The Hong Kong University of Science & Technology

MATH243 - Statistical Inference

Final Examination - Fall 03/04

Answer ALL Questions

Date: 11 December 2003, Thursday

Time allowed: 3 Hours

1. Let Y_1 and Y_2 be independent random variables. Consider the following model:

$$Y_1 = 4 - \theta + \varepsilon_1$$

$$Y_2 = 2 + 2\theta + \varepsilon_2$$

where θ is a constant, $\varepsilon_1 \sim \text{Normal } (0, \sigma^2)$ and $\varepsilon_2 \sim \text{Normal } (0, \sigma^2)$.

- (a) (3 marks) Find the maximum likelihood estimate, $\hat{\theta}$, for θ .
- (b) (2 marks) Find $E(\hat{\theta})$. Is $\hat{\theta}$ an unbiased estimator for θ ?
- (c) (2 marks) Find $Var(\hat{\theta})$
- (d) (3 marks) Let $W = Y_1 + Y_2 6$. Is W unbiased? Which estimator is more efficient for θ ? Why?
- **2.** Let $X_1, X_2, ..., X_n$ be a random sample from the following distribution:

$$f_X(x;\theta) = \begin{cases} \theta^2 x e^{-\theta x} & x > 0, \ \theta > 0 \\ 0 & \text{otherwise} \end{cases}$$

- (a) (2 marks) Find the maximum likelihood estimator for θ . Hence, find the maximum likelihood estimator for the variance of the distribution.
- (b) **(4 marks)** Find the UMVUE for $\frac{1}{\theta}$ and its variance. Find the Cramer Rao lower bound for unbiased estimators of $\frac{1}{\theta}$. Is the variance of the UMVUE for $\frac{1}{\theta}$ equal to Cramer Rao lower bound?
- (c) **(4 marks)** Find the UMVUE for θ . Is the variance of the UMVUE for θ equal to the Cramer Rao lower bound for unbiased estimators of θ ? Explain! No calculation of CRLB is needed.

3. Let $X_1, X_2, ..., X_n$ be a random sample from the following distribution:

$$f_X(x; \theta) = \begin{cases} \frac{2x}{\theta^2} & 0 < x < \theta \\ 0 & \text{otherwise} \end{cases}$$

- (a) (2 marks) Find the MLE for θ .
- (b) **(4 marks)** Show that the MLE is a biased estimator for θ and find a multiple of it that is an unbiased estimator for θ .
- (c) (4 marks) Find an unbiased estimator for θ^2 .

4. Let $X_1, X_2, ..., X_n$ be a random sample of size n from probability density function given by

$$f_X(x \mid \theta) = \begin{cases} \theta e^{-\theta x} & x > 0, \ \theta > 0 \\ 0 & \text{elsewhere} \end{cases}$$

- (a) **(3 marks)** Find the rejection region for the most powerful test of: $H_0: \theta = \theta_0$ versus $H_a: \theta = \theta_a$ where $\theta_a < \theta_0$.
- (b) **(2 marks)** Is the test in (a) the uniformly most powerful test for testing $H_0: \theta = \theta_0$ versus $H_1: \theta < \theta_0$? Explain!
- (c) (2 marks) Is the test in (a) the uniformly most power test for testing $H_0: \theta \ge \theta_0$ versus $H_a: \theta < \theta_0$? Explain!
- (d) (3 marks) For a random sample of size n = 10, use the test in (a) to test H_0 : $\theta = 5$ versus H_a : $\theta = 2$. Find the rejection region for $\alpha = 0.05$.

5. Let $Y_1, Y_2, ..., Y_n$ denote a random sample from a population having a Poisson distribution with mean θ_1 . Let $X_1, X_2, ..., X_m$ denote a random sample from a population having a Poisson distribution with mean θ_2 . We are interested in testing the hypothesis:

$$H_0: \theta_1 = \theta_2$$
 versus $H_a: \theta_1 \neq \theta_2$

- (a) **(7 marks)** Find the likelihood ratio test for testing these hypotheses and simplify as much as possible.
- (b) (3 marks) What are the degrees-of-freedom for the chi-square approximation to the test in part (a)? Give the form of the test.

- 6. Assume that $X_1, X_2, ..., X_n$ is a random sample from the $U(0, \theta)$ distribution, and that you want to test: $H_0: \theta = 1.6$ against $H_a: \theta = 2$.
 - (a) (3 marks) Suppose that n = 1 (i.e., you have <u>one</u> observation), and consider the rejection region:

reject
$$H_0$$
 if $X > k$.

- (i) Find the test (i.e., the value of k) that has power $1 \beta = 0.9$.
- (ii) What is the significance level (α) of the test in (i)
- (b) (3 marks) Suppose, again, that n = 1 (i.e., you have <u>one</u> observation), and again consider the rejection region:

reject
$$H_0$$
 if $X > k$.

- (i) Find the test (i.e., the value of k) that has significance level (α) 0.05.
- (ii) What is the power of the test in (i)
- (c) (4 marks + 4 marks (Bonus))

Suppose now that n = 8 and that the observations are:

Find the most powerful test for $\alpha = 0.05$? What is your conclusion? Explain!

***** END *****