

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 194 (2006) 409-424

www.elsevier.com/locate/cam

Finite-element method for time-dependent Maxwell's equations based on an explicit-magnetic-field scheme

Changfeng Maa, b, *

a Department of Information and Computational Science, College of Mathematics and Physics,
 Zhejiang Normal University, Zhejiang 321004, PR China
 b Department of Computational Science and Mathematics, Guilin University of Electronic Technology,
 Guangxi 541004, PR China

Received 21 September 2003; received in revised form 26 July 2005

Abstract

This paper provides a convergence analysis of the finite-element method for time-dependent Maxwell's equations by means of an explicit-magnetic-field scheme. Error estimates in finite time are given. And it is verified that provided the time-stepsize τ is sufficiently small, the proposed algorithm yields for finite time T an error of $\mathcal{O}(h^s + \tau)$ in the L^2 -norm for the electric field E, the magnetic field E, where E is the mesh size and $\frac{1}{2} < s \le 1$. In addition, some numerical results are reported in the paper.

© 2005 Elsevier B.V. All rights reserved.

MSC: 65M60; 65N30; 46E35; 35Q60

Keywords: Time-dependent Maxwell's equations; Finite-element method; Decoupled scheme; Error analysis

1. Introduction

The Maxwell equations describe electromagnetic phenomena. Numerical methods for the Maxwell equations are usually referred to as computational electromagnetics. There are a wide range of

E-mail address: macf@zjnu.cn.

Supported by the National Natural Science Foundation of China and Zhejiang Science Foundation.

^{*} Department of Information and Computational Science, College of Mathematics and Physics, Zhejiang Normal University, Zhejiang 321004, PR China. Tel.: +8605792291074; fax: +8605792291074.

applications for the numerical solutions of Maxwell equations, for instance, electromagnetic compatibility, antenna analysis and synthesis, radar cross-section calculations, microwave ovens, and diffraction of electromagnetic wave. As is known, to solving numerically the full of system of time-dependent Maxwell's equations can be extremely costly in terms of computer time. A number of different numerical methods for the equations have been proposed [1–3,6,9,12,14]. We are interested, in this paper, in the numerical approximations to time-dependent Maxwell's equations by decoupling the electric field and magnetic field.

Maxwell equations were first formulated by James Clerk Maxwell. They are

$$\varepsilon \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{H} - \sigma \mathbf{E} - \mathbf{J}_{S} \quad \text{in } \Omega \times (0, T), \tag{1.1}$$

$$\mu \frac{\partial \mathbf{H}}{\partial t} = -\nabla \times \mathbf{E} \quad \text{in } Q_T = \Omega \times (0, T), \tag{1.2}$$

where Ω is a bounded Lipschitz continuous polyhedral domain in \Re^3 , and E(x,t) and H(x,t) the electric and magnetic fields, respectively. And $\varepsilon(x)$ and $\sigma(x)$ are the dielectric constant and the conductivity of the medium, respectively, while $\mu(x)$ and $J_s(x,t) \in L^\infty(\Omega)$ are the magnetic permeability of the material in Ω and source electric current density, respectively. We assume that the boundary of Ω , denoted by Γ , is a perfect conductor, that is,

$$\mathbf{n} \times \mathbf{E} = 0 \quad \text{on } \Sigma_T = \Gamma \times (0, T),$$
 (1.3)

where n is the unit normal vector to Γ . We supplement Maxwell's Eqs. (1.1)–(1.2) with initial conditions:

$$E(x, 0) = E_0(x), \quad H(x, 0) = H_0(x) \quad \text{in } \Omega,$$
 (1.4)

where E_0 and H_0 are given functions and H_0 satisfies

$$\nabla \cdot (\mu H_0) = 0 \text{ in } \Omega, \quad n \cdot H_0 = 0 \text{ on } \Gamma. \tag{1.5}$$

The divergence-free condition in (1.5) together with (1.2) implies that

$$\nabla \cdot (\mu \mathbf{H}) = 0 \quad \text{in } O_T \tag{1.6}$$

which is usually included with (1.1)–(1.2) in the statement of Maxwell's equations. In addition, the boundary condition in (1.5) together with (1.1) and (1.2) implies

$$\mathbf{n} \cdot \mathbf{H} = 0 \quad \text{on } \Sigma_T.$$
 (1.7)

Furthermore, for the sake of simplicity, it is assumed that the coefficients ε , μ and σ are $L^{\infty}(\Omega)$ functions, that is, there exist positive constants $\underline{\varepsilon}$, μ , $\overline{\varepsilon}$, $\overline{\mu}$ and $\overline{\sigma}$ such that

$$\underline{\varepsilon} \leqslant \varepsilon(\mathbf{x}) \leqslant \overline{\varepsilon} < \infty,
\underline{\mu} \leqslant \mu(\mathbf{x}) \leqslant \overline{\mu} < \infty,
0 \leqslant \sigma(\mathbf{x}) \leqslant \overline{\sigma} < \infty,$$
a.e. in Ω . (1.8)

One can easily find that the initial-boundary problem (1.1)–(1.4) and (1.7) is well posed under hypothesis (1.8).

Due to practical interest, there has been a great deal of work on numerical approximations to time-dependent Maxwell's equations and also on the convergence analysis of a numerical scheme for stationary Maxwell's equations and related models; see, for example, [1,5,14] and the references therein. However, there does not exist much work on the convergence analysis or error estimates for fully discrete time-dependent Maxwell's equations. For some recent work in this aspect, we refer readers to [6,8,11] for time-dependent Maxwell systems with continuous coefficients and Chen [3] with discontinuous coefficients.

In this paper we will study a finite-element approximation for time-dependent Maxwell systems by a so-called explicit-magnetic-field scheme. In Section 2, a decoupled scheme for Maxwell equations is described in detail. In Section 3, we discuss the semidiscrete approximation of the proposed scheme and give its so-called continuous error bounds. Section 4 is devoted to the spatial approximation of the semidiscrete scheme and gain so-called discrete error estimates. Finally, some numerical results are reported in Section 5.

2. A decoupled scheme for Maxwell equations

Let us first introduce the following notations used in the sequel. We define

$$H(\mathbf{curl}; \Omega) = \{ v \in L^2(\Omega)^3 : \nabla \times v \in L^2(\Omega)^3 \},$$

$$H_0(\mathbf{curl}; \Omega) = \{ v \in H(\mathbf{curl}; \Omega) : \mathbf{n} \times \mathbf{v}|_{\Gamma} = \mathbf{0} \},$$

$$H^{\alpha}(\mathbf{curl}; \Omega) = \{ \mathbf{v} \in H^{\alpha}(\Omega)^3 : \nabla \times \mathbf{v} \in H^{\alpha}(\Omega)^3 \},$$

where α is a nonnegative number. $H(\mathbf{curl}; \Omega)$ and $H^{\alpha}(\mathbf{curl}; \Omega)$ are equipped with the following norms:

$$\|\mathbf{v}\|_{0,\mathbf{curl}}^2 = \|\mathbf{v}\|_0^2 + \|\nabla \times \mathbf{v}\|_0^2,$$

$$\|v\|_{\alpha, \text{curl}}^2 = \|v\|_{\alpha}^2 + \|\nabla \times v\|_{\alpha}^2.$$

Here and hereafter, $\|\cdot\|_0$ will always mean the $L^2(\Omega)^3$ -norm (or $L^2(\Omega)$ -norm, if only scalar functions are involved). In addition, the Green's formula of integration by parts is as follows:

$$(v, \nabla \times w) - (\nabla \times v, w) = \int_{\Gamma} v \times n \cdot w, \quad \forall v \in H(\mathbf{curl}; \Omega), \ \forall w \in H^{1}(\Omega)^{3}.$$
 (2.1)

Hereafter we shall repeatedly use the following discrete Gronwall inequality (see [13]):

Lemma 2.1. Let δ , g_0 , a_n , b_n , c_n and γ_n (n = 0, 1, ...) be a sequence of nonnegative numbers so that

$$a_n + \delta \sum_{i=0}^n b_i \leqslant \delta \sum_{i=0}^n \gamma_i a_i + \delta \sum_{i=0}^n c_i + g_0.$$

Assume that $\gamma_i \delta < 1$ for all i, and set $\sigma_i = (1 - \gamma_i \delta)^{-1}$. Then we obtain for all $n \ge 0$

$$a_n + \delta \sum_{i=0}^n b_i \le \left(\delta \sum_{i=0}^n c_i + g_0\right) \exp\left(\delta \sum_{i=0}^n \sigma_i \gamma_i\right).$$

In the sequel of this paper, C will always denote a generic constant which is independent of both the time step τ and finite-element mesh h.

Let us now propose a decoupled scheme for Maxwell systems (1.1)–(1.2). We divide the times interval (0, T) into N equally spaced subintervals by using nodal points

$$0 = t^0 < t^1 < \dots < t^N = T$$

with $t^n = n\tau$, n = 0, 1, ..., N. For a given sequence $\{u^n\}_{n=1}^N \subset L^2(\Omega)^3$, we introduce the first-order backward finite difference:

$$\partial_{\tau} \boldsymbol{u}^n = \frac{\boldsymbol{u}^n - \boldsymbol{u}^{n-1}}{\tau}.\tag{2.2}$$

Then in view of (2.2), Eqs. (1.1)–(1.2) can be written as the following backward Euler discretization:

$$\varepsilon \frac{E^n - E^{n-1}}{\tau} = \nabla \times H^n - \sigma E^n - J_s^n, \tag{2.3}$$

$$\mu \frac{H^n - H^{n-1}}{\tau} = -\nabla \times E^n. \tag{2.4}$$

Combining (2.3) and (2.4), we can infer

$$\left(\varepsilon \frac{E^{n} - E^{n-1}}{\tau} + \sigma E^{n}, F\right) + \left(\frac{\tau}{\mu} \nabla \times E^{n}, \nabla \times F\right)$$

$$= (H^{n-1}, \nabla \times F) - (J_{s}^{n}, F), \quad \forall F \in H_{0}(\mathbf{curl}; \Omega),$$
(2.5)

$$\mathbf{H}^n = \mathbf{H}^{n-1} - \frac{\tau}{\mu} \nabla \times \mathbf{E}^n. \tag{2.6}$$

Remark 2.2. Schemes (2.5)–(2.6) are so-called explicit-magnetic-field schemes or the decoupled scheme. That is to say, after obtaining solution E^n of (2.5) by using a known value H^{n-1} , we can explicitly gain H^n by the recurrence formula $H^n = H^{n-1} - v\tau \nabla \times E^n$, for n = 1, ..., N, where v is the inverse of the magnetic permeability μ (magnetic susceptibility).

We end this section with the following stability estimate for schemes (2.5)–(2.6):

Theorem 2.3. There exists a constant C > 0 independent of τ such that for all sufficiently small τ ,

$$\varepsilon \|\mathbf{E}^n\|_0^2 + \mu \|\mathbf{H}^n\|_0^2 + \frac{\tau^2}{\mu} \sum_{n=1}^N \|\nabla \times \mathbf{E}^n\|_0^2 \leqslant C.$$
 (2.7)

Proof. Without loss of generality, parameters ε , σ and μ are assumed to be constants in the sequel.

(i) By Green's formula (2.1), taking the inner product of (2.5) by $2\tau E^n \in H_0(\mathbf{curl}; \Omega)$ and using the identity $2(a-b,a) = |a|^2 + |a-b|^2 - |b|^2$, we obtain

$$\varepsilon \|\mathbf{E}^{n}\|_{0}^{2} + \varepsilon \|\mathbf{E}^{n} - \mathbf{E}^{n-1}\|_{0}^{2} - \varepsilon \|\mathbf{E}^{n-1}\|_{0}^{2} + 2\sigma\tau \|\mathbf{E}^{n}\|_{0}^{2} + \frac{2\tau^{2}}{\mu} \|\nabla \times \mathbf{E}^{n}\|_{0}^{2} = 2\tau (\mathbf{H}^{n-1}, \nabla \times \mathbf{E}^{n}) - 2\tau (\mathbf{J}_{s}^{n}, \mathbf{E}^{n}).$$
(2.8)

We take the inner product of (2.3) by $2\tau H^n \in H_0(\mathbf{curl}; \Omega)$ to obtain

$$\mu \|\boldsymbol{H}^{n}\|_{0}^{2} + \mu \|\boldsymbol{H}^{n} - \boldsymbol{H}^{n-1}\|_{0}^{2} - \mu \|\boldsymbol{H}^{n-1}\|_{0}^{2} = -2\tau(\nabla \times \boldsymbol{E}^{n}, \boldsymbol{H}^{n}). \tag{2.9}$$

(ii) After summing up (2.8) and (2.9), we gain

$$\varepsilon \|\mathbf{E}^{n}\|_{0}^{2} - \varepsilon \|\mathbf{E}^{n-1}\|_{0}^{2} + 2\sigma\tau \|\mathbf{E}^{n}\|_{0}^{2} + \frac{2\tau^{2}}{\mu} \|\nabla \times \mathbf{E}^{n}\|_{0}^{2}$$

$$+ \mu \|\mathbf{H}^{n}\|_{0}^{2} + \mu \|\mathbf{H}^{n} - \mathbf{H}^{n-1}\|_{0}^{2} - \mu \|\mathbf{H}^{n-1}\|_{0}^{2}$$

$$\leq -2\tau (\mathbf{H}^{n} - \mathbf{H}^{n-1}, \nabla \times \mathbf{E}^{n}) - 2\tau (\mathbf{J}_{s}^{n}, \mathbf{E}^{n}). \tag{2.10}$$

Note that, by the inequality $2(a, b) \leq \gamma |a|^2 + |b|^2 / \gamma$,

$$-2\tau(\boldsymbol{H}^{n}-\boldsymbol{H}^{n-1},\nabla\times\boldsymbol{E}^{n})\leqslant\mu\|\boldsymbol{H}^{n}-\boldsymbol{H}^{n-1}\|_{0}^{2}+\frac{\tau^{2}}{\mu}\|\nabla\times\boldsymbol{E}^{n}\|_{0}^{2}$$

and

$$-2\tau(J_{s}^{n}, E^{n}) \leq C\tau ||E^{n}||_{0}^{2} + C\tau ||J_{s}^{n}||_{0}^{2}.$$

Then, by these bounds, it follows from (2.10) that

$$\varepsilon \|\mathbf{E}^{n}\|_{0}^{2} - \varepsilon \|\mathbf{E}^{n-1}\|_{0}^{2} + 2\sigma\tau \|\mathbf{E}^{n}\|_{0}^{2}$$

$$+ \frac{\tau^{2}}{\mu} \|\nabla \times \mathbf{E}^{n}\|_{0}^{2} + \mu \|\mathbf{H}^{n}\|_{0}^{2} - \mu \|\mathbf{H}^{n-1}\|_{0}^{2}$$

$$\leq C\tau \|\mathbf{E}^{n}\|_{0}^{2} + C\tau \|\mathbf{J}_{s}^{n}\|_{0}^{2}. \tag{2.11}$$

Adding up from n = 1 to N we have

$$\varepsilon \| \mathbf{E}^N \|_0^2 + \mu \| \mathbf{H}^N \|_0^2 + \frac{\tau^2}{\mu} \sum_{n=1}^N \| \nabla \times \mathbf{E}^n \|_0^2$$

$$\leq \varepsilon \|\boldsymbol{E}^{0}\|_{0}^{2} + \mu \|\boldsymbol{H}^{0}\|_{0}^{2} + C\tau \sum_{n=1}^{N} \|\boldsymbol{E}^{n}\|_{0}^{2} + C \int_{0}^{T} \|\boldsymbol{J}_{s}(t)\|_{0}^{2} dt.$$

By discrete Gronwall inequality Lemma 2.1, one can easily find that, for all sufficiently small τ , (2.7) holds. \Box

3. Semidiscrete approximation

In this section, we shall propose a semidiscrete decoupled scheme and give so-called continuous error estimates. We define two sequences of approximate electric field $\{E^n \in H_0(\mathbf{curl}; \Omega)\}$ and magnetic field $\{H^n \in H(\mathbf{curl}; \Omega)\}$ as follows:

• The semidiscrete decoupled scheme

Step 1 (Initialization): The sequences $\{E^n \in H_0(\mathbf{curl}; \Omega)\}$ and $\{H^n \in H(\mathbf{curl}; \Omega)\}$ are initialized by

$$E^{0} = E(t=0)$$
 and $H^{0} = H(t=0)$, (3.1)

respectively.

Step 2 (Time loop): For 1 < n < N, seek $\{E^n \in H_0(\mathbf{curl}; \Omega)\}$

$$\left(\varepsilon \frac{E^{n} - E^{n-1}}{\tau} + \sigma E^{n}, F\right) + \left(\frac{\tau}{\mu} \nabla \times E^{n}, \nabla \times F\right)$$

$$= (H^{n-1}, \nabla \times F) - (J_{\varsigma}^{n}, F), \quad \forall F \in H_{0}(\mathbf{curl}; \Omega)$$
(3.2)

and set

$$\boldsymbol{H}^{n} = \boldsymbol{H}^{n-1} - \frac{\tau}{\mu} \nabla \times \boldsymbol{E}^{n}. \tag{3.3}$$

We assume in the sequel that the continuous solution (E, H) of initial-boundary value problem (1.1)–(1.4) and (1.7) is unique and satisfies:

(H1)
$$\int_0^T (\|E''(t)\|_0^2 + \|H''(t)\|_0^2) dt \le C$$
.

In the sequel we use C as a generic constant depending on J_s , E_0 , H_0 , ε , σ , μ and Ω , but not on the time step τ or on the mesh size h.

Let us now give the error bounds of schemes (3.2)–(3.3). We define the continuous errors (as for the spatial variables) as

$$\eta_{\mathrm{c}}^{n} = E(t^{n}) - E^{n}, \quad \theta_{\mathrm{c}}^{n} = H(t^{n}) - H^{n}.$$

For convenience, we introduce the notations: $\forall w \in L^2(\Omega)^3$,

$$\|w\|_{\varepsilon}^{2} = (\varepsilon w, w), \quad \|w\|_{\sigma}^{2} = (\sigma w, w),$$
$$\|w\|_{\mu}^{2} = (\mu w, w), \quad \|\nabla \times w\|_{\mu^{-1}}^{2} = (\mu^{-1} \nabla \times w, \nabla \times w).$$

Then the continuous error estimates read as follows:

Theorem 3.1. Assume that Assumption (H1) holds. Then, there exists a constant C > 0 independent of τ such that for all sufficiently small τ ,

$$\|\boldsymbol{\eta}_{c}^{N}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{c}^{N}\|_{\mu}^{2} + \frac{1}{2}\tau^{2} \sum_{n=1}^{N} \|\nabla \times \boldsymbol{\eta}_{c}^{n}\|_{\mu^{-1}}^{2} \leqslant C\tau^{2}.$$
(3.4)

Proof. We argue in the following three steps:

Step 1: It follows from (1.1)–(1.2) for all $F \in H_0(\mathbf{curl}; \Omega)$,

$$\begin{cases}
\left(\varepsilon \frac{E(t^n) - E(t^{n-1})}{\tau}, F\right) + (\sigma E(t^n), F) \\
-(H(t^n), \nabla \times F) = (-J_s^n + \varepsilon R_1^n, F), \\
\mu \frac{H(t^n) - H(t^{n-1})}{\tau} = -\nabla \times E(t^n) + \mu R_2^n,
\end{cases}$$
(3.5)

where the truncation errors \mathbf{R}_1^n and \mathbf{R}_2^n are defined by

$$\begin{cases}
\mathbf{R}_{1}^{n} = -\frac{1}{\tau} \int_{t^{n-1}}^{t^{n}} (t - t^{n-1}) \mathbf{E}''(t) \, \mathrm{d}t, \\
\mathbf{R}_{2}^{n} = -\frac{1}{\tau} \int_{t^{n-1}}^{t^{n}} (t - t^{n-1}) \mathbf{H}''(t) \, \mathrm{d}t.
\end{cases}$$
(3.6)

By (3.5), we can deduce the following:

$$\begin{cases}
\left(\varepsilon \frac{E(t^{n}) - E(t^{n-1})}{\tau} + \sigma E(t^{n}), F\right) + \left(\frac{\tau}{\mu} \nabla \times E(t^{n}), \nabla \times F\right) \\
= \left(-J_{s}^{n} + \varepsilon R_{1}^{n}, F\right) + \left(H(t^{n-1}) + \tau R_{2}^{n}, \nabla \times F\right), \\
H(t^{n}) = H(t^{n-1}) - \frac{\tau}{\mu} \nabla \times E(t^{n}) + \tau R_{2}^{n}.
\end{cases} (3.7)$$

Subtracting (3.2) and (3.3) from the first equation and second Eq. of (3.7) and using the definitions of η_c^n and θ_c^n , we obtain

$$\left(\varepsilon \frac{\boldsymbol{\eta}_{c}^{n} - \boldsymbol{\eta}_{c}^{n-1}}{\tau}, F\right) + (\sigma \boldsymbol{\eta}_{c}^{n}, F) + \left(\frac{\tau}{\mu} \nabla \times \boldsymbol{\eta}_{c}^{n}, \nabla \times F\right)
= (\varepsilon \boldsymbol{R}_{1}^{n}, F) + (\boldsymbol{\theta}_{c}^{n-1}, \nabla \times F) + \tau (\boldsymbol{R}_{2}^{n}, \nabla \times F)$$
(3.8)

and

$$\theta_{c}^{n} = \theta_{c}^{n-1} - \frac{\tau}{\mu} \nabla \times \boldsymbol{\eta}_{c}^{n} + \tau \boldsymbol{R}_{2}^{n}. \tag{3.9}$$

Step 2: Taking $F = 2\tau \eta_c^n \in H_0(\mathbf{curl}; \Omega)$ in (3.8) and using the inequality $2(a - b, a) \ge |a|^2 - |b|^2$, we obtain

$$\|\boldsymbol{\eta}_{c}^{n}\|_{\varepsilon}^{2} - \|\boldsymbol{\eta}_{c}^{n-1}\|_{\varepsilon}^{2} + 2\tau \|\boldsymbol{\eta}_{c}^{n}\|_{\sigma}^{2} + 2\tau^{2} \|\nabla \times \boldsymbol{\eta}_{c}^{n}\|_{v}^{2}$$

$$\leq 2\tau(\boldsymbol{\theta}_{c}^{n-1}, \nabla \times \boldsymbol{\eta}_{c}^{n}) + 2\tau(\varepsilon \boldsymbol{R}_{1}^{n}, \boldsymbol{\eta}_{c}^{n}) + 2\tau^{2}(\boldsymbol{R}_{2}^{n}, \nabla \times \boldsymbol{\eta}_{c}^{n}). \tag{3.10}$$

Noting that, by the inequality $2(a, b) \le \gamma |a|^2 + |b|^2 / \gamma$,

$$2\tau(\varepsilon \boldsymbol{R}_{1}^{n}, \boldsymbol{\eta}_{c}^{n}) \leq \gamma_{1}\tau \|\boldsymbol{\eta}_{c}^{n}\|_{\varepsilon}^{2} + C_{\gamma_{1}}\tau \|\boldsymbol{R}_{1}^{n}\|_{0}^{2}$$
$$\leq \gamma_{1}\tau \|\boldsymbol{\eta}_{c}^{n}\|_{\varepsilon}^{2} + C_{\gamma_{1}}\tau^{2} \int_{t^{n-1}}^{t^{n}} \|\boldsymbol{E}''(t)\|_{0}^{2} dt$$

and

$$2\tau^{2}(\mathbf{R}_{2}^{n}, \nabla \times \mathbf{\eta}_{c}^{n}) \leq \gamma_{2}\tau^{3} \|\nabla \times \mathbf{\eta}_{c}^{n}\|_{v}^{2} + C_{\gamma_{2}}\tau \|\mathbf{R}_{2}^{n}\|_{0}^{2}$$
$$\leq \gamma_{2}\tau^{3} \|\nabla \times \mathbf{\eta}_{c}^{n}\|_{v}^{2} + C_{\gamma_{2}}\tau^{2} \int_{t^{n-1}}^{t^{n}} \|\mathbf{H}''(t)\|_{0}^{2} dt.$$

Thereby, using these bounds, it follows from (3.10),

$$\begin{split} &\|\boldsymbol{\eta}_{\mathrm{c}}^{n}\|_{\varepsilon}^{2} - \|\boldsymbol{\eta}_{\mathrm{c}}^{n-1}\|_{\varepsilon}^{2} + 2\tau\|\boldsymbol{\eta}_{\mathrm{c}}^{n}\|_{\sigma}^{2} + 2\tau^{2}\|\nabla \times \boldsymbol{\eta}_{\mathrm{c}}^{n}\|_{v}^{2} \\ &\leq 2\tau(\boldsymbol{\theta}_{\mathrm{c}}^{n-1}, \nabla \times \boldsymbol{\eta}_{\mathrm{c}}^{n}) + \gamma_{1}\tau\|\boldsymbol{\eta}_{\mathrm{c}}^{n}\|_{\varepsilon}^{2} \\ &+ \gamma_{2}\tau^{3}\|\nabla \times \boldsymbol{\eta}_{\mathrm{c}}^{n}\|_{0}^{2} + C\tau^{2}\int_{t^{n-1}}^{t^{n}} (\|\boldsymbol{E}''(t)\|_{0}^{2} + \|\boldsymbol{H}''(t)\|_{0}^{2}) \,\mathrm{d}t. \end{split}$$

Choose parameter $\gamma_2 \leqslant \frac{1}{2\tau}$; then, we have

$$\|\boldsymbol{\eta}_{c}^{n}\|_{\varepsilon}^{2} - \|\boldsymbol{\eta}_{c}^{n-1}\|_{\varepsilon}^{2} + 2\tau \|\boldsymbol{\eta}_{c}^{n}\|_{\sigma}^{2} + \frac{3}{2}\tau^{2}\|\nabla \times \boldsymbol{\eta}_{c}^{n}\|_{v}^{2}$$

$$\leq 2\tau(\boldsymbol{\theta}_{c}^{n-1}, \nabla \times \boldsymbol{\eta}_{c}^{n}) + \gamma_{1}\tau \|\boldsymbol{\eta}_{c}^{n}\|_{\varepsilon}^{2}$$

$$+ C\tau^{2} \int_{t^{n-1}}^{t^{n}} (\|\boldsymbol{E}''(t)\|_{0}^{2} + \|\boldsymbol{H}''(t)\|_{0}^{2}) dt.$$
(3.11)

Step 3: We take the inner product of (3.9) by $2\mu\theta_c^n \in L^2(\Omega)^3$ and using the identity $2(a-b,a) = |a|^2 + |a-b|^2 - |b|^2$, we obtain

$$\begin{split} \|\boldsymbol{\theta}_{c}^{n}\|_{\mu}^{2} + \|\boldsymbol{\theta}_{c}^{n} - \boldsymbol{\theta}_{c}^{n-1}\|_{\mu}^{2} - \|\boldsymbol{\theta}_{c}^{n-1}\|_{\mu}^{2} \\ &= -2\tau(\nabla \times \boldsymbol{\eta}_{c}^{n}, \boldsymbol{\theta}_{c}^{n}) + 2\tau(\mu \boldsymbol{R}_{2}^{n}, \boldsymbol{\theta}_{c}^{n}) \\ &\leqslant -2\tau(\nabla \times \boldsymbol{\eta}_{c}^{n}, \boldsymbol{\theta}_{c}^{n}) + C\tau\|\boldsymbol{\theta}_{c}^{n}\|_{\mu}^{2} + C\tau^{2} \int_{t^{n-1}}^{t^{n}} \|\boldsymbol{H}''(t)\|_{0}^{2} dt. \end{split}$$
(3.12)

By (3.11) + (3.12) we obtain

$$\begin{split} \| \boldsymbol{\eta}_{\mathrm{c}}^{n} \|_{\varepsilon}^{2} - \| \boldsymbol{\eta}_{\mathrm{c}}^{n-1} \|_{\varepsilon}^{2} + 2\tau \| \boldsymbol{\eta}_{\mathrm{c}}^{n} \|_{\sigma}^{2} + \frac{3}{2}\tau^{2} \| \nabla \times \boldsymbol{\eta}_{\mathrm{c}}^{n} \|_{\mu^{-1}}^{2} \\ + \| \boldsymbol{\theta}_{\mathrm{c}}^{n} \|_{\mu}^{2} + \| \boldsymbol{\theta}_{\mathrm{c}}^{n} - \boldsymbol{\theta}_{\mathrm{c}}^{n-1} \|_{\mu}^{2} - \| \boldsymbol{\theta}_{\mathrm{c}}^{n-1} \|_{\mu}^{2} \\ \leqslant -2\tau (\boldsymbol{\theta}_{\mathrm{c}}^{n} - \boldsymbol{\theta}_{\mathrm{c}}^{n-1}, \nabla \times \boldsymbol{\eta}_{\mathrm{c}}^{n}) + C\tau \| \boldsymbol{\eta}_{\mathrm{c}}^{n} \|_{\varepsilon}^{2} \\ + C\tau \| \boldsymbol{\theta}_{\mathrm{c}}^{n} \|_{\mu}^{2} + C\tau^{2} \int_{t^{n-1}}^{t^{n}} (\| \boldsymbol{E}'' \|_{0}^{2} + \| \boldsymbol{H}'' \|_{0}^{2}) \, \mathrm{d}t. \end{split}$$

Since

$$\begin{aligned} -2\tau(\boldsymbol{\theta}_{\mathrm{c}}^{n}-\boldsymbol{\theta}_{\mathrm{c}}^{n-1},\nabla\times\boldsymbol{\eta}_{\mathrm{c}}^{n}) &= -2(\mu(\boldsymbol{\theta}_{\mathrm{c}}^{n}-\boldsymbol{\theta}_{\mathrm{c}}^{n-1}),\mu^{-1}\tau\nabla\times\boldsymbol{\eta}_{\mathrm{c}}^{n}) \\ &\leq &\|\boldsymbol{\theta}_{\mathrm{c}}^{n}-\boldsymbol{\theta}_{\mathrm{c}}^{n-1}\|_{\mu}^{2}+\tau^{2}\|\nabla\times\boldsymbol{\eta}_{\mathrm{c}}^{n}\|_{\mu^{-1}}^{2}, \end{aligned}$$

we have

$$\|\boldsymbol{\eta}_{c}^{n}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{c}^{n}\|_{\mu}^{2} + 2\tau \|\boldsymbol{\eta}_{c}^{n}\|_{\sigma}^{2} + \frac{1}{2}\tau^{2}\|\nabla \times \boldsymbol{\eta}_{c}^{n}\|_{\mu^{-1}}^{2}$$

$$\leq \|\boldsymbol{\eta}_{c}^{n-1}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{c}^{n-1}\|_{\mu}^{2} + C\tau (\|\boldsymbol{\eta}_{c}^{n}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{c}^{n}\|_{\mu}^{2})$$

$$+ C\tau^{2} \int_{t^{n-1}}^{t^{n}} (\|\boldsymbol{E}''(t)\|_{0}^{2} + \|\boldsymbol{H}''(t)\|_{0}^{2}) dt.$$
(3.13)

Summing up for n = 1, ..., N, we obtain

$$\begin{split} \|\boldsymbol{\eta}_{\mathbf{c}}^{N}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{\mathbf{c}}^{N}\|_{\mu}^{2} + 2\tau \sum_{n=1}^{N} \|\boldsymbol{\eta}_{\mathbf{c}}^{n}\|_{\sigma}^{2} + \frac{1}{2}\tau^{2} \sum_{n=1}^{N} \|\nabla \times \boldsymbol{\eta}_{\mathbf{c}}^{n}\|_{\mu^{-1}}^{2} \\ & \leq \|\boldsymbol{\eta}_{\mathbf{c}}^{0}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{\mathbf{c}}^{0}\|_{\mu}^{2} + C\tau \sum_{n=1}^{N} (\|\boldsymbol{\eta}_{\mathbf{c}}^{n}\|_{0}^{2} + \|\boldsymbol{\theta}_{\mathbf{c}}^{n}\|_{0}^{2}) \\ & + C\tau^{2} \int_{0}^{T} (\|\boldsymbol{E}''(t)\|_{0}^{2} + \|\boldsymbol{H}''(t)\|_{0}^{2}) \, \mathrm{d}t. \end{split}$$

Using initialization condition (3.1), Assumption (H3) and discrete Gronwall inequality Lemma 2.1, it can easily be found that (3.4) follows. \Box

4. Fully discrete decoupled scheme

In this section, we discuss a spatial approximation of the semi-discrete (3.2)–(3.3) with Nédélec's finite-elements and gain the so-called discrete errors bound.

We first triangulate the solution domain Ω and assume that \mathcal{T}_h is a regular partition of Ω into tetrahedrons with a mesh h(see [4,6,13]). An element of \mathcal{T}_h is denoted by K, and the diameters of K and its inscribed ball are denoted by h_K and ρ_K , respectively. We then introduce the following Nédélec's $H(\mathbf{curl}; \Omega)$ conforming finite-element space:

$$V_h = \{ v_h \in H(\mathbf{curl}; \Omega); v_h |_K \in \mathscr{P}_1^3, \forall K \in \mathscr{T}_h \},$$

where \mathscr{P}_1 is the space of linear polynomials. It was proved in Nédélec [10] that any function v in V_h can be uniquely determined by the degrees of freedom in the momentum set $M_E(v)$ on each element $K \in \mathscr{T}_h$. Here $M_E(v)$ is defined as follows:

$$M_E(v) = \left\{ \int_e v \cdot \tau \, \mathrm{d}s; e \text{ is any an edge of } K \right\},$$

where τ is the unit vector along the edge e. We know that the integrals required in the definition of $M_E(v)$ make sense for any $v \in H^s(K)^3$, with $s > \frac{1}{2}$. Thus, we can define an interpolation $\mathscr{I}_h v$ of any $v \in H^s(K)^3$ such that $\mathscr{I}_h v \in V_h$ and $\mathscr{I}_h v$ have the same degrees of freedom as v on each K in \mathscr{T}_h .

In order to take the boundary condition $n \times E = 0$ on $\Gamma = \partial \Omega$, we define a subspace of V_h :

$$X_h = V_h \cap H_0(\mathbf{curl}; \Omega).$$

These finite-element spaces satisfy the following approximating properties(see [6,7,9,10]):

Lemma 4.1. There exists a constant C > 0 such that

$$\|\mathbf{u} - \mathcal{I}_h \mathbf{u}\|_0 + \|\nabla \times (\mathbf{u} - \mathcal{I}_h \mathbf{u})\|_0 \leqslant Ch^s \|\mathbf{u}\|_{s, \text{curl}}$$

for all $u \in H^s(\mathbf{curl}; \Omega)$ with $\frac{1}{2} < s \le 1$.

Let us now define a fully discrete version (3.2)–(3.3). We define two sequences of approximate electric field $\{E_h^n \in X_h\}$ and magnetic field $\{H_h^n \in V_h\}$ as follows:

The fully discrete decoupled scheme

Step 1 (Initialization): The sequences $\{E_h^n \in X_h\}$ and $\{H_h^n \in V_h\}$ are initialized by

$$E_h^0 = \mathcal{I}_h^1 E^0 \quad \text{and} \quad H_h^0 = \mathcal{I}_h^2 H^0, \tag{4.1}$$

respectively. Here $\mathscr{I}_h^1 E^0$ and $\mathscr{I}_h^2 H^0$ are finite-element interpolants of semidiscrete solutions E^0 and H^0 , respectively.

Step 2 (Time loop): For 1 < n < N, seek $\{E_h^n \in X_h\}$

$$\left(\varepsilon \frac{E_h^n - E_h^{n-1}}{\tau} + \sigma E_h^n, F_h\right) + \left(\frac{\tau}{\mu} \nabla \times E_h^n, \nabla \times F_h\right)
= (H_h^{n-1}, \nabla \times F_h) - (J_s^n, F_h), \quad \forall F_h \in X_h$$
(4.2)

and set

$$H_h^n = H_h^{n-1} - \frac{\tau}{\mu} \nabla \times E_h^n. \tag{4.3}$$

We now proceed to obtain error estimates for the fully discrete electric field E_h^n (resp. the fully discrete magnetic field H_h^n) as an approximation of the semi-discrete solution E^n (resp. H^n) under suitable regularity assumptions on the continuous problem. We define and split the error of the method as follows:

$$\eta^n = E(t^n) - E_h^n = \eta_c^n + (E^n - \mathcal{I}_h^1 E^n) + \eta_d^n,$$

$$\theta^n = H(t^n) - H_h^n = \theta_c^n + (H^n - \mathcal{I}_h^2 H^n) + \theta_d^n,$$

where the discrete errors are defined as

$$\eta_{\mathrm{d}}^{n} = \mathscr{I}_{h}^{1} E^{n} - E_{h}^{n}, \quad \theta_{\mathrm{d}}^{n} = \mathscr{I}_{h}^{2} H^{n} - H_{h}^{n},$$

where $\mathscr{I}_h^1 E^n$ and $\mathscr{I}_h^2 H^n$ are finite-element interpolants of semidiscrete solutions E^n and H^n , respectively,

and satisfying the following interpolation properties:

$$||E^{n} - \mathcal{I}_{h}^{1}E^{n}||_{0} + ||\nabla \times (E^{n} - \mathcal{I}_{h}^{1}E^{n})||_{0} \leqslant Ch^{s}||E^{n}||_{s.\text{curl}},$$
(4.4)

$$\|\mathbf{H}^{n} - \mathcal{I}_{h}^{2}\mathbf{H}^{n}\|_{0} + \|\nabla \times (\mathbf{H}^{n} - \mathcal{I}_{h}^{2}\mathbf{H}^{n})\|_{0} \leqslant Ch^{s}\|\mathbf{H}^{n}\|_{s.\mathbf{curl}}$$
 (4.5)

for all $(E^n, H^n) \in H^s(\mathbf{curl}; \Omega) \times H^s(\mathbf{curl}; \Omega), \frac{1}{2} < s \le 1.$

Later on, we will need the following estimates for $B = H^s(\mathbf{curl}; \Omega)$ with $\frac{1}{2} < s \le 1$ or $B = H^{\alpha}(\Omega)^3$ with $\alpha \ge 0$:

$$\|\partial_{\tau} E^{n}\|_{0}^{2} \leqslant \frac{1}{\tau} \int_{t^{n-1}}^{t^{n}} \|H'(t)\|_{0}^{2} dt, \quad \forall E \in H^{1}(0, T; B),$$

$$(4.6)$$

$$\|\partial_{\tau} \mathbf{H}^{n}\|_{0}^{2} \leqslant \frac{1}{\tau} \int_{t^{n-1}}^{t^{n}} \|\mathbf{H}'(t)\|_{0}^{2} dt, \quad \forall \mathbf{H} \in H^{1}(0, T; B),$$

$$(4.7)$$

where notation $\partial_{\tau} \mathbf{p}^n = (\mathbf{p}^n - \mathbf{p}^{n-1})/\tau$.

Furthermore, we assume that

(H2) E_t , $H_t \in L^2(0, T; L^2(\Omega)^3)$; and

(H3) $(E^n)_n$, $(H^n)_n$ uniformly bounded in $H^s(curl, \Omega)$.

The following theorem is the main result of this section.

Theorem 4.2. Let (E^n, H^n) and (E_h^n, H_h^n) be the solutions of the semidiscrete scheme (3.2)–(3.3) and the fully discrete scheme (4.2)–(4.3), respectively. Assumptions (H1) and (H3) hold. Assume that for n = 1, ..., N,

 $E^n \in H_0(\mathbf{curl}; \Omega) \cap H^s(\mathbf{curl}; \Omega)$ and $H^n \in H(\mathbf{curl}; \Omega) \cap H^s(\mathbf{curl}; \Omega)$,

with $\frac{1}{2} < s \le 1$. Then, we have

$$\|\boldsymbol{\eta}_{\rm d}^{N}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{\rm d}^{N}\|_{\mu}^{2} + \frac{1}{2}\tau^{2} \sum_{n=1}^{N} \|\nabla \times \boldsymbol{\eta}_{\rm d}^{n}\|_{\mu^{-1}}^{2} \leqslant Ch^{2s}. \tag{4.8}$$

Proof. Step 1: Subtracting (4.2)–(4.3) from (3.2)–(3.3), respectively, and using the definitions of η_d^n and θ_d^n , we obtain

$$(\varepsilon \hat{o}_{\tau} \boldsymbol{\eta}_{d}^{n} + \sigma \boldsymbol{\eta}_{d}^{n}, \boldsymbol{F}_{h}) + \left(\frac{\tau}{\mu} \nabla \times \boldsymbol{\eta}_{d}^{n}, \nabla \times \boldsymbol{F}_{h}\right) - (\boldsymbol{\theta}_{d}^{n-1}, \nabla \times \boldsymbol{F}_{h})$$

$$= (\varepsilon \hat{o}_{\tau} (\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \boldsymbol{F}_{h}) + (\sigma (\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \boldsymbol{F}_{h})$$

$$+ (\tau \mu^{-1} \nabla \times (\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \nabla \times \boldsymbol{F}_{h})$$

$$- (\mathscr{I}_{h}^{2} \boldsymbol{H}^{n-1} - \boldsymbol{H}^{n-1}, \nabla \times \boldsymbol{F}_{h}), \quad \forall \boldsymbol{F}_{h} \in X_{h}.$$

$$(4.9)$$

and

$$\mu \partial_{\tau} \theta_{\mathrm{d}}^{n} + \nabla \times \boldsymbol{\eta}_{\mathrm{d}}^{n} = \nabla \times (\mathcal{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}) + \mu \partial_{\tau} (\mathcal{I}_{h}^{2} \boldsymbol{H}^{n} - \boldsymbol{H}^{n}). \tag{4.10}$$

Step 2: Taking $F_h = 2\tau \eta_d^n \in X_h$ in (4.9), we obtain

$$\begin{split} \| \boldsymbol{\eta}_{d}^{n} \|_{\varepsilon}^{2} + \| \boldsymbol{\eta}_{d}^{n} - \boldsymbol{\eta}_{d}^{n-1} \|_{\varepsilon}^{2} - \| \boldsymbol{\eta}_{d}^{n-1} \|_{\varepsilon}^{2} \\ + 2\tau \| \boldsymbol{\eta}_{d}^{n} \|_{\sigma}^{2} + 2\tau^{2} \| \nabla \times \boldsymbol{\eta}_{d}^{n} \|_{v}^{2} - 2\tau (\boldsymbol{\theta}_{d}^{n-1}, \nabla \times \boldsymbol{\eta}_{d}^{n}) \\ = 2\tau (\varepsilon \partial_{\tau} (\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \boldsymbol{\eta}_{d}^{n}) + 2\tau (\sigma (\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \boldsymbol{\eta}_{d}^{n}) \\ + 2\tau^{2} (\mu^{-1} \nabla \times (\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \nabla \times \boldsymbol{\eta}_{d}^{n}) \\ - 2\tau (\mathscr{I}_{h}^{2} \boldsymbol{H}^{n-1} - \boldsymbol{H}^{n-1}, \nabla \times \boldsymbol{\eta}_{d}^{n}). \end{split}$$
(4.11)

We take the inner product of (4.10) by $2\tau\theta_d^n \in V_h$, to obtain

$$\|\boldsymbol{\theta}_{d}^{n}\|_{\mu}^{2} + \|\boldsymbol{\theta}_{d}^{n} - \boldsymbol{\theta}_{d}^{n-1}\|_{\mu}^{2} - \|\boldsymbol{\theta}_{d}^{n-1}\|_{\mu}^{2} + 2\tau(\nabla \times \boldsymbol{\eta}_{d}^{n}, \boldsymbol{\theta}_{d}^{n})$$

$$= 2\tau(\nabla \times (\mathcal{I}_{b}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \boldsymbol{\theta}_{d}^{n}) + 2\tau(\mu \hat{o}_{\tau}(\mathcal{I}_{b}^{2} \boldsymbol{H}^{n} - \boldsymbol{H}^{n}), \boldsymbol{\theta}_{d}^{n}). \tag{4.12}$$

By adding up (4.11) and (4.12) we have

$$\| \boldsymbol{\eta}_{d}^{n} \|_{\varepsilon}^{2} + \| \boldsymbol{\eta}_{d}^{n} - \boldsymbol{\eta}_{d}^{n-1} \|_{\varepsilon}^{2} - \| \boldsymbol{\eta}_{d}^{n-1} \|_{\varepsilon}^{2} + 2\tau \| \boldsymbol{\eta}_{d}^{n} \|_{\sigma}^{2}$$

$$+ 2\tau^{2} \| \nabla \times \boldsymbol{\eta}_{d}^{n} \|_{v}^{2} + \| \boldsymbol{\theta}_{d}^{n} \|_{\mu}^{2} + \| \boldsymbol{\theta}_{d}^{n} - \boldsymbol{\theta}_{d}^{n-1} \|_{\mu}^{2} - \| \boldsymbol{\theta}_{d}^{n-1} \|_{\mu}^{2}$$

$$= 2\tau(\varepsilon \hat{o}_{\tau}(\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \boldsymbol{\eta}_{d}^{n}) + 2\tau(\mu \hat{o}_{\tau}(\mathscr{I}_{h}^{2} \boldsymbol{H}^{n} - \boldsymbol{H}^{n}), \boldsymbol{\theta}_{d}^{n})$$

$$+ 2\tau(\sigma(\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \boldsymbol{\eta}_{d}^{n}) - 2\tau(\boldsymbol{\theta}_{d}^{n} - \boldsymbol{\theta}_{d}^{n-1}, \nabla \times \boldsymbol{\eta}_{d}^{n})$$

$$- 2\tau(\mathscr{I}_{h}^{2} \boldsymbol{H}^{n-1} - \boldsymbol{H}^{n-1}, \nabla \times \boldsymbol{\eta}_{d}^{n}) + 2\tau(\nabla \times (\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \boldsymbol{\theta}_{d}^{n})$$

$$+ 2\tau^{2}(\mu^{-1} \nabla \times (\mathscr{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \nabla \times \boldsymbol{\eta}_{d}^{n}) =: \sum_{i=1}^{7} I_{i}.$$

$$(4.13)$$

Since, by (4.4)–(4.5) and (4.6)–(4.7)

$$\begin{split} &I_{1} \leqslant C\tau \|\boldsymbol{\eta}_{\mathrm{d}}^{n}\|_{\varepsilon}^{2} + C\tau \|\partial_{\tau}(\mathcal{I}_{h}^{1}E^{n} - E^{n})\|_{0}^{2} \\ &\leqslant C\tau \|\boldsymbol{\eta}_{\mathrm{d}}^{n}\|_{\varepsilon}^{2} + C\tau h^{2s} \|\partial_{\tau}E^{n}\|_{0}^{2} \\ &\leqslant C\tau \|\boldsymbol{\eta}_{\mathrm{d}}^{n}\|_{\varepsilon}^{2} + C\tau h^{2s} + Ch^{2s} \int_{t^{n-1}}^{t^{n}} \|E'(t)\|_{0}^{2} \, \mathrm{d}t, \\ &I_{2} \leqslant C\tau \|\boldsymbol{\theta}_{\mathrm{d}}^{n}\|_{\mu}^{2} + C\tau \|\partial_{\tau}(\mathcal{I}_{h}^{2}H^{n} - H^{n})\|_{0}^{2} \\ &\leqslant C\tau \|\boldsymbol{\theta}_{\mathrm{d}}^{n}\|_{\mu}^{2} + C\tau h^{2s} \|\partial_{\tau}H^{n}\|_{0}^{2} \\ &\leqslant C\tau \|\boldsymbol{\theta}_{\mathrm{d}}^{n}\|_{\mu}^{2} + C\tau h^{2s} + Ch^{2s} \int_{t^{n-1}}^{t^{n}} \|H'(t)\|_{0}^{2} \, \mathrm{d}t. \end{split}$$

and

$$\begin{split} I_{3} &\leqslant \tau \| \boldsymbol{\eta}_{d}^{n} \|_{\sigma}^{2} + C\tau \| \mathcal{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n} \|_{0}^{2} \leqslant \tau \| \boldsymbol{\eta}_{d}^{n} \|_{\sigma}^{2} + C\tau h^{2s} \| \boldsymbol{E}^{n} \|_{s,curl}^{2}, \\ I_{4} &= -2(\mu(\boldsymbol{\theta}_{d}^{n} - \boldsymbol{\theta}_{d}^{n-1}), \mu^{-1}\tau \nabla \times \boldsymbol{\eta}_{d}^{n}) \\ &\leqslant \| \boldsymbol{\theta}_{d}^{n} - \boldsymbol{\theta}_{d}^{n-1} \|_{\mu}^{2} + \tau^{2} \| \nabla \times \boldsymbol{\eta}_{d}^{n} \|_{\mu^{-1}}^{2}, \\ I_{5} &= -2\tau (\mathcal{I}_{h}^{2} \boldsymbol{H}^{n-1} - \boldsymbol{H}_{h}^{n-1}, \nabla \times \boldsymbol{\eta}_{d}^{n}) \\ &= -2\tau (\nabla \times (\mathcal{I}_{h}^{2} \boldsymbol{H}^{n-1} - \boldsymbol{H}^{n-1}), \boldsymbol{\eta}_{d}^{n}) \\ &\leqslant C\tau \| \nabla \times (\mathcal{I}_{h}^{2} \boldsymbol{H}^{n-1} - \boldsymbol{H}^{n-1}) \|_{\nu} + C\tau \| \boldsymbol{\eta}_{d}^{n} \|_{\mu}^{2} \\ &\leqslant C\tau h^{2s} \| \boldsymbol{H}^{n} \|_{s,curl}^{2} + C\tau \| \boldsymbol{\eta}_{d}^{n} \|_{\mu}^{2}, \\ I_{6} &\leqslant C\tau \| \boldsymbol{\theta}_{d}^{n} \|_{\mu} + C\tau \| \nabla \times (\mathcal{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}) \|_{\mu^{-1}}^{2} \\ &\leqslant C\tau \| \boldsymbol{\theta}_{d}^{n} \|_{\mu} + C\tau h^{2s} \| \boldsymbol{E}^{n} \|_{s,curl}^{2}, \\ I_{7} &= 2\tau^{2} (\nabla \times (\mathcal{I}_{h}^{1} \boldsymbol{E}^{n} - \boldsymbol{E}^{n}), \mu^{-1} \nabla \times \boldsymbol{\eta}_{d}^{n}) \\ &\leqslant C\tau^{2} h^{2s} \| \boldsymbol{E}^{n} \|_{s,curl}^{2} + \frac{1}{2}\tau^{2} \| \nabla \times \boldsymbol{\eta}_{d}^{n} \|_{\mu^{-1}}. \end{split}$$

By these bounds, it follows from (4.13) that

$$\|\boldsymbol{\eta}_{d}^{n}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{d}^{n}\|_{\mu}^{2} + \tau \|\boldsymbol{\eta}_{d}^{n}\|_{\sigma}^{2} + \frac{1}{2}\tau^{2}\|\nabla \times \boldsymbol{\eta}_{d}^{n}\|_{v}^{2}$$

$$\leq \|\boldsymbol{\eta}_{d}^{n-1}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{d}^{n-1}\|_{\mu}^{2} + C\tau(\|\boldsymbol{\eta}_{d}^{n}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{d}^{n}\|_{\mu}^{2})$$

$$+ C\tau h^{2s}(\|\boldsymbol{E}^{n}\|_{s,curl}^{2} + \|\boldsymbol{H}^{n}\|_{s,curl}^{2})$$

$$+ Ch^{2s} \int_{t^{n-1}}^{t^{n}} (\|\boldsymbol{E}'(t)\|_{0}^{2} + \|\boldsymbol{H}'(t)\|_{0}^{2}) dt. \tag{4.14}$$

Step 3: After summing up (4.14) from n = 1, ..., N, we gain

$$\|\boldsymbol{\eta}_{d}^{N}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{d}^{N}\|_{\mu}^{2} + \tau \sum_{n=1}^{N} \|\boldsymbol{\eta}_{d}^{n}\|_{\sigma}^{2} + \frac{1}{2}\tau^{2} \sum_{n=1}^{N} \|\nabla \times \boldsymbol{\eta}_{d}^{n}\|_{\nu}^{2}$$

$$\leq \|\boldsymbol{\eta}_{d}^{0}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{d}^{0}\|_{\mu}^{2} + C\tau \sum_{n=1}^{N} (\|\boldsymbol{\eta}_{d}^{n}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{d}^{n}\|_{\mu}^{2})$$

$$+ Ch^{2s} (\|\boldsymbol{E}^{n}\|_{s,curl}^{2} + \|\boldsymbol{H}^{n}\|_{s,curl}^{2})$$

$$+ Ch^{2s} \int_{0}^{T} (\|\boldsymbol{E}'(t)\|_{0}^{2} + \|\boldsymbol{H}'(t)\|_{0}^{2}) dt. \tag{4.15}$$

By the discrete Gronwall inequality Lemma 2.1 and initialization condition (4.1), one can easily see that

$$\|\boldsymbol{\eta}_{\rm d}^{N}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}_{\rm d}^{N}\|_{\mu}^{2} + \frac{1}{2}\tau^{2}\sum_{n=1}^{N}\|\nabla\times\boldsymbol{\eta}_{\rm d}^{n}\|_{v}^{2} \leq Ch^{2s},$$

which completes the proof of this theorem. \Box

As a consequence of the previous results, we have the following so-called global error bounds.

Corollary 4.3. Assume that the conditions of Theorems 3.1 and 4.2 hold. Assume also that, for n = 1, ..., N,

$$E^n \in H_0(\mathbf{curl}, \Omega) \cap H^s(\mathbf{curl}, \Omega)$$
 and $H^n \in H(\mathbf{curl}, \Omega) \cap H^s(\mathbf{curl}, \Omega), \frac{1}{2} < s \le 1$

and that they are uniformly bounded in these spaces. Then there exists a constant C > 0 independent of τ and h such that, for small enough τ :

$$\|\boldsymbol{\eta}^{N}\|_{\varepsilon}^{2} + \|\boldsymbol{\theta}^{N}\|_{\mu}^{2} + \frac{1}{2}\tau^{2} \sum_{n=1}^{N} \|\nabla \times \boldsymbol{\eta}^{n}\|_{v}^{2} \leqslant C(\tau^{2} + h^{2s}). \tag{4.16}$$

Proof. By the definition of η^n and θ^n , (4.16) follows from (3.4), (4.4)–(4.5) and (4.8). \square

5. Numerical results

In this section we present some numerical test for the fully discrete decoupled scheme in Section 4. Assume that $\Omega = [0, 1]^3$, [0, T] = [0, 1] and the parameters used in the test were $\varepsilon = 0.2$, $\sigma = 0.0$, $\mu = 2.5$, and the source electric current density was

$$J_s = (1.4\cos(2t - 3z), 1.4\cos(2t - 3x), 1.4\cos(2t - 3y))^{\mathrm{T}}.$$

This example has an exact solution

$$\mathbf{H} = (0.4\sin(2t - 3y), 0.4\sin(2t - 3z), 0.4\sin(2t - 3x))^{\mathrm{T}},$$

$$E = (\sin(2t - 3z), \sin(2t - 3x), \sin(2t - 3y))^{\mathrm{T}}.$$

Error notations are introduced as follows:

$$\operatorname{Err}(\mathbf{H}_{i}^{n}) = \|[\mathbf{H}(t^{n}) - \mathbf{H}_{h}^{n}]_{i}\|_{0}, \quad \operatorname{Err}(\mathbf{E}_{i}^{n}) = \|[\mathbf{E}(t^{n}) - \mathbf{E}_{h}^{n}]_{i}\|_{0},$$

Table 1 Error of the electric field E

Mesh size	$\operatorname{Err}(E_1^n)$	$\operatorname{Err}(E_2^n)$	$\operatorname{Err}(E_3^n)$
$h = \frac{1}{2}$	3.7485E-01	3.7485E-01	3.7485E-01
$h = \frac{1}{4}$	1.1871E-01	1.6016E-01	1.2591E-01
$h = \frac{1}{8}$	4.3757E-02	8.8904E-02	4.3899E-02
$h = \frac{1}{16}$	1.5095E-02	4.3004E-02	1.4297E-02

(Take time stepsize $\tau = 1/32$)

Table 2 Error of the magnetic field *H*

Mesh size	$\operatorname{Err}\left(\boldsymbol{H}_{1}^{n}\right)$	$\operatorname{Err}(\boldsymbol{H}_2^n)$	$\operatorname{Err}(\boldsymbol{H}_3^n)$
$h = \frac{1}{2}$	4.5693E-01	4.5693E-01	4.5693E-01
$h = \frac{1}{4}$	2.2853E-01	2.2672E-01	2.2894E-01
$h = \frac{1}{8}$	9.3632E-02	9.3062E-02	9.2414E-02
$h = \frac{1}{16}$	4.3261E-02	4.3211E-02	4.2540E-02

(Take time stepsize $\tau = 1/32$)

Table 3 Error of the electric field *E*

Times stepsize	$\operatorname{Err}(E_1^n)$	$\operatorname{Err}(\boldsymbol{E}_2^n)$	$\operatorname{Err}\left(\boldsymbol{E}_{3}^{n}\right)$
$\tau = \frac{1}{2}$	1.5050E-01	1.2310E-01	1.5011E-01
$\tau = \frac{1}{4}$	8.0182E-02	3.8055E-02	7.9568E-02
$\tau = \frac{1}{8}$	3.3259E-02	2.3857E-02	3.2390E-02
$\tau = \frac{1}{16}$	1.5641E-02	4.2510E-02	1.4628E-02
$\tau = \frac{1}{32}$	1.5095E-02	4.3004E-02	1.4297E-02
$\tau = \frac{1}{64}$	2.6318E-02	4.3107E-02	2.5848E-02

(Take mesh size h = 1/16)

where the subscript i(i=1,2,3) denotes the *i*th component of the electric field E or magnetic field H. The numerical results are given in Tables 1–4 using different time stepsize τ or mesh size h.

Table 4
Error of the electric field *H*

Time stepsize F	Err (H_1^n)	$\operatorname{Err}(H_2^n)$	Err (\boldsymbol{H}_3^n)
$\tau = \frac{1}{2}$	3.6760E-01	3.7313E-01	3.7533E-01
$\tau = \frac{1}{4}$	1.8112E-01	1.8532E-01	1.8540E-01
$\tau = \frac{1}{8}$	9.4931E-02	9.5222E-02	9.5006E-02
$\tau = \frac{1}{16}$	4.3735E-02	4.7869E-02	4.6409E-02
$\tau = \frac{1}{32}$	2.3267E-02	2.3211E-02	2.3540E-02
$\tau = \frac{1}{64}$	1.1095E-02	1.1881E-02	1.2063E-02

(Take mesh size h = 1/16)

References

- [1] F. Assous, P. Degond, E. Heintzé, P.-A. Raviart, J. Segré, On the finite element method for solving the three-dimensional Maxwell equations, J. Comput. Phys. 109 (1993) 222–237.
- [2] R. Albanese, G. Rubinacci, Formulation of the eddy-current problem, IEE Proc. 137 (1 Pt. A) (1990) 16–22.
- [3] Z. Chen, Q. Du, J. Zou, Finite element methods with matching and non-matching meshes for Maxwell's equations with discontinuous coefficients, SIAM J. Numer. Anal. 37 (2000) 1542–1570.
- [4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
- [5] P. Ciarlet Jr., J. Zou, Finite element convergence for the Darwin model to Maxwell's equations, RAIRO Math. Modelling Numer. Anal. 31 (1997) 213–250.
- [6] P. Ciarlet Jr., J. Zou, Fully discrete finite element approaches for time-dependent Maxwell's equations, Numer. Math. 82 (1999) 193–219.
- [7] V. Girault, P.A. Raviart, Finite Element Method for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer, Berlin, New York, 1986.
- [8] C. Makriddakis, P. Monk, Time-discrete finite element schemes for Maxwell equations, RAIRO Math. Modelling Numer. Anal. 29 (1995) 171–197.
- [9] P. Monk, Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal. 29 (1992) 714–729.
- [10] J.-C. Nédélec, A new family of mixed finite elements in \mathbb{R}^3 , Numer. Math. 50 (1986) 57–81.
- [11] R. Nicolaides, D.-Q. Wang, Covegence analysis of a covolume scheme for Maxwell equations in three dimensions, Math. Comput. 67 (1998) 947–963.
- [12] J.T. Oden, J.N. Reddy, An Introduction to The Mathematical Theory of Finite Elements, Wiley, New York, 1974.
- [13] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23, Springer, Berlin, 1994.
- [14] P.-A. Raviart, Finite element approximation of the time-dependent Maxwell equations, Technical Report, Ecole Polytechnique, France, GdR SPARCH #6, 1993.