f B3 $\triangle ABC$ において AB=3, $AC=3\sqrt{3}$, $\cos A=-\frac{\sqrt{3}}{3}$ である。また,点 D は辺 BC 上にあり, $AD=\sqrt{3}$ BD を満たしている。

- (1) 辺BCの長さを求めよ。 BC=3√6
- (2) 線分BDの長さを求めよ。 BD= 15
- (3) \triangle ABC の外接円の中心を O とする。点 O を通り平面 ABC に垂直な直線上に点 P を とり、四面体 PABD をつくる。四面体 PABD の体積が $\frac{3\sqrt{6}}{4}$ になるとき、 $\cos \angle$ PAO の値を求めよ。 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc (配点 20)

【選択問題】 数学 B 受験者は,次の B4 \sim B8 のうちから 2 題を選んで解答せよ。

 $\mathbf{B4}$ 2つの整式 P(x) = (x-3)(2x+a) と $Q(x) = x^3 - 3x^2 + bx + c$ がある。P(x) をx-1 で 割った余りは -6 であり,Q(x) は $x^2 + 2$ で割り切れる。ただし,a, b, c は定数とする。

- (1) aの値を求めよ。 Q=
- (2) Q(x)を x^2+2 で割った商を求めよ。また、b、cの値をそれぞれ求めよ。
- (3) k を定数とする。x の方程式 kP(x)+Q(x)=0 の異なる実数解の個数がちょうど 2 個であるとき、k の値を求めよ。

$$(21)$$
 $\chi = 3$, $b = 2$, $c = -6$

$$(3)$$
 $\ell = 2, -1, -\frac{11}{7}$

B5 〇を原点とする座標平面上に円 $x^2+y^2-2ax-4y+a^2=0$ (a は定数) ……①と点 A (2, 1)がある。

- (1) 円①の中心の座標を a を用いて表せ。また、円①の半径を求めよ。
- (2) 点 A を通り直線 OA に垂直な直線を ℓ とする。直線 ℓ の方程式を求めよ。また,円① の中心が直線 ℓ 上にあるとき, α の値を求めよ。
- (3) 方程式①で表される円のうち, (2)で求めた直線 ℓ と接する円は 2 つある。これら 2 つの円の中心を C₁, C₂ とする。このとき, △OC₁C₂ の面積を求めよ。 (配点 20)

$$(2) H = -2x + 5 Q = 2$$

$$(3) \triangle 0 C_1 C_2 = 2\sqrt{5} - 6 -$$

B6 関数 $y = \sin 2\theta - \sqrt{2} (\sin \theta - \cos \theta)$ があり、 $t = \sin \theta - \cos \theta$ とおく。

- (1) $\theta = \frac{\pi}{4}$ のとき, y の値を求めよ。
- (2) $t \in r \sin(\theta + \alpha)$ $(r > 0, -\pi < \alpha \leq \pi)$ の形で表せ。また、 $\sin 2\theta$ を t を用いて表せ。
- (3) $0 \le \theta \le \pi$ とする。関数 y の最大値と最小値を求めよ。また,最大値をとるときの θ の値を求めよ。

(2)
$$t-\sqrt{2}\sin(\theta-\frac{\pi}{4})$$
 $\sin 2\theta = 1-t^2$
(3) $Mox = \frac{3}{2}(\theta = \frac{\pi}{12})$, $Min - 3$

B7 初項 a, 公差 d の等差数列 $\{a_n\}$ があり、 $a_3+a_7=12$ を満たしている。ただし、 $d \neq 0$ とする。

- (2) 3数 a4, a5, a8 がこの順に等比数列になるとき, a, dの値をそれぞれ求めよ。
- (3) (2)のとき、和 $S = na_1 + (n-1)a_2 + (n-2)a_3 + \cdots + 1 \cdot a_n$ を n を n を n を n と

(2)
$$Q = -0$$
, $d = 4$
(3) $\frac{1}{3} N(n+1) (2n-17)$

 $oxed{B8}$ $\triangle OAB$ があり,OA=3, $OB=\sqrt{3}$ である。辺 AB の中点を C,線分 OC を 2:1 に内 分する点を D とし, $\overrightarrow{OA}=\overrightarrow{a}$, $\overrightarrow{OB}=\overrightarrow{b}$ とする。

- (1) \overrightarrow{OC} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また, \overrightarrow{OD} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。
- (2) 内積 $\vec{a} \cdot \vec{b} = 2$ のとき、線分 OC の長さを求めよ。
- (3) (2)のとき,点 D から辺 AB に垂線を引き,交点を H とする。AH: HB = t:(1-t) とおくとき,実数 t の値を求めよ。また,線分 CH の長さを求めよ。 (配点 20)

$$(1)$$
 $02 = 4 + 5$, $09 = 3 + 3$

$$(2) \quad \bigcirc C = 2$$