

ABSTRACT OF THE DISCLOSURE

Over-current protection is accomplished in an output transistor (MP) of an electronic circuit wherein an input signal (Vgatedrive) is applied to a first conductor (19) coupled to a gate of the output transistor to cause an output current (Iout) to flow through the output transistor and an output terminal (11) of the electronic circuit. A limit voltage (V_{LIMIT}) is applied to an input (21) of a voltage clamping circuit (18) to cause a clamping current to flow in the first conductor (19) as needed to prevent the magnitude of the input signal (Vgatedrive) from being less than the magnitude of the limit voltage (V_{LIMIT}) so that the output current (Iout) is limited to a maximum current limit determined by the limit voltage (V_{LIMIT}). A control signal (I_{LIMIT}/n) is applied to an input of a current-to-voltage conversion circuit (20) to cause the current-to-voltage conversion circuit to produce the limit voltage (V_{LIMIT}), which is applied to an emitter of a first transistor (Q1) having a collector in base connected to a bias current source (I1). The resulting voltage on a base of the first transistor is applied to a base of a second transistor (Q2), and the input signal (Vgatedrive) is applied to the first conductor (19).