8

Further Applications of Integration

Copyright © Cengage Learning. All rights reserved.

We obtain a polygonal approximation to C by dividing the interval [a, b] into n subintervals with endpoints x_0, x_1, \ldots, x_n and equal width Δx .

If $y_i = f(x_i)$, then the point $P_i(x_i, y_i)$ lies on C and the polygon with vertices P_0, P_1, \ldots, P_n , illustrated in Figure 3, is an approximation to C.

Figure 3

Therefore we define the **length** L of the curve C with equation, y = f(x), $a \le x \le b$ as the limit of the lengths of these inscribed polygons (if the limit exists):

1

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

$$|P_{i-1}P_i| = \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2} = \sqrt{(\Delta x)^2 + (\Delta y_i)^2}$$

Therefore,

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + [f'(x_i^*)]^2} \Delta x$$

We recognize this expression as being equal to

$$\int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$

by the definition of a definite integral. We know that this integral exists because the function $g(x) = \sqrt{1 + [f'(x)]^2}$ is continuous.

Thus we have proved the following theorem:

The Arc Length Formula If f' is continuous on [a, b], then the length of the curve y = f(x), $a \le x \le b$, is

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} \, dx$$

If we use Leibniz notation for derivatives, we can write the arc length formula as follows:

3

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

We will find it useful to have a function that measures the arc length of a curve from a particular starting point to any other point on the curve.

Thus if a smooth curve C has the equation, y = f(x), $a \le x \le b$ let s(x) be the distance along C from the initial point $P_0(a, f(a))$ to the point Q(x, f(x)).

Then s is a function, called the **arc length function**, and, by Formula 2,

$$s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} dt$$

(We have replaced the variable of integration by *t* so that *x* does not have two meanings.) We can use Part 1 of the Fundamental Theorem of Calculus to differentiate Equation 5 (since the integrand is continuous):

$$\frac{ds}{dx} = \sqrt{1 + [f'(x)]^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

Equation 6 shows that the rate of change of s with respect to x is always at least 1 and is equal to 1 when f'(x), the slope of the curve, is 0.

The differential of arc length is

7

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

and this equation is sometimes written in the symmetric form

8

$$(ds)^2 = (dx)^2 + (dy)^2$$

The geometric interpretation of Equation 8 is shown in Figure 7. It can be used as a mnemonic device for remembering both of the Formulas 3 and 4.

If we write $L = \int ds$, then from Equation 8 either we can solve to get (7), which gives (3), or we can solve to get

$$ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy$$

which gives (4).

Example 4

Find the arc length function for the curve $y = x^2 - \frac{1}{8} \ln x$ taking $P_0(1, 1)$ as the starting point.

Solution:

If
$$f(x) = x^2 - \frac{1}{8} \ln x$$
, then $f'(x) = 2x - \frac{1}{8x}$

$$1 + [f'(x)]^2 = 1 + \left(2x - \frac{1}{8x}\right)^2 = 1 + 4x^2 - \frac{1}{2} + \frac{1}{64x^2}$$

$$= 4x^2 + \frac{1}{2} + \frac{1}{64x^2} = \left(2x + \frac{1}{8x}\right)^2$$

$$\sqrt{1 + [f'(x)]^2} = 2x + \frac{1}{8x}$$
 (since $x > 0$)

Example 4 – Solution

Thus the arc length function is given by

$$s(x) = \int_{1}^{x} \sqrt{1 + [f'(t)]^{2}} dt$$

$$= \int_{1}^{x} \left(2t + \frac{1}{8t}\right) dt = t^{2} + \frac{1}{8} \ln t \Big]_{1}^{x}$$

$$= x^2 + \frac{1}{8} \ln x - 1$$

For instance, the arc length along the curve from (1, 1) to (3, f(3)) is

$$s(3) = 3^2 + \frac{1}{8} \ln 3 - 1 = 8 + \frac{\ln 3}{8} \approx 8.1373$$