Example 3

(2004 AMC 10B Problem 20) In $\triangle ABC$ points D and E lie on BC and AC, respectively. Suppose that AD and BE intersect at T so that AT/DT = 3 and BT/ET = 4. What is the value of CD/BD?

- (A) $\frac{1}{8}$ (B) $\frac{2}{9}$ (C) $\frac{3}{10}$ (D) $\frac{4}{11}$ (E) $\frac{5}{12}$

Solution: (D).

Method 1:

Let F be a point on AC such that DF is parallel to BE. Let BT=4x and ET = x.

Because $\triangle ATE$ and $\triangle ADF$ are similar, we have

$$\begin{array}{c} \frac{DF}{x} = \frac{AD}{AT} = \frac{4}{3} \text{ and } DF = \frac{4x}{3}. \\ \text{Also, } \triangle BEC \text{ and } \triangle DFC \text{ are similar, so} \\ \frac{CD}{BC} = \frac{DF}{BE} = \frac{4x/3}{5x} = \frac{4}{15}. \end{array}$$

Thus
$$\frac{CD}{BC} = \frac{CD/BC}{1-CD/BC} = \frac{4/15}{1-4/15} = \frac{4}{11}$$
. Method 2:

Let F be a point on BE such that DF is parallel to AC. Let BT=4x and ET = x.

Let AT = 3y and DT = y.

Because
$$\triangle ATE$$
 and $\triangle DTF$ are similar, we have
$$\frac{AT}{DT} = \frac{ET}{FT} = \frac{3}{1} \Rightarrow \frac{x}{FT} = \frac{3}{1} \Rightarrow FT = \frac{x}{3}.$$
 So $EF = x + \frac{x}{3} = \frac{4}{3}x$ and $BF = 4x - \frac{x}{3} = \frac{11}{3}x$

Also,
$$\triangle BEC$$
 and $\triangle BFD$ are similar, so $\frac{BF}{EF} = \frac{BD}{CD} \implies \frac{\frac{11}{3}x}{\frac{4x}{3}} = \frac{BD}{CD} \implies \frac{CD}{BC} = \frac{4}{11}.$

$$(1) \div (2) : \frac{CD}{BD} = \frac{4}{11}.$$
Method 5:

Let F be a point on AC such that TF is parallel to BC. Let BT=4x and ET=x. Let AT=3y and DT=y. Because $\triangle ATF$ and $\triangle ADC$ are similar, we have

$$\frac{AT}{AD} = \frac{FT}{CD} \Rightarrow \frac{3y}{4y} = \frac{FT}{CD} \Rightarrow \frac{FT}{CD} = \frac{3}{4}$$

Also,
$$\triangle BEC$$
 and $\triangle TEF$ are similar, so $\frac{FT}{BC} = \frac{ET}{BE} \implies \frac{FT}{BD+CD} = \frac{x}{5x}$

$$\Rightarrow \frac{FT}{BD + CD} = \frac{1}{5}$$

$$(1) \div (2): \frac{BD + CD}{CD} = \frac{15}{4} \Rightarrow \frac{BD}{CD} + 1 = \frac{15}{4}$$

$$\Rightarrow \frac{BD}{CD} = \frac{11}{4} \Rightarrow \frac{CD}{BD} = \frac{4}{11}.$$

Method 6:

Let F be a point on BC such that TF is parallel to BC. Let BT=4x and ET=x. Let AT=3y and DT=y. Because $\triangle ADC$ and $\triangle TDF$ are similar, we have $\frac{AT}{CF} = \frac{DT}{DF} \Rightarrow \frac{3y}{CF} = \frac{y}{DF} \Rightarrow \frac{CF}{DF} = 3 \Rightarrow \frac{CD-DF}{DF} = 3 \Rightarrow \frac{CD-DF}{DF} = 3 \Rightarrow \frac{CD}{DF} = 4$

Because
$$\triangle BTF$$
 and $\triangle BEC$ are similar, so
$$\frac{BT}{FE} = \frac{BF}{CF} \implies \frac{4x}{x} = \frac{BF}{CF} = 4$$
$$\frac{BF}{CF} = \frac{BD + DF}{CF} = 4 \implies \frac{BD + DF}{3DF} = 4 \implies \frac{BD}{DF} + 1 = 12$$
$$\implies \frac{BD}{DF} = 11$$
$$(1) \div (2) : \frac{CD}{BD} = \frac{4}{11}.$$