

Operationsverstärker

Allgemeines - Einsatz

Analogrechner der 60er

- Operationsverstärker (Abk. OP auch OV, OPV)
 (engl. Operational Amplifier; Op Amp):
- Erhältlich als monolithisch integrierte Schaltung (engl. integrated circuit, Abk. IC).
- Ursprünglich entwickelt für Analogrechner zur Durchführung mathematischer Operationen.
- Linearer Universalverstärker mit sehr hoher Verstärkung.
- Zahlreiche Anwendungen in Elektronik, Nachrichten-, Mess- und Regelungstechnik.
- Meistverwendetes Bauelement (bzw. Funktionseinheit) in der Analogtechnik.
 Sehr große Typenvielfalt im Handel für unterschiedliche Anforderungen.

Elektronik 1

Allgemeines – Pin-Belegung

übliches Schaltzeichen

Pin-Belegung des Standardtyps µA 741

- 2 Eingänge:
- 1. nichtinvertierender Eingang (Plus-Eingang)
- 2. invertierender Eingang (Minus-Eingang)
- Der OP wird in der Regel mit einer dualen (symmetrischen) Spannungsversorgung $\pm U_B$ betrieben (je nach Typ in weiten Grenzen varrierbar) z.B. TLC272

$$-U_B = -1.5V \dots - 8V$$
 $U_B = +1.5V \dots + 8V$

$$U_B = +1.5V \dots + 8V$$

Aufbau eines Operationsverstärkers

- Herzstück jedes OPs ist eine Differenzstufe am Eingang.
- Differenz- und Zwischenstufe ergeben zusammen eine sehr hohe Verstärkung. Typische Werte: $A_D = 10^4 \dots 10^6 (= 80 \dots 120 \ dB)$
- Ausgangsstufe für niederohmige Lasten.
- Durch die direkte Kopplung der einzelnen Stufen (keine Koppelkapazitäten) kann der OP auch als Gleichspannungsverstärker eingesetzt werden, d. h. $f_{gu}=0$.

Betriebsarten des OP

Signal am nichtinvertierenden Eingang:

Differenzbetrieb:

Signal am invertierenden Eingang:

reiner Gleichtaktbetrieb:

• Aufgrund der Differenzstufe am Eingang werden ausschließlich Differenzsignale $U_D = U_P - U_N$ mit der Verstärkung A_D sehr hoch verstärkt.

$$U_A = A_D \cdot U_D$$

• Gleichtaktsignale U_{CM} werden im Idealfall nicht verstärkt.

Verstärkungen des OP

 Die Differenzverstärkung sollte möglichst groß sein: Uz

$$A_D = \frac{U_A}{U_D} \xrightarrow{ideal} \infty$$

Angabe häufig in dB: $A_D=20\cdot log_{10}\frac{U_A}{U_D}$ in dB (z.B. $A_D=10.000\Rightarrow 80dB$)

 Datenblätter geben anstelle von A_{CM} meist nur das Gleichtaktunterdrückungsverhältnis (common mode rejection ratio) an:

$$CMRR = \frac{A_D}{A_{CM}} \xrightarrow{ideal} \infty$$

(Angabe meist in dB: $CMRR = 20 \cdot log_{10} \frac{A_D}{A_{cM}} in dB$) (z.B. CMRR = 1.000.000 \Rightarrow 120 dB)

Signalersatzschaltungen

 r_A Ausgangswiderstand

 r_D Eingangswiderstand bei Differenzbetrieb (primär interessant)

 r_{CM} Eingangswiderstand bei Gleichtaktbetrieb (weniger wichtig und vernachlässigbar, da $r_{CM}\gg r_D$)

Vergleich idealer / realer OP

	ideal	real
Differenzverstärkung A_D	∞	10 ⁴ 10 ⁶ (=80120dB)
Gleichtaktverstärkung A _{CM}	0	0,5 5
Gleichtaktunterdrückung CMRR	∞	80 120 dB
Differenzeingangswiderstand r_{D}	∞	100 kΩ10 ¹⁵ Ω (MOS)
Eingangsruheströme I_N , I_P	0	0,1 pA 1 μA
Ausgangswiderstand r_A	0	10 1 kΩ
max. Ausgangsstrom I_{Amax}	∞	1 mA 1 A
obere 3dB-Grenzfrequenz f_{go}	∞	10 Hz 10 kHz
Eingangs-Offsetspannung U_{OS}	0	0,01 100 mV
Betriebsspannungsdurchgriff PSRR (Power Supply Rejection Ratio)	0	0,1 μV/V 0,1 mV/V
Slew Rate (Anstiegsrate) SR	∞	0,1 1000 V/µs
Rauschen U_n	0	1 100 nV/√ <i>Hz</i>

