Diffusion Model Journal Club

Kingma & Gao: Understanding Diffusion Objectives as the ELBO with Simple Data Augmentation

Johannes Zenn

Tübingen Al Center, University of Tübingen, IMPRS-IS

► forward SDE (from data to noise)

$$dz = f(z,t)dt + g(t)dw$$
 (1)

▶ the forward SDE can be reversed (Anderson, 1982) resulting in the reverse SDE

$$d\mathbf{z} = [\mathbf{f}(\mathbf{z}, t) - g(t)^{2} \nabla_{\mathbf{x}} \log q(\mathbf{x}, t)] dt + g(t) d\mathbf{w}$$
(2)

Figure taken from Song et al. (2020)

Two Stochastic Differential Equations

Last Week: Variance-Preserving and Variance-Exploding Forward SDEs

Variance-Preserving (VP) SDE

$$dz = \underbrace{-\frac{1}{2} \left(\frac{d}{dt} \log(1 + e^{-\lambda_t}) \right) z}_{\text{drift}} dt$$

$$+ \underbrace{\sqrt{\frac{d}{dt} \log(1 + e^{-\lambda_t})}}_{\text{diffusion}} dw$$
(3)

Variance-Exploding (VE) SDE

$$dz = 0 dt + \sqrt{\frac{d}{dt} \log(1 + e^{-\lambda_t})} dw$$
 (4)

Figure taken from Kingma & Gao (2024)

Denoising Score Matching

Following Hyvärinen & Dayan (2005) and Vincent (2011)

• for generative modeling, we need to approximate the score (of the data) $\nabla_x \log q(x, t)$ in the reverse SDE

$$dz = [f(z,t) - g(t)^{2}\nabla_{x}\log q(x,t)]dt + g(t)dw$$
(5)

► following TODO: Hyvärinen 2005, Vincent 2011 we want to minimize the following objective

$$\mathbb{E}_{q(\boldsymbol{x})} \left[\| \nabla_{\boldsymbol{x}} \log q(\boldsymbol{x}) - \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}) \|_{2}^{2} \right]$$
 (6)

we have

$$\mathbb{E}_{q(\boldsymbol{x})} \left[\|\nabla_{\boldsymbol{x}} \log q(\boldsymbol{x}) - \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x})\|_{2}^{2} \right]$$

$$= \mathbb{E}_{q(\boldsymbol{x})} \left[\left\| \frac{\partial \log q(\boldsymbol{x})}{\partial \boldsymbol{x}} \right\|^{2} \right] - \mathbb{E}_{q(\boldsymbol{x})} \left[\left\langle \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}), \frac{\partial \log q(\boldsymbol{x})}{\partial \boldsymbol{x}} \right\rangle \right]$$

$$+ \mathbb{E}_{q(\boldsymbol{x})} \left[\|\nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x})\|^{2} \right]$$

$$(7)$$

Denoising Score Matching Following Hyvärinen & Davan (2005)

Following Hyvärinen & Dayan (2005) and Vincent (2011)

and, after some manipulations.

$$\mathbb{E}_{q(\boldsymbol{x})}\left[\left\langle \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}), \frac{\partial \log q(\boldsymbol{x})}{\partial \boldsymbol{x}} \right\rangle\right] = \mathbb{E}_{q(\boldsymbol{x}, \tilde{\boldsymbol{x}})}\left[\left\langle \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}), \frac{\partial \log q(\boldsymbol{x} \mid \tilde{\boldsymbol{x}})}{\partial \boldsymbol{x}} \right\rangle\right] \quad (8)$$

where $q(\boldsymbol{x}, \tilde{\boldsymbol{x}}) = q(\boldsymbol{x} \mid \tilde{\boldsymbol{x}})q_0(\tilde{\boldsymbol{x}})$ and $q(\boldsymbol{x} \mid \tilde{\boldsymbol{x}})$ is a noising distribution

therefore.

$$\mathbb{E}_{q(\boldsymbol{x})} \left[\| \nabla_{\boldsymbol{x}} \log q(\boldsymbol{x}) - \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}) \|_{2}^{2} \right]$$

$$= \mathbb{E}_{q(\boldsymbol{x}, \tilde{\boldsymbol{x}})} \left[\| \nabla_{\boldsymbol{x}} \log q(\boldsymbol{x} \mid \tilde{\boldsymbol{x}}) - \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}) \|_{2}^{2} \right]$$
(9)

we parameterize the score of the model by

$$\mathbb{E}_{q(\boldsymbol{x},\tilde{\boldsymbol{x}})} \left[\| \nabla_{\boldsymbol{x}} \log q(\boldsymbol{x} \mid \tilde{\boldsymbol{x}}) - \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}) \|_{2}^{2} \right]$$

$$= \mathbb{E}_{q(\boldsymbol{x},\tilde{\boldsymbol{x}})} \left[\| \nabla_{\boldsymbol{x}} \log q(\boldsymbol{x} \mid \tilde{\boldsymbol{x}}) - s_{\boldsymbol{\theta}}(\boldsymbol{x}) \|_{2}^{2} \right]$$
(10)

