Theorem 8.6 (Rice's Theorem) Any nontrivial property \mathcal{G} of the r.e. languages is undecidable.

$$L_u \leq L_{\mathscr{G}}$$
 L_u is not recursive $\Rightarrow L_{\mathscr{G}}$ is not recursive

We need an algo A s.t.
$$A(M, w) = \langle M' \rangle$$
 s.t.
$$\begin{cases} L(M') \in \mathcal{G} & \text{if } w \in L(M) \\ L(M') \notin \mathcal{G} & \text{if } w \notin L(M) \end{cases}$$

Wlog assume $\phi \notin \mathcal{G}$. Take any r.e. language $L \in \mathcal{G}$. $\exists \text{ TM } M_L \text{ s.t. } L = L(M_L)$.

Yes Start Yes
$$L(M') = L \in \mathcal{G}$$
 if $w \in L(M)$ $L(M') = \phi \notin \mathcal{G}$ if $w \notin L(M)$

Fig. 8.11 M' used in Rice's theorem.

Many-one Turing Reduction

For $L_1, L_2 \subset \Sigma^*$

A (many-one turing) reduction of L_1 to L_2 is an algorithm $A: \Sigma^* \to \Sigma^*$

s.t. $x \in L_1$ if and only if $A(x) \in L_2$

 L_1 reduces to L_2 if there exists a reduction

$$L_1 \leq L_2$$

If $L_1 \leq L_2$ then,

 L_2 is recursive implies L_1 is recursive

If $L_1 \leq L_2$ then, L_2 is r.e. implies L_1 is r.e.

Martin L(M) - ne Comment a TM MI with only X, #X, #X3# -- -- my mit stop X1: may not be distinct. xi EL (M) x, appoint in the dist (quentually) Iff