Lecture 39

The Spectral Density: Part 1

Arnab Hazra

Periodic process (recap)

- We first define a cycle as one complete period of a sine or cosine function defined over a unit time interval.
- We consider the periodic process

$$X_t = A\cos(2\pi\omega_0 t + \phi)$$

for $t = 0, \pm 1, \pm 2, ...$, where ω_0 is a fixed frequency index.

- Here A determines the height or amplitude of the function and ϕ , called the phase, determining the start point of the cosine function.
- We can introduce random variation in this time series by allowing the amplitude and phase to vary randomly.

Periodic process (contd., recap)

ightharpoonup For purposes of data analysis, it is easier to write X_t as

$$X_t = U_1 \cos(2\pi\omega_0 t) + U_2 \sin(2\pi\omega_0 t),$$

where $U_1 = A\cos(\phi)$ and $U_2 = -A\sin(\phi)$.

- ▶ We then often take U_1 and U_2 to be normally distributed.
- ▶ The amplitude is $A = \sqrt{U_1^2 + U_2^2}$ and the phase is $\phi = \tan^{-1}(-U_2/U_1)$.
- ► Here, A and ϕ are independent random variables if U_1 and U_2 are independent standard normal random variables.
- ▶ Then $A^2 \sim \chi_2^2$ and $\phi \sim \text{Unif}(-\pi, \pi)$.
- Straightforward Jacobian calculations show that the reverse is also true.

Moments of X_t

If we assume that U_1 and U_2 are uncorrelated random variables with mean 0 and variance σ^2 , then

- ightharpoonup Mean $E(X_t)=0$.
- Covariance

$$\operatorname{Cov}(X_{t+h}, X_t) = \sigma^2 \cos(2\pi\omega_0 h) = \frac{\sigma^2}{2} \exp[\iota \ 2\pi\omega_0 h] + \frac{\sigma^2}{2} \exp[-\iota \ 2\pi\omega_0 h].$$

- Note that we can we write $Cov(X_{t+h}, X_t)$ as $\int_{-1/2}^{1/2} \exp(\iota 2\pi\omega h) dF(\omega)$.
- Here $F(\cdot)$ is the function defined by $F(\omega) = 0$ if $\omega < -\omega_0$, $F(\omega) = \frac{\sigma^2}{2}$ if $-\omega_0 \le \omega < \omega_0$, and $F(\omega) = \sigma^2$ if $\omega \ge \omega_0$.
- ▶ Basically two jumps of $\sigma^2/2$ at $-\omega_0$ and ω_0 .

Interpretation of $F(\cdot)$

- ► The function $F(\cdot)$ behaves like a cumulative distribution function for a discrete random variable, except that $F(\infty) = \sigma^2 = \text{Var}(X_t)$ instead of one.
- ▶ In fact, $F(\cdot)$ is a cumulative distribution function, not of probabilities, but rather of variances, with $F(\infty)$ being the total variance of the process X_t .
- ▶ Hence, we term $F(\cdot)$ the spectral distribution function.
- A representation of $X_t = U_1 \cos(2\pi\omega_0 t) + U_2 \sin(2\pi\omega_0 t)$ always exists for a stationary process.

Spectral Representation of an Autocovariance Function

- ▶ If $\{X_t\}$ is stationary with autocovariance $\gamma(h) = \text{Cov}(X_{t+h}, X_t)$, there exists a unique monotonically increasing function $F(\cdot)$, called the spectral CDF.
- $ightharpoonup F(-\infty)=F(-1/2^-)=0$, and $F(\infty)=F(1/2)=\gamma(0)$ such that

$$\gamma(h) = \int_{-1/2}^{1/2} \exp[\iota \ 2\pi\omega h] dF(\omega).$$

- An important situation we use repeatedly is the case when the autocovariance function is absolutely summable.
- In that case the spectral distribution function is absolutely continuous with $dF(\omega) = f(\omega)d\omega$, and we can talk about spectral density.

Spectral density

If the autocovariance function $\gamma(h)$ of a stationary process satisfies $\sum_{h=0}^{\infty} |\gamma(h)| < \infty$,

Then it has the representation

$$\gamma(h) = \int_{-1/2}^{1/2} \exp(\iota \ 2\pi\omega h) f(\omega) d\omega, \quad h = 0, \pm 1, \pm 2, \dots$$

Then it can be written as the inverse transform of the spectral density

$$f(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) \exp(-\iota 2\pi\omega h), -1/2 \le \omega \le 1/2.$$

Spectral density: properties

- ▶ This spectral density is the analogue of the probability density function.
- ▶ The fact that $\gamma(h)$ is non-negative definite ensures $f(\omega) \ge 0$ for all ω .
- It follows immediately that $f(\omega) = f(-\omega)$ verifying the spectral density is an even function.
- ▶ Because of the evenness, we will typically only plot $f(\omega)$ for $0 \le \omega \le 1/2$.
- ▶ In addition, putting h = 0 yields $\gamma(0) = \text{Var}(X_t) = \int_{-1/2}^{1/2} f(\omega) d\omega$.
- ► This expresses the total variance as the integrated spectral density over all of the frequencies.

Example: White noise

- ▶ The autocovariance function is $\gamma_W(h) = \sigma_W^2$ for h = 0, and zero, otherwise.
- ▶ Hence, $f_W(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) \exp(-\iota 2\pi\omega h) = \sigma_W^2$, $-1/2 \le \omega \le 1/2$.
- Hence the process contains equal power at all frequencies.
- ► This property is seen in the realization, which seems to contain all different frequencies in a roughly equal mix.
- ▶ In fact, the name white noise comes from the analogy to white light, which contains all frequencies in the color spectrum at the same level of intensity.

Thank you!