

Anticipez les besoins en consommation électrique de bâtiments

Agenda

- 1 Contexte
- 2 Approche
- 3 Présentation des jeux de données
- 4 Préparation
- 5 Machine Learning
- 6 Prochaines étapes
- 7 Annexe : l'environnement technique

1) Contexte

Objectif

La ville de **Seattle** a pour objectif de ville neutre en émissions carbones en 2050. A ce stade, une attention particulière est donnée sur les émissions des bâtiments non destinés à l'habitation.

Données mises à disposition

La ville de Seattle a effectué des relevés minutieux en 2015 et 2016 sur les bâtiments.

Mission

Prédiction des émissions de CO2 et la consommation totale d'énergie de bâtiments pour lesquels elles n'ont pas encore été mesurées.

2) Approche

Présentation des jeux de données (Taille du jeu de données, Type de données, nombre de lignes, nombre de colonnes, données manquantes...)

Uniformisation du nom des colonnes, uniformisation des données au sein des categories, Sélection des colonnes pertinentes, enrichissement des données manquantes, Encoding (OneHotEncoding, ,...), Normalisation / Standardisation des données,

Application de différents algorithmes de machine learning (linéraire, ...)

3) Présentation des jeux de données (1/2)

Jeu de données 2015

	OSEBuildingID	DataYear	BuildingType	PrimaryPropertyType	PropertyName	TaxParcelldentificationNumber	Location	CouncilDistrictCode	N
0	1	2015	NonResidential	Hotel	MAYFLOWER PARK HOTEL	659000030	{'latitude': '47.61219025', 'longitude': '-122	7	
1	2	2015	NonResidential	Hotel	PARAMOUNT HOTEL	659000220	{'latitude': '47.61310583', 'longitude': '-122	7	ı
2	3	2015	NonResidential	Hotel	WESTIN HOTEL	659000475	{'latitude': '47.61334897', 'longitude': '-122	7	
3	5	2015	NonResidential	Hotel	HOTEL MAX	659000640	{'latitude': '47.61421585', 'longitude': '-122	7	
4	8	2015	NonResidential	Hotel	WARWICK SEATTLE HOTEL	659000970	{'latitude': '47.6137544', 'longitude': '-122	7	

Extrait du jeu de données 2015

Indicateurs clés du jeu de données

Jeu de données 2016

	OSEBuildingID	DataYear	BuildingType	PrimaryPropertyType	PropertyName	Address	City	State	ZipCode	TaxParcelldentificationNumber
0	1	2016	NonResidential	Hotel	Mayflower park hotel	405 Olive way	Seattle	WA	98101.0	0659000030
1	2	2016	NonResidential	Hotel	Paramount Hotel	724 Pine street	Seattle	WA	98101.0	0659000220
2	3	2016	NonResidential	Hotel	5673-The Westin Seattle	1900 5th Avenue	Seattle	WA	98101.0	0659000475
3	5	2016	NonResidential	Hotel	HOTEL MAX	620 STEWART ST	Seattle	WA	98101.0	0659000640
4	8	2016	NonResidential	Hotel	WARWICK SEATTLE HOTEL (ID8)	401 LENORA ST	Seattle	WA	98121.0	0659000970
	1									100

Extrait du jeu de données 2016

Indicateurs clés du jeu de données

Analyse des Nan pour 2015

Caractéristiques	Valeur
Nombre de lignes	3330
Moyenne du nombre de valeurs	7.937725
Ecart type	1.961370
Min de valeurs	3
25%	7
50%	8
75%	9
Max	27

Analyse des Nan pour 2016

Caractéristiques	Valeur
Nombre de lignes	3376
Moyenne du nombre de valeurs	5.909953
Ecart type	1.763215
Min de valeurs	2
25%	5
50%	6
75%	7
Max	25

Le jeu de données pour 2016 est plus complété que celui de 2015. Afin d'avoir un algorithme de Machine Learning efficace, un enrichissement des données est à effectuer.

1) Présentation
2) Préparation

Uniformisation des noms des colonnes et des données

(a) Machine Learning

^{*} Le dataset final est basé sur celui de 2016

Analyse des corrélations

• Corrélation importante entre les éléments suivants :

Valeur 1*	Valeur 2
'SiteEUI(kBtu/sf)'	'SiteEUIWN(kBtu/sf)'
'SourceEUI(kBtu/sf)"	'SourceEUIWN(kBtu/sf)'
'SiteEnergyUse(kBtu)'	'SiteEnergyUseWN(kBtu)'
'Electricity(kBtu)'	'Electricity(kWh)'
'NaturalGas(kBtu)'	'NaturalGas(therms)'

*afin d'éviter le sur-apprentissage de l'algorithme, uniquement les valeurs en gras sont conservées.

 L'energyScore est très faiblement corrélé avec la consommation d'énergie, cet indicateur ne semble pas pertinent, il est conservé cependant afin de verifier son influence sur le modèle.

