In Geiges

Lemma 5.2.4 Let M_i , $i \in \{0,1\}$ be compact hypersulpiers of contact type in symplectic mfds (W_i , w_i) with corresponding Liouville VFs Y_i . Let there be a strict contactomorphism $\Phi: (M_o, i_{Y_o} w_o) \rightarrow (M_1, i_{Y_o} w_i)$. Then Φ can be extended to a symplectomorphism of reighborhoods of M_o and M_1 .

Proof Define $(:t, \epsilon) \times M \longrightarrow W$ $(t, x) \mapsto F_{t}^{Y} \times V$ This is a differ onto it's image for small enough ϵ . $(!a) = dia_{t}(!a) = d(!a) = d(!a) = e^{*a}dina = e^{*a}di$

So we see, a while of M is symplectomorphic to the symplectization of (M, ira). Hence when the M, one one strictly contactornorphic, then also their symplectizations over symplectomorphic.

 $(\Psi^*_{\omega})(t_{1}x)=(di_{\partial_{t}} \Psi^*_{\omega})(t_{1}x)=(dli_{\partial_{t}} e^{t}(\Psi^*_{\omega}))(0,x)=d(e^{t}\Psi^*_{i_{1}\omega})(0,x).$