

University of Engineering & Management, Kolkata

Term - I Examination, August - September, 2021

Programme Name: B.Tech in Computer Science Semester: 3rd

Course Name: Mathematics-III

Course Code: BSC301

Full Marks: 100 Time: 3 hours

GROUP A (20 Marks)

Answer the following questions. Each question is of 2 marks.

Question No.		Questions				
1.	i)	If X is a constant random variable then find Var(X).	2			
	ii)	Find the value of $E(X^2)$ when $X \sim N(0,1)$.	2			
	iii)	Find the mean of the binomial distribution $B(5,2/5)$.	2			
	iv)	Find the value of k such that the following function is a p.d.f. $f(x) = \begin{cases} k, -2 < x < 2 \\ 0, otherwise \end{cases}$	2			
	v)	If $Y=3+5X$ then find $var(Y)$ where $var(X)=2$.	2			
	vi)	Find the regression line y on x where mean of x is 62.33, mean of y is 65.32, $s_x^2 = 303.30$ $s_y^2 = 186.83$, $Cov(x, y) = 174.57$.	2			
	vii)	Obtain \bar{x} and \bar{y} from the two regression lines $3x - 5y = 1$ 4x - 7y = 3.	2			
	viii)	Find mean of the function $f(x) = \begin{cases} \frac{1}{4}e^{-\frac{x}{4}}, & x > 0\\ 0 & \text{elsewhere} \end{cases}$	2			
	ix)	The mean and SD of a binomial distribution are respectively 4 and $\sqrt{8/3}$ Find the values of n and p .	2			
	x)	Find the value of k such that the following function is a p.d.f. $f(x) = \begin{cases} k, -2 < x < 2 \\ 0, \text{ otherwise} \end{cases}$	2			

GROUP B (30 Marks)

Answer the following questions. Each question is of 5 marks.

	В.	OR	
7.	A.	A random variable has a Poisson distribution such that P(1)=P(2), find (i) mean of distribution?	5
	В.	Fit a straight line for the given pairs of (x,y) which are (1,5), (2,7), (3,9), (4,10), (5,11).	5
		OR	
6.	A.	Consider the following set of points: $\{(2, 1), (1, 3), (3, 7)\}$. Find the least square regression line for the given data points.	5
	В.	There are 500 misprints in a book of 500 pages. What is the probability of the given page will contain at most 3 misprints.	5
		OR	
5.	A.	A and B play a game in which their chances of winning are in the ratio 3:2. Find A's chance of winning at least three games out of the five games played.	5
4.		If the random variable X has the following p.d.f, find P(X<1) and P($ X-1 \ge \frac{1}{2}$) $f(x) = \frac{1}{4}, -2 \le x \le 2$	5
		$f(x) = \frac{3x(2-x)}{4} \qquad 0 < x < 2.$ If the gradient point is a full principle of the field P(Y, t) and	-
3.		The probability density of a continuous distribution is given by the following pdf. Compute mean and variance?	5
2.		If a continuous random variable X has exponential distribution with parameter, μ then show that the variance is $\frac{1}{\mu^2}$	5

GROUP C (50 Marks)

5

Answer the following questions. Each question is of 10 marks.

8.	The probability density function of a random variable X is	
	$f(x) = k(x-1)(x-2)$ $1 \le x \le 2$	
	(i) Determine the value of k	
	(ii) the distribution function $F(x)$	10
	(iii) $\operatorname{Fin}\mathcal{O}(\frac{5}{4} \le x \le \frac{3}{2})$	

Define Poisson distribution and find out the expression for mean and variance of it.

- **9.** A random variable X has the following probability distribution
 - a) Find the value of k.
 - b) Find P(X<6).
 - c) Find cumulative distribution function of X.
 - d) The smallest value of 'x' for which $P(X \le x) > \frac{1}{2}$

X	0	1	2	3	4	5	6	7
PX)	0	K	2k	2k	3k	K^2	$2 K^2$	$7K^2+k$

10

10. A. The length of bolts produced by a machine is normally distributed with mean 4 and s.d. 0.5. A bolt is defective if its length does not lie in the interval (3.8, 4.3). Find the percentage of defective bolts produced by the machine. Given that

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.6} e^{\frac{-t^2}{2}} dt$$
 =0.7257 and

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.4} e^{\frac{-t^2}{2}} dt = 0.6554$$

OR

- **B.** The mean weight of 500 students at a certain college is 150 lbs and the standard deviation is 15lbs. Assuming that the weight is normally distributed find how many students weight
 - (i) between 120 and 155 lbs
 - (ii)more than 155 lbs

Given that

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{2} e^{\frac{-t^{2}}{2}} dt = 0.9772, \quad \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.33} e^{\frac{-t^{2}}{2}} dt = 0.6293$$

- 11. A. The values of x and their corresponding values of y are shown in the table below
 - a) Find the least square regression line y = a x + b.
 - b) Estimate the value of y when x = 12.

X	2	7	9	8	2
V	3	1	10	7	9

OR

B.

In a study of the relationship between expenditure (X) and annual sales volume (Y), a sample of 10 firms yielded the coefficient of correlation r = 0.93. Can we conclude on the basis of this data that X and Y are linearly related?

12. A. 91. The sales of a company (in million dollars) for each year are shown in the table below. Find the least square regression line y = a x + b.

x (year)	2005	2006	2007	2008	2009
y (sales)	12	19	29	37	45

OR

B. By the method of least square, find the straight line that best fits the following data:

X	1	2	3	4	5
Y	14	27	40	55	68
