Breast Cancer: Wisconsin

Jose Tamez

2023-04-28

Contents

Wisconsin Prognosis	1
1.1 The data	2
1.2 Modeling	2
1.3 Cox Model Performance	3
1.4 Cross-Validation	19
1 Wisconsin Prognosis	
.0.1 Libraries	
ibrary(survival) ibrary(FRESA.CAD)	
## Loading required package: Rcpp	
# Loading required package: stringr	
## Loading required package: miscTools	
## Loading required package: Hmisc	
## Attaching package: 'Hmisc'	
## The following objects are masked from 'package:base': ##	
format.pval, units	
## Loading required package: pROC	
## Type 'citation("pROC")' for a citation.	
## Attaching package: 'pROC'	
## The following objects are masked from 'package:stats': ##	
t# cov, smooth, var	
<pre>op <- par(no.readonly = TRUE)</pre>	
pander::panderOptions('digits', 3)	
#pander::panderOptions('table.split.table', 400) pander::panderOptions('keep.trailing.zeros',TRUE)	
Aurant Parant op o tomb (Moop . ot atting . Zot ob , 11001)	

1.1 The data

```
dataBreast <- read.csv("~/GitHub/RISKPLOTS/DATA/wpbc.data", header=FALSE)</pre>
table(dataBreast$V2)
##
##
     N
         R
## 151 47
rownames(dataBreast) <- dataBreast$V1</pre>
dataBreast$V1 <- NULL</pre>
dataBreast$status <- 1*(dataBreast$V2=="R")</pre>
dataBreast$V2 <- NULL</pre>
dataBreast$time <- dataBreast$V3</pre>
dataBreast$V3 <- NULL
dataBreast <- sapply(dataBreast,as.numeric)</pre>
## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
dataBreast <- as.data.frame(dataBreast[complete.cases(dataBreast),])</pre>
table(dataBreast$status)
##
##
     0
        1
## 148 46
```

1.2 Modeling

```
ml <- BSWiMS.model(Surv(time, status)~1, data=dataBreast)
[++++]
sm <- summary(ml)
pander::pander(sm$coefficients)</pre>
```

Table 1: Table continues below

	Estimate	lower	HR	upper	u.Accuracy	r.Accuracy
V26	1.24e-02	1	1.01	1.02	0.593	0.237
V27	2.04e-04	1	1.00	1.00	0.608	0.727
V24	1.18e-02	1	1.01	1.02	0.598	0.634
V7	1.59e-07	1	1.00	1.00	0.588	0.237
V35	1.40e-02	1	1.01	1.03	0.727	0.608
V34	1.40 e-02	1	1.01	1.03	0.634	0.598

Table 2: Table continues below

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI	NRI	z.IDI
V26	0.593	0.598	0.500	0.598	0.0626	0.393	2.77
V27	0.613	0.608	0.641	0.597	0.0562	0.447	2.72
V24	0.603	0.609	0.618	0.613	0.0532	0.323	2.62
V7	0.588	0.595	0.500	0.595	0.0487	0.380	2.30
V35	0.613	0.641	0.608	0.597	0.0288	0.551	2.27
V34	0.603	0.618	0.609	0.613	0.0233	0.411	2.13

	z.NRI	Delta.AUC	Frequency
V26	2.38	0.09827	1
V27	2.72	-0.04436	1
V24	1.94	-0.00529	1
V7	2.30	0.09489	1
V35	3.41	-0.01160	1
V34	2.47	0.00338	1

1.3 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.3.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

```
index <- predict(ml,dataBreast)
timeinterval <- 2*mean(subset(dataBreast,status==1)$time)

h0 <- sum(dataBreast$status & dataBreast$time <= timeinterval)
h0 <- h0/sum((dataBreast$time > timeinterval) | (dataBreast$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 4: Initial Parameters

h0	timeinterval
0.323	51.1

Cumulative vs. Observed: Raw Train: Breast Cancer

Decision Curve Analysis: Raw Train: Breast Cancer

Relative Risk: Raw Train: Breast Cancer

ROC: Raw Train: Breast Cancer

Time vs. Events: Raw Train: Breast Cancer

Kaplan-Meier: Raw Train: Breast Cancer

As we can see the Observed probability as well as the Time vs. Events are not calibrated.

1.3.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$OERatio),caption="0/E Ratio")

Table 5: O/E Ratio

est	lower	upper
0.837	0.613	1.12

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 6: O/E Ratio

mean	50%	2.5%	97.5%
0.995	0.996	0.947	1.04

pander::pander(t(rrAnalysisTrain\$OAcum95ci), caption="0/Acum Ratio")

Table 7: O/Acum Ratio

mean	50%	2.5%	97.5%
0.782	0.782	0.775	0.79

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.686	0.687	0.603	0.762

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 9: ROC AUC

est	lower	upper
0.646	0.553	0.739

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 10: Sensitivity

est	lower	upper
0.261	0.143	0.411

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 11: Specificity

est	lower	upper
0.899	0.838	0.942

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 12: Probability Thresholds

90%)
0.448	3

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 13: Risk Ratio

est	lower	upper
2.09	1.24	3.53

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 14: Logrank test Chisq = 12.659046 on 1 degrees of freedom, p = 0.000374

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	167	34	41.28	1.28	12.7
class=1	27	12	4.72	11.24	12.7

1.3.3 Cox Calibration

h0	Gain	DeltaTime
0.245	0.759	40.8

1.3.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Calibrated Train: Breast

Decision Curve Analysis: Calibrated Train: Breast

Relative Risk: Calibrated Train: Breast

Time vs. Events: Calibrated Train: Breast

Kaplan-Meier: Calibrated Train: Breast

1.3.5 Calibrated Train Performance

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 16: O/E Ratio

est	lower	upper
0.878	0.643	1.17

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 17: O/E Ratio

mean	50%	2.5%	97.5%
1.05	1.05	0.995	1.1

pander::pander(t(rrAnalysisTrain\$0Acum95ci), caption="0/Acum Ratio")

Table 18: O/Acum Ratio

mean	50%	2.5%	97.5%
0.955	0.955	0.948	0.962

pander::pander(t(rrAnalysisTrain\$c.index\$cstatCI),caption="C. Index")

Table 19: C. Index

mean.C Index	median	lower	upper
0.686	0.685	0.603	0.765

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 20: ROC AUC

est	lower	upper
0.646	0.553	0.739

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 21: Sensitivity

est	lower	upper
0.261	0.143	0.411

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 22: Specificity

est	lower	upper
0.899	0.838	0.942

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 23: Probability Thresholds

90%	
0.363	

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 24: Risk Ratio

est	lower	upper
2.09	1.24	3.53

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 25: Logrank test Chisq = 12.659046 on 1 degrees of freedom, p = 0.000374

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	167	34	41.28	1.28	12.7
class=1	27	12	4.72	11.24	12.7

1.4 Cross-Validation

Here we use the estimated h0 and timeinterval from the full set

```
[+++], [++++], [+++++], [+++++], [+++++], [++++++], [+++++], [+++++] Tested: 128 Avg. Se-
lected: 4.1 Min Tests: 1 Max Tests: 4 Mean Tests: 1.5625. MAD: 0.492001. [+++]. [++++]. [++++]. [+]. [+]. [+++]. [++++]. [++++].
Tested: 173 Avg. Selected: 3.9 Min Tests: 1 Max Tests: 6 Mean Tests: 2.312139 . MAD: 0.4917073
Tested: 186 Avg. Selected: 4.133333 Min Tests: 1 Max Tests: 8 Mean Tests: 3.225806 . MAD: 0.4921404
[+++++]
Tested: 187 Avg. Selected: 4.325 Min Tests: 1 Max Tests: 10 Mean Tests: 4.278075 . MAD: 0.4883659
191 Avg. Selected: 4.4 Min Tests: 1 Max Tests: 13 Mean Tests: 5.235602 . MAD: 0.4852724 .[-
Avg. Selected: 4.316667 Min Tests: 1 Max Tests: 14 Mean Tests: 6.217617 . MAD: 0.4827781
[++++]
Tested: 194 Avg. Selected: 4.371429 Min Tests: 1 Max Tests: 17 Mean Tests: 7.216495 . MAD:
       Tested: 194 Avg. Selected: 4.3875 Min Tests: 1 Max Tests: 18 Mean Tests: 8.247423 . MAD: 0.4819771
Tested: 194 Avg. Selected: 4.533333 Min Tests: 1 Max Tests: 18 Mean Tests: 9.278351 . MAD: 0.4803538
Tested: 194 Avg. Selected: 4.55 Min Tests: 1 Max Tests: 18 Mean Tests: 10.30928 . MAD: 0.4831203
stp <- rcv$survTestPredictions</pre>
```

```
stp <- stp[!is.na(stp[,4]),]
bbx <- boxplot(unlist(stp[,1])~rownames(stp),plot=FALSE)
times <- bbx$stats[3,]
status <- boxplot(unlist(stp[,2])~rownames(stp),plot=FALSE)$stats[3,]
prob <- ppoisGzero(boxplot(unlist(stp[,4])~rownames(stp),plot=FALSE)$stats[3,],h0)</pre>
```

Cumulative vs. Observed: Test: Breast Cancer

Decision Curve Analysis: Test: Breast Cancer

Relative Risk: Test: Breast Cancer

Time vs. Events: Test: Breast Cancer

Kaplan-Meier: Test: Breast Cancer

1.4.1 Cross-Validation Test Performance

pander::pander(t(rrAnalysisTest\$0ERatio), caption="0/E Ratio")

Table 26: O/E Ratio

est	lower	upper
0.869	0.636	1.16

pander::pander(t(rrAnalysisTest\$0E95ci),caption="0/E Ratio")

Table 27: O/E Ratio

mean	50%	2.5%	97.5%
1.05	1.05	1	1.1

pander::pander(t(rrAnalysisTest\$OAcum95ci),caption="0/Acum Ratio")

Table 28: O/Acum Ratio

mean	50%	2.5%	97.5%
0.917	0.917	0.903	0.929

pander::pander(rrAnalysisTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.654	0.653	0.562	0.733

pander::pander(t(rrAnalysisTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 30: ROC AUC

est	lower	upper
0.608	0.514	0.701

pander::pander((rrAnalysisTest\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 31: Sensitivity

est	lower	upper
0.174	0.0782	0.314

pander::pander((rrAnalysisTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 32: Specificity

est	lower	upper
0.905	0.846	0.947

pander::pander(t(rrAnalysisTest\$thr_atP),caption="Probability Thresholds")

Table 33: Probability Thresholds

90%	
0.363	

pander::pander(t(rrAnalysisTest\$RR_atP),caption="Risk Ratio")

Table 34: Risk Ratio

est	lower	upper
1.65	0.887	3.06

pander::pander(rrAnalysisTest\$surdif,caption="Logrank test")

Table 35: Logrank test Chisq = 3.877078 on 1 degrees of freedom, p = 0.048950

	N	Observed	Expected	$(O-E)^2/E$	$(O-E)^2/V$
$\begin{array}{c} { m class}{=}0 \\ { m class}{=}1 \end{array}$	$\begin{array}{c} 172 \\ 22 \end{array}$	38 8	41.82 4.18	$0.349 \\ 3.499$	3.88 3.88

1.4.2 Calibrating the test results

h0	Gain	DeltaTime
0.325	1.01	41.2

Cumulative vs. Observed: Calibrated Test: Breast

Decision Curve Analysis: Calibrated Test: Breast

Relative Risk: Calibrated Test: Breast

Time vs. Events: Calibrated Test: Breast

Kaplan-Meier: Calibrated Test: Breast

Number at risk

Low	170	117	78	42	20	1
At Risk > 0.359	24	10	8	2	0	0

Calibrated Test Performance

pander::pander(t(rrAnalysisTest\$0ERatio),caption="0/E Ratio")

Table 37: O/E Ratio

est	lower	upper
0.872	0.638	1.16

pander::pander(t(rrAnalysisTest\$0E95ci),caption="0/E Ratio")

Table 38: O/E Ratio

mean	50%	2.5%	97.5%
1.05	1.05	1	1.11

pander::pander(t(rrAnalysisTest\$OAcum95ci),caption="0/Acum Ratio")

Table 39: O/Acum Ratio

mean	50%	2.5%	97.5%
0.911	0.911	0.898	0.924

pander::pander(rrAnalysisTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.654	0.653	0.571	0.736

pander::pander(t(rrAnalysisTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 41: ROC AUC

est	lower	upper
0.608	0.514	0.701

pander::pander((rrAnalysisTest\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 42: Sensitivity

est	lower	upper
0.196	0.0936	0.339

pander::pander((rrAnalysisTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 43: Specificity

est	lower	upper
0.899	0.838	0.942

pander::pander(t(rrAnalysisTest\$thr_atP), caption="Probability Thresholds")

Table 44: Probability Thresholds

90%
0.359

pander::pander(t(rrAnalysisTest\$RR_atP),caption="Risk Ratio")

Table 45: Risk Ratio

est	lower	upper
1.68	0.931	3.04

pander::pander(rrAnalysisTest\$surdif,caption="Logrank test")

Table 46: Logrank test Chisq = 5.501458 on 1 degrees of freedom, p = 0.019001

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	170	37	41.64	0.517	5.5
class=1	24	9	4.36	4.937	5.5