Measure Theory and Integration

Luc Veldhuis

13 November 2017

Theorems

- Fatou: $u_i \ge 0$ $\int \liminf_{i \to \infty} u_i d\mu \le \liminf_{i \to \infty} \int u_i d\mu$
- ② Monotone convergence (Beppu-lei) $0 \le u_i \uparrow u \Rightarrow \int u_i d\mu \uparrow \int u d\mu$
- **③** Dominated convergence u_i integrable functions $u_i \rightarrow u$ (almost everywhere) Suppose $\exists w$ integrable: $|u_i| \leq w \ \forall i$ then:

Proof of 3

$$\begin{aligned} |u_i| &\leq w, \ |u| = \lim + i \to \infty |u_i| \leq w \\ |\int u_i d\mu - \int u d\mu| &= |\int (u_i - u) d\mu| \leq \int \int |u_i - u| d\mu. \\ &\text{Enough to proof } 3.1. \ |u_j - u| \leq |u_j| + |u| \leq 2w, \text{ so} \\ 2w - |u_i - u| \geq 0. \\ &\text{Fatou: } \int 2w d\mu = \int \liminf_{i \to \infty} (2w - |u_i - u|) d\mu \leq \\ &\lim \inf_{i \to \infty} \int (2w - |u_i - u|) d\mu = \int 2w - \lim \sup_{i \to \infty} \int |u_j - u| d\mu. \\ &\text{So we have: } \int 2w d\mu \leq \int 2w - \lim \sup_{i \to \infty} \int |u_j - u| d\mu. \\ &\text{Hence: } \lim \sup_{i \to \infty} \int |u_i - u| d\mu = 0 \end{aligned}$$

Example

Example to show that some condition is necessary.

$$u_i=i1_{\{0,\frac{1}{i}\}},\ i=1,2,\ldots.$$

$$\int u_i d\lambda = \frac{1}{i}i=1.$$

$$\lim_{i\to\infty}\int u_i d\lambda = 1,\ \mathrm{but}\ u_i\to u\equiv 0.$$
 So $\int u d\lambda = 0.$

Application

$$(X, \mathcal{A}, \mu), \ a \leq b$$

 $\mu_i : (a, b)xX \to \mathbb{R}$
 $u(t, x) = u_t(x).$
Take $v : (a, b) \to \mathbb{R}$ defined by $v(t) = \int_X u(t, x) d\mu(x).$

Theorem

Suppose:

- $\forall t \in (a, b) \ u_t(x) \in \mathcal{L}'(\mu)$
- $t \to u(t,x)$ is continuous, $\forall x \in X$
- $|u(t,x) \leq w(x) \in \mathcal{L}'(\mu)$

Then it is the case v(t) is continuous.

Proof

$$t_j \to t$$
, $u_j(x) = u(t_j, x) \to u(t, x)$ and $|u_j(x)| \le w(x)$.
So $\lim_{j \to \infty} v(t_j) = \lim_{j \to \infty} \int u(t_j, x) d\mu = \int \lim_{j \to \infty} u(t_i, x) d\mu = \int u(t, x) d\mu = v(t)$

Lebesgue is an improvement, because it works on **any** space with a measure, but sometimes you might think Riemann is better:

Example 1

$$f: \mathbb{R} \to \mathbb{R} \text{ with }$$

$$f(x) = \begin{cases} \frac{(-1)^n}{n+1} & x \in [n, n+1) \text{ with } n = 0, 1, 2, \dots \\ 0 & x \in 0 \end{cases}$$

Is this function integrable?

Let $f_k = |f| 1_{[0,k]}$, then $\lim_{k \to \infty} f_k \to |f|$.

But $\int |f| d\mu$ goes to infinity, so does not exist.

But Riemann integral gives: $\int_0^\infty f(x)dx = \sum_{n=0}^\infty \frac{(-1)^n}{n+1} \le \infty$ does exists.

Lebesgue does not uses the minus sign.

Theorem

 $f:[a,b]\to\mathbb{R}$ bounded and measurable.

- f is Riemann integrable $\Leftrightarrow f$ is almost everywhere continuous, with respect to Lebesgue measure.
- Riemann integrable functions on [a, b] are Lebesgue integrable, and the 2 integrals are the same.

Proof

Take
$$P=\{a_i|a=a_0< a_1<\cdots< a_n=b\}$$
 a partition of $[a,b]$. $\Delta_i=a_i-a_{i-1}$. $I_i=[a_{i-1},a_i)$. $M_i=\sup\{f(x)|x\in I_i\}$ $m_i=\inf\{f(x)|x\in I_i\}$ Upper sum $U_p=\sum_{i=1}^n M_i\Delta_i$ Lower sum $L_p=\sum_{i=1}^n m_i\Delta_i$ Note $U_p=\int u_p d\lambda$ where $u_p=\sum_{i=1}^n m_i 1_{I_i}$. Refining the partition means adding points on the interval. P_1,P_2,\ldots with $U_i=U_{P_i}$ and $U_i=L_{P_i}$ and $u_i=u_{p_1}$ and $I_i=I_{p_i}$. We have that $I_n\leq f\leq u_n\ \forall n$.

Proof (continued)

We see that $l_1 \leq l_2 \leq \cdots \leq f \leq \cdots \leq u_2 \leq u_1$ because of definition of supremum and infimum.

 $u = \lim_{i \to \infty} u_i$ and $l = \lim_{i \to \infty} l_i$ exist. Claim:

$$\lim_{n\to\infty}\int_{[a,b]}u_nd\lambda=\int_{[a,b]}ud\lambda.$$

$$\lim_{n\to\infty}\int_{[a,b]}I_nd\lambda=\int_{[a,b]}Id\lambda.$$

Dominant
$$w(x) = M$$
 on $[a, b]$ $M = \sup_{x \in X} |f(x)|$

Intermediate proof

Suppose x is not an endpoint of any of the P_n . (Excludes at most countably many).

For such x we have the following:

f is continuous at $x \Leftrightarrow u(x) = f(x) = I(x)$.

Proof (continued)

Suppose f is Riemann integrable $\Rightarrow \int_{[a,b]} u d\lambda = \int_{[a,b]} I d\lambda$ With $(u-I) \ge 0$.

 $\int_{[a,b]} (u-I)d\lambda = 0 \Rightarrow u=I$ almost everywhere $\Rightarrow u=I=f$ almost everywhere $\Rightarrow f$ is continuous almost everywhere.

Suppose f is almost everywhere continuous $\Rightarrow u(x) = f(x) = I(x)$ almost everywhere.

 $\int_{[a,b]} u d\lambda = \int_{[a,b]} I d\lambda = \int_{[a,b]} f d\lambda$ so f is Riemann integrable because of the limits in the claim previously.

Proof

Riemann integrable means that

$$\int u d\lambda = \int I d\lambda = \int_{[a,b]} f d\lambda = \int_a^b f(x) dx$$
. (In previous proof).

Improper Riemann integrals

Theorem

 $f \ge 0 \lim_{a \to -\infty, b \to \infty} \int_a^b f(x) dx = \int_{-\infty}^\infty f(x) dx$ exists. Then $\int_{\mathbb{R}} f d\lambda$ exists and has to be the same.

Proof

 $f_n=f1_{[-n,n]}\uparrow f$, and we proofed that $\int_{\mathbb{R}}f_nd\lambda=\int_{-n}^nf(x)dx$. Now we have $\int_{-n}^nf(x)dx\to\int_{-\infty}^\infty f(x)dx$ by assumption. And $\int_{\mathbb{R}}f_nd\lambda\to\int_{\mathbb{R}}fd\lambda$ by the monotone convergence theorem. So $\int_{\mathbb{R}}fd\lambda=\int_{-\infty}^\infty f(x)dx$.

Assigment tips

Computation

$$\begin{array}{l} f_{\alpha}(x)=x^{\alpha} \text{ with } x>0.\\ \int_{(0,1)}x^{\alpha}d\lambda=^{MCT}\lim_{j\to\infty}\int x^{\alpha}\mathbf{1}_{\left[\frac{1}{j},1\right)}(x)d\lambda=\lim_{j\to\infty}\frac{1}{\frac{1}{j}}x^{\alpha}dx=\\ \lim_{j\to\infty}\left[\frac{x^{\alpha+1}}{\alpha+1}\right]_{\frac{1}{j}}^{1}=\lim_{j\to\infty}\left(\frac{1}{\alpha+1}-\frac{1}{j^{\alpha+1}(\alpha+1)}\right). \text{ Only }<\infty \text{ if and only if } \alpha>-1. \end{array}$$