BLM2041 Signals and Systems

Syllabus

The Instructors:

Prof. Dr. Nizamettin Aydın

naydin@yildiz.edu.tr

Asist. Prof. Dr. Ferkan Yilmaz

ferkan@yildiz.edu.tr

Course Details

Course Code : BLM 2041

 Course Name: Signals and Systems (Sinyaller ve Sistemler)

Instructor : Prof. Dr. Nizamettin Aydın
Asist. Prof. Dr. Ferkan Yilmaz

Assesment

Method	Quantity	(%)
Quiz	_	-
Homework	-	-
Take-home Exam	_	_
Midterm Exam(s)	2	60
Final Exam	1	40

By University Rule:

Your average < 40 \rightarrow FF

Assesment

Method	Quantity	(%)
Quiz	-	-
Homework	_	-
Take-home Exam	1	20
Midterm Exam(s)	2	40
Final Exam	1	40

By University Rule:

Your average < 40 \rightarrow FF

Course Outline

1. Introduction.

Mathematical Representation of Signals. Mathematical Representation of Systems.

2. Sinusoids.

Review of Sine and Cosine Functions. Sinusoidal Signals. Sampling and Plotting Sinusoids. Complex Exponentials and Phasors. Phasor Addition. Time Signals.

3. Spectrum Representation.

The Spectrum of a Sum of Sinusoids. Beat Notes. Periodic Waveforms. Fourier Series Analysis and Synthesis. Time-Frequency Spectrum. Frequency Modulation.

4. Sampling and Aliasing.

Sampling. Spectrum View of Sampling and Reconstruction. Discrete-to-Continuous Conversion. The Sampling Theorem.

5. Continuous-Time LTI Systems and the Convolution Integral.

Establishing a General Input-Output Relationship. Working with the Convolution Integral.

6. Discrete-Time LTI Systems and the Convolution Sum.

Specializing the Input/Output Relationship. Working with the convolution Sum.

7. LTI System Differential and Difference Equations in the Time Domain.

Obtaining the differential/difference equations for the input-output relations of systems. Solution of differential and discrete euations in the time domain.

Course Outline

8. The Fourier Transform for Continuous-Time Signals and Systems.

Continuous-Time Aperiodic Signals. Continuous-Time Fourier Transform. Properties of Continuous-Time Fourier Transform.

9. The Discrete Time Fourier Transform for Discrete-Time Signals.

Discrete-Time Aperiodic Signals. Discrete-Time Fourier Transform. Properties of Discrete-Time Fourier Transform

10. The Laplace Transform for Continuous Time.

Laplace Transform. Common Laplace Transforms. Properties Of the Laplace Transform. Inverse Laplace Transform. Poles and Zeros in the s-plane.

11. The Z Transform for Discrete Time.

Z Transform. Common Z Transforms. Properties Of the Z Transform. Inverse Z Transform. Poles and Zeros in the z-plane.

COURSE OBJECTIVES

• Students will be able to:

• Understand mathematical descriptions of Signals and Systems

- Express those descriptions as computer implementations (MATLAB or OCTAVE)
 - Yıldız Technical University provides MATLAB License.

Course Objectives (In details)

Academic knowledge

- Students will be able to:
 - Understand and develop simple mathematical models for representing signals and systems
 - Understand the relationship between time and frequency domain models of dynamic systems
 - Convert time to frequency-domain models and vice versa
 - Understand the relationship between continuous and discrete-time models

Intellectual skills

- Students will be able to:
 - Build a mathematical model from a real-life problem related to signals and systems
 - Interpret results achieved by mathematical solutions

Practical skills

- Students will be able to:
 - Express models and methods as computer implementations (MATLAB or OCTAVE)
 - Yıldız Technical University provides MATLAB License.
 - Apply Matlab/Octave for analysis and simulation of continuous and discrete time systems
 - Analyse mathematical solutions in the context of the original problem

Transferable skills

- Students will be able to:
 - Choose appropriate approach in problem solving situation
 - Present and communicate formalised results and conclusions

Main course book

Signal Processing First

by James H McClellan, Ronald W. Schaffer and Mark A. Yoder.

Published by <u>Prentice</u> <u>Hall</u>.

Isbn: 0-13-120265-0

Some Other Books

- by Mark Wickert

Wickert, Mark. Signals and Systems for Dummies. John Wiley & Sons, 2013.

Some Other Books

by Alan. V. Oppenheim and Alan S. Willsky

Oppenheim, Alan V., Alan S. Willsky, and Syed Hamid Nawab. "Signals and systems 2nd ed." *New Jersey: Prentice Hall*(1997).

Some Other Books

- Online e-book by Richard Baraniuk

https://cnx.org/contents/d2CEAGW5

Rules of the Conduct

- No eating /drinking in class
 - except water
- Cell phones must be kept outside of class or switched-off during class
 - If your cell-phone rings during class or you use it in any way, you will be asked to leave and counted as unexcused absent.
- No web surfing and/or unrelated use of computers,
 - when computers are used in class or lab.

Rules of the Conduct

- You are responsible for checking the class web page often for announcements.
- Academic dishonesty and cheating will not be tolerated and will be dealt with according to university rules and regulations
 - Presenting any work, or a portion thereof, that does not belong to you is considered academic dishonesty.
- University rules and regulations:
 - http://www.ogi.yildiz.edu.tr/category.php?id=17
 - https://www.yok.gov.tr/content/view/544/230/lang,tr TR/

Attendance Policy

- The requirement for attendance is 70%.
 - Hospital reports are not accepted to fulfill the requirement for attendance.

- The students, who fail to fulfill the attendance requirement, will be excluded from the final exams and the grade of F0 will be given.
- Absent more than 12 hours \rightarrow F0

Seeing the Big Picture

