Appunti LFT

Lorenzo Tabasso

Aggiornato al 1 agosto 2017

Indice

I	Introduzione				
	1.1	Token		2	
	1.2		m		
	1.3		na		
	1.5	LC33CII			
2	Automi: metodo e follia				
	2.1	Concet	tti Base	3	
		2.1.1	Alfabeto	3	
		2.1.2	Stringa		
		2.1.3	Operazioni su stringhe		
		2.1.4	Linguaggio		
		2.1.5	Operazioni sui linguaggi		
		2.1.6	Tipi di linguaggi		
		2.1.0	1161 01 1116 00 066		
3	Automi a stati finiti 1				
	3.1	Introdu	uzione informale	11	
	3.2	Autom	ni a stati finiti deterministici - DFA	11	
		3.2.1	Definizione formale		
		3.2.2	Elaborazione di stringhe di un DFA		
		3.2.3	Notazioni differenti		
		3.2.4	Funzione di transizione estesa $(\hat{\delta})$		
		_	· /		
		3.2.5	Linguaggio di un DFA		
	3.3	Autom	ni a stati finiti non deterministici - NFA		
		3.3.1	Definizione formale	13	
		3 3 2	Funzione di transizione estesa $(\hat{\delta})$	13	

Capitolo 1

Introduzione

Schema generale di un compilatore-interprete

1.1 Token

Coppia (nome token, valore attributo)

• Nome Token: simbolo astratto che rappresenta un'unita' lessicale (una parola chiave, un identicatore, ecc.).

1.2 Pattern

Descrizione della forma che i lessemi di un'unità lessicale possono avere.

1.3 Lessema

Sequenza di caratteri del programma sorgente che rispetta il pattern di un token.

Capitolo 2

Automi: metodo e follia

Figura 2.1: Mappa mentale degli argomenti del capitolo

2.1 Concetti Base

In questo paragrafo, introdurremo i concetti base della teoria degli automi

2.1.1 Alfabeto

Un alfabeto è un insieme finito e non vuoto di simboli (anche detti caratteri), si indica convenzionamene con il simbolo Σ . Tra gli alfabeti più comuni citiamo:

- 1. $\Sigma = \{0, 1\}$ l'alfabeto binario
- 2. $\Sigma = \{a, b, ..., z\}$ l'insieme di tutte le lettere minuscole
- 3. $\Sigma = \{\alpha, \beta, \gamma, \delta\}$ l'insieme delle prime quattro lettere minuscole dell'alfabeto greco

Cardinalità di un alfabeto

La cardinalità di un alfabeto è il numero di simboli dell'alfabeto. Se Σ denota l'alfabeto, $|\Sigma|$ denota la sua cardinalità. Di seguito alcuni esempi:

1.
$$|\Sigma| = |\{0,1\}| = 2$$

2.
$$|\Sigma| = |\{a, b, ..., z\}| = 27$$

3.
$$|\Sigma| = |\{\alpha, \beta, \gamma, \delta\}| = 4$$

2.1.2 Stringa

Una stringa (o *parola*) è una sequenza finita di simboli scelti da un alfabeto. Ad esempio:

- 1. aabb, cac, cba, abba sono quattro stringhe sull'alfabeto {a,b,c}
- 2. **01101, 111** sono due stringhe sull'alfabeto {0,1}

Stringa Vuota

La stringa vuota è una stringa composta da 0 simboli, questa stringa indicata con ε è una stringa che può essere scelta da un qualunque alfabeto.

Lunghezza di una stringa

La lunghezza di una stringa è il numero di simboli della stringa stessa. Se x denota la stringa, |x| denota la sua lunghezza. Ad esempio:

- 1. |aabb| = 4
- 2. |cab| = 3
- 3. |101101| = 6

Attenzione: $|\varepsilon| = 0$, la lunghezza della stringa vuota è sempre 0!

Stringhe uguali e diverse

Due stringhe della stessa lunghezza sono **uguali** se e solo se **i loro caratteri letti da sinistra verso destra coincidono**. Formalmente:

Siano
$$x=a_1...a_n$$
 e $y=b_1...b_m$
$$x=y \Leftrightarrow n=m \text{ and } \forall \ 1 \leq i \leq n \quad a_i=b_i$$

Contrariamente, se l'ordine non coincide, sono **diverse** tra loro.