Denoising Score Matching Following Hyvärinen & Dayan (2005) and Vincent (2011)

ightharpoonup now, introduce multiple noise levels λ

$$z_{\lambda} = \alpha_{\lambda} x + \sigma_{\lambda} \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I})$$

we recover the denoising score matching (DSM) objective

$$\mathcal{L}_{\text{DSM}}(\boldsymbol{x}) = \mathbb{E}_{t,\epsilon} \left[\left\| \boldsymbol{s}_{\theta}(\boldsymbol{z}_{\lambda}; \lambda) - \frac{\boldsymbol{z}_{\lambda} - \alpha_{\lambda} \boldsymbol{x}}{\sigma_{\lambda}^{2}} \right\|_{2}^{2} \right]$$
(11)

lacksquare where we used the gradient of $\log q(oldsymbol{z}_{\lambda}|oldsymbol{x})$

$$\nabla_{\boldsymbol{z}_{\lambda}} \log q(\boldsymbol{z}_{\lambda}|\boldsymbol{x}) = -\frac{\boldsymbol{z}_{\lambda} - \alpha_{\lambda} \boldsymbol{x}}{\sigma_{\lambda}^{2}}$$
(12)

Parameterization of the Score Network Last Week: Following Karras et al. (2022)

lacktriangle now, we can approximate the score (of the data) $abla_{m{x}} \log q(m{x},m{t})$ in the reverse SDE

$$dz = [f(z,t) - g(t)^{2}\nabla_{x}\log q(x,t)]dt + g(t)dw$$
(13)

by $\nabla_{\boldsymbol{x}} \log q(\boldsymbol{x},t) \approx \boldsymbol{s}_{\theta}(\boldsymbol{z};\lambda)$

• the score network can be parameterized in various ways, based on the relationships between z_{λ} , x, and ϵ

$$z_{\lambda} = \alpha_{\lambda} x + \sigma_{\lambda} \epsilon$$
 (14) $s_{\theta}(z; \lambda) = -\nabla_{z} E_{\theta}(z, \lambda)$ (17)

$$x = \alpha_{\lambda}^{-1}(z_{\lambda} - \sigma_{\lambda}\epsilon)$$
 (15) $s_{\theta}(z;\lambda) = -\hat{\epsilon}_{\theta}(z;\lambda)/\sigma_{\lambda}$ (18)

$$\epsilon = \sigma_{\lambda}^{-1}(\boldsymbol{z}_{\lambda} - \alpha_{\lambda}\boldsymbol{x}) \tag{16}$$

$$\boldsymbol{s}_{\theta}(\boldsymbol{z};\lambda) = -(\boldsymbol{z} - \alpha_{\lambda}\hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z};\lambda))/\sigma_{\lambda}^{2} \tag{19}$$

F-Prediction (Karras et al., 2022) Last Week: Variance Exploding (VE) SDE Specie

UBINGEN

- Last Week: Variance Exploding (VE) SDE Special Case
 - F-prediction model: In Karras et al., the F-prediction model is used to parameterize the score network under the variance-exploding (VE) SDE
 - ► **F**-prediction Formula for VE SDE

$$x = \frac{\tilde{\sigma}_{\text{data}}^2}{e^{-\lambda} + \tilde{\sigma}_{\text{data}}^2} z_{\lambda} + \frac{e^{-\lambda/2} \tilde{\sigma}_{\text{data}}}{\sqrt{e^{-\lambda} + \tilde{\sigma}_{\text{data}}^2}} F$$
 (20)

$$F = \frac{\sqrt{e^{-\lambda} + \tilde{\sigma}_{data}^2}}{e^{-\lambda/2}\tilde{\sigma}_{data}}x - \frac{\tilde{\sigma}_{data}\alpha_{\lambda}}{e^{-\lambda/2}\sqrt{e^{-\lambda} + \tilde{\sigma}_{data}^2}}z_{\lambda}$$
(21)

where $\tilde{\sigma}_{data} = 0.5$.

Variational Diffusion Models Starting with Kingma et al. (2021)

Let's get probabilistic.

Evidence Lower Bound Slowly approaching the paper for today

lacktriangle the log evidence (marginal likelihood) of the data x under the model is

$$\log p(\mathbf{x}) = \log \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$
 (22)

where p(x, z) is the joint distribution of the data x and latent variables z.

we can derive a lower bound (Jensen's inequality) on the log-evidence, introducing the variational distribution q(z|x)

$$\log p(\boldsymbol{x}) = \log \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}) \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})} d\boldsymbol{z} \ge \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})} \right]$$
(23)

This gives us the evidence lower bound (ELBO) (Blei et al., 2017)

we rewrite the ELBO

$$\log p(\boldsymbol{x}) \ge \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[\log p(\boldsymbol{x}|\boldsymbol{z})\right] - D_{KL}(q(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z})) \tag{24}$$

From Variational Autoencoders to Diffusion Models Originally by Kingma & Welling (2014) and Rezende et al. (2014)

Variational Autoencoder

Diffusion Model

- \blacktriangleright We aim to learn a generative model $p_{\theta}(x)$ that approximates q(x), where x is drawn from a dataset. (think: x image or latent representation)
- \blacktriangleright The model incorporates a sequence of latent variables z_t for $t \in [0, 1]$, where $z_{0,\ldots,1} := z_0,\ldots,z_1.$
- forward process: defines a conditional distribution $q(z_0, 1|x)$
- \triangleright generative model: defines a joint distribution $p(z_0 = 1)$

Following Kingma et al. (2021)

▶ forward diffusion process generates a sequence of increasingly noisy versions of the data x, latent variables at time $t \in [0,1]$ are denoted z_t

$$q(\mathbf{z}_t|\mathbf{x}) = \mathcal{N}\left(\alpha_t \mathbf{x}, \sigma_t^2 \mathbf{I}\right) \quad \Rightarrow \quad \mathbf{z}_t = \alpha_t \mathbf{x} + \sigma_t^2 \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (25)

where α_t and σ_t^2 are strictly positive scalar functions of time.

