Plan

- Examples of optimization problems
- Examples of Linear Programming Problems (LPP)
- Solution of an LPP by the Graphical Method
- Extreme points and Corner points
- Exercises and Questions

 Nothing takes place in the world whose meaning is not that of some minimum or maximum: L. Euler

- Nothing takes place in the world whose meaning is not that of some minimum or maximum: L. Euler
- Heron's problem: 'On Mirrors' (book related to laws of reflection of light, approx 1st century AD).

- Nothing takes place in the world whose meaning is not that of some minimum or maximum: L. Euler
- Heron's problem: 'On Mirrors' (book related to laws of reflection of light, approx 1st century AD).
 A and B are two given points on the same side of a line L.
 Find a point D on L such that the sum of the distances from A to D and from B to D is a minimum.

- Nothing takes place in the world whose meaning is not that of some minimum or maximum: L. Euler
- Heron's problem: 'On Mirrors' (book related to laws of reflection of light, approx 1st century AD).
 A and B are two given points on the same side of a line L.
 Find a point D on L such that the sum of the distances from A to D and from B to D is a minimum.
- Extremal principles of nature:

- Nothing takes place in the world whose meaning is not that of some minimum or maximum: L. Euler
- Heron's problem: 'On Mirrors' (book related to laws of reflection of light, approx 1st century AD).
 A and B are two given points on the same side of a line L.
 Find a point D on L such that the sum of the distances from A to D and from B to D is a minimum.
- Extremal principles of nature:
- Laws of reflection of light.
 Nature breaks a ray of light at equal angles, if it does not unnecessarily want it to meander to no purpose.

- Nothing takes place in the world whose meaning is not that of some minimum or maximum: L. Euler
- Heron's problem: 'On Mirrors' (book related to laws of reflection of light, approx 1st century AD).
 A and B are two given points on the same side of a line L.
 Find a point D on L such that the sum of the distances from A to D and from B to D is a minimum.
- Extremal principles of nature:
- Laws of reflection of light.
 Nature breaks a ray of light at equal angles, if it does not unnecessarily want it to meander to no purpose.
- Laws of refraction of light.
 What characterizes the trajectory of light moving from one point to another in a non homogeneous medium is that it is traversed in a minimum time.

• Isoperimetric problem, Oldest version: 'Aenid' of Vergil.

Isoperimetric problem, Oldest version: 'Aenid' of Vergil.
 Escaping from her brother, the Phoenician princess
 (Phoenicia is Lebanon, with parts of Syria, Israel) Dido set off westward in search of a safe place to settle down.

Isoperimetric problem, Oldest version: 'Aenid' of Vergil. Escaping from her brother, the Phoenician princess (Phoenicia is Lebanon, with parts of Syria, Israel) Dido set off westward in search of a safe place to settle down. She liked a certain place now known as 'Bay of Tunis'. • Isoperimetric problem, Oldest version: 'Aenid' of Vergil. Escaping from her brother, the Phoenician princess (Phoenicia is Lebanon, with parts of Syria, Israel) Dido set off westward in search of a safe place to settle down. She liked a certain place now known as 'Bay of Tunis'. Dido asked the local leader Yarb for as much land as could be 'encircled with a bull's hide' (9th century BC).

- Isoperimetric problem, Oldest version: 'Aenid' of Vergil. Escaping from her brother, the Phoenician princess (Phoenicia is Lebanon, with parts of Syria, Israel) Dido set off westward in search of a safe place to settle down. She liked a certain place now known as 'Bay of Tunis'. Dido asked the local leader Yarb for as much land as could be 'encircled with a bull's hide' (9th century BC).
- Isoperimetric problem: Among all closed plane curves of a given length(perimeter), find the one that encloses the maximum area.

- Isoperimetric problem, Oldest version: 'Aenid' of Vergil. Escaping from her brother, the Phoenician princess (Phoenicia is Lebanon, with parts of Syria, Israel) Dido set off westward in search of a safe place to settle down. She liked a certain place now known as 'Bay of Tunis'. Dido asked the local leader Yarb for as much land as could be 'encircled with a bull's hide' (9th century BC).
- Isoperimetric problem: Among all closed plane curves of a given length(perimeter), find the one that encloses the maximum area. Answer: Circle

- Isoperimetric problem, Oldest version: 'Aenid' of Vergil. Escaping from her brother, the Phoenician princess (Phoenicia is Lebanon, with parts of Syria, Israel) Dido set off westward in search of a safe place to settle down. She liked a certain place now known as 'Bay of Tunis'. Dido asked the local leader Yarb for as much land as could be 'encircled with a bull's hide' (9th century BC).
- Isoperimetric problem: Among all closed plane curves of a given length(perimeter), find the one that encloses the maximum area. Answer: Circle
- Isoepiphanic property of the Sphere: The Sphere encloses the largest volume among all closed surfaces with the same surface area.

- Isoperimetric problem, Oldest version: 'Aenid' of Vergil. Escaping from her brother, the Phoenician princess (Phoenicia is Lebanon, with parts of Syria, Israel) Dido set off westward in search of a safe place to settle down. She liked a certain place now known as 'Bay of Tunis'. Dido asked the local leader Yarb for as much land as could be 'encircled with a bull's hide' (9th century BC).
- Isoperimetric problem: Among all closed plane curves of a given length(perimeter), find the one that encloses the maximum area. Answer: Circle
- Isoepiphanic property of the Sphere: The Sphere encloses the largest volume among all closed surfaces with the same surface area.
- Easier problem: Among all rectangles of a given perimeter (say 20), find the one that encloses the maximum area.
 Maximize ac

- Isoperimetric problem, Oldest version: 'Aenid' of Vergil. Escaping from her brother, the Phoenician princess (Phoenicia is Lebanon, with parts of Syria, Israel) Dido set off westward in search of a safe place to settle down. She liked a certain place now known as 'Bay of Tunis'. Dido asked the local leader Yarb for as much land as could be 'encircled with a bull's hide' (9th century BC).
- Isoperimetric problem: Among all closed plane curves of a given length(perimeter), find the one that encloses the maximum area. Answer: Circle
- Isoepiphanic property of the Sphere: The Sphere encloses the largest volume among all closed surfaces with the same surface area.
- Easier problem: Among all rectangles of a given perimeter (say 20), find the one that encloses the maximum area.
 Maximize ac subject to, a + c = 10, a > 0, c > 0.

- Isoperimetric problem, Oldest version: 'Aenid' of Vergil. Escaping from her brother, the Phoenician princess (Phoenicia is Lebanon, with parts of Syria, Israel) Dido set off westward in search of a safe place to settle down. She liked a certain place now known as 'Bay of Tunis'. Dido asked the local leader Yarb for as much land as could be 'encircled with a bull's hide' (9th century BC).
- Isoperimetric problem: Among all closed plane curves of a given length(perimeter), find the one that encloses the maximum area. Answer: Circle
- Isoepiphanic property of the Sphere: The Sphere encloses the largest volume among all closed surfaces with the same surface area.
- Easier problem: Among all rectangles of a given perimeter (say 20), find the one that encloses the maximum area.
 Maximize ac subject to, a + c = 10,

Answer: Square

a > 0, c > 0.

Diet Problem: For U.S soldiers, World War II

• Let there be m nutrients $N_1, N_2, ..., N_m$ and n food products, $F_1, F_2, ..., F_n$, available in the market which can supply these nutrients.

Diet Problem: For U.S soldiers, World War II

• Let there be m nutrients $N_1, N_2, ..., N_m$ and n food products, $F_1, F_2,, F_n$, available in the market which can supply these nutrients.

For healthy survival a human being requires say atleast, b_i units of the i th nutrient, i = 1, 2, ..., m, respectively.

Diet Problem: For U.S soldiers, World War II

• Let there be m nutrients $N_1, N_2, ..., N_m$ and n food products, $F_1, F_2,, F_n$, available in the market which can supply these nutrients.

For healthy survival a human being requires say atleast, b_i units of the i th nutrient, i = 1, 2, ..., m, respectively.

Let a_{ij} be the amount of the i th nutrient (N_i) present in unit amount of the j th food product (F_j) , and let c_j , j = 1, 2, ..., n be the cost of unit amount of F_i .

Diet Problem: For U.S soldiers, World War II

• Let there be m nutrients $N_1, N_2, ..., N_m$ and n food products, $F_1, F_2,, F_n$, available in the market which can supply these nutrients.

For healthy survival a human being requires say atleast, b_i units of the i th nutrient, i = 1, 2, ..., m, respectively.

Let a_{ij} be the amount of the i th nutrient (N_i) present in unit amount of the j th food product (F_j) , and let c_j , j = 1, 2, ..., n be the cost of unit amount of F_i .

So the problem is to decide on a diet of minimum cost consisting of the *n* food products (in various quantities) so that one gets the required amount of each of the nutrients.

Min
$$\sum_{j=1}^{n} c_j x_j = \mathbf{c}^T \mathbf{x}$$

Min
$$\sum_{j=1}^{n} c_j x_j = \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$, for $i = 1, 2, ..., m$,

Min
$$\sum_{j=1}^{n} c_j x_j = \mathbf{c}^T \mathbf{x}$$
 subject to $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$, for $i = 1, 2, ..., m$, $x_i \ge 0$ for all $j = 1, 2, ..., n$.

Min
$$\sum_{j=1}^{n} c_j x_j = \mathbf{c}^T \mathbf{x}$$
 subject to $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$, for $i = 1, 2, ..., m$, $x_j \ge 0$ for all $j = 1, 2, ..., n$. or as $A\mathbf{x} > \mathbf{b}$, (or alternatively as $-A\mathbf{x} < -\mathbf{b}$), $\mathbf{x} > \mathbf{0}$,

Min
$$\sum_{j=1}^{n} c_j x_j = \mathbf{c}^T \mathbf{x}$$
 subject to $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$, for $i = 1, 2, ..., m$, $x_j \ge 0$ for all $j = 1, 2, ..., n$. or as $A\mathbf{x} \ge \mathbf{b}$, (or alternatively as $-A\mathbf{x} \le -\mathbf{b}$), $\mathbf{x} \ge \mathbf{0}$, where A is an $m \times n$ matrix (a matrix with m rows and n columns), the (i, j) th entry of A is given by a_{ij} ,

Min
$$\sum_{j=1}^{n} c_j x_j = \mathbf{c}^T \mathbf{x}$$
 subject to $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$, for $i=1,2,...,m$, $x_j \ge 0$ for all $j=1,2,...,n$. or as $A\mathbf{x} \ge \mathbf{b}$, (or alternatively as $-A\mathbf{x} \le -\mathbf{b}$), $\mathbf{x} \ge \mathbf{0}$, where A is an $m \times n$ matrix (a matrix with m rows and n columns), the (i,j) th entry of A is given by a_{ij} , $\mathbf{b} = [b_1, b_2, ..., b_m]^T$ and $\mathbf{x} = [x_1, x_2, ..., x_n]^T$, $\mathbf{0}$ is the zero vector with n components.

