Contrôle SI 221

Novembre 2014 1h30

autorisés : calculette + polycopié + notes de cours

Exercice 1

On suppose que l'on dispose d'un test médical qui permette de détecter la présence (classe ω_2) ou l'absence (classe ω_1) d'une maladie à partir d'un taux sanguin noté x. Quand un patient subit ce test, on extrait la valeur de son taux et on le compare à une valeur seuil x_0 .

Si $x \le x_0$ le patient est estimé en bonne santé, si $x > x_0$ le patient est estimé malade.

On veut maintenant évaluer la pertinence de ce test du point de vue théorique et pratique.

Partie I On suppose que les densités de probabilités conditionnelles $p(x \mid \omega_i), i = 1, 2$ sont connues et gaussiennes de moyenne μ_1 et μ_2 , et de variance σ_1^2 , σ_2^2 , respectivement.

- **Q. 1.1** Donner les expressions des densités conditionnelles en fonction de μ_1 , μ_2 , σ_1^2 , σ_2^2 .
- Q. 1.2 Remplir le tableau I en indiquant où se trouvent les fausse alarmes et les non détections, ainsi que les décisions correctes. On note C, la variable aléatoire de classe.

Table 1 -

	C=1	C=2
décision : absence de maladie		
décision : présence de maladie		

- **Q. 1.3** Donner les expressions des probabilités de fausse alarme et de non détection en fonction des probabilités a priori (supposées connues), des moyennes μ_1 , μ_2 , des variance σ_1^2 , σ_2^2 , et du seuil x_0 . Quelle est la probabilité d'erreur totale du système?
- Partie 2 Dans cette partie, on veut estimer les performances du système de détection mais on ne dispose pas de la connaissance des densités de probabilité comme dans la partie 1. On a maintenant un ensemble de patients dont on connaît l'état réel de santé (bonne santé ou malade), et on leur fait subir le test. 4 cas de figure se présentent :
 - un patient malade est correctement détecté comme malade. Le nombre de ces patients est noté VP ($Vrais\ Positifs$).
 - un patient en bonne santé est incorrectement détecté comme malade. Le nombre de ces patients est noté FP (Faux Positifs).

- un patient malade est incorrectement détecté comme en bonne santé. Le nombre de ces patients est noté FN (Faux Négatifs).
- un patient en bonne santé est détecté comme en bonne santé. Le nombre de ces patients est noté VN ($Vrais\ Negatifs$).

Q. 2.1

Remplir de nouveau le tableau I mais en indiquant où se trouvent VP, FP, FN et VN. On note toujours C, la variable aléatoire de classe.

- **Q. 2.2** On note P_{FA}^c la probabilité conditionnelle de fausse alarme : $P_{FA}^c = P(\text{décider }\omega_1 | \omega_1)$, et P_{ND}^c la probabilité conditionnelle de non détection : $P_{ND}^c = P(\text{décider }\omega_1 | \omega_2)$. Comment peut-on estimer P_{FA}^c et P_{ND}^c à partir de VP, FP, FN et VN.
- **Q. 2.3** Comment définiriez-vous la probabilité conditionnelle de détection correcte de la maladie pour les personnes malades, et comment l'estimeriez-vous en fonction de VP, FP, FN et VN?

Exercice 2: Apprentissage du perceptron monocouche

Soit un perceptron monocouche ayant comme fonction de transition f, la fonction seuil suivante : si a > seuil, f(a) = 1, sinon f(a) = -1. Nous fixons ici le seuil à 0.2. Soit la base composée de 4 exemples d'apprentissage :

	e1	e2	d
(1)	1	1	1
(2)	-1	1	-1
(3)	-1	-1	-1
(4)	1	-1	-1

e1 et e2 sont les entrées du réseaux de neurones et d la sortie correspondante, telle qu'étiquetée dans l'ensemble d'apprentissage.

- **Q. 1** En appliquant l'algorithme d'apprentissage du perceptron avec un pas de modification des poids η égal à 0.1, déterminez les poids du perceptron. Vous initialiserez l'algorithme avec les valeurs suivantes, w1 = -0.2, w2 = 0.1.
- Q. 2 Représentez les données d'apprentissage dans un espace à 2 dimensions et tracez la droite séparatrice des 2 classes. Donnez son équation.