ML1000 - Project 1 - Heart Training

Environment Setup

```
!pip install pycaret -q
  !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip -q
  import numpy as np
  import pandas as pd
  from pycaret.classification import *
  from pandas_profiling import ProfileReport
  from pycaret.utils import enable_colab
  enable_colab()
       Colab mode enabled.
  # running this fixed the plots not displaying
  import matplotlib.pyplot as plt
  import matplotlib.gridspec as gridspec
  import seaborn as sns
  %matplotlib inline
  plt.close('all')
  from google.colab import drive
  drive.mount('/content/gdrive', force_remount=True)
       Mounted at /content/gdrive
  #profile = ProfileReport(dataset, title="Heart Dataset", html={'style': {'full_width': True}})
  #profile.to_notebook_iframe()
  #profile.to_file(output_file="Heart_UCI_Profile.html")
Data Import/Setup
```

```
df_path = 'gdrive/My Drive/Colab Notebooks/heart_cleveland_upload.csv' #change dir to your project folder
dataset = pd.read_csv(df_path)
dataset.shape
     (297, 14)
dataset.head(1)
        age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca
         69
                            160
                                 234
                                                         131
                                                                 0
                                                                         0.1
# Rename categorical modes for better graphs/understanding
dataset.sex = dataset.sex.map({0:'Female',1:'Male'})
dataset.cp = dataset.cp.map({3:'Asymptomatic', 1:'Atypical', 2:'Not Anginal', 0:'Typical'})
dataset.fbs = dataset.fbs.map({0:'<120mg',1:'120mg+'})</pre>
dataset.restecg= dataset.restecg.map({0:'Normal',1:'ST Abnormality',2:'LV Hypertrophy'})
dataset.exang = dataset.exang.map({0:'No',1:'Yes'})
dataset.slope = dataset.slope.map({0:'Upslope',1:'Flat',2:'Downslope'})
dataset.thal = dataset.thal.map({1:'Fixed Defect',0:'Normal',2:'Reversable Defect'})
\#dataset.condition = dataset.condition.map(\{0:1, 1:0\}) \#Reverse order for better graph display?
dataset.condition = dataset.condition.map({0:'No', 1:'Yes'})
# bin oldpeak
bins= [-0.1,0.1,1.5,np.inf]
names=["None"."Low"."High"]
```

```
dataset.oldpeak=pd.cut(dataset.oldpeak, bins, labels=names)
```

```
# Renaming columns
```

dataset.head(4)

```
Age Gender Chest_Pain Blood_Pressure Cholesterol Blood_Sugar
                                                                           Rest_ECG
                                                                                  LV
                                                                120mg+
0
    69
          Male
                     Typical
                                         160
                                                      234
                                                                          Hypertrophy
                     Typical
    69
       Female
                                         140
                                                      239
                                                                 <120mg
                                                                              Normal
                     Typical
2
    66 Female
                                                      226
                                                                <120mg
                                                                              Normal
                                         150
                                                                                  LV
    65
          ماد۱۸
                     Typical
                                         122
                                                      222
                                                                 120ma+
```

```
data = dataset.sample(frac=0.90, random_state=54321)
data_unseen = dataset.drop(data.index)
```

```
data.reset_index(inplace=True, drop=True)
data_unseen.reset_index(inplace=True, drop=True)
```

print('Data for Modeling: ' + str(data.shape))
print('Unseen Data For Predictions ' + str(data_unseen.shape))

Data for Modeling: (267, 14) Unseen Data For Predictions (30, 14)

data.head(1)

```
Age Gender Chest_Pain Blood_Pressure Cholesterol Blood_Sugar Rest_ECG I

0 62 Female Asymptomatic 150 244 <120mg Normal
```

#Decision: We dropped the "fbs" column because in a small dataset there is are only two values and they are split into a 85
#data.drop('Blood_Sugar', axis=1, inplace=True)
#data.head(1)

```
#Set variable for name of target column
TARGET_COLUMN = 'Heart_Disease'
exp_clf102 = setup(
      data = data,
      target = TARGET_COLUMN,
#
       feature_selection = True,
       feature_selection_threshold = .5,
      pca = True,
       pca_components = .999,
#
       combine_rare_levels = True,
       rare_level_threshold = 0.05,
       ignore_features = ['oldpeak'],
      normalize = True,
#
       transformation = True,
      remove_multicollinearity = True,
      multicollinearity threshold = 0.70,
       numeric features = ['Marked Vessels'],
#
      bin_numeric_features = ['Age'],
      ordinal_features = {'ST_Depression': ['None','Low','High']},
      feature selection = True,
#
      profile=True,
      silent=True,
      train_size = 0.9,
      remove outliers = True,
      #log_experiment = True,
      #experiment_name = 'P1_Heart',
      session_id=123)
```

