Показательная функция.

Перечень вопросов, рассматриваемых в теме:

- какая функция называется показательной;
- какие свойства имеет показательная функция в зависимости от ее основания;
- какой вид имеет график показательной функции в зависимости от ее основания;
 - примеры реальных процессов, описываемых показательной функцией.

Глоссарий по теме

Функция вида $y = a^x$, a > 0, $a \ne 1$ называется показательной функцией с основанием a.

Функция называется **монотонно возрастающей** на промежутке <a; b>, если (чем больше аргумент, тем больше значение функции).

Функция называется **монотонно убывающей** на промежутке <a; b>, если $\forall x_1, x_2: x_1 > x_2 \rightarrow f(x_1) < f(x_2)$ (чем больше аргумент, тем меньше значение функции).

Теоретический материал для самостоятельного изучения

1. Определение, свойства и график показательной функции

Определение:

Функция вида $y=a^x$, a>0, $a\ne 1$ называется показательной функцией с основанием a.

Такое название она получила потому, что независимая переменная стоит в показателе. Основание a — заданное число.

Для положительного основания значение степени a^x можно найти для любого значения показателя x - u целого, u рационального, u иррационального, то есть для любого действительного значения.

Сформулируем основные свойства показательной функции.

1. Область определения.

Как мы уже сказали, степень a^x для a>0 определена для любого действительного значения переменной x, поэтому область определения показательной функции $D_{(y)}=R$.

2. Множество значений.

Так как основание степени положительно, то очевидно, что функция может принимать только положительные значения.

Множество значений показательной функции $E_{(y)}=R^+$, или $E_{(y)}=(0;+\infty)$.

3. Корни (нули) функции.

Так как основание a>0, то ни при каких значениях переменной х функция не обращается в 0 и корней не имеет.

4. Монотонность.

При a > 1 функция монотонно возрастает.

При 0 < a < 1 функция монотонно убывает.

5. При любом значении а значение функции у (0) = $a^0 = 1$.

6. График функции.

При a > 1

Рисунок 1 — График показательной функции при $a{>}1$

При 0<a<1

Рисунок 2 — График показательной функции при 0 < a < 1

Независимо от значения основания a график функции имеет горизонтальную асимптоту y=0. Для 0 < a < 1 при x стремящемся x плюс бесконечности, для x > 1 при x стремящемся x минус бесконечности.

2. Рассмотрим пример исследования функции $y=-3^x+1$.

Решение:

1) Область определения функции – любое действительное число.

2) Найдем множество значений функции.

Так как $3^x>0$, то $-3^x<0$, значит, $-3^x+1<1$, то есть множество значений функции $y=-3^x+1$ представляет собой промежуток (- ∞ ; 1).

- 3) Так как функция $y=3^x$ монотонно возрастает, то функция $y=-3^x$ монотонно убывает. Значит, и функция $y=-3^x+1$ также монотонно убывает.
 - 4) Эта функция будет иметь корень: $-3^x+1=0$, $3^x=1$, x=0.
 - 5) График функции

Рисунок 3 — График функции $y=-3^x+1$

- 6) Для этой функции горизонтальной асимптотой будет прямая у=1.
- 3. Примеры процессов, которые описываются показательной функцией.
- 1) Рост различных микроорганизмов, бактерий, дрожжей и ферментов описывает формула: $N=N_0\cdot a^{kt}$, N- число организмов в момент времени t,t- время размножения, а и k- некоторые постоянные, которые зависят от температуры размножения, видов бактерий. Вообще это закон размножения при благоприятных условиях (отсутствие врагов, наличие необходимого количества питательных веществ и т.п.). Очевидно, что в реальности такого не происходит.
- 2) Давление воздуха изменяется по закону: $P=P_0 \cdot a^{-kh}$, P- давление на высоте h, P_0- давление на уровне моря, h- высота над уровнем моря, а и k- некоторые постоянные.
- 3) Закон роста древесины: $D=D_0 \cdot a^{kt}$, D- изменение количества древесины во времени, D_0 начальное количество древесины, t время, a и k некоторые постоянные.
- 4) Процесс изменения температуры чайника при кипении описывается формулой: $T=T_0+(100-T_0)e^{-kt}$.
- 5) Закон поглощения света средой: $I=I_0 \cdot e^{-ks}$, s— толщина слоя, k коэффициент, который характеризует степень замутнения среды.
- 6) Известно утверждение, что количество информации удваивается каждые 10 лет. Изобразим это наглядно.

Примем количество информации в момент времени t=0 за единицу. Тогда через 10 лет количество информации удвоится и будет равно 2. Еще через 10 лет количество информации удвоится еще раз и станет равно 4 и т.д.

Если предположить, что поток информации изменялся по тому же закону до того года, который принят за начальный, то будем двигаться по оси абсцисс влево от начала координат и над значениями аргумента -10, -20 и т.д. будем наносить на график значения функции уже в порядке убывания — уменьшая каждый раз вдвое.

Рисунок 4 — График функции $y=2^x$ — изменение количества информации

Закон изменения количества информации описывается показательной функцией $y=2^x$.

Примеры и разбор решения заданий тренировочного модуля

Пример 1.

Выберите показательные функции, которые являются монотонно убывающими.

- 1. $y=3^{x-1}$ 2. $y=(0,4)^{x+1}$ 3. $y=(0,7)^{-x}$
- 4. $y=\left(\frac{3}{7}\right)^{0,5x}$ 5. $y=3^{-2x}$ 6. $y=10^{2x+1}$

Решение:

Монотонно убывающими являются показательные функции, основание которых положительно и меньше единицы. Такими функциями являются: 2) и 4) (независимо от того, что коэффициент в показателе функции 4) равен 0,5),

заметим, что функцию 4) можно переписать в виде: свойство степеней.

Также монотонно убывающей будет функция 5). Воспользуемся свойством степеней и представим ее в виде:

$$y = 3^{-2x} = (3^{-2})^x = \left(\frac{1}{9}\right)^x$$

Ответ: 2) 4) 5)

Пример 2.

Найдите множество значений функции $y=3^{x+1}-3$.

Решение:

Рассмотрим функцию.

Так как $3^{x+1} > 0$, то $3^{x+1} - 3 > -3$, то есть множество значений:

$$(-3; +\infty)$$
.

Пример 3.

Найдите множество значений функции $y=|2^x-2|$

Рассмотрим функцию.

 2^{x} —2>—2, но, так как мы рассматриваем модуль этого выражения, то получаем: $|2^{x}$ — 2|≥0.