ECO 372: Introduction to Econometrics

Spring 2025

Hypothesis Tests and Confidence Intervals

Sakib Bin Amin, Ph.D.

Associate Professor in Economics

Director, Accreditation Project Team (APT)

Outline

Our objectives will be to explore:

- o Hypothesis Testing: Recap
- o Single Coefficient Hypothesis Test
- o Hypothesis Test with Regressions: Example

Hypothesis Testing: Recap

- > We can use the information in the sample to make inferences about the population.
- We will always have two hypotheses that go together, the null hypothesis (denoted H_0) and the alternative hypothesis (denoted H_1).
- The null hypothesis is the statement or the statistical hypothesis that is actually being tested. The alternative hypothesis represents the remaining outcomes of interest.
- For example, suppose given the regression results, we are interested in the hypothesis that the true value of β is in fact 0.5. We would use the notation.

$$H_0: \beta = 0.5$$

$$H_1: \beta \neq 0.5$$

This would be known as a two sided test.

Single Coefficient Hypothesis Test

➤ Multiple regression model with K explanatory variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$$

Steps for Testing Hypothesis for Single Coefficient:

- 1. Compute the standard error of $\hat{\beta}_j$ [i.e., $SE(\hat{\beta}_j)$]
- 2. Compute the t-statistic: $t = \frac{\hat{\beta}_j \hat{\beta}_j, 0}{SE(\hat{\beta}_j)}$
- 3. Compute the p-value: $2\phi(-|t^{act}|)$
- 4. Make decision
- Where, t^{act} is the t-statistic actually computed. Reject the hypothesis at the 5%-10% significance level if the p-value is less than 0.05-0.10 or, equivalently $t^{crit} = 1.96 1.85$ (can be obtained from t-table).
- ➤ It is worth noting that 10% significance level is considered as weak significance. Less than or equal 5% significance level is considered as high significance

Note: The standard error the t-statistic and p-value are typically computed by the software.

Hypothesis Test with Regressions: Example

Let us take a model to start with:

$$Wage_i = \alpha_0 + \beta_1 EXP_i + \beta_2 EDU_i + u_i$$

Source	SS	df	MS	Number of obs	=	28,532
				F(2, 28529)	=	6089.03
Model	1951.0667	2	975.53335	Prob > F	=	0.0000
Residual	4570.6764	28,529	.160211588	R-squared	=	0.2992
				Adj R-squared	=	0.2991
Total	6521.7431	28,531	.228584455	Root MSE	=	.40026

ln_wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ttl_exp	.0344367	.0005242	65.69	0.000	.0334092	.0354642
grade	.0741641	.0010493	70.68	0.000	.0721075	.0762208
_cons	.5314258	.0129982	40.88	0.000	.5059487	.5569029

Single Coefficient Hypothesis Test: Example

- > Our objective is to test null that the coefficient of variable experience (ttl_exp) is actually zero.
- So, out set is as follows:

$$H_0: \beta = 0$$

$$H_1: \beta \neq 0$$

Now, we follow the steps as discussed previously:

- 1. Standard error of β_1 =0.0005242
- 2. t statistics = $\frac{0.0344367-0}{0.0005242}$ which is 65.70
- 3. P-value =0.000
- 4. We can reject null at 5% since p-value is less than 5% and t-value in this case is well above 3 (from student's t-table)

Question: can we reject the null at 1%?

Task: Can you do the same hypothesis testing for the education variable?

Single Coefficient Hypothesis Test: Example

TABLE A.2

t Distribution: Critical Values of t

		Significance level							
Degrees of	Two-tailed test:	10%	5%	2%	1%	0.2%	0.1%		
freedom	One-tailed test:	5%	2.5%	1%	0.5%	0.1%	0.05%		
1		6.314	12.706	31.821	63.657	318.309	636.619		
2		2.920	4.303	6.965	9.925	22.327	31.599		
3		2.353	3.182	4.541	5.841	10.215	12.924		
4		2.132	2.776	3.747	4.604	7.173	8.610		
5		2.015	2.571	3.365	4.032	5.893	6.869		
6		1.943	2.447	3.143	3.707	5.208	5.959		
7		1.894	2.365	2.998	3.499	4.785	5.408		
8		1.860	2.306	2.896	3.355	4.501	5.041		
9		1.833	2.262	2.821	3.250	4.297	4.781		
10		1.812	2.228	2.764	3.169	4.144	4.587		
11		1.796	2.201	2.718	3.106	4.025	4.437		
12		1.782	2.179	2.681	3.055	3.930	4.318		
13		1.771	2.160	2.650	3.012	3.852	4.221		
14		1.761	2.145	2.624	2.977	3.787	4.140		
15		1.753	2.131	2.602	2.947	3.733	4.073		
16		1.746	2.120	2.583	2.921	3.686	4.015		
17		1.740	2.110	2.567	2.898	3.646	3.965		
18		1.734	2.101	2.552	2.878	3.610	3.922		
19		1.729	2.093	2.539	2.861	3.579	3.883		
20		1.725	2.086	2.528	2.845	3.552	3.850		
21		1.721	2.080	2.518	2.831	3.527	3.819		
22		1.717	2.074	2.508	2.819	3.505	3.792		
23		1.714	2.069	2.500	2.807	3.485	3.768		
24		1.711	2.064	2.492	2.797	3.467	3.745		
25		1.708	2.060	2.485	2.787	3.450	3.725		
26		1.706	2.056	2.479	2.779	3.435	3.707		
27		1.703	2.052	2.473	2.771	3.421	3.690		
28		1.701	2.048	2.467	2.763	3.408	3.674		
29		1.699	2.045	2.462	2.756	3.396	3.659		
30		1.697	2.042	2.457	2.750	3.385	3.646		

Multiple Coefficient or Joint Hypothesis Test

- From our wage model, can we say there is no difference between $\hat{\beta}_1$ and $\hat{\beta}_2$?
- That is,

$$H_0: \hat{\beta}_1 = \hat{\beta}_2 = 0$$

$$H_1: \hat{\beta}_1 \neq \hat{\beta}_2 \neq 0$$

- This is joint hypothesis. We use F-statistics for the joint hypothesis test.
- ➤ Why F-statistics? Because it helps to understand the model's nested character.
- Suppose if $\hat{\beta}_1$ and $\hat{\beta}_2$ are zero or either one of them are zero, with the help of F-test we, we can determine whether there is any need of any variable in the regression. General formula is:

$$F = \frac{(M_{restricted} - M_{unrestricted})/q}{M_{restricted}/(N - k_{unrestricted} - 1)}$$

N= sample size, k=number of predictors, $M_{restricted}=$ restricted entity, $M_{unrestricted}=$ unrestricted entity, q=number of restrictions(just the numbers of parameters tested).

Multiple Coefficient or Joint Hypothesis Test

Source	SS	df	MS	Number of obs	=	28,532
				F(2, 28529)	=	6089.03
Model	1951.0667	2	975.53335	Prob > F	=	0.0000
Residual	4570.6764	28,529	.160211588	R-squared	=	0.2992
				Adj R-squared	=	0.2991
Total	6521.7431	28,531	.228584455	Root MSE	=	.40026

ln_wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ttl_exp		.0005242	65.69	0.000	.0334092	.0354642
grade		.0010493	70.68	0.000	.0721075	.0762208
_cons		.0129982	40.88	0.000	.5059487	.5569029

STATA Command

reg ln_wage ttl_exp grade test ttl_exp=grade=0

We can reject the null at 5% since F static P-value is 0.000 Also, Notice STATA output reports the same result!

Multiple Coefficient or Joint Hypothesis Test

TABLE A.3

									•	•		•			
v_1	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
v_2															
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.36	246.46	247.32	248.01
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.42	19.43	19.44	19.45
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.71	8.69	8.67	8.66
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.87	5.84	5.82	5.80
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.64	4.60	4.58	4.56
6	5.99	5.14	4.76	4.53	4.39		4.21	4.15	4.10	4.06	4.00	3.96	3.92	3.90	3.87
7	5.59	4.74	4.35	4.12	3.97		3.79	3.73	3.68	3.64	3.57	3.53	3.49	3.47	3.44
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.24	3.20	3.17	3.15
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.03	2.99	2.96	2.94
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.86	2.83	2.80	2.77
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.74	2.70	2.67	2.65
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.64	2.60	2.57	2.54
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.55	2.51	2.48	2.46
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.48	2.44	2.41	2.39
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.42	2.38	2.35	2.33
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.37	2.33	2.30	2.28
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.33	2.29	2.26	2.23
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.29	2.25	2.22	2.19
19	4.38	3.52	3.13	2.90	2.74		2.54	2.48	2.42	2.38	2.31	2.26	2.21	2.18	2.16
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.22	2.18	2.15	2.12
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.20	2.16	2.12	2.10
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.17	2.13	2.10	2.07
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.15	2.11	2.08	2.05
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.13	2.09	2.05	2.03
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.11	2.07	2.04	2.01
26	4.22	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.09	2.05	2.02	1.99
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.08	2.04	2.00	1.97
28	4.20	3.34	2.95	2.71	2.56		2.36	2.29	2.24	2.19	2.12	2.06	2.02	1.99	1.96
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.05	2.01	1.97	1.94
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.04	1.99	1.96	1.93
35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.04	1.99	1.94	1.91	1.88
40	4.08	3.23	2.84	2.61	2.45		2.25	2.18	2.12	2.08	2.00	1.95	1.90	1.87	1.84
		5.25	2.0	2.01	2.15	2.5	2.20	2.10	22	2.00	2.00	1.75	1.70	1.07	1.01

Confidence Interval (CI)

- A Confidence Interval (CI) is an interval which is expected to typically contain the parameter being estimated.
- ➤ 95% CI is computed by finding the set of values of the coefficients that are not rejected using a t-statistic at the 5% significance level.
- This approach can be extended to the case of multiple coefficients.
- \triangleright CI = point estimate \pm margin of error margin of error, which can widely known as following:

$$\hat{\beta} \pm z \frac{\sigma}{\sqrt{N}}$$
, where z=z statistics, σ =standard error, N= sample size

CI actually creates a band within which all the significant values fall.

Confidence Interval (CI)

Confidence Interval (CI)

Suppose we want to show the residual within a 95% CI for the wage model we have seen earlier.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$$

- ➤ How to find residual? Recall our last class.
- \triangleright Residual : $\hat{u}_i = Y_i \hat{Y}_i$
- Now all we have to do is to tell STATA to compute and show residual with 95% CI
 - > Run the regression with "reg" command
 - Find residual with "predict" command
 - > Prepare a table of residual summary with "ci residual" command
 - > "ci means" gives CI for all variables in the dataset

STATA Command

reg ln_wage ttl_exp grade predict residual, resid ci residual ci means

Variable	0bs	Mean	Std. Err.	[95% Conf	. Interval]
residual	28,532	7.78e-12	.0023695	0046444	.0046444