq \mathbb{R}^p$, $f: D \to \mathbb{R}^q$, $x_0 \in D' = \{x \in \mathbb{R}^p \mid există un şir <math>(x_n)_{n \in \mathbb{N}}$ de elemente din $D \setminus \{x_0\}$ cu proprietatea că $\lim_{n \to \infty} x_n = x_0\}$ și $l \in \mathbb{R}^q$. Spunem că l este limita funcției f în x_0 (și scriem $\lim_{x \to x_0} f(x) = l$) dacă pentru orice şir $(x_n)_{n\in\mathbb{N}}$ de elemente din $D\setminus\{x_0\}$ cu proprietatea că $\lim_{n\to\infty}x_n=x_0$, $avem \lim_{n \to \infty} f(x_n) = l.$

Observație. Fie $D \subseteq \mathbb{R}^p$, $f: D \to \mathbb{R}^q$, $x_0 \in D'$ și $l \in \mathbb{R}^q$. Atunci $\lim_{x \to x_0} f(x) = l$ dacă și numai dacă pentru orice $\varepsilon > 0$ există $\delta_{\varepsilon} > 0$ astfel încât $||f(x) - l|| < \varepsilon$ pentru orice $x \in D$ cu proprietatea că $0 < ||x - x_0|| < \delta_{\varepsilon}$.

Exemple.
1.
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{|x|+|y|} = 0$$
.
Fie $(x_n,y_n)\subseteq \mathbb{R}^2 \setminus \{(0,0)\}$ astfel încât

$$\lim_{n \to \infty} (x_n, y_n) = (0, 0)$$
, i.e. $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$.

Atunci

$$0 \leq \frac{x_n^2 + y_n^2}{|x_n| + |y_n|} = \frac{(|x_n| + |y_n|)^2 - 2|x_n| |y_n|}{|x_n| + |y_n|} \leq |x_n| + |y_n|,$$

pentru orice $n \in \mathbb{N}$. Cum $\lim_{n \to \infty} (|x_n| + |y_n|) = 0$, conform lemei cleştelui deducem c

$$\lim_{n \to \infty} \frac{x_n^2 + y_n^2}{|x_n| + |y_n|} = 0.$$

Aşadar $\lim_{(x,y)\to(0,0)}\frac{x^2+y^2}{|x|+|y|}=0.$ 2. Să se arate că nu există $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}.$

Dacă, prin absurd, ar exista $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$, atunci am avea $\lim_{n\to\infty} \frac{\frac{1}{n}\cdot\frac{1}{n}}{\frac{1}{n^2}+\frac{1}{n^2}} =$ $\lim_{n\to\infty} \frac{\frac{1}{n} \cdot \frac{2}{n}}{\frac{1}{2} + \frac{2^{2}}{2}}, \text{ de unde contradicția } \frac{1}{2} = \frac{2}{5}.$

Exerciții. Să se calculeze:

i)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{xy+1}-1};$$
ii)
$$\lim_{(x,y)\to(0,2)} \frac{\sin(xy)}{x}.$$

ii)
$$\lim_{(x,y)\to(0,2)} \frac{\sin(xy)}{x}$$

Exemple

1. Fie $f: \mathbb{R}^2 \to \mathbb{R}$ dată de

$$f(x,y) = \left\{ \begin{array}{ll} \frac{\sin(x^4 + y^4)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{array} \right..$$

Să se arate că f este continuă în origine. Soluție. Fie $(x_n, y_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^2 \setminus \{(0, 0)\}$ astfel încât

$$\lim_{n\to\infty}(x_n,y_n)=(0,0), \text{ i.e. } \lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=0.$$

Atunci, cum

$$\left|\frac{x_n^4+y_n^4}{x_n^2+y_n^2}\right| \leq \frac{x_n^2}{x_n^2+y_n^2}x_n^2 + \frac{y_n^2}{x_n^2+y_n^2}y_n^2 \leq x_n^2+y_n^2,$$

pentru orice $n \in \mathbb{N}$, deducem că

$$\lim_{n \to \infty} \frac{x_n^4 + y_n^4}{x_n^2 + y_n^2} = 0. \tag{1}$$

Deoarece $\lim_{n\to\infty}(x_n^4+y_n^4)=0$, obţinem că

$$\lim_{n \to \infty} \frac{\sin(x_n^4 + y_n^4)}{x_n^4 + y_n^4} = 1.$$
 (2)

Din (1) și (2), concluzionăm că

$$\lim_{n \to \infty} \frac{x_n^4 + y_n^4}{x_n^2 + y_n^2} \frac{\sin(x_n^4 + y_n^4)}{x_n^4 + y_n^4} = 0,$$

deci

$$\lim_{n \to \infty} \frac{\sin(x_n^4 + y_n^4)}{x_n^2 + y_n^2} = 0, \text{ i.e. } \lim_{n \to \infty} f(x_n, y_n) = f(0, 0).$$

Prin urmare

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0),$$

deci f este continuă în (0,0).

Fie acum $(x_n, y_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^2$ astfel încât

$$\lim_{n \to \infty} (x_n, y_n) = (0, 0)$$

şi

$$M = \{ n \in \mathbb{N} \mid (x_n, y_n) = (0, 0) \}.$$

Dacă M este finită, ignorând un număr finit de termeni ai șirului, putem presupune că $(x_n,y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^2\backslash\{(0,0)\}$ și raționamentul de mai sus ne asigură că $\lim_{n\to\infty}f(x_n,y_n)=f(0,0)$.

Dacă M este infinită, apar două situații:

- a) $\mathbb{N} \setminus M$ finită;
- b) $\mathbb{N} \setminus M$ infinită.

În cazul a), ignorând un număr finit de termeni ai şirului, putem presupune că $(x_n, y_n) = (0, 0)$ pentru orice $n \in \mathbb{N}$, deci $\lim_{n \to \infty} f(x_n, y_n) = f(0, 0)$.

În cazul b), există două subșiruri $(f(x_{n_k},y_{n_k}))_{k\in\mathbb{N}}$ și $(f(x_{n_p},y_{n_p}))_{p\in\mathbb{N}}$ ale șirului $(f(x_n,y_n))_{n\in\mathbb{N}}$ care converg către 0 cu proprietatea că

$$\{f(x_{n_k}, y_{n_k}) \mid k \in \mathbb{N}\} \cup \{f(x_{n_p}, y_{n_p}) \mid p \in \mathbb{N}\} = \{f(x_n, y_n) \mid n \in \mathbb{N}\}.$$

Prin urmare $\lim_{n\to\infty} f(x_n, y_n) = f(0, 0)$.

2. Fie $f: \mathbb{R}^2 \to \mathbb{R}$ dată de

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

Să se arate că f nu este continuă în origine.

Soluție. Să presupunem, prin reducere la absurd, că f este continuă în (0,0).

Atunci pentru orice $(x_n, y_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^2$ astfel încât $\lim_{n \to \infty} (x_n, y_n) = (0, 0)$, avem $\lim_{n \to \infty} f((x_n, y_n)) = f(0, 0) = 0$.

În particular avem $\lim_{n\to\infty} f(\frac{1}{n}, \frac{1}{n}) = 0$, deci obținem contradicția $\frac{1}{2} = 0$. Așadar f nu este continuă în origine.

3. Fie $f: \mathbb{R}^2 \to \mathbb{R}$ o funcție continuă. Fie $g_1: \mathbb{R} \to \mathbb{R}$ dată de $g_1(x) = f(x,0)$ pentru orice $x \in \mathbb{R}$ și $g_2: \mathbb{R} \to \mathbb{R}$ dată de $g_2(x) = f(0,x)$ pentru orice $x \in \mathbb{R}$. Să se arate că g_1 și g_2 sunt continue. Să se arate că dacă g_1 și g_2 sunt continue în 0, nu rezultă, în general, că f este continuă în (0,0).

