UC Berkeley Electrical Engineering & Computer Sciences



# You're invited to a special event

Considering a career in VLSI, chip design, circuit design, or computer architecture?

Join Apple and UC Berkeley EECS faculty for a special presentation about career paths in these exciting fields!

Afterwards, network with Apple engineers and UC Berkeley over burritos and boba.

#### **New Silicon Initiative Fall Kickoff**

Friday, September 5, 2025 11:00 a.m. – 1:00 p.m. PT Banatao Auditorium

Check-in begins at 10:45 a.m. PT

Register by scanning or clicking the QR code.





#### **Announcements**

- New Zoom link: <u>cs61c.org/fa25/lecture-zoom</u>
- Waiting on dept word about class expansion (+CEs); I'm hopeful
- Planning to enroll but need Ed access? forms.gle/Qv2riacbtKCp2cZy6
- Discussion section format
  - On the fence about Regular vs. Bridge vs. Video discussion? Choose Regular/Bridge to be assigned a time that works for you.
  - Fill out welcome survey by Friday (today) 11:59pm to get assigned a regular time (if applicable). All other students default to video.
  - Can switch section times/formats until Add/Drop deadline (Week 4)
- 61C Scholars Pilot Program (self-identify on welcome survey)
  - Scholars-specific regular discussion + other activities/socials





# CS61C

Great Ideas
in
Computer Architecture
(a.k.a. Machine Structures)



Teaching Professor
Dan Garcia

# **Number Representation**

Great book ⇒
The Universal History of Numbers
by Georges Ifrah





UC Berkeley cs61c.org



# Digital data not necessarily born Analog...





hof.povray.org
02-Number Representation (4)





#### **Data input: Analog → Digital**

Real world is analog!
To import analog information, we must do two things

- Sample
  - E.g., for a CD, every 44,100ths of a second, we ask a music signal how loud it is.
- Quantize
  - For every one of these samples, we figure out where, on a 16-bit (65,536 tic-mark) "yardstick", it lies.





#### Agenda

# Binary, Decimal, Hex

- Binary, Decimal, Hex
- Integer Representations
- Sign-Magnitude,
   Ones' Complement
- Two's Complement
- Bias Encoding





#### Number vs Numeral

#### **Numeral**

A symbol or name that stands for a number e.g., 4, four, quatro, IV, IIII, ...
...and Digits are symbols that make numerals

#### **Above the abstraction line**

**Abstraction Line** 

Below the abstraction line

#### Number

The "idea" in our minds...there is only ONE of these e.g., the concept of "4"





### Decimal: Base 10 (Ten) #s

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:

$$3271 = 3271_{10} = (3x10^3) + (2x10^2) + (7x10^1) + (1x10^0)$$



### Base 2 (Two) #s, Binary

Digits: 0, 1 (binary digits → bits)

Example: Binary number "1101"

Convert to decimal:

**Ob1101** = 
$$1101_2$$
 =  $(1x2^3) + (1x2^2) + (0x2^1) + (1x2^0)$   
=  $8 + 4 + 0 + 1$   
=  $13$ 

Common binary shorthand: **0b1101** 



## Base 16 (Sixteen) #s, Hexadecimal

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
10, 11, 12, 13, 14, 15

Example: Hexadecimal number "A5"

#### Convert to decimal:

$$0xA5 = A5_{16} = (10x16^{1}) + (5x16^{0})$$
$$= 160 + 5$$
$$= 165$$

"Hex" for short.
Common hex
shorthand: 0xA5





#### **Convert from Decimal to Binary**

E.g., 13 to binary?
Start with the columns



#### Left to right, is (column) ≤ number n?

- If yes, put how many of that column fit in n, subtract col \* that many from n, keep going.
- If not, put 0 and keep going. (and Stop at 0)





## **Convert from Decimal to Hexadecimal**

E.g., 165 to hexadecimal? Start with the columns



| 16 <sup>3</sup> = 4096 | 16 <sup>2</sup> €256 | 16 <sup>1</sup> = 16 | 16º <b>€</b> 1 |
|------------------------|----------------------|----------------------|----------------|
| 0                      | 0                    | 10(A)                | 5              |

0x00A5

0xA5

#### Left to right, is (column) ≤ number n?

- If yes, put how many of that column fit in n, subtract col \* that many from n, keep going.
- If not, put 0 and keep going. (and Stop at 0)





#### **Nibbles and Bytes**

Memorize this table.

