DM Project Report

Deepti Yadav April'22

Date: 03/07/2022

Table of Contents

Problem 1 : Clustering4
1.1 Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-
variate, and multivariate analysis)4
1.2 Do you think scaling is necessary for clustering in this case? Justify11
1.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using
Dendrogram and briefly describe them12
1.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow
curve and silhouette score. Explain the results properly. Interpret and write inferences on the
finalized clusters13
1.5 Describe cluster profiles for the clusters defined. Recommend different promotional
strategies for different clusters14
Problem 2 : CART- RF - ANN
2.1 Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-
variate, and multivariate analysis)16
$2.2\mathrm{Data}$ Split: Split the data into test and train, build classification model CART, Random Forest,
Artificial Neural Network27
2.3 Performance Metrics: Comment and Check the performance of Predictions on Train and
Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC
score, classification reports for each model31
2.4 Final Model: Compare all the models and write an inference which model is best/optimized. 37
2.5 Inference: Based on the whole Analysis, what are the business insights and
recommendations38

List of Figures

Figure 1 - Pairplot	8
Figure 2 – Heat Map	9
Figure 3 – Boxplot with Outliers	10
Figure 4 – Boxplot without Outliers	11
Figure 5 – Dendogram	12
Figure 6 – Truncated Dendogram	13
Figure 7 – Elbow curve	14
Figure 8 – Proportion of observations in Target class	20
Figure 9 – Boxplot for continuous variables	21
Figure 10 – Boxplot for continuous variables (without outliers)	22
Figure 11 - Pairplot	23
Figure 12 – Heat Map	24
Figure 13 – Decision - CART	27
Figure 14 – Feature importance - CART	28
Figure 15 – Feature importance - RF	30
that of Tables	
List of Tables Table 1- Dataset Description	1
Table 2 - Dataset Information	
Table 3 - Missing values Check	
Table 4 – Univariate Analysis	
Table 5 – Skewness Analysis	
Table 6 – Correlation Values	
Table 7 – Data after Scaling	
Table 8 – Cluster profile for hierarchical clustering	
Table 9 – Cluster profile for K-Means clustering	
Table 10- Dataset Description	
Table 11 - Dataset Information	
Table 12 - Missing values Check	
Table 13 - Geting unique counts of all Objects	
Table 14 – Data Five Point summary	
Table 15 – Data Five Point summary (modified)	
Table 16 – Checking for Duplicates	
Table 17 – Correlation Coefficients	
Table 18 – Dataset (All categorical/numerical)	
Table 19 – Dataset information (All categorical/numerical)	
Table 20 – Variables unique code	
Table 21 – Predicted Probability - CART	
Table 22 – AUC and ROC for the training data (CART)	
Table 23 – AUC and ROC for the test data (CART)	
Table 24 – Confusion Matrix for the training data (CART)	
Table 25 – Confusion Matrix for test data (CART)	
Table 25 Common Machine for test data (or mill)	

Table 26 – Classification report for training data (CART)	33
Table 27 – Classification report for test data (CART)	
Table 28 – AUC and ROC for the training data (RF)	33
Table 29 – AUC and ROC for the test data (RF)	34
Table 30 – Confusion Matrix for the training data (RF)	34
Table 31 – Confusion Matrix for test data (RF)	34
Table 32 – Classification report for training data (RF)	35
Table 33 – Classification report for test data (RF)	35
Table 34 – AUC and ROC for the training data (ANN)	35
Table 35 – AUC and ROC for the test data (ANN)	36
Table 36 – Confusion Matrix for the training data (ANN)	36
Table 37 – Confusion Matrix for test data (ANN)	36
Table 38 – Classification report for training data (ANN)	37
Table 39 – Classification report for test data (ANN)	37
Table 40 – Comparison of all model	37

Problem 1: Clustering

A leading bank wants to develop a customer segmentation to give promotional offers to its customers. They collected a sample that summarizes the activities of users during the past few months. You are given the task to identify the segments based on credit card usage.

