```
In [1]: import pandas as pd
import numpy as np
# import matplotlib.pyplot as plt
# import seaborn as sns

from statsmodels.formula.api import ols
from scipy import stats
```

Задание:

- 1. Проведите разведочный анализ данных. Сделайте основные выводы про полноту датасета.
- 2. Нужно ли увеличить количество полицейских, чтобы снизить количество краж? Поясни свой ответ.

```
In [2]:
    first_part
    https://docs.google.com/spreadsheets/d/lJkevCnJrPzzVnhC4FMRunBVWs_g5q9mqM
Date: Дата.
District: Район города.
Warehouse_Name: Название склада.
Number_of_Guards: Количество охраны на складе.
Police_Units: Количество полицейских на район.
"""
first_part = pd.read_excel('first_part.xlsx')
first_part.head()
```

Out[2]:		Date	District	Warehouse_Name	Number_of_Guards	Police_Units
	0	2024- 01-26	Мышеостровский	Колбасовы	7	6
	1	2024- 01-26	Мышеостровский	Молочковы	10	9
	2	2024- 01-26	Мышеостровский	Мятновы	8	8
	3	2024- 01-26	Мышеостровский	Сметанинковы	8	7
	4	2024- 01-26	Краснокотейский	Колбасовы	7	6

```
In [3]: """
```

about:srcdoc Page 1 of 25

```
second_part
https://docs.google.com/spreadsheets/d/12ENNpZ18t2-aBX2nAIjYSwV3hOeaW6Sjd

Date: Дата.

District: Район города.

Warehouse_Name: Название склада.

Percent_of_Crime_Solved: Процент раскрытых преступлений по уничтожению фо

Number_of_Lights: Количество фонарей в районе.

"""

second_part = pd.read_excel('second_part.xlsx')
second_part.head()
```

Out[3]:		Date	District	Warehouse_Name	Percent_of_Crime_Solved	Number_
	0	2024- 01-26	Мышеостровский	Колбасовы	83.160959	
	1	2024- 01-26	Мышеостровский	Молочковы	87.756487	
	2	2024- 01-26	Мышеостровский	Мятновы	87.010121	
	3	2024- 01-26	Мышеостровский	Сметанинковы	82.207203	
	4	2024- 01-26	Краснокотейский	Колбасовы	86.684716	

Проверим полноту датасета:

memory usage: 675.1+ KB

```
In [4]: print(first_part.shape)
        first_part.info()
       (17280, 5)
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 17280 entries, 0 to 17279
       Data columns (total 5 columns):
        #
            Column
                             Non-Null Count Dtype
        0
            Date
                              17280 non-null datetime64[ns]
        1
            District
                              17280 non-null object
           Warehouse_Name
        2
                             17280 non-null object
        3
           Number_of_Guards 17280 non-null int64
            Police Units
                             17280 non-null int64
       dtypes: datetime64[ns](1), int64(2), object(2)
```

In [5]: print(second_part.shape)

about:srcdoc Page 2 of 25

```
second part.info()
       (17280, 5)
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 17280 entries, 0 to 17279
       Data columns (total 5 columns):
            Column
                                     Non-Null Count Dtype
            _____
                                     17280 non-null datetime64[ns]
        0
            Date
                                     17280 non-null object
            District
        1
                                     17280 non-null object
        2
            Warehouse Name
            Percent_of_Crime_Solved 17280 non-null float64
        3
                                     17280 non-null int64
            Number_of_Lights
       dtypes: datetime64[ns](1), float64(1), int64(1), object(2)
       memory usage: 675.1+ KB
        В обоих датасетах не существует ни одного null значения.
In [6]: print(first part.columns)
        print((first_part
             .groupby(['Date', 'District', 'Warehouse_Name'])
             .value_counts()
        ).max())
        print(second_part.columns)
        print((second_part
             .groupby(['Date', 'District', 'Warehouse_Name'])
             .value_counts()
        ).max())
       Index(['Date', 'District', 'Warehouse_Name', 'Number_of_Guards',
              'Police_Units'],
             dtype='object')
       Index(['Date', 'District', 'Warehouse_Name', 'Percent_of_Crime_Solved',
              'Number_of_Lights'],
             dtype='object')
       1
        Триплет ['Date', 'District', 'Warehouse_Name'] является уникальным
        ключом для обеих частей, так что можно попробовать соединить их:
In [7]: full_data = first_part.merge(
            right=second_part,
            on=['Date', 'District', 'Warehouse_Name'],
            how='inner'
        print(full_data.columns)
        print(full_data.shape)
        full data.head()
```

about:srcdoc Page 3 of 25

Out[7]:		Date	District	Warehouse_Name	Number_of_Guards	Police_Units	P
	0	2024- 01-26	Мышеостровский	Колбасовы	7	6	
	1	2024- 01-26	Мышеостровский	Молочковы	10	9	
	2	2024- 01-26	Мышеостровский	Мятновы	8	8	
	3	2024- 01-26	Мышеостровский	Сметанинковы	8	7	
	4	2024- 01-26	Краснокотейский	Колбасовы	7	6	