	Description	Value
0	session_id	123
1	Target	Heart_Disease
2	Target Type	Binary
3	Label Encoded	No: 0, Yes: 1
4	Original Data	(267, 14)
5	Missing Values	False
6	Numeric Features	4
7	Categorical Features	9
8	Ordinal Features	True
9	High Cardinality Features	False
10	High Cardinality Method	None
11	Transformed Train Set	(228, 23)
12	Transformed Test Set	(27, 23)
13	Shuffle Train-Test	True
14	Stratify Train-Test	False
15	Fold Generator	StratifiedKFold
16	Fold Number	10
17	CPU Jobs	-1
18	Use GPU	False
19	Log Experiment	False
20	Experiment Name	clf-default-name
21	USI	94e6
22	Imputation Type	simple
23	Iterative Imputation Iteration	None
24	Numeric Imputer	mean
25	Iterative Imputation Numeric Model	None
26	Categorical Imputer	constant
27	Iterative Imputation Categorical Model	None
28	Unknown Categoricals Handling	least_frequent
29	Normalize	True
30	Normalize Method	zscore
31	Transformation	False
32	Transformation Method	None
33	PCA	True
34	PCA Method	linear
35	PCA Components	0.99
36	Ignore Low Variance	False
37	Combine Rare Levels	False
38	Rare Level Threshold	None
39	Numeric Binning	True
40	Remove Outliers	True
41	Outliers Threshold	0.05
42	Remove Multicollinearity	True
43	Multicollinearity Threshold	0.9
44	Remove Perfect Collinearity	True
45	Clustering	False
46	Clustering Iteration	None
47	Polynomial Features	False
48	Polynomial Degree	None
	a google com/drive/1CONgol lafA8Av0zcT0ADvCA8A	CCL o In1 A#o orollTo=046

49	Trignometry Features	False
50	Polynomial Threshold	None
51	Group Features	False
52	Feature Selection	False
53	Feature Selection Method	classic
54	Features Selection Threshold	None
55	Feature Interaction	False
56	Feature Ratio	False

Compare models

#Compare models common parameters
#Decision: Num folds = 10 because
#Decision: Optimize_for = Accuracy because
NUM_FOLDS = 10
OPTIMIZE_FOR = 'Recall'

top3 = compare_models(
 fold=NUM_FOLDS,
 n_select=3,
 sort=OPTIMIZE_FOR,
 turbo=False)

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	T (Sec
mlp	MLP Classifier	0.7976	0.9052	0.7845	0.8042	0.7792	0.5944	0.6125	0.649
gbc	Gradient Boosting Classifier	0.8024	0.8819	0.7845	0.8079	0.7829	0.6037	0.6204	0.15
rbfsvm	SVM - Radial Kernel	0.8152	0.8979	0.7836	0.8261	0.7941	0.6282	0.6422	0.02
lightgbm	Light Gradient Boosting Machine	0.8148	0.8828	0.7818	0.8219	0.7938	0.6267	0.6367	0.070
lr	Logistic Regression	0.8067	0.9007	0.7655	0.8226	0.7809	0.6104	0.6251	0.02
et	Extra Trees Classifier	0.8026	0.8949	0.7645	0.8130	0.7731	0.6009	0.6160	0.46
qda	Quadratic Discriminant Analysis	0.7761	0.8443	0.7564	0.7761	0.7550	0.5509	0.5635	0.01
knn	K Neighbors Classifier	0.8283	0.8738	0.7555	0.8676	0.8015	0.6526	0.6638	0.11
• .1	Ridge	0 0444	0 0000	0.7070	0.0405	^ 7770	0 0470	0.000	0.04

Model 1 - Exploration

#comment out "create model" and switch to using top3[0] for automated model run/selection
#
#model1 = top3[0]
model1 = create_model('mlp')
display(model1)

