Face Processing

IN4393 – Computer Vision

Introduction

- Face processing/analysis comprises a number of different tasks:
 - Face detection ("where is a face?")
 - Face recognition ("of whom is this face?")
 - Face verification ("are these faces the same?")
 - Expression recognition ("is this face happy or not?")

• Train a *classifier* to predict whether a bounding box contains a face or not:

feature 1 →

At test time, use a sliding window detector for multiple scales:

• Use non-maxima suppression in x-y-scale space to filter classifier predictions

• Extract *Haar features* from the image patch, using the *integral image*:

• We find features that are common in faces, and use these as weak learners

• Features can be computed efficiently using the *integral image*:

12	8	2	4	7	12	20	22	26	33
2	11	3	6	8	14	33	38	48	63
3	2	0	1	10	17	38	43	54	79
1	5	2	7	2	18	44	51	69	96
0	0	2	3	2	18	44	53	74	103

• Features can be computed efficiently using the *integral image*:

12	8	2	4	7	12	20	22	26	33
2	11	3	6	8	14	33	38	48	63
3	2	0	1	10	17	38	43	54	79
1	5	2	7	2	18	44	51	69	96
0	0	2	3	2	18	44	53	74	103

• Features can be computed efficiently using the *integral image*:

						D			В	
12	8	2	4	7		12	20	22	26	33
2	11	3	6	8		14	33	38	48	63
3	2	0	1	10		₹	38	43	5 4	79
1	5	2	7	2		18	44	51	69	96
0	0	2	3	2	•	18	44	53	74	103

• Extract *Haar features* from the image patch, using the *integral image*:

• We find features that are common in faces, and use these as weak learners

AdaBoost training on annotated data set; learns collection of weak learners:

$$h(\mathbf{x}) = \operatorname{sign}\left[\sum_{i=1}^{m} \alpha_i h_i(\mathbf{x})\right]$$

AdaBoost training on annotated data set; learns collection of weak learners:

$$h(\mathbf{x}) = \operatorname{sign}\left[\sum_{i=1}^{m} \alpha_i h_i(\mathbf{x})\right]$$

• In Viola & Jones, the weak learners are *decision stumps*:

$$h_i(\mathbf{x}) = [f_i \ge \theta_i]$$

AdaBoost training on annotated data set; learns collection of weak learners:

$$h(\mathbf{x}) = \operatorname{sign}\left[\sum_{i=1}^{m} \alpha_i h_i(\mathbf{x})\right]$$

• In Viola & Jones, the weak learners are decision stumps:

$$h_i(\mathbf{x}) = [f_i \ge \theta_i]$$

• Iteratively select the learner that minimizes the weighted classification error:

$$e_i = \sum_{n=1}^{N} w_{n,i} (1 - \delta(y_n, h_i(\mathbf{x}_n; \theta_i)))$$

- Efficient algorithms exist to find the threshold in linear time
- Update the *per-instance weights* based on the classification error of weak learner

Final classifier is a combination of weak classifiers

Face detection

Schematic overview of AdaBoost learning with decision stumps:

- Update for per-instance weights: $w_{n,i+1} \leftarrow w_{n,i} \left(\frac{e_i}{1-e_i}\right)^{1-\delta(y_n,h_i(\mathbf{x}_n;\theta_i))}$
- Weak-learner weights given by: $\alpha_i = -\log\left(\frac{e_i}{1-e_i}\right)$

- To perform the detection, we use a sliding window detector (at multiple scales)
- The classification of a patch can be performed using a cascaded classifier.

Note that this is extremely fast at test time: for negative examples, we typically only need to compute a very small number of features!

• False positive rate of a cascade with K classifiers: $FPR = \prod_{i=1}^{K} FPR_i$

• Detection rate of a cascade with K classifiers: $DR = \prod DR_i$

- False positive rate of a cascade with K classifiers: $FPR = \prod_{i=1}^{K} FPR_i$
- Detection rate of a cascade with K classifiers: $DR = \prod^{-1} DR_i$

- Assume we have a cascade of K = 32 classifiers:
 - To get a false positive rate of 10⁻⁶, each classifier may have FPR of 65%
 - To get a detection rate of 90%, each classifier should have DR of 99.7%

Multiple locations near a face will typically yields multiple detections

- In the original V&J detector, the detections are post-processed as follows:
 - Whenever two detections overlap, the bounding boxes are merged
 - The final detection is the average of the corners of all merged detections:

• Examples of face detections (using V&J implementation in OpenCV):

• Detection of profile faces requires training on separate data set:

Consider face images as high-dimensional data points

Apply dimension reduction on the images to obtain low-dimensional features

• The reduction is performed using *principal components analysis*

• Principal Components Analysis maps the data in a *linear subspace*, such that the *variance* of the projected data is maximized:

- Our objective is to maximize variance: $\max_{\|\mathbf{w}\|^2=1} var(\mathbf{w}^T\mathbf{X})$
- Assuming zero-mean data: $var(\mathbf{w}^T\mathbf{X}) = [\mathbf{w}^T\mathbf{X}\mathbf{X}^T\mathbf{w}] = [\mathbf{w}^T\mathbf{C}\mathbf{w}]$

• Enforce constraint using Lagrange multipliers:

$$\max_{\|\mathbf{w}\|^2=1} var(\mathbf{w}^T \mathbf{X}) = \max_{\mathbf{w}, \lambda} \mathbf{w}^T \mathbf{C} \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1)$$

• Set gradient with respect to ${f w}$ to zero: ${f Cw}-\lambda{f w}=0$ ${f Cw}=\lambda{f w}$

We can move through the PCA subspace to generate new faces:

• We can visualize the eigenfaces to show the main sources of variation:

• We may use $\mathbf{z} = \left[\mathbf{w}_1^{\mathrm{T}}\mathbf{x}, \dots, \mathbf{w}_p^{\mathrm{T}}\mathbf{x}\right]^{\mathrm{T}}$ as features for identity recognition

• Separates face variations into *shape* and *texture* variation:

- Gather a data set of face images with annotated feature points
- Remove translations and rotations from point annotations (Procrustes alignment)
- Learn point distribution model and texture model from the data

Point distribution model is obtained using PCA:

New facial shape is generated by linearly combining the components:

• Texture model is also obtained using PCA:

New facial textures are generated using a linear combination of components:

• We receive a new face image in which we want to measure facial features:

- Now what do we do to fit the active appearance model to this new face?
 - Find parameters of the model that best fit the face (minimizing sum of squared errors) using *Lucas-Kanade algorithm*

Image warp

• We can warp between an arbitrary shape and the base shape (and vice versa):

Image warp

• We can warp between an arbitrary shape and the base shape (and vice versa):

• Minimizes sum of squared error w.r.t. **p** using *Gauss-Newton* algorithm:

Minimizes sum of squared error w.r.t. p using Gauss-Newton algorithm:

Goal: Set the shape parameters **p** such that the left image looks as much as possible like the right image

• Minimizes sum of squared error w.r.t. **p** using *Gauss-Newton* algorithm:

$$\sum_{\mathbf{x}} [A_0(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p}))]^2$$

• Iteratively solve for parameter increment $\Delta {f p}$:

$$\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} [A_0(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p}))]^2$$

• Minimizes sum of squared error w.r.t. **p** using *Gauss-Newton* algorithm:

$$\sum_{\mathbf{x}} [A_0(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p}))]^2$$

• Iteratively solve for parameter increment $\Delta \mathbf{p}$:

$$\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} [A_0(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p}))]^2$$

• This is strongly non-linear, so write down *first-order Taylor expansion*:

Minimizes sum of squared error w.r.t. p using Gauss-Newton algorithm:

$$\sum_{\mathbf{x}} [A_0(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p}))]^2$$

• Iteratively solve for parameter increment $\Delta \mathbf{p}$:

$$\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} [A_0(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p}))]^2$$

• This is strongly non-linear, so write down first-order Taylor expansion:

$$\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \left[A_0(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p})) - \nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p} \right]^2$$

• As expected, this is a standard linear least squares problem

Gradient Images

• Illustration of the image gradient ∇I

• Illustration of the warp Jacobian: $\frac{\partial W}{\partial \mathbf{p}} = \frac{\partial W}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \mathbf{p}}$

• Illustration of the warp Jacobian: $\frac{\partial W}{\partial x}$

$$\frac{\partial W}{\partial \mathbf{p}} = \frac{\partial W}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \mathbf{p}}$$

Closed-form solution for the parameter update:

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial W}{\partial \mathbf{p}} \right]^{\mathrm{T}} \left[A_0(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p})) \right]$$

ullet Herein, old H is the Gauss-Newton approximation to the Hessian:

$$\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial W}{\partial \mathbf{p}} \right]^{\mathrm{T}} \left[\nabla I \frac{\partial W}{\partial \mathbf{p}} \right]$$

Closed-form solution for the parameter update:

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial W}{\partial \mathbf{p}} \right]^{\mathrm{T}} \left[A_0(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p})) \right]$$

ullet Herein, old H is the Gauss-Newton approximation to the Hessian:

$$\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial W}{\partial \mathbf{p}} \right]^{\mathrm{T}} \left[\nabla I \frac{\partial W}{\partial \mathbf{p}} \right]$$

Every iteration requires computation of warp Jacobian and Hessian

- 1. Warp *I* with $\mathbf{W}(\mathbf{x};\mathbf{p}) \Rightarrow I(\mathbf{W}(\mathbf{x};\mathbf{p}))$
- 2. Compute error image $A_o(x) I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
- 3. Warp gradient of I to compute ∇I
- 4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$
- 5. Compute Hessian
- 6. Compute $\Delta \mathbf{p}$
- 7. Update parameters $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$

• Illustration of fitting a shape model:

Face recognition and expression analysis

- Facial feature points (landmarks) can be used for a number of tasks:
 - Facial expression analysis:
 - Measure variations of landmark locations over time (shape variation); use texture features to measure presence of wrinkles (texture variation), etc.

Face recognition and expression analysis

- Facial feature points (landmarks) can be used for a number of tasks:
 - Facial expression analysis:
 - Measure variations of landmark locations over time (shape variation); use texture features to measure presence of wrinkles (texture variation), etc.
 - Facial identity recognition or face verification (passport control):
 - Measure characteristics that are invariant under expressions but person-specific: inter-ocular distance, relative position of nose, *etc.*
 - Build skin models:

Example: Recognition of Action Units (FACS)

AU 1
Inner brow raise

AU 2
Outer brow raise

AU 4 Brow lower

AU 6 Cheek raise

AU 9 Nose wrinkler

AU 12 Lip corner pull

AU 15 Lip corner depress

AU 20 Lip strecher

Example: Recognition of Action Units (FACS)

- Inner brow raiser:
- Outer brow raiser:
- Brow lowerer:
- Upper lid raiser:
- Nose wrinkler:
- Lip corner depressor:
- Etcetera...

Example: Recognition of Action Units (FACS)

Example: Expression Recognition

Example: Detection of Expression Spontaneity

Example: Detection of Expression Spontaneity

Example: Expression cloning

Example: Expression cloning

MSc Projects

- Are you interested in face processing?
 - Face Tracking
 - Expression Analysis
 - Age Estimation
 - Face Recognition
 - Kinship Verification/Recognition
 - Automatic Assessment of Depression
 - And more... (only limit is your imagination)

Reading material: Section 14.1 and 14.2 Section 1 and 2 of "Lucas-Kanade 20 Years on"