Indução Matemática Lista de Exercícios

- Prove as proposições abaixo usando Indução matemática:
 - 1. $n^3 \leq 2^n$, para *n* inteiro, com $n \geq 10$.
 - 2. $3^n > n^2$, para n inteiro positivo.
 - 3. $5n + 5 < n^2$, para n inteiro, com $n \ge 6$.
 - 4. $\prod_{i=2}^{n} (1 \frac{1}{i^2}) = \frac{n+1}{2n}$, para *n* inteiro, com $n \ge 2$.
 - 5. $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$, para n inteiro, com $n \ge 1$.
 - 6. $\sum_{i=1}^{n} 3 \times 2^{i-1} = 3(2^{n} 1)$, para *n* inteiro, com $n \ge 1$.
 - 7. $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$, para *n* inteiro positivo.
 - 8. $1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$, para *n* inteiro positivo.
 - 9. $1^3 + 2^3 + 3^3 + \ldots + n^3 = (1 + 2 + 3 + \ldots + n)^2$, para n inteiro, com n > 1.
 - 10. $2^1 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} 2$, para n inteiro, com $n \ge 1$.
 - 11. $1 \times 2 + 2 \times 3 + 3 \times 4 + \ldots + n \times (n+1) = \frac{n(n+1)(n+2)}{3}$, para *n* inteiro, com n > 1.
 - 12. $f_n \ge \left(\frac{3}{2}\right)^{n-2}$, onde f_k é o k-ésimo número de Fibonacci¹, para n inteiro, com $n \ge 1$.
 - 13. f_{3n} é par, onde f_k é o k-ésimo número de Fibonacci¹, para n inteiro, com $n \geq 1$.
 - 14. f_{4n} é divisível por 3, onde f_k é o k-ésimo número de Fibonacci¹, para n inteiro, com $n \ge 1$.
 - 15. $f_n^2+f_{n+1}^2=f_{2n+1}$, onde f_k é o k-ésimo número de Fibonacci¹, para n inteiro, com $n\geq 1$.
 - 16. $f_n^2 = f_{n-1} \times f_{n+1} + (-1)^{n-1}$, onde f_k é o k-ésimo número de Fibonacci¹, para n inteiro, com $n \ge 2$.
 - 17. $\sum_{i=1}^{n} f_i = f_{n+2} 1$, onde f_k é o k-ésimo número de Fibonacci¹, para n inteiro, com $n \ge 1$.

¹Dica: $f_1 = 1$, $f_2 = 1$ e $f_k = f_{k-1} + f_{k-2}$

- 18. $\sum_{i=1}^{n} f_i^2 = f_n \times f_{n+1}$, onde f_k é o k-ésimo número de Fibonacci¹, para n inteiro, com n > 2.
- 19. $8^n 3^n$ é divisível por 5, para n inteiro, com $n \ge 1$.
- 20. $9^n 1$ é divisível por 8, para n inteiro, com $n \ge 1$.
- 21. 3^{2n-1} é divisível por 4, para n inteiro, com $n \ge 1$.
- 22. $8^n 1$ é divisível por 7, para n inteiro, com $n \ge 1$.
- 23. $5^{2n-1} + 1$ é divisível por 6, para n inteiro, com $n \ge 1$.
- 24. $2^{2n} 1$ é divisível por 3, para n inteiro positivo.
- 25. $x^n y^n$ é divisível por x y, para n inteiro positivo.
- 26. Deseja-se colocar um total de n centavos de selos numa carta. No entanto só se possui selos de 5 centavos e 12 centavos. Prove que qualquer valor de selos pode ser colocado numa carta desde que este valor seja maior ou igual a 44 centavos.
- 27. Prove que a expansão de $(1+x+x^2)^n$ contem pelo menos um coeficiente par, para n inteiro, com $n \geq 2$.

Algumas soluções:

5.
$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}, \text{ para } n \text{ inteiro, com } n \ge 1.$$

$$P(1) : \frac{1}{1(1+1)} = \frac{1}{(1+1)}$$

$$\frac{1}{2} = \frac{1}{2}$$

$$P(n+1) : \sum_{i=1}^{n} \frac{1}{i(i+1)} + \frac{1}{(n+1)((n+1)+1)} = \frac{n+1}{((n+1)+1)}$$

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$$

como por P(n):
$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$
$$\frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$$
Colocando tudo sobre o mesmo denominador fica

$$\frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n+1}{n+2}$$

Somando e subtraindo n+1 no numerador fica

$$\begin{array}{ll} \frac{n(n+2)+1+(n+1)-(n+1)}{(n+1)(n+2)} & = \frac{n+1}{n+2} \\ \frac{n(n+2)+(n+2)-(n+1)}{(n+1)(n+2)} & = \frac{n+1}{n+2} \\ \frac{(n+1)(n+2)-(n+1)}{(n+1)(n+2)} & = \frac{n+1}{n+2} \\ 1 - \frac{(n+1)}{(n+1)(n+2)} & = \frac{n+1}{n+2} \end{array}$$

$$P(n+1)$$
 : $1 - \frac{(n+1)}{(n+1)(n+2)} = \frac{n+1}{n+2}$

Simplificando n+1 fica

$$1 - \frac{1}{n+2} \qquad \qquad = \frac{n+1}{n+2}$$

Simplificando
$$n+1$$
 fiea
$$1-\frac{1}{n+2} = \frac{n+1}{n+2}$$
 Colocando tudo sobre o mesmo denominador fica
$$\frac{n+2-1}{n+2} = \frac{n+1}{n+2}$$

$$= \frac{n+1}{n+2}$$

$$= \frac{n+1}{n+2}$$

12. $f_n \geq \left(\frac{3}{2}\right)^{n-2}$, onde f_k é o k-ésimo número de Fibonacci

Para $P(1): f_1 = 1 \ge \left(\frac{3}{2}\right)^{-1} \implies 1 \ge \frac{2}{3}$ que é verdadeiro. Para P(n+1):

$$f_{n+1} \geq \left(\frac{3}{2}\right)^{n+1-2}$$

$$= \left(\frac{3}{2}\right)^{n-1}$$

$$= \frac{3}{2} \times \left(\frac{3}{2}\right)^{n-2}$$

$$f_{n+1} \geq \left(\frac{3}{2}\right)^{n+1-2}$$

$$= \left(\frac{3}{2}\right)^{n-1}$$

$$= \frac{3}{2} \times \left(\frac{3}{2}\right)^{n-2}$$
Substituindo $\left(\frac{3}{2}\right)^{n-2}$ por f_n

$$f_{n+1} \geq \frac{3}{2}f_n$$

$$f_n + f_{n-1} \geq \frac{3}{2}f_n$$

$$2f_n + 2f_{n-1} \geq 3f_n$$

$$2f_{n-1} \geq f_n$$

$$2f_{n-1} \geq f_n$$

$$2f_{n-1} \ge f_{n-1} + f_{n-2}$$

 $f_{n-1} \ge f_{n-2}$

O que obviamente é verdadeiro já que $f_{n-1} = f_{n-2} + f_{n-3}$

14. f_{4n} é divisível por 3, onde f_k é o k-ésimo número de Fibonacci¹, para n inteiro, com $n \ge 1$.

A sequencia de Fibonacci é: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,

$$P(1)$$
 : $f_4 =$
3 é divisível por 3

$$P(n+1) : f_{4(n+1)} = \\ f_{4n+4} = \\ f_{4n+3} + f_{4n+2} = \\ f_{4n+2} + f_{4n+1} + f_{4n+2} = \\ 2 \times f_{4n+2} + f_{4n+1} = \\ 2 \times [f_{4n+1} + f_{4n}] + f_{4n+1} = \\ 3 \times f_{4n+1} + 2 \times f_{4n} \qquad \text{que \'e divis\'ivel por 3}$$

Pois por P(n): f_{4n} é divisível por 3, e f_{4n+1} está sendo multiplicado por 3 Logo o resultado é divisível por 3

23. $5^{2n-1} + 1$ é divisível por 6, para n inteiro, com $n \ge 1$.

$$\begin{array}{ccc} P(1) & : & 5^1+1 = \\ & & 6 & & \text{\'e divis\'evel por 6} \end{array}$$

$$P(n+1) : 5^{2(n+1)-1} + 1$$

$$5^{2}n + 1 + 1$$

$$5^{2} \times 5^{2n-1} + 1$$

$$5^{2} \times (5^{2n-1} + 1) - 24$$

Como por P(n): $5^{2n-1} + 1$ é divisível por 6, podemos substituir por $5^2 \times 6 \times f(n) - 24$

onde f(n) é um valor dependente de n que multiplicado por 6 dá $5^{2n-1}+1$ $5^2\times 6\times f(n)-6\times 4$ $6\times (5^2\times f(n)-4)$ que é divisível por 6

Observação: É importante notar que isto só funciona se $5^2 \times f(n) - 4 > 0$, mas isto vale para todos os valores de n, já que $n \ge 1$.

25. $x^n - y^n$ é divisível por x - y, para n inteiro positivo.

$$P(1) : x^1 - y^1 =$$

$$x - y$$
 é divisível por $x - y$

$$P(n+1)$$
 : $x^{n+1} - y^{n+1}$ =
 $x \cdot x^n - y \cdot y^n$ =

Aqui temos que tentar usar o P(n), mas como está não dá, então precisamos colocar algum valor que permita gerar $x^n - y^n$ sem alterar a equação. Portanto vamos somar e subtrair o valor $(x - y)y^n$

$$\begin{array}{lll} x.x^{n} - y.y^{n} - (x - y)y^{n} + (x - y)y^{n} & = \\ x.x^{n} - y.y^{n} - x.y^{n} + y.y^{n} + (x - y)y^{n} & = \\ x.x^{n} - x.y^{n} + (x - y)y^{n} & = \\ x.(x^{n} - y^{n}) + (x - y)y^{n} & = \end{array}$$

Agora temos $x^n - y^n$ que é P(n) e portanto multiplo de x - y portanto podemos substituir por (x - y)f(n) onde f(n) é uma valor dependente de n que multiplicado por (x - y) dá $x.(x^n - y^n)$

$$(x-y)f(n) + (x-y)y^n$$
 = que é divisível por $x-y$