การทำนายราคารถยนต์ในอนาคต

โดย

63010022 นายกกฤต รุ่งโรจน์กิจกุล63010042 นายกฤษติภูมิ เทียนงาม63010052 นายก้องเกียรติ ชุนงาม63010332 นายณัฐพล จำปานนท์

โครงงานนี้เป็นส่วนหนึ่งของการศึกษา วิชา 01076032 ELEMENTARY DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA

ปีการศึกษา 2564

บทคัดย่อ

โครงงานเรื่อง การทำนายราคารถยนต์ในอนาคต จัดทำขึ้นเพื่อแก้ปัญหาว่าถ้าหากสนใจรถ รุ่นใดรุ่นหนึ่งแล้วในอนาคตรถนั้นจะมีราคาเท่าใดถ้าถูกขายแบบมือสองหรือราคาที่ลดตามกาลเวลา โดยการนำความรู้ในเรื่องของ Vector และ Matrix มาประยุกต์เพื่อทำนายหรือคาดเดาราคาใน อนาคต โดยผ่านกระบวนการคำนวณต่างๆ จนได้โปรแกรมที่สามารถรับข้อมูลจากผู้ใช้งานแล้วแสดง ราคาของรถในอนาคตออกมา

คำสำคัญ: Vector, Matrix, ทำนาย

สารบัญ

บทคัดย่อ	ອີ	1
สารบัญ		2
บทที่ 1 ร	บทนำ	
1.1	ที่มาของโครงงาน	3
1.2	จุดประสงค์โครงงาน	
บทที่ 2 ส	ภาพรวมการออกแบบระบบ	
2.1	ภาพรวมขั้นตอนการทำงานของระบบ	
2.2	รายละเอียดข้อมูลที่เกี่ยวข้อง	
2.3	อธิบายขั้นตอนย่อยแต่ละขั้น	14
บทที่ 3 เ	การประยุกต์ใช้ทฤษฎี	25
3.1	การประยุกต์ใช้ทฤษฎีเวกเตอร์	25
3.2	การประยุกต์ใช้ทฤษฎีเมทริกซ์	27
บทที่ 4 เ	ผลการทดลอง	33
บทที่ 5 ส	สรุปผลการทดลองและข้อเสนอแนะ	37
5.1	สรุปผลการทดลอง	37
5.2	ข้อเสนอแนะ	37
รายการย์	อ้างอิง	38
ภาคผนว	าก	39
ภาคผนว	วก ก	40
ข้อมูลโค	รงงาน	40
ภาคผนว	วก ข	41
วิดีโอและ	ะสไลด์นำเสนอโครงงาน	41

บทที่ 1

บทน้ำ

1.1 ที่มาของโครงงาน

จากคำถามทั่วไปตามสื่อโซเชียลมีเดียต่างๆไปจนถึงบทสนทนาระหว่างครอบครัว หนึ่งใน หัวข้อที่มักจะถูกหยิบมาพูดคุยกันอยู่บ่อยครั้งคือระหว่าง "บ้าน" และ "รถ" จะเลือกซื้ออะไร เป็นอย่างแรกถึงจะคุ้มค่ากว่า เป็นที่แน่นอนว่าต่างคนต่างก็มีเหตุผลของตัวเองอย่างเช่น คนที่ เลือกซื้อบ้านก่อนเพราะการที่บ้านตอบโจทย์ในการใช้ชีวิตมากกว่า การมีพื้นที่ให้ได้พักผ่อนอย่าง เต็มที่หรือ อีกเหตุผลคือที่ดินนั้นไม่มีค่าเสื่อมราคายิ่งเวลาผ่านไปค่าของมันก็ยิ่งเพิ่มทำให้ถ้ามีการ ซื้อขายก็จะคงได้กำไรแน่นอน เป็นต้น ส่วนคนที่เลือกซื้อรถนั้นอาจเป็นเพราะในการทำงานต้อง เดินทางบ่อย หรือการที่มีบ้านแล้วแต่ระยะทางจากบ้านไปที่ทำงานมีระยะทางที่ไกล ทำให้การ เลือกที่จะซื้อรถนั้นตอบโจทย์ในการใช้ชีวิตมากกว่า จากเหตุผลที่กล่าวมาเป็นแค่เหตุผลบ้าง เหตุผลเท่านั้น ยังมีผู้คนจำนวนมากที่ถึงจะไม่เลือกซื้อบ้านแต่ก็มีค่าใช้จ่ายในชีวิตประจำวันที่มา กอยู่แล้ว การที่มีความจำเป็นจะซื้อรถนั้นอาจต้องไปซื้อรถมือ 2 มาแทนแต่ถ้าไม่อยากซื้อรถมือ 2 แล้วอย่างจะทราบราคาของรถรุ่นที่สนใจในอนาคตว่าจะมีราคาเท่าใดจะสามารถทราบได้หรือไม่

จากเหตุผลและคำถามที่ได้กล่าวมาข้างต้น การที่จะสามารถทราบราคาของรถมือสองหรือ ราคาขอรถรุ่นที่สนใจในอนาคตได้นั้น สามารถทำได้โดยการนำข้อมูลเกี่ยวกับรถยนต์มาทำการ วิเคราะห์ด้วยกระบวนการทางคณิตศาสตร์ที่เรียกว่า linear regression โดยเมื่อผ่านการคำนวณ เสร็จจะได้ Model ที่สามารถทำนายราคาของรถยนต์ในอนาคตได้ ด้วยเหตุนี้ทางคณะผู้จัดทำได้ ตัดสินใจทำโครงงานเรื่องนี้เพื่อให้เป็นประโยชน์แก่ผู้ที่ต้องการทราบราคาของรถยนต์และ ผู้ที่ ต้องการหาข้อมูลไปใช้ในการประกอบการตัดสินใจของตนเอง

1.2 จุดประสงค์โครงงาน

- 1.2.1 เพื่อให้เป็นประโยชน์แก่ผู้ที่ต้องการทราบราคาของรถยนต์และผู้ที่ต้องการหาข้อมูลไป ใช้ในการประกอบการตัดสินใจของตนเอง
- 1.2.2 ประยุกต์ใช้ความรู้ที่ได้จากการศึกษามาใช้กับการทำงานจริงและก่อประโยชน์สูงสุด

