

ORIENTABILIDAD DE SUPERFICIES

Alan Reyes-Figueroa Geometría Diferencial

(AULA 16) 10.MARZO.2022

Recordemos el efecto del signo del determinante en \mathbb{R}^n :

Efecto del determinante en \mathbb{R}^2 : (a) preserva la orientación, (b) invierte la orientación.

Definición

Sea $S \subseteq \mathbb{R}^3$ superficie regular. Dos parametrizaciones $\mathbf{x}_1: U_1 \subseteq \mathbb{R}^2 \to V_1 \cap S$ y $\mathbf{x}_2: U_2 \subseteq \mathbb{R}^2 \to V_2 \cap S$ en la superficie S son **coherentes** cuando $W = V_1 \cap V_2 \cap S = \varnothing$, o cuando $W = V_1 \cap V_2 \cap S \neq \varnothing$ y la matriz jacobiana satisface $\det D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{q}) > 0, \quad \forall \mathbf{q} \in \mathbf{x}_1^{-1}(W).$

Obs! Como det $D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{q})$ es una función continua en \mathbf{q} (¿por qué?) entonces su signo queda completamente determinado en cada componente conexa de $\mathbf{x}_1^{-1}(W)$.

Luego, todo cambio de coordenadas, o es coherente en todos sus puntos, o no lo es en ninguno.

Definición

Un **atlas** A de clase C^k en una superficie $S \subseteq \mathbb{R}^3$ es una colección de parametrizaciones o cartas locales $A = \{(\mathbf{x}_i, U_i)\}_i$, con $\mathbf{x}_i : U_i \subseteq \mathbb{R}^2 \to V_i \cap S$, tales que

- $S = \bigcup_i V_i$, esto es, los $V_i = \mathbf{x}(U_i)$ cubren a todos S.
- las parametrizaciones \mathbf{x}_i son todas de clase C^k .

Definición

Un atlas A de S se llama **coherente** cuando cualesquiera dos parametrizaciones $(\mathbf{x}_i, U_i), (\mathbf{x}_j, U_j) \in A$ son coherentes.

Un atlas coherente de clase C^k para S es **maximal** si no está contenido en otro atlas coherente maximal de clase C^k para S.

Obs! Por el Lema de Zorn, todo atlas coherente dee S está contenido en un atlas coherente maximal.

Teorema (Lema de Zorn)

Todo conjunto parcialmente ordenado no vacío en el que toda cadena ascendente tiene cota superior, contiene un elemento maximal.

En este caso, si $A_0 = \{(\mathbf{x}_i, U_i)\}_i$ es un atlas coherente de S, podemos hacer el siguiente mecanismo:

Consideremos una carta local adicional (\mathbf{x}, U) . Si (\mathbf{x}, U) es coherente con todas las cartas locales de \mathcal{A}_o , la agregamos: $\mathcal{A}_1 = \mathcal{A}_o \cup \{(\mathbf{x}, U)\}$. Podemos continuar este mecanismo indefinidamente, para formar una cadena creciente de atlases

$$A_0 \subset A_1 \subset A_2 \subset \dots$$

(o hasta que ya no podamos agregar más cartas coherentes). Del lema de Zorn, esta cadena tiene una cota superior $\widehat{\mathcal{A}}$, el cual debe ser un atlas coherente maximal.

Definición

Unsa superficie $S \subseteq \mathbb{R}^3$ es **orientable** cuando existe al menos un atlas coherente de clase C^k en S.

En este caso, existe también un atlas coherente maximal \mathcal{A} , llamado una **orientación** para S.

Una **superficie orientada** es una superficie orientable en la cual se hizo una elección de una orientación A.

Un atlas coherente preserva la misma orientación en todos los T_pS .

Si \mathcal{A} es una orientación para S y $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \cap S$ es una parametrización, entonces la aplicación $N: V \cap S \to \mathbb{R}^3$ dada por

$$\mathbf{n} = N(\mathbf{p}) = rac{\mathbf{x}_u(\mathbf{q}) imes \mathbf{x}_v(\mathbf{q})}{||\mathbf{x}_u(\mathbf{q}) imes \mathbf{x}_v(\mathbf{q})||}, \quad \mathsf{con} \; \mathbf{q} = \mathbf{x}^{-1}(\mathbf{p}),$$

define un vector normal unitario sobre $V \cap S$. En particular, $N(\mathbf{p}) \in T_{\mathbf{p}}S^{\perp}$ y

 $||N({\bf p})|| = 1.$

Cuando consideramos a todo el conjunto de vectores $N(\mathbf{p})$, con $\mathbf{p} \in V \cap S$, obtenemos un **campo de vectores normales**, o un **campo normal unitario** a $V \cap S$.

Campo normal a la superficie S.