第8讲线性规划(上)

罗国杰

gluo@pku.edu.cn

2024年春季学期

算 P 法 K 设山 与 0 分 4 实 3 验。 班 0

本讲内容

- 线性规划模型
- 应用例子
- 单纯形法

线性规划模型

■ 例 生产计划问题 用 3 种原料混合配制 2 种清洁剂

	原料1	原料2	原料3	售价(万元/吨)
清洁剂A	0.25	0.50	0.25	12
清洁剂 B	0.50	0.50		15
存量 (吨)	120	150	50	

这 2 种清洁剂应各配制多少才能使总价值最大?

设清洁剂A和B分别配制x和y吨

$$\max z = 12x + 15y$$

s.t.
$$0.25x + 0.50y \le 120$$

$$0.50x + 0.50y \le 150$$

$$0.25x \leq 50$$

$$\leq 50$$

$$x \ge 0, y \ge 0$$

线性规划的一般形式

$$\min(\max) z = \sum_{j=1}^{n} c_j x_j$$
 目标函数

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \le (=, \ge) b_i$$
, $i = 1, 2, ..., m$ 约束条件

$$x_{j} \ge 0$$
, $j \in J \subseteq \{1,2,...,n\}$ 非负条件 x_{i} 任意, $j \in \{1,2,...,n\} - J$ 自由变量

可行解 满足约束条件和非负条件的变量

可行域 全体可行解

最优解 目标函数值最小(最大)的可行解

最优值 最优解的目标函数值

线性规划求解工具

- **■** IBM ILOG CPLEX
 - commercial
- COIN-OR Linear Programming (CLP)
 - ▶ open-source

Problem Set	CPLEX	CLP	GLPK	lp_solve ³	MINOS ⁴
Small CCO	0.0	0.1	1.3	19.0	3.1
Infeasible	0.2^{1}	3.6	0.7	43.8	16.3
Netlib	9.1	29.5	52.5	14,975.1	3,198.7
Kennington	12.9	16.1	624.3	19,417.5	10,123.8
Large CCO	13.0	19.0	108.4	3,175.8	41,976.1
FOME	54.5	182.7	6,061.4	33,544.5	59,301.9
Rail	152.5	212.9	N/A ²	29,012.2	28,899.9
PDS	179.6	224.5	34,118.3	115,200.0	115,200.0
Grand Total	421.8	688.4	40,966.9	215,387.9	258,719.8

¹Infeasible problem set solution time for CPLEX does not include CPLEX2.mps in summation.

source: Gearhart, "Comparison of Open-Source Linear Programming Solvers," **SANDIA REPORT 2013**

²None of the Rail problems for GLPK could be solved due to read error.

³lp_solve included 1 Netlib time out, 1 Kennington time out, 1 FOME time out, 2 Rail time outs, and 8 PDS time outs.

⁴MINOS included 3 FOME time outs, 2 Rail time outs, and 8 PDS time outs, 8 solve Small COO solve errors and 8 Large OCC solve errors.

求解工具: CPLEX 例子

```
IloNumVarArray x(env);
x.add(IloNumVar(env, 0.0, IloInfinity));
x[0].setName("x");
x.add(IloNumVar(env, 0.0, IloInfinity));
x[1].setName("y");
IloObjective obj = IloMinimize(env);
obj.setLinearCoef(x[0], 12);
obj.setLinearCoef(x[1], 15);
IloRangeArray c(env);
c.add(IloRange(env, -IloInfinity, 120));
c[0].setLinearCoef(x[0], 0.25);
c[0].setLinearCoef(x[1], 0.50);
c.add(IloRange(env, -IloInfinity, 150));
c[1].setLinearCoef(x[0], 0.50);
c[1].setLinearCoef(x[1], 0.50);
c.add(IloRange(env, -IloInfinitty, 50));
c[2].setLinearCoef(x[0], 0.25);
```

```
IloEnv env;
IloModel model(env);
model.add(obj);
model.add(c);
IloCplex cplex (model);
cplex.solve();
IloNumArray vals(env);
cplex.getValues(vals, x);
```