Potenze di un alfabeto

Se Σ è un alfabeto, possiamo esprimere l'insieme di tutte le stringhe di una certa lunghezza su tale alfabeto usando una notazione esponenziale. Definiamo Σ^k come l'insieme di stringhe di lunghezza k, con simboli tratti da Σ . Ad esempio:

- 1. $\Sigma = \{0, 1\}$
 - (a) $\Sigma^1 = \{0, 1\}$
 - (b) $\Sigma^2 = \{00, 01, 10, 11\}$
 - (c) $\Sigma^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$

Notare la **differenza tra** Σ **e** Σ^1 , il primo è un alfabeto e i suoi membri sono i simboli $\{0,1\}$, mentre il secondo è un insieme di stringhe di lunghezza 1 su quell'alfabeto!

L'insieme di tutte le stringhe su un alfabeto Σ viene indicato con Σ^* (**Kleene Star**) e contiene anche ε , per escluderla si può usare Σ^+ (**Kleene Plus**), più chiaramente:

- $\bullet \ \Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots$
- $\Sigma^* = \Sigma^+ \cup \{\varepsilon\}$

Vedremo tutto ciò in maniera meglio approfondita più avanti.

Concatenazione di stringhe

siano x e y due stringhe, allora xy denota la loro concatenazione (o alternativamente anche x.y), vale a dire la stringa formata da una copia di x seguita da una copia di y. Più precisamente se x è la stringa composta da da i simboli $x = a_1a_2...a_i$ e y è la stringa composta da da j simboli $y = b_1b_2...b_j$, allora xy è la stringa di lunghezza i+j: $xy = a_1a_2...a_ib_1b_2...b_j$. Per esempio:

- 1. $x = 01101 \ y = 110$
 - (a) xy = 01101110
 - (b) xy = 11001101
- 2. nano.tecnologie = nanotecnologie
- 3. tele.visione = televisione

Attenzione però:

- 1. ε è **l'identità** della concatenazione (detto anche *elemento neutro*), infatti, data una qualsiasi stringa w si ottiene $\varepsilon w = w\varepsilon = w$
- 2. Il concatenamento **non è commutativo**, infatti $xy \neq yx$
 - (a) $(tele.visione = televisione) \neq (visione.tele = visionetele)$
- 3. Il concatenamento **è associativo**, infatti x(yz) = (xy)z
 - (a) nano.(tecno.logie) = nano.tecnologie = nanotecnologie
 - (b) (nano.tecno).logie = nanotecno.logie = nanotecnologie

Sottostringa

La stringa y è una sottostringa della stringa x se esistono delle stringhe u e v tali che x = uyv. Per esempio, le sottostrighe di *abbc* sono ε , a, b, c, ab, bb, bc, abb, bbc, abbc.

Prefisso

La stringa y è un prefisso della stringa x se esiste una stringa v tale che x = yv. Un prefisso è una sottostringa in cui u = ε . Per esempio, i prefissi di *abbc* sono { ε , a, ab, abb, abbc}.

Suffisso

la stringa y è un suffisso della stringa x se esiste una stringa u tale che x = uy. Un suffisso è una sottostringa in cui v = ε . Per esempio, i suffissi di *abbc* sono { ε , c, bc, bbc, abbc}.

Sottostringa Propria

Una sottostringa (prefisso, suffisso) di una stringa e' **propria** se non coincide con ε o con la stringa stessa. Esempi:

- Le sottostrighe proprie di *abbc* sono {a, b, c, ab, bb, bc, abb, bbc},
- i prefissi propri di *abbc* sono {a, ab, abb}
- I suffissi propri di *abbc* sono {c, bc, bbc}

Lunghezza della sottostringa

se $|x| \ge k$ indichiamo con k : x il prefisso di x di lunghezza k (inizio di lunghezza k di x). Ad esempio:

- 2 : abbc = ab
- 3: abbc = abb

2.1.3 Operazioni su stringhe

Riflessione

la riflessione di una stringa è la stringa ottenuta scrivendo i caratteri in ordine inverso. x^R denota la riflessione della stringa x.

$$(a_1...a_n)^R = a_n...a_1$$
$$(abbc)^R = cbba$$

la riflessione gode inoltre delle seguenti proprietà:

- 1. $(x^R)^R = x$
- 2. La riflessione della concatenazione di due stringhe e' la concatenazione inversa delle loro riflessioni, $(xy)^R = y^R x^R$.
- 3. La riflessione della stringa vuota e' la stringa vuota: $\varepsilon^R=\varepsilon$, e vale anche per $a^R=a^R$, se $a\in \Sigma$.
- 4. La riflessione ha **precedenza sul concatenamento**, $abbc^R = abbc$

