CSL003P1M: Probability and Statistics Lecture 25 (Joint Moment Generating Functions)

Sumit Kumar Pandey

November 10, 2021

An Important Property of MGF

The moment generating function uniquely determines the distribution. That is, if $M_X(t)$ exists and is finite in some region about t = 0, then the distribution of X is uniquely determined.

For instance, if

$$M_X(t) = \left(\frac{1}{2}\right)^{10} (e^t + 1)^{10}$$

then it follows that X is a binomial random variable with parameters 10 and $\frac{1}{2}$. Note that the mgf of binomial random variable X is

$$M_X(t) = (pe^t + 1 - p)^n.$$

Suppose that the moment generating function of a random variable X is given by $M(t) = e^{3(e^t - 1)}$. What is $P\{X = 0\}$?

The mgf of the Poisson random variable X with parameter λ is

$$M_X(t) = e^{-\lambda} e^{\lambda e^t}$$

It is clear from $M_X(t)$ that X is a Poisson random variable with parameter $\lambda=3$. Thus,

$$P{X = 0} = e^{-3} \frac{3^0}{0!} = e^{-3}.$$

Prove that the sum of independent random variables equals the product of the individual moment generating functions.

- Suppose that X and Y are independent and have moment generating functions $M_X(t)$ and $M_Y(t)$ respectively.
- Then $M_{X+Y}(t)$, the moment generating function of X+Y is given by

$$M_{X+Y}(t) = E[e^{t(X+Y)}]$$

= $E[e^{tX}e^{tY}]$
= $E[e^{tX}]E[e^{tY}]$ (since X and Y are independent)
= $M_X(t)M_Y(t)$

MGF of the sum of a random number of random variables

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables, and let N be a nonnegative integer. We want to compute the moment generating function of

$$Y = \sum_{i=1}^{N} X_i$$

It follows easily from the previous result that

$$M_Y(t) = [M_{X_1}(t)]^N$$

Joint Moment Generating Functions

For any n random variables X_1, \ldots, X_n , the joint moment generating function, $M(t_1, \ldots, t_n)$, is defined, for all real values of t_1, \ldots, t_n by

$$M(t_1,\ldots,t_n)=E[e^{t_1X_1+\cdots+t_nX_n}]$$

The individual moment generating functions can be obtained from $M(t_1, \ldots, t_n)$ by letting all but one of the t_i 's be 0. That is,

$$M_{X_i}(t) = E[e^{tX_i}] = M(0, \dots, 0, t, 0, \dots, 0)$$

where t is in the ith place.

Joint Moment Generating Functions

- It can be proven that the joint moment generating function $M(t_1, t_2, ..., t_n)$ uniquely determines the joint distribution of $X_1, ..., X_n$.
- This result can then be used to prove that the n random variables X_1, \ldots, X_n are independent if and only if

$$M(t_1,\ldots,t_n)=M_{X_1}(t_1)\cdots M_{X_n}(t_n)$$

Proof: If the n random variables are independent, then

$$M(t_1, \dots, t_n) = E[e^{(t_1X_1 + \dots + t_nX_n)}]$$

$$= E[e^{t_1X_1} \dots e^{t_nX_n}]$$

$$= E[e^{t_1X_1}] \dots E[e^{t_nX_n}]$$
 (by independence)
$$= M_{X_1}(t_1) \dots M_{X_n}(t_n)$$

For the other direction, try yourself. (Hint: use the fact that the joint moment generating function uniquely determines the joint distribution.)

If X and Y are independent binomial random variables with parameters (n, p) and (m, p), respectively, what is the distribution of X + Y?

The moment generating function of X + Y is given by

$$M_{X+Y}(t) = M_X(t)M_Y(t) = (pe^t + 1 - p)^n(pe^t + 1 - p)^m$$

= $(pe^t + 1 - p)^{m+n}$

However, $(pe^t + 1 - p)^{m+n}$ is the moment generating function of a binomial random variable having parameters m + n and p. Thus, this must be the distribution of X + Y.

If X and Y are independent Poisson random variables with parameters λ_1 and λ_2 , what is the distribution of X + Y?

The moment generating function of X + Y is given by

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$

$$= e^{-\lambda_1}e^{\lambda_1e^t}e^{-\lambda_2}e^{\lambda_2e^t}$$

$$= e^{-(\lambda_1+\lambda_2)}e^{(\lambda_1+\lambda_2)e^t}$$

However, $e^{-(\lambda_1+\lambda_2)}e^{(\lambda_1+\lambda_2)e^t}$ is the moment generating function of a Poisson random variable having parameter $\lambda_1+\lambda_2$. Thus, this must be the distribution of X+Y.

Let X be a negative binomial random variable with parameters r and p. Find the mgf of X given that the mgf of a geometric random variable with parameter p is

$$\frac{pe^t}{1-(1-p)e^t}$$

Solution:

- For $1 \le i \le r$, let X_i be independent geometric random variables each with parameter p.
- Then

$$X = X_1 + X_2 + \cdots + X_r$$

Thus,

$$M_X(t) = [M_{X_1}(t)]^r = \left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r$$

Thank You