Two-Way Tables: Chi-Square Tests Edpsy/Psych/Soc 589

Carolyn J. Anderson

Department of Educational Psychology

Two-Way Tables: Chi-Square Tests Slide 1 of 45

Outline

O		D - 6 - 141
()\/er\/ie\//	and	Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

- Overview and Definitions
- Chi-squared distribution
- Pearson's X^2 statistic
- Likelihood ratio test statistic
- Examples of
 - ◆ Independence
 - Homogeneous distributions
 - Unrelated classifications
 - Other
- Residuals
- (Partitioning Chi-square)
- Comments

Two-Way Tables: Chi-Square Tests Slide 2 of 45

Overview and Definitions

Overview and Definitions

Overview and Definitions

Null Hypotheses

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

■ For a 2–way table, a null hypothesis H_o specifics a set of probabilities

$$H_O: \{\pi_{ij}\}$$
 for $i=1,\ldots,I$ and $j=1,\ldots,J$

"Expected Frequencies" are the values expected if the null hypothesis is true,

$$\mu_{ij} = n\pi_{ij}$$

■ To test a null hypothesis, we compare the observed frequencies n_{ij} and the expected frequencies μ_{ij} :

$$\{n_{ij} - \mu_{ij}\}$$

- The test statistics are functions of observed and expected frequencies.
- If the null hypothesis is true, then the test statistics are distributed as chi-squared random variables so they are referred to as

"Chi-Squared Tests".

Null Hypotheses

Overview and Definitions

Overview and Definitions

Null Hypotheses

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

The two most common tests/null hypotheses are

- Chi-squared test of *Independence*.
- Chi-squared test of *Homogeneous Distributions*.

Two-Way Tables: Chi-Square Tests Slide 4 of 45

The Chi-Squared Distribution

Overview and Definitions

The Chi-Squared Distribution

The Chi–Squared Distribution

Picture of Chi–Squared
 Distributions

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

The "Degrees of Freedom", df, completely specifies a chi-squared distribution.

- \blacksquare 0 \leq chi-squared random variable.
- The mean of a chi-squared distribution = df.
- The variance of a chi-squared distribution = 2df and the standard deviation = $\sqrt{2df}$.
- The shape is skewed to the right.
- As *df* increase, the mean gets larger and the distribution more spread out.
- As df increase, the distribution becomes more "bell-shaped" (i.e., $df \to \infty$, $\chi^2_{df} \to \mathcal{N}$).

Picture of Chi-Squared Distributions

Two-Way Tables: Chi-Square Tests Slide 6 of 45

Pearson's Chi-Squared Statistic

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Pearson's Chi-Squared Statistic

Chi–Squared Distribution and p-value

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - \mu_{ij})^{2}}{\mu_{ij}}$$

- $= 0 < X^2$
- When $n_{ij} = \mu_{ij}$ for all (i, j), then $X^2 = 0$
- For "large" samples, X^2 has an approximate chi-squared distribution.

A good rule: "Large" means $\mu_{ij} \geq 5$ for all (i, j).

■ The p-value for a test is the right tail probability of X^2 .

Chi–Squared Distribution and *p***-value**

Two-Way Tables: Chi-Square Tests

Slide 8 of 45

Likelihood Ratio Statistic

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Likelihood Ratio Statistic

Likelihood Ratio Statistic for 2-way Table

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

- Need the maximum likelihood estimates of parameters assuming
 - Null hypothesis is true (simpler, restrictions on parameters).
 - ◆ Alternative hypothesis is true (more general, no (or fewer) restrictions on parameters).
- The test statistic is based on

 $\Lambda = \frac{\text{maximum of the likelihood when parameters satisfy } H_O}{\text{maximum of likelihood when parameters are not restricted}}$

- The numerator \leq denominator $(\max L(H_O) \leq \max L(H_A))$.
- $\blacksquare 0 \le \Lambda \le 1.$
- If $\max L(H_O) = \max L(H_A)$, then there is no evidence against H_O . (i.e., $\Lambda = 1$)
- The smaller the likelihood under H_O , the more evidence against H_O (i.e., the smaller Λ).

Likelihood Ratio Statistic for 2-way Table

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

- Likelihood Ratio Statistic
- Likelihood Ratio Statistic for 2-way Table

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

The test statistic is $-2\log(\Lambda)$, which for contingency tables

$$G^{2} = 2\sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} \log(n_{ij}/\mu_{ij})$$

This is the "likelihood ratio chi-squared statistic".

