| Table 1 | ParaView*                       | VTK [4]                | Vapor [6] [7]               | Intel OSPRay* [11]         | Blender             |
|---------|---------------------------------|------------------------|-----------------------------|----------------------------|---------------------|
|         | *built on top of VTK [3]        |                        |                             | *library                   |                     |
| + Pros  | *inherits $(2)$ , $(3)$ , $(4)$ | + IEEE VIS2021         | + Good performance -        | + Includes a path          | + Includes a ray-   |
|         | from underlying VTK             | Test of Time           | OpenGL (GLSL)               | tracer capable of          | tracing package     |
|         |                                 | Award: many future     | implementation [1]          | interactively rendering    | (called Cycles) by  |
|         | + Has built-in NetCDF           | visualisation toolkits | → macOS, Linux              | photorealistic global      | default             |
|         | reader                          | were influenced by     | and Windows                 | illumination [12]          |                     |
|         |                                 | VTK, or simply         | support                     |                            | + Includes Python   |
|         | + VR Support [19]               | build on top of it.    |                             | + Directly integrated      | scripting           |
|         |                                 |                        | + Support of regular and    | into ParaView 5.x. [12]    |                     |
|         | + Still/Interactive             | + Supports             | curvilinear grids           |                            | +Has a capable      |
|         | rendering available             | structured and         | (efficiently, as Vapor uses | + Focused on HPC           | realistic rendering |
|         |                                 | unstructured data      | separate algorithms) [1]    | visualization rendering,   | engine              |
|         | + "ParaView features            | (1)                    | 711                         | therefore supports both    |                     |
|         | are implemented in              |                        | + Support of                | CPU and GPU                |                     |
|         | libraries, it is possible to    | + Linux, Mac OS,       | unstructured models (v      | rendering [11]             |                     |
|         | completely replace the          | Windows support        | 3.1.0) and unstructured     |                            |                     |
|         | ParaView GUI with your          | (2)                    | model rendering (v3.3.0)    | + " implementation is      |                     |
|         | own custom                      |                        | [2]                         | specifically designed for  |                     |
|         | application" [20] this is       | + Scripting support,   |                             | CPU based                  |                     |
|         | reminiscent of the AVS          | via TCl and Python     | + Support for missing       | platforms such as Intel    |                     |
|         | modular approach,               | [4] (3)                | values [1] – does not       | Xeon and Xeon Phi          |                     |
|         | therefore, there are lots       | [ ] (-)                | include missing data        | based workstations and     |                     |
|         | of plug-ins available and       | + Active ongoing       | values when rendering       | HPC resources" [11],       |                     |
|         | developed by the                | Parallel               | , taltes when rendering     | which are available on     |                     |
|         | community.                      | development (VTK-      | + Blending considers        | ARC3 [13] and ARC4         |                     |
|         | community.                      | m)                     | depth information [1]       | [14]                       |                     |
|         | + Easy Remote Server-           | ····)                  |                             | [ [ + +]                   |                     |
|         | Client setup                    |                        | + Interactivity             | + Integrated Shading       |                     |
|         | Chem Scoup                      |                        | maintained by               | Models [11]                |                     |
|         | + Multiple ways of              |                        | downgrading rendering       | Modera [11]                |                     |
|         | parallelisation (either as      |                        | during scene navigation     | Cupport for large          |                     |
|         | paranensation (either as        |                        | o o                         | + Support for large        |                     |
|         |                                 |                        | [1]                         | data (tested on $2048^3$ ) |                     |

