东南大学学生会

Students' Union of Southeast University

07-08-3 高数 B 期中试卷参考答案

- 一. 单项选择题(本题共 4 小题, 每小题 4 分, 满分 16 分)
- 1. [A] 2.[C] 3. [B] 4. [B]
- 二. 填空题(本题共5小题,每小题4分,满分20分)

5.
$$\frac{\pi}{4}$$
; 6. $2x^2 + 3y^2 + 2z^2 = 4$; 7. $\begin{cases} y^2 + z^2 = 1 \\ x = 0 \end{cases}$;

- **8**. <u>3</u>; **9**. [1,3].
- 三. 计算下列各题(本题共 4 小题, 每小题 9 分, 满分 36 分)

10. 解
$$\mathbf{s}_1 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ 1 & -1 & 1 \end{vmatrix} = (1, -2, -3)$$
,平面方程为 $\begin{vmatrix} x-1 & y-2 & z-1 \\ 1 & -2 & -3 \\ 0 & -1 & -1 \end{vmatrix} = 0$

即 x-y+z=0

11. **解** 设所求直线与直线
$$\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-3}{-5}$$
 的交点为 (x_0, y_0, z_0) , $x_0 = 1 + 3t_0$,

$$y_0 = -1 + 2t_0$$
, $z_0 = 3 - 5t_0$, \mp

$$6(x_0+4)-2(y_0-6)-3(z_0+2)=6(5+3t_0)-2(-7+2t_0)-3(5-5t_0)=29(t_0+1)=0$$

得
$$t_0 = -1$$
,交点为(-2,-3,8),所求直线方程为 $\frac{x+4}{2} = \frac{y-6}{-9} = \frac{z+2}{10}$

12

$$\mathbf{f}(x) = \ln\left(2x^2 + x - 3\right) = \ln(x - 1)(2x + 3) = \ln 18 + \ln\left(1 + \frac{x - 3}{2}\right) + \ln\left(1 + \frac{2}{9}(x - 3)\right)$$

$$= \ln 18 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(\frac{1}{2^n} + \left(\frac{2}{9} \right)^n \right) (x-3)^n, \quad 1 < x \le 5$$

东南大学学生会 Students' Union of Southeast University

13. \mathbf{M} \Leftrightarrow $y = x^2$,

$$\sum_{n=1}^{\infty} (-1)^{n-1} n x^{2n} = \sum_{n=1}^{\infty} (-1)^{n-1} n y^n = y \left(\sum_{n=1}^{\infty} (-1)^{n-1} y^n \right)' = y \left(\frac{y}{1+y} \right)' = \frac{y}{(1+y)^2} = \frac{x^2}{(1+x^2)^2},$$

$$-1 < x < 1$$

四(14). (本题满分9分)

解 设
$$M_0(x_0, y_0, 1)$$
 是准线上一点,则 $\frac{x - x_0}{0} = y - y_0 = z - 1$,则 $x_0 = x$,

 $y_0 = y - z + 1$,代入准线方程即得所求的柱面方程 $4x^2 - (y - z + 1)^2 = 1$

五(15)。(本题满分9分)

解
$$\int_{n}^{n+1} e^{-\sqrt{x}} dx \le e^{-\sqrt{n}} \le \frac{24}{n^2}$$
,而 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,由比较判别法得知级数 $\sum_{n=1}^{\infty} \int_{n}^{n+1} e^{-\sqrt{x}} dx$ 收敛

六(16).(本题满分10分)

解 由题设知
$$a_n = 0, n = 0, 1, 2, \dots$$
, $b_n = \frac{2}{\pi} \int_0^{\pi} \frac{\pi - 2x}{4} \sin nx dx = \frac{1 + (-1)^n}{2n}$, $n = 1, 2, \dots$

$$f(x) = \sum_{n=1}^{\infty} \frac{1 + (-1)^n}{2n} \sin nx = \sum_{n=1}^{\infty} \frac{1}{2n} \sin 2nx, \quad x \in (0, \pi) ,$$

取
$$x = \frac{\pi}{4}$$
, 得 $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n}{2} \pi = \frac{\pi}{4}$, 即 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} = \frac{\pi}{4}$