

深度學習 Deep Learning

機器學習 vs. 深度學習

Machine Learning vs. Deep Learning

深度學習

機器學習 vs. 深度學習

- 深度學習可處理高維度特徵、非結構化的資料建立高複雜度模型
- 機器學習仰賴人為處理過較好的特徵
- 深度學習降低人為處理特徵的需要,透過複雜的神經網路組合特徵

深度學習成功應用

- Google Deep Mind AlphaGo
- Google Translate
- Apple Siri
- · Facebook 相片自動標註人名

驅動深度學習的關鍵因素

- 大數據: 越大量的數據可以讓深度學習的效果越好
- · 硬體運算能力:深度學習的建模速度比機器學習慢很多(數分鐘到數天都有可能),所以仰賴硬體運算能力的支援如: 夠好的CPU/GPU
- · 演算法:良好的深度學習架構不僅能提高建模速度,更能有效的擬合特定應用之資料,例如:卷積神經網路(CNN)適合用於影像辨識

感知器 Perceptron

感知器 (Perceptron)

• Frank Rosenblatt (1957)

感知器 (Perceptron)

• 類似邏輯閘:訊號輸入、輸出 —> OR Gate 分類問題

A	В	out
0	0	Ο
0	1	1
1	0	1
1	1	1

感知器 (Perceptron)

· AND Gate 分類問題

A	В	out
0	0	0
0	1	0
1	0	0
1	1	1

單層Perceptron的限制

XOR Gate

A	В	out
0	0	O
Ο	1	1
1	O	1
1	1	Ο

多層感知器(Multi-layered Perceptron)

XOR Gate

$$h_1 = 20x_1 + 20x_2 - 10$$

$$h_2 = -20x_1 - 20x_2 + 30$$

$$y = 20h_1 + 20h_2 - 30$$

A	В	out
O	O	O
O	1	1
1	0	1
1	1	O

多層感知器(Multi-layered Perceptron)

XOR Gate

A	В	out
0	0	O
0	1	1
1	0	1
1	1	0

神經網路 Neural Network

Neuron

· 模擬大腦神經元(Neuron)運作方式

Neuron

· 羅吉斯迴歸 (Logistic Regression)

神經網路 (Neural Netwok)

神經網路架構

激勵函數 Activation Function

Activation Funciton

• 激勵/活化函數

Step Function

Sigmoid/Logistic Function

- · 輸出介於(o,1)
- 可輸出連續型數值(機率)

Activation Funciton

• ReLU (Rectified Linear Unit)

- 相較於Logistic Function 訓練時更容易收斂 (輸出值較大)
- · 目前深度學習較常用的activation function

Propagation Forward

$$a_n^{(i)} = w_{0n}^{(i)} \cdot a_0^{(i-1)} + w_{1n}^{(i)} \cdot a_1^{(i-1)} + w_{2n}^{(i)} \cdot a_2^{(i-1)}$$

Softmax

· Softmax函數可以把數值矩陣轉換成介於[o,1]之間的機率值,且相加為1

$$\operatorname{softmax}(x)_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$$

e.g.

多類別分類 with Softmax

反向傳播演算法

Backpropagation

損失函數 (Loss Function)

- MSE (Mean Squared Error)
- 交叉熵誤差 (Cross Entropy Error)
 - $-\sum_{m} y_{m} \log \hat{y}_{k}$
 - 因為結果是o/1 (one-hot),所以 只會計算到真實值y = 1的Error 🚆

Notes

▶代價函數(Cost Function) 和損失函數(Loss Function) 意義相當接近,一般會把單一點實際和預測值的差稱為Loss Function,所有資料誤差加總或是加上正規化稱為Cost Function,另外也有人稱這兩者為Error Function。

- · 梯度下降 (Gradient Descent)
- · 小批梯度下降(Mini-batch Gradient Descent, MBGD):介於批次梯度下降(Batch Gradient Descent, BGD)和隨機梯度下降(Stochastic Gradient Descent, SGD)之間,每次隨機選擇m筆資料計算。

Notes

▶ 現在一般泛指的SGD也包含 MBGD。

Cost Function of Logistic Regression

$$J(w) = -\frac{1}{m} \left(\sum_{i=1}^{m} y^{(i)} \log p(x^{(i)}) + (1 - y^{(i)}) \log(1 - p(x^{(i)})) \right)$$

$$J(w) = -\log(1 - p(x))$$
 $J(w) = -\log(p(x))$

$$J(w) = -\log(p(x))$$

Cost Function & Gradient Descent

Logistic Regression:
$$J(w) = -\frac{1}{m} (\sum_{i=1}^{m} y^{(i)} \log p(x^{(i)}) + (1 - y^{(i)}) \log (1 - p(x^{(i)})))$$

Neural Network: $J(w) = -\frac{1}{m} (\sum_{i=1}^{m} \sum_{j=1}^{k} y_j^{(i)} \log \hat{y}_j^{(i)} + (1 - y_j^{(i)}) \log (1 - \hat{y}_j^{(i)}))$

- 計算 J(w)的偏微分: $\frac{\partial}{\partial w}J(w)$
- 更新權重: $w_n = w_n \alpha \cdot \frac{\partial}{\partial w} J(w)$

Notes

▶ Logistic Regression和Neural Network 通常 都是採用Cross Entropy作為Loss Function

反向傳播法 (Backpropagation)

- · 計算與hidden layer相連接的weights
- Steps:
 - 1. 隨機初始weights
 - 2. Propagation forward
 - 3. 計算Loss/Cost
 - 4. Backpropagation(1) update the weights from *output layer* to *hidden layer*
 - 5. Backpropagation(2) update the weights from *hidden layer* to *input layer*

Notes

▶ 若神經網路中的weights初始值皆設為o(或相同值),經Propagation後所有neuron的值都還會是o(或相同值),導致無法正常訓練weights。

反向傳播法 (Backpropagation)

- Rumelhart et al. (1986)
- 搭配梯度下降的優化計算方法,至今仍是訓練深度學習模型最常用的方法
- 利用計算圖(Computational Graph)來理解

Notes

▶ 若對Backpropagation 完整數學及演算 法推導過程有興趣,可參考References。

計算圖 - 加法

• 1代表x1或x2增加1,y就會增加1

計算圖-乘法

- · x₁增加1,y就會增加x₂
- · x₂增加1, y就會增加x₁

計算圖 - 多層&連鎖律(Chain Rule)

Notes

▶ 連鎖律(Chain Rule)

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$

計算圖 - 多層&連鎖律(Chain Rule)

Notes

▶透過Backpropagation可以計算出neuron中的值對output y值的影響。

- x_1 增加1,y就會增加2
- · x₂增加1, y就會增加2

計算圖 - ReLU

when x>0

Notes

▶當neuron的值變成o時, Backpropagation也是o,等於 這個neuron不運作了。

when x≤0

References

- Artificial Neural Networks: Mathematics of Backpropagation (Part 4)
 - http://briandolhansky.com/blog/2013/9/27/artificial-neural-networks-backpropagation-part-4
- The Backpropagation Algorithm
 - https://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf

最佳化 Optimization

隨機梯度下降(SGD)

- 前進方向晃動大,收斂速度較慢
- · 步伐越來越小,可能卡在local optimum

SGD with Momentum

物理原理:球越往低處滾,動量越大且越往穩定 方向前進,可加速SGD收斂。

▶ 動量 (向量) $\vec{p} = m\vec{v}$

Notes

減速(阻力)=0.9 學習速率(eta)

$$w = w + v$$

SGD with Momentum

SGD with Keras

- keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)
 - Ir: float >= 0. Learning rate.
 - momentum: float >= 0. Parameter updates momentum.
 - decay: float >= 0. Learning rate decay over each update.
 - nesterov: boolean. Whether to apply Nesterov momentum.

AdaGrad

• 不同特徵使用不同的學習速率,而非定值或統一降低的學習速率

$$h = h + \frac{d}{dx}J(w) \odot \frac{d}{dx}J(w)$$

J(w)微分值越大(坡越陡) h越大,學習速率越慢

$$w=w-\eta \frac{1}{\sqrt{h+\varepsilon}} \frac{d}{dw} J(w)$$
學習速率 epsilon: 設定很小的值不同 w_n 有不同的h 避免根號內為o

AdaGrad with Keras

- keras.optimizers.Adagrad(lr=0.01, epsilon=1e-08, decay=0.0)
 - Ir: float >= 0. Learning rate.
 - epsilon: float >= 0.
 - decay: float >= 0. Learning rate decay over each update.
- It is recommended to leave the parameters of this optimizer at their default values.

RMSProp

速率降低到最後可能變成o,所以用RMSProp改善此問題,建議值為設定保留過去o.9的h(遺忘掉o.1來更新)

$$h_{t} = 0.9h_{t-1} + 0.1\frac{d}{dx}J(w)\odot\frac{d}{dx}J(w)$$

$$w = w - \eta \frac{1}{\sqrt{h + \varepsilon}} \frac{d}{dw} J(w)$$

RMSProp

- keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
 - **Ir**: float >= 0. Learning rate.
 - **rho**: float >= 0.
 - epsilon: float >= 0. Fuzz factor.
 - **decay**: float >= 0. Learning rate decay over each update.
- It is recommended to leave the parameters of this optimizer at their default values (except the **learning rate**, which can be freely tuned).
- This optimizer is usually a good choice for recurrent neural networks (RNN).

Adam

- SGD with Momentum + AdaGrad
- 表現通常不錯
- keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
 - **Ir**: float >= 0. Learning rate.
 - beta_1: float, 0 < beta < 1. Generally close to 1.
 - beta_2: float, 0 < beta < 1. Generally close to 1.
 - epsilon: float >= 0. Fuzz factor.
 - decay: float >= 0. Learning rate decay over each update.

Notes

▶論文原著:〈ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION〉
https://arxiv.org/pdf/1412.6980.pdf

用Keras訓練第一個神經網路

Training your first neural network with Keras