IN THE CLAIMS:

Please cancel claims 1 and 15-28 without prejudice or disclaimer of the subject matter thereof.

The following is a complete listing of claims in this application.

- 1. (canceled)
- 2. (currently amended) The process according to claim \pm 55, wherein the pre-treatment step \pm comprises an activation \pm in a strongly strong acid or alkaline bath to enable fast dissolution of surface oxides.
- 3. (currently amended) The process according to claim \pm 55, wherein the pre-treatment step \pm comprises a pre-nickel plating step \pm to coat the aluminum conductor with a primary nickel deposit.
- 4. (original) The process according to claim 3, wherein the equivalent average thickness of the said primary nickel deposit is less than about 0.1 μm .
- 5. (currently amended) The process according to claim $\frac{1}{55}$, wherein the pre-treatment step $\frac{1}{5}$ comprises an activation $\frac{1}{5}$ in a strongly strong acid or alkaline bath to enable fast dissolution of surface oxides and a pre-nickel plating step $\frac{1}{5}$ in a pre-nickel plating bath that coats the aluminum conductor with a primary nickel deposit, and wherein the pre-nickel plating step $\frac{1}{5}$ and the activation step $\frac{1}{5}$ are done jointly and electrolytically with a liquid current connection.
- 6. (original) The process according to claim 5, wherein the compositions of the activation bath and the pre-nickel plating bath are substantially the same.
- 7. (original) The process according to claim 5, wherein the equivalent average thickness of said primary nickel deposit is less than about 0.1 μm_{\odot}
- 8. (currently amended) The process according to claim \pm 55, wherein the pre-treatment step \pm comprises an activation \pm

1727 KING STREET

in a strongly strong acid or alkaline bath to enable fast dissolution of surface oxides and a pre-nickel plating step ${\tt PN}$ in which the aluminum conductor is coated with a primary nickel deposit, and wherein the pre-nickel plating step $\frac{PN}{PN}$ and the activation step A are done simultaneously in the same bath.

- 9. (original) The process according to claim 8, wherein the equivalent average thickness of said primary nickel deposit is less than about 0.1 µm.
- 10. (currently amended) The process according to claim 1 55, wherein the mechanical contact is immersed in a an optionally cooled liquid, possibly cooled, such as water or a neutral solution.
- 11. (currently amended) The process according to claim \pm 55, wherein said mechanical electric contact comprises at least one mechanical rolling contact means.
- 12. (currently amended) The process according to claim + 55, wherein several <u>aluminum</u> conductors are treated simultaneously.
- 13. (currently amended) The process according to claim \pm 55, wherein the aluminum conductor is made of an alloy selected from the group consisting of AA 1370, AA 1110 and AA 6101 according to the nomenclature of the Aluminum Association.
- 14. (currently amended) A process for manufacturing an aluminum electrical cable comprising:
- providing an elementary wire or strand as said aluminum conductor;
- nickel plating said wire or strand using the process according to claim 1 55;
- making said cable using said at least one nickel plated elementary wire or strand.

Claims 15-28 (canceled).

- 29. (currently amended) The process according to claim \pm 55, wherein said aluminum conductor is an aluminum strip or aluminum tube.
- 30. (currently amended) The process according to claim \pm 55, wherein said aluminum conductor is a composite aluminum product comprising a base part and at least one clad <u>aluminum</u> alloy layer.
- 31. (original) The process according to claim 30, wherein the clad alloy layer comprises a wetting agent.
- 32. (original) The process according to claim 31, wherein the wetting agent is selected from the group consisting of lead, bismuth, lithium, antimony, tin, silver, thallium and any mixture thereof.
- 33. (original) The process according to claim 31, wherein the clad alloy layer comprises between 0.01 and 1 wt. % of wetting agent.
- 34. (original) The process according to claim 30, wherein the clad alloy layer comprises an aluminum-silicon alloy.
- 35. (currently amended) The process according to claim † 55, wherein the nickel plating step is performed using a nickel plating bath containing a compound of a wetting agent, so as to deposit a nickel coat containing a wetting agent onto the aluminum conductor.
- 36. (original) The process according to claim 35, wherein the compound is selected from the group consisting of the acetates, citrates, sulfamates, fluoborates, lactates, oxides and mixtures thereof.
- 37. (currently amended) The process according to claim 36, wherein said aluminum conductor is a composite aluminum product comprising a base part and at least one clad <u>aluminum</u> alloy layer.
- 38. (original) The process according to claim 37, wherein the clad alloy layer comprises an aluminum-silicon alloy.

