

भारतीय प्रौद्योगिकी संस्थान मुंबई Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 6

Swaprava Nath

Slide preparation acknowledgments: Ramsundar Anandanarayanan and Harshvardhan Agarwal

ज्ञानम् परमम् ध्येयम् Knowledge is the supreme goal

Contents

- ► Equilibrium in IIEFGs
- ► Game Theory in Practice: P2P File Sharing
- ▶ Bayesian Games
- ► Strategy, Utility in Bayesian Games
- ► Equilibrium in Bayesian Games
- ► Examples in Bayesian Equilibrium

• Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we need to extend to mixed strategies

- Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we need to extend to mixed strategies
- Because of the information sets, best response cannot be defined without the belief of each player

- Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we need to extend to mixed strategies
- Because of the information sets, best response cannot be defined without the belief of each player

- Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we need to extend to mixed strategies
- Because of the information sets, best response cannot be defined without the belief of each player

Belief

It is the conditional probability distribution over the histories in an information set - conditioned on reaching the information set.

EX 7.38 MSZ: An IIEFG with perfect recall, i.e., mixed and behavioral strategies are equivalent.

EX 7.38 MSZ: An IIEFG with perfect recall, i.e., mixed and behavioral strategies are equivalent.

Consider the behavioral strategy profile: σ_1 , at $I_1^1(L\{5/12\}, M\{4/12\}, R\{3/12\})$

EX 7.38 MSZ: An IIEFG with perfect recall, i.e., mixed and behavioral strategies are equivalent.

Consider the behavioral strategy profile: σ_2 , at $I_2^1(l\{1\}, m\{0\}, r\{0\})$ choose l

EX 7.38 MSZ: An IIEFG with perfect recall, i.e., mixed and behavioral strategies are equivalent.

Consider the behavioral strategy profile: σ_1 , at $I_1^2(L_1\{0\}, R_1\{1\})$ choose R_1

EX 7.38 MSZ: An IIEFG with perfect recall, i.e., mixed and behavioral strategies are equivalent.

Consider the behavioral strategy profile: σ_1 , at $I_1^3(L_2\{1\}, R_2\{0\})$ choose L_2

Question

Is this an equilibrium? which implies

- Are the Bayesian beliefs consistent with P_{σ} that visits vertex x with probability $P_{\sigma}(x)$?
- The actions and beliefs are consistent for every player, i.e., maximizes their expected utility?

Sequential rationality

Choose an action maximizing expected utility at each information set.

The strategy vector σ induces the following probabilities to the vertices.

$$P_{\sigma}(x_2) = 5/12, P_{\sigma}(x_3) = 4/12, P_{\sigma}(x_4) = 0, P_{\sigma}(x_5) = 0, P_{\sigma}(x_6) = 4/12, P_{\sigma}(x_7) = 0$$

- Player 1 at information set I_1^3 , believes that x_6 is reached with probability 1.
- If the belief was > 2/7 in favor of x_7 , player 1 should have chosen R_2

- Player 2 at I_2^1 believes the x_3 is reached w.p. $P_{\sigma}(x_3|I_2^1) = P_{\sigma}(x_3)/(P_{\sigma}(x_2) + P_{\sigma}(x_3)) = 4/9$
- Similarly $P_{\sigma}(x_2|I_2^1) = 5/9$

Question

Is the action of player 2 sequentially rational w.r.t.her belief?

Answer

By picking *l*, expected utility= $5/9 \times 1 + 4/9 \times 2 = 13/9$, larger than any other choice of action.

Question

Given all information, what is the sequentially rational strategy for player 1 at I_1^1

Answer

L, M, R all give the same expected utility for player 1 (utility = 2).

Thus, mixed/behavioral strategy profile σ is sequentially rational for all players.

Belief

Belief

Let the information sets of player i be $I_i = \{I_i^1, I_i^2, I_i^3, ..., I_i^{k(i)}\}$. The belief of player i is a mapping $\mu_i^j : I_i^j \to [0, 1]$ s.t., $\sum_{x \in I_i^j} \mu_i^j(x) = 1$

Bayesian belief

A belief $\mu_i = \{\mu_i^1, \mu_i^2, ..., \mu_i^{k(i)}\}$ of player i is Bayesian w.r.t.to the behavioral strategy σ , if it is derived from σ using Bayes rule, i.e.,

$$\mu_i^j(x) = P_\sigma(x) / \sum_{y \in I_i^j} P_\sigma(y), \forall x \in I_i^j, \forall j = 1, 2, 3, ..., k(i)$$

Sequential rationality

A strategy σ_i of player i at an information set I_i^j is sequentially rational given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i} | x) \geqslant \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i} | x)$$

Sequential rationality

A strategy σ_i of player i at an information set l_i^j is sequentially rational given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i}|x) \geqslant \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i}|x)$$

• The tuple (σ, μ) is sequentially rational if it is sequentially rational for every player at every information set.

Sequential rationality

A strategy σ_i of player i at an information set l_i^j is sequentially rational given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i}|x) \geqslant \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i}|x)$$

- The tuple (σ, μ) is sequentially rational if it is sequentially rational for every player at every information set.
- The tuple (σ, μ) is also called an assessment.

Sequential rationality

A strategy σ_i of player i at an information set I_i^j is sequentially rational given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i} | x) \geqslant \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i} | x)$$

- The tuple (σ, μ) is sequentially rational if it is sequentially rational for every player at every information set.
- The tuple (σ, μ) is also called an assessment.
- Sequential rationality is a refinement of Nash Equilibrium.

Sequential rationality

A strategy σ_i of player i at an information set I_i^j is sequentially rational given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i} | x) \geqslant \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i} | x)$$

- The tuple (σ, μ) is sequentially rational if it is sequentially rational for every player at every information set.
- The tuple (σ, μ) is also called an assessment.
- Sequential rationality is a refinement of Nash Equilibrium.
- The notion coincides with SPNE when applied to PIEFGs

Theorem

In a PIEFG, a behavioral strategy profile σ *is an SPNE iff the tuple* $(\sigma, \hat{\mu})$ *is sequentially rational.*

Theorem

In a PIEFG, a behavioral strategy profile σ is an SPNE iff the tuple $(\sigma, \hat{\mu})$ is sequentially rational.

In a PIEFG, every information set is a singleton, $\hat{\mu}$ is the degenerate distribution at that singleton.

Theorem

In a PIEFG, a behavioral strategy profile σ *is an SPNE iff the tuple* $(\sigma, \hat{\mu})$ *is sequentially rational.*

In a PIEFG, every information set is a singleton, $\hat{\mu}$ is the degenerate distribution at that singleton.

Equilibrium with Sequential rationality

Perfect Bayesian Equilibrium: An assessment (σ, μ) is PBE if $\forall i \in N$

- μ_i is Bayesian w.r.t. σ
- σ_i is sequentially rational given σ_{-i} and μ_i

Theorem

In a PIEFG, a behavioral strategy profile σ is an SPNE iff the tuple $(\sigma, \hat{\mu})$ is sequentially rational.

In a PIEFG, every information set is a singleton, $\hat{\mu}$ is the degenerate distribution at that singleton.

Equilibrium with Sequential rationality

Perfect Bayesian Equilibrium: An assessment (σ, μ) is PBE if $\forall i \in N$

- μ_i is Bayesian w.r.t. σ
- σ_i is sequentially rational given σ_{-i} and μ_i
- Often represented only with σ , since μ is obtained from σ

Theorem

In a PIEFG, a behavioral strategy profile σ *is an SPNE iff the tuple* $(\sigma, \hat{\mu})$ *is sequentially rational.*

In a PIEFG, every information set is a singleton, $\hat{\mu}$ is the degenerate distribution at that singleton.

Equilibrium with Sequential rationality

Perfect Bayesian Equilibrium: An assessment (σ, μ) is PBE if $\forall i \in N$

- μ_i is Bayesian w.r.t. σ
- σ_i is sequentially rational given σ_{-i} and μ_i
- Often represented only with σ , since μ is obtained from σ
- Self-enforcing (like the SPNE) in a Bayesian way.

Contents

- ► Equilibrium in IIEFGs
- ► Game Theory in Practice: P2P File Sharing
- ► Bayesian Games
- ► Strategy, Utility in Bayesian Games
- ► Equilibrium in Bayesian Games
- ► Examples in Bayesian Equilibrium

Peer to Peer1

¹Slides of this section are adapted from CS186, Harvard

Scalability

Terminology:

- Scalability
- Failure resilience

Terminology:

- Scalability
- Failure resilience

Terminology:

• Protocol: messages that can be sent, actions that can be taken over the network

- Scalability
- Failure resilience

Terminology:

- Protocol: messages that can be sent, actions that can be taken over the network
- Client: a particular process for sending messages, taking actions

Desired Properties and Terminology

- Scalability
- Failure resilience

Terminology:

- Protocol: messages that can be sent, actions that can be taken over the network
- Client: a particular process for sending messages, taking actions
- Reference client: particular implementation

Desired Properties and Terminology

- Scalability
- Failure resilience

Terminology:

- Protocol: messages that can be sent, actions that can be taken over the network
- Client: a particular process for sending messages, taking actions
- Reference client: particular implementation
- Peer

Early P2P Technologies

Napster (1999 - 2001)

- Centralized database
- Users download music from each other

Early P2P Technologies

Napster (1999 - 2001)

- Centralized database
- Users download music from each other

Gnutella (2000 -)

- Get list of IP addresses of peers from set of known peers (no server)
- To get a file: Query message broadcast by peer A to known peers
- Query response: sent by B if B has the desired file (routed back to requestor)
- A can then download directly from B

The File Sharing Game

The File Sharing Game (Contd.)

Image courtesy: Adar and Huberman (2000)

Incentives for Client Developers

- Client developers can ensure file sharing
- But competition among the developers

Incentives for Client Developers

- Client developers can ensure file sharing
- But competition among the developers
- 85% peers free-riding by 2005; Gnutella less than 1% of ww P2P traffic by 2013
- Few other P2P systems met the same fate

New Protocol

BitTorrent (2001 -)

- Approx 85% of P2P traffic in US
- File sharing
- Also used for S/W distribution (e.g., Linux)

New Protocol

BitTorrent (2001 -)

- Approx 85% of P2P traffic in US
- File sharing
- Also used for S/W distribution (e.g., Linux)

Key innovations

- Break file into pieces: A repeated game!
- "If you let me download, I'll reciprocate."

BitTorrent Schematic

Figure 5.4.: Starting a download process in the BitTorrent protocol: 1) A user goes to a searchable directory to find a link to a .torrent file corresponding to the desired content; 2) the .torrent file contains metadata about the content, in particular the URL of a tracker; 3) the tracker provides a list of peers participating in the swarm for the content (i.e., their IP address and port); 4) the user's BitTorrent client can now contact all these peers and download content.

Image courtesy: Parkes and Seuken (2017)

Tracker is a centralized entity that controls the traffic, tracks the connection between peers and their speed of upload, download etc.

Tracker is a centralized entity that controls the traffic, tracks the connection between peers and their speed of upload, download etc.

Reference Client Protocol:

 \bullet Set a threshold r of uploading speed (typically the third maximum speed in the recent past)

Tracker is a centralized entity that controls the traffic, tracks the connection between peers and their speed of upload, download etc.

Reference Client Protocol:

- Set a threshold r of uploading speed (typically the third maximum speed in the recent past)
- If a peer j uploaded to i at a rate $\geq r$, unchoke j in the next period

Tracker is a centralized entity that controls the traffic, tracks the connection between peers and their speed of upload, download etc.

Reference Client Protocol:

- Set a threshold *r* of uploading speed (typically the third maximum speed in the recent past)
- If a peer j uploaded to i at a rate $\geq r$, unchoke j in the next period
- If a peer j uploaded to i at a rate < r, choke j in the next period

Tracker is a centralized entity that controls the traffic, tracks the connection between peers and their speed of upload, download etc.

Reference Client Protocol:

- Set a threshold r of uploading speed (typically the third maximum speed in the recent past)
- If a peer j uploaded to i at a rate $\geq r$, unchoke j in the next period
- If a peer j uploaded to i at a rate < r, choke j in the next period
- Every three time periods, optimistically unchoke a random peer from the neighborhood who is currently choked, and leave that peer unchoked for three time periods.

Tracker is a centralized entity that controls the traffic, tracks the connection between peers and their speed of upload, download etc.

Reference Client Protocol:

- Set a threshold r of uploading speed (typically the third maximum speed in the recent past)
- If a peer j uploaded to i at a rate $\geq r$, unchoke j in the next period
- If a peer j uploaded to i at a rate < r, choke j in the next period
- Every three time periods, optimistically unchoke a random peer from the neighborhood who is currently choked, and leave that peer unchoked for three time periods.

Forcing a repeated game by fragmenting the files

Tracker is a centralized entity that controls the traffic, tracks the connection between peers and their speed of upload, download etc.

Reference Client Protocol:

- Set a threshold r of uploading speed (typically the third maximum speed in the recent past)
- If a peer j uploaded to i at a rate $\geq r$, unchoke j in the next period
- If a peer j uploaded to i at a rate < r, choke j in the next period
- Every three time periods, optimistically unchoke a random peer from the neighborhood who is currently choked, and leave that peer unchoked for three time periods.

Forcing a repeated game by fragmenting the files

The leecher-seeder game is a repeated Prisoners' Dilemma

Tracker is a centralized entity that controls the traffic, tracks the connection between peers and their speed of upload, download etc.

Reference Client Protocol:

- Set a threshold r of uploading speed (typically the third maximum speed in the recent past)
- If a peer j uploaded to i at a rate $\geq r$, unchoke j in the next period
- If a peer j uploaded to i at a rate < r, choke j in the next period
- Every three time periods, optimistically unchoke a random peer from the neighborhood who is currently choked, and leave that peer unchoked for three time periods.

Forcing a repeated game by fragmenting the files

The leecher-seeder game is a repeated Prisoners' Dilemma

Strategy of the seeder is tit-for-tat

Illustration

Illustration

Strategic Behaviors

- How often to contact tracker?
- Which pieces to reveal?
- How many upload slots, which peers to unchoke, at what speed?
- What data to allow others to download?
- Possible goals: min upload, max download speed, some balance

Attacks on BitTorrent

- BitThief
- Strategic piece revealer
- BitTyrant

BitThief

- Goal: download files without uploading
- Keep asking for peers from tracker, grow neighborhood quickly
- Exploit the optimistic unchoking part
- Never upload!

BitThief

- Goal: download files without uploading
- Keep asking for peers from tracker, grow neighborhood quickly
- Exploit the optimistic unchoking part
- Never upload!
- Fix: modify the tracker (block same IP address within 30 minutes).

Ref: Locher et al., "Free Riding in BitTorrent is Cheap", HotNets 2006

Strategic Piece Revealer

- Reference client: tell neighbors about new pieces, use "rarest-first" to request
- Manipulator strategy: reveal most common piece that reciprocating peer does not have!
- Try to protect a monopoly, keep others interested

Ref: Levin et al., "BitTorrent is an Auction: Analyzing and Improving BitTorrent's Incentives", SIGCOMM 2008

Strategic Piece Revealer

Summary

- P2P demonstrates importance of game-theory in computer systems
- Early systems were easily manipulated
- BitTorrent's innovation was to break files into pieces, enabling TitForTat.
- Still some vulnerabilities, but generally very successful example of incentive-based protocol design.

Contents

- ► Equilibrium in IIEFGs
- ► Game Theory in Practice: P2P File Sharing
- ► Bayesian Games
- ► Strategy, Utility in Bayesian Games
- ► Equilibrium in Bayesian Games
- ► Examples in Bayesian Equilibrium

Games

Games

- Non-cooperative games
 - Complete information Players deterministically know which game they are playing

Games

- Complete information Players deterministically know which game they are playing
 - Normal form games
 Appropriate for simultaneous move single-stage games
 Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated

Games

- Complete information Players deterministically know which game they are playing
 - Normal form games
 Appropriate for simultaneous move single-stage games
 Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated
 - Extensive form games
 Appropriate for multi-stage games
 Equilibrium notions: SPNE (PIEFG), mixed and behavioral strategies (IIEFG), PBE

Games

- Complete information Players **deterministically** know which game they are playing
 - Normal form games
 Appropriate for simultaneous move single-stage games
 Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated
 - Extensive form games
 Appropriate for multi-stage games
 Equilibrium notions: SPNE (PIEFG), mixed and behavioral strategies (IIEFG), PBE
- Incomplete information Players do not deterministically know which game they are playing

Games

- Complete information Players **deterministically** know which game they are playing
 - Normal form games
 Appropriate for simultaneous move single-stage games
 Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated
 - Extensive form games
 Appropriate for multi-stage games
 Equilibrium notions: SPNE (PIEFG), mixed and behavioral strategies (IIEFG), PBE
- Incomplete information Players do not deterministically know which game they are playing
- Cooperative games Players form coalitions and utilities are defined over coalitions

Games

- Complete information Players **deterministically** know which game they are playing
 - Normal form games
 Appropriate for simultaneous move single-stage games
 Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated
 - Extensive form games
 Appropriate for multi-stage games
 Equilibrium notions: SPNE (PIEFG), mixed and behavioral strategies (IIEFG), PBE
- Incomplete information Players do not deterministically know which game they are playing
- Cooperative games Players form coalitions and utilities are defined over coalitions
- Other types of games repeated, stochastic etc.