บทที่ 2

ภาพรวมการออกแบบระบบ

2.1 ภาพรวมขั้นตอนการทำงานของระบบ

ระบบจะวิเคราะห์ข้อมูลที่นำเข้ามาโดยใช้การเขียนโปรแกรมภาษา Python โดยจะทำงานที่ Google Colab

2.1.1 การนำข้อมูลเข้าสู่ระบบ

นำข้อมูลที่เป็นไฟล์ csv เข้าสู่ระบบโดยการอัปโหลดไฟล์ไว้ใน GitHub จากนั้นทำการ import ข้อมูลเข้าสู่ระบบ

2.1.2 การปรับแต่งข้อมูล

ข้อมูลที่นำเข้าสู่ระบบนั้นยังไม่สามารถนำไปวิเคราะห์ได้เพราะว่าอาจมีข้อมูลบางตัวผิดพลาด หรือ มีข้อมูลบางอย่างในชุดข้อมูลที่ไม่ได้นำมาวิเคราะห์

2.1.3 การวิเคราะห์ชุดข้อมูล

นำข้อมูลที่ได้หลังจากการปรับแต่งข้อมูลมาวิเคราะห์โดยใช้วิธีการ Linear Regression

2.1.4 Model การทำนายของโครงงาน

เมื่อวิเคราะห์ชุดข้อมูลสำเร็จจะได้ Model ที่ใช้ในการทำนายราคารถยนต์ในอนาคต โดยเมื่อ นำค่าที่ได้จาก Model มาหาค่าความใกล้เคียงโดยใช้ Cosine Similarity จะมีค่าอยู่ที่ 0.9684%

2.2 รายละเอียดข้อมูลที่เกี่ยวข้อง

ชุดข้อมูลนั้นได้มากจากเว็บไซต์ Kaggle ที่ถูกเก็บเมื่อปี ค.ศ. 2018 ที่ประเทศอินเดียจำนวน 301 ชุด โดยที่ชุดข้อมูลประกอบด้วยข้อมูลต่อไปนี้

1. Name	คือ ชื่อรุ่นของรถยนต์
2. Year	คือ ปีที่ซื้อรถยนต์
3. Selling price	คือ ราคาของรถยนต์ที่ขายจากบุคคลสู่บุคคล
4. Present price	คือ ราคาของรถยนต์จากโชว์รูมรถยนต์
5. Km driven	คือ ระยะทางที่รถยนต์นั้นวิ่ง
6. Fuel	คือ ประเภทของเชื้อเพลิง
7. Seller type	คือ ประเภทการขาย
8. Transmission	คือ ประเภทของเกียร์
9. Owner	คือ จำนวนเจ้าของรถก่อนหน้านี้

2.2.1 Name

จากข้อมูลจะเห็นว่ารถยนต์นั้นมีชื่อรุ่นที่ไม่ซ้ำกันถึง 98 ชื่อ

2.2.2 Year

```
[] data["Year"].value_counts()

2015    61
2016    50
2014    38
2017    35
2013    33
2012    23
2011    19
2010    15
2008    7
2009    6
2006    4
2007    2
2003    2
2018    1
2004    1
Name: Year, dtype: int64
```


2.2.3 Selling price

```
[ ] data["Selling_Price"].value_counts()
      0.60
0.45
5.25
4.50
4.75
      19.99
4.35
0.80
      0.27 1
7.20 1
Name: Selling_Price, Length: 156, dtype: int64
[ ] data["Selling_Price"].describe()
                  301.000000
                   4.661296
5.082812
0.100000
0.900000
      mean
      std
      min
25%
      50%
                    3.600000
      75%
                    6.000000
                   35.000000
      Name: Selling_Price, dtype: float64
```


2.2.4 Present price

```
[ ] data["Present_Price"].value_counts()
                   15
13
       9.40
       13.60
      5.70
4.43
1.47
                    8
7
7
      9.29
92.60
13.70
      1.17 1
0.65 1
Name: Present_Price, Length: 147, dtype: int64
[ ] data["Present_Price"].describe()
                   301.000000
7.628472
8.644115
0.320000
       count
      mean
std
      min
25%
50%
                      1.200000
                    6.400000
9.900000
92.600000
      75%
max
       Name: Present_Price, dtype: float64
```


2.2.5 Km driven

```
[] data["Kms_Driven"].value_counts()

15000 9
45000 9
35000 5
25000 5
...
1000 1
500000 1
11800 1
5400 1
4100 1
Name: Kms_Driven, Length: 206, dtype: int64

[] data["Kms_Driven"].describe()

count 301.000000
mean 36947.205980
std 38886.883882
min 500.000000
25% 15000.000000
50% 32000.000000
50% 32000.000000
75% 48767.000000
max 500000.000000
Name: Kms_Driven, dtype: float64
```


2.2.6 Fuel

```
[ ] data["Fuel_Type"].value_counts()

Petrol 239
Diesel 60
CNG 2
Name: Fuel_Type, dtype: int64
```


2.2.7 Seller type

```
[ ] data["Seller_Type"].value_counts()
```

Dealer 195 Individual 106

Name: Seller_Type, dtype: int64

2.2.8 Transmission

[] data["Transmission"].value_counts()

Manual 261 Automatic 40

Name: Transmission, dtype: int64

2.2.9 Owner

[] data["Owner"].value_counts()

0 290
1 10
3 1
Name: Owner, dtype: int64

2.3 อธิบายขั้นตอนย่อยแต่ละขั้น

2.3.1 การนำข้อมูลเข้าสู่ระบบ

```
[ ] url = "https://raw.githubusercontent.com/KirttiphoomEarth/Car_pre_data/main/car%20data.csv" # last updated 2020
```

นำเข้าชุดข้อมูลจากชุดข้อมูลที่ถูกอัพโหลดไว้ใน GitHub

```
[ ] import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt

[ ] #Additional library
  from sklearn.linear_model import LinearRegression
  from sklearn.model_selection import train_test_split
  from sklearn.metrics import mean_squared_error
  from sklearn.preprocessing import RobustScaler
  import math
```

