

Домашнее задание #2

Hard deadline по теоретическому заданию: 23:59 25 февраля Hard deadline по заданию на программирование: 23:59 3 марта

1 Теоретическое задание [50 баллов]

На лекции мы разбирали задачу распределения статей по рецензентам и сформулировали ее в терминах целочисленного линейного программирования (ILP). Пусть у нас есть d статей $\{1,2,3,\ldots,d\}=[d]$ и n рецензентов $\{1,2,3,\ldots,n\}=[n]$. Для каждой пары (статья i, рецензент j) определим экспертизу $s_{ij}\in[0,1]$ рецензента i в проверке статьи j и объединим значения экспертиз в матрицу $S\in[0,1]^{d\times n}$.

Цель задачи — найти распределение рецензентов по статьям, которое максимизирует суммарную экспертизу по всем парам (статья, рецензент) и при этом не нарушает ограничений:

- Paper load constraints. Каждую статью проверяют не менее $\lambda \in \mathbb{N}$ рецензентов
- ullet Reviewer load constraints. Каждый рецензент проверяет не более $\mu \in \mathbb{N}$ статей

Чтобы формализовать эту задачу, введем бинарную матрицу $X \in \{0,1\}^{d \times n}$. Матрица X определяет распределение статей по рецензентам: элемент x_{ij} равен 1 тогда и только тогда, когда рецензент j назначен на проверку статьи i. В этих обозначениях мы можем формально ввести задачу распределения статей по рецензентам:

$$\max_{X \in \{0,1\}^{d \times n}} \sum_{i \in [d]} \sum_{j \in [n]} s_{ij} x_{ij}
\text{subject to } \sum_{i \in [d]} x_{ij} \leq \mu \quad \forall j
\sum_{j \in [n]} x_{ij} \geq \lambda \quad \forall i$$
(1)

Современные конференции (например, NeurIPS) каждый год получают тысячи статей, которые нужно распределить по рецензентам. Решение произвольной задачи целочисленного линейного программирования (ILP) таких размеров может быть непрактично долгим.

К счастью, в этой домашней работе мы покажем, что наша конкретная задача (1) обладает особой структурой, которая позволяет снять ограничения на целочисленность и эффективо решить задачу с помощью симплекс-метода (решение LP-релаксации сразу даст целочисленное решение). *Цель теоретической части домашнего задания* — найти эту структуру.

 $^{^{1}}$ В отличие от лекции в этом задании мы разрешаем назначить на статью больше чем λ рецензентов. Это техническое изменение немного упростит доказательства.

Пункт 1

Перепишите задачу (1) в каноническом виде целочисленного линейного программирования:

$$\begin{array}{ll}
\text{maximize} \\
x \in \{0,1\}^{\text{dim}} & \langle c, x \rangle \\
\text{subject to} & Ax \le b,
\end{array}$$

где x это вектор, полученный за счет конкатенации строк матрицы X. Вам нужно задать A,b,c и \dim .

Пункт 2

Докажите, что матрица A, полученная вами в предыдущем пункте, выполняет свойство TU (totally unimodular).

Определение Матрица выполняет свойство TU (totally unimodular matrix) если любая ее квадратная подматрица имеет определитель -1, 0 или 1.

Набросок доказательства²

Докажем утверждение с помощью индукции по размеру квадратной подматрицы в определении свойства TU.

База индукции

Проверьте, что для каждой подматрицы A' размера 1×1 свойство TU выполняется.

Шаг индукции

Пусть свойство TU выполняется для всех квадратных подматриц размера $k \times k$. Покажем, что оно также выполняется для подматриц размера $(k+1) \times (k+1)$. Для этого рассмотрим произвольную подматрицу M размера $(k+1) \times (k+1)$. Заметим, что матрица M принадлежит одному из трех типов:

- $Tun\ 1.\$ В матрице M есть столбец, состоящий целиком из нулей.
- $Tun\ 2$. В матрице M есть столбец, состоящий из k нулей и одного ненулевого элемента.
- $Tun\ 3$. Каждый столбец матрицы M имеет ровно два ненулевых элемента.

Аккуратно докажите, что возможны только эти три типа. Дальше для каждого из типов проанализируйте определитель матрицы M и докажите, что матрица M удовлетворяет свойству $\mathrm{TU}.$

Подсказка 1. При исследования типа 2 воспользуйтесь свойством, что перестановка строк матрицы меняет только знак определителя.

Подсказка 2. При исследования типа 3 сложите строки матрицы. Вспомните, что если строки матрицы линейно зависимы, то определитель такой матрицы равен нулю.

 Π ункт 3 10 баллов

Примените теорему из лекции (Lecture 5: Optimization II, слайд 35) и запишите LP-релаксацию задачи, решение которой дает решение исходной задачи ILP (1).

²Ваша задача — аккуратно восстановить доказательство.

2 Задание на программирование [50 баллов]

В этой задаче вам предстоит реализовать алгоритм BRANCH AND BOUND для решения судоку. В этой задаче судоку определяется двумерным массивом размера 9×9 . Например,

Нулевые элементы обозначают клетки, которые должны быть заполнены вашим алгоритмом, а остальные числа (от 1 до 9) обозначают клетки, которые заполнены по условию. Ваша функция solve_sudoku должна возвращать tuple (solved_puzzle, constraints), где solved_puzzle это решенная задача судоку, а constraints это дополнительные ограничения, которые позволяют алгоритму BRANCH AND ВОИND найти целочисленное решение. Например, для задачи выше решение будет выглядеть так:

Значение переменной constraints означает, что если мы добавим два ограничения $(x_{8,5})_2 = 1$ и $(x_{5,3})_4 = 1$, то LP-релаксация задачи целочисленного линейного программирования (см. детали ниже) даст целочисленное решение. Обратите внимание, что разные дополнительные ограничения могут

приводить к одному и тому же решению.

Решение задачи состоит из двух ключевых шагов, которые мы сейчас обсудим.

Шаг 1. Решение LP-релаксации

Ключевой компонент алгоритма BRANCH AND BOUND — симплекс метод, который решает задачу LPрелаксации. Используя библиотеку сухру, напишите функцию, которая решает LP-релаксацию задачи судоку. Подробнее про сухру можно прочитать в документации http://cvxpy.org.

На лекции 5 мы обсудили, что в задаче судоку мы работаем с переменными $\{(x_{i,j})_k : i \in [9], j \in [9], k \in [9]\}$. Переменная $(x_{i,j})_k$ равна 1 тогда и только тогда, когда в клетке (i,j) записано число k.³. В этих обозначениях, LP-релаксация задачи судоку выражается следующим образом:

 $^{^3}$ Будьте аккуратны с тем, что нумерация элементов массива в питоне начинается с нуля

Важно: Даже когда LP-релаксация теоретически дает целочисленное решение, результаты, которые вы получите на практике, могут не быть целочисленными. Например, вместо 1 вы можете получить 0.999995. В этом задании вы можете округлять числа в ε -окрестности 0 и 1, где $\varepsilon = 0.005$.

Бонусные очки Вы можете получить до 10 бонусных очков, если самостоятельно проанализируете целевую функцию задачи LP-релаксации и объясните ее выбор (либо предложите другой, более оптимальный выбор целевой функции).

Шаг 2. Branch and Bound

Peanusyйте алгоритм Branch and Bound для решения судоку.

Подсказка: В случае если LP-релаксация не дает целочисленного решения, эффективно фиксировать значение той переменной $\{(x_{(i,j)})_k: i,j,k=1,...,9\}$, чье текущее значение лежит ближе всего к 0.5.

Шаблон

Шаблоны функций даны в Google Colab:

https://colab.research.google.com/drive/1kjZ6r-c8ryA_KQ4RAr-019EjPCFXXCyf?usp=sharing

Для решения скопируйте ноутбук себе и оформите решение в нем. Прикрепите ссылку на ваш ноутбук к решению на EDU и убедитесь, что вы выдали доступ на просмотр вашего решения. Пожалуйста, не изменяйте имена заданных функций и убедитесь, что весь ноутбук можно запустить после перезапуска ядра.