Math 108B Homework 3

Rad Mallari

February 22, 2022

Let V be an inner product space over F, and $T \in \mathcal{L}(V)$

1 Problem 1

Prove that if U = range (T), then $U^{\perp} = \text{null } T^*$.

Proof. Suppose $T \in \mathcal{L}(V, W)$, and let $U = \max T$. By a previous result,

$$w \in \text{null } T^* \Leftrightarrow T^*w = 0$$

where $w \in W$, then

$$w \in \text{null } T^* \Leftrightarrow \langle v, T^*w \rangle = 0 \quad \forall v \in V$$

$$w \in \text{null } T^* \Leftrightarrow \langle Tv, w \rangle = 0 \quad \forall v \in V$$

$$w \in \text{null } T^* \Leftrightarrow w \in (\text{range } T)^{\perp} = (U)^{\perp}$$

Thus we have $(U)^{\perp} = \text{null } T^*$.

Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that P is an orthogonal projection if and only if P is self-adjoint.

Proof. For one direction, we assume that P is a orthogonal projection. Then we use it's symmetry, denoted by P_u , where $u \in U$ and taking $w \in U^{\perp}$, $v \in V \Rightarrow v = u + w$. Taking two arbitrary v we have $v_1 = u_1 + w_1$ and $v_2 = u_2 + w_2$ which results in

$$\langle Pv_1, v_2 \rangle = \langle u_1, u_2 + w_2 \rangle$$

$$= \langle u_1 + u_2 \rangle + \langle u_1 + w_2 \rangle$$

$$= \langle u_1, u_2 \rangle$$

$$= \langle u_1, u_2 \rangle + \langle w_1, u_2 \rangle$$

$$= \langle u_1, w_1, u_2 \rangle$$

$$= \langle u_1, Pv_2 \rangle$$
(1)

Hence $P = P^*$ and P is self-adjoint. For the other direction, we suppose that P is self-adjoint. Then taking $v \in V$, we know that $P(v - Pv) = Pv - P^2v = 0$ meaning

$$v - Pv \in \text{null } P = (\text{range } P^*)^{\perp} = (\text{range } P)^{\perp}$$

by the homework, and we can manipulate to get

$$v = Pv + (v - Pv)$$

3 Problem 3

Prove that if T is normal, then range $T = \text{range } T^*$ **Proof.** Since T is normal we know that

range
$$T = (\text{null } T^*)^{\perp} = (\text{null } T)^{\perp} = \text{range } T^*$$

Prove that if T is normal, then

$$\operatorname{null}\, T^k = \operatorname{null}\, T \quad \text{and} \quad \operatorname{range}\, T^k = \operatorname{range}\, T$$

for every positive integer k.

Proof. If k=1, then this is trivial, and now since k is a positive integer, we consider $k\geq 2$. For the first, we know that if $v\in \operatorname{null} T$, then $T^kv=T^{k-1}(Tv)=T^{k-1}0=0$. Therefore, $v\in \operatorname{null} T^k$ and so $\operatorname{null} T\subset \operatorname{null} T^k$. Similarly, for $TT^*=T^*T$, we follow

$$\langle T^*T^{k-1}v, T^kT^{k-1} \rangle = \langle T^*T^{k-1}v, T^{k-1} \rangle$$

$$= \langle TvT^{k-1} \rangle$$

$$= 0$$
(2)

This implies $T^*T^{k-1}v$ is orthogonal, meaning $T^{k-1}v$ is orthogonal by 7.4. By way of induction, $v \in \text{null } T^{k-1} \subset \text{null } T$ proves $\text{null } T^k = \text{null } T$. For range T, we know range $T = Tv \quad \forall v \in V$. So, for $v \in \text{range } T^k$, there exists $w \in V$ such that $T^kw = V$ implying

$$V = T^k w = (T^{k-1})Tw \Rightarrow v \in \text{range } T$$

This result shows that range $T^k \subset \text{range } T$, now using

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

we get

$$\dim \operatorname{range} T^k = \dim V - \dim \operatorname{null} T^k$$

$$= \dim V - \dim \operatorname{null} T$$

$$= \dim \operatorname{range} T$$

$$(3)$$

So we conclude that range $T^k = \text{range } T$.

Prove that there does not exist a self-adjoint operator $T \in \mathcal{L}(\mathbb{R}^3)$ such that T(1,2,3) = (0,0,0) and T(2,5,7) = (2,5,7)

Proof. By way of contradiction, we suppose $T \in \mathcal{L}(\mathbb{R}^3)$ where T(1,2,3) = (0,0,0) and T(2,5,3) = (2,5,7). Using $Tu = \lambda u$, we find the eigenvector (1,2,3) has $\lambda_1 = 0$ and (2,5,7) has $\lambda_2 = 1$. We assume that the corresponding eigenvectors of T are orthogonal such that for $\alpha = \lambda_1 = C$, $\beta = \lambda_2 = 1$, and u = (1,2,3), v = (2,5,7)

$$(\alpha - \beta)\langle u, v \rangle = 0$$

Because $\langle u, v \rangle \neq 0$, T is not a self-adjoint operator.

6 Problem 6

Give a counterexample to show that the product of two self-adjoint operators is not necessarily self-adjoint.

Proof. We begin by letting $S, T \in \mathcal{L}(V^2)$ be two operators with matrices

$$M(S) = \begin{bmatrix} 2 & 3 \\ 3 & 7 \end{bmatrix} \qquad M(T) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

So $M(S^*) = S$ and $M(J^*) = T$. So,

$$M(S) \cdot M(T) = \begin{bmatrix} 3 & 3 \\ 2 & 7 \end{bmatrix} \neq \begin{bmatrix} 3 & 2 \\ 3 & 7 \end{bmatrix}$$

and the product is not necessarily self-adjoint.

7 Problem 7

Suppose $F = \mathbb{C}$. Prove that a normal operator on V is self-adjoint if and only if all its eigenvalues are real.

Proof. Letting $T \in \mathcal{L}(V)$ be normal. If T is self-adjoint then every corresponding eigenvalue must be real by 7.1. Now, suppose all the eigenvalues of a normal $T \in \mathcal{L}(V)$ are real. By 7.9, we know V gives us an orthonormal basis of the respective eigenvectors of T, specifically, $(e_1, ..., e_n) \in V$. From this we obtain a diagonal matrix for T, and T^* gives us a diagonal matrix as well. This implies that T and T^* commute and so T must be self-adjoint. \square

Suppose $F = \mathbb{C}$ and T is a normal operator on V. Prove that there is a $S \in \mathcal{L}(V)$ such that $T = S^2$.

Proof. Letting $T \in \mathcal{L}(V)$ be a normal operator on the complex, inner-product space V. By 7.10, we know the orthonormal basis $(e_1, ..., e_n)$ of V consists of eigenvectors of T such that $T(e_j) = \lambda_{j\frac{1}{2}}e_j$ such that each $\lambda_{j\frac{1}{2}}$ represents the square root at every λ_j of T. Then,

$$T(e_j) = (\lambda_{j^{\frac{1}{2}}} e_j)(\lambda_{j^{\frac{1}{2}}} e_j)$$

$$= (\lambda_{j^{\frac{1}{2}}} e_j)^2$$
(4)

implies $T = S^2$.

Prove that if T is a positive operator on V, then T^k is positive for every positive integer k.

Proof. Letting $T \in \mathcal{L}(V)$ be a positive operator on V, for an arbitrary $k \in \mathbb{N}$ (positive integers), implies that T^k is self-adjoint by 7.24. Now looking at the case for when k is even we have that k = 2n for $n \in \mathbb{N}$. By definition of positive operators, yields

$$\langle T^k v \rangle = \langle T^{2n} v, v \rangle$$

$$= \langle T^n \cdot T^n v, v \rangle$$

$$= \langle T^n, T^n v \rangle$$

$$\geq 0, \quad \forall v \in V$$

$$(5)$$

Hence T^k is positive. Now for the case of when k is odd, we know k = 2n + 1 for some $n \in \mathbb{N}$. By a similar process as the even case we have

$$\langle Tv, v \rangle = \langle T^{2n+1}v, v \rangle$$

$$= \langle T(T^{2n}v), v \rangle$$

$$= \langle T(T^n \cdot T^n)v, v \rangle$$

$$= \langle T(T^n)v, T^n v \rangle$$

$$> 0 \quad \forall v \in V$$

$$(6)$$

And again, $T > 0 \Rightarrow T^k$ is positive. So for both cases T^k is positive for all $k \in \mathbb{N}$.

Suppose T is a positive operator on V. Prove that T is invertible if and only if $\langle Tx, x \rangle$ is positive for $x \in V \setminus \{0\}$.

Proof. Letting T be a positive operator on V, we assume that T is invertible. Also, letting $x \in V \setminus \{0\}$ we have, by definition, a unique inverse of T denoted by $T^{-1} \neq 0$. Using 7.26d yields

$$\exists S \in \mathcal{L}(V) \Rightarrow T = S^*S$$

and it follows that

$$\langle Tx, x \rangle = \langle S^* Sx, x \rangle$$

$$= \langle Sx, Sx \rangle$$
(7)

Since T is invertible, $Tx \neq 0$, hence

$$\langle Tx, x \rangle > 0$$

Now assuming the converse, $\langle Tx, x \rangle$ is positive for all $x \in V \setminus \{0\}$, and letting $u \in V \setminus \{0\}$. Then by 3.17, where Tx = Tu, we observe that

$$x = T^{-1}(Tx) = T^{-1}(Tu) = u \cdot x = u$$

and we can conclude that T is injective, and therefore invertible. \square

Prove that if $S \in \mathcal{L}(\mathbb{R}^3)$ is an isometry, then there exists a nonzero vector $x \in \mathbb{R}^3$ such that $S^2x = x$.

Proof. Assume $S \in \mathcal{L}(R^3)$ is an isometry, by definition ||Sv|| = ||v||. 7.38 implies when \mathbb{R}^3 is an odd-dimnesional real inner-product space, there exists an orthonormal basis of V with respect to S. Hence S includes a block diagonal matrix where each block is of the form |x| containing 1 or -1 or a 2x2 matrix. And so, at least 1 or -1 is an eigenvalue of S and we can conclude that in either case $Sx = \lambda x$, that is

$$S^2x = S(Sx) = S(\lambda x) = \lambda(\lambda x) = \lambda^2 x = x$$