Zeta Function SUM using Geometric series Between 0 and 1

Shaimaa said soltan¹

¹ Computer Engineer, Toronto, Canada

Correspondence: Shaimaa Soltan, 3050 Constitution Blvd, Mississauga, ON., L4Y 3X1, Canada. Tel: 1-647-801-6063 E-mail: shaimaasultan@hotmail.com

.....

Suggested Reviewers (Optional)

Please suggest 3-5 reviewers for this article. We may select reviewers from the list below in case we have no appropriate reviewers for this topic.

Name:	E-mail:	
Affiliation:		
Name:	E-mail:	
Affiliation:		
Name:	E-mail:	
Affiliation:		
Name:	E-mail:	
Affiliation:		
Name:	E-mail:	
Affiliation:		

Zeta Function SUM using Geometric series Between 0 and 1

Abstract

We are going to calculate Zeta function Sum between X interval [0,1] in a complex plan, using a geometric series. And for simplicity, we are going to represent each term in zeta function as a separate geometric series of order 3. (These series can be expanded to higher order as well).

Keywords: Prime Numbers, Composite Prime Numbers, Prime Number Distribution, Zeta function

1. Introduction

We are going to represent each term in zeta function as a separate geometric series of order 3 for simplicity (but these series can be expanded to higher order.

$$a * R^3 + a * R^2 + a * R + R$$

Where R is a common ratio linear function, where its zero is a zeta function Term. In other words, Zeta function term is a 1/slop of a linear function (R = common ratio for a geometric series).

Zeta function Term	Term R (common ratio) in geometric series		
Zeta function ferm			
1	2x-1		
$\frac{1}{2}$			
1	3x-1		
$\frac{1}{3}$			
1	4x-1		
$\frac{1}{4}$			
1	5x-1		
$\frac{1}{5}$			
1	6x-1		
$\frac{1}{6}$			
1	7x-1		
$\frac{1}{7}$			

Therefore, write each term as a separate geometric series as

Zeta function Term	geometric series
$\frac{1}{2}$	$a*(2*X-1)^3 + a*(2*X-1)^2 + a*(2*X-1)^1 + (2*X-1)$
$\frac{1}{3}$	$a*(3*X-1)^3 + a*(3*X-1)^2 + a*(3*X-1)^1 + (3*X-1)$
$\frac{1}{4}$	$a*(4*X-1)^3 + a*(4*X-1)^2 + a*(4*X-1)^1 + (4*X-1)$
1 5	$a*(5*X-1)^3 + a*(5*X-1)^2 + a*(5*X-1)^1 + (5*X-1)$
1 6	$a*(6*X-1)^3 + a*(6*X-1)^2 + a*(6*X-1)^1 + (6*X-1)$
1 7	$a*(7*X-1)^3 + a*(7*X-1)^2 + a*(7*X-1)^1 + (7*X-1)$

Properties for these geometric series

- 1- at X = 0; the geometric series SUM = -(a + 1)
- 2- at $X = Zeta \ term$; the geometric series SUM = 0
- 3- [a]is a scaler value for the geometric series; where [a] is any Real number.
- 4- At [a] = 0; these series converge to linear functions = R = Common ration for the geometric series.
- 5- At [a] = 0; and X = 1; these series converge to linear functions = R = Common ration for the geometric series with SUM = (reciprocal of zeta term)-1.
- 6- Between X interval [0,1]; zeta function SUM Converges = (a + 1)
- 7- each of these geometric series will have a Zero at its own Zeta function term and these zeros will be in between intereval X = [0,1].

A) If at X = 0; the geometric series SUM = -(a + 1); then For A = 1; all These geometric series will Y-intercept at Y = -2. At X = 0.

$$zr1(x) = a r1(x) ((r1(x))^{2} + r1(x) + 1) + r1(x)$$

$$\rightarrow 1 (x-1) ((x-1)^{2} + x - 1 + 1) + x - 1$$

$$zr2(x) = a r2(x) ((r2(x))^{2} + r2(x) + 1) + r2(x)$$

$$\rightarrow 1 (2x-1) ((2x-1)^{2} + 2x - 1 + 1) + 2x - 1$$

$$zr3(x) = a r3(x) ((r3(x))^{2} + r3(x) + 1) + r3(x)$$

$$\rightarrow 1 (3 x - 1) ((3 x - 1)^{2} + 3 x - 1 + 1) + 3 x - 1$$

$$zr4(x) = a r4(x) ((r4(x))^{2} + r4(x) + 1) + r4(x)$$

$$\rightarrow 1 (4 x - 1) ((4 x - 1)^{2} + 4 x - 1 + 1) + 4 x - 1$$

$$zr5(x) = a (r5(x))^3 + a (r5(x))^2 + a r5(x) + r5(x)$$

$$\rightarrow 1 (5 x - 1)^3 + 1 (5 x - 1)^2 + 1 (5 x - 1) + 5 x - 1$$

B) $at X = Zeta \ term$; the geometric series SUM = 0; as the series is based on using the Zeta function term as common ratio for the series

$$zr5(x) = a (r5(x))^3 + a (r5(x))^2 + a r5(x) + r5(x)$$

$$\rightarrow 1 (5 x - 1)^3 + 1 (5 x - 1)^2 + 1 (5 x - 1) + 5 x - 1$$

Zr5(x) its Zeta function term = 1/5 Therefore Zr5(x) geometric SUM = 0 at X = 1/5 = 0.2 Same will be for all Zr2(X), zr3(X), zr4(X), ...

X :	zr3(x) 🚦	zr5(x)	zr4(x) 🚦
-0.1	-3.107	-4.125	-3.584
-0.05	-2.498375	-2.890625	-2.688
0	-2	-2	-2
0.05	-1.591625	-1.359375	-1.472
0.1	-1.253	-0.875	-1.056
0.15	-0.963875	-0.453125	-0.704
0.2	-0.704	0	-0.368
0.25	-0.453125	0.578125	0
0.3	-0.191	1.375	0.448
0.35	0.102625	2.484375	1.024
0.4	0.448	4	1.776
0.45	0.865375	6.015625	2.752
0.5	1.375	8.625	4
0.55	1.997125	11.921875	5.568

- C) [a]is a scaler value for the geometric series; where [a] is any Real number.
 - [a] can take any real value by changing A or the denominator.

One of the usages of this scaler parameter [a]; when [a = 0] this parameter reduces the dimension of our geometric series into a linear function

$$a * R^3 + a * R^2 + a * R + R$$

D) At [a] = 0; and X = 1; these series converge to linear functions = R = Common ration for the geometric series with SUM = (reciprocal of zeta term)-1.

$$zr3(x) = a r3(x) ((r3(x))^{2} + r3(x) + 1) + r3(x)$$

$$\rightarrow 0 (3x - 1) ((3x - 1)^{2} + 3x - 1 + 1) + 3x - 1$$

$$zr4(x) = a r4(x) ((r4(x))^{2} + r4(x) + 1) + r4(x)$$

$$\rightarrow 0 (4x - 1) ((4x - 1)^{2} + 4x - 1 + 1) + 4x - 1$$

$$zr1(x) = a r1(x) ((r1(x))^{2} + r1(x) + 1) + r1(x)$$

$$\rightarrow 0 (x - 1) ((x - 1)^{2} + x - 1 + 1) + x - 1$$

$$zr2(x) = a r2(x) ((r2(x))^{2} + r2(x) + 1) + r2(x)$$

$$\rightarrow 0 (2x - 1) ((2x - 1)^{2} + 2x - 1 + 1) + 2x - 1$$

$$zr5(x) = a (r5(x))^{3} + a (r5(x))^{2} + a r5(x) + r5(x)$$

$$\rightarrow 0 (5x - 1)^{3} + 0 (5x - 1)^{2} + 0 (5x - 1) + 5x - 1$$

Each one of these liner functions intersects with X axis at Zeta Term.

So Zr1(X) intersects with X-axis at X = 1

Zr2(X) intersects with X-axis at $X = \frac{1}{2}$

Zr3(X) intersects with X-axis at X = 1/3

Zr4(X) intersects with X-axis at $X = \frac{1}{4}$

Zr5(X) intersects with X-axis at X = 1/5

As we add new geometric series for each term in Zeta function, we get new linear function for this term intersects with X-axis at Zeta function Term. (Infinity number or linear functions in X interval between [0,1])

We are going to use the area of these triangles to get a SUM of these Zeta function terms between [0,1]. (Integral between 0 and 1) but without using integrals

Using X-axis and Y-axis as our other sides of the triangle

Geometric Series	Area
Zr1(X)	0.5 * 1
Zr2(X)	0.5 * 0.5 * 1
Zr3(X)	0.5 * 1/3 * 1
Zr4(X)	0.5 * ¼ * 1
Zr5(X)	0.5 * 1/5 * 1
Zr6(X)	0.5 * 1/6 * 1
Zr7(X)	0.5 * 1/7 * 1

To get the SUM we need to remove the duplicates areas by subtracting each two terms from each other; Area (BDE) = Area (CBD) – Area (CED); by doing these we sum the Difference between areas (i.e., integrate all terms between [0,1]).

Areas without duplicates

7 ii cas Without auphicates		
Geometric Series	Area	
Zr1(X)	0.5	
Zr1(X) - Zr2(X)	0.5 - 0.5 * 0.5	
Zr2(X) - Zr3(X)	0.5 * 0.5 - 0.5 *	
	1/3	
Zr3(x) - Zr4(X)	0.5 * 1/3 - 0.5 * 1/4	
Zr4(X) - Zr5(X)	0.5 * ¼ - 0.5 * 1/5	
Zr5(X) - Zr6(X)	0.5 * 1/5 -0.5 *	
	1/6 * 1	
Zr6(X) - Zr7(X)	o.5 * 1/6 - 0.5 *	
	1/7 * 1	