求解工具: CVXOPT 例子

```
Python 3.7.6 (default, Jan 8 2020, 19:59:22)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from cvxopt import matrix, solvers
>>> c = matrix([ -12.0, -15.0 ])
>>> A = matrix([[ 0.25, 0.50, 0.25, -1.0, 0.0 ], [ 0.50, 0.50, 0.0, 0.0, -1.0 ]])
>>> b = matrix([ 120.0, 150.0, 50.0, 0.0, 0.0 ])
>>> sol = solvers.lp(c, A, b)
    pcost dcost
                                         dres k/t
                           gap
                                  pres
 0: -1.8893e+03 -4.8941e+03 3e+03 0e+00
                                        9e-17 1e+00
 1: -3.9740e+03 -4.9444e+03 1e+03 2e-16
                                        2e-16 8e+01
 2: -4.1350e+03 -4.2540e+03 1e+02 3e-16
                                        4e-16 1e+01
 3: -4.1399e+03 -4.1413e+03 1e+00 2e-16 8e-16 1e-01
 4: -4.1400e+03 -4.1400e+03 1e-02 6e-16 7e-16 1e-03
 5: -4.1400e+03 -4.1400e+03 1e-04 2e-16 4e-16 1e-05
Optimal solution found.
>>> print(sol['x'])
[ 1.20e+02]
[ 1.80e+02]
>>>
```

线性规划简史

- 1939 (Kantorovich): 《组织和计划的数学方法》最早提出线性规划
- 1940s (Dantzig, Kantorovich, Koopmans, von Neumann, ...) : 奠定线性规划的基础, 起源于经济问题与物流问题的研究
- 1947 (Dantzig) : 单纯形法
- 1950s-60s: 线性规划应用于其他领域
- 1979 (Khachiyan): 椭球算法, 最坏情况复杂度(多项式时间)优于单纯形法, 但求解实际问题远慢于单纯形法
- 1984 (Karmarkar): 投影算法(内点法), 最坏情况多项式时间, 实际也高效
- 1984后:内点法变种(降低复杂度、或提高实际效率),求解大规模问题的软件

应用: 无穷范数(切比雪夫范数)拟合

minimize
$$||Ax - b||_{\infty}$$

with
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$

• ℓ_{∞} -norm (Chebyshev norm) of m-vector y is

$$||y||_{\infty} = \max_{i=1,\dots,m} |y_i|$$

应用: L1范数拟合

minimize $||Ax - b||_1$

• ℓ_1 -norm of m-vector y is

$$||y||_1 = \sum_{i=1}^m |y_i|$$

L1范数拟合 vs L2范数拟合 (最小二乘)

histograms of residuals Ax - b, with randomly generated $A \in \mathbf{R}^{200 \times 80}$, for

$$x_{ls} = \operatorname{argmin} ||Ax - b||, \qquad x_{\ell_1} = \operatorname{argmin} ||Ax - b||_1$$

 ℓ_1 -norm distribution is **wider** with a **high peak at zero**

应用:鲁棒的线性拟合

- fit affine function $f(t) = \alpha + \beta t$ to m points (t_i, y_i)
- an approximation problem $Ax \approx b$ with

$$A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix}, \qquad x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \qquad b = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

- dashed: minimize ||Ax b||
- solid: minimize $||Ax b||_1$

 ℓ_1 -norm approximation is more robust against outliers

应用:稀疏信号重建

- $\hat{x} \in \mathbb{R}^n$ is unknown signal, known to be very sparse
- we make linear measurements $y = A\hat{x}$ with $A \in \mathbf{R}^{m \times n}$, m < n

estimation by ℓ_1 -norm minimization: compute estimate by solving

minimize
$$||x||_1$$
 subject to $Ax = y$

estimate is signal with smallest ℓ_1 -norm, consistent with measurements

应用:稀疏信号重建例子

- exact signal $\hat{x} \in \mathbf{R}^{1000}$
- 10 nonzero components

least-norm solutions (randomly generated $A \in \mathbf{R}^{100 \times 1000}$)

 ℓ_1 -norm estimate is **exact**

应用:线性分类

- given a set of points $\{v_1, \ldots, v_N\}$ with binary labels $s_i \in \{-1, 1\}$
- find hyperplane that strictly separates the two classes

$$a^T v_i + b > 0$$
 if $s_i = 1$
 $a^T v_i + b < 0$ if $s_i = -1$

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

$$s_i(a^T v_i + b) \ge 1, \quad i = 1, \dots, N$$

应用: 线性不可分集合的近似线性分类

minimize
$$\sum_{i=1}^{N} \max\{0, 1 - s_i(a^T v_i + b)\}$$

- ullet penalty $1-s_i(a_i^Tv_i+b)$ for misclassifying point v_i
- can be interpreted as a heuristic for minimizing #misclassified points
- ullet a piecewise-linear minimization problem with variables $a,\ b$

二维线性规划图解法(1/2)

例 max
$$z = 12x + 15y$$

s.t. $0.25x + 0.50y \le 120$
 $0.50x + 0.50y \le 150$
 $0.25x \le 50$
 $x \ge 0, y \ge 0$

O(0,0), A(0,240), B(120,180),

C(200,100), D(200,0)

最优解 $x^*=120$, $y^*=180$ (点B) 最优值 $z^*=4140$.