- 4 Bits
  - 1 "Nibble"
  - 1 Hex Digit = 16 things
- 8 Bits
  - 1 "Byte"
  - 2 Hex Digits = 256 things

| Dec | Hex | Bin  |
|-----|-----|------|
| 00  | 0   | 0000 |
| 01  | 1   | 0001 |
| 02  | 2   | 0010 |

- Α В
- D
- F



## **Convert Binary** → **Hexadecimal**

Memorize this table.

- Binary  $\rightarrow$  Hex? Easy!
  - Left-pad with 0s
  - (Group into full 4-bit values)
  - Look it up
  - 0b11110
  - → 0b00011110
    - $(\rightarrow 0b0001 1110)$
    - 0x1E
- Hex  $\rightarrow$  Binary? Easy!
  - Just look it up
  - 0x1E 0
    - → 0b00011110
    - → **0b11110** (drop leading 0s)



8

9

В

D

07

08

09

10

11

12

13

14

15

1010

1011 1100

0111

1000

1001

1101 1110







#### Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and see 4 bits/symbol
  - Terrible for arithmetic on paper
- Binary: what computers use
  - To a computer, numbers are always binary
  - Regardless of how number is written:
  - $\circ$  32<sub>ten</sub> == 32<sub>10</sub> == 0x20 == 100000<sub>2</sub> == 0b100000

#### To avoid confusion:

- Decimal: subscript "ten" or prefix (none)
- Hex: subscript "hex" or prefix 0x
- Binary: subscript "two" or prefix 0b





## **Every Base is Base 10...?**





How many

rocks?



#### The computer knows it, too...

(more next time)

```
#include <stdio.h>
int main() {
    const int N = 1234;
    printf("Decimal: %d\n",N);
    printf("Hex: %x\n",N);
    printf("Octal: %o\n",N);
    printf("Literals (not supported by all compilers):\n");
    printf("0x4d2 = %d (hex)\n", 0x4d2);
    printf("0b10011010010 = %d (binary)\n", 0b10011010010);
    printf("02322 = %d (octal, prefix 0 - zero)\n", 0x4d2);
    return 0;
```

```
Output Decimal: 1234
Hex: 4d2
Octal: 2322
Literals (not supported by all compilers):
0x4d2 = 1234 (hex)
0b10011010010 = 1234 (binary)
02322 = 1234 (octal, prefix 0 - zero)
```





### **BIG IDEA: Bits can represent anything!!**

- Logical values? <u>1 bit</u>
  - One possible convention:  $0 \rightarrow False$ ,  $1 \rightarrow True$
- Characters? Several options:
  - A, ..., Z: 26 letters  $\rightarrow$  5 bits (26 ≤ 32)
  - ASCII: upper/lower case + punctuation  $\rightarrow$  7 bits  $\rightarrow$  round to 1 byte
  - Unicode (<u>www.unicode.com</u>): standard code to cover all the world's languages  $\Rightarrow$  8, 16, 32 bits
- Colors?
  - HTML color codes: <u>24 bits</u> (3 bytes)
- Locations / addresses?
  - Commands?
    - IPv4 (32 bit), IPv6 (64 bit), etc.

California Gold
0xFDB515

Red (FD) Green (E

Green (B5) Blue (15)

With N bits, you can represent at most 2<sup>N</sup> things.

Garcia, FA25



# How many bits do you need to represent $\pi$ (pi)?

- A. ´
- B. 9 ( $\pi$ =3.14, so 0.011"." 001100)
- C. 64 (Macs are 64-bit machines)
- D. Every bit the machine has
- E. ∞





#### Number Representation: How many bits to represent $\pi$ (Pi)?



| 1<br>                                        | 0% |
|----------------------------------------------|----|
|                                              |    |
| 9 ( $\pi$ = 3.14, so that's 011 "." 001 100) | 0% |
|                                              |    |
| 64 (Since Macs are 64-bit machines)          | 0% |
| Every bit the machine has!                   |    |
| Every bit the machine has:                   | 0% |
| ∞                                            |    |
|                                              | 0% |







#### Pop quiz??

1. How many "things" can be represented by 4 bits?

[no pollEV, just discuss]
 How many bits do you need to represent π (pi)?

3. [no pollEV, just discuss]
What does this particular
4-bit pattern represent?