Transportation Problem: Soviet Union 1940's Let there be m supply stations, $S_1, S_2, ..., S_m$ for a particular product (P) and n destination stations, $D_1, D_2, ..., D_n$ where the product is to be transported.

Let there be m supply stations, $S_1, S_2, ..., S_m$ for a particular product (P) and n destination stations, $D_1, D_2, ..., D_n$ where the product is to be transported.

Let c_{ij} be the cost of transportation of unit amount of the product (P) from S_i to D_j .

Let there be m supply stations, $S_1, S_2, ..., S_m$ for a particular product (P) and n destination stations, $D_1, D_2, ..., D_n$ where the product is to be transported.

Let c_{ij} be the cost of transportation of unit amount of the product (P) from S_i to D_i .

Let s_i be the amount of the product available at S_i and let d_j be the corresponding demand at D_i .

Let there be m supply stations, $S_1, S_2, ..., S_m$ for a particular product (P) and n destination stations, $D_1, D_2, ..., D_n$ where the product is to be transported.

Let c_{ij} be the cost of transportation of unit amount of the product (P) from S_i to D_j .

Let s_i be the amount of the product available at S_i and let d_j be the corresponding demand at D_i .

The problem is to find x_{ij} , i = 1, 2, ..., m, j = 1, 2, ..., n, where x_{ij} is the amount of the product to be transported from S_i to D_j such that the demands d_j are met and the cost of transportation is minimum.

Let there be m supply stations, $S_1, S_2, ..., S_m$ for a particular product (P) and n destination stations, $D_1, D_2, ..., D_n$ where the product is to be transported.

Let c_{ij} be the cost of transportation of unit amount of the product (P) from S_i to D_j .

Let s_i be the amount of the product available at S_i and let d_j be the corresponding demand at D_i .

The problem is to find x_{ij} , i = 1, 2, ..., m, j = 1, 2, ..., n, where x_{ij} is the amount of the product to be transported from S_i to D_j such that the demands d_j are met and the cost of transportation is minimum.

The problem can be modelled as (under certain simplifying assumptions)

 $Min \sum_{i,j} c_{ij} x_{ij}$

The problem can be modelled as (under certain simplifying assumptions)

Min
$$\sum_{i,j} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} \leq s_i$, for $i = 1, 2, ..., m$,

The problem can be modelled as (under certain simplifying assumptions)

Min
$$\sum_{i,j} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} \leq s_i$, for $i = 1, 2, ..., m$, $\sum_{i=1}^{m} x_{ij} \geq d_j$, for $j = 1, 2, ..., n$,

The problem can be modelled as (under certain simplifying assumptions)

```
Min \sum_{i,j} c_{ij} x_{ij}

subject to \sum_{j=1}^{n} x_{ij} \le s_i, for i = 1, 2, ..., m, \sum_{i=1}^{m} x_{ij} \ge d_j, for j = 1, 2, ..., n, x_{ij} \ge 0 for all i = 1, 2, ..., m, j = 1, 2, ..., n.
```

The problem can be modelled as (under certain simplifying assumptions)

Min
$$\sum_{i,j} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} \leq s_i$, for $i = 1, 2, ..., m$, $\sum_{i=1}^{m} x_{ij} \geq d_j$, for $j = 1, 2, ..., n$, $x_{ij} \geq 0$ for all $i = 1, 2, ..., m$, $j = 1, 2, ..., n$.

Note that the constraints of the above LPP can again be written as:

 $Min c^T x$

The problem can be modelled as (under certain simplifying assumptions)

Min
$$\sum_{i,j} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} \leq s_i$, for $i = 1, 2, ..., m$, $\sum_{i=1}^{m} x_{ij} \geq d_j$, for $j = 1, 2, ..., n$, $x_{ij} \geq 0$ for all $i = 1, 2, ..., m$, $j = 1, 2, ..., n$.

Note that the constraints of the above LPP can again be written as:

Min $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$,

The problem can be modelled as (under certain simplifying assumptions)

Min
$$\sum_{i,j} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} \leq s_i$, for $i = 1, 2, ..., m$, $\sum_{i=1}^{m} x_{ij} \geq d_j$, for $j = 1, 2, ..., n$, $x_{ij} \geq 0$ for all $i = 1, 2, ..., m$, $j = 1, 2, ..., n$.

Note that the constraints of the above LPP can again be written as:

Min $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} > \mathbf{0}$.

The problem can be modelled as (under certain simplifying assumptions)

Min
$$\sum_{i,j} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} \le s_i$, for $i = 1, 2, ..., m$, $\sum_{i=1}^{m} x_{ij} \ge d_j$, for $j = 1, 2, ..., n$, $x_{ij} \ge 0$ for all $i = 1, 2, ..., m$, $j = 1, 2, ..., n$.

Note that the constraints of the above LPP can again be written as:

Min $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$,

$$x \ge 0$$
,

where A is a matrix with (m+n) rows and $(m \times n)$ columns,

The problem can be modelled as (under certain simplifying assumptions)

Min
$$\sum_{i,j} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} \le s_i$, for $i = 1, 2, ..., m$, $\sum_{i=1}^{m} x_{ij} \ge d_j$, for $j = 1, 2, ..., n$, $x_{ij} \ge 0$ for all $i = 1, 2, ..., m$, $j = 1, 2, ..., n$.

Note that the constraints of the above LPP can again be written as:

Min $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$,

 $\mathbf{x} \geq \mathbf{0}$,

where A is a matrix with (m+n) rows and $(m \times n)$ columns, \mathbf{x} , $\mathbf{0}$ are vectors with $m \times n$ components

The problem can be modelled as (under certain simplifying assumptions)

Min
$$\sum_{i,j} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} \le s_i$, for $i = 1, 2, ..., m$, $\sum_{i=1}^{m} x_{ij} \ge d_j$, for $j = 1, 2, ..., n$, $x_{ij} \ge 0$ for all $i = 1, 2, ..., m$, $j = 1, 2, ..., n$.

Note that the constraints of the above LPP can again be written as:

Min $\mathbf{c}^T \mathbf{x}$

subject to $Ax \leq b$,

$$\mathbf{x} \geq \mathbf{0}$$
,

where A is a matrix with (m+n) rows and $(m \times n)$ columns,

x, **0** are vectors with $m \times n$ components

and **b** =
$$[s_1, ..., s_m, -d_1, ..., -d_n]^T$$
.

For example the 1st row of A (the row corresponding to the first supply constraint) is given by $[1, 1, ..., 1, 0, ..., 0]^T$

 $[1, 1, \ldots, 1, 0, \ldots, 0]^T$

that is 1 in the first *n* positions and 0's elsewhere.

$$[1, 1, \ldots, 1, 0, \ldots, 0]^T$$

that is 1 in the first n positions and 0's elsewhere.

The second row of A (the row corresponding to the second supply constraint) is given by

$$[0,\ldots,0,1,1,\ldots,1,0,\ldots,0]^T$$

$$[1, 1, \ldots, 1, 0, \ldots, 0]^T$$

that is 1 in the first n positions and 0's elsewhere.

The second row of $\ensuremath{\textit{A}}$ (the row corresponding to the second supply constraint) is given by

$$[0,\ldots,0,1,1,\ldots,1,0,\ldots,0]^T$$

that is 1 in the (n + 1) th position to the 2n th position and 0's elsewhere.

$$[1, 1, \ldots, 1, 0, \ldots, 0]^T$$

that is 1 in the first n positions and 0's elsewhere.

The second row of \boldsymbol{A} (the row corresponding to the second supply constraint) is given by

$$[0,\ldots,0,1,1,\ldots,1,0,\ldots,0]^T$$

that is 1 in the (n + 1) th position to the 2n th position and 0's elsewhere.

The mth row of A (the row corresponding to the m th supply constraint) is given by

$$[0,\ldots,0,1,1,\ldots,1]^T$$

$$[1, 1, \ldots, 1, 0, \ldots, 0]^T$$

that is 1 in the first n positions and 0's elsewhere.

The second row of $\[A \]$ (the row corresponding to the second supply constraint) is given by

$$[0,\ldots,0,1,1,\ldots,1,0,\ldots,0]^T$$

that is 1 in the (n + 1) th position to the 2n th position and 0's elsewhere.

The mth row of A (the row corresponding to the m th supply constraint) is given by

$$[0,\ldots,0,1,1,\ldots,1]^T$$

that is 1 in the (m-1)n+1 th position to the mn th position and 0's elsewhere.

$$[1, 1, \ldots, 1, 0, \ldots, 0]^T$$

that is 1 in the first n positions and 0's elsewhere.

The second row of $\[A \]$ (the row corresponding to the second supply constraint) is given by

$$[0,\ldots,0,1,1,\ldots,1,0,\ldots,0]^T$$

that is 1 in the (n + 1) th position to the 2n th position and 0's elsewhere.

The mth row of A (the row corresponding to the m th supply constraint) is given by

$$[0,\ldots,0,1,1,\ldots,1]^T$$

that is 1 in the (m-1)n+1 th position to the mn th position and 0's elsewhere.

The (m+1) th row of A (the row corresponding to the first destination constraint) is given by $[-1,0,\ldots,0,-1,0,\ldots,0]$,

The (m+1) th row of A (the row corresponding to the first destination constraint) is given by

$$[-1,0,\ldots,0,-1,0,\ldots,0,-1,0,\ldots,0]$$
,

that is -1 at the first position, -1 at the (n+1)th position, -1 at the (2n+1)th position,, -1 at the ((m-1)n+1) th position, etc and 0's elsewhere.

The (m+1) th row of A (the row corresponding to the first destination constraint) is given by

$$[-1,0,\ldots,0,-1,0,\ldots,0,-1,0,\ldots,0]$$
,

that is -1 at the first position, -1 at the (n+1)th position, -1 at the (2n+1)th position, ..., -1 at the ((m-1)n+1) th position, etc and 0's elsewhere.

The (m+n) th row of A (the row corresponding to the nth (last) destination constraint) is given by

$$[0,\ldots,-1,0,\ldots,-1,0,\ldots,-1,0,\ldots,-1,\ldots,0,\ldots,-1]$$
,

The (m+1) th row of A (the row corresponding to the first destination constraint) is given by

$$[-1,0,\ldots,0,-1,0,\ldots,0,-1,0,\ldots,0]$$
,

that is -1 at the first position, -1 at the (n+1)th position, -1 at the (2n+1)th position,, -1 at the ((m-1)n+1) th position, etc and 0's elsewhere.

