1.

AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

(Currently Amended) A method, comprising: 1 2 providing a semiconductor substrate; forming electrically conductive columns [[on]] over the semiconductor substrate; 3 forming electrically conductive rows crossing [[over]] the electrically conductive 4 5 columns; 6 forming a plurality of memory components each having a resistance value corresponding 7 to multiple logical bits; and forming non-volatile memory cells, each formed by connecting a memory component 8 between an electrically conductive row and an electrically conductive column, wherein the 9 non-volatile memory cells are formed without transistors for reduced space usage on the 10 semiconductor substrate by each memory cell. 11 (Currently Amended) A method as recited in claim 1, A method, comprising: 2. 1 providing a semiconductor substrate; 2 forming electrically conductive columns over the semiconductor substrate; 3 forming electrically conductive rows crossing the electrically conductive columns; 4 forming a plurality of memory components each having a resistance value corresponding 5 6 to multiple logical bits; and forming non-volatile memory cells, each formed by connecting a memory component 7 between an electrically conductive row and an electrically conductive column, 8 wherein [[each]] the memory component is components are formed to have [[a]] varying 9 resistance value values based on a thickness at least one of: (1) varying thicknesses of 10 electrically resistive material materials that forms an individual are part of respective memory 11 component components; (2) varying areas of electrically resistive materials that are part of 12 respective memory components; and (3) varying geometric shapes of electrically resistive 13 14 materials that are part of respective memory components.

that forms an individual memory component.

3

8

9

10

11

12

- 3. (Original) A method as recited in claim 1, wherein each memory component is formed to have a resistance value based on an area of electrically resistive material that forms an individual memory component.

 4. (Original) A method as recited in claim 1, wherein each memory component is formed to have a resistance value based on a geometric shape of electrically resistive material
- 5. (Original) A method as recited in claim 1, wherein the plurality of memory components are each formed to have a different resistance value based on a different area of electrically resistive material that forms a memory component.
- 6. (Currently Amended) A method as recited in claim 1, A method, comprising:

 providing a semiconductor substrate;

 forming electrically conductive columns over the semiconductor substrate;

 forming electrically conductive rows crossing the electrically conductive columns;

 forming a plurality of memory components each having a resistance value corresponding

 to multiple logical bits; and

 forming non-volatile memory cells, each formed by connecting a memory component

forming non-volatile memory cells, each formed by connecting a memory component between an electrically conductive row and an electrically conductive column,

wherein the plurality of memory components are each formed to have a resistance value based on a rectangular geometric shape of electrically resistive material that forms a memory component, at least some of the rectangular geometric shapes having different resistance values corresponding to an area of a rectangular geometric shape.

1	7. (Currently Amended) A method as recited in claim 1, A method, comprising:
2	providing a semiconductor substrate;
3	forming electrically conductive columns over the semiconductor substrate;
4	forming electrically conductive rows crossing the electrically conductive columns;
5	forming a plurality of memory components each having a resistance value corresponding
6	to multiple logical bits; and
7	forming non-volatile memory cells, each formed by connecting a memory component
. 8	between an electrically conductive row and an electrically conductive column,
9	wherein forming the non-volatile memory cells comprises:
10	forming a first memory cell having a memory component that indicates logical bits 00
11	(zero-zero);
12	forming a second memory cell having a memory component that indicates logical bits 01
13	(zero-one);
14	forming a third memory cell having a memory component that indicates logical bits 10
15	(one-zero); and
16	forming a fourth memory cell having a memory component that indicates logical bits 11
17	(one-one).

