Clean Copy of the Revised Claims

1. A compound of formula I

wherein

R₁ and R₃ are each independently of the other ethyl, haloethyl, ethynyl, C₁-C₂alkoxy, C₁-C₂haloalkoxy, C₁-C₂alkylcarbonyl, C₁-C₂hydroxyalkyl or C₁-C₂alkoxycarbonyl;

Q is a group

$$R_{17}$$
 R_{18}
 R_{18}
 R_{18}
 R_{19}
 R_{138}
 R_{139}
 R_{138}
 R_{137}
 R_{14}
 R_{15}
 R_{137}

 R_4 and R_5 are each independently of the other $C_1\text{-}C_{10}$ alkyl, $C_2\text{-}C_{10}$ alkenyl, $C_2\text{-}C_{10}$ alkynyl, $C_1\text{-}C_{10}$ haloalkyl, $C_2\text{-}C_{10}$ alkoxyalkyl, $C_3\text{-}C_{10}$ alkenyloxyalkyl, $C_3\text{-}C_{10}$ alkynyloxyalkyl, $C_2\text{-}C_{10}$ alkylthioalkyl, $C_2\text{-}C_{10}$ alkylsulfinylalkyl, $C_2\text{-}C_{10}$ alkylsulfonylalkyl, $C_2\text{-}C_{10}$ alkylcarbonylalkyl, $C_2\text{-}C_{10}\text{-}N\text{-}alkoxylminoalkyl,}$ $C_2\text{-}C_{10}$ alkoxycarbonylalkyl, $C_1\text{-}C_{10}$ aminoalkyl, $C_3\text{-}C_{10}$ dialkylaminoalkyl, $C_2\text{-}C_{10}$ alkyl-aminoalkyl, $C_1\text{-}C_1$ 0cyanoalkyl, $C_4\text{-}C_1$ 0cycloalkylalkyl, $C_1\text{-}C_1$ 0phenylalkyl,

C₁-C₁₀heteroarylalkyl, C₁-C₁₀phenoxyalkyl, C₁-C₁₀heteroaryloxyalkyl, C₁-C₁₀heter

R₄ and R₅, together with the atoms to which they are bonded, form a 5- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur and that, in addition, may contain a fused or spiro-bound alkylene or alkenylene chain consisting of from 2 to 6 carbon atoms, which chain may in turn contain one or two hetero atoms selected from oxygen and sulfur, wherein the cyclic group may be substituted by phenyl or benzyl, which in turn may be substituted by halogen, C₁-C₆alkyl, C₁-C₆halo-alkyl, C₃-C₆cycloalkyl, hydroxy, C₁-C₆alkoxy,

C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆haloalkoxy or by nitro;

 $R_2,\,R_6$ and R_{32} are each independently of the others $C_1\text{-}C_{10}$ alkyl, $C_2\text{-}C_{10}$ alkenyl,

 $C_2\text{-}C_{10}\text{alkynyl}, \ C_1\text{-}C_{10}\text{haloalkyl}, \ C_2\text{-}C_{10}\text{alkoxyalkyl}, \ C_3\text{-}C_{10}\text{alkenyloxyalkyl}, \ C_3\text{-}C_{10}\text{alkynyloxyalkyl}, \ C_2\text{-}C_{10}\text{alkylthioalkyl}, \ C_2\text{-}C_{10}\text{alkyl-sulfonylalkyl}, \ C_2\text{-}C_{10}\text{alkylcarbonylalkyl}, \ C_3\text{-}C_{10}\text{cycloalkyl}, \ \text{aryl or h teroaryl};}$

 R_7 , R_{31} and R_{33} are each independently of the others hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl or C_2 - C_{10} alkoxyalkyl;

R₈ is hydrogen, C₁-C₁₀alkyl, C₁-C₁₀hal alkyl, C₂-C₁₀alk xyalkyl, C₃-C₁₀alkenyloxyalkyl, C₃-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthloalkyl, C₂-C₁₀alkylsulfinylalkyl, C₂-C₁₀alkylsulfonylalkyl, C₃-C₁₀cycloalkyl, aryl or heteroaryl; or R₆ and R₇ or R₂ and R₃₁ or R₃₂ and R₃₃, together with the atom to which they are bonded, form a saturated 3- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur; or R₈ and R₈, together with the atoms to which they are bonded, form a 5- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

 R_9 , R_{10} , R_{11} and R_{12} are each independently of the others C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} haloalkyl, C_2 - C_{10} alkoxyalkyl, C_3 - C_{10} alkenyloxyalkyl,

 C_3 - C_{10} alkynyloxyalkyl, C_2 - C_{10} alkylthioalkyl, C_2 - C_{10} alkylsulfinylalkyl, C_2 - C_{10} alkyl-sulfonylalkyl, C_2 - C_{10} alkylcarbonylalkyl, C_3 - C_{10} cycloalkyl, aryl or heteroaryl; or

 R_9 and R_{11} or R_9 and R_{10} , together with the atoms to which they are bonded, form a 5- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

 R_{13} , R_{14} , R_{34} and R_{35} are each independently of the others C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} haloalkyl, C_2 - C_{10} alkoxyalkyl, C_3 - C_{10} alkenyloxyalkyl,

 C_3 - C_{10} alkynyloxyalkyl, C_2 - C_{10} alkylthioalkyl, C_2 - C_{10} alkylsulfinylalkyl, C_2 - C_{10} alkyl-sulfonylalkyl, C_2 - C_{10} alkylcarbonylalkyl, C_3 - C_{10} cycloalkyl, aryl or heteroaryl; or

 R_{13} and R_{14} or R_{34} and R_{35} , together with the atoms to which they are bonded, form a 5- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

