Zadanie 1.

Oblicz wartość chwilową prądu i=10sin(314t+30⁰) w chwilach t=0, 3.335, 8, 15, 18.34 ms. Naszkicuj ten przebieg oraz przedstaw go w postaci wektora.

Zadanie 2.

Określ wartość oraz typ elementu (R, L czy C) jeśli znasz przebiegi napięcia na jego zaciskach i płynącego przezeń prądu:

a) $u(t)=150\sin(\omega t + \pi/6)$

 $i(t) = 5\sin(\omega t + 30^{\circ})$

b) $u(t)=125\sin(157t-\pi/6)$

 $i(t)=2.5\cos(157t-\pi/6)$

c) $u(t)=220\sqrt{2}\sin(314t-\pi/4)$

 $i(t) = -\sqrt{2}\cos(314t - \pi/4)$

d) $u(t)=120\sqrt{2}\cos(314t-30^0)$

 $i(t) = 6\sqrt{2}\sin(314t + 60^0)$

Odp. c) indukcyjność L=0,7H

d) rezystancja $R=20\Omega$

Zadanie 3.

Wyznacz wartości skuteczne, średnie oraz współczynnik szczytu i kształtu dla przebiegów przedstawionych obok.

(przebieg trójkątny i wyprostowany półfalowo sinus)

Zadanie 4

Przez dwójniki płynie prąd i(t)=10sin(100t), wyznacz przebiegi chwilowe i wartości skuteczne napięć na poszczególnych elementach oraz na całym dwójniku.

Zaznacz kierunek prądu i spadki napięć.

Nie korzystaj z metody symbolicznej

Zadanie 5.

Dany jest chwilowy przebieg sygnału $x(t) = 100\sqrt{2} \sin(100\pi t + 30^\circ)$.

- a) Napisać jego funkcję zespoloną
- b) Obliczyć wartość zespoloną i napisać ją w postaci wykładniczej, trygonometrycznej i algebraicznej
- c) Podać przebieg chwilowy y(t) o dwa razy mniejszej amplitudzie, wyprzedzający przebieg x(t) o kąt 120^0
- d) Narysować wykresy chwilowe przebiegów x(t) i y(t)
- e) Narysować wskazy przebiegów x(t) i y(t)

Zadanie 6.

Dane są przebiegi chwilowe $i(t) = 2\sqrt{2} \sin \omega t + 3\sqrt{2} \cos \omega t$ oraz $u(t) = 200\sqrt{2} \cos \omega t$.

- a) Napisać funkcje zespolone przebiegów
- b) Napisać wartości zespolone przebiegów
- c) Obliczyć kat przesunięcia fazowego między przebiegami
- d) Narysować wskazy obu przebiegów

odp. b) \underline{I} =2+j3 \underline{U} =j200 $c)\varphi = \psi_u - \psi_i = 33,7^0$

Zadanie 7.

Z danych wartości zespolonych: U=100-j100 I=3-j4

- a) Obliczyć funkcje zespolone $\underline{U}(t)$, $\underline{I}(t)$
- b) Obliczyć wartości chwilowe u(t), i(t)
- c) Obliczyć impedancję zespoloną, reaktancję, rezystancję
- d) Narysować wykres wskazowy prądu i napięć

Odp. b)
$$u(t)=200sin(\omega t-45^0)$$
,

$$i(t)=5\sqrt{2} \sin(\omega t-53,13^{0})$$

c) Z = 28 + j4

Zadanie 8

Przez dwójniki płynie prąd i(t)=10sin(100t).

Korzystając z metody symbolicznej wyznacz przebiegi chwilowe i wartości skuteczne napięć na poszczególnych elementach oraz na całym dwójniku.

Odp. c)
$$U_R = 50\sqrt{2}$$
 $U_L = 20\sqrt{2}$ $U_C = 20\sqrt{2}$ $u(t) = 100\sin(100t)$

a)
$$R=10\Omega$$
 $L=0.05H$
b) $R=5\Omega$ $C=5mF$
c) $R=10\Omega$ $L=40mH$ $C=2.5mF$

Zadanie 9

Wyznacz prądy w każdej gałęzi metodą upraszczania i redukcji obwodu.

 $Dane:\ u(t) = 100sin(1000t),\ \ R_1 = 10\Omega,\ R_2 = 15\Omega,\ L_1 = 10mH,\ L_2 = 5mH,\ C = 200\mu F$

a) b) odp.
$$i_{L2}(t) = 4\sqrt{5} \sin(1000t - 63.43^{\circ})$$

c) odp.
$$i_{R2}(t) = 6,667 \sin(1000t) i_{R1}(t) = 2\sqrt{10} \sin(1000t - 18,43^0)$$
 d)

Zadanie 10

Wyznacz wskazanie woltomierza V jeśli woltomierz V_1 wskazuje 24V. Dane $R=16\Omega,\ X_C=12\Omega$

odp. 40V

Zadanie 11

Jak zmieni się wskazanie amperomierza jeśli zamiast prądu sinusoidalnego przez dwójnik popłynie prąd stały o takiej wartości, że wskazania woltomierza nie ulegną zmianie. Dane R=X_I

Odp. prąd większy $\sqrt{2}$ razy.

Zadanie 12

W gałęzi szeregowej *RLC* płynie prąd *i*(*t*). Wyznaczyć napięcia na elementach obwodu oraz napięcie na całej gałęzi.

Dane : $i(t) = 20 \sin(5t)$; $R = 10 \Omega$; L = 1 H; C = 10 mF;

Zadanie 13

Dane są prądy $i_2=\sin(10t)$, $\underline{I}_3=2+j\sqrt{3}$, $i_4=2\sin(10t+60^0)$, $i_5=5\sin(10t-30)$.

Wyznacz wartość prądu i₁(t).

Zadanie 14

Dany jest przebieg chwilowy napięcia na dwójniku: $u(t)=3\sqrt{2}\cos\omega t - \sqrt{2}\sin\omega t$ oraz jego impedancja <u>Z</u>=3+j. Oblicz przebieg chwilowy prądu.

$$Odp. \ i(t) = \sqrt{2} \ sin(\omega t + 90^{\circ})$$

Zadanie 15

Dany jest przebieg prądu $i_2(t)=\sin(10t-\pi)$ i napięcie źródła $e(t)=\cos(10t)$ w układzie jak na rysunku o parametrach $R=1\Omega$ i C=1F.

Oblicz przebieg prądu i(t).

 $i(t)=1.49\sin(10t+132,27^0)$

Zadanie 16

Dla gałęzi szeregowej jak na rysunku dane są: $R=2\Omega$, L=1H, C=1F, e(t)=cos(2t) oraz napięcie na kondensatorze $u_e(t)=sin(2t)$.

Wyznaczyć przebieg napięcia u(t) na zaciskach gałęzi. *Odp.* $u(t)=5\sqrt{2} \sin(2t+81.87^{\circ})$

Zadanie 17

Przez dwójnik przedstawiony na rysunku płynie prąd $i(t)=5\sqrt{2}\cos(\omega t-45^{\circ})$.

Wartości elementów: $R=X_L=10\Omega$, $X_C=5\Omega$. Wyznacz:

- a) prąd płynący przez rezystor \underline{I}_R
- b) napięcie na kondensatorze U_C i indukcyjności U_L
- c) przebieg chwilowy napięcia na całym dwójniku u(t)
- d) impedancję dwójnika
- e) naszkicuj wykres wskazowy napięć i pradów

Zadanie 18

Dwa równolegle połączone odbiorniki pobierają prądy o wartościach skutecznych 25 A i 33 A przy pradzie zasilającym 52 A.

- a) Wyjaśnić pozorny paradoks prądowy;
- b) Obliczyć cosinus kata przesuniecia fazowego miedzy pradami odbiornika:
- c) Napisać przebiegi chwilowe zakładając, że prąd zasilający ma fazą początkową równą 90^{0} ;