Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Отчет по проектной работе

по теме "Движение вращающегося мяча в воздухе с учетом эффекта Магнуса"

по дисциплине "Механика"

Выполнили: студенты

Нечаева А.А. Попов В.А.

Преподаватель: Смирнов Александр Витальевич

1 Построение математической модели

1.1 Эффект Магнуса

Эффект Магнуса - физическое явление, возникающее при обтекании вращающегося тела потоком жидкости или газа. Возникающая сила - результат воздействия таких физических явлений, как эффект Бернулли и образования пограничного слоя в среде вокруг обтекаемого объекта, - действует на тело перпендикулярно направлению потока. Эффект описан немецким физиком Генрихом Магнусом в 1853 году.

Вращающийся объект создает вокруг себя вихревое движение, с одной стороны направление вихря совпадает с направлением обтекающего потока, с другой - противоположно, следовательно, скорость движения среды с одной стороны повышается, с другой - уменьшается. Согласно уравнению Бернулл: чем меньше скорость, тем выше давление. Возникающая разность давлений вызывает возникновение поперечной силы, вектор которой направлен от стороны, где направления вращения и потока противоположны, стороне с сонаправленными. Явление иллюстрирует рисунок 1.

Рис. 1. Иллюстрация эффекта Магнуса

1.2 Вывод уравнений и формул

Обозначим начальные условия полета мяча:

- 1. Мяч абсолютно твёрдое тело, то есть будем считать, что взаимное расположение точек мяча не меняется с течением времени, деформацией во время полета пренебрежем
- 2. Известные параметры мяча: радиус (\mathbfilde{R}) и масса (\mathbfilde{m})
- 3. Также заданы начальные значения угловой $(\omega_{\mathbf{0}})$ и линейной скоростей $(\mathbf{v_0})$
- 4. Задана некоторая плотность газа среды, в которой происходит полет

мяча (ρ)

Запишем закон Ньютона в общем виде

$$\vec{F} = m \cdot \vec{a} \tag{1}$$

Далее распишем силы, действующие на мяч в процессе полета

$$\vec{F}_{\text{тяжести}} + \vec{F}_{\text{Магнуса}} = m \cdot \vec{a} \tag{2}$$

Пусть шар находится в потоке набегающего не него идеального газа. Скорость потока на бесконечности \vec{u}_{∞} . Чтобы сымитировать вращение шара, введем циркуляцию скорости Γ вокруг него. Исходя из закона Бернулли, можно получить, что полная сила, действующая в таком случае на шар, равна:

$$\vec{R} = -\rho \vec{\Gamma} \times \vec{u}_{\infty} \,, \tag{3}$$

где $\vec{u}_{\infty} = -\vec{v}\;(v$ – линейная скорость мяча); Γ вычислим как

$$\Gamma = \oint_{L} v_{\tau} dS \,, \tag{4}$$

 $v_{ au}$ – проекция скорости на касательную к этой кривой, dS – элемент длины кривой. В случае шара запишем Запишем формулу для вычисления силы Магнуса в общем виде:

$$\Gamma = \int_{-R}^{R} 2\pi\omega (R^2 - x^2) dx = 2\pi\omega \left(R^2 x - \frac{x^3}{3} \right) \Big|_{-R}^{R} =$$

$$= 2\pi\omega \left(R^3 - \frac{R^3}{3} + R^3 - \frac{R^3}{3} \right) = 4\pi\omega \frac{2R^3}{3} = \frac{8\pi\omega}{3} R^3, \quad (5)$$

где R – радиус шара, ω – заданная угловая скорость вращения мяча. Будем считать, что вектор угловой скорости задан вдоль 1 оси – оси Z. Тогда запишем формулу для вычисления силы Магнуса:

$$\vec{F}_{\text{Marhyca}} = -\rho \vec{\Gamma} \times \vec{u}_{\infty} = -\rho \frac{8\pi \vec{\omega}}{3} R^3 \times -\vec{v} = \frac{8\pi}{3} \rho R^3 \vec{\omega} \times \vec{v}$$
 (6)

В общем случае будем рассматривать движение мяча в Декартовой системе координат, в трехмерном пространстве, тогда проекции на оси X,

Y и Z соотвественно

$$\begin{cases}
m\ddot{x} = \frac{8\pi}{3}\rho R^3 \left(\vec{\omega} \times \vec{v}\right)_x, \\
m\ddot{y} = \frac{8\pi}{3}\rho R^3 \left(\vec{\omega} \times \vec{v}\right)_y, \\
\ddot{z} = g
\end{cases} \tag{7}$$

