1 Постановка задачи

Моделируется нейтронное поле в многогрупповом диффузионном приближении. Динамика нейтронов рассматривается в ограниченной выпуклой двумерной или трехмерной области Ω ($\mathbf{x} = \{x_1, ..., x_d\} \in \Omega$, d = 2, 3) с границей $\partial \Omega$. Перенос нейтронов описывается системой уравнений

$$\frac{1}{v_g} \frac{\partial \phi_g}{\partial t} - \nabla \cdot D_g \nabla \phi_g + \Sigma_g \phi_g - \sum_{g \neq g'=1}^G \Sigma_{s,g' \to g} \phi_{g'}$$

$$= (1 - \beta) \chi_g \sum_{g'=1}^G \nu \Sigma_{fg'} \phi_{g'} + \widetilde{\chi}_g \sum_{m=1}^M \lambda_m c_m, \quad g = 1, 2, ..., G. \tag{1}$$

Здесь $\phi_g(\boldsymbol{x},t)$ — поток нейтронов группы g в точке \boldsymbol{x} на момент времени t,G — число групп, v_g — эффективная скорость нейтронов в группе $g,D_g(\boldsymbol{x})$ — коэффициент диффузии, $\Sigma_g(\boldsymbol{x},t)$ — сечение поглощения, $\Sigma_{s,g'\to g}(\boldsymbol{x},t)$ — сечение рассеяния с группы g' в группу g,β — эффективная доля запаздывающих нейтронов, $\chi_g,\widetilde{\chi}_g$ — спектры мгновенных и запаздывающих нейтронов, $\nu\Sigma_{fg}(\boldsymbol{x},t)$ — сечение генерации группы g,c_m — плотность источников запаздывающих нейтронов m типа, λ_m — постоянная распада источников запаздывающих нейтронов, M — число типов запаздывающих нейтронов. Плотность источников запаздывающих нейтронов описывается уравнениями

$$\frac{\partial c_m}{\partial t} + \lambda_m c_m = \beta_m \sum_{g=1}^G \nu \Sigma_{fg} \phi_g, \quad m = 1, 2, ..., M,$$
(2)

где β_m — доля запаздывающих нейтронов m типа, причем

$$\beta = \sum_{m=1}^{M} \beta_m.$$

На границе области $\partial\Omega$ ставятся условия альбедного типа:

$$D_g \frac{\partial \Phi_g}{\partial n} + \gamma_g \Phi_g = 0, \qquad g = 1, 2, ..., G, \tag{3}$$

где n — внешняя нормаль к границе $\partial\Omega$.

Рассматривается задача для системы уравнений (1), (2) с краевыми условиями(3), и начальными условиями:

$$\phi_g(\mathbf{x}, 0) = \phi_g^0(\mathbf{x}), \quad g = 1, 2, ..., G.$$
 (4)

Запишем краевую задачу (1), (2), (3), (4) в операторной форме. Определим векторы $\boldsymbol{\phi} = \{\phi_1, \phi_2, ..., \phi_G\}, \, \boldsymbol{c} = \{c_1, c_2, ..., c_M\}$ и матрицы

$$V = (v_{gg'}), \quad v_{gg'} = \delta_{gg'} v_g^{-1},$$

$$D = (d_{gg'}), \quad d_{gg'} = -\delta_{gg'} \nabla \cdot D_g \nabla,$$

$$S = (s_{gg'}), \quad s_{gg'} = \delta_{gg'} \Sigma_g - \Sigma_{s,g' \to g},$$

$$R = (r_{gg'}), \quad r_{gg'} = (1 - \beta) \chi_g \nu \Sigma_{fg'},$$

$$B = (b_{gm}), \quad b_{gm} = \widetilde{\chi}_g \lambda_m,$$

$$\Lambda = (\lambda_{mm'}), \quad \lambda_{mm'} = \lambda_m \delta_{mm'},$$

$$Q = (q_{mg}), \quad q_{mg} = \beta_m \nu \Sigma_{fg},$$

$$g, g' = 1, 2, ..., G, \quad m, m' = 1, 2, ..., M,$$

где

$$\delta_{gg'} = \begin{cases} 1, & g = g', \\ 0, & g \neq g', \end{cases}$$

есть символ Кронеккера. Будем работать на множестве векторов ϕ , компоненты которого удовлетворяют граничным условиям (3). С учетом введенных обозначений система уравнений (1), (2) записывается в следующем виде

