37 Cl(d, α), 37 Cl(d, $\alpha\gamma$) 1975VaYG,1972Va07

1972Va07,1975VaYG: 37 Cl(d, $\alpha\gamma$) 35 S with a 4.25-MeV deuteron beam of 55 nA from the Groningen 5 MV Van de Graaff generator. The target was a 100 μ g/cm 2 Co 37 Cl enriched to 98% evaporated onto 10μ g/cm 2 Formva plus 10μ g/cm 2 carbon. α particles were detected using a 60- μ m annular silicon detector. γ rays were detected using a 120 cm 3 Ge(Li) at 90°. Measured σ (E $_{\alpha}$), E $_{\gamma}$, I $_{\gamma}$, and $\alpha\gamma$ -coin. Deduced levels, γ -branching ratios.

1968Te06: 37 Cl(d, $\alpha\gamma$) 35 S with 3.1-4.6-MeV deuteron beams of 50 nA from the Groningen 5-MV Van de Graaff generator. The target was a 100 μ g/cm 2 Co 37 Cl both of natural 37 Cl abundance and enriched to 93% evaporated onto 10μ g/cm 2 Formva plus 10μ g/cm 2 carbon. α particles were detected using an annular solid-state detector at 168-173°. γ rays were detected using a 3 in. by 3 in. NaI(Tl) scintillator at 55°. Measured σ (E $_{\alpha}$), E $_{\gamma}$, and $\alpha\gamma$ -coin. Deduced levels.

1955Pa54: 37 Cl(d, α) 35 S with 3.0, 5.6, 6.0, 7.0, and 7.5-MeV deuteron beams from the MIT-ONR electrostatic generator. Targets were 80^- and $300-\mu g/\text{cm}^2$ Barium chloride (75.4% 35 Cl, 24.6% 37 Cl) evaporated onto formvar films on a gold layer. Charged reaction products emitted at 90° were magnetically analyzed by a broad-range spectrograph. Measured $\sigma(E_\alpha)$. Deduced levels.

^{35}S	Levels
----------	--------

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]
0	3/2+	2939.2 13	(3/2,5/2)	3818.1 <i>11</i>	4180 3
1572.2 12	1/2+	3423 5		3889.0 <i>19</i>	4187 <i>3</i>
1990.0 <i>11</i>	5/2-,7/2-	3560.8 <i>19</i>		4022.2 22	4302 <i>4</i>
2348.2 20	3/2-	3598.4 <i>21</i>		4027.7 22	4480.0 <i>16</i>
2716.7 11	(3/2,5/2,7/2)	3803.6 <i>19</i>		4108 <i>3</i>	

[†] From 1975VaYG based on γ -ray energies.

γ (35S)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}^{\sharp}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
1572.2	1/2+	1572	100	0	3/2+	
1990.0	5/2-,7/2-	1990	100	0	3/2+	
2348.2	3/2-	776	25 2	1572.2	1/2+	
		2348	75 2	0	3/2+	
2716.7	(3/2,5/2,7/2)	2717	100	0	3/2+	
2939.2	(3/2,5/2)	2939	100	0	3/2+	
3423		3423	100	0	3/2+	
3560.8		1213	35 <i>4</i>	2348.2		
		1571	65 4	1990.0		
3598.4		3598	100	0	3/2+	I_{γ} : >95 in 1975VaYG.
3803.6		2232	38 <i>3</i>	1572.2	1/2+	,
		3804	62 <i>3</i>	0	3/2+	
3818.1		1828	100	1990.0		
3889.0		1541	40 4	2348.2		
		1899	45 5	1990.0	5/2-,7/2-	
		3889	15 <i>3</i>	0	3/2+	
4022.2		2032	100	1990.0		
4027.7		1089	33 4	2939.2		
		1679	33 <i>4</i>	2348.2		
		2455	34 6	1572.2	1/2+	
4108		4110	100	0	3/2+	I_{ν} : >95 in 1975VaYG.
4180		2611	18 5	1572.2	1/2+	,
		4180	82 5	0	3/2+	
4187		1839	100	2348.2		I_{ν} : >95 in 1975VaYG.
4302		1953	59 <i>5</i>	2348.2		,
		4304	41 5	0	3/2+	
4480.0		1765	36 <i>4</i>	2716.7		

[‡] From $\gamma(\theta)$ of ³⁴S(d,p γ)³⁵S in 1972Va07.

37 Cl(d, α), 37 Cl(d, $\alpha\gamma$) 1975VaYG,1972Va07 (continued)

γ ⁽³⁵S) (continued)

[†] From level energy difference. [‡] From 1975VaYG.

Level Scheme

Intensities: % photon branching from each level

