Exploiting Decryption Failures in Mersenne Number Cryptosystems

Marcel Tiepelt¹ and Jan-Pieter D'Anvers²

¹Kastel, Karlsruhe Institute of Technology, marcel.tiepelt@kit.edu ²imec-COSIC, KU Leuven, janpieter.danvers@esat.kuleuven.be

APKC Oct. 6, 2020, Taipei, Taiwan,

Decryption Failures in Post-Quantum Cryptography

What?

- \blacksquare $m \neq decrypt(encrypt(m))$
- Artificial errors in post-quantum crypto

Why?

Efficiency

Decryption Failures in Post-Quantum Cryptography

What?

- $= m \neq decrypt(encrypt(m))$
- Artificial errors in post-quantum crypto

Why?

- Efficiency
- Probabilities of failure:

Decryption Failures in Post-Quantum Cryptography

What?

- \blacksquare $m \neq decrypt(encrypt(m))$
- Artificial errors in post-quantum crypto

Why?

- Efficiency
- Probabilities of failure:

Kyber: 2⁻¹⁶⁰ Saber: 2⁻¹³⁶ HQC: 2⁻¹³⁸

LEDAcrypt: 2⁻⁶⁴

Ramstake: 2⁻⁶⁴

Disclaimer:

Ramstake

(Secure?) Round 1 candidate for NIST post-quantum project

- Mersenne number $p = 2^n 1$
- Secrets $a, b \in \mathbb{Z}_p$ with low Hamming weight
- Integer $G \in \mathbb{Z}_p$ with Hamming weight $\approx \frac{n}{2}$

- Mersenne number $p = 2^n 1$
- Secrets $a, b \in \mathbb{Z}_p$ with low Hamming weight
- Integer $G \in \mathbb{Z}_p$ with Hamming weight $\approx \frac{n}{2}$

Mersenne Low Hamming Combination Problem For random *n*-bit string *R*, distinguishing the tuples

$$(G, aG + b \mod p) \text{ or } (G, R)$$

is difficult.

Alice

Fix Mersenne number $p, G \stackrel{\$}{\leftarrow} \mathbb{Z}_p$

Bob

 $a.b \stackrel{\$}{\leftarrow} SMALL_{HW}(\mathbb{Z}_p)$

 $c.d \stackrel{\$}{\leftarrow} SMALL_{HW}(\mathbb{Z}_p)$

$$P_A \equiv aG + b \mod p$$

 $P_B \equiv cG + d \mod p$

Secret

Public

<u>Alice</u>

Fix Mersenne number $p, G \stackrel{\$}{\leftarrow} \mathbb{Z}_p$

<u>Bob</u>

Secret

Public

 $a, b \stackrel{\$}{\leftarrow} \mathsf{SMALL_{HW}}(\mathbb{Z}_p)$

 ${\color{red} {\cal C}, \, {\color{red} {\it d}} \stackrel{\$}{\leftarrow} {\sf SMALL_{HW}}({\mathbb Z}_{{\color{blue} {\it p}}})}$

 $P_A \equiv aG + b \mod p$

 $\stackrel{\textstyle P_A}{\longrightarrow}$

 $P_B \equiv cG + d \mod p$

$$ctxt = m \oplus (cP_A \mod p)_{[0:|m|]}$$
$$= m \oplus (acG + bc \mod p)_{[0:|m|]}$$

Fix Mersenne number $p, G \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ Alice Bob $a b \stackrel{\$}{\leftarrow} SMALL_{HW}(\mathbb{Z}_p)$ $c.d \stackrel{\$}{\leftarrow} SMALL_{HW}(\mathbb{Z}_p)$ $P_{\Delta} \equiv aG + b \mod p$ $P_B \equiv cG + d \mod p$ P_A ____ $ctxt = m \oplus (cP_A \mod p)_{[0:|m|]}$ $= m \oplus (acG + bc \mod p)_{[0:|m|]}$ $(ctxt, P_B)$ $m' = ctxt \oplus (aP_B \mod p)_{[0:|m|]}$ $= ctxt \oplus (acG + ad \mod p)_{[0:|m|]}$

Secret

Public

Alice Fix Mersenne number $p, G \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ Bob $a, b \stackrel{\$}{\leftarrow} \mathsf{SMALL_{HW}}(\mathbb{Z}_p)$ $P_A \equiv aG + b \mod p$ $P_A \Longrightarrow cG + d \mod p$ $ctxt = m \oplus (cP_A \mod p)_{[0:|m|]}$ $= ctxt \oplus (aP_B \mod p)_{[0:|m|]}$ $= ctxt \oplus (aCG + ad \mod p)_{[0:|m|]}$

Secret

Public

 $\bullet (acG+ad)_{[0:|m|]} \approx (acG+bc)_{[0:|m|]}$

Alice Fix Mersenne number $p, G \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ Bob $a, b \stackrel{\$}{\leftarrow} \mathsf{SMALL_{HW}}(\mathbb{Z}_p)$ $P_A \equiv aG + b \mod p$ $P_A \longrightarrow P_B \equiv cG + d \mod p$ $ctxt = m \oplus (cP_A \mod p)_{[0:|m|]}$ $= ctxt \oplus (aP_B \mod p)_{[0:|m|]}$ $= ctxt \oplus (acG + ad \mod p)_{[0:|m|]}$

$$(acG+ad)_{[0:|m|]} \approx (acG+bc)_{[0:|m|]}$$

■ $Pr[m \neq m']$ too high \Longrightarrow introduce ECC

Secret

Public

Secret

Public

Example Parameters

Ramstake-756839

Mersenne exponent	n = 756839
Hamming weight	128
#Corrected Errors	t = 111
$Pr[m' \neq m]$	2^{-64}
quantum security	128
pk	93 <i>kB</i>
pk ctxt	94 <i>kB</i>

$$p = 2^n - 1$$

■ $P_A = aG + b \mod p$ $a, b \in \mathbb{Z}_p$ have low Hamming weight

Example Parameters

Ramstake-756839

Mersenne exponent	n = 756839
Hamming weight	128
#Corrected Errors	t = 111
$Pr[m' \neq m]$	2^{-64}
quantum security	128
pk ctxt	93 <i>kB</i>
ctxt	94 <i>kB</i>

$$p = 2^n - 1$$

■ $P_A = aG + b \mod p$ $a, b \in \mathbb{Z}_p$ have low Hamming weight

Our Attack: $\approx 2^{46}$ quantum steps + 2^{72} decryption queries

Introduced by Beunardeau et al. [Beu+19]

$$\frac{a}{b} = P_A$$

Introduced by Beunardeau et al. [Beu+19]

Guess approximate positions of 1's in the secrets a, b
 (128 of 756839 positions)

Introduced by Beunardeau et al. [Beu+19]

- Guess approximate positions of 1's in the secrets a, b
 (128 of 756839 positions)
- Apply some lattice reduction technique

Introduced by Beunardeau et al. [Beu+19]

- Guess approximate positions of 1's in the secrets a, b
 (128 of 756839 positions)
- Apply some lattice reduction technique

Guessing positions is very difficult

Introduced by Beunardeau et al. [Beu+19]

- Guess approximate positions of 1's in the secrets a, b
 (128 of 756839 positions)
- Apply some lattice reduction technique

Guessing positions is very difficult

Decryption failures to make a good guess!

Ramstake: Decryption Failures

Alice

$$c'_m = ctxt \oplus (aP_B \mod p)_{[0:|c_m|]}$$

= $ctxt \oplus (acG + ad \mod p)_{[0:|c_m|]}$
 $m' = decode(c'_m)$

Bob

$$c_m = encode(m)$$
 $ctxt = c_m \oplus (cP_A \mod p)_{[0:|c_m|]}$
 $= c_m \oplus (acG + bc \mod p)_{[0:|c_m|]}$

 $(ctxt, P_B)$

Ramstake: Decryption Failures

Alice

 $= ctxt \oplus (acG + ad \mod p)_{[0:|c_m|]}$

 $c'_m = ctxt \oplus (aP_B \mod p)_{[0:|c_m|]}$

(ctxt, P_B)

<u>Bob</u>

```
c_m = encode(m)
ctxt = c_m \oplus (cP_A \mod p)_{[0:|c_m|]}
= c_m \oplus (acG + bc \mod p)_{[0:|c_m|]}
```

Decryption Failure

 $m' = decode(c'_m)$

$$decode(c'_m)$$
 fails

$$\Leftrightarrow \mathsf{HW}_{[0:|c_m|]}\left((\mathit{acG} + \mathit{ad} \mod p) \oplus (\mathit{acG} + \mathit{bc} \mod p)\right) > t$$

$$\approx (HW_{[0:|c_m|]}(ad) + HW_{[0:|c_m|]}(bc)) > t$$

Ramstake Information Leak

- Consider only error ad
- Assume decryption returns fail
- \Rightarrow HW_[0:|c_m|](ad) large
- \Rightarrow only possible for *some* values of *a*

Ramstake Information Leak

- Consider only error ad
- Assume decryption returns fail
- \Rightarrow HW_[0:| c_m |](ad) large
- \Rightarrow only possible for *some* values of *a*

Ramstake Information Leak

- Consider only error ad
- Assume decryption returns fail
- $\Rightarrow HW_{[0:|c_m|]}(ad)$ large
- \Rightarrow only possible for *some* values of *a*

Strategy

- Query decryption oracle with (ctxt, P_B)
- Estimate candidate bits of a
- Repeat sufficiently often.

а

- Query decryption oracle with (ctxt, P_B)
- Estimate candidate bits of a
- Repeat sufficiently often.

- Query decryption oracle with (ctxt, P_B)
- Estimate candidate bits of a
- Repeat sufficiently often.

- Query decryption oracle with (ctxt, P_B)
- Estimate candidate bits of a
- Repeat sufficiently often.

- Query decryption oracle with (ctxt, P_B)
- Estimate candidate bits of a
- Repeat sufficiently often.

- Query decryption oracle with (ctxt, P_B)
- Estimate candidate bits of a
- Repeat sufficiently often.

"Nothing-up-our-sleeves" Result

https://github.com/Fleeep/ramstake-failure-attack

"Nothing-up-our-sleeves" Result

Ramstake-756839 (Security level: 128)

#decryption failures	approx. # quantum step
2 ⁹	2 ⁶⁸
2 ¹⁰	2 ⁵²
2 ¹¹	2 ⁴⁸
2 ¹²	2 ⁴⁶

Conclusion

Mersenne number cryptosystems leak information

Conclusion

Mersenne number cryptosystems leak information

Information to estimate secrets.

For Ramstake-756839: 2¹² decryption failures

Conclusion

Mersenne number cryptosystems leak information

Information to estimate secrets.

For Ramstake-756839: 2¹² decryption failures

Probability of failure should to be very low.

Thanks.

Happy to answer any questions!

Exploiting Decryption Failures in Mersenne Number Cryptosystems

Marcel Tiepelt¹ and Jan-Pieter D'Anvers²

¹Kastel, KIT, marcel.tiepelt@kit.edu ²imec-COSIC, KU Leuven, janpieter.danvers@esat.kuleuven.be