Signal-to-Noise Ratio (SNR)

$$SNR(t) = \frac{\alpha_t^2}{\sigma_t^2}$$
 (26)

- lacktriangledown variance-preserving (VP): $lpha_t=\sqrt{1-\sigma_t^2}$, variance-exploding (VE): $lpha_t^2=1$
- \blacktriangleright noise schedule σ_t^2 is learned via a monotonic neural network $\gamma(t)$

$$\sigma_t^2 = \operatorname{sigmoid}(\gamma_{\eta}(t)), \quad \alpha_t^2 = \operatorname{sigmoid}(-\gamma_{\eta}(t)), \quad \operatorname{SNR}(t) = \exp(-\gamma_{\eta}(t))$$
 (27)

Following Kingma et al. (2021)

reverse diffusion process is the (hierarchical) generative model

$$p(\boldsymbol{x}) = \int_{\boldsymbol{z}} p(\boldsymbol{z}_1) p(\boldsymbol{x}|\boldsymbol{z}_0) \prod_{i=1}^{T} p(\boldsymbol{z}_{s(i)}|\boldsymbol{z}_{t(i)}),$$
(28)

where s(i) = (i-1)/T, and t(i) = i/T.

• for t = T, with VP diffusion and sufficiently small SNR(1),

$$p(\mathbf{z}_1) = \mathcal{N}(\mathbf{z}_1; 0, \mathbf{I}), \tag{29}$$

lacktriangle generative model approximates the (unknown) conditional distribution $q(m{x}|m{z}_0)$

$$p(\boldsymbol{x}|\boldsymbol{z}_0) = \prod_i p(x_i|z_{0,i}), \tag{30}$$

where $p(x_i|z_{0,i}) \propto q(z_{0,i}|x_i)$, remember: $q(\boldsymbol{z}_t|\boldsymbol{x}) = \mathcal{N}\left(\alpha_t \boldsymbol{x}, \sigma_t^2 \mathbf{I}\right)$

Generative Model Following Kingma et al. (2) Following Kingma et al. (2021)

conditional model distributions

$$p(\boldsymbol{z}_s|\boldsymbol{z}_t) = q(\boldsymbol{z}_s|\boldsymbol{z}_t, \boldsymbol{x} = \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_t;t)), \tag{31}$$

where $\hat{x}_{\theta}(z_t;t)$ is the noise-prediction parameterization

we see

$$q(\mathbf{z}_t|\mathbf{z}_s) = \mathcal{N}(\alpha_{t|s}\mathbf{z}_s, \sigma_{t|s}^2\mathbf{I}), \quad \alpha_{t|s} = \frac{\alpha_t}{\alpha_s}, \quad \sigma_{t|s}^2 = \sigma_t^2 - \alpha_{t|s}^2\sigma_s^2$$
(32)

ightharpoonup posterior $q(z_s|z_t,x) \propto q(z_s|x)q(z_t|z_s)$, we get

$$q(\mathbf{z}_s|\mathbf{z}_t, \mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_Q(\mathbf{z}_t, \mathbf{x}; s, t), \sigma_Q^2(s, t)\mathbf{I}), \tag{33}$$

where

$$\sigma_Q^2(s,t) = \frac{\sigma_s^2 \sigma_{t|s}^2}{\sigma_t^2}, \quad \boldsymbol{\mu}_Q(\boldsymbol{z}_t, \boldsymbol{x}; s, t) = \frac{\alpha_{t|s} \sigma_s^2}{\sigma_t^2} \boldsymbol{z}_t + \frac{\alpha_s \sigma_{t|s}^2}{\sigma_t^2} \boldsymbol{x}. \tag{34}$$

for the generative model we replace x by the predicted $\hat{x}_{\theta}(z_t;t)$

$$p(\mathbf{z}_s|\mathbf{z}_t) = \mathcal{N}(\boldsymbol{\mu}_{\theta}(\mathbf{z}_t; s, t), \sigma_Q^2(s, t)\mathbf{I}), \tag{35}$$

eberhard karls INIVERSITÄT TUBINGEN

► remember: ELBO

Following Kingma et al. (2021)

$$\log p(x) \ge \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - \mathsf{KL}(q(z|x)||p(z)) \tag{36}$$

minimize the negative ELBO

$$-\log p(\mathbf{x}) \le -\text{VLB}(\mathbf{x})$$

$$= \underbrace{D_{KL}(q(\mathbf{z}_1|\mathbf{x})||p(\mathbf{z}_1))}_{\text{Prior loss}} + \underbrace{\mathbb{E}_{q(\mathbf{z}_0|\mathbf{x})}\left[-\log p(\mathbf{x}|\mathbf{z}_0)\right]}_{\text{Reconstruction loss}} + \underbrace{\mathcal{L}_T}_{\text{Diffusion loss}}$$
(37)

for finite T, the diffusion loss can be expressed as

$$\mathcal{L}_T = \sum_{i=1}^T \mathbb{E}_{q(\boldsymbol{z}_{t(i)}|\boldsymbol{x})} D_{KL}[q(\boldsymbol{z}_{s(i)}|\boldsymbol{z}_{t(i)},\boldsymbol{x})||p_{\theta}(\boldsymbol{z}_{s(i)}|\boldsymbol{z}_{t(i)})]$$
(38)

we can write

$$\mathcal{L}_{T} = \sum_{i=1}^{T} \mathbb{E}_{q(\boldsymbol{z}_{t(i)}|\boldsymbol{x})} D_{KL}[q(\boldsymbol{z}_{s(i)}|\boldsymbol{z}_{t(i)},\boldsymbol{x})||p_{\theta}(\boldsymbol{z}_{s(i)}|\boldsymbol{z}_{t(i)})]$$

$$= \frac{T}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0,\mathbf{I}), i \sim U\{1,T\}} \left[(\mathsf{SNR}(s) - \mathsf{SNR}(t)) ||\boldsymbol{x} - \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_{t};t)||_{2}^{2} \right]$$
(40)

- ightharpoonup here, \mathcal{L}_T is an unbiased Monte Carlo estimator, where
 - $ightharpoonup U\{1,T\}$ is the uniform distribution over $\{1,\ldots,T\}$,
 - ightharpoonup s = (i-1)/T, t = i/T,
 - $ightharpoonup z_t = \alpha_t x + \sigma_t \epsilon$, where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$.

Variational Lower Bound A Closer Look on the Connection to the SNR

KL Divergence between Gaussians:

$$D_{KL}(q(\mathbf{z}_s|\mathbf{z}_t, \mathbf{x})||p_{\theta}(\mathbf{z}_s|\mathbf{z}_t)) = \frac{1}{2\sigma_Q^2(s, t)}||\mathbf{\mu}_Q - \mathbf{\mu}_{\theta}||_2^2$$
(41)

Mean Difference $||\mu_O - \mu_\theta||_2^2$:

$$\mu_Q - \mu_\theta = \frac{\alpha_s^2}{\sigma_s^2} (\boldsymbol{x} - \hat{\boldsymbol{x}}_\theta(\boldsymbol{z}_t; t))$$
(42)

Simplification of KL Divergence:

$$D_{KL}(q(\boldsymbol{z}_s|\boldsymbol{z}_t,\boldsymbol{x})||p_{\theta}(\boldsymbol{z}_s|\boldsymbol{z}_t)) = \frac{1}{2} \frac{\alpha_s^2}{\sigma_s^2} \left(1 - \frac{\alpha_t^2}{\sigma_t^2}\right) ||\boldsymbol{x} - \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_t;t)||_2^2$$
(43)

Final Expression with SNR:

$$D_{KL}(q(\boldsymbol{z}_s|\boldsymbol{z}_t,\boldsymbol{x})||p_{\theta}(\boldsymbol{z}_s|\boldsymbol{z}_t)) = \frac{1}{2} \left(\mathsf{SNR}(s) - \mathsf{SNR}(t) \right) ||\boldsymbol{x} - \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_t;t)||_2^2$$
(44)

• in the limit as $T \to \infty$, the diffusion loss \mathcal{L}_T can be written as a function of $\tau = 1/T$

$$\mathcal{L}_{T} = \frac{1}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), i \sim U\{1, T\}} \left[\frac{\mathsf{SNR}(t - \tau) - \mathsf{SNR}(t)}{\tau} ||\boldsymbol{x} - \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_{t}; t)||_{2}^{2} \right]$$
(45)

ightharpoonup as au o 0 and $T o \infty$, we get

$$\mathcal{L}_{\infty} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), t \sim \mathcal{U}[0, 1]} \left[\mathsf{SNR}'(t) || \boldsymbol{x} - \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_t; t) ||_2^2 \right]$$
(46)

▶ The continuous-time formulation of the diffusion loss is then:

$$\mathcal{L}_{\infty} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})} \int_{0}^{1} \mathsf{SNR}'(t) ||\boldsymbol{x} - \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_{t}; t)||_{2}^{2} dt$$
(47)

- we know: the signal-to-noise ratio (SNR) function is invertible: $t = SNR^{-1}(v)$.
- \blacktriangleright therefore, by a change of variables (t to v) we can express the diffusion loss as

$$\mathcal{L}_{\infty} = \frac{1}{2} \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{I})} \int_{\mathsf{SNR}_{\mathsf{min}}}^{\mathsf{SNR}_{\mathsf{max}}} \| \boldsymbol{x} - \tilde{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_{v}, v) \|_{2}^{2} dv$$
 (48)

- shape of SNR function between t=0 and t=1 does not affect the diffusion loss; only the values at the endpoints (SNR_{min} and SNR_{max}) matter
- ▶ two different diffusion processes with the same SNR_{min} and SNR_{max} will define the same distribution p(x), up to a rescaling of the latents
- therefore, variance-preserving and variance-exploding diffusion models are equivalent in continuous time

Weighted Diffusion Loss

A More General Framework including Score-Based Methods

► The continuous-time diffusion loss can be generalized to a weighted loss (no equivalence)

$$\mathcal{L}_{\infty}(\boldsymbol{x}, w) = \frac{1}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})} \int_{\mathsf{SNR}_{\mathsf{min}}}^{\mathsf{SNR}_{\mathsf{max}}} w(v) \| \boldsymbol{x} - \tilde{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_{v}, v) \|_{2}^{2} dv$$
(49)

- \blacktriangleright w(v) is a weighting function that can emphasize different noise levels
- different objectives in diffusion models are special cases of this weighted diffusion loss

Now, let's discuss Kingma & Gao (2024).

Noise schedule is a strictly monotonically decreasing function $\lambda = f_{\lambda}(t)$ with endpoints $\lambda_{\text{max}} := f_{\lambda}(0)$ and $\lambda_{\text{min}} := f_{\lambda}(1)$.

Noise Schedules Deriving the PDF from the Noise Schedule

- During training, time t is sampled uniformly: $t \sim \mathcal{U}(0,1)$. The noise level λ is then computed via $\lambda = f_{\lambda}(t)$.
- ► This results in a distribution over noise levels, with the probability density function (PDF) given by:

$$p(\lambda_t) = -\frac{d}{d\lambda} f_{\lambda}^{-1}(\lambda_t) = -\frac{dt}{d\lambda} = -\frac{1}{f_{\lambda}'(t)}$$

▶ The PDF $p(\lambda_t)$ represents the likelihood of encountering a particular noise level λ during training.

Noise schedule name	$\lambda = f_{\lambda}(t) = \dots$	$t = f_{\lambda}^{-1}(\lambda) = \dots$	$p(\lambda) = -\frac{d}{d\lambda} f_{\lambda}^{-1}(\lambda)$
Cosine Shifted Cosine EDM (Training)	$-2 \log(\tan(\pi t/2)) -2 \log(\tan(\pi t/2)) + 2s -F_{M}^{-1}(t; 2.4, 2.4^{2})$	$(2/\pi)\arctan(e^{-\lambda/2})$ $(2/\pi)\arctan(e^{-\lambda/2-s})$ $F_{\mathcal{N}}(-\lambda; 2.4, 2.4^2)$	$\mathrm{sech}(\lambda/2)/(2\pi)$ $\mathrm{sech}(\lambda/2-s)/(2\pi)$ $\mathcal{N}(\lambda; 2.4, 2.4^2)$
EDM (Sampling)	$-2\rho \log(\sigma_{\max}^{1/\rho} + (1-t)(\sigma_{\min}^{1/\rho} - \sigma_{\max}^{1/\rho}))$	$1 - \frac{e^{-\lambda/(2\rho)} - \sigma_{\max}^{1/\rho}}{\sigma_{\min}^{1/\rho} - \sigma_{\max}^{1/\rho}}$ $1/(1 + e^{\lambda/2})$	$\frac{e^{-\lambda/(2\rho)}}{2\rho(\sigma_{\max}^{1/\rho} - \sigma_{\min}^{1/\rho})}$
Flow Matching (OT)	$2\log((1-t)/t)$	$1/(1+e^{\lambda/2})$	$\mathrm{sech}^2(\lambda/4)/8$

we define the log signal-to-noise ratio (SNR) as

$$\lambda = \log(\alpha_{\lambda}^2 / \sigma_{\lambda}^2) \tag{50}$$

ightharpoonup therefore, we can write \mathcal{L}_{∞} as

$$\mathcal{L}_{\infty} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), t \sim \mathcal{U}[0, 1]} \left[\mathsf{SNR}'(t) || \boldsymbol{x} - \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_t; t) ||_2^2 \right]$$
 (51)

$$= -\frac{1}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), t \sim \mathcal{U}[0, 1]} \left[\frac{d\lambda}{dt} || \boldsymbol{x} - \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{z}_t; t) ||_2^2 \right]$$
(52)

we can similarly use the noise prediction parameterization

$$-\mathsf{ELBO}(\boldsymbol{x}) = \frac{1}{2} \mathbb{E}_{t \sim \mathcal{U}(0,1), \epsilon \sim \mathcal{N}(0,\boldsymbol{I})} \left[-\frac{d\lambda}{dt} \cdot \|\hat{\boldsymbol{\epsilon}}_{\theta}(\boldsymbol{z}_t; \lambda_t) - \boldsymbol{\epsilon}\|_2^2 \right] + c \tag{53}$$

