

Stainless Steel Rotary Servo Actuator in Hygienic Design

Content

Overview	04
axenia value 060	
axenia value 080	
axenia value 115	
Options	
Project planning	

Overview - axenia value

The compact axenia servo actuator was specially developed and produced for challenging applications. It is made from highly resistant stainless steel and is therefore durably resistant against numerous aggressive media such as cleaning agents and disinfectants Furthermore, it provides a highly precise and dynamic connection between motor and gearhead.

Your technical benefits

- Hygienic design: Cavity-free design
- Long service life through use of CIP-compatible materials
- Integrated, optimized actuator sealing concept
- Resistant against aggressive cleaning agents and disinfectants
- Foodstuff-compatible lubrication
- Powerful motor performance
- Low gearhead torsional backlash

Your benefits

- Simple and hygienic cleaning
- Smaller machines possible
- No complicated encapsulation
- Fewer wearing parts in the machine
- Low drive failure probability
- Low maintenance and repair costs

Fields of application

Suitable for any field of application where hygiene is the highest priority, aggressive cleaning agents are used and precise drives are required.

Particularly in the following industries, the stainless steel servo actuator shows its strengths:

- Food industry
- Pharmaceutical industry
- Textile industry
- Medical industry
- Packaging industry

axenia value 060

Technical data

i	16	20	25	50	70	100
V DC	560					
Nm	21	26	32	30	32	29
Nm	7.5	9.4	11.8	8.2	11.5	15
Nm	17.6	22	27.5	55 (1)	77 (1)	-
rpm	375	300	240	120	86	60
Nm		1.4			0.7	
А		2.3			1.7	
kgcm ²	0.35 0.28					
arcmin	≤ 15					
Nm/arcmin			2.3			2
N			10	00		
N			16	00		
h			200	000		
kg			(3		
dB(A)			≤	60		
°C			10	35		
°C			9	0		
	F					
°C	0 to +40					
	IP69K (2)					
	Lubricated for life H1					
			Any	(3)		
	V DC Nm Nm Nm rpm Nm A kgcm² arcmin Nm/arcmin N h kg dB(A) °C °C	V DC Nm 21 Nm 7.5 Nm 17.6 rpm 375 Nm A kgcm² arcmin Nm/arcmin N h kg dB(A) °C °C	V DC Nm 21 26 Nm 7.5 9.4 Nm 17.6 22 rpm 375 300 Nm 1.4 A 2.3 kgcm² 0.35 arcmin Nm/arcmin N h kg dB(A) °C °C	V DC 56 Nm 21 26 32 Nm 7.5 9.4 11.8 Nm 17.6 22 27.5 rpm 375 300 240 Nm 1.4 4 2.3 kgcm² 0.35 35 arcmin ≤ 2.3 N 10 10 N 16 10 kg 6 6 dB(A) ≤ 6 °C 9 10 °C 0 to 10 Lubricated 10 10	V DC 560 Nm 21 26 32 30 Nm 7.5 9.4 11.8 8.2 Nm 17.6 22 27.5 55 (1) rpm 375 300 240 120 Nm 1.4 4 4 A 2.3 4 4 kgcm² 0.35 4 4 arcmin 2.3 4 4 Nm/arcmin 2.3 4 4 N 1600 4 4 kg 6 4 6 dB(A) ≤ 60 6 4 °C 90 7 90 F °C 0 to +40 1P69K (2)	V DC 560 Nm 21 26 32 30 32 Nm 7.5 9.4 11.8 8.2 11.5 Nm 17.6 22 27.5 55 (1) 77 (1) rpm 375 300 240 120 86 Nm 1.4 0.7 A 2.3 1.7 kgcm² 0.35 0.28 arcmin ≤ 15 Nm/arcmin 2.3 N 1600 N 1600 kg 6 dB(A) ≤ 60 °C 135 °C 90 F °C 0 to +40 IP69K (2) Lubricated for life H1

(1) greater than T2B of the gearhead. In an emergency, can be used approx. 1000 times while the motor is rotating. (2) at 30 bar, based on DIN40050-9. (3) preferably horizontal mounting position with cable outlet facing downwards.

