Computational Physics Übungsblatt 7

Ausgabe: 03.06.2016 Abgabe: 10.06.2016

Aufgabe 1. Linear kongruente Generatoren

(10 P.)

Generieren Sie Pseudo-Zufallszahlen, indem Sie einen linear kongruenten Generator

$$r_{n+1} = (ar_n + c) \operatorname{mod} m \tag{1}$$

selbst implementieren.

- a) Schreiben Sie ein Programm, um die ersten N Glieder (N < m) der Integer-Folge r_n abhängig von den 4 Parametern r_0 (seed), a, c und m zu generieren (verwenden Sie hierbei 64-Bit-Integer). Teilen Sie r_{n+1} durch m um einen floating point-Generator für Zufallszahlen in [0,1[zu bekommen.
- b) Untersuchen Sie für die vier Parametersätze
 - (i) $r_0 = 1234$, a = 20, c = 120, m = 6075,
 - (ii) $r_0 = 1234$, a = 137, c = 187, m = 256,
 - (iii) $r_0 = 123456789$, a = 65539, c = 0, $m = 2^{31} = 2147483648$ (RANDU Generator von IBM),
 - (iv) $r_0=1234,\,a=7^5=16807,\,c=0,\,m=2^{31}-1$ (ran1() aus Numerical Recipes, 2. Ausgabe, bzw. Matlab bis Version 4)

Ihren floating point-Generator zuerst auf Gleichverteilung, indem Sie für $N=10^5$ Werte ein Histogramm erstellen. Teilen Sie hierfür das Intervall [0,1[in 10 Bins der Länge 0.1 auf.

Abgabe: Vier Histogramme

c) Testen Sie die vier floating point-Generatoren nun auf Korrelationen, indem Sie jeweils N/2 Paare $\{(r_n, r_{n-1}), (r_{n-2}, r_{n-3}), \dots\}$ aus aufeinanderfolgenden Punkten in einem zweidimensionalen Quadrat $[0, 1]^2$ auftragen. Benutzen Sie bis zu $N = 10^5$ Werte. Beachten Sie, dass nur N < m Sinn ergibt.

Abgabe: Vier Plots

Aufgabe 2. Beliebige Verteilungen

(10 P.)

Ein Zufallsgenerator, der gleichverteilte Zahlen zwischen 0 und 1 erzeugt, kann auch eingesetzt werden, um beliebige Verteilungen zu erzeugen. Verwenden Sie für die folgenden Aufgabenteile den vierten Generator aus Aufgabe 1.

- a) Implementieren Sie den Box-Muller-Algorithmus, um eine Gauß-Verteilung zu erzeugen.
- b) Verwenden Sie den zentralen Grenzwertsatz, um eine Gauß-Verteilung zu erzeugen. Bilden Sie dafür die Summe von N (geeignet gewählten) gleichverteilten Zufallszahlen aus [0,1[. Wie bekommt man eine Verteilung mit Mittelwert 0 und Standardabweichung 1? Welche Nachteile hat diese Methode, z.B. in Korrektheit und Effizienz?
- c) Verwenden Sie das von Neumannsche Rückweisungsverfahren, um die Verteilung

$$p_1(x) = \frac{\sin(x)}{2} \tag{2}$$

in den Grenzen 0 bis π zu erzeugen.

d) Verwenden Sie die Transformationsmethode, um die Verteilung

$$p_2(x) = 3x^2 \tag{3}$$

in den Grenzen 0 bis 1 zu erzeugen.

Abgabe: pro Aufgabenteil ein Histogram mit jeweils 10^5 Zufallszahlen und der zugehörigen analytischen Verteilung