Teoría de Control - Práctica

Transformada de Laplace

1. Hallar x(s) para las siguientes ecuaciones diferenciales:

a)
$$x' + 3x = 0$$

b)
$$x''' + x = 1$$

c)
$$x''+3x'+2x = 0$$

d)
$$x'''+4x''+5x'+2x = 2$$

e)
$$x''+2x'+5x = 3$$

$$x(0) = 2$$

$$x(0) = x'(0) = x''(0) = 0$$

$$\begin{cases} x(0) = a \\ x'(0) = b \end{cases}$$

$$x(0) = x'(0) = x''(0) = 0$$

$$x(0) = x'(0) = 0$$

2. Determinar x(t) o f(t) para las siguientes ecuaciones:

a)
$$x' + x = 1$$

b)
$$x' + 3x = 0$$

c)
$$x''+2x''-x'-2x = 4 + e^{2t}$$

$$x(0) = 0$$

$$x(0) = 2$$

$$\begin{cases} x(0) = 1 \\ x'(0) = 0 \\ x''(0) = -1 \end{cases}$$

d)
$$f(s) = \frac{1}{s(s^2 + 2s + 2)}$$

Expansión en fracciones parciales cuando f(s) involucra polos múltiples

3. Determinar f(t) para las siguientes transformadas:

a)
$$f(s) = \frac{s^2 + 2s + 3}{(s+1)^3}$$

b)
$$f(s) = \frac{5(s + 2)}{s^2(s + 1)(s + 3)}$$

C)
$$f(s) = \frac{1}{s(s^2 + w^2)}$$

Teorema del valor final

4. Determinar $f(t = \infty)$

a)
$$f(s) = \frac{1}{s(s+1)}$$

Naturaleza Cualitativa de las Soluciones

5. Hallar y(t) a partir de las siguientes ecuaciones diferenciales, graficar las salidas y ubicar los polos de la función de transferencia en el plano complejo:

a)
$$y'(t) + 2y'(t) + 2y(t) = x(t)$$

$$y(0) = y(0) = 0$$

$$b) \quad y(t) \quad + \ y(t) \quad = \ x(t)$$

$$y(0) = 0$$

c)
$$y'(t) - 2y'(t) + 2y(t) = x(t)$$

$$y(0) = y(0) = 0$$

$$d) \quad y(t) \quad - y(t) \quad = x(t)$$

$$y(0) = 0$$

$$e) \quad y'(t) \quad + y(t) \quad = x(t)$$

$$y(0) = y(0) = 0$$

Diagramas de Bloques

6. Reducir los siguientes diagramas de bloques:

a) Hallar $\frac{C(s)}{R(s)}$

b) Hallar
$$\frac{C(s)}{R(s)}$$
 y $\frac{C(s)}{U(s)}$

c) Hallar $\frac{Y(z)}{X(z)}$

d) Hallar $\frac{Y(z)}{X(z)}$

e) Hallar $\frac{Y(z)}{X(z)}$

f) Hallar $\frac{Y(z)}{X(z)}$

g) Hallar $\frac{Y(z)}{X(z)}$

Respuestas de sistemas de Primer Orden

- **7.** Determinar la respuesta de un sistema de primer orden para las siguientes entradas:
 - a) Escalón
 - b) Impulso
 - c) Senoidal

Controladores

- **8.** Determinar la función de transferencia de los controladores:
 - a) Proporcional
 - b) Proporcional Integral
 - c) Proporcional Derivativo
 - d) Proporcional Integral Derivativo
- **9.** Dado el siguiente diagrama de bloques:

Y siendo:

- G₁(s): función de transferencia del controlador
- $G_2(s) = \frac{1}{s^2 + 10 s + 20}$
- H(s) = 1
- Problema Servo

• Entrada Escalón unitaria

Determinar el error en estado estacionario para los siguientes controladores:

- a) Proporcional
- b) Proporcional Integral
- c) Proporcional Derivativo
- d) Proporcional Integral Derivativo

Trabajando con los siguientes parámetros:

Controlador	Función de transferencia	k _p	k _p /τ _i	k _p τ _d
Р	k _p	300	1	-
PI	$k_{p}(1+\frac{1}{\tau_{i}s})$	30	70	-
PD	$k_p(1 + \tau_d s)$	300	-	10
PID	$k_{p}(1 + \frac{1}{\tau_{i}S} + \tau_{d}S)$	350	300	50

Estabilidad. Criterio de Routh

10. Dados los sistemas cuya función de transferencia en lazo cerrado esta definida por:

$$\frac{C(s)}{R(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n} = \frac{B(s)}{A(s)}$$

Determinar si los sistemas siguientes son estables y en caso contrario, determinar cuantos polos inestables poseen:

a)
$$A(s) = s^4 + 3s^3 + 5s^2 + 4s + 2$$

b)
$$A(s) = s^4 + 2s^3 + 3s^2 + 4s + 5$$

C)
$$A(s) = s^3 + 2s^2 + s + 2$$

d)
$$A(s) = s^3 - 3s + 2$$

e)
$$A(s) = s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50$$

11. Determinar los valores de k para los cuales el sistema es estable, cuya ecuación característica es la siguiente:

a)
$$A(s) = \frac{1}{6}s^3 + s^2 + \frac{11}{6}s + (1 + k)$$

12. Determinar los valores de k para los cuales el sistema modelado por el siguiente diagrama de bloques es estable:

a)

b)

c)

