Мікроканонічний ансамбль (N, V, E)

Замкнута система

$$E = E_K + E_P = const$$

Канонічний ансамбль (N, V, T)

Система в термостаті

$$E_{\kappa} = const$$

Детерміністичні методи

Визначаються і координатиімпульси (швидкості) частинок

Забезпечення консервативності (постійності) повної енергії шляхом нормування швидкостей (перерозподіл між видами енергії гарантує коректне значення потенціальної енергії)

Забезпечення консервативності (постійності) кінетичної енергії шляхом нормування швидкостей

Стохастичні методи

Розглядається лише конфігураційна частина задачВідсутня власна динаміка системи

Конфігураційні зміни зміни ведуть до потенціальної енергії системи. Для даного ансамблю вони мусять забезпечуватися перерозподілом $E_{\scriptscriptstyle K}$ та $E_{\scriptscriptstyle P}$. Очевидно, що при зміні потенціальної енергії системи обов'язковою є зміна кінетичної енергії системи на $-\Delta E$ для забезпечення консервативності повної енергії. Але у стохастичних моделях немає ступенів вільності, що відповідають за кінетичну енергію.

Тому введемо додаткову ступінь вільності E_D , яка відповідатиме за зміни кінетичної енергії системи: 1) зменшення потенціальної енергії можливо завжди і вивільнена енергія ΔE додається до E_D (збільшення кінетичної енергії); 2) збільшення потенціальної енергії на ΔE можливо лише, якщо від E_D можна забрати стільки енергії (причому завжди $E_D > 0$).

Історично введена додаткова ступінь вільності називається демоном. Демон переміщується по системі і переносить енергію, коли намагається змінити динамічні змінні системи. Якщо в мантії достатньо енергії, він віддає її будь-якому елементу для здійснення обміну. Якщо після здійснення обміну є надлишок енергії, то вона накопичується в демоні. Через демона відбувається перерозподіл енергії.

Алгоритм

- 1. Визначити зміну енергії системи ΔE обміну.
- 2. Якщо $\Delta E \leq 0$,

то обмін приймається і $E_D := E_D + |\Delta E|$,

інакше Якщо $E_D \ge \Delta E$,

то обмін приймається і $E_D := E_D - \Delta E$, **інакше** обмін не приймається.

Кінетика процесу визначається температурою (T = const)

Імовірність мікростану визначається за розподілом Больцмана відповідно до

температури
$$p_s = \exp\left(\frac{-\Delta E}{kT}\right),$$

$$\Delta E = E_{after} - E_{before}$$
.

Алгоритм Метрополіса (обмін приймається завжди при зменшенні енергії системи або флуктуаційно при збільшенні з імовірністю пропорційною температурі)

- 1. Визначити енергію системи $E_{\it before}$.
- 2. Розіграти випадковий обмін.
- 3. Визначити енергії системи E_{after} .
- 4. Повернутися до попереднього стану системи.
- 2. Якщо $\Delta E \leq 0$, то прийняти обмін з пункту 2, інакше Якщо $\Delta E > 0$ і

$$random < \exp\left(\frac{-\Delta E}{kT}\right),$$

то прийняти обмін з пункту 2.

Для програмної реалізації Метрополіса:

- 1. Визначити енергію системи E_{before} .
- 2. Розіграти випадковий обмін.
- 3. Визначити енергії системи E_{after} .

4. Яκщо
$$\Delta E > 0$$
 або $random \ge \exp\left(\frac{-\Delta E}{kT}\right)$,

то повернутися до попереднього стану сми.

Алгоритм Глаубера (вибір однієї з двох залежних подій за теорією імовірності) Імовірність знаходження системи у стані

до обміну
$$p_{before} = \exp\left(-\frac{E_{before}}{kT}\right);$$

Після обміну —
$$p_{after} = \exp\left(-\frac{E_{after}}{kT}\right)$$
.

Події залежні (їх сума рівна одиниці). Імовірність досягнення стану *after*:

$$p_{s} = \frac{\exp\left(-\frac{E_{after}}{kT}\right)}{\exp\left(-\frac{E_{after}}{kT}\right) + \exp\left(-\frac{E_{before}}{kT}\right)} = \frac{\exp\left(-\frac{\Delta E}{kT}\right)}{\exp\left(-\frac{\Delta E}{kT}\right) + 1}$$

Алгоритм RTA (residence time algorithm) — вибір однієї з можливих N залежних подій

$$p_s = \frac{v_s}{\sum_{i=1}^N v_i},$$

$$v_s = v_0 \exp\left(-\frac{Q}{kT}\right) \exp\left(-\frac{E_{after}^s - E_{before}^s}{2kT}\right).$$

Оцінка інтервалу часу при виборі стану системи $dt = \frac{1}{\sum_{i=1}^{N} v_i} = \frac{\ln random}{\sum_{i=1}^{N} v_i}$.