os. A dataset was pre-processed for PCA. After pre-processing,
the pour observations on the dataset are [1] [2] [-3] [0] let [a b] be the scatter metrix of this dataset. Then a =?, b =? and c=? Let $x_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$ $x_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$ $x_3 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$ $x_4 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $2(x_1)' = \begin{bmatrix} 1 \\ -4 \end{bmatrix} \begin{bmatrix} 1 - 4 \end{bmatrix} = \begin{bmatrix} 1 \times 1 & 1 \times -4 \\ -4 \times 1 & -4 \times -4 \end{bmatrix} = \begin{bmatrix} 1 & -4 \\ -4 & 16 \end{bmatrix}$ $\chi_{2}(\chi_{2})' = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2-2 \end{bmatrix} = \begin{bmatrix} 2x2 & 2x-2 \\ -2x2 & -2x-2 \end{bmatrix} = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix}$ $\chi_3(\chi_3)' = \begin{bmatrix} -3 \\ 5 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} -3x-3 \\ 5x-3 \end{bmatrix} = \begin{bmatrix} 9 \\ -15 \end{bmatrix}$ $x_4(x_4)' = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ $\frac{4}{\sum_{i=1}^{4} (x_i)^i} = \begin{bmatrix} 1 & -4 \\ -4 & 16 \end{bmatrix} + \begin{bmatrix} 4 & -4 \\ -4 & 24 \end{bmatrix} + \begin{bmatrix} 9 & -15 \\ -15 & 25 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1+4+9+0 & -4-4-15+0 \\ -4-4-15+0 & 16+4+25+1 \end{bmatrix} = \begin{bmatrix} 14 \\ 23 \end{bmatrix}$

K	Week 9: Revision 2
04.	In this question, 3 d.p. It is known that the matrix [1 2 6] has an eigenvector with corresponding eigenvalue equals to 5. If the eigenvector is [2], then a = ? and b = ?
•	A.U = N.U whore, A Is a dxd square matrix U usird is an eigenvector of A A is eigenvalue of the eigenvector.
	let $A = \begin{bmatrix} 1 & 2 & 6 \\ 2 & 6 & 1 \\ 6 & 1 & 4 \end{bmatrix}$ $U = \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}$ $\Lambda = 5$
	$ \begin{bmatrix} 1 & 2 & 6 \\ 2 & 6 & 1 \\ \hline 6 & 1 & 4 \end{bmatrix} = 5. \begin{bmatrix} 1 \\ 0 \\ \hline 1 & 2 \\ \hline 0 & 3 & 3 & 3 & 3 & 1 \end{bmatrix} = 5. \begin{bmatrix} 1 \\ 0 \\ \hline 0 & 1 & 4 \end{bmatrix} = 5. \begin{bmatrix} 1 \\ 0 \\ \hline 0 & 1 & 4 \end{bmatrix} = 5. \begin{bmatrix} 1 \\ 0 \\ \hline 0 & 1 & 4 \end{bmatrix} $
	$ \begin{bmatrix} 1x_{1} + 2x_{0} + 6x_{0} \\ 2x_{1} + 6x_{0} + 1x_{0} \end{bmatrix} = \begin{bmatrix} 1 + 2a + 6b \\ 2 + 6a + b \end{bmatrix} = \begin{bmatrix} 5a \\ 6x_{1} + 1x_{0} + 4x_{0} \end{bmatrix} = \begin{bmatrix} 6 + a + 4b \end{bmatrix} = \begin{bmatrix} 5b \end{bmatrix} $
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	-2 -2

Meet 9: Quiz

- al. The dimension of a matrix A is 7x15. what is the dimension of its transpose A!?

 Solution: 15 x7
- A2. The key mohivation behind PCA is to sock a vector of that maximizes the variance of the projections of the observations onto the supspace spanned by U. As it turns out, U is the eigenvector of the scatter matrix with the largest eigenvalue.
- 6.3. 4 dop. Let $x = \begin{bmatrix} -1 \\ 0 \\ 5 \end{bmatrix}$, $y = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ and $y = \begin{bmatrix} 4 \\ -3 \\ -2 \end{bmatrix}$

Then $\langle x, u1 \rangle = ?$ and $\langle x, u2 \rangle = ?$ Let the projection of x on the subspace spanned by u1, u2 be $\begin{bmatrix} a \end{bmatrix}$. Then a=?, b=? and c=?

 $\langle x, u_{17} = (-1) \cdot 1 + 0.2 + 5. (-1) = -1 + 0 + (-5) = -6$ $\langle x, u_{27} = (-1) \cdot 4 + 0. (-3) + 5. (-2) = -4 + 0 - 10 = -14$ Exit, Check that u_{1} and u_{2} are orthogonal $\langle u_{1}, u_{27} = 1.4 + 2. (-3) + (-1).(-2) = 4 - 6 + 2 = 0$

Then, compute (x) uit omd (x, u2) Klouit Klouit

 $\langle U_{1}, U_{1} \rangle = (01)^{2} + 2^{2} + (-1)^{2} = 1 + 4 + 1 = 6$. $\langle U_{2}, U_{2} \rangle = 4^{2} + (-3)^{2} + (-2)^{2} = 16 + 9 + 4 = 29$

Projection = -6 of $\frac{1}{2}$ + $\frac{-14}{29}$ of $\frac{4}{2}$ = $\begin{bmatrix} -1 \\ -2 \end{bmatrix}$ + $\begin{bmatrix} -56/29 \\ 42/29 \end{bmatrix}$

$$= \frac{-35/29}{-16/29} = \frac{-2.9310}{-0.5517}$$

$$= \frac{57/29}{1.9655}$$

	week 91 autz
04.	A dataset was pre-processed for PCA. After pre-processing the three observations in the dataset are
	[2] [1] and [-3] let (a) b) c 7 be the scatter matrix [b] de t [c] e t
	of this dataset. Then a=?, b=? and e=?
	Let $x_1 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$, $x_2 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ and $x_3 = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$
	$\frac{2}{2} \frac{(x_1)^2 - [2]}{[2-2-1]} = \frac{2 \times 2}{[2-2-1]} = \frac{2 \times 2}{[2-2-2]} = \frac{2 \times 2}$
	3×3
	$2(x_2)' = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 - 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$
	F-31-
	$2/3(2/3)^{1} = -1/3 - 1/2 = 9/3 - 6$
	[-6-2-4]
	$\frac{3}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{14}{2} \times \frac{2}{3} = \frac{12}{3} \times \frac{3}{3} = \frac{12}{3} = \frac{12}{3} = \frac{12}{3} = \frac{12}{3} = \frac{12}{3} = \frac{12}{$
	7=1 (-9 (-3) 6
05	For this question, you may use R or Python, accurat to 4dep.
	what is the sum of all eigenvalues of -6.4 -7.7 1.8 -10.1
	1.8 1.3 -4.4 27.9
4	In R:
	9 <- matrix (c (put the dataset hore), ncol=4, by row = TRUE)
	eigen-of-9 2- eigen(9)
	sum (eigen of 9\$ values).
	- SUIVIC CARTON THE MANUEL ST.