PMSM Current Controller

Discrete-time permanent magnet synchronous machine current controller

Library: Simscape / Electrical / Control / PMSM Control

Description

The PMSM Current Controller block implements a discrete-time PI-based permanent magnet synchronous machine (PMSM) current controller in the rotor *d-q* reference frame.

You typically use this block in a series of blocks making up a control structure.

- You can generate a current reference in the d-q frame to be used as an input to this block with a PMSM Current Reference Generator.
- You can obtain a voltage reference in the abc domain by converting the output of this block using an Inverse Park Transform block.

You can see an example of a full control structure, from machine measurements to machine inputs, in the PMSM Field-Oriented Control block.

Equations

The block is discretized using the backward Euler method due to its first-order simplicity and its stability.

Two PI current controllers implemented in the rotor reference frame produce the reference voltage vector:

$$v_d^{ref} = \left(K_{p_id} + K_{i_id} \frac{T_s z}{z - 1}\right) \left(i_d^{ref} - i_d\right) + v_{d_FF},$$

and

$$v_q^{ref} = \left(K_{p_iq} + K_{i_iq} \frac{T_s z}{z - 1}\right) \left(i_q^{ref} - i_q\right) + v_{q_FF},$$

where:

- v_d^{ref} and v_q^{ref} are the *d*-axis and *q*-axis reference voltages, respectively.
- $i_d^{\it ref}$ and $i_q^{\it ref}$ are the *d*-axis and *q*-axis reference currents, respectively.
- i_d and i_q are the \emph{d} -axis and \emph{q} -axis currents, respectively.
- K_{p_id} and K_{p_iq} are the proportional gains for the *d*-axis and *q*-axis controllers, respectively.
- K_{i_id} and K_{i_iq} are the integral gains for the *d*-axis and *q*-axis controllers, respectively.
- v_{d_FF} and v_{q_FF} are the feedforward voltages for the *d*-axis and *q*-axis, respectively, obtained from the machine mathematical equations and provided as inputs.

T_s is the sample time of the discrete controller.

Zero Cancellation

Using PI control results in a zero in the closed-loop transfer function, which can result in undesired overshoot in the closed-loop response. This zero can be canceled by introducing a zero-cancelation block in the feedforward path. The zero cancellation transfer functions in discrete time are:

$$G_{ZC_id}(z) = \frac{\frac{T_s K_{i_id}}{K_{p_id}}}{z + \left(\frac{T_s - \frac{K_{p_id}}{K_{i_id}}}{\frac{K_{p_id}}{K_{i_id}}}\right)},$$

and

$$G_{ZC_{-}iq}(z) = \frac{\frac{T_s K_{i_{-}iq}}{K_{p_{-}iq}}}{z + \left(\frac{T_s - \frac{K_{p_{-}iq}}{K_{i_{-}iq}}}{\frac{K_{p_{-}iq}}{K_{i_{-}iq}}}\right)}.$$

Voltage Saturation

Saturation must be imposed when the stator voltage vector exceeds the voltage phase limit V_{ph_max} :

$$\sqrt{v_d^2 + v_q^2} \le V_{ph_max},$$

where v_d and v_d are the *d*-axis and *q*-axis voltages, respectively.

In the case of axis prioritization, the voltages v_1 and v_2 are introduced, where:

- $v_I = v_d$ and $v_2 = v_q$ for *d*-axis prioritization.
- $v_I = v_q$ and $v_2 = v_d$ for *q*-axis prioritization.

The constrained (saturated) voltages v_1^{sat} and v_2^{sat} are obtained as follows:

$$v_1^{sat} = \min(\max(v_1^{unsat}, -V_{ph_max}), V_{ph_max})$$

and

$$v_2^{sat} = \min(\max(v_2^{unsat}, -V_{2_max}), V_{2_max}),$$

where:

- v_1^{unsat} and v_2^{unsat} are the unconstrained (unsaturated) voltages.
- v_{2_max} is the maximum value of v_2 that does not exceed the voltage phase limit, given by $v_{2_max} = \sqrt{(V_{ph_max})^2 (v_1^{sat})^2}$.

In the case that the direct and quadrature axes have the same priority (d-q equivalence) the constrained voltages are obtained as follows:

$$v_d^{sat} = \min(\max(v_d^{unsat}, -V_{d_max}), V_{d_max})$$

and

$$v_q^{sat} = \min(\max(v_q^{unsat}, -V_{q_max}), V_{q_max}),$$

where

$$V_{d_max} = \frac{V_{ph_max} |v_d^{unsat}|}{\sqrt{\left(v_d^{unsat}\right)^2 + \left(v_q^{unsat}\right)^2}}$$

and

$$V_{q_max} = \frac{V_{ph_max} |v_q^{unsat}|}{\sqrt{\left(v_d^{unsat}\right)^2 + \left(v_q^{unsat}\right)^2}}.$$

Integral Anti-Windup

An anti-windup mechanism is employed to avoid saturation of integrator output. In such a situation, the integrator gains become:

$$K_{i_id} + K_{aw_id} (v_d^{sat} - v_d^{unsat})$$

and

$$K_{i_iq} + K_{aw_iq} (v_q^{sat} - v_q^{unsat}),$$

where $K_{aw\ id}$ and $K_{aw\ iq}$ are the anti-windup gains for the *d*-axis and *q*-axis, respectively.

Assumptions

- The plant model for direct and quadrature axis can be approximated with a first-order system.
- This control solution is used only for permanent magnet synchronous motors with sinusoidal flux distribution and field windings.

Ports

Input expand all

>

idqRef — Reference currents vector

idq — Measured currents vector

>	vdqFF — Feedforward voltages vector
>	VphMax — Maximum phase voltage scalar
>	Reset — External reset scalar
Output expand all	
>	vdqRef — Reference voltages vector
Parameters expand all	
Control Parameters	
>	D-axis current proportional gain — D-axis proportional gain 1 (default) positive number
>	D-axis current integral gain — D-axis integral gain 100 (default) positive number
>	D-axis current anti-windup gain — D-axis anti-windup gain 1 (default) positive number
>	Q-axis current proportional gain — Q-axis proportional gain 1 (default) positive number
>	Q-axis current integral gain — Q-axis integral gain 100 (default) positive number
>	Q-axis current anti-windup gain — Q-axis anti-windup gain 1 (default) positive number

- > Sample time (-1 for inherited) Block sample time -1 (default) | -1 or positive number
- > Axis prioritization Axis prioritization for voltage limiter q-axis (default) | d-axis | d-q equivalence
- > Enable zero cancellation Feedforward zero-cancellation off (default) | on
- > Enable pre-control voltage Pre-control voltage on (default) | off

Model Examples

References

[1] Bernardes, T., V. F. Montagner, H. A. Gründling, and H. Pinheiro. "Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine." *IEEE Transactions on Industrial Electronics*. Vol. 61, Number 4, 2014, pp. 1679–1691.

[2] Carpiuc, S., and C. Lazar. "Fast real-time constrained predictive current control in permanent magnet synchronous machine-based automotive traction drives." *IEEE Transactions on Transportation Electrification.* Vol.1, Number 4, 2015, pp. 326–335.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Blocks

PMSM Current Controller with Pre-Control | PMSM Current Reference Generator

Introduced in R2017b