

Exam 2, Math 330

1. (a) Suppose $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. Suppose x_0 is a limit point of D and $L \in \mathbb{R}$. Complete the $\epsilon - \delta$ definition: We say the **limit of** f **as** x **approaches** x_0 **is** L and write $\lim_{x \to x_0} f(x) = L$ iff...

 $\forall \epsilon 70, \exists 570 \text{ s.t. } \forall x \in \mathbb{D},$ if $0 < |x - x_0| < \delta$, then $|f(x) - L| < \epsilon$.

(b) Use the $\epsilon - \delta$ definition to prove that $\lim_{x \to 3} (2x^2 - 7x) = -3$

Let 870.

Let $S = mm \stackrel{?}{\leq} \stackrel{\leq}{\leq} 2$, 6.13 > 6. Suppose $x \in \mathbb{R}$ is such that $|x-3| \leq S$.

Then 1x-3/<0,1

Sook 2x-1 < 5.2

Also 1x-31 < E 5.2

So $|(2x-1)(x-3)| < 5.2|x-3| < \epsilon$.

 $\pm y$, $|2x^2-7x-(-3)|<\epsilon$.

 S_{10} =: $|2x^2-7x+3| < \epsilon$ $|(2x-1)(x-3)| < \epsilon$ $|(2x-1)(x-3)| < \epsilon$ |(2x-1)(x-3)| < 5.2 |(2x-1)(x-3)| < 5.2 |(2x-1)(x-3)| < 5.2 |(2x-1)(x-3)| < 5.2

- 2. We say $f: D \to \mathbb{R}$ is uniformly continuous on D iff $\forall \{u_n\}, \{v_n\} \subseteq D$, if $\lim_{n \to \infty} (u_n v_n) = 0$, then $\lim_{n \to \infty} (f(u_n) f(v_n)) = 0$.
 - (a) Negate the above definition so that we see what $f: D \to \mathbb{R}$ is **not uniformly** continuous on D means.

(b) Consider $g:(0,2)\to\mathbb{R}$ by $g(x)=\frac{1}{x}$. Prove that g is not uniformly continuous on (0,2).

Then
$$\{u_n = \frac{2}{n} \text{ and } V_n = \frac{1}{n} \text{ for } n \geq 1$$
.

Then $\{u_n\}$, $\{V_n\} \subseteq (0, 2)$ and

$$\lim_{n\to\infty} \left(\frac{2}{n} - \frac{1}{n}\right) = 0 - 0 = 0$$

But
$$\lim_{n\to\infty} \left(g(u_n) - g(v_n)\right) = \lim_{n\to\infty} \left(\frac{n}{2} - n\right)$$

- 3. Choose one of the following two to prove. Do not submit answers for both.
 - (a) Suppose $f:[1,3] \to \mathbb{R}$ and $g:[1,3] \to \mathbb{R}$ are continuous functions on [1,3]. Define $h:[1,3] \to \mathbb{R}$ by h(x) = f(x)g(x). Suppose that f(1) = -5 = g(1) and that f(3) = 10 = g(3). Prove $\exists x_0 \in (1,3)$ such that $h(x_0) = 0$.
 - (b) Suppose that $g:[1,3] \to \mathbb{R}$ is a continuous function on [1,3] such that $\forall x \in [1,3], g(x) > 0$. Define $h:[1,3] \to \mathbb{R}$ by $h(x) = \frac{1}{g(x)}$. Prove $\exists M \in \mathbb{R}$ such that $\forall x \in [1,3]$, we have h(x) < M.
 - (a) Notice that f(t) = -r and f(3) = 10. Since f is continuous on [1,3] and -5 < 0 < 10. the IVF rays $\exists x_0 \in (1,3)$ s.t. $f(x_0) = 0$. Then $h(x_0) = f(x_0) g(x_0) = 0 - g(x_0) = 0$.
- (b) Since g is continuous on [1,3] and $g(x) \neq 0$ on [1,3], $h(x) = \frac{1}{g(x)}$ is continuous on [1,3]. By EVT, h attains a max on [1,3] and $\exists x_0 \in [1,3]$ st. $\forall x \in [1,3]$, $f(x) \leq f(x_0)$. Use $M = f(x_0) + 1$.

14

4. (a) Complete the definition: we say that $x_0 \in \mathbb{R}$ is a **limit point of** $D \subseteq \mathbb{R}$ iff ...

∃{xn3 ⊆ 2 × 2xo3 such that lim xn = xo.

i. Give an example of a set C with no limit points. (No justification needed.)

C= {1,33

ii. Give an example of a set D with a limit point x_0 where $x_0 \notin D$. (No justification needed.)

D = [1,3) 3 is a limit point not

(b) Suppose $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. Complete the sequential definition: we say f is **continuous at** $x_0 \in D$ iff...

VFEn3 = D, it low xn = xo, trem low f(xn) - f(x).

(c) Use the sequential definition of continuity and limit laws to prove that $f: [2,5] \to \mathbb{R}$ by $f(x) = \frac{3x}{x^2 + 1}$ is continuous at $x_0 = 4$.

Let FX, P & [2,5] and suppose ling xn = 4.

Then lon 3x = 12 and long (x +1) = 17.

Thus like $f(x_n) = \lim_{n \to \infty} \frac{P(x_n)}{x_{n+1}^2} = \frac{12}{17} = f(4)$

- 5. For each problem, circle T for true or F for false.
- T For every set $D \in \mathbb{R}$, all points of D are limit points.
- T F The function $f:[2,4] \to \mathbb{R}$ by $f(x) = \frac{x-3}{x+1}$ is uniformly continuous.
 - T FAll functions $f:[0,1] \to \mathbb{R}$ such that f([0,1]) is bounded are continuous.
- T Suppose $f: D \to \mathbb{R}$ is not continuous at $x_0 \in D$. Then $\forall \delta > 0, \exists \epsilon > 0$ such that $\exists x \in D$ where $0 < |x x_0| < \delta$ and $|f(x) f(x_0)| < \epsilon$.
- The function $f:(0,1]\to\mathbb{R}$ by f(x)=2x+1 attains a maximum value.
- There exists a solution to the equation $4x^3 + 3x^2 4 = 0$ on the interval $(0, \infty)$.
 - T Every function $f: \mathbb{R} \to \mathbb{R}$ such that f(x) is a degree four polynomial has a solution to f(x) = 0 for some $x \in \mathbb{R}$.
 - T (F)Suppose a < b. Every function $f : [a, b] \to \mathbb{R}$ is uniformly continuous.