Apuntes de Probabilidad y Estadística II

Leonardo H. Añez Vladimirovna¹

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

23 de agosto de 2018

 $^{^{1}}$ Correo Electrónico: toborochi98@outlook.com

Notas del Autor

Estos apuntes fueron realizados durante mis clases en la materia MAT305 (Probabilidad y Estadística II), acompañados de referencias de libros, fuentes y código que use a lo largo del curso, en el período I-2018 en la Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones.

Para cualquier cambio, observación y/o sugerencia pueden enviarme un mensaje al siguiente correo:

toborochi98@outlook.com

Índice general

1.	Varia	ables Aleatorias	ŀ
	1.1. (Clasificación de Variables Aleatorias	١
	1.2.	Función de Probabilidad de una Variable Aleatoria	6
	1.3.	Función de Distribución Acumulada (FDA)	6
	-	1.3.1. Representación Gráfica	6
		1.3.2. Caso Continuo	6
		1.3.3. Propiedades de la FDA	7
		Esperanza Matemática	
		1.4.1. Varianza	

ÍNDICE GENERAL

Capítulo 1

Variables Aleatorias

Una variable aleatoria x (desde ahora denotada por $\mathbf{v.a.}$) es una función definida sobre el espacio muestral S con valores en \mathbb{R} que a cada elemento de S (Punto muestral) hace corresponder un número real x = X.

$$x = X(w) \in Rec_X \subseteq \mathbb{R}$$

Gráficamente

Notación Conjuntista

$$X = \{(w, x) \mid w \in S, x = X(w) \in \mathbb{R}\} \subseteq S \times \mathbb{R}$$

Donde:

- S: Conjunto Partida (Espacio Muestral).
- R: Conjunto de llegada.
- w: Elemento de S (Punto Muestral).
- x: Valor de la **v.a.** X.
- Rec_X : Recorrido de X.
- X: Función v.a. (Conjunto de Pares Ordenados).

Notaciones

Las $\mathbf{v.a.}$ se denotan con letras mayúsculas tales como X,Y o Z, y los valores correspondientes con letras minúsculas.

1.1. Clasificación de Variables Aleatorias

• Discreta: Cuyo recorrido es un conjunto finito o infinito numerable de valores:

$$X$$
 es **v.a.** discreta \Rightarrow $\begin{cases} \text{Conjunto Finito de Valores} \\ \text{Conjunto Infinito Numerable de Valores} \end{cases}$

- Contínua: Es aquella cuyo recorrido es conjunto finito no numerable de valores, puede tomar cualquier valor en un intervalo o conjunto.
- ♦ En general las **v.a.** discretas representan datos que provienen del conteo de número de elementos. Pueden ser número de titulados, número de estudiantes, etc. Mientras que las **v.a.** contínuas representan mediciones, como longitud, capacidad, etc.

1.2. Función de Probabilidad de una Variable Aleatoria

También llamada función de cuantía o función de masa de probabilidad de una v.a..

Se denomina función de probabilidad de una **v.a.** discreta X a una función p o f, cuyo valor es p(x) o P(X=x)0 ya que a cada valor distinto de la **v.a.** discreta X hace corresponder en un número entre los valores [0,1] que es su probabilidad, de ahí el nombre de función de cuantía o función de probabilidad. Estos valores satisfacen las siguientes condiciones:

1.
$$P(x) \ge 0$$
 ; $\forall x \in \mathbb{R}$

$$2. \sum_{x_i \in Rec_X} p(x_i) = 1$$

• Si
$$Rec_X = \{x_1, x_2, \dots, x_n\}$$
 entonces la condición (II) es: $\sum_{i=1}^n p(x_i) = 1$

• Si
$$Rec_X = \{x_1, x_2, \dots, x_n, \dots\}$$
 entonces la condición (II) es: $\sum_{i=1}^{\infty} p(x_i) = 1$

Si A es un evento en el recorrido de la $\mathbf{v.a.}$ discreta X entonces la probabilidad de A es el número:

$$P(A) = \sum P(X = x) = \sum p(x)$$

Nota:

$$P(X = x) \begin{cases} p(x) \ge 0; & \forall x \in \mathbb{R} \\ f(x) \ge 0; & \forall x \in \mathbb{R} \end{cases}$$

