第11章 APB(クロック・リセット)制御

11.1 概要

NPPFAHBAPBPERIV20(以降、APB-SS と略します)は、AHBAPB ブリッジ、APB 周辺マクロを内蔵したサブシステムです。

11.1.1 特徴

APB-SS は以下のマクロを搭載しています。

- ・32 ビット精度 APB-SS タイマ(Interval Timer)
- UART
- · CSI
- I2C
- ・AHBAPB ブリッジ

11.1.2 準拠規格

- · AMBA3 AHB Lite
- AMBA3 APB
- ・ I2C バスフォーマット(Philips 社 1995 年 4 月発行「The I2C-bus and how to use it」)

11.2 レジスタ

11.2.1 レジスター覧

本 APB-SS のレジスタの一覧を示します。

R/W 欄の記号は以下の動作になります。

R/W:リード・ライト可能

R:リードのみ可能

W: ライトのみ可能(リードした場合は **0000_0000H** が読み出されます)

表 11-1 レジスター覧(1/5)

対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ
APB-SS	EFFF_0200H	APB-SS クロック制御レジスタ	ACC	R/W	FFFF_FFFFH	32 ビット
クロック 制御	EFFF_0204H EFFF_020FH	予約領域 ^建 2	I	I	不定	_
	EFFF_0210H	APB-SS ソフトウエア・リセット・レジスタ	ASR	R/W	FFFF_FFFFH	32 ビット
APB-SS リセット	EFFF_0214H EFFF_021FH	予約領域 ^{建2}	I	I	不定	_
	EFFF_0220H EFFF_023FH	未使用領域 <mark>達</mark> 1	_	_	不定	_

- 注1 未使用領域にアクセスした場合、ERRORレスポンスを返します。
- 注2 予約領域にアクセスした場合、OKAYレスポンスを返します。

この領域は今後の機能拡張で、初期値、リード・ライト属性が変わる場合があります。 ソフトウエアで、この領域をリードした値がOであることを期待した記述はしないで下さい。

表 11-2 レジスター覧(2/5)

対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ
	EFFF_1000H	APB-SS タイマ・カウント・レジスタ	TMD0	R	0000_0000H	32 ビット
APB-SS タイ	EFFF_1004H	コンペア・レジスタ	CMD0	R/W	0000_0000H	32 ビット
マ 0	EFFF_1008H	コントロール・レジスタ	TMCD0	R/W	00H	8 ビット
	EFFF_100CH	割り込みクリア・レジスタ	INTCLR0	W	0000_0000H	32 ビット
	EFFF_1010H	APB-SS タイマ・カウント・レジスタ	TMD1	R	0000_0000H	32 ビット
APB-SS タイ	EFFF_1014H	コンペア・レジスタ	CMD1	R/W	0000_0000H	32 ビット
マ 1	EFFF_1018H	コントロール・レジスタ	TMCD1	R/W	00H	8 ビット
	EFFF_101CH	割り込みクリア・レジスタ	INTCLR1	W	0000_0000H	32 ビット
	EFFF_1020H	APB-SS タイマ・カウント・レジスタ	TMD2	R	0000_0000H	32 ビット
APB-SS タイ	EFFF_1024H	コンペア・レジスタ	CMD2	R/W	0000_0000H	32 ビット
マ 2	EFFF_1028H	コントロール・レジスタ	TMCD2	R/W	00H	8ビット
	EFFF_102CH	割り込みクリア・レジスタ	INTCLR2	W	0000_0000H	32 ビット
	EFFF_1030H	APB-SS タイマ・カウント・レジスタ	TMD3	R	0000_0000H	32 ビット
APB-SS タイ マ 3	EFFF_1034H	コンペア・レジスタ	CMD3	R/W	0000_0000H	32 ビット
	EFFF_1038H	コントロール・レジスタ	TMCD3	R/W	00H	8 ビット
	EFFF_103CH	割り込みクリア・レジスタ	INTCLR3	W	0000_0000H	32 ビット

注1 未使用領域にアクセスした場合、ERROR レスポンスを返します。

注2アクセス・サイズに記載以外のアクセスは禁止です。

表 11-3 レジスター覧(3/5)

対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ
	EFFF_4000H	CSI モード・コントロール・レジスタ	CSI_MODE0	R/W	0000_0000H	32 ビット
	EFFF_4004H	CSI クロック選択レジスタ	CSI_CLKSEL0	R/W	0000_FFFEH	32 ビット
	EFFF_4008H	CSI コントロール・レジスタ	CSI_CNT0	R/W	1000_0000H	32 ビット
	EFFF_400CH	CSI 割り込みステータス・レジスタ	CSINT0	R/W	0000_0000H	32 ビット
	EFFF_4010H	CSI 受信 FIFO レベル表示レジスタ	CSI_IFIFOL0	R/W	0000_0000H	32 ビット
CSI0	EFFF_4014H	CSI 送信 FIFO レベル表示レジスタ	CSI_OFIFOL0	R/W	0000_0000H	32 ビット
C310	EFFF_4018H	CSI 受信ウインドウ・レジスタ	CSI_IFIFO0	R	0000_0000H	32 ビット
	EFFF_401CH	CSI 送信ウインドウ・レジスタ	CSI_OFIFO0	W	0000_0000H	32 ビット
	EFFF_4020H	CSI FIFO トリガ・レベル・レジスタ	CSI_FIFOTRG0	R/W	0000_0000H	32 ビット
	EFFF_4024H					
	1	予約領域 ^{達2}	_	_	不定	_
	EFFF_403FH					

- 注1 未使用領域にアクセスした場合、ERROR レスポンスを返します。
- 注2予約領域にアクセスした場合、OKAYレスポンスを返します。 この領域は今後の機能拡張で、初期値、リード・ライト属性が変わる場合があります。 ソフトウエアで、この領域をリードした値がOであることを期待した記述はしないで下さい。
- 注3アクセス・サイズに記載以外のアクセスは禁止です。

表 11-4 レジスター覧(4/5)

対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ
	EFFF_4800H	UART シリアル受信データ・レジスタ	RBRO	R	00H	8 ビット
	L111_400011	UART シリアル送信データ・レジスタ	THR0	W	00H	8 ビット
		UART ボー・レート除数レジスタ(下位バイト)	DLL0	R/W	00H	8 ビット
	EFFF_4804H	UART ボー・レート除数レジスタ(上位バイト)	DLH0	R/W	00H	8 ビット
		UART 割込み許可レジスタ	IERO	R/W	00H	8 ビット
	EFFF_4808H	UART 割込み確認レジスタ	IIRO	R	01H	8 ビット
		UART FIFO コントロール・レジスタ	FCR0	W	00H	8 ビット
	EFFF_480CH	UART ラインコントロール・レジスタ	LCR0	R/W	00H	8 ビット
	EFFF_4810H	UART モデムコントロール・レジスタ	MCR0	R/W	00H	8 ビット
	EFFF_4814H	UART ラインステータス・レジスタ	LSRO	R	60H	8 ビット
	EFFF_4818H	UART モデムステータス・レジスタ	MSRO	R	00H	8 ビット
UART0	EFFF_481CH	UART スクラッチパッド・レジスタ	SCR0	R/W	00H	8 ビット
	EFFF_4820H EFFF_487BH	予約領域	I	-	不定	アクセス禁止
	EFFF_487CH	UART ステータス・レジスタ	USRO	R	0B *bit7-1 は不定	8ビット
	EFFF_4880H EFFF_48FFH	予約領域	-	-	不定	アクセス禁止
	EFFF_4900H	UART DMA 転送要求コントロール・レジスタ	FDR0	R/W	00H	8ビット
	EFFF_4904H EFFF_49FFH	予約領域 ^達 1	_	_	不定	_

注1 予約領域にアクセスした場合、OKAYレスポンスを返します。

この領域は今後の機能拡張で、初期値、リード・ライト属性が変わる場合があります。 ソフトウエアで、この領域をリードした値がOであることを期待した記述はしないで下さい。 注2アクセス・サイズに記載以外のアクセスは禁止です。

表 11-5 レジスター覧(5/5)

対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ
	EFFF_5000H	2C 動作許可レジスタ	IICACT0	R/W	00H	8ビット
	EFFF_5004H	12C シフト・レジスタ	IIC0	R/W	00H	8ビット
	EFFF_5008H	I2C コントロール・レジスタ	IICC0	R/W	00H	8 ビット
	EFFF_500CH	スレーブアドレス・レジスタ	SVA0	R/W (BitO のみ R)	00H	8 ビット
	EFFF_5010H	I2C 転送クロック選択レジスタ	IICCL0	R/W	00H	8ビット
	EFFF_5014H	I2C 機能拡張レジスタ	IICX0	R/W	00H	8ビット
I2C	EFFF_5018H	I2C 状態レジスタ	IICS0	R	00H	8ビット
	EFFF_501CH	I2C 状態レジスタ(エミュレーション用リード専用レジスタ)	IICSE0	R	00H	8 ビット
	EFFF_5020H	12C フラグ・レジスタ	IICF0	R/W	00H	8 ビット
	EFFF_5024H	- 6/ AT 1 N				
	 EFFF_503FH	卜予約領域 ^{達2} 	_	_	不定	_

- 注1 未使用領域にアクセスした場合、ERROR レスポンスを返します。
- 注 2 予約領域にアクセスした場合、OKAYレスポンスを返します。 この領域は今後の機能拡張で、初期値、リード・ライト属性が変わる場合があります。 ソフトウエアで、この領域をリードした値が 0 であることを期待した記述はしないで下さい。
- 注3 アクセス・サイズに記載以外のアクセスは禁止です。

11.3 割り込み

11.3.1 割り込み信号

本 APB-SS では、以下の割り込み信号を出力します。

表 11-6 割り込み信号一覧

端子名	割り込み発生マクロ	アクティブ・ レベル	パルス/レベル	同期クロック
INTTM0	APB-SS タイマ 0	ハイ	パルス/レベル出力*1	TIM_CLK
INTTM1	APB-SS タイマ 1	ハイ	パルス/レベル出力*1	TIM_CLK
INTTM2	APB-SS タイマ 2	ハイ	パルス/レベル出力*1	TIM_CLK
INTTM3	APB-SS タイマ 3	ハイ	パルス/レベル出力*1	TIM_CLK
UART_INT	APB-SS UART	ハイ	レベル出力	PCLK
CSI_INT	APB-SS CSIO	ハイ	レベル出力	PCLK
IIC_INT	APB-SS I2C	ハイ	レベル出力	IIC_CLK

^{*1} レジスタにより切り替え可能です。

[備考]	TIM_CLK	APB-SS タイマ用カウント・クロック入力
	HCLK	AHB バス・クロック入力
	PCLK	APB バス・クロック入力
	IIC_CLK	I2C 内部サンプリング・クロック入力

注意 · INTTM0-3 はパルス設定時、TIM_CLK 同期で TIM_CLK の 1 クロック期間アクティブになります。割り込みコントローラは立ち上がりエッジの設定でご使用ください。

- ・ パルス設定の INTTMO-3 と接続する割り込みコントローラの入力をパルス設定にし、かつ非同期の割り込み信号を割り込みコントローラに入力する場合は、割り込みコントローラの動作クロックである HCLK の 2 クロック以上の長さが必要となります。この為、APB-SS タイマ・カウント・クロックである TIM CLK には HCLK の 2 クロック以下の低い周波数のクロックを入力してください。
- ・ レベル設定の INTTM0-3 を使用し、割り込み要因のクリアにおいて連続アクセスを行う場合、パルス割り込みと同様、TIM_CLK には HCLK の 2 クロック以下の低い周波数のクロックを入力してください。
- · IIC_INT はレベル出力されますが、割り込みコントローラはパルス設定で使用してください。

11.4 機能説明

11.4.1 AHBAPB ブリッジ

(1) AHB 対応レスポンス一覧

本 APB-SS が発行するレスポンス一覧を示します。

表 11-7 使用レスポンス一覧

SHRESP	発行	備考
ERROR	する	APB アクセスにて、未使用領域へのアクセス及び、スレーブからのエラー応答時に 発行します。
SPLIT	しない	SPLIT は発行しません。
RETRY	しない	RETRY は発行しません。

本 APB-SS がサポートする転送方式およびレスポンス一覧を示します。

表 11-8 サポート転送方式一覧

SHTRANS	SHSIZE	SHBURST	PSLVERR	応答	備考
BUSY			_	OKAY	IDLE 転送とみなします。
			0	OKAY	32 ビットのリード・ライトを正常に行ないます。
NONSEQ	注 1	all	1	ERROR	APB アドレス・デコーダが PSLVERR をアサート した場合、ERROR を発行します。
\$EQ			0	OKAY	NONSEQ と同様に扱います。
SEQ			1	ERROR	NON3EQ と回探に扱います。

