Questions
Multiplexing dividesline intochannels.
In, the medium is divided into a number of channels, each with a frequency bandwidth.
is a analog multiplexing technique.
is a digital multiplexing technique.
is a intelligent multiplexing technique.
Multiplexing divides the physical line(medium) into logical segments called
A separates the signal meant for different destinations and sends them appropriately.
The is responsible for both multiplexing and demultiplexing.
If input signals are, they need to be passed through both modems and multiplexers.
We can use data compression technique in
Three physical lines are divided into five logical channels in Multiplexing.
In FDM, the medium is divided into a number of channels, each with a frequency bandwidth.
WDM is a analog multiplexing technique.
Digital multiplexing can be implemented by FDM technique.
Staistical TDM, a multiplexing technique, monitors a machine for idealness to allocate the time slices.
Multiplexing divides the physical line(medium) into physical segments called partitions.
A demultiplexer collects various signals from different sources for different destinations and sends them appropriated
Both multiplexing and demultiplexing can be performed using the MUX.
Digital input signals need to be passed through both modems and multiplexers.
We can implement data compression technique in WDM.
is caused because the signals at different frequencies travel at different speeds along the medium.
As a signal travels through any medium, its strength decreases due to
Some electromagnetic energy can get inserted somewhere during transmission, which is normally called
Overhead bits are added to data in case of
The receiver sends aback to the sender if everything was ok.
In sender sends one frame and waits for an acknowledgement before sending the next frame.
Thedefines how much data the sender can send before it must wait to receive an acknowledgement from the re-
Delay distortion is caused because the signals at different frequencies travel at speeds along the medium
Attenuation with distance.
CRC calculation is based on portion of data.
The receiver sends a acknowledgement if there is any error in the received data.
In method, sender must sends all the frames again starting from negative acknowledged frame.
Delay distortion is caused because the signals at different frequencies travel at different speeds along the medium.
Attenuation decreases with distance.
CRC calculation is based on specific portion of data.
The receiver sends a negative acknowledgement if there is any error in the received data.
In the sliding window method, only when the first byte is acknowledged by the receiver then the sender would send
Single-bit-errors caused when one bit of the data unit changes.
Noise reduces the strength of a singnal as it travels through any medium.
Some electromagnetic energy can get inserted somewhere during transmission, which is normally called Distortion.
Parity check technique is also called as VRC.
The receiver sends a signal NAK back to the sender if everything was ok.
In Go Back N technique, sender sends one frame and waits for an acknowledgement before sending the next frame.

The stop and wait, sender retransmits all the frames from n errorful frame.

MCQ

OptionA	OptionB	OptionC	OptionD
one, many	many, many	one, one	many, one
TDM	STDM	FDM	None of the above
TDM	STDM	FDM	None of the above
TDM	STDM	FDM	None of the above
TDM	STDM	FDM	None of the above
partitions	channels	logical path	divisions
Multiplexer	Demultiplexer	Modulator	Demodulator
MUX	DEMUX	MODEM	None of the above
Analog	Neutral	Digital	Binary
FDM	TDM	WDM	STDM
TRUE	FALSE		
Delay Distortion	Attenuation	Noise	Error
Delay Distortion	Attenuation	Noise	Error
Delay Distortion	Attenuation	Noise	Error
VRC	LRC	CRC	parity
NAK	AKN	AKC	ACK
	Wait	Stop & Wait	Go Back N
Stop			
Sliding Window	Go Back N	Stopping Window	Shrinking Window
same	different	random	steady
Increases	Decreases	Jumps	remains stable
full	specific	partial	random
positive	negative	start	stop
Sliding Window	Go Back N	Stopping Window	Shrinking Window
TRUE	FALSE		

In, either a 0 bit changes to 1 or a 1 bit changes to 0.
In burst errors, two bits get changed during data transmission.
In errors, two or more bits get changed due to any errorful reason.
Burst errors has only 1 bit change in data.
Some mathematical process is applied on the data to calculate
is the position dependent checksum method.
In, original data is arranged as rows to calculate checksum.
A single bit error effectively changes a 0 bit to 1 or a 1 bit to 0.
CRC is calculated using some mathematical process on data.
is the checksum algorithm.
In Go Back N, either a 0 bit changes to 1 or a 1 bit changes to 0.
Stop and wait technique applies some mathematical process on data.
Burst errors changes multiple bits during transmission of data bits.
In, parity bit is calculated for each column of n-bit sized different rows of a list and new row of n bits is create
Parity bit can be either 0 or 1.
Parity bit must be 1 for odd scheme and 0 for even scheme.

Single bit error	1 bit error	multiple bits error	only bit error
exactly	at least	maximum	None of the above
multiple	single-bit	burst	None of the above
TRUE	FALSE		
checksum	CRC	VRC	LRC
VRC	CRC	LRC	None of the above
VRC	CRC	LRC	None of the above
TRUE	FALSE		
TRUE	FALSE		
parity check	modular sum	position dependent	All of the above
TRUE	FALSE		
TRUE	FALSE		
TRUE	FALSE		
VRC	CRC	LRC	None of the above
TRUE	FALSE		
TRUE	FALSE		