OCELOT: Overlapped Cell on Tissue Dataset for Histopathology

Jeongun Ryu, Aaron Valero Puche, JaeWoong Shin, Seonwook Park, Biagio Brattoli, Jinhee Lee, Wonkyung Jung, Soo Ick Cho, Kyunghyun Paeng, Chan-Young Ock, Donggeun Yoo, Sérgio Pereira; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023

Paper Review

Hangyeol Jung, Hyunseo Chung Jan, 24, 2025

Abstract/Conclusion

Context & Motivation

- Traditional cell detection focuses on high-magnification patches only
- Paper introduces **OCELOT**, a new dataset with overlapping patches for cell detection and tissue segmentation

Key Contributions

- Multi-organ coverage with both cell and tissue annotations
- Multi-task learning approach improves F1-score by **up to 6.79%** over single-task baseline

Abstract/Conclusion

Core Finding

• Exploiting **cell-tissue relationships** significantly boosts cell detection performance

Broader Impact

- Validate across multiple datasets, indicating robust, generalizable improvements
- Encourage further research on combining tissue context with cell-level analysis

Future Direction

- Investigate two-way interaction (how **cell** information aids **tissue** segmentation)
- Explore larger-scale datasets

Introduction

Pathologist examine **large FoV** first to understand tissue architecture, then **zoom in** to classify <u>individual cells</u>.

Related Works

Cell Detection Datasets

• Many existing sets focus on **single organs** or **multiple organs**.

Tissue Segmentation Datasets

- Proposed for various organs (e.g., prostate [7,23,33], colorectal [50], brain [1]).
- Often do **not overlap** with cell annotations, making **joint training** infeasible.

Lack of Overlapping Annotations

- A few datasets have both tasks, but **no overlapping** between cell and tissue subsets.
- **TIGER** has overlapping cell/tissue annotations, but **no further attempts** at joint cell-tissue modeling.

OCELOT Dataset

Data Composition

$$D = \{(x_s, y_s^c, x_l, y_l^t, c_x, c_y)_i\}_{i=1}^{N}$$

- 1. x_s : Small FoV patch
- 2. y_s^c : Cell annotations
- 3. x_l : Large FoV patch
- 4. y_l^t : Tissue segmentation
- 5. c_x, c_y : Relative coordinates of x_s within x_l
- WSIs from 6 different organs.
- Patch configuration of 1024 X 1024 pixels and 4096 X 4096 pixels.

OCELOT Dataset

Annotation

Cell Annotations/Small FoV Patch

- Two classes: Tumor Cell (TC) vs. Background Cell (BC).
- TC 35.01% | BC 64.99%.

Tissue Annotations/Large FoV Patch

- Pixel-wise segmentation: Cancer Area (CA), Background (BG).
- BG 55.77% | CA 40.17% | UNK 4.06%.

8	Train	Val	Test	Train	Val	Test
Kidney	48	15	18	125	41	41
Head-neck	13	5	6	27	9	10
Prostate	26	12	10	50	17	16
Stomach	15	6	5	36	12	12
Endometrium	38	13	13	86	29	25
Bladder	35	14	14	82	29	26
Total	175	65	66	406	137	130

Slides

Organs

Patch Pairs

Table 2. Dataset size per organ and data subset.

Dataset Splits

• Train, Val, Test in a **6:2:2 ratio**

Empirical Analysis

Interrelation between cell and tissue classes

- This insights are further corroborated by two main empirical observations
- Verified that in OCELOT, around 93% of TC are located within CA

Cell	Tissue			Call	Tissue		
	CA	non-CA		Cell	ST	non-ST	
		5.4K 35.2K		LC	45.4K	5.4K	
(a) OCELOT			(b) TIGER				

Table 3. **Cell counts based on the tissue class.** Each value stands for the number of cells located inside the tissue area. *TC*, *BC*, *LC*, *CA*, and *ST* stand for Tumor Cell, Background Cell, Lymphocyte Cell, Cancer Area tissue, and Stroma tissue, respectively.

CA	non-CA		ST	non-ST	
40.17%	59.83%		30.79%	69.21%	
(a) OC	CELOT		(b) TIGER		

Table 4. **Pixel ratio among tissue classes.** *CA*, and *ST* stand for Cancer Area tissue, and Stroma tissue, respectively.

Tissue-label Leaking Model

Exploratory experiment to see how using tissue labels affects cell detection.

- Tissue-label Leaking Model improves F1-score on OCELOT by +7.69% and +9.76%.
- Not feasible in real-world use, because true tissue labels are unknown at inference.

- 1. Crop & Upsample the tissue annotation (y_l^t) to match the small patch size (x_s).
- 2. Concatenate $(x_s \oplus y_s^t)$ along the channel dimension.
- 3. **Train** a cell detection model with this combined input.

