Контейнеры и категории

Функциональное программирование 2023 z.

Pattern Matching B Haskell

- Сопоставление по образцам сверху вниз (рассахаривание в саѕе-оператор).
- Сопоставление с образцом слева направо.
- Образцы линейные (без повторных переменных).
- Можно также внутри let и лямбда-объявлений.

```
ff y = let (x:4:y) = map (*2) [1,2,1]
in x + 5
```


Некоторые удобные конструкции

• As-образец (аналог where для образцов):

$$f x@(y:ys) = (:) y x$$

 Ленивые образцы (связывание с образцом не влечет выполнение аргумента):

$$f \sim (x:xs) = x$$

Примеры

```
-- bottom
f x = f x

let x = f 1 in 0

let (x,y) = f 1 in 0

(\(\(x,y)\) -> 0) (f 1)

(\(\(\(x,y)\) -> 0) (f 1)

(\(\(x,y)\) -> 0) ((f 1),(f 1))

(\(\(x,y)\) -> (x:x:xs)) (f 1)
```

Теория категорий

Определение

Категория С — пара $\{O, M\}$, где О — набор объектов, М — набор стрелок (морфизмов), и выполнены следующие законы:

- ullet \forall A, B \in O \exists id_A, id_B \forall f : $A \to B(id_B \circ f = f \circ id_A = f))$ (тождественный морфизм)
- \bullet $\forall f: A \to B, g: B \to C \ \exists h: A \to C (f \circ g = h)$ (существование композиции)
- $\forall f, g, h(f \circ (g \circ h) = (f \circ g) \circ h)$ (ассоциативность композиции)

Объекты — типы; морфизмы — функции над типами.

Коммутативные диаграммы

Диаграммы для законов категории

• Треугольник указанного ниже вида означает, что

$$g \circ f = h.$$
 $A \xrightarrow{f} B$

• Пунктир указывает, что морфизм единственный.

Задача

Диаграммы не обязательно коммутативные! Единичные морфизмы опускаются.

Универсальная конструкция

Универсальная конструкция — конструкция, которая описывается только свойствами морфизмов, а не внутренними свойствами объектов, включённых в конструкцию.

Эпиморфизм — такой морфизм f, что $\forall g_1, g_2(g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2).$ Мономорфизм — такой морфизм f, что $\forall h_1, h_2(f \circ h_1 = f \circ h_2 \Rightarrow h_1 = h_2).$

Универсальные конструкции определяются с точностью до изоморфизма.

Универсальная конструкция

Универсальная конструкция — конструкция, которая описывается только свойствами морфизмов, а не внутренними свойствами объектов, включённых в конструкцию.

Эпиморфизм — такой морфизм f, что $\forall g_1, g_2(g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2).$ Мономорфизм — такой морфизм f, что $\forall h_1, h_2(f \circ h_1 = f \circ h_2 \Rightarrow h_1 = h_2).$

Универсальные конструкции определяются с точностью до изоморфизма.

Инициальный объект — такой объект, что из него есть ровно одна стрелка в любой другой. Терминальный объект — объект, в который есть ровно одна стрелка из любого другого.

Конструкторы типов

Прямое произведение и прямая сумма

Функциональный тип(экспонента) — пока без пояснений $\Gamma \times A \xrightarrow{f} B$ $\text{curry}(f) \times \text{id} \qquad \text{app}$ $[A \Rightarrow B] \times A$

Конструкторы типов

Из каждого «кандидата» на произведение есть стрелка в «оптимальное» произведение.

Алгебраические типы данных

- Структура перечисление п-ок.
- Прямое произведение: $(a, ()) \sim a, (a, b) \sim (b, a), (a, (b, c)) \sim ((a, b), c).$
- Прямая сумма: Either a void \sim a, Either a (Either b c) \sim Either (Either a b) c.
- Дистрибутивность:
 (a, Either b c) ~ Either (a, b) (a, c)

Прямая сумма + прямое произведение + дистрибутивность = полукольцо.

Пример

Начинающий программист спроектировал систему с двумя типами: int и bool — и следующими преобразованиями f, g между ними.

Какая категория соответствует его системе? Какие изменения можно внести, чтобы категория упростилась?

Системе соответствует следующая категория.

Пример

Какая категория соответствует его системе? Какие изменения можно внести, чтобы категория упростилась?

Системе соответствует следующая категория.

Чтобы ее улучшить, достаточно положить либо g False = -1, либо $f x \mid x \le 0$ = False.