Potenza m-esima

della stringa x è il concatenamento di x con se stessa m volte. x^m denota potenza m-esima di x.

$$x^{0} = \varepsilon$$

$$x^{m} = x^{m} - 1x \qquad m > 0$$

Esempi:

- $(abbc)^3 = abbcabbcabbc$
- $\bullet \ (abbc)^6 = abbcabbcabbcabbcabbcabbc$
- $(aa)^2 = aaaa$

La potenza ha **precedenza sul concatenamento**: $abbc^3 = abbccc$

- $\bullet \ ((ab)^R)^3 = (ba)^3 = bababa$
- $((ab)^3)^R = (ababab)^R = bababa$

2.1.4 Linguaggio

Un linguaggio su un alfabeto è un insieme di stringhe su quell'alfabeto. Le stringhe o parole di un linguaggio vengono anche chiamate *frasi*. Esempi:

- aabb, cac, cba, abba è un linguaggio sull'alfabeto a, b, c
- l'insieme dei numeri scritti in binario e' un linguaggio sull'alfabeto 0, 1
- l'insieme delle stringhe palindrome contenenti solo i simboli a, b, c e' un linguaggio sull'alfabeto a, b, c

N.B. il primo ed il terzo linguaggio hanno lo stesso alfabeto.

Dato un alfabeto quanti linguaggi si possono definire su di esso? Infiniti.

Linguaggi come insiemi

Un linguaggio può essere definito mediante un descrittore di insiemi: $\{w \mid \text{enunciato su } w\}$. Questa espressione va letta come "l'insieme delle parole w tali che vale l'enunciato su w scritto a destra di \mid ". Certe volte w viene sostituito da un'espressione con parametri secondo l'uso della teoria degli insiemi, come ad esempio

$$\{0^n1^n \mid n \ge 1\}$$
, oppure $\{0^n1^m \mid 0 \le n \le m\}$

Cardinalità dei linguaggi

La cardinalità' di un linguaggio e' il numero delle sue stringhe. Se L denota un linguaggio, $\mid L \mid$ denota la sua cardinalità. Esempio:

- $\bullet \mid \{aabb, cac, cba, abba\} \mid = 4$
- | Insieme dei numeri binari $|=\infty$

inoltre,

- 1. Un linguaggio è finito se la sua cardinalità è finita. Allora, esso è anche detto vocabolario.
- 2. Un linguaggio è infinito se la sua cardinalità è infinita.
- 3. Il **linguaggio vuoto** (denotato da Φ) è il linguaggio che non contiene alcuna stringa. $|\Phi| = 0$

2.1.5 Operazioni sui linguaggi

Unione

L'unione $L_1 \cup L_2$ dei linguaggi L_1 ed L_2 è l'insieme delle stringhe che appartengono a L_1 oppure a L_2 .

$$L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$$

Intersezione

L'intersezione $L_1 \cap L_2$ dei linguaggi L_1 ed L_2 è l'insieme delle stringhe che appartengono sia a L_1 che a L_2 .

$$L_1 \cap L_2 = \{x \mid x \in L_1 \text{ and } x \in L_2\}$$

Differenza

La differenza L_1-L_2 del linguaggio L_1 meno L_2 è l'insieme delle stringhe di L_1 che non appartengono a L_2 .

$$L_1 - L_2 = \{x \mid x \in L_1 \text{ and } x \notin L_2\}$$

Incluso

Il linguaggio L_1 è incluso nel linguaggio L_2 (in notazione $L_1 \subseteq L_2$) se tutte le stringhe appartenenti a L_1 appartengono anche a L_2 .

Inclusone propria

Il linguaggio L_1 è propriamente incluso nel linguaggio L_2 (in notazione $L_1 \subset L_2$) se tutte le stringhe di L_1 appartengono a L_2 , e almeno una stringa di L_2 non appartiene a L_1 .

Linguaggi uguali

Due linguaggi sono uguali se contengono lo stesso numero di stringhe.

$$L_1=L_2 \Leftrightarrow L_1 \subseteq L_2 \text{ and } L_2 \subseteq L_1$$

 $L_1=L_2 \Leftrightarrow L_1-L_2=L_2-L_1=\Phi$

Riflessione

La riflessione del linguaggio L (in notazione L^R) è l'insieme delle stringhe riflesse di L.

$$L^R = \{x \mid x = y^R \text{ and } y \in L\}$$

Inizi di lunghezza k

L'insieme degli inizi di lunghezza k del linguaggio L (in notazione k:L) è l'insieme degli inizi di lunghezza k delle stringhe di L.

$$k: L = \{k: x \mid x \in L \text{ and } |x| \ge k\}$$

Concatenamento

Il concatenamento dei linguaggi L_1 ed L_2 (in notazione L_1L_2) è l'insieme ottenuto concatenando in tutti i modi possibili le stringhe di L_1 con le stringhe di L_2 .

$$L_1L_2=\{x\mid x=yz \text{ and } y\in L_1 \text{ and } z\in L_2\}$$

$$L\Phi=\Phi=\Phi L$$

$$L\{\varepsilon\}=L=\{\varepsilon\}L$$

Potenza m-esima

La potenza m-esima del linguaggio L (in notazione L^m) è il concatenamento di L con sè stesso m volte.

- $L^0 = \{\varepsilon\}$
- $\bullet \ L^m = L^{m-1}L$
- $\Phi^0 = \{\varepsilon\}$

In generale, si ha: $\{x \mid x = y^m \text{ and } y \in L\} \subset L^m$

Chiusura di Kleene (Kleene Star)

La chiusura di Kleene (o chiusura rispetto al concatenamento) del linguaggio L (notazione L^*) è l'unione di tutte le potenze di L.

$$L^* = \bigcup_{n=0}^{\infty} L^n = \{\varepsilon\} \cup L^1 \cup L^2 \cup \dots$$

Essa gode delle seguenti proprietà:

- 1. Monotonicità $L \subseteq L^*$
- 2. Chiusura rispetto al concatenamento $(x \in L^*)$ and $(y \in L^*) \Rightarrow xy \in L^*$
- 3. Idempotenza $(L^*)^* = L^*$
- 4. Commutatività della riflessione con la chiusura di Kleene $(L^*)^R=(L^R)^*$
- 5. Commutatività della riflessione con la potenza $(L^m)^R = (L...L)^R = L^R...L^R = (L^R)^m$
- 6. $\Phi^* = \{ \varepsilon \}$
- 7. $\{\varepsilon\}^* = \{\varepsilon\}$

Chiusura non riflessiva (Kleene Plus)

La chiusura non riflessiva rispetto al concatenamento del linguaggio L (notazione L^+) è l'unione di tutte le potenze positive di L.

$$L^{+} = \bigcup_{n=1}^{\infty} L^{n} = L^{1} \cup L^{2} \cup \dots$$

Essa gode delle seguenti proprietà:

- 1. $L^* = L^+ \cup \{\varepsilon\}$
- 2. $L^+ \subset L^*$
- 3. $L^+ = L^*L = LL^*$
- 4. $\varepsilon \in L^+ \Leftrightarrow \varepsilon \in L$

Linguaggio universale

Il linguaggio universale (o monoide libero di un alfabeto Σ) è la sua chiusura di Kleene:

$$\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$$

Contiene stringhe di lunghezza finita, ma illimitate. Inoltre, ogni lunguaggio su un alfabeto Σ è un sottoinsieme di Σ^*

Complemento

Il complemento di un linguaggio L su un alfabeto Σ rispetto a un alfabeto Δ (notazione $(\neg L)_{\Delta}$) è la differenza fra Δ^* ed L

$$\neg L_{\Lambda} = \Delta^* - L$$

 $\neg L$ indicherà il complemento fatto rispetto all'alfabeto su cui L è definito. Esempi:

- $\neg \{ab, ba\}_{a,b} = \{\varepsilon, a, b, aa, bb, aaa, ...\}$
- $\neg \{ab, ba\}_{a,b,c} = \{\varepsilon, a, b, aa, bb, aaa, ...\} \cup \{\text{Stringhe contenenti almeno un c}\}$

2.1.6 Tipi di linguaggi

Linguaggio Formale

I linguaggi "formali", in senso lato, sono linguaggi in cui l'insieme delle stringhe che li costituiscono è definibile in modo rigoroso e formale.

Per linguaggio formale, in matematica, logica, informatica e linguistica, si intende un insieme di stringhe di lunghezza finita costruite sopra un alfabeto finito, cioè sopra un insieme finito di oggetti tendenzialmente semplici che vengono chiamati caratteri, simboli o lettere.

Wikipedia IT

In mathematics, computer science, and linguistics, a formal language is a set of strings of symbols together with a set of rules that are specific to it.

Wikipedia EN

Cosa si richiede ad un linguaggio formale?

- 1. Struttura delle frasi descritta in modo chiaro e comprensibile (sintassi).
- 2. Possibilità di definire algoritmi di riconoscimento.
- 3. Possibilità di associare regole per definire il significato delle frasi (semantica).

La semplice notazione insiemistica non è sufficiente. Bisogna ricorrere a formalismi più specifici.

- 1. Formalismi **generativi** (*grammatiche, espr. regolari*): permettono di capire se una frase appartiene a un dato linguaggio attraverso la descrizione della sua struttura.
- 2. Formalismi **riconoscitivi** (*automi*): forniscono algoritmi per decidere se una frase appartiene o no al linguaggio.

Entrambi gli approcci sono *duali* ed *equivalenti*, si può infatti passare da un algoritmo di generazione ad uno di riconoscimento in modo meccanico.

Capitolo 3

Automi a stati finiti

3.1 Introduzione informale

Un automa è un modello teorico di un sistema hardware/software utilizzato a scopo di verifica riguardo alla compatibilità di un input in un certo algoritmo. Anche se questa definizione può sembrare molto criptica, vedremo più avanti di approfondire meglio l'argomento.

3.2 Automi a stati finiti deterministici - DFA

Il termine *deterministico* sta a indicare che **per ogni input esiste una sola transizione** verso un'altro stato. Spesso questo tipo di automa è abbreviato con la sigla **DFA** (*Deterministic Finite Automaton*).

3.2.1 Definizione formale

Un DFA A è una quintupla di 5 elementi:

$$A = (Q, \Sigma, \delta, q_0, F)$$

- 1. Q = e un insieme finito di stati,
- 2. $\Sigma = \hat{e}$ l'alfabeto finito di input,
- 3. $\delta = Q \times \Sigma \rightarrow Q$ è la funzione di transizione,

la quale prende in input uno stato e un simbolo, e restituisce uno stato. Si potrebbe vedere in "pseudocodice alla C" come:

```
status delta(status q, symbol w) {
    status result;
    ...
    return result;
}
```

- 4. q_0 è lo stato iniziale $(q_0 \in Q)$,
- 5. $F \subseteq Q$ è l'insieme di stati di accettazione. $(F \subseteq Q)$.

3.2.2 Elaborazione di stringhe di un DFA

La prima cosa che bisogna capire di un DFA è come decide se "accettare" o no una sequenza di simboli in input. Il "linguaggio" di un DFA è l'insieme di tutte le stringhe che esso accetta.

3.2.3 Notazioni differenti

Esistono diversi tipi di notazioni per un DFA, tutte tra loro equivalenti.

1. Definizione della quintupla e delle funzioni di transizione

2. Diagrammi di transizione

- (a) Per ogni stato in Q, esiste un nodo
- (b) Per ogni stato q in Q e per ogni simbolo di input a in Σ sia $\delta(q,a)$ allora, il diagramma ha un arco dal nodo q al nodo p etichettato a, se vi sono altri simboli che descrivono la stessa transizione da q a p, si aggiungono i rispettivi archi annotati tra i due stati.
- (c) Si aggiunge una freccia etichettata Start che entra nel nodo q_0 , che indicherà lo stato iniziale dell'automa.
- (d) Gli stati appartenenti a F (cioè quelli finali) sono etichettati da un doppio cerchio.

Figura 3.1: Diagramma di transizione per il DFA che accetta tutte le stringhe contenenti 01.

3. Tabelle di transizione

La tabella di transizione è una comune rappresentazione tabellare di una funzione come δ , che ha due argomenti e restituisce un valore. Le righe della tabella corrispondono agli stati, le colonne all'input. All'incrocio della riga si ottiene il risultato dell'operazione δ , con l'input e lo stato nelle rispettive righe/colonne.

$$\begin{array}{c|c|c|c|c} & 0 & 1 \\ \hline \rightarrow q_0 & q_1 & q_0 \\ q_1 & q_1 & q_2 \\ *q_2 & q_2 & q_2 \end{array}$$

3.2.4 Funzione di transizione estesa $(\hat{\delta})$

Abbiamo visto in modo informale che un DFA definisce un linguaggio: l'insieme di tutte le sringhe he producono una sequenza di transizioni di salti dallo stato iniziale a uno stato accettante. Rispetto al diagramma di transizione il linguaggio di un DFA è l'insieme delle etichette lungo i cammini che conducono dallo stato iniziale a un qualunque stato accettante.

