

Umbales Sostenibles en la Gestión de Riesgo

Ayudantía de Investigación - Departamento de Matemáticas

29 de julio de 2022

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA

Métricas de Riesgo

Volatilidad Condicional

EWMA

Volatilidad condicional tipo IGARCH(1,1), los retornos

$$r_t = \sigma_t \varepsilon_t, \quad \varepsilon_t \stackrel{iid}{\sim} N(0,1)$$

$$\sigma_t^2 = \alpha \sigma_{t-1}^2 + (1 - \alpha) r_{t-1}^2$$

 $con \alpha = 0.94$

Considerando \mathbf{x}_t el retorno del sistema dinámico, si se busca controlar la volatilidad en todo momento:

- Exposición : x_t , retorno de $x_t = x_{t-1}e^{r_t}$, $r_t|_{\mathcal{F}_{t-1}} \sim F$
- Provisión : y_t
- Capital total : $W_t = x_t + y_t$

$$g_t(x_t, u_t) = -\frac{x_t}{W_t} \left(\alpha \sigma_{t-1}^2 + (1 - \alpha) r_{t-1}^2 \right)^{1/2}$$

$$g_t(x_t, u_t) = -\frac{x_{t-1} - u_t}{W_{t-1} + u_t} \left(\alpha \sigma_{t-1}^2 + (1 - \alpha) r_{t-1}^2 \right)^{1/2}$$

 $P(g_t \ge \theta) = \alpha$ coincide que $\theta = VaR_{\alpha}(W_t)$. Entonces

$$P(g_t \ge \theta, \forall t \in [0, T]) = P(\max\{g_t\}_{t \in [0, T]} \ge \theta) = \beta$$

Con $\beta=0.05$ se tiene para $\theta<0$ la probabilidad de que en cualquier momento $t\in[0,T]$ la pérdida sea mayor a θ es igual al $5\,\%$.

Corresponde al VaR incondicional:

Drawdown

Considerando W_t el capital total en el tiempo:

$$W^*(t) := \max_{0 \le k \le t} W_k, \quad t^* := \arg\max_{0 \le \tau \le t} W_\tau$$

$$\mathbf{Drawdown}(t) \quad D(t) := \frac{W_t - W^*(t)}{W^*(t)} = \frac{W_t}{W^*(t)} - 1$$

La pérdida acumulada desde el máximo hasta el tiempo actual , t.

$$D(t) = \left\{ \begin{array}{ll} 0 & \text{si } t^* = t, \text{no hay p\'erdida acumulada} \\ W_t/W^*(t) - 1 & \text{si } t^* < t, \text{hay una p\'erdida } D(t) \text{ acumulada} \end{array} \right.$$

$$P(q_t(x_t, u_t) = D(t) > \theta, \quad \forall t \in [0, T]) = \beta$$

Con una probabilidad del 5 % (β) la pérdida desde el valor máximo del portafolio es inferior a la cota $\theta < 0$.

Condición final

Considerando una condición de término del tipo:

$$\theta(W_{T+1}) \ge c$$

con
$$\theta(x_t) = x_t$$
, o $\theta(x_t) = x_t/x_0$

$$\operatorname{PnL}(T+1) = \frac{W_{T+1}}{W_0} \ge c$$

Comparando Métricas

$$\mathbb{S}^{\beta}(\xi) = \left\{ (\theta_1, \theta_2) \in \mathbb{R}^2 : \exists u \in \mathbb{U}, P \left(\begin{array}{c} g_t(x_t, u_t) & \geq \theta_1 \ , \forall t \in [0, T] \\ \mathsf{PnL}(\mathsf{T} + 1) & \geq \theta_2 \end{array} \right) \geq \beta \right\}$$

- $oldsymbol{g}_t$: si esta métrica es menor (más negativa) entonces se está expuesto a un mayor riesgo
- Para aumentar la expectativa de ganancia PnL, hay que estar más expuesto

Resultados

PnL

MaxDrawdown

Max Volatility

Max Drawdown vs PnL

Max Drawdown vs PnL

Max Volatility vs PnL

Max Volatility vs PnL

Threshold Prob.

Umbales Sostenibles en la Gestión de Riesgo

Ayudantía de Investigación - Departamento de Matemáticas

29 de julio de 2022

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA