

Engenharia de Telecomunicações e Informática Sistemas de Comunicação Ótica

Projeto de um anel com gestão de dispersão e encaminhamento de comprimentos de onda

João Rabuge | 98509 Tiago Felício | 99213

Grupo 17

Docentes:

Prof. Adolfo da Visitação Tregeira Cartaxo

Prof. João Lopes Rebola

Ano curricular: 3° ano

Semestre: 2°

2022/23

A	crónim	os e Siglas utilizados		3
V	ariávei	s e Constantes utilizadas		3
1	Intr	odução		4
2	Aná	lise e Resultados		5
	2.1	Seleção das ligações óticas no anel A17	5	
	2.2 necess	Eliminação de emissores e recetores que não apresentem a largura de bar sária para a capacidade pretendida		
	2.3	Avaliação da necessidade de compensação de dispersão e escolha dos Do	CM's7	
	2.3.	Frequências e comprimentos de onda centrais dos 22 canais		8
	2.3.	2 Análise de Necessidade de Compensação		9
	2.4	Avaliação de Exequibilidade da Ligação	12	
	2.4.	l Ligação Sem Amplificação ótica		12
	2.4.	2 Pré-Amplificação Ótica		14
	2.4.	Pré e Pós Amplificação Ótica		15
	2.4.4 Unio	Pré e Pós Amplificação Ótica em todos os ROADMS e Amplificação de L camente nas Secções de Multiplexagem onde seja Necessário		16
	2.5	Verificações Finais	20	
3	Con	clusão		21
4	Ane	xos		23
	4.1	Anexo A – Número de Canais e Cálculo da Largura de Banda a -3 dB	23	
	4.2	Anexo B – Largura de Banda Necessária	24	
	4.3	Anexo C – Cálculos Frequências e Comprimentos de Onda	24	
	4.4	Anexo D – Análise de Dispersão	25	
	4.5	Anexo E – Perdas no Anel (Sem Amplificação)	26	
	4.6	Anexo F – Cálculo da Margem dos pares T _x -R _x (Sem Amplificação)	26	
	4.7	Anexo G – Perdas Anel (Pré-Amplificação)	29	
	4.8	Anexo H – Cálculos de Amplificação de Linha	29	
	4.9	Anexo I – Cálculo de Penalidade	31	

Acrónimos e Siglas utilizados

DCM - Dispersion Compensation Module

SSMF - Standard Single-Mode Fiber

UPSR - Unidirectional Path Switched Ring

ROADM - Reconfigurable optical Add-drop Multiplexer

ITU-T – International Telecommunication Union

AWG – Arrayed Waveguied Granting

OSNR – Optical Siganl to Noise Ratio

EDFA – Erbium Doped Fiber Amplifier

ASE – Amplified Spontaneous Emission

VOA – Variable Optical Attenuator

Variáveis e Constantes utilizadas

 \boldsymbol{X} - Capacidade por canal ótico

Y - Capacidade total

 λ - Comprimento de onda do canal

 ${\it D}_{\it sec}$ - Dispersão da fibra em cada secção

 D_{λ} - Dispersão para a frequência ótica do canal

D_{res} - Dispersão residual

Dres, máx - Dispersão residual máxima

 Δv_M - Largura de banda associada à modulação

 Δv_L - Largura de linha a meia potência

 $\Delta Pi^-(D\lambda L)|_{dB,m\acute{a}x}$ - Penalidade máxima aceitável devida à dispersão

 $R_{b.ch}$ - Ritmo binário do canal

B_{-3 dB} – Largura de Banda a -3 dB

 T_x - Emissor

 R_x - Recetor

1 Introdução

Neste projeto de um anel com gestão de dispersão e encaminhamento de comprimentos de onda, o objetivo é generalizar-se a análise realizada na 1ª parte do projeto. Essa generalização será feita para os emissores, recetores e comprimentos de onda associados às frequências pretendidas. Verificar a necessidade de compensar a dispersão, quando o anel está a ser operado num **multicanal** e a utilizar a **fibra ótica Corning SMF-28e+**. Se for necessária essa compensação, serão especificados quais os dispositivos de compensação de dispersão (**DCM's**) escolhidos em cada secção do anel. É de notar que este anel é unidirecional e que há características específicas a cada grupo (**Grupo 17**), descritas na *Tabela 1*.

Dados	Valor
Comprimento de onda do canal (λ)	1554.13 nm
Anel do Grupo	A17
Capacidade por Canal ótico (X)	10 Gbit/s
Capacidade Total (Y)	220 Gbit/s
Fase Não Linear Aceitável	$\pi/2$
Pior caso de probabilidade de erro de bit requerida	10-10
Margem de Sobrecarga Requerida	2 dB
Margem de Sistema Requerida	2.5 dB
Número de Canais	22
Penalidade Máxima Aceitável devido a efeitos Não Lineares da Fibra	1 dB
Penalidade Máxima Aceitável devido à Dispersão	1 dB
Segmento de Fibra de Transmissão	2 Km

Tabela 1 – Características e valores do projeto, para o grupo 17.

São tidos em conta os **emissores** e **recetores** definidos no **enunciado do projeto**, para a realização de uma análise sobre quais destes devem ser utilizados para o **melhor desempenho do anel A17**, realizando-se assim a escolha dos **equipamentos necessários** para o projeto.

O anel atribuído ao nosso grupo foi o **A17**, cujas ligações e respetivas características estão enunciadas na *Tabela 2*. De modo a sabermos o número de segmentos de fibra ótica para cada ligação, fizemos a divisão do comprimento dessa ligação pelo comprimento de cada **segmento de fibra ótica (2 km)**.

Ligação	Nós de entrada e saída	Comprimento da ligação	Número segmentos
A	Viseu – Peso da Régua	71 Km	$35.5 \approx 36$
В	Peso da Régua - Chaves	92 Km	46
C	Chaves – Braga	121 Km	60.5 ≈ 61
D	Braga - Porto	56 Km	28
E	Porto - Aveiro	76 Km	38
F	Aveiro - Viseu	87 Km	43.5 ≈ 44

Tabela 1 – Ligações mais longas, para o grupo 17.

Para fazer o estudo deste anel de forma correta, estipulámos serem necessárias **5 fases** de análise distintas:

- identificar as conexões mais longas no anel A17,
- eliminar emissores e recetores que não possuam largura de banda necessária para a capacidade pretendida,
- avaliação da necessidade de compensação de dispersão e escolha dos DCM's,
- avaliação da exequibilidade da ligação,
- verificações finais.

2 Análise e Resultados

2.1 Seleção das ligações óticas no anel A17

As ligações óticas no anel A17 que se pretendem estudar são as mais longas, asseguradas por este, de forma a assegurar todas as margens e penalidades. Sabendo que o anel em estudo é composto por seis secções, induz-se que as ligações mais longas atravessam cinco secções. Como forma de apoio à análise destas ligações, realizámos a *Tabela 3* onde é possível observar que a ligação mais longa é a ligação E5 (Porto - Aveiro), com um comprimento de ligação equivalente a 447 Km. Esta ligação é a escolhida, devido ao facto de ser a mais limitativa, uma vez que é esta que apresentará mais perdas devido aos materiais (fibras, juntas e conectores).

Ligação (mais longa)	Nós de entrada e saída	Secções atravessadas	Comprimento da ligação
A1	Viseu – Peso da Régua	A + B + C + D + E	416 Km
B2 Peso da Régua - Chaves		B + C + D + E + F	432 Km
C3 Chaves – Braga		C + D + E + F + A	411 Km
D4	Braga - Porto	D + E + F + A + B	382 Km
E5	Porto - Aveiro	E + F + A + B + C	447 Km
F6	Aveiro - Viseu	F + A + B + C + D	427 Km

Tabela 3 - Ligações mais longas do anel A17 e respetivos comprimentos.

2.2 Eliminação de emissores e recetores que não apresentem a largura de banda necessária para a capacidade pretendida

Primeiramente, foi necessário calcular a **largura de banda** necessária para cada um dos 22 **canais** existentes, chegando-se à conclusão que **B**-3 dB = 6 GHz. Assim, após comparação com a tabela dos emissores do enunciado do projeto verifica-se, que emissores e recetores têm o **B**-3 dB > 6 GHz. Assim, nas análises daqui em diante, serão apenas considerados os **emissores A**, **B**, **C** e **D** e os **recetores A**, **B**, **C**, **D** e **H** como demonstrado na *Tabela 4*. É possível observar as fórmulas para o cálculo da largura de banda a -3 dB no <u>Anexo A – Número de Canais e</u> Cálculo Largura de Banda a -3 dB.

ID do Emissor	Largura de Banda a -3 dB [GHz]	Largura de Linha a Meia Potência [MHz]		
A	13 10			
В	11	6		
С	9	2		
D	6.5	8		
ID do Recetor	Largura de Band	da a -3 dB [GHz]		
A	1	0		
В	1	2		
С	8			
D	9			
Н	6.	.5		

Tabela 4 – Emissores e Recetores que cumprem cláusula de largura de banda para o anel A17.

2.3 Avaliação da necessidade de compensação de dispersão e escolha dos DCM's

Quando se pretende fazer uma avaliação da necessidade de compensação de dispersão, tem que se primeiramente identificar as **frequências óticas** (comprimentos de onda) dos 22 canais. Assume-se também que os canais podem estar em qualquer parte da banda ótica disponível. Para isto, é necessário identificar essa banda ótica e que **equipamentos a limitam**. Apenas os **amplificadores óticos** e **multiplexadores/desmultiplexadores WDM**, usados nos **ROADM's** mostram **limitação de banda**. De entre os 2 multiplexadores/desmultiplexadores disponíveis, apenas o **AWG100W** é **viável**. Isto deve-se ao facto, de apenas este **garantir a abrangência de todos os canais do anel A17** (22 canais), tendo este **40** disponíveis, ao contrário do **AWG50** (8 canais). Na *Tabela* 5, é possível observar algumas características do **AWG100** e dos **EDFA oa3500** e **oa4500** na *Tabela* 6.

Características	Valores
Tipo	AWG
Número Canais	40
Espaçamento entre canais [GHz]	100
Banda de passagem de referência [GHz]	± 12.5
Gama de cumprimentos de onda de funcionamento [nm]	Banda C (1530-1565) ou L (1565-1625)
Perdas de inserção [dB]	5.0 (máximo)
Variação pico a pico das perdas entre canais [dB]	0.5 (máximo)
Largura de banda a -3 dB [GHz]	75

Tabela 5 – Características do AWG 100.

EDFA	λ _{min} [nm]	λ _{max} [nm]
Oa3500	1430	1563
Oa4500	1530	1564

Tabela 6 – Características dos EDFA.

Após a observação da tabela acima, é possível garantir que a banda disponível está entre 1530 –1564 [nm]. Agora, é preciso averiguar se o AWG 100 pode ser utilizado, tendo em conta se a sua largura de banda (75 GHz) é suficiente para receber a capacidade que se pretende transmitir em cada canal e, também se tem que examinar a deriva de sinal causada pelo emissor. Para os emissores A, B, C, e D, tendo em conta a deriva máxima de frequência de cada um deles, foi possível calcular a largura de banda necessária e verificar se esse valor será inferior ao do AWG100 e assim, possível de ser acomodado por este.

Na *Tabela 7*, é possível verificar esses valores. Os cálculos são possíveis de observar no *Anexo*

<u>B – Largura de Banda Necessária AWG</u>

ID do Emissor	Largura de Banda Necessária (AWG) [GHz]	Deriva Máxima de Frequência [GHz]
A	29	± 4.5
В	27	± 3.5
С	25	± 2.5
D	26	± 3

Tabela 7 – Largura de Banda Necessária (AWG) e Deriva Máxima para cada Emissor.

2.3.1 Frequências e comprimentos de onda centrais dos 22 canais

A imposição do **espaçamento de 100GHz**. Com **22 canais de banda disponível**, torna assim possível identificar 3 alternativas para delinear um plano de **comprimentos de onda**, de acordo com as limitações que os canais sofrem pelo ITU-T, como é demonstrado na *Tabela 8*, os cálculos realizados encontram-se em <u>Anexo C – Cálculos Frequências e Comprimentos de</u> *Onda*:

- 22 canais encostados ao extremo inferior da banda disponível,
- 22 canais centrados aproximadamente ao meio da banda disponível,
- 22 canais encostados ao extremo superior da banda disponível

ID do		Inferior da Pisponível		la Banda onível		uperior da isponivel
Canal	[THz]	[nm]	[THz]	[nm]	[THz]	[nm]
1	193.7	1547.72	192.9	1554.13	191.9	1562.23
2	193.8	1546.92	193	1553.33	192.0	1561.42
3	193.9	1546.12	193.1	1552.52	192.1	1560.61
4	194.00	1545.32	193.2	1551.72	192.2	1559.79
5	194.1	1544.53	193.3	1550.92	192.3	1558.98
6	194.2	1543.73	193.4	1550.12	192.4	1558.17
7	194.3	1542.94	193.5	1549.32	192.5	1557.36
8	194.4	1542.14	193.6	1548.51	192.6	1556.55
9	194.5	1541.35	193.7	1547.72	192.7	1555.75
10	194.6	1540.56	193.8	1546.92	192.8	1554.94
11	194.7	1539.77	193.9	1546.12	192.9	1554.13
12	194.8	1538.98	194.0	1545.32	193.0	1553.33
13	194.9	1538.19	194.1	1544.53	193.1	1552.52
14	195.0	1537.40	194.2	1543.73	193.2	1551.72
15	195.1	1536.61	194.3	1542.94	193.3	1550.92
16	195.2	1535.82	194.4	1542.14	193.4	1550.12
17	195.3	1535.04	194.5	1541.35	193.5	1549.32
18	195.4	1534.25	194.6	1540.56	193.6	1548.51

Tabela 8 – Frequências e comprimentos de onda dos 22 canais: extremo inferior e superior e central de banda disponível..

2.3.2 Análise de Necessidade de Compensação

Tendo em conta os 22 canais de 10 Gbit/s, o valor máximo da dispersão residual para uma penalidade devido à dispersão associada à modulação de 1 dB irá depender exclusivamente da localização em que os canais se encontram. Assim, iremos escolher o canal com o valor de dispersão mais elevado, de modo a que os outros 21 canais não estejam tão subcompensados. O canal escolhido é o canal 1, pois este apresenta o maior comprimento de onda para cada plano de frequências, estes valores são possíveis observar na *Tabela 9*.

	Extremo Inferior da Banda Disponível	Centro da Banda Disponível	Extremo Superior da Banda Disponível
Comprimento de onda [nm]	1547.72	1554.13	1562.23
Dispersão para a frequência ótica do canal [ps/(nm*Km)]	17.33	17.70	18.17
Dispersão Residual Máxima por Ligação [ps/nm]	751.74	745.54	737.83

Tabela 9 – Valores de dispersão para a frequência do canal 1 e dispersão residual máxima do canal 1.

Através destes valores, é possível concluir que é possível utilizar um valor menor de dispersão residual, com a condição de que seja utilizado o extremo superior da banda disponível, algo que exige mais dispersão, portanto maior comprimento de DCF e por consequência também maiores perdas. Também é introduzida dispersão na banda pela SSMF, tornando assim impossível concluir de antemão que banda é a melhor.

Assim, ir-se-á considerar o DCM que apresenta o valor de **dispersão mais baixo (em módulo devido à modulação externa)** para cada comprimento das secções, algo que é o pior caso do **ponto de vista das perdas**.

A banda que irá ser escolhida, será aquela que tenha o **total de perdas mais baixo**, nos DCM, na ligação mais longa. Isto pois as perdas nos outros componentes não dependem da banda utilizada.

Na *Tabela 10*, é possível observar os dados **DCM tabelados e para os comprimentos de onda de cada plano.**

	Comprimento Onda [nm]	Comprimento Onda [nm]	Comp	rimento [nm]	Onda	m	perdas [dB]
	1550	1569	1554. 13	1547. 72	1562. 23		
DCM-	227	249	331.5	324.4	340.5	1105263	2.4
DCM-	-327	-348	497.1	486.0	511.2	158 - 1736842	3.4
30 DCM- 40	-490 -653	-523 -697	662.5 6	647.7 2	681.3	105 - 2315789 474	4.1
DCM- 60	-980	-1045	994.1	-972.2	- 1021. 84	3421052 632	6.1
DCM- 80	-1307	-1394	1325. 91	1296. 56	1363. 00	4578947 368	7.5
DCM- 100	-1633	-1742	1656. 69	1619. 92	1703. 16	5736842 105	8.9
DCM- 120	-	-	1987. 48	1943. 28	2043. 32	-	10.3
DCM- 140	-	-	2318. 26	2266. 64	2383. 48	-	11.7

Tabela 10 – DCM tabelados e para comprimentos de onda de cada plano.

Agora nas *Tabelas 11, 12 e 13* vai ser possível observar o processo de **seleção dos DCM's** para as localizações **superiores, centrais e inferiores da banda**. Uma vez que o **extremo inferior** da banda apresenta **menor valor de dispersão residual**, será este o considerado doravante como demonstrado nas tabelas a seguir.

	Secção A	Secção B	Secção C	Secção D	Secção E	Secção F
Comprimento da						
secção [Km]	71	92	121	56	76	87
Dispersão na SSMF	1230.264	1594.146	2096.648	970.3497	1316.903	1507.507
[ps/nm]	863	019	569	508	233	649
D residual por secção	150.3467	150.3467	150.3467	150.3467	150.3467	150.3467
[ps/nm]	602	602	602	602	602	602
	-	-	-	-	-	-
D acc DCM ideal	1079.918	1443.799	1946.301	820.0029	1166.556	1357.160
[ps/nm]	102	259	808	906	473	888
Fase 1						
Dis. DCM	-972.2	-1296.56	-1943.28	-972.2	-1296.56	-1296.56
				-		
	258.0648	297.5860	153.3685	1.850249	20.34323	210.9476
Dres,sec [ps/nm]	626	191	686	233	318	485
Subestimação disp.	107.7181	147.2392	3.021808	152.1970	130.0035	60.60088
[ps/nm]	024 727.5124	589	445	094	27	834 918.1168
Dres total [ps/nm]	727.5124 343	680.3952 202	640.8740 637	785.0915 142	940.3103 32	918.1168 496
Dies total [ps/lilli]	343	202	057	142	32	470
	ı		ı	ı		1
Fase 2						
Dis. DCM	-972.2	-1619.92	-1943.28	-972.2	-1296.56	-1296.56
		-		-		
	258.0648	25.77398	153.3685	1.850249	20.34323	210.9476
Dres,sec [ps/nm]	626	088	686	233	318	485
		-		-	-	
Subestimação disp.	107.7181	176.1207	3.021808	152.1970	130.0035	60.60088
[ps/nm]	024	411	445	094	27	834
D	404.1524	357.0352	640.8740	461.7315	616.9503	594.7568
Dres total [ps/nm]	343	202	637	142	32	496
Perdas DCM secção [dB]	6.1	8.9	10.3	6.1	7.5	7.5
Perdas DCM's ligação começa na ligação K	38.9	40.3	37.5	36.1	40.3	38.9
começa na ngaçao K	36.9	40.3	37.3	30.1	40.3	36.9
[uD]						

Tabela 11 – Processo seleção DCM's do extremo inferior da banda.

	Secção A	Secção B	Secção C	Secção D	Secção E	Secção F
Comprimento da						
secção [Km]	71	92	121	56	76	87
Dispersão na SSMF	1256.716	1628.421	2141.728	991.2131	1345.217	1539.920
[ps/nm]	694	631	45	667	869	455
D residual por secção	149.1091	149.1091	149.1091	149.1091	149.1091	149.1091
[ps/nm]	091	091	091	091	091	091
	-	-	-	-	-	-
D acc DCM ideal	1107.607	1479.312	1992.619	842.1040	1196.108	1390.811
[ps/nm]	584	522	34	576	76	346
Fase 1						
r asc 1			İ		! 	
	994.1289	1325.911	1987.475	994.1289	1325.911	1325,911
Dis. DCM	474	053	263	474	053	053
23012 (.,,,	055	203	.,,	055	033
	262.5877	302,5105	154.2531	2.915780	19.30681	214.0094
Dres,sec [ps/nm]	461	784	863	655	648	028
Dres,sec [ps/iiii]	401	704	803	055	-	028
Subestimação disp.	113,4786	153,4014	5.144077	152.0248	129.8022	64.90029
[ps/nm]	37	693	203	898	927	365
LP	735,7425	687.1642	647.2413	795,4987	952.6677	930.4451
Dres total [ps/nm]	467	034	711	632	302	33
				L		'
Fase 2						
1 430 2			_	_	_	_
	994.1289	1656.693	1987.475	994.1289	1325.911	1325,911
Dis. DCM	474	158	263	474	053	053
		-		-		
	262.5877	28.27152	154.2531	2.915780	19.30681	214.0094
Dres,sec [ps/nm]	461	687	863	655	648	028
		-		-	-	
Subestimação disp.	113.4786	177.3806	5.144077	152.0248	129.8022	64.90029
[ps/nm]	37	36	203	898	927	365
	404.9604	356.3820	647.2413	464.7166	621.8856	599.6630
Dres total [ps/nm]	415	981	711	579	249	278
Perdas DCM secção		0.0	10.2		7.5	7.5
[dB]	6.1	8.9	10.3	6.1	7.5	7.5
Perdas DCM's ligação						
começa na ligação K	38.9	40.3	37.5	36.1	40.3	38.9
[dB]						
լաթյ			L	l	l	

Tabela 12 – Processo seleção DCM's do centro da banda.

	Secção A	Secção B	Secção C	Secção D	Secção E	Secção F
Comprimento da						
secção [Km]	71	92	121	56	76	87
Dispersão na SSMF	1289.769	1671.250	2198.057	1017.282	1380.597	1580.421
[ps/nm]	163	184	307	72	978	369
D residual por secção	147.5668	147.5668	147.5668	147.5668	147.5668	147.5668
[ps/nm]	872	872	872	872	872	872
	-	-	-	-	-	-
D acc DCM ideal	1142.202	1523.683	2050.490	869.7158	1233.031	1432.854
[ps/nm]	276	296	419	332	091	482
Fase 1						
	-	-	-	-	-	-
	1021.839	1363.000	2043.322	1021.839	1363.000	1363.000
Dis. DCM	474	526	632	474	526	526
				-		
	267.9296	308.2496	154.7346	4.556753	17.59745	217.4208
Dres,sec [ps/nm]	897	573	751	232	144	43
				-	-	
Subestimação disp.	120.3628	160.6827	7.167787	152.1236	129.9694	69.85395
[ps/nm]	025	7	878	405	358	572
	743.9547	693.4458	653.1259	806.6408	965.9323	943.7781
Dres total [ps/nm]	204	736	06	882	165	119
Fase 2						
	-		-	-	-	-
	1021.839		2043.322	1021.839	1363.000	1363.000
Dis. DCM	474	-1703.16	632	474	526	526
		-		-		
	267.9296	31.91139	154.7346	4.556753	17.59745	217.4208
Dres,sec [ps/nm]	897	535	751	232	144	43
		-		-	-	
Subestimação disp.	120.3628	179.4782	7.167787	152.1236	129.9694	69.85395
[ps/nm]	025	826	878	405	358	572
	403.7936	353.2848	653.1259	466.4798	625.7712	603.6170
Dres total [ps/nm]	677	209	06	356	639	592
Perdas DCM secção	6.1	8.9	10.3	6.1	7.5	7.5
[dB]	0.1	8.9	10.3	0.1	7.5	7.5
Perdas DCM's ligação		1				
começa na ligação K	38.9	40.3	37.5	36.1	40.3	38.9
[dB]						
		•				

Tabela 13 – Processo seleção DCM's do extremo superior da banda.