Dual Branch Architecture

- Simple U-net segmentation architectures
- Separated corresponding to tissue and cell tasks

$$\mathcal{D} = \left\{ \left(x_s, y_s^c \middle| x_l, y_l^t \middle| c_x, c_y \right)_i \right\}_{i=1}^N$$

Dual Branch Architecture

- Especially **cell segmentation branch**, make the fixed-radius annotation centered on cell point
- Inference, output as point prediction using predicted **cell probability maps**

Tissue-prediction injection model

- Simple extensions of Tissue label leaking model
- Injection is considered in **four possible points**
 - a. Pred-to-input
 - b. Pred-to-afterEnc
 - c. Pred-to-afterASPP
 - *d. Pred-to-afterDec*
- Align the cell and tissue contents then, just concatenate them in the channel dimensions

Cell-Tissue Feature Sharing Model

- Simplify the **Bi-directional injection logic**
- Each corresponding region go through the shallow 3x3 conv and **concatenated**

Cell-Tissue Feature Sharing Model

- Found the best performing model within 4³ experiments
- Denominated Cell-Tissue Feature Sharing Model

Implementation Details

Aspect	Details
Model Architecture	Both cell and tissue branches based on DeepLabV3+ with a ResNet-34 encoder
Datasets	OCELOT, TIGER, CARP
Training Epochs	300 (OCELOT), 150 (TIGER), 100 (CARP)
Optimizer	Adam
Learning Rate Range	$[5 \times 10^{-5}, 2 \times 10^{-3}]$
Model Selection	Best-performing model on the validation set is used for test set evaluation
Repetitions	All experiments repeated 5 times
Metrics Reporting	Mean and 95% confidence interval of performance metrics
Additional Details	More implementation details available in the supplementary material

Approached Models

Cell-Only

Cell branch

Tissue-label Leaking

Injection Models

Feature-sharing Model

Main Results

F1 scores per Cell detection models

Method	OCELOT		TIC	SER	CARP	
Withou	Val	Test	Val	Test	Val	Test
Cell-only	68.87±1.76	64.44 _{±1.82}	63.89±1.39	53.82±1.23	78.48±0.69	70.96±1.47
Pred-to-input	$73.36{\scriptstyle\pm0.59}$	69.65 ± 3.93	66.00 ± 2.00	$53.29_{\pm 1.30}$	79.46 ± 0.79	72.98 ± 0.82
Pred-to-inter-1	72.74 ± 0.50	70.54 ± 2.20	$\overline{66.19_{\pm 1.02}}$	$55.87{\scriptstyle\pm1.78}$	79.74 ± 0.80	73.05 ± 0.69
Pred-to-inter-2	72.68±1.58	$\overline{71.23_{\pm 0.96}}$	$65.43_{\pm 1.14}$	54.75 ± 2.25	$\overline{79.87_{\pm 0.78}}$	$\overline{73.14_{\pm 1.53}}$
Pred-to-output	66.85 ± 5.62	65.05 ± 3.72	63.02 ± 0.16	$\overline{53.32 \pm 0.42}$	78.92 ± 0.60	72.61 ± 0.95
Feature-sharing	72.30 ± 0.73	68.91±2.52	65.64 ± 1.07	55.10±2.18	79.38±0.74	73.00±0.33
Tissue-label leaking	76.56±0.80	74.20±0.91	69.71±0.61	61.66±1.16	80.13±1.04	72.97±0.49
				Assı	ıme that it	's too late

Main Results

Main Results
F1 scores per Cell detection models within the Organs

Method	population (130)	kidney (41)	endometrium (25)	bladder (26)	prostate (16)	stomach (12)	head-neck (10)
Cell-only	64.44±1.82	64.12±3.41	66.88±3.71	59.42±5.61	65.46±1.64	66.19±8.93	59.24±5.04
Pred-to-input	69.65 ± 3.93	63.37 ± 3.27	73.31 ± 6.35	63.61 ± 4.55	68.36 ± 8.61	69.34 ± 7.15	$75.28{\scriptstyle\pm0.82}$
Pred-to-inter-1	70.54 ± 2.20	66.62 ± 7.30	$\overline{73.05_{\pm 4.14}}$	64.35 ± 3.59	$70.20_{\pm 2.56}$	$71.55 {\scriptstyle\pm5.21}$	74.50 ± 1.52
Pred-to-inter-2	$\overline{71.23{\scriptstyle\pm0.96}}$	68.94±5.65	75.15 ± 2.70	$\overline{64.94}_{\pm 2.34}$	$68.35{\scriptstyle\pm8.83}$	$70.29{\scriptstyle\pm0.81}$	$\overline{73.74_{\pm 1.72}}$
Pred-to-output	65.05 ± 3.72	63.38 ± 4.48	68.21 ± 4.11	59.81 ± 3.96	64.18 ± 8.41	$\overline{67.51 \pm 6.39}$	60.88 ± 6.77
Feature-sharing	68.91 ± 2.52	64.97 ± 5.33	71.28 ± 5.30	63.21 ± 5.31	66.25 ± 9.52	$69.79_{\pm 2.25}$	73.88 ± 4.39
Tissue-label leaking	74.20±0.91	75.75±1.97	72.71±1.12	71.18±0.93	74.56±1.25	75.24±1.71	75.78±0.46

Discussions

Think Backward...

- The most of cells were on the tissues
- Tissue area can be defined as the associations of cells?
- Reverse Cell-Tissue leaking model!

QnA