TD Thermodynamique

Rayonnement thermique

1 Échange entre deux corps noirs proches

Deux solides A et B, de températures T_A et T_B et qui se comportent comme des corps noirs, sont placés face-à-face. La distance mutuelle e est petite devant les dimensions des deux solides, de sorte que les deux solides sont modélisables comme deux plans face-à-face.

- 1. Déterminez le flux ϕ qui transite de A à B. Vous en donnerez une approximation linéaire dans le cas d'un faible écart de température.
- 2. Définissez la résistance thermique associée à ce rayonnement.
- 3. L'espace entre A et B contient de l'air de conductivité thermique K. Comparez les résistances thermiques de rayonnement et de conduction en notant S_0 la «section utile» des deux solides.

Données : e = 5 mm; $T_A \simeq T_B = 300 \text{ K}$; $\sigma = 5.67.10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$; $K = 0.03 \text{ W m}^{-1} \text{ K}^{-1}$; $S_0 = 5.10^{-3} \text{ m}^2$.

2 Dioxyde de carbone et effet de serre

L'objectif de cet exercice est de modéliser l'effet de serre et son amplification causé par l'augmentation de la quantité de CO₂ dans l'atmosphère.

1. Modèle mono-couche.

La figure 1a montre le modèle. La croûte terrestre est assimilée à un corps noir de température T_t rayonnant un flux thermique Φ_t vers l'atmosphère. La Terre est entourée d'une couche de CO_2 gazeux en concentration volumique C_0 fixée, de température T_c et rayonnant un flux Φ_c vers la Terre et vers l'espace. Le flux solaire est noté Φ_s et supposé non affecté par la traversée de la couche de CO_2 .

- (a) On rappelle que le soleil rayonne (température externe moyenne $T_s \simeq 6000\,\mathrm{K}$) rayonne à peu près comme un corps noir avec un maximum dans le visible à $\lambda_m \simeq 0.5\,\mu\mathrm{m}$.
 - En utilisant des ordres de grandeur raisonnables pour les températures, déterminez l'ordre de grandeur de la longueur d'onde radiative maximale de la croûte terrestre et de la couche de CO₂.
 - La couche de CO_2 absorbe totalement le rayonnement Φ_t . Vous admettrez dans la suite qu'elle est donc assimilable à un corps noir dans la gamme spectrale du rayonnement terrestre, mais transparente pour le flux solaire.
- (b) Écrivez l'équilibre radiatif pour l'ensemble couche+croûte terrestre en supposant que le deux ont sensiblement le même rayon, puis pour la croûte seule. Déduisez-en T_t en fonction de Φ_s . Comparez ce résultat à celui obtenu en l'absence de couche de CO_2 .

2. Modèle multi-couches.

L'augmentation de la quantité de CO_2 est modélisée en considérant la superposition de N couches, comme indiqué 1b. Chaque couche contient la même concentration volumique C_0 de CO_2 . Notons Φ_{cp} le rayonnement émis vers le haut et vers le bas par la couche p de température T_{cp} . Le rayonnement émis par une couche est totalement absorbée par les autres.

- (a) Écrivez l'équilibre radiatif pour les systèmes suivants : ensemble couches+croûte, pe couche, première couche, croûte.
- (b) Déduisez-en Φ_{cp} et Φ_t en fonction de Φ_s , N et p.
- (c) Calculez T_t en fonction de Φ_s , N et σ .

3. Modèle continu.

Passons à la limite de couches infiniment fines, de sorte que la Terre est entourée d'une couche gazeuse sphérique de rayon proche du rayon R_T de la Terre et d'épaisseur $h \ll R_T$ (figure 1c). La concentration volumique C_0 est toujours supposée constante, mais h peut varier avec la quantité de CO_2 .

Initialement h = 5 km et $T_t = 288$ K. Le flux solaire est $\Phi_s = 342$ W m⁻².

FIG. 1: Effet de serre: a) modèle mono-couche, b) modèle multi-couches, c) modèle continu.

(a) Soit N_0 le nombre total de molécules de CO_2 dans l'atmosphère. Dans le modèle multi-couches, N_0 est proportionnel au nombre N de couches : $N_0 = \gamma N$. Montrez alors que $N = \alpha h$ où α est une constante positive que vous exprimerez en fonction de C_0 , γ et R_T . Déduisez-en que :

$$T_t = \left(\frac{\Phi_s(1+\alpha h)}{\sigma}\right)^{\frac{1}{4}} \tag{1}$$

Déduisez-en la valeur de α .

(b) Déterminez la variation Δh de l'épaisseur de la couche de CO_2 si la quantité de CO_2 augmente de 10 %. Déduisez-en l'augmentation de température T_t .

3 Température d'une planète

(Mines MP 2014) Admettons que le rayonnement thermique reçu par une planète vient essentiellement du soleil, assimilable à un corps noir sphérique de rayon R_S et de température $T_S = 5800$ K.

- 1. Estimez le flux thermique intercepté par une planète de rayon R_P située à une distance D du soleil.
- 2. Montrez que, si la planète est assimilée à un corps noir de température T_P en équilibre radiatif, il est possible d'en déterminer la température.
- 3. Appliquez ce modèle à la Terre avec $R_P=6400\,\mathrm{km}$; $R_S=7.10^8\,\mathrm{m}$; $D=1,5.10^{11}\,\mathrm{m}$. Corrigez ensuite le résultat en tenant compte du coefficient de réflexion en énergie de la Terre, appelé albédo et valant $A_T=35\,\%$. Commentez.