

概述

TP4054是一个完善的线性锂离子电池线性充电管理芯片,具有完整的涓流/恒定电流/恒定电压三段充电模式。采用小巧的SOT23-5L封装外形,内置MOSFET功率输出,在应用上不需要外部电阻和隔离二极管,极少的外围零件,很方便在便携产品中设计、应用。TP4054的输入/输出端口最高11V的耐压,适用于各种USB电源和适配器电源工作环境。在高压、高能量运行或外围高温度时,先进的温度控制电路自动控制充电电流以降低芯片温度,增加芯片运行的可靠性。

特点

- 500mA的可编程充电电流
- 电池反接保护
- 最高耐压达11V
- 4.2V预设充电电压(精度±1%)
- 恒流/恒压运行,具有热保护功能
- 先进的充电电流输出监控
- 待机BAT端电流低于1.0μA
- · 停止工作时电源电流40µA
- 完整的充电状态显示
- · 2.9V 涓流充电阈值电压
- · 无需外接 MOSFET、检测电阻、反向二极管
- 软启动限制浪涌电流电流
- 采用 SOT23-5L 封装

www.sot23.com.tw

TP4054 充电电流大小通过外部一个电阻就可以设定, 具有先进的充电电流监控系统,当达到浮充电压并且 充电电流下降到设定值的 1/10 时,将自动终止充电, 充电停止电压设定在4.2V。当移除充电电源时, 将自动进入到1.0μA的低电流状态,极小的漏电流对电 池电量的影响降到最低。

TP4054内置防反接功能,在锂电池反接时芯片自动进入保护状态,芯片不容易被击穿、烧损,降低电池自放电引起事故。

TP4054还具有输入低电压闭锁、自动循环充电的特性,有一个引脚外接指示灯可以指示充电状态。

应用

- 锂电池充电器
- 手机, PDA, MP3
- 蓝牙应用

管脚分布

管脚号	管脚名	描述		
1	CHRG	漏极开路充电状态输出。		
2	GND	接地端 。		
3	BAT	充电电流输出端		
4	VCC	提供正电压输入		
5	PROG	充电电流编程,充电电流监控 和关闭端		

典型应用电路图

极限参数

参数	数值	参数	数值
输入电源电压 V _{cc}	-0.3V ~ +11.0V	静电电压	5KV
电池端口电压V _{BAT}	-0.3V ~ +11.0V	BAT短路期限	连续
PROG端口电压V _{PROG}	-0.3V ~ +11.0V	工作环境温度TA	–20°C ~ 85°C
CHRG端口电压V _{CHRG}	-0.3V ~ +11.0V	存储温度Ts	–55°C ~125°C
BAT电流I _{BAT}	500mA	焊接温度	260°C (10S)
PROG电流I _{PROG}	800µA	工作环境温度TA	−20°C ~ 85°C

2021.6.15 2

电气特性 (V_{DD} = 5.0V,T_A= 25°C unless otherwise noted)

