Practice Questions for Feb 12, 2019

- 1. Assume subsetOne = [1, 1, 0, 0, 1] and we are testing whether subsetTwo (which is also a 0/1-array of length 5 = subsetOne.length) equals subsetOne or not.
 - (a) Give the number of 0/1-arrays subsetTwo for which the first iteration of the loop (see the code given in an earlier practice question) returns the value false.
 - (b) Repeat (a) for $k = 2, 3, \dots, 5$.
 - (c) Compute the total number of loop-iterations for returning the value false for different subsetTwo.
 - (d) Compute the average number of loop-iterations for returning the value false for different subsetTwo.
 - (e) What is #(loop-iterations for the return value true)? What is #(0/1-arrays subsetTwo that give return value true)?
 - (f) Compute the average number of loop-iterations for the code (irrespective of the return value)
- 2. Give the average values in Problem 1 for the general case (subsetOne is arbitrary 0/1-array of length $n \ge 1$)?
- 3. Consider two subsets H (for things John has) and W (for things that John wants) of $\Omega \neq \emptyset$, and the four disjoints subsets H W, $H \cap W$, W H, and $H^c \cap W^c$ into which Ω is partitioned (see the Venn-diagram below).

We write x_1 = "yes", "no", and "?" to indicate, respectively, that $H - W \neq \emptyset$, = \emptyset , and we do not know (care) whether H - W is empty or not. Similarly for other x_i 's. Note that $\Omega \neq \emptyset$ implies we cannot have $x_1 = x_2 = x_3 = x_4 =$ "no".

Shown below are a few cases of yes/no/? combinations of values of x_i 's, the description of the situation in ordinary English, and the description in the set notation. (A few cases are completely filled and a few are only partially filled.) In some situations, you may need a long sentence combining several other cases. Note that #9 is a special case of #1, and we need a longer English expression to describe this situation than that for #1; the set notation also shows that #9 is a special case of #1. Similar remarks hold for case #10.

Give English sentence and set-expression for each of #3, #5, #6, and #7. Do the same for some of the cases with two yes/no's and two "?". How many (total) different cases are there with all yes/no/? combinations (except all no's)? What is English description for the case "????" and what is the set-expression for this case?

Case	x_1	x_2	x_3	x_4	English description (without using set terminology)	Set notation (without use of complement)
1.	yes	?	?	?	John has some thing that he does not want.	$H \not\subseteq W$
2.	no	?	?	?	John does not have any thing that he does not want, i.e.,	$H\subseteq W$
					John has only things that he wants. (It does not say	
					whether John wants any thing or John has any thing.)	
					Another way of expressing it without using negation: John	
					wants everything he has.	
3.	?	yes	?	?		
4.	?	no	?	?	John does not have any thing he wants. Another way of	$H \cap W = \emptyset$
					saying it: John does not want any thing he has.	
5.	?	?	yes	?		
6.	?	?	no	?		
7.	?	?	?	yes		
8.	?	?	?	no	There is nothing that John does not have and does not want.	$H \cup W = \Omega$
9.	yes	yes	?	?		$H \not\subseteq W$ and $H \cap W \neq \emptyset$
10	yes	no	?	?		
		•••				