Negative ELBO and Further Connections

EBERHARD KARLS
INIVERSITAT
TÜBINGEN

Reiterating Various Parameterizations

noise prediction parameterization

$$-\mathsf{ELBO}(\boldsymbol{x}) = \frac{1}{2} \mathbb{E}_{t \sim \mathcal{U}(0,1), \boldsymbol{\epsilon} \sim \mathcal{N}(0,\boldsymbol{I})} \left[-\frac{d\lambda}{dt} \cdot \|\hat{\boldsymbol{\epsilon}}_{\theta}(\boldsymbol{z}_t; \lambda_t) - \boldsymbol{\epsilon}\|_2^2 \right] + c \tag{54}$$

using

$$oldsymbol{s}_{ heta}(oldsymbol{z}_t;\lambda_t) = -rac{\hat{oldsymbol{\epsilon}}_{ heta}(oldsymbol{z}_t;\lambda_t)}{\sigma_{\lambda}}$$

and $\tilde{w}(t) = \sigma_t^2$ we can connect

$$\mathcal{L}_{\text{DSM}}(\boldsymbol{x}) = \mathbb{E}_{t \sim \mathcal{U}(0,1), \epsilon \sim \mathcal{N}(0,\boldsymbol{I})} \left[\tilde{\boldsymbol{w}}(t) \cdot \| \boldsymbol{s}_{\theta}(\boldsymbol{z}_{t}, \lambda_{t}) - \nabla_{\boldsymbol{z}_{t}} \log q(\boldsymbol{z}_{t}|\boldsymbol{x}) \|_{2}^{2} \right]$$
(55)

to

$$\mathcal{L}_{\epsilon}(\boldsymbol{x}) = \frac{1}{2} \mathbb{E}_{t \sim \mathcal{U}(0,1), \epsilon \sim \mathcal{N}(0,\boldsymbol{I})} \left[\| \hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta}}(\boldsymbol{z}_t; \boldsymbol{\lambda}_t) - \epsilon \|_2^2 \right]$$
 (56)

general form of the weighted loss is

$$\mathcal{L}_{w}(\boldsymbol{x}) = \frac{1}{2} \mathbb{E}_{t \sim \mathcal{U}(0,1), \boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{I})} \left[w(\lambda_{t}) \cdot \left(-\frac{d\lambda}{dt} \right) \cdot \| \hat{\boldsymbol{\epsilon}}_{\theta}(\boldsymbol{z}_{t}; \lambda_{t}) - \boldsymbol{\epsilon} \|_{2}^{2} \right]$$
(57)

weighted loss can be rewritten as an integral

$$\mathcal{L}_{w}(\boldsymbol{x}) = \frac{1}{2} \int_{\lambda_{\min}}^{\lambda_{\max}} w(\lambda) \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{I})} \left[\| \hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta}}(\boldsymbol{z}_{\lambda}; \boldsymbol{\lambda}) - \boldsymbol{\epsilon} \|_{2}^{2} \right] d\boldsymbol{\lambda}$$
 (58)

loss does not depend on the specific noise schedule λ_t except for the endpoints λ_{\min} and λ_{\max} , noise schedule (only!) affects the variance of the Monte Carlo estimator

Weighted Loss as ELBO with Data Augmentation Main Result of (Kingma & Gao, 2024)

 \blacktriangleright the noise schedule $p(\lambda)$ acts as an importance sampling distribution

$$\mathcal{L}_{w}(\boldsymbol{x}) = \frac{1}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), \lambda \sim p(\lambda)} \left[\frac{w(\lambda_{t})}{p(\lambda)} \| \hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta}}(\boldsymbol{z}_{t}; \lambda_{t}) - \epsilon \|_{2}^{2} \right]$$
(59)

Theorem

If the weighting function $w(\lambda_t)$ is monotonic, then the weighted diffusion objective is equivalent to the ELBO with data augmentation (additive noise).

Result: Any objective with (implied) monotonic weighting, can be uunderstood as equivalent to the ELBO with simple data augmentation (additive noise)

 adaptive noise schedule: by lowering the variance of the loss estimator, this often significantly speeds up optimization

Proof of Theorem 1 (Kingma & Gao, 2024) KL Divergence and Time Derivative KL Divergence and Time Derivative

KL Divergence: define $\mathcal{L}(t; x) = D_{KL}(q(z_{t,...,1}|x)||p(z_{t,...,1}))$ for the KL divergence between $q(z_{t-1}|x)$ and $p(z_{t-1})$ for timesteps t to 1

$$\mathcal{L}(t; \boldsymbol{x}) := D_{KL}q(\boldsymbol{z}_{t,\dots,1}|\boldsymbol{x})||p(\boldsymbol{z}_{t,\dots,1}))$$
(60)

Time Derivative: show that the time derivative of $\mathcal{L}(t;x)$ is

$$\frac{d}{dt}\mathcal{L}(t; \boldsymbol{x}) = \frac{1}{2} \frac{d\lambda}{dt} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})} \left[\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}_{\theta}(\boldsymbol{z}_t; \lambda_t)\|_2^2 \right]$$
(61)

Rewriting the Weighted Loss: therefore, the weighted loss is rewritten as

$$\mathcal{L}_{w}(\boldsymbol{x}) = -\int_{0}^{1} \frac{d}{dt} \mathcal{L}(t; \boldsymbol{x}) w(\lambda_{t}) dt$$
 (62)

Proof of Theorem 1 (Kingma & Gao, 2024) Integration by Parts and Monotonic Weighting Integration by Parts and Monotonic Weighting

weighted loss

$$\mathcal{L}_{w}(\boldsymbol{x}) = -\int_{0}^{1} \frac{d}{dt} \mathcal{L}(t; \boldsymbol{x}) w(\lambda_{t}) dt$$
(63)

Integration by Parts: integration by parts yields

$$\mathcal{L}_{w}(\boldsymbol{x}) = \int_{0}^{1} \frac{d}{dt} w(\lambda_{t}) \mathcal{L}(t; \boldsymbol{x}) dt + w(\lambda_{\text{max}}) \mathcal{L}(0; \boldsymbol{x}) + \text{constant}$$
 (64)