**A.** 4 **C.** 16

D. 64

E. Something else

- **1.** 1
- **B.** 9  $(\pi = 3.14, so 0.011"." 001100)$
- c. 64 (Macs are 64-bit machines)
- **D.** Every bit the machine has
- **E**. ∞



#### How many things can be represented using 4 bits?



0

0

0

0

0

- How many "things" can be represented by 4 bits?
- A. 4 B. 8
- C. 16 D. 64
  - E. Something else

- [no pollEV, just discuss]
   How many bits do you need to represent π (pi)?
- [no pollEV, just discuss]
   What does this particular 4-bit pattern represent?
- C. 64 (Macs are 64-bit machines)D. Every bit the machine hasE. ∞

A. 1 B. 9 (π=3.14, so 0.011"." 001100)

- (A) 4
- (B) 8
- (C) 16
- (D) 64
- (E) Something else





#### Pop quiz??

1. How many "things" can be represented by 4 bits?

[no pollEV, just discuss]
 How many bits do you need to represent π (pi)?

3. [no pollEV, just discuss]
What does this particular
4-bit pattern represent?

- . 4
- . 8 **D**. 6
  - E. Something else

 $16 = 2^4$ 

- ۱ (۱۵
- 9 ( $\pi$ =3.14, so 0.011"." 001100)
- C. 64 (Macs are 64-bit machines)
- D. Every bit the machine has
- **E**. ∞

#### Agenda

# Integer Representations

- Binary, Decimal, Hex
- Integer Representations
- Sign-Magnitude, Ones' Complement
- Two's Complement
- Bias Encoding





### How do we pick a representation for integers?

- Want a representation that supports common integer operations:
  - Add them

- Multiply them
- Subtract them
- Divide them

- Compare them
  - $(<, =, \neq, \leq, etc.)$

- Example: 10 + 7 = 17
  - o 10, 7 can be represented with 4 bits:
  - Addition, subtraction just as you would in decimal!!
  - So simple to add in binary that we can build circuits to do it!
    - This design decision would make hardware simple!
  - o ...wait...

11 carry bits

1010

<u>+ 0111</u>





#### What if "too big"? Overflow

- Strictly speaking, base 2 numerals have an ∞ number of digits.
  - With almost all being same (00...0 or 11...1) except rightmost digits
  - Just don't normally show leading digits ...0000001010
- However, hardware has physical limits. No infinite bits!
  - o Common representations: 8 bits, 16 bits, 32 bits, 64 bits, ...
  - Again: With N bits, you can represent at most 2<sup>N</sup> things.
- If integer result of operation (+, -, \*, /, >, <, =, etc.) cannot be represented by HW bits, we say integer overflow occurred</li>



**Integer overflow**: The arithmetic result is outside the representable range.





#### **Many Possible Number Representations**

- So far, we have only discussed <u>un</u>signed numbers (non-negative).
  - C's uint8\_t, uint16\_t, etc.: [0, 2<sup>N</sup>-1]
  - Most computers use the "obvious" representation:



- What about signed numbers? Need a way to represent negative numbers. Let's discuss a few:
  - Sign-Magnitude
  - Ones' Complement
  - Two's Complement (C23: the only signed integer rep permitted)
  - Bias Encoding (if time, otherwise review on your own)



#### Agenda

# Sign-Magnitude, Ones' Complement

- Binary, Decimal, Hex
- Integer Representations
- Sign-Magnitude, Ones' Complement
- Two's Complement
- Bias Encoding





#### Sign-Magnitude: Ain't No Free Lunch (tell story)

- Strawman ("obvious") solution:
  - Leftmost sign bit:  $0 \rightarrow +, 1 \rightarrow -$

Rest of bits: numerical value



- Sign-magnitude is rarely used, due to many shortcomings:
  - Incrementing "binary odometer" increases then decreases values
  - Arithmetic circuit complicated: depends on signs same/different
  - Two zeros (how to compare??)
- Reasonable for signal processing, not for general purpose computers

$$0 \times 0 0 0 0 0 0 0 0 = +0$$

0x80000000 1000 0000 ... 0000





## **Ones' Complement: Another try**

 To represent a negative number, complement ("flip") the bits of its positive representation:





- Observations:
  - Positive numbers: leading 0s
  - Negative numbers: leading 1s
- #s represented in N bits:
  - Zero: 2
  - o Positive: 2<sup>N-1</sup> 1
  - Negative: (same as positive)





### **Shortcomings of Ones' Complement?**



- Advantages:
  - Leftmost bit ("most significant bit") is still effectively sign bit
  - Incrementing binary odometer consistent on the # line
- Some disadvantages still persist:
  - Still two zeros
  - Arithmetic still somewhat complicated (more later)
- While used for a while on some computer products
  - It's not currently used in current hardware



#### Agenda

# Two's Complement

- Binary, Decimal, Hex
- Integer Representations
- Sign-Magnitude, Ones' Complement
- Two's Complement
- Bias Encoding





#### Two's Complement: C23 standard number rep.



 The problem: Negative mappings "overlap" with the positive ones, creating the two 0s.





