

Table des matières

T	Rappels de maths sup et complements	٠
	1.1 Matrices semblables	į
	1.2 Matrices diagonales et triangulaires	5
	1.2.1 Matrices diagonales	3
	1.2.2 Matrices triangulaires	3
	1.3 Rappels sur les sommes de sous-espaces	4
2	Sous-espaces stables	5
	2.1 Cas général	5
	2.1.1 Définition	F
	2.1.2 Interprétation matricielle	Ę
	2.2 Droites stables	Ę
	2.3 Réduire un endomorphisme	5
3	Valeurs propres, vecteurs propres	7
	3.1 Valeurs et vecteurs propres	7
	3.2 Sous-espaces propres	7
4	Endomorphismes diagonalisables	g
	4.1 Définition	Ć
	4.2 Caractérisations	Ć
5	Polynôme caractéristique	11
	5.1 Définition	11
	5.2 Propriétés	11
6		13
		13
	6.2 Diagonalisation explicite	13
7	Endomorphismes trigonalisables	15
	7.1 Définition	15
	7.2 Condition nécessaire et suffisante	15
8	v i	17
	8.1 Algèbre $\mathbb{K}[f]$	17
	8.2 Commutant	17

Plan du chapitre

I - Rappels de maths sup et compléments

- 1. Matrices semblables
- 2. Matrices diagonales. Matrices triangulaires
 - (a) Matrices diagonales
 - (b) Matrices triangulaires
- 3. Rappels sur les sommes de plusieurs sous-espaces

II - Sous-espaces stables

- 1. Cas général
 - (a) Définition
 - (b) Interprétation matricielle
- 2. Droites stables
- 3. Réduire un endomorphisme ou une matrice carrée

III - Valeurs propres, vecteurs propres, sous-espaces propres

- 1. Valeurs et vecteurs propres
- 2. Sous-espaces propres

IV - Endomorphismes ou matrices diagonalisables

- 1. Définition
- 2. Premières caractéristiques de la diagonalisabilité en dimension finie

V - Polynôme caractéristique

- 1. Polynôme caractéristique d'une matrice
- 2. Ordre de multiplicité d'une valeur propre
- 3. Degré et coefficients du polynôme caractéristique
- 4. Propriétés du polynôme caractéristique
- 5. Polynôme caractéristique d'un endomorphisme

VI - Diagonalisation

- 1. Une condition nécessaire et suffisante de diagonalisabilité
- 2. Diagonalisation explicite

VII - Endomorphismes ou matrices trigonalisables

- 1. Définition
- 2. Une condition nécessaire et suffisante de trigonalisabilité
- 3. Quelques conséquences

VIII - Polynômes d'endomorphismes, polynômes de matrices

- 1. L'algèbre des polynômes en f (ou en A)
- 2. Commutant d'un endomorphisme ou d'une matrice
- 3. Polynômes annulateurs d'un endomorphisme (ou d'une matrice)
- 4. Polynôme minimal d'un endomorphisme (ou d'une matrice)
- 5. Polynôme minimal et polynôme caractéristique d'un endomorphisme induit
- 6. Le théorème de CAYLEY-HAMILTON
- 7. Polynômes annulateurs et valeurs propres
- 8. Le théorème de décomposition des noyaux
- 9. Une nouvelle caractérisation de la diagonalisabilité

IX - Applications de la réduction

- 1. Calculs de puissances de matrices (ou d'endomorphismes)
- 2. Calculs d'inverses de matrices inversibles (ou de réciproques d'automorphismes)

Introduction

Dans tout ce chapitre $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C.$

Rappels de maths sup et compléments

1.1 Matrices semblables

Définition 1.1.1. Soit $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$. La matrice A est semblable à la matrice B si et seulement si il existe $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$.

Théorème 1.1.2. La relation « A est semblable à B » est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{K})$.

Démonstration. Réflexivité, symétrie et transitivité sont démontrées par les calculs standards.

Théorème 1.1.3. Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$, $f \in \mathcal{L}(E)$. Soient \mathcal{B} et \mathcal{B}' deux bases de E, $A = \operatorname{Mat}_{\mathcal{B}}(f)$, $B = \operatorname{Mat}_{\mathcal{B}'}(f)$ et $P = \mathcal{P}_{\mathcal{B}'}^{\mathcal{B}}$. Alors $B = P^{-1}AP$.

Théorème 1.1.4. Si A et B sont semblables, alors :

- $-\operatorname{rg}(A) = \operatorname{rg}(B)$
- $-\operatorname{Tr}(A) = \operatorname{Tr}(B) \ et \ \det(A) = \det(B)$
- A inversible ssi B inversible

1.2 Matrices diagonales et triangulaires

1.2.1 Matrices diagonales

Définition 1.2.1. Une matrice $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$ est diagonale si $\forall i \neq j$, $a_{ij} = 0$. On note diag $(\lambda_1, \ldots, \lambda_n)$ la matrice diagonale de coefficients λ_i .

Théorème 1.2.2. L'ensemble $\mathcal{D}_n(\mathbb{K})$ des matrices diagonales est :

- Un sous-espace vectoriel de dimension n
- Une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$

1.2.2 Matrices triangulaires

Définition 1.2.3. A est triangulaire supérieure (resp. inférieure) si $\forall i > j$ (resp. i < j), $a_{ij} = 0$. On note $\mathcal{T}_{n,s}(\mathbb{K})$ (resp. $\mathcal{T}_{n,i}(\mathbb{K})$) cet ensemble.

Théorème 1.2.4. Toute matrice triangulaire inférieure est semblable à une matrice triangulaire supérieure.

Théorème 1.2.5. L'ensemble $\mathcal{T}_{n,s}(\mathbb{K})$ (resp. $\mathcal{T}_{n,i}(\mathbb{K})$) est :

- Un sous-espace vectoriel de dimension $\frac{n(n+1)}{2}$
- Une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$

1.3 Rappels sur les sommes de sous-espaces

Définition 1.3.1. La somme $F_1 + \cdots + F_p$ est l'ensemble $\{x_1 + \cdots + x_p \mid x_i \in F_i\}$.

Définition 1.3.2. La somme est directe si tout vecteur s'écrit de manière unique comme somme. On note $F_1 \oplus \cdots \oplus F_p$.

Théorème 1.3.3 (Caractérisation des sommes directes). La somme $\sum F_k$ est directe ssi $\forall i, F_i \cap \sum_{j \neq i} F_j = \{0\}.$

Théorème 1.3.4 (Dimension finie). $Si \dim E < +\infty$:

- 1. $\dim(\bigoplus F_i) = \sum \dim(F_i)$
- 2. $\dim(\sum F_i) \leq \sum \dim(F_i)$ avec égalité ssi somme directe
- 3. $E = \bigoplus F_i \iff \dim E = \sum \dim F_i$

Sous-espaces stables

2.1 Cas général

2.1.1 Définition

Définition 2.1.1. Un sous-espace F est stable par f si $f(F) \subset F$.

Théorème 2.1.2. Si F est stable par f, alors f induit un endomorphisme de F.

Théorème 2.1.3. Si f et g commutent, alors g laisse stable Im(f), Ker(f) et $\text{Ker}(f - \lambda \text{Id})$.

2.1.2 Interprétation matricielle

En dimension finie, si $E = F \oplus G$ avec F stable, la matrice de f dans une base adaptée est triangulaire supérieure par blocs. Si G est aussi stable, elle est diagonale par blocs.

2.2 Droites stables

 $D = \operatorname{Vect}(x)$ est stable ssi $f(x) = \lambda x$ pour un $\lambda \in \mathbb{K}$.

2.3 Réduire un endomorphisme

Objectif : trouver une base où la matrice est simple (diagonale, triangulaire). Applications au calcul de puissances matricielles.

Valeurs propres, vecteurs propres

3.1 Valeurs et vecteurs propres

Définition 3.1.1. λ est valeur propre de f ssi $\exists x \neq 0$, $f(x) = \lambda x$. x est alors vecteur propre.

Définition 3.1.2. Spectre Sp(f): ensemble des valeurs propres.

Théorème 3.1.3. λ valeur propre ssi $f - \lambda \operatorname{Id}$ non injectif. En dimension finie: ssi $\det(f - \lambda \operatorname{Id}) = 0$.

Théorème 3.1.4. Une famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Théorème 3.1.5. Tout endomorphisme en dimension finie sur \mathbb{C} admet au moins une valeur propre.

3.2 Sous-espaces propres

Définition 3.2.1. $E_{\lambda}(f) = \text{Ker}(f - \lambda \text{Id}).$

Théorème 3.2.2. La somme des sous-espaces propres associés à des valeurs propres distinctes est directe.

Endomorphismes diagonalisables

4.1 Définition

Définition 4.1.1. f est diagonalisable ssi il existe une base de vecteurs propres.

4.2 Caractérisations

Théorème 4.2.1. f diagonalisable ssi $E = \bigoplus E_{\lambda_i}(f)$.

Théorème 4.2.2. f diagonalisable ssi χ_f scindé et dim $E_{\lambda} = \text{multiplicit}(\lambda)$.

Polynôme caractéristique

5.1 Définition

Définition 5.1.1. Pour $A \in \mathcal{M}_n(\mathbb{K})$, $\chi_A(X) = \det(XI_n - A)$.

5.2 Propriétés

- $\deg \chi_A = n$, coefficient dominant 1
- $\chi_A = X^n \text{Tr}(A)X^{n-1} + \dots + (-1)^n \det A$
- Valeurs propres = racines de χ_A
- En dimension finie : $\chi_f = \chi_A$ où A matrice de f

Diagonalisation

6.1 Condition nécessaire et suffisante

Voir théorème précédent.

6.2 Diagonalisation explicite

Méthode pratique : résoudre $(A-\lambda I)X=0$ pour chaque valeur propre, construire la matrice de passage.

Endomorphismes trigonalisables

7.1 Définition

Définition 7.1.1. f est trigonalisable ssi il existe une base où sa matrice est triangulaire supérieure.

7.2 Condition nécessaire et suffisante

Théorème 7.2.1. f trigonalisable ssi χ_f scindé sur \mathbb{K} .

Polynômes d'endomorphismes

8.1 Algèbre $\mathbb{K}[f]$

Définition 8.1.1. Pour $P = \sum a_k X^k \in \mathbb{K}[X]$, $P(f) = \sum a_k f^k$.

Théorème 8.1.2. L'application $P \mapsto P(f)$ est un morphisme d'algèbres.

8.2 Commutant

Définition 8.2.1. Le commutant $C(f) = \{g \in \mathcal{L}(E) \mid f \circ g = g \circ f\}.$

Théorème 8.2.2. Si f diagonalisable, $\dim C(f) = \sum (\dim E_{\lambda_i})^2$.