1	8. (Currently Amended) A method as recited in claim 1, A method, comprising:
2	providing a semiconductor substrate;
3	forming electrically conductive columns over the semiconductor substrate;
4	forming electrically conductive rows crossing the electrically conductive columns;
5	forming a plurality of memory components each having a resistance value corresponding
6	to multiple logical bits; and
7	forming non-volatile memory cells, each formed by connecting a memory component
. 8	between an electrically conductive row and an electrically conductive column,
9	wherein forming the non-volatile memory cells comprises:
10	forming a first memory cell that indicates logical bits 00 (zero-zero) corresponding to a
11	first resistance value based on an area of electrically resistive material that forms a memory
12	component in the first memory cell;
13	forming a second memory cell that indicates logical bits 01 (zero-one) corresponding to a
14	second resistance value based on an area of electrically resistive material that forms a memory
15	component in the second memory cell;
16	forming a third memory cell that indicates logical bits 10 (one-zero) corresponding to a
17	third resistance value based on an area of electrically resistive material that forms a memory
18	component in the third memory cell; and
19	forming a fourth memory cell that indicates logical bits 11 (one-one) corresponding to a
20	fourth resistance value based on an area of electrically resistive material that forms a memory
21	component in the fourth memory cell.
1	9. (Original) A method as recited in claim 1, wherein forming the plurality of
2	memory components comprises forming individual memory components with a resistor in series
3	with a diode.
1	10. (Original) A method as recited in claim 1, further comprising configuring the
2	resistance value of an individual memory component by exposing the memory component to
3	light.

Appln. Serial No. 10/611,544 Amendment Dated April 28, 2005 Reply to Office Action Mailed February 10, 2005

(Original) A method as recited in claim 1, further comprising configuring the 1 11. 2 resistance value of an individual memory component by exposing electrically resistive material 3 forming the memory component to light. (Original) A method as recited in claim 1, further comprising configuring the 12. 1 resistance value of an individual memory component by exposing the memory component to 2 3 heat. (Original) A method as recited in claim 1, further comprising configuring the 13. 1 resistance value of an individual memory component by exposing electrically resistive material 2 3 forming the memory component to heat. (Currently Amended) A method as recited in claim 1, wherein forming the non-14. 1 2 volatile memory cells comprises: forming a first non-volatile memory cell by connecting a first memory component 3 4 between an electrically conductive row and a first electrically conductive column, the first nonvolatile memory cell formed as part of a first layer of non-volatile memory cells; and 5

forming a second non-volatile memory cell by connecting a second memory component

between the electrically conductive row and a second electrically conductive column, the second

non-volatile memory cell formed as part of a second layer of non-volatile memory cells, the

1 15. – 22. (Cancelled)

second layer formed over the first layer.

6

7

8 9

1	23. (New) A method comprising:
2	providing electrically conductive row traces and electrically conductive column traces;
3	providing memory cells having respective resistive components, the resistive components
4	connected between respective row and column traces without connecting through isolation
5	circuitry,
6	an individual one of the resistive components having a resistance value representing
7	plural logical bits.
1	24. (New) The method of claim 23, wherein providing the memory cells having
2	respective resistive components connected between respective row and column traces without
3	passing through isolation circuitry comprises providing the memory cells having respective
4	resistive components connected between respective row and column traces without passing
5	through transistors.
1	25. (New) The method of claim 23, wherein providing the memory cells having
2	respective resistive components connected between respective row and column traces without
3	passing through isolation circuitry comprises providing the memory cells having respective
4	resistive components connected between respective row and column traces without passing
5	through transistors or diodes.
1	26. (New) The method of claim 23, further comprising:
2	connecting a selected one of the column traces to a first voltage;
3	connecting a selected one of the row traces to a second voltage such that electrical current
4	passes through a selected memory cell; and
5	connecting unselected column and row traces to voltages generally equal to the first
6	voltage to reduce parasitic electrical current through unselected memory cells.
1	27. (New) The method of claim 26, wherein connecting the selected row trace to the
2	second voltage comprises connecting the selected row trace to ground.

Appln. Serial No. 10/611,544 Amendment Dated April 28, 2005 Reply to Office Action Mailed February 10, 2005

1

2

3

4

5

6

1

2

3

- 1 28. (New) The method of claim 23, wherein providing the memory cells comprises 2 providing the memory cells in at least a first layer and a second layer, the first layer being 3 provided over the second layer.
 - 29. (New) The method of claim 23, wherein providing the memory cells having respective resistive components comprises providing resistive components having varying resistance values based on at least one of: (1) varying thicknesses of electrically resistive materials that are part of respective resistive components; (2) varying areas of electrically resistive materials that are part of respective resistive components; and (3) varying geometric shapes of electrically resistive materials that are part of respective resistive components.
 - 30. (New) The method of claim 1, wherein forming the non-volatile memory cells comprises connecting the memory components of respective memory cells between respective columns and rows without connecting through a transistor or diode.