Dokumentace k semestrální práci předmětu BI-BIG

Michal Konečný

9. prosince 2018

Obsah

1	$\mathbf{\acute{U}vod}$																3
			mestráln														3
	1.1		ožadavky														3
	1.1	.2 Fo	orma				 •	 •	•	•	٠	•	٠	•	•	 •	3
2			led na														4
	2.1 Uk	ázka d	at z jedn	otlivýc	n tabu	lek	 •										4
3	Import	dat d	lo HDF	\mathbf{S}													5
1	Agrega	ce - 1															5
	4.1 Uk	ázka v	ýsledné a	agregace	e		 •										6
5	Agrega																6
	5.1 Uk	ázka v	ýsledné a	agregace	э		 •										7
3	Agrega																7
	6.1 Uk	.ázka v	ýsledné a	agregace	э		 •								•	 ٠	7
7			ElasticS														8
			at a vytv														8
																	9
			ltrování														9
			řídění .														9
	7.2	.3 W	ildcard				 •	 •			•	٠		•	•	 ٠	10
3			- vizuali														11
			ní jednot														11
			t jednotli														11
			á délka je														12
			á váha je														12
	8.5 Vý	sledný	dashboa	rd			 •										13
9	Závěr																14
10	Přílohy	r															15
	10.1 Lo	gstash	config .														15

1 Úvod

1.1 Zadání semestrální práce

1.1.1 Požadavky

- vybrat si min. 3 různé datasety (možno i vygenerovat smysluplná data náhodně)
 - každý vstupní dataset bude mít nejméně 50.000 záznamů (pokud budete předvádět v učebně, zvolte data tak, aby bylo časově reálné úlohu ukázat)
- tyto (min.) 3 datasety naimportovat do databáze či distribuovaného filesystému (např. HDFS)
- vytvořit nový dataset, který bude agregovat data z jednoho původního datasetu
- vytvořit nový dataset, který bude agregovat data ze dvou původních datasetů najednou
- vytvořit nový dataset, který bude agregovat data ze dvou datasetů najednou, z čehož jeden bude výsledkem předchozí agregace a uložit ho zpět do databáze/na file systém
- vytvořit nad kterýmkoliv datasetem index v ElasticSearch (či podobném enginu) a připravit 3 různé dotazy do tohoto indexu (nestačí index databáze, je potřeba použít indexovací engine jako je ElasticSearch)
 - využit filtrování
 - využít třídění
 - použít wildcard hledání (www.soft.com)
- k indexu připojit vizualizační nástroj (např. Kibanu) a udělat dashboard s 4 smysluplnými pohledy na vaše data
- po dohodě (dopředu schváleno) je možné použít i jiné technologie než je Spark a ElasticSearch

1.1.2 Forma

- k semestrální práci je potřeba zpracovat kompletní dokumentaci (odevzdat ve formátu PDF), která bude obsahovat minimálně:
 - klasickou strukturu včetně hlavičky, rejstříku, úvodu, hlavní části, závěru
 - businessový pohled na to, jaká data se budou používat
 - popis a ukázku dat z použitých datasetů (ukázka = několik jednotek, maximálně desítek řádků z každého datasetu)

- kompletní příkazy použité pro jednotlivé transformace
- v příloze použité konfigurační soubory (např. pro search engine)
- na základě dokumentace by mělo být možné se vstupními datasety kompletně replikovat vaší práci!

2 Business pohled na data

Data, která jsem použil ve své semestrální práci, jsou náhodně generovaná data a mají simulovat data Českého rybářského svazu. Jde o data rybářů a jejich úlovků za posledních 5 let - mezi lety 2014-2018, vždy od 1.3. do 1.12 daného roku. Dataset rybáři obsahuje 50000 záznamů, známe jméno, příjmení, pohlaví, datum narození a telefon jednotlivce. Dataset ryby obsahuje též 50000 záznamů, u jednotlivých ryb evidujeme rodové jméno - kapr/amur/štika/sumec/candát/pstruh, délku v cm a váhu v kg. Poslední dataset sumář obsahuje přes 120000 záznamů a jde o dataset, který simuluje spojení mezi rybáři a jejich úlovky. Zaznamenáváme id rybáře a id ryby, dále datum ulovení, typ vody, typ nástrahy a okres, ve kterém byla ryba chycena.

2.1 Ukázka dat z jednotlivých tabulek

įd		jmeno	prijmeni	pohlavi	datum_narozeni	telefon
	1	Doubravka	Sloukova	Z	16.10.1969	603946861
	2	Krystof	Jiracek	M	3.9.1986	732983944
	3	Radmila	rehorova	Z	22.7.1983	775222416
	4	Ivana	Francova	Z	6.2.1969	773227594
	5	stefan	Dite	M	24.4.1968	777861126
	6	Viola	Belkova	Z	11.2.1996	736123456

(a) Tabulka rybari

id_rybar	id_ryba	datum_uloveni	typ_vody	nastraha	okres
40282	32879	23.3.2016	svazova	cervi	Kolin
375	6952	28.11.2016	svazova	zizala	Chrudim
22169	19348	21.4.2016	soukroma	cervi	Strakonice
39838	9408	2.7.2016	soukroma	cervi	Beroun
7628	18151	22.7.2016	svazova	kukurice	Prachatice
29033	36711	28.5.2016	svazova	boilies	cesky Krumlov
31401	6141	10.8.2016	svazova	peleta	Nachod

(b) Tabulka sumar

<u>id</u>	rodove_imeno	delka	vaha	
1	kapr	60	2	
2	kapr	54	5	
3	kapr	49	4	
4	kapr	44	6	
5	kapr	42	4	

(c) Tabulka ryby

Obrázek 1: Ukázka z jednotlivých tabulek

3 Import dat do HDFS

```
Při importu dat do HDFS jsem postupoval stejným způsobem, jako na cvičení
https://courses.fit.cvut.cz/BI-BIG/tutorials/05/index.html
Container pro SPARK master a worker:
docker build -f spark.df -t spark.
docker-compose up
Conainer pro spark-shell:
docker run -it -p 8088:8088 -p 8042:8042 -p 4041:4040 --
   name driver -h driver spark: latest bash
Připojení spark-shell na master:
spark-shell —master spark://<IP adresa mastera>:7077
Container pro HDFS:
docker run — name hadoop – t – i sequenceiq/hadoop – docker /
   etc/bootstrap.sh -bash
Vytvoření složek a import dat:
export PATH=$PATH:/usr/local/hadoop/bin/
hdfs dfs -mkdir /semestralka
hdfs dfs -mkdir /semestralka/dataset
curl https://gitlab.fit.cvut.cz/konecmi4/bi-big/tree/
   master/rybari.csv —output rybari.csv
curl https://gitlab.fit.cvut.cz/konecmi4/bi-big/tree/
   master/ryby.csv --output ryby.csv
curl https://gitlab.fit.cvut.cz/konecmi4/bi-big/tree/
   master/sumar.csv —output sumar.csv
hdfs dfs -put ./rybari.csv /semestralka/dataset/
hdfs dfs -put ./ryby.csv /semestralka/dataset/
hdfs dfs -put ./sumar.csv /semestralka/dataset/
```

4 Agregace - 1

```
val ryby = spark.sqlContext.read.format("csv").option("
   header", "true").option("delimiter", ";").option("
   inferSchema", "true").load("hdfs://172.17.0.5:9000/
   semestralka/dataset/ryby.csv")
ryby.createOrReplaceTempView("ryby")
val nejvetsi_kapri = spark.sqlContext.sql("SELECT * FROM
   ryby WHERE rodove_jmeno = 'kapr' delka > 90 AND vaha
>= 15 ORDER BY vaha DESC")
```

```
nejvetsi_kapri.write.option("header", "true").csv("hdfs://172.17.0.5:9000/semestralka/dataset/nejvetsi_kapri.csv")
```

4.1 Ukázka výsledné agregace

Obrázek 2: Největší kapři

5 Agregace - 2

```
val rybari = spark.sqlContext.read.format("csv").option("
    header", "true").option("delimiter", ";").option("
    inferSchema", "true").load("hdfs://172.17.0.5:9000/
    semestralka/dataset/rybari.csv")
rybari.createOrReplaceTempView("rybari")
val sumar = spark.sqlContext.read.format("csv").option("header", "true").option("delimiter", ";").option("inferSchema", "true").load("hdfs://172.17.0.5:9000/semestralka/dataset/sumar.csv")
sumar.createOrReplaceTempView("sumar")
val rybari_sumar = spark.sqlContext.sql("SELECT r.id, r.jmeno, r.prijmeni, pohlavi, s.datum_uloveni, id_ryba, nastraha, typ_vody, okres FROM rybari r JOIN sumar s
ON r.id = s.id_rybar")
```

5.1 Ukázka výsledné agregace

id jmeno	prijmeni da	atum_uloveni i	d_ryba	nastraha	typ_vody	okres
1 Doubravka 1 Doubravka 1 Doubravka	Sloukova Sloukova Sloukova	24.10.2015 8.7.2018 16.7.2017	45727 16601 36927	peleta	svazova svazova svazova	Tabor Cheb Jicin
1 Doubravka 2 Krystof 3 Radmila	Sloukova Jiracek rehorova	30.11.2016 3.4.2014	14702 49361	pecivo trpytka	soukroma svazova	Melnik

Obrázek 3: Spojení tabulky rybari a sumar

6 Agregace - 3

```
val rybari_sumar_new = spark.sqlContext.read.format("csv
").option("header", "true").option("inferSchema", "
    true").load("hdfs://172.17.0.5:9000/semestralka/
    dataset/rybari_sumar.csv")
rybari_sumar_new.createOrReplaceTempView("rybari_sumar")
val rybari_sumar_ryby = spark.sqlContext.sql("SELECT rs.
    id AS id_rybar, rs.jmeno, rs.prijmeni, rs.pohlavi, rs.
    datum_uloveni, id_ryba, f.rodove_jmeno, f.delka AS
    delka_v_cm, f.vaha AS vaha_v_kg, nastraha, typ_vody,
    okres FROM rybari_sumar rs JOIN ryby f ON rs.id_ryba =
    f.id")
rybari_sumar_ryby.write.option("header", "true").csv("
    hdfs://172.17.0.5:9000/semestralka/dataset/
    rybari_sumar_ryby.csv")
```

6.1 Ukázka výsledné agregace

id_rybar	jmeno	prijmeni poh	hlavi da	atum_uloveni i	d_ryba	rodove_jmeno delka_	v_cm \	/aha_v_kg	nastraha	typ_vody	okres
1 Do	oubravka	Sloukova	Z	24.10.2015	45727	sumec	175	51	guma	svazova	Tabor
1 Do	oubravka	Sloukova	Z	8.7.2018	16601	kapr	77	10	peleta	svazova	Cheb
1 Do	oubravkaj	Sloukova	Ζį	16.7.2017	36927	amur	90	13	cervi	svazova	Jicin
1 Do	oubravka	Sloukova	Ζį	30.11.2016	14702	kapr	60	8	pecivo	soukroma	Melnik
2	Krystof	Jiracek	M	3.4.2014	49361	pstruh	44		trpytka	svazova	Kladno
3	Radmila	rehorova	z	24.9.2018	42464	stika	95	10 z	iva rybka	svazova	ceske Budejovice

Obrázek 4: Spojení tab z AG2 a tab ryby

7 Logstash + ElasticSearch

Nad datasetem z agregace č.3 vytvořím index v ElasticSearch a připravím 3 různé dotazy do tohoto indexu. Postupuji podobným způsobem jako na cvičení č 9

https://courses.fit.cvut.cz/BI-BIG/tutorials/09/index.html

7.1 Import dat a vytvoření indexu

Pro import dat do ElasticSearch využiji nástroj Logstash. Vytvořím adresář elastic, do kterého stáhnu připravený balíček ze cvičení č.9.

https://drive.google.com/open?id=1PqEtoRUxRjWXWkQQOR-20ltMh6DY7MOi Do složky elastic/logstash/datasets zkopíruji dataset

```
rybari_sumar_ryby.csv
```

Jediný soubor, který je třeba upravit je v

```
elastic/logstash/pipeline-logstash.conf
```

Jeho přesnou podobu můžete najít v příloze. Spustíme docker a jakmile projde příkaz, otevřeme si logy z logstash, abychom viděli v jakém stavu je import.

```
docker-compose up -d
docker logs -f logstash
```

Po dokončení importu již můžeme otevřít Kibanu a vytvořit Index Pattern založený na již vytvořeném indexu v ElasticSearch.

- Panel Management
- Index Pattern
- Create Index Pattern
- Next step a vybrat, že nechceme použít časový filtr.
- Create Index Pattern

Nyní můžeme přejít do Dev tools a začít s dotazy do indexu.

7.2 Dotazy

7.2.1 Filtrování

Ulovení kapři s délkou větší než 90 cm a váhou větší než 15 kg.

7.2.2 Třídění

Najde všechny ulovené sumce a seřadí je dle data ulovení(od nejstaršího po nejaktuálnější)

```
GET _search
{
    "query": {
        "match": {
            "rodove_jmeno": "sumec"
        }
    },
    "sort": {
        "datum_uloveni.keyword": {"order": "asc"}
    }
}
```

7.2.3 Wildcard

Hledá rybářky jejichž příjmení obsahuje koncovku ova.

```
GET _search
{
    "query": {
        "wildcard": {
            "prijmeni": "*ova*"
        }
     }
}
```

8 Dashboard + vizualizace

Nakonec vytvoříme nový dashboard a provedeme pár vizualizací.

8.1 Zastoupení jednotlivých druhů ryb

Obrázek 5: Zastoupení druhů

8.2 Úspěšnost jednotlivých nástrah

Obrázek 6: Úspěšnost nástrah

8.3 Průměrná délka jednotlivých druhů

Obrázek 7: Průměrná délka

8.4 Průměrná váha jednotlivých druhů

Obrázek 8: Průměrná váha

8.5 Výsledný dashboard

Obrázek 9: Dashboard

9 Závěr

Cílem této semestrální práce bylo prozkoumat základní použití technologií využívaných v předmětu BI-BIG. To se podařilo. Bohužel vzhledem k tomu, že jsem použil náhodně generovaná data(která spolu sice souvisí, ale není jich dostatek), nejsou konečné statistiky zcela relevantní. Pro další projekt bych tedy raději použil nějaká reálná data.

10 Přílohy

10.1 Logstash config

```
input {
          \ file\ \{
                    path => "/datasets/ryb_sumar_ryb.csv"
                    start_position => "beginning"
                    codec => plain {charset=>"Windows-1250"}
         }
}
filter {
         csv {
               separator => ";"
              columns => ["datum_uloveni",
"id_rybar",
                              "id_ryba",
"typ_vody",
                              "nastraha",
                              "okres",
                              "jmeno",
                              "prijmeni",
                             "pohlavi",
"telefon",
                              "rodove_jmeno",
                              "delka",
                              "vaha"]
         mutate {convert => ["delka", "integer"]}
mutate {convert => ["vaha", "integer"]}
}
output {
          elasticsearch {
                    hosts \implies "http://elasticsearch:9200"
                    index => "vsechno"
         }
}
```