EE 240C Analog-Digital Interface Integrated Circuits

ADC Architectures

Architectures of Published ADCs (ISSCC and VLSI)

- Evolution due to ADC improvements, technology shift, and focus on low power
- Source data: B. Murmann, "ADC Performance Survey 1997-2019," [Online].
 Available: http://web.stanford.edu/~murmann/adcsurvey.html
- TI arch. combined with core arch. (e.g. SAR and TI SAR); other arch, (10-15%) not incl.

ADC Performance Survey (ISSCC & VLSI 2007-2017)

Data: http://www.stanford.edu/~murmann/adcsurvey.html

Speed Comparison

Serial ADC

- Low complexity
- Very high accuracy achievable (digital volt-meter)
- Slow: conversion time proportional 2^B

Successive Approximation

- Binary search over DAC output
- High accuracy achievable (16+ Bits)
- Moderate speed proportional to B (1+ MHz)

Flash Converter

 Very fast: only 1 clock cycle per conversion

High complexity:
 2^B-1 comparators

High input capacitance

Folding Converter

- Significantly fewer comparators than flash $\sim 2^{B/2+1}$
- Fast
- Nonidealities in folder limit resolution to ~10Bits

Time Interleaved Converter

 Extremely fast: Limited by speed of S/H

 V_{IN} S/H ADC $f_s + T/4$ ADC $f_s + 2T/4$ ADC $f_s + 3T/4$ ADC ADC

 Accuracy limited by mismatch in individual ADCs (timing, offset, gain, ...)

Residue Type ADC

- Quantization error output ("residuum") enables cascading for higher resolution
- Flexibility for stages: flash, oversampling ADC, ...
- Optional S/H enables parallelism (pipelining)
- Fast: one clock per conversion (with S/H), latency

Pipelined ADC

- Approaches speed of flash, but lower complexity
- One clock per conversion, but K clocks latency
- Efficient digital calibration possible
- Versatile: from 16Bits/1MS/s to 14Bits/100MS/s

Algorithmic ADC

- Essentially same as pipeline, but a single stage is used for all partial conversions
- K clocks per conversion

Oversampled ADC

- Hard to comprehend ... "easy" to build
- Input is oversampled (M times output rate)
- Reduces Anti-Aliasing filter requirements and capacitor size
- Accuracy independent of component matching
- Very high resolution achievable (> 20 Bits)

Nyquist ADC Architectures

- Nyquist rate
 - Word-at-a-time
 - Flash ADC
 - Instantaneous comparison with 2^B-1 reference levels
 - Multi-step
 - E.g. pipeline ADCs
 - Coarse conversion, followed by fine conversion of residuum
 - Bit-at-a-time
 - E.g. successive approximation ADCs
 - Conversion via a binary search algorithm
 - Level-at-a-time
 - E.g. single or dual slope ADCs
 - Input is converted by measuring the time it takes to charge/discharge a capacitor from/to input voltage

EE 240C Analog-Digital Interface Integrated Circuits

Flash Converters

High-Speed A/D Converter

- Flash Converter
 - Comparator
 - Binary Encoder
- Interpolation
- Folding

Flash ADC Speed

Flash Converter

- Very fast: only 1 clock cycle per conversion
- High complexity:
 2^B-1 comparators
 for 2^B levels
- R/2 at ends
 → end points ½ LSB
 beyond end transition
- High input capacitance

Comparator

- Clock rate f_s
- Resolution
- Overload Recovery
- Input capacitance (and linearity!)
- Power dissipation
- Common-mode rejection
- Kickback noise
- ...

Flash Converter Errors

• Comparator input:

- Offset
- Nonlinear input capacitance
- Kickback noise (disturbs reference)
- Signal dependent sampling time
- Comparator output:
 - Sparkle codes (...111101000...)
 - Metastability

Ref: Analog Devices application note: "Find Those Elusive ADC Sparkle Codes and Metastable States" http://www.analog.com/en/content/0,2886,760%255F788%255F91218,00.html

Sparkle Codes

Correct Output: 0110 ... 1000

Actual Output: 1110

Sparkle Tolerant Encoder

Protects against a *single* sparkle.

Ref: C. Mangelsdorf et al, "A 400-MHz Flash Converter with Error Correction," JSSC February 1990, pp. 997-1002.

Meta Stability

Binary Output (negative)

Different gates interpret metastable output X differently

Correct Output:0111 or 1000

Actual Output: 1111

Solutions:

- Latches (high power)
- -Gray encoding
- -Adder

Ref: C. Portmann and T. Meng, "Power-Efficient Metastability Error Reduction in CMOS Flash A/D Converters," JSSC August 1996, pp. 1132-40.

Solution 1: Latch Pipelining

- Use additional latches to create extra gain before generating decoder signals
- High power and area inefficient

Solution 2: Gray Encoding

Thermometer Code							Gray			Binary		
T ₁	T_2	T_3	T_4	T_5	T_6	T_7	G_3	G_2	G_1	B_3	B_2	B ₁
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	1
1	1	0	0	0	0	0	0	1	1	0	1	0
1	1	1	0	0	0	0	0	1	0	0	1	1
1	1	1	1	0	0	0	1	1	0	1	0	0
1	1	1	1	1	0	0	1	1	1	1	0	1
1	1	1	1	1	1	0	1	0	1	1	1	0
1	1	1	1	1	1	1	1	0	0	1	1	1

$$G_1 = T_1 \overline{T_3} + T_5 \overline{T_7}$$

$$G_2 = T_2 \overline{T_6}$$

$$G_3 = T_4$$

- Each T_i affects only one G_i
 → Avoids disagreement of interpretation by multiple gates
- Protects also against sparkles
- Follow Gray encoder by (latch and) binary encoder

Solution 3: Adder

- Wallace-tree adder
- F. Kaess et al., "New encoding scheme for high-speed flash ADC's," in Proceedings of 1997 IEEE International Symposium on Circuits and Systems, 1997. ISCAS '97., vol. 1, pp. 5-8 vol.1, June 1997

Redundant Comparators

- Redundant comparators

 [M. P. Flynn, C. Donovan, and L. Sattler, "Digital calibration incorporating redundancy of flash ADCs," IEEE J. Solid-State Circuits, vol. 50, pp. 205-213, May 2003]
- Choose comparators at power-on
- Implementation: select input diff pairs of comparator

Reorder comparators

- [A. Varzaghani et al., "A 10.3–GS/s, 6–Bit flash ADC for 10g ethernet applications," *IEEE J. Solid–State Circu* vol. 48, pp. 3038–3048, Dec. 2013]
- Automatically reorder comparators using adder (therm → binary)
- Monte Carlo simulations

EE 240C Analog-Digital Interface Integrated Circuits

Interpolation

Offset

- Typically want offset of each comparator < ¼ LSB
 - If we budget half of the input referred offset for the latch, the other half for the pre-amp, this means pre-amp offset must be < ½ LSB / sqrt(2)

$$3\sigma_{VOS} = 3\frac{A_{VT}}{\sqrt{WL}} < \frac{1}{4\sqrt{2}}\frac{\text{FSR}}{2^B}$$

E.g. 6-bit flash ADC, FSR=1V:

$$3\frac{A_{VT}}{\sqrt{WL}} < \frac{1}{4\sqrt{2}} \frac{1V}{2^6} = 2.8mV$$

$$WL > \left(\frac{3A_{VT}}{2.8mV}\right)^2 = \left(\frac{3 \cdot 4mV\mu m}{2.8mV}\right)^2 = 18.4\mu m^2 \Rightarrow W > \frac{18.4\mu m^2}{0.18\mu m} = 102\mu m$$
Huge!

Options

- Simply use large devices
 - For each extra bit, need to increase width by 4x, also need to double number of comparators
 - Assuming constant current density, this means each additional bit costs 8x in power!
- Offset cancellation
 - Tends to cost speed
- Offset averaging
- Calibration and/or postprocessing techniques

Interpolation

- Idea
 - Interpolation between preamp outputs
- Reduces number of preamps
 - Reduced input capacitance
 - Reduced area, power dissipation
- Same number of latches
- Important "side-benefit"
 - Decreased sensitivity to preamp offset
 - → improved DNL

Preamp Output

Zero crossings (to be detected by latches) at V_{in} =

$$V_{ref1} = 1 \Delta$$

$$V_{ref2} = 2 \Delta$$

Differential Preamp Output

Zero crossings at
$$V_{in} =$$

$$V_{ref1} = 1 \Delta$$

$$V_{ref12} = 0.5*(1+2) \Delta$$

$$V_{ref2} = 2 \Delta$$

Interpolation in Flash ADC

Half as many reference voltages and preamps

Resistive Interpolation

Resistive Interpolation

- Resistors produce additional levels
- Interpolation factor= ratio of latches / preamps
- With 4 resistors, the "interpolation factor" M=8

Preamp offset distributed over M resistively interpolated voltages:

→ impact on DNL divided by M

Ref: H. Kimura et al, "A 10-b 300-MHz Interpolated-Parallel A/D Converter," JSSC April 1993, pp. 438-446.

DNL Improvement

- Preamp offset distributed over M resistively interpolated voltages:
 - → impact on DNL divided by M
- Latch offset divided by gain of preamp
 - → use "large" preamp gain ...
 - \rightarrow but ...

Preamp Input Range

Linear preamp input ranges must overlap

i.e. range $> \Delta$

Sets upper bound on gain $<< V_{DD} / \Delta$

Example

10 b

4.0W

36,000

 $9.0 \times 4.2 \text{ mm}^2$

1.0 μm bipolar:ft=25GHz

Maximum conversion frequency		300 MHz	
Integral non-linearity		\pm 1.0 LSB	
Differential non-linearity		\pm 0.4 LSB	
SNR/THD	10MHz input	56/-59 dB	
	50MHz input	48/-47 dB	
Input capacitance		8 pF	
Input range		2 V	
Power supply		-5.2V	

Ref: H. Kimura et al, "A 10-b 300-MHz Interpolated-Parallel A/D Convterter," JSSC April 1993, pp. 438-446.

Resolution

Power dissipation

Element count

Technology

Chip size

EE 240C Analog-Digital Interface Integrated Circuits

Folding ADCs Folding & Interpolating ADCs

L29

Folding Converter

- Significantly fewer comparators than flash $\sim 2^{B/2+1}$
- Reduced input capacitance
- Nonidealities in folder limit resolution to ~10Bits

Folding

- Folder maps input to smaller range
- MSB ADC determines which fold input is in
- LSB ADC determines position within fold
- Logic circuit combines LSB and MSB results

Generating Folds

Folding Circuit

CMOS Folder Output

- Accurate only at zerocrossings
- Most folding ADCs do not actually use the folds, but only the zero-crossings!

Folding & Interpolation

- Parallel folders
- Interpolate folder outputs

Folder / Interpolator Output

Folder / Interpolator Output

Interpolate only between closely spaced folds to avoid nonlinear distortion

Folding and Interpolationg ADC Example

R. C. Taft et al., "<u>A 1.8-V 1.6-GSample/s 8-b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency</u>," *IEEE Journal of Solid-State Circuits*, vol. 39, no. 12, pp. 2107–2115, Dec. 2004

Each folding stage:

- 9 x 3 diff pairs
- 3x folding
- 9 outputs

9x overall folding

9x reduction # comp

Folding and Interpolationg ADC Example

TABLE I
PERFORMANCE SUMMARY AT 1.6 GS/s FOR A SINGLE ADC

	F _{IN} = 97.77 MHz	F _{IN} = 797.77 MHz (Nyquist)	
Sample Rate, F _S	1.6 GS/s		
Resolution	8 bits		
Max DNL	±0.15 LSB		
Max INL	±0.35 LSB		
SNR	48 dB	46 dB	
SFDR	61 dB	56 dB	
THD	- 57 dB	- 57 dB	
ENOBs	7.60	7.26	
Interleave aperture offset	< 0.35 ps @ F _S = 1 GS/s & F _{IN} = 1.5 GHz		
Input (–3 dB) Bandwidth	> 1.75 GHz		
Resolution (-0.5 ENOB) Bandwidth	1.0 GHz		
Input Range	±400 mV differential		
Input Capacitance	1.8 pF (to gnd, w/o package)		
Input Termination	50 Ω (100 Ω differential)		
Single Supply	1.8 V		
Analog (DC) Current	245 mA		
Switching (AC) Current	185 mA		
LVDS Output Drivers	90 mA		
ADC Core Power (w/o outputs)	774 mW		
ADC core area	3.6 mm ²		
ADC die area	16 mm² (for dual ADC, pad limited)		
Package	128-pin EPQFP		
Technology	0.18 μm CMOS (1-poly, 5-metal)		
	No capacitor module nor dual-gate process		

R. C. Taft et al., "<u>A 1.8-V 1.6-</u> GSample/s 8-b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency," *IEEE Journal of Solid-*State Circuits, vol. 39, no. 12, pp. 2107–2115, Dec. 2004

EE 240C Analog-Digital Interface Integrated Circuits

Track & Hold Amplifier

Recap

- How to build circuits that "sample"?
- Ideal Dirac sampling is impractical
 - Need a switch that opens, closes and acquires signal within an infinitely small time
- Practical solution
 - "Track & hold"
 - Customary to liberally use the term "SHA" = Sample & Hold, although the function is different

Outline

- Elementary track-and-hold circuit and its nonidealities
- First order improvements to elementary track-and-hold
- Advanced techniques
 - Clock bootstrapping
 - Bottom plate sampling
- Settling and noise analysis in charge-redistribution track-and-hold circuit
- Noise simulation example

Ideal Track-and-Hold Circuit

Signal Nomenclature

Continuous Time Signal

T/H Signal ("Sampled Data Signal")

Clock

Discrete Time Signal

Circuit with MOS Switch

Nonidealities

- Finite acquisition time
- Thermal noise
- Clock jitter
- Signal dependent hold instant
- Tracking nonlinearity
- Hold mode feedthrough and leakage
- Charge injection and clock feedthrough

EE 240C Analog-Digital Interface Integrated Circuits

Track & Hold Amplifier Acquisition Time

Finite Acquisition Time

- Consider various input signal scenarios
- 1. Input is a sampled data signal, i.e. the output of another switched capacitor stage
- 2. Input is a slowly varying continuous time signal, e.g. the input of an oversampling ADC
- 3. Input is a rapidly varying continuous time signal, e.g. the input of a Nyquist or sub-sampling ADC

Finite Acquisition Time – Case 1

- For simplicity, neglect finite rise time of the input signal
- Consider worst case the output is required to settle from 0 to the full-scale voltage of the system (V_{FS})

First order MOS switch model

$$\Rightarrow V_{\text{out}}(t) = V_{\text{FS}}(1 - e^{-t/\tau})$$

Finite Acquisition Time – Case 1

$$V_{\text{out,err}}\left(\frac{T_{\text{S}}}{2}\right) = -V_{\text{FS}}e^{-\frac{T_{\text{S}}}{2}/\tau} = -V_{\text{FS}}e^{-N}$$

 Typically think about settling error in terms of the number of settling time constants (N) required for ½ LSB settling in a Bbit system

$$\left| -V_{\mathrm{FS}} e^{-N} \right| \le \frac{1}{2} \frac{V_{\mathrm{FS}}}{2^B}$$

$$N = \frac{T_{\rm s}/2}{\tau} \ge \ln(2 \cdot 2^B)$$

В	N
6	>4.9
10	>7.6
14	>10.4
18	>13.2

Finite Acquisition Time – Case 2 & 3

 Consider a sinusoidal input around "0", and "0" also as the initial condition for V_{out} (for notational simplicity)

$$V_{\rm in}(t) = A\cos(\omega t + \phi)$$

$$V_{\text{out}}(t) = \underbrace{-\frac{A\cos(\phi - \theta)}{\sqrt{1 + \omega^2 \tau^2}} e^{-\frac{t}{\tau}}}_{\text{initial transient}} + \underbrace{\frac{A\cos(\omega t + \phi - \theta)}{\sqrt{1 + \omega^2 \tau^2}}}_{\text{steady-state response}}$$

$$\theta = \operatorname{atan}(\omega \tau)$$

Finite Acquisition Time – Case 2 & 3

- At $t=T_s/2$, the error in the held signal consists of two parts
- Residual error due to initial exponentially decaying initial transient term
 - In order to minimize this error, we need to chose N appropriately, as calculated for the step input scenario
- Error due to magnitude attenuation and phase shift in the steady state term
 - This error depends only on the RC time constant and the input frequency; it cannot be reduced by extending the length of the track phase
 - How significant is the error due to the steady-state term?

Finite Acquisition Time – Case 2 & 3

 As an example, let's compute the percent amplitude error for the N values derived previously (½ LSB, B-bit settling to a step)

$$A_{\text{err}} = \left| \frac{\frac{A}{\sqrt{1 + (\omega \tau)^2}} - A}{A} \right| = 1 - \frac{1}{\sqrt{1 + (\omega \tau)^2}} = 1 - \frac{1}{\sqrt{1 + (2\pi f_{\text{in}} \frac{T_{\text{s}}/2}{N})^2}} = 1 - \frac{1}{\sqrt{1 + \left(\frac{\pi f_{\text{in}}}{N} \frac{f_{\text{in}}}{f_{\text{s}}}\right)^2}}$$

В	N	$A_{err} (f_{in} = f_s/20)$	$A_{err} (f_{in} = f_s/2)$
6	4.9	0.052%	4.9%
10	7.6	0.021%	2.1%
14	10.4	0.011%	1.1%
18	13.2	0.007%	0.7%

Summary – Finite Acquisition Time

- Precise settling to an input step is accomplished within 5...13 RC time constants (depending on precision)
- Precise tracking of a high-frequency continuous time input signal tends to impose more stringent requirements
 - Number to remember: $\sim 1\%$ attenuation error at Nyquist $(f_{in}=f_s/2)$ for N ~ 10
- In applications where attenuation is tolerable, the RC time constant requirements then tend to follow from the distortion specs
 - The larger the attenuation, the larger the instantaneous voltage drop across the (weakly nonlinear) MOSFET → undesired harmonics

EE 240C Analog-Digital Interface Integrated Circuits

Track & Hold Amplifier - Noise

Thermal Noise (1)

Questions

- What is the noise variance of the Vout samples in hold mode?
- What is the spectrum of the discrete time sequence representing these samples?
 - Nearly white, provided that the number of settling time constants (N) is large

Thermal Noise (2)

- Sample values Vout(n) correspond to instantaneous values of the track mode noise process
- From Parseval's theorem, we know that the time domain power (or variance) of this process is equal to its power spectral density integrated over all frequencies
 - Further, given that the process is ergodic, this number must also be equal to the "ensemble" variance, i.e. the variance of a sample taken at a particular time

$$\frac{\overline{v_{out}^2}}{\Delta f} = 4kTR \cdot \left| \frac{1}{1 + sRC} \right|^2$$

$$var[V_{\text{out}}(n)] = \overline{v_{\text{out,tot}}^2} = \int_0^\infty 4kTR \cdot \left| \frac{1}{1 + j2\pi f \cdot RC} \right|^2 df = \frac{kT}{C}$$

Alternative Derivation

- The equipartition theorem says that each "degree of freedom" (typically a quadratic energy variable) of a system in thermal equilibrium holds an average energy of kT/2
- In our system, the degree of freedom is the energy stored on the capacitor

$$\frac{\overline{1}}{2}Cv_{\text{out}}^2 = \frac{1}{2}kT$$

$$\overline{v_{\rm out}^2} = \frac{kT}{C}$$

Implications of kT/C Noise

 Example: suppose we make the kT/C noise equal to the quantization noise of a B-bit ADC

$$\frac{kT}{C} = \frac{\Delta^2}{12}, \quad \Delta = \frac{V_{\rm FS}}{2^B} \Rightarrow \quad C = 12kT \left(\frac{2^B}{V_{\rm FS}}\right)^2$$

- For a given B, both C and R (via N on slide 19) are fully determined
- Example numbers for $V_{FS}=1V$ and $f_s=100MHz$:

В	C [pF]	R [Ω]
8	0.003	246,057
10	0.052	12,582
12	0.834	665
14	13.3	36
16	213	1.99
18	3,416	0.11

Commercial Example

Aperture Uncertainty

- In any sampling circuit, electronic noise causes random timing variations in the actual sampling clock edge
 - Adds "noise" to samples, especially if dVin/dt is large

- Analysis
 - Consider sine wave input signal
 - Assume Δt is random with zero mean and standard deviation σ_t

Analysis

$$E\{\Delta V_{\rm in}^2\} \cong E\left\{\left(\frac{dV_{\rm in}}{dt}\right)^2 \cdot \Delta t^2\right\} = E\left\{\left(\frac{dV_{\rm in}}{dt}\right)^2\right\} \cdot E\{\Delta t^2\}$$

$$\cong E\left\{\left(\frac{d}{dt}A\cos[2\pi \cdot f_{\rm in} \cdot t]\right)^2\right\} \cdot \sigma_t^2 \cong \frac{1}{2}(2\pi \cdot A \cdot f_{\rm in})^2 \cdot \sigma_t^2$$

$$SNR_{\text{aperture}}[dB] \cong 10 \cdot \log \left[\frac{\frac{1}{2}A^2}{\frac{1}{2}(2\pi \cdot A \cdot f_{\text{in}} \cdot \sigma_t)^2} \right] = 20 \cdot \log \left[\frac{1}{2\pi \cdot f_{\text{in}} \cdot \sigma_t} \right]$$

- For an input signal whose power is evenly distributed between 0...fs/2, the above result improves by 4.8 dB
 - See e.g. [Da Dalt, TCAS1, 9/2002]

Result

ADC Performance Survey (ISSCC & VLSI 97-10)

Data: http://www.stanford.edu/~murmann/adcsurvey.html

EE 240C Analog-Digital Interface Integrated Circuits

Track & Hold Amplifier – Linearity

Voltage Dependence of Switch

$$\begin{split} I_{D(\text{triode})} &= \mu C_{ox} \frac{W}{L} \bigg(V_{GS} - V_t - \frac{V_{DS}}{2} \bigg) V_{DS} \\ R_{ON} &\cong \left[\frac{dI_{D(\text{triode})}}{dV_{DS}} \bigg|_{V_{DS} \to 0} \right]^{-1} \\ R_{ON} &= \frac{1}{\mu C_{ox} \frac{W}{L} (\phi - V_{\text{in}} - V_t)} \end{split}$$

- Two problems
 - Transistor turn off is signal dependent, occurs when $\phi = V_{in} + V_t$
 - R_{ON} is modulated by Vin (assuming e.g. f=VDD=const.)

Signal Dependent Sampling Instant (1)

• Must make fall time of sampling clock (T_f) much faster than maximum dV_{in}/dt

Signal Dependent Sampling Instant (2)

Distortion analysis result (see Yu, TCAS II, 2/1999)

$$HD_{3} = \frac{\text{Amplitude of third harmonic}}{\text{Amplitude of fundamental}}$$
$$\cong \frac{3}{8} \left(\frac{A}{V_{\text{CK}}} \omega T_{f} \right)^{2}$$

Example:

$$V_{CK} = 1.8V$$
, $A = 0.5V$, $T_f = 100ps$, $\omega = 2\pi 100MHz$

$$HD_3 \cong \frac{3}{8} \left(\frac{0.5}{1.8} \cdot 2\pi 100 \cdot 10^6 \cdot 100 \cdot 10^{-12} \right)^2 = -79dB$$

Track Mode Nonlinearity

- Output tracks well when input voltage is low
 - Gets distorted when voltage is high due to increase in R_{ON}

Analysis

$$I_D \cong K(V_{GS} - V_t)V_{DS} - \frac{K}{2}V_{DS}^2$$

$$C\frac{dV_{\text{out}}}{dt} = K(\phi - V_{\text{out}} - V_t)(V_{\text{in}} - V_{\text{out}}) - \frac{K}{2}(V_{\text{in}} - V_{\text{out}})^2$$

- "All" we need to do is solve the above differential equation...
- Can use Volterra Series analysis
 - General method that allows us to calculate the frequency domain response of nonlinear circuits with memory
 - See e.g. EE 242B
- Luckily someone has already done this for us
 - See [Yu, TCAS II, 2/1999]

Result

$$HD_{3} = \frac{\text{Amplitude of third harmonic}}{\text{Amplitude of fundamental}}$$

$$\cong \frac{1}{4} \left(\frac{A}{V_{GS} - V_{t}} \right)^{2} \cdot \omega \tau = \frac{1}{4} \left(\frac{A}{V_{GS} - V_{t}} \right)^{2} \frac{f_{\text{in}}}{f_{\text{s}}} \cdot \frac{\pi}{N}$$

- V_{GS} is the "quiescent point" value of the gate-source voltage;
 i.e. in the zero crossing of the sine input
- For low distortion
 - Make amplitude smaller than V_{GS}-V_t
 - Low swing → bad for SNR
 - Make $1/\tau$ much larger than ω (input frequency)
 - Big switch → may cost lots of power to drive, comes with large parasitic capacitances

Numerical Example

Parameters

$$- V_{DD} = V_{CK} = 1.8V$$

- Signal is centered about $V_{DD}/2 = 0.9V$
- $-V_{GS}-V_{t} = 1.8V-0.9V-0.45V = 0.45V$
- A = 0.2V
- $N = 0.5T_s/\tau = 10$
- $-f_{in} = f_s/2$

$$HD_3 \cong \frac{1}{4} \left(\frac{0.2}{0.45}\right)^2 \frac{1}{2} \cdot \frac{\pi}{10} = -42dB$$

Not all that great...

Hold Mode Feedthrough

- Want to make R_{out} as small as possible
- Consider using a "T-switch" when hold-mode feedthrough is a

Hold Mode Leakage

• Example:

Gate Leakage Data

A. Annema, et al., "Analog circuits in ultra-deep-submicron CMOS," *IEEE J. Solid-State Circuits*, pp. 132-143, Jan. 2005.

$$\frac{dv_C}{dt} \approx -\gamma_{dv\,dt} \cdot f_{\text{gate}} \left[\frac{V}{s} \right] \quad \text{with } \gamma_{dv\,dt} \approx 1 \text{ V.}$$

- In 65nm CMOS, gate capacitance droop rate is ~1V/ms (!)
- Issue is solved with high-k dielectrics in post-65nm technologies

EE 240C Analog-Digital Interface Integrated Circuits

Track & Hold Amplifier Switch Charge Injection

Charge Injection and Clock Feedthrough

- Analyze two extreme cases
 - Very large T_f ("slow gating")
 - Very small T_f ("fast gating")

Slow Gating

 All channel charge has disappeared by t_{off} without introducing error; it is absorbed by the input source

Slow Gating Model for t > t_{off}

$$V_{out} = V_{in} - \Delta V_{out}$$

Clock feedthrough
$$V_{out} = V_{in} - \frac{C_{ol}}{C_{ol} + C} (V_{in} + V_t - \phi_L) = V_{in} (1 + \epsilon) + V_{os}$$

$$\epsilon = -\frac{C_{ol}}{C_{ol} + C} \qquad \qquad V_{os} = -\frac{C_{ol}}{C_{ol} + C} \big(V_t - \phi_L \big)$$

Gain Error

Offset Error

• Example: C=1pF, ϕ_L =0V, V_t =0.45V, W=20 μ m, C_{ol} '=0.1fF/ μ m, C_{ol} =2fF $\epsilon = -0.2\% \qquad V_{os} = -0.9mV$

Fast Gating

- Channel charge cannot change instantaneously
- Resulting surface potential decays via charge flow to source and drain
- Charge divides between source and drain depending on impedances loading these nodes

Charge Split Ratio Data

G. Wegmann et al., "Charge injection in analog MOS switches," IEEE J. Solid-State Circuits, pp. 1091-1097, June 1987.

Y. Ding and R. Harjani, "A universal analytic charge injection model," Proc. ISCAS, pp. 144-147, May 2000.

Interpretation

- R_{on}C₂ and T_f are usually comparable, or at least not more than an order of magnitude apart
 - This brings us into the range of 0.1...1 on the chart by Wegmann
- This means that the charge split will in practice have some dependence on the impedances seen on the two sides of the transistor
- Remember: Slightly more charge will go to the side with lower impedance

Fast Gating Model for t > t_{off}

$$V_{out} = V_{in} - \Delta V_{out} = V_{in} (1 + \varepsilon) + V_{os}$$

$$\mathbf{Q}_{ch} = -WLC_{ox} \left[\phi_{H} - V_{in} - V_{t} \right]$$

$$\epsilon = \frac{1}{2} \frac{WLC_{ox}}{C} \qquad V_{os} = -\frac{C_{ol}}{C_{ol} + C} \big(\varphi_H - \varphi_L \big) - \frac{1}{2} \frac{WLC_{ox}}{C} \big(\varphi_H - V_t \big)$$

• Example: C=1pF, $\phi_H-\phi_L=1.8V$, $V_t=0.45V$, $W=20\mu m$, $LC_{ox}=2fF/\mu m$ C_{ol} '=0.1 $fF/\mu m$, $C_{ol}=2fF$

$$\varepsilon = +2\%$$
 $V_{os} = -30.6 \text{mV}$

Transition Fast/Slow Gating

- $|\epsilon|$ and $|V_{os}|$ decrease as the fall time of ϕ (T_f) increases and approach the limit case of slow gating
- Unfortunately, high-speed switched capacitor circuits tend to operate in fast gating regime

Impact of Technology Scaling

$$\Delta V \cong \frac{1}{2} \frac{Q_{ch}}{C} \qquad \frac{1}{2f_s} = \frac{T_s}{2} = N \cdot RC$$

$$R \cong \frac{1}{\mu C_{ox} \frac{W}{L} (V_{GS} - V_t)} = \frac{L^2}{\mu Q_{ch}}$$

 Charge injection error to speed ratio benefits from shorter channels and increases in mobility (e.g. due to strain)