

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A61K 38/00, 39/00, 39/395, 39/40, C07H 21/04, C07K 1/00, C12N 15/00, C12P 21/06, G01N 33/53		A1	(11) International Publication Number: WO 98/19689 (43) International Publication Date: 14 May 1998 (14.05.98)
(21) International Application Number: PCT/US97/19226		ZARFOS, Phillip, N. [US/US]; 1907 Yorktown North, Norristown, PA 19403 (US).	
(22) International Filing Date: 27 October 1997 (27.10.97)		(74) Agents: GIMMI, Edward, R. et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).	
(30) Priority Data: 60/029,930 1 November 1996 (01.11.96) US		(81) Designated States: CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
<p>(71) Applicants (<i>for all designated States except US</i>): SMITHKLINE BEECHAM CORPORATION [US/US]; One Franklin Plaza, Philadelphia, PA 19103 (US). SMITHKLINE BEECHAM PLC [GB/GB]; New Horizons Court, Brentford, Middlesex TW8 9EP (GB).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): BLACK, Michael, Terance [GB/US]; 502 Milhouse Way, Chester Springs, PA 19425 (US). HODGSON, John, Edward [GB/US]; 260 Lapp Road, Malvern, PA 19355 (US). KNOWLES, David, Justin, Charles [GB/GB]; Downsvie House, 45 Cronks Hill Road, Redhill, Surrey RH1 6LY (GB). LONETTO, Michael, Arthur [US/US]; 18 Victoria Circle, Collegeville, PA 19426 (US). NICHOLAS, Richard, Oakley [GB/US]; 355 Carmen Drive, Collegeville, PA 19426 (US). REID, Robert, H., Jr. [US/US]; 8 Pacer Lane, East Norriton, PA 19401 (US).</p>			
<p>(54) Title: NOVEL CODING SEQUENCES</p> <p>(57) Abstract</p> <p>This invention relates to newly identified Streptococcal polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

NOVEL CODING SEQUENCES

FIELD OF THE INVENTION

This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, in these and in other regards, the invention relates to novel polynucleotides and polypeptides set forth in Table 1.

BACKGROUND OF THE INVENTION

The Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including otitis media, pneumonia and meningitis. Since its isolation more than 100 years ago, *Streptococcus pneumoniae* (herein *S. pneumoniae*) has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact, the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe. Despite the vast amount of research with *S. pneumoniae*, many questions concerning the virulence of this microbe remain.

While certain Streptococcal factors associated with pathogenicity have been identified, e.g., capsule polysaccharides, peptidoglycans, pneumolysins, PspA Complement factor H binding component, autolysin, neuraminidase, peptide permeases, hydrogen peroxide, IgA1 protease, the list is certainly not complete. Further very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.

GUG is used as an initiating nucleotide, rather than ATG, for a significant number of mRNA's in both Gram positive and Gram negative bacteria. Statistics on the frequency of NTG codons in the start codon for several bacterial species are available on line via computer at http://biochem.otago.ac.nz:800/Transterm/home_page.html.

A discussion of initiation codons in *B. subtilis* is set forth in Vellanoweth, RL 1993 in Bacillus subtilis and other Gram Positive Bacteria, Biochemistry, Physiology and Molecular Genetics, Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-711. Vellenworth indicates a major difference between *B. subtilis* and the gram-negative organisms is in the choice of initiation codon. 91% of the sequenced *E. coli*

genes start with AUG. By contrast, about 30% of *B. subtilis* and other clostridial branch genes start with UUG or GUG. Moreover, CUG functions as a start codon in *B. subtilis*. Mutations of an AUG initiation codon to GUG or UUG often cause decreased expression in *B. subtilis* and *E. coli*. Generally, translation efficiency is higher with AUG initiation codons. A strong Shine-Delgarno ribosome binding site, however, can compensate almost fully for a weak initiation codon. It has been reported that genes with a range of expression levels have initiation codons other than ATG in gram positives (Vellanoweth, RL.1993 in Bacillus subtilis and other Gram Positive Bacteria, Biochemistry, Physiology and Molecular Genetics, Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-711).

Provided herein are ORF sequences from genes possessing GUG initiation codons and proteins expressed therefrom and homologues thereto to be used for screening for antimicrobial compounds. Clearly, there is a need for polypeptide and polynucleotide sequences that may be used to screen for antimicrobial compound and which may also be used to determine the roles of such sequences in pathogenesis of infection, dysfunction and disease. There is also need, therefore, for identification and characterization of such sequences which may play a role in preventing, ameliorating or correcting infections, dysfunctions or diseases.

The polypeptides of the invention have amino acid sequence homology to a known protein(s) as set forth in Table 1.

SUMMARY OF THE INVENTION

It is an object of the invention to provide polypeptides that have been identified as novel polypeptides by homology between an amino acid sequence selected from the group consisting of the sequences set out in Table 1 and a known amino acid sequence or sequences of other proteins such as the protein identities listed in Table 1.

It is a further object of the invention to provide polynucleotides that encode novel polypeptides, particularly polynucleotides that encode polypeptides of *Streptococcus pneumoniae*.

In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding a polypeptide comprising a sequence selected from the group consisting of the sequences set out in Table 1, or a variant of any of these sequences.

In another particularly preferred embodiment of the invention there is a novel protein from *Streptococcus pneumoniae* comprising an amino acid sequence selected from the group consisting of the sequences set out in Table 1, or a variant of any of these sequences.

In accordance with another aspect of the invention there is provided an isolated nucleic acid molecule encoding a mature polypeptide expressible by the *Streptococcus pneumoniae* 0100993 strain contained in the deposited strain.

A further aspect of the invention there are provided isolated nucleic acid molecules encoding a polypeptide of the invention, particularly *Streptococcus pneumoniae* polypeptide, and including mRNAs, cDNAs, genomic DNAs. Further embodiments of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.

In accordance with another aspect of the invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunization. Among the particularly preferred embodiments of the invention are naturally occurring allelic variants of a polypeptide of the invention and polypeptides encoded thereby.

Another aspect of the invention there are provided novel polypeptides of *Streptococcus pneumoniae* as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.

Among the particularly preferred embodiments of the invention are variants of the polypeptides of the invention encoded by naturally occurring alleles of their genes.

In a preferred embodiment of the invention there are provided methods for producing the aforementioned polypeptides.

In accordance with yet another aspect of the invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents, including, for example, antibodies.

In accordance with certain preferred embodiments of the invention, there are provided products, compositions and methods for assessing expression of the polypeptides and polynucleotides of the invention, treating disease, for example, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid, assaying genetic variation, and administering a polypeptide or polynucleotide of the invention to an organism to raise an immunological response against a bacteria, especially a *Streptococcus pneumoniae* bacteria.

In accordance with certain preferred embodiments of this and other aspects of the invention there are provided polynucleotides that hybridize to a polynucleotide sequence of the invention, particularly under stringent conditions.

In certain preferred embodiments of the invention there are provided antibodies against polypeptides of the invention.

In other embodiments of the invention there are provided methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity of a polypeptide or polynucleotide of the invention comprising: contacting a polypeptide or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity of the polypeptide or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide or polynucleotide.

In accordance with yet another aspect of the invention, there are provided agonists and antagonists of the polypeptides and polynucleotides of the invention, preferably bacteriostatic or bacteriocidal agonists and antagonists.

In a further aspect of the invention there are provided compositions comprising a polynucleotide or a polypeptide of the invention for administration to a cell or to a multicellular organism.

Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following descriptions and from reading the other parts of the present disclosure.

GLOSSARY

The following definitions are provided to facilitate understanding of certain terms used frequently herein.

"Disease(s)" means any bacterial infection, but preferably a streptococcal infection, such as, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema, endocarditis, meningitis, and infection of cerebrospinal fluid.

"Host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence.

"Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings

of such sequences. "Identity" and "similarity" can be readily calculated by known methods, — including but not limited to those described in (*Computational Molecular Biology*, Lesk, A.M., ed., Oxford University Press, New York, 1988; *Biocomputing: Informatics and Genome Projects*, Smith, D.W., ed., Academic Press, New York, 1993; *Computer Analysis of Sequence Data*, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; *Sequence Analysis in Molecular Biology*, von Heinje, G., Academic Press, 1987; and *Sequence Analysis Primer*, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM *J. Applied Math.*, 48: 1073 (1988). Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., *Nucleic Acids Research* 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., *J. Molec. Biol.* 215: 403-410 (1990). The BLAST X program is publicly available from NCBI and other sources (*BLAST Manual*, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., *J. Mol. Biol.* 215: 403-410 (1990). As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence it is intended that the nucleotide sequence of the tested polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. Analogously , by a polypeptide having an amino acid sequence having at least, for example, 95% identity to a reference amino acid sequence is intended that the test amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino

acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

"Isolated" means altered "by the hand of man" from its natural state, *i.e.*, if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.

"Polynucleotide(s)" generally refers to any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotide(s)" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions. In addition, "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. As used herein, the term "polynucleotide(s)" also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for

example, simple and complex cells. "Polynucleotide(s)" also embraces short polynucleotides often referred to as oligonucleotide(s).

"Polypeptide(s)" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds. "Polypeptide(s)" refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene encoded amino acids. "Polypeptide(s)" include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini. Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenylation, sulfation, transfer-RNA mediated addition of amino acids to proteins, such as arginylation, and ubiquitination. See, for instance, *PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES*, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993) and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in *POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS*, B. C. Johnson, Ed., Academic Press, New York (1983); Seifter et al., *Meth. Enzymol.* 182:626-646 (1990) and Rattan et al., *Protein Synthesis: Posttranslational Modifications and Aging*, Ann. N.Y. Acad. Sci. 663: 48-62 (1992). Polypeptides may be branched or cyclic, with or without branching. Cyclic, branched and branched circular polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well.

"Variant(s)" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans.

DESCRIPTION OF THE INVENTION

Each of polynucleotide and polypeptide sequences provided herein may be used in the discovery and development of antibacterial compounds. Upon expression of the sequences with the appropriate initiation and termination codons the encoded polypeptide can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding preferably the amino terminal regions of the encoded protein or the Shine-Delgarno region can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The

first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. Because each of the sequences contains an open reading frame (ORF) with an appropriate initiation and termination codons, the encoded protein upon expression can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

It is believed that bacteria possess a number of ways of regulating gene expression levels, especially in subtle degrees, and the interplay between ribosome binding site and initiation codon is utilized for this purpose for these genes. It is also believed that such genes will be important targets for antimicrobial drug discovery, particularly since pathogenesis genes are believed undergo gene expression regulation during the pathogenesis process. Therefore, the invention provides ORF sequences possessing a GTG (GUG) initiation codon and protein targets expressed therefrom.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

ORF Gene Expression

Recently techniques have become available to evaluate temporal gene expression in bacteria, particularly as it applies to viability under laboratory and infection conditions. A number of methods can be used to identify genes which are essential to survival *per se*, or essential to the establishment/maintenance of an infection. Identification of an ORF unknown by one of these methods yields additional information about its function and permits the selection of such an ORF for further development as a screening target. Briefly, these approaches include:

1) Signature Tagged Mutagenesis (STM): This technique is described by Hensel et al., Science 269: 400-403(1995), the contents of which is incorporated by reference for background purposes. Signature tagged mutagenesis identifies genes necessary for the establishment/maintenance of infection in a given infection model.

The basis of the technique is the random mutagenesis of target organism by various means (e.g., transposons) such that unique DNA sequence tags are inserted in close proximity to the site of mutation. The tags from a mixed population of bacterial mutants and bacteria recovered from an infected hosts are detected by amplification, radiolabeling and hybridisation analysis. Mutants attenuated in virulence are revealed by absence of the tag from the pool of bacteria recovered from infected hosts.

In *Streptococcus pneumoniae*, because the transposon system is less well developed, a more efficient way of creating the tagged mutants is to use the insertion-duplication mutagenesis technique as described by Morrison et al., J. Bacteriol. 159:870 (1984) the contents of which is incorporated by reference for background purposes.

2) In Vivo Expression Technology (IVET): This technique is described by Camilli et al., Proc. Nat'l. Acad. Sci. USA. 91:2634-2638 (1994), the contents of which is incorporated by reference for background purposes. IVET identifies genes up-regulated during infection when compared to laboratory cultivation, implying an important role in infection. ORF identified by this technique are implied to have a significant role in infection establishment/maintenance.

In this technique random chromosomal fragments of target organism are cloned upstream of a promoter-less recombinase gene in a plasmid vector. This construct is introduced into the target organism which carries an antibiotic resistance gene flanked by resolvase sites. Growth in the presence of the antibiotic removes from the population those fragments cloned into the plasmid vector capable of supporting transcription of the recombinase gene and therefore have caused loss of antibiotic resistance. The resistant pool

is introduced into a host and at various times after infection bacteria may be recovered and assessed for the presence of antibiotic resistance. The chromosomal fragment carried by each antibiotic sensitive bacterium should carry a promoter or portion of a gene normally upregulated during infection. Sequencing upstream of the recombinase gene allows identification of the up regulated gene.

3) Differential display: This technique is described by Chuang *et al.*, *J. Bacteriol.* 175:2026-2036 (1993), the contents of which is incorporated by reference for background purposes. This method identifies those genes which are expressed in an organism by identifying mRNA present using randomly-primed RT-PCR. By comparing pre-infection and post infection profiles, genes up and down regulated during infection can be identified and the RT-PCR product sequenced and matched to ORF 'unknowns'.

4) Generation of conditional lethal mutants by transposon mutagenesis:

This technique, described by de Lorenzo, V. *et al.*, *Gene* 123:17-24 (1993); Neuwald, A. F. *et al.*, *Gene* 125: 69-73(1993); and Takiff, H. E. *et al.*, *J. Bacteriol.* 174:1544-1553(1992), the contents of which is incorporated by reference for background purposes, identifies genes whose expression are essential for cell viability.

In this technique transposons carrying controllable promoters, which provide transcription outward from the transposon in one or both directions, are generated. Random insertion of these transposons into target organisms and subsequent isolation of insertion mutants in the presence of inducer of promoter activity ensures that insertions which separate promoter from coding region of a gene whose expression is essential for cell viability will be recovered. Subsequent replica plating in the absence of inducer identifies such insertions, since they fail to survive. Sequencing of the flanking regions of the transposon allows identification of site of insertion and identification of the gene disrupted. Close monitoring of the changes in cellular processes/morphology during growth in the absence of inducer yields information on likely function of the gene. Such monitoring could include flow cytometry (cell division, lysis, redox potential, DNA replication), incorporation of radiochemically labeled precursors into DNA, RNA, protein, lipid, peptidoglycan, monitoring reporter enzyme gene fusions which respond to known cellular stresses.

5) Generation of conditional lethal mutants by chemical mutagenesis: This technique is described by Beckwith, J., *Methods in Enzymology* 204: 3-18(1991), the contents of which are incorporated herein by reference for background purposes. In this technique random chemical mutagenesis of target organism, growth at

temperature other than physiological temperature (permissive temperature) and subsequent replica plating and growth at different temperature (e.g. 42°C to identify ts, 25°C to identify cs) are used to identify those isolates which now fail to grow (conditional mutants). As above close monitoring of the changes upon growth at the non-permissive temperature yields information on the function of the mutated gene. Complementation of conditional lethal mutation by library from target organism and sequencing of complementing gene allows matching with unknown ORF.

6) RT-PCR: *Streptococcus pneumoniae* messenger RNA is isolated from bacterial infected tissue e.g. 48 hour murine lung infections, and the amount of each mRNA species assessed by reverse transcription of the RNA sample primed with random hexanucleotides followed by PCR with gene specific primer pairs. The determination of the presence and amount of a particular mRNA species by quantification of the resultant PCR product provides information on the bacterial genes which are transcribed in the infected tissue. Analysis of gene transcription can be carried out at different times of infection to gain a detailed knowledge of gene regulation in bacterial pathogenesis allowing for a clearer understanding of which gene products represent targets for screens for novel antibacterials. Because of the gene specific nature of the PCR primers employed it should be understood that the bacterial mRNA preparation need not be free of mammalian RNA. This allows the investigator to carry out a simple and quick RNA preparation from infected tissue to obtain bacterial mRNA species which are very short lived in the bacterium (in the order of 2 minute halflives). Optimally the bacterial mRNA is prepared from infected murine lung tissue by mechanical disruption in the presence of TRIzole (GIBCO-BRL) for very short periods of time, subsequent processing according to the manufacturers of TRIzole reagent and DNAase treatment to remove contaminating DNA. Preferably the process is optimised by finding those conditions which give a maximum amount of *Streptococcus pneumoniae* 16S ribosomal RNA as detected by probing Northerns with a suitably labelled sequence specific oligonucleotide probe. Typically a 5' dye labelled primer is used in each PCR primer pair in a PCR reaction which is terminated optimally between 8 and 25 cycles. The PCR products are separated on 6% polyacrylamide gels with detection and quantification using GeneScanner (manufactured by ABI).

Each of these techniques may have advantages or disadvantage depending on the particular application. The skilled artisan would choose the approach that is the most relevant with the particular end use in mind.

Use of the of these technologies when applied to the ORFs of the present invention — enables identification of bacterial proteins expressed during infection, inhibitors of which would have utility in anti-bacterial therapy.

The invention relates to novel polypeptides and polynucleotides as described in greater detail below. In particular, the invention relates to polypeptides and polynucleotides of *Streptococcus pneumoniae*, which is related by amino acid sequence homology to known polypeptide as set forth in Table 1. The invention relates especially to compounds having the nucleotide and amino acid sequence selected from the group consisting of the sequences set out in Table 1, and to the nucleotide sequences of the DNA in the deposited strain and amino acid sequences encoded thereby.

Deposited materials

The deposit has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure. The strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. The deposit is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. §112.

A deposit containing a *Streptococcus pneumoniae* bacterial strain has been deposited with the National Collections of Industrial and Marine Bacteria Ltd. (NCIMB), 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland on 11 April 1996 and assigned NCIMB Deposit No. 40794. The *Streptococcus pneumoniae* bacterial strain deposit is referred to herein as "the deposited bacterial strain" or as "the DNA of the deposited bacterial strain."

The deposited material is a bacterial strain that contains the full length FabH DNA, referred to as "NCIMB 40794" upon deposit.

The sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.

A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.

The deposited strain contains the full length genes comprising the polynucleotides set forth in Table 1. The sequence of the polynucleotides contained in the deposited strain, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.

Polypeptides

The polypeptides of the invention include the polypeptides set forth in Table 1 (in particular the mature polypeptide) as well as polypeptides and fragments, particularly those which have the biological activity of a polypeptide of the invention, and also those which have at least 50%, 60% or 70% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1 or the relevant portion, preferably at least 80% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and more preferably at least 90% similarity (more preferably at least 90% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and still more preferably at least 95% similarity (still more preferably at least 95% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.

The invention also includes polypeptides of the formula:

wherein, at the amino terminus, X is hydrogen, and at the carboxyl terminus, Y is hydrogen or a metal, R₁ and R₃ are any amino acid residue, n is an integer between 1 and 2000, and R₂ is an amino acid sequence of the invention, particularly an amino acid sequence selected from the group set forth in Table 1. In the formula above R₂ is oriented so that its amino terminal residue is at the left, bound to R₁, and its carboxy terminal residue is at the right, bound to R₃. Any stretch of amino acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. In preferred embodiments n is an integer between 1 and 1000 or 2000.

A fragment is a variant polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the aforementioned polypeptides. As with polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region, a single larger polypeptide.

Preferred fragments include, for example, truncation polypeptides having a portion of the amino acid sequence of Table 1, or of variants thereof, such as a continuous series of residues that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus. Degradation forms of the polypeptides of the invention in a host cell, particularly a *Streptococcus pneumoniae*, are also preferred. Further preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil

and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Also preferred are biologically active fragments which are those fragments that mediate activities of polypeptides of the invention, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those fragments that are antigenic or immunogenic in an animal, especially in a human. Particularly preferred are fragments comprising receptors or domains of enzymes that confer a function essential for viability of *Streptococcus pneumoniae* or the ability to initiate, or maintain cause disease in an individual, particularly a human.

Variants that are fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.

In addition to the standard single and triple letter representations for amino acids, the term "X" or "Xaa" is also used. "X" and "Xaa" mean that any of the twenty naturally occurring amino acids may appear at such a designated position in the polypeptide sequence.

Polynucleotides

The nucleotide sequences disclosed herein can be obtained by synthetic chemical techniques known in the art or can be obtained from *S. pneumoniae* 0100993 by probing a DNA preparation with probes constructed from the particular sequences disclosed herein. Alternatively, oligonucleotides derived from a disclosed sequence can act as PCR primers in a process of PCR-based cloning of the sequence from a bacterial genomic source. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

To obtain the polynucleotide encoding the protein using the DNA sequence given herein typically a library of clones of chromosomal DNA of *S.pneumoniae* 0100993 in *E. coli* or some other suitable host is probed with a radiolabelled oligonucleotide, preferably a 17mer or longer, derived from the partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using high stringency washes. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by

Maniatis, T., Fritsch, E.F. and Sambrook, J. in MOLECULAR CLONING, A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory (see: Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70).

Moreover, another aspect of the invention relates to isolated polynucleotides that encode the polypeptides of the invention having a deduced amino acid sequence selected from the group consisting of the sequences in Table 1 and polynucleotides closely related thereto and variants thereof.

Using the information provided herein, such as the polynucleotide sequences set out in Table 1, a polynucleotide of the invention encoding polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using *Streptococcus pneumoniae* 0100993 cells as starting material, followed by obtaining a full length clone. For example, to obtain a polynucleotide sequence of the invention, such as a sequence set forth in Table 1, typically a library of clones of chromosomal DNA of *Streptococcus pneumoniae* 0100993 in *E.coli* or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent conditions. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently, such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook et al., *MOLECULAR CLONING, A LABORATORY MANUAL*, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). (see in particular Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70). Illustrative of the invention, the polynucleotides set out in Table 1 were discovered in a DNA library derived from *Streptococcus pneumoniae* 0100993.

The DNA sequences set out in Table 1 each contains at least one open reading frame encoding a protein having at least about the number of amino acid residues set forth in Table 1. The start and stop codons of each open reading frame (herein "ORF") DNA are the first three and the last three nucleotides of each polynucleotide set forth in Table 1.

Certain polynucleotides and polypeptides of the invention are structurally related to known proteins as set forth in Table 1. These proteins exhibit greatest homology to the homologue listed in Table 1 from among the known proteins.

The invention provides a polynucleotide sequence identical over its entire length to each coding sequence in Table 1. Also provided by the invention is the coding sequence for the mature polypeptide or a fragment thereof, by itself as well as the coding sequence for the mature polypeptide or a fragment in reading frame with other coding sequence, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence. The polynucleotide may also contain non-coding sequences, including for example, but not limited to non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence which encode additional amino acids. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain embodiments of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz *et al.*, *Proc. Natl. Acad. Sci., USA* 86: 821-824 (1989), or an HA tag (Wilson *et al.*, *Cell* 37: 767 (1984). Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.

The invention also includes polynucleotides of the formula:

wherein, at the 5' end of the molecule, X is hydrogen, and at the 3' end of the molecule, Y is hydrogen or a metal, R₁ and R₃ is any nucleic acid residue, n is an integer between 1 and 3000, and R₂ is a nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from the group set forth in Table 1. In the polynucleotide formula above R₂ is oriented so that its 5' end residue is at the left, bound to R₁, and its 3' end residue is at the right, bound to R₃. Any stretch of nucleic acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. In a preferred embodiment n is an integer between 1 and 1000, or 2000 or 3000.

The term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the *Streptococcus pneumoniae* having an amino acid sequence set out in Table 1. The term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by integrated phage or an insertion sequence or editing) together with additional regions, that also may contain coding and/or non-coding sequences.

The invention further relates to variants of the polynucleotides described herein that encode for variants of the polypeptide having the deduced amino acid sequence of Table 1.

Variants that are fragments of the polynucleotides of the invention may be used to synthesize full-length polynucleotides of the invention.

Further particularly preferred embodiments are polynucleotides encoding polypeptide variants, that have the amino acid sequence of a polypeptide of Table 1 in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of such polynucleotide.

Further preferred embodiments of the invention are polynucleotides that are at least 50%, 60% or 70% identical over their entire length to a polynucleotide encoding a polypeptide having the amino acid sequence set out in Table 1, and polynucleotides that are complementary to such polynucleotides. Alternatively, most highly preferred are polynucleotides that comprise a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the deposited strain and polynucleotides complementary thereto. In this regard, polynucleotides at least 90% identical over their entire length to the same are particularly preferred, and among these particularly preferred polynucleotides, those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.

A preferred embodiment is an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of: a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*; and a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 50% identical to the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*.

Preferred embodiments are polynucleotides that encode polypeptides that retain substantially the same biological function or activity as the mature polypeptide encoded by the DNA of Table 1.

The invention further relates to polynucleotides that hybridize to the herein above-described sequences. In this regard, the invention especially relates to polynucleotides that hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the terms "stringent conditions" and "stringent hybridization conditions" mean hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium

citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at about 65°C. Hybridization and wash conditions are well known and exemplified in Sambrook, *et al.*, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein.

The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence set forth in Table 1 under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or a fragment thereof; and isolating said DNA sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers described elsewhere herein.

As discussed additionally herein regarding polynucleotide assays of the invention, for instance, polynucleotides of the invention as discussed above, may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding a polypeptide and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to a polynucleotide set forth in Table 1. Such probes generally will comprise at least 15 bases. Preferably, such probes will have at least 30 bases and may have at least 50 bases. Particularly preferred probes will have at least 30 bases and will have 50 bases or less.

For example, the coding region of each gene that comprises or is comprised by a polynucleotide set forth in Table 1 may be isolated by screening using a DNA sequence provided in Table 1 to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.

The polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for disease, particularly human disease, as further discussed herein relating to polynucleotide assays.

Polynucleotides of the invention that are oligonucleotides derived from the a polynucleotide or polypeptide sequence set forth in Table 1 may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

The invention also provides polynucleotides that may encode a polypeptide that is the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to

the mature polypeptide (when the mature form has more than one polypeptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in vivo*, the additional amino acids may be processed away from the mature protein by cellular enzymes.

A precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.

In addition to the standard A, G, C, T/U representations for nucleic acid bases, the term "N" is also used. "N" means that any of the four DNA or RNA bases may appear at such a designated position in the DNA or RNA sequence, except it is preferred that N is not a base that when taken in combination with adjacent nucleotide positions, when read in the correct reading frame, would have the effect of generating a premature termination codon in such reading frame.

In sum, a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.

Vectors, host cells, expression

The invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention. Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis et al., *BASIC METHODS IN MOLECULAR BIOLOGY*, (1986) and Sambrook et al., *MOLECULAR CLONING: A LABORATORY MANUAL*, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium

phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.

Representative examples of appropriate hosts include bacterial cells, such as streptococci, staphylococci, enterococci *E. coli*, streptomycetes and *Bacillus subtilis* cells; fungal cells, such as yeast cells and *Aspergillus* cells; insect cells such as *Drosophila S2* and *Spodoptera Sf9* cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used to produce the polypeptides of the invention. Such vectors include, among others, chromosomal, episomal and virus-derived vectors, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression system constructs may contain control regions that regulate as well as engender expression. Generally, any system or vector suitable to maintain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard. The appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook *et al.*, *MOLECULAR CLONING, A LABORATORY MANUAL*, (*supra*).

For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.

Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.

Diagnostic Assays

This invention is also related to the use of the polynucleotides of the invention for use as diagnostic reagents. Detection of such polynucleotides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of a disease. Eukaryotes (herein also "individual(s)"), particularly mammals, and especially humans, infected with an organism comprising a gene of the invention may be detected at the nucleic acid level by a variety of techniques.

Nucleic acids for diagnosis may be obtained from an infected individual's cells and tissues, such as bone, blood, muscle, cartilage, and skin. Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification technique prior to analysis. RNA or cDNA may also be used in the same ways. Using amplification, characterization of the species and strain of prokaryote present in an individual, may be made by an analysis of the genotype of the prokaryote gene. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the genotype of a reference sequence. Point mutations can be identified by hybridizing amplified DNA to labeled polynucleotide sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in the electrophoretic mobility of the DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al., *Science*, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase and S1 protection or a chemical cleavage method. See, e.g., Cotton et al., *Proc. Natl. Acad. Sci., USA*, 85: 4397-4401 (1985).

Cells carrying mutations or polymorphisms in the gene of the invention may also be detected at the DNA level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations. It is particularly preferred to used RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA or cDNA may also be used for the same purpose, PCR or RT-PCR. As an example, PCR primers complementary to a nucleic acid encoding a polypeptide of the invention can be used to identify and analyze mutations. These primers may be used for, among other things, amplifying a DNA of the invention isolated from a sample derived from an individual. The primers may be used to amplify the gene isolated from an infected individual such that the gene may then be subject to various techniques for elucidation of the DNA sequence. In this way, mutations in the DNA sequence may be detected and used to diagnose infection and to serotype and/or classify the infectious agent.

The invention further provides a process for diagnosing disease, preferably bacterial infections, more preferably infections by *Streptococcus pneumoniae*, and most preferably disease, comprising determining from a sample derived from an individual a increased level of expression of polynucleotide having the sequence of Table 1. Increased or decreased expression of a polynucleotide of the invention can be measured using any one of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods.

In addition, a diagnostic assay in accordance with the invention for detecting over-expression of a polypeptide of the invention compared to normal control tissue samples may be used to detect the presence of an infection, for example. Assay techniques that can be used to determine levels of a protein, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

Antibodies

The polypeptides of the invention or variants thereof, or cells expressing them can be used as an immunogen to produce antibodies immunospecific for such polypeptides. "Antibodies" as used herein includes monoclonal and polyclonal antibodies, chimeric, single chain, simianized antibodies and humanized antibodies, as well as Fab fragments, including the products of an Fab immunoglobulin expression library.

Antibodies generated against the polypeptides of the invention can be obtained by administering the polypeptides or epitope-bearing fragments, analogues or cells to an animal, preferably a nonhuman, using routine protocols. For preparation of monoclonal antibodies, any technique known in the art that provides antibodies produced by continuous cell line cultures can be used. Examples include various techniques, such as those in Kohler, G. and Milstein, C., *Nature* 256: 495-497 (1975); Kozbor *et al.*, *Immunology Today* 4: 72 (1983); Cole *et al.*, pg. 77-96 in *MONOCLONAL ANTIBODIES AND CANCER THERAPY*, Alan R. Liss, Inc. (1985).

Techniques for the production of single chain antibodies (U.S. Patent No. 4,946,778) can be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies.

Alternatively phage display technology may be utilized to select antibody genes with binding activities towards the polypeptide either from repertoires of PCR amplified v-genes of lymphocytes from humans screened for possessing recognition of a polypeptide of

the invention or from naive libraries (McCafferty, J. et al., (1990), *Nature* **348**, 552-554; Marks, J. et al., (1992) *Biotechnology* **10**, 779-783). The affinity of these antibodies can also be improved by chain shuffling (Clackson, T. et al., (1991) *Nature* **352**, 624-628).

If two antigen binding domains are present each domain may be directed against a different epitope - termed 'bispecific' antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptides to purify the polypeptides by affinity chromatography.

Thus, among others, antibodies against a polypeptide of the invention may be employed to treat disease.

Polypeptide variants include antigenically, epitopically or immunologically equivalent variants that form a particular aspect of this invention. The term "antigenically equivalent derivative" as used herein encompasses a polypeptide or its equivalent which will be specifically recognized by certain antibodies which, when raised to the protein or polypeptide according to the invention, interfere with the immediate physical interaction between pathogen and mammalian host. The term "immunologically equivalent derivative" as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a vertebrate, the antibodies act to interfere with the immediate physical interaction between pathogen and mammalian host.

The polypeptide, such as an antigenically or immunologically equivalent derivative or a fusion protein thereof is used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the polypeptide. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Alternatively a multiple antigenic peptide comprising multiple copies of the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.

Preferably, the antibody or variant thereof is modified to make it less immunogenic in the individual. For example, if the individual is human the antibody may most preferably be "humanized"; where the complementarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody, for example as described in Jones, P. et al. (1986), *Nature* **321**, 522-525 or Tempest et al.,(1991) *Biotechnology* **9**, 266-273.

The use of a polynucleotide of the invention in genetic immunization will preferably employ a suitable delivery method such as direct injection of plasmid DNA into

muscles (Wolff et al., *Hum Mol Genet* 1992, 1:363, Manthorpe et al., *Hum. Gene Ther.* 1963;4, 419), delivery of DNA complexed with specific protein carriers (Wu et al., *J Biol Chem.* 1989: 264,16985), coprecipitation of DNA with calcium phosphate (Benvenisty & Reshef, *PNAS*, 1986;83,9551), encapsulation of DNA in various forms of liposomes (Kaneda et al., *Science* 1989:243,375), particle bombardment (Tang et al., *Nature* 1992, 356:152, Eisenbraun et al., *DNA Cell Biol* 1993, 12:791) and *in vivo* infection using cloned retroviral vectors (Seeger et al., *PNAS* 1984;81,5849).

Antagonists and agonists - assays and molecules

Polypeptides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et al., *Current Protocols in Immunology* 1(2); Chapter 5 (1991).

The invention also provides a method of screening compounds to identify those which enhance (agonist) or block (antagonist) the action of a polypeptides or polynucleotides of the invention, particularly those compounds that are bacteriostatic and/or bacteriocidal. The method of screening may involve high-throughput techniques. For example, to screen for agonists or antagonists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a polypeptide of the invention and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be an agonist or antagonist of a polypeptide of the invention. The ability of the candidate molecule to agonize or antagonize a polypeptide of the invention is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate. Molecules that bind gratuitously, i.e., without inducing the effects of a polypeptide of the invention are most likely to be good antagonists. Molecules that bind well and increase the rate of product production from substrate are agonists. Detection of the rate or level of production of product from substrate may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric labeled substrate converted into product, a reporter gene that is responsive to changes in polynucleotide or polypeptide activity, and binding assays known in the art.

Another example of an assay for antagonists of polypeptides of the invention is a competitive assay that combines any such polypeptide and a potential antagonist with a compound which binds such polypeptide, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay. A polypeptide of the

invention can be labeled, such as by radioactivity or a colorimetric compound, such that the number of such polypeptide molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.

Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polynucleotide or polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the same sites on a binding molecule, such as a binding molecule, without inducing activities induced by a polypeptide of the invention, thereby preventing the action of such polypeptide by excluding it from binding.

Potential antagonists include a small molecule that binds to and occupies the binding site of the polypeptide thereby preventing binding to cellular binding molecules, such that normal biological activity is prevented. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules. Other potential antagonists include antisense molecules (see Okano, *J. Neurochem.* 56: 560 (1991); *OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION*, CRC Press, Boca Raton, FL (1988), for a description of these molecules). Preferred potential antagonists include compounds related to and variants of a polypeptide of the invention.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.

The invention also provides the use of the polypeptide, polynucleotide or inhibitor of the invention to interfere with the initial physical interaction between a pathogen and mammalian host responsible for sequelae of infection. In particular the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive bacteria, to mammalian extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block protein-mediated mammalian cell invasion by, for example, initiating phosphorylation of mammalian tyrosine kinases (Rosenshine *et al.*, *Infect. Immun.* 60:2211 (1992); to block bacterial adhesion between mammalian extracellular matrix proteins and bacterial proteins that mediate tissue damage and; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.

The antagonists and agonists of the invention may be employed, for instance, to inhibit _____ and treat disease.

Helicobacter pylori (herein *H. pylori*) bacteria infect the stomachs of over one-third of the world's population causing stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori (International Agency for Research on Cancer, Lyon, France; <http://www.uicc.ch/ecp/ecp2904.htm>). Moreover, the international Agency for Research on Cancer recently recognized a cause-and-effect relationship between *H. pylori* and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen. Preferred antimicrobial compounds of the invention found using screens provided by the invention, particularly broad-spectrum antibiotics, should be useful in the treatment of *H. pylori* infection. Such treatment should decrease the advent of *H. pylori*-induced cancers, such as gastrointestinal carcinoma. Such treatment should also cure gastric ulcers and gastritis.

Vaccines

Another aspect of the invention relates to a method for inducing an immunological response in an individual, particularly a mammal which comprises inoculating the individual with a polypeptide of the invention, or a fragment or variant thereof, adequate to produce antibody and/ or T cell immune response to protect said individual from infection, particularly bacterial infection and most particularly *Streptococcus pneumoniae* infection. Also provided are methods whereby such immunological response slows bacterial replication. Yet another aspect of the invention relates to a method of inducing immunological response in an individual which comprises delivering to such individual a nucleic acid vector to direct expression of a polynucleotide or polypeptide of the invention, or a fragment or a variant thereof, for expressing such polynucleotide or polypeptide, or a fragment or a variant thereof *in vivo* in order to induce an immunological response, such as, to produce antibody and/ or T cell immune response, including, for example, cytokine-producing T cells or cytotoxic T cells, to protect said individual from disease, whether that disease is already established within the individual or not. One way of administering the gene is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid.

A further aspect of the invention relates to an immunological composition which, when introduced into an individual capable or having induced within it an immunological response, induces an immunological response in such individual to a polynucleotide of the

invention or protein coded therefrom, wherein the composition comprises a recombinant polynucleotide or protein coded therefrom comprising DNA which codes for and expresses an antigen of said polynucleotide or protein coded therefrom. The immunological response may be used therapeutically or prophylactically and may take the form of antibody immunity or cellular immunity such as that arising from CTL or CD4+ T cells.

A polypeptide of the invention or a fragment thereof may be fused with co-protein which may not by itself produce antibodies, but is capable of stabilizing the first protein and producing a fused protein which will have immunogenic and protective properties. Thus fused recombinant protein, preferably further comprises an antigenic co-protein, such as lipoprotein D from *Hemophilus influenzae*, Glutathione-S-transferase (GST) or beta-galactosidase, relatively large co-proteins which solubilize the protein and facilitate production and purification thereof. Moreover, the co-protein may act as an adjuvant in the sense of providing a generalized stimulation of the immune system. The co-protein may be attached to either the amino or carboxy terminus of the first protein.

Provided by this invention are compositions, particularly vaccine compositions, and methods comprising the polypeptides or polynucleotides of the invention and immunostimulatory DNA sequences, such as those described in Sato, Y. et al. Science 273: 352 (1996).

Also, provided by this invention are methods using the described polynucleotide or particular fragments thereof which have been shown to encode non-variable regions of bacterial cell surface proteins in DNA constructs used in such genetic immunization experiments in animal models of infection with *Streptococcus pneumoniae* will be particularly useful for identifying protein epitopes able to provoke a prophylactic or therapeutic immune response. It is believed that this approach will allow for the subsequent preparation of monoclonal antibodies of particular value from the requisite organ of the animal successfully resisting or clearing infection for the development of prophylactic agents or therapeutic treatments of bacterial infection, particularly *Streptococcus pneumoniae* infection, in mammals, particularly humans.

The polypeptide may be used as an antigen for vaccination of a host to produce specific antibodies which protect against invasion of bacteria, for example by blocking adherence of bacteria to damaged tissue. Examples of tissue damage include wounds in skin or connective tissue caused, e.g., by mechanical, chemical or thermal damage or by implantation of indwelling devices, or wounds in the mucous membranes, such as the mouth, mammary glands, urethra or vagina.

The invention also includes a vaccine formulation which comprises an immunogenic recombinant protein of the invention together with a suitable carrier. Since the protein may be broken down in the stomach, it is preferably administered parenterally, including, for example, administration that is subcutaneous, intramuscular, intravenous, or intradermal. Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the bodily fluid, preferably the blood, of the individual; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

While the invention has been described with reference to certain protein, such as, for example, those set forth in Table 1, it is to be understood that this covers fragments of the naturally occurring protein and similar proteins with additions, deletions or substitutions which do not substantially affect the immunogenic properties of the recombinant protein.

Compositions, kits and administration

The invention also relates to compositions comprising the polynucleotide or the polypeptides discussed above or their agonists or antagonists. The polypeptides of the invention may be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tissues or organisms, such as a pharmaceutical carrier suitable for administration to a subject. Such compositions comprise, for instance, a media additive or a therapeutically effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient. Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. The formulation should suit the mode of administration. The invention further relates to diagnostic and pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.

Polypeptides and other compounds of the invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

The pharmaceutical compositions may be administered in any effective, convenient manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.

In therapy or as a prophylactic, the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.

Alternatively the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol or oleyl alcohol for lotions. Such carriers may constitute from about 1% to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.

For administration to mammals, and particularly humans, it is expected that the daily dosage level of the active agent will be from 0.01 mg/kg to 10 mg/kg, typically around 1 mg/kg. The physician in any event will determine the actual dosage which will be most suitable for an individual and will vary with the age, weight and response of the particular individual. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

In-dwelling devices include surgical implants, prosthetic devices and catheters, i.e., devices that are introduced to the body of an individual and remain in position for an extended time. Such devices include, for example, artificial joints, heart valves, pacemakers, vascular grafts, vascular catheters, cerebrospinal fluid shunts, urinary catheters, continuous ambulatory peritoneal dialysis (CAPD) catheters.

The composition of the invention may be administered by injection to achieve a systemic effect against relevant bacteria shortly before insertion of an in-dwelling device. Treatment may be continued after surgery during the in-body time of the device. In addition, the composition could also be used to broaden perioperative cover for any surgical technique to prevent bacterial wound infections, especially *Streptococcus pneumoniae* wound infections.

Many orthopedic surgeons consider that humans with prosthetic joints should be considered for antibiotic prophylaxis before dental treatment that could produce a bacteremia. Late deep infection is a serious complication sometimes leading to loss of the prosthetic joint and is accompanied by significant morbidity and mortality. It may therefore be possible to extend the use of the active agent as a replacement for prophylactic antibiotics in this situation.

In addition to the therapy described above, the compositions of this invention may be used generally as a wound treatment agent to prevent adhesion of bacteria to matrix proteins exposed in wound tissue and for prophylactic use in dental treatment as an alternative to, or in conjunction with, antibiotic prophylaxis.

Alternatively, the composition of the invention may be used to bathe an indwelling device immediately before insertion. The active agent will preferably be present at a concentration of 1 μ g/ml to 10mg/ml for bathing of wounds or indwelling devices.

A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response. A suitable unit dose for vaccination is 0.5-5 microgram/kg of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks. With the indicated dose range, no adverse toxicological effects will be observed with the compounds of the invention which would preclude their administration to suitable individuals.

Each reference disclosed herein is incorporated by reference herein in its entirety. Any patent application to which this application claims priority is also incorporated by reference herein in its entirety.

TABLES

Certain pertinent data for preferred polypeptide and polynucleotide embodiments of the invention are summarized in Tables 1 and 2.

Provided in Table 1 are sequence search results providing characterization information regarding certain preferred polynucleotides (denoted as "Assembly") and polypeptides of the invention encoded thereby. For each polynucleotide in Table 1, there is listed the closest homologue of each polypeptide encoded by each ORF in such polynucleotide. This determination of homology is based on a comparison of the sequences of in Table 1 with sequences available in the public domain (see heading entitled "Description" for the homologue name). Where no significant homologue was detected the term "unknown" appears after the heading "Description". Preferred polypeptides encoded by the ORFs of the invention, particularly full length proteins either obtained using such

ORFs or encoded entirely by such ORFs, are ones that have a biological function of the homologue listed, among other functions. The analysis used to determine each homologue listed in Table 1 was either BlastP and/or BlastX and/or MPSearch, each of which is well known. Also provided in Table 1 is the amino acid sequence encoded by each ORF. An "Assembly ID" number provides a convenient way to correlate the polynucleotide sequence with the ORF or ORFs it comprises and the polypeptides encoded by these ORFs, as well as to correlate such sequences with other pertinent information provided in Tables 1 and 2. Following the heading "ORF Predictions" the nucleotides at the beginning and end of the ORF sequence are set forth ("Start" and "End" respectively). The direction of translation on the polynucleotide depicted is denoted by an "F" for forward or an "R" for reverse (reverse being translated on the opposite strand from the one depicted). The length of each amino acid sequence is also indicated in a column entitled "Length." Below these data is shown the amino acid sequence encoded by the ORF. If a given polynucleotide comprises one ORF, then in the column entitled "ORF # there is the numeral one. If it encodes two, there are the numerals one and two in the column, and so on.