Chi-Squared Tests Hypotheses

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Chi-Squared TestsHypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

- 1. Independence
- 2. Homogeneous Distributions
- 3. Unrelated Classifications
- 4. Other
- 1, 2, & 3 are all tests of "no association" or "no relationship".
- 1 & 2 are the most common.
- 1, 2, & 3 all use the same formula to compute expected frequencies, but arrive at it from different starting points.
- 4 depends on the (substantive) hypothesis you are testing.
- These four test differ in terms of
 - Experimental procedure (i.e., sampling design)
 - The null and alternative hypothesis
 - Logic used to obtain estimates of expected frequencies assuming H_O is true.

Two-Way Tables: Chi-Square Tests Slide 11 of 45

Independence

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Independence

- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

• Example: Two Items from the

1994 GSS

- Example: EstimatedExpected Values
- Example: Test Statistics
- Residuals
- Adjusted Residuals
- Residuals and SAS
- Another Example of Independence
- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

<u>Situation</u>: Two response variables (either Poisson sampling or multinomial sampling)

Null Hypothesis: Two variables are statistically independent

Alternative Hypothesis: Two variables are dependent.

Definition of statistical independence,

$$H_O: \pi_{ij} = \pi_{i+}\pi_{+j}$$

for all $i = 1, \ldots, I$ and $j = 1, \ldots, J$.

Statistical dependence is not statistically independent

$$H_A: \pi_{ij} \neq \pi_{i+}\pi_{+j}$$

for at least one $i = 1, \dots, I$ and $j = 1, \dots, J$.

To test this hypothesis, we assume H_O is true.

Expected Frequencies Under Independence

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- ◆ Testing Independence
- Computing Degrees of

Freedom

Example: Two Items from the

1994 GSS

Example: Estimated
 Type at ad Values

Expected Values

- Example: Test Statistics
- Residuals
- Adjusted Residuals
- Residuals and SAS
- Another Example of

Independence

- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

Given data, the observed marginal proportions p_{i+} and p_{+j} are the maximum likelihood estimates of π_{i+} and π_{+j} , respectively; that is,

$$\hat{\pi}_{i+} = p_{i+}$$

$$\hat{\pi}_{+j} = p_{+j}$$

"Estimated Expected Frequencies" are

$$\hat{\mu}_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j}$$

$$= n(n_{i+}/n)(n_{+j}/n)$$

$$= \frac{n_{i+}n_{+j}}{n}$$

Testing Independence

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence

Testing Independence

- Computing Degrees of
- Freedom
- Example: Two Items from the
- 1994 GSS

Residuals

- Example: EstimatedExpected Values
- Example: Test Statistics
- Adjusted Residuals
- Residuals and SAS
- Another Example of

Independence

- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

For "large" samples, to test the hypothesis that two variables are statistically independent, use either

$$G^2 = 2\sum_{i}\sum_{j}n_{ij}\log(n_{ij}/\hat{\mu}_{ij})$$

or

$$X^{2} = \sum_{i} \sum_{j} \frac{(n_{ij} - \hat{\mu}_{ij})^{2}}{\hat{\mu}_{ij}}$$

and compare value to the appropriate chi-squared distribution.

General Rule for computing Degrees of Freedom:

The number of parameters specified under the alternative hypothesis minus the number of parameters specified under the null hypothesis.

Computing Degrees of Freedom

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence

Computing Degrees of

Freedom

- Example: Two Items from the 1994 GSS
- Example: EstimatedExpected Values
- Example: Test Statistics
- Residuals
- Adjusted Residuals
- Residuals and SAS
- Another Example of
- Independence
- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

 $df = (\# \text{ parameters in } H_A) - (\# \text{ parameters in } H_O)$

- Null hypothesis has
 - (I-1) unique parameters for the row margin, $\hat{\pi}_{i+}$.
 - (J-1) unique parameters for the column margin, $\hat{\pi}_{+j}$.
- Alternative hypothesis has (IJ-1) unique parameters. The only restriction on the parameters in the H_A is that the probabilities sum to 1.
- Degrees of Freedom so

$$df = (IJ - 1) - [(I - 1) + (J - 1)] = (I - 1)(J - 1).$$

df= the same number was came up with when we considered how many numbers we need to completely describe the association in an $I\times J$ table.

Example: Two Items from the 1994 GSS

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

● Example: Two Items from the 1994 GSS

- Example: EstimatedExpected Values
- Example: Test Statistics
- Residuals
- Adjusted Residuals
- Residuals and SAS
- Another Example of
- Independence
- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

■ Item 1: A working mother can establish just as warm and secure a relationship with her children as a mother who does not work.

■ Item 2: Working women should have paid maternity leave.

Observed Frequencies: n_{ij}

		ltem2				
	Strongly				Strongly	
Item 1	Agree	Agree	Neither	Disagree	Disagree	
Strongly Agree	97	96	22	17	2	234
Agree	102	199	48	38	5	392
Disagree	42	102	25	36	7	212
Strongly Disagree	9	18	7	10	2	46
	250	415	102	101	16	884

Unrelated Classification

Two-Way Tables: Chi-Square Tests Other Hypotheses

Example: Estimated Expected Values

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

- Example: Two Items from the 1994 GSS
- Example: Estimated

Expected Values

- Example: Test Statistics
- Residuals
- Adjusted Residuals
- Residuals and SAS
- Another Example of

Independence

- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

- Item 1: A working mother can establish just as warm and secure a relationship with her children as a mother who does not work.
- Item 2: Working women should have paid maternity leave.

Estimated Expected Frequencies:

$$\hat{\mu}_{ij} = \frac{n_{i+}n_{+j}}{n}$$

			Item2			
	Strongly				Strongly	
Item 1	Agree	Agree	Neither	Disagree	Disagree	
Strongly Agree	66.18	109.85	27.00	26.74	4.24	234
Agree	110.86	184.03	45.23	44.79	7.10	392
Disagree	59.96	99.53	24.46	24.22	3.84	212
Strongly Disagree	13.01	21.60	5.31	5.26	0.83	46
	250	415	102	101	16	884

Example: Test Statistics

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

• Example: Two Items from the

1994 GSS

Example: EstimatedExpected Values

Example: Test Statistics

- Residuals
- Adjusted Residuals
- Residuals and SAS
- Another Example of

Independence

- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

Statistic		$d\!f$	Value	p-value
Pearson Chi-square	X^2	12	47.576	< .001
Likelihood Ratio Chi-square	G^2	12	44.961	< .001

What's the nature of the dependency? Residuals...

Unrelated Classification

Two-Way Tables: Chi-Square Tests Other Hypotheses

Residuals

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

• Example: Two Items from the

1994 GSS

• Example: Estimated

Expected Values

Example: Test Statistics

Residuals

- Adjusted Residuals
- Residuals and SAS
- Another Example of Independence
- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

■ Raw Residuals: $n_{ij} - \hat{\mu}_{ij}$

Problem: These tend to be large when $\hat{\mu}_{ij}$ is large.

For Poisson random variables, mean = variance.

■ Pearson Residuals or often called "standardized residuals"

$$\frac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}}}$$

	Strongly				Strongly
	Agree	Agree	Neither	Disagree	Disagree
Strongly Agree	3.79	-1.32	96	-1.88	-1.09
Agree	84	1.10	.41	-1.01	79
Disagree	-2.32	.25	.11	2.39	1.61
Strongly Disagree	-1.11	77	.73	2.07	1.28

If the null hypothesis is true, then these should be approximately normally distributed with mean = 0, but . . .

Adjusted Residuals

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

• Example: Two Items from the

1994 GSS

Example: Estimated **Expected Values**

- Example: Test Statistics
- Residuals

Adjusted Residuals

- Residuals and SAS
- Another Example of Independence
- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

- Problem with Pearson Residuals: The variance (standard deviation) of Pearson residuals is a bit too small.
- Adjusted Residuals or "Haberman residuals" (Haberman, 1973).

$$\frac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}(1 - p_{i+})(1 - p_{+j})}}$$

If the null hypothesis is true, then these residuals have an asymptotic standard normal distribution.

	Strongly				Strongly
	Agree	Agree	Neither	Disagree	Disagree
Strongly Agree	5.22	-2.12	-1.19	-2.33	-1.28
Agree	-1.33	2.03	.59	-1.44	-1.06
Disagree	-3.14	.39	2.92	2.92	1.82
Strongly Disagree	-1.35	-1.09	.80	2.25	1.33

Residuals and SAS

■ DATA GSS94;
INPUT item1 item2 count;
DATALINES;

1 1 97

The Chi-Squared Distribution
Pearson's Chi-Squared Statistic
Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence
Independe

■ PROC FREQ gives raw residuals (DEVIATION option) and "cell contribution" to Pearson chi-squared statistic, which are Squared Pearson residuals (CELLCH2 option). PROC FREQ;

TABLES item1*item2 / CELLCH2;

PROC GENMOD gives Adjusted residuals and lots more. PROC GENMOD;

CLASS item1 item2;

MODEL count = item1 item2 / link=log dist=P obstats;

"AdjChiRes" are the adjusted chi-square (Haberman) residuals.

