

CDS 533 Statistics for Data Science

Instructor: Lisha Yu

Division of Artificial Intelligence

School of Data Science

Lingnan University

Fall 2024

Big Picture of Statistics

Inferential Statistics

Inferential statistics

- Draw conclusion from data
- Sample
 - Describe data
- Use sample statistic to infer population parameter
 - Estimation
 - Hypothesis testing

Real World Problem

Suppose you are a quality analyst at a bulb manufacturing company and analyze the reliability of bulbs. Historically, 70% of the bulbs pass the reliability test.

Now, a slightly altered manufacturing process(B) has been introduced to produce the bulbs.

Can you conclude whether the new process improves the reliability of the bulbs?

Gathering Evidence for Statistical Inference

We selected a random sample of 100 bulbs out of which 73 are reliable. Does this provide strong evidence that the new manufacturing process is

more reliable?

A similar experiment was run with yet another manufacturing process (C). A sample of 100 bulbs produced using this process had 81 reliable

bulbs.

Why Hypothesis

Estimation

The problem of estimation is considered, when there is no previous knowledge of the population parameter. The problem is simpler in that case. A random sample is taken, a sample statistic is computed and an appropriate point and interval estimate is suggested.

Hypothesis Testing

Often the interest is not in the numerical value of the point estimate of the parameter, but in knowing the plausibility of a hypothesis about the population parameter by using sample data. Estimation is not enough to arrive at a conclusion in such cases.

Definitions

In statistics,

a hypothesis is a statement or claim about a property of a population.

• The "property of a population" is often the value of a population parameter (such as mean or variance)

For **example**, your **hypothesis** might be:

Definitions

Example:

Hypothesis

Men earn more than women in Germany.

In statistics,

a **hypothesis test** (or test of significance) is a standard procedure for testing a claim about the value of a population parameter in the light of the evidence gathered from the sample.

Hypothesis Test

But can we just test every statement?

Hypotheses are **formulated** in such a way

that in the further research process

they can be tested with collected **data**.

Overview of Applications

Motivation

Law of Universal Gravitation

General Theory of Relativity

Motivation

Components of a Formal Hypothesis Test

- 1. Form Hypothesis
- 2. State Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Forming Hypothesis

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Statistical hypothesis

- A statement, or claim, about a population parameter.
- Need a pair of hypotheses
 - one that represents the claim
 - the other, its complement
- When one of these hypotheses is false, the other must be true.

Forming Hypothesis

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Null hypothesis (denoted by H_0) is a statement that the value of a population parameter is equal to some claimed value.

- MUST contain condition of equality
- ➤ No effect or no difference
- \triangleright Symbolic form: =, \geq , \leq
- ➤ Read "H subzero" or "H naught"

Alternative hypothesis (denoted by H_a) is the statement that the parameter has a value that differs from the null hypothesis.

- >Hypothetical statement that the researcher wants to test.
- \triangleright Symbolic form : \neq , >, <
- ➤ Read "H sub-a"

Forming Hypothesis-Examples

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

State the null and alternative hypotheses that would be used to test each of the following statements:

 A manufacturer claims that the average life of a transistor is less than 1000 hours (h)

```
H0: \mu \ge 1000
H1: \mu < 1000
```

 A pharmaceutical firm maintains that the average time for a certain drug to take effect is 15 mins

```
H0: \mu = 15
H1: \mu \neq 15
```

The mean starting salary of graduates is higher than R50000 per annum

```
H0: \mu = 50000
H1: \mu > 50000
```

Types of Errors

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion
- No matter which hypothesis represents the claim, always begin the hypothesis test assuming that the equality condition in the null hypothesis is true.
- At the end of the test, one of two decisions will be made:
 - reject the null hypothesis
 - fail to reject the null hypothesis
- Because your decision is based on a sample, there is the possibility of making the wrong decision.

Types of Errors

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

	Actual Truth of H ₀	
Decision	H_0 is true	H_0 is false
Do not reject H ₀	Correct Decision	Type II Error = β
Reject H ₀	Type I Error = α	Correct Decision

- A type I error occurs if the null hypothesis is rejected when it is true.
- A type II error occurs if the null hypothesis is not rejected when it is false.