The (m+n) th row of A (the row corresponding to the nth (last) destination constraint) is given by

$$[0,\ldots,-1,0,\ldots,-1,0,\ldots,-1,0,\ldots,-1,\ldots,0,\ldots,-1]$$
,

that is -1 at the nth position, -1 at the 2n th position, -1 at the 3n th position,, -1 at the $(m \times n)$ th position, etc and 0's elsewhere.

Given $\mathbf{c} \in \mathbb{R}^n$, a column vector with n components, $\mathbf{b} \in \mathbb{R}^m$, a column vector with m components, and an $A \in \mathbb{R}^{m \times n}$, a matrix with m rows and n columns

Given $\mathbf{c} \in \mathbb{R}^n$, a column vector with n components, $\mathbf{b} \in \mathbb{R}^m$, a column vector with m components, and an $A \in \mathbb{R}^{m \times n}$, a matrix with m rows and n columns

A linear programming problem(LPP) is given by : Max or Min $\mathbf{c}^T \mathbf{x}$

Given $\mathbf{c} \in \mathbb{R}^n$, a column vector with n components, $\mathbf{b} \in \mathbb{R}^m$, a column vector with m components, and an $A \in \mathbb{R}^{m \times n}$, a matrix with m rows and n columns

A linear programming problem(LPP) is given by : Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} < \mathbf{b}$ (or $A\mathbf{x} > \mathbf{b}$),

Given $\mathbf{c} \in \mathbb{R}^n$, a column vector with n components, $\mathbf{b} \in \mathbb{R}^m$, a column vector with m components, and an $A \in \mathbb{R}^{m \times n}$, a matrix with m rows and n columns

A linear programming problem(LPP) is given by : Max or Min $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ (or $A\mathbf{x} \geq \mathbf{b}$), $\mathbf{x} > \mathbf{0}$.

Given $\mathbf{c} \in \mathbb{R}^n$, a column vector with n components, $\mathbf{b} \in \mathbb{R}^m$, a column vector with m components, and an $A \in \mathbb{R}^{m \times n}$, a matrix with m rows and n columns

A linear programming problem(LPP) is given by : Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ (or $A\mathbf{x} \geq \mathbf{b}$), $\mathbf{x} > \mathbf{0}$.

The function $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$ is called the objective function, the constraints $\mathbf{x} \ge \mathbf{0}$ are called the non negativity constraints.

$$\mathbf{a}_{i}^{T}\mathbf{x} \leq b_{i} \text{ for } i = 1, 2, ..., m,$$

$$\mathbf{a}_{i}^{T}\mathbf{x} \leq b_{i} \text{ for } i = 1, 2, ..., m,$$

 $\mathbf{x}_{j} \geq 0 \text{ for } j = 1, 2, ..., n,$
or $-\mathbf{e}_{i}^{T}\mathbf{x} \leq 0 \text{ for } j = 1, 2, ..., n,$

$$\mathbf{a}_{i}^{T}\mathbf{x} \leq b_{i} \text{ for } i = 1, 2, ..., m,$$

 $x_{j} \geq 0 \text{ for } j = 1, 2, ..., n,$
or $-\mathbf{e}_{i}^{T}\mathbf{x} \leq 0 \text{ for } j = 1, 2, ..., n,$

where \mathbf{a}_i^T is the *i* th row of the matrix A, and \mathbf{e}_j is the *j* th column of the identity matrix of order n, I_n .

$$\mathbf{a}_{i}^{T}\mathbf{x} \leq b_{i} \text{ for } i = 1, 2, ..., m,$$

 $x_{j} \geq 0 \text{ for } j = 1, 2, ..., n,$
or $-\mathbf{e}_{i}^{T}\mathbf{x} \leq 0 \text{ for } j = 1, 2, ..., n,$

where \mathbf{a}_{i}^{T} is the *i* th row of the matrix A, and \mathbf{e}_{j} is the *j* th column of the identity matrix of order n, I_{n} .

Note that each of the functions

$${\bf a}_i^{\ \ T}{\bf x}$$
, for $i = 1, 2 \dots, m$,

$$\mathbf{a}_{i}^{\mathsf{T}}\mathbf{x} \leq b_{i}$$
 for $i = 1, 2, ..., m$,
 $x_{j} \geq 0$ for $j = 1, 2, ..., n$,
or $-\mathbf{e}_{i}^{\mathsf{T}}\mathbf{x} \leq 0$ for $j = 1, 2, ..., n$,

where \mathbf{a}_i^T is the *i* th row of the matrix A, and \mathbf{e}_j is the *j* th column of the identity matrix of order n, I_n .

Note that each of the functions

$$\mathbf{a}_{i}^{T}\mathbf{x}$$
, for $i = 1, 2, ..., m$,
 $-\mathbf{e}_{i}^{T}\mathbf{x}$, for $j = 1, 2, ..., n$,

$$\mathbf{a}_{i}^{T}\mathbf{x} \leq b_{i} \text{ for } i = 1, 2, ..., m,$$

 $x_{j} \geq 0 \text{ for } j = 1, 2, ..., n,$
or $-\mathbf{e}_{i}^{T}\mathbf{x} \leq 0 \text{ for } j = 1, 2, ..., n,$

where \mathbf{a}_{i}^{T} is the *i* th row of the matrix A, and \mathbf{e}_{j} is the *j* th column of the identity matrix of order n, I_{n} .

Note that each of the functions

$${\bf a}_i^T {\bf x}$$
, for $i = 1, 2, ..., m$,
 ${\bf -e}_i^T {\bf x}$, for $j = 1, 2, ..., n$,

and $\mathbf{c}^T \mathbf{x}$ are all linear functions from $\mathbb{R}^n \to \mathbb{R}$, hence the name linear programming problem.

Linear function, Feasible solution, Optimal Solution

• A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear map (linear function, linear transformation) if it satisfies the following:

Linear function, Feasible solution, Optimal Solution

• A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear map (linear function, linear transformation) if it satisfies the following: $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

• A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear map (linear function, linear transformation) if it satisfies the following:

$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and $T(\alpha \mathbf{x}) = \alpha T(\mathbf{x})$ for all $\alpha \in \mathbb{R}$ and all $\mathbf{x} \in \mathbb{R}^n$.

• A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear map (linear function, linear transformation) if it satisfies the following: $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and $T(\alpha \mathbf{x}) = \alpha T(\mathbf{x})$ for all $\alpha \in \mathbb{R}$ and all $\mathbf{x} \in \mathbb{R}^n$.

An x ≥ 0 satisfying the constraints Ax ≤ b (or Ax ≥ b) is called a feasible solution of the linear programming problem (LPP).

- A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear map (linear function, linear transformation) if it satisfies the following: $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and $T(\alpha \mathbf{x}) = \alpha T(\mathbf{x})$ for all $\alpha \in \mathbb{R}$ and all $\mathbf{x} \in \mathbb{R}^n$.
- An x ≥ 0 satisfying the constraints Ax ≤ b (or Ax ≥ b) is called a feasible solution of the linear programming problem (LPP).
- The set of all feasible solutions of a LPP is called the feasible region of the LPP.

• A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear map (linear function, linear transformation) if it satisfies the following: $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and $T(\alpha \mathbf{x}) = \alpha T(\mathbf{x})$ for all $\alpha \in \mathbb{R}$ and all $\mathbf{x} \in \mathbb{R}^n$.

- An x ≥ 0 satisfying the constraints Ax ≤ b (or Ax ≥ b) is called a feasible solution of the linear programming problem (LPP).
- The set of all feasible solutions of a LPP is called the feasible region of the LPP.

Hence the feasible region of a LPP, denoted by Fea(LPP)is given by,

Fea(LPP)=
$$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} \geq 0, A\mathbf{x} \leq \mathbf{b}\}.$$

• A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear map (linear function, linear transformation) if it satisfies the following: $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and $T(\alpha \mathbf{x}) = \alpha T(\mathbf{x})$ for all $\alpha \in \mathbb{R}$ and all $\mathbf{x} \in \mathbb{R}^n$.

- An x ≥ 0 satisfying the constraints Ax ≤ b (or Ax ≥ b) is called a feasible solution of the linear programming problem (LPP).
- The set of all feasible solutions of a LPP is called the feasible region of the LPP.

Hence the feasible region of a LPP, denoted by Fea(LPP)is given by,

Fea(LPP)=
$$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} \geq 0, A\mathbf{x} \leq \mathbf{b}\}.$$

• Fea(LPP)= $\{\mathbf{x} \in \mathbb{R}^n : x_j \geq 0, j = 1, \dots, n, \quad \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, \dots, m\}$

• Fea(LPP)= {**x** ∈ \mathbb{R}^n : $x_j \ge 0, j = 1, ..., n$, $\mathbf{a}_i^T \mathbf{x} \le b_i$, i = 1, ..., m}
= {**x** ∈ \mathbb{R}^n : $-\mathbf{e}_j^T \mathbf{x} \le 0$, j = 1, ..., n, $\mathbf{a}_i^T \mathbf{x} \le b_i$, i = 1, ..., m},

- Fea(LPP)= $\{\mathbf{x} \in \mathbb{R}^n : x_j \geq 0, j = 1, \dots, n, \quad \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, \dots, m\}$
 - $= \{ \mathbf{x} \in \mathbb{R}^n : -\mathbf{e}_j^T \mathbf{x} \le 0, \ j = 1, \dots, n, \quad \mathbf{a}_i^T \mathbf{x} \le b_i, \ i = 1, \dots, m \},$

where \mathbf{a}_i^T is the *i* th row of the matrix A, and \mathbf{e}_j is the *j*th standard unit vector, or the *j* th column of the identity matrix I_n .

- Fea(LPP)= $\{\mathbf{x} \in \mathbb{R}^n : x_j \geq 0, j = 1, \dots, n, \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, \dots, m\}$ = $\{\mathbf{x} \in \mathbb{R}^n : -\mathbf{e}_j^T \mathbf{x} \leq 0, j = 1, \dots, n, \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, \dots, m\}$, where \mathbf{a}_i^T is the i th row of the matrix A, and \mathbf{e}_j is the jth standard unit vector, or the j th column of the identity matrix I_n .
- A feasible solution of an LPP is called an optimal solution if it minimizes or maximizes the objective function (depending on the nature of the problem).

- Fea(LPP)= $\{\mathbf{x} \in \mathbb{R}^n : x_j \geq 0, j = 1, \dots, n, \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, \dots, m\}$ = $\{\mathbf{x} \in \mathbb{R}^n : -\mathbf{e}_j^T \mathbf{x} \leq 0, j = 1, \dots, n, \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, \dots, m\}$, where \mathbf{a}_i^T is the i th row of the matrix A, and \mathbf{e}_j is the jth standard unit vector, or the j th column of the identity matrix I_n .
- A feasible solution of an LPP is called an optimal solution if it minimizes or maximizes the objective function (depending on the nature of the problem).
- If the LPP has an optimal solution, then the value of the objective function c^Tx where x is an optimal solution of the LPP is called the optimal value of the LPP.

