

Neural networks and deep learning

Algorithm Presentation

田奇

预备知识

- 多元微分
 - 链式法则
 - 梯度(随机梯度下降 not only for neural networks)
- 线性代数
 - 矩阵向量运算(高维变量运算)
- 概率统计
 - 均方差(误差评估,拟合数据not only for neural networks)

例子

- 神经网络模拟加法器
 - -最简单的网络结构
 - 感知机(Perceptrons),用于判断真假

$$\ \, \bullet \ \, \text{output} \ \, = \ \, \begin{cases} 0 & \text{if } \sum_{j} \quad w_{j}x_{j} \leq \text{ threshold} \\ 1 & \text{if } \sum_{j} \quad w_{j}x_{j} > \text{ threshold} \end{cases}$$

神经网络模拟加法器

• output =
$$\begin{cases} 0 & \text{if } w \cdot x + b \le 0 \\ 1 & \text{if } w \cdot x + b > 0 \end{cases} w \cdot x \equiv \sum_{j} w_{j} x_{j}$$

NAND与非门!!!

	0	1
0	(-2) * 0 + (-2) * 0 + 3 = 3 1	(-2) * 0 + (-2) * 1 + 3 = 1 1
1	(-2) * 1 + (-2) * 0 + 3 = 1 1	(-2) * 1 + (-2) * 1 + 3 = -1

神经网络模拟加法器

Awesome!!!

- 神经网络是否可以模拟任意的模型?
 - 理论上是可以的!

启发

- 所有的识别感知问题都可以使用神经网络来训练!!!
- 图像处理专家,语音识别专家,自然语言处理专家,人工智能专家,机器视觉专家.......

- All in one method
- Deep learning

• 预热

- 高中的线性回归
 - 假设我们有很多二维空间的样本点 (x_i, y_i) ,我们预判这些样本点满足一次线性方程即y = a * x + b.
 - 如何计算a和b。经典的是最小二乘法,即计算min $C = \sum_i (ax_i + b y_i)^2$.
 - 计算方法分别对a和b求偏导数,令其值为0。我们可以直接解出a和b是关于 x_i, y_i 式子。
- 随机梯度下降
 - 计算a b的另一种方法实际上是无限逼近,就是先给a和b设定任意值,然后根据公式 $a \xrightarrow{\Delta} a \eta \frac{\partial c}{\partial a}$ 和 $b \xrightarrow{\Delta} b \eta \frac{\partial c}{\partial b}$ 反复使用样本 (x_i, y_i) 更新a 和 b,直到拟合到我们想要的结果!

- 随机梯度下降
 - 为什么要使用 $\eta \frac{\partial c}{\partial a}$ 和 $\eta \frac{\partial c}{\partial b}$ 来更新a和b呢?假设a和b分别代表 v_1 和 v_2 . $\left(\frac{\partial c}{\partial a}, \frac{\partial c}{\partial b}\right)$ 是C的梯度,我们知道二元函数C沿着梯度方向反方向是下降最快的,因此使用梯度来更新! η 是一个学习步长,为常数!

- 二维空间到高维空间
 - 如果我们的样本数据变成了高维有序对即 (α,β) , α,β 分别是向量。
 - 最小二乘法还能用吗?如何计算系数?
- 二层到多层
 - 如果我们的输出再作为下一层的输入继续计算,如何构建我们的模型?

- 模型架构
 - 我们把所有问题简单归结为映射,给定输入数据input,我们的网络结构直接计算,输出预测结果output.
 - 但是我们的网络结构初始状态是不成熟的, 他需要学习!
 - 典型的三层神经网络结构

• Sigmoid函数

- 回顾前面我们的感知器 $_{\text{output}} = \{ \substack{0 \text{ if } \Sigma_j \text{ } w_j x_j \leq \text{ threshold} \}}$,他对于输出结构就只有两种可能,即只有两类。神经网络需要更多的输出类别,并且对细微的改变也能做出输出上的细调整。
- -为了让神经网络能够对细微的差别做出细微的改变,我们引入一个重要的函数输出函数Sigmoid. Sigmoid函数具备很多有趣的数学特性!
 - $\sigma(z) \equiv \frac{1}{1+e^{-z}}$.
 - $z = w \cdot x + b$
 - $a = \sigma(z)$ a为每一层每一个单元的输出激活

•
$$\frac{\partial a}{\partial z} = \sigma'(z) = \sigma(z)(1 - \sigma(z)) = a(1 - a).$$

