

DATE: 12/12/2021

SENECA COLLEGE OF APPLIED ARTS AND TECHNOLOGY SENECA BUSINESS

BAN 100 - Statistics for Analytics

Other Version NA

PROFESSOR(S): Samaneh Gholam	ni 	
Allowable Examination Aids: (chec	k applicable boxes)	
☑ Calculators (non-programmable only)☑ Formula Sheets (attached)☑ Dictionary	☑ Math Tables (normal distribution table)☑ Textbooks☑ Notes	☑ Periodic Tables☑ Probability Tables☑ Other
Answers to be completed on:		
☐ Exam Booklet	☐ GradeMaster Card	☐ Exam Paper
TOTAL MARKS: 100	WEIGHTED VALUE: 25	
INSTRUCTIONS:		
"2.3 Should there be a suspected violation of the integrity sanctions will be applied according to the sanctions. 2.4 Should a suspected violation of this p	vironment. The AI policy is always in effect. Note Section this policy (e.gcheating, falsification, impersonation of esseverity of the offence committed. Refer to Appendix policy be a result of, or in combination with, a suspected ted Seneca policy, the matter will be investigated and additional combination.	or plagiarism), the academic B for the academic integrity violation of Seneca's Student
TO	BE COMPLETED BY STUDENT	
SUBJECT SECTION NUMBER (e.g. QNM22		
STUDENT NAME: SUKANYA MUKHERJEE	· •	
STUDENT NUMBER: 128041217	i el	
STUDENT SIGNATURE:		
APPROVED BY: Cristina Italia, Interim Chai School of Management an		
DATE: 12/12/2021		

TIME ALLOWED: Two weeks

ASSIGNMENT 6: LOGISTIC REGRESSION

DUE DATE IS DECEMBER 12, 2021

IT IS AN INDIVIDUAL ASSIGNMENT, WORTH 25% OF YOUR OVERALL GRADE. DOWNLOAD THE ASSIGNMENT QUESTIONS AND THE DATASETS FORM THE ASSIGNMENT SECTION ON BB.

Problem 1 (10 marks) File: Customer. xlsx

Consumer Reports conducted a taste test on some brands of boxed chocolates. The data show the price per serving, based on the FDA serving size of 1.4 ounces, and the quality rating for the chocolates tested.

```
proc import out = work.customer
datafile = "/home/u59406283/Assignment4PA/Customer.xlsx"
dbms = xlsx
replace;
getnames = yes;
datarow = 2 ; run;
proc print data= work.customer; format price dollar10.2; run;
```

H0: coefficient of all independent variables is zero

H1: at least one of the coefficients is non-zero

Suppose that you would like to determine whether products that cost more rate higher in

quality. use the following binary dependent variable:

y= 1 if the quality rating is very good or excellent and 0 if good or fair

```
data work.customer;
   set work.customer;
   if rating = "Very Good" or rating = "Excellent" then y = 1;
   else if rating = "Good" or rating = "Fair" then y = 0; run;
```


a. Write the logistic regression equation relating x = price per serving to y. (3 marks)

```
proc reg data = work.customer;
model y = Price; run;
```

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read	19
Number of Observations Used	19

	Α	nalysis of \	/ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1.78708	1.78708	10.68	0.0045
Error	17	2.84450	0.16732		
Corrected Total	18	4.63158			

Root MSE	0.40905	R-Square	0.3858
Dependent Mean	0.57895	Adj R-Sq	0.3497
Coeff Var	70.65444		

		Pa	rameter Estin	nates		
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	0.07589	0.18028	0.42	0.6791
Price	Price	1	0.16403	0.05019	3.27	0.0045

b. Use SAS to compute the estimated logit.(2 mark)

```
Proc logistic data=work.customer;
model y = Price; run;
```

Model Informa	ation
Data Set	WORK.CUSTOMER
Response Variable	у
Number of Response Levels	2
Model	binary logit
Optimization Technique	Fisher's scoring

Number of Observations Read 19 Number of Observations Used 19

Response Profile					
Ordered Value	у	Total Frequency			
1	0	8			
2	1	11			

Probability modeled is y=0.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

	Model Fit	Statistics
Criterion	Intercept Only	Intercept and Covariates
AIC	27.864	20.399
sc	28.808	22.288
-2 Log L	25.864	16.399

Concordant is 86.4 = accurate and good fit

Price (pvalue = 0.02) < alpha (0.05) = at least one of the coefficients is non-zero.

c. Use the estimated logit computed in part (b) to compute an estimate of the probability a chocolate that has a price per serving of \$4.00 will have a quality rating of very good or excellent. (3 marks)

We have no exact observation for \$4.00 and y=1 (very good or excellent),

As seen in the below output:

d. What is the estimate of the odds ratio? What is its interpretation? (2 marks)

```
proc logistic data=work.customer;
class y (ref='1') / param=ref;
model y (event='1') = Price;
```

Model Informa	ation
Data Set	WORK.CUSTOMER
Response Variable	у
Number of Response Levels	2
Model	binary logit
Optimization Technique	Fisher's scoring

Number of Observations Read 19

Number of Observations Used 19

Resp	ons	e Profile
Ordered Value	у	Total Frequency
1	0	8
2	1	11

Probability modeled is y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

	Model Fit	Statistics
Criterion	Intercept Only	Intercept and Covariates
AIC	27.864	20.399
sc	28.808	22.288
-2 Log L	25.864	16.399

		Test	ing Global	Null Hy	/poth	esis: l	BETA=0		
	Test			Chi-Sq	hi-Square DF		Pr > Ch	iSq	
	Likel	ikelihood Ratio		9.4	1648	1	0.0	021	
	Scor	re		7.3	3311	1	0.0	068	3
	Wald	d		4.9	924	1	0.0	255	
	Α	naly	sis of Max	imum L	ikelil	nood E	stimates	;	
Paramet	er	DF	Estimate	Stand E	dard rror	Chi-	Wald Square	Pr>	ChiSq
Intercept	t	1	-2.8050	1.4	4316		3.8387		0.0501
Price		1	1.1492	0.8	5143		4.9924		0.0255
			s Ratio Estimates 95% Wald						
		ffect rice	Point E				fidence Limits		
	FI	rice		3.100	3.156 1.152		8.647		
Associa	ation	of P	redicted F	robabil	ities	and O	bserved	Resp	onses
Percent	t Con	ncord	lant	86	6.4	Some	rs' D		0.727
Percent	t Disc	cord	ant	13	3.6	Gamr	na		0.727
Percent	t Tiec	d		(0.0	Tau-a			0.374
									0.864

In the odds ratio estimates: odds ratio is greater than 1 (3.156) when y=1 means that there is greater odd of cost being high when rating is high than the cost being low when rating is high.

Problem 2 (11 marks) File: Titanic. xlsx

The data set contains personal information for 891 passengers, including an indicator variable for their survival, and the objective is to predict survival, or probability thereof, from the other characteristics. The survival data for all passengers is stored in the binary variable called Survived. The predictors include Sex (modeled with male/female dummy variables), Age (and additional dummy variables for ranges), Class (first, second, or third, modeled with dummy variables), SiblingSpouse (number of siblings and spouses accompanying the passenger, and corresponding dummy variables), ParentChild (number of parents and children accompanying the passenger, and corresponding dummy variables), and Embarked (ports of Cherbourg, QueensTown, and Southampton, modeled by dummy variables)

```
proc import out = work.titanic
datafile = "/home/u59406283/Assignment4PA/titanic.csv"
dbms = csv
replace;
getnames = yes;
datarow = 2 ; run;
proc print data= work.titanic; run;
```

a. Write the logistic regression equation relating Age and Survived.(2 mark)

```
proc logistic data=work.titanic;
class Survived (ref='1') / param=ref;
model Survived (event='1') = Age ; run;
```

Model Information					
Data Set WORK.TITANIO					
Response Variable	Survived				
Number of Response Levels 2					
Model	binary logit				
Optimization Technique	Fisher's scoring				

Number of Observations Read	891
Number of Observations Used	714

Response Profile					
Ordered Value	Total Frequency				
1	0	424			
2	1	290			

Probability modeled is Survived='1'.

Note: 177 observations were deleted due to missing values for the response or explanatory variables.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	966.516	964.228			
sc	971.087	973.370			
-2 Log L	964.516	960.228			

Testing Global Null Hypothesis: BETA=0										
	Tes	Test			ni-Squ	are	DF	Pr > ChiS		
	Lik	elihoo	d Ratio		4.28	376	1	0.0384		
	Sco	Score			4.25	577	1	0.0391		
	Wal	ld			4.23	310	1	0.0	397	
		Analy	sis of Ma	xim	um Lil	kelih	ood E	stimates	;	
Paramet	er	DF	Estimat		Stand Er	ard ror	Chi-	Wald Square	Pr>	ChiSq
Intercep	t	1	-0.056	7	7 0.1736		0.1068			0.7438
Age		1	-0.011	0	0.00533		4.2310			0.0397
			Odd	ls R	atio E	stima	ates			
	E	Effect	Point E	Estir	nate	Coi		Wald ice Limit	5	
	P	Age		0	.989	C	.979	0.99	9	
Associ	atio	n of P	redicted	Pro	babilit	ies a	nd O	served	Resp	onses
Associ Percen				Pro		i es a		oserved l ners' D	Resp	0.062
	t Co	ncor	dant	Pro	5			ers' D	Resp	
Percen	t Co	ncord	dant	Prol	5	2.1	Som	ners' D nma	Resp	0.062

b. For the Titanic data, use SAS to compute the estimated logistic regression equation. (2 marks)

```
proc logistic data=work.titanic;
class Survived (ref='1')
Sex (ref='female') / param=ref;
model Survived (event='1') = Class Sex Age SiblingSpouse ParentChild; run;
```

Model Information					
Data Set	WORK.TITANIC				
Response Variable	Survived				
Number of Response Levels	2				
Model	binary logit				
Optimization Technique	Fisher's scoring				

Number of Observations Read	891
Number of Observations Used	714

Response Profile						
Ordered Value	Total Frequency					
1	0	424				
2	1	290				

Probability modeled is Survived='1'.

Note: 177 observations were deleted due to missing values for the response or explanatory variables.

Class Level Information					
Class Value Design Variables					
Sex	female	0			
	male	1			

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	966.516	648.622			
sc	971.087	676.048			
-2 Log L	964.516	636.622			

Testing Global Null Hypothesis: BETA=0						
Test Chi-Square DF Pr > ChiS						
Likelihood Ratio	327.8937	5	<.0001			
Score	285.5391	5	<.0001			
Wald	192.9260	5	<.0001			

Type 3 Analysis of Effects							
Effect	DF	Wald Chi-Square	Pr > ChiSq				
Class	1	87.2741	<.0001				
Sex	1	144.4986	<.0001				
Age	1	29.6795	<.0001				
SiblingSpouse	1	8.3073	0.0039				
ParentChild	1	0.0964	0.7561				

		Analy	sis of	Maxii	mum L	ikelih	ood E	stimate	es		
Parame	eter		DF	Esti	mate	Stand	dard rror	Chi-S	Wald quare	٠	r > ChiSc
Interce	pt		1	5.	6196	0.8	5467	10	5.6584		<.0001
Class			1	-1.	3160	0.1	1409	8	7.2741		<.0001
Sex		male	1	-2.	6374	0.2	2194	14	4.4986	3	<.0001
Age			1	-0.	0445	0.00	0816	29	9.6795	5	<.0001
Sibling	Spouse		1	-0.	3646	0.1	1265		8.3073	3	0.0039
Parent(Child		1	-0.	0371	0.	1196		0.0964	1	0.7561
	Sex n	Class Sex male vs female Age		•		0.072	-	0.047		110 972	
	Siblin	gSpous	e			0.694		0.542	0.	890	
	Paren	tChild				0.964		0.762	1.	218	
	A : - 4	: 6 D		I D-	-11-11	1141			. D		
	Associat			ea Pr	opabli	85.8		ers' D	ı Kesp	0.7	
	Percent I					14.0	Gam			0.7	
	Percent		unt			0.1	Tau-			0.7	
	Cicent	cu				2960	iau-	u		0.85	

Concordant is 85.8 = accurate and good fit

Class (pvalue < 0.0001) < alpha (0.05) = at least one of the coefficients is non-zero.

Sex (pvalue < 0.0001) < alpha (0.05) = at least one of the coefficients is non-zero.

Age (pvalue < 0.0001) < alpha (0.05) = at least one of the coefficients is non-zero.

Sibling Spouse (pvalue = 0.0039) < alpha (0.05) = at least one of the coefficients is non-zero.

ParentChild (pvalue = 0.7561) > alpha (0.05) = coefficient of independent variable is zero

c. Estimate the probability of surviving the passenger with the average Age 30. (2 marks)

```
data work.titanic;
    set work.titanic;
    if missing(Age) then Age_Group = ' ';
    else if Age lt 25 then Age_Group = '1:< 25';
    else if Age le 35 then Age_Group = '2:25-35';
    else Age_Group = '3:35+'; run;
proc logistic data=work.titanic;
class Age_Group (ref='2')
Survived (ref='1') / param=ref;
model Survived (event='1') = Age_Group; run;</pre>
```

Model Informati	on
Data Set	WORK.TITANIC
Response Variable	Survived
Number of Response Levels	2
Model	binary logit
Optimization Technique	Fisher's scoring

Number of Observations Read	891
Number of Observations Used	714

Response Profile							
Ordered Value	Survived	Total Frequency					
1	0	424					
2	1	290					

Probability modeled is Survived='1'.

Note: 177 observations were deleted due to missing values for the response or explanatory variables.

Class Level Information								
Class Value Design Variab								
Age_Group	1	1	0					
	2	0	0					
	3	0	1					

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Association of Predicted Probabilities and Observed Responses							
Percent Concordant	35.0	Somers' D	0.039				
Percent Discordant	31.2	Gamma	0.059				
Percent Tied	33.8	Tau-a	0.019				
Pairs	122960	С	0.519				

Probability (Survived =1, Age_Group=2) = e(-0.3789)/1 + e(-0.3789) = 0.68/1.68 = 0.40

d. Suppose we want to check who have a 0.50 or higher probability of surviving. What is the average age to achieve this level of probability? (3 marks)

Survival = 0 or 1 in the dataset.

e. What is the estimated odds ratio? What is the interpretation? (2 marks)

```
proc logistic data=work.titanic;
class Age_Group (ref='3')
Survived (ref='1') / param=ref;
model Survived (event='1') = Age_Group; run;
```


		Model Fit Statistics									
	Cri	iterio	n	Interce	pt On	nly Inter	ept	and Cov	/ariat	es	
	Ald	2			966.5	16	969.624			24	
	SC				971.087			983.337		37	
	-2	Log I	-		964.5	64.516 963.624		24			
									_		
		1	estir	ng Glol	bal Nu	ull Hypoth	sis:	BETA=	0		
	1	est			Ch	i-Square	DF	Pr > 0	ChiSo	1	
	L	ikeli	hood	d Ratio		0.8918	2	0	.640	3	
	5	Score				0.8902	2	0	.640	3	
	V	Vald				0.8896	2	0).641()	
				Туре	3 Analysis of Effects						
		Effect D		Wald DF Chi-Square		-					
		Ag	e_Gr	roup	2	0.889	6	0.64	410		
		An	alys	is of M	laxim	um Likelih	ood	Estimat	es		
						Standar		W Chi-Squ	ald	Pr>	ChiSq
Parame	ter		DF	Esti	mate	Erro	r		are		
Parame Intercep			DF 1		mate 4790			11.7			0.0006
	ot	1		-0.		0.139	7	11.7			
Interce	ot	_	1	-0. 0.	4790	0.139 0.185	7	11.7	596		0.0006 0.3456 0.6097
Interce	ot	_	1	-0. 0.	4790 1745	0.139 0.185	7	11.7	596 895		0.3456
Interce	ot	_	1	-0. 0.	4790 1745 1001	0.139 0.185	7 0 1	11.73 0.83 0.24	596 895 607		0.3456
Interce	ot	2	1	-0. 0.	4790 1745 1001	0.139 0.185 0.196	7 0 1	11.7: 0.8: 0.20	596 895 607 Wald		0.3456
Interce	ot oup oup	2 ct	1 1 1	-0. 0.	4790 1745 1001	0.139 0.185 0.196	7 0 1	11.73 0.83 0.24	596 895 607 Wald ce Li		

Association of Predicted Probabilities and Observed Responses							
Percent Concordant	35.0	Somers' D	0.039				
Percent Discordant	31.2	Gamma	0.059				
Percent Tied	33.8	Tau-a	0.019				
Pairs	122960	С	0.519				

Odds ratio tells us that:

Age_Group (2: 25-35) and Age_Group (1:<25) have similar approx. 1.1 more odds of survival than Age_Group (3: 35+)

Problem 3 (4 marks): Capital punishment

I ran two models between race and capital punishment. However, I recoded race two different ways:

Model 1: white coded as 0, blacks coded as 1

Model 2: blacks coded as 0, whites coded as 1

This gave me the following results:

	Model 1	Model 2	
Coefficient	-1.081	1.081	
Odds for whites	2.472	2.472	
Odds for blacks	0.838	0.838	
Odds ratio	0.34	2.95	

a. Why the odds ratios are different? Explain it (2 marks)

Model 1 (Coefficient) = -1.081 so the exp (-1.081) = 0.34 (Odds ratio)

Model 2 (Coefficient) = 1.081 so the exp (1.081) = 2.95 (Odds ratio)

b. Show the relation between the odd ratios and coefficient (2 marks)

If a = coefficient then odds ratio = exp (a)

Model 1 (Coefficient) = -1.081 so the exp (-1.081) = 0.34 (Odds ratio)

Model 2 (Coefficient) = 1.081 so the exp (1.081) = 2.95 (Odds ratio)