Gdevops 全球敏捷运维峰会

Oracle x86化企业建设方案

演讲人:罗春

Content/内容

- 1 数据库基础架构
- 2 高可用数据库容灾方案
- 3 海量数据库自动化运维

影响数据库性能的三要素

计算

数据运算能力-CPU主频和核数决定

网络

数据从存储介质跑到CPU的关键路径—网络传输、南北桥桥接,CPU Cache

IO性能

IO设备自身的性能极限--*IO延迟与IO吞吐量。*

三管齐下,极致提升数据库整体性能.

革命性的高速Flash IO设备

- 专利技术的磨损均衡(wear-leveling)算法
- 容量超配(Over Provisioning)
 - Reserve space for handling individual cell/LEB death
 - Reserve space is adjustable if higher write performance is needed
- 更高密度的ECC算法进一步提升数据的可靠性以及设备的使用寿命
- N+1 存储块级的数据保护 (think RAID protection on card)
- 意外掉电情况下数据完全不丢失(OEM认证)

Heat Sink/FPGA
Parity Chip

1 Failed block.

2 Data from failed block will be rebuilt from parity.

Data
USER DATA

PARITY

Block
Parity

NAND Flash Chips

注: 所列性能参数来自一线品牌厂商阶段性公开数据, 仅供参考

数据传输架构的变革

GE 8G FC **10GE** 56G FDR

关键业务支撑 - x86分布式集群基础架构

侧 服务器x86化

- 标准x86 Linux服务器
- 高性价比

分布式存储

- x86分布式存储
- 消除单点故障与性能瓶颈

高性能技术

- IB网络,闪存IO
- 基于RDMA的软件技术

全冗余架构

- 计算,存储,网络冗余
- 跨机器的分布式镜像

分布式存储池-x86数据库存储资源池

资源池: 类似于SAN的RAID组概念,与RAID相比,其优点是:

存储池化:存储节点形成存储池,按需划分存储资源

》 存储共享:到lun级别的存储资源共享,允许lun在多个数据库间切换使用

券商手机APP-上亿级交易资产查询

实时资产

市场行情

委托交易

股票资讯

券商手机APP-上亿级交易资产查询

数据库压力

- 15000查询SQL/秒
- 50000 IO请求/秒
- CPU利用率40%

业务压力

- 1000万涨乐乐友
- 交易数据实时同步
- 高峰期段1.2亿次 乐友资产刷新

小型机存储架构 核心交易库

X86分布式集群 同步查询库

Content/内容

- 1 数据库基础架构
- 2 高可用数据库容灾方案
- 3 海量数据库自动化运维

x86化面临的备份问题

存在数据丢失风险

丢失最近一次备份之后的数据

备份窗口紧张 避开业务高峰 错开使用设备

• 恢复有效性无法验证

介质可靠性/恢复操作过程/恢复的时间

• 备份系统的鸡肋

日常情况下备份起不到作用

数据库与虚拟化存储结合的CDP技术

100%可用的数据库持续备份

- 基于数据库复制技术(Oracle DataGuard/MySQL Replication)
- 结合快照,随时保证数据有完整的备份

数据库的时光轴

存储层定时快照技术+数据库日志

回溯查询

存储层定时快照技术结合指定时间点日志应用

准生产测试环境准备的苦恼

数据中心数据层双活定义

双中心同时读写 真正意义的双活

故障无干预 平滑切换,自动接管 性能可接受 支持业务性能激增

分布式集群同城异地读写双活架构

Content/内容

- 1 数据库基础架构
- 2 高可用数据库容灾方案
- 3 海量数据库自动化运维

海量数据库管理运维的困境

随着数据库x86化的不断建设,数据库规模越来越大带给管理人员的运维成本随之增加,日常DBA经常面临各种问题

数据库一键式自动巡检

集成一体化装机

```
WOQU Cobbler System | wogutech.com
(Incal)
Memory-os
Hyper-RHEL72-x86_64
QBackup-RHEL72-x86_64
MySQL-5.6-rhe166-x86 64
Oracle-10.2.0.5-rhel5.8-x86 64
Oracle-11.1.0.7-rhel6.6-x86 64
Oracle-11.2.0.3-rhel6.6-x86 64
Oracle-11.2.0.4-rhel6.6-x86_64
Oracle-12C-rhel6.8-x86 64
```

自定义屏幕性能仪表盘

☆ 实例首页 > 仪表盘 > 核心库性能仪表盘

添加监控图表

Oracle SCN HeadRoom监控分析

数据库性能听诊器

	核心一号库		能仪表	核心二号库		Phy		核心三号库		
Redo Size	Execute Count db block changes Redo Size Parse Count(Total) Parse Count(Hard) User Commits Redo writes	: 2919 :3906 : 2345 : 5,34 : 234 : 23 : 458 : 324 : 30	db file sea db file sca	Logical Reads Execute Count db block changes Redo Size Parse Count(Total) Parse Count(Hard) User Commits Redo writes ConCurrent trans	: 3/	34 at:1	db t	Redo writes	: 2343 :3094 : 3498 : 219 : 156 : 43 : 254 : 234 : 12	, q 7
Redo writes ConCurrent RAC HeartB Global cache	TOP EVENT library cache lock shared pool latch	10 8 2 : 2ms : 4ms	9	TOP EVENT log file sync shared pool latch enq : row content db file searead time	15 9 1 : 1 ms	.3		TOP EVENT library cache lock shared pool latch enq: index content db file searead time db file scaread time	10 8 2 : 3ms : 5ms	8
	log file par write time log file sync time	e :3ms :5ms		log file par write tim log file sync time	e :2ms :1ms			log file par write tim log file sync time	e :2ms :6ms	

Gdevops

全球敏捷运维峰会

THANK YOU!