Hospital Readmissions EDA & Modeling
Pablo Diaz
M.Sc Business
Analytics



**Great River Medical Center** 

### AGENDA



- 1. PROBLEM STATEMENT
- 2. DATASETS
- 3. DATA EXPLORATION
- 4. FEATURE SELECTION
- 5. MODEL DEPLOYMENT AND EVALUATION
- 6. CONCLUSION



# PROBLEM STATEMENT



#### **COST OF ADMISSIONS**

The cost of readmissions within 30 days is large for patient and hospital, ranging from \$10,900 to \$15,200

#### TOP CAUSES OF HOSPITAL READMISSION

1. Septicemia

3. Diabetes

2. Heart Failure

4. COPD



## DATASETS



| FILE NAME                     | ROWS                | COLUMNS | DESCRIPTION               |
|-------------------------------|---------------------|---------|---------------------------|
| diabetesHospitalInfoTrain.csv | 7500                | 16      | information gathered at   |
|                               | , 555               |         | the hospital i.e number   |
| diabetesHospitalInfoTest.csv  | nfoTest.csv 2500 16 |         | of lab procedures and     |
|                               |                     |         | diagnosis descriptions    |
| diabetesMedsTrain.csv         | 7500                | 23      | patients medicine         |
| arabetesivieus iraini.esv     | 7500                | 20      | information i.e patient   |
| diabetesMedsTest.csv          | 2500                | 23      | is taking a specific drug |
| and betesivieds rest.esv      | 2300                |         | like Metformin            |
| diabatas DationtTrain cov     | 7500                | 7       | patients' demographic     |
| diabetesPatientTrain.csv      | 7300                | /       | and insurance             |
| diabetesPatientTest.csv       | 2500                | 7       | information i.e race,     |
| diabetesi atientiest.csv      | 2300                | /       | gender, age, weight       |



# DATA<br/>EXPLORATION



| FILE NAME           | ROWS   | COLUMNS | DESCRIPTION       |
|---------------------|--------|---------|-------------------|
| patientsComined.csv | 10.000 | 45      | All data from the |
|                     | 10,000 |         | previous datasets |

<sup>\*</sup> Creating train/test column to distinguish observations

#### DATA PREPARATION

- \* Removed columns with only one value or +95% of observations concentrated in 1 value (Low cardinality)
- \* Discarded features diagnosis 2 and 3 since we don't know if they were readmitted before 30 days after the first diagnosis
- \* Discarded Discharge Disp. values related to patients' death and Hospice
- \* Divided columns into factor and numeric
- \* Checked for outliers



# DATA<br/>EXPLORATION



#### MISSING VALUES IMPUTATION

**NUMERIC** 

No N.A. values found in the dataset

**FACTOR** 

Vtreat as an algorithm for feature manipulation due to the

low quantity of features with missing values

#### **FEATURE SELECTION**

- \* Splited training data into treatment plan data (10%), training data (72%) and validation data (18%)
- \* Applied treatment plan to perform feature engineering
- \* Applied Boruta feature selection algorithm (random forest model & shadow feature set) to identify important features.



<sup>\*</sup>Discarded redundant and duplicated features

## DATA EXPLORATION



### **CORRELATION MATRIX**





## FEATURE SELECTION



### BOROUTA FEATURE IMPORTANCE







### **MODEL LIST**

LOGISTIC REGRESION

**DECISION TREE** 

NAIBE BAYES

**RANDOM FOREST** 

**NEURAL NETWORKS** 

**GRADIENT BOOSTING** 

- \* Models trained and evaluated with training and validation data sets.
- \* Performed backward stepwise regression to eliminate noise in LR model.





### **ACCURACY COMPARISON**

Models: LR, DT, RF, NB, NN, GB

Number of resamples: 10

#### Accuracy

|    | Min.      | 1st Qu.   | Median    | Mean      | 3rd Qu.   | Max.      | NA's |
|----|-----------|-----------|-----------|-----------|-----------|-----------|------|
| LR | 0.6337761 | 0.6359758 | 0.6495696 | 0.6482410 | 0.6559080 | 0.6736243 | 0    |
| DT | 0.5958254 | 0.6212663 | 0.6324774 | 0.6298212 | 0.6365800 | 0.6565465 | 0    |
| RF | 0.6349810 | 0.6399431 | 0.6454373 | 0.6467222 | 0.6527514 | 0.6653992 | 0    |
| NB | 0.5920304 | 0.6200190 | 0.6283270 | 0.6296322 | 0.6440421 | 0.6546490 | 0    |
| NN | 0.6242884 | 0.6364510 | 0.6444867 | 0.6482475 | 0.6589112 | 0.6793169 | 0    |
| GB | 0.6280835 | 0.6389546 | 0.6425856 | 0.6503333 | 0.6630237 | 0.6787072 | 0    |