目标函数改为 $\max z = 12x + 12y$

最优解
$$x^*=120t+200(1-t)=200-80t$$
 $y^*=180t+100(1-t)=100+80t$, $z^*=3600$ 最优值

二维线性规划图解法 (2/2)

例 min
$$z = x - 2y$$

s.t. $2x + y \ge 2$
 $x - y \le 2$
 $x \ge 0, y \ge 0$

有可行解 目标函数值可以任意小 无最优解.

 $2x + y \ge 2$ 改为 $2x + y \le 2$, $x - y \le 2$ 改为 $x - y \ge 2$ 则可行域为空集, 无可行解

线性规划的几何解释

minimize $c^T x$ subject to $Ax \le b$

• 虚线 (超平面) 对应 $c^T x = \alpha$ 在不同 α 值的水平集 (level set)

线性规划的几何解释: 超平面和半空间

 \blacksquare 超平面 $G = \{x \mid a^T x = b\}$

 \blacksquare 半空间 $H = \{x \mid a^T x \leq b\}$

线性规划的几何解释: 超平面和半空间例子

线性规划的几何解释:多面体

■ 可行域是多面体(有限个半空间的交集)

- 超平面 Fx = g 等价于两个半空间 $Fx \le g$ 和 $-Fx \le -g$ 的交集

线性规划的几何解释:多面体例子

线性规划的几何解释:多面体例子

线性规划的几何解释

minimize $c^T x$ subject to $Ax \le b$

• 虚线 (超平面) 对应 $c^T x = \alpha$ 在不同 α 值的水平集 (level set)

线性规划的几何解释: 例子

optimal solution is (1,1)

几种解的情况

- (1) 解有4种可能
 - (a) 有唯一的最优解.
 - (b) 有无穷多个最优解.
 - (c) 有可行解, 但无最优解 (目标函数值无界).
 - (d) 无可行解, 更无最优解.
- (2) 可行域是一个凸多边形 (可能无界, 也可能是空集). 如果有最优解,则一定可以在凸多边形的顶点取到.

一般的 n 维线性规划也是如此

单纯形法 (Simplex)

■ 标准形

- 目标最小 min c[™]x
- 等式约束 Ax=b, 且 b≥0
- 变量非负 x≥0
- 基本可行解
 - 构造 Ax=b 和 x≥0 且满足一定性质的可行解

■ 单纯形法基础

- 定理1: 如果标准形有可行解,则必有基本可行解。
- 定理2: 如果标准形有最优解,则必存在一个基本可行解是最优解。
- 单纯形法步骤
 - 确定初始基本可行解
 - 从一组基本可行解变换到另一组"相邻的" 基本可行解,且使目标函数下降
 - 重复上述步骤直至找到最优解

单纯形法的线性规划标准形

标准形

min
$$z = \sum_{j=1}^{n} c_{j} x_{j}$$

s.t. $\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \ge 0$, $i = 1, 2, ..., m$
 $x_{i} \ge 0$, $j = 1, 2, ..., n$

特点

目标函数: 最小化

约束条件: 等式约束, 常数非负; 变量非负

化成标准形

- (1) 把 $\max z$ 替换成 $\min z' = -z$, 即取 $c_j' = -c_j$.
- (2) $b_i < 0$. 两边同时变号, \leq 改变成 \geq , \geq 改变成 \leq .

- (5) 自由变量 x_j 替换成 $x_j' x_j''$, $x_j' \ge 0$, $x_j'' \ge 0$

化成标准形: 例子

写出下述线性规划的标准形

max
$$z = 3x_1 - 2x_2 + x_3$$

s.t. $x_1 + 3x_2 - 3x_3 \le 10$
 $4x_1 - x_2 - 5x_3 \le -30$
 $x_1 \ge 0, x_2 \ge 0, x_3$ 任意

解 min
$$z' = -3x_1 + 2x_2 - x_3' + x_3''$$

s.t. $x_1 + 3x_2 - 3x_3' + 3x_3'' + x_4 = 10$
 $-4x_1 + x_2 + 5x_3' - 5x_3'' - x_5 = 30$
 $x_1 \ge 0, x_2 \ge 0, x_3' \ge 0, x_3'' \ge 0, x_4 \ge 0, x_5 \ge 0$

标准形的其他形式

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\min z = c^T x$$

s.t.
$$Ax = b$$

$$x \ge 0$$

向量形式

min
$$z = c^T x$$
 min $z = \sum_{j=1}^{n} c_j x_j$
s.t. $Ax = b$ s.t. $\sum_{j=1}^{n} P_j x_j = b$ $P_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$

标准形的可行解的性质

定义 设 A 的秩为 m,

A的 m 个线性无关的列向量称作标准形的基.