Data Dictionary for Market Segmentation:

- 1. spending: Amount spent by the customer per month (in 1000s)
- 2. advance payments: Amount paid by the customer in advance by cash (in 100s)
- 3. probability_of_full_payment: Probability of payment done in full by the customer to the bank
- 4. current_balance: Balance amount left in the account to make purchases (in 1000s)
- 5. credit limit: Limit of the amount in credit card (10000s)
- 6. min_payment_amt : minimum paid by the customer while making payments for purchases made monthly (in 100s)
- 7. max spent in single shopping: Maximum amount spent in one purchase (in 1000s)

1.1 Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and multivariate analysis).

Table 1- Dataset Description

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping
0	19.94	16.92	0.8752	6.675	3.763	3.252	6.550
1	15.99	14.89	0.9064	5.363	3.582	3.336	5.144
2	18.95	16.42	0.8829	6.248	3.755	3.368	6.148
3	10.83	12.96	0.8099	5.278	2.641	5.182	5.185
4	17.99	15.86	0.8992	5.890	3.694	2.068	5.837
	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping
205	13.89	14.02	0.8880	5.439	3.199	3.986	4.738
			0.0000	0.100	0.100	5.566	4.700
206	16.77	15.62		5.927	3.438	4.920	
206 207			0.8638				5.795
	14.03	14.16	0.8638 0.8796	5.927 5.438	3.438	4.920	5.795 5.001
207	14.03 16.12	14.16 15.00	0.8638 0.8796 0.9000	5.927 5.438	3.438 3.201	4.920 1.717	5.795 5.001 5.443 5.879

Table 2 - Dataset Information

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 7 columns):

Daca	columns (cocal / columns).		
#	Column	Non-Null Count	Dtype
0	spending	210 non-null	float64
1	advance_payments	210 non-null	float64
2	probability_of_full_payment	210 non-null	float64
3	current_balance	210 non-null	float64
4	credit_limit	210 non-null	float64
5	min_payment_amt	210 non-null	float64
6	max_spent_in_single_shopping	210 non-null	float64
dtype	es: float64(7)		
memoi	rv usage: 11.6 KB		

Table 3 - Missing values Check

spending	0
advance_payments	0
<pre>probability_of_full_payment</pre>	0
current_balance	0
credit_limit	0
min_payment_amt	0
max_spent_in_single_shopping	0
dtype: int64	

Observation:

7 variables and 210 records.

No missing record based on initial analysis.

All the variables numeric type.

No duplicate rows found

Univariate Analysis:

Table 4 – Univariate Analysis

Table 5 – Skewness Analysis

max_spent_in_single_shopping	0.561897
current_balance	0.525482
min_payment_amt	0.401667
spending	0.399889
advance_payments	0.386573
credit_limit	0.134378
probability_of_full_payment	-0.537954
dtype: float64	

Observations:

- 1) Outliers present in "probability_of_full_payment" & "min_payment_amt"
- 2) "probability_of_full_payment" is left skewed.
- 3) Other variables are right skewed.

Multivariate Analysis:

Figure 1 - Pairplot

Figure 2 – Heat Map

Table 6 – Correlation Values

		correlation
advance_payments	spending	0.994341
	current_balance	0.972422
credit_limit	spending	0.970771
current_balance	spending	0.949985
advance_payments	credit_limit	0.944829
max_spent_in_single_shopping	current_balance	0.932806
advance_payments	max_spent_in_single_shopping	0.890784
spending	max_spent_in_single_shopping	0.863693
current_balance	credit_limit	0.860415
probability_of_full_payment	credit_limit	0.761635
max_spent_in_single_shopping	credit_limit	0.749131
spending	probability_of_full_payment	0.608288
advance_payments	probability_of_full_payment	0.529244

Observation

Strong positive correlation between

- advance_payments & spending,
- advance_payments & current_balance,
- credit_limit & spending
- current_balance & spending
- advance_payments & credit_limit
- max_spent_in_single_shopping & current_balance

Figure 3 – Boxplot with Outliers

Figure 4 – Boxplot without Outliers

There are no outliers after treating them

1.2 Do you think scaling is necessary for clustering in this case? Justify

Standardization or scaling is an important aspect of data pre-processing. Since, the range of values of data may vary widely, it becomes a necessary step in data preprocessing while using machine learning algorithms. All machine learning

algorithms are dependent on the scaling of data. for clustering too, scaling is

usually applied. In this case we can see that variables are in 100s, 1000s and 10000s. Since the data in these variables are of different scales, it is tough to compare these variables. In this

method, we convert variables with different scales of measurements into a single scale. Scaling normalizes the data using the formula (x-mean)/standard deviation. Standard deviation becomes 1 and mean becomes zero.

StandardScaler is used for scaling and data is given below.

Table 7 – Data after Scaling

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping
0	1.754355	1.811968	0.178230	2.367533	1.338579	-0.298806	2.328998
1	0.393582	0.253840	1.501773	-0.600744	0.858236	-0.242805	-0.538582
2	1.413300	1.428192	0.504874	1.401485	1.317348	-0.221471	1.509107
3	-1.384034	-1.227533	-2.591878	-0.793049	-1.639017	0.987884	-0.454961
4	1.082581	0.998364	1.196340	0.591544	1.155464	-1.088154	0.874813
205	-0.329866	-0.413929	0.721222	-0.428801	-0.158181	0.190536	-1.366631
206	0.662292	0.814152	-0.305372	0.675253	0.476084	0.813214	0.789153
207	-0.281636	-0.306472	0.364883	-0.431064	-0.152873	-1.322158	-0.830235
208	0.438367	0.338271	1.230277	0.182048	0.600814	-0.953484	0.071238
209	0.248893	0.453403	-0.776248	0.659416	-0.073258	-0.706813	0.960473

1.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them.

Choosing average linkage method and creating Dendogram

Figure 5 - Dendogram

Figure 6 – Truncated Dendogram

Importing fcluster module to create clusters

1.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score. Explain the results properly. Interpret and write inferences on the finalized clusters.

Calculating WSS for other values of K - Elbow Method

Clusters with K = 7: wss - 262.22500296635945, Clusters with K = 8: wss - 239.71459430002525, Clusters with K = 9: wss - 222.40017089869343, Clusters with K = 10: wss - 208.48821050568935

WSS reduces as K keeps increasing

From the above curve there is a sharp dip at K=3.

Also silhouette score is better for 3 clusters (0.40) than for 4 clusters (0.32).

So selecting K=3 for further evaluation.

1.5 Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters.

Table 8 - Cluster profile for hierarchical clustering

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping	Freq
clusters								
1	18.129200	16.058000	0.881595	6.135747	3.648120	3.650200	5.987040	75
2	11.916857	13.291000	0.846845	5.258300	2.846000	4.619000	5.115071	70
3	14.217077	14.195846	0.884869	5.442000	3.253508	2.759007	5.055569	65

Table 9 – Cluster profile for K-Means clustering

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping	sil_width	freq
Clus_kmeans									
0	11.856944	13.247778	0.848330	5.231750	2.849542	4.733892	5.101722	0.399556	72
1	18.495373	16.203433	0.884210	6.175687	3.697537	3.632373	6.041701	0.468077	67
2	14.437887	14.337746	0.881597	5.514577	3.259225	2.707341	5.120803	0.338593	71

Recommendation for different promotional strategies for different clusters

Cluster 0 for Kmeans & Cluster 1 for hierarchical / : High Spending Group

- Giving any reward points might increase their purchases.
- maximum max_spent_in_single_shopping is high for this group, so can be offered discount/offer on next transactions upon full payment
- Increase there credit limit and
- Increase spending habits
- Give loan against the credit card, as they are customers with good repayment record.
- Tie up with luxary brands, which will drive more one time maximun spending

Cluster 2 for Kmeans & Cluster 3 for hierarchical: Moderate Spending Group

- They are potential target customers who are paying bills and doing purchases and maintaining comparatively good credit score. So we can increase credit limit or can lower down interest rate.
- Promote premium cards/loyality cars to increase transcations.
- Increase spending habits by trying with premium ecommerce sites, travel portal, travel airlines/hotel, as this will encourge them to spend more

Cluster 1 for Kmeans & Cluster 2 for hierarchical: Low Spending Group

- customers should be given remainders for payments. Offers can be provided on early payments to improve their payment rate.
- Increase there spending habits by tieing up with grocery stores, utilities (electircity, phone, gas, others)

Problem 2: CART-RF - ANN

An Insurance firm providing tour insurance is facing higher claim frequency. The management decides to collect data from the past few years. You are assigned the task to make a model which predicts the claim status and provide recommendations to management. Use CART, RF & ANN and compare the models' performances in train and test sets.

