A Novel Way of Updating Knowing How

Carlos Areces^{1,2}, Raul Fervari^{1,2}, **Andrés R. Saravia**^{1,2}, Fernando R. Velázquez-Quesada³

¹Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina ²Universidad Nacional de Cordoba (UNC), Argentina ³Universitetet i Bergen, Norway

ReacTS, Aveiro - Portugal

5/XI/2024

 A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)
- Dynamic operators (2022)

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)
- Dynamic operators (2022)
 - ontic updates: annoucement-like and arrow-update-like modalities

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)
- Dynamic operators (2022)
 - ontic updates: annoucement-like and arrow-update-like modalities
 - epistemic updates: refining the perception of agents

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)
- Dynamic operators (2022)
 - ontic updates: annoucement-like and arrow-update-like modalities (limited axiomatizations via reductions axioms)
 - epistemic updates: refining the perception of agents

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)
- Dynamic operators (2022)
 - ontic updates: annoucement-like and arrow-update-like modalities (limited axiomatizations via reductions axioms)
 - epistemic updates: refining the perception of agents (fails uniform substitution, no axiomatizations)

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)
- Dynamic operators (2022)
 - ontic updates: annoucement-like and arrow-update-like modalities (limited axiomatizations via reductions axioms)
 - epistemic updates: refining the perception of agents (fails uniform substitution, no axiomatizations)
- We present a dynamic epistemic logic

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)
- Dynamic operators (2022)
 - ontic updates: annoucement-like and arrow-update-like modalities (limited axiomatizations via reductions axioms)
 - epistemic updates: refining the perception of agents (fails uniform substitution, no axiomatizations)
- We present a dynamic epistemic logic
 - extend the static language with basic modalities ([a], $a \in Act$)

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)
- Dynamic operators (2022)
 - ontic updates: annoucement-like and arrow-update-like modalities (limited axiomatizations via reductions axioms)
 - epistemic updates: refining the perception of agents (fails uniform substitution, no axiomatizations)
- We present a dynamic epistemic logic
 - extend the static language with basic modalities ([a], $a \in Act$)
 - ullet define a dynamic modality ([!a]) that distinguishes an action from others

- A framework for knowing how logics with a notion of epistemic indistinguishability (2021, 2023)
 - ontic information (available abilities)
 - epistemic information (perceived-as-possible abilities)
- Dynamic operators (2022)
 - ontic updates: annoucement-like and arrow-update-like modalities (limited axiomatizations via reductions axioms)
 - epistemic updates: refining the perception of agents (fails uniform substitution, no axiomatizations)
- We present a dynamic epistemic logic
 - extend the static language with basic modalities ([a], $a \in Act$)
 - ullet define a dynamic modality ([!a]) that distinguishes an action from others
 - sound and complete axiomatization for all models via reduction axioms

Definition (Uncertainty-based LTS (2021, 2023))

Definition (Uncertainty-based LTS (2021, 2023))

An uncertainty-based LTS (LTS^U) for Prop, Act and Agt is a tuple $\mathcal{M} = \langle W, \{R_a\}_{a \in Act}, \{U(i)\}_{i \in Agt}, V \rangle$ where:

 $\bullet \ \langle W, \{R_a\}_{a \in Act}, V \rangle \ \text{is an LTS},$

Definition (Uncertainty-based LTS (2021, 2023))

- $\langle W, \{R_a\}_{a \in Act}, V \rangle$ is an LTS, and
- $U(i) \subseteq \mathcal{P}(Act^*)$ is s.t.

Definition (Uncertainty-based LTS (2021, 2023))

- $\langle W, \{R_a\}_{a \in Act}, V \rangle$ is an LTS, and
- $U(i) \subseteq \mathcal{P}(Act^*)$ is s.t.

Definition (Uncertainty-based LTS (2021, 2023))

- $\langle W, \{R_a\}_{a \in Act}, V \rangle$ is an LTS, and
- $U(i) \subseteq \mathcal{P}(Act^*)$ is s.t.
 - \bullet $U(i) \neq \emptyset$, $\emptyset \notin U(i)$, and
 - ② if $\pi_1, \pi_2 \in U(i)$ y $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$.

Definition (Uncertainty-based LTS (2021, 2023))

- $\langle W, \{R_a\}_{a \in Act}, V \rangle$ is an LTS, and
- $U(i) \subseteq \mathcal{P}(Act^*)$ is s.t.
 - \bullet $U(i) \neq \emptyset$, $\emptyset \notin U(i)$, and
 - ② if $\pi_1, \pi_2 \in U(i)$ y $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$.

$$\mathcal{M} = \langle \{w, v, u\}, \{\mathsf{R}_c, \mathsf{R}_d\}, \{\mathsf{U}(i)\}, \mathsf{V} \rangle$$

Definition (L_{Kh_i})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

Definition (L_{Kh_i})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi, \varphi)$: "when ψ holds, the agent i knows how to make φ true"

Definition (L_{Kh_i})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

Definition (L_{Kh_i})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "when ψ holds, the agent i knows how to make φ true" $\mathcal{M}, w \models \mathsf{Kh}_i(\psi,\varphi)$ iff there is $\pi \in \mathsf{U}(i)$ s.t.

• π is SE at all ψ -states,

Definition (L_{Kh_i})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- ullet π is SE at all ψ -states, and
- ullet from ψ -states π reaches only to arphi-states

Definition (L_{Kh_i})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- \bullet π is SE at all ψ -states, and
- from ψ -states π reaches only to φ -states

Definition (L_{Kh_i})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- \bullet π is SE at all ψ -states, and
- from ψ -states π reaches only to φ -states

$$\mathcal{M}, w \models \mathsf{Kh}_i(p, \neg q)$$

Definition (L_{Kh_i})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "when ψ holds, the agent i knows how to make φ true" $\mathcal{M}, w \models \mathsf{Kh}_i(\psi,\varphi)$ iff there is $\pi \in \mathsf{U}(i)$ s.t.

- \bullet π is SE at all ψ -states, and
- from ψ -states π reaches only to φ -states

 $\mathcal{M}, w \not\models \mathsf{Kh}_i(p,q)$

Definition (L_{Kh_i})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "when ψ holds, the agent i knows how to make φ true" $\mathcal{M}, w \models \mathsf{Kh}_i(\psi,\varphi)$ iff there is $\pi \in \mathsf{U}(i)$ s.t.

- \bullet π is SE at all ψ -states, and
- from ψ -states π reaches only to φ -states

 $A\varphi := Kh_i(\neg \varphi, \bot), E\varphi := \neg A \neg \varphi, Eq$

The language $L_{Kh_i} + [!a]$

Definition
$$(L_{Kh_i} + [!a])$$

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!a]\varphi$$

The language $L_{Kh_i} + [!a]$

Definition $(L_{Kh_i} + [!a])$

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!a]\varphi$$

[!a]arphi: "after announcing that a is distinguishable from all plans, arphi holds"

The language $L_{Kh_i} + [!a]$

Definition $(L_{Kh_i} + [!a])$

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!a]\varphi$$

 $[!a]\varphi$: "after announcing that a is distinguishable from all plans, φ holds" $\mathcal{M}, w \models [!a]\varphi$ iff $\mathcal{M}^a, w \models \varphi$ where $\mathcal{M}^a = \langle \mathsf{W}, \mathsf{R}, \mathsf{U}', \mathsf{V} \rangle$, with:

Definition $(L_{Kh_i} + [!a])$

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!a]\varphi$$

 $[!a]\varphi$: "after announcing that a is distinguishable from all plans, φ holds" $\mathcal{M}, w \models [!a]\varphi$ iff $\mathcal{M}^a, w \models \varphi$ where $\mathcal{M}^a = \langle \mathsf{W}, \mathsf{R}, \mathsf{U}', \mathsf{V} \rangle$, with:

• $\mathsf{U}'(i) = (\mathsf{U}(i) \setminus \{\pi\}) \cup \{\{a\}\}\$ if there is $\pi \in \mathsf{U}(i)$ such that $a \in \pi$,

Definition $(L_{Kh_i} + [!a])$

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!a]\varphi$$

 $[!a]\varphi$: "after announcing that a is distinguishable from all plans, φ holds" $\mathcal{M}, w \models [!a]\varphi$ iff $\mathcal{M}^a, w \models \varphi$ where $\mathcal{M}^a = \langle \mathsf{W}, \mathsf{R}, \mathsf{U}', \mathsf{V} \rangle$, with:

- $\mathsf{U}'(i) = (\mathsf{U}(i) \setminus \{\pi\}) \cup \{\{a\}\}$ if there is $\pi \in \mathsf{U}(i)$ such that $a \in \pi$,
- $U'(i) = U(i) \cup \{\{a\}\}$ otherwise

Definition $(L_{Kh_i} + [!a])$

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!a]\varphi$$

 $[!a]\varphi$: "after announcing that a is distinguishable from all plans, φ holds" $\mathcal{M}, w \models [!a]\varphi$ iff $\mathcal{M}^a, w \models \varphi$ where $\mathcal{M}^a = \langle \mathsf{W}, \mathsf{R}, \mathsf{U}', \mathsf{V} \rangle$, with:

- $\mathsf{U}'(i) = (\mathsf{U}(i) \setminus \{\pi\}) \cup \{\{a\}\}$ if there is $\pi \in \mathsf{U}(i)$ such that $a \in \pi$,
- $U'(i) = U(i) \cup \{\{a\}\}$ otherwise

Definition $(L_{Kh_i} + [!a])$

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!a]\varphi$$

 $[!a]\varphi$: "after announcing that a is distinguishable from all plans, φ holds" $\mathcal{M}, w \models [!a]\varphi$ iff $\mathcal{M}^a, w \models \varphi$ where $\mathcal{M}^a = \langle \mathsf{W}, \mathsf{R}, \mathsf{U}', \mathsf{V} \rangle$, with:

- $\mathsf{U}'(i) = (\mathsf{U}(i) \setminus \{\pi\}) \cup \{\{a\}\}$ if there is $\pi \in \mathsf{U}(i)$ such that $a \in \pi$,
- $U'(i) = U(i) \cup \{\{a\}\}$ otherwise

 $\mathcal{M}, w \not\models \mathsf{Kh}_i(p,q)$

Definition $(L_{Kh_i} + [!a])$

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [!a]\varphi$$

 $[!a]\varphi$: "after announcing that a is distinguishable from all plans, φ holds" $\mathcal{M}, w \models [!a]\varphi$ iff $\mathcal{M}^a, w \models \varphi$ where $\mathcal{M}^a = \langle \mathsf{W}, \mathsf{R}, \mathsf{U}', \mathsf{V} \rangle$, with:

- $\mathsf{U}'(i) = (\mathsf{U}(i) \setminus \{\pi\}) \cup \{\{a\}\}$ if there is $\pi \in \mathsf{U}(i)$ such that $a \in \pi$,
- $U'(i) = U(i) \cup \{\{a\}\}$ otherwise

 $\mathcal{M}, w \models [!d] \mathsf{Kh}_i(p,q)$

 Kh_i is not sufficient to capture [!a]

 Kh_i is not sufficient to capture [!a]

 ${\mathcal M}$ and $\tilde{{\mathcal M}}$ satisfy $\mathsf{Kh}_i(p, \lnot q)$ and $\lnot \mathsf{Kh}_i(p, q)$

 Kh_i is not sufficient to capture [!a]

 \mathcal{M} and $\tilde{\mathcal{M}}$ satisfy $\mathsf{Kh}_i(p, \neg q)$ and $\neg \mathsf{Kh}_i(p, q)$ $\mathcal{M}, w \models [!d] \mathsf{Kh}_i(p, q)$

 Kh_i is not sufficient to capture [!a]

 \mathcal{M} and $\tilde{\mathcal{M}}$ satisfy $\mathsf{Kh}_i(p, \neg q)$ and $\neg \mathsf{Kh}_i(p, q)$ $\tilde{\mathcal{M}}, w \not\models [!d] \mathsf{Kh}_i(p, q)$

 Kh_i is not sufficient to capture [!a]

 \mathcal{M} and $\tilde{\mathcal{M}}$ satisfy $\mathsf{Kh}_i(p, \neg q)$ and $\neg \mathsf{Kh}_i(p, q)$ $\tilde{\mathcal{M}}, w \not\models [!d] \mathsf{Kh}_i(p, q)$ Kh_i talks about plans implicitly

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [a]\varphi \mid [!a]\varphi,$$

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [a]\varphi \mid [!a]\varphi,$$

[a] φ : "every execution of action a leads to situations in which φ holds"

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [a]\varphi \mid [!a]\varphi,$$

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [a]\varphi \mid [!a]\varphi,$$

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [a]\varphi \mid [!a]\varphi,$$

$$\mathcal{M}, w \models [c] \neg q$$

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [a]\varphi \mid [!a]\varphi,$$

$$\mathcal{M}$$
, $w \models [d]q$

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [a]\varphi \mid [!a]\varphi,$$

$$\mathcal{M}, w \models \langle d \rangle \top$$

 $[!a] \varphi$ can be rewritten in terms of Kh and [a] $(\mathsf{L}_{\mathsf{Kh}_i,\square,[!a]} \approx \mathsf{L}_{\mathsf{Kh}_i,\square})$

