Database Management System

Sumayyea Salahuddin (Lecturer)
Dept. of Computer Systems Eng.
UET Peshawar

Objectives

- Relational Algebra
- Relational Calculus

Relational Algebra

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, *increases the mental power of the race*.

-- Alfred North Whitehead (1861 - 1947)

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

Relational Algebra: More operational, very useful for representing execution plans.

Relational Calculus: Lets users describe what they want, rather than how to compute it. (even more declarative.)

□ Understanding Algebra & Calculus is key to understanding SQL, query processing!

Example: Joining Two Tables

Enrolled

cid	grade	sid
Carnatic101	C	53666
Reggae203	В	53666
Topology112	A	53650
History105	В	53666

Students

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

Pre-Relational:

write a program

Relational SQL

Select name, cid from students s, enrolled e where s.sid = e.sid

Relational Algebra

$$\pi_{name,cid}(Students \bowtie Enrolled)$$

Relational Calculus

 $\{S \mid S \in Students \land \exists E(E \in Enrolled \land E.sid = S.sid)\}$

Relational Algebra: 5 Basic Operations

- <u>Selection</u> (σ) Selects a subset of *rows* from relation (horizontal).
- <u>Projection</u> (π) Retains only wanted **columns** from relation (vertical).
- $\underline{Cross-product}$ (\times) Allows us to combine two relations.
- Set-difference () Tuples in r1, but not in r2.
- *Union* (\cup) Tuples in r1 and/or in r2.

Since each operation returns a relation, operations can be *composed!* (Algebra is "closed".)

Example Instances R1

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

*S*1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

bidbnamecolor101Interlakeblue102Interlakered103Clippergreen104Marinered

Boats

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

- Examples: $\pi_{age}(S2)$; $\pi_{sname,rating}(S2)$
- Retains only attributes that are in the "projection list".
- Schema of result:
 - exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates
 (How do they arise? Why remove them?)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

Projection

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

age
35.0
55.5

$$\pi_{age}(S2)$$

Selection (σ)

- Selects rows that satisfy selection condition.
- Result is a relation.

Schema of result is same as that of the input relation.

Do we need to do duplicate elimination?

si	1	sname	rating	ag	;e
28)	yuppy	9	35	0.0
3		lubber	8	54	5
1	1	C11404017	5	2	
4	T	guppy)	٦,).U
5	3	rusty	10	3.	5.0

sname	rating
yuppy	9
rusty	10

$$\sigma_{rating>8}(S2)$$

$$\pi_{sname,rating}(\sigma_{rating} > 8^{(S2)})$$

Union and Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - `Corresponding' fields have the same type.
- For which, if any, is duplicate elimination required?

Union

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

Set Difference

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1-S2

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age	
28	yuppy	9	35.0	
44	guppy	5	35.0	
S2-S1				

Cross-Product

- S1 × R1: Each row of S1 paired with each row of R1.
- Q: How many rows in the result?
- Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - May have a naming conflict: Both S1 and R1 have a field with the same name.
 - In this case, can use the *renaming operator*:

$$\rho$$
 (C(1 \rightarrow sid1,5 \rightarrow sid2), S1 \times R1)

Cross Product Example

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1

S1

$$R1 \times S1 =$$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Database Management System, Spring 2022, DCSE.

Compound Operator: Intersection

- In addition to the 5 basic operators, there are several additional "Compound Operators"
 - These add no computational power to the language, but are useful shorthands.
 - Can be expressed solely with the basic ops.
- Intersection takes two input relations, which must be <u>union-compatible</u>.
- Q: How to express it using basic operators?

$$R \cap S = R - (R - S)$$

Intersection

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \cap S2$

Compound Operator: Join

- Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a "natural join" (often just called "join"). R ⋈ S conceptually is:
 - Compute R × S
 - Select rows where attributes that appear in both relations have equal values
 - Project all unique atttributes and one copy of each of the common ones.
- Note: Usually done much more efficiently than this.
- Useful for putting "normalized" relations back together.

Natural Join Example

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

R1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

$$R1 \bowtie S1 =$$

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Other Types of Joins

Condition Join (or "theta-join"):

$$R \bowtie_{c} S = \sigma_{c}(R \times S)$$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie S1.sid < R1.sid$$
 $R1$

- Result schema same as that of cross-product.
- May have fewer tuples than cross-product.
- <u>Equi-Join</u>: Special case: condition c contains only conjunction of equalities.

Compound Operator: Division

- Useful for expressing "for all" queries like:
 Find sids of sailors who have reserved all boats.
- For A/B attributes of B are subset of attrs of A.
 - May need to "project" to make this happen.
- E.g., let A have 2 fields, x and y, B have only field y:

$$A/B = \{\langle x \rangle | \forall \langle y \rangle \in B(\exists \langle x, y \rangle \in A) \}$$

A/B contains all tuples (x) such that for <u>every</u> y tuple in B, there is an xy tuple in A.

Examples of Division A/B

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

pno	
p2	
<i>B</i> 1	

pno
p2
p4
<i>B</i> 2

r	no
r	1
$ \mathfrak{p} $	2
r	$\diamond 4 \mid$
	B3

sno	
s1	
s2	
s3	
s4	

sno s1 A/B3

 \boldsymbol{A}

A/B1

A/B2

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- Idea: For A/B, compute all x values that are not `disqualified' by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

Disqualified x values:
$$\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

A/B:
$$\pi_{\chi}(A)$$
 – Disqualified x values

Reserves

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

<u>bid</u>	bname	color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

E1: Find names of sailors who've reserved boat #103

• Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$

• Solution 2: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

E2: Find names of sailors who've reserved a red boat

 Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

□ A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'},Boats)\bowtie Res)\bowtie Sailors)$$

□ *A query optimizer can find this given the first solution!*

E3: Find sailors who've reserved a red or a green boat

 Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho \ (\textit{Tempboats}, (\sigma_{color = 'red' \lor color = 'green'}, \textit{Boats}))$$

$$\pi_{sname}$$
 (Temphoats \bowtie Reserves \bowtie Sailors)

E4: Find sailors who've reserved a red and a green boat

 Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho \text{ (Tempred, } \pi_{sid}\text{(}(\sigma_{color='red'}\text{Boats})\bowtie \text{Reserves}\text{))}$$

$$\rho \text{ (Tempgreen, } \pi_{sid}\text{(}(\sigma_{color='green'}\text{Boats})\bowtie \text{Reserves}\text{))}$$

 $\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$

E5: Find the names of sailors who've reserved all boats

 Uses division; schemas of the input relations to / must be carefully chosen:

$$\rho$$
 (Tempsids, (π sid,bid Reserves) / (π bid Boats))
$$\pi$$
 sname (Tempsids \bowtie Sailors)

□ To find sailors who've reserved all 'Interlake' boats:

....
$$/\pi_{bid}(\sigma_{bname=Interlake'}Boats)$$

29

- Relational Algebra: a small set of operators mapping relations to relations
 - Operational, in the sense that you specify the explicit order of operations
 - A closed set of operators! Can mix and match.
- Basic ops include: σ , π , \times , \cup , —
- Important compound ops: ∩, ⋈, /

Relational Calculus

We will occasionally use this arrow notation unless there is danger of no confusion.

-- Ronald Graham (Elements of Ramsey Theory)

Relational Calculus

- High-level, first-order logic description
- English:

Find all sailors with a rating above 7

More logical English:

From the universe of all things, find me the set of things that happen to be tuples in the Sailors relation and whose rating field is a number greater than 7.

Relational Calculus (TRC)

 $\{S \mid S \in Sailors \land S.rating > 7\}$

So what is Relational Calculus?

 A formal, logical description, of what you want from the database.

