Komisja Egzaminacyjna dla Aktuariuszy

L Egzamin dla Aktuariuszy z 5 października 2009 r.

Część I

Matematyka finansowa

WERSJA TESTU A

lmię i	nazwi	sko osob	y egzami	nowanej:

Czas egzaminu: 100 minut

1. Niech D oznacza sumę wartości rent malejących $(Da)_{\overline{n}|}$ tzn. $D=\sum_{n=1}^{10}(Da)_{\overline{n}|}$, natomiast I sumę wartości rent rosnących $(Ia)_{\overline{n}|}$ tj. $I=\sum_{n=1}^{10}(Ia)_{\overline{n}|}$. Który z poniższych wzorów wyraża różnicę D-I?

(i)
$$\frac{45 \cdot i - 20 + (2 \cdot v + 1) \cdot \ddot{a}_{\overline{10}|} - 10 \cdot v^{10}}{i^2}$$

(ii)
$$\frac{45 \cdot i - 20 + \left(3 + 2 \cdot i\right) \cdot a_{\overline{10}} - 10 \cdot v^{10}}{i^2}$$

(iii)
$$\frac{45 \cdot i - 10 + a_{\overline{10}|} + 2 \cdot \ddot{a}_{\overline{10}|} - 20 \cdot v^{10}}{i^2}$$

(iv)
$$\frac{45 \cdot i - 18 + 3 \cdot a_{\overline{10}} - 12 \cdot v^{10}}{i^2}$$

Odpowiedź:

- A) tylko (ii)
- B) tylko (ii) i (iii)
- C) tylko (iii)
- D) tylko (ii) i (iv)
- E) tylko (i) i (iv)

2. Ubezpieczenie na życie i dożycie posiada opcję wypłaty świadczenia, w przypadku dożycia do określonego wieku, w formie renty pewnej 25 letniej, płatnej w równych ratach na koniec kolejnych lat. Do kalkulacji raty renty oraz obliczania wysokości rezerwy technicznej (rezerwa techniczna to aktualna wartość renty ang. *present value*) stosowana jest stopa procentowa 3,5% (tzw. stopa techniczna).

Ubezpieczony, któremu po dożyciu do końca okresu ubezpieczenia należy się świadczenie jednorazowe w wysokości 200 000 PLN, wybiera opcję wypłaty świadczenia w formie renty, na co przeznacza całą powyższą kwotę.

Umowa ubezpieczenia zakłada, że zakład ubezpieczeń dzieli się z ubezpieczonym zyskiem uzyskanym przy lokowaniu aktywów stanowiących pokrycie rezerw technicznych. Oznacza to, że przy każdej płatności renty zakład wypłaci ubezpieczonemu 90% zysku osiągniętego ponad stopę techniczną w ostatnim roku (liczonego od kwoty rezerwy technicznej na początku roku).

Zakładając, że ubezpieczony dożyje do końca okresu wypłacania renty, obliczyć ile wyniesie suma wszystkich wypłat dodatkowych z tytułu udziału w zysku, jeżeli stopy zwrotu z aktywów stanowiących pokrycie rezerw będą następujące:

- 6% w latach 1 5,
- 5% w latach 6 10,
- 4% w latach 11 15,
- 3,5% w latach 16 20,
- 4,5% w latach 21 25.

Podaj najbliższa wartość:

- A) 36 223 PLN
- B) 36 413 PLN
- C) 36 653 PLN
- D) 36 813 PLN
- E) 40 123 PLN

- **3.** Renta nieskończona wypłaca kwotę $\frac{1}{k(k+1)}$ na koniec lat $k=1,2,\ldots$ Rozważmy N takich jednakowych rent. Ile co najmniej powinno wynosić N, aby suma wartości obecnych tych rent była dwukrotnie wyższa od wartości obecnej renty nieskończonej wypłacającej kwotę $\frac{1}{k}$ na koniec lat $k=1,2,\ldots$? Do obliczeń przyjmij czynnik dyskontujący v=0.9. Odpowiedź:
 - A) 3
 - B) 4
 - C) 5
 - D) 6
 - E) 7

4. Inwestor działający na rynku opcyjnym ma w momencie *t* do dyspozycji następujące cztery portfele:

Portfel V_I : europejska opcja kupna warta c_t z ceną wykonania X i momentem wygaśnięcia T $(t \le T)$ wystawiona na akcję o cenie S_t płacącą roczną stopę dywidendy $q \ge 0$; oraz kwota X zainwestowana w instrument wolny od ryzyka dający rocznie stopę zwrotu $r \ge 0$.

Portfel V₂: $e^{-q(T-t)}$ jednostek akcji o cenie S_t płacącej roczną stopę dywidendy $q \ge 0$, z których dywidenda jest reinwestowana w zakup kolejnych jednostek tej akcji; oraz wystawiona na tą akcję amerykańska opcja sprzedaży warta P_t z ceną wykonania X i momentem wygaśnięcia $T(t \le T)$.

Portfel V₃: amerykańska opcja kupna warta C_t z ceną wykonania X i momentem wygaśnięcia T ($t \le T$) wystawiona na akcję o cenie S_t płacącą roczną stopę dywidendy $q \ge 0$; oraz kwota $Xe^{-r(T-t)}$ zainwestowana w instrument wolny od ryzyka dający rocznie stopę zwrotu $r \ge 0$.

Portfel V_d : jedna akcja o cenie S_t płacąca roczną stopę dywidendy $q \ge 0$, z której dywidenda jest reinwestowana w zakup kolejnych jednostek tej akcji; oraz wystawiona na tą akcję europejska opcja sprzedaży warta p_t z ceną wykonania X i momentem wygaśnięcia T ($t \le T$).

Przyjmując kapitalizację ciągłą oraz zakładając, że inwestor działa na rynku doskonałym, na którym obowiązuje zasada braku arbitrażu cenowego, wskaż prawdziwe oszacowanie:

A)
$$S_t e^{-q(T-t)} - X > C_t - P_t$$
 i $C_t - P_t > S_t - X e^{-r(T-t)}$

B)
$$S_t e^{-q(T-t)} - X \le C_t - P_t$$
 i $C_t - P_t > S_t - X e^{-r(T-t)}$

C)
$$P_t < c_t - S_t e^{-q(T-t)} + X e^{-r(T-t)}$$

D)
$$max(Xe^{-r(T-t)} - S_te^{-q(T-t)}, 0) > P_t \text{ i } max(S_te^{-q(T-t)} - Xe^{-r(T-t)}, 0) > c_t$$

E)
$$S_t e^{-q(T-t)} - X \le C_t - P_t$$
 i $C_t - P_t \le S_t - X e^{-r(T-t)}$

<u>Wskazówka</u>: zbadaj relację miedzy wartością portfela V_1 a wartością portfela V_2 oraz relację między wartością portfela V_3 a wartością portfela V_4 .

5. Zbiór scenariuszy przedstawiający model pewnego rynku finansowego w czasie t=0,1,2,3 opisuje Drzewko 1.

Drzewko 1. Drzewko 2.

Na przykład, scenariusz ω_1 oznacza wzrosty rynku we wszystkich krokach. Wskazać liczbę prawdziwych stwierdzeń wśród następujących:

- a) Rozpatrzmy algebrę F_1 określoną jako $F_1 = \{\emptyset, \Omega, \{\omega_1, \omega_2, \omega_3, \omega_4\}, \{\omega_5, \omega_6, \omega_7, \omega_8\}\}$. Jeżeli cena W_1 pewnej akcji w t = 1 wynosi 72 dla $\omega \in \{\omega_1, \omega_2, \omega_3, \omega_4\}$ i 84 dla $\omega \in \{\omega_5, \omega_6, \omega_7, \omega_8\}$ to W_1 jest F_1 -mierzalna.
- b) Jeżeli cena W_1 tej samej akcji w t=1 wynosi 72 dla $\omega \in \{\omega_1, \omega_2, \omega_3, \omega_5\}$ i 84 dla $\omega \in \{\omega_4, \omega_6, \omega_7, \omega_8\}$ to W_1 jest F_1 -mierzalna.
- c) Rozpatrzmy teraz algebrę F_2 , generowaną przez następujący podział zdarzeń elementarnych $\{\emptyset, \Omega, \{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}, \{\omega_5, \omega_6\}, \{\omega_7, \omega_8\}\}$. Niech ceny pewnej akcji S będą opisane przez Drzewko 2. Wówczas cena S_2 jest F_1 -mierzalna i F_2 -mierzalna, ale nie jest F_3 -mierzalna.
- d) S_2 jest F_3 -mierzalna, gdzie $F_3=2^\Omega$, $\Omega=\{\omega_i\}$, i=1,...,8, zaś 2^Ω to zbiór wszystkich możliwych zdarzeń.

Odpowiedź:

- A) 0
- B) 1
- C) 2
- D) 3
- E) 4

6. Inwestor stosuje strategię typu *spread byka* (*bull spread*) zbudowaną w oparciu o europejskie opcje kupna o okresie wykonania 5 lat. Uwzględniająca koszty transakcji wypłata, w zależności od ceny S_5 instrumentu bazowego w momencie wykonania, przedstawiona jest na rysunku:

Obecne (moment t=0) kwotowania europejskich opcji sprzedaży wystawionych na instrument bazowy o obecnej cenie $S_0=125$ i okresie wykonania 5 lat, w zależności od ceny wykonania X przedstawione są w tabeli:

Cena wykonania X	Cena opcji sprzedaży
110	0.13
140	1.84
150	3.36

Zmienność σ (*volatility*) instrumentu bazowego jest równa 10%, wolna od ryzyka stopa procentowa wynosi 7%.

Obecny koszt, jaki poniósł inwestor przyjmując strategię *byka* wynosi (podaj najbliższą wartość):

- A) 5.20
- B) 19.43
- C) 24.96
- D) 28.18
- E) 47.61

- 7. Kredyt w wysokości 300 000 PLN ma być spłacany przez okres 25 lat w następujący sposób:
 - przez pierwsze 5 lat na końcu każdego roku spłacane będzie jedynie 40% kwoty odsetek od oryginalnego (nominalnego) zadłużenia,
 - przez następne 5 lat na końcu każdego roku spłacane będą jedynie odsetki od kwoty bieżącego zadłużenia,
 - przez kolejne 5 lat na końcu każdego roku spłacany będzie jedynie kapitał przy użyciu równych rat, przy czym łącznie w tym okresie zapłacone zostanie 30% nominalnej kwoty zadłużenia,
 - przez ostatnie 10 lat na końcu każdego roku kredyt spłacany będzie przy użyciu równych rat w wysokości *R*.

Oblicz wartość *R*, jeżeli wiadomo, że w pierwszych 10 latach stopa procentowa wyniesie 6%, w następnych 5 latach 7%, a w ostatnich 10 latach 8%.

Podaj najbliższą wartość:

- A) 60 005 PLN
- B) 60 205 PLN
- C) 60 405 PLN
- D) 60 605 PLN
- E) 60 805 PLN

- **8.** Firma inwestycyjna oferuje umowy długoterminowego oszczędzania na okres 15 lat. Umowa gwarantuje inwestorowi oprocentowanie w wysokości 6% od wpłat podstawowych, od momentu dokonania wpłaty do końca umowy, oraz oprocentowanie 4% od wypracowanej nadwyżki wynikającej z uzyskania przychodów z lokowania wpłat podstawowych ponad stopę 6%, od momentu uzyskania nadwyżki do końca okresu umowy.
 - Inwestor podpisując umowę zadeklarował wysokość rocznej wpłaty płatnej na początku każdego roku trwania umowy (wpłaty podstawowej) na poziomie 2 000 PLN.
 - Wiedząc, że w okresie 5 pierwszych lat obowiązywania umowy stopa zwrotu z inwestowania środków pochodzących z wpłat podstawowych wynosiła 8%, oblicz, jaka co najmniej kwota zostanie wypłacona inwestorowi po zakończeniu umowy.

Podaj najbliższą wartość:

- A) 50 060 PLN
- B) 50 160 PLN
- C) 50 260 PLN
- D) 50 360 PLN
- E) 50 460 PLN

- **9.** Rozważmy następujący, dyskretny model struktury terminowej stóp procentowych:
 - W chwili t = 0 krzywa stóp procentowych zadana jest funkcją: r(0, T) = 3%, T = 1, 2, 3, ..., gdzie r(0, T) oznacza T-letnią stopę spot w ujęciu rocznym w chwili 0.
 - W chwilach t = 1, 2, 3, ... krzywa stóp procentowych r(t, T) zadana jest funkcją: r(t, T) = 3% + X, T = 1, 2, 3, ..., gdzie X jest zmienną losową o rozkładzie jednostajnym na przedziale [-3%, 3%]. Funkcja r(t, T) oznacza T-letnią stopę spot w ujęciu rocznym w chwili t.

W chwili t = 0 emitowana jest obligacja zerokuponowa o nominale 1 000, zapadająca w chwili t = 3. Niech P(t) oznacza cenę tej obligacji w chwili t.

Ceny obligacji w chwilach t=0 i t=1, wyznaczone przy pomocy opisanego modelu stopy procentowej wynoszą (podać najbliższą odpowiedź):

A)
$$P(0) = 915.14, P(1) = 942.60$$

B)
$$P(0) = 916.70, P(1) = 943.40$$

C)
$$P(0) = 915.14, P(1) = 943.40$$

D)
$$P(0) = 916.70, P(1) = 942.60$$

E)
$$P(0) = 915.14, P(1) = 970.87$$

- **10.** Do wyceny obligacji korporacyjnych wykorzystywany jest model oparty o rating kredytowy emitenta. Model oparty jest o następujące założenia:
 - Możliwe są dwa ratingi kredytowe A lub B.
 - Dana jest następującą macierz prawdopodobieństw przejścia pomiędzy ratingami w jednym kroku:

$$\begin{bmatrix} p_{AA} & p_{AB} \\ p_{BA} & p_{BB} \end{bmatrix} = \begin{bmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{bmatrix}.$$

- Krok modelu jest roczny.
- Jeśli na początku roku k, k = 1, 2, ..., emitent obligacji posiada rating kredytowy A, to do dyskontowania przepływów pieniężnych z wyemitowanej przez niego obligacji występujących w tym roku używamy czynnika dyskontującego $v_A = 0.95$. Jeżeli zaś na początku roku k emitent posiada rating kredytowy B, to analogiczny czynnik dyskontujący v_B wynosi 0.90.

Rozważmy obligację korporacyjną wyemitowaną na początku pierwszego roku przez spółkę o ratingu kredytowym A. Jest to trzyletnia obligacja o nominale 100, z kuponem w wysokości 4% wartości nominalnej, płatnym na koniec roku.

Cena tej obligacji w momencie emisji wyznaczona przy użyciu opisanego modelu wynosi w przybliżeniu:

- A) 75.24
- B) 85.01
- C) 89.35
- D) 94.05
- E) 99.00

Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka finansowa

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko:
Pesel:
OZNACZENIE WERSJI TESTU

Zadanie nr	Odpowiedź	Punktacja⁴
1	D	
2	В	
3	Е	
4	Е	
5	C	
6	В	
7	A	
8	D	
9	C	
10	D	
_		

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.
* Wypełnia Komisja Egzaminacyjna.