SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

- **Output Swing Includes Both Supply Rails**
- Low Noise . . . 9 nV/ $\sqrt{\text{Hz}}$  Typ at f = 1 kHz
- Low Input Bias Current . . . 1 pA Typ
- Fully Specified for Both Single-Supply and **Split-Supply Operation**
- **Common-Mode Input Voltage Range Includes Negative Rail**
- High-Gain Bandwidth . . . 2.2 MHz Typ
- High Slew Rate . . . 3.6 V/us Typ

#### description

The TLC2272 and TLC2274 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC227x family offers 2 MHz of bandwidth and 3 V/µs of slew rate for higher speed applications. These devices offer comparable ac performance while having better noise, input offset voltage, and power dissipation than existing operational amplifiers. The TLC227x has a noise voltage of 9 nV/ $\sqrt{Hz}$ , two times lower than competitive solutions.

The TLC227x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature, with single- or split-supplies, makes this

- Low Input Offset Voltage 950  $\mu$ V Max at T<sub>A</sub> = 25°C
- **Macromodel Included**
- Performance Upgrades for the TS272, TS274, TLC272, and TLC274
- **Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards**

## **MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE**



family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC227xA family is available with a maximum input offset voltage of 950 μV. This family is fully characterized at 5 V and  $\pm$ 5 V.

The TLC2272/4 also makes great upgrades to the TLC272/4 or TS272/4 in standard designs. They offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices.

If the design requires single amplifiers, see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments



SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

#### **TLC2272 AVAILABLE OPTIONS**

|                |                                |                          |                           | PACKAGED                  | DEVICES                 |                           | _                           |
|----------------|--------------------------------|--------------------------|---------------------------|---------------------------|-------------------------|---------------------------|-----------------------------|
| TA             | V <sub>IO</sub> max<br>At 25°C | SMALL<br>OUTLINE†<br>(D) | CERAMIC<br>LCC<br>(FK)    | CERAMIC<br>DIP<br>(JG)    | PLASTIC DIP<br>(P)      | TSSOP‡<br>(PW)            | CERAMIC<br>FLAT PACK<br>(U) |
| 0°C to 70°C    | 950 μV<br>2.5 mV               | TLC2272ACD<br>TLC2272CD  |                           |                           | TLC2272ACP<br>TLC2272CP | TLC2272ACPW<br>TLC2272CPW |                             |
| -40°C to 125°C | 950 μV<br>2.5 mV               | TLC2272AID<br>TLC2272ID  | _                         | _                         | TLC2272AIP<br>TLC2272IP | —<br>TLC2272IPW           | _                           |
| -40°C to 125°C | 950 μV<br>2.5 mV               | TLC2272AQD<br>TLC2272QD  | <u>-</u>                  | <u>-</u>                  | _                       | TLC2272AQPW<br>TLC2272QPW | <u> </u>                    |
| -55°C to 125°C | 950 μV<br>2.5 mV               | TLC2272AMD<br>TLC2272MD  | TLC2272AMFK<br>TLC2272MFK | TLC2272AMJG<br>TLC2272MJG | TLC2272AMP<br>TLC2272MP | _                         | TLC2272AMU<br>TLC2272MU     |

<sup>†</sup> The D packages are available taped and reeled. Add R suffix to the device type (e.g., TLC2272CDR).

#### **TLC2274 AVAILABLE OPTIONS**

|                |                                |                          |                           | PACKAGE                 | D DEVICES               | _                          | _                           |
|----------------|--------------------------------|--------------------------|---------------------------|-------------------------|-------------------------|----------------------------|-----------------------------|
| T <sub>A</sub> | V <sub>IO</sub> max<br>AT 25°C | SMALL<br>OUTLINE†<br>(D) | CERAMIC<br>LCC<br>(FK)    | CERAMIC<br>DIP<br>(J)   | PLASTIC<br>DIP<br>(N)   | TSSOP <sup>‡</sup><br>(PW) | CERAMIC<br>FLAT PACK<br>(W) |
| 0°C to 70°C    | 950 μV<br>2.5 mV               | TLC2274ACD<br>TLC2274CD  | _                         | _                       | TLC2274ACN<br>TLC2274CN | TLC2274ACPW<br>TLC2274CPW  |                             |
| 4000 1- 40500  | 950 μV<br>2.5 mV               | TLC2274AID<br>TLC2274ID  | _                         | _                       | TLC2274AIN<br>TLC2274IN | TLC2274AIPW<br>TLC2274IPW  | _                           |
| -40°C to 125°C | 950 μV TLC2274AQD — — — —      |                          | _                         | _                       | _                       | _                          |                             |
| -55°C to 125°C | 950 μV<br>2.5 mV               | TLC2274AMD<br>TLC2274MD  | TLC2274AMFK<br>TLC2274MFK | TLC2274AMJ<br>TLC2274MJ | TLC2274AMN<br>TLC2274MN | _                          | TLC2274AMW<br>TLC2274MW     |

<sup>†</sup> The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2274CDR).



<sup>&</sup>lt;sup>‡</sup> The PW package is available taped and reeled. Add R suffix to the device type (e.g., TLC2272PWR).

<sup>§</sup> Chips are tested at 25°C.

<sup>&</sup>lt;sup>‡</sup>The PW package is available taped and reeled.

<sup>§</sup> Chips are tested at 25°C.

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004



NC - No internal connection

#### equivalent schematic (each amplifier)



| ACTUAL DEVI    | CE COMPONENT | COUNT   |  |  |  |  |  |  |
|----------------|--------------|---------|--|--|--|--|--|--|
| COMPONENT      | TLC2272      | TLC2274 |  |  |  |  |  |  |
| Transistors    | 38           | 76      |  |  |  |  |  |  |
| Resistors      | 26           | 52      |  |  |  |  |  |  |
| Diodes         | 9            | 18      |  |  |  |  |  |  |
| Capacitors 3 6 |              |         |  |  |  |  |  |  |
| Capacitors     | 3            | 6       |  |  |  |  |  |  |

<sup>†</sup> Includes both amplifiers and all ESD, bias, and trim circuitry

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| , | Supply voltage, V <sub>DD+</sub> (see Note 1)            |             |                              | 8 V            |
|---|----------------------------------------------------------|-------------|------------------------------|----------------|
|   | Input voltage range, $V_{\rm I}$ (any input, see Note 2) |             |                              |                |
|   | Input current, I <sub>I</sub> (any input)                |             |                              |                |
|   | Output current, IO                                       |             |                              |                |
|   | Total current into V <sub>DD+</sub>                      |             |                              |                |
| • | Total current out of V <sub>DD</sub>                     |             |                              | ±50 mA         |
|   | Duration of short-circuit current at (or below)          | 25°C (see   | Note 3)                      | unlimited      |
|   | Package thermal impedance, $	heta_{\sf JA}$ (see Notes   | s 4 and 5): |                              |                |
|   |                                                          |             | D package (14 pin)           |                |
|   |                                                          |             | N package                    | 79.7°C/W       |
|   |                                                          |             | P package                    |                |
|   |                                                          |             | PW package (8 pin)           | 149°C/W        |
|   |                                                          |             | PW package (14 pin)          | 113°C/W        |
|   | Package thermal impedance, $\theta_{\sf JC}$ (see Notes  | s 4 and 5): |                              |                |
|   |                                                          |             | J package                    | 15.1°C/W       |
|   |                                                          |             | U package                    |                |
| ( | Operating free-air temperature range, TA: C              | Csuffix     |                              | 0°C to 70°C    |
|   |                                                          |             |                              |                |
|   | N                                                        | ∕I suffix   |                              | –55°C to 125°C |
| , | Storage temperature range                                |             |                              | 65°C to 150°C  |
|   | Lead temperature 1,6 mm (1/16 inch) from ca              | ase for 10  | seconds: D, N, P or PW packa | age 260°C      |
| - | Lead temperature 1,6 mm (1/16 inch) from ca              | ase for 60  | seconds: J or U package      | 300°C          |
|   |                                                          |             |                              |                |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD -.
  - 2. Differential voltages are at IN+ with respect to IN –. Excessive current will flow if input is brought below V<sub>DD</sub> 0.3 V.
  - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
  - 4. Maximum power dissipation is a function of  $T_J(max)$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any allowable ambient temperature is  $P_D = (T_J(max) T_A)/\theta_{JA}$ . Operating at the absolute maximum  $T_J$  of 150°C can affect reliability.
  - 5. The package thermal impedance is calculated in accordance with JESD 51-7 (plastic) or MIL-STD-883 Method 1012 (ceramic).

#### recommended operating conditions

|                                            | C         | C SUFFIX              |           | SUFFIX                | Q :       | SUFFIX                | М :       | SUFFIX                | LINUT |
|--------------------------------------------|-----------|-----------------------|-----------|-----------------------|-----------|-----------------------|-----------|-----------------------|-------|
|                                            | MIN       | MAX                   | MIN       | MAX                   | MIN       | MAX                   | MIN       | MAX                   | UNIT  |
| Supply voltage, V <sub>DD±</sub>           | ±2.2      | ±8                    | ±2.2      | ±8                    | ±2.2      | ±8                    | ±2.2      | ±8                    | V     |
| Input voltage, V <sub>I</sub>              | $V_{DD-}$ | V <sub>DD+</sub> -1.5 | V     |
| Common-mode input voltage, V <sub>IC</sub> | $V_{DD-}$ | V <sub>DD+</sub> -1.5 | V     |
| Operating free-air temperature, TA         | 0         | 70                    | -40       | 125                   | -40       | 125                   | -55       | 125                   | °C    |



SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2272C electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

|                 | DADAMETED                                               | TEST COL                                                                                                      | IDITIONS                                | T. +             | T           | LC22720          |      | TL          | .C2272A        | C    |       |
|-----------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|-------------|------------------|------|-------------|----------------|------|-------|
|                 | PARAMETER                                               | TEST CON                                                                                                      | IDITIONS                                | T <sub>A</sub> † | MIN         | TYP              | MAX  | MIN         | TYP            | MAX  | UNIT  |
| VIO             | Input offset voltage                                    |                                                                                                               |                                         | 25°C             |             | 300              | 2500 |             | 300            | 950  | μV    |
| V10             | input onset voltage                                     | ]                                                                                                             |                                         | Full range       |             |                  | 3000 |             |                | 1500 | μν    |
| αΝΙΟ            | Temperature coefficient of input offset voltage         |                                                                                                               |                                         | 25°C<br>to 70°C  |             | 2                |      |             | 2              |      | μV/°C |
|                 | Input offset voltage<br>long-term drift<br>(see Note 4) | $V_{IC} = 0 \text{ V},$<br>$V_{DD} \pm = \pm 2.5 \text{ V},$<br>$V_{O} = 0 \text{ V},$<br>$R_{S} = 50 \Omega$ |                                         | 25°C             |             | 0.002            |      |             | 0.002          |      | μV/mo |
| IIO             | Input offset current                                    | 1.5                                                                                                           |                                         | 25°C             |             | 0.5              | 60   |             | 0.5            | 60   | pА    |
| 10              |                                                         |                                                                                                               |                                         | Full range       |             |                  | 100  |             |                | 100  | F     |
| I <sub>IB</sub> | Input bias current                                      |                                                                                                               |                                         | 25°C             |             | 1                | 60   |             | 1              | 60   | pА    |
| .ID             |                                                         |                                                                                                               |                                         | Full range       |             |                  | 100  |             |                | 100  | P     |
| VICR            | Common-mode input                                       | R <sub>S</sub> = 50 Ω,                                                                                        | V <sub>IO</sub>   ≤ 5 mV                | 25°C             | 0 to 4      | -0.3<br>to 4.2   |      | 0 to 4      | -0.3<br>to 4.2 |      | V     |
| VICK            | voltage                                                 | 113 - 00 22,                                                                                                  | 14101=01114                             | Full range       | 0 to<br>3.5 |                  |      | 0 to<br>3.5 |                |      | v     |
|                 |                                                         | $I_{OH} = -20 \mu A$                                                                                          |                                         | 25°C             |             | 4.99             |      |             | 4.99           |      |       |
|                 | High lovel output                                       | I <sub>OH</sub> = -200 μA                                                                                     |                                         | 25°C             | 4.85        | 4.93             |      | 4.85        | 4.93           |      |       |
| ۷он             | High-level output voltage                               | 10Η = -200 μΑ                                                                                                 |                                         | Full range       | 4.85        |                  |      | 4.85        |                |      | V     |
|                 | renage                                                  | I <sub>OH</sub> = -1 mA                                                                                       |                                         | 25°C             | 4.25        | 4.65             |      | 4.25        | 4.65           |      |       |
|                 |                                                         | IOH = = I IIIA                                                                                                |                                         | Full range       | 4.25        |                  |      | 4.25        |                |      |       |
|                 |                                                         | $V_{IC} = 2.5 V,$                                                                                             | I <sub>OL</sub> = 50 μA                 | 25°C             |             | 0.01             |      |             | 0.01           |      |       |
|                 |                                                         | V <sub>IC</sub> = 2.5 V,                                                                                      | I <sub>OL</sub> = 500 μA                | 25°C             |             | 0.09             | 0.15 |             | 0.09           | 0.15 |       |
| $V_{OL}$        | Low-level output voltage                                | VIC = 2.5 V,                                                                                                  | 10L = 300 μΑ                            | Full range       |             |                  | 0.15 |             |                | 0.15 | V     |
|                 |                                                         | V <sub>IC</sub> = 2.5 V,                                                                                      | $I_{OL} = 5 \text{ mA}$                 | 25°C             |             | 0.9              | 1.5  |             | 0.9            | 1.5  |       |
|                 |                                                         | VIC = 2.5 V,                                                                                                  | 10L = 3 111A                            | Full range       |             |                  | 1.5  |             |                | 1.5  |       |
|                 | Laura simual diffarential                               | V 0.5.V                                                                                                       | $R_L = 10 \text{ k}\Omega^{\ddagger}$   | 25°C             | 15          | 35               |      | 15          | 35             |      |       |
| AVD             | Large-signal differential voltage amplification         | $V_{IC} = 2.5 \text{ V},$<br>$V_{O} = 1 \text{ V to 4 V}$                                                     | K[ = 10 K22+                            | Full range       | 15          |                  |      | 15          |                |      | V/mV  |
|                 | voltage amplification                                   | VO = 1 V 10 4 V                                                                                               | $R_L = 1 \text{ m}\Omega^{\ddagger}$    | 25°C             |             | 175              |      |             | 175            |      |       |
| rid             | Differential input resistance                           |                                                                                                               |                                         | 25°C             |             | 10 <sup>12</sup> |      |             | 1012           |      | Ω     |
| rį              | Common-mode input resistance                            |                                                                                                               |                                         | 25°C             |             | 1012             |      |             | 1012           |      | Ω     |
| ci              | Common-mode input capacitance                           | f = 10 kHz,                                                                                                   | P package                               | 25°C             |             | 8                |      |             | 8              |      | pF    |
| z <sub>O</sub>  | Closed-loop output impedance                            | f = 1 MHz,                                                                                                    | A <sub>V</sub> = 10                     | 25°C             |             | 140              |      |             | 140            |      | Ω     |
| 01/55           | Common-mode                                             | V <sub>IC</sub> = 0 V to 2.7 \                                                                                | /,                                      | 25°C             | 70          | 75               |      | 70          | 75             |      |       |
| CMRR            | rejection ratio                                         | $V_0 = 2.5 \text{ V},$                                                                                        | $R_S = 50 \Omega$                       | Full range       | 70          |                  |      | 70          |                |      | dB    |
| ksvr            | Supply-voltage rejection ratio                          | V <sub>DD</sub> = 4.4 V to 16                                                                                 | V,V <sub>IC</sub> = V <sub>DD</sub> /2, | 25°C             | 80          | 95               |      | 80          | 95             |      | dB    |
| -541            | $(\Delta V_{DD}/\Delta V_{IO})$                         | No load                                                                                                       |                                         | Full range       | 80          |                  |      | 80          |                |      |       |
|                 |                                                         | V 05V                                                                                                         | Natard                                  | 25°C             |             | 2.2              | 3    |             | 2.2            | 3    | A     |
| I <sub>DD</sub> | Supply current                                          | $V_0 = 2.5 V$ ,                                                                                               | No load                                 | Full range       |             |                  | 3    |             |                | 3    | mA    |

<sup>†</sup> Full range is 0°C to 70°C.

NOTE 6: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150$ °C extrapolated to  $T_A = 25$ °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.



<sup>‡</sup>Referenced to 0 V

## TLC2272C operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

|                | DADAMETED                            | TEAT CONDITI                                                                                      | ONO                    | - +              | Т     | LC22720 | ;   | TI    | LC2272A | С   | LINUT              |  |     |
|----------------|--------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|------------------|-------|---------|-----|-------|---------|-----|--------------------|--|-----|
| '              | PARAMETER                            | TEST CONDITI                                                                                      | ONS                    | T <sub>A</sub> † | MIN   | TYP     | MAX | MIN   | TYP     | MAX | UNIT               |  |     |
|                | Slew rate at unity                   | $V_0 = 0.5 \text{ V to } 2.5 \text{ V},$                                                          |                        | 25°C             | 2.3   | 3.6     |     | 2.3   | 3.6     |     |                    |  |     |
| SR             | gain                                 | $R_L = 10 \text{ k}\Omega^{\ddagger}, \qquad C_L = 10 \text{ k}\Omega^{\ddagger}$                 | = 100 pF‡              | Full range       | 1.7   |         |     | 1.7   | 1.7     |     | V/μs               |  |     |
|                | Equivalent input                     | f = 10 Hz                                                                                         |                        | 25°C             |       | 50      |     | 50    |         |     | nV/√ <del>Hz</del> |  |     |
| Vn             | noise voltage                        | f = 1 kHz                                                                                         |                        | 25°C             |       | 9       |     | 9     |         |     | nv/√Hz             |  |     |
| .,             | Peak-to-peak                         | f = 0.1 Hz to 1 Hz                                                                                |                        | 25°C             |       | 1       |     |       |         |     |                    |  |     |
| VNPP           | equivalent input<br>noise voltage    | f = 0.1 Hz to 10 Hz                                                                               |                        | 25°C             |       | 1.4     |     |       |         | μV  |                    |  |     |
| In             | Equivalent input noise current       |                                                                                                   |                        | 25°C             |       | 0.6     |     | 0.6   |         |     | fA/√Hz             |  |     |
|                |                                      | $V_{O} = 0.5 \text{ V to } 2.5 \text{ V},$                                                        | A <sub>V</sub> = 1     |                  |       | 0.0013% |     |       | 0.0013% |     |                    |  |     |
| THD + N        | Total harmonic distortion plus noise | f = 20 kHz,                                                                                       | A <sub>V</sub> = 10    | 25°C             |       | 0.004%  |     |       | 0.004%  |     |                    |  |     |
|                | distortion plus holse                | $R_L = 10 \text{ k}\Omega^{\ddagger}$                                                             | A <sub>V</sub> = 100   |                  | 0.03% |         |     | 0.03% |         |     |                    |  |     |
|                | Gain-bandwidth product               | $f = 10 \text{ kHz}, R_L = 100 \text{ pF}^{\ddagger}$                                             | = 10 kΩ <sup>‡</sup> , | 25°C             | 2.18  |         |     | 2.18  |         |     | MHz                |  |     |
| ВОМ            | Maximum output-swing bandwidth       | $V_{O(PP)} = 2 \text{ V}, \qquad A_{V} = R_{L} = 10 \text{ k}\Omega^{\ddagger}, \qquad C_{L} = 0$ | = 1,<br>= 100 pF‡      | 25°C             |       | 1       |     |       | 1       |     | MHz                |  |     |
|                | Cattling time                        | $A_V = -1$ ,<br>Step = 0.5 V to 2.5 V,                                                            |                        | 25°C             |       | 1.5     | 1.5 |       | 1.5     |     |                    |  |     |
| t <sub>S</sub> | Settling time                        | $R_L = 10 \text{ k}\Omega^{\ddagger},$<br>$C_L = 100 \text{ pF}^{\ddagger}$ To 0.01%              |                        | 20 0             | 2.6   |         | 2.6 |       | 2.6     |     | 2.6                |  | μ\$ |
| φm             | Phase margin at unity gain           | $R_L = 10 \text{ k}\Omega^{\ddagger}, \qquad C_L = 100 \text{ pF}^{\ddagger}$                     |                        | 25°C             | 50°   |         |     | 50°   |         |     |                    |  |     |
|                | Gain margin                          | $R_{L} = 10 \text{ k}\Omega + , \qquad C_{L} = 100 \text{ pF} + $                                 |                        | 25°C             | 10    |         |     | dB    |         |     |                    |  |     |

