Prueba de bondad de ajuste

Jessica Nathaly Pulzara Mora jessica.pulzara@udea.edu.co

Departamento de ingeniería de sistemas

Prueba de bondad de ajuste

Una prueba de Bondad de Ajuste es un procedimiento especial para determinar si un conjunto de datos proviene de cierta distribución conocida.

- Las pruebas de hipótesis que discutimos anteriormente están diseñadas para resolverse cuando la distribución de la población es conocida, y sus parámetros hacen parte de la hipótesis.
- Otro tipo de pruebas de hipótesis también son importantes: cuando no conocemos la distribución de la población, y deseamos probar que cierta distribución es un modelo satisfactorio.

Pruebas de bondad de ajuste

Existen varias pruebas de bondad de ajuste:

- Prueba Chi-cuadrado: las mas utilizada cuando los datos son discretos.
- Prueba Chi-cuadrado para distribuciones continuas.
- Otras pruebas para variables continuas que no hacen parte del curso: Kolmogorov - Smirnov, Shapiro - Wilks, Cramer Von Mises, Jarque Bera, entre otras.

Se dispone de n observaciones independientes de una v.a X, estas observaciones son agrupadas en k posibles categorías o clases (por ejemplo, al lanzar un dado se tienen 6 clases: 1,2,3,4,5,6).

Sea p_i la probabilidad de clasificar en la categoría i.

Las hipotesis que se desean poner a prueba son:

$$H_0: F(x) = F_0(x)$$

 $H_1: F_0(x)$ no es la f.d.p asociada a la muestra

O alternativamente:

$$H_0: p_i = p_{i0} \quad i = 1, 2, \dots, k$$

$$H_1: \exists_j \text{ tal que } p_j \neq p_{j0}$$

Si F_0 esta claramente especificada, es posible conocer los valores particulares para los p_i

Prueba Chi-cuadrado datos discretos

Se tiene lo siguiente:

$$H_0: p_i = p_{i0} \quad i = 1, 2, \dots, k$$

 $H_1: \exists_j \text{ tal que } p_j \neq p_{j0}$

Categoría/v.a	Frec. Observada	Probabilidad	Frec. Esperada
1	n_1	p_1	np_1
2	n_2	p_2	np_2
:	:	:	:
i	n _i	p_i	np_i
:	:	:	:
k	n_k	p_k	np_k

- n es el tamaño de la muestra.
- k es el número de categorías.

El estadístico de prueba es el siguiente:

$$X_c = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i} \sim \chi^2(k-1)$$

- La región de rechazo es: $\{X_c : X_c > \chi^2_{\alpha}(k-1)\}$
- El valor $p = P(\chi^2 > X_c)$.
- H_0 se rechaza si valor $p < \alpha$.

Nota: *np_i* debe ser mayor o igual que 5.

Ejemplo

Para determinar si un dado está cargado o no, éste es lanzado 600 veces y se anota cuantas veces aparece cada cara. Los resultados fueron los siguientes:

Cara	1	2	3	4	5	6
Frec. Observada	85	94	108	112	98	103

¿Qué podemos afirmar sobre el dado?

Cara	1	2	3	4	5	6
Frec. Observada	85	94	108	112	98	103
Frec. Esperada	100	100	100	100	100	100

Hipótesis

$$H_0: p_i = \frac{1}{6} \quad i = 1, 2, \dots, k$$
 $H_1: \exists_j \text{ tal que } p_j \neq \frac{1}{6}$

$$H_1:\exists_j$$
 tal que $p_j
eqrac{1}{6}$

 $X_c = 4.82$, valor p = 0.1, por lo tanto, con un 95 % de confianza, no hay evidencia para afirmar que el dado está cargado.