

Lezione n°: Titolo:

Attività n°:

INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

Diagrammi di Nyquist con MATLAB

Facoltà di Ingegneria

Sommario

- Il diagramma di Nyquist.
- Esempio di tracciamento a partire dai diagrammi di Bode disegnati in MATLAB.

Corso di Laurea: Insegnamento: Lezione nº:

Titolo: Attività n°: INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

72

Diagrammi di Nyquist con MATLAB

1

Facoltà di Ingegneria

Diagramma di Nyquist (1/3)

Il diagramma di Nyquist di F(s) è un particolare diagramma composto da:

- 1. Il <u>diagramma **polare**</u> della funzione F(s). Tale diagramma fornisce, al variare della pulsazione ω da
 - $-\infty$ a $+\infty$, il valore di $F(j\omega)$ nel piano complesso:
 - Asse x: Re($F(j\omega)$)
 - Asse y: $Im(F(j\omega))$,

Corso di Laurea: Insegnamento: Lezione n°:

Titolo: Attività n°: INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

Diagrammi di Nyquist con MATLAB

1

Facoltà di Ingegneria

Diagramma di Nyquist (2/3)

 (cont.) Il <u>diagramma polare</u> <u>si può dedurre facilmente</u> dai <u>diagrammi di Bode</u>, anche considerando la seguente proprietà:

$$F(-j\omega) = F^*(j\omega)$$

Ciò implica, in pratica, che il diagramma polare per pulsazioni negative può essere ottenuto semplicemente ribaltando, rispetto all'asse x, il diagramma disegnato per ω positive a partire dai diagrammi di Bode.

Corso di Laurea: Insegnamento: Lezione no:

Titolo:

Attività n°:

INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

Diagrammi di Nyquist con MATLAB

Facoltà di Ingegneria

Diagramma di Nyquist (3/3)

In corrispondenza ad ogni polo di F(s) a parte reale nulla di molteplicità m, il diagramma di Nyquist effettua m mezzi giri (ognuno di π radianti) all'infinito in senso orario.

 p_i polo di F(s) con molteplicità m tale che $Re(p_i) = 0$

 $m\pi$ giri all'infinito in senso orario

Corso di Laurea: Insegnamento: Lezione nº:

Titolo:
Attività n°:

72 Diagrammi di Nyquist con MATLAB

1

Diagrammi di Nyquist con MATLAB 1

INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE

METODI E TECNOLOGIE DI SIMULAZIONE

Facoltà di Ingegneria

Esempio di diagramma di Nyquist (1/4)

Disegnare il diagramma di Nyquist della seguente funzione di trasferimento, a partire dai diagrammi di Bode:

$$F(s) = \frac{1}{s(s+2)}$$

Attività n°:

Lezione no: Titolo:

Diagrammi di Nyquist con MATLAB

INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

Facoltà di Ingegneria

Esempio di diagramma di Nyquist (2/4)

I diagrammi di Bode della funzione di trasferimento F(s) = $\frac{1}{s(s+2)}$ sono tracciati nella figura a lato.

Corso di Laurea: Insegnamento: Lezione no:

Titolo:

Attività n°:

INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

Diagrammi di Nyquist con MATLAB

Facoltà di Ingegneria

Esempio di diagramma di Nyquist (3/4)

Notiamo che:

- Per $\omega \to 0$ il modulo vale $+\infty$ e la fase vale -90° .
- Per $\omega \to +\infty$ il modulo è nullo (in dB tende a $-\infty$) e la fase vale -180°
- Nella F(s) è presente un polo in s=0.
- In corrispondenza del modulo unitario (0 dB) la pulsazione vale 0.486 rad/sec e la fase vale circa -100°

Corso di Laurea: Insegnamento: Lezione n°:

Titolo: Attività n°:

ı°:

INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

72

Diagrammi di Nyquist con MATLAB

1

Facoltà di Ingegneria

Esempio di diagramma di Nyquist (4/4)

Il diagramma di Nyquist della funzione di trasferimento in esame si può quindi disegnare nel modo seguente:

Corso di Laurea: INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

Insegnamento: Lezione nº:

Titolo: Attività n°:

72/S1

Sessione di studio

Facoltà di Ingegneria

Sessione di studio

Lezione nº:

Titolo: Attività n°:

INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

72/S1

Sessione di studio

Facoltà di Ingegneria

Verifica

Ripassare la parte del corso riguardante i diagrammi di Nyquist.

Corso di Laurea: INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

Insegnamento: Lezione nº:

Titolo: Attività n°:

72/S2

Sessione di studio

Facoltà di Ingegneria

Corso di Laurea: INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE METODI E TECNOLOGIE DI SIMULAZIONE

Insegnamento:

Lezione nº:

72/S2 Sessione di studio

Titolo: Attività n°:

Facoltà di Ingegneria

Esercizi

Tracciare il diagramma di Nyquist delle seguenti funzioni di trasferimento:

$$\bullet \quad F(s) = \frac{s+1}{s^2(s+2)}$$

•
$$F(s) = \frac{s+1}{(s+2)(s+5)}$$

Corso di Laurea: INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE Insegnamento: METODI E TECNOLOGIE DI SIMULAZIONE

Lezione nº:

72/S3

Sessione di studio Titolo: Attività n°:

Facoltà di Ingegneria

Titolo: Attività n°:

Lezione nº:

72/S3

Sessione di studio

INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE

METODI E TECNOLOGIE DI SIMULAZIONE

Facoltà di Ingegneria

Esercizio

Determinare una funzione di trasferimento affinché il suo diagramma di Nyquist:

- Compia due mezzi giri all'infinito in senso orario.
- Termini (per $\omega \to +\infty$) nel punto (+2,0) del piano cartesiano.