<sup>†</sup> Full range is 0°C to 70°C. ‡ Referenced to 0 V



SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2272C electrical characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5$ V (unless otherwise specified)

|                 | PARAMETER                                               | TEST                                         | NDITIONS                  | T. +             | Т               | LC22720           |      | TL              | .C2272A           | С    | T     |
|-----------------|---------------------------------------------------------|----------------------------------------------|---------------------------|------------------|-----------------|-------------------|------|-----------------|-------------------|------|-------|
|                 | PARAMETER                                               | 1231 00                                      | MUITIONS                  | T <sub>A</sub> † | MIN             | TYP               | MAX  | MIN             | TYP               | MAX  | UNIT  |
| V. 0            | Input offset voltage                                    |                                              |                           | 25°C             |                 | 300               | 2500 |                 | 300               | 950  | μV    |
| VIO             | input onset voltage                                     |                                              |                           | Full range       |                 |                   | 3000 |                 |                   | 1500 | μν    |
| αΛΙΟ            | Temperature coefficient of input offset voltage         |                                              |                           | 25°C<br>to 70°C  |                 | 2                 |      |                 | 2                 |      | μV/°C |
|                 | Input offset voltage<br>long-term drift<br>(see Note 4) | $V_{IC} = 0 \text{ V},$<br>$R_S = 50 \Omega$ | V <sub>O</sub> = 0 V,     | 25°C             |                 | 0.002             |      |                 | 0.002             |      | μV/mo |
| lio             | Input offset current                                    |                                              |                           | 25°C             |                 | 0.5               | 60   |                 | 0.5               | 60   | pА    |
| טוי             | input onset current                                     |                                              |                           | Full range       |                 |                   | 100  |                 |                   | 100  | PΛ    |
| I <sub>IB</sub> | Input bias current                                      |                                              |                           | 25°C             |                 | 1                 | 60   |                 | 1                 | 60   | рA    |
| .ID             | mpat blac carrent                                       |                                              |                           | Full range       |                 |                   | 100  |                 |                   | 100  | P     |
| Vion            | Common-mode input                                       | R <sub>S</sub> = 50 Ω,                       | V <sub>IO</sub>   ≤5 mV   | 25°C             | -5<br>to<br>4   | -5.3<br>to<br>4.2 |      | -5<br>to<br>4   | -5.3<br>to<br>4.2 |      | V     |
| VICR            | voltage                                                 | NS = 50 \$2,                                 | lvIO l≥2 iiiv             | Full range       | -5<br>to<br>3.5 |                   |      | -5<br>to<br>3.5 |                   |      | V     |
|                 |                                                         | $I_0 = -20 \mu A$                            |                           | 25°C             |                 | 4.99              |      |                 | 4.99              |      |       |
|                 | Maximum positive peak                                   | Ja - 200 u/                                  |                           | 25°C             | 4.85            | 4.93              |      | 4.85            | 4.93              |      |       |
| VOM+            | OM+ output voltage                                      | $I_{O} = -200 \mu$                           | `                         | Full range       | 4.85            |                   |      | 4.85            |                   |      | V     |
|                 | output romago                                           | I <sub>O</sub> = -1 mA                       |                           | 25°C             | 4.25            | 4.65              |      | 4.25            | 4.65              |      |       |
|                 |                                                         | 10 = -1111A                                  |                           | Full range       | 4.25            |                   |      | 4.25            |                   |      |       |
|                 |                                                         | $V_{IC} = 0 V$                               | $I_0 = 50  \mu A$         | 25°C             |                 | -4.99             |      |                 | -4.99             |      |       |
|                 | Maximum negative peak                                   | V <sub>IC</sub> = 0 V,                       | ΙΟ = 500 μΑ               | 25°C             | -4.85           | -4.91             |      | -4.85           | -4.91             |      |       |
| VOM−            | output voltage                                          | 10 0 1,                                      | 10 = 300 μΑ               | Full range       | -4.85           |                   |      | -4.85           |                   |      | V     |
|                 |                                                         | $V_{IC} = 0 V$                               | $I_O = 5 \text{ mA}$      | 25°C             | -3.5            | -4.1              |      | -3.5            | -4.1              |      |       |
|                 |                                                         | 10 ,                                         | <del>-</del>              | Full range       | -3.5            |                   |      | -3.5            |                   |      |       |
|                 | Large-signal differential                               |                                              | R <sub>L</sub> = 10 kΩ    | 25°C             | 25              | 50                |      | 25              | 50                |      |       |
| AVD             | voltage amplification                                   | $V_O = \pm 4 V$                              |                           | Full range       | 25              |                   |      | 25              |                   |      | V/mV  |
|                 |                                                         |                                              | $R_L = 1 \text{ m}\Omega$ | 25°C             |                 | 300               |      |                 | 300               |      |       |
| <sup>r</sup> id | Differential input resistance                           |                                              |                           | 25°C             |                 | 1012              |      |                 | 1012              |      | Ω     |
| rį              | Common-mode input resistance                            |                                              |                           | 25°C             |                 | 1012              |      |                 | 1012              |      | Ω     |
| Cį              | Common-mode input capacitance                           | f = 10 kHz,                                  | P package                 | 25°C             |                 | 8                 |      |                 | 8                 |      | pF    |
| z <sub>o</sub>  | Closed-loop output impedance                            | f = 1 MHz,                                   | A <sub>V</sub> = 10       | 25°C             |                 | 130               |      |                 | 130               |      | Ω     |
| OMES            | Common-mode rejection                                   | $V_{IC} = -5 \text{ V to}$                   | 2.7 V,                    | 25°C             | 75              | 80                |      | 75              | 80                |      | i     |
| CMRR            | ratio                                                   | $V_O = 0 V$                                  | $R_S = 50 \Omega$         | Full range       | 75              |                   |      | 75              |                   |      | dB    |
| 1-              | Supply-voltage rejection                                | V <sub>DD±</sub> = 2.2 \                     | √ to ±8 V.                | 25°C             | 80              | 95                |      | 80              | 95                |      | - 10  |
| ksvr            | ratio ( $\Delta V_{DD\pm}/\Delta V_{IO}$ )              | $V_{IC} = 0 V$                               | No load                   | Full range       | 80              |                   |      | 80              |                   |      | dB    |
|                 |                                                         | .,                                           |                           | 25°C             |                 | 2.4               | 3    |                 | 2.4               | 3    | _     |
| IDD             | Supply current                                          | VO = 0 V                                     | No load                   | Full range       |                 |                   | 3    |                 |                   | 3    | mA    |

<sup>†</sup> Full range is 0°C to 70°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150$ °C extrapolated to  $T_A = 25$ °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.



## TLC2272C operating characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5~\text{V}$

|                  | PARAMETER                          | TEST CONDITIO                                       |                      | _ +              |     | TLC22720 | ;   | Т   | LC2272A | С   |                    |
|------------------|------------------------------------|-----------------------------------------------------|----------------------|------------------|-----|----------|-----|-----|---------|-----|--------------------|
| P/               | ARAMETER                           | TEST CONDITION                                      | ONS                  | T <sub>A</sub> † | MIN | TYP      | MAX | MIN | TYP     | MAX | UNIT               |
|                  | 01                                 | V 100V                                              | 4010                 | 25°C             | 2.3 | 3.6      |     | 2.3 | 3.6     |     |                    |
| SR               | Slew rate at unity gain            | $V_O = \pm 2.3 \text{ V},$ R $C_L = 100 \text{ pF}$ | L = 10 kΩ,           | Full range       | 1.7 |          |     | 1.7 |         |     | V/μs               |
| .,               | Equivalent input                   | f = 10 Hz                                           |                      | 25°C             |     | 50       |     |     | 50      |     | nV/√ <del>Hz</del> |
| V <sub>n</sub>   | noise voltage                      | f = 1 kHz                                           |                      | 25°C             |     | 9        |     |     | 9       |     | nv/√Hz             |
| \/               | Peak-to-peak equivalent input      | f = 0.1 Hz to 1 Hz                                  |                      | 25°C             |     | 1        |     |     | 1       |     | /                  |
| V <sub>NPP</sub> | noise voltage                      | f = 0.1 Hz to 10 Hz                                 |                      | 25°C             |     | 1.4      |     |     | 1.4     |     | μV                 |
| In               | Equivalent input noise current     |                                                     |                      | 25°C             |     | 0.6      |     |     | 0.6     |     | fA/√Hz             |
|                  | Total harmonic                     | V <sub>O</sub> = ±2.3 V,                            | A <sub>V</sub> = 1   |                  |     | 0.0011%  |     |     | 0.0011% |     |                    |
| THD + N          | distortion pulse                   | f = 20 kHz,                                         | A <sub>V</sub> = 10  | 25°C             |     | 0.004%   |     |     | 0.004%  |     |                    |
|                  | duration                           | $R_L = 10 \text{ k}\Omega$                          | A <sub>V</sub> = 100 |                  |     | 0.03%    |     |     | 0.03%   |     |                    |
|                  | Gain-bandwidth product             | $f = 10 \text{ kHz},$ R $C_L = 100 \text{ pF}$      | L = 10 kΩ,           | 25°C             |     | 2.25     |     |     | 2.25    |     | MHz                |
| ВОМ              | Maximum output-<br>swing bandwidth |                                                     | v = 1,<br>L = 100 pF | 25°C             |     | 0.54     |     |     | 0.54    |     | MHz                |
|                  | Cattling time                      | $A_V = -1$ ,<br>Step = -2.3 V to 2.3 V,             | To 0.1%              | 25°C             |     | 1.5      |     |     | 1.5     |     |                    |
| t <sub>S</sub>   | Settling time                      | $R_L$ = 10 kΩ,<br>$C_L$ = 100 pF                    | To 0.01%             | 25°C             |     | 3.2      |     |     | 3.2     |     | μS                 |
| φm               | Phase margin at unity gain         | $R_{I} = 10 \text{ k}\Omega,$                       | i = 100 pF           | 25°C             |     | 52°      |     |     | 52°     |     |                    |
|                  | Gain margin                        | 1 -                                                 | - '                  | 25°C             |     | 10       |     |     | 10      |     | dB                 |

<sup>†</sup>Full range is 0°C to 70°C.

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2274C electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

| Vio   Input offset voltage   Emperature coefficient of input offset voltage   Input offset current   Vio   Vio   O V   Vio   O Vio   O V   Vio   O Vio   O V   O V   Vio   O V   O V   Vio   O V   Vio   O V   Vio   O V   Vio   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V   O V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | DADAMETED                 | TEST CON                                                   | IDITIONS                               | - +              | Т    | LC2274           | С    | TL   | C2274A           | C    |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|------------------------------------------------------------|----------------------------------------|------------------|------|------------------|------|------|------------------|------|------------|
| Full range   3000   1500   μV   1500   μV   1500   μV   1500   μV   1500   1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | PARAMETER                 | IESI CON                                                   | NDITIONS                               | T <sub>A</sub> † | MIN  | TYP              | MAX  | MIN  | TYP              | MAX  | UNIT       |
| Temperature coefficient of input offset voltage input offset current in input input bias current   Vica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V/10            | Input offset voltage      |                                                            |                                        | 25°C             |      | 300              | 2500 |      | 300              | 950  | \/         |
| The first voltage   Input offset current   VOD ± = ±2.5 V, VO = 0 V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۷IO             | iliput oliset voltage     |                                                            |                                        | Full range       |      |                  | 3000 |      |                  | 1500 | μν         |
| long-term drift (see Note 4)   VO = 0 V,   VO = 0 V,   VO = 0 V,   VO = 0 V,   RS = 50 Ω   PA     Input offset current   Input offset current   Input bias current   Input bias current   RS = 50 Ω,   Input bias current   VOR   VOITE   V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | αΝΙΟ            |                           |                                                            |                                        |                  |      | 2                |      |      | 2                |      | μV/°C      |
| Input offset current   Full range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | long-term drift           | $V_{DD\pm} = \pm 2.5 \text{ V},$<br>$V_{O} = 0 \text{ V},$ | $V_{IC} = 0 V$ ,<br>$R_S = 50 \Omega$  | 25°C             |      | 0.002            |      |      | 0.002            |      | μV/mo      |
| The provided input provided input voltage   Policy   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lio.            | Input offeet current      | ]                                                          |                                        | 25°C             |      | 0.5              | 60   |      | 0.5              | 60   | nΔ         |
| Input bias current   Full range   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10              | Input onset current       | ]                                                          |                                        | Full range       |      |                  | 100  |      |                  | 100  | PΛ         |
| Vical   Vic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lin             | Innut hiss current        |                                                            |                                        | 25°C             |      | 1                | 60   |      | 1                | 60   | nΔ         |
| $V_{\text{ICR}} = \begin{array}{c} \text{Common-mode input voltage} \\ \text{VICR} = \begin{array}{c} \text{Common-mode input voltage} \\ \text{IOH} = -20 \ \mu\text{A} \\ \text{IOH} = -200 \ \mu\text{A} \\ \text{IOH} = -200 \ \mu\text{A} \\ \text{IOH} = -200 \ \mu\text{A} \\ \text{IOH} = -1 \ \text{mA} \\ $ | чв              | input bias current        |                                                            |                                        | Full range       |      |                  | 100  |      |                  | 100  | PΑ         |
| Voh   High-level output voltage   Full range   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vion            | Common-mode input         | Po = 50 O                                                  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 25°C             | _    |                  |      |      |                  |      | \ <u>'</u> |
| $V_{OH} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VICR            | voltage                   | KS = 50 12,                                                | $ V O  \geq 9 \text{ mV},$             | Full range       |      |                  |      |      |                  |      | V          |
| $V_{OH}  \text{High-level output voltage}  \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                           | $I_{OH} = -20  \mu A$                                      |                                        | 25°C             |      | 4.99             |      |      | 4.99             |      |            |
| $V_{OL} = \frac{10 \text{High-level output voltage}}{10 \text{High-level output voltage}} = \frac{10 \text{High-level output voltage}}{10 \text{High-level output voltage}} = \frac{25^{\circ}\text{C}}{10 \text{High-level output voltage}} = \frac{25^{\circ}\text{C}}{10 \text{High-level output voltage}} = \frac{25^{\circ}\text{C}}{10 \text{Low-level output voltage}} = \frac{25^{\circ}\text{C}}{10 Lo$                                                                                                                                                                                                  |                 |                           |                                                            |                                        | 25°C             | 4.85 | 4.93             |      | 4.85 | 4.93             |      |            |
| $V_{OL} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ∨он             | High-level output voltage | ΙΟΗ = -200 μΑ                                              |                                        | Full range       | 4.85 |                  |      | 4.85 |                  |      | V          |
| $V_{OL} \ \ Low-level output voltage \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                           | 1 4 4                                                      |                                        | 25°C             | 4.25 | 4.65             |      | 4.25 | 4.65             |      |            |
| $V_{OL} \ \ Low-level output voltage \ \ V_{IC} = 2.5 \ V,  I_{OL} = 500 \ \mu A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                           | IOH = -1 MA                                                |                                        | Full range       | 4.25 |                  |      | 4.25 |                  |      |            |
| $ V_{OL}  \text{Low-level output voltage }  V_{IC} = 2.5  \text{V},  I_{OL} = 500  \mu\text{A} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 5  \text{mA} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V},  I_{OL} = 2.5  \text{V} \\ \hline V_{IC} = 2.5  \text{V} \\ \hline$                                                                                                                                                                                                                                                                                                                                                    |                 |                           | V <sub>IC</sub> = 2.5 V,                                   | I <sub>OL</sub> = 50 μA                | 25°C             |      | 0.01             |      |      | 0.01             |      |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                           | V 25V L                                                    |                                        | 25°C             |      | 0.09             | 0.15 |      | 0.09             | 0.15 |            |
| $ V_{ C } = 2.5 \text{ V},   O_{ C } = 5 \text{ mA} $ Full range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VOL             | Low-level output voltage  | VIC = 2.5 V, IC                                            | ΣΓ = 200 μΑ                            | Full range       |      |                  | 0.15 |      |                  | 0.15 | V          |
| AVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                           | V: 2 F V                                                   | la. – E mA                             | 25°C             |      | 0.9              | 1.5  |      | 0.9              | 1.5  |            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                           | VIC = 2.5 V,                                               | IOC = 2 IIIA                           | Full range       |      |                  | 1.5  |      |                  | 1.5  |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                           | .,                                                         | D. 401-0†                              | 25°C             | 15   | 35               |      | 15   | 35               |      |            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVD             |                           |                                                            | R[ = 10 K22+                           | Full range       | 15   |                  |      | 15   |                  |      | V/mV       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | voltage amplification     | 1 10 - 1 1 10 + 1                                          | $R_L = 1 \text{ m}\Omega^{\ddagger}$   | 25°C             |      | 175              |      |      | 175              |      |            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r <sub>id</sub> |                           |                                                            |                                        | 25°C             |      | 10 <sup>12</sup> |      |      | 10 <sup>12</sup> |      | Ω          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rį              | ·                         |                                                            |                                        | 25°C             |      | 1012             |      |      | 1012             |      | Ω          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ci              | '                         | f = 10 kHz,                                                | N package                              | 25°C             |      | 8                |      |      | 8                |      | pF         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z <sub>O</sub>  |                           | f = 1 MHz,                                                 | A <sub>V</sub> = 10                    | 25°C             |      | 140              |      |      | 140              |      | Ω          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OMBE            | Common-mode rejection     | $V_{IC} = 0 \text{ V to } 2.7 \text{ V}$                   |                                        | 25°C             | 70   | 75               |      | 70   | 75               |      | .ID        |
| kSVR ratio ( $\Delta$ VDD/ $\Delta$ VIO) VIC = VDD/2, No load Full range 80 80 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CMRR            |                           |                                                            |                                        | Full range       | 70   |                  |      | 70   |                  |      | aB         |
| ratio ( $\Delta V_{DD}/\Delta V_{IO}$ ) $V_{IC} = V_{DD}/2$ , No load Full range 80 80 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l               | Supply-voltage rejection  | V <sub>DD</sub> = 4.4 V to 1                               | 6 V,                                   | 25°C             | 80   | 95               |      | 80   | 95               |      | 10         |
| In Supply current I/o = 2.5.V No lood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KSVR            |                           |                                                            |                                        | Full range       | 80   |                  |      | 80   |                  |      | aB         |
| Supply current $VO = 2.5 \text{ V}$ , No load Full range 6 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1               | Committee and a state of  | V- 05V                                                     | Nelect                                 | 25°C             |      | 4.4              | 6    |      | 4.4              | 6    | ^          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DD              | Supply current            | VO = 2.5 V,                                                | ino load                               | Full range       |      |                  | 6    |      |                  | 6    | mA         |

<sup>†</sup> Full range is 0°C to 70°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150$ °C extrapolated to  $T_A = 25$ °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.



<sup>‡</sup>Referenced to 0 V

## TLC2274C operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

|                |                                   |                                                                                 |                                                             | _ +              | 1   | TLC22740 | ;   | TI  | _C2274A | С   |                     |
|----------------|-----------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|-----|----------|-----|-----|---------|-----|---------------------|
| PA             | RAMETER                           | TEST CONDI                                                                      | TIONS                                                       | T <sub>A</sub> † | MIN | TYP      | MAX | MIN | TYP     | MAX | UNIT                |
|                |                                   |                                                                                 |                                                             | 25°C             | 2.3 | 3.6      |     | 2.3 | 3.6     |     |                     |
| SR             | Slew rate at unity gain           | $V_O = 0.5 \text{ V to } 2.5 \text{ V},$ $R_L = 10 \text{ k}\Omega^{\ddagger},$ | C <sub>L</sub> = 100 pF <sup>‡</sup>                        | Full range       | 1.7 |          |     | 1.7 |         |     | V/μs                |
| V              | Equivalent input                  | f = 10 Hz                                                                       |                                                             | 25°C             |     | 50       |     |     | 50      |     | ->4/ <del>11-</del> |
| Vn             | noise voltage                     | f = 1 kHz                                                                       |                                                             | 25°C             |     | 9        |     |     | 9       |     | nV/√Hz              |
| .,             | Peak-to-peak                      | f = 0.1 Hz to 1 Hz                                                              |                                                             | 25°C             |     | 1        |     |     |         |     |                     |
| VN(PP)         | equivalent input<br>noise voltage | f = 0.1 Hz to 10 Hz                                                             |                                                             | 25°C             |     | 1.4      |     |     | μV      |     |                     |
| In             | Equivalent input noise current    |                                                                                 |                                                             | 25°C             |     | 0.6      |     |     | 0.6     |     | fA/√Hz              |
|                | Total harmonic                    | $V_O = 0.5 \text{ V to } 2.5 \text{ V},$                                        | A <sub>V</sub> = 1                                          |                  |     | 0.0013%  |     |     | 0.0013% |     |                     |
| THD + N        | distortion plus                   | f = 20 kHz,                                                                     | A <sub>V</sub> = 10                                         | 25°C             |     | 0.004%   |     |     | 0.004%  |     |                     |
|                | noise                             | $R_L = 10 \text{ k}\Omega^{\ddagger}$                                           | A <sub>V</sub> = 100                                        |                  |     | 0.03%    |     |     | 0.03%   |     |                     |
|                | Gain-bandwidth product            | f = 10  kHz,<br>$C_L = 100 \text{ pF}^{\ddagger}$                               | $R_L = 10 \text{ k}\Omega^{\ddagger}$ ,                     | 25°C             |     | 2.18     |     |     | 2.18    |     | MHz                 |
| ВОМ            | Maximum output-swing bandwidth    | $V_{O(PP)} = 2 \text{ V},$ $R_L = 10 \text{ k}\Omega^{\ddagger},$               | A <sub>V</sub> = 1,<br>C <sub>L</sub> = 100 pF <sup>‡</sup> | 25°C             |     | 1        |     |     | 1       |     | MHz                 |
|                | Cattling time                     | $A_V = -1$ ,<br>Step = 0.5 V to 2.5 V,                                          | To 0.1%                                                     | 2500             |     | 1.5      |     |     | 1.5     |     |                     |
| t <sub>S</sub> | Settling time                     | $R_L = 10 \text{ k}\Omega^{\ddagger},$<br>$C_L = 100 \text{ pF}^{\ddagger}$     | To 0.01%                                                    | 25°C             |     | 2.6      |     |     | 2.6     |     | μs                  |
| φm             | Phase margin at unity gain        | $R_{I} = 10 \text{ k}\Omega^{\ddagger}$                                         | C <sub>L</sub> = 100 pF‡                                    | 25°C             |     | 50°      |     |     | 50°     |     |                     |
|                | Gain margin                       | 1 -                                                                             | _ '                                                         | 25°C             |     | 10       |     |     | 10      |     | dB                  |

