Week 2 Comprehensive

TOTAL POINTS 10

		7. Which of the following are benefits of stochastic gradient descent?	1 point
What does the equation for the loss function do conceptually?	1 point	With stochastic gradient descent, the update time does not scale with data size.	
Penalize overconfidence			
Ignore historical statistical developments		Stochastic gradient descent can update many more times than gradient descent.	
Mathematically define network outputs		Stochastic gradient descent finds the solution more accurately.	
Reward indecision		Stochastic gradient descent gets near the solution quickly.	
2. What is overfitting?	1 point	Stochastic gradient descent finds a more exact gradient than gradient descent.	
Model complexity fits too well to training data and will not generalize in the real-world.		Why is gradient descent computationally expensive for large data sets?	1 point
Overfitting refers to the fact that more complexity is always better, which is why deep learning works.		Calculating the gradient requires looking at every single data point.	
Model complexity is not enough to capture the nuance of the data and will under-perform in the real-world.		Large data sets require deeper models, which have more parameters.	
Model complexity is perfectly matched to the data.		There are too many local minima for an algorithm to find.	
G		Large data sets do not permit computing the loss function, so a more expensive measure is used.	
3. Why should the test set only be used once?	1 point	9. What are the two main benefits of early stopping?	1 point
More than one use can lead to overfitting.		✓ It helps save computation cost.	
The model cannot learn anything new from subsequent uses.		✓ It performs better in the real world.	
More than one use can lead to blas.		It improves the training loss.	
It is expensive to use more than once.		☐ There is rigorous statistical theory on it.	
4. Which two of the following describe the purpose of a validation set?	1 point		
✓ To estimate the performance of a model.		10. Why are optimization and validation at odds?	1 point
		Optimization seeks to generalize to the real world, while validation seeks to do as well as possible on a validation set.	
✓ To pick the best performing model.		Optimization seeks to do as well as possible on a training set, while validation seeks to do as well as possible on a	
To test the performance in lieu of real-world data.		validation set.	
To learn the model parameters.		 Optimization seeks to do as well as possible on a training set, while validation seeks to generalize to the real world. 	
		They are not at odds—they have the same goal.	
5. How do we learn our network?	1 point		
Analytically determine global minimum			
Gradient descent			
O Downhill skiing			
Monte Carlo simulation			
What technique is used to minimize loss for a large data set?	1 point		
Taylor series expansion			
Newton's method			
Stochastic gradient descent			
○ Gradient descent			