190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

FINAL DE REQUERTES 28/01/05 PMT

Subject:

Statistics

Subject:	Statistics Paper: \$	5 2	
Question Number	Scheme	Marks	/
1.	(a) P(R=5) = P(R < 5) - P(R < 4) = 0.7211 - 0.5155 Can be inflict	A MI	
:	- 0.2061 AWRT 0.2061	Al	(2)
	$(\circ R: {}^{15}C_{5}(\circ .3)^{5}(\circ .7)^{10} = 0.206130)$ $(b) P(S=5) = 0.2414 - 0.1321 = 0.1093 Accept 0.1093 at 0.109 AMET AME$		(ı)
	(c) $P(T=5) = 0$. B1	(i)
۵.	(e) (i) A collection of individuals or items	81	
,	in A list of all sampling units in the population	BI	(د)
·	(6) Not always possible to keep this list up to date	BI	(1)
-	(c) (i) eg:- Publis in year 12 - small early listed variffe	81	
	Population known & easily accessed	Bı	
	(ii) Students in a University - Large not early little	•
	Population known but too time population consuming expensive to interview	81	(4)
	all of them.		
	() SR (i) Definition of census by example B1		
	(ii) Vanfle 31		

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Paper: S2

Question Number	Scheme	Marks
3.	(a) Continuous uniform/Rectangular	B (
	$f(x) = \begin{cases} 1/2, & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$	B1 (3)
	(1) $P(X < \frac{1}{3}L) = \frac{1}{L} \times \frac{L}{3} = \frac{1}{3}$	·
	(c) E(x)= \frac{1}{2}L	B1 (1)
	(d) P(Both < 12) = (13)2 = 1	(b) ² MI Ay(2)
4.	(a) Probability of success/failure is cons Trials are independent	tant B1 B1 (2)
	(b) Let p represent proportion of steechen distinguish detenden brands Ho: p=0.1; Hi: p>0.1	to who can (both) BI
	4= 0.01; CR: 2 > 2.3263	2-3263 81
	up = 25; upq = 22.5	both B1 Combe juplied
	$3 = \frac{39.5 - 25}{\sqrt{22.5}} = 3.0568$	Standardication M1 Silk ±0.5 & New My AWRT 3.06 A1
	Riject Ho: claim count be accepted	Based on clear A11 (6) evidence from 80%
	(c) 29:- np, nor both 75 - true to accept p close to 0.5 - not true, assured failure not clear cut no indefendance - one student influ	withon not met B1 (2)

(b) Aliter 8= 3.06 * p=0.9989 >0.99 } &1 equar to 2.3263

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme Marks	Marks	
5 .	Let X represent the number of defective articles		
	$X \sim B(10, 0.032)$ (a) $P(X=2) = \frac{10}{2} (0.032)^2 (1-0.032)^3$ Use of $C_r \neq 0^{-1}$ All correct $= 0.0355274$ Awar o.0355	M) A) A) (3)	
	(b) Large n small $\beta \Rightarrow Poisson application Seen or implied with \lambda = 100 \times 0.032 \approx 3.2$	81	
	$P(X \le 4) = P(X \le 3) = P(0) + P(1) + P(2) + P(3)$ $P(X \le 3) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	MI	
	$\frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{-3.2}{2} \left(1 + 3.2 + \frac{3.2}{100} + \frac{3.2}{100} \right)$ All correct	AI	
	= 0.602519 AWET 0.603	A1 (4)	
	(C) np & nor bok >5 => Hornal affronium tion Maffrox with np = 32 and npy = 30.976 boh	M 1 A\	
	P(X > 42) = P(Y > 42.5) white Y-11(32, 30.976) 31 md exit.	Μı	
	= $P(Z > \frac{42.5-32}{\sqrt{30.976}})$ All correct	Al	
	= P(2 > 1.8845) AWRT 1.69	Ąι	
	= 0.0294	A1 (6)	

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

uestion umber	Scheme	Marks
6.	het X represent number of accidents/month :: x~ Po (3)	81
	(a) $P(X>4) = 1 - P(X=4); = 1 - 0.8513 - 0.1647$	MI; AI (3)
	(b) Let Yrepresent number of accidents in 3 worther :: Yn 90 (3x3 = 9) Can be in	picea Bi
	P(Y>4)= 1-0.0560 = 0.9450	B1 (2)
	(c) Ho: $\lambda = 3$; H: $\lambda = 3$ 2. stailed; allow both 2. stailed; allow both 2. stailed; allow both 3. stailed; allow both	8 1
-	P(X=1/2=3)= 0.1991; >0.05	81; M1
	in Insufficient evidence to cuff out the claim that the new number of accident han been reduced. (M8: CR: X =0; X=1 not in CR; same conclusion >> B), MI,	AIV (4) AI)
	(d) Ho: >= 24x3=72; H1: > < 72 (an beinglich >:	.72 81
	K= 0.07 - CK. 8 - 1.44	awy Bi
	Using Hornal approximation with JET- 72 Canbrie	cplicad KI
	8= 55.5-72 = -1.94454 ±0.15, p.	with all w
	Since -1.944 is in the CR, the 1s rejected. There	+ 2 AIV (7)
	is evidence that the restriction has reduced clearers	chen ca
i	100	

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme	Marks	
7.	(a) $k \int_{-\infty}^{+\infty} (-x^{2} + 5x - 4) dx = 1$ Using $\int_{0}^{+\infty} f(x) dx = 1$	MI	
	$\therefore \left[\frac{1}{3} + \frac{5x^{2}}{2} - 4x \right]^{4} = 1$ All correct inty with limits	AI	
		A1 (3)	
	(b) $E(x) = \int_{-2/9}^{4/9} (-x^3 + 5x^2 - 4x) dx$ Ung $\int_{-2/9}^{4/9} x f(x) dx$	MI	
	$= \frac{2}{9} \left[-\frac{164}{4} + \frac{5x^2}{3} - \frac{4x^2}{1} \right]^{\frac{1}{4}}$ Comet in fig.	∄ I	
	= 5/2 Cao	A1 (3)	
	(c) $\frac{d}{dx}f(x) = \frac{2}{3}(-2x+5) = 0$; \Rightarrow Mode = $\frac{5}{2}$ Diff. If (x)	MI; AI (2)	
	(d) $F(x) = \int_{-1}^{1} 49(-x^2 + 5x - 4) dx$ Un # Steph	Mi	
	$= \left[\frac{49}{3} \left(-\frac{x^{2}}{3} + \frac{5x^{2}}{2} - 4x\right]^{3}\right]$ Integ [*] with limits	AI	
	$= \frac{2}{9} \left[-\frac{1}{3} + \frac{5}{2} - 4 = + \frac{11}{6} \right]$ auf	Ar	
	$F(x) = \begin{cases} 0 & x < 1 \\ \frac{2}{3} = \frac{2}{3} + \frac{5}{3} x^{2} - 4x + \frac{11}{3} \end{cases} \begin{cases} 0 & x < 1 \\ 1 \le x \le 4 \end{cases}$ $1 \le x \le 4$ $1 \le x \le 4$	B ₁ (s)	
	(e) $P(x=2.5) = F(2.5) = 0.5$ [1.15] or [Atyral expected]	MI AI (2)	
	(f) Median = 2.5; Distribution is eguenetreed	Blibl(2)	