CONTENTS

Preface to the Second Edition	XXV
Preface to the First Edition	xxvi
Authors	xxix
Notation	xxxi
Part I Exact Solutions	1
1 First-Order Equations with Two Independent Variables	3
1.1 Equations of the Form $f(x,y)\frac{\partial w}{\partial x} + g(x,y)\frac{\partial w}{\partial y} = 0$	
1.1.1 Equations Containing Power-Law Functions	
1.1.2 Equations Containing Exponential Functions	
1.1.3 Equations Containing Hyperbolic Functions1.1.4 Equations Containing Logarithmic Functions	
1.1.5 Equations Containing Trigonometric Functions	
1.1.6 Equations Containing Inverse Trigonometric Functions	
1.1.7 Equations Containing Arbitrary Functions of x	
1.1.8 Equations Containing Arbitrary Functions of Different Arguments	
1.2 Equations of the Form $f(x,y)\frac{\partial w}{\partial x} + g(x,y)\frac{\partial w}{\partial y} = h(x,y)$. 66
1.2.1 Equations Containing Power-Law Functions	
1.2.2 Equations Containing Exponential Functions	
1.2.3 Equations Containing Hyperbolic Functions	
1.2.4 Equations Containing Logarithmic Functions	
1.2.5 Equations Containing Trigonometric Functions	
1.2.6 Equations Containing Inverse Trigonometric Functions	
1.3 Equations of the Form $f(x,y)\frac{\partial w}{\partial x} + g(x,y)\frac{\partial w}{\partial y} = h(x,y)w$	
1.3.1 Equations Containing Power-Law Functions	
1.3.3 Equations Containing Hyperbolic Functions	
1.3.4 Equations Containing Logarithmic Functions	
1.3.5 Equations Containing Trigonometric Functions	
1.3.6 Equations Containing Inverse Trigonometric Functions	
1.3.7 Equations Containing Arbitrary Functions	
1.4 Equations of the Form $f(x,y)\frac{\partial w}{\partial x} + g(x,y)\frac{\partial w}{\partial y} = h_1(x,y)w + h_0(x,y)$. 114
1.4.1 Equations Containing Power-Law Functions	
1.4.2 Equations Containing Exponential Functions	. 120
1.4.3 Equations Containing Hyperbolic Functions	
1.4.4 Equations Containing Logarithmic Functions	
1.4.5 Equations Containing Trigonometric Functions	
1.4.6 Equations Containing Inverse Trigonometric Functions	
1.4.7 Equations Containing Arbitrary Functions	. 133

vi Contents

2 F	irst-O	rder Equations with Three or More Independent Variables	139
2.1	Equat	ions of the Form $f(x, y, z) \frac{\partial w}{\partial x} + g(x, y, z) \frac{\partial w}{\partial y} + h(x, y, z) \frac{\partial w}{\partial z} = 0$	139
		Equations Containing Power-Law Functions	139
	2.1.2	•	150
	2.1.3	Equations Containing Hyperbolic Functions	154
	2.1.4	Equations Containing Logarithmic Functions	158
	2.1.5	Equations Containing Trigonometric Functions	159
	2.1.6	Equations Containing Inverse Trigonometric Functions	162
	2.1.7	Equations Containing Arbitrary Functions	164
2.2	Equat	ions of the Form $f_1 \frac{\partial w}{\partial x} + f_2 \frac{\partial w}{\partial y} + f_3 \frac{\partial w}{\partial z} = f_4$, $f_n = f_n(x, y, z)$	170
	2.2.1	Equations Containing Power-Law Functions	171
	2.2.2	Equations Containing Exponential Functions	177
	2.2.3	Equations Containing Hyperbolic Functions	179
	2.2.4	Equations Containing Logarithmic Functions	183
		Equations Containing Trigonometric Functions	184
	2.2.6	Equations Containing Inverse Trigonometric Functions	188
	2.2.7	Equations Containing Arbitrary Functions	191
2.3	Equat	ions of the Form $f_1 \frac{\partial w}{\partial x} + f_2 \frac{\partial w}{\partial y} + f_3 \frac{\partial w}{\partial z} = f_4 w$, $f_n = f_n(x, y, z)$	196
	2.3.1	Equations Containing Power-Law Functions	197
	2.3.2	Equations Containing Exponential Functions	203
	2.3.3	Equations Containing Hyperbolic Functions	205
	2.3.4		209
	2.3.5	Equations Containing Trigonometric Functions	210
	2.3.6	Equations Containing Inverse Trigonometric Functions	214
	2.3.7	Equations Containing Arbitrary Functions	217
2.4	Equat	ions of the Form $f_1 \frac{\partial w}{\partial x} + f_2 \frac{\partial w}{\partial y} + f_3 \frac{\partial w}{\partial z} = f_4 w + f_5$, $f_n = f_n(x, y, z)$	222
	2.4.1	Equations Containing Power-Law Functions	223
		Equations Containing Exponential Functions	228
	2.4.3	Equations Containing Hyperbolic Functions	230
		Equations Containing Logarithmic Functions	234
		Equations Containing Trigonometric Functions	236
		Equations Containing Inverse Trigonometric Functions	240
		Equations Containing Arbitrary Functions	243
		Underdetermined Equations Containing Operator div	248
	2.4.9	Equations with Four or More Independent Variables	251
3 S	econd-	Order Parabolic Equations with One Space Variable	261
3.1		ant Coefficient Equations	261
		Heat Equation $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2}$	261
	3.1.2	Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + \Phi(x,t)$	270
	3.1.3	Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + bw + \Phi(x, t)$	275
	3.1.4	Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + \Phi(x, t)$	280
	3.1.5	Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + cw + \Phi(x, t)$	284