Übertragungskennlinie eines Verstärkers

Linearer (= idealer) Verstärker:

$U_2 = A_U \cdot U_1$

Begrenzung des Aussteuerbereichs:

Übertragungskennlinie eines OP

- Je nach Belastung des Ausgangs liegen die Sättigungsgrenzen der Ausgangsspannung bei gewöhnlichen OPs ca. 20% unterhalb der positiven bzw. oberhalb der negativen Versorgungsspannung (Ausnahme: Rail-to-Rail-OPs).
- Auf Grund der hohen Verstärkung ist der lineare Bereich stark eingeschränkt.
- Auch der Ausgangsstrom wird durch die Endstufe auf einen Höchstwert $\pm I_{Amax}$ begrenzt. OPs sind in der Regel kurzschlussfest.

Gegenkopplung des OP

nicht invertierender Spannungsverstärker

invertierender Spannungsverstärker

- OPs lassen sich nur mit einer externen Beschaltung sinnvoll als Verstärker einsetzen.
 Grund: Die Differenzverstärkung (open loop gain) ist nicht sehr konstant (Exemplarstreuung, Temperaturabhängigkeit, etc.)! Deshalb soll die Signalverstärkung (closed loop gain) auf einen definierten, stabilen Wert herabgesetzt werden!
- Mittel der Wahl: Gegenkopplung! (GK, engl. negative feedback)
 Gegenkopplung ist eine Unterart der Rückkopplung. Dabei wird ein Teil des Ausgangssignals so zurückgeführt, dass es dem Eingangssignal entgegenwirkt. Die unkontrolliert hohe Leerlaufverstärkung wird so wie gewünscht reduziert.
- Ein Signal kann sowohl am (+)-Eingang als auch am (-)-Eingang eingespeist werden.
 Man unterscheidet dementsprechend zwei Grundschaltungen für die Realisierung gegengekoppelter Verstärker.

Nicht invertierender Verstärker

A_D Differenzverstärkung des OP = Leerlaufverstärkung (open loop gain)

$$A = \frac{U_A}{U_E}$$
 Signalverstärkung mit GK (closed loop gain)

$$U_A = A_D \cdot U_D = A_D \cdot (U_E - U_R)$$
, wobei $U_R = U_A \cdot \frac{R_2}{R_1 + R_2}$ (Annahme: Spannungsteiler sei durch OP nicht belastet: OP Fingangswiderstand sehr boch)

Eingangswiderstand sehr hoch)

$$U_{A} = A_{D} \cdot \left(U_{E} - U_{A} \cdot \frac{R_{2}}{R_{1} + R_{2}} \right) \implies U_{A} = U_{E} \cdot \frac{A_{D}}{1 + \frac{R_{2}}{R_{1} + R_{2}} \cdot A_{D}}$$

$$A = \frac{U_A}{U_E} = \frac{1}{\frac{1}{A_D} + \frac{R_2}{R_1 + R_2}} = \frac{R_1 + R_2}{R_2}$$
 (Annahme: idealer OP mit unendlich großer Differenzverstärkung)

$$A = \frac{R_1}{R_2} + 1$$

- Wir unterscheiden zwischen der Leerlaufverstärkung des OP und der Signalverstärkung.
- Durch die Rückführung entsteht ein Regelkreis, der für stabile Verhältnisse sorgt: Im Idealfall wird die Signalverstärkung A durch die äußere Beschaltung und weniger durch den OP bestimmt. (Vergleich: Emitterschaltung mit Stromgegenkopplung)

Nicht invertierender Verstärker – Virtuelle Masse

- Man findet dieses Ergebnis schneller, wenn man für die Analyse idealisierend von $A_D \to \infty$ ausgeht $\Longrightarrow U_D = (U_A/A_D) \to 0!$
- Diese Annahme führt auf das Prinzip des virtuellen Kurzschlusses:
 Die zwei Eingänge haben genau die gleiche Spannung!!

Wiederholung der Analyse:

$$U_D = 0$$
 (viruteller Kurzschluss) $\implies U_E = U_D + U_R = U_R = U_A \cdot \frac{R_2}{R_1 + R_2}$

$$\Rightarrow A = \frac{U_A}{U_E} = \frac{R_1 + R_2}{R_2} = \frac{R_1}{R_2} + 1 \quad \text{Der OP } \textit{regelt} \text{ seine Ausgangsspannung } U_A, \text{ bis } U_R = U_E \Rightarrow U_D = 0.$$
 (Hier können wir U_A nicht aus $U_D \cdot A_D$ berechnen)

• Allgemein gilt:

Die Ausgangsspannung eines gegengekoppelten, quasiidealen OPs mit $A_D \to \infty$ stellt sich stets so ein, dass U_D zu null wird.

Nicht invertierender Verstärker – Spannungsfolger

- Der nicht invertierende Spannungsverstärker wird aufgrund seines sehr hohen Eingangswiderstands auch als Elektrometerverstärker bezeichnet. Durch die Gegenkopplung (Berechnung folgt): wird der ohnehin große Kleinsignal-Eingangswiderstand des OPs (r_D) noch erheblich vergrößert; der Kleinsignal-Ausgangswiderstand des OPs (r_A) wird dagegen verkleinert.
- Wir betrachten den Sonderfall $R_1 = 0$, $R_2 = \infty$:

$$A = \lim_{\substack{R_1 \to 0 \\ R_2 \to \infty}} \frac{R_1 + R_2}{R_2} = 1 \quad \text{bzw. bei endlichem } A_D \quad A = \lim_{\substack{R_1 \to 0 \\ R_2 \to \infty}} \frac{1}{\frac{R_2}{R_1 + R_2} + \frac{1}{A_D}} = \frac{1}{1 + \frac{1}{A_D}} \approx 1$$

- Wegen A = 1 bezeichnet man diese Variante als Spannungsfolger (der Ausgang "folgt" dem Eingang) (engl. voltage follower).
- Sie wird aufgrund ihrer Eigenschaften (großes r_{Ein} , kleines r_{Aus}) als Impedanzwandler eingesetzt.

Invertierender Verstärker

Für die Berechnung von A machen wir zwei Annahmen:

- (2) Der Strom, der in den invertierenden Eingang fließt, ist vernachlässigbar klein bzw. null.

Damit gilt wegen (1):
$$I_1 = \frac{U_{R1}}{R_1} = \frac{U_E}{R_1}$$
 $I_2 = \frac{U_{R2}}{R_2} = -\frac{U_A}{R_2}$ (U_E und U_A gegen Masse)

$$\frac{E}{2}$$
 I_2

$$\frac{U_{R2}}{R_2} = \frac{U_{R2}}{R_2} = -\frac{U_{R2}}{R_{R2}}$$

und wegen (2):

$$I_1 = I_2 \implies \frac{U_E}{R_1} = -\frac{U_A}{R_2}$$

 $I_1 = I_2 \implies \frac{U_E}{R_1} = -\frac{U_A}{R_2}$ Der OP regelt seine Ausgangsspannung so aus, dass diese Beziehung gilt: $I_1 = I_2$

$$A = -\frac{R_2}{R_1}$$

Damit folgt für $A = \frac{U_A}{U_E}$: $A = -\frac{R_2}{R_1}$ (negative Verstärkung) \rightarrow Phasenumkehr

Man beachte: Ist $U_E > 0$, dann muss $U_A < 0$ werden!

Der Eingangswiderstand der Schaltung wird von R_1 bestimmt:

$$r_{Ein} = \frac{u_E}{i_1} = \frac{u_E}{u_E/R_1} = R_1$$

Der Eingangswiderstand der Schaltung ist wesentlich kleiner als der des OPs!! (Wirkung der GK!!).

Invertierender Verstärker mit endlichem A_D

Eine genauere Analyse mit endlichem A_D ergibt (\rightarrow Übung):

$$A = \frac{U_A}{U_E} = -\frac{\frac{R_2}{R_1}}{1 + \frac{1}{A_D} \cdot \left(1 + \frac{R_2}{R_1}\right)}$$

Hinweis:

$$U_A = A_D \cdot U_D$$

$$U_E = f(I_1, U_D)$$

$$U_A = f(I_1, U_D)$$

Beispiel: Für eine Verstärkung vom Betrag 100 wählen wir z. B. $R_1=1k\Omega$, $R_2=100k\Omega$. Wie groß ist für A die prozentuale Abweichung vom Idealwert $R_2/R_1=100$ bei verschiedenen, endlichen Leerlaufverstärkungen A_D ?

Fehler U_{E} U_A |A| U_D A_D 10^{5} 99,90 - 0,10% $9,99 \mu V$ 10 mV 999 mV 10^{4} $99,0 \mu V$ 10 mV 990 mV 99,00 - 1.00% 908 µV 10^3 90,83 - 9,17% 10 mV 908 mV

Man beachte in diesem Zusammenhang den Frequenzgang des OP!

Der Eingangswiderstand der Schaltung wird von R_1 bestimmt:

$$r_{Ein} = \frac{u_E}{i_1} = \frac{u_E}{u_E/R_1} = R_1$$

Der Eingangswiderstand der Schaltung ist wesentlich kleiner als der des OPs (Wirkung der GK).

Eingangs-Offsetspannung

- Werden beide OP-Eingänge eines realen Operationsverstärkers auf Masse (0 V) gelegt, so ist U_A nicht null, sondern der OP wird, aufgrund der großen Verstärkung, in der Regel übersteuert!
- Ursache ist die interne Offsetspannung in der Eingangsstufe: Sie entsteht u. a. durch die Asymmetrie der Eingangstransistoren und wirkt wie ein angelegtes Differenzsignal.

Eingangs-Offsetspannung

- Werden beide OP-Eingänge eines realen Operationsverstärkers auf Masse (0 V) gelegt, so ist U_A nicht null, sondern der OP wird, aufgrund der großen Verstärkung, in der Regel übersteuert!
- Ursache ist die interne Offsetspannung in der Eingangsstufe: Sie entsteht u. a. durch die Asymmetrie der Eingangstransistoren und wirkt wie ein angelegtes Differenzsignal.
- Die Eingangs-Offsetspannung entspricht gerade der Spannung U_D , die man am Eingang anlegen müsste, damit $U_A = 0$ wird. Größe (einige mV) und Polarität von U_{OS} variiert zufällig (exemplarabhängig).

Eingangs-Offsetspannung

- Werden beide OP-Eingänge eines realen Operationsverstärkers auf Masse (0 V) gelegt, so ist U_A nicht null, sondern der OP wird, aufgrund der großen Verstärkung, in der Regel übersteuert!
- Ursache ist die interne Offsetspannung in der Eingangsstufe: Sie entsteht u. a. durch die Asymmetrie der Eingangstransistoren und wirkt wie ein angelegtes Differenzsignal.
- Die Eingangs-Offsetspannung entspricht gerade der Spannung U_D , die man am Eingang anlegen müsste, damit $U_A = 0$ wird. Größe (einige mV) und Polarität von U_{OS} variiert zufällig (exemplarabhängig).

Wir können den "realen" Verstärker nun mit der Offset-Spannung als Quelle an einem Eingang eines "idealen" OPs zeichnen.

Offsetspannung bei Gegenkopplung

- Wir wollen die durch U_{OS}
 verursachte Fehlerspannung am
 Ausgang der beiden gegengekop pelten Verstärker bestimmen.
- Die Eingangsspannungen werden dazu deaktiviert (→ null setzen bzw. kurzschließen).
- Bei beiden Verstärkertypen sind die Verhältnisse gleich: Die Offsetspannung wird verstärkt.

Es gilt:
$$U_A = U_{OS} \cdot \left(1 + \frac{R_2}{R_1}\right)$$

<u>Beispiel</u>: (Die Polarität von U_{OS} variiert zufällig – exemplarabhängig). Bei z. B. 100-facher Verstärkung bedeuten ± 10 mV Eingangs-Offset einen DC-Ausgangs-Offset von -1 V bzw. + 1 V. das bedeutet:

- Jedes Nutzsignal am Ausgang wird von einem unerwünschten Gleichspannungsanteil überlagert.
- Da der Ruhearbeitspunkt nicht mehr in der Mitte bei 0 V liegt, ist der Aussteuerungsbereich nicht mehr symmetrisch und daher mehr oder weniger reduziert.

Kompensation der Eingangs-Offsetspannung

- Viele OPs erlauben den Anschluss eines Potis für einen Nullpunktabgleich (falls erforderlich).
- U_{OS} ist temperaturabhängig.
 Der Abgleich ist daher immer nur bei einer bestimmten Temperatur optimal.
- U_{OS} kann auch zeitabhängig sein.
 Der Abgleich kann daher mehrfach erforderlich werden.
- Durch die Rückkopplung kann der Ausgang besser abgeglichen werden, da ohne Rückkopplung die Kennlinie des OPs sehr steil ist.
 (Eingang kurzschließen, abgleichen, Eingang "normal" verwenden)

Eingangsruheströme

 $+U_S, -U_S$ Versorgungsspannungen (*supply voltages*) I_{S+}, I_{S-} Versorungsruheströme (*supply currents*) I_{BP} Eingangsruhegleichstrom am P-Eingang input bias I_{BN} Eingangsruhegleichstrom am N-Eingang

- Die Biasströme sind die Basisströme der bipolaren Eingangstransistoren des Differenzverstärkers.
 Betriebsspannungsschwankungen oder Widerstände in den Eingangsleitungen haben kaum Einfluss auf die Größe dieser Ströme.
- I_{BP} und I_{BN} sind nur im Idealfall gleich groß. Auf Datenblättern wird der Mittelwert sowie die Abweichung der Ströme spezifiziert:

$$I_B = \frac{I_{BP} + I_{BN}}{2}$$
 mittlerer Eingangsruhestrom $I_{OS} = |I_{BP} - I_{BN}|$ Eingangs- (Erfahrungswert: Offsetstrom $I_{OS} \approx 0.1 \cdot I_B$)

Eingangsruheströme - Beispiel

Sind die Spannungsabfälle an den Widerständen verschieden groß, entsteht eine unerwünschte Differenz, die zu einer Fehlerspannung am Ausgang führt:

$$U_D = R_2 \cdot I_{BN} - R_1 \cdot I_{BP}$$

Man kann versuchen, U_D zu minimieren, indem man die wirksamen Widerstände in den Eingangsleitungen gleich groß macht, d. h. $R_1 = R_2 = R$.

$$U_D = R \cdot \underbrace{(I_{BN} - I_{BP})}_{= \pm I_{OS}}$$

<u>Beispiel</u>: Für den OP in der obigen Schaltung sind folgende Daten gegeben: $A_D = 100 \ dB$, $I_B = 100 \ nA$, $I_{OS} = 10 \ nA$, $U_{OS} = 0$ (abgeglichen). Wie groß ist die Fehlerspannung am Ausgang?

$$R_1 = 1 k\Omega, R_2 = 0$$
:

b) Wir wählen nun
$$R_1 = R_2 = R = 1k\Omega$$
:

$$U_D = -R_1 \cdot I_{BP} \approx -R_1 \cdot I_B = -1 \ k\Omega \cdot 100 \ nA = -0.1 \ mV$$

$$U_A = A_D \cdot U_D = 10^5 \cdot (-0.1 \, mV) = -10 \, V$$

$$U_D = R \cdot (I_{BN} - I_{BP}) = R \cdot (\pm I_{OS}) = \pm 1 \ k\Omega \cdot 10 \ nA = \pm 10 \ \mu V$$

$$U_A = A_D \cdot U_D = 10^5 \cdot (\pm 10 \,\mu\text{V}) = \pm 1 \,\text{V}$$
 (Polarität a priori nicht bekannt.)

Biasstrom-Kompensation

- Um den Einfluss der Biasströme zu minimieren, werden in praktischen OP-Schaltungen die wirksamen Widerstände in Eingangsleitungen häufig gleich groß gemacht.
- R₁||R₂ ist der Thévenin-Widerstand, auf den der N-Eingang sieht.
 Daher muss gelten: R₃ = R₁||R₂.

Betriebsspannungsunterdrückung

- Betriebsspannungsschwankungen wirken sich wie ein internes Differenzsignal am Eingang aus.
- Die Betriebsspannungsunterdrückung (engl. power supply rejection ratio) wird über die Wirkung auf die Eingangs-Offsetspannung definiert:

$$PSRR = \frac{\Delta U_{OS}}{\Delta U_S}$$

Der Wert gibt die Größe der Änderung von U_{OS} an, wenn sich die Betriebsspannungen U_S des OPs um jeweils 1 V ändern.

(Typische Werte, z. B. 10…100 μV/V, Angabe auf Datenblättern erfolgt meist in dB.)

Slew Rate

slew-Rate-begrenztes

Ausgangssignal

- Bei zu schnellen (Großsignal-) Änderungen am Eingang kommt es am Ausgang des OPs zu nichtlinearen Signalverzerrungen.
- Die maximale Anstiegsgeschwindigkeit (engl. slew rate) gibt an, um wie viel Volt je Mikrosekunde sich die Ausgangsspannung höchstens ändern kann.

$$SR = \frac{dU_A}{dt}\Big|_{max}$$
 (typ. Werte: 1...100 V/µs)

Ein Sinussignal $u_a(t) = \hat{U}_A \cdot sin(\omega t)$ hat im Nulldurchgang die größte Steigung. Diese darf die SR nicht überschreiten!

$$\frac{d}{dt}u_{A}(t) = \hat{\mathbf{U}}_{A} \cdot \omega \cdot \cos(\omega t) \Rightarrow \max\left(\frac{d}{dt}u_{A}(t)\right) = \hat{\mathbf{U}}_{A} \cdot \omega$$

$$SR \ge \hat{\mathbf{U}}_{A} \cdot \omega = 2\pi \cdot f \cdot \hat{\mathbf{U}}_{A}$$

Beispiel: Für den Standardtyp μA 741 ist SR = 0,5 V/μs.
Bis zu welcher Frequenz können sinusförmige
Ausgangsspannungen mit einer Amplitude
von 1 V verzerrungsfrei wiedergegeben werden?

$$f \le \frac{SR}{2\pi \cdot \hat{U}_A} = \frac{5 \cdot 10^5 \, V/s}{6,28 \cdot 1 \, V} \approx 80 \, kHz$$

 U_A

erwartetes

Ausgangssignal

realer OP

 r_{cm} u_{A} u_D $A_D \cdot u_D$

Eingangswiderstand bei Gleichtaktbetrieb (da $r_{CM} \gg r_{D}$ weniger interessant und vernachlässigbar)

 r_D Eingangswiderstand bei Differenzbetrieb (primär interessant)

$$i_{OS} = |i_P - i_N|$$

$$i_{OS} = |i_P - i_N| \qquad u_D = u_E = u_P - u_N$$

27

Ersatzschaltung eines Spannungsverstärkers

Berechnung der Ein- und Ausgangsspannung:

Leerlauf-Spannungsverstärkung

 U_2 R_{Ein} Eingangsinnenwiderstand

 R_{Aus} Ausgangsinnenwiderstand

$$U_{1} = U_{q} \cdot \frac{R_{Ein}}{R_{Ein} + R_{i}}$$

$$U_{2} = A_{D} \cdot U_{1} \cdot \frac{R_{L}}{R_{L} + R_{Aus}}$$

$$U_2 = A_D \cdot U_q \cdot \frac{R_{Ein}}{R_{Ein} + R_i} \cdot \frac{R_L}{R_L + R_{Aus}}$$

Damit gilt für die Signalverstärkung:

$$A = \frac{U_2}{U_q} = A_D \cdot \underbrace{R_{Ein}}_{R_{Ein} + R_i} \cdot \underbrace{R_L}_{R_L + R_{Aus}}$$

Für einen Spannungsverstärker soll gelten:

 $R_{Ein} \gg R_i$ und $R_{Aus} \ll R_L$

Die 4 Verstärkermodelle (Spannungsausgang)

1. Spannungsverstärker

$$A_U = \frac{U_2}{U_1} \Big|_{I_2=0}$$
 Leerlauf-Spannungsverstärkung

ideal: $R_{Ein} \rightarrow \infty$, $R_{Aus} \rightarrow 0$

2. <u>Transimpedanzverstärker</u> (Strom-Spannungswandler)

ideal: $R_{Ein} \rightarrow 0$, $R_{Aus} \rightarrow 0$

Die 4 Verstärkermodelle (Stromausgang)

3. <u>Transkonduktanzverstärker</u> (Steilheitsverstärker, Spannungs-Stromwandler)

$$G_m = \frac{I_2}{U_1} \Big|_{U_2=0}$$
 Kurzschluss-Übertragungsleitwert (Transkonduktanz, Steilheit) ideal: $R_{Ein} \to \infty$, $R_{Aus} \to \infty$

4. Stromverstärker

$$\left| \begin{array}{cc} U_2 & A_I = \frac{I_2}{I_1} \Big|_{U_2=0} \end{array} \right|$$
 Kurzschluss-Stromverstärkung

ideal: $R_{Ein} \rightarrow 0$, $R_{Aus} \rightarrow \infty$