DATA VISUALIZATION

Group 8: Hye-Jin Cho-Drugeon

Data: Supermarket

À PROPOS

Plainly, I analyze the data frame. I would like to investigate which variables are capably explaining this data's causality.

There are 17 columns.

df.head()

é	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	Total	Date	Time	Payment	cogs	gross margin percentage	gross income	Rating
	750-67- 8428	Α	Yangon	Member	Female	Health and beauty	74.69	7	26.1415	548.9715	1/5/2019	13:08	Ewallet	522.83	4.761905	26.1415	9.1
á	226-31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	3.8200	80.2200	3/8/2019	10:29	Cash	76.40	4.761905	3.8200	9.6
	631-41- 3108	Α	Yangon	Normal	Male	Home and lifestyle	46.33	7	16.2155	340.5255	3/3/2019	13:23	Credit card	324.31	4.761905	16.2155	7.4
è	123-19- 1176	Α	Yangon	Member	Male	Health and beauty	58.22	8	23.2880	489.0480	1/27/2019	20:33	Ewallet	465.76	4.761905	23.2880	8.4
	373-73- 7910	Α	Yangon	Normal	Male	Sports and travel	86.31	7	30.2085	634.3785	2/8/2019	10:37	Ewallet	604.17	4.761905	30.2085	5.3

THE TYPE OF **VARIABLES**

THE CATEGORY OF PRODUCT LINE

df['Product line'].value_counts().head(10)

Fashion accessories	178						
Food and beverages	174						
Electronic accessories	170						
Sports and travel	166						
Home and lifestyle	160						
Health and beauty 152							
Name: Product line, dtype:	int64						

VARIABLE TYPES

df.dtypes

F						
	Invoice ID	object				
	Branch	object				
	City	object				
	Customer type	object				
	Gender	object				
	Product line	object				
_	Unit price	float64				
	Quantity	int64				
ŀ	Tax 5%	float64				
	Total	float64				
	Date	object				
	Time	object				
	Payment	object				
	cogs	float64				
	gross margin percentage	float64				
	gross income	float64				
	Rating	float64				
	dtype: object					

DESCRIBE

df.describe()

	Unit price	Quantity	Tax 5%	Total	cogs	gross margin percentage	gross income	Rating
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000	1.000000e+03	1000.000000	1000.00000
mean	55.672130	5.510000	15.379369	322.966749	307.58738	4.761905e+00	15.379369	6.97270
std	26.494628	2.923431	11.708825	245.885335	234.17651	6.131498e-14	11.708825	1.71858
min	10.080000	1.000000	0.508500	10.678500	10.17000	4.761905e+00	0.508500	4.00000
25%	32.875000	3.000000	5.924875	124.422375	118.49750	4.761905e+00	5.924875	5.50000
50%	55.230000	5.000000	12.088000	253.848000	241.76000	4.761905e+00	12.088000	7.00000
75%	77.935000	8.000000	22.445250	471.350250	448.90500	4.761905e+00	22.445250	8.50000
max	99.960000	10.000000	49.650000	1042.650000	993.00000	4.761905e+00	49.650000	10.00000

DISTRIBUTION HAS THE VARIATY. FOR EXAMPLE, STANDARD DEVIATION IS FROM MINIMAL VALUES SUCH AS 0 (GROSS INCOME), 1 (QUANTITY).

RATING IS NOT UNIFORMLY DISTRIBUTED AND CONDENSED CLOSE TO 6.

PRESENTATION DU PRODUIT

REPLACE

Make the category variables to Boolean types or numeric values for the correlation check.

NULL VARIABLES

Relative low attention on null variables except for one abnormal variable

SIGNIFICANT PRCING INFO.

There is a tax info. which ought to be corresponding to unit prices and amounts.

PREDICTION

Prices are required for prediction analysis for next saling.


```
# converting the health column to string instead of integer in existing column:
df = df.replace({
    'Gender': {
        'Female': 1,
        'Male': 0
    }
})

# converting the health column to string instead of integer in existing column:
df = df.replace({
    'Customer type': {
        'Member': 1,
        'Normal': 0
    }
})
```

DATA VISUALIZATION

