Assignment #8

No late assignments accepted!

ECE 487 (Data Communications Networks) Se	ction B1	Dr. Hai Jiang
Electrical and Computer Engineering, Universit		Winter 2020
1 0	Your Fist Name:	
Your Student ID:	_	

Due: Thursday, March 19, 2020, 4:00 PM, in the assignment box at 2nd Floor - Pedway between ICE and ETLC

- 1. Change the following IP addresses from binary notation to dotted-decimal notation. (4 points)
- a) 01110110 11101110 01100111 01111011
- b) 10101110 11000010 111111000 00011101
- c) 11011111 11110000 00001110 01011101
- d) 11110111 11101111 11000111 00011100

Solution:

- a) 118.238.103.123
- b) 174.194.248.29
- c) 223.240.14.93
- d) 247.239.199.28
- 2. In a block of addresses with mask "/15", we know the IP address of one host is 24.32.12.56. What are the first address and the last address in this block? **Please show the addresses using dotted-decimal notation**. (4 points)

Solution:

The mask is n=15.

We write the given IP address in binary: 00011000.00100000.00001100.00111000

- 3. (12 points) An organization is granted the address block 16.0.0.0/8. The administrator wants to create 1024 equal-size subnets. Assume no address is left unused after the 1024 subnets are created.
- a) Find the subnet mask. (2 points)
- b) Find the number of addresses in each subnet. (2 points)
- c) Find the first and last addresses (using dotted-decimal notation) in the first subnet. (4 points)
- d) Find the first and last addresses (using dotted-decimal notation) in the last subnet. (4 points)

Solution:

a)&b): the total number of addresses of the organization is: $2^{32-8} = 2^{24}$.

The number of addresses in each subnet is $2^{24}/1024 = 2^{14}$. Therefore, the subnet mask is 32-14=18.

Therefore, for the first subnet, the first address is $0b \ \underline{00010000 \ 00000000 \ 00}000000 \ 00000000 \ (16.0.0.0)$, and the last address is $0b \ \underline{00010000 \ 00000000 \ 00}111111 \ 11111111 \ (16.0.63.255)$.

For the last subnet, the first address is 0b $\underline{00010000}$ $\underline{11111111}$ $\underline{11}000000$ 00000000 (16.255.192.0), and the last address is 0b $\underline{00010000}$ $\underline{11111111}$ $\underline{11}11111$ 11111111 (16.255.255.255).