1 Méthode géométrique

Le logiciel Geogébra est téléchargeable à l'adresse https://www.geogebra.org/. Maximiser

$$z = x_1 + x_2$$

Sous les contraintes

$$4x_1 - x_2 \le 8$$
$$2x_1 + x_2 \le 10$$
$$5x_1 - 2x_2 \ge -2$$
$$x_1, x_2 \ge 0$$

- 1. Ouvrir le logiciel et créer la région de réalisation noteée K
- 2. Recenser le nombre de sommets de K
- 3. Trouver le plan optimal
- 4. Sur la même figure, utiliser la méthode des droites parallèles pour trouver la solution optimale

2 Solveur karmarkar

Le logiciel Scilab est téléchargeable à l'adresse http://www.scilab.org/rubrique Téléchargement. Il est preferable de desinstaller toute version precedente de scilab et d'utiliser la version officielle.

Il permet de résoudre des problèmes d'optimisation linéaires.

Syntax

Le solveur karmarkar permet de résoudre un problème de minimisation de la programmation linéaire. Pour résoudre le problème de maximisation, il suffit d'inverser les cofficients de la fonction objectif z et la valeur optimale est l'inverse.

- $\bullet \ xopt, fopt, exitflag, iter, yopt = karmarkar(.....)$
 - fopt: la valeur optimale de l'objectif.
 - xopt: la solution optimale
 - exitflag: indique la manière dont l'algorithme Simplex a terminé:
 1 if algorithm converged.
 - 0 if maximum number of iterations was reached.

- -1 if no feasible point was found
- -2 if problem is unbounded.
- -3 if search direction became zero.
- -4 if algorithm stopped on user's request.
- iter: le nombre d'itérations (default maxiter=200)
- yopt: la valeur optimale de la dualité
- Le programme linéaire sous la forme standard (contraintes en égalités). xopt,fopt,exitflag,iter,yopt=karmarkar(A,b,c)
- Le programme linéaire est sous la forme canonique (contraintes en inégalités inférieurs

xopt, fopt, exitflag, iter, yopt = karmarkar([], [], c, [], [], [], [], A, b)

Exercice 1

Soit le programme linéaire suivant:

Max

$$Z = 0 + 3x_1 + x_2 + 2x_3$$

SC

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- 1. Transformer ce programme en forme matricielle (A,b,c)
- 2. Saisir les paramètres de la forme matricielle sous Scilab
- 3. Taper la commande suivante :

xopt, fopt, exitflag, iter, yopt = karmarkar(A, b, c)

Déduire la solution optimale

Dans combien d'itérations l'algorithme se termine et la raison d'arrêt.

Exercice 2

Si le programme linéaire est sous la forme canonique Max

$$Z = 4x_1 + 12x_2 + 3x_3$$

$$x_1 \le 1000$$

$$x_2 \le 500$$

$$x_3 \le 1500$$

$$3x_1 + 6x_2 + 2x_3 \le 6750$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

- 1. Transformer ce programme en forme matricielle (A,b,c)
- 2. Saisir les paramètres de la forme matricielle sous Scilab
- 3. Taper la commande suivante :

xopt, fopt, exitflag, iter, yopt=karmarkar([], [], c, [], [], [], [], A, b)

Afficher la solution optimale et sa valeur. Taper la commande disp([xopt fopt])

Dans combien d'itérations l'algorithme se termine et la raison d'arrêt. Taper la commande disp([exitflag iter]).