Домашнее задание № 5. Исследование линейного объекта при случайном входном воздействии

Цель работы: рассмотреть прохождение случайного входного сигнала через апериодическое звено первого порядка и колебательное звено. Вычислить случайные характеристики процессов по состоянию и выходу.

Теоремические сведения. Рассмотрим линейный стационарный объект с одним входом и одним выходом, представленный частотной передаточной функцией $W(j\omega)$. На вход объекта подается стохастическое воздействие «белый шум» u(t) = w(t).

Спектральная плотность выходного сигнала может быть вычислена по следующей формуле:

$$S_{y}(\omega) = |W(\omega)|^{2} S_{u}(\omega) \tag{1}$$

Дисперсия выходного сигнала определяется через его спектральную плотность как

$$D_{y} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{y}(\omega) d\omega. \tag{2}$$

Корреляционная функция выхода

$$R_{y}(\tau) = \frac{1}{\pi} \int_{0}^{\infty} S_{y}(\omega) cos(\omega \tau) d\omega. \tag{3}$$

Теперь рассмотрим линейный стационарный объект одним входом и выходом, заданный в форме вход-состояние-выход

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) \end{cases} \tag{4}$$

с вектором состояния x(t), вектором выхода y(t) и входным воздействием u(t), матрицей состояния $A \in R^{n \times n}$, матрицей входа $B \in R^{n \times 1}$ и матрицей выхода $C \in R^{1 \times n}$.

На вход линейного объекта подается стохастическое воздействие «белый шум» u(t) = w(t).

1) Вычислим матрицы дисперсий входа и выхода.

Установившееся значение D_x матрицы дисперсий $D_x(t)$ вектора состояния x(t) устойчивого объекта (4) может быть вычислено как решение уравнения Ляпунова

$$AD_x + D_x A^T = -BNB^T. (5)$$

Для дисперсии вектора выхода объекта (4) можно записать

$$D_{y} = M[(y(t) - \bar{y}(t))(y(t) - \bar{y}(t))^{T}] = M[C(x(t) - \bar{x}(t))(x(t) - \bar{x}(t))^{T}C^{T}] =$$

$$= CM[(x(t) - \bar{x}(t))(x(t) - \bar{x}(t))^{T}]C^{T} = CD_{x}C^{T}.$$
(6)

2) Вычислим корреляционные матрицы векторов состояния и выхода системы

Для корреляционной матрицы $R_x(\tau)$ вектора состояния можно записать следующие выражения

$$R_x(\tau) = M\{x(t+\tau)x^T(t)\} = M\{e^{A\tau}x(t)x^T(t)\} = e^{A\tau}D_x, \, \tau \ge 0, \quad (7)$$

$$R_{x}(\tau) = M\{x(t-\tau)x^{T}(t)\} = M\{e^{-A\tau}x(t)x^{T}(t)\} = e^{-A\tau}D_{x}, \tau \le 0.$$
 (8)

В свою очередь, корреляционная матрица вектора выхода $R_y(\tau)$ на основе вычисляется как

$$R_{\gamma}(\tau) = CR_{\chi}(\tau)C^{T} = Ce^{A\tau}D_{\chi}C^{T}, \quad \tau \ge 0, \tag{9}$$

$$R_{y}(\tau) = CR_{x}(\tau)C^{T} = Ce^{-A\tau}D_{x}C^{T}, \tau \le 0.$$
 (10)

3) Вычислим матрицы спектральных плотностей векторов состояния и выхода

Для объекта вида (4) при стохастическом внешнем воздействии типа «белый шум» матрицы $S_x(\omega)$ спектральных плотностей мощности вектора состояния и $S_y(\omega)$ вектора выхода могут быть вычислены по следующим формулам

$$S_{x}(\omega) = -2F(F^{2} + \omega^{2}I)^{-1}D_{x},$$
 (11)

$$S_{y}(\omega) = CS_{x}(\omega)C^{T} = -2CF(F^{2} + \omega^{2}I)^{-1}D_{x}C^{T}.$$
 (12)

Порядок выполнения работы.

- 1. Реакция апериодического звена 1-го порядка на белый шум
 - 1.1 Записать объект в форме передаточной функции и в форме вход-состояние выход в соответствии со своим вариантом задания.

