Physics-Based Animation

Kenny Erleben, Jon Sporring, Knud Henriksen, and Henrik Dohlmann

Chapter 2 - Articulated Figures

What's an articulated figure & when it's used

 An articulated figure is a construction made of links and joints.

 Articulated figures are at the core of Forward and Inverse kinematics.

Joint types

Revolute (or Hinge) joint

Prismatic (or Slide) joint

How do we describe articulated figures?

Paired joint coordinates

Denavit-Hartenberg

• The idea for both notations is to have a way to express points on links with respect to any link or joint frame.

Paired joint coordinates

 This notation uses 3 frames per link: body frame, inner frame and outer frame.

- Body Frame (BF): associated with link i, usually the origin is set at the center of mass of the link.
- Inner frame (IF): associated with joint i, the origin is set somewhere on the joint axis.
- Outer Frame (OF): associated with joint i, the origin is set somewhere on the joint axis.
- For IF and OF the origin and axis are specified in the BF.

Now that we have these frames what?

 We can start expressing points in different coordinate systems using some transformations.

$$^{TO}oldsymbol{T}_{FROM}$$

• We're gonna need 4 tranforms:

$$^{BF_i}\boldsymbol{T}_{IF_i} = \boldsymbol{T}_{IF_i}(\boldsymbol{r}_{IF_i})\boldsymbol{R}_{IF_i}(\varphi_{IF_i},\boldsymbol{u}_{IF_i})$$

$$egin{aligned} oldsymbol{T}_{IF_i}(oldsymbol{r}_{IF_i}) &= egin{bmatrix} oldsymbol{1} & oldsymbol{r}_{IF_i} \\ oldsymbol{O}^T & 1 \end{bmatrix} \ oldsymbol{R}_{IF_i}(oldsymbol{arphi}_{IF_i}, oldsymbol{u}_{IF_i}) &= egin{bmatrix} oldsymbol{i}_{IF_i} & oldsymbol{j}_{IF_i} & oldsymbol{k}_{IF_i} & oldsymbol{0} \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

• For ${}^{BF_i}T_{OF_i}$ is exactly the same but using the OF to compute the matrices.

Now that we have these frames what?

• The remaining 2 transforms:

$$^{OF_{i-1}}T_{IF_i}(\boldsymbol{d}_i,\varphi_i,\boldsymbol{u}_i) = T_i(\boldsymbol{d}_i)R_i(\varphi_i,\boldsymbol{u}_i)$$

$$\mathbf{T}(d_i) = \begin{bmatrix}
1 & 0 & 0 & d_x \\
0 & 1 & 0 & d_y \\
0 & 0 & 1 & d_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\mathbf{R}(\varphi_i, \mathbf{u}_i) = \begin{bmatrix}
u_x^2 + (1 - u_x^1)c\varphi & u_z u_y (1 - c\varphi) - u_z s\varphi & u_x u_z (1 - c\varphi) + u_y s\varphi & 0 \\
u_x u_y (1 - c\varphi) + u_z s\varphi & u_y^2 + (1 - u_y^2)c\varphi & u_y u_z (1 - c\varphi) - u_x s\varphi & 0 \\
u_x u_z (1 - c\varphi) - u_y s\varphi & u_y u_z (1 - c\varphi) + u_x s\varphi & u_z^2 + (1 - u_z^2)c\varphi & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\lim_{z \to z} \mathbf{R}(\varphi_i, \mathbf{u}_i) = \begin{bmatrix}
u_x^2 + (1 - u_x^1)c\varphi & u_z u_y (1 - c\varphi) - u_z s\varphi & u_z u_z (1 - c\varphi) - u_z s\varphi & 0 \\
u_x u_z (1 - c\varphi) - u_y s\varphi & u_y u_z (1 - c\varphi) + u_x s\varphi & u_z^2 + (1 - u_z^2)c\varphi & 0 \\
0 & 0 & 1
\end{bmatrix}$$

