

Statistics and Learning

Julien Bect

(julien.bect@centralesupelec.fr)

Teaching : CentraleSupélec / dept. of Statistics and Signal Processing

Research: Laboratory of Signals and Systems (L2S)

J. Bect & L. Le Brusquet — 1A — Statistics and Learning

Lecture 4/9 Bayesian estimation

In this lecture you will learn how to...

- Introduce the concept of prior information.
- Present the basics of the Bayesian approach.
- Explain how to construct estimators using prior information.

Lecture outline

1 – Introduction : the Bayes risk

2 - Bayesian statistics : prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

Lecture outline

1 – Introduction : the Bayes risk

2 – Bayesian statistics : prior / posterior distribution

3 – Choosing a prior distributior

4 – Bayes estimators

Recap: comparing estimators

Quadratic risk :
$$R_{\theta}(\hat{\eta}) = \mathbb{E}_{\theta}(\|\hat{\eta} - g(\theta)\|^2)$$
.

Definition

We will say that $\hat{\eta}'$ is (weakly) preferable to $\hat{\eta}$ if

 $\blacktriangleright \ \forall \theta \in \Theta, \ R_{\theta}(\hat{\eta}') \leq R_{\theta}(\hat{\eta}),$

We will say that it is strictly preferable to $\hat{\eta}$ if, in addition,

 $ightharpoonup \exists \theta \in \Theta, \ R_{\theta}(\hat{\eta}') < R_{\theta}(\hat{\eta}),$

Remarks

- ▶ The relation "is preferable to" is a partial order on risk functions.
- ▶ In general there is no optimal estimator, i.e., no estimator that is preferable to all the others (unless we restrict the class of estimators that is considered).

Comparing (all) estimators: two approaches

Two approaches make it possible to refine the comparison for the cases where the risk functions R_{θ} cannot be compared :

1 the minimax (or « worst case ») approach :

$$R_{\mathsf{max}}(\hat{\eta}) = \sup_{\theta \in \Theta} R_{\theta}(\hat{\eta}),$$

- not discussed in this class;
- 2 the Bayesian (or « average case ») approach :

$$R_{\mathsf{Bayes},\pi}(\hat{\eta}) = \int_{\Theta} R_{\theta}(\hat{\eta}) \, \pi(\mathrm{d}\theta),$$

where π is a probability measure on Θ , to be chosen.

this is the topic of this lecture.

Example: white balls / red balls (see lecture #1)

$$- \mathsf{pdf} \, \beta(1,6) = \frac{1}{2} \, \frac{1}$$

Measure π : uniform over [0,1]

$$\hat{\theta}_{\mathbf{a}} = \frac{\sum_{i=1}^{n} X_i + 1}{n+2}$$

Measure $\pi:\beta(1,6)$

$$\hat{\theta}_{\mathrm{b}} = \frac{\sum_{i=1}^{n} X_i + 1}{n+7}$$

Observation : $\hat{\theta}_{\rm b} = \frac{n+2}{n+7} \; \hat{\theta}_{\rm a}$,

the second estimator provides smaller estimates

The beta family of distributions

Let $X \sim \beta(a, b)$ with $(a, b) = \theta \in (\mathbb{R}_{\star}^+)^2$. Its pdf is :

$$f_{\theta}(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \mathbb{1}_{]0,1[}(x).$$

Moments

- expectation : $\mathbb{E}_{\theta}(X) = \frac{a}{a+b}$
- variance : $V_{\theta}(X) = \frac{ab}{(a+b)^2(a+b+1)}$

Special case

 $ightharpoonup \mathcal{U}_{[0,1]} = \beta(1,1)$

Properties

- ▶ If $X \sim \beta(a, 1)$, then $-\log(X) \sim \mathcal{E}\left(\frac{1}{a}\right)$.
- ▶ If $X \sim \Gamma(a, \lambda)$, $Y \sim \Gamma(b, \lambda)$, and $X \perp Y$, then $\frac{X}{X+Y} \sim \beta(a, b)$.