 R_{15} is $C_1\text{-}C_{10}$ alkyl, $C_2\text{-}C_{10}$ alkenyl, $C_2\text{-}C_{10}$ alkynyl, $C_1\text{-}C_{10}$ haloalkyl, $C_2\text{-}C_{10}$ alkoxyalkyl, $C_3\text{-}C_{10}$ alkenyloxyalkyl, $C_3\text{-}C_{10}$ alkynyloxyalkyl, $C_2\text{-}C_{10}$ alkylthioalkyl, $C_2\text{-}C_{10}$ alkyl-sulfinylalkyl, $C_2\text{-}C_{10}$ alkylsulfonylalkyl, $C_2\text{-}C_{10}$ alkylcarbonylalkyl, $C_2\text{-}C_{10}$ alkoxy-carbonylalkyl, $C_1\text{-}C_{10}$ aminoalkyl, $C_3\text{-}C_{10}$ dialkylamin alkyl, $C_2\text{-}C_{10}$ alkylaminoalkyl, $C_1\text{-}C_1\text{-}C}$

C₁₀cycloalkylalkyl, C₁-C₁₀phenylalkyl, C₁-C₁₀heteroarylalkyl, C₁-C₁₀phenoxyalkyl, C₁-C₁₀h teroaryloxyalkyl, C₁-C₁₀nitroalkyl, C₃-C₁₀cycloalkyl, aryl or heteroaryl;

R₁₈ is C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₂-C₁₀alkoxyalkyl, C₃-C₁₀alkenyloxyalkyl, C₃-C₁₀alkynyloxyalkyl, C₂-C₁₀alkylthiolkyl, C₂-C₁₀alkyl-sulfinylalkyl, C₂-C₁₀alkylsulfonylalkyl, C₃-C₁₀cycloalkyl, aryl or heteroaryl;

 R_{17} is $C_1\text{-}C_{10}$ alkyl, $C_2\text{-}C_{10}$ alkenyl, $C_2\text{-}C_{10}$ alkynyl, $C_1\text{-}C_{10}$ haloalkyl, $C_2\text{-}C_{10}$ alkoxyalkyl, $C_3\text{-}C_{10}$ alkynyloxyalkyl, $C_2\text{-}C_{10}$ alkylthioalkyl, $C_2\text{-}C_{10}$ alkyl-sulfinylalkyl, $C_2\text{-}C_{10}$ alkylcarbonylalkyl, $C_3\text{-}C_{10}$ cycloalkyl, aryl or heteroaryl; R_{18} is hydrogen, $C_2\text{-}C_{10}$ alkenyl, $C_2\text{-}C_{10}$ alkynyl, $C_1\text{-}C_{10}$ alkyl or $C_1\text{-}C_1$ 0alkyl; or

 R_{17} and R_{18} , together with the atoms to which they are bonded, form a 3- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

Y is oxygen, sulfur, C-R₁₉ or N-R₃₆;

 R_{19} and R_{36} are each independently of the other C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} haloalkyl, phenyl or heteroaryl; or

 R_{18} and R_{19} or R_{18} and R_{26} , together with the atom to which they are bonded, form a saturated 5- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

 G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 , G_9 and G_{10} are each independently of the others hydrogen, $-C(X_1)-R_{20}$, $-C(X_2)-X_3-R_{21}$, $-C(X_4)-N(R_{22})-R_{23}$, $-SO_2-R_{24}$, an alkali metal cation, alkaline earth metal cation, sulfonium cation or ammonium cation, $-P(X_5)(R_{25})-R_{26}$ or $-CH_2-X_6-R_{27}$;

 X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each independently of the others oxygen or sulfur;

 $R_{20},\,R_{21},\,R_{22}$ and $R_{23}\,$ are each independently of the others hydrogen, C_{1-} C_{10} alkyl, C_{2} - C_{10} alkenyl, C_{2} - C_{10} alkynyl, C_{1} - C_{10} haloalkyl, C_{1} - C_{10} cyanoalkyl, C_{1-} C_{10} nitroalkyl, C_{1-} - C_{10} aminoalkyl, C_{1-} - C_{5} alkylamino- C_{1-} - C_{5} alkyl, C_{2-} - C_{8} dialkylamino- C_{1-} - C_{5} alkyl, C_{3-} - C_{7} cycloalkyl- C_{1-} - C_{5} alkyl, C_{2-} - C_{10} alkoxyalkyl, C_{4-} - C_{10} alkenyloxyalkyl,

 C_4 - C_{10} alkynyloxyalkyl, C_2 - C_{10} alkylthioalkyl, C_1 - C_5 alkylsulfoxyl- C_1 - C_5 alkyl, C_1 - $C_{6} alkyl-sulfonyl-C_{1}-C_{6} alkyl,\ C_{2}-C_{8} alkylideneaminooxy-C_{1}-C_{5} alkyl,\ C_{1}-C_{6} alkyl-al$ carbonyl-C₁-C₅alkyl, C₁-C₅alkoxycarbonyl-C₁-C₅alkyl, C₁-C₅amin carbonyl- C_1 - C_5 alkyl, C_2 - C_8 dialkylaminocarbonyl- C_1 - C_5 alkyl, C_1 - C_5 alkylcarbonylamino-C₁-C₅alkyl, C₁-C₅alkylcarbonyl-(C₂-C₅alkyl)-aminoalkyl, C₃-C₆trialkylsllyl- C_1 - C_5 alkyl, phenyl- C_1 - C_5 alkyl, heteroaryl- C_1 - C_5 alkyl, phenoxy- C_1 - C_5 alkyl, heteroaryloxy- C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 haloalkenyl, C_3 - C_8 cycloalkyl, phenyl, or phenyl substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, or heteroaryl or heteroarylamino, or heteroaryl or heteroarylamino substituted by C1-C3alkyl, C1-C3haloalkyl, C1-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, diheteroarylamino, or diheteroarylamino substituted by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C₃haloalkoxy, halogen, cyano or by nitro, phenylamino, or phenylamino substituted by C₁-C₃alkyl,