TABLE 1

Assembly ID: 3049156

Assembly Length: 495bp

```
> 3049156 Strep Assembly -- Assembly id#3049156
CTCGGTGATAGAAATAGTGTAAATCATGCTTTCTCTTCTATCTATACTTTGCTACTTCT
ATTATACAAAAAAATAAAGCGCTTGACTAGGGATTTAGAAAAAGCCTATTTTCA
AGAAAAATAGGCTTTGCGAACGATTGACACAATTGGATTGGTTAATTCACTCTAAC
GATGGTTTAAACGATATATATTTTATATGTAAATTAAAACCTCTTCCTTCACT
TCCTACGACTTTTCAGATACAGATAGCCAAAGAAGTTTCATAGAGGGCAAAAAGAGGA
GGAAGGCATGAAGAAAGAAGGTCTCTGGCAAAATCATAATAACAGGATCCTGGCTGGAT
CAAAAGCCAGGTATCATCTCCCACAAAGAGAATTGATGGAAAAGAGTAAAGAATTGGT
CAAAACCAATCAAACCTCCCCAAGTCCATCATCACAGGTAAGACTACTAGAGCCAGGAG
ACTTTTCGATAAAG
```

ORF Predictions:

ORF #	Start	End	Direction	Length
1	236	385	R	50 aa

```
> 3049156-1 ORF translation from 236-385, direction R
VGDDTWLFDPAKDPVIMILPETFFLHAFLFFALYENFFGYLYLKSRRK*
```

Description:

unknown

Assembly ID: 3049862

Assembly Length: 529bp

```
> 3049862 Strep Assembly -- Assembly id#3049862
CTAGAGCAAGTATTTCAAACCTTTCCGAATAAATAGATAGAGCCAGAGAATTAGTA
AACCTAGATTAAAAATGTGCTATAACATAATATTGAATCTATAATAGTACACCTTGA
CTGCTAAAATATTCTATAAAATTAAATTGACTTCCTGATAGAGTTATTCACATCTTATT
TCAACTCACTATAGAAGGAGGAATAGGAGGATTCTCAGACATCCGGCATCAGCCAACT
AATGATTGATTGCTAAGAAAATATTCAAGCAATCCAGAAATCACTTGTCAATTATTACGC
GATATGCTGGACTGCCAGAAAAATGTTGACCATTGAGGAAGCGATATTACGT
ATTACTCTCCATGCCTTACTCAGTGCAGGATTTTATACCAAGTATAGACGTCTGGCGGA
GTTGGATAACGGTACTCAAGTAATTATTGAGATTCAAGTCCATCATCAGAATTTCATC
AATCACTTGTGGACTTACCTGTGCAGTCAGGTTAACAAATCTTGAAAAA
```

ORF Predictions:

ORF #	Start	End	Direction	Length
1	383	526	F	48 aa

```
> 3049862-1 ORF translation from 383-526, direction F
VQDFYTSIDVLAELDNGTQVIIEIQVHHQNFSITCGLTCAVRLIKS*
```

Description:

unknown

Assembly ID: 3112810

Assembly Length: 885bp

```
> 3112810 Strep Assembly -- Assembly id#3112810
CTCATCATCTGTCAAAAGCGTTCTTAGCAGTCGTGATATCCATAAAATACTAATAT
CACGATTTCCATCCGCAAAGAAAGGAAGGCTGACCAACTCCAGTGCACATCCTTGTGTA
AACTACTTCTGCATATCAAAGTAGGCAAAGTTGAGGTGAGCAGAATCATACCCAATCTG
TTTCAACACTTGAECTTCACTCACTCAAACGTACCCCTGATCTGTCCCTGTAAATAGGCG
CAGGCTCGTAAATTGATAAAAGTCAACTTCTGACTTCTTCATGGCTAGCATCGTCTC
TCCTTCTTCAGATTTCGATTTAATTAGTCAATATAGCGCAATTCCCACGGAAATC
TTCTAAAGCTCTCGTAGCCTTTCCACCATGATTGCTTCAGTTCATTGGTAAAGCGGTC
AAAAGCACTGACGCCTTCTTGTGAAGGGTCGTTCCCACCTGCACCATACTGCTCCACA
GAGGATGTGTTCAAAGGCATCTGACCAAGTCAGAACGCCACCTGTTCCGATAATTGGAT
TTGAGGATTAAACGTTGATAAAAGGCGTGAACATTGGCTAGAGCAGTCGGTTGATGTA
```

TTATCCACCAATTCCACCAAACCATTCTTAGGCCAATAACGACAGATTGTCTTCTAT
 ATAGAGGCCGTTCCGATAGAGTTAACGCAGTGACAAACTGAGCGGATATTGTGAA
 AATAGCTGCCGCTTGATCAAAGTGAACAATATCAAATAAGGTGGCAATTAAATTCCAAG
 AGGTTGGTGAAGTAAGCAAACACTTCTGCCAAAATCCGGTCTGTTCTCAAAATCATA
 GGCAATCTGAGGTTACCTGGAACATTGGACAGGAAAGATTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	601	804	R	68 aa

> 3112810-2 ORF translation from 601-804, direction R
 VFAYFTKPLGIKLPPYFDIVHFDQAAIFNKYPLKFVNCVNSIGNGLYIEDESVVIRPKN
 GFGGIGG*

Description:

LLCPYRDA NCBI gi: 511014 - Lactococcus lactis. DIHYDROORotate
 DEHYDROGENASE (EC 1.3.3.1) (DIHYDROORotate OXIDASE)

Assembly ID: 3112866

Assembly Length: 925bp

> 3112866 Strep Assembly -- Assembly id#3112866
 TCTTGGCCAACTGCATGGAGTTCAGCGGTCAATTCAACGCACCTGAGAACAGACCCCT
 GCACCCCTGAAATCTCAGGAGACATGATGGTCTGGATGGAATCAATAATGAGAAAGTCTG
 GCTGGATACGCTACCACTCTGCACGAACACTCTGCATATTGGTCTCTGCATAGAGATAA
 AACTCACTATCAAATCACCTAACGGCTCTGCACGTAGTTAACATCTGCTGGCAGACTCC
 TCCCCACTGACATAGAGAACTGTCCCCACTTGGGACAACGGGTTGAGACTTGTAGGAGA
 AGAGTTGATTCCCAATCCCAGGATCCCCACCGATGAGGACGAGACTTCCCTGGTACAAC
 TCCGCCTCCAAGCACACGGTTGAATTCCCTCCATCTCCGTCTTGGTTCGATTGACATTGAT
 GGAAGTCACCTCAGCTAGTTCATGGGCTTGGTTTCACCTGTCAAGGACACACGCGC
 ATTCTTGACCTCGGCAACCTCAACCTCTTCCACAAAAGAACCAAGACCCACAGTGGG
 GCAACGTCCCAGATATTAGGGGAATTATAACCCACAATTTGACATACAAATGTCGCTTT
 TTTCTTGCGATGACAAACCTCTTCTATATCTAACTCACACTCAATCACTTGGAAA
 AATCAATCTTCATTTGGCACAAACTGGCGCATGAGCATTGATGAGCAACAACTACCA
 CAGTCTGATGTTCTCGATACTTAGACATACATTCTAGAAACCGAGACTTCATTCCGTAG
 CTGTCTCATATTGAATAGGACTATTAGGAAGCAACTCCCCCTGTTTCTAAAAACAGTC
 TTCTAGCTGTTCAAAGTTCTATTCTGTTTATAGACCTGCCATTGATGAAATAAG
 GCTCTACTCTTAAAGGAAGACCCGT

ORF Predictions:

ORF #	Start	End	Direction	Length

1 220 513 R 98 aa

> 3112866-2 ORF translation from 220-513, direction R
 VEEVEVAEVKNARVSLTGEKTKPMKLAEVTSINVNRKTEMEEFNRLGGGVPGKSRPH
 RWGSWDWEINSSPTSLNPVVPSGDSSLQWGGVCPAD*

Description:

SMS PROTEIN. - ESCHERICHIA COLI.

Assembly ID: 3113664

Assembly Length: 602bp

> 3113664 Strep Assembly -- Assembly id#3113664
 TTATGTCAGTGGGATTACGCCTAATCTCCCAGAACAGCAGAATTATTATCCGGTCAGGAAAT
 TAÀAACCTTGGNAGACATGAAAAGTCAGCGCAGAAATTGCATGATTAGGAGCGCCAGC
 AGTCATTATCAAAGGGAGGCAATCGTCTTAGTCAGGACAAGGCTGTGGATGTCTTTATG
 ATGGACAGACCTTACTATCCTAGAAAATCCAGTTATCCAAGGCCAAATGCTGGTGCAG
 GTTGTACCTTGCCCTAGCATTGCCAGTCATTGGTTAAAGGTGATAAAACTTTGCCAG
 CAGTAGAAAGCTCTAAGGCTTCGTTATCGTCTATTGCACAAGCAGATCAGTATGGAG
 TAAGACAATATGAAGCAAACAAAACAATAAAATGCCCTGTATCCCTATTAACCGCC
 CTTTCTGTGGTTCTAGGTATTCTTAAAAATCCAACACCTACAGGNATTCTAACTCTT
 TTAGATGCTGGTGTCTTCTTGCGGCCTTACTTGGTAGTCGTGAAGGAGCGGTAGTC
 GGAGGACTAGCAAGTTCTGCTTGACCTTTACAGGCTACCCCTCAGTGGATGTTTT
 AG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	165	392	F	76 aa

> 3113664-1 ORF translation from 165-392, direction F
 VDVFYDGQTFTILENPVIQGQNAGAGCTFASSIASHLVKGDKLLPAVESSKAFVYRAIAQ
 ADQYGVROQEANKNN*

Description:

Thi protein - Rhizobium meliloti

Assembly ID: 3113716

Assembly Length: 456bp

> 3113716 Strep Assembly -- Assembly id#3113716
 CTGGATACTAAGAGAAATCAAAAAGCACTCTAGGATAGAGGCCTAAAGTGCTTAGTTTC
 AAGGCTTACAGCCTATCATATTAAATAAAATTACAACATCTTGTAGAATTCAAC

GACAAGTGCTCGTTGATTCGCGTTCTGGCAAGCGAGTCATGA
 ACCTTCCAATTTCAGCGTCGAATGATAACGAATGCTGGACGTCCAAGAGTAGCTTCTAC
 TGCTTCAGGATTGCTGGAACCTTCATGATTTCACGAACTGAGATCAGTCACCGCTGC
 AGTTACGCGGTATGATGGGATATCAACGCGTTCCCGTCAACAAGGATGTGACCGCTGGT
 TTACAAATTGGACCAAACCTGACGACCAGTAGTCGCGAGACCAAGACGGTAAACACGTT
 ATCCAAACGACGTTCCAAAAGAAGCATAAAGTTGAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	94	291	R	66 aa

> 3113716-1 ORF translation from 94-291, direction R
 VISVREKSLKVPAILAVEATLGRPAFVSFDAEKLEGSLTRLPERDEINPEINEALVVEF
 YNKML*

Description:

30S RIBOSOMAL PROTEIN S4 (BS4). - BACILLUS SUBTILIS.

Assembly ID: 3174176

Assembly Length: 1961bp

> 3174176 Strep Assembly -- Assembly id#3174176
 CTAATATAGAATAATCACCGCCGTTGTGAAAGAACGATTGGATGATAATCCAATCGTTCA
 GGGAAATTGGAAGACCTGGGTTCCAATTAGGCATGAGACACCTTGGTGGCTGCTGC
 CGTCCCTCACAAGCTAAGGTGATTGTTGAAAAAGAGGAAAAGGAGAAGAAATGAAACCA
 GTAATTCCATCATCATGGGCTCAAATCCGACTGGGCAACCATGCAAAAAACAGCAGAA
 GTCCTAGACCGCTTCGGTGTAGCCTACGAAAAGAAAGTTGTTCCGCACACCGTACACCA
 GACCTCATGTTCAAACATGCAGAAGAACGCCGTAGTCGTGGCATCAAGATCATCATCGCA
 GGTGCTGGTGGCGCAGCGCATTGCCAGGCATGGTAGCTGCCAAAACAACCTCCAGTC
 ATTGGTGTGCCAGTCAGTCTCGTCTTAGTGGAGTGGATTCACTCTATTCTATCGTT
 CAGATGCCGGTGGGGTGCCTGTCGACCATGGCTATCGGTGAACCTTTTTAGGATA
 TAAAACAGGGTCGGATAAGTTTTTGCAAGGTGGATGATGGCTACATTGTAATGTTT
 CCTTGTCTAACTTAGTCTAAAAGCAGGTGAAAAGTGAGGGCATGCTTGGCAGCTGT
 ATGAGTACCTACCGCAGATAAGGGAACCCCGTTGACCATCCTCCCAGCTAAATCAATC
 TGACCTGACTGATAATAGAAGAACATCCAGTCAGCGAAAGCTTGTAAATTGAGCAGGATTA
 TCAAAGGCATGAATATTCGAATCTCGCTAAATGACCGCCCCCTAAACGATTCTCAATC
 CCAGTAACCGCTGTGATGACCGAGTTAACTCAGCCATCAAGTCATTGACACATTTTCC
 GCCTTGTCAATGAGCCTTTGTAATGTTGATGTTCTTACACGAGATAAAACGTCTA
 TGCGTTATCAAACCTATTACCAATTAAAACAAATGTGGTTAGATCCTTCGGAAATTGTC
 AAGCGATTGGAGGAAATGAACTAATCCACAGCGGCTTATTCCAAGTATAACCAACTTGGGCT
 TTGGCAGTAGCTAACTGCGCTAAATATAATATAAGGAGGAGTAAATGAAGACAGTTCAA
 TTTTTTGGCATTATTTAAGGTCTACAAGTTCTCATTTGTTAGTTGTCATCCTGATGATT

GTTCTGGCGACTTTGCCCAAGCCCTTTCCAGTCTTCTGGACAAGCGGTGACCGAG
 CTAGCCAATTAGTCAGCTTATCAAATGGCAATCCAGAACCTGTATGGCAAAGCCT
 ATCAGGAATTATGGTCATGGCTGCTGGTTGGGTCTATTTATCTCTAGGTGT
 AATATAAACATGTGTCTCATGACGCCGTGATTGCAGAACGACCAACGAGATGCCAAA
 GGTCTCTTGTAAGCTGCTCAGTGACGGTTCTTCTTGACCCTGACAAGATGGC
 GATATCCTGTCTCATTTACCACTGATTGGATAATATCCTCCAAGCCTTAACGAAAGC
 TTGATTCAAGTCATGAGCAATATTGTTATACATTGGTCTGATTGTCATGTTTCG
 AGAAATGTGACGCTGGCTCTCATCACCATTGCCAGCACCCCATTGGCTTCCTATGCTG
 ATTTTCATCGTAAAAATGGCACGTAACACCAACCTCCAGCAGAAAGAGGTAGGAAAG
 CTCAACGCCTATATGGATGAGAGCATCTCAGGCCAAAAGCCGTGATTGCTAGGAATT
 CAAGAGGATATGATGGCAGGATTCTTGAACAAATGAGCGCTGCGCAAGGCAACCTTT
 AAAGGAAGAATGTTCTCAGGAATTCTTCCCTGTCATGAATGGGATGAGCCTGATTAAT
 ACAGCCATCGTCATCTTGCTGGCTGTACTTTGAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	139	543	F	135 aa

> 3174176-1 ORF translation from 139-543, direction F
 VIVEKEEKGEEMKPVISIIMGSKSDWATMQKTAEVLDRFGVAYEKVVSAHRTPDLMFKH
 AEEARSRGIKIIAGAGGAALPGMVAAKTTLPIVGVPVKSRALSGVDSLYSIVQMPGGV
 PVATMAIGELFFRI*

Description:

PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21) (AIR C ARBOXYLASE) (AIRC). - BACILLUS SUBTILIS.

Assembly ID: 3174186
 Assembly Length: 375bp

> 3174186 Strep Assembly -- Assembly id#3174186
 CTATCTCAAGTNCGNTTGAATNCCTCCGCNANCCACAACCATCCAAGCCTTNCAA
 CGTGNCCCTGGTCCGGTCCTCCAGTGCCTNACNGCACCTGCNCATGGTAGG
 TCACATGGCTCGGTCTACGTCTACGATACTAAGGCGCCCTATTCAAGACTCGGNTNCCCT
 AGGGCTCCGTCTTCAACTAACCACGCAACAGAACGTNACCCGCCGGTCATTCTACA
 AAAGGCAGNCTCTCACCCATTAACGGGCTCGAACCTGTTGAGGCACACNGCTTCAGGTN
 CTATTCACCCCCCTCCGGGGAGCANCTCAACTGACCCNCACGGCACCGGTGNANNAAA
 CGGTCACTTAGGGAG

ORF Predictions:

ORF #	Start	End	Direction	Length

1	83	283	F	67 aa
---	----	-----	---	-------

> 3174186-1 ORF translation from 83-283, direction F
 VRXXAPSTCXWVGHMASGLRHDTKAPYSDSXXLGLRLFNLTTQQNXTRRFILQKAXSHPL
 TGSNLL*

Description:

unknown

Assembly ID: 3174374

Assembly Length: 665bp

> 3174374 Strep Assembly -- Assembly id#3174374
 GGGGGGGTNNNTCTGGGCCGGTGNNTCCTNGAAAAATGCTGGACTAACGGTTAA
 ATCATTTGAATTGGCCTGTGGATTTAGCTAGCAATCCAGAGCGAGTTTCTCCAAGACA
 GACCTCTATGAAAAGATCTGGAAAGAANACTACGTGGATGACACCAATACCTGAATGTG
 CATATCCATGCTCTTCGACAGGAGCTGGCAAATATAGTAGTGACCAAACGCCACTATT
 AAGACAGTTGGGGTTGGGATATAAGATAGAGAAACCGAGAGGGACAAACATGAAACTAA
 AAAGTTATATTGGTTGGATATATTATTCAACCCTTTAACCATTGGTTGTTTT
 GGGCTGTTCAAAAATGCTGATTGCGAAAGGCAGATTACTTTGCTGGGATGACCA
 TCGTTGCCAGCCTTGTGGTGGCTGGGATTAGTCTCTTCTCCTATTGCCAGTCTTACGT
 CGTTGGGCAAACCTCAAGGAGCATGCCAAGCGGGTAGCGGCCAAGGATTCCTCCAATT
 GGANGTTCAAGGTCCCTGTTAAATTCCCCATTAGGGCAACCTTTAATGAAANTTT
 CCNTNATTGCCGGGANCTTGAATCCCTNGGAAAAAACCCAACNAAAAAAAGGGCTTA
 NNCCC

ORF Predictions:

ORF #	Start	End	Direction	Length
-----	-----	-----	-----	-----
1	154	294	F	47 aa

> 3174374-1 ORF translation from 154-294, direction F
 VDDTNLNVHIHALRQELAKYSSDQTPTIKTVWGLGYKIEKPRGQT*

Description:

REGULATORY PROTEIN VANR. - ENTEROCOCCUS FAECIUM (STREPTOCOCCUS FAECIUM).

Assembly ID: 3174972

Assembly Length: 989bp

> 3174972 Strep Assembly -- Assembly id#3174972
 CTACGATATCTTGGTCTTTGTAAGATATGAGGTCCACCCTATGCGCCTCAGTGGCA

TTTCATGCATTCAAGAAGTTGCCCTCTTGTCAACCAAACCATACTTGATGTTGGTTC
 CACCGATATCAATTGCAACGTAATATGTCATAAAATACCTCCTTAGATTAGAGGAAGCG
 CTCCTGGTTTCACGAATCAAGGAGCAGCCGCTCTACAACACTGGACGATCTCTTCAGT
 CACTGGTGTCAATGGTGAACGAACAGATCCAATATTCAAGCCTTATTGATTTCAAGAC
 TTCTTGATGACACCGTACATATTCATGAGCAGAAGTGAGTTACCAATGATTGCGTT
 GATAGCATACTGCAATTACGCGCTGTTCTAGGCCTTATCCGAATCAACTGATTGAG
 TTTCAAGAAGAGTTCTGGCATAGCACCATAGTACCAACCGATACCAGCCTAGCCCCAT
 GAGGCCTCCTAGGAACGTGTCATCAGGACCATTAAGACGATATGGTCTTCTCCACC
 AAGGCTGACAAGGTTGGATATCTGAACGGCATAGAAGAGTTCTCACACCGATAAAC
 ACGAGGATTTCAACATTCTGTGAAAGGCTGGAGTCAAAGCAACCCCTGCCAATTG
 AGGAATGTTGAAATCACGTAGTCTGTTGGAGCTGAGAACATGATATCGTTCCAGTA
 TTTGGCAACTGAGTTATTCTGGCAAGCGAAATAAATTGGTGGATCCGTTGCAATAGCA
 TCTACTCCCAGCTTCAGCATGGCGAGCAAGTCCATACTATTTAGTATTATTGCAA
 GCAACATGGGCAATAATGGTCAATTACCTTGGCTACGCCATGACTTCTCCAAAATC
 AACTTGGCATTCAACGCTTGGTAGATACATTACCAAGAAGAACATTGACATAAGAC
 CTTGAACACCTTATCAATGAAGTATTGA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	169	678	R	170 aa

> 3174972-1 ORF translation from 169-678, direction R
 VIYNIPQLAGVALTPSLYTEMKNPRVIGVKNSSMPQDIQTFVSLGGEDHIVFNGPDEQ
 FLGGRLMGARAGIGGYGAMPEFLKLNQLIADKLETARELQYAINAIIGKLTSAHGNM
 YGVIKEVLKINEGLNIGSVRSPLPVTEEDRPVVEAAAALIRETKERFL*

Description:

N-ACETYLNEURAMINATE LYASE SUBUNIT (EC 4.1.3.3) (N-ACETYLNEURAMINIC ACID ALDOLAS E) (N-ACETYLNEURAMINATE PYRUVATE LYASE) (NALASE). - ESCHERICHIA COLI.

Assembly ID: 3175138

Assembly Length: 1450bp

> 3175138 Strep Assembly -- Assembly id#3175138
 CTCCATATTCTAGCCTCTCAATTAGGGTCTTGAAGTCTCGACACCACCGATACGCT
 TACCAATATCAGCATAGTCAAGTGACCAGAGTCATGGCTGTGATATCCTAACCTTTC
 CCAACCTTGAGGGTTGTCATAATGCTACGATAAGCAATGGCACCATCTGCCAAC
 TTTCTGTCTGCATTGGCATCTCAGTGATAACAACCTAGCACTTGGAGTTCTCGT
 GTATTCTGGAAAACAATGCCCTTATAAGCTTTCCATTGCCATTCAAGAGCTGGAT
 TCCTACATAGTTGGCATTCCGACTGTTCTTATAAGCTGTCAAACGAGTCCAGTCATT
 CGAACCAACACCAGCTATTGAGAGTTACTCCAAACACCAGCAGCAAGCTATCTGT

AGAAACAAATCCATACATGTAACCCTAGCAAATCCTCATGGATTGGTACATCGAT
 ATGATCATCTCCGCTGACATGCGTATTGTTGACATGGTGCCTCATCAAACCTAGCACC
 AGTTGATCACTAGAACAGAGACTAAAGCATTGCCGAGGAAACTAATAGAAGAAAGTAG
 TTTTCTTCGTCATCAATCTTGACCTGGAGTGACTTGATTGTGGTTGACAATCTTGGT
 CACATCAAAGTCAATTGATTGTCCACAACCTGCAAGCGTACTGTCATTCCGCATTGAT
 TAAGTGAGCATCATCGCGAAGCTTCATCAAGTACTCTGCTGTCTCATTGATTTTT
 ATAAGTGAATTTCAGGGGTGATTGGTGGTTATTGATAAAAGACTTGTTGAATTGTCAC
 CTGCTCTGGCAAAGTATGCCATTCAAGGTGATCCCTGACACGAAGGAAGGCTGGTC
 AATTACTGCCTTAAGTACCTTAAACTGGATCGTATCATAAGTCACCTGCTATCGTCAAC
 AACCGGACCTGTTCTGGCAGGGGTATCCTCTGGGTTTACCCCTCTGTGGCTA
 TCCGTTCAACGCTTGAACAACTGGTCGCTATCGTCATAAGAGCCCGCCTTGAGAAAAA
 TCTTCTCTCATTTCTAAGATGGTCATTGACCGCAGCTGGTAGAGTCACTGTGTCAAAGA
 AGATTGACATCCTATTGCCTGGCATTACCTGACCGTCTGACTGAAGACTGATAGAG
 AGACGGTTGTTGATCCTGTTCAGGAGCAGCAACACGACTACCTCTATACCAAGTGT
 GTTGGTAGATTATACCCCAGAACCGCCATCCTGTCTAACCAGACAAAACATTA
 TTATTGGTATCTTAAATTCAAGGAGACACCAAGCGTGAATTGCCCTTTCAGAATCT
 TCTTGAAGGTTAAATCAACAGTTGCATTGCCATTGGCATCACGGTCAAGCCCTCTT
 TCAAACAGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	79	945	R	289 aa

> 3175138-1 ORF translation from 79-945, direction R
 VTYDTIQFKVLKAVIDQAFRLVKGYTLNGHTLPGQVQQFNQVFINNHRITPEVTYKKINE
 TTAEYLMKLRDDAHLINAEMTVRLQVVDNQLHFDTVKIVNHNQVTPGQKIDDERKLSSI
 SFLGNALVSVSSDQTGAKFDGATMSNNTHVSGDDHIDVTNPMDLAKGMYGFVSTDKLA
 AGVWSNSQNSYGGGSNDWTRLTAYKETVGNANYVGIHSSEWQWEKAYKGIVFPEYTKELP
 SAKVVITEDANADKKVDWQDGAIAYRSIMNNPQGWEVKDITAMTLVT*

Description:

unknown

Assembly ID: 3175860

Assembly Length: 420bp

> 3175860 Strep Assembly -- Assembly id#3175860
 CTGCGAGTTGTGAGGCTCTATTATGTCCTGATTAAATCTCTATAAGGTGATTGG
 AGGGAAATTATCGGGCAGCGGGTAGAGAAGAGATGAAAGAGGCTATTGGAATATC
 AAGCAAATCCTGCTGCCTTAAAGATCTCAAAGAAAGGCTAAGAATATTCCAGAGAGT
 ATTCTGAAGAGCATCTGTTACAAATCTGGTGGACTTTATGAGAAACAAGCCGCTTAC
 GGACAAAGTAAAAGTGGAGGTAATCTATGCGAATTGGTTATTACAGATACCTATTTC

CTCAGGTTCTGGTGTGCGACCAATATCCAACCTGAAAACCCACCTGAAAACACGG
ACTTGCCTGCATTNTATCTCATACAATCCACCGAATTCGATGCCCCCTCCCTACAAC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	51	251	F	67 aa

> 3175860-1 ORF translation from 51-251, direction F
VILEGNYRATAGREEMKEAILEYQANPAALKDLKEAKNISREYSEEHLLQIWLDFYEKQ
AALGTK*

Description:

unknown

Assembly ID: 3175918

Assembly Length: 661bp

> 3175918 Strep Assembly -- Assembly id#3175918
CTCCCCAACTTTATTTGAGAGTGAACGGTATAAGAATATGAAACCGGAGGTTAAGGTG
GTTTACTCAGTTAAAAGATCGGGTGGAGTTGTCTTGAGCAAAGGTTGGATTGATGAG
GATGGGACTATTATTTGATTATTCCAATTCAAATTGATGGCAGTTAGGCTGTTCA
AAGTCAAATTACTCTCATGTGAGTTGAAAGTGACATTAGATGATTACCATAAAAA
ACATAACTACCCACTATTACGAATCCTATCTCAAAACGTTATGAAATTCTTGAAAG
TCAAGACATAAAGAATGGGGTTGATGCCCTTGTAGATGATCATCAAAATCTGTTTGT
TTTATATGGACAAGGCTATCGAGCCGAGGGAAAAGAGGGAAATACTTACAACCCAAGTAAC
TGTAAAAGCTTATGATGAAGACAAGAAACCGATTAACCTCGCAAATTATTAGATTCTT
AATCGTGTCAAGAATATCAAATGGAACCGAATCTTGGGAGGTCTCCTATGATTGATCTCT
ATCTAAGTAAAATAGCCGAAGAAATCAACTTCTTTAGACTTCTCCTAAACTATGGCA
TCGAGGTATCTGTCATTCAAGTTCTGAAATGACAAAGGACAAATTGAGATGATGA
G

ORF Predictions:

ORF #	Start	End	Direction	Length
1	212	535	F	108 aa

> 3175918-1 ORF translation from 212-535, direction F
VTFLDDYHKKHNYPLFYESYLQNVMEFLESQDIKNGVDAFVDDHQNLVFVLYGQGYRAEG
KEGILTTQVTVKAYDEDKKPINFANLDSLIVSEYQMEPNLWEVSYD*

Description:

unknown

Assembly ID: 3811220
 Assembly Length: 1429bp

```
> 3811220 Strep Assembly -- Assembly id#3811220
CTGCCCCTGTAAAGGCTGGACGATTGCCTTCCTAGTATCCGCAAAGAGGTAACGTGAGAA
TAGAGAGGATTCTCCTCAATATCTTGACAGACAGGTTCATCTGCCTCTACGTCTG
AAAAAAATCCGCATATTGACCAGTTCTCACAGCATAGCTCAAATCTCCTCTGGCCT
CTGGTCCAACACCAACCAGCAATAAAAGTCCCTGATTGATTTTCCCTGAATCTGGCCT
CTATAACTCACTGGGCTTTTAACCGTTGGATAATGATTTCATAATAGCCTTCTAG
TAAGAGCTAGGACAACTAGCCGTTGGTCCGTTGACAGAGTAAACTCTGGCACACTCTT
AATTTATCGACAACCGTGGTCAGTGTAGAGAGGTTGGCAATACCGAAGGACACATGGAT
ATTAGCAAACCTCATATCCTGGTTGGCTGGCATTGACCGTTGAAATATTCTGGTTGT
ATTGAAAGAACATTGCAGTACATCGTTCAACAGTCCTGTACGGTTGAGACCGTAGATATC
GATATGGGCCATATACTCCTTATTGAGCTAGAGTACTGGTCTCCATTCCACATCAAG
GAGACGTTGCTCGTAGTTCTGGCACGCAGGTCATACAGTCCACACGGTGAATAGC
CACACCACGACCCTGGTAATGTAGCCAACAATATCGTCACCAGGCACGGGTTACAACA
CTTAGCAATCCGCACTAGGAGACCAGAACGACCTCAATAACCAACTCCCCCTCATGCTT
GACCTTGGAGAGTTCTTATTTCACACCTTGACCTCGCCACCTTGACAAGCTCCTCTG
CCTCAGCCTGGCCTGGCACGCTCTCCTCACGGCGTCTTTCACTGAGTCAGACGGTAA
AGACGGAATCGCACCGATTCCCCAAAACCAATGGCCCAAAGAGGGAGTCTCTGTCT
TGTAACTGGTCTTGAGAACATTGATCCATGTGGCGTTGTCCATAAATTATTGCCA
CATAGCCATTCTTGGAACTGAGCCATCAGCATCTCACGACCCCTGTTGACAGACAATT
CCTTATCTGGTTTTAAAGAACTGGCGAATCTTATTGCGCGCCTGCTAGTCTGACCA
TATTGAGCCAGTCACGGCTAGGTCAAAGGAGGTTGGCGATAATTCAACCTGAT
CCCCTGTCTTAACTGGGTGTCAGTGGAAACCATGCGCCATTGACCTTGGCACCAGTTG
CTTTTCACCGACCTGGTATGGATTCTGTAGGCAAATCAATCGTCCTGAATCTTGG
GAAGAGAACGGACAGCTCATCTGGGTAACAGTAAATCTCCTCAGCCAGATAGTTT
CCTAACAGAGTCCACAAATTCTTAGCATCATCAGCCTGGTCTGGAG
```

ORF Predictions:

ORF #	Start	End	Direction	Length
1	316	873	R	186 aa

```
> 3811220-2 ORF translation from 316-873, direction R
VRKSVPRLRQRSLSKVARSLKIKKLSVKHEGGVIVEGASGLVRIAKCCNPVPGDD
IVGYITKGRGVIAHRVDCMNLRAQENYEQRLLDVEWEDQYSSNKEYMAHIDIYGLNRTG
LLNDVLQVLSNTTKNISTVNAQPTKDMKFANIHVSFGIANLSTLTVVDKIKSVPEVYSV
KRTNG*
```

Description:

stringent response-like protein - *Streptococcus equisimilis*

Assembly ID: 3811436
 Assembly Length: 1513bp

> 3811436 Strep Assembly -- Assembly id#3811436
 CTCTGCAATGATGTACTCAAACATCTCGCTCTAGTCCTCCTTAGGCAGAGGAATT
 CCCACGTCGATCCGGTTCATAAAGACCGTATGGTTCTAAATCAAACATACAAACT
 CATGTGGGAATATCCAATCCAATGGCTTAGGCCACATTCCTTACTTGCTCCATGGT
 CTGACCAGGCAGAGCATAAATCAAATCAATGGAGATGTTGTCAAAACCAGCCAGTTCA
 GCGATCGATATTCATAAAATATCCTCTCAAATGACTGCGCCAATTTTCAACAT
 CTTATCATCAAAGGTCTGGACACCTAGCGAACACAGATTGACAGCCGAATTTCAAAC
 AGCTATCTTATCCGATCCAAATCGCCTGGATTGGCTCAATGGCAACTCTCCAAGAC
 AGACAAATCCAAGTTTAGTCAAGCCATTCAAGAACACCTCCAGTTGGAGCCAG
 GGCTGTCGGTGTCCACCACCGATATAAAGGGTTGACAACATTCAATATCATAAGAAC
 AAACCTTCCAGCAGATGCTCTAAATAGCTGTCAGTGGCTGATTTTGATGAAGACCTT
 TGAAAAATCACAATAAAACAAATCTGGTACAAATGGATGTGCACATAGGCTGACGT
 TGGTTTTCTGCATAGTAATTATTACACAAAGACTAGATTCCAGATAAAATCACC
 ATCCCCAGATACTAGTCGGTCCGGAGATGGTGTGGTTATTCTCTGTTATATCAATC
 ACAATCTCTCTGAGTCATCAAGAGCTCGGCTTTCTGCCATTGTTCTGAGATTA
 TTTAATTGATTTTGATGCTTCTGCGCTGAAAAGCATAGGATTAGCTTGAGCAAGT
 ATACTGTCCACAGTGATTTCACCTGACTCAACCTGTTCTGTTCTGTTATATCAATC
 GTAGCCTGCTCCTTAACTCTGTCAGTTTCACAGACTGCTCCTGGCATACTCCGA
 TCTTCTCTCAAATCATCTAAAAATCTTGAGCCTGACTGCAAACATTGTTGCCCTATCA
 CTTGTTAAAACAAGGCAAGAGCTGCACCTGAAACGGTCTAAAGGATTGAGGATAAT
 TTACCCATAAGGATTCTCCTTTTATTTTGAAAAATTACTTGCAAGACGAAGAGCT
 GACAGACTTGCACCAAGTCTGAGTGGTGAACCAGCTGATGAAGCTTCTGCTCAAG
 ACACGCGCATGGTCATTGAGGTCTGAAACAGATAGAGATAATCTGCAACAGCACTGAAG
 AGTGGATCAATCGTAGGCCACCTGACATTGATATCATCTGCCAAGACATTGACCTAGCC
 AACAACTCATTGGTGTGATGCAAGGTCACATCCACATCTGAAGTCAAGGTTAATGTC
 TTTCTGTTCATCGATGACACGACCAAGCTTGTACAGTAATGATCAGATAGACCAAA
 AAGACAATCACAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1164	1511	R	116 aa

> 3811436-3 ORF translation from 1164-1511, direction R
 VIVFLVYLIITVQKLGRVIDEKTIKTLTSVDVTLHHTNELLAKVNVLADDINVKVAT
 IDPLFSAVADLSLSVSDLNDHARVLSKKASSAGSKTLKTGASLSALRLASKFFKK*

Description:
 unknown

Assembly ID: 3811984
 Assembly Length: 505bp

```
> 3811984 Strep Assembly -- Assembly id#3811984
CTCTTGTCAAGAGAAATTACAAAACGTTAGGAGAATAAGATGGCATTATTGAAAAAGGT
CAAGAAATCGATATGGAAGTCATCAAGGCTGAAACCCAATTGTCTGCAGAAGCCTTGAGA
CTCAAGGAAAGCCGTGACAGGGAAATTGGCAGATATTATTTCAGGGGAAGATGACCGTATT
CTCTTGGCTGATTGGCCTTGCTCTGATAATGAAGAGGCCGTCTTGAATATGCTCG
CCGTTATCCGCCCTGCAAAAGAAGGTAGCGGATAAGATTTCATGGTCATGCGCGTGA
TACTGCTAACGCCCTGACCAATGGAGACGGCTATAAAGGGTGGTCACCAGCCAGATAAC
TTCTAAGGCTCCAACCTGATTAACGGCTTGCAGGCTGTGCGCCAGTTGCACTACCGCGT
TGATTACAGAGACTGGTTGACAACGGCAGATGAGATGCTTATCCGTCAAATCTGATCT
TGGTGGATGACTTGGTCACCTACC
```

ORF Predictions:

ORF #	Start	End	Direction	Length
1	134	454	F	107 aa

```
> 3811984-2 ORF translation from 134-454, direction F
VTGNWQILFQGKMTVFSWLIGPCSSDNEEAVLEYARRLSALQKKVADKIFMVMRVTAKP
RTNGDGYKGLVHQPDTSKAPTLINGLQAVRQLHYRVDYRDWFNDGR*
```

Description:

PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE, TYR-SENSITIVE (EC 4.1.2.15) (PHOSP HO-2-KETO-3-DEOXYHEPTONATE ALDOLASE) (DAHP SYNTHETASE) (3-DEOXY-D-ARABINO-HEP TULOSONATE 7-PHOSPHATE SYNTHASE). - ESCHERICHIA COLI.

Assembly ID: 3857228
 Assembly Length: 1827bp

```
> 3857228 Strep Assembly -- Assembly id#3857228
CTCTTTAACGTTTAGCGGTGACACCGAGGATTTTCAGGACCCAAGACTTGTGGGG
CAACCGAAACTGGGAGTCGTACATCTCAATATGCAGACCAGCAGCATCAACCGCAAGAC
AAACATCCAACCGATCATCGATTATCAAGGGACCTGATAGGCATCTGTTATTCCTTGA
CTTGTGTTGCCAGTTGATAATATTGATTGGGTGTGAGATTTTCTCGCAATTGGACTA
TGGTAACCCCTGAACGGCAGGCCGCTCAACTTTGCAAGAAAGCTTCCACGGAATCTT
GATAGCGATTGGTTACCAGATATAGTCTAACCGCTTCTATTCTACATAAACCTCTCCTTGA
ATGGTATCTAGCCAATTTCATCTCTTCTTAGGAGCGAAAGCTGATTGAGTACTTGGTAA
CGAAATTCTCCAATCCCATTCTGAACAACTATTTCTCAGCAGCGATATTGAGATAA
GAGACTGCTAACGCAAGAACTTCAAAACCAGTCTTCCCTGGCTGAGAAAACAGCTGTTA
```

AGGCTCCAACCAAGTCTCCTGTCCCTGTTATCCAGTCTAATTCAAGTACAGGCCATTCTCAA
 GTACAGCAACTGATTCTCGAAACAATAAGGCCTTGGGACCTGTGACTAAGAACATGACA
 TACCAAGATAGGTCTGACACCAGTCCTTAAGAACCTGAAGCAAATCCTCCGTTCTTGAT
 CTTTAGCACTCGCATCGACCCAACGCCGTGATGCTTAATCCAACAAGACTTCGAATTT
 CTGACATGTTCTTAAGGACCGTAGGTCTATAGTCTAAAAGGTCTTAACTAAGCTCT
 TACGAATGGATGAAGTCGTTACGCCAACCGCATCTACTACCATCGGGAGAGAACATTGGT
 TTGCATACAAAGCTGCCATCGGGATTGCTTTCTCAGCTGACAAATGCCCAAAT
 TGATGAAGAGAGCCTGGCTTGCTTAGTAAAATCAAGAACCTCACGGGATCATCTGCCA
 TGACAGGTTGCATCCCAGGCCAAAATCCATTGCCCCAGCATCTCACAAAGAACATCTCAT
 TGGTCATACAGTGAATGAGGGAACTAGAGCCTATAGGAAAAGGATTGTCAATGCCTGCA
 TCATTCTATCCTTCAGCAAAGAAATATCCTGCACCTTTAAAGAATTCTGCTTGAT
 TAAAAATCTAAATGCAATAAAGGAAATCGCTGTACCAATCAAGGTTGCTCCGAAAATCG
 AGGCGTGTAGATAAACCAACTAACGCTTAGCAGCCGATCCTGTAAAGAGCACCATAACAGG
 ATAGGAAAACAATAGAACCAATAATACCTGTTCCCACAATTCTCCAAGGCAGAAAAGTA
 AAATTTCGACCGTACTTATAAAAGAGACCTGCTAGAAGGGCTCCAAAAGTCGCTCCTGT
 GAGAGATAAAGGAGCTTATCGGAATACCCCTGAGTCGTACACGGATAAAGGCTGTCACT
 GTAGCCATAGCCAAGGCATAAACAGGTCCCACATGATTCCCGCTAGAATATTGACTACA
 CTGGACATCGGTGCCATTCCCTCAATCCGAAAGATAGGTGTAAGGACTACATCAAGGGCA
 ATCATCATAGATAAAATGGCAATTGTAACCTGTAGTTGGTGTCTCAAGTTCTA
 TTCTCTCCTTTCTAAAGACTGTAAATCGCTCTTCCATGTCGGTGTGGTAAGGCAT
 CTCCCAAAACTGGCTTCCATATGAACACTGATGTGGAAGGCATCTAGCATTGCTT
 ATCTGTCATCACTTCTCGATAGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1141	1356	R	72 aa

> 3857228-2 ORF translation from 1141-1356, direction R
 VGTGIIGSIVSYPMVLFTGSAKLSWFIYTPRFFGATLIGTAISFIAFRFLIKQEFFKK
 VQGYFFAERIE*

Description:

unknown

Assembly ID: 3857842

Assembly Length: 485bp

> 3857842 Strep Assembly -- Assembly id#3857842
 CTATTGCCAATCCATATAGCCTATCAGGTGGTCAATAACACGTGTGGCCATCGCTCGTG
 GCCTATCAATGAATCCAGACATCATGCTCTCGATGAACCAAATTCTGCCCTGACCCCTG
 AGATGGTGGAGAAGTAATTAACGTTATGAAGGAATTGGCTGAGCAAGGCATGACCATGA
 TTATCGTAACCCATGAGATGGGATTGCCGCCAGGTTGCCAACCGCGTATCTTACTG

CAGATGGCGAGTCCTTGAAGACGGAACACCTGACCAAATCTTGATAACCCACAACACC
 CTCGTCTGAAAGAGTTCTAGATAAGGTCTAACGTCTAAACTCAAACTGCAAGGATT
 CCTTGAGTTTCTACCTCGTATTGAAATTTCGATTTGAAATTATGTTAGAAT
 TAAGTTATGAAATGAGGTTCTACCTAGCAAGACTAGGAATAAAATAGAAATTA
 GGTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	45	341	F	99 aa

> 3857842-1 ORF translation from 45-341, direction F
 VAIARGLSMNPDIMLFDEPNSALDPEMVGEVINVMKELAEQGMTMIIVTHEMGFARQVAN
 RVIFTADGEFLEDGTPDQIFDNPQHPRLKEFLDKVLNV*

Description:

GLUTAMINE TRANSPORT ATP-BINDING PROTEIN GLNQ. - BACILLUS STEAROTHERMOPHILUS.

