Санкт-Петербургский Политехнический университет Петра Великого Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

Отчет о летней производственной практике

на тему:

«Применение факторного анализа для кластеризации геологических проб»

> Место выполнения: ИПММ, СПБПУ Петра Великого Студент группы 3630102/70301 Королевская К.Д. Оценка научного руководителя: фумла Баженов А.Н.

> > к.ф.-м.н., доцент высшей школы

прикладной математики и вычислительной физики

ИПММ, СПбПУ Петра Великого

Санкт-Петербург 2020 г

Оглавление

Введение	3
основная часть	
Выводы	
Резюме	
Список литературы	19

Введение

Цель работы: проверить отличаются ли показатели, взятые с русского Севера и центральной Африки, исследовать по каким компонентам они различаются.

Задачи: изучить метод главных компонент, поработать с пакетами, необходимыми для обработки данных, представленных в виде эмиссионной матрицы.

Основная часть.

У нас есть набор 2D данных — следы жизни в геологических объектах. Образцы взяты с двух разных регионов: русский Север и центральная Африка. Известна область для каждой аминокислотых[1].

$E_{x_{max}}(nm)$	$E_{m_{max}}(nm)$	Тип компонента	Буквенное
			обозначение
320-350	420-480	Humic-like	С
250-260	380-480	Humic-like	А
310-320	380-420	Marine Humic-like	М
270-280	300-320	Tyrosine-like, Pro-	В
		tein-like	
270-280	320-350	Tryptophane-like,	Т
		Protein-like or	
		phenol-like	

Таблица 1. Основные флуоресцентные компоненты

Ранее уже было получено разделение по критерию $K = \frac{C+A}{B+T}$ (отношение сложной и простой органики): для данных Севера $K \in [4; 25]$,а для Африки $K \in [1; 4]$.

Рисунок 1. Коэффициент К.

Рисунок 2. Гистограмма параметра К.

Также для данных была получена таблица:

	Гуминовые компоненты (А + С)	Белковоподобные компоненты (Т + В)
Африка	< 100000	> 30000
Север	> 100000	< 30000

Таблица 2. Разделение данных по компонентам.

В ходе этой работы был изучен Метод главных компонент(МГК) [2].

МГК применяется к данным, записанным в виде матрицы. Перед применением метода данные необходимо отцентрировать и отнормировать. Цель этого метода — извлечение из этих данных нужной информации. В результате мы приходим от большого количества переменных к новому представлению, размерность которого значительно меньше.

С помощью этого метода мы раскладываем нашу матрицу X размерности $I \times J$ на две:

$$X = \sum_{a=1}^{A} t_a p_a^t + E = TP^t + E,$$

где
$$t_a = p_{a1}x_1 + \dots + p_{aJ}x_J$$
.

Матрица Т называется матрицей счетов, а матрица Р – матрицей нагрузок.

Алгоритм обработки каждого набора данных:

1) Считывание и визуализация данных:

Рисунок 3. Визуализация файла 4.4_87(Африка)

2) Обрезка графика

Рисунок 4. Обрезка графика (400:600)

3) Удаление лучей рэлеевского рассеяния

Рисунок 5. Удаление у пробы лучей рэлеевского рассеяния

4) Отображение областей пиков и вычисление интегралов интенсивности

Рисунок 6. Области пиков

Полученные результаты для всех файлов:

	NameFile	Region	C	A	M	В	Т
1	1.1_70.	Africa	27637.371	15901.663	8280.282	8847.592	18994.630
2	1701	North	254510.671	106219.655	53529.277	7156.039	12150.725
3	1.2_21	Africa	44299.522	17860.389	10944.548	9787.680	20385.952
4	1702	North	208747.601	98056.478	47482.860	4114.232	7973.801
5	1.3_68	Africa	84971.269	33205.100	22349.206	12679.743	28993.264
6	1704	North	62079.794	44620.021	15616.355	2051.332	3262.508
7	1.4_114	Africa	7808.704	10276.516	3666.342	3011.712	6803.685
8	1706	North	113082.273	34739.732	22186.164	11108.461	13179.679
9	1.5_11	Africa	46284.663	15830.898	10869.338	8912.177	18020.170
10	1708_1to10	North	28110.263	9396.959	3809.299	257.763	1300.336
11	1.6_37	Africa	43116.107	17584.536	10654.783	9562.391	19427.253
12	1708_1to20	North	13160.902	5361.934	2825.748	1395.107	2172.467
13	2.3_5 (400)	Africa	30790.999	30622.243	15370.053	6702.295	15023.209
14	1711	North	99851.295	57454.808	25296.511	5179.702	7384.226
15	2.3_5 (600)	Africa	7808.704	10276.516	3666.342	3011.712	6803.685
16	1712	North	3166.849	2580.343	1132.392	4156.429	4213.396
17	2.3_5	Africa	64928.502	56813.466	32160.834	14245.489	32194.158
18	1727	North	35150.555	23946.585	9209.576	4543.336	5343.927
19	2.4_7	Africa	30765.041	12190.613	7726.828	5742.752	11548.541
20	1728	North	172170.658	92432.433	43010.285	3327.836	8005.972
21	3.1_14	Africa	76705.161	27022.439	19764.457	15118.346	32090.572
22	1729	North	99726.835	58533.628	23495.943	3900.187	7019.745
23	3.2_69	Africa	53790.643	21756.001	14319.347	8589.816	18565.242
24	1730	North	13317.395	8646.659	3295.380	3140.594	4555.072
25	3.3_15 (600)	Africa	9059.810	12920.868	6602.240	1905.545	3655.235
26	1732	North	70629.692	39587.362	16915.751	5747.826	7208.943
27	3.4_20(800)	Africa	6439.392	14502.318	7533.037	1811.117	3753.948
28	1733	North	44532.668	25364.819	11509.320	5101.810	8345.626
29	3.4_20	Africa	24513.053	54038.659	28561.785	5597.266	12751.716
30	1734	North	98481.255	45260.690	23024.502	11070.989	12906.910

Таблица 3. Интегралы интенсивности.

Полученная матрица главных компонент (матрица счетов):

-			` 1		
	PC1	PC2	PC3	PC4	PC5
1	-0.59703999	1.3772987	0.02073497	0.1016102120	-0.1184636385
2	4.64186936	-1.6561731	-0.41513814	0.1965302124	0.0755029989
3	-0.19813137	1.5298249	-0.10988824	0.1224230731	-0.0581926550
4	3.50331435	-2.1641073	-0.03866739	0.1990901959	0.0540661630
5	1.37307403	2.2412172	-0.00445231	0.3107850644	0.0393746072
6	-0.38640990	-1.4469204	0.15827815	-0.0324479287	-0.2037877787
7	-1.83288181	-0.3417775	0.08471708	0.1148776255	-0.0327191241
8	1.06577447	0.6470918	-0.81764493	-0.3882855388	0.1630166965
9	-0.35310996	1.2177831	-0.18201522	0.1243042203	0.0185354639
10	-2.02063471	-1.2830670	-0.14274340	0.3020115844	0.0614077285
11	-0.26956487	1.4290323	-0.12573306	0.0869377849	-0.0535084022
12	-2.16313885	-0.9245899	-0.11219942	0.1279232730	0.0998939056
13	-0.26450944	0.4792438	0.38951037	-0.0168728840	-0.0232154134
14	0.92527703	-0.9888513	0.01906274	-0.1820087423	-0.0872994606
15	-1.83288181	-0.3417775	0.08471708	0.1148776255	-0.0327191241
16	-2.12019801	-0.2321538	-0.23511338	-0.1903410956	0.0390307847
17	2.25401928	2.4673647	0.79042912	-0.1441649714	-0.0181017334
18	-1.04255741	-0.5016055	-0.10490429	-0.2183860673	-0.0765739287
19	-1.09870121	0.3256610	-0.10897084	0.1211476713	0.0469670072
20	2.83917952	-2.0532648	0.27496157	0.1698443406	-0.0163467488
21	1.33838831	3.0008169	-0.14582650	0.1686466231	-0.0004407408
22	0.77041671	-1.2165705	0.09008003	0.0009717715	-0.1982571781
23	-0.03943392	1.0818566	-0.05354057	0.1802301347	0.0546730041
24	-1.88820590	-0.4935954	-0.11398611	-0.0104827488	0.0060738366
25	-1.82057788	-0.8306454	0.14808895	0.0230696658	0.1087380340
26	0.02033099	-0.5308865	-0.14730405	-0.2459973492	-0.0931067472
27	-1.77874713	-0.8556152	0.23581516	0.0046212882	0.1239401796
28	-0.71168764	-0.2515187	-0.06772634	-0.0637030679	-0.0324133552
29	0.52488080	-0.2401421	1.11541845	-0.3765021136	0.1799245350
30	1.16188697	0.5560709	-0.48595949	-0.6007098590	-0.0259989160

Таблица 4. Матрица главных компонент.

