Künstliche Intelligenz - Blatt 8

Lukas Härtel Mat. Nr.: 210101282

Mail: lukashaertel@uni-koblenz.de

Aufgabe 8.1

Logisches Programm P:

 $\begin{aligned} p &\leftarrow \neg a, x. \\ a &\leftarrow b, not \ q, not \ s. \\ j &\leftarrow not \ y, r, s. \\ k &\leftarrow not \ l. \\ t &\leftarrow r, s, y. \\ r. \\ s. \\ y. \end{aligned}$

Aufgabenteil a)

Für $S = \{r, s, t\}$. ist das Redukt P^S :

$$P^{S} = \{ p \leftarrow \neg a, x., j \leftarrow r, s., k., t \leftarrow r, s, y., r., s., y. \}$$

Minimales Modell von P^S ist $\{k, r, s, y, t, j\} \neq S$, damit ist S keine Antwortmenge.

Aufgabenteil b)

Setze $S := \{k, r, s, y, t, j\}$, dann ist das Redukt P^S :

$$P^S = \{ p \leftarrow \neg a, x., j \leftarrow r, s., k., t \leftarrow r, s, y., r., s., y. \}$$

Minimales Modell von P^S ist $\{k,r,s,y,t,j\}=S,$ damit Antwortmenge.

Aufgabe 8.2

Gegeben folgendes erweiterte logische Programm P:

$$a \leftarrow not \ c$$

$$c \leftarrow b, not \ q$$

$$c \leftarrow not \ d, not \ e$$

$$e \leftarrow a, not \ d$$

$$b.$$

Nach Umformung in Default-Logik:

$$\delta_1 = \frac{\top : \neg c}{a}$$

$$\delta_2 = \frac{b : \neg q}{c}$$

$$\delta_3 = \frac{\top : \neg d, \neg e}{c}$$

$$\delta_4 = \frac{a : \neg d}{e}$$

$$def(P) = (\{b\}, \{\delta_1, \delta_2, \delta_3, \delta_4\})$$

Aufgabe 8.3

Allgemeines Wissen Aus dem Übungstext übernommen. Erst werden Tageszeiten, Aufgaben und ihre Dauer, Voraussetzungen und bekannte Startzeiten angegeben.

Listing 1: problem.lp

```
1% The usable hours in the day
2 day(9, 20).

3
4% Known events, with their durations
5 event(geldautomat, 1).
6 event((einkaufen; ki_vorlesung; ki_uebung), 2).
7 event(grillfeier, 3).

8
9% Dependencies between events
10 dependency(grillfeier, einkaufen).
11 dependency(einkaufen, geldautomat).
12 dependency(ki_uebung, ki_vorlesung).

13
14% Known start times
15 starttime(ki_vorlesung, 10; ki_uebung, 17).
```

Abgeleitetes Wissen Berechnung der Endzeit einer Aufgabe, Constraints für Aufgabenvoraussetzung, Überprüfung auf Tageszeit, Vermeidung von Überlappung, sowie Generator für alle möglichen Startzeiten.

Überlappungen werden durch die belegten Stunden abgefangen, wie durch occupied/2 vorbereitet und das letzte Constraint angegeben.

Listing 2: problem.lp (contd.)

```
16 % The endtime is the start time plus the duration
17 endtime (X, S + D) :=
       starttime(X, S), event(X, D).
_{20}\,\% The hours of a day that are occupied by an event
_{21} occupied (X, S ... (E - 1)) :-
       starttime\left( X,\ S\right) ,\ endtime\left( X,\ E\right) .
24 % For a dependency from X to Y, X needs to happen after Y has ended
       dependency(X, Y), starttime(X, S), endtime(Y, E), S < E.
26
27 % An event may not happen outside of the hours of a day
       starttime(\underline{\ }, X), day(Y, \underline{\ }), X < Y.
       endtime(\underline{\ }, \ X), \ day(\underline{\ }, \ Y), \ X > Y.
29:-
31 % Two different events may not overlap
       occupied (X, T), occupied (Y, T), X = Y.
33
_{34}\,\% Starttime of an event can be any time of the day, but only one assignment
35 { starttime (X, Y) : Y = S ... (E - 1) } == 1 :-
       \operatorname{event}\left(X,\ \_\right),
       day(S, E).
37
39 #show starttime /2.
```

Resultat Nach Berechnung über gringo problem.lp | clasp > result.txt ergeben sich die folgenden Belegungen.

```
9 Uhr Geldautomat
10 Uhr KI-Vorlesung
12 Uhr Einkaufen
14 Uhr Grillfeier
17 Uhr KI-Übung
```

Listing 3: result.txt

```
clasp version 3.1.4
<sup>2</sup> Reading from stdin
з Solving ...
4 Answer: 1
5 starttime (ki_vorlesung, 10) starttime (ki_uebung, 17) starttime (
     grillfeier ,14) starttime (einkaufen ,12) starttime (geldautomat
     , 9)
6 SATISFIABLE
_8 Models
                 : 1+
9 Calls
                 : 1
10 Time
                 : 0.007s (Solving: 0.00s 1st Model: 0.00s Unsat:
     0.00 \, \mathrm{s})
11 CPU Time
            : 0.016 \,\mathrm{s}
```