Aeronautics Workshop Part 1: Glider Design

Prepared by:

Elyes Khechine Ahmed Aziz Bousaid Nermine Gharbi

INTRODUCTION

Suite aux formations d'initiations dans l'axe d'aéronautique déroulée au sein de l'INSAT par le club AerobotiX, nous avons procédé à réaliser une conception complète d'un planeur pour mettre concrètement en application les connaissances acquises.

AERONAUTICS WORKSHOP PLAN

Conception Planeur

Savoir faire un bon design d'un planeur conformément au règles prescrites.

Conception Polyclub

Modéliser les composants nécessaires pour un Polyclub.

Construction

Coupez les morceaux et assemblez-les tous avec l'électronique.

Pilotage

Time to have fun with your new creation!

NOMENCLATURE

METHODOLOGY

Fixer l'envergure

L'envergure a été fixé 1m dès le début.

valuer l'allongement •

es calculs précédents ont abouti à un allongement de 6.667, qui bien obéit à la marge d'allongement de 6 à 8 pour un planeur d'envergure 1m.

Dimensionnement des ailes

Pour avoir des valeurs simples, on a d'abord fixer la corde emplant. Ba à 20cm. Puisque on a Enva=1m, la longueur d'une aile sera La=0.5m. D'après la formule de la surface d'un trapèze: Sa= (Ba+ba)*La, on a donc ba=10cm.

Calcul de la surface Sa

En injectant les valeurs de l'allongement et de l'envergure dans la formule: Sa= Env²/λa, on a pu obtenir une surface alaire Sa=15cm.

METHODOLOGY (1)

Fixer une corde

Ici, on a opté à fixer la corde emplant du stab **Bs** à **9cm** pour avoir le maximum de valeurs simples possible.

Choix de l'allongement •

Puisque l'Env du stab est proportionnelle à l'allongement, on a opté pour l'allongement minimale égale à 3. Ce choix permet donc de réduire l'Env et ainsi diminuer les dimensions et le poids du planeur.

Choix de la surface 5s

Conformément à la marge, on a choisi une surface de stab égale à 10% la surface alaire. Ceci permet de réduire un peu le poids et les dimensions réelles du stab.

Dimensionnement obtenu

Les choix précédents on aboutit à une Envs=21.21cm du stab, la longueur panneau sera Ls=10.6cm. D'après la formule de la surface d'un trapèze: Ss= (Bs+bs)*Ls, on a donc bs=5.14cm.

METHODOLOGY (2)

Fixer le coef. Vs

Le calcul de la distance BL nécessite de fixer le coef Vs. Pour le max de stabilité, on a au début opté pour la valeur max admissible égale 0.8, mais suite à obtenir plus tard une longueur de fuselage énorme, on a pté à le réduire jusqu'à 0.5 pour ne pas dépasser 1.2m en longueur.

Calcul de BL et B — n a donc tous les données pour

calculer BL=Vs * CAMa * (Sa/Ss)
On a obtenu BL= 778mm. Puis,
suite à la détermination des
distances Da=Ba-ba et Ds=Bs-bs,
on obtient le levier stab

Calcul de CAMa et CAMs

Pour calculer la corde aérodynamique moyenne d'aile (CAMa) et du stab (CAMs), on a utilisé le logiciel PredimRC qui, après saisie des des dimensions des ailes et du stab, a donnée directement les valeurs CAMa=155.6mm et CAMs=72.5.

Dérive, hauteur et écart latéral

Pour la dérive, on l'a choisi 60% de la surface du stab, ce qui donne 0.9dm².

Pour la hauteur, on a l'a fixé à zéro pour ce planeur. Et l'écart latéral est laissé par défaut à 20mm;

Conception du fuselage et optimization

METHODOLOGY

Fixer une levier nez

Pour ne pas dépasser 1.2m en longueur du fuselage, on a opté à fixer le levier nez d'abord à 20cm. À la fin des optimizations, on a l'augmenter à une valeur finale de lyn=21cm.

Optimization du CG •

Puisque on vise toujours à avoir un centrage d'environ 30% de la corde oyenne pour la marge statique de 5%, l'optimization est inévitable. na joué principalement sur les valeurs evier nez, de longueur et de largeur du fuselage (10cm), et de Vs.

Longueur du fuselage

Pour calculer sa longueur, on a utilisé la formule Lf=B+Bs+lvn. Le calcul donne Lf=1.173m après tous les optimizations.

•Voilà!

Après vérification de la charge pour un planeur d'Env 1m et de masse compris entre 150-200g qui était bien dans la marge, nous étions satisfaits des résultats.

Values summary

Ailes	Enva	Sa	Allongement	Ba (Corde emplant)	ba (Corde saumon)	La (longueur aile)	Ba+ba	CAMa	NB: All units are in meters unless otherwise specified!
Calcul	1	0.15	6.66666667	0.2	0.1	0.5	0.3	155.6	
Valeur voulu		0.15	6.66666667	0.2	0.1				
Stab	Envs	Ss	Allongement	Bs (Corde emplant)	bs (Corde saumon)	Ls (longueur panneau)	Bs+bs	CAMs	
Calcul	0.21213203	0.015	3	0.09	0.05142136	0.106066	0.14142136	72.5	
Valeur voulu		0.015							
4	% Ss/Sa	BL	В	Vs	Da	Ds	Dérive (dm²)	Ecart latéral	
Calcul	0.1	778	873.163023	0.5	100	38.57864	0.9	0.02	
Fuselage	Lf (longueur fuselage)	lvn (Levier du nez)	Largeur	Hauteur					
Calcul	1.17316302	0.21	0.1	0.05					
В									

PredimRC Results

PredimRC Results

THANKS