Unknown parameter → random variables

We will assume from now on a dominated model : pdf $f_{\theta}(\underline{x})$.

Consider the Bayesian risk (quadratic, in this case)

$$\begin{split} R_{\mathsf{Bayes},\pi}\big(\hat{\eta}\big) \; &= \; \int_{\Theta} R_{\theta}\big(\hat{\eta}\big) \, \pi(\mathrm{d}\theta) \\ &= \; \int_{\Theta} \mathbb{E}_{\theta} \left(\|\hat{\eta} - g(\theta)\|^2 \right) \, \pi(\mathrm{d}\theta). \end{split}$$

It can be re-written as:

$$R_{\mathsf{Bayes},\pi}(\hat{\eta}) = \iint_{\underline{\mathcal{X}} \times \Theta} \lVert \hat{\eta}(\underline{\mathbf{x}}) - g(\theta) \rVert^2 \qquad \underbrace{f_{\theta}(\underline{\mathbf{x}}) \, \nu(\mathrm{d}\underline{\mathbf{x}}) \, \pi(\mathrm{d}\theta)}_{\mathsf{Probability meas. on } \underline{\mathcal{X}} \times \Theta}$$

Unknown parameter \rightarrow random variables (cont'd)

Let us introduce a new random variable ϑ , such that

$$(\underline{X}, \vartheta) \sim f_{\theta}(\underline{x}) \nu(\underline{d}\underline{x}) \pi(\underline{d}\theta).$$
 (*)

Then the bayesian risk can be re-written more simply as :

$$R_{\mathsf{Bayes},\pi} = \mathbb{E}\left(\|\hat{\boldsymbol{\eta}} - g(\boldsymbol{\vartheta})\|^2\right),$$

where the expectation is, this time, over both \underline{X} and ϑ .

Bayesian approach

In Bayesian statistics, the unknown parameter θ is (also) modeled as a random variable.

(Technical remark : the introduction of a new random variable ϑ such that (\star) holds is always possible, if we are willing to replace the underlying set Ω by $\widetilde{\Omega}=\Omega\times\Theta$, provided that Θ is endowed with a σ -algebra \mathscr{F}_{Θ} such that $\theta\mapsto \mathbb{P}_{\theta}(E)$ is \mathscr{F}_{Θ} -measurable for all $E\in\mathscr{F}$.)

Lecture outline

1 – Introduction : the Bayes risk

2 – Bayesian statistics : prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

Bayesian statistical models

Technical assumptions : we assume from now on that

- ▶ Θ is endowed with a σ -algebra \mathscr{F}_{Θ} . For inst. : if $\Theta \subset \mathbb{R}^p$, $\mathscr{F}_{\Theta} = \mathscr{B}(\Theta)$;
- ▶ $\theta \mapsto \mathbb{P}_{\theta}(E)$ is \mathscr{F}_{Θ} -measurable for all $E \in \mathscr{F}$ (σ -algebra on Ω).

Definition

A Bayesian statistical model consists of

▶ a statistical model as previously defined :

$$\left(\underline{\mathcal{X}},\ \underline{\mathscr{A}},\ \left\{\mathbb{P}_{\theta}^{\underline{X}},\ \theta\in\Theta\right\}\right),$$

ightharpoonup a probability distrib. π , called prior distribution, on $(\Theta, \mathscr{F}_{\Theta})$.

Dominated model \rightarrow makes it possible to define a likelihood.

Joint, prior and posterior distributions

Recall that we have introduced a new random variable ϑ , such that

$$(\underline{X}, \vartheta) \sim f_{\theta}(\underline{x}) \nu(\mathrm{d}\underline{x}) \pi(\mathrm{d}\theta).$$
 (*)

Bayesian vocabulary

We call:

- **b** joint distribution the distribution of \underline{X} and ϑ , that is, (\star) ,
- **prior distribution** the marginal distribution \mathbb{P}^{ϑ} of ϑ , that is, π ,
- **posterior distribution** the distribution $\mathbb{P}^{\vartheta|X}$ of ϑ given the data.

Interpretation ("subjective Bayes")

- ightharpoonup prior distribution ightharpoonup knowledge about heta before data acquisition
- ightharpoonup posteriori distribution $ightarrow \dots$ after data acquisition

Joint and marginal densities

We will assume \dagger from now on that π admits a pdf

- wrt a measure ν_{Θ} on $(\Theta, \mathscr{F}_{\Theta})$, e.g., Lebesgue's measure,
- we will write (abusively) : $\pi(d\theta) = \pi(\theta) d\theta$.

Proposition

The joint distribution admits the joint pdf

$$f^{(\underline{X},\vartheta)}(\underline{x},\theta) = f_{\theta}(\underline{x}) \pi(\theta),$$

and the corresponding marginal densities are

$$f^{\vartheta}(\theta) = \pi(\theta),$$

 $f^{\underline{X}}(\underline{x}) = \int f_{\theta}(\underline{x}) \pi(\theta) d\theta.$

 $^{^\}dagger$: This is not actually an assumption, since we can always use $u_\Theta=\pi$ (with the pdf equal to 1).

Proof

Joint pdf (informal proof)

$$\mathbb{P}^{(\underline{X},\vartheta)}(\underline{d}\underline{x},\underline{d}\theta) = \underbrace{f_{\theta}(\underline{x})\nu(\underline{d}\underline{x})}_{\text{joint pdf}} \pi(\theta)\underline{d}\theta$$
$$= \underbrace{f_{\theta}(\underline{x})\pi(\theta)}_{\text{joint pdf}} \nu(\underline{d}\underline{x})\underline{d}\theta$$

Marginal densities \rightarrow we just need to integrate :

$$f^{\vartheta}(\theta) = \int f_{\theta}(\underline{x}) \pi(\theta) \nu(d\underline{x}) = \pi(\theta),$$

$$f^{\underline{X}}(\underline{x}) = \int f_{\theta}(\underline{x}) \pi(\theta) d\theta.$$

12/32

Likelihood and Bayes' formula

Proba refresher : the conditional density of $Y \mid Z$ is equal to

$$f^{Y|Z}(y \mid z) = \frac{f^{(Y,Z)}(y,z)}{f^{Z}(z)}, \quad \forall z \text{ s.t. } f^{Z}(z) \neq 0.$$
 (*)

Proposition

i) The conditional distribution of \underline{X} given ϑ admits the pdf

$$f^{\underline{X}|\vartheta}(\underline{x} \mid \theta) = f_{\theta}(\underline{x})$$
 ("likelihood").

ii) The posterior distribution (ϑ given \underline{X}) admits the pdf :

$$f^{\vartheta|\underline{X}}(\theta \mid \underline{x}) = \frac{f_{\theta}(\underline{x}) \pi(\theta)}{f^{\underline{X}}(x)}$$
 (Bayes' formula).

Proof. Simply apply (\star) to the joint pdf.

Remark: proportionality

The term $\frac{1}{f^{\underline{X}}(\underline{x})}$ plays the role of a normalizing constant :

$$f^{\vartheta|\underline{X}}(\theta \mid \underline{x}) = \frac{f_{\theta}(\underline{x}) \pi(\theta)}{f^{\underline{X}}(\underline{x})}.$$

Notation. The symbol " \propto " indicates proportionality. Thus,

$$f^{\vartheta|\underline{X}}(\theta \mid \underline{x}) \propto f_{\theta}(\underline{x}) \pi(\theta),$$

or, less formally,

posterior pdf \propto likelihood \times prior pdf.

The « constant » $f^{\underline{X}}(\underline{x})$ is often difficult to compute, but in some situations the computation can be avoided (MAP estimator, MCMC numerical methods...).

Example: white balls / red balls (cont'd)

Reminder: we want to estimate $\theta = \frac{W}{W+R}$ from $X_1, \dots, X_n \stackrel{\mathsf{iid}}{\sim} \mathrm{Ber}(\theta)$.

Density of the observations:

$$f_{\theta}(\underline{x}) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^{N(\underline{x})} (1 - \theta)^{n - N(\underline{x})}.$$

with $N(\underline{x}) = \sum_{i=1}^{n} x_i$.

