Existem várias evidências que sustentam a ideia da evolução dos seres vivos

- provas que mostram que a evolução existe
- o grau de parentesco entre os seres vivos

Evolução - Evidências

a) FÓSSEIS - O estudo dos fósseis constitui uma importante evidência do processo evolutivo.

Qualquer resto ou marca orgânica com mais de 11 mil anos.

Formar um fóssil é extremamente difícil.

Encontrar um fóssil também é difícil.

Porque estes:

- Mostram as modificações dos organismos ao longo das eras geológicas;
- Podem apresentar formas de transição (ancestrais comuns), as quais poderiam explicar o surgimento de duas espécies diferentes;
- Permitem estabelecer relações de parentesco entre os seres vivos.

Vale lembrar que a fossilização não é um processo que ocorre facilmente e, geralmente, acontece apenas com as **partes rígidas do corpo** (ossos, por exemplo). Além disso, os fósseis apresentam informações pontuais sobre o processo evolutivo.

b) Anatomia comparada como evidência da evolução biológica

Órgãos homólogos

Mesmo ancestral.

Estruturas corporais que se desenvolvem de modo semelhante em embriões de diferentes espécies.

Podem desempenhar funções parecidas ou diferentes

Órgão homólogos

Homologia entre os membros anteriores dos mamíferos.

Órgãos análogos

Estruturas corporais presentes em diferentes espécies que desempenham funções semelhantes.

Ancestral diferente.

Mas têm origens embrionárias totalmente distintas.

<u>Homólogos</u>

Comum

DIVERGÊNCIA

<u>Análogos</u>

CONVERGÊNCIA

Irradiação adaptativa

Irradiação adaptativa

Ambientes diferentes

Homologia: mesma origem embriológica de estruturas de diferentes organismos, sendo que essas estruturas podem ter ou não a mesma função. As estruturas homólogas sugerem ancestralidade comum.

EVOLUÇÃO CONVERGENTE

Convergência Adaptativa/Evolutiva

Espécies com pouco grau de parentesco apresentam aspectos semelhantes, pois são adaptadas ao mesmo ambiente.

convergência adaptativa ou evolução convergente

c) Órgãos vestigiais

São estruturas pouco desenvolvidas, atrofiadas, e sem função evidente no organismo.

Permite dar um grau de parentesco entre os organismos.

Exemplo: apêndice cecal do intestino humano.

Evolução

ÓRGÃOS VESTIGIAIS

Estruturas atrofiadas e sem função evidente

d) Estudos embriológicos

Embriologia comparativa, do peixe ao homem.

e) Evidências moleculares e bioquímicas

Pode-se determinar o grau de parentesco entre duas espécies por meio da comparação de moléculas de **DNA**.

Também podem-se comparar as proteínas dessas espécies.

Adaptação – capacidade que todos os seres vivos tem de se ajustar ao ambiente, isto é, de se adequar em resposta a uma alteração ambiental.

Podemos focalizar a adaptação em dois níveis: **no indivíduo** e na população.

Individual – a adaptação consiste no ajustamento individual a determinada mudança ambiental.

Sob o ponto de vista **populacional**, adaptação evolutiva é o processo em que uma população se ajusta ao ambiente ao longo de sucessivas gerações como resultado da seleção natural.

Melanismo industrial como exemplo de adaptação evolutiva.

Um dos estudos que mostram a ação da seleção natural é o da dinâmica de populações da mariposa *Biston betularia*, em áreas industriais da Inglaterra e do norte dos EUA ao longo dos últimos 160 anos.

A partir de 1850, observou-se que a forma melânica, na época extremamente rara, foi se tornando extremamente comum nas áreas industrializadas, até suplantar as mariposas claras e passar a ser predominante.

Camuflagem, coloração de aviso e mimetismo

Camuflagem é o tipo de adaptação em que uma espécie desenvolveu características que a confundem com o ambiente e dificultam a sua localização.

Exemplo: raposas-do-ártico.

Camuflagem, coloração de aviso e mimetismo

Algumas espécies têm cores e desenhos marcantes que, ao invés de escondê-las, as destacam no ambiente.

Funciona como proteção por mostrar aos predadores que o animal que a ostenta tem sabor desagradável, é tóxico ou perigoso, e deve ser evitado.

Camuflagem, coloração de aviso e mimetismo

Outro exemplo de adaptação é o **mimetismo**, em que duas espécies distintas compartilham alguma semelhança reconhecida por outras espécies.

Essa adaptação confere vantagens para um ou ambas as espécies miméticas.

Exemplo: serpentes conhecidas como cobras-coral.

Conceito de espécie biológica e especiação

Espécie é um grupo de populações cujos indivíduos são capazes de cruzar entre si e produzir descendentes férteis, em condições naturais, estando reprodutivamente isolados de indivíduos de outras espécies (MAYR, 1942).

Especiação – formação de novas espécies de seres vivos.

É uma etapa fundamental do processo evolutivo.

De acordo com a linha de pensamento predominante atualmente, as espécies surgem normalmente por diversificação de populações de uma espécie ancestral, que se mantêm isoladas no território, o que se denomina isolamento geográfico.

Mutações podem ocorrer.

Em ambientes distintos, a **seleção natural** atua de forma diferenciada sobre as populações isoladas, conduzindo cada uma a uma adaptação particular.

Depois de algum tempo, elas podem se tornar diferentes em termos genéticos que a reprodução entre elas já não é possível, mesmo que o isolamento geográfico deixe de existir.

Nesse estágio, as populações passam a apresentar isolamento reprodutivo.

 O processo de especiação pode ser desencadeado a partir de um isolamento aeoaráfico.

 O isolamento geográfico pode resultar em um isolamento reprodutivo.

Um grupo habita uma região.

Barreira geográfica intransponível. Isolamento geográfico.

Diferenças acentuadas pelas mutações e seleção natural diferencial.

A barreira geográfica é desfeita e os descendentes dos grupos originais se reúnem.

A barreira geográfica é desfeita e os descendentes dos grupos originais se reúnem.

Se houver cruzamento e produzirem descendentes férteis, ainda são da **mesma espécie**. São **raças** ou **variedades**.

São espécies diferentes.

O modo de especiação que admite o isolamento geográfico como fator primordial do processo costuma ser denominado especiação alopátrica.

Especiação que ocorre sem necessidade de isolamento geográfico – especiação simpátrica.

