$$\sum_{k=0}^{\infty} \beta^{k} = \beta^{0} + \beta^{1} + \beta^{2} + \beta^{3} + \cdots$$

$$\Rightarrow \sum_{k=0}^{\infty} \beta^{k} = \frac{1}{(1-\beta)} \quad \text{by geometric suggested}$$

$$\beta \in [0,1]$$

DOS Componenta Interest

$$A_{o} (1+r)^{\dagger} = A_{o}(1+r) (1+r) (1+r) (1+r) \dots$$

$$teches$$

$$principal \Rightarrow \forall t = A_{o}(1+r)^{\dagger}$$

$$V_{+} = A_{o}(1+r)^{\dagger}$$

where, Griven that you take out a loon of Ao, V+ is the amont you will have to pay back at time(t) with an interest the (r).

> (3) Given you led out an initial amount Ao, V+ is your total return, including Au, test you will get back

Present Discoursed Value

Ao = V+ would have to pay twolay

-- + periods => PDV = to get in of the loan you took out for t periods at Interest reste (T).

How much you would need to be paidlight now to make you indiscerns between the nevery you will gain in the Suture.

Discontact Value of Payment Streems

mane/receive payments over time we PDV = E (THO)+M

$$PDV = m + \frac{1}{(1+r)}m + \frac{1}{(1+r)^2}m + \frac{1}{(1+r)^2} + \cdots$$

$$= M\left(\frac{\infty}{\sum_{t=0}^{\infty} \frac{1}{C(t+t)^t}}\right)$$

$$= M\left(\frac{1}{(1-(1+\epsilon))}\right) = \frac{M}{\Gamma} = 11$$

Given that you have to make a stream of payossss on a Roan, the PDV is how much you would have to pay right now to buy out of a loan in which you are Contracted into so- + periods at interest robe to

69 How much you would have to get bought out at.

PDV - Investment =
$$\frac{\infty}{1}$$
 $\frac{1}{(1+0)^{+}}$ $m - C$ $\frac{1}{1}$ $\frac{1}{1}$

$$=\sum_{t=0}^{\infty}\frac{(B_t-c_t)}{(1+c)^t}$$

Nominal Vs. Real Interest Rates

Nominal: Rose quoted on the morrest. It is not relative to anything. we do not know the purchasing power of these values.

Real Interest Rate: Rose of return in terms of purchasing power. Also called infloren adjusted interest rate.

T To Insterior Rate

[Des] Expeased Value (Discrete Probability Storeme)

511ch 14.4 (1/57

$$= \sum_{i=1}^{n} p_i x$$

=> E(x) = \(\frac{\sigma}{12} \) p: \(\sigma \) p: is the probability of event

& inppering.

In the notes

= Epimi will give you a pay out (M).

Expected Income, Expected Utility, & Rish Previous

Side 14.5 (1/11)

- Rish neutral is when payoth function is constant.
- We usually assume economic agents are rish adverse. Ly comes from declining marginal writing.

=> utility suchia is increasing to a decreasing rate.

- 3 CES NAIVILLO
- a log (xy) = log(x) + log(y)

Adam Exemple

=>
$$E(u) = \frac{1}{2}\sqrt{36} + \frac{1}{2}\sqrt{60}$$

= $\frac{1}{2}6 + \frac{1}{2}\sqrt{0} = 3+5 = 9$

Calculating the Fish into total utilly

progests in 60 into the utility

Calculary rish والمرة عامر: income.

=> What is the Income in which Adam needs to gain the Same utility when Including the rish into his decision? B=1x

NOCO, to more him indiscerent => 68-64 = 4