Birla Institute of Technology and Science, Pilani. ECE/ EEE / INSTR F243: Signals and Systems AY: 2022-23, Semester: II

MATLAB-BASED ASSIGNMENT: Open Book

Max Marks: 20 Date: 17-04-2023

Instructions:

- Please make sure you add a title, axis labels, x-axis limit and y-axis limit, and legend (if required) to each of your figures.
- Use different markers for different curves within a plot.
- The marks will be deducted if the figures are not clear and/or any of these are not mentioned.
- Submission date: Monday, 24-04-2023 (2:30 to 5:00 pm), Hard copy
- Submission room: Analog and Digital Lab (Room #2241)
- Sign the submission sheet kept with the lab instructor (Mr. Manoj and/or Mr. Amitabh)
- Submission after the deadline is not allowed.

Submission format:

The first page should contain the following information:

- Name:
- BITS ID:
- Tutorial section #:
- Name of tutorial Instructor:
- Total number of printed pages in the assignment

Every page should contain a header containing (Name and BITS ID)

Every page should contain a footer containing (page number/total # of pages)

Maximum page limit: 4 (printed back to back) (avoid single-side printing)

Birla Institute of Technology and Science, Pilani.

ECE/ EEE / INSTR F243: Signals and Systems

AY: 2022-23, Semester: II MATLAB-BASED ASSIGNMENT: Open Book

Max Marks: 20 Date: 17-04-2023

Instructions:

- Please make sure you add a title, axis labels, x-axis limit and y-axis limit, and legend (if required) to each of your figures.
- Use different markers for different curves within a plot.
- The marks will be deducted if the figures are not clear and/or any of these are not mentioned.

Q1. An LTI system has input x(t), output y(t), and impulse response h(t).

An input signal x(t) is represented as $x(t) = \sum_{i=0}^{M} \frac{1}{(2i+1)} \sin((2i+1)2\pi Nt)$. Plot x(t) for one second with M = 1, M = 2, and M = 8 in the same figure (use hold on command).

Assuming h(t) as a sinc function of appropriate amplitude and width, compute the output y(t) such that it has maximum frequency content of 3N Hz when M = 8.

Where $N = X + \text{sum of last two digits of your BITS ID, (where <math>X = 2 \text{ for A3, 4 for A8, 6 for AA, and 7 for all dual degree and other students).}$

Sketch the magnitude spectrum |Y(f)| of the signal y(t).

Ensure your x-axis is in frequency (in Hz), containing both positive and negative frequencies. Comment on your observations.

Note: Use "conv" "fft" and "fftshift" command in MATLAB. (5M)

Q2. The discrete system function of a causal LTI system is given by:

$$H(Z) = \frac{1 + aZ^{-1} + Z^{-2}}{1 - hZ^{-1} + Z^{-2} - cZ^{-3}}$$

The constants a, b, and c correspond to the last three digits of your BITS ID number (e.g., if 2020A3PS0123P, then a=1, b=2 and c=3). However, based on your BITS ID number, if a=0, then replace by 4, if b=0, then replace by 2 and if c=0, then replace by 1. If a=b=c, then replace only b with the 4th digit of your BITS ID (e.g., 2020A3PS0222P). Sketch the pole-zero diagram of b(z) and display the poles and zeros. Also, plot the magnitude and phase spectrum of b(z) in the frequency range b(z) b(z) (5M)

Birla Institute of Technology and Science, Pilani. ECE/EEE / INSTR F243: Signals and Systems AY: 2022-23, Semester: II

MATLAB-BASED ASSIGNMENT: Open Book

Max Marks: 20 Date: 17-04-2023

Instructions:

- Please make sure you add a title, axis labels, x-axis limit and y-axis limit, and legend (if required) to each of your figures.
- Use different markers for different curves within a plot.
- The marks will be deducted if the figures are not clear and/or any of these are not mentioned.

Q3 a) Generate a signal x(t) with a total duration of 20 ms (0 to 20 ms), in which the first 10 ms (i.e., 0 to 10 ms), there is a single tone sinusoidal $x_1(t) = A\cos(2\pi f_c t)$, where A (signal amplitude) = 7 volts, and for the rest of the duration, the signal is zero. Use the sampling frequency (Fs) = **X**00 kHz (where **X** is the 6th digit of your BITS ID: 2020A3PS0123P; if it is non-numerical, take **X=5**) and the signal frequency (f_c) of the signal is 1**XXX** (where **XXX** is the last three digits of your BITS ID number, that is, if the ID is 2020A3PS0123P, then the frequency = 1123Hz).

b) Now, a new signal $x_2(t) = x\left(b - \frac{3}{2}t\right)$ is generated, where x(t) is the same as in 3a) and the constant \boldsymbol{b} (in ms) is the last digit of your BITS ID number (2020A3PS0123P). However, based on your ID number, if $\boldsymbol{b} = 0$, then select $\boldsymbol{b} = 9$.

Plot the signals x(t), x(t+b) and $x_2(t)$ as a function of time. Show the results as subplots of 4x1. The x-axis range must be the same for all the signals to be plotted in 4 x 1 to show the effect of the operation performed. (5M)

Birla Institute of Technology and Science, Pilani.

ECE/ EEE / INSTR F243: Signals and Systems

AY: 2022-23, Semester: II MATLAB-BASED ASSIGNMENT: Open Book

Max Marks: 20 Date: 17-04-2023

Instructions:

- Please make sure you add a title, axis labels, x-axis limit and y-axis limit, and legend (if required) to each of your figures.
- Use different markers for different curves within a plot.
- The marks will be deducted if the figures are not clear and/or any of these are not mentioned.

Q4. The transfer function of an electric circuit is given below.

$$H(s) = \frac{A}{B}$$

$$A = \overline{a_1} * 10^3 s^8 + a_2 * 10^{-9} s^7 + a_3 * 10^{16} s^6 - a_4 * 10^2 s^5 + a_5 * 10^{28} s^4 + a_6 * 10^{12} s^3 + a_7 * 10^{17} s^2 + a_8 s + a_9 * 10^{15}$$

$$B = b_1 * s^{10} + b_2 * 10s^9 + b_3 * 10^{11}s^8 + b_4 * 10^{10}s^7 + b_5 * 10^{15}s^6 + b_6 * 10^{10}s^5 + b_7 * 10^{15}s^4 + b_8 * 10^{10}s^3 + b_9 * 10^{10}s^2 + b_{10} * 10^4s + b_{11} * 10^{03}$$

The constants a_1 to a_9 and b_1 to b_{11} correspond to your BITS ID No. as per the relations given below.

 $a_1 = a_2 = a_5 = a_7 =$ the last second digit of your BITS ID No. If $a_1 = 0$, then replace it with the first digit of your bits id.

 $a_3 = b_2 = b_3$ = the last digit of your BITS ID No., if $a_3 = 0$, then replace it with twice of the first digit number of your BITS ID No.

 $b_1 = b_5 = b_8 =$ is the third digit of your BITS ID No.

 $a_6 = a_9 = b_6 = b_7 = b_{10} = b_{11} =$ is the sum of the first three digits of your BITS ID No.

 $b_9 = \text{maximum digit of your BITS ID No.}$

 $a_4 = a_8 = x*x$ (here x=maximum digit of your BITS ID No.)

 $b_4 = \text{minimum digit of your BITS ID No. (min. = 0 then take min=0.5)}$.

Sketch the pole-zero diagram and bode plot and comment on its stability. Comment on the value of circuit elements and related time constants.