

Week 3

Normalize features

In [59]:	<pre>X.describe().T</pre>								
Out[59]:		count	mean	std	min	25%	50%	75%	r
	Substance	22092.0	1.500000	1.118059	0.0	0.75	1.500	2.250	3.
	Unit	22092.0	0.250000	0.433023	0.0	0.00	0.000	0.250	1.
	Supply Chain Emission Factors without Margins	22092.0	0.084807	0.267039	0.0	0.00	0.002	0.044	7.
	Margins of Supply Chain Emission Factors	22092.0	0.012857	0.078720	0.0	0.00	0.000	0.000	3.
	DQ ReliabilityScore of Factors without Margins	22092.0	3.308030	0.499643	2.0	3.00	3.000	4.000	4.
	DQ TemporalCorrelation of Factors without Margins	22092.0	2.571429	0.494883	2.0	2.00	3.000	3.000	3.
	DQ GeographicalCorrelation of Factors without Margins	22092.0	1.000000	0.000000	1.0	1.00	1.000	1.000	1.
	DQ TechnologicalCorrelation of Factors without Margins	22092.0	2.632129	1.135661	1.0	1.00	3.000	3.000	5.
	DQ DataCollection of Factors without Margins	22092.0	1.000000	0.000000	1.0	1.00	1.000	1.000	1.
	Source	22092.0	0.500634	0.500011	0.0	0.00	1.000	1.000	1.
In [60]:	<pre># Normalize features scaler = StandardScaler() X_scaled = scaler.fit_transform(X)</pre>								
In [61]:	<pre>X_scaled[0].min(),X_scaled[0].max()</pre>								
Out[61]:	(np.float64(-1.3416407864998738), np.float64(1.3849614361966767))								
In [62]:	<pre>np.round(X_scaled.mean()),np.round(X_scaled.std())</pre>								
Out[62]:	(np.float64(-0.0), np.float64(1.0))								

Divide the data into train and test

```
In [63]: X.shape
Out[63]: (22092, 10)
In [65]: X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2)
In [66]: X_train.shape
Out[66]: (17673, 10)
In [67]: X_test.shape
Out[67]: (4419, 10)
```

Select the model for training

```
In [68]: RF_model = RandomForestRegressor(random_state=42) # Initializing Random Forest
```

Step 4: Training

```
In [70]: RF_model.fit(X_train, y_train) # Fitting the model on training data
Out[70]: RandomForestRegressor
RandomForestRegressor(random_state=42)
```

Step 5: Prediction and Evaluation

```
print(f'RMSE: {RF_rmse}')
print(f'R² Score: {RF_r2}')

RMSE: 0.006143789217304181
R² Score: 0.9993280085696331

In [74]: from sklearn.linear_model import LinearRegression # Importing Linear Regressic
LR_model = LinearRegression() # Initializing Linear Regression model
# Fitting the Linear Regression model on training data

LR_model.fit(X_train, y_train)

LR_y_pred = LR_model.predict(X_test) # Making predictions on the test set usin

LR_mse = mean_squared_error(y_test, LR_y_pred) # Calculating Mean Squared Error
LR_rmse = np.sqrt(LR_mse) # Calculating Root Mean Squared Error (RMSE) for Lin
LR_r2 = r2_score(y_test, LR_y_pred) # Calculating R² score for Linear Regressi

print(f'RMSE: {LR_rmse}')
print(f'RMSE: {LR_rmse}')
print(f'RNSE: {LR_rr2}')
```

RMSE: 0.00028073792916293835 R² Score: 0.9999985968848819

Step 6: Hyperparameter Tuning

```
In [75]: # Hyperparameter tuning for Random Forest Regressor using GridSearchCV
    # Define the parameter grid for hyperparameter tuning
    param_grid = {
        'n_estimators': [100, 200],
        'max_depth': [None, 10, 20],
        'min_samples_split': [2, 5]
}

# Perform grid search with cross-validation to find the best hyperparameters
    grid_search = GridSearchCV(RandomForestRegressor(random_state=42), param_grid,

# Fit the grid search model on the training data
    grid_search.fit(X_train, y_train)

# Best model from grid search
    best_model = grid_search.best_estimator_
    print("Best Parameters:", grid_search.best_params_)
Best Parameters: {'max depth': 20, 'min samples split': 2, 'n estimators': 100}
```

Use best parameters for prediction

```
In [76]: # Use the best model to make predictions on the test set
```

```
y_pred_best = best_model.predict(X_test)

HP_mse = mean_squared_error(y_test, y_pred_best)
HP_rmse = np.sqrt(HP_mse)
HP_r2 = r2_score(y_test, y_pred_best)

print(f'RMSE: {HP_rmse}')
print(f'R^2 Score: {HP_r2}')
```

RMSE: 0.005948528382514106 R² Score: 0.9993700440298772

Step 7: Comapartive Study and Slecting the Best model

```
In [77]: # Create a comparative DataFrame for all models
         results = {
             'Model': ['Random Forest (Default)', 'Linear Regression', 'Random Forest (
             'MSE': [RF mse, LR mse, HP mse],
             'RMSE': [RF rmse, LR rmse, HP rmse],
             'R2': [RF r2, LR r2, HP r2]
         # Create a DataFrame to compare the results of different models
         comparison df = pd.DataFrame(results)
         print(comparison df)
                            Model
                                            MSE
                                                     RMSE
                                                                 R2
       0 Random Forest (Default) 3.774615e-05 0.006144 0.999328
                Linear Regression 7.881378e-08 0.000281 0.999999
            Random Forest (Tuned) 3.538499e-05 0.005949 0.999370
```

Save model and encoders

```
In [78]: # Create a directory to save the models if it doesn't exist
!mkdir models

In [79]: # Save model and encoders
   joblib.dump(best_model, 'models/LR_model.pkl') # Save the best model
   joblib.dump(scaler, 'models/scaler.pkl') # Save the scaler used for normalizat

Out[79]: ['models/scaler.pkl']
```