เพิ่ม library ต่างๆที่ใช้ในการคำนวณในระบบ

[] data = pd.read_csv(url) data.head()

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0

อ่านชุดข้อมูลและแสดงข้อมูลเบื้องต้น

[] data.count()

Car Name	301
Year	301
Selling_Price	301
Present_Price	301
Kms_Driven	301
Fuel_Type	301
Seller_Type	301
Transmission	301
Owner	301
dtype: int64	

นับจำนวนข้อมูล

2.3.2 การปรับแต่งข้อมูล

] data.drop('Car_Name', axis=1, inplace=True) data.head()												
		Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner			
	0	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0			
	1	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0			
	2	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0			
	3	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0			
	4	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0			

นำข้อมูล Name ออกเพราะมีความแตกต่างกันมากเกินไป

```
[ ] data['Year'].replace({2010 : 1, 2011 : 2, 2012 : 3, 2013 : 4, 2014 : 5, 2015 : 6, 2016 : 7, 2017 : 8, 2018 : 9}, inplace=True)
data.loc((data['Year'] >= 2003) & (data['Year'] <= 2009), 'Year'] = 0
data['Year'].value_counts()

6    61
7    50
5    38
8    35
4    33
0    26
3    23
2    19
1    15
9    1
Name: Year, dtype: int64</pre>
```

การปรับจากปีที่ผลิตต่างๆเป็นเลขเพื่อที่ให้ง่ายต่อการคำนวณในระบบ

ถ้าอยู่ในช่วงปี ค.ศ. 2003 ถึง ค.ศ. 2009 กำหนดให้เป็น 0

ปี ค.ศ. 2010 กำหนดให้เป็น 1

ปี ค.ศ. 2011 กำหนดให้เป็น 2

ปี ค.ศ. 2012 กำหนดให้เป็น 3

ปี ค.ศ. 2013 กำหนดให้เป็น 4

ปี ค.ศ. 2014 กำหนดให้เป็น 5

ปี ค.ศ. 2015 กำหนดให้เป็น 6

ปี ค.ศ. 2016 กำหนดให้เป็น 7

ปี ค.ศ. 2017 กำหนดให้เป็น 8

ปี ค.ศ. 2018 กำหนดให้เป็น 9

```
[ ] data.loc[(data['Kms_Driven'] >= 500) & (data['Kms_Driven'] <= 15000), 'Kms_Driven'] = 0
    data.loc[(data['Kms_Driven'] > 15000) & (data['Kms_Driven'] <= 32000), 'Kms_Driven'] = 1
    data.loc[(data['Kms_Driven'] > 32000) & (data['Kms_Driven'] <= 49000), 'Kms_Driven'] = 2
    data.loc[(data['Kms_Driven'] > 49000), 'Kms_Driven'] = 3
    data["Kms_Driven"].value_counts()
0 77
2 76
1 75
3 73
Name: Kms_Driven, dtype: int64
```

ปรับข้อมูลระยะที่รถวิ่งได้โดยกำหนดเลขในช่วงใดช่วงหนึ่งเพื่อให้ง่ายต่อการคำนวณในระบบ
ในช่วง 500 ถึง 15000 กิโล/เมตร กำหนดให้เป็น 0
ในช่วง 15000 ถึง 32000 กิโล/เมตร กำหนดให้เป็น 1
ในช่วง 32000 ถึง 49000 กิโล/เมตร กำหนดให้เป็น 2
ตั้งแต่ 49000 กิโล/เมตร กำหนดให้เป็น 3

```
[ ] numFuel = {"Petrol":0,"Diesel":1,"CNG":2}
   data["Fuel_Type"].replace(numFuel, inplace = True)
   data["Fuel_Type"].value_counts()

0   239
1   60
2   2
Name: Fuel_Type, dtype: int64
```

การปรับข้อมูลประเภทของเชื้อเพลิง โดยกำหนดให้
เครื่องยนต์เบนซิน เป็น 0
เครื่องยนต์ดีเซล เป็น 1
เครื่องยนต์ก๊าซธรรมชาติ เป็น 2

```
[ ] numSeller = {"Individual":0,"Dealer":1}
  data["Seller_Type"].replace(numSeller, inplace = True)
  data["Seller_Type"].value_counts()

1    195
    0    106
    Name: Seller_Type, dtype: int64
```

ประเภทของการขายกำหนดให้ ขายผ่าน Dealer เป็น 0 ขายผ่าน Individual เป็น 1

```
[ ] numTrans = {"Manual":0,"Automatic":1}
  data["Transmission"].replace(numTrans, inplace = True)
  data["Transmission"].value_counts()

0     261
     1     40
  Name: Transmission, dtype: int64
```

ประเภทของเกียร์กำหนดให้เกียร์ประเภท Manual เป็น 0 และเกียร์ประเภท Automatic เป็น 1

	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
0	5	3.35	5.59	1	0	1	0	0
1	4	4.75	9.54	2	1	1	0	0
2	8	7.25	9.85	0	0	1	0	0
3	2	2.85	4.15	0	0	1	0	0
4	5	4.60	6.87	2	1	1	0	0

ตัวอย่างชุดข้อมูลหลังจากการปรับแต่งข้อมูล

2.3.3 การวิเคราะห์ชุดข้อมูล

การเปรียบที่ยบข้อมูลแต่ละตัวในชุดข้อมูล

การนำชุดข้อมูลมาหา Correlations และแสดงอยู่ในรูปของ Matrix

```
[ ] #Training (Selling_Price)
x1 = data.drop(['Selling_Price'], axis=1)  #Drop both Price makes Linear
y1 = data['Selling_Price']
x1 = RobustScaler().fit_transform(x1)
x1Train, x1Test, y1Train, y1Test = train_test_split(x1, y1, test_size = 0.2,random_state = 42)
x1Train.shape, x1Test.shape, y1Train.shape, y1Test.shape
((240, 7), (61, 7), (240,), (61,))
```

นำชุดข้อมูลมาผ่านการ Training

```
[ ] #Linear Regression (Selling_Price)
aLR = LinearRegression()
aLR.fit(x1Train, y1Train)
yPredict = aLR.predict(x1Test)
print("Linear regression score : ",aLR.score(x1Test, y1Test))
print("Mean squared error : ", mean_squared_error(y1Test, yPredict))

Linear regression score : 0.8592697783382605
```

Mean squared error : 3.2418029156481825

นำชุดข้อมูลที่ผ่านการ Training มาเข้ากระบวนการ Linear Regression

```
[ ] #Linear Regression (Selling_Price)
    yPredict = aLR.predict(x1)
    print("Linear regression score : ",aLR.score(x1, y1))
    print("Mean squared error : ", mean_squared_error(y1, yPredict))
```

Linear regression score : 0.8852375928700549 Mean squared error : 2.955033613791859

นำชุดข้อมูลที่ไม่ได้ผ่านการ Training มาเข้ากระบวนการ Linear Regression

```
predict = aLR.predict(x1)
    np.set_printoptions(precision=2, suppress=True)
    print("Predict Y(Selling_Price)\n",yPredict)
    #for i in range(0,len(yPredict)-3,3):
    # a_format = '{0:.3g}'.format(yPredict[i])
    # b format = '{0:.3g}'.format(yPredict[i+1])
    # c_format = '{0:.3g}'.format(yPredict[i+2])
    # print(a_format+"
                      "+b_format+" "+c_format)
    Predict Y(Selling Price)
    [ 4.08 6.55 7.53 2.57 5.77 9.4 5.61 6.95 7.83 7.08 4.77 7.38
     8.22 5.42 2.06 8.32 7.91 8.32 6.86 3.16 4.17 5.7 4.69 2.79
     2.45 2.59 3.1 4.31 1.38 7.73 4.21 1.85 6.04 7.13 6.3
     4.85 -1.5 4.43 2.41 7.36 3.02 2.04 6.3 1.28 8.74 2.66 0.71
     5.42 8.05 16.58 18.15 14.86 15.6 2.01 6.99 4.88 7.49 3.28 20.11
     9.09 5.07 19.76 20.52 22.15 5.8 14.88 9.81 5.77 12.02 5.37 7.03
     8.74 2.56 6.33 4.67 7. 5.8 10.85 16.58 10.48 6.61 17.35 9.09
     6.31 6.52 41.76 6.18 3.53 4.25 7.11 9.5 4.94 18.15 10.42 8.33
     16.59 11.43 9.09 9.81 2.22 2.59 2.58 2.5
                                               2.44 1.67 0.77 0.83
     1.7
           2.44 2.17 2.05 1.63 1.3 1.28 1.28 0.11 1.82 1.28 1.
     1.94 0.01 1.9
                    0.11 0.53 -1.39 2.21 1.74 2.17 2.16 2.17 0.99
     2.21 1.8 2.15 1.3 0.75 0.16 1.77 1.05 0.34 1.39 1.
0.66 -0.24 0.92 0.3 -1.34 1.45 -0.29 1.28 0.19 -0.1 0.9
                                                          0.96
                2.03 3.47 -0.58 0.58 0.19 -0.99 1.62 3.08 1.62 0.23
     2.02 1.
     0.49 1.21 0.12 1.22 0.85 3.47 0.59 -1.35 -0.54 2.74 1.91 -1.64
     -1.07 0.55 0.07 0.02 -2.46 0.25 0.28 0.04 0.06 -2.26 -2.18 -1.32
     3.97 4.31 6.33 5.64 6.76 6.01 2.48 9.68 8.44 3.39 5.35 4.6
     4.73 4.73 5.42 4.6 4.43 5.66 5.74 6.95 6.47 2.42 4.53 1.65
     5.73 4.57 6.48 6.99 10.37 4.5 4.88 6.99 4.73 8.81 4.66 2.75
     6.08 3.84 4.41 6.13 6.48 5.73 3.45 5.82 3.23 5.78 9.56 4.88
     6.49 7.11 4.88 2.46 7.74 7.68 8.03 4.35 8.44 5.41 4.23 5.83
     4.76 6.68 4.35 8.05 5.39 6.44 4.11 3.3 6.44 2.6 4.61 9.9
     8.03 8.03 6.49 7.28 4.97 2.24 8.58 7.99 4.16 7.64 5.91 6.44
     7.68 8.79 4.44 4.71 6.49 4.01 4.26 8.58 8.68 3.92 3.74 10.18
     5.38]
```

ค่าที่ได้จากการ Training Model การทำนาย

กราฟเปรียบเทียบค่าที่ได้จาก Model การทำนาย และ ค่าจริง

```
[ ] #Cosine Similarity
    real = data['Selling_Price'].values.tolist()
                                                                                  #List of real values
     predict = yPredict.tolist()
                                                                                  #List of predict values
     dot = np.dot(real,predict)
                                                                                  #Dot product
    magReal = np.linalg.norm(real)
                                                                                  #magnitude of real values
     magPredict = np.linalg.norm(predict)
                                                                                  #magnitude of predict values
    cosine = dot/(magReal*magPredict)
degree = float("{0:.3f}".format((math.acos(cosine)*180)/math.pi))
                                                                                  #cosine value
                                                                                  #value in degree
     print("Cosine =","{0:.4f}".format(cosine))
    print("Degree =",degree,"°")
    Cosine = 0.9684
Degree = 14.447 °
```

หาค่าของ Cosine Similarity เพื่อวัดประสิทธิภาพของ Model การทำนาย

2.3.4 Model การทำนายของโครงงาน

การรับข้อมูลจากผู้ใช้งานเข้ามาสู่ Model การทำนายและแสดงค่าการทำนาย

```
*** Car Selling Price Prediction ***

Input:

Year: 2014

Present Price (THB): 2000000

Kms Driven (km): 200000

Fuel type (Select one: Petrol = 0 / Diesel = 1 / CNG = 2): 0

Seller Type (Select one: Individual = 0 / Dealer = 1): 1

Car Transmission (Select one: Manual = 0 / Automatic = 1): 0

Number of Car Owner (Select one: First hand = 0 / Second hand = 1 / Third hand = 2 / Fourth hand or more = 3): 0

Output:

Predict selling price: 956549.20 THB
```

