Semantic search of similar academic papers

Alexander Demidovskij

Igor Salnikov

December 2023

Abstract

Information retrieval is one of integral parts of modern natural language processing tasks. arXiv is one of the key resources nowadays for sharing latest and greatest results in various academic fields, such as Computer Science. However, built-in search on the website does not allow to get most relevant results, finding arXiv preprints via Google requires advanced search skills, other solutions require paid subscription. In this work we propose a mechanism that allows to easier find relevant papers and suggest integrating it either to built-in search of the website or as a standalone service for free usage. Project is open-source with the following link: https://github.com/demid5111/arxiv-ai-search.

1 Introduction

Information retrieval is one of integral parts of modern natural language processing tasks. arXiv is one of the key resources nowadays for sharing latest and greatest results in various academic fields. It is owned by Cornell University and has 8 key categories:

- 1. Computer Science (40 sub-categories)
- 2. Economics (3 sub-categories)
- 3. Electrical Engineering and System Science (4 sub-categories)
- 4. Mathematics (32 sub-categories)
- 5. Physics (51 sub-categories)
- 6. Quantitative Biology (10 sub-categories)
- 7. Quantitative Finance (9 sub-categories)
- 8. Statistics (6 sub-categories)

This repository of open access preprints plays a vital role in modern academia, helps to quickly identify recent progress in the field of interest and considerably boosts information exchange. Comparing to traditional academic pipeline that

assumes that a scientist gets results, prepares anonymous reports, sends it to a conference or a journal with review period of 2-3 months and 3-6 months correspondingly, then publication within 2-3 months. Thus, between results that are obtained and when they are exposed a half of the year or a year might last. Comparing to that, a researcher might immediately publish his results in a form of preprint and get exposed to the world-wide community. These benefits have made arXiv an integral part of modern scientific life with more than 16K pre-prints being published online every month. Dynamics of papers in a single category "Computer Science" is depicted in Figure 1

Figure 1: Dynamics of papers in a single category "Computer Science".

However, such a velocity of publications also requires robust and quick means of search. Currently there are several ways of finding papers and pre-prints related to your field. We will demonstrate the existing search issues by an example: search of papers related to the quite famous paper [Hu et al., 2021] that introduces LoRA algorithm for Parameter-Efficient Fine-Tuning (PEFT) of Large Language Models (LLM). As we want to find papers that are close to this paper, we perform search by its title: $Lora: Low-rank \ adaptation \ of \ large \ language \ models$. For assessment we evaluate top-10 answers ignoring the order. Search is performed on 12/18/2023.

First, is the built-in search on the arXiv platform (Figure 2). Based on the results obtained with a sorting based on decreasing relevance, we can see that

only 2 academic papers somehow relate to the paper's content. Other papers are found mostly by match to the words "large language model". Interestingly, we do not see the original paper in the list. So, efficiency is 2/10.

Figure 2: Search by title in arXiv platform.

Second option is basic search through Google (Figure 3). Based on the results obtained, we can see that only 1 academic paper found at all, however it is relevant to what we are looking for. Also, we do not count that there are several preprints of the original paper, as we want to find papers that are relevant to that one but not the original paper itself. So, efficiency is 1/10.