$$V\frac{d\boldsymbol{\phi}}{dt} + (D+S)\boldsymbol{\phi} = R\boldsymbol{\phi} + B\boldsymbol{c},$$

$$\frac{d\boldsymbol{c}}{dt} + \Lambda\boldsymbol{c} = Q\boldsymbol{\phi}.$$
(5)

Для (5) рассматривается задача Коши, когда

$$\phi(0) = \phi^0, \tag{6}$$

где $\boldsymbol{\phi}^0 = \{\phi_1^0, \phi_2^0, ..., \phi_G^0\}.$

2 Спектральная задача

Для характеристики динамических процессов в ядерном реакторе, которые описываются задачей Коши (5), (6) привлекаются решения некоторых спектральных задач [?, ?, 8].

Обычно рассматривается спектральная задача

$$(D+S)\varphi = \lambda^{(k)}(R\varphi + B\mathbf{s}),$$

$$\Lambda \mathbf{s} = \lambda^{(k)}Q\varphi.$$
(7)

Это задача (7) известно как Lambda modes спектральная задача. Для характеристики нейтронного поля привлекается минимальное собственное значение, так что

$$k = \frac{1}{\lambda_1^{(k)}}$$

есть эффективный коэффициент размножения. Значение $k = \lambda_1^{(k)} = 1$ связывается с критическим состоянием реактора, соответствующая собственная функция $\varphi_1(\boldsymbol{x})$ есть стационарное решение уравнения (5). При k > 1 говорят о надкритическом состоянии реактора, при k < 1 — о подкритическом состоянии.

Спектральную задачу (7) нельзя напрямую связать с динамическими процессами в ядерном реакторе. В лучшем случае мы можем выделить только предельный случай — стационарное критическое состояние. Более приемлемая спектральная характеристика для нестационарного уравнения (5) связана со спектральной задачей

$$(D+S-R)\varphi - Bs = \lambda^{(\alpha)}V\varphi,$$

$$\Lambda s - Q\varphi = \lambda^{(\alpha)}s.$$
(8)

Фундаментальное собственное значение

$$\alpha = \lambda_1^{(\alpha)}$$

называется [?] α -eigenvalues или period eigenvalues. С собственным значением α можно связать асимптотическое поведение решения задачи Коши (5), (6) при больших временах. В этом регулярном режиме поведение реактора описывается функцией $e^{-\alpha t}\varphi_1(\boldsymbol{x})$.

3 Аппроксимация по времени

Для численного решения задачи методом конечных элементов, необходимо дискретизировать производные по времени используя конечно-разностные схемы, а затем каждую стационарную задачу привести к вариационной постановке [1].

Для аппроксимации по времени рассмотрим две схемы: чисто-неявную, явно-неявную. Пусть τ шаг равномерной сетки по времени, такой что $\phi^n = \phi(\boldsymbol{x}, t_n)$, $\boldsymbol{c}^n = \boldsymbol{c}(\boldsymbol{x}, t_n)$ где $t_n = n\tau$, n = 0, 1, ..., N, $N\tau = T$.