 Example 1: Given the linear programming problem Max 5x + 2y subject to

 $3x + 2y \le 6$

Max 5x + 2ysubject to $3x + 2y \le 6$ $x + 2y \le 4$

Max 5x + 2ysubject to $3x + 2y \le 6$ $x + 2y \le 4$ $x \ge 0, y \ge 0$.

 $\begin{array}{l} \text{Max } 5x + 2y \\ \text{subject to} \\ 3x + 2y \le 6 \end{array}$

 $x + 2y \leq 4$

 $x \ge 0, y \ge 0.$

 $[3,0]^T$ is not a feasible solution.

Max 5x + 2y subject to

$$3x + 2y \le 6$$

$$x + 2y \leq 4$$

 $x \ge 0, y \ge 0$. [3, 0]^T is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal.

Max 5x + 2ysubject to $3x + 2y \le 6$ $x + 2y \le 4$ x > 0, y > 0.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

Max
$$5x + 2y$$

subject to
 $3x + 2y \le 6$
 $x + 2y \le 4$
 $x \ge 0, y \ge 0$.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

• Example 2: Consider the problem, Min - x + 2y,

Max
$$5x + 2y$$

subject to
 $3x + 2y \le 6$
 $x + 2y \le 4$
 $x \ge 0, y \ge 0$.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

• Example 2: Consider the problem, Min -x + 2y, subject to

Max
$$5x + 2y$$

subject to
 $3x + 2y \le 6$
 $x + 2y \le 4$
 $x \ge 0, y \ge 0$.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

 Example 2: Consider the problem, Min -x + 2y.

subject to

$$x+2y\geq 1$$
,

Max
$$5x + 2y$$

subject to $3x + 2y \le 6$
 $x + 2y \le 4$
 $x \ge 0, y \ge 0$.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

 Example 2: Consider the problem, Min -x + 2y,

subject to
$$x + 2y \ge 1, -x + y \le 1,$$

Max
$$5x + 2y$$

subject to
 $3x + 2y \le 6$
 $x + 2y \le 4$
 $x \ge 0, y \ge 0$.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

 Example 2: Consider the problem, Min -x + 2v.

$$x + 2y \ge 1, -x + y \le 1, 2x + 4y \le 4,$$

Max
$$5x + 2y$$

subject to $3x + 2y \le 6$
 $x + 2y \le 4$
 $x \ge 0, y \ge 0$.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

• Example 2: Consider the problem,

Min
$$-x + 2y$$
, subject to

$$x + 2y \ge 1$$
, $-x + y \le 1$, $2x + 4y \le 4$, $x \ge 0$, $y \ge 0$.

Max
$$5x + 2y$$

subject to
 $3x + 2y \le 6$
 $x + 2y \le 4$
 $x \ge 0, y \ge 0$.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

• Example 2: Consider the problem,

Min
$$-x + 2y$$
, subject to

$$x + 2y \ge 1, -x + y \le 1, 2x + 4y \le 4, x \ge 0, y \ge 0.$$

 $[0,0]^{T}$ is not a feasible solution.

Max
$$5x + 2y$$

subject to
 $3x + 2y \le 6$
 $x + 2y \le 4$
 $x > 0, y > 0$.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

• Example 2: Consider the problem,

Min
$$-x + 2y$$
, subject to

$$x + 2y \ge 1, -x + y \le 1, 2x + 4y \le 4, x \ge 0, y \ge 0.$$

 $[0,0]^{T}$ is not a feasible solution.

 $[1,0]^T$, $[0,1]^T$ are feasible solutions which are **not** optimal.

Max
$$5x + 2y$$

subject to
 $3x + 2y \le 6$
 $x + 2y \le 4$
 $x > 0, y > 0$.

 $[3,0]^T$ is not a feasible solution.

 $[0,0]^T$, $[1,0]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=10.

• Example 2: Consider the problem,

Min
$$-x + 2y$$
, subject to

$$x + 2y \ge 1, -x + y \le 1, 2x + 4y \le 4, x \ge 0, y \ge 0.$$

 $[0,0]^{T}$ is not a feasible solution.

 $[1,0]^T$, $[0,1]^T$ are feasible solutions which are **not** optimal. Optimal solution = $[2,0]^T$, Optimal value=-2.

• A subset H of \mathbb{R}^n is called a hyperplane if it can be written as:

 $\mathsf{H} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = d \}$ for some $\mathbf{a} \in \mathbb{R}^n$ and $d \in \mathbb{R}$, or equivalently as

• A subset H of \mathbb{R}^n is called a hyperplane if it can be written as:

 $\mathsf{H} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^\mathsf{T}\mathbf{x} = d\}$ for some $\mathbf{a} \in \mathbb{R}^n$ and $d \in \mathbb{R}$, or equivalently as

 $H=\{\mathbf{x}\in\mathbb{R}^n:\mathbf{a}^T(\mathbf{x}-\mathbf{x}_0)=0\}$ for some $\mathbf{a}\in\mathbb{R}^n,\ d\in\mathbb{R}$, and \mathbf{x}_0 satisfying $\mathbf{a}^T\mathbf{x}_0=d$.

• A subset H of \mathbb{R}^n is called a hyperplane if it can be written as:

 $\mathsf{H} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^\mathsf{T}\mathbf{x} = d\}$ for some $\mathbf{a} \in \mathbb{R}^n$ and $d \in \mathbb{R}$, or equivalently as

 $H=\{\mathbf{x}\in\mathbb{R}^n: \mathbf{a}^T(\mathbf{x}-\mathbf{x}_0)=0\}$ for some $\mathbf{a}\in\mathbb{R}^n, d\in\mathbb{R}$, and \mathbf{x}_0 satisfying $\mathbf{a}^T\mathbf{x}_0=d$.

So geometrically a hyperplane in ℝ is just an element of ℝ
 (a single point),

• A subset H of \mathbb{R}^n is called a hyperplane if it can be written as:

 $\mathsf{H} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^\mathsf{T}\mathbf{x} = d\}$ for some $\mathbf{a} \in \mathbb{R}^n$ and $d \in \mathbb{R}$, or equivalently as

 $H=\{\mathbf{x}\in\mathbb{R}^n:\mathbf{a}^T(\mathbf{x}-\mathbf{x}_0)=0\}$ for some $\mathbf{a}\in\mathbb{R}^n,\,d\in\mathbb{R}$, and \mathbf{x}_0 satisfying $\mathbf{a}^T\mathbf{x}_0=d$.

• So geometrically a hyperplane in \mathbb{R} is just an element of \mathbb{R} (a single point), in \mathbb{R}^2 it is just a straight line,

• A subset H of \mathbb{R}^n is called a hyperplane if it can be written as:

 $\mathsf{H} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^\mathsf{T}\mathbf{x} = d\}$ for some $\mathbf{a} \in \mathbb{R}^n$ and $d \in \mathbb{R}$, or equivalently as

 $H=\{\mathbf{x}\in\mathbb{R}^n: \mathbf{a}^T(\mathbf{x}-\mathbf{x}_0)=0\}$ for some $\mathbf{a}\in\mathbb{R}^n, d\in\mathbb{R}$, and \mathbf{x}_0 satisfying $\mathbf{a}^T\mathbf{x}_0=d$.

So geometrically a hyperplane in R is just an element of R (a single point), in R² it is just a straight line, in R³ it is just the usual plane we are familiar with.

• A subset H of \mathbb{R}^n is called a hyperplane if it can be written as:

 $H = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = d \}$ for some $\mathbf{a} \in \mathbb{R}^n$ and $d \in \mathbb{R}$, or equivalently as

 $H=\{\mathbf{x}\in\mathbb{R}^n: \mathbf{a}^T(\mathbf{x}-\mathbf{x}_0)=0\}$ for some $\mathbf{a}\in\mathbb{R}^n, d\in\mathbb{R}$, and \mathbf{x}_0 satisfying $\mathbf{a}^T\mathbf{x}_0=d$.

- So geometrically a hyperplane in R is just an element of R (a single point), in R² it is just a straight line, in R³ it is just the usual plane we are familiar with.
- The vector a is called a normal to the hyperplane H, since it is orthogonal (or perpendicular) to each of the vectors x x₀ on the hyperplane with tail at x₀.

• A collection of hyperplanes H_1, \ldots, H_k in \mathbb{R}^n is said to be **Linearly Independent (LI)** if the corresponding normal vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are linearly independent as vectors in \mathbb{R}^n .

- A collection of hyperplanes H₁,..., H_k in Rⁿ is said to be Linearly Independent (LI) if the corresponding normal vectors a₁,..., a_k are linearly independent as vectors in Rⁿ.
- Otherwise the collection of hyperplanes is said to be Linearly Dependent (LD).

- A collection of hyperplanes H_1, \ldots, H_k in \mathbb{R}^n is said to be **Linearly Independent (LI)** if the corresponding normal vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are linearly independent as vectors in \mathbb{R}^n .
- Otherwise the collection of hyperplanes is said to be Linearly Dependent (LD).
- **Definition:** Vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$ in \mathbb{R}^n are said to be **LD** if there exists real numbers c_1, \ldots, c_k , not all zeros such that $c_1 \mathbf{a}_1 + \ldots + c_k \mathbf{a}_k = \mathbf{0}$, (**) where \mathbf{O} is the zero vector.

- A collection of hyperplanes H_1, \ldots, H_k in \mathbb{R}^n is said to be **Linearly Independent (LI)** if the corresponding normal vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are linearly independent as vectors in \mathbb{R}^n .
- Otherwise the collection of hyperplanes is said to be Linearly Dependent (LD).
- **Definition:** Vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$ in \mathbb{R}^n are said to be **LD** if there exists real numbers c_1, \ldots, c_k , not all zeros such that $c_1 \mathbf{a}_1 + \ldots + c_k \mathbf{a}_k = \mathbf{0}$, (**) where \mathbf{O} is the zero vector
- If they are not **LD** then the vectors are called **LI**, that is, the only solution to (**) is $c_1 = \ldots = c_k = 0$.