Соединение прошло удачно. Посмотрим, как распределены данные:

```
In [8]: (full_data
             ['District']
             .value_counts()
Out[8]: District
         Мышеостровский
                             2880
          Краснокотейский
                             2880
          Мышесельский
                             2880
          Петрокотский
                             2880
          Приморский
                             2880
          Невский
                             2880
         Name: count, dtype: int64
 In [9]: (full data
             ['Warehouse Name']
             .value_counts()
Out[9]: Warehouse_Name
          Колбасовы
                          4320
         Молочковы
                          4320
          Мятновы
                          4320
          Сметанинковы
                          4320
          Name: count, dtype: int64
In [10]: (full data
             [['District', 'Warehouse_Name']]
             .value_counts()
```

about:srcdoc Page 4 of 25

Out[10]:	District	Warehouse_Name	
	Краснокотейский	Колбасовы	720
		Молочковы	720
	Приморский	Мятновы	720
		Молочковы	720
		Колбасовы	720
	Петрокотский	Сметанинковы	720
		Мятновы	720
		Молочковы	720
		Колбасовы	720
	Невский	Сметанинковы	720
		Мятновы	720
		Молочковы	720
		Колбасовы	720
	Мышесельский	Сметанинковы	720
		Мятновы	720
		Молочковы	720
		Колбасовы	720
	Мышеостровский	Сметанинковы	720
		Мятновы	720
		Молочковы	720
		Колбасовы	720
	Краснокотейский	Сметанинковы	720
		Мятновы	720
	Приморский	Сметанинковы	720
	Name: count, dty	pe: int64	

Помимо того, что названия округов подозрительно напоминают названия районов Санкт-Петербурга, заметим, что данные по ним распределены **чрезвычайно ровно.** Их визуализация не даёт ничего полезного, так что приводить её здесь я не буду. Однако, я бы хотел оценить, насколько их распределения совпадают по среднему значению и СКО.

about:srcdoc Page 5 of 25

- >>> <function ttest ind at 0x127a3d9d0>
- >> Number_of_Guards
- > Мышеостровский-Краснокотейский равны по показателю Number_of_Guards: TtestResult(statistic=0.8715041607006833, pvalue=0.38351527024669474, df=5 758.0)
- > Мышеостровский-Мышесельский равны по показателю Number_of_Guards: TtestResult(statistic=0.4825399632092622, pvalue=0.6294407596917191, df=5758.0)
- > Мышеостровский-Петрокотский равны по показателю Number_of_Guards: TtestResult(statistic=-0.30863835552401464, pvalue=0.7576078063723227, df= 5758.0)
- > Мышеостровский-Приморский равны по показателю Number_of_Guards: TtestResult(statistic=0.32882672248510725, pvalue=0.7422986221006729, df=5 758.0)
- > Мышеостровский-Невский равны по показателю Number_of_Guards: TtestResult(statistic=0.03905434517787736, pvalue=0.9688484143849871, df=5 758.0)
- >> Police_Units
- > Мышеостровский-Краснокотейский равны по показателю Police_Units: TtestResult(statistic=1.1454536349606426, pvalue=0.2520688965348275, df=5758.0)
- > Мышеостровский-Мышесельский равны по показателю Police_Units: TtestResult(statistic=0.6022231939766808, pvalue=0.5470492918713652, df=5758.0)
- > Мышеостровский-Петрокотский равны по показателю Police_Units: TtestResult(statistic=-0.3067142118950546, pvalue=0.7590720018236087, df=5 758.0)

about:srcdoc Page 6 of 25

- > Мышеостровский-Приморский равны по показателю Police_Units: TtestResult(statistic=0.08678638459973438, pvalue=0.930844327986379, df=5758.0)
- > Мышеостровский-Невский равны по показателю Police_Units: TtestResult(statistic=0.1332212004697219, pvalue=0.8940231001557188, df=5758.0)
- >> Percent_of_Crime_Solved
- > Мышеостровский-Краснокотейский равны по показателю Percent_of_Crime_Solv ed:

TtestResult(statistic=0.23448439779536875, pvalue=0.8146172815196955, df=5 758.0)

