These questions are for practice, in preparation for Workshop 1.

- 1. Which of the following sentences are statements?
- (a) Australia is a country. Yes true.
- (b) Australia is the greatest country. No "greatest" is ambiguous. (With a broader definition of "statement" you could call this "an ambiguous statement")
- (c) Is Australia a country? No question.
- (d) Tell me if Australia is a country. No directive.
- (e) Australia is in the Northern hemisphere. Yes false.
- (f) I always lie. Yes false. (If true, it would be contradictory.)
- If (f) is a statement, is it true or false?
- **2.** Find the negation of the following statements.
- (a) I am young. I am not young. (NB: "not young" # "old"!)
- (b) You are rich. You are not rich. (NB "not rich" # "poor".)
- (c) New Zealand always wins. New Zealand doesn't always win.

(NB: "doesn't always" # "never".)

- (d) This is not fair. This is fair.
- (e) This is not what you think it is not. This is what you think it is not.
- **3.** Rewrite the following statements symbolically as in the example.

Example: I am a mathematician, but I am not crazy.

p: I am a mathematician. q: I am crazy. r: I am a mathematician, but I am not crazy. $r \equiv p \land \neg q$.

- (a) Either I get it, or I don't. $p \lor \neg p$; p ="I get it."
- (b) I live in Australia or in France. $p \lor q$; p ="I live in Australia",

q = "I live in France"

- (c) There will be an election soon, and we will win. $p \wedge q$;
 - p = "There will be an election soon", q = "We will win (the election)"
- (d) Either you have earned enough points and have been a member since 2002, or you have earned enough points and paid \$100. $(p \land q) \lor (p \land r)$; r = "You paid \$100" p = "You've earned enough pts", q = "You've been a mbr since 2002"
- 4. Construct truth tables for the following statements.
- (a) $(p \lor q) \land \neg r$.

(b) ($(p \oplus$	q)	٧	r.
-------	-------------	----	---	----

p q r	$(p \lor q) \land \neg r$	$(p \oplus q) \vee r$
$egin{array}{cccc} T & T & T & T \ T & T & F \end{array}$	$ \mathcal{T}_{T} \mathcal{F}_{T} \mathcal{F}_{T} $	
$egin{array}{cccccccccccccccccccccccccccccccccccc$		
F T T	$\stackrel{ au}{L} \stackrel{ au}{E} \stackrel{ au}{E}$	$ \stackrel{\cancel{T}}{\mathcal{T}} \stackrel{\cancel{T}}{\mathcal{T}} \stackrel{\cancel{T}}{\mathcal{T}} $
$egin{array}{cccccccccccccccccccccccccccccccccccc$		
F F F	# F #	# F#

5. Give an example of a tautology and an example of a contradiction.

Tautology: Either I succeed, or I don't. $(p \lor \neg p)$

Contradiction: $\sqrt{2}$ is both negative and non-negative. $(p \land \neg p)$

- **6.** Are these two statements logically equivalent?
- (a) $p \lor (q \land r)$.
- (b) $(p \lor q) \land (p \lor r)$.

Yes. This is one of the distributive laws. It can be verified by truth table.

p	q	r	$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
T T T F F	$T \\ F \\ F$	$F \\ T$		
T F		F T		
$F \\ F \\ F$	$T \\ F \\ F$	$\stackrel{F}{T}$	$egin{pmatrix} F & F & F \ F & F & F \ \end{bmatrix}$	

same

- 7. Are these two statements logically equivalent?
- (a) $\neg (p \lor q \lor r)$. No. E.g. taking p and q true and r false provides a counterexample, because then statement form (a) is false but (b)
- (b) $p \wedge q \wedge \neg r$. is true. The only other counterexample comes from taking p,q,r all false.
- 8. Formalise the following statements as in the example.

Example: People who do not give up always succeed.

p: you do not give up. q: you succeed. $p \implies q$.

- (a) You will get a discount if you apply early. $e \implies d$ d = "You will get a discount" and e = "you apply early".
- (b) Musicians are cool. m ⇒ c
 m = "You are a musician" and c = "you are cool".
 [Alternatively, if M denotes the set of all musicians, and c(m) denotes the predicate "m is cool" then the sentence can be rendered ∀x ∈ M c(x).]
- (c) No machine running Microsoft's Windows runs well. $m \implies \neg w$ m = "The machine runs Microsoft Windows" and w = "the machine runs well". [Alternatively, if C denotes the set of all computers and m(c) and w(c) denote the predicates "c runs MS Windows" and "c runs well", then the sentence can be rendered $\forall c \in C$ $m(c) \Longrightarrow \neg w(c)$.]
- **9.** Negate the following expressions.
- (a) If GDP grows, people are happier. GDP grows but people are no(t) happier.
- (b) If I have a coffee, I feel energetic.

 I have a coffee but don't feel energetic.

 NB: Any answer involving "if" is wrong!
- (c) You can get it if you really want. You really want it but you can't get it.

 Again, any answer involving "if" is wrong.
- 10. Reasoning by contrapositive, what can be concluded from the following statements? Guns don't kill people. I kill people.

Let g ="I am a gun" and k = "I kill people".

Then the statements become $g \Longrightarrow \neg k$ and k.

Replacing the first statement by its (equivalent) contrapositive and applying the (valid) modus ponens argument we get the argument shown at right.

$$k \Longrightarrow \neg g \\ k$$

Thus we conclude "I am not a gun".

- 11. Find the condition in the following statements, and determine if it is necessary, sufficient, or both.
- (a) To get a table you need to have a reservation. necessary.
- (b) Only people who arrive early might get a ticket. necessary.
- (c) If you were a member of our earlier program, you are automatically a member of the new program. sufficient.
- 12. Are the following arguments valid or not?
- (a) If the user has been inactive for five minutes, then turn the display off. The display is on. Therefore the user has been active in the last five minutes. Valid.

With p = "user inactive for 5mins", q = "display off", this is modus tollens.

- (b) If we are given more time to prepare a plan and have a representative on the committee, then we will reach a consensus. No consensus has been reached. This means that we were not given enough time to prepare our plan and did not have a representative on the committee. Invalid. Using modus tollens and DeMorgan's law the correct conclusion is that we were not given enough time to prepare our plan OR did not have a representative on the committee.
- (c) People who have done a lot of mathematics are logical. Therefore logical people have done a lot of mathematics. Invalid. An implication does not imply its converse.
- 13. Find the logic expression that corresponds to this circuit, and give its truth table.

14. Draw a circuit corresponding to the following truth table.

X	Y	Z	output
1	1	1	0
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	0
0	0	0	0

From lines 4,5,6 we read off that the table corresponds to the statement form

$$(X \land \neg Y \land \neg Z) \lor (\neg X \land Y \land Z) \lor (\neg X \land Y \land \neg Z)$$

$$\equiv (X \land \neg Y \land \neg Z) \lor [(\neg X \land Y) \land (Z \lor \neg Z)]$$

$$\equiv (X \land \neg Y \land \neg Z) \lor [(\neg X \land Y) \land T]$$

$$\equiv (X \land \neg Y \land \neg Z) \lor (\neg X \land Y)$$

Several other circuits also work.

15. The NOR gate has the truth table at right. Construct the following gates using only NOR gates.

X	Y	$ NOR(X,Y) = X \downarrow Y $
1	1	0
1	0	0
0	1	0
0	0	1

1. NOT
$$\neg p \equiv p \downarrow p$$

2. AND
$$p \wedge q$$

$$\equiv \neg (\neg p \vee \neg q)$$

$$\neg p \downarrow \neg q$$

3. NAND
$$p \mid q$$

 $\equiv \neg (p \land q)$

- **16.** Which of these sentences could be predicates?
 - 1. User x is not allowed to view this page. Yes. Variable x is free.
 - 2. For every user x, the cache has been cleared. No. The only variable, x, is bound by the universal quantifier "For every".
 - 3. This lecture is boring. No. There is no free variable.
 - 4. For every user x, page y has been deleted. Yes. Variable y is free.
- 17. Negate the following statements.
- (a) Snakes can't swim. Does "snakes" mean (i) "all snakes" or (ii) "some snakes"?

 (i) Some snakes can swim. (ii) All snakes can swim.
- (b) Fast growing countries are all in Asia. Not all fast growing countries are in Asia. or, mor directly Some fast growing countries are outside Asia.
- (c) All sheep are black. Not all sheep ar black. —or— Some sheep aren't black.
- **18.** Negate the following statements.

(a)
$$\exists x \ p(x) \Longrightarrow q(x)$$
. $\forall x \ \neg(p(x) \Longrightarrow q(x)) \equiv \forall x \ p(x) \land \neg q(x)$

(b)
$$\exists x \ \forall y \ p(y)$$
. $\forall x \ \neg(\forall y \ p(y)) \equiv \forall x \ \exists y \ \neg p(y)$

(c)
$$\forall x \quad \exists z \quad \exists w \quad \forall t \quad p(x,z) \lor q(w,t) \Longrightarrow \neg r(x,z,w,t)$$

 $\exists x \quad \neg [\exists z \quad \exists w \quad \forall t \quad p(x,z) \lor q(w,t) \Longrightarrow \neg r(x,z,w,t)]$
 $\equiv \exists x \quad \forall z \quad \neg [\exists w \quad \forall t \quad p(x,z) \lor q(w,t) \Longrightarrow \neg r(x,z,w,t)]$
 $\equiv \exists x \quad \forall z \quad \forall w \quad \neg [\forall t \quad p(x,z) \lor q(w,t) \Longrightarrow \neg r(x,z,w,t)]$
 $\equiv \exists x \quad \forall z \quad \forall w \quad \exists t \quad \neg [p(x,z) \lor q(w,t) \Longrightarrow \neg r(x,z,w,t)]$
 $\equiv \exists x \quad \forall z \quad \forall w \quad \exists t \quad (p(x,z) \lor q(w,t)) \land r(x,z,w,t)$

19. Is the following argument valid?

It is false that snakes can't swim. Indeed, sea snakes can. So snakes can swim. Let S be the set of all snakes and let c(s) be the predicate "s can swim". Then the first premise of the argument is $\neg [\forall s \in S \ \neg c(s)] \equiv \exists s \in S \ c(s)$. Thus the second premise, c(sea snakes), adds nothing to the first premise. So the conclusion, $\forall s \in S \ c(s)$, does not follow from the premises, and consequently the argument is invalid. (This analysis makes assumption (i) in the answer to Q17. Other interpretations are possible.)