A finite element toolbox for the Bogoliubov-de Gennes stability analysis of Bose-Einstein condensates

Georges Sadaka¹, Ionut Danaila¹, <u>Victor Kalt</u>¹, Fredéric Hecht²

¹Laboratoire de Mathématiques Raphaël Salem Université de Rouen Normandie

> ²Laboratoire Jacques-Louis Lions Sorbonne Université

> > 09/12/2022

Introduction

Bose-Einstein Condensates (BECs)

A state of matter obtained from a dilute gas of bosons cooled to temperatures near 0 K. All particles are in the same (lowest energy) state. They are described in the Gross-Pitaevskii model by a complex wavefunction $\psi = \sqrt{\rho} e^{iS}$.

- \bullet $\rho = |\psi|^2$ corresponds to the atomic density
- $\mathbf{v} = \nabla S$ is the fluid velocity.

Introduction

Bogoliubov-de Gennes problem

An eigenvalue problem describing the linear stability of stationary states of Bose-Einstein condensates in the Gross-Pitaevskii framework.

Outline:

- The Gross-Pitaevskii model
- The Bogoliubov-de Gennes system
- Numerical tools
- Results

The Gross-Pitaevskii equation (GPE)

• The Gross-Pitaevskii equation (GPE), in dimensionless form:

$$i\partial_t \psi = -\frac{1}{2} \nabla^2 \psi + V_{\text{trap}} \psi + \beta |\psi|^2 \psi \tag{1}$$

- $V_{\rm trap} = \omega_{\perp}(x^2 + y^2 + z^2)$: trapping potential
- β : interaction between atoms
- The GPE derives from the GP energy:

$$\mathcal{E}(\psi) = \int \left(\frac{1}{2}|\nabla \psi(\mathbf{x},t)|^2 + V_{\text{trap}}(\mathbf{x})|\psi(\mathbf{x},t)|^2 + \frac{\beta}{2}|\psi(\mathbf{x},t)|^4\right) d\mathbf{x}.$$
(2)

FreeFem - BdG

Stationary states of the GPE

• Using the ansatz:

$$\psi(\mathbf{x},t) = \phi(\mathbf{x})e^{-i\mu t} \tag{3}$$

• We get the stationary GPE:

$$\mu\phi = -\frac{1}{2}\nabla^2\phi + V_{\text{trap}}\phi + \beta|\phi|^2\phi,\tag{4}$$

- ϕ : the stationary wavefunction
- μ : the chemical potential, related to the energy by:

$$\mu = \mathcal{E}(\psi) + \frac{\beta}{2} \int |\psi|^4 d\mathbf{x}$$
 (5)

FreeFem - BdG

Linearization

- We linearize the GPE around the state $(\phi(\mathbf{x}) + \delta\phi(\mathbf{x},t))e^{-i\mu t}$
- Replacing in the GPE and neglecting high order terms gives:

$$i\frac{\partial \delta \phi}{\partial t} = -\frac{1}{2}\nabla^2 \delta \phi + V_{trap}\delta \phi + \beta \phi^2 \overline{\delta \phi} + 2\beta |\phi|^2 \delta \phi - \mu \delta \phi.$$
 (6)

• Considering perturbations of the form $\delta\phi(\mathbf{x},t)=A(\mathbf{x})e^{-i\omega t}+\overline{B}(\mathbf{x})e^{i\overline{\omega} t}$ leads yields the Bogoliubov-de Gennes eigenvalue problem:

$$\begin{pmatrix} \mathcal{H} - \mu + 2\beta |\phi|^2 & \beta \phi^2 \\ -\beta \bar{\phi}^2 & -(\mathcal{H} - \mu + 2\beta |\phi|^2) \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \omega \begin{pmatrix} A \\ B \end{pmatrix}, \quad (7)$$

where
$$\mathcal{H} = -rac{1}{2}
abla^2 + V_{\textit{trap}}$$

Properties of the BdG system

- If ω is an eigenvalue, then $-\overline{\omega}$ is too.
- The first eigenvalue is 0
- ullet A non-zero imaginary part of ω indicates a dynamic instability.
- ullet The energy difference between states ϕ and $\phi+\delta\phi$ is

$$\delta \mathcal{E} = \omega \int |A|^2 - |B|^2 d\mathbf{x}. \tag{8}$$

• The Krein signature $K = sign(\delta \mathcal{E})$ is linked to the energetic stability of the state

Computing the stationary state

• Use of Newton's method after separating real and imaginary parts of $\phi = \phi_r + i\phi_i$:

$$\begin{cases}
\mathcal{F}_{r} = -\mu\phi_{r} - \frac{1}{2}\nabla^{2}\phi_{r} + V_{trap}\phi_{r} + \beta f(\phi_{r}, \phi_{i})\phi_{r} = 0, \\
\mathcal{F}_{i} = -\mu\phi_{i} - \frac{1}{2}\nabla^{2}\phi_{i} + V_{trap}\phi_{i} + \beta f(\phi_{r}, \phi_{i})\phi_{i} = 0,
\end{cases} (9)$$

with
$$f(\phi_r, \phi_i) = \phi_r^2 + \phi_i^2$$
.

Dirichlet boundary conditions

Computing the stationary state

• The Newton system at iteration *k* reads:

$$\begin{pmatrix}
\left[\frac{\partial \mathcal{F}_r}{\partial \phi_r}\right]_{\phi_r = \phi_r^k, \phi_i = \phi_i^k} & \left[\frac{\partial \mathcal{F}_r}{\partial \phi_i}\right]_{\phi_r = \phi_r^k, \phi_i = \phi_i^k} \\
\left[\frac{\partial \mathcal{F}_i}{\partial \phi_r}\right]_{\phi_r = \phi_r^k, \phi_i = \phi_i^k} & \left[\frac{\partial \mathcal{F}_i}{\partial \phi_i}\right]_{\phi_r = \phi_r^k, \phi_i = \phi_i^k} \\
\phi_r = \phi_r^k, \phi_i = \phi_r^k, \phi_i = \phi_i^k
\end{pmatrix} \begin{pmatrix} q \\ s \end{pmatrix} = \begin{pmatrix} \mathcal{F}_r(\phi_r^k, \phi_i^k) \\ \mathcal{F}_i(\phi_r^k, \phi_i^k) \end{pmatrix}, (10)$$

where the increments are:

$$q = \phi_r^k - \phi_r^{k+1}, \quad s = \phi_i^k - \phi_i^{k+1}.$$
 (11)

Computing the stationary state

• We solve:

$$\begin{cases}
\int_{\mathcal{D}} (C_{trap} - \mu) q v_{r} + \int_{\mathcal{D}} \frac{1}{2} \nabla q \cdot \nabla v_{r} \\
+ \int_{\mathcal{D}} \beta \left(\frac{\partial f}{\partial \phi_{r}} (\phi_{r}^{k}, \phi_{i}^{k}) \phi_{r}^{k} q + \frac{\partial f}{\partial \phi_{i}} (\phi_{r}^{k}, \phi_{i}^{k}) \phi_{r}^{k} s + f(\phi_{r}^{k}, \phi_{i}^{k}) q \right) v_{r} \\
= \int_{\mathcal{D}} (C_{trap} - \mu) \phi_{r}^{k} v_{r} + \int_{\mathcal{D}} \frac{1}{2} \nabla \phi_{r}^{k} \cdot \nabla v_{r} + \int_{\mathcal{D}} \beta f(\phi_{r}^{k}, \phi_{i}^{k}) \phi_{r}^{k} v_{r}, \\
\int_{\mathcal{D}} (C_{trap} - \mu) s v_{i} + \int_{\mathcal{D}} \frac{1}{2} \nabla s \cdot \nabla v_{i} \\
+ \int_{\mathcal{D}} \beta \left(\frac{\partial f}{\partial \phi_{r}} (\phi_{r}^{k}, \phi_{i}^{k}) \phi_{i}^{k} q + \frac{\partial f}{\partial \phi_{i}} (\phi_{r}^{k}, \phi_{i}^{k}) \phi_{i}^{k} s + f(\phi_{r}^{k}, \phi_{i}^{k}) s \right) v_{i} \\
= \int_{\mathcal{D}} (C_{trap} - \mu) \phi_{i}^{k} v_{i} + \int_{\mathcal{D}} \frac{1}{2} \nabla \phi_{i}^{k} \cdot \nabla v_{i} + \int_{\mathcal{D}} \beta f(\phi_{r}^{k}, \phi_{i}^{k}) \phi_{i}^{k} v_{i}. \end{cases} \tag{12}$$

where v_r, v_i are the test functions.