Level of Significance

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Level of significance

- Your maximum allowable probability of making a type I error.
 - Denoted by a
- [Pre-specified] By setting a at a small value, you are saying that you want the probability of rejecting a true null hypothesis to be small.
- Commonly used levels of significance:

•
$$a = 0.10$$
 $a = 0.05$

$$a = 0.05$$

$$a = 0.01$$

	Actual Truth of H₀	
Decision	H_0 is true	H_0 is false
Do not reject H ₀	Correct Decision	Type II Error=β
Reject H ₀	Type I Error = α	Correct Decision

- $\alpha = P(\text{type I error}) = P(\text{rejecting } H_0 \text{ when } H_0 \text{ is true})$
- $\beta = P(\text{type II error}) = P(\text{failing to reject } H_0 \text{ when } H_0 \text{ is false})$

(Power of a hypothesis test: 1- β : rejecting a false null hypothesis.)

- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

- Statistical Tests
 - To decide whether H_0 will be rejected or not , a value, called the TEST STATISTIC has to be calculated by using sample results

There are different test statistics for testing:

- One-Sample (single population)
 - Mean, Proportion, Variance
- Two-Samples (Difference between two populations)
 - Mean, Proportion, Variance

Parameter	Sampling Distribution	Test Statistics
Proportion: p	Normal (<i>Z</i>)	$Z = \frac{\hat{p} - p}{\sqrt{pq/n}}$
Mean: μ	t	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$
Mean: μ	Normal (Z)	$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$
Standard Deviation: σ Or Variance: σ^2	χ²	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

Critical Region

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Distribution of test statistic often follows a certain distribution.

- Distribution can be divided into 2 regions:
 - A region of rejection (Critical region)
 - A region of non- rejection

- Critical region set of all values of the test statistic that would cause a rejection of the null hypothesis.
- Critical Value value or values that separate the critical region from the values of the test statistics that do not lead to a rejection of the null hypothesis.

Types of the Test

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion
- The type of test depends on the region of the sampling distribution that favors a rejection of H_0 .
- This region is indicated by the alternative hypothesis.

Three types of hypothesis tests

- Left-tailed test
- Right-tailed test
- Two-tailed test

Types of the Test

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Test statistic value does not change for two-tailed or one-tailed test. Only the critical value(s) associated with the test statistic changes.

Testing Methods

Critical Value Method

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

To use a rejection region to conduct a hypothesis test, calculate the **test statistic**. If the standardized test statistic

- 1. is in the rejection region, then reject H_0 .
- 2. is not in the rejection region, then fail to reject H_0 .

Critical Value Method: Example

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Find the critical value and rejection region for a two-tailed test with a=0.05. The Sampling distribution is normal.

The rejection regions are to the left of $-z_0$ =-1.96 and to the right of z_0 =1.96

Testing Methods

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

P-value (or probability value)

- The probability, if the null hypothesis is true, of obtaining a sample statistic with a value as extreme or more extreme than the one determined from the sample data, assuming that the null hypothesis is true.
- Use test statistic to find the probability.
- Depends on the Types of the test.

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Two-tailed Test

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Left-tailed Test

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Right-tailed Test

Test Statistic

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Decision Rule Based on P-value

- Compare the P-value with a.
 - If $P \leq a$, reject H_0 .
 - If P > a, fail to reject H_0 .

Here is a memory tool useful for interpreting the P-value:

If the P is low, the null must go. If the P is high, the null will fly.

P-Value Method: Example

For each claim, state H_0 and H_a . Then determine whether the hypothesis test is a left-tailed, right-tailed, or two-tailed test. Sketch a normal sampling distribution and shade the area for the P-value.

1. A university publicizes that the proportion of its students who graduate in 4 years is 82%.

Solution:

$$H_0$$
: $p = 0.82$
 H_a : $p \neq 0.82$

$$H_{\rm a}$$
: $p \neq 0.82$

P-Value Method: Example

For each claim, state H_0 and H_a . Then determine whether the hypothesis test is a left-tailed, right-tailed, or two-tailed test. Sketch a normal sampling distribution and shade the area for the P-value.

2. A water faucet manufacturer announces that the mean flow rate of a certain type of faucet is less than 2.5 gallons per minute.

Solution:

 H_0 : $\mu \ge 2.5$ gpm

 H_a : $\mu < 2.5 \text{ gpm}$

P-Value Method: Example

For each claim, state H_0 and H_a . Then determine whether the hypothesis test is a left-tailed, right-tailed, or two-tailed test. Sketch a normal sampling distribution and shade the area for the P-value.

3. A cereal company advertises that the mean weight of the contents of its 20-ounce size cereal boxes is more than 20 ounces.

Solution:

$$H_0$$
: $\mu \le 20$ oz

$$H_a$$
: $\mu > 20$ oz

Conclusions

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

1. Critical Value Method

- Reject H_0 if the test statistic falls in the critical region
- Fail to reject H_0 if the test statistic does not fall in the critical region

2. P-Value Method

- Reject H_0 if the P-value is less than or equal a, i.e. $P \leq \alpha$
- Fail to reject H_0 if the P-value is greater than the a, i.e., P > a

We are not proving the null hypothesis.

Conclusions

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Wording of final conclusion

1. Reject the H_0

```
Conclusion: There <u>is</u> sufficient (enough) evidence to conclude......(what ever H_a says)
```

2. Fail to reject the H_0

```
Conclusion: There <u>is not</u> sufficient (enough) evidence to conclude......(what ever H_a says)
```

Conclusions

- 1. Form Hypothesis
- 2. Select Significance Level
- 3. Calculate Test Statistic
- 4. Find Critical Value(s)
- 5. Conclusion

Wording of final conclusion

1. Reject the H_0

```
Conclusion: There <u>is</u> sufficient (enough) evidence to conclude......(what ever H_a says)
```

2. Fail to reject the H_0

```
Conclusion: There <u>is not</u> sufficient (enough) evidence to conclude......(what ever H_a says)
```

Steps of Hypothesis Test

- 1. Determine H_0 and H_a . (and a if necessary)
- Determine the correct test statistic and calculate.
- 3. Determine the critical values and sketch a graph.
- 4. Determine Reject H_0 or Fail to reject H_0
- 5. State conclusion in simple nontechnical terms.

Hypothesis Testing

One-sample

Hypothesis Test for

Mean

- Large sample
- Small sample

Proportion

Variance

Mean with $n \geq 30$ or σ is known

Z-test

Assumption:

- 1. The sample is a random sample.
- 2. The sample is large (n>30): a)CLT applies; b)Can use normal
- 3. If σ is known

Notation

```
\bar{x}= sample mean \mu= hypothesized population mean \sigma= population standard deviation n= sample size
```

Mean with $n \geq 30$ or σ is known

Example

It will be cost effective to employee an additional staff member at a well known take away restaurant if the average sales for a day is more than 11,000 per day. A sample of 60 days were selected and the average sales for the 60 days were 11,841 with a standard deviation of 1,630. Test if it will be cost effective to employ an additional staff member. Assume a normal distributed population. Use $\alpha = 0.05$

Solution

$$- H_0$$
: $\mu = 11 000$

$$- H_1: \mu > 11 000$$

$$-\alpha = 0.05$$

$$z = \frac{\overline{x} - \mu_0}{\left(\frac{s}{\sqrt{n}}\right)} = \frac{11841 - 11000}{\frac{1630}{\sqrt{60}}}$$

- Reject H₀

At α = 0,05 if it will be cost effective to employ an additional staff member – the average monthly income is more than R11 000

Critical value $Z_{1-\alpha} = Z_{0.95} = 1.65$

Mean with n < 30 and σ is unknown **t-test**

Assumption:

- 1. The sample is a random sample.
- 2. The sample is small (n≤30): a) Population is approximately normal
- 3. If σ is unknown

Notation

```
\bar{x} = \text{sample mean}
```

 μ = hypothesized population mean

s = Sample standard deviation

n = sample size

Mean with n < 30 and σ is unknown

 H_1 : $\mu < \mu_0$

Testing H_0 : $\mu = \mu_0$ for n < 30Alternative Decision rule: hypothesis Reject H_0 if H_1 : $\mu \neq \mu_0$ $|t| \geq t_{n-1;1-\alpha/2}$ $t \geq t_{n-1;1-\alpha}$

 $t \leq -t_{n-1:1-\alpha}$

Test statistic

$$t = \frac{\overline{x} - \mu_0}{\left(\frac{s}{\sqrt{n}}\right)}$$

Example

Government claims that patients will wait less than 30 minutes on average to see a doctor. A random sample of 25 patients revealed that their average waiting time was 28 minutes with a standard deviation of 8 minutes. On a 1% level of significance can we say that the claim from government is correct?

Solution

At
$$\alpha = 0.01$$
 we can not say that the average waiting time at clinics is less than 30 minutes
$$-\alpha = 0.01$$

$$t = \frac{\overline{x} - \mu_0}{\left(\frac{s}{\sqrt{n}}\right)} = \frac{28 - 30}{\frac{8}{\sqrt{25}}} = -1.25$$

$$-\text{Accept H}_0$$
At $\alpha = 0.01$ we can not say that the average waiting time at clinics is less than 30 minutes
$$\alpha = 0.01$$

$$\alpha = 0.01$$
Reject H₀ Accept H₀

 $t_{n-1;1-\alpha} = t_{24;0.99} = -2.492$

Assumption:

- 1. The sample is a random sample.
- 2. The conditions np \geq 5 and nq \geq 5 are both satisfied ($\mu = np$, $\sigma = \sqrt{npq}$)

Notation

```
n = sample size or number of trials p = population proportion (used in the null hypothesis) \hat{p} = \frac{x}{n} = Sample proportion
```

 \hat{p} sometimes is given directly "10% of the observed sports cars are red" is expressed as $\hat{p} = 0.10$

Notes:

**p sometimes must be calculated

"96 surveyed households have cable TV and 54 do not" is calculated using

**p = x = 96 = 0.64

Testing H_0 : $p = p_0$ for $n \ge 30$

Alternative hypothesis

Decision rule: Reject H₀ if

Test statistic

$$H_1$$
: $p \neq p_0$

$$|\mathbf{z}| \geq \mathbf{Z}_{1-\alpha/2}$$

$$H_1: p > p_0$$

$$z \geq Z_{1-\alpha}$$

$$H_1: p < p_0$$

$$z \leq -Z_{1-\alpha}$$

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Example

A market research company investigates the claim of a supplier that 35% of potential buyers are preferring their brand of milk. A survey was done in several supermarkets and it was found that 61 of the 145 shoppers indicated that they will buy the specific brand of milk. Assist the research company with the claim of the supplier on a 10% level of significance.

Solution

- The population of interest is the proportion of buyers
- Want to test the claim that the proportion is 35% = 0.35
- $H_0: p = 0.35$
- The alternative hypothesis must specify that the proportion is not 35%
- $H_1 : p \neq 0.35$
- Sample proportion $\hat{p} = \frac{\text{number of successes}}{\text{sample size}} = \frac{x}{n} = \frac{61}{145} = 0,42$
- Need to test if $0.42(\hat{p})$ is significant different from 0.35(p)

Solution

At α = 0,10 we can <u>not</u> say that 35% of the clients will prefer the brand of milk

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0,42 - 0,35}{\sqrt{0,35(1 - 0,35)}} = 1,76$$

- Reject H₀

$$Z_{1-\alpha/2} = Z_{0.95} = +/-1.65$$

p-value=2P(z>1.76)=2(1-0.9608)=0.0784
$$\alpha$$
=0.1

P-value=0.0784<0.1 -> Reject

TABLE A-2 (continued) Cumulative Area from the LEFT

Ξ	Z	.00	.01	.02	.03	.04	.05	.06	.07
П	0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279
	0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675
	0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064
	0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443
	0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808
	0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157
	0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486
	0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794
	0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078
	0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340
	1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577
	1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790
	1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980
	1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147
	1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292
	1.5	.9332	.9345	.9357	.9370	.9382	.9394	.940/	.9418
	1.6	.9452	.9463	.9474	.9484	.9495 *	.9505	.95	.9525
	1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616
	1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693

One-sample: Variance

Chi-Square Statistic

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

with degrees of freedom df = n-1, formally denoted as χ_{n-1}^2 .

	Testing H_0 : $\sigma^2 = \sigma^2$	20
Alternative hypothesis	Decision rule: Reject H ₀ if	Test statistic
$H_1: \sigma^2 \neq \sigma_0^2$	$X^{2} \le X^{2}_{n-1;\alpha/2}$ or $X^{2} \ge X^{2}_{n-1;1-\alpha/2}$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$
	$X^2 \ge X^2_{n-1;1-\alpha}$	σ_0^2
$H_1: \sigma^2 < \sigma^2_0$		

One-sample: Variance

Example

The variation in the content of a 340ml can of beer should be more than $10ml^2$. To test the validity of this, 25 cans of beers revealed a variance of 12 ml^2 . On a 5% level of significance can we say the variation in the content of the cans is too large?

One-sample: Variance

 $\alpha = 0.05$

Solution

$$- H_0: \sigma^2 = 10$$

$$- H_1: \sigma^2 > 10$$

$$-\alpha = 0.05$$

$$\chi^{2} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}} = \frac{(25-1)12}{10}$$
 Accept H₀ Reject H

- Accept H₀

$$X_{n-1; 1-\alpha}^2 = X_{24; 0.95}^2 = 36.42$$

At α = 0,05 we can <u>not</u> say that the variation in the content of the cans is more than 10ml²

p-value=P(χ 2 >28.8) is between 0.9 and 0.1 α =0.05

P-value>0.05 -> Fail to reject.

				Area to th	o Diahtoftha Ca	itical Value		
	Area to the Right of the Critical Value							
Degrees of Freedom	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025
1	_	_	0.001	0.004	0.016	2.706	3.841	5.024
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143
5	0.412	0.554	0.831	1.145	1.610	9.236	11.071	12.833
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852
20	7.434	8.260	9.591	10.851	12.443	7 412	31.410	34.170
21	8.034	8.897	10.283	11.591	13.240	<i>5</i> 15	32.671	35.479
22	8.643	9.542	10.982	12.338	14.042	0.813	33.924	36.781
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646

Comparison with Confidence Interval

The inferences from the hypothesis test and the confidence interval are consistent with each other.

- If we are 99% confident that 98.1 < μ < 98.4, then the two-sided p-value for the null hypothesis μ = 98.6 must be less than 0.01, and it is.
- The hypothesis test quantifies evidence against a null hypothesis with a probability (of observing a result at least as extreme as that observed, assuming the null hypothesis is true), on a scale from 0 to 1.
- ➤ A confidence interval quantifies uncertainty on the scale of the measurements of the data.
- Thus, confidence intervals provide information in the context of the problem, and thus are more informative to the reader with background knowledge.
- A confidence interval allows the reader to ascertain the practical importance of the inference.

Hypothesis Testing

CDS 533

Two-samples

Hypothesis Test for

Difference between two means

- Large sample
- Small sample

Difference between two proportions

Difference between two Variances

Hypothesis tests for comparing two Populations

```
- H_0: Population 1 parameter = Population 2 parameter

- H_1: Population 1 parameter \neq Population 2 parameter

- H_1: Population 1 parameter > Population 2 parameter

- H_1: Population 1 parameter < Population 2 parameter
```

Two-samples: Means

Compares two parameters from two populations. Sampling methods:

Independent Samples

The sample selected from one population is not related to the sample selected from the second population.

- Large samples
- Small samples

Dependent Samples (paired or matched samples)

Each member of one sample corresponds to a member of the other sample.

Independent and Dependent Samples

Independent Samples

Dependent Samples

Two-samples: Independent means

[Unequal Variance] $\sigma_1^2 \neq \sigma_2^2$

Two-samples: Independent means

[*Equal Variance*] $\sigma_1^2 = \sigma_2^2$ (homogeneity of variance)

Testing H_0 : $\mu_1 = \mu_2$ for $n_1 < 30$ and $n_2 < 30$

Alternative hypothesis

Decision rule: Reject H₀ if

$$H_1$$
: $\mu_1 \neq \mu_2$

$$|t| \ge t_{n1+n2-2; 1-\alpha/2}$$

$$H_1: \mu_1 > \mu_2$$

$$t \ge t_{n1+n2-2; 1-\alpha}$$

$$H_1: \mu_1 < \mu_2$$

$$t \le -t_{n1+n2-2;1-\alpha}$$

Test statistic

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \quad \text{with}$$

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Two-samples: Independent Means

Example

There is a belief that people staying in Cape Town travel less than people staying in Johannesburg. Random samples of 43 people in Cape Town and 39 in Johannesburg were drawn. For each person the distance travelled during October were recorded. Test the belief on a 5% level of significance.

Cape Town	Johanesburg
$\overline{x_1} = 604$	$\overline{x_2}$ = 633
n_1 = 43	n_2 = 39
$s_1 = 64$	$s_2 = 103$

Two-samples: Independent Means

• From the data: Cape Town Johan $\overline{x}_1 = 604$ Johan $\overline{x}_2 = 604$ The belief that people staying in Cape Town travel less than people staying in Johannesburg is <u>not</u> true on a 5% level of significance on a 5% le

p-value=P(z <-1.51) is 0.655 α =0.05 P-value>0.05 -> Fail to reject.

TABLE A-2 Standard Normal (z) Distribution: Cumulative Area from the LEFT

z	.00	.01	.02	.03	.04	.05	.06	.07
-3.50 and lower	.0001							
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004
- 3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005
- 3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116
- 2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307
-1.7	.0446	-047	.0427	.0418	.0409	.0401	.0392	.0384
-1.6	.0548	.0.	.0526	.0516	.0505	* .0495	.0485	.0475
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020

Two-samples: Dependent means (Paired)

$$\sigma_1^2 = \sigma_2^2$$

		Observation				
	1	2	3		n	
Sample 1 Sample 2	X_{11} X_{21}	$\begin{array}{c} X_{12} \\ X_{22} \end{array}$	$X_{13} X_{23}$		X_{1n} X_{2n}	
Difference (d)	$d_1 \ (X_{11} - X_{21})$		$d_3 = (X_{13} -$	(X_{1n})	d_n X_{2n}	

$$\overline{d} = \frac{1}{n} \sum d$$
 and $s_d = \sqrt{\frac{\sum d^2 - \frac{1}{n} \left(\sum d\right)^2}{n-1}}$

Two-samples: Dependent means (Paired)

$$\sigma_1^2 = \sigma_2^2$$

	Testing H_0 : $\mu_1 = \mu_2$	
Alternative hypothesis	Decision rule: Reject H ₀ if	Test statistic
H_1 : $\mu_1 \neq \mu_2$	$ t \geq t_{n-1\;;\;1\text{-}\;\alpha/2}$	\bar{d}
$H_1: \mu_1 > \mu_2$	$t \geq t_{n-1; 1-\alpha}$	$l = \frac{1}{\left(\frac{S_d}{\sqrt{n}}\right)}$
$H_1: \mu_1 < \mu_2$	$t \leq -t_{n-1;1-\alpha}$	$\langle n \rangle$

CDS 533

Two-samples: Paired Means

Example

Blood samples for 10 different types of test were analyzed by the traditional laboratories and by the newly equipped laboratories. The time, in minutes, were captured for each test. Did the time reduce? $\alpha = 0.01$

Blood sample	Existing lab	New lab
1	47	70
2	65	83
3	59	78
4	61	46
5	75	74
6	65	56
7	73	74
8	85	52
9	97	99
10	84	57

- -Calculate the difference for each row
- -Calculate the average differences and the standard deviation of the differences

$$\bar{x}_d$$
 =2.2

$$s_d$$
 =19.14

Two-samples: Paired Means

- The hypotheses test for this problem is

$$H_0$$
: $\mu_1 = \mu_2$
 H_1 : $\mu_1 > \mu_2$

- The statistic is

$$t = \frac{\overline{d}}{\left(\frac{s_d}{\sqrt{n}}\right)}$$
$$= \frac{2,2}{19,14/\sqrt{10}}$$
$$= 0.36$$

Using α = 0.01, introducing some new equipment the time taken did **not** reduce.

p-value=P(t >0.36) >0.1 α =0.01 P-value>0.01 -> Fail to reject.

TABLE A-3 t Distribution: Critical t Values

			Area in One Tail		
	0.005	0.01	0.025	0.05	0.10
Degrees of Freedom	0.01	0.00	Area in Two Tails	0.10	0.20
	0.01	0.02	0.05	0.10	0.20
1	63.657	31.821	12.706	6.314	3.078
2	9.925	6.965	4.303	2.920	1.886
3	5.841	4.541	3.182	2.353	1.638
4	4.604	3.747	2.776	2.132	1.533
5	4.032	3.365	2.571	2.015	1.476
6	3.707	3.143	2.447	1.943	1.440
7	3.499	2.998	2.365	1.895	1.415
8	3.355	2.896	2.306	1.860	1.397
9	3.250	2.821	2.262	1.833	1.383
10	3.169	2.764	2.228	1.812	1.372
11	3.106	2.718	2.201	1.796	1.363
12	3.055	2.681	2.179	1.782	1.356
13	3.012	2.650	2.160	1.771	1.350
14	2.977	2.624	2.145	1.761	1.345
15	2.947	2.602	2.131	1.753	1.341

Two-samples: Means

Two-samples: Proportions

Testing H_0 : $p_1 = p_2$ for $n_1 \ge 30$ and $n_2 \ge 30$						
Alternative hypothesis	Decision rule: Reject H ₀ if	Test statistic				
$H_1: p_1 \neq p_2$	$ \mathbf{z} \geq \mathbf{Z}_{1-\alpha/2}$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{1 + \frac{1}{2}}}$				
$H_1: p_1 > p_2$	$z \geq Z_{1-\alpha}$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$				
$H_1: p_1 < p_2$	$z \leq -Z_{1-\alpha}$	where $\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$				

Two-samples: Proportion

Example

A clothing manufacturer introduced two new swim suit ranges on the market. Of the 266 clients asked if they will wear range A, 85 indicated they will. Of the 192 clients asked if they will wear range B, 50 indicated they will. Can we say there is a difference in the preferences of the two ranges. Use $\alpha = 0.05$.

Two-samples: Proportion

From the data:

- Range A:
$$\hat{p}_1 = \frac{85}{266} = 0,32$$
 Range B: $\hat{p}_2 = \frac{50}{192} = 0,26$

- $\hat{p} = \frac{266(0,32) + 192(0,26)}{266 + 192} = 0,29$

- H_0 : $p_1 = p_2$ Reject H_0 Reject H_0 Reject H_0

- H_1 : $p_1 \neq p_2$

- $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{0,32 - 0,26}{\sqrt{0,29(1-0,29)\left(\frac{1}{266} + \frac{1}{192}\right)}} = 1,93$

- Accept H_0 There is no difference in the preferences of the two ranges if $\alpha = 0,05$.

p-value=2P(z >1.93) =0.0536
$$\alpha$$
=0.05 P-value>0.05 -> Fail to reject.

TABLE A-2 (continued) Cumulative Area from the LEFT

Z	.00	.01	.02	.03	.04	.05
0.0	.5000	.5040	.5080	.5120	.5160	.5199
0.1	.5398	.5438	.5478	.5517	.5557	.5596
0.2	.5793	.5832	.5871	.5910	.5948	.5987
0.3	.6179	.6217	.6255	.6293	.6331	.6368
0.4	.6554	.6591	.6628	.6664	.6700	.6736
0.5	.6915	.6950	.6985	.7019	.7054	.7088
0.6	.7257	.7291	.7324	.7357	.7389	.7422
0.7	.7580	.7611	.7642	.7673	.7704	.7734
0.8	.7881	.7910	.7939	.7967	.7995	.8023
0.9	.8159	.8186	.8212	.8238	.8264	.8289
1.0	.8413	.8438	.8461	.8485	.8508	.8531
1.1	.8643	.8665	.8686	.8708	.8729	.8749
1.2	.8849	.8869	.8888	.8907	.8925	.8944
1.3	.9032	.9049	.9066	.9082	.9099	.9115
1.4	.9192	.9207	.9222	.9236	.9251	.9265
1.5	.9332	.9345	.9357	.9370	.9382	.9394
1.6	.9452	.9463	.9474	.9484	.9495 *	.9505
1.7	.9554	.9564	.9573	.95	.9591	.9599
1.8	.9641	.9649	.9656		.9671	.9678
1.9	.9713	.9719	.9726	.9732	.9738	.9744
2.0	.9772	.9778	.9783	.9788	.9793	.9798

Two-samples: Variance

Testing	$H_0: \sigma^2_1$	$= \sigma^2_2$
----------------	-------------------	----------------

Alternative hypothesis

Decision rule: Reject H₀ if

Test statistic

$$H_1: \sigma^2_1 \neq \sigma^2_2$$

$$H_1: \sigma^2_1 \neq \sigma^2_2$$
 $F \geq F_{n1-1; n2-1; \alpha/2}$

$$H_1: \sigma_1^2 > \sigma_2^2$$

$$H_1: \sigma^2_1 > \sigma^2_2$$
 $F \ge F_{n1-1; n2-1; \alpha}$

$$F = \frac{s_1^2}{s_2^2}$$

Assume population 1 has the larger variance. Thus always: $s_1^2 > s_2^2$

> **CDS 533** 75

Two-samples: Variance

Example

An important measure to determine service delivery in the banking sector is the variability in the service times. An experiment was conducted to compare the service times of two bank tellers. The results from the experiment:

- Teller A: n_A = 18 and s_A^2 = 4,03
- Teller B: n_B = 26 and s_B^2 = 9,49

Can we say that the variance in service time of teller A is less than that variance of teller B on a 5% level of significance.

Remember:

Population 1 has the larger variance. Thus always: $s_1^2 > s_2^2$

We will then test if the variance in service time of teller B is more that the variation of teller A: $s_R^2 > s_A^2$

Two-samples: Paired Means

From the data:

- The results from the experiment:
 - Teller A: $n_A = 18$ and $s_A^2 = 4,03$
 - Teller B: $n_B = 26$ and $s_B^2 = 9,49$

F_{26-1;18-1;0,05} = 2,18

Accept H₀ Reject

$$-H_0: S_{1}^2 = S_{2}^2$$

$$-H_1: S_1^2 > S_2^2$$

$$F = \frac{S_1^2}{S_2^2} = \frac{9,49}{4,03} = 2,35$$

- Reject H₀

Variation of teller B is more than the variation of teller A on a 5% level of significance.

TABLE A-5 (continued) F Distribution ($\alpha = 0.05$ in the right tail)

		Numerator degrees of freedom (df ₁)					
		10	12	15	20	24	30
or degrees of freedom (d f_2)	1	241.88	243.91	245.95	248.01	249.05	250.10
	2	19.396	19.413	19.429	19.446	19.454	19.462
	3	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166
	4	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459
	5	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957
	6	4.0600	3.9999	3.9381	3.8742	3.8415	3.8082
	7	3.6365	3.5747	3.5107	3.4445	3.4105	3.3758
	8	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794
	9	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637
	10	2.9782	2.9130	2.8450	2.7740	2.7372	2.6996
	11	2.8536	2.7876	2.7186	2.6464	2.6090	2.5705
	12	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663
	13	2.6710	2.6037	2.5331	2.4589	2.4202	2.3803
	14	2.6022	2.5342	2.4630	2.3879	2.3487	2.3082
	15	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468
	16	2.4935	2.4247	2.3522	2.2756	2.23	2.1938
	17	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477
	18	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071
	19	2.3779	2.3080	2.2341	2.1555	2.1141	2.0712

