1

Sreeja Komakula - EE22BTECH11029

Question 56

Let (X, Y) have joint probability mass function

 $p_{XY}(x,y) = \begin{cases} \frac{e^{-2}}{x!(y-x)!} & if x = 0, 1, ..., y; y = 0, 1, 2, \\ 0 & otherwise. \end{cases}$

(1)

Then which of the following statements is/are true?

- 1) E(X|Y=4)=2
- 2) The moment generating function of *Y* is $e^{2(e^{v}-1)}$ for all $v \in R$
- 3) E(X) = 2
- 4) The joint moment generating function of (X, Y) is $e^{-2+(1+e^u)e^v}$ for all $(u, v) \in R^2$

(GATE ST 2023)

Solution: Given

$$p_{XY}(x,y) = \frac{e^{-2}}{x!(y-x)!}$$
 (2)

Then,

$$p_Y(y) = \sum_{x=0}^{\infty} p_{XY}(x, y) dx$$
 (3)

$$= \sum_{v=0}^{\infty} \frac{e^{-2}}{x!(y-x)!}$$
 (4)

$$=\frac{e^{-2}2^{y}}{y!}$$
 (5)

(6)

1) E(X|Y = 4) = 2:

$$E(X|Y=4) = \sum_{x} x \frac{p_{XY}(x,y)}{p_{Y}(y)}$$
 (7)

$$=\sum_{x=0}^{4} x \frac{p_{XY}(x,4)}{p_{Y}(4)}$$
 (8)

$$=\sum_{x=0}^{4} x \frac{4!}{2^4 x! (4-x)!}$$
 (9)

$$=\sum_{x=0}^{4} x \frac{24}{16x!(4-x)!}$$
 (10)

$$=\sum_{x=0}^{4} x \frac{3}{2x!(4-x)!}$$
 (11)

$$= \frac{3}{2}(0 + \frac{1}{6} + \frac{1}{2} + \frac{1}{2} + \frac{1}{6}) \quad (12)$$

$$=\frac{3}{2}\times\frac{4}{3}\tag{13}$$

$$= 2 \tag{14}$$

Hence, the given statement is true.

2) The moment generating function of *Y* is $e^{2(e^{v}-1)}$ for all $v \in R$:

The *z*-transform of *Y* is defined as:

$$M_Y(z) = E\left[z^{-y}\right] \tag{15}$$

$$= \sum_{k=0}^{\infty} p_Y(k) z^{-k}$$
 (16)

$$=\sum_{k=0}^{\infty} \frac{e^{-2}2^k}{k!} z^{-k} \tag{17}$$

$$=e^{-2}\sum_{k=0}^{\infty}\frac{z^{-k}2^k}{k!}$$
 (18)

$$=e^{-2}\sum_{k=0}^{\infty}\frac{(\frac{2}{z})^k}{k!}$$
 (19)

$$=e^{-2+\frac{2}{z}}$$
 (20)

For moment generating function, z is replaced

by e^{-z} , we get

$$M_Y(z) = e^{-2 + \frac{2}{e^{-z}}}$$
 (21)

$$= e^{-2+2e^z} (22)$$

$$=e^{2(e^z-1)} (23)$$

$$\implies M_Y(v) = e^{2(e^v - 1)} \tag{24}$$

Hence, the given statement is true.

3) E(X) = 2:

$$p_X(x) = \sum_{y=x}^{\infty} p_{XY}(x, y) dy$$
 (25)

$$=\sum_{y=x}^{\infty} \frac{e^{-2}}{x!(y-x)!}$$
 (26)

$$= \frac{e^{-2}}{x!} \sum_{y=x}^{\infty} \frac{1}{(y-x)!}$$
 (27)

$$=\frac{e^{-2}e}{x!}\tag{28}$$

$$=\frac{e^{-1}}{x!}\tag{29}$$

Moment generating function is defined as:

$$M_X(z) = E(z^{-x}) \tag{30}$$

$$= \sum_{k=0}^{\infty} p_X(k) z^{-k}$$
 (31)

$$=\sum_{k=0}^{\infty} \frac{e^{-1}}{k!} z^{-k}$$
 (32)

$$=e^{-1}\sum_{k=0}^{\infty}\frac{z^{-k}}{k!}$$
 (33)

$$=e^{-1+z^{-1}} (34)$$

$$\implies M_X\left(z^{-1}\right) = e^{-1+z} \tag{35}$$

$$E[X] = \frac{dM_X(z^{-1})}{dz}|_{z=1}$$
 (36)

$$=\frac{de^{-1+z}}{dz}|_{z=1}$$
 (37)

$$= e^{-1+z}|_{z=1} (38)$$

$$=e^0 \tag{39}$$

$$= 1 \tag{40}$$

Therefore, E(X) = 1.

Hence, the given statement is wrong.

4) The joint moment generating function of (X, Y) is $e^{-2+(1+e^u)e^v}$ for all $(u, v) \in R^2$:

$$M_{XY}(z_1, z_2) = E\left(e^{z_1 x + z_2 y}\right)$$

$$= \sum_{x=0}^{\infty} \sum_{y=x}^{\infty} e^{z_1 x + z_2 y} \frac{e^{-2}}{x!(y-x)!}$$

$$= e^{-2} \sum_{x=0}^{\infty} e^{z_1 x} \sum_{x=0}^{\infty} e^{z_2 y}$$

$$= e^{-2} \sum_{x=0}^{\infty} e^{z_1 x} \sum_{x=0}^{\infty} e^{z_2 y}$$
(42)

$$=e^{-2}\sum_{x=0}^{\infty}\frac{e^{z_1x}}{x!}\sum_{y=x}^{\infty}\frac{e^{z_2y}}{(y-x)!}$$
(43)

$$=e^{-2}e^{e^{z_2}}\sum_{x=0}^{\infty}\frac{e^{(z_1+z_2)x}}{x!}$$
 (44)

$$= e^{-2 + e^{z_2}} e^{e^{z_1 + z_2}} (45)$$

$$=e^{-2+(1+e^{z_1})e^{z_2}} (46)$$

$$\implies M_{XY}(u, v) = E(e^{ux+vy})$$

$$= e^{-2+(1+e^{u})e^{v}}$$
(47)
(48)

$$=e^{-2+(1+e^u)e^v} (48)$$

Hence, the given statement is true. Therefore, 1,2,4 statements are true.