

SEQUENCE LISTING

<110> Steward, Lance E.
Fernandez-Salas, Ester
Herrington, Todd
Aoki, Kei Roger

<120> Clostridial Neurotoxin Compositions and
Modified Clostridial Neurotoxins

<130> 17355CIP3 (BOT)

<140> US 10/757,077
<141> 2004-01-14

<150> US 09/910,346
<151> 2001-07-20

<150> US 09/620,840
<151> 2000-07-21

<150> US 10/163,106
<151> 2003-06-04

<160> 148

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 7
<212> PRT
<213> Clostridium botulinum serotype A

<400> 1
Phe Glu Phe Tyr Lys Leu Leu
1 5

<210> 2
<211> 7
<212> PRT
<213> Rattus norvegicus

<400> 2
Glu Glu Lys Arg Ala Ile Leu
1 5

<210> 3
<211> 7
<212> PRT
<213> Rattus norvegicus

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<400> 3
Glu Glu Lys Met Ala Ile Leu
1 5

<210> 4
<211> 7
<212> PRT
<213> Rattus norvegicus

<400> 4
Ser Glu Arg Asp Val Leu Leu
1 5

<210> 5
<211> 7
<212> PRT
<213> Rattus norvegicus

<400> 5
Val Asp Thr Gln Val Leu Leu
1 5

<210> 6
<211> 7
<212> PRT
<213> Mus musculus

<400> 6
Ala Glu Val Gln Ala Leu Leu
1 5

<210> 7
<211> 7
<212> PRT
<213> Xenopus laevis

<400> 7
Ser Asp Lys Gln Asn Leu Leu
1 5

<210> 8
<211> 7
<212> PRT
<213> Gallus gallus

<400> 8
Ser Asp Arg Gln Asn Leu Ile
1 5

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<210> 9
<211> 7
<212> PRT
<213> Ovis aries

<400> 9
Ala Asp Thr Gln Val Leu Met
1 5

<210> 10
<211> 7
<212> PRT
<213> Homo sapiens

<400> 10
Ser Asp Lys Asn Thr Leu Leu
1 5

<210> 11
<211> 7
<212> PRT
<213> Homo sapiens

<400> 11
Ser Gln Ile Lys Arg Leu Leu
1 5

<210> 12
<211> 7
<212> PRT
<213> Homo sapiens

<400> 12
Ala Asp Thr Gln Ala Leu Leu
1 5

<210> 13
<211> 7
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 13
Asn Glu Gln Ser Pro Leu Leu
1 5

<210> 14
<211> 12
<212> PRT
<213> *Clostridium botulinum* serotype A

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<400> 14
Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp
1 5 10

<210> 15
<211> 11
<212> PRT
<213> Clostridium botulinum serotype A

<400> 15
Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp
1 5 10

<210> 16
<211> 4
<212> PRT
<213> Clostridium botulinum serotype A

<400> 16
Met Tyr Lys Asp
1

<210> 17
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (1)...(7)
<223> Consensus sequence for Leucine-based motif.

<221> VARIANT
<222> (1)...(1)
<223> Xaa is any amino acid.

<221> VARIANT
<222> (3)...(5)
<223> Xaa is any amino acid.

<400> 17
Xaa Asp Xaa Xaa Xaa Leu Leu
1 5

<210> 18
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<222> (1)...(7)

<223> Consensus sequence for Leucine-based motif.

<221> VARIANT

<222> (1)...(1)

<223> Xaa is any amino acid.

<221> VARIANT

<222> (3)...(5)

<223> Xaa is any amino acid.

<400> 18

Xaa Glu Xaa Xaa Xaa Leu Leu
1 5

<210> 19

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (1)...(7)

<223> Consensus sequence for Leucine-based motif.

<221> VARIANT

<222> (1)...(1)

<223> Xaa is any amino acid.

<221> VARIANT

<222> (3)...(5)

<223> Xaa is any amino acid.

<400> 19

Xaa Asp Xaa Xaa Xaa Leu Ile
1 5

<210> 20

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (1)...(7)

<223> Consensus sequence for Leucine-based motif.

<221> VARIANT

<222> (1)...(1)

<223> Xaa is any amino acid.

<221> VARIANT

<222> (3)...(5)

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<223> Xaa is any amino acid.

<400> 20

Xaa Asp Xaa Xaa Xaa Leu Met
1 5

<210> 21

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (1)...(7)

<223> Consensus sequence for Leucine-based motif.

<221> VARIANT

<222> (1)...(1)

<223> Xaa is any amino acid.

<221> VARIANT

<222> (3)...(5)

<223> Xaa is any amino acid.

<400> 21

Xaa Glu Xaa Xaa Xaa Leu Ile
1 5

<210> 22

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (1)...(7)

<223> Consensus sequence for Leucine-based motif.

<221> VARIANT

<222> (1)...(1)

<223> Xaa is any amino acid.

<221> VARIANT

<222> (3)...(5)

<223> Xaa is any amino acid.

<400> 22

Xaa Glu Xaa Xaa Xaa Ile Leu
1 5

<210> 23

<211> 7

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (1)...(7)

<223> Consensus sequence for Leucine-based motif.

<221> VARIANT

<222> (1)...(1)

<223> Xaa is any amino acid.

<221> VARIANT

<222> (3)...(5)

<223> Xaa is any amino acid.

<400> 23

Xaa Glu Xaa Xaa Xaa Leu Met

1

5

<210> 24

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (1)...(4)

<223> Consensus sequence for Tyrosine-based motif.

<221> VARIANT

<222> (2)...(3)

<223> Xaa is any amino acid.

<221> VARIANT

<222> (4)...(4)

<223> Xaa is any hydrophobic amino acid.

<400> 24

Tyr Xaa Xaa Xaa

1

<210> 25

<211> 50

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)...(50)

<223> Peptide comprising a 6x His tag and S-tag

<400> 25

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

Met His His His His Ser Ser Gly Leu Val Pro Arg Gly Ser
1 5 10 15
Gly Met Lys Glu Thr Ala Ala Ala Lys Phe Glu Arg Gln His Met Asp
20 25 30
Ser Pro Asp Leu Gly Thr Asp Asp Asp Asp Lys Ala Met Tyr Lys Asp
35 40 45
Pro Val
50

<210> 26
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<221> PEPTIDE
<222> (1)...(14)
<223> Peptide comprising a 6x His tag

<400> 26
Asn Phe Thr Lys Leu Thr Arg Ala His His His His His His
1 5 10

<210> 27
<211> 8
<212> PRT
<213> Clostridium botulinum serotype A

<400> 27
Pro Phe Val Asn Lys Gln Phe Asn
1 5

<210> 28
<211> 22
<212> PRT
<213> Clostridium botulinum sertotype A

<400> 28
Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg
1 5 10 15
Gly Ile Ile Thr Ser Lys
20

<210> 29
<211> 438
<212> PRT
<213> Clostridium botulinum sertotype A

<400> 29
Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly
1 5 10 15

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met Gln Pro
 20 25 30
 Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg
 35 40 45
 Asp Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu
 50 55 60
 Ala Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr
 65 70 75 80
 Asp Asn Glu Lys Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu
 85 90 95
 Arg Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser Ile Val
 100 105 110
 Arg Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys
 115 120 125
 Val Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr
 130 135 140
 Arg Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile
 145 150 155 160
 Ile Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr
 165 170 175
 Arg Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro Asp Phe
 180 185 190
 Thr Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu
 195 200 205
 Gly Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu
 210 215 220
 Leu Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn
 225 230 235 240
 Arg Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu
 245 250 255
 Glu Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp Ala Lys
 260 265 270
 Phe Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Tyr Asn
 275 280 285
 Lys Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val
 290 295 300
 Gly Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu Lys
 305 310 315 320
 Tyr Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu
 325 330 335
 Lys Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp
 340 345 350
 Asn Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr Leu Asn
 355 360 365
 Phe Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr
 370 375 380
 Thr Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn
 385 390 395 400
 Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu
 405 410 415
 Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg
 420 425 430
 Gly Ile Ile Thr Ser Lys
 435

<210> 30
<211> 441
<212> PRT
<213> Clostridium botulinum sertotype B

<400> 30
Met Pro Val Thr Ile Asn Asn Phe Asn Tyr Asn Asp Pro Ile Asp Asn
1 5 10 15
Asn Asn Ile Ile Met Met Glu Pro Pro Phe Ala Arg Gly Thr Gly Arg
20 25 30
Tyr Tyr Lys Ala Phe Lys Ile Thr Asp Arg Ile Trp Ile Ile Pro Glu
35 40 45
Arg Tyr Thr Phe Gly Tyr Lys Pro Glu Asp Phe Asn Lys Ser Ser Gly
50 55 60
Ile Phe Asn Arg Asp Val Cys Glu Tyr Tyr Asp Pro Asp Tyr Leu Asn
65 70 75 80
Thr Asn Asp Lys Lys Asn Ile Phe Leu Gln Thr Met Ile Lys Leu Phe
85 90 95
Asn Arg Ile Lys Ser Lys Pro Leu Gly Glu Lys Leu Leu Glu Met Ile
100 105 110
Ile Asn Gly Ile Pro Tyr Leu Gly Asp Arg Arg Val Pro Leu Glu Glu
115 120 125
Phe Asn Thr Asn Ile Ala Ser Val Thr Val Asn Lys Leu Ile Ser Asn
130 135 140
Pro Gly Glu Val Glu Arg Lys Lys Gly Ile Phe Ala Asn Leu Ile Ile
145 150 155 160
Phe Gly Pro Gly Pro Val Leu Asn Glu Asn Glu Thr Ile Asp Ile Gly
165 170 175
Ile Gln Asn His Phe Ala Ser Arg Glu Gly Phe Gly Gly Ile Met Gln
180 185 190
Met Lys Phe Cys Pro Glu Tyr Val Ser Val Phe Asn Asn Val Gln Glu
195 200 205
Asn Lys Gly Ala Ser Ile Phe Asn Arg Arg Gly Tyr Phe Ser Asp Pro
210 215 220
Ala Leu Ile Leu Met His Glu Leu Ile His Val Leu His Gly Leu Tyr
225 230 235 240
Gly Ile Lys Val Asp Asp Leu Pro Ile Val Pro Asn Glu Lys Lys Phe
245 250 255
Phe Met Gln Ser Thr Asp Ala Ile Gln Ala Glu Glu Leu Tyr Thr Phe
260 265 270
Gly Gly Gln Asp Pro Ser Ile Ile Thr Pro Ser Thr Asp Lys Ser Ile
275 280 285
Tyr Asp Lys Val Leu Gln Asn Phe Arg Gly Ile Val Asp Arg Leu Asn
290 295 300
Lys Val Leu Val Cys Ile Ser Asp Pro Asn Ile Asn Ile Asn Ile Tyr
305 310 315 320
Lys Asn Lys Phe Lys Asp Lys Tyr Lys Phe Val Glu Asp Ser Glu Gly
325 330 335
Lys Tyr Ser Ile Asp Val Glu Ser Phe Asp Lys Leu Tyr Lys Ser Leu
340 345 350
Met Phe Gly Phe Thr Glu Thr Asn Ile Ala Glu Asn Tyr Lys Ile Lys
355 360 365
Thr Arg Ala Ser Tyr Phe Ser Asp Ser Leu Pro Pro Val Lys Ile Lys
370 375 380

Asn Leu Leu Asn Glu Ile Tyr Thr Ile Glu Glu Gly Phe Asn Ile
385 390 395 400
Ser Asp Lys Asp Met Glu Lys Glu Tyr Arg Gly Gln Asn Lys Ala Ile
405 410 415
Asn Lys Gln Ala Tyr Glu Glu Ile Ser Lys Glu His Leu Ala Val Tyr
420 425 430
Lys Ile Gln Met Cys Lys Ser Val Lys
435 440

<210> 31

<211> 4

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> PHOSPHORYLATION

<222> (1)...(4)

<223> Tyrosine-based motif

<400> 31

Tyr Ile Lys Ile

1

<210> 32

<211> 4

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> PHOSPHORYLATION

<222> (1)...(4)

<223> Tyrosine-based motif

<400> 32

Tyr Asp Ser Thr

1

<210> 33

<211> 4

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> PHOSPHORYLATION

<222> (1)...(4)

<223> Tyrosine-based motif

<400> 33

Tyr Gly Ser Thr

1

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<210> 34
<211> 4
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> PHOSPHORYLATION
<222> (1)...(4)
<223> Tyrosine-based motif

<400> 34
Tyr Asn Lys Phe
1

<210> 35
<211> 4
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> PHOSPHORYLATION
<222> (1)...(4)
<223> Tyrosine-based motif

<400> 35
Tyr Met Lys Asn
1

<210> 36
<211> 4
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> PHOSPHORYLATION
<222> (1)...(4)
<223> Tyrosine-based motif

<400> 36
Tyr Leu Asn Phe
1

<210> 37
<211> 4
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> PHOSPHORYLATION
<222> (1)...(4)
<223> Tyrosine-based motif

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<400> 37

Tyr Asp Gly Phe
1

<210> 38

<211> 4

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> PHOSPHORYLATION

<222> (1)...(4)

<223> Tyrosine-based motif

<400> 38

Tyr Lys Leu Leu
1

<210> 39

<211> 30

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<400> 39

Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly
1 5 10 15
Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30

<210> 40

<211> 50

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<400> 40

Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln
1 5 10 15
Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu Lys Asn Phe Thr
20 25 30
Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg Gly Ile Ile Thr
35 40 45
Ser Lys

50

<210> 41
<211> 30
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> DOMAIN
<222> (13)...(30)
<223> Amino terminal 30 amino acids of light chain

<400> 41
Met Pro Val Thr Ile Asn Asn Phe Asn Tyr Asn Asp Pro Ile Asp Asn
1 5 10 15
Asp Asn Ile Ile Met Met Glu Pro Pro Phe Ala Arg Gly Thr
20 25 30

<210> 42
<211> 50
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> DOMAIN
<222> (1)...(50)
<223> Carboxyl terminal 50 amino acids of light chain

<400> 42
Tyr Thr Ile Glu Glu Gly Phe Asn Ile Ser Asp Lys Asn Met Gly Lys
1 5 10 15
Glu Tyr Arg Gly Gln Asn Lys Ala Ile Asn Lys Gln Ala Tyr Glu Glu
20 25 30
Ile Ser Lys Glu His Leu Ala Val Tyr Lys Ile Gln Met Cys Lys Ser
35 40 45
Val Lys
50

<210> 43
<211> 30
<212> PRT
<213> Clostridium botulinum serotype C1

<220>
<221> DOMAIN
<222> (1)...(30)
<223> Amino terminal 30 amino acids of light chain

<400> 43
Met Pro Ile Thr Ile Asn Asn Phe Asn Tyr Ser Asp Pro Val Asp Asn
1 5 10 15
Lys Asn Ile Leu Tyr Leu Asp Thr His Leu Asn Thr Leu Ala

20

25

30

<210> 44
<211> 50
<212> PRT
<213> Clostridium botulinum serotype C1

<220>
<221> DOMAIN
<222> (1)...(50)
<223> Carboxyl terminal 50 amino acids of light chain

<400> 44
Asn Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly Gln Asn Leu
1 5 10 15
Ser Arg Asn Pro Ala Leu Arg Lys Val Asn Pro Glu Asn Met Leu Tyr
20 25 30
Leu Phe Thr Lys Phe Cys His Lys Ala Ile Asp Gly Arg Ser Leu Tyr
35 40 45
Asn Lys
50

<210> 45
<211> 30
<212> PRT
<213> Clostridium botulinum serotype D

<220>
<221> DOMAIN
<222> (1)...(30)
<223> Amino terminal 30 amino acids of light chain

<400> 45
Met Thr Trp Pro Val Lys Asp Phe Asn Tyr Ser Asp Pro Val Asn Asp
1 5 10 15
Asn Asp Ile Leu Tyr Leu Arg Ile Pro Gln Asn Lys Leu Ile
20 25 30

<210> 46
<211> 50
<212> PRT
<213> Clostridium botulinum serotype D

<220>
<221> DOMAIN
<222> (1)...(50)
<223> Carboxyl terminal 50 amino acids of light chain

<400> 46
Tyr Thr Ile Arg Asp Gly Phe Asn Leu Thr Asn Lys Gly Phe Asn Ile
1 5 10 15
Glu Asn Ser Gly Gln Asn Ile Glu Arg Asn Pro Ala Leu Gln Lys Leu

	20		25		30										
Ser	Ser	Glu	Ser	Val	Val	Asp	Leu	Phe	Thr	Lys	Val	Cys	Leu	Arg	Leu
	35				40					45					
Thr	Lys														
	50														

<210> 47

<211> 30

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acid of light chain

<400> 47

Met	Pro	Lys	Ile	Asn	Ser	Phe	Asn	Tyr	Asn	Asp	Pro	Val	Asn	Asp	Arg
1						5			10				15		
Thr	Ile	Leu	Tyr	Ile	Lys	Pro	Gly	Gly	Cys	Gln	Glu	Phe	Tyr		
							25						30		

<210> 48

<211> 50

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<400> 48

Gly	Tyr	Asn	Ile	Asn	Asn	Leu	Lys	Val	Asn	Phe	Arg	Gly	Gln	Asn	Ala
1							5		10			15			
Asn	Leu	Asn	Pro	Arg	Ile	Ile	Thr	Pro	Ile	Thr	Gly	Arg	Gly	Leu	Val
							20		25			30			
Lys	Lys	Ile	Ile	Arg	Phe	Cys	Lys	Asn	Ile	Val	Ser	Val	Lys	Gly	Ile
							35		40			45			
Arg	Lys														
	50														

<210> 49

<211> 30

<212> PRT

<213> Clostridium botulinum serotype F

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<400> 49
Met Pro Val Ala Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp
1 5 10 15
Asp Thr Ile Leu Tyr Met Gln Ile Pro Tyr Glu Glu Lys Ser
20 25 30

<210> 50
<211> 50

<212> PRT

<213> Clostridium botulinum serotype F

<220>
<221> DOMAIN
<222> (1)...(50)
<223> Carboxyl terminal 50 amino acids of light chain

<400> 50
Thr Val Ser Glu Gly Phe Asn Ile Gly Asn Leu Ala Val Asn Asn Arg
1 5 10 15
Gly Gln Ser Ile Lys Leu Asn Pro Lys Ile Ile Asp Ser Ile Pro Asp
20 25 30
Lys Gly Leu Val Glu Lys Ile Val Lys Phe Cys Lys Ser Val Ile Pro
35 40 45
Arg Lys
50

<210> 51
<211> 30
<212> PRT

<213> Clostridium botulinum serotype G

<220>
<221> DOMAIN
<222> (1)...(30)
<223> Amino terminal 30 amino acids of light chain

<400> 51
Met Pro Val Asn Ile Lys Asn Phe Asn Tyr Asn Asp Pro Ile Asn Asn
1 5 10 15
Asp Asp Ile Ile Met Met Glu Pro Phe Asn Asp Pro Gly Pro
20 25 30

<210> 52
<211> 50
<212> PRT

<213> Clostridium botulinum serotype G

<220>
<221> DOMAIN
<222> (1)...(50)
<223> Carboxyl terminal 50 amino acids of light chain

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<400> 52

Gln Asn Glu Gly Phe Asn Ile Ala Ser Lys Asn Leu Lys Thr Glu Phe
1 5 10 15
Asn Gly Gln Asn Lys Ala Val Asn Lys Glu Ala Tyr Glu Glu Ile Ser
20 25 30
Leu Glu His Leu Val Ile Tyr Arg Ile Ala Met Cys Lys Pro Val Met
35 40 45
Tyr Lys
50

<210> 53

<211> 30

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (4)...(4)

<223> Alanine substitution

<400> 53

Met Pro Phe Ala Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly
1 5 10 15
Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30

<210> 54

<211> 50

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (25)...(25)

<223> Arginine substitution

<400> 54

Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln
1 5 10 15
Asn Thr Glu Ile Asn Asn Met Asn Arg Thr Lys Leu Lys Asn Phe Thr
20 25 30
Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg Gly Ile Ile Thr
35 40 45
Ser Lys
50

<210> 55

<211> 30

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (10)...(10)

<223> Lysine substitution

<400> 55

Met Pro Phe Val Asn Lys Gln Phe Asn Lys Lys Asp Pro Val Asn Gly

1 5 10 15

Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25 30

<210> 56

<211> 50

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (31)...(31)

<223> Alanine substitution

<221> VARIANT

<222> (32)...(32)

<223> Alanine substitution

<400> 56

Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln

1 5 10 15

Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu Lys Asn Ala Ala
20 25 30

Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg Gly Ile Ile Thr
35 40 45

Ser Lys

50

<210> 57

<211> 30

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (21)...(21)

<223> Arginine substitution

<400> 57

Met	Pro	Phe	Val	Asn	Lys	Gln	Phe	Asn	Tyr	Lys	Asp	Pro	Val	Asn	Gly
1				5				10					15		
Val	Asp	Ile	Ala	Arg	Ile	Lys	Ile	Pro	Asn	Ala	Gly	Gln	Met		
		20				25							30		

<210> 58

<211> 50

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (13)...(13)

<223> Histidine substitution

<400> 58

Gly	Phe	Asn	Leu	Arg	Asn	Thr	Asn	Leu	Ala	Ala	Asn	His	Asn	Gly	Gln
1				5				10				15			
Asn	Thr	Glu	Ile	Asn	Asn	Met	Asn	Phe	Thr	Lys	Leu	Lys	Asn	Phe	Thr
		20						25				30			
Gly	Leu	Phe	Glu	Phe	Tyr	Lys	Leu	Leu	Cys	Val	Arg	Gly	Ile	Ile	Thr
	35					40					45				
Ser	Lys														
	50														

<210> 59

<211> 30

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (7)...(7)

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<223> Histidine substitution

<400> 59

Met Pro Phe Val Asn Lys His Phe Asn Tyr Lys Asp Pro Val Asn Gly			
1	5	10	15
Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met			
20	25	30	

<210> 60

<211> 50

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (43)...(43)

<223> Alanine substitution

<400> 60

Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln			
1	5	10	15
Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu Lys Asn Phe Thr			
20	25	30	
Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Ala Arg Gly Ile Ile Thr			
35	40	45	
Ser Lys			
50			

<210> 61

<211> 30

<212> PRT

<213> Clostridium botulinum serotype B

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (3)...(3)

<223> Alanine substitution

<400> 61

Met Pro Ala Thr Ile Asn Asn Phe Asn Tyr Asn Asp Pro Ile Asp Asn			
1	5	10	15
Asp Asn Ile Ile Met Met Glu Pro Pro Phe Ala Arg Gly Thr			
20	25	30	

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<210> 62

<211> 50

<212> PRT

<213> Clostridium botulinum serotype B

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (44)...(44)

<223> Arginine substitution

<400> 62

Tyr Thr Ile Glu Glu Gly Phe Asn Ile Ser Asp Lys Asn Met Gly Lys
1 5 10 15

Glu Tyr Arg Gly Gln Asn Lys Ala Ile Asn Lys Gln Ala Tyr Glu Glu
20 25 30

Ile Ser Lys Glu His Leu Ala Val Tyr Lys Ile Arg Met Cys Lys Ser
35 40 45

Val Lys
50

<210> 63

<211> 30

<212> PRT

<213> Clostridium botulinum serotype B

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (21)...(21)

<223> Alanine substitution

<221> VARIANT

<222> (22)...(22)

<223> Alanine substitution

<400> 63

Met Pro Val Thr Ile Asn Asn Phe Asn Tyr Asn Asp Pro Ile Asp Asn
1 5 10 15

Asp Asn Ile Ile Ala Ala Glu Pro Pro Phe Ala Arg Gly Thr
20 25 30

<210> 64

<211> 50

<212> PRT

<213> Clostridium botulinum serotype B

<220>
<221> DOMAIN
<222> (1)...(50)
<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT
<222> (41)...(41)
<223> Arginine substitution

<400> 64
Tyr Thr Ile Glu Glu Gly Phe Asn Ile Ser Asp Lys Asn Met Gly Lys
1 5 10 15
Glu Tyr Arg Gly Gln Asn Lys Ala Ile Asn Lys Gln Ala Tyr Glu Glu
20 25 30
Ile Ser Lys Glu His Leu Ala Val Arg Lys Ile Gln Met Cys Lys Ser
35 40 45
Val Lys
50

<210> 65
<211> 30
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> DOMAIN
<222> (1)...(30)
<223> Amino terminal 30 amino acids of light chain

<221> VARIANT
<222> (10)...(10)
<223> Arginine substitution

<400> 65
Met Pro Val Thr Ile Asn Asn Phe Asn Arg Asn Asp Pro Ile Asp Asn
1 5 10 15
Asp Asn Ile Ile Met Met Glu Pro Pro Phe Ala Arg Gly Thr
20 25 30

<210> 66
<211> 50
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> DOMAIN
<222> (1)...(50)
<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT
<222> (30)...(30)
<223> Lysine substitution

<400> 66

Tyr	Thr	Ile	Glu	Glu	Gly	Phe	Asn	Ile	Ser	Asp	Lys	Asn	Met	Gly	Lys
1				5				10					15		
Glu	Tyr	Arg	Gly	Gln	Asn	Lys	Ala	Ile	Asn	Lys	Gln	Ala	Lys	Glu	Glu
				20				25				30			
Ile	Ser	Lys	Glu	His	Leu	Ala	Val	Tyr	Lys	Ile	Gln	Met	Cys	Lys	Ser
				35				40				45			
Val	Lys														
	50														

<210> 67

<211> 30

<212> PRT

<213> Clostridium botulinum serotype C1

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (8)...(8)

<223> Lysine substitution

<400> 67

Met	Pro	Ile	Thr	Ile	Asn	Asn	Lys	Asn	Tyr	Ser	Asp	Pro	Val	Asp	Asn
1					5				10				15		
Lys	Asn	Ile	Leu	Tyr	Leu	Asp	Thr	His	Leu	Asn	Thr	Leu	Ala		
				20				25				30			

<210> 68

<211> 50

<212> PRT

<213> Clostridium botulinum serotype C1

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (48)...(48)

