In [174]: import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.linear_model import LogisticRegression

from sklearn.preprocessing import StandardScaler

import re

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

In [175]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\madrid_200!

Out[175]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PM25	РХ
0	2005- 11-01 01:00:00	NaN	0.77	NaN	NaN	NaN	57.130001	128.699997	NaN	14.720000	14.91	10.65	Na
1	2005- 11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.93	NaN	1.5
2	2005- 11-01 01:00:00	NaN	0.40	NaN	NaN	NaN	46.119999	53.000000	NaN	30.469999	14.60	NaN	Na
3	2005- 11-01 01:00:00	NaN	0.42	NaN	NaN	NaN	37.220001	52.009998	NaN	21.379999	15.16	NaN	Na
4	2005- 11-01 01:00:00	NaN	0.57	NaN	NaN	NaN	32.160000	36.680000	NaN	33.410000	5.00	NaN	Na
236995	2006- 01-01 00:00:00	1.08	0.36	1.01	NaN	0.11	21.990000	23.610001	NaN	43.349998	5.00	NaN	Na
236996	2006- 01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999	4.95	1.49	1.0
236997	2006- 01-01 00:00:00	0.19	NaN	0.26	NaN	0.08	26.730000	30.809999	NaN	43.840000	4.31	2.93	Na
236998	2006- 01-01 00:00:00	0.14	NaN	1.00	NaN	0.06	13.770000	17.770000	NaN	NaN	5.00	NaN	Na
236999	2006- 01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998	5.67	2.11	1.C

237000 rows × 17 columns

In [176]: a.info()

RangeIndex: 237000 entries, 0 to 236999 Data columns (total 17 columns): Column Non-Null Count Dtype ____ ---------0 date 237000 non-null object BEN float64 1 70370 non-null 2 CO 217656 non-null float64 3 EBE 68955 non-null float64 4 MXY 32549 non-null float64 5 NMHC 92854 non-null float64 6 NO 2 235022 non-null float64 7 NOx 235049 non-null float64 8 OXY 32555 non-null float64 float64 9 0 3 223162 non-null PM10 232142 non-null float64 10 11 PM25 69407 non-null float64 12 PXY 32549 non-null float64 13 SO_2 235277 non-null float64 14 TCH 93076 non-null float64 TOL 70255 non-null float64 15 16 station 237000 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 30.7+ MB

<class 'pandas.core.frame.DataFrame'>

```
In [177]: b=a.fillna(value=102)
h
```

Out[177]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10
0	2005- 11-01 01:00:00	102.00	0.77	102.00	102.00	102.00	57.130001	128.699997	102.00	14.720000	14.91
1	2005- 11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.93
2	2005- 11-01 01:00:00	102.00	0.40	102.00	102.00	102.00	46.119999	53.000000	102.00	30.469999	14.60
3	2005- 11-01 01:00:00	102.00	0.42	102.00	102.00	102.00	37.220001	52.009998	102.00	21.379999	15.16
4	2005- 11-01 01:00:00	102.00	0.57	102.00	102.00	102.00	32.160000	36.680000	102.00	33.410000	5.00
236995	2006- 01-01 00:00:00	1.08	0.36	1.01	102.00	0.11	21.990000	23.610001	102.00	43.349998	5.00
236996	2006- 01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999	4.95
236997	2006- 01-01 00:00:00	0.19	102.00	0.26	102.00	0.08	26.730000	30.809999	102.00	43.840000	4.31
236998	2006- 01-01 00:00:00	0.14	102.00	1.00	102.00	0.06	13.770000	17.770000	102.00	102.000000	5.00
236999	2006- 01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998	5.67

