CI 525-02

PM MAVEM 2006

MATERIA

ANNICIS Y DISCITO 65 SM), PROYECTO

CALCULÓ

SMV

PROYECTO

AN HORMIGORY

REVISÓ

Smy = 1.6 e

1	DETSAMINAGON	ES7650R
7	DETSTIMITION	

- GEOMETMA Y APOTOS
- FACTOR ESBERTUFE (le); E= 13/lex
- Recogningento 15cm

3. - MEMALOS

4 - COMSIDEMMIOINE

- PULLY COORDINA Preton maninin De GRIGH P/29-> M=M(1+ 20)
- ARMEDING TORSION FRETON K M+= KM+ JAR

CI52-6-02

MATERIA PROYECTO

Primurent 2006

CALCULÓ Revisó

5.- CMCWL Y DISCHO & E=4/lx K(T) A K $\frac{1}{1} \int_{-\infty}^{\infty} \frac{1}{1} \int_{-\infty}^{\infty} \frac{1} \int_{-\infty}^{\infty} \frac{1}{1} \int_{-\infty}^{\infty} \frac{1}{1} \int_{-\infty}^{\infty} \frac{1}{1} \int_{-\infty$ Mex = / Mex = Mex (I-m) Mey = / Mey = Mey (I-m)

SUPLUS: M= (fIRMI + f2M2) × 0.9 (2-m)

18 M1 M2 8

DISCHO

7(2/00	014	7(27	10 W/Z	
\$Balli	4	Balsi	680	v13i
701	21	(702)	1	
Kews y	Sou 185	(14)	8/8/	P1-480
8 8w18	a.		889	703
The same			¥	1 .

INDICE

FECHA

PROYECTO CI529-02 VENT. ESTATION 52 BCI Contevist CALCULÓ REVISÓ JMV Primarint 2006 CARGAS 60 SUB KARMANSO Rellings 10 CM __ 0.200 T/M2 TABIALLS _ D.100 V citto forso D 0.030 V 5037447291 -D 0.500 (Sucursa, Agbatamion) GEHTE 0.83 / e=16 -> 0+ /m -> 9= 1.23 /m2 e=13 -> 0.325V -- 9 = 1.16 V e=12 -> 0.300 V -- 9 = 1.13 V 7/29 = 0.22 MITEMALS ALLERO 444-284 -> fj = 2800 kg/cm2 SUPOMEMOS HORMIJOH ~ H25 -> fck = 200 Ec = 2100.000 T/m2 VENEGUCION VOZS 55/100 ESE (J-I) 77 1.38 T/M V55/100 5.44 3.84 0.046 MT 1.38 I AC 0.46 M2 TL= 1.23 7/m2 (e=16) 4.06 2.54 1.48 71= 1.23x 1.15= 1.42 =/m x 7.0 = 2.46 V x 1.2: 1.48 V 2.46 13= x 3.3 = 4.06 V 9- = 1.38 IA = 26.08 T V029 0.5 1.3 0.3 1.5

0.9

11.2

-13.5 -0.B

8

Δ

3

INDICE

16

13

-9.2 0.3

2.2

1.9

8

0.4

85

4

0.2 mm de 1

1.5 3.8

5

4.0

10.08

0

13.5 .

- 5.4

V55/100

Q=13.5T.

M = 9.4-> A=6.3-

M+= 6.5-) A=4.36-

M=13.5- 1=9.1 cm2

M+=9-03=6.0V

= 16T NA = 5.0 Kg/cm2 = NC= 7.33 Kg/cm2
-> Eswisos minimo).

PAG. 44

ANEXO C: TABLAS PARA EL DISEÑO DE LOSAS

(J.Hahn "Vigas confinuas, pórticos, placas y vigas flotantes sobre lecho elástico")

Valores numéricos según Marcus (sin armadura a torsión)

Valores numéricos según Czerny

8 =	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.55	1.60	1.80	2.00	ε=	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.55	1.60	1.80	2.1
k	1.3	1.35	1.34	1.33	1.32	1.30	1.28	1.27	1.25	1.23	1.22	1.20	1.18	1.15	1.12	mx	27.2	25.8	24.6	23.7	22.9	22.3	21.8	21.4	21.0	20.7	20.5	20.4	20.3	20.3	20
Δ	***	-		-		-		***	-			-	-		-	my	27.2	28.9	30.7	32.7	34.9	37.5	40.2	43.0	45.9	48.9	52.0	54.9	57.9	69.3	80
Δx		-	100				-	-			***			_	-	mex	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Δy	100		-	-	-				pro				_	_		mey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
																mxy	21.6	21.7	21.8	21.9	22.1	22.4	22.7	23.1	23.5	23.9	24.4	24.9	25.4	27.7	30.2
2=3	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1,35	1.40	1,45	1.50	1.55	1.60	1.80	2.00	= 3	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1,45	1.50	1,55	1.60	1.80	2.00
k				-			-			100	***				_	mx	31.4	30.7	30.0	29.7	29.4	29.2	29.1	29.2	29.4	29.6	29.8	30.1	30.4	32.0	34.2
Δ					-		***				_		_	-		my	41.2	45.4	49.6	54.0	58.5	62.9	67.3	71.7	76.0	79.7	83.4	86.9	90.4	106.0	118.0
Δx	0.05	0.06	0.07	0.09	0.11	0.14	0.18	0.21	0.24	0.27	0.30	0.33	0.35	0.43	0.51	mex	11.9	11.9	12.0	12.1	12.2	124	12.6	12.8	13.0	13.2	13.5	13.8	14.1	15.1	16.6
Δу	0.25	0.30	0.35	0.39	0.44	0.49	0.54	0.59	0.64	0.70	0.75	0.79	0.83	0.99	1.15	mey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
																mxy	26.2	26.8	27.4	28.1	28.8	29.6	30.5	31.3	32.2	33.1	34.1	35.1	36.1	40.3	44.8
g'=	1.00	1.05	1.10	1.15	1.00	1.05	1.30	1 25	1.40	1.45	1.50	1.55	1.60	1.80	0.00														1.45		
k	1.00	1700	1.10	1.112	1.20	1.20	1.50	1.55	1,40	1.45	1,50	1.33	1.00	1.60	2.00	= 3	1.00		1.10		1.20	1.25		1.35	1.40	1.45					
Δ						_		-	-			-	-		-	mx	41.2		35.1	32.9	31.1	29.6	28.3	27.2	26.3	25.6					
-	.0.25	0.21	0.19	0.16	0.14	0.12	0.11	0.09	0.08	0.08	0.08	0.07	0.07	0.07	0.07	my	29.4		31.7	33.1	34.7	36.5	38.6	40.8	43.1	45.7	48.4		53.8		
Δγ	0.05			0.02				0.00	0.00	0.00	0.00	-	4,44		0.07	mex	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
,	0.00	y.	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	mey	11.9	11.9	12.0	12.0	12.1	12.3	12.5	12.7	12.9	13.1	13.3	13.6	13.9	15.1	16.4
							*									IIIAy	26.2	25.8	25.5	25.3	25.2	25.1	25.2	25.4	25.6	25.8	20.1	26.5	26.9	28.6	30.8
ε =	1,00	1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1,45	1.50	1.55	1.60	1.80	2.00	e =	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.55	1.60	1.80	2.00
* k	-		-		-		-	-		NAME			-			mx	35.1	35.0	34.9	35.1	35.3	35.7	36.1	36.6	37.3	37.9	38.7	39.4	40.3	43.9	48.2
Δ	t	-	-	-		***		-	-		-			***	***	my	61.7	68.0	73.9	79.9	85.8	90.8	95.5	100.3	105.0	109.5	114.0	118.5	123.0	139.0	154.0
Δx	0.37	0.43	0.50	0.57	0.64	0.71	0.78	0.85	0.92	0.99	1.05	1,11	1.15	1.15	1.15	mex	14.3	14.6	14.9	15.2	15.6	16.0	16.4	16.8	17.3	17.7	18.2	18.7	19.2	21.5	24.0
Δy	1.04	1.15	1.28	1.40	1.53	1.66	1.78	1.90	2.02	2.14	2.24	2.34	2.42	2.42	2.42	mey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
																mxy	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
= 3	1.00	1.05	1.10	1.15	1.20	1.25	1,30	1.35	1.40	1.45	1.60	100	1.10		0.00	-										1.15	1.00				
k	1.00	1,00	1.10	1.15	1.20	1.25	1,30	1.35	1,40	1.45	1.50	1.55	1.60	1.80	2.00	= 3	1.00		1.10		1.20	1.25			1.40						
			-	-	-						-	-	-			mx	63.3		50.7		42.5				33.2						
ΔX	1.04	0.94	0.05	0.77	0.70	0.44	0.00	0.57	0.40	0.46		0.00				my	35.1	35.6	36.2		38.0	39.2			44.0						
Δγ			0.85		0.70	0.64	0.59	0.54	0.49	0.45	0.41	0.38	0.35		0.35	mex	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.3/	0.32	0.2/	0.22	0.18	0.14	0.10	0.07	0.05	0.03	0.02	0.01	0.01	0.01	0.01	mey	14.3	14.1	14.0	13.9	13.8	13.8	13.9	13.9	14.0	14.1	14.2	14.4	14.7	15.7	16.8

			3			
Apoyo	1.00	1.10	1.20	1.30	1.40	1.50
1	1.00	1.00	1.00	1.00	1.00	1.00
2a	0.80	0.80	0.80	0.80	0.80	0.80
2b	0.80	0.88	0.91	0.93	0.94	0.95
3a	0.60	0.60	0.60	0.60	0.60	0.60
3b	0.60	0.66	0.72	0.78	0.84	0.88
4	0.66	0.70	0.72	0.74	0.75	0.76
5a	0.58	0.58	0.58	0.59	0.59	0.59
5b	0.58	0.61	0.66	0.70	0.74	0.75
6	0.53	0.55	0.56	0.56	0.57	0.58

si k = --- se considera k=1 si
$$\Delta x$$
 = --- se considera Δx = Δy = Δ

ESFUERZOS DE DISEÑO RECOMENDADOS PARA LOSAS CON ε >2.0 (franjas)

(Según René Lagos y Asoc.)

Los valores indicados a continuación no consideran la alternancia de cargas.

$$Mex = \frac{q \cdot lx^2}{12}$$

$$Mex = \frac{q \cdot lx^2}{8}$$

$$Mey = \frac{q \cdot lx^2}{8}$$

$$Mey = \frac{q \cdot lx^2}{17.5}$$

$$Mey = \frac{q \cdot lx^2}{11.25}$$

$$Mx = \frac{q \cdot lx^2}{8}$$

$$Mx = \frac{q \cdot lx^2}{17(19)}$$

$$Mx = \frac{q \cdot lx^2}{10(12)}$$

EQUILIBRIO DE MOMENTOS NEGATIVOS

Dif=(M1-M2)/M1 (%)

Si:

- Dif<25% → M=(M1+M2)/2x0.9 , f=1.0
- 25<Dif<50% → M-=(0.6×M1+0.4×M2)×0.9 , f=1.0
- 50<Dif<70% → M=(0.65×M1+0.35×M2)×0.9, f=1.0
- $70 < dif < 100\% \rightarrow M = (0.7 \times M1 + 0.3 \times M2) \times 0.9$, f>1.0
- dif>100% → M=0.7xmax(M1,M2)

Donde f: factor de amplificación del momento +

ARMADURA MINIMA EN LOSAS FLOTANTES

Amin =5.0 %. *b*e como armadura total, con b: unidad de ancho y e: espesor

Ejemplos:

ARMADURA MINIMA EN LOSAS POSTENSADAS

- Amin =2.0 % *b*e
- Amin =1.0 a 1.3 % *b*e
- Amin =1.5% *b*e
 =1.0% *b*e
- Amin =2.0 a 2.5 %. *bl*e

Amin =1.5 % *b*e

- sobre las bandas de cables
- como armadura de tramo (malla inferior)
- malla inferior capiteles si no existen muros perimetrales
- malla inferior capiteles si existen muros perimetrales como fe de temperatura (retracción) cuando hay restricción al
- acortamiento (paralela al muro). donde bl: ancho de la banda de losa que colabora.
- como armadura superior, perpendicular al muro, en perímetros

DISPOSICION DE ARMADURAS Y NOMENCLATURA

Barra superior → F'=\\$8\@20 (s) (armadura secundaria)

Barra inferior → F=\\$8\@20 (s) (armadura principal)

Barra inferior → F=\\$8\@20 (s) (armadura principal)

Barra superior → F=\\$8\@20 (s) (armadura principal)

(armadura principal)

(armadura principal)

(armadura secundaria)

Armadura inferior o armadura de tramo

L1 = 12 % luz menor de la losa.

L2 = e losa -3 cm para armadura (i), e losa - 4 cm para armadura (s).

L3 = 1/5 de la luz menor de la losa – (40ϕ cm + 10 cm) ≤ 100 cm

Si la luz de la losa es menor o igual que 350 cm, se usara solo un fierro de largo L4.

L4 = Distancia entre ejes + e muro - 2 cm (recubrimiento típico)

L5 = 1/4 de la mayor de las luces menores de las losas involucradas.

L6 = e losa - 3 cm

L7 = 1/4 de la luz menor de la losa.

L8 = 40 cm para \(\phi 8\), 45 cm para \(\phi 10\), 50 cm para \(\phi 12\), 60 cm para \(\phi 16\)

L9 = siempre mayor o igual que L5 (debe llegar al borde del voladizo)

EMPALMES Y GANCHOS SEGUN A.C.I. 318-99

0	empo	almes de	tracción	(cm)	empalmes de compresión (cm)	gan	chos de t	racción	(cm)	pata gancho
	H25	H30	H35	H40		H25	H30	H35	H40	(cm)
8	47	42	38	35	30	18	16	15	14	10
10	59	52	48	44	30	22	20	18	17	12
12	70	63	57	53	35	27	24	22	20	14
16	94	84	77	71	47	36	32	29	27	19
18	105	94	86	80	53	40	36	33	30	22
* 22	161	144	132	122	65	49	44	40	37	26
25	183	164	150	138	74	56	50	46	42	30
28	205	183	167	155	82	63	56	51	47	34
32	234	210	191	177	94	72	- 64	58	54	38
36	264	236	215	199	106	80	72	66	61	43

EMPALMES Y GANCHOS SEGUN RENE LAGOS Y ASOCIADOS

0	е		de tracción (cm) 00+10	empalmes de compresión (cm) 400+10	pata gancho mínima (cm)
8		58	> usar 60	40	30
10	11.	70	> usar 70	50	30
12	1	82	> usar 80	60	30
16.		106	> usar 110	75	30
18		118	> usar 120	80	35
22		142	> usar 140	100	40
25	•	160	> usar 160	110	45
28		178	> usar 180	120	50
32		202	> usar 200	140	50
36		226	> usar 220	155	50

FECHA

INDICE

PAG.

Tahlas 17 - Placas libremente apoyadas por tres lados

Tabla 17 a - Coeficientes de momentos y flechas

Tipo de carga:

- 1 Carga uniforme $K = q l_s l_y$ Momentos Flecha $M_1 = K/m_1$ $w_r = K \cdot l_s^2/D$
- 2 Carga triangular $K = \frac{1}{2} q l_s l_s$ Momentos Flecha $M_1 = K/m_1$ no determinada
- 3 Carga de borde $S = q_s l_s$ Momentos Flecha $M_1 = S/m_1$ $w_r = S \cdot l_s^{-1}/D$
- 4 Momento de borde μ (mt/m) Momentos Flecha $M_1 = \mu/m_1$ $w_r = \mu l_s^2/D$ $R_1 = 2 M_{sy}$ $R_2 = 2 M_{sy}$ $D = \overline{\omega}_r E d^2$ (tracción)

Caso	ε	1,5	1,4	1,3	1,2	1,1	1,0	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,25	0,125
	m _{ar}	-12,6	11,9	11,3	10,7	10,2	9,8	9,4	9,1	9,1	9,2	9,8	11,0	13,7	16.2	30,0
	man	15,3	14,9	14,5	14,1	13,8	13,7	13,6	13,8	14,2	15,2	17,0	20,2	26,3	31,5	49,0
1	m _{ym}	62,4	58,4	54,2	50,0	45,9	41,7	37,1	33,2	29,9	27,4	25,9	26,3	29,7	33,7	60,0
	± m _{xy1}	22,3	20,6	19,3	17,9	16,7	15,4	14,1	12,9	11,8	10,8	10,1	9,4	8,8	8,6	8,4
	± m,,,1	412	300	220	161	118	86,5	63,6	47,0	35,0	26,3	20,1	15,8	12,8	11,6	10,0
	ω,	9,10	8,70	8,35	8,05	7,80	7,60	7,45	7,35	7,35	7,40	7,65	8,25	9,90	11,60	21,70
	m_{sr}	24,9	22,7	20,7	19,0	17,5	16,2	15,2	14,4	14,0	14,0	14,7	16,5	20,5	24,1	> 40
	m_{sm}	17,6	17,3	17,1	17,0	17,0	17,1	17,4	18,0	19,1	20,8	23,8	28,9	38,7	47,0	> 70
2	$m_{\rm ym}$	33,6	32,1	30,5	29,2	27,3	25,6	24,4	23,5	22,6	22,2	22,4	23,9	28,2	32,4	> 60
	± m _{xy2}	18,1	17,5	16,9	16,3	15,7	15,1	14,5	13,9	13,4	12,9	12,6	12,5	12,4	12,8	14,0
	± m,,,1	-133	-134	-138	-150	-179	-263	-930	349	121	64,4	40,7	28,3	21,3	18,9	15,1
	$m_{\rm ar}$						4,1	4,1	4,2	4,3	4,5	4,9	5,6	6,9	8,1	15,9
	m _{am}						10,9	10,2	9,6	9,4	9,2	9,6	10,5	12,6	16,1	31,3
3	— m _{yqs}	Sec. 1		1			25,0	26,9	29,4	33,2	40,1	52,5	91,0	200	500	00
	± may2						20,7	15,4	12,1	9,7	7,8	6,3	5,3	4,7	4,4	4,2
	w,						3,10	3,05	3,05	3,10	3,35	3,70	4,45	5,75	7,00	13,20
	m; _{KF}						2,90	2,85	2,80	2,74	2,65	2,50	2,35	2,20	. 2,08	2,0
4	m _{AM}						-31,0	no	100	35,0	12,5	7,9	5,7	4,6	4,2	4,0
	— т,т						8,0	6.5	5,1	4,0	3,1	2,5	2,2	2,1	2,0	2,0
	$\overline{\omega}_{r}$						2,00	1,95	1,90	1,85	1,78	1,71	1,63	1,54	1,49	1,36

Nota: En los casos 3 y 4, quedan por determinar los coeficientes para \$ > 1,0.

Tabla 18 - Placas apoyadas por tres lados, con el borde posterior empotrado

Tipos de carga:

1 Carga uniforme $K = q l_s l_y \qquad M_i = K/m_i$

2 Carga triangular $K = \frac{1}{2} q_e l_e l_y \quad M_i = K/m_i$ $(q_e = \text{máx. } q_{2\cdot 2}; \quad q = 0 \text{ en } m_i$ el borde libre)

3 Carga de tramo 1-1 $S = q_x l_x \qquad M_i = S/m_i$

4 Carga concentrada P en r $M_1 = P/m_1$,
Fuerzas de vértice $R = 2 M_{ry_1}$

Tipo de carga	ε =	1,5	1,4	1,3	1,2	1,1	1,0	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2
	m _{ar}	13,1	12,5	12,1	11,7	11,5	11,4	11,5	12,0	13,0	15,2	19,4	29,4	60,2	105
1	$m_{\rm em}$	18,1	18,1	18,1	18,3	18,8	19,7	21,0	23,3	27,0	34,2	48,0	79,0	174	293
Carga	m'ym	84	77	70	64	59	55	52	54	57	63	72	85	107	124
uniforme	- mey	12,1	11,3	10,5	9,8	9,1	8,5	7,9	7,4	7,1	6,8	6,8	7,1	8,1	9,0
*	± m _{xy1}	262	195	146	110	84	64	48	40	33	29	26	26	30	35
	β	0,20	0,22	0,25	0,28	0,31	0,34	0,37	0,40	0,43	0,46	0,49	0,53	0,57	0,60
2	$m_{\rm xr}$	27,3	25,4	23,8	22,6	21,6	21,3	21,0	21,7	23,5	27,6	35,2	53,5	110	189
Carga	$m_{\rm xm}$	22,3	22,7	23,3	24,3	25,6	27,5	30,5	35,0	42,3	55,0	80,5	137	307	504
triang.	m'ym	48	46	45	44	43	43	44	46	50	57	68	85	112	132
q máx. en el	m _{ey}	10,1	9,8	9,5	9,2	8,9	8,7	8,5	8,4	8,4	8,5	8,9	9,8	11,5	13,2
borde	± m _{xy1}	-174	-187	-215	282	-510	00	343	161	101	75	63	59	65	74
2—2	β	0,20	0,20	0,21	0,21	0,22	0,23	0,25	0,27	0,30	0,33	0,37	0,41	0,48	0,54
Carga de	m_{x_l}	Tod	avía	por d	eterm	inar	5,0	5,2	5,5	6,1	6,9	8,3	11,8	28,0	40,0
borde S	— mey	Tod	avía	por d	ctern	inar	10,0	8,4	7,3	6,2	5,2	4,5	4,2	4,2	4,4
4	mxr	pa	та 🛵	$= t_x/l_y$, - 0,2		1,72	1,72	1,72	1.73	1,74	1,76	1,80	1,84	1,87
Carga	m_{re} para $k_r = t_e / t_e = 0.4$					2,27	2,28	2,29	2,30	2,32	2,34	2,38	2,44	2,49	
concentr	m _{sm}						8,5	8,8	9,1	9,4	9,7	10,0	10,3	10,5	10,6
en·r P	— m _{ym}	Tod	avía	por d	etern	inar	11,5	11,2	10,5	9,7	8,6	7,4	6,1	5,2	4,9
-	- mey			27000	7000	-	5,90	4,95	4,15	3,62	3,17	2,75	2,44	2,22	2,17

El alcance de los momentos negativos ($-M_{ey}$) se determina con βl_y .

Tabla 19 -- Placas apoyadas por tres lados, con un borde lateral empotrado

Tipos de carga:

1 Carga uniforme

$$K = q l_z l_y$$

$$M_i = K/m_i$$

2 Carga de borde

$$S = q_e l_e$$

$$M_i = S/m_i$$

3 Momento de borde μ $M_i = \mu/m_i$

Tipo de carga	e =	2,0	1,8	1,6	1,4	1,2	1,0	0,8	0,6	0,5	0,4	0,25
	m _{st.}	27,8	26.3	23,2	20,4	17,7	15,3	12.9	11.7	11.4	11,6	15,4
(1)	m _{am.}	30,7	27.5	24.8	22,5	20,5	18,81	17.5	17,7	18,5	20,6	31,3
Carga .	m,	117	101	86	71 -	58	46	35	28	29	30	35
K	mer	14,6	13,3	12.0	10,6	9,2	7,9	6,7	5,8	5,0	4,5	4,1
	mem	17,0	15,4	13,9	12.5	11,2	10.1	9,2	8,8	9,1	9,8	11,7
	mxe	5,2	5,2	5.3	5,3	5.4	5,5	5,7	6,0	6,3	6,6	6,9
(2)	$m_{\rm xm}$	16,6	16.6	16,6	16,6	16,6	16,4	16,1	14,6	14,1	13,9	16,1
Carga de borde	m _{er}	3,0	1,0	3,0	2,9	2,9	2,8	2.8	2,8	2,9	3,1	3,5
5	m _{en}	51	35	29	19,5	12,9	9,1	7,6	7,7	8,2	9,1	10,5
	m_{χ_T}	3,0	3.0	3,0	3,0	3,0	3,1	3,1	2,9	2.7	2,4	2,2
(3)	m_{sm}	50	41	52,5	25,1	18,1	12,4	9,5	7,7	6,8	6,3	5,9
Momento de borde	- mer	:1,7	1,7	1,7	1,7	1,7	1,7	1.7	1,6	1,55	1,45	1,25
' μ	mem	33	- 35	50	50	16,7	10,5	7,2	5,3	4,6	4,0	3,1

Nota: Para placas con $\epsilon > 0.8$ (aprox.), el coeficiente de M_{ν} no es el correspondiente al centro m de la placa, sino el de $M_{\nu \, max}$ cerca del borde 3-4.

Tabla 20 — Placas apoyadas por tres lados con dos bordes laterales empotrados

Tipos de carga:

1 Carga uniforme

$$K = q l_x l_y$$

$$M_i = K/m_i$$

2 Carga de borde

$$S = q_z l_z$$

$$M_i = S/m_i$$

3 Momento de borde µ

$$M_i = \mu/m_i$$

Tipo de carga	ε ==	2,0	1,8	1,6	1,4	1,2	1,0	0,8	0,6	0,5	0,4	0,25
	m_{xr}	48,1	43,3	38,4	33,4	28,3	23,5	19,5	15,9	14,8	13,8	16,6
(1)	m_{x_m}	49,0	44,6	40,2	36,4	32,5	29,0	25,4	22,7	22,1	23,3	29,0
Carga	m_{y}	170	149	127	108	90	72	52	44	39	36	37
uniforme K	-mer	24,1	21,6	19,2	16,9	14,3	11,9	9,5	7,1	6,1	5,2	4,5
	$-m_{em}$	24,2	21,9	19,7	17,4	15,7	13,8	12,1	10,7	10,1	9,7	9,8
(2) Carga de	$m_{\rm ar}$	7,0	7,0	7,0	7,0	7,0	- 7,1	7,1	7,1	7,2	7,7	8,3
borde S	$-m_{er}$	3,5	3,5	3,5	3,5	3,5	3,5	3,6	3,6	3,6	3,7	4,2
(3) Momento	m _{xr}	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	2.95	2,75	2,45
de borde µ	-mer	1,5	1,5	1,5	1,5	1,5	1,5	1.5	1.45	1,45	1,35	1,2

Nota: Para placas con $\varepsilon > 0,6$ (aprox.), el coeficiente de M_y no es el correspondiente al centro m de la placa, sino el de $M_{y \text{ máx}}$, cerca del borde 3-4.

Tabla 21 — Placas apoyadas por tres lados con dos bordes consecutivos empotrados

Tipos de carga:

1. Carga uniforme $K = q l_x l_y$

2. Carga triangular $K = q_{\text{max}} l_x l_y/2$

3. Carga de borde $S = q_x l_x$

en general $M_i = \frac{K}{m_i}$, resp. $\frac{S}{m_i}$

	,									m;		m
Tipo de carga	ε =	2,0	1,8	1,6	1,4	1,2	1,0	0,8	0,6	0,5	0,4	0,2
	$m_{\scriptscriptstyle Af}$	30,1	26,7	23,7	21,0	18,6	16,4	15,1	16,0	19,1	25,2	54,
	$m_{\kappa m}$	33,2	30,3	27,3	25,7	24,8	24,9	26,8	33,3	41,4	55,5	112
(1) Carga	m _{ym}	201	195	137	125	106	83	67	71	80	103	690
uniforme K	- mer .	14,7	13.3	11,9	10,5	9,1	7,8	6,7	6,0	5,7	5,8	6,
^	m _{em}	17,9	16,3	14,8	13,5	12,6	12,1	12,3	13,6	15,1	17,4	26,
	m _{ey}	25,3	22,9	20,5	18,0	15,4	12,8	10,3	8,4	8,0	7,9	9,
	m _{xr}	95	72	56,6	45,9	37,1	31,9	28,2	30,6	36,7	48,6	101
(2) Carga triangular	$m_{\chi m}$	38	34,3	31,7	30,4	30,6	32,6	38,4	51,2	66	89	165
	тут	77	75,1	73,3	67,8	62,0	55,1	52,4	62,0	75	98	178
q_{max} en el borde $2-2$	mer	44,3	39,3	33,0	27,6	22,6	18,2	14,5	11,3	- 11,5	. 11,8	14,
K	-mem	19,3	17,6	16,2	15,1	14,5	14,4	15,3	17,9	20,4	24,0	40,
	-mey	18,1	16,8	15,5	14,2	13,0	11,8	10,8	10,2	10,4	11,0	13,
	$m_{\rm xr}$	5,5	5,5	5,5	5,5	5,5	5,6	5,8	6,7	7,9	10,4	21,
	$m_{\kappa m}$	73	61,2	49,3	37,5	28,1	21,0	17,1	19,8	23,5	29,1	58,
(3) Carga	тэт	73,5	62,1	51,8	43,6	34,8	26,4	20,2	15,8	15,0	13,5	11,
de borde S	-mer	2,6	2,6	2,6	2,6	2,5	2,4	2,3	2,2	2,4	2,8	3,0
3	-m _{em}	81	63	47,3	34,8	24,2	16,1	11,6	10,4	10,8	11,8	14,3
	-m _O	-	-	301	152	61	28	14,1	7,8	6,1	5,2	5,

Tabla 22 - Placas con tres bordes perfectamente empotrados

(Factores de momento según Czerny) M = K/m

Tipo de carga: Carga uniforme $K = q \cdot l_x \cdot l_y$ $\epsilon = l_y/l_x$

e	1,5	1,4	1,3	1,2	1,1	1,0	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,25
m _{ar}	35,8	33,4	31,0	28,6	26,4	24,3	22,4	20,9	19,9	19,8	21,3	26,8	46,4	77,0
m _{zm}	39,8	38,3	37,0	35,8	34,9	34,3	34,0	34,3	35,6	38,6	45,6	63,6	126	228
m _{ym}	163	152	141	130	119	109	99,5	91,0	83,4	80,0	83,4	108	208	417
- m _{er}	17,8	16,6	15,3	14,1	12,8	11,6	10,4	9,3	8,2	7,4	6,8	6,8	- 7,6	8,6
- m	18,7	17,8	17,0	16,2	15,6	15,0	14,5	14,3	14,2	14,7	15,8	18,1	23,0	27,2
- m _{ey}	26,4	24,6	22,8	21,1	19,3	17,6	15,8	14,2	12,6	11,1	9,8	9,0	9,0	9,6

Tipo de carga: Carga triangular $K=q_m \cdot l_x \cdot l_y$ En el borde libre se tiene q=0En el borde 3-4 se tiene $q=2 \ q_m$

ε .	1,5	1,4	1,3	1,2	1,1	1,0	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,25
m _{ar}	115	100	86,3	73,7	63,0	54,1	46,8	41,4	37,9	36,6	38,9	48,7	85,5	143
m _{em}	42,4	41,5	41,1	41,0	41,3	42,2	44,0	46,8	51,4	59,2	74,2	110	230.	430
m _{ym}	80,6	76,2	71,3	66,7	62,5	58,8	56,9	54,0	56,5	59,1	69,0	91,0	172	313
- m _{er}	85,8	74,8	64,0	54,1	45,1	37,1	30,0	24,6	20,2	17,0	15,0	14,3	15,7	17,7
- m _{em}	19,1	18,4	17,8	17,3	16,9	16,6	16,5	16,7	17,2	18,3	20,3	23,9	30,7	36,5
- mey	17,8	17,0	16,3	15,6	14,9	14,2	13,5	13,0	12,5	12,0	11,7	11,7	12,6	13,8