CSBRIDGE - NET 5

PROF. KATZ

USER DATAGRAM PROTOCOL (UDP)

- A simple, connection-less layer 4 protocol for the transmission of non-critical data
- No reliability, No confirmation of delivery, No order of packets!
- Very Light protocol which sits on top of IP layer.
- Used by a number of ULPs including DNS, DHCP, and BootP.

PORT NUMBERS

- UDP introduces the concept of port numbers as a layer 4 address.
- Ports are used to indicate which layer 7 service should receive the packet and which produced it.
- When a server program starts it "binds" to the port it will use for communication (usually <1024), UDP then knows that data received for that port should be delivered to that program.

PORTS (CONT.)

- When a client service begins communication it can either request a specific port for communication or use a unique port provided by the OS.
- Server ports are static, client ports may be dynamic.

COMMON UDP PORT NUMBERS

- 67 BooTP Server
- 68 BootP client
- 69 Trivial FTP

UDP HEADER

HEADER VALUES

- Source port The port on the source host which generated this message
- Destination Port The port on the destination host which should receive this message
- Length The length of the header and data

UDP CHECKSUM

- The UDP checksum is calculated across the data and the header.
- The Checksum is the one's compliment of the 16-bit sum of the words in the header and data.
- Additionally the 32-bit source and destination, the 8 bit protocol field, and the UDP length are included in the sum.

UDP GENERATED HEADER

0		31									
32-bit source adress											
32-bit destination address											
8-bit zero	bit zero 8-bit protocol(=17) 16-bit UDP length										
16-bit so	ource port number	16-bit destination port number									
16-b	it UDP length	16-bit-UDP cheksum									
data											
data	8-bit pad byte(0)										

UDP CHECKSUM

- On the receiving end all words are added to the checksum and the result should be all ones.
- If the result is not all ones then an error has occurred.

UDP IN ACTION (DNS DEMO)

TRANSPORT CONTROL PROTOCOL

- Provides a connection oriented layer 4 service
- Provides guarantees
- Provides sequence ability

TCP HEADER

0	1	2	3	4	5	6	7 Source	8 ce Po	9 ort	1 0	1	1 2	1 3	1 4	1 5	1	1 7	1 8	1 9	2 0	2	2 2 Des	2 3 stina	2 4	2 5 Port	2 6	2 7	2 8	2 9	3 0	3 1
Sequence Number																															
Acknowledgement Number																															
Header len						rese	erved	d		U R G	A C K	P S H	R S T	S Y N	FIN		Window size														
Checksum										Urgent Pointer																					
														Optio	ons +	- pac	dding)													
Data																															

TCP HEADER (CONT.)

- Source and destination ports Which application produced the packet and which should receive it
- Sequence number Identification of the relative location of the first byte in the packet to the first byte in the stream.
- Acknowledgement number The sequence number of the next byte which the receiving station expects

TCP HEADER (CONT.)

- Urgent
- Acknowledgement
- Push
- Reset
- Synchronize sequence numbers
- Final packet

TCP CONNECTION ESTABLISHMENT

- Client Sends SYN
- Server Replies with SYN-ACK
- Client Replies with ACK

TCP CONNECTION MAINTENANCE

- The Sequence number is incremented for every packet sent
- An acknowledgement must be made before the window size is reached.
- An ack is sent for the next byte which the client expects to receive.

TCP STATE DIAGRAM