#### **Arithmetic in Two's Complement is simple**



#### Advantages:

- Leftmost bit ("most significant bit") is still effectively sign bit
- Incrementing binary odometer consistent on the # line
- One zero, and one extra negative number (here, -8 vs 7)
- Simple hardware for addition

**(**)

111 carry bits







#### **Two's Complement: Formula**

- Positive <u>and</u> negative numbers can be computed using the same formula:
  - Highest bit multiplied by neg power of 2!

#### 0b1011

 $= (1 \times -2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$  = -8 + 0 + 2 + 1 = -5

#### **0b0101**

```
= (\mathbf{0} \times -2^3) + (\mathbf{1} \times 2^2) + (\mathbf{0} \times 2^1) + (\mathbf{1} \times 2^0)
= 0 + 4 + 0 + 1
```



# Two's Complement: Algorithm

At home: Prove algorithm is equivalent to formula!

- Positive and negative numbers can be computed using the same formula:
  - Highest bit multiplied by neg power of 2!
  - Hardware to convert positive to negative (& vice versa) is simple.
    - Complement all bits
    - 2. Then add 1



## 0b0101

$$= (\mathbf{0} \times -2^{3}) + (\mathbf{1} \times 2^{2}) + (\mathbf{0} \times 2^{1}) + (\mathbf{1} \times 2^{0})$$

$$= 0 + 4 + 0 + 1$$

$$= 5$$

- $0101 \rightarrow 1010 \rightarrow 1011$
- 1011 → 0100 → 0101



#### Two's Complement: C standard (as of 2025)

Two's complement is the C23 standard number representation for signed integers.
 0000
 0001
 0111



- o 2<sup>N-1</sup> negatives
- o 2<sup>N-1</sup> non-negatives
  - 1zero
  - How many positives?





## Two's Complement: Integer Overflow

Two's complement is the C23 standard number representation for signed integers.
 0000
 0001
 0111







#### Agenda

# **Bias Encoding**

- Binary, Decimal, Hex
- Integer Representations
- Sign-Magnitude,
   Ones' Complement
- Two's Complement
- Bias Encoding





## **Bias Encoding**

Think of an electrical signal from 0v to 15v. How to center on 0?

- We have a system that can represent this:
- We want to represent this:
- Bias encoding: "Shift" the numbers so that they center on zero
- Formally:
  - Define a "bias"
  - To interpret stored binary: Read the data as an unsigned number, then add the bias
  - To store a data value: Subtract the bias, then store the resulting number as an unsigned number





## **Bias Encoding**



- Number = (unsigned rep) + (bias)
- With N bits, default bias is -(2<sup>N-1</sup> 1)
  - $\circ$  E.g., 4 bits, bias = -(2<sup>3</sup>-1) = -(8-1) = -7
- Bias could be anything we want! (i.e., 4 bits could be #s 800-815)



#### Bias Encoding: N = 4, bias = -7

Example: N = 4, bias = -7



#### Consider:

- One zero
- How many positives?
- o How many negatives?



#### **Amazing Illustrations by Ketrina (Yim) Thompson**











#### And in summary...

- We represent "things" in computers as particular bit patterns:
  - With N bits, you can represent at most 2<sup>N</sup> things.
- Today, we discussed five different encodings for integers:
  - Unsigned integers
  - Signed integers:
    - Sign-Magnitude
    - Ones' Complement
    - Two's Complement
    - Bias Encoding
- Computer architects make design decisions to make HW simple
  - Unsigned and Two's complement are C standard. Learn them!!
- Integer overflow: The result of an arithmetic operation is outside the representable range of integers.
  - Numbers have infinite digits, but computers have finite precision.

For you to consider:

How could we represent -12.75?

This can lead to arithmetic errors. More later! 02-Number Representation (44)





# L02b How best to represent -12.75? (explain shifting binary point)

2s Complement (but shift binary point)

Bias (but shift binary point)

Combination of 2 encodings

Combination of 3 encodings

We can't









# L02b How best to represent -12.75? (explain shifting binary point)

2s Complement (but shift binary point)

Bias (but shift binary point)

Combination of 2 encodings

Combination of 3 encodings

We can't





# L02b How best to represent -12.75? (explain shifting binary point)

2s Complement (but shift binary point)

Bias (but shift binary point)

Combination of 2 encodings

Combination of 3 encodings

We can't

