

COMP4434 Big Data Analytics

Lecture 3 Logistic Regression Classifier, F1 Score, & Overfitting

HUANG Xiao

xiaohuang@comp.polyu.edu.hk

Structured Data: Tabular Data

Instance/tuple

Sepal		Petal	
Length	Width	Length	Width
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2
5.8	4.0	1.2	0.2
5.6	3.0	4.5	1.5
5.8	2.7	4.1	1.0
6.2	2.2	4.5	1.5
5.6	2.5	3.9	1.1
5.9	3.2	4.8	1.8
7.1	3.0	5.9	2.1
6.3	2.9	5.6	1.8
6.5	3.0	5.8	2.2
7.6	3.0	6.6	2.1

attribute/feature

Tabular Data with Labels

- Attributes of a table $A_1, A_2, ..., A_d$
 - We also call "attribute" as "feature"
 - Number of features
 d represents the
 dimensionality
 - A data object x is represented as $(x_1, x_2, ..., x_d)$
- In some datasets, each data object has a label

Sepal		Petal		Class Labal
Length	Width	Length	Width	Class Label
4.9	3.0	1.4	0.2	Setosa
4.7	3.2	1.3	0.2	Setosa
4.6	3.1	1.5	0.2	Setosa
5.0	3.6	1.4	0.2	Setosa
5.8	4.0	1.2	0.2	Setosa
5.6	3.0	4.5	1.5	Versicolor
5.8	2.7	4.1	1.0	Versicolor
6.2	2.2	4.5	1.5	Versicolor
5.6	2.5	3.9	1.1	Versicolor
5.9	3.2	4.8	1.8	Versicolor
7.1	3.0	5.9	2.1	Virginica
6.3	2.9	5.6	1.8	Virginica
6.5	3.0	5.8	2.2	Virginica
7.6	3.0	6.6	2.1	Virginica
4.9	2.5	4.5	1.7	Virginica

Iris Versicolor

Iris Setosa

Iris Virginica

COMP4434

Classification (Binary vs Multi-class)

- Binary Classification
 - Email: Spam / Not Spam
 - Tumor: Malignant / Benign
 - Covid-19: Positive / Negative
 - $y \in \{0,1\}$
- Multi-class Classification
 - Email auto-tagging: Spam / Work / Personal
 - Credit Rating: Poor / Okay / Trust
 - Handwriting number: 0, 1, 2, 3, 4, ...
 - $y \in \{0,1,2,...\}$

Classification by Linear Regression

- Training Examples
 - both are supervised learning (x, y)
 - Linear Regression: y is a real-value,
 e.g., salary
- What we need is discrete label:
 - 0: malignant; 1: benign
- Can we use Linear Regression Model to do classification? Any disadvantages?
 - Yes, we can, but not good
 - $\bullet \quad h_{\theta}(x) = \theta_0 + \theta_1 x$

Classification by Linear Regression - Example

 A linear regression model classifies tumors as malignant (1) or benign(0) given their size

 The linear regression model minimizes the distances between the points and the hyperplane (line for single feature)

The threshold is set as 0.5

Classification by Linear Regression - Example

- After introducing a few more malignant tumor cases, the regression line shifts and a threshold of 0.5 no longer separates the classes
- Conclusion: Linear regression is sensitive to imbalance data for classification problem.

Logistic Regression

- New model outputs probabilities
- It works better in both cases using 0.5 as a threshold
- The inclusion of additional points does not affect the estimated curve too much

Hypothesis Model

• Linear Regression: $-\infty < h_{\theta}(x) < +\infty$ $h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n = \theta^T x$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

- Logistic Regression: $0 < h_{\theta}(x) < 1$
 - $\bullet \ h_{\theta}(x) = g(\theta^T x)$
 - logistic/sigmoid function $g(z) = \frac{1}{1 + e^{-z}}$
 - $\bullet \quad h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$
 - https://www.wolframalpha.com/ y = 1/(1+e^-x), x from -6 to 6

Representation

- $h_{\theta}(x)$ represents the estimated **probability** that y = 1 on input x
- $h_{\theta}(x) = P\{y = 1 | x, \theta\}$ means probability of y = 1, given x, under parameter values θ
- $P\{y = 0 | x, \theta\} = 1 h_{\theta}(x)$
- Example

 - $h_{\theta}(x) = 0.8$: this email x has 80% chance of being spam

Further Understanding

•
$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} \in (0,1)$$

- Predict y = 1 when $h_{\theta}(x) \ge 0.5$, i.e., $\theta^T x \ge 0$
- Predict y = 0 when $\theta^T x < 0$