Данная матрица(табл.4) дает проекции исходных данных на подпространство главных компонент. Ее строки — это координаты данных в новой СК, а столбцы — проекции на новую координатную ось. Графикам, основанным именно на этой матрице, уделяют особое внимание.

Полученная матрица нагрузок:

		PC1	PC2	PC3	PC4	PC5
C		0.5275275	-0.2146383	-0.7106661	0.4090055	-0.05756213
	A	0.5239462	-0.2786959	0.3874170	-0.2421326	-0.66263781
	M	0.5552962	-0.1519265	0.3248485	-0.1274301	0.73945891
	В	0.2749165	0.6447891	-0.3466574	-0.6226209	-0.02897929
	T	0.2515198	0.6613806	0.3452012	0.6084334	-0.09979207

Таблица 5. Матрица нагрузок.

Это матрица (табл.5) перехода из исходного пространства в пространство главных компонент. Каждый столбец матрицы — это проекция соответствующей начальной переменной на новую СК, а каждая строка — это коэффициенты, связывающие исходные и конечные переменные.

Рисунок 7. Метод главных компонент. Компоненты

Как видно из графика (рис. 7) наибольший вклад вносят компоненты 1 и 2.

Рисунок 8. Метод главных компонент. Визуализация.

Рисунок 9. МГК. РС1 - РС2

Рисунок 10. МГК. РСЗ - РС4

На графике PC1-PC2 (рис. 9) отчетливо видно разделение на две группы – Север и Африку, чего не скажешь о графике PC3-PC4 (рис. 10).

Первая компонента разделяет данные по С, М и А, а вторая компонента по В и Т.

Рисунок 11. Разделение по А и С.

Рисунок 12. Разделение по М и С.

Рисунок 13. Разделение по В и С.

Рисунок 14. Разделение по С и Т.

Рисунок 15. Разделение по А и М.

Рисунок 16. Разделение по А и В.

Рисунок 17. Разделение по А и Т.

Рисунок 18.Разделеление по В и М.

Рисунок 19. Разделение по Т и М.

Рисунок 20. Разделение по Т и В.

Из графиков (рис. 11 - 20) также видно, что пробы могут быть разделены по всем компонентам, взятым по раздельности, за исключением компоненты M.

Выводы

Полученные результаты подтвердили то, что пробы Африки и Севера могут быть разделены, но также подтвердилось и то, что есть исключения: например, при разделении по компоненте С выбиваются файлы 3.3_15(600) и 3.4_20(800) Африки, по компоненте А 1712 и 1730 Севера и 3.4_20 Африки и т.д. При «суммарном» же разделении от остальных отличаются файлы Севера: 1706 и 1734, а Африки: 1.4_114, 2.3_5(600) и те же 3.3_15(600), 3.4_20(800).

При помощи МГК нам удалось уменьшить размерность до двумерной.

Из рассмотрения Таблицы 4 видно, что основной вклад в данные вносят главные компоненты PC1, PC2. Например, рассмотрим 2 первых строчки данных в таблице 4:

		PC1	PC2	PC3	PC4	PC5
1		-0.59703999	1.3772987	0.02073497	0.1016102120	-0.1184636385
	2	4.64186936	-1.6561731	-0.41513814	0.1965302124	0.0755029989

$$Africa(1) = -0.6 PC1 + 1.4 PC2 + 0.02 PC3 - 0.12 PC4 - 0.12 PC5$$

 $North(1) = 4.6 PC1 - 1.6 PC2 - 0.41 PC3 + 0.2 PC4 + 0.08 PC5$

Таким образом установлено, что пробы, полученные с разных регионов, могут быть разделены с помощью метода главных компонент.

Резюме

В ходе практической работы был изучен метод главных компонент. С помощью данного метода были проанализированы данные, полученные с русского Севера и Африки. Было получено, что пробы из разных регионов могут быть разделены с помощью МГК. Также были освоены пакеты EEM и stats языка программирования R в среде разработки RStudio.

Список литературы

- 1. https://cran.r-project.org/web/packages/eemR/vignettes/introduction.html
- 2. https://www.chemometrics.ru/ru/books/metod-glavnykh-komponent/lyudi-i-strany/
- 3. https://github.com/korolevskaya-kd/MathStatistics/tree/master/Practic