motion control

Char. curves

AXV 060_-016_-6__1-053B-K_-000

AXV 060_-020_-6__1-053B-K_-000

AXV 060_-025_-6__1-053B-K_-000

AXV 060_-050_-6__1-053A-K_-000

AXV 060_-070_-6__1-053A-K_-000

AXV 060_-100_-6__1-053A-K_-000

Short-term maximum torque Permanent torque curve S1 Permanent torque curve S1 50K over ambient temperature

at surface

at surface

••••• Permanent torque curve S1 30K over ambient temperature

Ratio	Length L1 [mm]	Length L2 [mm]
Dual-stage (16, 20, 25, 50, 70, 100)	229	282

axenia value 080

Technical data

Ratio	i	16	20	25	50	70	100
Intermediate circuit voltage	V DC	560					
Max. acceleration torque at output	Nm	50	62	78	48	67	72
Static output torque	Nm	21	26.2	32.8	15	21	30
Brake holding torque at output (100°C)	Nm	18	17.6	27.5	55	77	110 (1)
Max. speed	rpm	375	300	240	120	86	60
Max. motor acceleration torque	Nm		3.4			1.24	
Max. motor acceleration current	А		4.4			1.77	
Actuator mass moment of inertia at MS	kgcm ²		0.98			0.7	
Backlash	arcmin	≤ 15					
Torsional rigidity	Nm/arcmin			7.5			5.5
Max. axial force	N			15	00		
Max. radial force (relative to shaft center at 100 rpm)	N			25	00		
Bearing lifespan	h			200	000		
Weight (with resolver, without brake)	kg			11	1.5		
Operating noise (at n1 = 3000 rpm)	dB(A)			≤	63		
Max. perm. motor surface temperature	°C			10	35		
Max. perm. gearhead surface temperature	°C			9	0		
Insulating material class				ı	=		
Ambient temperature	°C	0 to +40					
Protection class		IP69K (2)					
Lubrication		Lubricated for life H1					
Mount. pos.		Any (3)					

(1) greater than T2B of the gearhead. In an emergency, can be used approx. 1000 times while the motor is rotating. (2) at 30 bar, based on DIN40050-9. (3) preferably horizontal mounting position with cable outlet facing downwards.

motion control

Char. curves

Ratio	Length L1 [mm]	Length L2 [mm]
Dual-stage (16, 20, 25, 50, 70, 100)	244.5	304.5

Short-term maximum torque
Permanent torque curve S1
Permanent torque curve S1
50K over ambient temperature at surface
Permanent torque curve S1
30K over ambient temperature at surface

axenia value 115

Technical data

Ratio	i	16	20	25	50	70	100	
Intermediate circuit voltage	V DC	560						
Max. acceleration torque at output	Nm	145	181	200	152	200	180	
Static output torque	Nm	57	71	88	42	58	83	
Brake holding torque at output (100°C)	Nm	72	90	113	225 (1)	315 (1)	450 (1)	
Max. speed	rpm	300	240	192	96	69	48	
Max. motor acceleration torque	Nm		9.55			3.53		
Max. motor acceleration current	А		12.9			4.8		
Actuator mass moment of inertia at MS	kgcm²		3.73			2.51		
Backlash	arcmin	≤ 15						
Torsional rigidity	Nm/arcmin			24			22	
Max. axial force	N			30	100			
Max. radial force (relative to shaft center at 100 rpm)	N			42	250			
Bearing lifespan	h			200	000			
Weight (with resolver, without brake)	kg			2	.1			
Operating noise (at n1 = 3000 rpm)	dB(A)			≤	68			
Max. perm. motor surface temperature	°C			1;	35			
Max. perm. gearhead surface temperature	°C			g	00			
Insulating material class				1	F			
Ambient temperature	°C	0 to +40						
Protection class		IP69K (2)						
Lubrication		Lubricated for life H1						
Mount. pos.		_	Any (3)					

(1) greater than T2B of the gearhead. In an emergency, can be used approx. 1000 times while the motor is rotating. (2) at 30 bar, based on DIN40050-9. (3) preferably horizontal mounting position with cable outlet facing downwards.

