MACMACHINE LEARNING

section 8
Reinforcement Learning tutorial

Contact Information

Instructor: Qi Hao

E-mail: hao.q@sustc.edu.cn

Office: Nanshan iPark A7 Room 906

Office Hours: M 2:00-4:00pm

Available other times by appointment or the open door policy

Office Phone: (0755) 8801-8537

QQ: 463715202 机器学习2018

Web:

http://hqlab.sustc.science/teaching/

Previous Lectures

- Supervised learning
 - classification, regression
- Unsupervised learning
 - clustering
- Reinforcement learning
 - more general than supervised/unsupervised learning
 - learn from interaction w/ environment to achieve a goal

Structure

Today

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Temporal-Difference learning

Lab Evironment: OpenAI Gym

https://gym.openai.com/

OpenAI Gym

FrozenLake-v0 is a simple toy-text environment for you to get start.

OpenAI Gym

It is easy for you to install OpenAI Gym toolkit. Just Follow the document. https://gym.openai.com/docs/

Lab Output sample

Policy Iteration and Value Iteration

```
Policy evaluation terminated at 203 iterations.
Found stable policy after 2 evaluations.
Final policy derived using Policy Iteration:
Episodes: 10.000 Wins: 5,796 Total rewards: 5,069.0 Max action: 100
Policy Iteration - number of wins = 5,796
Policy Iteration - average reward = 0.51
Policy Iteration - average action = 77.52
Value iteration converged at iteration #8
Final policy derived using Value Itearation:
↑ ↑ ↑ ↑ ↑ → ↓ ↓ ↑ ↑ ↑ ↑ → → → ↑ ↑ ↑ ↑ → ← ↓ → ↑ ↑ → → ↑ ↑ ↓ → ↑ ↑ ↑ ↓ → ← ↓ ↑ ↑ ↑ → ← ↑ ↑
Episodes: 10,000 Wins: 5,474 Total rewards: 55.0 Max action: 89
Value Itearation - number of wins = 5,474
Value Itearation - average reward = 0.01
Value Itearation — average action = 79.88
```

Lab Output sample

Q-Learning

```
print("Average Score:" + str(sum(rewards)/total episodes))
print(qtable)
Average Score:0.4891
   6.71041688e-02
                     2.32263070e-02
                                      3.09411148e-02
                                                        4.21933318e-02]
    5.76276006e-04
                                                        4.21741721e-02]
                     9.06889696e-03
                                      5.53165381e-03
    2.73147928e-01
                     1.08307115e-02
                                                        1.81316546e-02]
                                      3.02736420e-03
    4.93313421e-04
                     2.03283461e-03
                                                        1.83112673e-021
                                      5.72540625e-04
   1.81415230e-01
                     2.22054051e-02
                                      2.05868180e-02
                                                        2.60516231e-021
   0.00000000e+00
                     0.00000000e+00
                                      0.00000000e+00
                                                        0.00000000e+001
                     8.12118808e-08
                                                        9.28242853e-09]
   1.72102052e-03
                                      5.46545036e-02
   0.00000000e+00
                     0.00000000e+00
                                      0.00000000e+00
                                                        0.00000000e+001
   1.04194730e-02
                     3.48995137e-02
                                      3.11367406e-02
                                                        2.62904206e-011
   1.34923533e-02
                     5.25277619e-01
                                      2.92925591e-03
                                                        1.82725840e-02]
   1.76854497e-01
                     2.94306444e-03
                                      4.05848203e-04
                                                        1.05800417e-031
   0.00000000e+00
                     0.00000000e+00
                                      0.00000000e+00
                                                        0.00000000e+00]
   0.00000000e+00
                     0.00000000e+00
                                      0.00000000e+00
                                                        0.00000000e+00]
   1.40986054e-02
                     2.69451291e-02
                                      6.75171022e-01
                                                        8.50771691e-02]
    2.32230063e-01
                     2.29847314e-01
                                                        1.71978211e-011
                                      9.27897153e-01
    0.00000000e+00
                     0.00000000e+00
                                      0.00000000e+00
                                                        0.00000000e+00]]
```

Robot in a room

actions: UP, DOWN, LEFT, RIGHT

80% move UP
10% move LEFT
10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each other state
- what's the strategy to achieve max reward?
- what if the actions were deterministic?

Other examples • pole-balancing • TD-Gammon [Gerry Tesauro]

- helicopter [Andrew Ng]
- no teacher who would say "good" or "bad"
 - is reward "10" good or bad?
 - rewards could be delayed
- similar to control theory
 - more general, fewer constraints
- explore the environment and learn from experience
 - not just blind search, try to be smart about it

Resource allocation in datacenters

- A Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation
 - Tesauro, Jong, Das, Bennani (IBM)
 - ICAC 2006

Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Temporal-Difference learning

Robot in a room

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2] reward -0.04 for each other state

- states
- actions
- rewards
- what is the solution?

Is this a solution?

