Sinus och cosinus 4: Slutuppgift

Nu avslutar vi spelet:

- Se till att kulan inte är synlig i början (tips: ställ in y_kogel på minus hundra)
 Om du trycker på blanksteg, ställ in corner_kogel lika med corner_kanon

Figure 33: Sinus och cosinus 4: Slutuppgift

Processing

Bok 7

Figure 1: Bok 7: sinus en cosinus

#	Beskriving
25	Sinus och cosinus 1: graf
26	Sinus och cosinus 2: ritar
27	Sinus och cosinus 3: planteter
28	Sinus och cosinus 4: skjuta

Contents

Förord	1
Sinus och cosinus 1: graf	2
Sinus och cosinus 2: rita	14
Sinus och cosinus 3: solsystem	23
Sinus och cosinus 4: skjutning	33

Förord

Detta är en bok om Processing för ungdomar. Processing är ett programmeringsspråk. Denna bok lär dig det programmeringsspråket.

Om den här boken

Denna bok är licensierad av CC-BY-NC-SA.

Figure 1: Licensen för denna bok

(C) Richèl Bilderbeek och alla lärare och alla elever

Med det här häftet kan du göra vad du vill, så länge du hänvisar till originalversionen på denna webbplats: https://github.com/richelbilderbeek/processing_foer_ungdomar. Detta häfte kommer alltid att förbli gratis, fritt och öppet.

Det är fortfarande en lite slarvig bok. Det finns stafvel och la*youten ä*r inte alltid vacker. Eftersom den här boken finns på en webbplats kan alla som tycker att den här boken är för slarvig göra den mindre slarvig.

1

Sinus och cosinus 4: lösning 6

```
float vinkel kanon = 0;
float x kogel = 0;
float v kogel = 0;
float vinkel kogel = 0;
void setup()
  size(300, 200);
  strokeWeight(5);
void draw()
  background(255, 255, 255);
  final float x mitten = width / 2;
  final float y mitten = height / 2;
  final float x kanon = x mitten + (cos(vinkel kanon) * 20);
  final float y kanon = y mitten - (sin(vinkel kanon) * 20);
  x kogel += cos(vinkel kogel);
  y_kogel -= sin(vinkel_kogel);
  line(x mitten, y mitten, x kanon, y kanon);
  ellipse(x_mitten, y_mitten, 20, 20);
  ellipse(x_kogel, y_kogel, 5, 5);
  vinkel kanon += 0.1;
  if (keyPressed)
    if (key == ' ')
      x kogel = x kanon;
      y kogel = y kanon;
  }
```

Sinus och cosinus 4: uppgift 6

- Skapa en ny variabel ovanför setup-funktionen med namnet vinkel ball
- Ge corner_ball startvärdet noll
- Låt x_ball bli mer och mer med cosinus av vinkel_ball
- Låt y_ball bli *mindre* med sinus för vinkel_ball

Figure 32: Sinus och cosinus 4: uppgift 6

Sinus och cosinus 1: graf

Under den här lektionen ska vi rita en sinus och en cosinus.

Figure 2: Elite

Sinus och Cosinus 1: uppgift 1

Skriv denna kod över:

```
float x = 0;

void setup()
{
    size(314, 200);
}

void draw()
{
    final float y = sin(x);
    point(x, y);
    x = x + 1;
}
```

3

Vad ser du?

314 är ungefär hundra gånger talet pi

Sinus och cosinus 4: lösning 5

```
float vinkel kanon = 0;
float x_kogel = 0;
float y kogel = 0;
void setup()
  size(300, 200);
  strokeWeight(5);
void draw()
  background(255, 255, 255);
  final float x_mitten = width / 2;
  final float y mitten = height / 2;
  final float x kanon = x mitten + (cos(vinkel kanon) * 20);
  final float y kanon = y mitten - (sin(vinkel kanon) * 20);
  line(x mitten, y mitten, x kanon, y kanon);
  ellipse(x mitten, y mitten, 20, 20);
  ellipse(x_kogel, y_kogel, 5, 5);
  vinkel kanon += 0.1;
  if (keyPressed)
  {
    if (key == ' ')
      x_kogel = x_kanon;
      y_kogel = y_kanon;
```

Sinus och cosinus 4: uppgift 5

- Om du trycker på mellanslagstangenten så ...
 - får x_kogel värdet av x_kanon
 - får y_kogel värdet för y_kanon
 - kanonen bara fortsätter snurra

Figure 31: Sinus och cosinus 4: uppgift 5

Sinus och cosinus 1: lösning 1

Figure 3: Sinus och cosinus 1: lösning 1

Du kommer att se en sorts prickad linje längst upp.

Sinus och Cosinus 1: uppgift 2

• Flytta den prickade linjen nedåt. Gör detta genom att lägga till halva höjden med y

Tips: det är smart att sätta parenteser runt height / 2

Figure 4: Sinus och cosinus 1: uppgift 2

5

Sinus och cosinus 4: lösning 4

```
float vinkel kanon = 0;
float x_kogel = 0;
float y kogel = 0;
void setup()
  size(300, 200);
  strokeWeight(5);
void draw()
  background(255, 255, 255);
  final float x mitten = width / 2;
  final float y mitten = height / 2;
  final float x kanon = x mitten + (cos(vinkel kanon) * 20);
  final float y kanon = y mitten - (sin(vinkel kanon) * 20);
  line(x_mitten, y_mitten, x_kanon, y_kanon);
  ellipse(x mitten, y mitten, 20, 20);
  ellipse(x_kogel, y_kogel, 5, 5);
  vinkel kanon += 0.1;
  if (keyPressed)
    if (key == ' ')
      vinkel_kanon = 0;
  }
```

Sinus och cosinus 4: uppgift 4

- Gör variablerna x_ball och y_kogel högst upp
- Ställ in de initiala värdena för x_kogel och y_kogel till noll
- Rita en kula med mitten (x_kogel, y_kogel) med en cirkel som är 5 pixlar bred och hög

Figure 30: Sinus och cosinus 4: uppgift 4

Sinus och cosinus 1: lösning 2

```
float x = 0;

void setup()
{
    size(314, 200);
}

void draw()
{
    final float y = sin(x) + (height / 2);
    point(x, y);
    x = x + 1;
}
```


Fästena hjälper datorn att veta ordningen på en beräkning

En sinusvåg är formad som en våg som svänger mellan -1 och

Sinus och cosinus 1: uppgift 3

• Ersätt sin(x) med (sin(x) * 50)

Figure 5: Sinus och cosinus 1: uppgift 3

7

Sinus och cosinus 4: lösning 3

Figure 29: Sinus och cosinus 4: uppgift 3

```
float vinkel kanon = 0;
void setup()
  size(300, 200);
  strokeWeight(5);
void draw()
  background(255, 255, 255);
  final float x_mitten = width / 2;
  final float y_mitten = height / 2;
  final float x_kanon = x_mitten + (cos(vinkel_kanon) * 20);
  final float y_kanon = y_mitten - (sin(vinkel_kanon) * 20);
  line(x mitten, y mitten, x kanon, y kanon);
  ellipse(x_mitten, y_mitten, 20, 20);
  vinkel_kanon += 0.1;
  if (keyPressed)
    if (key == ' ')
      vinkel_kanon = 0;
```

Sinus och cosinus 1: lösning 3

Du kommer nu att se ett mönster.

Figure 6: Sinus och cosinus 3: uppgift 2

```
float x = 0;

void setup()
{
    size(314, 200);
}

void draw()
{
    final float y = (sin(x) * 50) + (height / 2);
    point(x, y);
    x = x + 1;
}
```


Det är en röra, eftersom vi blandar ungefär 100 bihålor

*50 gör att sinus förstoras femtio gånger

Sinus och cosinus 1: uppgift 4

• Ersätt sin(x) med sin(x / 100)

Figure 7: Sinus och cosinus 1: uppgift 4

9

Sinus och cosinus 4: uppgift 3

- Se till att ${\tt vinkel_kanon}$ blir noll när du trycker på mellanslagstangenten

Dricks:

```
if (keyPressed)
{
  if (key == ' ')
  {
    //Sett vinkel_kanon pa nol
  }
}
```

Sinus och cosinus 4: lösning 2

```
float vinkel_kanon = 0;

void setup()
{
    size(300, 200);
    strokeWeight(5);
}

void draw()
{
    background(255, 255, 255);
    final float x_mitten = width / 2;
    final float y_mitten = height / 2;
    final float x_kanon = x_mitten + (cos(vinkel_kanon) * 20);
    final float y_kanon = y_mitten - (sin(vinkel_kanon) * 20);
    line(x_mitten, y_mitten, x_kanon, y_kanon);
    ellipse(x_mitten, y_mitten, 20, 20);
    vinkel_kanon += 0.1;
}
```

Sinus och cosinus 1: lösning 4

Du ser nu en våg: en sinus!.