Задача

Рассмотрим следующую категорию.

Построить систему типов X, Y и преобразований между ними, которая ей соответствует.

Задача

Рассмотрим следующую категорию.

Построить систему типов X, Y и преобразований между ними, которая ей соответствует.

Композиции $f.g_1$, $f.g_2$ обе могут быть равны только id_Y . Поэтому f — сюръекция. Предположим теперь, что $g_1.f=id_X$. Тогда $g_1.f.g_2=g_1=g_2$, что невозможно. Поэтому ни $g_1.f$, ни $g_2.f$ тождественными морфизмами быть не могут.

Композиции $f.h_1$, $f.h_2$ — морфизмы из X в Y. Такой морфизм на диаграмме один, это f. Поэтому $f.h_1 = f.h_2 = f.$

Продолжение задачи

Положим, что тип Y состоит ровно из одного элемента a (то есть $Y = \{a\}$). Тогда для всех $x \in X$ f(x) = a. Пусть $g_1(a) = b_1$, $g_2(a) = b_2$. Тогда композиция $g_1.f$ — это морфизм, отображающий все элементы X в b_1 , а $g_2.f$ отображает все в b_2 . Назначим $g_1.f = h_1$, $g_2.f = h_2$. Проверим существование композиций.

$$\begin{array}{llll} h_1.h_1=h_1 & & h_1.g_1=g_1 & & g_1.f=h_1 \\ h_1.h_2=h_1 & & h_1.g_2=g_1 & & g_2.f=h_2 \\ h_2.h_1=h_2 & & h_2.g_1=g_2 & & f.g_i=id \\ h_2.h_2=h_2 & & h_2.g_1=g_2 & & f.h_i=f \end{array}$$

Поскольку определенные нами преобразования являются функциями в алгебраическом смысле, ассоциативность композиции выполняется.

Рекомендации

- Ритуальная фраза про «функции в алгебраическом смысле» подходит для всех чистых функций (детерминированных). Главное при построении модели убедиться, что существуют все композиции.
- Если у объекта X есть петли (стрелки в себя), нужно убедиться, что существует композиция петли с собой, с другими петлями и со всеми входящими в X и исходящими из X стрелками.
- Чем меньше элементов содержит тип, тем проще построить модель. Если к объекту X из каждого другого объекта ведет не больше, чем одна стрелка, и петель у X нет, можно попробовать объявить X одноэлементным типом. Это самое простое решение, но не обязательно оно подойдет.

Это категория или нет?

Заведомо $g_i.f = id_Y$ (других морфизмов из Y в Y нет). Поэтому f — инъекция. Притом h.f = f, что означает, что h совпадает c id_X на codom(f) (т.е. если $\exists w(f(w) = v)$, то h(v) = v).

Известно, что $h \neq id_X$, то есть $\exists \alpha'(h(\alpha') \neq \alpha')$. Поэтому $\alpha' \notin codom(f)$, и f — не сюръекция. Значит, композиции $f.g_i$ не могут быть равны id_X (в частности, ни одна из них не может принимать значение α'), следовательно, обе они равны h.

Поскольку $g_1 \neq g_2$, то $\exists \alpha(g_1(\alpha) \neq g_2(\alpha))$. Поскольку f инъективна, то $f(g_1(\alpha)) \neq f(g_2(\alpha))$. С другой стороны, из рассуждений выше $f(g_1(\alpha)) = h(\alpha) = f(g_2(\alpha))$. Противоречие.

Другие преобразования типов

Что такое в терминах категорий список [а]?

- Любой тип может порождать список.
- Структура преобразований над простыми типами переносится на структуру преобразований над списками.

Списки — это преобразование между категориями!

Определение

Даны категории C_1, C_2 . Функтор F — преобразование $F: C_1 \to C_2$ такое, что

- если $f: a \to b$ морфизм C_1 , то $F(f): F(a) \to F(b)$ морфизм C_2 ;
- $F(id_X) = id_{F(X)}$;
- $F(f \circ g) = F(f) \circ F(g)$.

Функторы

Функтор F а — полиморфная структура, снабжённая функцией fmap (или <\$>):

Логичное требование: если функция ничего не делает, её навешивание на структуру не должно ничего менять.

fmap id = id

Функторы в Haskell

Определение

```
class Functor f where
fmap :: (a -> b) -> f a -> f b
```

Примеры

```
-- списки
instance Functor [] where
fmap = map
-- Maybe
instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing
```

fmap можно заменить инфиксным <\$>.

