SPRINT DELIVERY – 4

TITLE	Smart Farmer-IOT Enabled Smart Farming Application
DOMAIN NAME	INTERNET OF THINGS
TEAM ID	PNT2022TMID29878

Receiving commands from IBM cloud using Python program

import time

import sys

import ibmiotf.application

import ibmiotf.device import random

#Provide your IBM Watson Device Credentials

```
"orgId": "oy32g",
"typeId": "Dharshini",
"deviceId": "2002",
"token": "sridharan11"
```

Initialize GPIO

```
def myCommandCallback(cmd):
print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
if status=="motoron":
    print ("motor is on")
elif status == "motoroff":
```

```
print ("motor is off")
else:
    print ("please send proper command")
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
#.....
except Exception as e:
print("Caught exception connecting device: %s"
% str(e)
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times
deviceCli.connect()
while True:
#Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Moist=random. Randint(20,120)
data = { 'temp' : temp, 'Humid': Humid,
'Moist': Moist}
#print data
def myOnPublishCallback( ):
print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
if not success:
print("Not connected to IoTF")
time.sleep(10)
deviceCli.commandCallback = myCommandCallback
```

Disconnect the device and application from the cloud deviceCli.disconnect()

```
*untitled*
File Edit Format Run Options Window Help
import time
import sys
 import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
orgId = "oy32g"
deviceType = "Dharshini"
deviceId = 2002
token = "sridharan11"
authMethod = "use-token-auth"
# Initialize GPIO
def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
if status=="motoron";
          print ("motor is on")
     else:
          print ("motor is off")
     #print(cmd)
   deviceOptions = {"org": orgId, "type": deviceType, "id": deviceId, "auth-method": authMethod, "auth-token": Token} deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
   print("Caught exception connecting device: %s" % str(e))
   sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting" 10 times
deviceCli.connect()
      #Get Sensor Data from DHT11
      temp=random.randint(-20,125)
     hum=random.randint(0,100)
      soil=random.randint(0,100)
     ### data = { 'temp' : temp, 'hum': hum , 'soil': soil)
#print data def myOnPublishCallback():
print (f"Published temp = {temp} C , hum = {hum} , soil = {soil} deg c to IBM Watson")
      success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,on_publish=myOnPublishCallback)
     if not success:
   print("Not connected to IOTF")
   time.sleep(10)
     deviceCli.commandCallback = myCommandCallback

# Disconnect the device and application from the cloud
      deviceCli.disconnect()
```


Flow Chart

Observations & Results

Temperature

Humidity

Moisture

Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.