Politecnico di Bari

Analisi Matematica – II modulo– Laurea in Ingegneria Informatica e dell'Automazione A.A. 2015/2016 Appello 19 gennaio 2017 Traccia A

C	NI	Nº Matricola
Cognome	Nome	_Nº Matricola
998		

1) Stabilire se la funzione $f(x) = \frac{\cos^2 x}{x(-\log x)^{3/2}}$ è integrabile tra 0 e $\frac{1}{2}$.

7 pts.

2) Determinare la soluzione del problema di Cauchy:

$$\begin{cases} y' = y \arctan x \\ y(0) = 1 \end{cases}$$

Si consideri poi la seguente modifica del problema precedente

$$\begin{cases} y' = y \arctan x + \sin y \\ y(0) = 1 \end{cases}$$

È ancora vero che tale problema ha una ed una sola soluzione definita su \mathbb{R} ? Motivare la risposta.

8 pts.

3) Determinare i punti stazionari della funzione

$$f(x,y) = (1 - x^2 - y^2)xy$$

e studiarne la loro natura.

8 pts.

4) Calcolare

$$\int_A x^2 \cos(xy) \mathrm{d}x \mathrm{d}y,$$

dove $A = \{(x, y) \in \mathbb{R}^2 : \frac{\pi}{2} \le x \le \pi, \ 1 \le y \le \frac{\pi}{x}\}.$

7 pts.

Politecnico di Bari

Analisi Matematica – II modulo– Laurea in Ingegneria Informatica e dell'Automazione A.A. 2015/2016 Appello 19 gennaio 2017 Traccia B

Cognome_____Nome____No Matricola_____

1) Stabilire se la funzione $f(x) = \frac{\sin(x^4)}{x \log^{4/3} x}$ è integrabile tra 0 e $\frac{1}{3}$.

7 pts.

2) Determinare la soluzione del problema di Cauchy:

$$\begin{cases} y' = \frac{x^2}{x^2 + 1}y\\ y(0) = 1 \end{cases}$$

Si consideri poi la seguente modifica del problema precedente

$$\begin{cases} y' = \frac{x^2}{x^2 + 1}y + \cos y \\ y(0) = 1 \end{cases}$$

È ancora vero che tale problema ha una ed una sola soluzione definita su \mathbb{R} ? Motivare la risposta.

8 pts.

3) Determinare i punti stazionari della funzione

$$f(x,y) = (1 - x^2 + y^2)xy$$

e studiarne la loro natura.

8 pts.

4) Calcolare

$$\int_{A} \frac{x^2 \cos x}{\cos^2(xy)} \mathrm{d}x \mathrm{d}y,$$

dove $A = \{(x, y) \in \mathbb{R}^2 : \frac{\pi}{6} \le x \le \frac{\pi}{4}, \ 1 \le y \le \frac{\pi}{4x} \}.$

7 pts.