Security Development for Tartan system

2021/6/17 Team 4

Introduction to Tartan system

System overview

- Server(Camera) & Client(Monitoring system) for live streaming
- Facial recognition with Database
- Wireless Network

Figure 1: High-level design

Project Goals

- Security Development for Tartan system
- Business perspective
 - Think of this system as MVP(minimum viable product)
 - Try to avoid implementing fancy features such as GUI.
- Security Goals
 - Focused on enhancing security of the product.
 - Should be designed to achieve three principles.

Application

Overview

- Monitoring and tracking people with CCTV in the server room
- Detecting unauthorized people with facial recognition
- CCTV in the server room
- Monitoring system in the security room

Security Development Process

- Based on MS-SDL
 - Some items on each stage are excluded due to the project development scope

Requirements - Functions

- Security agents can watch and identify people through the real-time video streaming.
- A manager can access CCTV and register/unregister authorized people.
- The system should provide facial recognition.
- A manager can check the past dis/connection records.
- A manager can check the log file to see who entered the server room and when they did.

Requirements - Security

To achieve the security goals, the following security requirements are defined to identify and analyze possible threats and apply the derived mitigation.

These requirements were derived through threat analysis and mitigation measures.

- Secure network
 Network sections between CCTV and the monitoring system are encrypted.
- Personal information encryption
 Relevant data to privacy information should be encrypted securely.
- Key protection
 Keys which are used for encryption should be kept safely.
- CCTV should identify who was in or out and save the information to a log file.

Design - Threat Modeling 1/2

- Data Flow Diagrams
 Decompose the system into parts and show that each part is not susceptible to relevant threats.
- Employ threat modeling using followings
 - STRIDE
 - PnG

Design - Threat Modeling 2/2

STRIDE

Threats	Spoofing	Tampering	Repudiation	Information Disclosure	Denial Of Service	Elevation Of Privilege
82	22	5	8	9	17	21

PnG

Threats	Persona 1	Persona 2	Persona 3
8	4	3	1

lleff

An insider who is morally wrong and angry about incentives.

Jeff, who designed a CCTV system in his company. He has been working for this company as a network engineer. But for some reason he didn't get any incentive from the company, and he thought it was unfair.

Motivation

Having complaints about incentives.

He got an offer from someone who wants to break into the building to get some information and accepted to help him.

Goal:

Unauthorized person who needs information can break into the server room where it is stored.

Skills

knowledge of intra network system, knowledge about CCTV recognition algorithm, network skills, network hacking

Misuse case 1

- Jeff tries to log in CCTV with the default ID/password via ssh.
- After login to the CCTV, Jeff adds a photo of the person who wants to infiltrate and register him as an authorized person.
- Jeff wants him to be shown as an authorized person and let him pass through the CCTV and safely enter into the server room.

Design - Mitigation

ld	Title	Category	Priority	Description	
10 Spoofing the 1. Monitoring Spoofing High 1. M		High	1. Monitoring system (Host) may be spoofed by an attacker and this may		
system (Host) Process			lead to information disclosure by 2. CCTV (Target). Consider using a		
			standard authentication mechanism to identify the destination process.		

Methods	pros	cons
IP/MAC	Implementation is the simplest	Since an attack that modifies IP and MAC is possible, spoofing cannot be reliably prevented.
ID/Passwo rd	Implementation is simple.	To prevent the password from being exposed, the communication section must be encrypted, and a module for user credentials is required. If exposed to sniffing attacks, it can be neutralized.
Certificate	the most effective authentication	There is a burden of creating, distributing, and managing certificates.

Design - Risk Assessments

OWASP

Threats	Mitigated	High	Medium	Low
90	25	11	45	9

	number of exploitable issues. Consider all paths and the way they handle data. Verify that all input is verified for correctness using an approved list input validation approach.	Vulnerability	Intrusion detection	9 - Not logged	·			Impact	Privacy violation	1- *			
	expected is a root cause of a very large	17.7	Awareness	9 - Public knowledge	+			Business	Non-compliance	3- ▼			
	#11. 1. Data flowing across f12. Image and result may be tampered with by an attacker. This may lead to a denial of service attack against 1. Monitoring system (Host) or an elevation of privilege attack against 1. Monitoring system (Host) or an information disclosure by 1. Monitoring system (Host) Failure to verify that input is as		Ease of exploit	5 - Easy	-		HIGH		Reputation damage	7. •	4.875	MEDIUM	High
			Ease of discovery	7 - Easy	*	• • • • • • • • • • • • • • • • • • •		Technical Impact	Financial damage	3 - Minor effect on annual profit			
			Group Size	4 - Intranet users	*				Loss of accountability	7 - Possibly traceable 🔻			
		Threat Agent	Opportunity	 4 - Special access or resources required 	•				Loss of availability	7 - Extensive primary services interrupted *			
			Motive	9 - High reward	+				Loss of integrity	7 - Extensive seriously corrupt data			
	#11- Potential Lack of Input Validation for 1. Monitoring system (Host) [Tampering]		Skill level	3 - Network and programming skills	-				Loss of confidentiality	4 - Minimal critical data disclosed, extensive non-sensitive data disclosed			

Design - Mitigations - Overall

Risk mitigations

DFD

Scenario view

Design - Mitigations - Mutual Authentication

TLS connection using PKI

cctv.csr : request information for cert of cctv cctv.crt : cert of cctv made by rootca

client.csr : request information for cert of client client.crt : cert of client made by rootca

- 1. Verify monitoring system by cert of monitoring system with root CA cert.
- 2. Verify CCTV by cert of CCTV with root CA cert
- 3.If authentication is success, then network transport channel is encrypted by TLS1.2

Design - Mitigations - User Info protection

User image protection overview

User image file

- User image file is encrypted using AES-128 CBC in User Register
- Encrypted user image file is decrypted using AES-128 CBC in CCTV
- o AES-128 Key is provided by KeyManager

User image filename

- User image file name is encrypted using AES-128 CBC in User Register
- Encrypted file name is Base64 encoded in User Register
- Apply substitution to slash(/) characters in Base64 encoded file name
- Encoded file name is Base64 decoded in CCTV
- Encrypted filename is decrypted using AFS-128 CBC in CCTV
- AES-128 Key is provided by KeyManager

Design - Mitigations - Key Management

Implementation

Secure Coding

Static Analysis
 Analyzing the source code prior to the compilation provides a highly scalable method of security code review and helps ensure that secure coding policies are being followed.

Tools	Target	Total Detected	false positive	To mitigate	Remark
Sonarcloud	Monitoring system components	247	247		 218 issues are detected as a code smell type, which is false positive and the rest are minor issues.
Code x-ray	all components	24	24		- The issues detected by Blocker(1 issue) and Major(4 issues) are about the files(out of scope) or have no effect on the code.
Flawfinder	CCTV and user register components	48	43		- 5 issues are fixed.(2 issues related to integer overflow, 3 related to statically-sized buffer)

^{*)} We decided to fix the issues found in the static analysis if necessary for items greater than Major (FlawFinder Level 3).

Verification

Test Report

Test Cases	Pass	Fail
19	19	0

Test Case #1(Functional Requirement)

Purpose

This TC verifies the real-time CCTV person detection function of the CCTV system.

Precondition

- The Monitoring System is installed.(also cert. key is installed)
- A Security agent is logged in.
- CCTV is running and streaming camera video.

Test Constraints

Only one monitoring system can be connected to CCTV.

Deliverables

https://github.com/hijang/lsc_cctv

Lessons learned

- The more we know about the system, the better we can design and implement threat mitigations
- If I had realized earlier that my mentor was also a stakeholder who should share information, I would have been able to get more help.