<223> Arginine substitution

<400> 68

Asn	Ile	Pro	Lys	Ser	Asn	Leu	Asn	Val	Leu	Phe	Met	Gly	Gln	Asn	Leu
1					5			10				15			
Ser	Arg	Asn	Pro	Ala	Leu	Arg	Lys	Val	Asn	Pro	Glu	Asn	Met	Leu	Tyr
					20			25				30			
Leu	Phe	Thr	Lys	Phe	Cys	His	Lys	Ala	Ile	Asp	Gly	Arg	Ser	Leu	Arg
				35			40				45				
Asn	Lys														
	50														

<210> 69

<211> 30

<212> PRT

<213> Clostridium botulinum serotype D

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (5)...(5)

<223> Alanine substitution

<221> VARIANT

<222> (14)...(14)

<223> Alanine substitution

<400> 69

Met Thr Trp Pro Ala Lys Asp Phe Asn Tyr Ser Asp Pro Ala Asn Asp
1 5 10 15
Asn Asp Ile Leu Tyr Leu Arg Ile Pro Gln Asn Lys Leu Ile
20 25 30

<210> 70

<211> 50

<212> PRT

<213> Clostridium botulinum serotype D

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (44)...(44)

<223> Alanine substitution

<400> 70

Tyr Thr Ile Arg Asp Gly Phe Asn Leu Thr Asn Lys Gly Phe Asn Ile
1 5 10 15
Glu Asn Ser Gly Gln Asn Ile Glu Arg Asn Pro Ala Leu Gln Lys Leu
20 25 30
Ser Ser Glu Ser Val Val Asp Leu Phe Thr Lys Ala Cys Leu Arg Leu
35 40 45
Thr Lys
50

<210> 71

<211> 30

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (13)...(13)

<223> Alanine substitution

<400> 71

Met	Pro	Lys	Ile	Asn	Ser	Phe	Asn	Tyr	Asn	Asp	Pro	Ala	Asn	Asp	Arg
1						5			10						15
Thr	Ile	Leu	Tyr	Ile	Lys	Pro	Gly	Gly	Cys	Gln	Glu	Phe	Tyr		
						20			25						30

<210> 72

<211> 50

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (31)...(31)

<223> Histidine substitution

<400> 72

Gly	Tyr	Asn	Ile	Asn	Asn	Leu	Lys	Val	Asn	Phe	Arg	Gly	Gln	Asn	Ala
1						5			10						15
Asn	Leu	Asn	Pro	Arg	Ile	Ile	Thr	Pro	Ile	Thr	Gly	Arg	Gly	His	Val
								20		25					30
Lys	Lys	Ile	Ile	Arg	Phe	Cys	Lys	Asn	Ile	Val	Ser	Val	Lys	Gly	Ile
						35			40						45
Arg	Lys														
	50														

<210> 73

<211> 30

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (7)...(7)

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<223> Arginine substitution

<400> 73

Met	Pro	Lys	Ile	Asn	Ser	Arg	Asn	Tyr	Asn	Asp	Pro	Val	Asn	Asp	Arg
1						5			10					15	
Thr	Ile	Leu	Tyr	Ile	Lys	Pro	Gly	Gly	Cys	Gln	Glu	Phe	Tyr		
						20			25					30	

<210> 74

<211> 50

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (42)...(42)

<223> Alanine substitution

<221> VARIANT

<222> (43)...(43)

<223> Alanine substitution

<400> 74

Gly	Tyr	Asn	Ile	Asn	Asn	Leu	Lys	Val	Asn	Phe	Arg	Gly	Gln	Asn	Ala
1						5			10				15		
Asn	Leu	Asn	Pro	Arg	Ile	Ile	Thr	Pro	Ile	Thr	Gly	Arg	Gly	Leu	Val
						20			25			30			
Lys	Lys	Ile	Ile	Arg	Phe	Cys	Lys	Asn	Ala	Ala	Ser	Val	Lys	Gly	Ile
						35			40			45			
Arg	Lys														50

<210> 75

<211> 30

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (30)...(30)

<223> Arginine substitution

<400> 75

Met	Pro	Lys	Ile	Asn	Ser	Phe	Asn	Tyr	Asn	Asp	Pro	Val	Asn	Asp	Arg
1						5			10				15		

Thr Ile Leu Tyr Ile Lys Pro Gly Gly Cys Gln Glu Phe Arg
20 30

<210> 76

<211> 50

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> DOMAIN

<222> (1)...(50)

<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT

<222> (45)...(45)

<223> Alanine substitution

<400> 76

Gly	Tyr	Asn	Ile	Asn	Asn	Leu	Lys	Val	Asn	Phe	Arg	Gly	Gln	Asn	Ala
1				5				10						15	
Asn	Leu	Asn	Pro	Arg	Ile	Ile	Thr	Pro	Ile	Thr	Gly	Arg	Gly	Leu	Val
					20			25					30		
Lys	Lys	Ile	Ile	Arg	Phe	Cys	Lys	Asn	Ile	Val	Ser	Ala	Lys	Gly	Ile
				35				40					45		
Arg	Lys														
				50											

<210> 77

<211> 30

<212> PRT

<213> Clostridium botulinum serotype F

<220>

<221> DOMAIN

<222> (1)...(30)

<223> Amino terminal 30 amino acids of light chain

<221> VARIANT

<222> (3)...(3)

<223> Alanine substitution

<400> 77

Met	Pro	Ala	Ala	Ile	Asn	Ser	Phe	Asn	Tyr	Asn	Asp	Pro	Val	Asn	Asp
1					5				10					15	
Asp	Thr	Ile	Leu	Tyr	Met	Gln	Ile	Pro	Tyr	Glu	Glu	Lys	Ser		
					20			25					30		

<210> 78

<211> 50

<212> PRT

<213> Clostridium botulinum serotype F

<220>
<221> DOMAIN
<222> (1)...(50)
<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT
<222> (46)...(46)
<223> Alanine substitution

<400> 78
Thr Val Ser Glu Gly Phe Asn Ile Gly Asn Leu Ala Val Asn Asn Arg
1 5 10 15
Gly Gln Ser Ile Lys Leu Asn Pro Lys Ile Ile Asp Ser Ile Pro Asp
20 25 30
Lys Gly Leu Val Glu Lys Ile Val Lys Phe Cys Lys Ser Ala Ile Pro
35 40 45
Arg Lys
50

<210> 79
<211> 30
<212> PRT
<213> Clostridium botulinum serotype G

<220>
<221> DOMAIN
<222> (1)...(30)
<223> Amino terminal 30 amino acids of light chain

<221> VARIANT
<222> (8)...(8)
<223> Histidine substitution

<400> 79
Met Pro Val Asn Ile Lys Asn His Asn Tyr Asn Asp Pro Ile Asn Asn
1 5 10 15
Asp Asp Ile Ile Met Met Glu Pro Phe Asn Asp Pro Gly Pro
20 25 30

<210> 80
<211> 50
<212> PRT
<213> Clostridium botulinum serotype G

<220>
<221> DOMAIN
<222> (1)...(50)
<223> Carboxyl terminal 50 amino acids of light chain

<221> VARIANT
<222> (47)...(47)
<223> Alanine substitution

<400> 80
Gln Asn Glu Gly Phe Asn Ile Ala Ser Lys Asn Leu Lys Thr Glu Phe
1 5 10 15
Asn Gly Gln Asn Lys Ala Val Asn Lys Glu Ala Tyr Glu Glu Ile Ser
20 25 30
Leu Glu His Leu Val Ile Tyr Arg Ile Ala Met Cys Lys Pro Ala Met
35 40 45
Tyr Lys
50

<210> 81
<211> 26
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> VARIANT
<222> (1)...(26)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 81
Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly
1 5 10 15
Val Asp Ile Ala Tyr Ile Lys Ile Pro His
20 25

<210> 82
<211> 43
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> VARIANT
<222> (1)...(43)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 82
Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln
1 5 10 15
Asn Thr Glu Ile Asn Asn Met Asn Ala Ala Ala Ala Ala Ala Ala
20 25 30
Ala Ala Cys Val Arg Gly Ile Ile Thr Ser Lys
35 40

<210> 83
<211> 26
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> VARIANT
<222> (1)...(26)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 83

Met Ala Ala Ala Asn Tyr Lys Asp Pro Val Asn Gly Val Asp Ile Ala
1 5 10 15
Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met
20 25

<210> 84

<211> 48

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> VARIANT

<222> (1)...(48)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 84

Gly Lys Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln
1 5 10 15
Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu Lys Asn Phe Thr
20 25 30
Gly Leu Phe Glu Phe Tyr Lys Cys Val Arg Gly Ile Ile Thr Ser Lys
35 40 45

<210> 85

<211> 26

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> VARIANT

<222> (1)...(26)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 85

Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly
1 5 10 15
Val Asp Ile Ala Arg Asn Ala Gly Gln Met
20 25

<210> 86

<211> 46

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> VARIANT

<222> (1)...(46)

<223> Variant of carboxyl-terminal 50 amino acids of LC

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<400> 86

Gly	Phe	Asn	Leu	Arg	Asn	Thr	Asn	Leu	Ala	Ala	His	Asn	Thr	Glu	Ile
1				5				10					15		
Asn	Asn	Met	Asn	Phe	Thr	Lys	Leu	Lys	Asn	Phe	Thr	Gly	Leu	Phe	Glu
				20				25				30			
Phe	Tyr	Lys	Leu	Leu	Cys	Val	Arg	Gly	Ile	Ile	Thr	Ser	Lys		
				35			40				45				

<210> 87

<211> 26

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> VARIANT

<222> (1)...(26)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 87

Met	Pro	Lys	Val	Asn	Lys	Gln	Phe	Asn	Val	Asn	Gly	Val	Asp	Ile	Ala
1					5				10				15		
Tyr	Ile	Lys	Ile	Pro	Asn	Ala	Gly	Gln	Met						
				20				25							

<210> 88

<211> 42

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> VARIANT

<222> (1)...(42)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 88

Gly	Phe	Asn	Leu	Arg	Asn	Thr	Asn	Leu	Ala	Ala	Asn	Phe	Asn	Gly	Gln
1					5				10				15		
Asn	Thr	Glu	Ile	Asn	Asn	Met	Asn	Phe	Thr	Lys	Leu	Lys	Asn	Phe	Thr
					20			25				30			
Gly	Leu	Phe	Glu	Phe	Arg	Arg	Thr	Ser	Lys						
				35			40								

<210> 89

<211> 30

<212> PRT

<213> Clostridium botulinum serotype B

<220>

<221> VARIANT

<222> (1)...(30)

<223> Variant of amino-terminal 30 amino acids of LC

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<400> 89
Met Pro Val Thr Ile Asn Asn Phe Asn Tyr Asn Asp Pro Ile Asp Asn
1 5 10 15
Asp Asn Ile Ile Ala Ala Ala Ala Ala Ala Arg Gly Thr
20 25 30

<210> 90
<211> 37
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> VARIANT
<222> (1)...(37)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 90
Tyr Thr Ile Pro Pro Gly Phe Asn Ile Ser Asp Lys Asn Met Gly Lys
1 5 10 15
Glu Tyr Arg Gly Gln Asn Lys Ala Ile Asn Lys Gln Ala Tyr Glu Glu
20 25 30
Ile Ser Lys Glu His
35

<210> 91
<211> 26
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> VARIANT
<222> (1)...(26)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 91
Met Pro Ala Phe Asn Tyr Asn Asp Pro Ile Asp Asn Asn Ile Ile
1 5 10 15
Met Met Glu Pro Pro Phe Ala Arg Gly Thr
20 25

<210> 92
<211> 50
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> VARIANT
<222> (1)...(50)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 92
Tyr Thr Ile Glu Glu Gly Phe Asn Ile Ser Asp Lys Asn Met Gly Lys

1 5 10 15
Glu Tyr Arg Gly Gln Asn Lys Ala Ala Ala Ala Ala Glu Glu
20 25 30
Ile Ser Lys Glu His Leu Ala Val Tyr Lys Ile Gln Met Cys Lys Ser
35 40 45
Val Lys
50

<210> 93

<211> 20

<212> PRT

<213> Clostridium botulinum serotype B

<220>

<221> VARIANT

<222> (1)...(20)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 93

Met Pro Val Thr Ile Asn Asn Phe Asn Arg Met Met Glu Pro Pro Phe
1 5 10 15
Ala Arg Gly Thr
20

<210> 94

<211> 44

<212> PRT

<213> Clostridium botulinum serotype B

<220>

<221> VARIANT

<222> (1)...(44)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 94

Tyr Thr Ile Glu Glu Gly Phe Asn Ile Ser Asp Lys Asn Met Gly Lys
1 5 10 15
Glu Tyr Arg Gly Gln Asn Lys Ala Ile Asn Lys Gln Ala Tyr Ala Ala
20 25 30
Ala Ala Ala Ala Ile Gln Met Cys Lys Ser Val Lys
35 40

<210> 95

<211> 21

<212> PRT

<213> Clostridium botulinum serotype C1

<220>

<221> VARIANT

<222> (1)...(21)

<223> Variant of amino-terminal 30 amino acids of LC

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

<400> 95
Met Ser Asp Pro Val Asp Asn Lys Asn Ile Leu Tyr Leu Asp Thr His
1 5 10 15
Leu Asn Thr Leu Ala
20

<210> 96
<211> 47
<212> PRT
<213> Clostridium botulinum serotype C1

<220>
<221> VARIANT
<222> (1)...(47)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 96
Asn Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly Gln Asn Leu
1 5 10 15
Ser Arg Asn Pro Ala Leu Arg Lys Val Asn Pro Glu Asn Met Leu Ala
20 25 30
Ala Ala Cys His Lys Ala Ile Asp Gly Arg Ser Leu Tyr Asn Lys
35 40 45

<210> 97
<211> 26
<212> PRT
<213> Clostridium botulinum serotype D

<220>
<221> CONFLICT
<222> (1)...(26)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 97
Met Thr Arg Pro Val Lys Asp Asp Pro Val Asn Asp Asn Asp Ile Leu
1 5 10 15
Tyr Leu Arg Ile Pro Gln Asn Lys Leu Ile
20 25

<210> 98
<211> 44
<212> PRT
<213> Clostridium botulinum serotype D

<220>
<221> VARIANT
<222> (1)...(44)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 98
Tyr Thr Ile Arg Asp Gly Phe Asn Leu Thr Asn Lys Gly Phe Asn Ile

```

1           5          10         15
Glu Asn Ser Gly Gln Asn Ile Glu Arg Asn Pro Ala Leu Gln Lys Leu
20          25          30
Asp Leu Pro Pro Lys Val Cys Leu Arg Leu Thr Lys
35          40

```

<210> 99

<211> 31

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> VARIANT

<222> (1) . . . (31)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 99

Met Pro Lys Ile Asn Ser Pro Pro Asn Tyr Asn Asp Pro Val Asn Asp	1	5	10	15
Arg Thr Ile Leu Tyr Ile Lys Pro Gly Gly Cys Gln Glu Phe Tyr	20	25	30	

<210> 100

<211> 50

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> VARIANT

<222> (1) ... (50)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 100

Gly Tyr Asn Ile Asn Asn Leu Lys Val Asn Phe Arg Gly Gln Asn Ala
 1 5 10 15
 Asn Leu Asn Pro Arg Ile Ile Thr Pro Ile Thr Gly Arg Gly Leu Val
 20 25 30
 Lys Lys Ala Ala Ala Ala Cys Lys Asn Ile Val Ser Val Lys Gly Ile
 35 40 45
 Arg Lys
 50

<210> 101

<211> 33

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> VARIANT

<222> (1) . . . (33)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 101
Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Asp Pro Ala Ala Ala
1 5 10 15
Asn Asp Arg Thr Ile Leu Tyr Ile Lys Pro Gly Gly Cys Gln Glu Phe
20 25 30
Tyr

<210> 102
<211> 47
<212> PRT
<213> Clostridium botulinum serotype E

<220>
<221> VARIANT
<222> (1)...(47)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 102
Gly Tyr Asn Ile Asn Asn Leu Lys Val Asn Phe Arg Gly Gln Asn Ala
1 5 10 15
Asn Leu Asn Pro Arg Ile Ile Thr Pro Ile Thr Gly Arg Gly Leu Val
20 25 30
His Arg Phe Cys Lys Asn Ile Val Ser Val Lys Gly Ile Arg Lys
35 40 45

<210> 103
<211> 30
<212> PRT
<213> Clostridium botulinum serotype E

<220>
<221> VARIANT
<222> (1)...(30)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 103
Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp Arg
1 5 10 15
Thr Ile Leu Lys Ile Lys Pro Gly Gly Cys Lys Glu Phe Tyr
20 25 30

<210> 104
<211> 33
<212> PRT
<213> Clostridium botulinum serotype E

<220>
<221> VARIANT
<222> (1)...(33)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 104
Gly Tyr Asn Ile Asn Asn Leu Lys Val Asn Phe Arg Gly Gln Asn Ala
1 5 10 15
Asn Leu Asn Pro Arg Ile Ile Thr Pro Ile Thr Gly Arg Gly Leu Pro
20 25 30
Pro

<210> 105
<211> 24
<212> PRT
<213> Clostridium botulinum serotype F

<220>
<221> VARIANT
<222> (1)...(24)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 105
Met Pro Asn Tyr Asn Asp Pro Val Asn Asp Asp Thr Ile Leu Tyr Met
1 5 10 15
Gln Ile Pro Tyr Glu Glu Lys Ser
20

<210> 106
<211> 48
<212> PRT
<213> Clostridium botulinum serotype F

<220>
<221> VARIANT
<222> (1)...(48)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 106
Thr Val Ser Glu Gly Phe Asn Ile Gly Asn Leu Ala Val Asn Asn Arg
1 5 10 15
Gly Gln Ser Ile Lys Leu Asn Pro Lys Ile Ile Asp Ser Ile Pro Asp
20 25 30
Lys Gly Ala Ala Ala Ala Ala Cys Lys Ser Val Ile Pro Arg Lys
35 40 45

<210> 107
<211> 26
<212> PRT
<213> Clostridium botulinum serotype G

<220>
<221> CONFLICT
<222> (1)...(26)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 107
Met Pro Val Asn Ile Pro Pro Asp Pro Ile Asn Asn Asp Asp Ile Ile
1 5 10 15
Met Met Glu Pro Phe Asn Asp Pro Gly Pro
20 25

<210> 108
<211> 35
<212> PRT
<213> Clostridium botulinum serotype G

<220>
<221> CONFLICT
<222> (1)...(35)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 108
Gln Asn Glu Gly Phe Asn Ile Ala Ser Lys Asn Leu Lys Thr Glu Phe
1 5 10 15
Asn Gly Gln Asn Lys Ala Val Asn Lys Glu Ala Tyr Ala Ala Ala
20 25 30
Ala Ala Ala
35

<210> 109
<211> 22
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> VARIANT
<222> (1)...(22)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 109
Met Tyr Lys Asp Pro Val Asn Gly Val Asp Ile Ala Tyr Ile Lys Ile
1 5 10 15
Pro Asn Ala Gly Gln Met
20

<210> 110
<211> 39
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> VARIANT
<222> (1)...(39)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 110
Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln

1	5	10	15												
Asn	Thr	Glu	Ile	Asn	Asn	Met	Asn	Phe	Thr	Lys	Leu	Lys	Asn	Phe	Thr
			20					25						30	
Gly	Leu	Phe	Glu	Phe	Tyr	Lys									
							35								

<210> 111

<211> 24

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> VARIANT

<222> (1)...(24)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 111

Met	Pro	Phe	Val	Asn	Lys	Gln	Val	Asn	Gly	Val	Asp	Ile	Ala	Tyr	Ile
1				5				10					15		
Lys	Ile	Pro	Asn	Ala	Gly	Gln	Met								
				20											

<210> 112

<211> 40

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> VARIANT

<222> (1)...(40)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 112

Gly	Phe	Asn	Leu	Arg	Asn	Thr	Asn	Leu	Ala	Ala	Asn	Phe	Asn	Gly	Gln
1				5				10			15				
Asn	Thr	Glu	Ile	Asn	Asn	Met	Asn	Phe	Thr	Lys	Leu	Lys	Leu	Leu	Cys
			20			25					30				
Val	Arg	Gly	Ile	Ile	Thr	Ser	Lys								
			35			40									

<210> 113

<211> 24

<212> PRT

<213> Clostridium botulinum serotype A

<220>

<221> VARIANT

<222> (1)...(24)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 113

Met	Pro	Phe	Val	Asn	Lys	Gln	Phe	Asn	Tyr	Lys	Asp	Pro	Ala	Tyr	Ile
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

1 5 10 15
Lys Ile Pro Asn Ala Gly Gln Met
20

<210> 114
<211> 42
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> VARIANT
<222> (1)...(42)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 114
Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln
1 5 10 15
Asn Thr Glu Ile Asn Asn Met Asn Gly Leu Phe Glu Phe Tyr Lys Leu
20 25 30
Leu Cys Val Arg Gly Ile Ile Thr Ser Lys
35 40

<210> 115
<211> 20
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> VARIANT
<222> (1)...(20)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 115
Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly
1 5 10 15
Val Asp Ile Ala
20

<210> 116
<211> 40
<212> PRT
<213> Clostridium botulinum serotype A

<220>
<221> CONFLICT
<222> (1)...(40)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 116
Gly Phe Asn Leu Arg Asn Asn Thr Glu Ile Asn Asn Met Asn Phe Thr
1 5 10 15

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys
20 25 30
Val Arg Gly Ile Ile Thr Ser Lys
35 40

<210> 117

<211> 23

<212> PRT

<213> Clostridium botulinum serotype B

<220>

<221> VARIANT

<222> (1)...(23)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 117

Met Pro Val Thr Ile Asn Asn Phe Asn Tyr Asn Asp Pro Ile Asp Asn
1 5 10 15
Asp Asn Ile Ile Met Met Glu
20

<210> 118

<211> 45

<212> PRT

<213> Clostridium botulinum serotype B

<220>

<221> VARIANT

<222> (1)...(45)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 118

Tyr Thr Ile Ile Ser Asp Lys Asn Met Gly Lys Glu Tyr Arg Gly Gln
1 5 10 15
Asn Lys Ala Ile Asn Lys Gln Ala Tyr Glu Glu Ile Ser Lys Glu His
20 25 30
Leu Ala Val Tyr Lys Ile Gln Met Cys Lys Ser Val Lys
35 40 45

<210> 119

<211> 20

<212> PRT

<213> Clostridium botulinum serotype B

<220>

<221> CONFLICT

<222> (1)...(20)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 119

Met Pro Val Thr Ile Asn Asn Phe Asn Tyr Asn Asp Glu Pro Pro Phe
1 5 10 15

Ala Arg Gly Thr
20

<210> 120
<211> 42
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> VARIANT
<222> (1)...(42)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 120
Tyr Thr Ile Glu Glu Gly Phe Asn Ile Ser Asp Gly Gln Asn Lys Ala
1 5 10 15
Ile Asn Lys Gln Ala Tyr Glu Glu Ile Ser Lys Glu His Leu Ala Val
20 25 30
Tyr Lys Ile Gln Met Cys Lys Ser Val Lys
35 40

<210> 121
<211> 22
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> VARIANT
<222> (1)...(22)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 121
Met Pro Asn Asp Pro Ile Asp Asn Asp Asn Ile Ile Met Met Glu Pro
1 5 10 15
Pro Phe Ala Arg Gly Thr
20

<210> 122
<211> 38
<212> PRT
<213> Clostridium botulinum serotype B

<220>
<221> VARIANT
<222> (1)...(38)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 122
Tyr Thr Ile Glu Glu Gly Phe Asn Ile Ser Asp Lys Asn Met Gly Lys
1 5 10 15
Glu Tyr Arg Gly Gln Asn Lys Ala Ile Asn Lys Gln Ala Lys Ile Gln
20 25 30

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

Met Cys Lys Ser Val Lys
35

<210> 123

<211> 23

<212> PRT

<213> Clostridium botulinum serotype C1

<220>

<221> VARIANT

<222> (1)...(23)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 123

Met Pro Ile Ser Asp Pro Val Asp Asn Lys Asn Ile Leu Tyr Leu Asp
1 5 10 15
Thr His Leu Asn Thr Leu Ala
20

<210> 124

<211> 40

<212> PRT

<213> Clostridium botulinum serotype C1

<220>

<221> VARIANT

<222> (1)...(40)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 124

Asn Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly Gln Asn Leu
1 5 10 15
Ser Arg Asn Pro Ala Leu Arg Lys Val Lys Phe Cys His Lys Ala Ile
20 25 30
Asp Gly Arg Ser Leu Tyr Asn Lys
35 40

<210> 125

<211> 20

<212> PRT

<213> Clostridium botulinum serotype D

<220>

<221> CONFLICT

<222> (1)...(20)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 125

Met Thr Trp Val Asn Asp Asn Asp Ile Leu Tyr Leu Arg Ile Pro Gln
1 5 10 15
Asn Lys Leu Ile

20

<210> 126
<211> 40
<212> PRT
<213> Clostridium botulinum serotype D

<220>
<221> CONFLICT
<222> (1)...(40)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 126
Tyr Thr Ile Arg Asp Gly Phe Asn Leu Thr Asn Lys Gly Phe Asn Ile
1 5 10 15
Glu Asn Ser Gly Gln Asn Ile Glu Arg Asn Pro Ala Asp Leu Phe Thr
20 25 30
Lys Val Cys Leu Arg Leu Thr Lys
35 40

<210> 127
<211> 22
<212> PRT
<213> Clostridium botulinum serotype E

<220>
<221> VARIANT
<222> (1)...(22)
<223> Variant of amino-terminal 30 amino acids of LC

<400> 127
Met Pro Asp Pro Val Asn Asp Arg Thr Ile Leu Tyr Ile Lys Pro Gly
1 5 10 15
Gly Cys Gln Glu Phe Tyr
20

<210> 128
<211> 40
<212> PRT
<213> Clostridium botulinum serotype E

<220>
<221> VARIANT
<222> (1)...(40)
<223>
Variant of carboxyl-terminal 50 amino acids of LC

<400> 128
Gly Tyr Asn Ile Asn Asn Leu Lys Val Asn Phe Arg Gly Gln Asn Ala
1 5 10 15
Asn Leu Asn Pro Arg Ile Ile Thr Pro Ile Arg Phe Cys Lys Asn Ile
20 25 30