La función de probabilidad de una $\mathbf{v.a.}$ discreta X se puede expresar por:

■ Un Conjunto:

$$p = \{(x, P(X))/x \in D_p\}$$

■ Una Tabla:

ĺ	x_i	x_1	x_2	 x_n
	$p(x_i)$	$p(x_1)$	$p(x_2)$	 $p(x_n)$

Una Gráfica:

1.3. Función de Distribución Acumulada (FDA)

El valor de la **FDA** de una **v.a.** discreta X, que es F(x), viene dada por la sumatoria de las probabilidades, desde un valor mínimo t hasta un valor específico x; esto es:

$$F(x) = P(X \le x) = \sum_{t \le x} P(t), \quad \forall x \in \mathbb{R}$$

1.3.1. Representación Gráfica

Valores F(x) aumentan en saltos, presentando entonces la forma de una escalera:

1.3.2. Caso Continuo

Función de Densidad

f es función densidad, si f(x) cumple las siguientes condiciones:

(I)
$$f(x) \ge 0$$
; $\forall x \in \mathbb{R}$

(II)
$$\int_{-\infty}^{\infty} f(x)dx = 1$$

(III)
$$p(a \le x \le b) = \int_a^b f(x)dx$$

FDA

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx$$

1.3.3. Propiedades de la FDA

Caso Discreto

- 1. $0 \le F(x) \le 1$; $\forall x \in \mathbb{R}$
- 2. $F(-\infty) = 0$
- 3. $F(+\infty) = 1$
- 4. P(X < a) = F(a)
- 5. P(X > a) = 1 P(X < a) = 1 F(a)

6.
$$P(X < a) = \begin{cases} F(a-1), \text{ si } a \in \mathbb{Z} \\ F([a]), \text{ si } a \notin \mathbb{Z} \end{cases}$$

- 7. $P(X \le -a) = 1 P(X \le a) = 1 F(a)$
- 8. $P(a < X \le b) = F(b) F(a)$
- 9. $P(a \le X \le b) = F(b) F(a) + P(X = x)$
- 10. P(a < X < b) = F(b) F(a) P(X = b)
- 11. $P(X = x_i) = F(x_i) F(x_{i-1})$

Caso Continuo

- 1. $0 \le F(x) \le 1$; $\forall x \in \mathbb{R}$
- 2. $F(-\infty) = 0$
- 3. $F(+\infty) = 1$
- 4. $P(X \le a) = P(X < a) = F(a)$
- 5. $P(X > a) = 1 P(X \le a) = 1 F(a)$
- 6. P(X > a) = 1 P(X < a) = 1 F(a)
- 7. P(X < -a) = 1 P(X < a) = 1 F(a)
- 8. $P(a < X \le b) = P(a \le X \le b) = P(a < X < b)$
- 9. $f(x) = \frac{dF(x)}{dx}$

1.4. Esperanza Matemática

Sea X una **v.a.** con función de probabilidad f definida por f(x). La esperanza matemática de X, denotada por E(x), μ ó μ_x ; está dada por:

$$E(x) = \mu = \mu_x = \begin{cases} \sum_x x \cdot p(x), \text{ Si } X \text{ es } \mathbf{v.a.} \text{ Discreta} \\ \int_{-\infty}^{+\infty} x \cdot f(x) dx, \text{ Si } X \text{ es } \mathbf{v.a.} \text{ Continua} \end{cases}$$

Propiedades

- 1. E(a) = a
- 2. $E(x \pm a) = E(x) \pm a$
- 3. E(ax) = aE(x)
- 4. $E(ax \pm b) = aE(x) \pm b$

1.4.1. Varianza

Notaciones: $V(x), \sigma^2, \sigma_x^2$

$$V(x) = \sigma^2 = \begin{cases} E[x - \mu]^2 = \sum_x (x - \mu)^2 f(x); \text{ Si } X \text{ es } \mathbf{v.a.} \text{ Discreta} \\ \\ E[x - \mu]^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx; \text{Si } X \text{ es } \mathbf{v.a.} \text{ Continua} \end{cases}$$

Propiedades

- 1. $V(x) \ge 0$
- 2. V(a) = 0
- 3. V(ax) = aV(x)
- 4. $V(ax \pm b) = a^2V(x)$
- 5. $V(x) = E(x^2) [E(x)]^2$