ЛКШ.2014.Август.А'.День 09 Россия, Берендеевы Поляны, 07.08.14

Задача А. Расстояние между отрезками

 Имя входного файла:
 distance2.in

 Имя выходного файла:
 distance2.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Найдите расстояние между двумя отрезками.

Формат входных данных

В двух строках входного файла даны по четыре целых числа — координаты концов сначала первого, затем второго отрезков. Все числа по модулю не превосходят 10 000.

Формат выходных данных

Одно число — расстояние между отрезками с точностью не менее 10^{-6} .

distance2.in	distance2.out
1 1 2 2	0.70710678118654752000
2 1 3 0	

Задача В. В школу на велосипеде

Имя входного файла: bike.in
Имя выходного файла: bike.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Петя любит ездить в школу на велосипеде. Но ездить на велосипеде по тротуарам запрещено, а ездить по дороге опасно. Поэтому Петя ездит только по специальным велосипедным дорожкам. К счастью, и Петин дом, и Петина школа находятся в непосредственной близости от таких дорожек.

В городе, где живет Петя есть ровно две велосипедных дорожки. Каждая дорожка имеет форму окружности. В точках их пересечения можно переехать с одной дорожки на другую.

Петя знает точку, в которой он заезжает на дорожку и точку, в которой следует съехать, чтобы попасть в школу. Петю заинтересовал вопрос: какое минимальное расстояние ему следует проехать по дорожкам, чтобы попасть из дома в школу.

Формат входных данных

Будем считать, что в городе введена прямоугольная декартова система координат.

Первые две строки входного файла описывают велосипедные дорожки. Каждая из них содержит по три целых числа — координаты центра окружности, которую представляет собой соответствующая дорожка, и ее радиус. Координаты и радиус не превышают 300 по абсолютной величине, радиус — положительное число. Гарантируется, что дорожки не совпадают.

Следующие две строки содержат по два вещественных числа — координаты точки, где Петя заезжает на дорожку и точки, в которой Петя съезжает с дорожки. Гарантируется, что каждая из точек с высокой точностью лежит на одной из дорожек (расстояние от точки до центра одной из окружностей отличается от ее радиуса не более чем на 10^{-8}). Точки могут лежать как на одной дорожке, так и на разных.

Формат выходных данных

Выведите в выходной файл минимальное расстояние, которое следует проехать Пете по велосипедным дорожкам, чтобы попасть из дома в школу. Ответ должен отличаться от правильного не более чем на 10^{-4} .

Если доехать из дома до школы по велосипедным дорожкам невозможно, выведите в выходной файл число -1.

Примеры

bike.in	bike.out
0 0 5	8.4875540166
4 0 3	
3.0 4.0	
1.878679656440357 -2.121320343559643	
0 0 5	6.4350110879
4 0 3	
4.0 3.0	
4.0 -3.0	
0 0 4	-1
10 0 4	
4.0 0.0	
6.0 0.0	

Замечание

Задача С. Выпуклая оболочка

Имя входного файла: convex.in
Имя выходного файла: convex.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Вам дано множество точек на плоскости. Найдите их выпуклую оболочку.

Формат входных данных

Первая строка входного файла содержит целое число n — количество точек ($3 \le n \le 200\,000$). В следующих n строках описываются точки. iая строка состоит из двух целых чисел — координат iой точки. Координаты не превосходят 10^9 по модулю. Гарантируется, что все точки не лежат на одной прямой. Точки могут совпадать.

Формат выходных данных

В первую строчку выходного файла выведите количество вершин в выпуклой оболочке. Во вторую — номера вершин через пробел, которые ее образуют. Выводите вершины в порядке обхода против часовой стрелки. Никакие два ребра выпуклой оболочки не должны лежать на одной прямой.

В третью строчку выведите периметр оболочки, в четвертую - ее площадь.

Периметр должен быть выведен с абсолютной или относительной погрешностью не больше 10^{-9} . Площадь должна быть выведена абсолютно точно.

convex.in	convex.out
5	4
0 0	3 5 1 4
1 1	6.47213595499958000000
2 2	2.0
1 0	
0 1	

Задача D. Теодор Рузвельт

Имя входного файла: theodore.in Имя выходного файла: theodore.out Ограничение по времени: 2 секунды 64 мегабайта

«Теодор Рузвельт» — флагман военно-морского флота Кукуляндии. Заклятые враги кукуляндцев, флатландцы, решили уничтожить его. Они узнали, что «Теодор Рузвельт» представляет собой выпуклый многоугольник из n вершин и узнали его координаты. Затем они выпустили m баллистических ракет и определили координаты точек, где эти ракеты взорвались. По расчётам штаба флатландцев, «Теодор Рузвельт» будет уничтожен, если в него попадёт хотя бы k ракет. Вычислите, удалось ли флатландцам уничтожить корабль.

Формат входных данных

В первой строке через пробел записаны целые числа n, m, k ($3 \le n \le 10^5, 0 \le k \le m \le 10^5$). В последующих n строках записаны координаты вершин многоугольника в порядке обхода против часовой стрелки. В следующих m строках записаны координаты точек. Гарантируется, что все координаты — целые числа, не превосходящие по модулю 10^9 .

Формат выходных данных

Выведите «YES», если в многоугольнике лежит по крайней мере k точек, и «NO» в противном случае.

theodore.in	theodore.out	
5 4 2	YES	
1 -1		
1 2		
0 4		
-1 2		
-1 -1		
-2 -1		
1 -1		
0 1		
2 3		

ЛКШ.2014.Август.А'.День 09 Россия, Берендеевы Поляны, 07.08.14

Задача Е. Место встречи изменить нельзя

Имя входного файла: rendezvous.in Имя выходного файла: rendezvous.out

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны N точек. Найдите 2 из них, такие, что расстояние между ними минимально.

Формат входных данных

Первая строка входного файла содержит целое число N ($2 \le N \le 100\,000$) — количество точек. Каждая из следующих N строк содержит пару целых чисел X и Y, разделённых пробелом, — координаты ($-1\,000\,000\,000 \le X, Y \le 1\,000\,000\,000$). Все точки различны.

Формат выходных данных

Единственная строка выходного файла должна содержать координаты двух выбранных точек.

rendezvous.in	rendezvous.out
4	0 0
0 0	0 1
0 1	
1 1	
1 0	

Задача F. Ожерелье

 Имя входного файла:
 necklace.in

 Имя выходного файла:
 necklace.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Ювелир должен сделать эксклюзивное ожерелье для Королевы. Ожерелье должно состоять из серебряных, золотых и бронзовых бусинок, расположение которых строго специфицировано. Золотые бусинки одинаковые и могут использоваться взаимозаменяемо, аналогично обстоит дело с серебряными и бронзовыми бусинками. Ювелир подготовил бусины для работы и нанизал их на один длинный стержень. Теперь он готов собирать ожерелье снимая бусины одну за одной со стержня и нанизывая на шнурок с любой из сторон, а в завершение процесса соединяя два конца шнурка. Соединение будет незаметно, поэтому оно может быть между любыми двумя бусинами.

К несчастью, бусины на стержне могут не быть в том же порядке, в котором они появятся на ожерелье. Поэтому в процессе сборки ожерелья, ювелир может брать бусины со стержня и откладывать в сторону. Ювелир хочет минимизировать максимальное количество бусин, которые он отложит в сторону в процессе сборки ожерелья.

Формат входных данных

Первая строка ввода содержит одно целое число L ($1 \le L \le 1000$) — количество бусин в ожерелье. Следующая строка содержит строку из L букв (каждая из которых либо G, ли

Формат выходных данных

Вывод должен содержать одну строку — минимально возможное максимальное количество бусин, которые ювелир отложит в сторону в процессе сборки ожерелья.

necklace.in	necklace.out
8	3
GSGSGSGS	
SSSSGGGG	
8	0
SSSGGGBB	
GSGSGSBB	