華中科技大學

数字电路与逻辑设计 实验报告

业: 计算机科学与技术 专 班 级: CS2106 班 学号: U202115512 姓 名: 洪炜豪 话: 电 15259722318 邮 件: 1294830296@qq.com 完成日期: 2022. 12. 09

2022

实验报告及电路设计评分细则

评 分 项 目	满分	得分		备注	
文档格式(段落、行间					实验报告
距、缩进、图表、编号	15				总分
等)					
设计方案与实验过程	60				
遇到的问题及处理	10				
设计方案存在的不足	5				
心得(含思政)	5				
意见和建议	5				
电路(头歌)	100				
教师签名			日	期	

备注:实验过程将从电路的复杂度、是否考虑竞争和险象、电路的美观等方面进行评分。

实验课程总分=电路(头歌)*0.4+实验报告*0.6

目 录

1	实验	佥概述	1
	1.1	实验名称	
	1.2	实验目的	1
	1.3	实验环境	1
	1.4	实验内容	1
	1.5	实验要求	2
2	设ì	十方案与实验过程	3
	2. 1	方案设计	3
	2. 2	实验过程1	.13
3	设ì	十总结与心得	37
	3. 1	实验总结	37
	3. 1. 1	遇到的问题及处理	37
	3. 1. 2	2设计方案存在的不足	37
	3. 2	实验心得	38
	3. 3	意见与建议	.38

1 实验概述

1.1 实验名称

运动码表系统设计。

1.2 实验目的

实验将提供一个完整的数字逻辑实验包,从真值表方式构建7段数码管驱动电路, 到逻辑表达式方式构建四位比较器,多路选择器,利用同步时序逻辑构建BCD计数器, 从简单的组合逻辑电路到复杂时序逻辑电路,最终集成实现为运动码表系统。

实验由简到难,层次递进,从器件到部件,从部件到系统,通过本实验的设计、仿真、验证3个训练过程使同学们掌握小型数字电路系统的设计、仿真、调试方法以及电路模块封装的方法。

1.3 实验环境

软件: Logisim2.15.0.2 软件一套。

平台: https://www.educoder.net

1.4 实验内容

设计一个运动码表系统,具体内容及要求如下:

输入: 4个按钮,分别为 Start、Stop、Store 和 Reset。

输出: 4个7段数码管显示数字,分别显示秒和百分秒。

具体功能:

- (1) 当按下 Start 时, 计时器清零, 重新开始计时;
- (2) 当按下 Stop 时, 计时器停止计时, 显示计时数据;
- (3) 当按下 Store 时,若当前计时数据小于系统记录,则更新系统记录,并显示 当前计时数据:否则不更新系统记录,但显示系统记录。
 - (4) 当按下 Reset 时,复位,计时=0.00,系统记录=99.99。

1.5 实验要求

- (1) 根据给定的实验包,将运动码表系统切分为一个个实验单元;
- (2) 对每一个实验单元,按要求设计电路并使用 Logisim 软件进行虚拟仿真;
- (3) 设计好的电路在 educoder 平台上提交并进行评测,直到通过全部关卡。

2 设计方案与实验过程

2.1 方案设计

2.1.1 系统流程:

- ①当按下 Start 时, 计时器清零, 重新开始计时;
- ②当按下 Stop 时, 计时器停止计时, 显示计时数据;
- ③当按下 Store 时,若当前计时数据小于系统记录,则更新系统记录,并显示当前计时数据,否则不更新系统记录,但显示系统记录。
- ④当按下 Reset 时, 复位, 计时=0.00, 系统记录=99.99。

2.1.2 模块划分框图:

功能部件:

	功能部件	控制信号	输入	输出
1	2路选择器	Sel		
2	无符号比较器			
3	并行加载寄存器SD	SD-En	CLK, Din(16位)	Q(16位)
4	时间计数器TM	TM-En, TM-Rst	CLK	时间计数输出16位
5	数码管显示DP		Din(16位)	DisplayInfo(32位)

数据通路构建:

功能部件	数据输入	数据来源	备注
码表计数器TM			
16位寄存器SD	CLK, Din (16位)	99.99或当前记录	増加2路选择器SD-Sel
数码管显示驱动电路DP	Din (16位)	TM.Q或SD.Q	增加2路选择器DP-Sel
16位无符号比较器		当前计时和SD.Q	NewRecord

