Taller Ext2

Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

Sistemas Operativos, Primer Cuatrimestre 2022

(2) Presentación Taller

- Se programará un Sistema de Archivos ext2.
- Puntualmente, se requiere leer el contenido de /grupos/gNUMERO/nota.txt.
- ¿Qué debemos conocer y tener para lograrlo?
 - Lo que aprendimos en la teórica y la clase complementaria sobre ext2.
 - Un disco al cual podemos acceder a cualquiera de sus bloques.

(3) El disco

- ¿Qué es? Un montón de bytes agrupados en bloques.
- A cada bloque se accede con su LBA (Logical Block Addressing).
- API de HDD:

```
int read(unsigned int lba, unsigned char * buffer);
int write(unsigned int lba, unsigned char * buffer);
```

- ¿Qué tamaño tiene el disco? A priori no se conoce.
- ¿Qué tamaño tiene cada bloque? 1024 bytes.
- ¿Por dónde se empieza? 🛕

(4) Boot block

- Bloque de Booteo o Master Boot Record
- Está en la primera parte del disco. Es el espacio reservado ya mencionado de 1024 bytes.

Structure of a classical generic MBR				
Address		Description		Size
Hex	Dec	Description		(bytes)
+000h	+0	Bootstrap code area		446
+1BEh	+446	Partition entry #1	Partition table (for primary partitions)	16
+1CEh	+462	Partition entry #2		16
+1DEh	+478	Partition entry #3		16
+1EEh	+494	Partition entry #4		16
+1FEh	+510	55h	Boot signature ^[a]	2
+1FFh	+511	AAh		
			Total size: 446 + 4×16 + 2	512

 No contiene datos en TODOS los sistemas de archivos. Solo los usados para iniciar la máquina.

(5) Partición de EXT2

- Llegamos hasta donde empieza el primer grupo de bloques.
- El superblock: tiene información de TODO el sistema de archivos.
- ¿En qué parte de la partición estará?
- A partir del byte 1024. Independientemente, del tamaño del bloque. △

(6) Superblock

```
struct Ext2FSSuperblock {
__le32 s_inodes_count; /* Contador de Inodos */
__le32 s_blocks_count; /* Contador de Bloques */
__le32 s_r_blocks_count; /* Contador de Bloques reservados */
__le32 s_free_blocks_count; /* Contador de Bloques libres */
__le32 s_free_inodes_count; /* Contador de Inodos libres */
__le32 s_first_data_block; /* Primer bloque de Datos */
__le32 s_log_block_size; /* Tamano del bloque */
__le32 s_blocks_per_group; /* Cantidad de bloques por grupo */
__le32 s_inodes_per_group; /* Cantidad de Inodos por grupos */
_{-}le16 s_{-}magic; /* Firma magica — Identifica el S.A. */
__le32 s_first_ino; /* Primer Inodo no reservado */
__le16 s_inode_size; /* Tamano de la estructura del Inodo */
```

(7) Estructura de Ext2

- ¿Dónde está mi archivo /home/krypton.gis ?
- Recordemos que en Ext2 todo está representado por Inodos.
 ¿Cuál es el inodo de mi archivo?
- Supongamos que está en el Inodo 2483.

(8) Inodo

- La representación de un archivo.
- Un archivo puede ser desde un archivo regular, un directorio, un pipe, un socket, un device, etc.
- A bajo nivel, en este taller, es un struct de FSInode.

(9) FSInode

```
struct Ext2FSInode
  unsigned short mode;
  unsigned short uid:
  unsigned int size;
  unsigned int atime;
  unsigned int ctime:
  unsigned int mtime;
  unsigned int dtime;
  unsigned short gid:
  unsigned short links_count:
  unsigned int blocks;
  unsigned int flags;
  unsigned int os_dependant_1:
  unsigned int block [15];
  unsigned int generation;
  unsigned int file_acl:
  unsigned int directory_acl:
  unsigned int faddr;
  unsigned int os_dependant_2[3];
```

- ¿Dónde están los datos? Λ
- ¿Dónde está el nombre del archivo? \triangle A nivel de usuario no se hace referencia a números de Inodos.
- ¿El Inodo directorio qué struct usa? △

(10) Inodo - Datos

- 15 Punteros a bloques con distintos sabores:
 - 12 Punteros a bloques de datos directos
 - 1 Puntero indirecto a bloque de datos
 - 1 Puntero con una doble indirección a bloque de datos
 - 1 Puntero con una triple indirección a bloque de datos.

- ¿Son punteros a direcciones de memoria? 🛆
- ¿Los bloques a los que apuntan, están en memoria o en disco?

(11) Inodo - Directorio

- Es un Inodo IGUAL que cualquier otro.
- Es decir, tiene la misma estructura Ext2FSInode.
- Entonces ¿Dónde está la lista de archivos de mi directorio?
- \bullet En los bloques de datos. \triangle

(12) Ext2FSInode

```
struct Ext2FSDirEntry {
  unsigned int inode;
  unsigned short record_length;
  unsigned char name_length;
  unsigned char file_type;
  char name[];
}; como name[] es variable la dirEntry es variable
```

- Los datos del Inodo son una lista de structs Ext2FSDirEntry.
- Cada struct tiene tamaño variable. Δ

(13) Enunciado

- Completar la implementación de los siguientes métodos:
 - unsigned int get_block_address(inode,block_number)
 - Ext2FSInode * load_inode(inode_number)
 - Ext2FSInode * get_file_inode_from_dir_inode(from,filename)
- Hacer un programa que, utilizando el FS programado en el punto anterior, imprima los 50 caracteres que se encuentran guardados en el archivo /grupos/gNUMERO/nota.txt (de la imágen de disco hdd.raw provista) a partir de la posición 14000 inclusive.

(14) ¿Qué parte del código ya está preparada?

- Las clases HDD, MBR y PartitionEntry.
- Parcialmente la clase Ext2FS.
- Las estructuras de Ext2FS:
 - Ext2FSSuperblock (Superblock)
 - Ext2FSBlockGroupDescriptor (Block Group Descriptor)
 - Ext2FSInode (Inode)
 - Ext2FSDirEntry (Directory Entry)
- Las funciones auxiliares de Ext2FS:
 - read_block: Lee un bloque de disco.
 - superblock: Devuelve el superbloque.
 - block_group: Devuelve el descriptor del bloque de grupo.
 - blockgroup_ for_inode: Número de blockgroup del Inodo.
 - blockgroup_inode_index: Offset dentro de la tabla de Inodos, para el inodo.

(15) Últimos tips

- Hagan los ejercicios en el orden dado.
- Descompriman la imagen hdd.raw.gz en /tmp para usarla.
- Hay estructuras para cada tipo.
- Utilicen las funciones auxiliares.
- Recuerden, los directorios son archivos. Δ
- Documentación:
 - http://www.nongnu.org/ext2-doc/ext2.html
 - http://e2fsprogs.sourceforge.net/ext2intro.html
 - http://wiki.osdev.org/Ext2