```
In [138]: # File Management
      import os
      import requests # to make TMDB API calls
      import locale # to format currency as USD
      locale.setlocale( locale.LC ALL, '' )
      import numpy as np
      import pandas as pd
      # Plotting Libraries
      import seaborn as sb
      import matplotlib.pyplot as plt
```

```
In [140]: # Either manually create a folder called "plots" or run this code
          if "plots" not in os.listdir(): # If folder called "plots" doesnt exist in currer
              os.mkdir("plots") # Make a folder called "plots". mkdir = make directory
```

Interesting Problem

Is your movie going to be successful?

There are many factors that can create a good movie

We will be looking at these 3 common assumptions

- 1. Certain genres bring about higher success rate
- 2. Popular cast usually mean that movies are more successful
- 3. Higher budget would equate to higher success

In this project, we will assume that only these 3 factors would have a major effect on the success of a movie

These factors would be then be compared against a **Success** which would include either

- Revenue
- Vote Average

1. Data Extraction and Cleaning

Steps taken

- get_year_detail calls get_page_detail to retrieve 10 pages of top movies of a year(by revenue/vote)
- 2. get_page_detail uses API to retrieve top movies of a certain page
- 3. Using list of movie names from **page details**, get individual movie details using **get_movie_detail**
- 4. Concat all info into 1 dataframe (movie_data)
- 5. Remove all movies that have no budget or casts

<u>API Documentation Site (https://developers.themoviedb.org/3/authentication/how-do-i-generate-a-session-id)</u>

In [2]: api_key = 'INSERT YOUR OWN API KEY HERE' # Required to make API calls

Functions Required for data collection

```
In [8]: def get movie detail(ID,api key):
            # Getting Movie Details
            movie = requests.get(f'https://api.themoviedb.org/3/movie/{ID}?api key={api |
            movie = movie.json()
            # Getting Cast Names
            casts = requests.get(f'https://api.themoviedb.org/3/movie/{ID}/credits?api ke
            casts = list(cast['name'] for cast in casts if cast['popularity']>10) #Gettir
            # Dictionary to store all details
            movie dict = {}
            movie_dict['Name of Movie'] = movie['original_title']
            movie_dict['Genres'] = list(genre['name'] for genre in movie['genres']) # to
            movie_dict['Budget'] = movie['budget']
            movie dict['Casts'] = casts
            movie_dict['Vote Count'] = movie['vote_count']
            movie_dict['Vote Average'] = movie['vote_average']
            movie_dict['Revenue'] = movie['revenue']
            return movie dict
        def get_page_detail(year,api_key,page,sort_factor):
                year : integer e.g. 2000
                api_key : string
                page: integer e.g. 10
                sort factor : string either 'revenue' or 'vote average'
            response = requests.get(f'https://api.themoviedb.org/3/discover/movie?api key
            page_details = response.json()['results'] #response.json returns a dictionary
            ID_list = list(x['id'] for x in page_details) # to get movie IDs for each pag
            page movies list = []
            for ID in ID list:
                page_movies_list.append(get_movie_detail(ID, api_key))
            return page_movies_list
```

Data Cleaning

```
year_detail['Budget']==0
```

check for rows with budgets = 0

```
year_detail['Casts'].map(len)==0
```

check for rows with no casts

```
year_detail.drop(list(year_detail[year_detail['Budget']==0].index), inplace=True) # Removing rows with no budget year_detail.drop(list(year_detail[year_detail['Casts'].map(len)==0].index), inplace=True) # Removing rows with no casts info
```

Revenue vs Vote Average as a measure for good movie

```
In [10]: # Sort by revenue
get_year_detail(2000,api_key, 'revenue')
...

In [6]: # Sort by vote average
get_year_detail(2000,api_key, 'vote_average')
...
```

From the tables above, it is clear that **Revenue** is a <u>better measure</u> than **Vote Average** as a lot of the highly voted films has little to no information with very little vote count therefore are **not reliable** as datasets

Getting Dataframe of movie details

Do NOT run the bottom line of code if csv is already in the folder(Code takes 1hr+ to complete)

After confirming that **Revenue** is a better measure of a popular/good movie than **Vote Average**, we can continue analysing whole dataset

- 10 pages a year
- year range from 1981 to 2022
- · removes outliers

Saves everything in csv file

```
In [223]: # Getting Dataframe of 10 pages of movie from 1981 to 2022

data_list = []
for year in range(1981,2023):
    print(year)
    data_list.append(get_year_detail(year,api_key, 'revenue', gen))

movie_data = pd.concat(data_list)
del data_list #delete data list to free space
...
```

```
In [224]: movie_data.to_csv("tmdb_topRevenueData.csv") # Saving to csv
```

2. Data Visualisation

Continuing from csv instead of reading API

if there is a csv file already made from the data, skip step 1 (**Data Extraction and Cleaning**) and go straight to this code

In [2]: movie_data = pd.read_csv("tmdb_topRevenueData.csv", index_col = 'Unnamed: 0').res
movie_data

Out[2]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue	Gen
0	Raiders of the Lost Ark	['Adventure', 'Action']	18000000	['Harrison Ford', 'Karen Allen', 'Paul Freeman	10400	7.922	389925971	Х
1	For Your Eyes Only	['Adventure', 'Action', 'Thriller']	28000000	['Roger Moore', 'Carole Bouquet', 'Lynn-Holly	1478	6.477	195312802	x
2	Porky's	['Comedy']	4000000	['Kim Cattrall']	690	6.419	125728258	Х
3	On Golden Pond	['Adventure', 'Drama', 'Romance']	15000000	['Henry Fonda', 'Jane Fonda', 'Dabney Coleman']	359	7.333	119285432	Х
4	Arthur	['Comedy', 'Drama', 'Romance']	7000000	['Paul Gleason', 'Mark Margolis']	335	6.530	95461682	X
5354	Infinite Storm	['Drama', 'Thriller']	4749917	['Naomi Watts', "Denis O'Hare"]	90	6.206	1564696	Z
5355	Les passagers de la nuit	['Drama']	4300000	['Charlotte Gainsbourg', 'Emmanuelle Béart']	44	7.023	1396831	Z
5356	Terrifier 2	['Horror', 'Thriller']	250000	['Lauren LaVera', 'David Howard Thornton', 'Gr	5	7.000	1200000	Z
5357	Gold	['Thriller', 'Action']	6500000	['Zac Efron']	393	6.295	176048	Z
5358	The Good Neighbor	['Thriller']	105	['Jonathan Rhys Meyers', 'Luke Kleintank', 'Br	65	7.231	94909	Z

5359 rows × 8 columns

Measure of a good movie

- As a measure of good movie, we will be seeing how much profit was made with reference to budget
- For profit, equation would be: profit = Revenue Budget
- For success, equation would be: Success = profit/budget

In [3]: movie_data['Profit'] = movie_data['Revenue'] - movie_data['Budget']
movie_data['Success'] = round(movie_data['Profit']/movie_data['Budget'],4) # Roun
movie_data

Out[3]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue	Gen	Profit
0	Raiders of the Lost Ark	['Adventure', 'Action']	18000000	['Harrison Ford', 'Karen Allen', 'Paul Freeman	10400	7.922	389925971	х	371925971
1	For Your Eyes Only	['Adventure', 'Action', 'Thriller']	28000000	['Roger Moore', 'Carole Bouquet', 'Lynn-Holly 	1478	6.477	195312802	Х	167312802
2	Porky's	['Comedy']	4000000	['Kim Cattrall']	690	6.419	125728258	Х	121728258
3	On Golden Pond	['Adventure', 'Drama', 'Romance']	15000000	['Henry Fonda', 'Jane Fonda', 'Dabney Coleman']	359	7.333	119285432	х	104285432
4	Arthur	['Comedy', 'Drama', 'Romance']	7000000	['Paul Gleason', 'Mark Margolis']	335	6.530	95461682	X	88461682
5354	Infinite Storm	['Drama', 'Thriller']	4749917	['Naomi Watts', "Denis O'Hare"]	90	6.206	1564696	Z	-3185221
5355	Les passagers de la nuit	['Drama']	4300000	['Charlotte Gainsbourg', 'Emmanuelle Béart']	44	7.023	1396831	Z	-2903169
5356	Terrifier 2	['Horror', 'Thriller']	250000	['Lauren LaVera', 'David Howard Thornton', 'Gr	5	7.000	1200000	Z	950000
5357	Gold	['Thriller', 'Action']	6500000	['Zac Efron']	393	6.295	176048	Z	-6323952
5358	The Good Neighbor	['Thriller']	105	['Jonathan Rhys Meyers', 'Luke Kleintank', 'Br	65	7.231	94909	Z	94804

5359 rows × 10 columns

Visualising Success

Seeing the distribution of Success from all movies

```
In [4]: success_df = pd.DataFrame(movie_data['Success'])
success_df.describe() # Written Description of success
```

Out[4]:

	Success
count	5.359000e+03
mean	4.922176e+02
std	2.552029e+04
min	-9.986000e-01
25%	7.700000e-03
50%	1.190000e+00
75%	3.136950e+00
max	1.545929e+06

```
In [5]: f = plt.figure(figsize=(24, 4))
sb.boxplot(data = success_df, orient = "h")
```

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x250ed3fad30>

From this boxplot, some outliers can be identified(values that are >10) and removed for better visualisation

Cleaning Data

Inspecting 'Budget' further as there could be the contributing factor to these outliers

```
In [6]: movie_data['Budget'].describe()
Out[6]: count
                  5.359000e+03
        mean
                  3.820260e+07
        std
                  4.428827e+07
        min
                  7.000000e+00
        25%
                 1.000000e+07
        50%
                  2.300000e+07
        75%
                  5.000000e+07
                  5.000000e+08
        max
        Name: Budget, dtype: float64
```

From the description, it can be seen that the minimum budget is \$7 however, this is not feasible. Hence, we would be filtering out any movies with Budget < 100,000

```
In [7]: movie_data.drop(movie_data.loc[movie_data['Budget']<100_000].index, inplace=True)
movie_data.reset_index(drop=True,inplace=True) # Reset Index</pre>
```

In [8]: movie_data

Out[8]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue	Gen	Profit
0	Raiders of the Lost Ark	['Adventure', 'Action']	18000000	['Harrison Ford', 'Karen Allen', 'Paul Freeman	10400	7.922	389925971	X	371925971
1	For Your Eyes Only	['Adventure', 'Action', 'Thriller']	28000000	['Roger Moore', 'Carole Bouquet', 'Lynn-Holly 	1478	6.477	195312802	Х	167312802
2	Porky's	['Comedy']	4000000	['Kim Cattrall']	690	6.419	125728258	Х	121728258
3	On Golden Pond	['Adventure', 'Drama', 'Romance']	15000000	['Henry Fonda', 'Jane Fonda', 'Dabney Coleman']	359	7.333	119285432	Х	104285432
4	Arthur	['Comedy', 'Drama', 'Romance']	7000000	['Paul Gleason', 'Mark Margolis']	335	6.530	95461682	X	88461682
5335	The King's Daughter	['Fantasy', 'Drama', 'Romance', 'History']	40500000	['Pierce Brosnan', 'Kaya Scodelario', 'Benjami	574	7.251	2182492	Z	-38317508
5336	Infinite Storm	['Drama', 'Thriller']	4749917	['Naomi Watts', "Denis O'Hare"]	90	6.206	1564696	Z	-3185221
5337	Les passagers de la nuit	['Drama']	4300000	['Charlotte Gainsbourg', 'Emmanuelle Béart']	44	7.023	1396831	Z	-2903169
5338	Terrifier 2	['Horror', 'Thriller']	250000	['Lauren LaVera', 'David Howard Thornton', 'Gr	5	7.000	1200000	Z	950000
5339	Gold	['Thriller', 'Action']	6500000	['Zac Efron']	393	6.295	176048	Z	-6323952

5340 rows × 10 columns

4

```
In [9]: # Plotting
    f = plt.figure(figsize=(24, 4))
    plt.title("Distribution of Success")
    sb.boxplot(data = movie_data['Success'], orient = "h")
    plt.savefig("plots/success_boxplot.png") #Save plot
```



```
In [10]: # Plotting
    f = plt.figure(figsize=(24, 12))
    plt.title("Distribution of Success")
    sb.histplot(data = movie_data['Success'])
    plt.savefig("plots/success_histplot.png") #Save plot
```


From these plots, we have decided that a movie with "Success" > 1 would be considered a **good movie**, else it is considered a bad movie. Hence now an edit will be done to the main dataframe to reflect this decision.