Attribute Information:

- 1. Target: Claim Status (Claimed)
- 2. Code of tour firm (Agency_Code)
- 3. Type of tour insurance firms (Type)
- 4. Distribution channel of tour insurance agencies (Channel)
- 5. Name of the tour insurance products (Product)
- 6. Duration of the tour (Duration in days)
- 7. Destination of the tour (Destination)
- 8. Amount worth of sales per customer in procuring tour insurance policies in rupees (in 100's)
- 9. The commission received for tour insurance firm (Commission is in percentage of sales)
- 10.Age of insured (Age)

2.1 Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and multivariate analysis).

Table 10- Dataset Description

	Δne	Agency Code	Type	Claimed	Commision	Channel	Duration	Sales	Product Name	Destination
	Age	Agency_code	iype	Cialified	Commission	Citatine	Duration	Juies	TTOURCE_Name	Destination
0	48	C2B	Airlines	No	0.70	Online	7	2.51	Customised Plan	ASIA
1	36	EPX	Travel Agency	No	0.00	Online	34	20.00	Customised Plan	ASIA
2	39	CWT	Travel Agency	No	5.94	Online	3	9.90	Customised Plan	Americas
3	36	EPX	Travel Agency	No	0.00	Online	4	26.00	Cancellation Plan	ASIA
4	33	JZI	Airlines	No	6.30	Online	53	18.00	Bronze Plan	ASIA

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product_Name	Destination
2995	28	CWT	Travel Agency	Yes	166.53	Online	364	256.20	Gold Plan	Americas
2996	35	C2B	Airlines	No	13.50	Online	5	54.00	Gold Plan	ASIA
2997	36	EPX	Travel Agency	No	0.00	Online	54	28.00	Customised Plan	ASIA
2998	34	C2B	Airlines	Yes	7.64	Online	39	30.55	Bronze Plan	ASIA
2999	47	JZI	Airlines	No	11.55	Online	15	33.00	Bronze Plan	ASIA

Table 11 - Dataset Information

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3000 entries, 0 to 2999 Data columns (total 10 columns): Non-Null Count Dtype # Column 3000 non-null int64 Age Agency_Code 3000 non-null object 1 3000 non-null object Type Claimed Type Claimed
Commision 3000 non-null
3000 non-null 3000 non-null object float64 object Channel Duration 3000 non-null int64 3000 non-null float64 Product_Name 3000 non-null object 9 Destination 3000 non-null object dtypes: float64(2), int64(2), object(6) memory usage: 234.5+ KB

Table 12 - Missing values Check

Age	0
Agency_Code	0
Type	0
Claimed	0
Commision	0
Channel	0
Duration	0
Sales	0
Product_Name	0
Destination	0
dtype: int64	

Observation

- 10 variables are present
- Age, Commission, Duration, Sales are numeric variable & rest are object/categorial variables
- 3000 records, no missing one
- 9 independant variable and one target variable Clamied

