Curso: Diseño Lógico, Sem 2-2013 Tema: Problemas de álgebra boolena

1. Floyd, Thomas L., Fundamentos de sistemas digitales, Prentice Hall, 7ª edición, Madrid, España, 2000.

SECCIÓN 4.2 Leyes y reglas del álgebra de Boole

pag 263

7. Identificar la ley del álgebra booleana en que está basada cada una de las siguientes igualdades:

(a)
$$A\overline{B} + CD + A\overline{C}D + B = B + A\overline{B} + A\overline{C}D + CD$$

(b)
$$AB\overline{C}D + \overline{A}B\overline{C} = D\overline{C}BA + \overline{C}B\overline{A}$$

(c)
$$AB(CD + E\overline{F} + GH) = ABCD + ABE\overline{F} + ABGH$$

8. Identificar las reglas booleanas en que se basan las siguientes igualdades:

(a)
$$\overline{AB + CD} + \overline{EF} = AB + CD + \overline{EF}$$

(b)
$$A\overline{A}B + AB\overline{C} + AB\overline{B} = AB\overline{C}$$

(c)
$$A(BC + BC) + AC = A(BC) + AC$$

(d)
$$AB(C + \overline{C}) + AC = AB + AC$$

(e)
$$A\overline{B} + A\overline{B}C = A\overline{B}$$

(f)
$$ABC + \overline{AB} + \overline{ABCD} = ABC + \overline{AB} + D$$

SECCIÓN 4.3 Teoremas de DeMorgan

9. Aplicar los teoremas de DeMorgan a cada una de las expresiones siguientes:

(a)
$$\overline{A + \overline{B}}$$

(b)
$$\overline{\overline{A}B}$$

(c)
$$\overline{A+B+C}$$

(d)
$$\overline{ABC}$$

(e)
$$\overline{A(B+C)}$$

(e)
$$\overline{A(B+C)}$$
 (f) $\overline{AB} + \overline{CD}$

(g)
$$\overline{AB + CD}$$

(h)
$$\overline{(A+\overline{B})(\overline{C}+D)}$$

10. Aplicar los teoremas de DeMorgan a cada expresión:

(a)
$$\overline{A\overline{B}(C+\overline{D})}$$

(b)
$$\overline{AB(CD + EF)}$$

(c)
$$\overline{(A + \overline{B} + C + \overline{D})} + \overline{ABC\overline{D}}$$

(d)
$$\overline{(\overline{A} + B + C + D)(\overline{A}\overline{B}\overline{C}D)}$$

(e)
$$\overline{AB}(CD + \overline{E}F)(\overline{AB} + \overline{CD})$$

11. Aplicar los teoremas de DeMorgan a las siguientes expresiones:

(a)
$$(\overline{ABC})(\overline{EFG}) + (\overline{HIJ})(\overline{KLM})$$

(b)
$$(A + \overline{BC} + CD) + \overline{BC}$$

(c)
$$\overline{(\overline{A}+\overline{B})(\overline{C}+\overline{D})(\overline{E}+\overline{F})(\overline{G}+\overline{H})}$$

SECCIÓN 4.5 Simplificación mediante el álgebra de Boole 1973 264

17. Mediante las técnicas del álgebra booleana, simplificar las siguientes expresiones lo máximo posible:

(a)
$$A(A + B)$$

(b)
$$A(\overline{A} + AB)$$

(c)
$$BC + \overline{B}C$$

(d)
$$A(A + \widetilde{A}B)$$

(e)
$$A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C$$

18. Mediante el álgebra booleana, simplificar las siguientes expresiones:

(a)
$$(A + \overline{B})(A + C)$$

(b)
$$\overline{AB} + \overline{ABC} + \overline{ABCD} + \overline{ABCDE}$$

(c)
$$AB + \overline{AB}C + A$$

(d)
$$(A + \overline{A})(AB + AB\overline{C})$$

(e)
$$AB + (\overline{A} + \overline{B})C + AB$$

Floyd, Thomas L., <u>Fundamentos de sistemas digitales</u>, Prentice Hall, 7ª edición, Madrid, España, 2000. (continuación)

19. Mediante el álgebra booleana, simplificar las siguientes expresiones: Pag 265

(a)
$$BD + B(D + E) + \overline{D}(D + F)$$

(b)
$$\overline{A} \, \overline{B} C + (\overline{A + B + \overline{C}}) + \overline{A} \, \overline{B} \, \overline{C} \, D$$

(c)
$$(B + BC)(B + \overline{B}C)(B + D)$$

(d)
$$ABCD + AB(\overline{CD}) + (\overline{AB})CD$$

(e)
$$ABC[AB + \overline{C}(BC + AC)]$$

20. Determinar cuáles de los circuitos lógicos de la Figura 4.55 son equivalentes.

FIGURA 4.55

2. Tocci, Widmer y Moss. Sistemas Digitales Principios y Aplicaciones. Pearson Prentice Hall: 10° Ed. 2007.

SECCIONES 4-2 Y 4-3

CCIONES 4-2 Y 4-3 Pag 1944
4-1. Simplifique las siguientes expresiones mediante el uso del álgebra boo-B leana.

(a)
$$x = ABC + \overline{A}C$$

(b)
$$y = (Q + R)(\overline{Q} + \overline{R})$$

(c)
$$w = ABC + A\overline{B}C + \overline{A}$$

(d)
$$q = \overline{RST}(\overline{R} + S + T)$$

(e)
$$x = \overline{A} \, \overline{B} \, \overline{C} + \overline{A} B C + A B C + A \, \overline{B} \, \overline{C} + A \overline{B} C$$

(f)
$$z = (B + \overline{C})(\overline{B} + C) + \overline{\overline{A} + B + \overline{C}}$$

(g)
$$y = (\overline{C + D}) + \overline{A}C\overline{D} + A\overline{B}\overline{C} + \overline{A}\overline{B}CD + AC\overline{D}$$

(h)
$$x = AB(\overline{\overline{C}D}) + \overline{A}BD + \overline{B}\overline{C}\overline{D}$$

В 4-2. Simplifique el circuito de la figura 4-65 mediante el uso del álgebra booleana.

FIGURA 4-65 Problemas 4-2 y 4-3.

4-3.* Cambie cada una de las compuertas del problema 4-2 por compuertas NOR B y simplifique el circuito mediante álgebra booleana. 18 195

- Mano, Morris M. <u>Ingeniería computacional: diseño del hardware</u>; Prentice-Hall Hispanoamericana, S.A., México, 1ª Edición en español, 1991.
 - 2-1 Demuestre por medio de tablas de verdad la validez de las siguientes identidades:
 - (a) Teorema de DeMorgan para tres variables $\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$
 - (a) residual de Devisigan para les variables X + Z = X + Y + Z(b) La segunda ley distributiva. X + YZ = (X + Y)(X + Z)
 - (c) $\overline{X}Y + \overline{Y}Z + X\overline{Z} = X\overline{Y} + Y\overline{Z} + \overline{X}Z$
 - 2-2 Pruebe la identidad de cada una de las ecuaciones booleanas que siguen utilizando la manipulación algebraica.
 - (a) $\overline{X}\overline{Y} + XY + \overline{X}Y = \overline{X} + Y$
 - (b) $\overline{X}Y + X\overline{Y} + XY + \overline{X}\overline{Y} = 1$
 - (c) $\overline{X} + XY + X\overline{Z} + X\overline{Y}\overline{Z} = \overline{X} + Y + \overline{Z}$
 - (d) $X\overline{Y} + \overline{Y}\overline{Z} + \overline{X}\overline{Z} = X\overline{Y} + \overline{X}\overline{Z}$
 - 2-3 Simplifique las expresiones booleanas siguientes a un número mínimo de literales.
 - (a) $XYZ + \overline{X}Y + XY\overline{Z}$

pag 80

- (b) $\overline{X}YZ + XZ$
- (c) $(\overline{X} + \overline{Y})(\overline{X} + \overline{Y})$
- (d) $XY + X(WZ + W\overline{Z})$
- (e) $(X + \overline{Y} + X\overline{Y})(XY + \overline{X}Z + YZ)$

- [Respuesta: $XY + \overline{X}\overline{Y}Z$]
- 2-4 Reduzca las expresiones booleanas que siguen al número de literales que se indica.
 - (a) $\overline{A}\overline{C} + ABC + A\overline{C}$
- A tres literales
- (b) $(\overline{CD} + A) + A + CD + AB$
- A tres literales
- (c) $\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$
- 'A una literal
- (d) $(\overline{A} + C)(\overline{A} + \overline{C})(A + B + \overline{C}D)$
 - A cuatro literales
- 2-5 Aplicando el teorema de DeMorgan, exprese la siguiente función

$$F = XY + \overline{X}\overline{Y} + \overline{Y}Z$$

- (a) sólo con operaciones OR y de complemento.
- (b) sólo con operaciones AND y de complemento.
- 2-6 Determine el complemento de las expresiones siguientes:
 - (a) $X\overline{Y} + \overline{X}Y$
 - (b) $(A\overline{B} + C)\overline{D} + E$
 - (c) $AB(\overline{C}D + C\overline{D}) + \overline{AB}(\overline{C} + D)(C + \overline{D})$
 - (d) $(A + \overline{B} + C)(\overline{A} + \overline{C})(A + B)$