Diseño de Sistemas Distribuidos

Máster en Ciencia y Tecnología Informática Curso 2018-2019

Sistemas de altas prestaciones en entornos distribuidos

Alejandro Calderón Mateos y Félix García Carballeira Grupo de Arquitectura de Computadores alejandro.calderon@uc3m.es

3-Tier Architecture

Internet / Intranet

3-Tier Architecture

Internet / Intranet

3-Tier Architecture Internet / Intranet

3-Tier Architecture

Internet / Intranet

3-Tier Architecture

Internet / Intranet

Computación de altas prestaciones

Sistemas Distribuidos

Agenda

Introducción a la computación de altas prestaciones

- Qué, dónde y cómo
- Hardware y software

Evolución de la computación de altas prestaciones

- Plataformas
- Tendencias

Agenda

Introducción a la computación de altas prestaciones

- Qué, dónde y cómo
- Hardware y software

Evolución de la computación de altas prestaciones

- Plataformas
- Tendencias

Computación de altas prestaciones

- La computación de altas prestaciones o HPC (High Performance Computing) se centra principalmente en la velocidad.
- El objetivo es conseguir la máxima cantidad de cómputo posible en la mínima cantidad de tiempo.

¿Dónde se necesita?

Ejemplo 1/2: Predicción meteorológica...

(http://www.businessinsider.com/97-million-supercomputer-in-the-uk-2014-10)

- La oficina encargada de previsiones meteorológicas invertirá en un supercomputador que le permitirá mejores previsiones.
 - Con precisión de 300 metros se podrá indicar incidencias relacionadas con niebla, rachas de viento, etc.
 - Predicciones con un margen de 1 hora (en lugar de 3 como ahora)

Impacto:

- Supondrá 97 millones de libras (156,9 millones de dólares)
- Estará operacional en el 2017.
- El supercomputador pesa lo que 11 autobuses de doble planta

Growth in Supercomputing Capability: Jun 2005 - Jun 2012

Rmax = Maximal LINPACK performance achieved

- Capacidad computacional:
 - Será 13 veces más potente que el que se usa ahora.
 - Tiene una capacidad aproximada de 16 petaFLOPS.

Ejemplo 2/2: Big Hero 6 (2014)...

(http://www.engadget.com/2014/10/18/disney-big-hero-6/)

Ejemplo 2/2: Big Hero 6 (2014)...

(http://www.engadget.com/2014/10/18/disney-big-hero-6/)

- To manage that cluster and the 400,000-plus computations it processes per day (roughly about 1.1 million computational hours per day), his team created software called Coda, which treats the four render farms like a single supercomputer. If one or more of those thousands of jobs fails, Coda alerts the appropriate staffers via an iPhone app.
- The film takes 199 million core-hours (181 days) of rendering.
 To put the enormity of this computational effort into perspective,
 Hendrickson says that Hyperion "could render Tangled (2010) from scratch every 10 days."
- If that doesn't drive the power of Disney's proprietary renderer home, then consider this: San Fransokyo contains around 83,000 buildings, 260,000 trees, 215,000 streetlights and 100,000 vehicles (plus thousands of crowd extras generated by a tool called Denizen). What's more, all of the detail you see in the city is actually based off assessor data for lots and street layouts from the real San Francisco.

- Mejores algoritmos
 - O(n²), viajante, ...

- Mejores algoritmos
 - O(n²), viajante, ...

- Mejores procesadores (mejoras en la tecnología)
 - CPU a 10 GHz, 510 TB de RAM, ...

- Mejores algoritmos
 - O(n²), viajante, ...

- Mejores procesadores (mejoras en la tecnología)
 - CPU a 10 GHz, 510 TB de RAM, ...
- Paralelismo (mejoras en el uso de la tecnología actual)
 - Speedup, Ley de Amdahl, ...

¿Eso del paralelismo qué implica?

- Mejores algoritmos
 - O(n²), viajante, ...

- Mejores procesadores (mejoras en la tecnología)
 - CPU a 10 GHz, 510 TB de RAM, ...
 - Paralelismo (mejoras en el uso de la tecnología actual)
 - Speedup, Ley de Amdahl, ...

Tipos de paralelismo

Tareas independientes:

Tipos de paralelismo

Tareas independientes:

- Tareas cooperativas:
 - Pipeline
 - Coordinación (mutex y conditions)

Tipos de paralelismo

Tareas independientes:

- Tareas cooperativas:
 - Pipeline
 - Coordinación (mutex y conditions)
- Tareas competitivas:
 - Código secuencial :-S

Speedup

• La mejora (o *speedup*) en la ejecución paralela con n elementos de cómputo será:

speedup = tiempo_de_ejecución (1) / tiempo_de_ejecución (n)

Speedup

 La mejora (o speedup) en la ejecución paralela con n elementos de cómputo será:

speedup = tiempo_de_ejecución (1) / tiempo_de_ejecución (n)

No siempre se obtiene un speedup ideal:

Ley de Amdahl

Ley de Amdahl:

"el *speedup* <u>teórico</u> está limitado por la fracción secuencial <u>s</u> del programa"

speedup
$$<= \frac{1}{s + \frac{(1-s)}{n}}$$

SIn T ENTONCES speedup ~ 1 / s

Ley de Amdahl

¿Eso del paralelismo ayuda?

caso de estudio: genoma humano

http://genomebiology.com/2011/12/8/125 http://pressroom.nvidia.com/easyir/customrel.do?easyirid=A0D622CE9F579F09&prid=878712&releasejsp=release_157

Diseño de Sistemas Distribuidos Alejandro Calderón Mateos

¿Eso del paralelismo ayuda?

caso de estudio: genoma humano

http://genomebiology.com/2011/12/8/125 http://pressroom.nvidia.com/easyir/customrel.do?easyirid=A0D622CE9F579F09&prid=878712&releasejsp=release_157

Computación de altas prestaciones

- Mejores algoritmos
 - O(n²), viajante, ...

- Mejores procesadores
 - 10 GHz, 510 TB, ...
- Paralelismo
 - Ley de Amdahl, ...

Agenda

Introducción a la computación de altas prestaciones

- Qué, dónde y cómo
- Hardware y software

Evolución de la computación de altas prestaciones

- Plataformas
- Tendencias

Plataforma hardware y software

Aplicaciones paralelas
Entorno paralelo MPI/PVM

Middleware (Single System Image)

S.O. + servicios

Proceso
Red Almacenamiento

HW

SW

Computador de altas prestaciones

Plataforma hardware

HVV

- procesamiento (vectorial vs multiprocesador)
- memoria (compartida vs distribuida)

Plataforma hardware

HVV

- procesamiento (vectorial vs multiprocesador)
- memoria (compartida vs distribuida)

Taxonomía de Flynn

http://www.buyya.com/microkernel/chap1.pdf

Single Instruction

Multiple Instruction

Single Data

Multiple Data

Taxonomía de Flynn

Multiple Instruction

Single Data

Multiple Data

Taxonomía de Flynn

Multiple Instruction

Single Data

Multiple Data

vectorial

multiprocesador

Plataforma hardware

- procesamiento (vectorial vs multiprocesador)
- memoria (compartida vs distribuida)

Acceso a memoria

 Memoria lógicamente compartida (NUMA)

Acceso a memoria

Visión lógica de la memoria

(comunicación/sincronización)

"Programación cómoda"

Plataforma software

SW

- Vectoriales
 - Uso de instrucciones especiales
- Multiprocesador
 - UMA, NUMA
 - OpenMP, ...
 - M. Distribuida
 - MPI, ...

Plataforma software

SW

- Vectoriales
 - Uso de instrucciones especiales
- Multiprocesador
 - UMA, NUMA
 - OpenMP, ...
 - M. Distribuida
 - MPI, ...

Qué es MPI

 MPI es una interfaz de paso de mensaje que representa un esfuerzo prometedor de mejorar la disponibilidad de un software altamente eficiente y portable para satisfacer las necesidades actuales en la computación de alto rendimiento a través de la definición de un estándar de paso de mensajes universal.

William D. Gropp et al.

Principales pilares de MPI

Portabilidad:

- Definido independiente de plataforma paralela.
- Útil en arquitecturas paralelas heterogéneas.

Eficiencia:

- Definido para aplicaciones multihilo (multithread)
- Sobre una comunicación fiable y eficiente.
- Busca el máximo de cada plataforma.

Funcionalidad:

 Fácil de usar por cualquier programador que ya haya usado cualquier biblioteca de paso de mensajes.

Implementaciones de MPI

Open MPI 3.1.2 (24/08/2018)

- http://www.open-mpi.org/
- FT-MPI + LA-MPI + LAM/MPI + PACX-MPI

MPICH2

MPICH 3.2.1 (11/11/2017)

- http://www.mpich.org/
- Argonne National Laboratory & University of Chicago

Cómo es MPI

```
#include <stdio.h>
#include "mpi.h"
main(int argc, char **argv)
    int node, size;
    int tam = 255;
    char name[255];
    MPI_Init(&argc,&argv);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    MPI_Comm_rank(MPI_COMM_WORLD, &node);
    MPI_Get_processor_name(name, &tam);
    printf("Hola Mundo2 del proceso %d de %d procesos (%s)\n",node,size,name);
    MPI_Finalize();
}
```

Cómo es MPI: uso interactivo

bsc41729@login2:~/tmp> mpicc -g -o hello hello.c

bsc41729@login2:~/tmp> cat > machines

login1

login2

login3

login4

bsc41729@login2:~/tmp> mpirun -np 4 -machinefile machines hello

Hola Mundo2 del proceso 2 de 4 procesos (s41c3b03-gigabit1)

Hola Mundo2 del proceso 1 de 4 procesos (s41c3b02-gigabit1)

Hola Mundo2 del proceso 3 de 4 procesos (s41c3b04-gigabit1)

Hola Mundo2 del proceso 0 de 4 procesos (s41c3b01-gigabit1)

Cómo es MPI: uso de PBS (1)

```
bsc41729@login2:~/tmp> cat hello.cmd
#!/bin/bash
#@job type = parallel
# @ class = q10
# @ group = bsc41
# @ initialdir = /home/bsc41/bsc41729/tmp/
# @ output = hello.out
#@error = hello.err
# @ restart = no
# @ blocking = unlimited
# @ total tasks = 2
#@queue
# Program Execution.
mpirun -np 2 \
      -machinefile $LL_MACHINE_LIST /home/bsc41/bsc41729/tmp/hello
```

Cómo es MPI: uso de PBS (2)

bsc41729@login2:~/tmp> llsubmit hello.cmd

Ilsubmit: Processed command file through Submit Filter: "/etc/perf/loadl/scripts/llsubmit".

Ilsubmit: The job "s42-gigabit1.mn.406842" has been submitted.

bsc41729@login2:~/tmp> llq

Id	Owner	Submitted	ST PRI Class	Runnin	g On
s42-gigabit1	L.404704.0	bsc41729	11/27 12:19 R	50 q09	s06c4b11-gigabit1
s42-gigabit1	L.404731.0	bsc41729	11/27 12:32 R	50 q09	s07c1b10-gigabit1
s42-gigabit1	L.404732.0	bsc41729	11/27 12:32 R	50 q09	s06c4b03-gigabit1
s42-gigabit1	L.404736.0	bsc41729	11/27 12:34 5	0 q09	
s42-gigabit1	L.406842.0	bsc41729	11/27 17:18 5	0 q10	

4 job step(s) in query, 1 waiting, 0 pending, 3 running, 0 held, 0 preempted

Cómo es MPI: uso de PBS (3)

bsc41729@login2:~/tmp> cat hello.out

Program binary is: /home/bsc41/bsc41729/tmp/hello

Machines file is /gpfs/projects/bsc99/perf/restricted/spool/049/mlist/s42-gigabit1.mn.406849.0.machine_list

Shared memory for intra-nodes coms is enabled.

GM receive mode used: polling.

2 processes will be spawned:

Process 0 (/home/bsc41/bsc41729/tmp/hello) on s06c1b03-gigabit1.mn

Process 1 (/home/bsc41/bsc41729/tmp/hello) on s06c1b03-gigabit1.mn

Open a socket on s06c1b03...

Got a first socket opened on port 33735.

Shared memory file: /tmp/gmpi shmem-811134:[0-9]*.tmp

Hola Mundo2 del proceso 1 de 2 procesos (s06c1b03-gigabit1)

Hola Mundo2 del proceso 0 de 2 procesos (s06c1b03-gigabit1)

MPI Id 1 is using GM port 2, board 0 (MAC 0060dd4846f0).

MPI Id 0 is using GM port 4, board 0 (MAC 0060dd4846f0).

Received data from all 2 MPI processes.

Sending mapping to MPI Id 0.

Sending mapping to MPI Id 1.

Data sent to all processes.

Reap remote processes:

All remote MPI processes have exited.

Cómo es MPI: uso de PBS (4)

bsc41729@login2:~/tmp> llclass -limits

class	group	job	job	max	max	max	wall clock
name	name	nodes	tasks	jobs	idle	tasks	time
debug	bsc41	32	64	80	8	256	00:10:00
interactive	bsc41	1	1	14	8	14	02:00:00
papi	bsc41	320	512	80	8	640	12:00:00
q09	bsc41	256	512	80	8	640	48:00:00
q10	bsc41	256	512	80	8	640	48:00:00

MPI 2.2 - 3.1

(http://mpi-forum.org/docs/)

- Estructuras de datos
 - Tipos de datos (básicos, vectores, compuestos, ...)
 - Grupo de procesos (grupos, comunicadores, ...)
- Paso de mensajes
 - Llamadas punto a punto (bloqueantes, ...)
 - Llamadas colectivas (bcast, scatter, gather, ...)
- Entrada y salida
 - Gestión de ficheros (apertura, cierre, ...)
 - Gestión de contenidos (vistas, punteros, ...)
- Procesos
 - Gestión de procesos (creación, ...)
 - Profiling

Plataforma hardware y software

Código C/C++, Fortran Código C, C++, Fortran MPICH2/OpenMPI Compiladores de GNU, Intel, PGI BLAS, LAPACK, ACML, etc. PBS/Torque (batch) + MAUI (planificador) SSH, C3Tools, IPMI, SNMP, Ganglia, Nagios, etc. Linux (NTP, DNS, DHCP, TFTP, LDAP/NIS, etc.) Gigabit, NFS, LUSTRE, Nativo, Infiniband, GPFS, GFS, SAN virtualizado **Myrinet**

HW

SW

Supercomputador

Plataforma hardware y software

Aplicaciones paralelas
Entorno paralelo MPI/PVM

Software de desarrollo
(compiladores y bibliotecas)

Software de gestión de recursos

Software de gestión de sistema
(instalación, administración, monitorización)

S.O. + servicios

Proceso
(cpu,gpu,...)

Red
(ultrarápida)

(S.F. paralelo y compartido)

HW

SW

Supercomputador

Diseño de Sistemas Distribuido Alejandro Calderón Mateos

Top 500 Junio 2017

(http://www.top500.org)

Rank	Site	System	Cores	R _{max} (TFLOP/s)	R _{peak} (TFLOP/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 Cray Inc.	361,760	19,590.0	25,326.3	2,272
4	DOE/SC/Oak Ridge National Laboratory United States	<u>Titan</u> - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
5	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
6	DOE/SC/LBNL/NERSC United States	<u>Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect</u> Cray Inc.	622,336	14,014.7	27,880.7	3,939
7	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path Fujitsu	556,104	13,554.6	24,913.5	2,719
8	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
9	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
10	DOE/NNSA/LANL/SNL United States	<u>Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect</u> Cray Inc.	301,056	8,100.9	11,078.9	4,233

Top 500

(country=es)

Junio 2014

Rank	Site	System	Cores	(TFlop/s)	(TFlop/s)	Power (kW)
41	Barcelona Supercomputing Center Spain	MareNostrum - iDataPlex DX360M4, Xeon E5-2670 8C 2.600GHz, Infiniband FDR, IBM	48,896	925.1	1,017.0	1,015.6
168	Instituto Tecnológico y de Energías Renovables S.A. Spain	TEIDE-HPC - Fujitsu PRIMERGY CX250 S1, Xeon E5-2670 8C 2.600GHz, Infiniband QDR, Fujitsu	16,384	274.0	340.8	312

• Junio 2015

77	Barcelona Supercomputing Center Spain	MareNostrum - iDataPlex DX360M4, Xeon E5-2670 8C 2.600GHz, Infiniband FDR, IBM	48,896	925.1	1,017.0	1,015.6
259	Instituto Tecnológico y de Energías Renovables S.A. Spain	TEIDE-HPC - Fujitsu PRIMERGY CX250 S1, Xeon E5-2670 8C 2.600GHz, Infiniband QDR, Fujitsu	16,384	274.0	340.8	312

• Junio 2016

106	Barcelona Supercomputing Center Spain	MareNostrum - iDataPlex DX360M4, Xeon E5- 2670 8C 2.600GHz, Infiniband FDR IBM	48,896	925.1	1,017.0	1,015.6	
-----	---------------------------------------	--	--------	-------	---------	---------	--

• Junio 2017

13	Barcelona Supercomputing Center Spain	MareNostrum - Lenovo SD530, Xeon Platinum 8160 24C 2.1GHz, Intel Omni-Path , Lenovo	148,176	6,227.2	9,957.4	1,380
----	--	--	---------	---------	---------	-------

Top 500 Junio 2017

(http://top500.org/statistics/perfdevel/)

Performance Development

Top 500 Junio 2017

(http://top500.org/statistics/perfdevel/)

Performance Development

Lists

tps://www.xataka.com/basics/que-son-los-teraflops-y-que-miden-exactamente

Nvidia Tegra X1

(http://www.dailytech.com/NVIDIAs+64Bit+ARM+Tegra+X1+SoC+Doubles+the+Power +of+K1+Guns+for+Qualcomm/article37049.htm)

INTRODUCING NVIDIA DRIVE™ PX

AUTO-PILOT CAR COMPUTER

Dual Tegra X1 • 12 camera inputs • 1.3 GPix/sec

- 2.3 Teraflops mobile supercomputer
- CUDA programmability
- Deep Neural Network Computer Vision
- Surround Vision

Nvidia Tegra X1

(http://www.dailytech.com/NVIDIAs+64Bit+ARM+Tegra+X1+SoC+Doubles+the+Power +of+K1+Guns+for+Qualcomm/article37049.htm)

Agenda

Introducción a la computación de altas prestaciones

- Qué, dónde y cómo
- Hardware y software

Evolución de la computación de altas prestaciones

- Plataforma
- Tendencias

- Problemas con gran cantidad de cómputo
- Más usado en ciencia y ejército
- Uso de paralelismo masivo

Supercomputadoras (SMP, MPP, Sistólico, Array, ...)

-1950-1990

- Problemas con gran cantidad de datos tratados
- Más usado en administración
- Uso de paralelismo y alta frecuencia

Supercomputadoras & Mainframes (SMP, MPP, Sistólico, Array, ...)

- Construido por Donald Becker y Thomas Sterling en 1994 (NASA)
- Formado por 16 computadores personales con procesador intel DX4 a 200 MHz interconectados por un switch Ethernet.
- Rendimiento teórico era de 3,2 Gflops
- Posibilidad de supercomputadoras "baratas"

- Construido por Donald Becker y Thomas Sterling en 1994 (NASA)
- Formado por 16 computadores personales con procesador intel DX4 a 200 MHz interconectados por un switch Ethernet.
- Rendimiento teórico era de 3,2 Gflops
- Posibilidad de supercomputadoras "baratas"

Architecture - Systems Share

http://es.wikipedia.org/wiki/Intel MIC

- Antecesor: metacomputing por Larry Smarr (NCSA) al inicio de los 80
 - Centros de supercomputación interconectados: más recursos disponibles
 - I-WAY demostrado en 1995
- Grid aparece en un seminario dado en 1997 en ANL por lan Foster y Carl Kesselman

- Término acuñado por Luis F. G. Sarmenta (Bayanihan)
- En 1999 se lanza los proyectos SETI@home y Folding@home
- A día 6/11/2016 todos los proyectos BOINC suponen ~170,4 TeraFLOPS

Google presenta:

- MapReduce como framework para trabajar con grandes conjuntos de datos: la misma función se aplica a diferentes particiones de datos (map) y después estos resultados se combinan (reduce)
- GFS como forma de almacenar petabytes de datos (ordenadores normales, distribución escalable y tolerancia a fallos)
- GFS+MR permite a los usuarios construir mainframes baratos (GFS+MR vs mainframe similar a cluster vs supercomputador)

Doug Cutting y Hadoop

- Amazon inspira el Cloud computing actual:
 - data centers pensando en las compras de Navidad, el resto del tiempo se usaban ~10%
 - Dos pilares fundamentales:
 utility computing y virtualización
- Principales mejoras: agilidad, coste, escalabilidad, mantenimiento, ...
- Openstack: construir un cloud con un cluster

Amazon Cluster Compute Instance

Tightly coupled

Amazon Elastic MapReduce

Agenda

Introducción a la computación de altas prestaciones

- Qué, dónde y cómo
- Hardware y software

Evolución de la computación de altas prestaciones

- Plataformas
- Tendencias

Principales tendencias

Computador de altas prestaciones

Principales tendencias

Aplicaciones paralelas

Aplicaciones secuenciales

Entorno paralelo

Middleware (Single System Image)

S.O. + servicios

Software

Computador de altas prestaciones

Plataforma:

uso de recursos distribuidos

 Clouds: empleo de recursos distribuidos alquilados bajo demanda

Fog/Edge: acercar el cloud a los dispositivos que lo usan

https://iot.do/ngd-openfog-fog-computing-2016-10

Plataforma:

uso eficiente de recursos

 Clouds privados y públicos: ajuste de infraestructura para minimizar gasto

 Green computing: uso de recursos distribuidos de distintas organizaciones

 Internet computing: uso de ordenadores personales a escala global (SETI@home)

Principales tendencias

Computador de altas prestaciones

más procesadores y cores heterogéneos

más procesadores y cores heterogéneos

Tarjetas gráficas: uso de la capacidad de procesamiento de las potentes tarjetas gráficas actuales

más procesadores y cores heterogéneos

Tarjetas gráficas: uso de la capacidad de procesamiento de las potentes tarjetas gráficas actuales

más procesadores y cores heterogéneos

http://www.many-core.group.cam.ac.uk/platforms/gpu.shtml

más procesadores y cores heterogéneos

 Tarjetas gráficas: uso de la capacidad de procesamiento de las potentes tarjetas gráficas actuales

– CUDA:

Entorno de programación para poder usar la potencia de las tarjetas gráficas de NVidia

– OpenCL:

lenguaje basado en C99 extendido para operaciones vectoriales y eliminando ciertas funcionalidades

más procesadores y cores heterogéneos

Procesadores many-core: gran cantidad de procesadores en un mismo chip

- http://gizmodo.com/5846060/this-crazy-64+core-processor-wants-to-be-in-your-smartphone
- http://www.tgdaily.com/hardware-features/33451-tilera-announces-64-core-processor

más procesadores y cores heterogéneos

 Procesadores many-core: gran cantidad de procesadores en un mismo chip

http://www.electroiq.com/articles/sst/2012/01/40nm-manycore-processors-roll-out-at-tilera.html

más procesadores y cores heterogéneos

- **Procesadores many-core**: gran cantidad de procesadores en un mismo chip
 - <memoria compartida>: SMP Linux 2.6
 - <paso de mensaje>:
 Hypervisor (VMs)

más procesadores y cores heterogéneos

Procesadores heterogéneos: gran cantidad de procesadores con coprocesadores especializados (many integrated cores)

- http://es.wikipedia.org/wiki/Intel_MIC
- http://hothardware.com/News/Intel-Demos-Knights-Ferry-Development-Platform-Tesla-Scores-With-Amazon/

más procesadores y cores heterogéneos

 Procesadores heterogéneos: gran cantidad de procesadores con coprocesadores especializados

- http://es.wikipedia.org/wiki/Intel_MIC
- http://hothardware.com/News/Intel-Demos-Knights-Ferry-Development-Platform-Tesla-Scores-With-Amazon/

más procesadores y cores heterogéneos

- Procesadores heterogéneos: gran cantidad de procesadores con coprocesadores especializados
 - <memoria compartida>: Intel Cilk (plus), Intel Threading Building Blocks, OpenMP, ¿OpenACC?, OpenCL
 - <paso de mensaje>:

- http://goparallel.sourceforge.net/parallel-programming-intel-mic-early-experiences-tacc/
- http://www.drdobbs.com/parallel/intels-50-core-mic-architecture-hpc-on-a/232800139

más procesadores y cores heterogéneos

memoria persistente, de gran capacidad y baja latencia

Memoria 3D-XPoint:

"memoria" con capacidad de cómputo

Memoria "activa": computo simple en la propia memoria

Planted Motif Search Problem	Automata Processor	UCONN - BECAT Hornet Cluster
Processors	48 (PCIe Board)+CPU	48 CPU (Cluster/OpenMPI)
Power	245W-315W1	>2,000W1
Cost	TBD	~\$20,000¹
Performance (25,10)	12.26 minutes ²	20.5 minutes
Performance (26,11)	13.96 minutes ²	46.9 hours
Performance (36,16)	36.22 minutes ²	Unsolved

- Planted Motif Search problem is a leading problem in bioinformatics and is NP Hard. Attempts to find common genomic sequences in noisy data.
- Solutions involving high match lengths and substitution counts are often presented to HPC clusters for processing.
- Independent research predicts the Micron Automata Processor significantly outperforms a multi-core HPC cluster in speed, power and estimated cost.

Micron Technology Estimates, Not including Memory of 4GB DRAM /Core

² Research conducted by Georgia Tech (Roy/Aluru)

aceleradores específicos por USB

- Conector USB Type A.
- VPU (Vision Processing Unit)
 Myriad 2.
- 4 GB de memoria LPDDR3.
- Soporte del framework "Caffe".
- Compatible con FP16 (precisión media).
- Consumo de 1 vatio.
- Precio: 79 dólares (2017)
- https://www.muycomputer.com/2017/07/20/movidius-neural-compute-stick/
- https://www.movidius.com/MyriadX

qubit-chip

 "...While quantum computers promise greater efficiency and performance to handle certain problems, they won't replace the need for conventional computing or other emerging technologies like neuromorphic computing. We'll need the technical advances that Moore's law delivers in order to invent and scale these emerging technologies..."

Principales tendencias

Computador de altas prestaciones

Software

Vectoriales SSE, AVX, AVX2, ...

Multiprocesador UMA, NUMA OpenMP, iTBB, ...

> M. Distribuida MPI,... Map-reduce

 Integrar soluciones vectoriales y multiprocesador (dentro de las herramientas de desarrollo)

Ejemplo:

CUDA/LLVM adaptado a nuevos entornos

- CUDA Compiler SDK
- Versión de Clang/LLVM con:
 - Generación de código para GPU
 - Compilación con CUDA
- Soporte para:
 - MacOS
 - Windows
 - Linux (algunos)

Software

Vectoriales SSE, AVX, AVX2, ...

Multiprocesador UMA, NUMA OpenMP, iTBB, ...

M. Distribuida MPI,...

Map-reduce

- Integrar soluciones vectoriales y multiprocesador (dentro de las herramientas de desarrollo)
- Integrar soluciones de memoria compartida y paso de mensaje con ayuda del sistema operativo.

Ejemplo:

MPI 3.x: adaptación a requisitos actuales

- Programación híbrida
- Tolerancia a fallos
- Acceso remoto a memoria
- Comunicación colectiva y topología
- Soporte de herramientas
- Persistencia
- Compatibilidad hacia atrás

Software

Vectoriales SSE, AVX, AVX2, ...

Multiprocesador UMA, NUMA OpenMP, iTBB, ...

> M. Distribuida MPI,... Map-reduce

- Integrar soluciones vectoriales y multiprocesador (dentro de las herramientas de desarrollo)
- Integrar soluciones de memoria compartida y paso de mensaje con ayuda del sistema operativo.
- Buscar perfiles simplificados que permitan la mayor escalabilidad posible.

Sistemas distribuidos:

Computación de altas prestaciones

- Google:
 - Modelo MapReduce

- Sistemas de ficheros de Google
- Algoritmos de clasificación (K-Means + Canopy)

- http://code.google.com/edu/parallel/mapreduce-tutorial.html
- http://code.google.com/edu/submissions/mapreduce-minilecture/listing.html
- http://en.wikipedia.org/wiki/MapReduce

Aplicaciones:

Adaptación a computación de altas prestaciones

Ejemplos:

- Primal and dual-based algorithms for sensing range adjustment in WSNs
- The unified accelerator architecture for RNA secondary structure prediction on FPGA
- Protein simulation data in the relational model
- Dynamic learning model update of hybrid-classifiers for intrusion detection

Agenda

Introducción a la computación de altas prestaciones

- Qué, dónde y cómo
- Hardware y software

Evolución de la computación de altas prestaciones

- Plataformas
- Tendencias

Bibliografía

- Parallel Computer Architectures: a Hardware/Software Approach. D.E. Culler, J.P. Singh, with A. Gupta
 - Capítulo 1
- Organización y Arquitectura de Computadores (5ta. ed.) William Stallings
 - Capítulo 16: Procesamiento Paralelo.
- Organización de Computadoras (4ta. ed.)
 - Andrew S. Tanenbaum
 - Capítulo 8: Arquitecturas de computadoras paralelas.

Bibliografía

- GPU + CPU
 - http://www.hardwarezone.com.ph/articles/view.php?cid=3&id=2786
- Cluster
 - http://www.democritos.it/~baro/slides/LAT-HPC-GRID-2009/Part1.pdf
- TOP500 Supercomputer Sites
 - http://www.top500.org/
- Beowulf
 - http://www.beowulf.org/overview/index.html

Diseño de Sistemas Distribuidos

Máster en Ciencia y Tecnología Informática Curso 2018-2019

Sistemas de altas prestaciones en entornos distribuidos

Alejandro Calderón Mateos y Félix García Carballeira Grupo de Arquitectura de Computadores alejandro.calderon@uc3m.es