2.1.3 模块设计:

一、7段数码管驱动电路设计:

1、需求:驱动七段数码管显示数字 0-9

2、输入: 4位 BCD 码输入

3、输出: 7位数码管驱动信号

4、引脚:

5、设计:利用组合逻辑电路分析功能,填写真值表,自动生成电路。

ХЗ	X2	X1	X0	Seg_1	Seg_2	Seg_3	Seg_4	Seg_5	Seg_6	Seg_7
0	0	0	0	0	1	1	1	1	1	1
0	0	0	1	0	0	0	1	0	0	1
0	0	1	0	1	0	1	1	1	1	0
0	0	1	1	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	0	0	1
0	1	0	1	1	1	1	0	0	1	1
0	1	1	0	1	1	1	0	1	1	1
0	1	1	1	0	0	1	1	0	0	1
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	0	1	1	1	1	1	1
1	0	1	1	0	0	0	1	0	0	1
1	1	0	0	1	0	1	1	1	1	0
1	1	0	1	1	0	1	1	0	1	1
1	1	1	0	1	1	0	1	0	0	1
1	1	1	1	1	1	1	0	0	1	1

二、16位2路选择器设计

- 1、需求:根据选择控制信号,将相应的输入进行输出,其中 Out=(Sel==0)?X:Y;
- 2、输入: 16 位输入 X, Y; 选择控制信号 Sel
- 3、输出: 16 位输出 Out
- 4、引脚:

5、设计:

(1)设计1位的2路选择器:利用组合逻辑电路分析功能,填写真值表,自动生成电路。

(2) 利用封装好 1 位的 2 路选择器构建 16 位的 2 路选择器。

三、16位无符号比较器

- 1、需求:对两个16位的无符号数进行比较。
- 2、输入: 16 位输入 X, Y;
- 3、输出: 大于(1位),等于(1位),小于(1位)
- 4、引脚:

5、设计:

(1) 构建 4 位无符号比较器:利用组合逻辑电路分析功能,通过填写表达式自动生成电路。

填写表达式时,遵循高位原则。先比较高位,若高位相同,再比较低位。

- 注:图中所填写的表达式并非输入的原始表达式,为 logisim 自动转换后的结果。
- (2)利用封装好的 4 位无符号比较器构建 16 位无符号比较器:整体思路与 4 位无符号比较器的构建相似,仍为高位优先原则,从最高的四位开始比较,逐渐往下。

四、码表显示驱动设计

- 1、需求:利用4个并行的7段数码管显示电路级联构建4位十进制显示驱动电路。
- 2、输入: 16 位 BCD 码
- 3、输出: 4个7段数码管的控制信号(32位)

S4T, S4B, S3T, S3B

S2T, S2B, S1T, S1B

4、引脚:

5、设计:

将四个7段数码管显示并联,其中小数点用四个常量单独控制:亮点为1,暗点为0。

五、16位并行加载寄存器

- 1、需求: 当 En 为 1 时,输入数据,当 En 为 0 时,保持上次输入的数据。En=1、Clock ↑ 时,Q=Din
- 2、输入: 16 位输入 Din, 使能信号 En,
- 3、输出: 16 位输出 Q
- 4、引脚:

5、设计:

- (1) 构建 4 位并行加载寄存器:利用四个 D 触发器实现钟控寄存。
- (2)利用封装好的4位并行加载寄存器构建16位并行加载寄存器:将4个位并行加载寄存器并行连接即可。

六、码表计数器

- 1、需求: 利用 4 个 BCD 计数器显示码表计数,分别对应 10 秒,1 秒,1/10 秒,1/100 秒
- 2、输入: 时钟信号 Clk, 使能 En, 异步复位 Rst
- 3、输出: 16 位输出 Q
- 4、功能:包含4个BCD码计数器,低位计数器从9到0时,高位计数器加1
- 5、引脚:

6、设计:

(1) 构建 4 位 BCD 码计数器: 计数器由状态转换, 触发器模块, 输出函数组成。

①状态转换部分:在Excel模板中构建真值表,获取对应的逻辑表达式。

	当	前状	态(现	态)		下一状态 (次态)									
S3	S2	S1	S0	现态 10进制	in1	in2	in3	in4	in5		次态 10进制	N3	N2	N1	NO
0	0	0	0	0							1	0	0	0	1
0	0	0	1	1					v		2	0	0	1	0
0	0	1	0	2							3	0	0	1	1
0	0	1	1	3							4	0	1	0	0
0	1	0	0	4							5	0	1	0	1
0	1	0	1	5							6	0	1	1	0
0	1	1	0	6							7	0	1	1	1
0	1	1	1	7							8	1	0	0	0
1	0	0	0	8							9	1	0	0	1
1	0	0	1	9							0	0	0	0	0

②输出函数部分: 当计数器计数至 9->0 时, 产生进位输出

③触发器模块:

输入: CLK, En, Rst, 次态

输出: 现态(Q)

(2)利用封装好的 4 位 BCD 码计数器构建码表计数器:利用 4 个 4 位的 BCD 码计数器级联而成,每个计数器在 0-9 之间变化,当最低位计数器从 9 变化为 0 时,高位计数器加 1;当低两位计数器变化到 99 时,下一个时钟到来时,高一位的计数器加 1;当低三位计数器变化到 9.99 时,下一个时钟到来时,最高一位的计数器加 1。

七、码表控制器

1、需求:构建运动码表的控制单元

2、输入: Start, Stop, Reset, Store, NewRecord

3、输出: TM-EN, TM-RST, SD-EN, SD-SEL, DP-SEL

4、引脚:

5、设计:

(1) 码表控制器状态机设计

状态图:

在 Excel 模板中构建真值表, 获取对应的逻辑表达式。

	当	前状态	态(现	态)			下一状态 (次态)								
S3	S2	S1	1 SO 現态 10进制 start stop store reset NewRecord							次态 10进制	N3	N2	N1	NO	
				•				1			0	0	0	0	0
0	0	0	0	0				0			1	0	0	0	1
0	0	0	1	1	1			0			2	0	0	1	0
0	0	0	1	1	0			0			1	0	0	0	1
0	0	1	0	2		1		0			3	0	0	1	1
0	0	1	0	2		0		0			2	0	0	1	0
0	0	1	1	3	1	100		0			1	0	0	0	1
0	0	1	1	3	0		1	0	0		5	0	1	0	1
0	0	1	1	3	0		1	0	1		4	0	1	0	0
0	0	1	1	3	0		0	0			3	0	0	1	1
0	1	0	0	4				0			5	0	1	0	1
0	1	0	1	5	1			0			1	0	0	0	1
0	1	0	1	5	0			0			5	0	1	0	1

(2) 码表控制器输出函数设计

真值表:

S3 S2 S1 S0 现态 10进制 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1	当前状态(现态)				[态]	输入信号							输出						
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S 3	S2	SI	S0	现态 10进制								SDse1	SDen	DPsel	TMen	TMreset		
	0	0	0	0	0									1	1		1		
0 0 1 0 2	0	()	0	1	1										1		1		
	0	0	1	0	2							T			1	1			
0 0 1 1 3	0	0	1	1	3										1				
0 1 0 0 4	0	1	0	0	4								1	1	1				
0 1 0 1 5	0	1	0	1	5								0	0	0	0	0		

(3) 把当前输入转换为状态,再把状态对应的控制信号输出

八、运动码表数据通路设计(系统集成)

- 1、需求: 从控制流角度连接控制单元和执行部件,构建数据通路
- 2、输入: 时钟脉冲 CLK, 在线评测开关 TestMode, 开始计时信号 start, 停止计时信号 stop, 存储计时记录信号 store, 计时复位信号 reset
- 3、输出: 计时成绩或者成绩记录 Time
- 4、引脚:

5、设计:

2.2 实验过程

2.2.1 7段数码管驱动电路

- 1、电路图
- (1) 内部结构电路图

(2) 封装电路图

2、测试

测试用例 1:输入:0000输出:数码管驱动信号,显示出 0

测试用例 2: 输入: 0100 输出: 数码管驱动信号,显示出 4

测试用例 3: 输入: 1100 输出: 数码管驱动信号,显示出 9

3、功能描述:

如测试样例 1、2, 当输入值(4 位 BCD 码)在 0~9 之间,十进制数字(输入)和七段数码管(输出)的对应关系如下图所示:

如测试样例 3, 当输入值(4 位 BCD 码)在 10~15 之间,不考虑数码管的输出值。

2.2.2 2 路选择器设计

- 1、电路图
- (1) 内部结构图:
 - ①1位2路选择器

②16位2路选择器

(2) 封装电路图:

2、测试

测试用例 1: 输入 X-a17f Y-ee22 Sel-0 输出: a17f

测试用例 2: 输入 X-a17f Y-ee22 Sel-1 输出: ee22

3、功能分析:根据选择控制信号 Sel,将相应的输入进行输出。若 Sel==0,输出 X;若 Sel==1,输出 Y

2.2.3 无符号比较器

- 1、电路图
- (1) 内部结构图
 - ① 4位无符号比较器

②16 位无符号比较器

(2) 封装电路图

2、测试图

测试用例 1:

输入 X-3039 Y-0934 输出: Great:1 Equal:0 Less:0

测试用例 2:

输入 X-3039 Y-d431 输出: Great:0 Equal:0 Less:1

测试用例 3:

输入 X-6410 Y-6410 输出: Great:0 Equal:1 Less:0

3、功能:

若 X>Y,则输出 Great

若 X==Y, 则输出 Equal

若 X<Y, 则输出 Less

2.2.4 并行加载寄存器

- 1、电路图
- (1) 内部结构图:

①四位寄存器

②十六位寄存器

(2) 封装电路图:

2、测试图

测试用例 1: 输入 Din-2cbb 使能端为 1 Clock ↑ 时 Q=2cbb

测试用例 2: 输入 Din-0479 使能端为 0 Clock 1 时 Q=2cbb 不变

3、功能: 当 En=1 且有时钟信号输入变化时(Clock ↑ 时)时,Q=Din; 否则 Q 的 值维持不变

2.2.5 码表计数器设计

- 1、电路图
- (1) 内部结构图:
- ①BCD 计数器输出函数

②BCD 计数器状态转换

③4位 BCD 计数器

④ 码表计数器

(2) 封装电路图

2、测试

测试用例 1: 现态 Q=0 使能端为 1 Clock ↑ 时 Q=1

4位BCD(1位十进制)计数器,输出Q在0-9之间循环计数,EN使能端;Rst异步复位;Cout=(Q==9)?1:0;

测试用例 2: 现态 Q=8 使能端为 1 Clock ↑ 时 Q=9 且进位端 Cout=1

测试用例 3: Rst=1 时 Q=0 Cout=0

3、功能: 当 En=1 且有时钟信号输入变化时 (Clock ↑ 时) 时, Q=(Q+1)mod9, 在 0-9 之间循环计数。当 Q=9 时, 进位 Cout=1, 其余情况为 0。

2.2.6 码表控制器设计

- 1、电路图
- (1) 内部结构图
 - ①码表控制器:

② 码表控制器状态转换:

③ 码表控制器输出函数:

(2) 封装电路图:

2、测试

测试控制码表输出函数:

测试用例 1: 输入 000 输出 SDsel=0 SDen=1 DPSel=1 TMen=0 TMreset=1 复位: 寄存器输出 9999 作为最好成绩,计时器设零,码表示零。

测试用例 2: 输入 001 输出 SDsel=0 SDen=0 DPSel=1 TMen=0 TMreset=1 清零: 计时器设零,码表示零。

测试用例 3: 输入 010 输出 SDsel=0 SDen=0 DPSel=1 TMen=1 TMreset=0 计时: 计时器工作,码表显示计数器数据。

2.2.8 码表显示驱动设计

1、电路图

(1) 内部结构图

(2) 封装电路图

2、测试

测试用例 1:

J表计数显示输出驱动,将16位BCD数据输出到四个7段数码管,输出为4个数码管的控制信息,共32位。

测试用例 2:

3、功能:码表计数显示驱动根据不同的输入输出对应的数码管控制信息。

2.2.9 运动码表

1、电路图

(1) 内部结构图

(2) 封装电路图

2、测试

测试样例 1: 点击 start 键,码表开始计时。

测试样例 2: 码表停止计时后点击 store 键,存储最好成绩。

测试样例 3: 点击 reset 键, 重置码表。

3 设计总结与心得

3.1 实验总结

3.1.1 遇到的问题及处理

- 1连接电路有时粗心大意,分线器接出时不够仔细,把相邻接口连一起了。
- 2 在设计码表计数器时,如果简单的用前一个 BCD 计数器的输出函数值用于下一个 BCD 计数器的钟控信号,那么系统会在状态达到 9 时产生进位信号,而不是达到 10 时。当时我没有解决的思路,所以只好改从使能端入手。我把低位的进位端并后再接到高位使能端,解决了问题,这样能保障只有低位都是 9 的时候,下一次时钟跳动高位才进一。后来我对于原始的思路进行思考:有没有一种办法将进位信号延迟一下呢?最后想出了一种解决方法:将输出函数信号取反,这样能将从 9 到 10 的下降沿变成上升沿,实现正常进位。
 - 3 实验刚开始时,有时不小心修改了隧道与引脚,通不过头歌的测试。
- 4 在设计 4 位并行加载寄存器时,我发现使用默认的 D 触发器没有使能端。最后通过咨询同学才发现需要在左下角中将"包含使能端?"改成"是"。
- 5 注意引脚接口对应,比如从左到右是 0 到 31 还是 31 到 0;输入与输出的接口也应该一一对应。
- 6 注意子电路外观,包括引脚位置是否正确(如 BCD 计数器输出函数设计中,子电路的接口就出现了错误,需要进行修正)

3.1.2设计方案存在的不足

- ①在该设计方案中,码表无法完成多次计时的功能。其一次只能记录一个时间, 无法连续记录多个时间。
- ②在该设计方案中,码表无法完成暂停的功能。在按下"STOP"后,码表无法继续在该时间的基础上继续计时。

3.2 实验心得

本次实验通过头歌平台的"闯关"设计,将实验任务进行模块化细分,极大地降低了学生的负担,有效地引导我们从最基本的模块开始,条理清楚,思路清晰地完成运动码表的设计。

但实验的过程也并非一帆风顺。从一开始的对 logisim 的不熟悉,遇到难关不知如何实现等问题一度令我十分头疼。但我凭借着不懈努力,最终成功完成了该实验。过程中对电路的分析过程,极大加深了我对数字电路与逻辑设计这门学科的理解,为以后学习 csapp 等专业课打下了更坚实的基础。此外,我也深刻地体会到,电路设计是一门胆大心细的活,必须时时刻刻注意各种细节,不论是电路图的设计还是到实际的生产加工均是如此。一个微小的模块出现错误,往往会影响到整个系统功能的实现。

计算机学生要学习的不只是软件,还有硬件。数字逻辑便是一门偏硬件的学科。 只有"软硬兼施",我么的系统能力才能得到更好的培养。因此,我们需要学好这门课。

3.3 意见与建议

希望实验课可以早点开,期末太多实验堆在一起了,负担还是比较重的。

原创性声明

本人郑重声明本报告内容,是由作者本人独立完成的。有关观点、方法、数据和文献等的引用已在文中指出。除文中已注明引用的内容外,本报告不包含任何其他个人或集体已经公开发表的作品成果,不存在剽窃、抄袭行为。

已阅读并同意以下内容。

判定为不合格的一些情形:

- (1) 请人代做或冒名顶替者;
- (2) 替人做且不听劝告者;
- (3) 实验报告内容抄袭或雷同者;
- (4) 实验报告内容与实际实验内容不一致者;
- (5) 实验电路抄袭者。

作者签名: 洪炜豪

最终提交的文件

- (1) 实验电路[电子版];
- (2) 实验报告[电子版];
- (3) 实验报告[纸质版]。

提交的电子版文件无需压缩,每个学生放在一个文件夹,文件夹及文件命名方式: 班级-学号-姓名。如: 计算机 2101-U21010101-张三-运动码表实验报告

全班收齐后统一打包压缩交给指导教师。