19日本国特許庁

①特許出願公開

公開特許公報

昭53—77057

DInt. Cl.2	識別記号	砂日本分類	庁内整理番号	砂公開 昭	和53年(19)78) 7 J	月 8	日
C 07 D 261/20		16 E 34	6762—44					
C 07 D 413/12 //		16 E 462	7138—44	発明の数	•			
A 61 K 31/41		30 G 133.2	7432—44	審査請求	未請求			
A 61 K 31/495		30 H 111.3	5727—44					
(C 07 D 413/12						(全(6 員	€)
C 07 D 261/20								

匈1,2-ベンズイソキサゾール誘導体

②特 願 昭51-151759

②出 願 昭51(1976)12月16日

@発 明 者 宇野凖

C 07 D 295/00).

高槻市日吉台三番町11番15号

同 黒川美貴雄

神戸市灘区大内通3丁目8番地

⑩発 明 者 增田義信

枚方市御殿山南町3 公団中宮

第3団地57-301号

⑪出 願 人 大日本製薬株式会社

大阪市東区道修町3丁目25番地

四代 理 人 弁理士 坪井有四郎

明細書

- 1. 発明の名称
 - 1、2ーペンズイソキサゾール誘導体
- 2. 特許請求の範囲
 - 1) 一般式

$$X = (CH_2)_{n-SO_2N} <_{R_2}^{R_1}$$

〔式中、Xは水素原子、nロゲン原子またはトリフルオロメチル基を意味し、 R_1 および R_2 は同一または異なって水素原子、炭素原子数 $1 \sim 3$ 個の直鎖状もしくは分枝鎖状の低級アルキル基またはヒドロキシ基を(但し、 R_1 および R_2 が共にヒドロキシ基を意味する場合を除く)意味するか、あるいは-N < 0 は 4-x チルー1ーピベラジニル基を意味し、n は $1 \sim 3$ の整数を意味する。〕

で表わされる化合物。

2) Riおよび/またはRiが水繋原子である特許請求 の範囲第1項記載の化合物のアルカリ金属塩。 3) 一般式

$$X = (CH_2)_n - SO_2N <_{R_2}^{R_1}$$

(式中、Xは水素原子または5もしぐは6位のハロケン原子を意味し、RiおよびRiは同一または異なって水素原子,メチル基,エチル基,イソプロピル基またはヒドロキシ基を(但し、RiおよびRiが共にヒドロキシ基を意味する場合を除く)意味するか、あるいは−N√Riが4−メチル−1−ピペラシニル基を意味し、nは1~3の整数を意味する。)

で表わされる特許請求の範囲第1項記載の化合物。

- 4) R₁およびR₂が共に水素原子である特許請求の範囲第3項記載の化合物。
- 5) -N
 -N

- 6) n が 1 である特許請求の範囲第 4 項記載の化合物。
- 7) 3 スルファモイルメチルー1, 2 ペンズイ ソキサソールである特許請求の範囲第6項記載の 化合物。
- 8) 5-フルオロー3ースルフアモイルメチルー1,2-ベンズイソキサゾールである特許請求の範囲第6項記載の化合物。
- 9) 5-クロロー3-スルフアモイルメチルー1,2-ベンズイソキサゾールである特許請求の範囲第6項記載の化合物。
- 10) 5 ブロモー3 スルフアモイルメチルー1,2 ベンズイソキサソールである特許請求の範囲第 6 項記載の化合物。
- 11) ・6 フルオロー3 スルフアモイルメチルー1,2 ペンズイソキサゾールである特許請求の範囲第 6 項記載の化合物。
- 12) 3-スルフアモイルメチルー1, 2ーベンズインキサゾール・ナトリウム塩である特許請求の範

2ーベンズイソキサソール誘導体およびRiおよび /またはRiが水素原子であるときのそのアルカリ 金属塩、ならびにそれらの製造方法に関する。

上記式中Xで示されるハロゲン原子の具体例としては、フッ案原子、塩素原子、臭素原子が挙げられる。

本発明者らは数年来、種々の1,2ーペンズイソ キサソール誘導体を研究してきたが、3位にスル ファモイルアルキル基を導入すると優れた抗けい れん作用が発現することを見出し、更に研究を重 ねた結果、本発明を完成した。

本発明化合物のうちで好適なものは、式(1)において、Xが水素原子または5もしくは6位のハロゲン原子であり、 R_1 および R_2 が同一または異なって水絮原子,メチル基,エチル基,イソプロピル基またはヒドロキン基(但し、 R_1 および R_2 が共にヒドロキン基である場合を除く)であるか、あるいは $-N < R_2$ が4-メチル-1-ピペラシェル基であり、nが 1 \sim 3 の整数である化合物である。

囲第2項記載のアルカリ金属塩。

- 13) 5 フルオロー3 スルフアモイルメチルー1, 2 - ペンズイソキサゾール・ナトリウム塩である 特許請求の範囲第2項記載のアルカリ金属塩。
- 3. 発明の詳細な説明

本発明は新規で有用な 1, 2 - ベンズイソキサゾ - ル誘導体に関する。更に詳しくは、一般式(I)

$$X = \bigcup_{ON} (CH_2)_{n-SO_2N} < \frac{R_1}{R_2}$$
 (I)

「式中、Xは水素原子、ハロゲン原子またはトリフルオロメチル基を意味し、RiおよびRiは同一または異なって水素原子、炭素原子数 1 ~ 3 個の直鎖状もしくは分枝鎖状の低級アルキル基またはヒドロキシ基を(但し、RiおよびRiが共にヒドロキシ基を意味する場合を除く)意味するか、あるいは−N
Ri は 4 −メチルー1 − ピベラジニル基を意味し、nは1~3の整数を意味する。〕

で表わされる3-スルフアモイルアルキル-1,

更に好適なものは、式(I)において、Xが水素原子または5もしくは6位のハロゲン原子であり、R1およびR1が共に水素原子で、nが1~3の整数である化合物、およびXが先の場合と同じであり、-N
-N
R1 がメチルアミノ基,エチルアミノ基,イソプロピルアミノ基,シメチルアミノ基,ヒドロキシアミノ基または4ーメチルー1ーピペラジェル基で、nが1である化合物である。

最も好適なものは、式(I)において、Xが水素 原子または5もしくは6位のハロゲン原子であり、 RiおよびRiが共に水素原子であり、nが1である 化合物で、例えば次の化合物が挙げられるが、な かんずく前二者が好適である。

3 - スルフアモイルメチルー 1, 2 - ペンズイソ キサゾール

5-フルオロー 3 - スルフアモイルメチルー 1, 2-ベンズイソキサゾール

5 - クロロー 3 - スルフアモイルメチルー 1, 2 - ベンズイソキサゾール 5ープロモー3ースルフアモイルメチルー 1, 2 ーペンズイソキサゾール

6 - フルオロー 3 - スルフアモイルメチルー 1. 2 - ペンズイソキサゾール

本発明化合物(I)は、一般式(II)

$$X = (CH_2)_{n-SO_2Y}$$

(式中、Xおよびnは前掲に同じものを意味し、 Yはハロゲン原子を意味する。)

で表わされる化合物と一般式 (III)

$$H N < R_2$$
 (III)

(式中、Riおよび Riは前掲に同じものを意味する。)で表わされるアミン類とを反応させることにより得られる。

化合物(II)とアミン類(III)との反応は、無溶媒下あるいは不活性溶媒中で行うことができるが、不活性溶媒中で行うのが好ましい。不活性溶媒としては、例えば水、エタノール、インプロパノール等のア

ルコール類、トルエン、キシレン等の芳香族炭化 水素類、ジエチルエーテル、テトラヒドロフラン、 ジオキサン等のエーテル類、酢酸エチル等のエス テル類が挙げられるが、エーテル類、エステル類 が特に好適である。これらの溶媒は、これぞれ単 独で、または2種以上混合して使用できる。

本反応は、脱ハロゲン化水繋剤としての塩基性物質の存在下に行うのが好ましく、塩基性物質としては、例えば炭酸水繋ナトリウム,炭酸水繋カリウム等の炭酸水繋アルカリ、炭酸ナトリウム,炭酸カリウム等の炭酸アルカリあるいはトリエチルアミン等の有機塩基が挙げられる。また、アミン類(II)を過剰に用いて、それ自体脱ハロゲン化水紫剤を兼ねさせることもできる。

アミン類(II)の使用量は、通常化合物(II)に対して等モル量ないし4倍モル量であるが、大過剰使用することも可能である。反応温度は特に限定されないが、好ましくは0℃ないし35℃である。原料化合物(II)は、例えば下記の方法で製造す

ることができる。

(b)
$$X \xrightarrow{CH_2 COOH} \xrightarrow{C1SO_3 H} X \xrightarrow{CH_2 SO_2 C1}$$
(M) (II)

(II)

(c)
$$X \xrightarrow{CH_2 COOH} \xrightarrow{SO_3 - OOO} X \xrightarrow{CH_2 SO_3 H} CH_2 SO_3 H$$

(式中、X, Yおよびnは前掲に同じものを意味し、Hal はハロゲン原子を意味する。)

(a)法によれば、3 - ハロゲノアルキル体 (IV)

〔Chem.Pharm.Bull.(Tokyo) <u>24</u>,632(1976) に 記載の方法に準じて合成される〕と亜硫酸ナトリ ウムとを不活性溶媒(例 水性メタノール,水性 エタノール)中、40~80℃で反応させて3ーア ルキルスルホン酸ナトリウム類(V)を得、次いで これとハロゲン化剤(例 オキシ塩化リン,オキ ン臭化リン)とを反応させることにより化合物(II) を得ることができる。

式(II)において n が 1 である化合物はまた (b) 法あるいは (c) 法によっても得られる。

- (b) 法によれば、3 一酢酸類(VI) [Phytochemi-stry 10,539(1971) に記載の方法に準じて合成される]とクロルスルホン酸とを無溶媒下、50~70℃ で反応させることにより3 ーメタンスルホン酸クロリド類(II) を得ることができる。
- (c) 法によれば、3 一酢酸類 (M) と無水硫酸ージオキサン [J.Am.Chem.Soc. <u>75</u>, 1651(1953)] またはクロルスルホン酸 —— ジオキサンとを不活

性溶媒(例 塩化エチレン,クロロホルム)中、35~70℃ で反応させて3ーメタンスルホン酸類(VII)を得、次いでこれをナトリウム塩(V)に変換後ハロゲン化剤を作用させるか、または3ーメタンスルホン酸類(VII)に直接ハロゲン化剤を作用させるより3ーメタンスルホン酸ハライド類(II)を得ることができる。

式(I)においてRiおよび/またはRiが水繋原子である本発明化合物は、常法に従ってアルカリ金属化合物と反応させることによりアルカリ金属塩に導くことができる。ここに用いられるアルカリ金属化合物としては、水酸化ナトリウム,水酸化カリウム等の水酸化アルカリまたはナトリウムエチラート等のアルカリ金属アルコラートが挙げられる。

本発明化合物(I)およびそのアルカリ金属塩は優れた抗けいれん作用を示し、例えば抗てんかん薬として有用である。本発明化合物(I)の、マウスにおける抗最大電撃ショック作用〔抗MES 作

また、実施例 1 および 2 の化合物の、マウスにおける NTD₅₀(50%神経群性量 (neurotoxic dose);回転棒 (rotarod) 法により測定), LD₅₀ (7日間 観察;プロビット法により算出), 治療係数 (NTD₅₀/ED₅₀ (抗MES作用)) および安全係数 (LD₅₀/ED₅₀ (抗MES作用)) は表 2 に示すとおりである。

表 2

(マウス,経口)

		:		
試験化合物	NTDso (mg/kg)	治療 係数	LDso (mg/kg)	安全係数
実施例1の化合物	292	1 4.9	1829	93.3
実施例2の化合物	154	10.6	1257	8 6.7

本発明化合物(I)およびそのアルカリ金属塩を抗てんかん薬として使用する場合、単独で、あるいは生理的に許容される製剤用添加剤と混合し、例えば錠剤,カプセル剤,顆粒剤,坐剤等の固体製剤、またはシロップ剤,注射剤等の液体製剤の形で、経口的あるいは非経口的に投与される。本発明化合物(I)およびそのアルカリ金属塩の投与

用; J.Am. Pharm. Assoc. <u>38</u>, 201(1949)に記載の方法に準じて測定〕は表1に示すとおりである。

25

表 1. 抗最大電撃ショック作用(マウズ)

$$X = \begin{pmatrix} CH_2 \end{pmatrix}_{n-SO_2 N} < \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$

試験化合物		E D 50	試験化合物		E D ₅₀		
ກ	х	$-N <_{R_2}^{R_1}$	(ng√kg) (p.o.)	מ	х	$-N <_{R_2}^{R_1}$	(mg/kg) (p.O.)
1	н	-NH2	19. 6	i	5-F	-инсн	34. 5
1	н	-NHCH ₃	22.3	1	5-F	-N H C ₂ H ₅	31.6
1	н	-NHC₂H5	38. 9	1	5-F	-N(CH ₃) ₂	32.0
j	н	-NHCH (CH ₃) ₂	56.0	1	5-Br	-N Hz	1 3. 5
1	H	-N(CH ₃) ₂	37. 2	1	5-Br	-инсн	15.0
1	н	-и N-CH,	5 7 . I	1	5-Br	-NHC ₂ H ₅	18.3
1	н	-инон	32.4	1	5 – Br	-NHCH(CH ₃) ₂	22.3
1	5-C1	-NH2	14. 2	1	5-Br	-N_N-CH₃	87.7
1	5-C1	-NHCH:	約20	1	6-F	-NH2	18.9
1	5-C1	-NHC2H5	21. 3	2	н	-NH ₂	26.1
ī	5-C1	-N (CH ₂) ₂	56.2	3	н	-NH ₂	38. 9
1	5-F	-NH2	14.5			-	
プリミドン			21. 7		7:	エナセミド	61.2

量は、化合物の種類、投与方法、症状、年令等により異なるが、通常 1~100 mg/kg/日、好ましくは3~50 mg/kg/日である。

以下に参考例および実施例を挙げて本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、化合物の同定は元素分析値、マス・スペクトル、IRスペクトル、NMRスペクトル等により行なった。

参考例 1

5 ーフルオロー 1, 2 ーペンズイソキサゾール ー 3 ーメタンスルホン酸クロリド

5 ーフルオロー 1, 2 ーペンズイソキサゾール

- 3 - 酢酸(融点 151~156℃)3.0gをクロルスルホン酸 20 ml に加え、60℃ で 5 時間加熱攪拌する。反応液を冷却し、氷水中に注ぐと目的物は沈殿として得られる。これを沪取し、少景の冷水で洗浄したのち次の反応に用いる。

参考例 2

1,2-ベンズイソギサゾール— 3 — メタンスル ホン酸クロリド

3 ープロモメチルー 1,2 ーペンズイソキサゾール (融点 64~66℃) 8.0 g をメタノール 130ml に 溶解させ、亜硫酸ナトリウム 8.1 g を水 1 30mlに 溶解させた溶液を加える。上記混合物を 50℃で 4 時間加熱攪拌したのち滅圧で濃縮し、残渣の結晶にメタノール 250ml を加えて加温溶解させる。メタノールに不溶の不純物を沪去したのちメタノールを滅圧で留去し、残渣の結晶をとりエーテルで洗浄すると粗製の 1,2 ーペンズイソキサゾールー 3ーメタンスルホン酸のナトリウム塩 10.5 g を 得る。

上記ナトリウム塩 10.5g をオキシ塩化リン 100 ml に加え、 3 時間加熱還流させる。過剰のオキシ塩化リンを減圧で留去し乾固する。残渣を酢酸エチル 200mlに溶解させ、不溶物を沪去すること

;

ホン酸クロリドの酢酸エチル溶液 200ml(参考例 2 で得られた溶液)を氷冷し、アンモニアガスを 飽和させる。室温で1時間放置したのち酢酸エチ ルに不溶の物質を沪去し、次いで酢酸エチルを留 去する。残渣を少量の酢酸エチルで洗浄したのち 酢酸エチルより再結晶すると目的物 5.2 g を得る。 融点 160~163℃

実施例2

5 ーフルオロー 3 ースルフアモイルメチルー 1,2 ーベンズイソキサゾール

参考例1で得られた 5 ーフルオロー 1,2 ーベンズイソキサゾールー 3 ーメタンスルホン酸クロリドに冷濃アンモニア水 50ml を加え、室温で1時間放置する。アンモニア水を滅圧で留去し、残渣に酢酸エチルを加えて加温溶解させる。不溶物を活去したのちが液を滅圧で濃縮すると結晶が析出する。析出結晶をが取し、ベンセンで洗浄すると目的物 0.9gを得る。融点 182~185℃

により目的物の酢酸エチル溶液を得る。

参考例3

1.2ーベンズイソキサゾールー 3 ーメタンスル ホン酸クロリド

クロルスホン酸 11.0g を塩化エチレン 50ml に溶解させ、氷冷下シオキサン 8.2g を内温 10~15 でで滴下する。 1.2 ーペンズイソキサゾールー 3 一酢酸 15.0gを加え、室温で 3 時間、続いて 50℃ で 6 時間攪拌する。次いで反応液に冷水を加え、 水層を分離し、これを水酸化ナトリウム水溶液で中和する。水層を減圧で濃縮乾固し、残渣にオキシ塩化リン 90ml を加え、参考例 2 の後段と同様 に反応・処理して目的物の酢酸エチル溶液を得る。

実施例1

3 ースルフアモイルメチルー 1, 2 ーベンズイソ キサソール

1,2ーペンズイソキサゾールー3ーメタンスル

実施例3

3 - (4 - メチル - 1 - ピペラジニル) スルホ ニルメチルー 1, 2 - ベンズイソキサゾール

. _____1

1.2ーベンズイソキサゾールー3ーメタンスルホン酸ナトリウム 2.0 g をオキシ塩化リン10mlに溶解させ、4時間加熱還流させる。減圧でオキシ塩化リンを留去し、残渣をエーテル 50ml に溶解させ、冷却下1ーメチルピペラジン 3mlをエーテル 30ml に溶解させた溶液を加え 3 0 分間放浴する。エーテル溶液を10%炭酸ナトリウムで乾燥浴および水で洗浄し、無水硫酸ナトリウムで乾燥後エーテルを留去する。残渣をベンゼン ── n ーへキサンより再結晶すると目的物 0.6 g を得る。融点 119~121℃

実施例 4

実施例 I ~ 3 と同様に反応・処理して表 3 の化合物を得る。

			
n	Х	$-N <_{R_2}^{R_1}$	融点 (C)
1	Н	-инсн.	113~115
1	Н	-NHCH2CH,	76~ 78
1	Н	-инсн.сн.сн.	86~ 88
1	н	-NHCH (CH,):	114~117
1	н	-N(CH ₃) ₂	105~107
1	Н	-инон	140~143
1	5 – F	-инсн,	141~144
1	5 - F	-NHCH.CH.	114~117
1	5 – F	-NHCH(CH ₁);	127~130
1	5 — F	-N(CH ₃) ₂	145~148
1	5 – F	-N_N-СН,	151~153
1	6 – F	-NH:	187~190
1	5 - Ci	-NH:	192~195
1	5-C1	-NHCH.	148~151
1	5-C1	-NHCH2CH3	150~152

3-4

させた溶液を加える。しばらく放置したのちェタ ノールを減圧で留去し、析出する結晶を沪取、エ タノールで洗浄し乾燥すると目的物 6.5 g を得る。 融点 2 2 5~2 3 0℃(分解)

上記実施例と同様に反応・処理して次の化合物 を得る。

5-フルオロー3ースルフアモイルメチルー」。 2-ベンズイソキサゾール・ナトリウム塩 融点 240~243℃(分解)

> 特許出願人 大日本製薬株式会社 代 理 人 坪 井. 有四郎

n	х	$-N <_{R_2}^{R_1}$	融点(C)
1	5 - C1	-NHCH (CH ₃) ₂	114~116
1	5-C1	-N(CH ₁);	176~179
1	5-Br	-NH ₂	221~225
1	5 - Br	-инсн.	152~154
1	5 - Br	-инсн.сн.	144~147
ı	5 – Br	-инсн (сн.).	95~ 97
1	5 – Br	-N (CH ₂);	183~185
1	5 – Br	-NN-CH.	118~121
2	н	-NH:	159~162
3	Н	-NH:	136~138

実施例 5

3 - スルフアモイルメチルー 1, 2 - ペンズイッキサゾール・ナトリウム塩

3 - スルフアモイルメチルー 1,2 - ベンズイソ キサゾール 7.0 g をエタノール 300ml に溶解さ せ、ナトリウム 0.76g をエタノール 40ml に溶解