Games with Incomplete Information

Games with Complete Information

- Players deterministically know the game they are playing
- There can be some chance moves but probabilities are known

Games with Incomplete information

Players do not know deterministically know which game they are playing

Games with Incomplete Information

Games with Complete Information

- Players deterministically know the game they are playing
- There can be some chance moves but probabilities are known

Games with Incomplete information

- Players do not know deterministically know which game they are playing
- they receive **private signals / types**

Games with Incomplete Information

Games with Complete Information

- Players deterministically know the game they are playing
- There can be some chance moves but probabilities are known

Games with Incomplete information

- Players do not know deterministically know which game they are playing
- they receive **private signals / types**
- To discuss: a special subclass called games with incomplete information with common priors (Harsanyi 1967)

Games with Incomplete Information

Games with Complete Information

- Players deterministically know the game they are playing
- There can be some chance moves but probabilities are known

Games with Incomplete information

- Players do not know deterministically know which game they are playing
- they receive **private signals / types**
- To discuss: a special subclass called games with incomplete information with common priors (Harsanyi 1967)
- Also called **Bayesian games**

Football game (two competing teams)

• Each can choose a gameplan: aim to win (W) or aim to draw (D)

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.
- There are four possible type profiles in this example WW, WD, DW, DD.

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.
- There are four possible type profiles in this example WW, WD, DW, DD.
- The payoff matrices differ as follows (payoff for DW is symmetrically opposite to WD).

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.
- There are four possible type profiles in this example WW, WD, DW, DD.
- The payoff matrices differ as follows (payoff for DW is symmetrically opposite to WD).

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.
- There are four possible type profiles in this example WW, WD, DW, DD.
- The payoff matrices differ as follows (payoff for DW is symmetrically opposite to WD).

Assumptions

• The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.

Assumptions

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

Assumptions

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

Assumptions

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

Definition

A Bayesian game is represented by $\langle N, (\Theta_i)_{i \in N}, P, (\Gamma_{\theta})_{\theta \in (\times_{i \in N} \Theta_i)} \rangle$

• N: set of players

Assumptions

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

Definition

A Bayesian game is represented by $\langle N, (\Theta_i)_{i \in N}, P, (\Gamma_{\theta})_{\theta \in (\times_{i \in N} \Theta_i)} \rangle$

- N: set of players
- Θ_i : set of types of player i

Assumptions

- The probabilities of choosing different games (or type profiles) come from a common prior distribution.
- The common prior is common knowledge

Definition

A Bayesian game is represented by $\langle N, (\Theta_i)_{i \in N}, P, (\Gamma_{\theta})_{\theta \in (\times_{i \in N} \Theta_i)} \rangle$

- N: set of players
- Θ_i : set of types of player i
- P: common prior distribution over $\Theta = \times_{i \in N} \Theta_i$ s.t. $\sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_i, \theta_{-i}) > 0$, $\forall \theta_i \in \Theta_i, \forall i \in N$ i.e., marginals for every type is positive (otherwise we can prune the type set)

Assumptions

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

Definition

A Bayesian game is represented by $\langle N, (\Theta_i)_{i \in N}, P, (\Gamma_{\theta})_{\theta \in (\times_{i \in N} \Theta_i)} \rangle$

- N: set of players
- Θ_i : set of types of player i
- P: common prior distribution over $\Theta = \times_{i \in N} \Theta_i$ s.t. $\sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_i, \theta_{-i}) > 0$, $\forall \theta_i \in \Theta_i, \forall i \in N$
 - i.e., marginals for every type is positive (otherwise we can prune the type set)
- Γ_{θ} : NFG for the type profile $\theta \in \Theta$ i.e., $\Gamma_{\theta} = \langle N, (A_i(\theta))_{i \in N}, (u_i(\theta))_{i \in N} \rangle$ $u_i : A \times \Theta \to \mathbb{R}, A = \times_{i \in N} A_i$ [We assume $A_i(\theta) = A_i, \forall \theta$]

Stages of a Bayesian game

• $\theta = (\theta_i, \theta_{-i})$ is chosen randomly according to the common prior P

Stages of a Bayesian game

- $\theta = (\theta_i, \theta_{-i})$ is chosen randomly according to the common prior P
- ullet Each player observes her own type $heta_i$

Stages of a Bayesian game

- $\theta = (\theta_i, \theta_{-i})$ is chosen randomly according to the common prior P
- Each player observes her own type θ_i
- Player *i* picks action $a_i \in A_i$, $\forall i \in N$

Stages of a Bayesian game

- $\theta = (\theta_i, \theta_{-i})$ is chosen randomly according to the common prior P
- Each player observes her own type θ_i
- Player *i* picks action $a_i \in A_i$, $\forall i \in N$
- Player i realizes a payoff of $u_i(a_i, a_{-i}; \theta_i, \theta_{-i})$

Contents

- ► Equilibrium in IIEFGs
- ► Game Theory in Practice: P2P File Sharing
- ► Bayesian Games
- ► Strategy, Utility in Bayesian Games
- ► Equilibrium in Bayesian Games
- ► Examples in Bayesian Equilibrium

Definition

Strategy is a plan to map type to action.

$$s_i:\Theta_i\to A_i$$

Pure

$$\sigma_i:\Theta_i\to\Delta A_i$$

Mixed

Definition

Strategy is a plan to map type to action.

$$s_i: \Theta_i \to A_i$$
 Pure $\sigma_i: \Theta_i \to \Delta A_i$ Mixed

The player can experience its utility in two stages for Bayesian games (depending on the realization of θ_i).