Assembly ID: 3857996

Assembly Length: 1547bp

> 3857996 Strep Assembly -- Assembly id#3857996
 NTCTGGGCNCNGGCGNNCTTGTAGGACNACGGTATCGATGACCTTGATCTCAAGTG
 CAAGCAGTATCTGAATCTGCAGCACCTGTCCGTGCAAAAGTTCGTCCAACATACAGT
 ACAAACGCTTCAAGTTATCCAATTGGAGAATGTACATGGGGAGTAAAAACATTGGCACCT
 TGGGCTGGAGACTACTGGGTAATGGAGCACAGTGGGCTACAAGTGCAGCAGCAGCAGGT
 TTCCGTACAGGTTCAACACCTCAAGTTGGAGCAATTGCATGTTGAATGATGGTGGATAT
 GGTACAGTAGCGGTTGTTACAGCTGTTGAATCAACAAACACGTATCCAAGTATCAGAATCA
 AATTATGCAGGTAAATCGTACAATTGGAAATCACCGTGGATGGTTCAATCCAACAAACACT
 TCTGAAGGTTTGTACATATATTATGCAGATTAATTACAGAGGGACTCGAATAGAGC
 CCTCTTTCAGGTTTACCGTGACAATCCCTATTAAAAATTATCAAAATCGTAAAAT
 ATTGGAAAAGTATGGTAGAATGAAAATTGTCGTGTGAACGATAATACTCATTCTGATGA
 ATTGTGAAGCAGTTGCCCTGGGTCGTTGCGAGTTGAAGTCAAGAAGAGGAAAAAAC
 AAAAGGAGAAACTCATCGAATTCAATGAAACAACTTCTTGAGGCTGGTGTACACTT
 TGGTCACCAAACCGTGTGGAACTCTAAGATGGCTAAGTACATCTTACTGAACGTAAC
 CGGAATCCACGTTATCGACTTGCAACAAACTGTAAAATCGCTGACCAAGCATACTGACTT
 CATGCGTGATGCAGCAGCTAACGATGCGAGTTGTATTGTTGTTGACTAAGAAACAAGC
 AGCTGATGCAGTTGCTGAAGAAGCAGTACGTTAGGTCAATACCTCATCAACCACCGTTG
 GTTGGGTGGAACCTTACAAACTGGGAACAATCCAAAACGTATCGCTGTTGAAAGA
 AATTAAACGTATGGAAGAAGATGGAACATTGCAAGTTCTCCTAAGAAAGAAGTTGCAC
 TCTTAACAAACACGTGCGCGTCTGAAAAATTCTGGCGGTATCGAAGATATGCCTCG
 TATCCAGATGTGATGTACGTAGTGACCCACATAAAGAGCAAATCGCTTAAAGAAGC

TAAAAAAATTGGGAATCCCAGTTGTAGCGATGGTTGACACCAATACTGATCCAGATGATAT
 CGATGTAATCATCCCAGCTAACGATGACGCTATCCGTGCTGTTAAATTGATCACAGCTAA
 ATTGGCTGACGCTATTATCGAAGGACGTCAAGGTGAGGATGCAGTAGCAGTTGAAGCAGA
 ATTTGCAGCTCAGAAACTCAAGCAGATTCAATTGAAGAAATCGTTGAAGTTGAGAAGG
 TGACAACGCTTAATTTACAAATAGTAATTACCTAGGAGGGCGGGCTAGCCGGCTC
 TCCTATTTCAAAAAATATAGGAGAATTAAAATGGCAGAAATTACAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	58	456	F	133 aa

> 3857996-1 ORF translation from 58-456, direction F

VQAVSESAAPVRAKVRPTYSTNASSYPIGECTWGVKTLAPWAGDYWGNGAQWATSAAAA
 GFRTGSTPQVGAIACWNDGGYGHVAVVTAVESTTRIQVSESNYAGNRTIGNHRGWFNPTT
 TSEGFVTYIYAD*

Description:

unknown

Assembly ID: 3858236

Assembly Length: 740bp

> 3858236 Strep Assembly -- Assembly id#3858236

CTATAAAAAAAAGGGTAACCAGTATGGAGGATGAATGTCTGGAACTATCTGAGAATCTCG
 GATTTTGGAAATCAGACCGATCATCATGAGATAAGGAAGGAAAGCACTTGTAAGAAC
 TGTAACCACGCCAGTCCCCGTCCCCAAGAGGGTGAGGTGGTAGCGTAAACCATGCGGAA
 AAATCCCTTTAGTGGTTGAAATTCTCTCCTTGCTGCGACGTTCTTTTGACCTCTC
 CTCACTATTAAGCAGGATCACGTATAAAACGAGGAAGGACCTCTTTGGTCAGATA
 AAGCAGGAAGAGAGTTAGCCTATCCAAGCGAGCAGACCCAATATGGCTTCTATTGAAAA
 AGGCTCACTGCTATTTGTAAAAGATATGAAGAGGATAAAGGAGAAATGGAATGTCTCT
 AACTTTGTCAACAATACTTCAAAAGTCGACTGAAGAAAGAAGATAATATTAAAGGTAT
 GAGAACTCCTATCCAATCATCACATTGAAAAAATAGACTGATACTTCTGAAGACCT
 AGTCTGAGCCAAGAAATGTAAGTGCCTACCGTCACCAAAGTAACAGAGACAAATAA
 GGTCAAGGACAGTAGCATCAAAGGAAACCCAGCCAAAGAGAAGGGAGCTAGACTAATATA
 GAGGGCTAGAAAATAAGCTAGGATTGGTACAATTCCAGTTAGAGCTGGCAAGAGGACAGA
 CAGTCCTTAGCAATTGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1	261	R	87 aa

> 3858236-1 ORF translation from 1-261, direction R
VILLNSEEVKKERRSKERISTTKKGFFRMVLRYHLLQGTGVVTVLFTSAFLPYLMM
IGLISKIRDSQIVPDIHPPYWLPFFL*

Description:

unknown

Assembly ID: 3858264

Assembly Length: 2219bp

> 3858264 Strep Assembly -- Assembly id#3858264
ATCGAATTCTGTTGCAGTGGCGAAATGCGAACACGTTGTCTTATAAGTTCCA
CGTCTCTTGACACGACCAGTTGCACCTGAGCCAGAAACGTCGTAGAGGTTATCC
CTAAATCATCCGCTAACCTTCTAGCTGCAGGAGTCGCTCTAGCTGTATCAGCCATGA
CCTCTCCAATTCTATTATGATAACAAAGGGCGTAAAAGCGACTGAAAAATAGGAAATCG
ACGATGGCTTCGATGAAGCCAAGGAGATTATCTTTTCCAAGCTTTAGCCGTGCT
CTAATCTAAGATATTAAGGACGAAGAGCTCTGCACCTAAAGATAACAAAGTTCTCGTAG
CTTTGTTTATTACATAACTTATCTTATGTAACCTATTCTTGTATAAGTTTCGG
ATTGCATCTTGATACTTCAACTGTTGAATCATTGCACATTTTAGGTTGCGCATA
AGGCATCGGCACATCTCTCCTGCACAACGGCGATTGGTCATCTAGATAGTCAAATGC
TTCTGATTCTGAAATAATAGCTGAAATTTCACCGATATGCCACTTGTGTTGGC
GTTGACCAAGAACCTTACCACTGAGTTATGATGATATCCTTATCAAG
CGGAACAAGGGTACGTGGGTCAACAATTCAACTGAAATTCCCTCTCAGCTAATTCTC
AGCAGCTTGAACCACACGGCGAACATTTCATAAAGTGACAACGTTACATCCGTTCC
TTGGCGTTGATTCACCAACCCAGTGGATTGTGAGTCTGGATCAACTGGCACTTC
CCCTTTGGTTAAATTCTGACTTGTACTCAAGTATAAACTGGGTGTTACCGGAT
AGAAGACTTAAGCAGGCCATTGACGATATTGTCATGGCAATAACAGAGAAGTCCATGAAGGT
TGGAATGTGAGTAAACCAAGACTCTAGAGATTGTGAGTCTGGATCAACTGGCACTTC
GTTACCAGCTGCACAACGAACAGTCATTGGAACCTGACCTTACCAACATGTAACG
TGTTTAGCAGCTGGTTGACGATATTGTCATGGCAATAACAGAGAAGTCCATGAAGGT
CATATCGACGATTGGACGAAGTCCTGTATGGCTGCTCCTGCTGAGCTCCAGAGATGGC
AGCTTCAGAAATCGGACAGTCACGGACACGTTCTGGACCAAATTCTCAAGCATTCAAAC
AGAAGTACCGAAGTCTCCCGAACACACGGACGTCTCCCATTCAAGAACACATTTC
ATCGGAACGCATTCCCTCAGACATAGCAAGGATAATGGTGTACGGAAAGGACATTGTT
TTGTTCCATTATCTCTTCTCCTAGTCTCGTAAATATCTCAAAGGCTGATTCAA
GCGGTGGAATGGCTTCTGCAAATTAAAGAGCTTACTGCTTCTTACTT
GCGCTTGGATTCTCCAATTCTCGGCATTGCAATGTTATTTCAATAAGGTAATTGC
GGAGGTTTCGATTGGATCTTTGTTCCACAATTCCACTTCTCACCGTACGATATT
TACCAAGGGTCAGATGATGAGTGACCGAGCCAGCGATAAGTTACACTTCAATCAAGACTG
GACCATTGCCACTGCGAACATGGCTATAGCTTCTGAAATCCTCATAGACATCGATGA
CATTGTTACCGTCTCGATGAACATTCCAGGAATTCCATAAGCGCGCTACGTTGATGGA
TATGTTCTATATTGGTCATTCTGATATCCGCAGAGATAACCGTAACCGTTGTTAATGC
AATAGAAAATGACTGGCAGGTTCCAGATAGAAGCCATGTTACTGCTTGTGGAAAACAC

CTTCATTGGTCGACCATCTCAAAGAAGCAGACAACGATTTACCGGTATTTGCATTT
 GCTGACTGAGGGCTGCACCGACAGCGATCCCCATACCACACCTACGATAACCATTGGCAC
 CAAGGTTCCCAGCATCAAGGTCAAGGTCAAGGTTCAGCGATATGCATAGATCCACCTTCCCTTACAGGTTC
 CAGTGTATTTACCAAGGATTCAGCCATCATCCGTTGAAGTCAATCCCTTAGCAATAG
 CTTGCCCGTGTCCACGGTGGTTGAGGTAATCAGATCATCTGGATTGAGAGCTACATAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	439	1365	R	309 aa

> 3858264-1 ORF translation from 439-1365, direction R
 VTPLSLLCLRKCVRDENVFLMGEDVGVF GGDFGTSVGMLEFGPERVRDCPISEAAISGA
 AAGAACMTGLRPIVDMTFMDFSVIAMDNIVNQAAKTRYMFGKGQVPMVRCAAGNGVGSA
 AQHSQSLESWFTHIPGLKVVAAPGTPADMKGLLKSSIRDNNPVILEYKSEFNQKGEVPVD
 PDYTIPLGVGEIKRQGTDVTVVTYGKMLRRVVQAAEELAEGISVEIVDPRTLVP LDKDI
 IINSVKKTGKVVLVNDAHKTSGYIGEISAIISEAFDYLDAPIRRCAGEDVPMPYAQNL
 KMCNDSNS*

Description:

2-OXOISOVALERATE DEHYDROGENASE BETA SUBUNIT (EC 1.2.4.4)
 (BRANCHED- CHAIN ALPHA -KETO ACID DEHYDROGENASE COMPONENT BETA
 CHAIN (E1)) (BCKDH E1-BETA). - BACILL US SUBTILIS.

Assembly ID: 3858610

Assembly Length: 1078bp

> 3858610 Strep Assembly -- Assembly id#3858610
 CTAACCCNTNGACGGGGCCGCTATCATCAGTCAAACAGCTAAAATCTGTCTGCAAAAGT
 CTCGATTAAC TGAGCTTTACAAAGCCGTATTCCTGGAAATAACTTGGAGATTGATCAT
 CTTATCCATCAATT CAGCCGATT CGATATT GTCTTCAGCCAGTG CAGACTTTACGAT
 TGATT TTGGCAATT CGTAGACATAGGTGTTCTCTCAAAGGAATT TGACAATACCTAA
 CTCTTGATATCTCGGGATACCGTCGCCTGAGTGGCAGTGATACTGCTTCTTCAAATG
 TTCTACAATTCTCTTGCGTCCGATTGATAATCTGTCACCAATCTCTAATT TTTCA
 AAGTCTCTCTTTTATT CATT TAAATTGACTATGCGCCCTCTACTGCTTCTTAA
 TCTCAGCAAGAATCTGATTGCTGACTTTCTTTCAAATACACTAAAATTCAA
 TATT TCCATGTCCACCTGGATGGGAGAAAAGTCCAAGCCAAGGACTGAAAACCTGCCT
 CTACTGCCATAGCTTACAGATTCAAGGACATTCTGATGAATCTTAGCATCTCGAATAA
 TTCCATT TTCCAACTCTGCTCACGTCCCTGCCTCAAAC TGAGGTTGACAAGTGCTACCA
 CCTGACCTTGATCAGCCAAGACACGGTGCAAGGCTGGCAAATCAGACTAAGGGAAATGA
 AACTCACATCAATACTGGCAAAGCTCGGCTCTGCTCGAAATCAGTCTTTCAGCATAGC
 GGAAATTGAACTGCTCCATGCTGACAAC TCGTGGTCTTGGCGTAATTCCAAGCCAATC
 GATTGGTACCAACATCGACTGCAAAGACCAACTTGGCACTATTCTGTAGCATGACATCGG

TAAAACCTCCAGTAGAGGCCCGATATCAATCGTAGTCGCGCCATCCACCGACAAATCAA
 AGACCTGCAAGGCCCTTCCAGTTCAAACCACGGCTGACATACTGAGTTCTCC
 CCCTTGAGTTAATTGGTGTACCTGGAATTCTCCTGGCTGTCAAACCGTTC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	374	949	R	192 aa

> 3858610-2 ORF translation from 374-949, direction R
 VDGATTIDIGASTGGFTDVMLQNSAKLVFAVDVGTNQLAWKLRQDPRVVSMEQFNFRYAE
 KTDFEQEPEFSASIDVSFISLSSLILPALHRVLADQGVVALVKPQFEAGREQIGKNGIIRD
 AKIHQNVL_ESVTAMAVEAGFSVLGLDFSPIQGGHGNIEFLVYLKEKSASNQILAEIKEA
 VERAHSQFKNE*

Description:

cytotoxin/hemolysin ORF2 tly - Serpula hydysenteriae

Assembly ID: 3858716

Assembly Length: 928bp

> 3858716 Strep Assembly -- Assembly id#3858716
 ACTTCCTGACCTCTGTTCCAATAATCTTCAAATGGACAGAGATCTACCGTTTTG
 CATCGATAGCTGAGGTCTTTAGAAAATACCATCACTTTAGAAAATATAAACACATT
 TTTCGGATAAGATTAAGGTTAAAAGCAGCTCGTTATCCAGGGCTGATGATGGTCTCA
 CGATAAACACATCCAATAACCAATGCATACTTCTGCTGACCAATGACCTCGAACACTA
 TGGCAAAAGGTCAACATCAAGCTTAAAGTTAAAGATAAAATAGCGAACGTCTGACT
 TGTAATACCATCTCTATCAATAGTATTACGAGTCATTCCAATTCCACGCAATTATGCCA
 TTTGGGATGGTTTGACACAACCCTAACATCAGAAGACACCCAGTATTCTCGAACCTC
 AATCTATCCTCTTCTATATTCTAACTGAAAGGACAATTCAATGATTCAATTAAATGA
 TTAGGCCATTGCTCTAGCCATTGGAATTGGTTACCGCACCAAAATCAATTGGCCTGC
 TGGCTATTGCTTTCTACCTCATCGAACCACTCTCATGGGATTAAGTCCAAAGAAC
 TTCTTCATTTGGCCAACCTCACTCTTTTACCATTTTAGCGTCTCTCTCTTTATA
 ACGTTGCAACAACGACTTGTACTCTGATGTTGGCTCAACACATTCTCACCGCACAC
 GCACCCACCCCTAACGCCCTACATGATTTATACCTGATGGCAACCCTTGTCTGCTT
 TAGGTGCTGGATTTCACTACTATGGCGTTGCTGCTCTAGCGATTACCTCTGTC
 AAAAGCGGACAAACACCCTTGATTGGAGTCAAAGCGTCAATGGAACTCAGGAAGGG
 TAATTGATAACCAAAGGAATAAAATT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	238	402	R	55 aa

> 3858716-1 ORF translation from 238-402, direction R
VSSDVKWLQCNHPKWHKLRGIGMTRNTIDRDGITSQDVRYFIFNFKLDVDDLLP*

Description:

unknown

Assembly ID: 3859124

Assembly Length: 847bp

> 3859124 Strep Assembly -- Assembly id#3859124
AAAAACGCACCATATCAAAAACAAAAAGTTGATATCATGCGTCATGTCTAAACTAAT
TGACTATACTTCTATTCAAATGAGCTTTAACCAATTGATTGAGCCAATCCACTCTAA
AACCAAAGGAGCAATTCTCGGCTAGCTGACTCTCTCGGAATCTGAACCATGTACAAC
ATTTGGATAATCTCATTTCCTCCAGCAGCTTGCAAAATCACCTCGAATAGTGCCTGG
TAAAGCTTCTCTGGACGAGTTGCACCCATCATGGTCCGCCAAGTTCGATTACTTGGG
ACCAGAAATGACACCCACAAGAACCTGGACCTGAAGTCATGAATTACGAATCGGTGGGTA
AAAACTCTGACCAACCAAGTCCTGATAGTGCCTGGCAATCAACTCTCTGAAAACCTGTG
AACGAAACTCCAATTTCGATTGAAATCCACGTTGTCATGCGCTTAACACTTCAC
CCACTAGCCCTCTTTACACCATCTGGTTGATGATAAAGAACGTTGTTCCATACCCG
TCTCCTTGTCACTGCTTCTTTATTTACACATCTCGTGGAAAATGGAGAAAGTT
TTCAGAAGAGAGAATGAGAGAACCTCGGGTTCTCATTCTCTTATTCTACTGTTTC
TTCCACAGTGTCAACGGCAGTATCCACAACACTTCTGTTGTTCTTCATTCCTCTTC
CTCTACTGGAGGATTAAGGTATTCTCTCGTTGACAGCATGTGGTTCAAGGTTACGGTA
ACGGGCCATACCACTGGGATGATCTTACCGATGAATAACATTTCCTTAAAT
TCCAAGG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	73	453	R	127 aa

> 3859124-1 ORF translation from 73-453, direction R
VDLQSKNWSFVHRFSEELIDQHYQDLVGQSFYPPIREFMTSGPVLGVVISGPKVIEWTWR
MMGATRPEEALPGTIRGDFAKAAGENEIIQNVHGSDSEKSRLSREIAPLVLRVWDLNQL
VKSSF*

Description:

NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6) (NDK) (NDP KINASE)
(ABNORMAL WING DI SCS PROTEIN) (KILLER-OF-PRUNE PROTEIN). -
DROSOPHILA MELANOGASTER (FRUIT FLY)

Assembly ID: 3859244

Assembly Length: 578bp

```
> 3859244 Strep Assembly -- Assembly id#3859244
ACAACCTAACTACCGNCTAATTCAAGCGCGAACCTCTGCAGTAGCTGCTTCAACAACTTCA
CGACGTGAAAGGATGAAGCGGTTTCTTAGCGTTACTCTTGATTTAGTATCAAAT
TCTTGACCTACAAAACGCTCAGCGTTACGTACGAAACGAGTATCCAACATTGAAGCTGGG
ATAAATCCACGAACACCTCAAATTCTACTGAAAGTCACCTTAACGGCACCGCTCCT
TTAACAGTAACAACCTCTTCGCGACCAACAAGTTGTCCCAGTGTGAGCTTCA
AGGCAGTTTTAGATGACAAGGTATGTAACGTATCAGTATCTTACCAACTACTGACG
AACTACAAGAACATCCAATACTCTCCTACTTTAACAAAGTCATTGATATCTGCATCACG
ATCGTTGTCAATTGCGAAGAGTCAGACACCCTAACACACCAGTTCCAGAAGAATGC
AACGTTAGCTTGAGTCGCATCAACTGTCAATACTTCAGCACTAACACATCACCAGTCTCA
ACTTGACTNACGCTATTGAGCANATCTCAAATTGAT
```

ORF Predictions:

ORF #	Start	End	Direction	Length
1	310	462	R	51 aa

```
> 3859244-2 ORF translation from 310-462, direction R
VLKGVLTLRELTNDRDADINDFVKVGEVLDVLVRQVVGKDTDTVTYLV*
```

Description:

unknown

Assembly ID: 3859250

Assembly Length: 888bp

```
> 3859250 Strep Assembly -- Assembly id#3859250
GTAGTTATAGTAGGGGTCGGATTGAAATGCCACNGCGCTTCTGGAGTTCTGATACCGT
TTAAAATAGCGTTGGCATTCTGGTTGGAGTCAGAGCCTTATCAAGCGCAATCATGATA
GGTTGGTTGGTATAGTAGTTGTCTAGGATAACCTGGTTCTGGTCTAGGCACCTGGTG
GAGGAAGGTTGTCAGCAATTCTCCTTTGACGAAATTCTCAGCGTTGTCTGCGCCAG
TAACTATTTCTGTTTTGAGTTGTCTGGTTCTGAAGTCATTCAACACG
ACGAATCAGTTCACTGGCCTGCTGTTGACCGCGTCGCGCTCAGCCTATCCTTATAGTA
GGTGTCCAACAAATCAGAAAGATTGCAAAGGCTCTCCACCTGATTGCAAAGGAAC
TGGACTGAAGGAAGTCTCAGTCAAGCATGGCTGGTTCTGATTGAAAAAATTCCGAA
AGCGGAAAGTTTCACTAACAGTATCCTTCCAATTGCGTATCGCGTCCAG
ACCTTGAAAGAGGCTTGAAGATTGCTGTTAGTTCTGGTTGCAGGATTCAA
GAGCTTTCATCCTTGATAGTAAAGGATTGAGAGATTGTACTTGGCGGAGCGATATA
GGTCGATCCTGGAAGTAAGGTGCAGTAGCTATTTGTGAAAGGCCGACGTGTTGATAAC
TTCGAGGATTATGACTGCTTTATCCGACCAGTTAGAATATTACTGTGTTCCCCATA
ATTCGATAATCAAGGTAGCCTGGATATGGCTCCAATCTCGTTTATTGGAAACTGTA
```

ATTTCCACAATA CGGT CATT TCC ACTT GCT CAAT CGACT CAAT CAGG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	244	402	R	53 aa

> 3859250-1 ORF translation from 244-402, direction R
 VGEPFANLS DLLTYY KDKAERDRV KQQASELIRR VENELQKNRHKLKKQEK*

Description:

STRFBP5A NCBI gi: 496253 - Streptococcus pyogenes.
 Fibrinogen/Fibronectin binding protein

Assembly ID: 3859588

Assembly Length: 513bp

> 3859588 Strep Assembly -- Assembly id#3859588
 ATCGAATTTGTTCTTCATAGAGAGCTACCTGAGTTCTATTCAAGCTCAGGTAGTACTT
 TCTTATAAACTAGACAAACTAACGTCTACCATCAGATTACAAGACATCATCGTCA
 CTCACCTTGGATTCAATGTCGTACCCAATGGTAATTTACGGTGGGGTTGAGCTAAA
 ATTGGTCTGTTTCATAGATTGTTGCCATCTATTCCATAGTAGGCCGTCTTTCTCA
 ATCTTAACTCGCAGATTCTCATATTTCCTTGATTGGGAGGTTGAGGACAAAACCTGCA
 GTCTGGTTGCGACCCTTCCCTCCAAAGAATGACTACGAACAACTGGTTCCATCTTA
 TCTACTGGAACCTCTCCAAAGTTATGGAGTAGCGGGCAATGTAAGCTCCACTGTGTTGA
 ATTATCAATGTTTATCTTCACAGGGAGTCTGACTGATTGGTTGAACTGGCTTAGAAC
 TTGTGTCGCCGTTTCAGCATTGCTAGCTATAAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	102	443	R	114 aa

> 3859588-1 ORF translation from 102-443, direction R
 VKDKTLIIQHSGAYIARYSITWEEVPVDKDGQVVRSHSWEGNQRNQTAGFVLNLPIKEN
 MRNLRVKIEKKTGLLWRQTIYENRPILAQPHRKITHWGTTLNSKVSDDDVL*

Description:

PNEUMOLYSIN (THIOL-ACTIVATED CYTOLYSIN). - STREPTOCOCCUS
 PNEUMONIAE.

Assembly ID: 3859774

Assembly Length: 214bp

> 3859774 Strep Assembly -- Assembly id#3859774
ATCGAATTCTAACATGTGCTCTCCTTCTATTGTTCTATCTTAAAATCTACTCCTTCA
TGCTCCAAGAGCCAAGCTTCTTTCCACTCCTGCAGCATAACCTGTCAGACGCTGCCT
GCTCCAACACACGATGACAAGGTACTAGGATAGACCAAGGATTGCGTCCACTGCTCCA
CCAATTGCTTGAGCAGAAGCCACTTGCAGGTCTT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	9	131	R	41 aa

> 3859774-1 ORF translation from 9-131, direction R
VLGAGKRLTGYAAGVEKKAWLLEHEGVDFKDRNNRRRSTC*

Description:

GLUTAMATE RACEMASE (EC 5.1.1.3). - ESCHERICHIA COLI.

Assembly ID: 3860140

Assembly Length: 1084bp

> 3860140 Strep Assembly -- Assembly id#3860140
CTCCAGCAATGGATCCAAGTATGATGGGCGGGATGATGTAAGCTTCTATAGAAAACACC
TTATAAAAAACACGAAAGGAGGAATGACTAACCTCTTTTATAATATTCACTCTAA
GATTGATGGTGAGCTCTCTAACTTATATGATAAAATAAGACTAGAGGAAAGGAGAAGAA
CATGATCGATGTACAAGAAATTCTGTGCAAGATGACCCCCAATCAGAAGATTAATTATGA
CCGTGTCATGCAGAAAATGGTACAAGCATGGAAAAAAATGAGTAGCGGCCAACATTCT
CGTGCATGTTGCTGTGCCCTTGTAGTACCTATACACTAGAATATTGACCAAGTATGC
AGATGTGACCATCTATTGCCAATTCTAATATCCATCCCAAGGCAGAATACCATAAGCG
GGTCTATGTCACCAAGAAATTGTTAGTGATTAAATGAGCAGACAGGAAATACGGTTCA
GTACCTAGAAGCTCCCTACGAACCCAATTAAACCGAAAATAGTTAGGGGGCTAGAGGA
GGAGCCCAGGGTGGCGACCGTTGCAAGGTTGTTGACTACCGACTGGATAAAACAGC
GCAAGTGGCTATGGACTTGGCTTGTGACTACTTGGTTGACCCATCAGTCTCA
TAAGAATTCTCAAACATCAATAGCATCGGAATCGATGTGCAAAAAATTACACGCCCA
CTATCTTCCCAACGATTCAAGAAAATCAAGGCTACAAACGTTCACTAGAGATGCGTGA
GGAGTATGATATCTATCGTCAATGTTATTGTTGCTGCGTCTATGCAGCCCAAGCCCAGAA
TATTGACCTGGTTAAGTTGAGTAGGACGCCACAGCATGCTGCTGGATAAGGATGTTGA
GAAAGACTATTCTCATATCACATTATAGTAGATTGAAACTAGAAATAGTACACCTTACT
TCTCAAACATTGTTAGAAATCGATTGGCTGCTTATTCATTAAATATACTGGTACG
AAATTAGATATCAATGATAACTGCCTCAAGGTAGGTTTGATAGTAGAAAAGCGA
TAGA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	302	511	F	70 aa
2	605	856	F	84 aa

> 3860140-1 ORF translation from 302-511, direction F
 VHVCAPCSTYLTLEYLTKYADVTIYFANSNIHPKAEYHKRVYVTKFVSDNEQTGNTVQ
 YLEAPYEPN*

Description:

unknown

> 3860140-2 ORF translation from 605-856, direction F
 VAMDLGFDYFGSALTISPHKNSQTINSIGIDVQKIYTPHYLPNDFKKNQGYKRSVEMREE
 YDIYRQCYCGCVYAAQAQNIDLV*

Description:

unknown

Assembly ID: 3860206

Assembly Length: 1124bp

> 3860206 Strep Assembly -- Assembly id#3860206
 ATCGAATTCAATTGACTGCCCTGAAAAGACTTCAACTCGTCTGCCTGATAACCGAAAGACTT
 GGTTACTTTGATACCTGTACGGACTCCTGTACCTTGTTATTGAGTTCAGAAAAAGCAGC
 TTGGGATTCGCCAAAGGCCTTATGAGTCTTCTCCCTAGGCGACTAGTCGTATAGGCCAT
 GAAAGGTAGGGGGAGAATGGCAACAAGAGTCATCTGCCATGAGATGCTAAAGAGCATGGT
 CAACAAAGTCACCAGAGCCGTGATAGAGGCATCCACCGCAGACATGACACCGCACCTGC
 TAAACCGAGTCAGGAATTGATATCATTGGTTGCGTGTGCCATCAGATACCCGTCCGATA
 GGTTTGATAAAAGGCTGACGACATTTTGAAATGCTTAAACAAGCGAGACCGCATGAT
 CTGTCCAAGCAATAAGAGGTCCCAAGGATATAACATAGCCACACATAGCGCAAATAGTA
 CATACCAAAGGCTGCAAGTAGCAAGTAAAATAGGCTAAGAAGGGCTGCTGGGTTAA
 TTGCCCGATGTGATGGCATCAATAACCCGCCCCATAACCATAGGAGGAATGAGATTGAG
 GACGGAAACCAAGACCAGGGCCACAATCCCAGTAGATAACGGCTTTCTAACCTGAA
 AAACCCACAAAATTTTGAAATAATGGACATAAAATCCCTTCTGGATTGCAAATAGAAAC
 CTGAGGCCAATACTCAATGGAAATCAAAGAGCAAATAGGAAACTAGCCGAGGCTGCT
 CAAAGCACTGCTTGAGGTTGTAGATAGAACTGACGAAGTCAGTAACCTACATACGGCAA
 GGCGACGTTGACGCCGTTGAAGAAATTCCGAAGAATACAAGACCCCAGGTTTCTTA
 TTTATAAGTTACCACTGTAACAGCACCCCTGTCATATTCAAGCAAAACTCCTCGCTACGA
 ATTGTCATGCCCTGTTACTGAGGTTATCAAGCAACCACCTCGCTACGAACAATCGA
 TCCCAAGACATCTACTTGAATCACACCGTCAGTCACAACACTGGATACTTAGGATTTCATC
 TCCCATTGACACAACGATGAGTTGCCATTGCTCTGCACAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	898	1056	R	53 aa

> 3860206-2 ORF translation from 898-1056, direction R
VTDGVIQVDVLGSIVRSEEWLLDNL SKQGHNDNVANIFIAEYDKGAVTVVTYK*

Description:

unknown

Assembly ID: 3860270

Assembly Length: 1242bp

> 3860270 Strep Assembly -- Assembly id#3860270

TTACCTTCATTGCAGCCATTATTGGTTCTTGTGTCAAGCCAGATTTAAGTATTCTTATA
AGACACCTGCTGGTCTTATCTTGGCATTGGCACCGCTGGTCCAGGTTATCTCT
CCTACCGAACAACTGCCTTTTGACAGGGGACTATAATAAAGCACTGGCAAGTGC
CCTTGGTTGTCAATGGCTTGGTAATCTCTATTGAATGGCTAGCGGAACAGTGATT
TCAGACTGTATCATTATATAAAAACACATCGAGTATCGTAGACTTACAGAAATAAAGA
ATTTCTGAAAATGAGATAAATAATTAAACAACGCTTCTATATGTGCGAGAATACCG
ACTTATGAAGAAATTGGCGCTGATTGGTATCCACGAAAGCAACTTAATCCGTCGGAGC
CAATGGTTGAAGTAACTCTGTTCAAAGTGGTGTACGATTCAAAAACTCATCTTAGT
GCTGAGAATACGGTGATTGGATGCAACAGAGGTAaaaATCAATGCCCTAAAAACAA
TTAGCGAATGATTCTGGAAAAAGAAATTCAACGCTATGAAGGCTCAGGCGATTGTCACA
AGTCAAGGGAGAATTGTTCTTGATATCGCTGTGAACATTGTCATGATATGAAGTTG
TTCAAAATGAGTCGCAGAAAATATCGGACAAGCTGGAAAATCTGGCTGATAGGTTAT
CAAGGGCCCAGTGAAGATATATCCTCAAGCACAAACTCCACGTAAATCCAGCAAAC
CCGCTAATAGCTGAAGATAAGCTATAACCAGTCGCTATCCAAGGAGAGAACAGGTT
GAGAACATCTTGCCAAAGTAAAACGTTAAAATGTTCAACAAACCTATCGAAATCAT
CGTAAACGCTTCGGATTACGAATGAATTGATTGCTGGCATTATCAATTATGAAC
TTCTAGTTTGAGGAAGTCTATTATTCCTTATTGCTGTAAAGTCTACTGACCTGTT
GTTTATCCCAGTCATGGTTCTAGTTGGGCTCAGAGTTCAAAGTGGATGGCAAGAGCA
TCAATTGATTGCTGAGAAGGTTAGAAAACACTTGACAAGACATTGATAAGGATGTCAG
AAAAATTCCGACCAGTCAGTTTATCAAAAATTGTAGATGAGATGGGAAGGATTACTC
AGGAAATTGATCCTCCCAGGAGCTGATAACTGTGAATGGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	346	966	F	207 aa

> 3860270-1 ORF translation from 346-966, direction F

VREYRTYEEIAADFGIHESNLIRRSQWVEVTLVQSGVTISKTHLSAENTVIVDATEVKIN
 RPKKQLANDSGKKKFHAMKAQAIUTSQGRIVSLDIAVNCHDMKLFKMSRRNIGQAGKIL
 ADSGYQGPMKIYPQAQTPRKSSKLPLIAEDKAYNHALKERSKVENIFAKVKTBFMFST
 TYRNHRKRFGLRMNLIAGIINYELGF*

Description:

ISL2 protein - *Lactobacillus helveticus* (Probable transposase)

Assembly ID: 3860438

Assembly Length: 1575bp

```
> 3860438 Strep Assembly -- Assembly id#3860438
GTGATGGGCCTCAGGGAAATGGTTTGACTTGTCTGACCTTGATGAGCAGAACATCAGGTT
CTCCTGTTGGTGGGATTGGTGGTCCACCCCTGCTTGAGGTGGCCAAGGAATTGCAT
GAACGTGGAGTGAAAGTAGTGACAGTCCTCGGTTTGCTAATAAGGATGCTGTTATTTG
AAAACGGAATTGGCTCAGTATGGTCAGGTCTTGTAACGACAGATGATGGTTCTATGGC
ATCAAGGGAAATGTTCCCGTTGTTATCAATGATTTAGATAGTCAGTTGATGCTGTTACT
CGTGTGGGGCTCCAGGAATGATGAAGTATATCAATCAAACCTTGATGATCACCCAAAGAG
CCTATTATCTCTGGAATCTCGTATGGCTTGTGGATGGGAGCTGCTATGCCTGTGTT
TAAAAGTACCAAGAACGAGACGGTCAGCCAACCGCTCTGTGAAGATGGCCTGTTTCC
GCACAGGAACAGTTGATTATAAGGAGAAATTATGACTACAAATCGATTACAAGTGTCT
CTACCTGGTTGGATTGAAAAATCCGATTATTCCAGCATCAGGCTGTTTGGCTTGGGA
CAAGAGTATGCCAAGTACTATGATTTAGACCTTTAGGTTCTATTATGATCAAGGCAGA
ACCCTTGAAACCACGTTTGGGAATCCAACCTCAAGAGTGGCAGAGACGCCGCTGCTGGTATG
CTCAATGCAATTGGCTTGCAAAATCTGGTTAGAGGTTGTTGGCTGAAAGCTACCT
TGGCTGGAAAGAGAATATCCAATCTTCTATTATGCCAATGTCAGCTGGTTTTCAAAA
CAAGAGTATGCAGCTGTTCTCATGGATTCCAAGGCAACTAATATAAAAGCTATCGAG
CTCAATATTCTGTCCCCAATGTTGACCACTGTAATCATGGACTTTGATTGGTCAAGAT
CCAGATTGGCTATGATGTTGAAAGCAGCTGTGGAAGCCTCAGAAGTGCAGTTTAT
GTCAAATTAAACCCGAGTGTGACCGATATCGTTACTGTCGCAAAAGCTGCAGAAGATGCG
GGAGCAAGTGGCTTGACTATGATCATACTCTGGTGGATGCGCTTGACCTCAAAACCAG
AAAACCAATCTGGCCAATGGAACAGGTGGAATGTCAGGTCCAGCAGTTTCCAGTAGCC
CTCAAACTCATCCGCCAAGTAGCCAAACAACAGACCTGCCATTCATTGGAATGGGGGA
GTGGATTGGCTGAAGCTGCCCTAGAAATGTATCTGGCTGGGATCTGCTATCGGAGTT
GGAACAGCTAACTTACCAATCCTTATGCCGCCCTGACATCATCGAAAATTACCAAAA
GTCATGGATAAATACGGTATTAGCAGTCTGGAAGAACTCCGTCAGGAAGTAAAGAGTCT
CTGAGGTAAACTGCAATCAATCTGTTCTGATTAGTTGATTTTATTAGTTGAAATATGAATTAG
GAGAATTGGTACAATAAAATAAGAACAGAGGAAGAAGGTTAATGAAGAAAGTAA
GATTATTTTTAG
```

ORF Predictions:

ORF #	Start	End	Direction	Length
-------	-------	-----	-----------	--------

1	1	276	F	92 aa
2	460	1128	F	223 aa

> 3860438-1 ORF translation from 1-276, direction F
 VMGPQNGFDSDLDEQNQVLLVGGGIGVPPLEVAKELHERGVKVVTVLGFANKDAVIL
 KTELAQYGQVFVTTDDGSYGIKGNVPLLSMI*

Description:

unknown

> 3860438-3 ORF translation from 460-1128, direction F
 VKMVLFSAQEQLYYKEKIMTTNRLQVSLPGLDLKNPIIPASGCFGQYEAKYYDLDLLG
 SIMIKATTLEPRFGNPTPRVAETPAGMLNAIGLQNPGLEVVLAEKLPWLEREYPNLPIIA
 NVAGFSKQEYAAVSHGISKATNIKAIELNISCPNVDHCNHGLLIGQDPDLAYDVVKAAVE
 ASEVPVYVKLTPSVTDIVTVAKAAEDAGASGLTMIILWWDAL*

Description:

DIHYDROORotate DEHYDROGENASE (EC 1.3.3.1) (DIHYDROORotate
 OXIDASE) (DHODEHASE). - BACILLUS SUBTILIS.

Assembly ID: 3860544

Assembly Length: 776bp

> 3860544 Strep Assembly -- Assembly id#3860544
 CTAAGATATCAGAATAACAAACGAAATCGAACGCATTAAAAACAAATATTACTTCTAAGAAT
 AGCGAGATTGATAGTCACAAAGCAATTAGGATATGACCGTACCTATAATGATCCAA
 CTTCTCAGGCTTATAATATTATGCTCAATTAAATTAGTGAAGTTAGGTACTGCTCGTTCAA
 ACAACAATAAAAGTATTACAGAGCTTGAGGCTAATCTGGAGTGGCACACAGGTCAAGATA
 AAGCTCATAGTATATTAGCGTCAAATGAAGGTACTCTGCATTATCTGGTACCTTGAAAC
 AAGGAATGTCTATTAGCAGGGCAAACGATAGCAGAAGTTCAAGGAAAGAAAAGGTT
 ACTATGTAGAGGCTTTGACTTGCAGTGTATTTCTCGTGTTCAAAAGGAGCAGAAAG
 TTGATGTTGCTATTACTGGTGTGAATAGTCAAAATATGGAACACTAAAGGGACAAGTCA
 GACAGATTGATTAGAACATTTCCAAGAAACGAAAGAGGGAAATTAGCCTCTATA
 AAGTCATGATAGAATTAGAACCTTAACTCTAAAACATGGAAGCGAGACGGTCATACTCC
 AAAAGGATATGCCAGTTGAAGTGCGGATTGTCTATGATAAAGAACCTATCTTGATTGGA
 TTTTAGAAATGTTAAGTTCAAGCAATAATTGGTTAACCTTAGGTAACCTATAAAAAA
 CAAATAAGGTAGAGAAAGGATATTCTAAGTTAGCTCACATTACTGCCATTCC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	222	689	F	156 aa

> 3860544-1 ORF translation from 222-689, direction F
 VATQDKAHSILASNEGLHLYVPLKQGMSIQQGQTIAEVSGKEKGYYVEAFVLASDISR
 VSKGAKVDVAITGVNSQKYGTLKGQVRQIDSgtISQETKEGNISLYKVMIELETTLKHG
 SETVILQKDMPVEVRIVYDKETYLDWILEMLSFKQ*

Description:

unknown

Assembly ID: 3860558
 Assembly Length: 1487bp

> 3860558 Strep Assembly -- Assembly id#3860558
 CTGGCCTTCTCCACAAAATTGTCCTGAGGGAAAGTCAGAACACTAGCCGTTGC
 ATCTTCCTTTGCTTTCAATCGAATTCCAGATAATTTCCCATTCTTTGGTGA
 CCGGGAGGCAGGATTGAATGGCTGAGGGAAATGACAAACTTGTCTAGCAAGAATGGTC
 AAGGCACCTCCGCTACAATCAAATCTGATTGGCTTAAATTAAACAAAGACCTGTTT
 ACTAGATTTCTCCAGAACGATCGTCCTGAAACCAGGCCAGCAAGATAACTTGCC
 TTCTCCAATTGCTTTAACATTGCTGGCTTGAAGAGAAAAGGCCATAGGCTCAGGT
 AAATGGCTGTGCAGAGCCGGATATTTCCCTGTCCTCCACGGTCACCAATCCTGCA
 CCGCTTTTACAGCTGCTAACAGCAGCCATGATGGCACCTCCATAAGGATAAGTACCA
 CCAAGCAGCAGCAGACGACCATAATCTCTTATGACTTGAACGAGAACGTTCAATAATA
 ACTTTCTAGTAAGGTTGATTAATCACTTCATCCTTTCCCTCTCACTTTATTAT
 ACAACAAAAAGGAGACGCAGACCTCCTTTGTAATCTTATATCTAAAATTAAATTCAT
 TTCTGCCATTTAGATATAGCTATAGAAAATACACTCTATTAAATCGAATGTTCTCTTAT
 TTTCTATCCAATGTCCGAAGTGCTGCTTGATAAGTTGCTCCATCAGCATGGTAATGGTC
 ATAGGACCGACACCTCCAGGGACTGGCGTATGGCTAGCAAGTGGTCAACTGCCTCA
 TAATCAACATCTCCACAGAGCTCCCATTTCATCTGGTCACTCCACGTCAATGACA
 ACCGCACCTGGTTGACAAAGTCAGCAGTCACAAACTGGCGGGCCATTGCGACTACA
 AGAATATCTGCTTAGCAGCCACCTGGCAAGATTATGAGTTCGTGAGTGGCCAAGGTT
 ACTGTCGCATTTAGCCAAAAGAAGCTGAGCCATAGGTTCCAACGATATTGAACGA
 CCGATTACGACCGCATTTTACCTCCAAGTCATCCATATTCAATGAAACATTCCATA
 ATTCCCTGAGGTGTCGAGGGAAATCATGACTGGATGTCCAGACCAAAGACGTCCCATTGTT
 AGGGGATGGAAACCATCCACATCCTTTCTGGGTCAATGGCTAATAAAACCGCCTCTCA
 TCGATATGTTGGTAATGGCAACTGGACAAAATCCATGCCAGCTGGATCCTGATTA
 TATTTAGCAATCAGGTCTAACATCCTTGTAGTAATGGTCTCTGGAACTCGCACTACT
 TCGGTACGGAAACCAGCCGAAGAGCTGACCTCTCCTGCGAACGTTAAACTTGGCT
 GGCTGGATTATCCCCAACCAAAACTCACTACCAAAACCAGGCAGTACTAGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	717	1376	R	220 aa

> 3860558-2 ORF translation from 717-1376, direction R
 VRVPETITQEELLDLIAKYNQDPAWHGILVQLPLKHIDEEAVLLAIDPEKDVGDFHPLN
 MGRLWSGHPVMIPSTPAGIMEMFHEYGIDLEGKNAVIGRSNIVGKPMAQLLAKNATVT
 LAHSRTHNLAKVAAKADILVVAIGRAKFVTADFVKPGAVVIDVGMNRDENGKLCGDVDYE
 AVAPLASHITPVPGGVGPMTITMLMEQTYQAALRTLDRK*

Description:

5,10-methylene-tetrahydrofolate dehydrogenase (fold) homolog -
Haemophilus infl uenzae (strain Rd KW20)

Assembly ID: 3860568

Assembly Length: 1634bp

> 3860568 Strep Assembly -- Assembly id#3860568
 CGTGCCTGGCCAATGATCCAAAATCTGATTCAGACGAGTCGCTCAAATTCGGCC
 CCTGGACCCTTAAGACCAACCCAAGCAGATTGGCCCTGGTTGCAAGATTGAACCAA
 AAATTAGGCTGACTGTGCTCTGATTACGCATGAAATGCAGATTGTCAAAGACATTGCC
 AACCGTGTGCAGTTATGCAGGATGGCATTGATTGAAGAGAGTAGTGTGCTTGAAATC
 TTCTCAGACCCTAACACACCTTGACTCAAGACTTATCTAACAGCTACAGGTATTGAC
 GAAGCCATGGTCAAATCGAGAACGAAAGAACACTGTGAAACACTTGTCTGAAAACAGTCTC
 TTGGTGCAACTCAAGTACGCTGGATCTCACAGACGAGCCACTTTGAATGAATTGTAC
 AAGCATTATCAAGTAATGGCTAATATTCTCTATGGGAATATCGAAATCCTCGATGGTACT
 CCTGTTGGAGAATTGGTGGTGGTCTTGTCAAGTGAAAAAGCAGCGCTGGCAGGTGCTCAA
 GAAGCCATTGTCAGCAGCGTACAGTTAAAGTATTGAAGGGAGGACAGTAAGATGGA
 ATCATTTGATTCAAACCTATTTACCAAATGTCTATAAGATGGTTGGCTGGCAGGCAGG
 CTGGGAACAGCTATCTACCTAACCCCTATATGACAGTTCTTCCTTCATTATCGGAGG
 CTTCTGGGGCTAGTGGCAGGTCTTCTCGTCTTGACAGCGCCAGGTGGTGTCTGG
 GAATAAAAGTCGTATTCTGGATTTAGACAAAATTACCTCAATTTCGTGCGGTTCCCTT
 TATCATCCTCTGGCAATCTTGTCAACCACTTCTCACTTGATTGAAAAAACAGTATCGG
 GCCAAATGCAAGCCCTGTCCCACTTCTTGCAAGTCTTGCCTCTTGCCTCGAGCG
 TGCAGGTTGTCTGGCTGAAATGGATGGCAGGTGTCAATTGAGGCGGGCTAAAGCGAGCG
 AGCGACTTTCTGGACATCGTGGGTGTTACCTATCAGAAGGTCTTCAGATTGATCCG
 TGTGACGACTGTGACCTGATTCCCTTGTGGGAAACAGCTATGGCCGGTGCAGGTGG
 AGCTGGTGGTATCGTAACGTAGCCATCGCTATGGATTAAACCGCTACAATCACGATGT
 GACCACCTTGGCAACCATCGTTATCATTGATTATCTTGCAATCCAATTCTTAGGAGA
 TTTCTGACTAAGAAATTGAGCCATAAATAAAAAGAGCCGTGGCTTTAACTGA
 TCAGATTTCTGGCAAATTCTACTCAAGGCTTGTCAAATCAAGGCACCCACTAGGGC
 TCCGATGACAATACCTGCGATAAATAGAAGGACAGTTCCAGGGTTGGAGCGACCATGAT
 GCGGTCGATATATTCTGGGATTTCCTCTTGCCAGAAGAGTAGCCATAGGCTTGG
 CGCAATCCACATAAGCAAGATTGGCCTGTTGACTAAAGCGAAATAATGAAAGAAAG
 GAAGTTCTTGTGTTGTCCCTGTATTTCCCAAATGAGCTACTCCATCTGCTAGGAGGCC
 ACAGATAATTGCGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1040	1291	F	84 aa

> 3860568-3 ORF translation from 1040-1291, direction F
 VGVYLSEGLPDLIRVTTVTLISLVGETAMAGAVGAGGIGNVAIAYGFNRYNHDTILATI
 VIILIIIFAIQFLGDFLTKKLSHK*

Description:

unknown

Assembly ID: 3860582

Assembly Length: 1087bp

> 3860582 Strep Assembly -- Assembly id#3860582
 GGAATCATGATGATGTCACTGCTAAATGGTTCTTAGAAAAAATTCCCTGAGCGCTTA
 CAGATTAGTTGGCTTGCTGATTTATCATTGAGCGGTACAGCTCCCTTGGTACCAA
 GCCTATCCCTTGTCTTGGAACACGGCTCTCTGGTTGGCTTGGGATGATCAAT
 GCCAAGGCCATTCTATTATCAGTGAACGCTACCAAGGAAAAGGCGAATTAGATGTTA
 GGGCTACCGCCTCTGCAGAGGTCGGAGCTCTCATTACCTTGGCCGTCGGTCAA
 GTTGGTGGCCTTGGTGGACAGCTATCTTCTAGCCTATAGTGCTGGATTGGTGGCT
 GCCCCTTATCTGCTCTTGTCCCTATGGAAAATCAAAGAAAGTCAAGAAAAGAGC
 GAAGGAAGCAAGTCGTTAACTCGAGAAATGAAAGGCTGATTTTACCTAGCTATCGA
 AGCGGCAGTTGTAGTTGTACCAATACAGCTATTACCATCCGTATTCCAAGTTGATGGT
 GGAAAGAGGATTGGGGATGCCAGTTATCTAGTTGTTCTTAGTATCATGCAGTGAT
 CGGGATTGTGGCTGGGTGAGTTTCTTCTTGATTCTATCTTAAAGAGAAACTGCT
 CCTCTGGTCTGGTATTACCTTGGCTGGGCAAATCGTGATTGCCTTGCTTCATCCTT
 GTGGGTGGTAGTAGCAGGAAGTGTCTGGCTGGATTGCCTATAGTGTAGTCTGACGAC
 GGTCTTCAACTGTCTGAACGAATTCCAGCTAAACTCCTCAATCAAGCAACTCATT
 TGCTGTATTAGGCTGTAGTTCGGAGCCTTACGACCCCATTGCTTAGGTGCAATTGG
 CTTACTAACTACAATGGGATGTTGGCTTTAGTATCTTAGGAGGTTGGTGGATTGTAAT
 CTCTATCTTGTACCTACTTCAGAAGAGAGCTTAGGATTGATTCTAAGTTTT
 CTTTGATACTCAATGAAATCAAAGAGCAAACATAGTTGATTGAGTTGGAATAGTAT
 GCTGTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	356	1027	F	224 aa

> 3860582-1 ORF translation from 356-1027, direction F
 VLPLYLLFVPYGKSKEVKKRAKEASRLTREMKGTLAIEAAVVCTNTAITIRIPSL

MVERGLGDAQLSSFVLSIMQLIGIVAGVSFSFLISIFKEKLLLWSGITFGLGQIVIALSS
 SLWVVVAGSVLAGFAYSVLTTVFQLVSERIPAKLLNQATSFAVLGCSFGAFTTPFVLGA
 IGLLTHNGMLVFSILGGWLIVISIFVMYLLQKRALGLIPKFFF*

Description:

unknown

Assembly ID: 3860724

Assembly Length: 1191bp

> 3860724 Strep Assembly -- Assembly id#3860724
 GGATTCCAACGATTATGAACCTTGACTGGTCCACTGATTCAATGGCTTAGAAACAC
 AGCTTTCTTGGATTAGTCGTCCAGACTCCTAGAAAGTACAGCTCAGGTTGAAAATAT
 GGTCGCAAACGTGCCATCGTGGTGTGGACCAGAAGGGTTGGATGAAGCTGGCTTGAAC
 GGAACAACCNAGATTGCACTTNTGAAAATGGCAGAACATCAGCTGTCAAGCTTACTCCA
 GAGGATTGGAAATGGAAGGCTATGCTATGGAAGATATTGTTGGGGAAATGCTCAGGAA
 AATGCAGAAATTGCTTAGCGTTCTGAAAAACGAAGCAAGTCCATTCTGGAAACGACA
 GTCTTGAATGCTGGTCTTGGTTCTATGCTAATGGTAAGATTGATAGCATCAAGGAAGGA
 GTTGCCTTGGCCCGTCAAGTATTGCTAGAGGCAAGGCCCTGAAAAACTCAGACTGTTA
 CAGGAGTACCAAAATGAGTCAGGAATTAGCACGAATCTTAGAGCAGAAGGCGCGTG
 AGGTGGAGCAGATGAAGCTGGAGCAAATCCAGCCTCTGCGCCAGACCTATCGCTTGGCAG
 AATTTTGAAGAATCATCAGGACCGCTTGAGGTAAATCGCTGAGTCAAGAAAGCTAGCCC
 TAGTTGGGAGATATCAATCTGATGTGGATTGTCAAACAGGCCAGACTTATGAAGA
 AAACGGAGCAGTGTGATTTCGGTGTGACAGATGAGGTTTCTTAAAGGGCATTGGA
 TTATCTACGGAAATTCCAGTCAGGTAGAGATTCCGACGCTCAACAAAGACTTTATCAT
 AGATGAAAAGCAAATCATCCGCGCTCGCAATGCAGGTGCGACAGTTATCTGCTTATTGT
 GGCAGCCTGTCCGAAGAACGCCTCAAGGAACGTATGACTACGCGACAGAGCTGGTCT
 GGAAGTCTTAGTGGAGACTCACAATCTAGCTGAACTAGAGGTAGCCCACAGACTTGGTGG
 CTGAGATTATCGGGTCAACAACCGCAACTGACTACCTTTGAAGTCGACTTGCAGACCA
 GTGTAGATTTAGCCCCCTACTTGAGGAAGGTGCTATTACATTCTGAATCTGCCATT
 TCACAGGGCAGGATGCGGAACGACTAGCCCCATACTTAAACGGAATTGCGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	139	498	F	120 aa
2	686	1024	F	113 aa

> 3860724-1 ORF translation from 139-498, direction F

VVAGPEGLEAGLNGTTXIALXENGEISLSSFTPEDLGMEGYAMEDIRGGNAQENAEILL
 SVLKNEASFLETTVLNAGLGFYANGKIDSIKEVALRQVIARGKALEKLRLLQEYQK*

Description:

ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18). -
LACTOCOCCUS LACTIS (SUB SP. LACTIS) (STREPTOCOCCUS LACTIS).

> 3860724-2 ORF translation from 686-1024, direction F
VDIVQQAQTYEENGAVMISVLTDEVFFKGHLDSLREISSQVEIPTLNKDFIIDEKQIIRA
RNAGATVILLIVAALSEERLKELYDYATELGLEVETHNLAELEVAHRLGG*

Description:

INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48) (IGPS). -
LACTOCOCCUS LACTIS (SUBSP. LACTIS) (STREPTOCOCCUS LACTIS).

Assembly ID: 3860858

Assembly Length: 858bp

> 3860858 Strep Assembly -- Assembly id#3860858
ATCGAATTGCCAACCAAGAAAAATATCCCTGGATGGTTCTGGCAATGCAAGCAATAT
CATCGTCGTATGGTGGGATTCTGGATTTGTACATCTTGTGTGACAAGCTCAATAACGT
TTCTGTTGATGGCTATACCATTGAAGCAGAACGCTGGGCTAACTTGATTGAAACAACTCG
CATTGCCCTCCGTCATAGTTAACGGCTTGAGTTGCTTGTGGTATTCCAGGAAGCGT
TGGCGGTGCTGCTTTATGAATGCCGGTGCCTATGGTGGCGAGATTGCTCACATCTGCA
GTCTTGTAAGGTCTTGACCAAGGATGGAGAAATGAAACCCCTGTCTGCTAAAGACTGGC
TTTGGTTACCGCCATTCTAGCTATTCTAGGAGTCTGGTGCAGTTGCTTGTCAAGTTAAATT
TGCCTAGCTCCAGGAACCCATCAGGTTATCAAGCAGGAAATGGACCGCTTGACGCACCT
ACGTGAACTCAAGCAACCTTGGAAATACCCATCTGTGGCTCGGTCTTAAGCGTCCAGT
CGGGCATTTCAGGTCAAGGTTCTGAAAGCTGGCTTGAAAGGCTATCGTATCGGT
GGCGTAGAAAGTGTCAAGAAAAGCATGCAGGATTATGATCAATGTCGCAGATGGAACGGCC
AAAGACTACGAGGACTTGATCCAATCGGTTATCGAAAAAGTCAGGAACACTCAGGTATT
ACGCTTGAAAGAGAAGTCCGGATCTGGGTGAAAGCCTATCGGTAGCGAAGATGTATGCA
GGTGGTTTACTCCCTGCAAGAGGTAGTGGGGACCTGACAGAGCCCCGATCGTTAATCT
ATGAAAAAGAAGGAATT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	610	807	F	66 aa

> 3860858-1 ORF translation from 610-807, direction F
VSEKHAGFMINVADGTAKDYEDLIQSIEKVKEHSGITLEREVRLGESLSVAKMYAGGF
TPCKR*

Description:

unknown

Assembly ID: 3860890
 Assembly Length: 980bp

```
> 3860890 Strep Assembly -- Assembly id#3860890
CTGAAAAAACAGGTTTGACTATGNAGATTGACAGACGCCGTCGGAGGTGCAGATATT
GATGCAGCAGGACCTCCCTTACCTGATGAAACCCTTAAGGCAAGTAGGAAAGCAGATGCT
ATCCTACTAGTAGCTATCGGTAGTCCTCAGTATGATGGAGTAGCGGTTGCCCTGAACAA
GGCCTGATGGCTCTCCGTAAGAACTCAATCTTACGCTAATATTGTCCTGTAAAAATCT
TTGACAGTCTCAAGTATTGTCACCACTCAAACCGGAACGAATTCTGGTGTAGACTTCG
TCGTGGTGCCTGAATTGACTAGGCGAGATTACTTGGAGATCATATCCTGAAGAGCGC
AAAGCGCGTGAATCAACCGACTATACTGAGGAAGTGGAGCGGATTATCGCAAAGCC
TTTGCCATCGAATTGCAAGAAATCGCAGAAAATCGTTACTAGTATCGATAAGCAAATG
TTCTAGCGACCTCAAAACTCTGGCGAAAGTAGCTGAGGAAGTCGCACAGGATTCTCAG
ATGTAACCTGGAACACCAGCTGGTAGACTCAGCTGCTATGATTACCAATCCTG
CTAAGTTGATGTTATTGTAACGGAGATCTTTGGAGATATTCTGATGAATCAA
GCGTCTATGAACTATTACGGTTACGACCTGATATTGCAAGGAAATTGCCAATC
CTATTCCATGTTTATCAGTTGTCATGATGTTGAGAGATAGTTCGGACGTTATGAGG
ATACAGAGCGTATCAAACGTGCTGTTGAGACAAGTCTGGCGCAGGAATTAAACGAGAG
ATATAGGAGGTCAGGCTCAACAAAGGAAATGATGAAAGCTATTATTGCAAGGTTATGAA
GTTAGACGAAAAAATTGAT
```

ORF Predictions:

ORF #	Start	End	Direction	Length
1	397	486	F	30 aa

```
> 3860890-2 ORF translation from 397-486, direction F
VERIIRKAFAIELQEIAEKSLLVSIISKMF*
```

Description:

unknown

Assembly ID: 3860952
 Assembly Length: 874bp

```
> 3860952 Strep Assembly -- Assembly id#3860952
TCGATCTAGAGAATTGCTCCAGAGCTTCTGACCGTCCGTCGCTCAATAGTTCATAGC
CACAAATCCGTCAAATAATCACTGACCCCCTCACGGATCATCTCTCATCTACAATTA
AAATTTCATACTTAACTGCTCTATTCTTATTCTTAGAATAAAATACCTACTCT
ATTCTTCTATTATAGTCTCTGCTGGCTTTGTATGTAAGCAACTGACCACTAGATAAAA
CGTTGTGAAATTCTCTCATAAATTCCATAACTTTAGTATATTATTTAAGCACTAA
AGTACAAAGAAAGCAACTGAAAGCAATGATTTCACCACTGCTTCAGATTCTTGAA
```

TTGTTAAATAGCTATTCCATTCACATTCTGAATAGAAACACAAGATGCAATCTTAT
 TCCAGACTCATTCTTAAAAATCAAATTATCACCATCCAGCAAGAGCTCTTGTT
 GTTTCTAAGGAGATTGCTGAAGCAAGGCCATAACGAGAACCACTAGAACCAAGGAA
 GGACAAAATGATGATAAAGTCTGATGTCTGAATGGAAATGTCTAGGCTCGACAAGGTCT
 TGCTAAAGCCATCTACTCTGCACCGCCACCAAGGTTAGAGGCTTGAGCCGCCTACTAG
 CCTGTTGGCAACACCTGAAGTCACATTGGCAAGGACAGTGTTCACATTGCACGGCA
 GTGTAATTAGCTAGGAAGTAAGCANAAACTAGAGCAGGGATAGCAATCAAGATAGATTG
 GTGATGAATTGACCCAAGATACTGCCTGCTGAGACCAATAGAGAGGAGGATTCCACT
 TCCTGCCGACGGCATTGATCCAAAGACTGAGC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	449	715	R	89 aa

> 3860952-1 ORF translation from 449-715, direction R
 VRIGNTVLANVTSGVAKQASKAAQASNLGGGAEVDGFSKTLSSLISIQTSDFIIIFVLA
 LVLVVLVMAASSNLLRKQPKELELDGE*

Description:

unknown

Assembly ID: 3860962
 Assembly Length: 762bp

> 3860962 Strep Assembly -- Assembly id#3860962
 CTTGTAACGGTCATAAAGTTCTGCAAACCTACCATCCTGCTCATTAGTAACCAAGTT
 ATCAAGATAGTCGTTGAGCTCTGTATTTGATTCTTGGTAACAATACCGTAGTCAGATGG
 CTTGAAACTATCATCTAGTAGTTCTGCGTTAACCTAGTGTAGCCAGATAGAAATAGAGC
 GGTCAACGGAAAAGGCATCGATACGATGAGCGTGAAGGGAAAGTAATCAATTCTGGTAGG
 AACCAAGTTCGACGAATTAAACTCAGACCTTCTTACCCAGTTCAATCAGGC
 GTTGGGTGATAGAACCTGGCGACTCCGATGGTTTGCCGTTAGGTCTCAATCTTT
 TGATTCTGGCAGATTATTGACCAAAATCCAGAAGCGTCTGTAGTAGGGACTGGTAA
 AGTTGTAGAGTTTGCGTCCGTGATGGTAAAGGTCGCGATATCCATATCGACCT
 GTTCATTGTCTAGAAGGGGGCGCGGGTTTGTGCTGTAACCGGCACATAGTGAATCTGA
 CCTTGAGTTCATCAGCTACCATTGGCCAAGTCGGTTCGATACCAGAATAAGTACCGG
 TCTTGGGATCTTGTAAACAAATTGGGAACGTCTGTTGACACCCGACAACCAAGTTC
 GCCTCTTTTGAAATGTCGCGATACTAGTATTAGCCTGGACTGGTTGGCAGCAACAAG
 GCCGAAAAGGCTAATCAATAATGCTGATAAAAAGAATTGAT

ORF Predictions:

ORF #	Start	End	Direction	Length

1	152	646	R	165 aa
---	-----	-----	---	--------

> 3860962-1 ORF translation from 152-646, direction R
 VSNKTF PILVN KDPKTG TYSGIETDLAKMVADELKV KIH YVPVTAQTRGPLL DNEQVDMD
 IATFTITDERKKLYNFTSPYYTDASGFLVNKS A KIKKIE DLNGK TIGVAQGSITQRLITE
 LGKKKGLKF KFVELGSY PELITS LHAHR IDAFS VDRSILSGY TS*

Description:

cell adhesion factor PEB1 precursor - *Campylobacter jejuni*

Assembly ID: 3861268

Assembly Length: 1942bp

> 3861268 Strep Assembly -- Assembly id#3861268

CTCGAATT TTTGGTGCTCCAGAAACGGT C CAGCAGGAAGCGTGCTTCAAGGCATCCA
 TGGCAGTGAGTTCTGCAAGCAAACGTCCCTGACCACACTGGTCAAATGCATGACGTAGC
 GGAAGAGCTCCACCTCCATACTTAGTAAC TGGACACTGCCGTTCAAGAGATGCCGC
 CAATATCGTTACGCCCAAGTCTACCAACATTGATGTTCTGCTGTTCCCTCATCAG
 AGAGGAGGTCA GTGCCAAGGCCTGTCTCCATCCGTAGCCCCTTGGTCGCGTCC
 CTGCAATCGGATTGGTTGTCACGATGCCATT TGACAGAAACCAA ACTTCTGGACTAG
 CTCCGATGATTGATAATCCCCAAAATCATACAAATAAAGGTAATTAGATGGATTAGTC
 CGCGGAGATTCTGTAGAAGTCAAATGGATTCCAGTTAAC TCTGCGTGAAGAAAACGC
 TGGCTGAGTTACACATCGGAACATATCTCCGTTACGAATCAAGTCACGAGCTGTTCTAC
 CATTCCCTCAA ACTTATGTGGAGCGATATCGGTTGAAGTCAAGTGGT GATAAATCAA
 GTCTCAAATTCA TTGGAGCAGGAATCGTAATT CCTCAAGCACTGGTTCAAGGATT
 TTCCAAGGCCTTGTACTCGCCTCACTATAAAGTCATCCTCTATGACATGTTATCTTCT
 CCTTCTTGTGGTCAAAGACCATA TAGCTCTCATAGACAAGAAATGCATGTCGGCGTC
 CCAATTGTATCCTCAGGGATTGACCAATTCTCATAAAGCGAAATCATATCGTAACCA
 ACAAAACCAATGGCTCCCCACAAAAGGGAGGTCTGAATGGTCTGGCTCTTATGAATC
 ACTTCATAAAGGAAATCCAAGGGATCCGATCAATCGCTTGACCAATTGATAGAGAACT
 CCATTTCAAACTTAATCTCAAAACTGGATTATAGGCTAGGATAGAAAACGAGCTGTT
 TCCTTGTCTCGGAATACTCTCTAA AACTTATGTTGCCCTTAAGCGCATATAA
 GCCAAGATTGGT GATAAGACATCTCCATGAATGATTGTTCCATTGTCATTCCCTTCA
 GTTCTAATTGAGTTCTGCGACTGTATGAAAATCCCACGCAAATAACTTGTGTA
 GGACGAAATTCCGGT GCCACCTCAATTATAGGATTCTCCTATCTCTCATTCCCTGTC
 AGATATCTCCTGTAACAGGCTGTGCGATAAAGGGACTCCCTGAGAATGATGTTCTT
 CTCTCGTTCA GATGAACCCAACTTACAGCTTCTGCTTGTGTTTCA GCAACCACAAG
 CTCTCGT GAGAGAAAAGACTGTAATT TCCATCTATT ATT GTTAGCTTCTAGTAATC
 TGCAATCGCAGCTAGGTCTTGCCCTCACGACCAGAGACATTGATGAAGAGATGTTCATC
 TCGGTACACCTTATACTCTCGAAAATCTCTCAAACCGCGTCAACGTCGCCTGCCGT
 AGGTATGGTTACTGACTTCGT CAGTTCTATGCAACCTCAAACAGTGTGTTGAGCTGA
 CTTCGTCA GTCTTATGACAACCTCAAACAGTGTGTTGAGCAGCCTGCAAGCTAGTTCC
 TAGTTGCTCTTGATTTCATTGAGTATTATTCATTCTCTGCAATTGAATTCTTG

CTCAGCTTTGTCTATTCCTTAAATCAAAGTAGCTTTGTTAATAACTCGAT
 CAACAAACATCGTGGTACAAGTATCTACTTGAAATTATCAACCACTAACACTGATA
 CTGTATTCTAGGAAAACGATGACATTCTCCTAATAAAACTTCATATATAGCATAAA
 TTTCTACTCTTTAATTGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	457	645	R	63 aa

> 3861268-1 ORF translation from 457-645, direction R
 VLEELRIPAPNEFEDLDLSPLDKFPHIAPHKFEGMVETARDLIRNGDMFRCVTQPAFSSR
 RS*

Description:

ANTHRANILATE SYNTHASE COMPONENT I (EC 4.1.3.27). - LACTOCOCCUS
 LACTIS (SUBSP. L ACTIS) (STREPTOCOCCUS LACTIS).

Assembly ID: 3861270

Assembly Length: 1048bp

> 3861270 Strep Assembly -- Assembly id#3861270
 CTGTTAAGATTGTTCCGTGCATCCACATAGGATTACCTTGTCTGTATGGGCCAATTCA
 CCCATCAAAACGCCATAGGTCTCATCTGTCAGATACTAGACATACCGATATTGTACCAA
 AGACTGGTATGACGGAAATAAGTCATGCGTGTAAACTCAACAAAAAGAGACGCAAGTTG
 ATTAGAAAAACCGTCATAGCAATAGCTGCCACAGGAGCTGAACCACAATCAGTGCAC
 ATGGCAAACGGGCACCTCCAGCATAAACAAAGAGACTCATCAAGCCCATCTCAACAGGT
 GTCACATAGGGCGCACCGATAGTCCCACAGGCCAGGCCGATACTGACATAGCCAAGAGCC
 GTTGGCATGGCTGCCTGCCCTCCTAAATCCTTTCTTCATCTTCTCCTCATA
 TTGTCTTAATAACTCAATGAAAATCAAAGAGCAAACTAGGAAATTAGCCGAGGNTGC
 TCAAAACACCGTTTGAGGTTGCAGATAGAAACTGACGAAGTCAGCTCAAAACACCGTT
 TGAGGTTGCAGATAGAACTGACGAAGTCAGTAACATATACGGCAAGGCCACGTTGACG
 TGGTTGAAGAGATTTCGAAGAGTATTAGAAAATGCGATAAGGGTCTGCATACCAAGG
 CTGGTGAGGATGATGGCAATCCAGCAGACGGCTCCGAGAACAAATGGATTTCACTGGAT
 TTGACCATAGCGACCAAGATTAGTTTGAGACCGATGGCACTCATGGCCATGATAATGAGG
 AATTTAGAGAGTTGTTGAGAGGGTAAAGAAACTACTAGACACACCGAGAGAGGTCAGA
 AGGGTGGTTAGGAGCGATGCAAGGATGAAGTAAAGGATAAAAGTGGGAAGACTTTTC
 AGTTGTAAGCCTGCTTATTTTGCTCGCAGTTGCCAGTAGGAGAGAAAGAGAGTGT
 ATGGGGATGATAGCTAGGGTGCCTGAGTTGACAATGGTGCGGATTGAGGGTATTG
 GTCTGGTAGAGACTGTCCAAGCGCTAG

ORF Predictions:

ORF #	Start	End	Direction	Length

1

627

824

R

66 aa

> 3861270-1 ORF translation from 627-824, direction R.
VSSSFFTPLKQLSKFLIIMAMSAIGLKTNLVAMVKSSGKSIVLGAVCWIAILTSLGMQT
LIGIF*

Description:

unknown

Assembly ID: 3861288

Assembly Length: 1571bp

> 3861288 Strep Assembly -- Assembly id#3861288
AGAGCTGGTAATATTCCCAAAGAAACGGCTCAAATCGAATTAGAAAGCCTCTGCAAAAAA
GGAATCCCAGTCGCTCTGGTATCACGATGCTTAACGGTATTGCCGAGCCTGTTATGCC
TACCAGGGTGGGGCGTACAGTTGAAAAAGCAGGCCTTCTTGTTAAAGAACTCAAC
GCCCAAAAAGCCCCTGAAACTCCTCATGCCCTCAATGCCGACTAACAGGACAGGCT
TTGAAAGACTATATGGAAGGCTAATACTCTCGAAAATCTCTGCAAACACGTCAGCGTC
GCCTTACCGTATGTAGAGCACAAAATCAGGAAATCTCTCGATTCCCTGATTTTTCTAT
TTACGTTTCGTGTTGAGCTACGTTCTGTCAAACCATGAGGTAAGAGAACTTCACGTTCT
TCCAACCTTCCTTATGCATAATCTTGGTCAACATACGCATAACTAATGGCACCAAGGTCA
TAAAGAGGTTGGCAATCGTTGCAAGTTGGACGGTAAAGCGTAGAGATTGTGAATCA
TCACTAGTAATAATTGATAATCTCTGGCACAGAAACACCTTATCAGCCAAACCGTTCA
AGACTCCTGCTGCCAACTCATCACCTGTCACAACGTGCAGTTGCATTGATGAAATCA
AACGCTCTGCTAAGGCGTAACCATCATAGCTATATTAGATTCAAATACCAAACCCCT
CACTATAAGCGATTCCCTGCTTTTCAAGGTTCCCTGTAGCCAACAAACGAACCTTAC
CATTGATGTCATCCACTAGCGGACCGCTAACGAAAGCAATACGTCATTTCAGCAA
GGTAACACTGCATCAATTGTTGCTTGTATAGTCATATTGACACTTGGCAACTGGT
GCTCAACATCGACAGTCCCTGCGAGAACAAATCGGAGTACGTGAACCGAAAATTCTGAGC
GAATTTTATCTGTCAGTGATAACCCATATAGATAATGCCATCTACCTGCTTGAAAAGA
GGGTATTGACAACAGAAACTCTTCTCGTTATCTCATCGCTATTAGCTAGGACAAATAT
TGTACTTGTACATTCTGCAATATCATCAATCCCCTAGCCAACACTCGAAAATAACCAT
TGGTAATATTGGAATCACGACACCGACAGTGGTTCTTTACTTGCAAGACCACGCG
CAAATGCATTGGACGATAATCCAAACGATCAATTACCTCTAGCAGTTTACGGGTAT
TCTCTTTACATTTTATTGCCATTGACCACACGGCTGACCGTCGCCATGGAAACACCT
GCTTCACGAGCGACATCATAAATGGTTACTGTATCATCTGCATTCAATTCTTCTGTC
CTTCTATCTCCACACATTCTTACAAGTAGAAGTGTGAATTGAAAGCTCTATATCTT
ACTTACAAAATGAAGATGTGAAAATTCTGTTTCAATTCTACTTATTCCATTCTATC
ACTAATTGTAACACTTCAAGTGTGTTTGAAGATTGATTGAAAAAATTCTATAGAAAA
CCTAGGTTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	357	572	R	72 aa

> 3861288-1 ORF translation from 357-572, direction R
 VPEDYRIITSDDSQISRFTRPNLTTIAQPLYDLGAISMRLTKIMHKEELEEREVLLPHG
 LTERSSSTRKRK*

Description:

GLUCOSE-RESISTANCE AMYLASE REGULATOR. - BACILLUS SUBTILIS.

Assembly ID: 3861306

Assembly Length: 1682bp

> 3861306 Strep Assembly -- Assembly id#3861306
 CTGACGTAAAAAAGATTTCGGAAAAGTATCATCATCTATTTAGACCATTTCTTATAA
 TAACCATTATTTATTGTCAAGGTCTTGAATTCTTCTAAACAAAGCCTGTAAAT
 CTCTACTTTGAAGAATTATTTCTTACTGACAAGATTGAGACGGTAGGAATCATT
 GAAAATAACCTAGCCAACATCAATCACAAATCATTCTCCTTCTCAATTACACTAAATTA
 TAGTGTATTGAATCTATAACAGTCACCTTGGCTGCTAAAATATTCTATAAATTAATTT
 GACTTCCTGATAGAGTTGTCACATCTTATTCAATTCACTATACTTTCCCTTATACTC
 AATGAAAATCAAAGCGCAAACTAGGAAGCTAGCCACAGGCTGCTCAAAGCACTGCTTGA
 GGTTGTAGATAAGACTGACGAAGTCAGTTACATATATCTACGGCAAGGCGAAGCTGACGC
 GGTTGAAGAGATTTGAAGAGTATAAAGTTGTTCTGTATCTTCAGAAAAATAAGG
 TATACTGTATGTAAACGATTCAAAGGAGTCCAGTTATGGCAAAAACATTTTATTCCA
 AATAAACAGAGCATTAGGAGAACAAAGAGATTTGAATGCCAAGTCGATCTGGCTATG
 ATGTAATCTCCGTCAGCCTTAATCGTCTCGAGTATATTGAGTGTGCGATAGTGG
 GGCAATCACAATTCTTTAAGGTCAAGTTACAGGATGGCTAGCTGATGGTCAAAAGGTTACCGTGTG
 ATCTCCTGACCTACTAACAAAGACAGACTGGCAGATTATCAAGTCATTAGATGTT
 TGCTTGCTTATACAGGGACTGATATTGAAGGGCTAGATGGTTGATTTGAAGCTTATT
 TCCAAGCAAGTATTCAAGCCTATCTAGCAGACCCCTGTAGCTCGTTACGATTTGCCAAC
 GAATTTTAACCTATTCTTAGTCGTGAGAACTTGAAAAGCTTTAGAGGCAGATG
 GCTTGGCTCAGTTGAAGCGGTGCGTGCAGTTCAAGAGACAGATGCCACTTGC
 GAGTTCCCTATCAGGATGGAGAACAGGAAAGTGCATGGCTTACCATCTAGCTCAAG
 GAGTCAGACAGTTTACCGAGAGAACCGTTGTTCTGCAGCCTATATTGAGCGAATTG
 GTGGATAAGGAAGTCCAGTGGAGATTGACTTGGTTCAAATCAGGAGACGGCTCTAA
 CCAGAAGACTATGAATCCATAGCTCGCTGGACTATGCAAAATTCTTAGAGGTATTACCC
 CCATCTTTACCAACTAGACGCCAACAAATAGAAATACAACCCATCCTAGGACAA
 GATTTAAACATTAGCACAAGAAAAGTAAAGCAGAAGCAGGTCAATCGACTTGCTTTT
 TGACATAGAAAAAATCCTGCCAAGGATGACAGGATTGCTACTCAATGAAAATCAAAGAC
 AAACTAGGAAGCTAGCCGAGGCTGTACTTGAGTACGGTAAGGCGAAGCTGACGTGGTT
 GAATTGATTTCGAAGAGTATGAATTAAAGAAAGGCCAAGATACGAAGATAATCTCC
 AATCAGTGCCACTTCAGCTCCAAGAAGAAGATTATAACTCCGTTCCCCAAGGACA

GA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	717	1208	F	164 aa
2	1201	1410	F	70 aa

> 3861306-1 ORF translation from 717-1208, direction F
 VGQSQFLFKVSYADGQKAYRVDLPLDLTWDQIIKSFLDVLLAYTGTIDIEGLDFDFAE
 YFQASIQAYLADPVARFTICQRIFNPIFFSRENLKSLEADGLAQFEARVRAVQETDAYF
 ARVSFYQDGEGKVHGKYHLAGQVKTVLPREPFPVPAAYIERIGG*

Description:

unknown

> 3861306-2 ORF translation from 1201-1410, direction F
 VDKEVQWEIDLVQITGDGSKPEDYESIARLDYAKFLEVLPSPSFYHQLDANQIEIQPILGQ
 DFKTLAQEK*

Description:

unknown

Assembly ID: 3861334

Assembly Length: 3041bp

> 3861334 Strep Assembly -- Assembly id#3861334
 ATCGAATTAAAAATGAGGTATTCAAGGCTTGTGATTTCTATGGAAGTTAACAGTGATTGC
 CTCTAATGCTTACAAGTGATATTAAAAATAGAGGACCTAGTGATGTCAATCATTCAACT
 GATTTAACCCCTTTCAAATAGATGATACTTGAAGCAGCCTGCGAGAAAGATGTTCAT
 TCCGAAGATTACAGTACCAATGCCATTGGTATCATGGCCAAGCCAAGGTGTCGCTT
 TTTGCCAAGGAAGCTGGTTAGCGGGCTAACGTTTCAAAGGGTTTACCTA
 TTTGATGCCGAGGTGACCTTCCAGAACCTCATCAATTAAAGGATGGGATCGTTGACT
 AGTGGCGATTGGTTAGAAATCATAGGCTCGGTGAGAAGTCTCTAACATGTGAAACGC
 GTTGCCTTGAATTTCACAACATTATCAGGGATCGCTCGATGACAGCTGCTTATGTA
 GAAGCCTTAGGCATGATTGATTAAGGTATTGATACTCGAAAAACTACTCCTAATTAA
 CGTCTTTTGAGAAATATGCCGTGAGAGTTGGCGGTGGCTATAATCATCGCTTAAATTAA
 TCAGATGCTATCCTGCTAAAAGACAATCACATTGGCGCAGTAGGTAGTGTCAAAGGGCA
 ATTGCTCAAGCGCGTGCCTATGCTCCTTGTGAAATGGTCAGGTGGAAGTGGAAAGC
 CTTGCTGCTGCCAAGAAGCTGCCGGCGGGTGTGATATTATCATGTTGGATAATATG
 TCATTGGAACAGATTGAAACAGGCCATTACCTAACATTGCAGGACGTTCTGGATTGAATGT
 TCTGGAAATATTGATATGACCACTATTAGCCGTTTGTGGTTAGCGATTGATTACGTC
 TCCAGTGGTAGTTAACCCATAGTGCTAACAGTCTGATTTCATGAAGGGTTAAC

TACCTTGATGCTAAGTTGAAAATAACTAACTTTAAAGGATGTCTTCCTCTAGAA
 CGAGTTTATGTCAGATAGTTAACGCCTCTCAAATATAGTAAAATGAACCAAAAATA
 GTACACAATGTGGTATAATCTTCTTATGGCATATTCAATAGATTTCGAAAAAGTTCT
 TTCTTATTGTGAGCGAACAGGTAGTATAACAGAACATCACACGTTCCAAATCTCACG
 TAATACCATTATGGCTGGTAAAGCTAAAAGAGAAAACAGGAGAGCTAAACCACCAAGT
 AAAAGGAACAAACCAAGAAAAGTTGATAGAGATAGACTAAAAACTATCTTACTGACAA
 TCCAGACGCTTATTGACTGAAATAGCTCTGAATTGGCTGTCATCCAACCTACCATCCA
 CTATGCGCTCAAAGCTATGGCCTACACTCGAAAAAAGGACCACACCTACTATGAACAAAGA
 CCCAGAAAAAGTAGCCTATTCTAAAATTTAATAGTTAAAGCACCTAGCACCTGT
 TTAGATTGATGAAACAGGATTGATACTTATTATCGAGAATATGGTCGCTCATAAA
 AGGTCAAGTTAATAAGAGGTAAGTATCTGGAAGAAGATATCAGAGGATTCTTGGTTGC
 AGGTCTAACAAATGGTGAGTTAATCGCTCCAATGACTACGAAGAGACGATGACGAGCGA
 CTTTTGAAGCATGGTTCAAGGTTCTACCAACATTAACCACACCACGGTTAT
 TATTATGGATAATGCAAGATTCCATAGAATGGTAAGTTAGAACTTTATGCGAGGAGTT
 TGGGCATAAAACTTTACCTCTCCTCCCTACTCGCCTGAGTACAATCTTATTGAGAAAAC
 ATGGGCTCATATCAAAAAGCACCTCAAAAGGTATTACCAAGTTGCAATACCTTTATGA
 GGCTCTTGTCTGCTCTGTTCAATTGACTATAGTCACGGATACAGTTGGAAAGA
 AGTTAAATGTAGTTGGATTCCACTAAAGGTTGATGAGTAAGTTTGATCTGAACCTG
 ATTGGCCGCAAGCAGCTAAAGCAAAGCAGATGCAAAAGTCAGACCTGCACCAAGGACAC
 GCTCTTATGTCATCTCTTCTCCTTAATAGTGGAAATTGTAAGTTAAAGTTAATTGAATT
 TCAAGAATGAAGGTTTATAAAACTTGGTTATAAAAACAAAGGATTCTGTCTTTATA
 CAGTCCTCCCCTGTTTATACGATTCAATTAAATTCTGCAAAATTTCTGCAAAATATTAT
 AGTAATTCCACACAGAAAGCATCCATGGAACTAAGATTGTTCAAAAGACTTCTG
 GCTAGGGTGTTCATCAAGACAGATTGACTTTCTACTGTCAAGTCTGCTCT
 TCATTGGACAAGTTAGCCACAACTAGGAAGCGACGGTCGCCATCCTTACGTATATAAGCA
 AAGACCTTATCAGCCGTATCAAGCAATTCAAAGTCAGCTCGAATTAGCCAACATTCTCC
 TTGCGAATTGGACCAGTTCTGATAGGTATAGAAAATAGAATCTGGATTGCCAGCGCT
 TCTTGGACGTTGATCATCTCGTAATTGGATTAAC TGCCAACCAAGGTTGACCTGTTGAG
 AAACCAAGCTTTGCTCTCGTCCATTGCATAGGGTACGGCATTGTCACGTCCAATA
 ACACGGATACTGTCCATGATTCTGCATCGAACACCTTTCAAGAGCCTCACGCGCA
 TAGTTGAGAGATTCAATATCTTACTTGATCCAGTGTTCAAACGGATAGTTGGTCATC
 CCAATCTCCTCACCTGGTAGATATAAGGAGTTCTCTCATAAAGATGAAGCAAGATTGCA
 AAGGCTTGGCAGATTTCGCGGTATTCTGGTCAATTCCCCAGATTGAGACAATACGA
 GGGAGGTCATGGTTGTTCCAGAAGAGGAAATTCCAGCCGCTCTCAACTCTAACTCTGTC
 TGCCATTGTTGAAGATTCTTTAACTTAGCGATATTCAAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	76	975	F	300 aa

> 3861334-1 ORF translation from 76-975, direction F
 VILKIEDLVMSSIISTDLTPFQIDDTLKAALREDVHSEDYSTNAIFDHGQAKVSLFAKEA

GVLAGLTVFQRVFTLFDAEVTFQNPHQFKDGDRLLSGDLVLEIIGSVRSLLTCERVALNF
 LQHLSGIASMTAAYVEALGDDCIKVFDTRKTPNRLFEKYAVRVGGYNHRFNLSDAIL
 LKDNHIAAVGSVQRAIAQARAYAPFVKMVEVEVESLAAAEEAAAAGADIIMLDNMSLEQI
 EQAITLIAGRSRIECSGNIDMTTISRFRGLAIDYVSSGSLTHSAKSLDFSMKGLTYLDV*

Description:

PROBABLE NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE (CARBOXYLATING)
 (EC 2.4.2.19) (QUINOLINATE PHOSPHORIBOSYLTRANSFERASE
 (DECARBOXYLATING)) (QAPRTASE) (FRAGMENT). - BACILLUS
 SUBTILIS (BLAST)

Assembly ID: 3864148

Assembly Length: 4694bp

```
> 3864148 Strep Assembly -- Assembly id#3864148
TTAATTAAATTCTAAAATTTTCATAATAATCTCCCTATAAAATAAGTCGCCAA
TCAGGCGGCTTATTTTGAAAATGGGCTTGGTGCCTGAGAATAATAGCTTAGTGAT
AGAAGAAAATGGGAAATATGGTATAATGAAACGATAGATTTGAATAGGAATAAGATC
ATGTTGGATTTTAAGAAAGATAAAGGCTGTGGAAGTAGAGGTTCCGACACAGGTTCC
TGCTCATATCGGCATCATGGATGGCAATGCCGTTGGCTAAAAACGTATGCAACC
GCGAGTTTTGGACATAAGCGGGCATGGAAGCATTGCAAACCGTGACCAAGGCAGCCAA
CAAACGGCGTCAAGGTTATTACGGTCTATGCTTTCTACGAAAACTGGACCCGTCC
AGATCAGGAAGTCAAGTTATCATGAACCTGCCAGTAGAGTTATGATAATTATGCTCC
GGAACATACATGCAATAATGTTAAGATTCAAATGATTGGGAGACAGACCGCCTGCCTAA
GCAAACCTCGAACGCTTAACCAAGGCTGAGGAATTGACTAAGAACACACAGGATTGAT
TCTTAATTGCTTAACTATGGTGGACGTGCTGAGATTACACAGGCGCTTAAGTTGAT
TTCCCAGGATGTTAGATGCCAAATCAACCCAGGTGACATCACAGAGGAATTGATTGG
TAACTATCTCTTACCCAGCATTGCTAACGACTTACGAGACCCAGACTGATTATCCG
TACTAGTGGAGAATTGCGTTGAGCAATTCCCTCATGGCAGGGAGCCTATAGTGAGCT
TTATTTACGGACACCTTATGGCCTGATTTGACGAAGCGGCCTGCAGGAAGCTATTCT
TGCCTATAATCGTCGCCATGCCGATTTGGAGGAGTTAGGAGGAATATGACCCAGGAT
TTACAGAAAAGAACCTGTTATGCAGGGATTGCCCTGACTATTTCTACCAATTAAAT
GATTGGGGCTTTGCTTCAGATAGCAATCGGAATCATANCCATGCTAGCCATGCATGAA
CTTTGAAGATGAGAGGTCTAGAGACCATGACGATGGAGGCCTTGACCCCTTTGCAC
NTTNGTATTGACCATTCCCTGGAATCGAATTACCTGACTTTTGCCAGTTGATGGAA
TGTGGTTGCCTATAGTGTGTTGATTCAATCATGTTAGGAACGACCGTTAGCAAGTC
TTATACGATTGAGGATGCCGTTTCCCTCTGCTATGAGCTTACGTGGGCTTTGGATT
TAATGCTTACTAGATGCTCGTGTGCAGGTTGGACAAGGCTCTTAGCCTGTGTAT
CGTCTGGCGACAGACAGTGGTGCCTATCTGTTGGGATGAACTATGGAAACGAAAGTT
AGCACCAAGGGTATGCCATAAAACCTTGAGGGTGCCTGGGTGGTATTTAGGAGC
AATTTAGTAACCATTATCTTATGATAGTTGACAGTACAGTTGCTCTCCATATGGAAT
TTACAAGATGTCAGTCTTGCTATTTCTTAGCATTGCTGGACAATTGGTGATTACT
AGAAAGTTGATCAAACGTCATTGGTGTAAAGGATTCTGGAAATTATCCCTGGACA
```

TGGTGGTGTGATCGTTGATAGTATGTTGCTTGATTTCCAATCATGCACTTATT
TGGACTCTTTAATCAAAGACGGAGAACGCTATGCTCGGAATTAAACCTTATTCT
GGTTTTGGGATTATTGTAGTGGTCACGAGTCGGGACTTCTACTTGCAAGAAATC
AGGGATTTAGTACGTGAATTGCCATCGGTATGGGACCTAAAATCTTGCTCACATTGG
CAAGGATGGAACGCCATACCATTGAATCTGCCTCTGGGTGGCTATGTCGCATGGC
CGGTTGGGTGATGATAACAATGAAATCAAGACAGGAACGCCCTGTTAGTTGACACTTGC
TGATGATGGTAAGGTAAACGCATCAATCTCAGGTAAGGATCAAACAGCCCT
CCCTATGCAGGTGACCCAGTTGATTGAAGACAAGCTCTTATCAAAGGATTGGTCT
GGAAGAAGAAAAACATTGCAGTGGATCACGATGCAACGGTTGGAAGCAGATGGTAC
TGAGGTTGGATTGCACCTTAGATGTTCAATATCAAATGCGACTTATCTGGGCAAA
CTGATTACCAATTTCAGGTCTATGAACAATTATCTTAGGTGTTGTTTTGG
GTTTAATCTTATGCAGGGTGGTGCAGAGATGTTGATACCAATCAGTCCATATCATG
CCCCAAGGTGCCCTGGCCAAGGTAGGAGTACAGAACGGCACAAATTACCAAGATTGGC
TCACATGAGGTTAGCAACTGGAAAGCTTGATCCAAGCTGTGAAACAGAAACCAAAGAT
AAGACGGCACCGACTTGGATGTGACTATTCTGAAAAGGGAGTGACAAACAAGTCACT
GTTACACCGAAGATAGTCAAGGTGTTACCTCTAGGTGTTCAACCGGGGTTAAGTCA
GATTTCTATCCATGTTGAGGTGTTTACAACCTGCTGACTCAGCTCTCCGAATT
CTCTCAGCTCTGAAAATCTGATTTCACCGGATTGAAACAAGTTGGTGGACCTGTT
GCTATTTAAGGCAAGTAGTGTGCTGCTAAAATGGAATTGAGAATTCTGTACTT
CTTGGCAATGATTCCATCAATATTGGATTTTAATCTTATTCCGATTCAGCCTGG
TGGTGGTAAGATTGTGCTCAATATCTAGAACGCATCCGCCGAAACCAATTGAAACAAGA
AATTGAAACCTATGTCACCTGGCCGGAGTGGTCATCATGGTTGTTGATGATTGCTGT
GACTTGGAAATGACATTATGCGACTCTTTAGATAATCGAGGAATTATGAAACAAAG
TAAAATGCCATCCCAACGCTCGGAAATGCCAAGCGATGCTCAAGTTATCAGCCATGC
TCTTATGTTGCGTGTGGTTATGTCGCCAAGTTACAGCAGGTGTTATTCTTATCTACC
ACTTGCAACCGTGTGATTGAAAAGCTAAAACATCATGCGCCAAGAATTGAAAAGAT
TGGTGCCTGTTGAGATGTTGGCTCCAGCCTTCTTAGTGCAGAATTGTCAGTGAATCAGG
TCGTTACGAAACCTATGGTGAAGACCTTACAAACTGAAAACCGTGAAAATCAGACTT
TATCTTAGGTCCAACTCAGAAGAACCTTACAGCTATTGTCAGTGTAAATCAG
TTACAAGCAATTGCCACTCAACCTTATCAAATTGAGGCCAAGTATGATGAAAACG
CCCACGTAATGACTTCTCGTACACGTGAGTTATCATGAAGGATGCTTATAGTTCCA
CGCTAACTATGATAGTTGGATAGTGTGTTATGATGAGTACAAAGCAGCCTATGAGCGTAT
TTTCACCGTAGTGGTTAGACTCAAGGCTATTATTGGTACGGTGGAGCCATGGTGG
TAAGGATAGCCAAGAATTATGCCATTACATCTGCTCGTACAGACCTTGACCGCTGGG
TGTCTGGACAAGTCAGTTGCCCTCATTTGACGAAATTCTGAGAAGTGCAAGAAGAAT
CAAGGCAGAATTGCTCAAATGGATAGTCTCTGGTGAAGATACCATTGCTTACTCAAGTGA
GTCTAGCTATGCACTTAGAAATGGCAACAAACGAGTACAAACCAAGCAACCGTGT
TGTGCGTGAAGAAGAAGTTACTCGTGTGAAACGCCAGATGTTAAATCAATTGATGAAGT
TGCAGCCTCCCAATGTTCCAGAAGAACAAACGATTAACCCCTTCTACATTGAGA
TGGTGGCTTGTGCAGCCCTTAGTTGAAATGACCAACTCAACGAAGTCAAGTTGAA
AAATCACTGGGAGCAAATTCTTGACGTTGCTAGCGAAGAAGAAGTGGCGAATGTTG
TCAAGCAGGATTGGTCACTTGACCAACTGGTGTGCAAGAATATTAAAATTATTG
AGATCGTAAGGTGCAAGATGTTGCAATGCACTGAGTTGTCGGTGCTAACGAAGATGGCTACCA

CTTGACTGGTGTGAACCCAGGCCGTGATTTACTGCAGAATATGTGGATATCCGTGAAGT
 TCGTGAGGGTGAATTCAGATGGACAAGGTGTCTTAACTTGCGCGTGGTATTGA
 GATCGGTCAATTCAAACCTCGAACACTCGCTATTCAAGCAAGCATGGGAGCAGATGTCTT
 GGATGAAAATGGTCGTGCTGTGCCAATCATCATGGGATGTTACGGTATCGGTGTAGCCG
 TCTTCTTCAGCAGTGATGGAGCAACACGCTCGCCTCTTGTAAACAAAAGCCAAAAGG
 TGAATACCGTTACGCTTGGGAATCAATTCCCTAAAGAATTGGCACCATTTGATGTGCA
 TTTGATTACTGTTAATGTCAAGGATGAAGAACGCAAGCCTGACAGAAAAACTGAAGC
 AAGCTTGATGGGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	212	940	F	243 aa
2	1202	1753	F	184 aa
3	2750	3037	F	96 aa

> 3864148-1 ORF translation from 212-940, direction F
 VEVEVPTQVPAHIGIIMDGNGRWAKKRMQPRVFGHKAGMEALQTVTKAANKLGVKVITVY
 AFSTENWTRPDQEVKFIMNLPVEFYDNYVPELHANNVKIQMIGETDRLPKQTFEALTAKAE
 ELTKNNNTGLILNFALNYGGRAEITQALKLISQDVLDakinPGDITEELIGNYLFTQHLPK
 DLRDPDLIIRTSGELRLSNFLPWQGAYSELYFTDTLWPDFDEAALQEAILAYNRRHRRFG
 GV*

Description:

unknown

> 3864148-2 ORF translation from 1202-1753, direction F
 VVAYSVLISIMLGGTTVFSKSYTIEDAVFPLAMSFYVGFGFNALLDARVAGLDKALLALCI
 VWATDSGAYLVGMNYGKRKLAPRVSPNKTLEGALGGILGAILVTIIFMIVDSTVALPYGI
 YKMSVFAIFFSIAGQFGDLLESSIKRHFGVKDSGKFIPGHGGVLDRFDSMLLVFPIMHLF
 GLF*

Description:

CDP-diglyceride synthetase (cdsA) homolog - Haemophilus
 influenzae (strain Rd K W20)

> 3864148-10 ORF translation from 2750-3037, direction F
 VDLLLSLRQVVMLLKMEMLRIFLYFLAMISINIGIFNLIPIPALDGGKIVLNILEAIRRKP
 LKQEIEETYVTLAGVVIMVVLMAVTWNIDMRLF*

Description:

unknown

Assembly ID: 3864172
 Assembly Length: 1352bp

```
> 3864172 Strep Assembly -- Assembly id#3864172
CTCGTAAGTCGAAAGCTATCTACACAAGAAATTAAACCGCTGCCTAAAGGAGAACCATG
TCAACATATAACTGGGATGAGAAGCATACTCCCTACCTTCTGAAGAAAAGTAGCCCTT
TCTACTAAGGATGTCCATGTTACTATGGTAAAATGAATCCATTAAGGGATTGATATG
CAATTGAAAGAAATAAATTACAGCTTGATTGGTCCGTCGGATCGGGAAATCTACC
TACTTACGCAGTCTCAATCGCATGAATGATAACCATTGATATTGCTAAAGTAACGGCAG
ATTCTCTATCGTCCAATTGATGTCAACCGTCCAGAAATCAACGTTATGAAATGCGTAAA
CACATTGGAATGGTTTCAACGCCCAATCCATTGCTAAATCGAATTACCGTAATAT
TACCTTGCGCATGAACGTGCTGGAGTTAAGGATAAGCAAGTCCTAGATGAAATCGTAGA
AACCTCCCTTAGTCAGGCTGCCCTTGGATCAGGTTAAAGACCGATCTCCACAAGTCAGC
CTTGACCTTATCAGGTGGTCAGCAACAACGCTCTGTATCGCTCGGCCATCTGTAA
GCCAGATATCCTCTTAATGGATGAGCCAGCCTCAGCCTGGATCGATTGCGACCATGCA
ACTAGAAGAGACCATGTTGAGCTCAAGAAAACCTTACCATCATCATTGTAACGCATAA
TATGCAGCAGGCTGCTCGCAAGTGAATACAGGCTTCTTACTTGGGTGATTGAT
TGAGTATGACAAGACTGCAACTATTTCCAAAATGCCAAGCTACAGTCACCAATGACTA
TGTATCTGGTCACTTGGTTAGAAAGGAAACCGTATGACAGATGCGATTACAGGTATC
AGACCTGTCGTTATTATAATAAAAAGAAGGCTTGAATAGTGTTCCTATCTTCCA
ACCTAAGGAAATTACAGCCTTGATTGGTCATCTGGATCAGGGAAAGTCACCCCTCTCAA
GTCTCTCAACCGCATGGGAGATCTCAATCCAGAGGTGACCACAACGGATCCGTGGTGA
CAATGGTCACAACATCTACAGTCCCGTACAGATACTGGTGAATTACGTAAGGAAATCGG
AATGGTTTCCAACAACCTAATCCTTCCCTATGACTATCTATGAGAATGTTGTCTACGG
GCTTCGTATCAATGGAATTAAAGGATAAGCAGGTCTGGATGAAGCCGTAGAAAAGCCTT
GCAAGGGTGCCTCTATCTGGGATGAGGTCAAGGATCGTCTATATGATTAGCTATTGGATT
GTCAGGTGGTCAACAGCAGCGTGTGCGTGG
```

ORF Predictions:

ORF #	Start	End	Direction	Length
1	311	862	F	184 aa

```
> 3864172-2 ORF translation from 311-862, direction F
VELMSTVQKSTFMKVNTLEWFFNAPIHLLNRIYRNITFAHERAGVKDKQVLDEIVETSL
SQAALWDQVKDDLHKSAUTLSGGQQQLCIARAIISVKPDILLMDEPASALDPIATMQLEE
TMFELKKNFTIIIVTHNMQQAARASDYTGFFYLGDLIEYDKTATIFQNAKLQSTNDYVSG
HFG*
```

Description:

HYPOTHETICAL ABC TRANSPORTER (ORF75). - BACILLUS SUBTILIS.
 (BLAST)

Assembly ID: 3864180
Assembly Length: 2258bp

> 3864180 Strep Assembly -- Assembly id#3864180
AACTTCGACCGTGATAAACAAAGCTGAGCTTGACATACTGTAGCCAACCTAAAAGCCGT
TCTTCAAGGCCTCAAACCAAGCTGCAACTCATTAGGAAGCCTGGATGAAAATGAAGTGGC
TGCCAATGTTGAAACCAGACCAACTCATCACAGAACTGAAGAAATTCCATTGAACT
TATCAAGAAAGAAAATCTAATCCCAGCTGGTCAGGAAATATTATCACAGCAGGAGTCAA
AGGTGAACGAACCTATTACATCTGTACTCACTGAAAATGAAAAACAACAGAACAGT
CCTTGATAGCCAGGTAACCAAGAAGTTATAAACCAAGTGGTGAAGTTGGCGCTCCTGT
AACTCACAAGGGTGTGAAAGTGGTCTTGACCAACTACTGAGGTAAAACCTAGACTGGA
TATCCAAGAAGAAGAAATTCCATTACACAGTGAACCGTAAAATCCACTCTTACTCAA
AGGAAAAACACAAGTCATTACTAAGGGTGTCAATGGACATCGTAGCAACTCTACTGT
GAGCACTCTGCCATGGTAAGGAAGTGAAAACACTTGTAAATAGTGTGTCAGCACAGGA
AGCCGTTACTCAAATAGTCGAAGTCGGAACATATGGTAACACATGTAGGCGATGAAAACGG
ACAAGCCGCTATTGCTGAAGAAAACAAAAGTAAACATGCAAGCCAACCAGCTCCTGC
TGAGGAAAGCAAAGCTCTCCTCAAGATCCAGCTCTGTGGTAATAGAGAAAAACTTCC
TGAAACAGGAACTCACGATTCTGCAGGGACTAGTAGTCGCAGGACTCATGGCCACACTAG
CAGCCTATGGACTCACTAAAAGAAAAGACTAAGTCTTCGATAAAAATAACAGC
GAGATTGAAGCTCGCTGTTATTTTAATTAACTCACCTAGTCCAAGACGTTCAAAGATA
TCATCCACTCGTTGGTGTAAATAAAACTGGGTTGAAGATTTCATCGATTTCTTGTGTC
AGACGTGATGTTACTTCTGAATCTGCCTCAAGAAGTGGTTAAAGTCTACTTGGTTGTC
CAAGAGTAGGCTTTGGTGCACCAAGTCATAGGCTGTCACGGGTATGCCCTT
TCAATCAATGTCAACATAGCCCCGTTGGCTAAAGATAAGACCAAAAGTCGAGTTCATGTT
CGGATCATATTTCTGGGAAGACTGTCAAGTTCTGACGATATTCCAAAACGGTTGAGC
ATGTAGTCAATCAAATGGCGTATCTGGTGTGATGATACGCTCAGCTGATGAGTGAGAA
ATATCGCGTTCGTGCCAGAGAGCGACGTTTCATAAGCCGTAATCATGTGACCACGAATG
ACACCGGCCAGACCAAGTCATATTCAGAACCGATTGGGTTGCGTTGTGAGGCATTGCT
GAAGACCTTTGCCCTTAGCAAAGAAACTCTTACTTCGCGTTGCTCAGATTGTTG
AGACCACGAATCTCAGTCGCCATACGTTCGATTGAAGTCGCAATGCTGGCAAGAACCGCA
AAAGTACTCAGCGTGAAGGTACGAGGAAGGACTTGTGTTAAAGATTCCCTGGGACGGAT
GCCAAGATTATCGCAGACATACTCCTCTACAAATGGGGATATTGGCAAAGTTCCCAA
CCGCACCAGAAATCTTACCGCTTACACCAGCAGCGCATGCTCGAAGCGCTCGATAT
TGCCTTCATTCGCTGTACCAAGTTGCTAATTAAAGACCAAGGTTGCGCTCAGCGT
GCACACCAGTACGCCCATCATGATGGTAATTGTGCTCCTGGCCTTGTGAGCGA
TGATATTAGTGAAGTTCAAGGTACGACGGATGATGTCGTTGGCCTGCTGTAGAGGT
AACCATAAAGCAGTATCCACCACTCGCGTAGAAGTTAACCCATAGTGAACCCACTTGC
CTTCACCAAGAGTCTCAGAACCGCACCGTGAAAGCCACACATCGTGGCGCTCCT
GCTCAATTCCAAAATACGGTCGATGTCAAAGTCCGCTTGTGCAATCAAAGCCACAT
CTTCCTTAGGGATTCCCCAACTCAGCCATGCCCTCGTAGAGAGGATTCCACCTCAA
GCCAAGCACGGTATTATTTCTTCACTCCAAATATTGCCATCTCAGGGCGAGAGTAAC
GGTTGATCATGTGTTAATTTCCTTCTTAAGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	930	1616	R	229 aa

> 3864180-2 ORF translation from 930-1616, direction R
 VPKESLTQVLPRDLHAEYFAVLSIATSIERMATEIRGLQKSEQREVEEFFAKGQKGSSA
 MPHKRNPPIGSENMTGLARVIRGHMITAYENVALWHERDISHSSAERIITPDTTILIDYML
 NRFGNIVKNLTVFPENMIRNMNSTFGLIFSQRAMLTLIEKGMTREQAYDLVQPKTAYSWD
 NQVDFKPLLEADSEVTSRLTQEEIDEIFNPVYYTKRVDDIFERLGLGD*

Description:

ADENYLOSUCCINATE LYASE (EC 4.3.2.2) (ADENYLOSUCCINASE) (ASL).
 BACILLUS SUBTIL IS.

Assembly ID: 3864184

Assembly Length: 4392bp

> 3864184 Strep Assembly -- Assembly id#3864184
 CCCTTTGCCTCTCCCTTGTTGCAGATTCTTGGGAATTGTGATTGGTCTCTTTAC
 CCAAACTGACTTCATCTAACCGAGTTGTTGGCTGGTTATCGGACCCCTGCT
 TTTCCGAGAGGCTGAAGAACGAGATGTTACGGCTATTTAAAACACTGGCGAATCATTGT
 TTATCTCATATTCAGTGATTTATCTGACCCCTGAGTTGGGTGGCTGGCCATCT
 TCTTGTTTCAGCCTCCCTGGCAGCTGCTGGCTGGGGCAGCCCTGGTCTAC
 GGACTTGGTGGCCTTGCCTCTTTGGAGCGTTTAGCTTCCTAACGCGTGTCAA
 TATTCTTAAGGGGAAGGACTCTTGAATGATGCTCTGGTTGGCTTTCAGGTAGC
 TTTGACAGCTTGGACAACGGAGCTTTCTGGGGCAAGCTAGCAGTCGCTCATCTT
 TTCAATCCTAGGGTTTTAATTGGATTTAACAGCCATGACCAACCCTCC
 TACCTCTTGCTAACGTGCGCGAACGGATATTGCCAGTGAACCTTATTAGAATTG
 GTTTGCCTCTAGTGACCTTCTGGCAGAAGAAGTCCATGTTCAGGGATTATTGCC
 TCGTAGTTGATCGAACCTTAAAGGCAAGTCGCTTCAAGAAAATACGCTCCTCGAACGCC
 AAGTGGATACGGTGACCGAGACGGTCTGGCATAACAGTGACCTTATGCTCAACGGTCTG
 TCTTGATTTAGGGATGGAGTTGAAATGATAGCAGAACCTATCTGACCAATCAA
 TCTATAATCCTCTACTTTATTGCTATCTCATGCCCTTACCTTGTCTCTTGTCA
 TTCGTTTATTATGATCTATGGCTATTATGCCATAGAACCCGACGCCAAAGAAAAAGC
 TAAATAAGTATATGAAGGACATGTTCTTGACCTTTCAGGTGTTAAGGGAACGGTGT
 CGATTGCTACGATTCTCTGATACCAAGTAATCTAGAACAGGAGTATCCTCTTGTCTT
 TCCTTGTGCAGGTGTGACGCTTGTCAAGCTTTAACAGGTCTTGGTCTGCCTCATC
 TTTCTGATGAAGAGGAAGAAAGCAAGGATTATCTCATGACATATGCCATTGAAATGAAG
 TAACGCTAGAGTTGGAAAAAGAGTTGGAAGACACCAGAAATAACTCCCTATGCGG
 CTATTGACAATTGATGGACGTATTGAAAATCTCATTAAAGCCAAGAAAACCAGGA
 TGATCAAGAAGACTGGGCTGCTTGAAAATCGAATTCTTAGTATTGAAAGTGTGGTTG
 GAACAGGCCTATGAAGAGGGAACATTAGCAATCGTGTACCGAGTTACCAACGTTAT

CTGAAAAATATAGAACAAAGGAATCAATCGTAAACTTGCCCTCAAGACTGACCTATTATTT
CTTGTTCCTTGAGGATTTCAGTTCATGAAAGTTTACTCTGGAAAGACC
TTCCGTAGCTGGAAGGACAAGGAGCAAAGCCGTCTCGTCTTGATTATGACCAAATT
GCAGAGCTCTATCTTGCCAATACAGAGATGATTATGAAAGTTGGAAAACCTGAAGGGA
GTCTACAGACGCTCTTGATTAGTTATGCAGGAGTCTCGTCTCGAGAAACAGCTATT
ATCAGCAGTGGTCCTTGTCAACGGTTATCAATCGTCAAACCCAACAATATCGAT
GAAATGCTGAGAGGCTATTATCTGGAGCGCAAGTTGATTTGAATACGAAGAAAACGA
TTGATTACGACTAAGTATGCCAAGAAATTACGACAAATGTAATAACTTAGAGAACTAT
TCCTTGAGGAAGCTGCCAATACCCCTGCCGTATGATATGGTGAATTGGTAAGAAGAAAT
TAGTTAATACTCTCGAAAATCTTCAAACACGTAGCGTGCCTGGATTATATG
TGAUTGACTTCGTCAGTTCATCTACAAACCTCAAAGCAGGGCTTGAGCAACCTGCGGCT
AGCTTCCTAGTTGCTCTTGATTTCATTGAGTATAAGATTGTAAGTGAAGGAGTGTGA
CATGAAAAATGGGAAAGAGCCTGAACACTAGCCTGTACTTTACCCAATCACACTTC
CATTTGGTACAGCTGGATCAACTGTGAGAAGGGATCGAATTGCCATCATGTTAGCTGA
GAGAATCATAACCCCTGGCTGACATATTTTCATCATTTCAGTGGTTTGAGGTTAGCAAC
GATTGAACTTCTGCCGACCAATTCTGTTCAATTGGATAGTATTTGCAATTCTGA
AAGAATCTGACGATCTTCTCCATCACCAGCATCCAAGCGGAATTGAAGCAACTTATCTGA
ACCTTCTACTTAGACACTTCTTGACTTCTGCGACACGGATTCAACCTGTCAAAGTC
TTCAAACTTGATTCATCCTGTTAGTTGAGCTCAACTCGTCCGGATTCCATTCTT
TTCGACTGCTGGTTATTGCCCTCCATTGTCCTGATATAGGCAGTTCTTCTCCAT
ATTTAGACGTGGAAAGATAGGTGTCCTTGGCAACTACAGTCACATCTGCTGGGAAGTC
AGCCAAACTCAAGTTCAAGACTAGAAACTTCTCAAACCAAGTTGAGTCAAAGTC
ACGACTAGTTCCATCATAATGGTCAATCAAGTGAAGCAACTACACGAATGCTGGCTGC
CAAGTGGCTCATGACACTTGCAATTGGTCACGAAGAGCTTCATCCTGTCCAAGACCCA
TGGTGCAGTCTCATCGATGTATTATTGGTACGAGAGATCAGAGTCCAGACTGCTTCAG
CGCACGTGGATAGTCAACTGCTCCATGTGTATGGAAGTCTGCGATTGATTTCTGC
AACCTCAGCAAGAACATGATCAAATTCAAGTCACACCTCTACATAGGCAGGGATTGTCC
ATCAAAGTACTTATTAATCATGGAAACCGTACGGTTAAGGAGGTTCCAAGGTCAATTAGC
CAATTCAAGTTGATACGACCGACATAGTCTCAGGAGTAAAGGTTCCGTCTGAACCAAC
TGGAAAGGTTACGCATGAGGTAGTAACGAAGTGGATCTAGTCCATAACGCTCTACCAACAT
TTCAGGGTAAACGACATTCCCTTTGACTTAGACATTTCAGTCTTCCATGACAACCA
ACCATGGGCAATCAAACGATCAGGTAAATTAAACATCCAACATCATAAGAAGGATTGGCA
GTAGATAGAGTGGAAAGCGAAGGATGTCTTCTACCATATGGAAGACTGTTCCATTCCA
GAACCTGTCAAAGTTACCATGTTCGTCTTGAGCGTAGCCAAAAGCTGTCGATAGTTAAG
AAGGGCATCAATCCAAACGTAGACAAACGTGTTGGATTGATGGACAGGCACCTCCCCA
TGTAAAGGTTGACGAGATACCGCAAATCTCCAAACCTGGCTCGATGAAGTTGCGTAG
CATTTCATTAAGACGACCATTGGCGTGTAAATTCAAGGATGAGCTTGGAAAAATTGAC
CAAACGGTCTGGTATTGCTAAGCGAAGGAAGTATGATTCTCAGAAACCCATTCAAC
CTCATGACCTGATGGAGCAATACCACCAAGTCACATTCCAGCTCATCACGGAAAACCTC
TGCCAGCTGGCTTCTGAAAGAATTCTCGTCTGATAGTGAATACCAACCAGAGTATTC
ACCCAAGTAGATATCATCTTGAGCAAGTAAGCGTTCAAAGACCTGTGCGACAACCTTT
ATGGTAGTCATGGTTGTACGGATAAAATTATCGTATGAGATATCTAGTAATTGCCAGAG
TTCTTAACTCCAACCGCCATTCCATCAACATAGGTTGAGGTGAATACCAAGATTGAA

TTCCGCTTCTGCTGGATTTCTGACCATGTCATCAAGACCTGTCAGATAAAATACATC
 GTAGCCCATTAGGCCTTGTAACGTCTAGGACATCACATGCGATAGTTGTGTAGGCAGA
 ACCGATATGAAGTTCCAGATGGATAGTAAATCGGCCTGTAATATAAAAATTTTTTC
 AGACATAATTTCTTCCAGGCAAATGAAACCTGTTCTAACACTCATTATATCA
 CATTTTAATGAATTTCGATAGGGAAATCCATACCAAAACAAGATAGACGAGTGTCCATC
 TTGTTGATCTCATTCTAACGAAGGGCTCAATTGGATCAAGTTCGATGCCTGTTGGC
 TGGCAAGACTCC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	197	670	F	158 aa
2	612	1304	F	231 aa

> 3864184-1 ORF translation from 197-670, direction F
 VIFISTLSLGGLAHLLWFSLPLAACLAvgAALGPTDLVAFASL SERFSFPKRVSNILKGE
 GLLNDASGLVAFQVALTAWTTGAFSLGQASSSLIFSILGGFLIGFLTAMTNRFLHTFLLS
 VRATDIASELLFEFASSDLLSGRRSPCFRDYCRRS*

Description:

unknown

> 3864184-2 ORF translation from 612-1304, direction F
 VTFFLAEEHVSGIIAVVVDRLIKASRFKKITLLEAQVDTVTEVWHTVTFMLNGSVFVI
 LGMELEMIAEPILTNPYIYNPLLLLSSLIALTFVLFVIRFIMIYGYAYRTRRLKKLNKY
 MKDMFLLTFSGVKGTVSIATILLIPSNEQEYPLLFLVAGVTLVSLTGLLVLPHLSDE
 EEESKDYLHMIAILNEVTLEKELEDTRNKLPLYAAIDNSIMDVLKISF*

Description:

unknown

Assembly ID: 3864194

Assembly Length: 1941bp

> 3864194 Strep Assembly -- Assembly id#3864194
 AATTAGTATTCTCAACCTTTATCTTGATAGTTCAAGATGGCATTGCTGAATTGGTAA
 CATAGTAACTATCCACTCCCTTCAGTTAGCTGCCTCTGAACCCAGGATTCTGCGGTT
 TTGGCGGTTCAACAGGAATTCTTTCTTCCAGAAACCGTAAAGCTGATTGTTCTG
 AGTAAAAGACCATCTTACTTTTAGGAGAGAAAAGACGCTAATATTTCTGAGA
 TTTAGTCATATCTTATTGACTTGACGAGATAGGGAAATCACCCAAAGCCATAATCACAAC
 AACTGATGAAACACCGATAATAATCCAATCATAGTAAGCAAAGAACGCATCTTGAGC
 CATGATAGATGAAAAGGAAATTCAAGATTCTGCATCTTAGTTCTCCTTCTTAAC
 GAGCACTGTCAGACGAAATGACCCATCCGAATGACAATCTGACGTTGGCATAGGCAG

CAATCTCAGGCTTCATCGGTTACCATGATAATGGTTTCCCTTATTCAAATCAACC
 AATAATTGCATAATTGGTTACCTGTTGGTATCCAAGGCTCTGCGGTTCATCCGCT
 AGGATAATAGAAGGATTGTTACCAAGGCACCGCAATGGCTACACGTTGCTTGTACCA
 CCAGATAATTCTGAAGGTAAATGGTACTACGTTCTATCAATTCAACCTGTCTAAATAT
 TCCTCAGCCAACCTGCGACGTTGAAGACGAAACTCCTGCGTAAATCAAGGGCAATTCT
 ACATTTCGAGAGCATTGAGCTTCGATAGAAGAAGAACTGCTGAAAGACAAAACCGATT
 TGTTGGTTACGGACCTTAGCTAGTTGTTTACCAAGCCCAGCCACTTCTGACCTTCA
 AGATAATATTCTCCACTGGTGGTGTATCCAACATGCCAACATCGTATTTCATCAGAGTGGAC
 TTACCAAGACCCAGATGGTCCCAGTGGCTACAAATTCAACCTCATTCACTCTAGATTG
 ATATTGGAGAACCTGCAGTTCTGGTACCCATTACGGTAACCTCTGAAGATATTGG
 AGACTAATTAGTTGCTTCATCAGCCTCACCTCTTCCCTTCCAAGGAAGATGGTGG
 ATTACTGATGACCTTAGCACCCTGTTAAACAGAAGTGATTCTGATTTCGTC
 AGCATTCCCAATGAAACCTCAACTTTTACGCTTTGTTGTTCATCCACAATCCAGAC
 ATAATTAACTATCATCATTACTAGACTGCTAACAGGAACAAGAACAGCTTAGTTT
 GCTTTAACCTCAATGTTGACAGAAAAACCTGTTCAAATACCAACCTCGCCTGTCAC
 ATCAATAGTATAAGGGTATTAGAACCTGTATTATTCCCGGCTGCTGGACTAGCTGCTTC
 ACCATTGTTTAGGATAGTCAGAAATAGGCTTAATTCCAGTCATTGTTATCAG
 GATACACTTAAAGTAAAGCTTACTTGTACCTACAGAAAGGTTGGCTAGATTGACT
 CAGACAATTCTCCCTGACTTGTAAATTTCATTGCTGACAATATGAACCATAACTGAC
 TCGCCCCCTGTTGGAGATTAGAAACATTGCTATTGACTTCGACTACAGTCCCTCTAGGG
 TACTGAGAACAGTTGTCATCCAATTGACTTGAGCCTGCTTAATTGCGCTGCAGCAT
 CTGCACGCGCATCACGGGATCACCAATTGAGCATTCAATAGAACAGAACAGAACAG
 CCACTGGAGTTGGGCTTGCACCGTTGCATCTCCTCCTACTGGCGCTGGTAACGTG
 GAGCCTGAGCTGAAGCGGCTCATTGCTGCTGATTGAGTCATTGATATGACGATCTG
 CCTTAGCTACTGCTCGACTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1084	1380	R	99 aa

> 3864194-3 ORF translation from 1084-1380, direction R
 VTGEVGDLKQGF SVNIEVKS KTKAILVPVSSLVMDDSKNYVWIVDEQQKAKKVEVSLGNA
 DAENQEITSGLTNGAKVI SNPTSSLEEGKEVKADEATN*

Description:

unknown

Assembly ID: 3864338

Assembly Length: 1335bp

> 3864338 Strep Assembly -- Assembly id#3864338
 ATCGAATTCCCTATTAACTTCTTTCTAAAACAGTCTATATTATTTCAAACTG

TATTATATTTGAAAAAATAAGCCTTTCTTTTCAGAAAAAGGGTATAATA
 AAAGAAAATAAGCAGTAACACTCAATGGAATCGAAAAGCAAACTAGGAAGCTAGCCGC
 AGATTGCTAAAACACTGTTTGAGGTTGCAGATAGAGCTGACGTGGTTGAAGAGATTT
 TCGAAGAGTATAAAAGGTGCTAGGCATGTTGATTTCTTGTAAATGATTGTCAA
 GAAAATCATCCATATTGGACATGGATGCCTTTGCTGCAGTGGAAATCAGGGATAAT
 CCTAAACTCAGAGGAAAACCTGTCATTATTGGAAGCGACCCTCGGCAAACAGGTGGACGG
 GGAGTCGTTCTACCTGTAGTTATGAGGCAAGAGCTTGGTGTCCATTCTGCCATGAGT
 TCCAAGGAAGCTTATGAACGTTGCCCCAGGCTGTCTTATCTCAGGGAATTCGATGAGA
 AATACAAGTCTGTGGACTCCAGATTGAGCTATTTAAGCGCTATACAGATTTGATTG
 AACCCATGAGCATTGACGAAGCCTATTGGATGTGACAGAAAATAACTCGGTATCAAGT
 CAGCGGTCAAAATTGCTCGCCTCATTCAAAAAGATATCTGGCAAGAACTCCATCTAAGT
 CTTCCGCAGGCCTTCTAACAAATTCTAGCTAAAATGGCAGTGATTATCAAAAAC
 CACATGGTTGACAGTGATTCTACCTGAACAGGCTGAGGATTTCTCAAACAAATGGATA
 TTTCCAAATTTCATGGAGTAGGAAAAAAGACAGTAGAACGTCTTCATCAAATGGCGTT
 TTACTGGTGCTGATTTACTTGAAGTCTGAGGTAACCTAATAGACCGTTGGTAGAC
 TAGGCTATGATCTGTATCGAAAGGCTCGTGGCATTACAACACTCTCCAGTCAAATCCAATC
 ACATCCGTAAATCAATCGCAAGGAGAAAACCTACGGGAAGATTCTCCGTGCTGAGGAAG
 ATATCAAAAAGAGAGCTGACTCTCTATCAGAAAAGTCGCTCTCAATCTACATCAACA
 AGAAAAGCTGGAAAATTGTCATTGAAAATCCGCTACGAGGACTTTCAAACCTTAC
 CAAACGAAAAGTATTGCTCAAAAACACAAGATGCTAGTCAGATAAGCCAAATAGCCCT
 GCAACTCTATGAAGAATTAAGTGAGAAAGAAAGAGGTGTCCGCCTATTGGGATTACCAT
 GACTGGATTTAAAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	552	1100	F	183 aa

> 3864338-2 ORF translation from 552-1100, direction F
 VGLQIRAIKFRYTDLIEPM SIDEAYLDV TENKLG IKSAVK IARLI QKDI WQEL HLTASAG
 VS YNKFLAKM ASDYQ KPH GLTV ILPE QAEDFL KQMD ISKF HG VGK KTVERL HQ MG VFTGA
 DLLEV P E VTLID RFG RLGYD LYR KARGI HNSPV KS NH IRK SIGKE KTYG KILRAE EDIKK
 ES*

Description:

ECODINJ NCBI - Escherichia coli (sub_strain W3110, strain K-12)
 DinP, DNA damage inducible protein

Assembly ID: 3864360

Assembly Length: 1796bp

> 3864360 Strep Assembly -- Assembly id#3864360
 TCCAAAGCTAGCTATT CGTGGAAAGGGGCTT CGGTT GG CAGAAC CTGGTGA ATT TACCCAA

ACGTGCTTTTAAACGGTCGCGTAGACTGACACAGGCAGAGGCTGTGATGGATATCAT
 CCGTGCCAAGACTGACAAGGCATGAACATTGCGGTCAAACAATTAGACGGCTCCCTTC
 TGACCTCATTAAACAATACCGTCAAGAAATCCTCAATACACTTGCCCAGTTGAGGTCAA
 TATCGACTATCCTGAATATGATGATGTTGAGGAAGCTACTACTGCCGTTGCGTGAGAA
 GACTATGGAGTTGAGCAATTGCTAACCAAGCTCCTTAGGACAGCACGTGTTGAGGAAAT
 CCTTCGTGAAGGAATTCAACGGCTATCATTGGACGTCCAACGTTGGGAAATCAAGCCT
 TCTCAACAAACCTTGTGAGGACAAGGCTATCGTAACCGATATCGCTGGACAACACG
 AGATGTCATCGAAGAGTACGTCAACATCAATGGTGTCTAAAATTGATTGACACAGC
 TGGTATTGAAACGGATGATATCGTTGAACAAATCGGTGTTGAGCGTTGAGGAAAAAGC
 CCTCAAGGAAGCCGACTTGGTTCTACTAGTGCTAAATGCCAGTGAACCACGTGCGCA
 AGACAGACAACCTTGTAAATTAGCCAAGATAACCAATCGCATTATTCTACTTAATAAAC
 CGACCTGCCAGAAACGATTGAAACACTTCGAAACTACCTGAAGACGTTATCCGTATTCAGT
 CCTTAAAAACCAAAACATCGACAAGATTGAAGAGCGAATCAACAACCTTGTGAGGAA
 TGCTGGCTTGGTCAGCAAGATGCTACTTACTTGTCAAACGCCGTACATTTCCCTGAT
 TGAAAAAGCAGTTGAAAGCCTACAAGCCGTTAATCAAGGTCTTGAGCTGGGATGCCAGT
 TGATTGCTTCAAGTTGACTTGACTCGTACTTGGGAAATCCTCGGAGGAAATCACTGGGA
 TGCTGCTCCAGATGAACATCGTACCCAACTCTTAGCCAATTCTGTTAGGAAAATAAGA
 AAAATCCATGATCCTTCATTGGTCAATGGATTATTGTCTTATTAGTAATCTGGCTT
 AAGACCCCTGTTACAGTTGCCTAGTTGCTTAGTCGACATCTACGACAACCTTGATA
 ATGCGTTGACATCTCTGGTCTGGAACAAGAGGTAGACCGAGTGGGTCCAGCTTCA
 AATCCCATATAGTTAAGAATTGCCCTAACTGGAGCAGGACTTGGATAAGAGAAGAGCA
 TTAACCTTAGGAATGAATTACGCTGAATTGCTGCGGCTTCTTCATATCGCTTCTGCA
 ATGGCAGTAAACATCTCGCATTTCATCCCCATTGTATGAGAGGCAACAGAAATAACC
 CCATCCGCCCCAAGGTTCATGGCATGGAAAGCATCTCCATCCTCACCTGTATAAATCAAG
 AACTCTCAGGCTTGTGCTCAATCAAGTAAGCCATATTAGCCAAGCTAGTACATTCTTG
 ACACCGATAATATTGGATGGTCAGCCAAGCGAAGCATGGTTCTGGAGTCAATTGACA
 ACTACACGCCCTGGAATGTTAGATAATAATTGGTAGGTAGAAGCATCTGCAATAGCC
 TTAAAGTGCTGATAACATCCCTTCTTGAGAAGGTTGTTAGTAAGGAACAATAGCAAGC
 CCAGCTGCGAAACCACCAAATTCCGCTACTTCTTGACAAACTCAATAGAGTCACG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	47	1078	F	344 aa

> 3864360-1 ORF translation from 47-1078, direction F
 VNLPKRAFLNGRVDLTQAEAVMDIIRAKTDKAMNIAVKQLDGSLSLDLINNTRQEILNTLA
 QVEVNIDYPEYDDVEEATTAVVREKTMEFEQLLTKLLRTARRGKILREGISTAIIGRPNV
 GKSSLLNNLLREDKAIVTEDIAGTTRDVIEEYVNINGVPLKLIDTAGIRETDDIVEQIGVE
 RSKKALKEADLVLLVLNASEPLTAQDRQLLEISQDTNRIILLNKTDLPETIETSKLPEDV
 IRISVLKNQNIDKIEERINNLFFENAGLVEQDATYLSNARHISLIEKAVESLQAVNQGLE
 LGMPVDLLQVDLTRTWEILGEITGDAAPDELITQLFSQFCLGK*

Description:

THIOPHENE AND FURAN OXIDATION PROTEIN THDF. - ESCHERICHIA COLI.