ФЯ как исчисление

- Строим тип требуемой полиморфной структуры в виде формулы логики.
- Строим вывод этого типа, и заодно пытаемся извлечь из вывода построение.
- **3** Если построение неоднозначно, тогда тестируем варианты построения с помощью законов.
- Если построение всё ещё неоднозначно, значит, их несколько. Только на этом этапе требуется согласовать конструкцию с библиотечной.
- PROFIT! Почти всегда получаем корректно определённую структуру, 100% согласованную с дизайном языка.

Функтор State s

```
-- F a раскрываем как s -> (a, s)
fmap :: (a -> b) -> (s -> (a, s)) -> (s -> (b, s))
```

В виде логической формулы:

$$(A \Rightarrow B) \Rightarrow ((S \Rightarrow A \& S) \Rightarrow (S \Rightarrow B \& S)).$$

Функтор State s

В виде логической формулы:

$$(\mathsf{A}\Rightarrow\mathsf{B})\Rightarrow((\mathsf{S}\Rightarrow\mathsf{A}\;\&\;\mathsf{S})\Rightarrow(\mathsf{S}\Rightarrow\mathsf{B}\;\&\;\mathsf{S})).$$

Два возможных способа доказательства:

- $\f x s \rightarrow let (x1, s1) = x s in (f x1, s)$
- $f x s \rightarrow let (x1, s1) = x s in (f x1, s1)$

Какой из них подойдёт для построения правильного функтора? Здравого смысла у нас нет, есть только логика.

Функтор State s

В виде логической формулы:

$$(\mathsf{A}\Rightarrow\mathsf{B})\Rightarrow((\mathsf{S}\Rightarrow\mathsf{A}\;\&\;\mathsf{S})\Rightarrow(\mathsf{S}\Rightarrow\mathsf{B}\;\&\;\mathsf{S})).$$

Два возможных способа доказательства:

- $f x s \rightarrow let (x1, s1) = x s in (f x1, s)$
- $f x s \rightarrow let (x1, s1) = x s in (f x1, s1)$

Какой из них подойдёт для построения правильного функтора? Здравого смысла у нас нет, есть только логика.

(подсказка: законы)

Функтор Either e I

```
-- F a раскрываем как Either e a
      fmap :: (a -> b) -> (Either e a) -> (Either e b)
      Требуемая формула типа: (A \Rightarrow B) \Rightarrow ((E \lor A) \Rightarrow (E \lor B)).
*A \Rightarrow B
                                                    тип f
  *E \lor A
                                                  тип а
     *E
                                                                     f z2
       E \vee B Left z1 E \vee B Right (f z2)
    E \vee B either (\lambda z1 \rightarrow Left z1) (\lambda z2 \rightarrow Right (f z2)) a
  (E \lor A) \Rightarrow (E \lor B) \lambda a \rightarrow \text{either } (\lambda z1 \rightarrow \text{Left } z1) \ (\lambda z2 \rightarrow \text{Right } (f z2)) \ a
(A \Rightarrow B) \Rightarrow ((E \lor A) \Rightarrow (E \lor B))
                             \lambda f \rightarrow (\lambda a \rightarrow \text{either } (\lambda z1 \rightarrow \text{Left } z1) \ (\lambda z2 \rightarrow \text{Right } (f \ z2)) \ a)
```


Примеры функторов

Задача

Может ли аппликация <\$> для списков быть определена как fmap1, fmap2, fmap3? Если нет, то какие законы функторов нарушаются?

Бифункторы

```
class Bifunctor f where
  bimap :: (a -> c) -> (b -> d) -> f a b -> f c d
  bimap g h = first g.second h
  first :: (a -> c) -> f a b -> f c b
  first g = bimap g id
  second :: (b -> d) -> f a b -> f a d
  second = bimap id
```


Функции > 1 аргумента

Проблема:

```
?fmap :: (a -> (b -> c)) -> F a -> ???
```

Получается алгебраическая структура «не до конца вычисленных» значений: F (b -> c). Как вычислять её дальше?