Figure 8: Sinus och cosinus 1: uppgift 4

```
float x = 0;

void setup()
{
    size(314, 200);
}

void draw()
{
    final float y = (sin(x / 25) * 50) + (height / 2);
    point(x, y);
    x = x + 1;
}
```

Sinus och Cosinus 1: uppgift 5

• Ersätt sin(x) med cos(x)

Figure 9: Sinus och cosinus 1: uppgift 5

Sinus och cosinus 1: lösning 5

Du ser nu en våg: en sinus!.

Figure 10: Sinus och cosinus 1: uppgift 5

```
float x = 0;

void setup()
{
    size(314, 200);
}
```

Sinus och cosinus 4: uppgift 2

• Få kanonen att rotera genom att göra vinkel_kanon mer och mer 0.1

Figure 28: Sinus och cosinus 4: uppgift 2

Sinus och cosinus 4: lösning 1

Figure 27: Sinus och cosinus 4: lösning 1

Du ser en cirkel i mitten, med en kanon

```
void draw()
{
  final float y = (sin(x / 25) * 50) + (height / 2);
  point(x, y);
  x = x + 1;
}
```

12

 $\tt x$ / $\tt 25$ ser till att vi går 25 gånger lugnare genom sinus

Sinus och cosinus 1: Slutuppgift

- Rita både sinus och cosinus
- Få varje våg att gå upp och ner en gång
- Rita cosinus röd, sinus blå

Figure 11: Sinus och cosinus 1: Slutuppgift

13

Sinus och cosinus 4: uppgift 1

Skriv denna kod över:

```
float vinkel_kanon = 0;

void setup()
{
    size(300, 200);
    strokeWeight(5);
}

void draw()
{
    background(255, 255, 255);
    final float x_mitten = width / 2;
    final float y_mitten = height / 2;
    final float x_kanon = x_mitten + (cos(vinkel_kanon) * 20);
    final float y_kanon = y_mitten - (sin(vinkel_kanon) * 20);
    line(x_mitten, y_mitten, x_kanon, y_kanon);
    ellipse(x_mitten, y_mitten, 20, 20);
}
```

34

Vad ser du?

Sinus och cosinus 4: skjutning

Under den här lektionen ska vi använda en sinus och cosinus för att skjuta en kula

Figure 26: Xybots

Sinus och cosinus 2: rita

Under den här lektionen ska vi använda en sinus och cosinus för att få en måne att kretsa runt en planet.

Figure 12: Spacewar

Sinus och cosinus 2: uppgift 1

Skriv denna kod över:

```
float vinkel = 0;

void setup()
{
    size(300, 200);
}

void draw()
{
    final float x = cos(vinkel) * 100;
    final float y = sin(vinkel) * 100;
    point(x, y);
    vinkel = vinkel + 0.01;
}
```

Vad ser du?

Sinus och cosinus 3: Slutuppgift

Låt månen kretsa runt jorden!

- Skapa en ny variabel vinkel_man, lägg den högst upp
- Gör vinkel man mer i slutet av draw-funktionen. Använd ett värde som 0.1.
- Gör x_man nu x_jord plus tio gånger sinus för vinkel_jord
- Samma för y_man.

Figure 25: Sinus och cosinus 3: Slutuppgift

Sinus och Cosinus 3: uppgift 5

- Skapa två nya variabler för månen: x_man och y_man (inom draw-funktionen)
- Värdet på x_man är värdet på x_jord plus 10
- Värdet på y_man är värdet på y_jord plus 10
 Rita månen som en cirkel med en bredd och höjd på 5 pixlar

Figure 24: Sinus och cosinus 3: uppgift 5

Sinus och cosinus 2: lösning 1

Figure 13: Sinus och cosinus 2: lösning 1

Du kommer att se en kvartscirkel i det övre vänstra hörnet.

Sinus och Cosinus 2: uppgift 2

- Flytta cirkeln till mitten
- Gör detta genom att lägga till halva höjden med y
- Gör detta genom att lägga till halva bredden med x.