Google	Low-Rank Adaptation of Large Language Models X 🕴 🙃 Q
	C. All 🔚 Images 🕩 Videos 🖺 Books 🗷 Shopping 🖫 More Tools
	About 18,200,000 results (0.30 seconds)
	arXiv https://arxiv.org > cs
	LoRA: Low-Rank Adaptation of Large Language Models
	by EJ Hu \cdot 2021 \cdot Cited by 1686 — We propose Low-Rank Adaptation, or LoRA, which freezes the pre-trained model weights and injects trainable rank decomposition matrices into each
	Scholarly articles for Low-Rank Adaptation of Large Language Models Lora: Low-rank adaptation of large language models - Hu - Cited by 1686
	Hugging Face https://hugginglace.co > docs > diffusors > training > l
	Lora
	LoRA (Low-Rank Adaptation of Large Language Models) is a popular and lightweight training technique that significantly reduces the number of trainable
	GHHub https://github.com > microsoft > LoRA :
	LoRA: Low-Rank Adaptation of Large Language Models
	LoRA reduces the number of trainable parameters by learning pairs of rank-decomposition matrices while freezing the original weights. This vastly reduces the
	x https://ankv.org.v.cs
	Bayesian low-rank adaptation for large language models by AX Yang : 2023 - Cled by 1 — Abstract.Low-rank adaptation (LcRA) has emerged as a new paradigm for cost-efficient fine-tuning of large language models (LLMs).
	People also ask :
	What is a low rank adaptation?
	What is low rank adaptation from scratch?
	What is low rank adaptation Stable Diffusion?
	What is the network rank in LoRA training?
	OpenReview
	LoRA: Low-Rank Adaptation of Large Language Models
	LORA: LOW-Narink Adaptation of Large Language models by EJ Hu 2221 Citate by 1686 — We propose Low-Rank Adaptation, or LoRA, which freezes the pre-trained model weights and injects trainable rank decomposition matrices into each
	OpenReview https://iopenreview.net > pdl PDF 1
	LORA: LOW-RANK ADAPTATION OF LARGE LAN
	by E Hu \cdot Cited by 1686 — We propose Low-Rank Adaptation, or LoRA, which freezes the pre- trained model weights and injects trainable rank decomposition matrices into each layer of
	Medium - Gary Nakanelua 20-likes - 4 months ago
	LoRA: Low-Rank Adaptation of Large Language Models
	First introduced by Microsoft via the whitepaper here, LoRA is a technique used in language models to make them more efficient and easier for
	Hugging Face https://huggingface.co > docs > diffusers > training > L
	Low-Rank Adaptation of Large Language Models (LoRA) Low-Rank Adaptation of Large Language Models (LoRA) is a training method that accelerates the training of large models while consuming less memory:
	YouTube - Al Coffee Break with Letitia 14.5K+ views - 3 months ago
	What is LoRA? Low-Rank Adaptation for finetuning LLMs
	Large Language Models (in 2023). Hyung Won Chung · 64K views ; Low-rank Adaption of Large Language Models: Explaining the Key Concepts Behind LoRA.
	TechTalks https://bdtechtalks.com / What is
	what is low-rank adaptation (LoRA)?

Figure 3: Search by title in Google.

Third option is advanced search through Google (Figure 4). As we want to find preprints on a particular website we can use special flag in search query to specify it as the only source for searching, so the query is: Low-rank adaptation of large language models site:arxiv.org. Based on the results obtained, we can see that now feed contains only preprints. After analyzing their relevance to the topic, 6 papers are relevant, 3 are original paper and its duplicates, 1 is duplicate of the relevant paper. So, efficiency is 6/10.

As we can see, current search engine in arXiv does not help much in finding relevant articles, Google search allows to find relevant papers much better, but that requires advanced search flags that are not so widespread among researchers and still relevance search quality could be further improved. It is hard to predict how exactly Google searches the scientific papers, arXiv seems to search based on keywords.

In this work we propose a mechanism that allows to easier and more qualitatively find relevant papers on arXiv, we deliver a prototype of a service for search and plan to suggest integrating it to built-in search of the arXiv website. We propose to build index of arXiv papers, use projections of their titles and abstracts to the latent space and search for relevant papers based on the distance between the distributed representation of a query and indexed papers.

1.1 Team

Please list your team members and describe their responsibilities. Example:

Alexander Demidovskij defined research task and methodology, collected arXiv index for Computer Science section from 1993 to 2023, collected validation dataset based on Google queries, proposed metrics used for models assessment, prepared this document.

Igor Salnikov defined list of deep learning models for comparison, implemented application, deployed it as an on-line service, performed computational experiments with proper visualizations that became an integral part of this document.

Figure 4: Search by title in Google with advanced flags.

2 Related Work

Information retrieval (IR) is "the name of the field encompassing the retrieval of all information retrieval IR manner of media based on user information needs" [Jurafsky and Martin, 2023]. The task of IR is usually defined by a user's query

that is given to the IR system and the response is the ranked list of documents.

Information retrieval has undergone a considerable evolution starting with term-based methods and to integrating Artificial Neural Networks (ANNs). One of the most basic approaches is keyword retrieval [Salton and Buckley, 1988]. Also, within a field of search system the important role is played by two ranking approaches: TF-IDF and BM25 algorithms that define ranking rules for documents based on query terms [Robertson et al., 1995]. A serious paradigm shift in information retrieval happened due to introduction of vector space model [Salton et al., 1975]. The most simple scenario is mapping documents to vectors based on unigrams frequencies and search is then performed on base of cosine distance between pairs of vectors. The key problem with this approach is vocabulary mismatch problem: query contains words that are not known to the system, therefore their statistics become unusable in this case.

Modern systems are mostly based on Artificial Neural Networks [Lin et al., 2022], however, general principle of using embeddings (or vectorized representations of the text) is the prevailing idea in modern IR systems as well. However, nowadays dense vector representations are obtained with encoder neural networks, such as BERT. However, using pre-trained models, like BERT, might not produce embeddings that capture semantics of particular use case.

One of the key directions is fine-tuning encoders for a downstream task or field. Another important topic is IR is fast indexing and search of close documents among millions of entries. For example, new libraries appear such as Facebook's FAISS [Johnson et al., 2019] or Nvidia's RAFT [Rapidsai, 2022]. Designing a production-ready solution in a form of a service or an application is also a challenging task which introduces novel questions to the list of standard design decisions to be made, such as selection of algorithm and libraries for efficient search of documents, selection of pre-trained encoder, definition of distance metric between document embeddings, etc.

3 Model Description

We suggest to design arXiv search engine based on dense embeddings produced by ANN. The proposed system is described according to key elements of IR system: Rewriter, Retriever, Reranker, Reader.

3.1 Rewriter

We propose to keep user query as-is, given the assumption that a user is a researcher who needs to find papers exactly about the topic they requested. We recommend to introduce upper bound for a word limit in the query in the same manner as Google does (not more than 32 words). However, no refining of the initial query is needed.

Table 1: Models selected for retriever component of arXiv IR.

Models	Max sequence length, tokens	Dimensions	$\begin{array}{c} \textbf{Speed,} \\ \textbf{sen-} \\ \textbf{tence/sec} \end{array}$	$egin{aligned} \mathbf{Size} \ \mathbf{(MB)} \end{aligned}$
all-MiniLM-L6-v2	256	384	14200	80
all-mpnet-base-v2	384	768	2800	420
all-distilroberta-v1	512	768	4000	290
multi-qa-distilbert-cos-v1	512	768	4000	250
e5-large	512	1024		1340

3.2 Retriever

Search for relevant papers should be performed on top of dense representations of papers. The way they are collected and stored is covered in Section 4. Given that all papers are collected, they should be translated to the latent space with the means of ANN. We propose to use two strategies. The first one is encoding only title - it is short and concise summary of the paper. The second one is encoding an abstract - it contains valuable details about main paper ideas and results, therefore search through abstracts might help researchers find related papers based on the query. Number of dimensions of the distributed vector is defined by the encoder architecture.

3.3 Reranker

We propose to use two different metrics for estimating similarity between query and document: cosine similarity and euclidean distance (the smaller the distance the more similar are the documents).

3.4 Reader

For the case of academic papers search we do not suggest any improvements or rephrasing for the answers exposed to the user. The results of IR is list of relevant papers that might be interesting for a user.

3.5 Encoder models

As for models, we propose to use selected models from HuggingFace. Summary of used models is demonstrated in Table 1.

3.6 Quality assessment

The task of creating search engine for a particular platform is not a novel task, however, several specific characteristics of the given task for arXiv platform are still present. First, we do not care at this moment of search engine development

about the ranks of responses. What is necessary from our point of view is to demonstrate the use top-N relevant papers to the given query. Similar approach is used in some paid services, such as Connected Papers¹ where relevant papers are represented as nodes with an edge between current paper and the original one. Therefore, ranking metrics are not that much applicable for evaluating quality of the final solution.

Evaluation is not possible without a dataset. For the given task, the new dataset needs to be collected. Technical details on collection of validation dataset are given in Section 4. Here, we focus on what should constitute the validation dataset.

As a query we consider a title of the article. Complexity comes with the reference answer. We do not want to perform manual annotation as it does not scale and is error-prone. At the same time, to the best of our knowledge, there is no ready collection of correct recommendations for a given article. We decided to use Google responses as correct answers. So, for a given article, we get its title, query Google with the special flag as demonstrated in Introduction, get top- $10 \ arXiv$ papers from the response. Thus, we obtain a validation dataset entry: a sample (title of the article) and reference value ($10 \ arXiv$ papers).

4 Dataset

Designing the IR for arXiv papers, we consider vast amount of papers that should be indexed on a regular basis. So, there is no appropriate source of dataset, other than just content of arXiv platform available for open access. Therefore, we have designed the scrapper that collects articles from arXiv and collected all articles from January 1993 to November 2023 in the category of "Computer Science".

The aforementioned scrapper is built on top of simple scheme of making HTTP GET requests to the pages of the arXiv platform, parsing these pages and extracting valuable information, such as authors, title, summary, etc. Now we explain this process step by step.

4.1 Index collection

To be able to scrape web data we need to define the page which contains necessary information. We are at first interested in obtaining list of papers that were made in a particular month of the particular year. For that, we have identified a proper mechanism of arXiv platform. When you open the browser with a link https://arxiv.org/list/cs/2301?skip=2000&show=4000, you will get list of papers that were published in January (01) 2023, we select to see papers from 2000th to 4000th. Maximum number of pages if limited by platform and is equal to 2000. Therefore, if we see from the page that in this period there were more than 2000 papers, we make several GET requests to obtain the full

¹https://www.connectedpapers.com/

list. From the resulting HTML pages we extract links to the papers and their meta-information.

Index collection is organized with the help of requests and beautifulsoup4 libraries. All months are processed concurrently with multiprocessing module, overall collection time depends on available cores of the machine. Resulting index is stored in .csv format, separate file for each month and year. At the final stage, these files are joined together with the help of pandas library.

Index collection is performed in a fully automatic manner for a particular category. As a result of collection, information about 566847 papers was obtained, 3 of them are filtered out during pre-processing as they are no longer available on the arXiv platform. It is available online: https://github.com/demid5111/arxiv-ai-search/blob/main/arxiv_scrapper/assets/arxiv_index_Nov_2023.csv under GPL-3.0 license. Overall distribution of articles per year in a single category "Computer Science" is demonstrated in Figure 5.

Figure 5: Overall distribution of articles per year in a single category "Computer Science".

4.2 Abstracts collection

Original HTML pages with list of papers published at the particular month do not contain abstract. Therefore, we need to collect abstracts for each paper separately. Overall approach is the same: GET request to obtain HTML page

with abstract, parsing HTML and extracting vital information. To give an example of page that contains an abstract we refer to https://arxiv.org/abs/2106.09685.

Abstracts collection is organized with the help of requests and beautifulsoup4 libraries. All months are processed concurrently with multiprocessing module, overall collection time depends on available cores of the machine. However, it is considerably long: takes 3-4 machine days on a moderate hardware (8-16 CPU cores). Resulting file is stored in .csv format, separate file for each month and year. At the final stage, these files are joined together with the help of pandas library.

Abstracts collection is performed in a fully automatic manner for a particular category. As a result of collection, abstracts of 566847 papers were obtained, 3 of them are filtered out during pre-processing as they are no longer available on the arXiv platform. It is available online: https://cloud.mail.ru/public/MrJu/TW2mYSV55/arxiv_abs_Nov_2023.csv under GPL-3.0 license. Overall distribution of articles per month through whole period of arXiv existence in a single category "Computer Science" is demonstrated in Figure 6.

Figure 6: Overall distribution of articles per month in a single category "Computer Science".

4.3 Validation dataset collection

As described in Section 3, we are measuring performance of our system with a help of special procedure of alignment with Google search results. During designing the validation dataset, we have faced several issues:

- 1. Google is very strict with GET requests made from code. After 3-10 successful requests, Google bans the IP for approximately 8-12 hours.
- 2. Google's HTML names (styles, classes) are auto-generated and change almost in every response.

To tackle these problems, we have chosen a different scraping strategy. Instead of GET request from Python code, we open a browser in headless mode via *selenium* library, open a page in the browser, get HTML from browser and only then parse it. Working from browser allows to make much more requests (up to 30) per IP. Also, we open a browser with a special URL that already contains search string, so we skip additional step of searching that saves additional 20-30 requests - that allows to make up to 60 requests per single IP. So, to collect validation dataset for 12 months with 10 entries per month, we need two IP addresses. Obviously it does not perfectly scale and requires running this scrapper on several machines, but at the same time is still much faster and safer than collecting same amount of validation data with a help of human annotators, such as students.

Validation dataset contains entries from 2019-2023, takes nearly 12 hours and needs 10 IP addresses. As a result of collection, validation dataset contains 590 entries, after pre-processing 235 are left. It is available online: https://github.com/demid5111/arxiv-ai-search/blob/main/arxiv_scrapper/assets/arxiv_google_Nov_2023.csv under GPL-3.0 license.

5 Experiments

5.1 Metrics

We have defined following metrics for evaluating quality of our solution.

Precision For true positives (TP) we consider papers that are both in reference list and in predictions, (FP) we consider papers that are not in reference list but are present in predictions. We evaluate precision according to 1.

$$Precision = \frac{|TP|}{|TP| + |FP|} \tag{1}$$

Top-K For true positives (TP) we consider papers that are both in reference list and in predictions, (FP) we consider papers that are not in reference list but are present in predictions. We evaluate precision according to 2, where

D denotes dataset, x,Y - a query and reference results from a single entry of validation dataset, ϕ - search function.

$$hit(Y, \hat{Y}, k) = \begin{cases} 1, & |Y \cap \{\hat{y}_i \in \hat{Y} | i = 1, 2, ..., k\}| > 0 \\ 0, & otherwise \end{cases}$$

$$Hit(D, k) = \frac{\sum_{x, Y \in D} hit(Y, \phi(x), k)}{|D|}$$
(2)

5.2 Experiment Setup

Hardware used for experiments: CPU: AMD Ryzen 3 PRO 3200G X4 3.6GHz, GPU: NVIDIA GeForce RTX 3060 12GB. Software used for experiments: Driver Version: 525.147.05, CUDA Version: 12.0. Models were taken from Hugging-Face (Table 1). Dataset details are present in Section 4. Encoding of papers was performed on GPU. Number of k in metrics is defined as 10.

5.3 Baselines

As a baseline we consider random selection of related papers. Number of related papers is defined as 10.

6 Results

We have performed extensive experiments with the own scrapped validation dataset and also we have built a prototype of a service that is available online for free of charge use.

To begin with, computational experiments against our own dataset. We have performed 4 experiments with each encoder model, resulting in 20 experiments. They are grouped by configuration:

- 1. Embeddings search by abstract, L_2 as a distance metric (Table 2),
- 2. Embeddings search by abstract, cosine as a distance metric (Table 3),
- 3. Embeddings search by title, L_2 as a distance metric (Table 4),
- 4. Embeddings search by title, cosine as a distance metric (Table 5).

Table 2: Experiment results for search by indexed abstracts with L_2 as a distance

Model	$\begin{array}{c} \mathbf{Precision,} \\ \% \end{array}$	Hits@1, %	$^{\rm Hits@10,}_{\%}$
all-MiniLM-L6-v2	21.15	99.15	99.15
all-mpnet-base-v2	21.53	99.57	99.57
all-distilroberta-v1	21.79	99.15	99.15
multi-qa-distilbert-cos-v1	19.15	97.02	97.87
e5-large	22.47	98.3	98.3
Random	2.12	0.0	0.25

Table 3: Experiment results for search by indexed abstracts with *cosine* as a distance.

