DM TUTORIAL - 5

Q1 Let $A = \{1, 4, 7, 13\}$ and $R = \{(1, 4), (4, 7), (7, 4), (1, 13)\}$ Find transitive closure using Warshall's algoritm. Q2 Define Lattice check if the following diagram is a lattice ox not: A3 Mention all the elements in D36. Also specify R on D36 as a Rb ij a 16. Mention domain and range of R. Emplain ij the relation is equivalence relation or a partially ordered relation. If it is a partially ordered relation draw its Hasse diagram. $A = \{1, 2, 3\}$. Draw Hasse diagram. ANS 1. STEP 1: We just write the matrin Mr of the relation R and denote it by Wo. STEP 2: Now, we write a blank matrin of order 4, denote

it by W, and transfer all 1's from Wo to W.

Sundaram

	$: W_1 = [1 1]$
	The same of the sa
	1
	We now observe the just column and the just now. Since 1
	does not appear in the just column ($Pi = 0$) and hence $Pi qj = 0$ and there is no addition of 1 in W_1 , i.e. $W_2 = W_1$
	Piqj = 0 and there is no addition of 1 in W, i.e. W2 = W1
	· W ₂ = []
	1
	1
ř	STEP 3: Now we observe the second column and the second
	2000. Now in the second column, I appears in the 1st and
	3 rd positions. Hence we add 1 in (1,3) and (3,3) positions.
	* W3 = 1 1
	Tow In the third evolumn, 1 appears in 2nd and 3nd
	positions. So we add is in (1,2), (1,3), (2,2), (2,3), (3,2)
	and (3,3) positions if there is no 1.
	$= \omega_y = \cdots + 1$
	••••
	1
	11.

FOR EDUCATIONAL USE

Sundaram

	STEP 5: Now we observe the fourth column and the fourt										
	vow. In the fowth row, there is no 1. Hence there will be no additions of 1's. Hence pi = 0 and pig; = 0. Wy is our required matrin.										
	Wy	=	1 0	1	1	1.					
			4 0	1	1	0					
			7 0	. (-	0					
	Thus, the transitive column of R, i.e. $R^{\infty} = \{(1,4), (1,7), (1,11), (4,4), (4,7), (7,7)\}$										
	R =	{(1,4)	ر (۱٫۶)	, (1,11)	, (4,0	1), (4,7), (7,4), (7,7) y				
ANS 2	lattice	: A	poset	· (L ,	(L, <) in which every pair {a,b} of 2						
	elements of L has a least upper bound (LUB) and a										
•	greatest lower bound (GLB) is called a lattice.										
		B									
-		· ·	C	1		, .	· · · · · · · · · · · · · · · · · · ·				
				A		· ·					
	0				1.110		210				
	Prepara	ing ta	bles	7020	LUB	ano	GLB, we get:				
	LyB										
	V	A:	В	С	D	ϵ					
	A	A	B.	С	D	ε					
		В	В	E	E	E					
	С	C	E	С	D	E					
	D	D	E	D	D	ϵ					
	E	E	E	E	E	E					
				1			irs have LUB				
Sundaram					FO	R EDU	CATIONAL USE				

GLB	, -				
^,	Α	- 1 B	С	D	E
A	Α .	A	- A	Α	Α
В	A	В	Α	Α	В
С	A	A	C	C	C
D	A	Α	С	D	D
E	Α	В	C	D	E

Meets enist jox all pairs. Ay pairs have GUB. Since every pair of elements has a GLB & LUB, the xelation is a lattice.

ANS 3 $D_{36} = \{1,2,3,4,6,9,12,18,36\}$

R = { R | a | b, a \in D_{36 & b \in D_{36}}

 $R = \{ (1,1), (1,2), (1,3), (1,4), (1,6), (1,12), (1,18), (1,36),$

(2,2), (2,4), (2,6), (2,12), (2,18), (2,36), (3,3), (3,6),

(3.9), (3.12), (3.18), (3.36), (4.4), (4.12), (4.36), (6.6),

(6,12), (6,18), (6,36), (9,9), (9,18), (9,36), (12,12), (12,36),

(18, 18), (18,36), (36,36) }

Domain of R = {1,2,3,4,6,9,12,18,36}

Range of R = { 1,2,3,4,6,9, 12, 18,36}

=> R is replemive since you all (a,b) \in R

a R b => a 1 b [a divides b]

a Ra > a [a divides a]

⇒ R is antisymmetric because jox ay (a,b) ∈ R

a R b ⇒ a 1 b [a divides b] a Ra => a1a = 1 [a doesn't divide b until a = b!] \Rightarrow Relation R is transitive because fox all (a,b) \in R arb => a1b [adivides b]
brc => b1c [b divides c]
arc => a1c [a divides c] : R is a partially oxdered xelation (poset) : Hasse diagram of R is < 12 18 ANS 4 A = {1,2,3} Let $R_1 = (A, \leq)$ and $R_2 = (A, \geq)$ For every (a,b) & R, (i) : a < a, R, is xylemive (ii) I a < b and b < a then a = b, R, is antisymmetric.
(iii) I a < b, b < c then a < c . R, is transitive. Sundaram

	: R, is a poset.	
;	R, is a poset Hasse diagram of R,: 2	
	For every (a,b) e R ₂	
(i)	Since $a \ge a$, R_2 is xellegive.	
(ii)	Since $a \ge a$, R_2 is xellemive If $a \ge b$ and $b \ge a$ then $a = b$ R_2 is antisymmetric.	
	: R2 is antisymmetric.	a distribution of the second
	J. Min Cosuc	
(iii)	I a ≥ b, b ≥ c and a > c	
	If $a \ge b$, $b \ge c$ and $a \ge c$. Reg is transitive	
	:. R ₂ is a poset.	
	4	
	: Hasse diagram of R2:	
		·
Sundaram		

FOR EDUCATIONAL USE