Lærerveiledning - Flagg

Informasjon til veiledere

Flagg viser hvordan man kan bruke kloner til å animere et flagg. I animasjonen bruker *sinus* og *cosinus* for enkle sirkelbevegelser. Disse funksjonene blir raskt introdusert og elevene får muligheten til å eksperimentere litt med dem.

Bakgrunn

Flagg ble opprinnelig skrevet av Sverre Oskar Konestabo som et bidrag til programmeringskonkurransen som ble avholdt for barn som deltok på Kodeklubben Blindern våren 2016.

Forberedelser

Antatt tidbruk: 1.5 - 2 timer for hele prosjektet.
Nødvendige forkunnskaper : God kjennskap til Scratch. Elevene bør ha gjort flere prosjekter på Introduksjon- og Nybegynner-nivå før de starter med Flagg.

Benytt gjerne anledningen til å snakke om forskjellige måter å kode sirkelbevegelse i Scratch.

Typiske utfordringer

Nedenfor er en liste over utfordringer vi har opplevd at noen elever kommer borti.

Det er viktig at variablene, spesielt (sentrumX) og (sentrumY), gjelder kun for denne figuren. Hvis variablene er felles for
alle figurer vil ikke klonene kunne ha forskjellige sentrum de roterer rundt. I stedet vil klonene være mer eller mindre
stablet over hverandre.

Dimensjonene på flagget er litt feil. I følge flaggloven skal forholdet mellom flaggets bredde og lengde være 16 til 22,
mens i oppgaven tegnes flagget 14 til 19. Dette er på grunn av en begrensning i Scratch hvor det kun er mulig å lage
300 kloner av en figur, mens 16 ganger 22 ville krevd 352 kloner.

•			
\mathbf{V}	ria	CIO	ner
Va	па		
T C	110	\cup	

Skriv denne koden:

Hovedpoengene i denne oppgaven er å gi elevene litt kjennskap til funksjonene <i>sinus</i> og <i>cosinus</i> , samt vise hvordan man kan bruke mange kloner sammen for å skape en større animasjon. La gjerne elevene eksperimentere underveis, for eksempel ved å
Endre på tallene underveis. Spesielt tallene i de forskjellige vend høyre () grader -klossene kan ha en stor effekt.
Tegne sine egne flagg. Slik sirklene legges ut starter man nederst i venstre hjørne og går oppover og etterhvert mot høyre når man bruker den lange teksten (mmhbbhrmmmmhbbhmm) for å beskrive fargene i flagget.
T C'
Tema: Sirkelbevegelser
Det er flere måter å få figurer til å utføre sirkelbevegelser i Scratch. I denne presentasjonen viser vi flere av dem, og ser på begrensninger til de enkleste, og viser hvorfor <i>sinus</i> og <i>cosinus</i> gir oss ekstra muligheter.
I dette prosjektet introduserer vi <i>sinus</i> og <i>cosinus</i> som forholdet mellom sider i en trekant, og holder stort sett fokus på at effekten av å bruke disse funksjonene er at figurene våre kan gå i sirkel. Andre del av presentasjonen nedenfor er ment å illustrere dette visuelt.
Presentasjon
Start et nytt Scratchprosjekt ved å klikke Programmering fra hovedsiden, eller Ny i Fil -menyen.
Vi vil først se på enkle sirkelbevegelser som barna sannsynligvis allerede er kjent med. Spør gjerne barna hvordan de vil kode en figur som beveger seg i sirkel før du viser dem eksemplene under.
Det enkleste er nok å gi en figur denne koden:
for alltid gå (10) steg vend høyre (5) grader slutt
Her er det ikke veldig farlig akkurat hva tallene er. Eksperimenter gjerne med verdiene for å se hvordan det påvirker sirkelbevegelsen.
En annen måte å få en figur til å gå i sirkel på er vist frem i Soloball-oppgaven.
Stopp det forrige skriptet, og dra figuren tilbake omtrent midt på skjermen. Klikk på <mark>Drakter</mark> -fanen, og dra figuren i drakteditoren (vinduet til høyre på skjermen) litt vekk fra sentrum. Gå tilbake til <mark>Skript</mark> -fanen og forenkle skriptet:
for alltid vend høyre (5) grader slutt
lgjen skal figuren gå i sirkel! Hvordan endrer man størrelsen på sirkelen i dette eksempelet? (<i>Flytter figuren i drakteditoren</i> .)
Spør barna om de ser noen begrensninger i denne måten å programmere på? Spesielt spør hvordan man kan få figuren til å se i spesielle retninger mens den beveger seg i sirkel? Siden vi bruker retningen til figuren i sirkelbevegelsen kan vi ikke samtidig få den til å se i en gitt annen retning.
Lag en ny figur (fordi den forrige figuren er flyttet vekk fra sentrum).
Lag en variabel, (vinkel) . I denne presentasjonen er det ikke viktig om den gjelder for alle eller kun denne figuren.

```
sett [vinkel v] til [45]
gå til x: (0) y: (0)
penn på
sett x til ((150) * ([cos v] av (vinkel))
sett y til ((150) * ([sin v] av (vinkel))
gå til x: (0) y: (0)
penn av
```

Dette vil tegne en rettvinklet trekant hvor den ene vinkelen er 45 grader.

- Legg gjerne inn vent (3) sekunder -klosser etter de to sett x til () og sett y til () -klossene for å vise hva henholdsvis [cos v] av (vinkel) og [sin v] av (vinkel) tilsvarer.
- Tegn trekanter med forskjellige vinkler (ved å endre på tallet i sett [vinkel v] til [] -klossen). Vis gjerne hva som skjer om (vinkel) er 0, 90, større enn 90, eller til og med negativ.

Om du trenger å slette noen av trekantene som har blitt tegnet kan du bruke slett -klossen.

Når du har tegnet en del trekanter kan du spørre om noen av barna ser at du har begynt å tegne en sirkel? *De ytterste hjørnene i trekantene vil etterhvert danne en sirkel fordi den skrå streken, hypotenusen, er like lang i alle trekantene.*

For å vise frem at trekantene virkelig danner en sirkel kan du bruke en gjenta-løkke på denne måten:

```
sett [vinkel v] til [0]
gå til x: (0) y: (0)
penn på
gjenta (72) ganger
sett x til ((150) * ([cos v] av (vinkel))
sett y til ((150) * ([sin v] av (vinkel)))
gå til x: (0) y: (0)
endre [vinkel v] med (5)
slutt
penn av
```