Homogeneous Distributions

Admission Scandal Results

Unrelated Classification

Independence

Freedom

1994 GSS

Residuals

Independence

Testing Independence

Computing Degrees of

Example: EstimatedExpected Values

Adjusted ResidualsResiduals and SASAnother Example of

Results Continued

Test of Independence

Example: Test Statistics

• Example: Two Items from the

Another Example of Independence

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

• Example: Two Items from the

1994 GSS

- Example: EstimatedExpected Values
- Example: Test Statistics
- Residuals
- Adjusted Residuals
- Residuals and SASAnother Example of

Independence

- Admission Scandal Results
- Results Continued
- Test of Independence

Homogeneous Distributions

"Specifically, there were about 26,000 applications to the Urbana campus this year. About 18,000 applicants were admitted using the 69% admissions rate cited in the article. The 160 "I list" applicants had a 77% admissions rate, according to the Tribune. This translates into the admission of 13 more applicants on the Category I list admissions rate versus the standard rate."

Ignoring the ethical question, is 13 more applicants admitted statistically significant? In other words, is 77% statistically different from 69%?

Let's look at the statistical question using all methods that we've discussed so far.

Admission Scandal Results

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

• Example: Two Items from the

1994 GSS

Example: EstimatedExpected Values

Expected values

- Example: Test Statistics
- Residuals
- Adjusted Residuals
- Residuals and SAS
- Another Example of

Independence

Admission Scandal Results

- Results Continued
- Test of Independence

Homogeneous Distributions

Binomial test of whether admission rate from I list is same as general admission rate. The results are significant whether use asymptotic test or binomial exact tests.

I-list: H_o : Probability of Admission of I list)= .69 = (i.e., the proportion general admission)

The FREQ Procedure

			Cumulative	Cumulative
admit	Frequency	Percent	Frequency	Percent
yes	123	76.88	123	76.88
no	37	23.13	160	100.00

	Large Sample	Exact Binomial
Proportion	0.7688	
ASE	0.0333	
95% Lower Conf Limit	0.7034	0.6956
95% Upper Conf Limit	0.8341	0.8317

Unrelated Classification

Results Continued

Asymptotic (large sample) Test of H0: Proportion =0.69

ASE under H0 0.0366

Z 2.1538

One-sided Pr > Z 0.0156

Two-sided Pr > |Z| = 0.0313

Sample Size = 160

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

• Example: Two Items from the

1994 GSS

Example: Estimated

Expected Values

- Example: Test Statistics
- Residuals
- Adjusted Residuals
- Residuals and SAS
- Another Example of

Independence

Admission Scandal Results

Results Continued

Test of Independence

Homogeneous Distributions

		95% Co	nfidence
Statistic	Value	Inte	erval
Difference of Proportions	.076	0.009	0.144
Odds ratio	1.478	1.022	2.136
Relative Risk	1.110	1.020	1.209
Correlation	0.013		

Unrelated Classification

Two-Way Tables: Chi-Square Tests Other Hypotheses

Test of Independence

		yes
Overview and Definitions	I list	123
The Chi–Squared Distribution Pearson's Chi-Squared Statistic	general	18000
Likelihood Ratio Statistic	Total	18123

Statistics for Table of List by Admission

Admission

no

37

8000

8037

Total

160

26000

26160

Statistic	DF	Value	Prob
Chi-Square	1	4.3659	0.0367
Likelihood Ratio Chi-Square	1	4.6036	0.0319
Continuity Adj. Chi-Square	1	4.0141	0.0451
Mantel-Haenszel Chi-Square	1	4.3657	0.0367
Phi Coefficient		-0.0129	

Chi-Squared Test Hypotheses

Independence

- Independence
- Expected Frequencies Under Independence
- Testing Independence
- Computing Degrees of

Freedom

• Example: Two Items from the

1994 GSS

Example: Estimated **Expected Values**

- Example: Test Statistics
- Residuals
- Adjusted Residuals
- Residuals and SAS
- Another Example of

Independence

- Admission Scandal Results
- Results Continued

Test of Independence

Homogeneous Distributions

Unrelated Classification

Two-Way Tables: Chi-Square Tests Other Hypotheses

Homogeneous Distributions

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Homogeneous Distributions

- Chi-Square Test for
- Homogeneous Distributions
- Estimated ExpectedFrequencies
- Degrees of Freedom
- Example: Effectiveness of Vitamin C
- Summary regardingEffectiveness of Vitamin C

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

<u>Situation:</u> Sample from different populations and observe classification on a response variable. The explanatory variable defines the populations and the number from each population is determined by the researcher.

i.e., independent Binomial/Multinomial sampling.

Null Hypothesis: The distributions of responses from the different populations are the same.

Alternative Hypothesis: The distributions of responses from the different populations are different.

Effectiveness of Vitamin C for prevention of common cold.

	Outo		
	Cold	No Cold	
vitamin C	17/139 = .12	122/139 = .88	.12 + .88 = 1.00
placebo	31/140 = .22	109/140 = .78	.22 + .78 = 1.00
	48/279 = .17	231/279 = .83	.17 + .83 = 1.00

Chi-Square Test for Homogeneous Distributions

The null and alternative hypotheses are:

$$H_O: \pi_1 = \pi_2$$

versus

$$H_A:\pi_1\neq\pi_2$$

and more generally,

$$H_O: \pi_{j|i} = \frac{\pi_{ij}}{\pi_{i+}} = \pi_{+j}$$

versus

$$H_A: \pi_{j|i} = \frac{\pi_{ij}}{\pi_{i+}} \neq \pi_{+j}$$

for all i, \ldots, I and $j = 1, \ldots, J$.

Assuming H_O is true, the conditional distributions of the response variable given the explanatory variable should all be equal and they should equal the marginal distribution of the response variable; that is,

$$\pi_{j|i} = \frac{\pi_{ij}}{\pi_{i+}} = \pi_{+j}$$

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Homogeneous Distributions

Chi-Square Test for Homogeneous Distributions

- Estimated Expected
- Frequencies
- Degrees of Freedom
 Example: Effectiveness of Vitamin C
- Summary regardingEffectiveness of Vitamin C

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

Estimated Expected Frequencies

Expected frequencies equal

$$\mu_{ij} = n_{i+} \pi_{+j}$$

where n_{i+} is given (fixed by design).

 Given data, our (maximum likelihood) estimates of the marginal probabilities of responses are

$$\hat{\pi}_{j|i} = \hat{\pi}_{+j} = p_{+j} = n_{+j}/n$$

■ Estimated Expected Frequencies are

$$\hat{\mu}_{ij} = n_{i+}\hat{\pi}_{+j}$$

$$= n_{i+}(n_{+j}/n)$$

$$= \frac{n_{i+}n_{+j}}{n}$$

which is the exact same formula that we use to compute estimated expected frequencies under independence.

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

- Homogeneous Distributions
- Chi-Square Test for

Homogeneous Distributions

Estimated ExpectedFrequencies

- Degrees of Freedom
- Example: Effectiveness of

Vitamin C

Summary regarding

Effectiveness of Vitamin C

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

Degrees of Freedom

for test of homogeneous distributions

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

- Homogeneous Distributions
- Chi-Square Test for
- Homogeneous Distributions
- Estimated Expected

Frequencies

Degrees of Freedom

- Example: Effectiveness of Vitamin C
- Summary regarding

Effectiveness of Vitamin C

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

Null Hypothesis has

(J-1) unique parameters — the $\hat{\pi}_{+j}$, which sum to 1.

Alternative Hypothesis has

I(J-1) unique parameters — for I values of $\hat{\pi}_{j|i}$, which must sum to 1.

Degrees of Freedom equal

$$df = I(J-1) - (J-1) = (I-1)(J-1)$$

Same as for testing independence.

Example: Effectiveness of Vitamin C

	Observe	ed Frequ	iencies			Expe	cted Va	lues
		Ou	itcome				Ou	ıtcome
Overview and Definitions The Chi–Squared Distribution		Cold	No Cold				Cold	No C
Pearson's Chi-Squared Statistic	vitamin C	17	122	139	vitar	min C	23.91	115
Likelihood Ratio Statistic	placebo	31	109	140	plac	ebo	24.09	115
Chi-Squared Test Hypotheses Independence		48	231	279	-		48	6
Homogeneous Distributions	Test Statis	stic	•	1	C	df Va	alue j	p–value
 Homogeneous Distributions Chi-Square Test for Homogeneous Distributions 	Pearson C	Chi-Squ	ıare	X	72	1 4.	811	.03
Estimated ExpectedFrequencies	Likelihood	l Ratio	Chi-Squai	re C	r^2	1 4.	872	.03
 Degrees of Freedom Example: Effectiveness of Vitamin C 	Adjusted Residuals							
 Summary regarding Effectiveness of Vitamin C 					Outco	me		
Unrelated Classification				Col	d N	lo Cold	1	
Other Hypotheses Partitioning Chi-Square	vitamin C -2.31				2.17			

placebo

Two-Way Tables: Chi-Square Tests

Summary Comments on

Chi-Squared Tests

No Cold

115.09

115.91

.03

.03

p–value

-2.22

2.10

231

139

140

279

Summary regarding Effectiveness of Vitamin C

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

- Homogeneous Distributions
- Chi-Square Test for
- Homogeneous Distributions
- Estimated Expected

Frequencies

- Degrees of Freedom
- Example: Effectiveness of

Vitamin C

Summary regardingEffectiveness of Vitamin C

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

Difference of Proportions	=	10	95% CI $(19,01)$
Relative Risk	=	.552	95% CI $(.32, .93)$
Odds ratio	=	.490	95% CI $(.26, .93)$

Correlation = -.131

Test Statistic		df	Value	p–value
Pearson Chi-Square	X^2	1	4.811	.03
Likelihood Ratio Chi-Square	G^2	1	4.872	.03

Adjusted Residuals

	Outcome				
	Cold	No Cold			
vitamin C	-2.31	2.17			
placebo	2.10	-2.22			

Unrelated Classification

Situation: Both margins are fixed by design. The sample can be considered the population.

Example: 1970 draft lottery of 19–26 year olds (Fienberg, 1971). Each day of the year (including Feb 29) was typed on a slip of paper and inserted into a capsule. The capsules were mixed and were assigned a "drawing number" according to their position in the sequence of capsules picked from a bowl. The cross-classification of months by drawing number where drawing numbers are grouped into thirds.

		Drawing Numbers				
		1–122	123–244	245–366	Totals	
	Jan	9	12	10	31	
	Feb	7	12	10	29	
	March	5	10	16	31	
	April	8	8	14	30	
	May	9	7	15	31	
Month	June	11	7	12	30	
	July	12	7	12	31	
	Aug	13	7	11	31	
	Sept	10	15	5	30	
	Oct	9	15	7	31	
	Nov	12	12	6	30	
	Dec	17	10	4	31	
	Totals	122	122	122	366	

Slide 32 of 45

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Unrelated Classification

- Hypothesis of Unrelated Classification
- Expected Values
- Example: 1970 Draft

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

Two-Way Tables: Chi-Square Tests

Hypothesis of Unrelated Classification

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

- Unrelated Classification
- Hypothesis of Unrelated Classification
- Expected Values
- Example: 1970 Draft

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

Null Hypothesis: The row and column classifications are unrelated.

 H_O : Drawing was random; that is, there is no relationship between drawing number and month of birth.

Alternative Hypothesis: The row and column classifications are related.

 H_A : Drawing was not random; there is a relationship between drawing number and month of birth.

Two-Way Tables: Chi-Square Tests Slide 33 of 45

Expected Values

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

- Unrelated Classification
- Hypothesis of Unrelated Classification

Expected Values

● Example: 1970 Draft

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

The logic to find the expected values follows that of homogeneous distributions.

- \blacksquare n_{i+} fixed for rows
- n_{+i} fixed for columns
- n_{+j}/n = proportion in column j.

If the null hypothesis is true, then expected frequencies μ_{ij} are

$$\mu_{ij} = (\# \text{ in row } i)(\text{proportion in column } j)$$

$$= n_{i+}(n_{+j}/n)$$

$$= \frac{n_{i+}n_{+j}}{n}$$

Degrees of Freedom = (I-1)(J-1).

Example: 1970 Draft

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

- Unrelated Classification
- Hypothesis of Unrelated Classification
- Expected Values

● Example: 1970 Draft

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

Statistic		df	Value	<i>p</i> –value
Pearson chi-square	X^2	22	37.540	.02
Likelihood ratio chi-square	G^2	22	38.669	.02

What's the nature of the association?

Adjusted Residuals:

		Drawing Number				
		1-122	123–244	245–366		
	Jan	52	.64	12		
	Feb	-1.08	.93	.15		
	March	-2.11	15	2.27		
	April	80	83	1.63		
	May	52	-1.35	1.87		
Month	June	.42	-1.23	.82		
	July	.68	-1.35	.68		
	Aug	1.07	-1.35	.28		
	Sept	.01	2.00	-2.01		
	Oct	52	1.83	-1.32		
	Nov	.68	1.04	-1.72		
	Dec	2.67	15	251		

Explanation...

Other Hypotheses

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Other Hypotheses

- Example of Other Hypothesis
- Another Other Example

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

These can either be

- Simpler than independence. (Example on following slides)
- More complex. (e.g., symmetry and others ... later in the semester).

