Automatic Calibration of Large Traffic Models

Felix Meziere ¹ Gabriel Gomes ²

California PATH Program

August 27th, 2015

¹Ecole polytechnique [felix.meziere@polytechnique.edu]

Introduction

and motivation of this work

- Calibrate large traffic models input:
 - Constants of the scenario
 - Source and sink flows depending on day of week & moment of year
- for the output to match:
 - Congestion
 - VMT and VHT
 - Credible ramp flows
- Goal: model accurately a usual traffic situation to make predictions.

Setup

Freeway and traffic model, data, notation

$$M = [1, n]$$

$$R \subset M$$

$$T \subset M$$

$$K \subset R$$

$$G = (g_i)_{i \in [1, \gamma]}$$

$$\vec{k} = (k_{i_1}, k_{i_2} \dots, k_{i_\kappa})$$

$$\sigma = (\sigma_{i_1}, \sigma_{i_2} \dots, \sigma_{i_\kappa})$$

Mainline link indexes Ramp link indexes Monitored mainline links Non-Monitored ramps Knob group indexes Knobs value vector on/off-ramp indicator $\begin{aligned} &(f_i(t))_{i \in M} \\ &(d_i(t))_{i \in M} \\ &(r_i(t))_{i \in R} \\ &(\widetilde{f_i}(t))_{i \in T} \\ &(\widetilde{d_i}(t))_{i \in T} \\ &(\widetilde{r_i}(t))_{i \in (R \setminus K)} \\ &\tau, \ D \end{aligned}$

Mainline links exit flows Mainline links densities Ramps exit flows Measured mainline exit flows Measured mainline densities Measured ramps exit flows Set of time-steps, Duration

Constraints

Physical Boundaries

Let $(t_i(t))_{i \in K}$ the templates:

$$\forall t \in \tau,$$
 $k_i.t_i(t) = \bar{r}_i(t) \leq [Capacity \ of \ the \ ramp \ associated \ to \ knob \ i]$
 $m_i = \frac{[Capacity \ of \ ramp \ associated \ to \ k_i]}{\max_t t_i(t)}$

$$\forall i \in K$$
, $0 \le k_i \le m_i \Leftrightarrow \vec{k} \in \mathscr{B}$

Constraints

Knob groups and refined constraints

Each ramp is closely monitored by mainline sensors.

$$egin{aligned} orall i \in \llbracket 1, \gamma
rbracket, & \Delta_i = \sum_{t \in au} \left[\widetilde{f}_{eta_i}(t) - \widetilde{f}_{\eta_i}(t) + \sum_{j \in (R \setminus K) \cap S_i} \sigma_j. \widetilde{r_j}(t)
ight] \ & \ldots \ & \ldots \ & \ldots \ & \ldots \end{aligned}$$

$$\Leftrightarrow$$
 $\Delta_i = -\sum_{j \in g_i} \sigma_j.k_j.\Theta$

Constraints

Loosening the constraints: uncertainty

- Umul, Uadd and Uglobal
- $\forall i \in [1, \gamma]$, let the most permissive flow demands:

$$\begin{array}{l} \Delta_i^- = \min\left\{|\Delta_i| - U^{add}; |\Delta_i|.(1-U^{mul})\right\} \\ \Delta_i^+ = \max\left\{|\Delta_i| + U^{add}; |\Delta_i|.(1+U^{mul})\right\} \end{array}$$

Loosened constraints:

$$\forall i \in [1, \gamma], \ \Delta_i^- \le |\sum_{j \in g_i} \sigma_j.k_j.\Theta| \le \Delta_i^+$$

Vehicles Hour Traveled (VHT)

Value computation from model output and data :

$$VHT(\vec{k}) = \frac{dt}{[1 \text{ hour}]} \sum_{i \in T} L_i \sum_{t \in \tau} d_i(t)$$

Error :

$$E_{VHT}(\vec{k}) = \frac{|VHT(\vec{k}) - \widetilde{VHT}|}{\widetilde{VHT}}$$

Vehicles Mile Traveled (VMT) (1)

Value computation from BeATS output and PeMS:

$$VMT(\vec{k}) = \sum_{i \in T} L_i \sum_{t \in \tau} f_i(t)$$

Error :

$$E_{VMT}(\vec{k}) = \frac{|VMT(\vec{k}) - \widetilde{VMT}|}{\widetilde{VMT}}$$

Vehicles Mile Traveled (VMT) (2)

Initial conditions hypothesis $\Rightarrow VMT$ can be computed a-priori.