- > Мышеостровский-Мышесельский равны по показателю Percent_of_Crime_Solved: TtestResult(statistic=-0.1532499802938289, pvalue=0.8782065146470208, df=5 758.0)
- > Мышеостровский-Петрокотский равны по показателю Percent_of_Crime_Solved: TtestResult(statistic=0.30068319613350686, pvalue=0.7636669395827532, df=5 758.0)
- > Мышеостровский-Приморский равны по показателю Percent_of_Crime_Solved: TtestResult(statistic=-0.010761776050321675, pvalue=0.9914138836124542, df =5758.0)
- > Мышеостровский-Невский равны по показателю Percent_of_Crime_Solved: TtestResult(statistic=0.15121383403814914, pvalue=0.8798123349622053, df=5 758.0)
- >> Number_of_Lights
- > Мышеостровский-Краснокотейский равны по показателю Number_of_Lights: TtestResult(statistic=-0.8476611501080906, pvalue=0.3966619408712536, df=5 758.0)
- > Мышеостровский-Мышесельский равны по показателю Number_of_Lights: TtestResult(statistic=0.8444025888717446, pvalue=0.39847955730860873, df=5 758.0)
- > Мышеостровский-Петрокотский равны по показателю Number_of_Lights: TtestResult(statistic=0.2980367122362964, pvalue=0.7656858970387669, df=5758.0)
- > Мышеостровский-Приморский равны по показателю Number_of_Lights: TtestResult(statistic=0.6269577833380775, pvalue=0.5307117658183869, df=5758.0)
- > Мышеостровский-Невский равны по показателю Number_of_Lights: TtestResult(statistic=0.6081620018366941, pvalue=0.5431040206796555, df=5758.0)

about:srcdoc Page 7 of 25

```
In [13]:
         print(test_data(
             data=full data,
             metrics to test=metric list,
             field_to_test='Warehouse_Name',
             test_to_use=stats.ttest_ind,
         ))
        >>> <function ttest_ind at 0x127a3d9d0>
        >> Number of Guards
        > Колбасовы-Молочковы равны по показателю Number_of_Guards:
        TtestResult(statistic=-0.05987771723013768, pvalue=0.9522544122845377, df=
        8638.0)
        > Колбасовы-Мятновы равны по показателю Number_of_Guards:
        TtestResult(statistic=-0.9886615638226333, pvalue=0.3228564463875877, df=8
        638.0)
        > Колбасовы-Сметанинковы равны по показателю Number of Guards:
        TtestResult(statistic=0.19579113250347852, pvalue=0.8447782563751698, df=8
        638.0)
        >> Police_Units
        > Колбасовы-Молочковы равны по показателю Police_Units:
        TtestResult(statistic=0.2044125312672294, pvalue=0.8380359542352203, df=86
        38.0)
        > Колбасовы-Мятновы равны по показателю Police_Units:
        TtestResult(statistic=-0.46918340065064884, pvalue=0.6389503909404572, df=
        8638.0)
        > Колбасовы-Сметанинковы равны по показателю Police_Units:
        TtestResult(statistic=0.7209938018615215, pvalue=0.4709328403159081, df=86
        38.0)
        >> Percent of Crime Solved
        > Колбасовы-Молочковы равны по показателю Percent of Crime Solved:
        TtestResult(statistic=0.32859944819108805, pvalue=0.7424664306651769, df=8
        638.0)
        > Колбасовы-Мятновы равны по показателю Percent_of_Crime_Solved:
        TtestResult(statistic=-0.10869818088869354, pvalue=0.9134444094976287, df=
        8638.0)
        > Колбасовы-Сметанинковы равны по показателю Percent_of_Crime_Solved:
        TtestResult(statistic=0.09716204633791999, pvalue=0.9225999622041798, df=8
        638.0)
        >> Number_of_Lights
```

about:srcdoc Page 8 of 25

- > Колбасовы-Молочковы равны по показателю Number_of_Lights: TtestResult(statistic=1.471064906416363, pvalue=0.1413099908568232, df=863 8.0)
- > Колбасовы-Мятновы равны по показателю Number_of_Lights: TtestResult(statistic=0.5695557582658989, pvalue=0.5689938531140089, df=86 38.0)
- > Колбасовы—Сметанинковы равны по показателю Number_of_Lights: TtestResult(statistic=1.1114495872055554, pvalue=0.2664058122338372, df=86 38.0)

- >>> <function levene at 0x1278dc550>
- >> Number_of_Guards
- > Мышеостровский-Краснокотейский равны по показателю Number_of_Guards: TtestResult(statistic=0.8715041607006833, pvalue=0.38351527024669474, df=5 758.0)
- > Мышеостровский-Мышесельский равны по показателю Number_of_Guards: TtestResult(statistic=0.4825399632092622, pvalue=0.6294407596917191, df=5758.0)
- > Мышеостровский-Петрокотский равны по показателю Number_of_Guards: TtestResult(statistic=-0.30863835552401464, pvalue=0.7576078063723227, df= 5758.0)
- > Мышеостровский-Приморский равны по показателю Number_of_Guards: TtestResult(statistic=0.32882672248510725, pvalue=0.7422986221006729, df=5 758.0)
- > Мышеостровский-Невский равны по показателю Number_of_Guards: TtestResult(statistic=0.03905434517787736, pvalue=0.9688484143849871, df=5 758.0)
- >> Police_Units
- > Мышеостровский-Краснокотейский равны по показателю Police_Units: TtestResult(statistic=1.1454536349606426, pvalue=0.2520688965348275, df=5758.0)
- > Мышеостровский-Мышесельский равны по показателю Police_Units: TtestResult(statistic=0.6022231939766808, pvalue=0.5470492918713652, df=5758.0)

