Definition 17.1. Given a Euclidean or Hermitian space E, a linear map $f: E \to E$ is normal if

$$f \circ f^* = f^* \circ f.$$

A linear map $f: E \to E$ is self-adjoint if $f = f^*$, skew-self-adjoint if $f = -f^*$, and orthogonal if $f \circ f^* = f^* \circ f = \text{id}$.

Obviously, a self-adjoint, skew-self-adjoint, or orthogonal linear map is a normal linear map. Our first goal is to show that for every normal linear map $f: E \to E$, there is an orthonormal basis (w.r.t. $\langle -, - \rangle$) such that the matrix of f over this basis has an especially nice form: it is a block diagonal matrix in which the blocks are either one-dimensional matrices (i.e., single entries) or two-dimensional matrices of the form

$$\begin{pmatrix} \lambda & \mu \\ -\mu & \lambda \end{pmatrix}.$$

This normal form can be further refined if f is self-adjoint, skew-self-adjoint, or orthogonal. As a first step we show that f and f^* have the same kernel when f is normal.

Proposition 17.1. Given a Euclidean space E, if $f: E \to E$ is a normal linear map, then $\operatorname{Ker} f = \operatorname{Ker} f^*$.

Proof. First let us prove that

$$\langle f(u), f(v) \rangle = \langle f^*(u), f^*(v) \rangle$$

for all $u, v \in E$. Since f^* is the adjoint of f and $f \circ f^* = f^* \circ f$, we have

$$\langle f(u), f(u) \rangle = \langle u, (f^* \circ f)(u) \rangle,$$

= $\langle u, (f \circ f^*)(u) \rangle,$
= $\langle f^*(u), f^*(u) \rangle.$

Since $\langle -, - \rangle$ is positive definite,

$$\langle f(u), f(u) \rangle = 0$$
 iff $f(u) = 0$,
 $\langle f^*(u), f^*(u) \rangle = 0$ iff $f^*(u) = 0$,

and since

$$\langle f(u), f(u) \rangle = \langle f^*(u), f^*(u) \rangle,$$

we have

$$f(u) = 0$$
 iff $f^*(u) = 0$.

Consequently, Ker $f = \text{Ker } f^*$.