Desafío STEM: Determinación de la Permeabilidad Magnética del Aire

Objetivos

- Determinar experimentalmente la permeabilidad magnética del aire μ_a usando la Ley de Faraday.
- Verificar la relación entre el voltaje inducido y la corriente alterna en una bobina inductora.
- lacktriangle Analizar cómo varía el campo magnético efectivo B_{ef} a lo largo del eje de una bobina.

Preparación previa

Antes de asistir al laboratorio, el estudiante debe investigar y entender:

- Ley de Faraday y su forma eficaz para señales senoidales.
- Efecto de una bobina circular sobre el campo magnético en el eje.
- Definición y unidades de la permeabilidad magnética μ_a .
- Funcionamiento de: variac, multímetro en modo AC, amperímetro, y bobinas.

Materiales

- 1 bobina inductora: $R \approx 10.5$ cm, N = 200 vueltas o $R \approx 6.5$ cm, N = 320 vueltas. (Depende de la bobina suministrada)
- 1 bobina de detección: $r \approx 13$ mm, n = 2000 vueltas (espiras).
- 2 multímetros (uno para voltaje inducido, otro para corriente eficaz).
- Variac (AC, 60 Hz).
- Regla graduada o riel con escala.
- Carrito para bobina 2.

Conexiones STEM

- Ciencia: Electromagnetismo, campo magnético de bobinas, ley de Faraday.
- Tecnología: Uso de multímetros, variac, y adquisición de datos.
- Ingeniería: Diseño experimental para determinar una constante física.
- Matemáticas: Modelos lineales, ajuste de curvas y análisis gráfico.

Montaje experimental

Desarrollo Teórico Aplicado

El campo B_{ef} es el valor eficaz del campo magnético senoidal producido por la bobina 1 en la posición donde se encuentra la bobina 2.

Paso 1: Mediciones experimentales

- Se mide la corriente eficaz I_{ef} con el amperímetro.
- Se mide el voltaje eficaz inducido ϵ_{ef} con el voltímetro en la bobina 2.

Paso 2: Corriente aplicada

$$i(t) = I_0 \sin(\omega t), \quad I_{ef} = \frac{I_0}{\sqrt{2}}, \quad \omega = 2\pi f$$

Paso 3: Campo magnético en el eje de la bobina 1

$$B(t) = \frac{\mu_a N I_0 R^2}{2(R^2 + x^2)^{3/2}} \sin(\omega t)$$

Paso 4: El campo magético efectivo

$$B_{ef} = \frac{\mu_a N R^2}{2(R^2 + x^2)^{3/2}} I_{ef}$$

Paso 5: Flujo magnético en la bobina 2

$$\Phi(t) = \frac{\mu_a N n \pi r^2 R^2 I_0}{2(R^2 + x^2)^{3/2}} \sin(\omega t)$$

Paso 6: Voltaje inducido eficaz

$$\epsilon(t) = -\frac{d\Phi}{dt} = \frac{\mu_a N n \pi r^2 R^2 \omega I_0}{2(R^2 + x^2)^{3/2}} \cos(\omega t)$$

$$\epsilon_{ef} = \frac{\mu_a N n \pi r^2 R^2 \omega}{2(R^2 + x^2)^{3/2}} I_0 \cdot \frac{1}{\sqrt{2}} = K I_{ef}$$

Paso 7: Cálculo de μ_a

$$K = \frac{\mu_a N n \pi r^2 R^2 \omega}{2(R^2 + x^2)^{3/2}}, \quad \mu_a = \frac{2K(R^2 + x^2)^{3/2}}{N n \pi r^2 R^2 \omega}$$

Así, ϵ_{ef} =K $I_{ef},$ donde K= pendiente de la gráfica.

Por otra parte, de las anteriores ecuaciones se puede demostrar también que $B_{ef} = \mu_0 X$, donde μ_0 = pendiente de la gráfica, siendo

$$B_{ef} = \frac{\epsilon_{ef}}{2\pi n r^2 f}$$

у

$$X = \frac{I_{ef}NR^2}{2(R^2 + x^2)^{3/2}}$$

Toma de datos

- 1. Fije x = 0 y complete el cuadro 1
- 2. Varíe x y complete el cuadro 2

Obtenga μ_a para cada procedimiento y comparar con $\mu_a = 1,25663753 \times 10^{-6} \text{ N/A}^2$.

Corriente I_{ef} (A)	Voltaje ϵ_{ef} (V)
0.0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
:	
1.7	
1.7	

Cuadro 1: Datos para determinar K

Distancia x (cm)	Voltaje ϵ_{ef} (V)	$B_{ef} = \frac{\epsilon_{ef}}{2\pi n r^2 f} \; (\mu T)$
0.0		
0.5		
1.0		
1.5		
2.0		
2.5		
3.0		
:		
25.0		

Cuadro 2: Datos para determinar la dependencia de ${\cal B}_{ef}$ con la posición x

Rúbrica del informe (5.0 puntos)

Criterio	Puntaje
Claridad del objetivo y fundamentación teórica	1.0
Registro completo y ordenado de los datos	1.0
Análisis gráfico y cálculo de μ_a	1.0
Comparación con valor teórico y discusión de resultados	1.0
Presentación y formato del informe	1.0

Rúbrica de sustentación oral (5.0 puntos)

Criterio	Punta j e
Dominio del tema y respuestas correctas	1.0
Claridad y orden en la exposición	1.0
Interpretación adecuada de gráficas y resultados	1.0
Participación equitativa del grupo	1.0
Puntualidad, tiempo y material de apoyo	1.0

Nota final

$$\mbox{Nota final} = \frac{\mbox{Nota del informe} + \mbox{Nota de la exposición}}{2}$$