INTEGERS

Mojtaba Aajami

Integers

- Fixed number of bits in memory
 - Short: usually 16 bits
 - Int: 16 or 32 bits
 - Long: 32 bits
- Unsigned integer
 - No sign bit
 - Shows a positive number or 0
- Signed integer
 - Most left bit is for sign
 - Shows a positive, negative or or 0

Unsigned Integer

- 00000001 **→** 1
- 000011111 → 15
- 00010000 **→** 16
- 00100001 → 33
- 111111111 **→** 255

SIGN-AND-MAGNITUDE

• SIGN-AND-MAGNITUDE

1111 ₂	-7 ₁₀ converted to 4-bit Signed Binary Number
<mark>0</mark> 1101 ₂	13 ₁₀ converted to 5-bit Signed Binary Number
111110 ₂	-30 ₁₀ converted to 6-bit Signed Binary Number
1 111011 ₂	-59 ₁₀ converted to 7-bit Signed Binary Number
0 1100100 ₂	100 ₁₀ converted to 8-bit Signed Binary Number

SIGN-AND-MAGNITUDE

for Unsigned Binary Number:

$$0 \text{ to } (2^n - 1) \rightarrow 0 \text{ to } (2^4 - 1) \rightarrow 0 \text{ to } 15$$

$$-(2^{(n-1)}-) to (2^{(n-1)}-1)$$

$$-(2^3-1) to (2^3-1) \to (-7) to 0 to (+7)$$

- ONE'S COMPLEMENT
 - flip every bit

- The positive values remain unchanged
- The negative values are one's complement