• 模型公式

- -标量公式 $a_j^l = \sigma(\sum_k w_{jk}^l a_k^{l-1} + b_j^l)$, $z_j^l = \sum_k w_{jk}^l a_k^{l-1} + b_j^l$
 - 激活输出层的神经元 a_i^l 与 前一层的所有神经元 a_k^{l-1} 相关
- -向量公式 $a^{l} = \sigma(w^{l}a^{l-1} + b^{l})$. $z^{l} \equiv w^{l}a^{l-1} + b^{l}$

- 模型评估(这里只讲均方差)
 - -均方差C,输入为(x,y)
 - 向量式 $C = \frac{1}{2n} \sum_{x} ||y(x) a^{L}(x)||^{2}$,
 - 标量式 $C = \frac{1}{2n} \sum_{x} \sum_{j} (y_j^x a_j^{x,L})^2$,
 - 训练模型的目的是使均方差最小,均方差C在偏导数全部为0的地方是最小的。(其实是局部最小,但实践表现很好)
 - 也就是说我们需要对所有的权值w和偏差b求偏导数。
 - 但是,很不好直接求出来!! 多层网络结构有非常多的权值矩阵和偏差向量。

反向传播算法(BackPropagation 美国辦学技术大学

- 最后一层L和L-1层之间的权值导数(链式法则)
 - -公式 $a_j^l = \sigma(\sum_k w_{jk}^l a_k^{l-1} + b_j^l)$, $z_j^l = \sum_k w_{jk}^l a_k^{l-1} + b_j^l$

•
$$\frac{\partial C}{\partial w_{jk}^L} = \frac{\partial C}{\partial a_j^L} \cdot \frac{\partial a_j^L}{\partial z_j^L} \cdot \frac{\partial z_j^L}{\partial w_{jk}^L} = \left(a_j^L - y_j^L\right) \cdot \sigma'(z_j^L) \cdot a_k^{L-1}$$

•
$$\frac{\partial C}{\partial b_j^L} = \frac{\partial C}{\partial a_j^L} \cdot \frac{\partial a_j^L}{\partial z_j^L} \cdot \frac{\partial z_j^L}{\partial b_j^L} = (a_j^L - y_j^L) \cdot \sigma'(z_j^L) \cdot 1$$

- -通过对一个样本正向计算一次,即可得到 $z_j^l a_j^l$,因此最后一层的权值导数是直接可求的。
- 那么中间层的权值和偏差导数如何求解呢?

• 为了方便,我们先定义
$$\delta_j^l = \frac{\partial C}{\partial z_j^l} = \frac{\partial C}{\partial a_j^l} \cdot \frac{\partial a_j^l}{\partial z_j^l} = \frac{\partial C}{\partial a_j^l} \sigma'(z_j^l)$$

反向传播算法(BackPropagatio University of Science and Technology of China

• 我们暂且把 δ_j^l 叫每一层每一个神经元的误差项,则

•
$$\frac{\partial C}{\partial w_{jk}^L} = \delta_j^L \cdot a_k^{L-1}$$
 $\frac{\partial C}{\partial b_j^L} = \delta_j^L$ $\delta_j^l = \frac{\partial C}{\partial z_j^l} = \frac{\partial C}{\partial a_j^l} \cdot \frac{\partial a_j^l}{\partial z_j^l} = \frac{\partial C}{\partial a_j^l} \sigma'(z_j^l)$

- 我们真的需要计算出中间层的导数吗?要知道中间层的导数表达出来是一个很复杂的式子。
 - 递推法(链式法则)

•
$$\frac{\partial C}{\partial w_{jk}^l} = \frac{\partial C}{\partial a_j^l} \cdot \frac{\partial a_j^l}{\partial z_j^l} \cdot \frac{\partial z_j^l}{\partial w_{jk}^l} = \delta_j^l \cdot a_k^{l-1}$$
 $\frac{\partial C}{\partial b_j^l} = \frac{\partial C}{\partial a_j^l} \cdot \frac{\partial a_j^l}{\partial z_j^l} \cdot \frac{\partial z_j^l}{\partial b_j^l} = \delta_j^l \cdot 1$

 $-\delta_j^L$ 是直接求出来的,那么 δ_j^l 是否可以通过 δ_j^L 递推?

反向传播算法(BackPropagation 美国神学技术大学

• 递推

•
$$\delta_{j}^{l} = \frac{\partial C}{\partial z_{j}^{l}} = \sum_{k} \frac{\partial C}{\partial z_{k}^{l+1}} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} = \sum_{k} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} \delta_{k}^{l+1}$$
• $z_{k}^{l+1} = \sum_{j} w_{kj}^{l+1} a_{j}^{l} + b_{k}^{l+1} = \sum_{j} w_{kj}^{l+1} \sigma(z_{j}^{l}) + b_{k}^{l+1}$.

$$\bullet \frac{\partial z_k^{l+1}}{\partial z_j^l} = w_{kj}^{l+1} \sigma'(z_j^l).$$

•
$$\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l)$$
.

