Question Number	Answer		Mark
19(a)	(When the object is displaced):		
	there is a (resultant) force that is proportional to the displacement from the equilibrium position	(1)	
	and (always) acting towards the equilibrium position [Accept force is in the opposite direction to displacement]	(1)	2
	(Accept 'acceleration' for 'force') (For equilibrium position accept: undisplaced point/position or fixed point/position or central point/position, do not accept mean position)		
19(b)(i)	Frequency/period calculated from oscillations per minute	(1)	
	T = 0.22 s [can be seen on graph]	(1)	
	Use of $\omega = 2\pi f$ Or Use of $\omega = \frac{2\pi}{T}$	(1)	
	Use of $v = A\omega \sin \omega t$	(1)	
	$v = 1.1 \text{ m s}^{-1} \text{ [can be seen on graph]}$	(1)	
	At least 1 cycle of a sinusoidal graph with calculated values of v and T on axes	(1)	6
	Example of calculation $f = \frac{270 \text{ min}^{-1}}{60 \text{ s min}^{-1}} = 4.5 \text{ Hz}$ $\omega = 2\pi \text{ rad} \times 4.5 \text{ s}^{-1} = 28.3 \text{ rad s}^{-1}$		
	$v = \left(\frac{8.0 \times 10^{-2} \text{ m}}{2}\right) \times 28.3 \text{ s}^{-1} = 1.13 \text{ m s}^{-1}$		
19(b)(ii)	Use of $a = -\omega^2 x$	(1)	
	$a = 32 \text{ m s}^{-2} [\text{ecf from (i)}]$	(1)	2
	Example of calculation $a = -(28.3 \text{ s}^{-1})^2 \times 4.0 \times 10^{-2} \text{ m} = 32.0 \text{ m s}^{-2}$		

19(b)(iii)	The particles are free to move inside the can	
	Or Not all the particles will move with simple harmonic motion	
	Or Amplitude/frequency/period of oscillation of particles is different to amplitude of can	
	Or The particles may continue to move upwards as the can starts moving downwards	
	Or The particles may collide with each other	
	Or the force on the paint particles is not equal to the force on the can. (1)	1
	Total for question 16	11