Eksploracja Masywnych Danych - Analiza danych

Kajetan Zimniak & Bartosz Górka 27 October, 2019

Contents

Podsumowanie analizy	1
Wykorzystane biblioteki	1
Ustawienie ziarna generatora	1
Charakterystyka obserwacji - zastosowane atrybuty	2
Wczytanie danych z pliku	2
Podstawowe statystyki zbioru danych	3
Statystyka parametrów obserwacji	3
Rozkład wartości cech	3
Przetwarzanie brakujących danych	10

Podsumowanie analizy

TODO: Podsumowanie na koniec

Wykorzystane biblioteki

- knitr
- dplyr
- tidyverse
- ggplot2
- gridExtra

Ustawienie ziarna generatora

Celem zapewnienia powtarzalności operacji losowania, a co za tym idzie powtarzalności wyników przy każdym uruchomieniu raportu na tych samych danych zastosowano ziarno generatora o wartości 102019.

set.seed(102019)

Charakterystyka obserwacji - zastosowane atrybuty

W ramach analizy mamy do czynienia z obserwacjami opisanymi za pomocą następujących atrybutów:

```
length: długość złowionego śledzia [cm]
cfin1: dostępność planktonu [zagęszczenie Calanus finmarchicus gat. 1]
cfin2: dostępność planktonu [zagęszczenie Calanus finmarchicus gat. 2];
chel1: dostępność planktonu [zagęszczenie Calanus helgolandicus gat. 1];
chel2: dostępność planktonu [zagęszczenie Calanus helgolandicus gat. 2];
lcop1: dostępność planktonu [zagęszczenie widłonogów gat. 1];
lcop2: dostępność planktonu [zagęszczenie widłonogów gat. 2];
fbar: natężenie połowów w regionie [ułamek pozostawionego narybku];
recr: roczny narybek [liczba śledzi];
cumf: łączne roczne natężenie połowów w regionie [ułamek pozostawionego narybku];
totaln: łączna liczba ryb złowionych w ramach połowu [liczba śledzi];
sst: temperatura przy powierzchni wody [°C];
sal: poziom zasolenia wody [Knudsen ppt];
xmonth: miesiąc połowu [numer miesiąca];
nao: oscylacja północnoatlantycka [mb].
```

Wczytanie danych z pliku

Dane zamieszczone na stronie przedmiotu w postaci pliku CSV pobieramy wyłącznie w sytuacji braku pliku w katalogu roboczym. Pozwala to nam na ograniczenie niepotrzebnego transferu danych, jeżeli plik już istnieje.

```
file_name = "sledzie.csv"
source_url = "http://www.cs.put.poznan.pl/alabijak/emd/projekt/sledzie.csv"

if (!file.exists(file_name)) {
   download.file(source_url, destfile = file_name, method = "wget")
}
```

Po ewentualnym pobraniu wczytujemy dane do pamięci.

```
library('knitr')
library('dplyr')
library('tidyverse')

content =
   file_name %>%
   read_csv(col_names = TRUE, na = c("", "NA", "?")) %>%
   select(-1)

content[0:11] %>%
   head(n = 5) %>%
   kable(align = 'c', caption = 'Wybrane pomiary')
```

Table 1: Wybrane pomiary

length	cfin1	cfin2	chel1	chel2	lcop1	lcop2	fbar	recr	cumf	totaln
23.0	0.02778	0.27785	2.46875	NA	2.54787	26.35881	0.356	482831	0.3059879	267380.8
22.5	0.02778	0.27785	2.46875	21.43548	2.54787	26.35881	0.356	482831	0.3059879	267380.8
25.0	0.02778	0.27785	2.46875	21.43548	2.54787	26.35881	0.356	482831	0.3059879	267380.8
25.5	0.02778	0.27785	2.46875	21.43548	2.54787	26.35881	0.356	482831	0.3059879	267380.8
24.0	0.02778	0.27785	2.46875	21.43548	2.54787	26.35881	0.356	482831	0.3059879	267380.8

Oryginalnie zbiór posiada znaki ? jako oznaczenie wartości pustej (brakującej). Dzięki wykorzystaniu parametru na podczas wywołania funkcji read_csv możemy zastąpić znak ? poprawnym oznaczeniem braku wartości NA. W tabeli Wybrane pomiary zaprezentowano pierwsze pięć obserwacji.

Podstawowe statystyki zbioru danych

```
total_records = count(content)
total_records_without_na_values = count(na.omit(content))
```

W zbiorze danych mamy do czynienia z 52582 obserwacjami opisanych za pomocą 15 atrybutów. W całym zbiorze mamy do czynienia z 42488 obserwacjami bez wartości pustych co stanowi 81 procent całego zbioru.

Statystyka parametrów obserwacji

```
content %>%
  summary() %>%
  kable(align = 'c', caption = 'Statystyka zbioru danych')
```

	length	c fin 1	cfin2	chel1	chel2	lcop1
	Min. :19.0	Min.: 0.0000	Min.: 0.0000	Min.: 0.000	Min.: 5.238	Min.: 0.3074
	1st Qu.:24.0	1st Qu.: 0.0000	1st Qu.: 0.2778	1st Qu.: 2.469	1st Qu.:13.427	1st Qu.: 2.5479
	Median $:25.5$	Median: 0.1111	Median: 0.7012	Median: 5.750	Median $:21.673$	Median: 7.0000
	Mean $:25.3$	Mean: 0.4458	Mean: 2.0248	Mean $:10.006$	Mean $:21.221$	Mean: 12.8108
	3rd Qu.:26.5	3rd Qu.: 0.3333	3rd Qu.: 1.7936	3rd Qu.:11.500	3rd Qu.:27.193	3rd Qu.: 21.2315
	Max. $:32.5$	Max. :37.6667	Max. :19.3958	Max. $:75.000$	Max. $:57.706$	Max. :115.5833
	NA	NA's :1581	NA's :1536	NA's :1555	NA's :1556	NA's :1653
TODO:	Poprawić tabelk	ę, nie mieści się n	a stronie PDF			

Rozkład wartości cech

```
library('ggplot2')
library('gridExtra')
```

```
ggplot(content, aes(x = length)) + geom_histogram(binwidth = 0.25) +
theme_bw() + ggtitle('Długość złowionego śledzia [cm]') +
xlab(sprintf('Długość [cm]')) + ylab('Liczba obserwacji')
```

Długo złowionego ledzia [cm]

Jak możemy zaobserwować, większość śledzi w połowie ma długość od 23 do 27 centymetrów.

```
plot_cfin1 <- ggplot(content, aes(x = cfin1)) + geom_histogram(binwidth = 1.0) +
    theme_bw() + ggtitle('Calanus finmarchicus gat. 1') +
    xlab(sprintf('Zageszczenie planktonu [j]')) + ylab('Liczba obserwacji')

plot_cfin2 <- ggplot(content, aes(x = cfin2)) + geom_histogram(binwidth = 1.0) +
    theme_bw() + ggtitle('Calanus finmarchicus gat. 2') +
    xlab(sprintf('Zageszczenie planktonu [j]')) + ylab('Liczba obserwacji')

grid.arrange(plot_cfin1, plot_cfin2, nrow = 1)</pre>
```



```
plot_chel1 <- ggplot(content, aes(x = chel1)) + geom_histogram(binwidth = 0.5) +
    theme_bw() + ggtitle('Calanus helgolandicus gat. 1') +
    xlab(sprintf('Zageszczenie planktonu [j]')) + ylab('Liczba obserwacji')

plot_chel2 <- ggplot(content, aes(x = chel2)) + geom_histogram(binwidth = 0.5) +
    theme_bw() + ggtitle('Calanus helgolandicus gat. 2') +
    xlab(sprintf('Zageszczenie planktonu [j]')) + ylab('Liczba obserwacji')

grid.arrange(plot_chel1, plot_chel2, nrow = 1)</pre>
```


Calanus helgolandicus gat. 2 5000 4000 1000 1000 1000 1000 2000 1000

Zag szczenie planktonu [j]

```
plot_lcop1 <- ggplot(content, aes(x = lcop1)) + geom_histogram(binwidth = 0.5) +
    theme_bw() + ggtitle('Widłonogi gat. 1') +
    xlab(sprintf('Zagęszczenie planktonu [j]')) + ylab('Liczba obserwacji')

plot_lcop2 <- ggplot(content, aes(x = lcop2)) + geom_histogram(binwidth = 0.5) +
    theme_bw() + ggtitle('Widłonogi gat. 2') +
    xlab(sprintf('Zagęszczenie planktonu [j]')) + ylab('Liczba obserwacji')

grid.arrange(plot_lcop1, plot_lcop2, nrow = 1)</pre>
```



```
plot_fbar <- ggplot(content, aes(x = fbar)) + geom_histogram(binwidth = 0.05) +
    theme_bw() + ggtitle('Natezenie połowów') +
    xlab(sprintf('Ułamek pozostawionego narybku')) + ylab('Liczba obserwacji')

plot_recr <- ggplot(content, aes(x = recr)) + geom_histogram(binwidth = 50000.0) +
    theme_bw() + ggtitle('Roczny narybek') +
    xlab(sprintf('Liczba śledzi')) + ylab('Liczba obserwacji')

plot_cumf <- ggplot(content, aes(x = cumf)) + geom_histogram(binwidth = 0.02) +
    theme_bw() + ggtitle('Łączne roczne nateżenie połowów') +
    xlab(sprintf('Ułamek pozostawionego narybku')) + ylab('Liczba obserwacji')

plot_totaln <- ggplot(content, aes(x = totaln)) + geom_histogram(binwidth = 1000.0) +
    theme_bw() + ggtitle('Łączna liczba złowionych ryb') +
    xlab(sprintf('Liczba śledzi')) + ylab('Liczba obserwacji')

grid.arrange(plot_fbar, plot_recr, plot_cumf, plot_totaln, nrow = 2)</pre>
```



```
plot_sst <- ggplot(content, aes(x = sst)) + geom_histogram(binwidth = 0.1) +
    theme_bw() + ggtitle('Temperatura przy powierzchni wody') +
    xlab(sprintf('Temperatura')) + ylab('Liczba obserwacji')

plot_sal <- ggplot(content, aes(x = sal)) + geom_histogram(binwidth = 0.01) +
    theme_bw() + ggtitle('Poziom zasolenia wody') +
    xlab(sprintf('Zasolenie wody')) + ylab('Liczba obserwacji')

plot_xmonth <- ggplot(content, aes(x = xmonth)) + geom_histogram(binwidth = 0.5) +
    theme_bw() + ggtitle('Miesic połowu') +
    xlab(sprintf('Miesiac')) + ylab('Liczba obserwacji')

plot_nao <- ggplot(content, aes(x = nao)) + geom_histogram(binwidth = 0.5) +
    theme_bw() + ggtitle('Oscylacja północnoatlantycka') +
    xlab(sprintf('Oscylacja')) + ylab('Liczba obserwacji')

grid.arrange(plot_sst, plot_sal, plot_xmonth, plot_nao, nrow = 2)</pre>
```


Analizując przedstawione wykresy dotyczące poszczególnych atrybutów opisujących połowy możemy zaobserwować rozkład zbliżony do normalnego dla wielu z nich (chociażby parametr długości śledzia). W przypadku parametrów dostępności planktonu *Calanus finmarchicus gat. 1* oraz *Widłonogów gat. 1* obserwujemy występowanie drobnej próbki danych odbierających znacząco od reszty. Na potrzeby dalszego przetwarzania dane zostaną oczyszczone z tych obserwacji odstających.

```
without_outliers =
  content %>%
  filter(cfin1 <= 10 | is.na(cfin1)) %>%
  filter(lcop1 <= 90 | is.na(lcop1))</pre>
```

Po operacji w zbiorze obserwacji pozostało 52576 próbek (usunięto 6 obserwacji).

```
plot_cfin1_clear <- ggplot(without_outliers, aes(x = cfin1)) + geom_histogram(binwidth = 1.0) +
    theme_bw() + ggtitle('Calanus finmarchicus gat. 1') +
    xlab(sprintf('Zageszczenie planktonu [j]')) + ylab('Liczba obserwacji')

plot_lcop1_clear <- ggplot(without_outliers, aes(x = lcop1)) + geom_histogram(binwidth = 0.5) +
    theme_bw() + ggtitle('Widłonogi gat. 1') +
    xlab(sprintf('Zageszczenie planktonu [j]')) + ylab('Liczba obserwacji')

grid.arrange(plot_cfin1_clear, plot_lcop1_clear, nrow = 1)</pre>
```


Przetwarzanie brakujących danych

TODO: Analiza jakie atrybuty oraz liczność TODO: Uśrednienie wartości bazując na rozkładzie