Soluție. Fie $x_0 \in \mathbb{R}$ și $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ astfel încât $\lim_{n \to \infty} x_n = x_0$.

Atunci $((x_n,0))_{n\in\mathbb{N}}\subseteq\mathbb{R}^2$ are proprietatea că $\lim_{n\to\infty}^{n\to\infty}(x_n,0)=(x_0,0)$, de unde, având în vedere faptul că f este continuă, deducem că

$$\lim_{n\to\infty} f(x_n, 0) = f(x_0, 0)$$
, i.e. $\lim_{n\to\infty} g_1(x_n) = g_1(x_0)$.

Prin urmare g_1 este continuă în x_0 .

Similar se arată că g_2 este continuă în x_0 .

Fie $f: \mathbb{R}^2 \to \mathbb{R}$ dată de

$$f(x,y) = \left\{ \begin{array}{ll} 0, & \text{dacă } xy = 0, \\ 1, & \text{dacă } xy \neq 0. \end{array} \right.$$

Atunci $g_1 = g_2 = 0$, deci g_1 și g_2 sunt continue în 0.

Deoarece

$$\lim_{n \to \infty} f(\frac{1}{n}, \frac{1}{n}) = 1 \neq 0 = f(0, 0),$$

deducem că f nu este continuă în (0,0).

Așadar continuitatea în ansamblul variabilelor implică continuitatea în raport cu fiecare dintre variabile, însă reciproca nu este validă.

Exerciții. Să se studieze continuitatea în (0,0) a funcției $f: \mathbb{R}^2 \to \mathbb{R}$ dată

i)
$$f(x,y) = \{ \begin{array}{ll} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{array} ;$$

ii) $f(x,y) = \{ \begin{array}{ll} \frac{x^2y}{x^4+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{array} .$

ii)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
.

Limita unei funcții într-un punct

Cadrul în care vom lucra în această secțiune este următorul: se consideră $D \subseteq \mathbb{R}^p$, $f: D \to \mathbb{R}^q$, $x_0 \in D'$ și $l \in \mathbb{R}^q$.

Definiție. Vom spune că f tinde către l atunci când x tinde către x_0 dacă pentru orice $V \in \mathcal{V}_l$ există $U \in \mathcal{V}_{x_0}$ astfel încât $f(x) \in V$ pentru orice $x \in$ $(U \cap D) \setminus \{x_0\}, i.e. \ f((U \cap D) \setminus \{x_0\}) \subseteq V. \ Vom nota această situație prin$

Demonstrația Teoremei următoare, fiind foarte asemănătoare cu cea a Teoremei de unicitate a limitei unui șir, este lăsată în seama cititorului.

Teorema de unicitate a limitei unei funcții. În cadrul de mai sus, dacă $l^{'} \in \mathbb{R}^{q}, \ f(x) \underset{x \to x_{0}}{\longrightarrow} l \ \text{și} \ f(x) \underset{x \to x_{0}}{\longrightarrow} l^{'}, \ atunci \ l = l^{'}.$

Observație. Valoarea l, unic determinată de proprietatea $f(x) \underset{x \to x_0}{\longrightarrow} l$, poartă numele de limita lui f atunci când x tinde către x_0 . Vom marca această situație astfel: $\lim_{x \to x_0} f(x) = l$.

Următorul rezultat (a cărui demonstrație -fiind foarte asemănătoare cu cea a Teoremei de caracterizare a continuității într-un punct- este lăsată pe seama cititorului) prezintă formulări echivalente pentru existența limitei unei funcții într-un punct.

Teorema de caracterizare a limitei unei funcții într-un punct. $\hat{I}n$ cadrul de mai sus, următoarele afirmații sunt echivalente:

- α) Există $\lim_{x \to x_0} f(x)$ și $\lim_{x \to x_0} f(x) = l$. β) Pentru orice $\varepsilon > 0$ există $\delta_{\varepsilon} > 0$ astfel încât $||f(x) l|| < \varepsilon$ pentru orice $x \in D$ cu proprietatea că $0 < ||x - x_0|| < \delta_{\varepsilon}$.
- γ) Pentru orice şir $(x_n)_{n\in\mathbb{N}}$ de elemente din $D\setminus\{x_0\}$ cu proprietatea că $\lim_{n \to \infty} x_n = x_0, \ avem \lim_{n \to \infty} f(x_n) = l.$

Următorul rezultat precizează legătura dintre continuitate și limită.

Teorema de caracterizare a continuității în punctele de acumulare. În cadrul de mai sus, facem presupunerea suplimentară că x_0 este punct al lui D. Atunci, următoarele afirmații sunt echivalente:

- α) f este continuă în x_0 .
- $\beta) \ Exist \ \underset{x \to x_0}{\lim} f(x) \ \ \text{i $\lim_{x \to x_0}} f(x) = f(x_0).$

Demonstrație.

 $\alpha)\Rightarrow \beta$) Pentru a arăta că există $\lim_{x\to x_0} f(x)$ şi $\lim_{x\to x_0} f(x) = f(x_0)$ este suficient să arătăm că pentru orice şir $(x_n)_{n\in\mathbb{N}}\subseteq D\smallsetminus\{x_0\}$ cu proprietatea că $\lim_{n\to\infty} x_n = x_0$, avem $\lim_{n\to\infty} f(x_n) = l$. Acest fapt decurge din caracterizarea continuității lui f în x_0 cu ajutorul şirurilor.

 β) \Rightarrow α) Faptul că pentru orice $\varepsilon > 0$ există $\delta_{\varepsilon} > 0$ astfel încât $||f(x) - f(x_0)||$ $< \varepsilon$ pentru orice $x \in D$ cu $||x - x_0|| < \delta_{\varepsilon}$ este imediat din ipoteză. Acest lucru arată că f este continuă în x_0 . \square

Teorema următoare prezintă comportamentul limitei la compunere. Ea va fi folosită în cadrul demonstrației regulii lui l'Hospital.

Teorema privind limita compunerii de funcții. Fie $D_1 \subseteq \mathbb{R}^p$, $f: D_1 \to \mathbb{R}^q$, $Imf \subseteq D_2 \subseteq \mathbb{R}^q$, $g: D_2 \to \mathbb{R}^s$, $x_0 \in D_1^{'}$, $l \in \mathbb{R}^q$ și $l^{'} \in \mathbb{R}^s$ astfel încât:

- $i) \lim_{x \to x_0} f(x) = l;$
- $ii) \lim_{y \to l} g(y) = l';$
- iii) există $U \in \mathcal{V}_{x_0}$ astfel încât $f(x) \neq l$ pentru orice $x \in (U \cap D_1) \setminus \{x_0\}$ (deci l este punct de acumulare pentru $f(D_1)$).

Atunci există $\lim_{x \to x_0} (g \circ f)(x)$ şi $\lim_{x \to x_0} (g \circ f)(x) = l'$.

Demonstrație. Conform Teoremei de caracterizare a limitei unei funcții întrun punct este suficient să arătăm că pentru orice șir $(x_n)_{n\in\mathbb{N}}\subseteq D_1\smallsetminus\{x_0\}$ cu proprietatea că $\lim_{n\to\infty}x_n=x_0$, avem $\lim_{n\to\infty}(g\circ f)(x_n)=l'$. Conform ipotezei i), șirul $(f(x_n))_{n\in\mathbb{N}}$ este convergent și limita sa este l. Mai mult, conform ipotezei iii), există $n_0\in\mathbb{N}$ astfel încât $f(x_n)\neq l$ pentru orice $n\in\mathbb{N},\ n\geq n_0$. Așadar, ignorând primii n_0-1 termeni ai șirului, putem presupune că $(f(x_n))_{n\in\mathbb{N}}\subseteq D_2\smallsetminus\{l\}$. Utilizând ipoteza ii), tragem concluzia că șirul $((g\circ f)(x_n))_{n\in\mathbb{N}}$ este convergent și limita sa este l'. \square

Observație. Condiția iii) din teorema de mai sus este esențială, așa cum arată exemplul următor: $f: \mathbb{R} \to \mathbb{R}$ este dată de $f(x) = \{ \begin{array}{ll} 0, & x \neq 0 \\ 1, & x = 0 \end{array}, g = f$ și $x_0 = 0$.

Definitie. O functie $f: \mathbb{R}^p \to \mathbb{R}^q$ se numeste aplicație liniară dacă:

- 1) f(x+y) = f(x) + f(y) pentru orice $x, y \in \mathbb{R}^p$
- 2) f(ax) = af(x) pentru orice $x \in \mathbb{R}^p$ și $a \in \mathbb{R}$.

Observație.

- 1) Fie $A\in M_{q,p}\left(\mathbb{R}\right)$. Funcția $f:\mathbb{R}^p\to\mathbb{R}^q$ dată de $f(x)=Ax^t$ este o aplicație liniară.
- 2) Orice aplicație liniară $f: \mathbb{R}^p \to \mathbb{R}^q$ este de forma $f(x) = Ax^t$ pentru orice $x \in \mathbb{R}^p$, unde $A \in M_{q,p}(\mathbb{R})$.

Teorema de continuitate a aplicațiilor liniare între spații vectoriale finit dimensionale. Pentru orice aplicație liniară $f: \mathbb{R}^p \to \mathbb{R}^q$ există $M \in [0,\infty)$ cu proprietatea că $||f(x)|| \leq M ||x||$ pentru orice $x \in \mathbb{R}^p$. În particular, o astfel de funcție este continuă.

Demonstrație. Pentru simplitate vom alege p=3 și q=2 (cazul general fiind similar). Așadar $f=(f_1,f_2)$.

Avem

$$||f(x)|| = \sqrt{f_1^2(x) + f_2^2(x)} =$$

$$= \sqrt{(f_1(x_1e_1 + x_2e_2 + x_3e_3))^2 + (f_2(x_1e_1 + x_2e_2 + x_3e_3))^2} =$$

$$= \sqrt{(x_1f_1(e_1) + x_2f_1(e_2) + x_3f_1(e_3))^2 + (x_1f_2(e_1) + x_2f_2(e_2) + x_3f_2(e_3))^2} \le$$

$$\le \sqrt{(x_1^2 + x_2^2 + x_3^2)(f_1^2(e_1) + f_1^2(e_2) + f_1^2(e_3)) + (x_1^2 + x_2^2 + x_3^2)(f_2^2(e_1) + f_2^2(e_2) + f_2^2(e_3))} \le$$

$$\le M\sqrt{(x_1^2 + x_2^2 + x_3^2)} = M ||x||,$$

pentru orice $x \in \mathbb{R}^3$, unde

$$M = \sqrt{f_1^2(e_1) + f_1^2(e_2) + f_1^2(e_3) + f_2^2(e_1) + f_2^2(e_2) + f_2^2(e_3)}.$$

Fie $x_0 \in \mathbb{R}^3$. Vom arăta că f este continuă în x_0 . În acest scop vom considera un şir $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^3$ astfel încât $\lim_{n \to \infty} x_n = x_0$. Atunci, având în vedere că f este liniară, obținem

$$0 \le ||f(x_n) - f(x_0)|| = ||f(x_n - x_0)|| \le M ||x_n - x_0||,$$

pentru orice $n \in \mathbb{N}$, de unde, conform lemei cleştelui, deducem că

$$\lim_{n \to \infty} f(x_n) = f(x_0).$$

Aşadar f este continuă în x_0 . \square