Monotonic Weighting: assume $w(\lambda_t)$ is monotonically increasing and normalized

$$\mathcal{L}_w(\boldsymbol{x}) = \mathbb{E}_{p_w(t)} \left[\mathcal{L}(t; \boldsymbol{x}) \right] + \text{constant}$$
 (65)

Probability Distribution: $p_w(t) = \frac{d}{dt}w(\lambda_t)$ is a probability distribution over $t \in [0,1]$, meaning that $\mathcal{L}_w(x)$ becomes an expected KL divergence.

we note that

$$\mathcal{L}(t; \boldsymbol{x}) = D_{KL}(q(\boldsymbol{z}_{t,\dots,1}|\boldsymbol{x})||p(\boldsymbol{z}_{t,\dots,1})) = -\mathbb{E}_{q(\boldsymbol{z}_{t}|\boldsymbol{x})}[\mathsf{ELBO}_{t}(\boldsymbol{z}_{t})] - \mathcal{H}(q(\boldsymbol{z}_{t}|\boldsymbol{x}))$$
(66)

$$\mathsf{ELBO}_{t}(\boldsymbol{z}_{t}) := \mathbb{E}_{q(\tilde{\boldsymbol{z}}_{t}|\boldsymbol{z}_{t})}[\log p(\boldsymbol{z}_{t}, \tilde{\boldsymbol{z}}_{t}) - \log q(\tilde{\boldsymbol{z}}_{t}|\boldsymbol{z}_{t})] \leq \log p(\boldsymbol{z}_{t}), \tilde{\boldsymbol{z}}_{t} := \boldsymbol{z}_{t+dt,\dots,1} \tag{67}$$

therefore,

$$\mathcal{L}(t; \boldsymbol{x}) = D_{KL}(q(\boldsymbol{z}_{t,\dots,1}|\boldsymbol{x})||p(\boldsymbol{z}_{t,\dots,1})) \ge D_{KL}(q(\boldsymbol{z}_{t}|\boldsymbol{x})||p(\boldsymbol{z}_{t}))$$
(68)

lacksquare $\mathcal{L}(t;m{x})$ is the expected negative ELBO of noise-perturbed data $m{z}_t$

$$\mathcal{L}(t; \boldsymbol{x}) = -\mathbb{E}_{q(\boldsymbol{z}_t|\boldsymbol{x})}[\mathsf{ELBO}_t(\boldsymbol{z}_t)] + \mathsf{c.} \ge -\mathbb{E}_{q(\boldsymbol{z}_t|\boldsymbol{x})}[\log p(\boldsymbol{z}_t)] + \mathsf{c.} \tag{69}$$

$$\mathcal{L}_{w}(\boldsymbol{x}) = \mathbb{E}_{p_{w}(t)} \left[\mathcal{L}(t; \boldsymbol{x}) \right] + c.$$

$$= - \underbrace{\mathbb{E}_{p_{w}(t), q(\boldsymbol{z}_{t}|\boldsymbol{x})} \left[\mathsf{ELBO}_{t}(\boldsymbol{z}_{t}) \right]}_{\mathsf{ELBO} \text{ of noise-perturbed data}} + c. \geq - \underbrace{\mathbb{E}_{p_{w}(t), q(\boldsymbol{z}_{t}|\boldsymbol{x})} \left[\log p(\boldsymbol{z}_{t}) \right]}_{\mathsf{II. of noise-perturbed data}} + c. \tag{70}$$

				DDPM sampler		EDM sampler		
Model parameterization	Training noise schedule	Weighting function	Monotonic?	$\text{FID} \downarrow$	IS ↑	$\text{FID} \downarrow$	IS ↑	
ϵ -prediction	Cosine	$\operatorname{sech}(\lambda/2)$ (Baseline)		1.85	54.1 ± 0.79	1.55	59.2 ± 0.78	
	Cosine	$sigmoid(-\lambda + 1)$	✓	1.75	55.3 ± 1.23			
"	Cosine	$sigmoid(-\lambda + 2)$	✓	1.68	56.8 ± 0.85	1.46	60.4 ± 0.86	
	Cosine	$sigmoid(-\lambda + 3)$	✓	1.73	56.1 ± 1.36			
	Cosine	$sigmoid(-\lambda + 4)$	✓	1.80	55.1 ± 1.65			
	Cosine	$sigmoid(-\lambda + 5)$	✓	1.94	53.5 ± 1.12			
	Adaptive	$sigmoid(-\lambda + 2)$	✓	1.70	54.8 ± 1.20	1.44	60.6 ± 1.44	
п	Adaptive	EDM-monotonic	\checkmark	1.67	56.8 ± 0.90	1.44	$\textbf{61.1} \pm 1.80$	
EDM (Karras et al., 2022)	EDM (training)	EDM (Baseline)				1.36		
EDM (our reproduction)	EDM (training)	EDM (Baseline)				1.45	60.7 ± 1.19	
	Adaptive	EDM				1.43	63.2 ± 1.76	
"	Adaptive	$sigmoid(-\lambda + 2)$	✓			1.55	63.7 ± 1.14	
п	Adaptive	EDM-monotonic	✓			1.43	63.7 ± 1.48	
$oldsymbol{v}$ -prediction	Adaptive	$\exp(-\lambda/2)$ (Baseline)	✓			1.62	58.0 ± 1.56	
"	Adaptive	$sigmoid(-\lambda + 2)$	✓			1.51	64.4 ± 1.28	
п	Adaptive	EDM-monotonic	\checkmark			1.45	$\textbf{64.6} \pm 1.35$	

