

CS5321 Network Security Week6: Routing Security

Daisuke MASHIMA

2022/23 Sem 2

Agenda

- Inter-domain routing: BGP
- Security problems of BGP: Hijacking
- BGPSEC/RPKI and their limitations
- SCION: redesign the Internet (Guest lecture by Prof Adrian Perrig from ETH Zurich)

How a packet is delivered across the

Routers

BGP*

Gateway Protocol (BGP)

Autonomous System (AS) Numbers

- Each AS identified by an ASN number
 - 16-bit values
 - 64512 65535 are reserved
- Currently, there are ~ 60000 ASNs
 - SingTel: 7473
 - Starhub: 4657
 - National Univ of Singapore: 7472
 - Google 15169, 36561, ...

Border Gateway Protocol

- Border Gateway Protocol (BGP)
 - De facto inter-domain routing protocol of the Internet
 - Uses a path vector routing
 - Policy based routing protocol
- Relatively simple protocol, but...
 - Complex, manual configuration
 - Entire world sees routing advertisements
 - Errors can screw up traffic globally
 - Policies driven by economics
 - Not by performance (e.g. shortest paths)

BGP

BGP's Business Relationships

Tier-1 ISP Peering

Route Selection Summary

AS selects one "best" route to use/advertise for each IP prefix

Highest Local Preference

Enforce relationships

Shortest AS Path

Traffic engineering

Lowest IGP (Interior Gateway Protocol) Cost to BGP Egress

Lowest Router ID

When all else fails, break ties

IMPORTING ROUTES

EXPORTING ROUTES

Modeling BGP

Gao-Rexford model

- AS prefers to use customer path, then peer, then provider
 - Follow the money!
- Valley-free property for traversal and advertisement
 - A downhill path followed by another uphill path is NOT allowed.
 - Invalid patterns: P -> C -> Peer, P -> C -> P, Peer -> Peer, Peer -> P

Lack of security mechanisms in BGP

- Confidentiality?
- Integrity?
- Availability?
- BGP has none!
- Three major BGP attacks:
 - Prefix theft
 - AS path truncation
 - AS path alteration

BGP *Hijacking* and *Interception*

Pakistan Youtube Outage Event (2008)

Interception in real world

Traceroute Path 1: from Guadalajara, Mexico to Washington, D.C. via Belarus

Normal BGP

1) Prefix hijacking (invalid origin)

This attack causes "multiple origin AS (MOAS) anomaly" And thus can be detected.

2) One-hop prefix hijacking (invalid next hop) NUS

BGP Hijacking and Interception

- AS X hijacks traffic to C1 from AS Y
- If AS X forward traffic to C1, we call it interception.

- ✓ Will AS Y accept the invalid BGP advertisement for path for p? (Hijacking)
- ✓ Can AS X always forward traffic to C1? (Interception)

Effectiveness of Hijacking

 AS Y accepts the invalid BGP update only when the new (invalid) route is cheaper than the original (valid) route

Table 1: AS Y's traffic to prefix p can (\checkmark) , cannot (\times) or can partly (-) be hijacked depending on its existing route and the invalid route.

Invalid route \Rightarrow		Customer	Peer	Provider
Existing route	Length			
	<n< td=""><td>X</td><td>X</td><td>X</td></n<>	X	X	X
Customer	=n	_	X	×
	>n	✓	X	X
	<n< td=""><td>✓</td><td>X</td><td>X</td></n<>	✓	X	X
Peer	=n	√	1	×
	>n	✓	√	X
	<n< td=""><td>✓</td><td>√</td><td>×</td></n<>	✓	√	×
Provider	=n	✓	√	_
	>n	✓	√	✓

Interception = Hijacking + Forwarding

 Attacker may want to be stealthy. Thus, instead of backhauling, it forwards packets to original receiver

Is forwarding always possible once path is hijacked?