- only if actions deterministic
 - not in this case (actions are stochastic)
- solution/policy
 - mapping from each state to an action

Optimal policy

Reward for each step: -2

Reward for each step: -0.1

Reward for each step: -0.04

Reward for each step: -0.01

Reward for each step: +0.01

Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S_0
- transition model P(s,a,s')
 - P([1,1], up, [1,2]) = 0.8
- reward function r(s)
 - r([4,3]) = +1

- goal: maximize cumulative reward in the long run
- policy: mapping from S to A
 - $\pi(s)$ or $\pi(s,a)$ (deterministic vs. stochastic)
- reinforcement learning
 - transitions and rewards usually not available
 - how to change the policy based on experience
 - how to explore the environment

Computing return from rewards

- episodic (vs. continuing) tasks
 - "game over" after N steps
 - optimal policy depends on N; harder to analyze

additive rewards

- $V(s_0, s_1, ...) = r(s_0) + r(s_1) + r(s_2) + ...$
- infinite value for continuing tasks

discounted rewards

- $V(s_0, s_1, ...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + ...$
- value bounded if rewards bounded

Value functions

- state value function: $V^{\pi}(s)$
 - expected return when starting in s and following π
- state-action value function: $Q^{\pi}(s,a)$
 - expected return when starting in s, performing a, and following π
- useful for finding the optimal policy
 - can estimate from experience
 - pick the best action using $Q^{\pi}(s,a)$

Bellman equation

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[r^{a}_{ss'} + \gamma V^{\pi}(s') \right] = \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$

Optimal value functions

- there's a set of *optimal* policies
 - V^{π} defines partial ordering on policies
 - they share the same optimal value function

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

Bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s'} P^a_{ss'} \left[r^a_{ss'} + \gamma V^*(s') \right]$$

- system of n non-linear equations
- solve for $V^*(s)$
- easy to extract the optimal policy

• having Q*(s,a) makes it even simpler

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

Dynamic programming

- main idea
 - use value functions to structure the search for good policies
 - need a perfect model of the environment
- two main components

- policy evaluation: compute V^π from π
 policy improvement: improve π based on V^π
- start with an arbitrary policy
- repeat evaluation/improvement until convergence

Policy evaluation/improvement

- policy evaluation: $\pi \rightarrow V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}(s) = \sum_{a} \pi(s, a) \sum_{k'} P_{ss'}^{a} \left[r_{ss'}^{a} + \gamma V_{k}(s') \right]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

• policy improvement: $V^{\pi} \rightarrow \pi'$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P^{a}_{ss'} \left[r^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

 $-\pi$ either strictly better than π , or π is optimal (if $\pi = \pi$)

Policy/Value iteration

Policy iteration

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

- two nested iterations; too slow
- don't need to converge to V^{π_k}
 - just move towards it

$$V_{k+1}(s) = \max_{a} \sum_{s'} P_{ss'}^{a} \left[r_{ss'}^{a} + \gamma V_{k}(s') \right]$$

- use Bellman optimality equation as an update
- converges to V*

Using DP

- need complete model of the environment and rewards
 - robot in a room
 - state space, action space, transition model
- can we use DP to solve
 - robot in a room?
 - back gammon?
 - helicopter?

Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning
- miscellaneous
 - state representation
 - function approximation
 - rewards

Monte Carlo methods

- don't need full knowledge of environment
 - just experience, or
 - simulated experience
- but similar to DP
 - policy evaluation, policy improvement
- averaging sample returns
 - defined only for episodic tasks

Monte Carlo policy evaluation

- want to estimate $V^{\pi}(s)$
 - = expected return starting from s and following π
 - estimate as average of observed returns in state s
- first-visit MC
 - average returns following the first visit to state s

$$V^{\pi}(s) \approx (2 + 1 - 5 + 4)/4 = 0.5$$

Monte Carlo control

- V^{π} not enough for policy improvement
 - need exact model of environment
- estimate $Q^{\pi}(s,a)$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

MC control

$$\pi_0 \to^E Q^{\pi_0} \to^I \pi_1 \to^E Q^{\pi_1} \to^I \dots \to^I \pi^* \to^E Q^*$$

- update after each episode
- non-stationary environment

$$V(s) \leftarrow V(s) + \alpha [R - V(s)]$$

- a problem
 - greedy policy won't explore all actions

Maintaining exploration

- deterministic/greedy policy won't explore all actions
 - don't know anything about the environment at the beginning
 - need to try all actions to find the optimal one
- maintain exploration
 - use *soft* policies instead: $\pi(s,a)>0$ (for all s,a)
- ε-greedy policy
 - with probability 1-ε perform the optimal/greedy action
 - with probability ε perform a random action
 - will keep exploring the environment
 - slowly move it towards greedy policy: ε -> 0

Summary of Monte Carlo

- don't need model of environment
 - averaging of sample returns
 - only for episodic tasks
- learn from sample episodes or simulated experience
- can concentrate on "important" states
 - don't need a full sweep
- need to maintain exploration
 - use soft policies

Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning
- miscellaneous
 - state representation
 - function approximation
 - rewards