Nonprovisional Patent Application

17355CIP3 (BOT)

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

Val Ser Val Lys Gly Ile Arg Lys
35 40

<210> 129

<211> 20

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> VARIANT

<222> (1)...(20)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 129

Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Ile Lys Pro Gly Gly Cys
1 5 10 15
Gln Glu Phe Tyr
20

<210> 130

<211> 44

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> VARIANT

<222> (1)...(44)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 130

Gly Tyr Asn Ile Asn Asn Gly Gln Asn Ala Asn Leu Asn Pro Arg Ile
1 5 10 15
Ile Thr Pro Ile Thr Gly Arg Gly Leu Val Lys Lys Ile Ile Arg Phe
20 25 30
Cys Lys Asn Ile Val Ser Val Lys Gly Ile Arg Lys
35 40

<210> 131

<211> 22

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> VARIANT

<222> (1)...(22)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 131

Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp Arg
1 5 10 15
Thr Ile Leu Tyr Ile Lys
20

<210> 132

<211> 42

<212> PRT

<213> Clostridium botulinum serotype E

<220>

<221> VARIANT

<222> (1)...(42)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 132

Gly Tyr Asn Ile Asn Asn Leu Lys Val Asn Phe Arg Gly Gln Asn Ala
1 5 10 15
Asn Leu Asn Pro Arg Ile Ile Thr Pro Ile Thr Gly Arg Gly Leu Val
20 25 30
Lys Lys Ile Ile Arg Lys Gly Ile Arg Lys
35 40

<210> 133

<211> 25

<212> PRT

<213> Clostridium botulinum serotype F

<220>

<221> VARIANT

<222> (1)...(25)

<223> Variant of amino-terminal 30 amino acids of LC

<400> 133

Met Pro Val Ala Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp
1 5 10 15
Asp Thr Ile Leu Tyr Met Gln Ile Pro
20 25

<210> 134

<211> 42

<212> PRT

<213> Clostridium botulinum serotype F

<220>

<221> VARIANT

<222> (1)...(42)

<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 134

Thr Val Ser Glu Gly Phe Asn Ile Gly Asn Leu Ala Val Asn Asn Arg
1 5 10 15
Gly Gln Ser Ile Lys Leu Asn Pro Lys Ile Ile Asp Ser Ile Pro Asp
20 25 30
Lys Phe Cys Lys Ser Val Ile Pro Arg Lys
35 40

<210> 135
<211> 38
<212> PRT
<213> Clostridium botulinum serotype G

<220>
<221> VARIANT
<222> (1)...(38)
<223> Variant of carboxyl-terminal 50 amino acids of LC

<400> 135
Gln Asn Glu Gly Phe Asn Ile Ala Ser Lys Asn Leu Lys Thr Glu Phe
1 5 10 15
Asn Gly Gln Asn Lys Ala Val Asn Lys Glu Ala Arg Ile Ala Met Cys
20 25 30
Lys Pro Val Met Tyr Lys
35

<210> 136
<211> 423
<212> PRT
<213> Artificial Sequence

<220>
<221> DOMAIN
<222> (1)...(423)
<223> BoNT/A-BoNT/E chimeric LC

<400> 136
Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Asn Asp Arg
1 5 10 15
Thr Ile Leu Tyr Ile Lys Pro Gly Gly Cys Gln Glu Phe Tyr Lys Ser
20 25 30
Phe Asn Ile Met Lys Asn Ile Trp Ile Ile Pro Glu Arg Asn Val Ile
35 40 45
Gly Thr Thr Pro Gln Asp Phe His Pro Pro Thr Ser Leu Lys Asn Gly
50 55 60
Asp Ser Ser Tyr Tyr Asp Pro Asn Tyr Leu Gln Ser Asp Glu Glu Lys
65 70 75 80
Asp Arg Phe Leu Lys Ile Val Thr Lys Ile Phe Asn Arg Ile Asn Asn
85 90 95
Asn Leu Ser Gly Gly Ile Leu Leu Glu Glu Leu Ser Lys Ala Asn Pro
100 105 110
Tyr Leu Gly Asn Asp Asn Thr Pro Asp Asn Gln Phe His Ile Gly Asp
115 120 125
Ala Ser Ala Val Glu Ile Lys Phe Ser Asn Gly Ser Gln Asp Ile Leu
130 135 140
Leu Pro Asn Val Ile Ile Met Gly Ala Glu Pro Asp Leu Phe Glu Thr
145 150 155 160
Asn Ser Ser Asn Ile Ser Leu Arg Asn Asn Tyr Met Pro Ser Asn His
165 170 175
Gly Phe Gly Ser Ile Ala Ile Val Thr Phe Ser Pro Glu Tyr Ser Phe

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

180	185	190
Arg Phe Asn Asp Asn Ser Met Asn Glu Phe Ile Gln Asp Pro Ala Leu		
195	200	205
Thr Leu Met His Glu Leu Ile His Ser Leu His Gly Leu Tyr Gly Ala		
210	215	220
Lys Gly Ile Thr Thr Lys Tyr Thr Ile Thr Gln Lys Gln Asn Pro Leu		
225	230	235
Ile Thr Asn Ile Arg Gly Thr Asn Ile Glu Glu Phe Leu Thr Phe Gly		
245	250	255
Gly Thr Asp Leu Asn Ile Ile Thr Ser Ala Gln Ser Asn Asp Ile Tyr		
260	265	270
Thr Asn Leu Leu Ala Asp Tyr Lys Ile Ala Ser Lys Leu Ser Lys		
275	280	285
Val Gln Val Ser Asn Pro Leu Leu Asn Pro Tyr Lys Asp Val Phe Glu		
290	295	300
Ala Lys Tyr Gly Leu Asp Lys Asp Ala Ser Gly Ile Tyr Ser Val Asn		
305	310	315
Ile Asn Lys Phe Asn Asp Ile Phe Lys Lys Leu Tyr Ser Phe Thr Glu		
325	330	335
Phe Asp Leu Ala Thr Lys Phe Gln Val Lys Cys Arg Gln Thr Tyr Ile		
340	345	350
Gly Gln Tyr Lys Tyr Phe Lys Leu Ser Asn Leu Leu Asn Asp Ser Ile		
355	360	365
Tyr Asn Ile Ser Glu Gly Tyr Asn Ile Asn Asn Leu Lys Val Asn Phe		
370	375	380
Arg Gly Gln Asn Ala Asn Leu Asn Pro Arg Ile Ile Thr Pro Ile Thr		
385	390	395
Gly Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val		
405	410	415
Arg Gly Ile Ile Thr Ser Lys		
420		

<210> 137

<211> 441

<212> PRT

<213> Artificial Sequence

<220>

<221> DOMAIN

<222> (1)...(441)

<223> BoNT/A-BoNT/B chimeric LC

<400> 137

Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly			
1	5	10	15
Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met Gly Arg			
20	25	30	
Tyr Tyr Lys Ala Phe Lys Ile Thr Asp Arg Ile Trp Ile Ile Pro Glu			
35	40	45	
Arg Tyr Thr Phe Gly Tyr Lys Pro Glu Asp Phe Asn Lys Ser Ser Gly			
50	55	60	
Ile Phe Asn Arg Asp Val Cys Glu Tyr Tyr Asp Pro Asp Tyr Leu Asn			
65	70	75	80
Thr Asn Asp Lys Lys Asn Ile Phe Phe Gln Thr Leu Ile Lys Leu Phe			

Asn Arg Ile Lys Ser Lys Pro Leu Gly Glu Lys Leu Leu Glu Met Ile	85	90	95
100	105	110	
Ile Asn Gly Ile Pro Tyr Leu Gly Asp Arg Arg Val Pro Leu Glu Glu	115	120	125
130	135	140	
Phe Asn Thr Asn Ile Ala Ser Val Thr Val Asn Lys Leu Ile Ser Asn	145	150	155
160			
Pro Gly Glu Val Glu Arg Lys Lys Gly Ile Phe Ala Asn Leu Ile Ile	145	150	160
Phe Gly Pro Gly Pro Val Leu Asn Glu Asn Glu Thr Ile Asp Ile Gly	165	170	175
Ile Gln Asn His Phe Ala Ser Arg Glu Gly Phe Gly Gly Ile Met Gln	180	185	190
Met Lys Phe Cys Pro Glu Tyr Val Ser Val Phe Asn Asn Val Gln Glu	195	200	205
Asn Lys Gly Ala Ser Ile Phe Asn Arg Arg Gly Tyr Phe Ser Asp Pro	210	215	220
Ala Leu Ile Leu Met His Glu Leu Ile His Val Leu His Gly Leu Tyr	225	230	235
240			
Gly Ile Lys Val Asp Asp Leu Pro Ile Val Pro Asn Glu Lys Lys Phe	245	250	255
Phe Met Gln Ser Thr Asp Thr Ile Gln Ala Glu Glu Leu Tyr Thr Phe	260	265	270
Gly Gly Gln Asp Pro Ser Ile Ile Ser Pro Ser Thr Asp Lys Ser Ile	275	280	285
Tyr Asp Lys Val Leu Gln Asn Phe Arg Gly Ile Val Asp Arg Leu Asn	290	295	300
Lys Val Leu Val Cys Ile Ser Asp Pro Asn Ile Asn Ile Asn Ile Tyr	305	310	315
320			
Lys Asn Lys Phe Lys Asp Lys Tyr Lys Phe Val Glu Asp Ser Glu Gly	325	330	335
Lys Tyr Ser Ile Asp Val Glu Ser Phe Asn Lys Leu Tyr Lys Ser Leu	340	345	350
350			
Met Leu Gly Phe Thr Glu Ile Asn Ile Ala Glu Asn Tyr Lys Ile Lys	355	360	365
Thr Arg Ala Ser Tyr Phe Ser Asp Ser Leu Pro Pro Val Lys Ile Lys	370	375	380
380			
Asn Leu Leu Asp Asn Glu Ile Tyr Thr Ile Glu Glu Gly Phe Asn Ile	385	390	395
400			
Ser Asp Lys Asn Met Gly Lys Glu Tyr Arg Gly Gln Asn Lys Ala Ile	405	410	415
420	425	430	
Lys Ile Gln Met Cys Lys Ser Val Lys	435	440	

<210> 138

<211> 423

<212> PRT

<213> Artificial Sequence

<220>

<221> DOMAIN

<222> (1)...(423)

<223> BoNT/A-BoNT/E chimeric LC

<400> 138

Met Pro Phe Val Asn Lys Gln Phe Asn Asn Asp Pro Val Asn Asp Arg			
1	5	10	15
Thr Ile Leu Tyr Ile Lys Pro Gly Gly Cys Gln Glu Phe Tyr Lys Ser			
20	25	30	
Phe Asn Ile Met Lys Asn Ile Trp Ile Ile Pro Glu Arg Asn Val Ile			
35	40	45	
Gly Thr Thr Pro Gln Asp Phe His Pro Pro Thr Ser Leu Lys Asn Gly			
50	55	60	
Asp Ser Ser Tyr Tyr Asp Pro Asn Tyr Leu Gln Ser Asp Glu Glu Lys			
65	70	75	80
Asp Arg Phe Leu Lys Ile Val Thr Lys Ile Phe Asn Arg Ile Asn Asn			
85	90	95	
Asn Leu Ser Gly Gly Ile Leu Leu Glu Glu Leu Ser Lys Ala Asn Pro			
100	105	110	
Tyr Leu Gly Asn Asp Asn Thr Pro Asp Asn Gln Phe His Ile Gly Asp			
115	120	125	
Ala Ser Ala Val Glu Ile Lys Phe Ser Asn Gly Ser Gln Asp Ile Leu			
130	135	140	
Leu Pro Asn Val Ile Ile Met Gly Ala Glu Pro Asp Leu Phe Glu Thr			
145	150	155	160
Asn Ser Ser Asn Ile Ser Leu Arg Asn Asn Tyr Met Pro Ser Asn His			
165	170	175	
Gly Phe Gly Ser Ile Ala Ile Val Thr Phe Ser Pro Glu Tyr Ser Phe			
180	185	190	
Arg Phe Asn Asp Asn Ser Met Asn Glu Phe Ile Gln Asp Pro Ala Leu			
195	200	205	
Thr Leu Met His Glu Leu Ile His Ser Leu His Gly Leu Tyr Gly Ala			
210	215	220	
Lys Gly Ile Thr Thr Lys Tyr Thr Ile Thr Gln Lys Gln Asn Pro Leu			
225	230	235	240
Ile Thr Asn Ile Arg Gly Thr Asn Ile Glu Glu Phe Leu Thr Phe Gly			
245	250	255	
Gly Thr Asp Leu Asn Ile Ile Thr Ser Ala Gln Ser Asn Asp Ile Tyr			
260	265	270	
Thr Asn Leu Leu Ala Asp Tyr Lys Ile Ala Ser Lys Leu Ser Lys			
275	280	285	
Val Gln Val Ser Asn Pro Leu Leu Asn Pro Tyr Lys Asp Val Phe Glu			
290	295	300	
Ala Lys Tyr Gly Leu Asp Lys Asp Ala Ser Gly Ile Tyr Ser Val Asn			
305	310	315	320
Ile Asn Lys Phe Asn Asp Ile Phe Lys Lys Leu Tyr Ser Phe Thr Glu			
325	330	335	
Phe Asp Leu Ala Thr Lys Phe Gln Val Lys Cys Arg Gln Thr Tyr Ile			
340	345	350	
Gly Gln Tyr Lys Tyr Phe Lys Leu Ser Asn Leu Asn Asp Ser Ile			
355	360	365	
Tyr Asn Ile Ser Glu Gly Tyr Asn Ile Asn Asn Leu Lys Val Asn Phe			
370	375	380	
Arg Gly Gln Asn Ala Asn Leu Asn Pro Arg Ile Ile Thr Pro Ile Thr			
385	390	395	400
Gly Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val			
405	410	415	

