NMB - Oefenzitting 7: Iteratieve methoden

Simon Telen & Daan Camps

1 Convergentie CG

Opgave 1. Pen en papier

Ga voor jezelf na dat formule (38.9) op p. 298 van [Trefethen & Bau] wil zeggen dat voor alle veeltermen $p_n(z) \in P_n$ (veeltermen van graad $\leq n$ met $p_n(0) = 1$) het volgende geldt

$$\frac{\|e_n\|_A}{\|e_0\|_A} \le \max_{z \in \Lambda(A)} |p_n(z)| \tag{1}$$

We kunnen aan de hand van deze formule voor bepaalde matrices de convergentie voorspellen aan de hand van een goed gekozen rij veeltermen. Er geldt ook nog

$$\frac{\|e_n\|_A}{\|e_0\|_A} \le 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^n \tag{2}$$

waarbij $||x||_A = ||A^{\frac{1}{2}}x|| = \sqrt{x^*Ax}$.

Voorspel de convergentie voor matrices met de onderstaande eigenschappen. Veronderstel dat deze matrices symmetrisch-positief definiet zijn. Geef ook een schatting voor het aantal iteraties nodig om de A-norm van de fout ten opzichte van de initiële fout met een factor 10^{-3} te verkleinen. Tip: veeltermen van de vorm $p_n(z) = (1 - z/a)^n$ voldoen aan de voorwaarde $p_n(0) = 1$.

- a) Eigenwaarden in het interval (9, 11).
- b) Eigenwaarden in $(1, 1.5) \cup (399, 400)$. Gebruik eerst de formule met $\kappa(A)$. Verscherp deze schatting gebruik makend van de rij veeltermen $p_{3k}(z) = (1 z/1.25)^k (1 z/400)^{2k}$.

Opgave 2. Matlab

Controleer je bevindingen met numerieke experimenten. Je kan de volgende MATLAB-functies gebruiken. Gebruik help <naam> voor extra informatie.

Naam	info
linspace.m	N reële getallen uniform verdeeld in [rmin, rmax]
eigint.m	N willekeurige reële getallen uniform verdeeld in [rmin, rmax)
eigcirk.m	N willekeurige complexe getallen λ met $ \lambda - c < R$
willglv.m	past een willekeurige gelijkvormigheidstransformatie toe op de diago-
	naalmatrix met opgegeven waarden
willorth.m	pas een willekeurige orthogonale transformatie toe op de diagonaalma-
	trix met opgeven waarden
cg.m	help cg (M=eye(size(A)))

Je kan bijvoorbeeld een matrix maken met 10 eigenwaarden in (3,4) en 5 eigenwaarden in (7,8) met het volgende bevel

```
A = willglv([eigint(3,4,10); eigint(7,8,5)]);
```

Gebruik je willorth dan is A, in dit geval, symmetrisch positief-definiet. Je kan de eigenwaarden bekijken met plot(eig(A),'+').

Suggestie: Genereer een matrix A, kies een exacte oplossing x^* , bepaal het rechterlid $b = Ax^*$. Los het stelsel Ax = b op met CG. Maak grafieken van de norm van de fout $(x - x^*)$, het residu (b - Ax) en van de A-norm van de fout. Tip: maak hiervoor een m-bestand (of meerdere natuurlijk).

Probeer matrices die voldoen aan a) en b) uit de vorige opgave. Probeer verschillende liggingen van 1 en 2 intervallen. Formuleer enkele besluiten.

2 CG versus steilste helling

CG kan beschouwd worden als een methode om de functie $\phi(x) = \frac{1}{2}x^TAx - x^Tb$ te minimaliseren. Een andere manier is de methode van de steilste helling. Een iteratie bestaat dan uit het nemen van een stap in de richting van de negatieve gradiënt van $\phi(x)$.

Opgave 3. Pen en papier

- a) Leid af dat $\nabla \phi(x) = -r$.
- b) Bepaal de optimale staplengte voor de iteratie $x_n = x_{n-1} \alpha_n \nabla \phi(x_{n-1})$.
- c) Toon aan dat de methode van de steilste helling convergeert.

Opgave 4. Matlab

- a) Implementeer de methode van de steilste helling. (Een lus met 3 bevelen.)
- b) Vergelijk de convergentie van CG en de methode van de steilste helling voor een spd matrix met $\kappa = 10$. (Gebruik de norm van het residu.)

3 Eigenwaarden bepalen met de Arnoldi iteratie

Opgave 5. Matlab

Implementeer de Arnoldi iteratie. De iteratie hoeft geen rekening te houden met 'breakdown' (deling door 0). Bepaal bij elke iteratie de grootste en kleinste Ritz-eigenwaarden (efficiëntie is niet belangrijk, gebruik de standaard MATLAB-functie). Construeer een matrix met eigenwaarden in het interval (4, 5). Maak een grafiek van de absolute waarde van het verschil tussen de grootste Ritz-eigenwaarde en de grootste eigenwaarde. Idem voor de kleinste Ritz-eigenwaarde en de kleinste eigenwaarde. Doe nu hetzelfde maar vervang een van de eigenwaarden door 8 en vervolgens ook een door 2. Wat stel je vast? Wat zou je hieruit kunnen besluiten?

${\it 4}\quad {\it The SIAM 100-Dollar, 100-Digit Challenge}$

Opgave 6. Zoek op het internet het artikel met als titel 'A Hundred-Dollar, Hundred-Digit Challenge'. Het is geschreven door de auteur van het tekstboek dat voor dit vak gebruikt wordt. Los probleem 7 uit dit artikel op.