• For the last one we just cook everything together:

$$(^{BF_{i-1}}\boldsymbol{T}_{OF_{i-1}})(^{OF_{i-1}}\boldsymbol{T}_{IF_{i}}(\boldsymbol{d}_{i},\varphi_{i},\boldsymbol{u}_{i}))(^{BF_{i}}\boldsymbol{T}_{IF_{i}})^{-1}$$

Denavit-Hartenberg notation

• 4 parameters:

link length	a_i	The perpendicular distance between the axes of $joint_i$ and $joint_{i+1}$.
link twist	α_i	The angle between the axes of $joint_i$ and $joint_{i+1}$. The angle α_i is mea-
		sured around the x_i -axis. Positive angles are measured counterclockwise
		when looking from the tip of vector x_i toward its foot.
link offset	d_{i}	The distance between the origins of the coordinate frames attached to joint
		$joint_{i-1}$ and $joint_i$ measured along the axis of $joint_i$. For a prismatic joint
		this is a joint parameter.
joint angle	$arphi_i$	The angle between the link lengths a_{i-1} and a_i . The angle φ_i is measured
		around the z_i -axis. Positive angles are measured counterclockwise when
		looking from the tip of vector z_i toward its foot. For a revolute joint this
		is a joint parameter.

• A bit redundant since every joint has max 1 DOF, if we want more we need to stack joints and connect them with links of length 0.

Link length

3 methods to compute it: pseudo-naive, geometric and analytic.

Parametrise
$$egin{aligned} oldsymbol{l}_i(s) &= oldsymbol{p}_i + soldsymbol{u}_i \ oldsymbol{l}_{i+1}(t) &= oldsymbol{p}_{i+1} + toldsymbol{u}_{i+1} \end{aligned}$$

$$oldsymbol{p}_i + soldsymbol{u}_i + koldsymbol{u}_i imes oldsymbol{u}_{i+1} = oldsymbol{p}_{i+1} + toldsymbol{u}_{i+1}$$
 Solve for s, k, t

$$a_i = \frac{(\boldsymbol{p}_{i+1} - \boldsymbol{p}_i) \cdot (\boldsymbol{u}_i \times \boldsymbol{u}_{i+1})}{\|\boldsymbol{u}_i \times \boldsymbol{u}_{i+1}\|_2}$$

NOTE: k is what we're looking for

$$o_{i} = l_{i}(s) = p_{i} + \frac{(p_{i+1} - p_{i}) \cdot (u_{i} || u_{i+1}||_{2}^{2} - u_{i+1}(u_{i} \cdot u_{i+1}))}{\|u_{i}\|_{2}^{2} \|u_{i+1}\|_{2}^{2} - (u_{i} \cdot u_{i+1})^{2}} u_{i}$$

$$o_{a_{i}} = l_{i+1}(t) = p_{i+1} + \frac{(p_{i+1} - p_{i}) \cdot (u_{i}(u_{i} \cdot u_{i+1}) - u_{i+1} || u_{i}||_{2}^{2})}{\|u_{i}\|_{2}^{2} \|u_{i+1}\|_{2}^{2} - (u_{i} \cdot u_{i+1})^{2}} u_{i+1}$$

Link length - analytic approach

Parametrise

$$l_i(s) = p_i + su_i$$
$$l_{i+1}(t) = p_{i+1} + tu_{i+1}$$

Treats the problem like an optimisation problem

The trick is to find the stationary points.

For this to be true we can set just just the numerator = 0 and solve for s and t finding the two origin points.

$$= \min \sqrt{(\boldsymbol{p}_{i+1} + t\boldsymbol{u}_{i+1} - \boldsymbol{p}_i - s\boldsymbol{u}_i) \cdot (\boldsymbol{p}_{i+1} + t\boldsymbol{u}_{i+1} - \boldsymbol{p}_i - s\boldsymbol{u}_i)}$$

$$\frac{\partial d(s,t)}{\partial s} = \frac{(\boldsymbol{p}_{i+1} + t\boldsymbol{u}_{i+1} - \boldsymbol{p}_i - s\boldsymbol{u}_i) \cdot \boldsymbol{u}_i}{\sqrt{(\boldsymbol{p}_{i+1} + t\boldsymbol{u}_{i+1} - \boldsymbol{p}_i - s\boldsymbol{u}_i) \cdot (\boldsymbol{p}_{i+1} + t\boldsymbol{u}_{i+1} - \boldsymbol{p}_i - s\boldsymbol{u}_i)}} = 0$$

