Chapitre 23

Sous-espaces affines

23 Sous	s-espaces affines	1
23.1	Sous-espace affine	2
23.8	Caractérisation des sous-espaces affines par leur direction et leur point	2

23.1 Sous-espace affine

Définition

Soit E un \mathbb{K} -espace vectoriel.

— On appelle sous-espace affine de E toute partie \mathcal{F} de E de la forme :

$$\mathcal{F} = x + F = \{f + x \mid f \in F\}$$

où F est un sous-espace vectoriel de E et x un vecteur de E.

— Le sous-espace vectoriel F associé au sous-espace affine \mathcal{F} est unique. On l'appelle direction de \mathcal{F} et ses éléments sont appelés les vecteurs directeurs de \mathcal{F} .

On suppose que $\mathcal{F} = x_1 + F_1 = x_2 + F_2$.

Soit $y \in F_1$.

On a $y + x_1 \in \mathcal{F}$ donc $y + x_1 = x_2 + y_2$ avec $y_2 \in F_2$.

Or $x_1 \in \mathcal{F}$ donc $x_1 = x_2 + g_2$ avec $g_2 \in F_2$.

Donc:

$$y = x_2 - x_1 + y_2$$
$$= y_2 - g_2$$
$$\in F_2$$

avec $F_1 \subset F_2$.

Par symétrie :

$$F_1 = F_2$$

23.8 Caractérisation des sous-espaces affines par leur direction et leur point

Théorème 23.8

Soit E un espace vectoriel sur \mathbb{K} , \mathcal{F} un sous-espace affine de E de direction F et $A \in \mathcal{F}$, alors :

$$\mathcal{F} = A + F$$

 $\mathcal{F} = x + F$. Soit $A \in \mathcal{F}$.

Donc $A = x + f, f \in F$.

Donc $A - x \in F$.

Ainsi:

$$\mathcal{F} = x + F$$
$$= (x - A) + A + F$$
$$= A + F$$