Vocabulaire relatif aux applications

Aperçu

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles

- 1. Définition ensembliste d'une application
- 1.1 Notion d'application
- 1.2 À propos des fonctions de «définies par morceaux»
- 1.3 Fonctions indicatrices
- 1.4 À propos des fonctions de «plusieurs variables»
- 2. Image directe et image réciproque
- Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles

1. Définition ensembliste d'une application

- 1.1 Notion d'application
- 1.2 À propos des fonctions de «définies par morceaux»
- 1.3 Fonctions indicatrices
- 1.4 À propos des fonctions de «plusieurs variables»
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles

Étant donné deux ensembles A et B, une **application** de A dans B est un triplet f=(A,B,G) où G est une partie de $A\times B$ telle que

$$\forall x \in A, \exists ! y \in B, (x, y) \in G.$$

- ightharpoonup A est appelé l'ensemble de départ ou ensemble de définition de f,
- $lackbox{\textbf{B}}$ est l'ensemble d'arrivée de f. On dit que la fonction f prend ses valeurs dans B ou est à image dans B.
- Pour $x \in A$, l'unique $y \in B$ tel que $(x, y) \in G$ s'appelle **l'image** de x par f, et se désigne par f(x) ou f_x . On dit encore que f(x) est la **valeur** de f pour l'élément x de A.
- Pour $y \in B$, en cas d'existence, tout $x \in A$ tel que y = f(x) est appelé un antécédent de y par f.
- ightharpoonup G est le **graphe** de f. On a

D

$$G = \{ (x, y) \in A \times B \mid y = f(x) \} = \{ (x, f(x)) \mid x \in A \}.$$

L'ensemble des applications de A vers B se note $\mathcal{F}(A, B)$ ou B^A . Une application $f \in \mathcal{F}(A, B)$ se note

$$A \xrightarrow{f} B$$
 ou $f: A \to B$

L'application dont l'ensemble de définition ainsi que celui d'arrivée est ℕ ; qui a chaque naturel n fait correspondre $n^2 + 1$ se note

$$\begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} & \\ n & \mapsto & n^2 + 1 \end{array}.$$

Par exemple, on a $f(4) = 4^2 + 1 = 17$.

Pour $(x, y) \in \mathbb{R}^2$, la relation $y = \frac{1}{x^2 - 1}$ définit une application de $]-\infty,-1[\cup]-1,1[\cup]1,+\infty[$ dans \mathbb{R} .

Soient A et B deux ensembles et b un élément de B. L'application $f:A\to B$ définie par

$$\forall x \in A, f(x) = b$$

est une application constante. On la note parfois \tilde{b} ou simplement b lorsqu'aucune confusion n'est possible.

Soit A un ensemble. L'application $\mathrm{Id}_A:A o A$ définie par

$$\forall x \in A, \mathrm{Id}_A(x) = x$$

est l'application identique de A, ou identité de A.

Deux applications $f:A\to B$ et $g:A'\to B'$ sont **égales** si et seulement si

- les ont même ensemble de départ : A = A',
- ightharpoonup elles ont même ensemble d'arrivée : B=B',
- et si pour tout $x \in A$, on a f(x) = g(x).

On écrit alors f = g.

- 1. Définition ensembliste d'une application
- 1.1 Notion d'application
- 1.2 À propos des fonctions de «définies par morceaux»
- 1.3 Fonctions indicatrices
- 1.4 À propos des fonctions de «plusieurs variables»
- 2. Image directe et image réciproque
- Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles

Une fonction f est définie par

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1 - x & \text{si } x \le 1 \\ x^2 & \text{si } x > 1 \end{cases}$$

Évaluer f(0), f(1), f(2) et représenter le graphe de f.

Voici un extrait des tarifs courrier pour la France métropolitaine.

Lettre verte	
Poids jusqu'à	Tarifs nets
20g	0.58€
50g	0.97€
100g	1.45€
250g	2.35€
500g	3.15€
1kg	4.15€
2kg	5.40€
3kg	6.25€

Définir la fonction coût C en fonction du poids. Représenter le graphe de C.

1. Définition ensembliste d'une application

- 1.1 Notion d'application
- 1.2 À propos des fonctions de «définies par morceaux»
- 1.3 Fonctions indicatrices
- 1.4 À propos des fonctions de «plusieurs variables»
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles

D

Soit E un ensemble et $A \subset E$. On appelle fonction indicatrice de A (dans E), et on note $\mathbb{1}_A$ la fonction

$$\begin{array}{cccc} \mathbb{1}_A : & E & \rightarrow & \{\ 0,1\ \} \\ & & & \\ x & \mapsto & \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \not\in A \end{cases} \end{array}$$

- 1. Définition ensembliste d'une application
- 1.1 Notion d'application
- 1.2 À propos des fonctions de «définies par morceaux»
- 1.3 Fonctions indicatrices
- 1.4 À propos des fonctions de «plusieurs variables»
- 2. Image directe et image réciproque
- Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles

f(x, y).

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 2.1 Image directe d'une partie par une application
- 2.2 Image réciproque d'une partie par une application
- Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 2.1 Image directe d'une partie par une application
- 2.2 Image réciproque d'une partie par une application
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles

Soient $f: A \rightarrow B$ une application, et X une partie de A.

L'ensemble des éléments de B qui possèdent un antécédent dans X s'appelle l'**image** de X par f et se désigne par f(X) ou $f_*(X)$.

$$f(X) = \{ y \in B \mid \exists x \in X, y = f(x) \} = \{ f(x) \mid x \in X \}.$$

Autrement dit, f(X) est décrit par f(x) quand x décrit X.

En particulier, f(A) est appelée l'**image** de f, on la note

$$Im(f) = \{ y \in B \mid \exists x \in A, y = f(x) \} = \{ f(x) \mid x \in A \}$$

c'est un abus de langage pour «image de l'ensemble de départ de f par f ».

L'image de f est toujours inclue dans l'ensemble d'arrivée de f, c'est-à-dire $\operatorname{Im} f \subset Y$.

Étant donnés $f:A\to B$ et $X\subset A$,

D

$$y \in f(X) \iff \exists x \in X, y = f(x).$$

 $y \in \text{Im } f \iff \exists x \in A, y = f(x).$

R Nous avons déjà croisé une notion très proche de la notion d'image directe. C'est la notation d'ensemble en extension. Par exemple, l'ensemble des multiple de 2π ,

$$\{ 2k\pi \mid k \in \mathbb{Z} \}$$

est l'image directe de \mathbb{Z} par l'application $x \mapsto 2\pi x$.

Т

Notons f l'application définie de \mathbb{R} dans \mathbb{R} par $f(x) = x^2$. Calculer

- 1. f(4) 4. $f(\{-1,1\})$ 7. $f(\mathbb{R})$
- 2. $f(\{4\})$ 5. f([0,2])
- 3. $f(\{1,3,5\})$ 6. f([-3,1]) 8. Im f

Lorsque $A \subset B$, certaines circonstances peuvent se produire.

Soient $f: A \to B$ une application avec $A \subset B$ et X une partie de A.

- Si $f(X) \subset X$, on dira que X est une partie stable par f.
- Si f(X) = X, on dira que X est une partie invariante par f.
- Un élément $x \in A$ tel que f(x) = x est dit **invariant** par f. On dit aussi que x est un **point fixe** de f.

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 2.1 Image directe d'une partie par une application
- 2.2 Image réciproque d'une partie par une application
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles

D

Soit $f: A \to B$ une application, et Y une partie de B. L'ensemble des éléments de A dont l'image est dans Y s'appelle l'**image réciproque** de Y par f et se désigne par $f^{-1}(Y)$ ou $f^*(Y)$.

$$f^{-1}(Y) = \{ x \in A \mid f(x) \in Y \}.$$

Étant donnés
$$f:A\to B$$
 et $Y\subset B$,

$$x \in f^{-1}(Y) \iff x \in A \text{ et } f(x) \in Y.$$

Notons f l'application définie de \mathbb{R} dans \mathbb{R} par $f(x) = x^2$. Déterminer

1.
$$f^{-1}(\{4\})$$
.

4.
$$f^{-1}([0,4])$$
.

7.
$$f^{-1}(f([0,2]))$$
.

2.
$$f^{-1}(\{1,9,25\})$$
. 5. $f^{-1}([-5,-3])$.

5.
$$f^{-1}([-5, -3])$$

8.
$$f(f^{-1}([-4,4]))$$
.

3.
$$f^{-1}(\{-2\})$$
.

6.
$$f^{-1}([-4,4])$$
.

9.
$$f\left(f^{-1}\left(\mathbb{R}_{-}\right)\right)$$
.