Let us choose a $\beta(a_0, b_0)$ prior :

$$\pi(\theta) \propto \theta^{a_0-1} (1-\theta)^{b_0-1}$$
.

(The choice of the prior distribution will be discussed later.)

Example : white balls / red balls (cont'd)

Then we have:

$$f^{\vartheta|\underline{X}}(\theta \mid \underline{x}) \propto f_{\theta}(\underline{x}) \pi(\theta)$$

$$\propto \theta^{N(\underline{x})} (1-\theta)^{n-N(\underline{x})} \cdot \theta^{a_0-1} (1-\theta)^{b_0-1}$$

$$= \theta^{a_0+N(\underline{x})-1} (1-\theta)^{b_0+n-N(\underline{x})-1}.$$

We recognize (up to a cst) the pdf of the $\beta(a_n, b_n)$ distrib., with

$$\begin{cases} a_n = a_0 + N, \\ b_n = b_0 + n - N. \end{cases}$$

Conclusion. Posterior distribution : $\vartheta \mid \underline{X} \sim \beta(a_n, b_n)$.

Example: white balls / red balls (cont'd)

Remark : for $n \to \infty$, we have a $\mathbb{E}(\vartheta \mid \underline{X}_n) = \bar{X}_n + O(\frac{1}{n})$ with $\mathbb{V}(\vartheta \mid \underline{X}_n) \simeq \frac{\theta(1-\theta)}{n}$.

Example: component reliability

Reminder: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{E}(\theta) = \mathcal{E}(\frac{1}{\eta})$, hence the likelihood:

$$\mathcal{L}(\eta, \underline{x}_n) = f(\underline{x}_n \mid \eta) = \prod_{i=1}^n \frac{1}{\eta} \exp\left(-\frac{1}{\eta} x_i\right)$$
$$= \eta^{-n} \exp\left(-\frac{1}{\eta} \sum_{i=1}^n x_i\right).$$

(Here we directly use η as our unknown parameter.)

We choose (see below) a truncated $\mathcal{N}(\eta_0, \sigma_0^2)$ prior for η :

$$\pi(\eta) \, \propto \, \exp\left(-rac{(\eta-\eta_0)^2}{2\sigma_0^2}
ight) \mathbb{1}_{\eta \geq 0}.$$

Example: component reliability (cont'd)

Posterior distribution of η . From Bayes' formula we get :

$$p(\eta \mid \underline{x}_n) \propto \underbrace{\eta^{-n} \exp\left(-\frac{1}{\eta} \sum_{i=1}^n x_i\right)}_{\text{likelihood}} \cdot \underbrace{\exp\left(-\frac{(\eta - \eta_0)^2}{2\sigma_0^2}\right)}_{\text{prior pdf}}.$$

This time we fail to recognize a "familiar" density

numerical evaluation of the integral

$$f(\underline{x}) = \int \eta^{-n} \exp\left(-\frac{1}{\eta} \sum_{i=1}^{n} x_i\right) \exp\left(-\frac{(\eta - \eta_0)^2}{2\sigma_0^2}\right) \nu(d\underline{x}).$$

Example: component reliability (cont'd)

Numerical application. $\eta_0 = 14.0$, $\sigma_0 = 1.0$ and the true value is $\eta = 11.4$.

Figure – Prior and posterior densities of η , for four values of n.

Lecture outline

1 – Introduction : the Bayes risk

2 – Bayesian statistics : prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

Several approaches

Two kinds of sources of prior information:

- "historical" data,
- experts : subjective knowledge, field expertise, etc.

Advanced topics (not covered in this course):

- Merging several sources of prior information,
- "weakly informative" priors
- Least favorable priors (cf. minimax),
- **.** . . .

Example: white balls / red balls (cont'd)

Assume that we have data from a past experiment :

- ightharpoonup sample of $n_0 = 20$ draws,
- $ightharpoonup N_0 = 15$ white balls drawn.

Choice of a prior distribution

```
We can decide, e.g., to choose a \beta(a_0, b_0) prior, with a_0 = N_0 = 15 and b_0 = n_0 - N_0 = 5.
```

Arguments in favour of this choice:

- the shape of the distrib. makes computations easier (see below);
- expectation : $\frac{a_0}{a_0+b_0}=p_0$, with $p_0=\frac{N_0}{n_0}$;
- ▶ variance : $\frac{a_0b_0}{(a_0+b_0)^2(a_0+b_0+1)} \approx \frac{p_0(1-p_0)}{n_0}$ wriance of \bar{X}_{n_0} .

Example: white balls / red balls (cont'd)

Example: component reliability

We have the following pieces of information :

- The manufacturer claims that tex lifetime of its components is approximately $\eta_0 = 6$ months.
- A field expert estimates that the accuracy of the manufacturer's data is roughly $\varepsilon_0 = 10\%$.

Choice of a prior distribution (elicitation)

We can decide, e.g., to choose a $\mathcal{N}(\eta_0, \sigma_0)$ prior, truncated to $[0, +\infty[$, with $\sigma_0 = \varepsilon_0 \eta_0/1.96$.

Arguments in favour of this choice :

- ▶ The prior is centered on the manufacturer's value η_0 .
- ightharpoonup ho 95% of the prior proba. is supported by the interval [0.9 η_0 , 1.1 η_0].
- ▶ The choice of the Gaussian form is arbitrary....

Conjugate priors easier computations!

Families of conjugate prior distributions

A family of distributions (densities) is called conjugate for a given statistical model if, for any prior π in this family, the posterior $f^{\vartheta|\underline{X}}$ remains inside the family.

Examples.

- $ightharpoonup \operatorname{Ber}(\theta)$ sample $+ \beta$ prior,
- $\mathcal{N}(\mu, \sigma^2)$ sample with known $\sigma^2 + \mathcal{N}$ prior on μ ,
- $ightharpoonup \mathcal{N}(\mu, \sigma^2)$ sample with known $\mu + \mathcal{IG}^{\dagger}$ prior on σ^2 ,
- $\triangleright \mathcal{E}(\theta)$ sample + gamma prior,
- **•** . . .

 $^{^{\}dagger}$: inverse gamma. $Z\sim\mathcal{IG}$ if 1/Z has a gamma distribution.

Lecture outline

1 – Introduction : the Bayes risk

2 – Bayesian statistics : prior / posterior distribution

3 – Choosing a prior distributior

4 - Bayes estimators

Bayes estimators

Goal

We want to construct estimators of $\eta = g(\theta)$ taking into account

- \triangleright the data \underline{x} ,
- ightharpoonup and the prior distribution π .

Bayes estimators

Let $L: N \times N \to \mathbb{R}$ be a loss function.

▶ Reminder : we "lose" $L(\eta, \tilde{\eta})$ if we estimate $\tilde{\eta}$ when the true value is η .

Definition: Bayesian estimator

A Bayesian estimator is an estimator that minimizes the posterior expected loss :

$$\hat{\eta}(\underline{x}) = \arg\min_{\tilde{\eta} \in \mathcal{N}} J(\tilde{\eta}, \underline{x})$$

with

$$J(\tilde{\eta},\underline{x}) = \mathbb{E}\left(L(g(\theta),\tilde{\eta}) \mid \underline{X} = \underline{x}\right)$$
$$= \int_{\Theta} L(g(\theta),\tilde{\eta}) f^{\vartheta|\underline{X}}(\theta \mid \underline{x}) d\theta.$$

Remark : equivalently, a Bayesian estimator minimizes the Bayes risk R_{π} .

Quadratic loss

Consider the quadratic loss function $L(\eta, \tilde{\eta}) = \|\eta - \tilde{\eta}\|^2$:

$$J(\tilde{\eta},\underline{x}) = \int_{\Theta} \|g(\theta) - \tilde{\eta}\|^2 f^{\theta|\underline{X}}(\theta \mid \underline{x}) d\theta.$$

Proposition

In this case, the Bayesian estimator is the posterior mean :

$$\hat{\eta}(\underline{x}) = \mathbb{E}(g(\theta) \mid \underline{X} = \underline{x}) = \int_{\Theta} g(\theta) f^{\theta \mid \underline{X}}(\theta \mid \underline{x}) d\theta.$$

Remark: it can also be written as:

$$\hat{\eta}(\underline{x}) = \frac{\int_{\Theta} g(\theta) f_{\theta}(\underline{x}) \pi(\theta) d\theta}{f^{\underline{X}}(\underline{x})} = \frac{\int_{\Theta} g(\theta) f_{\theta}(\underline{x}) \pi(\theta) d\theta}{\int_{\Theta} f_{\theta}(\underline{x}) \pi(\theta) d\theta}.$$

Example: white balls / red balls (cont'd)

With a $\beta(a_0, b_0)$ prior on ϑ , we have seen that :

$$\vartheta | \underline{X} \sim \beta (N + a_0, n - N + b_0)$$
 with $N = \sum_{i=1}^{n} X_i$.

The expectation of the $\beta(a,b)$ distribution is $\frac{a}{a+b}$, thus :

$$\hat{\theta} = \frac{N + a_0}{n + a_0 + b_0}.$$

Remark : we recover the expressions of $\hat{\theta}_a$ and $\hat{\theta}_b$.

Another example : Gaussian *n*-sample (with known σ^2)

We have seen that, if

- $X_i, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\theta, \sigma_0^2)$ with $\theta \in \mathbb{R}$ (unknown) and $\sigma_0 > 0$ (known),
- $\triangleright \ \vartheta \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^2),$

then

$$\vartheta|\underline{x} \sim \mathcal{N}\left(\frac{\sigma_{\theta}^2 \sum_{i=1}^n x_i + \sigma_0^2 \mu_{\theta}}{n\sigma_{\theta}^2 + \sigma_0^2}, \frac{\sigma_{\theta}^2 \sigma_0^2}{n\sigma_{\theta}^2 + \sigma_0^2}\right)$$

Hence the Bayesian estimator (for the quadratic loss) :

$$\hat{\theta} = \frac{\sigma_{\theta}^2 \sum_{i=1}^n X_i + \sigma_0^2 \mu_{\theta}}{n\sigma_{\theta}^2 + \sigma_0^2}$$

Interpretation

- when $n \to \infty$, $\hat{\theta} \approx \bar{X}$ (the prior no longer has influence)
- with finite n, when $\frac{\sigma_0}{\sigma_0} \gg 1$, $\hat{\theta} \approx \mu_{\theta}$ (the data is ignored).

L^1 loss

Assume for simplicity that $\eta = \theta \in \mathbb{R}$.

Consider the loss function $L(\theta, \tilde{\theta}) = |\theta - \tilde{\theta}|$:

$$J(\tilde{\theta},\underline{x}) = \int_{\Theta} \left| \theta - \tilde{\theta} \right| f^{\vartheta \mid \underline{X}} (\theta \mid \underline{x}) d\theta.$$

Proposition

In this case the Bayesian estimator $\hat{ heta}$ is such that

$$\int_{-\infty}^{\hat{\theta}} f_{\theta}(\underline{x}) \pi(\theta) d\theta = \int_{\hat{\theta}}^{\infty} f_{\theta}(\underline{x}) \pi(\theta) d\theta \left(= \frac{1}{2} \right)$$

 $\stackrel{\blacksquare}{\longrightarrow}$ $\hat{\theta}$ is thus the median of the posterior density of ϑ

Remark : when $\vartheta|\underline{x}$ has a symmtric density, the two Bayesian estimators (L^1 and L^2 loss) coincide.

Example: mean of a Gaussian n-sample, with a Gaussian prior.

Example: white balls / red balls (cont'd)

Observed sample (n = 5): $\underline{X} = (W, R, R, W, R)$.

Prior on η : $\vartheta \sim \beta(1,6)$, with $\theta = \mathbb{P}(X_1 = W)$.