บทที่ 3

การประยุกต์ใช้ทฤษฎี

3.1 การประยุกต์ใช้ทฤษฎีเวกเตอร์

3.1.1 Cosine similarity

การนำ Cosine similarity มาใช้เพื่อวัดประสิทธิภาพของ Model การทำนายว่ามีค่า ใกล้เคียงกับค่าจริงมากแค่ไหน

Cosine similarity หรือ ความคล้ายคลึงโคไซน์ ค่าจะขึ้นอยู่กับมุมที่เวกเตอร์ 2 เวกเตอร์ กระทำต่อกัน

จากรูปจะเห็นว่าเมื่อเวกเตอร์ 2 เวกเตอร์ทำมุมต่อกันน้อยกว่า 100 องศาเวกเตอร์จะมี ทิศทางใกล้เคียงกันต่างจากการที่เวกเตอร์ 2 เวกเตอร์ตั้งฉากและมีมุมมากกว่า 100 องศา ที่ทิศทาง นั้นไม่มีความใกล้เคียงกัน

โดยที่ Cosine similarity จะมีสูตรการคำนวณดังนี้

$$D_{Cosine} = cos\theta = \frac{u \cdot v}{|u||v|}$$

จากสมการหา Cosine similarity สามารถนำไปเขียนให้อยู่ในรูปของผลรวมได้คือ

$$\frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}$$

จากสมการการคำนวณหา Cosine similarity ที่ได้กล่าวมาเมื่อนำมาใช้วนระบบมีการเขียน โปรแกรมคำนวณดังนี้

```
[ ] #Cosine Similarity
     real = data['Selling_Price'].values.tolist()
                                                                            #List of real values
    predict = yPredict.tolist()
                                                                            #List of predict values
                                                                            #Dot product
    dot = np.dot(real,predict)
    magReal = np.linalg.norm(real)
                                                                             #magnitude of real values
     magPredict = np.linalg.norm(predict)
                                                                             #magnitude of predict values
     cosine = dot/(magReal*magPredict)
                                                                             #cosine value
    degree = float("{0:.3f}".format((math.acos(cosine)*180)/math.pi))
                                                                            #value in degree
     print("Cosine =","{0:.4f}".format(cosine))
    print("Degree =",degree,"°")
    Cosine = 0.9684
Degree = 14.447 °
```

จากรูปจะเห็นว่าค่า Cosine similarity ของ Model การทำนายมีความใกล้เคียงกับค่าจริง อยู่ที่ 14.447 องศาหรือประมาณ 97 เปอร์เซ็น

3.2 การประยุกต์ใช้ทฤษฎีเมทริกซ์

3.2.1 Correlation

Correlation หรือ สหสัมพันธ์ คือการศึกษาหาความสัมพันธ์ระหว่าง ตัวแปร 2 ตัวแปรขึ้นไปสามารถเขียนในรูปสมการคือ

$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

เมื่อนำมาใช้ในระบบจะใช้ในการหาความสัมพันธ์ของข้อมูลที่แต่ละตัวในชุ ข้อมูลมีความสัมพันธ์มากน้อยแค่ไหน โดยจะแสดงอยู่ในรูปของ Matrix ดังรูปต่อไปนี้

3.2.2 Gaussian elimination

คือวิธีการในการแก้ปัญหาของสมาการ Liner โดยการทำให้เลขที่อยู่เหนือสมาชิก นำมีค่าเป็นศูนย์ทั้งหมด ซึ่งถ้าทำเฉพาะส่วนแรก ก็จะได้เมทริกซ์ที่มีรูปแบบขั้นบันได

โดยจะนำไปคำนวณในระบบเพื่อทำ Linear regression ต่อไป

301	1449	446	64	195	40	13	2296.17		1403.05
1449	8743	1665	320	946	196	33	10689.389	1	7622.18
446	1665	1036	138	343	58	24	4258.175		2227.86
64	320	138	68	63	12	1	974.53		629.11
195	946	343	63	195	29	4	2122.83		1310.73
40	196	58	12	29	40	3	612.62		376.8
13	33	24	1	4	3	19	104.35		27.2
2296.17	10689.389	4258.175	974.53	2122.83	612.62	104.35	39932.48733	I	22288.92846
1	4.813953488	1.481727575	0.2126245847	0.6478405316	0.1328903654	0.04318936877	7.628471761	I	4.661295681
1449	8743	1665	320	946	196	33	10689.389	1	7622.18
446	1665	1036	138	343	58	24	4258.175	1	2227.86
64	320	138	68	63	12	1	974.53		629.11
195	946	343	63	195	29	4	2122.83		1310.73
40	196	58	12	29	40	3	612.62		376.8
13	33	24	1	4	3	19	104.35		27.2
2296.17	10689.389	4258.175	974.53	2122.83	612.62	104.35	39932.48733	I	22288.92846
1	4.813953488	1.481727575	0.2126245847	0.6478405316	0.1328903654	0.04318936877	7.628471761	I	4.661295681
0	1767.581395	-482.0232558	11.90697674	7.279069767	3.441860465	-29.58139535	-364.2665814		867.9625581
0	-482.0232558	375.1495017	43.16943522	54.06312292	-1.26910299	4.737541528	855.8765947		148.9221262
0	11.90697674	43.16943522	54.39202658	21.53820598	3.495016611	-1.764119601	486.3078073		330.7870764
0	7.279069767	54.06312292	21.53820598	68.67109635	3.086378738	-4.42192691	635.2780066		401.7773422
0	3.441860465	-1.26910299	3.495016611	3.086378738	34.68438538	1.272425249	307.4811296		190.3481728
0	-29.58139535	4.737541528	-1.764119601	-4.42192691	1.272425249	18.43853821	5.17986711		-33.39684385
0	-364.2665814	855.8765947	486.3078073	635.2780066	307.4811296	5.17986711	22416.21933	T I	11585.80116