给定基 $B = (P_{i_1}, P_{i_2}, \dots, P_{i_m})$,

对应基中列向量的变量 $x_{i_1}, x_{i_2}, \dots, x_{i_m}$ 称作基变量,

其余的变量称作非基变量.

基变量构成的向量记作 x_B , 非基变量构成的向量记作 x_N . 令 $x_N = 0$, 等式约束变成

$$B x_B = b$$

解得 $x_B = B^{-1}b$. 向量 x 满足约束 Ax = b且非基变量全为 0, 称作关于基 B 的基本解 .

x是一个基本解且 $x \ge 0$, 则称 x是基本可行解, 对应的基 B为可行基.

基变量/基本可行解/可行基:例子

$$\min z = -12x_1 - 15x_2$$
s.t. $0.25x_1 + 0.50x_2 + x_3 = 120$

$$0.50x_1 + 0.50x_2 + x_4 = 150$$

$$0.25x_1 + x_5 = 50$$

$$x_i \ge 0, \quad i = 1, 2, ..., 5$$

$$A = \begin{bmatrix}
\mathbf{0.25} & \mathbf{0.50} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0.50} & \mathbf{0.50} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{0.25} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1}
\end{bmatrix}$$

基
$$B_1$$
=(P_1 , P_2 , P_3). 基变量 x_1 , x_2 , x_3 , 非基变量 x_4 , x_5 . 令 x_4 = 0, x_5 = 0, 得 0.25 x_1 + 0.50 x_2 + x_3 = 120 0.50 x_1 + 0.50 x_2 = 150 0.25 x_1 = 50 解得 x_1 = 200, x_2 = 100, x_3 = 20. $x^{(1)}$ = (200,100,20,0,0) T 是基本可行解, B_1 是可行基.

基变量/基本可行解/可行基:例子(续)

取基 $B_2 = (P_1, P_2, P_4)$. 基变量 x_1, x_2, x_4 , 非基变量 x_3, x_5 .

$$\Rightarrow x_3 = 0, x_5 = 0, \pm 0.25x_1 + 0.50x_2 = 120$$

$$0.50x_1 + 0.50x_2 + x_4 = 150$$

$$0.25x_1 = 50$$

解得 x_1 =200, x_2 =140, x_4 =-20.

 $x^{(2)} = (200, 140, 0, -20, 0)^T$ 是基本解,

不是基本可行解.

基本可行解的性质

引理 1α 是Ax=b的解,即 $A\alpha=b$

 α 是基本解 $\Leftrightarrow \alpha$ 中非零分量对应的列向量线性无关.

证 🖒 必要性 根据基本解的定义, 这是显然的.

使得 P_{j_1} , P_{j_2} , …, P_{j_m} 线性无关, 构成一个基, 记作B. α 是方程 $Bx_B = b$ 的解, 而这个方程的解是惟一的, 故 α 是关于B 的基本解.

基本可行解的性质

定理1 如果标准形有可行解,则必有基本可行解,

 $\overline{\mathbf{u}}$ 设 α 是一个可行解, 从 α 开始, 构造出一个基本可行解.

设 α 的非零分量为 α_1 , α_2 ,..., α_r , $r \le n$. 如果对应的列向量 P_1 , P_2 ,..., P_r 线性无关,则 α 是一个基本可行解.

否则, 存在不全为 0 的 λ_1 , λ_2 , ..., λ_r 使

$$\lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_r P_r = 0$$

取 $\lambda_{r+1} = \ldots = \lambda_n = 0$, 有

$$\lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_n P_n = 0$$

于是,对任意的 δ ,

$$\sum_{j=1}^{n} (\alpha_j + \delta \lambda_j) P_j = \sum_{j=1}^{n} \alpha_j P_j + \delta \sum_{j=1}^{n} \lambda_j P_j = b$$

定理1: 如果标准形有可行解,则必有基本可行解(续)

记 $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)^T$, 为使 $\alpha + \delta \lambda$ 成为一个可行解, 要求所有 $\alpha_i + \delta \lambda_i \geq 0$. 当 $\lambda_i = 0$ 时, 不等式自然成立.

设
$$\left|\alpha_{j_0}/\lambda_{j_0}\right| = \min\left\{\left|\alpha_j/\lambda_j\right| : \lambda_j \neq 0\right\}, \quad 1 \leq j_0 \leq r$$

$$\mathbb{X} \, \delta^* = - \alpha_{j_0} / \lambda_{j_0}, \, \Leftrightarrow \beta_j = \alpha_j + \delta^* \lambda j \, , \quad (j = 1, 2, ..., n)$$

$$\beta_1 P_1 + \ldots + \beta_n P_n = b$$

$$\beta_{j} \ge 0 \ (j=1,2,...,n), \quad \beta_{j_{0}} = 0, \ \beta_{r+1} = ... = \beta_{n} = 0.$$

 $\beta = (\beta_1, \beta_2, ..., \beta_n)$ 是可行解且比 α 至少少一个非零分量.

上述过程至多进行 r-1 次一定可以得到一个基本可行解.

基本可行解的性质

定理2 如果标准形有最优解,则必存在一个基本可行解是最优解.

证 当 α 是最优解时, β 也是最优解. (定理1的 α 和 β)

由 $\alpha_j = 0 \Rightarrow \lambda_j = 0$, 对足够小的 $\delta > 0$, $\alpha + \delta \lambda$ 和 $\alpha - \delta \lambda$ 都是可行解.

$$\sum_{j=1}^{n} c_{j} \alpha_{j} \leq \sum_{j=1}^{n} c_{j} (\alpha_{j} + \delta \lambda_{j}) = \sum_{j=1}^{n} c_{j} \alpha_{j} + \delta \sum_{j=1}^{n} c_{j} \lambda_{j}$$

$$\sum_{j=1}^{n} c_{j} \alpha_{j} \leq \sum_{j=1}^{n} c_{j} (\alpha_{j} - \delta \lambda_{j}) = \sum_{j=1}^{n} c_{j} \alpha_{j} - \delta \sum_{j=1}^{n} c_{j} \lambda_{j}$$

$$\sum_{j=1}^{n} c_{j} \alpha_{j} \leq \sum_{j=1}^{n} c_{j} (\alpha_{j} - \delta \lambda_{j}) = \sum_{j=1}^{n} c_{j} \alpha_{j} - \delta \sum_{j=1}^{n} c_{j} \lambda_{j}$$

$$\sum_{j=1}^{n} c_{j} \beta_{j} = \sum_{j=1}^{n} c_{j} (\alpha_{j} + \delta^{*} \lambda_{j}) = \sum_{j=1}^{n} c_{j} \alpha_{j} + \delta^{*} \sum_{j=1}^{n} c_{j} \lambda_{j} = \sum_{j=1}^{n} c_{j} \alpha_{j}$$

 $\beta = \alpha + \delta^* \lambda$ 也是最优解.

A有m行n列, 至多有 C_n^m 个基, 故至多有 C_n^m 个基本解.

单纯形法

基本步骤

- (1) 确定初始基本可行解.
- (2) 检查当前的基本可行解.

若是最优解或无最优解, 计算结束;

否则作基变换,用一个非基变量替换一个基变量,得到一个新的可行基和对应的基本可行解,且使目标函数值下降(至少不升).

(3) 重复(2).

确定初始基本可行解

先考虑最简单的情况, 设约束条件为

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$
 , $b_i \ge 0$, $i = 1, 2, \dots, m$ 引入 m 个松弛变量 $x_{n+i} \ge 0$ ($i = 1, 2, \dots, m$) , $a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + x_{n+i} = b_i$, $i = 1, 2, \dots, m$ 取 x_{n+i} ($i = 1, 2, \dots, m$) 作为基变量,初始基本可行解为 $x^{(0)} = (0, 0, \dots, 0, b_1, b_2, \dots, b_m)^T$

min
$$z' = -12x_1 - 15x_2$$

s.t. $0.25x_1 + 0.50x_2 + x_3 = 120$
 $0.50x_1 + 0.50x_2 + x_4 = 150$
 $0.25x_1 + x_5 = 50$
 $x_j \ge 0, i = 1, 2, ..., 5$

例
$$\max z = 12x + 15y$$

s.t. $0.25x + 0.50y \le 120$
 $0.50x + 0.50y \le 150$
 $0.25x$ ≤ 50
 $x \ge 0, y \ge 0$

