ECG signal classification with liner laws

Linear laws for time series

Time series representation

- The signal samples are represented as time series -> y(t)
- Time embedding: The samples are divided into shorter sub samples using a sliding window with maximum overlap
- The "sub samples" are organized into a learning set matrix.
- For multiple samples of shorter time series we create the learning set matrix individually and later join them into a large matrix by adding more rows under each other.
- Order of the elements does not matter in this matrix.

$$Y_{ki} = Y_i^k = y(t_k - i\Delta t)$$

Time window slides

New sample starts

Definition of linear laws

Consider a mapping which brings all the sub samples into 0:

$$\mathcal{F}: \mathbb{V}^{n+1} \to \mathbb{R}, \quad \mathcal{F}\left(Y^{(k)}\right) = 0, \quad \forall k$$

Linear laws: fix the form of the mapping and consider only linear relations:

$$\mathcal{F}(Y^k) = \sum_{i=0}^n Y_{ki} w_i \equiv (Yw)_k = 0, \quad \forall k$$
 Linear law

- Laws: represent a relation which is true for the whole learning set
- Analogy to physical conservation laws: they describe a quantity which is "conserved" for the whole learning set (here it remains 0)

$$\begin{bmatrix} t_k & t_{k}-\Delta t & t_{k}-2\Delta t & \dots \\ t_{k}-\Delta t & t_{k}-2\Delta t & t_{k}-3\Delta t & \dots \\ \vdots & & & \vdots \end{bmatrix} = \begin{bmatrix} 0 & & & & & \\ w_0 & & & & & \\ w_1 & & & & & \\ \vdots & & & & & \end{bmatrix}$$

Determining linear laws

Starting from the definition:

$$(Yw)_k = 0 \qquad \qquad ||Yw|| = 0$$

In quadratic norm:

$$||Yw||^2 = \frac{1}{K} (Yw)^T (Yw) = w^T Cw = 0$$
 $C = \frac{1}{K} Y^T Y_0$

To avoid the trivial w=0 solution we need to require |w|=1. This leads to a constrained minimalization problem:

$$\chi^2(\lambda) = w^T C w - \lambda w^T w = \min.$$

The solution to this is the eigenvalue equation:

$$Cw^{(\lambda)} = \lambda w^{(\lambda)}$$

The n+1 components of the eigenvectors are the linear laws.

Finding linear laws is an eigenvalue problem

Calculating the linear laws for the ECG signals

 Solving the eigenvalue equation corresponding to the learning set yields linear laws

$$Cw^{(\lambda)} = \lambda w^{(\lambda)}$$

- This yields as many linear laws as many independent eigenvectors.
- Which one of the solutions should be chosen?

Selecting the best solution

The linear laws are true at a given precision. In practice instead of zero they map the learning samples to small numbers:

$$\mathcal{F}(Y^k) = \sum_{i=0}^n Y_{ki} w_i \equiv \xi_k$$

Substituting this into the quadratic norm form we get:

$$||Yw||^2 = \frac{1}{K} \sum_{k=0}^{K} \xi_k^2 = \langle \xi^2 \rangle$$

So instead of zero as norm we get the variance of the error on the sample. This norm can also be expressed using the eigenvalues:

$$||Yw||^2 = \frac{1}{K} (Yw)^T (Yw) = w^T Cw \iff Cw^{(\lambda)} = \lambda w^{(\lambda)}$$

The variance is the eigenvalue.
$$\|Yw\|^2 = \lambda w^T w = \lambda = \left\langle \xi^2 \right\rangle$$

The best linear law is the eigenvector corresponding to the smallest eigenvalue, because this one has the highest precision on average.

Intuition behind linear laws

 PCA: The PCA method select the direction in which the data changes the most.

- **Linear laws**: Select the direction in which the data appears to be constant.
- The linear law is a direction in the multidimensional space.
- This direction is "as orthogonal as possible" to the data in a sense that it is the normal vector of the hyperplane in which the data can be found. (considering precision)
- This also means that the linear laws are generated for sets that are collecting things which are considered similar for the problem. They correspond to classes.

Linear laws ~ Anti-PCA

Generating Linear features (LLT)

- The sample is time embedded with a window length equal to the length of the linear law
- A new Y_{ki} matrix is created
- The linear laws corresponding to the classes in the classification problem set are applied on the Y matrix.
- The results are downsampled than concatenated
- Feature vector: features generated by each linear law.

