Challenge BBVA AI Factory

Ignacio Vellido Expósito

Data Analysis

- CLIENTS

- Imbalanced target class: ~90% of non-compliant
 - Also on categorical features
- Numerical variables equally distributed across both classes
- Lack of normality

- BEHAVIOURAL

- 1/₃ of the clients
- Time indexed

Data Analysis

- Anomaly detection
 - Could be more than one dimensional
 - 1% identified with a KNN-based model
- Correlation
 - Low correlation with target, but high in measure variables (e.g. LOAN_ANNUITY_MIN/MAX/SUM)
- Missing data
 - High for some features
 - CAR_AGE 66%
 - REACTIVE_SCORING 56%

Q1: Can you design a code that detects those clients who are **not** going to fulfill the contractual conditions?

Could help the marketing experts design the best strategy for the products.

Opens the door for some other interesting analyses:

- What client segments are more likely to fulfil the contract?
- What is our target market? How big it is?
- What makes a client valid? Could some other product be defined for those who not?

Preprocessing

- Outliers
 - Removed, but should be analyzed
- Feature selection
 - High dimensional space with low data → Multiple functions that fit the data
- Normalization
 - Not normally distributed → min-max more appropriate
- Missing values imputation
 - Using simple statistical based methods. Models could be trained
- Treatment of class imbalance
 - Using class weight properties of the models
- Data augmentation
 - Appropriate, but not carried out

Training

Logistic Regression

- Simple model
- Interpretable
- With regularization for feature selection

Gradient boosting

- Complex model
- Somehow interpretable using other techniques

Evaluation

- With imbalance some metrics could be misleading
 - Global metrics (F1, accuracy...)
 - AUC
- In-class precision-recall more suitable

- Same results for both models.
 Something could be wrong in the process
 - No better than baseline for non-compliant

How can you prove that any model that you develop is not capturing noise?

- Metrics: Good F1-scores (classification) or MSE/MAE (regression).
 Precision/recall over the desired thresholds
- Is the model generalizing?
- How outliers are affecting the model?
- Sensitivity analysis
- How are the predictions distributed? Is there any bias?
- If time is a variable, are the estimates (or the errors) stationary?

If you were auditing your own model from an outsider perspective, how would you determine whether or not the model is robust?

- Model Foundations
 - Is the best model for the problem?
 - Are assumptions fulfilled?

- Data
 - Do they encode the necessary information?
 - Preprocessing

- Performance
 - Backtesting. Has been data or concept drift?
 - Global/local/segment biases?
 - Counterfactuals

- IT Infrastructure
 - Documented, defined?
 - Dependencias identified and managed?

Q2: We think that it is viable to create a salary estimator for customers for whom we do not have demographic and financial data. Is this possible?

Accurately estimating the salary would increase the number of potential clients, but:

 Many variables missing. Although the BEHAVIOURAL dataset could be useful (e.g. trying to make an estimate from balance and drawings).

- Task prone to bias. We should think if we want to represent the data as it is or fix any possible bias in it.

Preprocessing

- Only numerical features available
- Median imputation for missing values
- Min-Max scaling to [0,1] range
- Correlated variables kept
- Outliers for the target variable INCOME removed

Model - Random Forest

- Most relevant variables
 - INSTALLMENT
 - LOAN_ANNUITY_PAYMENT_MAX
 - PROACTIVE_SCORING

- Results
 - Out-of-bag R²
 - 0.2 (0 = Average, 1 = Best)
 - Mean Absolute Error
 - 525.80€ (High for a monthly income)

Distribution of test predictions

Q3: Can you propose new data, procedures or methodologies to apply with the idea of giving continuity to our project?

Data

- Account/card balance evolution through time
- Mortgage related data
- Customer behaviour on the app/web to measure effects of marketing
- Identify patterns in customer's operations to ensure they qualify for the contract requirements

Models

- Segmentation, looking to normality with VAE and/or adversarial networks
- RLHF to improve client preferences
- Ensemble and DL models for more complex but least interpretable models
- Learning relationships between clients with transactional data and graph theory (GNN)
- Evolution of customer profiles over time and the impact of economic cycles or other country-level actions on them

Challenge BBVA AI Factory

Ignacio Vellido Expósito