Centro Universitário São Miguel

Biofísica

Estruturas Supramoleculares

Prof. M.Sc. Yuri Albuquerque

A célula, em conceito amplo, pode ser considerada como:

- A unidade fundamental dos seres vivo.
- A menor estrutura biológica capaz de ter vida autônoma.

As células existem como seres unicelulares, ou fazendo parte de seres mais complexos, os pluricelulares. Com relação à **suficiência de alimentação**, os seres vivos, e também suas células constituintes, se dividem em duas grandes classes:

- **1. Autótrofos** (auto, por si mesmo; trophos, nutrição). Aqueles que sintetizam todos os componentes moleculares que precisam para viver.
- **2.** Heterótrofos (heteros, diferente; trophos, nutrição). Aqueles que necessitam receber algumas moléculas (ou precursores), de outros seres vivos, ou de outras fontes.

Exemplo – Algas verdes (autótrofos); Entamboeba coli (heterótrofo).

As **células**, tanto de seres vivos **uni**, como **pluricelulares**, são classificados em três tipos gerais de acordo com o refinamento estrutural:

- Procarióticos as mais rudimentares, sem membrana nuclear.
- Eucarióticos as mais sofisticadas, com membrana nuclear.
- Fotossintéticas desenvolvimento intermediário entre as precedentes.

Os **procarióticos** são as menores células conhecidas, e compreendem as ricketsias, espiroquetas, certas algas e as eubactérias entre outras. Os **eucarióticos** são muito maiores, e compreendem os fungos, protozoários, algas superiores; e as células dos seres superiores, tanto vegetais, como animais. As **fotossintéticas** silo células vegetais, em sua maioria, e produzem glicose e amido, utilizando energia radiante.

Todos os três tipos possuem **membrana** citoplasmática, que envolve o citoplasma, e parede celular, que envolve a membrana.

Membranas

São estruturas altamente diferenciadas, destinadas a uma compartimentação única, na natureza. Elas são capazes de selecionar, por mecanismos de Transporte Ativos e Passivos, os ingredientes que devem passar, tanto para dentro, como para fora.

As **membranas biológicas** estabelecem um gradiente entrópico entre interior (Entropia baixa), e o exterior (Entropia alta), e consegue manter o interior em Estado Estacionário.

A Membrana Morfofuncional - Modelos

O estudo das funções da membrana, do ponto de vista biofísico, pode simplificar bastante o seu complexo funcionamento. Para efeito didático, a membrana pode ser considerada como tendo 4 estruturas Básicas.

- Poros ou canais
- Zonas de Difusão Facilitada (ZDF)
- Receptores
- Operadores

Poros

São passagens que permitem a comunicação entre o lado externo e o interno da célula. Os canais podem ser olhados como uma "falha" na continuidade da membrana.

Zonas de Difusão Facilitada (ZDF)

São regiões que possuem moléculas de uma determinada espécie química, em alta concentração. Daí, moléculas afins se difundem com mais facilidade através dessas zonas.

Receptores

São sítios capazes de receber moléculas específicas. Com a ligação dessas moléculas, uma mensagem é transmitida, e a célula aciona mecanismos de abertura ou fechamento de poros, entrada ou saída de substâncias, etc. Os receptores, frequentemente estão associados aos operadores.

Operadores

São mecanismos moleculares capazes de transportar substâncias através da membrana, em sentido único. Os operadores que transportam para fora, não transportam para dentro, e vice-versa.

Membranas e Transporte

1. Cicio y-glutamílico

Aminoacidos podem ser transportados para o interior da célula, através de combinação com o radical γ -glutamil da glutationa (γ -glutamil-cisteinil-glicina). Esse tripéptide se encontra livre em tecidos animais, em concentração de 5 a 8 x 10⁻³ M. O γ -glutamil-aminoácido seria hidrolisado no interior da célula, e liberaria o aminoácido.

Membranas e Transporte

2. O Íon Ca²⁺

No transporte transmembrana de Ca²⁺, funciona uma Ca²⁺ ATPase. Esse processo é especialmente acentuado na membrana do retículo sarcoplasmático, onde há um processo ativo de transporte de Ca²⁺ para o interior do retículo. O íon Mg²⁺ e um cofator para o funcionamento da Ca²⁺ ATPase. A despolarização da membrana do retículo sarcoplasmático libera o cálcio e dispara a concentração muscular.

Membranas e Transporte

3. Antibióticos, lonóforos e Transporte

Alguns antibióticos alteram o fluxo transmembrana de íons. A valinomicina aumenta a permeabilidade ao K⁺, e a gramicidina A, aumenta a permeabilidade aos íons K⁺, ou Na⁺. O mecanismo de transporte pode ser **difusão facilitada**, como na valinomicina, ou a formação de canais, como na gramicidina A. O íon K⁺ passa mais facilmente que o Na⁺, porque tem menor raio hidratado. A água não é excluída dessas passagens, que possuem cerca de 0,4 nm (4 Å).

Muitas outras substâncias que interferem no transporte, de íons já foram sintetizadas, e foram denominadas de **ionóforos** (íon, caminhante; phorein, carregar, conduzir), ou seja carreadores de íons.

Membranas e Transporte

- **4. Difusão Facilitada** O transporte passivo de substancias pela membrana tem dois modos principais:
- a) Um é o não **facilitado** (ou **não mediado**), que ocorre simplesmente pelo gradiente de concentração, e seu gráfico seria uma reta em função da concentração. A medida que a concentração aumenta, o fluxo cresce proporcionalmente.
- b) O segundo processo e o **transporte passivo facilitado**, ou **mediado**. Nesse caso, a relação entre concentração e fluxo segue a cinética de Michaelis-Menten. A partir de certa concentração, o sítio de transporte está **saturado**, e o fluxo não mais aumenta.

Este e exatamente o que ocorre nas ZDF (Zonas de Difusão Facilitada).

Membranas e Transporte

4. Membrana Celular e Parede Celular

Todas as células possuem essas duas estruturas. A relação entre essas duas estruturas pode ser visualizada na Figura. A membrana é responsável pelo potencial de estado fixo e potencial de ação, que resulta de distribuição assimétrica de aníons e cátions, sendo o exterior positive. A **parede celular** tem carga **negativa** devido a presença de glicídios, fosfolipídios e proteínas, é responsável pelas propriedades eletroforéticas de células (migram para o ânodo), pela comunicação, reconhecimento, e adesão celular. A parede celular é chamada de glicocálice.

SUMÁRIO

■ Heneine, I. F. Biofísica Básica. 2ª ed. Atheneu: Minas Gerais.

DOWNLOAD DO CONTEÚDO DA AULA

