МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по научно-исследовательской работе

Тема: Система автоматической проверки наиболее частых формальных ошибок в научных текстах

Студент гр. 3304	 Блеес Э.И.
Руководители	 Заславский М.М.
	Кринкин К.В.

Санкт-Петербург 2018

ЗАДАНИЕ

на научно-исследовательскую работу

Студент Блеес Э.И.				
Группа 3304				
Тема НИР: Система автоматической проверки наиболее частых формальных				
ошибок в научных текстах				
Задание на НИР:				
• изучение возможности автоматизации параметров проверки научных				
статей на соответствие научному стилю;				
• разработка исполняемого сценария для проверки научной статьи по				
автоматизируемым критериям;				
• исследование разработанного сценария на опубликованных научных				
статьях для получения рекомендованных границ для критериев;				
G				
Сроки выполнения НИР: 13.02.2018 – 27.05.2018				
Дата сдачи отчета: 25.05.2018				
Дата защиты отчета: 25.05.2018				
Студент Блеес Э.И.				
Руководители Заславский М.М.				

Кринкин К.В.

АННОТАЦИЯ

В данной статье приведено исследование возможности автоматизации процесса проверки научных статей на соответствие научному стилю, в результате которого было показано, что часть критериев проверки может быть автоматизирована. Было предложено решение по автоматизации процесса проверки научных статей в виде исполняемого сценария, проверяющего текст по нескольким критериям. Было проведено исследование решения на выборке статей, опубликованных в научных журналах ВАК и базе RSCI, в результате которого выявлены границы критериев автоматической проверки статей, которые будут использоваться в дальнейшем для рекомендаций при проверке.

SUMMARY

This article explores the possibilities of automating the process of checking scientific articles for compliance with the scientific style, as a result of which it was shown that some of the verification criteria can be automated. A solution was proposed to automate the process of checking articles in the form of an executable script that verifies the text by several criteria. A study was conducted on a sample of articles published in the scientific journals of the Higher Attestation Commission and the RSCI database, as a result of which the boundaries of the verification criteria were identified, which will be used subsequently for recommendations in the audit of papers.

СОДЕРЖАНИЕ

	Введение	5
1.	Обзор предметной области	6
1.1.	Критерии сравнения аналогов	7
1.2.	Выбор метода решения	8
2.	Исполняемый сценарий	10
2.1.	Описание метода решения	10
2.2.	Сценарии использования	10
2.3.	Алгоритм работы и используемые технологии	10
2.4.	Исследование решения	11
2.5.	Выводы	13
	Заключение	14
	Список использованных источников	15
	Приложение А. Сведения о сборнике конференции	16

ВВЕДЕНИЕ

Соответствие статьи научному стилю является одним из основных критериев принятия статьи к публикации. В текущем виде, процесс проверки представляет собой отправку статьи на обзор третьим лицам, ожидание ответа, исправление недочетов и отправка на повторную проверку – это очень долго. В связи с этим, автоматизация данного процесса является актуальной задачей, позволяющей значительно ускорить процесс выявления ошибок исправления, и в следствие этого ускорить сам процесс публикации статьи. В соответствие задача исследования ЭТИМ возникает автоматизации процесса проверки научных статей на соответствие научному стилю. Также возникает необходимость предложить решение, позволяющее проверить научную статью по нескольким критериям, основываясь проведенном исследовании.

1. ОБЗОР ПРЕМЕТНОЙ ОБЛАСТИ

Научный стиль - наиболее строгий стиль речи, используемый для написания научных статей. Характеризуется использованием научной терминологии, исключая жаргонизмы. Научный стиль не допускает личного изложения [1]. Проверяя текст на соответствие научному стилю есть смысл реализовать и базовую проверку на качество текста. К такого рода анализу можно отнести SEO-анализ.

