

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

268

# Equivalenza di espressioni

- Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- L'equivalenza è importante in pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

# Tipi di equivalenza

- Assoluta
  - $\pi_{AB} \left( \sigma_{A>0}(R) \right) \equiv \sigma_{A>0} \left( \pi_{AB} \left( R \right) \right)$
- · Dipendente dallo schema
  - $\pi_{AB}(R_1) \bowtie \pi_{AC}(R_2) \equiv_{\mathbf{R}} \pi_{ABC}(R_1 \bowtie R_2)$
- esempio: R<sub>1</sub>(ABC) e R<sub>2</sub>(AC)
  - le due espressioni di prima non sono equivalenti

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

271

### Atomizzazione di selezioni

$$\sigma_{A^AB}(E) \equiv \sigma_A(\sigma_B(E))$$

 E è una espressione. Questa trasformazione consente l'applicazione di successive trasformazioni che operano su selezioni con condizioni atomiche

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

# Idempotenza delle proiezioni

$$\pi_X(E) \equiv \pi_X(\pi_{XY}(E))$$

 Una proiezione può essere trasformata in una cascata di proiezioni che 'eliminano' i vari attributi in fasi diverse

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

273

# Anticipazione selezione risp. al Join

$$\sigma_F(E_1\bowtie E_2)\equiv E_1\bowtie \sigma_F(E_2)$$

cond F su attributi di E<sub>2</sub>

$$\sigma_{F1^{\wedge}F2}(E_1\bowtie E_2)\equiv\sigma_{F1}(E_1)\bowtie\sigma_{F2}(E_2)$$

F1 cond su attributi di E<sub>1</sub> e F2 cond su attributi di E<sub>2</sub>

 Detto anche pushing selections down riduce in modo significativo la dimensione del risultato intermedio (e quindi il costo dell'operazione)

Basi di Dati + Laboratorio - Informatica Triennale - Corso A



# Eliminazione proiezioni superflue

$$\pi_Z(E) \equiv E$$

se Z sono tutti gli attributi di E

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

# Anticipazione $\pi$ rispetto al prodotto

$$\pi_{XY}(E_1 \times E_2) \equiv \pi_X(E_1) \times \pi_Y(E_2)$$

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

277

# Possibile algoritmo di ottimizzazione

- 1. Si anticipa l'esecuzione delle selezioni sulle proiezioni (da sx verso dx)
- 2. Si raggruppano le selezioni
- 3. Si anticipa l'esecuzione delle selezioni sul prodotto (join)
- 4. Si ripete questi tre passi finché possibile
- 5. Si eliminano le proiezioni superflue
- 6. Si raggruppano le proiezioni
- 7. Se l'espressione è un prodotto si anticipa l'esecuzione delle proiezioni rispetto al prodotto

Basi di Dati + Laboratorio - Informatica Triennale - Corso A













# Selezione con valori nulli

#### **Impiegati**

| Matricola | Cognome | Filiale | Età  |
|-----------|---------|---------|------|
| 7309      | Rossi   | Roma    | 32   |
| 5998      | Neri    | Milano  | 45   |
| 9553      | Bruni   | Milano  | NULL |

σ<sub>Età > 40</sub> (Impiegati)

 la condizione atomica è vera solo per valori non nulli

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

285

# Un risultato non desiderabile

 $\sigma_{\text{Età}>30}$  (Persone)  $\cup \sigma_{\text{Età}\leq30}$  (Persone)  $\neq$  Persone

- Perché? Perché le selezioni vengono valutate separatamente!
- Ma anche

 $\sigma_{\text{Età}>30\,\vee\,\text{Età}\leq30}$  (Persone)  $\neq$  Persone

· condizioni atomiche valutate separatamente

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

# Selezione con valori nulli: soluzione

#### $\sigma_{Età > 40}$ (Impiegati)

- la condizione atomica è vera solo per valori non nulli
- per riferirsi ai valori nulli esistono forme apposite di condizioni:

# IS NULL IS NOT NULL

 si potrebbe usare (ma non serve) una "logica a tre valori" (vero, falso, sconosciuto)

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

287

# Selezione con valori nulli: soluzione

#### Quindi:

 $\begin{array}{c} \mathtt{SEL}_{\ \mathsf{Et\grave{a}} > 30}\left( \mathsf{Persone} \right) \cup \mathtt{SEL}_{\ \mathsf{Et\grave{a}} \leq 30}\left( \mathsf{Persone} \right) \cup \mathtt{SEL}_{\ \mathsf{Et\grave{a}}} \\ & \mathtt{IS}_{\ \mathsf{NULL}}\left( \mathsf{Persone} \right) \end{array}$ 

SEL Età>30 ∨ Età≤30 ∨ Età IS NULL (Persone)

Persone

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

# Impiegati

| Matricola | Cognome | Filiale | Età  |
|-----------|---------|---------|------|
| 5998      | Neri    | Milano  | 45   |
| 9553      | Bruni   | Milano  | NULL |

 $\sigma$  (Età > 40) OR (Età IS NULL) (Impiegati)

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

289

# 29/10/2020

Basi di Dati + Laboratorio - Informatica Triennale - Corso A