

hybridPY

A Hybrid Traffic Simulation Case Study for Munich

Fabian Schuhmann, Jörg Schweizer, Christian Wiggenhauser, Fabian Netzler, Markus Lienkamp

Datum: 17.06.2024

Introduction

State of the Art

Methodology

Results

The M Cube Cluster

Our mission is to improve the

Air

Traffic-related environmental pollution

Space

Mobility in public spaces

Time

Efficiency of transportation systems

Methodology

Results

Discussion

The M Cube Pipeline

Simulation of urban development and mobility requirements [3]

Simulation of mobility and individual mobility systems

Evaluation of the mobility system and comprehensible presentation of the results

Methodology

Results

system and comprehensible

presentation of the results

The M Cube Pipeline

requirements [3]

MATSim User Meeting | 17.06.2024

individual mobility systems

Introduction

State of the Art

Methodology

Results

Ш

General Approach

Simulation of mobility and individual mobility systems

Methodology

Results

Discussion

Conclusion

General Aproach

The general approach is combining a global meso- and a local micro-scopic model

Methodology

Results

Discussion

Conclusion

The Idea in a Nut-shell

- 1. Running the MATSim simulation
- 2. Detection of the system ends in SUMO
- 3. Analysis of MATSim routes with regard to entering the SUMO area
- 4. Import as trip or activity

5. Re-routing in SUMO

Methodology

- 1. Running the MATSim simulation
- 2. Detection of the system ends in SUMO
- 3. Analysis of MATSim routes with regard to entering the SUMO area
- 4. Import as trip or activity
 - 5. Re-routing in SUMO

Methodology

Results

Discussion

The MATSim Workflow inside hybridPY

Standard

Methodology

EV - contrib

Results

Discussion

Conclusion

The hybridPY Deploy Pipeline

MATSim User Meeting | 17.06.2024

SUMO

Emissions

+ Noise

Methodology

Results

Discussion

The M Cube Pipeline

Methodology

Results

Discussion

Conclusion

KPI Analysis Modul is developed as PlugIn for hybridPY

Modul is capable of reading MATSim and SUMO outputs!

Methodology

Results

Cor

Analyzing Mobility Innovations

Methodology

Results

Discussion

Conclusion

Summary and Conclusions

- User-friendly Interface
- Customizable and easily extensible
- Supports Cloud-Usage

Future Work

Automatic synchronisation of the traffic networks

Extension of MATSim
Integration (Public
Transport, PT & Network
Editing, Config checks, etc)

Validation

Literature

- [1] W Axhausen, Kay; Horni, Andreas; Nagel, Kai (2016): The multi-agent transport simulation MATSim: Ubiquity Press.
- [2] Lopez, Pablo Alvarez; Behrisch, Michael; Bieker-Walz, Laura; Erdmann, Jakob; Flötteröd, Yun-Pang; Hilbrich, Robert et al. (2018): Microscopic Traffic Simulation using SUMO. In: The 21st IEEE International Conference on Intelligent Transportation Systems: IEEE. Online verfügbar unter https://elib.dlr.de/124092/.
- [3] Moeckel, Rolf; Huang, Wei-Chieh; Ji, Joanna; Llorca, Carlos; Moreno, Ana Tsui; Staves, Corin; Zhang, Qin; Erhardt, Gregory D.: The Activity-based model ABIT: Modeling 24 hours, 7 days a week. Transportation Research Procedia 78, 2024, 499-506, DOI: https://doi.org/10.1016/j.trpro.2024.02.062
- [4] Schweizer, Joerg (2014): SUMOPy: An Advanced Simulation Suite for SUMO. In: Michael Behrisch, Daniel Krajzewicz und Melanie Weber (Hg.): Simulation of Urban Mobility. Berlin, Heidelberg: Springer Berlin Heidelberg, S. 71–82.
- [5] https://sumo.dlr.de/pdf/2024/4-3.pdf
- [6] https://datenhub.mcube-cluster.de/records/725j1-fbe49