Санкт-Петербургский Политехнический университет Петра Великого

Институт Прикладной Математики и Механики Кафедра «Прикладная Математика и Информатика»

Отчет

По лабораторной работе № 2 По Дисциплине «Математическая статистика»

Выполнил:

Студент Селянкин Федор

Группа 3630102/70301

Проверил:

к.ф. – м.н., доцент

Баженов Александр Николаевич

Содержание

Постановка задачи	3
Теория	3
Распределения	3
Статистические характеристики	3
Характеристики рассеяния	4
Реализация	4
Результаты	4
Нормальное распределение	4
Распределение Коши	4
Распределение Лапласа	4
Распределение Пуассона	5
Равномерное распределение	5
Литература	5
Обсуждения	5
Список таблиц:	
Таблица 1 Нормальное распределение	4
Таблица 2 Распределение Коши	4
Таблица ЗРаспределение Лапласа	4
Таблица 4Распределение Пуассона	5
Таблица 5 Равномерное распределение	5

Постановка задачи

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши C(x, 0, 1)
- Распределение Лапласа $L(x, 0, \frac{1}{\sqrt{2}})$
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Стенерировать выборки размером 10, 100 и 1000 элементов.

Для каждой выборки вычислить следующие статистические характеристики положения данных: \overline{x} , med x, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$\mathbf{D}(\mathbf{z}) = \overline{\mathbf{z}^2} - \overline{\mathbf{z}}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

Теория

Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{-x^2}{2}}$$
 (3)

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

• Распределение Лапласа

$$L(\mathbf{x}, 0, \frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}|\mathbf{x}|}$$
 (5)

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10}$$
 (6)

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при } |x| \le \sqrt{3} \\ 0 & \text{при } |x| > \sqrt{3} \end{cases}$$
 (7)

Статистические характеристики

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$med \ x = \begin{cases} x_{(l+1)} & \text{при } n = 2l + 1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при } n = 2l \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

• Полусумма квартилей Выборочная квартиль z_p порядка р определяется формулой.

$$m{z_p} = egin{cases} m{x_{(np)+1}} & \text{при } m{np} \ m{x} \end{pmatrix}$$
 при $m{np}$ дробном, (11) $m{x_{(np)}} & \text{при } m{np} \end{pmatrix}$ целом.

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усеченное среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (13)

Характеристики рассеяния

• Выборочная дисперсия

$$\mathbf{D} = \frac{1}{n} \sum_{i=1}^{n} (x_{(i)} - \overline{x})^2$$
 (14)

Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm, с использованием дополнительных библиотек для отображения и расчетов. Исходный код лабораторной выложен на веб-сервисе GitHub [2].

Результаты

Нормальное распределение

n		\overline{x}	med x	Z_R	Z_Q	z_{tr}	
10	Е	0.01	0	0	-0.3	0	
	D	0.096971	0.142454	0.193487	0.113430	0.166238	
100	Е	0	0	0	-0.01	0	
	D	0.010519	0.015980	0.103325	0.012640	0.011316	
1000	Е	0	0	0	0	0	
	D	0.000981	0.001644	0.062102	0.001258	0.001219	
$\overline{x} < z_{tr} < z_0 < med \ x < z_R$							

Таблица 1 Нормальное распределение

Распределение Коши

n		\overline{x}	med x	Z_R	Z_Q	z_{tr}	
10	Е	0	0	0	-1	0	
	D	70974.612820	0.306827	31123.008220	5.088886	0.833265	
100	Е	0	0	0	-0.04	0	
	D	340057.722086	0.025110	4790055.844103	0.050678	0.025347	
1000	Е	0	0	0	0	0	
	D	3152.073514	0.002294	36577755.775665	0.005139	0.002566	
$med\ x < z_{tr} < z_Q < \overline{x} < z_R$							

Таблица 2 Распределение Коши

Распределение Лапласа

n		\overline{x}	med x	Z_R	z_Q	z_{tr}	
10	Е	0	0	0	-0.3	0	
	D	0.101021	0.076025	0.446803	0.123058	0.098940	
100	Е	0	0	0	-0.02	0	
	D	0.010233	0.005696	0.363117	0.010345	0.005857	
1000	Е	0	0	0	-0.002	-0.0007	
	D	0.001074	0.000531	0.390686	0.001000	0.000597	
$med\ x < z_{tr} < z_0 < \overline{x} < z_R$							

Таблица ЗРаспределение Лапласа

Распределение Пуассона

n		\overline{x}	med x	z_R	z_Q	z_{tr}	
10	Е	10.0	10.0	10.0	10.0	11.0	
	D	1.008408	1.484790	1.740384	1.231344	1.469999	
100	Е	10.0	9.9	10.0	10.0	9.9	
	D	0.099818	0.224111	0.955558	0.156679	0.118266	
1000	Е	10.0	10.000000	11.0	9.9	9.9	
	D	0.009958	0.000000	0.663388	0.004436	0.011769	
$med\ x < z_Q < \overline{x} < z_{tr} < z_R$							

Таблица 4Распределение Пуассона

Равномерное распределение

n		\overline{x}	med x	Z_R	Z_Q	z_{tr}	
10	Е	0	0	0	-0.31	0	
	D	0.099079	0.227962	0.043533	0.146461	0.228256	
100	Е	0	0	0	-0.015	0	
	D	0.010254	0.028950	0.000637	0.013887	0.019951	
1000	Е	0.0011	0	-0.000076	-0.002	0	
	D	0.000970	0.002742	0.000006	0.001472	0.001991	
$z_R < \overline{x} < z_0 < z_{tr} < med \ x$							

Таблица 5 Равномерное распределение

Литература

- 1. Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: .Иван Федоров.,2001. 592 с., илл.
- 2. Ссылка на репозиторий GitHub https://github.com/SelyankinFyodor/math-statistics/tree/master/Lab2
- 3. Распределение Коши https://en.wikipedia.org/wiki/Cauchy distribution

Обсуждения

С увеличением мощности выборки величины среднее и усеченное среднее имеют все меньшее рассеяние (с увеличением мощности в 10 раз, дисперсия уменьшается в 10 раз)[3]. Для Распределения Коши в качестве характеристики положения не разумно брать среднее или полусумму экстремалей.