

«Московский государственный технический университет имени Н.Э. Баумана»

(национальный исследовательский университет)

ФАКУЛЬТЕТ КАФЕДРА ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

Отчет

по домашнему заданию №2(часть 4) варианта №7

Название лабораторной работы:

Создание модулей. Процедурный тип параметров.

Дисциплина:

Основы программирования

Студент гр. ИУ6-12	Векшин Роман	
J/ 1	(Подпись, дата)	(И.О. Фамилия)
Преподаватель	Черноусова Татьяна Геннадьевна	
	(Подпись, дата)	(И.О. Фамилия)

Часть 4. Создание модулей. Процедурный тип параметров

Разработать модуль, содержащий указанную процедуру. Написать тестирующую программу.

Составить подпрограмму-процедуру NEIBR проверки принадлежности точки плоскости с координатами (x, y) данной кривой y=f(x).

В основной программе использовать процедуру NEIBR для проверки принадлежности десяти различных точек кривым $y=\cos(x)$ и $y=\sin(x2)$.

Рисунок 1-Схема алгоритма модуля и тестирующей программы

Код модуля

```
unit NEIBR;
{$mode objfpc}{$H+}
interface

type
  func = function(x: real): real;
procedure NEIBR(f: func; x, y: real; var prindl: boolean);
implementation
procedure NEIBR(f: func; x, y: real; var prindl: boolean);
begin
  prindl := (y = f(x));
end;
end.
```

Код тестирующей программы

```
program project1;
{$APPTYPE CONSOLE}
uses
 NEIBR;
  function F1(x: real): real;
  begin
    F1 := cos(x);
  end;
  function F2(x: real): real;
  begin
    F2 := sin(x * x);
  end;
var
  pri1, pri2: boolean;
  i: 1..10;
  y, x: real;
begin
  writeln('x': 10, 'y': 10, '\sin(x)': 10, '\sin(x^2)': 10);
  for i := 1 to 5 do
  begin
     x := pi / i;
     y := \cos(x);
    neibr.neibr(@f1, x, y, pri1);
neibr.neibr(@f2, x, y, pri2);
writeln(x: 10: 8, y: 10: 6, pri1: 10, pri2: 10);
  end;
  for i := 1 to 5 do
  begin
     x := pi / i;
     y := \overline{\sin(x * x)};
    neibr.neibr(@f1, x, y, pri1);
neibr.neibr(@f2, x, y, pri2);
writeln(x: 10: 8, y: 10: 6, pri1: 10, pri2: 10);
  end;
  ReadLn;
end.
```

Пример работы тестирующей программы

С:\Users\Asus\Desktop\ОП\Д3\Д32\Задача4\project1.exe					
x	у	sin(x)	sin(x^2)		
3.14159265	-1.000000	TRUE	FALSE		
1.57079633	0.000000	TRUE	FALSE		
1.04719755	0.500000	TRUE	FALSE		
0.78539816	0.707107	TRUE	FALSE		
0.62831853	0.809017	TRUE	FALSE		
3.14159265	-0.430301	FALSE	TRUE		
1.57079633	0.624266	FALSE	TRUE		
1.04719755	0.889670	FALSE	TRUE		
0.78539816	0.578469	FALSE	TRUE		
0.62831853	0.384609	FALSE	TRUE		

Рисунок 2-Тестирование модуля

Вывод

- 1) Разработана схема алгоритма программы и модуля в среде LibreOffice Draw (см. рис. 1, рис. 2).
- 2) Создан код программы и модуля по схеме алгоритма в среде Lazarus.
- 3) Проведено тестирование модуля программой(см. рис). Тестирование показало корректность работы программы

(Модуль содержит процедуру NEIBR, которая получает в виде аргументов функцию, её аргумент, её предполагаемое значение и параметр для ответа, в которому будет присвоено значение TRUE, если значение функции при таком аргументе равно предполагаемому значению, и FALSE в противном случае).