

SEQUENCE LISTING

<110> Hashida, Ryoichi Kagaya, Shinji Yayoi, Yoshihiro Sugita, Yuji Saito, Hirohisa

<120> METHODS FOR EXAMINATION FOR ALLERGIC DISEASES, AND DRUGS FOR TREATING ALLERGIC DISEASES

<130> 3462.1003-000

<140> 10/608,863

<141> 2003-06-27

<150> JP 2002-188490

<151> 2002-06-27

<160> 18

<170> PatentIn Ver. 2.0

<210> 1

<211> 3794

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (730)..(2607)

<400> 1

ataaatqacq tqccqaqaqa gcqaqcqaac gcgcaqccgg gagagcggag tctcctgcct 60 cccqccccc acccctccaq ctcctqctcc tcctccqctc cccatacaca gacgcqctca 120 caccegetee eteactegea cacaegaca caagegegea cacaggetee geacaeacae 180 ttcgctctcc cgcgcgctca cacccctctt gccctgagcc cttgccggtg cagcgcggcg 240 cegeagetgg acgecectee egggeteact ttgcaacget gacggtgeeg geagtggeeg 300 tgqaqgtqqq aacaqcqqcq qcatcctccc ccctqqtcac agcccaaqcc agqacqcccg 360 cggaacctct cggctgtgct ctcccatgag tcgggatcgc agcatccccc accagccgct 420 caccgcctcc gggagccgct gggcttgtac accgcagccc ttccgggaca gcagctgtga 480 ctcccccca gtgcagattt cgggacagct ctctagaaac tcgctctaaa gacggaaccg 540 ccacagcact caaagcccac tgcggaagag ggcagcccgg caagcccggg ccctgagcct 600 ggaccettag eggtgeeggg cageactgee ggegettege etegeeggae gteegeteet 660

cctacactet cagecteege tggagagace eccagececa ecatteageg egeaagatae 720

cctccagat atg ccc tgc gtc caa gcc caa tat agc cct tcc cct cca ggt 7 Met Pro Cys Val Gln Ala Gln Tyr Ser Pro Ser Pro Pro Gly 1 5 10												771				
tcc a Ser S 15																819
atg a Met A																867
atc a Ile T																915
gag g Glu G																963
atg c Met G	cag Gln 80	cgg Arg	ccc Pro	ttg Leu	atc Ile	aaa Lys 85	gtg Val	gag Glu	gag Glu	ggg Gly	cgg Arg 90	gcg Ala	ccc Pro	agc Ser	tac Tyr	1011
cat c His H 95																1059
cag c Gln H																1107
gtg c Val I																1155
ccc a Pro I																1203
gca c Ala I 1																1251
ccg c Pro F 175																1299
ttc c Phe H																1347
ggc g Gly G																1395

ctg Leu	ccg Pro	ctg Leu 225	gga Gly	gcc Ala	gca Ala	gcc Ala	gcc Ala 230	gcg Ala	ggc Gly	agc Ser	cag Gln	gcc Ala 235	gcc Ala	gcg Ala	ctt Leu	1443
					ggg Gly											1491
					ggc Gly 260											1539
					agc Ser											1587
					tgt Cys											1635
					acc Thr											1683
					gca Ala											1731
					cgt Arg 340											1779
					gga Gly											1827
					ggt Gly											1875
					cag Gln											1923
					cga Arg											1971
					tgt Cys 420											2019
_					caa Gln					_		-			-	2067

						gaa Glu										2115
						ctt Leu										2163
						agg Arg 485										2211
						ctg Leu										2259
						att Ile										2307
						gcc Ala										2355
						tta Leu										2403
						agt Ser 565										2451
						tcc Ser										2499
						ggc Gly										2547
						cct Pro										2595
	cta Leu			taa	tcag	gag (cagt	ggag	ca g	tgago	ctgc	c tc	ctct	ccta		2647
gca	cctg	ctt (gcta	cgca	gc a	aagg	gata	g gti	ttgg	aaac	cta	tcat	ttc (ctgt	ccttcc	2707
tta	agag	gaa	aagc	agct	cc to	gtaga	aaag	c aaa	agac	tttc	ttt	tttt.	tct (ggct	cttttc	2767
ctt	acaa	cct a	aaag	ccag	aa aa	actt	gcaga	a gta	attg [.]	tgtt	ggg	gttg	tgt 1	ttta [.]	tattta	2827
ggc	attg	ggg (gatg	gggt	gg ga	aggg	ggtt	a ta	gttc	atga	ggg	tttt	cta a	agaa	attgct	2887

aacaaaqcac ttttqqacaa tqctatccca qcaqqaaaaa aaaggataat ataactgttt 2947 taaaactctt tctggggaat ccaattatag ttgctttgta tttaaaaaca agaacagcca 3007 agggttgttc gccagggtag gatgtgtctt aaagattggt cccttgaaaa tatgcttcct 3067 qtatcaaagg tacgtatgtg gtgcaaacaa ggcagaaact tccttttaat ttccttcttc 3127 ctttatttta acaaatggtg aaagatggag gattacctac aaatcagaca tggcaaaaca 3187 ataatggctg tttgcttcca taaacaagtg caatttttta aagtgctgtc ttactaagtc 3247 ttgtttatta actctccttt attctatatg gaaataaaaa ggaggcagtc atgttagcaa 3307 atgacacgtt aatateeeta geagaggetg tgtteaeett eeetgtegat eeettetgag 3367 gtatggccca tccaagactt ttaggccatt cttgatggaa ccagatccct gccctgactg 3427 tccagctatc ctgaaagtgg atcagattat aaactggatt acatgtaact gttttggttg, 3487 tgttctatca accccaccag agttccctaa acttgcttca gttatagtaa ctgactggta 3547 tattcattca gaagcgccat aagtcagttg agtatttgat ccctagataa gaacatgcaa 3607 atcagcagga actggtcata cagggtaagc accagggaca ataaggattt ttatagatat 3667 aatttaattt ttgttattgg ttaaggagac aattttggag agcaagcaaa tctttttaaa 3727 aaatagtatg aatgtgaata ctagaaaaga tttaaaaaaat agtatgagtg tgagtactag 3787 3794 gaaggat

```
<210> 2
```

<400> 2

Met Pro Cys Val Gln Ala Gln Tyr Ser Pro Ser Pro Pro Gly Ser Ser 1 5 10 15

Tyr Ala Ala Gln Thr Tyr Ser Ser Glu Tyr Thr Thr Glu Ile Met Asn 20 25 30

Pro Asp Tyr Thr Lys Leu Thr Met Asp Leu Gly Ser Thr Glu Ile Thr 35 40 45

Ala Thr Ala Thr Thr Ser Leu Pro Ser Ile Ser Thr Phe Val Glu Gly 50 55 60

Tyr Ser Ser Asn Tyr Glu Leu Lys Pro Ser Cys Val Tyr Gln Met Gln 65 70 75 80

Arg Pro Leu Ile Lys Val Glu Glu Gly Arg Ala Pro Ser Tyr His His
85 90 95

<211> 626

<212> PRT

<213> Homo sapiens

His	His	His	His 100	His	His	His	His	His 105	His	His	His	Gln	Gln 110	Gln	His
Gln	Gln	Pro 115	Ser	Ile	Pro	Pro	Ala 120	Ser	Ser	Pro	Glu	Asp 125	Glu	Val	Leu
Pro	Ser 130	Thr	Ser	Met	Tyr	Phe 135	Lys	Gln	Ser	Pro	Pro 140	Ser	Thr	Pro	Thr
Thr 145	Pro	Ala	Phe	Pro	Pro 150	Gln	Ala	Gly	Ala	Leu 155	Trp	Asp	Glu	Ala	Leu 160
Pro	Ser	Ala	Pro	Gly 165	Cys	Ile	Ala	Pro	Gly 170	Pro	Leu	Leu	Asp	Pro 175	Pro
Met	Lys	Ala	Val 180	Pro	Thr	Val	Ala	Gly 185	Ala	Arg	Phe	Pro	Leu 190	Phe	His
Phe	Lys	Pro 195	Ser	Pro	Pro	His	Pro 200	Pro	Ala	Pro	Ser	Pro 205	Ala	Gly	Gly
His	His 210	Leu	Gly	Tyr	Asp	Pro 215	Thr	Ala	Ala	Ala	Ala 220	Leu	Ser	Leu	Pro
Leu 225	Gly	Ala	Ala	Ala	Ala 230	Ala	Gly	Ser	Gln	Ala 235	Ala	Ala	Leu	Glu	Ser 240
His	Pro	Tyr	Gly	Leu 245	Pro	Leu	Ala	Lýs	Arg 250	Ala	Ala	Pro	Leu	Ala 255	Phe
Pro	Pro	Leu	Gly 260	Leu	Thr	Pro	Ser	Pro 265	Thr	Ala	Ser	Ser	Leu 270	Leu	Gly
Glu	Ser	Pro 275	Ser	Leu	Pro	Ser	Pro 280	Pro	Ser	Arg	Ser	Ser 285	Ser	Ser	Gly
Glu	Gly 290	Thr	Cys	Ala	Val	Cys 295	Gly	Asp	Asn	Ala	Ala 300	Cys	Gln	His	Tyr
Gly 305	Val	Arg	Thr	Cys	Glu 310	Gly	Cys	Lys	Gly	Phe 315	Phe	Lys	Arg	Thr	Val 320
Gln	Lys	Asn	Ala	Lys 325	Tyr	Val	Cys	Leu	Ala 330	Asn	Lys	Asn	Cys	Pro 335	Val
Asp	Lys	Arg	Arg 340	Arg	Asn	Arg	Cys	Gln 345	Tyr	Cys	Arg	Phe	Gln 350	Lys	Cys
Leu	Ser	Val 355	Gly	Met	Val	Lys	Glu 360	Val	Val	Arg	Thr	Asp 365	Ser	Leu	Lys
Gly	Arg 370	Arg	Gly	Arg	Leu	Pro 375	Ser	Lys	Pro	Lys	Ser 380	Pro	Leu	Gln	Gln
Glu 385	Pro	Ser	Gln	Pro	Ser 390	Pro	Pro	Ser	Pro	Pro 395	Ile	Cys	Met	Met	Asn 400

gtttttttt ttttta

7/12

Ala Leu Val Arg Ala Leu Thr Asp Ser Thr Pro Arg Asp Leu Asp Tyr Ser Arg Tyr Cys Pro Thr Asp Gln Ala Ala Ala Gly Thr Asp Ala Glu His Val Gln Gln Phe Tyr Asn Leu Leu Thr Ala Ser Ile Asp Val Ser Arg Ser Trp Ala Glu Lys Ile Pro Gly Phe Thr Asp Leu Pro Lys Glu Asp Gln Thr Leu Leu Ile Glu Ser Ala Phe Leu Glu Leu Phe Val Leu Arg Leu Ser Ile Arg Ser Asn Thr Ala Glu Asp Lys Phe Val Phe Cys Asn Gly Leu Val Leu His Arg Leu Gln Cys Leu Arg Gly Phe Gly Glu Trp Leu Asp Ser Ile Lys Asp Phe Ser Leu Asn Leu Gln Ser Leu Asn 520 Leu Asp Ile Gln Ala Leu Ala Cys Leu Ser Ala Leu Ser Met Ile Thr Glu Arg His Gly Leu Lys Glu Pro Lys Arg Val Glu Glu Leu Cys Asn 555 Lys Ile Thr Ser Ser Leu Lys Asp His Gln Ser Lys Gly Gln Ala Leu 570 Glu Pro Thr Glu Ser Lys Val Leu Gly Ala Leu Val Glu Leu Arg Lys 585 Ile Cys Thr Leu Gly Leu Gln Arg Ile Phe Tyr Leu Lys Leu Glu Asp 600 Leu Val Ser Pro Pro Ser Ile Ile Asp Lys Leu Phe Leu Asp Thr Leu 615 620 Pro Phe 625 <210> 3 <211> 17 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Artificially Synthesized Primer Sequence <400> 3

<210><211><211><212><213>	17	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Primer Sequence	
<400> gttttt	4 Etttt tttttc	17
<210> <211> <212> <213>	17	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Primer Sequence	
<400> gtttt	5 Etttt tttttg	17
<210><211><212><213>	10	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Primer Sequence	
<400> cattc		10
<210><211><211><212><213>	22	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Primer Sequence	
<400> tgcct	7 tgtct agaactgcac ag	22
<210><211><211><212><213>	21	

<220> <223>	Description of Artificial Sequence: Artificially Synthesized Primer Sequence	
<400> aagtgt	8 cgttg gaccaagcag c	21
<210><211><211><212><213>	26	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Probe Sequence	
<400> aagtca	9 agtgc agagcctgga tgagga	26
<210><211><211><212><213>	25	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Primer Sequence	
<400> tcacco	10 cacac tgtgcccatc tacga	25
<210><211><211><212><213>	25	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Primer Sequence	
<400> cagcgg	11 gaacc gctcattgcc aatgg	25
<210><211><211><212><213>	26	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Probe Sequence	

<220><221><222><223>	(1)	_binding									
<222>	(7)	_binding . TAMRA									
<400> 12 atgccctccc ccatgccatc ctgcgt											
<210><211><211><212><213>	23 DNA	Ficial Seque	ence								
<220> <223>			Artificial S mer Sequence	Sequence:Art	cificially						
<400> 13 gttccaggca ataacatcat acc											
<210><211><212><212><213>	23 DNA	Ficial Seque	ence								
<220> <223> Description of Artificial Sequence: Artificially Synthesized Primer Sequence											
<400> gctact		aaactcccaa	atg				23				
<210><211><211><212><213>	2087 DNA	sapiens									
<400> ggcaaa		tgtactttaa	aaagtgccat	tggatgattc	tttggcacac	taaggtttga	60				
gaacca	atcga	tatagtttat	aataacaact	caattttacc	ttgaattttc	cagcttttcc	120				
tggggt	tgag	aagggatgag	caatagagat	ataaattttc	ctgaaagcaa	tcaattcatt	180				
taacaa	aatac	ttactgaatg	gctgctaggt	agtaggcact	gttccagggc	aatggacacg	240				
ttgctg	gaaca	agacaaagcc	cttatccaca	tgaaccttac	atacctgtaa	aggagaaaaa	300				
gagtaa	acaa	atatacaatt	gcagtgatgt	cattggtggg	aggagaggaa	ttttttgctt	360				

tttgcttttt ggagtggggg catagagtta gatcagaaaa gaaaaaattg gggggaaaat 420 atattcattg ccaattttta aaatgtcact ttttaaagtg taagaaccta agaatatgta 480 tacatagttt gacttataca atgatcacat ctaaaatttt tagagctata gttgagaaaa 540 gtaacatttt aaggggagaa aaacgtgtcc ttagcgtagt ctacatattt agccagggct 600 gaaagtgaga tagagtaaat attagattcc actctgctat taaagcctca catcactaat 660 ttttgagggg tggtgttttc catgggtctc acttaatttc cacacaaata tctcatttgg 720 ggcctgggct attgctgaag tctgacttgt atagctgcgt tactgccata tgaaacacac 780 agacccattt tagtttacat aatatccatt gctgttgttt gcagctctag attcccattc 840 taggtgcttt agagaaacct tccttaggca ttggctgtca gtaaatgtaa tactgtgtct 900 ttgactagtg agaaagccag agttctgaca gatcaataac ccctataggg tggaaaaaaa 960 ttagtataaa caggaaaaaa gttcacttaa aaaaatcttt ttgcatttga cctatgttcg 1020 attggcatga tcagtaagca aatatttcta gattttcttt gtcaaacccc aaacctactt 1080 ttccaactct aggaccagta ttcattgggt gaggttttcc taaactggta ggccaggcag 1200 agaaaaaatc taaaacgttt tgttccgttc ctttacatct tatgtccaat agaggagatt 1260 tttettttee teeageattg gatgetgaee eteeagteae eeecaagtta etggtggete 1320 agactgaatt cactttggct ccaaaattct gagacttgga ccaaaaccac tgcaggtgaa 1380 gcccagagga tctggctgga gcctggcagg ctgggccggc tggctttcct tcttgctggg 1440 ctccatcaga gaaaagtaca cacacagggt gggcagggac ttcacttccc tgtgtgcaga 1500 aggcatgaaa tgtgagccca gcaggggcag aagcctgcag aggaccctgg gtgaaagcta 1560 cacactttga tggattctga acaaatattg gaagcagaga gattgttgag ttgtgagcca 1620 tggattcagg ggagtcagtg caggaggtag ctgtcagatc cattctcagg ggaaactatt 1680 cattetttag tettttete teteceaeta tittaaaaca aaataatget gaateagtgt 1740 caagttccag gcaataacat catacctggt gtgatttagc aatatttaga atcatttaat 1800 gcaagagcca gaagtaatct tagggatcag gtagtccact ttattcctgt tccagagact 1860 gaaactgact cagagaggtt aaatgccttg tctagaactg cacagcaagt cagtgcagag 1920 cctggatgag gaccccatga cctgctgctt ggtccaacac actttccttt actcccactc 1980 atttgggagt ttcacaagta gctccctcag cttttgaaag ggaggatctg ccctgaattt 2040 2087 cattctgctc ttggagagcc tgtggaatta ttaaataaat tcataaa

<210><211><211><212>	19	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:Artificially Synthesized Primer Sequence	
<400> tgggtg	16 gccct ggtagaact	19
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Primer Sequence	
<400> gcttca	17 aggta gaagatgcgc t	21
<210><211><211><212><213>	24	
<220> <223>	Description of Artificial Sequence: Artificially Synthesized Probe Sequence	
<400> aggaa	18 gatet geaccetggg cete	24