A questo punto, per precisare la nozione di linguaggio di un DFA, introduciamo la definizione di **funzione di transizione estesa**, (in notazione $\hat{\delta}$), che descrive cosa succede quando partiamo da uno stato e seguiamo una sequenza di input. Questa funzione di transizione prende uno stato q e una stringa w e restituisce uno stato, ed è definita induttivamente come segue:

BASE $\hat{\delta}(q,\varepsilon)=q$. In altre parole, se ci troviamo in uno stato q e non leggiamo nessun input, allora rimaniamo in q.

INDUZIONE supponiamo che w sia una stringa della forma xa, ossia a è l'ultimo simbolo di w e x è la stringa che contiene tutti i simboli eccetto l'ultimo. Per esempio, w=1101 si scompone in x=110 e a=1 allora, per induzione

$$\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$$

Può sembrare contorta, ma in realtà è molto semplice. Per computare $\hat{\delta}(q,w)$ calcoliamo prima $\hat{\delta}(q,x)$, lo stato in cui si trova l'automa dopo aver elaborato tutti i simboli di w eccetto l'ultimo. Supponiamo ora che questo stato sia p, ossia $\hat{\delta}(q,x)=p$, allora $\hat{\delta}(q,w)$ è quanto si ottiene compiendo una transizione dallo stato p sull'input a, l'ultimo simbolo di w. In altre parole $\hat{\delta}(q,w)=\delta(p,a)$.

3.2.5 Linguaggio di un DFA

Dato un DFA $A=(Q,\Sigma,\delta,q_0,F)$, definiamo il linguaggio di A, in notazione L(A) come

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \text{ è in } F \}$$

Ovvero, l'insieme delle stringhe w che portano dallo stato iniziale $q_{=}$ a uno degli stati accettanti. Se L è uguale a L(A) per un DFA A, allora diciamo che L è un **linguaggio regolare**.

3.3 Automi a stati finiti non deterministici - NFA

Il termine *non-deterministico* sta a indicare che **per ogni input possono esiste più di una transizione** verso altri stati. Spesso questo tipo di automa è abbreviato con la sigla **NFA** (*Non-deterministic Finite Automaton*).

Infatti, tra gli NFA e i DFA, l'unica cosa che cambia (e lo vedremo dalla definizione formale) è la funzione δ , poiché nel caso dei NFA riceve in input uno stato e un simbolo, ma ha come valore di output un **sottoinsieme di stati**.

3.3.1 Definizione formale

Un NFA A è una quintupla di 5 elementi:

$$A = (Q, \Sigma, \delta, q_0, F)$$

- 1. Q = e un insieme finito di stati,
- 2. $\Sigma = \hat{e}$ l'alfabeto finito di input,
- 3. $\delta = Q \times \Sigma \to Q$ è la funzione di transizione,

la quale prende in input uno stato e un simbolo, e restituisce un **sottoinsieme di** Q.

- 4. q_0 è lo stato iniziale $(q_0 \in Q)$,
- 5. $F \subseteq Q$ è l'insieme di stati di accettazione. $(F \subseteq Q)$.

3.3.2 Funzione di transizione estesa $(\hat{\delta})$

Come per i DFA, anche gli NFA hanno una funzione di transizione estesa, ma, dato che questa definizione si basa sulla relativa definizione di δ nell'automa, allora anche $\hat{\delta}$ cambia.

Negli NFA, la funzione di transizione $\hat{\delta}$ prende come argomenti uno stato q e una stringa w e restituisce **l'insieme degli stati in cui si trova l'NFA quanto parte dallo stato stato** q **e dalla stringa** w. Essa è definita induttivamente come segue:

BASE $\hat{\delta}(q,\varepsilon)=\{q\}$. Se nessun simbolo di input è stato letto, ci troviamo nel solo stato da cui siamo partiti.

INDUZIONE supponiamo che w sia una stringa della forma w=xa, dove a è l'ultimo simbolo di w e x è la parte restante. Supponiamo altresì che $\hat{\delta}(q,x)=\{p_1,p_2,...,p_k\}$. Sia

$$\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, ..., r_m\}$$

allora $\hat{\delta}(q,w)=\{r_1,r_2,...,r_m\}$. In poche parole, computiamo $\hat{\delta}(q,w)$ calcolando inizialmente $\hat{\delta}(q,w)$ e poi seguendo le transizioni etichettate "a" da tutti questi stati.