Assembly ID: 3864388

Assembly Length: 2337bp

> 3864388 Strep Assembly -- Assembly id#3864388
CTTCGTACAGGTGGTCCATGCAAGGGTGGAAGCCAATCGTCAGAACACAAGCATCTT
CATCAAGCCAGAACTGGAGCAATTACAAAAAGAAATTGCTGAAGAAGAAGCAAGCTTGGG
TTCAGAAGAAGTGGTTGAAGACCTTGCAAGATGAGATGGCCAGATTGACCGAGTCATT
AGAAGCTATTAAATCTCAAGGAGAGCAGGCACGTATTCAAGGAGCAAGGCTGTCCCTCGC
TTATCAGCAAACACTAGTCAGCAAGTTGAAGAACTGGAAACTCTTGGAAACTCCAAGAAGA
GGAAATAGATCGTCTTCCGAGGGAGATTGGCAAGCGGATAAGGAAAATGCCAAGAGCG
TCTTGCTGCAATGCCAGTGACAAGCAAAATCTGGAAAGCTGAGATTGAAGAGATTAAGTC
TAATAAAAATGCCATCCAAGAACGCTATCAAACATTGCAGGAAGAGCTAGCGCAAGCTCG
TTTGCTTAAGACAGAACTGCAAGGGCAAAACGTTATGAAATTGCTGATATTGAACGCTT
AGGCAAGGAATTGGACAATCTTGATTGAACAAGAGGAAATCCAGCGCCTTCTTCAAGA
AAAGGTTGACAATCTTGAGAAGGTTGATACAGAATTGCTCAGTCACAGCGGAAGAAC
CAAAACTCAGAAAACGAACCTCCAACAAGGTTGATTGCAAACAGTTGAGTTGGATGA
TATAGAAGGTCACTGGATGATATTGCTAGTCATTGGATCAGGCTCGCCAGCAGAATGA
GGAGTGGATTGCAAGCAAACACGTGCTGAAGCTAAGAAAGAAAAGGTAGCGAGCGCTT
TGCCGCCATCTACAAAGTCATTAAACAGACCAGTACCGAGATTAGCCATACTGAAGCTCTA
GAAAAAGCGCATGAATTGGAAAACCTCAATCTGGCAGAGCAAGAAGTTAAGGATTAGAG
AAGGCTATTCGCTCACTGGGTCTGTCAATATAGAAGCTATTGACCGGTACGAAGAAGTT
CACACCCTCTGGACTTCTAAATAGTCAGCGAGATGATATTGTCAGCGAAAATCTG
CTCCTTGAACCATACAAAGATGAATGATGAGGTTAAGGAACGCTTAAATCAACCTTT
GAAGCTATTCGTGAGTCCTTAAAGTGACCTTCAGCAGATGTTGGCGAGGTAGGCA
GACTTGATATTGACTGAGGGCGACCTTACAGCTGGTGTGGAGATTCTGTTCAACCTC
CAGGTAAGAAAATCCAGTCGCTAACCTCATGAGTGGTGGTGAAGGACCTATCGGCTC
TTGCCTTGCTTTCTCCATTATCGTGTCAAGACCATTCTTGTCACTTGGATGAGG
TGGAGCTGCGTGGATGAAGCCAATGTTAAACGTTGGGGATTACCTCAACCGCTT
ACAAGGACAGCCAGTTATCGTGTAAACCCACCGTAAGGGAACCATGGCAGCGGCCATT
CCATCTATGGAGTGACCATGCAAGAACGTTCAAGGTTCAAAGATTGTTCAAGTTAA
AAGATTAGAAAGTATTGAAGGATGACAATTAAACTAGTAGCAACGGATATGGACGGAAC
CTTCCTAGATGAGAATGGCGCTTGATATGGACCGCTCAAGTCTCTCTGGTTCTA
CAAGGAAAAGGGATTACTTGCGGTGGCTCGGGTCGGGGATTCTGTCTCTGGAAAT
CGAATTATTCGCTGGTGTGATGACATTATTCATCGCGAAAATGGCAGTTGGT
AGAGTATCAAGGTCAAGGACTGTATGAAGCAGTATGTCCTGTGACTTTATCTGGCAAC
TTTGAAAAGCTAAAACGTCACCTTATATAGATATCAATAAAACTGCTCTGACGGTAA
GAAGGGTTCATATGTTCTAGATACGGTTGATGAGACCTATTGAAAGTGAAGTCAGCATTA
TAATGAAAATATCCAAAAGTAGCGAGTTGGAAGATATCACAGATGACATTCAAATT
TACAACCAACTTCACAGAAGAAACGCTAGAAGCTGGTGAAGCTGGTCAATGATAATGT
CCCTGGTGTCAAGGCTATGACAACCTGGCTTGAATCTATTGATATTGTTCTGGACTATGT

CGATAAGGGTAGCTATTGTTGAATTAGCTAAAAACTGGCATCACAAATGGATCAGGT
 CATGGCTTTGGAGACAATCTTAATGACTTACATATGATGCAGGTTGTGGACATCCTGT
 AGCTCCTGAAAATGCACGACCAGAGATTTAGAATTAGCATAAGACTGTGATTGGTC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1239	1586	F	116 aa

> 3864388-3 ORF translation from 1239-1586, direction F
 VEISVQPPGKKIQSLNLMSGEGEAKSALALLFSIIRVKTIPFVILDEVEAALDEANVKRF
 GDYLNRFDKDSQFIVVTHRKGTMMAADSIYGVMTMQESGVSKIVSVKLKDLESIEG*

Description:

P115 protein - Mycoplasma hyorhinis (SGC3) (similarity to SMC1_YEAST, chromosome segregation protein)

Assembly ID: 3864406

Assembly Length: 2162bp

> 3864406 Strep Assembly -- Assembly id#3864406
 CTAAAAGTGAAGCCCGATAGCGTCTCTCCTGCAAGGATTCATAACCAATAACAGGAG
 ATTGACGAACAATAATCGGTTGAATGACCCCATTTCCTTGATAGACTGTGCTAGTCAT
 CTAGCTTTCTCTATCAAATTCTTCGGGGTTGATAGGGATTTTTGTATATCTGTGA
 TAGAAATCATTCAAATTTCATGATTCTACACTAACACATCTTCTCTTATGTAAA
 GCTTCTTACATAGATGCAATTAAAGATTCTAAATCACCTGAACACTTGTAAAGTTGA
 TAGAGGTAGTTCTTCCCGTACGATAGTAGGTTATCTTAATGGTGTCTCCGATAG
 AATGGTTGAAAGAGCACTTGTAAAGTCTGTTGATGAAGCAATCTTTGTCATCTACTT
 TTGTAATTACATCGTATTTCAGGTGACCATGGCAGGCATATTACTTTGACCGAAC
 GAACAATTACACCAGATGTAACATTACTTGAATATTGAGTCTCTGATGTCGTTGTAC
 TCACATTAGATAAAATTAAACCCTGGATTCCCAAAGCTGGACGCGTCACTTTCCGTTT
 TTTCTAACTGTTCAATAATATTGATAGCATCTTGCAAGGAATTGCGAAACCAAGACCTT
 CTACAGATGTTCCCTCATTGAGCAATTACTTGAGGTAATTCCGATAACCTGCCCTT
 GAATATTGATCAGTGGCCGCCAGAGTTACCTGGGTTAATAGCAGTATCAGTTGGATGG
 CTTTTGTAGAAATAGCTTGTCCATCTCCGATTAAAGGATACATTCTATTGAGACTGG
 ATACGATACTTGAGTGACAGTATTGATATTCAAGAACCTAACGGGCTACCGATGGCAA
 TAGCAGTTCTCCTACAGTTAACTTACTAGAATCACCAAACTCAGCTACTGTTGTCACTT
 TTTCTGAAGAGATTCGACGACAGCAATATCAGAGAAAGTGTCACTCCGACAATTCTC
 CAGGTACTTAGTCCCCTGACAATCGAATATCTACTTGTGGCGCCATTATAACGT
 GATTGTTGGTGACGATGTAAGCTTCTTATCATTCTTTATAAAACTCCAGATCCTT
 CACTAGAGATTGCTGAGAATCTGTCAGTATCATCATTGCCAAATACGCTATTGTC
 TGTTGCCGAATAAGTAATAACAGAAACACAGCATCTTACTTTGTTAACGGCCTGTG
 TTGTTGAATTTCGCTCCTATAGGCAGTTGTAAAGTACTATTGTTAGAGTT

GTTCACACTTTTGAGTTAGTGAGTTATTGAAAAACTACCCAAGGCTCCACTAAA
 AAAGCTAATGACGATAACGACTAATAATTGAAACCATTGGTAAAATGTTTAGATG
 TTTCATATTGCCTCCATATGTTGAATTACTGAAAGTATAAACTGACTAGCTTAATTAT
 AACTTAAACACAAAAGTTTACACAAACTGTGGATAACTCTTGAAACTGTGATTTCT
 TAATTGAAATCTATTGGTGAATAAGATGTGAAAAAATAGAGAATATGTTAGA
 ATAGAGTCATGAAAATTAAAGTTGTAACAGTGGGAAACTGAAAGAAAAGTATTAAAAG
 ATGGTATCGCAGAGTATTCAAAACGAATTCTAGATTGCTAAGTTGAAATGATTGAGT
 TATCAGATGAAAAAACACCAGATAAGGCCAGTGAATCAGAAAATCAAAGATTTAGAAA
 TAGAAGGTCAGAGAATTATCAAAATTGCTGACCGTGATTCGTTATTGTGTTAGCCA
 TTGAAGGGAAAACCTTCTCAGAAGAATTAGTAAGCAGTGAGAAGAAACTCTATAA
 GGAAGGGATGTCTACTCTTACTTTATTGGGGGAAGTTAGGATTGTCATCATCTGTA
 AAAAATAGAGCCAATCTTCTGTCAGTTGGTCGCCTAACCTGCCTCATCAGTTAATG
 AGACTAGTTCTGTTGAACAAATCTATCGCGTTTACGATTCAAGCAGGGATTCCCCTAC
 CATAAAATAGAGAATTGACTTTAATTGAATTGGTAGAATAATTGTGTTAGGTCTCAT
 AG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	263	958	R	232 aa

> 3864406-1 ORF translation from 263-958, direction R
 VTTVAEFGDSSKLTVG**E**TIAIGSP**L**GSEYANTV**T**Q**G**I**V**SSLNRNV**S**LK**S**ED**G**Q**A**IST**K**
 I**Q**TDT**A**INPGN**S**GG**P**L**N**I**Q**G**Q**V**I**G**I**T**S**SKI**A**T**N**GG**T**S**V**EG**L**G**F**A**I**P**A**ND**A**IN**I**I**E**Q**L**
 NG**K**V**T**R**P**AL**G**I**Q**M**V**N**L**SV**N**TS**D**IR**R**LN**I**P**S**NT**S**GV**I**V**R**SV**Q**SN**M**PANGH**L**EV**I**D**V**IT**K**
 VDD**K**E**I**ASSTD**L**Q**S**ALYNHS**I**G**D**TI**K**ITY**R**NG**K**E**T**TS**I**KL**N**KSSGD**L**ES*

Description:

Bacillus subtilis (strain 168,) DNA. Homologous to E. coli serine protease HtrA (BLAST)

Assembly ID: 3864452

Assembly Length: 1766bp

> 3864452 Strep Assembly -- Assembly id#3864452
 ATCGAATTTC**C**AAATGGGGAGCTAGAGCAGTGGAGTGATTATGTGGCAGACGATTGA
 TTCAGCATAATCATGAGATTGGACAAGGAAGTGCTGCTTATAAAACTATGTGGCTGAAT
 ATATTGTCACTTTGACTTCGTTCACTCTTAGGACAAGGAAACTATGTGGTTAGCT
 ATGGTCAGACTCAGATTGATGGCGTTGCTTATGCCAAGTACGATATCTCCGTTAAAGA
 ACGGGAAAATTGTGGAGCATTGGGATAATAAGGAAGTCATGCC**T**AAGGTAGAAGACTTGA
 CCAATCGAGGGAA**G**TTAAATTGAGGACAAAGAATGATTGAATACAAA**A**TGTAGCACT
 GCGCTACACAGAAAAGGATGTCTGAGAGATGTCAACTACAGATTGAGGATGGGAATT
 TATGGTTTAGTAGGGC**T**TCTGGGTCAAGGTAAGAC**G**AC**C**ATG**C**TCAAGATGATTAAACCG

TCTTTGGAACCAACTGATGGAAATATTATGGATGGGAAGCGCATCAAAGACTATGA
TGAGCGTGAACCTCGTCTTCTACTGGTTATGTTTACAGGCTATTGCTCTTTCCAAA
TCTAACAGTTGCGGAAAATATTGCTCTCATTCCCTGAATGAAGGGTGGAGCAAGGAAGA
AATTACGAAGAAAACAGAAGAGCTTGGCTAAGGTTGGTTACCAGTAGCCGAGTATGG
GCATCGCTTACCTAGTGAATTATCTGGTGGAGAACAGCAACGGTCGGTATTGTCCGAGC
TATGATTGGTCAGCCAAGATTTCCTCATGGATGAACCCCTTCGGCCTGGATGCTAT
TTCGAGAAAACAGTTGCAGGTTCTGACAAAAGAATTGCATAAAGAGTTGGGATGACAAC
GATTTTGTAACCCATGATACGGATGAAGCCTGAGTTGGCGGACCGTATTGCTGTCTT
GCAGGATGGAGAAATGCCAGGTAGCGAATCCCAGACAATTAAAAGTGCCTGCAAC
AGACTTGTAGCAGACTGTTGGAGGTAGTGTTCATGACTAATTAAATTGCAACTTTC
AGGATCGTTTAGTGAATTGGTTGACAGCTACAATGACATTGGTCGGTCTTGAGCAAGA
GATAGATTAGCCAGACAGTCATGCCAAAATCCCTCAGGTAGAGCATAGACCGTGCA
CATTAAGTACGATTAAGGAAATTGATAATGGCAAGAAACTGCTACTGCTTGTAAATAAA
AGGTTGTTAGTGTCAATTAGTCATCAATACCAAGGGCAGAGAAGTTCTGCCCTAA
GCGAGGGTAATGAGCAGGGATTCAAACATCTTACTCATACCAGAGTTATGTGGTGGTC
ATAATATCACGGACCGCATTGGTCAAGGCAATACCTGGTACAAACGGCATGACCGCACCA
GCTATAATCAAATCTGCCGTTGAAGGAAAACCTGTGTAGCGAGCCAAAACTGGGCAATT
ATCCCAAAGACAAAAGCTCCAGCAAAGGCTGTCAAAAGGGAAATTGGATAAATTTC
ACATAGAGGGAAAAGGCAAAACCAAATAAGGTCGCCACTCCTGCCCAAGTGCCTCGTAG
ATATTCCGCTAACATAACTGAAAAGGAGCACTAAAGGTCGCAGCCAGAGTTACC
TGCAACTTAGTATAGGAAGGGTTGAGCTTGCAAGGCCGTCAATTGCTTAAAGGCTGTT
TCTAAGTCAATCTGCCCTCAACTGG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1079	1201	R	41 aa

> 3864452-2 ORF translation from 1079-1201, direction R
VQRSMLLPGGILGMTVWLIYLLLKEPTNVIVAVNQSLKRS*

Description:

unknown

Assembly ID: 3864458

Assembly Length: 1705bp

> 3864458 Strep Assembly -- Assembly id#3864458
CTCTGACGGAGGCTGGTTATGTGGGTGAGGATGTGGAAAATACTCCTCAAACCTTGC
AGGTTGCTGACTTTAACATCGAACGTGCAGAGCGTGGCATTATCTATGTGGATGAAATTG
ACAAGATTGCCAAGAAGAGTGAGAATGTGTCTATCACACGTGATGTTCTGGTGAAGGGG
TGCAACAAGCCCTCTCAAGATTATTGAGGGAACTGTTGCTAGCGTACCGCCTCAAGGTG
GACGCAAACATCCACAACAAGAGATGATTCAAGTGGATACAAAAATCCTCTTCATCG

TGGGTGGTCTTGATGGTATTGAAGAAATTGTCACAAACAGTCTGGGTGAAAAGTCA
 TCGGATTGGTCAAACAATAAGGCATTGACGAAACAGCTCATACATGCAAGAAATCA
 TCGCTGAAGACATTCAAAAATTGGTATTATCCCTGAGTTGATTGGACGCTGCCCTGTT
 TTGCGGCTCTTGAGCAATTGACCGTTGATGACTTGGTCGCATCTGAAAGAGCCAAGAA
 ATGCCTTGGTAAACAATACCAAACCTGCTTCTTATGATGATGTTGAGTTGAAATTG
 ACGACGAAGCCCTCAAGAGATTGCTAATAAAGCAATCGAACGGAAGACAGGGCGCGTG
 GACTTCGCTCCATCATCGAAGAAACCAGCTAGATGTTATGAGGTGCCGAGTCAGG
 AAAATGTGAAATTGGTTCGCATCACTAAAGAAACTGTCGATGGAACGGATAAACCAGATCC
 TAGAAACAGCCTAGAGGTGACTATGGAACCTTAATACACACAATGCTGAAATCTGCTCAG
 TGCAGCTAATAAGTCCCACATCCGCAGGATGAACTGCCAGAGATTGCCCTAGCAGGGCG
 TTCAAATGTTGGTAAATCCAGCTTATCAACACTATGTTGAAACCGTAAGAAATCTGCTCG
 TACATCAGGAAAACCTGGTAAAACCCAGCTCTGAACTTTTAACTTGTGACAAGAT
 GCGCTTGTGGATGTGCCTGGTTATGGCTATGCTCGTGTCTAAAAAGGAACGTGAAAA
 GTGGGGGTGCATGATTGAGGAGTAATTAAACGACTCGGAAAATCTCGTGCCTGGTTGTC
 GTCTAGTTGACCTCGTCATGACCCGTCAAGCAGATGATGTCAGATGTACGAATTCTCA
 AGTATTATGAGATTCCAGTCATCATTGTGGCACCAAGCGGACAAGATTCTCGTGGTA
 AATGGAACAAGCATGAATCAGCAATAAAAAGAAATTAAACTTGACCCAAGTGACGATT
 TCATCCTCTTTCATCTGTCAGCAAGGCAGGGATGGATGAGGCTGGATGCAATCTAG
 AAAAATTGTGAGGAAAAGAAAATGGCAAAAACAATTCATACAGATAAGGCCCAAAGGCT
 ATCGGGCCCTATGTTCAAGGAAAATCGTTGGCAACCTTTGCTAGCGGTCAAGTT
 CCCCTATCCCCTGAAACTGGGAAATTGTAGGAGAGAATATCCAAGAACAGACAGAGCAA
 GTCTTGAAAACATCGGTGCTATTTGGCAGAACAGAGACTTGACCATGTTGTC
 AAAACAACTTGTTCTGAGCGATATGAACGACTTGTCCTTTAATGAGGTTACCAA
 ACGGCCTCAAAGAGGAATTCCAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	797	1105	F	103 aa
2	1179	1391	F	71 aa

> 3864458-2 ORF translation from 797-1105, direction F
 VTMELNTHNAEILLSAANKSHYPQDELPEIALAGRNSVGKSSFINTMLNRKNLARTSGKP
 GKTQLLNFFNIDDKMRFVDVPGYGYARVSKEREKGCMIEE*

Description:

unknown

> 3864458-3 ORF translation from 1179-1391, direction F
 VQMYEFLKYYEIPVIIVATKADKIPRGKWNKHESAICKKLNFDPSSDDFILFSSVKAGMD
 EAWDAILEKL*

Description:

HYPOTHETICAL 22.0 KD PROTEIN IN LON-HEMA INTERGENIC REGION
(ORFX). - BACILLUS S UTILIS.

Assembly ID: 3864474

Assembly Length: 1673bp

```
> 3864474 Strep Assembly -- Assembly id#3864474
ACGTTTGGAACTGTCGGATAGCAGATTCCGAACAAACTGATAATGGTTGGCAAAATC
ATTATTCCTAATAGTAACGAAGCTGGTAGGACAACTCATGCCATTCTAAAGGTAA
TAATCCAAGGCACCAATAATTGTAGGCCAAAAACCATAAACAAATAGATGGAATGGCTG
CCATCAAGTTGATAGCTGATTTAAGAAGCTATAGACGGGCTTGGACAATTATAAACCA
TAAACACCGATGTCAAGATCGCCTGTTGGCACCCAACTACAATCGCTCTAAAGGTGAA
TAAATAAGGAACCAACGATCATTGGTAAAATACCATAAGCTTGCCGGATGTTGTTGGCG
ACCAATCACTGCCTAATAAAACGGCAAAGCCGTAGTTAGCTATGAAAGGTAAGCCAT
TACTAAAATAAGAAACAGATTAGCAAAATAGCTACAACAGCTACTGTTGCACTCATGA
AAAAAAATTGCCCTAAAAGCTGCTTGTGAAGGCTTGTTCACATCTGTCTTCT
AGTGAAGAAAGTAAGGGAGATACGACACCTCCCTACTGCTCTTTATCTTATTGTACG
ATGAAACGTCTGCATCTTTAGAGATTTATGGAGCAAACATTTATTTAATCTGTCCC
AGGTGGTTAATTGCCACTAAAACGTCCGCAAGTCAGCCATACTGACTGGCTTGCCT
TATTGTCTTATTGACCACAACAGCAATACCGTCTAAAGCAATAGCATCATGGGTGAGAC
TCTTACCTTCTCAGGAGTTAATTCCCTAGAAACCATAACCAATATCAGCGTTCTCCT
TAACAGCGGTAATACCTGCTGAAGACCCATTAGAGGTAAATATCAATCGTAACTCTGGAT
TTCTTTTATAAGCTCTGCTAATTTCCATTAAAGAAGATACTGAAGTGGAACCTA
CAACAGACAACCTGCCTGATAAGTGTGGCTGTATATTCTGTGGTTCGGTTAGCTT
CAATAAATTATTCTGTGACCACCTGTTGACCTTGGAGTGGATAAGCTGATAA
AATCTGACCTAGCTGGAAAGATTAGAAGACCAAACAATGTTGAAGGGACGTTGAAGAG
GGTATTCACCATCTAAACACTGTGTCGACTAGCCTGACACCATACTCTAAAGCCT
TGACAGATTGTTAAAGATCCAAGGAGATGTAGCCGATAGCATTAGCATTCCCTGAA
CTGCTGAGAGAACACCTCTGTACTATTTGAATCACAGCTGTTGGCAGTGTAGTC
TTTTTTATCACCGTCTTTGAGAATCCCTGTGATTCTGTGAAGGCACCCGTGTC
CAGAGCCATTCTCGTGAAATCACCTCAATCGTCTGGAGCTGACTGTTGGAAAGCAG
CTGACTGATTGCCACAGGCAACAAGCCAAATCCTGATAAGCCAATGGCTGCAAGAGTAA
GCATTTTTGAATTCTATAAAATCACCTTATCTCTATGTATTTCTGTGAGGCT
TACTACATTATAGTCTAACAGCTTGTAAAGGTTATCCCTGATTCTATGTAAAGATT
GTGTAAAGAATCAAAAAAGCCACCTTGAAAAATGGCTGCCCTAAAAATAG
```

ORF Predictions:

ORF #	Start	End	Direction	Length
1	68	247	R	60 aa
2	644	1528	R	295 aa

> 3864474-1 ORF translation from 68-247, direction R

VFMVYNCPKPVYSFLKSAINLMAAIPSIVYGFGLQLLVPWIKTFLGNGMSCPQNQLRYY*

Description:

PROBABLE ABC TRANSPORTER PERMEASE PROTEIN (ORF72). --BACILLUS SUBTILIS. (BLAST)

> 3864474-2 ORF translation from 644-1528, direction R
VIIMKFKKMLTLAAIGLSGFLVACGNQSAASKQSAPGTIEVISRENGSGTRGAFTEITG
ILKKDGDKKIDYTAKTAQVNSTEGVLSAVQGNANAIGYISLGSLSKSVKALEIDGVKAS
RDTVLDGEYPLQRPFNIVWSSNLSKLGQDFISFIHSKQGQQVTDNKFIEAKTETTEYTS
QHLSGKLSVVGSTS VSSLMEKLA EAYKKENPEVTIDITSNGSSAGITAVKEKTADIGMVS
RELTPEEGKSLTHDAIALDGIAVVVNNDNKASQVSMAELADVFSGKLTWDKIK*

Description:

probable hemolysin precursor - Streptococcus agalactiae (strain 74-360)

Assembly ID: 3864510

Assembly Length: 1702bp

> 3864510 Strep Assembly -- Assembly id#3864510
CTTTTTTATTCACAACAAGTCATAACGTGCTTACTGGTGAAGGTTGACCAGCTTA
AGAATGACTTGGCTTAAGGTCACTGTGAATGGCATCTGGTAAAGCTTGCCTCAAGA
GCAATCCCATTGTGCTGTAGCATTGGCTGACCTCTATGATGACACTTCATCCACAAAG
TTTGCTGTGTAGACCACAAAGCAAGGAGCTCTGTCTTAAAAGCAGGAAGCGACCTGAA
TTTGGTCATAAAGGAATCCAGCATTGTATGGCCTGCAGGAAGGGCAAATGGATGATCC
AACCTGATGCCAGCTGGATTGCTCATCTCTCTGCAAAGATATCCTCAACAAGGCA
CCATTGTAGATGTGTTGACCACATCACGGTGGCTCTGGAGTTGGCAGGAACACCG
TCAGGAGCGATTGAGTAAATGCCCTGTGTTAGTTGAAGACATGACGGTCAATCGTC
TGCCTGAAATCACCAGACAAGTTGAAATAGCTGTGGTTGGATTGACCAGCGTATCC
TGATCGGTGTTACCTGTAGATCGAATTGAGTGGAGGACCAAGTTCTCCAAGTGTAA
CTGATGCCAAATCTTGAGATTCCAGGGAACCCCTCTGTCCATCTGTACGCTCTGTG
AGAGAGTCAGCCATGATCGTTACTTCTCAACTTCAAACAAGCTGGAATCCAAACCAG
TTGAACCACGTGATTACAGTTGCTAGCATTATTAACCTCAAGGTCAAGGTCTTACCAT
TGAGCTCAAAGGTCGCACCTGCAATACGACCCGCTACAGGACCTACACTGCTCCATGCT
TGGGACTATTGCCTACATAACTATCAAAGTCATCAAATCCCAAGATAACATTGGAAAAT
TTCCAGCCTGTCAGGTGCGACATAGCGCAAGATAGTCGCACCAAGTCAACACCTCAA
GTTGGTAGCCACCGTCTGCTCAAATCGATAGGCCAAGACATCCTCACCCCTAACATTTC
CAAATACAGCTGTGTATGCTTCAATTCTGTTCTCTTACTATTCTCTCAAGCAA
ACAAACCATAGAAAGCTACTGACAATCTATGGTTATCTGATAATTACAACCTCTT
GTCAAGAATTCAAAACACTGTCTTACTTTGATATTGTAAATTGACACCTTGACT
ACACGGTTACTGTACCTGTAGGAGACGGTGTATCTGGTTATTCTACCTGAGTGAA
GTCAATAGGGCAAAGAGTTGGCATAAACGATGTAAGGAAAGACACGGTAAATATCATTC

AAGACACGCCACAACCAAGGGCCACTTCTTGACATTTCAAGACCAAAAGCTTGATCA
 CTCAAAAGCACACACGAGCAATCTGGCACCAGCAACTTCACGAACCAAGTCCAAG
 TCGTACTTACGAGTGTAGTCCGTCGTTGTACCAAAGACCAAAACAACGTATTGTCGTTG
 ATAAGAGATTTGGACCGTGACGGAAGCCAACGGCTTCATACATGGTCGAACTTGA
 CCAGCAGTTAATTCCAAAATCTTGAGCTGAGCTTCATGAGCAAGTCCAAGAAAGGACCA
 GCGCCTAGAATAGATGACACGGTAAAGTCTAAATCAACGAGATCTTGACATCTCTGC
 CTTGTCTAAAACCTTACGGGCA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1164	1640	R	159 aa

> 3864510-3 ORF translation from 1164-1640, direction R
 VSSILGAGPFFGLAHEAQLKILELTAGQVATMYESPVGFRHGPKSLINDNTVVLVFGETT
 DYTRKYDLDLVREVAGDQIARRVVLSDQAFGLENVKEVALGCGGVNLNDIYRVFPYIVYA
 QLFALLTSLKVENKPDTSPPTGTVNRVVQGVIIHEYQK*

Description:

AGAS PROTEIN. - ESCHERICHIA COLI. (Probable tagatose-6-phosphate ketose/aldose isomerase)

Assembly ID: 3864526

Assembly Length: 1940bp

> 3864526 Strep Assembly -- Assembly id#3864526
 TGCAGGATTGATTGGACGACTTTATTATTACAGATTGCCCTAGGAATAGAAAAAG
 AGCCCAAGAGTGGACTATGATATCTTGCCTGCTATTAAATGACCACCCCTTACCTAAG
 CGAGGAAGTGATTGGATTCTCTGCATCGGAAAGTTAGTCGAGCTCAGATTCTGCCCT
 TGAAGAATACCAAAAGCCTCTGTATTCTAGACAGCGATAACACTTCCCTGGACATAC
 CTGTATTATCACGGATTTTACACTGCTATGAAACAGGGTTCGATTATTCCTCAGTCA
 AGGAATGGACCGTATCGGGATTCTAACAGGCCCTGAAGAAACAACAGACCAAGAAGAAAT
 CATTCAAGACAAGCGTCTAGAAAACCTCAAAACTACAGTCAAGCGAGGGAAATCTATCA
 TGATGAACCTGGCTTTCAAGGAAGATTACTGCCAGTCTGGCTATGACTTAATGAAGGA
 GGCCATTCAAGAGCTTGGGAGACCAACTTCCGCCAGCATTTTCCGAGCCAGCGATAGTT
 AGCTATCGGTGCCCTCCGTGCCCTCCAAGAAGCTGGAATCAGCCTGCCAGATCGCGTCAG
 CCTCATTCCCTTAACGACACTAGTCTGACCAAACAGGTCTATCCTCCCTCTAGTAT
 TACAGTTATACTGAAGAAATGGCCGAGCAGGTATGGATATTCTAACAGGAAGTCCT
 CCACGGTCGGAAAATCCCTAGCCTGACCATGCTGGAACCGAGACTGACATTAAGAGAAAG
 TACCCCTAAATCAAGAATAGGATAACATAAAAAACGAATAGAGTCTAAAACCTCTATTG
 TTTTTTATTGATTACAATCATAGACTTAATGGCTTACGTTACATCCATATCTTGAGG
 CTTGGTCGATATCTCCAGTTATAACTTGAAGTAAAGACGCGACCTGGATTGATATCAC
 CATCAAGGACGGCTTTAGTAAAATTGCTTACGTATGTTAGCAGAAGCTCCCCAC

CTGCTACAGAGATATTCGATAAATGCGAACCAAGAGCACGATTATTATAGTGTGGGA
 CTCCTACAAAGCCCATAGCCCTCATTATGAAGAACACCTAGCGCTGTTCTATAGCAG
 CCTCCGTACCAACACATTCAAGTGCTGCGTCTGCCTCCGCCAGGAGTTCACGCACCT
 TGGTAATTCTTCTTGACCACGTTCTGCAACAAACAGCTGCGCACCTGACTCCATAGCCA
 TCTTTGACGGTCTTCATGACGGCTCATAGGATAATTGTGATGCTCCACGCATCTTAG
 CCGCGATGACAGCACATTGACCAACAGCCCCATCACCATAACAACAAACCTGTCCCCTT
 TTTGAACATTGCAACACCGGCCGATGATAGCCTGTCGGCATGACATCTGCAAGAGTCA
 AAAGGGACTTGAGCATCCCTCTGTATAGTCAGAAGGTTGACCAGGGATTTAACCAAGCG
 CCCAGTTGCATAGTGGAAAGCGAATATATTCTGCCTGAAAATCACCCCCAAATTATTGC
 CAATATGATTGTCGCAAGAACCGTCAAATCCAGCAAGACAGGCATCACACTCACACATC
 CATGTGTAAAAGGGACAATCACAAATCACCTGGTTCACCGTCGTAATGGCTCCCCAG
 CTTCTCAACAATCCAATCGCTCGTCCACTTATTTGTGTCCAACTTCTGTTT
 CCNTGGATTACGGTACCTCCATAAATTGAACCAACACGACCGCACGAACCACAGAAT
 AATCACATCATCCGCTCTTATTATTGCGGACGTTCAATGCTAGCAAGTCCAACCTGACC
 TGCCTTGTATATACTGCTGATTCATTAAAATTTCTCCTTATAAAGTTAATT
 GAGATTAAACGATTAAAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	845	1660	R	272 aa

> 3864526-2 ORF translation from 845-1660, direction R
 VKPGDFVIVPFTHGCGECDACLAGFDGSCDNHIGNNLGGDFQAEYIRHYANWALVKIPG
 QPSDYTEGMLKSLTLADVMPTGYHAARVANVQKGDKVVIGDAVGQCAVIAAKMRGAS
 QIILMSRHEDRQKMAMESGATAVVAERGQEGITKVREILGGGADAALCVGTEAAIEQAL
 GVLHNNGRMGFVGVPHYNRNLGSTMQNISVAGGAASATTYDKQFLKAVLDGDINPGR
 VFTSSYKLEDIDQAYKDMDERKTIKSMIVIE*

Description:

ALCOHOL DEHYDROGENASE (EC 1.1.1.1). - ALCALIGENES EUTROPHUS.

Assembly ID: 3864548

Assembly Length: 2051bp

> 3864548 Strep Assembly -- Assembly id#3864548
 ATCGAATTTCTAGCCAGGCTACAGTTGGCAAGTAAGGTTCATCTCAGGCAGTC
 CTGGGTGAGTGCCTTATTAGCGGAGCTCTCAAGTGATTGTTGCCTGATTATCGTCC
 TTTCATGCTCTTATCTCTGCGTGTGGAAAGGCTTGCCTAAGTCAACTATTGACCC
 CATTCCAAGAAAATTGAAGGAACCTGTTGGACAAGTTCTATCAGATGTGAATCAACAGTT
 GTCCAACATGTTGAGGGCAAGTGACAGTGGCTATTATTGAGCAGTAATGTTATCAT
 CTTCTCAAGATTATTGGCTACGCTATGCGGTTACGCTGGGGTTACTGCTGGTATT
 AAATCTGGTCCCTTATCTGGTAGCTTCTAGCCATGCTCCTGCCCTAGTATTGGGTTT

GATTGCTGGTCCAGTCATGCTTTGAAAGTAGTGATTGTCTTATTGTAGAACAAACTAT
 TGAAGGCCGTTTGTCTCTCCATTGATTTGGGAAGTCAATTAAACATCCACCCTATTAA
 TGTTCTCTTGTAACTTCAGGATCTATGTTGGTATCTGGGAGTTTACTTGG
 TATTCCGGTTATGCCTCTGCTAAGGTTGTCAAGGCTATTCAGCCATTTCGAATGGTATAAGGT
 AGTCAGTGGTCTATATGAATTAGAGGGTGAGGAAGTCAAGAGTGAACAATAGTCAACAGA
 TGTTACAGGCTTGGAGGAGCAAGATTAACTAAGGCTGAGCATTATTCGCCAAAGCTT
 TAGAAAATGATTCAAGTGATCTCTGTATGAGTTGGCAACTTATCTGAAGGGATTGGTT
 TCTATCCTCAGGCCAAGGAAATTACCTGAAAATTGTAGAAGAATTCCAGAGGTTCATC
 TTAATCTAGCTGCAATGGCTAGCGAGGATGGTCAAATAGAAAAAGCCTTAACTATCTTG
 AGGAAATCCAAGCTGACAGTGACTGGTATGTCTCGCTTGGCTCTGAAGGCAGACCTA
 TACCAAGCTGGAAGGTTGACAGATGTGGCACGTGAGAAATTATTGGAGGCCTTGACCTAC
 TCAAAGGATTCTCTCTTGATATTGGGTTGGCAAAGTGGATAGTGAGTTGGAAAATTAC
 CAAGCGCTATTCAAGCCTATGCCAGTTAGATAATCGCTCGATTATGAGCAAACGGC
 ATTTCACCTATCAACGAATTGGCTTGCCATTGCTCAGTTAGGAAATTGAAACGGCT
 ACTGAGTTTTAGAAAAGCCCTGGAGTTAGAATACGATGACTTAACAGCTTTGAGTTG
 GCCAGTCTTATTGATCAAGAAGAATATCAAAAGCCACCCTCTACTTTAAGCAGCTT
 GATACCATTCTCCTGACTTGAGGCTATGAGTATGGGTACAGTCAGGCTTACATAAG
 GAACATCAAGTCAAGAAGCCCTGCGTATCGCTAAGCAAGGATTAGAGAAAATCCCTT
 GAAACTCGCCTCTGCTAGCTGCTCACAATTCTTATGAATTGATGCTAGTGGT
 GCAGAAAATTATCTCCTACTGCAAAGAAGACGCTGAGGATACAGAAGAAATCTGCTT
 CGTTAGCCACTATTTATCTGGAGCAGGAGCGTTATGAGGATATTCTAGACTTGAGCT
 GAGGAGCCAGAAAATCTTGACCAAGTGGATGATTGCTCGTTATCAAGAAATGGAC
 GATTGGATACTGCTTATGAGCATTATCAAGAGTTGACAGGAGATTGAAGGACAATCCA
 GAATTCTGGAACACTATATCTATCTTGTGAATTGGACATTGAAAGAAGCAAA
 GTCCATGCTCACACTTACTTAAACTGGTCCAGATGATGTGCAAATGCAAGAACTGTT
 GAGAGATTGTAAGAATGTTAACATATAGAACTGTAGTTATCTCTTTGATAGCTACG
 GTCTTATTGATGGTAGAATCTTTACAAAATACTTGGTAATCTGTTATTCA
 TGCCATAATAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	687	1055	F	123 aa
2	979	1932	F	318 aa

> 3864548-2 ORF translation from 687-1055, direction F
 VRKSRVNNSQQLQALEEQDLTKAEHYFAKALENDSSDLLYELATYLEGIGFYPQAKEIY
 LKIVEEFPEVHLNLAAMASEDQIEKAFNYLEEIQADSDWYVSLFGSEGRPIPAGRFDRC
 GT*

Description:
 unknown

> 3864548-3 ORF translation from 979-1932, direction F
 VTGMSRSLALKADLYQLEG LTDVAREKLLEALTYSKDSL LILGLAKLDSELEN YQAAIQA
 YAQLDNRSIYEQTGISTYQRIGFAYAQLGFETATEFLEKALELEYDDLTAFELASLYFD
 QEEYQKATLYFKQLDTISPDFEGYEYGYSQALHKEHQVQEALRIAKQGLEKNPFETRLLL
 AASQFSYELHDASGAENYLLTAKEDAEDTEEILLRLATIYLEQERYEDILDQSEEPENL
 LTKWMIARSYQEMDDLDTAYEHYQELTGDLKDNP EFLEHYIYLLRELGHFEEAKVHAHTY
 LKLVPDDVQMQUEFLR*

Description:

unknown

Assembly ID: 3864582

Assembly Length: 1318bp

> 3864582 Strep Assembly -- Assembly id#3864582
 CTTTAGCAATCAGTTATTGGGAGATTGACTGCCACTCTGTTGGAACCTTGATAATCT
 TTTTACCCCTCAAAGCGTTCCATACCAGAAATCTAACATCAACTGCTAAAATAACTACAT
 CCGCTGCATCAATCTGCTCTGACTCAATTCAATTCTACCCCTATTGTCCCCTGAGTCT
 CAACATGAATCACATGTCCAGCTACCTTGGCATTCTCTAATTTCCTGTGCAATAT
 AAGTGTGGCAATTCCCATAGTACAAGCTGCAACACCAACAATTTCATACGGATAACCC
 CCAAAATTCTTCTTATTAAACAAAAGCTGCAATCACATCATCAGATGTCTGAGCCGAA
 CTAATTGGCAACAACCTCGTCATTACCAAGTTTCGAGCAAAGAGTGATAAGGTCTTC
 AATGCTCCCTAGCAGCTCTGTATCATCACCAACTGCAAAGAGTACAATTACTTTGACCC
 CTTTCCCCTCAATGGTCTCCAAGGAATCTCATTGTGATTATAGCTATGACTACCCCCG
 CCTTCTCCACAGCAGAACTCTAGCTATGGGAATAGCAATATAATTCCAATACCGGTCT
 GTCCTCTGCCTCTCTGATAAAAGACCTTCGATAAAATTGGTCTCTATCAGACACATAAC
 CCGTCTCAACCAATAGTATGAGCTAATGCCTCAAAACCTCTTGTCTGCATCTGT
 AAATCCGTCTGGATCAGACTCACATTAAGAATATCTTGATTTCCATATATTATCTCCG
 TAATTCTCTTGTAACTGTTAATTGATTATGAATGATTCTGCTAGTCTTCT
 CATCAATGTTTAATACATGACTTGTCTGTGATACTGCAATGCCAACCGATAATAAG
 GTCAACACACTGGATATCCTCGACCATTCTCTGATAGGTGGTTAATCTAGTAATCAC
 TAAGACATGATGTTGAAAGTTCTCACAATGTGGTAGAAGAACACCTTAGCAACCTC
 TATACCTCCCTGTCTCTACGTAATATAGAAGCTCTTCTATTCTGTATCTCAGA
 AACAAAGAAGGCTGATTGATTGCTAATTCTTGTAGGCTTGTGACGATTTGAACAGA
 TATATCCATAAGGACAAGCAGAAAGATTATTGATAGTTATCTCCTGAATTTGCTTGAA
 GACGTTGTTATCACCCTCGGTTAGAAAAGCACTAACTAGGACAAACGGGACACTTGCTG
 GTTCCCTGCAAAGCTACCGTCGTACAATGAAATCTGGATATAGATTTATCAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	317	550	R	78 aa

> 3864582-1 ORF translation from 317-550, direction R
VEKAGVVIAINHNEIPWETIDGKGVKIVLFAVGDDTEAAREHLKTLSLFARKLGNDENV
AKLVRAQTSDDVIAAFC*

Description:

Probable phosphotransferase enzyme IIa component

Assembly ID: 3864604

Assembly Length: 2077bp

> 3864604 Strep Assembly -- Assembly id#3864604
CTAGTCTGGCTACTGTCTAACGTTGGCTTGCAATTGCATAAGCCTGCCAGATTTTTGTTGGGG
TTTGGCAAGTGGTAATTCTGAATTCTCTGGTAAAGCCAACGAACCTCCCTATCTGA
AAAATCATGGAAAGTCACTCACCTGACCTGCTACAATCTGTACATGCCATTTCGATGACT
AAAAACATGCTGGACTGTATCAAACAAACATCAAGCCAATCAACATCTAGGTCATAGTC
CTGCTGGAAACTCTCTGGACTGGGCCAGAGTTCACACTTTCTCCGCAACCTGAT
GAAAGAGGTCAAACGCTCTTGCGAAAAGTTCAACTTCTATAAAGGGAAATGCC
AAAAACCTGCCAAGAGCTTTGCTTCATTTCAGTAAAGTAAATGTCCTTGAGAAT
TTTCACAACTAAGGTTAACGATAAAATAGGAACCGGTTTCTTAGGAGATTAAATTG
GATAACGGTCCATGGTCCATTCTGATATGCCGCACTAAAGTCCTGACTGGCTTCTT
CAGGTCTGGATTTCAGGAGACTCAATATCAGACCCCTAACGCTTCAAGGCTTGATTAA
AATCACCCGGACGATCTGGATTAATCAAGATCTCCATATTGCCATTGCTGAAAAATTTCGAT
TACTTGGAAATCCAATATCGTGGTGACTTCAAACAGACGCCAAGACCCGATGACAT
TACCATCTACAGCTGGCTCAGGCAAGTTAAAGCAATACTGGAAATGGCTCCTGCTGT
AAGGTCCAATCCCTTCAAGCTGGAAATTCTCATAGGTATTGGAAATTGCCACCAA
AGTCAGTCATAATCTGCTGGCTGCAGCCTGCATATTGCGAACTCGAGAATAATAACCCA
AGCCCTCCCAGCTTCAGTAAACTCTCCTCAGGCGCAGTTGCCAGACTTCGACAGTTG
GAAACCAGTCCAAAATCTTCGTAGTAAGGGATAACTGTATCCACCCCTGGCTGCTGAA
GCATGATTCAGATACCCAGATGTGATAAGGATTTACTTCTCCTCCAAGGCAAATCTC
TTTGTGTTTCATCATAACCAAGCGAGAAGTTCTCACCGGAAAGAAATGACTTCTCCTC
CGGCCACATGACGATACCGTATTCTTCAAATCCTAACATATCTCTAGTTATAACACAGA
AGGTTCACCTGCTTGTATCTGATTATAATATTCTAACATAGATAGTATATAACTTT
CCTATCTACTTAACTCCAATGAAAATCCAAAGAGCAAACTAAGAAGCTAGCCGAGGTT
GCTCAAAACACTGTTTGAGGTTGGATAGAACTGACAGAGTCAGTATCATATTACCTA
CGGCAAGGTGAAGCTGACGTAGTTGAAAAGATTTCGAAGAGTATAAATCTTATTGATG
AACTGCTGAGCTGAGAAAAATGAGCTGGATATTATTCCAACACTCACTAAAGTC
AATTCTAACATCCACTAGAACAAAGCCTAGTACAGTCCATCGCTTCAACATCCATGTGAG
AGCTGCTGGACGTTTGGAAAGACCTGGCATGGTCATAACATCACCAGTTAAGGCAAACGAT
GAAGCCTGCACCTAACATTGGTACCAATTCACTAACGAAATTCAAAGTTCTGGTGC
TCCAAGCGCATTGGATTGTCTGAGAAACTGTATTGAGTTAGCCATACAAATTGGCAA
TTTGTCCCAACCCTTGAACGATTGAGCAATTGTGTTGAGCTTCTCAAAGTT
CACTTGCTACCACGATAGATTCACTGACAATTCTCAATCTTCTGGACAGAAAG
GTCATTATCGTACAAACGTTATAGTTAGCTGGATTTCAGCAATTGTCTAACACTGT

TTCGGCAAGTGCTACTCCACCTTCTGCTCCATCAGCCCAGACACTAGCCAATTCAACTGG
 TACATCGATTGAGGCACAGAGTTCTTAAGGCTGCAATTTCAGCTTCTGTATCAGATAAC
 AAATTCTTAATAGATAACAAGCTAATGGAATACCGAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1	141	R	47 aa
2	1513	1803	R	97 aa

> 3864604-1 ORF translation from 1-141, direction R
 VSDFHDFSDREVRLSPEEFKNYPLAKPQQKIQAYAQANLDSSQD*

Description:

unknown

> 3864604-3 ORF translation from 1513-1803, direction R
 VNFEKKAAQTQIAQIVQNGWDKLPLICMAKTQYSFSNDNPNALGAPENFEITIRELVPKLGAG
 FIVALTDVMTMPGLPKRPAALNMDVESDGTVLGLF*

Description:

FORMATE--TETRAHYDROFOLATE LIGASE (EC 6.3.4.3)
 (FORMYLtetrahydrofolate synthetas E) (FHS) (FTHFS). -
 CLOSTRIDIUM ACIDI-URICI.

Assembly ID: 3864610

Assembly Length: 1887bp

> 3864610 Strep Assembly -- Assembly id#3864610
 CTCAAAACNCTGCTTGAAAGAGATTTCAAAGAGTACAAGAAGTTAGTTATTAGCGTTC
 TTACCGCTTGTAAACTAGATTTCTCATAAAATAGAATCTTCTTCTTGTAAACTA
 GTCTGGGAGAGTAGAGAGGTTGAGATACCTTCTAGCTTCTGATTATCATCTAAGAAG
 AGTAATTTCCCTGCATTAAGGGAAAAAGAGACACGAAATGACTATAATGGGTGAC
 AATGGGGAAGGGATAGACAAGAGATTTATCCACATATGAAAAAAGGAGGTTAGGAAAG
 AGTTATATATCTATATTATATAATCAATTGCCAGAAATTGGTAAGAATTCTATG
 CGTCAACTCATAAAGAACTACTTAAAGTCACAGTATTCTATAATTATTCGAGGAGA
 AAAACAGTGAAGGGAAAGCTTGTCTGTCTTATCGCTTTGGCTGACGGCT
 TGTTTAGCTGGCTGTCTGGATTGATCGTGGAGAATCCATAACGGCTGTTGGCTCA
 ACTGCCTTGCAACCCTGGTTGAAGTAGCAGCAGATGAATTGGCACCATCCATGTTGGA
 AAAACGGTCAATGTCCAAGGGGAAGTTCTGGTACAGGCTGTCCCAGGTTCACTGGG
 GCAGTTGATATAGGAAACTCAGATGTATTGCTGAGGAAAAAGACGGAATTGATGTTCT
 GCTCTTGTGACCACAAGGTCGCGGTAGCTGGCTGCTGATTGTCAATAAGGAGGTT
 GATGTTGATAACCTAACGACAGAGCAACTTCGTCAAATCTTCATAGGTGAGGTAACCAAT

TGGAAAGAGGTTGGTGGTAAGGACTTACCCATCTGTTATCAATCGGGCAGCCGGCTCT
 GGCTCTCGTGCTACCTTGATACTGTCATTATGGAAGGTCAAGTCTGCCATGCAAAGTCAG
 GAGCAGGATTCAAATGGAGCGGAAAATCAATCGTATCAAAAGTCCAGGAGCTATCTCT
 TATTTATCTCTTACCTATATAGATGATTGGTCAAAAGCATGAAGTTGAATGGCTATGAC
 TTAAGTCCAGAAAATATAAGTAGCAATAATTGGCCCTGTGGCTTATGAGCATATGTAT
 ACATTGGGGCAGCCCAATGAGTTGGCTGCAGAATTCTCAATTGGTCTCTCGGATGAG
 ACCCAAGAAGGGATTGTCAAAGGATTGAAGTATATTCCGATTAAGGAAATGAAGGTTGAA
 AAAGATGCTGCCGGAAGTGTGACAGTGTGGAAGGGAGACAATAATGAATCAAGAAGAAT
 TAGCTAAGAAAATGTTGCTTCCATCAAAGAATTCTCGTCTGGAGAAATTAGGAAAAGGTT
 TGACCTTGCGCTGTCTTCTTGATAGTCATCCTGTGGCCATGATTTGGTTTCGTAG
 CGCAAAAAGGCTTGTGACCTTCTTGTCAATGGTGTGAATATCTTGACTTCTTGG
 GAGGAACCTTGGAAATCCTCTAGTAAAGAATTGGTGCCTCCATGATTTGGGTTCC
 TTATCGTTACCATTCTCTCAGCCCTATCGAACACCCCTTGCTATTGGTGCAGCAGTT
 TTATGACCGAAGTATCACCAAAAGGGCGAAGATTTGCAACCAGCTATTGAACCTCTGG
 TTGGGATTCCCTCAGTAGTGTACGGATTATTGGCTTGCAAGTCGTCCTCCCTTGTTC
 GCAGTGTCTTGGGGACTGGTTGGGATTTGTCAGGGATTCCGTCCCTTTGTCA
 TGATTGGCCGACCGTAACCTTATGACAACGGATAGCTGCGTGCAGGTTCCCTCCNTTAT
 TATCGTAAGCCAGTTCGCTATGGGA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	427	1305	F	293 aa

> 3864610-1 ORF translation from 427-1305, direction F
 VKKRKKLALSILIAFWLTACLVGCASWIDRGESITAVGSTALQPLVEVAADFGTIHVGKT
 VNVQGGSSGTGLSQVQSGAVDIGNSDVFAEEKDGIDASALVDHKVAVAGLALIVNKEVDV
 DNLTTEQLRQIFIGEVTNWKEVGGKDLPISVINRAAGSGSRATFDVTIMEQSAMQSSEQ
 DSNGAVKSIVSKSPGAISYLSLTYIDDSVKSMKLNGYDLSPENISSNNWPLWSYEHMYTL
 GQPNELAAEFLNFVLSDETQEGIVKGLKYIPIKEMKVEKDAAGTVTVLEGRQ*

Description:

PROBABLE ABC TRANSPORTER BINDING PROTEIN PRECURSOR (ORF108). -
 BACILLUS SUBTILIS. (BLAST)

Assembly ID: 3864716
 Assembly Length: 405bp

> 3864716 Strep Assembly -- Assembly id#3864716
 CTGAGGAATCAAAGTTGAACCACCAAGTAGAACAGCATAAGTCCCAGAACAAACCGTGC
 AACCTACACAAGCTGAGCAACCAAGTACACCAAAAGAACATCACACAACAAGAAAATCCTA
 AAGAAGATAGGGAGCGGAAGAGACTCCGAAACAAGAAGATGAACAGCCAGCAGAACGCC
 AAGAAATCAAGGTTGAAGAACCAAGTAGAACATAGAGGAGACTGTCATTCAACCTGTTG

AACAACCAAAAGTGGAAACGCCCTGCTTTAATAACTAACGGAACCTACAGAGGAACCTA
 AAGTTGAAGTAACTAGTATTCCCCTCACTACTCGCTATGAGGAAGACCTACTTACGAAC
 ACGGAACCGCGTTGAAGTTAGGAAGGTTATAATTGGCAGTAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	57	272	F	72 aa

> 3864716-1 ORF translation from 57-272, direction F
 VQPTQAEQPSTPKESSQQENPKEDRGAEETPKQEDEQPAEAQEIKVEEPVESIEETVIQP
 VEQPKVETPAV*

Description:

unknown

Assembly ID: 3864718
 Assembly Length: 1542bp

> 3864718 Strep Assembly -- Assembly id#3864718
 CTATGGGATTGGTAGTTCTCCTAGTGCAGGGCTGTAGACCCAGTTGCGACCCTAGCGC
 TGGACTAGTCGAGAGGGTGTGAAAATGGATGGCTATCGCTATGTTGGTTATCTATC
 AGGTGACATCCTCAAAACGCTTGGCTGGACACTGTTTAGAAGAAACCTCAGCAAAACC
 TGGAGAGGTGACTGTAGTCGAAGTTGAGACTCCTCAATCAACAAACAAATCAGGAGCAAGC
 TAGGACAGAAACCAAGTAGTAGAGACAGAGGAAGCTCCAAAAGAAGAAGCACCTAAAC
 AGAAGAAAGTCCAAGGAAGAACCAAATCGGAGGTAAACCTACTGACCGACACCCCTCC
 TAAAGTAGAAGAGGGAAAGAAGATTCAAGCAGAACCATCTCCAGTTGAAGAAGTAGGTGG
 AGAAGTTGAGTCAAACCAAGAGGAAAAGTAGCAGTTAAGCCAGAAAGTCAACCATCAGA
 CAAACCAAGCTGAGGAATCAAAGTTGAACCACCAAGTAGAACACAAGCAAAAGTCCCAGAAC
 ACCCGTGCAACCTACACAAGCTGAGCAACCAAGTACACCAAAAGAACATCACAAACAAGA
 AAATCCTAAAGAACGATAGGGAGCGGAAGAGACACCGAACAAAGAACGACAGCCAGC
 AGAACGCCAAGAACATCAAGGTTGAAGAACCAAGTAGAACATCAAAGAGGGAGACTGTTAATCA
 ACCTGTTGAACAACCAAAGTGGAAACGCCCTGCTGTAGAAAACAAACGGAACCAACAGA
 GGAACCAAAGTTGAAGTAACAAGTATTCCCCAAACTACTCGCTATGAGGAAGACCTTAC
 TAAGGAACACGGAACCGCTGAAGTTAGGAAGGTAGAACATGGCAGTAGAACAGTTAC
 TACTCCATATATCTGAATGCGACAGATGGTACGACTACAGAAGGCACCTCGACAACTGA
 TGAAGCTGAGATGGAGAAAGAGGTGTTCGTGGCACGAAACCCAAAGAAAAATTAGC
 TCCAGCTTAAGTTGACAAGTGTACAGATAATGCAATGTTGCGTAGTGCAGACTTAC
 TTATCATTTGGAAAATACAGATAGTAGTGTGATGTGAAAAAAATTCTGCTGAAATTAAAAA
 TGGCGATAAGGTGTCAAAACTATTGACTTATCTAAAGAGAGATTATCAGATGCTGTTGA
 CGGTCTGAACTTATAAAGATTATAAGATTGTGACGAGTATGACCTATGATAGAGGTAA
 TGGTGAAGAACCTCTACGTTGGAAGAAACTCCACTACGATTAGACCTCAAGAACGTTGA
 ATTGAAAAACATCGGCTACTAATCTCGTCAAAGTAAATGAGGATGGTACTGAGGTGGC

AAGTGACTTCTTAACAAGTAAACCTGTGGATGTGCAGAATTACTACCTCAAAGTAACTTC
 CCGTGATAATAAAGTTGTTCCCTCCCAGTTGAAAAAATTGAAGAGGTGACTGAGGAAG
 GTCCACCACTTACAAAGTCCCTGCTAAGGCCCTAATTGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	77	1474	F	466 aa

> 3864718-1 ORF translation from 77-1474, direction F
 VLLKMDGYRYVGYLSGIDLKTLGLDTVLEETSAKPGEVTVEVETPQSTTNQEQRARTENQ
 VVETEEAPKEEAPKTEESPKKEEPKSEVKPTDDTLPKVEEGKEDSAEPSPVEVGGEVESK
 PEEKVAVKPESQPSDKPAEESKVEPPVEQAKVPEQPVQPTQAEQPSTPKESSQQENPKED
 RGAEETPKQEDEQPAAQEIKVEEPVESKEETVNQPVEQPKVETPAVEKQTEPTEEPKVE
 VTSIPQTTRYEEDLTKEHGTREVVKEGKNGSRTVTTPYILNATDGTTTEGTSTTDEAEME
 KEVVRVGTKPKEKLAPVLSLTSVTDNAMLRSLRSLTYHLENTSDVDVKKIHAEIKNGDKVV
 KTIDLSKERLSDAVDGLELYKDYKIVTSMTYDRGNGETSTLEETPLRLDLKKVELKNIG
 STNLVKVNEDGTEVASDFLTSKPVDVQNYYLKVTSRDNKVVSPPS*

Description:

unknown

Assembly ID: 3864802
 Assembly Length: 1321bp

> 3864802 Strep Assembly -- Assembly id#3864802
 ATCGAATTACTCAACTCCAACCTTACTCTCAATAAAAATCAAATGAAAAAGAGGAGCT
 AAATTATCTTTCTCCTCCTCATCGTTCTACTTTGACCATAATAAGCATTGGTC
 CATGTTACGTTGGTAGTGTCTAGTATGACTGGGGAGCAGGTTCAACTCTGGAT
 TGATTGTTCTGTAAAGCGATTCATCTTGATACTCCTCTAGTACGACAGAGTGTAAA
 CAGCATTCTCTGGATTTGCCAGGTGAATGGACCGTGATTGCGTACAACAATTCTG
 GTACTTCAACGGGTTAAGTCGCGATGTTCAAACACTCTTCTACGATAACCAGGCCAGTAT
 CTTTTCATAGGCCACTCTACTTCGTCTGGTCAAACACTACGGCGCAAGGGATTGAAC
 CGTAGAAATAATCTGCATGGTTGTTCCGTAGAAAGGAATATCACGACCTGCCTGAGCCC
 AAGCAACAGCTCTGTCGAATGGGTGTGAACCACACTACCAATTCTGACCAAGCCTTAT
 ATAATTGCACATGAGTTGGGAAGTCGGAAGATGGCTTAAATCCCCTTATAGGATCTTAC
 CATCTAGATCAGTCACTACCATGTTTCAGGTGTCAATTGTCATAATCCACGCCTGATG
 GTTTGATAACAATGACACCGAGTTCGCGATTGACTTCAGATAACATTCCCCAGGTAAATT
 TGACAAGTCCATGTTGGCAATGATTGATTGGCATCACAGACTCGTTACGCATAGCAT
 TGATTACTGATTCATCTTACATCAAACCTGCTTCTTAATGAGTGGATAGAGAAAAGCT
 TCGATTAGGAAAGGTCCATTATAATTGGTTCCCTTAAAATATCGAAAGCTTCTTCCCAT
 TTGACACAAACCTTGCCTTAAAGGTACATCTCGGAACTGGCCCTTGAACATTCTGTCACT

GCATAAGTATCCTTGAGATGGAGAGTTGCGATGCCATGATGACCAAGATAAAACTCACTA
 TAGATATCATTATGCCATGCAGACACATTACCAATATCTGGATATACAAAGAGGAAGGGA
 GAGTCAACTCTCTTTCTATAGCCAAATATTTCGATGCTATTGATGAAAGGATCATCC
 ATAATTCAATAGCAAGTACCACTGAGCTCTCAGCCCAGTCACAGGCTTTCTCAA
 TTTTGATAAAACGTTGGCGTGTCTGGGTGACTTTCTCATAGTAAACATCGTAACCA
 G

ORF Predictions:

ORF #	Start	End	Direction	Length
1	92	550	R	153 aa

> 3864802-1 ORF translation from 92-550, direction R
 VQLYKAWSEIGSVVHTHSTEAVAWAQAGRDIPIFYGTTHADYFYGSIPCARSLTKDEVEVA
 YEKDTGLVIVEEFEHRGLNPVEVPGIVVRNHGPFTWGKNPENAVYHSVVLEEVSKMNRT
 EQINPRVEPAPQYILEKHYQRKHGPNAYYGQK*

Description:

L-RIBULOSE-5-PHOSPHATE 4-EPIMERASE (EC 5.1.3.4). - ESCHERICHIA COLI.

Assembly ID: 3864854

Assembly Length: 1265bp

> 3864854 Strep Assembly -- Assembly id#3864854
 TTTTCTGTTTCGGAGCAAACCTGGCTCCAGCCGGTTTGGCCTCTTCCTTAGCTA
 CAGCTGGTTAGCTGGCTCAGATTTGGCTTCTGCACTTACTTTGGTGTG
 CAGGTTTGCTCTACTTCGGAGCAGCTGCAGGCTAAAGCTGGCAGCAATTTCAG
 CGACAGCTTCTCCACACTTGATGAGTGGCTTTCACATCCAAGCCAACTTTGCAC
 GCGCTACAACCTCTTACTTCTTCCAAGTTCTTGCGATTCTGTACAATCTTCT
 TAGACAAATCATGTCCTCTCTTCTATTCCATAAGAGACCTATTCTTGTAAATCCA
 GCATCTGTTACAGCAAACCTTCGATTTCCGACTGCTATGATTAATTCCAGTGT
 GAAAACACGGTTACAATTCTACTTGATAATAATGACTTTATCTGAATCTTCTGGTC
 AGATTGGGTCCAGCATCATGAGCTAGAAAGACCAACTGGCCTGCCGTCTGAATGGCC
 TTGACCACCAATTCTCACCCGATATGATGCCCTGCTCGCTGAGCAAGCCCCAAGAGA
 TTACTTATCTTGTATTCAAGTCCAACTCTCTTCTTCACTTGATCCACATA
 AGCGATCAACTCGTCATAAAAGCTTCTTCCACTTCATGCTAAAGCTGCCGTAAAGAC
 CTTCTCTTTCGCTCTAGGGCTCTGCATTGTCTAGTTGATATAAGGCCCGGCC
 ATTGGCCTTGCCCGTAGGATCAATAAAAGACTTGTCTCCTTGTCTTGACAATGCCAG
 CAAATCACGCTTATCAATCACTTCGTTAGACACAACAGACTTGCGCAAAGGGATTTCT
 TGTTTCATCTTCCCTCTAGCAGCTTTATTCTACAGTATCGTTCTACTTC
 CAACTCTACTGAAGCAGCGTCTCCATGGCTTCAAATCGTAGCAGACTTGATATCGAT
 ACGGTAACCAGTCAAGTGAGCCGCAAGCGCACGTTTGTCCACGACGACCAATGGCAAG

AGAAAGCTTGTATCTGGAACAACCACCAAGGCACGTTGCTGTCGTTCATCAAAGAT
 AACTTGTCACCTCAGCAGGAGCGATGGCATTGTAGATAAATTAGCTGGATCTGCTAC
 CCACTCGATAACATCGATATTCCTCGATTGGTACCATGCGTCATTTAGCATCGTA
 ACGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	324	548	R	75 aa

> 3864854-1 ORF translation from 324-548, direction R
 VVKAIQDGKAKLVFLAHDAGPNLTKIQDKSHYYQVEIVTVFSTLELIIAVGKSRKVLAV
 TDAGFTKKMRSLME*

Description:

PROBABLE 11.1 KD RIBOSOMAL PROTEIN IN NUSA-INF B INTERGENIC REGION (ORF4). - BACILLUS SUBTILIS.

Assembly ID: 3864862

Assembly Length: 1305bp

> 3864862 Strep Assembly -- Assembly id#3864862
 ATAAACCAAAGGAAGCTGAGCTTTAGTCCAGCTTTATATATAAAATTACCG
 CGTAAAAAGACAGGGCCTAGCAGACTCTTTACTTCGTTACCCCTGCTTTCTT
 TGTATGTTGGCGTTGGCAGTTGGTATACATAGCTAAATCAGGTCTTATAGAACAT
 CTTATTATCAAGTTCTCCACTCAAATCATTCTTGGCACCTTGTATGGAAACTCAA
 AGAAGATTGGTCAATCTTATCTAAGACTGCTGCACGGTTAACAAAAGCGATCGTCA
 TAAATGCCGCCAATAATCTGCCGCCAGTAAAGAACATACTCCCCATCATGGAACGG
 TAAGTCACATCATCTAATCCTGATAATTGTTAAAACAAATTCAAATAGTTCTTACTT
 GATGCCATTCTAATCTTAGGCTCTGTTCAACGATAACAACCGTATAGAGTTCTGCT
 TAACCTCGCATCCAATTGATTAAAGCCCTGTTCCAAAATGCTGAGATTGCGGAT
 TTCCCTTAACATAAGCCAAACGTGCCCTTCGAAAGTTCTAGAAAATAAGCTAGTGCTT
 CTGTCACAATATGACTACCAATCCCTTCCTGATAGGCTTGATCAACCATAAACAAAC
 CAATAAAACAGTCTCCTCATCAGGATATGCATAGACAAAATCCATAACAGCCACAAGGT
 CAAATCCATTCCAAAATCCAACAAAAACTTATCAGCCTTAGCTTACCTTCAGGTAGAC
 AAAGCATGTCCTTTACAGTTGCAAAATTGGCTCTGGACAATGCTGAAAATACA
 GAGGATTACTTCATATAAGATAAAACTTGGAAATACCTTTCACTGTTAGTACTCTAC
 AACTGTAATACTTAGATAGTTGGTCAATCATTTCAAATTGATACCTTCTTGCCC
 TGTGATTATGACACAGGAAGATGCACTGATCGTCATGCCACATAAAAGTTCTTCCAT
 CGTGCCTAATCGTTCTCAAACCTTGGATAAAACCTTACGCTATACAACGGATT
 CCTCTCTCAAAAGTATATTCTTGCAGGCGAACCTCCTCAAAATCAGTCGTGCAACT
 TCAGTAGAATATTGAGGCTCGGATAATCTGAGCGACAACAGGATGGCGAACACATCC
 TTGGCTGAAAATGAACAAAGTCAATCTGATGGATGTTGAGTTCTTGAGCATCA

ATCAAACCGGACTTGACATTACGTGGCAGGTCAATCTGACTAATA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	431	1003	R	191 aa

> 3864862-1 ORF translation from 431-1003, direction R
 VADDDQCIFLCHNHRAQESIEFEKMDQLSKYYSCRILTEKDIPSILSLYESNPLYFQHC
 PPEPNFATVKEDMLCLPEGKAKADKFFVGFWNGFDLVAVMDFVYAYPDEETVFIGLFMVD
 QAYQRKGIGSHIVTEALAYFAKNFRKARLAYVKGNPQSQHFWEKQGFKSIGCEVKQELYT
 VVIVEQSLED*

Description:

unknown

Assembly ID: 3864888

Assembly Length: 1742bp

> 3864888 Strep Assembly -- Assembly id#3864888
 CTAATCTCCTAAACGTGATCTTTCAAGAATATTTTATCTAAACAATCCAGCAAGTC
 TTGGTAAGAATAGACTTCGTAAGTCGGCTGGGCTTGTGTGATTTCGAGGTGATGAGG
 ATTATACCAGATAGTGTCAATCCCCGATTATTGCCACCTGAATGTCGGCGTTAGAGA
 ATCTCCAATCATCAGCGTCTTCTTACTAAATCCAGCAATTGCTGCCAATCTTTC
 ATAAAAAAAGAGCATCCGGCTTTGAGTTGCAACTGTTCTGAGATAAAGACTTGATTGAA
 ATAAGGTGCTAGACCAGATTGAGCCAACGTCCCTGCTGAATGGCAGTAATGCCATTG
 CGCAGCATAACAAGTTATAATCACGCTCAATGAGGCTGTCAGAGAGATCATGAGCGCCGA
 TAGTGTGCTGCCTGCTGGCGAGGTAAAATTGTAACGCTGGCAAGAAAACCTACCGTC
 TTTTCTGTCCAAATGAGCAAATAAACGAGAAAAGCGCGTGTAAACCAGCTTGT
 ACTGATTTCTTCAGCTCCAAGTCTTCCAGAGAGCCTGTTCATAGGAACGTAATAATC
 TTTATAAGCCGGAATATCCGCAACTCCTCTTTAGAAGTGGAGTCAAAGCCACATC
 CTCAGCAGCATAAAATCAAGAAGAGTGTGGCGAGGTGAAGAGTACAAATTGAGAA
 CAATTGAGGTTTCTGAAAATTCTGAAATTCAAGAACATTATATCATAAAGCACCTCAT
 ACAATTAACTAATTAACTCACTAAAAAAATTGAAACACTTTCTATACAAACTGACAGCT
 CAAATCTTCAGAATAGAACAAACTAACTATCGAACACCCCGTCTCATAAATACATAT
 GTAATTCTAGGCCTAGAATTCTATAAACTAAATGCTTCTACTCTTCCAAGTAATTGA
 TTGCTTAAATTAAATTGAAAGGTTCTAAAGCTAGAATAGCCCACATCACAACTCAGT
 TTTGATTGATTACAATTAGAAACACTATAGTTCACTCCTGTTAAAATAAAAGGAAC
 TGCATAAGCAATCCCTTCTGATTTGAAATCATTACTTAACATTATAGTTGAGAT
 AATCAATAGCTTATCTATAAAAAGAGTTAGTAAATTCTTATTTATTGATTCCAAGC
 TCCGCTAACTGTATTGAATAACTGACAGTTCTGCACCAGCCTGAAAAGAGCAGCTGCA
 TTATAGGCACCTCTACAATTGAAACCCTGTTGATGATGATACTTTTACTGAAATCA
 GTCACCATTAAAGTTCAATTAGCAGAACCTAGGTCAAAAAGGCAAGTAAAGTATCT

GCTGGATTTCGGAAACAACCTATCTACTTGATCAAAACTCGTCCAATTCCCTCCGCC
 TCGGTCCCTCCTACATAAGTAATCGGAACATCTTAGCTACTTACTAATCAGTTCAACA
 ACACCTTCTGCAATGTGTTGGAATGTGAAACGATAACAAGACCAATACCAATACTTCC
 ATCAAACCACTCCAGTTCTAAAATAGCAGTAAAGAGTAATCCTGATGAGAATGATCCAG
 GATCAATATGTCCAAGAACCATGCTCCTAAGACAAGAGCTAACAGACTGGCCATCAA
 TAATAGTATTGTTCTTTTTCATCATTACTCCTTAACTAGTGTAACTGATTAATTG
 AT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	10	657	R	216 aa

> 3864888-1 ORF translation from 10-657, direction R
 VALTPLLKKEGVADI PAYKDYYVPMNKALWKDLELKISKQELVNTRFSRLFAHFGQEKD
 GSFLAQRYQFYLAQQQQLSGAHDLDSLIERDYNLYAATNGITAIQTGRLAQSGLAPYF
 NQVFISEQLQTQKPDALFYEKIGQQIAGFSKEKLMIGDSLTDIQQGNNAQIDTIWYNP
 HHLENHTQAQPTYEVYSYQDLLDCLDKNILEKITF*

Description:

unknown

Assembly ID: 3864898
 Assembly Length: 1136bp

> 3864898 Strep Assembly -- Assembly id#3864898
 GTGGAATGCAGGGACGCCTTGTCTAATTGGATCAAGCCCTGAGTTGACACAGGGAAA
 TGAGCTGGACGGACTGCTATCTCTGAAGAAATTACTGGCACCAATTAGCCTATCAGCCTTG
 GATGATTATGTGGCGGCCCTGTCTAACAGGGATGTTCCAAAGCTTGTCTTGCTGAAT
 CTTCTTTGACAATGGTAAGAGCATGACTCGTTGTGACCGATCTTGCACTATTAA
 AGAGACTTGTAAATTGTTCAAACAGGGGAGAAAATACTCATCATAGTCAGTCTTGTA
 GAAAATTGGCACTTCCTCAAAAAATCTGTTGAAATGATTGCTTAGCAACAGTGAAT
 TTAGCAGATATTAAGTCTAGTTGCAGCCAAAGATTATGCTGAAATGATGACCGTCCGT
 TTGGCGGAAATCAAGCCCCAACAGCTATCAGGAGCGGTTGAAAATCGAATTGCTACG
 CTGAGACAGGAAGTTGCCGTCTCAAACAAGAGCTTCTAATGCAGGTGCGGTTCTAAA
 CAAGTTGCACCAGCTCTAGTCGACCAGCTACGGGAAAACAGTCTATCGTGTGATCGC
 AATAAAAGTGAATCTATCTTACAAGAGGCCGTGAAAATCCTGATTAGCACGTAAAAT
 CTAATTGTTGCAGAATGCCTGGGGAGAGGTAAATTGAAAGTCTAGGTGGCCGGACAAG
 GCTCTGCTAGTTGGTTCTCAACCAGGTTGCTGCCAATGAAACACCATGCTATTCTGCTTT
 GAGTCTAACTCAATGCTGGTCAAACATGAAACGAGACAATCTCAATACCATGTTGGT
 AATATCCTCAGTCAGGCGGCAGGTTTTCACCTGAGATTAGCTATTCCATGGAGGAA
 TGGAAAGAAGTCGCGCAGCCTTTCAGCCAAAGCCAAATCTCTCAAACGTGAAAAGAA
 GTAGAAGAAAGCCTGATTCCAGAAGGATTGAAATTGGCTGATAAAGTGAAGGTAGAG

GAAGACTAAAGAAAGATTCATGATAACAATAAGTTATGAATAAACACAATTATTATT
ATGGCGCTATTCACAGCTGCTGAGACCTATTTCAATGAAGCCTGGATGACTGG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	130	1029	F	300 aa

> 3864898-1 ORF translation from 130-1029, direction F
VAALSQDVPKALSCLNLLFDNGKSMTRFVTDLLHYLRDLLIVQTGGENTHHSSVFVENL
ALPQKNLFEMIRLATVNLADISSLQPKIYAEEMMTVRLEIKPEPALSGAVENRIATLRQ
EVARLKQELSNAGAVPKQVAPAPSXPATGKTVRVDRNKVQSILQEAVENPDLARQLNIR
LQNNAWGEVIESLGGPDKALLVGSQPVAANEHHAILAFESNFNAGQTMKRDNLNTMFGNIL
SQAAGFSPEILAISMEEWKEVRAAFSAKSSQTEKEVEESLIPEGFEFLADKVKEED*

Description:

unknown

Assembly ID: 3864938

Assembly Length: 1670bp

> 3864938 Strep Assembly -- Assembly id#3864938
CTGTCTGAAACAGTCACATCAAGTGCCTCTGAACAAACGCCCNCCTAGGTNGACGGT
ATCGATAAGCTCGATCTGTGATTCAGAGAAGAAATCAAGTGCTGTAACAGAAGTAAGAT
GTAATTGTATGAAAGGAGACGTCATGTTAAATAGTATTGTAACCATTATTGTATTGCC
CTTATCGCGTTATCTGTTGGTTTCAAAAAGCCTGAAAAATCTGGACAAAAAGCC
CAGCAAAAAACGGATACCAAGAGATTGAGTGGAGTCATGGGAGGCTATACTCCTGAG
TTGATTGTCCTCAAGAAATCAGTGCAGCCCCGATTGCTTTGACCGCAAGGATCCTCA
CCATGTCGGATCAAATTGTTTCCAGATTGTTGGTGTACATGCGAACCTGCCATGGGG
GAAGAGTATGTAGTGGAAATCACGCCTGAACAGGCTGGAGAGTTGGCTTGCTGTGGT
ATGAACATGATGCACGGCAAGATGATTGTAGAGTAGGTGGAGACTATGACAGAAATTGTG
AAAGCAAGCTAGAAAATGGCATTCAAAAATCCGTATCCGAGCTGAAAAAGGCTATCAT
CCAGCCCATATCCAGCTTCAAAAGGAATTCCAGCTGAGATTACCTTCATTGCGTAC
TCCTTCAAACGTTATAAGGGAAATTCTGTTGAAGAAGAAGGTATCTTGAAGCAATCG
GCGTAGATGAGGAGAAAGTCATTGTTACACCTCAAGAATTAGGGAGACATGAATT
CTTGTGGCATGAAGATGCAAAAGGAAGCTATATAGTCGTTGAGAAGACTCGAAAATCTC
TATCTCTCCTGCAAACGTTTGGATTACTAGTATCTTACTGTCGCTCTGTGATTCTC
ATGATTGGGATGTTGGCAGGTAGCATTAGTCATCAAGTCATGCATTGGGAACCTTTA
GCAACAAACGCCATTATGTTAGTGGCTGGTAAGCCATATATCCAGAGTGCTTGGCCAGT
TTTAAAAGCACAATGCCAACATGGATACCTGGTTGGCTGGAACTCTAGTGGCTTAT
TTCTATAGCCTAGTTGCTCTTTGCTGGCTCCCTGTTACTTCGAAAGTGTGGATT
ATCCTCTTTGCTTGGAGCAGTTTGAGGAAAAATGAGGAAAATACGTCC
CAAGCTGTGGAGAAATTACTGGACTTGCAAGCTAAACCGCAGAAGTCTTGAGTGATGAT

AGTTATGTCCAAGTCCTTGGAACAAAGTCAAGGTACCGCACCTGATTCCAGTGCCTGCC
 CGGTAAAAGATTGCTGTTGATGGTGTCTAGTAGAAGGTGTCTAGTATTGACGAATC
 CATGGTGACAGGTGAGAGTCTGCCTGTGGACAAGACAGTTGGAGATACTGTCATTGGCTC
 AACCATCAATCATAGTGGAACGCTGTCTTAGAGCAGAAAAGTTGGCTCAGAGACTGT
 TTTGGCTCAGATTGTAGATTTGTGAAGAAAGCTCAGACAAGTCGTGCAGCGATTCAAGGA
 CTTGACGGATAAGATTCAGGGATTTGTCAGTAGTTGTCAATTAGGAATCATGAC
 CTTTGGGTTGGTCTGCTCAGGGATAGTGTGGTGTGCTGGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	883	1326	F	148 aa

> 3864938-2 ORF translation from 883-1326, direction F
 VPLVILMIGMLAGSISHQVMHWGTFATTPIMLVAGKPYIQSAWASFKKHNANMDTLVAL
 GTLVAYFYSLVALFAGLPVYFESAGFILFFVLLGAVFEKMRKNTSQAVEKLLDLQAKTA
 EVLSDDSYVQVPLEQVKVRDLDSSASR*

Description:

ATCS_SYNTP7

Assembly ID: 3864956

Assembly Length: 1252bp

> 3864956 Strep Assembly -- Assembly id#3864956
 ACAAGAACAAATTGGAACAGGTACAGGCTGTTAAAAAATCGATTAACACAGCTAGTGAAGA
 AGTAAAAACCAAGTCTGCTACCCATGGCTGATCACTTAGTGGCTGCTACTGAGGAAAT
 TTTAGCGGCTAATGCCCTCGATATGGCAGCGGCTAAGGGAAATCTCAGATGTGATGTT
 GGATCGTCTTATTGGATGCAGATCGTATAGAAGCGATGGCAAGAGGAATTGTAAGT
 GGTTGCCTTACCAATCGGTGAAGTTAGAAACAAGTCAGCTTGAAAATGGTT
 GGTTATCACAAAAAACGTGTAGCTATGGGGTCATCGGTATTATCTATGAAAGCCGTCC
 AAATGTGACGCTGTGATCGGCTGCTTGAATCTTAAGAGTGGAAATCGGTTGTTCTTCG
 TAGTGGTAAGGATGCCTATCAAACAACCCATGCCATTGTCACAGCCTTGAAGAAGGGCTT
 GGAGACGACTACTATTCCAAATGTGATTCAACTGGTGGAGGATACTAGCCGTGAAAG
 TAGTTATGCTATGATGAAGGCCAAGGGCTATCTAGACCTCTCATTCTCGTGGAGGAGC
 TGGCTTGATTAATGCAGTAGTTGAGAATGCCATTGTCCTGTTATCGAGACAGGAACCTGG
 GATTGTCATGTTATGTCATAAGGACGAGATGACGACAAGGACTGTCTATCATCAA
 CAATGCCAAAACCAGTCGCTCTGTGCAATGCCATTGGAGGTTCTGCTGGTTCATGA
 AGACAAGGCAGCAAGCTCCTCGCTGGAGCAAGTGCTGGTTGCAGATCGAAAAGA
 AGCTGGGTTGGAACCAATTCAATTCCGCCTAGATAGCAAAGCAAGCCAGTTGTTCAAG
 TCAAGCTGCTCAAGCACAAAGACTTTGATACCGAGTTAGACTATATTCTAGCTGTTAA
 GGTTGTGAGCAGTTAGAAGAAGCGGTTGCCATTGAATCCACAGTACCCATTCATTG
 GATGCTATTGTGACGGAAAATGCTGAAGCTGCAGCATACTTACAGATCAAGTGGACTCT

GCAGCGGTGTATGTTAATGCCTCAACTCGTTCACAGATGGAGGACAATTGGTCTGGT
 TGTGAAATGGGGATTCTACTCAGAAATTGCACGCGCTGGTCCAATGGGCTTGAAAGAG
 TTGACCAGCTACAAGTATGTGGTTGCTGGTGTGGCAGATAAGGGAGTAAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1030	1251	F	74 aa

> 3864956-2 ORF translation from 1030-1251, direction F
 VTENAEAAAYFTDQVDAAVYVNASTRFTDGGQFGLGCEMGISTQKLHARGPMGLKELTS
 YKYVVAGDGQIRE*

Description:

gamma-glutamyl phosphate reductase (proA) homolog - Haemophilus influenzae (str ain Rd KW20)

Assembly ID: 3864958

Assembly Length: 1785bp

> 3864958 Strep Assembly -- Assembly id#3864958
 CTGCCCTAGCAGGAACGCAAGAACGAAAGGACTGGAGAATAGGCATTTCAAAATTATAACCTA
 CACTAGCCATCATATCTAATGTTGGAGTGCTAACTAGCTTATCCTTACTATTCAAGGATA
 AGGCGTCTGCTCTCATTGATCTACAACAATCAAATAATTTGGTTGTTGTCTGAA
 CCATAAAAATCTCCTTCTAATATGGAAAAGAGGCACAAGAAGATATCTACCTTACTGC
 ACCCCTTCTATATCAATCTCTATATAAGCAATAACATTCTGTTATGTTTATAGA
 ACAATGGACTAAAATATGACTAAATCGATTAGGAAATTCAAATCATTCTAGTACTGTT
 TTAGTAAGTTACAGTGTACTATTCCAACTTCAATAAATTATAAACCTTGTCTAATAACA
 ATTTTAGTGGAGATAAGAAATCCTACACCTAACTCATCTTACACGTAATCTATTCTATT
 TTATCACAACAAACGCAAGTAAGACCATTAACTCAATTCTAGTTATCTGCCATTTCAC
 AAATGGGAAATAAGTCAAGACACTAATAATCAAACAAACAATGATAAGATGATGGCACG
 CCAATCAAATGCTGTAGAGAAGAAACCATATAAAATTGGAGGCATTACCCAAGTAACATT
 TTGTGTAAACAGGTGAAACAAGACCCCAGTTGTTGCCAGTAAGCTACCGTTGCCATGAA
 AACCGGGCTAAGTACAATGGTATAAATAGCAAAGGATTCAAGACAACGGTAAACCATA
 ATTGATAACGGCTCACCAATTAAACAGAACTGGTGCTAGACCAAGTTAGCAACTTT
 TCGATAATGACTGTTCTGAAAAAATTAAAGCAAGTACTAATCCTAATCCTCCAAA
 CCAGACAAACGCCAAAAGACCCACTTGTCCATATAAGGAATCGGTTCACCTTTG
 GAAAGCATCCAGATTGCTAACATAGCAACTCCAAATAGCCCTCCATGATGGGAGCCAA
 TACATTCTCCATGGAGACCAAAACAGAATAACTTATTCAAAGATCATCAGAAT
 AACTGCAAAGAAACTTGTGAGACCAACCTAGTAATGGCGTTGTAACACCTGTAAACCCA
 ATCAATCAATAAGTCATTGCTAAGTAAATGGAAAACATAAGTCAAGATGGCTACTATATA
 CATGCCATAATCCTGGAATGATAGAAGTGAACGGCTAGCAATCGCAGGGGGAACTGA
 ATCTGGTAACTTGATTACCCAGTTCTTTTCAATTACTTACAGAAAATAATAGAGGCTAA

AAATCCAATCATCATGGCTGTAAAGTAGCCTCTGGCATTAATATGGTTCCCTGGAATCAC
ATTCCCATAAGTTACCATCAGATTTCACATCAAATGCTAGATTATCAATTCCATGTTA
AGATTGATCTAATTACATCTCCTACATTGCCAAAGGGAAACTCTTGTAACTGTAC
TTCCAATCGAAATGACAAACGAAGCAAGTGATAACAAACCAGCAGAAACTGTATCACCT
TGTAAATCTTAGCGATATTCACTCCAAGCAATAGATGAACAACAAGGAAACAATTGGTA
TACTTCCCTTGAATACCAAATTATTGATGTCAACAAGCCACTGAAAGGTTTCGTAATAC
TTCCTAGGTGAAATTGTTGTGGTAAATCCACTAGAAAAGCATTAAATAACAAAGCAATGG
AACCTGTCATAATAACAGGCATAGCCCCACAAATGAATCACGTT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1427	1711	R	95 aa

> 3864958-2 ORF translation from 1427-1711, direction R
VDLPQQFHLSITKTFQWLVDINNLVFKGSIPIVSLLFIYCLGVNIAKIYKVDTVSAGLV
SLASFVISIGSTVTKSPLANVGDVKLDQILTWN*

Description:

unknown

Assembly ID: 3865022

Assembly Length: 1386bp

> 3865022 Strep Assembly -- Assembly id#3865022
ATCGAATTCATTCTATTCCATTCCATTTCATAATGAAACAGAACTAG
AAAGCTGGTCGCTGGTGGTCAAAACACTGTTTGAGATTGTCAATAGAACTGACAAACC
CTGTAATATACCTGCATATATACATACGACAAGGCATACTACCTAGTTGAAGAGATT
TTCGAAGAGTATTCACTTTGTCTTTACTTATTATACCATATTCACTACATAAAAAACGAA
CATTCTATCCTAAAAATGCTCATTTCTAAATTATCAATCTAAATCTGGTTATAG
AAGGAACGATTATCCATAGCGAAGATTTATTGGTCATCTCCTTATCCACCAAAAGCC
AGAGCTGTTGACATCATCATCATGCTGCATCCAGATTGTCAATCATATGGATAATCTCT
GCCTCCATAATACGTGGACGGACTGGAATTCCATATTCAAGCAAGCCGTGGACTTG
AGGATGACATGACGAAGCAAAACGACTTCTCCTGGTATCATCGATGCCGAGTTCCATA
ACTGCTTGGTAATTTCGCTATCAATGAGAGCGATATGTCCAAGAAGATTACCTCGCACT
GTGTACTCTGTCGGTCTGGCCCCGTCAACTCGATAACCTAGCTAAGTCATGCAGCATA
ATCCCCGATAGAGCAGGCTCTTATTGAGCTGAGGATAAACTCGCTAATAGCGTCTGCC
AAACGTACCATGGTCGCCGTATGATAAGCCAACCCCGTTCAAAGGCATGGTGGTGGTC
TTGGCGGCTGGATAGGAGTAGAATTCCATTACACTTGGTGTAGAGATTTCGGACAATC
CGTTGCCAGACAGGATTTCAATTGAAATCATTCGACATGTAGTCACGAATTCC
TTGACATCAACTGGTGACTTGACCTTGAAATCAGCTGGTCATTGGTTACCAGCTTGA
GGCAGGCAGGAGAGTAATTGATTGACTTGAGGGTATTGTTATAAAACTCTCGCGTCCT
TTCATGTGGACAACCTTACCTGCGTAAAGGCCTCAATGTTATGAGGTTGGGCATCCCAG

AGCTTCCCCTCAATCTGCCACTATCATCTTGAAGGTAAAGGCTAGGTAGTTTCCA
 GCTCGAGTTGCCTCAGGTCACTGATTGATTAGTAAAAGCCTCAAATAACTCATCT
 TTTTCATGTGACTAATCTTCATATTCTCCTCATTTCTTGAAAATGGAGTAGATCAAG
 CGCAGGCTCACCTCTGACAACCAATGTGACGGAGCGCTCGATAGCTATGGTACG
 ACGGTTAATAATTGATCAATATTGCCAGAGGCATGTTGGAGATGTTTGTGCCTTGA
 CCAGAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	279	1271	R	331 aa

> 3865022-1 ORF translation from 279-1271, direction R
 VSLRLIYSIFKKMRKNMKISHMKKDELFEGLYLIKSADLRQTRAGKNYLAFTFQDDSGEI
 DGKLWDAQPHNIEAFTAGKVVMKGREVYNNTPVQNQITLRLPQAGEPNDPADFKVKSP
 VDVKEIRDYMSQMIFKIENPVWQRIVRNLYTKYDKEFYSYPAAKTNHHAFETGLAYHTAT
 MVRLADAISEVYPQLNKSLLYAGIMLHDLAKVIELTGPDQTEYTVRGNLLGHIALIDSEI
 TKTVMELGIDDTKEEVVLLRHVILKSTTAACLNEIPVRPRIMEAEIIHMIDNLASMMMM
 STALALVDKGEMTNKIFAMDNRSFYKPDL*

Description:

gi|710422 (U21636) cmp-binding-factor 1 [Staphylococcus aureus]

Assembly ID: 3865036

Assembly Length: 1167bp

> 3865036 Strep Assembly -- Assembly id#3865036
 CTCAGATTACAGAGGACAATCAACTGGTCATTTCTGTTCCAGTTCAAAAGGCTTAG
 AAAGGGAGTTCATCTATCGTGTGGAAAAAGAAAAAGTTAAGGCAGGTGTTCTCCTCTAC
 GCAGTCACCATAGCAGCCATCTTAGCTTTGCAATTATTGAAACCGACAAGTC
 GCCCACTATCAAGACTATGCTTGAAATAAGAAAATTGGTTGCTTTGCTATGGCTAAA
 CGAACCAAAGATAAGGTTGAGCAAGAAAGTGGGAACAGGTTTAATCTAGGTCAAGGTA
 AGCTATCAAACAAAGAAAAGTGGCTTAGTGACGAGGGTTCGTACGGATAAGAGCCAATAT
 GAGTTCTGTTCTTCAGTCAAATCAAAGAAGAGAAAAGAGATAAAAAGGAAGAGGTA
 GCGACCGATTCAAGCGAAAAGTGGAGAAGAAAAATCAGAACAGAGAAGCCTGAAAGAAA
 GAGAATTCTAGTCAACTATAATGCGTTGAATCCAGAACAGTCCACTGTAGTTTC
 TAGAAAATTGCTGAAATGGATGTTAAGCTCAATTGTTATATCTTATTCTAGT
 CCACTATACTTGTGCTAAATTAAAGATATGAAACATGATTTAACCAAGCAGAAC
 TTTCGATTTCCCTAAAAATATCTCCTCGCAAACCTGGTATGTCAAGCAGCCGAGAAACA
 GATTGATCTCTATCAGACAAAGAAATTAGATTCGGTGGCAGGGCTATTAGC
 CTTGCCCTAACCCCTAGCCAAGCAGGCTAAGTCAGTCAGTCAACTCTTGTAGACATTCTGAGA
 AAATGTTGGAGCAAGCTCGTTGAAAGTGGAGCAGCAAGCAATCAAGAATATCCAGTTT
 TGGAGCAAGATTACGAAAAATCCCTGGAGAAAGAGTTGATTGCCTGCTTAGTC