反向传播算法(BackPropagation 美国神学技术大学

- 总结向量矩阵形式的公式
 - $\delta^L = \nabla_a C \odot \sigma'(z^L)$.
 - $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$,
 - $\frac{\partial C}{\partial b_j^l} = \delta_j^l$.
 - $\bullet \ \frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l.$
- 为什么要写成向量的形式?
 - 因为标量公式涉及大量的角标,例如 w_{jk}^l 就有三个角标,显然程序至少是三重循环,并且对每一个样本x,又是一层循环,再来最后训练多次,又是一层循环,这样写程序很难维护,角标容易错误。因此采用封装和抽象的思想,封装好矩阵运算,我们就可以直接减少三重循环。易于代码的阅读和维护。

反向传播算法(BackPropagation 美国科学技术大学

- 1.Input x: Set the corresponding activation a^1 for the input layer
- 2.Feedforward: For each I = 2,3,...,L compute $z^l = w^l a^{l-1} + b^l$ and $a^l = \sigma(z^l)$.
- 3.Output error δ^L :Compute the vector $\delta^L = \nabla_{\!\!\!a} C \odot \sigma'(z^L)$.
- 4.Backpropagate the error:For each I = L-1,L-2,...2 compute $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l),$
- 5.Output: The gradient of cost function is given by $\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$. and $\frac{\partial C}{\partial b_j^l} = \delta_j^l$.
- 6.Gradient descent: For each l=L,L-1,...,2 update the weights according to the rule $w^l \to w^l \frac{\eta}{m} \sum_x \delta^{x,l} (a^{x,l-1})^T$ and the biases according to the rule $b^l \to b^l \frac{\eta}{m} \sum_x \delta^{x,l}$

• 采用MNIST数据集(手写字符图片)