• For k=2, \mathbf{a}_1 , \mathbf{a}_2 is **LD** if and only if either $c_1 \neq 0$ or $c_2 \neq 0$, $\mathbf{a}_1 = -\frac{c_2}{c_1} \mathbf{a}_2$ (if $c_1 \neq 0$)

• For k=2, \mathbf{a}_1 , \mathbf{a}_2 is **LD** if and only if either $c_1 \neq 0$ or $c_2 \neq 0$, $\mathbf{a}_1 = -\frac{c_2}{c_1} \mathbf{a}_2$ (if $c_1 \neq 0$) $\mathbf{a}_2 = -\frac{c_1}{c_2} \mathbf{a}_1$ (if $c_2 \neq 0$). [.1cm]

- For k=2, \mathbf{a}_1 , \mathbf{a}_2 is **LD** if and only if either $c_1 \neq 0$ or $c_2 \neq 0$, $\mathbf{a}_1 = -\frac{c_2}{c_1} \mathbf{a}_2$ (if $c_1 \neq 0$) $\mathbf{a}_2 = -\frac{c_1}{c_2} \mathbf{a}_1$ (if $c_2 \neq 0$). [.1cm]
- Any set of vectors containing the zero vector is LD.

- For k=2, \mathbf{a}_1 , \mathbf{a}_2 is **LD** if and only if either $c_1 \neq 0$ or $c_2 \neq 0$, $\mathbf{a}_1 = -\frac{c_2}{c_1} \mathbf{a}_2$ (if $c_1 \neq 0$) $\mathbf{a}_2 = -\frac{c_1}{c_2} \mathbf{a}_1$ (if $c_2 \neq 0$). [.1cm]
- Any set of vectors containing the zero vector is LD.
 For example if say a₁ = O then
 1a₁ + 0a₂ ... + 0a_k = O.

- For k=2, \mathbf{a}_1 , \mathbf{a}_2 is **LD** if and only if either $c_1 \neq 0$ or $c_2 \neq 0$, $\mathbf{a}_1 = -\frac{c_2}{c_1} \mathbf{a}_2$ (if $c_1 \neq 0$) $\mathbf{a}_2 = -\frac{c_1}{c_2} \mathbf{a}_1$ (if $c_2 \neq 0$). [.1cm]
- Any set of vectors containing the zero vector is **LD**. For example if say $\mathbf{a}_1 = \mathbf{O}$ then $1\mathbf{a}_1 + 0\mathbf{a}_2 \dots + 0\mathbf{a}_k = \mathbf{O}$, there is a solution to $c_1\mathbf{a}_1 + \dots + c_k\mathbf{a}_k = \mathbf{O}$, with $c_1 = 1, c_2 = 0, \dots, c_k = 0$ not all of which are zeros.

• Example 2 revisited: Consider the problem, Min - x + 2y,

• Example 2 revisited: Consider the problem, Min - x + 2y, subject to

• Example 2 revisited: Consider the problem, Min - x + 2y,

subject to $x + 2y \ge 1$,

• Example 2 revisited: Consider the problem, $\min -x + 2y$,

subject to
$$x + 2y \ge 1, -x + y \le 1,$$

• Example 2 revisited: Consider the problem, Min -x + 2y, subject to $x + 2y \ge 1$, $-x + y \le 1$, $2x + 4y \le 4$, • Example 2 revisited: Consider the problem, Min -x + 2y, subject to $x + 2y \ge 1$, $-x + y \le 1$, $2x + 4y \le 4$, $x \ge 0$, $y \ge 0$. • Example 2 revisited: Consider the problem, Min -x + 2y, subject to $x + 2y \ge 1$, $-x + y \le 1$, $2x + 4y \le 4$, $x \ge 0$, $y \ge 0$. $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$ is LI. **Example 2 revisited:** Consider the problem, Min -x + 2y, subject to $x + 2y \ge 1$, $-x + y \le 1$, $2x + 4y \le 4$, $x \ge 0$, $y \ge 0$. $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$ is **Li**. $H_1 = \{[x, y]^T : x = 0\}$, $H_3 = \{[x, y]^T : x + 2y = 1\}$ is **Li**.

• **Example 2 revisited:** Consider the problem, Min -x + 2y, subject to $x + 2y \ge 1$, $-x + y \le 1$, $2x + 4y \le 4$, $x \ge 0$, $y \ge 0$. $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$ is **LI**. $H_1 = \{[x, y]^T : x = 0\}$, $H_3 = \{[x, y]^T : x + 2y = 1\}$ is **LI**.

• A set of normals to H_1 is $\{[1,0]^T, [-1,0]^T\}$ whereas a set of normals to H_2 is $\{[0,1]^T, [0,-1]^T\}$ and $\{[1,0]^T, [0,1]^T\}$ is **LI**.

- Example 2 revisited: Consider the problem, Min -x + 2y, subject to $x + 2y \ge 1$, $-x + y \le 1$, $2x + 4y \le 4$, $x \ge 0$, $y \ge 0$. $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$ is LI.
- $H_1 = \{[x,y]^T : x = 0\}$, $H_3 = \{[x,y]^T : x + 2y = 1\}$ is **LI**. • A set of normals to H_1 is $\{[1,0]^T, [-1,0]^T\}$ whereas a set of normals to H_2 is $\{[0,1]^T, [0,-1]^T\}$ and $\{[1,0]^T, [0,1]^T\}$ is **LI**. $H_3 = \{[x,y]^T : x + 2y = 1\}$, $H_4 = \{[x,y]^T : 2x + 4y = 4\}$ is **LD**.

- **Example 2 revisited:** Consider the problem, Min -x + 2y, subject to $x + 2y \ge 1$, $-x + y \le 1$, $2x + 4y \le 4$, $x \ge 0$, $y \ge 0$. $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$ is **LI**. $H_1 = \{[x, y]^T : x = 0\}$, $H_3 = \{[x, y]^T : x + 2y = 1\}$ is **LI**.
- A set of normals to H_1 is $\{[1,0]^T, [-1,0]^T\}$ whereas a set of normals to H_2 is $\{[0,1]^T, [0,-1]^T\}$ and $\{[1,0]^T, [0,1]^T\}$ is **LI**. $H_3 = \{[x,y]^T : x+2y=1\}$, $H_4 = \{[x,y]^T : 2x+4y=4\}$ is **LD**.
- A set of normals to H_3 is $\{[1,2]^T, [-1,-2]^T\}$ whereas a set of normals to H_2 is $\{[2,4]^T, [-2,-4]^T\}$ and $\{[1,2]^T, [2,4]^T\}$ is **LD** since $2[1,2]^T 1[2,4]^T = \mathbf{O}$.

- **Example 2 revisited:** Consider the problem, Min -x + 2y, subject to $x + 2y \ge 1$, $-x + y \le 1$, $2x + 4y \le 4$, $x \ge 0$, $y \ge 0$. $H_1 = \{[x,y]^T : x = 0\}$, $H_2 = \{[x,y]^T : y = 0\}$ is **LI**. $H_1 = \{[x,y]^T : x = 0\}$, $H_3 = \{[x,y]^T : x + 2y = 1\}$ is **LI**.
- A set of normals to H_1 is $\{[1,0]^T, [-1,0]^T\}$ whereas a set of normals to H_2 is $\{[0,1]^T, [0,-1]^T\}$ and $\{[1,0]^T, [0,1]^T\}$ is **LI**. $H_3 = \{[x,y]^T : x + 2y = 1\}$, $H_4 = \{[x,y]^T : 2x + 4y = 4\}$ is **LD**.
- A set of normals to H_3 is $\{[1,2]^T, [-1,-2]^T\}$ whereas a set of normals to H_2 is $\{[2,4]^T, [-2,-4]^T\}$ and $\{[1,2]^T, [2,4]^T\}$ is **LD** since $2[1,2]^T 1[2,4]^T = \mathbf{O}$.
- What about H_1, H_2, H_3 ?

• Any set of (n+1) hyperplanes in \mathbb{R}^n is LD.

- Any set of (n+1) hyperplanes in \mathbb{R}^n is LD.
- Associated with a hyperplane H are two closed half spaces

- Any set of (n+1) hyperplanes in \mathbb{R}^n is LD.
- Associated with a hyperplane H are two closed half spaces

 $\dot{H}_1 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \leq d\}$ and

- Any set of (n+1) hyperplanes in \mathbb{R}^n is LD.
- Associated with a hyperplane H are two closed half spaces

```
H_1 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le d\} \text{ and } H_2 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \ge d\}.
```

- Any set of (n+1) hyperplanes in \mathbb{R}^n is LD.
- Associated with a hyperplane H are two closed half spaces

```
H_1 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le d\} and H_2 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \ge d\}.
```

Note that the hyperplane H, and the two half spaces H_1 , H_2 are all closed subsets of \mathbb{R}^n

- Any set of (n+1) hyperplanes in \mathbb{R}^n is LD.
- Associated with a hyperplane H are two closed half spaces

```
H_1 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le d\} and H_2 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \ge d\}.
```

Note that the hyperplane H, and the two half spaces H_1 , H_2 are all closed subsets of \mathbb{R}^n (since each of these sets contains all its boundary points, the boundary points being $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}^T \mathbf{x} = \mathbf{d}$).

- Any set of (n+1) hyperplanes in \mathbb{R}^n is LD.
- Associated with a hyperplane H are two closed half spaces

```
H_1 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le d\} and H_2 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \ge d\}.
```

Note that the hyperplane H, and the two half spaces H_1 , H_2 are all closed subsets of \mathbb{R}^n (since each of these sets contains all its boundary points, the boundary points being $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}^T \mathbf{x} = \mathbf{d}$).

For example for the hyperplane $H = \{[x, y]^T : x + 2y = 1\}$, as well as the half spaces $H_1 = \{[x, y]^T : x + 2y \le 1\}$ and $H_2 = \{[x, y]^T : x + 2y \ge 1\}$, the boundary points are

- Any set of (n+1) hyperplanes in \mathbb{R}^n is LD.
- Associated with a hyperplane H are two closed half spaces

```
H_1 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le d\} and H_2 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \ge d\}.
```

Note that the hyperplane H, and the two half spaces H_1 , H_2 are all closed subsets of \mathbb{R}^n (since each of these sets contains all its boundary points, the boundary points being $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}^T \mathbf{x} = \mathbf{d}$).

For example for the hyperplane $H = \{[x, y]^T : x + 2y = 1\}$, as well as the half spaces $H_1 = \{[x, y]^T : x + 2y \le 1\}$ and $H_2 = \{[x, y]^T : x + 2y \ge 1\}$, the boundary points are $\{[x, y]^T : x + 2y = 1\}$.

For example the feasible region in Example 2 is

- A set which is the intersection of a finite number of closed half spaces is called a polyhedral set.
 - For example the feasible region in **Example 2** is $S = \{[x,y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}$ which is the intersection of the closed half spaces

- A set which is the intersection of a finite number of closed half spaces is called a polyhedral set.
 - For example the feasible region in **Example 2** is $S = \{[x,y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}$ which is the intersection of the closed half spaces

$$H_1 = \{[x,y]^T : x \geq 0\},\$$

- A set which is the intersection of a finite number of closed half spaces is called a polyhedral set.
 - For example the feasible region in **Example 2** is $S = \{[x,y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}$ which is the intersection of the closed half spaces

$$\dot{H}_1 = \{[x,y]^T : x \ge 0\}, H_2 = \{[x,y]^T : y \ge 0\},\$$

For example the feasible region in **Example 2** is $S = \{[x,y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}$ which is the intersection of the closed half spaces

$$H_1 = \{[x, y]^T : x \ge 0\}, H_2 = \{[x, y]^T : y \ge 0\}, H_3 = \{[x, y]^T : x + 2y \ge 1\},$$

- A set which is the intersection of a finite number of closed half spaces is called a polyhedral set.
 - For example the feasible region in **Example 2** is $S = \{[x,y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}$ which is the intersection of the closed half spaces

$$H_1 = \{[x,y]^T : x \ge 0\}, H_2 = \{[x,y]^T : y \ge 0\}, H_3 = \{[x,y]^T : x + 2y \ge 1\}, H_4 = \{[x,y]^T : 2x + 4y \le 4\}$$
 and

For example the feasible region in **Example 2** is $S = \{[x,y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}$ which is the intersection of the closed half spaces $H_1 = \{[x,y]^T : x \ge 0\}, H_2 = \{[x,y]^T : y \ge 0\}, H_3 = \{[x,y]^T : x + 2y \ge 1\}, H_4 = \{[x,y]^T : 2x + 4y \le 4\}$ and $H_5 = \{[x,y]^T : -x + y \le 1\}$ is a polyhedral set.

For example the feasible region in **Example 2** is $S = \{[x,y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}$ which is the intersection of the closed half spaces $H_1 = \{[x,y]^T : x \ge 0\}, H_2 = \{[x,y]^T : y \ge 0\}, H_3 = \{[x,y]^T : x + 2y \ge 1\}, H_4 = \{[x,y]^T : 2x + 4y \le 4\}$ and $H_5 = \{[x,y]^T : -x + y \le 1\}$ is a polyhedral set.

• The feasible region of a LPP is a polyhedral set.

- A set which is the intersection of a finite number of closed half spaces is called a polyhedral set.
 - For example the feasible region in **Example 2** is $S = \{[x,y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}$ which is the intersection of the closed half spaces

$$H_1 = \{[x,y]^T : x \ge 0\}, H_2 = \{[x,y]^T : y \ge 0\},$$

 $H_3 = \{[x,y]^T : x + 2y \ge 1\}, H_4 = \{[x,y]^T : 2x + 4y \le 4\}$
and $H_5 = \{[x,y]^T : -x + y \le 1\}$
is a polyhedral set.

- The feasible region of a LPP is a polyhedral set.
- Since the intersection of any collection of closed subsets
 of Rⁿ is again a closed subset of Rⁿ, hence Fea(LPP) is a
 closed subset of Rⁿ, geometrically the feasible region of a
 LPP contains all its boundary points.

• The hyperplanes $\mathbf{a}_i^T \mathbf{x} = \mathbf{b}_i$ for i = 1, 2, ..., m,

• The hyperplanes $\mathbf{a}_i^T \mathbf{x} = \mathbf{b}_i$ for i = 1, 2, ..., m, $x_j = 0$ for j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} = 0$ for j = 1, 2, ..., n,

• The hyperplanes $\mathbf{a}_i^T \mathbf{x} = b_i$ for i = 1, 2, ..., m, $x_j = 0$ for j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} = 0$ for j = 1, 2, ..., n, associated with an LPP are called its defining hyperplanes.

- The hyperplanes $\mathbf{a}_i^T \mathbf{x} = b_i$ for i = 1, 2, ..., m, $x_j = \mathbf{0}$ for j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} = \mathbf{0}$ for j = 1, 2, ..., n, associated with an LPP are called its defining hyperplanes.
- The associated half spaces are $\mathbf{a}_i^T \mathbf{x} \leq \mathbf{b}_i$, i = 1, 2, ..., m,

- The hyperplanes $\mathbf{a}_i^T \mathbf{x} = b_i$ for i = 1, 2, ..., m, $x_j = 0$ for j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} = 0$ for j = 1, 2, ..., n, associated with an LPP are called its defining hyperplanes.
- The associated half spaces are $\mathbf{a}_i^T \mathbf{x} \leq \mathbf{b}_i, i = 1, 2, \dots, m,$ $x_j \geq 0, j = 1, 2, \dots, n, \text{ or } -\mathbf{e}_j^T \mathbf{x} \leq 0, j = 1, 2, \dots, n.$

- The hyperplanes $\mathbf{a}_i^T \mathbf{x} = b_i$ for i = 1, 2, ..., m, $x_j = 0$ for j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} = 0$ for j = 1, 2, ..., n, associated with an LPP are called its defining hyperplanes.
- The associated half spaces are $\mathbf{a}_i^T \mathbf{x} \leq b_i$, i = 1, 2, ..., m, $x_j \geq 0$, j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} \leq 0$, j = 1, 2, ..., n. For example the defining hyperplanes in **Example 2** are $H_1 = \{[x, y]^T : x = 0\}$,

- The hyperplanes $\mathbf{a}_i^T \mathbf{x} = b_i$ for i = 1, 2, ..., m, $x_j = 0$ for j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} = 0$ for j = 1, 2, ..., n, associated with an LPP are called its defining hyperplanes.
- The associated half spaces are $\mathbf{a}_i^T \mathbf{x} \leq b_i$, i = 1, 2, ..., m, $x_j \geq 0$, j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} \leq 0$, j = 1, 2, ..., n. For example the defining hyperplanes in **Example 2** are $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$,

- The hyperplanes $\mathbf{a}_i^T \mathbf{x} = \mathbf{b}_i$ for i = 1, 2, ..., m, $\mathbf{x}_j = \mathbf{0}$ for j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} = \mathbf{0}$ for j = 1, 2, ..., n, associated with an LPP are called its defining hyperplanes.
- The associated half spaces are $\mathbf{a}_i^T \mathbf{x} \leq b_i$, i = 1, 2, ..., m, $x_j \geq 0$, j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} \leq 0$, j = 1, 2, ..., n. For example the defining hyperplanes in **Example 2** are $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$, $H_3 = \{[x, y]^T : x + 2y = 1\}$,

- The hyperplanes $\mathbf{a}_i^T \mathbf{x} = b_i$ for i = 1, 2, ..., m, $x_j = \mathbf{0}$ for j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} = \mathbf{0}$ for j = 1, 2, ..., n, associated with an LPP are called its defining hyperplanes.
- The associated half spaces are $\mathbf{a}_{i}^{T}\mathbf{x} \leq b_{i}, i = 1, 2, ..., m,$ $x_{j} \geq 0, j = 1, 2, ..., n,$ or $-\mathbf{e}_{j}^{T}\mathbf{x} \leq 0, j = 1, 2, ..., n.$ For example the defining hyperplanes in **Example 2** are $H_{1} = \{[x, y]^{T} : x = 0\}, H_{2} = \{[x, y]^{T} : y = 0\}, H_{3} = \{[x, y]^{T} : x + 2y = 1\}, H_{4} = \{[x, y]^{T} : 2x + 4y = 4\}$ and

- The hyperplanes $\mathbf{a}_i^T \mathbf{x} = b_i$ for i = 1, 2, ..., m, $x_j = \mathbf{0}$ for j = 1, 2, ..., n, or $-\mathbf{e}_j^T \mathbf{x} = \mathbf{0}$ for j = 1, 2, ..., n, associated with an LPP are called its defining hyperplanes.
- The associated half spaces are $\mathbf{a}_{i}^{T}\mathbf{x} \leq b_{i}$, i = 1, 2, ..., m, $x_{j} \geq 0$, j = 1, 2, ..., n, or $-\mathbf{e}_{j}^{T}\mathbf{x} \leq 0$, j = 1, 2, ..., n. For example the defining hyperplanes in **Example 2** are $H_{1} = \{[x, y]^{T} : x = 0\}$, $H_{2} = \{[x, y]^{T} : y = 0\}$, $H_{3} = \{[x, y]^{T} : x + 2y = 1\}$, $H_{4} = \{[x, y]^{T} : 2x + 4y = 4\}$ and $H_{5} = \{[x, y]^{T} : -x + y = 1\}$.

• Example 1: Given the linear programming problem Max 5x + 2y subject to $3x + 2y \le 6$

• Example 1: Given the linear programming problem Max 5x + 2y subject to $3x + 2y \le 6$ $x + 2y \le 4$

• Example 1: Given the linear programming problem Max 5x + 2y subject to $3x + 2y \le 6$

• Example 1: Given the linear programming problem

Max 5x + 2y subject to

 $3x+2y\leq 6$

x + 2y ≤ 4

 $x \ge 0, y \ge 0.$

The optimal solution to be x = 2, y = 0 that is $[2, 0]^T$ which happened to be a corner point of the feasible region.

Example 1: Given the linear programming problem Max 5x + 2y subject to

$$3x + 2y \le 6$$

 $x + 2y \le 4$
 $x \ge 0, y \ge 0.$

The optimal solution to be x = 2, y = 0 that is $[2,0]^T$ which happened to be a corner point of the feasible region. Later we will again convince ourselves (by using more rigor) that this is indeed the optimal solution. The optimal value is 10.

Example 1: Given the linear programming problem Max 5x + 2y subject to

$$3x + 2y \le 6$$

 $x + 2y \le 4$
 $x \ge 0, y \ge 0.$

The optimal solution to be x = 2, y = 0 that is $[2,0]^T$ which happened to be a corner point of the feasible region. Later we will again convince ourselves (by using more rigor) that this is indeed the optimal solution. The optimal value is 10.

Example 2: Consider the problem,
 Min -x + 2y
 subject to

• Example 2: Consider the problem, Min -x + 2ysubject to $x + 2y \ge 1$

$$x$$
 + 2 y ≥ 1

$$-x+y\leq 1$$
,

Min
$$-x + 2y$$
 subject to

$$x + 2y \ge 1$$

$$-x+y\leq 1$$
,

$$x \ge 0, y \ge 0.$$

$$x + 2y \ge 1$$

$$-x+y\leq 1$$
,

$$x \ge 0, y \ge 0.$$

The above linear programming problem does not have an optimal solution.

$$x + 2y \ge 1$$
$$-x + y < 1,$$

$$-x+y\leq 1$$
,

$$x \ge 0, y \ge 0.$$

The above linear programming problem does not have an optimal solution.

• **Example 3:** Note that in the above problem keeping the feasible region same, if we just change the objective function to Min 2x + y, then the changed problem has a unique optimal solution.

$$x + 2y \ge 1$$
$$-x + y < 1,$$

$$-x+y\leq 1$$
,

$$x \ge 0, y \ge 0.$$

The above linear programming problem does not have an optimal solution.

• **Example 3:** Note that in the above problem keeping the feasible region same, if we just change the objective function to Min 2x + y, then the changed problem has a unique optimal solution.

Example 4: Also in Example 2 if we change objective function to Min x + 2y
 then the changed problem has infinitely many optimal solutions, although the set of optimal solutions is bounded.

- Example 4: Also in Example 2 if we change objective function to Min x + 2y
 then the changed problem has infinitely many optimal solutions, although the set of optimal solutions is bounded.
- Example 5: Note that in Example 2 keeping the feasible region same, if we just change the objective function to Min *y*, then the changed problem has infinitely many optimal solutions and the set of optimal solutions is unbounded.

- Example 4: Also in Example 2 if we change objective function to Min x + 2y
 then the changed problem has infinitely many optimal solutions, although the set of optimal solutions is bounded.
- Example 5: Note that in Example 2 keeping the feasible region same, if we just change the objective function to Min *y*, then the changed problem has infinitely many optimal solutions and the set of optimal solutions is unbounded.
- Example 6: Max −x + 2y subject to x + 2y < 1

- Example 4: Also in Example 2 if we change objective function to Min x + 2y
 then the changed problem has infinitely many optimal solutions, although the set of optimal solutions is bounded.
- Example 5: Note that in Example 2 keeping the feasible region same, if we just change the objective function to Min *y*, then the changed problem has infinitely many optimal solutions and the set of optimal solutions is unbounded.
- Example 6: Max -x + 2y subject to x + 2y ≤ 1 -x + y > 1,

- Example 4: Also in Example 2 if we change objective function to Min x + 2y
 then the changed problem has infinitely many optimal solutions, although the set of optimal solutions is bounded.
- Example 5: Note that in Example 2 keeping the feasible region same, if we just change the objective function to Min *y*, then the changed problem has infinitely many optimal solutions and the set of optimal solutions is unbounded.
- Example 6: Max -x + 2ysubject to $x + 2y \le 1$ $-x + y \ge 1$, x > 0, y > 0.

- Example 4: Also in Example 2 if we change objective function to Min x + 2y
 then the changed problem has infinitely many optimal solutions, although the set of optimal solutions is bounded.
- Example 5: Note that in Example 2 keeping the feasible region same, if we just change the objective function to Min *y*, then the changed problem has infinitely many optimal solutions and the set of optimal solutions is unbounded.
- Example 6: $\max -x + 2y$ subject to $x + 2y \le 1$ $-x + y \ge 1$, $x \ge 0, y \ge 0$.

Clearly the feasible region of this problem is the empty set. So this problem is called **infeasible**, and since it **does not** have a feasible solution it obviously does not have an optimal solution.

 Question 1: Can there be exactly 2, 5, or say exactly 100 optimal solutions of a LPP?

- Question 1: Can there be exactly 2, 5, or say exactly 100 optimal solutions of a LPP?
- If we have two optimal solutions then what about points in between and on the line segment joining these two solutions?

- Question 1: Can there be exactly 2, 5, or say exactly 100 optimal solutions of a LPP?
- If we have two optimal solutions then what about points in between and on the line segment joining these two solutions?
- Question 2: Is the set of optimal solutions of an LPP a convex set?

- Question 1: Can there be exactly 2, 5, or say exactly 100 optimal solutions of a LPP?
- If we have two optimal solutions then what about points in between and on the line segment joining these two solutions?
- Question 2: Is the set of optimal solutions of an LPP a convex set?
 - That is, if \mathbf{x}_1 and \mathbf{x}_2 are two optimal solutions of a LPP,

- Question 1: Can there be exactly 2, 5, or say exactly 100 optimal solutions of a LPP?
- If we have two optimal solutions then what about points in between and on the line segment joining these two solutions?
- Question 2: Is the set of optimal solutions of an LPP a convex set?

That is, if \mathbf{x}_1 and \mathbf{x}_2 are two optimal solutions of a LPP, then are \mathbf{y} 's of the form $\mathbf{y} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$, $0 \le \lambda \le 1$, also optimal solutions of the LPP?

• A nonempty set, $S \subseteq R^n$ is said to be a convex set if for all $\mathbf{x}_1, \mathbf{x}_2 \in S$, $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in S$, for all $0 \le \lambda \le 1$.

- A nonempty set, $S \subseteq R^n$ is said to be a convex set if for all $\mathbf{x}_1, \mathbf{x}_2 \in S, \lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2 \in S$, for all $0 \le \lambda \le 1$.
- $\lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2$, $0 \le \lambda \le 1$ is called a convex combination of \mathbf{x}_1 and \mathbf{x}_2 .

- A nonempty set, $S \subseteq R^n$ is said to be a convex set if for all $\mathbf{x}_1, \mathbf{x}_2 \in S, \lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2 \in S$, for all $0 \le \lambda \le 1$.
- $\lambda \mathbf{x_1} + (1 \lambda)\mathbf{x_2}$, $0 \le \lambda \le 1$ is called a convex combination of $\mathbf{x_1}$ and $\mathbf{x_2}$.
- If in the above expression, $0 < \lambda < 1$, then the convex combination is said to be a strict convex combination of \mathbf{x}_1 and \mathbf{x}_2 .

- A nonempty set, $S \subseteq R^n$ is said to be a convex set if for all $\mathbf{x}_1, \mathbf{x}_2 \in S, \lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2 \in S$, for all $0 \le \lambda \le 1$.
- $\lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2$, $0 \le \lambda \le 1$ is called a convex combination of \mathbf{x}_1 and \mathbf{x}_2 .
- If in the above expression, 0 < λ < 1, then the convex combination is said to be a strict convex combination of x₁ and x₂.

Example: $H = \{[x, y]^T : x + 2y \le 1\}$, is a convex set. Note that $\mathbf{x}_1 = [0, 0]^T$, $\mathbf{x}_2 = [1, 0]^T \in \mathbf{H}$.

- A nonempty set, $S \subseteq R^n$ is said to be a convex set if for all $\mathbf{x}_1, \mathbf{x}_2 \in S, \lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2 \in S$, for all $0 \le \lambda \le 1$.
- $\lambda \mathbf{x_1} + (1 \lambda)\mathbf{x_2}$, $0 \le \lambda \le 1$ is called a convex combination of $\mathbf{x_1}$ and $\mathbf{x_2}$.
- If in the above expression, 0 < λ < 1, then the convex combination is said to be a strict convex combination of x₁ and x₂.

Example: $H = \{[x, y]^T : x + 2y \le 1\}$, is a convex set. Note that $\mathbf{x}_1 = [0, 0]^T$, $\mathbf{x}_2 = [1, 0]^T \in \mathbf{H}$. $[0, 0]^T = 1[0, 0]^T + 0[1, 0]^T$ is a convex combination of \mathbf{x}_1 and \mathbf{x}_2 , but **not** a strict convex combination of \mathbf{x}_1 and \mathbf{x}_2 whereas

- A nonempty set, $S \subseteq R^n$ is said to be a convex set if for all $\mathbf{x}_1, \mathbf{x}_2 \in S, \lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2 \in S$, for all $0 \le \lambda \le 1$.
- $\lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2$, $0 \le \lambda \le 1$ is called a convex combination of \mathbf{x}_1 and \mathbf{x}_2 .
- If in the above expression, 0 < λ < 1, then the convex combination is said to be a strict convex combination of x₁ and x₂.

Example: $H = \{[x, y]^T : x + 2y \le 1\}$, is a convex set. Note that $\mathbf{x}_1 = [0, 0]^T$, $\mathbf{x}_2 = [1, 0]^T \in \mathbf{H}$. $[0, 0]^T = 1[0, 0]^T + 0[1, 0]^T$ is a convex combination of \mathbf{x}_1 and \mathbf{x}_2 , but **not** a strict convex combination of \mathbf{x}_1 and \mathbf{x}_2 whereas

 $[\frac{2}{3}, 0]^T = \frac{1}{3}[0, 0]^T + \frac{2}{3}[1, 0]^T$ is a convex combination as well as a strict convex combination of \mathbf{x}_1 and \mathbf{x}_2 .

• Let us first try to answer Question 2.

Let us first try to answer Question 2.
 If the answer to this question is a YES then that would imply that if a LPP has more than one optimal solution then it should have infinitely many optimal solutions, so the answer to Question 1 would be a NO.

Let us first try to answer Question 2.

If the answer to this question is a YES then that would imply that if a LPP has more than one optimal solution then it should have infinitely many optimal solutions, so the answer to **Question 1** would be a NO.

Answer to **Question 2** is YES, that is the set of all optimal solutions of an LPP is indeed a convex set.

- Let us first try to answer Question 2.
 If the answer to this question is a YES then that would imply that if a LPP has more than one optimal solution then it should have infinitely many optimal solutions, so the answer to Question 1 would be a NO.
 - Answer to **Question 2** is YES, that is the set of all optimal solutions of an LPP is indeed a convex set.
- Question 3: If the feasible region of a LPP is a nonempty, bounded set then does the LPP always have an optimal solution?

Let us first try to answer Question 2.
 If the answer to this question is a YES then that would imply that if a LPP has more than one optimal solution then it should have infinitely many optimal solutions, so the

answer to **Question 1** would be a **NO**.

- Answer to **Question 2** is YES, that is the set of all optimal solutions of an LPP is indeed a convex set.
- Question 3: If the feasible region of a LPP is a nonempty, bounded set then does the LPP always have an optimal solution?

The answer to this question is YES, due to Weierstrass, called the Extreme Value Theorem:

• Extreme Value Theorem: If S is a nonempty, closed, bounded subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continuous, then f attains both its minimum and maximum value in S.

- Extreme Value Theorem: If S is a nonempty, closed, bounded subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continuous, then f attains both its minimum and maximum value in S.
- Question 4: Whenever a LPP has an optimal solution does there always exist at least one corner point (points lying at the point of intersection of at least two distinct lines in case n = 2), at which the optimal value is attained?

