МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет

А.А. Потехин А.Ю. Чурин С. В. Оболенский

ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВОГО ДИОДА

Практикум

Рекомендовано методической комиссией радиофизического факультета для студентов ННГУ, обучающихся по направлениям подготовки 011800 «Радиофизика и электроника» 010400 «Информационные технологии» 654700 «Информационная безопасность телекоммуникационных систем»

Нижний Новгород, 2014 И-37 Потехин А. А., Чурин А. Ю., Оболенский С. В. ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВОГО ДИОДА: Практикум. — Нижний Новгород: Нижегородский госуниверситет, 2014. — 22 с.

Рецензент: доктор физико-математических наук В. К. Киселев

В пособии представлены элементы зонной теории твердых тел и неравновесных процессов в полупроводниковых структурах. Подробно изложена методика измерения времени жизни и диффузионной длины неосновных носителей заряда в полупроводниках.

Практикум предназначен для студентов дневного и вечернего отделений радиофизического факультета ННГУ в качестве пособия при подготовке и проведении лабораторных работ по курсам «Физика полупроводников и полупроводниковых приборов», «Физика твердого тела и твердотельная электроника».

Ответственный за выпуск: председатель методической комиссии радиофизического факультета ННГУ, к.ф.-м.н., доцент **Н.Д. Миловский**

УДК 53.082, 538.95 ББК 32.85

© Нижегородский государственный университет им. Н.И. Лобачевского, 2014

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. р-п ПЕРЕХОД

Электрическим переходом называется приконтактный слой между областями твердого тела с различными типом или величиной проводимости, например, между областями полупроводника n- и p-типа, металлом и полупроводником, двумя полупроводниками с различной шириной запрещенной зоны и т.д. Переход между областями полупроводника p- и n-типа подробно рассмотрен в соответствующем методическом пособии [1]. Здесь мы лишь коротко изложим основные понятия и формулы, которые понадобятся нам в дальнейшем.

В равновесном состоянии между областями с различными типами проводимости существует потенциальный барьер и соответствующая ему контактная разность потенциалов. При этом ток диффузии через барьер уравновешивается дрейфовым током неосновных носителей во встроенном электрическом поле (рисунок 1.1).

При подаче положительного внешнего напряжения ("плюс" к p- и "минус" к n- области) высота барьера уменьшается, и в результате инжекции носителей возникает ток, величина которого нарастает с увеличением приложенного напряжения.

Рис. 1.1. Зонная диаграмма p-n перехода в равновесном состоянии. Стрелками показаны основные процессы переноса носителей заряда за счет диффузии и дрейфа

При обратной полярности внешнего напряжения высота потенциального барьера увеличивается; в этом случае ток, определяемый неосновными носителями, достаточно мал по величине. При значительном увеличении обратного напряжения возникает пробой полупроводника (рисунок 1.2).

Ширина области пространственного заряда (OП3) p-n перехода задается выражением:

$$d = \sqrt{\frac{2\varepsilon\varepsilon_0(U_k - U)}{e} \left[\frac{1}{N_d} + \frac{1}{N_a} \right]}, \qquad (1.1.)$$

где ε - диэлектрическая проницаемость, e — модуль заряда электрона, N_d , N_a — концентрации доноров и акцепторов, соответственно, U_κ — контактная разность потенциалов, U — внешнее напряжение.

Если, например, $N_d << N_a$ (резко несимметричный p-n переход), то слагаемым $\frac{1}{N_a}$

можно пренебречь. В такой ситуации практически вся ОПЗ сосредоточена в области полупроводника n-типа.

Выражение для барьерной ёмкости контакта имеет вид:

$$C = \frac{\varepsilon \varepsilon_0 S}{d} = S \sqrt{\frac{e\varepsilon \varepsilon_0 N_a N_d}{2(N_a + N_d) \cdot (U_k - U)}} \,.$$

Вольт-амперная характеристика p-n перехода в приближении малого уровня инжекции описывается следующим выражением:

$$J = J_S \left(\exp \left[\frac{e}{kT} (U - JR_{\tilde{O}}) \right] - 1 \right),$$

$$J_S = S \cdot (eD_p p_n / L_p + eD_n n_p / L_n) .$$

Здесь R_{δ} — сопротивление базы (области с меньшей степенью легирования), D_p , D_n , L_p , L_n — коэффициенты диффузии и диффузионные длины дырок и электронов, соответственно ($d << L_p$, L_n).

1.2. КОНТАКТ ШОТТКИ

Другим часто используемым типом электрических переходов является контакт между металлом и полупроводником. Выпрямляющим называется контакт с нелинейной ВАХ, аналогичной изображенной на рисунке 1.2. Для получения выпрямляющего контакта между металлом и полупроводником п-типа работа выхода электронов из полупроводника должна быть меньше, чем из металла. В этом случае часть электронов переходит из полупроводника в металл, а в полупроводнике появляется обедненный слой, содержащий положительный заряд ионов доноров. Как и для р-п перехода, равновесное состояние характеризуется определенными значениями высоты потенциального барьера и толщины обедненного слоя, который целиком расположен в полупроводнике изза предельно высокой концентрации свободных электронов в металле (рис. 1.3).

Рис. 1.3. Зонная диаграмма контакта металла и п — полупроводника в равновесном состоянии. Обозначения: ϕ_b — контактная разность потенциалов

При прямом смещении ("плюс" к металлу) энергетический барьер для электронов полупроводника снижается, что приводит к увеличению тока. При обратном напряжении ток определяется электронами, переходящими из металла в полупроводник. Для них барьер высок и почти не зависит от прикладываемого напряжения, поэтому ток обратно смещенного диода Шоттки незначителен по величине.

Аналитическое выражение для ВАХ имеет вид:

$$j = j_S \left[\exp \left\{ \frac{e(U - JR_{\tilde{o}})}{kT} \right\} - 1 \right],$$

$$j_S = A * T^2 \exp \left\{ -\frac{e\varphi_b}{kT} \right\}.$$

Здесь $A^* = 4\pi m^* e k^2/h^3$, $R_{\tilde{0}}$ — сопротивление базы. Ёмкость барьера Шоттки определяется аналогично ёмкости p-n перехода.

контакта металл-полупроводник Особым типом является омический приборах твердотельной (невыпрямляющий) контакт. В электроники используется для подключения металлических электродов к полупроводниковым слоям с минимальным паразитным сопротивлением на границе металлполупроводник. Для такого контакта характерна линейная ВАХ. При больших концентрациях примесей в полупроводнике, а также при соответствующем подборе материалов, высота барьера омического контакта может быть настолько низкой, а толщина барьера настолько малой, что наблюдается значительный туннельный ток через границу раздела металл-полупроводник. Последнее как раз и обуславливает низкое сопротивление контакта.

Так как основной целью этого методического пособия является ознакомление целевой аудитории с измерениями BAX на конкретном стенде, то более подробную информацию о структуре, свойствах и особенностях приборов можно получить в источнике [2].

2. ОСНОВЫ ЦИФРОВОЙ ОБРАБОТКИ СИГНАЛОВ.

Аналого-цифровое преобразование — это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь — устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина — напряжение,

ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п.

Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, в частности, такие, как погрешности измерения.

2.1. Основные характеристики АЦП

АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность — в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS. Одновременно обе величины не достижимы, так как чем выше разрядность АЦП, тем дольше происходит оцифровка аналогового сигнала. Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.

2.2. Типы АЦП

Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:

- АЦП параллельного преобразования (прямого преобразования, flash ADC)
- АЦП последовательного приближения (SAR ADC)
- дельта-сигма АЦП (АЦП с балансировкой заряда)

Существуют также и другие типы АЦП, в том числе конвейерные и комбинированные типы, состоящие из нескольких АЦП с различной архитектурой. Однако приведенные выше архитектуры АЦП являются наиболее показательными в силу того, что каждая архитектура занимает определенную нишу в общем диапазоне скорость-разрядность.

Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS.

Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.

Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.

Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.

Применительно к стенду для измерения вольт-амперных характеристик - осциллограф, входящий в состав комплекса, оснащен 8-разрядным АЦП и запись выходного файла происходит в виде кодовой последовательности чисел от 0 до 256, где 127, при отсутствии смещения на канале соответствует 0 В.

Стоит также отметить, что прибор может вносить погрешность, связанную с ошибкой квантования, которая составит ~ 0.8 %.

2. 3. Усреднение.

Шум, наводимый на измерительный усилитель, будем считать аддитивным белым гауссовским шумом с нулевым средним. Формула гауссовского распределения:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

где параметр μ — математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ — среднеквадратическое отклонение (σ^2 — дисперсия) распределения.

Среднее дискретного набора, состоящего из і отсчетов случайной величины, вычисляется по формуле:

 $\langle x \rangle = \sum_{i} x_{i} \cdot W_{i}$

где Wi – вероятность обнаружения значения xi случайной величины.

Дисперсией случайной величины называется математическое ожидание квадрата ее отклонения от математического ожидания:

$$D(x) = M(x - M(x))^2.$$

Для того, чтобы производить усреднение необходимо, чтобы усредняемые отсчеты были не коррелированы. Иначе будет необходимо учитывать корреляцию между каждой парой усредняемых точек, что повлечет за собой громоздкость и неудобность в усреднении.

Так как среднее считаем нулевым, то при статистическом усреднении этот тип ошибки стремится к 0. Следовательно, для большей точности измерений необходимо использовать усреднение, как минимум, по 50 точкам. Применительно к данному стенду и образцам - с точки зрения практической наглядности дает хороший результат. В случае прецизионных измерений необходимо усреднение как минимум по 100 точкам.

3. ПРАКТИЧЕСКАЯ ЧАСТЬ.

3.1. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ.

Состав стенда:

- Осциллограф АС-3117
- Генератор АНР-3122
- Усилитель
- Источник постоянного напряжения
- Программное обеспечение приборов

Данный стенд позволяет снимать данные с осциллографа в виде файла, тем самым, позволяя проводить численную обработку измерений быстрее, нежели при работе с аналоговыми приборами. Также устраняется ошибка, связанная с работой оператора при снятии точек. Установка позволяет добиться максимального разрешения в 10 нс (что соответствует развертке 100 нс/дел). Напряжение выходного сигнала генератора может достигать 5 В. Существует и возможность усреднения результатов по 50 отсчетам, что позволяет частично избавиться от наводок на схему, распределенных Гауссу имеющих нулевое среднее. Наиболее подробную ПО И информацию о генераторе и осциллографе можно получить в источниках [3-4]. Фотография стенда приведена на рис 3.1, а схема установки - на Рис 3.2.

Рис 3.1 Стенд для измерения статических и импульсных вольт-амперных характеристик.

Рис 3.2 Схематичное изображение стенда для измерения статических и импульсных вольт-амперных характеристик.

3.2. УСИЛИТЕЛЬ ДЛЯ СТЕНДА ПО ИЗМЕРЕНИЮ СТАТИЧЕСКИХ И ИМПУЛЬСНЫХ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК

В состав стенда входит оригинальный двухкаскадный эмиттерный усилитель, который увеличивает ток нагрузки образца. Благодаря данному усилителю, существует возможность измерения на данном стенде диодов Ганна, равно как и обычных диодов. Схема усилителя представлена на Рис.4.2.

Рис.3.2 Схема усилителя для измерения статических и импульсных вотамперных характеристик

В ходе анализа параметров усилителя были проведены измерения длительности фронтов импульсов, коэффициентов усиления по току и полосы усиления усилителя.

Таблица 1. Измерение параметров усилителя.

Сопротивление нагрузки, Ом	Передний фронт импульса, нс	Задний фронт импульса, нс
43	40	250
750	35	150

Коэффициент усиления по току составляет 3..40, в зависимости от сопротивления, на которое нагружается усилитель. Полоса усиления составляет от 70 Гц до 7 МГц.

Так как стенд является дорогостоящим, необходимо перед началом измерений пройти вводный инструктаж у преподавателя по особенностям программного обеспечения и пользования зондовым устройством.

Задание 1.

Измерение вольт-амперной характеристики диода с измерительным сигналом типа «пила»

Под руководством преподавателя:

- 1. Выбрать канал подачи сигнала и открыть редактор сигнала, соответствующий выбранному каналу.
- 2. Выставить параметры:
- -частота 300 кГц;
- размах 5 В;
- смещение 0 В;
- -фаза 0;
- 3. В меню редактора сигнала (рис 4.3) в выпадающем меню форма выбрать форму сигнала «пила» и нажать зеленую галочку.

Рис 3.4 Панель «задатчик формы сигнала» генератора.

- 4. В главной панели прибора последовательно нажать кнопки «загрузить» и «запустить».
- 5. В главной панели осциллографа выбрать развертки для каналов А и В (в соответствии с рекомендациями руководителя):
- 6. В панели цифровой фильтрации выставить галочку в пункте «накопительный фильтр», выбрать порядок равный 50.
- 7. Сохранить полученные осциллограммы в текстовом формате. Для этого необходимо в главном меню осциллографа нажать «Файл->Запись данных в файл» и в появившемся окне сохранить результаты.

Обратите внимание, что в зависимости от выбранных в ходе измерений каналов будет зависеть формат содержимого выходного файла, а также его обработка.

Примечание- после выполнения задания 1 необходимо убрать галочку в пункте «накопительный фильтр».

Задание 2.

Обработка полученных данных в редакторе таблиц Microsoft Excel 2010 Задание выполняется самостоятельно.

- 1. Полученный в первом задании файл подгружается на пустой лист MS Excel. Для этого переходим во вкладку «Данные», выбираем пункт «Из текста». В контекстном меню после выбора файла выбираем «с разделителем», тип разделителя- запятая. После проведения данных операций мы получаем осциллограмму, представленную виде оцифрованного установкой сигнала.
- 2. Установить соответствие между разверткой осциллографа и напряжением.
- 3. Для того, чтобы получить ток из данных с канала В необходимо, поделить полученный результат на 10 (описание см. раздел «специфика расчета ВАХ диодов»). Ток пересчитывается в новом столбце, так как данные исходной таблицы необходимы для расчета реальных значений напряжения.
- 4. Вычисляем реальное напряжение на диоде для этого необходимо вычесть пересчитанные в п2 значения напряжения (значения по каналу В вычитаются из значений по каналу А).
- 5. Строим вольт-амперную характеристику.

Задание 3. Измерение вольт-амперной характеристики с использованием сигнала типа «ступеньки»

Выполняется самостоятельно.

- 1. Выбрать канал подачи сигнала и открыть редактор сигнала, соответствующий выбранному каналу.
- 2. Выставить параметры:
- -частота 300 кГц;
- размах 5 В;
- смещение 0 В;
- -фаза 0;
- 3. Загрузить измерительный сигнал из файла. Для этого необходимо нажать на иконку «Открыть файл данных» и выбрать нужный файл.
- 4. Выполнить п 4-7 задания 1. И выполнить обработку полученных данных в соответствии с заданием 1.2.

Вопросы и дополнительные задания:

- 1. Почему необходимо производить деление на 10, чтобы получить ток?
- 2. Чем объясняется разброс параметров на полученной характеристике?
- 3. Зачем использовать накопительный фильтр при снятии осциллограмм?
- 4. Определить погрешность шума квантования для произвольного диапазона напряжений.

- 5. Определить примерную частоту ЦАП из текстового файла осциллограммы.
- 6. Как установить соответствие между разверткой осциллографа и напряжением?
- 7. Чем объясняется выбор эмиттерного повторителя в качестве схемы усиления сигнала?
- 8. Какие факторы могут повлиять на точность снятия вольт-амперной характеристики?
- 9. Зачем на схеме усилителя смонтированы выходы на Л2-56?
- 10. Объяснить принцип работы усилителя.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. А. Битюрин, С. В. Оболенский, А. С. Мельников, А. П. Чириманов, Н. В. Демарина, Е. В. Киселева, А. П. Шитвов. Измерение статических характеристик полупроводникового диода. ННГУ, 2004.
- 2. Зи С.М. Физика полупроводниковых приборов. М.: Сов. Радио, 1984.
- 3. Осциллограф цифровой запоминающий четырёхканальный АСК-3117. Руководство по эксплуатации.
- 4. Генераторы функциональные АНР-3121 АНР-3122. Руководство по эксплуатации.

Александр Александрович Потехин

Андрей Юрьевич Чурин

Сергей Владимирович Оболенский

ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВОГО ДИОДА

Практикум

Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им. Н.И. Лобачевского».

603950, Нижний Новгород, пр. Гагарина, 23.

Подписано в печать . Формат 60×84 1/16. Бумага офсетная. Печать офсетная. Гарнитура Таймс. Усл. печ. л. . Уч.-изд. л. Заказ № . Тираж 100 экз.

Отпечатано в типографии Нижегородского госуниверситета

им. Н.И. Лобачевского

603600, г. Нижний Новгород, ул. Большая Покровская, 37

Лицензия ПД № 18-0099 от 14.05.01