

Louis Lesueur

Representing 3d shapes

Figure 1: Various methods to store shapes

Continuous representations

- ► Can be approximated with neural networks
- ▶ Mesh can easily be reconstructed with marching cubes

Neural networks approaches

Training setup

Figure 2: Training pipepline

- ▶ For SDF: clamped L_1 loss: $\mathcal{L}(f_{\theta}(x), s) = |\text{clamp}(f_{\theta}(x), \delta), \text{clamp}(f_{\theta}(x), \delta)|$ ▶ Regularization on latent space (autodecoder): $\frac{1}{\sigma^2}||z||_2^2$
- For Occupancy: Binary cross entropy loss

Results

Figure 3: DeepSDF training loss

Figure 4: ONet training loss

	mean chamfer	precision	recall
DeepSDF ONet			

Visuals

Figure 5: Original mesh

Figure 6: DeepSDF

Figure 7: ONet

Conclusions

- ► Train on a bigger dataset
- ▶ Try other encoder architectures (for single view reconstruction in particular)
- ► Train autoencoder on SDF and autodecoder on occupancy

Biliography

[1]

Park J J, Florence P, Straub J, Newcombe R and Lovegrove S 2019 DeepSDF: Learning continuous signed distance functions for shape representation

[2]

Mescheder L, Oechsle M, Niemeyer M, Nowozin S and Geiger A 2019 Occupancy networks: Learning 3D reconstruction in function space

[3]

Chen Z and Zhang H 2019 Learning implicit fields for generative shape modeling