Temporal Difference Learning

- combines ideas from MC and DP
 - like MC: learn directly from experience (don't need a model)
 - like DP: learn from values of successors
 - works for continuous tasks, usually faster than MC
- constant-alpha MC:
 - have to wait until the end of episode to update

$$V(s_t) \leftarrow V(s_t) + \alpha \left[R_t - V(s_t) \right]$$

target

- simplest TD
 - update after every step, based on the successor

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

MC vs. TD

- observed the following 8 episodes:
 - A 0, B 0
- B-1

B-1

B - 1

B-1

- B-1 B-1

B-0

- MC and TD agree on V(B) = 3/4
- MC: V(A) = 0
 - converges to values that minimize the error on training data
- TD: V(A) = 3/4
 - converges to ML estimate of the Markov process

Sarsa

• again, need Q(s,a), not just V(s)

control

- start with a random policy
- update Q and π after each step
- again, need ε -soft policies

The RL Intro book

Richard Sutton, Andrew Barto Reinforcement Learning, An Introduction

http://www.cs.ualberta.ca/~sutton/book/the-book.html

Q-learning

- before: on-policy algorithms
 - start with a random policy, iteratively improve
 - converge to optimal
- Q-learning: off-policy
 - use any policy to estimate Q

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

- Q directly approximates Q* (Bellman optimality eqn)
- independent of the policy being followed
- only requirement: keep updating each (s,a) pair

Sarsa

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

Q value

When an agent take action a_t in state s_t at time t, the predicted future rewards is defined as $Q(s_t, a_t)$.

$$Q(s_{t}, a_{t}) = H\{r_{t+1} + y_{t+2} + y^{2}, r_{t+3} + y^{3}, r_{t+4} + \cdots \}$$

Generally speaking, an agent should take action a_t^1 because the corresponding Q value $Q^1(s_t, a_t)$ is max.

Q learning

First, Q value can be transformed as follows.

$$Q(s_{i}, a_{i}) = R\{r_{i+1} + yr_{i+2} + y^{2}r_{i+3} + y^{3}r_{i+4} + \cdots\}$$

$$= R\{r_{i+1} + y > y^{2}r_{i+k+2}\}$$

$$= R\{r_{i+1} + y > y^{2}r_{i+k+2}\}$$

$$= R\{r_{i+1} + y > (s_{i+1}, a_{i+1})\}$$

$$= R\{r_{i+1} + y > (s_{i+1}, a_{i+1})\}$$

As a result, the Q value at time t is easily calculated by r_{t+1} and Q value of the next step.

Q learning

Q values is updated every step.

When an agent take action a_t in state s_t , and gets reward r, the Q value is updated as follows.

$$Q(s_i, a_i) = Q(s_i, a_i) + \alpha |r| + \gamma \max_{a} Q(s_{i+1}, a) + Q(s_i, a_i) |$$

$$\text{target value} \qquad \text{current value}$$

$$\text{TD error}$$

α: step size parameter (learning rate)

Q learning algorithm

Initialize Q(s,a) arbitrarily

Repeat (for each episode):

initialize s

Repeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., greedy, ε -greedy)

take action a, observe r, s'

$$Q(s,a) = Q(s,a) + \alpha r + \gamma \max_{a'} Q(s',a') + Q(s,a)$$

s←*s* ';

until s is terminal

Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning
- miscellaneous
 - state representation
 - function approximation
 - rewards

State representation

- pole-balancing
 - move car left/right to keep the pole balanced
- state representation
 - position and velocity of car
 - angle and angular velocity of pole
- what about *Markov property*?
 - would need more info
 - noise in sensors, temperature, bending of pole
- solution
 - coarse discretization of 4 state variables
 - left, center, right
 - totally non-Markov, but still works

Function approximation

- represent V_t as a parameterized function
 - linear regression, decision tree, neural net, \dots
 - linear regression: $V_t(s) = \vec{\theta}_t^T \vec{\phi}_s = \sum_{i=1}^n \theta_t(i) \phi_s(i)$
- update parameters instead of entries in a table
 - better generalization
 - fewer parameters and updates affect "similar" states as well
- TD update

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

$$V(s_t) \mapsto r_{t+1} + \gamma V(s_{t+1})$$

- treat as one data point for regression
- want method that can learn on-line (update after each step)

Splitting and aggregation

- want to discretize the state space
 - learn the best discretization during training
- splitting of state space
 - start with a single state
 - split a state when different parts of that state have different values

- state aggregation
 - start with many states
 - merge states with similar values

Designing rewards

robot in a maze

episodic task, not discounted, +1 when out, 0 for each step

chess

- GOOD: +1 for winning, -1 losing
- BAD: +0.25 for taking opponent's pieces
 - high reward even when lose

rewards

- rewards indicate what we want to accomplish
- NOT how we want to accomplish it

shaping

- positive reward often very "far away"
- rewards for achieving subgoals (domain knowledge)
- also: adjust initial policy or initial value function

Summary

- Reinforcement learning
 - use when need to make decisions in uncertain environment
- solution methods
 - dynamic programming
 - need complete model
 - Monte Carlo
 - time-difference learning (Sarsa, Q-learning)
- most work
 - algorithms simple
 - need to design features, state representation, rewards