

FCC / IC Test Report

FOR: Juniper Systems, Inc.

Model Name: MS3

Product Description:

Ultra-rugged handheld computer with Windows 10, providing long battery life, 7-inch touchscreen display, programmable keys, 802.11ac, Bluetooth, camera

FCC ID: VSFMS3 IC ID: 7980A-MS3

Applied Rules and Standards: 47 CFR Part 15.247 (DSS) RSS-247 Issue 2 (FHSs) & RSS-Gen Issue 5

REPORT #: EMC_JUNIP-026-19001_15.247_BT_DSS

DATE: 2019-03-29

A2LA Accredited

IC recognized # 3462B-2

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 • Fax: +1 (408) 586 6299 • E-mail: info@cetecom.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

TABLE OF CONTENTS

1	A	SSESSMENT	3
2	Α	DMINISTRATIVE DATA	4
	2.1 2.2 2.3	IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT	4 4
3	E	QUIPMENT UNDER TEST (EUT)	5
	3.1 3.2 3.3 3.4 3.5	EUT SPECIFICATIONS EUT SAMPLE DETAILS ACCESSORY EQUIPMENT (AE) DETAILS TEST SAMPLE CONFIGURATION JUSTIFICATION FOR WORST CASE MODE OF OPERATION	6 6
4	SI	UBJECT OF INVESTIGATION	8
5	M	EASUREMENT RESULTS SUMMARY	8
6	M	EASUREMENTS	9
	6.1 6.2 6.3	MEASUREMENT UNCERTAINTY	9
7	M	EASUREMENT PROCEDURES	10
	7.1 7.2	RADIATED MEASUREMENTRF CONDUCTED MEASUREMENT PROCEDURE	
8	TI	EST RESULT DATA	13
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	MAXIMUM PEAK CONDUCTED OUTPUT POWER. DUTY CYCLE BAND EDGE COMPLIANCE 20DB BANDWIDTH CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS TIME OF OCCUPANCY (DWELL TIME) TRANSMITTER SPURIOUS EMISSIONS AND RESTRICTED BANDS AC POWER LINE CONDUCTED EMISSIONS.	29 30 43 45 47
9		EST SETUP PHOTOS	
10		EST EQUIPMENT AND ANCILLARIES USED FOR TESTING	
11	R	EVISION HISTORY	62

EMC_JUNIP-026-19001_15.247_BT_DSS

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

1 Assessment

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations and the relevant ISED Canada standard RSS-247.

No deviations were ascertained.

Company	Description	Model #
Juniper Systems, Inc.	Ultra-rugged handheld computer with Windows 10, providing long battery life, 7-inch touchscreen display, programable keys, 802.11ac, Bluetooth, camera	MS3

Responsible for Testing Laboratory:

	Cindy Li				
2019-03-29	Compliance	(EMC Lab Manager)			
Date	Section	Name	Signature		

Responsible for the Report:

		Yuchan Lu	
2019-03-29	Compliance	(Test Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

Date of Report 2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
EMC Lab Manager:	Cindy Li
Responsible Project Leader:	Sangeetha Sivaraman

2.2 Identification of the Client

Applicant's Name:	Juniper Systems, Inc.
Street Address:	1132 W 1700 N
City/Zip Code	Logan, UT 84321
Country	USA

2.3 Identification of the Manufacturer

Manufacturer's Name:	The same as client
Manufacturers Address:	N/A
City/Zip Code	N/A
Country	N/A

EMC_JUNIP-026-19001_15.247_BT_DSS

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

3 Equipment Under Test (EUT)

3.1 EUT Specifications

Model No:	MS3		
HW Version :	MS3_00		
SW Version :	MS3_SW_00		
FCC-ID:	VSFMS3		
IC-ID:	7980A-MS3		
HVIN:	MS3		
PMN:	Mesa 3		
Product Description:	Ultra-rugged handheld computer with Windows 10, providing long battery life, 7-inch touchscreen display, programable keys, 802.11ac, Bluetooth, camera		
Frequency Range / number of channels:	Nominal band: 2400 MHz – 2483.5 MHz Center to center: 2402 MHz (ch 0) – 2480 MHz (ch 78), 79 Channels		
Type(s) of Modulation:	Bluetooth BR/EDR: GFSK, π /4 DQPSK, 8DPSK		
Modes of Operation:	Fixed channel and hopping mode		
Antenna Information as declared:	PCB Trace, 2.4dBi/Low channel, -0.1dBi/Mid channel, 1.1dBi/high channel		
Max. declared output Powers:	Conducted Power 10.22dBm		
Power Supply/ Rated Operating Voltage Range:	Battery: Vmin: 6 VDC/ Vnom: 7.3 VDC / Vmax: 7.3 VDC Charger: Vmin: 9.9 VDC/ Vnom: 12 VDC / Vmax: 15.6 VDC		
Operating Temperature Range	-20 °C to +50 °C		
Other Radios included in the device:	Bluetooth 4.2 Low Energy (BT LE) WIFI 802.11a/b/g/n/ac; WCDMA; LTE; GPS; RFID		
Sample Revision	□Prototype Unit; ■Production Unit; □Pre-Production		

EMC_JUNIP-026-19001_15.247_BT_DSS

2019-03-29

3.2 EUT Sample details

EUT#	Serial Number	HW Version	SW Version	Notes/Comments
1	MS3W-C01	MS3_00	MS3_SW_00	Conducted RF
2	MS3W-C03	MS3_00	MS3_SW_00	Radiated Emissions

3.3 Accessory Equipment (AE) details

AE#	Туре	Model	Manufacturer	Serial Number
1	Switching power supply	PSAA30R-120	Phihong Technology	P74900943A1

3.4 Test Sample Configuration

EUT Set	-up#	Combination of AE used for test set up	Comments		
1		EUT#1 + AE#1	The radio of the EUT was configured to a fixed channel transmission with highest possible duty cycle using software provided by client that is not available to the end user. The measurement equipment was connected to the 50 ohm RF port of the EUT.		
2	2 EUT#2 + AE#1 highest possible duty cy		The radio of the EUT was configured to a fixed channel with highest possible duty cycle using software provided by client that is not available to the end user.		

EMC_JUNIP-026-19001_15.247_BT_DSS

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

3.5 Justification for Worst Case Mode of Operation

During the testing process, the EUT was tested with transmitter sets on low, mid and high channels with the highest possible duty cycle.

For radiated measurements, all data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT.

For conducted measurements, the highest power mode of operation (GFSK DH1), was used to evaluate the worst case performance of the EUT, including the band edge compliance and TX radiated spurious emissions testing. Maximum peak conducted output power and spectrum bandwidth, were measured in all supported modulation modes for the EUT.

The output power of each mode was set to fixed level from configuration file provided by client

EMC_JUNIP-026-19001_15.247_BT_DSS

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

4 Subject of Investigation

The objective of the measurements done by CETECOM Inc. was to assess the performance of the EUT according to the relevant requirements specified in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Radio Standard Specification RSS-247 Issue1 of ISED Canada.

Testing procedures are based on ANSI C63.10:2013 including section 7.8 for FHSS systems.

5 Measurement Results Summary

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	NA	NP	Result
§15.247(b)(1) RSS-247 5.4(2)	Maximum Peak Conducted Output Power	Nominal	GFSK π/4-DQPSK 8DPSK				Complies
§15.247(d) RSS-247 5.5 RSS-Gen 8.10	Band Edge Compliance	Nominal	GFSK DH1				Complies
§15.247(a)(1) RSS-247 5.1(1)	Spectrum Bandwidth	Nominal	GFSK DH1				Complies
§15.247(a)(1) RSS-247 5.1(1)	Carrier Frequency Separation	Nominal	GFSK DH1				Complies
§15.247(a)(1) RSS-247 5.1(4)	Number of Hopping Channels	Nominal	GFSK DH1	•			Complies
§15.247(a)(1)(iii) RSS-247 5.1(4)	Time of occupancy	Nominal	GFSK DH1				Complies
§15.247(d) §15.209 (a) RSS-Gen 6.13	TX Spurious emissions-Radiated	Nominal	GFSK DH1				Complies
§15.207(a) RSS-Gen 8.8	AC Conducted Emissions	Nominal	GFSK DH1				Complies

Note: NA= Not Applicable; NP= Not Performed.

Test Report #:

EMC_JUNIP-026-19001_15.247_BT_DSS

Date of Report 2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

6 Measurements

6.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

Radiated measurement

9 kHz to 30MHz ±2.5 dB (Magnetic Loop Antenna) 30 MHz to 1000 MHz ±2.0 dB (Biconilog Antenna) 1 GHz to 40 GHz ±2.3 dB (Horn Antenna)

Conducted measurement

150 kHz to 30 MHz ± 0.7 dB (LISN)

RF conducted measurement ±0.5 dB

6.2 Environmental Conditions during Testing:

The following environmental conditions were maintained during the course of testing:

• Ambient Temperature: 20-25°C

• Relative humidity: 40-60%

6.3 Dates of Testing:

03/11/2019 - 03/15/2019

7 <u>Measurement Procedures</u>

7.1 Radiated Measurement

The radiated measurement is performed according to: ANSI C63.10 (2013)

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn antennas are used to cover frequencies up to 40 GHz.

Radiated Emissions Test Setup 30MHz-1GHz Measurements

Test Report #:

EMC_JUNIP-026-19001_15.247_BT_DSS

Date of Report 2019-03-29

7.1.1 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- Measured reading in dBµV
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS $(dB\mu V/m)$ = Measured Value on SA $(dB\mu V)$ - Cable Loss (dB)+ Antenna Factor (dB/m)

Example:

Frequency (MHz)			Antenna Factor Correction (dB)	Field Strength Result (dBµV/m)	
1000	80.5	3.5	14	98.0	

7.2 RF Conducted Measurement Procedure

Reference: ANSI C63.10 (2013) Section 6.9, 6.10, and 7.8

- Connect the equipment as shown in the above diagram.
- Adjust the settings of the SA (Rohde-Schwarz Spectrum Analyzer) to connect the EUT at the required mode of test.
- Measurements are to be performed with the EUT set to the low, middle and high channels and for worst case modulation schemes.

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

8 Test Result Data

8.1 Maximum Peak Conducted Output Power

8.1.1 Measurement according to ANSI C63.10 Section 7.8

Spectrum Analyzer settings:

- Span = approximately 5 times the 20 dB bandwidth
- RBW > the 20 dB bandwidth of the emission being measured
- VBW ≥ RBW
- Sweep = Auto Couple
- Detector function = Peak
- Trace = Max hold
- Use the marker-peak function to set the marker to the peak of the emission.

8.1.2 Limits:

Maximum Peak Output Power:

FCC 15.247 (b)(1): 1 W IC RSS-247: 1 W

8.1.3 Test conditions and setup:

Ambient Temperature EUT Set-Up #		EUT operating mode	Power Input	Antenna Gain	
23° C	1	GFSK, π/4 DQPSK, 8DPSK	120 VAC/Battery	Section 3.1	

8.1.4 Measurement result:

Modulation	Packet type	Channel	Spectrum analyzer reading/dBm	corrected by path loss/dBm	Antenna gain/dBi	EIRP/dBm	Limit/dBm	Result	Plot #
		Low	6.54	7.61	2.4	10.01	30(Pk) / 36(EIRP)	pass	1
	DH1	mid	7.96	9.08	-0.1	8.98	30(Pk) / 36(EIRP)	pass	2
		High	9.23	10.22	1.4	11.62	30(Pk) / 36(EIRP)	pass	3
		Low	6.48	7.55	2.4	9.95	30(Pk) / 36(EIRP)	pass	4
GFSK	DH3	mid	7.92	9.04	-0.1	8.94	30(Pk) / 36(EIRP)	pass	5
		High	9.15	10.14	1.4	11.54	30(Pk) / 36(EIRP)	pass	6
	DH5	Low	6.46	7.53	2.4	9.93	30(Pk) / 36(EIRP)	pass	7
		mid	7.93	9.05	-0.1	8.95	30(Pk) / 36(EIRP)	pass	8
		High	9.17	10.16	1.4	11.56	30(Pk) / 36(EIRP)	pass	9
		Low	5.6	6.67	2.4	9.07	30(Pk) / 36(EIRP)	pass	10
π/4 DQPSK	2-DH5	Mid	6.74	7.86	-0.1	7.76	30(Pk) / 36(EIRP)	pass	11
		High	7.63	8.62	1.4	10.02	30(Pk) / 36(EIRP)	pass	12
		Low	5.8	6.87	2.4	9.27	30(Pk) / 36(EIRP)	pass	13
8-DPSK	3-DH5	mid	6.94	8.06	-0.1	7.96	30(Pk) / 36(EIRP)	pass	14
		High	7.81	8.8	1.4	10.2	30(Pk) / 36(EIRP)	pass	15

8.1.5 Measurement Plots:

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

8.2 Duty cycle

8.2.1 Measurement according to FCC 558074 D01 DTS Meas Guidance v04

Spectrum Analyzer settings:

- Set the center frequency of the instrument to the center frequency of the transmission
- Zero span
- Set RBW >= OBW if possible; otherwise, set RBW to the largest available value
- Detector = Peak or average

8.2.2 Measurement result

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

8.3 Band Edge Compliance

8.3.1 Measurement according to ANSI C63.10 Section 6.10

Spectrum Analyzer settings for non-restricted band edge:

- Span: wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.
- RBW ≥ 1% of the span
- VBW ≥ RBW
- Sweep Time: Auto couple
- Detector = Peak/RMS
- Trace = Max hold
- Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge.
- Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- Now, using the same instrument settings, enable the hopping function of the EUT.
- Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Spectrum Analyzer settings for restricted band:

Peak measurements are made using a peak detector and RBW=1 MHz

8.3.2 Limits: Restricted Band FCC 15.209 and RSS-Gen 8.10

- PEAK LIMIT= 74 dBµV/m @3 m =-21.23 dBm
- AVG. LIMIT= 54 dBµV/m @3 m =-41.23 dBm
- Start frequency & stop frequency according to frequency range specified in the restricted band table in FCC section 15.205

Restricted bands of operation:

 Except as shown in CFR 47 Part 15.205 paragraph (d), only spurious emissions are permitted in any of the frequency bands listed below

EMC JUNIP-026-19001 15.247 BT DSS

2019-03-29

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

8.3.3 Limits: Non-restricted Band §15.247 and RSS-247 5.5

FCC15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247 5/5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.3.4 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna gain
22° C	1	DH1 - fixed channel DH1 - hopping	120 VAC/Battery	Section 3.1

EMC_JUNIP-026-19001_15.247_BT_DSS

FCC ID: VSFMS3 2019-03-29 IC ID: 7980A-MS3

8.3.5 **Measurement result:**

	Plot #	EUT operating mode	Band Edge	Band Edge Delta (dBc)	Limit (dBc)	Result
	1	DH1 fixed channel	Lower, non-restricted	55.09	> 20	Pass
I	2	DH1 hopping	Lower, non-restricted	54.82	> 20	Pass

Plot #	EUT operating mode	Band Edge	Measured value	Corrected by duty cycle	Corrected by path loss and antenna gain	Limit (dBm)	Result
3	DH1 fixed channel	Upper restricted peak	-33.37	-33.37	-30.98	-21.23 Peak	Pass
4	DH1 hopping	Upper restricted peak	-33.79	-33.79	-31.4	-21.23 Peak	Pass
5	DH1 fixed channel	Upper restricted average	-53.36	-48.58	-46.19	-41.23 AVG	Pass
6	DH1 hopping	Upper restricted average	-62.04	-57.26	-54.87	-41.23 AVG	Pass

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

8.3.6 Measurement Plots:

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

8.4 20dB Bandwidth

8.4.1 Measurement according to ANSI C63.10 Section 6.9

Spectrum Analyzer settings:

- Span: approximately 2 to 3 times the 20 dB bandwidth, centered on the hopping channel
- RBW ≥ 1% of the 20 dB bandwidth
- Sweep Time = Auto couple
- Detector = Peak
- Trace = Max hold

8.4.2 Limits: FCC 15.247 (a) (1), RSS-227

Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

8.4.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up#	EUT operating mode	Power Input
22° C	1	DH1	120VAC/Battery

8.4.4 Measurement result:

Plot #	EUT operating mode	Channel	20 dB Bandwidth (MHz)
1	GFSK DH1	Low	993.6
2	GFSK DH1	Mid	1001.6
3	GFSK DH1	High	1001.3

8.4.5 Measurement Plots:

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

8.5 Carrier Frequency Separation

8.5.1 Measurement according to ANSI C63.10 Section 7.8

Spectrum Analyzer settings:

- Span = Wide enough to capture the peaks of the two adjacent channels
- RBW ≥ 1% of the span
- VBW \geq RBW or 3 x
- Sweep = Auto couple
- Detector function = Peak
- Trace = Max hold
- Use marker-delta function to determine the separation between the peaks of the two adjacent channels.

8.5.2 Limits: FCC 15.247 (a) (1) & RSS-247

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

8.5.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	1	DH1 Hopping	120VAC/Battery

8.5.4 Measurement result:

PI	lot#	Carrier Frequency Separation (MHz)	Limit (MHz)	Result
	1	1	> 2/3 * OBW = 0.67	Pass

8.5.5 Measurement Plots:

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

8.6 Number of hopping channels

8.6.1 Measurement according to ANSI C63.10 Section 7.8

Spectrum Analyzer settings:

- Span = the entire frequency band of operation
- RBW ≥ 50 KHz
- VBW ≥ RBW or 3X
- Sweep = Auto couple
- Detector function = Peak
- Trace = Max hold

8.6.2 Limits: FCC 15.247 (a) (1) (ii) (iii) & RSS-227

At least 15 non-overlapping channels

8.6.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up#	EUT operating mode	Power Input
23° C	1	DH1 hopping	120VAC/Battery

8.6.4 Measurement result:

Plot #	Number of Hopping Frequencies	Limit	Result
1	79	15 non-overlapping channels	Pass

FCC ID: VSFMS3 IC ID: 7980A-MS3

8.6.5 Measurement Plots:

8.7 Time of Occupancy (Dwell Time)

8.7.1 Measurement according to ANSI C63.10 Section 7.8

Spectrum Analyzer settings:

Duration of Pulse Measurement

- RBW = 1 MHz
- VBW = 3 MHz
- Span = 0
- Sweep Time = 10 ms
- Sweep Mode = Single
- Detector =Peak
- Trigger = Video

Observation Period

- RBW = 1 MHz
- VBW = 3 MHz
- Span = 0
- Sweep Time = 31.6 s
- Sweep Mode = Single
- Detector = Peak
- Trigger = Free Run

Observation Period = 0.4s x No. of hopping channels = 0.4 x 79 = 31.6 s

8.7.2 Limits: FCC 15.247 (a) (1) (iii) & RSS-247

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.7.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up#	EUT operating mode	Power Input
23° C	1	DH1 hopping	120VAC/Battery

8.7.4 Measurement result:

Plot #	Modulation	Timing	Number of hops 31.6s	Pulse Width (ms)	Total Dwell Time in 31.6s (ms)	Limit (ms)	Result
1	GFSK	DH1	320	0.416	133.12	< 400 in 31.6s	Pass

8.7.5 Measurement Plots:

2019-03-29

EMC_JUNIP-026-19001_15.247_BT_DSS 2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

8.8 Transmitter Spurious Emissions and Restricted Bands

8.8.1 Measurement according to ANSI C63.10

Analyzer Settings:

- Frequency = 9 KHz 30 MHz
- RBW = 9 KHz
- Detector = Peak
- Frequency = 30 MHz 1 GHz
- Detector = Peak / Quasi-Peak
- RBW = 120 KHz (<1 GHz)
- Frequency > 1 GHz
- Detector = Peak / Average
- RBW = 1MHz

Plots reported here represent the worst case emissions for horizontal and vertical antenna polarizations and for three orientations of the EUT. Unless mentioned otherwise, the emissions outside the limit lines in the plots are from the transmit signal.

8.8.2 Limits: FCC 15.247(d)/15.209(a)

• Except as shown in CFR 47 Part 15.205 paragraph (d), only spurious emissions are permitted in any of the frequency bands listed below

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	<u> 156.52475-156.52525</u>	2483.5-2500	17.7-21.4
8.37625-8.38675	<u> 156.7-156.9</u>	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Test Report #:

EMC_JUNIP-026-19001_15.247_BT_DSS

Date of Report 2019-03-29

• Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

PEAK LIMIT= 74dBµV/m

• AVG. LIMIT= 54dBµV/m

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Radiated spurious emissions shall be measured for the transmit frequencies, transmit power, and data rate for the lowest, middle and highest channel in each frequency band of operation and for the highest gain antenna for each antenna type, and using the appropriate parameters and test requirements described in 5.4. The highest (or worst-case) data rate shall be recorded for each measurement.

For testing at distance other than the specified in the standard, the limit conversion is calculated by using 40 dB/decade extrapolation as follow:

Conversion factor (CF) = $40 \log (D/d) = 40 \log (300 \text{ m} / 3 \text{ m}) = 80 \text{ dB}$

8.8.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	2	DH1 fixed channel	120VAC/Battery

8.8.4 Measurement result:

Plot #	Channel #	Scan Frequency	Limit	Result
1-3	Low	30 MHz – 18 GHz	See section 8.8.2	Pass
4-8	Mid	9 kHz – 26 GHz	See section 8.8.2	Pass
9-12	High	30 MHz – 18 GHz	See section 8.8.2	Pass

8.8.5 Measurement Plots:

2019-03-29

Modulation: DH1	Channel: Low				33.3%	Duty (Cycle		
Final Resi	ult								
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
55,332307	30.95	40.00	9.05	200.0	120,000	319.0	Н	161.0	16.4
88.718149	24.89	43.52	18.63	200.0	120.000	163.0	Н	240.0	17.8
173.106897	31.72	43.52	11.80	200.0	120.000	308.0	Н	210.0	21.0
173.106897	2:31:43 PM 2:33:24 PM		1						
70т									
+								FCC	
50-									<u> </u>
60- 50-	- Harris Andrews					And the state of t			<u> </u>

EMC_JUNIP-026-19001_15.247_BT_DSS

FCC ID: VSFMS3 IC ID: 7980A-MS3

Plot # 3 Radiated Emissions: 3-18 GHz

Modulation: DH1 Channel: Low 33.3% Duty Cycle

Final Result

2019-03-29

i iliai ileaali									
Frequency (MHz)	MaxPeak (dBμV/m)	Average (dΒμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3202.680000	45.29		74.00	28.71	100.0	1000.000	218.0	٧	-24.0
3203.000000		32.99	54.00	21.01	100.0	1000.000	220.0	٧	-27.0
4803.700000	45.92		74.00	28.08	100.0	1000.000	273.0	٧	28.0
4804.000000		32.65	54.00	21.35	100.0	1000.000	276.0	٧	28.0

(continuation of the "Final_Result" table from column 15 ...)

Frequency	Corr.	Comment
(MHz)	(dB)	
3202.680000	-8.5	1:26:02 PM - 3/12/2019
3203.000000	-8.5	1:30:52 PM - 3/12/2019
4803.700000	-5.1	1:28:25 PM - 3/12/2019
4804.000000	-5.1	1:33:10 PM - 3/12/2019

EMC_JUNIP-026-19001_15.247_BT_DSS

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

Plot #11 Radiated Emissions: 3-18 GHz

Modulation: DH1 Channel: High 33.3% Duty Cycle

Final Result

I IIIGI IXCOC	116								
Frequency (MHz)	MaxPeak (dBμV/m)	Average (dΒμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3306.680000	43.83		74.00	30.17	100.0	1000.000	153.0	٧	-30.0
3307.000000		31.16	54.00	22.84	100.0	1000.000	202.0	V	-29.0
4960.000000		32.76	54.00	21.24	100.0	1000.000	198.0	٧	47.0
4960.020000	44.00		74.00	30.00	100.0	1000.000	230.0	٧	33.0

(continuation of the "Final_Result" table from column 15 ...)

Frequency (MHz)	Corr. (dB)	Comment
3306.680000	-8.3	2:25:25 PM - 3/12/2019
3307.000000	-8.3	2:30:30 PM - 3/12/2019
4960.000000	-4.8	2:33:05 PM - 3/12/2019
4960.020000	-4.8	2:28:02 PM - 3/12/2019

FCC ID: VSFMS3 IC ID: 7980A-MS3

8.9 AC Power Line Conducted Emissions

8.9.1 Measurement according to ANSI C63.10 (2013)

Analyzer Settings:

RBW = 9 KHz (CISPR Bandwidth)

• Detector: Peak / Average for Pre-scan

• Quasi-Peak/Average for Final Measurements

8.9.2 Limits: §15.207 & RSS-Gen 8.8

FCC §15.207(a) & RSS-Gen 8.8

• Except as shown in paragraphs (b) and (c) of this section of the CFR, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table (1), as measured using a 50 µH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between frequency ranges.

Fraguency of amission (MH=)	Conducted limit (dBμV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15–0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		

^{*}Decreases with the logarithm of the frequency.

8.9.3 Test conditions and setup:

Ambient Temperature ©	EUT Set-Up#	EUT operating mode	Power line (L1, L2, L3, N)	Power Input
22	2	GFSK continuous fixed channel	Line & Neutral	110V / 60Hz

8.9.4 Measurement Result:

Plot #	Port	EUT Set-Up #:	EUT operating mode	Scan Frequency	Limit	Result
1	AC Mains	2	GFSK continuous fixed channel	150 kHz – 30 MHz	See section 8.9.2	Pass

EMC_JUNIP-026-19001_15.247_BT_DSS

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

8.9.5 Measurement Plots:

Plot #1

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	PE	Corr. (dB)
0.154000		22.17	55.78	33.62	500.0	9.000	N	GND	10.7
0.154000	41.04		65.78	24.75	500.0	9.000	N	GND	10.7
0.166000	35.76		65.16	29.40	500.0	9.000	N	GND	10.6
0.442000		29.88	47.02	17.14	500.0	9.000	L1	GND	10.3
0.442000	40.28		57.02	16.75	500.0	9.000	L1	GND	10.3
0.494000		27.80	46.10	18.30	500.0	9.000	N	GND	10.2
0.502000	40.27		56.00	15.73	500.0	9.000	L1	GND	10.2

(continuation of the "Final_Result" table from column 15 ...)

Frequency (MHz)	Comment
0.154000	1:33:51 PM - 3/14/2019
0.154000	1:32:31 PM - 3/14/2019
0.166000	1:32:36 PM - 3/14/2019
0.442000	1:34:24 PM - 3/14/2019
0.442000	1:33:13 PM - 3/14/2019
0.494000	1:34:41 PM - 3/14/2019
0.502000	1:33:17 PM - 3/14/2019

EMC_JUNIP-026-19001_15.247_BT_DSS

2019-03-29

FCC ID: VSFMS3 IC ID: 7980A-MS3

9 Test setup photos

Setup photos are included in supporting file name: "EMC_JUNIP-026-19001_15.247_Setup_Photos.pdf"

10 Test Equipment And Ancillaries Used For Testing

Equipment Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
Biconlog Antenna	EMCO	3142E	166067	3 years	6/28/2017
Loop Antenna	ETS Lindgren	6507	161344	3 years	10/26/2017
Horn Antenna	EMCO	3115	35114	3 years	7/31/2017
Horn Antenna	ETS Lindgren	3117 PA	169547	3 years	8/8/2017
Compact Digital Barometer	Control Company	35519-055	91119547	2 Years	6/20/2017
Spectrum Analyzer	R&S	FSU26	200065	3 years	7/3/2017
Spectrum Analyzer	R&S	FSV40	101022	3 years	7/5/2017
Thermometer Humidity	Dickson	TM320	5280063	2 Year	11/2/2017

Note: Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels. Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

EMC_JUNIP-026-19001_15.247_BT_DSS

FCC ID: VSFMS3 2019-03-29 IC ID: 7980A-MS3

11 Revision History

Date	Report Name	Changes to report	Report prepared by
2019-03-29	EMC_JUNIP-026-19001_15.247_BT_DSS	Initial Version	Yuchan Lu