Week 1 Summary: Introduction. Decision Trees.

02.229 - Decision Theory and Practice, 2019 Jan-April

Yustynn Panicker

February 4, 2019

Contents

		Decision Rules
1.1	Maxin	nin and Maximax
	1.1.1	Maximin
	1.1.2	Maximax
1.2	Furthere	er Constraints: Leximin and Leximin Modifications
	1.2.1	Explanation
	1.2.2	Formal Definition
1.3	Combi	ination: Optimism-Pessimism Rule (a.k.a alpha-index rule)
	1.3.1	Random Thought
1.4	Proble	em: Relevance of non-extreme values [all]
1.5		em: Unintuitive equivalence [Minimax, Maximax]
1.6	Minim	nax Regret
	1.6.1	Explanation
	1.6.2	Procedure (won't formally describe)
	1.6.3	Note
	1.6.4	Problem: Argument from irrelevant alternatives
		1.6.4.1 Example: Addition of a_5
		1.6.4.2 Counter
Tra	nsform	native Decision Rules
2.1	Princip	ple of Insufficient Reason
	2.1.1	Problem: Which states should be considered? Modeling problem
	2.1.2	Problem: Uniform probability assumption seems arbitrary
		2.1.2.1 Counter: Symmetry
		2.1.2.1.1 Problem
	2.1.3	Problem: Practically, it's often not complete ignorance
2.2	Rando	omized Acts
	2.2.1	Procedure
		2.2.1.1 Example
	2.2.2	Potential Problem
Axi	omatic	e Analysis of the Decision Rules
11/1		Descriptions of Axioms
		Axiomatic Analysis
	1.2 1.3 1.4 1.5 1.6	1.1.1 1.1.2 1.2 Further 1.2.1 1.2.2 1.3 Combination 1.3.1 1.4 Problem 1.5 Problem 1.6 Minimation 1.6.2 1.6.3 1.6.4 Transform 2.1 Princi 2.1.1 2.1.2 2.1.3 2.2 Rando 2.2.1 2.2.2 Axiomation 3.0.1

1 Effective Decision Rules

1.1 Maximin and Maximax

They're the same, just at different extreme ends.

1.1.1 Maximin

Informal Principle of choosing the act with the largest minimal outcome obtainable

Formal $a_i \succeq a_j \iff \min(a_i) \ge \min(a_j)$

1.1.2 Maximax

Informal: Principle of choosing the act with the largest maximal outcome obtainable

Formal: $a_i \succeq a_j \iff \max(a_i) \ge \max(a_j)$

1.2 Further Constraints: Leximin and Leximin Modifications

Below is for leximin. Leximax is just the opposite

1.2.1 Explanation

Description: Essentially a way to filter the dominance space from maximin (also an effective decision rule)

Procedure: Iteratively compare the next minimal outcomes under the states until you find a difference. Remove the act(s) with a lower outcome

Equivalence: The only remaining equivalent acts are acts which are equivalent in every state

1.2.2 Formal Definition

 $a_i \succ a_j \iff$ there exists some positive integer n such that $\min^n(a_i) > \min^n(a_j)$ and $\min^m(a_i) = \min^m(a_j)$ for all m < n

1.3 Combination: Optimism-Pessimism Rule (a.k.a alpha-index rule)

Informal: Weighted combination of maximin and maximax. Weight parameter α reflects optimism

Formal: $a_i \succeq a_j \iff \alpha \cdot \max(a_i) + (1 - \alpha) \cdot \min(a_i) \ge \alpha \cdot \max(a_j) + (1 - \alpha) \cdot \min(a_j)$

1.3.1 Random Thought

You can probably combine with leximin/leximax to some degree too, to get an even better framework

1.4 Problem: Relevance of non-extreme values [all]

Particularly easy to see when the mins are close. E.g. below.

Applying the maximin principle selects option a_2 , but intuitively a_1 seems far better.

Note: Example formulated for maximin/leximin. Just flip the logic for maximax

	s_1	s_2	s_3	s_4	s_5	s_6	s_7
$\overline{a_1}$	1	0.99	99999	99999	99999	99999	99999
a_2	1	1	1	1	1	1	1

Pedantic Note: you don't know the probability distribution of the state space. Maybe a_2 is better after all. . .

1.5 Problem: Unintuitive equivalence [Minimax, Maximax]

Note: Example formulated for maximin. Just flip the logic for maximax

	s_1	s_2
a_1	1	99999
a_2	1	1

Under vanilla maximin, both acts are equally reasonable. Obviously, this is weird

1.6 Minimax Regret

1.6.1 Explanation

• Essentially an attempt to formalize the concept of regret

1.6.2 Procedure (won't formally describe)

1.6.3 Note

It's not globally accepted that this concept is relevant to rational decision making. But a substantial number of theorists think it is.

