Limites (TS2)

Limites (TS2)

Exercice 1

Vrai ou faux?

- 1. Si $\lim_{x \to a} g(x) = a$ et $\lim_{x \to b} f(x) = a$ alors $\lim_{x \to b} (g \circ f)(x) = a$.
- 2. Soit la fonction u telle que $x-2 \le u(x) \le x+3$ pour tout x > 1. Alors $\lim_{x \to +\infty} \frac{u(x)}{\sqrt{x}} = +\infty$.
- 3. Si une fonction f définie et strictement croissante sur $\mathbb R$ telle que : $\lim_{x \to \infty} f(x) = 0$ et $\lim_{x \to +\infty} f(x) = 1 \text{ alors}:$
 - **a)** $\lim_{x \to +\infty} f(-x+1) = 0$ **b)** $\lim_{x \to 0^+} f\left(x + \frac{1}{x}\right) = 1$ **c)** $\lim_{x \to -\infty} \frac{f(x) + x}{f(|x|) 1} = +\infty$.

Exercice 2

Étudier les limites suivantes.

1.
$$\lim_{x \to +\infty} \sin \frac{\pi}{x}$$

$$2. \lim_{x \to \infty} x \sin \frac{\pi}{x}$$

$$3. \lim_{x \to -\infty} \sqrt{\frac{2x^2}{1-x}}$$

$$4. \lim_{x \to +\infty} \left(x - \sqrt{x} + \frac{1}{x} \right)^3$$

5.
$$\lim_{x \to +\infty} x \left(\sqrt{\frac{x}{x+1} - 1} \right)$$

Exercice 3

Calculer la limite suivante. $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$

En déduire:

$$\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{4 + \cos x} - 2}{\cos x} \quad \text{et} \quad \lim_{x \to \frac{\pi}{2}} \frac{\sqrt{4 + \sin x} - 2}{x}$$

Exercice 4

On considère la fonction f définie sur $[2, +\infty[$ par $f(x) = \frac{3x + \sin x}{x - 1}$

Montrer que, pour tout $x \ge 2$, $|f(x) - 3| \le \frac{4}{x - 1}$. En déduire la limite de f en $+\infty$?.

Exercice 5

Soit la fonction f définie par : $f: x \mapsto x^2 \sin\left(\frac{1}{x}\right) + 1 \quad \forall x \in \mathbb{R}^*$

- 1. Montrer que $\forall x \in \mathbb{R}^* \ 1 x^2 \le f(x) \le 1 + x^2$
- 2. En déduire:
 - (a) $\lim_{x\to 0} f(x)$
 - (b) $\lim_{x \to +\infty} \frac{f(x)}{x^3}$
 - (c) $\lim_{x\to 0} \frac{f(x)-1}{x}$.

Exercice 6

Soi f une fonction définie sur $\mathbb{R} \setminus \{-1\}$ telle que : $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -1^-} f(x) = +\infty$ et $\lim_{x \to -1^+} f(x) = -\infty$.

- 1. Interpréter graphiquement ces limites.
- 2. En déduire les limites suivantes.

(a)
$$\lim_{x \to +\infty} f(\sqrt{x})$$

(b)
$$\lim_{x \to +\infty} f\left(-1 + \frac{1}{x}\right)$$

(c)
$$\lim_{x \to 0^-} f\left(\frac{1}{x}\right)$$

(d)
$$\lim_{x \to -\infty} \left(\frac{f(x) - 1}{2f(x) + 1} \right)^2$$

Exercice 7

Étudier les limites suivantes.

1.
$$\lim_{x \to 1} \frac{x^{10} - 1}{x - 1}$$

2.
$$\lim_{x \to -1} \frac{x\sqrt{x+2}+1}{x+1}$$

3.
$$\lim_{x \to \frac{\pi}{6}} \frac{x+1}{6x-\pi}$$

4.
$$\lim_{x\to 0} \frac{\cos^5 x + \sin 2x - 1}{x}$$

Exercice 8

Soit f une fonction définie et dérivable sur \mathbb{R} tel que f(1) = 0 et f'(1) = -1.

 \mathscr{C}_f admet une asymptote d'équation y=3 en $-\infty$ et une asymptote d'équation y=x+4 en $+\infty$.

3

1. Calculer les limites suivantes.

(a)
$$\lim_{x\to 0} f\left(\frac{x-1}{x^2}\right)$$

(b)
$$\lim_{x \to +\infty} \frac{f(x)}{x + f(x)}$$

(c)
$$\lim_{x \to +\infty} \frac{1}{f(x) - x + 3}$$

- 2. On considère la limite suivante $\lim_{x \to +\infty} xf\left(1 + \frac{1}{x}\right)$.
 - (a) Justifier qu'il y a une présence de forme indéterminée.
 - (b) En posant $X = 1 + \frac{1}{x}$, calculer cette limite.