Intuition behind LLT

- 1. The features measure how "similar" a sub-sample to the learning set.
 - Intuition: scalar product measures how "large" is a vector in a given direction.
 - Direction = linear law, which represents the learning set
 - Feature = sample linear law, we expect zero if sample is from LL class
- 2. LLT is like choosing a **coordinate system** which fit the problem better
 - Spherical problem -> spherical coordinates
 On the surface of the sphere r = const for everything ~ linear law variables are eliminated the problem become simpler

• By finding the linear law we have a vector which is orthogonal to the

hypersurface of the data

Different sample: outside of the hyperplane characterized by Linear law

Features have large value

Classification with LLT

LLT aids classification by providing a quantity which is constant over a given class

- Linear laws represent the classes which they are derived from in an operator form.
- When applied on data Linear laws generate features, which are small for similar data and large for different ones.
- The generated features are **similarity measures** for each class: Applying linear laws derived from classes to a sample yields features which measure how similar the sample to the defining class of each linear law.
- Linear laws are "voting" how similar the sample to each class.
- Votes = features

Application of LLT for ECG signal classification

Anatomy of ECG signals

ECG: average (net) polarization of the hearth as function of time.

One cycle:

- 1. Atrial depolarization -> P
- 2. Septal depolarization -> Q
- 3. Left ventricle is behind in time, so the left and right can not cancel each other properly -> R, S
- 4. Repolarization of the ventricles -> T

The polarization wave

Categorization strategy

- 1. Focus on the QRS complex in healthy signals cut the peaks
- 2. Use the Linear law for healthy QRS complexes for LLT for both ectopic and normal peaks.
 - This is different than it was explained above. It works because we have only 2 classes

Sample size

3. Use classification algorithm on the LLT transformed peaks

Look at the data

Balanced dataset of around 8000 signals

- 30% is used for training
- 70% is used for testing!

YES, really!

Look at the data

- 34 point long window were used to cut the peaks
- Meta parameter: fitted on healthy signals
- · Peaks are standardized:
 - Mean = 0
 - Max = 1

- Because of the irregularity of the signals there are artifacts at the peak search
 - No peak found -> instant rejection
 - Multiple peaks found in one sample
- Take the more strict route: check performance only on samples where there are peaks and consider multiple peak samples too

Random forest

LLT results in 24 features which is used to fit a random forest

- Number of estimators = 30
- Max depth = 15
- accuracy: 95.4% avg (normal: 95.2%, ectopic: 95.6 %)
- Including the 10 most important features results in 93% accuracy

To increase accuracy further we need more features (larger forest does not work)

- Use **linear law for ectopic** set and use that to transform the full dataset again and create pairs:
- [Normal LLT(sample), ectopic LLT(sample)] => 48 features
- Accuracy 96.4 %

 (normal: 95.3%, ectopic: 97.5 %)

Other Classifiers

K nearest neighbours

- Smaller Ks are more stable
- accuracy: 95-96.7% avg
 (normal: 98%, ectopic: 95.4 %)
- The features can be downsampled to get similarly good results

Support Vector Machine

- Nonlinear Kernel was used
- accuracy: 94% avg
 (normal: 94.4%, ectopic: 93.8 %)

Thank you!

Auxiliary slides

Recursions and linear laws

If a linear law is found w_i are all determined. The law means:

$$\mathcal{F}(Y^k) = \sum_{i=0}^n Y_{ki} w_i \equiv (Yw)_k = 0, \qquad \text{For a given k} \qquad \sum_{i=0}^n y(t_k - i\Delta t) w_i = 0$$

This can be rewritten as a recursion:

$$y(t_k) = -\frac{1}{w_0} \sum_{i=1}^n y(t_k - i\Delta t) w_i \qquad \overrightarrow{\mathbf{t_k} = \mathbf{k} \, \Delta \mathbf{t}} \qquad y_k = -\frac{1}{w_0} \sum_{i=1}^n y_{k-i} w_i = \sum_{i=1}^n y_{k-i} \hat{w}_i$$

Since this relation is true for all k this n-length recursion can generate the dataset.

- If data reconstruction is the purpose sampling becomes important because the recursion is not exact, the linear law is true at a given precision
- Searching for linear laws is equivalent to finding recursive representations of data