C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, dlphenylamino, or diphenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or C₃-C7cycloalkylamino, di-C3-C7cycloalkylamino or C3-C7cycloalkoxy; R_{24} , R_{25} and R_{26} are hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C1-C10haloalkyl, C1-C10cyanoalkyl, C1-C10nitroalkyl, C1-C10aminoalkyl, $C_1\text{-}C_5 alkylamino-C_1\text{-}C_5 alkyl, \ C_2\text{-}C_8 dialkylamino-C_1\text{-}C_5 alkyl, \ C_3\text{-}C_7 cycloalkyl-cycloalkyl C_1$ - C_5 alkyl, C_2 - C_{10} alkoxyalkyl, C_4 - C_{10} alkenyloxyalkyl, C_4 - C_{10} alkynyloxyalkyl, C2-C10alkylthioalkyl, C1-C5alkylsulfoxyl-C1-C5alkyl, C1-C5alkylsulfonyl-C1- C_5 alkyl, C_2 - C_8 alkylideneaminooxy- C_1 - C_5 alkyl, C_1 - C_5 alkylcarbonyl- C_1 - C_5 alkyl, $C_1\text{-}C_5 \\ alkoxycarbonyl\text{-}C_1\text{-}C_5 \\ alkyl\text{,} \ C_1\text{-}C_5 \\ aminocarbonyl\text{-}C_1\text{-}C_5 \\ alkyl\text{,} \ C_2\text{-}C_8 \\ dialkyl\text{-}C_1\text{-}C_5 \\ alkyl\text{-}C_2\text{-}C_8 \\ dialkyl\text{-}C_2\text{-}C_8 \\ di$ aminocarbonyl-C₁-C₅alkyl, C₁-C₅alkylcarbonylamino-C₁-C₅alkyl, C₁-C₅alkylcarbonyl-(C_2 - C_5 alkyl)-aminoalkyl, C_3 - C_6 trialkylsilyl- C_1 - C_5 alkyl, phenyl- C_1 - C_5 alkyl, heteroaryl- C_1 - C_5 alkyl, phenoxy- C_1 - C_5 alkyl, heteroaryloxy- C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 haloalkenyl, C_3 - C_6 cycloalkyl, phenyl, or phenyl substituted by C1-C3alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or

heteroaryl or heteroarylamino, or heteroaryl or h t roarylamino substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, diheteroarylamino, or dih teroarylamino substituted by C₁-C₃alkyl,

C₁-C₃hal -alkyl, C₁-C₃alk xy, C₁-C₃haloalkoxy, halogen, cyano r by nitro, phenylamino, or phenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃halo-alkoxy, halogen, cyan or by nitro, diph nylamino, or diphenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or C₃-C₇cycloalkylamino, di-C₃-C₇cycloalkylamino, C₃-C₇cycloalkylamino, C₃-C₇cycloalkoxy,

 C_1 - C_{10} alkoxy, C_1 - C_{10} haloalkoxy, C_1 - C_5 alkylamino, C_2 - C_8 dlalkylamino, benzyloxy or phenoxy, wherein the benzyl and phenyl groups may in turn be substituted by

 C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

 $R_{27} \text{ is } C_1\text{-}C_{10}\text{alkyl}, C_2\text{-}C_{10}\text{alkenyl}, C_2\text{-}C_{10}\text{alkynyl}, C_1\text{-}C_{10}\text{haloalkyl}, C_1\text{-}C_{10}\text{cyanoalkyl}, C_1\text{-}C_{10}\text{nitroalkyl}, C_1\text{-}C_{10}\text{aminoalkyl}, C_1\text{-}C_5\text{alkylarnino-}C_1\text{-}C_5\text{alkyl}, C_2\text{-}C_8\text{dialkyl-amino-}C_1\text{-}C_5\text{alkyl}, C_3\text{-}C_7\text{cycloalkyl-}C_1\text{-}C_5\text{alkyl}, C_2\text{-}C_{10}\text{alkoxyalkyl}, C_4\text{-}C_{10}\text{alkenyl-oxyalkyl}, C_4\text{-}C_{10}\text{alkynyloxyalkyl}, C_2\text{-}C_{10}\text{alkylthioalkyl}, C_1\text{-}C_5\text{alkylsulfoxyl-}C_1\text{-}C_5\text{alkylsulfonyl-}C_1\text{-}C_5\text{alkyl}, C_2\text{-}C_8\text{alkylldeneaminooxy-}C_1\text{-}C_5\text{alkylsulfonyl-}C_1\text{-}C_5\text{alkyl}, C_2\text{-}C_8\text{alkylldeneaminooxy-}C_1\text{-}C_5\text{alkyl}, C_2\text{-}C_8\text{alkylldeneaminooxy-}C_1\text{-}C_5\text{alkylsulfonyl-}C_1\text{-}C_5\text{alkyl}, C_2\text{-}C_8\text{alkylldeneaminooxy-}C_1\text{-}C_5\text{alkylsulfonyl-}C_1\text{-}C_5\text{alkyl}, C_2\text{-}C_8\text{alkylldeneaminooxy-}C_1\text{-}C_5\text{alkylsulfonyl-}C_1\text{-}C_5\text{alkyl}, C_2\text{-}C_8\text{alkylldeneaminooxy-}C_1\text{-}C_5\text{alkylsulfonyl-}C_1\text{-}C_5\text{alkyl}, C_2\text{-}C_8\text{alkylldeneaminooxy-}C_1\text{-}C_5\text{alkylsulfonyl-}C_$

