Introduction to Recommender Systems

Recommender System

Provide recommendations to the users

Recommender System

Provide recommendations to the users

Booking.com

Provide recommendations to the users

Provide recommendations to the users

Provide recommendations to the users

Taxonomy of Recommender Systems

Ratings, predictions and recommendations

Rating Systems

Explicit ratings

Rating Systems

Ratings Distribution

Rating Systems

Explicit ratings

Implicit ratings

Even Ratings Scale

Odd Ratings Scale

Ratings Distribution

Rating Systems

Inferring Preferences

 r_{ui} = Rating that user u gave to item i

Inferring Preferences

 $r_{ui} \in \{0,1\}$ (Implicit)

 r_{ui} = Rating that user u gave to item i

Inferring Preferences

$$r_{ui} \in \{0,1\} \leftarrow \text{implicit}$$

$$r_{ui} \in \{1,2,3,4,5\} \leftarrow \text{explicit}$$

 r_{ui} = Rating that user u gave to item i

URM Density

typical URM density < 0.01 %

URM Density

typical URM density < 0.01 %

Netflix URM density ≈ 0.002%

MovieLens URM density ≈ 0.005%

Top Popular

Top Popular

ratings per item

Top Popular

Best Rated

Avg ratings per item

Item bias

Average rating of item i

$$b_i = \frac{\sum_u r_{ui}}{N_i}$$

Item bias

Average rating of item i

$$b_i = \frac{\sum_u r_{ui}}{N_i}$$

 r_{ui} : rating given by user u to item i (non zero ratings)

 N_i : number of users who rated item i

Item bias: support

Shrinked avg. rating of item i

$$b_i = \frac{\sum_u r_{ui}}{N_i + C}$$

Item bias: support

Shrinked avg. rating of item i

$$b_i = \frac{\sum_u r_{ui}}{N_i + C}$$

 r_{ui} : rating given by user u to item i (non zero ratings)

 N_i : number of users who have rated item i

C: shrink term (costant value)

Global Effects

Avg. ratings for all items and users

$$\mu = \frac{\sum_{i} \sum_{u} r_{ui}^{+}}{N^{+}}$$

Avg. ratings for all items and users

$$\mu = \frac{\sum_{i} \sum_{u} r_{ui}^{+}}{N^{+}}$$

 μ : overall average of ratings, for all users and all items

 r_{ui}^+ : explicit rating given by user u to item i

 N^+ : total number of non zero ratings

Note: the + symbol denotes that we are not computing this average on the full URM, but **only** on the **non zero elements**

Normalized rating

$$r'_{ui} = r^+_{ui} - \mu$$

to be computed for each user *u* and item *i*, only on non-zero ratings

Item bias

$$b_i = \frac{\sum_u r'_{ui}}{N_i + C}$$

Item bias

$$b_i = \frac{\sum_u r'_{ui}}{N_i + C}$$

 N_i : number of users who have rated item i to be computed for each item i

Recompute rating

$$r_{ui}^{\prime\prime}=r_{ui}^{\prime}-b_{i}$$

to be computed for each user *u* and item *i*, only on non-zero ratings

User bias

$$b_u = \frac{\sum_i r_{ui}^{\prime\prime}}{N_u + C}$$

User bias

$$b_u = \frac{\sum_i r_{ui}^{\prime\prime}}{N_u + C}$$

 N_u : number of items i rated by user u to be computed for each user u

Global effects final formula estimated rating

$$\tilde{r}_{ui} = \mu + b_i + b_u$$

to be computed for each user *u* and item *i*, only on non-zero ratings

• Step 1: compute the average of all ratings (μ)

$$\tilde{r}_{ui} = \mu + b_i + b_u$$

- Step 1: compute the average of all ratings (μ)
- Step 2: remove this quantity from the URM

$$\tilde{r}_{ui} = \mu + b_i + b_u$$

- Step 1: compute the average of all ratings (μ)
- Step 2: remove this quantity from the URM
- Step 3: compute the bias for each item (b_i)

$$\tilde{r}_{ui} = \mu + b_i + b_u$$

- Step 1: compute the average of all ratings (μ)
- Step 2: remove this quantity from the URM
- Step 3: compute the bias for each item (b_i)
- Step 4: remove this quantity from the URM

$$\tilde{r}_{ui} = \mu + b_i + b_u$$

Global Effects: Recap

- Step 1: compute the average of all ratings (μ)
- Step 2: remove this quantity from the URM
- Step 3: compute the bias for each item (b_i)
- Step 4: remove this quantity from the URM
- Step 5: compute the bias for each user (b_u)

$$\tilde{r}_{ui} = \mu + b_i + b_u$$

Global Effects: Recap

- Step 1: compute the average of all ratings (μ)
- Step 2: remove this quantity from the URM
- Step 3: compute the bias for each item (b_i)
- Step 4: remove this quantity from the URM
- Step 5: compute the bias for each user (b_u)
- Step 6: final formula creating a new URM

$$\tilde{r}_{ui} = \mu + b_i + b_u$$

Evaluation of Recommender Systems

FUNCTIONAL REQUIREMENTS

FUNCTIONAL REQUIREMENTS

What the software does

FUNCTIONAL REQUIREMENTS

What the software does

NON-FUNCTIONAL REQUIREMENTS

FUNCTIONAL REQUIREMENTS

What the software does

NON-FUNCTIONAL REQUIREMENTS

How the software does its job

RESPONSE TIME

RESPONSE TIME

 How long does it take for the system to generate one recommendation?

RESPONSE TIME

SCALABILITY

RESPONSE TIME

SCALABILITY

 How many recommendations per second the system is able to generate?

RESPONSE TIME

SCALABILITY

PRIVACY AND SECURITY

RESPONSE TIME

SCALABILITY

PRIVACY AND SECURITY

- Protect against reverse engineering
- Protect against intrusions from outside

RESPONSE TIME

SCALABILITY

PRIVACY AND SECURITY

USER INTERFACE

RESPONSE TIME

SCALABILITY

PRIVACY AND SECURITY

USER INTERFACE

- Which is the best place to show recommendations?
- How many items should be recommended?

Quality indicators for Recommender Systems

RELEVANCE

RELEVANCE

· Recommend items that users like

RELEVANCE

COVERAGE

RELEVANCE

COVERAGE

 Ability to recommend most of the items in a catalogue

RELEVANCE

COVERAGE

NOVELTY

RELEVANCE

COVERAGE

NOVELTY

Recommend items unknown to the user

RELEVANCE

COVERAGE

NOVELTY

DIVERSITY

RELEVANCE

COVERAGE

NOVELTY

DIVERSITY

Diversify the items recommended

RELEVANCE

COVERAGE

NOVELTY

DIVERSITY

CONSISTENCY

RELEVANCE

COVERAGE

NOVELTY

DIVERSITY

CONSISTENCY

 Recommendations should not change to often

RELEVANCE

COVERAGE

NOVELTY

DIVERSITY

CONSISTENCY

CONFIDENCE

RELEVANCE

COVERAGE

NOVELTY

DIVERSITY

CONSISTENCY

CONFIDENCE

How much a system is sure about a recommendation

RELEVANCE

COVERAGE

NOVELTY

DIVERSITY

CONSISTENCY

CONFIDENCE

SERENDIPITY

RELEVANCE

COVERAGE

NOVELTY

DIVERSITY

CONSISTENCY

CONFIDENCE

SERENDIPITY

- The ability of surprising the user
- The ability to recommend items that users would have never been able to discover by themselves

Evaluation Techniques

Evaluation Techniques

ONLINE

Evaluation Techniques

ONLINE

OFF-LINE

Online Evaluation

DIRECT USER FEEDBACK

Online Evaluation

DIRECT USER FEEDBACK

Online Evaluation

DIRECT USER FEEDBACK

A/B TESTING

DIRECT USER FEEDBACK

A/B TESTING

DIRECT USER FEEDBACK

A/B TESTING

CONTROLLED EXPERIMENTS

DIRECT USER FEEDBACK

A/B TESTING

CONTROLLED EXPERIMENTS

DIRECT USER FEEDBACK

A/B TESTING

CONTROLLED EXPERIMENTS

CROWDSOURCING

DIRECT USER FEEDBACK

A/B TESTING

CONTROLLED EXPERIMENTS

CROWDSOURCING

TASK

TASK DATASET

TASK
DATASET
PARTITIONING

TASK
DATASET
PARTITIONING
METRICS

RATING PREDICTION

RATING PREDICTION

TOP-N RECOMMENDATION

RATING PREDICTION

TOP-N RECOMMENDATION

Off-line Evaluation: Dataset

Off-line Evaluation: Dataset

Dataset

Off-line Evaluation: Dataset

Off-line Evaluation: Partitioning

- Model = f(URM)
- Estimated ratings = g(model, user profile)

Off-line Evaluation: Partitioning

- Model = f(URM)
- Estimated ratings = g(model, user profile)

```
E.G. Model = Star Wars is similar to Avatar
User profile = Paolo Cremonesi likes Star Wars
```


Off-line Evaluation: Partitioning

- Model = f(URM)
- Estimated ratings = g(model, user profile)

Estimated ratings ↔ True recommendation

Partitioning: Hold Out of Ratings

- Model = f(X)
- Estimated ratings = g(model, Y)
- Estimated ratings \leftrightarrow Z

Partitioning: Hold Out

- Model = f(X)
- Estimated ratings = g(model, Y)
- Estimated ratings \leftrightarrow Z

X = training

Partitioning: Hold Out of Ratings

- Model = f(X)
- Estimated ratings = g(model, Y)
- Estimated ratings ↔ Z

X = training

Partitioning: Hold Out of Ratings

- Model = f(X)
- Estimated ratings = g(model, Y)
- Estimated ratings ↔ Z

X = training

Partitioning: Hold Out of Users

Partitioning: Hold Out of Users

Partitioning: Hold Out of Users

True value r_{ui}

4 over 5

True value r_{ui}

4 over 5

Estimated value \hat{r}_{ui}

3.7 over 5

True value $r_{\mu i}$

4 over 5

Estimated value \hat{r}_{ui}

3.7 over 5

Error: $e_{ui} = r_{ui} - \hat{r}_{ui}$

True value $r_{\mu i}$

4 over 5

3.7 over 5

Error:
$$e_{ui} = r_{ui} - \hat{r}_{ui} = 4 - 3.7 = 0.3$$

True value r_{ni}

3.7 over 5

Error:
$$e_{ui} = r_{ui} - \hat{r}_{ui} = 4 - 3.7 = 0.3$$

 \hat{r}_{ni} : rating estimated by the recommender system

 r_{ni} : true rating in the test set

Mean absolute error:

$$MAE = \frac{\sum_{u,i \in T} |r_{ui} - \hat{r}_{ui}|}{|T|}$$

Mean absolute error:

$$MAE = \frac{\sum_{u,i \in T} |r_{ui} - \hat{r}_{ui}|}{|T|}$$

Mean square error:

$$MSE = \frac{\Sigma_{u,i \in T} (r_{ui} - \hat{r}_{ui})^2}{|T|}$$

Mean absolute error:

$$MAE = \frac{\sum_{u,i \in T} |r_{ui} - \hat{r}_{ui}|}{|T|}$$

Mean square error:

$$MSE = \frac{\sum_{u,i \in T} (r_{ui} - \hat{r}_{ui})^2}{|T|}$$

T: test set

 \hat{r}_{ui} : rating estimated by recommender system

 r_{ui} : true rating in the test set

Off-line Evaluation: Error Metrics

Off-line Evaluation: Error Metrics

$$Recall(K) = \frac{\#relevant\ recommended\ items}{}$$

$$Recall(K) = \frac{\text{#relevant recommended items}}{\text{#tested relevant items}}$$

$$Recall(K) = \frac{\text{#relevant recommended items}}{\text{#tested relevant items}} = \frac{\text{TP}}{\text{FN + TP}}$$

$$Recall(K) = \frac{\text{#relevant recommended items}}{\text{#tested relevant items}} = \frac{\text{#hits}}{\text{FN + TP}}$$

$$Precision(K) = \frac{\text{#relevant recommended items}}{}$$

$$Precision(K) = \frac{\text{#relevant recommended items}}{\text{#all recommended items}}$$

$$Precision(K) = \frac{\text{#relevant recommended items}}{\text{#all recommended items}} = \frac{\text{TP}}{\text{FP + TP}}$$

$$Precision(K) = \frac{\text{#relevant recommended items}}{\text{#all recommended items}} = \frac{\text{#hits}}{\text{FP + TP}}$$

$$Fallout(K) = \frac{\#non \ relevant \ recommended \ items}{}$$

$$Fallout(K) = \frac{\text{#non relevant recommended items}}{\text{#all non relevant items}}$$

$$Fallout(K) = \frac{\text{#non relevant recommended items}}{\text{#all non relevant items}} = \frac{FP}{FP + TN}$$

$$Fallout(K) = \frac{\text{#non relevant recommended items}}{\text{#all non relevant items}} = \frac{\text{#miss}}{\text{FP + TN}}$$