#### Kappa

|       | Min.     | 1st Qu.   | Median    | Mean      | 3rd Qu.   | Max.      | NA's |
|-------|----------|-----------|-----------|-----------|-----------|-----------|------|
| LR 0. | 1968504  | 0.2109614 | 0.2386247 | 0.2343025 | 0.2523625 | 0.2847358 | 0    |
| DT 0. | .0797967 | 0.1563945 | 0.1845117 | 0.1711788 | 0.2017906 | 0.2251322 | 0    |
| RF 0. | .1793672 | 0.1975395 | 0.2083110 | 0.2077823 | 0.2174913 | 0.2488763 | 0    |
| NB 0  | .1307967 | 0.1907341 | 0.2157001 | 0.2132613 | 0.2391249 | 0.2740497 | 0    |
| NN O  | .1849879 | 0.2158363 | 0.2376605 | 0.2441968 | 0.2731321 | 0.3148104 | 0    |
| GB 0. | .1873171 | 0.2206987 | 0.2270323 | 0.2420725 | 0.2702509 | 0.3042001 | 0    |





### **ROC CURVE**







### **ROC CURVE**







#### **CONFUSION MATRIX**

#### **GRADIENT BOOSTING**

#### Reference Prediction FALSE TRUE FALSE 631 300 TRUE 167 219

Sensitivity: 0.7907 Specificity: 0.4220 Pos Pred Value: 0.6778 Neg Pred Value: 0.5674

Prevalence: 0.6059
Detection Rate: 0.4791
Detection Prevalence: 0.7069

Balanced Accuracy: 0.6063

#### **RANDOM FOREST**

#### Reference Prediction FALSE TRUE FALSE 699 360 TRUE 99 159

Sensitivity: 0.8759
Specificity: 0.3064
Pos Pred Value: 0.6601
Neg Pred Value: 0.6163
Prevalence: 0.6059

Detection Rate: 0.5308
Detection Prevalence: 0.8041
Balanced Accuracy: 0.5911





#### **CONFUSION MATRIX**

#### **NEURAL NETWORKS**

## LOGISTIC REGRESSION

Reference Prediction FALSE TRUE FALSE 611 304 TRUE 187 215

Sensitivity: 0.7657 Specificity: 0.4143 Pos Pred Value: 0.6678 Neg Pred Value: 0.5348

Prevalence: 0.6059 Detection Rate: 0.4639

Detection Prevalence: 0.6948

Balanced Accuracy: 0.5900

Reference Prediction no yes no 745 416 yes 53 103

Sensitivity: 0.9336
Specificity: 0.1985
Pos Pred Value: 0.6417
Neg Pred Value: 0.6603
Prevalence: 0.6059

Detection Rate: 0.5657 Detection Prevalence: 0.8815 Balanced Accuracy: 0.5660





#### RANDOM FOREST FEATURE IMPORTANCE



<sup>\*</sup> Top 100 patients with highest probability of readmission with probabilities ranging 66.4% – 87.2%





### NUMBER OF LAB PROCEDURES







### NUMBER OF LAB PROCEDURES







### AGE OF PATIENTS







### AGE OF PATIENTS







### **NUMBER OF MEDICATIONS**







### **NUMBER OF MEDICATIONS**







### NUMBER OF DIAGNOSES







### NUMBER OF DIAGNOSES







### **NUMBER OF INPATIENT**







### **NUMBER OF INPATIENT**







### TIME IN THE HOSPITAL







### TIME IN THE HOSPITAL







### **TOP WORDS IN DIAGNOSIS**







#### TOP WORDS IN DIAGNOSIS





### CONCLUSION



In order to decrease readmission rates for diabetic patients, hospitals should focus on several factors

- \* Monitoring the number of laboratory procedures performed on a patient, as a higher number of procedures can indicate underlying health concerns and increase the risk of readmission
- \* Pay attention to the age of the patient, as older patients are more susceptible to developing additional health conditions that can lead to complications and readmission.
- \* Number of medications a patient is taking should be monitored, as patients taking a higher number of medications are more likely to be readmitted.
- \* Patients with multiple diagnoses and inpatient admissions are at a higher risk of readmission
- \* Hospitals should monitor comorbidities such as heart disease, COPD, bronchitis, pneumonia, and tachycardia in diabetic patients, as these conditions can lead to complications and readmission

By focusing on these factors, hospitals can help decrease readmission rates for diabetic patients and improve overall health outcomes.





Questions pdiaz@student.hult.edu



**Great River Medical Center**