Excercise_6_solutions_part_2

May 30, 2019

1 PART 2 - Logistic Regression Project

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        ad_data = pd.read_csv('advertising.csv')
In [2]: ad_data.head()
Out [2]:
           Daily Time Spent on Site
                                                        Daily Internet Usage
                                      Age
                                          Area Income
        0
                               68.95
                                       35
                                              61833.90
                                                                       256.09
        1
                               80.23
                                       31
                                              68441.85
                                                                       193.77
        2
                               69.47
                                       26
                                              59785.94
                                                                       236.50
        3
                               74.15
                                       29
                                              54806.18
                                                                       245.89
        4
                               68.37
                                       35
                                              73889.99
                                                                       225.58
                                    Ad Topic Line
                                                              City Male
                                                                             Country \
        0
                                                                             Tunisia
              Cloned 5thgeneration orchestration
                                                      Wrightburgh
                                                                       0
        1
              Monitored national standardization
                                                         West Jodi
                                                                       1
                                                                               Nauru
                Organic bottom-line service-desk
                                                         Davidton
                                                                          San Marino
        3
           Triple-buffered reciprocal time-frame
                                                   West Terrifurt
                                                                       1
                                                                               Italy
                   Robust logistical utilization
                                                     South Manuel
                                                                             Iceland
                                Clicked on Ad
                     Timestamp
          2016-03-27 00:53:11
                                             0
        1 2016-04-04 01:39:02
        2 2016-03-13 20:35:42
                                             0
        3 2016-01-10 02:31:19
                                             0
          2016-06-03 03:36:18
In [3]: ad_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 10 columns):
```

```
Daily Time Spent on Site
                            1000 non-null float64
                            1000 non-null int64
Age
Area Income
                            1000 non-null float64
Daily Internet Usage
                            1000 non-null float64
Ad Topic Line
                            1000 non-null object
City
                            1000 non-null object
Male
                            1000 non-null int64
                            1000 non-null object
Country
Timestamp
                            1000 non-null object
Clicked on Ad
                            1000 non-null int64
```

dtypes: float64(3), int64(3), object(4)

memory usage: 78.2+ KB

In [4]: ad_data.describe()

Out[4]:		Daily	Time Spent on S	ite		Age	Area Income	١
	count		1000.000	000	1000.000	000	1000.000000	
	mean		65.000	200	36.009	000	55000.000080	
	std		15.853	615	8.785	562	13414.634022	
	min		32.600	000	19.000	000	13996.500000	
	25%		51.360	000	29.000	000	47031.802500	
	50%		68.215	000	35.000	000	57012.300000	
	75%		78.547	500	42.000	000	65470.635000	
	max		91.430	000	61.000	000	79484.800000	
		Daily	Internet Usage		Male	Cli	cked on Ad	
	count		1000.000000	100	0.000000		1000.00000	
	mean		180.000100	(0.481000		0.50000	
	std		43.902339	(0.499889		0.50025	
	min		104.780000	(0.000000		0.00000	
	25%		138.830000	(0.000000		0.00000	
	50%		183.130000	(0.000000		0.50000	
	75%		218.792500		1.000000		1.00000	
	max		269.960000		1.000000		1.00000	

Exploratory Data Analysis

```
In [5]: sns.set_style('whitegrid')
        ad_data['Age'].hist(bins=30)
        plt.xlabel('Age')
Out[5]: Text(0.5, 0, 'Age')
```


Create a jointplot showing Area Income versus Age.

In [6]: sns.jointplot(x='Age',y='Area Income',data=ad_data)

/home/kamil/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Us return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[6]: <seaborn.axisgrid.JointGrid at 0x7ff04c566f28>

Create a jointplot showing the kde distributions of Daily Time spent on site vs. Age.

In [7]: sns.jointplot(x='Age',y='Daily Time Spent on Site',data=ad_data,color='red',kind='kde'

Create a jointplot of 'Daily Time Spent on Site' vs. 'Daily Internet Usage'

In [8]: sns.jointplot(x='Daily Time Spent on Site',y='Daily Internet Usage',data=ad_data,color=
Out[8]: <seaborn.axisgrid.JointGrid at 0x7ff01b3bb198>

Finally, create a pairplot with the hue defined by the 'Clicked on Ad' column feature.

In [9]: sns.pairplot(ad_data,hue='Clicked on Ad',palette='bwr')

/home/kamil/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kde.py:488: Runtimbinned = fast_linbin(X, a, b, gridsize) / (delta * nobs)

/home/kamil/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kdetools.py:34: Ru: FAC1 = 2*(np.pi*bw/RANGE)**2

/home/kamil/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py:83: RuntimeWarning return ufunc.reduce(obj, axis, dtype, out, **passkwargs)

Out[9]: <seaborn.axisgrid.PairGrid at 0x7ff01b2d1c88>

3 Logistic Regression

Now it's time to do a train test split, and train our model! You'll have the freedom here to choose columns that you want to train on!

• Split the data into training set and testing set using train_test_split

```
In [10]: from sklearn.model_selection import train_test_split
In [11]: ad_data.head()
Out[11]:
            Daily Time Spent on Site
                                             Area Income
                                                          Daily Internet Usage
                                        Age
                                68.95
                                         35
                                                61833.90
                                                                          256.09
         1
                                80.23
                                         31
                                                68441.85
                                                                          193.77
         2
                                69.47
                                         26
                                                59785.94
                                                                          236.50
```

```
3
                               74.15
                                        29
                                                                        245.89
                                               54806.18
         4
                               68.37
                                        35
                                               73889.99
                                                                        225.58
                                     Ad Topic Line
                                                              City Male
                                                                              Country \
         0
               Cloned 5thgeneration orchestration
                                                       Wrightburgh
                                                                        0
                                                                              Tunisia
               Monitored national standardization
                                                         West Jodi
         1
                                                                                Nauru
         2
                 Organic bottom-line service-desk
                                                          Davidton
                                                                       0 San Marino
         3 Triple-buffered reciprocal time-frame West Terrifurt
                                                                       1
                                                                                Italy
                    Robust logistical utilization
                                                                              Iceland
                                                      South Manuel
                                                                       0
                      Timestamp Clicked on Ad
         0 2016-03-27 00:53:11
                                              0
         1 2016-04-04 01:39:02
                                              0
         2 2016-03-13 20:35:42
                                              0
         3 2016-01-10 02:31:19
                                              0
         4 2016-06-03 03:36:18
                                              0
In [12]: X = ad_data[['Daily Time Spent on Site', 'Age', 'Area Income', 'Daily Internet Usage',
         y = ad_data['Clicked on Ad']
In [13]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state
  Train and fit a logistic regression model on the training set.
In [14]: from sklearn.linear_model import LogisticRegression
In [15]: lm = LogisticRegression()
         lm.fit(X_train,y_train)
/home/kamil/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: Future
 FutureWarning)
Out[15]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, max_iter=100, multi_class='warn',
                   n_jobs=None, penalty='12', random_state=None, solver='warn',
                   tol=0.0001, verbose=0, warm_start=False)
   Predictions and Evaluations
Now predict values for the testing data.
In [23]: y_pred = lm.predict(X_test)
  Create a classification report for the model.
```

In [24]: from sklearn.metrics import classification_report

In [25]: print(classification_report(y_test, y_pred))

		precision	recall	f1-score	support
	0	0.84	0.97	0.90	146
	1	0.96	0.82	0.89	154
micro	avg	0.89	0.89	0.89	300
macro	avg	0.90	0.90	0.89	300
weighted	avg	0.90	0.89	0.89	300

In []: