

Plant Seedling Classification Using CNN

Plant Seedling Classification Project – PGP ML/AI

July 23, 2023

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Architecture
- Model Performance Summary
- Conclusion
- Appendix

Executive Summary

- The goal of the project is to create a classifier capable of determining a plant's species from an image to reduce expense, manual labor, time, and inefficiency and to improve crop yields, free-up time for higher-order decision making, and promote sustainability
- A dataset containing 4,750 images of 12 unique plant species was used to train and test models
- An exploratory data analysis was completed, the images/labels were preprocessed, and data was split into 80% training/10% validation/10% test sets
- Two convolutional neural network model architectures were built, trained, and tested, and performance on evaluation metrics were evaluated
- The final chosen model is able to classify plant seedlings into their respective categories at an accuracy of 77%

Business Problem Overview and Solution Approach

Problem

• Manually sorting and recognizing different plants and weeds is expensive, labor intensive, time consuming, and inefficient

Solution

• Use machine learning to classify plant seedlings more efficiently and effectively which can lead to better crop yields, free up time for higher-order agricultural decision making, and result in more sustainable environmental practices

Methodology

- Step 1: Preprocess dataset containing images of unique plant species
- Step 2: Train Convolutional Neural Network Models
- Step 3: Evaluate and compare results and choose final model

EDA Results

- Overview of data:
 - 4,750 color images
 - 128x128 pixels each
 - 3 color dimensions (BGR)
 - 12 unique plant species
 - Separate images and labels files

EDA Results (contd.)

- Imbalanced dataset
 - Ranges from 654
 images (Loose Silky-Bent) to
 221 images (Common
 Wheat, Maize)
- Data augmentation can help with imbalanced datasets

Data Preprocessing

40 50

Converted BGR color format to RGB color format

Model Architecture

- All models utilized:
 - Convolution layers: padding = 'same', activation = 'relu', 3x3 kernel size
 - Pooling layers: Max pooling, padding='same', 2x2 patches
- Model 1:
 - Adam optimizer, epochs = 30, batch size = 32
 - 128,828 parameters

Model Architecture (contd.)

- Model 2:
 - Applied data augmentation by randomly rotating images 20 degrees
 - Applied function to decrease learning rate by a 0.5 factor if loss is not decreasing
 - Adam optimizer, epochs = 30, batch size = 64
 - 151,676 parameters

Model Performance Summary

- Model 1 was underfitting as the validation did better than the training set
- Under/Overfitting reduced in Model 2 with Batch Norm, reduced learning rate, and data augmentation

Model Performance Summary (contd.)

- 50

- Numbers off the main diagonal are misclassifications
- Black-grass was most commonly misclassified among both models as Loose Silky-bent

Metric	Model 1	Model 2	Improvement
Training Accuracy	54%	75%	+21%
Validation Accuracy	69%	79%	+10%
Testing Accuracy	67%	77%	+10%
Precision (weighted avg)	66%	77%	+11%
Recall (weighted avg)	67%	77%	+10%
F1 Score (weighted avg)	64%	76%	+12%

Conclusion

- Model 2 outperformed Model 1 in every metric and showed less underfitting and overfitting
- Model 2 can classify plant seedlings with 77% accuracy
- Model 2 utilized data augmentation, decreased learning rate, batch normalization, and higher batch size than Model 1 to improve performance
- Recommendations to improve performance:
 - Implement transfer learning
 - Train model with grayscale images or masking the background
 - Focus on Loose Silky-bent and Black-grass differences as that was commonly misclassified
 - Apply other data augmentation techniques like zooming in and flipping
 - Add spatial dropout and more batch norm layers to further reduce overfitting
 - Increase the number of fully connected layers

APPENDIX

Data Background and Contents

- The Aarhus University Signal Processing group, in collaboration with the University of Southern Denmark, released a dataset containing images of unique plants belonging to 12 different species.
- Data provided in two separate files:
 - Images.npy
 - Label.csv

- List of Species:
 - Black-grass
 - Charlock
 - Cleavers
 - Common Chickweed
 - Common Wheat
 - Fat Hen
 - Loose Silky-bent
 - Maize
 - Scentless Mayweed
 - Shepherds Purse
 - Small-flowered Cranesbill
 - Sugar beet

Happy Learning!