Проинтегрируем уравнение (2) от t_n до t_{n+1} , тогда

$$c_m^{n+1} = c_m^n e^{-\lambda_m \tau} + \beta_m e^{-\lambda_m \tau} \int_{t_n}^{t_{n+1}} e^{\lambda_m (t - t_n)} \sum_{g=1}^G \nu \Sigma_{fg} \phi_g, \quad m = 1, 2, ..., M.$$
 (9)

Рассмотрим для уравнения 5 чисто-неявную разностную схему. Будем использовать верхную сумму для вычисления подынтегральной функции (9), тогда получаем

$$V\frac{\boldsymbol{\phi}^{n+1} - \boldsymbol{\phi}^n}{\tau} + (D+S)\boldsymbol{\phi}^{n+1} = R\boldsymbol{\phi}^{n+1} + B\boldsymbol{c}^{n+1},$$

$$\boldsymbol{c}^{n+1} = \hat{\Lambda}\boldsymbol{c}^n + \tau Q\boldsymbol{\phi}^{n+1},$$
(10)

где

$$\hat{\Lambda} = (\hat{\lambda}_{mm'}), \quad \hat{\lambda}_{mm'} = \delta_{mm'} e^{-\lambda_m \tau}$$

Теперь рассмотрим для уравнения 5 явно-неявную разностную схему. Для этого случая использовуем нижную сумму для вычисления подынтегральной функции (9), тогда получаем

$$V\frac{\boldsymbol{\phi}^{n+1} - \boldsymbol{\phi}^{n}}{\tau} + (D+S)\boldsymbol{\phi}^{n+1} = R\boldsymbol{\phi}^{n} + B\boldsymbol{c}^{n+1}$$
$$\boldsymbol{c}^{n+1} = \hat{\Lambda}\boldsymbol{c}^{n} + \tau \hat{Q}\boldsymbol{\phi}^{n},$$
 (11)

где

$$\hat{Q} = (\hat{q}_{mg}), \quad \hat{q}_{mg} = e^{-\lambda_m \tau} \beta_m \nu \Sigma_{fg}$$

Подставляем c^{n+1} из нижнего уравнения в верхнее и перепишем так, чтобы ϕ^{n+1} были с левой стороны уравнения, а ϕ^n с правой стороны уравнения, тогда получаем СЛАУ

$$Au = b$$
.

где $u = \phi^{n+1}$. Для уравнения (10) имеем

$$A = \frac{V}{\tau} + D + S - R - \tau Q, \quad b = \frac{V}{\tau} \phi^n + \hat{\Lambda} c^n.$$

А для уравнения (11) имеем

$$A = \frac{V}{\tau} + D + S, \quad b = \left(\frac{V}{\tau} + R + \tau \hat{Q}\right) \phi^n + \hat{\Lambda} c^n.$$

4 Модельная задача

Рассматривается тестовая задача для реактора ВВЭР-1000 без отражателя [2] в двумерном приближении (Ω — сечение активной зоны реактора). Геометрическая модель активной зоны ВВЭР-1000 состоит из набора кассет гексагональной формы и представлена на рис.1, где цифрами показаны кассеты различных типов. Размер кассеты «под ключ» равен 23.6 см. Диффузионные нейтронно-физические константы в системе измерений СИ приведены в табл.1. Используются граничные условия (3) при задании $\gamma_g = 0.5, \ g = 1, 2.$ Задача рассматривается при $v_1 = 12500000, \ v_2 = 250000, \ \lambda_1 = 0.08$ и

 $\beta_1 = 0.0065.$

Рис. 1: Геометрическая модель активной зоны реактор ВВЭР-1000.

