- (2) $\overrightarrow{e_1}=(1,0)$, $\overrightarrow{e_2}=(0,1)$ とする. $\overrightarrow{a_1}=\overrightarrow{e_1}+\overrightarrow{e_2}$, $\overrightarrow{a_{2n}}=\overrightarrow{a_{2n-1}}+2n\overrightarrow{e_2}$, $\overrightarrow{a_{2n+1}}=\overrightarrow{a_{2n}}+(2n+1)\overrightarrow{e_1}$ $(n=1,2,3,\cdots)$ で定義されるベクトルの列がある. $\overrightarrow{a_{2n}}$ を $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ で表せ.
- (3) $\overrightarrow{a_{2n-1}}$, $\overrightarrow{a_{2n}}$ を 2 辺とする 3 角形の面積を S_n , $\overrightarrow{a_{2n}}$, $\overrightarrow{a_{2n+1}}$ を 2 辺とする 3 角形の面積を T_n で表すとき , $\lim_{n \to \infty} \frac{S_n}{T_n}$ を求めよ .