Predictive modeling for cancer prognosis

Gene expression data

mRNA Samples

		sample1	sample2	sample3	sample4	sample5	
Gene	1	0.46	0.30	0.80	1.51	0.90	
	2	-0.10	0.49	0.24	0.06	0.46	
	3	0.15	0.74	0.04	0.10	0.20	
	4	-0.45	-1.03	-0.79	-0.56	-0.32	
	5	-0.06	1.06	1.35	1.09	-1.09	
	'						

gene-expression level or ratio for gene i in mRNA sample j

Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring

T. R. Golub, 1,2*† D. K. Slonim, 1† P. Tamayo, 1 C. Huard, 1 M. Gaasenbeek, 1 J. P. Mesirov, 1 H. Coller, 1 M. L. Loh, 2 J. R. Downing, 3 M. A. Caligiuri, 4 C. D. Bloomfield, 4 E. S. Lander 1,5*

Golub, et al., Science 286:531-537 (1999).

Differential (supervised) expression analysis

- Two (or more) classes of sample
 - Unpaired or paired
 - Perhaps defined from a clustering analysis
- Continuous variable
- Survival outcome (censored data)
- What genes are significantly different between classes
 - Or correlated with a variable
 - Or associated with outcome

Basic Data Analysis

- Differential expression analysis (what differs between 2 or more sample types)
 - Fold change (relative increase or decrease in intensity for each gene)
 - T-test type statistics
 - P-values, multiple hypothesis testing, false discovery rates
- Clustering samples and/or genes by similar patterns across the dataset

What does difference mean?

The "p-value"

- p-value = P(Type I Error) = P(Reject Ho | Ho is true)
- This is also called the "statistical significance."
- It represents an acceptable probability of making a mistake (i.e. false positive)!
- A p-value of 0.05 or less customarily treated as an "acceptable" error level (this is rather arbitrary)
- Also important to consider type II error (false negative)
- Don't be a p-value slave or p-hacker!
 - https://med.stanford.edu/news/all-news/2016/03/misleading-pvalues-showing-up-more-often-in-journals.html
 - http://www.nature.com/articles/nmeth.4120

Type I and Type II Errors for Single Hypothesis Test

_	Actual Situation "Truth"				
Decision	H₀ True	H _o False			
Do Not Reject H _o	Correct Decision 1 - α	Incorrect Decision Type II Error β			
Rejct H _o	Incorrect Decision Type I Error α	Correct Decision 1 - β			

 $\alpha = P(Type\ I\ Error)$ $\beta = P(Type\ II\ Error)$

HO is the null hypothesis e.g. that there is no difference between two groups

Multiple hypothesis testing

- Testing 1000's of genes at once
- Normal p-value not sufficient
 - Many results will be false positives
- Modifications that account for this:
 - False discovery rate
 - Number of positive results that are likely to be wrong

Why Multiple Testing Matters

- Genomics = Lots of Data = Lots of Hypothesis Tests
- A typical gene expression expression might result in performing 20,000 separate hypothesis tests.
- If we use a standard p-value cut-off of 0.05, we would expect **1000** genes to be deemed "significant" by chance.

Identifying Differential Expression

- Compare treatment to the control
 - The fold approach
 - The t-test (unpaired or paired)
 - Variations of the t-test
 - SAM: significance analysis of microarrays
- Compare several treatments
 - ANOVA: analysis of variance
 - MAANOVA: http://www.jax.org/staff/churchill/labsite/software/anova/index.html

Fold Change

- Measure ratios of gene expression levels.
- Ratio = T_i/C_i. Ratio of measured treatment intensity to control intensity for the ith gene
- The log₂ ratio treats up and down regulated genes equally
 - e.g. when looking for genes with more than 2 fold variation in expression

The Fold Approach

- In northern blot analysis, a 2-fold change can be seen with bare eyes
- Thus biologists tend to use 2-fold as the threshold of differential expression

- If x1 and x2 are in log2 space:
 - Difference in mean $(x_1, x_2) > 1$
 - Difference in mean $(x_1, x_2) < -1$

Two-fold up-regulation

- Problems with this approach:
 - Only identifies most changed genes.
 - Also identifies noise and highly variable genes.
 - Ratio is unstable when the denominator is small.

No estimate of significance of the results

7/17/18

14

Ratios are unstable

Initial measurements:

$$30/60 = 0.5$$

 $500/1000 = 0.5$

Add random noise (+15 numerator and -15 denominator):

```
45/45 = 1.0
```

515/985 = 0.52

What does difference mean?

- a statistical difference is a function of the difference between means relative to the variability
- a small difference between means with large variability could be due to chance
- like a signal-to-noise ratio

So we estimate

noise difference between group means
$$\frac{\overline{X_T - X_C}}{\overline{X_T - X_C}}$$

The Student's t-test

- We make use of the T-distribution distribution in the two-sample Students t-test.
- This test is used to test whether two samples come from distributions with the same means.
- The samples are assumed to come from Gaussian (normal) distributions.
- The two samples must have similar dispersions

Student's t-distribution

- is mound shaped
- is symmetrical about zero
- is more widely dispersed than the standard normal distribution
- it's actual shape is dependent on the sample size

 different t distributions are identified by their degrees of freedom (df), where df = n-1

Permutation test

Significance analysis of microarrays

- "Significance analysis of microarrays applied to the ionizing radiation response" Tusher, Tibshirani, Chu PNAS 2001
- T-test combined with permutation testing to generate false discovery rate
- Convenient Excel and R packages:
 - https://statweb.stanford.edu/~tibs/software.html
 - (or through Bioconductor)

Significance analysis of microarrays applied to the ionizing radiation response

- Lymphoblastoid cell lines grown with (n=4) or without irradiation
 - Small sample size! Generally need more
- 6800 genes
 - Old technology
- Test statistic for each gene

$$d(i) = \frac{\bar{x}_{\mathrm{I}}(i) - \bar{x}_{\mathrm{U}}(i)}{s(i) + s_0}$$

$$s(i) = \sqrt{a \left\{ \sum_{m} [x_{m}(i) - \bar{x}_{I}(i)]^{2} + \sum_{n} [x_{n}(i) - \bar{x}_{U}(i)]^{2} \right\}}$$

SAM procedure

- Rank genes by d(i)
- Do the same after permuting sample labels -> dE(i)
 - In this case there are only 36 balanced permutations
 - Generally want thousands (need more than you think)
- Identify genes for which d(i) is greater than expected by some amount Δ
- At a specified threshold Δ , the false discovery rate is # of genes in the permutations that appear significant
- Choose Δ according to the FDR you want
- Omitting s0 -> higher FDRs...

Regression

- Linear (simple or multiple)
- Logistic regression (also called logit)
- Failure time (survival)
- Meta-analysis
- Nonlinear regression
- Feature selection
- Sparse regression

Linear regression

•
$$Y_i = \beta 0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \epsilon$$

- Minimize objective function (sum of squares)
- Linear refers to the coefficients the regression could be a function of e.g. square of independent variables

Pitfall of linear regression

12 -

 x_3

12

Anscombe quartet

 X_4

Linear modeling in R

- lm!
- Two vectors x,y
 - Im(x ~ y)
- Two variables in a data frame
 - Im(var1 ~ var2, data=dataframe)
- Residuals = deviation of predicted from observed
- Leverage = ability of an observation to move the regression line

Logistic regression

- Continuous independent variables
- Discrete dependent variable

Survival (Cox) regression

- Time to event (death, relapse, metastasis...)
- Censored patients drop out of followup

Variable	Patient1	Patient2	Patient3	Patient4	Patient5	Patient6	Patient7	•••
Time	12	3	27	8	35	14	22	
Status	1	1	0	1	0	0	1	
Gene1	1.45	0.15		-0.59		-0.83	-0.26	
Gene2	0.94	-0.35	1.23	2.66	-0.23	2.09	-0.13	
Gene3	0.91	-0.32		-0.82		0.86	0.32	

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$
$$h(t, \mathbf{X}) = h_0(t) \times e^{\sum_{i=1}^{p} \beta_i X_i}$$

 X_i = expression of gene i at sample collection

Expression ~ survival

Convenient to use the log-hazard

Survival (Cox) regression

Often evaluated with Kaplan-Meier analysis

KM Plot(s) for gene **FOXM1** in *Brain cancer*Neuroblastoma

PubMed: Westermann et al. (opens in new browser window/tab)
Accession: E-TABM-38 (opens in new browser window/tab)
No. patients (OS/DSS): 251

KM Plot(s) for gene IL6R in Lung cancer ADENO

PubMed: Shedden et al. (opens in new browser window/tab)

Accession: ca00182

No. patients (OS/DSS): 255

Feature selection

- Situation:
 - Simple outcome (class, treatment response, survival...0
 - 1000s of potential predictors
 - Do not want all of them in model:
 - Overfitting
 - Uninterpretable
- Sparse regression
 - Find a subset of predictors
 - Lasso & elastic net are common approaches

Lasso/elastic net

- LASSO (least absolute shrinkage and selection operator)
- Idea behind both is that the regression is subject to constraints on coefficients ("budget")

$$\min_{eta_0,eta}\left\{rac{1}{N}\sum_{i=1}^N(y_i-eta_0-x_i^Teta)^2
ight\} ext{ subject to } \sum_{j=1}^p|eta_j|\leq t.$$

$$\hat{eta} = \operatorname*{argmin}_{eta} (\|y - Xeta\|^2 + \lambda_2 \|eta\|^2 + \lambda_1 \|eta\|_1)$$

glmnet

- Implements Lasso and elastic net for various models including
 - Continuous outcome
 - Logistic
 - Survival
 - Surv(Time, Status)
- Similar format to samr, Im etc
- Uses nfold-internal cross validation to determine the penalization parameters

Internal cross-validation

- Want to avoid over-fitting
- Split the training data into pieces (e.g. 10)
- Learn model on 90% of data and test it on left-out 10%
- Repeat, leaving out each 10%
- Take parameters which minimize the average error on left-out part
- Run cross-validation multiple times
- Refit model with selected variables

Thursday exercise

- Predict groups (long term vs short term survivors) from cancer data
- Estimate survival function
- Plot survival curves (Kaplan-Meier)

Please go back and look at some of the genes that came up in Module