ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μάθημα Σήματα και Συστήματα	Ημερομηνία
Όνομα Επώνυμο	A.E.M.
Βαθμολογία	Εξάμηνο

Να λύσετε τα προβλήματα, να επισυνάψετε τις λύσεις μετά τις εκφωνήσεις, να σκανάρετε το δοκίμιο και να το μετατρέψετε σε pdf. Να αναρτήσετε στο elearning το αρχείο pdf ως την **Τρίτη 15 Νοεμβρίου 2021 και ώρα 11 π.μ.** Για να προσμετρηθεί η επιπρόσθετη βαθμολογία στην τελική βαθμολογία θα πρέπει να συγκεντρώσετε τουλάχιστον 1.8 από τις 3.5 μονάδες στην ενδιάμεση εξέταση είτε στο μέρος Α της τελικής γραπτής εξέτασης.

ΘΕΜΑ 1 (Μονάδες 0.4)

Έστω h(t) ο τριγωνικός παλμός

$$h(t) = \left\{ \begin{array}{ll} 1 - |t| & \text{an } |t| \leq 1 \\ 0 & \text{alling} \end{array} \right.$$

και x(t) το σήμα

$$x(t) = \sum_{n = -\infty}^{+\infty} \delta(t - n T).$$

Να υπολογίσετε και να σχεδιάσετε το σήμα y(t) = h(t) * x(t) για τις εξής τιμές του T:

Av mod(AEM, 3) = 0, T = 3

 $Av \mod(AEM, 3) = 1, T = 1.5$

Av mod(AEM, 3) = 2, T = 2.

ΘΕΜΑ 2 (Μονάδες 0.6)

Να βρείτε μια κλειστή έκφραση για το x(t), επιλύοντας το πρόβλημα που αντιστοιχεί στο ΑΕΜ σας.

 \mathbf{A} ν $\operatorname{mod}(AEM,3)=0$, θεωρήστε ένα σήμα x(t) με μετασχηματισμό Fourier $X(j\Omega)$. Υποθέστε ότι σας δίνονται τα εξής στοιχεία:

- 1. Το σήμα x(t) είναι πραγματικό και μη-αρνητικό.
- 2. Όταν το σήμα x(t) διέρχεται από σύστημα με κρουστική απόκριση $h(t) = \exp(-3t)u(t)$ παράγεται απόκριση, η οποία έχει μετασχηματισμό Fourier

$$Y(j\Omega) = \frac{K}{(2+j\Omega)(3+j\Omega)}$$
 όπου K πραγματικός αριθμός.

3. $\int_{-\infty}^{\infty} |X(j\Omega)|^2 d\Omega = 2\pi.$

 \mathbf{A} ν $\operatorname{mod}(AEM,3)=1$, θεωρήστε ένα σήμα x(t) με μετασχηματισμό Fourier $X(j\Omega)$. Υποθέστε ότι σας δίνονται τα εξής στοιχεία:

- 1. Το σήμα x(t) είναι πραγματικό και μη-αρνητικό.
- 2. Όταν το σήμα x(t) διέρχεται από σύστημα με κρουστική απόκριση $h(t) = \exp(-t)u(t)$ παράγεται απόκριση, η οποία έχει μετασχηματισμό Fourier

$$Y(j\Omega) = \frac{K}{(1+j\Omega)(2+j\Omega)}$$
 όπου K πραγματικός αριθμός.

3. $\int_{-\infty}^{\infty} |X(j\Omega)|^2 d\Omega = 2\pi.$

 \mathbf{A} ν $\operatorname{mod}(AEM,3)=2$, θεωρήστε ένα σήμα x(t) με μετασχηματισμό Fourier $X(j\Omega)$. Υποθέστε ότι σας δίνονται τα εξής στοιχεία:

- 1. Το σήμα x(t) είναι πραγματικό και μη-αρνητικό.
- 2. Το σήμα x(t) διέρχεται από σύστημα με κρουστική απόκριση $4\delta(t)+\frac{d}{dt}\delta(t)$ και η απόκριση του συστήματος είναι $\frac{1}{B}e^{-2t}\ u(t)$, όπου το B δεν εξαρτάται από το t.
- 3. $\int_{-\infty}^{\infty} |X(j\Omega)|^2 d\Omega = \frac{2\pi}{16}.$

ΘΕΜΑ 3 (Μονάδες 0.5)

Έστω $\alpha \in \mathbb{R}$ τέτοιος ώστε $0 < \alpha < 1$. Υποθέστε ότι το περιοδικό σήμα συνεχούς χρόνου x(t) με εκθετική σειρά Fourier

$$x(t) = \sum_{k=-\infty}^{+\infty} \alpha^{|k|} \exp(j k \frac{\pi}{5} t)$$

διεγείρει ένα Γραμμικό Χρονοαμετάβλητο Σύστημα με απόκριση συχνότητας, όπως εξειδικεύεται ακολούθως.

 $\mathbf{A}\mathbf{v} \mod(AEM,3) = 0$,

$$H(j\Omega) = \begin{cases} 1 & W_1 \le |\Omega| \le W_2 \\ 0 & \text{αλλιώς.} \end{cases}$$

Αν οι δύο πρώτες αρμονικές δεν εμπίπτουν στη ζώνη διάβασης, ενώ η 3η αρμονική είναι στη ζώνη διάβασης, να προσδιορίσετε τις συχνότητες αποκοπής W_1 και W_2 ώστε το σήμα στην έξοδο να έχει ισχύ τουλάχιστον το 90% της ισχύος στην είσοδο.

 $\mathbf{A}\mathbf{v} \mod(AEM,3) = 1$,

$$H(j\Omega) = \begin{cases} 1 & |\Omega| \ge W \\ 0 & |\Omega| < W. \end{cases}$$

Να προσδιορίσετε τη συχνότητα αποχοπής W, ώστε το σήμα στην έξοδο να έχει ισχύ τουλάχιστον το 90% της ισχύος στην είσοδο.

 $\mathbf{A}\mathbf{v} \mod(AEM,3) = 2$

$$H(j\Omega) = \left\{ \begin{array}{ll} 0 & W_1 \leq |\Omega| \leq W_2 \\ 1 & \text{αλλιώς.} \end{array} \right.$$

Αν η πρώτη αρμονική εμπίπτει στη ζώνη διάβασης, να προσδιορίσετε τις συχνότητες αποκοπής W_1 και W_2 , ώστε το σήμα στην έξοδο να έχει ισχύ τουλάχιστον το 90% της ισχύος στην είσοδο.