Two-Way Tables: Chi-Square Tests Slide 36 of 45

Example of Other Hypothesis

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Other Hypotheses

Example of Other Hypothesis

Another Other Example

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

The null hypothesis specifies the distribution of one or more of the margins.

Example: (from Wickens, 1989). Suppose that there are 2 approaches to solving a problem and the answer is either correct or incorrect.

		Ans		
		Correct	Incorrect	
Method	Α			n/2 = .5
	В			n/2 = .5 $n/2 = .5$
				n

- H_O : Independence and equal number of students should choose each method.
- H_A : Method and Answer are dependent and/or unequal number of students choose each method.

The expected frequencies = $n_{i+}n_{+j}/n = n_{+j}/2$.

Another Other Example

Testing Mendal's Theories of natural inheritance Review:

$$Y = \text{yellow} \longrightarrow \text{dominant trait}$$
 $g = \text{green} \longrightarrow \text{recessive trait}$

- 1st generation: All plants have genotype Yg and phenotype is yellow.
- 2nd generation: Possible genotypes and phenotypes are

Assuming

Genotype	Phenotype	random
YY	yellow	25%
Yg	yellow	25%
gY	yellow	25%
gg	green	25%

Theory predicts that 75% will be yellow and 25% will be green.

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

- Other Hypotheses
- Example of Other Hypothesis

Another Other Example

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

Two-Way Tables: Chi-Square Tests

Partitioning Chi-Square

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Partitioning Chi-Square

- Partitioning Chi-Square by Example
- Check for Relationship & Then Partition
- Independent Component
 Tables
- Description of Association
- Necessary Conditions for Partitioning

Summary Comments on Chi-Squared Tests

Another way to investigate the nature of association

The sum of independent chi-squared statistics are themselves chi-squared statistics with degrees of freedom equal to the sum of the degrees of freedom for the individual statistics.

For example, if

$$Z_1^2$$
 is chi-squared with $df_1=1$

and \mathbb{Z}_2^2 is chi-squared with $d\!f_2=1$

then
$$(Z_1^2 + Z_2^2)$$
 is chi-squared with $df = df_1 + df_2 = 2$

... and (of course) Z_1^2 and Z_2^2 are independent.

"Partitioning chi-squared" uses this fact, but in reverse:

We start with a chi-squared statistic with df > 1 and break it into component parts, each with df = 1.

Partitioning Chi-Square by Example

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

- Partitioning Chi-Square
- Partitioning Chi-Square by Example
- Check for Relationship & Then Partition
- Independent Component
 Tables
- Description of Association
- Necessary Conditions for Partitioning

Summary Comments on Chi-Squared Tests

Why partition? Partitioning chi—squared statistics helps to show that an association that was significant for the overall table primarily reflects differences between some categories and/or groups of categories.

Demonstrate the method by example by partitioning G^2 for a 3×3 table into (3-1)(3-1)=4 parts.

Example: A sample of psychiatrists were classified with respect to their school of psychiatric thought and their beliefs about the origin of schizophrenia. (Agresti, 1990; Gallagher, et al, 1987).

School of	Origin of Schizophrenia				
Psychiatric Thought	Biogenic	Environmental	Combination		
Eclectic	90	12	78		
Medical	13	1	6		
Psychoanalysis	19	13	50		

Two-Way Tables: Chi-Square Tests Slide 40 of 45

Check for Relationship & Then Partition

First we check if these two variables are independent or not.

_	Statistic	df	Value	p–value
	X^2	4	22.378	< .001
	G^2	4	23.036	< .001

School of	Origin of Schizophrenia				
Psychiatric Thought	Biogenic	Environmental	Combination		
Eclectic	90	12	78		
Medical	13	1	6		
Psychoanalysis	19	13	50		

Sub-table 1:

	Bio	Env
Eclectic	90	12
Medical	13	1

$- \rightarrow df = 1$ $G^2 = .294$ p-value = .59

Sub-table 3:

Bio	Env
13	1
19	13
	13

$$\longrightarrow df = 1$$
 $G^2 = 6.100$
 p -value = .01

Sub-table 2:

	Env	Com
Eclectic	12	78
Medical	1	6

Sub-table 4:

	Env	Com
Medical	1	6
Psychoan	13	50

$$\begin{array}{l}
\longrightarrow df = 1 \\
G^2 = .171 \\
p\text{-value} = .68
\end{array}$$

But....
$$294 + .005 + 6.100 + .171 = 6.570 \neq 23.036$$

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

- Partitioning Chi-Square
- Partitioning Chi-Square by Example
- Check for Relationship &

Then Partition

- Independent ComponentTables
- Description of Association
- Necessary Conditions for Partitioning

Summary Comments on Chi-Squared Tests

Independent Component Tables

A general method proposed by Lancaster (1949).