Функции > 1 аргумента

Проблема:

Получается алгебраическая структура «не до конца вычисленных» значений: F (b -> c). Как вычислять её дальше? Понадобится функция типа:

Функции > 1 аргумента

Понадобится функция типа:

С помощью такой аппликации можно обрабатывать функции какого угодно числа аргументов, если добавить ещё «стандартный способ» погружения в алгебру:

pure :: a -> F a

Аппликативные функторы

Определение

```
class Functor f => Applicative f where
pure :: a -> f a
<*> :: f(a -> b) -> f a -> f b
```

Примеры

```
-- Списки
instance Applicative [] where
pure x = [x]
fs <*> xs = [f x | f <- fs, x <- xs]
-- Maybe
instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
(Just f) <*> a = f <$> a
```


Законы аппликативов

Пока смотрим:

```
pure id <*> x = x
pure f <*> pure x = pure (f x)
u <*> pure x = pure (\f -> f x) <*> u
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
```

Алгебраически естественно выводятся из альтернативного представления аппликативных функторов через т.н. «тензорное умножение» на моноидальной структуре.

Моноидальная структура

```
class Functor f => Monoidal f where
  (**) :: f a -> f b -> f (a,b)
  unit :: f ()
```

Законы моноидальных функторов:

```
u ** unit = u = unit ** u

fmap (f * g) (u ** v) = fmap f u ** fmap g v

u ** (v ** w) = (u ** v) ** w
```

Правила перевода:

```
pure x = fmap (const x) unit
fs <*> xs = fmap (uncurry ($)) $ fs ** xs
```


единственное.

Аппликатив для State s

Запишем подходящий тип:

$$(S\Rightarrow (A\Rightarrow B)\ \&\ S)\Rightarrow (S\Rightarrow A\ \&\ S)\Rightarrow (S\Rightarrow B\ \&\ S)$$
 Начнём вывод:

*
$$S \Rightarrow (A \Rightarrow B) \& S$$
 тип б

* $S \Rightarrow A \& S$ тип а

* $S \Rightarrow A \& S$ тип в

...и непонятно, что применять к s: f или а?

($S \Rightarrow (A \Rightarrow B) \& S) \Rightarrow (S \Rightarrow A \& S) \Rightarrow (S \Rightarrow B \& S)$

Аппликатив для Either e

```
*A \Rightarrow B
                                                          тип f
   *E \lor A
                                                        тип а
      *E
                                  7.1 *A
                                          *F
                                                                     v1 *A \Rightarrow B
                                                                                                           v2z2
                                             E \vee B Left v1 | E \vee B Right (v2 z2)
                                         \overline{E \vee B} either (\lambda v1 \rightarrow Left v1) (\lambda v2 \rightarrow Right (v2 z2)) f
         E \vee B Left z1
                                         either (\lambda z1 \rightarrow \text{Left } z1) (\lambda z2 \rightarrow
      E \vee B
                                              (either (\lambda v1 \rightarrow \text{Left } v1) (\lambda v2 \rightarrow \text{Right } (v2 z2) \text{ f})) a
   (E \lor A) \Rightarrow (E \lor B)
                                                                            тип \lambda a \rightarrow (either ...)
(\overline{E \lor (A \Rightarrow B)}) \Rightarrow ((E \lor A) \Rightarrow (E \lor B))
                                                                                   тип \lambdaf a \rightarrow
    either (\lambda z1 \rightarrow \text{Left } z1)
```

Не считая неудобной кодировки для разбора случаев, вывод простой и прямолинейный.

 $(\lambda z2 \rightarrow (\text{either } (\lambda v1 \rightarrow \text{Left } v1) \ (\lambda v2 \rightarrow \text{Right } (v2 \ z2) \ f))$

Упражнения

```
-- K, S определяются как обычно
f x y = K (*) 'S' (+) x 'S' (+) y
> f 1 2 3
```

```
> [(*0),(+100),(-2)] <*> [1,2,3]
> (,,) <$> "dog" <*> "cat" <*> "rat"
> (\a b c ->[a,b,c]) <$> (+5) <*> (*3) <*> (/2) $ 7
```


Может ли аппликативный функтор на списках задаваться операциями fapp1, fapp2? Если нет, какие законы аппликативных функторов нарушаются?

```
fapp1 [] xs = []
fapp1 (f:fs) (x:xs) = ((f x):(fapp1 fs xs))
fapp2 [] xs = []
fapp2 [f] xs = map f xs
fapp2 (f:fs) xs = fapp2 fs (map f xs)
```


Продолжение задачи

Ещё раз рассмотрим определение аппликации в контексте списков.

```
pure x = [x]
fapp1 [] xs = []
fapp1 (f:fs) (x:xs) = ((f x):(fapp1 fs xs))
```