$$\frac{\partial d(s,t)}{\partial t} = \frac{(\boldsymbol{p}_{i+1} + t\boldsymbol{u}_{i+1} - \boldsymbol{p}_i - s\boldsymbol{u}_i) \cdot (\boldsymbol{p}_{i+1} + t\boldsymbol{u}_{i+1} - \boldsymbol{p}_i - s\boldsymbol{u}_i)}{\sqrt{(\boldsymbol{p}_{i+1} + t\boldsymbol{u}_{i+1} - \boldsymbol{p}_i - s\boldsymbol{u}_i) \cdot (\boldsymbol{p}_{i+1} + t\boldsymbol{u}_{i+1} - \boldsymbol{p}_i - s\boldsymbol{u}_i)}} = 0$$

 $a_i = \min d(s,t) = \min \sqrt{\left(\boldsymbol{l}_{i+1}(t) - \boldsymbol{l}_i(s)\right) \cdot \left(\boldsymbol{l}_{i+1}(t) - \boldsymbol{l}_i(s)\right)}$

$$a_i = o_{a_i} - o_i$$

 $a_i = ||a_i||_2 = ||o_{a_i} - o_i||_2$

It can be shown that the vector is perpendicular to both joint axes

Special cases to consider when computing link length

The joint axes intersect

$$a_i = \frac{\boldsymbol{u}_i \times \boldsymbol{u}_{i+1}}{\|\boldsymbol{u}_i \times \boldsymbol{u}_{i+1}\|_2}$$
$$a_i = 0$$

The joint axes are parallel
$$egin{aligned} oldsymbol{a}_i = (oldsymbol{p}_{i+1} - oldsymbol{p}_i) - \left((oldsymbol{p}_{i+1} - oldsymbol{p}_i) \cdot rac{oldsymbol{u}_i}{\|oldsymbol{u}_i\|_2}
ight) rac{oldsymbol{u}_i}{\|oldsymbol{u}_i\|_2} \ a_i = \|oldsymbol{a}_i\|_2 \end{aligned}$$

- The first joint: we can choose the coordinate frame arbitrarily, but we can be clever and choose it to be the exact same frame as link 1.
- The last joint: we only need to specify the axis of the last joint. So we can choose the remaining parameters so that the others are 0.

Coordinate frame attachment

- 1. The Origin: Let the origin of the i^{th} link frame be at the point o_i on the axis of $joint_i$.
- 2. The z_i -axis: Let the z_i -axis be along the i^{th} joint axis. That is, let the z_i be parallel to vector u_i from (2.41)

$$\boldsymbol{z}_i = \frac{\boldsymbol{u}_i}{\|\boldsymbol{u}_i\|_2} \tag{2.42}$$

3. The x_i -axis: Let the x_i -axis be along the link vector a_i from (2.32a)

$$\boldsymbol{x}_i = \frac{\boldsymbol{a}_i}{\|\boldsymbol{a}_i\|_2} \tag{2.43}$$

4. The y_i -axis: Let the x_i -axis be such that the vectors x_i, y_i, z_i form a right-handed orthogonal coordinate system. That is, let y_i be given as

$$\boldsymbol{y}_i = \frac{\boldsymbol{z}_i \times \boldsymbol{x}_i}{\|\boldsymbol{z}_i \times \boldsymbol{x}_i\|_2} \tag{2.44}$$

The link twist

Done	link length	a_i	The perpendicular distance between the axes of $joint_i$ and $joint_{i+1}$.
>	link twist	$lpha_i$	The angle between the axes of $joint_i$ and $joint_{i+1}$. The angle α_i is mea-
			sured around the x_i -axis. Positive angles are measured counterclockwise
			when looking from the tip of vector x_i toward its foot.
	link offset	d_i	The distance between the origins of the coordinate frames attached to joint
			$joint_{i-1}$ and $joint_i$ measured along the axis of $joint_i$. For a prismatic joint
			this is a joint parameter.
	joint angle	φ_i	The angle between the link lengths a_{i-1} and a_i . The angle φ_i is measured
			around the z_i -axis. Positive angles are measured counterclockwise when
			looking from the tip of vector z_i toward its foot. For a revolute joint this
			is a joint parameter.

