

MS5611-01BA03

Sensor de presión barométrica, con tapa de acero inoxidable

ESPECIFICACIONES

- Módulo de alta resolución, 10 cm
- Conversión rápida de hasta 1 ms Bajo
- consumo, 1 μA (en espera < 0,15 μA)
- Paquete QFN 5,0 x 3,0 x 1,0 mm₃
- Tensión de alimentación 1,8 a 3,6 V
- Sensor de presión digital integrado (24 bit ΔΣ ADC)
- Rango de operación: 10 a 1200 mbar, -40 a +85 °CI₂
- Interfaz C y SPI hasta 20 MHz
- Sin componentes externos (oscilador interno)
- Excelente estabilidad a largo plazo

El MS5611-01BA es una nueva generación de sensores de altímetro de alta resolución de MEAS Suiza con SPI e I2Interfaz de bus C. Este sensor de presión barométrica está optimizado para altímetros y variómetros con una resolución de altitud de 10 cm. El módulo sensor incluye un sensor de presión de alta linealidad y un ADC $\Delta\Sigma$ de 24 bits de potencia ultrabaja con coeficientes internos calibrados de fábrica. Proporciona un valor digital preciso de presión y temperatura de 24 bits y diferentes modos de operación que permiten al usuario optimizar la velocidad de conversión y el consumo de corriente. Una salida de temperatura de alta resolución permite la implementación de una función de altímetro/termómetro sin ningún sensor adicional. El MS5611-01BA se puede conectar a prácticamente cualquier microcontrolador. El protocolo de comunicación es sencillo, sin necesidad de programar registros internos en el dispositivo. Pequeñas dimensiones de solo 5,0 mm x 3,0 mm y una altura de solo 1.0 mm permiten la integración en dispositivos móviles. Esta nueva generación de módulos de sensores se basa en la tecnología MEMS líder y los últimos beneficios de la experiencia y los conocimientos técnicos probados de MEAS Suiza en la fabricación de gran volumen de módulos de altímetro, que se han utilizado ampliamente durante más de una década. El principio de detección empleado conduce a una histéresis muy baja y una alta estabilidad de la señal de presión y temperatura.

CARACTERISTICAS

CAMPO DE APLICACIÓN

- Sistemas móviles de altímetro/barómetro
- Ciclocomputadores
- Variómetros
- Detección de altura para alarmas médicas
- Navegación interior

DATOS TÉCNICOS

Rendimiento del sensor (V _{DD} = 3 v	oltios)			
Presión	mínimo	tipo	máx.	Unidad
Rango	10		1200	mbar
ADC		24		poco
Resolución (1)		/ 0,042 / .018 / 0.0		mbar
Precisión 25°C, 750 mbar	- 1.5		+ 1.5	mbar
Banda de error, -20°C a +85°C, 450 a 1100 mbar (2)	- 2.5		+ 2.5	mbar
Tiempo de respuesta (1)	0,5 / 1	1,1 / 2,1 / 8.22	4,1 /	Sra
Estabilidad a largo plazo		±1		mbar/año
Temperatura	mínimo	tipo	máx.	Unidad
Rango	- 40		+ 85	°C
Resolución		<0.01		°C
Exactitud	- 0.8		+ 0.8	°C
Notas: (1) Relación de sobremuestreo: 256 / 512 / 1024 / 2048 / 4096 (2) Con autocero en un punto de presión				6

DIAGRAMA DE BLOQUES FUNCIONAL

ESPECIFICACIONES DE RENDIMIENTO

ÍNDICES ABSOLUTOS MÁXIMOS

Parámetro	Símbolo	Condiciones	mín.	tip.	máx.	Unidad
Tensión de alimentación	V _{DD}		- 0.3		+ 4.0	V
Temperatura de almacenamiento	Ts		- 40		+ 125	°C
Presión demasiada	PAGSmáximo				6	bar
Soldadura Máxima Temperatura	Tmáximo	40 segundos máx.			250	°C
Clasificación ESD		Cuerpo humano Modelo	- 4		+ 4	kV
Hacer conexion		estándar JEDEC nº 78	- 100		+ 100	mamá

CARACTERÍSTICAS ELECTRICAS

Parámetro	Símbolo	Condiciones	mín.	tip.	máx.	Unidad
Tensión de alimentación de funcionamiento	V _{DD}		1.8	3.0	3.6	V
Temperatura de funcionamiento	Т		- 40	+ 25	+ 85	°C
Corriente de suministro (1 muestra por segundo)	IDD	OSR 4096 2048 1024 512 256		12.5 6.3 3.2 1.7 0.9		μΑ
Corriente máxima de suministro		durante la conversión		1.4		mamá
Corriente de suministro en espera		a 25°C		0.02	0.14	μΑ
Condensador VDD		De VDD a GND	100			nF

CONVERTIDOR ANALÓGICO DIGITAL (ADC)

Parámetro	Símbolo	Condiciones	mín.	tip.	máx.	Unidad
Palabra de salida				24		росо
tiempo de conversión	tc	OSR 4096 2048 1024 512 256	7.40 3.72 1.88 0,95 0.48	8.22 4.13 2.08 1.06 0.54	9.04 4.54 2.28 1.17 0,60	Sra

ESPECIFICACIONES DE RENDIMIENTO (CONTINUACIÓN)

CARACTERÍSTICAS DE SALIDA DE PRESIÓN (VDD= 3 V, T = 25 °C A MENOS QUE SE INDIQUE LO CONTRARIO)

Parámetro	Condicion	es	mín.	tip.	máx.	Unidad
Rango de presión de funcionamiento	PAGSrango	PAGS _{rango} Precisión total			1100	mbar
Rango de presión extendido	PAGSextensión	Rango lineal de ADC			1200	mbar
	a 25°C, 70	001100 mbar a	- 1.5		+ 1.5	
Danda da amantatal sin autaana	050°C, 4	501100 mbar a	- 2.0		+ 2.0	mbar
Banda de error total, sin autocero	-2085°C,	4501100 mbar a	- 3.5		+ 3.5	IIIDai
	-4085°C,	4501100 mbar	- 6.0		+ 6.0	
	a 25°C, 70	001100 mbar a	- 0.5		+ 0.5	
Banda de error total, autocero en	1050°C,	1050°C, 4501100 mbar a			+ 1.0	mbar
un punto de presión	-2085°C,	4501100 mbar a	- 2.5		+ 2.5	IIIDai
	-4085°C,	4501100 mbar	- 5.0		+ 5.0	
Error máximo con tensión de alimentación	V en1,8 V	. 3,6 V		±2,5		mbar
Estabilidad a largo plazo				±1		mbar/año
Tiempo de recuperación después del reflujo (1)				7		días
	OSR	4096		0.012		
		2048		0.018		
Resolución RMS		1024		0.027		mbar
		512		0.042		
		256		0.065		

⁽¹⁾ Tiempo para recuperar al menos el 66% del impacto del reflujo

CARACTERÍSTICAS DE SALIDA DE TEMPERATURA (VDD= 3 V, T = 25 °C A MENOS QUE SE INDIQUE LO CONTRARIO)

Parámetro	Condiciones		mín.	tip.	máx.	Unidad
	a 25°C		- 0.8		+ 0.8	
Precisión absoluta	- 2085°C		- 2.0		+ 2.0	°C
	- 4085°C		- 4.0		+ 4.0	
Error máximo con tensión de alimentación	V æd ,8 V 3,6 V			±0,5		°C
	OSR	4096		0.002		
		2048		0.003		
Resolución RMS		1024		0.005		°C
		512		0.008		
		256		0.012		

ESPECIFICACIONES DE RENDIMIENTO (CONTINUACIÓN)

ENTRADAS DIGITALES (CSB, I₂C, DIN, SCLK)

Parámetro	Símbolo	Condiciones	mín.	tip.	máx.	Unidad
Reloj de datos en serie	SCLK	protocolo SPI			20	megahercio
Entrada de alto voltaje	Vyo	Pines CSB	80% V _{DD}		100% V _{DD}	V
Entrada de bajo voltaje	VILLINOIS		0% V _{DD}		20% V _{DD}	V
Corriente de fuga de entrada	Ifuga25°C Ifuga85°C	a 25°C			0.15	μΑ

SALIDAS DE PRESIÓN (I₂C, DOUT)

Parámetro	Símbolo	Condiciones	mín.	tip.	máx.	Unidad
Salida de alto voltaje	Vон	I _{fuente} = 1,0 mA	80% V _{DD}		100% V _{DD}	V
Salida de bajo voltaje	V OL	Ihundir = 1,0 mA	0% V _{DD}		20% V _{DD}	٧
Capacidad de carga	Ccarga				dieciséis	pF

DESCRIPCION FUNCIONAL

Figura 1: Diagrama de bloques de MS5611-01BA

GENERAL

El MS5611-01BA consta de un sensor piezorresistivo y un IC de interfaz de sensor. La función principal del MS5611-01BA es convertir la tensión de salida analógica no compensada del sensor de presión piezorresistivo en un valor digital de 24 bits, además de proporcionar un valor digital de 24 bits para la temperatura del sensor.

CALIBRACIÓN DE FÁBRICA

Cada módulo se calibra individualmente en fábrica a dos temperaturas y dos presiones. Como resultado, los 6 coeficientes necesarios para compensar las variaciones del proceso y las variaciones de temperatura se calculan y almacenan en la PROM de 128 bits de cada módulo. Estos bits (divididos en 6 coeficientes) deben ser leídos por el software del microcontrolador y utilizados en el programa que convierte D1 y D2 en valores de presión y temperatura compensados.

INTERFAZ DE SERIE

El MS5611-01BA tiene incorporados dos tipos de interfaces seriales: SPI e I₂C. Tirar del pin de selección de protocolo PS a bajo selecciona el protocolo SPI, tirando de PS a alto activa el I₂Protocolo de bus C.

Pin PD	Modo	pines usados
Elevado	I ₂ C	ASD
Bajo	SPI	IDE, SDO, CSB

MODO SPI

El microcontrolador externo sincroniza los datos a través de la entrada SCLK (Serial CLocK) y SDI (Serial Data In). En el modo SPI, el módulo puede aceptar tanto el modo 0 como el modo 3 para la fase y la polaridad del reloj. El sensor responde en la salida SDO (Serial Data Out). El pin CSB (Chip Select) se usa para habilitar/deshabilitar la interfaz, para que otros dispositivos puedan hablar en el mismo bus SPI. El pin CSB se puede colocar alto después de enviar el comando o después del final de la ejecución del comando (por ejemplo, el final de la conversión). El mejor rendimiento de ruido del módulo se obtiene cuando el bus SPI está inactivo y sin comunicación con otros dispositivos durante la conversión ADC.

I₂MODO C

El microcontrolador externo registra los datos a través de la entrada SCLK (Serial CLocK) y SDA (Serial DAta). El sensor responde en el mismo pin SDA que es bidireccional para el I2Interfaz de bus C. Por lo tanto, este tipo de interfaz usa solo 2 líneas de señal y no requiere una selección de chip, lo que puede ser favorable para reducir el espacio de la placa. en yo2Modo C el complemento del pin CSB (Chip Select) representa el LSB del I2dirección C. Es posible utilizar dos sensores con dos direcciones diferentes en el I2autobús C. El pin CSB se conectará a VDD o GND (¡no lo deje sin conectar!).

COMANDOS

El MS5611-01BA tiene solo cinco comandos básicos:

- 1. Restablecer
- 2. Leer PROM (128 bits de palabras de calibración)
- 3. Conversión D1
- 4. conversión D2
- 5. Lea el resultado ADC (presión/temperatura de 24 bits)

CÁLCULO DE PRESIÓN Y TEMPERATURA

evaluación de las variables min y max

Figura 2: Diagrama de flujo para lectura de presión y temperatura y compensación de software.

^[2] [3] min y max tienen que ser definidos

^[4] min y max tienen que ser definidos

COMPENSACIÓN DE TEMPERATURA DE SEGUNDO ORDEN

Figura 3: Diagrama de flujo para presión y temperatura con la precisión óptima.

INTERFAZ SPI

COMANDOS

El tamaño de cada comando es de 1 byte (8 bits) como se describe en la siguiente tabla. Después de los comandos de lectura de ADC, el dispositivo devolverá un resultado de 24 bits y después de que la PROM lea un resultado de 16 bits. La dirección de la PROM está incrustada dentro del comando de lectura de la PROM utilizando los bits a2, a1 y a0.

	byte o	de coma	ndo						valor hexadecimal
número de bit	0	1	2	3	4	5	6	7	
Nombre de bit	relaciones p	úblicCOV	-	tipo	anuncio2/ os2	anuncio1/ os1	anuncio0/ OSO	Detener	
Mando									
Reiniciar	0	0	0	1	1	1	1	0	0x1E
Convertir D1 (OSR=256)	0	1	0	0	0	0	0	0	0x40
Convertir D1 (OSR=512)	0	1	0	0	0	0	1	0	0x42
Convertir D1 (OSR=1024)	0	1	0	0	0	1	0	0	0x44
Convertir D1 (OSR=2048)	0	1	0	0	0	1	1	0	0x46
Convertir D1 (OSR=4096)	0	1	0	0	1	0	0	0	0x48
Convertir D2 (OSR=256)	0	1	0	1	0	0	0	0	0x50
Convertir D2 (OSR=512)	0	1	0	1	0	0	1	0	0x52
Convertir D2 (OSR=1024)	0	1	0	1	0	1	0	0	0x54
Convertir D2 (OSR=2048)	0	1	0	1	0	1	1	0	0x56
Convertir D2 (OSR=4096)	0	1	0	1	1	0	0	0	0x58
Lectura ADC	0	0	0	0	0	0	0	0	0x00
lectura PROM	1	0	1	0	anuncio2	anuncio1	anuncio0	0	0xA0 a 0xAE

Figura 4: Estructura de comando

SECUENCIA DE RESTABLECIMIENTO

La secuencia de reinicio se enviará una vez después del encendido para asegurarse de que la PROM de calibración se cargue en el registro interno. También se puede usar para restablecer la ROM del dispositivo desde una condición desconocida

Figura 5: Secuencia de comando de reinicio modo SPI 0

Figura 6: Secuencia de comando de reinicio modo SPI 3

SECUENCIA DE CONVERSIÓN

El comando de conversión se utiliza para iniciar la conversión de presión no compensada (D1) o temperatura no compensada (D2). La selección de chip se puede desactivar durante este tiempo para comunicarse con otros dispositivos.

Después de la conversión, usando el comando de lectura ADC, el resultado se registra primero con el MSB. Si la conversión no se ejecuta antes del comando de lectura ADC, o si se repite el comando de lectura ADC, dará 0 como resultado de salida. Si se envía el comando de lectura ADC durante la conversión, el resultado será 0, la conversión no se detendrá y el resultado final será incorrecto. La secuencia de conversión enviada durante el proceso de conversión ya iniciado también arrojará un resultado incorrecto.

Figura 7: Secuencia de conversión, Typ=d1, OSR = 4096

Figura 8: Secuencia de lectura de ADC

SECUENCIA DE LECTURA PROM

El comando de lectura para PROM se ejecutará una vez después de que el usuario lo restablezca para leer el contenido de la PROM de calibración y calcular los coeficientes de calibración. Hay un total de 8 direcciones que dan como resultado una memoria total de 128 bits. La dirección 0 contiene datos de fábrica y la configuración, las direcciones 1-6 coeficientes de calibración y la dirección 7 contiene el código de serie y CRC. La secuencia de comandos tiene una longitud de 8 bits con un resultado de 16 bits que se sincroniza primero con el MSB.

Figura 9: Secuencia de lectura PROM, dirección = 011 (Coeficiente 3).

I2INTERFAZ C

COMANDOS

cada yo₂El mensaje de comunicación C comienza con la condición de inicio y finaliza con la condición de parada. La dirección MS5611-01BA es 111011Cx, donde C es el valor complementario del pin CSB. Dado que el IC no tiene un microcontrolador dentro, los comandos para I₂C y SPI son bastante similares.

SECUENCIA DE RESTABLECIMIENTO

El reinicio se puede enviar en cualquier momento. En el caso de que no haya un restablecimiento de encendido exitoso, esto puede deberse a que el SDA está bloqueado por el módulo en el estado de reconocimiento. La única forma de hacer que el MS5611-01BA funcione es enviar varios SCLK seguidos de una secuencia de reinicio o repetir el encendido al reiniciar.

Figura 10: yo₂C Restablecer comando

SECUENCIA DE LECTURA PROM

El comando de lectura de PROM consta de dos partes. El primer comando configura el sistema en el modo de lectura de PROM. La segunda parte obtiene los datos del sistema.

Figura 11: yo₂C Comando para leer dirección de memoria= 011 (Coeficiente 3)

Figura 12: yo₂Respuesta C de MS5611-01BA

SECUENCIA DE CONVERSIÓN

Se puede iniciar una conversión enviando el comando a MS5611-01BA. Cuando se envía un comando al sistema, permanece ocupado hasta que se realiza la conversión. Cuando finaliza la conversión, se puede acceder a los datos enviando un comando de lectura, cuando aparece un reconocimiento del MS5611-01BA, se pueden enviar 24 ciclos SCLK para recibir todos los bits de resultado. Cada 8 bits el sistema espera una señal de reconocimiento.

Figura 15: yo₂Respuesta C de MS5611-01BA

COMPROBACIÓN DE REDUNDANCIA CÍCLICA (CRC)

= Condición de parada

MS5611-01BA contiene una memoria PROM de 128 bits. Se ha implementado un CRC de 4 bits para verificar la validez de los datos en la memoria. La nota de aplicación AN520 describe en detalle el código CRC-4 utilizado.

Figura 16: Asignación de PROM de memoria

CIRCUITO DE APLICACIÓN

El MS5611-01BA es un circuito que se puede utilizar junto con un microcontrolador en aplicaciones de altímetros móviles. Está diseñado para sistemas de baja tensión con una tensión de alimentación de 3 V.

SPI protocol communication

I2C protocol communication

Figura 17: Circuito de aplicación típico con SPI/I2Comunicación de protocolo C

CONFIGURACIÓN DE PINES

Alfiler	Nombre	Escribe	Función
1	VDD	PAGS	Tensión de alimentación positiva
2	PD	I	Selección de protocolo PS alta (VDD) - I2C PS bajo (GND) - SPI
3	TIERRA	GRAMO	Terrestre
5	CSB	I	Selección de chip (activo bajo), conexión interna
6	SDO	0	Salida de datos en serie
7	IDE / ASD	yo / yo	Entrada de datos en serie / I₂E/S de datos C
8	SCLK	I	Reloj de datos en serie

ESQUEMA DEL PAQUETE DEL DISPOSITIVO

Figura 18: Esquema del paquete MS5611-01BA03

DISPOSICIÓN DE PASTILLAS RECOMENDADA

Diseño de almohadilla para el lado inferior del MS5611-01BA soldado en la placa de circuito impreso.

PAQUETE DE ENVÍO

1: 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2
2: CAMBER IN COMPLIANCE WITH EIA 481
3: POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITIONOF POCKET, NOT POCKET HOLE

CONSIDERACIONES DE MONTAJE Y MONTAJE

SOLDADURA

Consulte la nota de aplicación AN808 disponible en nuestro sitio web para todos los problemas de soldadura.

MONTAJE

El MS5611-01BA se puede colocar con equipos Pick & Place automáticos mediante boquillas de vacío. No será dañado por el vacío. Debido al montaje de baja tensión, el sensor no muestra efectos de histéresis de presión. Es importante soldar todas las almohadillas de contacto.

CONEXIÓN A PCB

El diseño del paquete del módulo permite el uso de una PCB flexible para la interconexión. Esto puede ser importante para aplicaciones en relojes y otros dispositivos especiales.

LIMPIEZA

El MS5611-01BA se ha fabricado en condiciones de sala limpia. Por lo tanto, se recomienda ensamblar el sensor bajo clase 10'000 o apuestater condiciones. Si esto no fuera posible, se recomienda proteger la abertura del sensor durante el montaje para que no entren partículas y polvo. Para evitar la limpieza de la PCB, la soldadura en pasta de Se utilizará el tipo "no-clean". ¡La limpieza podría dañar el sensor!

PRECAUCIONES ESD

Las almohadillas de contacto eléctrico están protegidas contra ESD hasta 4 kV HBM (modelo de cuerpo humano). Por lo tanto, es esencial poner a tierra correctamente las máquinas y el personal durante el montaje y la manipulación del dispositivo. El MS5611-01BA se envía en cajas de transporte antiestáticas. Cualquier adaptador de prueba o caja de transporte de producción utilizada durante el montaje del sensor debe ser de un material antiestático equivalente.

CONDENSADOR DE DESACOPLAMIENTO

Se debe tener especial cuidado al conectar el dispositivo a la fuente de alimentación. Se debe colocar un capacitor cerámico de 100 nF lo más cerca posible del pin MS5611-01BA VDD. Este condensador estabilizará la fuente de alimentación durante la conversión de datos y, por lo tanto, proporcionará la mayor precisión posible.

CARACTERÍSTICAS TÍPICAS DE RENDIMIENTO

Valor ADC D2 frente a temperatura (típica)

CARACTERÍSTICAS TÍPICAS DE RENDIMIENTO (CONTINUACIÓN)

Precisión de presión absoluta después de la calibración, compensación de segundo orden

Error de presión Precisión frente a temperatura (típica)

Error de temperatura Precisión frente a temperatura (típica)

CARACTERÍSTICAS TÍPICAS DE RENDIMIENTO (CONTINUACIÓN)

INFORMACIÓN SOBRE PEDIDOS

NÚMERO DE PARTE	DESCRIPCIÓN	Arte. No	Entrega Formulario
MS5611-01BA03	Sensor de presión barométrica con tapa metálica delgada	MS561101BA03-50	Cinta y carrete

NORTEAMÉRICA

Measurement Specialties, Inc., una empresa de TE Connectivity Tel: +1 800-522-6752

Correo electrónico:atenciónalcliente.frmt@te.com

EUROPA

Measurement Specialties (Europe), Ltd., una empresa de TE Connectivity Teléfono: +31 73 624 6999

Correo electrónico: atenciónal cliente. bevx@te.com

ASIA

Measurement Specialties (China) Ltd., una empresa de TE Connectivity Teléfono: +86 0400-820-6015

Correo electrónico: atenciónal cliente. shzn@te.com

TE.com/sensorsolutions

Measurement Specialties, Inc., una empresa de TE Connectivity.

Measurement Specialties, TE Connectivity, TE Connectivity (logotipo) y EVERY CONNECTION COUNTS son marcas comerciales. Todos los demás logotipos, productos y/o nombres de empresas a los que se hace referencia en este documento pueden ser marcas comerciales de sus respectivos propietarios.

La información proporcionada en este documento, incluidos los dibujos, ilustraciones y esquemas que tienen únicamente fines ilustrativos, se cree que es confiable. Sin embargo, TE Connectivity no ofrece garantías en cuanto a su precisión o integridad y se exime de cualquier responsabilidad en relación con os u uso. Las obligaciones de TE Connectivity serán únicamente las establecidas en los Términos y condiciones estándar de venta de TE Connectivity para este producto y, en ningún caso, TE Connectivity será responsable de los daños incidentales, indirectos o consecuentes que surjan de la venta, reventa, uso o mal uso de el producto. Los usuarios de los productos de TE Connectivity deben realizar su propia evaluación para determinar la idoneidad de cada producto para la aplicación específica.

© 2015 TE Connectivity Ltd. familia de empresas Todos los derechos reservados.

