Codificación de canal

Motivación

- Existencia de canales ruidosos:
 - Necesidad de transmitir información libre de errores

Códigos de repetición

- Posiblemente la solución más sencilla:
 - Repito cada bit transmitido n veces

• Por ejemplo, si n=3:

Parámetros importantes

- Tasa de codificación: Relación entre el número de bits de información y el número de bits totales transmitidos
- Distancia Hamming: número de elementos distintos entre dos vectores
- **Distancia mínima**: La menor distancia Hamming entre dos palabras código válidas

Detección y corrección de errores

- Dado un código con distancia mínima $d_{\it min}$:
 - Se pueden **detectar** $d_{min} 1$ errores
 - Se pueden **corregir** (dmin 1)/2 errores

¿Y la probabilidad de error?

- ullet Supongamos que la probabilidad de error en un bit es p_e
- La probabilidad de que ocurran *i* errores en una palabra código de *n* bits es:

$$p(i,n) = \binom{n}{i} \cdot p_e^i \cdot (1 - p_e)^{n-i} \approx \binom{n}{i} \cdot p_e^i$$

$$\binom{n}{i} = \frac{n!}{i! (n-i)!}$$

Ejemplo

- Supongamos lo siguiente:
 - $p_e = 10^{-6}$
 - Código de repetición con k=1 y n=3

- La probabilidad de que haya algún error pero no lo detectemos es: $p(3,3)=p_e^3=10^{-18}$
- La probabilidad de que haya algún error y no lo podamos corregir: $p = p(2,3) + p(3,3) = 3 \cdot p_e^2 2p_e^3 \approx 3 \cdot 10^{-12}$

Códigos de paridad

- Se utiliza n = k + 1
- El bit de paridad es tal que el número de unos en la palabra código sea par (paridad par) o impar (paridad impar)

Códigos bloque

- Es una generalización de todo lo anterior
- Antes, un par de definiciones:
 - Código lineal:
 - La suma de dos vectores código es otro vector código
 - El vector 0 forma parte del código
 - Peso de un vector:
 - Número de unos que tiene el vector
 - Distancia mínima:
 - Se puede calcular como el peso mínimo del código

Códigos bloque (II)

- Supongamos un mensaje a transmitir $m{m}=(m_1,m_2,...,m_k)$
- Y el correspondiente vector transmitido $\mathbf{x} = (x_1, x_2, ..., x_n)$
- En un código bloque, ambos vectores se relacionan como:

$$x = m \cdot G$$

- **G** es la matriz generadora del código $(k \times n)$
- Un código es sistemático si la matriz generadora es:

$$G = [I_k | P]$$

Códigos bloque (III)

- ¿Y cómo decodificamos el mensaje?
- Se utiliza la matriz de paridad $(n k \times n)$:

$$H = [P^T \mid I_{n-k}]$$

• Si recibimos un vector y (que será el vector transmitido x más ruido, e), haremos:

$$s = y HT$$

• A $oldsymbol{s}$ se le llama $oldsymbol{sindrome}$, y si es nulo, la palabra código $oldsymbol{y}$ es válida.

Códigos bloque (IV)

- Vale, bien, pero ¿y qué hay de lo de corregir errores?
- Se puede demostrar que el síndrome depende exclusivamente del error cometido (e), y no del vector transmitido (x)
- Problema:
 - Si x tiene n bits, hay 2^n errores posibles
 - El síndrome sólo tiene n-k bits -> Sólo hay 2^{n-k} síndromes posibles

Códigos bloque (V)

- Decodificación de máxima verosimilitud:
 - Tenemos que crear una tabla con los síndromes correspondientes a los 2^{n-k-1} vectores de error más probables.
 - El decodificador:
 - Calcula el síndrome ($s = y H^T$)
 - Busca en la tabla ese síndrome
 - Obtiene el vector de error correspondiente (ê)
 - Obtiene cuál sería la palabra decodificada $(y + \hat{e})$

Códigos bloque (VI)

- ¿Y cómo se define la matriz generadora?
- · Hay muchos métodos, pero vamos a ver sólo uno: códigos Hamming
- Se caracterizan por:
 - Bits de control: $q = n k \ge 3$
 - $n = 2^q 1$
 - Independientemente de q, $d_{min} = 3$
 - Podemos detectar hasta 2 errores
 - Podemos corregir hasta un error

Códigos Hamming

 Para crear la matriz de comprobación de paridad colocamos todos los vectores binarios posibles en las columnas, ordenados de forma que quede la matriz identidad al final:

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Códigos Hamming (II)

• A partir de ahí es inmediato calcular G, sabiendo que $H = [P^T | I_q]$:

$$G = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Decodificación dura y blanda

Decodificación dura:

- Es lo que hemos venido haciendo hasta ahora
- La palabra recibida se decodifica bit a bit
- Se elige aquella palabra código a una distancia Hamming menor

Decodificación blanda:

- En este caso se elige el símbolo a una menor distancia euclídea.
- La probabilidad de error va a ser menor

Ejemplo

- Código de paridad con n=3
- Utilizamos una PAM unipolar con amplitudes 0V y 1V
- Supongamos que:
 - Se transmite el símbolo **011**
 - Es decir, transmitimos por el canal la señal 0V 1V 1V
 - En recepción tenemos: **0.2V 0.45V 0.7V**

Decodificación dura

- Al decodificar la señal recibida, el receptor obtiene:
 - 0.2V -> 0
 - 0.45V -> 0
 - 0.7V -> 1
- Es decir, recibimos la secuencia **001**, que sabemos que es incorrecta.
- Hay cuatro posibilidades: 000, 011, 101 y 110.
- Las distancias Hamming son 1, 1, 1 y 3
- Elegiremos una de las tres primeras al azar.
- Acertaremos 1 de cada 3 veces

Decodificación blanda

- Recibimos lo mismo que antes: 0.2V 0.45V 0.7V
- En este caso calculo la distancia euclídea a cada uno de los posibles símbolos de mi constelación:
 - $000 \rightarrow (0 0.2)^2 + (0 0.45)^2 + (0 0.7)^2 = 0.73$
 - $011 \rightarrow (0 0.2)^2 + (1 0.45)^2 + (1 0.7)^2 = 0.43$
 - $101 \rightarrow (1 0.2)^2 + (0 0.45)^2 + (1 0.7)^2 = 0.93$
 - $110 \rightarrow (1 0.2)^2 + (1 0.45)^2 + (0 0.7)^2 = 1.43$

• Elegiremos el símbolo 011

Códigos convolucionales

- Principal diferencia: tienen memoria
- Ejemplo: código (n,k,L) = (2,1,2)

$$x'_{j} = m_{j} \oplus m_{j-2}$$
$$x''_{j} = m_{j} \oplus m_{j-1} \oplus m_{j-2}$$

Árbol del código

Diagrama de rejilla y de estados