			FID ↓				
Model parameterization	Training noise schedule	Weighting function	Monotonic?	train	eval	IS ↑	
$oldsymbol{v}$ -prediction	Cosine-shifted	$\exp(-\lambda/2)$ (Baseline)	✓	1.91	3.23	171.9 ± 2.46	
•	Adaptive	$sigmoid(-\lambda+2)$ -shifted	✓	1.91	3.41	183.1 ± 2.20	
•	Adaptive	EDM-monotonic-shifted	✓	1.75	2.88	171.1 ± 2.67	

		Without guidance FID ↓		With guidance		e
Method	train	eval	IS ↑	train	eval	IS ↑
128 × 128 resolution	1					
ADM (Dhariwal & Nichol, 2021)	5.91	_	-	2.97	_	-
CDM (Ho et al., 2022)	3.52	3.76	128.8 ± 2.5	_	-	-
RIN (Jabri et al., 2023)	2.75	-	144.1	_	-	-
Simple Diffusion (U-Net) (Hoogeboom et al., 2023)	2.26	2.88	137.3 ± 2.0	-	-	-
Simple Diffusion (U-ViT, L) (Hoogeboom et al., 2023)	1.91	3.23	171.9 ± 2.5	2.05	3.57	189.9 ± 3.5
VDM++ (Ours) , $w(\lambda) = \text{sigmoid}(-\lambda + 2)$	1.91	3.41	183.1 ± 2.2	_	-	-
VDM++ (Ours), EDM-monotonic weighting	1.75	2.88	171.1 ± 2.7	1.78	3.16	190.5 \pm 2.3
256 × 256 resolution	1					
BigGAN-deep (no truncation) (Brock, 2018)	6.9	_	171.4 ± 2.0	_	-	_
MaskGIT (Chang et al., 2022)	6.18	-	182.1	-	-	_
ADM (Dhariwal & Nichol, 2021)	10.94	_	-	3.94	-	215.9
CDM (Ho et al., 2022)	4.88	4.63	158.7 ± 2.3	_	-	-
RIN (Jabri et al., 2023)	3.42	-	182.0	_	-	-
Simple Diffusion (U-Net) (Hoogeboom et al., 2023)	3.76	3.71	171.6 ± 3.1	_	-	-
Simple Diffusion (U-ViT, L) (Hoogeboom et al., 2023)	2.77	3.75	211.8 ± 2.9	2.44	4.08	256.3 ± 5.0
VDM++ (Ours), EDM-monotonic weighting	2.40	3.36	225.3 ± 3.2	2.12	3.69	267.7 ± 4.9

		Without guidance FID ↓		With guidance		e	
Method		train	eval	IS↑	train	eval	IS ↑
Latent diffusion with pretrained VAE:							
DiT-XL/2 (Peebles & Xie, 2023)		9.62	-	121.5	2.27	-	278.2
U-ViT (Bao et al., 2023)		-	_	-	3.40	_	-
Min-SNR-γ (Hang et al., 2023)		-	-	-	2.06	-	-
MDT (Gao et al., 2023)		6.23	-	143.0	1.79	-	283.0
512 × 512 resolution	П						
MaskGIT (Chang et al., 2022)		7.32	-	156.0	-	-	_
ADM (Dhariwal & Nichol, 2021)		23.24	-	_	3.85	-	221.7
RIN (Jabri et al., 2023)		-	-	_	3.95	-	216.0
Simple Diffusion (U-Net) (Hoogeboom et al., 2023)		4.30	4.28	171.0 ± 3.0	_	-	-
Simple Diffusion (U-ViT, L) (Hoogeboom et al., 2023)		3.54	4.53	205.3 ± 2.7	3.02	4.60	248.7 ± 3.4
VDM++ (Ours), EDM-monotonic weighting		2.99	4.09	232.2 ± 4.2	2.65	4.43	$\textbf{278.1} \pm 5.5$
Latent diffusion with pretrained VAE:							
DiT-XL/2 (Peebles & Xie, 2023)		12.03	-	105.3	3.04	-	240.8
LDM-4 (Rombach et al., 2022)		10.56	-	103.5 ± 1.2	3.60	-	247.7 ± 5.6

Conclusion and Discussion

Summary of Results:

- We have demonstrated that the weighted diffusion loss generalizes diffusion objectives in the literature.
- ▶ It can be interpreted as a **weighted integral of ELBO objectives**, where each ELBO corresponds to a different noise level.
- When the weighting function $w(\lambda_t)$ is monotonic, the loss has an interpretation as the ELBO objective with **data augmentation** via noise perturbation.

Implications:

- ► The equivalence between monotonic weighting and the ELBO with data augmentation enables a direct comparison between diffusion models and other likelihood-based models such as autoregressive transformers.
- ► This opens up avenues for optimizing other model types toward the same objective as monotonically weighted diffusion models.

Discussion