<u>Safety condition (condition for hijacking AS to successfully forward)</u>

None of the ASes along the route to prefix p used by the hijacking AS should choose the invalid route advertised by it over their existing route to p.

Solutions to BGP Hijacking

RPKI and BGPSEC

- Resource Public Key Infrastructure (RPKI)
 - Ensures particular AS owns particular address blocks

M does not have the Google prefix!

- BGPSEC
 - Provides AS path integrity

RPKI Prevents Prefix Hijacks

RPKI

Partial Landscape of BGP Defenses

Current paradigm: a two step solution

- First, RPKI against invalid origin
- Then, add BGPsec
 - Protects against false paths (e.g., next-AS attacks)
 - Deployment challenge: •Real-time signature and validation

BGPsec in partial adoption?

Meager benefits [Lychev et al., SIGCOMM'13]

AS 666 launches a next-AS attack against AS 1

A clean-slate approach: SCION

(Following slides are from 2022 for reference)

Limitations of the Current Internet

- Too little *path control* by end points
 - ♦ Destination has too little control over inbound paths

Limitations of the Current Internet

- Too little *path control* by end points
 - ♦ Destination has too little control over inbound paths
- Lack of routing isolation
 - ♦ A failure/attack can have global effects
 - ♦ Global visibility of paths is not scalable
- Lack of route freshness
 - ♦ Current BGP enables replaying of obsolete paths
- Huge routing/forwarding table size

Wish List (1): Isolation

- Localization of attacks
- Mutually distrusting domains, no single root of trust

Wish List (2): Balanced Control

- Source, destination, transit ISPs all have path control
- Support rich policies and DDoS defenses

Wish List (3): Explicit Trust

- Know who needs to be trusted
- Enforceable accountability

SCION Architecture Overview

Trust domain (TD)s

♦ Isolation and scalability

♦ Regulated by the same legal framework

Path construction

Path resolution

♦ Control

♦ Explicit trust

Route joining (shortcuts)

♦ Efficiency, flexibility

Split the network into a set of trust domains (TD)

Path Construction

Goal: each endpoint learns multiple verifiable paths to its core

- Discovering paths via Path Construction Beacons (PCBs)
 - ✓ TD Core periodically initiates PCBs
 - ✓ Providers advertise upstream topology to peering and customer ADs.
- ADs perform the following operations
 - ✓ Collect PCBs

 - ✓ Update cryptographic information in PCBs
- Endpoint AD will receive up to k PCBs from each upstream AD, and select k down-paths and up-paths

Path Construction Beacons (PCBs)

Forwarding

- Down-path contains all forwarding decisions (AD traversed) from endpoint AD to TD core
 - ✓ Ingress/egress points for each AD, authenticated in opaque fields
 - ✓ ADs use internal routing to send traffic from ingress to egress point.
- Joined end-to-end route contains full forwarding information from source to destination
 - √ No routing / forwarding tables needed!

SCION Security Benefits

		BGPSEC etc	SCION
	Scalability, freshness		
Isolation	Path replay attack		
	Collusion attack		
	Single root of trust		
Trusted Computing Base		Whole Internet	TD Core and on-path ADs
Path Control	Source	End-to-end control	Only up-path
	Destination	No control	Inbound paths
	DDoS	Open attacks	Enable defenses

Performance Benefits

Scalability

♦ Routing updates are scoped within the local TD

Flexibility

♦ Transit ISPs can embed local routing policies in opaque fields

Simplicity and efficiency

- ♦ No interdomain forwarding table
- ♦ Current network layer: routing table explosion
- ♦ Symmetric verification during forwarding
- ♦ Simple routers, energy efficient, and cost efficient

Routing Attacks (= BGP Attacks)

- BGP is the routing protocol of the Internet
- But hijacking and interception of BGP routes are very easy

- Approach 1: BGPSEC/RPKI
 - Several practical issues. Not widely deployed.
- Approach 2: SCION
 - Can we really re-design the Internet?

Questions?