<sup>†</sup> Full range is 0°C to 70°C. ‡ Referenced to 0 V



SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2274C electrical characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5$ V (unless otherwise noted)

|                   | PARAMETER                                         | TEST CO                               | ONDITIONS                   | - +              | Т            | LC2274         | С    | TL           | .C2274A        | C    |       |
|-------------------|---------------------------------------------------|---------------------------------------|-----------------------------|------------------|--------------|----------------|------|--------------|----------------|------|-------|
|                   | FARAMETER                                         | 1231 00                               | DINDITIONS                  | T <sub>A</sub> † | MIN          | TYP            | MAX  | MIN          | TYP            | MAX  | UNIT  |
| VIO               | Input offset voltage                              |                                       |                             | 25°C             |              | 300            | 2500 |              | 300            | 950  | μV    |
| V10               | input onset voltage                               | ]                                     |                             | Full range       |              |                | 3000 |              |                | 1500 | μν    |
| αΛΙΟ              | Temperature coefficient of input offset voltage   |                                       |                             | 25°C<br>to 70°C  |              | 2              |      |              | 2              |      | μV/°C |
|                   | Input offset voltage long-term drift (see Note 4) | $V_{IC} = 0 V$ ,<br>$R_S = 50 \Omega$ | $V_O = 0 V$ ,               | 25°C             |              | 0.002          |      |              | 0.002          |      | μV/mo |
| 1                 | Innut offeet europt                               | 1                                     |                             | 25°C             |              | 0.5            | 60   |              | 0.5            | 60   | - A   |
| liO               | Input offset current                              |                                       |                             | Full range       |              |                | 100  |              |                | 100  | рA    |
| lin               | Input bias current                                |                                       |                             | 25°C             |              | 1              | 60   |              | 1              | 60   | pА    |
| ΙΒ                | input bias current                                |                                       |                             | Full range       |              |                | 100  |              |                | 100  | PΑ    |
| \/                | Common-mode input                                 | D- 50.0                               | N/1-1 < F ms //             | 25°C             | -5<br>to 4   | -5.3<br>to 4.2 |      | -5<br>to 4   | -5.3<br>to 4.2 |      | V     |
| VICR              | voltage                                           | KS = 50 12,                           | $ V_{IO}  \le 5 \text{ mV}$ | Full range       | -5<br>to 3.5 |                |      | -5<br>to 3.5 |                |      | V     |
|                   |                                                   | I <sub>O</sub> = -20 μA               |                             | 25°C             |              | 4.99           |      |              | 4.99           |      |       |
|                   |                                                   |                                       | ^                           | 25°C             | 4.85         | 4.93           |      | 4.85         | 4.93           |      |       |
| VOM+              | Maximum positive peak output voltage              | $I_{O} = -200 \mu$                    | А                           | Full range       | 4.85         |                |      | 4.85         |                |      | V     |
|                   | voltago                                           | lo - 1 m/                             |                             | 25°C             | 4.25         | 4.65           |      | 4.25         | 4.65           |      |       |
|                   |                                                   | $I_O = -1 \text{ mA}$                 |                             | Full range       | 4.25         |                |      | 4.25         |                |      |       |
|                   |                                                   | $V_{IC} = 0 V$ ,                      | $I_O = 50 \mu A$            | 25°C             |              | -4.99          |      |              | -4.99          |      |       |
|                   |                                                   | V 0.V                                 | I- 500 ·· A                 | 25°C             | -4.8<br>5    | -4.91          |      | -4.85        | -4.91          |      |       |
| V <sub>OM</sub> - | Maximum negative peak output voltage              | V C = 0 V,                            | ΙΟ = 500 μΑ                 | Full range       | -4.8<br>5    |                |      | -4.85        |                |      | V     |
|                   |                                                   | .,                                    |                             | 25°C             | -3.5         | -4.1           |      | -3.5         | -4.1           |      |       |
|                   |                                                   | VIC = 0 V                             | $I_O = -5 \text{ mA}$       | Full range       | -3.5         |                |      | -3.5         |                |      |       |
|                   |                                                   |                                       | D. 401-0                    | 25°C             | 25           | 50             |      | 25           | 50             |      |       |
| AVD               | Large-signal differential voltage amplification   | V <sub>O</sub> = ±4 V                 | R <sub>L</sub> = 10 kΩ      | Full range       | 25           |                |      | 25           |                |      | V/mV  |
|                   | voltage amplification                             |                                       | $R_L = 1 M\Omega$           | 25°C             |              | 300            |      |              | 300            |      |       |
| rid               | Differential input resistance                     |                                       |                             | 25°C             |              | 1012           |      |              | 1012           |      | Ω     |
| rį                | Common-mode input resistance                      |                                       |                             | 25°C             |              | 1012           |      |              | 1012           |      | Ω     |
| ci                | Common-mode input capacitance                     | f = 10 kHz,                           | N package                   | 25°C             |              | 8              |      |              | 8              |      | pF    |
| z <sub>O</sub>    | Closed-loop output impedance                      | f = 1 MHz,                            | Ay = 10                     | 25°C             |              | 130            |      |              | 130            |      | Ω     |
| CMDD              | Common mando maio etica metic                     | V <sub>IC</sub> = -5 V                | to 2.7 V,                   | 25°C             | 75           | 80             |      | 75           | 80             |      | 40    |
| CIVIKK            | Common-mode rejection ratio                       | $V_0 = 0 V$                           | $R_S = 50 \Omega$           | Full range       | 75           |                |      | 75           |                |      | dB    |
| keyre             | Supply-voltage rejection ratio                    | V <sub>DD±</sub> = ±2.                | 2 V to ±8 V,                | 25°C             | 80           | 95             |      | 80           | 95             |      | ٩D    |
| ksvr              | $(\Delta V_{DD\pm}/\Delta V_{IO})$                | $V_{IC} = 0 V$                        | No load                     | Full range       | 80           |                |      | 80           |                |      | dB    |
| la s              | Cumply ourrant                                    | \\o = 0.\\                            | No load                     | 25°C             |              | 4.8            | 6    |              | 4.8            | 6    | m ^   |
| <sup>I</sup> DD   | Supply current                                    | $V_O = 0 V$                           | เพษายลติ                    | Full range       |              |                | 6    |              |                | 6    | mA    |

<sup>†</sup>Full range is 0°C to 70°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150^{\circ}C$  extrapolated to  $T_A = 25^{\circ}C$  using the Arrhenius equation and assuming an activation energy of 0.96 eV.



## TLC2274C operating characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm5~V$

| _               | AD AMETED                            | TEOT CONDITIO                                                                   |                     | - +              | Т   | LC22740 |     | Τι  | _C2274A | С   |                    |
|-----------------|--------------------------------------|---------------------------------------------------------------------------------|---------------------|------------------|-----|---------|-----|-----|---------|-----|--------------------|
|                 | ARAMETER                             | TEST CONDITIO                                                                   | )NS                 | T <sub>A</sub> † | MIN | TYP     | MAX | MIN | TYP     | MAX | UNIT               |
|                 | <u> </u>                             |                                                                                 |                     | 25°C             | 2.3 | 3.6     |     | 2.3 | 3.6     |     |                    |
| SR              | Slew rate at unity gain              | $V_O = \pm 2.3 \text{ V}, \qquad R_L = C_L = 100 \text{ pF}$                    | 10 kΩ,              | Full range       | 1.7 |         |     | 1.7 |         |     | V/μs               |
| .,              | Equivalent input                     | f = 10 Hz                                                                       |                     | 25°C             |     | 50      |     |     | 50      |     | nV/√ <del>Hz</del> |
| Vn              | noise voltage                        | f = 1 Hz                                                                        |                     | 25°C             |     | 9       |     |     | 9       |     | nv/√HZ             |
| ,,              | Peak-to-peak                         | f = 0.1 Hz to 1 Hz                                                              |                     | 25°C             |     | 1       |     |     | 1       |     |                    |
| VN(PP)          | equivalent input<br>noise voltage    | f = 0.1 Hz to 10 Hz                                                             |                     | 25°C             |     | 1.4     |     |     | 1.4     |     | μV                 |
| In              | Equivalent input noise current       |                                                                                 |                     | 25°C             |     | 0.6     |     |     | 0.6     |     | fA/√Hz             |
|                 | Total harmonic                       | V <sub>O</sub> = ±2.3 V,                                                        | A <sub>V</sub> = 1  |                  |     | 0.0011% |     |     | 0.0011% |     |                    |
| THD + N         | distortion plus                      | f = 20 kHz,                                                                     | A <sub>V</sub> = 10 | 25°C             |     | 0.004%  |     |     | 0.004%  |     |                    |
|                 | noise                                | $R_L = 10 \text{ k}\Omega$                                                      | $A_{V} = 100$       |                  |     | 0.03%   |     |     | 0.03%   |     |                    |
|                 | Gain-bandwidth product               | f = 10 kHz, R <sub>L</sub> = 1<br>C <sub>L</sub> = 100 pF                       | 10 kΩ,              | 25°C             |     | 2.25    |     |     | 2.25    |     | MHz                |
| B <sub>OM</sub> | Maximum<br>output-swing<br>bandwidth | $V_{O(PP)} = 4.6 \text{ V},  A_{V} = R_{L} = 10 \text{ k}\Omega,  C_{L} = 0.00$ | 1,<br>100 pF        | 25°C             |     | 0.54    |     |     | 0.54    |     | MHz                |
|                 | Settling time                        | $A_V = -1$ ,<br>Step = -2.3 V to 2.3 V,                                         | To 0.1%             | 25°C             |     | 1.5     |     |     | 1.5     |     |                    |
| t <sub>S</sub>  | Setting time                         | $R_L = 10 \text{ k}\Omega$ ,<br>$C_L = 100 \text{ pF}$                          | To 0.01%            | 25 0             |     | 3.2     |     |     | 3.2     |     | μs                 |
| φm              | Phase margin at unity gain           | $R_L = 10 \text{ k}\Omega$ , $C_L =$                                            | 100 pF              | 25°C             |     | 52°     |     |     | 52°     |     |                    |
|                 | Gain margin                          | ] -                                                                             | •                   | 25°C             |     | 10      |     |     | 10      |     | dB                 |

<sup>†</sup> Full range is 0°C to 70°C.

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2272I electrical characteristics at specified free-air temperature, $V_{DD}$ = 5 V (unless otherwise noted)

|                       | DADAMETED                                               | TEST CO.                                                  | NDITIONS                              |                  | 1           | TLC2272          |      | Т           | LC2272A          | AI . |            |
|-----------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|------------------|-------------|------------------|------|-------------|------------------|------|------------|
|                       | PARAMETER                                               | TEST CO                                                   | NDITIONS                              | T <sub>A</sub> † | MIN         | TYP              | MAX  | MIN         | TYP              | MAX  | UNIT       |
| V <sub>IO</sub>       | Input offset voltage                                    |                                                           |                                       | 25°C             |             | 300              | 2500 |             | 300              | 950  | μV         |
| ۷IO                   | input onset voltage                                     | ]                                                         |                                       | Full range       |             |                  | 3000 |             |                  | 1500 | μν         |
| $\alpha_{\text{VIO}}$ | Temperature coefficient of input offset voltage         |                                                           |                                       | 25°C<br>to 85°C  |             | 2                |      |             | 2                |      | μV/°C      |
|                       | Input offset voltage<br>long-term drift<br>(see Note 4) |                                                           | $V_{DD\pm} = \pm 2.5 \text{ V}$       | 25°C             |             | 0.002            |      |             | 0.002            |      | μV/mo      |
|                       |                                                         | $V_O = 0 V$ ,                                             | $R_S = 50 \Omega$                     | 25°C             |             | 0.5              | 60   |             | 0.5              | 60   |            |
| I <sub>IO</sub>       | Input offset current                                    |                                                           |                                       | -40°C to 85°C    |             |                  | 150  |             |                  | 150  | pА         |
|                       |                                                         |                                                           |                                       | Full range       |             |                  | 800  |             |                  | 800  |            |
|                       |                                                         |                                                           |                                       | 25°C             |             | 1                | 60   |             | 1                | 60   |            |
| I <sub>IB</sub>       | Input bias current                                      |                                                           |                                       | -40°C to 85°C    |             |                  | 150  |             |                  | 150  | pА         |
|                       |                                                         |                                                           |                                       | Full range       |             |                  | 800  |             |                  | 800  |            |
| V <sub>ICR</sub>      | Common-mode input                                       | $R_S = 50 \Omega$ ,                                       | V <sub>IO</sub>   ≤ 5 mV              | 25°C             | 0 to 4      | -0.3<br>to 4.2   |      | 0 to 4      | -0.3<br>to 4.2   |      | V          |
| VICR                  | voltage                                                 | NS = 00 \$2,                                              | V     3 111V                          | Full range       | 0 to<br>3.5 |                  |      | 0 to<br>3.5 |                  |      | V          |
|                       |                                                         | $I_{OH} = -20 \mu A$                                      |                                       | 25°C             |             | 4.99             |      |             | 4.99             |      |            |
|                       | 18.1.1                                                  | I <sub>OH</sub> = -200 μA                                 |                                       | 25°C             | 4.85        | 4.93             |      | 4.85        | 4.93             |      |            |
| $V_{OH}$              | High-level output voltage                               | ΙΟΗ = -200 μΑ                                             |                                       | Full range       | 4.85        |                  |      | 4.85        |                  |      | V          |
|                       | vollago                                                 | I <sub>OH</sub> = -1 mA                                   |                                       | 25°C             | 4.25        | 4.65             |      | 4.25        | 4.65             |      |            |
|                       |                                                         | IOH = - I IIIA                                            |                                       | Full range       | 4.25        |                  |      | 4.25        |                  |      |            |
|                       |                                                         | $V_{IC} = 2.5 V$ ,                                        | $I_{OL} = 50 \mu A$                   | 25°C             |             | 0.01             |      |             | 0.01             |      |            |
|                       | Lave lavel avitavit                                     | V <sub>IC</sub> = 2.5 V,                                  | I <sub>OL</sub> = 500 μA              | 25°C             |             | 0.09             | 0.15 |             | 0.09             | 0.15 |            |
| $V_{OL}$              | Low-level output voltage                                | V <sub>1</sub> C = 2.0 v,                                 | 10L = 000 μ/τ                         | Full range       |             |                  | 0.15 |             |                  | 0.15 | V          |
|                       | 3                                                       | V <sub>IČ</sub> = 2.5 V,                                  | I <sub>OL</sub> = 5 mA                | 25°C             |             | 0.9              | 1.5  |             | 0.9              | 1.5  |            |
|                       |                                                         | 10 =10 1,                                                 | .OL 0                                 | Full range       |             |                  | 1.5  |             |                  | 1.5  |            |
|                       | Large-signal differential                               | V <sub>IC</sub> = 2.5 V,                                  | $R_L = 10 \text{ k}\Omega^{\ddagger}$ | 25°C             | 15          | 35               |      | 15          | 35               |      |            |
| $A_{VD}$              | voltage amplification                                   | $V_{IC} = 2.5 \text{ V},$<br>$V_{O} = 1 \text{ V to 4 V}$ |                                       | Full range       | 15          |                  |      | 15          |                  |      | V/mV       |
|                       |                                                         |                                                           | $R_L = 1 \text{ m}\Omega^{\ddagger}$  | 25°C             |             | 175              |      |             | 175              |      |            |
| r <sub>id</sub>       | Differential input resistance                           |                                                           |                                       | 25°C             |             | 10 <sup>12</sup> |      |             | 10 <sup>12</sup> |      | Ω          |
| rį                    | Common-mode input resistance                            |                                                           |                                       | 25°C             |             | 10 <sup>12</sup> |      |             | 10 <sup>12</sup> |      | Ω          |
| Ci                    | Common-mode input capacitance                           | f = 10 kHz,                                               | P package                             | 25°C             |             | 8                |      |             | 8                |      | pF         |
| z <sub>o</sub>        | Closed-loop output impedance                            | f = 1 MHz,                                                | A <sub>V</sub> = 10                   | 25°C             |             | 140              | _    |             | 140              |      | Ω          |
| CMDD                  | Common-mode                                             | $V_{IC} = 0 \text{ V to } 2.7$                            | V,                                    | 25°C             | 70          | 75               |      | 70          | 75               |      | <b>4</b> D |
| CMRR                  | rejection ratio                                         | $V_0 = 2.5 \text{ V},$                                    | $R_S = 50 \Omega$                     | Full range       | 70          |                  |      | 70          |                  |      | dB         |
| k <sub>SVR</sub>      | Supply-voltage rejection ratio                          | $V_{DD} = 4.4 \text{ V to 1}$<br>$V_{IC} = V_{DD}/2$ ,    | 6 V,<br>No load                       | 25°C             | 80          | 95               |      | 80          | 95               |      | dB         |
|                       | $(\Delta V_{DD}/\Delta V_{IO})$                         | VIC - VDD/Z,                                              | างบาบสน                               | Full range       | 80          |                  |      | 80          |                  |      |            |
| Inn                   | Supply current                                          | V <sub>O</sub> = 2.5 V,                                   | No load                               | 25°C             |             | 2.2              | 3    |             | 2.2              | 3    | mA         |
| I <sub>DD</sub>       | Cappiy Carrett                                          | v0 - 2.5 v,                                               | 140 1000                              | Full range       |             |                  | 3    |             |                  | 3    | 111/       |

<sup>†</sup> Full range is – 40°C to 125°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150$ °C extrapolated to  $T_A = 25$ °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.



<sup>‡</sup>Referenced to 0 V

## TLC2272I operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

|                  | DAMETER                            | TEST CONDITION                                                                        | 2110                                  | - +              |     | TLC2272I |     | 1   | LC2272AI |     |                   |
|------------------|------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------|------------------|-----|----------|-----|-----|----------|-----|-------------------|
| PA               | ARAMETER                           | TEST CONDITION                                                                        | ONS                                   | T <sub>A</sub> † | MIN | TYP      | MAX | MIN | TYP      | MAX | UNIT              |
|                  | Olassa mata at                     | V 05V1-05V                                                                            |                                       | 25°C             | 2.3 | 3.6      |     | 2.3 | 3.6      |     |                   |
| SR               | Slew rate at unity gain            | $V_O = 0.5 \text{ V to } 2.5 \text{ V},$ $R_L = 10 \text{ k}\Omega^{\ddagger},$ $C_I$ | _ = 100 pF‡                           | Full<br>range    | 1.7 |          |     | 1.7 |          |     | V/μs              |
| .,               | Equivalent input                   | f = 10 Hz                                                                             |                                       | 25°C             |     | 50       |     |     | 50       |     | nV√ <del>Hz</del> |
| V <sub>n</sub>   | noise voltage                      | f = 1 kHz                                                                             |                                       | 25°C             |     | 9        |     |     | 9        |     | nv√Hz             |
| V                | Peak-to-peak equivalent input      | f = 0.1 Hz to 1 Hz                                                                    |                                       | 25°C             |     | 1        |     |     | 1        |     | \/                |
| V <sub>NPP</sub> | noise voltage                      | f = 0.1 Hz to 10 Hz                                                                   |                                       | 25°C             |     | 1.4      |     |     | 1.4      |     | μV                |
| In               | Equivalent input noise current     |                                                                                       |                                       | 25°C             |     | 0.6      |     |     | 0.6      |     | fA√Hz             |
|                  | Total harmonic                     | $V_{O} = 0.5 \text{ V to } 2.5 \text{ V},$                                            | A <sub>V</sub> = 1                    |                  |     | 0.0013%  |     |     | 0.0013%  |     |                   |
| THD + N          | distortion plus                    | f = 20 kHz,                                                                           | $A_{V} = 10$                          | 25°C             |     | 0.004%   |     |     | 0.004%   |     |                   |
|                  | noise                              | $R_L = 10 \text{ k}\Omega^{\ddagger}$                                                 | $A_{V} = 100$                         |                  |     | 0.03%    |     |     | 0.03%    |     |                   |
|                  | Gain-bandwidth product             | $f = 10 \text{ kHz}, R_1$<br>$C_L = 100 \text{ pF}^{\ddagger}$                        | $_{-}$ = 10 k $\Omega$ <sup>‡</sup> , | 25°C             |     | 2.18     |     |     | 2.18     |     | MHz               |
| ВОМ              | Maximum output-<br>swing bandwidth |                                                                                       | / = 1,<br>_ = 100 pF‡                 | 25°C             |     | 1        |     |     | 1        |     | MHz               |
|                  | Settling time                      | $A_V = -1$ ,<br>Step = 0.5 V to 2.5 V,                                                | To 0.1%                               | 25°C             |     | 1.5      |     |     | 1.5      |     |                   |
| t <sub>S</sub>   | Setting time                       | $R_L = 10 \text{ k}\Omega^{\ddagger},$<br>$C_L = 100 \text{ pF}^{\ddagger}$           | To 0.01%                              | 20 0             |     | 2.6      |     |     | 2.6      |     | μS                |
| фm               | Phase margin at unity gain         | $R_{I} = 10 \text{ k}\Omega^{\ddagger},$ $C_{I}$                                      | = 100 pF‡                             | 25°C             |     | 50°      |     |     | 50°      |     |                   |
|                  | Gain margin                        | ] -                                                                                   | - '                                   | 25°C             |     | 10       |     |     | 10       |     | dB                |

<sup>†</sup> Full range is – 40°C to 125°C. ‡ Referenced to 0 V

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

#### TLC2272I electrical characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5$ V (unless otherwise noted)

|                       | DADAMETED                                               | TEST 00                               | NDITIONS                   |                  | Т            | LC2272I          |      | TI           | LC2272A          |      |       |
|-----------------------|---------------------------------------------------------|---------------------------------------|----------------------------|------------------|--------------|------------------|------|--------------|------------------|------|-------|
|                       | PARAMETER                                               | IESI CO                               | NDITIONS                   | T <sub>A</sub> † | MIN          | TYP              | MAX  | MIN          | TYP              | MAX  | UNIT  |
| V <sub>IO</sub>       | Input offset voltage                                    |                                       |                            | 25°C             |              | 300              | 2500 |              | 300              | 950  | μV    |
| V10                   | mpat onset voltage                                      | ]                                     |                            | Full range       |              |                  | 3000 |              |                  | 1500 | μν    |
| $\alpha_{\text{VIO}}$ | Temperature coefficient of input offset voltage         |                                       |                            | 25°C to 85°C     |              | 2                |      |              | 2                |      | μV/°C |
|                       | Input offset voltage<br>long-term drift<br>(see Note 4) | $V_{IC} = 0 V$ ,<br>$R_S = 50 \Omega$ | V <sub>O</sub> = 0 V,      | 25°C             |              | 0.002            |      |              | 0.002            |      | μV/mo |
|                       |                                                         | 1.5 00 ==                             |                            | 25°C             |              | 0.5              | 60   |              | 0.5              | 60   |       |
| $I_{IO}$              | Input offset current                                    |                                       |                            | -40°C to 85°C    |              |                  | 150  |              |                  | 150  | рА    |
|                       |                                                         |                                       |                            | Full range       |              |                  | 800  |              |                  | 800  |       |
|                       |                                                         | 1                                     |                            | 25°C             |              | 1                | 60   |              | 1                | 60   |       |
| I <sub>IB</sub>       | Input bias current                                      |                                       |                            | -40°C to 85°C    |              |                  | 150  |              |                  | 150  | рА    |
|                       |                                                         |                                       |                            | Full range       |              |                  | 800  |              |                  | 800  |       |
| $V_{ICR}$             | Common-mode                                             | $R_S = 50 \Omega$                     | V <sub>IO</sub>   ≤ 5 mV   | 25°C             | –5 to<br>4   | -5.3<br>to 4.2   |      | –5 to<br>4   | -5.3<br>to 4.2   |      | V     |
| VICR                  | input voltage                                           | NS = 50 22,                           | v 0   ≥ 3 111v             | Full range       | –5 to<br>3.5 |                  |      | –5 to<br>3.5 |                  |      | V     |
|                       |                                                         | $I_O = -20 \mu A$                     |                            | 25°C             |              | 4.99             |      |              | 4.99             |      |       |
|                       |                                                         | I <sub>O</sub> = -200 μA              |                            | 25°C             | 4.85         | 4.93             |      | 4.85         | 4.93             |      |       |
| $V_{OM+}$             | Maximum positive<br>peak output voltage                 | 10 = -200 μΑ                          |                            | Full range       | 4.85         |                  |      | 4.85         |                  |      | V     |
|                       | pour output romago                                      | I <sub>O</sub> = -1 mA                |                            | 25°C             | 4.25         | 4.65             |      | 4.25         | 4.65             |      |       |
|                       |                                                         |                                       |                            | Full range       | 4.25         |                  |      | 4.25         |                  |      |       |
|                       |                                                         | $V_{IC} = 0 V$ ,                      | $I_O = 50 \mu A$           | 25°C             |              | -4.99            |      |              | -4.99            |      |       |
|                       | Maximum negative                                        | V <sub>IC</sub> = 0 V,                | I <sub>O</sub> = 500 μA    | 25°C             | -4.85        | -4.91            |      | -4.85        | -4.91            |      |       |
| $V_{OM-}$             | peak output voltage                                     | VIC = 0 V,                            | 10 = 000 μ/ τ              | Full range       | -4.85        |                  |      | -4.85        |                  |      | V     |
|                       |                                                         | V <sub>IC</sub> = 0 V,                | $I_O = 5 \text{ mA}$       | 25°C             | -3.5         | -4.1             |      | -3.5         | -4.1             |      |       |
|                       |                                                         | 10 0 1,                               | .0 0                       | Full range       | -3.5         |                  |      | -3.5         |                  |      |       |
|                       | Large-signal                                            |                                       | $R_L = 10 \text{ k}\Omega$ | 25°C             | 25           | 50               |      | 25           | 50               |      |       |
| $A_{VD}$              | differential voltage                                    | $V_O = \pm 4 V$                       |                            | Full range       | 25           |                  |      | 25           |                  |      | V/mV  |
|                       | amplification                                           |                                       | $R_L = 1 \text{ m}\Omega$  | 25°C             |              | 300              |      |              | 300              |      |       |
| r <sub>id</sub>       | Differential input resistance                           |                                       |                            | 25°C             |              | 10 <sup>12</sup> |      |              | 10 <sup>12</sup> |      | Ω     |
| r <sub>i</sub>        | Common-mode input resistance                            |                                       |                            | 25°C             |              | 10 <sup>12</sup> |      |              | 10 <sup>12</sup> |      | Ω     |
| Ci                    | Common-mode input capacitance                           | f = 10 kHz,                           | P package                  | 25°C             |              | 8                |      |              | 8                |      | pF    |
| Z <sub>O</sub>        | Closed-loop output impedance                            | f = 1 MHz,                            | A <sub>V</sub> = 10        | 25°C             |              | 130              |      |              | 130              |      | Ω     |
| 01400                 | Common-mode                                             | $V_{IC} = -5 \text{ V to } 2.7$       | 7 V,                       | 25°C             | 75           | 80               |      | 75           | 80               |      |       |
| CMRR                  | rejection ratio                                         |                                       | $R_S = 50 \Omega$          | Full range       | 75           |                  |      | 75           |                  |      | dB    |
| k <sub>SVR</sub>      | Supply-voltage rejection ratio                          | V <sub>DD</sub> = 4.4 V to 1          |                            | 25°C             | 80           | 95               |      | 80           | 95               |      | dB    |
| OVIC                  | $(\Delta V_{DD\pm}/\Delta V_{IO})$                      | $V_{IC} = V_{DD}/2,$                  | No load                    | Full range       | 80           |                  |      | 80           |                  |      |       |
|                       | Cumply aver                                             | .,                                    | No les d                   | 25°C             |              | 2.4              | 3    |              | 2.4              | 3    | A     |
| I <sub>DD</sub>       | Supply current                                          | $V_O = 0 V$ ,                         | No load                    | Full range       |              |                  | 3    |              |                  | 3    | mA    |

<sup>†</sup> Full range is – 40°C to 125°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150^{\circ}C$  extrapolated to  $T_A = 25^{\circ}C$  using the Arrhenius equation and assuming an activation energy of 0.96 eV.



## TLC2272I operating characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5~V$

|                |                                   | TEGT GOVERNMENT                                                    |                      | _ +              |     | TLC2272I |     | Т   | LC2272A | I   |                   |
|----------------|-----------------------------------|--------------------------------------------------------------------|----------------------|------------------|-----|----------|-----|-----|---------|-----|-------------------|
| P/             | ARAMETER                          | TEST CONDITION                                                     | ONS                  | T <sub>A</sub> † | MIN | TYP      | MAX | MIN | TYP     | MAX | UNIT              |
|                | Slew rate at                      | $V_0 = \pm 2.3 \text{ V}, R$                                       | L = 10 kΩ,           | 25°C             | 2.3 | 3.6      |     | 2.3 | 3.6     |     |                   |
| SR             | unity gain                        | $C_L = 100 \text{ pF}$                                             | L = 10 KS2,          | Full range       | 1.7 |          |     | 1.7 |         |     | V/μs              |
| .,             | Equivalent input                  | f = 10 Hz                                                          |                      | 25°C             |     | 50       |     |     | 50      |     | nV√ <del>Hz</del> |
| V <sub>n</sub> | noise voltage                     | f = 1 kHz                                                          |                      | 25°C             |     | 9        |     |     | 9       |     | nv√HZ             |
| V              | Peak-to-peak                      | f = 0.1 Hz to 1 Hz                                                 |                      | 25°C             |     | 1        |     |     | 1       |     |                   |
| VNPP           | equivalent input<br>noise voltage | f = 0.1 Hz to 10 Hz                                                |                      | 25°C             |     | 1.4      |     |     | 1.4     |     | μV                |
| In             | Equivalent input noise current    |                                                                    |                      | 25°C             |     | 0.6      |     |     | 0.6     |     | fA√Hz             |
|                | Total harmonic                    | V <sub>O</sub> = ±2.3 V                                            | A <sub>V</sub> = 1   |                  |     | 0.0011%  |     |     | 0.0011% |     |                   |
| THD + N        | distortion plus                   | $R_L = 10 \text{ k}\Omega$                                         | $A_{V} = 10$         | 25°C             |     | 0.004%   |     |     | 0.004%  |     |                   |
|                | noise                             | f = 20 kHz                                                         | $A_{V} = 100$        |                  |     | 0.03%    |     |     | 0.03%   |     |                   |
|                | Gain-bandwidth product            | f = 10 kHz, R<br>C <sub>L</sub> = 100 pF                           | L = 10 kΩ,           | 25°C             |     | 2.25     |     |     | 2.25    |     | MHz               |
| ВОМ            | Maximum output-swing bandwidth    | $V_{O(PP)} = 4.6 \text{ V},$ Average $R_L = 10 \text{ k}\Omega,$ C | v = 1,<br>L = 100 pF | 25°C             |     | 0.54     |     |     | 0.54    |     | MHz               |
|                | Cattling time                     | $A_V = -1$ ,<br>Step = -2.3 V to 2.3 V,                            | To 0.1%              | 0500             |     | 1.5      |     |     | 1.5     |     |                   |
| t <sub>S</sub> | Settling time                     | $R_1 = 10 \text{ kO}$                                              | To 0.01%             | 25°C             |     | 3.2      |     |     | 3.2     |     | μs                |
| φm             | Phase margin at unity gain        | R <sub>L</sub> = 10 kΩ, C                                          | L = 100 pF           | 25°C             |     | 52°      | _   | _   | 52°     |     |                   |
|                | Gain margin                       | ]                                                                  | •                    | 25°C             |     | 10       |     |     | 10      |     | dB                |

<sup>†</sup> Full range is –40°C to 125°C.

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

#### TLC2274I electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

|                  | PARAMETER                                         | TEST CON                                                   | IDITIONS                              | T <sub>A</sub> † | Т           | LC2274           | I    | TI          | LC2274           | Al   | UNIT  |
|------------------|---------------------------------------------------|------------------------------------------------------------|---------------------------------------|------------------|-------------|------------------|------|-------------|------------------|------|-------|
|                  | FARAMETER                                         | 1E31 CON                                                   | IDITIONS                              | 'A'              | MIN         | TYP              | MAX  | MIN         | TYP              | MAX  | UNIT  |
| V <sub>IO</sub>  | Input offset voltage                              |                                                            |                                       | 25°C             |             | 300              | 2500 |             | 300              | 950  | μV    |
| V10              | input onset voltage                               |                                                            |                                       | Full range       |             |                  | 3000 |             |                  | 1500 | μν    |
| $\alpha_{VIO}$   | Temperature coefficient of input offset voltage   |                                                            |                                       | 25°C to 85°C     |             | 2                |      |             | 2                |      | μV/°C |
|                  | Input offset voltage long-term drift (see Note 4) | V+2 E V                                                    | V0.V                                  | 25°C             |             | 0.002            |      |             | 0.002            |      | μV/mc |
|                  |                                                   | $V_{DD\pm} = \pm 2.5 \text{ V},$<br>$V_{O} = 0 \text{ V},$ |                                       | 25°C             |             | 0.5              | 60   |             | 0.5              | 60   |       |
| I <sub>IO</sub>  | Input offset current                              |                                                            | •                                     | -40°C to 85°C    |             |                  | 150  |             |                  | 150  | pА    |
|                  |                                                   |                                                            |                                       | Full range       |             |                  | 800  |             |                  | 800  |       |
|                  |                                                   | 1                                                          |                                       | 25°C             |             | 1                | 60   |             | 1                | 60   |       |
| I <sub>IB</sub>  | Input bias current                                |                                                            |                                       | -40°C to 85°C    |             |                  | 150  |             |                  | 150  | pА    |
|                  |                                                   |                                                            |                                       | Full range       |             |                  | 800  |             |                  | 800  |       |
| .,               | Common-mode input                                 | <b>5 50</b> 0                                              | N/ 1 - <b>5</b> - 1/                  | 25°C             | 0 to<br>4   | -0.3<br>to 4.2   |      | 0 to<br>4   | -0.3<br>to 4.2   |      | .,    |
| V <sub>ICR</sub> | voltage                                           | $R_S = 50 \Omega$ ,                                        | $ V_{IO}  \le 5 \text{ mV}$           | Full range       | 0 to<br>3.5 |                  |      | 0 to<br>3.5 |                  |      | V     |
|                  |                                                   | $I_{OH} = -20  \mu A$                                      |                                       | 25°C             |             | 4.99             |      |             | 4.99             |      |       |
|                  |                                                   |                                                            |                                       | 25°C             | 4.85        | 4.93             |      | 4.85        | 4.93             |      |       |
| V <sub>OH</sub>  | High-level output voltage                         | $I_{OH} = -200 \mu A$                                      |                                       | Full range       | 4.85        |                  |      | 4.85        |                  |      | V     |
|                  |                                                   |                                                            |                                       | 25°C             | 4.25        | 4.65             |      | 4.25        | 4.65             |      |       |
|                  |                                                   | $I_{OH} = -1 \text{ mA}$                                   |                                       | Full range       | 4.25        |                  |      | 4.25        |                  |      |       |
|                  |                                                   | V <sub>IC</sub> = 2.5 V,                                   | I <sub>OL</sub> = 50 μA               | 25°C             |             | 0.01             |      |             | 0.01             |      |       |
|                  |                                                   | V 25V                                                      | I 500 A                               | 25°C             |             | 0.09             | 0.15 |             | 0.09             | 0.15 |       |
| $V_{OL}$         | Low-level output voltage                          | $V_{IC} = 2.5 V,$                                          | $I_{OL} = 500 \mu\text{A}$            | Full range       |             |                  | 0.15 |             |                  | 0.15 | V     |
|                  |                                                   | V <sub>IC</sub> = 2.5 V,                                   | l EmA                                 | 25°C             |             | 0.9              | 1.5  |             | 0.9              | 1.5  |       |
|                  |                                                   | V <sub>IC</sub> = 2.5 V,                                   | $I_{OL} = 5 \text{ mA}$               | Full range       |             |                  | 1.5  |             |                  | 1.5  |       |
|                  |                                                   |                                                            | D 40 kgt                              | 25°C             | 15          | 35               |      | 15          | 35               |      |       |
| $A_{VD}$         | Large-signal differential voltage amplification   | $V_{IC} = 2.5 \text{ V},$<br>$V_{O} = 1 \text{ V to 4 V}$  | $R_L = 10 \text{ k}\Omega^{\ddagger}$ | Full range       | 15          |                  |      | 15          |                  |      | V/mV  |
|                  | voltago amplinoation                              | 10-1151                                                    | $R_L = 1 M\Omega^{\ddagger}$          | 25°C             |             | 175              |      |             | 175              |      |       |
| r <sub>id</sub>  | Differential input resistance                     |                                                            |                                       | 25°C             |             | 10 <sup>12</sup> |      |             | 10 <sup>12</sup> |      | Ω     |
| rį               | Common-mode input resistance                      |                                                            |                                       | 25°C             |             | 10 <sup>12</sup> |      |             | 10 <sup>12</sup> |      | Ω     |
| Ci               | Common-mode input capacitance                     | f = 10 kHz,                                                | N package                             | 25°C             |             | 8                |      |             | 8                |      | pF    |
| Z <sub>O</sub>   | Closed-loop output impedance                      | f = 1 MHz,                                                 | A <sub>V</sub> = 10                   | 25°C             |             | 140              |      |             | 140              |      | Ω     |
| OMES             | Common-mode rejection                             | $V_{IC} = 0 \text{ V to } 2.7 \text{ V}$                   | V,                                    | 25°C             | 70          | 75               |      | 70          | 75               |      | i     |
| CMRR             | ratio                                             | $V_0 = 2.5 \text{ V},$                                     | $R_S = 50 \Omega$                     | Full range       | 70          |                  |      | 70          |                  |      | dB    |
|                  | Supply-voltage rejection                          | V <sub>DD</sub> = 4.4 V to 1                               | 6 V,                                  | 25°C             | 80          | 95               |      | 80          | 95               |      |       |
| k <sub>SVR</sub> | ratio ( $\Delta V_{DD} / \Delta V_{IO}$ )         | $V_{IC} = V_{DD}/2,$                                       | No load                               | Full range       | 80          |                  |      | 80          |                  |      | dB    |
|                  | Comply compart                                    | V 25V                                                      | No loo-l                              | 25°C             |             | 4.4              | 6    |             | 4.4              | 6    | A     |
| I <sub>DD</sub>  | Supply current                                    | $V_{O} = 2.5 \text{ V},$                                   | No load                               | Full range       |             |                  | 6    |             |                  | 6    | mA    |

<sup>†</sup> Full range is – 40°C to 125°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150^{\circ}C$  extrapolated to  $T_A = 25$ °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.



<sup>‡</sup>Referenced to 0 V

## TLC2274I operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

|                    |                                      | TEGT CONDITI                                                                           | 0110                      | _ +              |     | TLC22741 |     | Т   | LC2274A | J   |                    |
|--------------------|--------------------------------------|----------------------------------------------------------------------------------------|---------------------------|------------------|-----|----------|-----|-----|---------|-----|--------------------|
|                    | PARAMETER                            | TEST CONDITI                                                                           | ONS                       | T <sub>A</sub> † | MIN | TYP      | MAX | MIN | TYP     | MAX | UNIT               |
|                    | 01                                   | V 05V 05V                                                                              |                           | 25°C             | 2.3 | 3.6      |     | 2.3 | 3.6     |     |                    |
| SR                 | Slew rate at unity gain              | $V_O = 0.5 \text{ V to } 2.5 \text{ V},$ $R_L = 10 \text{ k}\Omega^{\ddagger},  C_L =$ | 100 pF‡                   | Full range       | 1.7 |          |     | 1.7 |         |     | V/μs               |
|                    | Equivalent input                     | f = 10 Hz                                                                              |                           | 25°C             |     | 50       |     |     | 50      |     | nV/√ <del>Hz</del> |
| Vn                 | noise voltage                        | f = 1 kHz                                                                              |                           | 25°C             |     | 9        |     |     | 9       |     | nv/√HZ             |
|                    | Peak-to-peak                         | f = 0.1 Hz to 1 Hz                                                                     |                           | 25°C             |     | 1        |     |     | 1       |     | V                  |
| V <sub>N(PP)</sub> | equivalent input noise voltage       | f = 0.1 Hz to 10 Hz                                                                    |                           | 25°C             |     | 1.4      |     |     | 1.4     |     | μV                 |
| In                 | Equivalent input noise current       |                                                                                        |                           | 25°C             |     | 0.6      |     |     | 0.6     |     | fA/√Hz             |
|                    |                                      | $V_O = 0.5 \text{ V to } 2.5 \text{ V},$                                               | A <sub>V</sub> = 1        |                  |     | 0.0013%  |     |     | 0.0013% |     |                    |
| THD + N            | Total harmonic distortion plus noise | f = 20 kHz,                                                                            | A <sub>V</sub> = 10       | 25°C             |     | 0.004%   |     |     | 0.004%  |     |                    |
|                    | allotoratori prao riolog             | $R_L = 10 \text{ k}\Omega^{\ddagger}$                                                  | $A_{V} = 100$             |                  |     | 0.03%    |     |     | 0.03%   |     |                    |
|                    | Gain-bandwidth product               | $f = 10 \text{ kHz}, R_L = C_L = 100 \text{ pF}^{\ddagger}$                            | 10 kΩ <sup>‡</sup> ,      | 25°C             |     | 2.18     |     |     | 2.18    |     | MHz                |
| ВОМ                | Maximum output-swing bandwidth       | $V_{O(PP)} = 2 \text{ V},  A_{V} = R_{L} = 10 \text{ k}\Omega^{\ddagger},  C_{L} = 0$  | 1,<br>100 pF <sup>‡</sup> | 25°C             |     | 1        |     |     | 1       |     | MHz                |
| 4                  | Cattling time                        | $A_V = -1$ ,<br>Step = 0.5 V to 2.5 V,                                                 | To 0.1%                   | 25°C             |     | 1.5      |     |     | 1.5     |     |                    |
| t <sub>S</sub>     | Settling time                        | $R_L = 10 \text{ k}\Omega^{\ddagger},$<br>$C_L = 100 \text{ pF}^{\ddagger}$            | To 0.01%                  | 25 0             |     | 2.6      |     |     | 2.6     |     | μs                 |
| φm                 | Phase margin at unity gain           | $R_{I} = 10 \text{ k}\Omega^{\ddagger},  C_{I} =$                                      | 100 pF <sup>‡</sup>       | 25°C             |     | 50°      |     |     | 50°     |     |                    |
|                    | Gain margin                          | $R_L = 10 \text{ k}\Omega^{\ddagger},  C_L = 100 \text{ pF}^{\ddagger}$                |                           | 25°C             |     | 10       |     |     | 10      |     | dB                 |

<sup>†</sup> Full range is – 40°C to 125°C. ‡ Referenced to 0 V

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2274I electrical characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5$ V (unless otherwise noted)

|                  | PARAMETER                                         | TEST CO                                    | ONDITIONS                               |                  | T            | LC2274I          |      | TI           | LC2274A          | I    | UNIT  |
|------------------|---------------------------------------------------|--------------------------------------------|-----------------------------------------|------------------|--------------|------------------|------|--------------|------------------|------|-------|
|                  | PARAMETER                                         | IESI CO                                    | CHOITIUNS                               | T <sub>A</sub> † | MIN          | TYP              | MAX  | MIN          | TYP              | MAX  | UNII  |
| V <sub>IO</sub>  | Input offset voltage                              |                                            |                                         | 25°C             |              | 300              | 2500 |              | 300              | 950  | μV    |
| ۷IO              | input onset voltage                               |                                            |                                         | Full range       |              |                  | 3000 |              |                  | 1500 | μν    |
| αΛΙΟ             | Temperature coefficient of input offset voltage   |                                            |                                         | 25°C to 85°C     |              | 2                |      |              | 2                |      | μV/°C |
|                  | Input offset voltage long-term drift (see Note 4) | V <sub>IC</sub> = 0 V,                     | V 0 V                                   | 25°C             |              | 0.002            |      |              | 0.002            |      | μV/mo |
|                  |                                                   | $R_S = 50 \Omega$                          | ν <sub>O</sub> = 0 ν,                   | 25°C             |              | 0.5              | 60   |              | 0.5              | 60   |       |
| I <sub>IO</sub>  | Input offset current                              |                                            |                                         | -40°C to 85°C    |              |                  | 150  |              |                  | 150  | pА    |
|                  |                                                   |                                            |                                         | Full range       |              |                  | 800  |              |                  | 800  |       |
|                  |                                                   | 1                                          |                                         | 25°C             |              | 1                | 60   |              | 1                | 60   |       |
| $I_{IB}$         | Input bias current                                |                                            |                                         | -40°C to 85°C    |              |                  | 150  |              |                  | 150  | pA    |
|                  |                                                   |                                            |                                         | Full range       |              |                  | 800  |              |                  | 800  |       |
| V                | Common-mode input                                 | B 50.0                                     | \\ \< \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 25°C             | -5 to<br>4   | -5.3<br>to 4.2   |      | –5 to<br>4   | -5.3<br>to 4.2   |      | V     |
| V <sub>ICR</sub> | voltage                                           | $R_{\rm S} = 50  \Omega_{\rm S}$           | $ V_{IO}  \le 5 \text{ mV}$             | Full range       | –5 to<br>3.5 |                  |      | –5 to<br>3.5 |                  |      | V     |
|                  |                                                   | $I_{O} = -20 \mu A$                        |                                         | 25°C             |              | 4.99             |      |              | 4.99             |      |       |
|                  |                                                   |                                            | ^                                       | 25°C             | 4.85         | 4.93             |      | 4.85         | 4.93             |      |       |
| V <sub>OM+</sub> | Maximum positive peak output voltage              | $I_{O} = -200 \mu$                         | A                                       | Full range       | 4.85         |                  |      | 4.85         |                  |      | V     |
|                  | output ronage                                     | l - 1 mΛ                                   |                                         | 25°C             | 4.25         | 4.65             |      | 4.25         | 4.65             |      |       |
|                  |                                                   | $I_O = -1 \text{ mA}$                      |                                         | Full range       | 4.25         |                  |      | 4.25         |                  |      |       |
|                  |                                                   | $V_{IC} = 0 V$ ,                           | I <sub>O</sub> = 50 μA                  | 25°C             |              | -4.99            |      |              | -4.99            |      |       |
|                  |                                                   | V.a = 0 V                                  | I <sub>O</sub> = 500 μA                 | 25°C             | -4.85        | -4.91            |      | -4.85        | -4.91            |      |       |
| $V_{OM-}$        | Maximum negative peak output voltage              | VIC = 0 V,                                 | 10 = 300 μΑ                             | Full range       | -4.85        |                  |      | -4.85        |                  |      | V     |
|                  |                                                   | V <sub>IC</sub> = 0 V,                     | lo = 5 mΛ                               | 25°C             | -3.5         | -4.1             |      | -3.5         | -4.1             |      |       |
|                  |                                                   | VIC = 0 V,                                 | 10 = 3 1112                             | Full range       | -3.5         |                  |      | -3.5         |                  |      |       |
|                  | Lorgo signal differential                         |                                            | $R_L = 10 \text{ k}\Omega$              | 25°C             | 25           | 50               |      | 25           | 50               |      |       |
| $A_{VD}$         | Large-signal differential voltage amplification   | $V_0 = \pm 4 V$                            | NC = 10 K22                             | Full range       | 25           |                  |      | 25           |                  |      | V/m\  |
|                  |                                                   |                                            | $R_L = 1 M\Omega$                       | 25°C             |              | 300              |      |              | 300              |      |       |
| r <sub>id</sub>  | Differential input resistance                     |                                            |                                         | 25°C             |              | 10 <sup>12</sup> |      |              | 10 <sup>12</sup> |      | Ω     |
| r <sub>i</sub>   | Common-mode input resistance                      |                                            |                                         | 25°C             |              | 10 <sup>12</sup> |      |              | 10 <sup>12</sup> |      | Ω     |
| Ci               | Common-mode input capacitance                     | f = 10 kHz,                                | N package                               | 25°C             |              | 8                |      |              | 8                |      | pF    |
| z <sub>o</sub>   | Closed-loop output impedance                      | f = 1 MHz,                                 | A <sub>V</sub> = 10                     | 25°C             |              | 130              |      | _            | 130              |      | Ω     |
| CMRR             | Common-mode rejection                             | $V_{IC} = -5 V t$                          |                                         | 25°C             | 75           | 80               |      | 75           | 80               |      | ٩D    |
| CIVIRK           | ratio                                             | $V_0 = 0 V$ ,                              | $R_S = 50 \Omega$                       | Full range       | 75           |                  |      | 75           |                  |      | dB    |
| l,               | Supply-voltage rejection                          | $V_{DD\pm} = \pm 2.2$                      | 2 V to ±8 V,                            | 25°C             | 80           | 95               |      | 80           | 95               |      | Ļ     |
| k <sub>SVR</sub> | ratio $(\Delta V_{DD\pm}/\Delta V_{IO})$          | $V_{IC} = 0 V$ ,                           | No load                                 | Full range       | 80           |                  |      | 80           |                  |      | dB    |
| ı                | Supply current                                    | V -0V                                      | No load                                 | 25°C             |              | 4.8              | 6    |              | 4.8              | 6    | ^     |
| I <sub>DD</sub>  | Supply current                                    | urrent $V_{\odot} = 0 \text{ V}$ , No load | V, No load                              | Full range       |              |                  | 6    | _            |                  | 6    | mA    |

<sup>†</sup> Full range is – 40°C to 125°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150$ °C extrapolated to  $T_A = 25$ °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.