12

Decision Boundary

- $\theta^T x = 0$ is the decision boundary, e.g.,
 - Assume $h_{\theta}(x) = g(-3 + x_1 + x_2)$
 - Decision boundary: $-3 + x_1 + x_2 = 0$, i.e., $x_1 + x_2 = 3$
 - Predict y = 1 when $-3 + x_1 + x_2 \ge 0$, i.e., $x_1 + x_2 \ge 3$ (red)

Other Decision Boundary

• Given
$$h_{\theta}(x) = g(\theta^T x) = g(\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2) = g(-1 + x_1^2 + x_2^2)$$

• If $h_{\theta}(x) = g(-1 + x_1^2 + x_2^2)$, draw the region that predicts y = 1 in the (x_1, x_2) plane

Non-Linear Decision Boundary

- Decision boundary $\theta^T x = 0 \rightarrow x_1^2 + x_2^2 = 1$
- Predict y = 1 when $x_1^2 + x_2^2 \ge 1$
- The region of y = 1 is outside the circle

 x_2

Cost Function of Linear Regression

• Cost Function
$$J(\theta) = \min_{\theta_0, \theta_1, \dots} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- Linear Regression
 - h_{θ} is **linear**
 - $J(\theta)$ is convex
 - $J(\theta)$ has a single minimum

Regression Metrics

MSE: Mean Square Error

$$\frac{1}{n}\sum_{i=1}^{n}(\hat{y}_{t}-y_{t})^{2}$$

MAE: Mean Absolute Error

$$\frac{1}{n}\sum_{i=1}^{n}|\hat{y}_t-y_t|$$

MAPE (Mean Absolute Percentage Error)

$$\frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_t - y_t}{y_t} \right|$$

Apply MSE to Logistic Regression

- We can apply the same cost function for logistic regression
- Problems
 - $J(\theta)$ would become non-convex. Why?

https://towardsdatascience.com/whynot-mse-as-a-loss-function-for-logisticregression-589816b5e03c

- It has multiple local minimums
- Gradient descent will be stuck in a local minimum

Logistic Loss

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & y = 1\\ -\log(1 - h_{\theta}(x)) & y = 0 \end{cases}$$

Logistic Loss - Heavy Penalty

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & y = 1\\ -\log(1 - h_{\theta}(x)) & y = 0 \end{cases}$$

- $Cost(h_{\theta}(x), y) \rightarrow 0$
 - When $h_{\theta}(x) \rightarrow 1$, i.e., predict y = 1
 - Good predication, low cost
- $Cost(h_{\theta}(x), y) \rightarrow \infty$
 - When $h_{\theta}(x) \to 0$, i.e., predict y = 0
 - Bad predication!
 - High cost represents penalty

Understanding $Cost(h_{\theta}(x), y = \mathbf{0})$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & y = 1\\ -\log(1 - h_{\theta}(x)) & y = 0 \end{cases}$$

- $Cost(h_{\theta}(x), y) \rightarrow 0$
 - When $h_{\theta}(x) \to 0$, i.e., predict y = 0
 - Good predication, low cost
- $Cost(h_{\theta}(x), y) \rightarrow \infty$
 - When $h_{\theta}(x) \rightarrow 1$, i.e., predict y = 1
 - Bad predication!
 - High cost represents penalty

Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & y = 1\\ -\log(1 - h_{\theta}(x)) & y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = -y \log h_{\theta}(x) - (1 - y) \log(1 - h_{\theta}(x))$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Gradient Descent Algorithm

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Repeat until convergence {
$$\theta_j = \theta_j - \alpha \frac{\partial J(\theta_0, \theta_1, \cdots)}{\partial \theta_j}$$
 }

$$\frac{\partial J(\theta_0, \theta_1, \cdots)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

Looks identical to linear regression!

23 COMP4434

Classification Metrics

- True Positives (TP): the actual class of the data point was True and the predicted is also True
- True Negatives (TN): the actual class of the data point was False and the predicted is also False
- False Positives (FP): the actual class of the data point was False and the predicted is True
- False Negatives (FN): the actual class of the data point was True and the predicted is False

		Actual	
		True	False
cted	True	TP	FP
Predicted	False	FN	TN

Accuracy

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

- A good measure when the target variable classes in the data are nearly balanced
 - 60% classes in our fruit images are apples and 40% are oranges
- NEVER used as a measure when the target variable classes in the data are a majority of one class (Why?)

		Actual	
		True	False
cted	True	TP	FP
Predicted	False	FN	TN

Limitation of Accuracy

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

- Example: In daily life, 5 people in 100 people have cancer.
- Consider a fake cancer detection model only outputs 'health', its accuracy can achieve 95%.
- Although its accuracy is good, is it a good model? NO.
- Observation: Accuracy performs bad when the target variable classes in the data are a majority of one class.