As ZrO(X) = X then Area difference will be (1-1/2)

$$(1-\frac{1}{2})+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{20}\right)+\left(\frac{1}{20}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{12}\right)+\left(\frac{1}{12}-\frac{1}{14}\right)+\cdots.$$

With Z0r(X) the sum converges to 1 and without the Zr0(X) the sum convers to 0.5.

b v	0.5/b ▼			Area Difference ▼
1	0.5	1	0.5	
2	0.25	1	0.25	0.25
3	0.16666667	1	0.166666667	0.083333333
4	0.125	1	0.125	0.041666667
5	0.1	1	0.1	0.025
6	0.08333333	1	0.083333333	0.016666667
7	0.07142857	1	0.071428571	0.011904762
8	0.0625	1	0.0625	0.008928571
9	0.0555556	1	0.05555556	0.006944444
10	0.05	1	0.05	0.00555556
11	0.04545455	1	0.045454545	0.004545455
12	0.04166667	1	0.041666667	0.003787879
13	0.03846154	1	0.038461538	0.003205128
14	0.03571429	1	0.035714286	0.002747253
15	0.03333333	1	0.033333333	0.002380952
16	0.03125	1	0.03125	0.002083333
17	0.02941176	1	0.029411765	0.001838235
18	0.02777778	1	0.027777778	0.001633987
19	0.02631579	1	0.026315789	0.001461988
20	0.025	1	0.025	0.001315789
21	0.02380952	1	0.023809524	0.001190476
22	0.02272727	1	0.022727273	0.001082251
23	0.02173913	1	0.02173913	0.000988142
24	0.02083333	1	0.020833333	0.000905797
25	0.02	1	0.02	0.000833333
26	0.01923077	1	0.019230769	0.000769231
27	0.01851852	1	0.018518519	0.000712251
28	0.01785714	1	0.017857143	0.000661376
29	0.01724138	1	0.017241379	0.000615764
30	0.01666667	1	0.016666667	0.000574713
31	0.01612903	1	0.016129032	0.000537634
32	0.015625	1	0.015625	0.000504032
33	0.01515152	1	0.015151515	0.000473485

If
$$r1(X) = X$$
.

$$\bigcap$$
 r1(x) = x

Scale by [a] = 1/8; SUM will be converged to 1 + a = 1 + 1/8 = 1.125. (Y Intercept Point)

This converges to 0.5 + 1/16 in interval X = [0,1]

i.e., SUM in interval X = [0,1] Converges to 0.5 + 0.5 * a.

$$zr3(x) = a r3(x) ((r3(x))^{2} + r3(x) + 1) + r3(x)$$

$$\rightarrow \frac{1}{8} (3 \times -1) ((3 \times -1)^{2} + 3 \times -1 + 1) + 3 \times -1$$

$$zr4(x) = a r4(x) ((r4(x))^{2} + r4(x) + 1) + r4(x)$$

$$\rightarrow \frac{1}{8} (4 \times -1) ((4 \times -1)^{2} + 4 \times -1 + 1) + 4 \times -1$$

$$zr0(x) = a r1(x) ((r1(x))^{2} + r1(x) + 1) + r1(x)$$

$$\rightarrow \frac{1}{8} \times (x^{2} + x + 1) + x$$

$$zr2(x) = a r2(x) ((r2(x))^{2} + r2(x) + 1) + r2(x)$$

$$\rightarrow \frac{1}{8} (2 \times -1) ((2 \times -1)^{2} + 2 \times -1 + 1) + 2 \times -1$$

$$zr5(x) = a (r5(x))^{3} + a (r5(x))^{2} + a r5(x) + r5(x)$$

$$\rightarrow \frac{1}{8} (5 \times -1)^{3} + \frac{1}{8} (5 \times -1)^{2} + \frac{1}{8} (5 \times -1) + 5 \times -1$$

3. Results

Conclusion: - writing Zeta function as a Geometric series of $a * R^3 + a * R^2 + a * R + R$

Where R = (n * X - 1) and Zeta Term = 1/n.

- 1- at X = 0; the geometric series SUM = -(a+1)
- 2- at X = Zeta term; the geometric series SUM = 0
- 3- [a]is a scaler value for the geometric series; where [a] is any Real number.
- 4- At [a] = 0; these series converge to linear functions = R = Common ration for the geometric series.
- 5- At [a] = 0; and X =1; these series converge to linear functions = R = Common ration for the geometric series with SUM = (reciprocal of zeta term)-1.
- 6- Between X interval [0,1]; zeta function SUM Converges = (a + 1)
- 7- each of these geometric series will have a Zero at its own Zeta function term and these zeros will be in between intereval X = [0,1].

References

https://en.wikipedia.org/wiki/Taylor_seriesdia

Legendre, A. M. (1830), Théorie des Nombres, Paris: Firmin Didot Frères

Moll, Victor H. (2012), Numbers and Functions, American Mathematical Society, ISBN 978-0821887950, MR 2963308, page 77

Leonard Eugene Dickson, History of the Theory of Numbers, Volume 1, Carnegie Institution of Washington, 1919, page 263.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).