Les principales colonnes sélectionnées (1/4)

(O)	

#	Code	Description	Raison	Action
1	OSEBuildingID	Identifiant d'un bâtiment	Donnée clé	
2	DataYear	Année des mesures	Donnée clé	
3	BuildingType	Type de bâtiment	Donnée input algo	A encoder (texte)
4	PrimaryPropertyType	Type Principale de la propriété	Donnée input algo	A encoder (texte)
5	Neighborhood		Donnée input algo	A encoder (texte)
6	YearBuilt	Année de construction	Donnée clé	
7	NumberOfBuilding	Nombre de bâtiments	→ Donnée input algo	MACION REQUIRED

Les principales colonnes sélectionnées (2/4)

3) Machine Learning	

#	Code	Description	Raison	Action
8	PropertyGFATotal	Surface au sol totale	Donnée input algo	MARION RECURSOR
9	PropertyGFAParking	Surface au sol des parkings	Donnée input algo	TO ACTION NO.
10	PropertyGFABuilding(s)	Surface au sol des bâtiments	Donnée input algo	ID LATION HOUSE
11	LargestPropertyUseType	Usage principale de la propriété	Donnée input algo	A encoder (texte)
12	SecondLargestPropertyUseType	Usage secondaire de la propriété	Donnée input algo	A encoder (texte)
13	ThirdLargestPropertyUseType	Usage tertiaire de la propriété	Donnée input algo	A encoder (texte)
14	SiteEUI(kBtu/sf)	Quantité d'energie nécessaire annuelle consommée	□ Donnée input algo	A binariser (fuite)

1) Présentation
2) Préparation

Les principales colonnes sélectionnées (3/4)

#	Code	Description	Raison	Action
15	SourceEUI(kBtu/sf)	Quantité d'energie nécessaire annuelle pour fonctionner	Donnée input algo	A binariser (fuite)
16	SteamUse(kBtu)	Quantité de vapeur consommée	Donnée input algo	A binariser (fuite)
17	Electricity(kBtu)	Quantité d'électricité consommée	Donnée input algo	A binariser (fuite)
18	NaturalGas(kBtu)	Quantité de gaz consommé	Donnée input algo	A binariser (fuite)
19	GHGEmissionsIntensity		Donnée input algo	A binariser (fuite)
20	EnergySTARSCORE	Score Energy	Donnée input algo	A encoder (texte)
21	SiteEnergyUse(kBtu)	Consommation énergétique du site	Donnée output algo	NO ACTION REQUIRED

2) Préparation

3) Machine Learning

Les principales colonnes sélectionnées (4/4)

#	Code	Description	Raison	Action
22	TotalGHGEmissions	Quantité des gaz à effet de serre émis	Donnée output algo	TO ACTION TO THE PARTY OF THE P

L'enrichissement des données (1/2)

Principe : pour un bâtiment donné, si une donnée signalétique est présente une année et absente l'autre, cette dernière est recopiée.

#	OSEBuildingID	DataYear	BuildingType	PrimaryPropertyType
1	1	2015		
2	1	2016		
3	2	2015	0	
4	2	2016		
5				
6	3000	2015		
7	3000	2016	•	

L'enrichissement des données avec homogénéisation des données (2/2)

3) Machine Learning

1) Homogénisation

Les changemen	ts opérés sont						
Intitulé source	University	Warehouse	Residence Hall	SPS-District K12	Supermarket / Grocery Store	Other-Mall	Supermarket/Grocery
Intitulé cible	College University	Non-Refrigerated Warehouse	Residence Hall / Dormitory	K12 School	Retail Store	Retail Store	Retail store

2) Résultats de l'homégénisation et l'enrichissement des données

3) Machine Learning

Encoding

Label Encoding

#	DataToEncode	EncodedData
1	Label1	1
2	Label2	2
3	Label3	3
4		
5	Label3	3
6	Label2	2
7	Labe	1

One Hot Encoding

#	DataToEncode	#	DataTo- Encode	Label1	Label2	Label3
1	Label1	1	Label1	1		
2	Label2	2	Label2		1	
3	Label3	3	Label3			1
4		4				
5	Label3	5	Label3			1
6	Label2	6	Label2		1	
7	Labe	7	Labe	1		

Target Encoding

#	DataTo Encode	ValueTo Assess
1	Label1	1
2	Label2	2
3	Label3	3
4		
5	Label3	4
6	Label2	4
7	Label	6

#	DataToEncode	EncodedData
1	Label1	Mean(ValueToAss ess)ForLabel1
2	Label2	Mean(ValueToAss ess)ForLabel2
3	Label3	Mean(ValueToAss ess)ForLabel3
4		
5	Label3	Mean(ValueToAss ess)ForLabel3
6	Label2	Mean(ValueToAss ess)ForLabel2
7	Labe1	Mean(ValueToAss ess)ForLabel1

