1 The Gauss Seidel Algorithm

The Gauss Seidel algorithm is a Splitting method used to solve a system of linear equations, which we represent in matrix form as Ax = b. A Splitting method has the general form

$$Px^{(k+1)} = Nx^{(k)} + b.$$

where A = P - N is the matrix splitting. This is equivalent to

$$x^{(k+1)} = x^{(k)} + P^{-1}r^{(k)},$$

where $r^{(k)} = b - Ax^{(k)}$ is called the residual. For the implementation of this method we redifine our decomposition of A to be A = D - (E + F), where -E, D, -F are the lower triangular matrix, diagonal matrix and upper triangular matrix of A respectively. For the Gauss Seidel method itself, P = D - E and N = F. The convergence of iterations of this type depends on the spectral radius $\rho(P^{-1}N)$, where

$$\rho(A) = \max\{|\lambda| : \lambda \in \lambda(A)\}.$$

The Gauss Seidel method can be applied to any matrix with non-zero elements on the diagonals, but convergence is only guaranteed if the matrix is either diagonally dominant, or symmetric and positive definite.

Noting that the matrix P is in triangular form, and

$$x^{(k+1)} = P^{-1}(Nx^{(k)} + b),$$

the elements $\boldsymbol{x}^{(k+1)}$ can be computed using forward substitution. Thus it follows that

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} x^{(k+1)} a_{ij} - \sum_{j=i+1}^n x^{(k)} a_{ij} \right),$$

for i=1,...,n. The procedure continues until the residual error, defined by $||r^{(k)}||=||b-Ax^{(k)}||$, is below some tolerance or the algorithm has stagnated. For the implementation used in this assignment, the norm is the L^{∞} -norm. Note that elements of the approximation $x^{(k)}$ can be overwritten in this algorithm, so only one storage vector for the approximation will be needed in practice.

For this assignment I have implemented a SparseMatrix class, which stores matrices in row major format in such a way that only non-zero elements are stored in memory. It contains a member function which allows the user to add entries to a blank matrix of their choice dimensions, along with other useful functions. In particular, it has a member function called GaussSeidel, which, for an initial guess $x^{(0)}$ and input vector b, performs the above algorithm and returns a vector containing the residual error for each iteration. This will implicitly return

Figure 1: This is the figure. Left: Function $f(x) = \sin(x)$. Right: Derivative $f'(x) = \cos(x)$. Note that the x-axis shows gridpoint-indices and not the proper x value.

the number of iterations computed, since it will be equal to the size of the vector.

I have set the function such that it continues iterating as long as the residual error for each iteration is above a tolerance of 1e-6 and no more than 100,000 iterations have been computed. Furthermore, the function checks that the input vectors are of appropriate dimension and that the diagonal of the matrix is nonzero. If any of these errors occur, the returned vector contains the residual error between b and $x^{(0)}$ only. A warning stating this is issued to the user in these cases.

2 Testing the Algorithm

I have tested my implementation for matrix $A \in \mathbb{R}^{N \times N}$ and vector $b \in \mathbb{R}^N$ defined as follows for i, j = 0, ..., N - 1:

$$a_{ij} = \begin{cases} -D_i & \text{for } j = i - 1\\ D_i + D_{i-1} & \text{for } j = i\\ -D_i & \text{for } j = i + 1\\ 0 & \text{otherwise} \end{cases}$$

where $D_i = a(w_i - \frac{1}{2})^2 + \delta$, $w_i = \frac{i+1}{N+1}$ for constants $a = (4 - \delta)$, $\delta > 0$, and

$$b_i = \begin{cases} -2a(w_i - \frac{1}{2})w_0^2 & \text{for } i = 0, ..., N - 2\\ -2a(w_i - \frac{1}{2})w_0^2 + 1 & \text{for } i = N - 1. \end{cases}$$

Initially δ was set to be 1, and the method was tested for $N=100,\,1000,\,$ and 100000.

Here are some results. The function is approximated on a grid with N=128 gripoints. See figure 1 for results.