about:srcdoc Page 9 of 25

- > Мышеостровский-Петрокотский равны по показателю Police_Units: TtestResult(statistic=-0.3067142118950546, pvalue=0.7590720018236087, df=5 758.0)
- > Мышеостровский-Приморский равны по показателю Police_Units: TtestResult(statistic=0.08678638459973438, pvalue=0.930844327986379, df=5758.0)
- > Мышеостровский-Невский равны по показателю Police_Units: TtestResult(statistic=0.1332212004697219, pvalue=0.8940231001557188, df=5758.0)
- >> Percent_of_Crime_Solved
- > Мышеостровский-Краснокотейский равны по показателю Percent_of_Crime_Solv ed:
- TtestResult(statistic=0.23448439779536875, pvalue=0.8146172815196955, df=5 758.0)
- > Мышеостровский-Мышесельский равны по показателю Percent_of_Crime_Solved: TtestResult(statistic=-0.1532499802938289, pvalue=0.8782065146470208, df=5 758.0)
- > Мышеостровский-Петрокотский равны по показателю Percent_of_Crime_Solved: TtestResult(statistic=0.30068319613350686, pvalue=0.7636669395827532, df=5 758.0)
- > Мышеостровский-Приморский равны по показателю Percent_of_Crime_Solved: TtestResult(statistic=-0.010761776050321675, pvalue=0.9914138836124542, df =5758.0)
- > Мышеостровский-Невский равны по показателю Percent_of_Crime_Solved: TtestResult(statistic=0.15121383403814914, pvalue=0.8798123349622053, df=5 758.0)
- >> Number_of_Lights
- > Мышеостровский-Краснокотейский равны по показателю Number_of_Lights: TtestResult(statistic=-0.8476611501080906, pvalue=0.3966619408712536, df=5 758.0)
- > Мышеостровский-Мышесельский равны по показателю Number_of_Lights: TtestResult(statistic=0.8444025888717446, pvalue=0.39847955730860873, df=5 758.0)
- > Мышеостровский-Петрокотский равны по показателю Number_of_Lights: TtestResult(statistic=0.2980367122362964, pvalue=0.7656858970387669, df=5758.0)
- > Мышеостровский-Приморский равны по показателю Number_of_Lights: TtestResult(statistic=0.6269577833380775, pvalue=0.5307117658183869, df=5758.0)

about:srcdoc Page 10 of 25

> Мышеостровский-Невский равны по показателю Number_of_Lights: TtestResult(statistic=0.6081620018366941, pvalue=0.5431040206796555, df=5758.0)

```
In [15]: print(test_data(
             data=full_data,
             metrics_to_test=metric_list,
             field_to_test='Warehouse_Name',
             test_to_use=stats.levene,
         ))
        >>> <function levene at 0x1278dc550>
        >> Number_of_Guards
        > Колбасовы-Молочковы равны по показателю Number_of_Guards:
        TtestResult(statistic=-0.05987771723013768, pvalue=0.9522544122845377, df=
        8638.0)
        > Колбасовы—Мятновы равны по показателю Number of Guards:
        TtestResult(statistic=-0.9886615638226333, pvalue=0.3228564463875877, df=8
        638.0)
        > Колбасовы-Сметанинковы равны по показателю Number_of_Guards:
        TtestResult(statistic=0.19579113250347852, pvalue=0.8447782563751698, df=8
        638.0)
        >> Police_Units
        > Колбасовы-Молочковы равны по показателю Police_Units:
        TtestResult(statistic=0.2044125312672294, pvalue=0.8380359542352203, df=86
        38.0)
        > Колбасовы-Мятновы равны по показателю Police_Units:
        TtestResult(statistic=-0.46918340065064884, pvalue=0.6389503909404572, df=
        8638.0)
        > Колбасовы-Сметанинковы равны по показателю Police_Units:
        TtestResult(statistic=0.7209938018615215, pvalue=0.4709328403159081, df=86
        38.0)
        >> Percent_of_Crime_Solved
        > Колбасовы-Молочковы равны по показателю Percent_of_Crime_Solved:
        TtestResult(statistic=0.32859944819108805, pvalue=0.7424664306651769, df=8
        638.0)
        > Колбасовы-Мятновы равны по показателю Percent_of_Crime_Solved:
        TtestResult(statistic=-0.10869818088869354, pvalue=0.9134444094976287, df=
        8638.0)
```

about:srcdoc Page 11 of 25

> Колбасовы-Сметанинковы равны по показателю Percent of Crime Solved:

TtestResult(statistic=0.09716204633791999, pvalue=0.9225999622041798, df=8

638.0)

```
>> Number_of_Lights
> Колбасовы-Молочковы равны по показателю Number_of_Lights:
TtestResult(statistic=1.471064906416363, pvalue=0.1413099908568232, df=863 8.0)
> Колбасовы-Мятновы равны по показателю Number_of_Lights:
TtestResult(statistic=0.5695557582658989, pvalue=0.5689938531140089, df=86 38.0)
> Колбасовы-Сметанинковы равны по показателю Number_of_Lights:
TtestResult(statistic=1.1114495872055554, pvalue=0.2664058122338372, df=86 38.0)
```

```
100%! Распределения по District и Warehouse_Name равны между собой по значениям среднего и СКО для всех показателей датасета ('Number_of_Guards', 'Police_Units', 'Percent_of_Crime_Solved', 'Number_of_Lights').
```

Показывать результат для 5 полей по 24 парам District, Warehouse_Name я не буду, потому что он очень громоздкий (а код менее красивый), но и там несоответствия наблюдаются только в **6.52%** сравнений.

Замечание. Да, статистически корректно писать не "равны / не равны по показателю", а "не обнаружено доказательств / обнаружены доказательства того, что средние/СКО в группах различаются", но для быстроты чтения в выводе использован первый вариант.

about:srcdoc Page 12 of 25

```
eq string = ''
                if ttest_res.pvalue <= 0.05:</pre>
                    eq_string = 'HE '
                res_str += """> {}/{}-{}/{} {}равны по показателю {}:\n{}
                    field_values_0[0], field_values_1[0],
                    fv_0, fv_1,
                    eq_string,
                    metric,
                    ttest_res
        res_str += '\n'
    return res_str
(test_data_2(
    data=full_data,
    metrics_to_test=metric_list,
    fields_to_test=('District', 'Warehouse_Name'),
    test_to_use=stats.ttest_ind
))
(test_data_2(
    data=full_data,
    metrics_to_test=metric_list,
    fields_to_test=('District', 'Warehouse_Name'),
    test_to_use=stats.levene
))
print(6.0 / 92.0)
```

0.06521739130434782

Попробуем вывести статистическую зависимость между процентом раскрытых преступлений и всеми остальными показателями с помощью линейной регрессии.

Для этого сначала сгененерируем one-hot encoding на строковые колонки Warehouse Name и District:

```
In [17]: warehouse_aliases = {
    'Колбасовы': 'КО',
    'Молочковы': 'МО',
    'Мятновы': 'МА',
    'Сметанинковы': 'SM'
}

for (k, v) in warehouse_aliases.items():
    full_data['is_W{}'.format(v)] = full_data['Warehouse_Name'].map(lambd)

In [18]:

district_aliases = {
    'Мышеостровский': 'МО',
    'Краснокотейский': 'КК',
```

about:srcdoc Page 13 of 25

about:srcdoc Page 14 of 25

Out[19]:	is_WKO	is_WMO	is_WMA	is_WSM	is_DMO	is_DKK	is_DMS	is_DPK	is_DPR
	15_DIVE 0 1	0 720	0	1	0	0	0	0	0
	0	720							1
	0	720						1	0
							1	0	0
	0	720				1	0	0	0
	0	720			1	0	0	0	0
	0	720	1	0	0	0	0	0	0
	1	720							1
	0	720						1	0
	0	720					1	0	0
	0	720				1		0	
	0	720					0		0
	0	720			1	0	0	0	0
	1	1 720	0	0	0	0	0	0	0
	0	720							1
	0	720						1	0
	0	720					1	0	0
	0	720				1	0	0	0
					1	0	0	0	0
	0 1	720 0	0	0	0	0	0	0	0
	1	720							1
	0	720						1	0
	0	720					1	0	0
	0	720				1	0	0	0
	0	720			1	0	0	0	0
	0 Name: c	720 ount, dt	ype: int	64	T	V	v	V	v

In [20]: #Проверим все переменные.

about:srcdoc Page 15 of 25

09.02.24, 23:12 investigation_Orlov

```
model = ols(
    """Percent_of_Crime_Solved ~
        Number_of_Guards
        + Police_Units
        + Number_of_Lights
        + is_WKO
        + is WMO
        + is_WMA
        + is_WSM
        + is_DMO
        + is_DKK
        + is_DMS
        + is_DPK
        + is_DPR
        + is_DNE""",
    data = full_data
).fit()
print(model.params)
model.summary()
```

Intercept 32.751650 Number_of_Guards -0.126136 Police_Units 0.050563 Number_of_Lights 0.033262 is_WKO 8.107703 is_WM0 8.204614 is WMA 8.216475 is_WSM 8.222859 is_DMO 5.449876 is_DKK 5.235693 is_DMS 5.628037 is_DPK 5.397317 is_DPR 5.547008 is_DNE 5.493719 dtype: float64

Out[20]:

OLS Regression Results

Dep. Variable:	Percent_of_Crime_Solved	R-squared:	0.217
Model:	OLS	Adj. R-squared:	0.217
Method:	Least Squares	F-statistic:	435.4
Date:	Fri, 09 Feb 2024	Prob (F-statistic):	0.00
Time:	22:48:34	Log-Likelihood:	-66288.
No. Observations:	17280	AIC:	1.326e+05
Df Residuals:	17268	BIC:	1.327e+05
Df Model:	11		
Covariance Type:	nonrobust		

about:srcdoc Page 16 of 25

	coef	std err	t	P> t	[0.025	0.975]
Intercept	32.7517	0.281	116.439	0.000	32.200	33.303
Number_of_Guards	-0.1261	0.104	-1.208	0.227	-0.331	0.078
Police_Units	0.0506	0.109	0.463	0.643	-0.163	0.265
Number_of_Lights	0.0333	0.000	69.143	0.000	0.032	0.034
is_WKO	8.1077	0.164	49.428	0.000	7.786	8.429
is_WMO	8.2046	0.163	50.286	0.000	7.885	8.524
is_WMA	8.2165	0.164	50.047	0.000	7.895	8.538
is_WSM	8.2229	0.163	50.324	0.000	7.903	8.543
is_DMO	5.4499	0.197	27.713	0.000	5.064	5.835
is_DKK	5.2357	0.197	26.588	0.000	4.850	5.622
is_DMS	5.6280	0.196	28.686	0.000	5.243	6.013
is_DPK	5.3973	0.197	27.454	0.000	5.012	5.783
is_DPR	5.5470	0.196	28.265	0.000	5.162	5.932
is_DNE	5.4937	0.196	27.973	0.000	5.109	5.879
Omnibus: 76	80.994	Durbin	-Watson:	0	.475	
Prob(Omnibus):	0.000	Jarque-B	era (JB):	92041	.290	
Skew:	-1.815	F	Prob(JB):		0.00	

Notes:

Kurtosis:

13.708

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

7.32e+17

[2] The smallest eigenvalue is 1.67e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

about:srcdoc Page 17 of 25

Intercept 32.733842 Number_of_Guards -0.080061Number_of_Lights 0.033264 is_WK0 8.104134 is WMO 8.200324 is_WMA 8.211587 is_WSM 8.217797 is_DMO 5.447083 is_DKK 5.231824 is_DMS 5.624764 is_DPK 5.394573 is_DPR 5.544994 is_DNE 5.490604 dtype: float64

Out [21]: OLS Regression Results

R-squared: Dep. Variable: Percent_of_Crime_Solved 0.217 Adj. R-squared: Model: OLS 0.217 Method: **Least Squares** F-statistic: 478.9 Date: Fri, 09 Feb 2024 **Prob (F-statistic):** 0.00 Time: 22:48:34 Log-Likelihood: -66288. No. Observations: 17280 **AIC:** 1.326e+05 **Df Residuals:** 17269 **BIC:** 1.327e+05 **Df Model:** 10

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	32.7338	0.279	117.481	0.000	32.188	33.280
Number_of_Guards	-0.0801	0.032	-2.534	0.011	-0.142	-0.018
Number_of_Lights	0.0333	0.000	69.151	0.000	0.032	0.034
is_WKO	8.1041	0.164	49.462	0.000	7.783	8.425
is_WMO	8.2003	0.163	50.342	0.000	7.881	8.520
is_WMA	8.2116	0.164	50.122	0.000	7.890	8.533

about:srcdoc Page 18 of 25

is_WSM	8.2178	0.163	50.407	0.000	7.898	8.537
is_DMO	5.4471	0.197	27.712	0.000	5.062	5.832
is_DKK	5.2318	0.197	26.593	0.000	4.846	5.617
is_DMS	5.6248	0.196	28.689	0.000	5.240	6.009
is_DPK	5.3946	0.197	27.453	0.000	5.009	5.780
is_DPR	5.5450	0.196	28.263	0.000	5.160	5.930
is_DNE	5.4906	0.196	27.974	0.000	5.106	5.875

Omnibus:	7681.189	Durbin-Watson:	0.475
Prob(Omnibus):	0.000	Jarque-Bera (JB):	92046.917
Skew:	-1.815	Prob(JB):	0.00
Kurtosis:	13.708	Cond. No.	7.58e+17