237000 rows × 17 columns

```
In [178]: b.columns
```

In [179]: c=b.head(10) c

Out[179]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PM
0	2005- 11-01 01:00:00	102.00	0.77	102.00	102.00	102.00	57.130001	128.699997	102.00	14.720000	14.910000	10
1	2005- 11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.930000	102
2	2005- 11-01 01:00:00	102.00	0.40	102.00	102.00	102.00	46.119999	53.000000	102.00	30.469999	14.600000	102
3	2005- 11-01 01:00:00	102.00	0.42	102.00	102.00	102.00	37.220001	52.009998	102.00	21.379999	15.160000	102
4	2005- 11-01 01:00:00	102.00	0.57	102.00	102.00	102.00	32.160000	36.680000	102.00	33.410000	5.000000	102
5	2005- 11-01 01:00:00	1.92	0.88	2.44	5.14	0.22	90.309998	207.699997	2.78	13.760000	18.070000	17
6	2005- 11-01 01:00:00	102.00	0.55	102.00	102.00	0.27	50.279999	77.209999	102.00	19.120001	18.209999	102
7	2005- 11-01 01:00:00	0.20	0.38	1.00	102.00	0.27	51.759998	72.989998	102.00	14.810000	16.430000	102
8	2005- 11-01 01:00:00	102.00	0.70	102.00	102.00	102.00	39.040001	43.860001	102.00	25.379999	16.139999	102
9	2005- 11-01 01:00:00	102.00	0.56	102.00	102.00	102.00	41.820000	51.869999	102.00	24.290001	7.130000	7
4 1												

Out[180]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	SO_2
0	102.00	0.77	102.00	102.00	102.00	57.130001	128.699997	102.00	14.720000	14.910000	102.00	4.62
1	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.930000	1.59	7.80
2	102.00	0.40	102.00	102.00	102.00	46.119999	53.000000	102.00	30.469999	14.600000	102.00	5.76
3	102.00	0.42	102.00	102.00	102.00	37.220001	52.009998	102.00	21.379999	15.160000	102.00	6.60
4	102.00	0.57	102.00	102.00	102.00	32.160000	36.680000	102.00	33.410000	5.000000	102.00	3.00
5	1.92	0.88	2.44	5.14	0.22	90.309998	207.699997	2.78	13.760000	18.070000	2.44	10.39
6	102.00	0.55	102.00	102.00	0.27	50.279999	77.209999	102.00	19.120001	18.209999	102.00	6.28
7	0.20	0.38	1.00	102.00	0.27	51.759998	72.989998	102.00	14.810000	16.430000	102.00	5.11
8	102.00	0.70	102.00	102.00	102.00	39.040001	43.860001	102.00	25.379999	16.139999	102.00	4.18
9	102.00	0.56	102.00	102.00	102.00	41.820000	51.869999	102.00	24.290001	7.130000	102.00	8.37
4												

In [181]: sns.pairplot(d)

Out[181]: <seaborn.axisgrid.PairGrid at 0x1b65712f700>


```
In [182]: sns.distplot(a['NOx'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[182]: <AxesSubplot:xlabel='NOx', ylabel='Density'>

In [183]: sns.heatmap(d.corr())

Out[183]: <AxesSubplot:>