• Ex-ante utility

Definition

Strategy is a plan to map type to action.

$$s_i: \Theta_i \to A_i$$
 Pure $\sigma_i: \Theta_i \to \Delta A_i$ Mixed

The player can experience its utility in two stages for Bayesian games (depending on the realization of θ_i).

- Ex-ante utility
- Ex-interim utility

Definition

Strategy is a plan to map type to action.

$$s_i: \Theta_i \to A_i$$
 Pure $\sigma_i: \Theta_i \to \Delta A_i$ Mixed

The player can experience its utility in two stages for Bayesian games (depending on the realization of θ_i).

- Ex-ante utility
- Ex-interim utility
- Ex-post utility (for complete information game)

Ex-ante Utility

Definition (Ex-ante utility)

Expected utility before observing own type.

$$u_i(\sigma) = \sum_{\theta \in \Theta} \frac{P(\theta)}{P(\theta)} u_i(\sigma(\theta); \theta)$$

$$= \sum_{\theta \in \Theta} \frac{P(\theta)}{(a_1, a_2, \dots, a_n) \in A} \prod_{j \in N} \sigma_j(\theta_j) [a_j] u_i(a_1, \dots, a_n; \theta_1, \dots, \theta_n)$$

Ex-ante Utility

Definition (Ex-ante utility)

Expected utility before observing own type.

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta)$$

=
$$\sum_{\theta \in \Theta} P(\theta) \sum_{(a_1, a_2, \dots, a_n) \in A} \prod_{j \in N} \sigma_j(\theta_j) [a_j] u_i(a_1, \dots a_n; \theta_1, \dots \theta_n)$$

The belief of player i over others' types changes after observing her own type θ_i according to Bayes rule on P.

$$P(\theta_{-i}|\theta_i) = \frac{P(\theta_i, \theta_{-i})}{\sum_{\tilde{\theta}_{-i} \in \Theta_{-i}} P(\theta_i, \tilde{\theta}_{-i})}$$

Ex-ante Utility

Definition (Ex-ante utility)

Expected utility before observing own type.

$$u_i(\sigma) = \sum_{\theta \in \Theta} \frac{P(\theta)}{P(\theta)} u_i(\sigma(\theta); \theta)$$

$$= \sum_{\theta \in \Theta} \frac{P(\theta)}{P(\theta)} \sum_{(a_1, a_2, \dots, a_n) \in A} \prod_{j \in N} \sigma_j(\theta_j) [a_j] u_i(a_1, \dots, a_n; \theta_1, \dots, \theta_n)$$

The belief of player i over others' types changes after observing her own type θ_i according to Bayes rule on P.

$$P(\theta_{-i}|\theta_i) = \frac{P(\theta_i, \theta_{-i})}{\sum_{\tilde{\theta}_{-i} \in \Theta_{-i}} P(\theta_i, \tilde{\theta}_{-i})}$$

This is why we needed every marginal to be positive – otherwise that type can be removed from its type set

Ex-interim utility

Definition (Ex-interim utility)

Expected utility after observing one's own type.

$$u_i(\sigma|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_{-i}|\theta_i) u_i(\sigma(\theta);\theta)$$

Ex-interim utility

Definition (Ex-interim utility)

Expected utility after observing one's own type.

$$u_i(\sigma|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_{-i}|\theta_i) u_i(\sigma(\theta);\theta)$$

Special Case : for independent types, observing θ_i does not give any information on θ_{-i} . Both utilities are the same.

Ex-interim utility

Definition (Ex-interim utility)

Expected utility after observing one's own type.

$$u_i(\sigma|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_{-i}|\theta_i) u_i(\sigma(\theta);\theta)$$

Special Case : for independent types, observing θ_i does not give any information on θ_{-i} . Both utilities are the same.

Relation between the two utilities is given by

$$u_i(\sigma) = \sum_{\theta_i \in \Theta_i} P(\theta_i) u_i(\sigma | \theta_i)$$

• Player 1 : seller, type : price at which he is willing to sell

- Player 1 : seller, type : price at which he is willing to sell
- Player 2 : buyer, type : price at which he is willing to buy

- Player 1 : seller, type : price at which he is willing to sell
- Player 2 : buyer, type : price at which he is willing to buy
- $\Theta_1 = \Theta_2 = \{1, 2, \dots, 100\}, A_1 = A_2 = \{1, 2, \dots, 100\}$

- Player 1 : seller, type : price at which he is willing to sell
- Player 2: buyer, type: price at which he is willing to buy
- $\Theta_1 = \Theta_2 = \{1, 2, \dots, 100\}, A_1 = A_2 = \{1, 2, \dots, 100\}$
- If the bid of the seller is smaller or equal to that of the buyer, trade happens at a price average of the two bids. Else, trade does not happen.

Example 1: Two Player Bargaining Game

Suppose type generation is independent and uniform over Θ_1 , Θ_2 respectively,

$$P(\theta_2|\theta_1) = P(\theta_2) = \frac{1}{100}, \forall \theta_1, \theta_2$$

$$P(\theta_1|\theta_2) = P(\theta_1) = \frac{1}{100}, \forall \theta_1, \theta_2$$

$$u_1(a_1, a_2; \theta_1, \theta_2) = \begin{cases} \frac{a_1 + a_2}{2} - \theta_1 & \text{if } a_2 \geqslant a_1 \\ 0 & \text{otherwise} \end{cases}$$

$$u_2(a_1, a_2; \theta_1, \theta_2) = \begin{cases} \theta_2 - \frac{a_1 + a_2}{2} & \text{if } a_2 \geqslant a_1 \\ 0 & \text{otherwise} \end{cases}$$

Common Prior : $P(\theta_1, \theta_2) = \frac{1}{1000}, \forall \theta_1, \theta_2$

Example 2: Sealed Bid Auction

Two players, both willing to buy an object. Their values and bids lie in [0,1].

Allocation Function:

$$O_1(b_1, b_2) = \begin{cases} 1 & \text{if } b_1 \geqslant b_2 \\ 0 & \text{ow} \end{cases}$$
 $O_2(b_1, b_2) = \begin{cases} 1 & \text{if } b_2 > b_1 \\ 0 & \text{ow} \end{cases}$

Beliefs

$$f(\theta_2|\theta_1) = 1, \forall \theta_1, \theta_2$$

$$f(\theta_1|\theta_2) = 1, \forall \theta_1, \theta_2$$

$$f(\theta_1, \theta_2) = 1, \forall \theta_1, \theta_2$$

$$u_i(b_1, b_2; \theta_1, \theta_2) = O_i(b_1, b_2)(\theta_i - b_i)$$

Winner pays for his bid.

Contents

- ► Equilibrium in IIEFGs
- ► Game Theory in Practice: P2P File Sharing
- **▶** Bayesian Games
- ► Strategy, Utility in Bayesian Games
- ► Equilibrium in Bayesian Games
- ► Examples in Bayesian Equilibrium

Ex-ante: before observing her own type

Nash Equilibrium
$$(\sigma^*, P)$$
: $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i', \sigma_{-i}^*), \forall \sigma_i', \forall i \in N$

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta)$$

Ex-ante: before observing her own type

Nash Equilibrium (σ^*, P) : $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i', \sigma_{-i}^*), \forall \sigma_i', \forall i \in N$

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta)$$

Ex-interim: after observing her own type

Bayesian Equilibrium
$$(\sigma^*, P)$$
: $u_i(\sigma_i^*(\theta_i), \sigma_{-i}^* | \theta_i) \geqslant u_i(\sigma_i'(\theta_i), \sigma_{-i}^* | \theta_i), \forall \sigma_i', \forall \theta_i \in \Theta_i, \forall i \in N$

Ex-ante: before observing her own type

Nash Equilibrium (σ^*, P) : $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i', \sigma_{-i}^*), \forall \sigma_i', \forall i \in N$

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta)$$

Ex-interim: after observing her own type

Bayesian Equilibrium (σ^*, P) : $u_i(\sigma_i^*(\theta_i), \sigma_{-i}^* | \theta_i) \geqslant u_i(\sigma_i'(\theta_i), \sigma_{-i}^* | \theta_i), \forall \sigma_i', \forall \theta_i \in \Theta_i, \forall i \in N$

• The RHS of the definition can be replaced by a pure strategy a_i , $\forall a_i \in A_i$. The reason is exactly the same as that of MSNE (these definitions are equivalent)

Ex-ante: before observing her own type

Nash Equilibrium (σ^*, P) : $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i', \sigma_{-i}^*), \forall \sigma_i', \forall i \in N$

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta)$$

Ex-interim: after observing her own type

Bayesian Equilibrium (σ^*, P) : $u_i(\sigma_i^*(\theta_i), \sigma_{-i}^* | \theta_i) \geqslant u_i(\sigma_i'(\theta_i), \sigma_{-i}^* | \theta_i), \forall \sigma_i', \forall \theta_i \in \Theta_i, \forall i \in N$

- The RHS of the definition can be replaced by a pure strategy a_i , $\forall a_i \in A_i$. The reason is exactly the same as that of MSNE (these definitions are equivalent)
- NE takes expectation over $P(\theta)$

Ex-ante: before observing her own type

Nash Equilibrium (σ^*, P) : $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i', \sigma_{-i}^*), \forall \sigma_i', \forall i \in N$

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta)$$

Ex-interim: after observing her own type

Bayesian Equilibrium (σ^*, P) : $u_i(\sigma_i^*(\theta_i), \sigma_{-i}^* | \theta_i) \geqslant u_i(\sigma_i'(\theta_i), \sigma_{-i}^* | \theta_i), \forall \sigma_i', \forall \theta_i \in \Theta_i, \forall i \in N$

- The RHS of the definition can be replaced by a pure strategy a_i , $\forall a_i \in A_i$. The reason is exactly the same as that of MSNE (these definitions are equivalent)
- NE takes expectation over $P(\theta)$
 - BE takes expectation over $P(\theta_{-i}|\theta_i)$

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the forward direction, suppose (σ^*, P) is a Bayesian equilibrium, consider

$$\begin{split} u_i(\sigma_i',\sigma_{-i}^*) &= \sum_{\theta_i \in \Theta_i} P(\theta_i) u_i(\sigma_i'(\theta_i),\sigma_{-i}^*|\theta_i) \\ &\leqslant \sum_{\theta_i \in \Theta_i} P(\theta_i) u_i(\sigma_i^*(\theta_i),\sigma_{-i}^*|\theta_i), \text{ since } (\sigma^*,P) \text{ is a BE} \\ &= u_i(\sigma_i^*,\sigma_{-i}^*) \end{split}$$

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the reverse direction, proof by contradiction. Suppose (σ^*, P) is not a Bayesian equilibrium i.e., there exists some $i \in N$, some $\theta_i \in \Theta_i$, some $a_i \in A_i$, s.t.

$$u_i(a_i, \sigma_{-i}^* | \theta_i) > u_i(\sigma_i^*(\theta_i), \sigma_{-i}^* | \theta_i)$$

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the reverse direction, proof by contradiction. Suppose (σ^*, P) is not a Bayesian equilibrium i.e., there exists some $i \in N$, some $\theta_i \in \Theta_i$, some $a_i \in A_i$, s.t.

$$u_i(a_i, \sigma_{-i}^* | \theta_i) > u_i(\sigma_i^*(\theta_i), \sigma_{-i}^* | \theta_i)$$

Construct the strategy $\hat{\sigma}_i$ s.t.,

$$\hat{\sigma}_i(\theta_i') = \sigma_i^*(\theta_i'), \forall \theta_i' \in \Theta_i \setminus \{\theta_i\}$$

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the reverse direction, proof by contradiction. Suppose (σ^*, P) is not a Bayesian equilibrium i.e., there exists some $i \in N$, some $\theta_i \in \Theta_i$, some $a_i \in A_i$, s.t.

$$u_i(a_i, \sigma_{-i}^* | \theta_i) > u_i(\sigma_i^*(\theta_i), \sigma_{-i}^* | \theta_i)$$

Construct the strategy $\hat{\sigma}_i$ s.t.,

$$\hat{\sigma}_i(\theta_i') = \sigma_i^*(\theta_i'), \forall \theta_i' \in \Theta_i \setminus \{\theta_i\}$$

$$\hat{\sigma}_i(\theta_i)[a_i] = 1, \hat{\sigma}_i(\theta_i)[b_i] = 0, \forall b_i \in A_i \setminus \{a_i\}$$

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

$$u_i(\hat{\sigma}_i,\sigma_{-i}^*) = \sum_{\tilde{\theta}_i \in \Theta_i} P(\tilde{\theta}_i) u_i(\hat{\sigma}_i(\tilde{\theta}_i),\sigma_{-i}^* | \tilde{\theta}_i)$$

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

$$u_{i}(\hat{\sigma}_{i}, \sigma_{-i}^{*}) = \sum_{\tilde{\theta}_{i} \in \Theta_{i}} P(\tilde{\theta}_{i}) u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}), \sigma_{-i}^{*} | \tilde{\theta}_{i})$$

$$= \sum_{\tilde{\theta}_{i} \in \Theta_{i} \setminus \{\theta_{i}\}} P(\tilde{\theta}_{i}) u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}), \sigma_{-i}^{*} | \tilde{\theta}_{i})$$

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

$$\begin{split} u_i(\hat{\sigma}_i, \sigma^*_{-i}) &= \sum_{\tilde{\theta}_i \in \Theta_i} P(\tilde{\theta}_i) u_i(\hat{\sigma}_i(\tilde{\theta}_i), \sigma^*_{-i} | \tilde{\theta}_i) \\ &= \sum_{\tilde{\theta}_i \in \Theta_i \setminus \{ \boldsymbol{\theta}_i \}} P(\tilde{\theta}_i) u_i(\hat{\sigma}_i(\tilde{\theta}_i), \sigma^*_{-i} | \tilde{\theta}_i) + P(\boldsymbol{\theta}_i) u_i(\hat{\sigma}_i(\boldsymbol{\theta}_i), \sigma^*_{-i} | \boldsymbol{\theta}_i) \end{split}$$

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

$$\begin{split} u_i(\hat{\sigma}_i, \sigma_{-i}^*) &= \sum_{\tilde{\theta}_i \in \Theta_i} P(\tilde{\theta}_i) u_i(\hat{\sigma}_i(\tilde{\theta}_i), \sigma_{-i}^* | \tilde{\theta}_i) \\ &= \sum_{\tilde{\theta}_i \in \Theta_i \setminus \{\theta_i\}} P(\tilde{\theta}_i) u_i(\hat{\sigma}_i(\tilde{\theta}_i), \sigma_{-i}^* | \tilde{\theta}_i) + P(\theta_i) u_i(\hat{\sigma}_i(\theta_i), \sigma_{-i}^* | \theta_i) \\ &> \sum_{\tilde{\theta}_i \in \Theta_i \setminus \{\theta_i\}} P(\tilde{\theta}_i) u_i(\sigma_i^*(\tilde{\theta}_i), \sigma_{-i}^* | \tilde{\theta}_i) + P(\theta_i) u_i(\sigma_i^*(\theta_i), \sigma_{-i}^* | \theta_i) = u_i(\sigma_i^*, \sigma_{-i}^*) \end{split}$$

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

Reverse direction proof continued ...

$$\begin{split} u_i(\hat{\sigma}_i, \sigma_{-i}^*) &= \sum_{\tilde{\theta}_i \in \Theta_i} P(\tilde{\theta}_i) u_i(\hat{\sigma}_i(\tilde{\theta}_i), \sigma_{-i}^* | \tilde{\theta}_i) \\ &= \sum_{\tilde{\theta}_i \in \Theta_i \setminus \{ \theta_i \}} P(\tilde{\theta}_i) u_i(\hat{\sigma}_i(\tilde{\theta}_i), \sigma_{-i}^* | \tilde{\theta}_i) + P(\theta_i) u_i(\hat{\sigma}_i(\theta_i), \sigma_{-i}^* | \theta_i) \\ &> \sum_{\tilde{\theta}_i \in \Theta_i \setminus \{ \theta_i \}} P(\tilde{\theta}_i) u_i(\sigma_i^*(\tilde{\theta}_i), \sigma_{-i}^* | \tilde{\theta}_i) + P(\theta_i) u_i(\sigma_i^*(\theta_i), \sigma_{-i}^* | \theta_i) = u_i(\sigma_i^*, \sigma_{-i}^*) \end{split}$$

Hence, $(\sigma_i^*, \sigma_{-i}^*)$ is not a Nash equilibrium

Existence of Bayesian Equilibrium

Theorem

Every finite Bayesian game has a Bayesian equilibrium.

[Finite Bayesian game: set of players, action set and type set are finite]

Existence of Bayesian Equilibrium

Theorem

Every finite Bayesian game has a Bayesian equilibrium.

[Finite Bayesian game: set of players, action set and type set are finite]

Proof.

