Machine Learning – COMS3007

Neural Networks

(Representations)

Benjamin Rosman

Based heavily on course notes by Geoffrey Hinton, Chris Williams and Victor Lavrenko, Amos Storkey, Eric Eaton, and Clint van Alten

A biological perspective

- Interest in how the brain works (as a computing machine)
 - Human brain: 10¹¹ neurons, 10¹⁴ synapses (connections)
 - Computers are much faster
 - But there are many more neurons
 - Neurons operate in parallel

A biological perspective

- Neurons send signals to each other
- Different parts of the brain do different things
- "One learning algorithm" hypothesis
 - Different areas learn in the same way
- Connection strength (synaptic weights) can change
 - Learning: perform useful computations
 - Strengths modulate the effects of signals between neurons
 - Excitatory vs inhibitory

Artificial neural networks

- Idealised models of how natural neurons work
- Allows us to study:
 - How the brain works
 - How to do computations in parallel rather than sequentially
 - How to solve complex problems

An engineering perspective

• We've spoken a lot about the importance of choosing the right features $\phi(x)$:

- Feature engineering (using domain expertise) has always been the most important aspect
 - But can't we learn these features as well as the weights?

A brief history

- 1943: first artificial neuron: threshold logic unit
 - Warren McCulloch and Walter Pitts
- 1949: weights (synapses) adapt during learning
 - Donald Hebb
- 1957: the perceptron (Frank Rosenblatt)
- 1969: "Perceptrons" (Minsky and Papert)
- 1970s: the Al winter
- 1975: backpropagation learning in networks (Paul Werbos)
- 1986: backprop rediscovered
 - David Rumelhart and Geoffrey Hinton
- 1980s 2006: difficult to train networks
- 2006: new strategies for training networks
 - Geoffrey Hinton, Yann LeCun, Yoshua Bengio
- Since then: deep learning everywhere!

A simple neuron

- Artificial neuron:
 - Output y as a function of inputs x and weights w

Linear neurons

• Let one of these inputs be a bias $b = 1 = x_0$

Sum over all input connections (including bias)

•
$$y = \sum_{i=0}^{d} x_i w_i$$

ith input

Weight on ith input

But this is just linear regression!

Binary threshold neurons

Use a step function (threshold function)

• But this is the perceptron!

Rectified linear neurons (ReLU)

Somewhere between a linear and threshold unit

$$\bullet z = \sum_{i=0}^{d} x_i w_i$$

•
$$y = \begin{cases} z & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid/logistic neurons

Use a logistic function

$$\bullet z = \sum_{i=0}^{d} x_i w_i$$

$$\bullet y = \frac{1}{1 + e^{-z}}$$

But this is logistic regression!

Neuron anatomy

Intuition: stack these neurons to learn features!

Learning features

- Logistic regression performs classification
 - Only with linear decision boundaries!

- To model more complicated systems, we need nonlinear class boundaries
- Use features $\phi(x)$ to get these nonlinear decision boundaries. But what features?
 - Ideally: features that apply to different parts of the input space
- Logistic regression model divides input space into two!
 - Let each feature $\phi_j(x)$ be a logistic regression model (neuron)

Learning features

- Logistic regression model divides input space into two!
 - Let each feature $\phi_j(x)$ be a logistic regression model (neuron) Accuracy: 99.30%

Stacking neurons

Neurons arranged in layers

Feed-forward networks

Sometimes called multilayer perceptrons (MLPs)

- Input layers
 - Raw data
 - As provided by sensor measurements
- Feed-forward networks (most common)
 - Outputs from one layer become inputs to the next
- Working forward through the network:
 - Apply input function to compute total input
 - Usually just the sum of inputs
 - Activation function transforms input to final value
 - Usually nonlinear function
- Output layer: computation target

Computations

Activation function

Bias = 1

- $a_i^{(j)}$ = activation of unit i in layer j
- $\Theta^{(j)} = \text{weight matrix: mapping from layer j to j+1}$

•
$$a_1^{(2)} = g \left(\Theta_{10}^{(1)} x_0 + \Theta_{11}^{(1)} x_1 + \Theta_{12}^{(1)} x_2 + \Theta_{13}^{(1)} x_3 \right)$$

•
$$a_2^{(2)} = g \left(\Theta_{20}^{(1)} x_0 + \Theta_{21}^{(1)} x_1 + \Theta_{22}^{(1)} x_2 + \Theta_{23}^{(1)} x_3 \right)$$

•
$$a_3^{(2)} = g \left(\Theta_{30}^{(1)} x_0 + \Theta_{31}^{(1)} x_1 + \Theta_{32}^{(1)} x_2 + \Theta_{33}^{(1)} x_3 \right)$$

•
$$h_{\Theta}(x) = a_1^{(3)} = g\left(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}\right)$$

• If s_j units in layer j, s_{j+1} in layer j+1: $\dim(\Theta^{(j)}) = s_{j+1} \times (s_j + 1)$

- Assume all activation functions are g()
- Output?
- $h = g(6a_1 + 2a_2 1)$
- h = g(6g(7x + 3y 8) + 2g(9x + 5y 4) 1)

- Weight matrix (layer 1) = $W^{(1)} = \begin{bmatrix} -8 & 7 & 3 \\ -4 & 9 & 5 \end{bmatrix}$
- Weight matrix (layer 2) = $W^{(2)} = [-1 \ 6 \ 2]$
- Assume all activation functions are ReLUs
- E.g. Input: $x = (1.5, -1)^T$
- Output?
 - Compute a_1 , a_2 and then propagate forward to h

•
$$W^{(1)} = \begin{bmatrix} -8 & 7 & 3 \\ -4 & 9 & 5 \end{bmatrix}$$
, $W^{(2)} = \begin{bmatrix} -1 & 6 & 2 \end{bmatrix}$

- All activation functions are ReLUs
- Input: $x = (1.5, -1)^T \rightarrow \text{augment to } x = (1, 1.5, -1)^T$
- Total input to a_1 :

•
$$\sum_{i=1}^{3} w_{1i}^{(1)} x_i = (-8)(1) + (7)(1.5) + (3)(-1) = -0.5$$

- Activation at a_1 (ReLU):
 - -0.5 < 0 so output $a_1 = 0$
- Total input to a_2 :

•
$$\sum_{i=1}^{3} w_{2i}^{(1)} x_i = (-4)(1) + (9)(1.5) + (5)(-1) = 4.5$$

- Activation at a_2 (ReLU):
 - 4.5 > 0 so output $a_2 = 4.5$

•
$$W^{(1)} = \begin{bmatrix} -8 & 7 & 3 \\ -4 & 9 & 5 \end{bmatrix}$$
, $W^{(2)} = \begin{bmatrix} -1 & 6 & 2 \end{bmatrix}$

- All activation functions are ReLUs
- $a_1 = 0$
- $a_2 = 4.5$
- Augment with $a_0 = 1$: $a = (1, 0, 4.5)^T$
- Total input to *h*:

•
$$\sum_{i=1}^{3} w_i^{(2)} a_i = (-1)(1) + (6)(0) + (2)(4.5) = 8$$

- Activation at h (ReLU):
 - 8 > 0 so output h = 8

Vectorization

•
$$a_1^{(2)} = g\left(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3\right) = g(z_1^{(2)})$$

•
$$a_2^{(2)} = g \left(\Theta_{20}^{(1)} x_0 + \Theta_{21}^{(1)} x_1 + \Theta_{22}^{(1)} x_2 + \Theta_{23}^{(1)} x_3 \right) = g(z_2^{(2)})$$

•
$$a_3^{(2)} = g\left(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3\right) = g(z_3^{(2)})$$

•
$$h_{\Theta}(x) = g \left(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)} \right) = g(z_1^{(3)})$$

Vectorized steps:

•
$$z^{(2)} = \Theta^{(1)}x$$

•
$$a^{(2)} = g(z^{(2)})$$

• Add
$$a_0^{(2)} = 1$$

•
$$\mathbf{z}^{(3)} = \Theta^{(2)} \mathbf{a}^{(2)}$$

•
$$h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$$

•
$$W^{(1)} = \begin{bmatrix} -8 & 7 & 3 \\ -4 & 9 & 5 \end{bmatrix}$$
, $W^{(2)} = \begin{bmatrix} -1 & 6 & 2 \end{bmatrix}$

- All activation functions are ReLUs
- Input: $x = (1.5, -1)^T \rightarrow \text{augment to } x = (1, 1.5, -1)^T$
- Total input $z^{(2)}$ at layer 2:

•
$$z^{(2)} = W^{(1)}x = \begin{bmatrix} -8 & 7 & 3 \\ -4 & 9 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1.5 \\ -1 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 4.5 \end{bmatrix}$$

- Apply ReLU operator: $a^{(2)} = g(z^{(2)})^{1} = (0, 4.5)^{T}$
- Augment with $a_0 = 1$: $a = (1, 0, 4.5)^T$
- Total input $z^{(3)}$ at layer 3:

•
$$z^{(3)} = W^{(2)}a = \begin{bmatrix} -1 & 6 & 2 \end{bmatrix}(1, 0, 4.5)^T = 8$$

• Apply ReLU operator: $h = g(z^{(3)}) = 8$

Hidden neurons

• If each neuron produces a sigmoid:

• Two can combine to give a ridge: (in the next layer)

• These can create more complex structures:

Architectures

Can build many different architectures

• E.g.

- Let L be the number of layers, s_i = nodes on layer i
 - Hyperparameters
- Usually: $s_0 = d$ (# input features), $s_{L-1} = K$ (# classes)

Multiclass classification

Pedestrian

Car

Motorcycle

Truck

$$h_{\Theta}(\mathbf{x}) \in \mathbb{R}^K$$

We want:

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 $h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ $h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$ $h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$ $h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$

when pedestrian

when car

when motorcycle

when truck

Multiclass classification

$$h_{\Theta}(\mathbf{x}) \in \mathbb{R}^K$$

We want:

$$h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

when pedestrian when car when motorcycle

when truck

- Given data $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$
- Convert labels to 1-of-K representation

• E.g.
$$\mathbf{y}_i = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 when motorcycle, $\mathbf{y}_i = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ when car, etc.

Representation power

- Every Boolean function can be represented by a network with a single hidden layer
- Every bounded continuous function can be approximated with arbitrarily small error by a network with one hidden layer
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers
- Neural networks are universal function approximators
- But:
 - A function being representable does not tell us how many hidden units would be required
 - May be exponential!
 - Nor how easily this can be learned!

Boolean functions – NOT

- Consider NOT
- $x_1 \in \{0,1\}$
- $y = NOT x_1$

x_1	$h_{\theta}(x)$
0	$g(10) \approx 1$
1	$g(-10) \approx 0$

Boolean functions – AND

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

$$h_{\Theta}(\mathbf{x}) = g(-30 + 20x_1 + 20x_2)$$

x_{1}	x_2	$h_{\Theta}(\mathbf{x})$
0	0	<i>g</i> (-30) ≈ 0
0	1	<i>g</i> (-10) ≈ 0
1	0	<i>g</i> (-10) ≈ 0
1	1	<i>g</i> (10) ≈ 1

Boolean functions — OR

- What about OR
- $x_1, x_2 \in \{0,1\}$
- $y = x_1 OR x_2$

Boolean functions — NOT XOR

• What about NOT XOR: $y = NOT (x_1 XOR x_2)$

Feature learning: images

Traditionally:

Neural network:

Feed raw pixels into network

Write a set of feature extractors: e.g. texture and edge detectors

Each layer has increasingly abstract representations

Final layer classifies

Convolutional neural networks

Working with images → too many weights! (input neuron pre pixel)

ConvNets/CNNs: learn small patterns of shared weights

Convolutional Nets

- Use the same set of weights (a small patch the filter) throughout the image
- Learn the weights → feature detectors

Convolutional Nets

- Use the same set of weights (a small patch the filter) throughout the image
- Learn the weights → feature detectors

- Use the same set of weights (a small patch the filter) throughout the image
- Learn the weights → feature detectors

- Use the same set of weights (a small patch the filter) throughout the image
- Learn the weights → feature detectors

- Use the same set of weights (a small patch the filter) throughout the image
- Learn the weights → feature detectors

- Learn multiple feature detectors
- Corresponding maps indicate presence of features

- Learn multiple feature detectors
- Corresponding maps indicate presence of features

- Learn multiple feature detectors
- Corresponding maps indicate presence of features

- Learn multiple feature detectors
- Corresponding maps indicate presence of features

- Learn multiple feature detectors
- Corresponding maps indicate presence of features

Repeat process on next layer

Think of all the data needed to train this!

Extracted features

• Features (filters) in the first hidden layer

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems*. 2012.

Deep Learning: Stacked Features

74

Recap

- Brains as motivation
- Different types of neurons
 - Relation to linear regression, logistic regression, perceptrons
- Feed-forward networks
- Hidden neurons
- Multiclass classification
- Boolean functions
- Convolutional networks
- Next time: training a neural network