Network Performance and Design

CSC/ECE 570 Computer Networks Fall 2024

Agenda

- Layers
- 2. Delay, Throughput, Loss
- 3. Network Design

TCP/IP Protocol Suite

Differences between OSI and TCP/IP?

5 layers:

- Physical
- Data link/MAC (ARP, SLIP)
- Network (IP, ICMP, IGMP)
- Transport (TCP, UDP)
- Application (http, ftp, telnet, smtp)


```
Frame 4: 448 bytes on wire (3584 bits), 448 bytes captured (3584 bits) on interface 0 Physical

Ethernet II, Src: LiteonTe_fe:e4:79 (cc:b0:da:fe:e4:79), Dst: 68:ed:12:05:75:7e (68:ed:12:05:75:7e)

Internet Protocol Version 4, Src: 172.29.34.3, Dst: 223.111.8.158 Network

Transmission Control Protocol, Src Port: 64430, Dst Port: 8080, Seq: 1, Ack: 1, Len: 394 Transport

Hypertext Transfer Protocol Application
```

Layers in a Router/Switch

- Operation of L3 itself may require buffering data
 - Store-and-forward
- Input-buffer-process-buffer-output cycle
- Discard data → loss

Agenda

- Layers in a Router/Switch
- Delay and Throughput
- 3. Network Design

Network Performance

- Networks are engineered systems
 - Intended to serve users
- Performance appropriately measured in quantities the end-user cares about
 - First: connectivity
 - Delay, throughput
 - Other metrics derived from these
- More sophisticated metrics
 - Predictability of above metrics
 - Predictability of connectivity: Reliability / Survivability
 - Predictability of delay or throughput
 - Guarantees Quality of Service contracts
 - Other emergent characteristics: e.g. Security

Two meanings

- How fast can successive bits be put into the pipe?
- How long does a bit take to traverse the pipe?

Throughput

- Total number of bits transferred, over given time
 - Related obviously to the transmission delay
 - Throughput sometimes referred to as "bandwidth"
 - "Bandwidth-delay product (BDP)" filling the pipe
- Conceptually simply need to be able to measure
 - ping can measure round-trip delay
 - Various tools such as *Iperf* for throughput

Queueing Delay, Loss

resource contention:

- aggregate resource demand (use of transmission link) can exceed amount available
- congestion:
 - packets will queue, wait for an available link use
 - packets can be dropped (lost) if no memory to store them

Bottleneck Link

The link with minimum "used" bandwidth along transmission path

More Delays

- Queuing (waiting) delay
 - Waiting to be served
 - Basic service is transmission on outgoing line
 - Input-buffer-process-buffer-output cycle
- Processing delay
 - Time taken for other processes data must go through before transmission (not transmission itself)
- These heavily depend on networking approach
 - Propagation delay is function of distance
 - Transmission delay is function of how much data (also modulation technology, medium, etc.)

1

Examples

Processing delay: memory write/read 1) Delay from NET to shared memory; 2) Delay from shared memory to DLC.

- Propagation delay
 - Get the ends closer together.
 - Usually not at luxury of network designer
- Transmission delay
 - Use faster transmission equipment
 - Has to be at both ends of link, high link capacity
 - Might need to upgrade cable (or medium)
- Queuing delay
 - Use faster memory for buffers, faster buses, higher clock-speed
 - Use fewer stages of buffering
 - Reduce buffer size (but probability of loss increases)
- Processing delay
 - Use faster computing equipment
 - Do more of the processing in dedicated hardware rather than in custom software on general purpose hardware

Question

Assume: All links: 2.5 km; C = 100Mbps; propagation speed = 200m/microsec. queuing delay = processing delay =0; packet size = 1000 bytes

What is the round-trip latency?