4		7	0	0	0	0	1	4	1	[
867		-365	-30	3	7	11	-483	1767	0	
148	1	855	4	-2	54	43	375	-483	0	
330	1	486	-2	3	21	54	43	11	0	
401	1	635	-5	3	68	21	54	7	0	
190		307	1	34	3	3	-2	3	0	
-34	T.	5	18	1	-5	-2	4	-30	0	
11585	i i	22416	5	307	635	486	855	-365	0	
4	1	7	0	0	0	0	1	4	1	[
0.4906621392		-0.2065647991	-0.01697792869	0.001697792869	0.003961516695	0.006225240521	-0.273344652	1	0	
384.9898132		755.229202	-4.200339559	-1.179966044	55.91341256	46.00679117	242.9745331	0	0	
324.6027165		488.2722128	-1.813242784	2.981324278	20.95642332	53.93152235	46.00679117	0	0	
397.565365		636.4459536	-4.881154499	2.98811545	67.97226938	20.95642332	55.91341256	0	0	
188.5280136		307.6196944	1.050933786	33.99490662	2.98811545	2.981324278	-1.179966044	0	0	
-19.28013582	I	-1.196943973	17.49066214	1.050933786	-4.881154499	-1.813242784	-4.200339559	0	0	
11764.09168	Ī	22340.60385	-1.196943973	307.6196944	636.4459536	488.2722128	755.229202	0	0	
4	1	7	0	0	0	0	1	4	1	I
0	1	-1	-1	0	0	0	-1	1	0	
384	1	755	-5	-2	55	46	242	0	0	
324	I	488	-2	2	20	53	46	0	0	
397		636	-5	2	67	20	55	0	0	
188	I	307	1	33	2	2	-2	0	0	
-20	I	-2	17	1	-5	-2	-5	0	0	
11764	1	22340	-2	307	636	488	755	0	0	
4	1	7	0	0	0	0	1	4	1	ſ
0	1	-1	-1	0	0	0	-1	1	0	L
1.58677686	- 1	3.119834711		-0.00826446281	0.2272727273	0.1900826446	1	0	0	
251.0082645	- 1	344.4876033	-1.049586777	2.380165289	9.545454545	44.25619835	0	0	0	
309.7272727	- 1	464.4090909	-3.863636364	2.454545455	54.5	9.545454545	0	0	0	
	- 1									
191.1735537	- !	313.2396694	0.958677686	32.98347107	2.454545455	2.380165289	0	0	0	
-12.0661157		13.59917355	16.89669421	0.958677686	-3.863636364	-1.049586777	0	0	0	
10565.98347	I	19984.52479	13.59917355	313.2396694	464.4090909	344.4876033	0	0	0	
4		7	0	0	0	0	1	4	1	r
0	i	-1	-1	0	0	0	-1	1	0	L
1	i i	3	-1	-1	0	0	1	0	0	
251		344	-2	2	9	44	0	0	0	
309	1	464	-4	2	54	9	0	0	0	
191	1	313	0	32	2	2	0	0	0	
-13	1	13	16	0	-4	-2	0	0	0	
10565		19984	13	313	464	344	0	0	0	
4	I	7	0	0	0	0	1	4	1	[
0	1	-1	-1	0	0	0	-1	1	0	
1	1	3	-1	-1	0	0	1	0	0	
5.704545455		7.818181818	-0.04545454545	0.04545454545	0.2045454545	1	0	0	0	
257.6590909	1	393.6363636	-3.590909091	1.590909091	52.15909091	0	0	0	0	
179.5909091	1	297.3636364	0.09090909091	31.90909091	1.590909091	0	0	0	0	
-1.590909091	1	28.63636364	15.90909091	0.09090909091	-3.590909091	0	0	0	0	
		17294.54545	28.63636364	297.3636364	393.6363636	0	0	0	0	

4	1	7	0	0	0	0	1	4	1	[
0		-1	-1	0	0	0	-1	1	0	
1		3	-1	-1	0	0	1	0	0	
5		7	-1	0	0	1	0	0	0	
257		393	-4	1	52	0	0	0	0	
179	1	297	0	31	1	0	0	0	0	
-2	1	28	15	0	-4	0	0	0	0	
8602]	1	17294	28	297	393	0	0	0	0	
4		7	0	0	0	0	1	4	1	[
0	1	-1	-1	0	0	0	-1	1	0	
1	1	3	-1	-1	0	0	1	0	0	
5	1	7	-1	0	0	1	0	0	0	
4.942307692	1	7.557692308	-0.07692307692	0.01923076923	1	0	0	0	0	
174.0576923		289.4423077	0.07692307692	30.98076923	0	0	0	0	0	
17.76923077		58.23076923	14.69230769	0.07692307692	0	0	0	0	0	
6659.673077]	1	14323.82692	58.23076923	289.4423077	0	0	0	0	0	
										_
4		7	0	0	0	0	1	4	1	l
0		-1	-1	0	0	0	-1	1	0	
1	1	3	-1	-1	0	0	1	0	0	
5	I	7	-1	0	0	1	0	0	0	
4		7	-1	0	1	0	0	0	0	
174		289	0	30	0	0	0	0	0	
17		58	14	0	0	0	0	0	0	
6659]	1	14323	58	289	0	0	0	0	0	
				_						
4		7	0	0	0	0	1	4	1	[
0		-1	-1	0	0	0	-1	1	0	
1		3	-1	-1	0	0	1	0	0	
5		7	-1	0	0	1	0	0	0	
4	1	7	-1	0	1	0	0	0	0	
5.8	1	9.633333333	0	1	0	0	0	0	0	
17		58	14	0	0	0	0	0	0	
4982.8]		11538.96667	58	0	0	0	0	0	0	
				_						_
4	I	7	0	0	0	0	1	4	1	[
0	I	-1	-1	0	0	0	-1	1	0	
1	I	3	-1	-1	0	0	1	0	0	
5		7	-1	0	0	1	0	0	0	
4		7	-1	0	1	0	0	0	0	
5.8		9.633333333		1	0	0	0	0	0	
1.214285714		4.142857143	1	0	0	0	0	0	0	
4912.371429	I	11298.68095	0	0	0	0	0	0	0	
,	_	7	0	0	0	0	4	,		
4	1	7	0	0	0	0	1	4	1	L
0	1	-1	-1	0	0	0	-1	1	0	
1		3	-1	-1	0	0	1	0	0	
5		7	-1	0	0	1	0	0	0	
4	1	7	-1	0	1	0	0	0	0	
5	1	9	0	1	0	0	0	0	0	
1	1	4		0	0	0	0	0	0	
4912]	I	11298	0	0	0	0	0	0	0	
4		7	0	0	0	0	4	4	4	
4	1	7	0	0	0	0	1	4	1	[
0	1	-1	-1	0	0	0	-1	1	0	
1	1	3	-1	-1	0	0	1	0	0	
5		7	-1	0	0	1	0	0	0	
4		7	-1	0	1	0	0	0	0	
5		9	0	1	0	0	0	0	0	
	1	4	1	0	0	0	0	0	0	
1 347672154]		1	0	0	0	0	0	0	0	