Precision and Recall

$$Precision = \frac{TP}{TP + FP}$$

 Precision is about being precise; even if we managed to capture only one True case, and we captured it correctly, then we are 100% precise

		Actual	
		True	False
cted	True	TP	FP
Predicted	False	FN	TN

D 11	TP
Recall =	$\frac{1}{\text{TP} + \text{FN}}$

 Recall is not so much about capturing cases correctly but more about capturing all True cases

		Actual	
		True	False
Predicted	True	TP	FP
Pred	False	FN	TN

F1 Score

$$F1 Score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

- A single score that represents both Precision and Recall
- F1 Score is the harmonic mean of Precision and Recall
- Different with arithmetic mean, harmonic mean is closer to the smaller number as compared to the larger number
- If Precision is 0.01 and Recall is 0.99, then arithmetic mean is 0.5 and harmonic mean is 0.0198
- Therefore, F1 score of the previous cancer detection model will be 0 ("positive" refers to having cancer)

Exercise

Assume that there are 1,000 documents in total. Among them, 700 documents are related to big data analysis. You build a model to identify documents related to big data analysis. As a result, your model returns 800 documents, but only 550 of them are relevant to big data analysis. What is the recall of your model? What is the F1 score of your model?

- TP = 550. FP = 250. FN = 150
- Precision = 550/800.
- Recall = 550/700.
- F1 = (2*550/800*550/700)/(550/800+550/700) = 0.7333333333.

Model Evaluation

- When training the model, we can not use test set
- If we have several models, e.g., linear regression and quadratic regression, how could we evaluate them?

Underfitting and Overfitting

Polynomial Regression with Degree = 4:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

nttps://scikit-learn.org/stable/auto_examples/moder_selection/plot_undernitting_overnitting_ntini

Underfitting and Overfitting

Two classes separated by an elliptical arc

Underfitting

a model does not fit the data well enough

Overfitting

a model is too closely fit to a limited set of data and lose generalization ability

Overfitting

- If we have too many features, the hypothesis may fit the training set very well, but fail to generalize to new examples (high variance)
- More broadly, variance also represents how similar the results from a model will be, if it were fed different data from the same process
- The bias error is from erroneous assumptions in the learning algorithm
- The variance error is from sensitivity to small fluctuations in the training set

Example in Logistic Regression

Address Overfitting

Feature Reduction

- Manual selecting which features to keep (by domain knowledge)
- Okay esp. when some features are really useless

Regularization

- Keep all features, but reduce their influence by giving smaller values to the parameter θ_i
- Okay when many features, each of which contributes a bit to predicting y

Regularized Linear Regression

Linear Regression

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$J(\theta_0, \theta_1, \dots) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Regularized Linear Regression

$$J(\theta_0, \theta_1, \dots) = \frac{1}{2m} \left[\sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^n \theta_j^2 \right]$$

 The value of the cost function is NOT equivalent to prediction error. Our goal is to make prediction errors on test data small

Understanding

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

- Penalized term: penalize large parameter values θ_i , $1 \le j \le n$
- Parameter λ : control the tradeoff
 - Too small: degenerate to linear regression (overfitting)
 - Too large: penalize all features except θ_0 , resulting in $h_{\theta}(x) = \theta_0$ (a horizontal line! underfitting)

Regularized Gradient Descent

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^n \theta_j^2 \right]$$

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \left(\sum_{i=1}^m \left(h_{\theta} (x^{(i)}) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right)$$

Repeat until convergence { $\theta_j = \theta_j \left(1 - \lambda \frac{\alpha}{m} \right) - \frac{\alpha}{m} \sum_{i=1}^m \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$

Types of Regularization Regression

■ $\|\theta\|_2$: Ridge Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

■ $\|\theta\|_1$: LASSO Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} |\theta_{j}| \right]$$

LASSO regression results in sparse solutions – vector with more zero coordinates. Good for high-dimensional problems – don't have to store all coordinates!

Supplement Material: Visual for Ridge Vs. LASSO Regression https://www.youtube.com/watch?v=Xm2C_gTAl8c

Regularized Logistic Regression

Logistic Regression

$$h_{\theta}(x) = g(\theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n})$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Regularized Logistic Regression

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Regularized Gradient Descent

$$h_{\theta}(x) = g(\theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n}) = \frac{1}{1 + e^{-(\theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n})}}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

$$\frac{\partial J(\theta)}{\partial \theta_{j}} = \frac{1}{m} \left(\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} + \lambda \theta_{j} \right)$$

Repeat until convergence {
$$\theta_j = \theta_j \left(1 - \lambda \frac{\alpha}{m}\right) - \frac{\alpha}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) x_j^{(i)}$$
 }