DeepVoice

Extracting meaningful signal representation for Speaker Recognition using deep architectures

Rémi Hutin, Rémy Sun, Raphaël Truffet Supervisors : Guillaume Gravier and Vedran Vukotić

Computer science department ENS Rennes

Linkmedia project IRISA

Outline

- 1 Signal representation for speaker recognition
- 2 Deep learning
- Methods
- Results
- Conclusion

Outline

- 1 Signal representation for speaker recognition
- Deep learning
- Methods
- 4 Results
- Conclusion

Signal processing workflow

Question

Can we do better than i-vectors?

Signal processing workflow

Outline

- 1 Signal representation for speaker recognition
- 2 Deep learning
- Methods
- 4 Results
- Conclusion

Deep neural networks are interesting because :

Non-linear feature extraction

Deep neural networks are interesting because :

- Non-linear feature extraction
- They naturally generate several level of representation

Deep neural networks are interesting because :

- Non-linear feature extraction
- They naturally generate several level of representation
- They bring out unsuspected features

Deep neural networks are interesting because :

- Non-linear feature extraction
- They naturally generate several level of representation
- They bring out unsuspected features
- There is a multitude of architectures

Formal neuron

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Formal neuron

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Formal neuron

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Neural network

 W_{1} , b_{1} W_{2} , b_{2} W_{3} , b_{3}

Neural network

G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

encoder

G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

$$x_{latent} = encoder(x_{input})$$

 $x_{output} = decoder(x_{latent}) \simeq x_{input}$

G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

Danger: Learning the identity

^{1.} G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

^{2.} P.Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1096 - 1103, ACM, 2008.

Danger: Learning the identity

Several solutions:

^{1.} G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

^{2.} P.Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1096 - 1103, ACM, 2008.

Danger: Learning the identity

Several solutions :

Compressing 1 : $size(x_{latent}) < size(x_{input})$

^{1.} G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

^{2.} P.Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1096 - 1103, ACM, 2008.

Danger: Learning the identity

Several solutions:

Compressing
1
: Adding noise 2 : $size(x_{latent}) < size(x_{input})$ $x_{input} = objective + noise$

^{1.} G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

^{2.} P.Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1096 - 1103, ACM, 2008.

New representation

New representation

Outline

- 1 Signal representation for speaker recognition
- Deep learning
- Methods
- 4 Results
- Conclusion

Filtering out non-speaker noise

 Filter out non-speaker dependant features

$$M = m + Tw$$

Filtering out non-speaker noise

- Filter out non-speaker dependant features (noise)
- Need to denoise the signal

$$M = noise + s_{speaker}$$

Filtering out non-speaker noise

- Filter out non-speaker dependant features (noise)
- Need to denoise the signal
- Same speaker, different signals
- Same signal, different non-speaker dependant noise

$$M_1 = noise_1 + s_{speaker}$$

 $M_2 = noise_2 + s_{speaker}$
 $s_{speaker} = encode(M)$

Processed data

- Raw data: 15308 numeric sound files from BFMTV with labeled speakers
- Pre-processed data : 3 678 470 pairs (v_1, v_2) of supervectors spoken by the same person
- Input : Supervector v₁ of length 2304
- Output : Supervector v₂ of length 2304

Processed data

- Raw data: 15308 numeric sound files from BFMTV with labeled speakers
- Pre-processed data : 3 678 470 pairs (v_1, v_2) of supervectors spoken by the same person
- Input: Supervector v₁ of length 2304
- Output : Supervector v₂ of length 2304

$$\begin{bmatrix} v_1^{0,0} \\ v_1^{0,1} \\ v_1^{0,1} \\ \dots \\ v_1^{0,63} \\ v_1^{1,0} \\ \dots \\ v_1^{N,63} \end{bmatrix} \begin{bmatrix} v_2^{0,0} \\ v_2^{0,1} \\ \dots \\ v_2^{0,63} \\ v_2^{1,0} \\ \dots \\ v_1^{N,63} \\ v_2^{N,63} \end{bmatrix}$$

New representation

Intermediate vector evaluation

Preliminary evaluation with cosine similarity

Threshold t

 $distance \leq t$ same speaker

distance > t
different speakers

Dataset

Training phase

Validation phase

Dataset

Dataset

• Number of layer

- Number of layer
- Size of the layers

- Number of layer
- Size of the layers
- Tied weights

- Number of layer
- Size of the layers
- Tied weights
- Optimizer

- Number of layer
- Size of the layers
- Tied weights
- Optimizer
- Dropout

Outline

- 1 Signal representation for speaker recognition
- Deep learning
- Methods
- Results
- Conclusion

Repartition histograms

Figure – Repartition of the cosine distance between deep vectors from the same speaker

Repartition histograms

Figure – Repartition of the cosine distance between deep vectors from different speakers

Repartition histograms

Figure – Repartition of the cosine distance between deep vectors

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Figure – t-SNE of the deep vectors of two different speakers

Detection Error Tradeoff (DET) graph

Detection Error Tradeoff (DET) graph

Number of layers	5					
Size of layers	2304	1000	50	10000	2304	
Tied weights	No					
Optimizer	Gradient Descent					
Dropout	0.90					

Number of layers			5			
Size of layers	2304	1000	50	10000	2304	
Tied weights	No					
Optimizer	Gradient Descent					
Dropout	0.90					

Number of layers			5			
Size of layers	2304	1000	50	10000	2304	
Tied weights	No					
Optimizer	Adam					
Dropout	0.90					

Number of layers			5		
Size of layers	2304	1000	50	10000	2304
Tied weights	No				
Optimizer	Adam				
Dropout	0.90				

Number of layers			5			
Size of layers	2304 480 100 480 2304					
Tied weights	No					
Optimizer	Adam					
Dropout	0.90					

Number of layers			5			
Size of layers	2304	480	100	480	2304	
Tied weights	No					
Optimizer	Adam					
Dropout	0.90					

Number of layers				7			
Size of layers	2304	720	225	70	225	720	2304
Tied weights		No					
Optimizer		Adam					
Dropout		0.90					

Number of layers				7			
Size of layers	2304	720	225	70	225	720	2304
Tied weights		Yes					
Optimizer		Adam					
Dropout		0.90					

Number of layers			5		
Size of layers	2304 500 80 500 2304				
Tied weights	No				
Optimizer	Adam				
Dropout	0.80				

Number of layers			5		
Size of layers	2304	500	80	500	2304
Tied weights	No				
Optimizer	Adam				
Dropout	0.80				

Outline

- 1 Signal representation for speaker recognition
- 2 Deep learning
- Methods
- 4 Results
- Conclusion

Deep-vectors vs. i-vectors

Further work

- Run additional experiments
- Adjust the hyper-parameters
- Run more experiments with disjoint training set and evaluation set