Linear functions

Stephen Boyd

EE103 Stanford University

September 20, 2017

Outline

Linear and affine functions

Taylor approximation

Superposition and linear functions

- $ightharpoonup f: \mathbf{R}^n o \mathbf{R}$ means f is a function mapping n-vectors to numbers
- \blacktriangleright f satisfies the superposition property if for any numbers α,β and n-vectors x,y

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

- be sure to parse this very carefully!
- a function that satisfies superposition is called *linear*

The inner product function

▶ with *a* an *n*-vector, the function

$$f(x) = a^{T}x = a_1x_1 + a_2x_2 + \dots + a_nx_n$$

is the inner product function

- f(x) is a weighted sum of the entries of x
- the inner product function is linear:

$$f(\alpha x + \beta y) = a^{T}(\alpha x + \beta y)$$

$$= a^{T}(\alpha x) + a^{T}(\beta y)$$

$$= \alpha(a^{T}x) + \beta(a^{T}y)$$

$$= \alpha f(x) + \beta f(y)$$

... and all linear functions are inner products

- ▶ suppose $f: \mathbf{R}^n \to \mathbf{R}$ is linear
- ▶ then it can be expressed as $f(x) = a^T x$ for some a
- specfically: $a_i = f(e_i)$
- ▶ follows from

$$f(x) = x_1 f(e_1) + x_2 f(e_2) + \dots + x_n f(e_n)$$

Affine functions

- ▶ a function that is linear plus a constant is called affine
- general form is $f(x) = a^T x + b$, with a an n-vector and b a scalar
- ▶ a function $f: \mathbf{R}^n \to \mathbf{R}$ is affine if and only if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

holds for all α, β with $\alpha + \beta = 1$

sometimes (ignorant) people refer to affine functions as linear

Linear versus affine functions

▶ left function is linear; right is affine

Outline

Linear and affine functions

Taylor approximation

First-order Taylor approximation

- ▶ suppose $f: \mathbf{R}^n \to \mathbf{R}$
- ▶ first-order Taylor approximation of f, near point z:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$$

- $ightharpoonup \hat{f}(x)$ is very close to f(x) when x_i are all near z_i
- $ightharpoonup \hat{f}$ is an affine function of x
- can write using inner product as

$$\hat{f}(x) = f(z) + \nabla f(z)^T (x - z)$$

where n-vector $\nabla f(z)$ is the gradient of f at z,

$$\nabla f(z) = \left(\frac{\partial f}{\partial x_1}(z), \dots, \frac{\partial f}{\partial x_n}(z)\right)$$

Outline

Linear and affine functions

Taylor approximation

Regression model

Regression model

regression model is (the affine function of x)

$$\hat{y} = x^T \beta + v$$

- ightharpoonup x is a feature vector; x_i are called *regressors*
- n-vector β is the weight vector
- scalar v is the offset
- ightharpoonup scalar \hat{y} is the *prediction* (of some actual outcome or *dependent variable*, denoted y)

- y is selling price of house in \$1000
 (in some location, over some time period)
- regressor is

$$x = ({\rm house~area}, \#~{\rm bedrooms})$$
 (house area is $1000~{\rm sq.ft.})$

regression model weight vector and offset are

$$\beta = (148.73, -18.85), \quad v = 54.40$$

 \blacktriangleright we'll see later how to guess β and v from sales data

x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
0.846	1	115.00	161.37
1.324	2	234.50	213.61
1.150	3	198.00	168.88
3.037	4	528.00	430.67
3.984	5	572.50	552.66
	0.846 1.324 1.150 3.037	0.846 1 1.324 2 1.150 3 3.037 4	0.846 1 115.00 1.324 2 234.50 1.150 3 198.00 3.037 4 528.00

