Quantifying Employee Satisfaction

Data Science Immersive Capstone Project

Author: Dave Hogue

Motivation

- Forbes "Best Places To Work" articles
- Personal experience as an employee
- Application of Natural Language Processing

Finding Source Data

Jglassdoor®

Employer Selection

Bird's Eye View:

- Over 560,000 total employers
- Most have 0 or 1 review

Employer Selection

Controlled for Volatility:

- 6,205 Employers
- Gaussian Distribution

Employer Selection

Selected for Analysis:

- Above 95th percentile
- Below 5th percentile
- 847 total employers

Data Collection

- Time consuming, tedious
- 25,000+ pages of reviews
- Manual separation of workload
- Multithreading for performance gains

Text Preprocessing Considerations

- Stop words you, your, me, I, the, a, an, etc.
- Part of speech tagging using context to filter text
- Lemmatization am, are, is, was → be

TF-IDF Matrix

Term Frequency - Inverse Document Frequency

- Each row represents one document, each column represents one term
- TF score count of instances in one document
- IDF score penalize for terms in many documents

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

NMF Clustering

Non-Negative Matrix Factorization

- Matrix (W) maps documents to latent topics
 - Each row represents a document
 - Each column represents a topic
- Matrix (H) maps latent topics to terms
 - Each row represents a topic
 - Each column represents a term

NMF Clustering

NMF Clustering

Blurry Clustering

- Allows each document to exist in multiple clusters
- Gives a score to each document for topic attribution
- Allows for discretion on a threshold for topic attribution

Compelling Positive Results

Compelling Positive Results

Compelling Negative Results

Compelling Negative Results

Challenges

Bot Detection

- Request Headers & Selenium
- **Rate Limits**
- **CAPTCHA Challenge Images**

Challenges

Scraping & Volume of Data

- HTTP Errors
- Multithreading in Selenium
- Multiprocessing

Technologies Used

Contact Information

- thedavehogue@gmail.com
- Thedavehogue
- in/thedavehogue
- **y** @thedavehogue

"This is the Dave Hogue you are looking for . . ."