|        | MPI, or batch/array jobs with pvbatch)  + Significant availability of data analysis toolkits (TTK, VortexFinder) and parallel algorithms (VTK-m)                                                                                                          |                                                                                                                                                                                | + Support of large<br>datasets - 2048³ was<br>manageable as far back<br>as 2007 [6]                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Cons | <ul> <li>Realistic rendering<br/>(with cast-shadows) is<br/>limited to the built-in<br/>OSPRay library</li> <li>Complicated Build<br/>process (a lot of<br/>options, need to<br/>research and include<br/>them before building<br/>and set-up)</li> </ul> | <ul> <li>Is a toolkit,</li> <li>therefore, would</li> <li>require building</li> <li>the user interface</li> <li>for it [3]</li> <li>Not easy to set up</li> <li>[3]</li> </ul> | - No support of scripting [8] [9] as of 2022 Release 3.6.0 [10]                                                                                                                                                                       | -Not faster than OpenGL GPU solutions, but competitive and similar results when using GPU [11] (note that this library focuses on CPU solutions)     | <ul> <li>Main focus on film-production or video game model creation</li> <li>As software not tailored for scientific visualisation, not scalable for large data visualisations</li> </ul> |
| Notes  | ParaView is used unanimously in the scientific community and has active ongoing development.                                                                                                                                                              |                                                                                                                                                                                | While initially started out as a collection of software and hardware technologies [7], and used the VTK ray caster, now includes custom collection of C++ class objects that implement various 2D and 3D visualization Algorithms [1] | This is a library, not a separate application or toolkit. [11]  Main novelty is "a fast CPU-based alternative to Mesa and OpenGL visualization" [11] |                                                                                                                                                                                           |

| Table 2 | McIDAS-V                                                                                                                                                             | VisIt                                                                                                                                                                                                                             | IDL                                                                                                                                                   | MATLAB                                                                                                                      |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                      | *built upon VTK                                                                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                             |
| + Pros  | - Known in meteorology community                                                                                                                                     | + Contains a GUI  + Supports rectilinear, curvilinear, unstructured and structured data  + Has Python Scripting interface  + Extensible via plug-ins  + Has good HPC support [17]  + Wide support of scientific data formats [18] | + Fundamentally scriptable  + Wide support for meteorological data formats (including HDF, CDF, NCDF)  + Has direct and indirect volume visualisation | + Fundamentally scriptable                                                                                                  |
| - Cons  | - Primary focus is on<br>environmental satellite<br>data visualisation, rather<br>than simulation data,<br>therefore lacks more<br>advanced 3D rendering             | <ul> <li>No globally-uniform lighting<br/>computation (using Phong Shading<br/>instead)</li> <li>More complex client/server remote<br/>usage setup[22]</li> </ul>                                                                 | - Steeper learning curve - Lack of realistic visualisation capabilities                                                                               | If Volume Rendering is desired, it needs to be extended with matVTK to get 3D Visualization which is a MATLAB-VTK interface |
| Notes   | Sequence of development:  1. VisAD  *implemented as generalised (now discontinued) Vis-5d  2. Integrated Data Viewer (IDV) - Unidata*  *built upon the VisAD library |                                                                                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                             |

## Timeline 1





Based on Tables 1, 2 and the Timeline 1, it is evident that a set of two distinct research cycles appear. First one starts at the initial set-up of the modular visualization environment design with the introduction of Application Visualisation System (AVS) in 1989. The other one – after the conception of VTK. The modern choices for scientific visualisation either stem from adding to / building from VTK, or acknowledging VTK, yet implementing custom tools. One such framework is the NCAR VAPOR package [1] [2], which initially started as a collection of software and hardware technologies, which included VTK in the very first prototype [7], but diverged from it to [21].

```
[1] @article{Li2019VAPORAV,

title={VAPOR: A Visualization Package Tailored to Analyze Simulation Data in Earth System Science},
  author={Shaomeng Li and Stanislaw Jaroszynski and Scott Pearse and Leigh Orf and John P. Clyne},
  journal={Atmosphere},
  year={2019}
```

[2] https://vapor.readthedocs.io/en/readthedocs/downloads/officialReleases.html

```
[3] @article{ahrensapplication,

title={An Application Architecture for Large Data Visualization: A Case Study},

author={Ahrens, James}
```

```
[4] @INPROCEEDINGS {567752,
  author={Schroeder, W.J. and Martin, K.M. and Lorensen, W.E.},
 booktitle={Proceedings of Seventh Annual IEEE Visualization '96},
  title={The design and implementation of an object-oriented toolkit for 3D graphics and visualization},
  year = \{1996\},
  volume={},
  number={},
  pages={93-100},
  doi={10.1109/VISUAL.1996.567752}}
[5] https://gitlab.kitware.com/vtk/vtk
[6] '@article{clyne2007interactive,
  title={Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics
and current sheet formation },
  author={Clyne, John and Mininni, Pablo and Norton, Alan and Rast, Mark},
  journal={New Journal of Physics},
  volume={9},
  number=\{8\},
  pages={301},
  year = \{2007\},
  publisher={IOP Publishing}
```

```
[7] '@inproceedings{clyne2005prototype,
  title={A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow
simulations},
  author={Clyne, John and Rast, Mark},
  booktitle={Visualization and Data Analysis 2005},
  volume={5669},
  pages = \{284 - -294\},
  year={2005},
  organization={SPIE}
[8] https://github.com/NCAR/VAPOR/issues/1894
[9] https://github.com/NCAR/VAPOR/issues/1908
[10] https://github.com/NCAR/VAPOR/releases/tag/3.6.0
[11] @ARTICLE { 7539599,
  author={Wald, I and Johnson, GP and Amstutz, J and Brownlee, C and Knoll, A and Jeffers, J and Günther, J
and Navratil, P},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  title={OSPRay - A CPU Ray Tracing Framework for Scientific Visualization},
  year={2017},
  volume={23},
  number=\{1\},
  pages={931-940},
```

```
doi={10.1109/TVCG.2016.2599041}}
[12] https://www.ospray.org/
[13] https://arcdocs.leeds.ac.uk/systems/arc3.html
[14] https://arcdocs.leeds.ac.uk/systems/arc4.html
[15] @techreport(moreland2008large,
  title={Large Scale Visualization with ParaView (slides).},
  author={Moreland, Kenneth D and Greenfield, John Andrew and Scott, W Alan and Ayachit, Utkarsh and Geveci,
Berk and DeMarle, David},
  year={2008},
  institution={Sandia National Lab.(SNL-NM), Albuquerque, NM (United States)}
[16] @ARTICLE { 299413,
  author={Hibbard, W.L. and Paul, B.E. and Santek, D.A. and Dyer, C.R. and Battaiola, A.L. and Voidrot-
Martinez, M.-F.},
  journal={Computer},
  title={Interactive visualization of Earth and space science computations},
  year={1994},
  volume={27},
  number=\{7\},
  pages=\{65-72\},
  doi=\{10.1109/2.299413\}\}
[17] @article{osti 15004017,
```

```
title = {VisIt: a component based parallel visualization package},
author = {Ahern, S and Bonnell, K and Brugger, E and Childs, H and Meredith, J and Whitlock, B},
abstractNote = {We are currently developing a component based, parallel visualization and graphical analysis
tool for visualizing and analyzing data on two- and three-dimensional (20, 30) meshes. The tool consists of
three primary components: a graphical user interface (GUI), a viewer, and a parallel compute engine. The
components are designed to be operated in a distributed fashion with the GUI and viewer typically running on a
high performance visualization server and the compute engine running on a large parallel platform. The viewer
and compute engine are both based on the Visualization Toolkit (VTK), an open source object oriented data
manipulation and visualization library. The compute engine will make use of parallel extensions to VTK, based
on MPI, developed by Los Alamos National Laboratory in collaboration with the originators of P K . The compute
engine will make use of meta-data so that it only operates on the portions of the data necessary to generate
the image. The meta-data can either be created as the post-processing data is generated or as a pre-processing
step to using VisIt. VisIt will be integrated with the VIEWS' Tera-Scale Browser, which will provide a high
performance visual data browsing capability based on multi-resolution techniques. },
doi = \{\},
url = {https://www.osti.gov/biblio/15004017}, journal = {},
number = ,
volume = ,
place = {United States},
year = \{2000\},
```

- [18] http://www.visitusers.org/index.php?title=Partial list of file formats and their details VisIt supports
- [19] https://www.kitware.com/navigation-basics-in-virtual-reality-with-paraview/

 $month = \{12\}$ 

```
[20] '@misc{moreland2007large,
   title={Large Scale Visualization with ParaView 3},
   author={Moreland, Kenneth and Greenfield, John},
   year={2007}
```

[21] http://cscads.rice.edu/alan-norton-cscads-2009.pdf

[22] https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/RemoteUsage.html