Analysis of Categorical Data

Dr. Supaporn Erjongmanee

Department of Computer Engineering Kasetsart University fengspe@ku.ac.th

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 1

1

Outline

- Analysis of Categorical Data
 - Introduction
 - Homogeneity test
 - Independence test

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 2

Introduction

- A study of data in categories
- Case: <u>Population I</u> of interest; Each population is separated into <u>J categories</u>
 - Example: 3 department stores vs. 5 payment methods (cash, check, store credit card, Visa, Mastercard)
- · Homogeneity (Hypothesis) Test
 - Proportions of all categories in each population are the same

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 3

3

Introduction (cont.)

- In general, data are put in the table
- Let n_{ii} = number of samples in (i,j) category
- Table contains {n_{ij}}'s is called two-way contingency table

	1	Z	•••	J	•••	J
1	n ₁₁	n ₁₂		n _{1j}		$n_{{\scriptscriptstyle 1\!J}}$
2	n ₂₁					
	•••					
i	n _{i1}			n _{ij}		
	•••					
I	n _{<i>I1</i>}					n_{IJ}

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 4

Δ

Outline

- Analysis of Categorical Data
 - Introduction
 - Homogeneity test
 - Independence test

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 5 Department of Computer Engineering
Kasetsart University

5

Homogeneity Test

 <u>Population I</u> of interest; Each population is separated into <u>J</u> <u>categories</u>

- Let
 - n_{ii} = number of samples in (i,j) category
 - n_j = number of samples in j category = $\sum_i n_{ij}$
 - \mathbf{n}_i = number of samples in i population = $\sum_j n_{ij}$
 - n = number of all samples = $\sum_{i} \sum_{j} n_{ij}$
 - p_{ij} = proportions of samples in (i,j) category
- Hypothesis test
 - Null hypothesis (H_0) : $p_{1j} = p_{2j} = ... = p_{Ij}$
 - Proportion of samples in j category for each population is the same
 - Alternative hypothesis (H_a): H₀ is not true

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 6

A can food production	•	ny have t	hree pro	oduct sizes;	each size	is produc	ed at diffe	erent
Test in nor	nconfori	mity of ca	ns at sig	nificance le	evel 0.5			
 Blemish 	, Crack,	Improper	pull tab	location, I	Missing pu	ıll tab, Ot	hers	
			N	lonconform	nity			
		Blemish	Crack	Location	Missing	Others	Sample	n
							size	
	1		65	17	21	13	150	
Production	1	34	05	17	21	13	130	
Production line	2	23	52	25	19	6	125	
	_						 	

- Hypothesis
 - H₀: All production lines are homogeneous in term of nonconformity categories (Blemish, Crack, Improper pull tab location, Missing pull tab, Others)
 - I = number of production lines = 3
 - J = types of nonconformity = 5
 - That is we test whether $p_{1j} = p_{2j} = p_{3j}$ for j = 1, 2, ..., 5
 - H_a: Production lines are not homogeneous

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 9 Department of Computer Engineering Kasetsart University

9

Find \hat{e}_{ij} = e	xpecte	d numbe	r of samp	les $= n_i \frac{n_j}{n}$				
				\hat{e}_{ij}				
		Blemish	Crack	Location	Missing	Others	Sample size	
Production line	1	150(89) 375 =35.60	$\frac{150(145)}{375}$ =58.00	$\frac{150(58)}{375}$ =23.20	$\frac{150(54)}{375}$ =21.60	$\frac{150(29)}{375}$ =11.60	150	
	2	$ \begin{array}{r} 125(89) \\ \hline 375 \\ = 29.67 \end{array} $	48.33	19.33	18.00	9.67	125	
	3	$ \begin{array}{r} 100(89) \\ \hline 375 \\ = 23.73 \end{array} $	38.7	15.47	14.40	7.73	100	
	Total	89	145	58	54	29	375	

• Find test statistic = $\sum_{i} \sum_{j} \frac{(n_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ii}}$

			$rac{(n_{ij}-\hat{e}_{ij})^2}{\hat{e}_{ij}}$					
		Blemish	Crack	Location	Missing	Others		
Production line	2	$\frac{(34-35.60)^2}{35.60}$ = 0.072 $\frac{(23-29.67)^2}{29.67}$ =1.498	$\frac{(65-58.00)^2}{58.00} = 0.845$ 0.278	$\frac{(17-23.20)^2}{23.20}$ = 1.657 1.661	$\frac{(21-21.60)^2}{21.60} = 0.017$ 0.056	$\frac{(13-11.60)^2}{11.60} = 0.169$ 1.391		
	3	$\frac{(32 - 23.73)^2}{23.73}$ $= 2.879$	2.943	0.018	0.011	0.664		

• Test statistic = $\sum_{i} \sum_{j} \frac{(n_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ij}} = 14.159$

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 11

11

Example (cont.)

- Test statistic = $\sum_{i} \sum_{j} \frac{(n_{ij} \hat{e}_{ij})^2}{\hat{e}_{ij}} = 14.159$
- Find rejection region:
 - Degree of freedom = (I-1)(J-1) = (3-1)(5-1) = (2)(4) = 8
 - $\chi^2_{0.05,8}$ = 15.507
- Thus, we do not reject hypothesis at α = 0.05
- At significance level = 0.05, all production lines are homogeneous in term of nonconformity categories

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 12

- Test statistic = $\sum_{i} \sum_{j} \frac{(n_{ij} \hat{e}_{ij})^2}{\hat{e}_{ij}} = 14.159$
- Find p-value
 - Degree of freedom = (I-1)(J-1) = (3-1)(5-1) = (2)(4) = 8
 - P-Value = 0.077
- Thus, we do not reject hypothesis since p-value > α = 0.05
- At significance level = 0.05, all production lines are homogeneous in term of nonconformity categories

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 13

13

Example 2

 Compare two books whether they were written by the same author or not

• How to compare these two books?

Image Source: http://www.clipartpanda.com/categories/school-book-clipart

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 14

Example 2

• Compare whether the frequencies of words in three of Austen's works are the same

Word	Sense and Sensibility	Emma	Sandition
а	147	186	101
an	25	26	11
this	32	39	15
that	94	105	37
with	59	74	28
without	18	10	10

Test homogeneity

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 15

15

Outline

- Analysis of Categorical Data
 - Introduction
 - Homogeneity test
 - Independence test

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 16

Introduction

- A study of data in categories
- Case: Single population with two factors; One factor with <u>I categories</u>, and the other factor with <u>J categories</u>
 - Example: One department store, 6 departments (male clothes, female clothes, children, cosmetics, shoes, grocery) vs. 5 payment methods (cash, check, store credit card, Visa, Mastercard)
- Independence Test
 - Two factors occur independently

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 17

17

Introduction (cont.)

- In general, data are put in the table
- Let n_{ii} = number of samples in (i,j) category
- Table contains {n_{ii}}'s is called two-way contingency table

1 2 J 1 n_{11} n_{12} n_{1j} n_{1J} 2 n_{21} ... $\mathbf{n}_{i\underline{j}}$ n_{i1} ••• Ι n₁₁ n_{IJ}

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 18

Independence Test

Single population with <u>two factors</u>; One factor with *I* categories, and the other factor with *J* categories

- Let
 - n_{ii} = number of samples in (i,j) category
 - n_i = number of samples in j category = $\sum_i n_{ij}$
 - n_i = number of samples in i category = $\sum_j n_{ij}$
 - n = number of all samples = $\sum_{i} \sum_{j} n_{ij}$
 - p_{ij} = proportions of samples in (i,j) category
- Hypothesis test
 - Null hypothesis (H_0) : $p_{ij} = p_i p_i$
 - Proportion of samples in categories i and j are independent
 - Alternative hypothesis (H_a): H₀ is not true

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 19

19

Example

- Study of gasoline station condition and aggressiveness in gasoline pricing
- <u>Two factors</u>: gasoline station condition (modern, standard, sub-standard) vs. aggressiveness in pricing (aggressive, neutral, nonaggressive)
- Test whether two factors are independent of each other at significance level = 0.01

		Aggress			
		Aggressive	Neutral	Non Aggressive	Sample Size
Condition	Substandard	24	15	17	56
	Standard	52	73	80	205
	Modern	58	86	36	180
	Total	134	174	133	441

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 21

21

Example (cont.)