SEO (search engine optimization) анализ [2-3] популярен и актуален в связи с необходимостью продвижения своих ресурсов, товаров и услуг в интернете. SEO-анализ текста дает возможность понять, не переспамлен ли текст, насколько велика его тошнота, или не преобладает ли в нем вода, какие слова являются подавляющими и т.д. Основные термины SEO-анализа:

- Тошнота это показатель повторений в текстовом документе ключевых слов и фраз. Синонимом тошноты является термин плотность [3];
- Стоп-слова это слова в тексте, которые не несут смысловой нагрузки. Иначе их называют также шумовые слова [3];
- Вода процентное соотношение стоп-слов и общего количества слов в тексте [3].

Рассмотрим возможность автоматизации критериев проверки текста. Уровень "воды" в тексте, его "тошнотность" и подсчет других числовых показателей, очевидно, можно автоматизировать. Но также важными показателями научной статьи являются её экспертность и полезность. На данный момент это может проверить только специалист в данной области, но разработки подобных инструментов ведутся [4].

Эти критерии можно применить и при проверке научных статей, но существуют веб-сервисы, проверяющие текст по этим критериям - сервисы, позволяющие провести SEO-анализ текста.

1y.ru

Анализатор качества контента [5]. Анализ проводится на базе закона Ципфа, то есть качество текста в данном случае определяется на основании соответствия частоты употребления слов в естественной речи и тексте. Результат выдается в двух окнах: в одном — график, в другом — частота использования отдельных слов и рекомендации по корректировке.

text.ru

Сервис проверки текстов по многим параметрам, включая уникальность, проверку орфографии, выделение ключевых слов [6].

contentmonster.ru

Сервис, осуществляющий поиск стоп-слов и подсчет их процентного соотношения к общей длине текста [7]. Определяет стоп-слова как всё то, что не несет самостоятельной смысловой нагрузки, но без чего не бывает связных текстов: предлоги, частицы, междометия, причастия, союзы, а также некоторые наречия, существительные и глаголы. Слишком большое количество таких слов затрудняет восприятие текста и увеличивает его водность.

1.1. Критерии сравнения аналогов

Сравнение аналогов будет проводиться по следующим критериям:

- Многокритериальная проверка как много критериев проверки использует сервис;
- Ограничение длины текста отсутствие ограничения длины текста, поступающего на проверку;
- Проверка научного стиля проверка текста на соответствие научному стилю.

В табл.1 представлено сравнение аналогов.

Таблица 1 - Сравнение аналогов

	Многокритериальная	Ограничение длины	Проверка научного
Аналог	проверка	текста	стиля
1y.ru	-	-	-
text.ru	+	+	-
contentmonster.ru	+	-	-

Результаты сравнения показывают, что часть существующих сервисов предлагает многокритериальную проверку текста, при этом, не ограничивая его по длине. Но все аналоги осуществляют SEO-проверку, ни один из них не реализует проверку статьи на соответствие научному стилю.

1.2. Выбор метода решения

Результаты сравнения аналогов показывают, что существует множество сервисов для SEO-проверки текста, но нет инструментов для проверки текста или статьи на соответствие научному стилю.

В связи с этим задачей является реализация решения, позволяющего автоматизировать проверку научных статей на соответствие научному стилю по нескольким критериям.

Метод решения - разработка исполняемого сценария. Данный метод выбран в связи с:

- Простотой разработки сценария;
- Легкостью поддержки решения;
- Легкостью запуска.

Реализуемые критерии проверки статьи:

- Анализ текста соответствию закону Ципфа [8-9] с рассчетом отклонения от идеального распределения;
 - Проверка водности текста.

Закон Ципфа - эмпирическая закономерность распределения частоты слов естественного языка: если все слова языка или достаточно длинного текста упорядочить по убыванию частоты их использования, то частота n-го слова в таком списке окажется приблизительно обратно пропорциональной его

порядковому номеру n [8-9]. Соответствие распределения слов в тексте закону Ципфа говорит об уровне его естественности.