Model	$\begin{array}{c} \mathbf{Precision,} \\ \% \end{array}$	Hits@1, %	$^{\rm Hits@10,}_{\%}$
all-MiniLM-L6-v2	21.14	99.15	99.15
all-mpnet-base-v2	21.53	99.57	99.57
all-distilroberta-v1	21.79	99.15	99.15
multi-qa-distilbert-cos-v1	19.15	97.02	97.87
e5-large	$\boldsymbol{22.47}$	98.30	98.30
Random	2.12	0.0	0.25

Table 4: Experiment results for search by indexed titles with L_2 as a distance.

Model	Precision,	Hits@1, %	Hits@10, %
all-MiniLM-L6-v2	17.23	36.605	77.87
${ m all-mpnet-base-v2}$	18.93	49.797	81.28
${ m all-distilrobert a-v1}$	17.49	38.725	77.87
multi-qa-distilbert-cos-v1	14.47	35.742	65.11
e5-large	21.45	$\boldsymbol{58.72}$	85.96
Random	2.12	0.0	00.25

Table 5: Experiment results for search by indexed titles with cosine as a distance.

Model	$\begin{array}{c} \mathbf{Precision,} \\ \% \end{array}$	Hits@1, %	$^{\rm Hits@10,}_{\%}$
all-MiniLM-L6-v2	17.19	36.60	77.87
all-mpnet-base-v2	18.94	49.79	81.28
all-distilroberta-v1	17.49	38.72	77.87
multi-qa-distilbert-cos-v1	14.47	35.74	65.11
e5-large	21.45	58.72	85.96
Random	2.12	0.0	00.25

ANALYSIS OF RESULTS - WHICH MODEL IS THE BEST/WHICH IS THE FASTEST

It is also important to compare performance of the resulting solution on the same example as we used in Introduction to demonstrate beneficial behavior of the new system Figure 7. Based on the results obtained 8 papers are relevant, 2 are less relevant but still interesting for an expert in PEFT field. So, efficiency is 8/10.

Figure 7: Search by title in proposed service.

DESCRIPTION OF SERVICE

7 Conclusion

In this work we have proposed a novel approach to finding relevant preprints on arXiv platform. In particular, we have following contributions:

- 1. identified a problem in search of relevant papers by manually comparing its quality on arXiv and Google,
- 2. proposed a solution based on dense vector representations obtained by modern encoder-based neural networks,
- 3. designed automatic scrapper of arXiv papers that scales to the whole platform and to the available hardware,
- 4. collected full index of arXiv papers for a period of its existence (1993-nowadays) in a section "Computer Science" (566844 papers),
- 5. identified original approach of evaluating quality of search via Google search feed,
- 6. collected validation dataset based on the specially designed approach of hybrid (both static and dynamic scrapping),

- 7. performed computational experiments with the validation dataset and 5 deep learning pre-trained models and identified best performing model, which is e5-large,
- 8. designed a system for efficient storage and search of documents based on their distributed representation,
- 9. designed and deployed a prototype of the web service that demonstrates capabilities of the search and is free of use.

We want to believe that our work might be integrated to the arXiv or continue existing as a standalone service. We are sure that contribution to the arXiv as a leading preprint platform will help researchers to find relevant papers easier that will allow better and faster information exchange and bring more innovation.

References

- [Hu et al., 2021] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021). Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.
- [Johnson et al., 2019] Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale similarity search with GPUs. *IEEE Transactions on Big Data*, 7(3):535–547.
- [Jurafsky and Martin, 2023] Jurafsky, D. and Martin, H. J. (2023). Speech and language processing.
- [Lin et al., 2022] Lin, J., Nogueira, R., and Yates, A. (2022). Pretrained transformers for text ranking: Bert and beyond. Springer Nature.
- [Rapidsai, 2022] Rapidsai (2022). Rapidsai/raft: Raft contains fundamental widely-used algorithms and primitives for data science, graph and machine learning.
- [Robertson et al., 1995] Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., Gatford, M., et al. (1995). Okapi at trec-3. Nist Special Publication Sp, 109:109.
- [Salton and Buckley, 1988] Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. *Information processing & management*, 24(5):513–523.
- [Salton et al., 1975] Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic indexing. *Communications of the ACM*, 18(11):613–620.