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 10 columns):
               Non-Null Count Dtype
# Column
0 Age
                 3000 non-null int64
    Agency_Code 3000 non-null object
    _ype
Claimed
                  3000 non-null
                                 object
                  3000 non-null
                                  object
    Commision 3000 non-null
   Channel 3000 non-null
Duration 3000 non-null
3000 non-null
                                  object
                                 int.64
                                 float64
    Product_Name 3000 non-null
 9 Destination 3000 non-null object
dtypes: float64(2), int64(2), object(6)
memory usage: 234.5+ KB
```

Table 13 - Geting unique counts of all Objects

Agency_Code EPX 1365 C2B 924 C2B C2B 924 CWT 472 JZI 239 Name: Agency Code, dtype: int64 Travel Agency 1837 Airlines 1163 Name: Type, dtype: int64 Claimed No 2076 Yes 924 Name: Claimed, dtype: int64 Channel 2954 Online Offline 46 Name: Channel, dtype: int64 Destination ASIA 2465 Americas 320 EUROPE 215 Name: Destination, dtype: int64 Product Name Customised Plan 1136
Cancellation Plan 678
Bronze Plan 650
Silver Plan 427
Gold Plan 109

Name: Product_Name, dtype: int64

Table 14 – Data Five Point summary

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Age	3000.0	NaN	NaN	NaN	38.091	10.463518	8.0	32.0	36.0	42.0	84.0
Agency_Code	3000	4	EPX	1365	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Туре	3000	2	Travel Agency	1837	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Claimed	3000	2	No	2076	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Commision	3000.0	NaN	NaN	NaN	14.529203	25.481455	0.0	0.0	4.63	17.235	210.21
Channel	3000	2	Online	2954	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Duration	3000.0	NaN	NaN	NaN	70.001333	134.053313	-1.0	11.0	26.5	63.0	4580.0
Sales	3000.0	NaN	NaN	NaN	60.249913	70.733954	0.0	20.0	33.0	69.0	539.0
Product_Name	3000	5	Customised Plan	1136	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Destination	3000	3	ASIA	2465	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Observation

- duration has negative value, it is not possible. Wrong entry.
- Commision & Sales- mean and median varies significantly

Replacing Duration of tour with minimum possible value that is 1.

Table 15 – Data Five Point summary (modified)

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Age	3000.0	NaN	NaN	NaN	38.091	10.463518	8.0	32.0	36.0	42.0	84.0
Agency_Code	3000	4	EPX	1365	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Туре	3000	2	Travel Agency	1837	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Claimed	3000	2	No	2076	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Commision	3000.0	NaN	NaN	NaN	14.529203	25.481455	0.0	0.0	4.63	17.235	210.21
Channel	3000	2	Online	2954	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Duration	3000.0	NaN	NaN	NaN	70.002667	134.052619	1.0	11.0	26.5	63.0	4580.0
Sales	3000.0	NaN	NaN	NaN	60.249913	70.733954	0.0	20.0	33.0	69.0	539.0
Product_Name	3000	5	Customised Plan	1136	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Destination	3000	3	ASIA	2465	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Table 16 – Checking for Duplicates

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product_Name	Destination
63	30	C2B	Airlines	Yes	15.0	Online	27	60.0	Bronze Plan	ASIA
329	36	EPX	Travel Agency	No	0.0	Online	5	20.0	Customised Plan	ASIA
407	36	EPX	Travel Agency	No	0.0	Online	11	19.0	Cancellation Plan	ASIA
411	35	EPX	Travel Agency	No	0.0	Online	2	20.0	Customised Plan	ASIA
422	36	EPX	Travel Agency	No	0.0	Online	5	20.0	Customised Plan	ASIA
2940	36	EPX	Travel Agency	No	0.0	Online	8	10.0	Cancellation Plan	ASIA
2947	36	EPX	Travel Agency	No	0.0	Online	10	28.0	Customised Plan	ASIA
2952	36	EPX	Travel Agency	No	0.0	Online	2	10.0	Cancellation Plan	ASIA
2962	36	EPX	Travel Agency	No	0.0	Online	4	20.0	Customised Plan	ASIA
2984	36	EPX	Travel Agency	No	0.0	Online	1	20.0	Customised Plan	ASIA

As the customer ID are not available, whether the duplicates are really duplicates cannot be verified. Also removing duplicate is resulting in overfitting of model. Therefore decision is to keep duplicates.

Figure 8 – Proportion of observations in Target class

No 0.692 Yes 0.308

Name: Claimed, dtype: float64

The target variables are unbalanced type as we almost 50% yes compared to No

Univariate Analysis:

Figure 9 – Boxplot for continuous variables

Outliers exists for every variable, and also has many outliers. Outliers must be treated.

Outlier treatment:

Figure 10 – Boxplot for continuous variables (without outliers)

There are no outliers after treating them

Multivariate Analysis:

Checking pairwise distribution of the continuous variables

Figure 11 - Pairplot

Figure 12 – Heat Map

Table 17 – Correlation Coefficients

Sales Commision 0.686219 Type Agency_Code 0.552247 Sales Duration 0.542824

Observation

There seems to be a clear correlation between Sales and commission. Correlation also exists between

- Commission and Duration
- Sales and Duration

Decision tree in Python can take only numerical / categorical columns. It cannot take string / object types.

Table 18 - Dataset (All categorical/numerical)

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product_Name	Destination
0	48.0	0	0	0	0.70	1	7.0	2.51	2	0
1	36.0	2	1	0	0.00	1	34.0	20.00	2	0
2	39.0	1	1	0	5.94	1	3.0	9.90	2	1
3	36.0	2	1	0	0.00	1	4.0	26.00	1	0
4	33.0	3	0	0	6.30	1	53.0	18.00	0	0

Table 19 – Dataset information (All categorical/numerical)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 10 columns):

Data	COTUMNIS (COCA.	i io coidillis).	
#	Column	Non-Null Count	Dtype
0	Age	3000 non-null	float64
1	Agency_Code	3000 non-null	int8
2	Type	3000 non-null	int8
3	Claimed	3000 non-null	int8
4	Commision	3000 non-null	float64
5	Channel	3000 non-null	int8
6	Duration	3000 non-null	float64
7	Sales	3000 non-null	float64
8	Product_Name	3000 non-null	int8
9	Destination	3000 non-null	int8

dtypes: float64(4), int8(6)

memory usage: 111.5 KB

Table 20 - Variables unique code