	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC
0	0.7826	0.9615	0.9000	0.6923	0.7826	0.5725	0.5923
1	0.8261	0.8538	0.7000	0.8750	0.7778	0.6378	0.6485
2	0.9565	0.9462	1.0000	0.9091	0.9524	0.9125	0.9161
3	0.7826	0.8636	0.6364	0.8750	0.7368	0.5594	0.5800
4	0.7391	0.8485	0.6364	0.7778	0.7000	0.4733	0.4808
5	0.7826	0.9773	0.5455	1.0000	0.7059	0.5560	0.6205
6	0.6522	0.8258	0.7273	0.6154	0.6667	0.3083	0.3130
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	0.6364	0.7917	0.7000	0.5833	0.6364	0.2787	0.2833
9	0.8182	0.9833	1.0000	0.7143	0.8333	0.6452	0.6901
Mean	0.7976	0.9052	0.7845	0.8042	0.7792	0.5944	0.6125

evaluate_model(model1)

Plot Type:	Hyperparameters	AUC	Confusion Matrix
	Threshold	Precision Recall	Prediction Error
	Class Report	Feature Selection	Learning Curve
	Manifold Learning	Calibration Curve	Validation Curve
	Dimensions	Feature Importance	Feature Importance
	Decision Boundary	Lift Chart	Gain Chart
	Decision Tree	KS Statistic Plot	

Parameters activation relu 0.0001 alpha batch_size auto beta_1 0.9 0.999 beta_2 early_stopping False 1e-08 epsilon hidden_layer_sizes (100,)learning_rate constant 0.001 learning_rate_init 15000 max_fun 500 max_iter momentum 0.9 n_iter_no_change 10 nesterovs_momentum True 0.5 power_t random_state 123 shuffle True

plot_model(model1, plot='confusion_matrix')

solver

tol

adam

0 0001

MLPClassifier Confusion Matrix

plot_model(model1, plot='calibration')

tuned_model1=tune_model(model1, optimize=OPTIMIZE_FOR, fold=NUM_FOLDS)
score_tuned_model1=pull()
display(tuned_model1)

	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC
0	0.8261	0.9385	0.9000	0.7500	0.8182	0.6541	0.6641
1	0.8261	0.9308	0.7000	0.8750	0.7778	0.6378	0.6485
2	0.8696	0.9692	0.9000	0.8182	0.8571	0.7376	0.7405
3	0.7826	0.8030	0.5455	1.0000	0.7059	0.5560	0.6205
4	0.7826	0.8636	0.6364	0.8750	0.7368	0.5594	0.5800
5	0.9130	0.9167	0.8182	1.0000	0.9000	0.8244	0.8374
6	0.8261	0.8712	0.8182	0.8182	0.8182	0.6515	0.6515
7	0.9565	0.9924	0.9091	1.0000	0.9524	0.9125	0.9161
8	0.6818	0.8333	0.7000	0.6364	0.6667	0.3636	0.3651
9	0.8636	0.9583	1.0000	0.7692	0.8696	0.7317	0.7596
Mean	0.8328	0.9077	0.7927	0.8542	0.8103	0.6629	0.6783
SD	0.0721	0.0590	0.1355	0.1152	0.0849	0.1454	0.1432

MLPClassifier(activation='identity', alpha=0.5, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=[100], learning_rate='constant', learning_rate_init=0.001, max_fun=15000, max_iter=500, momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5, random_state=123, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)

evaluate_model(tuned_model1)

Parameters

activation	identity
alpha	0.5
batch_size	auto
beta_1	0.9
beta_2	0.999
early_stopping	False
epsilon	1e-08
hidden_layer_sizes	[100]
learning_rate	constant
learning_rate_init	0.001

plot_model(tuned_model1, plot='calibration')

plot_model(tuned_model1, plot='confusion_matrix')

calibrated_model1 = calibrate_model(tuned_model1)
score_calibrated_model1=pull()
display(calibrated_model1)

