华东理工大学 2016~2017 学年第二学期 《热学》期中试卷 2017 年 4 月

开课学院: 理学院 考试形式: 闭卷 所需时间: 120分钟

		编号	: 姓名:	学号:	_ 专业:	班级	
	题	型	选择题	填空题	总	分	
	得	分					
	评卷	人					
— 、	È	单项选	择题(共 48 分, 每	题 4 分)			
(A) =	体ラ	 尼限压	缩所达到的最小体	系数 b 的物理意义 本积; (B) 气体无限见 R的 2 倍; (D) 所有	玉缩所达到最小] 倍
	(A) 6	SRT.	$(B) 5RT \cdot (C) 3R$	当温度为 T 时, T. (D) 6kT. (E) k 为玻尔兹曼常量)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. []
				300m/s,由此可推 (C)5.4Kg/m ³ . (D)		С]
 (A)分	子的	り平均	的温度是下列哪个 动能. (B) 分子的 匀振动动能. (E)分	平均平动动能. (C) 分子的平均转	[动动能.]
速率	之比	为 $\overline{v_A^2}$	$\left(\overline{\nu_B^2}\right)^{1/2}:\left(\overline{\nu_C^2}\right)^{1/2}:\left(\overline{\nu_C^2}\right)^{1/2}$	种理想气体,其分 =1:2:4,则其E . (C) 1:4:16. (∑ 强之比 <i>P_A: □</i>	D _B : P _C 为	i: _
之间	的分	子的·	平均速率为	函数,则速率介于		[₹ v _p
$(A)\int_{\mathbf{v}}^{\mathbf{v}}$	v vf	(v)dv	v (B) \int_{\bar{v}}^{\bar{v}_p} \mathbf{vf(v)} \d\mathbf{v} .	$(C) \frac{\int_{\mathbf{v_p}}^{\overline{\mathbf{v}}} \mathbf{vf(v)dv}}{\int_{\mathbf{v_p}}^{\overline{\mathbf{v}}} \mathbf{f(v)dv}}.$	(D) $\frac{\int_{\bar{v}}^{v_p} \mathbf{v} \mathbf{f}(\mathbf{v}) d\mathbf{r}}{\int_{\bar{v}}^{v_p} \mathbf{f}(\mathbf{v}) d\mathbf{r}}$	dv lv	
			斯韦速率分布率, $\frac{1}{\pi \overline{v}}.$ (C) $\frac{2}{\pi \overline{v}}$	由此得出速率倒数 \cdot . (D) $\frac{4}{\pi \overline{v}}$	的平均值	[]

[08]金属导体中的电子,在金属内部作无规则运动,与容器中	的气体分子	很类
似. 设金属中共有 N 个自由电子,其中电子的最大速率为 v_m , $v+dv$ 之间的概率为	电子速率右	Ev∼
$\frac{\mathrm{d}N}{N} = \begin{cases} Av^2 \mathrm{d}v & 0 \leq v \leq v_m \\ 0 & v > v_m \end{cases}$		
式中 Λ 为常数,则平均速率为	Ε]
(A) $\frac{A}{3}v_m^3$. (B) $\frac{A}{4}v_m^4$. (C) v_m . (D) $\frac{A}{3}v_m^2$.		
[09]气体的黏性现象源于	[]
(A)速度梯度. (B)质量梯度. (C)温度梯度. (D)数密度梯度.	_	_
[10]按分子运动论观点,气体的扩散现象输运物理量是(A)动量.(B)质量.(C)热量.(D)分子数.	[]
[11]气缸内盛有一定量的理想气体,当压强不变而温度增大时	,气体分子	的平
均碰撞频率 \bar{z} 和平均自由程 $\bar{\lambda}$ 的变化情况是(分子有效直径不	可以认为是	常数)
(A) \bar{Z} 和 $\bar{\lambda}$ 都增大。 (B) \bar{Z} 和 $\bar{\lambda}$ 都变小。 (C) \bar{Z} 增大、 $\bar{\lambda}$ 变小。 (D)	$ar{Z}$ 变小、 $ar{\lambda}$	增大.
(E) 以上说法均不对.]
[12]刚性球分子的热传导系数与温度 T、数密度 n 的关系是]]
(A)与 T、n 均有关. (B) 与 T、n 均无关.		
(C) 与 T 有关, 与 n 无关. (D)与 T 无关, 与 n 有关.		
二、填空题(共 52 分)		
[13]4′按对时间反演是否对称,物理学可分为	和	
两类,而	的唯一	代表。
[14]3′制定温标的三要素分别为、、	_ `	c
[15]5′一种假想物质具有如下的等压体膨胀系数和等温压缩系		
$\boldsymbol{\beta_p} = \frac{\boldsymbol{A}}{\boldsymbol{VT}}, \boldsymbol{\kappa_T} = \frac{\boldsymbol{B}}{\boldsymbol{V}}, $ 则其状态方程为	(A、B 均为f	常量)。
[16]5′高温 T 时的甲烷气体,每个分子平均能量为		c
[17]5' 速率分布函数 $f(v)$, $v>100m s^{-1}$ 的分子数占总数比率的表	达式	c
[18]6′平均平动动能为 6.38×10^{-21} J的氧分子速度 z 轴分量小于	- 240m/s 的	分子数
占总分子数百分比为(直接以i	误差函数表	示)

[19]6'某系统由两种理想气体 $A \times B$ 组成. 其分子数分别为 $N_A \times N_B$. 某一温度下, $A \times B$ 气体各自的速率分布函数为 $f_A(v) \times f_B(v)$,则在同一温度下,由 $A \times B$
B 气体组成的系统的速率分布函数为 f (v) =
[20]6′容器 V 内同时盛 M_1 、 M_2 的单原子、双原子分子理气,混合气平衡时各自
内能均为 E.则混合气 p= 两分子平均速率之比 $\frac{\bar{v}_1}{\bar{v}_2}$ =
[21] $6'$ 容器中某理气被一绝热薄壁隔板分成 A 、 B 两部分,分别与 T_A 、 T_B 热源接触, A 、 B 气体可通过隔板上开的小孔,以泻流方式互换分子最终达到动态平衡: 此时 A 中气体压强 p_A 、数密度 n_A , B 中气体压强 p_B 、数密度 n_B ,则此时压强
与温度的关系为;数密度与温度的关系为
[22]6′设 κ_{Cu} =2 κ_{Al} =4 $\kappa_{\text{±}}$ Cu,将三根长度及直径完全相同的直圆杆按Cu、A1、黄Cu顺序从左向右连成一根直圆杆,并保持杆左右两端温度分别为100°C、0°C,不计
侧面热损失,则热稳定时 Cu、A1 接头的热力学温度为,
A1、黄 Cu 接头处的热力学温度为 .