1 Jonction P-N

On considère la distribution volumique de charges $\rho(M) = \rho(x)$ suivante, où $e_1 = 1 \,\text{mm}$, $e_2 = 0.5 \,\text{mm}$ et $\rho_1 = 1 \times 10^{-6} \,\text{C} \cdot \text{m}^{-3}$. Le champ électrique est supposé nul à l'extérieur des plaques, et la distribution, supposée infinie dans toutes les directions excepté selon x.

Figure 1: Distribution volumique de charges.

- 1. Trouver l'expression de ρ_2 permettant d'assurer la neutralité électrique de l'ensemble.
- 2. Déterminer \vec{E} à l'intérieur de la distribution de charge.
- 3. En déduire le champ de potentiel V, en prenant pour convention $V(x=-e_1)=0$. Tracer les fonctions $f(x)=\|\vec{E}\|$ et g(x)=V(x).

2 Atome de CO_2 naïf

Figure 2: Modèle électrostatique na \ddot{i} f d'un atome de CO_2

On donne OA = OB = a, et
$$(1 + \epsilon)^m = 1 + m\epsilon + \frac{m(m-1)}{2}\epsilon^2$$
.

Pour M loin de la molécule, déterminer V(M) puis $\vec{E}(M)$. Ce modèle vous paraît-il pertinent?

3 Question de cours

Atome de Bohr: ordre de grandeur de l'énergie d'ionisation avec un modèle classique ? Définition du moment dipolaire électrique, comportement d'un dipole dans un champ électrique ?