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.56e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [22]: #Уберём Number_of_Guards по той же причине.
         model = ols(
              """Percent_of_Crime_Solved \sim
                  Number_of_Lights
                  + is_WKO
                  + is_WMO
                  + is_WMA
                  + is_WSM
                  + is_DMO
                  + is_DKK
                  + is DMS
                  + is_DPK
                  + is_DPR
                  + is_DNE""",
              data = full_data
          ).fit()
         print(model.params)
         model.summary()
```

about:srcdoc Page 19 of 25

09.02.24, 23:12 investigation_Orlov

Intercept	32.395446
Number_of_Lights	0.033265
is_WKO	8.020521
is_WMO	8.116435
is_WMA	8.123397
is_WSM	8.135093
is_DMO	5.389344
is_DKK	5.179032
is_DMS	5.569779
is_DPK	5.335083
is_DPR	5.489119
is_DNE	5.433088
dtype: float64	

OLS Regression Results

,	acyper reduced					
Out[22]:	OLS Regression Results					
	Dep. Variable:	Percent_of_Crime_Solved	R-squared:	0.217		
	Model:	OLS	Adj. R-squared:	0.216		
	Method:	Least Squares	F-statistic:	531.2		
	Date:	Fri, 09 Feb 2024	Prob (F-statistic):	0.00		
	Time:	22:48:35	Log-Likelihood:	-66291.		
	No. Observations:	17280	AIC:	1.326e+05		
	Df Residuals:	17270	BIC:	1.327e+05		
	Df Model:	9				

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	32.3954	0.245	132.458	0.000	31.916	32.875
Number_of_Lights	0.0333	0.000	69.141	0.000	0.032	0.034
is_WKO	8.0205	0.161	49.968	0.000	7.706	8.335
is_WMO	8.1164	0.160	50.881	0.000	7.804	8.429
is_WMA	8.1234	0.160	50.735	0.000	7.810	8.437
is_WSM	8.1351	0.160	50.923	0.000	7.822	8.448
is_DMO	5.3893	0.195	27.601	0.000	5.007	5.772
is_DKK	5.1790	0.196	26.469	0.000	4.796	5.563
is_DMS	5.5698	0.195	28.580	0.000	5.188	5.952
is_DPK	5.3351	0.195	27.342	0.000	4.953	5.718
is_DPR	5.4891	0.195	28.152	0.000	5.107	5.871
is_DNE	5.4331	0.195	27.864	0.000	5.051	5.815

about:srcdoc Page 20 of 25

0.474	Durbin-Watson:	7685.622	Omnibus:
92137.601	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	-1.816	Skew:
9.22e+17	Cond. No.	13.713	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.05e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [23]: #Всё "здорово", но что если мы уберём по одной dummy variable?
         model = ols(
             """Percent_of_Crime_Solved ~
                 Number_of_Lights
                  + is WMO
                 + is_WMA
                 + is_WSM
                 + is_DKK
                 + is_DMS
                 + is_DPK
                 + is_DPR
                 + is_DNE""",
             data = full_data
         ).fit()
         print(model.params)
         model.summary()
```

```
Intercept
                     45.805311
Number_of_Lights
                      0.033265
                      0.095914
is_WMO
is_WMA
                      0.102876
                      0.114572
is_WSM
is_DKK
                     -0.210312
is_DMS
                      0.180435
is_DPK
                     -0.054261
is DPR
                      0.099775
                      0.043744
is_DNE
dtype: float64
```

about:srcdoc Page 21 of 25

Out[23]:

OLS Regression Results

Dep. Variable:	Percent_of_Crime_Solved	R-squared:	0.217
Model:	OLS	Adj. R-squared:	0.216
Method:	Least Squares	F-statistic:	531.2
Date:	Fri, 09 Feb 2024	Prob (F-statistic):	0.00
Time:	22:48:35	Log-Likelihood:	-66291.
No. Observations:	17280	AIC:	1.326e+05
Df Residuals:	17270	BIC:	1.327e+05
Df Model:	9		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	45.8053	0.424	108.062	0.000	44.974	46.636
Number_of_Lights	0.0333	0.000	69.141	0.000	0.032	0.034
is_WMO	0.0959	0.241	0.397	0.691	-0.377	0.569
is_WMA	0.1029	0.241	0.426	0.670	-0.370	0.576
is_WSM	0.1146	0.241	0.475	0.635	-0.359	0.588
is_DKK	-0.2103	0.296	-0.711	0.477	-0.790	0.369
is_DMS	0.1804	0.296	0.610	0.542	-0.399	0.760
is_DPK	-0.0543	0.296	-0.184	0.854	-0.634	0.525
is_DPR	0.0998	0.296	0.337	0.736	-0.480	0.679
is_DNE	0.0437	0.296	0.148	0.882	-0.536	0.623

0.474	Durbin-Watson:	7685.622	Omnibus:
92137.601	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	-1.816	Skew:
4.86e+03	Cond. No.	13.713	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.86e+03. This might indicate that there are strong multicollinearity or other numerical problems.

about:srcdoc Page 22 of 25

Всё посыпалось: dummy variables имеют статистическую значимость только если все 4 склада и 6 районов присутствуют в регрессии **одновременно**. Тот факт, что данные расределены по этим 46=24 парам равномерно создаёт ситуацию, в которой знание о том, в каком именно районе и на каком именно складе произошло преступление не даёт нам ровным счётом ничего. В регрессии они без какой-либо пользы перетягивают на себя части Intercept 'а *(и гордо получают статистически значимую связь).

