from which we can read off the functional derivative by comparison with (B.3). Requiring that the functional derivative vanishes then gives

$$\frac{\partial G}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial G}{\partial y'} \right) = 0, \tag{B.8}$$

which are known as the Euler-Lagrange equations. For example, if

$$G = y(x)^{2} + (y'(x))^{2}$$
(B.9)

then the Euler-Lagrange equations take the form

$$y(x) - \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 0. {(B.10)}$$

This second-order differential equation can be solved for y(x) by making use of the boundary conditions on y(x).

Often, we consider functionals defined by integrals whose integrands take the form G(y,x) and that do not depend on the derivatives of y(x). In this case, stationarity simply requires that $\partial G/\partial y(x)=0$ for all values of x.

If we are optimizing a functional with respect to a probability distribution, then we need to maintain the normalization constraint on the probabilities. This is often most conveniently done using a Lagrange multiplier, which then allows an unconstrained optimization to be performed.

The extension of the above results to a multi-dimensional variable x is straightforward. For a more comprehensive discussion of the calculus of variations, see Sagan (1969).

Appendix C