```
Agency Code
 2
      1365
0
      924
1
      472
3
      239
Name: Agency_Code, dtype: int64
Type
1
     1837
     1163
Name: Type, dtype: int64
Claimed
 0
      2076
1
      924
Name: Claimed, dtype: int64
Channel
 1
      2954
       46
Name: Channel, dtype: int64
Destination
 0
     2465
1
      320
2
     215
Name: Destination, dtype: int64
Product Name
 2
      1136
     678
1
0
      650
4
     427
      109
Name: Product Name, dtype: int64
```

Label Encoding has been done and all columns are converted to number

2.2 Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network

Splitting data into training and test set in 30% test data

```
X_train (2100, 9)
X_test (900, 9)
train_labels (2100,)
test_labels (900,)
Total Obs 3000
```

Building classification model CART

```
param_grid = {
    'max_depth': [8,9,10],
    'min_samples_leaf': [15,20,25],
    'min_samples_split': [45,60,75]
}
dt_model = DecisionTreeClassifier()
grid_search = GridSearchCV(estimator = dt_model, param_grid = param_grid, cv = 3)
```

Best paramters

DecisionTreeClassifier DecisionTreeClassifier(max_depth=8, min_samples_leaf=25, min_samples_split=60, random state=1)

Figure 13 - Decision - CART

Feature importance with tuning hyper parameters

Figure 14 – Feature importance - CART

	Imp
Agency_Code	0.545688
Sales	0.252360
Product_Name	0.068850
Duration	0.060773
Age	0.051264
Commision	0.021065
Type	0.000000
Channel	0.000000
Destination	0.000000

Getting the Predicted Probabilities

Table 21 - Predicted Probability - CART

	0	1
0	0.966667	0.033333
1	0.555556	0.44444
2	0.247059	0.752941
3	0.130435	0.869565
4	0.935185	0.064815

Builiding Random Forest Classifier

Model with tuning hyper parameters

```
RandomForestClassifier

RandomForestClassifier (max_depth=10, max_features=5, min_samples_leaf=10, min_samples_split=50, n_estimators=250)
```

Feature Importance using RF

Figure 15 – Feature importance - RF

	Imp
Agency_Code	0.313772
Sales	0.189457
Product_Name	0.147803
Commision	0.121517
Duration	0.106087
Age	0.081551
Type	0.027649
Destination	0.011496
Channel	0.000669

Builiding ANN

Model with tuning hyper parameters