The link twist

$$\arctan(n,d) = \begin{cases} \arctan\left(\frac{n}{d}\right) & \text{if } n > 0 \land d > 0 \\ \arctan\left(\frac{n}{d}\right) & \text{if } n < 0 \land d > 0 \end{cases}$$

$$\arctan\left(\frac{n}{d}\right) + \pi & \text{if } n > 0 \land d < 0 \end{cases}$$

$$\arctan\left(\frac{n}{d}\right) - \pi & \text{if } n < 0 \land d < 0 \end{cases}$$

• If we just do arctan2(cos(alpha), sin(alpha)) isn't gonna work because of the range of sin.

$$\alpha_{i} = \begin{cases} + \arctan 2 \left(\frac{\|\boldsymbol{u}_{i} \times \boldsymbol{u}_{i+1}\|_{2}}{\|\boldsymbol{u}_{i}\|_{2} \|\boldsymbol{u}_{i+1}\|_{2}}, \frac{\boldsymbol{u}_{i} \cdot \boldsymbol{u}_{i+1}}{\|\boldsymbol{u}_{i}\|_{2} \|\boldsymbol{u}_{i+1}\|_{2}} \right) & \text{if } (\boldsymbol{u}_{i} \times \boldsymbol{u}_{i+1}) \cdot \boldsymbol{a}_{i} \geq 0 \\ - \arctan 2 \left(\frac{\|\boldsymbol{u}_{i} \times \boldsymbol{u}_{i+1}\|_{2}}{\|\boldsymbol{u}_{i}\|_{2} \|\boldsymbol{u}_{i+1}\|_{2}}, \frac{\boldsymbol{u}_{i} \cdot \boldsymbol{u}_{i+1}}{\|\boldsymbol{u}_{i}\|_{2} \|\boldsymbol{u}_{i+1}\|_{2}} \right) & \text{if } (\boldsymbol{u}_{i} \times \boldsymbol{u}_{i+1}) \cdot \boldsymbol{a}_{i} < 0 \end{cases}$$

The link offset

Done	link length	a_i	The perpendicular distance between the axes of $joint_i$ and $joint_{i+1}$.
Done	link twist	α_{i}	The angle between the axes of $joint_i$ and $joint_{i+1}$. The angle α_i is mea-
			sured around the x_i -axis. Positive angles are measured counterclockwise
			when looking from the tip of vector x_i toward its foot.
>	link offset	d_i	The distance between the origins of the coordinate frames attached to joint
			$joint_{i-1}$ and $joint_i$ measured along the axis of $joint_i$. For a prismatic joint
			this is a joint parameter.
	joint angle	$\varphi_{\pmb{i}}$	The angle between the link lengths a_{i-1} and a_i . The angle φ_i is measured
			around the z_i -axis. Positive angles are measured counterclockwise when
			looking from the tip of vector z_i toward its foot. For a revolute joint this
			is a joint parameter.

The link offset

$$d_i = \begin{cases} + \|\boldsymbol{o}_i - \boldsymbol{o}_{\boldsymbol{a}_{i-1}}\|_2 & \text{if } (\boldsymbol{o}_i - \boldsymbol{o}_{\boldsymbol{a}_{i-1}}) \cdot \boldsymbol{u}_i \ge 0 \\ - \|\boldsymbol{o}_i - \boldsymbol{o}_{\boldsymbol{a}_{i-1}}\|_2 & \text{if } (\boldsymbol{o}_i - \boldsymbol{o}_{\boldsymbol{a}_{i-1}}) \cdot \boldsymbol{u}_i < 0 \end{cases}$$

The joint angle

Done	link length	a_i	The perpendicular distance between the axes of $joint_i$ and $joint_{i+1}$.
Done	link twist	α_i	The angle between the axes of $joint_i$ and $joint_{i+1}$. The angle α_i is mea-
			sured around the x_i -axis. Positive angles are measured counterclockwise
			when looking from the tip of vector x_i toward its foot.
Done	link offset	d_i	The distance between the origins of the coordinate frames attached to joint
			$joint_{i-1}$ and $joint_i$ measured along the axis of $joint_i$. For a prismatic joint
			this is a joint parameter.
>	joint angle	φ_i	The angle between the link lengths a_{i-1} and a_i . The angle φ_i is measured
			around the z_i -axis. Positive angles are measured counterclockwise when
			looking from the tip of vector z_i toward its foot. For a revolute joint this
			is a joint parameter.

