Lista de Exercícios de Estruturas de Dados I

Q1) Dada uma matriz quadrada de dimensão 9, com valores de 1 a 9 em suas posições, escreva um programa que verifique se esta matriz é uma solução válida para o *Sudoku* (isto é, uma solução é válida no *Sudoku* se cada linha, cada coluna e cada bloco contém os números de 1 a 9 somente uma vez).

	6	7	4 2 8	İ	1	9	5	İ	3	4	8
_				•				•			
			9					÷			
			6								
	7	1	3	İ	9	2	4	İ	8	5	6
_				+-				+			
	9	6	1		5	3	7	I	2	8	4
	2	8	7	ĺ	4	1	9	İ	6	3	5
	3	4	5	ĺ	2	8	6	İ	1	7	9
	2	8	7	İ	4	1	9	İ	6	3	5

- Q2) Considere duas matrizes de inteiros de dimensões **m1**x**n1 e m2**x**n2**, onde m1 e n1 representam, respectivamente, o número de linhas e o número de colunas da primeira matriz, e m2 e n2 representam, respectivamente, o número de linhas e o número de colunas da segunda matriz. Escreva uma função que realize a multiplicação destas duas matrizes sem alterar nem a primeira e nem a segunda matriz: **int** mult (int m1, int n1, int **mat1, int m2, int n2, int **mat2)**
- Q3) Escreva uma função que dada uma string composta por substrings separadas por "/", retorne todas as suas substrings da string original. Por exemplo, a string /Fla/Flu/Bota/ será decomposta em:

Fla

Flu

Bota

Esta função não deve modificar a string original. O protótipo da função é o seguinte: **char** s2ss (char *str)**. Isto é, a resposta desta função será uma matriz de caracteres alocada dinamicamente.

Q4) A matriz de Hadamard H(N), usada em projetos de programas corretores de erros, é uma matriz N por N, onde N é potência de dois, de elementos booleanos (isto é, elementos 0 e 1) que satisfaz a seguinte propriedade: dadas duas linhas distintas i e j, onde $0 \le i \le N$ e $0 \le j \le N$, desta matriz, a quantidade de elementos distintos nestas linhas é sempre igual a N/2. Abaixo exemplica-se H(1), H(2) e H(4).

Para construir H(M), onde M = 2 * N, divide-se a matriz H(M) em quatro partes iguais, chamadas de quadrantes, repete-se três vezes a matriz H(N) nos quadrantes de menores índices, e no quadrante de maiores índices de H(M), inverte-se a matriz H(N). Implemente um programa que imprima a matriz H(N) na console. A dimensão desta matriz deve ser lida pelo seu programa.