```
In [184]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
y=d['TCH']
```

```
In [185]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [186]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[186]: LinearRegression()

```
In [187]: | print(lr.intercept_)
           -0.25120449480472473
In [188]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
          coeff
Out[188]:
                    Co-efficient
                  3.362127e-01
             BEN
              CO -4.538211e-14
             EBE 7.287275e-02
             MXY
                  2.387457e-01
           NMHC
                 5.488915e-01
            NO_2 -1.439444e-16
             NOx 8.936519e-16
             OXY -1.942599e-01
In [189]: | prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[189]: <matplotlib.collections.PathCollection at 0x1b603997220>
           100
             80
             60
             40
             20
                        20
                                 40
                                         60
                                                 80
                                                         100
In [190]: print(lr.score(x_test,y_test))
           0.7011963992356471
In [191]: from sklearn.linear_model import Ridge,Lasso
In [192]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[192]: Ridge(alpha=10)
In [193]: rr.score(x_test,y_test)
Out[193]: -0.09671547468017438
```

```
In [194]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[194]: Lasso(alpha=10)

In [195]: la.score(x_test,y_test)

Out[195]: -0.4922086413609599

In [196]: a1=b.head(7000)

a1

Out[196]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3	РМ
0	2005- 11-01 01:00:00	102.00	0.77	102.00	102.00	102.00	57.130001	128.699997	102.00	14.720000	14.9100
1	2005- 11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.9300
2	2005- 11-01 01:00:00	102.00	0.40	102.00	102.00	102.00	46.119999	53.000000	102.00	30.469999	14.6000
3	2005- 11-01 01:00:00	102.00	0.42	102.00	102.00	102.00	37.220001	52.009998	102.00	21.379999	15.1600
4	2005- 11-01 01:00:00	102.00	0.57	102.00	102.00	102.00	32.160000	36.680000	102.00	33.410000	5.0000
6995	2005- 11-11 21:00:00	1.11	0.56	1.85	4.41	0.25	73.570000	100.599998	1.33	11.450000	29.1299
6996	2005- 11-11 21:00:00	0.49	102.00	0.25	102.00	0.14	119.800003	254.500000	102.00	2.060000	49.2900
6997	2005- 11-11 21:00:00	0.25	102.00	0.51	102.00	0.10	73.500000	104.300003	102.00	102.000000	22.5800
6998	2005- 11-11 21:00:00	1.59	0.83	2.06	8.59	0.26	87.279999	118.400002	3.23	7.390000	45.3100
6999	2005- 11-11 22:00:00	102.00	0.78	102.00	102.00	102.00	53.900002	166.000000	102.00	11.820000	32.6199

7000 rows × 17 columns

```
In [198]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [199]: h=StandardScaler().fit transform(f)
In [200]: logr=LogisticRegression(max iter=10000)
          logr.fit(h,g)
Out[200]: LogisticRegression(max_iter=10000)
In [201]: from sklearn.model selection import train test split
          h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [202]: |i=[[10,20,30,40,50,60,15,26,37,47,58,58,29,78]]
In [203]: prediction=logr.predict(i)
          print(prediction)
          [28079039]
In [204]: |logr.classes_
Out[204]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                 28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                 28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
                 28079024, 28079026, 28079027, 28079035, 28079036, 28079038,
                 28079039, 28079040, 28079099], dtype=int64)
In [205]: logr.predict proba(i)[0][0]
Out[205]: 1.0904259422981613e-265
In [206]: logr.predict proba(i)[0][1]
Out[206]: 7.244658692284546e-196
In [207]: logr.score(h test,g test)
Out[207]: 0.5061904761904762
In [208]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x train,y train)
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ coordinate descent.p
          y:530: ConvergenceWarning: Objective did not converge. You might want to increase the
          number of iterations. Duality gap: 2.349501093043866, tolerance: 1.44677193401142
            model = cd_fast.enet_coordinate_descent(
Out[208]: ElasticNet()
In [209]: print(en.coef )
          [ 0.77875749 -0.
                                    0.18350609 0.02114982 0.01912012 -0.
           -0.00120644 0.
                                   1
```

```
In [210]: print(en.intercept_)
          -0.18985834564632853
In [211]: prediction=en.predict(x test)
          print(en.score(x test,y test))
          -0.4443370815034544
In [212]: from sklearn.ensemble import RandomForestClassifier
          rfc=RandomForestClassifier()
          rfc.fit(h_train,g_train)
Out[212]: RandomForestClassifier()
In [213]: | parameters={ 'max_depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n_estimators':[10,20,30,40,50]
           }
In [214]: | from sklearn.model_selection import GridSearchCV
          grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
          grid_search.fit(h_train,g_train)
Out[214]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                    'n estimators': [10, 20, 30, 40, 50]},
                        scoring='accuracy')
In [215]: grid_search.best_score_
Out[215]: 0.5565306122448979
In [216]: rfc best=grid search.best estimator
```

Conclusion: from this data set i observed that the LINEAR REGRESSION has the highest accuracy of 0.701196399235647

In []: