2.1: The Idea of Limits

Learning Objectives. Upon successful completion of Section 2.1, you will be able to...

- Answer conceptual questions involving average velocity or secant and tangent lines.
- Calculate average and instantaneous velocities.
- Calculate slopes of secant and tangent lines.
- Solve applications involving average and instantaneous velocities.

The Idea of a Limit

Given a function f and some input x = c in the domain of f, we are able to calculate the y-value, i.e. f(c). For instance, if f(x) = 3x - 1, then...

However, in some cases, things might not work out as nicely. Consider instead the function $f(x) = \frac{x^2 - 9}{x - 3}$. Because x = 3 is not in the domain of f, we cannot calculate f(3).

Very informally, we might say that the "limit" of f(x) at x = 3 is what f(3) "should" be. As you learn about how to work with limits, you will be able to show the following.

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6$$

Exploring Limits

We will explore the idea of a limit through the concept of velocity. The **average velocity** on some time interval $[t_1, t_2]$ is as follows.

$$v_{\text{avg}} = \frac{\text{distance traveled}}{\text{time elapsed}} = \frac{\Delta s}{\Delta t} = \frac{s(t_2) - s(t_1)}{t_2 - t_1}$$

Example. The position of a rock t seconds after being launched at a speed of 96 ft/s is given by $s(t) = -16t^2 + 96t$ feet. The average velocity between t = 1 and t = 3 is...

Geometric Interpretation. Geometrically, this average velocity is the slope of the line passing through the points (1,80) and (3,144).

We call such a line a **secant line**.

We can generalize the average velocity function to any function f.

Average Rate of Change. Given a general function f defined on [a, b], the quantity

is called the average rate of change of f on [a, b].

What if, instead of computing the average velocity between two time points, we want to compute the **instantaneous velocity** at a particular time? We cannot do this through standard means...

Example. Let's see if we can determine what the instantaneous velocity "should be" at a particular time. Suppose we want the instantaneous velocity at t = 1 second after the rock was launched.

$[1, t_1]$	$\frac{s(t_1) - s(1)}{t_1 - 1}$
[1, 1.500]	
[1, 1.100]	
[1, 1.010]	
[1, 1.001]	

What is the pattern as t_1 approaches 1, i.e. $t_1 \to 1$?

Example. Suppose $f(x) = \frac{2x-8}{\sqrt{x}-2}$. The following table was constructed for different values of x.

x	3.7	3.8	3.9	4.0	4.1	4.2	4.3
f(x)	7.847	7.899	7.950	0/0	8.050	8.099	8.147

How can we express the limit of f(x) using limit notation?

As we progress through the course, we will see that every fundamental task in calculus involves the calculation of a **limit**!

Tangent Lines

Definition. A tangent line to a curve at a point P(x, y) is a line that "just touches" the curve at P and has the same direction as the curve.

Tangent lines can help us see the geometric connection between **average** and **instantaneous** velocity. As the time interval for an average velocity shrinks, the slope of the associated *secant* line approaches the slope of the *tangent* line at the point of instantaneous velocity.

$$s(t) = -16t^2 + 96t$$

View an interactive demo here: https://www.desmos.com/calculator/gfpvpjeksy

Summary

• Informally, a **limit** is the "expected output" of a function or expression that cannot be directly calculated. We write this limit as

$$\lim_{x \to c} f(x) = L.$$

• The **instantaneous velocity** is the limit of the average velocity as the time interval shrinks to zero.

$$v_{\text{inst}} = \lim_{t_2 \to t_1} \frac{s(t_2) - s(t_1)}{t_2 - t_1}$$

- Geometrically, for two points P and Q...
 - the average velocity is the slope of the secant line passing through PQ, and
 - the **instantaneous** velocity is the slope of the **tangent** line passing through P.
- Calculating the slope of a tangent line is not possible through standard algebraic means. Our study of **calculus** with introduce techniques for finding the slope of a tangent line.

Helpful Equations. The following equations from an algebra course will be useful when working with secant and tangent lines.

• Slope of a Line.

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}$$

• Slope Intercept Form.

$$y = mx + b$$

• Point-Slope Form.

$$y - y_1 = m(x - x_1)$$