- 39. (original) The process according to claim 37, wherein the clad alloy layer comprises a wetting agent.
- 40. (original) The process according to claim 39, wherein the wetting agent is selected from the group consisting of lead, bismuth, lithium, antimony, tin, silver, thallium and any mixture thereof.
- 41. (original) The process according to claim 39, wherein the clad alloy layer comprises between 0.01 and 1 wt. % of wetting agent.
- 42. (currently amended) A process for manufacturing an assembled product comprising the steps of:
- providing as said aluminum conductor a composite aluminum product comprising a base part and at least one clad aluminum alloy layer; and
- nickel plating said composite product according to the process of claim $\frac{1}{55}$.
- 43. (original) The manufacturing process according to claim 42, wherein the clad alloy layer comprises a wetting agent.
- 44. (original) The manufacturing process according to claim 43, wherein the wetting agent is selected from the group consisting of lead, bismuth, lithium, antimony, tin, silver, thallium and mixtures thereof.
- 45. (original) The manufacturing process according to claim 43, wherein the clad alloy layer comprises between 0.01 and 1 wt. % of wetting agent.
- 46. (original) The manufacturing process according to claim 42, wherein the clad alloy layer comprises an aluminumsilicon alloy.
- 47. (original) The manufacturing process according to claim 42, wherein said composite product is in the form of a strip or a tube.
 - 48. (original) The manufacturing process according to

claim 42, wherein the nickel plating is performed using a nickel plating bath containing a compound of a wetting agent, so as to deposit a nickel coat containing a wetting agent onto the aluminum conductor.

- 49. (original) The manufacturing process according to claim 48, wherein the compound is selected from the group consisting of the acetates, citrates, sulfamates, fluoborates, lactates, oxides and mixtures thereof.
- 50. (original) The manufacturing process according to claim 48, wherein the clad alloy layer comprises a wetting agent.
- 51. (original) The manufacturing process according to claim 50, wherein the wetting agent is selected from the group consisting of lead, bismuth, lithium, antimony, tin, silver, thallium and any mixture thereof.
- 52. (original) The manufacturing process according to claim 50, wherein the clad alloy layer comprises between 0.01 and 1 wt. % of wetting agent.
- 53. (original) The manufacturing process according to claim 42, wherein the assembled product is a heat exchanger.
- 54. (original) The manufacturing process according to claim 42, further comprising brazing said composite product.
- 55. (new) A process for continuous nickel plating of an aluminum conductor, comprising the steps of:

electrolytically pre-treating the aluminum conductor to improve adherence of a nickel coat thereon by passing the aluminum conductor through a pre-treating bath in which is disposed an electrode connected to a first current source at a first voltage, for supplying to the aluminum conductor a pre-treating current;

electrolytically plating the pre-treated aluminum conductor with nickel in a plating bath in which is disposed an anode connected to a second current source at a second

LAW OFFICES
DENNISON, SCHULTZ, DOUGHERTY & MACDONALD

1727 KING STREET ALEXANDRIA, VIRGINIA 22314-2700 voltage, in which a nickel coat is deposited on the conductor by action of a nickel plating current \mathbf{I}_{n} , and

transmitting at least the nickel plating current I_n to the conductor through a mechanical electrical contact which contacts the conductor between the pre-treating bath and the plating bath,

wherein said pre-treating improves contact properties of the conductor sufficient to permit the transmitting through the mechanical electrical conductor.