

## CSC 495.002 – Lecture 6 Web/Social Networks Privacy: K-anonymity

Dr. Özgür Kafalı

North Carolina State University Department of Computer Science

Fall 2017



#### PREVIOUSLY ON SOCIAL NETWORKS

### **Targeted Advertising**

- Online behavioral advertising definition
- Types of targeted advertising
- Types of cookies and how they work
- Tools to mitigate privacy concerns of targeted advertising
- People's attitudes towards private browsing tools



### **Problem Definition**

- Data owner, e.g., hospital
- Has private dataset with user specific data
- Goal: To share a version of the dataset with researchers
  - Dataset can help researchers to train better models
  - Results can help the data owner
- Provide scientific guarantees that users in the dataset cannot be re-identified
- Data should remain practically useful

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

2/26



#### **APPLICATION DOMAINS**

### **Real Problem**

- For, 87% (216M of 248M) of the US population
- Uniquely identifiable based only on
  - 5-digit ZIP code
  - Gender
  - Date of birth



### **Netflix Prize**

- In October 2006, Netflix offered a \$1M prize for a 10% improvement in its recommendation system
- Released a training dataset for competitors to train their systems
- Disclaimer: To protect customer privacy, all personal information identifying individual customers has been removed and all customer IDs have been replaced by randomly assigned IDs
- Netflix is not the only movie-rating portal on the web
- On IMDb, individuals can rate movies "not" anonymously
- Researchers from University of Texas at Austin, linked Netflix dataset with IMDb to de-anonymize the identity of some users

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

4 / 26



#### **APPLICATION DOMAINS**

## Differential Privacy

- Provide guarantees for your released dataset
- Formally
  - Maximize the accuracy of queries from statistical databases
  - While minimizing the chances of identifying its records



### **Studies**

- Look at two studies
  - Originators of k-anonymity
  - De-anonymizing the Netflix dataset

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

6/26



#### **TECHNIQUES & STUDIES**

## K-anonymity: A model for Protecting Privacy

#### k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY1

#### LATANYA SWEENEY

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA E-mail: latanya@cs.cmu.edu

Received May 2002

Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful? The solution provided in this paper includes a formal protection model named k-anonymity and a set of accompanying policies for deployment. A release provides k-anonymity protection if the information for each person contained in the release cannot be distinguished from at least k-1 individuals whose information also appears in the release. This paper also examines re-identification attacks that can be realized on releases that adhere to k-anonymity unless accompanying policies are respected. The k-anonymity protection model is important because it forms the basis on which the real-world systems known as Datafly,  $\mu$ -Argus and k-Similar provide guarantees of privacy protection.

Keywords: data anonymity, data privacy, re-identification, data fusion, privacy.

Sweeney. K-anonymity: A model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002



## Re-identification by Linking



Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

8/26



#### **TECHNIQUES & STUDIES**

### Re-identification of Individuals

- William Weld: Governor of MA at the time
- His medical record in the Group Insurance Commission (GIC) data
- Lived in Cambridge, MA
- From the voter list
  - Six people with his particular birth date
  - Three of them male
  - He was the only one in his ZIP code



### Statistical Databases

- <u>Data:</u> Person-specific information organized as a table of rows and columns
- Tuple: Corresponds to a row, describes the relationship among the set of values for a person
- Attribute: Corresponds to a column, describes a field or semantic category of information

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

10 / 26



#### **TECHNIQUES & STUDIES**

### **Quasi-Identifiers**

- Attributes that in combination can uniquely identify individuals
- Such as ZIP, gender, and date of birth
- Data owner should identify the quasi-identifier



### Sensitive vs Nonsensitive Attributes

| Zip Code                               | Gender | Date of Birth | Medical Condition |
|----------------------------------------|--------|---------------|-------------------|
| **                                     | **     | **            | **                |
| **                                     | **     | **            | **                |
| ή                                      |        |               |                   |
| `nonsensitive' (at least individually) |        |               | sensitive         |

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

12 / 26



#### **TECHNIQUES & STUDIES**

### **Exercise: Column Combinations**

- Table with three columns
  - Physician
  - Patient
  - Medication
- Which combinations are sensitive?
  - R(Physician, Patient): Sensitive?
  - R(Physician, Medication): Sensitive?
  - R(Patient, Medication): Sensitive?



### K-Anonymity: Formal Definition

- Informally, your information contained in the released dataset cannot be distinguished from at least k-1 other individuals whose information also appear in the dataset
- Formally,
  - Let  $RT(A_1, ..., A_n)$  be a table
  - Let QI<sub>RT</sub> be the quasi-identifier for RT
  - RT satisfies k-anonymity if and only if each sequence of values in RT[QI<sub>RT</sub>] appears with at least k occurrences

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

14 / 26



#### **TECHNIQUES & STUDIES**

### Methods to Achieve K-anonymity

- Suppression: Values replaced with '\*'
  - All or some values of a column may be replaced
  - Attributes such as "Name" or "Religion"
- Generalization: Values replaced with a broader category
  - '19' of the attribute "Age" may be replaced with '< 20'
  - Replace '23' with '20 < Age  $\le$  30'



## **Example K-Anonymous Table**

|     | Race  | Birth | Gender | ZIP   | Problem      |
|-----|-------|-------|--------|-------|--------------|
| t1  | Black | 1965  | m      | 0214* | short breath |
| t2  | Black | 1965  | m      | 0214* | chest pain   |
| t3  | Black | 1965  | f      | 0213* | hypertension |
| t4  | Black | 1965  | f      | 0213* | hypertension |
| t5  | Black | 1964  | f      | 0213* | obesity      |
| t6  | Black | 1964  | f      | 0213* | chest pain   |
| t7  | White | 1964  | m      | 0213* | chest pain   |
| t8  | White | 1964  | m      | 0213* | obesity      |
| t9  | White | 1964  | m      | 0213* | short breath |
| t10 | White | 1967  | m      | 0213* | chest pain   |
| t11 | White | 1967  | m      | 0213* | chest pain   |

- QI = {Race, Birth, Gender, ZIP}
- k = 2

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

16 / 26



#### **TECHNIQUES & STUDIES**

## More Examples

| Race  | ZIP   |
|-------|-------|
| Asian | 02138 |
| Asian | 02139 |
| Asian | 02141 |
| Asian | 02142 |
| Black | 02138 |
| Black | 02139 |
| Black | 02141 |
| Black | 02142 |
| White | 02138 |
| White | 02139 |
| White | 02141 |
| White | 02142 |
| P     | PT T  |

GT1

| Race   | ZIP   |
|--------|-------|
| Person | 02138 |
| Person | 02139 |
| Person | 02141 |
| Person | 02142 |
| Person | 02138 |
| Person | 02139 |
| Person | 02141 |
| Person | 02142 |
| Person | 02138 |
| Person | 02139 |
| Person | 02141 |
| Person | 02142 |

**ZIP** Race Asian 02130 Asian 02130 Asian 02140 Asian 02140 Black 02130 Black 02130 Black 02140 Black 02140 White 02130 White 02130 White 02140 White 02140

GT2



# Exercise: Make This Table 4-anonymous

|    | Zip code | Age | Nationality | Condition       |
|----|----------|-----|-------------|-----------------|
| 1  | 27609    | 18  | Chinese     | Heart Disease   |
| 2  | 27615    | 19  | American    | Heart Disease   |
| 3  | 26724    | 50  | Indian      | Cancer          |
| 4  | 26724    | 55  | Chinese     | Heart Disease   |
| 5  | 27615    | 21  | Japanese    | Viral Infection |
| 6  | 26725    | 47  | American    | Viral Infection |
| 7  | 27609    | 23  | American    | Viral Infection |
| 8  | 27609    | 31  | American    | Cancer          |
| 9  | 27615    | 36  | Japanese    | Cancer          |
| 10 | 26725    | 49  | American    | Viral Infection |
| 11 | 27609    | 37  | Indian      | Cancer          |
| 12 | 27615    | 35  | American    | Cancer          |

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

18 / 26



### **TECHNIQUES & STUDIES**

## **One Solution**

|    | Zip code | Age | Nationality | Condition       |
|----|----------|-----|-------------|-----------------|
| 1  | 276**    | <30 | *           | Heart Disease   |
| 2  | 276**    | <30 | *           | Heart Disease   |
| 3  | 2672*    | ≧40 | *           | Cancer          |
| 4  | 2672*    | ≧40 | *           | Heart Disease   |
| 5  | 276**    | <30 | *           | Viral Infection |
| 6  | 2672*    | ≧40 | *           | Viral Infection |
| 7  | 276**    | <30 | *           | Viral Infection |
| 8  | 276**    | 3*  | *           | Cancer          |
| 9  | 276**    | 3*  | *           | Cancer          |
| 10 | 2672*    | ≧40 | *           | Viral Infection |
| 11 | 276**    | 3*  | *           | Cancer          |
| 12 | 276**    | 3*  | *           | Cancer          |



## L-diversity

| 276** | 3* | * | Heart<br>Disease   |
|-------|----|---|--------------------|
| 276** | 3* | * | Cancer             |
| 276** | 3* | * | Viral<br>Infection |
| 276** | 3* | * | Flu                |

Machanavajjhala et al. I-diversity: Privacy beyond k-anonymity. International Conference on Data Engineering, 2006

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 201

20 / 26



### **TECHNIQUES & STUDIES**

## L-diversity Solution

| 276** | 3* | * |
|-------|----|---|
| 276** | 3* | * |
| 276** | 3* | * |
| 276** | 3* | * |



## Exercise: L-diversity

|    | Zip code | Age | Nationality | Condition     |
|----|----------|-----|-------------|---------------|
| 1  | 276**    | <30 | *           | Cancer        |
| 2  | 276**    | <30 | *           | Cancer        |
| 3  | 2672*    | ≧40 | *           | Flu           |
| 4  | 2672*    | ≧40 | *           | Heart Disease |
| 5  | 276**    | <30 | *           | Heart Disease |
| 6  | 2672*    | ≧40 | *           | Heart Disease |
| 7  | 276**    | <30 | *           | Heart Disease |
| 8  | 276**    | 3*  | *           | Flu           |
| 9  | 276**    | 3*  | *           | Heart Disease |
| 10 | 2672*    | ≧40 | *           | Flu           |
| 11 | 276*     | 3*  | *           | Flu           |
| 12 | 276**    | 3*  | *           | Heart Disease |

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

22 / 26



### **TECHNIQUES & STUDIES**

# L-diversity Blocks

|    | Zip code | Age | Nationality | Condition     |
|----|----------|-----|-------------|---------------|
| 1  | 276**    | <30 | *           | Cancer        |
| 2  | 276**    | <30 | *           | Cancer        |
| 7  | 276**    | <30 | *           | Heart Disease |
| 5  | 276**    | <30 | *           | Heart Disease |
| 3  | 2672*    | ≧40 | *           | Flu           |
| 4  | 2672*    | ≧40 | *           | Heart Disease |
| 6  | 2672*    | ≧40 | *           | Heart Disease |
| 10 | 2672*    | ≧40 | *           | Flu           |
| 8  | 276**    | 3*  | *           | Flu           |
| 9  | 276**    | 3*  | *           | Heart Disease |
| 11 | 276*     | 3*  | *           | Flu           |
| 12 | 276**    | 3*  | *           | Heart Disease |



## L-diversity Concerns

- Some medical conditions are more sensitive than others
- Some medical conditions may indicate same disease

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

24 / 26



#### **TECHNIQUES & STUDIES**

### **T-closeness**



Measure semantic distance between concepts





## Example T-closeness Table

| Zip code | Age | Disease        |
|----------|-----|----------------|
| 4767*    | <40 | Gastric ulcer  |
| 4767*    | <40 | Stomach cancer |
| 4767*    | <40 | Pneumonia      |
| 4790*    | >39 | Gastritis      |
| 4790*    | >39 | Flu            |
| 4790*    | >39 | Bronchitis     |
| 2760*    | <40 | Gastritis      |
| 2760*    | <40 | Bronchitis     |
| 2760*    | <40 | Stomach cancer |

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017

26 / 26