## MAC0329 - Álgebra booleana e aplicações

 $\operatorname{DCC}$  /  $\operatorname{IME-USP}$  — Primeiro semestre de 2021

## Lista de exercícios 2

Prazo para entrega: 31/maio/2021 (no moodle)

Entregar no moodle (e-disciplinas) um arquivo pdf ou uma foto com as soluções A lista de exercícios é individual.

Em caso de dúvidas, poste suas dúvidas no Fórum de discussões/dúvidas no moodle.

- 1. (1 ponto) Sejam três variáveis lógicas (binárias)  $a, b \in c$ .
  - (a) Escreva uma expressão que toma valor 1 se e somente quando "a = 1, b = 0 e c = 1".
  - (b) Escreva uma expressão que toma valor 0 se e somente quando " $a=0,\,b=1$  e c=1".
  - (c) Escreva uma expressão que toma valor 1 se e somente quando " $a=1,\,b=0$  e c=1" ou quando " $a=1,\,b=0$  e c=0".
- 2. (2 pontos) Escreva a expressão lógica diretamente correspondente ao circuito abaixo.



3. (2 pontos) Desenhe o circuito lógico que corresponde à implementação direta (sem simplificação) da expressão lógica  $(a + \overline{b}) c(\overline{b \oplus c})$ . O circuito deve ter apenas três entradas  $(a, b \in c)$ .

4. (3 pontos) No primeiro exemplo da seção 4.2 das notas de aula mostramos que  $\langle B, +, \cdot, \bar{\phantom{a}}, 0, 1 \rangle$  é uma álgebra booleana. No outro exemplo, consideramos o conjunto  $B^n = B \times B \times \ldots \times B$ , com as operações  $+, \cdot$  e  $\bar{\phantom{a}}$  herdadas de B e definidas, para quaisquer  $(x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \in B^n$ , da seguinte forma

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
$$(x_1, x_2, \dots, x_n) \cdot (y_1, y_2, \dots, y_n) = (x_1 \cdot y_1, x_2 \cdot y_2, \dots, x_n \cdot y_n)$$
$$\overline{(x_1, x_2, \dots, x_n)} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$$

e com

$$\mathbf{0} = (\textcolor{red}{0}, \textcolor{red}{0}, \ldots, \textcolor{red}{0})$$

$$\mathbf{1}=(1,1,\dots,1)$$

Mostre que o conjunto  $B^n$ , com as operações mais os elementos  $\mathbf{0}$  e  $\mathbf{1}$  como definidos acima, é uma álgebra booleana.

(Note que a cor magenta é apenas para deixar claro a qual conjunto se referem as operações e os elementos identidade 0 e 1)

5. (2 pontos) Prove, algebricamente, a segunda igualdade do Teorema de DeMorgan, isto é, que

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

(Faça a demonstração da validade da igualdade acima explicitamente, usando as propriedades vistas em aula. Neste exercício o princípio da dualidade não pode ser invocado :-)