Определение естественности текста осуществляется на основе отклонения графика частоты встречаемости слов от идеального графика по

Ципфу. Закономерность Ципфа: $P_n = \frac{P_1}{n}$, где P_n - частота встречаемости п-

го по рангу слова; P_1 - количество повторений самого популярного слова в тексте. Показатель отклонения σ вычисляется на основе среднеквадратичного отклонения точек дискретной функции f(x) - практических показателей текста от точек дискретной функции g(x) - идеальной функции по Ципфу. Показатель отклонения:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (g(x_i) - f(x_i))^2}$$

Данные критерии проверки были выбраны для реализации в первую очередь в связи с их наглядностью и простотой исправления замечаний автором проверяемой статьи. Решение является расширяемым и позволит в дальнейшем увеличить количество критериев проверки текста.

2. ИСПОЛНЯЕМЫЙ СЦЕНАРИЙ

2.1. Описание метода решений

Исполняемый сценарий разработан на языке Python. Python выбран в связи с легкостью написания исполняемых сценариев на языке, а также наличием большого количества модулей для языка для разнообразных задач.

2.2. Сценарий использования

Предполагается единственный сценарий использования разработанного решения, состоящий из следующих этапов:

- 1. Запуск исполняемого сценария с указанием пути к директории с файлами для проверки;
 - 2. Получение результата проверки.

В качестве выходных данных пользователь получает json файл с объектами, содержащими числовой показатель водности текста, числовой показатель тошноты текста и числовое значение отклонения графика частоты встречаемости слов в тексте от идеального графика по Ципфу. В дополнение к этому пользователю предоставляются рекомендации по интерпретации полученных результатов проверки

2.3. Алгоритм работы и используемые технологии

Поставленная задача требовала решения следующих подзадач:

- Получения текста из файла;
- Синтаксический разбор текста;
- Анализ текста как набора слов;
- Математические расчеты и построение графиков.

Получение текста из pdf, md, doc, docx файлов выполняется с помощью модуля textract. Полученный текст с помощью регулярного выражения разбивается на слова, получая список слов текста. Работа с регулярными

выражениями осуществляется с помощью модуля re. Полученный список слов текста необходимо привести в нормальную языковую форму для дальнешей обработки, что возможно благодаря модулю pymorphy2 - морфологического анализатора для русского языка.

На данном этапе для определения "водности" текста необходимо подсчитать количество стоп-слов в нем, и исключить их для дальнейшей обработки. Список стоп-слов русского языка содержится в модуле nltk. Вычислительная работа с данными для их отображения осуществляется с помощью модуля scipy. Графики строятся средствами модуля matplotlib.

2.4. Исследование решения

Исследование решения проводилось на выборке из 1120 статей из журналов ВАК и базы RSCI, загруженных из ресурса Cyberleninka [10], с помощью вспомогательного скрипта. Так как эти статьи опубликованы в журналах ВАК и базе RSCI, можно опираться на результаты их проверки для получения рекомендованных интервалов критериев.

Рисунок 1 – Гистограмма числового показателя тошноты текста

Рисунок 2 – Гистограмма числового показателя водности текста

Рисунок 3 — Гистограмма числового показателя отклонения текста от закона Ципфа

Полученные данные свидетельствуют о наличии нормального распределения в выборке по каждому критерию. Рекомендуемый диапазон критерия – диапазон, в котором находится большая часть выборки, границы

которого находятся вычетом и добавлением среднеквадратичного отклонения к медиане выборки. Полученные результаты представлены в табл. 2:

Таблица 2 - Полученные результаты

Критерий	Медиана	Среднеквадратичное	Рекомендуемый
		отклонение	диапазон
Тошнота текста	9.42	4.53	[4.89, 13.95]
Водность текста	17.21	3.87	[13.34, 21.08]
Отклонение от	7.18	2.66	[4.52, 9.84]
идеальной кривой по			
Ципфу			

2.4. Выводы

В результате работы было проведено исследование возможности автоматизации процесса проверки научных статей на соответствие "научному стилю". Было предложено и реализовано решение в виде исполняемого сценария, позволяющее проверить научную статью на соответствие закону Ципфа, а также выполняющее расчет процентного соотношения стоп-слов к общему количеству слов в тексте. В качестве выходных данных пользователь получает числовой показатель "водности" текста, а также график соответствия текста закону Ципфа. В дополнение к этому пользователю предоставляются рекомендации ПО интерпретации полученных результатов проверки, полученные в результате проведения исследования решения на выборке статей, опубликованных в журналах ВАК и базе RSCI. В дальнейшем планируется увеличить количество критериев для проверки и реализовать веб-сервис.

ЗАКЛЮЧЕНИЕ

В результате выполнения работы было проведено исследование решения на выборке статей, опубликованных в научных журналах ВАК и базе RSCI, в результате которого выявлены границы критериев автоматической проверки статей, которые будут использоваться в дальнейшем для рекомендаций при проверке.

В ходе выполнения НИР была написана статья «Автоматизация процесса проверки текста на соответствие научному стилю». Статья опубликована в сборнике конференции «Современные технологии в теории и практике программирования». Сведения о сборнике представлены в Приложении А.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Демидова А. К. Пособие по русскому языку: научный стиль, оформление научной работы. Рус. яз., 1991.
- 2. Davis H. Search engine optimization. "O'Reilly Media, Inc.", 2006.
- 3. Словарь терминов семантического анализа. // URL: seopult.ru/library
- 4. Dong X. L. et al. Knowledge-based trust: Estimating the trustworthiness of web sources //Proceedings of the VLDB Endowment. − 2015. − T. 8. − №. 9. − C. 938-949.
- 5. Сервис оценки качества текста. // URL: 1y.ru
- 6. Сервис оценки качества текста. // URL: text.ru
- 7. Сервис оценки качества текста. // URL: contentmonster.ru
- 8. Newman M. E. J. Power laws, Pareto distributions and Zipf's law //Contemporary physics. -2005. -T. 46. -N0. 5. -C. 323-351.
- Lelu A. Jean-Baptiste Estoup and the origins of Zipf's law: a stenographer with a scientific mind (1868-1950) //Boletín de Estadística e Investigación Operativa. 2014. T. 30. №. 1. C. 66-77.
- 10. Научная электронная библиотека «Киберленинка». // URL: cyberleninka.ru

ПРИЛОЖЕНИЕ А

СВЕДЕНИЯ О СБОРНИКЕ КОНФЕРЕНЦИИ

УДК 004 ББК 32.973 С56

Современные технологии в теории и практике программирования : сборник материалов конференции, 24 апреля 2018 г. – СПб. : Изд-во Политехн. ун-та, 2018. – 174 с.

В сборнике публикуются материалы докладов студентов ряда вузов, представленные на научно-практическую конференцию, проводимую Санкт-Петербургским политехническим университетом Петра Великого и организованную Институтом компьютерных наук и технологий при поддержке Санкт-Петербургского Центра разработок Dell EMC и компании ЕРАМ. Доклады отражают современный уровень подготовленности студентов СПБПУ и других вузов — участников конференции в области применения современных средств и технологий разработки программного обеспечения.

Представляет интерес для специалистов в области информационных технологий, методов разработки программных проектов различного назначения, систем и средств автоматизации инженерного проектирования, для учащихся и работников системы высшего образования.

Редакционная коллегия: директор ВШ ПИ ИКНТ П. Д. Дробинцев, профессор В. П. Котляров

Печатается по решению Совета по издательской деятельности Ученого совета Санкт-Петербургского политехнического университета Петра Великого.

- © Санкт-Петербургский центр разработок Dell EMC, 2018
- © EPAM SYSTEMS, 2018
- © Санкт-Петербургский политехнический университет Петра Великого, 2018

ISBN 978-5-7422-6163-6