The joint angle

Very similar to link twist but with different axes. Recall:

$$\alpha_{i} = \begin{cases} + \arctan 2 \left(\frac{\|\boldsymbol{u}_{i} \times \boldsymbol{u}_{i+1}\|_{2}}{\|\boldsymbol{u}_{i}\|_{2} \|\boldsymbol{u}_{i+1}\|_{2}}, \frac{\boldsymbol{u}_{i} \cdot \boldsymbol{u}_{i+1}}{\|\boldsymbol{u}_{i}\|_{2} \|\boldsymbol{u}_{i+1}\|_{2}} \right) & \text{if } (\boldsymbol{u}_{i} \times \boldsymbol{u}_{i+1}) \cdot \boldsymbol{a}_{i} \geq 0 \\ - \arctan 2 \left(\frac{\|\boldsymbol{u}_{i} \times \boldsymbol{u}_{i+1}\|_{2}}{\|\boldsymbol{u}_{i}\|_{2} \|\boldsymbol{u}_{i+1}\|_{2}}, \frac{\boldsymbol{u}_{i} \cdot \boldsymbol{u}_{i+1}}{\|\boldsymbol{u}_{i}\|_{2} \|\boldsymbol{u}_{i+1}\|_{2}} \right) & \text{if } (\boldsymbol{u}_{i} \times \boldsymbol{u}_{i+1}) \cdot \boldsymbol{a}_{i} < 0 \end{cases}$$

In this case:

$$\varphi_{i} = \begin{cases} + \arctan 2 \left(\frac{\|\boldsymbol{a}_{i-1} \times \boldsymbol{a}_{i}\|_{2}}{\|\boldsymbol{a}_{i-1}\|_{2} \|\boldsymbol{a}_{i}\|_{2}}, \frac{\boldsymbol{a}_{i-1} \cdot \boldsymbol{a}_{i}}{\|\boldsymbol{a}_{i-1}\|_{2} \|\boldsymbol{a}_{i}\|_{2}} \right) & \text{if} \qquad (\boldsymbol{a}_{i-1} \times \boldsymbol{a}_{i}) \cdot \boldsymbol{z}_{i} \ge 0 \\ - \arctan 2 \left(\frac{\|\boldsymbol{a}_{i-1} \times \boldsymbol{a}_{i}\|_{2}}{\|\boldsymbol{a}_{i-1}\|_{2} \|\boldsymbol{a}_{i}\|_{2}}, \frac{\boldsymbol{a}_{i-1} \cdot \boldsymbol{a}_{i}}{\|\boldsymbol{a}_{i-1}\|_{2} \|\boldsymbol{a}_{i}\|_{2}} \right) & \text{if} \qquad (\boldsymbol{a}_{i-1} \times \boldsymbol{a}_{i}) \cdot \boldsymbol{z}_{i} < 0 \end{cases}$$

One last thing!

$$^{(i-1)}\boldsymbol{T}_{i}(d_{i},\varphi_{i},a_{i-1},\alpha_{i-1}) = \boldsymbol{R}_{\boldsymbol{x}_{i}}(\alpha_{i-1})\boldsymbol{T}_{\boldsymbol{x}_{i}}(a_{i-1})\boldsymbol{T}_{\boldsymbol{z}_{i}}(d_{i})\boldsymbol{R}_{\boldsymbol{z}_{i}}(\varphi_{i}) \qquad \text{or} \qquad ^{(i-1)}\boldsymbol{T}_{i}(d_{i},\varphi_{i})$$

Thank you!