Copy letter from Newton to John Smith, dated 24 July 1675

Author: Isaac Newton

Source: MS Add. 9597/2/18/43, Cambridge University Library, Cambridge, UK

Published online: February 2013

<43r>

Sir,

I received your former Letter as well as your later, and should have written to you sooner, but that I stay'd to think of something that might satisfy your Desire; But though I can not hitherto doe it to my owne liking, yet that I may not wrack your patience too much I have here writt you what occurrs to mee, which is only about facilitating the Extraction of R. The former Method might be applyed to determin all by every 1000th, as well as by every 100^{th} P_k , but not with advantage, for it will require the Extraction of P_k to 14 or 15 places, besides a greater number of Additions, Subductions & Divisions in those greater numbers: And therefore I have rather sent you the following Notes about Extracting R.

1.) When you have extracted any Px by common Arithmetick to 5 Decimal places, you may get the figures of the other 6 places by Dividing only the Residuum by

$$\begin{cases} \text{double the Quotient} \\ \text{triple the q of the Quotient} \\ \text{quadruple the c of the Quotient} \end{cases} \end{cases} \text{ for the } \mathsf{P}_{\!\!\mathbf{x}} \begin{cases} \text{square} \\ \text{cube} \\ \text{square square} \end{cases}$$

Suppose B. the Quotient or R extracted to 5 Decimal places, and C. the last Residuum, by the Division of which you are to get the next figure of the Quotient, and D the Divisor (that is 2B or 3BB or $4B^{\cdot c} = D$ & $B + \frac{C}{D}$ shall be the R desired. That is, the same Division, by which you would finde the 6^{th} decimal figure, if prosecuted, will give you all to the 11th decimal figure.

2) You may seek the Pk if you will, to 5 Decimal places by the logarithm's, But then you must finde the rest thus. Divide the propounded number twice by that R prosecuting the Division alwayes to 11 Decimal

$$y^{e} \text{ said } \textbf{R} \left\{ \begin{array}{l} \text{once, \& halfe} \\ \text{twice, \& a third part} \\ \text{thrice, \& a quarter} \end{array} \right\} \quad \text{of the summ} \quad \left\{ \begin{array}{l} \text{square} \\ \text{Cube} \\ \text{square square} \end{array} \right\} \quad \textbf{R} \quad \text{desired.}$$

let A be the number, and B. its $\begin{cases} Q \\ C \\ QQ \end{cases}$ Restracted by Logarithms unto 5 decimal places:

$$\begin{array}{c} \text{2)} \ \ B+\frac{A}{B}, \\ \text{and} \\ \text{3)} \ \ 2B+\frac{A}{B^2}, \text{ shall be the} \\ \text{4)} \ \ 3B+\frac{A}{B^3}, \end{array} \end{array} \right\} \begin{array}{c} Q \\ C \quad \text{root desired} \\ QQ \\ \end{array}$$

Note that you have according to my former Direction but 76 $\,\mathrm{Q}\,$ R & 88 $\,\mathrm{C}\,$ R & 94 $\,\mathrm{QQ}\,$ R to extract, whereof 10 are exact R. But I think you will doe well to lett the Table of $\,\mathrm{QQ}\,$ R alone, til you have done the other two, and then, if you finde your time too short, print the Q. & C. R without troubling your selfe any further.

Sir, I am, your humble Servant

Is: Newton

< insertion from the left margin >

Cambridge July 24th 1675

Copia vera

< text from f 43r resumes > <43v>

For M^r Collins Copie M^r Newtons 2^d Letter concerning extraction of P_k