Mathematical Reasoning

Methods of Proof

This Lecture

Now we have learnt the basics in logic.

We are going to apply the logical rules in proving mathematical theorems.

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

"Proof:" We use these steps, where a and b are two equal positive integers.

Step	Reason
1. a = b	Given
2. $a^2 = ab$	Multiply both sides of (1) by a
3. a2 -b2 = ab-b2	Subtract b2 from both sides of (2)
4. $(a-b)(a+b)=b(a-b)$	Factor both sides of (3)
5. α+b = b	Divide both sides of (4) by a-b
6. 2b = b	Replace a by b in (5) because a = b and simplify
7. 2=1	Divide both sides of (6) by b

What is wrong with this "proof?"

Basic Definitions

An integer n is an even number if there exists an integer k such that n = 2k.

An integer n is an odd number if there exists an integer k such that n = 2k+1.

Proving an Implication

Goal: If P, then Q. (P implies Q)

Method 1: Write assume P, then show that Q logically follows.

The sum of two even numbers is even.

Proof
$$x = 2m, y = 2n$$

 $x+y = 2m+2n$
 $= 2(m+n)$

Direct Proofs

If n is an odd integer, then n^2 is odd.

Proof
$$n = 2k + 1$$

 $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
By the definition of an odd integer, we can conclude that n^2 is an odd integer

if m and n are both perfect squares, then nm is also a perfect square.

Proof
$$m = a^2$$
 and $n = b^2$ for some integers a and b
Then $mn = a^2 b^2$
 $= (a a) (b b) = (ab)(ab)$
 $= (ab)^2$

So mn is a perfect square.

This Lecture

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

Proving an Implication

Goal: If P, then Q. (P implies Q)

Method 1: Write assume P, then show that Q logically follows.

Claim:

If r is irrational, then $\int r$ is irrational.

How to begin with?

What if I prove "If \sqrt{r} is rational, then r is rational", is it equivalent?

Yes, this is equivalent, because it is the **contrapositive** of the statement, so proving "if P, then Q" is equivalent to proving "if not Q, then not P". So, $p \rightarrow q$ is equivalent to its contrapositive, $\neg q \rightarrow \neg p$.

Rational Number

R is rational \Leftrightarrow there are integers a and b such that

Is 0.281 a rational number?

Yes, 281/1000

Is 0 a rational number?

Yes, 0/1

If m and n are non-zero integers, is (m+n)/mn a rational number?

Yes

Is the sum of two rational numbers a rational number? | Yes, a/b+c/d=(ad+bc)/bd

Is x=0.12121212... a rational number?

Note that 100x-x=12, and so x=12/99.

Proving the Contrapositive

Goal: If P, then Q. (P implies Q)

Method 2: Prove the contrapositive, i.e. prove "not Q implies not P".

Claim:

If r is irrational, then $\int r$ is irrational.

Proof:

We shall prove the contrapositive - "if \sqrt{r} is rational, then r is rational."

Since $\int r$ is rational, $\int r = a/b$ for some integers a,b.

So $r = a^2/b^2$. Since a,b are integers, a^2,b^2 are integers.

Therefore, r is rational. \square Q.E.D.

(Q.E.D.)

"which was to be demonstrated", or "quite easily done". \odot

Proving an "if and only if"

Goal: Prove that two statements P and Q are "logically equivalent", that is, one holds if and only if the other holds.

Example: For an integer n, n is even if and only if n^2 is even.

Method 1a: Prove P implies Q and Q implies P.

Method 1b: Prove P implies Q and not P implies not Q.

Method 2: Construct a chain of if and only if statement.

Proof the Contrapositive

For an integer n, n is even if and only if n^2 is even.

Method 1a: Prove P implies Q and Q implies P.

Statement: If n is even, then n² is even

Proof: n = 2k

 $n^2 = 4k^2$

Statement: If n² is even, then n is even

Proof: $n^2 = 2k$

n = J(2k)

Proof the Contrapositive

For an integer n, n is even if and only if n^2 is even.

Method 1b: Prove P implies Q and not Q implies not p.

Statement: If n² is even, then n is even

Contrapositive: If n is odd, then n^2 is odd.

Proof (the contrapositive):

Since n is an odd number, n = 2k+1 for some integer k.

So
$$n^2 = (2k+1)^2$$

= $(2k)^2 + 2(2k) + 1 = 2(2k^2 + 2k) + 1$

So n^2 is an odd number.

Prove that if n is an integer and 3n+2 is odd, then n is odd

Proof by contrapositive:

"If 3n+2 is odd, then n is odd" is false; namely,

Contrapositive: If n is even, then 3n+2 is even.

assume that n is even.

Then, by the definition of an even integer, n = 2k for some integer k.

Substituting 2k for n, we find that 3n+2 = 3(2k)+2 = 6k +2 = 2(3k+1).

This tells us that 3n+2 is even (because it is a multiple of 2), and therefore not odd.

This Lecture

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

Proof by Contradiction

$$\frac{\overline{P} \to \mathbf{F}}{P}$$

To prove P, you prove that not P would lead to ridiculous result, and so P must be true.

Proof by Contradiction, Example

- \triangleright Prove that if n is an integer and n^3+5 is odd, then n is even
- •Rephrased: If n³+5 is odd, then n is even

 \square Assume p is true and q is false, Assume that n^3+5 is odd, and n is odd

n=2k+1 for some integer k (definition of odd numbers)

$$n^3+5 = (2k+1)^3+5 = 8k^3+12k^2+6k+6 = 2(4k^3+6k^2+3k+3)$$

As $2(4k^3+6k^2+3k+3)$ is 2 times an integer, it must be even Contradiction!

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof (by contradiction):

 $\sqrt{2}$

Solution: Let p be the proposition " $\sqrt{2}$ is irrational." we suppose that $\neg p$ is true. So, $\neg p = \sqrt{2}$ is rational

If $\sqrt{2}$ is rational, there exist integers a and b with $\sqrt{2} = a/b$,

where b != 0 and a and b have no common factors

$$2 = \frac{a^2}{b^2}$$
 so, $2b^2 = a^2$

By the definition of an even integer it follows that a^2 is even.

if the square of an integer is even, then the integer itself must be even.

a² is even, so a must also be even,

by the definition of an even integer, a = 2c for some integer c.

$$2b^2 = a^2$$

Thus, $2b^2 = 4c^2$. Dividing both sides of this equation by 2
 $b^2 = 2c^2$.

By the definition of even, this means that b^2 is even. So, b must be even as well.

assumption of $\neg p$ leads to the equation $\sqrt{2} = a/b$, where a and b have no common factors, that is, 2 divides both a and b. So $\sqrt{2}$ is rational that is false.

So, $\sqrt{2}$ is irrational.

This Lecture

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

Proof by Cases

$$egin{array}{c} pee q\ p o r\ q o r\ \end{array}$$

e.g. want to prove a nonzero number always has a positive square.

x is positive or x is negative if x is positive, then $x^2 > 0$. if x is negative, then $x^2 > 0$. $x^2 > 0$.

Proof by Cases

- Show a statement is true by showing all possible cases are true
- Thus, you are showing a statement of the form:

$$(p_1 \lor p_2 \lor ... \lor p_n) \rightarrow q$$
 is true by showing that:

$$[(p_1 \lor p_2 \lor ... \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land ... \land (p_n \to q)]$$

Summary

We have learnt different techniques to prove mathematical statements.

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

Next time we will focus on a very important technique, proof by induction.