Proof idea: Transform the Bayesian game into a complete information game treating each type as a player, and invoke Nash Theorem for the existence of equilibrium - which is a BE in the original game. [See addendum for details]

Contents

- ► Equilibrium in IIEFGs
- ► Game Theory in Practice: P2P File Sharing
- **▶** Bayesian Games
- ► Strategy, Utility in Bayesian Games
- ► Equilibrium in Bayesian Games
- ► Examples in Bayesian Equilibrium

Example 2: Sealed Bid Auction

Two players, both willing to buy an object. Their values and bids lie in [0,1]. **Allocation Function**

$$O_1(b_1, b_2) = I\{b_1 \ge b_2\}$$

 $O_2(b_1, b_2) = I\{b_2 > b_1\}$

Beliefs

$$f(\theta_2|\theta_1) = 1, \forall \theta_1, \theta_2$$

$$f(\theta_1|\theta_2) = 1, \forall \theta_1, \theta_2$$

$$f(\theta_1, \theta_2) = 1, \forall \theta_1, \theta_2$$

• If $b_1 \ge b_2$ payer 1 wins and pays her bid otherwise, player 2 wins and pays her bid.

$$u_1(b_1, b_2, \theta_1, \theta_2) = (\theta_1 - b_1)T\{b_1 \ge b_2\}$$

$$u_2(b_1, b_2, \theta_1, \theta_2) = (\theta_2 - b_2)T\{b_1 < b_2\}$$

• If $b_1 \ge b_2$ payer 1 wins and pays her bid otherwise, player 2 wins and pays her bid.

$$u_1(b_1, b_2, \theta_1, \theta_2) = (\theta_1 - b_1)T\{b_1 \ge b_2\}$$

$$u_2(b_1, b_2, \theta_1, \theta_2) = (\theta_2 - b_2)T\{b_1 < b_2\}$$

•
$$b_1 = s_1(\theta_1), b_2 = s_2(\theta_2)$$

Assume $s_i(\theta_i) = \alpha_i \theta_i, \alpha_i > 0, i = 1, 2$

To find the BE, we need to find the s_i^* (or α_i^*) that maximizes the ex-interim utility of player i. i.e.

$$max_{\sigma_i}u_i(\sigma_i, \sigma_{-i}^*|\theta_i)$$

For player 1, this reduces to

$$\begin{split} \mathit{max}_{\sigma_i} u_i(\sigma_i, \sigma_{-i}^* | \theta_i) &= \mathit{max}_{b_1 \in [0, \alpha_2]} \int_0^1 f(\theta_2 | \theta_1) (\theta_1 - b_1) I\{b_1 \geqslant \alpha_2 \theta_2\} d\theta_2 \\ &= \mathit{max}_{b_1 \in [0, \alpha_2]} (\theta_1 - b_1) \frac{b_1}{\alpha_2} \\ &\Longrightarrow b_1 = \begin{cases} \frac{\theta_1}{2} \mathrm{if} \ \alpha_2 > \frac{\theta_1}{2} \\ \alpha_2 \mathrm{otherwise} \end{cases} \end{split}$$

From this we get,

$$s_1^*(\theta_1) = \min\{\frac{\theta_1}{2}, \alpha_2\}$$

$$s_2^*(\theta_2) = \min\{\frac{\theta_2}{2}, \alpha_1\}$$

If $\alpha_1 = \alpha_2 = \frac{1}{2}$, then $(\frac{\theta_1}{2}, \frac{\theta_2}{2})$ is a BE.

In the Bayesian Game induced by uniform prior on first price auction, bidding half the true value is a Bayesian equilibrium.

Second Price Auction

Highest bidder wins but pays the second highest bid.

$$u_1(b_1, b_2, \theta_1, \theta_2) = (\theta_1 - b_2)T\{b_1 \ge b_2\}$$

$$u_2(b_1, b_2, \theta_1, \theta_2) = (\theta_2 - b_1)T\{b_1 < b_2\}$$

Player 1 has to maximize

$$= \int_0^1 f(\theta_2 | \theta_1) (\theta_1 - s_2(\theta_2)) I\{b_1 \ge s_2(\theta_2)\} d\theta_2$$

$$= \int_0^1 1 \cdot (\theta_1 - \alpha_2 \theta_2) I\{\theta_2 \le \frac{b_1}{\alpha_2}\} d\theta_2$$

$$= \frac{1}{\alpha_2} (b_1 \theta_1 - \frac{\theta_1^2}{2})$$

This is maximized when $b_1 = \theta_1$. Similarly for $b_2 = \theta_2$.

Second Price Auction

If the distribution of θ_1 and θ_2 were arbitrary but independent, the maximization problem would have been

$$\int_0^{\frac{b_1}{\alpha_2}} f(\theta_2)(\theta_1 - \alpha_2 \theta_2) d\theta_2 = \theta_1 F\left(\frac{b_1}{\alpha_2}\right) - \alpha_2 \int_0^{\frac{b_1}{\alpha_2}} \theta_2 f(\theta_2) d\theta_2$$

Differentiating wrt b_1 , we get

$$\theta_1 \frac{1}{\alpha_2} f\left(\frac{b_1}{\alpha_2}\right) - \alpha_2 \cdot \frac{b_1}{\alpha_2} f\left(\frac{b_1}{\alpha_2}\right) \frac{1}{\alpha_2} = 0 \implies \frac{1}{\alpha_2} f\left(\frac{b_1}{\alpha_2}(b_1 - \theta_1)\right) = 0 \tag{1}$$

$$\implies b_1 = \theta_1 \mathbf{if} f\left(\frac{b_1}{\alpha_2}\right) > 0$$
 (2)

Similarly for 2.

For any independent positive prior, bidding true type is a BE of the induced Bayesian game in Second Price Auction.

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay