▼ Author : Braham Parkash

Data Science & Business Analytics Internship

GRIP - The Spark Foundation

Task 2: From the given 'Iris' dataset, predict the optimum number of clusters and represent it visually.

Machine learning can be of four types- Supervised, Unsupervised, Semi-supervised and Reinforcement learning. Unlike Supervised learning, Unsupervised learning has features measured for n observations but has no response, i.e., we have unlabeled training data. In this situation we cannot predict a response (as there is no response variable) and therefore we are left with the task of finding interesting patterns in the data. Some of the important unsupervised learning algorithms are - Clustering, Principal Component Analysis(PCA) and Association Rule learning. In this kernel we will explore Clustering and PCA

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')

data=pd.read_csv('IRIS.csv')
```

species	petal_width	petal_length	sepal_width	sepal_length	
Iris-setosa	0.2	1.4	3.5	5.1	0
Iris-setosa	0.2	1.4	3.0	4.9	1
Iris-setosa	0.2	1.3	3.2	4.7	2
Iris-setosa	0.2	1.5	3.1	4.6	3
Iris-setosa	0.2	1.4	3.6	5.0	4

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
Column Non-Null Count Dtype
--- 0 sepal_length 150 non-null float64
1 sepal_width 150 non-null float64
2 petal_length 150 non-null float64

3 petal_width 150 non-null float64

150 non-null

object

species

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

data.describe()

count	150.000000 5.843333	150.000000	150.000000	150.000000
mean	5.843333			
	0.0.000	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
data.
```

3

```
data.drop_duplicates(inplace=True)
```

```
data.duplicated().sum()
```

0

```
print('Data has {} number of rows and {} columns'.format(data.shape[0],data.shape[1]))
```

Data has 147 number of rows and 5 columns

```
print('The columns set in our dataset :',data.columns)
```

```
The columns set in our dataset : Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_v
       'species'],
      dtype='object')
```

#Frequency distribution of species iris_tab=pd.crosstab(index=data['species'],columns='count') iris_tab

col_0	count
species	
Iris-setosa	48
Iris-versicolor	50
Iris-virginica	49

→ Step 3: Data Visualization

```
#numeric v/s numeric v/s categorical
plt.figure(figsize=(12,5))
sns.scatterplot(x='sepal_length',y='sepal_width',data=data,hue='species')
plt.title('sepal_length vs sepal_width plot for all categories')
plt.grid()
plt.show()
```


Observations:

 Here the plot indicates that Iris-Setosa forms a cluster that can be seperated from other categories based on sepal_length and sepal_width. While other 2 are mixed and cannot be seperated directly

```
#numeric v/s numeric v/s categorical
plt.figure(figsize=(12,5))
sns.scatterplot(x='petal_length',y='petal_width',data=data,hue='species')
plt.title('petal_length vs petal_width plot for all categories')
plt.grid()
plt.show()
```

petal_length vs petal_width plot for all categories

2.5 species | Iris-setosa | Iris-

Observations:

- Here also the plot indicates that Iris-Setosa forms a seperate cluster that can be extracted from other categories based on petal_length and petal_width. While other 2 can also be seperated .
- We can say that if the petal_length<2 and petal_width <0.95 the class is Setosa
- And if the petal_length is between (2.9 and 5) and petal_width is between (1 and 1.75) the class is Versicolor
- And if the petal_length is between (4.75 and 7) and petal_width is between (1.6 and 2.5) the class is
 Virginica

sns.set_style("whitegrid")
sns.pairplot(data,hue='species',size=3)

<seaborn.axisgrid.PairGrid at 0x7f077bfe4b70>

15

10

5

0.0

0.5

1.0

1.5

2.0

2.5

3.5

4.0

4.5

data.hist(edgecolor='black',linewidth=1.1,figsize=(12,8)) plt.show()

0 2

3

4

5

15

10

5

data.corr()

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.109321	0.871305	0.817058
sepal_width	-0.109321	1.000000	-0.421057	-0.356376
petal_length	0.871305	-0.421057	1.000000	0.961883
petal_width	0.817058	-0.356376	0.961883	1.000000

6

sns.heatmap(data.corr(),annot=True,fmt='.2g',cmap='viridis')

<matplotlib.axes._subplots.AxesSubplot at 0x7f07775d8898>

- petal_length is higly correlated with sepal_length and petal_width and vice-versa.
- sepal_width is not correlated with any feature it can be useful in seperating features

```
plt.figure(figsize=(15,10))
plt.subplot(2,2,1)
sns.violinplot(x='species',y='sepal_length',data=data)
plt.subplot(2,2,2)
sns.violinplot(x='species',y='sepal_width',data=data)
plt.subplot(2,2,3)
sns.violinplot(x='species',y='petal_length',data=data)
plt.subplot(2,2,4)
sns.violinplot(x='species',y='petal_width',data=data)
plt.show()
```


• The violinplot shows density of the length and width in the species. The thinner part denotes that

K-Means Clustering

• K-Mean is a centroid-based algorithm, or a distance-based algorithm, where we calculate the distances to assign a point to a cluster. In K-Means, each cluster is associated with a centroid.