3.2.3 Linear regression

Linear Regression หรือ การวิเคราะห์การถดถอย เป็นการศึกษาความสัมพันธ์ ระหว่างตัวแปรตั้งแต่ 2 ตัวขึ้นไป ซึ่งได้แก่ตัว ประมาณการ (Predictor, X) และตัวตอบสนอง (Response, y) โดยเป็นความสัมพันธ์แบบเชิงเส้น (Linear) ทั้งนี้ในขั้นตอนการทำ Regression ต้อง มีการเก็บจำนวน Sample space จำนวนมากพอ นั้นคือ มี x และ y ที่มีความสัมพันธ์กันหลายๆ ครั้ง เพื่อนำมาหาสมการความสัมพันธ์

โดยนำ Linear regression มาสร้างโมเดลการทำนายราคาของรถยนต์ในอนาคต

กราฟ Linear regression ที่ได้จากการเขียนโปรแกรม

กราฟ Linear regression ที่ได้จากการคนวณใน Google Sheets

บทที่ 4

ผลการทดลอง

จากการขั้นตอนการทำงานทั้งหมด การนำเข้าข้อมูลจนถึงการ Training ชุดข้อมูลเพื่อสร้าง Model การทำนาย มีผลการทดลองดังนี้

4.1 Correlations

ผลการทดลอง จากรูป Matrix จะเห็นว่าค่าของ Correlations ที่แต่ละข้อมูลในชุดข้อมูล เทียบกันนั้นมีค่าใกล้เคียงกันมาก ดั้งนั้นชุดข้อมูลชุดนี้จึงสามารถนำไปสร้าง Model ที่มีค่าความ ผิดพลาดน้อยได้

4.2 Linear Regression

```
[ ] #Linear Regression (Selling_Price)
aLR = LinearRegression()
aLR.fit(x1Train, y1Train)
yPredict = aLR.predict(x1Test)
print("Linear regression score : ",aLR.score(x1Test, y1Test))
print("Mean squared error : ", mean_squared_error(y1Test, yPredict))

Linear regression score : 0.8592697783382605
Mean squared error : 3.2418029156481825

[ ] #Linear Regression (Selling_Price)
yPredict = aLR.predict(x1)
print("Linear regression score : ",aLR.score(x1, y1))
print("Mean squared error : ", mean_squared_error(y1, yPredict))

Linear regression score : 0.8852375928700549
Mean squared error : 2.955033613791859
```

ผลการทดลอง จาชุดข้อมูลนำไปเข้ากระบวนการ Linear Regression จะเห็นว่า Linear Regression score ประมาณ 88 เปอร์เซนและ Mean squared error ประมาณ 2.95 ซึ้งแสดงให้เห็นว่าตัวชุดข้อมูลนั้นมีค่าความผิดพลาดที่น้อย

4.3 Model การทำนายราคารถยนต์ในอนาคต


```
[ ] #Cosine Similarity
                                                                           #List of real values
    real = data['Selling_Price'].values.tolist()
    predict = yPredict.tolist()
                                                                           #List of predict values
    dot = np.dot(real,predict)
                                                                           #Dot product
                                                                           #magnitude of real values
    magReal = np.linalg.norm(real)
    magPredict = np.linalg.norm(predict)
                                                                           #magnitude of predict values
    cosine = dot/(magReal*magPredict)
                                                                           #cosine value
    degree = float("{0:.3f}".format((math.acos(cosine)*180)/math.pi))
                                                                           #value in degree
    print("Cosine =","{0:.4f}".format(cosine))
    print("Degree =",degree,"o")
    Cosine = 0.9684
    Degree = 14.447 °
```

จากรูปกราฟ Linear Regression จะเห็นว่าค่าจริงและค่าที่ทำนายนั้นไปในทิศทางดียวกัน และเมื่อหา Cosine Similarity เพื่อวัดประสิทธิภาพของ Model พบว่าใกล้เคียงถึง 96 เปอร์เซน

4.4 ตัวอย่างการทำงานของ Model กาทำนายราคารถยนต์ในอนาคต

```
*** Car Selling Price Prediction ***
 Input :
 Year : 2014
Present Price (THB) : 2000000
 Kms Driven (km): 20000

Fuel type (Select one: Petrol = 0 / Diesel = 1 / CNG = 2): 0

Seller Type (Select one: Individual = 0 / Dealer = 1): 1

Car Transmission (Select one: Manual = 0 / Automatic = 1): 0
 Number of Car Owner (Select one: First hand = 0 / Second hand = 1 / Third hand = 2 / Fourth hand or more = 3): 0
Output :
 Predict selling price : 956549.20 THB
    *** Car Selling Price Prediction ***
 Input :
 Year : 2017
 Present Price (THB) : 500000
 Kms Driven (km): 1000
Fuel type (Select one: Petrol = 0 / Diesel = 1 / CNG = 2): 1
 Seller Type (Select one: Individual = 0 / Dealer = 1): 0

Car Transmission (Select one: Manual = 0 / Automatic = 1): 1

Number of Car Owner (Select one: First hand = 0 / Second hand = 1 / Third hand = 2 / Fourth hand or more = 3): 0
 Predict selling price : 428311.60 THB
   *** Car Selling Price Prediction ***
Input :
Year : 2010
Present Price (THB): 459000
Kms Driven (km) : 0
Fuel type (Select one: Petrol = 0 / Diesel = 1 / CNG = 2): 1
Seller Type (Select one: Individual = 0 / Dealer = 1): 1
Car Transmission (Select one: Manual = 0 / Automatic = 1): 0
Number of Car Owner (Select one: First hand = 0 / Second hand = 1 / Third hand = 2 / Fourth hand or more = 3): 0
Output :
Predict selling price : 281664.60 THB
```