- Hypothesis
 - H₀: Gasoline station condition and aggressiveness in pricing are independent
 - I = number of conditions = 3
 - J = levels of pricing aggressiveness = 3
 - We test or $p_{ij} = p_i p_j$
 - H_a: Gasoline station condition and aggressiveness in pricing are not independent

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 22

• Find \hat{e}_{ij} = expected number of samples = $\frac{n_i n_j}{n}$

			\hat{e}_{ij}			
		Aggressive	Neutral	Non Aggressive	Sample Size	
Condition	Substandar d	56(134) 441 =17.02	56(174) 441 =22.10	56(133) 441 =16.89	56	
	Standard	$ \begin{array}{r} 205(134) \\ \hline 441 \\ = 62.29 \end{array} $	80.88	61.83	205	
	Modern	180(134) 441 =54.69	71.02	54.29	180	
	Total	134	174	133	441	

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 23

23

Example (cont.)

• Find test statistic = $\sum_{i} \sum_{j} \frac{(n_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ij}}$

			$\frac{(n_{ij}-\hat{e}_{ij})^2}{\hat{e}_{ij}}$	
		Aggressive	Neutral	Non Aggressive
Condition	Substandard	$\frac{(24-17.02)^2}{17.02}$ = 2.867	$\frac{(15-22.10)^2}{22.10}$ = 2.278	$\frac{(17-16.89)^2}{16.89} = 0.001$
	Standard	$\frac{(52-62.29)^2}{62.29}$ $= 1.700$	0.769	5.343
	Modern	$\frac{(58-54.69)^2}{54.69}$ $= 0.200$	3.160	6.160

• Test statistic = $\sum_{i} \sum_{j} \frac{(n_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ij}} = 22.476$

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 24 Department of Computer Engineering
Kasetsart University

- Test statistic = $\sum_{i} \sum_{j} \frac{(n_{ij} \hat{e}_{ij})^2}{\hat{e}_{ij}} = 22.476$
- Given α = 0.01, find p-value
 - Degree of freedom = (I-1) (J-1) = (3-1)(3-1) = 4 $\chi^2_{0.01,4}$ = 13.277
 - P-value 0.00016
- P-value < α = 0.01 => Null hypothesis is rejected
- Gasoline station condition and aggressiveness in pricing are dependent

from scipy.stats import chi2
1-chi2.cdf(22.476,4)
0.0001611050155756466

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 25

25

Example (cont.)

- Test statistic = $\sum_{i} \sum_{j} \frac{(n_{ij} \hat{e}_{ij})^2}{\hat{e}_{ij}} = 22.476$
- Given α = 0.01, find rejection region
 - Degree of freedom = (I-1) (J-1) = (3-1)(3-1) = 4
 - Thus, $\chi^2_{0.01,4}$ =13.277
- Null hypothesis is rejected
- Gasoline station condition and aggressiveness in pricing are dependent

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 26

Example 2

Is there a relationship between marital status and educational level?

Education	Married once	Married more than once	
College degree	550	61	
No college degree	681	144	

Test independency

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 27

27

References

- 1. J.L. Devore and K.N.Berk, Modern Mathematical Statistics with Applications, Springer, 2012.
- 2. J.A. Rice, Mathematical Statistics and Data Analysis, Duxbury Press, 1995.

Supaporn Erjongmanee fengspe@ku.ac.th

Analysis of Categorical Data Slide 28

