Math 254A Lecture 26 Notes

Daniel Raban

May 26, 2021

1 Basics of Shannon Entropy and Connection to Entropy Rate

1.1 Basic inequalities for Shannon entropy

Definition 1.1. Let A be a finite set with $p \in P(A)$, and let $\alpha \sim p$ be an A-valued random variable. Then

$$H(\alpha) := -\sum_{\alpha \in A} \mathbb{P}(\alpha = a) \log \underbrace{\mathbb{P}(\alpha = a)}_{p(a)} = H(p).$$

is the **Shannon entropy** of α (or of p).

The Shannon entropy quantifies how "uncertain" α is. We have seen that $H(p) \geq 0$ and is $\leq \log |A|$, with equalities achieved with a point mass and with the uniform distribution on |A|, respectively.

Next consider random variables α, β with values in A, B. Regard (α, β) as a random variable with values in $A \times B$. The joint distribution is $p_{\alpha,\beta} \in P(A \times B)$. Then

$$\begin{split} H(\alpha,\beta) &= -\sum_{a,b} p_{\alpha,\beta}(a,b) \log p_{\alpha,\beta}(a,b) \\ &= -\sum_{a,b} p_{\alpha,\beta}(a,b) \log \left(p_{\alpha}(a) \underbrace{p_{\beta|\alpha}(b \mid a)}_{\mathbb{P}(\beta=b|\alpha=a)} \right) \\ &= -\sum_{a,b} p_{\alpha,\beta}(a,b) \log p_{\alpha}(a) - \sum_{a,b} p_{\alpha}(a) p_{\beta|\alpha}(b \mid a) \log p_{\beta|\alpha}(b \mid a) \\ &= -\sum_{a} p_{\alpha}(a) \log p_{\alpha}(a) + \sum_{a} p_{\alpha}(a) \cdot H(p_{\beta|\alpha}(\cdot \mid a)) \\ &= H(\alpha) + H(\beta \mid \alpha), \end{split}$$

where $H(\beta \mid \alpha) := \sum_{a} p_{\alpha}(a) \cdot H(p_{\beta \mid \alpha}(\cdot \mid a)).$

Here is the generalization of this fact:

Theorem 1.1 (Chain rule).

$$H(\alpha_1,\ldots,\alpha_n)=H(\alpha_1)+H(\alpha_2\mid\alpha_1)+H(\alpha_3\mid\alpha_1,\alpha_2)+\cdots+H(\alpha_m\mid\alpha_1,\ldots,\alpha_{m-1}).$$

We also have the following property.

Lemma 1.1.

$$H(\beta \mid \alpha) \leq H(\beta),$$

and equality holds iff α, β are independent, in which case

$$H(\alpha, \beta) \le H(\alpha) + H(\beta)$$

Proof.

$$H(\beta \mid \alpha) = \sum_{a} p_{\alpha}(a) H(p_{\beta \mid \alpha}(\cdot \mid a)).$$

By the Law of Total Probability, for all $b \in B$,

$$p_{\beta}(b) = \sum_{\alpha} p_{\alpha}(a) p_{\beta\mid\alpha}(b\mid a).$$

Since H is strictly concave, Jensen's inequality gives that

$$H(\beta) = H(p_{\beta}) \ge \sum_{\alpha} p_{\alpha}(a) H(p_{\beta|\alpha}(\cdot \mid a)) = H(\beta \mid \alpha).$$

Equality holds in Jensen's inequality iff $P_{\beta|\alpha}(\cdot \mid a) = p_{\beta}$ whenever $p_{\alpha}(a) > 0$, i.e. α, β are independent.

Corollary 1.1.

$$H(\gamma \mid \alpha, \beta) \leq H(\gamma \mid \beta)$$

and similarly with more random variables. Equality holds iff α, γ are conditionally independent given β .

Here is a corollary of the chain rule:

Corollary 1.2. Let A be a finite set, $p \in P(A)$, and $0 \le \varepsilon < 1/2$. Suppose $A = B \sqcup C$ with $|B| \le |C|$ and $p(C) \le \varepsilon$. Then

$$H(p) \le H(\varepsilon, 1 - \varepsilon) + (1 - \varepsilon) \log |B| + \varepsilon \log |C|$$
.

Proof. Let $\alpha \sim p$, and let

$$\beta = \mathbb{1}_B(\alpha) = \begin{cases} 1 & \alpha \in B \\ 0 & \alpha \in C. \end{cases}$$

So $H(\alpha) = H(\alpha) + H(\alpha \mid \beta) = H(\alpha, \beta)$. Expanding via β first, we get

$$\begin{split} H(\alpha) &= H(\alpha,\beta) \\ &= H(\beta) + H(\alpha \mid \beta) \\ &= H(\beta) + \mathbb{P}(\beta = 1)H(p(\cdot \mid B)) + \mathbb{P}(\beta = 0)H(p(\cdot \mid C)) \\ &\leq H(\varepsilon, 1 - \varepsilon) + p(B) \cdot \log |B| + p(C) \cdot \log |C| \\ &= H(\varepsilon, 1 - \varepsilon) + (1 - \varepsilon) \log |B| + \varepsilon \log |C|. \end{split}$$

Here is the last information-theoretic inequality we need.