เริ่มจากการให้ผู้ใช้กรอกข้อมูลของรถยนต์ที่สนใจเช่น ราคาที่ขายจากโชว์รูม ประเภทของ เครื่องยนต์ ประเภทเกียร์จากนั้นระบบจะคำนวณ ราคารถยนต์ในอนาคตแล้วแสดงผลออกมาดังรูป

บทที่ 5

สรุปผลการทดลองและข้อเสนอแนะ

5.1 สรุปผลการทดลอง

จากการดำเนินการทั้งหมดที่ได้กล่าวมาโครงงานเรื่องนี้ได้ประยุกต์ใช้ความรู้ที่ได้ศึกษามา อย่างเต็มที่ ทั้งในเรื่องของ Vector และ Matrix คณะผู้จัดจึงได้เห็นว่าความรู้ต่างๆที่ได้ศึกษามา นั้นสามารถนำไปประยุกต์ใช้ให้ก่อประโยชน์ได้ จนเกิดเป็นโครงงานเรื่องนี้ขึ้นมา

การหาชุดข้อมูล นำเข้าชุดข้อมูล ปรับแต่งชุดข้อมูล จนไปถึงการ Training Model เมื่อผ่านการดำเนินทั้งหมดแล้วทางคณะผู้จัดทำจึงได้ Model การทำนายราคารถยนต์ในอนาคต ที่สามารถนำไปใช้ได้จริง ทางคณะผู้จัดทำหวังว่าโครงงานเรื่องนี้จะก่อประโยชน์กับบุคคลที่ ต้องการหาราคาของรถยนต์ในอนาคตรวมถึงผู้ที่ต้องการศึกษาการ Model การทำนาย อย่างสูงสุด

5.2 ข้อเสนอแนะ

5.2.1 ปัญหาที่พบ

- ข้อมูลมีความแตกกันมากเกินไป แก้ไขโดยการปรับชุดข้อมูลใหม่
- ชุดข้อมูลมีค่าของ Correlations มาเกินไป แก้ไขโดยการปรับชุดข้อมูลใหม่

5.2.2 ข้อเสนอแนะ

- การใช้ชุดข้อมูลที่มากว่า 301 ชุดอาจได้ผลลัพธ์ที่ละเอียดกว่านี้
- อาจทำตัวโปรแกรมออกมาในรูปแบบของ Web หรือ App ที่สามารถใช้และรับข้อมูลเพื่อ การทำนายได้ง่ายกว่านี้

รายการอ้างอิง

- Nehal Birla. (25 มิถุนายน 2561). Vehicle dataset. เข้าถึงได้จาก kaggle.com: https://www.kaggle.com/nehalbirla/vehicle-dataset-from-cardekho/metadata
- Phanpaporn Z. (26 สิงหาคม 2564). ทำความรู้จัก "Linear Regression" Algorithm ที่ คนทำ Machine Learning ยังไงก็ต้องได้ใช้! เข้าถึงได้จาก borntodev:

 $https://www.borntodev.com/2021/08/26\hbox{-linear-regression-algorithm}$

- Supalerk Pisitsupakarn. (17 มีนาคม 2564). เมื่อสาย DATA อยากจะกิน Pizza (โดยใช้

 Jaccard Similarity และ Cosine Similarity). เข้าถึงได้จาก medium.com:

 https://medium.com/data-cafe-thailand//เมื่อสาย-data-อยากจะกิน-pizza-โดยใช้jaccard-similarity-และ-cosine-similarity-f921fa4ab043
- Thanat Lapthawan. (30 พฤษภาคม 2562). สร้างโมเดลความสัมพันธ์ของข้อมูลทางธุรกิจด้วย
 เทคนิค linear regression. เข้าถึงได้จาก bigdataexperience:
 http://bigdataexperience.org/business-data-relation-with-linear-regression/
- wikipedia. (2564). Cosine similarity. เข้าถึงใค้จาก wikipedia: https://en.wikipedia.org/wiki/Cosine similarity
- wikipedia. (2564). สหสัมพันธ์. เข้าถึงได้จาก wikipedia: https://th.wikipedia.org/wiki/สหสัมพันธ์
- การกำจัดแบบเกาส์ (Gaussian elimination). (ม.ป.ป.). เข้าถึงได้จาก teamsnb: https://teamsnb.com/1960-gaussian-elimination/
- สถิติเบื้องต้นง่ายๆ ที่จะทำให้คุณเข้าใจการวิเคราะห์มากขึ้น (ตอนที่ 2). (ม.ป.ป.). เข้าถึงได้จาก coraline: https://www.coraline.co.th/single-post/basic-statistic-2

ภาคผนวก

ภาคผนวก ก

ข้อมูลโครงงาน

[1] ข้อมูลที่ใช้

Vehicle dataset | Kaggle

[2] Source code หรือ File ที่ใช้ในการคำนวณ <u>การทำนายราคารถยนต์.ipynb - Colaboratory (google.com)</u>

การทำนายราคารถยนต์ - Google Sheets

[3] ไฟล์ประกอบอื่นๆ

แผนการดำเนินการ .pdf - Google Drive

ภาคผนวก ข

วิดีโอและสไลด์นำเสนอโครงงาน

<u>นำเสนอความคืบหน้า ครั้งที่ 1 - Google Slides</u>

นำเสนอกวามคืบหน้ากรั้งที่ 2 - Google Slides

นำเสนอโครงงาน - Google Slides

วิดีโอนำเสนอ-ทำนายราคารถ - Google Drive

สมาชิก

Capybaras

63010022 นายกฤต รุ่งโรจน์กิจกุล (ฟิลด์)

63010052 นายก้องเกียรติ ชุนงาม (ก้อง)

กอดคอลงเรือ

63010042 นายกฤษติภูมิ เทียนงาม (เอิร์ท)

63010332 นายณัฐพล จำปานนท์ (โตโต้)