The holonomy correspondence I
Derek Krepski
Surface group rejoresentations
Definition: Let G be a group. A representation of G
Definition: Let G be a group. A representation of G is a homomorphism p: G -> GL(V), ie. V gets a
linear G-action.
Fix an identification $V = \mathbb{C}^n$.
When are two representations p2, p2: G -> GLn (C) the same? (Equivalent)
same? (Equivalent)
basis $\varphi: C^{n} \longrightarrow C^{n}$ such that
$C^{n} \xrightarrow{\varphi} C^{n}$
$\rho(g)$ $\int_{C_{n}} \varphi = \int_{C_{n}} \rho_{2}(g)$
commutes for every $g \in G$. Atternatively, if we think of $9 \in GL_n(C)$ then $p_2 = 9p_1 \cdot 9^{-1}$
So we have a GLn(C)-action on the space of all
So we have a GLn(C)-action on the space of all homomorphisms Hom(G, GLn(C)) by conjugation.
Set $M(G) = Hom(G, GLn(C))/_{\sim}$
" space of representations of a fixed dimension"
As an example:

Set G=Z. Then any p:G -> GLn(C) is determined
by p(1) EGLn(C), and all equivalent representations
would send 1 to an element conjugate to p(1).
So M(G) = { conjugacy classes in GL. (C)}
E.g. Takes n=2, use Jordan normal form to get a
"better description of M(G): Think of the
conjugacy classes corresponding to
E.g. Takes $n=2$, use Jordan normal form to get a "better description" of $M(G)$: Think of the conjugacy classes corresponding to $\begin{bmatrix} \lambda & 17 & \text{or} & \lambda_1 & 17 \\ 0 & \lambda_2 & & 0 \end{bmatrix}$
So you get M(G) ~ (C* x C*) U C*, since
every conjugacy class or either a pair of eigenvalues or a single repeated eigenvalue.
or a single repeated eigenvalue.
Example: Take G= Ti (S'xS') ~ IxI, then
any p:G -> Gln(C) is determined by p(1,0) and p(0,1). Then
$M(G) = \{(a,b) \in GL_n(C) \times GL_n(C) abab'=id\}$
GLn(C)
This is a special case of $M(\Sigma) = M(\pi_i(\Sigma))$
= moduli space of surface group representations.

Another generalization: Mk(B) = Hom(n,(B), K)/
Lie group manifold
Another generalization: $M_{k}(B) = Hom(\pi_{i}(B), K)/K$ Lie group manifold conjugation by elements of K
by sternard of R
Some basic questions about these spaces are tough, e.g. what's the number of connected components?
e.g. what's the number of connectic components:
Flat Bundles.
Def: A fibre bundle is (E,B,π,F) consisting of a smooth map $\pi:E \to B$ such that for each beB
I an open ubbd it and a diffeomorphism
h: UXF -> T'(U) such that Toh= PT
$U \times F \xrightarrow{h} \pi'(U) E := \text{Total space}$
B:=Base space $F:=Fibre$
F:= Fibre
Examples: . E=B×F, $\pi=pr_1$, U=B is a trivial
example.
· E = TB, the tangent brindle of the base space
E = TB, the tangent bundle of the base space B (projection Ti is to send each tangent space to its corresponding point)
ets corresponding points
Note: Locally fibre bundles and are trivial,
but globally there could be "twisting", e.g.
Note: Locally fibre bundles and are "trivial", but globally there could be "twisting", e.g. the Möbius band

Now we want to consider a special brendle type.
Definition: A principal G-bundle is (E, B, π, G) a fibre bundle, where each fibre $E_b = \pi'(b)$ carries
a free and transitive G-action, and the maps
h: U×G→π'(U) are "G-equivariant"
h(b,ga) = h(b,g) action.
Examples: · E = BxG
· E = Fr (TB) (the frame bundle)
= { (V ₁ ,, V _n) ordered bases of TB}, and bases are related to one another by change of bases matrices,
80 its a GLn(K)-bundle.
· E = S' Z I I is a principal \mathbb{Z}/\mathbb{Z}_R -brundle. B S' Z ^R
When are two principal G-brundles (over B) equivalent?
Ans: We say E, ~ Ez if and only of there exists a diffeomorphism $\varphi: E, \longrightarrow E_2$ such that
E, PEZ commotes, and such that

9 15 G-equivariant: 9(e.g) = 9(e).g Connections Definition: A connection on a principal G-bundle (E, B, T, G) is a smooth assignment pt tp of a subspace Hp = Tp E satisfying OTE= HOTEL 2) H is G-invariant, meaning Hpig = Rg Hp this is the "right action by g" map. Note: Hp is always isomorphic to the tangent space Trip, B, by an application of the rank-nullity theorem. What are connections good for? Y: [a, b] → E with dy (t) ∈ Hos happens because of Hp ~ Trip, B, so any tangent vector in Trup B arising from dx already has a specified tangent horizontal direction arising from the identification Ap = Trop B