

Chapter 3: Transport Layer

UDP

Transport layer functionality

Inter-process comm.

- Segmentation and reassembly
- Error checking
- Reliability
- In-order delivery

- 4: Transport
- 3: Network
- 2: Data link

2: Data link

3: Network

- 4: Transport
- 3: Network

 \leftrightarrow

Multiplexing and Demultiplexing

UDP

```
s = socket.socket(socket.AF_INET,
socket.SOCK_DGRAM)
s.bind(('127.0.0.1', 5000))
```

http://en.wikipedia.org/wiki/
List of TCP and UDP port numbers

• Packets demuxed by:

UDP sockets identified
(dst_IP:dst_port) tuple

Packets from (153.90.118.46,3541)
 and (128.111.52.235,5502) would go
 to the same socket

TCP

```
s = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
s.bind (('127.0.0.1', 80))
s.listen(1)
conn, addr = s.accept()
```

Packet demuxed by:

Packets from (153.90.118.46,3541)
 and (128.111.52.235,5502) would go
 different sockets

Daniel Stori {turnoff.us}

Mountains & Minds

UDP Packet structure

MONTANA STATE UNIVERSITY

Header information:

- Why use packet headers, as opposed to JSON?
- Source and destination ports for demux
 Where are source and destination IP addresses?
- Checksum for error detection
- Packet length in bytes (headers and data)

Why not send fixed length packets?

_

src_port dst_port

UDP Packet Format

length checksum

Application
data
(message)

Error checking

1. Recompute at receiver

32-bits

- 2. Add result to passed checksum
- 3. Error if not all zeros

Form one's complement

010001000100001

Mountains & Minds

UDP Checksum Exercise

Consider the following bits

Identify the fields of a UDP packet

Is the UDP packet correct?

In practice UDP checksum includes fields from IP header

UDP Packet Format

src_port	dst_port
length	checksum

Application data (message)

— 32-bits

UDP header and pseudo IP header

IPv4 pseudo heade	r format
-------------------	----------

Offsets	Octet	0 1								2								3								
Octet	Bit	0	1	2	3	4	5	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2										24	25	26	27	28	29	30	31	
0	0	Source IPv4 Address																								
4	32		Destination IPv4 Address																							
8	64	Zeroes Protocol UDP Length																								
12	96		Source Port Destination Port																							
16	128	Length Checksum																								
20	160+		Data																							

- In practice UDP checksum includes routing information.
- RFC 768 defines UDP checksum calculation
- Includes fields in the pseudo IPv4 (or IPv6) header available to in the UDP socket
- RFC 768: "This information gives protection against misrouted datagrams."

Which transport protocol where?

Typically UDP

•	•		
Application	Application-Layer Protocol	Underlying Trans Protocol	sport
Electronic mail	SMTP	TCP Email s	size > UDP packet size
Remote terminal access	Telnet	TCP	In order delivery
Web	HTTP	TCP	Large pages
File transfer	FTP	TCP	Large file sizes
Remote file server	NFS	Typically UDP	High rate of transfer
Streaming multimedia	typically proprietary	UDP or TCP	Fixed data rate
Internet telephony	typically proprietary	UDP or TCP	Fixed data rate
Network management	SNMP	Typically UDP	No connection delay
87 17		F	

DNS

Name translation

No connection delay

User Datagram Prot. (UDP)

- "No frills," "bare bones" Internet transport protocol
- Based on "best effort" network model
 - UDP segments can be lost
 - Or delivered out-of-order
- Connection-less
- No support for:
 - Flow control
 - Congestion control
 - In-order delivery
 - Reliability

Advantages of UDP:

- Immediate transmission
 - No connection establishment
 - No delayed transmission
- Fixed/immediate sending rate
 - No ramp up
- Lower memory requirements
 - No connection state
- Small packet overhead
 - 8B for UDP vs 20B for TCP

Disadvantages:

- Controversial in streaming applications
- Blocked by many firewalls

