

WaterstressAt Pinzgau

Entwurf für ein Werkzeug "Zukünftige Entwicklung des Abflusses im Pinzgau"

Dr. Peter Burek

Abteilung: Water Security

IIASA

WaterStressAT

Climate change induced water stress participatory modeling to identify risks and opportunities in Austrian regions

Wasserkraft im Land Salzburg

VEREIN KLEINWASSERKRAFT | LINKS | FAKTEN | RECHT | BUNDESLÄNDER | TI

Kleinwasserkraft in Salzburg

Die Nutzung von Wasserkraft hat in Salzburg jahrhundertealte Tradition. Auch zahlreiche Kleinwasserkraftwerke le überaus wertvollen Beitrag zur Ökostromerzeugung.

Über 450 Kleinwasserkraftwerke (davon rund 250 als Ökostromanlagen anerkannt)

- liefern jährlich ca. 825 Mio. kWh Ökostrom ins öffentliche Netz
- versorgen ca. 235.000 Haushalte
- vermeiden j\u00e4hrlich ca. 580.000 Tonnen CO2 im Vergleich zur Stromproduktion mit fossilen Energietr\u00e4gern

Einbau einer Wasserkraftschnecke an der Alm in Salzburg. Quelle: SN 23.11.22

und Klimawandel?

Temperatur Es wird weiter wärmer

und Klimawandel?

Klimaszenarien für den Niederschlag sind mit größeren Unsicherheiten behaftet als jene der Temperatur

- Es ist in Zukunft mit leichter Zunahme im mittleren Jahresniederschlag zu rechnen
- Im Winter mit mehr Niederschlagszunahme im Sommer mit weniger
- Änderungen unterliegen entweder der großen Schwankungsbreite des Niederschlags oder der mangelnden Zuverlässigkeit der Klimamodelle

Beobachtete Werte (in mm) und simulierte Änderungen der mittleren Niederschlagssummen (in %)

	1971-2000		2021-2050			
	Jahreswerte		RCP4.5 (Klimaschutz-Szenario)		RCP8.5 (business-as-usual)	
bis	1.554		+7,9		+12,1	
Mittel	1.499		+3,2		+5,8	
von	1.444		-0,8		+2,0	
	Winter	Sommer	Winter	Sommer	Winter	Sommer
bis	308	582	+19,0	+8,3	+23,5	+12,9
Mittel	283	550	+10,7	-0,4	+14,1	+3,0
von	258	518	-3,5	-9,2	-4,4	-6,5

ZAMG: OEKS15 Projektionen

ZAMG als Projektpartner

 Hat 27 Klimamodelle für Österreich aufbereitet

(1x1 km², RCP4.5 und RCP 8.5 aus EURO-Cordex CMIP5)

- Zeitraum 1971-2100
- Hat WaterstressAT
 4 Klimamodelle für
 die weitere Verwendung empfohlen
 und Daten bereitgestellt:

Community Water Model (CWatM)

Das hydrologische Model CWatM

- Für Salzach und Saalach (Auflösung: 1x1 km²)
- ist open-source in Python
- Beinhaltet die wichtigsten hydrologischen Prozesse

http://www.iiasa.ac.at/cwatmhttps://cwatm.iiasa.ac.at/

Daten im Hydrologischen Modell (eine Auswahl)

Fluss Netzwerk

Abgeleitet vom Digitalen Gelände Model EU-DEM 100m

Aufskaliert auf 1km

Schnee

Digital Elevation Model **EU-DEM**

Boden

Saturated hydraulic conductivity eBOD.at

Grundwasser

Baseflow recession coefficient Glympse 2.0

Daten im Hydrologischen Modell (eine Auswahl)

Als wichtigster Datensatz Meteorologische Daten von der ZAMG

- Beobachteter Niederschlag und Temperatur als 1x1km, t\u00e4glicher Datensatz: Spartacus 1971-2016
- Zukünftige Projektion als 1x1km, täglicher Datensatz: OEKS15 1971-2100

Kalibration Resultate - Abfluss

Abfluss

Vergleich:

Hydrologisches Modell CWatM Mit gemessenem Abfluss https://ehyd.gv.at/

https://waterstressatpinzgau.herokuapp.com

WaterstressAT Pinzgau Dashboard

Salzach und Saalach Einzugsgebiet

Zeitreihe: Lat: 47.28 Lon: 12.85 Zeitraum: 1990-2010 zu 1990-2020

Standort: Lat: 47.28 Lon: 12.85

Höhe: 784.0 m

Bruck an der Großglocknerstraße / Zell am See

GCM: MOHC85

Vergleich: 1990-2020 zu: 1990-2020 Durchschnitt: 61.51 m³s zu: 61.51 m³/s MNQ: 16.95 m³s zu: 16.57 m³s Dauerlinie 5%:19.34 m³s zu: 19.61 m³s Ø Tage Dauerlinie 5%: 30 Tage zu: 96 Tage Max. Tage Dauerlinie 5%: 27 Tage zu: 133 Tage

S I I A S A

https://waterstressatpinzgau.herokuapp.com

Linke Seite

Salzach und Saalach Flußsystem

Für jede 1x1 km² Zelle:

- Ort
- Koordinaten
- Höhe
- mittlere Durchfluss*

auf der rechten Seite Zeitreihe für die jeweilige Zelle**

^{*} Modelergebnis CWatM 1990-2020 mit ZAMG Spartacus Meteodaten

^{**} bei weniger als ØQ =0.2 m³/s keine Ganglinien Anzeige rechts

S I I A S A

https://waterstressatpinzgau.herokuapp.com

Auswahl Klimamodel Auswahl Diagramm

Auswahl Zeitrahmen 2020: Nur 1990-2020

2050: 1990-2020 und 2020-2050

Zeitreihe: Lat: 47.28 Lon: 12.85 Zeitraum: 1990-2010 zu 1990-2020

Diagramm
Hier: Zeitreihe

GCM: MOHC85

Vergleich: 1990-2020 zu: 1990-2020 Durchschnitt: 61.51 m³s zu: 61.51 m³/s MNQ: 16.95 m³s zu: 16.57 m³s

Dauerlinie 5%:19.34 m³s zu: 19.61 m³s Ø Tage Dauerlinie 5%: 30 Tage zu: 96 Tage Max. Tage Dauerlinie 5%: 27 Tage zu: 133 Tage Statistik

Rechte Seite

Zeitreihendiagramme:

- Zeitreihe,
- Jahresgang
- Dauerlinie

Für 3 Klimamodelle

Vergleich 1990-2020 zu 2020-2050

https://waterstressatpinzgau.herokuapp.com

https://waterstressatpinzgau.herokuapp.com

Dauerlinie: Lat: 47.28 Lon: 12.85 Zeitraum: 1990-2010 zu 2020-2050

GCM: MOHC85

Vergleich: 1990-2020 zu: 1990-2020

Durchschnitt: 61.51 m³s zu: 60.82 m³/s

MNQ: 16.95 m³s zu: 16.57 m³s

Dauerlinie 5%:19.34 m3s zu: 19.61 m3s

Statistik

- Berechnung Dauerlinie
- Geeignete Indikatoren für Bemessung, Wirtschaftlichkeit

Kleinwasserkraftwerke Pinzgau

Interview Veronica Karabaczek

- Kleinwasserkraftwerk Dientenbach
- Staudachbach

Kleinwasserkraftwerk Dientenbach https://www.bundesforste.at

Kleinwasserkraftwerke Pinzgau

- Kleinwasserkraftwerk Dientenbach Zeitreihe: Lat: 47.31 Lon: 13.03 Zeitraum: 1990-2010 zu 1990-2010 MOHC85 1990-3010 - MOHC85 1990-2010 Jahresgang: Lat: 47,31 Lon: 13.03 Zeitraum: 1990-2010 zu. 1990-2010 MOHORS AND 1990-2010 Standart: Lat: 67.31 Lax: 13.03 Hölve: 823.0 Taxenbach / Zell am See Kleinwasserkraftwerk Dientenbach

https://www.bundesforste.at

Standorf: Lat: 47.33 corr: 13.03 Höhe: 823.0 Taxenbach / Zell am See

Kleinwasserkraftwerke Pinzgau

- Staudachbach

MOHC85 1990-2

MIDHC85 1990-

Zeitreihe: Lat: 47.27 Lon: 12.86 Zeitraum: 1990-2010 zu 1990-2010

Kleinwasserkraftwerke Pinzgau

- Staudachbach

Tage

GCM

MOHC85

Vielen Dank

Für weitere Information:

www.iiasa.ac.at