Após observação das tabelas acima, é possível concluir que todas as **ligações do anel A17** têm **dispersão residual sempre inferior à dispersão residual máxima**.

Todos estes cálculos vão ser possíveis observar no Anexo D – Análise de Dispersão.

2.4 Avaliação de Exequibilidade da Ligação

2.4.1 Ligação Sem Amplificação ótica

Agora, iremos avaliar a necessidade de implementar **amplificação ótica**. Para ser **exequível sem amplificação ótica**, é necessário que se consiga obter a **margem de sistema requerida de 2.5 dB sem esta**. Mais uma vez, devem ser considerados os **piores casos** possíveis de **perdas** nos componentes. Deve-se ainda considerar que as atenuações dos **VOA's** estão em **0 dB**, visto que corresponde à **melhor situação** relativa à **potência de entrada no emissor**. Na ligação mais longa **E5** (**Porto – Aveiro**), onde atravessa as secções **E+F+ A+ B+C**, o sinal irá percorrer **1 ROADM** em modo de **extração**, **4** em modo de **passagem** e **1** em modo de **inserção**. Na *Tabelas 14* é possível observar a **ligação E5** e os respetivos **modos de ROADM** em cada nó.

Ligação E5	Comprimento Secção [Km]	Inicio Secção	ROADM's
E	76	Porto	Inserção - T _x
F	87	Aveiro	Passagem
A	71	Viseu	Passagem
В	92	Peso da Régua	Passagem
С	121	Chaves	Passagem
Total	447	Braga	Extração - R _x

Tabela 14 – Ligação E5 e respetivos ROADM's.

Agora, é necessário apresentar os **valores das perdas** para cada um dos **elementos**, tanto **ROADM's** nos seus **modos** específicos e de outros **componentes nos nós**. Esses valores estão apresentados abaixo nas *Tabelas 15* e *16*.

Modo Funcionamen to	Perdas demux [dB]	Perdas comutador [dB]	Perdas mux [dB]	Perdas conetores emissor e recetor	Total [dB]
Passagem	5	1.5	5	0	11.5
Extração	5	1.5	0	0.4	6.9
Inserção	0	1.5	5	0.4	6.9

Tabela 15 – Perdas nos ROADM's do anel.

Se cçã o	Comprime nto da fibra	Número conector es	Número de juntas	Perdas fibra [dB]	Perdas conectores [dB]	Perdas juntas [dB]	Perdas DCM [dB]	Tota l [dB]
				,		,		30.2
E	76	2	75	16.72	0.8	5.25	7.5	7
								33.4
F	87	2	86	19.14	0.8	6.02	7.50	6
								27.4
A	71	2	70	15.62	0.8	4.9	6.1	2
								36.3
В	92	2	91	20.24	0.8	6.37	8.90	1
								46.1
C	121	2	120	26.62	0.8	8.4	10.3	2

Tabela 16 – Perdas nos equipamentos em cada secção da ligação E5.

Após a análise dos dados, consegue-se concluir que existe um **total de perdas de 233.38 dB**. Tais cálculos para as perdas, são possíveis observar no <u>Anexo E - Perdas no Anel (Sem Amplificação)</u>.

Para a verificação da **exequibilidade da ligação E5 sem amplificação ótica**, foi necessário o cálculo das **margens de sistema de cada par emissor-recetor** $(T_x - R_x)$. Para isso, foi calculado no <u>Anexo F - Cálculo da Margem dos pares Tx-Rx (Sem Amplificação)</u>, os valores de **r**_{ext} e **potência média** para o emissor e o **parâmetro Q**, **efeito filtro** e **B**_{e,n} para o recetor para a obtenção da **sensibilidade**. Considerou-se também o valor máximo de penalidade a soma entre o valor de **penalidade máxima aceitável de vido à dispersão (1 dB)** e a **penalidade máxima aceitável devido à efeitos não lineares da fibra (1 dB).** Após esses cálculos, foi possível a obtenção da *Tabela 17* com as **margens** para cada um dos **22 pares emissor-recetor**.

Par Tx- Rx	Potência média acoplada à fibra [dBm]	Perdas no caminho [dB]	Sensibilidade [mW]	Sensibilidade [dBm]	Valor máximo de penalidade [dB]	Margem [dB]
A-A	8.063522236	233.38	4.30465E-06	-23.66061966	2	-203.6558581
A-B	8.063522236	233.38	9.38712E-06	-20.27467706	2	-207.0418007
A-C	8.063522236	233.38	1.14968E-05	-19.39422076	2	-207.922257
A-D	8.063522236	233.38	1.69946E-05	-17.69688393	2	-209.6195938
A-H	8.063522236	233.38	7.63515E-06	-21.17182607	2	-206.1446517
B-A	8.451536157	233.38	4.05779E-06	-23.91709961	2	-203.0113642
B-B	8.451536157	233.38	8.8488E-06	-20.531157	2	-206.3973068
В-С	8.451536157	233.38	1.08375E-05	-19.65070071	2	-207.2777631
B-D	8.451536157	233.38	1.602E-05	-17.95336388	2	-208.9751
В-Н	8.451536157	233.38	7.1973E-06	-21.42830602	2	-205.5001578
C-A	8.860477688	233.38	3.87293E-06	-24.11960308	2	-202.3999192
C-B	8.860477688	233.38	8.44567E-06	-20.73366047	2	-205.7858618
C-C	8.860477688	233.38	1.03438E-05	-19.85320418	2	-206.6663181
C-D	8.860477688	233.38	1.52902E-05	-18.15586735	2	-208.363655
С-Н	8.860477688	233.38	6.8694E-06	-21.63080948	2	-204.8887128
D-A	6.727302021	233.38	3.62507E-06	-24.40683403	2	-204.2458639
D-B	6.727302021	233.38	7.90516E-06	-21.02089143	2	-207.6318066
D-C	6.727302021	233.38	9.68181E-06	-20.14043513	2	-208.5122628
D-D	6.727302021	233.38	1.43117E-05	-18.4430983	2	-210.2095997
D-H	6.727302021	233.38	6.42978E-06	-21.91804044	2	-206.7346575

Tabela 17 – Margens sem amplificação ótica para os 22 pares emissor-recetor.

Após a observação da tabela, concluímos que todas as margens de cada par emissor-recetor são inferiores à margem de sistema de 2.5 dB. Conclui-se assim, que a ligação não é exequível sem amplificação ótica.

2.4.2 Pré-Amplificação Ótica

Nesta fase, foi utilizado um **amplificador por secção, colocado antes de cada ROADM**, de modo a que estes **compensem as perdas da secção em que se encontram** e também do **ROADM antecedente**. Para isto, foi necessário o cálculo do **ganho do amplificador**, que irá efetuar a **compensação**. Para isso, ele tem em consideração as **perdas totais**. Perdas totais essas, que os seus cálculos estão efetuados no <u>Anexo G – Perdas e Ganhos no Anel (Pré-Amplificação).</u>

Na *Tabela 18*, é possível observar o **ganho requerido ao pré-amplificador ótico** e as **perdas totais por secção.**

Secção	Total perdas fibra, conectores e juntas [dB]	Perdas do ROADM em modo de passagem [dB]	Total de perdas na secção [dB]	Ganho requerido ao pré- amplificador [dB]
E	30.27	11.9	42.17	42.17
F	33.46	11.9	45.36	45.36
A	27.42	11.9	39.32	39.32
В	36.31	11.9	48.21	48.21
C	46.12	11.9	58.02	58.02

Tabela 18 – Total de perdas por secção e ganho requerido ao pré-amplificador ótico.

Observando a *Tabela 18*, e os **ganhos requeridos ao pré-amplificador** e observando os amplificador **disponibilizados neste projeto**, conclui-se que nenhum deles (**OA3500 e**

OA4500), conseguem abrigar o ganho necessário. Isto pois, o ganho máximo do amplificador OA3500 é de 23 dB e o do amplificador OA4500 é de 32 dB. Assim, consegue concluir-se que a ligação E5 não é exequível recorrendo a pré-amplificação ótica.

2.4.3 Pré e Pós Amplificação Ótica

Após se concluir que a **ligação E5 não é exequível utilizando apenas pré-amplificação**, recorre-se agora **pré e pós amplificação ótica**. Ao invés do utilizado anteriormente, cada **secção possuirá 2 amplificadores**. 1 deles será colocado **antes do ROADM (pré-amplificador)**, e o outro será colocado **depois do ROADM (pós-amplificador)**. O **pré-amplificador** irá **compensar as perdas da secção** (fibras, conectores, juntas), já o pós-amplificador irá compensar as perdas do ROADM seguinte.

Para isto, foi necessário o cálculo do **ganho do pré-amplificador** e **pós-amplificador**, que irá efetuar a **compensação**. Para isso, ele tem em consideração as **perdas totais**.

Na *Tabela 19*, é possível observar o ganho requerido ao pré-amplificador ótico, ganho requerido ao pós-amplificador ótico e as perdas totais por secção.

Secção	Total perdas fibra, conectores e juntas [dB]	Perdas do ROADM em modo de passagem [dB]	Total de perdas na secção [dB]	Ganho requerido ao pré- amplificador [dB]	Ganho requerido ao pós- amplificador [dB]
E	30.27	11.9	42.17	30.27	11.9
F	33.46	11.9	45.36	33.46	11.9
A	27.42	11.9	39.32	27.42	11.9
В	36.31	11.9	48.21	36.31	11.9
C	46.12	11.9	58.02	46.12	11.9

Tabela 19 – Total de perdas por secção e ganho requerido ao pré e pós-amplificador ótico.

Observando a *Tabela 19*, e os ganhos requeridos ao pré-amplificador, verificamos que estes são mais baixos que anteriormente, no entanto, apenas passaria a ser exequível nas secções E e A (não sendo por isso mandatário amplificação de linha), utilizando o amplificador OA4500. Seria por isso necessário amplificação de linha nas secções C, E e F. Já observando os ganhos requeridos ao pós-amplificador, a ligação seria exequível em todas as secções com o amplificador OA3500.

2.4.4 Pré e Pós Amplificação Ótica em todos os ROADMS e Amplificação de Linha Unicamente nas Secções de Multiplexagem onde seja Necessário

Após verificação do realizado anteriormente, concluiu-se que que a **ligação E5**, **não cumpre** a **margem de sistema requerida de 2.5 dB** nem quando é usado um **pré amplificador**, nem quando este é **complementado** com um **pós-amplificador**. Note-se que foram necessários a utilização de **6 amplificadores de linha** para se chegar a ter pelo menos um **par emissor-recetor** com as **margens pretendidas**. A ordem de **adição dos amplificadores de linha** foi:

- 1º Secção C,
- 2º Secção B,
- 3º Secção F,
- 4º Secção E,
- 5º Secção A,
- 6° 2ª vez na Secção C₁

Esta ordem de adição de amplificadores de linha, era escolhida tendo em conta a necessidade de se aumentar a margem. Para isso, era necessário o aumento do OSNR, que era possível, através da redução do ruido ASE. A redução do desse ruído poderia ser realizada com a adição de um amplificador de linha. Por isso, até haver um par emissor-recetor que cumprisse a margem, era adicionado um amplificador de linha na secção com o maior valor de ruído ASE. A adição do amplificador de linha, introduz 2 conectores para ligar o amplificador de linha à fibra. Na *Tabela 20*, é apresentado os valores de margem de modo a cumprir a margem de sistema de 2.5 dB.

Amplificador	Ganho [dB]	Ganho [linear]	S _{ASE} [W/Hz]	Potência total de ruído ASE [W]	Potência total de ruído ASE p/Sec [W]
Linha, E	15.535	35.76844006	1.10465E-17	1.65697 E-06	3.31394E- 06
Pré -, E	15.535	35.76844006	1.10465E-17	1.65697 E-06	3.31394E- 06
Linha, F	17.13	51.64163693	1.60896E-17	2.41345 E-06	4.82689E- 06

iscte

Sistemas de Comunicação Ótica

Pré -, F	17.13	51.64163693	1.60896E-17	2.41345	4.82689E-
				E-06	06
Linha, A	14.11	25.76321157	7.86766E-18	1.18015	2.3603E-06
				E-06	
Pré -, A	14.11	25.76321157	7.86766E-18	1.18015	2.3603E-06
				E-06	
Linha, B	18.555	71.69683756	2.24615E-17	3.36922	6.73845E-
				E-06	06
Pré -, B	18.555	71.69683756	2.24615E-17	3.36922	6.73845E-
				E-06	06
Linha, C	15.9066	38.964281	1.20618E-17	1.80928	3.61855E-
	6667			E-06	06
Linha, C	15.9066	38.964281	1.20618E-17	1.80928	3.61855E-
	6667			E-06	06
Pré -, C	15.9066	38.964281	1.20618E-17	1.80928	5.42783E-
	6667			E-06	06
Pós	11.9	15.48816619	4.60312E-18	6.90468	6.90468E-
				E-07	07

Potência do ruído total [dBm]	- 16.3156 6555
OSNR [dB]	14.3242 7263

Par Tx-Rx	r	Q^2	$\mathbf{B}_{\mathrm{e,n}}$	B ₀ [Hz]	OSNR requerida [dB]
A-A	0.14125 3754	40.896025	10261721530	7500000 0000	12.33280293
A-B	0.14125 3754	40.896025	12199688862	7500000 0000	13.0562277
A-C	0.14125 3754	40.896025	8133125908	7500000 0000	11.36780543
A-D	0.14125 3754	40.896025	9996486611	7500000 0000	12.22366982
А-Н	0.14125 3754	40.896025	6670118994	7500000 0000	10.55215144
B-A	0.11220 1845	40.896025	10261721530	7500000 0000	11.71576151
В-В	0.11220 1845	40.896025	12199688862	7500000 0000	12.43293219
В-С	0.11220 1845	40.896025	8133125908	7500000 0000	10.76040216
B-D	0.11220 1845	40.896025	9996486611	7500000 0000	11.607642
В-Н	0.11220 1845	40.896025	6670118994	7500000 0000	9.954140362
C-A	0.08912 5094	40.896025	10261721530	7500000 0000	11.21177016

С-В	0.08912 5094	40.896025	12199688862	7500000 0000	11.92238381
C-C	0.08912 5094	40.896025	8133125908	7500000 0000	10.26635387
C-D	0.08912 5094	40.896025	9996486611	7500000 0000	11.10470542
С-Н	0.08912 5094	40.896025	6670118994	7500000 0000	9.469601953
D-A	0.05623 4133	40.896025	10261721530	7500000 0000	10.46147158
D-B	0.05623 4133	40.896025	12199688862	7500000 0000	11.15866075
D-C	0.05623 4133	40.896025	8133125908	7500000 0000	9.535875282
D-D	0.05623 4133	40.896025	9996486611	7500000 0000	10.35653932
D-H	0.05623 4133	40.896025	6670118994	7500000 0000	8.757521333

