3D-Printer

C. Meichel 4 juin 2014

Table des matières

1	Pré	esentation
	1.1	Cadre du projet
	1.2	Objectif
	1.3	Les imprimantes RepRap
2	Cor	nception
	2.1	Le chassis
	2.2	L'électronique
		2.2.1 Spécification
		2.2.2 La Smoothieboard
	2.3	Arduino
	2.4	
3	Mis	se en oeuvre
	3.1	L'électronique
		3.1.1 Un jeu de LEGO
		3.1.2 Alimentation externe
		3.1.3 Les premières embuches

1 Présentation

1.1 Cadre du projet

Une imprimante 3D est une machine qui permet de reproduire des pièces plus ou moins complexes par apport de matière. Il existe plusieurs types d'imprimantes, selon le principe d'apport de matière utilisé. Le prérimètre de ce projet est une imprimante qui extrude du plastique à déposer couches par couches.

1.2 Objectif

Le principal objectif est, évidement, de construire une imprimante 3D. Cette imprimante fonctionnera sur le principe d'extrusion de matière plastique. Je m'appuie sur les imprimantes Reprap (http://reprap.org/wiki/RepRap/fr). Dans cette perspective, je m'autorise à réutiliser, modifier, adapter des pièces conçues pour d'autres imprimantes Reprap. Une contrainte forte de ce projet est le budget. En référence, une imprimante Reprap i3 en kit est vendue 450€ sans l'électronique de commande (600€ tout compris). Mon objectif est de limiter mon budget à 200€. C'est difficilement atteignable, mais pas impossible.

1.3 Les imprimantes RepRap

Le principe de ces imprimantes est qu'elles sont réplicables. Concrêtement, pour fabriquer une imprimante RepRap, il faut imprimer des pièces. Mon projet repose sur ce principe. En effet, pour des questions de facilité (je m'affranchis de certains usinages complexe), la plupart des supports seront imprimés.

2 Conception

2.1 Le chassis

Le chassis est en profile aluminum. Plusieurs solutions se sont présentées :

- utiliser du profile pour la construction modulaire
- utiliser du profile carré
- utiliser les profiles que propose une célèbre enseigne française blanche et verte (fig. 1 page 4)

La première solution est chère. Il faut compter 60€les trois mètres (30mm), sans compter la quincaillerie d'assemblage.

Figure 1: profile aluminium 23.5 x 23.5

La seconde solution, la moins chère, est plus difficile à mettre en oeuvre et nécessite de la précision dans les usinages (perçages, sciages, ...) pour avoir de bons alignements.La dernière solution est un bon compromis, car c'est une solution de construction modulaire à petit prix (15€les 2,5m x 25mm). Les jonctions se font avec des L et des T en PVC. Si ce n'est pas assez rigide, je pourrais encore ajouter des équerres métaliques.

2.2 L'électronique

2.2.1 Spécification

L'électronique de commande doit respecter les spécifications suivantes :

- Elle devra piloter 5 axes (1 X-axis, 1 Y-axis, 2 Z-axis, 1 extrudeur)
- Elle se connectera à un ordinateur via le port USB
- Elle supportera une carte SD pour l'imprimante soit autonaume lors de l'impression
- Elle saura piloter des moteurs pas à pas bipolaires
- Elle intégrera les différents capteurs (fin de course, températere de l'extrudeur)
- Elle saura piloter le partie chauffante de l'extrudeur
- Elle ne sera pas propriétaire

2.2.2 La Smoothieboard

Toujours, pour des questions de budget, j'ai écarté la solution Smoothie (http://smoothieware.org/smoothieboard). Il faut compter $125 \in$ pour une carte 5 axes.

2.3 Arduino

La solution Arduino consiste à utiliser la version Mega et y brancher une carte de commande de moteur. Je suis donc parti sur la configuration suivante :

- Freeduino 2650 Mega (un clone de l'Arduino, mais en moins cher) : 19€
- RAMPS (une carte de commande de moteur; la plus utilisée par les firmwares proposés) : 14€
- 5 modules A4988 (commande de moteur pas à pas) : 5€ chacun

2.4 Liste du matériel

	Description	Qte	Prix
1	V modulaire	6	6.60 €
2	T modulaire	2	2.80 €
3	Tube alu modulaire 23.5	2.5	15.50 €
4	Carte RAMPS	1	14.00 €
5	Commande moteur A4988	5	23.00 €
6	Funduino 2650 Mega	1	19.00 €
7	Roulements linéaires LM8UU	12	6.70 €
8	Courroie GT2 $(2m) + 2$ poulies	1	7.00 €
9	Moteur pas à pas nema17	5	72.00 €
10	Rond inox 8mm	3	20.00 €
11	${\rm Injecteur~SD05447200~/~SD05447000}$	1	2.00 €
12	Alimentation PC 500W	1	5.00 €
13	Résistance 5.6(5W) / CTN 100k	1	1.00 €
14	Coupleur 5x8	2	2.00 €
15			
16	Total		196.60 €

FIGURE 2: Montage de RAMPS sur la Funduino

3 Mise en oeuvre

3.1 L'électronique

3.1.1 Un jeu de LEGO

Le montages erst relativement simple; la carte RAMPS s'enffiche bien sur la Funduino. Il ne faut pas assembler tout de suite les cartes. Il est préférable de fixer la funduino sur son support final (dans mon cas, une tole aluminum en équerre). une fois le Funduino fixée, on enffiche la RAMPS (fig. 2 page 6). il reste à brancher les commandes de moteur sur la RAMPS. Comme indiqué sur le wiki de Reprap, on vérifie les nom des broches et on branche (le GND va sur le GND et le direction va sur direction).

3.1.2 Alimentation externe

Il faut maintenant l'alimentation externe sur la RAMPS (bornier vert à quatre broches). Il est préconisé d'alimenter en 12V. J'ai donc utilisé une alimentation de PC (500W, qui peut le plus, peu le moins). Pour info, le 0V, c'est le fil noir, le 12V, c'est le fil jaune. Comme d'habitude, l'alimentation de PC est un élément que j'ai trouvé dans un vide-grenier (5€). Il y a une entrée 5A et une entrée 11A. Mon alimentation a une capacité de 18A sur la sortie 12V. Il m'a donc suffit de mettre les deux entrées en parallèle sur le 12V fig. 3 page 7).

FIGURE 3: Branchement de l'alimentation externe

3.1.3 Les premières embuches

Ce qui devait arriver arriva. En faisant des essais sur la carte RAMPS, j'ai fait un court-circuit. Une seconde a suffit pour que de la fumée s'échappe de la Funduino. Une fois l'ensemble démonté, un composant avait pris copieux.

Diagnostique : quand je branche seule, le Funduino au PC avec le cordon USB, le périphérique est reconnu. Si maintenant, j'alimente la RAMPS en 12V, le PC perd la connection USB. C'est embêtant. Dans ces cas là, il faut garder son calme. La Funduino, tout comme l'Arduino est une carte super simple: il y a un micro controlleur, quelques résistances, un condensateur, parfois une interface USB (sinon, pris en charge par le micro controlleur), et ... un régulateur de tension (AMS1117). Ce régulateur de tension permet de garder 5V dans le circuit quelque soit la tension d'alimentation (tant qu'elle reste au dessus de 5V). C'est un composant à trois pattes équipé d'un radiateur, qui ressemble à une quatrième patte (fig. 4 page 8). En regardant bien, c'est ce composant qui a chargé. La réparation est simple : le LM7805 rempli la même fonction. Il est carément plus gros, mais, on va trouver à le loger. J'en ai un sous le coude, c'est parti. Il faut être vigilent sur l'ordre des pattes. Pour s'adapter sur le circuit, il faut croiser le OUT et le GND pour avoir dans l'ordre [IN OUT GND] (fig. 4 page 8). Ensuite on soude (fig. 5 page 8). J'ai pris soin de mettre un scotch sur le radiateur du LM7805 pour éviter que la partie métallique ne touche une autre partie de la Funduino.

Je rebranche le tout, et ... c'est reparti comme en 40 ! Ce qu'il faut retenir, c'est que la Funduino est très fragile (en même temps, un court-circuit ne

FIGURE 4: Régulateurs de tension

FIGURE 5: Funduino avec son nouveau régulateur de tension

pardonne pas), et qu'il faut vérifier à deux fois avant de brancher quelque chose (on ne branchera rien à chaud!).