A Strong Separation for Adversarially Robust ℓ_0 Estimation for Linear Sketches

Elena Gribelyuk¹, Honghao Lin², David P. Woodruff², Huacheng Yu¹, Samson Zhou³

¹ Princeton University, ² Carnegie Mellon University, ³ Texas A&M University

Standard Streaming Model

- Input: Elements of a stream π, which arrive sequentially one at a time (worst-case, fixed in advance).
- Output: At the <u>end</u> of the stream, A outputs an approximation of a given function of π.
- Goal: A should use space sublinear in the size m
 of the input stream π.

Adversarially Robust Streaming

- **Input:** Elements of a stream π , which arrive sequentially and *adversarially*.
- Output: At each time t, A receives an update u_t, updates its internal state, and returns a current estimate r_t, which is recorded by the adversary.

"Future updates may depend on previous updates"

 Question: can we still design algorithms that use sublinear space?

Distinct Elements Estimation

- Given a stream π of m elements from [n], let f_i denote frequency of element i.
- Let F_0 be the number of distinct elements: $F_0 = |\{i : f_i \neq 0\}|$
- Goal: Given a stream π of m elements from [n] and an accuracy parameter ε , output a $(1 + \varepsilon)$ -approximation to F_0
- $\Theta(\frac{1}{c^2} + \log n)$ space in standard streaming model.
 - Must use randomization to achieve sublinear space!
 - If the stream updates are adaptive, the adversary may (over time) learn something about the internal randomness.

Main Result

<u>Theorem 1:</u> There is a constant $\varepsilon = \Omega(1)$ so that any linear sketch giving a $(1 + \varepsilon)$ -approximation to F_0 on an adversarial insertion-deletion stream that uses $r < n^c$ rows, for a constant c > 0, can be broken in $\tilde{O}(r^8)$ queries.

Overview of our Approach

Construct adaptive attack for the gap ℓ_0 norm problem, defined below.

<u>Definition (Gap ℓ_0 Norm Promise Problem):</u> Given input $x \in \mathbb{Z}^n$, decide whether $|x|_0 \ge \beta n$ or $|x|_0 \le \alpha n$, for constants $0 < \alpha < \beta < 1$. If neither holds, return 0/1 arbitrarily.

High-level intuition:

- \triangleright For query x, A will observe Ax.
- Some coordinates of the input vector are significant, i.e., learned well by the sketching matrix A, but most of them are not...
 - \triangleright Ex. If sketching matrix A has a row e_i , A will observe $\langle e_i, x \rangle = x_i$ exactly.

Definition (significant coordinate):

Coordinate i is *significant* if there exists $y \in \mathbb{R}^r$ such that

$$(\operatorname{FRAC}(y^{\mathsf{T}}A)_i)^2 \ge \frac{1}{s} \sum (\operatorname{FRAC}(y^{\mathsf{T}}A)_j)^2$$

• WLOG, pre-process A to obtain a new matrix A', which separates the significant coordinates (sparse part) and insignificant coordinates (dense part).

$$A' = \begin{bmatrix} S \\ D \end{bmatrix}$$

Attack Outline:

- 1. Iteratively identify the significant coordinates and set them to zero in all future queries. Our attack algorithm is inspired by the *interactive* fingerprinting code problem (defined below).
- 2. After we have learned all significant coordinates, the query algorithm must rely on the other coordinates, for which the sketch *Ax* only has "small" information.
- 3. Finally, we design a hard distribution family \mathcal{D} over [-R, ..., R] for the dense part, such that
 - o For $D_p \in \mathcal{D}$ with $p \in [\alpha, \beta]$, we have $\Pr_{X \sim D_p} [X = 0] = p$
 - For any $q, p \in [a, b]$, the total variation distance between Dx_p and Dx_q is small, i.e., $\frac{1}{\text{poly}(n)}$.

Interactive Fingerprinting Code

- An algorithm P selects a secret set S ⊂
 [N], |S| = n of coordinates unknown to the fingerprinting code F
- \mathcal{F} must identify S by making adaptive queries $c^t \in \{0, 1\}^N$
- For each query c^t , \mathcal{P} must distinguish between the case that $c^t = 0^n$ versus $c^t = 1^n$.
- BUT: \mathcal{P} can only observe c_i^t for $i \in S$.
- There exists an interactive fingerprinting code with length $\tilde{O}(n^2)$ [SteinkeUllman15]

Conclusions and Future Work

- We also provide efficient poly(r) length adaptive attacks against linear sketches over F_p and R.
- Open question: lower bounds against general sketches?