注 1 本 APB-SS は 32 ビット・アクセスを前提としておりますが、他のサイズでアクセスが来た場合でも OKAY レスポンスを返します。

(2) バイト・レーン

本ブリッジでは AHB、APB とも 32 ビット・データ・バスを想定しています。32 ビットよりも小さいバス 幅の APB スレーブを接続する場合、APB スレーブが接続されているバイト・レーンに正しくアクセスできるよう、AHB マスタにて転送方式を選択してください。バイト/ハーフワード・アクセスは、ワード・アラインしたアドレスに対してアクセスして下さい。

11.4.2 APB-SS タイマ機能

APB-SS タイマの機能については第14章 Interval Timer を参照ください。

11.4.3 CSI 機能

CSI についての詳細仕様は第13章 CSI を参照ください。

11.4.4 UART 機能

UART の詳細仕様は第 16 章 UART を参照ください。

11.4.5 I2C 機能

I2C の詳細仕様は第 15 章 I2C を参照ください。

11.5 クロック

APB-SS のクロック構成について説明します。

11.5.1 クロック制御レジスタ

本 APB-SS は、APB-SS クロック制御レジスタにアクセスすることで搭載する各 APB マクロに供給するクロックの制御が可能です。(対応マクロ: APB-SS タイマ、UART、CSI、I2C)

次のような APB インタフェースのクロック制御レジスタがあります。

(1) APB-SS クロック制御レジスタ(ACC)

アドレス(EFFF_0200H)

APB-SS に搭載する各 APB マクロへのクロック供給を制御します。初期状態では全てのクロックを供給します。クロックを停止する場合は手順に従ってください。

アドレ ス		EFFF_0200H																														
ビット	3	3	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
レジスタ名称				Reserved				22_02II		Reserved		UARTO_CC		Reserved		CSIO_CC	Reserved					Reserved						CIM3_CC	CIM2_CC	CIM1_CC	CTM0_CC	Reserved

ビット位置	ビット名	R/W	初期値	機能
31:27	Reserved	R/W	11111B	Reserved
26	Reserved	R/W	1B	Reserved
25	Reserved	R/W	1B	Reserved
24	IIC0_CC	R/W	1B	APB-SS I2C への クロック(PCLK,IIC_CLK)供給を制御します。 0:クロック停止 1:クロック供給

ビット位置	ビット名	R/W	初期値	機能
23	Reserved	R/W	1B	Reserved
22	Reserved	R/W	1B	Reserved
21	Reserved	R/W	1B	Reserved
20	UARTO_CC	R/W	1B	APB-SS UART へのクロック(PCLK,UART_CLK)供給を制御します。 0:クロック停止 1:クロック供給
19	Reserved	R/W	1B	Reserved
18	Reserved	R/W	1B	Reserved
17	Reserved	R/W	1B	Reserved
16	CSIO_CC	R/W	1B	APB-SS CSIO へのクロック(PCLK,CSI_CLK)供給を制御します。 0: クロック停止 1: クロック供給
15	Reserved	R/W	1B	Reserved
14	Reserved	R/W	1B	Reserved
13	Reserved	R/W	1B	Reserved
12	Reserved	R/W	1B	Reserved
11	Reserved	R/W	1B	Reserved
10	Reserved	R/W	1B	Reserved
9	Reserved	R/W	1B	Reserved
8	Reserved	R/W	1B	Reserved
7	Reserved	R/W	1B	Reserved
6	Reserved	R/W	1B	Reserved
5	Reserved	R/W	1B	Reserved
4	CTM3_CC	R/W	1B	APB-SS タイマ 3 (PCLK,TIM_CLK)へのクロック供給を制御します。 0: クロック停止 1: クロック供給
3	CTM2_CC	R/W	1B	APB-SS タイマ 2 (PCLK,TIM_CLK)へのクロック供給を制御します。 0: クロック停止 1: クロック供給
2	CTM1_CC	R/W	1B	APB-SS タイマ 1 (PCLK,TIM_CLK)へのクロック供給を制御します。 0: クロック停止 1: クロック供給
1	CTM0_CC	R/W	1B	APB-SS タイマ 0 (PCLK,TIM_CLK)へのクロック供給を制御します。 0: クロック停止 1: クロック供給
0	Reserved	R/W	1B	Reserved

(2) APB-SS タイマ・クロック制御手順

APB-SS タイマのクロック制御手順を示します。

図 11-1 APB-SS タイマ・クロック停止手順(1/2)

図 11-2 APB-SS タイマ・クロック停止手順(2/2)

(3) UART クロック制御手順

UART のクロック制御手順を示します。

図 11-3 UART クロック停止手順(1/2)

図 **11-4** UART クロック停止手順(2/2)

(4) CSI クロック制御手順

CSIのクロック制御手順を示します。

図 11-5 CSI クロック停止手順(1/2)

図 11-6 CSI クロック停止手順(2/2)

(5) 12C クロック制御手順

I2C のクロック制御手順を示します。

図 11-7 I2C クロック停止手順(1/2)

図 11-8 12C クロック停止手順(2/2)

11.6 リセット

本 APB-SS をリセットする方法は、外部端子よりリセットするハードウエア・リセットと、本 APB-SS 内部 に搭載する APB インタフェースのレジスタよりリセットするソフトウエア・リセットがあります。

11.6.1 ソフトウエア・リセット

次のようなソフトウエア・リセット用の APB インタフェースのレジスタがあります。

(1) APB-SS ソフトウエア・リセット・レジスタ(ASR) アドレス(EFFF_0210H)

APB-SS に搭載する APB マクロをリセットします。

アドレス	EFFF_0210H								
ビット	3 3 2 2 2 1 0 9 8 7	2 2 2 6 5 4	2 2 2 2 3 2 1 0	2 1 1 1 1 0 9 8 7 6	1 1 1 1 1 1 1 9 9 8 7 6 5 5 4 3 2 1 0 9 8 7 6 5	4 3 2 1 0			
レジスタ名称	Reserved	CC_SR Reserved IICO SR		NAR10_SR Reserved	2000	CTM3_SR CTM2_SR CTM1_SR CTM0_SR			

ビット位置	ビット名	R/W	初期値	機能
31:28	Reserved	R/W	1111B	Reserved
27	Reserved	R/W	1B	Reserved
26	CC_SR	R/W	1B	クロック制御レジスタへのリセット信号を生成します。 〇: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)
25	Reserved	R/W	1B	Reserved
24	IICO_SR	R/W	1B	APB-SS I2C へのリセット信号を生成します。 0:リセット(ロー・レベル) 1:リセット解除(ハイ・レベル)
23	Reserved	R/W	1B	Reserved
22	Reserved	R/W	1B	Reserved
21	Reserved	R/W	1B	Reserved
20	UARTO_SR	R/W	1B	APB-SS UART へのリセット信号を生成します。 〇: リセット(ロー・レベル) ヿ: リセット解除(ハイ・レベル)

ビット位置	ビット名	R/W	初期値	機能
19	Reserved	R/W	1B	Reserved
18	Reserved	R/W	1B	Reserved
17	Reserved	R/W	1B	Reserved
16	CSIO_SR	R/W	1B	APB-SS CSIO へのリセット信号を生成します。 0: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)
15	Reserved	R/W	1B	Reserved
14	Reserved	R/W	1B	Reserved
13	Reserved	R/W	1B	Reserved
12	Reserved	R/W	1B	Reserved
11	Reserved	R/W	1B	Reserved
10	Reserved	R/W	1B	Reserved
9	Reserved	R/W	1B	Reserved
8	Reserved	R/W	1B	Reserved
7	Reserved	R/W	1B	Reserved
6	Reserved	R/W	1B	Reserved
5	Reserved	R/W	1B	Reserved
4	CTM3_SR	R/W	1B	APB-SS タイマ 3 へのリセット信号を生成します。 O: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)
3	CTM2_SR	R/W	1B	APB-SS タイマ 2 へのリセット信号を生成します。 0:リセット(ロー・レベル) 1:リセット解除
2	CTM1_SR	R/W	1B	APB-SS タイマ 1 へのリセット信号を生成します。 0: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)
1	CTM0_SR	R/W	1B	APB-SS タイマ 0 へのリセット信号を生成します。 0: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)
0	Reserved	R/W	1B	Reserved