Theorem 1.2 (Shearer's inequality). Let $\alpha_1, \ldots, \alpha_m$ be valued in A_1, \ldots, A_m , let $S \subseteq \mathcal{P}(\{1, \ldots, m\})$, and let $k \geq 1$. Assume that every $i \in \{1, \ldots, m\}$ is contained in $\geq k$ members of S. Then

$$H(\alpha_1, \dots, \alpha_m) \le \frac{1}{k} \sum_{S \in \mathcal{S}} H(\alpha_i : i \in S).$$

Proof. Here is the proof in the case m=3 and $S=\{\{1,2\},\{1,3\},\{2,3\}\}\ (k=2)$; the argument generalizes well.

$$H(\alpha_1, \alpha_2) = H(\alpha_1) + H(\alpha_2 \mid \alpha_1)$$

$$H(\alpha_1, \alpha_3) = H(\alpha_1) + H(\alpha_3 \mid \alpha_1)$$

$$H(\alpha_2, \alpha_3) = H(\alpha_2) + H(\alpha_3 \mid \alpha_2)$$

Adding together the columns, the first column is $H(\alpha_1)$, the second column is $\geq 2H(\alpha_2 \mid \alpha_1)$, and the third column is $\geq 2H(\alpha_3 \mid \alpha_1, \alpha_2)$. So we get

$$H(\alpha_1, \alpha_2) + H(\alpha_1, \alpha_3)H(\alpha_2, \alpha_3) = 2[H(\alpha_1) + H(\alpha_2 \mid \alpha_1) + H(\alpha_3 \mid \alpha_1, \alpha_2)$$
$$= 2H(\alpha_1, \alpha_2, \alpha_3).$$

1.2 Applying Shearer's inequality to lattice models

Here is a corollary of Shearer's inequality.

Corollary 1.3. Let $W, B \subseteq \mathbb{Z}^d$ be finite with $0 < |A| < \infty$ and $\mu \in P(A^B)$. Then

$$H(\mu) \le \frac{1}{|W|} \sum_{v+W \subseteq B} H(\mu_{v+W}) + O\left(\frac{\log|A| \cdot |B| \cdot \operatorname{diam}(W)}{\text{min-side-length}(B)}\right).$$

Proof. Let $S_0 = \{v + W : v + W \subseteq B\}$, and define $S_1 = \{(v + W) \cap B : (v + W) \cap B \neq \emptyset\}$. Then $S_0 \subseteq S_1$, and S_1 covers every element of B exactly |W|-many times. Apply Shearer's inequality to get

$$H(\mu) \le \frac{1}{|W|} \sum_{(v+W)\cap B \in \mathcal{S}_1} H(\mu_{(v+W)\cap B}) = \frac{1}{|W|} \sum_{\mathcal{S}_0} H(\mu_{v+W}) + \text{error.}$$

The number of terms put into the error is $|\mathcal{S}_1 \setminus \mathcal{S}_0| = O(\frac{\operatorname{diam}(W) \cdot |B|}{\min - \operatorname{side-length}(B)})$. Each of these terms is $\leq \log |A^W| = |W| \cdot \log |A|$.

Now return to shift-invariant measures $\mu \in P^T(A^{\mathbb{Z}^d})$.

Lemma 1.2. The limit $\lim_{B\uparrow\mathbb{Z}^d} \frac{1}{|B|} H(\mu_B)$ exists, and

$$\lim_{B\uparrow\mathbb{Z}^d}\frac{1}{|B|}H(\mu_B)=\inf_B\frac{1}{|B|}H(\mu_\beta).$$

Here is a proof using Shearer's inequality:

Proof. Apply the previous corollary to a shift-invariant measure μ , and observe $\mu_{v+W} = \mu_W$ (up to fixing indexing). Then

$$\frac{1}{|B|}H(\mu_B) \le \frac{1}{|B|} \sum_{v+W \subseteq B} \frac{1}{|W|}H(\mu_W) + o(1)$$

$$= \frac{|\{v : v + W \subseteq B\}|}{|B|} \cdot \frac{1}{|W|}H(\mu_W) + o(1)$$

$$\le \frac{1}{|W|}H(\mu_W) + o(1).$$

So in fact,

$$\lim_{B\uparrow\mathbb{Z}^d} \frac{1}{|B|} H(\mu_\beta) = \inf_{|w| < \infty} \frac{1}{|W|} H(\mu_W).$$

Definition 1.2. The quantity

$$h(\mu) = \lim_{B \uparrow \mathbb{Z}^d} \frac{1}{|B|} H(\mu_B) \qquad (\mu \in P^T(A^{\mathbb{Z}^d}))$$

is called the **entropy rate** of μ .

The entropy rate satisfies

$$0 \le h(\mu) \le H(\mu_{\{0\}}).$$

Theorem 1.3. $s = h \text{ on } P^{T}(A^{\mathbb{Z}^{d}}), \text{ and so } \{s > -\infty\} = \{s \geq 0\} = P^{T}(A^{\mathbb{Z}^{d}}).$