Попробуем самую простую регрессию из возможных:

```
In [24]: model = ols(
    """Percent_of_Crime_Solved ~ Number_of_Lights""",
    data = full_data
).fit()

print(model.params)
model.summary()
```

Intercept 45.901904 Number_of_Lights 0.033253

dtype: float64

about:srcdoc Page 23 of 25

Out[24]:

OLS Regression Results

Model: OLS Adj. R-squared: 0.217 Method: Least Squares F-statistic: 4780. Date: Fri, 09 Feb 2024 Prob (F-statistic): 0.00 Time: 22:48:35 Log-Likelihood: -66292. No. Observations: 17280 AIC: 1.326e+05 Df Residuals: 17278 BIC: 1.326e+05	Dep. Variable:	Percent_of_Crime_Solved	R-squared:	0.217
Date: Fri, 09 Feb 2024 Prob (F-statistic): 0.00 Time: 22:48:35 Log-Likelihood: -66292. No. Observations: 17280 AIC: 1.326e+05 Df Residuals: 17278 BIC: 1.326e+05	Model:	OLS	Adj. R-squared:	0.217
Time: 22:48:35 Log-Likelihood: -66292. No. Observations: 17280 AIC: 1.326e+05 Df Residuals: 17278 BIC: 1.326e+05	Method:	Least Squares	F-statistic:	4780.
No. Observations: 17280 AIC: 1.326e+05 Df Residuals: 17278 BIC: 1.326e+05	Date:	Fri, 09 Feb 2024	Prob (F-statistic):	0.00
Df Residuals: 17278 BIC: 1.326e+05	Time:	22:48:35	Log-Likelihood:	-66292.
	No. Observations:	17280	AIC:	1.326e+05
Principal de la companya de la compa	Df Residuals:	17278	BIC:	1.326e+05
Dt Model:	Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	45.9019	0.346	132.526	0.000	45.223	46.581
Number_of_Lights	0.0333	0.000	69.140	0.000	0.032	0.034

Omnibus:	7683.743	Durbin-Watson:	0.474
Prob(Omnibus):	0.000	Jarque-Bera (JB):	92078.626
Skew:	-1.816	Prob(JB):	0.00
Kurtosis:	13.710	Cond. No.	2.92e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.92e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Чем богаты: количество фонарей объясняет 21.7% изменения процента раскрытых преступлений по уничтожению фонарей — каждый 1 добавленный фонарь ведёт к увеличению процента раскрытых преступлений на (целых) 0.033.

Ответы:

1. Проведённый разведочный анализ данных показал, что датасет обладает абсолютной полнотой (нет ни одного null значения), а данные в нём распределены равномерно и так, будто они были сгенерированы с одинаковыми показателями: проведённые t- и F-тесты не находят

about:srcdoc Page 24 of 25

доказательств неравенства средних и СКО между 4 складами и 6 районами, а количество тестов, которые нашли такие доказательства для 24 пар склад-район не превышает 6.52%.

(Также хочется заметить, что приведённое в условии наблюдение "в одном районе краж больше, чем в другом" не подтверждается при условии, что мы используем процент раскрытых преступлений по уничтожению фонарей как косвенный показатель краж.)

2. Увеличивать количество полицейских, чтобы снизить количество краж, **не нужно**, потому что не обнаружено статистической зависимости между их количеством и процентом раскрытых преступлений по уничтожению фонарей (которые, согласно гипотезе полицейских, связаны с кражами — проверить это мы не можем по причине отсутствия необходимых данных*, так что на данный момент согласимся с ними).

В качестве шуточной рекомендации хочется предложить провести оптимизацию, уволив некоторое количество полицейских и охранников и потратив освободившиеся средства на установку фонарей (так как это единственный показатель, с которым у процента раскрытых преступлений есть статистически значимая связь). Однако это остаётся шуткой, так как корреляция не есть каузация (и это предложение выглядит довольно смешно).

*Для того, чтобы ответить на этот вопрос точнее, мне бы хотелось иметь данные о количестве краж и проценте их раскрытия — я полагаю, если у полицейских есть данные по фонарям, то и по кражам что-то найдётся.

about:srcdoc Page 25 of 25