取 x_3, x_4, x_5 作为基变量, $x^{(0)} = (0,0,120,150,50)^T$

最优性检验 (1/2)

 $\min z = c^T x$ s.t. Ax = b $x \ge 0$

给定可行基 $B=(P_{\pi(1)}, P_{\pi(2)}, ..., P_{\pi(m)})$ 非基变量取 0,基变量由约束 Ax=b 确定唯一取值

目标函数

$$z = c^{T}x$$

$$= c^{T}x + c_{B}^{T}B^{-1}(b - Ax)$$

$$= c_{B}^{T}B^{-1}b + (c^{T} - c_{B}^{T}B^{-1}A)x$$

$$= z_{0} + (c^{T} - c_{B}^{T}B^{-1}A)x$$

以 B 为可行基时,目标函数取值 z_0 记 $\lambda^T = c^T - c_B^T B^{-1} A$ (**检验数**)目标函数可改写成 $z = z_0 + \lambda^T x$

最优性检验 (2/2)

$$z = z_0 + \lambda^T x$$
$$x_B = B^{-1}b - B^{-1}Nx_N$$

$$\exists B^{-1}A = (\alpha_{ij})_{m \times n}, \quad P_j' = B^{-1}P_j \ (1 \le j \le n), \quad \beta = B^{-1}b.$$

定理 3 给定基本可行解 $x^{(0)}$,

- (1) 若所有检验数大于等于0,则 x(0)是最优解.
- (2) 若存在检验数 $\lambda_k < 0$ 且所有 $\alpha_{ik} \le 0$ ($1 \le i \le m$), 则无最优解.
- 证 (1) 如果 $\lambda \ge 0$, 则对任意可行解, $x \ge 0$, $z \ge z_0$, 故 $x^{(0)}$ 是最优解.
- (2) 若存在 $\lambda_k < 0$ (λ_k 必对应非基变量) 且所有 $\alpha_{ik} \le 0$ ($1 \le i \le m$), 取 $x_k = M > 0$, 其余非基变量 $x_j = 0$,解得

$$x_{\pi(i)} = \beta_i - \alpha_{ik} M \ge 0, \qquad 1 \le i \le m$$

这是一个可行解, 其目标函数值为 $z = z_0 + \lambda_k M$ 当 $M \to +\infty$ 时, $z \to -\infty$. 得证无最优解.

问题 存在检验数 $\lambda_k < 0$ 且有 $\alpha_{lk} > 0$ 的情况呢? 基变换.

基变换 (1/3)

给定可行基 $B=(P_{\pi(1)},P_{\pi(2)},...,P_{\pi(m)})$,设 $\lambda_k < 0$ 且 $\alpha_{lk} > 0$, x_k 必是非基变量.

基变换: 用非基变量 x_k 替换基变量 $x_{\pi(l)}$,用 P_k 替换 B 中的 $P_{\pi(l)}$,新的基为 $B'=(P_{\pi(1)},...,P_{\pi(l-1)},P_k,P_{\pi(l+1)},...,P_{\pi(m)})$.

称 x_k 为换入变量, $x_{\pi(l)}$ 为换出变量.

(1) 证 B' 是基, 即 $P_{\pi(1)}, ..., P_{\pi(l-1)}, P_k, P_{\pi(l+1)}, ..., P_{\pi(m)}$ 线性无关. 由 于 $P_{\pi(1)}, P_{\pi(2)}, ..., P_{\pi(m)}$ 线性无关, 只需证 $P_{\pi(l)}$ 可表成 $P_{\pi(1)}, ..., P_{\pi(m)}$ 的线性组合.

曲于
$$(B^{-1}P_{\pi(1)}, B^{-1}P_{\pi(2)}, ..., B^{-1}P_{\pi(m)}) = B^{-1}B = E,$$

$$(B^{-1}P_k) = P'_k = \sum_{i=1}^m \alpha_{ik} P'_{\pi(i)} = \sum_{i=1}^m \alpha_{ik} (B^{-1}P_{\pi(i)}) \implies P_k = \sum_{i=1}^m \alpha_{ik} P_{\pi(i)}$$

基变换 (2/3)

解得

$$P_{\pi(l)} = \frac{1}{\alpha_{lk}} P_k - \sum_{\substack{i=1 \ \exists \neq l}}^m \frac{\alpha_{ik}}{\alpha_{lk}} P_{\pi(i)}$$

得证 B' 是一个基.

(2) 要保证 B' 是可行基.

$$Ax = b$$

$$B^{-1}Ax = B^{-1}b = \beta$$

$$x_B + B^{-1}Nx_N = \beta$$

 $B^{-1}A=(P_1',P_2',...,P_m')$ 中对应 x_B 的列 (第 $\pi(1),...,\pi(m)$ 列) 构成单位矩阵. 用 P_k 替换 $P_{\pi(l)}$ 得到 B', 将 x_B 中的 $x_{\pi(l)}$ 替换成 x_k , 即解出第 l 个方程中的 x_k . 这只需用 α_{lk} 除第l个方程,再用第 l 个方程消去其它方程中的 x_k

基变换 (3/3)

计算公式
$$\alpha_{lj}' = \alpha_{lj}/\alpha_{lk}, \quad 1 \le j \le n$$

$$\alpha_{ij}' = \alpha_{ij} - \alpha_{ik}\alpha_{lj}/\alpha_{lk}, \quad 1 \le i \le m 且 i \ne l, \quad 1 \le j \le n$$

$$\beta_{l}' = \beta_{l}/\alpha_{lk}$$

$$\beta_{l}' = \beta_{i} - \alpha_{ik}\beta_{l}/\alpha_{lk}, \quad 1 \le i \le m 且 i \ne l$$

为保证 B'是可行的, 只需

$$\beta_i' = \beta_i - \alpha_{ik}\beta_l/\alpha_{lk} \ge 0, \quad 1 \le i \le m \square i \ne l$$

 $\beta_i \ge 0$, $\beta_l \ge 0$, $\alpha_{lk} > 0$. $\alpha_{ik} \le 0$ 时不等式成立; $\alpha_{ik} > 0$ 时 $\beta_l / \alpha_{lk} \le \beta_i / \alpha_{ik}$

取 l 使得 $\beta_l/\alpha_{lk} = \min\{\beta_i/\alpha_{ik} \mid \alpha_{ik} > 0, 1 \le i \le m\}$

用第 l 个方程消去简化的目标函数中的 x_k ,

$$\lambda_{j}' = \lambda_{j} - \lambda_{k} \alpha_{lj} / \alpha_{lk}, \quad 1 \le j \le m$$

$$z_{0}' = z_{0} + \lambda_{k} \beta_{l} / \alpha_{lk}$$

单纯形法

算法 单纯形法 (针对最小化)

- 1. 设初始可行基 $B = (P_{\pi(1)}, P_{\pi(2)}, \dots, P_{\pi(m)}), \ \alpha = B^{-1}A, \ \beta = B^{-1}b,$ $\lambda^T = c^T c_B^T B^{-1}A, \ z_0 = B^{-1}b.$
- 2. 若所有 $\lambda_j \ge 0$ (1 $\le j \le n$), 则 $x_B = \beta$, $x_N = 0$ 是最优解, 计算结束.
- 3. 取 $\lambda_k < 0$. 若所有 $\alpha_{ik} \le 0$ ($1 \le i \le m$), 则无最优解, 计算结束.
- 4. 取 l 使得

$$\beta_l/\alpha_{lk} = \min\{ \beta_i/\alpha_{ik} \mid \alpha_{ik} > 0, 1 \le i \le m \}$$

- 5. 以 x_k 为换入变量、 $x_{\pi(l)}$ 为换出变量做基变换.
- 6. 转 2.

对最大化, $2 + \lambda_j \ge 0$ 改为 $\lambda_j \le 0$, $3 + \lambda_k < 0$ 改为 $\lambda_k > 0$.

单纯形表

			c_1	c_2		C_n	
c_B	x_B	b	x_1	x_2	• • •	\mathcal{X}_n	θ
$c_{\pi(1)}$	$x_{\pi(1)}$	β_1	α_{11}	α_{12}	• • •	α_{1n}	
$C_{\pi(2)}$	$x_{\pi(2)}$	β_2	α_{21}	$lpha_{22}$	• • •	α_{2n}	
•	•	•	•	•	• • •	•	
$C_{\pi(m)}$	$x_{\pi(m)}$	eta_m	α_{m1}	α_{m2}	• • •	α_{mn}	
	- Z	$-z_0$	λ_1	λ_2	• • •	λ_n	

$$-z + \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n = -z_0$$

$$\min z = c^T x$$

s.t. $Ax = b$
 $x \ge 0$

基变量 B

$$(\alpha_{i,j}) = B^{-1}A$$
$$(\beta_i) = B^{-1}b$$
$$\lambda^T = c^T - c_B^T B^{-1}A$$

选择
$$\lambda_k < 0$$
:
$$\theta_i = \beta_i / \alpha_{i,k}$$
for $\alpha_{i,k} > 0$

令
$$\theta_l = min\{\theta_i\}$$
:
基变量换出 $x_{\pi(l)}$
基变量换入 x_k

重复上述过程

单纯形表:例1

$$\min z = -12x_1 - 15x_2$$
s.t. $0.25x_1 + 0.50x_2 + x_3 = 120$
 $0.50x_1 + 0.50x_2 + x_4 = 150$
 $0.25x_1 + x_5 = 50$

			-12	-15	0	0	0	
C_B	X_B	b	x_1	x_2	x_3	X_4	X_5	θ
0	x_3	120	0.25	0.50	1	0	0	240
0	X_4	150	0.50	0.50	0	1	0	300
0	X_5	50	0.25	0	0	0	1	
	-z	0	-12	-15	0	0	0	
-15	x_2	240	0.50	1	2	0	0	480
0	x_4	30	0.25	0	-1	1	0	120
0	x_5	50	0.25	0	0	0	1	200
	- <i>z</i>	3600	-4.5	0	30	0	0	
-15	x_2	180	0	1	4	-2	0	
-12	x_1	120	1	0	-4	4	0	
0	χ_5	20	0	0	1	- 1	1	
	-z	4140	0	0	12	18	0	

单纯形法:例2

用单纯形法解下述线性规划

min
$$z = x_1 - 2x_2$$

s.t. $x_1 - x_2 \le 1$
 $-2x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

解引入2个松弛变量 x_3, x_4 ,得到标准形

min
$$z = x_1-2x_2$$

s.t. $x_1-x_2+x_3 = 1$
 $-2x_1+x_2+x_4=4$
 $x_j \ge 0, \quad j=1,2,3,4$

单纯形表:例2

			1	-2	0	0	
C_B	\mathcal{X}_{B}	b	x_1	x_2	x_3	\mathcal{X}_4	θ
0	x_3	1	1	-1	1	0	
0	x_4	4	-2	1	0	1	4
	- Z	0	1	-2	0	0	
0	x_3	5	-1	0	1	1	
-2	x_2	4	-2	1	0	1	
	- Z	8	-3	0	0	2	

目标函数值没有下界, 无最优解

构造初始基本可行解(其他约束条件)

- 不等式约束 $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$
 - ▶按前述方法,松弛变量取为不等式右值,构造初始基本可行解
- 不等式条件 $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$
 - ▶添加剩余变量, 转化为等式约束
- \blacksquare 等式约束 $\sum_{j=1}^{n} a_{ij} x_j = b_i$
 - ▶引入人工变量和辅助问题 (两阶段法)
 - ▶人工变量: $\sum_{j=1}^{n} a_{ij} x_j + y_i = b_i \, \exists \, y_i \geq 0$
 - ▶辅助问题:最小化人工变量之和,满足所有约束
 - 若最优值非零,原问题不存在可行解
 - 若最优解的基变量不含人工变量, 作为原问题的初始基本可行解
 - 若最优解的基变量含有人工变量,可推断存在线性相关的等式约束,将等式删掉后,继续求最优解,直到基变量不 含人工变量

避免换出换入变量循环的Bland规则

- 永不终止的单纯形法 [Beal 1955]
 - 规定: 当有多个 $\lambda_j < 0$ 时,设 $|\lambda_k| = \max\{|\lambda_j|: \lambda_j < 0\}$,取 x_k 作为换入变量;当有多个 θ_i 同时取到最小值时,取对应的下标最小的基变量作为换出变量。
 - 如下例子,取 x_5, x_6, x_7 作为初始基变量,计算经过6次基变换回到初始可行基

$$\min z = -\frac{3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$

$$s. t. \quad \frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 + x_5 = 0$$

$$\frac{1}{2}x_1 - 12x_2 - \frac{1}{2}x_3 + 3x_4 + x_6 = 0$$

$$x_3 + x_7 = 1$$

$$x_i \ge 0, \ 1 \le i \le 7$$

■ Bland规则

- 规则1: 当有多个 $\lambda_i < 0$ 时,取对应的非基变量中下标最小的作为换入变量
- 规则2: 当有多个 $\theta_i = \beta_i/\alpha_{ik}$ ($\alpha_{ik} > 0$) 同时取到最小值时,取对应的基变量中下标最小的作为换出变量

(可用反证法证明Bland规则不会出现循环)

本讲小结

- 线性规划模型
- 应用例子
- 单纯形法

to-be continued...