	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC
0	0.8261	0.9385	0.9000	0.7500	0.8182	0.6541	0.6641
1	0.8261	0.9154	0.7000	0.8750	0.7778	0.6378	0.6485
2	0.9565	0.9769	1.0000	0.9091	0.9524	0.9125	0.9161
3	0.7391	0.7955	0.5455	0.8571	0.6667	0.4692	0.5017
4	0.7391	0.8182	0.5455	0.8571	0.6667	0.4692	0.5017
5	0.7826	0.9318	0.5455	1.0000	0.7059	0.5560	0.6205
6	0.6522	0.7727	0.7273	0.6154	0.6667	0.3083	0.3130
7	0.9130	0.9848	0.9091	0.9091	0.9091	0.8258	0.8258
8	0.7273	0.8000	0.7000	0.7000	0.7000	0.4500	0.4500
9	0.8182	0.9500	0.9000	0.7500	0.8182	0.6393	0.6500
Mean	0.7980	0.8884	0.7473	0.8223	0.7681	0.5922	0.6091
SD	0.0859	0.0780	0.1624	0.1096	0.0992	0.1725	0.1684

 ${\tt CalibratedClassifier CV} (base_estimator = {\tt MLPClassifier} (activation = {\tt 'identity'}, activation = {\tt 'identity'}, activat$

alpha=0.5, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=[100], learning_rate='constant', learning_rate_init=0.001, max_fun=15000, max_iter=500, momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5, random_state=123, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1,

evaluate_model(calibrated_model1)

Parameters

plot_model(calibrated_model1,plot='calibration')

plot_model(calibrated_model1, plot='confusion_matrix')

#Decide between tuned model and calibrated model
#used as base for bag/boost

move_forward_model = tuned_model1
#move_forward_model = calibrated_model1

bagged_model1 = ensemble_model(move_forward_model)
score_bagged_model1=pull()

	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC
0	0.8261	0.9308	0.9000	0.7500	0.8182	0.6541	0.6641
1	0.8261	0.8923	0.7000	0.8750	0.7778	0.6378	0.6485
2	0.9130	0.9769	0.9000	0.9000	0.9000	0.8231	0.8231
3	0.7391	0.7955	0.5455	0.8571	0.6667	0.4692	0.5017
4	0.7391	0.8485	0.5455	0.8571	0.6667	0.4692	0.5017
5	0.8696	0.9015	0.7273	1.0000	0.8421	0.7356	0.7628
6	0.7391	0.8561	0.8182	0.6923	0.7500	0.4812	0.4886
7	0.9565	0.9924	0.9091	1.0000	0.9524	0.9125	0.9161
8	0.7273	0.8333	0.7000	0.7000	0.7000	0.4500	0.4500
9	0.8636	0.9667	1.0000	0.7692	0.8696	0.7317	0.7596
Mean	0.8200	0.8994	0.7745	0.8401	0.7943	0.6365	0.6516
SD	0.0774	0.0631	0.1485	0.1054	0.0940	0.1565	0.1535

plot_model(bagged_model1, plot='confusion_matrix')

#boosted_model1 = ensemble_model(move_forward_model,method = 'Boosting')
#score_boosted_model1=pull()

#plot_model(boosted_model1, plot='confusion_matrix')

Blend Models

Model Evaluation

```
#Compare Model Summaries
#Not including base model 1 as tuned model 1 should be no worse
#display('Summary: model1')
#results_model1 = predict_model(model1)
display('Summary: tuned_model1')
display(score_tuned_model1)
display('Prediction: calibrated_model1')
display(score_calibrated_model1)
display('Prediction: bagged_model1')
display(score_bagged_model1)
#display('Prediction: boosted_model1')
#display(score_boosted_model1)
display('Prediction: blend_soft')
display(score_blend_soft)
display('Prediction: blend_hard')
display(score_blend_hard)
```

'Summary:	tuned_r	model1'					
Ac	curacy	AUC	Recall	Prec.	F1	Карра	MCC
0	0.8261	0.9385	0.9000	0.7500	0.8182	0.6541	0.6641
1	0.8261	0.9308	0.7000	0.8750	0.7778	0.6378	0.6485
2	0.8696	0.9692	0.9000	0.8182	0.8571	0.7376	0.7405
3	0.7826	0.8030	0.5455	1.0000	0.7059	0.5560	0.6205
4	0.7826	0.8636	0.6364	0.8750	0.7368	0.5594	0.5800
5	0.9130	0.9167	0.8182	1.0000	0.9000	0.8244	0.8374
6	0.8261	0.8712	0.8182	0.8182	0.8182	0.6515	0.6515
7	0.9565	0.9924	0.9091	1.0000	0.9524	0.9125	0.9161
8	0.6818	0.8333	0.7000	0.6364	0.6667	0.3636	0.3651
9	0.8636	0.9583	1.0000	0.7692	0.8696	0.7317	0.7596
Mean	0.8328	0.9077	0.7927	0.8542	0.8103	0.6629	0.6783
SD	0.0721	0.0590	0.1355	0.1152	0.0849	0.1454	0.1432
'Predicti	on: cal	ibrated_					
Ac	curacy	AUC	Recall	Prec.	F1	Карра	MCC
0	0.8261	0.9385	0.9000	0.7500	0.8182	0.6541	0.6641
1	0.8261	0.9154	0.7000	0.8750	0.7778	0.6378	0.6485
2	0.9565	0.9769	1.0000	0.9091	0.9524	0.9125	0.9161
3	0.7391	0.7955	0.5455	0.8571	0.6667	0.4692	0.5017
4	0.7391	0.8182	0.5455	0.8571	0.6667	0.4692	0.5017
5	0.7826	0.9318	0.5455	1.0000	0.7059	0.5560	0.6205
6	0.6522	0.7727	0.7273	0.6154	0.6667	0.3083	0.3130
7	0.9130	0.9848	0.9091	0.9091	0.9091	0.8258	0.8258
8	0.7273	0.8000	0.7000	0.7000	0.7000	0.4500	0.4500
9	0.8182	0.9500	0.9000	0.7500	0.8182	0.6393	0.6500
Mean	0.7980	0.8884	0.7473	0.8223	0.7681	0.5922	0.6091
SD	0.0859	0.0780	0.1624	0.1096	0.0992	0.1725	0.1684
'Prediction		_		Dunn	F4	W	исс
	curacy	AUC	Recall	Prec.	F1	Карра	MCC
0	0.8261	0.9308	0.9000	0.7500	0.8182	0.6541	0.6641
1	0.8261	0.8923	0.7000	0.8750	0.7778	0.6378	0.6485
2	0.9130	0.9769	0.9000	0.9000	0.9000	0.8231	0.8231
3	0.7391	0.7955	0.5455	0.8571	0.6667	0.4692	0.5017
4	0.7391	0.8485	0.5455	0.8571	0.6667	0.4692	0.5017
5	0.8696	0.9015	0.7273	1.0000	0.8421	0.7356	0.7628
6	0.7391	0.8561	0.8182	0.6923	0.7500	0.4812	0.4886
7	0.9565	0.9924	0.9091	1.0000	0.9524	0.9125	0.9161
8	0.7273	0.8333	0.7000	0.7000	0.7000	0.4500	0.4500
pare Model	Predict	tion Sum	maries	0 7000		0 7017	0 7500

```
#Compare Model Prediction Summaries
```

display('Prediction: model1')

results_model1 = predict_model(model1)

display('Prediction: tuned_model1')

results_tuned_model1 = predict_model(tuned_model1)

display('Prediction: calibrated_model1')

results_calibrated_model1 = predict_model(calibrated_model1)

display('Prediction: bagged_model1')

results_bagged_model1 = predict_model(bagged_model1)

[#]display('Prediction: boosted_model1')

[#]results_boosted_model1 = predict_model(boosted_model1)

display('Prediction: blend_soft')

results_boosted_model1 = predict_model(blend_soft)

display('Prediction: blend_hard')

results_boosted_model1 = predict_model(blend_hard)

```
'Prediction: model1'
          Model Accuracy
                            AUC Recall Prec.
                                                    F1
                                                        Kappa
                                                                  MCC
0 MLP Classifier
                                 0.6364
                   0.7407 0.875
                                            0.7 0.6667 0.4553 0.4567
'Prediction: tuned model1'
          Model Accuracy
                            AUC
                                 Recall Prec.
                                                    F1 Kappa
                                                                 MCC
0 MLP Classifier
                                                              0.6128
                   0.8148 0.875
                                 0.7273
                                            0.8 0.7619
                                                        0.611
'Prediction: calibrated_model1'
          Model Accuracy
                             AUC Recall Prec.
                                                  F1
                                                      Kappa
                                                               MCC
                                  0.6364 0.7778 0.7 0.5263 0.533
0 MLP Classifier
                   0.7778 0.8239
'Prediction: bagged_model1'
          Model Accuracy
                             AUC Recall Prec.
                                                                   MCC
                                                     F1 Kappa
                   0.7778 0.8523 0.7273 0.7273 0.7273 0.5398 0.5398
0 MLP Classifier
'Prediction: blend_soft'
           Model Accuracy
                                                               MCC
                              AUC Recall
                                           Prec.
                                                  F1
                                                      Kappa
0 Voting Classifier
                    0.7778 0.858
                                  0.6364 0.7778 0.7 0.5263 0.533
'Prediction: blend_hard
           Model Accuracy
                              AUC Recall Prec.
                                                          Kappa
                                                                    MCC
```

Model Finalization

```
#Choose winning model and set to "winning_model"
 final_model = finalize_model(tuned_model1)
 print (final_model)
    MLPClassifier(activation='identity', alpha=0.5, batch_size='auto', beta_1=0.9,
                   beta_2=0.999, early_stopping=False, epsilon=1e-08,
                   hidden_layer_sizes=[100], learning_rate='constant',
                   learning_rate_init=0.001, max_fun=15000, max_iter=500,
                   momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,
                   power_t=0.5, random_state=123, shuffle=True, solver='adam',
                   tol=0.0001, validation_fraction=0.1, verbose=False,
                   warm_start=False)
results_final_model = predict_model(final_model, data=data_unseen)
holdout_score=pull()
confusion_matrix_final = pd.crosstab(results_final_model[TARGET_COLUMN], results_final_model['Label'], rownames=['Actual'],c
sns.heatmap(confusion_matrix_final, annot=True)
plt.show()
display(results_final_model)
```


	Age	Gender	Chest_Pain	Blood_Pressure	Cholesterol	Blood_Sugar	Rest_EC
0	59	Male	Typical	170	288	<120mg	L\ Hypertroph
1	66	Male	Atypical	160	246	<120mg	Norma
2	59	Male	Atypical	140	221	<120mg	Norma
3	56	Male	Atypical	120	236	<120mg	Norma
4	68	Male	Not Anginal	118	277	<120mg	Norma
5	67	Female	Not Anginal	152	277	<120mg	Norma
6	66	Female	Not Anginal	146	278	<120mg	L\ Hypertroph
7	59	Male	Not Anginal	126	218	120mg+	Norma
8	58	Male	Not Anginal	112	230	<120mg	L\ Hypertroph
9	50	Male	Not Anginal	129	196	<120mg	Norma
10	46	Female	Not Anginal	142	177	<120mg	L\ Hypertroph
11	44	Female	Not Anginal	118	242	<120mg	Norma
12	44	Male	Not Anginal	130	233	<120mg	Norma
13	44	Male	Not Anginal	140	235	<120mg	L\ Hypertroph
14	39	Female	Not Anginal	138	220	<120mg	Norma
15	70	Male	Asymptomatic	130	322	<120mg	L\ Hypertroph
16	64	Female	Asymptomatic	130	303	<120mg	Norma

```
save_model(final_model, 'Final-ML1000-P1-Heart-20211015')
```

```
Transformation Pipeline and Model Successfully Saved
(Pipeline(memory=None,
          steps=[('dtypes',
                  DataTypes_Auto_infer(categorical_features=[],
                                       display_types=False, features_todrop=[],
                                       id columns=[],
                                       ml_usecase='classification',
                                       numerical_features=[],
                                       target='Heart_Disease',
                                       time_features=[])),
                 ('imputer',
                  Simple_Imputer(categorical_strategy='not_available',
                                 fill_value_categorical=None,
                                 fill_value_numerical=None,
                                 numer...
                                batch_size='auto', beta_1=0.9, beta_2=0.999,
                                early_stopping=False, epsilon=1e-08,
                                hidden_layer_sizes=[100],
                                learning_rate='constant',
                                learning_rate_init=0.001, max_fun=15000,
                                max_iter=500, momentum=0.9, n_iter_no_change=10,
                                nesterovs_momentum=True, power_t=0.5,
                                random_state=123, shuffle=True, solver='adam',
                                tol=0.0001, validation_fraction=0.1,
                                verbose=False, warm_start=False)]],
```

verbose=False), 'Final-ML1000-P1-Heart-20211015.pkl')

нурегтгорп

All Models - Conf. Matrix (unseen data)

```
[ ] 1,7 cells hidden
```

Scratchpad

#note

✓ 0s completed at 3:20 PM

×