Таблица 1: Диффузионные константы для ВВЭР-1000

таолица т. диффузионые константы для ввот-тооб								
Материал	1	2	3	4	5			
D_1	1.38320e-0	1.38299e-0	1.39522e-0	1.39446e-0	1.39506e-0			
D_2	3.86277e-1	3.89403e-1	3.86225e-1	3.87723e-1	3.84492e-1			
$\Sigma_1 + \Sigma_{s,1\to 2}$	2.48836e-2	2.62865e-2	2.45662e-2	2.60117e-2	2.46141e-2			
Σ_2	6.73049e-2	8.10328e-2	8.44801e-1	9.89671e-2	8.93878e-2			
$\Sigma_{s,1\to 2}$	1.64977e-2	1.47315e-2	1.56219e-2	1.40185e-2	1.54981e-2			
$\nu\Sigma_{f1}$	4.81619e-3	4.66953e-3	6.04889e-3	5.91507e-3	6.40256e-3			
$ u\Sigma_{f2}$	8.46154e-2	8.52264e-2	1.19428e-1	1.20497e-1	1.29281e-1			

Для приближенного решение задачи используется метод конечных элементов [3] на треугольных расчетных сетках. Число треугольников на одну кассету $\kappa=6,24,96$ (рис.2). Используются стандартные лагранжевые конечные элементы степени p=1,2,3 (рис 3). Программное обеспечение написано с использованием библиотеки инженерных и научных вычислений FEniCS [4]. Для численного решения спектральных задач привлекается SLEPc [5].

Рис. 2: Разбиение кассеты на 6, 24 и 96 конечных элементов.

Рис. 3: Лагранжевые полиномы 1, 2, 3 степени соответственно.

4.1 Решение Alpha Modes спектральной задачи

Приведем результаты численного решения спектральной задачи (8). В рамках используемого двухгруппового приближения имеем

$$-\nabla \cdot D_1 \nabla \varphi_1 + \Sigma_1 \varphi_1 + \Sigma_{s,1 \to 2} \varphi_1 - (\nu \Sigma_{f1} \varphi_1 + \nu \Sigma_{f2} \varphi_2) - \lambda_1 s = \lambda^{(\alpha)} \frac{1}{v_1} \varphi_1,$$

$$-\nabla \cdot D_2 \nabla \varphi_2 + \Sigma_2 \varphi_2 - \Sigma_{s,1 \to 2} \varphi_1 = \lambda^{(\alpha)} \frac{1}{v_2} \varphi_2,$$

$$\lambda_1 s - \beta_1 (\nu \Sigma_{f1} \varphi_1 + \nu \Sigma_{f2} \varphi_2) = \lambda^{(\alpha)} s.$$
(12)

Ищется главное собственное значение $\alpha = \lambda_1^{(\alpha)}, \quad (\lambda_1^{(\alpha)} \leq \lambda_2^{(\alpha)} \leq ...).$

Результаты решения спектральной задачи (12) для первых собственных значений $\alpha_n = \lambda_n^{(\alpha)}, \ n=1,2,...,5, \ \lambda_1^{(\alpha)} \leq \lambda_2^{(\alpha)} \leq ...$ на разных расчетных сетках при использовании различных конечно-элементных аппроксимаций показаны в табл.2. Собственные значения $\alpha_2, \alpha_3, \ \alpha_4, \alpha_5, \ \alpha_9, \alpha_{10}$ для спектральной задачи (12) являются комплексные с малыми мнимыми частями, собственные значения $\alpha_1, \alpha_6, \alpha_7, \alpha_8$ — действительные.

Таблица 2: Собственные значения $\alpha_n = \lambda_n^{(\alpha)}, \ n = 1, 2, ..., 5$

κ	p	α_1	α_2, α_3	$lpha_4,lpha_5$	
	1	-0.22557	$0.04241 \pm 3.08808e-06i$	$0.06588 \pm 4.80448 \text{e-}07i$	
6	2	-2.10154	$0.03592 \pm 4.96474 \text{e-}06i$	$0.06452 \pm 1.21320 \text{e-}06i$	
	3	-2.47975	$0.03561 \pm 5.83719 \text{e-}06i$	$0.06445 \pm 1.41869 \text{e-}06i$	
	1	-0.82680	$0.03777 \pm 5.37884 \text{e-}06i$	$0.06489 \pm 1.37315 \text{e-}06i$	
24	2	-2.46601	$0.03562 \pm 5.78277 \text{e-}06i$	$0.06445 \pm 1.40897 \text{e-}06i$	
	3	-2.50294	0.03559 ± 5.80783 e-06 i	$0.06444 \pm 1.41341 \text{e-}06i$	
	1	-1.74998	$0.03619 \pm 5.69002 \text{e-}06i$	$0.06456 \pm 1.40299 \text{e-}06i$	
96	2	-2.50375	0.03559 ± 5.80693 e-06 i	$0.06444 \pm 1.41324 \text{e-}06i$	
	3	-2.51280	$0.03558 \pm 5.80954 \text{e-}06i$	$0.06444 \pm 1.41362 \text{e-}06i$	

Собственные функции для главного собственного значения (n=1) спектральной задачи (12) показаны рис.4.

В нашем примере главное собственное значение отрицательно и поэтому главная гармоника будет нарастать, а все другие будут затухать. Тем самым выражен регулярный режим работы реактора. Сама величина $\alpha = \lambda_1^{(\alpha)}$ определяет амплитуду развития нейтронного поля и непосредственно связывается с периодом реактора в регулярном режиме.

Рис. 4: Собственные функции $\varphi_1^{(1)}$ (слева) и $\varphi_2^{(1)}$ (справа).

Рис. 5: Реальная часть собственных функций $\varphi_1^{(2)},\ \varphi_1^{(3)}$ (слева) и $\varphi_1^{(4)},\ \varphi_1^{(5)}$ (справа).

Рис. 6: Мнимая часть собственных функций $\varphi_1^{(2)}, -\varphi_1^{(3)}$ (слева) и $\varphi_1^{(4)}, -\varphi_1^{(5)}$ (справа).

4.2 Решение нестационарной задачи

Нестационарная задача будет рассматриватся при следующих параметрах k=24 и p=2.

В рамках используемого двухгруппового приближения и чисто-неявной схемы(10)

имеем:

$$\frac{1}{\tau v_1} \varphi_1^{n+1} - \nabla \cdot D_1 \nabla \varphi_1^{n+1} + \Sigma_1 \varphi_1^{n+1} + \Sigma_{s,1 \to 2} \varphi_1^{n+1}
- (1 - \beta_1 + \tau \lambda_1 \beta_1) (\nu \Sigma_{f_1} \varphi_1^{n+1} + \nu \Sigma_{f_2} \varphi_2^{n+1}) = \frac{1}{\tau v_1} \varphi_1^n + \lambda_1 e^{-\lambda_1 \tau} s^n,$$

$$\frac{1}{\tau v_2} \varphi_2^{n+1} - \nabla \cdot D_2 \nabla \varphi_2^{n+1} + \Sigma_2 \varphi_2^{n+1} - \Sigma_{s,1 \to 2} \varphi_1^{n+1} = \frac{1}{\tau v_2} \varphi_2^n,$$
(13)

В случае явно-неявной схемы (11) имеем:

$$\frac{1}{\tau v_1} \varphi_1^{n+1} - \nabla \cdot D_1 \nabla \varphi_1^{n+1} + \Sigma_1 \varphi_1^{n+1} + \Sigma_{s,1 \to 2} \varphi_1^{n+1}
= \frac{1}{\tau v_1} \varphi_1^n + (1 - \beta_1 + \tau \lambda_1 \beta_1) e^{-\lambda_1 \tau} (\nu \Sigma_{f1} \varphi_1^n + \nu \Sigma_{f2} \varphi_2^n) + \lambda_1 e^{-\lambda_1 \tau} s^n, \qquad (14)$$

$$\frac{1}{\tau v_2} \varphi_2^{n+1} - \nabla \cdot D_2 \nabla \varphi_2^{n+1} + \Sigma_2 \varphi_2^{n+1} - \Sigma_{s,1 \to 2} \varphi_1^{n+1} = \frac{1}{\tau v_2} \varphi_2^n.$$

В качестве начального условия задачи (6) возьмем следующие значения:

$$\phi_1^0 = 1.0, \quad \phi_2^0 = 0.25.$$

Возмем $T=1\cdot 10^{-2}$ и будем варьировать шаг по времени $\tau=1\cdot 10^{-4}, 2\cdot 10^{-4}, 4\cdot 10^{-4}, 8\cdot 10^{-4}$ в случае чисто-неявной аппроксимации, $\tau=5\cdot 10^{-6}, 1\cdot 10^{-5}, 2\cdot 10^{-5}, 4\cdot 10^{-4}$ в случае явно-неявной аппроксимации. Реперным решением (ref) для обоих случаев будет решение при чисто-неявной аппроксимации при $\tau=5\cdot 10^{-5}$.

Рассмотрим сходимось решения нестационарной задачи(13), (14) к решению спектральной задачи (12). Для этого введем оценку сходимости η, которая равна норме разности решений спектральной и нестационарной задач:

$$\eta = \left\| \hat{\phi}_{\alpha_1} - \hat{\phi}_t \right\|,$$

$$\hat{\phi}_{\alpha_1} = \frac{\phi_{\alpha_1}}{\|\phi_{\alpha_1}\|},$$

$$\hat{\phi}_t = \frac{\phi_t}{\|\phi_t\|},$$
(15)

где ϕ_{α_1} – решение спектральной задачи, ϕ_t – решение нестационарной задачи. Введем еще одну оценку сходимости, которая имеет следующий вид:

$$\theta = \frac{1}{\|\alpha\|} \left\| \frac{1}{\phi_t} \frac{\partial \phi_t}{\partial t} - \alpha \right\|. \tag{16}$$

Графики η в зависимости от времени t при разных шагах по времени τ показаны на рис. 7 для чисто-неяной аппроксимации и на рис. 11 для явно-неявной аппроксимации.

Рис. 7: η для $\phi_1(t)$ при чисто-неявной аппроксимации.

Рис. 8: η для $\phi_1(t)$ при явно-неявной аппроксимации.

Рис. 9: η для $\phi_1(t)$ при чисто-неявной аппроксимации.

Рис. 10: θ при чисто-неявной аппроксимации.

Рис. 11: θ при явно-неявной аппроксимации.

На рис. 10 показан график η в зависимости от времени для чисто-неявной аппроксимации при $\tau=0.01$ до T=2.0.

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (project 16-08-01215).

Список литературы

- [1] A. Hebert. Application of a dual variational formulation to finite element reactor calculations. *Annals of Nuclear Energy*, 20:823–845, 1993.
- [2] Y.A. Chao and Y.A. Shatilla. Conformal mapping and hexagonal nodal methods-ii: Implementation in the anc-h code. *Nuclear Science and Engineering*, 121:210–225, 1995.
- [3] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics. Springer, 2008.
- [4] A. Logg, K.A. Mardal, G. Wells. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Lecture Notes in Computational Science and Engineering. Springer, 2012.
- [5] C. Campos, J.E. Roman, E. Romero, A. Tomas. SLEPc Users Manual, 2013.
- [6] C. Geuzaine, J.F. Remacle. Gmsh Reference Manual, 2014.
- [7] А.Н. Климов. Ядерная физика и ядерные реакторы. Атомиздат, 1971.
- [8] W.M. Stacey. Nuclear Reactor Physics. John Wiley & Sons, 2007.
- [9] И.Х. Ганев, Н.А. Доллежаль. Физика и расчет реактора. Энергоиздат, 1981.
- [10] Г.И. Марчук, В.И. Лебедев. *Численные методы в теории переноса нейтронов*. Атомиздат, 1981.
- [11] S. Gonzalez-Pintor, G. Verdu, and D. Ginestar. Approximation of the neutron diffusion equation on hexagonal geometries. New York, 2009.