Multiple Access Protocols

Shared Communications Channels

Terms: multiple access, channel access, channel sharing, media access control

Multiple Access Protocol

- a distributed algorithm that determines how nodes share a channel
- Ideally,
 - When only one node wants to transmit, it can send at the maximum channel rate R.
 - When M nodes want to transmit, each can send at an average rate R/M
 - Fully decentralized
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
 - no out-of-band channel for coordination
 - Simple

Types of Multiple Access Protocols

"Taking turns"

Token Passing

Channel Partitioning

- Frequency Division Multiple Access (FDMA)
- Time Division Multiple Access (TDMA)

Random Access

Aloha Protocol

Token Passing

Types of Multiple Access Protocols

"Taking turns"

Token Passing

Channel Partitioning

- Frequency Division Multiple Access (FDMA)
- Time Division Multiple Access (TDMA)

Random Access

Aloha Protocol

Time Division Multiple Access

- Nodes get access to channel in "rounds"
- In each round, each node gets a fixed-length slot to transmit
- Example, 4 nodes:

Advantages

- Fair
- No packet collisions
- Simple

Disadvantages

- Requires central resource allocator
- Synchronization needed
- Channel under utilized if nodes have little data to transmit

Types of Multiple Access Protocols

"Taking turns"

Token Passing

Channel Partitioning

- Frequency Division Multiple Access (FDMA)
- Time Division Multiple Access (TDMA)

Random Access

Aloha Protocol