ER Diagrams: Solutions

	person	member	club	Is it possible?
1.	5	0	8	Yes No
	5	7	8	Yes No
	5	0	5	Yes No
	5	10	5	Yes No
	11	3	4	YES NO
	11	9	4	Yes No

The min constraint of 1 for club's participation in member means that every club must participate in at least one member relationship. Hence, $|club| \leq |member|$. This makes the first three and fifth false.

The max constraint of 1 for person's participation in member means that a person can participate in at most one member relationship. Hence, $|person| \ge |member|$. This makes second and fourth false.

The last is possible. Two people have no member relationships. The nine member relationships each have a unique person and must use all four clubs but some can use the same club. An example (just one of many):

Person: P1, P2, ..., P11

Member (P1, C1), (P2, C2) (P3, C3), (P4, C4), (P5, C4), (P6, C4), (P7, C4), (P8, C4), (P9, C4)

Club: C1, C2, C3, C4

