السلسلة 2: ||إشنقاق و دراسة الدوال

أدرس فابلبك إشنفاق الدالة f في x_0 في كل حالة:

$$x_0 = 1$$
 g $f(x) = \frac{1}{x^2 + 3}$ (1)

$$x_0 = 0$$
 $f(x) = \sqrt{x^2 + 1}$ (2)

$$x_0 = \frac{\pi}{2}$$
 9 $f(x) = x \cdot |\cos(x)|$ (3)

$$x_0 = -1$$
 $f(x) = x^2 + |x + 1|$ (4)

$$x_0 = 1$$
 g $f(x) = |x - 1|$ (5)

$$x_0 = 1$$
 g $f(x) = \sqrt[3]{x}$ (6)

$$x_0 = 2$$
 9 $f(x) = \sqrt[3]{x^3 - 7}$ (7)

$$x_0 = 0$$
 9 $\begin{cases} f(x) = x^2 + 1; & x \ge 0 \\ f(x) = 4x + 1; & x < 0 \end{cases}$ (8)

$$x_0 = 0$$
 \mathbf{g} $\begin{cases} f(x) = \sqrt{x+1}; & x \ge 0 \\ f(x) = x^2 + \sqrt{-x}; & x < 0 \end{cases}$ (9)

$$x_0 = 1$$
 g $\begin{cases} f(x) = \frac{2 - \sqrt{3 + x}}{x - 1}; & x \neq 1 \\ f(1) = -\frac{1}{4} \end{cases}$ (10)

$$x_0 = 0$$
 $f(x) = \frac{\sqrt{1+2x} - \sqrt{1+x}}{x}; \quad x \neq 0$ $f(0) = \frac{1}{2}$

حدد المعادلة المختزلة للمماس (T) لمنحنى الدالة f في النفطة ذات الأفصول *x*₀ في كل حالة:

$$x_0 = 1$$
 g $f(x) = x^3 - x$ (1)

$$x_0 = 2$$
 $f(x) = 1 - 2\sqrt{x}$ (2)

$$x_0 = \pi$$
 $f(x) = |x| \cos(3x)$ (3)

$$x_0 = 2$$
 $f(x) = \sqrt{x^2 - 1}$ (4)

$$x_0 = 1$$
 9 $\begin{cases} f(x) = \frac{1}{2x} - \frac{1}{3}; & x < 1 \\ f(x) = \sqrt[3]{x} - \frac{5}{6}x; & x \geqslant 1 \end{cases}$ (5)

$$\pi$$
انگلن g دالهٔ عددبهٔ معرفهٔ علی المحال $\pi;\pi[$ ریمان g دالهٔ عددبهٔ معرفهٔ علی المحال $g(x)=rac{x^2}{ an(rac{x}{2})};$ $x
eq 0$

$$(1)$$
 ببن أن g نفبل الإشنفاق في النفطة g

$$g$$
 جدد النفربب النآلفي للداله g بجوار (2)

$$g(10^{-5})$$
 إعط فبمخ مفربخ للعدد (3)

نہرین ﴿4﴾ ____

 $f(x) = \sqrt[3]{1+x}$: لنكن $f(x) = \sqrt[3]{1+x}$ داله عددېه معرفه

$$0$$
 نفيل الإشنفاق في النفطة 0 بين أن بين أن أي ينه الإشنفاق أي النفطة 0

$$(2)$$
 حدد النفرب الناّلفي للداله f بجوار

$$.\sqrt[3]{1.0035}$$
 و $\sqrt[3]{0.997}$ و عط فيمث مفريث للعددين (3)

 $\sqrt[3]{7.98}$ و $\sqrt{5.007}$ و $\sqrt{5.007}$ و $\sqrt{5.007}$ و $\sqrt{5.007}$ و $\sqrt{6.091}$ و $\sqrt{6.091}$

نمرين ﴿6﴾ المُنالِدُ المُنالِدُ السَّعَمَالُ العَدِدُ المَشَنَّةُ: الحَسِبِ النَّعَالِ العَدِدُ المَشْنَقُ:

$$\lim_{x \to \pi} \frac{x \sin(x)}{x - \pi} \quad (1)$$

$$\lim_{x \to 1} \frac{\tan(\pi x)}{x - 1} \quad (2)$$

$$\lim_{x \to \frac{\pi}{3}} \frac{\cos x - \frac{1}{2}}{x - \frac{\pi}{3}} \tag{3}$$

$$(a > 0); \lim_{x \to a} \frac{x\sqrt{x} - a\sqrt{a}}{x^3 - a^3}$$
 (4)

$$\lim_{x \to \frac{\pi}{4}} \frac{2\cos x - \sqrt{2}}{2\sin x - \sqrt{2}}$$
 (5)
$$\lim_{x \to 0} \frac{\sqrt[3]{x + 1} - 1}{x}$$
 (6)

$$\lim_{x \to 5} \frac{x^4 - 625}{x - 5} \quad (7)$$

$$\lim_{x \to b} \frac{\sin^2(x) - \sin(x)\sin(b)}{x - b} \quad (3)$$

f' بعد نحدید مجموعهٔ نعریف کلا من f و f':

$$f(x) = \sqrt[3]{x^2 + x + 1}$$
 (8) $f(x) = (-7x + x^2 + 3)^5$ (1)

$$f(x) = \frac{1}{3x^2} - \frac{1}{x} + 3x$$
 (2)

$$f(x) = \sin(\frac{1+x}{1+x^2})$$
 (3)

$$f(x) = \sin(\sin(x)) \quad (4)$$

$$f(x) = \cos(x^2 + 7x - 1)$$
 (5)

$$f(x) = \cos(\sqrt{x^2 + 5})$$
 (6)

$$f(x) = \sqrt{\tan\frac{x}{2}} \quad (7)$$

$$f(x) = \sqrt[3]{x^4} + (x-1)^{\frac{1}{3}} \quad (12)$$
$$f(x) = x^{\frac{2}{3}} - \sqrt[4]{x^3 + 1} \quad (13)$$

 $f(x) = (x^{\frac{1}{3}} - x^{\frac{2}{3}})^{\frac{3}{2}}$ (9)

 $f(x) = \frac{1}{\sqrt[3]{x^2 + 7}} \quad (10)$

 $f(x) = (x^2 + x)^{\frac{1}{3}}$ (11)

$extbf{ion}$ نمرین $extbf{8}$ $extbf{0}$ کدد رئابهٔ الدالهٔ f و مطارفها إن وجدک:

$$f(x) = x^3 + 2x - 1$$
 (1)

$$f(x) = \frac{x^2 - 3x + 2}{x^2 + 2x + 1}$$
 (2)

$$f(x) = (2x - 3)\sqrt{x}$$
 (3)

$$f(x) = (2x - 3)\sqrt{x}$$
 (3)
$$f(x) = \frac{\sqrt{x}}{x - 1}$$
 (4)

$$f(x) = x + \sqrt{x^2 - 1}$$
 (5)

$$f(x) = \sqrt[3]{x^2 + 2x}$$
 (6)

$$f(x) = \sqrt[3]{x^3 - 3x + 2} \quad (7)$$

$$f(x) = \sqrt[3]{x^2} - \frac{x^2}{3} \quad (8)$$

I ببن أن الدالة $f^2 + (f')^2$ ثابته على المجال

نمرين ﴿10﴾ ____

 $(O; \overrightarrow{i}; \overrightarrow{j})$ المستوى منسوب الى معلم متعامد ممنظم ادرس نفعر منحنی f و حدد نفط إنعطافه (إن و جد $\dot{}$) فی کل حاله:

$$f(x) = \frac{1}{3}x^3 + \frac{3}{2}x^2 - 4x + 1 \quad (1)$$

$$f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 + x + 1 \quad (2)$$

$$f(x) = \frac{x}{3x^2 + 3} \quad (3)$$

$$f(x) = \frac{x^2 + x + 3}{x + 2}$$
 (4)

$$f(x) = x + \frac{1}{x^2 + 1}$$
 (5)

$$f(x) = \sin x - 3x^2 + 7 \quad (6)$$

$$f(x) = \sqrt{x^2 + 1} - x$$
 (9)

 $f(x) = -\cos^2 x - 2\sin x + 1 \quad (7)$

$$f(x) = \sqrt{2x - 2} + x$$
 (10)

 $f(x) = \sqrt{2x - 2} + x$ (8)

$$f(x) = \frac{1}{2}\sqrt{x+1} + \frac{2}{\sqrt{x+1}}$$
 (11)

$$f(x) = (x-1)^{\frac{2}{3}}$$
 (12)

نمرین ﴿11﴾

ادرس الفروع اللانهائية لمنحنى الدلة f في كل حالة:

$$f(x) = \frac{2x^2 + x + 3}{x + 1} \quad (1)$$

$$f(x) = \frac{2x+3}{x^3-1}$$
 (2)

$$f(x) = x + \frac{1}{x^2 + 1}$$
 (3)

$$f(x) = \frac{x^2 + x + 3}{x + 2}$$
 (4)

$$f(x) = \frac{1 - 2x^2}{x^2 + 1} \quad (5)$$

$$f(x) = 2x - 1 + \frac{1}{\sqrt{x}}$$
 (6)

$$f(x) = x\sqrt{x} + 2 \quad (7)$$

$$f(x) = x - \sqrt{\frac{x+2}{x-1}} \quad (9)$$
$$f(x) = \frac{x}{\sqrt{x^2 - 1}} \quad (10)$$

 $f(x) = 2x - \sqrt{x^2 + 1}$ (8)

نمرين ﴿16

 $O(i; \overrightarrow{i}; \overrightarrow{j})$ aislat anida

 (C_f) أنشئ المنحنى (7).

ٺمرين ﴿17﴾ _____

g أدرس نغبرات الدالة g.

g(x) حدد إشارة (4)

$$f(x) = \frac{1}{\sqrt{x^2 - 1}} \quad \text{(10)}$$

$$f(x) = \sqrt[3]{x^2 - 1}$$
 (11)

$$f(x) = x\sqrt[3]{4-x} \quad (12)$$

$$f(x) = 3x^{\frac{2}{3}} - 2x^{\frac{3}{2}} \quad (13)$$

$$\begin{cases} f(x) = x^2 + x; & x \le 0\\ f(x) = \frac{x}{\sqrt{x^2 + x}}; & x > 0 \end{cases}$$
 (14)

نمرين ﴿12﴾ _

ببن أن $(\hat{\Delta})$ محور ثماثل لمنحنى الدالة f في كل حالة:

$$(\Delta): x = 2$$
 g $f(x) = x^2 - 4x + 1$ (1)

$$(\Delta): x = -4$$
 g $f(x) = \sqrt[3]{x^2 + 8x - 7}$ (2)

$$(\Delta): x = -\frac{3}{2}$$
 q $f(x) = \frac{2}{x^2 + 3x - 4}$ (3)

$$(\Delta): x = \pi$$
 g $f(x) = \frac{2 - \sin^4(x)}{\cos(x) + 3}$ (4)

نمرین ﴿13﴾

بېن أن I مُركز ثماثل لمنخنى الدالهُ f في كل حالهُ:

$$I\left(-\frac{1}{2};0\right)$$
 g $f(x) = \frac{1+2x}{x^2+x-2}$ (1)

$$I\left(\frac{1}{2}; -\frac{5}{2}\right)$$
 g $f(x) = \frac{5x+1}{1-2x}$ (2)

$$I(0;2)$$
 $\mathbf{9}$ $f(x) = x^3 - 3x + 2$ (3)

$$I(-1;-2)$$
 g $f(x) = \frac{x^2}{x+1}$ (4)

$$I\left(\frac{\pi}{3};0\right)$$
 $f(x) = \sqrt{3}\cos(2x) + \sin(2x)$ (5)

$$I(0;0)$$
 g $f(x) = \frac{\sin(4x)}{\cos(2x) + 4}$ (6)

نمرين ﴿14﴾

 $h(x) = \cos^2(x) + 2\cos(x)$ نستن الله عردبه معرفه بنائل الله عردبه معرفه بنائل

- ببن أن h داله زوجبه و دوربه. (1)
- $[0;\pi]$ أدرس نغبرات الدالة h على المجال (2)
- أدرس نفعر منحنى الدالة h على المجال $[0;\pi]$ محددا نفط إنعطافه.
 - حدد نفط نفاطع منحني h و محور الأفاصيل على المجال $[0;\pi]$.
 - $[-2\pi; 2\pi]$ أنشئ منحنى h على المجال (5)

نمرين ﴿15﴾ _____

 $g(x)=x^3-3x-3$ نللن g داله عدوبه معرفه ب

- g أدرس تغبرات الدالة g
- $[1;+\infty[$ لنكن الدالة h فصور الدالة g على المجال h (2)

ا. بين أن الدالة h نفيل دالة علسبة h^{-1} و حدد مجموعة نعربفها. $0.2 < \alpha < 3$ بين أن المعادلة 0 = 0 نفيل حلا وحبدا α و أن α $(h^{-1})'(0) = \frac{1}{3(\alpha^2 - 1)}$ ج. بېن أن

 $(O; \overrightarrow{i}; \overrightarrow{j})$ وي معلم منعامد ممنظم ونحنى f في معلم منعامد ممنظم ونحنى أ

للَّان f دالله عددبه معرفه $f(x) = x\sqrt{x^2-1}$ منحناها في معلم

أدرس فابلبث إشنفاق الدالة f في 1 على البمبن و أول النئبجة هندسبا. (3)

ا. ببن أن الدالة g نفبل دالة علسبة g^{-1} معرفة على مجال J بجب أ

ببن أن المنحنى (C_f) بفبل نفطهٔ إنعطاف A أفصولها موجب. (5)

(D): y = x عدد نقطهٔ نقاطع المنحنی (C_f) مع المستقبم حدد نقطهٔ نقاطع

درد D_f مجموعة تعربف f و ببن أنها فردبة.

 $+\infty$ الفرع اللانهائي لمنحنى الداله f بجوار (2)

 $[1; +\infty]$ فع جدول نغيرات الدالة f على المجال (4)

 $[1;+\infty[$ للكن الدالة g فصور الدالة f على المجال (8)

J من $g^{-1}(x)$ من ج. إعط نعببر

 $g(x) = x^3 - 3x - 3$ بنكن و داله عدديد معرفه ب

 10^{-2} فَيْمَهُ مَغْرِبهُ للعرد lpha بالدفهُ (3)

f د. إسننئج نغبراf

 $f(\alpha)=3$ ه. بېن أن

lpha جلا وحبدا هي $\mathbb R$ جلا وجبدا g(x)=0 نفيل في (2)

f أدرس الفروع اللانهائبث لمنحنى الدالث f

 $f(x) = \frac{2x^3 + 3}{x^2 - 1}$: بالله عددېنه معرفه على $f(x) = \frac{2x^3 + 3}{x^2 - 1}$ بالله عددېنه معرفه على $f(x) = \frac{2x^3 + 3}{x^2 - 1}$

 $f(x)=2x+rac{2x+3}{x^2-1}$: لبين أن لَللَ x من $1;+\infty[$ لمينا: 1

 $]1;+\infty[$ على المحال $]1;+\infty[$ هي إشارة g(x) على المحال

د. أنشئ منحنى g^{-1} في نفس المعلم السابق.

نمرین ﴿18﴾

و. أدرس نفعر منحنى f و نفط إنعطافت.

 $(O; \overrightarrow{i}; \overrightarrow{j})$ منحناها في معلم منعامد معناها من

 (C_f) ببن أن المستفيم الذي معادلته $y=-x+rac{1}{2}$ مفارب مائل لمنحنى $y=-x+rac{1}{2}$

 $(\forall x > 1): \frac{f(x) - f(1)}{x - 1} = -\frac{1}{x} - \sqrt{\frac{x}{x - 1}}$ (2)

أدرس فابلبث إشتفاق الدالة f في f على البمبن و أول النتبحة هندسبا. (3)

 $(\forall x > 1): f'(x) = -\frac{1}{x^2} - \frac{2x-1}{2\sqrt{x^2 - x}}$ (4)

f إسنننج جدول تغبرات الدالة f

بحبث: lpha بخبث أن المنحنى (C_f) بفطع محور الأفاصبل في نفطهُ أفصولها α بحبث (6)

. ببن أن f تقبل داله عَلَسبه f^{-1} معرفه على مجال بنبغي تحديده.

 $(O;\overrightarrow{i};\overrightarrow{j})$ أنشئ المنحنى (C_f) و منحنى أ (C_f) في المعلم (8)