

基于图像的三维模型重建

稠密点云重建(上)

课程内容

✓ 稠密点云的获取方式

- ✓ Lidar 扫描
- ✓ Kinect
- ✓ 结构光
- ✓ 基于图像的方法-Multi-view Stereo

✓ 基础知识

- ✓ 极线搜索
- ✓ 光度一致性约束
- ✓ 可视性约束

✓多视角立体技术

- ✓ 基于体素的方法
- ✓ 基于深度图融合的方法
- ✓ 基于空间patch 的方法

LiDAR扫描

优势: 精度高(毫米级别),效率高,有效范围几米到几百米;

劣势: 价格昂贵, 高反光, 玻璃表面, 吸收表面。

Kinect

优势: 使用方便, 价格适中, 速度较快;

劣势:精度较低,有效距离短。

结构光(Structured Light)

基于灰度编码的二值样式

Hall-Holt and Rusinkiewicz's

Zhang et al彩色结构光

口腔扫描仪

优势: 高精度, 高效率;

劣势: 近距离数据获取。

基于图像的方法-Multi-view Stereo

输入无序图像 运动恢复结构(SFM) 多视角立体重建(MVS)

优势:无源被动式,成本低,图像来源广,精度较高;

劣势: 计算速度慢。

基于图像的方法-Learning based methods

CNN Prediction Dages

优势:数据驱动,算法流程简单,完全稠密的深度图

劣势: 耗GPU, 泛化性较差

课程内容

✓ 稠密点云的获取方式

- ✓ Lidar 扫描
- ✓ Kinect
- ✓ 结构光
- ✓ 基于图像的方法-Multi-view Stereo

✓ 基础知识

- ✔ 极线搜索
- ✓ 光度一致性约束
- ✓ 可视性约束

✓多视角立体技术

- ✓ 基于体素的方法
- ✓ 基于深度图融合的方法
- ✓ 基于空间patch 的方法

极线搜索

参考图像中的一点对应另一幅图像中的一条线段。

$$\boldsymbol{x}_{2}^{T}\boldsymbol{F}\boldsymbol{x}_{1}=0$$

$$l_1 = \boldsymbol{F}^T \boldsymbol{x}_2, \quad l_2 = \boldsymbol{F} \boldsymbol{x}_1$$

$$F = K_2^{-T}[t]_{\times} RK_1^{-1}$$
 是基础矩阵

光度一致性假设(Photo-consistency)

同一空间的点在不同视角的投影,应当具有相同的光度,重建的核心在于恢复空间中具有光度一致性的点。

常见的非朗伯面

光度一致性假设的度量方式

常用的计算区域光度一致性的方法有:

• SSD (Sum of Squared Differences):
$$\rho_{SSD}(f,g) = ||f-g||^2$$

SAD (Sum of Absolute Differences):
$$\rho_{SAD}(f,g) = ||f-g||_1$$

NCC (Normalized Cross Correlation):
$$\rho_{NCC}(f,g) = \frac{(f - \bar{f}) \cdot (g - \bar{g})}{\delta_f \delta_g}$$

$$f =$$
 g

f,g: 特征描述子的特征向量

可视性约束

图像中出现的点不能被遮挡;

重建的点前面不能出现点;

不能出现在物体内部。

Reference View

红色点:被遮挡的点

课程内容

✓ 稠密点云的获取方式

- ✓ Lidar 扫描
- √ Kinect
- ✓ 结构光
- ✓ 基于图像的方法-Multi-view Stereo

✓ 基础知识

- ✓ 极线搜索
- ✓ 光度一致性约束
- ✓ 可视性约束

✓多视角立体技术

- ✓ 基于体素的方法
- ✓ 基于深度图融合的方法
- ✓ 基于空间patch 的方法

常用的稠密重建方法

基于体素的方法

基于深度图融合的方法

基于3D patch扩张的方法

规则的划分

S.M. Seitz and C.R. Dyer. Photorealistic scene reconstruction by voxel coloring. International Journal of Computer Vision, 35(2):1–23, November 1999.

不规则的划分

等价于3D空间四面体标记的问题

Sinha S N, Mordohai P, Pollefeys M. Multi-View Stereo via Graph Cuts on the Dual of an Adaptive Tetrahedral Mesh[C]// IEEE, International Conference on Computer Vision. IEEE, 2007:1-8.

图像上的约束-剪影约束

Sinha S N, Mordohai P, Pollefeys M. Multi-View Stereo via Graph Cuts on the Dual of an Adaptive Tetrahedral Mesh[C]// IEEE, International Conference on Computer Vision. IEEE, 2007:1-8.

图像上的约束-光度一致性约束

Sinha S N, Mordohai P, Pollefeys M. Multi-View Stereo via Graph Cuts on the Dual of an Adaptive Tetrahedral Mesh[C]// IEEE, International Conference on Computer Vision. IEEE, 2007:1-8.

常用的优化模型-典型的MRF离散优化问题

参考图像上每个的像素分配一个标签 (内部或者外部)

$$E(f) = E_{data}(f) + E_{smoothness}(f) + E_{visibility}(f)$$

- 数据项-光度一致性假设
- 平滑项-邻域假设
- 可视项-可视性约束

优点:

- 生成规则的点云
- 便于提取物体的平面

缺点:

- 精度受到空间划分分辨率的影响
- 难以处理精度高、规模大的场景仅适用于小场景。单个物体、遮挡较少的场景

基于深度图融合的方法—整体流程

基于深度图融合的方法—底层几何模型

Patch

以空间中的3D点中心建立一个很小栅格,栅格的分辨率与图像分辨率以及3D点的位置相关

- ✓ Patch的中心点即为3D点的位置
- ✓ Patch的朝向即为3D点的法向量
- ✓ Patch上的每个点可以投影到不同视角中计算NCC用于度量光度一致性
- ✓ Patch实际上是增强了局部特征的描述能力

投影球半径-用于衡量图像的分辨率

图像上1个像素的宽度对应的三维空间中的物体尺寸

$$r = \frac{z_c}{fa}, a = \max(w, h)$$

预处理

- ✓ SFM重建的稀疏点构建种子patch
- 构建不同分辨率的图像以处理图像分辨率不同的情况
- ✓ 全局视角选择

SFM稀疏重建的结果作为种子点

图像分辨率不同的情况, patch投影分辨率也不同

基于深度图融合的方法-视角选择

全局视角选择

- 1. 图像具有相同的内容,外观—通过共享sift特征点的个数
- 2. 图像具有足够大的视差(宽基线)--通过视线的夹角
- 3. 图像具有相似的分辨率--通过计算投影球半径
- 4. 考虑每个特征在参考图像与已选择图像的视线夹角—排它性

流程:

A 对于每一个视角V,计算和参考视角的 $g_R(V)$

B 选择 $g_R(V)$ 最大的视角

C 重复上述过程, 直到选择的视角个数满足预设

准则:

三角量测夹角适中

$$g_R(V) = \sum_{f \in \mathbf{F}_V \cap \mathbf{F}_R} \underline{w_N(f)} \cdot \underline{w_s(f)},$$
 图像尺度相似

共有的特征点越多越好

相关视角的选择-局部视角选择

- 1. NCC值大于一定的阈值
- 2. 和已经选择的视角的极平面(PO_1O_3 和 PO_1O_2) 要足够分散(不共面)

$$l_R(V) = g_R(V) \cdot \prod_{V' \in \mathbf{A}} w_{\underline{e}}(V, V')$$
 和已选视角间的 极平面夹角

流程:

A 对于每一个视角V,计算和参考视角的 $l_R(V)$

B 选择 $l_R(V)$ 最大的视角

C 重复上述过程, 直到选择的视角个数满足预设

从候选视角中选择active 视角

区域生长流程

初始阶段的种子点选取

初始的种子点

对种子点进行优化后添加到队列中,并按照置信度进行排序

中间过程的种子点选取

当前优化完的种子点

已经重建了的种子点

两类邻域点将被选为种子点:

1) 没有没重建过的点 2) 置信度高于已经重建的点

区域生长法扩张

- 1. 重建的置信度建立优先级队列;
- 2. 从初始的稀疏特征点开始深度估计;
- 3. 对每个种子点进行非线性深度优化;
- 4. 每次优化完后判断以下两种情况,将邻域像素添加到队列中:
 - 1) 邻域没有深度值;
 - 2) 当前像素的置信度值高于邻域像素一定范围 (0.05)

新建patch的可视图像和法向量的初始值等同于邻域patch

$$n(p') = n(p)$$

$$V(p') = V(p)$$

新建patch的位置设置为当前cell的视线和 邻域patch所在的平面的交点

深度值非线性优化

中心点的三维坐标

$$\boldsymbol{X}_{R}(s,t) = \boldsymbol{O}_{R} + h(s,t)\vec{\boldsymbol{r}}_{R}(s,t)$$

Patch中每个点的三维坐标

otch中每个点的三维坐标
$$oldsymbol{X}_R(oldsymbol{s}+i,t+j)=oldsymbol{O}_R+ar{oldsymbol{r}}_R(s,t)(h(s,t)+i*h_s+j*h_t)$$

h(s,t)

 h_s 和 h_t 反应了patch的法向量。

深度值非线性优化

颜色模型

为邻域中每个视角K分配一个颜色尺度 $\mathbf{c}_k = [c_k^r, c_k^g, c_k^b]^T \epsilon R^{3\times 1}$,如果h(s,t)估计准确,那么应该有

$$I_R(s+i,t+j) = c_k \cdot I_k(P_k(X_R(s+i,t+j)))$$

为方便, 简写为

$$I_R(i,j) = c_k \cdot I_k(P_k(X_R(i,j))) = c_k \cdot I_k(i,j)$$

非线性优化的数学模型

$$E = \sum_{ijk} (\mathbf{I}_R(i,j) - \mathbf{c}_k \cdot \mathbf{I}_k(i,j))^2$$

$$i,j \in \left[-\frac{n-1}{2}, \frac{n-1}{2}\right]$$
 是 $patch$ 中的采样点, k 表示视角个数。

需要优化的变量: h(s,t), h_s , h_t 以及 { c_k }

颜色尺度的优化

求E关于 c_k 的导数

分别令上述三个偏导数为零,可以得到以下表达式

$$\frac{\partial E}{\partial c_k^r} = -\sum_{ij} \mathbf{I}_k^r(i,j) \mathbf{I}_R^r(i,j) + c_k^r \sum_{ij} (\mathbf{I}_k^r(i,j))^2 \qquad c_k^r = \frac{\sum_{ij} \mathbf{I}_k^r(i,j) \mathbf{I}_R^r(i,j)}{\sum_{ij} (\mathbf{I}_k^r(i,j))^2}$$

$$\frac{\partial E}{\partial c_k^g} = -\sum_{ij} \mathbf{I}_k^g(i,j) \mathbf{I}_R^g(i,j) + c_k^g \sum_{ij} (\mathbf{I}_k^g(i,j))^2 \qquad c_k^g = \frac{\sum_{ij} \mathbf{I}_k^g(i,j) \mathbf{I}_R^g(i,j)}{\sum_{ij} (\mathbf{g}(i,j))^2}$$

$$\frac{\partial E}{\partial c_k^b} = -\sum_{ij} \mathbf{I}_k^b(i,j) \mathbf{I}_R^b(i,j) + c_k^b \sum_{ij} (\mathbf{I}_k^b(i,j))^2 \qquad c_k^b = \frac{\sum_{ij} \mathbf{I}_k^b(i,j) \mathbf{I}_R^b(i,j)}{\sum_{ij} (\mathbf{I}_k^b(i,j))^2}$$

$h(s,t), h_s$ 和 h_t 的优化-梯度下降法

$$E = \sum_{ijk} \left(\mathbf{I}_R(i,j) - \mathbf{c}_k \cdot \mathbf{I}_k(i,j) + \mathbf{c}_k \cdot \frac{\partial \mathbf{I}_k(i,j)}{\partial h(s,t)} (dh(s,t) + i * dh_s + j * dh_t) \right)^2$$

则上式可以表达为

$$E = \sum_{ijk} (A_{ijk} \nabla x + \boldsymbol{b}_{ijk})^2$$

h(s,t), h_s和h_t的优化

求 E 关于 x 的梯度,可以得到

$$\frac{\partial E}{\partial \nabla x} = \sum_{ijk} A_{ijk}^T (A_{ijk} x + \boldsymbol{b}_{ijk})$$

令 $\frac{\partial E}{\partial \nabla x} = 0$,可以得到

$$(\sum_{ijk} A_{ijk}^T A_{ijk}) \nabla x + \sum_{ijk} A_{ijk}^T b_{ijk}) = \mathbf{0}$$

令
$$\pmb{A} = \sum_{ijk} \pmb{A}_{ijk}^{\pmb{T}} \pmb{A}_{ijk}$$
, $\pmb{b} = \sum_{ijk} \pmb{A}_{ijk}^{\pmb{T}} \pmb{b}_{ijk}$, 则有 $\nabla \pmb{x} = \pmb{A}^{-1} \pmb{b}$

深度值非线性优化—整体框架

- 1. 只进行深度 h(s,t) 的优化 (迭代4次)
- 2. While (迭代次数 < 20)
- 3. 每间隔5次迭代,进行 h(s,t), h_s , h_t 的优化,否则仅优化深度
- 4. 优化完成后跟踪判断每个视角的置信度
- 5. 如果视角的置信度太小,或者超过迭代14次尚未收敛,则从局部视角中移除该视角,并重新进行局部视角选择

深度估计结果

深度融合

直接聚合? 一致性,可视性

深度融合-一致性约束

深度融合-一致性约束

深度融合-可视性约束

P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm, R. Yang, D. Nistér, and M. Pollefeys, Real-Time Visibility-Based Fusion of Depth Maps. In *IEEE International Conference on Computer Vision (ICCV)*,2007.

- 邻域视角选择使得深度估计准确度提升,能够处理一些遮挡,障碍物较多的场景
- 原理简单,只用到光度一致性约束和可视性约束,适用的场景广泛

基于空间patch扩散的方法

- 假设空间中的3D 矩形patch
- 通过一定规则的扩张方法,使得patch覆盖物体表面

PMVS http://www.di.ens.fr/pmvs/

基于空间patch扩散的方法

- ➢ 初始种子点生成采用SIFT,HOG等特征点
- 扩张过程对已重建三维点的邻域进行匹配
- 滤波过程采用两种约束去除噪声点
 - □ 光度一致性约束
 - □ 可视性约束

3D Patch定义

位置,法向量 大小5x5

光度一致性约束 $h(p,I_1,I_2)$

Patch投影到不同图像上, 计算NCC

PMVS http://www.di.ens.fr/pmvs/

初始3D patch 的生成

- 在图像上均匀计算HOG/Harris特征;
- 2. 沿极线进行搜索找到匹配特征点;
- 3. 对匹配对,通过三角化建立patch;

中心: 三角化确立

法向量: 指向参考图像

可视图像V(p): 法向量和视线夹角足够小,通过光度一致性约束对可视图像进行筛选

$$V^*(p) = \{I | I \in V(p), h(p, I, R(p)) \le \alpha\}$$

4. 对patch 位置和法向量进行优化。

$$\min_{c(p),n(p)} g^*(p) = \frac{1}{|V^*(p) \setminus R(p)|} \sum_{I \in V^*(p) \setminus R(p)} h(p,I,R(p)).$$

PMVS http://www.di.ens.fr/pmvs/

Patch扩张

- 1. 将三维patch投影到图像上;
- 如果相邻cell没有patch且深度连续, 则建立初始patch;

3. 计算初始patch的可视图像,并进行优化。

新建patch的可视图像和法向量的初始值等同于邻域patch

$$n(p') = n(p)$$

$$V(p') = V(p)$$

新建patch的位置设置为当前cell 的视线和邻域patch所在的平面的 交点

PMVS http://www.di.ens.fr/pmvs/

Patch滤波

1. 可视性约束

$$|V^*(p)|(1-g^*(p)) < \sum_{p_i \in U(p)} 1-g^*(p_i)$$

2. 可视图像个数

$$|V^*(p)| < \gamma$$

3. 图像邻域中的cell同时也是空间邻域的比例小于0.25。

空间邻域: $|(\mathbf{c}(p) - \mathbf{c}(p')) \cdot \mathbf{n}(p)| + |(\mathbf{c}(p) - \mathbf{c}(p')) \cdot \mathbf{n}(p')| < 2\rho_1$

U(p): 三维上不是邻域,但投影到图像上同一个cell

PMVS http://www.di.ens.fr/pmvs/

优点

- 算法适用性强
- 使用于各种形状的物体

PMVS http://www.di.ens.fr/pmvs/

缺点

- 朗伯面假设
- 容易产生空洞

缺点

影像集	影像数目	影像尺寸	SFM (Hour)	稠密匹配 (Hour)
鲁甸	407	5616*3744	0.253	4.752
北川	273	5910*3854	0.351	3.545
连云港	782	5616*3744	0.643	7.414

● 计算量非常大

感谢各位聆听

Thanks for Listening