

BÀI 2

BÀI TOÁN ĐẾM

Giáo viên: TS. Nguyễn Văn Hiệu

Email: nvhieuqt@dut.udn.vn

Nhắc lại

Quy tắc nhân

Quy tắc cộng

Hoán vị (không lặp và lặp)

Chỉnh hợp (không lặp và lặp)

Tổ hợp (không lặp và lặp)

Tố hợp lặp ???

Nôi dung

- Bài toán "không thích nhau"
- Bài toán "nên hay không nên"
- Bài toán "kiến tha mồi"
- Bài toán "phân phát"
- Nguyên lý bù trừ

Bài toán "không thích nhau"

Bài toán "không thích nhau"

Bài toán "không thích nhau"

Bài toán "nên hay không nên"

Bài toán "kiến tha mồi"

Bài toán "kiến tha mồi"

- Một lời giải:
 - Số đoạn sang phải n
 - Số đoạn xuống n
- Ký hiệu:
 - Sang phải: 1
 - Xuống: 0
- Bài toán:
 - Xâu Bit có độ dài bằng n+m có đúng m bít 0

Bài toán phân bố đồ vật

Chia cổ bài 52 quân cho 4 người chơi, sao cho mỗi người có 5 quân

$$C_{52}^5$$
. C_{47}^5 . C_{42}^5 . $C_{37}^5 = \frac{52!}{5!.5!.5!.5!.32!}$

Bài toán phân bố đồ vật

Phân chia n đồ vật khác nhau vào trong k hộp sao cho có ni vật được đặt vào trong hộp thứ i,

$$\frac{n!}{n_1!.n_2!...n_k!.(n-n_1-...-n_k)!}$$

• A_1 và A_2 là hai tập hưu hạn, $A_1 \cap A_2 \neq \bigcirc$

$$N(A_1 \cup A_2) = N(A_1) + N(A_2) - N(A_1 \cap A_2)$$

 $N(A_1) + N(A_2) - N(A_1 \cap A_2)$

• Tổng quát: khi $A_i \cap A_j \neq \emptyset$ mọi i, j

$$N(A_1 \cup ... \cup A_n) = N_1 - N_2 + ... + (-1)^{n-1} N_n$$

- N_k là tổng phần tử của tất cả các giao của k tập lấy từ n tập.
 - $N_1 = N(A_1) + ... + N(A_m) ,$
 - **....**
 - $\square N_m = N(A_1 \cap A_2 \cap ... \cap A_m).$

- Nguyên lý bù trừ
 - A_k tính chất nào đó cho trên X
 - tổng số phần tử của X không thỏa mản bất cứ tính chất A_k

$$N(X) - N(A_1 \cup A_2 \cup ... \cup A_n)$$

N_i - là tổng số phần tử của X thỏa mản i tính chất.

Tổng số phần tử thỏa mản ít nhất một tính chất A_k nào đó

Hỏi tập $X=\{1,2,...50\}$ có bao nhiều số không chia hết cho bất các số 2, 3, 4?

$$A_i = \{ x \in X: x \% i ==0 \} i=2,3,4.$$

$$N(X) - N(A_2 \cup A_3 \cup A_4) = N - (N_1 - N_2 + N_3)$$

Ta có:

- N = 50 sô.
- $N_1 = N(A_2) + N(A_3) + N(A_4)$ = [50/2] + [50/3] + [50/4] = 25 + 16 + 12 = 53.
- $N_2 = N(A_2 \cap A_3) + N(A_3 \cap A_4) + N(A_2 \cap A_4)$ = [50/6] + [50/12] + [50/4] = 8 + 4 + 12 = 24.
- $N_3 = N(A_2 \cap A_3 \cap A_4)$ = [50/12] = 4.
- Suy ra 50 (53 24 + 4) = 17 sô.

Có bao nhiều xâu nhị phân độ dài 10 hoặc bắt đầu bởi 00 hoặc kết thúc bởi 11?

- X là tập hợp tất cả các cách bỏ thư.
- Đánh dấu : {1,2,3}
- A₁: lá thư thứ 1 bỏ đúng.
- A₂: lá thư thứ 2 bỏ đúng
- A₃: lá thư thứ 3 bỏ đúng
- N_k là số tất cả các cách bỏ thư sao cho có k lá thư bỏ đúng.
- N(A₁ ∪ A₂ ∪ A₃) là số tất cả các cách bỏ thư sao cho có ít nhất 1 lá thư bỏ đúng.

 \mathbf{DS} : 1/3

Có n lá thư và n phong bì ghi sắn địa chỉ. Bỏ ngẫu nhiên các lá thư vào phong bì. Hỏi xác suất để không một lá thư bỏ đúng địa chỉ

HD:

X – là tập hợp tất cả các cách bỏ thư.

 A_k – là tính chất lá thư thứ k bỏ đúng địa chỉ.

•
$$\overline{N} = N - (N_1 - N_2 + ... + (-1)^{n-1} N_n)$$

- N = n!
- N_k là số tất cả các cách bỏ thư sao cho có k lá thư đúng địa chỉ.

$$N_k = C_n^k (n-k)! = n!/k!$$

$$\overline{N} = n! - (n!/1! - n!/2! + \dots + (-1)^{n-1} n!/n!)$$

$$= n!(1 - 1/1! + 1/2! + \dots + (-1)^{n-1}/n!)$$

Xác suất cần tìm:

$$1 - 1/1! + 1/2! + ... + (-1)^{n-1}/n!$$

Trao đổi

What NEXT?

BÀI TOÁN ĐẾM NÂNG CAO