```
{'hidden_layer_sizes': (50, 100, 200),
  'max_iter': 4000,
  'solver': 'adam',
  'tol': 0.01}
```

2.3 Performance Metrics: Comment and Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score, classification reports for each model.

Classification model - CART

Table 22 – AUC and ROC for the training data (CART)

AUC: 0.855

Table 23 – AUC and ROC for the test data (CART)

AUC: 0.785

Table 24 – Confusion Matrix for the training data (CART)

Table 25 - Confusion Matrix for test data (CART)

Table 26 - Classification report for training data (CART)

	precision	recall	f1-score	support
0 1	0.83 0.70	0.90 0.57	0.86 0.63	1471 629
accuracy macro avg weighted avg	0.77 0.79	0.73 0.80	0.80 0.75 0.79	2100 2100 2100

Table 27 - Classification report for test data (CART)

	precision	recall	f1-score	support
0	0.77	0.92	0.84	605
1	0.72	0.44	0.54	295
accuracy			0.76	900
macro avg	0.75	0.68	0.69	900
weighted avg	0.75	0.76	0.74	900

Random forest classification model

Table 28 – AUC and ROC for the training data (RF)

Table 29 – AUC and ROC for the test data (RF)

AUC: 0.820

Table 30 – Confusion Matrix for the training data (RF)

Table 31 – Confusion Matrix for test data (RF)

Table 32 - Classification report for training data (RF)

	precision	recall	f1-score	support
0 1	0.85 0.76	0.92 0.62	0.88 0.68	1471 629
accuracy macro avg weighted avg	0.80 0.82	0.77 0.83	0.83 0.78 0.82	2100 2100 2100

Table 33 – Classification report for test data (RF)

	precision	recall	f1-score	support
0 1	0.78 0.74	0.92 0.46	0.84 0.57	605 295
accuracy macro avg weighted avg	0.76 0.77	0.69 0.77	0.77 0.71 0.76	900 900 900

ANN Model

Table 34 – AUC and ROC for the training data (ANN)

Table 35 – AUC and ROC for the test data (ANN)

AUC: 0.814

Table 36 - Confusion Matrix for the training data (ANN)

Table 37 - Confusion Matrix for test data (ANN)

Table 38 – Classification report for training data (ANN)

	precision	recall	f1-score	support
0 1	0.82 0.71	0.90 0.54	0.86 0.62	1471 629
accuracy macro avg weighted avg	0.77 0.79	0.72 0.80	0.80 0.74 0.79	2100 2100 2100

Table 39 - Classification report for test data (ANN)

	precision	recall	f1-score	support	
0 1	0.78 0.74	0.92 0.46	0.84 0.57	605 295	
accuracy macro avg weighted avg	0.76 0.76	0.69 0.77	0.77 0.70 0.75	900 900 900	

2.4 Final Model: Compare all the models and write an inference which model is best/optimized.

Table 40 - Comparison of all model

	CART Train	CART Test	Random Forest Train	Random Forest Test	ANN Train	ANN Test
Accuracy	0.80	0.76	0.83	0.77	0.80	0.77
AUC	0.855	0.785	0.885	0.820	0.847	0.814
Recall	0.57	0.44	0.62	0.46	0.54	0.46
Precision	0.70	0.72	0.76	0.74	0.71	0.74
F1 Score	0.63	0.54	0.68	0.57	0.62	0.57

Out of 3 models, Random forest is selected due to best Accuracy, AUC, Precision and F1 score and Recall.

2.5 Inference: Based on the whole Analysis, what are the business insights and recommendations

For the business problem of Insurance providing firm, three model were analysed i.e. CART, Random forest and ANN for the predictions. These three models were evaluated on training and testing datasets and model performance were analysed.

The Accuracy, Precision and F1 score was computed using classification report. The confusion matrix, AUC_ROC score and ROC plot was computed and compared for different models.

All the models have peroformed well but to increase our accuracy in predictions, we can choose Random forest which creates multiple trees for decision making.

Recommendation & Insights:

- More real time unstructured data and past data should be collected in order to have balanced data.
- As per the data 90% of insurance is done by online channel. Almost all the offline business has a claimed associated, need to find why?
- Need to train the JZI agency resources to pick up sales as they are in bottom, need to run promotional marketing campaign or evaluate if we need to tie up with alternate agency
- Also based on the model we are getting 80% accuracy, so we need customer books airline tickets or plans, cross sell the insurance based on the claim data pattern.
- Other interesting fact is more sales happen via Agency than Airlines and the trend shows the claim are processed more at Airline. So we may need to deep dive into the process to understand the workflow and why?

Key performance indicators (KPI) The KPI's of insurance claims are:

- Reduce claims cycle time
- Increase customer satisfaction
- Combat fraud
- Optimize claims recovery
- Reduce claim handling costs Insights gained from data and AI-powered analytics could expand the boundaries of insurability, extend existing products, and give rise to new risk transfer solutions in areas like a non-damage business interruption and reputational damage.