- 1. $0 \le t < T$ において以下の式を満足する周期 T > 0 の周期関数 f(t) の複素フーリエ級数展開を求めよ.
 - (1) f(t) = t (2) $f(t) = e^t$
- 2. 次の周期関数の複素フーリエ級数展開を求めよ.

(1)
$$\frac{1}{\frac{5}{4} + \sin \omega t}$$
 (2) $\frac{1}{\frac{1}{2} + e^{i\omega t}}$

3. 次式を満足する周期 2π の周期関数 f(t) に対して以下の問いに答えよ.

$$f(t) = t^2 \quad (-\pi \le t < \pi)$$

- (1) フーリエ級数展開を求めよ.
- (2) 複素フーリエ級数展開を求めよ.
- (3) 次の無限級数の和を求めよ.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$

4. $\mu > 0$ として次式を満たす周期 2π の周期関数 f(t) を考える.

$$f(t) = \sin \mu t \quad (0 \le t < 2\pi)$$

f(t) のフーリエ部分和を $S_N(t)$ として,以下の問いに答えよ.

- (1) $t \neq 2\pi \mathbb{Z}$ のとき $\lim_{N \to \infty} S_N(t)$ を求めよ.
- (2) $t=2\pi\mathbb{Z}$ のとき $\lim_{N o\infty}S_N(t)$ を求めよ.
- (3) f(t) のフーリエ級数展開が連続となるとき, μ が満たす条件を求めよ.
- **5.** 周期関数 f(t) のフーリエ係数 $c = \{c[n]\}_{n=-\infty}^{\infty}$ が $c \in \ell^1(\mathbb{Z})$ を満たすとき,そのフーリエ部分和は f(t) に必ず一様収束するか.理由を述べて答えよ.
- **6.** $\mu > 0$ として次式を満足する周期 2π の周期関数 f(t) に対して以下の問いに答えよ.

$$f(t) = \cos \mu t \quad (-\pi \le t < \pi)$$

- (1) フーリエ級数展開を求めよ.
- (2) t が整数でないとき次の関係式が成立することを示せ.

(a)
$$1 + 2t^2 \sum_{n=1}^{\infty} \frac{(-1)^n}{t^2 - n^2} = \frac{\pi t}{\sin \pi t}$$

(b)
$$\frac{1}{t} + \sum_{n=1}^{\infty} \frac{2t}{t^2 - n^2} = \pi \cot \pi t$$

7. f(t) が有界かつ有限個の点を除いて連続であるとき,以下の式が成立することを示せ. ただし,(1) では a>0 とする.

では
$$a > 0$$
 とする.
(1)
$$\int_0^{\pi/2} f(t) \sin at \, dt$$

$$= -\int_{-\pi/a}^{\pi/2 - \pi/a} f\left(t + \frac{\pi}{a}\right) \sin at \, dt$$
(2)
$$\lim_{a \to \infty} \int_0^{\pi/2} f(t) \sin at \, dt = 0$$

- 8. f(t) は必ずしもリプシッツ連続ではない,連続な周期関数とする.f(t) のフーリエ部分和を $S_N(t)$,フェイェル和を $\sigma_N(t)$ として,以下の問いに答えよ.
 - (1) $\sigma_N(t)$ を $S_n(t)$ $(n=0,\ldots,N-1)$ を用いて表せ、
 - (2) $\lim_{N \to \infty} S_N(t) = S(t)$ ならば, $\lim_{N \to \infty} \sigma_N(t) = S(t)$ となることを示せ.
 - (3) $\lim_{N \to \infty} S_N(t) = S(t)$ ならば、S(t) = f(t) となることを示せ.
- **9.** ある a > m + 1, C > 0 に対して

$$|c[n]| \le C(1+|n|)^{-a} \quad (n \in \mathbb{Z})$$

ならば,式(2.2)が成立することを示せ.

10. 連続な周期関数 f(t) のフーリエ係数が

$$c[n] = \begin{cases} \frac{1}{n^2(n^2 - 1)} & (n \neq 0, \pm 1 \text{ のとき}) \\ 1 & (n = \pm 1 \text{ のとき}) \\ 2 & (n = 0 \text{ のとき}) \end{cases}$$

で与えられるとき,以下の問いに答えよ.

- (1) フーリエ部分和が f(t) に一様収束することを示せ.
- (2) f(t) は C^2 級であるが, C^5 級でないことを示せ
- (3) f'(t), f''(t) のフーリエ係数を求めよ.
- 11. 連続な周期関数 f(t) のフーリエ係数を $\{c[n]\}_{n=-\infty}^{\infty}$ とするとき,以下の問いに答えよ.
 - (1) ある $a \in (m, m+1)$ に対して、極限

$$\lim_{n \to \pm \infty} (1 + |n|)^a |c[n]| > 0$$

が存在するならば, f(t) は C^{m-1} 級であるが, C^{m+1} 級ではないことを示せ.

(2) ある $\varepsilon > 0$ に対して,極限

$$\lim_{n \to +\infty} e^{\varepsilon \sqrt{|n|}} |c[n]| > 0$$

が存在するならば, f(t) は C^{∞} 級であるが, 解析的でないことを示せ.

12. 任意の M > 0 に対して定数 C > 0 が存在し、式 (2.7) が成立するとき,

$$u(x,t) = \sum_{n=1}^{\infty} b[n]e^{-n^2\omega^2 t} \sin m\omega x$$

がt > 0 においてxとtについて何回でも項別微 分可能であることを示せ.

13. 単位円板 D におけるラプラス方程式のディリク レ問題 (2.9) を考える. $f(e^{i\theta})$ のフーリエ係数が,

$$c[n] = a^{|n|}$$

で与えられるとき、解 $u(re^{i\theta})$ を求めよ.

- 14. 周期 T の有界で, [0,T] 上で積分可能な周期関数 f, g, h に対して次の関係式が成立することを示せ.
 - (1) (f * g) * h = f * (g * h)
 - (2) (f+g)*h = f*h+g*h
- **15.** 連続な周期関数 f(t), g(t) のフーリエ係数が, c[0] = $d[0] = 0, n \neq 0 のとき$

$$c[n] = \frac{1}{n^2}, \quad d[n] = \frac{1}{n^3}$$

で与えられるとき、 $\zeta(k) = \sum_{n=1}^{\infty} 1/n^k \ (k>1)$ と して,以下の関数のフーリエ係数を求めよ.

- (1) f(t)g(t)
- (2) f(t) * g(t)
- **16.** f(t) を周期関数とし、ある $m, M \in \mathbb{R}$ が存在して、 任意の $t \in \mathbb{R}$ に対して $m \leq f(t) \leq M$ が成立する ものとする. f のフェイエル和を $\sigma_N(t)$ とすると き, 任意の $t \in \mathbb{R}$ に対して $m \leq \sigma_N(t) \leq M$ が成 立することを示せ.
- **17.** 関数 $f(t) = (1 + |x|)^{-a}$ に対して以下の問いに答
 - (1) $f \in L^1(\mathbb{R})$ であるための a についての必要十 分条件を求めよ.
 - (2) $f \in L^2(\mathbb{R})$ であるための a についての必要十 分条件を求めよ.

18. n を任意の自然数として,関数 f(t) を

$$f(t) = \begin{cases} 2n^4(t-n) & (t \in [n, n+1/2n^3)); \\ -2n^4(t-n) + 2n & (t \in [n+1/2n^3, n+1/n^3)); \\ 0 & (t \in [n+1/n^3, n+1] \cup (0, 1)); \\ f(-t) & (t < (-\infty, 0)) \end{cases}$$

と定義する. 以下の問いに答えよ.

- (1) f は有界連続か. (2) $f \in L^1(\mathbb{R})$ であるか.
- (3) $f \in L^2(\mathbb{R})$ であるか.
- **19.** 次の関数のフーリエ変換を求めよ. ただし, a,b>0かつ $a \neq b$ とする.

(1)
$$\max(1 - |t|, 0)$$
 (2) $te^{-a|t|}$
(3) $\frac{1}{(t^2 + a^2)(t^2 + b^2)}$ (4) $\operatorname{sech} t \left(= \frac{1}{\cosh t} \right)$

- **20.** a > 0 とし、 $t \neq 0$ のとき $f(t) = \sin^2 at/t^2$ を満た す連続関数 f(t) に対して以下の問いに答えよ.
 - (1) f(0) を求めよ.
 - (2) $f \in L^1(\mathbb{R})$ であることを示せ.
 - (3) f のフーリエ変換を求めよ.
- **21.** 連続関数 $f \in L^1(\mathbb{R})$ に対して

$$F(t) = \int_{-\infty}^{t} f(s)ds$$

とおく. $F \in L^1(\mathbb{R})$ として, 以下の問いに答えよ.

- (1) F(t) は有界であることを示せ.
- (2) 極限 $\lim_{t\to +\infty} F(t)$ を求めよ.
- (3) f, F のフーリエ変換 \hat{f}, \hat{F} に対して,

$$i\xi \hat{F}(\xi) = \hat{f}(\xi)$$

が成立することを示せ.

- (4) $\hat{F} \in L^1(\mathbb{R})$ であり、反転公式 $F = \mathfrak{F}^*\hat{F}$ が成 立することを示せ.
- (5) $\hat{f} \in L^1(\mathbb{R})$ ならば、反転公式 $f = \mathfrak{F}^* \hat{f}$ が成立 することを示せ.
- **22.** 関数 $f(t) = e^{-|t|}$ とそのフーリエ変換 $\hat{f}(\xi)$ に対し て以下の問いに答えよ.
 - (1) f は C^1 級でないことを示せ.
 - (2) \hat{f} は C^{∞} 級であることを示せ.
- **23.** 関数 $f(t) = 1/(t^2+1)^k$ とそのフーリエ変換 $\hat{f}(\xi)$ に対して以下の問いに答えよ、ただし、k > 1を 自然数とする.

- (1) f は C^{∞} 級であることを示せ.
- (2) \hat{f} は $C^{2(k-1)}$ 級であることを示せ.
- **24.** $f,g \in L^1(\mathbb{R})$ ならば、 $\langle f, \mathfrak{F}^*g \rangle = \langle \mathfrak{F}f,g \rangle$ が成立することを示せ.
- **25.** 有界関数 $f \in L^1(\mathbb{R})$ のフーリエ変換 \hat{f} を用いて次の関数のフーリエ変換を表わせ, ただし, $a \in \mathbb{R} \setminus \{0\}$ は定数で, \hat{f} も有界可積分とする.
 - (1) f(at) (2) (f * f)(t) (3) $|f(t)|^2$
- **26.** f とそのフーリエ変換 \hat{f} が有界連続かつ可積分ならば、 $\lim_{t\to\pm\infty}f(t), \lim_{\xi\to\pm\infty}\hat{f}(\xi)=0$ となることを示せ.
- **27.** 3.9.1 節の \mathbb{R} 上の熱方程式の問題において, $f(x) = \cos x$ のときの解 u(x,t) を求めよ.
- **28.** 3.9.2 節の半平面のラプラス方程式のディリクレ問題において, $f(x) = \cos x$ のときの解 u(x,y) を求めよ.
- 29. 次の関数のラプラス変換と収束座標を求めよ.
 - $(1) e^{at} \cos kt \quad (2) e^{at} \sin kt \quad (3) \frac{1}{\sqrt{t}}$

$$(4) \sqrt{t} \quad (5) \frac{\cos a\sqrt{t}}{\sqrt{t}}$$

- **30.** 関数 f(t) が局所可積分で、かつある $\gamma \in \mathbb{R}$ に対して、 $t \to \infty$ のとき、 $|f(t)| = O(e^{\gamma t})$ かつ $|f(t)| \neq o(e^{\gamma t})$ を満たすならば、ラプラス変換 $\mathcal{L}[f](s)$ の収束座標は γ に等しいことを示せ.
- **31.** 関数 f(t) に対して

$$\lambda = \limsup_{T \to \infty} \frac{1}{T} \log \left| \int_0^T f(t) dt \right| > 0$$

となるとき,以下の問いに答えよ.

- (1) 任意の $\varepsilon > 0$ に対してラプラス変換 $\mathcal{L}[f](s)$ が $s = \lambda + \varepsilon$ で収束することを示せ.
- (2) $\mathscr{L}[f](s)$ の収束座標 σ_c が非負であることを示せ.
- (3) $s = s_0$ で $\mathcal{L}[f](s)$ が収束するとき、 $\operatorname{Re} s_0 \geq \lambda$ であることを示せ、
- (4) $\sigma_c = \lambda$ であることを示せ.
- **32.** Re $s > \sigma_a$ ならば $\mathcal{L}(f)(s)$ は絶対収束, すなわち

$$\int_{-\infty}^{\infty} |f(t)e^{-st}| dt < \infty$$

となり、 $\operatorname{Re} s < \sigma_a$ ならば $\mathcal{L}(f)(s)$ は絶対収束しないとき、 σ_a を $\mathcal{L}(f)(s)$ の絶対収束座標という。 $\mathcal{L}(f)(s)$ の収束座標を σ_c とするとき、以下の問いに答えよ.

- (1) 収束座標 σ_c と同様, 絶対収束座標 $\sigma_a \in [-\infty, \infty]$ は必ず存在することを示せ.
- (2) $\sigma_a \geq \sigma_c$ であることを示せ.
- **33.** 次の関数に対して収束座標 σ_c と絶対収束座標 σ_a を求めよ.
 - $(1) e^t \sin e^t \qquad (2) e^{t+e^t} \sin e^{e^t}$