 $C_5 alkyl, \\ C_1-C_5 alkyl-C_1-C_5 alkyl-C$

carbonylamino-C₁-C₅alkyl, C₁-C₅alkylcarbonyl-(C₂-C₅alkyl)-aminoalkyl,

C₃-C₆trialkylsilyl-C₁-C₅alkyl, phenyl-C₁-C₅alkyl, heteroaryl-C₁-C₅alkyl, phenoxy-

 C_1 - C_5 alkyl, heteroaryloxy- C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 haloalkenyl, C_3 - C_8 cyclo-alkyl, phenyl, or phenyl substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy,

C₁-C₃haloalkoxy, halogen, cyano or by nitro, or heteroaryl or heteroarylamino, or heteroaryl or heteroarylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃haloalkoxy, halogen, cyano or by nitro, diheteroarylamino, diheteroarylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, or phenylamino, phenylamino substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃haloalkoxy, halogen, cyano or by nitro, diphenylamino, diphenylamino substituted by C₁-C₃alkyl,

 C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halog n, cyano r by nitro, C_3 - C_7 cycloalkylamino, di- C_3 - C_7 cycloalkylamin , C_3 - C_7 cyclo lkoxy or C_1 - C_1 0alkylcarbonyl;

Y₂ is oxygen, sulfur, C-R₁₄₀-R₁₄₁ or N-R₁₄₂,

R₅₅ is C₁-C₁₀alkyl, C₂-C₁₀alkenyl, C₂-C₁₀alkynyl, C₁-C₁₀haloalkyl, C₂-

C₁₀alkoxyalkyl, C₃-C₁₀alkenyloxyalkyl, C₃-C₁₀alkynyloxyalkyl, C₂-

 C_{10} alkylthioalkyl, C_2 - C_{10} alkyl-sulfinylalkyl, C_2 - C_{10} alkylsulfonylalkyl, C_2 -

C₁₀alkylcarbonylalkyl, C₃-C₁₀cycloalkyl, aryl or heteroaryl;

 R_{137} is hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl or C_1 -

C10alkoxyalkyl; or

 R_{55} and R_{137} , together with the atoms to which they are bonded, form a 3- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

R₁₃₈ and R₁₃₉ are each independently of the other hydrogen, C₁-C₁₀alkyl,

C2-C10alkenyl, C2-C10alkynyl or C2-C10alkoxyalkyl; and

 R_{140} and R_{141} are each independently of the other hydrogen, C_1 - C_{10} alkyl,

C2-C10alkenyl, C2-C10alkynyl or C1-C10alkoxyalkyl; or

 R_{55} and C- R_{140} , together with the atoms to which they are bonded, form a saturated or unsaturated 3- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

 R_{142} is hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} haloalkyl, C_2 - C_{10} alkoxyalkyl, C_3 - C_{10} alkenyloxyalkyl, C_2 - C_{10} alkylthioalkyl, C_2 - C_{10} alkylsulfonylalkyl, C_3 - C_{10} alkylsulfonylalkyl, C_3 - C_{10} cycloalkyl, aryl or heteroaryl; or

 R_{55} and N-R₁₄₂, together with the atoms to which they are bonded, form a saturated or unsaturated 3- to 7-membered cyclic group that may contain one or two hetero atoms selected from nitrogen, oxygen and sulfur;

or an agronomically tolerable salt, isomer or enantiomer of such a compound.

- 2. A compound according to claim 1, wherein Q is Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_6 , Q_7 , Q_8 or Q_9 .
- 3. A process for the preparation of a compound of formula I according to claim 1, wherein a compound of formula XXX

Q-H (XXX)

wherein Q is Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_8 , Q_7 , Q_8 , Q_9 or Q_{10} , the substituents of which, with the exception of G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 , G_9 and G_{10} , have the meanings given above, and G_1 , G_2 , G_3 , G_4 , G_5 , G_6 , G_7 , G_8 , G_9 and G_{10} are hydrogen, is reacted with a compound of formula XXXI

wherein R_1 and R_3 are as defined for formula I and Hal is chlorine, bromine or iodine, in the presence of an inert solvent, a base and a palladium catalyst at temperatures of from 30 to 250°C.

4. A herbicidal and plant growth-inhibiting composition that comprises a herbicidally effective amount of a compound of formula I according to claim 1, on an inert carrier.

5. A method of controlling undesired plant growth that comprises applying a herbicidally effective amount of an active ingredient of formula I according to claim 1, or of a composition comprising such an active ingredient, to the plants or to the locus thereof.

6. A method of inhibiting plant growth that comprises applying a herbicidally effective amount of an active ingredient of formula I according to claim 1, or of a composition comprising such an active ingredient, to the plants or to the locus thereof.

7. A selective-herbicidal composition that comprises as active ingredient, in addition to customary inert formulation adjuvants, a mixture of a) a herbicidally effective amount of a compound of formula I according to claim 1, with the proviso that Q is other than Q_1 ; and

b) a herbicide-antagonistically effectly am unt ither fa compound of formula X

$$\begin{array}{c}
X_{6} \\
O - CH_{2} \longrightarrow O - R_{37}
\end{array}$$
(X),

wherein

 R_{37} is hydrogen, C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by C_1 - C_8 alkoxy or by C_3 - C_8 alkenyloxy; and X_7 is hydrogen or chlorine; or of a compound of formula X_1

wherein

E is nitrogen or methine;

R₃₈ is -CCl₃, phenyl or phenyl substituted by halogen;

 R_{39} and R_{40} are each independently of the other hydrogen or halogen; and R_{41} is C_1 - C_4 alkyl; or of a compound of formula XII

wherein R_{44} and R_{45} ar each independently of the other hydrogen or halogen, and

 $R_{46},\,R_{47}$ and R_{48} are each ind pendently if the oth rs C_1 - C_4 alkyl, or of a compound if formula XIII

$$R_{51}$$
 N -CO-N
 R_{52}
 R_{53}
 R_{53}
 R_{50}
 R_{50}
 R_{50}
 R_{50}
 R_{50}
 R_{50}
 R_{50}
 R_{50}
 R_{50}
 R_{50}

wherein A2 is a group

 R_{51} and R_{52} are each independently of the other hydrogen, C_1 - C_8 alkyl, C_3 -

$$C_8$$
cycloalkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, R_y , or C_1 - C_4 alkyl

substituted by
$$C_1$$
- C_4 alkoxy or by R_y ; or R_{51} and R_{52} together

form a C_4 - C_6 alkylene bridge that may be interrupted by oxygen, sulfur, SO, SO₂, NH or by -N(C_1 - C_4 alkyl)-;

 R_{53} is hydrogen or C_1 - C_4 alkyl;

 R_{49} is hydrogen, halogen, cyano, trifluoromethyl, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, -COOR_j, -CONR_kR_m, -COR_n, -SO₂NR_kR_m or -OSO₂- C_1 - C_4 alkyl; R_g is hydrogen, halogen, cyano, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, -COOR_j, -CONR_kR_m, -COR_n,

-SO₂NR_kR_m, -OSO₂-C₁-C₄alkyl, C₁-C₆alk xy, or C₁-C₆alkoxy substituted by C₁-C₄alkoxy or by hal g n, C₃-C₆alkenyloxy, or C₃-C₆alkenyloxy substituted by halogen, or C₃-C₆alkynyloxy, or R₄₉ and R₅₀ together f rm a C₃-C₄alkylene bridge that may be substituted by halogen or by C₁-C₄alkyl, or together form a C₃-C₄alkenylene bridge that may be substituted by halogen or by C₁-C₄alkyl, or together form a C₄alkadienylene bridge that may be substituted by halogen or by C₁-C₄alkyl;

 R_{50} and R_h are each independently of the other hydrogen, halogen, C_1 - C_4 alkyl, trifluoromethyl, C_1 - C_8 alkoxy, C_1 - C_8 alkylthio or -COOR_j; R_c is hydrogen, halogen, nitro, C_1 - C_4 alkyl or methoxy; R_d is hydrogen, halogen, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, -COOR_j or CONR_kR_m;

 R_{θ} is hydrogen, halogen, C_1 - C_4 alkyl, -COOR $_{\parallel}$, trifluoromethyl or methoxy, or R_d and R_{θ} together form a C_3 - C_4 alkylene bridge;

Rp is hydrogen, halogen, C₁-C₄alkyl, -COOR_j, trifluoromethyl or methoxy; Rq is hydrogen, halogen, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, -COOR_j or CONR_kR_m; or Rp and Rq together form a C₃-C₄alkylene bridge;

Rr is hydrogen, halogen, C_1 - C_4 alkyl, -COOR_j, trifluoromethyl or methoxy; Rs is hydrogen, halogen, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, -COOR_j or CONR_kR_m; or Rr and Rs together form a C_3 - C_4 alkylene bridge;

Rt Is hydrogen, halogen, C_1 - C_4 alkyl, -COOR_j, trifluoromethyl or methoxy; Ru is hydrogen, halogen, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, -COOR_j or CONR_kR_m; , or Rv and Ru together form a C_3 - C_4 alkylene bridge;

R₁ and Rv are hydrogen, halogen or C₁-C₄alkyl;

 R_x and R_y are each independently of the other hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkylthio, -COOR₅₄, trifluoromethyl, nitro or cyano;

 R_i , R_k and R_m are each independently of the others hydrogen or C_1 - C_4 alkyl; or R_k and R_m together form a C_4 - C_6 alkylene bridge that may be interrupted by oxygen, NH or by -N(C_1 - C_4 alkyl)-;

 R_n is C_1 - C_4 alkyl, phenyl, or phenyl substituted by halogen, C_1 - C_4 alkyl, methoxy, nitro or by trifluoromethyl;

R₅₄ Is hydrogen, C₁-C₁₀alkyl, C₁-C₄alkoxy-C₁-C₄alkyl, C₁-C₄alkylthio-C₁-C4alkyl, di-C1-C4alkylamino-C1-C4alkyl, halo-C1-C8alkyl, C2-C8alk nyl, halo-C2-C₈alkenyl, C₃-C₈alkynyl, C₃-C₇cycloalkyl, halo-C₃-C₇cycloalkyl, C₁-Cealkylcarbonyl, allylcarbonyl, Ce-Cycloalkylcarbonyl, benzoyl, which is unsubstituted or substituted on the phenyl ring identically or differently up to three times by halogen, C₁-C₄alkyl, halo-C₁-C₄alkyl, halo-C₁-C₄alkoxy or C₁-C₄alkoxy; or furoyl, thienyl; or C₁-C₄alkyl substituted by phenyl, halophenyl, C₁-C₄alkylphenyl, C₁-C₄alkoxyphenyl, halo-C₁-C₄alkylphenyl, halo-C₁-C₄alkoxyphenyl, C1-C6alkoxycarbonyl, C1-C4alkoxy-C1-C8alkoxycarbonyl, C3-C₈alkenyloxycarbonyl, C₃-C₈alkynyloxycarbonyl, C₁-C₈alkylthiocarbonyl, C₃-C₈alkenylthiocarbonyl, C₃-C₈alkynylthiocarbonyl, carbamoyl, mono-C₁-C4alkylaminocarbonyl, di-C1-C4alkylaminocarbonyl; or phenylaminocarbonyl, which is unsubstituted or substituted on the phenyl identically or differently up to three times by halogen, C₁-C₄alkyl, halo-C₁-C₄alkyl, halo-C₁-C₄alkoxy or C₁-C4alkoxy or once by cyano or nitro; or dioxolan-2-yl, which is unsubstituted or substituted by one or two C1-C4alkyl radicals, or dioxan-2-yl, which is unsubstituted or substituted by one or two C1-C4alkyl radicals, or C1-C4alkyl, which is substituted by cyano, nitro, carboxyl or by C1-C8alkylthio-C1-Calkoxycarbonyl;

