2021041010
2021AM10198
APL 7M7 Page No.
HOMEWORK 3
31. $\frac{\partial u(n,t,\omega)}{\partial t} + u(n,t,\omega) \frac{\partial u(n,t,\omega)}{\partial t} = 0$, $t \in [0,t]$
or de [0,1]
$u(0,t) = u(1,t)$; $u(n,0) = \frac{1}{2} sin(2\pi n)$
h sur carin
For PCE:
$u(n, t, \omega) = \sum_{i=0}^{\infty} u_i(n, t) \Phi_i(\omega)$
n=0
Detail in the set of basis functions of Hernite polynome
$ = \sum_{i} u_i \cdot \Phi_i + \sum_{i} u_i \cdot \Phi_i = 0 $
=1 Zig. dg. + 5Zig. dg. dg. =0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
=) < 4; \$\phi_1, \phi_2) + <55 u. du. d. d. d. d. \phi_2) = 0
=) uk+ 4; du; Cijk = 0 2(jk= 55 < 4.4.4)?
Voive CDS for distretogation:
$u_{k} = -u \cdot (n + 1) \cdot (n + 1 \cdot n + 1) - u \cdot (n - 1 \cdot n + 1)$
Voig Enter time stopping schowe:
ux(n, t+1)= ux(n,t) -thc; u(n,t) x [u(n+1)n, b) - u(n-1) +)]
Also intial condition: 4 (9,0) = (1 sin (27%) 4)
h sould the