- 1.2 Вычислить дисперсию, корреляционную функцию (матрицу) и спектральную плотность векторов состояния и выхода объекта по формулам (1)-(12).
- 1.3 Составить в Simulink схему моделирования объекта. Запустить моделирование.
- 1.4 Написать программу в Matlab, которая вычисляет значение математического ожидания и дисперсии выхода, выхода, а также построить графики корреляционной функции и спектральной плотности выхода используя данные, полученные при моделировании.

2. Реакция колебательного звена на белый шум

- 2.1 Записать объект в форме передаточной функции и в форме вход-состояние выход в соответствии со своим вариантом задания.
- 2.2 Вычислить дисперсию, корреляционную функцию (матрицу) и спектральную плотность векторов состояния и выхода объекта по формулам (1)-(12).
- 2.3 Составить в Simulink схему моделирования объекта. Запустить моделирование.
- 2.4 Написать программу в Matlab, которая вычисляет значение математического ожидания и дисперсии выхода, выхода, а также построить графики корреляционной функции и спектральной плотности выхода используя данные, полученные при моделировании.

Номер	Параметры апериодического	Параметры колебательного
варианта	звена $W(s) = \frac{k}{Ts+1}$	звена $W(s) = \frac{k}{T^2 s^2 + 2\xi T + 1}$
1	k = 5, T = 0.1 c	$k = 2, T = 0.1 \text{ c}, \xi = 0.3$
2	k = 4, T = 0.2 c	$k = 3, T = 0.2 \text{ c}, \xi = 0.4$
3	k = 2,5, T = 0,3 c	$k = 4, T = 0.3 \text{ c}, \xi = 0.5$
4	k = 3, T = 0.4 c	$k = 5, T = 0.4 \text{ c}, \ \xi = 0.6$
5	k = 7, T = 0.5 c	$k = 2,5, T = 0,5 \text{ c}, \xi = 0,7$
6	k = 3, T = 0.6 c	$k = 3.5, T = 0.6 \text{ c}, \xi = 0.3$
7	k = 4.5, T = 0.7 c	$k = 4.5, T = 0.7 \text{ c}, \xi = 0.4$
8	k = 1, T = 0.8 c	$k = 5.5, T = 0.8 \text{ c}, \xi = 0.5$
9	k = 2, T = 0.9 c	$k = 0.5, T = 0.9 \text{ c}, \ \xi = 0.6$
10	k = 6, T = 1 c	$k = 1.5, T = 1 \text{ c}, \xi = 0.7$
11	k = 5, T = 1,1 c	$k = 1, T = 1,1 \text{ c}, \xi = 0,3$
12	k = 4, T = 1,2 c	$k = 2, T = 1,2 \text{ c}, \xi = 0,4$
13	k = 2,5, T = 1,3 c	$k = 3, T = 1,3 \text{ c}, \xi = 0,5$
14	k = 3, T = 1.4 c	$k = 4, T = 1,4 \text{ c}, \ \xi = 0,6$
15	k = 7, T = 1,5 c	$k = 5, T = 1.5 \text{ c}, \xi = 0.7$
16	k = 3, T = 1,6 c	$k = 6, T = 1,6 \text{ c}, \xi = 0,3$
17	k = 4.5, T = 1.7 c	$k = 7, T = 1,7 \text{ c}, \xi = 0,4$
18	k = 1, T = 1.8 c	$k = 0.5, T = 1.8 \text{ c}, \xi = 0.5$
19	k = 2, T = 1,9 c	$k = 2.5, T = 1.9 \text{ c}, \ \xi = 0.6$
20	k = 6, T = 2 c	$k = 3.5, T = 2 \text{ c}, \xi = 0.7$
21	k = 5, T = 2,1 c	$k = 1.5, T = 2.1 \text{ c}, \xi = 0.3$
22	k = 4, T = 2,2 c	$k = 4, T = 2,2 \text{ c}, \xi = 0,4$
23	k = 2,5, T = 2,3 c	$k = 2.5, T = 2.3 \text{ c}, \xi = 0.5$
24	k = 3, T = 2,4 c	$k = 3, T = 2,4 \text{ c}, \ \xi = 0,6$
25	k = 7, T = 2,5 c	$k = 7, T = 2.5 \text{ c}, \xi = 0.7$