Эта аппликация нарушает закон сохранения единичного элемента.

```
> [\x -> x] 'fapp1' [1,2,3]
[1]
```


Продолжение задачи

Ещё раз рассмотрим определение аппликации в контексте списков.

```
pure x = [x]
fapp1 [] xs = []
fapp1 (f:fs) (x:xs) = ((f x):(fapp1 fs xs))
```

Эта аппликация нарушает закон сохранения единичного элемента.

```
> [\x -> x] 'fapp1' [1,2,3]
[1]
```

Можно переопределить pure так, чтобы fapp1 стало корректной аппликацией.

```
pure x = [x, x..]
```


Еще о законах аппликативов

Если выполняются два первых закона, то четвертый всегда нужно проверять для списка функций, содержащего больше, чем один элемент. Например, рассмотрим определение:

```
fapp3 [] xs = []
fapp3 (f:fs) xs = map f xs
```

Четвертый закон:

fарр3 fs [x] должно быть равно fapp3 [$h \rightarrow h x$] fs

Положим fs = (f:fs'), тогда fapp3 fs [x] = [(fx)] fapp3 $[\ h \rightarrow h \ x]$ $fs = map (\ h \rightarrow h \ x)$ fs

Видно, что списки получаются разные. Чтобы убедиться в этом, достаточно рассмотреть fs = [(+1), (+2)], x = 0.

Модальные логики

Модальность «не	обходимости»: $\square A$ (A выполнено во всех
достижимых мир	ax).
Правила вывода,	общие для большинства модальных логик
А — теорема	$\Box(A\RightarrowB)$
————————————————————————————————————	$\Box A \Rightarrow \Box B$
Ничего не напомі	инают?

Модальные логики

Модальность «необходимости»: ПА (А выполнено во все
достижимых мирах).

Правила вывода, общие для большинства модальных логик:

$$A \longrightarrow \text{теорема}$$
 $\Box (A \Rightarrow B)$ $\Box A \Rightarrow \Box B$ Ничего не напоминают?

Аппликация! (и это логичная причина так называемого «applicative monad proposal» в Haskell)

Из интуиционистской логики можно перейти к модальной простым гомоморфизмом µ:

$$\mu(A) = \Box A (A - переменная)$$

$$\mu(\Phi\Rightarrow\Psi)=\square(\mu(\Phi)\Rightarrow\mu(\Psi))$$

$$\mu(\Phi \vee \Psi) = \mu(\Phi) \vee \mu(\Psi)$$

$$\mu(\Phi \And \Psi) = \mu(\Phi) \And \mu(\Psi)$$

Помимо правил аппликативов, в полученной логике выполнены:

$$\Box A \Rightarrow A, \Box A \Rightarrow \Box \Box A$$
. О смысле этих правил узнаем далее

Модальная логика S4

Определение S4

- Модальность \square «необходимость». Правило вывода:
 - А теорема

Аксиомы:

- $\bullet \Box A \Rightarrow A;$
- $\Box A \Rightarrow \Box \Box A$;
- $\Box(A \Rightarrow B) \Rightarrow \Box A \Rightarrow \Box B$
- Двойственная модальность \lozenge «возможность».
 - $\Diamond A \Leftrightarrow \neg \Box \neg A$. Выводимо $A \Rightarrow \Diamond A$.

Модели S4 — модели Крипке.

Лабораторная работа 2 (любой функциональный язык)

- По описанию графа в языке Graphviz автоматически проверить, описывает ли он категорию как множество преобразований над, самое большее, множествами из п элементов, где п это максимальное число входящих стрелок в некоторый объект.
- По записи терма в формате Haskell, содержащей аппликацию, абстракцию, пары и проекции, построить редуцированный терм, эквивалентный ему. Исходный терм не обязательно корректно типизируется.
- По формуле в минимальной логике и входному числу п проверить, существует ли контрпример для этой формулы в моделях Крипке максимальной высоты п.
- По λ-терму, записанному в формате Haskell, построить CPS-термы в стиле Call-by-Name и Call-by-Value.
- По записи терма в формате Haskell, содержащей аппликацию, абстракцию, пары и проекции, построить его тип либо вывести сообщение о том, что терм не типизируется.
- (на двоих) По λ-терму построить его представление в комбинаторах, с использованием ограниченного η-преобразования.
- (на двоих) По описанию ADT в языке Haskell автоматически породить реализацию функтора для него.