# 12: Parameter Tuning

- Parameter tuning vs. parameter control
- Symbolic vs. numeric parameters
- EA vs. EA instance
- Tuning by generate-and-test
- Tuning methods
- Textbook Chapter 7

## Control and information flows of EA design



## **Taxonomy**



## Parameter tuning

- Test and compare different values before the "real" run
- Challenges
  - user mistakes in settings can be sources of errors or suboptimal performance
  - costs time
  - parameters interact: exhaustive search is not feasible; can't test one at a time
  - requirements may change during a run

### Parameter control

- Set values on-line, during a run
- Challenges
  - hard to optimize parameters with a time-varying schedule
  - hard to optimize user-defined feedback mechanism
  - hard to select for parameter optimization

### Historical account

- Not much work published on parameter tuning
- Tuning efforts are often not reported
- No systematic way to tune parameters
  - based on conventions
  - ad hoc choices
  - limited experimentation with few values

## Symbolic parameters

- E.g., mutation operator, xover operator, selection method
- Finite domain
- No sensible distance metric -> non-searchable, must be sampled



Parameter value

Non-searchable ordering



Parameter value

Searchable ordering

## Numeric parameters

- E.g., population size, mutation rate, xover rate, tournament size
- Domain is subset of R or N
- Sensible distance metric -> searchable



|                    | ALG-1          | ALG-2               | ALG-3           | ALG-4           |
|--------------------|----------------|---------------------|-----------------|-----------------|
|                    |                | SYMBOLIC PARAMETERS |                 |                 |
| Representation     | Bit-string     | Bit-string          | Real-valued     | Real-valued     |
| Overlapping pops   | N              | Υ                   | Υ               | Υ               |
| Survivor selection | _              | Tournament          | Replace worst   | Replace worst   |
| Parent selection   | Roulette wheel | Uniform determ      | Tournament      | Tournament      |
| Mutation           | Bit-flip       | Bit-flip            | Ν(0,σ)          | Ν(0,σ)          |
| Recombination      | Uniform xover  | Uniform xover       | Discrete recomb | Discrete recomb |
|                    |                | NUMERIC PARAMETERS  |                 |                 |
| Population size    | 100            | 500                 | 100             | 300             |
| Tournament size    | _              | 2                   | 3               | 30              |
| Mutation rate      | 0.01           | 0.1                 | _               | _               |
| Mutation stepsize  | _              | _                   | 0.01            | 0.05            |
| Crossover rate     | 0.8            | 0.7                 | 1               | 0.8             |

## EA vs. EA instance

#### • Option I:

- There is only on EA, the generic EA
- The table contains I EA and 4 EA instances
- Option 2: (commonly adopted)
  - An EA is a particular configuration of the symbolic parameters
  - The table contains 3 EAs with 2 instances for one of them

#### • Option 3:

- An EA is a particular configuration of all parameters
- EA = EA instance
- The table contains 4 EAs

# Why parameter tuning?

- Configure an EA by choosing parameter values that optimize its performance
- Analyze an EA by studying how its performance depends on its parameter values and/or the problems it is applied to
- Depends on
  - the problem to be solved
  - the EA used
  - the utility function (how we measure the algorithm quality)

# Tuning by generate-and-test

• EA parameter tuning is a search problem itself



## Meta-EA

- Run an EA to optimize the parameters of another EA
- Parameters can have a hierarchical, nested structure
  - e.g., a symbolic parameter can introduce a numeric parameter
- Utility landscape
  - abstract landscape where the locations are the parameter vectors of an EA
  - height reflects utility of a parameter vector
  - utility values are always stochastic (fitness values are typically deterministic)
  - defined in a statistical sense

# Meta-EA: testing parameter vectors

- Run EA with these parameters on the given problem(s)
- Record EA performance in that run using
  - solution quality: best fitness at termination
  - speed: time used to find required solution quality
- Multiple runs needed because EAs are stochastic
  - average performance of solution quality or speed
  - success rate
  - robustness

- ...

## Tuning methods

- Single-staged vs. multi-staged
  - both perform a number of tests for a reliable estimate of utilities
  - single-staged perform the same number of tests for each parameter vector
  - multi-staged select promising vectors for further tests, e.g., racing
- Model-free vs. model-based
  - optimize the utility landscape by finding parameter vectors that maximize performance
  - learn a model that estimates the performance of an EA for any given parameter vector

# Tuning is important





EA as is (accidental parameters)

EA as it can be ("optimal" parameters)