

Uniform Circular Motion

41. (d) Radial force
$$=\frac{mv^2}{r}=\frac{m}{r}\left(\frac{p}{m}\right)^2=\frac{p^2}{mr}$$
 [As $p=mv$]

42. (b)
$$\frac{mv^2}{r} \propto \frac{K}{r} \Rightarrow v \propto r^\circ$$

i.e. speed of the particle is independent of r.

43. (b) If the both mass are revolving about the axis *yy'* and tension in both the threads are equal then

$$M\omega^{2}x = m\omega^{2}(l-x)$$

$$\Rightarrow Mx = m(l-x)$$

$$\Rightarrow x = \frac{ml}{M+m}$$

44. (b)
$$\tan \theta = \frac{v^2}{rg} = \frac{400}{20 \times 9.8} \Rightarrow \theta = 63.9$$

45. (d) In complete revolution change in velocity becomes zero so average acceleration will be zero.

46. (a) We know that $\tan \theta = \frac{v^2}{Rg}$ and $\tan \theta = \frac{h}{b}$

Hence
$$\frac{h}{b} = \frac{v^2}{Rq} \Rightarrow h = \frac{v^2b}{Rq}$$

48. (a)
$$R = mg \cos \theta - \frac{mv^2}{r}$$

when θ decreases $\cos\theta$ increases *i.e.*, R increases.

49. (d) Tension in the string $T = m\omega^2 r = 4\pi^2 n^2 mr$

$$\therefore T \propto n^2 \Rightarrow \frac{n_2}{n_1} = \sqrt{\frac{T_2}{T_1}} \Rightarrow n_2 = 5\sqrt{\frac{2T}{T}} = 7rpm$$

50. (b)

51. (a)
$$T = m\omega^2 r \Rightarrow 10 = 0.25 \times \omega^2 \times 0.1 \Rightarrow \omega = 20 rad/s$$

52. (c)
$$v = 36 \frac{km\vec{r}}{h} = 10 \frac{m}{s}$$
. $F = \frac{mv^2}{r} \rightleftharpoons \frac{500 \times 100}{50} = 1000N$.

53. (a)
$$T = \frac{mv^2}{r} \Rightarrow 25 = \frac{0.25 \times v^2}{1.96} \Rightarrow v = 14m/s$$

54. (b) Centripetal force=
$$mr\omega^2 = 5 \times 1 \times (2)^2 = 20N$$

55. (a)
$$\frac{mv^2}{r} = \frac{k}{r^2} \Rightarrow mv^2 = \frac{k}{r}$$
: K.E.= $\frac{1}{2}mv^2 = \frac{k}{2r}$

$$P.E. = \int F dr = \int \frac{k}{r^2} dr = -\frac{k}{r}$$

P.E.=
$$\int F dr = \int \frac{k}{r^2} dr = -\frac{k}{r}$$

 \therefore Total energy = K.E. + P.E. = $\frac{k}{2r} - \frac{k}{r} = -\frac{k}{2r}$

ESTD: 2005

56. (d) Maximum tension =
$$\frac{mv^2}{r} = 16N$$

$$\Rightarrow \frac{16 \times v^2}{144} = 16 \Rightarrow v = 12 \text{ m/s}$$

57. (a) The maximum velocity for a banked road with friction,

$$v^2 = gr\left(\frac{\mu + \tan \theta}{1 - \mu \tan \theta}\right)$$

$$\Rightarrow v^2 = 9.8 \times 1000 \times \left(\frac{0.5+1}{1-0.5\times1}\right) \Rightarrow v = 172m/s$$

IIT-JEE PHYSICS

58. (d)
$$v = r\omega = \frac{r \times 2\pi}{T} = \frac{0.06 \times 2\pi}{60} = 6.28 mm/s$$

Magnitude of change in velocity =
$$|\overrightarrow{v_2} - \overrightarrow{v_1}|$$

= $\sqrt{v_1^2 + v_2^2} = 8.88mm/s$ (As $v_1 = v_2 = 6.28mm/s$)

- 59. (a) Work done by centripetal force in uniform circular motion is always equal to zero.
- **60.** (b) $v = r\omega = 20 \times 10 cm/s = 2m/s$

