STA 250/MTH 342 – Intro to Mathematical Statistics

Goodness-of-fit test: Weldon's Data

No. of Dice showing 5 or 6	Observed (X_i)	Theory (m_i)	$X_i - m_i$
0	185	203	-18
1	1149	1217	-68
2	3265	3345	-80
3	5475	5576	-101
4	6114	6273	-159
5	5194	5018	176
6	3067	2927	140
7	1331	1254	77
8	403	392	11
9	105	87	18
10-12	18	14	4
Total	26,306	26,306	0

After the grouping, we have k = 11 categories, and we carry out the tests with this new k.

► The χ^2 statistic is

$$Q = \frac{(-18)^2}{203} + \frac{(-68)^2}{1217} + \frac{(-80)^2}{3345} + \dots + \frac{18^2}{87} + \frac{4^2}{14} \approx 35.9.$$

- ▶ What is the sampling distribution of Q under H_0 ?
- ▶ The rejection region corresponding to level α is

$$\mathscr{R}(\alpha): \quad Q > F_{\chi_{10}^2}^{-1}(1-\alpha).$$

► The *p*-value is

$$1 - F_{\chi_{10}^2}(35.9) \approx .0000876 < .01.$$

▶ So we will reject H_0 at level $\alpha = .01$ or .05 etc.

Back to Weldon's data

No. of Dice showing 5 or 6	Observed (X_i)	Theory (m_i)	$X_i - m_i$
0	185	203	-18
1	1149	1217	-68
2	3265	3345	-80
3	5475	5576	-101
4	6114	6273	-159
5	5194	5018	176
6	3067	2927	140
7	1331	1254	77
8	403	392	11
9	105	87	18
10	14	13	1
11	4	1	3
12	0	0	0
Total	26,306	26,306	0

- ► The data provides strong evidence against Weldon's original null hypothesis, that the dice show "5" or "6" with 1/3 chance.
- ► The pattern in the table seems to suggest that the chance for getting "5" or "6" may be a a little larger than 1/3.
- ▶ Weldon accepted Pearson's response, and asked whether the dice are at least independently tossed with the same probability θ for "5" or "6".
- ► This is the null hypothesis that the number of "5" or "6" that one gets from each roll (of 12 dice) follow a Binomial(12,*p*) distribtuion, as opposed to Binomial(12,1/3) as he originally suggested.

Formulate the testing problem

- ▶ Weldon's new problem falls into the following general form.
- ► For multinomial(n; $\theta_1, \theta_2, ..., \theta_k$) data ($X_1, X_2, ..., X_k$), we are interested in testing the null hypothesis

$$H_0: \theta_1 = a_1(p), \theta_2 = a_2(p), \dots, \theta_k = a_k(p)$$

where $a_1(p), a_2(p), \dots, a_k(p)$ are functions of an unknown (possibly vector-valued) parameter p, versus the alternative

$$H_1$$
: otherwise.

That is, at least one θ_i is not equal to $a_i(p)$.

For Weldon's data, θ is the probability for a die to show "5" or "6".

- ► The slight complication here is that now the null hypothesis is also composite.
- ▶ But we have learned how to test a composite null versus a composite alternative!

► Recall our earlier result: under some "smoothness" conditions, when the sample size is large

$$-2\log\Lambda \sim_{approx} \chi_h^2$$

where the degrees of freedom $h = \text{Dim}(\Theta_0 \cup \Theta_1) - \text{Dim}(\Theta_0)$.

- ▶ $Dim(\Theta_0 \cup \Theta_1)$ is the number of *free* parameters estimated in computing the global MLE, and $Dim(\Theta_0)$ is the number of *free* parameters estimated in computing the restricted MLE.
- This is just a special case of our earlier general result about −2 log Λ.
- ► Similarly,

$$Q \sim_{approx} \chi_h^2$$
.

- For Weldon's problem, the degree of freedom is h = k 1 1 = k 2. Recall that when the null hypothesis is simple, the degree of freedom is k 1 0 = k 1.
- ▶ There is a reduction in the degree of freedom.

Specific form of the tests for Weldon's data

▶ In this case, the new null hypothesis is

$$\Theta_0 = \{(\theta_1, \theta_2, \dots, \theta_k) : \theta_i = a_i(p) \text{ for } i = 1, 2, \dots, k\}$$

and

$$\Theta_1 = \Theta \backslash \Theta_0$$

where $a_i(p) = \binom{12}{i} p^i (1-p)^{12-i}$ and

$$\Theta = \left\{ (\theta_1, \theta_2, \dots, \theta_k) : \theta_i \ge 0 \text{ for } i = 1, 2, \dots, k, \sum_{i=1}^k \theta_i = 1 \right\}$$

Now we reject the null when

$$\Lambda = \frac{\max_{(\theta_1, \theta_2, \dots, \theta_k) \in \Theta_0} L(\theta_1, \theta_2, \dots, \theta_k)}{\max_{(\theta_1, \theta_2, \dots, \theta_k) \in \Theta} L(\theta_1, \theta_2, \dots, \theta_k)} < K.$$

► Now the restricted MLE (by the invariance property) is

$$\hat{\theta}_0 = (\hat{a}_1, \hat{a}_2, \dots, \hat{a}_k) = (a_1(\hat{p}), a_2(\hat{p}), \dots, a_k(\hat{p})).$$

► The unrestricted MLE is still

$$\hat{\theta} = \left(\frac{X_1}{n}, \frac{X_2}{n}, \dots, \frac{X_k}{n}\right)$$

► The LR becomes

$$\Lambda = \frac{L(\hat{a}_{1}, \hat{a}_{2}, \dots, \hat{a}_{k})}{L(\frac{X_{1}}{n}, \frac{X_{2}}{n}, \dots, \frac{X_{k}}{n})} \\
= \frac{\frac{n!}{X_{1}!X_{2}! \cdots X_{k}!} \hat{a}_{1}^{X_{1}} \hat{a}_{2}^{X_{2}} \cdots \hat{a}_{k}^{X_{k}}}{\frac{n!}{X_{1}!X_{2}! \cdots X_{k}!} (\frac{X_{1}}{n})^{X_{1}} (\frac{X_{2}}{n})^{X_{2}} \cdots (\frac{X_{k}}{n})^{X_{k}}} \\
= \left(\frac{n\hat{a}_{1}}{X_{1}}\right)^{X_{1}} \left(\frac{n\hat{a}_{2}}{X_{2}}\right)^{X_{2}} \cdots \left(\frac{n\hat{a}_{k}}{X_{k}}\right)^{X_{k}} \\
= \left(\frac{\hat{m}_{1}}{X_{1}}\right)^{X_{1}} \left(\frac{\hat{m}_{2}}{X_{2}}\right)^{X_{2}} \cdots \left(\frac{\hat{m}_{k}}{X_{k}}\right)^{X_{k}}$$

where $\hat{m}_i = n\hat{a}_i$ is the MLE of the expected value of X_i under the null hypothesis H_0 .

The LR test

► So the LR test statistic becomes rejecting when

$$-2\log \Lambda = -2\sum_{i=1}^{k} X_i \log \left(\frac{\hat{m}_i}{X_i}\right) = \sum_{i=1}^{k} 2X_i \log \left(\frac{X_i}{\hat{m}_i}\right) > C.$$

• Similarly, the χ^2 test rejects when

$$Q = \sum_{i=1}^{k} \frac{(X_i - \hat{m}_i)^2}{\hat{m}_i} > C.$$

▶ What is the approximate sampling distribution of $-2 \log \Lambda$ and Q under H_0 ?

- ▶ Weldon computed the MLE for p, the probability of getting a "5" or "6" from the data he has, under H_0 .
- ▶ How to do this?
- By brute-force, write down the joint likelihood, take log, and derivative . . .
- ▶ A shortcut: There are a total of

$$12 \times 26,306 = 315,672$$

dice tosses.

Out of these,

$$0 \times 185 + 1 \times 1149 + \dots + 11 \times 4 + 12 \times 0 = 106,602$$

tosses show "5" or "6".

ightharpoonup Treating each toss as a Bernoulli(p) trial, we have the MLE for p

$$\hat{p} = \frac{106,602}{315,672} = .337699.$$

▶ Under this new "theory", we can compute the MLE of the expected counts (by what principle?)

$$\hat{m}_i = n \cdot a_i(\hat{p}) = 26,306 \times {12 \choose i} \hat{p}^i (1 - \hat{p})^{12 - i}$$
$$= 26,306 \times {12 \choose i} (.337699)^i (1 - .337699)^{12 - i}$$

for $i = 0, 1, 2, \dots, 12$.

Under the new "theory"

No. of Dice showing 5 or 6	Observed (X_i)	Theory (\hat{m}_i)	$X_i - \hat{m}_i$
0	185	187.4	-2.4
1	1149	1146.5	2.5
2	3265	3215.2	49.8
3	5475	5464.7	10.3
4	6114	6269.3	-155.3
5	5194	5114.7	79.3
6	3067	3042.5	24.5
7	1331	1329.7	1.3
8	403	423.8	-20.8
9	105	96.0	9.0
10	14	14.7	-0.7
11	4	1.4	2.6
12	0	0.1	-0.1
Total	26,306	26,306	0

Again let's group the last three categories—a total of 11 categories.

Let us compute the χ^2 statistic as before (after combining the last three categories)

$$Q = \frac{(-2.4)^2}{187.4} + \frac{2.5^2}{1146.5} + \dots + \frac{1.8^2}{16.2} = 8.2.$$

- ▶ Similarly, we can compute the LR statistic $-2\log \Lambda$.
- ► The corresponding *p*-value is .51, so we still do not reject the null hypothesis for all levels no more than .51.

Example: Galton's height data

			Wife:		
		Tall	Medium	Short	Total
	Tall	18	28	14	60
Husband:	Medium	20	51	28	99
	Short	12	25	9	46
	Total	50	104	51	205

- ➤ This is an example of a *contingency table*, a cross-classification of a number of "individual cases" according to two (or more) different categorical measurements.
- ► These data are a list of counts of observations, organized in a *rectangular list* whose margins correspond to the classifying factors.
- ▶ What is the sampling unit (i.e. an observation) here?
- ▶ What are the individual cases and the "classifying factors" here?

			Factor B		
		B_1	B_2	B_3	Total
	A_1	X_{11}	X_{12}	X_{13}	X_{1+}
Factor A	A_2	X_{21}	X_{22}	X_{23}	X_{2+}
	A_3	X_{31}	X_{32}	X_{33}	X_{3+}
	Total	X_{+1}	X_{+2}	X_{+3}	$X_{++} = n$

- ▶ We use X_{ij} to denote the count in the (i,j)th cell—that is the count in row i and column j.
- ▶ We use X_{i+} to denote the marginal total count for the *i*th row, and X_{+j} the marginal total count for the *j*th column, and X_{++} the overall total count, which is equal to n, the sample size.

				Factor B		
		B_1	B_2	• • •	B_c	Total
	A_1	$X_{11} X_{21}$	X_{12}	• • •	X_{1c}	X_{1+}
Factor A	A_2	X_{21}	X_{22}	• • •	X_{2c}	X_{2+}
	• • •		• • •	• • •	• • •	
	A_r	X_{r1}	X_{r2}	• • •	X_{rc}	X_{r+}
	Total	X_{+1}	X_{+2}	•••	X_{+c}	$X_{++} = n$

- \blacktriangleright More generally, we may have a table with r rows and c columns.
- We have

$$X_{i+} = \sum_{j=1}^{c} X_{ij}, \quad X_{+j} = \sum_{i=1}^{r} X_{ij}, \quad \text{and} \quad X_{++} = \sum_{i=1}^{r} \sum_{j=1}^{c} X_{ij} = n.$$

▶ In some problems, the rc counts X_{ij} can be modeled by a multinomial distribution with n being the total number of trials and $\theta_{ij} = P(A_i \cap B_j)$ the probability of the (i,j)th catogory.

Multinomial model on a contingency table

				Factor B		
		B_1	B_2	• • •	B_c	Total
	A_1	θ_{11}	θ_{12}	• • •	θ_{1c}	θ_{1+}
Factor A	A_2	θ_{21}	θ_{22}	• • •	θ_{2c}	θ_{2+}
	• • •	• • • •	• • •	• • •	• • •	• • • •
	A_r	θ_{r1}	θ_{r2}	• • •	θ_{rc}	$ heta_{r+}$
	Total	θ_{+1}	θ_{+2}	• • •	θ_{+c}	$\theta_{++}=1$

► Correspondingly, we use θ_{i+} , θ_{+j} to denote the total row and column marginal probabilities:

$$\theta_{i+} = \sum_{j=1}^{c} \theta_{ij} = P(A_i), \quad \theta_{+j} = \sum_{i=1}^{r} \theta_{ij} = P(B_j),$$

and

$$\theta_{++} = \sum_{i=1}^{r} \sum_{j=1}^{c} \theta_{ij} = 1.$$

Testing the independence null hypothesis

- Now consider testing the null hypothesis that the two categories are independent of each other: $P(A_i \cap B_j) = P(A_i)P(B_j)$ for all i and j.
- ▶ Under this null hypothesis, the cell probabilities are completely specified by the marginal probabilities θ_{i+} and θ_{+i} for all i and j.
- ► Formally, we want to test

$$H_0: \theta_{ij} = a_{ij}(\theta_{1+}, \theta_{2+}, \dots, \theta_{r+}, \theta_{r+1}, \theta_{r+2}, \dots, \theta_{r+c}) = \theta_{i+}\theta_{r+j}$$

for all i and j, versus the alternative

 H_1 : otherwise,

That is, at least one of the θ_{ij} is not equal to $\theta_{i+}\theta_{+j}$. (This is called the *test of independence*.)

- ▶ Now we are back in the situation of testing goodness-of-fit with the null hypothesis determined by some unknown parameters.
- Recall that we can apply either the LR test or the χ^2 test.
- ▶ To apply these tests, we can first find the MLE of the unknown parameters $(\theta_{1+}, \theta_{2+}, \dots, \theta_{r+}, \theta_{+1}, \theta_{+2}, \dots, \theta_{+c})$ under the null hypothesis.
- ► The MLE's are the corresponding observed proportions (show!):

$$\hat{\theta}_{i+} = \frac{X_{i+}}{n}$$
 and $\hat{\theta}_{+j} = \frac{X_{+j}}{n}$

for all i and j.

▶ Thus the MLE for θ_{ij} under the null is

$$\hat{ heta}_{ij}=\hat{a}_{ij}=\hat{ heta}_{i+}\hat{ heta}_{+j}=rac{X_{i+}X_{+j}}{n^2}$$

by the *invariance property* of MLEs.

► Accordingly, the MLE of the expected counts under the null are

$$\hat{m}_{ij}=m_{ij}(\hat{oldsymbol{ heta}})=n\hat{oldsymbol{ heta}}_{ij}=n\hat{a}_{ij}=rac{X_{i+}X_{+j}}{n}.$$

► The LR is

$$\Lambda = rac{rac{n!}{\prod_{i=1}^{r}\prod_{j=1}^{c}X_{ij}}\prod_{i=1}^{r}\prod_{j=1}^{c}\hat{a}_{ij}^{X_{ij}}}{rac{n!}{\prod_{i=1}^{r}\prod_{j=1}^{c}X_{ij}}\prod_{i=1}^{r}\prod_{j=1}^{c}\left(rac{X_{ij}}{n}
ight)^{X_{ij}}} = \prod_{i=1}^{r}\prod_{i=1}^{c}\left(rac{\hat{n}\hat{a}_{ij}}{X_{ij}}
ight)^{X_{ij}} = \prod_{i=1}^{r}\prod_{i=1}^{c}\left(rac{\hat{m}_{ij}}{X_{ij}}
ight)^{X_{ij}}$$

So the LR test statistic is

$$-2\log\Lambda = \sum_{i=1}^{r} \sum_{i=1}^{c} 2X_{ij} \log\left(\frac{X_{ij}}{\hat{m}_{ij}}\right).$$

► The χ^2 test statistic is

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(X_{ij} - \hat{m}_{ij})^{2}}{\hat{m}_{ij}} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(X_{ij} - \frac{X_{i+}X_{+j}}{n}\right)^{2}}{\frac{X_{i+}X_{+j}}{n}}.$$

- ▶ What is the degrees of freedom for their approximate sampling distribution under the null hypothesis?
- ▶ What is the number of *free* parameters under H_0 , that is in Θ_0 ?
- ▶ We have (r-1) free row marginal probabilities and (c-1) free column marginal probabilities. So the total is

$$(r-1)+(c-1)$$
.

- ▶ What is the number of *free* parameters overall?
- ▶ We have a total of (rc-1) free cell probabilities.
- ► Therefore the degrees of freedom for the approximate sampling distribution is

$$(rc-1)-((r-1)+(c-1))=rc-r-c+1=(r-1)(c-1).$$

Back to Galton's data

			Wife:		
		Tall	Medium	Short	Total
	Tall	18 (14.6)	28 (30.4)	14 (14.9)	60
Husband:	Medium	20 (24.1)	28 (30.4) 51 (50.2)	28 (24.6)	99
	Short	12 (11.2)	25 (23.3)	9 (11.4)	46
	Total	50	104	51	205

▶ The MLE of the expected count \hat{m}_{ij} are given in the parentheses.

$$Q = \frac{(18 - 14.6)^2}{14.6} + \frac{(28 - 30.4)^2}{30.4} + \dots + \frac{(9 - 11.4)^2}{11.4} = 2.91.$$

- ▶ The degrees of freedom is $(r-1)(c-1) = 2 \times 2 = 4$.
- ► The *p*-value is $1 F_{\chi_4^2}(2.91) \approx .573$.
- ➤ So we do not reject the null hypothesis of independence under any level less than .573. There is no evidence for rejecting the null that the spouses were selected without regard to height.