Critère	Commentaires
Nombre de colonnes	18 dans le jeu de données
Temps d'exécution	1.29s
Inconvénients	Les valeurs encodées influencent le modèle

Critères	Commentaires
Nombre de colonnes	207 dans le jeu de données
Temps d'exécution	5.59s
Inconvénient	Augmentation des temps d'execution des algorithms Augmentation du nombre de colonnes

Critère	Commentaires
Nombre de colonnes	18 dans le jeu de données
Temps d'exécution	1.29s
Commentaires	Meilleur compromis pour cet analyse. Les résultats décrits par la suite seront basés sur cet encoding

Algorithme optimisé

Données générées pour

les valeurs manquantes

SmartData

Encoding

DataConvertion

- Standardisation

Output

- CrossValidation à 5
- Passage à l'echelle log
- Métriques : temps, R2, Variance

- Suppression des outliers
- Pertinence EnergySTARScore
- · Hyperparamètres via GridSearchCV

1ère étape : Energy

2) Préparation

3) Machine Learning

1ère étape : Energy

Random Forest Regression

Extra Tree Regression

Gradient Boosting Regression

ExtraTrees est sélectionné car :

- 1) Meilleur R2 (avec données logarithmique)
- Temps d'execution bon au regard des résultats
- Bonne couverture des données

2) Préparation 3) Machine Learning

2ème étape : Energy

23.55269271584376

0.9411664179150365

Identification des outliers

L	OSEBuildingID	BuildingType	PrimaryPropertyType	LargestPropertyUseType	SecondLargestPropertyUseType	ThirdLargestPropertyUseType
3274	49967	Campus	College/University	College/University	NaN	NaN
35	43	Campus	Mixed Use Property	Office	Laboratory	Non-Refrigerated Warehouse
3546	276	NonResidential	Hospital	Hospital (General Medical & Surgical)	Parking	NaN
170	276	NonResidential	Hospital	Hospital (General Medical & Surgical)	Parking	NaN
618	828	NonResidential	Hospital	Hospital (General Medical & Surgical)	Parking	NaN
3997	828	NonResidential	Hospital	Hospital (General Medical & Surgical)	Parking	NaN
3936	753	NonResidential	Other	Data Center	Office	NaN
558	753	NonResidential	Other	Data Center	Office	NaN
124	198	NonResidential	Hospital	Hospital (General Medical & Surgical)	NaN	NaN
3499	198	NonResidential	Hospital	Hospital (General Medical & Surgical)	NaN	NaN
3264	49940	NonResidential	Hospital	Hospital (General Medical & Surgical)	NaN	NaN
6648	49859	Campus	Other	Other	NaN	NaN
167	268	NonResidential	Hospital	Hospital (General Medical & Surgical)	Parking	NaN
3543	268	NonResidential	Hospital	Hospital (General Medical & Surgical)	Parking	NaN
3717	477	Campus	Other	Other	Parking	NaN
340	477	Campus	Other	Other	Parking	NaN
4884	22062	Campus	College/University	College/University	Parking	NaN
1494	22062	Campus	College/University	College/University	Parking	NaN
5085	23113	NonResidential	Medical Office	Medical Office	Parking	Other/Specialty Hospital
1690	23113	NonResidential	Medical Office	Medical Office	Parking	Other/Specialty Hospital

2ème étape : Energy

2ère étape : Energy : Hyperparamètres

1 Hyperparamètres

Best score: 0.9295826758300855

Best params: {'max_features': 6, 'n_estimators': 500}

Données estimées avec n_estimators à 1000

ExtraTrees est sélectionné car :

- 1 Meilleur R2 (avec données logarithmique)
- Temps d'execution bon au regard des résultats
- Bonne couverture des données

2ème étape : GHG

Identification des outliers

	OSEBuildingID	BuildingType	PrimaryPropertyType	LargestPropertyUseType	SecondLargestPropertyUseType	ThirdLargestPropertyUseType
35	43	Campus	Mixed Use Property	Office	Laboratory	Non-Refrigerated Warehouse
3274	49967	Campus	College/University	College/University	NaN	NaN

Extra Tree Regression sans outliers

R2 Score (no log)	SMAPE
0.94213323731237	23.55720410962813

2ère étape : GHG : Hyperparamètres

1 Hyperparamètres

Best score: 0.9293377567117144

Best params : {'max_features': 5, 'n_estimators': 500}

Données estimées avec n_estimators à 1000

6) Prochaines étapes

Amélioration du modèle

- Récupérer les données des années 2017 à 2019 sur le site OpenData de la ville de Seattle.
- Intégrer une seule fois un batiment donné dans le modèle
- Récupérer des données complémentaires permettant de mieux gérer les outliers (Nombre de lits, nombre d'employés pour les hôpitaux, Nombre d'étudiants, nombre de professeurs pour les campus,....)

7) Environnement technique