$\sum_{a < i} \sum_{b < j} n_{ab}$	$\sum_{a < i} n_{aj}$
$\sum_{b < j} n_{ib}$	n_{ij}

Using this with our example:

School of	Origin of Schizophrenia		
Psychiatirc Thought	Biogenic	Environmental	Combination
Eclectic	90	12	78
Medical	13	1	6
Psychoanalysis	19	13	50

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

- Partitioning Chi-Square
- Partitioning Chi-Square by
- Check for Relationship &

Then Partition

Independent ComponentTables

- Description of Association
- Necessary Conditions for Partitioning

Summary Comments on Chi-Squared Tests

Sub-Table 1:

$$- \rightarrow df = 1$$
$$G^2 = .294$$

$$X^2 = .264$$

$$\hat{\theta} = .577$$

Sub-Table 3:

	Bio	Env
Ecl+Med	103	13
Psychoan	19	13

$$- \rightarrow df = 1$$

$$G^2 = 12.953$$

$$X^2 = 14.989$$

$$\hat{\theta} = 5.421$$

Sub-Table 2:

	Bio	
	+Env	Com
Eclectic	102	78
Medical	14	6

$$- \rightarrow df = 1$$

$$G^2 = 1.359$$

$$X^2 = 1.314$$

$$\hat{\theta} = .560$$

Sub-Table 4:

	Bio	
	+Env	Com
Ecl+Med	116	84
Psychoan	32	50

$$\longrightarrow df = 1$$
$$G^2 = 8.430$$

$$X^2 = 8.397$$

$$\hat{\theta} = 2.158$$

Description of Association

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

- Partitioning Chi-Square
- Partitioning Chi-Square by Example
- Check for Relationship & Then Partition
- Independent Component
 Tables

Description of Association

Necessary Conditions for Partitioning

Summary Comments on Chi-Squared Tests

from Agresti (1990):

"The psychoanalytic school seems more likely than other schools to ascribe the origins of schizophrenia as being a combination. Of those who chose either the biogenic or environmental origin, members of the psychoanalytic school were somewhat more likely than the other schools to chose the environmental origin."

With this partitioning, likelihood ratio chi-squared statistics add up to ${\cal G}^2$ for full table

$$.294 + 1.359 + 12.953 + 8.430 = 23.036$$

Pearson X^2 's don't add up to value in full table:

$$.264 + 1.314 + 14.989 + 8.397 = 24.964 \neq 22.378$$

... but this is OK because they are not suppose to add up exactly.

Necessary Conditions for Partitioning

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

- Partitioning Chi-Square
- Partitioning Chi-Square by Example
- Check for Relationship & Then Partition
- Independent Component
- Description of Association
- Necessary Conditions for Partitioning

Summary Comments on Chi-Squared Tests

You are not restricted to use the method proposed by Lancaster; however, for partitioning to lead to a full decomposition of G^2 the following are necessary conditions (Agresti, 1990)

- The degrees of freedom for the sub-tables must sum to the degrees of freedom for the original table.
- Each cell count in the original table must be a cell in one and only one sub-table.
- Each marginal total of the original table must be a marginal total for one and only one sub-table.

A better approach to studying the nature of association — estimating parameters that describe aspects of association and models the represent association.

Summary Comments on Chi-Squared Tests

Overview and Definitions

The Chi-Squared Distribution

Pearson's Chi-Squared Statistic

Likelihood Ratio Statistic

Chi-Squared Test Hypotheses

Independence

Homogeneous Distributions

Unrelated Classification

Other Hypotheses

Partitioning Chi-Square

Summary Comments on Chi-Squared Tests

 Summary Comments on Chi-Squared Tests

- Chi—squared tests of no association only indicate evidence there is against H_O .
- Chi—squared tests are limited to "large" samples.
 - ♦ As n increases relative to the size of the table, the distribution of X^2 and G^2 are better approximated by the chi–squared distribution.
 - Since the sampling distributions of X^2 and G^2 are only approximated by chi–square distributions, p–values should only be reported to 2 decimal places (3 at most).
 - ♦ The distribution of X^2 converges faster to chi—squared than the distribution of G^2 . (More about this later in semester).
 - ◆ There are small sample methods available "exact tests"
- The tests that we've discussed have not used additional information that we may have about the variables.
- In the case of ordinal variables, there are better methods.

Two-Way Tables: Chi-Square Tests Slide 45 of 45