In [11]: success_threshold = 1

Editing Movie Dataframe such that "Success > success_threshold" would be counte
movie_data['Successful'] = True # Creating a new column by setting everything to
movie_data.loc[movie_data['Success'] < success_threshold, 'Successful'] = False #
movie_data</pre>

Out[11]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue	Gen	Profit
0	Raiders of the Lost Ark	['Adventure', 'Action']	18000000	['Harrison Ford', 'Karen Allen', 'Paul Freeman	10400	7.922	389925971	X	371925971
1	For Your Eyes Only	['Adventure', 'Action', 'Thriller']	28000000	['Roger Moore', 'Carole Bouquet', 'Lynn-Holly 	1478	6.477	195312802	Х	167312802
2	Porky's	['Comedy']	4000000	['Kim Cattrall']	690	6.419	125728258	Х	121728258
3	On Golden Pond	['Adventure', 'Drama', 'Romance']	15000000	['Henry Fonda', 'Jane Fonda', 'Dabney Coleman']	359	7.333	119285432	х	104285432
4	Arthur	['Comedy', 'Drama', 'Romance']	7000000	['Paul Gleason', 'Mark Margolis']	335	6.530	95461682	X	88461682
5335	The King's Daughter	['Fantasy', 'Drama', 'Romance', 'History']	40500000	['Pierce Brosnan', 'Kaya Scodelario', 'Benjami	574	7.251	2182492	Z	-38317508
5336	Infinite Storm	['Drama', 'Thriller']	4749917	['Naomi Watts', "Denis O'Hare"]	90	6.206	1564696	Z	-3185221
5337	Les passagers de la nuit	['Drama']	4300000	['Charlotte Gainsbourg', 'Emmanuelle Béart']	44	7.023	1396831	Z	-2903169
5338	Terrifier 2	['Horror', 'Thriller']	250000	['Lauren LaVera', 'David Howard Thornton', 'Gr	5	7.000	1200000	Z	950000
5339	Gold	['Thriller', 'Action']	6500000	['Zac Efron']	393	6.295	176048	Z	-6323952

5340 rows × 11 columns

Visualising Factors

- Genres
- Casts
- Budget

2.1 Genres

Function to convert string to list

· dataframe issues where list are stored as strings

```
In [14]: # Issue with list in Dataframe
         string list = "['Adventure', 'Action']"
         def string_to_list(str):
             lst = []
             temp_word = ""
             for char in str :
                 if char == ',': # If there is a comma, append word to list
                     lst.append(temp_word)
                     temp_word = ''
                 elif char in ["'", "[","]", " ", ""]: # Ignore these characters
                      pass
                 else:
                     temp_word += char
             lst.append(temp word) #Appending Last word cos no comma
             return 1st
         string_to_list(string_list)
```

Out[14]: ['Adventure', 'Action']

Out[15]:

	Adventure	Action	Thriller	Comedy	Drama	Romance	History	War	ScienceFiction	Fami
Count	1057	1541	1411	2060	2302	977	271	168	659	65
4										

```
In [16]: # Sorting Genres for easier visualisation
Genre_sorted = Genre_df.T.sort_values(by="Count",ascending=False).T
Genre_sorted
```

Out[16]:

	Drama	Comedy	Action	Thriller	Adventure	Romance	Crime	ScienceFiction	Family	Fan
Count	2302	2060	1541	1411	1057	977	850	659	658	

From the plot, we can tell that **Drama** and **Comedy** are the most popular genres while **TV Movies** and **Genre-less** are least popular genres

Finding the Success distribution for both Drama and Comedy movies

```
In [18]: # Popular Genres analysis ("Drama and Comedy")
popular_list = []
for i,string_rows in enumerate(movie_data['Genres']) :
    list_row = string_to_list(string_rows) # Issue is that the list of genres is
    for genre in list_row :
        if genre == "Drama" or genre == 'Comedy':
            popular_list.append(movie_data[i:i+1])

popular_df = pd.concat(popular_list).reset_index(drop = True)
popular_success = pd.DataFrame(popular_df["Successful"])
popular_df["Successful"].value_counts()
```

Out[18]: True 2287 False 2075

Name: Successful, dtype: int64

```
In [19]: # Plotting
    f = plt.figure(figsize=(30, 16))
    sb.catplot(x = 'Successful',data = popular_success, kind = "count", orient ="h")
    plt.title("Drama and Comedy")
    plt.savefig("plots/popular_genre_success.png") #Save plot
```

<Figure size 2160x1152 with 0 Axes>

From the plots we can determine that Success of Drama and Comedy genres is not directly correlated as Success is equally distributed

Finding the Success distribution for both TVMovie and Genreless movies

```
In [20]: # Popular Genres analysis ("Drama and Comedy")
notpopular_list = []
for i,string_rows in enumerate(movie_data['Genres']) :
    list_row = string_to_list(string_rows) # Issue is that the list of genres is
    for genre in list_row :
        if genre == "TVMovie" or genre == 'Genreless':
            notpopular_list.append(movie_data[i:i+1])

notpopular_df = pd.concat(notpopular_list).reset_index(drop = True)
notpopular_success = pd.DataFrame(notpopular_df["Successful"])
notpopular_df["Successful"].value_counts()
```

Out[20]: True 3
False 1

Name: Successful, dtype: int64

```
In [21]: # Plotting
    f = plt.figure(figsize=(30, 16))
    sb.catplot(x = 'Successful',data = notpopular_success, kind = "count", orient ="Figure("TVMovies and Genreless")
    plt.title("TVMovies and Genreless")
    plt.savefig("plots/unpopular_genre_success.png") #Save plot
```

<Figure size 2160x1152 with 0 Axes>

Unpopular genres are more successful according to the plots however, there are also less movie with such genres hence these deductions are **not conclusive**

2.2 Cast

Finding the top 10 most popular cast members and the bottom 10 least popular cast members

```
In [22]: cast_dict = {}

for i,string_rows in enumerate(movie_data['Casts']) :
    list_row = string_to_list(string_rows) # Issue is that the list of casts is s
    for cast in list_row :
        try:
            cast_dict[cast] += 1
        except KeyError :
            cast_dict[cast] = 1

# Converting from dictionary to dataframe for easier visualistion
    cast_df = pd.DataFrame(cast_dict, index = ["count"]) # Add column called count
    cast_df = cast_df.T.sort_values(by="count", ascending=False) # Sort dataframe
    cast_df
```

Out[22]:

	count						
FrankWelker	95						
SamuelL.Jackson	86						
BruceWillis	65						
RobertDeNiro	62						
LiamNeeson	61						
ZlatkoBurić	1						
JohnHamburg	1						
JoeTurkel	1						
CharlesBaker	1						
GriffinSantopietro	1						
5543 rows × 1 columns							

Top 100 most popular cast members

```
In [23]: cast_df[:100]
```

Out[23]:

	count
FrankWelker	95
SamuelL.Jackson	86
BruceWillis	65
RobertDeNiro	62
LiamNeeson	61
JimCarrey	34
JimBroadbent	34
MichellePfeiffer	34
BrianCox	34
SigourneyWeaver	34

100 rows × 1 columns

Bottom 100 most popular cast members

```
In [24]: cast_df[-100:]
```

Out[24]:

	count
UhmJung-hwa	1
LeeMin-ki	1
KimYou-jung	1
NinavanPallandt	1
TomLipinski	1
ZlatkoBurić	1
JohnHamburg	1
JoeTurkel	1
CharlesBaker	1
GriffinSantopietro	1

100 rows × 1 columns

Checking for movies that popular cast members play in

Seeing if the movies they played are successful

Out[25]: True 350 False 290

Name: Successful, dtype: int64

```
In [26]: # Plotting
    f = plt.figure(figsize=(30, 16))
    sb.catplot(x = 'Successful',data = popular_cast_df, kind = "count", orient ="h")
    plt.title("Popular Cast Success")
    plt.savefig("plots/popular_cast_success.png") #Save plot
```

<Figure size 2160x1152 with 0 Axes>

These results goes against conventional thought process of **popular casts brings good movies** as there are still a significant amount of "unsuccesful" movies despite having popular casts. However, there are slightly more successful movies than unsuccessful movies hence there is still some weight to this claim

```
In [28]: # Plotting
    f = plt.figure(figsize=(30, 16))
    sb.catplot(x = 'Successful',data = unpopular_cast_df, kind = "count", orient ="h'
    plt.title("Unpopular Cast Success")
    plt.savefig("plots/unpopular_cast_success.png") #Save plot
```

<Figure size 2160x1152 with 0 Axes>

These results further **disprove** the claim that only popular cast make successful movies as there are more successful movie than unsuccessful movie with the bottom 10 most popular cast members

2.3 Budget

Analyzing the claim that a bigger budget would make a better movie

```
In [29]: movie_data["Budget"].describe()
Out[29]: count
                   5.340000e+03
         mean
                   3.833844e+07
                   4.430830e+07
         std
         min
                   1.000000e+05
         25%
                   1.000000e+07
         50%
                   2.400000e+07
         75%
                   5.000000e+07
                   5.000000e+08
         max
         Name: Budget, dtype: float64
In [30]:
         # Distribution of Budget
         f,axes = plt.subplots(2,1,figsize=(20, 12))
         sb.boxplot(data = movie_data["Budget"], orient = "h", ax=axes[0])
         sb.histplot(data = movie data["Budget"], ax=axes[1])
         plt.savefig("plots/budget_distribution.png")
           500
           400
           200
           100
```

From the analysis of budget above, we can consider movies with a budget of **more than 100 million as high budget** as most movies within the 75 and 25 percentile only have a budget of 10 to 50 million. Those films with less than **5 million dollar with be considered as low budget**.

High Budget Movies

Movies that have a budget of more than USD\$100 Million

In [31]: high_budget = movie_data.loc[movie_data['Budget'] >= 1*(10**8)]
high_budget

Out[31]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue	Gen	
779	Terminator 2: Judgment Day	['Action', 'Thriller', 'Science Fiction']	102000000	['Arnold Schwarzenegger', 'Linda Hamilton', 'E	10732	8.081	520000000	Х	418(
1095	True Lies	['Action', 'Thriller']	115000000	['Arnold Schwarzenegger', 'Jamie Lee Curtis',	3330	7.040	378882411	X	263
1194	Batman Forever	['Action', 'Crime', 'Fantasy']	100000000	['Val Kilmer', 'Tommy Lee Jones', 'Jim Carrey'	4437	5.398	336529144	X	236{
1197	Waterworld	['Adventure', 'Action', 'Science Fiction']	175000000	['Kevin Costner', 'Dennis Hopper', 'Jeanne Tri	3041	6.158	264218220	X	892
1324	The Hunchback of Notre Dame	['Drama', 'Animation', 'Family']	100000000	['Tom Hulce', 'Demi Moore', 'Tony Jay', 'Kevin	4302	7.092	325338851	X	2250
5285	Uncharted	['Action', 'Adventure']	120000000	['Tom Holland', 'Mark Wahlberg', 'Sophia Ali',	3663	7.108	401748820	Z	2817
5289	Lightyear	['Animation', 'Action', 'Adventure', 'Family',	200000000	['Chris Evans', 'Keke Palmer', 'Taika Waititi'	2202	7.200	226400000	Z	264
5308	Moonfall	['Science Fiction']	146000000	['Halle Berry', 'Patrick Wilson', 'Charlie Plu	1917	6.402	59100000	Z	-869
5321	Turning Red	['Animation', 'Family', 'Comedy', 'Fantasy']	190000000	['Sandra Oh', 'Maitreyi Ramakrishnan', 'James	3392	7.531	18879922	Z	-171 ⁻
5330	Black Adam	['Action', 'Fantasy', 'Adventure']	185000000	['Dwayne Johnson', 'Aldis Hodge', 'Pierce Bros	0	0.000	5000000	Z	-180(

479 rows × 11 columns

```
In [32]: # Distribution of Success of High budget film
    f = plt.figure(figsize=(30, 16))
    sb.jointplot(data = high_budget, x = "Budget", y = "Success", height = 12)

#plt.plot([range of x], [range of y], style, color)
    plt.plot([high_budget['Budget'].min(),high_budget['Budget'].max()],[1,1],'--',col
    plt.title("High Budget")
    plt.savefig("plots\HighBudgetvsSuccess_plot.png")
```

<Figure size 2160x1152 with 0 Axes>

- As can be seen from the plot above, Budget and Success do not have much of a correlation as success is evenly distributed around the 100 to 200 million dollar budget range.
- However, above 200 million dollars, most movie tend to be more successful with Success >=
 1.

<Figure size 2160x1152 with 0 Axes>

 From these analysis, it is fair to say that a higher budget definitely has an impact on success as there are almost twice as many successful movies as there are unsuccessful movie with a high budget

Low Budget Movies

Movies with less than \$5 Million budget

In [35]: low_budget = movie_data.loc[movie_data['Budget'] < 5*(10**6)]
low_budget</pre>

Out[35]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue	Gen	Profit	S
2	Porky's	['Comedy']	4000000	['Kim Cattrall']	690	6.419	125728258	Х	121728258	
11	Hardly Working	['Comedy']	3400000	['Jerry Lewis']	18	4.500	49000000	Х	45600000	
25	The Evil Dead	['Horror']	350000	['Bruce Campbell', 'Ted Raimi', 'Sam Raimi']	3096	7.313	29400000	X	29050000	
27	Private Lessons	['Comedy', 'Romance']	2800000	['Sylvia Kristel', 'Howard Hesseman', 'Ed Begl	73	5.726	26279000	Х	23479000	
29	Halloween II	['Horror', 'Thriller']	2500000	['Jamie Lee Curtis', 'Donald Pleasence', 'Pame	1594	6.550	25533818	Х	23033818	
5319	Father Stu	['Drama']	4000000	['Mark Wahlberg', 'Mel Gibson', 'Jacki Weaver'	302	7.500	21591034	Z	17591034	
5326	Fall	['Thriller']	3000000	['Grace Caroline Currey', 'Virginia Gardner',	1354	7.402	11900000	Z	8900000	
5336	Infinite Storm	['Drama', 'Thriller']	4749917	['Naomi Watts', "Denis O'Hare"]	90	6.206	1564696	Z	-3185221	
5337	Les passagers de la nuit	['Drama']	4300000	['Charlotte Gainsbourg', 'Emmanuelle Béart']	44	7.023	1396831	Z	-2903169	
5338	Terrifier 2	['Horror', 'Thriller']	250000	['Lauren LaVera', 'David Howard Thornton', 'Gr	5	7.000	1200000	Z	950000	

527 rows × 11 columns

```
In [36]: low_budget['Success'].describe()
Out[36]: count
                  527.00000
         mean
                    9.45578
         std
                    17.26949
         min
                    -0.99170
         25%
                    0.73215
         50%
                     3.54940
         75%
                    9.63355
         max
                  124.00280
         Name: Success, dtype: float64
```

```
In [37]: # Distribution of Success of High budget film
    f = plt.figure(figsize=(30, 16))
    sb.jointplot(data = low_budget, x = "Budget", y = "Success", height = 12)

#plt.plot([range of x], [range of y], style, color)
    plt.plot([low_budget['Budget'].min(),low_budget['Budget'].max()],[1,1],'--',color
    plt.title("Low Budget")
    plt.savefig("plots\LowBudgetvsSuccess_plot.png")
```

<Figure size 2160x1152 with 0 Axes>

From this plot, it can be seen that lower budget films(<5mil) have less movies under the threshold(Success<1) than higher budget movies.

<Figure size 2160x1152 with 0 Axes>

With more than twice as many successful movies than unsuccessful movies, it goes to show that low budget films **does not** equate to unsuccessful film and that the correlation might be that higher budget movies have a higher chance of failure instead

3. Machine Learning

Table of Contents

Models used

1. Decision Tree Classifier

- 2. Random Forest Classifier
- 3. TPOT Classifier

Model Optimization

- 1. Manually Find Best Parameter Value
- 2. GridSearchCV
- 3. Tpot vs GridSearchCV

Creating New Dataset

As Casts and Genres are categorical data, they are stored as strings

- For example genres = '["Adventure", "Action"], therefore genres[0] will output [
- · Need to create individual columns for each genre

Adventure	Action	Drama	
1	0	1	
0	0	1	
1	1	0	

- For Genres, check whether Movie contains the top 1000 cast
- · create a column that shows whether it has popular cast

Popula	r Cast
	1
	0
	0
	1

Genre Appending

```
In [40]: # Creating dictionary of genres
         genre_ml_dict = {}
         for genre in Genre_df.columns:
             genre_ml_dict[genre] = []
         # Looping through movie data to append value
         for i,string_rows in enumerate(movie_data['Genres']) :
             list_row = string_to_list(string_rows)
             # loop through genre dictionary
             for genre in genre_ml_dict:
                 if genre in list_row :
                     genre_ml_dict[genre].append(1)
                 else :
                     genre_ml_dict[genre].append(0)
         # Dataframe of only genres
         genre_ml_df = pd.DataFrame(genre_ml_dict)
         genre_ml_df
```

Out[40]:

	Adventure	Action	Thriller	Comedy	Drama	Romance	History	War	ScienceFiction	Family
0	1	1	0	0	0	0	0	0	0	С
1	1	1	1	0	0	0	0	0	0	С
2	0	0	0	1	0	0	0	0	0	С
3	1	0	0	0	1	1	0	0	0	С
4	0	0	0	1	1	1	0	0	0	C
5335	0	0	0	0	1	1	1	0	0	С
5336	0	0	1	0	1	0	0	0	0	C
5337	0	0	0	0	1	0	0	0	0	C
5338	0	0	1	0	0	0	0	0	0	C
5339	0	1	1	0	0	0	0	0	0	С

5340 rows × 20 columns

localhost:8888/notebooks/TMDB.ipynb

In [41]: # Join the genre dataframe with main dataframe
 ml_df = movie_data.join(genre_ml_df)
 ml_df

Out[41]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue	Gen	Profit
0	Raiders of the Lost Ark	['Adventure', 'Action']	18000000	['Harrison Ford', 'Karen Allen', 'Paul Freeman	10400	7.922	389925971	х	371925971
1	For Your Eyes Only	['Adventure', 'Action', 'Thriller']	28000000	['Roger Moore', 'Carole Bouquet', 'Lynn-Holly 	1478	6.477	195312802	X	167312802
2	Porky's	['Comedy']	4000000	['Kim Cattrall']	690	6.419	125728258	Х	121728258
3	On Golden Pond	['Adventure', 'Drama', 'Romance']	15000000	['Henry Fonda', 'Jane Fonda', 'Dabney Coleman']	359	7.333	119285432	Х	104285432
4	Arthur	['Comedy', 'Drama', 'Romance']	7000000	['Paul Gleason', 'Mark Margolis']	335	6.530	95461682	X	88461682
5335	The King's Daughter	['Fantasy', 'Drama', 'Romance', 'History']	40500000	['Pierce Brosnan', 'Kaya Scodelario', 'Benjami	574	7.251	2182492	Z	-38317508
5336	Infinite Storm	['Drama', 'Thriller']	4749917	['Naomi Watts', "Denis O'Hare"]	90	6.206	1564696	Z	-3185221
5337	Les passagers de la nuit	['Drama']	4300000	['Charlotte Gainsbourg', 'Emmanuelle Béart']	44	7.023	1396831	Z	-2903169
5338	Terrifier 2	['Horror', 'Thriller']	250000	['Lauren LaVera', 'David Howard Thornton', 'Gr	5	7.000	1200000	Z	950000
5339	Gold	['Thriller', 'Action']	6500000	['Zac Efron']	393	6.295	176048	Z	-6323952

5340 rows × 31 columns

Top 700 cast column

```
In [42]: top_casts = list(cast_df[:700].index)

popular_cast_list = []

for i,string_rows in enumerate(movie_data['Casts']) :
    list_row = string_to_list(string_rows)
    common_names = [name for name in list_row if name in top_casts] # if names in if common_names :
        popular_cast_list.append(1)
    else :
        popular_cast_list.append(0)

ml_df['Popular Casts'] = popular_cast_list
ml_df
```

Out[42]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue	Gen	Profit
0	Raiders of the Lost Ark	['Adventure', 'Action']	18000000	['Harrison Ford', 'Karen Allen', 'Paul Freeman	10400	7.922	389925971	х	371925971
1	For Your Eyes Only	['Adventure', 'Action', 'Thriller']	28000000	['Roger Moore', 'Carole Bouquet', 'Lynn-Holly 	1478	6.477	195312802	X	167312802
2	Porky's	['Comedy']	4000000	['Kim Cattrall']	690	6.419	125728258	Х	121728258
3	On Golden Pond	['Adventure', 'Drama', 'Romance']	15000000	['Henry Fonda', 'Jane Fonda', 'Dabney Coleman']	359	7.333	119285432	Х	104285432
4	Arthur	['Comedy', 'Drama', 'Romance']	7000000	['Paul Gleason', 'Mark Margolis']	335	6.530	95461682	Х	88461682
5335	The King's Daughter	['Fantasy', 'Drama', 'Romance', 'History']	40500000	['Pierce Brosnan', 'Kaya Scodelario', 'Benjami	574	7.251	2182492	Z	-38317508
5336	Infinite Storm	['Drama', 'Thriller']	4749917	['Naomi Watts', "Denis O'Hare"]	90	6.206	1564696	Z	-3185221
5337	Les passagers de la nuit	['Drama']	4300000	['Charlotte Gainsbourg', 'Emmanuelle Béart']	44	7.023	1396831	Z	-2903169

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue	Gen	Profit
5338	Terrifier 2	['Horror', 'Thriller']	250000	['Lauren LaVera', 'David Howard Thornton', 'Gr	5	7.000	1200000	Z	950000
5339	Gold	['Thriller', 'Action']	6500000	['Zac Efron']	393	6.295	176048	Z	-6323952

5340 rows × 32 columns

In [43]: ml_df['Popular Casts'].value_counts()

Out[43]: 1 4484

856

Name: Popular Casts, dtype: int64

There are 4483 movies with popular casts while only 856 movies without.

3.1 Decision Tree Classifier

```
In [116]: # Import Decision Tree Classifier model from Scikit-Learn
from sklearn.tree import DecisionTreeClassifier

# Plot the trained Decision Tree
from sklearn.tree import plot_tree

# Import essential models and functions from sklearn
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix

# For Exporting trained models
import pickle
```

For train-test split, change random_state to try different mix up the dataset. Every random_state is a specific combination of train-test data, hence change the number to **any integer** and test the accuracy. Remember the state with the best accuracy and always use that state

```
In [117]: # Columns Required
          columns required = [idx for idx in ml df.columns[11:]] # All columns from index 1
          columns required.append('Budget') # Adding Budget to part of dataframe column
          # Extract Response and Predictors
          y = pd.DataFrame(ml_df['Successful'])
          X = pd.DataFrame(ml df[columns required])
          # Split the Dataset into Train and Test
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, randon
In [127]: # Creating Decision Tree Model
          dectree = DecisionTreeClassifier(max_depth = 100) # create the decision tree mod
          dectree.fit(X_train, y_train)
                                                            # train the decision tree model
          # Exporting Model so that do not need to re-train model with each refresh
          with open('dectree untuned.pkl', 'wb') as f:
              pickle.dump(dectree , f)
In [398]: # Plotting the Tree for visualisation
          # Do NOT plot if more than depth of 4 because it lags and nothing can be seen any
          f = plt.figure(figsize=(24,24))
          plot tree(dectree, filled=True, rounded=True,
                    feature names=X train.columns,
                    class_names=["0","1"])
```

```
In [132]: # Predict Legendary values corresponding to Total
          y_train_pred = dectree.predict(X_train)
          y_test_pred = dectree.predict(X_test)
          # Confusion Matrix
          cm_train = confusion_matrix(y_train, y_train_pred)
          cm_test = confusion_matrix(y_test, y_test_pred)
          # Plot the Confusion Matrix
          fig, ax = plt.subplots(1,2,figsize=(20, 8))
          # CM for Train Data
          sb.heatmap(cm train,
                     annot = True, fmt=".0f", annot_kws={"size": 18},ax=ax[0])
          ax[0].set_title("Train Data Confusion Matrix")
          # CM for Test Data
          sb.heatmap(cm_test,
                     annot = True, fmt=".0f", annot kws={"size": 18},ax=ax[1])
          ax[1].set title("Test Data Confusion Matrix")
```

Out[132]: Text(0.5, 1.0, 'Test Data Confusion Matrix')

Classification Accuracy

- TPR = TP / (TP + FN) : True Positive Rate = True Positives / All Positives
- TNR = TN / (TN + FP) : True Negative Rate = True Negatives / All Negatives
- FPR = FP / (TN + FP) : False Positive Rate = False Positives / All Negatives
- FNR = FN / (TP + FN) : False Negative Rate = False Negatives / All Positives

```
In [133]: # Number of Rows for each dataset
          length train = X train.shape[0]
          length_test = X_test.shape[0]
          # Train data accuracy
          tn_train, fp_train, fn_train, tp_train = cm_train[0][0],cm_train[0][1],cm_train[1
          # Accuracy Measures
          train tr neg = tn train/(tn train+fp train)
          train_fa_pos = (fp_train/(tn_train+fp_train))
          train fa neg = (fn train/(fn train+tp train))
          train_tr_pos = (tp_train/(fn_train+tp_train))
          train_acc = (tp_train+tn_train)/length_train
          train_inacc = 1 - train_acc
          # Test data accuracy
          tn_test, fp_test, fn_test, tp_test= cm_test[0][0],cm_test[0][1],cm_test[1][0],cm_
          # Accuracy Measures
          test tr neg = tn test/(tn test+fp test)
          test fa pos = (fp test/(tn train+fp test))
          test_fa_neg = (fn_test/(fn_test+tp_test))
          test tr pos = (tp test/(fn test+tp test))
          test_acc = (tp_test+tn_test)/length_test
          test_inacc = 1 - test_acc
```

Out[134]:

	class_acc	train	test
0	tr_neg	0.820000	0.840731
1	fa_pos	0.180000	0.080475
2	fa_neg	0.208538	0.197368
3	tr_pos	0.791462	0.802632
4	acc	0.804441	0.820849
5	inacc	0.195559	0.179151

With a depth of **100**, the accuracy on the test data is around <u>56%</u>, there is **not enough evidence** to show a direct impact on **Success** by the factors mentioned. However, the train data accuracy is <u>91%</u> which would mean that there is some correlation between the factors and its "Successfulness"

3.2 Random Forest Classifier

```
In [60]: from sklearn.ensemble import RandomForestClassifier
         # Creating the model
         randomforest = RandomForestClassifier(max_depth=100, random_state=0, n_estimators
         randomforest.fit(X_train, y_train['Successful']) #Used y_train['Successful'] inst
         # Exporting Model so that do not need to re-train model with each refresh
         with open('randomforest untuned.pkl', 'wb') as f:
             pickle.dump(randomforest , f)
In [61]: # Predicting Results
         y_train_pred = randomforest.predict(X_train)
         y_test_pred = randomforest.predict(X_test)
         # Confusion Matrix
         cm_train = confusion_matrix(y_train, y_train_pred)
         cm test = confusion matrix(y test, y test pred)
         # Plot the Confusion Matrix
         fig, ax = plt.subplots(1,2,figsize=(20, 8))
         # CM for Train Data
         sb.heatmap(cm train,
                    annot = True, fmt=".0f", annot_kws={"size": 18},ax=ax[0])
         ax[0].set_title("Train Data Confusion Matrix")
         # CM for Test Data
         sb.heatmap(cm test,
                    annot = True, fmt=".0f", annot_kws={"size": 18},ax=ax[1])
```

Out[61]: Text(0.5, 1.0, 'Test Data Confusion Matrix')

ax[1].set title("Test Data Confusion Matrix")


```
In [62]: # Number of Rows for each dataset
         length train = X train.shape[0]
         length_test = X_test.shape[0]
         # Train data accuracy
         tn_train, fp_train, fn_train, tp_train = cm_train[0][0],cm_train[0][1],cm_train[1
         # Accuracy Measures
         train tr neg = tn train/(tn train+fp train)
         train_fa_pos = (fp_train/(tn_train+fp_train))
         train fa neg = (fn train/(fn train+tp train))
         train_tr_pos = (tp_train/(fn_train+tp_train))
         train_acc = (tp_train+tn_train)/length_train
         train_inacc = 1 - train_acc
         # Test data accuracy
         tn_test, fp_test, fn_test, tp_test= cm_test[0][0],cm_test[0][1],cm_test[1][0],cm_
         # Accuracy Measures
         test tr neg = tn test/(tn test+fp test)
         test fa pos = (fp test/(tn train+fp test))
         test_fa_neg = (fn_test/(fn_test+tp_test))
         test tr pos = (tp test/(fn test+tp test))
         test_acc = (tp_test+tn_test)/length_test
         test_inacc = 1 - test_acc
```


Out[63]:

	class_acc	train	test
0	tr_neg	0.903835	0.513619
1	fa_pos	0.096165	0.196644
2	fa_neg	0.071953	0.370638
3	tr_pos	0.928047	0.629362
4	acc	0.917068	0.573658
5	inacc	0.082932	0.426342

With a depth of **100**, the accuracy on the test data is around <u>57%</u>, there is **not enough evidence** to show a direct impact on **Success** by the factors mentioned however, as the accuracy of train data is around 91.5%, it shows that there is a correlation and therefore could be tuned to achieve better results

3.3 TPOT Classifier

- Tpot is an automated machine learning package in python that uses genetic programming concepts to optimize the machine learning pipeline
- Automates the machine learning by intelligently exploring thousands of the possible to find the best possible parameter that suits data
- TPOT Documentation Site (http://epistasislab.github.io/tpot/api/)
- RepeatedKFolds Documentation Site (https://scikitlearn.org/stable/modules/generated/sklearn.model selection.RepeatedKFold.html)

```
In [204]: # Required Libraries
    from tpot import TPOTClassifier
    from sklearn.pipeline import Pipeline
    from sklearn.feature_selection import SelectFromModel, SelectKBest, f_regression
    from sklearn.linear_model import Lasso
    """For Optimization of ML by KFolds"""
    from sklearn.model_selection import RepeatedKFold
    from sklearn.model_selection import cross_val_score

# 1st Tpot try
    cv = RepeatedKFold(n_splits=5, n_repeats=10, random_state=1)
    tpot = TPOTClassifier(template = 'Classifier', generations=20, population_size=26
```

```
In [206]: tpot.fit(X train, y train['Successful'])
          HBox(children=(FloatProgress(value=0.0, description='Optimization Progress', ma
          x=4200.0, style=ProgressStyle(d...
          Generation 1 - Current best internal CV score: -0.4021105455690857
          Generation 2 - Current best internal CV score: -0.4021105455690857
          Generation 3 - Current best internal CV score: -0.40186958171366394
          Generation 4 - Current best internal CV score: -0.40186958171366394
          TPOT closed during evaluation in one generation.
          WARNING: TPOT may not provide a good pipeline if TPOT is stopped/interrupted in
          a early generation.
          TPOT closed prematurely. Will use the current best pipeline.
          Best pipeline: XGBClassifier(input_matrix, learning_rate=0.1, max_depth=1, min_
          child weight=18, n estimators=100, n jobs=1, subsample=0.850000000000001, verb
          osity=0)
Out[206]: TPOTClassifier(cv=RepeatedKFold(n_repeats=10, n_splits=5, random_state=1),
                         generations=20, n_jobs=-1, population_size=200, random_state=1,
                         scoring='neg mean squared error', template='Classifier',
                         verbosity=2)
In [211]: TPOT model = model.fitted pipeline
          with open('tpot_new.pkl', 'wb') as f: #Exporting model to a pickle file so that a
```

pickle.dump(TPOT model , f)

```
In [207]: # Predicting Results
          y_train_pred = tpot.predict(X_train)
          y_test_pred = tpot.predict(X_test)
          # Confusion Matrix
          cm_train = confusion_matrix(y_train, y_train_pred)
          cm_test = confusion_matrix(y_test, y_test_pred)
          # Plot the Confusion Matrix
          fig, ax = plt.subplots(1,2,figsize=(20, 8))
          # CM for Train Data
          sb.heatmap(cm_train,
                     annot = True, fmt=".0f", annot_kws={"size": 18},ax=ax[0])
          ax[0].set_title("Train Data Confusion Matrix")
          # CM for Test Data
          sb.heatmap(cm_test,
                     annot = True, fmt=".0f", annot_kws={"size": 18},ax=ax[1])
          ax[1].set title("Test Data Confusion Matrix")
```

Out[207]: Text(0.5, 1.0, 'Test Data Confusion Matrix')


```
In [208]: # Number of Rows for each dataset
          length train = X train.shape[0]
          length_test = X_test.shape[0]
          # Train data accuracy
          tn_train, fp_train, fn_train, tp_train = cm_train[0][0],cm_train[0][1],cm_train[1
          # Accuracy Measures
          train tr neg = tn train/(tn train+fp train)
          train_fa_pos = (fp_train/(tn_train+fp_train))
          train fa neg = (fn train/(fn train+tp train))
          train_tr_pos = (tp_train/(fn_train+tp_train))
          train_acc = (tp_train+tn_train)/length_train
          train_inacc = 1 - train_acc
          # Test data accuracy
          tn_test, fp_test, fn_test, tp_test= cm_test[0][0],cm_test[0][1],cm_test[1][0],cm_
          # Accuracy Measures
          test tr neg = tn test/(tn test+fp test)
          test fa pos = (fp test/(tn train+fp test))
          test_fa_neg = (fn_test/(fn_test+tp_test))
          test tr pos = (tp test/(fn test+tp test))
          test_acc = (tp_test+tn_test)/length_test
          test_inacc = 1 - test_acc
```

Out[209]:

	class_acc	train	test
0	tr_neg	0.566454	0.508748
1	fa_pos	0.433546	0.272185
2	fa_neg	0.359801	0.413271
3	tr_pos	0.640199	0.586729
4	acc	0.606207	0.550562
5	inacc	0.393793	0.449438

After training and optimising a model using TPOT, the accuracy of the test data **remains similar** at <u>55%</u> accuracy.

Optimising Models

Decision Tree Model

```
In [120]: # Creating a function to call for prediction
          def Dec_tree_pred(max_depth, X_train, y_train, X_test, y_test):
              # Creating Decision Tree Model
              dectree = DecisionTreeClassifier(max depth = max depth) # create the decision
              dectree.fit(X_train, y_train)
                                                                # train the decision tree md
              # Predict Legendary values corresponding to Total
              y train pred = dectree.predict(X train)
              y_test_pred = dectree.predict(X_test)
              # Confusion Matrix
              cm train = confusion matrix(y train, y train pred)
              cm test = confusion matrix(y test, y test pred)
              # Number of Rows for each dataset
              length_train = X_train.shape[0]
              length_test = X_test.shape[0]
              # Train data accuracy
              tn_train, fp_train, fn_train, tp_train = cm_train[0][0],cm_train[0][1],cm_train
              # Accuracy Measures
              train_tr_neg = tn_train/(tn_train+fp_train)
              train fa pos = (fp train/(tn train+fp train))
              train fa neg = (fn train/(fn train+tp train))
              train_tr_pos = (tp_train/(fn_train+tp_train))
              train_acc = (tp_train+tn_train)/length_train
              train_inacc = 1 - train_acc
              # Test data accuracy
              tn_test, fp_test, fn_test, tp_test= cm_test[0][0],cm_test[0][1],cm_test[1][0]
              # Accuracy Measures
              test_tr_neg = tn_test/(tn_test+fp_test)
              test fa pos = (fp test/(tn train+fp test))
              test_fa_neg = (fn_test/(fn_test+tp_test))
              test tr pos = (tp test/(fn test+tp test))
              test_acc = (tp_test+tn_test)/length_test
              test_inacc = 1 - test_acc
              # Dictionary of measures
              accuracy_dict = {'class_acc': ['tr_neg', 'fa_pos', 'fa_neg', 'tr_pos', 'acc',
                      'train': [train tr neg, train fa pos, train fa neg,train tr pos, train
                     'test': [test_tr_neg, test_fa_pos, test_fa_neg,test_tr_pos, test_acc,
              # Dictionary to dataframe
              accuracy df = pd.DataFrame(accuracy dict)
              return test acc, accuracy df, dectree
```

```
In [121]: # Manually looping Through all the max depth to see which produces best results
          max_depth_range = [2,3,4,5,7,10,20,50,60,75,80,100,125,150,175,200,250,300,400,50]
          \max \ acc = 0
          acc_list = [] # For plotting
          for depth in max_depth_range:
              acc, acc_df, dec_model = Dec_tree_pred(depth, X_train, y_train, X_test, y_test
              acc list.append(acc)
              if acc > max_acc :
                  max_acc = acc
                  best df = acc df
                  best_depth = depth
                  #Saving Tuned Model
                  with open('dectree_tuned.pkl', 'wb') as f:
                       pickle.dump(dec_model , f)
          print(f"Best Accuracy : {max_acc}, best depth : {best_depth}")
          best_df
```

Best Accuracy : 0.5736579275905118, best depth : 10

Out[121]:

	class_acc	train	test
0	tr_neg	0.678235	0.588773
1	fa_pos	0.321765	0.214578
2	fa_neg	0.322866	0.440191
3	tr_pos	0.677134	0.559809
4	acc	0.677635	0.573658
5	inacc	0.322365	0.426342

```
In [122]: f = plt.figure(figsize=(20,10))
    plt.plot(max_depth_range,acc_list)
    plt.ylabel("Accuracy")
    plt.xlabel("Max_depth")
```

Out[122]: Text(0.5, 0, 'Max depth')

As can be seen from the accuracy plot, we can see that after max_depth > 80, the graph starts to saturate and max_depth does not affect the accuracy of the model as much. Therefore, we can conclude that **max depth > 100** is the optimal depth for an accurate prediction

Random Forest Model

- Finding the best 3 values for each parameter
- Using GridSearchCV to choose the best value for the best accuracy

```
In [73]: # Creating a function to call for prediction
         def Rand_For_pred(X_train, y_train, X_test, y_test, max_depth=100, n_estimators=1
                           min samples split=2, bootstrap=True, random state=0, max featur
             # Creating the model
             clf = RandomForestClassifier( max_depth=max_depth,
                                           n estimators=n estimators,
                                           min samples leaf=min samples leaf,
                                           min samples split=min samples split,
                                           bootstrap=bootstrap,
                                           random state= random state,
                                           max_features=max_features)
             clf.fit(X train, y train['Successful']) #Used y train['Successful'] instead d
             # Predict Legendary values corresponding to Total
             y train pred = clf.predict(X train)
             y_test_pred = clf.predict(X_test)
             # Confusion Matrix
             cm_train = confusion_matrix(y_train, y_train_pred)
             cm_test = confusion_matrix(y_test, y_test_pred)
             # Number of Rows for each dataset
             length train = X train.shape[0]
             length test = X test.shape[0]
             # Train data accuracy
             tn_train, fp_train, fn_train, tp_train = cm_train[0][0],cm_train[0][1],cm_train
             # Accuracy Measures
             train tr neg = tn train/(tn train+fp train)
             train_fa_pos = (fp_train/(tn_train+fp_train))
             train_fa_neg = (fn_train/(fn_train+tp_train))
             train tr pos = (tp train/(fn train+tp train))
             train_acc = (tp_train+tn_train)/length_train
             train_inacc = 1 - train_acc
             # Test data accuracy
             tn_test, fp_test, fn_test, tp_test= cm_test[0][0],cm_test[0][1],cm_test[1][0]
             # Accuracy Measures
             test_tr_neg = tn_test/(tn_test+fp_test)
             test fa pos = (fp test/(tn train+fp test))
             test_fa_neg = (fn_test/(fn_test+tp_test))
             test_tr_pos = (tp_test/(fn_test+tp_test))
             test_acc = (tp_test+tn_test)/length_test
             test_inacc = 1 - test_acc
             # Dictionary of measures
             accuracy_dict = {'class_acc': ['tr_neg', 'fa_pos', 'fa_neg', 'tr_pos', 'acc',
                     'train': [train_tr_neg, train_fa_pos, train_fa_neg,train_tr_pos, train
                     'test': [test_tr_neg, test_fa_pos, test_fa_neg,test_tr_pos, test_acc,
             # Dictionary to dataframe
```

```
accuracy_df = pd.DataFrame(accuracy_dict)

return test_acc, accuracy_df
```

max_depth

```
In [74]: # Manually looping Through all the max_depth to see which produces best results
max_depth_range = [2,3,4,5,7,10,20,50,60,75,80,100,125,150,175,200,250,300,400,50]
max_acc = 0
acc_depth_list = [] # For plotting
for depth in max_depth_range:
    acc, acc_df = Rand_For_pred(X_train, y_train, X_test, y_test,max_depth=depth)
    acc_depth_list.append(acc)
    if acc > max_acc :
        max_acc = acc
        best_df = acc_df
        best_depth = depth

print(f"Best Accuracy : {max_acc}, best depth : {best_depth}")
best_df
```

Best Accuracy: 0.5786516853932584, best depth: 20

Out[74]:

	class_acc	train	test
0	tr_neg	0.900885	0.512322
1	fa_pos	0.099115	0.197583
2	fa_neg	0.072442	0.359807
3	tr_pos	0.927558	0.640193
4	acc	0.915463	0.578652
5	inacc	0.084537	0.421348

```
In [75]: f = plt.figure(figsize=(20,10))
    plt.plot(max_depth_range,acc_depth_list)
    plt.ylabel("Accuracy")
    plt.xlabel("Max_depth")
```

Out[75]: Text(0.5, 0, 'Max depth')

n_estimators

```
In [325]: n_estimators_range = [50,100,200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 26

max_acc = 0
acc_nest_list = [] # For plotting
for n_estimator in n_estimators_range:
    acc, acc_df = Rand_For_pred(X_train, y_train, X_test, y_test,n_estimators=n_e
acc_nest_list.append(acc)
    if acc > max_acc :
        max_acc = acc
        best_df = acc_df
        best_n_estimator = n_estimator

print(f"Best Accuracy : {max_acc}, best_n_estimator : {best_n_estimator}")
best_df
```

Best Accuracy : 0.5861423220973783, best_n_estimator : 100

Out[325]:

	class_acc	train	test
0	tr_neg	0.907719	0.549125
1	fa_pos	0.092281	0.176409
2	fa_neg	0.078412	0.381839
3	tr_pos	0.921588	0.618161
4	acc	0.915195	0.586142
5	inacc	0.084805	0 413858

```
In [326]: f = plt.figure(figsize=(20,10))
    plt.plot(n_estimators_range,acc_nest_list)
    plt.ylabel("Accuracy")
    plt.xlabel("N estimator")
```

Out[326]: Text(0.5, 0, 'Max depth')

min samples leaf

```
In [444]: min_samples_leaf_range = [1, 2, 4,8, 10, 15, 17, 19,23]

max_acc = 0
acc_samLeaf_list = [] # For plotting
for samp_leaf in min_samples_leaf_range:
    acc, acc_df = Rand_For_pred(X_train, y_train, X_test, y_test,min_samples_leaf acc_samLeaf_list.append(acc)
    if acc > max_acc :
        max_acc = acc
        best_df = acc_df
        best_min_samples_leaf = samp_leaf

print(f"Best Accuracy : {max_acc}, best min_samples_leaf : {best_min_samples_leaf best_df}
```

Best Accuracy : 0.6054931335830213, best min_samples_leaf : 4

Out[444]:

	class_acc	train	test
0	tr_neg	0.605568	0.494609
1	fa_pos	0.394432	0.264271
2	fa_neg	0.198113	0.298837
3	tr_pos	0.801887	0.701163
4	acc	0.711343	0.605493
5	inacc	0.288657	0.394507

```
In [445]: f = plt.figure(figsize=(20,10))
    plt.plot(min_samples_leaf_range,acc_samLeaf_list)
    plt.ylabel("Accuracy")
    plt.xlabel("Min sample leaf")
```

Out[445]: Text(0.5, 0, 'Max depth')

min samples split

```
In [447]: min_samples_split_range = [2, 4,8, 10, 15, 17, 19,23]

max_acc = 0
acc_samSplit_list = [] # For plotting
for split in min_samples_split_range:
    acc, acc_df = Rand_For_pred(X_train, y_train, X_test, y_test,min_samples_split acc_samSplit_list.append(acc)
    if acc > max_acc :
        max_acc = acc
        best_df = acc_df
        best_min_samples_split = split

print(f"Best Accuracy : {max_acc}, best min_samples_split : {best_min_samples_split = split}
```

Best Accuracy : 0.6092384519350812, best min_samples_split : 17

Out[447]:

	class_acc	train	test
0	tr_neg	0.722158	0.528302
1	fa_pos	0.277842	0.219436
2	fa_neg	0.177259	0.320930
3	tr_pos	0.822741	0.679070
4	acc	0.776351	0.609238
5	inacc	0.223649	0.390762

```
In [448]: f = plt.figure(figsize=(20,10))
    plt.plot(min_samples_split_range, acc_samSplit_list)
    plt.ylabel("Accuracy")
    plt.xlabel("Min sample split")
```

Out[448]: Text(0.5, 0, 'Max depth')

max features

```
In [453]: max_features_range = [0.1,0.3,0.7,1,2,"sqrt","log2",None]

max_acc = 0
acc_max_features_list = [] # For plotting
for feature in max_features_range:
    acc, acc_df = Rand_For_pred(X_train, y_train, X_test, y_test,max_features=features_acc_max_features_list.append(acc)
    if acc > max_acc :
        max_acc = acc
        best_df = acc_df
        best_max_features = feature

print(f"Best Accuracy : {max_acc}, best max_features : {feature}")
best_df
```

Best Accuracy: 0.5873907615480649, best max_features: None

	class_acc	train	test
0	tr_neg	0.892691	0.513477
1	fa_pos	0.107309	0.190000
2	fa_neg	0.058093	0.348837
3	tr_pos	0.941907	0.651163
4	acc	0.919208	0.587391
5	inacc	0.080792	0.412609

Random State

```
In [442]: import random
           rand_list = [random.randrange(0,1000) for i in range(50)]
           rand list
Out[442]: [948,
            22,
            426,
           857,
            938,
            569,
            944,
            657,
            102,
            190,
            644,
            741,
            880,
            303,
            123,
            760,
            340,
            917,
            738,
In [443]: max acc = 0
           acc_rand_list = [] # For plotting
           for ran_num in rand_list:
               acc, acc_df = Rand_For_pred(X_train, y_train, X_test, y_test,random_state=rar
               acc_rand_list.append(acc)
               if acc > max_acc :
                   max_acc = acc
                   best_df = acc_df
                   best_random_state = ran_num
          print(f"Best Accuracy : {max_acc}, best random_state : {best_random_state}")
          best_df
           Best Accuracy: 0.5848938826466916, best random_state: 873
Out[443]:
```

	class_acc	train	test
0	tr_neg	0.893852	0.516173
1	fa_pos	0.106148	0.188947
2	fa_neg	0.059086	0.355814
3	tr_pos	0.940914	0.644186
4	acc	0.919208	0.584894
5	inacc	0.080792	0.415106

GridSearchCV

- · Exhaustive search the best parameters
- · Compare with Best tpot model

```
In [351]: | from sklearn.model_selection import GridSearchCV
In [369]: # Function to get the top 3 most accurate value for a parameter
          def top3params(params_list, acc_list ):
              sorted acc lst = sorted(acc list, reverse=True)[:3] #Get top 3 most accurate
              duplicate idx = 0 # to Loop through same number e.g. acc = [0.63, 0.73, 0.63, 0.63]
              best params = [] # List of best parameters
              for best acc in sorted acc lst:
                   index = acc_list.index(best_acc)
                  value = params list[index]
                  if value not in best params:
                       best_params.append(value) # If there is a duplicate accuracy so it we
                       duplicate idx = 0
                   else:
                       print(value)
                       duplicate_idx += 1
                       # Find the next index of the same value; e.q. in the above statement,
                       actual index = [i for i,n in enumerate(acc list) if n == best acc][d
                       best_params.append(params_list[actual_index]) # Duplicate accuracy me
              return best_params
          # Example : Depth
          top3params(max_depth_range,acc_depth_list)
Out[369]: [60, 300, 75]
```

```
In [473]: parameters = {
               'max depth' : top3params(max depth range,acc depth list),
              'n estimators' : top3params(n estimators range,acc nest list),
              'random state' : top3params(rand list,acc rand list),
              'criterion' : ["gini", "entropy", "log_loss"],
               'min_samples_leaf' : top3params(min_samples_leaf_range,acc_samLeaf_list),
               'min samples split' : top3params(min samples split range, acc samSplit list),
               'max_features' : top3params(max_features_range,acc_max_features_list)
          }
          parameters
          600
          432
Out[473]: {'max_depth': [60, 300, 75],
            'n estimators': [100, 600, 1600],
            'random_state': [873, 432, 194],
            'criterion': ['gini', 'entropy', 'log_loss'],
            'min_samples_leaf': [4, 2, 10],
            'min_samples_split': [17, 19, 10],
            'max features': [0.3, 1, 'sqrt']}
In [474]: # Creating a Gridsearch of the parameters using Random Forest
          # Will probably take super long maybe 5hr ?
          randFor tuned= GridSearchCV(RandomForestClassifier(), parameters)
          randFor_tuned.fit(X_train, y_train['Successful'])
  In [ ]: with open('GridSearch_RF_tuned.pkl', 'wb') as f: #Exporting model to a pickle fil
```

pickle.dump(randFor_tuned , f)

In [475]: |pd.DataFrame(randFor_tuned.cv_results_).sort_values(by='rank_test_score',ignore_i Out[475]: mean_fit_time std_fit_time mean_score_time std_score_time param_criterion param_max_de 0 0.212909 0.009541 0.015463 0.003846 gini 1 0.232979 0.018437 0.018350 0.001016 gini 2 0.017026 0.216043 0.003889 0.004091 gini 3 0.249670 0.019432 0.021216 0.006587 gini 0.212740 0.004919 0.018148 0.000401 4 gini ... 0.000000 2182 0.031915 0.003232 0.000000 log_loss 2183 0.196512 0.026987 0.000000 0.000000 log_loss 2184 0.179867 0.000000 0.015562 0.000000 log_loss 2185 0.440933 0.004065 0.000000 0.000000 log_loss 2186 0.451313 0.018233 0.000000 0.000000 log_loss 2187 rows × 20 columns

```
10/20/22, 10:09 AM
                                                  TMDB - Jupyter Notebook
    In [476]: # Predict Legendary values corresponding to Total
               y_train_pred = randFor_tuned.predict(X_train)
               y_test_pred = randFor_tuned.predict(X_test)
               # Confusion Matrix
               cm_train = confusion_matrix(y_train, y_train_pred)
               cm_test = confusion_matrix(y_test, y_test_pred)
               # Number of Rows for each dataset
               length train = X train.shape[0]
               length_test = X_test.shape[0]
               # Train data accuracy
               tn_train, fp_train, fn_train, tp_train = cm_train[0][0],cm_train[0][1],cm_train[1]
               # Accuracy Measures
               train_tr_neg = tn_train/(tn_train+fp_train)
               train_fa_pos = (fp_train/(tn_train+fp_train))
               train fa neg = (fn train/(fn train+tp train))
               train tr pos = (tp train/(fn train+tp train))
               train_acc = (tp_train+tn_train)/length_train
               train inacc = 1 - train acc
               # Test data accuracy
               tn test, fp test, fn test, tp test= cm test[0][0],cm test[0][1],cm test[1][0],cm
               # Accuracy Measures
               test tr neg = tn test/(tn test+fp test)
               test_fa_pos = (fp_test/(tn_train+fp_test))
               test_fa_neg = (fn_test/(fn_test+tp_test))
               test tr pos = (tp test/(fn test+tp test))
               test_acc = (tp_test+tn_test)/length_test
               test_inacc = 1 - test_acc
               # Dictionary of measures
               accuracy_dict = {'class_acc': ['tr_neg', 'fa_pos', 'fa_neg', 'tr_pos', 'acc', 'in;
                       'train': [train_tr_neg, train_fa_pos, train_fa_neg,train_tr_pos, train_acd
                      'test': [test tr neg, test fa pos, test fa neg,test tr pos, test acc, test
               # Dictionary to dataframe
               accuracy df = pd.DataFrame(accuracy dict)
               accuracy df
```

Out[476]:

	class_acc	train	test
0	tr_neg	0.568445	0.491914
1	fa_pos	0.431555	0.277819
2	fa_neg	0.239821	0.312791
3	tr_pos	0.760179	0.687209
4	acc	0.671750	0.596754
5	inacc	0.328250	0.403246

Despite tuning the hyper parameters, the model accuracy is only 59.6%

Comparing All Model Accuracy

```
In [89]: # Function to predict data and show accuracy automatically
         def model_accuracy(model_path, X_train,X_test,y_train,y_test):
             model name = model path[:-4] # Model name is the same as filename but without
             # Importing Model
             with open(model path, 'rb') as f:
                 model = pickle.load(f)
             # Predict Legendary values corresponding to Total
             y train pred = model.predict(X train)
             y_test_pred = model.predict(X_test)
             # Confusion Matrix
             cm_train = confusion_matrix(y_train, y_train_pred)
             cm_test = confusion_matrix(y_test, y_test_pred)
             # Number of Rows for each dataset
             length train = X train.shape[0]
             length_test = X_test.shape[0]
             # Train data accuracy
             tn_train, fp_train, fn_train, tp_train = cm_train[0][0],cm_train[0][1],cm_train
             # Accuracy Measures
             train_tr_neg = tn_train/(tn_train+fp_train)
             train fa pos = (fp train/(tn train+fp train))
             train_fa_neg = (fn_train/(fn_train+tp_train))
             train_tr_pos = (tp_train/(fn_train+tp_train))
             train_acc = (tp_train+tn_train)/length_train
             train inacc = 1 - train acc
             # Test data accuracy
             tn_test, fp_test, fn_test, tp_test= cm_test[0][0],cm_test[0][1],cm_test[1][0]
             # Accuracy Measures
             test tr neg = tn test/(tn test+fp test)
             test fa pos = (fp test/(tn train+fp test))
             test_fa_neg = (fn_test/(fn_test+tp_test))
             test_tr_pos = (tp_test/(fn_test+tp_test))
             test_acc = (tp_test+tn_test)/length_test
             test_inacc = 1 - test_acc
             # Dictionary of measures
             accuracy_dict = {
                    model_name+'_train': [train_tr_neg, train_fa_pos, train_fa_neg,train_t
                    model_name+'_test': [test_tr_neg, test_fa_pos, test_fa_neg,test_tr_pos
             }
             # Dictionary to dataframe
             accuracy_df = pd.DataFrame(accuracy_dict)
             return accuracy df
```

```
In [90]: pd.concat([model accuracy('tpot randomforest.pkl', X train,X test,y train,y test)
                      model_accuracy('GridSearch_RF_tuned.pkl', X_train,X_test,y_train,y_test
 Out[90]:
              tpot_randomforest_train tpot_randomforest_test GridSearch_RF_tuned_train GridSearch_RF_tunec
            0
                           0.611799
                                                0.618677
                                                                        0.549263
                                                                                               0.50
                                                                                               0.27
            1
                           0.388201
                                                0.220887
                                                                        0.450737
            2
                           0.276554
                                                0.273165
                                                                        0.252570
                                                                                               0.28
            3
                           0.723446
                                                0.726835
                                                                        0.747430
                                                                                               0.7
                           0.672820
                                                0.674782
                                                                        0.657571
                                                                                               0.62
            5
                           0.327180
                                                0.325218
                                                                        0.342429
                                                                                               0.37
In [109]:
          # listing all the model together
           model list = [file for file in os.listdir() if ".pkl" in file]
           model list
Out[109]: ['dectree_tuned.pkl',
             'dectree untuned.pkl',
            'GridSearch RF tuned.pkl',
            'randomforest untuned.pkl',
            'tpot_extratree.pkl',
            'tpot randomforest.pkl']
In [118]: import warnings
           warnings.filterwarnings('ignore') # Warnings keep coming up but output is correct
           # Initializing a dataframe
           all model df = pd.DataFrame({
               'class_acc' : ['tr_neg', 'fa_pos', 'fa_neg', 'tr_pos', 'acc', 'inacc']
           })
           for model path in model list:
               all model df = pd.concat([all model df, model accuracy(model path, X train,X
```

Analysis of all models

```
In [119]: all_model_df
```

Out[119]:

	class_acc	dectree_tuned_train	dectree_tuned_test	dectree_untuned_train	dectree_untuned_test
0	tr_neg	0.561765	0.567885	0.820000	0.840731
1	fa_pos	0.438235	0.257387	0.180000	0.080475
2	fa_neg	0.375368	0.381579	0.208538	0.197368
3	tr_pos	0.624632	0.618421	0.791462	0.802632
4	acc	0.596041	0.594257	0.804441	0.820849
5	inacc	0.403959	0.405743	0.195559	0.179151

 $\underline{\textbf{Untuned Decision Tree Model}}$ has the best accuracy as compared to any other model with an accuracy of 82%

(Train-Test split: random state = 73, test size =0.3).

Testing Model on movies I want to create

Things I want in my movie

1. Genre: Action and Comedy

2. Cast: No popular casts, just a group of friends

3. Budget: 500,000

```
In [135]: # Importing Best Model from above analysis
with open("dectree_untuned.pkl", 'rb') as f:
    model_selected = pickle.load(f)

model_selected
```

Out[135]: DecisionTreeClassifier(max_depth=100)

```
In [136]: # Creating DataFrame
          genre_wanted = ['Action','Comedy']
          popular_cast = 0
          budget = 500 000
          # Creating dictionary of genres
          genre_ml_dict = {}
          for genre in Genre_df.columns:
              if genre in genre_wanted :
                  genre_ml_dict[genre] = 1
              else:
                  genre_ml_dict[genre] = 0
          my_movie_df = pd.DataFrame(genre_ml_dict, index = [0])
          my_movie_df['Popular Casts'] = popular_cast
          my_movie_df['Budget'] = budget
          result = model_selected.predict(my_movie_df)
          if result[0] : # If results is true
              print(f"My Movie is successful")
          else:
              print(f"My Movie is unsuccessful")
```

My Movie is successful

Example of Unsuccessful movie

```
In [137]: # Creating DataFrame
          genre_wanted = ['Drama', 'ScienceFiction']
          popular_cast = 1
          budget = 40 000 000
          # Creating dictionary of genres
          genre_ml_dict = {}
          for genre in Genre_df.columns:
              if genre in genre_wanted :
                  genre_ml_dict[genre] = 1
              else:
                  genre_ml_dict[genre] = 0
          my_movie_df = pd.DataFrame(genre_ml_dict, index = [0])
          my_movie_df['Popular Casts'] = popular_cast
          my_movie_df['Budget'] = budget
          result = model_selected.predict(my_movie_df)
          if result[0] : # If results is true
              print(f"My Movie is successful")
          else:
              print(f"My Movie is unsuccessful")
```

My Movie is unsuccessful

Code Graveyard

Just for testing purpose

```
In [95]: # 1.2 Print response JSON
          # Returns a dictionary
          result = response.json()
          result
Out[95]: {'page': 1,
           'results': [{'adult': False,
             'backdrop_path': '/rSPw7tgCH9c6NqICZef4kZjF0Q5.jpg',
             'genre ids': [18, 80],
             'id': 238,
             'original_language': 'en',
             'original title': 'The Godfather',
             'overview': 'Spanning the years 1945 to 1955, a chronicle of the fictional
          Italian-American Corleone crime family. When organized crime family patriarc
          h, Vito Corleone barely survives an attempt on his life, his youngest son, Mi
          chael steps in to take care of the would-be killers, launching a campaign of
          bloody revenge.',
             'popularity': 100.336,
             'poster_path': '/3bhkrj58Vtu7enYsRolD1fZdja1.jpg',
             'release date': '1972-03-14',
             'title': 'The Godfather',
             'video': False,
             'vote_average': 8.7,
             'vote count': 16719},
In [72]: |pd.DataFrame(result['results'])
Out[72]:
              adult
                                        backdrop_path genre_ids
                                                                    id original_language
                                                                                        original
                                                                                        劇場版
                                                       [16, 28,
            0 False /qjGrUmKW78MCFG8PTLDBp67S27p.jpg
                                                                635302
                                                                                        の刃」無
                                                                                    ja
                                                        12, 14]
                                                       [10752,
            1 False
                       /IRN1JuNwr1VKp88Dscgja2uR8H.jpg
                                                                508935
                                                                                    zh
                                                     36, 18, 28]
                                                                                           Met
                                                                                         World\
            2 False
                      /ddygUzXBHGqnlBPcUl70ih7QOW0.jpg
                                                       [10402]
                                                               715904
                                                                                        Tour - L
                                                                                        Manche
```

```
In [96]: # 1.3 Movie Details
         movie detail = requests.get('https://api.themoviedb.org/3/movie/'+ '911046' +'?ar
         movie detail = movie detail.json()
         movie detail
Out[96]: {'adult': False,
           'backdrop path': '/pNx7Tsc0moO9mII939rv4IHeGiz.jpg',
           'belongs to collection': {'id': 935616,
            'name': 'In Search of Walt Whitman Collection',
            'poster path': '/wr2EZX9R7f8f8IvVqG06vuKLzlP.jpg',
            'backdrop_path': '/pNx7Tsc0moO9mII939rv4IHeGiz.jpg'},
           'budget': 0,
           'genres': [{'id': 99, 'name': 'Documentary'}, {'id': 36, 'name': 'History'}],
           'homepage': '',
           'id': 911046,
           'imdb id': 'tt13905906',
           'original language': 'en',
           'original_title': 'In Search of Walt Whitman, Part Two: The Civil War and Beyo
         nd (1861-1892)',
           'overview': 'The poet moves to Washington to care for injured Civil War soldie
         rs but is disillusioned by the Gilded Age after the war. He recovers from a deb
         ilitating stroke to live out his days in Camden NJ, where he continues to write
         poetry.',
           'popularity': 0.6,
           'poster_path': '/lp4pR7Aw7se5zbBPv8asO2vW43Y.jpg',
           'production companies': [],
           'production countries': [],
           'release date': '2020-04-19',
           'revenue': 0,
           'runtime': 89,
           'spoken languages': [],
           'status': 'Released',
           'tagline': '',
           'title': 'In Search of Walt Whitman, Part Two: The Civil War and Beyond (1861-
         1892)',
           'video': False,
           'vote average': 10.0,
           'vote count': 1}
```

```
In [98]: # 1.4 Getting Cast Names
         ID = 577922
         casts = requests.get('https://api.themoviedb.org/3/movie/'+ str(ID) + '/credits'
         list(cast['name'] for cast in casts if cast['popularity']>10) #Getting list of cd
Out[98]: ['John David Washington',
           'Robert Pattinson',
           'Elizabeth Debicki',
           'Kenneth Branagh',
           'Himesh Patel',
           'Aaron Taylor-Johnson',
           'Michael Caine',
           'Clémence Poésy',
           'Martin Donovan',
           'Fiona Dourif',
           'Jefferson Hall',
           'Josh Stewart']
In [99]: # 1.5 Printing Movie details (Function)
         get movie detail(ID, api key)
Out[99]: {'Name of Movie': 'Tenet',
           'Genres': ['Action', 'Thriller', 'Science Fiction'],
           'Budget': 205000000,
           'Casts': ['John David Washington',
            'Robert Pattinson',
            'Elizabeth Debicki',
            'Kenneth Branagh',
            'Himesh Patel',
            'Aaron Taylor-Johnson',
            'Michael Caine',
            'Clémence Poésy',
            'Martin Donovan',
            'Fiona Dourif',
            'Jefferson Hall',
            'Josh Stewart'],
           'Vote Count': 7629,
           'Vote Average': 7.213,
           'Revenue': 363129000}
```

```
In [115]: # 1.6 Printing Year page detail (Function)
          year = 2000
          page = 1 # Goes to 10, didnt really try beyond that
          sort factor = 'revenue'
          yr_pg = get_page_detail(year,api_key,page,sort_factor)
          yr_pg
Out[115]: [{'Name of Movie': 'Mission: Impossible II',
             'Genres': ['Adventure', 'Action', 'Thriller'],
             'Budget': 125000000,
             'Casts': ['Tom Cruise',
              'Dougray Scott',
              'Thandiwe Newton',
              'Ving Rhames',
              'Richard Roxburgh',
              'Brendan Gleeson',
              'Rade Šerbedžija',
              'William Mapother',
              'Dominic Purcell',
              'Anthony Hopkins',
              'Alison Araya',
              'Tory Mussett'],
             'Vote Count': 5497,
             'Vote Average': 6.109,
            'Revenue': 546388105},
           {'Name of Movie': 'Gladiator',
```

In [116]: pd.DataFrame(yr_pg)

Out[116]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue
0	Mission: Impossible II	[Adventure, Action, Thriller]	125000000	[Tom Cruise, Dougray Scott, Thandiwe Newton, V	5497	6.109	546388105
1	Gladiator	[Action, Drama, Adventure]	103000000	[Russell Crowe, Joaquin Phoenix, Connie Nielse	15633	8.202	465361176
2	Cast Away	[Adventure, Drama]	90000000	[Tom Hanks, Helen Hunt, Elden Henson, Jenifer	9719	7.656	429632142
3	What Women Want	[Comedy, Romance]	70000000	[Mel Gibson, Helen Hunt, Marisa Tomei, Alan Al	3338	6.410	374111707
4	Dinosaur	[Family, Animation]	127500000	[D.B. Sweeney, Alfre Woodard, Max Casella, Hay	2105	6.493	354248063
5	Meet the Parents	[Comedy, Romance]	55000000	[Ben Stiller, Robert De Niro, Teri Polo, Blyth	5138	6.665	330444045
6	The Perfect Storm	[Action, Adventure, Drama, Thriller]	120000000	[George Clooney, Mark Wahlberg, Diane Lane, Jo	1855	6.401	325756637
7	Le Roi Danse	[Drama, History, Music]	21000000	[Benoît Magimel, Tchéky Karyo]	34	6.600	320300000
8	X-Men	[Adventure, Action, Science Fiction]	75000000	[Patrick Stewart, Hugh Jackman, Ian McKellen,	9865	6.986	296339527
9	What Lies Beneath	[Drama, Horror, Mystery, Thriller]	100000000	[Harrison Ford, Michelle Pfeiffer, Diana Scarw	1505	6.402	291420351
10	Scary Movie	[Comedy]	19000000	[Anna Faris, Marlon Wayans, Shawn Wayans, Regi	5759	6.312	278019771
11	Charlie's Angels	[Action, Adventure, Comedy, Crime, Thriller]	92000000	[Cameron Diaz, Drew Barrymore, Lucy Liu, Bill	3602	5.824	264105545
12	Erin Brockovich	[Drama]	52000000	[Julia Roberts, Aaron Eckhart, Marg Helgenberg	2575	7.406	256271286
13	Unbreakable	[Thriller, Drama, Mystery]	75000000	[Bruce Willis, Samuel L. Jackson, Robin Wright	8016	7.132	248118121
14	Gone in Sixty Seconds	[Action, Crime, Thriller]	90000000	[Nicolas Cage, Giovanni Ribisi, Angelina Jolie	3687	6.383	237202299
15	Chicken Run	[Animation, Comedy, Family]	45000000	[Mel Gibson, Julia Sawalha, Miranda Richardson	4148	6.730	224834564
16	Vertical Limit	[Adventure, Action, Thriller]	75000000	[Chris O'Donnell, Robin Tunney, Bill Paxton, S	864	6.006	215663859

		Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue
	17	The Patriot	[Drama, History, War, Action]	110000000	[Mel Gibson, Heath Ledger, Joely Richardson, J	3255	7.154	215294342
	18	卧虎藏龍	[Adventure, Drama, Action, Romance]	17000000	[Chow Yun-Fat, Michelle Yeoh, Zhang Ziyi, Chan	2644	7.394	213525736
	19	Miss Congeniality	[Comedy, Crime, Action]	45000000	[Sandra Bullock, Benjamin Bratt, Michael Caine	3290	6.509	212000000
In []: [
In []:								
In []:								

Out[152]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue
0	Raid	[Crime, Drama, TV Movie]	0	0	1	10.0	0
1	René Vautier, le maquisard à la caméra	[Documentary]	0	0	1	10.0	0
2	King George and the Ducky	[Family, Animation]	0	П	1	10.0	0
3	René Vautier, le rebelle	[Documentary]	0	П	1	10.0	0
4	Young Guns Go For It - Soft Cell	[Documentary, Music]	0	0	1	10.0	0
5	Hunks on Haunted Hill	[Comedy, Horror, Mystery, Action]	0	0	1	10.0	0
6	Carnophage		0	0	1	10.0	0
7	Der Puppenschänder 2	0	0	0	1	10.0	0
8	The League of Gentlemen - Yule Never Leave!	0	0	0	1	10.0	0
9	Teddy, der kleine Bär	[Animation, Family]	0	0	1	10.0	0
10	The Acting Class	[Comedy]	0	[Jill Hennessy, Will Arnett, Jerry Orbach, Ale	1	10.0	0
11	Whoa Whoa Studio (for Courbet)	0	0	0	1	10.0	0
12	Dracula XXI	[Comedy, Horror]	11000	0	1	10.0	0
13	Sydney 2000 Olympics Closing Ceremony	0	40000000	0	1	10.0	0
14	Las Vegas	0	0	0	1	10.0	0
15	La grande aventure de Marcelino : l'ami des an	[Animation]	0	0	1	10.0	0
16	Cuốc Xe Đêm	0	0	0	1	10.0	0
17	Özallı Yıllar	[Documentary]	0	0	1	10.0	0
18	Ek Ajooba	[Family]	0	0	1	10.0	0
19	Austria 3 - Live vor dem Schloss Schönbrunn	0	0	0	1	10.0	0

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue
20	Offending Angels	[Romance]	88608	[Andrew Lincoln, Jack Davenport]	2	10.0	100
21	Bibleman: Shattering The Prince Of Pride	0	0	0	1	10.0	0
22	Silence Broken: Korean Comfort Women	[Documentary]	0	0	1	10.0	0
23	Кончина	[Documentary, History]	0	0	2	10.0	0
24	Mana-mana Tiba-tiba	[Comedy]	0	0	1	10.0	0
25	Alien technology	[Documentary]	0	[Stacy Keach]	1	10.0	0
26	پر پرواز	[Drama, Romance]	0	0	1	10.0	0
27	Le savon lave	[Animation, Family]	2883	0	1	10.0	2883
28	Jack the Ripper: An On-Going Mystery	[Documentary]	0	0	1	10.0	0
29	Shaheed Uddham Singh	[Drama, History, Music]	0	0	1	10.0	0
30	MxPx - It Came From Bremerton!	[Documentary]	0	0	1	10.0	0
31	The Man Who Came to Dinner	0	0	[Nathan Lane, Jean Smart, Harriet Sansom Harris]	1	10.0	0
32	Fyren	[Documentary]	0	0	1	10.0	0
33	Utopia Blues	[Drama]	0	0	1	10.0	0
34	Нет смерти для меня	[Documentary]	0	0	1	10.0	0
35	The Wake	0	0	0	1	10.0	0
36	Coppélia (The Royal Ballet)	[Fantasy, Music]	0	0	1	10.0	0
37	Abandonada	[Drama]	0	0	2	10.0	0
38	Déjà-Vu	[Thriller]	0	0	1	10.0	0
39	Scandalize My Name: Stories from the Blacklist	[Documentary]	1000000	[Morgan Freeman]	1	10.0	100000

In [209]: pg_detail.drop(list(pg_detail[pg_detail['Casts'].map(len)<1].index),inplace=True)</pre>

```
In [213]: list(pg_detail['Budget']<1].index)</pre>
```

Out[213]: [10, 25, 31]

Out[216]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue
20	Offending Angels	[Romance]	88608	[Andrew Lincoln, Jack Davenport]	2	10.0	100
39	Scandalize My Name: Stories from the Blacklist	[Documentary]	1000000	[Morgan Freeman]	1	10.0	100000

In [183]: pg_detail = pd.concat(lst).reset_index(drop=True) #pg_detail.drop(pg_detail[pg_detail['Budget']<1].index, inplace=True)</pre> #pg_detail.drop(pg_detail[pg_detail['Casts'].size<1].index, inplace=True)</pre> pg_detail

Out[183]:

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue
0	Raid	[Crime, Drama, TV Movie]	0	0	1	10.0	0
1	René Vautier, le maquisard à la caméra	[Documentary]	0	0	1	10.0	0
2	King George and the Ducky	[Family, Animation]	0	0	1	10.0	0
3	René Vautier, le rebelle	[Documentary]	0	0	1	10.0	0
4	Young Guns Go For It - Soft Cell	[Documentary, Music]	0	0	1	10.0	0
5	Hunks on Haunted Hill	[Comedy, Horror, Mystery, Action]	0	0	1	10.0	0
6	Carnophage		0	0	1	10.0	0
7	Der Puppenschänder 2	0	0	0	1	10.0	0
8	The League of Gentlemen - Yule Never Leave!	0	0	0	1	10.0	0
9	Teddy, der kleine Bär	[Animation, Family]	0	0	1	10.0	0
10	The Acting Class	[Comedy]	0	[Jill Hennessy, Will Arnett, Jerry Orbach, Ale	1	10.0	0
11	Whoa Whoa Studio (for Courbet)	0	0	0	1	10.0	0
12	Dracula XXI	[Comedy, Horror]	11000	0	1	10.0	0
13	Sydney 2000 Olympics Closing Ceremony	0	40000000	0	1	10.0	0
14	Las Vegas		0	0	1	10.0	0
15	La grande aventure de Marcelino : l'ami des an	[Animation]	0	О	1	10.0	0
16	Cuốc Xe Đêm	0	0	0	1	10.0	0
17	Özallı Yıllar	[Documentary]	0	0	1	10.0	0
18	Ek Ajooba	[Family]	0	0	1	10.0	0
19	Austria 3 - Live vor dem Schloss Schönbrunn	П	0	0	1	10.0	0

	Name of Movie	Genres	Budget	Casts	Vote Count	Vote Average	Revenue
20	Offending Angels	[Romance]	88608	[Andrew Lincoln, Jack Davenport]	2	10.0	100
21	Bibleman: Shattering The Prince Of Pride	О	0	0	1	10.0	0
22	Silence Broken: Korean Comfort Women	[Documentary]	0	0	1	10.0	0
23	Кончина	[Documentary, History]	0	0	2	10.0	0
24	Mana-mana Tiba-tiba	[Comedy]	0	0	1	10.0	0
25	Alien technology	[Documentary]	0	[Stacy Keach]	1	10.0	0
26	پر پرواز	[Drama, Romance]	0	0	1	10.0	0
27	Le savon lave	[Animation, Family]	2883	0	1	10.0	2883
28	Jack the Ripper: An On-Going Mystery	[Documentary]	0	0	1	10.0	0
29	Shaheed Uddham Singh	[Drama, History, Music]	0	0	1	10.0	0
30	MxPx - It Came From Bremerton!	[Documentary]	0	0	1	10.0	0
31	The Man Who Came to Dinner	0	0	[Nathan Lane, Jean Smart, Harriet Sansom Harris]	1	10.0	0
32	Fyren	[Documentary]	0	0	1	10.0	0
33	Utopia Blues	[Drama]	0	0	1	10.0	0
34	Нет смерти для меня	[Documentary]	0	0	1	10.0	0
35	The Wake	0	0	0	1	10.0	0
36	Coppélia (The Royal Ballet)	[Fantasy, Music]	0	0	1	10.0	0
37	Abandonada	[Drama]	0	0	2	10.0	0
38	Déjà-Vu	[Thriller]	0	0	1	10.0	0
39	Scandalize My Name: Stories from the Blacklist	[Documentary]	1000000	[Morgan Freeman]	1	10.0	100000

```
In [194]: pg detail = pd.concat(lst)
          pg_detail.drop(pg_detail[pg_detail['Budget']<1].index() or pg_detail[pg_detail['(</pre>
          pg detail.reset index(drop=True)
          TypeError
                                                     Traceback (most recent call last)
          <ipython-input-194-c379e1b84a6d> in <module>
                1 pg detail = pd.concat(lst)
           ---> 2 pg detail.drop(pg detail[pg detail['Budget']<1].index() or pg detail[pg
          _detail['Casts'].map(len)<1].index(), inplace=True)
                3 pg_detail.reset_index(drop=True)
          TypeError: 'Int64Index' object is not callable
In [188]: |pg_detail['Casts'][2].length()
          AttributeError
                                                     Traceback (most recent call last)
          <ipython-input-188-67ed4ccb5782> in <module>
          ----> 1 pg_detail['Casts'][2].length()
          AttributeError: 'list' object has no attribute 'length'
In [182]: len(pg_detail['Casts'][2])
Out[182]: 0
  In [ ]:
  In [ ]:
  In [ ]:
  In [ ]:
In [368]: top3params(n_estimators_range,acc_nest_list)
          600
Out[368]: [100, 600, 1600]
In [364]: [i for i,n in enumerate(acc_list) if n == 0.581772784019975][1]
Out[364]: 6
```

In [361]: acc_list

- Out[361]: [0.5792759051186017,
 - 0.5786516853932584,
 - 0.5755305867665418,
 - 0.583645443196005,
 - 0.5855181023720349,
 - 0.581772784019975,
 - 0.581772784019975,
 - 0.5780274656679151,
 - 0.581772784019975,
 - 0.5861423220973783,
 - 0.5805243445692884,
 - 0.579900124843945]