Mathematics: analysis and approaches Higher level Paper 1 Practice Set A (Hodder)

	 	_	_		 $\overline{}$
1 1			1		
1 1				$\overline{}$	 _

2 hours

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in an answer booklet.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: analysis and approaches formula book is required for this paper.
- The maximum mark for this examination paper is [110 marks].

$$\frac{96}{110} = 87.3\%$$
 $19/10/22$

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary.

1 [Maximum mark: 5]

On his way to school, Suresh stops for coffee with probability 0.8. If he stops for coffee, the probability that he is late for school is 0.4; otherwise, the probability that he is late is 0.1. Given that on a particular day Suresh is late for school, what is the probability that he did not stop for coffee?

$P(C' \mid L) = P(C' \cap L)$
$P(c' k) = \frac{P(c'nk)}{P(k')}$
= (0·2)(0·1) \(\sqrt{M}\)
$(0.8)(0.4) + (0.2)(0.1)$ \sqrt{M}
A2
$\frac{2 \times 10^{-2}}{32 \times 10^{-2} + 2 \times 10^{-2}} \sqrt{A1}$
= /32+2
= 2/34 = 1/17 Al
= 1/17 /Al

(5)

2 [Maximum mark: 7] Use the substitution u = x - 3 to find the exact value of $\int_{1}^{x} 5x\sqrt{x - 3} dx$.

U=2-3 → x = u+3
= du = doc ✓MI
Limits: $U=7-3=4$ \sqrt{M} .
: \[\frac{7}{3} 5 \times \sqrt{\chi - 3} d2 = \[\frac{1}{5} \left(u + 3 \right) \sqrt{U} du \tag{A} \]
= [4(52Ja + 15Ja)du /MI
= $\int_{0}^{4} 5u^{3/2} du + \int_{0}^{4} 15u^{3/2}$
= $5(\frac{1}{5})[u^{5/2}]_0^6 + 15(\frac{4}{3})[u^{3/2}]_0^4 \vee 4$
= $2(4^2\sqrt{4}) + 10(4\sqrt{4})$
= 2(32) + 80 MI
= 144 VAI

3 [Maximum mark: 6] z is the complex number which satisfies the equation $3z - 4z^{\bullet} = 18 + 21i$. Find $\left|\frac{z}{3}\right|$.

let 4 - a+bi : 2 = a - bi 32-42* = 3a+3bi-4a+4bi = -a+7bi = -a+7bi = 18+21i √A1 a=-18 and $7b=21 \rightarrow b=3$

- 4 [Maximum mark: 6]
 - a Show that (2x + 1) is a factor of $f(x) = 2x^3 13x^2 + 17x + 12$.
- **b** Solve the inequality $2x^3 13x^2 + 17x + 12 > 0$.

- (a) If 2x+1 is a factor, then:

$$2(-\frac{1}{8}) - 13(\frac{1}{4}) + 17(-\frac{1}{2}) + 12 = 0$$

$$-\frac{1}{4} - \frac{13}{4} - \frac{17}{2} + 12 = 0$$

$$-1 - 13 - 2(17) + 4(12) = 0$$

(b)
$$(2x+1)(x^2+bx+c)=2x^3+2bx^2+2cx+x^2+bx+c$$

= $2x^3+(2b+1)x^2+(2c+b)x+c$

Equating coefficients: " 2b = -14 | C=12 :. 2b+1=-13

:. other interepts one $(x^2-7x+12) = 0$:. (x-4)(x-3) = 0

5 [Maximum mark: 6]

Given the functions

$$f(x) = \frac{2-x}{x+3}$$
 (x \neq -3) and $g(x) = \frac{2}{x-1}$ (x \neq 1)

find $(f \circ g)^{-1}$ in the form $\frac{ax+b}{cx+d}$.

f.9	=	f(= g(=)	```	 	
الال		212	!.)		
	=	5/2/2	_,)	 	

$$\frac{2-\frac{2}{x-1}}{\frac{2}{x-1}+3}\sqrt{M}$$

$$\frac{2x-2-2}{2+3x-3} VMI$$

$$\frac{2x-4}{3x-1}$$

$$(f \circ g)^{-1} : \gamma c = \frac{2y-4}{3y-1} \sqrt{M1}$$

$$3yx-2y = x-4$$

$$y(3x-2) = x-4 \quad MI$$

$$(f \circ g)^{-1} = \frac{x-4}{3x-2} \quad AI$$

.:
$$(f \circ g)^{-1} = \frac{x - 4}{3x - 2} \sqrt{A1}$$

6 [Maximum mark: 6]

Find the possible values of x such that $45e^x$, $7e^{2x}$ and e^{3x} are consecutive terms of an arithmetic sequence.

d=7e2x-45ex = e3x-7e2x /MI

$$e^{2x} + |4e^{2x} - 45e^{x}| = 0$$
 Al
$$e^{2x} + |4e^{x} - 45| = 0$$
 $e^{x} \neq 0$ $x \in \mathbb{N}$

$$U = e^{2} \rightarrow u^{2} - |4u + 45| = 0$$

$$u^{2} - |4u + 45| = 0$$

$$u(u-9)-5(u-9) = 0 / M|A|$$

$$u(u-9)-5(u-9) = 0 / M|A|$$

$$u=5, 9$$

$$e^{x} = 5, \quad e^{x} = 9$$

$$x = \ln 5, \quad z = \ln 9 \quad \sqrt{4}$$

 $\lim_{x \to 0} \frac{x \sin x}{\ln \left(\frac{x}{\pi}\right)}.$

I'M XSINIC _ TSINIT IN(2/17) IN(1) /MI
= 0/0 = indeferminate.
$=\lim_{z\to\pi} \left(\frac{x\cos x + \sin x}{(\pi/x)(1/i)}\right) \sqrt{M_1} \left\{\frac{1}{1}\right\}$
- lim = (x cosx &+simc)
(/χ) /Δ]
- IIM (x2cosx + 2sinx)
= TT COST + TISINT VAI
$= -\pi^2$

[Maximum mark: 7] Sketch the graph of

 $y = \frac{2x^2 + 5x - 12}{x + 3}$

State the coordinates of all axis intercepts and the equations of all asymptotes.

9 [Maximum mark: 6]

a Prove that log, 5 is an irrational number.

b Aron says that $\log_2 n$ is an irrational number for every integer $n \ge 10$. Give a

[4]

counterexample to disprove this statement.

[2]

(a) assume log_5 = 9/b/m/a,b & 7 is true

twhith in a contradiction as no root of

=> $\log_2 5^{\alpha} = a \log_2 5$ X => which is a contradiction $\log_2 5$ is ilradical. => even LHS & odd RHS.

let $n = 16 = 24 \sqrt{Ml}$

conterexample as

4 is not an irrational aumber.

Do not write solutions on this page

Section B

Answer all questions in an answer booklet. Please start each question on a new page.

10 [Maximum mark: 20]

a Sketch the graph of $y = x^2 + 3x - 10$, showing clearly the axes intercepts and the coordinates of

b 1 Show that the line y = 2x - 20 does not intersect the graph of $y = x^2 + 3x - 10$.

II Find the set of values of k for which the line y = 2x - k intersects the graph of $y = x^2 + 3x - 10$ [7] at two distinct points.

c Describe fully a sequence of transformations which transforms the graph of $y = x^2 + 3x - 10$ to the graph of $y = (2x + \frac{3}{2})^2 + 2$. [4]

d Sketch the following graphs, indicating clearly all axes intercepts, asymptotes and turning points:

$$1 \quad y = |x^2 + 3x - 10|$$

ii
$$y = \frac{1}{x^2 + 3x - 10}$$

[4]

[4]

[4]

[8]

[5]

[4]

[2]

[6]

[2]

11 [Maximum mark: 16]

The graph of $y = \sin 2x$ for $0 \le x \le \pi$ is shown below.

The graph has a maximum point at P, a minimum point at Q and points of inflection at R and S.

a Show that the x-coordinates of point P and point Q satisfy $\tan 2x = 2$.

b Show that the x-coordinates of points R and S satisfy $\tan 2x = -\frac{4}{3}$.

c Show that the area of the shaded region enclosed below the curve and above the x-axis is given by a + b = 0, where a, b and c are constants to be found.

12 [Maximum mark: 19]

4

State and prove de Moivre's theorem.

Use de Moivre's theorem to prove that $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$.

Solve the equation $\cos 5\theta = 0$ for $0 \le \theta \le \pi$.

d By considering the equation $16c^5 - 20c^3 + 5c = 0$, where $c = \cos \theta$, find the exact value of $\cos \left(\frac{\pi}{10}\right)$. Justify your choice.

e Find the exact value of $\cos\left(\frac{\pi}{10}\right)\cos\left(\frac{7\pi}{10}\right)$

ANSWER BOOKLET LIVRET DE RÉPONSES **CUADERNILLO DE RESPUESTAS**

	_				
4 P	ΔG	FS	/ PA	GII	NAS

Candidate session number: / Numéro de session du					
candidat: /	Número	de conv	ocatoria	del	alumno:
			-		

Candidate name: / Nom du candidat: / Nombre del alumno:

Hooder Set A

At the start of each answer to a question, write the question number in the box using your normal hand writing / Avant de répondre à une question, inscrivez son numéro à la main dans la case appropriée / Al comienzo de cada respuesta, escriba a mano el número de pregunta en la casilla.

Example Ejemplo

Example Ejemplo

(a)

@ y=-10

22+3x -10 = 0

AOS = - 5/2a

0

	(b)(i)
	$2x-20 = x^2 + 3x - 10$
	$0 = \chi^2 + \chi + O $
	-1 t \1-4(10)
1	: x = 2
1	2-2
	As the book are imaginam = 2x-20 does
	=) gent use discriminant.
	(ii) $y = 24x - 17 = x^2 + 3x - 10$
	") = 7 + 1 - 1(\tr\ .// .
	: 0 = 22 + 22 + (k-10) /MIAI
	.: a=1-4(k-10) /M 3
	= 1-4h+10
	= 11-4k × AO
	Two distinct points when 11-4k-0
	9k411
	· · · K < 11/4
(- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	(c) $y = x^2 + 3x - 10$
	$\frac{(c) y = x^2 + 3x - 10}{= x^2 + 3x + (3/2)^2 - 10 + (3/2)^2}$
	$= x^2 + 3x + (3/2)^2 - 10 - 9/4$
	$= x^{2} + 3x + (3/2)^{2} - 10 - 9/4$ $= x^{2} + 3x + (3/2)^{2} - 49/4$
	$=(x+3/2)^2-49/4$

ANSWER BOOKLET LIVRET DE RÉPONSES **CUADERNILLO DE RESPUESTAS**

4 PAGES / PÁGINAS

Candidate s	ession nu	mber:/	Numéro c	le se	ession du
candidat: /					

Candidate name: / Nom du candidat: / Nombre del alumno:

Hodder Set

At the start of each answer to a question, write the question number in the box using your normal hand writing / Avant de répondre à une question, inscrivez son numéro à la main dans la case appropriée / Al comienzo de cada respuesta, escriba a mano el número de pregunta en la casilla.

Example Ejemplo

Example Ejemplo

= e-x sinlx

OEXEN

 $\frac{\cos 2x(2) + (-1)e}{e^{-2}\cos 2x} = \frac{\cos 2x}{\cos 2x}$

e-x (20052x-5112x

(20052X-51127C

20052x-5112x

. : =

(-51127c)(2) - 20052x +(20052x -5112x)(-1)e

-20052x#-20052x+SIN2x

-35 m2 - 4 cos2 x) 3511276-400526=0

3511216 = -40032x

	(c) $x-intercepts$ occur @ $e^{-x}sin^2x = 0$	$\int_{0}^{\pi/2} e^{-\pi/2} dx = \frac{2+2e^{-\pi/2}}{5}$
	: e = 0 {x + 0, \$ 17, 1 }}	$=\frac{2}{5}-\frac{2}{5}e^{-\frac{\pi}{3}}$
	SIN2x = 0 { e-x + 0}	$\frac{1}{1000} = \frac{1}{2} \frac{\sqrt{A}}{b} = \frac{1}{2} \frac{\sqrt{A}}$
	$2x = 0, \pi, 2\pi, 3\pi, 4\pi$ $x = 0, \pi/2, \pi, 3\pi/2, 2\pi, \dots$ $x = 0, \pi/2, \pi, 3\pi/2, 2\pi, \dots$	
	$A = \int_{0}^{\pi/z} e^{-\frac{\pi}{2}} \sin 2x dx = -\left[e^{-\frac{x}{2}} \sin 2x\right]_{0}^{\pi/z} - \left[e^{-\frac{x}{2}} \cos 2x dx\right] dx$	6
	$[U+ u=sin2x; du=2cos2x]$ $[U+ b=e^{-x}; u=-e^{-x}]$	(19)
	= -(e SINTI-0)+2 (e cos 2x /2 = = -12 0+2 (e-x cos 2x dx = 2	
	U= 0052x du=-251022] dv=e-x v=-e-x ,	
	= 2 (-e ~s)xe ~(-2 sin2 x)dic)	
	$= 2\left(\frac{1}{1}e^{-\frac{\pi}{2}} - e^{-\frac{\pi}{2}}\right) - 2\int_{0}^{\pi} e^{-\frac{\pi}{2}} dx$	
	$= 2(te+1-2) e^{-\pi/2} \sqrt{11/2-x}$	
	$\frac{\pi_{12-x}}{5} = \frac{\sqrt{M}}{2} = \frac{1}{2} = \frac{1}$	
4		

-2-

12	(a) $[\tau(\cos\theta + i\sin\theta)]^- = \tau^-(\cos\eta\theta + i\sin\eta\theta)$
	-> 8n NEZT AO
	Proce for n=1: LHS = r(cosO+isinno)
	RMS = T (COSO 18SINNO)
	= LHS VAI
	· true for n=1
	frame Set +
	Slp2: Assure the for nok:
	[r(coso risino)] = TK (cosko risinko)
	Sy3: Consider As n=k+1: [r(cos0+isin0)]k+1= rk+1 (cos(k+1)0+isin(k+1)0)
	(coso+15110)) (cos(MH) & FISIN(MI))
	=> LHS = T (cos0+ismo) T (cos0+ismo)
	= Th(cosko risinko) (T(coso risino)) {by
	1 (COSICIO) (160) C (COSCUMPTICO)
	= FK+1 (cos Deusko + icosDsinko + isinDosko + i sinOsinko)
	= TK+ (cosO(coskO+ionho)+isua (coshO+isuhO))
	= TKH (COSO + iSINO) (COSKO + iSINKO)
	= 1 (cos Ocosko - sin Osinko +7 (cososinko +51,00000))
	= THI (cos(k+1)0+2 (SIN(k+1)0-))
1	= PKH (cos(KHI)0 + isin (KHI)0)
	= RHS.
	the for N=k+1
	Step 4: on the for her and the for next wholever
	n=k is assumed to be the the fire for, all n \in 2+ by mathematical induction. It
	MU 1102 by majoriumed promotion.

ANSWER BOOKLET LIVRET DE RÉPONSES CUADERNILLO DE RESPUESTAS

Candida	ES / PÁGINAS ate session numb at: / Número de	STATE OF THE PROPERTY OF THE P		Candidate name: alumno:		lidat: / Nombre d
At the start inscrive	t of each answer to a q ez son numéro à la ma	uestion, write the q in dans la case appr Example 27 Ejemplo	uestion number in the opriée / Al comienzo d	box using your normal hand de cada respuesta, escriba a m Example 3 Ejemplo	writing / Avant de re ano el número de p	ápondre à une question regunta en la casilla.
1 2	(b) Ce	= CO = CO = CO = CO	CO-20 COS (COS) 2 250 (COS20) 2 50 (1-5187) 8 50 (520-COS20-COS 50 (COS20) 2 50 (COS20) 2 50 (COS20-COS 50 (COS20) 3	30 - SIN 20 S 0+20) - SIN 20 S 05010 SIN 20 SIN 20 (SIN 20 SIN 20	5110 20 + CUSOS 20 + CUSOS 20 - CUSO 20	5(n20) 50(sn20) (sm20) ² (1-(05 ² 20) 50+(0520) (C0520)

	(b) let 2 = cos50 + isin50		
	$= (\cos 0 + i\sin 0)^{\frac{1}{2}}$:MO = 10550 = 0
	14641		$50 = \frac{1}{2} \frac{3\pi}{2} \frac{5\pi}{2} \cdots \frac{3\pi}{2} \frac{5\pi}{2}$
	let a=coso and b=sinO		$\frac{50}{50} = \frac{11/2}{3\pi/2} \frac{3\pi/2}{5\pi/2} \frac{5\pi/2}{5\pi/10} \frac{9\pi/10}{9\pi/10}$ $\frac{11/10}{5\pi/10} \frac{3\pi/10}{3\pi/10} \frac{7\pi/10}{3\pi/10} \frac{9\pi/10}{4\pi/10}$ $= \frac{\pi/10}{3\pi/10} \frac{3\pi/10}{\pi/2} \frac{7\pi/10}{3\pi/10} \frac{9\pi/10}{4\pi/10}$
			= T/10, 371/10, T/2, 71/10, 17/10/11
	$-(arib)^{5} = 0^{5} + 40^{4} (ib) + 60^{3} (ib)^{2} + 40^{2} (ib)^{3}$		
	2 V#		S a
	.: (arib) = a + 4-50 (16) + 100 (16) + 5a (16) + (16)		(d) $ 6c^2-20c^2+6c = 0$
	$\frac{(arib) = a^{3} + 4.5a^{4}(ib) + (0a^{3}(ib)^{2} + (2a^{2}(ib)^{2} + 5a(ib)^{4} + (ib)^{5}}{(ib)^{2} + (10a^{3}b^{2} + 5ab^{4} + i(5a^{4}b - 10a^{2}b^{3} + b^{5})}$: 16 c4-20c2 + Sec = 0 √A1
			$\frac{16c^{4}-20c^{2}+10^{2}+5-10^{2}=0}{2}$
	:: Re(Z)= cosso = as - 102b2+5ab4/11		$\frac{16c^4 - 2\alpha^2 + 10^2}{(4c^2 + 10)^2} = 95$
	= cos0 - 10cos AsiRO +5 \$ co 50 sin 0		
	= cos 0 - 10 cos 0 (1-cos 0) + 5 cos 0 states (1-20)		4c ² //10 = I/95 4c ² = 85 - 105
	= (05)0 - 10103 + 10105 + 9105 (1-030)		.: 4c ² = 85 - 105
	= (8 1 (05 ⁵ 0 - b(05 ³ 0 + 5cos 0) + (05 ⁵ 0) + (05 ⁵ 0) = 1 (05 ⁵ 0) - 10cos ³ 0 + 5cos 0 - 10cos ³ 0 + 5cos ⁴ 0)		·· (= ± 85/4
-	$\frac{-116059 - 106050 + 36050 - 106050 + 36050}{660500 + 360500 + 36050 + 36050}$		· · C = J85/2 } (05 1/10 > 05
	(B35C - 18(B2) (3 - 20(B3) (4 + 3(D3) (4 + 1)		
		-	V4 2
			11/10
	(c) cosso = 0 -> 50=17/2 : 0=17/10		585
	:10 cos \$0 - 20 cos 30 + Scos 0 = 0		383
	: 16 cas 40 - 2000520 +5 =0/		120/
	?ot \400-20(16)		(e) $\cos(\frac{\pi}{10}) = \cos(\pi - \frac{3\eta}{10}) \times$
	·· cos 0 = 32		
	_ 20I 180		
	32		(12)
	= 20 2 NO 32 32		
	5 + 50		
	8 16 //		

