Robotic grasping

Group WangThinh Mengnan Wang Nguyen Truong Thinh

Overview

- > Solve robotic grasping of single object in 2D plane.
- Apply reinforcement learning and supervised learning.

System

- Baxter
 - Left arm and parallel plate gripper
 - Left hand camera
- > Workspace
 - Blue board
 - Light source(Optional, for better object detection)

Subtasks

- I. Approaching object in 2D plane
- II. Choosing grasping point
- III. Estimating grasping position and orientation
- IV. Executing grasping

System diagram

Baxter Software

Object detection

- Workspace detection
 - Color filtering → Convex hull
- Background subtraction
 - Contour of object → Centroid

I. Approach object

State space
Vector points from centroid of object to image center

Action set Forward/Backward/Left/Right

Goal state

Vector become zero → centroid align with image center

- Discrete length and angle of vector in pole coordinates
 - o 100 length bin
 - o 36 angle bin
- > Size of state space: 3600

Tabular Q-Learning

Model-free approximation of State-action value Q(s,a).

Training: 20000 episodes in MLR code base

(One episode terminates when goal is reached)

Problem: Transition dynamic on real robot is different with simulation

- Discrete image into 201x201 grids and vector is mapped to a grid index
- Larger state space: 40401
- → Using LSPI

Least square policy iteration(LSPI)

Linear approximation of Q(s,a)

$$Q(s, a) = \phi(s, a)^T \beta$$

Generalize to unvisit state

Training: 1000 episodes in Python

Aruco marker

Problem: Moving by policy is slow due to step size of action

→ Use Aruco marker

- 1. Estimate position of the marker
- Policy is used to track object's centre when marker detection fail
- 3. Move to 20cm above marker

II. Choose grasping point

Supervised learning

Training data

Stanford grasping data (Thickpencil, Martini glass, Eraser)

- Feature extractionShape context + 3 spatial scales
- Training model:

Logistic regression/Non-linear SVM

SHAPE CONTEXT

Feature descriptor $\log r$

Shape context

- 1. Sample edge into points. Calculate vector starts from each point to all others
- 2. Separate each vector into 5 log-radius bins and 4 angle bins
- 3. Store the histogram of each bin into vector of 5x4 = 20 Dimensions

Feature descriptor

- 1. Extract object edge (Canny)
- 2. Sample 300 points from the edges
- 3. Divide image into 10x10 pixel patches
- Concatenate shape context histogram of 3 scales into 1 vector (Our feature)

Non-linear SVM

- Kernel: Radial Basis Function
- Require suitable parameters for training model
 - → Use Grid search
- Grid search time: 8 days for 5x5 parameters table
- > Training time: about 2 hours for 121000 data points
- Accuracy: 57%

Logistic regression

Given data
$$D = \{(x_i, y_i)\}_{i=1}^n$$
, we minimize

$$L^{\text{logistic}}(\beta) = -\sum_{i=1}^{n} \log p(y_i \mid x_i) + \lambda \|\beta\|^2$$

- Training time: 10 minutes
- Accuracy: greater than 70%

- ---- Fast and good enough for predicting grasping point
- → Choose Logistic Regression for our system

II. Choose grasping point

- > Test result
 - Synthetic objects

Martini Glass	Eraser	Thick Pencil
77.34%	58.08%	79.58%

Similar objects

Screwdriver	Cylinder-shape Objects	
76.84%	77.42%	

II. Choose grasping point

Problem

- Use 3D grasping data to train 2D grasping
- Unbalanced data set for classification:
 - 0.05% data are grasping point
 - o 95.5% data are non-grasping point
 - → Balancing data set

III. Grasping point position estimation

- Stereo matching:
 - o Three images, two stereo pairs

Problem: Unstable due to performance of baxter camera and loose joint

Projection relation

$$\frac{x}{X} = \frac{f}{Z}$$

$$\frac{\int_{1}^{1} \frac{1}{y} \operatorname{grasping point in image}}{\int_{1}^{1} \frac{1}{y} \operatorname{grasping point}}$$

$$\frac{x}{X}$$

Drawback: Must give depth Z first

Feature tracking (SIFT)

Problem: Failure grasping may displace object

Track a small patch around grasping point

Keep updating grasping point

Re-estimate 3D position

Orientation estimation

- 1. Fitting a rectangle to object
- 2. Choose axis which is peropendicular to the narrow side

IV. Execute grasping

- 1. Move to grasping point and align with grasping orientation
- 2.Close gripper
- 3.Check force sensor
- 4. Open gripper and lower gripper
- 5.Close gripper and lift object
- 6.Check force sensor again

Grasping logic

- 1. Try grasping 5 times
- 2. Visual servoing
- a) Approach in 2D plane
- b) Lower the Robot's arm
- c) Close the Robot's gripper

Demo

Test result

Test No.	Screwdriver	Cylinder-shape Object	Stamper
1)	1	1	1
2)	1	1	3
3)	1	1	1
4)	1	1	1
5)	1	1	2
6)	1	1	1
7)	1	1	1
8)	2	3	1
9)	1	1	1
10)	2	Failed	2

Number of times that robot has tried to grasp successfully different objects

Multiple objects

We try to extend our projects to multiple objects

Problem:

Illumination change — Affect object detection

Conclusion

Minimum goal	Expectation	Done
Single object	Multiple object	Single and multiple (but unstale) object
Fixed shape	Unseen shape	Similar shape with training data
Fixed position and orientation	Arbitrary position and orientation	Arbitrary position and orientation

Improvement

- Hierarchical learning/SMDP
- Stereo camera for object detection/position estimation get rid of marker
- Deep neural networks for learning grasping point

.)

Thanks for your attention