Model Performance & Explainability Report

Dataset Overview

- **Dataset**: Phishing Websites (Engineered)
- Target: Binary classification : Phishing (1) vs. Legitimate (-1)
- Train-Test Split: 80% training, 20% testing, stratified on target variable

Model Used

- Classifier: Gradient Boosting Classifier
- Rationale: As for tabular data, many times, it gives a good performance in classification tasks.

Performance Metrics (Test Set)

Metric	Value
Accuracy	0.9402
Precision	0.9291
Recall	0.9488
F1 Score	0.9388

• Precision and recall being high could mean that there was less chance of false positives or negatives.

Confusion Matrix

- Clear separation between legitimate and phishing websites.
- Minimal misclassification.

Explainable AI (XAI) Techniques

1. Feature Importance (GBM Inherent)

- Highlights features directly used by the model during training.
- Top 5 Features:
 - 1. SSLfinal_State: 0.695
 - 2. URL_of_Anchor: 0.144
 - 3. Prefix_Suffix: 0.04
 - 4. Total_Link_Flags : 0.0397
 - 5. Web_traffic :0.0187

Interpretation: These features, according to the Gradient Boosting model, are the most relevant with regard to the prediction of phishing likelihood.

2. SHAP (SHapley Additive exPlanations)

- **Type**: Model-specific (TreeExplainer)
- Offers global and local interpretability.
- SHAP Summary Plot:
 - Visualizes the distribution and impact of each feature on predictions.
 - o Feature values are color-coded to reveal direction of influence.

3. LIME (Local Interpretable Model-Agnostic Explanations)

- Type: Local, model-agnostic
- Applied to a random test instance.
- Produces interpretable linear approximation around a single prediction.

Output:

- o Presents ten most important features that contributed to the prediction.
- Explanations justify the decision by showing the weights and directions of features.

4. PDP & ICE (Partial Dependence & Individual Conditional Expectation)

Feature: SSLfinal_State

Insight:

- Indicates the way in which predictions generated by the model vary with the final state of the SSL.
- ICE curves show different effects for each individual instance while PDP shows the average effect.
- Higher SSLfinal_State values are associated with an increase in phishing probability.

5. PFI (Permutation Feature Importance)

• Type: Model-agnostic, global

• Evaluates how random shuffling of each feature impacts model performance.

• Top PFI Features:

- Consistent with GBM feature importance and SHAP but some difference in the last two features.
- Further validates the importance of SSLfinal_State and URL_of_Anchor.

Conclusion

The Gradient Boosting model does a wonderful job in recognizing phishing websites. The interpretability techniques that one could apply in the context of this model include SHAP, LIME, PDP/ICE, and PFI. These methods not only validate the model's decisions but also justify to the user the reasons that cause his or her outputs. This is a very important step toward the trust and transparency of AI-based cyber security systems.