PRE029006 - PROCESSOS ESTOCÁSTICOS (2024.2 - T01)

Recuperação Avaliação 4

Aluno: Wagner Santos

- 7. Sejam X1, X2 ~ Unif([-2, 1]) variáveis aleatórias sorteadas independentemente.
- (a) Sejam
- $Y1 = X1^2$
- $Y2 = X2^2$,

$$Y3 = X1 * X2$$
.

Determine o vetor média e a matriz covariância do vetor aleatório Y = [Y1 Y2 Y3]T .

- (b) Sejam
- Z1 = Y1,
- Z2 = Y1 + Y2,

$$Z3 = Y1 + Y2 + Y3$$
.

Determine o vetor média e a matriz covariância do vetor aleatório Z = [Z1 Z2 Z3]T . Utilize a formulação matricial.

Parte (a)

Média e variância de X1 e X2:

X1 e X2 são independentes e têm distribuição uniforme no intervalo entre -2 e 1.

$$E[X] = a+b/2 = (-2 + 1) / 2 = -1/2$$

 $E[X^2]$ = integral de -2 até 1 x^2 fX (x) dx -> integral de -2 até 1 x^2 (1/b-a) dx = 1 Resolução WolframAlpha

$$Var(X) = E[X^2] - (E[X])^2 = 1 - (-1/2)^2 = 3/4$$

E[X1] = E[X2] = -1/2

Var[X1] = Var[X2] = 3/4

Média de Y1, Y2 e Y3:

Y1 = X1² Já calculado acima para $E[X^2] = 1$

Y2 = X2² Como X2 tem a mesma distribuição de X1 = 1

Y3 = X1*X2 E[Y3] = E[X1]*E[X2] = (-1/2)*(-1/2) = 1/4

Vetor média de Y:

$$E[Y] = E[Y1] [1]$$

E[Y2] [1]

E[Y3] [1/4]

Cov(Y) =

var(Y1)	cov(Y1, Y2)	cov(Y1,Y3)			
cov(Y2, Y1)	var(Y2)	cov(Y2, Y3)			
cov(Y3, Y1)	cov(Y3, Y2)	var(Y3)			

$Var(Y1) = Var(Y2) = E[Y1^2] - E[Y1^2]^2$

 $E[Y1^2] = E[X1^4] = integral de -2 até 1 x^4 (1/b-a) dx = 11/5$

Resolução WolframAlpha

 $Var(Y1) = Var(Y2) = 11/5 - 1^2 = 6/5$

$Var[Y3] = E[Y3^2] - E[Y3]^2$

 $Var[Y3] = 1 - (1/4)^2 = 15/16$

Cov(Y1, Y2) = 0, são independentes

Cov(Y1, Y3):

Y1 = X^2 e Y3 = X1 * X2

Cov(Y1, Y3) = E[Y1, Y3] - E[Y1]E[Y3]

 $E[Y1, Y3] = E[X1^2 * X1 * X2] = E[X1^3] * E[X2]$

 $E[X1^3] = integral de -2 a 1 x^3 * 1/3 dx = -5/4$

Resolução WolframAlpha

E[X2] = -1/2

E[Y1, Y3] = (-5/4)*(-1/2)= 5/8

Cov(Y1, Y3) = E[Y1, Y3] - E[Y1]E[Y3] = 5/8 - (1)*(1/4) = 3/8

Cov(Y1, Y2): é simétrica a Cov(Y1, Y3)

Matriz covariância de Y:

$$Cov(Y) =$$

6/5	0	3/8			
0	6/5	3/8			
3/8	3/8	15/16			

Parte (b)

Definindo Z como uma transformação linear de Y , Z = AY

A =

1	0	0		
1	1	0		
1	1	1		

Vetor média de Z:

Z= AY

Resolução WolframAlpha

E[Z]=

1	0	0		1		1
1	1	0	*	1	=	2
1	1	1		1/4		9/4

Matriz covariância de Z:

CZ = ACY AT

Resolução WolframAlpha

CZ=

1	0	0		6/5	0	3/8		1	1	1		6/5	6/5	63/40
1	1	0	*	0	6/5	3/8	*	0	1	1	II	6/5	12/5	63/20
1	1	1		3/8	3/8	15/16		0	0	1		63/40	63/20	387/80