Перейдем к уравнениям для угловой скорости вращения мяча ω , в частности, найдем выражения для разложения $(\vec{\omega} \times \vec{v})$ по единичным векторам, задающим оси координат, \vec{i} , \vec{j} и \vec{k}

$$(\vec{\omega} \times \vec{v}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \omega_x & \omega_y & \omega_z \\ v_x & v_y & v_z \end{vmatrix} = \vec{i} \begin{vmatrix} \omega_y & \omega_z \\ v_y & v_z \end{vmatrix} - \vec{j} \begin{vmatrix} \omega_x & \omega_z \\ v_x & v_z \end{vmatrix} + \vec{k} \begin{vmatrix} \omega_x & \omega_y \\ v_x & v_y \end{vmatrix} =$$

$$= \vec{i} (\omega_y v_z - \omega_z v_y) + \vec{j} (\omega_z v_x - \omega_x v_z) + \vec{k} (\omega_x v_y - \omega_y v_x) \rightarrow$$

$$\rightarrow (\vec{\omega} \times \vec{v})_x = \omega_y v_z - \omega_z v_y = -\omega_z v_y$$

$$(\vec{\omega} \times \vec{v})_y = \omega_z v_x - \omega_x v_z = \omega_z v_x$$

$$(\vec{\omega} \times \vec{v})_z = \omega_x v_y - \omega_y v_x = 0$$
(8)

Перейдем к дифференциальному виду уравнений проекций движения мяча на оси координат:

$$\begin{cases}
m\ddot{x} = -\frac{8\pi}{3}\rho R^3 \omega_z v_y, \\
m\ddot{y} = \frac{8\pi}{3}\rho R^3 \omega_z v_x, \\
\ddot{z} = g
\end{cases} \tag{9}$$

Запишем также начальные условия задачи, координаты мяча – положение его центра масс во времени

$$\begin{cases} (x(0), y(0), z(0)) = (0, 0, 0) \\ v_x(0) = v_{0x} \\ v_y(0) = v_{0y} \\ v_z(0) = v_{0z} \\ \omega_x(0) = 0 \\ \omega_y(0) = 0 \\ \omega_z(0) = \omega_0 \end{cases}$$

$$(10)$$

1.3 Решение дифференциальных уравнений

Для решения соотвествующей системы дифференциальных уравнений был применен *метод Эйлера* численного решения дифференциальных уравнений. Описание метода:

Пусть дана задача Коши для уравнения первого порядка:

$$\frac{dy}{dx} = f(x, y), \ y|_{x=x_0} = y_0,$$

где функция f определена на некоторой области $D \in R^2$. Решение ищется на полуинтервале $(x_0,b]$. На этом промежутке введем узлы $x_0 < x_1 < \ldots < x_n \leq b$. Приближенное решение в узлах x_i , которое обозначим через y_i , определяется по формуле

$$y_i = y_{i-1} + (x_i - x_{i-1})f(x_{i-1}, y_{i-1}), i = 1, 2, 3, ..., n.$$

Эти формулы непосредственно обобщаются на случай систем обыкновенных дифференциальных уравнений.

В данной работе для нахождения численного решения системы линейных однородных уравнений второго порядка метод Эйлера был применен последовательно: сначала для вычисления первой производной, а затем на основе полученного результата – второй производной.

1.4 Численный эксперимент. Огибание препятствия заданной ширины

Молуль силы, действующей на мяч, постоянен, а ее вектор перпендикулярен скорости мяча в любой момент времени и лежит в плоскости XY, следовательно, траектория мяча представляет собой фрагмент окружности в плоскости XY.

Запишем центростремительное ускорение:

$$a_n = \frac{F}{m} = \frac{8\pi}{3m}\rho\omega vR^3 = \frac{v^2}{r},\tag{11}$$

где r – радиус кривизны дуги, по которой движется мяч. Тогда

$$\frac{v}{\omega} = \frac{8\pi}{3m} \rho r R^3 \to \omega(v) = \frac{v}{k}, \ k = \frac{8\pi}{3m} \rho r R^3 \tag{12}$$

Пусть линейная скорость задана вдоль оси X, а препятствие представляет

Рис. 2. Геометрическая модель

собой бесконечный цилиндр.

На основе геометрической модели (рисунок 2) составим выражения:

$$|Y_0| - R_{\pi p} = O'B \tag{13}$$

$$O'B = \sqrt{(Y_0 - Y_{\rm np})^2 + X_{\rm np}^2}$$
 (14)

Откуда выразим Y_0 – радиус траектории мяча при касании препятствия:

$$Y_0 = \frac{X_{\rm np}^2 + Y_{\rm np}^2 - R_{\rm np}^2}{2\left(Y_{\rm np} - R_{\rm np}\right)\frac{\sqrt{Y_{\rm np}^2}}{Y_{\rm np}}}$$
(15)

Пусть h — коэффициент отношения расстояния от центра координат до пересечения прямой, на которой лежит центр координат и центр препятствия, и траектории мяча к расстоянию от начала координат до центра препятствия.

$$OO' = \sqrt{X_{\rm np}^2 + Y_{\rm np}^2} \tag{16}$$

$$BC^{2} = (X_{\text{HD}}h)^{2} + (Y_{0} - Y_{\text{HD}}h)^{2}$$
(17)

$$BC^2 = Y_0^2 (18)$$

$$h = \frac{2Y_0 Y_{\rm np}}{X_{\rm np}^2 + Y_{\rm np}^2} \tag{19}$$

$$\phi = 2\alpha,\tag{20}$$

где $\phi = \angle OBC$, $\alpha = \angle OBK$

$$\sin \alpha = \frac{OO'h}{2Y_0} \tag{21}$$

$$\phi = 2\arcsin\alpha\tag{22}$$

Пусть S — длина траектории до пересечения объектом прямой, соединяющей центр координат и центр препятствия.

$$S = \phi Y_0 = Y_0 2 \arcsin \alpha = Y_0 2 \arcsin \frac{\sqrt{X_{\pi p}^2 + Y_{\pi p}^2} h}{2Y_0}$$
 (23)

Мяч находится в поле тяжести, по оси Z ускорение равно g, соотвественно, время полета $t=2\frac{v_z}{q},\,v_z$ – начальная скорость по вертикали.

Найдем угловую скорость, для которой выполняется нужное соотношение с минимальной линейной скоростью мяча, при которой он сможет преодолеть необходимое расстояние.

2 Моделирование процесса

2.1 Общие сведения

Исходные данные программы:

- 1. Масса мяча (по футбольным стандартам) $\mathbf{m} = \mathbf{0.430} \; \mathbf{\kappa r}$
- 2. Радиус мяча (при длине окружности около 70 см) ${f R}={f 0.11}$ м
- 3. Плотность воздуха (при $T=15C^{
 m o}$) $\rho=1.225 {\rm KF \over M^3}$
- 4. Координаты начальной точки запуска мяча (0,0,0)

Данные вводимые пользователем:

- 1. Проекции линейной скорости на оси x, y, z, ограничение: $v_{z_0} > 0$
- 2. Значение угловой скорости ω , примечание: по умолчанию вектор угловой скорости направлен вдось оси z
- 3*. Задание ширины препятствия

Выходные данные:

- 1. Для первой части эксперимента с заданными линейной и угловой скоростями выводится графическое представление полета на плоскости xy
- 2. Для эксперимента с заданным препятствием выводятся подходящие значения угловой и линейных скоростей, которые необходимо задать, чтобы обойти препятствие

2.2 Результаты работы программы

Программа написана на языке $Python\ 3$ с использованием библиотеки Matplotlib.

Ниже представлены графики различных проекций траектории полета футбольного мяча при разных заданных значениях угловой скорости ω и одинаковых значениях линейной скорости.

Для $\omega = 30, 10, 0$ рад/с:

Puc. 3. $\Pi pu \ v_x = 10 \ \text{M/c}, \ v_y = 5 \ \text{M/c}, \ v_z = 10 \ \text{M/c}, \ \omega = 30 \ pad/c \ np. \ XY$

Puc. 4. $\Pi pu \ v_x = 10 \ \text{M/c}, \ v_y = 5 \ \text{M/c}, \ v_z = 10 \ \text{M/c}, \ \omega = 30 \ \text{pad/c} \ \text{np. XZ}$

Puc. 5. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=30$ рад/c пр. YZ

Puc. 6. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=30$ рад/с пр. XYZ

Puc. 7. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=10$ рад/c пр. XY

Puc. 8. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=10$ рад/c пр. XZ

Puc. 9. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=10$ рад/c пр. YZ

Puc. 10. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=10$ рад/с пр. XYZ

Puc. 11. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=0$ рад/c пр. XY

Puc. 12. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=0$ рад/с пр. XZ

Puc. 13. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=0$ рад/с пр. YZ

Puc. 14. При $v_x=10$ м/c, $v_y=5$ м/c, $v_z=10$ м/c, $\omega=0$ рад/с пр. XYZ

Рис. 15. Пример обхода препятствия