How to Implementing K-Means Clustering?

- Choose the number of clusters k
- · Select k random points from the data as centroids
- Assign all the points to the closest cluster centroid
- Recompute the centroids of newly formed clusters
- Repeat steps 3 and 4

[] L, 2 cells hidden

Using the elbow method to determine the optimal number of clusters for k-means clustering

```
plt.plot(range(1,15),loss)
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('Loss')
plt.show()
```


The bend in the curve is at 3.

```
kmeans=KMeans(n_clusters=3,random_state=95,n_jobs=-1)
kmeans.fit(x)
y_kmeans = kmeans.fit_predict(x)
```

```
1, 1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2,
          2, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 2, 2,
          2, 0, 2, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0], dtype=int32)
kmeans.cluster_centers_
    array([[5.9016129 , 2.7483871 , 4.39354839, 1.43387097],
                   , 3.418 , 1.464 , 0.244
                   , 3.07368421, 5.74210526, 2.07105263]])
          [6.85
#Visualising the clusters
plt.figure(figsize=(15,10))
plt.scatter(x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 100, c = 'purple', label = 'Iris-setosa')
plt.scatter(x[y_kmeans==1,0],x[y_kmeans==1,1],s=100,c='orange',label='Iris-versicolour')
plt.scatter(x[y kmeans==2,0],x[y kmeans==2,1],s=100,c='green',label='Iris-virginica')
#Plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=100,c='red',label='Centroids
```

plt.legend()
plt.show()

→ Prediction

	sepal_length	sepal_width	petal_length	petal_width	species	predicted
0	5.1	3.5	1.4	0.2	Iris-setosa	1
1	4.9	3.0	1.4	0.2	Iris-setosa	1
2	4.7	3.2	1.3	0.2	Iris-setosa	1
3	4.6	3.1	1.5	0.2	Iris-setosa	1
4	5.0	3.6	1.4	0.2	Iris-setosa	1
145	6.7	3.0	5.2	2.3	Iris-virginica	2
146	6.3	2.5	5.0	1.9	Iris-virginica	0
147	6.5	3.0	5.2	2.0	Iris-virginica	2
148	6.2	3.4	5.4	2.3	Iris-virginica	2
149	5.9	3.0	5.1	1.8	Iris-virginica	0

150 rows × 6 columns
False, Fa

```
centroids=kmeans.cluster_centers_
centroids
```

```
array([[5.9016129 , 2.7483871 , 4.39354839, 1.43387097], [5.006 , 3.418 , 1.464 , 0.244 ], [6.85 , 3.07368421, 5.74210526, 2.07105263]])
```

```
df=data.copy()
df["species"]=df["species"].map({'Iris-versicolor':0,'Iris-setosa':1,'Iris-virginica':2}).astype(int
df['predicted']=y_kmeans
df
```

	sepal_length	sepal_width	petal_length	petal_width	species	predicted
0	5.1	3.5	1.4	0.2	1	1
1	4.9	3.0	1.4	0.2	1	1
2	4.7	3.2	1.3	0.2	1	1
3	4.6	3.1	1.5	0.2	1	1
4	5.0	3.6	1.4	0.2	1	1

from sklearn.metrics import confusion_matrix
confusion_matrix(df['species'],y_kmeans)

import scikitplot as skplt

```
true_labels = ["Iris-versicolor", "Iris-setosa", "Iris-virginica"]
pred_labels = ["Iris-versicolor", "Iris-setosa", "Iris-virginica"]
```

2 0

```
y_true=df['species']
```

```
data = confusion_matrix(y_true,y_kmeans)
df_cm = pd.DataFrame(data, columns=np.unique(y_true), index = np.unique(y_true))
df_cm.index.name = 'Actual'
df_cm.columns.name = 'Predicted'
plt.figure(figsize = (14,10))
sns.set(font_scale=1.4)
```

sns.heatmap(df_cm, cmap="Blues",xticklabels=true_labels,yticklabels=true_labels, annot=True,annot_kw

E 1

10

From the confusion matrix we can see that out of all 50 data of class Iris-versicolor 48 are correctly predicted whereas 2 are wrongly predicted as Iris-virginica. For 50 data of Iris-setosa all are correctly predicted. And for 50 data of Iris-virginica 36 are correctly predicted whereas 14 are wrongly predicted as Iris-versicolor.

data["predicted"]=data["predicted"].map({0:'Iris-versicolor',1:'Iris-setosa',2:'Iris-virginica'})
data.head()

	sepal_length	sepal_width	petal_length	petal_width	species	predicted
0	5.1	3.5	1.4	0.2	Iris-setosa	NaN
1	4.9	3.0	1.4	0.2	Iris-setosa	NaN
2	4.7	3.2	1.3	0.2	Iris-setosa	NaN
3	4.6	3.1	1.5	0.2	Iris-setosa	NaN
4	5.0	3.6	1.4	0.2	Iris-setosa	NaN
			Pred	aictea		

data.tail()

predicted	species	petal_width	petal_length	sepal_width	sepal_length	
Iris-virginica	Iris-virginica	2.3	5.2	3.0	6.7	145
Iris-versicolor	Iris-virginica	1.9	5.0	2.5	6.3	146
Iris-virginica	Iris-virginica	2.0	5.2	3.0	6.5	147
Iris-virginica	Iris-virginica	2.3	5.4	3.4	6.2	148
Iris-versicolor	Iris-virginica	1.8	5.1	3.0	5.9	149

Double-click (or enter) to edit

```
%%time
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
scores = []
for i in range(2,8):
    print(f'Starting Cluster #{i}')
    aggl_cluster=AgglomerativeClustering(n_clusters=i)
    aggl_cluster.fit(x)
    scores.append(silhouette_score(x,aggl_cluster.labels_,random_state=25))
```

```
Starting Cluster #2
Starting Cluster #3
Starting Cluster #4
Starting Cluster #5
Starting Cluster #6
Starting Cluster #7
CPU times: user 40.6 ms, sys: 27.1 ms, total: 67.7 ms
Wall time: 48.2 ms
```

plot k vs Silhoutte Score

```
plt.plot(range(2,8), scores)
plt.xlabel('Clusters')
plt.ylabel('Silhoutte Score')
plt.title('Elbow Knee')
plt.legend('Knee')
plt.show()
```



```
aggl_cluster = AgglomerativeClustering(n_clusters=3)
aggl_cluster.fit(x)
```

AgglomerativeClustering(affinity='euclidean', compute_full_tree='auto', connectivity=None, distance_threshold=None, linkage='ward', memory=None, n_clusters=3)

aggl_cluster.labels_

```
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2,
   2, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 2, 2,
   2, 0, 0, 2, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0])
```

```
# Collect data points from each cluster
clusters_set = {i: np.where(aggl_cluster.labels_ == i)[0] for i in range(aggl_cluster.n_clusters)}
```

```
{0: array([ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 106, 113, 114, 119, 121, 123, 126, 127, 133, 134, 138, 142, 146, 149]),
1: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]),
2: array([ 77, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 115, 116, 117, 118, 120, 122, 124, 125, 128, 129, 130, 131, 132, 135, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148])}
```

agg_pred=aggl_cluster.fit_predict(x)

df1=data.copy()
df1["species"]=df1["species"].map({'Iris-versicolor':0,'Iris-setosa':1,'Iris-virginica':2}).astype(i
df1['predicted']=agg_pred
df1

	sepal_length	sepal_width	petal_length	petal_width	species	predicted
0	5.1	3.5	1.4	0.2	1	1
1	4.9	3.0	1.4	0.2	1	1
2	4.7	3.2	1.3	0.2	1	1
3	4.6	3.1	1.5	0.2	1	1
4	5.0	3.6	1.4	0.2	1	1
145	6.7	3.0	5.2	2.3	2	2
146	6.3	2.5	5.0	1.9	2	0
147	6.5	3.0	5.2	2.0	2	2
148	6.2	3.4	5.4	2.3	2	2
149	5.9	3.0	5.1	1.8	2	0

150 rows × 6 columns

```
import scikitplot as skplt
true_labels = ["Iris-versicolor", "Iris-setosa", "Iris-virginica"]
pred_labels = ["Iris-versicolor", "Iris-setosa", "Iris-virginica"]

y_true=df1['species']

data = confusion_matrix(y_true,agg_pred)

df_cm = pd.DataFrame(data, columns=np.unique(y_true), index = np.unique(y_true))

df_cm.index.name = 'Actual'

df_cm.columns.name = 'Predicted'
plt.figure(figsize = (14,10))
sns.set(font_scale=1.4)
```

sns.heatmap(df_cm, cmap="Blues",xticklabels=true_labels,yticklabels=true_labels, annot=True,annot_kw

<matplotlib.axes._subplots.AxesSubplot at 0x7f076f501668>

From the confusion matrix we can see that out of all 50 data of class Iris-versicolor 49 are correctly predicted whereas 2 are wrongly predicted as Iris-virginica. For 50 data of Iris-setosa all are wcorrectly predicted. And for 50 data of Iris-virginica 35 are correctly predicted whereas 15 are wrongly predicted as Iris-versicolor.

Could not connect to the reCAPTCHA service.	Please check your internet co	onnection and reload to get a re(CAPTCHA challenge.