符号	含义	条件	最小	典型	最大	单位
Vcc	输入电源电压	充电输入电压	4.2	5.0	7.5	V
		充电模式,RPROG=10KΩ		160	500	μΑ
Icc	输入电源电流	待机模式 (充电终止)		60	150	μΑ
		停机模式(RPROG未连接, Vcc/小于V _{BAT} 或 Vcc <v<sub>UV)</v<sub>		40	120	μA
V _{FLOAT}	输出浮充电压	0°C≤T _A ≤85°C, I _{BAT} <40mA	4.158	4.20	4.242	٧
		R _{PROG} =10KΩ,电流模式	85	100	115	mA
		R _{PROG} =2KΩ,电流模式	425	500	525	mA
a.		待机模式, V _{BAT} = 4.2V	0 4	-3.0	-6	μΑ
I _{BAT}	BAT端电流	停机模式(R _{PROG} 未连接)		±1	±2	μΑ
		睡眠模式, Vcc = 0V		±1	±2	μΑ
		V _{BAT} = - 4V, 电池反接模式		1		mA
I _{TRKL}	涓流充电电流	V _{BAT} <v<sub>TRIKL, R_{PROG}=2K</v<sub>	40	50	60	mA
V_{TRKL}	涓流充电阈值电压	R _{PROG} =10KΩ,V _{BAT} 上升	2.7	2.9	3.1	٧
V _{TRHYS}	涓流充电迟滞电压	R _{PROG} =10KΩ, V _{BAT} 下降	0.06	0.15	0.20	٧
Vuv	Vcc 欠压闭锁门限电压	Vcc上升	3.7	3.8	3.9	V
Vuvhys	Vcc 欠压闭锁迟滞电压	Vcc下降	30	45	60	mV
	工士长河河体内区	VPROG上升	0.96	1.05	1.10	٧
V_{MSD}	手动关闭阈值电压	V _{PROG} 下降	0.90	1.10	1.10	V
		Vcc上升	70	120	180	mV
V_{ASD}	闭锁阈值电压	Vcc下降	5	40	120	mV
•	0/40/41上河/古中次	R _{PROG} =10KΩ	0.085	0.10	0.115	mA
I _{TERM}	C/10终止阈值电流	R _{PROG} =2KΩ	0.085	0.10	0.115	mA
V _{PROG}	PRO引脚电压	R _{PROG} =10KΩ,电流模式	0.90	1.00	1.08	٧
V _{CHRG}	CHRG 输出低电压	I _{CHRG} =5mA	0.10	0.25	0.60	V
ΔV_{RECHRG}	再充电电池阈值电压	V _{FLOAT} -V _{RECHRG}	100	120	200	mV
T _{LIM}	限定温度模式中的结温			120		°C
Tss	软启动时间	I _{BAT} =0 至I _{BAT} =1000/R _{PROG}		100		μS
t _{RECHG}	再充电比较器滤波时间	V _{BAT} 下降	0.75	2	4	mS
t _{TERM}	终止比较器滤波时间	I _{BAT} < I _{CHG} /10	0.8	1.8	4	mS
I _{PROG}	PROG 引脚上拉电流			3		μΑ

引脚功能说明

- CHRG (引脚 1):漏极开路充电状态输出。当充电时,CHRG 端口被一个内置的 N 沟道 MOSFET 置于低电位。当充电完成时,CHRG 呈现高阻态。当 TP4054检测到低电锁定条件时, CHRG 呈现高阻态。当在 BAT 引脚和地之间接 1μF 的电容,就可以完成电池是否接好的指示, 当没有电池时,LED 灯会快速闪烁。
- GND (引脚 2) :接地端。
- BAT (引脚 3) : 充电电流输出端。给电池提供充电电流并控制浮动电压最终达到 4.2V。一个内部精密电阻把这个引脚同停工时自动断电的浮动电压分开。电池接反时,内部保护电路保护 BAT 的 ESD 二极管不被烧坏,同时 GND 与 BAT 之间形成大约 1mA电流。
- VCC (引脚 4): 外部电源输入端。V_{cc} 可以在 4.3V 到 7V 之间,并且至少有0.1μF 1μF 的退耦电容。当 BAT 引脚电压与 V_{cc} 的压差降到 30mV以内时,TP4054进入睡眠模式,并使 BAT 电流降到 2μA 以下。
- PROG (引脚 5): 充电电流编程,充电电流监控和关闭端。充电电流由一个精度为 1%的接到地的电阻控制。在恒定充电电流状态时,引脚的电压被维持在1V。在所有状态下,此端口电压都可以用下面的公式测算充电电流: I_{BAT} = (V_{PROG}/R_{PROG})×1000。

 PROG 端口也可用来关闭充电器。将外部编程电阻器与地断开,IC内部一个2.5uA 电流将PROG引脚拉至高电平,当该引脚电压达到 1.0V 的门限电压时,充当器进入停止工作状态,充电停止且输入电源电流降至40μA。重新将 PROG 和地端连接,将使充电器回到正常状态。

封装说明: SOT-23-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
C	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950 (BSC)		0.037 (BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
r	0°	8°	0°	8°