夏第一周作业参考答案:

第六章 频率特性分析法 - 1 习题六 P.259-263

6-1 若系统单位阶跃响应 $h(t) = 1 - 1.8e^{-4t} + 0.8e^{-9t}$, 试确定系统的频率特性。

解: 系统的输出拉氏变换:
$$H(s) = \frac{1}{s} - \frac{1.8}{s+4} + \frac{0.8}{s+9} = \frac{36}{s(s+4)(s+9)}$$
, 输入拉氏变换: $R(s) = \frac{1}{s}$

系统的传递函数为:
$$G(s) = \frac{H(s)}{R(s)} = \frac{36}{s^2 + 13s + 36}$$

系统的频率特性为:
$$G(j\omega) = \frac{36}{(j\omega)^2 + j13\omega + 36}$$

6-8 已知系统开环传递函数 $G(s)H(s) = \frac{K(\tau s+1)}{s^2(Ts+1)}$, $K, \tau, T>0$, 试分析并绘制 $\tau > T$ 和 $T>\tau$ 情况下的概略开环幅相曲线。

解: 系统开环频率特性曲线:
$$G(j\omega)H(j\omega) = \frac{K(j\omega\tau + 1)}{(j\omega)^2(j\omega T + 1)} = \frac{-K(1+\omega^2\tau T) + j\omega(\tau - T)}{\omega^2(1+\omega^2 T^2)}$$

$$v = 2, m = 1, n = 3$$

- (1) 开环幅相曲线的起点: $A(0_+) = \infty$, $\varphi(0_+) = -180^\circ$ 开环幅相曲线的终点: $A(\infty) = 0$, $\varphi(\infty) = -180^\circ$
- (2) 开环幅相曲线与实轴的交点: $Im\{G(j\omega)H(j\omega)\}=0\Rightarrow\omega=0$,即系统的幅相特性曲线除在 $\omega=0$ 处外与实轴无交点 \Rightarrow $\tau>T$ 时:
- 变化范围: 开环幅相特性曲线位于第III象限(取 $\tau=10, T=1, K=1$ 作图)系统的开环概略幅相特性曲线如图所示:

》 当 $T > \tau$ 时变化范围: 开环幅相特性曲线位于第II象限(取 $\tau = 1, T = 10, K = 1$ 作图)系统的开环概略幅相特性曲线如图所示:

Nyquist Diagram

4

2

2

4

-2.5 -2 -1.5 -1 -0.5 0

6-10 绘制下列传递函数的对数幅频渐近特性曲线

(1)
$$\frac{2}{(2s+1)(8s+1)}$$

(3)
$$G(s) = \frac{8(\frac{s}{0.1} + 1)}{s(s^2 + s + 1)(\frac{s}{2} + 1)}$$

(5)
$$G(s) = \frac{32(s+2)}{s(s^2+4s+16)}$$

解:

(1)
$$G(j\omega) = \frac{2}{(1+2j\omega)(1+8j\omega)}$$

$$20\lg|G(j\omega)|=20\lg|\frac{2}{(1+2j\omega)(1+8j\omega)}|=20\lg2-10\lg(1+4\omega^{2})-10\lg(1+64\omega^{2})$$

$$\phi(\omega) = -arctg2\omega - arctg8\omega$$

最小的转折频率 0.125, ω <0.125 时, 可视为低频区, 20lg|G(j ω)| \approx 20lg2 =6dB,

 $0.125 < \omega < 0.5$,渐近线斜率为-40dB/dec,在转折频率处,有最大误差 3dB. 同理可画出相频的渐近线及相频特性曲线.

(3) 开环系统由以下典型环节组成:
$$\frac{8}{s}$$
, $\frac{s}{0.1}$ +1, $\frac{1}{s^2+s+1}$, $\frac{1}{\frac{s}{2}+1}$

确定交接频率和斜率变化:

$$\frac{s}{0.1}$$
+1的交接频率为 ω_1 = 0.1,斜率变化 20dB/dec

$$\frac{1}{s^2 + s + 1}$$
的交接频率为 $\omega_2 = 1$,斜率变化一 40 dB/dec

$$\frac{1}{\frac{s}{2}+1}$$
的交接频率为 $ω_3 = 2$,斜率变化-20dB/dec

绘制低频段渐进特性曲线($\omega < \omega_1$),

因为 $\upsilon=1$, 所 以 低 频 渐 近 线 斜 率 k=-20dB/dec , 直 线 上 一 点 为 ω_0 =1 ,

$$L_a(\omega_0) = 20\lg K = 18dB$$

绘制频段 $\omega > \omega_1$ 渐进特性曲线:

$$\omega_1 \le \omega < \omega_2$$
, $k = 0dB/dec$

$$\omega_2 \le \omega < \omega_3$$
, $k = -40dB/dec$

$$\omega_3 \le \omega$$
, $k = -60dB/dec$

(5) This is type "1" system, and

$$G(s) = \frac{32(s+2)}{s(s^2+4s+16)} = \frac{32 \times 2(0.5s+1)}{s \times 16(1+\frac{1}{4}s+\frac{1}{16}s^2)} = \frac{4(0.5s+1)}{s(1+\frac{1}{4}s+\frac{1}{4^2}s^2)}$$

The basic factors are:
$$\frac{K_1}{T_1 s} \cdot T_2 s + 1 \cdot \frac{1}{1 + 2\zeta \frac{1}{\omega_n} s + \frac{1}{\omega_n^2} s^2}$$

Where:
$$K_1=4$$
, $\frac{1}{T_1}=1$; $\frac{1}{T_2}=2$; $\omega_n=4$; $2\zeta=1 \Rightarrow \zeta=0.5$

$$20 \log K_1 = 20 \log 4 = 12 dB$$
; $\zeta = 0.5 \Rightarrow M_m = \frac{1}{2\zeta\sqrt{1-\zeta^2}} = 1.15 dB$

6-14 已知最小相位系统的 Bode 图如图 6-75 所示, 试确定系统的传递函数

结构分析:

 $: \omega < 0.1$ 时,201g|G(S)|=30dB斜率为零,故无积分环节;

	斜率	对应环节
$\omega = 0.1$	+20 dB/dec	一节超前环节
$\omega = \omega_1$	$-20 \mathrm{dB} / dec$	一节滞后环节
$\omega = \omega_2$	$-20 \mathrm{dB}/\mathit{dec}$	一节滞后环节
$\omega = \omega_3$	$-20 \mathrm{dB} / dec$	一节滞后环节
$\omega = 100$	$-20 \mathrm{dB}/\mathit{dec}$	一节滞后环节

所以:
$$G(s) = \frac{31.6(\frac{s}{0.1} + 1)}{(\frac{s}{0.316} + 1)(\frac{s}{3.481} + 1)(\frac{s}{34.81} + 1)(\frac{s}{82.54} + 1)}$$