

LOGICA MATEMATICA

La lógica se encarga de estudiar las formas de razonamiento, se encarga de determinar a través de reglas y técnicas el valor de verdad de una proposición. Es fundamental para relacionar los conocimientos con otras áreas del conocimiento, permite resolver problemas incluso a nivel teórico, ayuda a que la gente piense efectivamente, mejora el nivel de razonamiento, hacer deducciones correcta, interpretaciones y asumir actitudes críticas.

A nivel matemático trata los métodos de razonamiento, proporciona reglas para determinar si es o no valido un argumento. Se emplea para demostrar teoremas, en sistemas en programación, en física y ciencias para evaluar hipótesis, en filosofía sirve para validar teorías, también se emplea para mantener un razonamiento ordenado.

SIMBOLIZACIÓN DE PROPOSICIONES

PROPOSICIONES

Una proposición es enunciado u oración de la cual puede afirmarse que es verdadera o falsa. No son proposiciones las expresiones dubitativas, imperativas, interrogativas y las exclamaciones.

Expresión dubitativa: Son oraciones que generan duda, pueden expresar un hecho incierto.

EJEMPLO

Sera que llueve hoy.

De pronto voy mañana.

Expresión imperativa: Son oraciones para dar órdenes o establecer prohibiciones.

EJEMPLO

Atención fir

Se prohíbe el ingreso con animales.

Expresión interrogativa: Son oraciones empleadas para preguntar.

EJEMPLO

¿Cómo se llama tu hermano?

¿Cuántos días tienes que esperarme?

Expresión exclamativa: Son oraciones empleadas para expresar emociones

EIEMPLO

¡Qué lástima!

¡Qué golazo!

RESUELVA LAS SIGUIENTES PREGUNTAS

- 1. ¿Qué estudia la lógica?
- 2. ¿Por qué es importante la lógica?
- 3. Haga cinco ejemplos de expresiones dubitativas.
- 4. Haga cinco ejemplos de expresiones imperativas.
- 5. Haga cinco ejemplos de expresiones interrogativas.
- 6. Haga cinco ejemplos de expresiones exclamativas.
- 7. Haga diez ejemplos de expresiones de las cuales se pueda afirmar que son ciertas o falsas, es decir proposiciones

PROPOSICIONES ATOMICAS O SIMPLE

Son proposiciones simples o básicas, están no poseen términos de enlace.

PROPOSICIONES MOLECULARES

Son proposiciones formadas por dos o más proposiciones atómicas, enlazadas por un término.

EJEMPLO

Hoy es sábado

Hoy no hay clase

Son proposiciones atómicas, pero cuando escribimos la proposición

Hoy es sábado **y** hoy no hay clase

Se convierte en proposición molecular.

VALOR DE VERDAD PROPOSICIÓN SIMPLE

El valor de verdad de una proposición es **falso** o **verdadero**. Se simboliza con las letras **F** y **V** respectivamente.

REPRESENTACIÓN DE PROPOSICIONES SIMPLES

Las proposiciones se representan con letras minúsculas, en especial *p*, *q*, *r*, *s*, *t entre otras*.

EJEMPLO

P: El Quijote de la Mancha lo escribió García Márquez (F)

CONECTIVOS LOGICOS

También se denominan términos de enlace permiten enlazar proposiciones simples o atómicas. Son la conjunción, disyunción, implicación, doble implicación y la negación.

DENOMINACIÓN	CONECTIVO LÓJICO	SIMBOLO
CONJUNCIÓN	Υ	٨
DISYUNCIÓN	0	V
DISYUNCIÓN EXCLUSIVA	Ó	<u>V</u>
IMPLICACIÓN	SI ENTONCES	⇒
DOBLE IMPLICACIÓN	SI Y SÓLO SI	\Leftrightarrow
NEGACIÓN	NO	\neg, ~

EIEMPLO

Al representar las proposiciones

- p: 7 es mayor que 5
- q: Bogotá es la capital de Cundinamarca

Al convertirla en una proposición compuesta o molecular se tendría:

p V **q**: 7 Es mayor que 5 o Bogotá es la capital de Cundinamarca.

CONSTRUYENDO PROPOSICIONES MOLECULARES

Resuelva las siguientes preguntas.

- 8. ¿Qué diferencias existen entre una proposición molecular v una atómica?
- Construya 20 proposiciones compuestas a partir de las inventadas en el numeral 7 y simbolice. NO EMPLEE NEGACIÓN
- **10.** Escriba 10 proposiciones compuestas referidas a conceptos matemáticos y simbolícelas.

NEGACIÓN DE UNA PROPOSICIÓN

Al negar una proposición simple, esta se convierte en proposición compuesta y su valor de verdad cambia.

	p	~ p
e	٧	F
r	F	٧

TABLA VALOR DE VERDAD:

Es una tabla que muestra todos los posibles valores que puede tomar una proposición compuesta.

Para hacer una tabla se recomienda comenzar por los valores de verdad **VERDADEROS** y continuar con los valores de verdad **FALSOS**. Es necesario tener en cuenta que la cantidad de valores de verdad están sujetos por la ecuación 2^n , donde n es el número de proposiciones y se toman la mitad verdaderos y la mitad falsos.

El proceso se continúa hallando la mitad de los restantes sucesivamente, hasta terminar con todas las proposiciones.

CONJUNCIÓN

Este conector es la Y, se dice que es verdadera únicamente cuando las dos proposiciones son verdaderas.

p	q	$p \wedge q$
V	٧	٧
V	F	F
F	٧	F
F	F	F

p	q	$p \lor q$
٧	>	٧
٧	F	V
F	٧	٧
F	F	F

DISYUNCIÓN

En este caso las proposiciones se encuentran unidas por el conectivo **O**, es verdadera cuando una de las dos proposiciones es verdadera.

DISYUNCIÓN EXCLUSIVA

Se trata de una disyunción pero en este caso no admite que se cumplan ambas, es verdadera cuando una de las proposiciones sea verdadera.

p	q	$p \vee q$
٧	٧	F
٧	F	V
F	٧	V
F	F	F

р	q	$p\Rightarrow q$
٧	٧	٧
٧	F	F
F	٧	٧
F	F	V

IMPLICACIÓN O CONDICIONAL

Se asocia con la expresión si...entonces, en el contexto cotidiano se relaciona con CAUSA-EFECTO. Es

verdadera cuando las dos proposiciones son verdaderas o falsas y cuando el antecedente es falso y el consecuente verdadero.

DOBLE IMPLICACIÓN O BICONDICIONAL

Es un conectivo que hace referencia a dos implicaciones, que pueden interpretarse como **si p entonces q y**

p	q	$p \Leftrightarrow q$	
<	٧	V	
٧	F	F	
F	٧	F	
F	F	V	

si q entonces p ($p \Rightarrow q \land q \Rightarrow p$). En este caso se considerar verdadera cuando las dos proposiciones son verdaderas o falsas.

HALLAR EL VALOR DE VERDAD

Dadas las siguientes proposiciones, escribir la proposición compuesta y hallar el valor de verdad respectivo.

- p: 5 es un múltiplo de 15
- q: Napoleón fue emperador
- r: Un triángulo equilátero tiene ángulos internos de 60 grados.
- s: Un número primo no tiene por lo menos 5 divisores
- t: Los números racionales no son reales

11.	$p \wedge q$	12.	$p \lor s$	<i>13.</i>	$s \wedge q$
14.	r <u>∨ </u> q	15.	$\sim p \Rightarrow q$	16.	$t \lor t$
17.	$\sim r \vee \sim s$	18.	$p \Rightarrow r$	19.	$\sim t \vee s$
20.	$s \Leftrightarrow \sim t$	21.	$r \Leftrightarrow q$	22.	$s \lor p$
23.	$\sim t \Rightarrow q$	24.	$q \vee s$	<i>25.</i>	$\sim p \Rightarrow s$
26.	$p \lor s$	27.	$\sim s \wedge q$	28.	q <u>∨</u> q
29.	$r \Leftrightarrow \sim q$	30.	s ⇔~ p	31.	$p \lor t$

TAUTOLOGÍA

Es una proposición en la cual la tabla de verdad siempre es verdadera sin interesar la falsedad o verdad de las proposiciones que la componen.

CONTRADICCIÓN

Es una proposición cuya tabla de verdad siempre es falsa sin importar la falsedad o veracidad de las proposiciones que la componen.

TABLAS DE VERDAD

Realizar las tablas de verdad para las siguientes proposiciones compuestas.

- **32.** $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
- *33.* $(p \land q) \lor (q \lor r) \Leftrightarrow (p \Rightarrow r)$
- **34.** $(p \land \sim q) \Rightarrow (q \lor r) \Leftrightarrow (s \lor r)$

FUNCION PROPOSICIONAL O PROPOSICION ABIERTA

Son proposiciones donde el valor de verdad depende del valor que se asigne a las variables, estas poseen variables y su solución es un conjunto que hace verdadera la proposición, es denominado conjunto solución o conjunto de verdad.

EJEMPLO

P(x): X escribió Don Quijote de la mancha. El conjunto solución será $p(x) = \{Miguel\ de\ Cervantes\}.$

HALLAR EL CONJUNTO SOLUCIÓN

35. $m(x): x + 1 < 5, \forall x \in N$

36. t(y): y es la Capital de Alemanía

CUANTIFICADORES

Se emplean para convertir funciones proposicionales en proposiciones. Los cuantificadores son palabras que indican la cantidad de elementos de un conjunto (todos los elementos, ninguno de los elementos, o algún elemento) que cumple una determinada condición o característica. En lógica, los cuantificadores determinan para las funciones proposicionales simples o compuestas asociadas a un conjunto, que el conjunto de verdad no es vacío, es todo U o es vacío.

CUANTICADOR UNIVERSAL ∀

Se emplea cuando se hace referencia a todos los elementos del conjunto. Se simboliza $(\forall x)(p(x)$

CUANTIFICADOR EXISTENCIAL ∃

Este cuantificador indica que la promoción es válida para algún elemento del conjunto. Se simboliza $(\exists x)(p(x)$

NEGACIÓN DE LOS CUANTIFICADORES

La negación de los cuantificadores se realiza empleando el cuantificador contrario, es para todo con existe y el existe con para todo y la negación respectiva de la proposición.

INVENTAR

- **37.** Inventar cinco proposiciones universales y realizar la respectiva negación.
- **38.** Inventar cinco proposiciones existenciales y realizar la respectiva negación.