CONVECÇÃO MÁSSICA

1. PARÂMETROS ADIMENSIONAIS

Nome	Grupo adimensional
Número de Reynolds (Re)	$\frac{\mathbf{v}L}{\boldsymbol{\nu}}$
Número de Schmidt (Sc)	$rac{oldsymbol{ u}}{D_{AB}}$
Número de Lewis (Le)	$rac{lpha}{D_{AB}}$
Número de Sherwood (Sh)	$rac{k_m L}{D_{AB}}$
Número de Stanton mássico (St _M)	$\frac{k_m}{\mathrm{v}}$
Número de Grashof mássico (Gr _M)	$rac{L^3g\Delta ho_A}{ hooldsymbol{ u}^2}$
Número de Peclet mássico (Pe _M)	$rac{{ m v}L}{D_{AB}}$
Fator j mássico (jм)	$\frac{k_m}{\mathrm{v}} S c^{2/3}$
Número de Prandtl (Pr)	$\frac{\mathbf{v}}{\alpha}$
Número de Nusselt (Nu)	$rac{hL}{k_f}$
Número de Stanton calor (St)	$\frac{h}{\rho vc_p}$
Número de Grashof calor (Gr)	$\frac{\beta L^3 g \Delta T}{\boldsymbol{v}^2}$
Fator j calor (jн)	$\frac{h}{\rho v c_p} P r^{2/3}$

2. CORRELAÇÕES PARA A TRANSFERÊNCIA DE MASSA

Placa Plana	Validade
$Sh_{x} = \frac{k_{m}x}{D_{AB}} = 0.332Re_{x}^{1/2}$	$Re_x < 2x10^5$ (laminar) Sc = 1; Sh local
$Sh_x = \frac{k_m x}{D_{AB}} = 0.332 Re_x^{1/2} Sc^{1/3}$	$Re_x < 2x10^5$ (laminar) $Sc \neq 1$; Sh local
$Sh_x = \frac{k_m x}{D_{AB}} = 0.36 Re_x^{1/2} Sc^{1/3}$	$Re_x < 2x10^5$ (laminar) $Sc \neq 1$; Sh local
$Sh_x = \frac{k_m x}{D_{AB}} = 0.0292 Re_x^{4/5} Sc^{1/3}$	$Re_x > 3x10^6$ (turbulento) $Sc \neq 1$; Sh local
$Sh_L = \frac{k_m L}{D_{AB}} = 0,664Re_L^{1/2}Sc^{1/3}$	$Re_L < 2x10^5$ (laminar) 0,6 $< Sc < 2.500$; Sh médio
$Sh_L = \frac{k_m L}{D_{AB}} = 0.0365 Re_L^{0.8} Sc^{1/3}$	$Re_L > 3x10^6$ (turbulento) 0,6 < Sc < 2.500 ; Sh médio
Esfera Única	Validade
$Sh = \frac{k_L D}{D_{AB}} = \left(4.0 + 1.21 P e_M^{2/3}\right)^{1/2}$	$Pe_{M} < 10.000$ $Re \ge 0.4Gr^{1/2}Sc^{-1/6}$ líquidos
$Sh = \frac{k_L D}{D_{AB}} = 1,01Pe_M^{1/3}$	$Pe_{M} > 10.000$ $Re \ge 0.4Gr^{1/2}Sc^{-1/6}$ líquidos
$Sh = \frac{k_m D}{D_{AB}} = 2,0 + 0,552Re^{1/2}Sc^{1/3}$	2 < Re < 800 $Re \ge 0.4Gr^{1/2}Sc^{-1/6}$ 0.6 < Sc < 2.7; gases
$Sh = 2.0 + 0.569(GrSc)^{0.25} + 0.347(ReSc^{1/2})^{0.62}$	$2 < Re < 3x10^4$ $0.6 < Sc < 3.200$ $GrSc \le 10^8 \text{ ; convecção natural}$
$Sh = 2.0 + 0.0254(GrSc)^{1/3}Sc^{0.244} + 0.347(ReSc^{1/2})^{0.62}$	$2 < Re < 3x10^4$ 0.6 < Sc < 3.200 $GrSc \ge 10^8$; convecção natural
Bolhas Esféricas	Validade
$Sh = \frac{k_L d_b}{D_{AB}} = 0.42Gr^{1/3}Sc^{1/2}$	$d_b < 2,5 \ mm$ convecção natural
$Sh = \frac{k_L d_b}{D_{AB}} = 0.42Gr^{1/3}Sc^{1/2}$	$d_b \geq 2,5 \ mm$ convecção natural

Cilindro Único	Validade
$\frac{k_m Sc^{0,56}}{v} = 0.281 Re^{-0.4}$	400 < Re < 25.000 0,6 < Sc < 2,6
Escoamento através de Tubos	Validade
$\frac{k_m D p_{B,ln}}{D_{AB} P} = 0.023 R e^{0.83} S c^{0.44}$	2000 < Re < 35.000 0.6 < Sc < 2.5; gases
$Sh = \frac{k_L D}{D_{AB}} = 0.023 Re^{0.83} Sc^{1/3}$	2000 < Re < 35.000 1000 < Sc < 2.260; líquidos
$Sh = 1,86 \left(\frac{D}{L} ReSc\right)^{1/3}$	Re < 2.000 $ReSc(D/L) > 10$
Leitos Fixos e Fluidizados	Validade
$j_M = 1,17Re^{-0,415}$	10 < Re < 2.500 leito fixo ; gás
$\varepsilon j_M = 1,09Re^{-0,67}$	0.0016 < Re < 55 165 < Sc < 70.600 $0.35 < \varepsilon < 0.75$; leito fixo; líquido
$\varepsilon j_M = 0.25 Re^{-0.31}$	55 < Re < 1.500 165 < Sc < 10.690 $0,30 < \varepsilon < 0,50$; leito fixo; líquido
0.000 =0.575	90 < Re < 4.000
$\varepsilon j_M = 2,06Re^{-0,575}$	$0.30 < \varepsilon < 0.50$; leito fixo; gás

Referência bibliográfica:

WELTY, J. R.; RORRER, G. L.; FOSTER, D. G. Fundamentos de Transferência de Momento, de Calor e de Massa. 6ª ed. Rio de Janeiro: LTC, 2017.