 $[!a]\varphi$ can be rewritten in terms of Kh and [a] $(\mathsf{L}_{\mathsf{Kh}_i,\square,[!a]} \approx \mathsf{L}_{\mathsf{Kh}_i,\square})$

- - $\mathcal{M}, w \models [!d] \mathsf{Kh}_i(p,q)$

 $[!a]\varphi$ can be rewritten in terms of Kh and [a] $(\mathsf{L}_{\mathsf{Kh}_i,\square,[!a]} \approx \mathsf{L}_{\mathsf{Kh}_i,\square})$

- - \mathcal{M} , $w \models [!d] \mathsf{Kh}_i(p,q)$
- $\bullet \ \mathcal{M}, w \models (\mathsf{Kh}_i([!d]p, [!d]q) \lor \mathsf{A}([!d]p \to (\langle d \rangle \top \land [d][!d]q)))$

- $[!a]\varphi$ can be rewritten in terms of Kh and [a] $(\mathsf{L}_{\mathsf{Kh}_i,\square,[!a]} pprox \mathsf{L}_{\mathsf{Kh}_i,\square})$

- - $\mathcal{M}, w \models [!d] \mathsf{Kh}_i(p,q)$
 - $\mathcal{M}, w \models (\mathsf{Kh}_i([!d]p, [!d]q) \lor \mathsf{A}([!d]p \to (\langle d \rangle \top \land [d][!d]q)))$
- $\bullet \ \mathcal{M}, w \models (\mathsf{Kh}_i(p,q) \lor \mathsf{A}(p \to (\langle d \rangle \top \land [d]q)))$

- $[!a]\varphi$ can be rewritten in terms of Kh and [a] $(\mathsf{L}_{\mathsf{Kh}_i,\square,[!a]} \approx \mathsf{L}_{\mathsf{Kh}_i,\square})$

- - $\mathcal{M}, w \models [!d] \mathsf{Kh}_i(p,q)$
 - $\mathcal{M}, w \models (\mathsf{Kh}_i([!d]p, [!d]q) \lor \mathsf{A}([!d]p \to (\langle d \rangle \top \land [d][!d]q)))$
- $\bullet \ \mathcal{M}, w \models (\mathsf{Kh}_i(p,q) \lor \mathsf{A}(p \to (\langle d \rangle \top \land [d]q)))$
- $\mathcal{M}, w \models A(p \rightarrow (\langle d \rangle \top \land [d]q))$

 $L_{\mathsf{K}\mathsf{h}_i,\square}$ has a sound and complete axiomatization

L_{Khi,□} has a sound and complete axiomatization

Taut
$$\vdash \varphi$$
 for φ a propositional tautology DistA $\vdash A(\varphi \to \psi) \to (A\varphi \to A\psi)$ TA $\vdash A\varphi \to \varphi$ 4KhA $\vdash Kh_i(\psi,\varphi) \to AKh_i(\psi,\varphi)$ 5KhA $\vdash \neg Kh_i(\psi,\varphi) \to A \neg Kh_i(\psi,\varphi)$ KhA $\vdash (A(\chi \to \psi) \land Kh_i(\psi,\varphi) \land A(\varphi \to \theta)) \to Kh_i(\chi,\theta)$ Dist $\Box \vdash [a](\varphi \to \psi) \to ([a]\varphi \to [a]\psi)$ A $\Box \vdash A\varphi \to [a]\varphi$

MP From $\vdash \varphi$ and $\vdash \varphi \to \psi$ infer $\vdash \psi$ NecA From $\vdash \varphi$ infer $\vdash A\varphi$

 $\mathsf{L}_{\mathsf{Kh}_i,\square}$ has a sound and complete axiomatization

$$\begin{array}{lll} \text{Taut} & \vdash \varphi \text{ for } \varphi \text{ a propositional tautology} \\ \text{DistA} & \vdash \mathsf{A}(\varphi \to \psi) \to (\mathsf{A}\varphi \to \mathsf{A}\psi) \\ \text{TA} & \vdash \mathsf{A}\varphi \to \varphi \\ \text{4KhA} & \vdash \mathsf{Kh}_i(\psi,\varphi) \to \mathsf{AKh}_i(\psi,\varphi) \\ \text{5KhA} & \vdash \neg \mathsf{Kh}_i(\psi,\varphi) \to \mathsf{A} \neg \mathsf{Kh}_i(\psi,\varphi) \\ \text{KhA} & \vdash (\mathsf{A}(\chi \to \psi) \land \mathsf{Kh}_i(\psi,\varphi) \land \mathsf{A}(\varphi \to \theta)) \to \mathsf{Kh}_i(\chi,\theta) \\ \text{Dist} \Box & \vdash [a](\varphi \to \psi) \to ([a]\varphi \to [a]\psi) \\ \text{A} \Box & \vdash \mathsf{A}\varphi \to [a]\varphi \\ \\ \text{MP} & \text{From } \vdash \varphi \text{ and } \vdash \varphi \to \psi \text{ infer } \vdash \psi \\ \text{NecA} & \text{From } \vdash \varphi \text{ infer } \vdash \mathsf{A}\varphi \end{array}$$

With the reduction axioms, $L_{Kh_i,\square,[!a]}$ too

Conclusions

Conclusions

• A new dynamic epistemic modality for knowing how logics

Conclusions

- A new dynamic epistemic modality for knowing how logics
- Sound and complete axiomatization (with reduction axioms)

Conclusions

- A new dynamic epistemic modality for knowing how logics
- Sound and complete axiomatization (with reduction axioms)

Conclusions

- A new dynamic epistemic modality for knowing how logics
- Sound and complete axiomatization (with reduction axioms)

Ongoing work

• Generalizing [!a]:

Conclusions

- A new dynamic epistemic modality for knowing how logics
- Sound and complete axiomatization (with reduction axioms)

- Generalizing [!a]:
 - Announcement for sequences of actions ([$!\sigma$], $\sigma \in \mathsf{Act}^*$)

Conclusions

- A new dynamic epistemic modality for knowing how logics
- Sound and complete axiomatization (with reduction axioms)

- Generalizing [!a]:
 - Announcement for sequences of actions ([$!\sigma$], $\sigma \in \mathsf{Act}^*$)
 - ullet Semi-private announcement for a group of agents ([! σ , i], $i\in\mathsf{Agt}$)

Conclusions

- A new dynamic epistemic modality for knowing how logics
- Sound and complete axiomatization (with reduction axioms)

- Generalizing [!a]:
 - Announcement for sequences of actions ([$!\sigma$], $\sigma \in \mathsf{Act}^*$)
 - ullet Semi-private announcement for a group of agents ([! σ , i], $i\in\mathsf{Agt}$)
- SAT problem for $L_{Kh_i,\square}$ is decidable via a filtration argument (2023)

Conclusions

- A new dynamic epistemic modality for knowing how logics
- Sound and complete axiomatization (with reduction axioms)

- Generalizing [!a]:
 - Announcement for sequences of actions ([$!\sigma$], $\sigma \in \mathsf{Act}^*$)
 - Semi-private announcement for a group of agents ([$!\sigma$, i], $i \in Agt$)
- SAT problem for $L_{Kh_i,\square}$ is decidable via a filtration argument (2023)
- $L_{Kh_i,\square,[!a]}$, $L_{Kh_i,\square,[!\sigma]}$ y $L_{Kh_i,\square,[!\sigma,i]}$ are decidable

Referencias

- [1] C. Areces et al. "Uncertainty-Based Semantics for Multi-Agent Knowing How Logics". In: Proceedings Eighteenth Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2021. Vol. 335. EPTCS. 2021, pp. 23–37. DOI: 10.4204/EPTCS.335.3. URL: https://doi.org/10.4204/EPTCS.335.3.
- [2] C. Areces et al. "First Steps in Updating Knowing How". In: Dynamic Logic. New Trends and Applications 4th International Workshop, DaLí 2022. Vol. 13780. LNCS. Springer, 2022, pp. 1-16. DOI: 10.1007/978-3-031-26622-5_1. URL: https://doi.org/10.1007/978-3-031-26622-5\5C_1.
- [3] C. Areces et al. *Uncertainty-Based Knowing How Logic*. 2023. arXiv: 2304.01022 [cs.L0].
- [4] C. Areces et al. "Uncertainty-based knowing how logic". In: Journal of Logic and Computation (2023), exad056. DOI: 10.1093/logcom/exad056. eprint: https://academic.oup.com/logcom/advance-article-pdf/doi/10.1093/logcom/exad056/51968909/exad056.pdf.