CONTENTS vii

3.2	Heat Equation with Axial or Central Symmetry and Related Equations	288
	3.2.1 Equation of the Form $\frac{\partial w}{\partial t} = a\left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r}\frac{\partial w}{\partial r}\right)$	288
	3.2.2 Equation of the Form $\frac{\partial w}{\partial t} = a\left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r}\frac{\partial w}{\partial r}\right) + \Phi(r,t)$	294
	3.2.3 Equation of the Form $\frac{\partial w}{\partial t} = a\left(\frac{\partial^2 w}{\partial r^2} + \frac{2}{r}\frac{\partial w}{\partial r}\right)$	298
	3.2.4 Equation of the Form $\frac{\partial w}{\partial t} = a(\frac{\partial^2 w}{\partial r^2} + \frac{2}{r}\frac{\partial w}{\partial r}) + \Phi(r,t)$	305
	3.2.5 Equation of the Form $\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + \frac{1-2\beta}{x} \frac{\partial w}{\partial x}$	308
	3.2.6 Equation of the Form $\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + \frac{1-2\beta}{x} \frac{\partial w}{\partial x} + \Phi(x,t)$	311
3.3	Equations Containing Power Functions and Arbitrary Parameters	312
	3.3.1 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t)w$	312
	3.3.2 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x}$	318
	3.3.3 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w + h(x,t) \dots$	321
	3.3.4 Equations of the Form $\frac{\partial w}{\partial t} = (ax+b)\frac{\partial^2 w}{\partial x^2} + f(x,t)\frac{\partial w}{\partial x} + g(x,t)w$	324
	3.3.5 Equations of the Form $\frac{\partial w}{\partial t} = (ax^2 + bx + c) \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t)w$	327
	3.3.6 Equations of the Form $\frac{\partial w}{\partial t} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x,t) \frac{\partial w}{\partial x} + h(x,t)w \dots$	329
	3.3.7 Equations of the Form $\frac{\partial w}{\partial t} = f(x,t) \frac{\partial^2 w}{\partial x^2} + g(x,t) \frac{\partial w}{\partial x} + h(x,t)w$	334
	3.3.8 Liquid-Film Mass Transfer Equation $(1-y^2)\frac{\partial w}{\partial x} = a\frac{\partial^2 w}{\partial y^2}$	335
	3.3.9 Equations of the Form $f(x,y)\frac{\partial w}{\partial x} + g(x,y)\frac{\partial w}{\partial y} = \frac{\partial^2 w}{\partial y^2} + h(x,y)$	338
3.4	Equations Containing Exponential Functions and Arbitrary Parameters	338
	3.4.1 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t)w$	338
	3.4.2 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x}$	341
	3.4.3 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	344
	3.4.4 Equations of the Form $\frac{\partial w}{\partial t} = ax^n \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	345
	3.4.5 Equations of the Form $\frac{\partial w}{\partial t} = ae^{\beta x} \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w \dots$	346
	3.4.6 Other Equations	349
3.5	Equations Containing Hyperbolic Functions and Arbitrary Parameters	349
	3.5.1 Equations Containing a Hyperbolic Cosine3.5.2 Equations Containing a Hyperbolic Sine	349 350
	3.5.3 Equations Containing a Hyperbolic Tangent	351
	3.5.4 Equations Containing a Hyperbolic Cotangent	352
3.6	Equations Containing Logarithmic Functions and Arbitrary Parameters	354
	3.6.1 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	354
	3.6.2 Equations of the Form $\frac{\partial w}{\partial t} = ax^k \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	354
3.7	Equations Containing Trigonometric Functions and Arbitrary Parameters	356
	3.7.1 Equations Containing a Cosine	356
	3.7.2 Equations Containing a Sine	357
	3.7.3 Equations Containing a Tangent	358
	3.7.4 Equations Containing a Cotangent	359
3.8	Equations Containing Arbitrary Functions	360
	3.8.1 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t)w$	360
	3.8.2 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x}$	363
	3.8.3 Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	368

viii Contents

	3.8.4 Equations of the Form $\frac{\partial w}{\partial t} = ax^n \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	370
	3.8.5 Equations of the Form $\frac{\partial w}{\partial t} = ae^{\beta x} \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w \dots$	372
	3.8.6 Equations of the Form $\frac{\partial w}{\partial t} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x,t) \frac{\partial w}{\partial x} + h(x,t)w \dots$	373
	3.8.7 Equations of the Form $\frac{\partial w}{\partial t} = f(t) \frac{\partial^2 w}{\partial x^2} + g(x,t) \frac{\partial w}{\partial x} + h(x,t)w$	382
	3.8.8 Equations of the Form $\frac{\partial w}{\partial t} = f(x,t) \frac{\partial^2 w}{\partial x^2} + g(x,t) \frac{\partial w}{\partial x} + h(x,t)w$	385
	3.8.9 Equations of the Form $s(x)\frac{\partial w}{\partial t} = \frac{\partial}{\partial x}\left[p(x)\frac{\partial w}{\partial x}\right] - q(x)w + \Phi(x,t)$	388
3.9	Equations of Special Form	393
- 17	Equations of Special Form	393
	3.9.2 One-Dimensional Schrödinger Equation $i\hbar \frac{\partial w}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 w}{\partial x^2} + U(x)w$	396
4 S	econd-Order Parabolic Equations with Two Space Variables	401
4.1	Heat Equation $\frac{\partial w}{\partial t} = a\Delta_2 w$	401
	4.1.1 Boundary Value Problems in Cartesian Coordinates	401
	4.1.2 Problems in Polar Coordinates	416
	4.1.3 Axisymmetric Problems	423
4.2	Heat Equation with a Source $\frac{\partial w}{\partial t} = a\Delta_2 w + \Phi(x, y, t)$	434
	4.2.1 Problems in Cartesian Coordinates	434 442
	4.2.3 Axisymmetric Problems	445
4.3	Other Equations	455
	4.3.1 Equations Containing Arbitrary Parameters	455
	4.3.2 Equations Containing Arbitrary Functions	457
5 S	econd-Order Parabolic Equations with Three or More Space Variables	463
5.1	Heat Equation $\frac{\partial w}{\partial t} = a\Delta_3 w$	463
	5.1.1 Problems in Cartesian Coordinates	463
	5.1.2 Problems in Cylindrical Coordinates	487 517
<i>5</i> 2	-	
5.2	Heat Equation with Source $\frac{\partial w}{\partial t} = a\Delta_3 w + \Phi(x, y, z, t)$	522 522
	5.2.2 Problems in Cylindrical Coordinates	528
	5.2.3 Problems in Spherical Coordinates	534
5.3	Other Equations with Three Space Variables	537
	5.3.1 Equations Containing Arbitrary Parameters	537
	5.3.2 Equations Containing Arbitrary Functions	539
	5.3.3 Equations of the Form $\rho(x, y, z) \frac{\partial w}{\partial t} = \operatorname{div}[a(x, y, z)\nabla w] - q(x, y, z)w + \Phi(x, y, z, t)$	542
5 4	Equations with n Space Variables	545
٠	5.4.1 Equations of the Form $\frac{\partial w}{\partial t} = a\Delta_n w + \Phi(x_1, \dots, x_n, t)$	545
	5.4.2 Other Equations Containing Arbitrary Parameters	548
	5.4.3 Equations Containing Arbitrary Functions	549
6 S	econd-Order Hyperbolic Equations with One Space Variable	557
6.1	Constant Coefficient Equations	557
	6.1.1 Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2}$	557
	6.1.2 Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} + \Phi(x, t)$	563
	6.1.3 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} - bw + \Phi(x, t)$	567

Contents ix

	6.1.4 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} - b \frac{\partial w}{\partial x} + \Phi(x, t)$	571
	6.1.5 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + cw + \Phi(x, t)$	574
6.2	Wave Equations with Axial or Central Symmetry	577
	6.2.1 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right)$	577
	6.2.2 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) + \Phi(r, t)$	580
	6.2.3 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{2}{r} \frac{\partial w}{\partial r} \right)$	581
	6.2.4 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{2}{r} \frac{\partial w}{\partial r} \right) + \Phi(r, t)$	585
	6.2.5 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) - bw + \Phi(r, t)$	586
	6.2.6 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{2}{r} \frac{\partial w}{\partial r} \right) - bw + \Phi(r, t)$	590
6.3	Equations Containing Power Functions and Arbitrary Parameters	593
	6.3.1 Equations of the Form $\frac{\partial^2 w}{\partial t^2} = (ax+b)\frac{\partial^2 w}{\partial x^2} + c\frac{\partial w}{\partial x} + kw + \Phi(x,t)$	593
	6.3.2 Equations of the Form $\frac{\partial^2 w}{\partial t^2} = (ax^2 + b) \frac{\partial^2 w}{\partial x^2} + cx \frac{\partial w}{\partial x} + kw + \Phi(x, t) \dots$ 6.3.3 Other Equations	598 600
6.4	Equations Containing the First Time Derivative	607
	6.4.1 Equations of the Form $\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = a^2 \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + cw + \Phi(x, t) \dots$	607
	6.4.2 Equations of the Form $\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x) \frac{\partial w}{\partial x} + h(x) w + \Phi(x, t)$ 6.4.3 Other Equations	616 621
6.5	Equations Containing Arbitrary Functions	623
	6.5.1 Equations of the Form $s(x)\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x}\left[p(x)\frac{\partial w}{\partial x}\right] - q(x)w + \Phi(x,t) \dots$	623
	6.5.2 Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a(t) \frac{\partial w}{\partial t} =$	
	$b(t) \left\{ \frac{\partial}{\partial x} \left[p(x) \frac{\partial w}{\partial x} \right] - q(x) w \right\} + \Phi(x, t) $ 6.5.3 Other Equations	626 628
7 S	second-Order Hyperbolic Equations with Two Space Variables	633
	Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_2 w$	633
	7.1.1 Problems in Cartesian Coordinates	633
	7.1.2 Problems in Polar Coordinates	639
	7.1.3 Axisymmetric Problems	645
7.2	Nonhomogeneous Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_2 w + \Phi(x, y, t)$	651 651
	7.2.2 Problems in Coordinates	653
	7.2.3 Axisymmetric Problems	656
7.3	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_2 w - bw + \Phi(x,y,t)$	659
	7.3.1 Problems in Cartesian Coordinates	659
	7.3.2 Problems in Polar Coordinates	664
	7.3.3 Axisymmetric Problems	670
7.4	Telegraph Equation $\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = a^2 \Delta_2 w - bw + \Phi(x, y, t)$	676 676
	7.4.1 Problems in Cartesian Coordinates	681
	7.4.3 Axisymmetric Problems	688
7.5	Other Equations with Two Space Variables	693

X CONTENTS

8 S	econd	Order Hyperbolic Equations with Three or More Space Variables	695
	8.1.1 8.1.2 8.1.3	$\begin{array}{l} \text{Equation } \frac{\partial^2 w}{\partial t^2} = a^2 \Delta_3 w \\ \text{Problems in Cartesian Coordinates} \\ \text{Problems in Cylindrical Coordinates} \\ \text{Problems in Spherical Coordinates} \end{array}$	695 695 701 712
	8.2.1 8.2.2 8.2.3	omogeneous Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_3 w + \Phi(x,y,z,t)$ Problems in Cartesian Coordinates	717 717 718 719
8.3	8.3.1 8.3.2	ions of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_3 w - bw + \Phi(x,y,z,t)$ Problems in Cartesian Coordinates	720 720 726 738
8.4	8.4.1 8.4.2	raph Equation $\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = a^2 \Delta_3 w - bw + \Phi(x, y, z, t)$. Problems in Cartesian Coordinates Problems in Cylindrical Coordinates Problems in Spherical Coordinates	743 743 748 760
8.5	8.5.1	Equations with Three Space Variables	765 765
8.6	_	$\operatorname{div}[a(x,y,z)\nabla w] - q(x,y,z)w + \Phi(x,y,z,t) \qquad$ ions with n Space Variables	765 768 768
	8.6.3	Nonhomogeneous Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_n w + \Phi(x_1, \dots, x_n, t) \dots$ Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_n w - bw + \Phi(x_1, \dots, x_n, t) \dots$ Equations Containing the First Time Derivative	770 773 776
9 S	econd	-Order Elliptic Equations with Two Space Variables	781
	Lapla 9.1.1 9.1.2	ce Equation $\Delta_2 w = 0$	781 781 787 792
9.2	Poisso 9.2.1 9.2.2 9.2.3	on Equation $\Delta_2 w = -\Phi(\mathbf{x})$	794 794 796 803 807
9.3	Helm 9.3.1 9.3.2	holtz Equation $\Delta_2 w + \lambda w = -\Phi(\mathbf{x})$. General Remarks, Results, and Formulas Problems in Cartesian Coordinate System Problems in Polar Coordinate System Other Orthogonal Coordinate Systems. Elliptic Domain	809 809 813 824 830
9.4	Other 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5	Equations	832 832 835 843 851 855

Contents xi

10 S	econd-	Order Elliptic Equations with Three or More Space Variables	859
10.1	10.1.1 10.1.2 10.1.3	e Equation $\Delta_3 w = 0$ Problems in Cartesian Coordinates Problems in Cylindrical Coordinates Problems in Spherical Coordinates Other Orthogonal Curvilinear Systems of Coordinates	859 859 862 863 866
10.2	10.2.1 10.2.2 10.2.3	Preliminary Remarks. Solution Structure Problems in Cartesian Coordinates Problems in Cylindrical Coordinates Problems in Spherical Coordinates	866 866 871 883 888
10.3	10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	oltz Equation $\Delta_3 w + \lambda w = -\Phi(\mathbf{x})$. Homogeneous Helmholtz Equation. Eigenvalue problems Nonhomogeneous Helmholtz Equation. General Remarks, Results, and Formulas Problems in Cartesian Coordinates Problems in Cylindrical Coordinates Problems in Spherical Coordinates Other Orthogonal Curvilinear Coordinates	892 892 893 900 915 924 929
10.4	10.4.1	Equations with Three Space Variables	931 931 934
10.5	10.5.1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	936 936 937
11 H	ligher-(Order Partial Differential Equations	941
	Third-0 11.1.1 11.1.2	Order Partial Differential Equations	941 941 944
		First Derivative in t	945951954
11.2		Order One-Dimensional Nonstationary Equations	957
		Equation of the Form $\frac{\partial w}{\partial t} + a^2 \frac{\partial^4 w}{\partial x^4} = \Phi(x, t)$	957
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \frac{\partial^2 w}{\partial x^4} = 0$	960
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \frac{\partial^4 w}{\partial t^4} = \Phi(x, t)$	962
	11.2.4 11.2.5 11.2.6	Equation of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \frac{\partial^4 w}{\partial x^4} + kw = \Phi(x, t)$	965 968 971 980
11.3		imensional Nonstationary Fourth-Order Equations	986
		Equation of the Form $\frac{\partial w}{\partial t} + a^2 \left(\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} \right) = \Phi(x, y, t)$	986
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \Delta \Delta w = 0$	988
	11.3.3	Equation of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \Delta \Delta w + kw = \Phi(x, y, t)$	991

xii Contents

		Equation of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \left(\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} \right) + kw = \Phi(x, y, t)$	993
11 /		Other Two-Dimensional Nonstationary Fourth-Order Equations	994 997
11.4		and n -Dimensional Nonstationary Fourth-Order Equations Equation of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \Delta \Delta w = 0$	997
	11.4.2	Equations Containing Mixed Derivatives	999
11.5	Fourth-	Order Stationary Equations	
		Biharmonic Equation $\Delta \Delta w = 0$	
	11.5.2	Equation of the Form $\Delta \Delta w = \Phi$	1009
	11.5.5	Equation of the Form $\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} = \Phi(x,y)$	1012
	11.5.1	Equation of the Form $\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} + kw = \Phi(x, y)$	1016
	11.5.5	Stokes Equation (Axisymmetric Flows of Viscous Fluids)	1010
11 6		-Order Linear Equations with Constant Coefficients	
11.0		Fundamental Solutions. Cauchy Problem	
		Elliptic Operators and Elliptic Equations	
		Hyperbolic Operators and Hyperbolic Equations	1025
	11.0.4	Problem	1025
	11.6.5	Some Equations with Two Independent Variables Containing the First	
	11.6.6	Derivative in t	1029
	11.0.0	Some Equations with Two Independent Variables Containing the Second Derivative in t	1035
	11.6.7	Other Equations with Two Independent Variables	1039
		Equations with Three and More Independent Variables	
11.7		-Order Linear Equations with Variable Coefficients	
		Equations Containing the First Time Derivative	
		Nonstationary Problems with Many Space Variables	
		Some Special Equations with Variable Coefficients	
12 S	ystems	of Linear Partial Differential Equations	1059
		nary Remarks. Some Notation and Helpful Relations	
	-	s of Two First-Order Equations	
		s of Two Second-Order Equations	
	12.3.1	Systems of Parabolic Equations	1063
12.4		is of Two Higher-Order Equations	
		st Systems Containing Vector Functions and Operators div and curl	
	12.5.1	Equation curl $\mathbf{u} = \mathbf{A}(\mathbf{x})$	1066
		Simple Systems of Equations Containing Operators div and curl	
10.6		Two Representations of Vector Functions	
12.6		ity Equations Elasticity Equations in Various Coordinate Systems	
		Various Forms of Decompositions of Homogeneous Elasticity	10/1
		Equations with $\mathbf{f} = 0$	1073
	12.6.3	Various Forms of Decompositions for Nonhomogeneous Elasticity Equations	1075
	12.6.4	Cauchy Problem and Its Solution. Fundamental Solution Matrix	

CONTENTS XIII

12.7		Equations for Viscous Incompressible Fluids	1077 1077
	12.7.2	Various Forms of Decompositions for the Stokes Equations with $\mathbf{f} = 0$ Various Forms of Decompositions for the Stokes Equations with $\mathbf{f} \neq 0$	1081 1082
		General Solution of the Steady-State Homogeneous Stokes Equations	1082
		Solution of the Steady-State Nonhomogeneous Stokes Equations	1085
	12.7.6	Solution of the Cauchy Problem	1085
12.8	Oseen I	Equations for Viscous Incompressible Fluids	1086
	12.8.1	Vector Form of Oseen Equations. Some Remarks	1086
		Various Forms of Decompositions for the Oseen Equations with $\mathbf{f} = 0$	1087
		Various Forms of Decompositions for the Oseen Equations with $\mathbf{f} \neq 0$	1088
		Oseen Equations with Variable Coefficients	1088
12.9		1	1089
		Vector Form of the Maxwell Equations	1089
	12.9.2	f=0	1089
	12.9.3	Various Forms of Decompositions for the Maxwell Equations with	
		$\mathbf{f} \neq 0$	1090
12.10		ons of Viscoelastic Incompressible Fluids (General Model)	1091
	12.10.	1 Linearized Equations of Viscoelastic Incompressible Fluids. Some	1001
	12.10	Models of Viscoelastic Fluids	1091
	12.10.	2 Various Forms of Decompositions for Equations of Viscoelastic Incompressible Fluids with $\mathbf{f} = 0$	1092
	12.10.	3 Various Forms of Decompositions for Equations of Viscoelastic	1072
		Incompressible Fluids with $\mathbf{f} \neq 0$	1093
12.11	Linear	rized Equations for Inviscid Compressible Barotropic Fluids	1094
	12.11.	1 Vector Form of Equations without Mass Forces. Some Remarks	1094
	12.11.	2 Decompositions of Equations for Inviscid Compressible Barotropic	400=
	10 11		1095
		3 Vector Form of Equations with Mass Forces	
12.12		1 1	
		1 Linearized Equations of Viscous Compressible Barotropic Fluids2 Decompositions of Equations of Viscous Compressible Barotropic	1096
	12.12.	Fluid with $f = 0$	1097
	12.12.	3 Decompositions of Equations of a Viscous Compressible Barotropic	
		Fluid with $\mathbf{f} \neq 0$	
		4 Reduction to One Vector Equation and Its Decompositions	
		5 Independent Equations for \mathbf{u} and p	
12.13		Equations for Viscous Compressible Barotropic Fluids	
		1 Vector Form of Equations. Some Remarks	
		2 Decompositions of Equations with $f = 0$	
10 14		• • • • • • • • • • • • • • • • • • • •	
14.14		ons of Thermoelasticity	
		2 Decompositions of Thermoelasticity Equations with $f = 0$	
		Decompositions of Thermoelasticity Equations with $f \neq 0$	

xiv Contents

12.15	12.15.1	ipative Thermoelasticity Equations (the Green–Naghdi Model) Vector Form of the Nondissipative Thermoelasticity Equations Decompositions of the Nondissipative Thermoelasticity Equations with $\mathbf{f} = 0$	1103
	12.15.3	Decompositions of Thermoelasticity Equations with $\mathbf{f} \neq 0$	1105
12.16	12.16.1 12.16.2	sticity Equations	1106 1106
12.17	12.17.1	l Equations (Electromagnetic Field Equations)	1108
12.18	12.18.1 12.18.2 12.18.3	Equations of General Form	1110 1111 1112
12.19	12.19.1 12.19.2	Systems Involving Vector and Scalar Equations: Part I	1114 1115
		Equation	1116
12.20	12.20.1 12.20.2	Systems Involving Vector and Scalar Equations: Part II Class of Systems Considered Asymmetric Decomposition Symmetric Decomposition	1118 1118
Part	II Anal	ytical Methods	1121
13 M	ethods fo	or First-Order Linear PDEs	1123
	13.1.1 S	DEs with Two Independent Variables pecial First-Order Linear PDEs with Two Independent Variables teneral First-Order Linear PDE with Two Independent Variables	1123
	13.2.1 C	er Linear PDEs with Three or More Independent Variables	1129
14 Se	cond-Or	der Linear PDEs: Classification, Problems, Particular Solutions	1133
	14.1.1 E	tion of Second-Order Linear Partial Differential Equations quations with Two Independent Variables	
	14.2.1 Ir	blems of Mathematical Physics	11401140
		irst, Second, Third, and Mixed Boundary Value Problems	

CONTENTS XV

14.3		ties and Particular Solutions of Linear Equations	1144
	14.3.1	Homogeneous Linear Equations. Basic Properties of Particular Solutions	1144
	14.3.2	Separable Solutions. Solutions in the Form of Infinite Series	
	14.3.3	Nonhomogeneous Linear Equations and Their Properties	1150
	14.3.4	General Solutions of Some Hyperbolic Equations	1150
15 S	eparati	on of Variables and Integral Transform Methods	1153
15.1			1153
		Description of Separation of Variables. General Stage of Solution	
		Problems for Parabolic Equations: Final Stage of Solution Problems for Hyperbolic Equations: Final Stage of Solution	
		Solution of Boundary Value Problems for Elliptic Equations	
	15.1.5	Solution of Boundary Value Problems for Higher-Order Equations	1163
15.2		1 Transform Method	
		Laplace Transform and Its Application in Mathematical Physics Fourier Transform and Its Application in Mathematical Physics	
		Fourier Sine and Cosine Transforms	
		Mellin, Hankel, and Other Integral Transforms	
16 C	Cauchy 1	Problem. Fundamental Solutions	1181
16.1			
		Dirac Delta Function and Its Properties	
16.2		Fundamental Solutions. Constructing Particular Solutions entation of the Solution of the Cauchy Problem via the Fundamental	1182
10.2		n	1185
		Cauchy Problem for Ordinary Differential Equations	
		Cauchy Problem for Parabolic Equations	
		Cauchy Problem for Hyperbolic Equations	
17 D		-	1199
		ry Value Problems. Green's Function Arry Value Problems for Parabolic Equations with One Space Variable.	1199
1/.1		• • • • • • • • • • • • • • • • • • • •	1199
	17.1.1	Representation of Solutions via the Green's Function	1199
	17.1.2	Problems for Equation $s(x)\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[p(x) \frac{\partial w}{\partial x} \right] - q(x)w + \Phi(x,t)$	1202
17.2		ary Value Problems for Hyperbolic Equations with One Space Variable.	
	010011	s Function. Goursat Problem	1205
		Problems for Equation $s(x)\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x}\left[p(x)\frac{\partial w}{\partial x}\right] - q(x)w + \Phi(x,t) \dots$	
		Problems for Equation $s(x) \frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x} [p(x) \frac{\partial w}{\partial x}] = q(x)w + \Psi(x,t) \dots$ Problems for Equation $\frac{\partial^2 w}{\partial t^2} + a(t) \frac{\partial w}{\partial t} =$	1207
	17.2.3		1208
	17.2.4	$b(t) \left\{ \frac{\partial}{\partial x} \left[p(x) \frac{\partial w}{\partial x} \right] - q(x) w \right\} + \Phi(x,t)$ Generalized Cauchy Problem with Initial Conditions Set along a	1200
		Curve. Riemann Function	1210
		Goursat Problem (a Problem with Initial Data on Characteristics)	
17.3		ary Value Problems for Elliptic Equations with Two Space Variables	1214
	17.3.1	Problems and the Green's Functions for Equation $a(x) \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial x^2} + h(x) \frac{\partial w}{\partial x^2} + a(x) \frac{\partial w}{\partial x^2} + \frac{\partial w}{\partial $	1214
	1732	$a(x)\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + b(x)\frac{\partial w}{\partial x} + c(x)w = -\Phi(x,y)$	1214
	11.3.4	Eunctions	1216

xvi Contents

17.4	17.4.1 17.4.2 17.4.3	Problems with Many Space Variables. Green's Function Problems for Parabolic Equations	1218 1220 1221
17.5	17.5.117.5.2	Green's Functions of Boundary Value Problems for Equations of Various Types in Bounded Domains	1223 1224
18 D		l's Principles. Some Transformations	1233
		el's Principles in Nonstationary Problems	
	18.1.1	Problems for Homogeneous Linear Equations	1233
18.2	18.2.1	ormations Simplifying Initial and Boundary Conditions	1237
		Conditions	
	•	of Linear Coupled PDEs. Decomposition Methods	1239
19.1	19.1.1	Asymmetric Decomposition. Order of Decomposition. Symmetric Decomposition. Invariant Transformations	1239
19.2	19.2.1	rder Decompositions. Examples	1244
19.3	19.3.1 19.3.2	Order Decompositions	1251
		Scalar Equation (the Second Approach)	1253
		ymptotic Results and Formulas	1255
20.1	20.1.1	r Perturbation Theory Formulas for the Eigenvalues	1256
20.2	Singula 20.2.1 20.2.2	Cauchy Problem for the Schrödinger Equation Stationary Phase Method Fourier Transform with a Parameter	1257 1257 1261
		s of Theory of Generalized Functions	1265
21.1	21.1.1 21.1.2 21.1.3 21.1.4	lized Functions of One Variable Important Terminological Remark Test Function Space Distribution Space. Dirac Delta Function Derivatives of Distributions. Some Formulas Operations on Distributions and Some Transformations	1265 1265 1266 1267

CONTENTS XVII

		Tempered Distributions and Fourier Transform	
21.2		lized Functions of Several Variables	
	21.2.2	Transformations	
Part	III Sv	mbolic and Numerical Solutions with Maple, Mathematica,	
and	MATL		1275
22 L	inear P	Partial Differential Equations with Maple	1277
22.1	22.1.1 22.1.2	Preliminary Remarks Brief Introduction to Maple Maple Language	1277 1279
22.2	22.2.1 22.2.2	ical Solutions and Their Visualizations	1282 1289
	22.2.5 22.2.6	Constructing Analytical Solutions of Cauchy Problems Constructing Analytical Solutions of Boundary Value Problems Constructing Analytical Solutions of Initial-Boundary Value Problems Constructing Analytical Solutions of Systems of Linear PDEs	1293 1297 1298
22.3	22.3.1 22.3.2	ical Solutions of Mathematical Problems	1301 1305
22.4	22.4.1 22.4.2 22.4.3 22.4.4 22.4.5	ical Solutions and Their Visualizations Constructing Numerical Solutions in Terms of Predefined Functions Numerical Methods Embedded in Maple Numerical Solutions of Initial-Boundary Value Problems Numerical Solutions of Boundary Value Problems Numerical Solutions of Cauchy Problems Numerical Solutions of Systems of Linear PDEs	1310 1312 1318 1322 1323
23 L	inear P	Partial Differential Equations with Mathematica	1327
23.1	23.1.1 23.1.2 23.1.3	Some Notational Conventions Brief Introduction to Mathematica Mathematica Language Dynamic Computation and Visualization in Mathematica Notebook	1327 1327 1329
23.2	23.2.1 23.2.2 23.2.3 23.2.4 23.2.5 23.2.6	Constructing Analytical Solutions via the Method of Characteristics Constructing General Solutions via the Method of Characteristics Constructing General Solutions via Conversion to Canonical Forms Constructing Analytical Solutions of Cauchy Problems	1333 1335 1338 1340 1342 1344

xviii Contents

23.3	Analytical Solutions of Mathematical Problems	1347 1350
23.4	Numerical Solutions and Their Visualizations 23.4.1 Constructing Numerical Solutions in Terms of Predefined Functions . 23.4.2 Numerical Methods Embedded in Mathematica . 23.4.3 Numerical Solutions of Initial-Boundary Value Problems . 23.4.4 Numerical Solutions of Boundary Value Problems . 23.4.5 Numerical Solutions of Cauchy Problems . 23.4.6 Numerical Solutions of Systems of Linear PDEs .	1356 1358 1359 1363 1364
24 L	inear Partial Differential Equations with MATLAB®	1367
24.1	Introduction	1367 1368
24.2	Numerical Solutions of Linear PDEs 24.2.1 Constructing Numerical Solutions via Predefined Functions 24.2.2 Numerical Methods Embedded in MATLAB 24.2.3 Numerical Solutions of Cauchy Problems 24.2.4 Numerical Solutions of Initial-Boundary Value Problems 24.2.5 Numerical Solutions of Boundary Value Problems	1374 1375 1383 1383 1385
24.3	Constructing Finite-Difference Approximations	1392
24.4	Numerical Solutions of Systems of Linear PDEs 24.4.1 Linear Systems of 1D PDEs 24.4.2 Linear Systems of 2D PDEs	1396
Part	IV Tables and Supplements	1403
25 E	Elementary Functions and Their Properties	1405
25.1	Power, Exponential, and Logarithmic Functions 25.1.1 Properties of the Power Function 25.1.2 Properties of the Exponential Function 25.1.3 Properties of the Logarithmic Function	1405
25.2	Trigonometric Functions 25.2.1 Simplest Relations 25.2.2 Reduction Formulas 25.2.3 Relations between Trigonometric Functions of Single Argument 25.2.4 Addition and Subtraction of Trigonometric Functions 25.2.5 Products of Trigonometric Functions 25.2.6 Powers of Trigonometric Functions 25.2.7 Addition Formulas 25.2.8 Trigonometric Functions of Multiple Arguments 25.2.9 Trigonometric Functions of Half Argument	1407 1408 1408 1408 1409 1409 1410 1410
	25.2.10 Differentiation Formulas	1410

CONTENTS XiX

	25.2.13 Representation in the Form of Infinite Products	
25.3	Inverse Trigonometric Functions	
23.3	25.3.1 Definitions of Inverse Trigonometric Functions	
	25.3.2 Simplest Formulas	
	25.3.3 Some Properties	
	25.3.4 Relations between Inverse Trigonometric Functions	
	25.3.5 Addition and Subtraction of Inverse Trigonometric Functions	
	25.3.6 Differentiation Formulas	1414
	25.3.7 Integration Formulas	
	25.3.8 Expansion in Power Series	
25.4	-	
23.4	Hyperbolic Functions	
	25.4.1 Definitions of Hyperbolic Functions	
	25.4.2 Simplest Relations	
	25.4.4 Addition and Subtraction of Hyperbolic Functions	
	25.4.6 Powers of Hyperbolic Functions	
	25.4.7 Addition Formulas	
	25.4.8 Hyperbolic Functions of Multiple Argument	
	25.4.9 Hyperbolic Functions of Half Argument	
	25.4.10 Differentiation Formulas	
	25.4.11 Integration Formulas	
	25.4.12 Expansion in Power Series	
	25.4.13 Representation in the Form of Infinite Products	
	25.4.14 Relationship with Trigonometric Functions	
25.5		
25.5	Inverse Hyperbolic Functions	
	25.5.1 Definitions of Inverse Hyperbolic Functions	
	25.5.2 Simplest Relations	
	25.5.3 Relations between Inverse Hyperbolic Functions	
	25.5.4 Addition and Subtraction of Inverse Hyperbolic Functions	
	25.5.6 Integration Formulas	
	25.5.7 Expansion in Power Series	
	•	1419
26 F	inite Sums and Infinite Series	1421
26.1	Finite Numerical Sums	1421
	26.1.1 Progressions	1421
	26.1.2 Sums of Powers of Natural Numbers Having the Form $\sum k^m$	1421
	26.1.3 Alternating Sums of Powers of Natural Numbers, $\sum (-1)^k k^m$	1422
	26.1.4 Other Sums Containing Integers	1422
	26.1.5 Sums Containing Binomial Coefficients	
	26.1.6 Other Numerical Sums	
26.2	Finite Functional Sums	
20.2	26.2.1 Sums Involving Hyperbolic Functions	
	26.2.2 Sums Involving Trigonometric Functions	
26.2		
20.3	Infinite Numerical Series	
	26.3.1 Progressions	1420

XX CONTENTS

26.4	26.4.1 26.4.2 26.4.3	Functional Series Power Series Trigonometric Series in One Variable Involving Sine Trigonometric Series in One Variable Involving Cosine Trigonometric Series in Two Variables	1428 1429 1431
27 I	ndefinit	e and Definite Integrals	1435
27.1	27.1.1 27.1.2 27.1.3 27.1.4 27.1.5 27.1.6	Integrals Involving Rational Functions Integrals Involving Irrational Functions Integrals Involving Exponential Functions Integrals Involving Hyperbolic Functions Integrals Involving Logarithmic Functions Integrals Involving Trigonometric Functions Integrals Involving Inverse Trigonometric Functions	1435 1439 1442 1443 1446 1447
27.2	27.2.1 27.2.2 27.2.3 27.2.4 27.2.5	Integrals Involving Power-Law Functions Integrals Involving Exponential Functions Integrals Involving Hyperbolic Functions Integrals Involving Logarithmic Functions Integrals Involving Trigonometric Functions Integrals Involving Bessel Functions	1452 1455 1456 1457 1457
28 I	ntegral	Transforms	1463
28.1	28.1.1 28.1.2 28.1.3 28.1.4 28.1.5 28.1.6	of Laplace Transforms General Formulas Expressions with Power-Law Functions Expressions with Exponential Functions Expressions with Hyperbolic Functions Expressions with Logarithmic Functions Expressions with Trigonometric Functions Expressions with Special Functions	1463 1465 1465 1466 1467
28.2	28.2.1 28.2.2 28.2.3 28.2.4 28.2.5 28.2.6 28.2.7 28.2.8 28.2.9	of Inverse Laplace Transforms General Formulas Expressions with Rational Functions Expressions with Square Roots Expressions with Arbitrary Powers Expressions with Exponential Functions Expressions with Hyperbolic Functions Expressions with Logarithmic Functions Expressions with Trigonometric Functions Expressions with Special Functions	1470 1472 1476 1477 1478 1479 1480 1481
28.3	Tables 28.3.1 28.3.2 28.3.3 28.3.4 28.3.5 28.3.6	of Fourier Cosine Transforms General Formulas Expressions with Power-Law Functions Expressions with Exponential Functions Expressions with Hyperbolic Functions Expressions with Logarithmic Functions Expressions with Trigonometric Functions Expressions with Special Functions	1482 1482 1482 1483 1484 1485 1485

CONTENTS XXI

	28.4.1 28.4.2 28.4.3 28.4.4 28.4.5 28.4.6 28.4.7	Expressions with Power-Law Functions Expressions with Exponential Functions Expressions with Hyperbolic Functions Expressions with Logarithmic Functions Expressions with Trigonometric Functions Expressions with Special Functions	1488 1489 1489 1490 1490 1492
29 C	Curvilin	ear Coordinates, Vectors, Operators, and Differential Relations	1495
29.1	29.1.1	ry Curvilinear Coordinate Systems	1495
29.2	29.2.1 29.2.2	an, Cylindrical, and Spherical Coordinate Systems	1498 1499
29.3	29.3.1 29.3.2 29.3.3 29.3.4 29.3.5 29.3.6 29.3.7 29.3.8	Special Orthogonal Coordinates Coordinates of a Prolate Ellipsoid of Revolution Coordinates of an Oblate Ellipsoid of Revolution Coordinates of an Elliptic Cylinder Conical Coordinates Parabolic Cylinder Coordinates Parabolic Coordinates Bicylindrical Coordinates Bipolar Coordinates (in Space) Toroidal Coordinates	1502 1503 1504 1505 1506 1506 1507 1507
30 S	pecial I	Functions and Their Properties	1509
30.1	30.1.1 30.1.2 30.1.3	Coefficients, Symbols, and Numbers Binomial Coefficients Pochhammer Symbol Bernoulli Numbers Euler Numbers	1509 1510 1510
30.2	30.2.1 30.2.2	Euror Function and Complementary Error Function Exponential Integral Logarithmic Integral Logarithmic Integral	1512 1512
30.3	30.3.1 30.3.2	tegral and Cosine Integral. Fresnel Integrals Sine Integral Cosine Integral Fresnel Integrals	1514 1515
30.4	30.4.1 30.4.2	a Function, Psi Function, and Beta Function Gamma Function Psi Function (Digamma Function) Beta Function	1516 1517
30.5	30.5.1	Incomplete Beta Function	1519

xxii Contents

	30.6.1 D 30.6.2 II 30.6.3 Z 30.6.4 H	Inctions (Cylindrical Functions) Definitions and Basic Formulas Integral Representations and Asymptotic Expansions Deform and Orthogonality Properties of Bessel Functions Itankel Functions (Bessel Functions of the Third Kind)	1520 1522 1524 1525
30.7	30.7.1 D	Bessel Functions Definitions. Basic Formulas ntegral Representations and Asymptotic Expansions	1526
30.8	30.8.1 D	ctions	1529
30.9	30.9.1 D 30.9.2 In	te Hypergeometric Functions (Kummer Functions)	1530 1533
30.10	30.10.1	Various Representations of the Hypergeometric Function	1534
30.11	Function 30.11.1	Legendre Polynomials, Legendre Functions, and Associated Legendre Legendre Polynomials and Legendre Functions Associated Legendre Functions with Integer Indices and Real	1536
	30.11.3	Argument	
30.12	30.12.1	c Cylinder Functions Definitions. Basic Formulas Integral Representations, Asymptotic Expansions, and Linear Relations	1542
30.13	30.13.1	Integrals	1544
30.14	30.14.1	Functions Jacobi Elliptic Functions Weierstrass Elliptic Function	1547
30.15	30.15.1	Series Representation of the Jacobi Theta Functions. Simplest Properties	
	30.15.2	Various Relations and Formulas. Connection with Jacobi Elliptic Functions	1554
30.16	30.16.1	Functions and Modified Mathieu Functions Mathieu Functions Modified Mathieu Functions	1555
30.17	30.17.1 30.17.2 30.17.3	Laguerre Polynomials and Generalized Laguerre Polynomials Chebyshev Polynomials and Functions Hermite Polynomials Jacobi Polynomials and Gegenbauer Polynomials	1558 1559 1561

		Contents	xxiii
30.18	30.18.1	ogonal Polynomials	1564
Refer	ences		1569
Index			1587