Greedy Algorithms

Refer Chapter 4 from Tardos

04-02-2022

Greedy Algorithms

• What is it?

Greedy Algorithms

- What is it?
- An algorithm is greedy if it builds the solution in small steps, choosing the best possible decision at each time step based on some underlying criteria.
- For the same problem, many greedy algorithms are possible each using a different criteria.
- Some problems cannot be solved by greedy approach at all.
- Choosing a current best solution without worrying about future. In other words the choice does not depend upon future sub-problems.
- Such algorithms are locally optimal, For some problems, as we will see shortly, this local optimal is global optimal also and we are happy.

It is easy to invent a greedy algorithm for almost any problem. Finding cases in which they work well, and proving that they work well is challenging.

Interval Scheduling Problem

- We are given a set of job/interval requests, S = a₁, a₂,..., a_n that need to use some resource.
- Each request a_i has a start time s_i & finish time fi, such that $0 \le s_i < f_i < \infty$.
- We need to allocate the resource in a compatible manner, such that the number of request scheduled is maximized.
- The resource can be used by one and only one request at any given time.

How is it different from Weighted Interval Scheduling (WIS)?

Compatible Jobs - Recall

Two requests a_i and a_j are said to be compatible, if the interval they span do not overlap i.e. $f_i \le s_i$ or $f_i \le s_i$

Example:

Some possible Greedy Solutions

Can you suggest some greedy solutions?

Some possible Greedy Solutions

- Shortest job first
- In the order of increasing starting times
- In the order of increasing finishing times

Approach 1: Shortest Job First

- Will it work? Give example
- Will it not work? Give example.

Write examples and then proceed.

Approach 1: Shortest Job First (2)

Approach 1: Shortest Job First (3)

Approach 2: Increasing order of start times

- Will it work? Give example
- Will it not work? Give example

Write examples and then proceed.

Approach 2: Increasing order of start times(2)

Approach 2: Increasing order of start times(3)

Approach 3: Increasing order of finish times

- Will it work? Give example
- Will it not work? Give example

Write examples and then proceed.

Approach 3: Increasing order of finish times(2)

Approach 3: Increasing order of finish times(2)

Algorithm

- Sort the requests in the increasing order of their finish times.
 Let P be the sequence so obtained.
- Consider the next request a_i in P.
 - Include a in the schedule S.
 - For each interval a that follows: Discard a and delete from P if it conflicts with a
 - Repeat until P is empty.

Proving it works!

- We will prove our claim by contradiction using "stay ahead of the optimal" strategy.
- S: My solution (in increasing order of finishing times) i₁, i₂,..., i_k
- O: Optimal solution (in increasing order of finishing times) j₁, j₂...,_{jm}
- There might be more than one optimal solution but number of intervals is same. That is, I wish to prove that |O| = |S|

Or we would like to prove M = K

Claims

Claim 1: (Stay ahead policy):

 $f(i_r) \le f(j_r)$ for all r (will prove later)

• Claim 2: k = m.

Proof: Clearly $k \le m$. We will prove that k cannot be < m

(by contradiction) and hence k must be = m.

Stay ahead policy: we will compare partial solutions that the greedy algorithm constructs to initial segments of optimal solution O, and show that greedy algorithm is doing better in a step-by-step fashion.

- Suppose k<m
- We have, $f(i_k) \le f(j_k) \dots$ (by claim 1)

- Suppose k<m
- We have, f (i ,) ≤ f (j ,) . . . (by claim 1)
- As k < m, $\exists j_{k+1} \subseteq O$
- Since j_{k+1} is compatible with j_k we have, $f(j_k) < s(j_{k+1}) < f(j_{k+1})$
- Since $f(i_k) \le f(j_k)$, we have $f(i_k) < s(j_{k+1})$ and hence j_{k+1} is also compatible with i_k also.

Our algorithm would have picked j $_{k+1}$ after i $_{k}$ in our solution.

- This contradicts our assumption that i_k is the last interval in our solution.
- Thus k = m.

Claim 1 (Stay ahead policy):

$$H(r): f(i_r) \le f(j_r)$$
 for all r

• Base case : r = 1, $f(i_1) \le f(j_1)$ by choice of our algorithm

Claim 1 (Stay ahead policy):

```
H(r): f(i_r) \le f(j_r) for all r
```

- Base case : r = 1, $f(i_1) \le f(j_1)$ by choice of our algorithm
- Induction Hypothesis: Assume that H(r) is true. We will prove H(r + 1) is true

Since j_{r+1} is compatible with j_r and $f(i_r) \le (j_r)$) therefore j_{r+1} is also compatible with i_r also.

- Thus our algorithm had the option of picking j_{r+1} . Thus, f (i_{r+1}) \leq f (j_{r+1})
- Hence proved.

Time Complexity

Algorithm

- Sort the requests in the increasing order of their finish times. Let
 P be the sequence so obtained
- Consider the next request a in P.
 - Include a in the schedule S.
 - For each interval a that follows: Discard a and delete from P if it conflicts with a .
 - Repeat until P is empty.

What is the associated complexity with each step?

Time Complexity

Algorithm

- Sort the requests in the increasing order of their finish times. Let P be the sequence so obtained.....O(n log n)
- Consider the next request a in P.
 - Include a in the schedule S.
 - \circ For each interval a that follows: Discard a and delete from P if it conflicts with a \circ
 - Repeat until P is empty.

In step 2, it takes O(1) time to take decision for each request whether to keep it or discard it making a total of O(n).

Thus, total time is O(n log n)

Next Lecture

• Interval Partitioning