

P1	P2	P3	P4	P5	NOTA

DEPARTAMENTO DE CIENCIAS BÁSICAS – ÁREA DE MATEMATICAS ING - PARCIAL CONSENSUADO XXX

Nombre: Luis Felipe Narváez Gómez Código: 2312660 Fech 13 11 2021

а

Para tener en cuenta: Al resolver los ejercicios en esta prueba, incluya todo el procedimiento en orden, exprese claramente su estrategia de solución, explique, argumente y concluya. Resalte y numere los resultados parciales importantes. Escriba preferiblemente en tinta y sobre una hoja de examen. Tiempo estimado para la prueba 120 minutos. No está permitido el uso de teléfonos móviles, tabletas y otros dispositivos electrónicos durante la prueba, excepto en el caso que se requiera y el docente así lo indique. El docente puede solicitar la sustentación parcial o total de la prueba dentro de los próximos 5 días hábiles. Además, tener en cuenta los Artículos 97 a 104 de la Reforma del Reglamento General Disciplinario de la USTA.

COMPETENCIA:

Interpreta cuando se debe aplicar un modelo de regresión o de interpolación, para solucionar problemas propios de ingeniería.

RESULTADO DE APRENDIZAJE:

TEMA: Interpolación lineal, cuadrática y polinomial por el método de Newton. Interpolación polinomios de Lagrange.

- 1. Comprende la diferencia entre regresión e interpolación en ejercicios y problemas contextualizados.
- 2. Calcula el modelo matemático que mejor se ajusta a un conjunto de datos por medio de una regresión lineal, polinomial, logarítmica o exponencial, mediante el uso de mínimos cuadrados.
- 3. Relaciona las variables independientes que interviene en problemas de regresión lineal múltiple.

Resuelva los siguientes ejercicios por el método indicado:

1. Dados los siguientes datos

Х	-4	-3	0
f(x)	24	19	-8

- a) Construya un polinomio de segundo grado $f_2(x)$ por el método de Newton y evalúe el valor de la función en el punto x = -1. (valor 2 puntos)
- b) Halle el error relativo porcentual verdadero, sabiendo que el valor de la función evaluada en el punto -1 es igual a 3. (valor 0.5 puntos)

Interpolacion de Newton de segundo grado					
rado del polinomio					
2					
X0	x1	x2	Х		
-4	-3	0	-1		
F(x0)	F(x1)	F(x2)	F(x)		
24	19	-8	3		
b0	b1	b2			
24	-5	-1			
F(x) calculada	Ea				
3	0				

El Polinomio y las Ecuaciones utilizadas son las siguientes:

$$b_{0} = f(x_{0})$$

$$b_{1} = f(x_{1}) - f(x_{0}) = 1.386294 - 0$$

$$x_{1} - x_{0} = 4 - 1$$

$$f(x_{2}) - f(x_{1}) - f(x_{0})$$

$$x_{2} - x_{1} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$b_{2} = \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{0}}$$

$$f_{2}(x) = b_{0} + b_{1}(x - x_{0}) + b_{2}(x - x_{0})(x - x_{1})$$

2. Utilice la interpolación de Lagrange de grado 2 para estimar el valor de la función en el punto x = 22, teniendo en cuenta los siguientes datos: (valor 2.5 puntos)

Х	5	10	20	30	40
f(x)	1.519	1.307	1.002	0.796	0.653

P1	P2	P3	P4	P5	NOTA

DEPARTAMENTO DE CIENCIAS BÁSICAS – ÁREA DE MATEMATICAS ING - PARCIAL CONSENSUADO XXX

x0	x1	x2	х3	x4	
	5	10	20	30	40
F(x0)	F(x1)	F(x2)	F(x3)	F(x4)	
	1,519	1,307	1,002	0,796	0,653

Debido a que se requiere una interpolacion de Lagrange de grado 2, solo temoran 3 posiciones alrededor del punto especificado.

grado	2		
posicion 0	posicion 1	posicion 2	
х0	x1	x2	Х
10	20	30	22
F(x0)	F(x1)	F(x2)	
1,307	1,002	0,796	
F[2][x)	-0,10456		
	0,96192		
	0,09552		
	0,95288		

El polinomio utilizado fue:

$$f_{2}(x) = f(x_{0}) \underbrace{\frac{(x-x_{1})}{(x_{0}-x_{1})} \underbrace{(x-x_{2})}_{(x_{0}-x_{2})}}_{(x_{0}-x_{1})} + f(x_{1}) \underbrace{\frac{(x-x_{0})}{(x_{1}-x_{0})}}_{(x_{1}-x_{0})} + f(x_{2}) \underbrace{\frac{(x-x_{0})}{(x_{1}-x_{2})}}_{(x_{2}-x_{0})} + f(x_{2})$$

Para confirmar el resultado pordemos realizar el ejercicio con el Metodo de Newton de grado igual.

grado			
2			
Х0	x1	x2	X
10	20	30	22
F(x0)	F(x1)	F(x2)	
1,307	1,002	0,796	
b0	b1	b2	
1,307	-0,0305	0,000495	
F(x) calculada			
0,95288			

El polinomio y las ecuaciones utilizadas para este método son:

$$b_{0} = f(x_{0})$$

$$b_{1} = f(x_{1}) - f(x_{0}) = 1.386294 - 0$$

$$x_{1} - x_{0}$$

$$f(x_{2}) - f(x_{1}) - f(x_{0})$$

$$x_{2} - x_{1}$$

$$b_{2} = \frac{f(x_{1}) - f(x_{0})}{x_{2} - x_{0}}$$

$$f_{2}(x) = b_{0} + b_{1}(x - x_{0}) + b_{2}(x - x_{0})(x - x_{1})$$

Con lo anterior podemos confirmar que la F(x) calculada es igual en ambos casos

Referencias Bibliográficas

Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill,.

Recursos CRAIUSTA

https://elibro.net/es/lc/usta/titulos/39455