Supplemental Material:

Learning Over Large Alphabets

Appendix A: A Proof for Theorem 1

We first introduce an important property that is used in our analysis.

Proposition 1 Let p be a probability distribution over a countable alphabet \mathcal{X} , $r \geq 1$ be a positive integer and $n \in \mathbb{N}_+$. Then the following holds,

$$\sum_{u \in \mathcal{X}} p^r(u)e^{-np(u)} \le \frac{(r-1)!}{n^{r-1}}.$$
 (1)

Proof. Let $X \sim p$ and define a random variable $T(x) = \frac{(np(x))^{r-1}e^{-np(x)}}{(r-1)!}$. Notice that T(x) is a Poisson distribution, $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$, with a parameter $\lambda = np(x)$ and k = r - 1. Therefore, $T(x) \in [0, 1]$. The expected value of T(x) satisfies

$$\mathbb{E}T(X) = \sum_{x \in \mathcal{X}} p(x) \frac{(np(x))^{r-1} e^{-np(x)}}{(r-1)!} = \frac{n^{r-1}}{(r-1)!} \sum_{x \in \mathcal{X}} p^r(x) e^{-np(x)} \le 1$$
 (2)

where the inequality follows from $T(x) \in [0,1]$.

Let us now derive the bound for the risk.

$$\mathbb{E}_{X^{n} \sim p} (\hat{M}_{\beta}(X^{n}) - M_{0}(X^{n}))^{2} =$$

$$\mathbb{E}_{X^{n} \sim p} \left(\sum_{u \in \mathcal{X}} \mathbb{1}\{N_{u} = 0\}p(u) - \sum_{u \in \mathcal{X}} \mathbb{1}\{N_{u} = 0\}\beta \right)^{2} =$$

$$\sum_{u \in \mathcal{X}} \sum_{v \in \mathcal{X}} P_{n}(0, 0)(p(u) - \beta)(p(v) - \beta)$$
(3)

where $P_n(i,j) = \mathbb{E}_{X^n \sim p} (\mathbb{1}(N_u = i)\mathbb{1}(N_v = j))$, and

$$P_n(i,j) = \begin{cases} \binom{n}{i} p^i(u) p^j(v) (1 - p(u) - p(v))^{n-i-j} & u \neq v \\ \binom{n}{i} p^i(u) (1 - p(u))^{n-i} & u = v, \ i = j \\ 0 & u = v, \ i \neq j \end{cases}$$
(4)

Plugging the definition of $P_n(i,j)$ (4) to the estimation risk (3), we obtain

$$\mathbb{E}_{X^{n} \sim p} \left(\hat{M}_{\beta}(X^{n}) - M(X^{n}) \right)^{2} =$$

$$\sum_{u \neq v} (1 - p(u) - p(v))^{n} (p(u) - \beta) (p(v) - \beta) + \sum_{u \in \mathcal{X}} (1 - p(u))^{n} (p(u) - \beta)^{2} =$$

$$\beta^{2} \sum_{u \neq v} (1 - p(u) - p(v))^{n}$$

$$- \beta \sum_{u \neq v} (1 - p(u) - p(v))^{n} (p(u) + p(v))$$

$$+ \sum_{u \neq v} (1 - p(u) - p(v))^{n} p(u) p(v)$$

$$+ \sum_{u \in \mathcal{X}} (1 - p(u))^{n} (p(u) - \beta)^{2}$$
(5)

Let us separately study each of the terms in (5).

Let us examine the first term in (5): $\beta^2 \sum_{u \neq v} (1 - p(u) - p(v))^n$. We have

$$\beta^2 \sum_{u \neq v} (1 - p(u) - p(v))^n \le \beta^2 \sum_{u \neq v} e^{-n(p(u) + p(v))}$$
(6)

where the inequality follows from

$$(1-t)^n \le e^{-nt} \tag{7}$$

for any $t \in \mathbb{R}$ and $n \in \mathbb{R}_+$ [1].

Let us examine the second term of (5): $-\beta \sum_{u\neq v} (1-p(u)-p(v))^n (p(u)+p(v))$. Following from the inequality

$$(1-t)^n \ge e^{-nt}(1-nt^2) \tag{8}$$

for any $0 \le t \le 1$ and $n \in \mathbb{N}_+$ [1, 2], we get that

$$-\beta \sum_{u \neq v} (1 - p(u) - p(v))^n (p(u) + p(v)) \le -\beta \sum_{u \neq v} e^{-n(p(u) + p(v))} (1 - n(p(u) + p(v))^2) (p(u) + p(v))$$

$$= -\beta \sum_{u \neq v} e^{-n(p(u) + p(v))} (p(u) + p(v)) + \beta n \sum_{u \neq v} e^{-n(p(u) + p(v))} (p(u) + p(v))^3$$
(9)

Using Proposition 1, we can find an bound on $\beta n \sum_{u \neq v} e^{-n(p(u)+p(v))} (p(u)+p(v))^3$:

$$\beta n \sum_{u \neq v} e^{-n(p(u)+p(v))} (p(u) + p(v))^{3} =$$

$$\beta n \sum_{u \neq v} e^{-n(p(u)+p(v))} (p^{3}(u) + 3p^{2}(u)p(v) + 3p(u)p^{2}(v) + p^{3}(v)) \leq$$

$$\beta n \sum_{u \in \mathcal{X}} e^{-np(u)} \sum_{v \in \mathcal{X}} e^{-np(v)} (p^{3}(u) + 3p^{2}(u)p(v) + 3p(u)p^{2}(v) + p^{3}(v)) \leq$$

$$\beta n (\frac{4}{n^{2}} \sum_{u \in \mathcal{X}} e^{-np(u)} + \frac{6}{n}) =$$

$$\frac{4\beta}{n} \sum_{u \in \mathcal{X}} e^{-np(u)} + 6\beta \leq$$

$$2\beta (\frac{2m}{n} + 3)$$
(10)

Let us examine the third term of (5): $\sum_{u\neq v} (1-p(u)-p(v))^n p(u) p(v)$. We have

$$\sum_{u \neq v} (1 - p(u) - p(v))^n p(u) p(v) \le \sum_{u \neq v} e^{-n(p(u) + p(v))} p(u) p(v)$$
(11)

where the inequality follows from (7).

So far we have

$$\mathbb{E}_{X^{n} \sim p} \left(\hat{M}_{\beta}(X^{n}) - M(X^{n}) \right)^{2} \leq 2\beta \left(\frac{2m}{n} + 3 \right) + \sum_{u \neq v} e^{-n(p(u) + p(v))} (\beta^{2} - \beta(p(u) + p(v)) + p(u)p(v)) + \sum_{u \in \mathcal{X}} (1 - p(u))^{n} (p(u) - \beta)^{2}$$
(12)

The term $\sum_{u\neq v} e^{-n(p(u)+p(v))} (\beta^2 - \beta(p(u)+p(v)) + p(u)p(v))$ can be bounded by a simpler bound:

$$\sum_{u \neq v} e^{-n(p(u)+p(v))} (\beta^2 - \beta(p(u)+p(v)) + p(u)p(v)) \leq$$

$$\sum_{u \in \mathcal{X}} e^{-np(u)} p(u) \sum_{v \in \mathcal{X}} e^{-np(v)} p(v)$$

$$-\beta \sum_{u \in \mathcal{X}} e^{-np(u)} p(u) \sum_{v \in \mathcal{X}} e^{-np(v)}$$

$$-\beta \sum_{u \in \mathcal{X}} e^{-np(u)} \sum_{v \in \mathcal{X}} e^{-np(v)} p(v)$$

$$+2\beta \sum_{u \in \mathcal{X}} e^{-2np(u)} p(u)$$

$$+\beta^2 \sum_{u \in \mathcal{X}} e^{-np(u)} \sum_{v \in \mathcal{X}} e^{-np(v)} =$$

$$(\sum_{u \in \mathcal{X}} p(u)e^{-np(u)} - \beta \sum_{u \in \mathcal{X}} e^{-np(u)})^2 + 2\beta \sum_{u \in \mathcal{X}} e^{-2np(u)} p(u) =$$

$$(\sum_{u \in \mathcal{X}} (p(u) - \beta)e^{-np(u)})^2 + 2\beta \sum_{u \in \mathcal{X}} e^{-2np(u)} p(u) \leq$$

$$(\sum_{u \in \mathcal{X}} (p(u) - \beta)e^{-np(u)})^2 + 2\beta$$

Where the last inequality stems from Proposition 1. Next, we study the last term in (5). Following (7) we get:

$$\sum_{u \in \mathcal{X}} (1 - p(u))^n (p(u) - \beta)^2 \le \sum_{u \in \mathcal{X}} e^{-np(u)} (p(u) - \beta)^2$$
 (14)

From (12), (13) and (14) we get Theorem 1:

$$\mathbb{E}_{X^n \sim p} \left(\hat{M}_{\beta}(X^n) - M(X^n) \right)^2 \le 2\beta \left(\frac{2m}{n} + 4 \right) + \left(\sum_{u \in \mathcal{X}} (p(u) - \beta) e^{-np(u)} \right)^2 + \sum_{u \in \mathcal{X}} e^{-np(u)} (p(u) - \beta)^2 \quad (15)$$

Appendix B

Theorem 2 Let p be a probability distribution over a countable alphabet \mathcal{X} of size $m < \infty$. Let $f_{n,\beta} = \sum_{u \in \mathcal{X}} e^{-np(u)} (p(u) - \beta)^2$ and $g_{n,\beta} = \sum_{u \in \mathcal{X}} e^{-np(u)} (p(u) - \beta)$. Let $f_{n,\beta}^{max} = \max_{p \in \Delta_m} f_{n,\beta}$, $g_{n,\beta}^{max} = \max_{p \in \Delta_m} g_{n,\beta}$ and $p_f^* = \arg\max_{p \in \Delta_m} f_{n,\beta}$, $p_g^* = \arg\max_{p \in \Delta_m} g_{n,\beta}$. Then, the following holds:

- For $g_{n,\beta}^{max}$:
 - 1. There exists no more than a single probability value $p_g^*(u)$ such that $p_g^*(u) \in (\frac{2}{n} + \beta, 1]$.
 - 2. If $p_g^*(u), p_g^*(v) \in [0, \frac{2}{n} + \beta]$, then $p_g^*(u) = p_g^*(v)$.
- For $f_{n,\beta}^{max}$:

- 1. There exist $m_0 < m$ probability values such that $p_f^*(u) = 0$.
- 2. There exists at most a single probability value $p_f^*(u)$ such that $p_f^*(u) \in \left(0, \frac{2-\sqrt{2}}{n} + \beta\right)$.
- 3. There exist $m_1 < m$ probability values such that $p_f^*(u) \in \left[\frac{2-\sqrt{2}}{n} + \beta, \frac{2+\sqrt{2}}{n} + \beta\right]$. Furthermore, $p_f^*(v) = p_f^*(u)$ for all $p_f^*(v), p_f^*(u) \in \left[\frac{2-\sqrt{2}}{n} + \beta, \frac{2+\sqrt{2}}{n} + \beta\right]$.
- 4. There exists at most a single probability value $p_f^*(u)$ such that $p_f^*(u) \in \left(\frac{2+\sqrt{2}}{n} + \beta, 1\right]$.

Proof. Let us first study the function $f = e^{-np}(p-\beta)^2$:

$$\frac{\partial f}{\partial p} = -ne^{-np}(p-\beta)^2 + 2e^{-np}(p-\beta) = 0$$

$$e^{-np}(p-\beta)(2-np+n\beta) = 0$$

f is non-negative, therefore $p_{min} = \beta$ which causes f to be 0 is a minimum. The other extremum is $p_{max} = \frac{2}{n} + \beta$ - it is a maxima, because $p_{min} < p_{max}$ and $f(p_{min}) < f(p_{max})$, meaning that the function is increasing in the range $[p_{min}, p_{max}]$, and since there are no other extremum and since the limit of the function approaches 0 as p approaches infinity, that means that the function is decreasing for $p > p_{max}$.

$$\frac{\partial^2 f}{\partial p^2} = n^2 e^{-np} (p - \beta)^2 - 4ne^{-np} (p - \beta) + 2e^{-np} = 0$$

$$e^{-np}(n^2(p-\beta)^2 - 4n(p-\beta) + 2) = 0$$

define $t = (p - \beta)$. Find the solutions to this equation:

$$t_{1,2} = \frac{4n \pm \sqrt{16n^2 - 8n^2}}{2n^2} = \frac{2 \pm \sqrt{2}}{n}$$

We get: $p_1 = \frac{2+\sqrt{2}}{n} + \beta, p_2 = \frac{2-\sqrt{2}}{n} + \beta$

Therefore, f is convex in the range (p_1, p_2) , concave in the range (p_2, p_1) , and convex in the range $(p_1, 1]$.

Proposition 2 An optimal solution includes no more than one value in the range $(0, p_2)$.

Proof. To prove it by contradiction, let us assume that an optimal solution with distribution p has a subset of values U such that for each u in U, p(u) is in the range $(0, p_2)$ with at least 2 values in the subset. Define the sum of these values $\sum_{u \in U} p(u) = C$. Let u_1 and u_2 be two values in U.

If $0 \le p(u_1) \le \beta \le p(u_2) \le p_2$ (without loss of generality), then due to the convex nature of f in the range $(0, p_2)$, a probability distribution p' where p'(v) = p(v) for $v \notin \{u_1, u_2\}$, $p'(u_1) = p(u_1) - min\{p(u_1), \beta - p(u_2)\}$, $p'(u_2) = p(u_2) + min\{p(u_1), \beta - p(u_2)\}$ yields a solution where the constraint

 $\sum_{u \in U} p'(u) = C$ is satisfied, with a higher value than the optimal solution, in contradiction to it being optimal (maximal).

If $0 \le p(u_1) \le p(u_2) \le \beta$ (without loss of generality), then let p' be a probability distribution where p'(v) = p(v) for $v \notin \{u_1, u_2\}$, and if $p(u_1) + p(u_2) \ge p_2$ then $p'(u_1) = p(u_1) - p_2 + p(u_2)$, $p'(u_2) = p_2$, otherwise $p'(u_1) = 0$, $p'(u_2) = p(u_2) + p(u_1)$. In both cases, the constraint $\sum_{u \in U} p'(u) = C$ is satisfied.

By the definition of a convex function, for all x,y in the convex domain, and all $\lambda \in [0,1]$, we have $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$. Therefore, we also have $f(\lambda x + (1-\lambda)y) + f(\lambda y + (1-\lambda)x) \leq f(x) + f(y)$. In the first case, if we choose $x = p'(u_1) = p(u_1) + p(u_2) - p_2$, $y = p'(u_2) = p_2$ and $\lambda = \frac{p(u_1) - p_2}{p(u_1) + p(u_2) - 2p_2}$, we get $f(p(u_1)) + f(p(u_2)) \leq f(p'(u_1)) + f(p'(u_2))$, meaning that for p' we get a higher value than the optimal solution, in contradiction to it being optimal. Similarly, in the second case, if we choose $x = p'(u_1) = 0$, $y = p'(u_2) = p(u_1) + p(u_2)$, $\lambda = \frac{p(u_1)}{p(u_1) + p(u_2)}$, we get the same result.

Proposition 3 All values in the range $[p_2, p_1]$ are equal in an optimal solution.

Proof. To prove it by contradiction, let us assume that an optimal solution with distribution p has a subset of values U such that for each u in U, p(u) is in the range $[p_2, p_1]$ with at least 2 values in the subset. Define the sum of these values $\sum_{u \in U} p(u) = C$. Let u_1 and u_2 be two values in U so that $p(u_1) \neq p(u_2)$.

By the definition of a concave function, for all x,y in the concave domain, and all $\lambda \in [0,1]$, we have $f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y)$. Therefore, we also have $f(\lambda x + (1-\lambda)y) + f(\lambda y + (1-\lambda)x) \ge f(x) + f(y)$. If we choose $x = p(u_1)$, $y = p(u_2)$ and $\lambda = 0.5$, we get $2f(\frac{p(u_1)+p(u_2)}{2}) \ge f(p(u_1)) + f(p(u_2))$, meaning that for p' where p'(v) = p(v) for $v \notin \{u_1, u_2\}$, $p'(u_1) = p'(u_2) = \frac{p(u_1)+p(u_2)}{2}$, we get that p' provides larger value than the optimal solution, in contradiction to it being optimal.

Proposition 4 An optimal solution includes no more than one value in the range $(p_1, 1]$.

Proof. To prove it by contradiction, let us assume that an optimal solution with distribution p has a subset of values U such that for each u in U, p(u) is in the range $(p_1, 1]$ with at least 2 values in the subset. Define the sum of these values $\sum_{u \in U} p(u) = C$. Let u_1 and u_2 be two values in U.

Without loss of generality, assume $p_1 \leq p(u_1) \leq p(u_2) \leq 1$, then due to the convex nature of f in the range $(p_1, 1]$, a probability distribution p' where p'(v) = p(v) for $v \notin \{u_1, u_2\}$, $p'(u_1) = p_1$, $p'(u_2) = p(u_2) + p(u_1) - p_1$ we would get a solution where the constraint $\sum_{u \in U} p'(u) = C$ is satisfied, with a higher value than the optimal solution, in contradiction to it being optimal (maximal). Because $p(u_1) + p(u_2) \leq 1$, so must $p'(u_2) \leq 1$, so the distribution p' is valid.

From propositions 2, 3, 4 we get that the possible optimal probability has the four following degrees of freedom:

- 1. Number of elements u for which p(u)=0.
- 2. The (single) value of all elements in the range $p(u) \in [p_2, p_1]$.

- 3. The value of the (single) element in the range $(0, p_2)$, if it exists.
- 4. The value of the (single) element in the range $(p_1, 1]$, if it exists.

Let us now analyze $g = e^{-np}(p - \beta)$:

$$\frac{\partial g}{\partial p} = e^{-np}(1 - np + n\beta) = 0$$

We get an extremum at $p = \frac{1}{n} + \beta$.

$$\frac{\partial^2 g}{\partial p^2} = e^{-np} n(np - 2 - n\beta) = 0$$

We get a critical point at $p = \frac{2}{n} + \beta$. At the extremum $p = \frac{1}{n} + \beta$ we get that the second derivative is negative, so it is concave for $p < \frac{2}{n} + \beta$ and therefore the extremum is a maximum. The function is convex for $p > \frac{2}{n} + \beta$.

This means that for the probability p which maximizes $g_{n,\beta}$:

- 1. There is no more than one value in the range $(\frac{2}{n} + \beta, 1]$. (see proposition 4).
- 2. All values in the range $[0, \frac{2}{n} + \beta]$ must be equal. (see proposition 3).

It follows from Theorem 1 that the estimation risk is bounded from above by

$$2\beta(\frac{2m}{n}+3) + (g_{n,\beta}^{max})^2 + f_{n,\beta}^{max}$$
 (16)

For every β that satisfies the conditions of Theorem 1 we attain a missing mass estimation bound, that holds for every probability distribution over an alphabet of size m. Thus, we examine different values, and seek the lowest risk bound. Algorithm 1 provides a pseudo-code for our suggested scheme.

Algorithm 1 Missing mass estimation bound for a known alphabet size

Require: m, n

- 1: for β that satisfies the conditions of Theorem 1 (specifically, $0 \le \beta \le \frac{1}{m}$) do
- 2: Numerically evaluate $f_{n,\beta}^{max}$ and $g_{n,\beta}^{max}$ according to Theorem 2.
- 3: Compute the upper bound according to (16).
- 4: end for
- 5: **return** the lowest upper bound and the β_0 that attains it.

References

[1] D. S. Mitrinovic and P. M. Vasic, Analytic inequalities. Springer, 1970, vol. 61.

[2] C. P. Niculescu and A. Vernescu, "A two-sided estimate of ex-(1+ x/n) n," Journal of Inequalities in Pure and Applied Mathematics, vol. 5, no. 3, 2004.