Capstone Engagement

Assessment, Analysis, and Hardening of a Vulnerable System

Table of Contents

This document contains the following sections:

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Network

Address Range: 192.168.1.0/24

Netmask: **255.255.255.0** Gateway: **192.168.1.1**

Machines

IPv4: **192.168.1.1** OS: **Windows**

Hostname: Red vs Blue -

ML-REFVM

IPv4: **192.168.1.90** OS: **Linux 2.6.32** Hostname: **Kali**

IPv4: **192.168.1.100**

OS: **Linux** Hostname: **ELK**

IPv4: **192.168.1.105**

OS: Linux

Hostname: Capstone

Red Team Security Assessment

Recon: Describing the Target

Nmap identified the following hosts on the network:

Hostname	IP Address	Role on Network
Red vs Blue ML-REFVM	192.168.1.1	Base Machine hosting the 3 VMs below
Kali	192.168.1.90	Attack Machine used for penetration testing
ELK	192.168.1.100	Logs data from Capstone Machine. Hosting a Kibana server and capturing activity on 192.168.1.105
Capstone	192.168.1.105	Vulnerable machine, Box we are attempting to pop hosting an apache and ssh server

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact
Open Port 80/TCP	The more applications and services run using open port for internet communication, the higher the risk of one of them having a vulnerability that can be exploited	Open port 80 allow attackers to gain access to a network and to sensitive information as it's often used for transmitting sensitive data.
Weak Authentication Management	Attackers can detect weak authentication using manual means and exploit them using automated tools with password lists and dictionary attacks	Attackers have to gain access to only a few accounts to compromise the system. This may allow money laundering, identity theft, or disclose legally protected highly sensitive information.
Remote Command Execution	When attempting to compromise a server, an attacker may try to exploit a command injection vulnerability on the server system. The injection code will often be a reverse shell script to provide a convenient command a shell for further malicious activities.	Once sufficiently compromised the attacker may be able to access any and all information on a server such as databases containing confidential information.

Exploitation: Open Port 80

01

Tools & Processes

An Nmap scan showed that port 80 is open. By opening a web browser and typing the IP address of the machine into the address bar got access to the server with company's directories.

02

Achievements

Identified the IP address and exposed services of the target VM. Got access to sensitive information on 192.168.1.105 has open ports 22, 80. Discovered a path to secret folder

03

```
root@Kali:~# nmap 127.0.0.1
Starting Nmap 7.80 ( https://nmap.org ) at 2021-03-23 18:49 PDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.0000080s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh
Nmap done: 1 IP address (1 host up) scanned in 0.22 seconds
root@Kali:~# nmap 127.0.0.1 -sC -sV -Pn
Starting Nmap 7.80 ( https://nmap.org ) at 2021-03-23 18:49 PDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.0000090s latency).
Not shown: 999 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh
                    OpenSSH 8.1p1 Debian 5 (protocol 2.0)
  ssh-hostkey:
    3072 f9:78:2d:d0:0c:8c:29:05:3e:02:0f:8c:a0:27:96:7e (RSA)
   256 02:89:af:87:70:f4:7c:f3:95:3d:7a:6c:1b:8e:5a:45 (ECDSA)
   256 24:cd:96:57:28:e2:4b:3e:c9:b1:4e:f2:e7:62:35:f7 (ED25519)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https:/
/nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 1.92 seconds
```

Exploitation: Brute Force Password

01

Tools & Processes

Used Brute Force attack on the password for the hidden directory using Hydra. Used Ashton's name, ran the Hydra attack against the directory.

02

Achievements

Found the username "ashton" and the password "leopold". Used credentials to log into the hidden folder. Located inside of the WebDAV file instructions on how to connect to the WebDAV directory, as well the user's username and hashed password.

```
root@Kali:~# hydra -l ashton -P /usr/share/wordlists/rockyou.txt -s 80 -f -vV 192.168.1.105 http-get http://192.168.1.105/company_folders/secret_folder
Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or secret service organizations, or for illegal purposes.

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2021-03-23 20:07:08
```


Exploitation: Weak Authentication Management

01

Tools & Processes

Using the open port 80, I opened a web browser to see if there is anything important to see

02

Achievements

Accessing the files gave us intel on which users had access to what and that where their secret files were located

03

Exploitation: Hashed Password

01

Tools & Processes

I used the website calls md5cracker to translate the hashed password for ryan's account

02

Achievements

This password granted us to access to 192.168.1.105/WebDav page, which later we will us to upload a shell scripts to attack

Blue Team Log Analysis and Attack Characterization

Analysis: Identifying the Port Scan

- The port scan occurred on March 24, 2021
- 19,373 packet were sent from 192.168.1.90
- Multiple clues indicated this was a port scan. Details below

After manual digging through the packetbeat logs, a pattern started to develop. I noticed several things:

- 1) A large number of packets on the same timestamp from the same machine (192.168.1.90)
- 2) All the source traffic was coming from the same port: 40806
- The size of each record was a single packet.
- The destination port was different each time.
- 5) I was able to filter for each host on the network and see the same pattern for each destination IP.
- 6) source.ip: 192.168.1.90 and source.packets: 1 and source.port: 40806 and destination.ip: 192.168.1.105
- 7) All of this added up to suggest a port scan.

