TECHNIQUES & MÉTHODES S06

NB: cette fiche reprend les techniques nécessaires minimales; elle ne constitue donc pas un objectif, mais un prérequis!

CALCUL DE PRIMITIVES

■■■ Démarche générale pour déterminer les primitives d'une fonction

D'après le théorème **Primitives d'une fonction continue**, je sais qu'une fonction continue sur un intervalle y admet des primitives. Pour déterminer une primitive quelconque de f, je l'écris comme une intégrale indéfinie :

$$\int_{-\infty}^{x} f(t) dt$$

- $\boxed{1}$ je détermine le domaine de continuité \mathcal{D}_f de f, je considère $I \subset \mathcal{D}_f$ un sous-intervalle contenu dans \mathcal{D}_f .
- $\boxed{2}$ je calcule $\int^x f(t) \ dt$ à l'aide de toutes les techniques possibles de calcul d'intégrales!
- $\boxed{3}$ à la fin, je n'oublie pas la constante dite d'intégration : $\int^x f(t) \ dt = F(x) + C$, où $C \in \mathbf{R}$.

■■■ Techniques usuelles de primitivation

Pour déterminer $\int_{-\infty}^{x} f(t) dt$, le tableau joint donne toutes les primitives usuelles au programme. Je les connais parfaitement : si f est une fonction usuelle, je peux l'intégrer directement. Mais en général, la fonction f est construite à partir de ces fonctions usuelles par opération.

lacktriangle Si f est combinaison linéaire de fonctions usuelles, j'utilise la linéarité de l'intégrale :

$$\int_{-\infty}^{\infty} (\alpha u(t) + \beta v(t)) dt = \alpha \int_{-\infty}^{\infty} u(t) dt + \beta \int_{-\infty}^{\infty} v(t) dt$$

lacktriangle Si f est un produit de fonctions usuelles, je peux utiliser une formule d'intégration par parties :

$$\int_{-\infty}^{\infty} u'(t) \times v(t) dt = \left[u(t) \times v(t) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u(t) \times v'(t) dt.$$

 \blacktriangleright Si f ressemble à une règle de dérivation en chaîne, je peux utiliser un changement de variable $u=\varphi(t)$:

$$\int^{x} g \circ \varphi(t) \times \varphi'(t) dt = \int^{\varphi(x)} g(u) du$$

■■■ Quelques primitives type

Polynômes en cos et sin

Pour calculer $\int_{-\infty}^{\infty} \cos^m(t) \sin^n(t) dt$, je discute suivant l'existence d'un exposant impair.

- \blacktriangleright Si m et n sont pairs, on linéarise à l'aide des formules de trigo ou la méthode MEN.
- ▶ Si m est impair, j'effectue le changement de variable $u = \sin(t)$.
- ▶ Si n est impair, j'effectue le changement de variable $u = \cos(t)$.

Primitives d'une fraction rationnelle

Pour calculer les primitives de $x \mapsto \frac{1}{ax^2 + bx + c}$, avec $a \neq 0$.

- $\boxed{1}$ je mets le trinôme sous forme canonique : $at^2+bt+c=a\big[(t+\frac{b}{2a})^2-(\frac{\Delta}{4a^2})\big]$
- $\boxed{2}$ au moyen d'un changement de variable je me ramène à une primitive usuelle du type $\frac{du}{\alpha^2 \pm u^2}$.

Remarque : pour une primitive du type $x\mapsto \frac{dx+e}{ax^2+bx+c}$ j'utilise d'abord une dérivée logarithmique afin de me ramener au type précédent!

Primitives d'un produit polynôme-exponentielle ou polynôme trigo

Soit $P:I\to \mathbf{R}$ une fonction polynomiale. Pour intégrer $x\mapsto P(x)e^{ax}$, (ou $x\mapsto P(x)\cos(ax)$, $x\mapsto P(x)\sin(ax)$) je procède par intégrations par parties successives en dérivant systématiquement le polynôme jusqu'à ce qu'il soit constant!

Primitives d'un produit exponentielle-trigo

Pour intégrer $x \mapsto e^{ax} \cos(bx)$, je peux

- ightharpoonup procèder à deux intégrations par parties successives en dérivant systématiquement la fonction trigo par exemple. De cette égalité, je peux déduire la valeur de $x\mapsto e^{ax}\cos(bx)$.
- $\bullet \text{ ou bien passer en complexes, puisque } e^{ax}\cos(bx) = \mathfrak{Re}\left(e^{(a+ib)x}, \text{ il vient } \int^x e^{at}\cos(bt) \ dt = \mathfrak{Re}\left(\int^x e^{(a+ib)t} \ dt\right)$

■■■ Quelques primitives usuelles

fonction	Primitives	Intervalles de validité
$x \mapsto x^{\alpha}$ $\text{avec } \alpha \neq -1$ $x \mapsto \frac{1}{x}$	$x \mapsto \frac{x^{\alpha+1}}{\alpha+1} + C$ $x \mapsto \ln(x) + C$	$I \subset \mathbf{R}^* \text{ si } \alpha \in \mathbf{Z}^-,$ $I \subset \mathbf{R}^{+*} \text{ si } \alpha \in \mathbf{R} \setminus \mathbf{Z}$
$x \mapsto e^x$ $x \mapsto \ln(x)$	$x \mapsto e^x + C$ $x \mapsto x \ln(x) - x + C$	
$x \mapsto \cos(x)$ $x \mapsto \sin(x)$ $x \mapsto \tan(x)$	$x \mapsto \sin(x) + C$ $x \mapsto -\cos(x) + C$ $x \mapsto -\ln(\cos x) + C$	
$x \mapsto \operatorname{ch}(x)$ $x \mapsto \operatorname{sh}(x)$ $x \mapsto \operatorname{th}(x)$	$x \mapsto \operatorname{sh}(x) + C$ $x \mapsto \operatorname{ch}(x) + C$ $x \mapsto \operatorname{ln}(\operatorname{ch} x) + C$	$I\subset \mathbf{R}$
$x \mapsto \frac{1}{a^2 + x^2}$ $x \mapsto \frac{1}{a^2 - x^2}$	$x \mapsto \frac{1}{a} \operatorname{Arctan}\left(\frac{x}{a}\right) + C$ $x \mapsto \frac{1}{2a} \ln\left(\left \frac{a+x}{a-x}\right \right) + C$	
V W 1	$x \mapsto \operatorname{Arcsin}(x) + C$ $x \mapsto \ln(x + \sqrt{x^2 - 1}) + C$ $x \mapsto \ln((x + \sqrt{1 + x^2})) + C$	$I\subset]-\infty,-1[\cup]1,+\infty[$