

Discrete Mathematics MH1812

Topic 8.1 - Relations I Dr. Guo Jian

What's in store...

By the end of this lesson, you should be able to...

- Explain the different types of binary relations.
- Explain the concept of reflexivity.
- Explain the concept of symmetry.
- Explain the concept of transitivity.

Binary Relations: Between Two Sets

Let A and B be sets. A binary relation R from A to B is a subset of $A \times B$. Given (x,y) in $A \times B$, x is related to y by R $(xRy) \leftrightarrow (x,y) \in R$.

Example

$$A = \{1,2\}, B = \{1,2,3\}, (x,y) \in R \longleftrightarrow (x-y)$$
 is even

$$A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$

$$(1,1) \in R, (1,3) \in R, (2,2) \in R$$

x > y, x owes y, x divides y

Binary Relations: Between Two Sets (Graphically)

$$A = \{1,2\}, B = \{1,2,3\}, (x,y) \in R \iff (x-y) \text{ is even}$$

$$A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$

$$(1,1) \in R, (1,3) \in R, (2,2) \in R$$

Binary Relations: Inverse of a Binary Relation

Let R be a relation from A to B. The inverse relation R^{-1} from B to A is defined as: $R^{-1} = \{(y,x) \in B \times A \mid (x,y) \in R\}$.

Binary Relations: Inverse of a Binary Relation (Example)

$$A = \{2,3,4\}, B = \{2,6,8\}, (x,y) \in R \leftrightarrow x \text{ divides } y$$

$$A \times B = \{(2,2), (2,6), (2,8), (3,2), (3,6), (3,8), (4,2), (4,6), (4,8)\}$$

$$(2,2) \in R, (2,6) \in R, (2,8) \in R, (3,6) \in R, (4,8) \in R$$

$$(2,2) \in R^{-1}, (6,2) \in R^{-1}, (8,2) \in R^{-1}, (6,3) \in R^{-1}, (8,4) \in R^{-1}$$

 $(y, x) \in R^{-1} \leftrightarrow y$ is a multiple of x

Binary Relations: Inverse of a Binary Relation (Graphically)

$$A = \{2,3,4\}, B = \{2,6,8\}, (x,y) \in R \leftrightarrow x \text{ divides } y$$

$$(2,2) \in R, (2,6) \in R, (2,8) \in R, (3,6) \in R, (4,8) \in R$$

$$(2,2) \in R^{-1}, (6,2) \in R^{-1}, (8,2) \in R^{-1}, (6,3) \in R^{-1}, (8,4) \in R^{-1}$$

Binary Relations: Matrix Representation

$$A = (a_{1}, a_{2}, a_{3}), B = (b_{1}, b_{2}, b_{3}, b_{4}),$$

$$R = \{(a_{1}, b_{2}), (a_{2}, b_{1}), (a_{3}, b_{1}), (a_{3}, b_{4})\}$$

$$(i, j) \text{th entry is } T \text{ if } a_{i}Rb_{j} : \begin{array}{c} b_{1} & b_{2} & b_{3} & b_{4} \\ a_{1} & F & F & F \\ T & F & F & F \\ T & F & F & T \end{array}$$

$$A = \{2,3,4\}, B = \{2,6,8\}, (x,y) \in R \leftrightarrow x \text{ divides } y.$$

$A \setminus B$	2	6	8
2	T	T	T
3	F	Т	F
4	F	F	Т

Binary Relations: Matrix Representation

R relation from A to B: $R^{-1} = \{(y,x) \in B \times A \mid (x,y) \in R \}$.

$$A = (a_1, a_2, a_3), B = (b_1, b_2, b_3, b_4)$$

$$R = \{(a_1, b_2), (a_2, b_1), (a_3, b_1), (a_3, b_4)\}$$

$$R^{-1} = \{(b_2, a_1), (b_1, a_2), (b_1, a_3), (b_4, a_3)\}$$

The matrix of R^{-1} is the transpose of the matrix of R.

$$\begin{bmatrix} a_i R b_j \colon & a_1 & b_1 & b_2 & b_3 & b_4 \\ a_2 & T & T & F & F \\ a_2 & a_3 & T & F & F \end{bmatrix}$$

$$\begin{bmatrix} b_1 & a_1 & a_2 & a_3 \\ b_1 & F & T & T \\ b_2 & T & F & F \\ b_3 & b_4 & F & F \end{bmatrix}$$

Binary Relations: Composition of Relations

Given R in $A \times B$, and S in $B \times C$, the composition of R and S is a relation on $A \times C$ defined by $R \circ S = \{(a, c) \in A \times C \mid \exists b \in B, aRb \text{ and } bSc\}.$

Example

$$A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$$

$$R = \{(a_1, b_1), (a_1, b_2)\}$$

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

What is $R \circ S$?

$$R \circ S = \{(a_1, c_1), (a_1, c_3), (a_1, c_2)\}$$

$$A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$$

$$R = \{(a_1, b_1), (a_1, b_2)\}$$

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

$$A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$$

$$R = \{(a_1, b_1), (a_1, b_2)\}$$

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

$$R \circ S = \{(a_1, c_1), (a_1, c_3), (a_1, c_2)\}$$

$$A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$$

$$R = \{(a_1, b_1), (a_1, b_2)\}$$

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

$$R \circ S = \{(a_1, c_1), (a_1, c_3), (a_1, c_2)\}$$

$$A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$$

$$R = \{(a_1, b_1), (a_1, b_2)\}$$

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

$$R \circ S = \{(a_1, c_1), (a_1, c_3), (a_1, c_2)\}$$

Reflexivity: Definition

A relation R on a set A is reflexive if every element of A is related to itself: $\forall x \in A, xRx$.

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x = y$: reflexive

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x > y$: not reflexive

What is the reflexivity on the matrix representing *R*?

Drawing Hands (M.C. Escher)

Reflexivity: Graphically

 $A = \{3,4,5,6,7\}, xRy \longleftrightarrow (x - y) \text{ is even}$

R reflexive

Symmetry: Definition

A relation R on a set A is symmetric if $(x,y) \in R$ implies $(y,x) \in R$: $\forall x \in A \ \forall y \in A, xRy \rightarrow yRx$.

Not Symmetric Relationship

E.g.,
$$A = \mathbb{Z}$$
, $xRy \longleftrightarrow x > y$: not symmetric

Symmetric Relationship

E.g.,
$$A = \mathbb{Z}$$
, $xRy \leftrightarrow x = y$: symmetric

Symmetry: Graphically

 $A = \{3,4,5,6,7\}, xRy \longleftrightarrow (x - y) \text{ is even}$

R reflexive

R symmetric

Transitivity: Definition

A relation R on a set A is transitive if $(x,y) \in R$ and $(y,z) \in R$ implies $(x,z) \in R$: $\forall x \forall y \forall z xRy \land yRz \rightarrow xRz$.

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x = y$: transitive

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x > y$: transitive

25

Transitivity: Graphically

 $A = \{3,4,5,6,7\}, xRy \longleftrightarrow (x - y) \text{ is even}$

$$[3] = \{3,5,7\}, [4] = \{4,6\}$$

R reflexive

R symmetric

R transitive

Let's recap...

- Binary relations:
 - Inverse and composition
 - Graphical representation
- Properties:
 - Reflexivity
 - Symmetry
 - Transitivity

Discrete Mathematics MH1812

Topic 8.2 - Relations II Dr. Guo Jian

What's in store...

By the end of this lesson, you should be able to...

- Explain the conditions for an equivalence relation.
- Explain the concept of antisymmetry.

Equivalence Relations: Definition

A relation R on a set A is an equivalence relation if:

- 1. R is reflexive: $\forall x \in A, xRx$
- 2. *R* is symmetric: $\forall x \forall y \ xRy \rightarrow yRx$
- 3. R is transitive: $\forall x \ \forall y \ \forall z \ xRy \ \land \ yRz \rightarrow xRz$

Equivalence class of a in A: $[a] = \{x \in A \mid aRx\}$ for R an equivalence relation.

Equivalence Relations: Equivalence Classes

Partition of a set *A*:

$$A_i \cap A_j = \varphi$$
 whenever $i \neq j$

$$A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6 = A$$

Equivalence classes of A form a partition of A.

Equivalence Relations: Integers mod n

$$a \equiv b \pmod{n} \iff a = qn + b$$

 \equiv (mod n) is an equivalence relation:

- 1. \equiv (mod n) is reflexive: $\forall x \in A, x \equiv x \mod n$
- 2. $\equiv \pmod{n}$ is symmetric: $\forall x \forall y x \equiv y \pmod{n} \rightarrow y \equiv x \pmod{n}$
- 3. $\equiv \pmod{n}$ is transitive: $\forall x \forall y \forall z x \equiv y \pmod{n} \land y \equiv z \pmod{n} \rightarrow x \equiv z \pmod{n}$

Equivalence Relations: Integers mod n

Equivalence class of $[0] = \{0, n, 2n, 3n, ..., -n, -2n, -3n...\}$

Equivalence class of $[1] = \{1, n + 1, 2n + 1, 3n + 1, ..., -n + 1, -2n + 1...\}$

Example: Integers mod 4

Integers mod n can be represented as elements between 0 and n-1: $\{0,1,2,...,n-1\}$

Antisymmetry: Definition

A relation R on a set A is antisymmetric if $(x,y) \in R$ and $(y,x) \in R$ implies x = y: $\forall x \ \forall y \ xRy \ \land yRx \rightarrow x = y$.

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x = y$: antisymmetric

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x \ge y$: antisymmetric

 $BRC \leftrightarrow B \subseteq C$: antisymmetric

Antisymmetry: Graphically

$$A = \{3,4,5,6,7\}, xRy \longleftrightarrow (x - y) \text{ is even}$$

$$[3] = \{3,5,7\}, [4] = \{4,6\}$$

R reflexive

R symmetric

R transitive

R is not antisymmetric

Let's recap...

- Equivalence relations: equivalence class
- Partial order: antisymmetry

Discrete Mathematics MH1812

Topic 8.3 - Relations III Dr. Guo Jian

What's in store...

By the end of this lesson, you should be able to...

- Explain the concept of partial order.
- Explain the three properties of transitive closure.
- Explain the concept of non-binary relations.
- Explain the different operations on relations.

Partial Order: Definition

R is a partial order on *A* if *R* is reflexive, antisymmetric and transitive.

$$A = \mathbb{Z}, xRy \longleftrightarrow x \le y$$

Notion of partial order is useful for scheduling problems across possibly different domains.

Transitive Closure: What is Closure?

Let A be a set and R a binary relation on A.

The closure of a relation $R \subseteq A \times A$ with respect to a property P (P being reflexive, symmetric, or transitive) is the relation obtained by adding the minimum number of ordered pairs to R to obtain property P.

Transitive Closure: Definition

Let A be a set and R a binary relation on A. The transitive closure of R is the binary relation R^{t} on A that satisfies the following three properties:

- 1. R^t is transitive
- 2. $R \subseteq R^{t}$
- 3. If S is any other transitive relation that contains R then $R^{t} \subseteq S$

Transitive Closure: Example

Let $A = \{0,1,2,3\}$

Consider a relation $R = \{(0,1), (1,2), (2,3)\}$ on A

S is transitive and $R \subseteq S$ Thus $R^t \subseteq S$

$$R^{t} = \{(0,1),(1,2),(2,3),(0,2),(0,3),(1,3)\}$$

Transitive Closure: Construction

- Let A be a set and R a binary relation on A.
- Start with R, and do the following: $\forall x, y, z \in A$, if $(xRy \land yRz \land x\not Rz)$ then add (x,z).
- Repeat until the obtained relation is transitive (will stop if |A| is finite).
- The ordering in which the edges are added does not matter.

Beyond Binary Relations: Non-binary Relations (Example)

 $S = \{s_1, s_2\}$ students, $T = \{c_1, c_2, c_3\}$ courses

 $G = \{A, B, C\}$ grades, (s_1, c_1, A) , (s_1, c_3, B) , (s_2, c_2, B)

Beyond Binary Relations: n-ary Relations

Let $A_1, ..., A_n$ be sets. A *n*-ary relation R is a subset of $A_1 \times \cdots \times A_n$. $a_1, ..., a_n$ are related if $(a_1, ..., a_n) \in R$.

 $S = \{s_1, s_2\}$ students, $T = \{c_1, c_2, c_3\}$ courses

 $G = \{A, B, C\}$ grades, $(s_1, c_1, A), (s_1, c_3, B), (s_2, c_2, B)$

Operations of Relations: Complement of a Relation

Let $R \subseteq A_1 \times \cdots \times A_n$ be a relation.

 $\overline{R} = (A_1 \times \cdots \times A_n - R)$ is the relational complement of R, i.e., $(a_1, a_2, a_3, ..., a_n) \notin R$.

$$A = \{1,2\}, B = \{3,5\} \text{ and } R = \{(1,3), (2,5)\}$$

Then
$$\overline{R} = A \times B - R = \{(1,5), (2,3)\}$$

Operations of Relations: Union of Relations

Let $R, S \subseteq A_1 \times \cdots \times A_n$ be two relations. $R \cup S$ is the relation such that $(a_1, a_2, a_3, ..., a_n) \in R \cup S \Leftrightarrow (a_1, a_2, a_3, ..., a_n) \in R \vee (a_1, a_2, a_3, ..., a_n) \in S$.

Example

 $A = \{1,2,3\}, B = \{1,2,3,4\} \text{ and } R = \{(1,1), (2,2), (3,3)\}$

 $S = \{(1,1), (1,2), (1,3), (1,4)\}$

Then $R \cup S = \{(1,1), (2,2), (3,3), (1,2), (1,3), (1,4)\}$

Operations of Relations: Intersection of Relations

Let $R, S \subseteq A_1 \times \cdots \times A_n$ be two relations. $R \cap S$ is the relation such that $(a_1, a_2, a_3, ..., a_n) \in R \cap S \Leftrightarrow (a_1, a_2, a_3, ..., a_n) \in R \wedge (a_1, a_2, a_3, ..., a_n) \in S$.

Example

$$A = \{1,2,3\}, B = \{1,2,3,4\} \text{ and } R = \{(1,1), (2,2), (3,3)\}$$

$$S = \{(1,1), (1,2), (1,3), (1,4)\}$$

Then
$$R \cap S = \{(1,1)\}$$

Operations of Relations: Example

$$T = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x + y \le 3 \}$$

Operations of Relations: Example

$$T = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x+y \le 3 \}$$
$$S = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x-y \le 2 \}$$

Operations of Relations: Example

$$T = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x+y \le 3 \}$$

$$S = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x-y \le 2 \}$$

$$T \cap S = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid (x+y \le 3) \land (x-y \le 2) \}$$

Let's recap...

- Partial Order
- Transitive Closure
- Beyond binary relations
- Operations on relations
 - Complement
 - Union
 - Intersection