1.6.4 Problem: Argument from irrelevant alternatives

- Ranking can be altered by adding a non-optimal alternative
- Breaks intuition about how a "normatively plausible decision rule must not be sensitive to the addition of irrelevant alternatives"

1.6.4.1 Example: Addition of a_5

Table 3	3.14			
$\overline{a_1}$	12	8	20	20
a_2	10	15	16	8
a_3	30	6	25	14
a_4	20	4	30	10
a_5	-10	10	10	39
Table 3	3.15			
$\overline{a_1}$	-18	-7	-10	-19
a_2	-20	0	-14	-31
a_2	0	-9	-5	-25

-11

-5

-10

0

-20

-29

1.6.4.2 Counter

• Prima facie intuition is wrong. It's "rational to compare alternatives with the entire set of alternatives".

2 Transformative Decision Rules

2.1 Principle of Insufficient Reason

Pro: Decision under ignorance \rightarrow Decision under risk

2.1.1 Problem: Which states should be considered? Modeling problem

- More states means lower probability for each state (direct influence on choice strategy)
- Choosing relevant states is often not easy
- Traditional argument for ir is from symmetric states (e.g. dice sides). Many problems have no such symmetry

2.1.2 Problem: Uniform probability assumption seems arbitrary

Under ignorance, any probability distribution seems to be equally justifiable as any other. Assumption of equality seems arbitrary

2.1.2.1 Counter: Symmetry

- Assume every probability distribution is equally justifiable
- Use lens of toy 2-state case $S = \{s_1, s_2\}$
- Every probability distribution has a symmetric partner (e.g. $\{p_{s_1}=0.6,p_{s_2}=0.4\}$ has $\{p_{s_1}=0.4,p_{s_2}=0.6\}$

- Exception: Uniform distribution. Suggests uniform distribution is a collapsed state of (in this case) 2 identical probability distributions. Making it multiplicatively more reasonable as any other case (in this case, 2x more reasonable)

2.1.2.1.1 Problem

• Beautiful argument, but the assumption of the uniform distribution being an additively collapsed one is a bit dubious imo

2.1.3 Problem: Practically, it's often not complete ignorance

You generally know some things or at least have a sense of ordinal ranking for the probabilities of some of the states. Why not use it?

2.2 Randomized Acts

2.2.1 Procedure

- Create a new act with expected values as outcomes
- If your decision making strategy selects random act, then randomly choose one of those initial acts
- Note: Choosing the random act is not a choice on its own, but a procedure to arrive at an actual choice

2.2.1.1 Example Introduce random act a_3

Table 3.18		
a_1	1	0
a_2	0	1

Table 3.1	9	
$\overline{a_1}$	1	0
a_2	0	1
a_3	1/2	1/2

2.2.2 Potential Problem

I'm assuming the random choice doesn't have to be uniformly distributed. But this opens up a whole can of worms by allowing you to tweak the probability distribution of the random function to bias it towards whatever choice you irrationally want.

3 Axiomatic Analysis of the Decision Rules

Taken directly and shamelessly from the textbook

3.0.1 Descriptions of Axioms

- 1. **Ordering**: \succeq is transitive and complete. (See Chapter 5.)
- Symmetry: The ordering imposed by

 is independent of the labelling of acts and states, so any two rows or columns in the decision matrix could be swapped.
- 3. **Strict Dominance**: If the outcome of one act is strictly better than the outcome of another under every state, then the former act is ranked above the latter.
- 4. **Continuity**: If one act weakly dominates another in a sequence of decision problems under ignorance, then this holds true also in the limit decision problem under ignorance.
- Interval scale: The ordering imposed by

 remains unaffected by a positive linear transformation of the values assigned to outcomes.
- Irrelevant alternatives: The ordering between old alternatives does not change if new alternatives are added to the decision problem.
- 7. **Column linearity**: The ordering imposed by \succeq does not change if a constant is added to a column.
- 8. **Column duplication**: The ordering imposed by <u>></u> does not change if an identical state (column) is added.
- 9. **Randomisation**: If two acts are equally valuable, then every randomisation between the two acts is also equally valuable.
- 10. **Special row adjunction**: Adding a weakly dominated act does not change the ordering of old acts.

3.0.2 Axiomatic Analysis

	Maximin	Optimism– pessimism	Minimax regret	Insufficient reason
	WIGAIIIIII	pessiiiisiii	regret	reason
1. Ordering	\otimes	\otimes	\otimes	\otimes
2. Symmetry	\otimes	\otimes	\otimes	\otimes
3. Strict dominance	\otimes	\otimes	\otimes	\otimes
4. Continuity	\otimes	\otimes	\otimes	\otimes
5. Interval scale	×	\otimes	×	×
6. Irrelevant alternatives	\otimes	\otimes	_	\otimes
7. Column linearity	_	-	\otimes	\otimes
8. Column duplication	\otimes	\otimes	\otimes	_
9. Randomisation	\otimes	_	\otimes	×
10. Special row adjunction	×	×	\otimes	×

Symbol	Meaning
-	Incompatible with decision rule
×	Compatible with decision rule
\otimes	Necessary and sufficient for decision rule