

88. Le graphique de la courbe représentative de la fonction numérique f d'une variable réelle définie par $f(x) = |\ln x|$ est :

(M.-92)

89. La limite quand x tend vers 0 par valeurs positives de la fonction

$$Z = \frac{\ln(1+2x)}{4x^2} \text{ est : } \quad \text{www.ecoles-rdc.net}$$

1. 0 2. $-\infty$ 3. 1 4. $+\infty$ 5. $\frac{1}{2}$ (B.-93)

90. On considère la fonction $f(x) = x \ln x$ et on note C sa représentation graphique dans un repère orthonormé d'axe x'Ox, y'Oy.

La proposition fausse est :

1. la fonction est définie et continue sur l'intervalle $[0, +\infty]$
2. le graphique C est tangent en 0 à Ox
3. le graphique C a une branche parabolique dans la direction Oy
4. le graphique C coupe l'axe Ox au point d'abscisse 1
5. la tangente est parallèle à la première bissectrice au point $x=1$ (B.-93)

91. On considère la fonction $f(x) = x^2 \ln x$ et on note (C) sa représentation graphique dans un repère orthonormé d'axes x'Ox, y'Oy'. La proposition fausse est :

1. la fonction est définie sur l'intervalle $[0, +\infty]$
2. la tangente au point d'inflexion est parallèle à la deuxième bissectrice
3. le graphique (C) n'admet aucune asymptote
4. on a $f'(x) = 3 + 2 \ln x$
5. on a $\lim_{x \rightarrow +\infty} f(x) = +\infty$ (M.-93)