

Central Vehicle Computer: Achieving freedom from interference by temporal software separation

ITK Engineering GmbH

Realizing customers' vision

Agenda

- Central Vehicle Computers Key Requirements
- Adaptive AUTOSAR A Solution Provider for Temporal Software Separation ?
- Mastering Parallel Execution of Code
- Conclusion

Key Requirements

Logical centralization instead of ECU patchwork

- Today's patchwork approach: adding new ECUs for new features is no longer sustainable
 - Distribution of highly interconnected functions on multiple ECUs is more complex than central integration

Logical centralization & EE architecture drives SW architecture.

Centralized EE architecture

Extensive software separation / isolation is key requirement

- Central vehicle computers as SW integration platform host many heterogenous applications in terms of
 - Real-time
 - Safety / security properties
 - Provided by cross-domain SW suppliers
- Fault detection via e.g. a watchdog is not sufficient as availability of functions is an increasing demand of future fault tolerant HAF systems

Key Requirement

Extensive software separation and isolation capabilities to achieve freedom from interference

Adaptive AUTOSAR

A Solution Provider for Temporal Software Separation?

Adaptive AUTOSAR tackles new market requirements

17/08/18

A solution provider for temporal software separation?

- 2 functional clusters are related to scheduling & execution of applications
 - Operating system (conform to POSIX PSE51)
 - Execution management

A solution provider for temporal software separation?

Operating System Interface Specification

"The Adaptive Platform Operating System shall support the following scheduling policies defined in the IEEE 1003.1 POSIX standard"

- First in First Out (FiFo)
- Round Robing (RR)
- Other → This is no real-time scheduling policy

Remark: «Since the above mentioned default scheduling policies may not guarantee proper execution for all real-time scenarios,...»

Wrap-Up: FiFo / Round Robin scheduling

12

17/08/18 © ITK Engineering GmbH — public —

Initial Setup

- Demo System with 2 threads
 - Thread A has a high criticality (e.g. ASIL D)
 - Thread B has a low criticality (e.g. ASIL A)
- Rate-Monotonic priority assignment

Initial scheduling using FiFo / Round Robin

- Thread A
 - Always preempts Thread B
 - Always meets its deadline
- Thread B
 - Could be preempted by Thread A

Thread A
Period: 7
Calculation Time: 2
Relative Deadline: 3

Thread B
Period: 9

Calculation Time: 2

Relative Deadline: 9

Adding a third thread

- Thread C
 - QM criticality e.g. HMI Data Provider
 - Shortest period
 - Highest priority

Thread A
Period: 7
Calculation Time: 2
Relative Deadline: 3

Thread B
Period: 9

Calculation Time: 2

Relative Deadline: 9

Period: 3
Calculation Time: 1
Relative Deadline: 3

Incorrect execution of thread C leads to criticality inversion

- Thread C
 - Thread C is at fault and still meets its deadline
 - Thread A is not at fault and misses its deadline
 - → criticality inversion → no temporal isolation!

Thread A
Period: 7
Calculation Time: 2
Relative Deadline: 3

Thread B
Period: 9
Calculation Time: 2
Relative Deadline: 9

Period: 3
Calculation Time: 1
Relative Deadline: 3

Adaptive AUTOSAR != Standard Solution for Freedom from Interference

POSIX scheduling policies may not guarantee proper execution for all real-time scenarios.

- public -© ITK Engineering GmbH 17 17/08/18

Partition the system by criticality

Approach

 Partition the system based on the criticality and introduce a second stage scheduler

17/08/18 © ITK Engineering GmbH – public – 19

Partition the system by criticality

Approach

 Partition the system based on the criticality and introduce a second stage scheduler

17/08/18 © ITK Engineering GmbH – public – 20

Intra-partition parallelism – symmetrical multi-processing

- Partitions are activated on each core
- Inside the partition threads may be executed in parallel on different cores

Intra-partition parallelism – symmetrical multi-processing

- Partitions are activated on each core
- Inside the partition threads may be executed in parallel on different cores
- Problematic:
 - Dependencies within a partition lead to available free-time which could not be used by other threads living in other partitions

17/08/18 © ITK Engineering GmbH – public – 22

Adaptive Partitioning

- Instead of assigning static timeslots to partitions, individual budgets which are replenished periodically are defined
- Scheduler runs the thread with the highest priority while the threads partition still has budget available.

17/08/18 © ITK Engineering GmbH – public – 23

Available CPU capacity is used whenever possible

1-A, 2-A and 3-A are ready to run

Available capacity is dynamically assigned to 3-A

1-A and 3-A would be scheduled according to the priorities. As partition 3 does not have any budget, 2-A is scheduled instead of 3-A.

Adaptive partitioning – real target evaluation

100ms Timeframe

Four high frequency threads bring down the system

- No freedom from interference!
- System without adaptive partitioning is unable to provide its functionality

Adaptive partitioning ensures freedom from interference

17/08/18

Adaptive partitioning is not the silver bullet

Adaptive partitioning...

- ... guarantees that every partition gets its assigned budget within a defined time window
- ... does not directly influence the scheduling behavior within a partition but may introduce additional runtime delays
- 1:1 mapping of adaptive applications to partitions is not feasible
- Suitable scheduling algorithm for systems with aperiodic threads assigned to partitions can be based on the slack time

Conclusion

Conclusion

Extensive software separation and isolation is key requirement for central vehicle computers

POSIX scheduling policies may not guarantee proper execution for all real-time scenarios

Dynamic system partitioning allows borrowing available free time

Dynamic system partitioning is not silver bullet

info@itk-engineering.com +49 (0)7272 7703-0

www.itk-engineering.com www.itk-career.com

