City University of Hong Kong

Course code & title: MA 1201 Calculus and Basic Linear Algebra II

Session: Semester B, 2019–2020

Time allowed: Three hours

This exam has <u>FIVE</u> pages (including this cover page and the attached table).

- 1. This exam consists of SIX problems (100 points in total).
- 2. Attempt ALL problems.
- 3. Start each problem on a NEW page.
- 4. Show your work clearly to receive full credits.
- 5. The use of pencil is not permitted.

This is a CLOSED-BOOK examination.

Candidates are allowed to use the following materials/aids:

• Non-programmable portable battery operated calculator.

Materials/aids other than those stated above are not permitted. Candidates will be subject to disciplinary action if any unauthorized materials or aids are found on them.

If assistance is needed, contact your instructor/TA in Zoom or call department hotline (3442 8646).

1. (15 points) Evaluate the following integrals.

(a) (5 points)
$$\int \frac{e^{2x} + 2e^{-2x} + 3}{e^{-x+1}} dx.$$

(b) (5 points)
$$\int \frac{1}{(2x+1)^2} dx$$
.

(c) (5 points)
$$\int_{-1}^{1} 2x \sin(1-x^2+x^4) dx$$
.

2. (20 points) Evaluate the following integrals.

(a) (7 points)
$$\int x^2 \tan^{-1} x \, dx.$$

(b) (5 points)
$$\int \frac{\cos^5 x}{\sin^2 x} dx.$$

(c) (8 points)
$$\int \frac{5x^2 - 11x + 32}{(x+1)(2x^2 - 4x + 10)} dx.$$

3. (15 points)

- (a) (8 points) Find the volume of the solid generated by revolving the region bounded by the upper branch of the parabola $x = y^2$, the upper branch of the ellipse $x^2 + 2y^2 = 3$, and the *x*-axis about the *y*-axis.
- (b) (7 points) Find the area of the surface generated by revolving the curve $x = \int_0^y \sqrt{4-t^2} dt$, $1 \le y \le 2$, about the *x*-axis.
- 4. (15 points) Let A(1,0,-1), B(2,-1,0), C(0,1,-1), and D(1,2,-2) be four points in \mathbb{R}^3 . Using vector method:
 - (a) (5 points) Find the volume of the parallelepiped with adjacent edges AB, AC, and AD.
 - (b) (5 points) Find the equation of the plane that contains A, B, and C.
 - (c) (5 points) Find the distance from D to the plane containing A, B, and C.

5. (15 points)

(a) (8 points) Solve the complex equation $(1+i)z^3 - \left[1 + e^{i(\pi/3)}\right] = 0$ and list all possible solutions in Euler's form with principal arguments.

- (b) (7 points) Express the complex number $z = (1 \sin \theta + i \cos \theta)^{20}$ in Euler's form.
- 6. (20 points)
 - (a) (5 points) Let A and B be two 4×4 matrices such that det(A) = 3 and det(B) = 2. Using the properties of determinant, find $det(2A^TB^{-1})$.
 - (b) (10 points) Solve the linear system

$$-x+3y-2z + w = 3$$

 $2x - y+2z + w = -1$
 $3x + y+2z+3w = 1$

by Gaussian elimination and express the general solution in vector form.

(c) (5 points) Write down the corresponding homogenous system explicitly and determine all non-trivial solutions from (b) without resolving the system.