Analysis: Finding the Request for the Hidden Directory

- There are 15,961 request for the hidden directory between 00:00 am and 4:00 am.
- The secret folder contains instructions on how you can access the webday server using Ryan's account. It also included a hashed password

Analysis: Uncovering the Brute Force Attack

Analysis: Finding the WebDAV Connection

- In the Top 10 HTTPS request [Packedbeat] ECS we are able to see requests for webday folder was connected and files were accessed.
- The files requested were the password.dav and additional file named "shell.php".
- 15.961 request were made to the WebDav directory

p 10 HTTP requests [Packetbeat] ECS		
url.full: Descending =	Count	
http://192.168.1.105/webdav	314,518	
http://192.168.1.105/company_folders/secret_folder	15,961	
http://127.0.0.1/server-status?auto=	823	
nttp://snnmnkxdhflwgthqismb.com/post.php	115	
nttp://www.gstatic.com/generate_204	67	

Blue TeamProposed Alarms and Mitigation Strategies

Mitigation: Blocking the Port Scan

Alarm

What Kind of alarm can be set to detect future port scans?

The scan and sweep filters track the number of port scan and host sweep attempt from a single source IP address. Host scan and port sweeps are blocked through the Quarantine feature. Scan and sweep filters only look at connections from traffic that undergoes lps inspection.

What threshold would you set to activate this alarm?

 These filters have threshold values that can be configured per Security Profile and per filter. The filter becomes active when the number of connection attempts from a source IP address exceeds the threshold

System Hardening

What configurations can be set on the host to mitigate port scans?

 In order to block port scans, you need to enable filters 7000 to 7004 and 7016. Please ensure that you read the filter descriptions as some of them have warnings attached.

Describe the solution. If possible, provide required command lines.

- 7000: TCP Port Scan
- 7001: UDP Port Scan
- 7002 TCP Host Sweep
- 7003: UDP Host Sweep
- 7004: ICMP Host Sweep
- 7016: ICMPv6 Host Weep

Mitigation: Finding the Request for the Hidden Directory

Alarm

What kind of alarm can be set to detect future unauthorized access?

 We could set an alert that goes off for any machine that attempts to access this directory or file.

What threshold would you set to activate this alarm?

 The threshold would be just for any machine accessing it.

System Hardening

What configuration can be set on the host to block unwanted access?

 This directory and file should be removed from the server all together.

Describe the solution. If possible, provide required command lines.

- rmdir -R / deletes directory
- rm -R / deletes file

Mitigation: Preventing Brute Force Attacks

Alarm

What kind of alarm can be set to detect future brute force attacks?

 We could set an alert if 401 Unauthorized is returned from any server over a certain threshold that would weed out forgotten passwords.

What threshold would you set to activate this alarm?

Start with 10 in one hour and refine from there

System Hardening

What configuration can be set on the host to block brute force attacks?

- Limit failed login attempts
- Make the root user inaccessible via SSH by editing the sshd_config file
- Limit logins to a specified IP address or range

Describe the solution. If possible, provide the required command line(s).

- For failed login attempts on Windows:
 - Double click Account Policies
 - See Account lockout threshold
 - Double click and change the number of failed login attempts

Mitigation: Detecting the WebDAV Connection

Alarm

What kind of alarm can be set to detect future access to this directory?

 We can create an alert anytime this directory is accessed by machine other than the machine that should have access.

What threshold would you set to activate this alarm?

- Setting a range of acceptable IPs that are allowed access.
- Any IP outside of the acceptable range will trigger an alarm.

System Hardening

What configuration can be set on the host to control access?

- Connections to this shared folder should not be accessible from the web interface
- Connections to this shared folder could be restricted by machine with a firewall rule

Describe the solution. If possible, provide the required command line(s).

- Blocking port 80 and 443
 - HTTP and HTTPS

Mitigation: Identifying Reverse Shell Uploads

Alarm

What kind of alarm can be set to detect future file uploads?

 We can set an alert for any traffic moving over port 4444

What threshold would you set to activate this alarm?

 Since we are setting an alert for ANY traffic moving over 4444, the threshold would be for any.

System Hardening

What configuration can be set on the host to block file uploads?

- Removing the ability to upload files to this directory over the web interface would take care of this issue
 - The required firewall rules for blocking the UPD port 4444 should be added

Describe the solution. If possible, provide the required command line.

- For Ubuntu:
 - Sudo ufw deny 4444/udp

