Homework 1 Solutions

E2-210, Jan-Apr 2025

1. Given a received word $\mathbf{y} = (y_1, y_2, \dots, y_n)$, let $J = \{i : y_i = ?\}$ denote the set of erased positions in \mathbf{y} . For any $\mathbf{c} = (c_1, c_2, \dots, c_n) \in \mathcal{C}$, let $\mathbf{c}_{\sim J}$ denote the vector $(c_j : j \in J^c)$ obtained from \mathbf{c} by deleting all the coordinates in J. Let $\mathcal{C}' = \{\mathbf{c}_{\sim J} : \mathbf{c} \in \mathcal{C}\}$. This is the code obtained from \mathcal{C} by deleting all the coordinates in J. Note that if \mathcal{C} has minimum distance d, then \mathcal{C}' has minimum distance at least d - |J|.

Now, consider a decoder \mathcal{D} that operates on a received word $\mathbf{y} = (y_1, y_2, \dots, y_n)$ as follows:

- **Step 1:** Determine the set of erased positions $J = \{i : y_i = ?\}$. Delete all the erased positions from y to obtain y'.
- **Step 2:** Apply minimum distance decoding to y' to find the closest (in Hamming distance) vector $c' \in C'$.
- **Step 3:** Extend \mathbf{c}' to a word $\widetilde{\mathbf{y}}$ of length n by inserting ?s in the coordinates in J.
- **Step 4:** Apply erasure decoding to $\widetilde{\mathbf{y}}$, i.e., identify (if possible) the unique codeword in \mathcal{C} that agrees with $\widetilde{\mathbf{y}}$ in all the unerased positions.

To see why the above decoder would work, assume that \mathbf{y} is obtained from a codeword $\mathbf{c} \in \mathcal{C}$ after at most s erasures and at most t errors, where $s+2t \leq d-1$. Then, $|J| \leq s$, and hence, \mathcal{C}' has minimum distance at least d-s. Since $2t+1 \leq d-s$, in Step 2, minimum distance decoding would uniquely recover $\mathbf{c}' = \mathbf{c}_{\sim J}$. Extend \mathbf{c}' to $\widetilde{\mathbf{y}}$ as in Step 3. Now, since $\rho \leq d-1$, the original codeword \mathbf{c} would be the unique codeword in \mathcal{C} that agrees with $\widetilde{\mathbf{y}}$ in all unerased coordinates, and Step 4 will recover \mathbf{c} .

- 2. $C_{\text{ISBN}} = \{(c_1, c_2, \dots, c_{10}) \in \mathbb{F}_{11}^{10} : \sum_{i=1}^{10} (11 i) \cdot c_i \equiv 0 \pmod{11} \}.$
 - (a) From the definition, it is clear that a parity-check matrix for C is:

$$H = [10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1].$$

- (b) By the rank-nullity theorem, $\dim(\mathcal{C}_{\text{ISBN}}) = n \text{rank}(H) = 10 1 = 9$. Since H has no 0 column, $\mathcal{C}_{\text{ISBN}}$ has no codewords of weight 1, and hence, $d_{\min}(\mathcal{C}_{\text{ISBN}}) \geq 2$. On the other hand, H has rank 1, and so any two columns of H must be linearly dependent. Therefore, $\mathcal{C}_{\text{ISBN}}$ has codewords of weight equal to 2, which proves that $d_{\min}(\mathcal{C}_{\text{ISBN}}) = 2$.
- (c) The parity-check matrix H above is in the form $[A \mid I_{n-k}]$. Hence, $G = [I_k \mid -A^T]$ is a systematic

generator matrix for C_{ISBN} :

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 9 \end{bmatrix}$$

3. Observe that $C_{ISBN}^{\#} = \text{nullspace}(H^{\#})$, where

- (a) Clearly, $\operatorname{rank}(H^\#) = 2$, hence $\dim(\mathcal{C}_{\operatorname{ISBN}}^\#) = 10 2 = 8$ by the rank-nullity theorem. For the minimum distance, one can argue (say, by examining determinants of 2×2 submatrices) that $\operatorname{\underline{any}}$ two columns of $H^\#$ are linearly independent over \mathbb{F}_{11} . Hence, $d_{\min}(\mathcal{C}_{\operatorname{ISBN}}^\#) \geq 3$. But, since $H^\#$ has rank 2, any three columns of H are linearly dependent. From this, we conclude that $d_{\min}(\mathcal{C}_{\operatorname{ISBN}}^\#) = 3$. Thus, $\mathcal{C}_{\operatorname{ISBN}}^\#$ is a [10,8,3] linear code over \mathbb{F}_{11} .
- (b) Since the minimum distance is 3, the code is single-error-correcting.
- 4. The parity-check matrix $H^{\#}$ above gives rise to $q^{n-k}=11^2=121$ distinct syndromes. So, the code $\mathcal{C}^{\#}_{\mathrm{ISBN}}$ can correct at most 120 non-zero error vectors via syndrome decoding. As we shall see, there are far more than 120 error vectors obtainable as $\mathbf{e}=\mathbf{y}-\mathbf{c}$, where $\mathbf{c}\in\mathcal{C}^{\#}_{\mathrm{ISBN}}$ is a codeword, and \mathbf{y} is obtained by interchanging some two digits of \mathbf{c} . Indeed, any such error pattern \mathbf{e} is of the form $[0\ldots 0,c_i-c_j,0,\ldots,0,c_j-c_i,0,\ldots 0]=(c_i-c_j)[0\ldots 0,1,0,\ldots,0,-1,0,\ldots 0]$, where c_i and c_j ($c_i\neq c_j$) are symbols that appear in the i-th and j-th coordinates (with i< j) of some $\mathbf{c}\in\mathcal{C}^{\#}_{\mathrm{ISBN}}$.

We claim that $c_i - c_j$ can take any non-zero value in \mathbb{F}_{11} . Indeed, for any pair of distinct $\alpha, \beta \in \mathbb{F}_{11}$, and any pair of distinct coordinate indices i, j, there is a codeword $\mathbf{c} \in \mathcal{C}^{\#}_{ISBN}$ such that $c_i = \alpha$ and $c_j = \beta$. This is because even if c_i and c_j are pre-specified, the remaining coordinates c_m ($m \neq i, j$) can always be chosen so that $H\mathbf{c}^T = 0$.

Thus, single transposition errors arise from error patterns of the form $\gamma[0\dots 0,1,0,\dots,0,-1,0,\dots 0]$, for $\gamma\in\mathbb{F}_{11}\setminus\{0\}$, with the 1 occurring in coordinate i, and the -1 in coordinate j, with $1\leq i< j\leq 10$. The total number of such error patterns is thus $\binom{10}{2}\times|\mathbb{F}_{11}\setminus\{0\}|=450$. This is much larger than the number of non-zero syndromes available. We thus conclude that the code $\mathcal{C}_{\mathrm{ISBN}}^{\#}$, under syndrome decoding, does **not** meet the requirements of the enhanced ISBN scheme.