• MNIST数据集是 28 * 28的灰度图片,60000个训练样例和10000个测试样

例


```
FOLDERS
mnist-parser
   natrix.c
                               int SGD(matrix *train_images[], matrix *train_labels[], int train_size, int epochs, int mini_batch_size, double eta,
    matrix.h
                                        matrix *test images[], matrix *test labels[], int test size) {
    mnist_reader.c
                                   matrix **mini batch images = (matrix**)malloc(mini batch size * sizeof(char*));
    mnist_reader.h
                                   matrix **mini batch labels = (matrix**)malloc(mini batch size * sizeof(char*));
   🖰 nn
                                   int i,k;
    nn.c
                                   int *array = (int*)malloc(train size * sizeof(int));
                                    for (i = 1; i <= epochs; i++) {
    nn1.c
                                       //混洗,即改变原来train_images的数组指针的指向
randomShuffle(array, train_size);
    test_images.txt
    test_labels.txt
    19 test matrix
    test_matrix.c
    14 test_reader
    test_reader.c
    train_images.txt
    train labels.txt
                                        for (int start = 0; start < train size; start+=mini batch size) {</pre>
                                             for(k = 0: k < mini batch size: k++) {</pre>
                                                mini_batch images[k] = train images[array[start+k]];
mini_batch_labels[k] = train_labels[array[start+k]];
                                            update mini batch(mini batch images, mini batch labels, mini batch size, eta);
                                        if (test images != NULL && test labels != NULL) {
                                            printf("Epoch %d: %d / %d\n", i, evaluate(test images, test labels, test size), test size);
                                            printf("Epoch %d complete\n", i);
                                   free(array);
                                   free(mini batch images);
                                   free(mini batch labels);
```



```
FOLDERS
                          ▼ ▶
▶ ☐ mnist-parser
                                 int update mini batch(matrix *mini batch images[], matrix *mini batch labels[], int mini batch size, double eta) {
    matrix.c
    matrix.h
                                      // 初始化矩阵转组, 用于存放婴deltaC的婴加值, 因为是batch matrix **nabla_w = (matrix**)malloc((num_layers-1) * sizeof(char*)); matrix **nabla_b = (matrix**)malloc((num_layers-1) * sizeof(char*));
    mnist_reader.c
    mnist_reader.h
                                      for (i = 0; i < num_layers-1; i++) {</pre>
    Th nn
                                          nabla w[i] = newMatrix(weights[i]->rows, weights[i]->cols);
                                          nabla_b[i] = newMatrix(biases[i]->rows, biases[i]->cols);
    nn1.c
    test_images.txt
    test_labels.txt
                                      matrix **delta_nabla_w = (matrix**)malloc((num_layers-1) * sizeof(char*));
    The test_matrix
                                      matrix **delta nabla b = (matrix**)malloc((num layers-1) * sizeof(char*));
                                      for (i = 0; i < mini_batch_size; i++) {</pre>
    test_matrix.c
    The test_reader
    test_reader.c
    train images.txt
    train_labels.txt
                                           backprop(mini batch images[i], mini batch labels[i], delta nabla w, delta nabla b);
                                          for (int j = 0; j < num_layers-1; j++) {
   sum(nabla_w[j], delta_nabla_w[j], nabla_w[j]);</pre>
                                                sum(nabla_b[j], delta_nabla_b[j], nabla_b[j]);
                                           for(int j = 0; j < num_layers-1; j++){
                                               deleteMatrix(delta_nabla_w[j]);
                                               deleteMatrix(delta nabla b[j]);
                                                                                                                                                                                                                                                 //释放delta_nabla_wandelta_nabla_b指针数组自己 free(delta nabla b);
                                      free(delta_nabla_w);
                                      // 更新W和D
for (i = 0; i < num_layers-1; i++) {
                                           multiplyMatrix(nabla_w[i], eta/mini_batch_size);
                                           minus(weights[i], nabla w[i], weights[i]);
                                           multiplyMatrix(nabla b[i], eta/mini batch size);
                                           minus(biases[i], nabla b[i], biases[i]);
                                      for (i = 0; i < num_layers-1; i++) {
                                           deleteMatrix(nabla w[i]);
                                           deleteMatrix(nabla b[i]);
                                      free(nabla w):
                                      free(nabla b);
```



```
FOLDERS
₩ 🗁 demo
 mnist-parser
                            int backprop(matrix *x, matrix *y, matrix *nabla w[], matrix *nabla b[]) {
   matrix.c
                               int i;
   matrix.h
   mnist_reader.c
                               matrix *activation = copyMatrix(x);
   mnist_reader.h
                               matrix **activations = (matrix**)malloc(num_layers * sizeof(char*));//存储所有的激活层
   [9 nn
                               matrix **zs = (matrix**)malloc(num layers * sizeof(char*));
                               activations[0] = activation;
   nn1.c
                                for (i = 0; i < num layers-1; i++) {
   test_images.txt
                                   matrix *z = newMatrix(weights[i]->rows, activation->cols);
   test labels.txt
                                   product(weights[i], activation, z); // z = W*a
                                   sum(z, biases[i], z);
   test_matrix
                                   zs[i+1] = copyMatrix(z);
   test matrix.c
                                   funcMatrix(z, sigmoid);
   [9 test_reader
                                   activation = z;
   test_reader.c
                                   activations[i+1] = activation;
   train_images.txt
   train labels.txt
                               matrix *nabla_c = cost_derivative(activations[num_layers-1], y);
                               matrix *nabla_z = copyMatrix(zs[num_layers-1]);
                               funcMatrix(nabla z, sigmoid prime);
                               matrix *delta = newMatrix(nabla_z->rows, nabla_z->cols);
                               scalarProduct(nabla_c, nabla_z, delta); // deltaL = nabla_C (*) sigmoid prime(z)
                               deleteMatrix(nabla c);
                               deleteMatrix(nabla_z);
                               nabla b[num layers-2] = delta;
                               transposeSelf(activations[num_layers-2]); // 倒数第三层的激活的转置 a(L-1).T
                               matrix *dp = newMatrix(weights[num_layers-2]->rows, weights[num_layers-2]->cols);
                               product(delta, activations[num_layers-2], dp); // delta product a(L-1).T
                               nabla w[num layers-2] = dp;
                               for (l = num layers-2; l >= 1; l--) {
                                   matrix *sp = copyMatrix(zs[l]);
                                   funcMatrix(sp, sigmoid prime);
                                   matrix *wt = copyMatrix(weights[l]);
                                   matrix *deltal = newMatrix(biases[l-1]->rows, biases[l-1]->cols);
                                   int ret = product(wt, nabla_b[l], deltal);
                                   if (ret == -2) {
                                       printf("wrong size: wt size: (%d, %d) nabla_b[%d] size: (%d, %d), deltal size: (%d, %d)\n",
                                           wt->rows, wt->cols, l, nabla_b[l]->rows, nabla_b[l]->cols, deltal->rows, deltal->cols);
                                   scalarProduct(deltal, sp, deltal); // delta[l] = (w[l+1].T * delta[l+1]) (*) sp(zl)
                                   nabla b[l-1] = deltal;
```

附录

- 代码网址
 - https://github.com/kitianFresh/neural-networks-by-c
- 使用工具
 - Valgrind C语言程序内存泄漏检测工具
- 算法
 - -O(1)空间转置矩阵
 - -O(n)时间混洗数组
 - 高斯分布随机数
- 参考
- http://neuralnetworksanddeeplearning.com/

Thank you