Correction

- 1. Soit $\sum a_n z^n$ une série entière. Le rayon de convergence R de la série entière $\sum a_n z^n$ est l'unique élément de $\mathbb{R}^+ \cup \{+\infty\}$ défini par : $R = \sup\{r \ge 0 / (a_n r^n) \text{ est bornée}\}.$
- 2. (a) Notons R le rayon de convergence de $\sum \frac{(n!)^2}{(2n)!} z^{2n+1}$ et soit $z \in \mathbb{C}$.

Posons:
$$\forall n \in \mathbb{N}, u_n = \left| \frac{(n!)^2}{(2n)!} z^{2n+1} \right|.$$

Pour
$$z = 0$$
, $\sum u_n$ converge.

Pour
$$z \neq 0$$
, $\forall n \in \mathbb{N}$, $|u_n| > 0$ et $\forall n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \frac{n+1}{4n+2}|z|^2$. Donc

$$\lim_{n\to +\infty} \left|\frac{u_{n+1}}{u_n}\right| = \frac{|z|^2}{4}.$$
 D'après la règle de d'Alembert,

Pour |z| < 2, la série numérique $\sum u_n$ converge absolument.

Pour |z| > 2, la série numérique diverge grossièrement.

On en déduit que R=2

(b) Notons R le rayon de convergence de $\sum n^{(-1)^n} z^n$ et posons : $\forall n \in \mathbb{N}$, $a_n = n^{(-1)^n}.$

On a, $\forall n \in \mathbb{N}, |a_n| \leq |n|$ et le rayon de convergence de la série entière

 $\sum nz^n$ vaut 1 (revenir par exemple à la définition). Donc $R \geqslant 1$. (*)

De même, $\forall n \in \mathbb{N}^*$, $\left|\frac{1}{n}\right| \leq |a_n|$ et le rayon de convergence de la série

$$\sum_{n\geqslant 1}\frac{1}{n}z^n \text{ vaut 1 (revenir par exemple à la définition). Donc } R\leqslant 1. \quad (**)$$

D'après (*) et (**),
$$R = 1$$

(c) Notons R le rayon de convergence de $\sum \cos nz^n$ et posons : $\forall n \in \mathbb{N}$,

On a, $\forall n \in \mathbb{N}, |a_n| \leq |1|$ et le rayon de convergence de la série entière $\sum z^n$ vaut 1. Donc $R \geqslant 1$. (*)

Pour z=1, la série $\sum \cos nz^n=\sum \cos n$ diverge grossièrement car

Donc
$$R \leq 1$$
. (**)

D'après (*) et (**),
$$R = 1$$