Insurance Bordereaux Column Mapping: Model Comparison

Analysis of Different Approaches for Column Mapping

Performance Evaluation and Results

Introduction

Challenge

Mapping insurance bordereaux columns to a canonical schema

Need

Handle variations in column names, languages, formats

Solution

Tested multiple approaches to identify optimal method

Goal

Achieve accurate, automated column mapping

The Challenge

Insurance Bordereaux Data

Column names vary significantly across sources

Different languages

Synonyms and terminology variations

A Typos and abbreviations

E Formatting differences

Need for reliable automated mapping to standard schema

Approach 1 - Multilingual Embedding (mpnet-base-v2)

sentence-transformers/paraphrase-multilingual-mpnet-base-v2

Semantic embeddings + cosine similarity mapping

- Strengths
- ✓ Good for multilingual content
- ✓ Handles synonyms effectively

- Limitations
- × Misses typos and abbreviations
- ➤ Struggles with formatting differences
- × Many columns remain UNKNOWN

Result: 33.3% accuracy (11/33 correct)

Approach 2 - Multilingual Embedding (MiniLM-L12-v2)

sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

Same as Approach 1, but lighter/faster model

- Strengths
- ✓ Faster processing
- ✓ Still handles multilingual content

- Limitations
- X Similar limitations as Approach 1
- ➤ Still leaves many columns as UNKNOWN

Result: 36.4% accuracy (12/33 correct)

Approach 3 - Merged Embedding + Fuzzy Logic

MiniLM-L12-v2 + rapidfuzz (fuzzywuzzy logic)

Embedding similarity first, then fuzzy string matching fallback

- Strengths
- ✓ Handles both semantic and textual similarity
- ✓ Effectively reduces UNKNOWN mappings
- ✓ Addresses limitations of pure embedding approaches

- Limitations
- × Requires both logic implementations
- × Depends on schema aliases

Result: 100% accuracy (33/33 correct)

Approach 4 - Unsupervised Clustering

MiniLM-L12-v2 (no schema)

Groups columns by semantic similarity without canonical mapping

- Strengths
- ✓ No schema required
- ✓ Reveals groups of similar columns across languages

- Limitations
- X Does not standardize to canonical schema
- ➤ Only clusters similar columns

Q

Result: Useful for exploratory analysis but not for direct mapping

Results Summary

E Performance Comparison

Approach	Correct	Unknown	Wrong	Accuracy
mpnet-base- v2	11	22	0	33.3%
MiniLM-L12- v2	12	21	0	36.4%
Merged Logic	33	0	0	100.0%

What We Discovered

- Embedding Models Alone
- Only 33-36% accuracy
- Left many columns as UNKNOWN
- Limited ability to handle textual variations

- Combined Approach
- Embedding + fuzzy logic dramatically improved performance
- Achieved **perfect 100**% accuracy
- Successfully mapped all columns

- **★** Hybrid Approach Capabilities
- Effectively handles multiple data challenges:
 - Multilingual content

⇄ Synonyms & terminology

A Typos & abbreviations

E Formatting differences

- Key Insight
- Semantic understanding + textual similarity = Complete solution
- ▼ Fuzzy logic bridges gap when embeddings fail
- Schema aliases crucial for mapping success

Production Solution

Recommended Approach

Merged Embedding + Fuzzy Logic

- Why
- **★** 100% accuracy
- ✓ Handles **full range** of data variations
- Robust solution for production
- **Zero** manual intervention

- Implementation Considerations
- **P** Requires both embedding & fuzzy logic
- Depends on well-defined schema aliases
- Acceptable processing time
- Scales for **production** workloads

Implementation Roadmap

Finalize Schema

Define **canonical columns** and create comprehensive **alias mappings** for all variations

Implement Merged Logic

Deploy **embedding + fuzzy matching** solution in production environment with proper error handling

Develop Monitoring

Create **dashboard** to track mapping accuracy, processing time, and system performance metrics

Create Feedback Loop

Implement **continuous improvement** process to collect corrections and enhance mapping rules

Extend Capabilities

Expand solution to handle additional languages and data formats as business needs evolve

1 Timeline: 3-4 months for full implementation with phased rollout