## TLC2274I operating characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5~V$

|                    |                                    | TEGT COMPLETE                                         |                      | _ +              |     | TLC22741 |     | Т   | LC2274A | I   |                    |
|--------------------|------------------------------------|-------------------------------------------------------|----------------------|------------------|-----|----------|-----|-----|---------|-----|--------------------|
| "                  | ARAMETER                           | TEST CONDITION                                        | ONS                  | T <sub>A</sub> † | MIN | TYP      | MAX | MIN | TYP     | MAX | UNIT               |
|                    | 01                                 | у                                                     | 4010                 | 25°C             | 2.3 | 3.6      |     | 2.3 | 3.6     |     |                    |
| SR                 | Slew rate at unity gain            | $V_{O} = \pm 2.3 \text{ V},$ $C_{L} = 100 \text{ pF}$ | L = 10 kΩ,           | Full range       | 1.7 |          |     | 1.7 |         |     | V/μs               |
| .,                 | Equivalent input                   | f = 10 Hz                                             |                      | 25°C             |     | 50       |     |     | 50      |     | nV/√ <del>Hz</del> |
| V <sub>n</sub>     | noise voltage                      | f = 1 kHz                                             |                      | 25°C             |     | 9        |     |     | 9       |     | nv/√Hz             |
| .,                 | Peak-to-peak                       | f = 0.1 Hz to 1 Hz                                    |                      | 25°C             |     | 1        |     |     | 1       |     | .,                 |
| V <sub>N(PP)</sub> | equivalent input<br>noise voltage  | f = 0.1 Hz to 10 Hz                                   |                      | 25°C             |     | 1.4      |     |     | 1.4     |     | μV                 |
| In                 | Equivalent input noise current     |                                                       |                      | 25°C             |     | 0.6      |     |     | 0.6     |     | fA/√Hz             |
|                    | Total harmonic                     | $V_{O} = \pm 2.3 \text{ V},$                          | A <sub>V</sub> = 1   |                  |     | 0.0011%  |     |     | 0.0011% |     |                    |
| THD + N            | distortion plus                    | $R_L = 10 \text{ k}\Omega$                            | A <sub>V</sub> = 10  | 25°C             |     | 0.004%   |     |     | 0.004%  |     |                    |
|                    | noise                              | f = 20 kHz                                            | A <sub>V</sub> = 100 |                  |     | 0.03%    |     |     | 0.03%   |     |                    |
|                    | Gain-bandwidth product             | $f = 10 \text{ kHz},$ $C_L = 100 \text{ pF}$          | L = 10 kΩ,           | 25°C             |     | 2.25     |     |     | 2.25    |     | MHz                |
| B <sub>OM</sub>    | Maximum output-<br>swing bandwidth |                                                       | y = 1,<br>L = 100 pF | 25°C             |     | 0.54     |     |     | 0.54    |     | MHz                |
|                    | Cattling time                      | $A_V = -1$ ,<br>Step = -2.3 V to 2.3 V,               | To 0.1%              | 25°C             |     | 1.5      |     |     | 1.5     |     |                    |
| t <sub>S</sub>     | Settling time                      | $R_L$ = 10 kΩ,<br>$C_L$ = 100 pF                      | To 0.01%             | 25°C             |     | 3.2      |     |     | 3.2     |     | μS                 |
| φm                 | Phase margin at unity gain         | $R_{I} = 10 \text{ k}\Omega,$ $C_{I}$                 | ı = 100 pF           | 25°C             |     | 52°      |     |     | 52°     |     |                    |
|                    | Gain margin                        | ]                                                     | - '                  | 25°C             |     | 10       |     |     | 10      |     | dB                 |

<sup>†</sup> Full range is –40°C to 125°C.

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2272Q and TLC2272M electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

|                   | PARAMETER                                             | TEST CO                                                   | NDITIONS                                                         | T <sub>A</sub> † |             | LC22720<br>LC2272 |      | TLC2272AQ, TLC2272AM  MIN TYP MAX  300 950  1500  2  0.002  0.5 60  800  1 60  800  0 -0.3 to 4 to 4.2  0 to 3.5  4.99  4.85  4.93  4.85  4.25  0.01  0.09  0.15  0.05  1.5  1.5 | UNIT  |      |            |
|-------------------|-------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|------------------|-------------|-------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------------|
| _                 |                                                       |                                                           |                                                                  |                  | MIN         | TYP               | MAX  | MIN                                                                                                                                                                              | TYP   | MAX  |            |
| V <sub>IO</sub> I | Input offset voltage                                  |                                                           |                                                                  | 25°C             |             | 300               | 2500 |                                                                                                                                                                                  | 300   | 950  | μV         |
| VIO 1             | input onset voltage                                   |                                                           |                                                                  | Full range       |             |                   | 3000 |                                                                                                                                                                                  |       | 1500 | μν         |
|                   | Temperature coefficient of input offset voltage       |                                                           |                                                                  | 25°C<br>to 125°C |             | 2                 |      |                                                                                                                                                                                  | 2     |      | μV/°C      |
|                   | Input offset voltage long-<br>term drift (see Note 4) | $V_{IC} = 0 V$ ,<br>$V_{O} = 0 V$ ,                       | $V_{DD\pm} = \pm 2.5 \text{ V},$<br>R <sub>S</sub> = 50 $\Omega$ | 25°C             |             | 0.002             |      |                                                                                                                                                                                  | 0.002 |      | μV/mo      |
| ا ما              | Input offeet ourrent                                  |                                                           | _                                                                | 25°C             |             | 0.5               | 60   |                                                                                                                                                                                  | 0.5   | 60   | - Δ        |
| IIO I             | Input offset current                                  |                                                           |                                                                  | Full range       |             |                   | 800  |                                                                                                                                                                                  |       | 800  | рA         |
|                   | lanut biog gurrant                                    |                                                           |                                                                  | 25°C             |             | 1                 | 60   |                                                                                                                                                                                  | 1     | 60   | <b>π</b> Λ |
| IIB I             | Input bias current                                    |                                                           |                                                                  | Full range       |             |                   | 800  |                                                                                                                                                                                  |       | 800  | рA         |
| V:05 (            | Common-mode input                                     | Po - 50 O                                                 | \/.o.  < 5 m\/                                                   | 25°C             | 0<br>to 4   | -0.3<br>to 4.2    |      |                                                                                                                                                                                  |       |      | V          |
|                   | voltage                                               | $R_S = 50 \Omega$ ,                                       | $ V_{IO}  \le 5 \text{ mV}$                                      | Full range       | 0<br>to 3.5 |                   |      | -                                                                                                                                                                                |       |      | ľ          |
|                   |                                                       | $I_{OH} = -20  \mu A$                                     |                                                                  | 25°C             |             | 4.99              |      |                                                                                                                                                                                  | 4.99  |      |            |
|                   |                                                       |                                                           |                                                                  | 25°C             | 4.85        | 4.93              |      | 4.85                                                                                                                                                                             | 4.93  |      |            |
| \/ \              | High-level output voltage                             | $I_{OH} = -200 \mu\text{A}$                               |                                                                  | Full range       | 4.85        |                   |      | 4.85                                                                                                                                                                             |       |      | V          |
| ,                 | voltage                                               | 1 4 4                                                     |                                                                  | 25°C             | 4.25        | 4.65              |      | 4.25                                                                                                                                                                             | 4.65  |      |            |
|                   |                                                       | $I_{OH} = -1 \text{ mA}$                                  |                                                                  | Full range       | 4.25        |                   |      | 4.25                                                                                                                                                                             |       |      |            |
|                   |                                                       | V <sub>IC</sub> = 2.5 V,                                  | I <sub>OL</sub> = 50 μA                                          | 25°C             |             | 0.01              |      |                                                                                                                                                                                  | 0.01  |      |            |
|                   |                                                       | V:- 2.5.V                                                 | In. 500 A                                                        | 25°C             |             | 0.09              | 0.15 |                                                                                                                                                                                  | 0.09  | 0.15 |            |
| V <sub>OL</sub> L | Low-level output voltage                              | $V_{IC} = 2.5 V,$                                         | I <sub>OL</sub> = 500 μA                                         | Full range       |             |                   | 0.15 |                                                                                                                                                                                  |       | 0.15 | V          |
|                   |                                                       | V <sub>IC</sub> = 2.5 V,                                  | lot – E mA                                                       | 25°C             |             | 0.9               | 1.5  |                                                                                                                                                                                  | 0.9   | 1.5  |            |
|                   |                                                       | VIC = 2.5 V,                                              | I <sub>OL</sub> = 5 mA                                           | Full range       |             |                   | 1.5  |                                                                                                                                                                                  |       | 1.5  |            |
| ı                 | Large-signal                                          | ., 0.5.7                                                  | R <sub>L</sub> = 10 kΩ <sup>‡</sup>                              | 25°C             | 10          | 35                |      | 10                                                                                                                                                                               | 35    |      |            |
|                   | differential voltage                                  | $V_{IC} = 2.5 \text{ V},$<br>$V_{O} = 1 \text{ V to 4 V}$ |                                                                  | Full range       | 10          |                   |      | 10                                                                                                                                                                               |       |      | V/mV       |
|                   | amplification                                         | VO = 1 V 10 4 V                                           | $R_L = 1 \text{ m}\Omega^{\ddagger}$                             | 25°C             |             | 175               |      |                                                                                                                                                                                  | 175   |      |            |
|                   | Differential input resistance                         |                                                           |                                                                  | 25°C             |             | 10 <sup>12</sup>  |      |                                                                                                                                                                                  | 1012  |      | Ω          |
| r:                | Common-mode input resistance                          |                                                           |                                                                  | 25°C             |             | 1012              |      |                                                                                                                                                                                  | 1012  |      | Ω          |
| C:                | Common-mode input capacitance                         | f = 10 kHz,                                               | P package                                                        | 25°C             |             | 8                 |      |                                                                                                                                                                                  | 8     |      | pF         |
|                   | Closed-loop output impedance                          | f = 1 MHz,                                                | A <sub>V</sub> = 10                                              | 25°C             |             | 140               |      |                                                                                                                                                                                  | 140   |      | Ω          |
| OMES (            | Common-mode rejection                                 | V <sub>IC</sub> = 0 V to 2.7                              | V,                                                               | 25°C             | 70          | 75                |      | 70                                                                                                                                                                               | 75    |      | .15        |
| UNKK              | ratio                                                 | $V_0 = 2.5 \text{ V},$                                    | $R_S = 50 \Omega$                                                | Full range       | 70          |                   |      | 70                                                                                                                                                                               |       |      | dB         |
| lk                | Supply-voltage rejection                              | V <sub>DD</sub> = 4.4 V to 1                              | 6 V,                                                             | 25°C             | 80          | 95                |      | 80                                                                                                                                                                               | 95    |      | 40         |
|                   | ratio (ΔV <sub>DD</sub> /ΔV <sub>IO</sub> )           | $V_{IC} = V_{DD}/2$                                       | No load                                                          | Full range       | 80          |                   |      | 80                                                                                                                                                                               |       |      | dB         |
|                   | 0                                                     | V 05V                                                     | No. local                                                        | 25°C             |             | 2.2               | 3    |                                                                                                                                                                                  | 2.2   | 3    |            |
| IDD S             | Supply current                                        | $V_0 = 2.5 V$ ,                                           | No load                                                          | Full range       |             |                   | 3    |                                                                                                                                                                                  |       | 3    | mA         |

Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150$ °C extrapolated to  $T_A = 25$ °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.



<sup>‡</sup>Referenced to 2.5 V

## TLC2272Q and TLC2272M operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

| P#              | ARAMETER                           | TEST CONDITION                                                                                                                | ONS                               | T <sub>A</sub> † |     | LC22720 | ,   |     | .C2272A(<br>.C2272A) | ,   | UNIT               |
|-----------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|-----|---------|-----|-----|----------------------|-----|--------------------|
|                 |                                    |                                                                                                                               |                                   |                  | MIN | TYP     | MAX | MIN | TYP                  | MAX |                    |
|                 | 0                                  | V 4.05.V/ 0.75.V/                                                                                                             |                                   | 25°C             | 2.3 | 3.6     |     | 2.3 | 3.6                  |     |                    |
| SR              | Slew rate at unity gain            | $V_{O} = 1.25 \text{ V to } 2.75 \text{ V},$ $R_{L} = 10 \text{ k}\Omega^{\ddagger},$ $C_{L} = 10 \text{ k}\Omega^{\ddagger}$ | = 100 pF‡                         | Full range       | 1.7 |         |     | 1.7 |                      |     | V/µs               |
| .,              | Equivalent input                   | f = 10 Hz                                                                                                                     |                                   | 25°C             |     | 50      |     |     | 50                   |     | nV/√ <del>Hz</del> |
| Vn              | noise voltage                      | f = 1 kHz                                                                                                                     |                                   | 25°C             |     | 9       |     |     | 9                    |     | nv/√HZ             |
| .,              | Peak-to-peak                       | f = 0.1 Hz to 1 Hz                                                                                                            |                                   | 25°C             |     | 1       |     |     | 1                    |     | .,                 |
| VNPP            | equivalent input<br>noise voltage  | f = 0.1 Hz to 10 Hz                                                                                                           |                                   | 25°C             |     | 1.4     |     |     | 1.4                  |     | μV                 |
| In              | Equivalent input noise current     |                                                                                                                               |                                   | 25°C             |     | 0.6     |     |     | 0.6                  |     | fA/√ <del>Hz</del> |
|                 | Total harmonic                     | $V_{O} = 0.5 \text{ V to } 2.5 \text{ V},$                                                                                    | A <sub>V</sub> = 1                |                  |     | 0.0013% |     |     | 0.0013%              |     |                    |
| THD + N         | distortion plus                    | f = 20 kHz,                                                                                                                   | Ay = 10                           | 25°C             |     | 0.004%  |     |     | 0.004%               |     |                    |
|                 | noise                              | $R_L = 10 \text{ k}\Omega^{\ddagger}$ ,                                                                                       | $A_V = 100$                       |                  |     | 0.03%   |     |     | 0.03%                |     |                    |
|                 | Gain-bandwidth product             | $f = 10 \text{ kHz},$ $C_L = 100 \text{ pF}^{\ddagger}$                                                                       | _ = 10 kΩ <sup>‡</sup> ,          | 25°C             |     | 2.18    |     |     | 2.18                 |     | MHz                |
| B <sub>OM</sub> | Maximum output-<br>swing bandwidth |                                                                                                                               | / = 1,<br>_ = 100 pF <sup>‡</sup> | 25°C             |     | 1       |     |     | 1                    |     | MHz                |
|                 | Cattling time                      | $A_V = -1$ ,<br>Step = 0.5 V to 2.5 V,                                                                                        | To 0.1%                           | 25°C             |     | 1.5     |     |     | 1.5                  |     |                    |
| t <sub>S</sub>  | Settling time                      | $R_L = 10 \text{ k}\Omega^{\ddagger},$<br>$C_L = 100 \text{ pF}^{\ddagger}$                                                   | To 0.01%                          | 25 0             |     | 2.6     |     |     | 2.6                  |     | μs                 |
| фm              | Phase margin at unity gain         | R <sub>L</sub> = 10 kΩ <sup>‡</sup> , C <sub>l</sub>                                                                          | = 100 pF‡                         | 25°C             |     | 50°     |     |     | 50°                  |     |                    |
|                 | Gain margin                        |                                                                                                                               | - '                               | 25°C             |     | 10      |     |     | 10                   |     | dB                 |
|                 |                                    |                                                                                                                               |                                   |                  |     |         |     |     |                      |     |                    |

<sup>†</sup> Full range is -40°C to 125°C for Q level part, -55°C to 125°C for M level part.

<sup>‡</sup>Referenced to 2.5 V

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2272Q and TLC2272M electrical characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5$ V (unless otherwise noted)

|                  | PARAMETER                                               | TEST C                               | ONDITIONS                 | T <sub>A</sub> † |              | LC22720<br>LC22721 |      |              | C2272A<br>C2272A |      | UNIT  |
|------------------|---------------------------------------------------------|--------------------------------------|---------------------------|------------------|--------------|--------------------|------|--------------|------------------|------|-------|
|                  |                                                         |                                      |                           |                  | MIN          | TYP                | MAX  | MIN          | TYP              | MAX  |       |
| \/.0             | Input offset voltage                                    |                                      |                           | 25°C             |              | 300                | 2500 |              | 300              | 950  | μV    |
| VIO              | Input offset voltage                                    | ]                                    |                           | Full range       |              |                    | 3000 |              |                  | 1500 | μν    |
| αΛΙΟ             | Temperature coefficient of input offset voltage         |                                      |                           | 25°C<br>to 125°C |              | 2                  |      |              | 2                |      | μV/°C |
|                  | Input offset voltage<br>long-term drift<br>(see Note 4) | $V_{IC} = 0 V,$<br>$R_S = 50 \Omega$ | V <sub>O</sub> = 0 V,     | 25°C             |              | 0.002              |      |              | 0.002            |      | μV/mo |
| IIO              | Input offset current                                    |                                      |                           | 25°C             |              | 0.5                | 60   |              | 0.5              | 60   | рA    |
| 10               | input onset ourient                                     |                                      |                           | Full range       |              |                    | 800  |              |                  | 800  | P/ ι  |
| I <sub>IB</sub>  | Input bias current                                      |                                      |                           | 25°C             |              | 1                  | 60   |              | 1                | 60   | pА    |
| ,ID              | mpat blad darront                                       |                                      |                           | Full range       |              |                    | 800  |              |                  | 800  | P/ (  |
| VICR             | Common-mode input                                       | $R_S = 50 \Omega$ ,                  | V <sub>IO</sub>   ≤ 5 mV  | 25°C             | -5<br>to 4   | -5.3<br>to 4.2     |      | -5<br>to 4   | -5.3<br>to 4.2   |      | V     |
| VICK             | voltage                                                 | 113 - 00 22,                         | [VIO] = 0 IIIV            | Full range       | -5<br>to 3.5 |                    |      | -5<br>to 3.5 |                  |      | v     |
|                  |                                                         | $I_O = -20 \mu A$                    |                           | 25°C             |              | 4.99               |      |              | 4.99             |      |       |
|                  | Marrian una manteixa mante                              | $I_{O} = -200 \mu$                   |                           | 25°C             | 4.85         | 4.93               |      | 4.85         | 4.93             |      |       |
| V <sub>OM+</sub> | Maximum positive peak output voltage                    | $10 = -200  \mu$                     | 1                         | Full range       | 4.85         |                    |      | 4.85         |                  |      | V     |
|                  | output voltago                                          | I <sub>O</sub> = -1 mA               |                           | 25°C             | 4.25         | 4.65               |      | 4.25         | 4.65             |      |       |
|                  |                                                         | 10 = -111114                         |                           | Full range       | 4.25         |                    |      | 4.25         |                  |      |       |
|                  |                                                         | $V_{IC} = 0 V$                       | $I_O = 50 \mu A$          | 25°C             |              | -4.99              |      |              | -4.99            |      |       |
|                  | Maximum negative peak                                   | V <sub>IC</sub> = 0 V,               | ΙΟ = 500 μΑ               | 25°C             | -4.85        | -4.91              |      | -4.85        | -4.91            |      |       |
| $^{V}OM-$        | output voltage                                          | VIC = 0 V,                           | 10 = 000 μ/ ι             | Full range       | -4.85        |                    |      | -4.85        |                  |      | V     |
|                  |                                                         | V <sub>IC</sub> = 0 V,               | $I_O = 5 \text{ mA}$      | 25°C             | -3.5         | -4.1               |      | -3.5         | -4.1             |      |       |
|                  |                                                         | VIC = 0 V,                           | 10 = 0 11#1               | Full range       | -3.5         |                    |      | -3.5         |                  |      |       |
|                  | Large-signal differential                               |                                      | R <sub>L</sub> = 10 kΩ    | 25°C             | 20           | 50                 |      | 20           | 50               |      |       |
| AVD              | voltage amplification                                   | $V_0 = \pm 4 V$                      |                           | Full range       | 20           |                    |      | 20           |                  |      | V/mV  |
|                  |                                                         |                                      | $R_L = 1 \text{ m}\Omega$ | 25°C             |              | 300                |      |              | 300              |      |       |
| <sup>r</sup> id  | Differential input resistance                           |                                      |                           | 25°C             |              | 1012               |      |              | 1012             |      | Ω     |
| rį               | Common-mode input resistance                            |                                      |                           | 25°C             |              | 1012               |      |              | 1012             |      | Ω     |
| cį               | Common-mode input capacitance                           | f = 10 kHz,                          | P package                 | 25°C             |              | 8                  |      |              | 8                |      | pF    |
| z <sub>O</sub>   | Closed-loop output impedance                            | f = 1 MHz,                           | A <sub>V</sub> = 10       | 25°C             |              | 130                |      |              | 130              |      | Ω     |
| CMRR             | Common-mode rejection                                   | $V_{IC} = -5 V to$                   |                           | 25°C             | 75           | 80                 |      | 75           | 80               |      | dB    |
| CIVIRR           | ratio                                                   | $V_O = 0 V$                          | $R_S = 50 \Omega$         | Full range       | 75           |                    |      | 75           |                  |      | uБ    |
| kovo             | Supply-voltage rejection                                | V <sub>DD</sub> = ±2.2 \             | √ to ±8 V,                | 25°C             | 80           | 95                 |      | 80           | 95               |      | dB    |
| ksvr             | ratio ( $\Delta V_{DD\pm}/\Delta V_{IO}$ )              | $V_{IC} = 0 V$                       | No load                   | Full range       | 80           |                    |      | 80           |                  |      | ub    |
| loo              | Supply current                                          | V <sub>O</sub> = 2.5 V,              | No load                   | 25°C             |              | 2.4                | 3    |              | 2.4              | 3    | mΛ    |
| I <sub>DD</sub>  | Supply current                                          | ν <sub>O</sub> = 2.5 ν,              | INU IUaU                  | Full range       |              | _                  | 3    |              | _                | 3    | mA    |

<sup>†</sup> Full range is  $-40^{\circ}$ C to 125°C for Q level part,  $-55^{\circ}$ C to 125°C for M level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150^{\circ}C$  extrapolated to  $T_A = 25^{\circ}C$  using the Arrhenius equation and assuming an activation energy of 0.96 eV.



# TLC2272Q and TLC2272M operating characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5~V$

| PARAMETER        |                                      | TEST CONDITIONS                                                             |                                                | T <sub>A</sub> † | TLC2272Q,<br>TLC2272M |     |      | TLC2272AQ,<br>TLC2272AM |         |        | UNIT                 |     |
|------------------|--------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------|------------------|-----------------------|-----|------|-------------------------|---------|--------|----------------------|-----|
|                  |                                      |                                                                             |                                                |                  | MIN                   | TYP | MAX  | MIN TYP MAX             |         |        |                      |     |
|                  | 01                                   | V 14.V 5                                                                    | 4010                                           | 25°C             | 2.3                   | 3.6 |      | 2.3                     | 3.6     |        |                      |     |
| SR               | Slew rate at unity gain              | $V_O = \pm 1 \text{ V},$ $R_L = 10 \text{ k}\Omega,$ $C_L = 100 \text{ pF}$ |                                                | Full range       | 1.7                   |     |      | 1.7                     |         |        | V/μs                 |     |
| .,               | Equivalent input                     | f = 10 Hz                                                                   |                                                | 25°C             |                       | 50  |      |                         | 50      |        | ->//\ <del>  =</del> |     |
| V <sub>n</sub>   | noise voltage                        | f = 1 kHz                                                                   |                                                | 25°C             |                       | 9   |      |                         | 9       |        | nV/√Hz               |     |
| .,               | Peak-to-peak                         | f = 0.1 Hz to 1 Hz<br>f = 0.1 Hz to 10 Hz                                   |                                                | 25°C             |                       | 1   |      |                         | 1       |        |                      |     |
| V <sub>NPP</sub> | equivalent input<br>noise voltage    |                                                                             |                                                | 25°C             | 1.4                   |     |      | 1.4                     |         |        | μV                   |     |
| In               | Equivalent input noise current       |                                                                             |                                                | 25°C             | 0.6                   |     | 0.6  |                         |         | fA/√Hz |                      |     |
|                  | Total harmonic distortion plus noise | $V_O = \pm 2.3 \text{ V}$ $R_L = 10 \text{ k}\Omega$ , $f = 20 \text{ kHz}$ | A <sub>V</sub> = 1                             |                  | 0.0011%               |     |      |                         | 0.0011% |        |                      |     |
| THD + N          |                                      |                                                                             | A <sub>V</sub> = 10                            | 25°C             | 0.004%                |     |      |                         | 0.004%  |        |                      |     |
|                  |                                      |                                                                             | A <sub>V</sub> = 100                           |                  | 0.03%                 |     |      |                         | 0.03%   |        |                      |     |
|                  | Gain-bandwidth product               | f = 10 kHz,<br>C <sub>L</sub> = 100 pF                                      | $R_L = 10 \text{ k}\Omega$ ,                   | 25°C             | 2.25                  |     | 2.25 |                         |         | MHz    |                      |     |
| B <sub>OM</sub>  | Maximum output-swing bandwidth       | V <sub>O</sub> (PP) = 4.6 V,<br>R <sub>L</sub> = 10 kΩ,                     | A <sub>V</sub> = 1,<br>C <sub>L</sub> = 100 pF | 25°C             | 0.54                  |     | 0.54 |                         | 0.54    |        |                      | MHz |
|                  | Cattling time                        | $A_V = -1$ ,<br>Step = -2.3 V to 2.3 V,                                     | To 0.1%                                        | 0500             | 1.5 1.5               |     |      |                         |         |        |                      |     |
| t <sub>S</sub>   | Settling time                        | $R_L = 10 \text{ k}\Omega$ ,<br>$C_L = 100 \text{ pF}$                      | To 0.01%                                       | 25°C             |                       | 3.2 |      |                         | 3.2     |        | μS                   |     |
| фm               | Phase margin at unity gain           | $R_{I} = 10 \text{ k}\Omega$                                                | C <sub>I</sub> = 100 pF                        | 25°C             | 52°                   |     | 52°  |                         |         |        |                      |     |
|                  | Gain margin                          |                                                                             | p.                                             | 25°C             | 10                    |     | 10   |                         |         | dB     |                      |     |

<sup>†</sup> Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2274Q and TLC2274M electrical characteristics at specified free-air temperature, $V_{DD}$ = 5 V (unless otherwise noted)

| PARAMETER       |                                                         | TEST CONDITIONS                                            |                                       | T <sub>A</sub> † | TLC2274Q,<br>TLC2274M |                  |      | TLC2274AQ,<br>TLC2274AM |                  |      | UNIT  |  |
|-----------------|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------|------------------|-----------------------|------------------|------|-------------------------|------------------|------|-------|--|
|                 |                                                         |                                                            |                                       |                  | MIN                   | TYP              | MAX  | MIN                     | TYP              | MAX  |       |  |
| 1/1-2           | Innut offset voltage                                    |                                                            |                                       | 25°C             |                       | 300              | 2500 |                         | 300              | 950  | \/    |  |
| VIO             | Input offset voltage                                    |                                                            |                                       | Full range       |                       |                  | 3000 |                         |                  | 1500 | μV    |  |
| ανιο            | Temperature coefficient of input offset voltage         |                                                            |                                       | 25°C<br>to 125°C |                       | 2                |      |                         | 2                |      | μV/°C |  |
|                 | Input offset voltage<br>long-term drift<br>(see Note 4) | $V_{DD\pm} = \pm 2.5 \text{ V},$<br>$V_{O} = 0 \text{ V},$ | $V_{IC} = 0 V$ ,<br>$R_S = 50 \Omega$ | 25°C             |                       | 0.002            |      |                         | 0.002            |      | μV/mo |  |
| IIO             | Input offset current                                    |                                                            |                                       | 25°C             |                       | 0.5              | 60   |                         | 0.5              | 60   | pА    |  |
| 10              | input onset current                                     |                                                            |                                       | Full range       |                       |                  | 800  |                         |                  | 800  | PΛ    |  |
| I <sub>IB</sub> | Input bias current                                      |                                                            |                                       | 25°C             |                       | 1                | 60   |                         | 1                | 60   | рA    |  |
| 'IB             | input blub building                                     |                                                            |                                       | Full range       |                       |                  | 800  |                         |                  | 800  | Pr    |  |
| Vion            | Common-mode input                                       | $R_S = 50 \Omega$                                          | V <sub>IO</sub>   ≤ 5 mV              | 25°C             | 0<br>to 4             | -0.3<br>to 4.2   |      | 0<br>to 4               | -0.3<br>to 4.2   |      | V     |  |
| VICR voltage    | voltage                                                 | NS = 30 22,                                                | v O                                   | Full range       | 0 to<br>3.5           |                  |      | 0 to<br>3.5             |                  |      | v     |  |
|                 | High-level output voltage                               | $I_{OH} = -20 \mu A$                                       |                                       | 25°C             |                       | 4.99             |      |                         | 4.99             |      |       |  |
|                 |                                                         | I <sub>OH</sub> = -200 μA                                  |                                       | 25°C             | 4.85                  | 4.93             |      | 4.85                    | 4.93             |      | ٧     |  |
| ∨он             |                                                         |                                                            |                                       | Full range       | 4.85                  |                  |      | 4.85                    |                  |      |       |  |
|                 |                                                         | I <sub>OH</sub> = -1 mA                                    |                                       | 25°C             | 4.25                  | 4.65             |      | 4.25                    | 4.65             |      |       |  |
|                 |                                                         |                                                            |                                       | Full range       | 4.25                  |                  |      | 4.25                    |                  |      |       |  |
|                 | Low-level output voltage                                | $V_{IC} = 2.5 V,$                                          | $I_{OL} = 50 \mu\text{A}$             | 25°C             |                       | 0.01             |      |                         | 0.01             |      |       |  |
|                 |                                                         | $V_{IC} = 2.5 V$ ,                                         |                                       | 25°C             |                       | 0.09             | 0.15 |                         | 0.09             | 0.15 |       |  |
| VOL             |                                                         | I <sub>OL</sub> = 500 μA                                   |                                       | Full range       |                       |                  | 0.15 |                         |                  | 0.15 | V     |  |
|                 |                                                         | V <sub>IC</sub> = 2.5 V,                                   | I <sub>OL</sub> = 5 mA                | 25°C             |                       | 0.9              | 1.5  |                         | 0.9              | 1.5  |       |  |
|                 |                                                         |                                                            |                                       | Full range       |                       |                  | 1.5  |                         |                  | 1.5  |       |  |
|                 | Large-signal differential voltage amplification         | V <sub>IC</sub> = 2.5 V,<br>V <sub>O</sub> = 1 V to 4 V    | $R_L = 10 \text{ k}\Omega^{\ddagger}$ | 25°C             | 10                    | 35               |      | 10                      | 35               |      | V/mV  |  |
| AVD             |                                                         |                                                            |                                       | Full range       | 10                    |                  |      | 10                      |                  |      |       |  |
|                 |                                                         | 0                                                          | $R_L = 1 M\Omega^{\ddagger}$          | 25°C             |                       | 175              |      |                         | 175              |      |       |  |
| rid             | Differential input resistance                           |                                                            |                                       | 25°C             |                       | 1012             |      |                         | 1012             |      | Ω     |  |
| rį              | Common-mode input resistance                            |                                                            |                                       | 25°C             |                       | 10 <sup>12</sup> |      |                         | 10 <sup>12</sup> |      | Ω     |  |
| ci              | Common-mode input capacitance                           | f = 10 kHz,                                                | N package                             | 25°C             |                       | 8                |      |                         | 8                |      | pF    |  |
| z <sub>0</sub>  | Closed-loop output impedance                            | f = 1 MHz,                                                 | A <sub>V</sub> = 10                   | 25°C             |                       | 140              |      |                         | 140              |      | Ω     |  |
| CMRR            | Common-mode                                             | V <sub>IC</sub> = 0 V to 2.7 \                             |                                       | 25°C             | 70                    | 75               |      | 70                      | 75               |      | dB    |  |
|                 | rejection ratio                                         | V <sub>O</sub> = 2.5 V,                                    | $R_S = 50 \Omega$                     | Full range       | 70                    |                  |      | 70                      | 0.5              |      |       |  |
| ksvr            | Supply-voltage rejection                                | $V_{DD} = 4.4 \text{ V to } 10^{-10}$                      |                                       | 25°C             | 80                    | 95               |      | 80                      | 95               |      | dB    |  |
|                 | ratio (ΔV <sub>DD</sub> /ΔV <sub>IO</sub> )             | $V_{IC} = V_{DD}/2,$                                       | No load                               | Full range       | 80                    | 4 4              |      | 80                      | 4.4              |      | 45    |  |
| I <sub>DD</sub> | Supply current                                          | $V_0 = 2.5 V$ ,                                            | No load                               | 25°C             |                       | 4.4              | 6    |                         | 4.4              | 6    | mA    |  |
| Ļ               |                                                         |                                                            |                                       | Full range       |                       |                  | 6    |                         |                  | 6    |       |  |

<sup>†</sup> Full range is -40°C to 125°C for Q level part, -55°C to 125°C for M level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150^{\circ}C$  extrapolated to  $T_A = 25^{\circ}C$  using the Arrhenius equation and assuming an activation energy of 0.96 eV.



<sup>‡</sup>Referenced to 2.5 V

## TLC2274Q and TLC2274M operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

| PARAMETER          |                                          | TEST CONDITIONS                                                                 |                                                 | T <sub>A</sub> † | TLC2274Q,<br>TLC2274M |             |         | TLC2274AQ,<br>TLC2274AM |        |        | UNIT   |  |   |  |     |
|--------------------|------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|------------------|-----------------------|-------------|---------|-------------------------|--------|--------|--------|--|---|--|-----|
|                    |                                          |                                                                                 |                                                 |                  | MIN                   | MIN TYP MAX |         | MIN TYP MAX             |        |        |        |  |   |  |     |
|                    | Class rate at socies                     | V- 05 V+ 05 V                                                                   | C: 400 = E‡                                     | 25°C             | 2.3                   | 3.6         |         | 2.3                     | 3.6    |        |        |  |   |  |     |
| SR                 | Slew rate at unity gain                  | $V_O = 0.5 \text{ V to } 2.5 \text{ V},$ $R_L = 10 \text{ k}\Omega^{\ddagger},$ | CL = 100 pr+                                    | Full range       | 1.7                   |             |         | 1.7                     |        |        | V/µs   |  |   |  |     |
| .,                 | Equivalent input                         | f = 10 Hz                                                                       |                                                 | 25°C             |                       | 50          |         |                         | 50     |        | ->///  |  |   |  |     |
| Vn                 | noise voltage                            | f = 1 kHz                                                                       |                                                 | 25°C             |                       | 9           |         |                         | 9      |        | nV/√Hz |  |   |  |     |
| .,                 | Peak-to-peak                             | f = 0.1 Hz to 1 Hz<br>f = 0.1 Hz to 10 Hz                                       |                                                 | 25°C             |                       | 1           |         |                         | 1      |        | ,      |  |   |  |     |
| V <sub>N(PP)</sub> | equivalent input<br>noise voltage        |                                                                                 |                                                 | 25°C             | 1.4                   |             |         | 1.4                     |        |        | μV     |  |   |  |     |
| In                 | Equivalent input noise current           |                                                                                 |                                                 | 25°C             | 0.6                   |             | 0.6     |                         |        | fA/√Hz |        |  |   |  |     |
|                    | Total harmonic distortion plus noise     | $V_O$ = 0.5 V to 2.5 V,<br>f = 20 kHz,<br>$R_L$ = 10 k $\Omega^{\ddagger}$      | A <sub>V</sub> = 1                              |                  | 0.0013%               |             |         | 0.0013%                 |        |        |        |  |   |  |     |
| THD + N            |                                          |                                                                                 | A <sub>V</sub> = 10                             | 25°C             | 0.004%                |             |         |                         | 0.004% |        |        |  |   |  |     |
|                    |                                          |                                                                                 | A <sub>V</sub> = 100                            |                  | 0.03%                 |             |         |                         | 0.03%  |        |        |  |   |  |     |
|                    | Gain-bandwidth product                   | f = 10 kHz,<br>C <sub>L</sub> = 100 pF <sup>‡</sup>                             | $R_L = 10 \text{ k}\Omega^{\ddagger}$ ,         | 25°C             | 2.18                  |             | 2.18    |                         |        | MHz    |        |  |   |  |     |
| B <sub>OM</sub>    | Maximum out-<br>put-swing band-<br>width | $V_{O(PP)} = 2 \text{ V},$ $R_{L} = 10 \text{ k}\Omega^{\ddagger},$             | A <sub>V</sub> = 1,<br>C <sub>L</sub> = 100 pF‡ | 25°C             | 1                     |             | 1       |                         | 1      |        | 1      |  | 1 |  | MHz |
|                    | Cattling time                            | $A_V = -1$ ,<br>Step = 0.5 V to 2.5 V,                                          | To 0.1%                                         | 25°C             |                       | 1.5         |         | 1.5                     |        |        |        |  |   |  |     |
| t <sub>S</sub>     | Settling time                            | $R_L = 10 \text{ k}\Omega^{\ddagger},$<br>$C_L = 100 \text{ pF}^{\ddagger}$     | To 0.01%                                        | 25°C             |                       | 2.6         |         |                         | 2.6    |        | μs     |  |   |  |     |
| φm                 | Phase margin at unity gain               | $R_{I} = 10 \text{ k}\Omega^{\ddagger}$                                         | C <sub>L</sub> = 100 pF <sup>‡</sup>            | 25°C             | 50°                   |             | 50° 50° |                         |        |        |        |  |   |  |     |
|                    | Gain margin                              | ] -                                                                             |                                                 | 25°C             |                       | 10          |         |                         | 10     |        | dB     |  |   |  |     |

 $<sup>^{\</sup>dagger}$  Full range is  $-40^{\circ}\text{C}$  to 125°C for Q level part,  $-55^{\circ}\text{C}$  to 125°C for M level part.  $^{\ddagger}$  Referenced to 2.5 V

SLOS190G - FEBRUARY 1997 - REVISED MAY 2004

# TLC2274Q and TLC2274M electrical characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5$ V (unless otherwise noted)

| PARAMETER      |                                                       | TEST CONDITIONS                       |                          | τ <sub>Α</sub> † | TLC2274Q,<br>TLC2274M |                  |      | TLC2274AQ,<br>TLC2274AM |                  |      | UNIT  |
|----------------|-------------------------------------------------------|---------------------------------------|--------------------------|------------------|-----------------------|------------------|------|-------------------------|------------------|------|-------|
|                |                                                       |                                       |                          |                  | MIN                   | TYP              | MAX  | MIN                     | TYP              | MAX  |       |
| \/             | lanut effect veltere                                  |                                       |                          | 25°C             |                       | 300              | 2500 |                         | 300              | 950  |       |
| VIO            | Input offset voltage                                  |                                       |                          | Full range       |                       |                  | 3000 |                         |                  | 1500 | μV    |
| αΝΙΟ           | Temperature coefficient of input offset voltage       |                                       |                          | 25°C<br>to 125°C |                       | 2                |      |                         | 2                |      | μV/°C |
|                | Input offset voltage long-<br>term drift (see Note 4) | $V_{IC} = 0 V$ ,<br>$R_S = 50 \Omega$ | $V_O = 0 V$ ,            | 25°C             |                       | 0.002            |      |                         | 0.002            |      | μV/mo |
|                | land offers and                                       | ]                                     |                          | 25°C             |                       | 0.5              | 60   |                         | 0.5              | 60   | 0     |
| lio            | Input offset current                                  |                                       |                          | Full range       |                       |                  | 800  |                         |                  | 800  | pА    |
| 1              | Innut bigg gurrent                                    |                                       |                          | 25°C             |                       | 1                | 60   |                         | 1                | 60   | n ^   |
| IB             | Input bias current                                    |                                       |                          | Full range       |                       |                  | 800  |                         |                  | 800  | рA    |
| \/             | Common-mode input                                     | Pa - 50 O                             | V <sub>IO</sub>   ≤ 5 mV | 25°C             | -5<br>to 4            | -5.3<br>to 4.2   |      | -5<br>to 4              | -5.3<br>to 4.2   |      | V     |
| VICR           | voltage                                               | KS = 50 12,                           | IAIO I ≥ 2 IIIA          | Full range       | -5<br>to 3.5          |                  |      | -5<br>to 3.5            |                  |      | ·     |
|                | Maximum positive peak output voltage                  | $I_{O} = -20 \mu\text{A}$             |                          | 25°C             |                       | 4.99             |      |                         | 4.99             |      |       |
|                |                                                       | I <sub>O</sub> = -200 μA              |                          | 25°C             | 4.85                  | 4.93             |      | 4.85                    | 4.93             |      |       |
| VOM+           |                                                       |                                       |                          | Full range       | 4.85                  |                  |      | 4.85                    |                  |      | V     |
|                |                                                       | I <sub>O</sub> = -1 mA                |                          | 25°C             | 4.25                  | 4.65             |      | 4.25                    | 4.65             |      |       |
|                |                                                       |                                       |                          | Full range       | 4.25                  |                  |      | 4.25                    |                  |      |       |
|                | Maximum negative peak output voltage                  | $V_{IC} = 0 V$                        | $I_{O} = 50  \mu A$      | 25°C             |                       | -4.99            |      |                         | -4.99            |      |       |
|                |                                                       | V <sub>IC</sub> = 0 V,                | ΙΟ = 500 μΑ              | 25°C             | -4.85                 | -4.91            |      | -4.85                   | -4.91            |      |       |
| VoM−           |                                                       |                                       |                          | Full range       | -4.85                 |                  |      | -4.85                   |                  |      | V     |
|                |                                                       | V <sub>IC</sub> = 0 V,                | I <sub>O</sub> = 5 mA    | 25°C             | -3.5                  | -4.1             |      | -3.5                    | -4.1             |      |       |
|                |                                                       |                                       |                          | Full range       | -3.5                  |                  |      | -3.5                    |                  |      |       |
|                | Lanca signal differential                             |                                       | R <sub>L</sub> = 10 kΩ   | 25°C             | 20                    | 50               |      | 20                      | 50               |      | V/mV  |
| AVD            | Large-signal differential voltage amplification       | $V_0 = \pm 4 V$                       |                          | Full range       | 20                    |                  |      | 20                      |                  |      |       |
|                |                                                       |                                       | $R_L = 1 M\Omega$        | 25°C             |                       | 300              |      |                         | 300              |      |       |
| rid            | Differential input resistance                         |                                       |                          | 25°C             |                       | 1012             |      |                         | 1012             |      | Ω     |
| ri             | Common-mode input resistance                          |                                       |                          | 25°C             |                       | 10 <sup>12</sup> |      |                         | 10 <sup>12</sup> |      | Ω     |
| ci             | Common-mode input capacitance                         | f = 10 kHz,                           | N package                | 25°C             |                       | 8                |      |                         | 8                |      | pF    |
| z <sub>0</sub> | Closed-loop output impedance                          | f = 1 MHz,                            | A <sub>V</sub> = 10      | 25°C             |                       | 130              |      |                         | 130              |      | Ω     |
| 01/55          | Common-mode rejection                                 | V <sub>IC</sub> = -5 V                | to 2.7 V                 | 25°C             | 75                    | 80               |      | 75                      | 80               |      | 15    |
| CMRR           | ratio                                                 | $V_{O} = 0 V,$                        | $R_S = 50 \Omega$        | Full range       | 75                    |                  |      | 75                      |                  |      | dB    |
| 1.             | Supply-voltage rejection                              | V <sub>DD+</sub> = ± 2                | .2 V to ±8 V,            | 25°C             | 80                    | 95               |      | 80                      | 95               |      | dB    |
| ksvr           | ratio ( $\Delta V_{DD\pm}/\Delta V_{IO}$ )            | $V_{IC} = 0 \text{ V},$               | No load                  | Full range       | 80                    |                  |      | 80                      |                  |      |       |
| la e           | Cupply ourront                                        | \                                     | No lood                  | 25°C             |                       | 4.8              | 6    |                         | 4.8              | 6    |       |
| lDD            | Supply current                                        | $V_O = 0 V$ ,                         | No load                  | Full range       |                       |                  | 6    |                         |                  | 6    | mA    |

<sup>†</sup> Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at  $T_A = 150^{\circ}$ C extrapolated to  $T_A = 25^{\circ}$ C using the Arrhenius equation and assuming an activation energy of 0.96 eV.



# TLC2274Q and TLC2274M operating characteristics at specified free-air temperature, $V_{DD\pm}$ = $\pm 5~V$

| PARAMETER          |                                      | TEST CONDITIONS                                                                                  |                      | T <sub>A</sub> † | TLC2274Q,<br>TLC2274M |       | TLC2274AQ,<br>TLC2274AM |            |         | UNIT   |        |
|--------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|------------------|-----------------------|-------|-------------------------|------------|---------|--------|--------|
|                    |                                      |                                                                                                  |                      |                  | MIN                   | TYP   | MAX                     | MIN        | TYP     | MAX    |        |
|                    | Olassa and a street to               | V 100V B                                                                                         | 401-0                | 25°C             | 2.3                   | 3.6   |                         | 2.3        | 3.6     |        |        |
| SR                 | Slew rate at unity gain              | $V_{O} = \pm 2.3 \text{ V},$ $R_{L} = 10 \text{ k}\Omega,$ $C_{L} = 100 \text{ pF}$              |                      | Full range       | 1.7                   |       |                         | 1.7        |         |        | V/μs   |
| .,                 | Equivalent input                     | f = 10 Hz                                                                                        |                      | 25°C             |                       | 50    |                         |            | 50      |        | ->4/15 |
| v <sub>n</sub>     | noise voltage                        | f = 1 kHz                                                                                        |                      | 25°C             |                       | 9     |                         | 9          |         |        | nV/√Hz |
| .,                 | Peak-to-peak                         | f = 0.1 Hz to 1 Hz<br>f = 0.1 Hz to 10 Hz                                                        |                      | 25°C             |                       | 1     |                         |            | 1       |        |        |
| V <sub>N(PP)</sub> | equivalent input<br>noise voltage    |                                                                                                  |                      | 25°C             | 1.4                   |       |                         | 1.4        |         |        | μV     |
| In                 | Equivalent input noise current       |                                                                                                  |                      | 25°C             | 0.6                   |       | 0.6                     |            |         | fA/√Hz |        |
|                    | Total harmonic distortion plus noise | $V_{O} = \pm 2.3 \text{ V},$                                                                     | A <sub>V</sub> = 1   |                  | 0.0011%               |       |                         |            | 0.0011% |        |        |
| THD + N            |                                      | $R_L = 10 \text{ k}\Omega$ ,<br>f = 20  kHz                                                      | A <sub>V</sub> = 10  | 25°C             | 0.004%                |       |                         |            | 0.004%  |        |        |
|                    |                                      |                                                                                                  | A <sub>V</sub> = 100 |                  |                       | 0.03% |                         |            | 0.03%   |        |        |
|                    | Gain-bandwidth product               | $f = 10 \text{ kHz},$ $R_L = 100 \text{ pF}$                                                     | = 10 kΩ,             | 25°C             |                       | 2.25  |                         | 2.2        |         |        | MHz    |
| B <sub>OM</sub>    | Maximum<br>output-swing<br>bandwidth | $V_{O(PP)} = 4.6 \text{ V},  \text{AV} = 10 \text{ k}\Omega,  \text{C}_{L} = 10 \text{ K}\Omega$ | = 1,<br>= 100 pF     | 25°C             | 0.54                  |       | 0.54                    |            | 0.54    |        | MHz    |
|                    | Cattling times                       | $A_V = -1$ ,<br>Step = -2.3 V to 2.3 V,                                                          | To 0.1%              | 0500             |                       | 1.5   |                         | 1.5<br>3.2 |         |        |        |
| t <sub>S</sub>     | Settling time                        | $R_L = 10 \text{ k}\Omega$ ,<br>$C_L = 100 \text{ pF}$                                           | To 0.01%             | 25°C             |                       | 3.2   |                         |            |         |        | μS     |
| фm                 | Phase margin at unit gain            | $R_{I} = 10 \text{ k}\Omega$ , $C_{I}$ :                                                         |                      |                  |                       | 52°   |                         |            | 52°     |        |        |
|                    | Gain margin                          | ] - ' - '                                                                                        | ·                    | 25°C             |                       | 10    |                         |            | 10      |        | dB     |

<sup>†</sup> Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.

#### **Table of Graphs**

|                                  |                                                                  |                                                | FIGURE               |  |  |  |
|----------------------------------|------------------------------------------------------------------|------------------------------------------------|----------------------|--|--|--|
| V <sub>IO</sub>                  | Input offset voltage                                             | Distribution vs Common-mode voltage            | 1 <b>- 4</b><br>5, 6 |  |  |  |
| ανιο                             | Input offset voltage temperature coefficient                     | Distribution                                   | 7 – 10               |  |  |  |
| I <sub>IB</sub> /I <sub>IO</sub> | Input bias and input offset current                              | vs Free-air temperature                        | 11                   |  |  |  |
| VI                               | Input voltage                                                    | vs Supply voltage<br>vs Free-air temperature   | 12<br>13             |  |  |  |
| Vон                              | High-level output voltage                                        | vs High-level output current                   | 14                   |  |  |  |
| VOL                              | Low-level output voltage                                         | vs Low-level output current                    | 15, 16               |  |  |  |
| V <sub>OM+</sub>                 | Maximum positive peak output voltage                             | vs Output current                              | 17                   |  |  |  |
| V <sub>OM</sub> -                | Maximum negative peak output voltage                             | vs Output current                              | 18                   |  |  |  |
| V <sub>O(PP)</sub>               | Maximum peak-to-peak output voltage                              | vs Frequency                                   | 19                   |  |  |  |
| los                              | Short-circuit output current                                     | vs Free-air temperature                        |                      |  |  |  |
| VO                               | Output voltage                                                   | vs Differential input voltage                  | 22, 23               |  |  |  |
|                                  | Large-signal differential voltage amplification                  | vs Load resistance                             | 24                   |  |  |  |
| $A_{VD}$                         | Large-signal differential voltage amplification and phase margin | vs Frequency                                   | 25, 26               |  |  |  |
|                                  | Large-signal differential voltage amplification                  | vs Free-air temperature                        | 27, 28               |  |  |  |
| z <sub>o</sub>                   | Output impedance                                                 | vs Frequency                                   | 29, 30               |  |  |  |
| CMRR                             | Common-mode rejection ratio                                      | vs Frequency<br>vs Free-air temperature        | 31<br>32             |  |  |  |
| ksvr                             | Supply-voltage rejection ratio                                   | vs Frequency<br>vs Free-air temperature        | 33, 34<br>35         |  |  |  |
| I <sub>DD</sub>                  | Supply current                                                   | vs Supply voltage<br>vs Free-air temperature   | 36, 37<br>38, 39     |  |  |  |
| SR                               | Slew rate                                                        | vs Load capacitance<br>vs Free-air temperature | 40<br>41             |  |  |  |
|                                  | Inverting large-signal pulse response                            |                                                | 42, 43               |  |  |  |
|                                  | Voltage-follower large-signal pulse response                     |                                                | 44, 45               |  |  |  |
| VO                               | Inverting small-signal pulse response                            |                                                | 46, 47               |  |  |  |
|                                  | Voltage-follower small-signal pulse response                     |                                                | 48, 49               |  |  |  |
| V <sub>n</sub>                   | Equivalent input noise voltage                                   | vs Frequency                                   | 50, 51               |  |  |  |
|                                  | Noise voltage over a 10-second period                            |                                                | 52                   |  |  |  |
|                                  | Integrated noise voltage                                         | vs Frequency                                   | 53                   |  |  |  |
| THD + N                          | Total harmonic distortion plus noise                             | vs Frequency                                   | 54                   |  |  |  |
|                                  | Gain-bandwidth product                                           | vs Supply voltage<br>vs Free-air temperature   | 55<br>56             |  |  |  |
| φm                               | Phase margin                                                     | vs Load capacitance                            | 57                   |  |  |  |
|                                  | Gain margin                                                      | vs Load capacitance                            | 58                   |  |  |  |

NOTE: For all graphs where  $V_{DD} = 5 \text{ V}$ , all loads are referenced to 2.5 V.



Percentage of Amplifiers - %

## DISTRIBUTION OF TLC2272 INPUT OFFSET VOLTAGE



# DISTRIBUTION OF TLC2272 INPUT OFFSET VOLTAGE



Figure 2

#### DISTRIBUTION OF TLC2274 INPUT OFFSET VOLTAGE



Figure 3

# DISTRIBUTION OF TLC2274 INPUT OFFSET VOLTAGE



Figure 4



Figure 5



Figure 6

## **DISTRIBUTION OF TLC2272** INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT<sup>†</sup>



Figure 7

## **DISTRIBUTION OF TLC2272** INPUT OFFSET VOLTAGE TEMPERATURE **COEFFICIENT**†



Figure 8

<sup>†</sup> Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



#### **DISTRIBUTION OF TLC2274** INPUT OFFSET VOLTAGE TEMPERATURE **COEFFICIENT**† 25 128 Amplifiers From 2 Wafer Lots $V_{DD} = \pm 2.5 \text{ V}$ 20 N Package Percentage of Amplifiers - % $T_A = 25^{\circ}C$ to $125^{\circ}C$ 15 10 5 2 -5 -2 -1 0 3 5 $\alpha_{\text{VIO}}$ – Temperature Coefficient – $\mu$ V/°C

Figure 9



Figure 10





<sup>†</sup>Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



V<sub>OH</sub> - High-Level Output Voltage - V

0

0



Figure 13



HIGH-LEVEL OUTPUT VOLTAGE<sup>†</sup> **HIGH-LEVEL OUTPUT CURRENT**  $V_{DD} = 5 V$  $T_A = 125^{\circ}C$  $T_A = 25^{\circ}C$  $T_A = -55^{\circ}C$ 

Figure 14



2

IOH - High-Level Output Current - mA



Figure 16

<sup>†</sup>Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE†

#### **TYPICAL CHARACTERISTICS**

# MAXIMUM POSITIVE PEAK OUTPUT VOLTAGET VS OUTPUT CURRENT $T_{A} = -55^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 125^{\circ}C$ $T_{A} = 125^{\circ}C$ $T_{A} = 125^{\circ}C$ $T_{A} = 125^{\circ}C$ $T_{A} = 125^{\circ}C$

Figure 17



Figure 18





<sup>†</sup>Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.





Figure 21



Figure 22

LARGE-SIGNAL DIFFERENTIAL



Figure 23



Figure 24

<sup>†</sup>Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



# LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

**FREQUENCY** 80 180°  $V_{DD} = 5 V$  $R_L = 10 \text{ k}\Omega$   $C_L = 100 \text{ pF}$   $T_A = 25^{\circ}\text{C}$ 135° 60 A<sub>VD</sub>- Large-Signal Differential Voltage Amplification - dB 40 90° <sup>o</sup>m − Phase Margin 20 45° 0 **0**° -20 -45° -90° 1 k 10 k 100 k 1 M 10 M

Figure 25

f - Frequency - Hz

# LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

**FREQUENCY** 80 180°  $V_{DD} = \pm 5 V$  $R_L = 10 \text{ k}\Omega$  $C_{L} = 100 \text{ pF}$ 135° 60  $T_A = 25^{\circ}C$ A<sub>VD</sub>- Large-Signal Differential Voltage Amplification - dB <sup>0</sup>m − Phase Margin 40 90° 45° 20 **0**° 0 -20 –45° -40 -90° 1 k 10 k 100 k 1 M 10 M f - Frequency - Hz

Figure 26







LARGE-SIGNAL DIFFERENTIAL

**VOLTAGE AMPLIFICATION**†

Figure 28

TA - Free-Air Temperature - °C

**OUTPUT IMPEDANCE** 



Figure 29





<sup>†</sup>Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



## **COMMON-MODE REJECTION RATIO FREQUENCY** 100 T<sub>A</sub> = 25°C CMRR - Common-Mode Rejection Ratio - dB $V_{DD} = \pm 5 V$ 80 $V_{DD} = 5 V$ 60 40 20 100 100 k 10 M 10 1 k 10 k 1 M f - Frequency - Hz

Figure 31



**COMMON-MODE REJECTION RATIO** 



Figure 32

#### SUPPLY-VOLTAGE REJECTION RATIO



Figure 34

## SUPPLY VOLTAGE REJECTION RATIO† FREE-AIR TEMPERATURE $V_{DD} \pm = \pm 2.2 \text{ V to } \pm 8 \text{ V}$ kSVR - Supply Voltage Rejection Ratio - dB $V_O = 0 V$ 105 100 95 90 85 75 100 -50 25 -75 -25 50 $T_A$ – Free-Air Temperature – $^{\circ}C$

Figure 35



SUPPLY CURRENTT
VS
SUPPLY VOLTAGE

TA = 25°C

TA = -55°C

TA = 125°C

Figure 36

4

|V<sub>DD±</sub> | - Supply Voltage - V

0

7

8



<sup>†</sup>Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.







### **SLEW RATE**† FREE-AIR TEMPERATURE 5 SR -SR - Slew Rate - V/µs SR + 3 2 $V_{DD} = 5 V$ $R_L = 10 \text{ k}\Omega$ C<sub>L</sub> = 100 pF $A_V = 1$ 25 50 -75 -50 -25 0 75 100 125 T<sub>A</sub> - Free-Air Temperature - °C

Figure 41



† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



### **INVERTING LARGE-SIGNAL PULSE RESPONSE**



Figure 43

# VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE



Figure 44

# VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE



Figure 45

#### **INVERTING SMALL-SIGNAL PULSE RESPONSE**



Figure 46



### **INVERTING SMALL-SIGNAL PULSE RESPONSE** 100 $V_{DD} = \pm 5 V$ $R_L = 10 \text{ k}\Omega$ $C_{L} = 100 \text{ pF}$ $T_A = 25^{\circ}C$ A<sub>V</sub> = 1 50 Vo - Output Voltage - mV 0 -50 -1000 0.5 1.5 2 2.5 3 3.5 1

Figure 47

t – Time –  $\mu$ s



Figure 48







TEXAS INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

#### **EQUIVALENT INPUT NOISE VOLTAGE**



Figure 51



Figure 52

#### **INTEGRATED NOISE VOLTAGE**



Figure 53

#### TOTAL HARMONIC DISTORTION PLUS NOISE



Figure 54











<sup>†</sup> Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



#### APPLICATION INFORMATION

#### macromodel information

Macromodel information provided was derived using Microsim  $Parts^{TM}$ , the model generation software used with Microsim  $PSpice^{TM}$ . The Boyle macromodel (see Note 5) and subcircuit in Figure 59 were generated using the TLC227x typical electrical and operating characteristics at  $T_A = 25^{\circ}C$ . Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).



Figure 59. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.







11-Mar-2015

### **PACKAGING INFORMATION**

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking (4/5)                    | Samples |
|------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|-----------------------------------------|---------|
| 5962-9318201M2A  | ACTIVE | LCCC         | FK                 | 20   | 1              | TBD                        | POST-PLATE       | N / A for Pkg Type | -55 to 125   | 5962-<br>9318201M2A<br>TLC2274<br>MFKB  | Samples |
| 5962-9318201MCA  | ACTIVE | CDIP         | J                  | 14   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9318201MC<br>A<br>TLC2274MJB       | Samples |
| 5962-9318201QDA  | ACTIVE | CFP          | W                  | 14   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9318201QD<br>A<br>TLC2274MWB       | Samples |
| 5962-9318202Q2A  | ACTIVE | LCCC         | FK                 | 20   | 1              | TBD                        | POST-PLATE       | N / A for Pkg Type | -55 to 125   | 5962-<br>9318202Q2A<br>TLC2274<br>AMFKB | Samples |
| 5962-9318202QCA  | ACTIVE | CDIP         | J                  | 14   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9318202QC<br>A<br>TLC2274AMJB      | Samples |
| 5962-9318202QDA  | ACTIVE | CFP          | W                  | 14   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9318202QD<br>A<br>TLC2274AMWB      | Samples |
| 5962-9555201NXD  | ACTIVE | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | Q2272M                                  | Samples |
| 5962-9555201NXDR | ACTIVE | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | Q2272M                                  | Samples |
| 5962-9555201Q2A  | ACTIVE | LCCC         | FK                 | 20   | 1              | TBD                        | POST-PLATE       | N / A for Pkg Type | -55 to 125   | 5962-<br>9555201Q2A<br>TLC2272<br>MFKB  | Samples |
| 5962-9555201QHA  | ACTIVE | CFP          | U                  | 10   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 9555201QHA<br>TLC2272M                  | Samples |
| 5962-9555201QPA  | ACTIVE | CDIP         | JG                 | 8    | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 9555201QPA<br>TLC2272M                  | Samples |
| 5962-9555202Q2A  | ACTIVE | LCCC         | FK                 | 20   | 1              | TBD                        | POST-PLATE       | N / A for Pkg Type | -55 to 125   | 5962-<br>9555202Q2A<br>TLC2272<br>AMFKB | Samples |





| Orderable Device | Status   | Package Type | Package | Pins |      | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | <b>Device Marking</b>   | Samples |
|------------------|----------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|-------------------------|---------|
|                  | (1)      |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                |              | (4/5)                   |         |
| 5962-9555202QHA  | ACTIVE   | CFP          | U       | 10   | 1    | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 9555202QHA<br>TLC2272AM | Samples |
| 5962-9555202QPA  | ACTIVE   | CDIP         | JG      | 8    | 1    | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 9555202QPA<br>TLC2272AM | Samples |
| TLC2272ACD       | ACTIVE   | SOIC         | D       | 8    | 75   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2272AC                  | Samples |
| TLC2272ACDG4     | ACTIVE   | SOIC         | D       | 8    | 75   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2272AC                  | Samples |
| TLC2272ACDR      | ACTIVE   | SOIC         | D       | 8    | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2272AC                  | Samples |
| TLC2272ACDRG4    | ACTIVE   | SOIC         | D       | 8    | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2272AC                  | Samples |
| TLC2272ACP       | ACTIVE   | PDIP         | Р       | 8    | 50   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type |              | TLC2272AC               | Samples |
| TLC2272ACPE4     | ACTIVE   | PDIP         | Р       | 8    | 50   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type |              | TLC2272AC               | Samples |
| TLC2272ACPW      | ACTIVE   | TSSOP        | PW      | 8    | 150  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | P2272A                  | Samples |
| TLC2272ACPWG4    | ACTIVE   | TSSOP        | PW      | 8    | 150  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | P2272A                  | Samples |
| TLC2272ACPWLE    | OBSOLETE | E TSSOP      | PW      | 8    |      | TBD                        | Call TI          | Call TI            |              |                         |         |
| TLC2272ACPWR     | ACTIVE   | TSSOP        | PW      | 8    | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | P2272A                  | Samples |
| TLC2272ACPWRG4   | ACTIVE   | TSSOP        | PW      | 8    | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | P2272A                  | Samples |
| TLC2272AID       | ACTIVE   | SOIC         | D       | 8    | 75   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2272AI                  | Samples |
| TLC2272AIDG4     | ACTIVE   | SOIC         | D       | 8    | 75   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2272AI                  | Samples |
| TLC2272AIDR      | ACTIVE   | SOIC         | D       | 8    | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2272AI                  | Samples |
| TLC2272AIDRG4    | ACTIVE   | SOIC         | D       | 8    | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2272AI                  | Samples |
| TLC2272AIP       | ACTIVE   | PDIP         | Р       | 8    | 50   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type |              | TLC2272AI               | Samples |





| Orderable Device | Status   | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan                   | Lead/Ball Finish (6) | MSL Peak Temp      | Op Temp (°C) | Device Marking (4/5)                    | Samples |
|------------------|----------|--------------|--------------------|------|----------------|----------------------------|----------------------|--------------------|--------------|-----------------------------------------|---------|
| TLC2272AIPE4     | ACTIVE   | PDIP         | Р                  | 8    | 50             | Pb-Free<br>(RoHS)          | CU NIPDAU            | N / A for Pkg Type |              | TLC2272AI                               | Samples |
| TLC2272AMD       | ACTIVE   | SOIC         | D                  | 8    | 75             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | -55 to 125   | 2272AM                                  | Samples |
| TLC2272AMDG4     | ACTIVE   | SOIC         | D                  | 8    | 75             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM |              | 2272AM                                  | Samples |
| TLC2272AMDR      | ACTIVE   | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | -55 to 125   | 2272AM                                  | Samples |
| TLC2272AMDRG4    | ACTIVE   | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM |              | 2272AM                                  | Samples |
| TLC2272AMFKB     | ACTIVE   | LCCC         | FK                 | 20   | 1              | TBD                        | POST-PLATE           | N / A for Pkg Type | -55 to 125   | 5962-<br>9555202Q2A<br>TLC2272<br>AMFKB | Samples |
| TLC2272AMJGB     | ACTIVE   | CDIP         | JG                 | 8    | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | 9555202QPA<br>TLC2272AM                 | Samples |
| TLC2272AMP       | OBSOLETI | PDIP         | Р                  | 8    |                | TBD                        | Call TI              | Call TI            | -55 to 125   |                                         |         |
| TLC2272AMUB      | ACTIVE   | CFP          | U                  | 10   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | 9555202QHA<br>TLC2272AM                 | Samples |
| TLC2272AQD       | ACTIVE   | SOIC         | D                  | 8    | 75             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | -40 to 125   | C2272A                                  | Samples |
| TLC2272AQDG4     | ACTIVE   | SOIC         | D                  | 8    | 75             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM |              | C2272A                                  | Samples |
| TLC2272AQDR      | ACTIVE   | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | -40 to 125   | C2272A                                  | Samples |
| TLC2272AQDRG4    | ACTIVE   | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM |              | C2272A                                  | Samples |
| TLC2272CD        | ACTIVE   | SOIC         | D                  | 8    | 75             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | 2272C                                   | Samples |
| TLC2272CDG4      | ACTIVE   | SOIC         | D                  | 8    | 75             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | 2272C                                   | Samples |
| TLC2272CDR       | ACTIVE   | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | 2272C                                   | Samples |
| TLC2272CDRG4     | ACTIVE   | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | 2272C                                   | Samples |



| Orderable Device | Status   | Package Type | _       | Pins | _    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | <b>Device Marking</b> | Sample |
|------------------|----------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|-----------------------|--------|
|                  | (1)      |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                |              | (4/5)                 |        |
| TLC2272CP        | ACTIVE   | PDIP         | Р       | 8    | 50   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | 0 to 70      | TLC2272CP             | Sample |
| TLC2272CPE4      | ACTIVE   | PDIP         | Р       | 8    | 50   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | 0 to 70      | TLC2272CP             | Sample |
| TLC2272CPSR      | ACTIVE   | SO           | PS      | 8    | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2272                 | Sample |
| TLC2272CPW       | ACTIVE   | TSSOP        | PW      | 8    | 150  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2272                 | Sample |
| TLC2272CPWG4     | ACTIVE   | TSSOP        | PW      | 8    | 150  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2272                 | Sample |
| TLC2272CPWLE     | OBSOLETE | TSSOP        | PW      | 8    |      | TBD                        | Call TI          | Call TI            | 0 to 70      |                       |        |
| TLC2272CPWR      | ACTIVE   | TSSOP        | PW      | 8    | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2272                 | Sample |
| TLC2272CPWRG4    | ACTIVE   | TSSOP        | PW      | 8    | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2272                 | Sample |
| TLC2272ID        | ACTIVE   | SOIC         | D       | 8    | 75   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 22721                 | Sample |
| TLC2272IDG4      | ACTIVE   | SOIC         | D       | 8    | 75   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 22721                 | Sample |
| TLC2272IDR       | ACTIVE   | SOIC         | D       | 8    | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 22721                 | Sample |
| TLC2272IDRG4     | ACTIVE   | SOIC         | D       | 8    | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2272                  | Sample |
| TLC2272IP        | ACTIVE   | PDIP         | Р       | 8    | 50   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type |              | TLC2272IP             | Sample |
| TLC2272IPE4      | ACTIVE   | PDIP         | Р       | 8    | 50   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type |              | TLC2272IP             | Sample |
| TLC2272IPW       | ACTIVE   | TSSOP        | PW      | 8    | 150  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | Y2272                 | Sample |
| TLC2272IPWG4     | ACTIVE   | TSSOP        | PW      | 8    | 150  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | Y2272                 | Sample |
| TLC2272IPWLE     | OBSOLETE | TSSOP        | PW      | 8    |      | TBD                        | Call TI          | Call TI            |              |                       |        |
| TLC2272IPWR      | ACTIVE   | TSSOP        | PW      | 8    | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | Y2272                 | Sample |
| TLC2272IPWRG4    | ACTIVE   | TSSOP        | PW      | 8    | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | Y2272                 | Sample |



| Orderable Device | Status   | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan                   | Lead/Ball Finish (6) | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5)                | Sample |
|------------------|----------|--------------|--------------------|------|----------------|----------------------------|----------------------|--------------------|--------------|----------------------------------------|--------|
| TLC2272MD        | ACTIVE   | SOIC         | D                  | 8    | 75             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | -55 to 125   | 2272M                                  | Sample |
| TLC2272MDG4      | ACTIVE   | SOIC         | D                  | 8    | 75             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM |              | 2272M                                  | Sample |
| TLC2272MDR       | ACTIVE   | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | -55 to 125   | 2272M                                  | Sample |
| TLC2272MDRG4     | ACTIVE   | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM |              | 2272M                                  | Sample |
| TLC2272MFKB      | ACTIVE   | LCCC         | FK                 | 20   | 1              | TBD                        | POST-PLATE           | N / A for Pkg Type | -55 to 125   | 5962-<br>9555201Q2A<br>TLC2272<br>MFKB | Sample |
| TLC2272MJG       | ACTIVE   | CDIP         | JG                 | 8    | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | TLC2272MJG                             | Sample |
| TLC2272MJGB      | ACTIVE   | CDIP         | JG                 | 8    | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | 9555201QPA<br>TLC2272M                 | Sample |
| TLC2272MP        | OBSOLETE | PDIP         | Р                  | 8    |                | TBD                        | Call TI              | Call TI            | -55 to 125   |                                        |        |
| TLC2272MUB       | ACTIVE   | CFP          | U                  | 10   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | 9555201QHA<br>TLC2272M                 | Sample |
| TLC2272QDG4      | ACTIVE   | SOIC         | D                  | 8    | 75             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM |              | C2272Q                                 | Sample |
| TLC2272QDR       | ACTIVE   | SOIC         | D                  | 8    | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | -40 to 125   | C2272Q                                 | Sample |
| TLC2272QPWRG4    | ACTIVE   | TSSOP        | PW                 | 8    | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM |              | T2272Q                                 | Sample |
| TLC2274ACD       | ACTIVE   | SOIC         | D                  | 14   | 50             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | 2274AC                                 | Sample |
| TLC2274ACDG4     | ACTIVE   | SOIC         | D                  | 14   | 50             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | 2274AC                                 | Sample |
| TLC2274ACDR      | ACTIVE   | SOIC         | D                  | 14   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | 2274AC                                 | Sample |
| TLC2274ACDRG4    | ACTIVE   | SOIC         | D                  | 14   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | 2274AC                                 | Sample |
| TLC2274ACN       | ACTIVE   | PDIP         | N                  | 14   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU            | N / A for Pkg Type | 0 to 70      | TLC2274ACN                             | Sample |
| TLC2274ACNE4     | ACTIVE   | PDIP         | N                  | 14   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU            | N / A for Pkg Type | 0 to 70      | TLC2274ACN                             | Sample |



| Orderable Device | Status   | Package Type | •       | Pins | _    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking | Sample |
|------------------|----------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|----------------|--------|
|                  | (1)      |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                |              | (4/5)          |        |
| TLC2274ACPW      | ACTIVE   | TSSOP        | PW      | 14   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2274A         | Sample |
| TLC2274ACPWG4    | ACTIVE   | TSSOP        | PW      | 14   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2274A         | Sample |
| TLC2274ACPWR     | ACTIVE   | TSSOP        | PW      | 14   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2274A         | Sample |
| TLC2274ACPWRG4   | ACTIVE   | TSSOP        | PW      | 14   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2274A         | Sample |
| TLC2274AID       | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | 2274AI         | Sample |
| TLC2274AIDG4     | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | 2274AI         | Sample |
| TLC2274AIDR      | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | 2274AI         | Sample |
| TLC2274AIDRG4    | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | 2274AI         | Sample |
| TLC2274AIN       | ACTIVE   | PDIP         | N       | 14   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | -40 to 125   | TLC2274AIN     | Sample |
| TLC2274AINE4     | ACTIVE   | PDIP         | N       | 14   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | -40 to 125   | TLC2274AIN     | Sample |
| TLC2274AIPW      | ACTIVE   | TSSOP        | PW      | 14   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | Y2274A         | Sample |
| TLC2274AIPWG4    | ACTIVE   | TSSOP        | PW      | 14   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | Y2274A         | Sample |
| TLC2274AIPWLE    | OBSOLETE | TSSOP        | PW      | 14   |      | TBD                        | Call TI          | Call TI            | -40 to 125   |                |        |
| TLC2274AIPWR     | ACTIVE   | TSSOP        | PW      | 14   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | Y2274A         | Sample |
| TLC2274AIPWRG4   | ACTIVE   | TSSOP        | PW      | 14   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | Y2274A         | Sampl  |
| TLC2274AMD       | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | 2274AM         | Sampl  |
| TLC2274AMDG4     | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2274AM         | Sampl  |
| TLC2274AMDR      | OBSOLETE | SOIC         | D       | 14   |      | TBD                        | Call TI          | Call TI            | -55 to 125   |                |        |
| TLC2274AMDRG4    | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | 2274AM         | Sample |



| Orderable Device | Status   | Package Type | -       | Pins | -    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking                          | Sample |
|------------------|----------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|-----------------------------------------|--------|
|                  | (1)      |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                |              | (4/5)                                   |        |
| TLC2274AMFKB     | ACTIVE   | LCCC         | FK      | 20   | 1    | TBD                        | POST-PLATE       | N / A for Pkg Type | -55 to 125   | 5962-<br>9318202Q2A<br>TLC2274<br>AMFKB | Sample |
| TLC2274AMJB      | ACTIVE   | CDIP         | J       | 14   | 1    | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9318202QC<br>A<br>TLC2274AMJB      | Sample |
| TLC2274AMWB      | ACTIVE   | CFP          | W       | 14   | 1    | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9318202QD<br>A<br>TLC2274AMWB      | Sample |
| TLC2274AQD       | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | TLC2274A                                | Sample |
| TLC2274AQDG4     | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | PJ2274A                                 | Sample |
| TLC2274AQDR      | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | TLC2274A                                | Sample |
| TLC2274AQDRG4    | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | PJ2274A                                 | Sampl  |
| TLC2274CD        | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274C                                | Sampl  |
| TLC2274CDG4      | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274C                                | Sampl  |
| TLC2274CDR       | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274C                                | Sampl  |
| TLC2274CDRG4     | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274C                                | Sampl  |
| TLC2274CN        | ACTIVE   | PDIP         | N       | 14   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type |              | TLC2274CN                               | Sampl  |
| TLC2274CNE4      | ACTIVE   | PDIP         | N       | 14   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type |              | TLC2274CN                               | Sampl  |
| TLC2274CNSR      | ACTIVE   | SO           | NS      | 14   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274                                 | Sampl  |
| TLC2274CPW       | ACTIVE   | TSSOP        | PW      | 14   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | P2274                                   | Samp   |
| TLC2274CPWG4     | ACTIVE   | TSSOP        | PW      | 14   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | P2274                                   | Samp   |
| TLC2274CPWLE     | OBSOLETE | TSSOP        | PW      | 14   |      | TBD                        | Call TI          | Call TI            |              |                                         |        |



| Orderable Device | Status   | Package Type | -       | Pins | U    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | <b>Device Marking</b>                  | Sample |
|------------------|----------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|----------------------------------------|--------|
|                  | (1)      |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                |              | (4/5)                                  |        |
| TLC2274CPWR      | ACTIVE   | TSSOP        | PW      | 14   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | P2274                                  | Sample |
| TLC2274CPWRG4    | ACTIVE   | TSSOP        | PW      | 14   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | P2274                                  | Sample |
| TLC2274ID        | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274I                               | Sample |
| TLC2274IDG4      | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274I                               | Sample |
| TLC2274IDR       | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274I                               | Sample |
| TLC2274IDRG4     | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274I                               | Sample |
| TLC2274IN        | ACTIVE   | PDIP         | N       | 14   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type |              | TLC2274IN                              | Sample |
| TLC2274IPW       | ACTIVE   | TSSOP        | PW      | 14   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | Y2274                                  | Sample |
| TLC2274IPWG4     | ACTIVE   | TSSOP        | PW      | 14   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | Y2274                                  | Sample |
| TLC2274IPWLE     | OBSOLETE | TSSOP        | PW      | 14   |      | TBD                        | Call TI          | Call TI            |              |                                        |        |
| TLC2274IPWR      | ACTIVE   | TSSOP        | PW      | 14   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | Y2274                                  | Sample |
| TLC2274IPWRG4    | ACTIVE   | TSSOP        | PW      | 14   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | Y2274                                  | Sample |
| TLC2274MD        | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | TLC2274M                               | Sample |
| TLC2274MDG4      | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | PJ2274M                                | Sample |
| TLC2274MDR       | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | TLC2274M                               | Sample |
| TLC2274MDRG4     | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | PJ2274M                                | Sampl  |
| TLC2274MFKB      | ACTIVE   | LCCC         | FK      | 20   | 1    | TBD                        | POST-PLATE       | N / A for Pkg Type | -55 to 125   | 5962-<br>9318201M2A<br>TLC2274<br>MFKB | Sample |
| TLC2274MJ        | ACTIVE   | CDIP         | J       | 14   | 1    | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | TLC2274MJ                              | Sample |



### PACKAGE OPTION ADDENDUM

11-Mar-2015

| Orderable Device | Status   | Package Type |         | Pins | _    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | <b>Device Marking</b>             | Samples |
|------------------|----------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|-----------------------------------|---------|
|                  | (1)      |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                |              | (4/5)                             |         |
| TLC2274MJB       | ACTIVE   | CDIP         | J       | 14   | 1    | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9318201MC<br>A               | Samples |
|                  |          |              |         |      |      |                            |                  |                    |              | TLC2274MJB                        |         |
| TLC2274MN        | ACTIVE   | PDIP         | N       | 14   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | -55 to 125   | TLC2274MN                         | Samples |
| TLC2274MWB       | ACTIVE   | CFP          | W       | 14   | 1    | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9318201QD<br>A<br>TLC2274MWB | Samples |
| TLC2274QD        | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | TLC2274                           | Samples |
| TLC2274QDG4      | ACTIVE   | SOIC         | D       | 14   | 50   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274                           | Samples |
| TLC2274QDR       | OBSOLETE | SOIC         | D       | 14   |      | TBD                        | Call TI          | Call TI            | -40 to 125   | TLC2274                           |         |
| TLC2274QDRG4     | ACTIVE   | SOIC         | D       | 14   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | TLC2274                           | Samples |
| TLC2274Y         | PREVIEW  | DIESALE      | Υ       | 0    |      | TBD                        | Call TI          | Call TI            |              |                                   |         |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.



#### PACKAGE OPTION ADDENDUM

TEXAS INSTRUMENTS

11-Mar-2015

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF TLC2272, TLC2272A, TLC2272AM, TLC2272M, TLC2274A, TLC2274AM, TLC2274AM, TLC2274AM:

- Catalog: TLC2272A, TLC2272, TLC2274A, TLC2274
- Automotive: TLC2272-Q1, TLC2272A-Q1, TLC2272A-Q1, TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1, TLC2274A-Q1, TLC2274A-Q1
- Enhanced Product: TLC2272A-EP, TLC2272A-EP, TLC2274-EP, TLC2274A-EP, TLC2274A-EP, TLC2274A-EP
- Military: TLC2272M, TLC2272AM, TLC2274AM

#### NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

## PACKAGE MATERIALS INFORMATION

8-Jul-2013 www.ti.com

### TAPE AND REEL INFORMATION



## TAPE DIMENSIONS Ф $\phi \phi \phi$ Ф Cavity → A0 **←**

| Α0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
|    | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



\*All dimensions are nominal

| Device           | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|------------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| 5962-9555201NXDR | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| TLC2272ACDR      | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| TLC2272ACPWR     | TSSOP           | PW                 | 8    | 2000 | 330.0                    | 12.4                     | 7.0        | 3.6        | 1.6        | 8.0        | 12.0      | Q1               |
| TLC2272AIDR      | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| TLC2272AMDR      | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| TLC2272AMDRG4    | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| TLC2272CDR       | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| TLC2272CPWR      | TSSOP           | PW                 | 8    | 2000 | 330.0                    | 12.4                     | 7.0        | 3.6        | 1.6        | 8.0        | 12.0      | Q1               |
| TLC2272IDR       | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| TLC2272IPWR      | TSSOP           | PW                 | 8    | 2000 | 330.0                    | 12.4                     | 7.0        | 3.6        | 1.6        | 8.0        | 12.0      | Q1               |
| TLC2272MDR       | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| TLC2274ACDR      | SOIC            | D                  | 14   | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| TLC2274ACPWR     | TSSOP           | PW                 | 14   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| TLC2274AIDR      | SOIC            | D                  | 14   | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| TLC2274AIPWR     | TSSOP           | PW                 | 14   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| TLC2274AQDR      | SOIC            | D                  | 14   | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| TLC2274CDR       | SOIC            | D                  | 14   | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| TLC2274CNSR      | SO              | NS                 | 14   | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |

## **PACKAGE MATERIALS INFORMATION**

www.ti.com 8-Jul-2013

| Device       | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TLC2274CPWR  | TSSOP           | PW                 | 14 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| TLC2274IDR   | SOIC            | D                  | 14 | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| TLC2274IPWR  | TSSOP           | PW                 | 14 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| TLC2274MDR   | SOIC            | D                  | 14 | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| TLC2274MDRG4 | SOIC            | D                  | 14 | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| TLC2274QDRG4 | SOIC            | D                  | 14 | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |



#### \*All dimensions are nominal

| Device           | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| 5962-9555201NXDR | SOIC         | D               | 8    | 2500 | 367.0       | 367.0      | 35.0        |
| TLC2272ACDR      | SOIC         | D               | 8    | 2500 | 340.5       | 338.1      | 20.6        |
| TLC2272ACPWR     | TSSOP        | PW              | 8    | 2000 | 367.0       | 367.0      | 35.0        |
| TLC2272AIDR      | SOIC         | D               | 8    | 2500 | 340.5       | 338.1      | 20.6        |
| TLC2272AMDR      | SOIC         | D               | 8    | 2500 | 367.0       | 367.0      | 35.0        |
| TLC2272AMDRG4    | SOIC         | D               | 8    | 2500 | 367.0       | 367.0      | 35.0        |
| TLC2272CDR       | SOIC         | D               | 8    | 2500 | 340.5       | 338.1      | 20.6        |
| TLC2272CPWR      | TSSOP        | PW              | 8    | 2000 | 367.0       | 367.0      | 35.0        |
| TLC2272IDR       | SOIC         | D               | 8    | 2500 | 340.5       | 338.1      | 20.6        |
| TLC2272IPWR      | TSSOP        | PW              | 8    | 2000 | 367.0       | 367.0      | 35.0        |
| TLC2272MDR       | SOIC         | D               | 8    | 2500 | 367.0       | 367.0      | 35.0        |



## **PACKAGE MATERIALS INFORMATION**

www.ti.com 8-Jul-2013

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TLC2274ACDR  | SOIC         | D               | 14   | 2500 | 333.2       | 345.9      | 28.6        |
| TLC2274ACPWR | TSSOP        | PW              | 14   | 2000 | 367.0       | 367.0      | 35.0        |
| TLC2274AIDR  | SOIC         | D               | 14   | 2500 | 333.2       | 345.9      | 28.6        |
| TLC2274AIPWR | TSSOP        | PW              | 14   | 2000 | 367.0       | 367.0      | 35.0        |
| TLC2274AQDR  | SOIC         | D               | 14   | 2500 | 367.0       | 367.0      | 38.0        |
| TLC2274CDR   | SOIC         | D               | 14   | 2500 | 333.2       | 345.9      | 28.6        |
| TLC2274CNSR  | SO           | NS              | 14   | 2000 | 367.0       | 367.0      | 38.0        |
| TLC2274CPWR  | TSSOP        | PW              | 14   | 2000 | 367.0       | 367.0      | 35.0        |
| TLC2274IDR   | SOIC         | D               | 14   | 2500 | 333.2       | 345.9      | 28.6        |
| TLC2274IPWR  | TSSOP        | PW              | 14   | 2000 | 367.0       | 367.0      | 35.0        |
| TLC2274MDR   | SOIC         | D               | 14   | 2500 | 367.0       | 367.0      | 38.0        |
| TLC2274MDRG4 | SOIC         | D               | 14   | 2500 | 367.0       | 367.0      | 38.0        |
| TLC2274QDRG4 | SOIC         | D               | 14   | 2500 | 367.0       | 367.0      | 38.0        |

### JG (R-GDIP-T8)

#### **CERAMIC DUAL-IN-LINE**



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

#### 14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

## U (S-GDFP-F10)

## CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA



## W (R-GDFP-F14)

## CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14



## FK (S-CQCC-N\*\*)

## LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004



## P (R-PDIP-T8)

## PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.



## D (R-PDSO-G14)

### PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.



# D (R-PDSO-G14)

## PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



PW (R-PDSO-G14)

### PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153



## PW (R-PDSO-G14)

## PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.





SMALL OUTLINE PACKAGE



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



SMALL OUTLINE PACKAGE



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



## D (R-PDSO-G8)

### PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.



# D (R-PDSO-G8)

## PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.





NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



## PS (R-PDSO-G8)

## PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



### **MECHANICAL DATA**

## NS (R-PDSO-G\*\*)

## 14-PINS SHOWN

### PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity