Welcome

Tina Umlandt

(sehr) kurzer CV

- Lehrauftrag
- seit bald 10 Jahren Developer
- angefangen in einer Agentur
- aktuell als Shop Developer bei Jimdo

Ablauf dieser Vorlesung

Ansprechpartner

Tina Umlandt christina.umlandt@haw-hamburg.de

Michael Brodersen michael.brodersen@haw-hamburg.de

Klausur

- am Ende des Semesters 90-120 Minuten
 - → Termin wird noch bekannt gegeben
- Voraussetzung:
 - → Bestehen aller Übungszettel

Übung/ Praktikum

- Insgesamt 7 Zettel
- Abgabe alle zwei Wochen
- Fangen nächste Woche an
 - 8:15 9:45
 - 10:00 11:30

- Lösen der Übungen zu zweit, in festen Gruppen
- Abgabe der Übungszettel spätestens am jeweiligen Termin
- beide Gruppenteilnehmer müssen erklären können

Vorlesung

https://github.com/klyrr/lecture

Termine und Themen

KW40 1.10.2015 - Einführung

KW41 8.10.2015 - Architektur

KW42 15.10.2015 - Datenmodelle

KW43 22.10.2015 - Relationale Datenbankdesign

KW45 5.11.2015 - SQL - Einführung

KW46 12.11.2015 - SQL - Komplexere Abfragen

KW47 19.11.2015 - Programmierung

KW49 3.12.2015 - Transaktionen

KW50 10.12.2015 - DBMS

KW1 7.1.2016 - Integrität

KW2 14.1.2016 - NoSQL

KW3 21.1.2016 - Datenschutz / Klausurvorbereitung

- Folien auf github
- Wiederholung der letzten Vorlesung am Anfang
- 12:30 15:45 mit 15 Minuten Pause:
 12:30 14:00 und 14:15 15:45
- Insgesamt 12 Vorlesungstermine (hier können sich die Termine eventuell noch ändern)

Begleitliteratur

Ablauf

- 1. Einführung (heute)
- 2. Architektur
- 3. Datenmodelle
- 4. Relationaler Datenbankentwurf
- 5. SQL Einführung
- 6. SQL Abfragen

- 7. PL-SQL/ Programmierung
- 8. Transaktionen
- 9. DBMS
- 10 . Integrität
- 11. NoSQL
- 12. Datenschutz/ Sicherheit

Ziele

- Verständnis der Basiskonzepte von Datenbanksystemen
- Verständnis für die Entwicklung von datenbankgestützten Anwendungssystemen
- SQL anwenden und verstehen

Haben Sie noch Fragen?

Fragen an Sie

Wer hat schon mal mit Datenbanken gearbeitet?

Wer arbeitet aktuell mit Datenbanken?

Los geht's \o/

Wozu genau braucht man denn Datenbanken?

5 min

Geschichte

Begriffe

Datenbank (DB)¹

¹ https://de.wikipedia.org/wiki/Datenbank

Datenbankmanagementsystem (DBMS)¹

¹ https://de.wikipedia.org/wiki/Datenbank

Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern und benötigte Teilmengen in unterschiedlichen, bedarfsgerechten Darstellungsformen für Benutzer und Anwendungsprogramme bereitzustellen.

Wikipedia¹

¹ https://de.wikipedia.org/wiki/Datenbank

Widerspruchsfrei? Dauerhaft? Teilmengen?

Was genau bedeutet das?

5 min

Structured Query Language (SQL)²

² https://de.wikipedia.org/wiki/SQL

Basisfunktionen an ein DBS (nach Edgar F. Codd)

- 1. Integration
- 2. Operationen
- 3. Katalog
- 4. Benutzersichten
- 5. Konsistenzüberwachung
- 6. Datenschutz
- 7. Transaktionen
- 8. Synchronisation
- 9. Datensicherung

1. Integration

- Verhindern von Redundanz
- einheitliche Schnittstelle an die Daten
- Daten werden nur einmal gespeichert
- einheitliche Verwaltung der Daten
- Querbezüge möglich

2. Operationen

- Spezifikationen von Datentypen
- Anlage, Speichern, Löschen von Daten
- Manipulation der Daten

3. Katalog

- Metadaten
- Struktur der DB wird in der DB gespeichert

4. Benutzersichten

- jeder Benutzer kann eigene Perspektiven (Views) auf Daten erstellen
- Teilmengen aber auch Berechnungen

5. Konsistenzüberwachung

- Plausibiliät und Konsistenz der Daten
- Benutzer kann Konsistenzbedingungen erstellen

