LECTURE 6

Data Cleaning and EDA

Exploratory data analysis and its role in the data science lifecycle.

Sean Kang

Quick Recap Pandas and Jupyter Notebooks

- Reviewing DataFrame concepts
 - Series: A named column of data with an index
 - **Indexes**: The mapping from keys to rows
 - DataFrame: collection of series with common index
- Dataframe access methods
 - Filtering on predicts and slicing
 - o **df.loc**: location by index
 - o **df.iloc**: location by integer address
 - groupby & pivot aggregating data

You have **collected** or **been given** a box of data?

What do you do next?

Data Acquisition

Exploratory Data Analysis

Topics For This Lecture

- Understanding the Data
 - Data Cleaning
 - Exploratory Data Analysis (EDA)
 - Basic data visualization
- Common Data Anomalies
 - ... and how to fix them

Data Cleaning

Exploratory Data Analysis

Data Cleaning

- The process of transforming raw data to facilitate subsequent analysis
- Data cleaning often addresses issues
 - structure / formatting
 - missing or corrupted values
 - unit conversion
 - encoding text as numbers
 - 0 ...
- Sadly, data cleaning is a big part of data science... (Large part of the time is spent here)

Exploratory Data Analysis (EDA)

"Getting to know the data"

- The process of **transforming**, **visualizing**, and **summarizing** data to:
 - Build/confirm understanding of the data and its provenance
 - Identify and address potential issues in the data
 - Inform the subsequent analysis
 - Journaling the data changes, or the way the data has been reformatt is an important part of the data transformation.
 - discover potential hypothesis ... (be careful)
- EDA is an open-ended analysis
 - Be willing to find something surprising

Data Types

Could be measured to arbitrary precision.

Examples:

- Price
- Temperature

Finite possible values

Examples:

- Number of siblings
- Yrs of education
- Number of Lanes on Freeway

Examples:

Preferences

consistent meaning to difference

Level of education

Categories w/ no specific ordering.

Examples:

- Political Affiliation (Demo, Republic, Inc etc)
- CallD number

What is the type of data?

	Quantitative Continuous	Quantitative Discrete	Qualitative Ordinal	Qualitative Nominal
CO ₂ level (PPM)				
Number of siblings				
GPA				
Income bracket (low, med, high)				
Race				
Number of years of education				
Yelp Rating				

File Formats and Structure

What should we look for?

Key Data Properties to Consider in EDA

- Structure -- the "shape" of a data file
- **Granularity** -- how fine/coarse is each datum
- **Scope** -- how (in)complete is the data
- Temporality -- how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

Rectangular Data

We prefer rectangular data for data analysis (why?)

- Regular structures are easy manipulate and analyze
- A big part of data cleaning is about transforming data to be more rectangular

Two kinds of rectangular data: Tables and Matrices

(what are the differences?)

- 1. Tables (a.k.a. data-frames in R/Python and relations in SQL)
 - Named columns with different types
 - Manipulated using data transformation languages (map, filter, group by, join, ...)

2. Matrices

- Numeric data of the same type
- Manipulated using linear algebra
- Will discuss this in the future for more in-depth data science, but in this lecture.

How are these data files formatted?

Comma and Tab Separated Values Files

- Tabular data where
 - Records are delimited by a newline: "\n", "\r\n"
 - Fields are delimited by ',' (comma) or '\t' (tab)
- Very Common!
- Issues?
 - Commas, tabs in records
 - Quoting
 - 0 ..

JavaScript Object Notation (JSON)

- Widely used file format for nested data
 - Very similar to python dictionaries
 - Strict formatting "quoting" addresses some issues in CSV/TSV
- Issues
 - Not rectangular
 - Each record can have different fields
 - Nesting means records can contain tables complicated

Extensible Markup Language - XML (another kind of nested data)

```
<catalog>
  <plant type='a'>
    <common>Bloodroot
    <botanical>Sanguinaria canadensis/botanical>
    \langle zone \rangle 4 \langle /zone \rangle
    <liqht>Mostly Shady</light>
    <price>2.44</price>
    <availability>03/15/2006</availability>
    <description>
          <color>white</color>
                                          Nested structure
          <petals>true</petals>
    </description>
    <indoor>true</indoor>
  </plant>
</catalog>
```


Log Data

Is this a csv file? tsv? JSON/XML?

```
169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET /stat141/Winter04 HTTP/1.1" 301 328 "http://anson.ucdavis.edu/courses/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"
```

```
169.237.6.168 - - [8/Jan/2014:10:47:58 -0800] "GET /stat141/Winter04/ HTTP/1.1" 200 2585
"http://anson.ucdavis.edu/courses/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"
```


Keys and Joins

Primary Key

Structure: Keys

- Often data will reference other pieces of data
- Primary key: the column or set of columns in a table that determine the values of the remaining columns
 - Primary keys are unique
 - Examples: SSN, ProductIDs, ...

	Purchases.csv	

<u>OrderNum</u>	<u>ProdID</u>	Quantity
1	42	3
1	999	2
2	42	1

Orders.csv

<u>OrderNum</u>	<u>CustID</u>	Date
1	171345	8/21/2017
2	281139	8/30/2017

Products.csv

<u>ProdID</u>	Cost
42	3.14
999	2.72

Primary Key

Customers.csv

<u>CustID</u>	Addr
171345	Harmon
281139	Main

Structure: Keys

- Often data will reference other pieces of data
- Primary key: the column or set of columns in a table that determine the values of the remaining columns
 - Primary keys are unique
 - Examples: SSN, ProductIDs, ...
- Foreign keys: the column or sets of columns that reference primary keys in other tables.
- You will need to join across tables

		Purchases.csv
<u>OrderNum</u>	<u>ProdID</u>	Quantity
1	42	3
1	999	2
2	42	1
Foreign Key		Orders.csv
<u>OrderNum</u>	<u>CustID</u>	Date
1	171345	8/21/2017
2	281139	8/30/2017

Products.csv

<u>ProdID</u>	Cost
42	3.14
999	2.72

Primary Key

Primary Key

Cusiomers.csv		
<u>CustID</u>		Addr
1713	345	Harmon
2811	39	Main

Questions to ask about Structure

- Are the data in a standard format or encoding?
 - Tabular data: CSV, TSV, Excel, SQL
 - Nested data: JSON or XML
- Are the data organized in "records"?
 - No: Can we define records by parsing the data?
- Are the data nested? (records contained within records...)
 - Yes: Can we reasonably un-nest the data?
- Does the data reference other data?
 - Yes: can we join/merge the data
- What are the fields in each record?
 - How are they encoded? (e.g., strings, numbers, binary, dates ...)
 - What is the type of the data?

Concepts and Terminology of Tables in Data Mining

- There are two types of tables in Data Mining: Fact Table and Dimensional Table
 - O Fact table: contains the main data.
 - Dimensional table: supports the fact table
- Examples of Fact Table
 - Call Service Record
 - Medical Tests
- Examples of Dimensional Table
 - Types of service calls
 - Referenced by Fact table by foreign keys

Summary

Summary: How do you do EDA/Data Cleaning?

- Examine data and metadata:
 - What is the date, size, organization, and structure of the data?
- Examine each field/attribute/dimension individually
- Examine pairs of related dimensions
 - Stratifying earlier analysis: break down grades by major ...
- Along the way:
 - Visualize/summarize the data
 - Validate assumptions about data and collection process
 - Identify and address anomalies
 - Apply data transformations and corrections
 - Record everything you do! (why?)

