Ashrith Adepu

+1 716-907-8929 | adepashrith@gmail.com | linkedin.com/in/ashrithadepu | Richland, WA

EDUCATION

University at Buffalo - Buffalo, NY

MSc-Mechanical Engineering Indian Institute of Technology Dharwad - India BTech-Mechanical Engineering

TECHNICAL SKILLS

Languages: Python, MATLAB, C++, Java

Certifications: Certified Lean Six Sigma Green Belt

CAD Softwares: SolidWorks, CATIA, Creo, Siemens NX, AutoCAD, Fusion 360 CAE Softwares: Simulink, ANSYS, ANSYS Fluent, Abaqus, LabVIEW, Minitab

Domain: Control Systems, HVAC, Design for Manufacturability, Mechanical Systems Optimization, Data Center Infrastructure, Mechanical System Design, Preventative Maintenance, Operational Efficiency Root Cause Analysis

Experience

Mechanical Field Engineer at Amazon Web Services, Hermiston, OR

Feb 2025 - Mar 2025

- Conducted on-site assessments, commissioning, and root cause analysis of critical HVAC systems, including CRAC units, chillers, pumps, and cooling towers, ensuring high system uptime and operational reliability.
- Partnered with cross-functional teams from design, construction, and operations to validate mechanical system designs, resolve system failures, and update engineering documentation such as SOPs, MOPs, and redlines.
- Ensured adherence to high engineering standards by applying ASHRAE and NFPA codes while supporting multiple global data center projects under tight timelines.

Research Assistant at University at Buffalo, Buffalo, NY

Aug 2022 - Dec 2024

- Optimized Vestas V110/V120 turbines at Maple Ridge & High Sheldon farms, achieving 10% more power, 12% load reduction, and 12% cost savings.
- Built high-fidelity MATLAB/Simulink models and applied SINDy for dynamic behavior analysis under real-world conditions.
- Designed adaptive control algorithms for blade pitch/yaw and performed SCADA-based torque optimization.
- Validated solutions with Vestas engineers using operational data to ensure scalability across turbine models.

Process Modelling Engineer at Decibels Labs, Bangalore, India

Jun 2020 - Jul 2021

- Modeled and simulated 6 EV powertrain components including motor, transmission, battery, and BMS for vehicles such as Ola S1 Pro, Ather 450 and Tesla Model 3 using MATLAB and Simulink.
- Designed and implemented a passive thermal vent system for the Ola Electric S1 Pro, improving battery cooling efficiency and extending battery lifespan by 1.3x.
- · Conducted high-fidelity simulations and drive cycle customization based on Indian traffic conditions, achieving a 10% improvement in overall energy efficiency.
- Collaborated with cross-functional teams to integrate and optimize subsystems, resulting in a 12% reduction in structural loads and enhanced production readiness.

TECHNICAL PROJECTS

HVAC Control System Optimization Project

Control Systems Engineer, "HVAC" Course Project, University at Buffalo

- Engineered adaptive HVAC control algorithms using MATLAB and Simulink, boosting system responsiveness by 25% and efficiency by 12% through employing predictive control strategies.
- Performed real-time simulations and optimized system performance under varying load conditions, ensuring stable operations, reducing downtime by 15%, and improving system resilience.
- Introduced dynamic feedback loops, using sensors to adjust settings based on occupancy, leading to significant energy savings and consistent climate control.

Defect Reduction and Quality Enhancement Project

Industrial Engineer, Rich Products Corp, "Lean Enterprise and Applications" Course Project, Buffalo, NY

- Led a Lean Six Sigma project, reducing production defects by 20% through strategic process enhancements, focusing on waste reduction and process streamlining.
- Introduced enhanced quality control standards that boosted product compliance by 20%, while simultaneously improving operational transparency and traceability across the production process.
- Collaborated with cross-functional teams, driving a 25% improvement in production efficiency by optimizing workflows and fostering stronger stakeholder engagement.