motion control

Char. curves

AXV 115_-016_-6__1-094C-K_-000

AXV 115_-020_-6__1-094C-K_-000

AXV 115_-025_-6__1-094C-K_-000

AXV 115_-050_-6__1-094A-K_-000

AXV 115_-070_-6__1-094A-K_-000

AXV 115_-100_-6__1-094A-K_-000

 Ratio
 Length L1 [mm]
 Length L2 [mm]

 Dual-stage (16, 20, 25, 50, 70, 100)
 293.6
 373.6

	Short-term maximum torque
	Permanent torque curve S1
	Permanent torque curve S1
	50K over ambient temperature at surface
••••••	Permanent torque curve S1
	30K over ambient temperature

at surface

Options /

Design (lubrication)

All gearheads are lubricated for life with a foodstuff-compatible synthetic grease (hydrocarbon oil, aluminum complex soap, type UH1 14-151, Klüber) or with a mineral oil-based lithium soap grease (type Longtime PD 1, Castrol).

Feedback systems

A selection of encoder systems is available for positioning and speed measurement.

Standard:

- Resolver, 2-pin, 1 sin/cos cycle per rotation

Optional:

- Single-turn, EnDat 2.1 with $1V_{ss}$, 512 S/R
- Multi-turn, EnDat 2.1 with $1V_{ss}$, 512 S/R, 4096 R
- Hiperface, single-turn, 128 S/R
- Hiperface, multi-turn, 128 S/R, 4096 R
- TTL incremental encoder with hall signals and rectangular incremental signals 2048 S/R
- other encoder types available on request

Operating voltage

The technical data on pages 6, 8, and 10 are based on an intermediate circuit voltage of 560 V DC. Other voltages are available on request.

Temperature sensors

Different sensors are available to protect the motor coil from overheating.

Standard:

- PTC resistor, type STM 160 according to DIN 44081/82
- KTY resistor, type KTY 84-130

Holding brake

A compact permanent magnet brake is fitted to secure the motor shaft when the actuator is disconnected from the power. Characteristics include no torsional backlash, no residual torque when the brake is released, unlimited duty cycles at zero speed and a constant torque at high operating temperatures.

Size		060 and 080	115		
Holding torque at 100°C	Nm	1.1	4.5		
Power supply	V DC	24 +6% / -10%			
Current	А	0.42	0.42		

Please refer to our project planning note on page 14.

Backlash

The standard backlash of the gearheads is \leq 15 arcmin.

Motor size

The motor sizes are defined in accordance with the selected ratios.

Size	060	080	115
Ratio: 16, 20, 25	053A	064C	094C
Ratio: 50, 70, 100	053B	064A	094A

Cables

The actuators are equipped with a cable as standard (1 meter length, clean cut end). The cable can optionally be ordered in 3, 5, 10, 15, 20, 25 and 30 meter lengths. The termination of the cables on the controller side can be implemented to customer requirements.

Please refer to our Instructions for Use for further information on cables and their color assignments.

axenia value mounting kit

A special mounting kit is available for all sizes. This comprises:

- O-rings for the output shaft, inner and outer shoulder of the gearhead housing
- Stainless steel screws and washers for housing and output shaft

Article codes:

Size 060: 20058221 Size 080: 20058222 Size 115: 20058220

Order code

Return system

R = Resolver, 2-pole

I = Incremental encoder, optical

S = EnDat absolute encoder, single turn

M = EnDat absolute encoder, multi-turn

N = Hiperface absolute encoder, single-turn

K = Hiperface absolute encoder, multi-turn

T = Incremental encoder with hall signal

Project planning

Project planning note on brakes

The holding brakes installed in the actuators are subject to various influencing factors, e.g. the oxidation of abrasion particles, the flattening of friction surfaces in the case of frequent brake action at the same position, or the wear-dependent changes to the air gap. This can result in a reduction of the available holding torques.