Tips: det är smart att sätta parenteser runt height / 2

Figure 14: Sinus och cosinus 2: uppgift 2

Sinus och cosinus 3: uppgift 4

- Se till att jorden går runt solen nu
- Gör nu y_jord y_sol plus femtio gånger cosinus för vinkel_jord

Figure 23: Sinus och cosinus 3: uppgift 4

Sinus och cosinus 3: lösning 3

Du ser nu jorden gå fram och tillbaka

Figure 22: Sinus och cosinus 3: uppgift 2

```
float vinkel_jord = 0;

void setup()
{
    size(300, 200);
}

void draw()
{
    background(255, 255, 255);
    final float x_sol = width / 2;
    final float y_sol = height / 2;
    ellipse(x_sol, y_sol, 20, 20);
    final float x_jord = x_sol + (50 * sin(vinkel_jord));
    final float y_jord = y_sol + 50;
    ellipse(x_jord, y_jord, 10, 10);
    vinkel_jord += 0.01;
}
```

Sinus och cosinus 2: lösning 2

```
float vinkel = 0;

void setup()
{
    size(300, 200);
}

void draw()
{
    final float x = cos(vinkel) * 100 + (width / 2);
    final float y = sin(vinkel) * 100 + (height / 2);
    point(x, y);
    vinkel = vinkel + 0.01;
}
```


Fästena hjälper datorn att veta ordningen på en beräkning

En sinus och cosinus tillsammans kan rita en cirkel

Sinus och cosinus 2: uppgift 3

• Rita en cirkel istället för en punkt. Cirkeln ska vara 20 pixlar bred och 20 pixlar hög

Figure 15: Sinus och cosinus 2: uppgift 3

Sinus och Cosinus 3: uppgift 3

- Skapa en ny variabel vinkel_jord, lägg den högst upp
- Gör vinkel_jord mer i slutet av draw-funktionen. Använd ett värde som 0.01.
- Gör x_jord nu x_sol plus femtio gånger sinus för vinkel_jord

Vad ser du?

Sinus och cosinus 3: lösning 2

```
void setup()
{
    size(300, 200);
}

void draw()
{
    background(255, 255, 255);
    final float x_sol = width / 2;
    final float y_sol = height / 2;
    ellipse(x_sol, y_sol, 20, 20);
    final float x_jord = x_sol + 50;
    final float y_jord = y_sol + 50;
    ellipse(x_jord, y_jord, 10, 10);
}
```

Sinus och cosinus 2: lösning 3

Du kommer nu att se ett mönster.

Figure 16: Sinus och cosinus 3: uppgift 2

```
float vinkel = 0;

void setup()
{
    size(300, 200);
}

void draw()
{
    final float x = cos(vinkel) * 100 + (width / 2);
    final float y = sin(vinkel) * 100 + (height / 2);
    ellipse(x, y, 20, 20);
    vinkel = vinkel + 0.01;
}
```

20

Sinus och cosinus 2: uppgift 4

- Se till att bollen inte lämnar en linje längre
- Använd en vit bakgrund för detta

Figure 17: Sinus och cosinus 2: uppgift 4

Tips: använd background

Sinus och Cosinus 3: uppgift 2

- Skapa två nya variabler: x_jord och y_jord (inom draw-funktionen)
- Värdet på x_jord är värdet på x_sol plus 50
- Värdet på y_jord är värdet på y_sol plus 50
- Rita jorden som en cirkel med en bredd och höjd på 10 pixlar

Figure 21: Sinus och cosinus 3: uppgift 2

Sinus och cosinus 3: lösning 1

Figure 20: Sinus och cosinus 3: lösning 1

Du ser en cirkel i mitten: solen!

Sinus och cosinus 2: Slutuppgift

- Rita också en cirkel i mitten, med en bredd och höjd på 50 pixlar
- Gör den rörliga cirkeln moturs
- Se till att den rörliga cirkeln inte längre går halvvägs ut från skärmen. Gör det här, genom att göra avståndet från centrum mindre

Figure 18: Sinus och cosinus 2: Slutuppgift

Sinus och cosinus 3: solsystem

I den här lektionen ska vi använda en sinus och cosinus för att skapa ett solsystem

Figure 19: Chaos Engine

Sinus och Cosinus 3: uppgift 1

Skriv denna kod över:

```
void setup()
{
    size(300, 200);
}

void draw()
{
    background(255, 255, 255);
    final float x_sol = width / 2;
    final float y_sol = height / 2;
    ellipse(x_sol, y_sol, 20, 20);
}
```

Vad ser du?