Arg Gly Ile Ile Thr Ser Lys
420

<210> 139
<211> 441
<212> PRT
<213> Artificial Sequence

<220>
<221> DOMAIN
<222> (1)...(441)
<223> BoNT/A-BoNT/B chimeric LC

<400> 139
Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Asn Asp Pro Ile Asp Asn
1 5 10 15
Asp Asn Ile Ile Met Met Glu Pro Pro Phe Ala Arg Gly Thr Gly Arg
20 25 30
Tyr Tyr Lys Ala Phe Lys Ile Thr Asp Arg Ile Trp Ile Ile Pro Glu
35 40 45
Arg Tyr Thr Phe Gly Tyr Lys Pro Glu Asp Phe Asn Lys Ser Ser Gly
50 55 60
Ile Phe Asn Arg Asp Val Cys Glu Tyr Tyr Asp Pro Asp Tyr Leu Asn
65 70 75 80
Thr Asn Asp Lys Lys Asn Ile Phe Phe Gln Thr Leu Ile Lys Leu Phe
85 90 95
Asn Arg Ile Lys Ser Lys Pro Leu Gly Glu Lys Leu Leu Glu Met Ile
100 105 110
Ile Asn Gly Ile Pro Tyr Leu Gly Asp Arg Arg Val Pro Leu Glu Glu
115 120 125
Phe Asn Thr Asn Ile Ala Ser Val Thr Val Asn Lys Leu Ile Ser Asn
130 135 140
Pro Gly Glu Val Glu Arg Lys Lys Gly Ile Phe Ala Asn Leu Ile Ile
145 150 155 160
Phe Gly Pro Gly Pro Val Leu Asn Glu Asn Glu Thr Ile Asp Ile Gly
165 170 175
Ile Gln Asn His Phe Ala Ser Arg Glu Gly Phe Gly Gly Ile Met Gln
180 185 190
Met Lys Phe Cys Pro Glu Tyr Val Ser Val Phe Asn Asn Val Gln Glu
195 200 205
Asn Lys Gly Ala Ser Ile Phe Asn Arg Arg Gly Tyr Phe Ser Asp Pro
210 215 220
Ala Leu Ile Leu Met His Glu Leu Ile His Val Leu His Gly Leu Tyr
225 230 235 240
Gly Ile Lys Val Asp Asp Leu Pro Ile Val Pro Asn Glu Lys Lys Phe
245 250 255
Phe Met Gln Ser Thr Asp Thr Ile Gln Ala Glu Glu Leu Tyr Thr Phe
260 265 270
Gly Gly Gln Asp Pro Ser Ile Ile Ser Pro Ser Thr Asp Lys Ser Ile
275 280 285
Tyr Asp Lys Val Leu Gln Asn Phe Arg Gly Ile Val Asp Arg Leu Asn
290 295 300
Lys Val Leu Val Cys Ile Ser Asp Pro Asn Ile Asn Ile Asn Ile Tyr
305 310 315 320

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

Lys	Asn	Lys	Phe	Lys	Asp	Lys	Tyr	Lys	Phe	Val	Glu	Asp	Ser	Glu	Gly
			325			330					335				
Lys	Tyr	Ser	Ile	Asp	Val	Glu	Ser	Phe	Asn	Lys	Leu	Tyr	Lys	Ser	Leu
			340			345					350				
Met	Leu	Gly	Phe	Thr	Glu	Ile	Asn	Ile	Ala	Glu	Asn	Tyr	Lys	Ile	Lys
			355			360				365					
Thr	Arg	Ala	Ser	Tyr	Phe	Ser	Asp	Ser	Leu	Pro	Pro	Val	Lys	Ile	Lys
			370			375				380					
Asn	Leu	Leu	Asp	Asn	Glu	Ile	Tyr	Thr	Ile	Glu	Glu	Gly	Phe	Asn	Ile
			385			390				395			400		
Ser	Asp	Lys	Asn	Met	Gly	Lys	Glu	Tyr	Arg	Gly	Gln	Asn	Lys	Ala	Ile
			405			410				415					
Asn	Lys	Gln	Lys	Asn	Phe	Thr	Gly	Leu	Phe	Glu	Phe	Tyr	Lys	Leu	Leu
			420			425				430					
Cys	Val	Arg	Gly	Ile	Ile	Thr	Ser	Lys							
			435			440									

<210> 140

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<221> DOMAIN

<222> (1)...(436)

<223> BoNT/A-BoNT/F chimeric LC

<400> 140

Met	Pro	Phe	Val	Asn	Lys	Gln	Phe	Asn	Tyr	Asn	Asp	Pro	Val	Asn	Asp
1				5				10			15				
Asp	Thr	Ile	Leu	Tyr	Met	Gln	Ile	Pro	Tyr	Glu	Glu	Ser	Lys	Lys	
				20				25			30				
Tyr	Tyr	Lys	Ala	Phe	Glu	Ile	Met	Arg	Asn	Val	Trp	Ile	Ile	Pro	Glu
			35			40					45				
Arg	Asn	Thr	Ile	Gly	Thr	Asn	Pro	Ser	Asp	Phe	Asp	Pro	Pro	Ala	Ser
			50			55				60					
Leu	Lys	Asn	Gly	Ser	Ser	Ala	Tyr	Tyr	Asp	Pro	Asn	Tyr	Leu	Thr	Thr
	65					70				75			80		
Asp	Ala	Glu	Lys	Asp	Arg	Tyr	Leu	Lys	Thr	Thr	Ile	Lys	Leu	Phe	Lys
			85			90				95					
Arg	Ile	Asn	Ser	Asn	Pro	Ala	Gly	Lys	Val	Leu	Leu	Gln	Glu	Ile	Ser
			100			105				110					
Tyr	Ala	Lys	Pro	Tyr	Leu	Gly	Asn	Asp	His	Thr	Pro	Ile	Asp	Glu	Phe
			115			120				125					
Ser	Pro	Val	Thr	Arg	Thr	Thr	Ser	Val	Asn	Ile	Lys	Leu	Ser	Thr	Asn
			130			135				140					
Val	Glu	Ser	Ser	Met	Leu	Leu	Asn	Leu	Leu	Val	Leu	Gly	Ala	Gly	Pro
	145				150				155			160			
Asp	Ile	Phe	Glu	Ser	Cys	Cys	Tyr	Pro	Val	Arg	Lys	Leu	Ile	Asp	Pro
			165			170				175					
Asp	Val	Val	Tyr	Asp	Pro	Ser	Asn	Tyr	Gly	Phe	Gly	Ser	Ile	Asn	Ile
			180			185				190					
Val	Thr	Phe	Ser	Pro	Glu	Tyr	Glu	Tyr	Thr	Phe	Asn	Asp	Ile	Ser	Gly
	195				200				205						

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

Gly His Asn Ser Ser Thr Glu Ser Phe Ile Ala Asp Pro Ala Ile Ser
 210 215 220
 Leu Ala His Glu Leu Ile His Ala Leu His Gly Leu Tyr Gly Ala Arg
 225 230 235 240
 Gly Val Thr Tyr Glu Glu Thr Ile Glu Val Lys Gln Ala Pro Leu Met
 245 250 255
 Ile Ala Glu Lys Pro Ile Arg Leu Glu Glu Phe Leu Thr Phe Gly Gly
 260 265 270
 Gln Asp Leu Asn Ile Ile Thr Ser Ala Met Lys Glu Lys Ile Tyr Asn
 275 280 285
 Asn Leu Leu Ala Asn Tyr Glu Lys Ile Ala Thr Arg Leu Ser Glu Val
 290 295 300
 Asn Ser Ala Pro Pro Glu Tyr Asp Ile Asn Glu Tyr Lys Asp Tyr Phe
 305 310 315 320
 Gln Trp Lys Tyr Glu Leu Asp Lys Asn Ala Asp Gly Ser Tyr Thr Val
 325 330 335
 Asn Glu Asn Lys Phe Asn Glu Ile Tyr Lys Lys Leu Tyr Ser Phe Thr
 340 345 350
 Glu Ser Asp Leu Ala Asn Lys Phe Lys Val Lys Cys Arg Asn Thr Tyr
 355 360 365
 Phe Ile Lys Tyr Glu Phe Leu Lys Val Pro Asn Leu Leu Asp Asp Asp
 370 375 380
 Ile Tyr Thr Val Ser Glu Gly Phe Asn Ile Gly Asn Leu Ala Val Asn
 385 390 395 400
 Asn Arg Gly Gln Ser Ile Lys Leu Asn Pro Lys Ile Ile Asp Lys Asn
 405 410 415
 Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg Gly Ile
 420 425 430
 Ile Thr Ser Lys
 435

<210> 141
<211> 483
<212> PRT
<213> Artificial Sequence

<220>
<221> DOMAIN
<222> (1)...(483)
<223> BoNT/A-BoNT/B chimeric LC

<400> 141
Met Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly
 1 5 10 15
Val Asp Ile Ala Tyr Ile Lys Ile Pro Asn Ala Gly Gln Met Gln Pro
 20 25 30
Val Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg
 35 40 45
Asp Thr Phe Tyr Asn Asp Pro Ile Asp Asn Asp Asn Ile Ile Met Met
 50 55 60
Glu Pro Pro Phe Ala Arg Gly Thr Gly Arg Tyr Tyr Lys Ala Phe Lys
 65 70 75 80
Ile Thr Asp Arg Ile Trp Ile Ile Pro Glu Arg Tyr Thr Phe Gly Tyr
 85 90 95

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

Lys Pro Glu Asp Phe Asn Lys Ser Ser Gly Ile Phe Asn Arg Asp Val
 100 105 110
 Cys Glu Tyr Tyr Asp Pro Asp Tyr Leu Asn Thr Asn Asp Lys Lys Asn
 115 120 125
 Ile Phe Phe Gln Thr Leu Ile Lys Leu Phe Asn Arg Ile Lys Ser Lys
 130 135 140
 Pro Leu Gly Glu Lys Leu Leu Glu Met Ile Ile Asn Gly Ile Pro Tyr
 145 150 155 160
 Leu Gly Asp Arg Arg Val Pro Leu Glu Glu Phe Asn Thr Asn Ile Ala
 165 170 175
 Ser Val Thr Val Asn Lys Leu Ile Ser Asn Pro Gly Glu Val Glu Arg
 180 185 190
 Lys Lys Gly Ile Phe Ala Asn Leu Ile Ile Phe Gly Pro Gly Pro Val
 195 200 205
 Leu Asn Glu Asn Glu Thr Ile Asp Ile Gly Ile Gln Asn His Phe Ala
 210 215 220
 Ser Arg Glu Gly Phe Gly Gly Ile Met Gln Met Lys Phe Cys Pro Glu
 225 230 235 240
 Tyr Val Ser Val Phe Asn Asn Val Gln Glu Asn Lys Gly Ala Ser Ile
 245 250 255
 Phe Asn Arg Arg Gly Tyr Phe Ser Asp Pro Ala Leu Ile Leu Met His
 260 265 270
 Glu Leu Ile His Val Leu His Gly Leu Tyr Gly Ile Lys Val Asp Asp
 275 280 285
 Leu Pro Ile Val Pro Asn Glu Lys Lys Phe Phe Met Gln Ser Thr Asp
 290 295 300
 Thr Ile Gln Ala Glu Leu Tyr Thr Phe Gly Gly Gln Asp Pro Ser
 305 310 315 320
 Ile Ile Ser Pro Ser Thr Asp Lys Ser Ile Tyr Asp Lys Val Leu Gln
 325 330 335
 Asn Phe Arg Gly Ile Val Asp Arg Leu Asn Lys Val Leu Val Cys Ile
 340 345 350
 Ser Asp Pro Asn Ile Asn Ile Asn Ile Tyr Lys Asn Lys Phe Lys Asp
 355 360 365
 Lys Tyr Lys Phe Val Glu Asp Ser Glu Gly Lys Tyr Ser Ile Asp Val
 370 375 380
 Glu Ser Phe Asn Lys Leu Tyr Lys Ser Leu Met Leu Gly Phe Thr Glu
 385 390 395 400
 Ile Asn Ile Ala Glu Asn Tyr Lys Ile Lys Thr Arg Ala Ser Tyr Phe
 405 410 415
 Ser Asp Ser Leu Pro Pro Val Lys Ile Lys Asn Leu Leu Asp Asn Glu
 420 425 430
 Ile Tyr Thr Ile Glu Glu Gly Phe Asn Ile Ser Asp Lys Asn Met Gly
 435 440 445
 Lys Glu Tyr Arg Gly Gln Asn Lys Ala Ile Asn Lys Gln Ala Tyr Glu
 450 455 460
 Glu Ile Ser Lys Glu His Leu Ala Val Tyr Lys Ile Gln Met Cys Lys
 465 470 475 480
 Ser Val Lys

<210> 142

<211> 458

<212> PRT

<213> Artificial Sequence

<220>

<221> DOMAIN

<222> (1)...(458)

<223> BoNT/A-BoNT/E chimeric LC

<400> 142

Met	Pro	Lys	Ile	Asn	Ser	Phe	Asn	Tyr	Asn	Asp	Pro	Val	Asn	Asp	Arg
1															15
Thr	Ile	Leu	Tyr	Ile	Lys	Pro	Gly	Gly	Cys	Gln	Glu	Phe	Tyr	Lys	Ser
															30
Phe	Asn	Ile	Met	Lys	Asn	Ile	Trp	Ile	Ile	Pro	Glu	Arg	Asn	Val	Ile
															45
Gly	Thr	Thr	Pro	Gln	Asp	Phe	His	Pro	Pro	Thr	Ser	Leu	Lys	Asn	Gly
															50
Asp	Ser	Ser	Tyr	Tyr	Asp	Pro	Asn	Tyr	Leu	Gln	Ser	Asp	Glu	Glu	Lys
															60
Asp	Arg	Phe	Leu	Lys	Ile	Val	Thr	Lys	Ile	Phe	Asn	Arg	Ile	Asn	Asn
															85
Asn	Leu	Ser	Gly	Gly	Ile	Leu	Leu	Glu	Leu	Ser	Lys	Ala	Asn	Pro	
															100
Tyr	Leu	Gly	Asn	Asp	Asn	Thr	Pro	Asp	Asn	Gln	Phe	His	Ile	Gly	Asp
															115
Ala	Ser	Ala	Val	Glu	Ile	Lys	Phe	Ser	Asn	Gly	Ser	Gln	Asp	Ile	Leu
															130
Leu	Pro	Asn	Val	Ile	Ile	Met	Gly	Ala	Glu	Pro	Asp	Leu	Phe	Glu	
															145
Asn	Ser	Ser	Asn	Ile	Ser	Leu	Arg	Asn	Asn	Tyr	Met	Pro	Ser	Asn	His
															165
Gly	Phe	Gly	Ser	Ile	Ala	Ile	Val	Thr	Phe	Ser	Pro	Glu	Tyr	Ser	Phe
															180
Arg	Phe	Asn	Asp	Asn	Ser	Met	Asn	Glu	Phe	Ile	Gln	Asp	Pro	Ala	Leu
															195
Thr	Leu	Met	His	Glu	Leu	Ile	His	Ser	Leu	His	Gly	Leu	Tyr	Gly	Ala
															210
Lys	Gly	Ile	Thr	Thr	Lys	Tyr	Thr	Ile	Thr	Gln	Lys	Gln	Asn	Pro	Leu
															225
Ile	Thr	Asn	Ile	Arg	Gly	Thr	Asn	Ile	Glu	Glu	Phe	Leu	Thr	Phe	Gly
															245
Gly	Thr	Asp	Leu	Asn	Ile	Ile	Thr	Ser	Ala	Gln	Ser	Asn	Ile	Tyr	
															260
Thr	Asn	Leu	Leu	Ala	Asp	Tyr	Lys	Ile	Ala	Ser	Lys	Leu	Ser	Lys	
															275
Val	Gln	Val	Ser	Asn	Pro	Leu	Leu	Asn	Pro	Tyr	Lys	Asp	Val	Phe	Glu
															290
Ala	Lys	Tyr	Gly	Leu	Asp	Lys	Asp	Ala	Ser	Gly	Ile	Tyr	Ser	Val	Asn
															305
Ile	Asn	Lys	Phe	Asn	Ile	Ile	Phe	Lys	Lys	Leu	Tyr	Ser	Phe	Thr	Glu
															325
Phe	Asp	Leu	Ala	Thr	Lys	Phe	Gln	Val	Lys	Cys	Arg	Gln	Thr	Tyr	Ile
															340
Gly	Gln	Tyr	Lys	Tyr	Phe	Lys	Leu	Ser	Asn	Leu	Asn	Asp	Ser	Ile	
															355
Tyr	Asn	Ile	Ser	Glu	Gly	Tyr	Asn	Ile	Asn	Asn	Leu	Lys	Val	Asn	Phe

370	375	380
Arg Gly Gln Asn Ala Asn	Leu Asn Pro Arg Ile Ile Thr Pro Gly Phe	
385	390	395
Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln Asn Thr		400
405	410	415
Glu Ile Asn Asn Met Asn Phe Thr Lys Leu Lys Asn Phe Thr Gly Leu		
420	425	430
Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg Gly Ile Ile Thr Ser Lys		
435	440	445
Asn Ile Val Ser Val Lys Gly Ile Arg Lys		
450	455	

<210> 143

<211> 443

<212> PRT

<213> Artificial Sequence

<220>

<221> DOMAIN

<222> (1)...(443)

<223> BoNT/α-BoNT/E chimeric LC

<400> 143

Met Pro Lys Ile Asn Ser Phe Asn Tyr Met Pro Phe Val Asn Lys Gln			
1	5	10	15
Phe Asn Tyr Lys Asp Pro Val Asn Gly Val Asp Ile Ala Tyr Ile Lys			
20	25	30	
Ile Pro Asn Ala Gly Gln Met Tyr Ile Lys Pro Gly Gly Cys Gln Glu			
35	40	45	
Phe Tyr Lys Ser Phe Asn Ile Met Lys Asn Ile Trp Ile Ile Pro Glu			
50	55	60	
Arg Asn Val Ile Gly Thr Thr Pro Gln Asp Phe His Pro Pro Thr Ser			
65	70	75	80
Leu Lys Asn Gly Asp Ser Ser Tyr Tyr Asp Pro Asn Tyr Leu Gln Ser			
85	90	95	
Asp Glu Glu Lys Asp Arg Phe Leu Lys Ile Val Thr Lys Ile Phe Asn			
100	105	110	
Arg Ile Asn Asn Asn Leu Ser Gly Gly Ile Leu Leu Glu Glu Leu Ser			
115	120	125	
Lys Ala Asn Pro Tyr Leu Gly Asn Asp Asn Thr Pro Asp Asn Gln Phe			
130	135	140	
His Ile Gly Asp Ala Ser Ala Val Glu Ile Lys Phe Ser Asn Gly Ser			
145	150	155	160
Gln Asp Ile Leu Leu Pro Asn Val Ile Ile Met Gly Ala Glu Pro Asp			
165	170	175	
Leu Phe Glu Thr Asn Ser Ser Asn Ile Ser Leu Arg Asn Asn Tyr Met			
180	185	190	
Pro Ser Asn His Gly Phe Gly Ser Ile Ala Ile Val Thr Phe Ser Pro			
195	200	205	
Glu Tyr Ser Phe Arg Phe Asn Asp Asn Ser Met Asn Glu Phe Ile Gln			
210	215	220	
Asp Pro Ala Leu Thr Leu Met His Glu Leu Ile His Ser Leu His Gly			
225	230	235	240
Leu Tyr Gly Ala Lys Gly Ile Thr Thr Lys Tyr Thr Ile Thr Gln Lys			

Gln	Asn	Pro	Leu	Ile	Thr	Asn	Ile	Arg	Gly	Thr	Asn	Ile	Glu	Glu	Phe
245															
Leu	Thr	Phe	Gly	Gly	Thr	Asp	Leu	Asn	Ile	Ile	Thr	Ser	Ala	Gln	Ser
260															270
Asn	Asp	Ile	Tyr	Thr	Asn	Leu	Leu	Ala	Asp	Tyr	Lys	Lys	Ile	Ala	Ser
275															285
Asp	Val	Phe	Glu	Ala	Lys	Tyr	Gly	Leu	Asp	Lys	Asp	Ala	Ser	Gly	Ile
290															300
Lys	Leu	Ser	Lys	Val	Gln	Val	Ser	Asn	Pro	Leu	Leu	Asn	Pro	Tyr	Lys
305															315
Asp	Val	Phe	Glu	Ala	Lys	Tyr	Gly	Leu	Asp	Lys	Asp	Ala	Ser	Gly	Ile
320															335
Tyr	Ser	Val	Asn	Ile	Asn	Lys	Phe	Asn	Asp	Ile	Phe	Lys	Lys	Leu	Tyr
325															340
Ser	Phe	Thr	Glu	Phe	Asp	Leu	Ala	Thr	Lys	Phe	Gln	Val	Lys	Cys	Arg
335															355
Gln	Thr	Tyr	Ile	Gly	Gln	Tyr	Lys	Tyr	Phe	Lys	Leu	Ser	Asn	Leu	Leu
340															370
Asn	Asp	Ser	Ile	Tyr	Ile	Ser	Glu	Gly	Phe	Asn	Leu	Arg	Asn	Thr	
345															385
Asn	Leu	Ala	Ala	Asn	Phe	Asn	Gly	Gln	Asn	Thr	Glu	Ile	Asn	Asn	Met
350															405
Asn	Phe	Thr	Lys	Leu	Lys	Asn	Phe	Thr	Gly	Leu	Phe	Glu	Phe	Tyr	Lys
355															420
Leu	Leu	Cys	Val	Arg	Gly	Ile	Ile	Thr	Ser	Lys					
360															435
															440

<210> 144

<211> 461

<212> PRT

<213> Artificial Sequence

<220>

<221> DOMAIN

<222> (1)...(461)

<223> BoNT/A-BoNT/B chimeric LC

<400> 144

Met	Pro	Val	Thr	Ile	Asn	Asn	Phe	Asn	Met	Pro	Phe	Val	Asn	Lys	Gln
1									5			10			15
Phe	Asn	Tyr	Lys	Asp	Pro	Val	Asn	Gly	Val	Asp	Ile	Ala	Tyr	Ile	Lys
									20			25			30
Ile	Pro	Asn	Ala	Gly	Gln	Met	Ile	Met	Met	Glu	Pro	Pro	Phe	Ala	Arg
									35			40			45
Gly	Thr	Gly	Arg	Tyr	Tyr	Lys	Ala	Phe	Lys	Ile	Thr	Asp	Arg	Ile	Trp
									50			55			60
Ile	Ile	Pro	Glu	Arg	Tyr	Thr	Phe	Gly	Tyr	Lys	Pro	Glu	Asp	Phe	Asn
									65			70			75
Lys	Ser	Ser	Gly	Ile	Phe	Asn	Arg	Asp	Val	Cys	Glu	Tyr	Tyr	Asp	Pro
									85			90			95
Asp	Tyr	Leu	Asn	Thr	Asn	Asp	Lys	Asn	Ile	Phe	Phe	Gln	Thr	Leu	
									100			105			110
Ile	Lys	Leu	Phe	Asn	Arg	Ile	Lys	Ser	Lys	Pro	Leu	Gly	Glu	Lys	Leu
									115			120			125
Leu	Glu	Met	Ile	Ile	Asn	Gly	Ile	Pro	Tyr	Leu	Gly	Asp	Arg	Arg	Val

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

130	135	140
Pro Leu Glu Glu Phe Asn Thr Asn Ile Ala Ser Val Thr Val Asn Lys		
145	150	155
Leu Ile Ser Asn Pro Gly Glu Val Glu Arg Lys Lys Gly Ile Phe Ala		160
165	170	175
Asn Leu Ile Ile Phe Gly Pro Gly Pro Val Leu Asn Glu Asn Glu Thr		
180	185	190
Ile Asp Ile Gly Ile Gln Asn His Phe Ala Ser Arg Glu Gly Phe Gly		195
195	200	205
Gly Ile Met Gln Met Lys Phe Cys Pro Glu Tyr Val Ser Val Phe Asn		
210	215	220
Asn Val Gln Glu Asn Lys Gly Ala Ser Ile Phe Asn Arg Arg Gly Tyr		
225	230	235
Phe Ser Asp Pro Ala Leu Ile Leu Met His Glu Leu Ile His Val Leu		240
245	250	255
His Gly Leu Tyr Gly Ile Lys Val Asp Asp Leu Pro Ile Val Pro Asn		
260	265	270
Glu Lys Lys Phe Phe Met Gln Ser Thr Asp Thr Ile Gln Ala Glu Glu		
275	280	285
Leu Tyr Thr Phe Gly Gly Gln Asp Pro Ser Ile Ile Ser Pro Ser Thr		
290	295	300
Asp Lys Ser Ile Tyr Asp Lys Val Leu Gln Asn Phe Arg Gly Ile Val		
305	310	315
Asp Arg Leu Asn Lys Val Leu Val Cys Ile Ser Asp Pro Asn Ile Asn		320
325	330	335
Ile Asn Ile Tyr Lys Asn Lys Phe Lys Asp Lys Tyr Lys Phe Val Glu		
340	345	350
Asp Ser Glu Gly Lys Tyr Ser Ile Asp Val Glu Ser Phe Asn Lys Leu		
355	360	365
Tyr Lys Ser Leu Met Leu Gly Phe Thr Glu Ile Asn Ile Ala Glu Asn		
370	375	380
Tyr Lys Ile Lys Thr Arg Ala Ser Tyr Phe Ser Asp Ser Leu Pro Pro		
385	390	395
Val Lys Ile Lys Asn Leu Leu Asp Asn Glu Ile Gly Phe Asn Leu Arg		400
405	410	415
Asn Thr Asn Leu Ala Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn		
420	425	430
Asn Met Asn Phe Thr Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe		
435	440	445
Tyr Lys Leu Leu Cys Val Arg Gly Ile Ile Thr Ser Lys		
450	455	460

<210> 145

<211> 456

<212> PRT

<213> Artificial Sequence

<220>

<221> DOMAIN

<222> (1)...(456)

<223> BoNT/A-BoNT/F chimeric LC

<400> 145

Met Pro Val Ala Ile Asn Ser Phe Asn Met Pro Phe Val Asn Lys Gln

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

1	5	10	15
Phe Asn Tyr Lys Asp Pro Val Asn Gly Val Asp Ile Ala Tyr Ile Lys			
20	25		30
Ile Pro Asn Ala Gly Gln Met Leu Tyr Met Gln Ile Pro Tyr Glu Glu			
35	40	45	
Lys Ser Lys Lys Tyr Tyr Lys Ala Phe Glu Ile Met Arg Asn Val Trp			
50	55	60	
Ile Ile Pro Glu Arg Asn Thr Ile Gly Thr Asn Pro Ser Asp Phe Asp			
65	70	75	80
Pro Pro Ala Ser Leu Lys Asn Gly Ser Ser Ala Tyr Tyr Asp Pro Asn			
85	90	95	
Tyr Leu Thr Thr Asp Ala Glu Lys Asp Arg Tyr Leu Lys Thr Thr Ile			
100	105	110	
Lys Leu Phe Lys Arg Ile Asn Ser Asn Pro Ala Gly Lys Val Leu Leu			
115	120	125	
Gln Glu Ile Ser Tyr Ala Lys Pro Tyr Leu Gly Asn Asp His Thr Pro			
130	135	140	
Ile Asp Glu Phe Ser Pro Val Thr Arg Thr Ser Val Asn Ile Lys			
145	150	155	160
Leu Ser Thr Asn Val Glu Ser Ser Met Leu Leu Asn Leu Leu Val Leu			
165	170	175	
Gly Ala Gly Pro Asp Ile Phe Glu Ser Cys Cys Tyr Pro Val Arg Lys			
180	185	190	
Leu Ile Asp Pro Asp Val Val Tyr Asp Pro Ser Asn Tyr Gly Phe Gly			
195	200	205	
Ser Ile Asn Ile Val Thr Phe Ser Pro Glu Tyr Glu Tyr Thr Phe Asn			
210	215	220	
Asp Ile Ser Gly Gly His Asn Ser Ser Thr Glu Ser Phe Ile Ala Asp			
225	230	235	240
Pro Ala Ile Ser Leu Ala His Glu Leu Ile His Ala Leu His Gly Leu			
245	250	255	
Tyr Gly Ala Arg Gly Val Thr Tyr Glu Glu Thr Ile Glu Val Lys Gln			
260	265	270	
Ala Pro Leu Met Ile Ala Glu Lys Pro Ile Arg Leu Glu Glu Phe Leu			
275	280	285	
Thr Phe Gly Gly Gln Asp Leu Asn Ile Ile Thr Ser Ala Met Lys Glu			
290	295	300	
Lys Ile Tyr Asn Asn Leu Leu Ala Asn Tyr Glu Lys Ile Ala Thr Arg			
305	310	315	320
Leu Ser Glu Val Asn Ser Ala Pro Pro Glu Tyr Asp Ile Asn Glu Tyr			
325	330	335	
Lys Asp Tyr Phe Gln Trp Lys Tyr Gly Leu Asp Lys Asn Ala Asp Gly			
340	345	350	
Ser Tyr Thr Val Asn Glu Asn Lys Phe Asn Glu Ile Tyr Lys Lys Leu			
355	360	365	
Tyr Ser Phe Thr Glu Ser Asp Leu Ala Asn Lys Phe Lys Val Lys Cys			
370	375	380	
Arg Asn Thr Tyr Phe Ile Lys Tyr Glu Phe Leu Lys Val Pro Asn Leu			
385	390	395	400
Leu Asp Asp Asp Ile Tyr Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala			
405	410	415	
Ala Asn Phe Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr			
420	425	430	
Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys			
435	440	445	

Val Arg Gly Ile Ile Thr Ser Lys
450 455

<210> 146

<211> 449

<212> PRT

<213> Artificial Sequence

<220>

<221> DOMAIN

<222> (1)...(449)

<223> BoNT/A-BoNT/E chimeric LC

<400> 146

Met Pro Lys Ile Asn Ser Phe Asn Tyr Asn Asp Pro Val Thr Ile Asn
1 5 10 15
Asn Phe Asn Tyr Asp Arg Thr Ile Leu Tyr Ile Lys Pro Gly Gly Cys
20 25 30
Gln Glu Phe Tyr Lys Ser Phe Asn Ile Met Lys Asn Ile Trp Ile Ile
35 40 45
Pro Glu Arg Asn Val Ile Gly Thr Thr Pro Gln Asp Phe His Pro Pro
50 55 60
Thr Ser Leu Lys Asn Gly Asp Ser Ser Tyr Tyr Asp Pro Asn Tyr Leu
65 70 75 80
Gln Ser Asp Glu Glu Lys Asp Arg Phe Leu Lys Ile Val Thr Lys Ile
85 90 95
Phe Asn Arg Ile Asn Asn Leu Ser Gly Gly Ile Leu Leu Glu Glu
100 105 110
Leu Ser Lys Ala Asn Pro Tyr Leu Gly Asn Asp Asn Thr Pro Asp Asn
115 120 125
Gln Phe His Ile Gly Asp Ala Ser Ala Val Glu Ile Lys Phe Ser Asn
130 135 140
Gly Ser Gln Asp Ile Leu Leu Pro Asn Val Ile Ile Met Gly Ala Glu
145 150 155 160
Pro Asp Leu Phe Glu Thr Asn Ser Ser Asn Ile Ser Leu Arg Asn Asn
165 170 175
Tyr Met Pro Ser Asn His Gly Phe Gly Ser Ile Ala Ile Val Thr Phe
180 185 190
Ser Pro Glu Tyr Ser Phe Arg Phe Asn Asp Asn Ser Met Asn Glu Phe
195 200 205
Ile Gln Asp Pro Ala Leu Thr Leu Met His Glu Leu Ile His Ser Leu
210 215 220
His Gly Leu Tyr Gly Ala Lys Gly Ile Thr Thr Lys Tyr Thr Ile Thr
225 230 235 240
Gln Lys Gln Asn Pro Leu Ile Thr Asn Ile Arg Gly Thr Asn Ile Glu
245 250 255
Glu Phe Leu Thr Phe Gly Gly Thr Asp Leu Asn Ile Ile Thr Ser Ala
260 265 270
Gln Ser Asn Asp Ile Tyr Thr Asn Leu Leu Ala Asp Tyr Lys Lys Ile
275 280 285
Ala Ser Lys Leu Ser Lys Val Gln Val Ser Asn Pro Leu Leu Asn Pro
290 295 300
Tyr Lys Asp Val Phe Glu Ala Lys Tyr Gly Leu Asp Lys Asp Ala Ser
305 310 315 320

Steward, L. E. et al., Clostridial Neurotoxin Compositions and Modified Clostridial Neurotoxins

Gly Ile Tyr Ser Val Asn Ile Asn Lys Phe Asn Asp Ile Phe Lys Lys			
325	330	335	
Leu Tyr Ser Phe Thr Glu Phe Asp Leu Ala Thr Lys Phe Gln Val Lys			
340	345	350	
Cys Arg Gln Thr Tyr Ile Gly Gln Tyr Lys Tyr Phe Lys Leu Ser Asn			
355	360	365	
Leu Leu Asn Asp Ser Ile Tyr Asn Ile Ser Glu Gly Tyr Asn Ile Asn			
370	375	380	
Asn Leu Lys Val Asn Phe Arg Gly Gln Asn Ala Asn Leu Asn Pro Arg			
385	390	395	400
Ile Ile Thr Pro Ile Thr Gly Arg Gly Leu Val Lys Lys Ile Ile Arg			
405	410	415	
Phe Cys Lys Asn Asn Met Asn Phe Thr Lys Leu Lys Asn Phe Thr Gly			
420	425	430	
Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg Gly Ile Ile Thr Ser			
435	440	445	
Lys			

<210> 147

<211> 459

<212> PRT

<213> Artificial Sequence

<220>

<221> DOMAIN

<222> (1)...(459)

<223> BoNT/A-BoNT/B-BoNT/F chimeric LC

<400> 147

Met Pro Val Ala Ile Asn Ser Phe Asn Tyr Asn Asp Val Thr Ile Asn			
1	5	10	15
Asn Phe Asn Tyr Thr Ile Leu Tyr Met Gln Ile Pro Tyr Glu Glu Lys			
20	25	30	
Ser Lys Lys Tyr Tyr Lys Ala Phe Glu Ile Met Arg Asn Val Trp Ile			
35	40	45	
Ile Pro Glu Arg Asn Thr Ile Gly Thr Asn Pro Ser Asp Phe Asp Pro			
50	55	60	
Pro Ala Ser Leu Lys Asn Gly Ser Ser Ala Tyr Tyr Asp Pro Asn Tyr			
65	70	75	80
Leu Thr Thr Asp Ala Glu Lys Asp Arg Tyr Leu Lys Thr Thr Ile Lys			
85	90	95	
Leu Phe Lys Arg Ile Asn Ser Asn Pro Ala Gly Lys Val Leu Leu Gln			
100	105	110	
Glu Ile Ser Tyr Ala Lys Pro Tyr Leu Gly Asn Asp His Thr Pro Ile			
115	120	125	
Asp Glu Phe Ser Pro Val Thr Arg Thr Thr Ser Val Asn Ile Lys Leu			
130	135	140	
Ser Thr Asn Val Glu Ser Ser Met Leu Leu Asn Leu Leu Val Leu Gly			
145	150	155	160
Ala Gly Pro Asp Ile Phe Glu Ser Cys Cys Tyr Pro Val Arg Lys Leu			
165	170	175	
Ile Asp Pro Asp Val Val Tyr Asp Pro Ser Asn Tyr Gly Phe Gly Ser			
180	185	190	

Ile Asn Ile Val Thr Phe Ser Pro Glu Tyr Glu Tyr Thr Phe Asn Asp
 195 200 205
 Ile Ser Gly Gly His Asn Ser Ser Thr Glu Ser Phe Ile Ala Asp Pro
 210 215 220
 Ala Ile Ser Leu Ala His Glu Leu Ile His Ala Leu His Gly Leu Tyr
 225 230 235 240
 Gly Ala Arg Gly Val Thr Tyr Glu Glu Thr Ile Glu Val Lys Gln Ala
 245 250 255
 Pro Leu Met Ile Ala Glu Lys Pro Ile Arg Leu Glu Glu Phe Leu Thr
 260 265 270
 Phe Gly Gly Gln Asp Leu Asn Ile Ile Thr Ser Ala Met Lys Glu Lys
 275 280 285
 Ile Tyr Asn Asn Leu Leu Ala Asn Tyr Glu Lys Ile Ala Thr Arg Leu
 290 295 300
 Ser Glu Val Asn Ser Ala Pro Pro Glu Tyr Asp Ile Asn Glu Tyr Lys
 305 310 315 320
 Asp Tyr Phe Gln Trp Lys Tyr Gly Leu Asp Lys Asn Ala Asp Gly Ser
 325 330 335
 Tyr Thr Val Asn Glu Asn Lys Phe Asn Glu Ile Tyr Lys Lys Leu Tyr
 340 345 350
 Ser Phe Thr Glu Ser Asp Leu Ala Asn Lys Phe Lys Val Lys Cys Arg
 355 360 365
 Asn Thr Tyr Phe Ile Lys Tyr Glu Phe Leu Lys Val Pro Asn Leu Leu
 370 375 380
 Asp Asp Asp Ile Tyr Thr Val Ser Glu Gly Phe Asn Ile Gly Asn Leu
 385 390 395 400
 Ala Val Asn Asn Arg Gly Gln Ser Ile Lys Leu Asn Pro Lys Ile Ile
 405 410 415
 Asp Ser Ile Pro Asp Lys Gly Leu Val Glu Lys Asn Asn Met Asn Phe
 420 425 430
 Thr Lys Leu Lys Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu
 435 440 445
 Cys Val Arg Gly Ile Ile Thr Ser Lys Arg Lys
 450 455

<210> 148

<211> 59

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)...(59)

<223> Peptide comprising a 6x His tag and S-tag

<400> 148

Met His His His His His Ser Ser Gly Leu Val Pro Arg Gly Ser
 1 5 10 15
 Gly Met Lys Glu Thr Ala Ala Ala Lys Phe Glu Arg Gln His Met Asp
 20 25 30
 Ser Pro Asp Leu Gly Thr Asp Asp Asp Asp Lys Ala Met Gly Ser Phe
 35 40 45
 Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val
 50 55