FreeFem - BdG 09/12/2022

Computing the BdG eigenvalues

• The BdG system is:

$$\begin{cases}
\int_{\mathcal{D}} \frac{1}{2} \nabla A \cdot \nabla v_{1} + \int_{\mathcal{D}} (C_{trap} - \mu) A v_{1} + \int_{\mathcal{D}} 2\beta |\phi|^{2} A v_{1} \\
+ \int_{\mathcal{D}} \beta \phi^{2} B v_{1} = \omega \int_{\mathcal{D}} A v_{1}, \\
- \int_{\mathcal{D}} \frac{1}{2} \nabla B \cdot \nabla v_{2} - \int_{\mathcal{D}} (C_{trap} + \mu) B v_{2} - \int_{\mathcal{D}} 2\beta |\phi|^{2} B v_{2} \\
- \int_{\mathcal{D}} \beta \overline{\phi}^{2} A v_{2} = \omega \int_{\mathcal{D}} B v_{2}.
\end{cases} (13)$$

Numerical tools

- The Newton system is solved using MUMPS, GMRES and an ILU preconditioner
- Iterations are stopped by monitoring the value of the residual and the GP functional
- Mesh adaptation decreases mesh size and computation time
- ARPACK is used to compute eigenvalues and eigenvectors
- A shift $\sigma = 1e 4$ is used when computing the eigenvalues
- The linear limit is given by:

$$\mu\phi = -\frac{1}{2}\nabla^2\phi + V_{\rm trap}\phi,\tag{14}$$

ullet A continuation on μ is used to follow states starting from the linear limit

Test cases

	Wi	thout adaptation		With adaptation			
	CPU time GP	PU time GP CPU time BdG		CPU time GP	CPU time BdG	mesh size	
1D ground state	2	13	3602				
1D dark soliton	1	4	1356				
2D ground state	6	58	10952	12	55	10615	
2D dark soliton	4801	31825	42632	2406	6014	9054	
2D central vortex	838	6054	14200	596	4303	11631	
3D ground state	542	4667	24576	457	3443	17831	
1D dark-antidark state	1252	898	2714				
2D vortex-antidark state	1032	6498	10469	1098	5337	7874	
2D ring-antidark state	2283	10353	10469	2762	10544	9533	

Table: Computational time and mesh size for the different test cases. When the continuation is used, the mesh size corresponds to the last iteration.

1D ground state

 Kevrekidis and Pelinovski (2009): eigenvalues are given in the Thomas-Fermi limit by:

$$\omega_n^{\mathsf{TF}} = \omega_z \sqrt{\frac{n(n+1)}{2}}, \quad n \in \mathbb{N}.$$
 (15)

	$Re(\omega)$	$\mathit{Im}(\omega)$	K	ω_n^{TF}
ω_1	-2.89857e-15	2.16087e-07	1	$\omega_0^{TF} = 0$
ω_2	6.18933e-15	-2.16087e-07	1	$\omega_0 = 0$
ω_3	-0.025	-8.80682e-11	1	$\omega_1^{TF} = \omega_z = 0.025$
ω_4	0.025	2.76512e-11	1	$\omega_1 - \omega_z = 0.025$
ω_5	-0.0433018	-4.41549e-11	1	$\omega_2^{TF} pprox 0.043301270$
ω_6	0.0433018	-1.21387e-11	1	$\omega_2 \approx 0.043301270$
ω_7	-0.0612394	-2.87955e-10	1	$\omega_3^{\sf TF} \approx 0.061237243$
ω_8	0.0612394	1.64467e-10	1	$\omega_3 \approx 0.001237243$
ω_9	-0.0790624	-1.09235e-10	1	$\omega_{4}^{TF} pprox 0.07905694$
ω_{10}	0.0790624	8.67993e-11	1	$\omega_4 \sim 0.07903094$

Table: Eigenvalues and Krein signatures for the ground state in 1D

FreeFem - BdG 09/12/2022

2D ground state

 Kevrekidis and Pelinovski (2009): eigenvalues are given in the Thomas-Fermi limit by:

$$\omega_{m,k}^{\mathsf{TF}} = \omega_z \sqrt{m + k^2 + 2k(1+m)}, \quad m, k \in \mathbb{N}.$$
 (16)

	No a	daptation		With adaptation			
	$Re(\omega)$	$Im(\omega)$	K	$Re(\omega)$	$Im(\omega)$	K	$\omega_{m,k}^{TF}$
ω_1	-2.07687e-06	5.60174e-16	1	-6.24135e-15	1.37474e-07	1	$\omega_{0,0}^{TF} = 0$
ω_2	2.07687e-06	-5.08061e-16	1	6.23144e-15	-1.37474e-07	1	$\omega_{0,0} = 0$
ω_3	-0.2	-4.04752e-11	1	-0.2	1.16809e-11	1	
ω_4	0.2	1.28499e-11	1	0.2	-2.51572e-11	1	$\omega_{1.0}^{\text{TF}} = 0.2$
ω_5	-0.2	-9.72650e-12	1	-0.2	-5.27780e-12	1	$\omega_{1,0} = 0.2$
ω_6	0.2	-1.80613e-11	1	0.2	4.37562e-11	1	
ω_7	-0.283446	5.84768e-11	1	-0.283447	4.45534e-12	1	
ω_8	0.283446	6.54561e-11	1	0.283447	3.70927e-12	1	$\omega_{2.0}^{TF} = 0.28284271$
ω_9	-0.283447	2.32827e-11	1	-0.283447	1.65992e-12	1	$\omega_{2,0} = 0.20204271$
ω_{10}	0.283447	2.88143e-11	1	0.283447	6.51049e-12	1	
ω_{11}	-0.348749	-3.21680e-12	1	-0.348750	1.02905e-11	1	
ω_{12}	0.348749	2.38853e-11	1	0.348750	1.33981e-11	1	$\omega_{3.0}^{\text{TF}} = 0.34641016$
ω_{13}	-0.348749	-4.01642e-11	1	-0.348751	-5.37018e-12	1	$\omega_{3,0} = 0.34041010$
ω_{14}	0.348749	-9.62656e-12	1	0.348751	6.96459e-11	1	

Table: Eigenvalues and Krein signatures for the 2D ground state with and without mesh adaptation

FreeFem - BdG 09/12/2022

2D vortex

	No a	daptation	With adaptation			
	$Re(\omega)$	$\mathit{Im}(\omega)$	K	$Re(\omega)$	$\mathit{Im}(\omega)$	K
ω_1	-4.30674e-07	1.19430e-11	1	-3.57935e-07	-1.10255e-11	1
ω_2	4.30674e-07	-1.19430e-11	1	3.57935e-07	1.10255e-11	1
ω_3	-0.03276	4.34475e-11	-1	-0.03277	3.17533e-11	-1
ω_{4}	0.03276	-2.37988e-11	-1	0.03277	-4.42317e-12	-1
ω_5	-0.19999	3.61301e-10	1	-0.19999	-2.08322e-10	1
ω_6	0.19999	6.48508e-10	1	0.19999	-1.12710e-10	1
ω_7	-0.2	-5.65815e-11	1	-0.2	-3.17103e-10	1
ω_8	0.2	2.63500e-11	1	0.2	-2.64453e-10	1
ω_9	-0.26368	4.37599e-11	1	-0.26368	-1.31734e-10	1
ω_{10}	0.26368	-1.01262e-10	1	0.26368	-4.36461e-11	1
ω_{11}	-0.30413	7.03287e-11	1	-0.30413	-4.64402e-11	1
ω_{12}	0.30413	6.98365e-11	1	0.30413	-9.74015e-11	1
ω_{13}	-0.32627	1.20460e-10	1	-0.32628	-8.22790e-12	1
ω_{14}	0.32627	-6.03038e-11	1	0.32628	1.63267e-12	1
ω_{15}	-0.37997	-7.69693e-11	1	-0.37998	5.84810e-11	1
ω_{16}	0.37997	2.18463e-10	1	0.37998	-5.82940e-11	1

Table: Valeurs propres et signatures de Krein pour le vortex central en 2D, calculées avec le code séquentiel, avec et sans adaptation de maillage.

2D dark soliton

- State studied by Middelkamp et al. (2010)
- $|1,0\rangle$ eigenstate in the linear limit
- Mesh adaptation every 5 iterations to limit rotation
- The anomalous mode is detected
- Dynamic instabilities correspond to collisions and bifurcations

2D vortex

• State studied by Middelkamp et al. (2010)

$$\phi_{VS} \propto r L_0^1(\omega_{\perp} r^2) e^{i\theta} e^{-\frac{1}{2}\omega_{\perp} r^2}.e$$
 (17)

Figure: Central vortex in a 2D BEC: real part ω_r of the eigenvalues as a function of μ computed a) without and b) with mesh adaptation.

FreeFem - BdG 09/12/2022

2D vortex

Figure: First four modes for the central vortex in a 2D BEC.

FreeFem - BdG 09/12/2022

2 component BECs

Two coupled GP equations

$$\begin{cases}
\mu_{1}\phi_{1} = -\frac{1}{2}\nabla^{2}\phi_{1} + C_{\text{trap}}\phi_{1} + \beta_{11}|\phi_{1}|^{2}\phi_{1} + \beta_{12}|\phi_{2}|^{2}\phi_{1}, \\
\mu_{2}\phi_{2} = -\frac{1}{2}\nabla^{2}\phi_{2} + C_{\text{trap}}\phi_{2} + \beta_{22}|\phi_{2}|^{2}\phi_{2} + \beta_{21}|\phi_{1}|^{2}\phi_{2}.
\end{cases} (18)$$

• We reproduce results obtained by Danaila et al. (2016)

Dark-antidark state

Figure: Dark-antidark state: a) real part ω_r and b) imaginary part ω_i of the eigenvalues, c) density profiles for three values of β_{12} .

FreeFem - BdG 09/12/2022

Ring-antidark ring state

Figure: Ring-antidark ring state: density profiles for three values of β_{12} .

FreeFem - BdG 09/12/2022

Ring-antidark ring state

Figure: Ring-antidark ring state: a) real part ω_r and b) imaginary part of the eigenvalues.

FreeFem - BdG 09/12/2022

3D states

- Only the ground state with the sequential code
- Parallel toolbox with PETSc/SLEPc (thanks to Pierre Jolivet)

Figure: Dark soliton in 3D: a) real (full lines) and imaginary (dashed lines) parts of the eigenvalues, b) density isosurface.

FreeFem - BdG 09/12/2022

Conclusion

- The code is validated against known results
- Mesh adaptation decreases the computational time
- → Study complex states in 3D with the parallel code

Figure: Density isosurface for S- and U-shaped vortices

Bibliography

- Kevrekidis, P.G., Pelinovsky, D.E., 2010., Distribution of eigenfrequencies for oscillations of the ground state in the Thomas-Fermi limit. Phys. Rev. A 81, 023627.
- Middelkamp, S., Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-Gonzalez, R., Schmelcher, P., 2010a., Bifurcations, stability, and dynamics of multiple matter-wave vortex states. Phys. Rev. A 82, 013646.
- Danaila, I., Khamehchi, M.A., Gokhroo, V., Engels, P., Kevrekidis, P.G., 2016., Vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates. Physical Review A 94, 053617.
- Bisset, R.N., Wang, W., Ticknor, C., Carretero-Gonzalez, R., Frantzeskakis, D.J., Collins, L.A., Kevrekidis, P.G., 2015a. Bifurcation and stability of single and multiple vortex rings in three-dimensional Bose-Einstein condensates. Phys. Rev. A 92, 043601.

Post-doc

- Lattice Boltzmann methods and applications
- https://lmrs-num.math.cnrs.fr/job-postdoc-lbm-2022.html
- Contact: ionut.danaila@univ-rouen.fr