Soluzione Laboratorio 2 - 24.04.2025

Esercizio 1

- 1. Si vedano i file calore EA.m, calore El.m e calore CN.m in allegato.
- 2. Utilizzando i tre metodi per risolvere il problema proposto con N=35 e K=50 si trovano i risultati riportati in Figura 1.

Come si evince dalle figure il metodo di EA è in questo caso instabile, mentre EI e CN sono stabili. Ciò rispecchia la proprietà che il metodo di EA sia condizionatamente stabile e che i metodi di EI e CN siano invece incondizionatamente stabili. In particolare la condizione per cui EA è stabile è del tipo $\Delta t < Ch^2$. Aumentando quindi K ci aspettiamo di trovare prima o poi un valore tale per cui anche EA è stabile.

Riportiamo in Figura 2 le soluzioni ottenute per K=200. In particolare si nota che in questo caso il metodo di EA è stabile. Per i dettagli si veda il file Lab2_Es1_2.m.

Figura 1: Soluzione esatta v
s approssimazione numerica con EA, EI e CN per un istante di tempo fissato, t=0.54. Valori di discretizzazione: $N=35,\,K=50$.

Figura 2: Soluzione esatta vs approssimazione numerica con EA, EI e CN per un istante di tempo fissato, t=0.54. Valori di discretizzazione: N=35, K=200.

3. Denotiamo con p1 l'ordine stimato con l'errore definito da e_1 e p2 quello stimato con l'errore definito da e_2 . Valutando M=4 discretizzazioni a partire da N=25 e K=35 si ottiene la seguente stima dell'ordine p per Eulero implicito

che mostrano come tale metodo sia globalmente del primo ordine. Per il metodo di Crank-Nicolson, si ha invece

$$p1 = 1.9585$$
 2.0084 2.0017
 $p2 = 2.0372$ 2.0068 2.0023

che mostrano come tale metodo sia globalmente del secondo ordine.

Per i dettagli si veda il file Lab2 Es1 3.m.

4. Analizzando gli autovalori della matrice A al variare di h si evince che l'autovalore minimo $\lambda_{\min}(A)$ è costante, mentre l'autovalore $\lambda_{\max}(A)$ si comporta come h^{-2} (vedasi Fig. 3).

Figura 3: Andamento degli autovalori λ_{\min} e λ_{\max} della matrice A al variare di h.

Coerentemente con il fatto che la matrice A è simmetrica e definita positiva, si osserva inoltre che gli autovalori sono tutti strettamente positivi. Per i dettagli si veda il file Lab2_Es1_4.m.