Exploring Nonnegative Matrix Factorization

Holly Jin
LinkedIn Corp
and
Michael Saunders
Systems Optimization Laboratory, Stanford University

MMDS08

Workshop on Algorithms for Modern Massive Data Sets Stanford University, June 25–28, 2008

MMDS08 1/24

oduction SNMF motivation Sparse NMF BPDN solvers SNMF results Application example

Outline

- Introduction
- SNMF motivation
- Sparse NMF
- Basis Pursuit DeNoising (BPDN)
- **5** SNMF results
- 6 Application examples

MMDS08 2/24

Many applications (signal processing, page rank, imaging) seek sparse solutions to square or rectangular systems $Ax \approx b$ x sparse

MMDS08 3/24

Many applications (signal processing, page rank, imaging) seek sparse solutions to square or rectangular systems $Ax \approx b$ x sparse

Basis Pursuit Denoising (BPDN) seeks sparsity by solving min $\frac{1}{2}\|Ax - b\|^2 + \lambda \|x\|_1$

MMDS08 3/24

Many applications (signal processing, page rank, imaging) seek sparse solutions to square or rectangular systems $Ax \approx b$ x sparse

Basis Pursuit Denoising (BPDN) seeks sparsity by solving $\min \frac{1}{2} ||Ax - b||^2 + \frac{\lambda}{\|x\|_1}$

Sparse Nonnegative Matrix Factorization (SNMF) involves square or rectangular systems

$$A \approx WH$$

 $W, H > 0$ low rank and sparse

3/24

Introduction

Many applications (signal processing, page rank, imaging) seek sparse solutions to square or rectangular systems $Ax \approx b$ x sparse

Basis Pursuit Denoising (BPDN) seeks sparsity by solving min $\frac{1}{2}\|Ax - b\|^2 + \lambda \|x\|_1$

Sparse Nonnegative Matrix Factorization (SNMF) involves square or rectangular systems

$$A \approx WH$$
 $W, H \geq 0$ low rank and sparse

Perhaps BPDN can find very sparse approximate W, H

MMDS08 3/24

Motivation for Sparse NMF Solver

MMDS08 4/24

An example

• Grouping similar items in a grocery store

MMDS08 5/24

An example

- Grouping similar items in a grocery store
- Customer check-out receipts:

	Flour	Balloon	Beer	Sugar	Chip
Customer1	0	3	8	0	1
Customer2	0	2	5	1	0
Customer3	5	0	1	10	0
Customer4	0	20	40	2	1
Customer5	10	0	1	10	1

MMDS08 5/24

Extract features using SVD

$$V = \begin{pmatrix} -0.1852 & -0.0225 & 0.1457 & 0.9394 & -0.2480 \\ -0.1179 & 0.0282 & -0.1676 & 0.2529 & 0.9451 \\ -0.0338 & 0.6126 & -0.7649 & 0.0793 & -0.1794 \\ -0.9744 & -0.0492 & -0.0030 & -0.2098 & -0.0645 \\ -0.0356 & 0.7881 & 0.6046 & -0.0570 & 0.0945 \end{pmatrix}$$

$$S = \begin{pmatrix} 45.9457 & 0 & 0 & 0 & 0 \\ 0 & 17.7720 & 0 & 0 & 0 \\ 0 & 0 & 2.9418 & 0 & 0 \\ 0 & 0 & 0 & 1.1892 & 0 \\ 0 & 0 & 0 & 0 & 0.2783 \end{pmatrix}$$

$$V = \begin{pmatrix} -0.0114 & 0.6158 & 0.7550 & -0.1455 & 0.1719 \\ -0.4414 & -0.0560 & 0.0144 & -0.7337 & -0.5134 \\ -0.8949 & -0.0341 & 0.0164 & 0.3441 & 0.2818 \\ -0.0601 & 0.7842 & -0.6042 & 0.0478 & -0.1191 \\ -0.0260 & 0.0403 & 0.2540 & 0.5656 & -0.7831 \end{pmatrix}$$

MMDS08 6/24

Truncated SVD

• Choose k=2 principal features according to matrix S:

$$Uk = \begin{pmatrix} -0.1852 & 0.0225 \\ -0.1179 & -0.0282 \\ -0.0338 & -0.6126 \\ -0.9744 & 0.0492 \\ -0.0356 & -0.7881 \end{pmatrix}$$

$$Sk = \begin{pmatrix} 45.9457 & 0 \\ 0 & 17.7720 \end{pmatrix}$$

$$Vk = \begin{pmatrix} -0.0114 & -0.6158 \\ -0.4414 & 0.0560 \\ -0.8949 & 0.0341 \\ -0.0601 & -0.7842 \\ -0.0260 & -0.0403 \end{pmatrix}$$

7/24

Truncated SVD

• Choose k=2 principal features according to matrix S:

$$Uk = \begin{pmatrix} -0.1852 & 0.0225 \\ -0.1179 & -0.0282 \\ -0.0338 & -0.6126 \\ -0.9744 & 0.0492 \\ -0.0356 & -0.7881 \end{pmatrix}$$

$$Sk = \begin{pmatrix} 45.9457 & 0 \\ 0 & 17.7720 \end{pmatrix}$$

$$Vk = \begin{pmatrix} -0.0114 & -0.6158 \\ -0.4414 & 0.0560 \\ -0.8949 & 0.0341 \\ -0.0601 & -0.7842 \\ -0.0260 & -0.0403 \end{pmatrix}$$

• Error
$$||A - USV^T|| = 1.5e-14$$

vs $||A - U_k S_k V_k^T|| = 2.9$ (minimized Frobenius norm)

• Row and column clustering and rankings:

$$Rr = \begin{pmatrix} (1,1) & 2 \\ (2,1) & 3 \\ (4,1) & 1 \\ (3,2) & 2 \\ (5,2) & 1 \end{pmatrix} \qquad Rc = \begin{pmatrix} (2,1) & 2 \\ (3,1) & 1 \\ (1,2) & 2 \\ (4,2) & 1 \\ (5,2) & 3 \end{pmatrix}$$

MMDS08 8/24

• Row and column clustering and rankings:

$$Rr = \begin{pmatrix} (1,1) & 2 \\ (2,1) & 3 \\ (4,1) & 1 \\ (3,2) & 2 \\ (5,2) & 1 \end{pmatrix} \qquad Rc = \begin{pmatrix} (2,1) & 2 \\ (3,1) & 1 \\ (1,2) & 2 \\ (4,2) & 1 \\ (5,2) & 3 \end{pmatrix}$$

Order of k preserves the ranking of cluster importance

MMDS08 8/24

• Row and column clustering and rankings:

$$Rr = \begin{pmatrix} (1,1) & 2 \\ (2,1) & 3 \\ (4,1) & 1 \\ (3,2) & 2 \\ (5,2) & 1 \end{pmatrix} \qquad Rc = \begin{pmatrix} (2,1) & 2 \\ (3,1) & 1 \\ (1,2) & 2 \\ (4,2) & 1 \\ (5,2) & 3 \end{pmatrix}$$

Order of k preserves the ranking of cluster importance

Cluster example meanings:

	Flour	Balloon	Beer	Sugar	Chip
Customer 1	0	3	8	0	1
Customer 2	0	2	5	1	0
Customer 3	5	0	1	10	0
Customer 4	0	20	40	2	1
Customer 5	10	0	1	10	1

MMDS08 8/24

• Row and column clustering and rankings:

$$Rr = \begin{pmatrix} (1,1) & 2 \\ (2,1) & 3 \\ (4,1) & 1 \\ (3,2) & 2 \\ (5,2) & 1 \end{pmatrix} \qquad Rc = \begin{pmatrix} (2,1) & 2 \\ (3,1) & 1 \\ (1,2) & 2 \\ (4,2) & 1 \\ (5,2) & 3 \end{pmatrix}$$

Order of k preserves the ranking of cluster importance

Cluster example meanings:

	Flour	Balloon	Beer	Sugar	Chip
Customer 1	0	3	8	0	1
Customer 2	0	2	5	1	0
Customer 3	5	0	1	10	0
Customer 4	0	20	40	2	1
Customer 5	10	0	1	10	1

• Features extraction:

Partying Baking
Customers 1, 2, 4 3, 5
Products Balloon. Beer Flour. Sugar. Chip

• A = WH, $A \approx W_k H_k$

MMDS08 9/24

- A = WH, $A \approx W_k H_k$
- Factorization not unique: (via Chih-Jen Lin's NMF solver)

$$W_k = \begin{pmatrix} 0 & 1.2850 \\ 0.4711 & 0.8065 \\ 8.4380 & 0.0365 \\ 0.0217 & 6.7563 \\ 10.8476 & 0 \end{pmatrix}$$

$$H_k = \begin{pmatrix} 0.7968 & 0 & 0.0928 & 1.0214 & 0.0567 \\ 0 & 2.9321 & 5.9337 & 0.2885 & 0.1667 \end{pmatrix}$$

MMDS08 9/24

- A = WH, $A \approx W_k H_k$
- Factorization not unique: (via Chih-Jen Lin's NMF solver)

$$W_k = \begin{pmatrix} 0 & 1.2850 \\ 0.4711 & 0.8065 \\ 8.4380 & 0.0365 \\ 0.0217 & 6.7563 \\ 10.8476 & 0 \end{pmatrix}$$

$$H_k = \begin{pmatrix} 0.7968 & 0 & 0.0928 & 1.0214 & 0.0567 \\ 0 & 2.9321 & 5.9337 & 0.2885 & 0.1667 \end{pmatrix}$$

Clustering and Ranking:

$$Rr = \begin{pmatrix} (1,2) & 2 \\ (2,2) & 3 \\ (4,2) & 1 \\ (3,1) & 2 \\ (5,1) & 1 \end{pmatrix} \qquad Rc = \begin{pmatrix} (2,2) & 2 \\ (3,2) & 1 \\ (5,2) & 3 \\ (1,1) & 2 \\ (4,1) & 1 \end{pmatrix}$$

MMDS08 9/24

- A = WH, $A \approx W_k H_k$
- Factorization not unique: (via Chih-Jen Lin's NMF solver)

$$W_k = \begin{pmatrix} 0 & 1.2850 \\ 0.4711 & 0.8065 \\ 8.4380 & 0.0365 \\ 0.0217 & 6.7563 \\ 10.8476 & 0 \end{pmatrix}$$

$$H_k = \begin{pmatrix} 0.7968 & 0 & 0.0928 & 1.0214 & 0.0567 \\ 0 & 2.9321 & 5.9337 & 0.2885 & 0.1667 \end{pmatrix}$$

Clustering and Ranking:

$$Rr = \begin{pmatrix} (1,2) & 2 \\ (2,2) & 3 \\ (4,2) & 1 \\ (3,1) & 2 \\ (5,1) & 1 \end{pmatrix} \qquad Rc = \begin{pmatrix} (2,2) & 2 \\ (3,2) & 1 \\ (5,2) & 3 \\ (1,1) & 2 \\ (4,1) & 1 \end{pmatrix}$$

• Order of k does not preserve the ranking of cluster importance

MMDS08

Sparse Nonnegative Factorization

MMDS08 10/24

Sparse NMF

$$A \approx WH$$
, $W, H \ge 0$, low rank and sparse

Kim and Park (2007)

$$\min_{W,H \ge 0} \frac{1}{2} ||A - WH||_F^2 + \eta ||W||_F^2 + \beta \sum ||h_j||_1^2$$

MMDS08 11/24

Sparse NMF

 $A \approx WH$, $W, H \geq 0$, low rank and sparse

Kim and Park (2007)

$$\min_{W,H\geq 0} \frac{1}{2} ||A - WH||_F^2 + \eta ||W||_F^2 + \beta \sum ||h_j||_1^2$$

Alternating nonnegative least squares (NLS) on

$$\left| \min_{W \ge 0} \left\| \begin{pmatrix} H^T \\ \sqrt{\eta}I \end{pmatrix} W^T - \begin{pmatrix} A^T \\ 0 \end{pmatrix} \right\|_F^2, \quad \min_{H \ge 0} \left\| \begin{pmatrix} W \\ \sqrt{\beta}e^T \end{pmatrix} H - \begin{pmatrix} A \\ 0 \end{pmatrix} \right\|_F^2 \right|$$

Sparse H

MMDS08 11/24

Sparse NMF via BPDN

$$\min_{W,H \ge 0} \frac{1}{2} ||A - WH||_F^2 + \beta \sum ||w_i||_1 + \eta \sum ||h_j||_1$$

MMDS08 12/24

$$\min_{W,H \ge 0} \ \frac{1}{2} \|A - WH\|_F^2 + \beta \sum \|w_i\|_1 + \eta \sum \|h_j\|_1$$

Alternating BPDN on

$$\min_{W \ge 0} \frac{1}{2} \|H^T W^T - A^T\|^2 + \eta \sum \|w_i\|_1$$

$$\min_{H \ge 0} \frac{1}{2} \|WH - A\|^2 + \beta \sum \|h_j\|_1$$
Sparse W and H

MMDS08 12/24

ction SNMF motivation Sparse NMF BPDN solvers SNMF results Application example

• Kim and Park (2007):

$$\min_{x>0} \ \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1^2$$

$$x \to 0$$
 only as $\lambda \to \infty$

(Nevertheless, Kim and Park report sparse solutions with moderate λ)

MMDS08 13/24

L1² or L1?

Kim and Park (2007):

$$\min_{x>0} \ \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1^2$$

 $x \to 0$ only as $\lambda \to \infty$

(Nevertheless, Kim and Park report sparse solutions with moderate λ)

• BPDN:

$$\min_{x>0} \ \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

$$x = 0$$
 for $\lambda \ge ||A^T b||_{\infty}$
 x very sparse for $\lambda = 0.9 ||A^T b||_{\infty}$ say

Easy to control the sparsity of x

MMDS08 13/24

SNMF via BPDN implementation

$$\min_{U,D,V \ge 0} \ \frac{1}{2} \|A - UDV^T\|_F^2 + \sum \beta_i \|Du_i\|_1 + \sum \eta_j \|Dv_j\|_1$$

Alternating BPDN on

$$\min_{v_{j} \geq 0} \frac{1}{2} \|Uv_{j} - a_{,j}\|^{2} + \eta_{j} \|v_{j}\|_{1}, \quad \text{normalize } V \to VD$$

$$\min_{u_{i} > 0} \frac{1}{2} \|Vu_{i} - a_{i,}\|^{2} + \beta_{i} \|u_{i}\|_{1}, \quad \text{normalize } U \to UD$$

MMDS08 14/24

SNMF via BPDN implementation

$$\min_{U,D,V \ge 0} \ \tfrac{1}{2} \|A - UDV^T\|_F^2 + \sum \beta_i \|Du_i\|_1 + \sum \eta_j \|Dv_j\|_1$$

Alternating BPDN on

$$\min_{v_j \ge 0} \ \frac{1}{2} \|Uv_j - a_{.j}\|^2 + \eta_j \|v_j\|_1, \qquad \text{normalize } V \to VD$$

$$\min_{u_i > 0} \ \frac{1}{2} \|Vu_i - a_{i.}\|^2 + \beta_i \|u_i\|_1, \qquad \text{normalize } U \to UD$$

•
$$\eta_j \leq \sigma \|U^T a_{.j}\|_{\infty}$$
 σ = "sparsity" input parameter $\beta_i \leq \sigma \|V^T a_{i.}\|_{\infty}$ = 0.9 or 0.8 say

14/24

SNMF via BPDN implementation

$$\min_{U,D,V \ge 0} \frac{1}{2} ||A - UDV^T||_F^2 + \sum \beta_i ||Du_i||_1 + \sum \eta_j ||Dv_j||_1$$

Alternating BPDN on

$$\min_{v_j \ge 0} \ \frac{1}{2} \|Uv_j - a_{.j}\|^2 + \eta_j \|v_j\|_1, \qquad \text{normalize } V \to VD$$

$$\min_{u_i > 0} \ \frac{1}{2} \|Vu_i - a_{i.}\|^2 + \beta_i \|u_i\|_1, \qquad \text{normalize } U \to UD$$

•
$$\eta_j \leq \sigma \|U^T a_{j}\|_{\infty}$$
 $\sigma =$ "sparsity" input parameter $\beta_i \leq \sigma \|V^T a_{i.}\|_{\infty}$ = 0.9 or 0.8 say

• At some point, freeze D (Also $\eta_i \beta_i$ stop changing)

14/24

BPDN solvers

MMDS08 15/24

$$\underset{\min}{\mathsf{BPDN}} \underset{\lambda \| x \|_1 + \frac{1}{2} \| \mathit{Ax} - b \|^2}{\mathsf{BPDN}}$$

Greedy **OMP** Davis, Mallat et al 1997 Interior, CG **BPDN-interior** Chen, Donoho & S. 1998, 2001 PDSCO, PDCO Saunders 1997, 2002 Interior, LSQR Orthogonal blocks **BCR** Sardy, Bruce & Tseng 2000 Active-set, all λ Homotopy Osborne et al 2000 Active-set, all λ LARS Efron, Hastie, Tibshirani 2004 Double greedy **STOMP** Donoho, Tsaig, et al 2006 11 ls Primal barrier, PCG Kim, Koh, Lustig, Boyd et al 2007 Gradient Projection **GPSR** Figueiredo, Nowak & Wright 2007 Spectral GP, all λ SPGL1 van den Berg & Friedlander 2007 Active-set on dual **BPdual** Friedlander & Saunders 2007 Active-set on dual. x > 0I Pdual Friedlander & Saunders 2007

MMDS08 16/24

Friedlander & Hatz 2007

IsNMF, IsNTF

Sparse NMF and NTF

(BCLS subproblem solver)

LPdual solver

Active-set method for dual of regularized LP:

$$\min_{x,y} e^{T}x + \frac{1}{2}\lambda ||y||^{2} \quad \text{st} \quad Ax + \lambda y = b, \quad x \ge 0$$

$$\min_{y} -b^{T}y + \frac{1}{2}\lambda ||y||^{2}$$
 st $A^{T}y \leq e$

MMDS08 17/24

LPdual solver

Active-set method for dual of regularized LP:

$$\min_{x,y} e^{T}x + \frac{1}{2}\lambda ||y||^{2} \quad \text{st} \quad Ax + \lambda y = b, \quad x \ge 0$$

$$\min_{y} -b^{T}y + \frac{1}{2}\lambda ||y||^{2}$$
 st $A^{T}y \leq e$

 $B \equiv$ columns of A for active constraints ($B^T y = e$) Initially y = 0, B empty Selects columns of B in mostly greedy manner

MMDS08 17/24

LPdual solver

Active-set method for dual of regularized LP:

$$\min_{x,y} e^{T}x + \frac{1}{2}\lambda ||y||^2 \quad \text{st} \quad Ax + \lambda y = b, \quad x \ge 0$$

$$\min_{y} -b^{\mathsf{T}}y + \frac{1}{2}\lambda ||y||^{2} \text{ st } A^{\mathsf{T}}y \leq e$$

 $B \equiv$ columns of A for active constraints ($B^T y = e$) Initially y = 0, B empty Selects columns of B in mostly greedy manner

Main work per iteration:

Solve min ||Bx - g||Form $dy = (g - Bx)/\lambda$ Form $dz = A^{T}dy$ Add or delete a column of B

SNMF Results

MMDS08 18/24

Sparse NMF example

• Sparse solution: k=2

$$U_k = \begin{pmatrix} 0.1859 \\ 0.1170 \\ 0.6146 \\ 0.9756 \\ 0.7889 \end{pmatrix} \qquad V_k = \begin{pmatrix} 0.6153 \\ 0.4428 \\ 0.8963 \\ 0.7877 \\ 0.0253 & 0.0303 \end{pmatrix}$$

$$D_k = \begin{pmatrix} 27.51 \\ 10.69 \end{pmatrix}$$

MMDS08 19/24

Sparse NMF example

• Sparse solution: k = 2

$$U_k = \begin{pmatrix} 0.1859 \\ 0.1170 \\ 0.6146 \\ 0.9756 \\ 0.7889 \end{pmatrix} \qquad V_k = \begin{pmatrix} 0.6153 \\ 0.4428 \\ 0.8963 \\ 0.7877 \\ 0.0253 \quad 0.0303 \end{pmatrix}$$

$$D_k = \begin{pmatrix} 27.51 \\ 10.69 \end{pmatrix}$$

Clustering and Ranking:

$$Rr = \begin{pmatrix} (1,1) & 2 \\ (2,1) & 3 \\ (4,1) & 1 \\ (3,2) & 2 \\ (5,2) & 1 \end{pmatrix} \qquad Rc = \begin{pmatrix} (2,1) & 2 \\ (3,1) & 1 \\ (1,2) & 2 \\ (4,2) & 1 \\ (5,2) & 3 \end{pmatrix}$$

MMDS08 19/24

Sparse NMF example

• Sparse solution: k = 2

$$U_k = \begin{pmatrix} 0.1859 \\ 0.1170 \\ 0.6146 \\ 0.9756 \\ 0.7889 \end{pmatrix} \qquad V_k = \begin{pmatrix} 0.6153 \\ 0.4428 \\ 0.8963 \\ 0.7877 \\ 0.0253 \quad 0.0303 \end{pmatrix}$$

$$D_k = \begin{pmatrix} 27.51 \\ 10.69 \end{pmatrix}$$

Clustering and Ranking:

$$Rr = \begin{pmatrix} (1,1) & 2 \\ (2,1) & 3 \\ (4,1) & 1 \\ (3,2) & 2 \\ (5,2) & 1 \end{pmatrix} \qquad Rc = \begin{pmatrix} (2,1) & 2 \\ (3,1) & 1 \\ (1,2) & 2 \\ (4,2) & 1 \\ (5,2) & 3 \end{pmatrix}$$

Order of k does preserve the ranking of cluster importance

MMDS08 19/24

m = n = 450, k = 200, increasing sparsity

MMDS08 20/24

Real Application Examples

MMDS08 21/24

Keyword clusterings

About 8000 stem terms

MMDS08 22/24

Keyword clusterings

- About 8000 stem terms
- Create term similarity matrix A

MMDS08 22/24

Keyword clusterings

- About 8000 stem terms
- Create term similarity matrix A
- Sample clusters:

```
googladword
               c++
adword
                cc++
googl
               java
googlanalyt
               c++java
yahoo
               c++program
searchmarket
                c++unix
omnitur
                pascal
                c++develop
msn
webtrend
                c++programm
adbrit
               javaprogram
```

MMDS08 22/24

User input standardization

- Field-of-study user input, about 400k unique entries
- Cluster user inputs automatically
- Sample clusters:
 - Abbreviations, variation of the same word or typos hr, human resources, hrm film production, film, theatre, acting, theater
 - New words
 physical therapy, kinesiology
 - Similar disciplines
 materials science and engineering, materials science, materials
 engineering
 - Foreign language

 business economics, bedrijfseconomie
 bedrijfskundige informatica, business informatics, informatica
 - bedrijfskundige informatica, business informatics, informatica

 Noise elimination, or crowded cluster
 - business administration, business, mba, project management, master in business administration, business administration, master of business administration, technology, business admin, general education

MMDS08 23/24

• Michael Friedlander (BP solvers)

- Michael Friedlander (BP solvers)
- Sou-Cheng Choi Lek-Heng Lim

- Michael Friedlander (BP solvers)
- Sou-Cheng Choi Lek-Heng Lim
- Jay Kreps
 Jonathan Goldman
 Huitao Luo

- Michael Friedlander (BP solvers)
- Sou-Cheng Choi Lek-Heng Lim
- Jay Kreps
 Jonathan Goldman
 Huitao Luo
- Understanding Complex Datasets
 Data Mining with Matrix Decompositions
 (useful book by David Skillicorn)

roduction SNMF motivation Sparse NMF BPDN solvers SNMF results Application examples

Thanks

- Michael Friedlander (BP solvers)
- Sou-Cheng Choi Lek-Heng Lim
- Jay Kreps
 Jonathan Goldman
 Huitao Luo
- Understanding Complex Datasets
 Data Mining with Matrix Decompositions
 (useful book by David Skillicorn)
- Michael Saunders