Par Tx-Rx	OSNR [dB]	OSNR requerida [dB]	Valor máx penalidade [dB]	Margem [dB]
A-A	14.3242 7263	12.33280293	2	- 0.00853 03
A-B	14.3242 7263	13.0562277	2	- 0.73195 5064
A-C	14.3242 7263	11.36780543	2	0.95646 7208
A-D	14.3242 7263	12.22366982	2	0.10060 281
А-Н	14.3242 7263	10.55215144	2	1.77212 1191
B-A	14.3242 7263	11.71576151	2	0.60851 1127
В-В	14.3242 7263	12.43293219	2	- 0.10865 956
В-С	14.3242 7263	10.76040216	2	1.56387 0471
B-D	14.3242 7263	11.607642	2	0.71663 0633
В-Н	14.3242 7263	9.954140362	2	2.37013 2272
C-A	14.3242 7263	11.21177016	2	1.11250 2479
С-В	14.3242 7263	11.92238381	2	0.40188 8825

C-C	14.3242	10.26635387	2	2.05791
	7263	10.20035507		8765
C-D	14.3242	11.10470542	2	1.21956
	7263	11.104/0342		7213
С-Н	14.3242	9.469601953	2	2.85467
	7263			0681
D-A	14.3242	10.46147158	2	1.86280
	7263			1056
D-B	14.3242	11 15066075	2	1.16561
	7263	11.15866075		1883
D-C	14.3242	0.525075202	2	2.78839
	7263	9.535875282		7352
D-D	14.3242	10.25652022	2	1.96773
	7263	10.35653932		3316
D-H	14.3242	8.757521333	2	3.56675
	7263			1301

Secções	Comprimento (km)	Comprimento Efetivo (km)
E1	55.51875	18.5550284
E2	20.48125	12.74587713
F1	61.5	18.8649456
F2	25.5	14.31613432
A1	50.175	18.18644136
A2	20.825	12.86662499
B1	66.84375	19.0726234
B2	25.15625	14.22084825
C1	53.9125	18.45452305
C2	53.9125	18.45452305
C3	13.175	9.612939562

Tabela 20 – Contribuições da potência ruído ASE e margens para pares emissores-recetores em cada amplificador e localização dos amplificadores com 6 amplificadores de linha nas secções acima referidas.

É possível perceber pela observação da tabela acima que os **pares emissor recetor-recetor C- H, D-C e D-H cumprem a margem de sistema de 2.5 dB**. O emissor C, para além de garantir uma **boa margem**, é também aquele que tem **menor largura de banda** (sendo por isso o **mais barato**). Em suma, conclui-se que o **C** é o emissor escolhido.

Em termos de margem de sobrecarga, tendo em consideração a **potência ótica média por canal** ser de **-1.99 dBm** e os valores mais baixos das **perdas do ROADM e dos dois conectores** são de 5+0.7+2*0.3 = **6.3 dB**. Assim, o pior caso possível (com emissor C, que é apenas o recetor H) em termos de sobrecarga de sistema é de -3-(-1.99-6.3) = **5.29 dB** > **2 dB**, logo **cumpre a margem de sobrecarga do sistema.**

2.5 Verificações Finais

Primeiramente, foi verificado o nível de **potência ótica** que chegava ao recetor (no pior caso) se era superior que a sensibilidade do **recetor C**. No pior caso possível, a potência ótica média à entrada do recetor é de -1.99-(5+1.5+2*0.4) = **-9.29 dBm**. Sendo a sensibilidade do par emissor recetor **C-H de -21.63 dBm**, concluindo assim que o é **desprezável o ruído do recetor** no desempenho da margem.

Em segundo lugar, verificamos que a dispersão residual para o plano inferior da banda é de **640.87 ps/nm**. Com um **ritmo binário de 10 Gbit/s** para o **emissor C**, com uma **largura de linha de 2 MHz**, esta dispersão residual leva a uma **penalidade de 6.57*10**-8**dB**, sendo por isso **desprezável**. (cálculos possíveis de observar no <u>Anexo I – Cálculo de Penalidade</u>).

Em terceiro lugar, foi necessário a validação se o nível de **potência à entrada dos EDFA's** se encontram dentro dos limites de funcionamento. Calculou-se por isso a **potência à entrada** do EDFA para a secção de amplificação que apresentava mais perdas, sendo essa a **secção B** com **18.555 dB**. Assim, a **potência ótica média por canal** à entrada dos amplificadores é de **-1.99** dBm – **18.555 dB** = **-20.545 dBm**. Assim, o valor encontra-se no intervalo de **-30 a 0 dBm** em que o amplificador funciona corretamente.

Em quarto lugar, as perdas dos VOA's serão tais para que os canais em modo de passagem a atenuação à entrada e também à saída do ROADM será de 11.9 dB. Se o canal estiver a ser inserido o VOA já irá produzir uma atenuação que faz com que a potência à saída do pósamplificador será igual à potência dos canais em modo de passagem. Sendo essa potência de -1.99 dBm. As perdas mínimas do VOA num canal que esteja inserido, ter-se-á um valor de 8.86-0.4-1.5-(-1.99-11.9+0.4+5) = 15.45 dB.

Para concluir, verifica-se que a margem para a ligação mais longa que inclua a **secção D** para assim se poder concluir se esta necessita de amplificação de linha. Essa ligação é a **B2** que irá atravessar as **secções B+C+D+E+F**. As perdas nessa secção são de **23.07 dB**. Como o ganho requerido ao pré-amplificador da secção D é de **11.9 dB**, a **potência total que existe na entrada do recetor** é de **-16.27 dBm**. A **OSNR** que se obtém à entrada do recetor é de **14.27 dB**, tendo sido também considerado o valor de **-1.99 dBm** para a **potência ótica do canal à saída do último EDFA**, por ser a mais limitativa para a secção mais **longa que inclui a secção D**. Assumindo tudo isto, obteve-se para o **par emissor-recetor C-H** a **margem de 2.8 dB** > **2.5**

cumprindo assim a margem. Assim sendo, não é necessário amplificação de linha para a secção D.

Todos os cálculos para a realização da tabela acima e as tabelas anteriores até se ter chegado ao valor que cumprisse a margem de sistema, estão apresentados no <u>Anexo H - Cálculos para Amplificação de Linha.</u>

3 Conclusão

É possível observar na *Figura 1*, o **esquema do anel** com a **localização dos equipamentos** principais para **um sentido da comunicação**, sabendo que para o outro sentido será **igual**.

Figura 1 – Esquema do anel para o sentido horário da comunicação.

Para conclusão do projeto, foi criada a *Tabela 21*, onde estão colocados todos os **equipamentos necessários** para a criação deste projeto.

Equipamento	Anel de Serviço	Anel de Proteção	
Fibra Ótica SMF-28	253 unidades (2 Km cada	253 unidades (2 Km cada	
	unidade)	unidade)	
DCM-60	2 unidades	2 unidades	
DCM-80	2 unidades	2 unidades	
DCM-100	1 unidade	1 unidade	
DCM-120	1 unidade	1 unidade	
AWG-100GHz	12 unidades	12 unidades	
Optical Switch	22*6 = 132 unidades	22*6 = 132 unidades	
VOA	22*6 = 132 unidades	22*6 = 132 unidades	
Emissor C	22*6 = 132 unidades	22*6 = 132 unidades	
Recetor H	22*6 = 132 unidades	22*6 = 132 unidades	
Juntas	247 unidades	247 unidades	
Conectores	24 unidades	24 unidades	
Amp. OAC-17F4500Cx	24 unidades	24 unidades	

Tabela 21 – Equipamentos a adquirir.

4 Anexos

Para a realização do projeto, foi necessário proceder a **diversos cálculos**, ao longo do projeto era indicado onde estariam esses **cálculos nos anexos agora descritos**.

4.1 Anexo A – Número de Canais e Cálculo da Largura de Banda a -3 dB

Primeiramente foi necessário calcular o **número de canais no sistema**. Para isto, era necessário dividir o **ritmo binário do sistema WDM** pelo **ritmo binário por canal**, como demonstrado na *Fórmula 1*.

$$N_{Ch} = \frac{R_{b,WDM}}{R_{h,Ch}} = \frac{220}{10} = 22$$

Fórmula 1 – Cálculo canais no sistema.

Após o cálculo do número de canais no sistema, foi necessário calcular a **largura de banda a** -3 dB nos emissores e recetores, tendo em conta o **fator** *roll-off*, α, do filtro que é cerca de 20%. Essa largura de banda é calculada com a **divisão do ritmo binário do canal por 2**, a multiplicar por 1.2 (1+ 0.2 de *roll-off*), como é demonstrado na *Fórmula 2*.

$$B_{-3 dB} = \frac{R_{b,Ch}}{2} * (1 + \alpha) = \frac{10}{2} * (1 + 0.2) = 6 [GHz]$$

Fórmula 2 – Cálculo largura de banda a -3 dB.

4.2 Anexo B – Largura de Banda Necessária

Para verificar se a **largura de banda AWG necessária** para cada emissor possível estava de acordo com a largura de banda que o **equipamento AWG-100GHz conseguia acomodar**, teve que se calcular. A **largura de banda AWG (75 GHz)**, tem que ser **superior ou igual** à **soma** de **2 vezes o ritmo binário por canal** com **2 vezes a deriva máxima da frequência**, como é possível observar na *Fórmula 3*.

$$B_{AWG} \geq 2 * R_{b.Ch} + 2 * \Delta v_{d.max}$$

Fórmula 3 – Cálculo para a largura de banda necessária (AWG).

4.3 Anexo C – Cálculos Frequências e Comprimentos de Onda

Devido ao facto de o multiplexador escolhido ter 100 GHz de espaçamento entre canais e 40 canais disponíveis, existem 3 planos onde delinear os comprimentos de onda de acordo com a grelha ITU-T, são estes os planos extremo inferior e superior, e central da banda disponível. Existem portanto 22 canais em cada plano, sendo por isso necessário primeiramente calcular as frequências de cada um dos canais. As frequências são calculadas através da *Fórmula 4*.

$$v_n = v_{anc} \pm \Delta v_{Ch}$$
, sendo $v_{anc} = 193.1$ [THz]

Fórmula 4 – Determinação frequência para os canais nos planos de acordo com a grelha ITU-T.

Após o cálculo das **frequências de cada canal** em cada plano, é possível calcular o **comprimento de onda de cada canal dependendo do plano** onde se encontram. Os **comprimentos de onda**, são calculados através da *Fórmula 5*.

$$\lambda_n = \frac{c}{v_n * 10^{-12}}$$
, sendo c (velocidade da luz) = $3 * 10^8$

Fórmula 5 – Determinação dos comprimentos de onda para os canais nos planos.

4.4 Anexo D – Análise de Dispersão

Para realizar **necessidade de compensação**, necessitamos de realizar alguns cálculos.

Primeiramente, sabendo que o $R_{b,Ch} = 10$ Gbit/s, e a penalidade máxima aceitável devido à dispersão é de 1 dB. Utiliza-se o comprimento de onda do canal 1 para um dos 3 planos.

Primeiramente teve que se calcular a dispersão para a **frequência ótica do canal, D** $_{\lambda}$, através da *Fórmula 6*.

$$D_{\lambda} = \Sigma \frac{s_0}{4*(\frac{\lambda_n - \lambda_0^4}{\lambda_n^3})}$$
, sendo $s_0 = 0.092~e~\lambda_0 = 1310~[nm]$

Fórmula 6 – Determinação da frequência ótica do canal para os canais nos planos.

Depois, observa-se que a largura de banda da modulação é maior que o ritmo binário do canal, sendo assim $\Delta \nu M >> \Delta \nu L_{r}$ o que implica que $\Delta P \Gamma(D \lambda L)|_{dB}^{M} \approx \Delta P \Gamma(D \lambda L)|_{dB}^{M}$

Assim, necessita-se de calcular a **figura de mérito máxima e a dispersão residual máxima**, como demonstrado na *Fórmula 7*.

$$\begin{split} D_{res} &= D_{\lambda} L \\ |f_m^M| &= \left| \frac{R_b^2 \cdot D_{res} \cdot \lambda^2}{2\pi c} \right| \Longrightarrow \left| \frac{R_b^2 \cdot D_{res} \cdot \lambda^2}{2\pi c} \right| \le \frac{\sqrt{10^{\frac{\Delta \overline{P_t}(D_{\lambda} L)}|_{dB,m\acute{a}x}}{5}} - 1}{8} \Longleftrightarrow \\ & \Leftrightarrow |D_{res}| \le \frac{\sqrt{10^{\frac{\Delta \overline{P_t}(D_{\lambda} L)}|_{dB,m\acute{a}x}}{5}} - 1}{R} \times 2\pi c} \\ & \Leftrightarrow |D_{res}| \le \frac{\sqrt{10^{\frac{\Delta \overline{P_t}(D_{\lambda} L)}|_{dB,m\acute{a}x}}{5}} - 1}{R} \times 2\pi c} \end{aligned}$$

Fórmula 7 – Determinação da figura de mérito máxima e da dispersão residual máxima para que não seja necessário compensação para os canais nos planos.

4.5 Anexo E – Perdas no Anel (Sem Amplificação)

Para a avaliação da **exequibilidade da ligação** mais longa **sem amplificação ótica**, é necessário o cálculo das **perdas totais no anel A17** tendo em conta os valores das *Tabelas 15 e 16*. As perdas totais são calculadas através da *Fórmula 8*.

$$Perdas\ Totals = 4 \times Total_{Passagem} + Total_{Extração} + Total_{Inserção} + Total_{B} + Total_{C} \\ + Total_{D} + Total_{E} + Total_{F}\ [dB]$$

Fórmula 7 – Determinação das perdas totais entre o emissor e recetor na ligação mais longa.

4.6 Anexo F – Cálculo da Margem dos pares T_x-R_x (Sem Amplificação)

Para os cálculos das margens para os pares emissor-recetor, foi necessário primeiramente calcular qual o valor máximo da penalidade, sendo a penalidade máxima aceitável devido à dispersão 1 dB e a penalidade máxima aceitável devido aos efeitos não lineares da fibra 1 dB, conclui.se que o valor máximo da penalidade 2[1+1] [dB].

Depois, foi necessário o cálculo da **potência média acoplada á fibra**. Sabendo os valores da **potência à saída – nível lógico "0" (dado no enunciado)** em **dBm**, teríamos primeiramente que converter de dBm em **mW** através da *Fórmula 8*.

$$P_0\left[mW\right] = 10^{\frac{P\left[dBm\right]}{10}}$$

Fórmula 7 – Conversão potência à saída de nível lógico "0" de dBm para mW.

Após a conversão para mW, foi necessário o cálculo do \mathbf{r}_{ext} , sabendo o \mathbf{R}_{ext} [dB] (dado no enunciado), através da *Fórmula* 8.

$$r_{ext} = 10^{\frac{R_{ext}[dB]}{10}}$$

Fórmula 8 – Cálculo do r_{ext} , sabendo o R_{ext} [dB].

iscte

Sistemas de Comunicação Ótica

Após o cálculo do r_{ext}, foi necessário calcular a **potência à saída – nível logico "1",** através da *Fórmula 9*.

$$P_1[mW] = r_{ext} * P_0[mW]$$

Fórmula 9 – Cálculo potência à saída de nível lógico "1" em mW.

Agora, é possível o cálculo da potência média [mW], através da Fórmula 10.

$$P_{media}[mW] = \frac{P_0 + P_1}{2}$$

Fórmula 10 – Cálculo da potência média em mW.

Foi necessário depois a **conversão para dBm da potência média**. Como é demonstrado pela *Fórmula 11*.

$$P_{media}[dBm] = 10Log(P_{media}[mW])$$

Fórmula 11 – Cálculo da potência média em dBm.

Foi necessário agora, o cálculo do **parâmetro Q**, sabendo que a $P_e=10^{-10}$. Através da *Fórmula* 12.

$$P_e = \frac{1}{2} erfc[\frac{Q}{\sqrt{2}}]$$

Fórmula 12 – Cálculo do parâmetro Q.

Depois foi necessário o cálculo do **efeito filtro** (**E**_f), sabendo a **ordem do filtro** (**O**_f) dada no enunciado através da *Fórmula 13*.

$$E_f = \frac{\frac{\pi}{2 * O_f}}{\sin\left(\frac{\pi}{2 * O_f}\right)}$$

Fórmula 13 – Cálculo do efeito filtro.

iscte

Sistemas de Comunicação Ótica

Agora foi necessário o cálculo do fator $B_{e,n}$, sabendo a Largura de Banda (LB) dada no enunciado, através da *Fórmula 14*.

$$B_{e,n} = E_f * LB$$

Fórmula 14 – Cálculo do fator $B_{e,n}$.

O último parâmetro a ser calculado antes ma margem, é a **sensibilidade**, para isto calculou-se a **sensibilidade** [mW] (será depois convertida para dBm), já era dado no enunciado os valores de NEP, através da *Fórmula 15*.

$$p_i[mW] = \frac{1 + r_{ext}}{1 - r_{ext}} * Q * NEP * 10^{-12} * \sqrt{B_{e,n} * 10^9}$$

Fórmula 15 – Cálculo da sensibilidade [mW].

Foi depois necessário converter a sensibilidade em dBm, como demonstrado na Fórmula 16.

$$p_i[dBm] = 10Log(p_i[mW]) + 30$$

Fórmula 15 – Cálculo da sensibilidade [dBm].

Assim, é finalmente possível o cálculo da margem, sabendo já a potência média acoplada à fibra, as perdas no caminho também já demonstradas como calcular, a sensibilidade [dBm] e o valor máximo da penalidade (Vm). É assim possível calcular a margem [dB], como demonstrado na *Fórmula 16*.

$$Margem[dB] = P_{media}[dBm] - Perdas[dB] - p_i[dBm] - V_m[dB]$$

Fórmula 16 – Cálculo da margem [dB].

4.7 Anexo G – Perdas Anel (Pré-Amplificação)

P a avaliação da **exequibilidade da ligação** mais longa **com pré-amplificação ótica**, é necessário o cálculo das **perdas totais no anel A17** tendo em conta os valores das *Tabelas 16 e 18*. As perdas totais são calculadas através da *Fórmula 17*, com base também na *Fórmula 7*.

 $Total\ Perdas\ Pre - Amp. = Perdas\ Totals + Perdas\ ROADM + 0.4$

Fórmula 17 – Cálculo das perdas pré-amplificação.

Sabe-se também que as **Perdas ROADM**, equivalem às perdas em **modo passagem 11.5**[5+1.5+5+0].

4.8 Anexo H – Cálculos de Amplificação de Linha

Os cálculos para a amplificação de linha, possui vários passos. Primeiramente começa com o comprimento efetivo da secção. Como demonstrado na *Fórmula 18*.

$$L_{eff} = \frac{1 - e^{-\alpha_{[\mathrm{Np/m}]} \cdot L_{sec}}}{\alpha_{[\mathrm{Np/m}]}}$$

Fórmula 18 – Cálculo do comprimento efetivo de secção.

Depois, é necessário o cálculo da **potência máxima do amplificador por canal**, como demonstrado na *Fórmula 19*.

$$P_{ch} = \frac{P_{m\acute{a}x}}{N_{ch}}$$

Fórmula 19 – Cálculo da potência máxima do amplificador por canal.

iscte

Sistemas de Comunicação Ótica

Depois foi necessário o **cálculo do OSNR** requerida à **entrada do fotodetetor**. Tal é demonstrado na *Fórmula 20*.

$$osnr_{R,i} = \frac{Q^2 \cdot B_{e,n}}{B_0} \cdot \left(\frac{r_{ext} + 1}{r_{ext} - 1}\right) \left[1 + \sqrt{\frac{4 \cdot r_{ext}}{(1 + r_{ext})^2} + \left(\frac{r_{ext} - 1}{r_{ext} + 1}\right)^2 \cdot \frac{B_0}{Q^2 \cdot B_{e,n}}}\right]$$

$$\Rightarrow OSNR_{R,i} = 10 \log_{10}(osnr_{R,i}) \text{ [dB]}$$

Fórmula 20 – Cálculo da potência requerida à entrada do fotodetetor.

Depois foi necessário o cálculo da **potência do ruído ASE** em cada amplificador, como demonstrado na **Fórmula 21**.

$$P_{ASE} = \frac{f_n}{2}(g-1) \cdot h \cdot \nu \cdot B_0$$

Com: f_n sendo o pior valor de frequência; g a depender da pré e pós-amplificação e da amplificação de linha; ν sendo a frequência ótica do pior canal; e $B_0 = B_{-3 \, \mathrm{dB}, AWG}$.

Fórmula 21 – Cálculo da potência do ruído ASE em cada amplificador.

É agora necessário, o cálculo da **potência do ruído ASE** no **pior caminho** do anel A17, tal como demonstrado na *Fórmula 22*.

$$P_{n,ASE} = 2 \cdot \sum_{i=1^3 \, sec \, da \, lig}^{\text{\'ultima sec da lig}} \left(P_{ASE,p\acute{o}s-amp,i} + P_{ASE,amp \, de \, linha,i} + P_{ASE,pr\acute{e}-amp,i} \right)$$

Fórmula 22 – Cálculo da potência do ruído ASE no pior caminho.

Agora, calcula-se a **OSNR à saída do último amplificador**, como demonstrado na *Fórmula* 23.

$$osnr_R = \frac{P_R}{P_{n.ASE}} \Longrightarrow OSNR_R = 10 \log_{10}(osnr_R)$$
 [dB]

Fórmula 23 – Cálculo da OSNR à saída do último amplificador.

iscte

Sistemas de Comunicação Ótica

Por fim, consegue-se assim calcular a margem do sistema com pré e pós-amplificação ótica e com amplificação de linha (onde necessário), como demonstrado na *Fórmula 24*.

$$M_S \ge M_{S,req} \iff OSNR_R - OSNR_{R,i} - \left(\Delta \overline{P}_i(D_{\lambda}L)|_{m\acute{a}x} + \Delta \overline{P}_i|_{trans,m\acute{a}x}\right) \ge M_{S,req}$$

Fórmula 24 – Cálculo da margem de sistema com pré e pós-amplificação de linha.

4.9 Anexo I – Cálculo de Penalidade

Foi necessário também o cálculo da **penalidade de dispersão no extremo inferior da banda**. Como demonstrado na *Fórmula 25*.

Para isto, foram necessários os dados: $D_{Res}=640.87$ ps/nm; $\Delta v_L = 2MHz$; $\lambda=1447.72$ nm e $R_{b,Ch}=10$ Gbit/s.

$$\Delta \lambda_L = \frac{\lambda^2}{c} * \Delta v_L = 1.597 * 10^{-14}$$

$$f_m^L = R_{b,Ch} * D_{res} * \frac{\Delta \lambda_L}{2.35} = 4.35 * 10^{-4}$$

$$\Delta P_i|_{\Delta v_L} = -5Log[1 - (4f_m^L)^2] = 6.57 * 10^{-8} dB$$

Fórmula 25 – Cálculo da penalidade de dispersão no extremo inferior da banda.