6. Datenschutz

- Benutzer werden unterschieden
- Zugriff nach Operationen werden unterschieden
- Rechtevergabe und Zugriffsprotokoll

7. Transaktionen

- Zusammenfassen von Einzelaktionen
- werden vollständig oder gar nicht ausgeführt
- Transaktionen führen von einem konsistenten Zustand in den nächsten

8. Synchronisation

- konkurrierende Transaktionen müssen synchronisiert werden
- Verhinderung der Beeinflussung und Schreibkonflikten

9. Datensicherung

- Regelmäßige Snapshots des Bestandes
- automatisch

Relationenmodell

- von Codd eingeführt (Turing-Award)
- ER-Modell für den konzeptionellen Entwurf, das Relationenmodell für die Realisierung


```
mysql> select * from student;
+-----+
| student_id | firstname | lastname | birthday |
+-----+
| 42 | Arthur | Dent | 1970-01-01 |
+-----+
1 row in set (0.00 sec)
```

```
mysql> explain student;
                              Null | Key | Default
  Field
             | Type
  student_id | int(11)
                              NO
                                           NULL
                                     PRI
              | varchar(20)
  firstname
                              YES
                                           NULL
 lastname
              | varchar(20)
                              YES
                                          NULL
  birthday
             date
                              YES
                                           NULL
4 rows in set (0.00 sec)
```

mysqi/ capidin picadeo,	mysql>	explair	n product;
-------------------------	--------	---------	------------

Field	+	Null	Key	Default	 Extra
product_id	bigint(20) unsigned	NO	PRI	 NULL	 auto_increment
module_id	bigint(20) unsigned	NO	MUL	NULL	
title	varchar(255)	NO		NULL	
description	text	YES		NULL	
short_description	text	YES		NULL	
price	\mid decimal(12,3) unsigned \mid	YES		NULL	
price_gross	\mid decimal(12,3) unsigned \mid	YES		NULL	
has_old_price	tinyint(1) unsigned	NO		0	
old_price	decimal(12,3) unsigned	YES		NULL	
vat_rate	\mid decimal(6,4) unsigned \mid	YES		NULL	
weight	decimal(8,3) unsigned	YES		NULL	
shipping_calculation_type	tinyint(1) unsigned	NO		0	
pool	int(11) unsigned	YES		NULL	
item_number	varchar(255)	YES		NULL	
modes	int(11) unsigned	NO		16	
options	text	YES		NULL	
visible	tinyint(1) unsigned	NO		1	
ordered	int(11) unsigned	YES		0	
delivery_time	tinyint(1) unsigned	YES		NULL	
website_id	int(10) unsigned	NO	MUL	NULL	
hash_value	varchar(255)	NO		a1b2d3	
download_module_id	bigint(20) unsigned	YES		NULL	
+		 	 	l	+

22 rows in set (0.00 sec)

```
mysql> select * from product limit 1\G
product_id: 33187584
                       module_id: 6356026884
                           title: Super
                      description: 
   Lorem ipsum dolor sit amet.
short_description:
                           price: 149.000
                     price_gross: 149.000
                    has_old_price: 0
                       old_price: 179.000
                        vat_rate: 19.0000
                        shipping: 0.000
            shipping_international: 0.000
                   shipping_gross: 0.000
      shipping_gross_international: 0.000
            has_specific_shipping: 0
has_specific_shipping_international: 0
                          weight: 0.000
         shipping_calculation_type: 0
                            pool: 10
                      item_number:
                           modes: 17
                         options:
                         visible: 1
                         ordered: 0
                    delivery_time: 1
                       website id: 6561055
                       hash_value: hashv1-4fad80f2a629efba65e7d2db3eb74499fc562096
               download_module_id: 0
1 row in set (0.00 sec)
```

Entwicklungszyklus

- 1. Datenbank logisch entwerfen
- 2. Datenbank systemtechnisch entwerfen
- 3. Datenbankprogramme entwickeln
- 4. Datenbank aufbauen
- 5. Datenbank betreiben

1. Datenbank logisch entwerfen

(Was soll in die Datenbank?)

2. Datenbank systemtechnisch entwerfen

(Wie soll es in die DB?)

3. Datenbankprogramme entwickeln

(Wie werden die Daten verarbeitet?)

4. Datenbank aufbauen

(Wie kommen die Daten in die DB?)

5. Datenbank betreiben

(Betriebskonzept, Einspielen von Updates, etc.)

Datenunabhängigkeit

Physische Datenunabhängigkeit

Implementierungsunabhängigkeit

Logische Datenunabhängigkeit

Anwendungsunabhängigkeit

Tina Umlandt, 2015