

## PROOF OF CONVERGENT SEQUENCES

GIVEN THAT \{\alpha\_{\text{N}}\}\_{\text{NEIN}} \leq \text{IR AND }\{\delta\_{\text{N}}\}\_{\text{NEIN}} \leq \text{IR AND LET}
\{\alpha\_{\text{N}}\}\_{\text{N}} \alpha\_{\text{N}} \text{AND }\{\delta\_{\text{N}}\}\_{\text{N}} \text{AND }\{\delta\_{\text{N}}\}\_{\text{N}} \text{AND }\delta\_{\text{N}} \text{CONVERSES TO }\delta\_{\text{N}}\}\_{\text{N}} \text{AND }\delta\_{\text{N}} \text{CONVERSES TO }\delta\_{\text{N}}\}\_{\text{N}} \text{AND }\delta\_{\text{N}} \text{CONVERSES TO }\delta\_{\text{N}}\}\_{\text{N}} \text{CONVER

THE SUM OF CONVERGENT SEQUENCES CONVERGE TO THE SUM OF THEIR LIMITS

A 6>0

SINCE OUN-OU |OUN-OU|CE YEZO

since 6n - 6 | 6n-6| CE 4E70

USING THE TRINNGLE INEQUACY. BY THAT THE ABSOCUTE VALUE OF THE SUM OF TWO TEAMS IS LESS OR EQUAL TO THE SUM OF THE ABSOCUTE

(On-ou) + (6n-b) = (On-a) + |6n-6|

LET EZO AND SINCE 
$$|\omega_N-\omega|$$
 AND  $|\omega_N-\omega|$ 

ARE BOTH ARBITRARY SMALL

[( $\omega_N-\omega_I$ ) +  $(\omega_N-\omega)$ ]  $\leq |\omega_N-\omega|$  +  $|\omega_N-\omega|$  +  $|\omega_N-\omega|$ 

THAT IS  $|\omega_N-\omega|$  AND  $|\omega_N-\omega|$ 

By Definition of A conversion sequence:

$$\exists_{N_1} \in |N|$$
 for ALL  $N > N_1$ 

$$|\alpha_N - \omega| \subset \frac{\varepsilon}{2}$$

$$|N = \max_{k = 1}^{\infty} \{N_1, N_2\}$$

THAT IS 
$$|(\omega_N-\omega)+(b_N-b)| < \xi + \xi = \delta$$
 
$$\bar{z} = \bar{z}$$
 So for an arbitrary Positive E WE found a number  $N$  so that

THUS A SEQUENCE OF TERMS COMPOSED OF THE SUM OF THE TERMS OF TWO CONVERSING SEQUENCES CONVERGES TO THE SUM OF THE LIMIT

EVERY TERM OF THE SEQUENCE AFTER N IS WITHIN E OF OU+6.

of those converging sequences

JNZEIN FOR ALL N 7NZ