Relational Calculus

- Comes in two flavors:
 - <u>Tuple relational calculus</u> (TRC)
 - <u>Domain relational calculus</u> (DRC)

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

English Example: Find all sailors with a rating above 7

 Tuple R.C.: From the universe of all things, find me the set of things that happen to be tuples in the Sailors relation and whose rating field is a number greater than 7.

 $\{S \mid S \in Sailors \land S.rating > 7\}$

Domain R.C.: From the universe of all things, find me S, N, R, and A, where S is an integer, N is a string, R is an integer greater than 7, and A is a floating point number, and <S, N, R, A> is a tuple in the Sailors relation.

$${ | \in Sailors \land R>7}$$

Relational Calculus (cont.)

Calculus has

- variables
 - TRC: Variables range over (i.e., get bound to) tuples. Like SQL.
 - <u>DRC</u>: Variables range over <u>domain elements</u> (= field values). Like Query-By-Example (QBE)
- constants, e.g.7, "Foo", 3.14159, etc.
- comparison ops, e.g. =, <>, <, >, etc.
- logical connectives
 - \neg not
 - \wedge and
 - ∨ or
 - ⇒- implies
 - ∈ is a member of
- quantifiers
 - $\forall X(p(X)) p(X)$ must be true for every X
 - $\exists X(p(X)) p(X)$ is true for some X
- Both TRC and DRC are simple subsets of first-order logic.
 We'll focus on TRC here

Tuple Relational Calculus

- Query has the form: $\{T \mid p(T)\}$
 - -p(T) denotes a formula in which tuple variable T appears.
- Answer is the set of all tuples T for which the formula p(T) evaluates to true.
- Formula is recursively defined:
 - ☐ start with simple *atomic formulas* (get tuples from relations or make comparisons of values)
 - ☐ build bigger and better formulas using the *logical* connectives.

TRC Formulas

An Atomic formula is one of the following:

```
R \in Rel
R.a \ op \ S.b
R.a \ op \ constant
op \ is \ one \ of \ <,>,=,\leq,\geq,\neq
```

A formula can be:

- an atomic formula
- $-\neg p, p \land q, p \lor q$ where p and q are formulas
- $\exists R(p(R))$ where variable R is a tuple variable
- $\forall R(p(R))$ where variable R is a tuple variable

Free and Bound Variables

- The use of quantifiers $\forall X$ and $\exists X$ in a formula is said to *bind* X in the formula.
 - A variable that is not bound is <u>free</u>.
- Let us revisit the definition of a query:
 - $-\{T \mid p(T)\}$
- There is an important restriction
 - the variable T that appears to the left of `|' must be the only free variable in the formula p(T).
 - in other words, all other tuple variables must be bound using a quantifier.

- $\forall x (P(x))$ is only true if P(x) is true for every x in the universe
- Usually:

```
\forall x ((x \in Boats) \Rightarrow (x.color = "Red"))
```

- ⇒ logical implication,
 - a ⇒ b means that if a is true, b must be true
 - $a \Rightarrow b$ is the same as $\neg a \lor b$

$a \Rightarrow b$ is the same as $\neg a \lor b$

- If a is true, b must be true!
 - If a is true and b is false, the implication evaluates to false.
- If a is not true, we don't care about b
 - The expression is always true.

Quantifier Shortcuts

$$\forall x \ ((x \in Boats) \Rightarrow (x.color = "Red"))$$
 can also be written as:
 $\forall x \in Boats(x.color = "Red")$

 $\exists x \ ((x \in Boats) \land (x.color = "Red"))$ can also be written as:

 $\exists x \in Boats(x.color = "Red")$

Selection and Projection

Find all sailors with rating above 8

$$\{S \mid S \in Sailors \land S.rating > 8\}$$

Find names and ages of sailors with rating above 8.

```
\{S \mid \exists S1 \in Sailors(S1.rating > 8 \land S.sname = S1.sname \land S.age = S1.age)\}
```

- Note: S is a tuple variable of 2 fields (i.e. {S} is a projection of Sailors)
 - only 2 fields are ever mentioned and S is never used to range over any relations in the query.

Find sailors rated > 8 who've reserved boat #103

```
\{S \mid S \in Sailors \land S.rating > 8 \land \exists R(R \in Reserves \land R.sid = S.sid \land R.bid = 103)\}
```

Note the use of ∃ to find a tuple in Reserves that `joins with' the Sailors tuple under consideration.

$$\{S \mid S \in Sailors \land S.rating > 8 \land \exists R(R \in Reserves \land R.sid = S.sid \land \exists B(B \in Boats \land B.bid = R.bid \land B.color = 'red'))\}$$

Find sailors rated > 8 who've reserved a red boat

- Observe how the parentheses control the scope of each quantifier's binding.
- This may look cumbersome, but it's not so different from SQL!

Division (makes more sense here???)

Find sailors who've reserved all boats

(hint, use ∀)

```
\{S \mid S \in Sailors \land \\ \forall B \in Boats (\exists R \in Reserves \\ (S.sid = R.sid \land B.bid = R.bid))\}
```

 Find all sailors S such that for all tuples B in Boats there is a tuple in Reserves showing that sailor S has reserved B.

Find the names of sailors who've reserved boat #103

```
\{N \mid \exists S \in Sailors \text{ (S.name = N.name } \land \exists R \in Reserves \text{(S.sid = R.sid } \land R.bid = 103))}
```


Find the names of sailors who've reserved any red boat

```
\{N \mid \exists S \in Sailors \ (S.name = N.name \land \exists R \in Reserves \ (S.sid = R.sid \land \exists B \in Boats(B.color = "Red" \land B.bid = R.bid)))\}
```


Find sailors who've reserved a red boat or a green boat

```
\{S \mid S \in Sailors \land \\ (\exists R \in Reserves \\ (S.sid = R.sid \land \\ \exists B \in Boats(B.bid = R.bid \land \\ (B.color = "Red" \lor \\ B.color = "Green"))))\}
```


Find sailors who've reserved a red boat <u>and</u> a green boat

```
 \{S \mid S \in Sailors \land \\ ((\exists R \in Reserves \\ (S.sid = R.sid \land \\ \exists B \in Boats(B.color = "Red" \land B.bid = R.bid)))   \land \\ (\exists R \in Reserves \\ (S.sid = R.sid \land \\ \exists B \in Boats(B.color = "Green" \land B.bid = R.bid)))) \}
```


Find sailors who've reserved all red boats

```
\{S \mid S \in Sailors \land \\ \forall B \in Boats(B.color = 'red' ⇒ \\ \exists R(R \in Reserves \land S.sid = R.sid \land B.bid = R.bid))\}
```

```
\{S \mid S \in Sailors \land \\ \forall B \in Boats (B.color ≠ `red' \lor \\ \exists R(R \in Reserves \land S.sid = R.sid \land B.bid = R.bid))\}
Database Management System, Spring 2022, DCSE.
```


Unsafe Queries, Expressive Power

 ∃ syntactically correct calculus queries that have an infinite number of answers! *Unsafe*_queries.

- e.g.,
$$\{S \mid \neg \{S \in Sailors\}\}$$

– Solution???? Don't do that!

- Expressive Power (Theorem due to Codd):
 - every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness: Query language (e.g., SQL) can express
 every query that is expressible in relational algebra/calculus.
 (actually, SQL is more powerful, as we will see...)

- The relational model has rigorously defined query languages — simple and powerful.
- Relational algebra is more operational
 - useful as internal representation for query evaluation plans.
- Relational calculus is non-operational
 - users define queries in terms of what they want, not in terms of how to compute it. (*Declarative*)
- Several ways of expressing a given query
 - a query optimizer should choose the most efficient version.
- Algebra and safe calculus have same expressive power
 - leads to the notion of relational completeness.