

Binary and Hexadecimal

- What is a base?
 - A number base is the number of digits or combination of digits that a system of counting uses to represent numbers. A base can be any whole number greater than 0.
- Base 10 Example with 42

10 ³ => 1000	10 ² => 100	10 ¹ => 10	100 => 1
42 // 1000	42 // 100	42 // 10	2 // 1
0	0	4	2

Binary and Hexadecimal

• Binary - Base 2

2 ⁵ => 32	24 => 16	2 ³ => 8	2 ² => 4	21 => 2	2 ⁰ => 1
42 // 32 => 1 42 % 32 => 10	10 // 16 => 0	10 // 8 => 1 10 % 8 => 2	2 // 4 => 0 2 % 4 => 2	2 // 2 => 1 2 % 2 => 0	
1	0	1	0	1	0

Binary and Hexadecimal

Hexadecimal - Base 16

16 ² => 256	16 ¹ => 1	16 ⁰ => 1
42 // 256 => 0 42 % 256 => 42	42 // 16 => 2 42 % 16 => 10	10 // 1 => 10
0	2	А

```
hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
```


Number Practice

Decimal	Binary	Hexadecimal
4	0b100	0x4
6	0b110	0x6
31	0b11111	0x1F
37		
275		

Number Practice

Decimal	Binary	Hexadecimal
4	0b100	0x4
6	0b110	0x6
31	0b11111	0x1F
37	0b100101	0x25
275	0b100010011	0x113

Internet Protocol

History lesson:

- In late 1960s, technology is booming, but communication between networks is limited
- Networks are generally limited to individual research labs or universities
- o In 1974 researchers for DARPA propose the *Transmission Control Program* which is a complex process that would allow for multiple networks to communicate with each other
- Key attributes of the Transmission Control Program
 - Fault tolerant -- data transmitted between networks can be cached and resent
 - End-to-end -- there is no single central systems that can take the whole network down (remember we're in the middle of the Cold War and worried about nuclear attacks)
- Transmission Control Program is too big and is divided into two sections
 - o Transmission Control Protocol (TCP) -- responsible for fault-tolerance
 - Internet Protocol -- responsible for end-to-end nature

What is the Internet?

- A series of tubes
- Loose definition is a series of internetworked systems
- The internet protocol opened the door for this internetworked model
- IP data is transmitted using packets and IP's communication style is called packet switching -- messages are split up into separate packets, delivered to
 - a destination and reassembled
- IP's primary responsibility is maintaining end-to-end state

ARAPNET

World's first packet-switch network and ancestor of modern internet

IPv4 and IPv6

IPv4

- Best known version of IP used when TCP/IP finalized by DARPA in 1983 and still most used today
- IPv4 packet's header consists of at least 13 fields (i.e. sequences of binary bits) and start with a version identifier 0100 (why is it 0100?)
- o IPv4 addresses composed of 4 octets or 8-bit binary numbers such as 192.18.1.1
- IPv4 can support around 4 billion unique addresses

IPv6

- New protocol that allows more addresses
- Different packet header format -- only uses 8 header fields and starts with version identifier
 0110
- O IPv6 addresses uses 128 bits compared to 32 bits and uses eight colon-ed hexadecimal such as 2600:6c5e:157f:d48c:138f:e0ba:6fa7:d859
- Supports 350 undecillion addresses (billion times a billion)

Transport Protocols

- IP is a very low level protocol there isn't much more information than the destination address in a packet -- packets can show up at a computer, but the computer doesn't know which application to give the data payload to
- Transport protocols were developed to help with this final step.
- Transport protocols utilize their own form of addressing called ports
 - Every application will request a unique port
 - When packets arrive, the computer checks the port and sends the data to the application that requested it

Transport Protocols

TCP

- Connection oriented -- slow because it has large headers
- Reliable data transfer
 - Data can't be "lost" across a TCP connection -- receiver will ask transmitter to resend
- Persistent and consistent connections
- Use cases:
 - Websites
 - File downloads
 - Streaming video / audio

UDP

- Connectionless and fast
- Provides no verifications for whether data is received
- Use Cases:
 - VoIP
 - Real-time video
 - Network services
 - Anything where performance matters more than quality

Reference Models

TCP/IP Reference Model

OSI Reference Model

Reference models are high-level overviews of complex topics

Domain Name System

- Allows us to look up a specific IP address by its domain
- Try typing 172.217.7.238:80 into your browser!
- Domain refers to the "friendly" name for the website's host or the server providing the site's content

```
https://students.appacademy.com/my-homework?username="CoolStudent"
protocol subdomain second-level domain TLD application route query parameters
```

- DNS Record Types
 - SOA: Start of Authority
 - NS: Name servers for the zone
 - A / AAAA: MOST IMPORTANT map a resource directly to an IP address
 - A -- IPv4 addresses, AAAA -- IPv6 addresses
 - CNAME acts as an alias inking one domain to another
 - O MX Mail Exchanger -- used by email clients to direct messages to the appropriate mail servers

Network Hardware

Hub

- Simplest networking device performs no network management
- Often considered a 'dumb' device because it just repeats and rebroadcasts data.

Switch

- "Intelligent hubs"
- Able to pass data to a specific device on a network (forward) if it already has a reference (the MAC address of the device), or it can broadcast to all devices (flood) if its MAC address is not in its table yet.
- Have an internal MAC address table

Router

- o Instead of identifying devices via MAC address, they use IP addresses to make decisions
- Can connect to external networks whereas hubs / switches operate only on the local network
- Routers utilize Network Address Translation:
 - single IP address for all external communication then uses IP ports to map incoming data to internal device IP addresses in its routing table