GGGTTCTTCATCATATGCCTGATTGGATGCGGCTCTCACTGTTCATCAACATTGA
 AGGAAGATGGAAACTCATCATTGCTGATTTACCAAGACAGAAGCTAATCATCATGGAT
 TTGATTTAGCTGAACCTGGAAAACAAGCTAATTGAGCATGGGTTTCATCTGTGCATAGT
 CAGATNCTCTATAGCGCTGAAGANCTG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	79	492	F	138 aa

> 3865036-1 ORF translation from 79-492, direction F
 VWKKKKVKAGVLLYAVTIAIFSLQLQFYLNQRQVAHYQDYALNKEKLVAFAMAKRTKDKV
 EQESGEQVFNLGQVSYQNKKTGLVTRVRTDKSQYEFLFPSVKIKEEKRDKKEEVATDSSE
 KVEKKKSEEKPEKKENS*

Description:

unknown

Assembly ID: 3865054

Assembly Length: 916bp

> 3865054 Strep Assembly -- Assembly id#3865054
 TCTCCCAACATATAATTCGTTTCCAATCCCCAGCTGTACAGTCTGTGATAAGA
 GCGATGTTCTGTTCTTTGTTGATAAGAATTCGCAAGCCTTGGATCTACGTGG
 TGACCACATCACAGATCAACTCTGCATAGGTATGTGGCAATTGGTACATGGCTCCAACCATA
 CCCAATTACACGGTGAGTCACCCCACGCATTCCATTGTAGGCATGCACCCAAACACTCGCT
 CCAGCATCGACTGCTTTGGCTTCATCAAAGTCGCGTTGAATGTCCAAGAGCAACC
 GTCACACCTCGCCCGTAACTGTACGAACAAAGTCTCCACCCATCACGTTCTGGTGCA
 ATCGAATTATTAAAGCAAGCCATTGCCGTTTGCCAAGAATGAAACTCCTAACAC
 CCGGGTCTCTCATATAAGTTGGATTGTGCCCTTAAAGTTCTGTGAAATATGGAC
 CTTCATAATAAAATCCCACGAATCTTAGCACCTGTTGCTTCTTATAATGGTTCCAAGAT
 TTTCAGTGAAGCAATTGCTCATAAAGTGGCTGTTAAAGTTGTGGTAAGAAACTGG
 TAACACCGGTACTAAGAAGTCCTCACTCATAGTATGCAATGTACCTCAATGTTGT
 CCATCACATCTACACCTGCATATCCATGAATATGAGTATCCACAAGACCTGGGCAATGC
 TATAACCTGTATAGTCAATCACCTCAGCCCCCTCAGGAATCTGCTCTACATGTTCCCAA
 ACTTGCCGTCCACAAGTCCAAGTAACCACCTCGACAAATCCGTGTGGTAGAAAAACTG
 ATCCGTTAATATAGTTAGGCATAATGTTAACCTCCTAAAAGATTGATTCTACAATTT
 ATTATGTCAATTGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	302	793	R	164 aa

> 3865054-1 ORF translation from 302-793, direction R
 VDGKFGKHVEQIPEGAEVIDYTGYSIAPGLVDTHIHGYAGVDVMNNIEGTLHTMSEGLL
 STGVTSFLPTTLTATYEQLLAVTENLGNHYKEATGAKIRGIYYEGPYFTETFKGAQNPTY
 MRDPGVEEFHSWQKAANGLLNKIRLHQNVMGWKTLFVQLRAKV*

Description:

N-acetylglucosamine-6-phosphate deacetylase (nagA) homolog -
Haemophilus influenzae nzae (strain Rd KW20)

Assembly ID: 3865102

Assembly Length: 786bp

> 3865102 Strep Assembly -- Assembly id#3865102
 CTGGATTAAAACGAGGCAGTTTCAGACTAATATCCAAGTCGTAAGAAATGCCGTAAATAA
 GCTTTCTAAATTGTCAAAGCTTGCAGGAAACGCTCTTGAATAGTTCTCTAAAGAA
 CTTGCTGATATAAACAGACATCTTGTCTCGAACGCAAGGAACTTCTCTGAGCGGTAGATT
 TCTTTAATCGCTGTTAAAACCTGAAGAACTTCTCTATCCCTGCTTCAAAAGCGTTGACC
 CGATAAAGAGGTAAGATAGGATGATGAAATTGCTTAGTGTCTGGATAAACCCCT
 ATATAGTAATCACAGCCTAGTTCTAACGACTCAACTCTATCAAATAAGGCACAATGACC
 GCGATATCCTCCAGGTACTGGGACAGGACTGACCAAGTTTCTCCCCCTGCATCTGGCT
 GTCGAAAGCTTCATCAACTGCTGATAGCCCACACTAGATAGAGCTAAAAGCGCAAATTC
 ACTTCCTGATCATCTACAAACACTGTCATTCAAGCCCTAGCAAAGGATGAATGCCGTAT
 TTTTTTGTAATCTCTAGAAAGTCGAAAGCGCCATAAAAGATTGTCATATCCATCATAGCC
 AAATGAGTGTAGCCGTATTCTTAGCTGCTCTCACATACTTTGATGAAATGACGCTT
 TCCATAAAACTATAGACTGTTTGATCTAGTTGTGCGATCAATTACACTTCTCCTCT
 ATCCTCTCACTATATTATACCATTTCACCTATAAATGGCTCTTGAGAAAAATTTC
 GATCAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	27	731	R	235 aa

> 3865102-1 ORF translation from 27-231, direction R
 VRRIEEKCKLIAQLDTKTVYSFMESVISIEKYVRAAKEYGYTHLAMMDIDNLYGAFDFLE
 ITKKYGIHPLLGLEMTVFVDDQEVNRLFLALSSVGYQQLMKLSTAKMQGEKTWSVLSQYL
 EDIAVIVPYFDRVESLELGCDYYIGVYPETLASEFHHPIPLYRVNAFESRDREVLQVLT
 AIKENLPLREVPLRSRQDVFISASSLEKLFQERFPASFGQFRKAYFRHFLRLGY*

Description:

unknown

Assembly ID: 3865156

Assembly Length: 1213bp

> 3865156 Strep Assembly -- Assembly id#3865156
 CACTTCAGCTTCTTCTCTTTGAACGGTTATAAACACGAATCAGATTCCCTATTCCTT
 GCGATTATGTGATTCTTATTTCCTAATCTAAAGTATAGTGAATGAAATAAAACATGC
 GCAAATCGATTAAGGAATTAACTAATTCATAACAATGTCTAGAAATCAAAGTGTACT
 ATTTAACTCAATGCACTAACATCTAATACTCAATAAAAATCAAAGAGCAAACTAGGA
 AACTAGCCGAGGTGGCTAAAACACTGTTTGAGGTTGTAGATGAAACTGACGAAGTCA
 GTAACCATAACATACGGCAAGGCAGCTGACGTGGTTGAAGAGATTTCGAAGAGTAGC
 AAAATGGAAAAAGGAGTGAGTGAAGCACATGCCCTCCCACCTCTTTCTGTTTAGG
 CTGTTTTCAACCTCAAGATTTACATCATAGCTACCAACAGGCGTTCAATGGTTG
 CTGTATCACCTGTTCTGCCAATCAAGGCCTGCCAATTGGGCTTCATTTGAAACCT
 TACCTGCAAAGGCATCCGACCAGCTGAACCTACGATAATATAAACTCTTCGTCT
 CACCAATTCTGGATGGTGACTIONTACCAATCGCTACTCGCCTGGCAACTGCGT
 CGCTATTGACGATTCAGCATAGCGGATTTGTTCTAAGCTAGAGATTGTCCTTCGA
 CAAAGGCTTGTTCATCCTTAGCTGCTCGTACTCACTGTTCTGAAAGGTACCGTATG
 AACGGGCAATCTTAATCGTTCTACCACCTCTGGTCGACGAAACCAATTCAATTCTTCT
 AATTCTTTCAAGTTTCTTCCTCAAGGGTCATAGGATATGTTTCTGCCATT
 TTTCTCAACTTCTCTGATAATATTCTAAAGAAAATTATGTGAAGTATCACATAATT
 TTAGTTGTTAGTTAATTGCTGTTGACATGTCAGCGACATTGGGTGCTGGTCTTC
 TTGATTGTTAGCATAGTAAACCTTGCCTCTGTGACATCTGCTACAAAGTAAAGTTATC
 GCTCTTAGTTGATTGATGCTGACTCAATCCGATCCAAGACTGGACTATCGACTGGA
 CCAGGCATGAGACCTACATTAAACATTATAAGGTGAATCAATGTTGGTATCAATC
 GCAACATCCTCAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	416	808	R	131 aa

> 3865156-1 ORF translation from 416-808, direction R
 VVERIKIARSYGDLSENSEYEAKDEQAFVEGQISSLETKIRYAEIVNSDAVAQDEVAIG
 KTVTIQEIGEDEEEVYIIVGSAGADAFAGKVSNESPIGQALIGKKTGDTATIETPVGSYD
 VKILKVEKTA*

Description:

TRANSCRIPTION ELONGATION FACTOR GREA (TRANSCRIPT CLEAVAGE FACTOR GREA). - ESCHE RICHIA COLI.

Assembly ID: 3865160

Assembly Length: 1173bp

> 3865160 Strep Assembly -- Assembly id#3865160

TGCGGCTGAGTTGGATTCCATCGTTAATAAGCGTGTATCGGTGACACCTATTCTCT
 GATTGGGGCAGCAGACAGATGCGACGACTACTGGTTCTGGCAAAAGCGCTTGATAAGGCT
 GCGAAAGAGATTGGTGTGGACTTTATTGGTGGCTTCTGCCTTAGAACAAAAGGTTAT
 CAAAAGGGAGATGAGATTCTCATCAATTCCATTCCCGCCTTGACTGAGACGGATAAG
 GTCTGCTCGTCAGTCAGATATCGGCTAACCAAGTCTGGTATTAAATATGACGGCTGTGGCA
 GATATGGGACGAATTATCAAGGAAACGGCAAATCTTCAGATATGGGAGCGGCCAAGTT
 GGTTGTATTCGCTAATGCTGTTGAGGACAATCCATTATGGCGGGTGCCTTCATGGTGT
 TGGGAAGCAGATGTTATCATCAATGTCGGAGTTCTGGTCTGGTGTGGTAAACGTGC
 TTTGGAAAAAGTCGTGGACAGAGCTTGATGTTAGTAACCCGAAAACCAGTTAAGAAA
 CTGCCTTTAAAATCACTCCGTATCCGGTCCAATTGGTTGGTCAAATGCCAGTGAGAG
 ACTGGGTGTGGAGTTGGTATTGTGGACTTGAGTTGGCACCAACCCCTGCGGTGGAGA
 CTCTGTGGCACGTGTCCTGAGGAAATGGGCTAGAAACAGTTGGCACGCATGGAACGAC
 AGCTGCCTTGGCCCTCTGAACGACCAAGTTAAAAGGGTGGAGTGTGGCTGTAAACCA
 GGTCGGTGGTCTATCTGGTCCTTATCCCTGTTCTGAGGATGAAGGAATGATTGCTGC
 AGTGCAAAATGGCTCTTTAATTAGAAAATAGAAGCTATGACGGCTATCTGTTCTTG
 TTGGATTGGATATGATTGCCATCCCAGAAGATACGCCGTGCTGAAACTATTGCGGCTATGA
 TTGCGGATGAAGCAGCAATCGGTGTTATCAACATGAAAACAACAGCTGTTGCTATCATTC
 CCAAAGGAAGAGAAGGCATATGATTGAGTTGGTGGCTATTAGGAACTGCACCCGTTA
 TGAAGGTTAATGGGCTCGTCTGCACTTCATCTCGCGGTGGACAAATCCCAGCAC
 CAATTCATAGTTAAAATTAAGAAAATAGGA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	136	375	F	80 aa

> 3865160-1 ORF translation from 136-375, direction F
 VDFIGGLSALEQKGYQKGDEILINSIPRALTEDKVCSSVNIGSTKSGINMTAVADMRI
 YQNGNGKSFRYGSQVGCIR*

Description:

unknown

Assembly ID: 3865172

Assembly Length: 1209bp

> 3865172 Strep Assembly -- Assembly id#3865172
 TCGGAATCTGAGCTAGTGTAGCTCCTTAATCTTATCTGATAAGATAGCTGTCATATCAG
 ACTCAATCATTCCCTGGAGCAATCAACATTGACTCGTATATTCCGACTAGCGACCTCGCG
 TGCCACAGACTGGTAAAGCCAATCAAGCCAGCCTTAGAAGCAGCAGTGTAGCTTGACC
 AATATTCCCCATCAAACCAACACTAGACATATTAAATGATAGCACCTCTGGCTTT
 CATCATCGGTTCAAGACTGATTGTCATATTAAAGGCACCAGTCAGATTGACCTGAG
 CACTTTTCAAAATCTGCTTCTGTCATCTGAGCATAAGAGTATCTTGGGTAATCCCTGC

ATTGTTGACCAAAACATCTACTGAACCCAGTTCTGCAATAGCTTGATCAATCATACGCTT
 AGCGTCTGCAAATCTGATACATCTCCTGAAATGGAACCACTTGATACCATAGTTGA
 AAACTCAGCGAGCAATTCTCTGAGATTGCCACGACTGTTAAGACAATGTTGGCTCC
 TGCTTGAGCAAACTTGTGGCGATGGCAAGACCAATTCCACGACTCGAACCTGTAATAAA
 GATATTTTATGTTCTAGTTCATTTTCCTTCAAAACTCTACTTATTAGTCTA
 TTTTCTAAAAGTGTACTAAACTCGCTTGATCTCCACATGAGCTAAGTGAGCAGTTG
 ATCAATTTTTTAACAAACCTGACAAGACTTCCCCGTCCAATCTGAATAAAGTTGC
 TTATGCCTGCTTCTTGATGACCCCAAAACTTACATAGAAACGAACGGGTTCCCTGACCT
 GACGCGTCAAGAGCTGAGCAATGTCCTTTGCATCACAGCAGCTCTGTATTGCCGA
 CTAGGGACAAGTAAAATCTGAAAAACTTACCTGAGCTAGAGTTCAGCTAGTTCTGGC
 TAGCAGGCTCAAGGAGAGCGGTGTGAAAGGGACCTGACACCTTAAGAGGAATCAAGCGTT
 TGGCACCTGCTTCTTGCAAAAAGTTCAACCGCTCGATCAACTGCAACCACCTCTCCAGCAA
 TGACGATTGTCAGGTGTGTTAGTGGCTGGAGTAACCACTCCAAGTTCCAGAAGCT
 TTTTGACAGGCTTCTCAATGACCTCTACTGGCGTATTGAGAACTGCTACCATCTGCCA
AGTTCAAGCA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	731	1123	R	131 aa

> 3865172-2 ORF translation from 731-1123, direction R
 VVTPANYNTPAQIVIAGEVVAVDRAVELLQEAGAKRLIPLKVSGPFHTALLEPASQKLAETLAQVSFSDFTCPLVGNTTEAAVMQKEDIAQLLTRQVKEPVRFYESIGVMQEAGISNFIRDWTGESLVRFC*

Description:

malonyl coenzyme A-acyl carrier protein transacylase (fabD)
 homolog - Haemophilus influenzae (strain Rd KW20)

Assembly ID: 3865228

Assembly Length: 813bp

> 3865228 Strep Assembly -- Assembly id#3865228
 ATGACACGTCTGTTCTCAAGCAGAAATGGCAGAGTAACAAAGCTCGATATTGAGGTAGC
CGATAAAAGAATTGGCTGAATTGAGCTCAGATTAAACAGGAAGTGGAGCTCCAAC
TG
TAGTGAGTCCTCAGGTTGAAGAAGAGCCTCAGCTCATCCAGTTGGCCAATGTATGAAGA
ACCAGAAAGTAAATCCAGTGCATCCGACAGGTCCAACACCAGCTACAGAAACTGTTGATTC
AATACCGGGATTGAAGCACCGCAAGAATCTGTTACAATTATAAGAAATATTCTGAGA
ACAATATCTTATCCTTATATTCCAGCGAGCAGGAAATGGTGTGAGTCCTGCATTCCCTA
TCGATAAGATTATCCTCTCAAACTATCAAGTCTGAATCTAGTAAGATTGACGTTCCCCA
CGTTACGGATAAGAGAGAGAAAGACTAAATCTTTCCAATAAGGTGGTACCACGAT
TTTCGTCCTTTGGAAGTCGTGGTTTAATTGTTATTATTAAGGAGATACCAT

GAAACTCAAAGACACCCTTAATCTGGGAAACTGAATTCCAATGCGTGCAGGCTCC
 TACCAAGAGCCAGTTGGAAAAGGAATGGGAAGATGCAAAACTTATCAACGTCGTCA
 AGAATTGAACCAAGGAAAACCTCATTGCACCTGCATGATGCCCTCCATACGCTAACGG
 AAATATCCACGTTGGACATGCTATGAACAAGATTCAAAAGATATCATTGTCGTTCTAA
 GTCTATGTCAGGATTACCGGCCATTATTCC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	197	286	F	30 aa

> 3865228-1 ORF translation from 197-286, direction F
 VHPTGPTPATETVDSIPGFAPQESTVIL*

Description:

unknown

Assembly ID: 3865230

Assembly Length: 953bp

> 3865230 Strep Assembly -- Assembly id#3865230
 ATCGAATTATTTGAAACAAGGTGGATCAGCTATTTGGCCTGATTAGTATTTACTCT
 TTAAATACACTGAAGGTCGATTCTAATCTCGCTAACCTTTTAATCCAGAATAAGGGA
 AATATGTTATACCTGTTTAAGAAAAAGTTCATTAAGATTGAGGAGTTAGAA
 ATGAAAGTATTAGTGACAGGTTTGAGCCCTTTGAGGCCATTAAAGGTTACCAGCTGA
 AATCCATGGTGTGAGGTCGTTGGCTAGAGGTGCCGACAGTTTCACAAATCTGCTCA
 AGTATTGGAAGAAGAGATGAATCGTTATCAACCTGACTTGTCTTGATTGGCAAGC
 TGGTGGAAAGAACTAGTTGACACCTGAACGAGTGGCCATTAAAGACGATGCACGTAC
 TTCTGATAACGAAGATAATCAACCGATTGACCGTCCCATTGCCAGATGGTGTCTCGGC
 CTACTTAGTAGTTGCCATTAAAGCGATGGTTCAAGCTATAAAAAGAAGGATTACCG
 GCCTCTGTTCCAATACGGCAGGGACTTTGTCTGCAGCCATTGATGTATCAGGCTCTC
 TATTTGGTAGAAAAGAAATTCCCATATGTTAAGGCAGGTTATGCATATTCTTATATG
 ATGGAACAGGTGGTGAACAGACCGACTACTCCAACATGAGTTAGTGGATATTGGCGA
 GGGATAGAAGCAGCAATCGCGCTATGATAGAACATGGAGATCAGGAACCTCAAGTTGGTA
 GGCGGAGAAATTGATAGAAAAAGCTTGAGGGAAAACCTCAAGCTTTGGACGT
 TTTCGAGCCAATACTGCTCGTAAACATAATTTAGTGCATTGGATATAAGGTAGGAGT
 GAAAAACTAGCAATGCCAAGGTAATCCAATTGAGGAAGTACCAAGGAAGAAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	272	586	F	105 aa

> 3865230-1 ORF translation from 272-586, direction F
 VPTVFHKSAQVLEEMNRYQPDFVLCIGQAGGRSLTPERVAINQDDARTSDNEDNQPID
 RPIRPDGASAYFSSLPIKAMVQAIIKKDYRPLFPIRQGLLSAAI*

Description:

PYRROLIDONE-CARBOXYLATE PEPTIDASE (EC 3.4.19.3) (5-OXOPROLYL-PEPTIDASE). - STR EPTOCOCCUS PYOGENES.

Assembly ID: 3865378

Assembly Length: 1060bp

> 3865378 Strep Assembly -- Assembly id#3865378
 CTACTTGAAACAGAACTGAAATTATACCCACTACCTCCCTGATTATCTTCAATGCTACG
 TCTAAATAAACTCCCCACTATTATTAGCTTAGCAACAACGTATAGTAAAATAACAT
 AAAATTACATAAAATAGATTAGGGAAATCAAAGCAACTCTAGGAATGTTTAGCAGTCA
 CAGTGTACTTCCCAGCATCAAGCCACTATAACTCTGCACATAAAATGGAGAAGATGGC
 CATCCTCTTCTCAAATATTAACCTCTTACAAACCAACTATAGTTGACAAAGAACCTAA
 AATCAATTGATAACACGAGGTCAGGTCGGTCAACTCTTCAACTGAAGCCCTGTCAACTC
 TTCCCATTATCAATCTGTATTGGAGAGAATTGCGGTGCAGATAGAGTTGCTGGCTGT
 TTAAGTGAGAACAGCACTATTTCCCAAAGAGAGAGAATGATTCCTGAATCTGATCTG
 ATCCAAAATCATCTGGTAGACATTCTTGATTGGCTCAAGTCCACGAGTCTTCTCC
 CAGACTCCAAAGATAGAGCTGAGAAAAAGTATGAACACCTTGGTGACCCTGACGCCACCA
 TGTCTGAACAAATCCCGCTCAGCTTGATTAAGTCTGATAGGGCTTGATGTCCCGTCTG
 AGACCAAACCTGACCCACATGATAGAAAGACGAAGTCCAAAGTCATACTCAACCGCTTC
 AATCGTATCACTAAAATATCTCTTACAGAAAGTGTATTGCTTGTGAAGCACGAAAAC
 ATAATCCTGAGATCCGACCTGTAGCACTGTGACAATTGGAAAAAGAGTCCGACATCAT
 ATCTAGCCAAGAACGCCAGATTTCTGCTGAAAATAAGAAAGATGGCAATAAACCAACTG
 AATCTTTTAAAATCTGCGGTGCCTGCTGGTCAAAAGGGCAACCAACTGCTTTCACGCTC
 GTTAGCGAACGAAACCTGCTCCTGCTGGTCAAAAGGGCAACCAACTGCTTTCACGCTC
 GCTGAGCCCAGCTCCTCCAGAAAATCCACTGCTGAGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	421	807	R	129 aa

> 3865378-1 ORF translation from 421-807, direction R
 VLQVGSQDYVFVLQQDKYTSVRDILSDTIEAVEYDFGLRLSIMLGQVWSQTGHQALSDLI
 KAERDLFKTWWRQGHQGVHTFSQLYLWSLGERLVDLKPIKECLHQMLDQDQIQEIILSL
 WENSAVLT*

Description:

unknown

Assembly ID: 3865470
 Assembly Length: 895bp

> 3865470 Strep Assembly -- Assembly id#3865470
 ATTTAGACTTGATGACAATCCTCAGCGGTTATCATGCCAATCACGAGGGGCTGGAA
 TTGCAGTTGCCAAGAACAGTGTGTTATGCATTAGGTGAGGAGATCTGACCGCTATGC
 AAGGAAGTAGGGCGGATTGTGTCGGCGAATTGCTTCTGCTACCAAGACCTATCCAGT
 CTCTTCATCAACTACAAGGGTGAGGAGGTCTGCTGGATCAGGCTCCTGCTGGCTCCGC
 TCCAGCAGCCCAGTTATGGATGGGTTGATTGGCTATGGTGTGGAGCAGCTTATCTAC
 TGGGACCTGTGGTGTCTAGCTGATATAGAGGAAAATGCCTTCTAGTCCTGTTCCGC
 TTTGCGAGATGAGGGAGCCAGTTACCACTATGTGGCACCTGCTGTTATGGAAATGCA
 GCCAGAGGCTATTGCTGCTATTGAGGAAGTTGGAAAGACAGAGGGATTCCCTATGAAGA
 AGTCATGACCTGGACGACAGACGGTTTACCGAGAAACGGCTGAAAAGGTGGCTTATCG
 TAAGGAAGAAGGCTGTGCTGTTGAGATGGAGTGTCTGCTCTGGCAGTAGCTCA
 ATTGCGTGGGTCTCTGGGTGAATTGTTGTTCACAGCAAATTCTCTAGCGGACTTGG
 CCAGTACAACAGTCGTGACTGGGCTCGAACCTTTAATAAGGCGCTAAACTGAGTT
 AGCAAGTGTCCACCACCTTAGTTGTTACTGGCAAAGGATTGTTATCATAAAATGTCT
 AGCTCATACTTTCAAAATATGTTAACGAAGTCACCTCCTCTGTCTAAGCATGT
 TTGAAGTTGGAAAAATCTTAAAATCAGAAAACGTATCATATCAGGTTGATGA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	98	742	F	215 aa

> 3865470-1 ORF translation from 98-742, direction F
 VRRSDRYAREVGADCVGEFVSATKYPVSFINYKGEVCLDQAPAGSAPAAQFMDGLIGY
 GVEQLISTGTCGVLADIEENAFLVPVRALRDEGASYHYVAPCRYMEMQPEAIAIEEVLE
 DRGIPYEEVMTWTDGFYRETAEKVAYRKEEGCAVEMECSALAAVAQLRGVLWGELLFT
 ANSLADLDQYNNSRDWGSEPFNKAALKLSLASVHHL*

Description:

unknown

Assembly ID: 3865632
 Assembly Length: 645bp

> 3865632 Strep Assembly -- Assembly id#3865632
 AGGGCTGTCAAGCTGGTTAGAACGTTAGAAAAGGAGAGTTAAGGTGGAAAATCTTACG
 AATTTTACGAAAAGTATCGTGTATCTGACTCGTCCACGTTAGAGCTTGGCAGTA
 GTTACCATGTTTANGNGCTGTACTCGTCTTTCTAAATATTCCAGAAAAGGTGTC
 TTAAAACTCGATAATGGAACGATTGTTATGATGGCAGTCTTGTCCGTGGAAAATGAAT

GGCCAAGGTACCATTACCTTCCAAAATGGAGACCAATATACTACAGGTGGCTCAACAATGGA
 GCCTCAACGGAAAAGGTACCTTCATCTAAAGAAGGCTGGACCTACGAAGGTGATTT
 GTAAATGGTCAGGCTGAAGGAAAAGGGAAACTAACAAACAGAACAGAAAGTCGTTATGAA
 GGAACCTTTAAACAAGGCCTTTCAACAAAAATAAGCCTCTTCAAAGGAGGTATT
 ATTAGAATTACAAGGTAAGCGTTACCTGTAATCCCTTCTTCAAATCCCTCTCCA
 AGCAAGTTGTGAAATAAAAATATTGAAATAATTCAACAAACTTCAAAGATAAAACC
 TGATAAGAAAAGAAAATGAGAAAAGTTCGCAAGAGTTAAAAAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	46	456	F	137 aa

> 3865632-1 ORF translation from 46-456, direction F
 VENLTNFYEKYRVYLTRPRLELLAVVTIVLXAVLVFFLNIPGKVLKLDNGTIVYDGSLV
 RGKMNGQGTITFQNGDQYTGGFNNGAFNGKGTFSKEGWTYEGDFVNGQAEGKGKLTTEQ
 EVVYEGTFKQGVFQQK*

Description:

unknown

Assembly ID: 3865710

Assembly Length: 572bp

> 3865710 Strep Assembly -- Assembly id#3865710
 GAGATCTGTCTTGACACCAAAAGTGTGGAGTACGCCAGCTAATTCAACGGCGATATAACC
 AGCGCCTAGAACGCAATTGACTCTGAAGTTCTCCAGGCAAATACATCATCAGAAGA
 GCCACCTAGCTCAGCACCAAGGAATATTAGGAATACTTGGATGGCACCTGTAGCAATCAC
 GATATGTCTAGCACGAATCAGTTCACCATTTACGCTTACAGTATGAGAATCTACAAATT
 AGCATGACCTTCATCAAGTCTACACCCTGCGTTAAACTACCATCATAGAGAAC
 GAGCGCGATCAATGTAGGCTTCAGGATTGCGACGTAGGGTTGCAAAGTTAAAGTTAAGAT
 CAGTAGTCTCAAAGCCGTAGTCTCTCCAAATTGATGGAAAGTCTCAGCGATTGCGGCC
 CGCTACCACATGATTCTTTAGGAACACAACCGACGTTGACACAGGTTCCACCTAATT
 TTTCTCAATAACGGCTGCTTGGCTCATGTTCCCAGCACGGTTCATGGTAGCGATCC
 TCCGCTACCTCCACGATAGCAATGATATCATA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	287	448	R	54 aa

> 3865710-1 ORF translation from 287-448, direction R
 VFLKESCGSGAQIAETFHQFGGDYGFETTDLFNFATLRRNREAYIDRARSSL*

Description:

glutathione reductase (NADPH) (EC 1.6.4.2) - *Streptococcus thermophilus*

Provided in Table 2 is information on the direction of the ORF (forward or reverse) for each polynucleotide in Table 1. Also listed for each ORF is its start and stop codon positions (refer to the columns containing nucleotide code labeled "Start" and "Stop"). The triplet codon sequence for each start and stop codon is also shown. These codons may be shown in the sense orientation or antisense orientation, such as GTG and CAC, respectively, for start codons. The "Length" column discloses the length of each polynucleotide assembly. The direction of translation on the polynucleotide depicted is denoted by and "Forward" for forward or and "Reverse" for reverse (or being on the opposite strand from the one depicted). As indicated above, the "Assembly ID" number is a unique identifier assigned to each ORF of Table 1 and allows a correlation between the data in Tables 1 and 2.

TABLE 2

Assembly ID	Start	Stop	Start	Stop	Length	Direction
3049156	~CAC	TCA~	236	385	50	Reverse
3049862	GTG	TGA	383	526	48	Forward
3112810	~CAC	TTA~	601	804	68	Reverse
3112866	~CAC	TTA~	220	513	98	Reverse
3113664	GTG	TAA	165	392	76	Forward

Assembly ID	Start	Stop	Start	Stop	Length	Direction
3113716	~CAC ..	TTA~	94	291	66	Reverse
3174176	GTG	TAA	139	543	135	Forward
3174186	GTG	TAG	83	283	67	Forward
3174374	GTG	TGA	154	294	47	Forward
3174972	~CAC	TTA~	169	678	170	Reverse
3175138	~CAC	TCA~	79	945	289	Reverse
3175860	GTG	TAA	51	251	67	Forward
3175918	GTG	TGA	212	535	108	Forward
3811220	~CAC	CTA~	316	873	186	Reverse
3811436	~CAC	TTA~	1164	1511	116	Reverse
3811984	GTG	TGA	134	454	107	Forward
3857228	~CAC	TCA~	1141	1356	72	Reverse
3857842	GTG	TAA	45	341	99	Forward
3857996	GTG	TAA	58	456	133	Forward
3858236	~CAC	CTA~	1	261	87	Reverse
3858264	~CAC	TCA~	439	1365	309	Reverse
3858610	~CAC	TTA~	374	949	192	Reverse
3858716	~CAC	CTA~	238	402	55	Reverse
3859124	~CAC	CTA~	73	453	127	Reverse
3859244	~CAC	TTA~	310	462	51	Reverse
3859250	~CAC	CTA~	244	402	53	Reverse
3859588	~CAC	TTA~	102	443	114	Reverse
3859774	~CAC	CTA~	9	131	41	Reverse
3860140	GTG	TAA	302	511	70	Forward
3860140	GTG	TAA	605	856	84	Forward
3860206	~CAC	TTA~	898	1056	53	Reverse
3860270	GTG	TAG	346	966	207	Forward
3860438	GTG	TAG	1	276	92	Forward
3860438	GTG	TGA	460	1128	223	Forward
3860544	GTG	TAA	222	689	156	Forward
3860558	~CAC	TTA~	717	1376	220	Reverse
3860568	GTG	TAA	1040	1291	84	Forward
3860582	GTG	TGA	356	1027	224	Forward
3860724	GTG	TGA	139	498	120	Forward

Assembly ID	Start	Stop	Start	Stop	Length	Direction
3860724	GTG	TGA	686	1024	113	Forward
3860858	GTG	TAG	610	807	66	Forward
3860890	GTG	TAG	397	486	30	Forward
3860952	~CAC	TTA~	449	715	89	Reverse
3860962	~CAC	TTA~	152	646	165	Reverse
3861268	~CAC	TTA~	457	645	63	Reverse
3861270	~CAC	TTA~	627	824	66	Reverse
3861288	~CAC	CTA~	357	572	72	Reverse
3861306	GTG	TAA	717	1208	164	Forward
3861306	GTG	TAA	1201	1410	70	Forward
3861334	GTG	TAA	76	975	300	Forward
3864148	GTG	TAG	212	940	243	Forward
3864148	GTG	TAA	1202	1753	184	Forward
3864148	GTG	TAA	2750	3037	96	Forward
3864172	GTG	TAG	311	862	184	Forward
3864180	~CAC	TTA~	930	1616	229	Reverse
3864184	GTG	TGA	197	670	158	Forward
3864184	GTG	TAA	612	1304	231	Forward
3864194	~CAC	CTA~	1084	1380	99	Reverse
3864338	GTG	TGA	552	1100	183	Forward
3864360	GTG	TAA	47	1078	344	Forward
3864388	GTG	TGA	1239	1586	116	Forward
3864406	~CAC	TTA~	263	958	232	Reverse
3864452	~CAC	TCA~	1079	1201	41	Reverse
3864458	GTG	TAA	797	1105	103	Forward
3864458	GTG	TGA	1179	1391	71	Forward
3864474	~CAC	CTA~	68	247	60	Reverse
3864474	~CAC	TTA~	644	1528	295	Reverse
3864510	~CAC	TTA~	1164	1640	159	Reverse
3864526	~CAC	TTA~	845	1660	272	Reverse
3864548	GTG	TGA	687	1055	123	Forward
3864548	GTG	TAA	979	1932	318	Forward
3864582	~CAC	TTA~	317	550	78	Reverse
3864604	~CAC	CTA~	1	141	47	Reverse
3864604	~CAC	CTA~	1513	1803	97	Reverse
3864610	GTG	TAA	427	1305	293	Forward
3864716	GTG	TAA	57	272	72	Forward
3864718	GTG	TGA	77	1474	466	Forward
3864802	~CAC	TTA~	92	550	153	Reverse

Assembly ID	Start	Stop	Start	Stop	Length	Direction
3864854	~CAC .. CTA~	324	548	75	- Reverse	
3864862	~CAC CTA~	431	1003	191	- Reverse	
3864888	~CAC TTA~	10	657	216	- Reverse	
3864898	GTG TAA	130	1029	300	Forward	
3864938	GTG TGA	883	1326	148	Forward	
3864956	GTG TAA	1030	1251	74	Forward	
3864958	~CAC TCA~	1427	1711	95	- Reverse	
3865022	~CAC TCA~	279	1271	331	- Reverse	
3865036	GTG TAG	79	492	138	Forward	
3865054	~CAC TCA~	302	793	164	- Reverse	
3865102	~CAC CTA~	27	731	235	- Reverse	
3865156	~CAC TTA~	416	808	131	- Reverse	
3865160	GTG TAA	136	375	80	Forward	
3865172	~CAC TTA~	731	1123	131	- Reverse	
3865228	GTG TAA	197	286	30	Forward	
3865230	GTG TGA	272	586	105	Forward	
3865378	~CAC TTA~	421	807	129	- Reverse	
3865470	GTG TAG	98	742	215	Forward	
3865632	GTG TAA	46	456	137	Forward	
3865710	~CAC TCA~	287	448	54	- Reverse	

EXAMPLES

The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative, but do not limit the invention.

Example 1

Isolation of DNA coding for a virulence gene in *Streptococcus pneumoniae*

As mentioned above each of the DNAs disclosed herein by virtue of the fact that it includes an intact open reading frame is useful to a greater or lesser extent as a screen for identifying antimicrobial compounds. A useful approach for selecting the preferred DNA sequences for screen development is evaluation by insertion-duplication mutagenesis. This system disclosed by Morrison et al., *J. Bacteriol.* 159:870 (1984), is applied as follows.

Briefly, random fragments of *Streptococcus pneumoniae*, strain 0100993 DNA are generated enzymatically (by restriction endonuclease digestion) or physically (by sonication based shearing) followed by gel fractionation and end repair employing T4 DNA

polymerase. It is preferred that the DNA fragments so produced are in the range of 200-400 base pairs, a size sufficient to ensure homologous recombination and to insure a representative library in *E.coli*. The fragments are then inserted into appropriately tagged plasmids as described in Hensel et al., Science 269: 400-403(1995). Although a number of plasmids can be used for this purpose, a particularly useful plasmid is pJDC9 described by Pearce et al., Mol. Microbiol. 9:1037 (1993) which carries the erm gene facilitating erythromycin selection in either *E. coli* or *S. pneumoniae* previously modified by incorporation of DNA sequence tags into one of the polylinker cloning sites. The tagged plasmids are introduced into the appropriate *S. pneumoniae* strain selected, inter alia, on the basis of serotype and virulence in a murine model of pneumococcal pneumonia.

It is appreciated that a seventeen amino acid competence factor exists (Havastein et al., Proc. Nat'l. Acad. Sci. USA 92:11140-44 (1995)) and may be usefully employed in this protocol to increase the transformation frequencies. A proportion of transformants are analysed to verify homologous integration and as a check on stability. Unwanted levels of reversion are minimized because the duplicated regions will be short (200-400 bp), however if significant reversion rates are encountered they may be modulated by maintaining antibiotic selection during the growth of the transformants in culture and/or during growth in the animal.

The *S. pneumoniae* transformants are pooled for inoculation into mice, e.g., Swiss and/or C57B1/6. Preliminary experiments are conducted to establish the optimum complexity of the pools and level of inoculum. A particularly useful model has been described by Veber et al. (J. Antimicrob. Chemother. 32:432 (1993) in which 10^5 cfu inocula sizes are introduced by mouth to the trachea. Strain differences are observed with respect to onset of disease e.g., 3-4 days for Swiss mice and 8-10 days for C57B1/6. Infection yields in the lungs approach 10^8 cfu/lung. IP administration is also possible when genes mediating blood stream infection are evaluated. Following optimization of parameters of the infection model, the mutant bank normally comprising several thousand strains is subjected to the virulence test. Mutants with attenuated virulence are identified by hybridization analysis using the labelled tags from the "input" and "recovered" pools as probes as described in Hensel et al., Science 269: 400-403(1995). *S. pneumoniae* DNA is colony blotted or dot blotted, DNA flanking the integrated plasmid is cloned by plasmid rescue in *E. coli* (Morrison et al., J. Bacteriol. 159:870 (1984)) and sequenced. Following sequencing, the DNA is compared to the nucleotide sequences given herein and the appropriate ORF is identified and function confirmed for example by knock-out studies.

Expression vectors providing the selected protein are prepared and the protein is configured in an appropriate screen for the identification of anti-microbial agents. Alternatively, genomic DNA libraries are probed with restriction fragments flanking the integrated plasmid to isolate full-length cloned virulence genes whose function can be confirmed by "knock-out" studies or other methods, which are then expressed and incorporated into a screen as described above.

What is claimed is

1. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

- (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising an amino acid sequence of Table 1;
 - (b) a polynucleotide having at least a 70% identity to a polynucleotide encoding a mature polypeptide expressed by the gene contained in the *S. pneumoniae* of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1;
 - (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence of Table 1;
 - (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
 - (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
- 2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
 - 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.
 - 4. The polynucleotide of Claim 2 comprising the nucleic acid sequence selected from the group consisting of the nucleic acid sequences set forth in Table 1.
 - 5. The polynucleotide of Claim 2 which encodes a polypeptide comprising an amino acid sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
 - 6. A vector comprising the polynucleotide of Claim 1.
 - 7. A host cell comprising the vector of Claim 6.
 - 8. A process for producing a polypeptide comprising: expressing from the host cell of Claim 7 a polypeptide encoded by said DNA.
 - 9. A process for producing a polypeptide or fragment comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide or fragment.
 - 10. A polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
 - 11. A polypeptide comprising an amino acid sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
 - 12. An antibody against the polypeptide of claim 10.

13. An antagonist or agonist of the activity or expression of the polypeptide of claim 10.

14. A method for the treatment or prevention of disease of an individual comprising: administering to the individual a therapeutically effective amount of the polypeptide of claim 10.

15. A method for the treatment of an individual having need to inhibit a bacterial polypeptide comprising: administering to the individual a therapeutically effective amount of the antagonist of Claim 13.

16. A process for diagnosing a disease related to expression or activity of the polypeptide of claim 10 in an individual comprising:

(a) determining a nucleic acid sequence encoding said polypeptide, and/or

(b) analyzing for the presence or amount of said polypeptide in a sample derived from the individual.

17. A method for identifying compounds which interact with and inhibit or activate an activity of the polypeptide of claim 10 comprising:

contacting a composition comprising the polypeptide with the compound to be screened under conditions to permit interaction between the compound and the polypeptide to assess the interaction of a compound, such interaction being associated with a second component capable of providing a detectable signal in response to the interaction of the polypeptide with the compound;

and determining whether the compound interacts with and activates or inhibits an activity of the polypeptide by detecting the presence or absence of a signal generated from the interaction of the compound with the polypeptide.

18. A method for inducing an immunological response in a mammal which comprises inoculating the mammal with the polypeptide of claim 10, or a fragment or variant thereof, adequate to produce antibody and/or T cell immune response to protect said animal from disease.

19. A method of inducing immunological response in a mammal which comprises delivering a nucleic acid vector to direct expression of a polypeptide of claim 10, or fragment or a variant thereof, for expressing said polypeptide, or a fragment or a variant thereof *in vivo* in order to induce an immunological response to produce antibody and/ or T cell immune response to protect said animal from disease.

20. A polynucleotide comprising a polynucleotide sequence selected from the group consisting of the first ten polynucleotides sequences from the top of Table 1.

21. A polypeptide comprising a polypeptide encoded by the polynucleotide of claim 20.

22. The isolated polynucleotide of claim 1 wherein said nucleotide is selected from the group consisting of:

(a) a polynucleotide having at least a 90% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1;

(b) a polynucleotide having at least a 90% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the *S. pneumoniae* of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1;

(c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 90% identical to the amino acid sequence of Table 1;

(d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and

(e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).

23. The isolated polynucleotide of claim 1 selected from the group consisting of:

(a) a polynucleotide having at least a 95% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1;

(b) a polynucleotide having at least a 95% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the *S. pneumoniae* of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1;

(c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 95% identical to the amino acid sequence of Table 1;

(d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and

(e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).

24. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

(a) a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*;

- (b) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 50% identical to the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*; and
- (c) a polynucleotide which is complementary to the polynucleotide of (a) or (b).
25. An isolated Streptococcal polypeptide having one of the amino acid sequences given in Table 1.
26. An isolated nucleic acid encoding one of the amino acid sequences of Claim 1 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
27. Recombinant vectors comprising the nucleic acid sequences of Claim 26 and host cells transformed or transfected therewith.
28. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 1 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
29. Antimicrobial compounds identified by the method of Claim 28.
30. An isolated Streptococcal polypeptide having one of the amino acid sequences given in Table 1.
31. An isolated nucleic acid encoding one of the amino acid sequences of Claim 30 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
32. Recombinant vectors comprising the nucleic acid sequences of Claim 31 and host cells transformed or transfected therewith.
33. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 30 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
34. Antimicrobial compounds identified by the method of Claim 33.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/19226

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 424/130.1, 139.1, 184.1; 435/7.1, 69.3, 320.1, 325; 530/300, 350; 536/23.7

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, MEDLINE, BIOSIS, CA, EMBASE, WPIDS

terms: Streptococcus, pneumoniae, dna, polypeptide, treat, diagnose

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5,476,929 A (BRILES ET AL) 19 December 1995, see entire document	1-5, 20, 22-24, 26, 31
A	SEVIER et al. Monoclonal Antibodies in Clinical Immunology. Clinical Chemistry. 1981, Vol. 27, No. 11, pages 1797-1806, see entire document	1-34
A	US 4,601,980 A (GOEDDEL ET AL) 22 July 1986, see entire document.	1-34
A	US 5,474,905 A (TAI ET AL) 12 December 1995, see entire document.	1-34

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
B earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or other means	"A"	document member of the same patent family
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

21 JANUARY 1998

Date of mailing of the international search report

20 FEB 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

MARK NAVARRO

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US97/19226

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (6):

A61K 38/00, 39/00, 39/395, 39/40; C07H 21/04; C07K 1/00; C12N 15/00; C12P 21/06; G01N 33/53

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

424/130.1, 139.1, 184.1; 435/7.1, 69.3, 320.1, 325; 530/300, 350; 536/23.7

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)