- Extreme Value Theorem: If S is a nonempty, closed, bounded subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continuous, then f attains both its minimum and maximum value in S.
- Question 4: Whenever a LPP has an optimal solution does there always exist at least one corner point (points lying at the point of intersection of at least two distinct lines in case n = 2), at which the optimal value is attained?
- Given a LPP with a nonempty feasible region,
 Fea(LPP) = S ⊂ ℝⁿ, an x ∈ S is called a corner point of S, if x lies at the point of intersection of n linearly independent hyperplanes defining S.

$$S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}.$$

$$S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}.$$

• The defining hyperplanes are $H_1 = \{[x, y]^T : x = 0\},$

$$S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}.$$

• The defining hyperplanes are $H_1 = \{[x, y]^T : x = 0\},\ H_2 = \{[x, y]^T : y = 0\},\$

$$S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}.$$

• The defining hyperplanes are $H_1 = \{[x, y]^T : x = 0\},\ H_2 = \{[x, y]^T : y = 0\},\ H_3 = \{[x, y]^T : x + 2y = 1\},\$

- Consider the feasible region of **Example 2**, $S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}.$
- The defining hyperplanes are $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$, $H_3 = \{[x, y]^T : x + 2y = 1\}$, $H_4 = \{[x, y]^T : 2x + 4y = 4\}$ and

$$S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}.$$

- The defining hyperplanes are $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$, $H_3 = \{[x, y]^T : x + 2y = 1\}$, $H_4 = \{[x, y]^T : 2x + 4y = 4\}$ and $H_5 = \{[x, y]^T : -x + y = 1\}$.
- $[1,0]^T$, $[0,1]^T$, $[0,\frac{1}{2}]^T$, $[2,0]^T$ are the corner points of S.
- $[1,0]^T$ lies on H_2, H_3 , which are LI.

- Consider the feasible region of **Example 2**, $S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}.$
- The defining hyperplanes are $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$, $H_3 = \{[x, y]^T : x + 2y = 1\}$, $H_4 = \{[x, y]^T : 2x + 4y = 4\}$ and $H_5 = \{[x, y]^T : -x + y = 1\}$.
- $[1,0]^T$, $[0,1]^T$, $[0,\frac{1}{2}]^T$, $[2,0]^T$ are the corner points of S.
- $[1,0]^T$ lies on H_2, H_3 , which are LI.
- $[0,1]^T$ lies on H_1, H_4, H_5 , of which each of $\{H_1, H_4\}$, $\{H_1, H_5\}$, $\{H_4, H_5\}$ is **LI**.

• Consider the feasible region of **Example 2**, $S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le 4, -x + y \le 0, 2x + 4y \le$

$$S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}.$$

- The defining hyperplanes are $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$, $H_3 = \{[x, y]^T : x + 2y = 1\}$, $H_4 = \{[x, y]^T : 2x + 4y = 4\}$ and $H_5 = \{[x, y]^T : -x + y = 1\}$.
- $[1,0]^T$, $[0,1]^T$, $[0,\frac{1}{2}]^T$, $[2,0]^T$ are the corner points of S.
- $[1,0]^T$ lies on H_2, H_3 , which are LI.
- $[0,1]^T$ lies on H_1 , H_4 , H_5 , of which each of $\{H_1, H_4\}$, $\{H_1, H_5\}$, $\{H_4, H_5\}$ is **LI**.
- $[0, \frac{1}{2}]^T$ lies on H_1, H_3 , which are LI.

$$S = \{[x, y]^T : x \ge 0, y \ge 0, 2x + 4y \le 4, -x + y \le 1, x + 2y \ge 1\}.$$

- The defining hyperplanes are $H_1 = \{[x, y]^T : x = 0\}$, $H_2 = \{[x, y]^T : y = 0\}$, $H_3 = \{[x, y]^T : x + 2y = 1\}$, $H_4 = \{[x, y]^T : 2x + 4y = 4\}$ and $H_5 = \{[x, y]^T : -x + y = 1\}$.
- $[1,0]^T$, $[0,1]^T$, $[0,\frac{1}{2}]^T$, $[2,0]^T$ are the corner points of S.
- $[1,0]^T$ lies on H_2, H_3 , which are LI.
- $[0,1]^T$ lies on H_1, H_4, H_5 , of which each of $\{H_1, H_4\}$, $\{H_1, H_5\}$, $\{H_4, H_5\}$ is **LI**.
- $[0,\frac{1}{2}]^T$ lies on H_1, H_3 , which are LI.
- $[2,0]^T$ lies on H_2, H_4 , which are LI.

 An x ∈ Fea(LPP) which lies in atleast one defining hyperplane of the Fea(LPP) is a boundary point of Fea(LPP).

- An x ∈ Fea(LPP) which lies in atleast one defining hyperplane of the Fea(LPP) is a boundary point of Fea(LPP).
 - $[\frac{3}{2}, 0]^T$ is a boundary point but **not** a corner point of *S* since it lies on only **one** defining hyperplane of *S*.

- An x ∈ Fea(LPP) which lies in atleast one defining hyperplane of the Fea(LPP) is a boundary point of Fea(LPP).
 - $[\frac{3}{2}, 0]^T$ is a boundary point but **not** a corner point of S since it lies on only **one** defining hyperplane of S.
- An x ∈ Fea(LPP) which does not lie on any of the defining hyperplanes of Fea(LPP) is an interior point of Fea(LPP)

- An x ∈ Fea(LPP) which lies in atleast one defining hyperplane of the Fea(LPP) is a boundary point of Fea(LPP).
 - $\left[\frac{3}{2},0\right]^T$ is a boundary point but **not** a corner point of *S* since it lies on only **one** defining hyperplane of *S*.
- An x ∈ Fea(LPP) which does not lie on any of the defining hyperplanes of Fea(LPP) is an interior point of Fea(LPP)
 [³/₂, ¹/₈]^T is an interior point of S since it does not lie on any defining hyperplane of S.

• Note that our feasible region S, has (m + n) defining hyperplanes.

- Note that our feasible region S, has (m + n) defining hyperplanes.
- (Alternate definition of corner points): The corner points
 of the feasible region of a LPP cannot be written as a strict
 convex combination of two distinct points of the feasible
 region, in other words those are all extreme points of the
 feasible region.

- Note that our feasible region S, has (m+n) defining hyperplanes.
- (Alternate definition of corner points): The corner points
 of the feasible region of a LPP cannot be written as a strict
 convex combination of two distinct points of the feasible
 region, in other words those are all extreme points of the
 feasible region.
- Given a nonempty convex set, S ⊂ Rⁿ, an x ∈ S is said to be an extreme point of S if x cannot be written as a strict convex combination of two distinct elements of S.

- Note that our feasible region S, has (m+n) defining hyperplanes.
- (Alternate definition of corner points): The corner points
 of the feasible region of a LPP cannot be written as a strict
 convex combination of two distinct points of the feasible
 region, in other words those are all extreme points of the
 feasible region.
- Given a nonempty convex set, $S \subset \mathbb{R}^n$, an $\mathbf{x} \in S$ is said to be an **extreme point** of S if \mathbf{x} cannot be written as a strict convex combination of two distinct elements of S.

That is if $\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$, for some $\mathbf{0} < \lambda < \mathbf{1}$ and $\mathbf{x}_1, \mathbf{x}_2 \in S$, then

- Note that our feasible region S, has (m+n) defining hyperplanes.
- (Alternate definition of corner points): The corner points
 of the feasible region of a LPP cannot be written as a strict
 convex combination of two distinct points of the feasible
 region, in other words those are all extreme points of the
 feasible region.
- Given a nonempty convex set, $S \subset \mathbb{R}^n$, an $\mathbf{x} \in S$ is said to be an **extreme point** of S if \mathbf{x} cannot be written as a strict convex combination of two distinct elements of S.

That is if $\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$, for some $0 < \lambda < 1$ and $\mathbf{x}_1, \mathbf{x}_2 \in S$, then $\mathbf{x}_1 = \mathbf{x}_2 = \mathbf{x}$.

- Note that our feasible region S, has (m+n) defining hyperplanes.
- (Alternate definition of corner points): The corner points
 of the feasible region of a LPP cannot be written as a strict
 convex combination of two distinct points of the feasible
 region, in other words those are all extreme points of the
 feasible region.
- Given a nonempty convex set, $S \subset \mathbb{R}^n$, an $\mathbf{x} \in S$ is said to be an **extreme point** of S if \mathbf{x} cannot be written as a strict convex combination of two distinct elements of S.
 - That is if $\mathbf{x} = \lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2$, for some $0 < \lambda < 1$ and $\mathbf{x}_1, \mathbf{x}_2 \in S$, then $\mathbf{x}_1 = \mathbf{x}_2 = \mathbf{x}$.
- All points on the **boundary** of a disc are extreme points of the disc.
- A hyperplane, half space does not have any extreme point.

• Theorem: If S = Fea(LPP) is nonempty, where $S = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{x} \le b_i, i = 1, \dots, m, -\mathbf{e}_j^T \mathbf{x} \le 0, j = 1, \dots, n \}$ then $\mathbf{x} \in S$ is a corner point of S if and only if it is an extreme point of S.

- Theorem: If S = Fea(LPP) is nonempty, where $S = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{x} \le b_i, i = 1, ..., m, -\mathbf{e}_j^T \mathbf{x} \le 0, j = 1, ..., n\}$ then $\mathbf{x} \in S$ is a corner point of S if and only if it is an extreme point of S.
- The total number of extreme points of the feasible region of a LPP with (m+n) constraints (including the non negativity constraints) is $\leq (m+n)_{C_R}$.

- Theorem: If S = Fea(LPP) is nonempty, where $S = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{x} \le b_i, i = 1, ..., m, -\mathbf{e}_j^T \mathbf{x} \le 0, j = 1, ..., n\}$ then $\mathbf{x} \in S$ is a corner point of S if and only if it is an extreme point of S.
- The total number of extreme points of the feasible region of a LPP with (m+n) constraints (including the non negativity constraints) is $\leq (m+n)_{C_R}$.
- Exercise: Think of a LPP (m+n) constraints such that the number of extreme points of the Fea(LPP) is equal to $\leq (m+n)_{Cn}$.

• Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly greater than (m+n) and is strictly less than $(m+n)_{Cn}$.

- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly greater than (m+n) and is strictly less than $(m+n)_{Cn}$.
- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly less than (m+n).

- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly greater than (m+n) and is strictly less than $(m+n)_{Cn}$.
- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly less than (m+n).
- Question: Does the feasible region of a LPP of the form given before (with non negativity constraints) always have an extreme point?

- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly greater than (m+n) and is strictly less than $(m+n)_{Cn}$.
- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly less than (m+n).
- Question: Does the feasible region of a LPP of the form given before (with non negativity constraints) always have an extreme point?

Answer: YES, we will see this later.

- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly greater than (m+n) and is strictly less than $(m+n)_{Cn}$.
- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly less than (m+n).
- Question: Does the feasible region of a LPP of the form given before (with non negativity constraints) always have an extreme point?

Answer: YES, we will see this later.

Exercise: Think of a convex set defined by only one hyperplane. Will it have any extreme point?

- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly greater than (m+n) and is strictly less than $(m+n)_{Cn}$.
- Exercise: If possible give an example of a LPP with (m+n) constraints such that the number of extreme points of the Fea(LPP) is strictly less than (m+n).
- Question: Does the feasible region of a LPP of the form given before (with non negativity constraints) always have an extreme point?

Answer: YES, we will see this later.

Exercise: Think of a convex set defined by only one hyperplane. Will it have any extreme point?