or of a compound of formula XIV

independently of the other C_1 - C_6 alkyl or C_2 - C_6 alkenyl; or R_{56} and R_{57} together

are
$$R_{59}$$
; R_{58} and R_{59} are each independently of the other

hydrogen or
$$C_1$$
- C_6 alkyl; or R_{56} and R_{57} together are R_{60}

 R_{60} and R_{61} are each independently of the other $C_1\text{-}C_4alkyl,$ or R_{60} and R_{61} together are -(CH₂)₅- ;

or R₅₆ and R₅₇ together are
$$R_{n_7}$$
 R_{n_8} R_{n_9} $R_$

 R_{63} , R_{64} , R_{65} , R_{86} , R_{67} , R_{68} , R_{69} , R_{70} , R_{71} , R_{72} , R_{73} , R_{74} , R_{75} , R_{76} , R_{77} and R_{78} are each independently of the others hydrogen or C_1 - C_4 alkyl; or of a compound of formula XV

wherein R_{80} is hydrogen or chlorine and R_{79} is cyano or trifluoromethyl; or of a compound of formula XVI

wherein R_{81} is hydrogen or methyl; or of a compound of formula XVI

wherein R₈₁ is hydrogen or methyl; or of a compound of formula XVII

wherein

 R_{82} is hydrogen, C_1 - C_4 alkyl, or C_1 - C_4 alkyl substituted by C_1 - C_4 alkyl- X_2 - or by C_1 - C_4 haloalkyl- X_2 -, or is C_1 - C_4 haloalkyl, nitro, cyano, -COOR₈₅, -NR₈₆R₈₇, -SO₂NR₈₈R₈₉ or -CONR₉₀R₉₁;

R₈₃ is hydrogen, halogen, C₁-C₄alkyl, trifluoromethyl, C₁-C₄alkoxy or C₁-C₄haloalkoxy;

R₈₄ is hydrogen, halogen or C₁-C₄alkyl;

 $U,\,V,\,W_1$ and Z_4 are each independently of the others oxygen, sulfur,

C(R₉₂)R₉₃, carbonyl, NR₉₄, or a group

$$C = \overset{H}{C}$$
 , wherein \dot{R}_{102} is $C_2\text{-}C_4$ alkenyl or $C_2\text{-}C_4$ alkynyl; with the

provisos that

a) at least one of the ring members U, V, W_1 or \mathbb{Z}_1 is carbonyl, and a ring member adjacent to that ring member or to those ring members is the group

$$C = \bigcap_{R_{95}}^{O} A_1$$
 or $C = \bigcap_{R_{95}}^{C} \bigcap_{R_{96}}^{R_{102}}$, that group appearing only

once; and

b) two adjacent ring members U and V, V and W_1 and W_1 and Z_4 cannot simultaneously be oxygen;

 R_{95} and R_{96} are each independently of the other hydrogen or C_1 - C_8 alkyl; or R_{95} and R_{96} together form a C_2 - C_6 alkylene group;

A₁ is R₉₉-Y₁- or -NR₉₇R₉₈;

X₂ is oxygen or -S(O)₉;

Y₁ is oxygen or sulfur;

 R_{99} is hydrogen, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, C_1 - C_4 alkoxy- C_1 - C_8 alkyl, C_3 - C_6 alkenyloxy- C_1 - C_8 alkyl, or phenyl- C_1 - C_8 alkyl in which the phenyl ring may be substituted by halogen, C_1 - C_4 alkyl, trifluoromethyl, methoxy or by methyl- $S(O)_{a}$ -, or is C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, phenyl- C_3 - C_6 alkynyl, oxetanyl, furyl or tetrahydrofuryl;

R₈₅ is hydrogen or C₁-C₄alkyl;

R₈₈ is hydrogen, C₁-C₄alkyl or C₁-C₄alkylcarbonyl;

R₈₇ is hydrogen or C₁-C₄alkyl; or

R₈₆ and R₈₇ together form a C₄- or C₅-alkylene group;

 R_{88} , R_{89} , R_{90} and R_{91} are each independently of the others hydrogen or C_{1-} C_{4} alkyl; or R_{88} together with R_{89} , or R_{90} together with R_{91} , are each independently of the other C_{4-} or C_{5-} alkylene in which one carbon atom may have been replaced by oxygen or by sulfur, or one or two carbon atoms may have been replaced by $-NR_{100-}$;

 R_{92} , R_{100} and R_{93} are each indipendintly of the others hydrogen or C_{1-} C_{8} alkyl; r

R₉₂ and R₉₃ together are C₂-C₆alkylene;

R₉₄ is hydrogen or C₁-C₈alkyi;

 R_{97} is hydrogen, C_1 - C_8 alkyl, phenyl or phenyl- C_1 - C_8 alkyl, wherein the phenyl rings may be substituted by fluorine, chlorine, bromine, nitro, cyano, -OCH₃, C_1 - C_4 alkyl or by CH_3SO_2 -, or is C_1 - C_4 alkoxy- C_1 - C_8 alkyl, C_3 - C_6 alkenyl or C_3 - C_8 alkynyl;

 R_{98} is hydrogen, C_1 - C_8 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl; or R_{97} and R_{98} together are C_4 - or C_5 -alkylene in which one carbon atom may have been replaced by oxygen or by sulfur, or one or two carbon atoms may have been replaced by -NR₁₀₁-;

R₁₀₁ is hydrogen or C₁-C₄alkyl;

r is 0 or 1; and

s is 0, 1 or 2,

or of a compound of formula XVIII

$$\begin{array}{c|c}
 & N \\
 & N \\
\hline
S & COOR_{100}
\end{array}$$

$$\begin{array}{c}
 & N \\
 & N \\
\hline
N & R_{100}
\end{array}$$
(XVIII).

wherein R_{103} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl; and R_{104} , R_{105} and R_{106} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl or C_1 - C_6 alkoxy, with the proviso that one of the substituents R_{104} , R_{105} and R_{106} is other than hydrogen; or of a compound of formula XIX

wherein Z_5 is N or CH, n is 0, 1, 2 r 3 when Z_5 Is N, and n is 0, 1, 2, 3 r 4 when Z_5 is CH, R₁₀₇ is halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, nitro, C₁-C₄alkylthio, C₁-C₄alkylsulf nyl, C₁-C₄alkoxycarbonyl, phenyl or phenoxy, or phenyl or phenoxy substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro; R₁₀₈ is hydrogen or C₁-C₄alkyl, R₁₀₉ is hydrogen, C₁-C₄alkyl, C₃-C₆cycloalkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₄alkylthio-C₁-C₄alkyl, C₁-C₄alkylsulfonyl-C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl;

or of a compound of formula XX

wherein Z_6 is oxygen or N-R₁₁₀ and R₁₁₀ is a group of formula

wherein R_{111} and R_{112} are each independently of the other cyano, hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, aryl, phenyl or heteroaryl, or phenyl, aryl or heteroaryl substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

or of a compound of formula XXI

$$W_2$$
 W_3 R_{114} (XXI) .

wherein Z_7 is oxyg n, sulfur, S=O, SO₂ or CH₂, R₁₁₃ and R₁₁₄ are ach independ ntly of the other hydr gen, hal gen or C₁-C₄alkyl, W₂ and W₃ are

each independently of the other CH_2COOR_{115} or $COOR_{0115}$ or t g ther are a gr up of formula - $(CH_2)C(O)$ -O-C(O)- (CH_2) -, and R_{115} and R_{0115} ar each independently of the other hydr gen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_4 haloalkyl, or a metal cation or an ammonium cation; or of a compound of formula XXII

wherein R_{119} and R_{120} are each independently of the other hydrogen, halogen or C_1 - C_4 haloalkyl, R_{121} is hydrogen, C_1 - C_4 alkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl, C_1 - C_4 haloalkyl, C_3 - C_6 cycloalkyl, a metal cation or an ammonium cation, Z_8 is N, CH, C-F or C-Cl and W_4 is a group of formula

wherein R_{122} and R_{123} are each independently of the other hydrogen or C_1 - C_4 alkyl and R_{124} and R_{125} are each independently of the other hydrogen or C_1 - C_4 alkyl;

or of a compound of formula XXIII

$$\begin{array}{c|c} \bullet & \\ \hline \\ S & \\ R_{127} \end{array}$$

wherein R_{128} is hydrogen, cyano, halogen, C_1 - C_4 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylthiocarbonyl, -NH- R_{128} , -C(O)NH- R_{0128} , aryl or heteroaryl, or aryl or heteroaryl substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano r by nitro; R_{127} is hydrogen, cyano, nitro, halog n, C_1 - C_4 alkyl, C_1 - C_4 hal alkyl, C_1 - C_4 alkoxy or C_1 - C_4 thioalkyl; and

R₁₂₈ and R₀₁₂₈ are each indep indentity of the other C₁-C₄alkyl, C₁-C₄hal alkyl, C₃-C₄alk nyl, C₃-C₄alkynyl, C₃-C₄cycloalkyl, aryl or hiteroaryl, or aryl in heteroaryl substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, formyl, C₁-C₄alkylcarbonyl or C₁-C₄alkylsufonyl;

or of a compound of formula XXIV

$$R_{131}$$
 R_{130} R_{132} N R_{129} $(XXIV).$

wherein R₁₂₉ and R₁₃₀ are each independently of the other hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, mono-C₁-C₈- or di-C₁-C₈-alkylamino, C₃-C₈cycloalkyl, C₁-C₄thioalkyl, phenyl or heteroaryl, R₁₃₁ has the meanings of R₁₂₉ and in addition is OH, NH₂, halogen, di-C₁-C₄aminoalkyl, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl or C₁-C₄alkoxycarbonyl, R₁₃₂ has the meanings of R₁₂₉ and in addition is cyano, nitro, carboxyl, C₁-C₄alkoxycarbonyl, di-C₁-C₄aminoalkyl, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl, SO₂-OH, i-C₁-C₄aminoalkylsulfonyl or C₁-C₄alkoxysulfonyl, R₁₃₃ has the meanings of R₁₂₉ and in addition is OH, NH₂, halogen, di-C₁-C₄aminoalkyl, pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl, C₁-C₄alkoxycarbonyl, phenoxy, naphthoxy, phenylamino, benzoyloxy or phenylsulfonyloxy; or of a compound of formula XXV

wherein R₁₃₄ is hydrogen, C₄alkyl, C₁-C₄haloalkyl, C₂-C₄ lkenyl, C₂-C₄alkynyl or C₁-C₄alkoxy-C₁-C₄alkyl, R₁₃₅ is hydrogen, halogen, C₁-C₄alkyl, C₁-

 C_4 haloalkyl or C_1 - C_4 alkoxy and R_{138} is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_1 - C_4 alkoxy, with the proviso that R_{135} and R_{138} are not simultaneously hydrogen, or of formula XXVI

wherein

R₁₄₃ is hydrogen, an alkali metal cation, alkaline earth metal cation, sulfonium cation or ethyl;

or of formula XXVII

wherein R_{144} and R_{145} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl; R_{146} is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_6 haloalkyl or C_1 - C_6 haloalkoxy; R_{147} is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkoxycarbonyl or nitro; C_1 - C_4 is 0, 1, 2 or 3; and

m is 1 or 2;

or of formula XXVIII

wherein

R₁₄₈ is hydrogen, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkylthio, C₃-C₆cycloalkyl, phenyl, phenyl-C₁-C₆alkyl or heteroaryl; wherein the said groups may be substituted by halogen, cyano, nitro, amin_, hydroxy, carbonyl, carboxyl, formyl, carbonamide or by sulfonamide;

 R_{149} is hydrogen, C_1 - C_8 alkyl or C_1 - C_4 haloalkyl; each R_{150} is independently of any other(s) hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfonyl, cyano, nitro, formyl or carboxyl;

 R_{151} is hydrogen, C_1 - C_6 alkyl or C_1 - C_4 haloalkyl; each R_{152} is independently of any other(s) hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfonyl, cyano, nitro, formyl or carboxyl;

o is 0, 1, or 2, and p is 0, 1 or 2;

or of formula XXIX

wherein

R₁₅₉ is hydrogen, formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkenylcarbonyl, C₁₋₆alkynylcarbonyl, C₁₋₆alkoxycarbonyl, C₁₋₆alkylthiocarbonyl, C₃₋₈cycloalkylcarbonyl, phenyl-C₁₋₈alkylcarbonyl, phenylcarbonyl, C₁₋₆alkylsulfonyl, C₁₋₆alkenylsulfonyl or phenylsulfonyl, wherein the aforementioned hydrocarbon groups may be substituted by one or more halogen atoms, cyano, nitro, amino, methoxy, ethoxy or phenyl;

R₁₅₃ is hydrogen, C₁₋₆alkyl, C₁₋₆alkenyl, C₁₋₆alkynyl, C₃₋₈cycloalkyl, formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkenylcarbonyl, C₁₋₆alkynylcarbonyl, C₁₋₆alkylthiocarbonyl, C₃₋₈cycloalkylcarbonyl, C₁₋₆alkylsulfonyl, C₁₋₆alkylsulfonyl or phenylsulfonyl, wherein the afore-method hydrocarbonyl or phenylsulfonyl or phenyls

gr ups may be substituted by one rm re halog n atoms, cyano, nitro, amino, methoxy, eth xy or phenyl;

 R_{154} is hydrogen, C_{1-6} alkyl, C_{1-6} alkenyl, C_{1-6} alkynyl, C_{3-8} cycloalkyl, formyl, C_{1-6} alkylcarbonyl, C_{1-6} alkynylcarbonyl, C_{1-6} alkylcarbonyl, C_{1-6} alkylthiocarbonyl, C_{3-8} cycloalkylcarbonyl, C_{1-6} alkylsulfonyl, C_{1-6} alkylsulfonyl or phenylsulfonyl, wherein the afore-mentioned hydrocarbon groups may be substituted by one or more halogen atoms, cyano, nitro, amino, methoxy, ethoxy or phenyl;

R₁₅₅, R₁₅₆, R₁₅₇, and R₁₅₈ are each independently of the others hydrogen, halogen, amino, C₁₋₃alkylamino, C₁₋₆dialkylamino, hydroxy, cyano, nitro, formyl, carboxyl, C₁₋₆alkoxy, C₁₋₆haloalkoxy, C₁₋₆alkylcarbonyl, C₁₋₆alkoxycarboxyl, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkenyl or C₁₋₆alkynyl; or R₁₅₃ and R₁₅₈, together with the ring atoms to which they are bonded, form a five- or six-membered, partially saturated or unsaturated ring that may contain up to 2 identical or different hetero atoms from the group oxygen, sulfur and nitrogen, it being possible for that ring to be substituted by an oxo radical.

- 8. A composition according to claim 7 that comprises a herbicideantagonistically effective amount of a safener of formula X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV or XXV.
- 10. A method according to claim 9 that comprises treating the useful plants, the seeds or cuttings thereof or the area of cultivation the reof with a herbicideantage nistically effective amount of a safener of formula X, XI, XII, XIII, XIV,

A3

XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV or XXV, according to claim 7.

- 11. A composition according to claim 4 that further comprises spray tank adjuvants.
- 12. A composition according to claim 7 that further comprises spray tank adjuvants.
- 13. A compound of formula (XXXIa)

wherein R_1 and R_3 are ethyl and Hal is chlorine, bromine or iodine.

Rose M. Allen Senior Parent Attorney Syngenta Crop Protection, Inc. Patent Department P.O. Box 18300 Greensboro, NC 27419

Tel (338) 632-7895 Fax (338) 632-2012 Internet: rose.alien Osyngenta.com

Fax

Attention

Paul Stanback

Assistant Commissioner for Patents

Washington, DC 20231

Fax no.

(703) 306-3424

Number of pages

24 including cover page

Date

October 18, 2002

Concerning

Patent Application No. 10/070,767 Our Reference: PH/5-31141A

Dear Mr. Stanback:

Please find the attached in reference to the above mentioned patent application.

Very truly yours,

Syngenta Crop Protection, Inc.

Rose M. Allen

RMA: kmw