

CAPÍTULO V

Os dados são replicados para melhorar a confiabilidade ou melhorar o desempenho.

Mas como se manter as réplicas consistentes?

Razões para a replicação

- Confiabilidade;
- Desempenho.

Confiabilidade

- "... dados são replicados para aumentar a confiabilidade de um sistema"
 - Um sistema replicado pode, em caso de falha, funcionar a partir de uma réplica;
 - É mais difícil perder dados.

Desempenho

"Replicação para melhoria de desempenho é importante quando um sistemas distribuído precisa ser aumentado em quantidade e área geográfica"

- Quantidade:
 - Acontece quando um número maior de processos precisa aceder a dados que são geridos por um único servidor;
 - Aumento do desempenho por replicação do servidor.
- Geográfica:
 - Colocação de uma réplica mais próximo ao local de acesso ao processo em execução;

Desempenho

- Problemas com a replicação:
- Manter várias cópias exige um esforço para manter a consistência;
- A modificação de um cópia a torna-a diferente das restantes;
- O preço da replicação é determinado "quando e como é que essas modificações precisam de ser executadas";

Desempenho

- Exemplo acesso a uma página web:
 - Os Browsers Web podem armazenar localmente uma cópia de uma página acedida previamente (cache);
 - O utilizador se pedir novamente a mesma página, o browser utiliza a cópia local;
 - O tempo de acesso é excelente;
 - Mas, a página pode ter sido atualizada e ainda não está propagar na cache local;

Replicação como técnica de crescimento

- Replicação e cache para melhoria de desempenho são muito utilizadas:
 - Usar cópias locais aumenta a percepção de maior largura de banda.
- No entanto, é necessário uma análise prévia:
 - Justifica colocar um réplica tão próxima?
 - A estratégia de atualização de réplica é eficiente?

Consistência ou Escalabilidade?

- Consistência com replicação síncrona:
 - Atualizar todas as cópias com uma única transação.
 - Como?
 - Necessário definir quando ...
 - Pode trazer um mau desempenho ...
 - Carece de sincronização global ...
 - Solução:
 - Permitir que nem todas as caches estejam sincronizadas => consistência de dados

Consistência de dados

Consistência de dados

- Uma operação de dados é classificada como uma operação de escrita quando altera os dados, caso contrário é classificada como uma operação de leitura".
- "Um modelo de consistência é um contrato entre os processos e o data store.
 Ele diz que, se os processos concordarem em obedecer a certas regras, o depósito promete funcionar de maneira correta.
- Como definir com precisão qual operação é a última operação de escrita a ser realizada?
- Consistência sequencial e consistência causal

Consistência Sequencial

 O resultado de qualquer execução é o mesmo que seria se as operações (de leitura e escrita) realizadas por todos os processos no data store fossem executados na mesma ordem sequencial que individualmente no seu programa.

Consistência Casual

 Idêntico ao anterior, mas diferencia eventos conflituantes de não conflituantes.

Operações em grupo

 Não é o relevante o resultado de cada operação singular. Apenas é relevante o resultado final de um conjunto de operações.

Modelo de consistências centrados no cliente

- Mostrar como evitar uma consistência global, focando no que clientes específicos precisam, em vez do que deveria ser mantido pelos servidores
- Inconsistência aceitável:
 - Utilização de cache. O utilizador ter acesso a páginas Web desatualizadas.
 - Mas seria aceitável dados de um monitor cardíaco desatualizados?
 - O que seria considerado não aceitável numa informação sobre tropas inimigas?

Gestão de réplicas

Uma questão fundamental para qualquer sistema distribuído que suporte replicação é decidir onde, quando e por quem é que as réplicas devem ser posicionadas, e quais os mecanismos para manter as réplicas consistentes.

- Posicionar servidores de réplicas:
 - Encontrar as melhores localizações para colocar um servidor que pode ser um data store (ou parte dele).
- Posicionar conteúdo:
 - Quais os melhores servidores para colocar o conteúdo.

Bibliografia

From: Wolfgang Emmerich

Engineering Distributed Objects John Wiley & Sons, Ltd 2000

From: Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

Edition 4 © Addison-Wesley 2005

From: Andrew S., Tanembaum and Van Steen, Maarten

Distributed Systems: Principles and Paradigms

Edition 2 © Pearson 2013

Questões?