Metody optymalizacji, lista 3

Radosław Wojtczak, numer indeksu: 254607

11.06.2023

Spis treści

1	Wprowadzenie	2
2	Problematyka	3
3	Otrzymane wyniki	5
4	Pełna tabela	7
	Bibliografia	13

Wprowadzenie

W ramach listy numer 3 należało zaimplementować w języku programowania **julia** 2-aproksymacyjny algorytm oparty na programowaniu liniowym dla problemu szeregowania zadań na niezależnych maszynach z kryterium minimalizacji długości uszeregowania. W celu wykonania zadania skorzystano z pakietu JuMP. Algorytm został zaimplementowany w oparciu o książkę [1]. Wszystkie szczegóły algorytmu znajdują się w rodziale 17 (algorytm 17.5).

Problematyka

Zaimplementowany algorytm jest sposobem na rozwiązanie problemu harmonogramowania zadań na niezależnych, równoległych maszynach (ang. Scheduling on unrelated parallel machines). Problem ten polega na przypisaniu zbioru zadań do zbioru niezależnych, równoległych maszyn w taki sposób, aby minimalizować czas wykonania wszystkich zadań. W opisywanym problemie każde zadania ma określony czas wykoniania na każdej z rozpatrywanych maszyn. Przedstawiając powyższe w zwięzłej, matematycznej formie:

- J zbiór zadań, n = |J|
- M zbiór maszyn m = |M|
- p macierz czasów realizacji zadania, zdefiniowana dla każdego zadania, które potencjalnie może zostać wykonane dla każdej z maszyn

$$(\forall j \in J)((\forall m \in M)(p_{ij} \in \mathbb{Z}^+)) \tag{2.1}$$

Próbując utworzyć model programowania liniowego dla wskazanego problemu najlepiej zacząć od konstrukcji modeulu programowania całkowitoliczbowego:

- \bullet min~t,gdzie t sumarycznym czasem realizacji zadania na najdłużej pracującej maszynie
- Każda z prac może być zrealizowana tylko na jednej maszynie

$$\sum_{i \in M} x_{ij} = 1 : j \in J \tag{2.2}$$

 \bullet Każda z maszyn nie może pracować dłużej niż wskazuje na to minimalizowana zmienna t

$$\sum_{j \in J} x_{ij} * p_{ij} \leqslant t : i \in M \tag{2.3}$$

• Zmienne decyzyjne okreslone są wartościami całkowitymi, gdzie wartość 1 oznacza, iż i-ta maszyna realizuje j-tą pracę

$$x_{ij} \in \{0,1\} : i \in M, j \in J$$
 (2.4)

Następnie chcielibyśmy dokonać relaksacji ostatniego ograniczenia, sprowadzającym tym samym problem do dobrze znanego nam programowania liniowego, jednakże pojawia się problem, w którym optymalizator dokonuje niecałkowitego podziału prac między maszyny. Aby wyeliminować powyżsża sytuację, autor pracy [1] zaproponował następujący algorytm:

- 1. Przeprowadź wyszukiwanie binarne w przedziale $\left[\frac{\alpha}{m},\alpha\right]$. Znajdź najmniejszą wartość T na zbiorze liczb całkowitych dodatniych, dla której LP(T) ma dopuszczalne rozwiązanie. Oznacz tę wartość jako T^*
- 2. Znajdź rozwiązanie bazowe dopuszczalne x dla problemu $LP(T^*)$
- 3. Przypisz wszystkie zadania z wartościami całkowitymi do maszyn zgodnie z rozwiązaniem $\mathbf x$
- 4. Skonstruuj graf i znajdź w nim doskonałe skojarzenie
- 5. Przypisz zadania z wartościami ułamkowymi do maszyn zgodnie ze skojarzeniem

Dzięki powyższemu algorytmowi, wcześniej przedstawiony model możemy sprowadzić do programowania liniowego zastępując definicję zmiennych decyzyjnych w następujący sposób

$$x_{ij} \geqslant \{0,1\} : i \in M, j \in J$$
 (2.5)

Celem następnych sekcji jest eksperymentalne ocenienie jakości proponowanego algorytmu aproksymacyjnego.

Otrzymane wyniki

Poniższa skrócona tabela przedstawia wyniki otrzymane w ramach przeprowadzonych testów na instancjach dostarczonych przez bibliotekę "Instances for unrelated parallel machines problems and makespan criterion". Pełna tabela przedstawiająca wyniki dla wszystkich instancji znajduje się na końcu pracy.

Instancja	OPT	Algorytm	2*OPT
121	30.0	42	60.0
122	36.0	46	72.0
123	32.0	52	64.0
124	33.0	48	66.0
131	19.0	35	38.0
132	23.0	40	46.0
133	16.0	26	32.0
134	18.0	34	36.0
511	501.0	524	1002.0
512	484.0	501	968.0

Tabela 3.1: Porownanie wybranych wyników optymalnych oraz wyprodukowanych przez algorytm dla wybranych instancji z rozpatrywanej biblioteki

Zgodnie z Twierdzeniem 17.8 [1] wartości w kolumnie "Algorytm" nie powinny przekraczać dwukrotności algorytmu optymalnego. Na poniższym wykresie można zauważyć, iż faktycznie krzywa prezentująca wartości otrzymane przez algorytm znajduje się pomiędzy krzywą reprezentująca rozwiązanie optymalne oraz jego dwukrotność.

Wartość funkcji celu względem badanych instancji

Rysunek 3.1: Wykres wartości funkcji celu względem wszystkich badanych instancji

Rysunek 3.2: Wykres wartości funkcji celu względem wybranych instancji w celu polepszenia widoczności

Na podstawie powyższego wnioskujemy, iż prezentowany algorytm jest dobrym algorytmem aproksymacyjnym.

Pełna tabela

Instancja	OPT	Algorytm	2*OPT
1011	977.0	997	1954.0
1012	905.0	919	1810.0
1013	978.0	995	1956.0
1014	960.0	985	1920.0
1015	964.0	1009	1928.0
1016	0	999	0
1017	942.0	971	1884.0
1018	990.0	1011	1980.0
1019	937.0	946	1874.0
1020	0	1011	0
1021	258.0	267	516.0
1022	0	278	0
1023	0	263	0
1024	266.0	288	532.0
1025	0	288	0
1026	267.0	279	534.0
1027	0	301	0
1028	272.0	296	544.0
1029	0	279	0
1030	260.0	275	520.0
1031	0	146	0
1032	0	154	0
1033	123.0	136	246.0
1034	126.0	138	252.0
1035	0	145	0
1036	125.0	135	250.0
1037	128.0	145	256.0
1038	126.0	136	252.0
1039	128.0	151	256.0
1040	127.0	138	254.0

1041	74.0	89	148.0
1042	0	85	0
1043	77.0	85	154.0
1044	75.0	89	150.0
1045	77.0	88	154.0
1046	75.0	84	150.0
1047	0	84	0
1048	75.0	85	150.0
1049	76.0	92	152.0
1050	74.0	83	148.0
1051	51.0	56	102.0
1052	49.0	60	98.0
1053	51.0	61	102.0
1054	51.0	58	102.0
1055	51.0	60	102.0
1056	0	60	0
1057	50.0	64	100.0
1058	0	59	0
1059	54.0	65	108.0
1060	52.0	61	104.0
111	117.0	152	234.0
112	87.0	111	174.0
113	98.0	136	196.0
114	115.0	131	230.0
115	104.0	136	208.0
116	101.0	125	202.0
117	114.0	147	228.0
118	103.0	122	206.0
119	114.0	139	228.0
120	98.0	131	196.0
121	30.0	42	60.0
122	36.0	46	72.0
123	32.0	52	64.0
124	33.0	48	66.0
125	31.0	49	62.0
126	29.0	45	58.0
127	35.0	51	70.0
128	30.0	46	60.0
129	30.0	37	60.0
130	29.0	45	58.0
131	19.0	35	38.0

100	1 00 0	40	40.0
132	23.0	40	46.0
133	16.0	26	32.0
134	18.0	34	36.0
135	16.0	27	32.0
136	24.0	44	48.0
137	17.0	25	34.0
138	19.0	34	38.0
139	16.0	29	32.0
140	17.0	30	34.0
141	10.0	19	20.0
142	12.0	21	24.0
143	12.0	23	24.0
144	10.0	18	20.0
145	11.0	19	22.0
146	12.0	20	24.0
147	14.0	26	28.0
148	13.0	22	26.0
149	23.0	42	46.0
150	14.0	24	28.0
151	8.0	15	16.0
152	13.0	25	26.0
153	10.0	15	20.0
154	11.0	20	22.0
155	9.0	16	18.0
156	10.0	18	20.0
157	8.0	14	16.0
158	11.0	20	22.0
159	9.0	14	18.0
160	9.0	17	18.0
211	204.0	213	408.0
212	204.0	230	408.0
213	197.0	216	394.0
214	195.0	211	390.0
215	218.0	236	436.0
216	183.0	212	366.0
217	189.0	217	378.0
218	198.0	214	396.0
219	197.0	211	394.0
220	206.0	232	412.0
221	55.0	76	110.0
222	58.0	68	116.0

223	53.0	85	106.0
224	60.0	76	120.0
225	55.0	69	110.0
226	59.0	82	118.0
227	58.0	79	116.0
228	56.0	79	112.0
229	58.0	89	116.0
230	54.0	69	108.0
231	27.0	45	54.0
232	27.0	40	54.0
233	28.0	42	56.0
234	27.0	48	54.0
235	24.0	36	48.0
236	31.0	57	62.0
237	27.0	43	54.0
238	28.0	44	56.0
239	29.0	45	58.0
240	30.0	46	60.0
241	17.0	26	34.0
242	17.0	31	34.0
243	16.0	25	32.0
244	17.0	25	34.0
245	19.0	34	38.0
246	18.0	33	36.0
247	18.0	28	36.0
248	17.0	27	34.0
249	14.0	21	28.0
250	18.0	28	36.0
251	13.0	21	26.0
252	16.0	27	32.0
253	12.0	23	24.0
254	12.0	22	24.0
255	13.0	21	26.0
256	12.0	20	24.0
257	13.0	22	26.0
258	12.0	21	24.0
259	13.0	25	26.0
260	12.0	23	24.0
511	501.0	524	1002.0
512	484.0	501	968.0
513	500.0	525	1000.0

514	469.0	488	938.0
515	503.0	528	1006.0
516	497.0	529	994.0
517	455.0	484	910.0
518	467.0	481	934.0
519	0	511	0
520	483.0	514	966.0
521	135.0	163	270.0
522	130.0	161	260.0
523	137.0	152	274.0
524	138.0	154	276.0
525	0	161	0
526	134.0	146	268.0
527	132.0	159	264.0
528	0	159	0
529	137.0	160	274.0
530	0	136	0
531	62.0	69	124.0
532	68.0	84	136.0
533	67.0	76	134.0
534	66.0	83	132.0
535	0	116	0
536	0	79	0
537	61.0	72	122.0
538	66.0	83	132.0
539	63.0	75	126.0
540	68.0	80	136.0
541	39.0	50	78.0
542	39.0	48	78.0
543	39.0	49	78.0
544	39.0	51	78.0
545	39.0	54	78.0
546	38.0	47	76.0
547	0	56	0
548	0	57	0
549	0	52	0
550	37.0	51	74.0
551	26.0	39	52.0
552	27.0	41	54.0
553	26.0	34	52.0
554	27.0	36	54.0

555	26.0	40	52.0
556	27.0	35	54.0
557	0	38	0
558	26.0	36	52.0
559	0	33	0
560	27.0	42	54.0

Tabela 4.1: Porownanie wszystkich wyników optymalnych oraz wyprodukowanych przez algorytm dla wybranych instancji z rozpatrywanej biblioteki

Należy zauważyć, iż w każdym przypadku wartość $Algorytm \in [OPT, 2*OPT],$ gdzie $OPT \geqslant 0.$

Bibliografia

[1] Vijay V. Vazirani. Approximation algorithms. 2001.