Precision

All-Missing-As-Negative (AMAN) hypothesis

- all missing ratings are irrelevant
- underestimate the true precision computed on the (unknown) complete data

Harald Steck, Training and testing of RSs on data missing not at random. In KDD '10

Recall

Missing-Not-At-Random (MNAR) hypothesis

- non-relevant ratings are missing with a higher probability than relevant ratings
- (nearly) unbiased estimate of recall on the (unknown) complete data
- much milder than assuming that all the ratings are missing at random (MAE and RMSE) all missing ratings are irrelevant (Precision)

Ranking Metrics

ROC curve (area under curve)

ROC curve (area under curve)

$$AUC = \Sigma_k \operatorname{Recall}(k) * \Delta \operatorname{Fallout}$$

 $AP = \Sigma_k \operatorname{Precision}(k) * \Delta \operatorname{Recall}$

 $AP = \Sigma_k \operatorname{Precision}(k) * \Delta \operatorname{Recall}$

 $\Delta \text{Recall} = \text{Recall}(k) - \text{Recall}(k-1)$

$$AP = \Sigma_k \operatorname{Precision}(k) * \Delta \operatorname{Recall}$$

$$MAP = \frac{\Sigma_u A P_u}{\text{#users}}$$

Average Reciprocal Hit-Rank

Weighted version of recall

$$ARHR = \frac{\sum_{i} \frac{1}{\text{rank(i)}}}{\text{\#tested relevant items}}$$

Average Reciprocal Hit-Rank

Weighted version of recall

$$ARHR = \frac{\sum_{i} \frac{1}{\text{rank(i)}}}{\text{\#tested relevant items}}$$

i: **relevant** item recommended to the user rank(i): position of item i in the list of recommendations

Netflix dataset: recall

Netflix dataset: recall on long tail

Evaluation: are we really making much progress?

Conference	Rep. / Non-rep.	Reproducible
KDD	3/4 (75%)	[17], [23], [48]
RecSys	1/7 (14%)	[53]
SIGIR	1/3 (30%)	[10]
WWW	2/4 (50%)	[14], [24]
Total	7/18 (39%)	

Non-reproducible: KDD: [43], RecSys: [41], [6], [38],

[44], [21], [45], SIGIR: [32], [7], WWW: [42], [11]

Evaluation: are we really making much progress?

	CiteULike-a				
	HR@5	NDCG@5	HR@10	NDCG@10	
TopPopular	0.1803	0.1220	0.2783	0.1535	
UserKNN	0.8213	0.7033	0.8935	0.7268	
ItemKNN	0.8116	0.6939	0.8878	0.7187	
$P^3\alpha$	0.8202	0.7061	0.8901	0.7289	
$RP^3\beta$	0.8226	0.7114	0.8941	0.7347	
CMN	0.8069	0.6666	0.8910	0.6942	

Evaluation: are we really making much progress?

Evaluating Non Accuracy Metrics

Measuring Diversity

diversity =
$$\frac{\Sigma_{i,j} 1 - \text{similarity}(i,j)}{N(N-1)}$$

Measuring Diversity

diversity =
$$\frac{\Sigma_{i,j} 1 - \text{similarity}(i,j)}{N(N-1)}$$

N: total number of items *i,j*: considered items

 $novelty \approx 1/popularity$

 $novelty \approx 1/popularity$

novelty =
$$\frac{\sum_{i \in \text{hits}} \log_2 \left(\frac{1}{\text{popularity}(i)} \right)}{\text{#hits}}$$

 $novelty \approx 1/popularity$

$$novelty = \frac{\sum_{i \in hits} log_2 \left(\frac{1}{popularity(i)}\right)}{\text{#hits}}$$

popularity(i) =
% of users who rated item i

Paolo Cremonesi paolo.cremonesi@polimi.it