Network Traffic

Ultimately, networks exist to serve traffic (enable traffic to be carried)

- What is traffic?
 - That which occupies / is carried by links (A stream of data)
- Traffic is offered to the network by/at network nodes
 - Network is made of end nodes, intermediate nodes, and links
 - All traffic ultimately originated/consumed by end-nodes

Traffic Characterization

- Traffic "Demand" for networking services
- Magnitude (bandwidth)
 - Could vary with time, if "reasonably long" life
- Lifetime
 - How long it is resident in the network
- Arrival and departure patterns
 - Call (like telephony) arrival and departure
 - Increment and decrement
 - Periodic (scheduled)
 - Static (long-term)

J., Ji etc

Traffic Demand Determines Packet Loss

- Loss may occur on the link
 - Usually very little in guided medium ignore
 - Usually handled by L2 transmissions
- Loss may occur at intermediate nodes
 - Store-and-forward buffers are finite may overflow
 - Other mechanism at intermediate node may discard
- Does retransmission occur?
 - May not be required / desired
 - If desired,
 - May be at L2, on link
 - May be E2E, at L4

Statistical TDM Performance

- Statistical TDM
- Delay is lower on average: "Statistical Multiplexing Gain"
 - But unpredictable for individual packet prediction is statistical

Blocking in Telephony

- Delay very small and constant, operative quantity is blocking ratio
- Average call rate λ
- Average holding time τ
- Offered traffic load or intensity $a = \lambda \tau$

$$a^{c} / c!$$

$$B(a,c) = -----$$

$$\sum_{k=0}^{c} a^{k} / k!$$
Erlang B formula

Scaling, Hierarchy, Aggregation

- Because of scalability, hierarchy seems inevitable
 - Connectivity is always less than full (esp. in large networks)
 - Nature of end-nodes and intermediate nodes vary
 - All links are TDM (FDM modeled as separate links)
- Hierarchy implies aggregation/disaggregation of traffic

Traffic Aggregation - Static Traffic

- Assume each station injects traffic steadily
 - Number of bits injected per time unit is constant for each source
- Due to aggregation, magnitude increases as traffic climbs hierarchy
 - But constant nature of traffic remains
- Aggregation/dis-aggregation process is straightforward for intermediate nodes
 - Effectively same as slotted TDM
- Therefore static traffic is stable remains static at higher levels of hierarchy

Bursty Traffic

- Traffic is generated intermittently at each end node
 - Assume (peak) rates are known

- Average bitrate vs. Peak bitrate
- Higher provision (waste of resources)
- Lower provision (may cause congestion and loss)

Contributing Factors

- "Elasticity" of traffic
 - Source-to-destination traffic flows in the Internet are not static as generated
 - Congestion in network will slow down bursts
 - In response, flow duration will increase

"Filling up" of pipes

- Provisioning levels are not perfect
 - At some levels, flows may be at capacity
- At next level, contributes a static flow

Agenda

- Layers in a Router/Switch
- Delay and Throughput
- 3. Network Design

Network Design

- Various aspects of the network must be determined/chosen/configured
- Network resources nodes and links
- Nodes
 - Physical connection interface
 - Buffers, scheduling, routing/forwarding, protocol
- Links
 - Circuit enablement, packet switching, bandwidth (bitrate capacity), protocol

- Goals are in terms of network performance (experienced by traffic)
- Basic goal: Connectivity
 - Basic design methodology: e.g., Routing (path finding)
 - Output of routing: Forwarding Information Bases
 - The one indispensable piece of information in making a forwarding decision: destination
 - Simplest routing approach: map from destination to next-hop
- Next goal: Performance metrics
 - Basic design: how much resource to place where
 - Dimensioning or provisioning

Orchestration

- We have introduced a large number of varieties of devices
- We have argued ourselves into attempting precise coordinated behavior of them
- How shall we configure all devices to obtain the coordinated behavior?
 - Need to be flexible and responsive to traffic → continuous reconfigurations
- Autoconfiguration → control signals
 - Control "plane"
 - Network administration/management/engineering/architecture
 - "Management plane"

Network Slicing

Orchestration

- Networking may be more complicated than obvious at first look
 - Additional complications introduced by need for predictable performance
- Networks must be carefully designed (resource provisioned)
- Design should proceed on the basis of
 - What is network use for
 - What behavior is expected or desired from network
- Different answers to above questions
 - Will result in different approach to design

Next Lecture

Network Simulation