⇒ new constraint:

$$\widetilde{VMT} = VMT^{a \ priori}(\vec{k}) = VMT^{ref} + \sum_{i \in K} \left[\sigma_i.k_i.\Theta. \sum_{\substack{j \in T \\ j > i}} L_j \right] \approx VMT(\vec{k})$$

with $VMT^{ref} = VMT((1,1,...,1))$ and $(L_i)_{i \in M}$ the mainline links lengths.

Congestion Pattern matching (CP) (1)

Congestion Pattern matching (CP) (2)

- A congestion density threshold is defined for each mainline link.
- Error calculation:

$$E_{CP}(\vec{k}) = \frac{\sum_{t \in \tau} \sum_{i \in M} \mathbb{1}_{\textit{Wrong congestion state pixels}}}{\sum_{t \in \tau} \sum_{i \in M} \mathbb{1}_{\textit{Pixels supposed to be congested}}}$$

Congestion Pattern matching (CP) (3)

Problem Formulation

Fitness function

Components:

$$\phi_{VHT}(\vec{k}) = w_1.E_{VHT}(\vec{k}).\mathbb{1}_{(E_{VHT} > U^{global})}$$

$$\phi_{VMT}(\vec{k}) = w_2.E_{VMT}(\vec{k}).\mathbb{1}_{(E_{VMT} > U^{global})}$$

$$\qquad \qquad \phi_{VMT}(\vec{k}) = w_2.E_{VMT}(\vec{k}).\mathbb{1}_{(E_{VMT} > U^{global})}$$

$$\qquad \qquad \phi_{CP}(\vec{k}) = w_3.E_{CP}(\vec{k}).\mathbb{1}_{(E_{CP} > U^{global})}$$

Objective function:

$$\Phi: \left| \begin{array}{ccc} \mathscr{B} & \longrightarrow & [0, 100] \\ \vec{k} & \longmapsto & \phi_{VHT}(\vec{k}) + \phi_{VMT}(\vec{k}) + \phi_{CP}(\vec{k}) \end{array} \right|$$

Problem Formulation

Optimization problem statement

$$\label{eq:minimize} \begin{split} & \min \text{minimize} & & \Phi(\vec{k}) \\ & s.t. & \forall i \in [\![1,\gamma]\!], \; \Delta_i^- \leq |\sum_{j \in g_i} \sigma_j.k_j.\Theta| \leq \Delta_i^+ \\ & \text{and } \widetilde{VMT}^- \leq \sum_{i \in K} \left[\sigma_i.k_i.\Theta.\sum_{\substack{j \in T \\ j > i}} L_j\right] + VMT^{ref} \leq \widetilde{VMT}^+ \\ & \text{and } \vec{k} \in \mathscr{B} \end{split}$$

Requirements

- Non-linear, non-convex black-box imputation problem in continuous domain
- Need for adaptive method
- Execution time does not matter

Covariance Matrix Adaptation - Evolution Strategy (CMA-ES)

- One of the most powerful evolutionary algorithms for single-objective real-valued optimization (very used)
- "Designed for difficult non-linear non-convex black-box optimisation problems in continuous domain"
- "Typically applied to unconstrained or bounded constraint optimization problems, and search space dimensions between three and a hundred"
- Does not presume existence of approximate gradients : feasible on our non-smooth problem
- ullet Adaptive algorithm : almost no parameter tuning o suitable to be used on several different freeways and days.
- Time does not matter for this initial study : not the fastest ES but good solution quality

Linear constraints implementation: Single knob groups equations

$$\forall i \in G \text{ s.t. } Card(g_i) = 1, \text{ i.e. } g_i = \{j\} :$$

$$\frac{\max\left\{0;|\Delta_{i}^{-}|\right\}}{\Theta} \leq k_{j} \leq \frac{\min\left\{m_{j};|\Delta_{i}^{+}|\right\}}{\Theta} \tag{1}$$

Constraints implementation : multiple knob groups and $VMT^{a-priori}$ equations

- Linear constraints not implemented in CMA-ES source code ⇒ project & penalize.
- Projection:

(1)

Constraints implementation: multiple knob groups and VMT^{a-priori} equations

 $D: \Theta.k_i - \Theta.k_i = \Delta_l$

 $D_+:\Theta.k_i-\Theta.k_j=\Delta_l^+$ $D_{-}:\Theta.k_{i}-\Theta.k_{j}=\Delta_{l}^{-}$

(2)

Constraints implementation: multiple knob groups and VMT^{a-priori} equations

Penalization:

$$E_{proj}(\vec{\underline{k}}^{(p)}, \vec{k}^{(p)}) = \frac{\left\|\vec{k}^{(p)} - \vec{\underline{k}}^{(p)}\right\|_{2}}{\left\|\begin{bmatrix}m_{1}\\m_{2}\\\vdots\\m_{\kappa}\end{bmatrix} - \begin{bmatrix}0\\0\\\vdots\\0\end{bmatrix}\right\|_{2}}$$

• The fitness function becomes:

$$J: \left| \begin{array}{ccc} \mathscr{B} & \longrightarrow & [0,100] \\ \underline{\vec{k}}^{(p)} & \longmapsto & \Phi(\vec{k}^{(p)}) + w_4. E_{proj}(\underline{\vec{k}}^{(p)}, \vec{k}^{(p)}) \end{array} \right|$$

August 27th, 2015 20 / 55

(3)

Experiment settings

Data

- Freeway 210 East in Los Angeles, average of 5 Tuesdays in fall 2104.
- 5-min measurements distributed as follows:
 - ▶ 33/135 monitored mainline links
 - ▶ 26/28 monitored on-ramps
 - ▶ 15/25 monitored off-ramps
 - \Rightarrow 12 knobs.
- Duration: 24 hours i.e. 289 time-steps (5min).

Experiment settings

Model and simulator

Cell-transmission model

Simulator: BeATS

Experiment settings

Implementation of congestion pattern

$$d_i^* = \frac{\textit{Link capacity}}{\textit{Link free flow speed}} + \delta$$

General observations

- Always converges
- Limited result quality
- No uniqueness

Overview

U^{global}	Population Size : λ	Initial standard deviation : σ	$\frac{U^{add}}{\widetilde{F}}$	U ^{mul}	Number of BeATS Evaluations	Number of CMA-ES generations	J minimum : J*
5%	11	2	2.5%	25%	2004	182	43.5%
				50%			28.2%
				75%			25.4%
				100%			23.7%
			5.0%	25%			35.1%
				50%			25.3%
				75%			25.3%
				100%			22.8%
			10.0%	25%			22.2%
				50%			21.6%
				75%			21.9%
				100%			21.8%
		5	2.5%	25%			44.7%
				50%			27.3%
				75%			27.0%
				100%			23.5%
				25%			36.1%
			5.0%	50%			24.5%
				75%			23.7%
				100%			25.5%
			10.0%	25%			22.8%
				50%			22.2%
				75%			23.8%
				100%			21.4%
							27.1%
	12	2	2.5%		3002	250	27.8%
							27.7%
	24			50%	3002	125	27.0%
							27.1%
							27.3%
					3026	84	27.1%
	36						27.1%
							27.2%

Effect of Umul

 $U^{mul} = 25\%$

 $U^{mul} = 25\%$

 $U^{mul} = 25\%$

 $U^{mul} = 50\%$

$U^{mul} = 75\%$

Effect of Umul

$U^{mul} = 100\%$

Effect of U^{mul}

$U^{mul}=25\%$

Effect of U^{mul}

$U^{mul} = 25\%$

$U^{mul}=25\%$

Effect of U^{mul}

Effect of Umul

Effects of σ

Effect of Sigma

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0% 45.0% 50.0% I*

Effects of λ

Effects of λ

Effects of λ

Further work

Next steps and ideas

- Modulate the templates shapes
- More accurate knob boundaries
- New constraints/objectives
- MO-CMAES
- Parallelization
- Wider loop with fundamental diagrams