All the holding torques indicated therefore apply for the ideal state under optimal conditions, without damaging influences. Such influences can be countered by means of a regular brake refresh cycle. For detailed information on the recommended refresh cycles, please refer to our Instructions for Use.

For critical applications, it is recommended to ensure sufficient design safeguards with regard to holding torque in order to take into account the above-mentioned uncertainty factors. Our in-house engineering department will be pleased to assist you with the application sizing.

Material information

The axenia value actuator is made from the following stainless steel materials:

- Gearhead output shaft: 1.4418
- Motor/gearhead housing, cover: 1.4404
- The surfaces are electropolished, surface roughness < Ra 0.8 (µm)
- Cable gland: 1.4404

The seals in the actuator are designed as follows:

- Gearhead output: PTFE
- Cover sealing ring: PUR
- O-ring between motor and gearhead: Fluoroprene
- Cable gland seal: TPU

Protection class information

The actuator complies with protection class IP69K. IP69K: Dustproof and water resistant at high pressure / steam jet cleaning (max. 30 bar)

All of the axenia value actuator materials which come into contact with the environment are highly resistant against a wide variety of aggressive CIP cleaning agents.

Servo controllers

The axenia actuator can be operated using a wide selection of different servo controllers. The table below contains a selection of servo controllers already tested with the axenia. and provides information to assist in selecting the correct options. You can request a set of quick start instructions containing all the most important information for parametrizing the servo controller. Please take the current consumption of the actuator during selection of the servo controller used.

		Motor feedback			Temperature sensor		DC bus voltage			
Manufacturer	Version/Type	Resolver	EnDat	Hiperface	TTL enco- der	PTC	KTY	48 V DC	320 V DC	560 V DC
Bosch Rexroth	IndraDrive	х	х	х	-	х	х	-	х	х
Beckhoff	AX5000	х	x	x	-	х	x	-	x	х
B & R	AcoPos	х	х	X ¹	-	х	х	-	X ²	х
Control techniques	UniDrive SP	x	x	×	х	x	-	-	-	х
	Servostar 300	x	x	×	х	х	-	-	x	х
Kollmorgen	Servostar 700	x	x	×	х	x	-	-	×	x
	AKD	х	х	×	-	х	-	-	x	х
FOD Dellas eige	TrioDrive D/xS	х	x	x	-	х	x	-	x	-
ESR Pollmeier	MidiDrive D/xS	x	x	×	-	x	x	-	-	х
Parker	Compax 3	х	x	×	х	х	-	-	x	х
KED	Combivert F5-Servo	x	x	×	-	х	-	-	x	х
KEB	Combivert F5-A Servo	x	-	-	-	x	-	-	×	х
	Global Drive 93xxx	x	-	×	-	х	x	-	-	x
Lenze	Global Drive 94xx	x	×	×	-	x	x	-	×	х
	ECS Servosystem	х	-	×	-	х	-	-	×	x
NUM	MDLU 3	-	-	×	-	х	-	-	-	х
	Ultra 3000	-	-	×	-	×	-	-	×	x
Davidson II	Kinetix 6000	-	-	×	-	x	-	-	×	х
Rockwell	Kinetix 6200	-	-	×	-	×	-	-	×	х
	Kinetix 6500	-	-	×	-	х	-	-	×	x
	SimoDrive 611U	x	x	-	-	-	×	-	-	x
0:	SimoDrive 611D	-	×	-	-	-	×	-	-	х
Siemens	Masterdrive MC	x	x	-	-	x	×	-	-	x
	Sinamics S120	x	x	-	-	-	×	-	-	x
Oak a side a Florat i	PacDrive MC-4	-	-	×	-	×	-	-	×	×
Schneider Electric	PacDrive 3	-	-	×	-	x	-	-	×	x
WITTENSTEIN motion control	simco	×	×	-	-	-	×	x ³	-	-

No programming of the electronic nameplate possible 2 up to 3.6 $\rm A_{eff}$ rated current 3 up to 10 $\rm A_{eff}$ rated current

WITTENSTEIN, Inc. 1249 Humbracht Circle Bartlett, IL 60103 USA

Tel. +1 630 540-5300

E-mail info@wittenstein-us.com