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 3.1 Restriction, prolongement
- 3.2 Composée de deux applications
- 4. Injection, surjection, bijection
- 5. Familles

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 3.1 Restriction, prolongement
- 3.2 Composée de deux applications
- 4. Injection, surjection, bijection
- Familles

On dit que deux fonctions f et g coı̈ncident dans un ensemble E si E est contenu dans les ensembles de définition de f et de g, et si

$$\forall x \in E, f(x) = g(x).$$

 $g:A'\to B'$ est un prolongement de $f:A\to B$ si et seulement si $A\subset A' \ \ \text{et} \ \ B\subset B' \ \ \text{et} \ \ (\forall x\in A, f(x)=g(x))\,.$

$$A \subset A'$$
 et $B \subset B'$ et $(\forall x \in A, f(x) = g(x))$

Soient $f:A\to B$ une application et X une partie de l'ensemble de définition A de f. L'application dont l'ensemble de définition est X, qui a le même ensemble d'arrivée que f est la **restriction** de f à X, et on la note f_X

$$\begin{array}{cccc} f_X: & X & \to & B \\ & x & \mapsto & f(x) \end{array}.$$

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 3.1 Restriction, prolongement
- 3.2 Composée de deux applications
- 4. Injection, surjection, bijection
- 5. Familles

Soit A,B et C trois ensembles, $f \in \mathcal{F}(A,B)$ et $g \in \mathcal{F}(B,C)$. L'application définie sur A et à valeurs dans C qui à x associe g(f(x)) est appelée **composée** des applications g et f; on la note $g \circ f: A \to C$ $x \mapsto g(f(x))$

On peut représenter la situation précédente ainsi

$$A \xrightarrow{f} B \xrightarrow{g} C$$

P Soient quatre ensembles A, B, C, D et trois applications définies par le diagramme

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$$

On a

D

$$h \circ (g \circ f) = (h \circ g) \circ f \in \mathcal{F}(A, D).$$

On dit que l'opération o est associative.

- Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 4.1 Injection
- 4.2 Surjection
- 4.3 Bijection
- 4.4 En résumé
- 4.5 Bijection réciproque d'une bijection
- Familles

- Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 4.1 Injection
- 4.2 Surjection
- 4.3 Bijection
- 4.4 En résumé
- 4.5 Bijection réciproque d'une bijection
- Familles

D

Soit f une application de A dans B. On dit que f est une **injection**, ou que f est une application **injective**, si

$$\forall (x, x') \in A^2, f(x) = f(x') \implies x = x'.$$

Ou de manière équivalente, f est injective si, et seulement si

$$\forall (x, x') \in A^2, x \neq x' \implies f(x) \neq f(x');$$

autrement dit, si deux éléments distincts de A ont des images distinctes par f.

Les assertions suivantes sont équivalentes

- (i) f est injective.
- (ii) Pour tout $y \in B$, l'équation f(x) = y, d'inconnue $x \in A$, admet au plus une solution.
- (iii) Tout élément de B a au plus un antécédent par f.

Montrer que l'application $f: \mathbb{N} \to \mathbb{N}$ est injective. $n \mapsto n^2 + 1$

Montrer que l'application $f: \mathbb{R}^2 \to \mathbb{R}^3$ est injective. $(x_1,x_2) \mapsto (x_1+x_2,x_1+2x_2,x_1+3x_2)$

La composée de deux injections est une injection.

Démonstration. ¹ Soit $f: A \to B$ et $g: B \to C$ deux applications injectives. Nous allons montrer que $g \circ f : A \to C$ est injective, c'est-à-dire

$$\forall (x, x') \in A^2, (g \circ f)(x) = (g \circ f)(x') \implies x = x'.$$

Considérons donc deux éléments $x, x' \in A$ tels que $(g \circ f)(x) = (g \circ f)(x')$, c'est-à-dire g(f(x)) = g(f(x')). Puisque par hypothèse g est injective, nous pouvons affirmer que f(x) = f(x'). Puis, f étant également injective, nous avons x = x'. Ceci étant vrai pour tous éléments $x, x' \in A$ tels que $(g \circ f)(x) = (g \circ f)(x')$,

l'application $g \circ f$ est injective.

 $f: A \to B \text{ et } g: B \to C.$ 4□ > 4個 > 4 = > 4 = > 9 < 0</p>

^{1:} Pour démontrer un énoncé aussi général, il faut commencer par se donner des objets sur lesquels on peut travailler. Ici nous avons besoin de deux injections que l'on peut composer; notons les

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 4.1 Injection
- 4.2 Surjection
- 4.3 Bijection
- 4.4 En résumé
- 4.5 Bijection réciproque d'une bijection
- Familles

D Soit f une application de A dans B. On dit que f est une surjection, ou que f est une application surjective si

$$\forall y \in B, \exists x \in A, y = f(x).$$

Les assertions suivantes sont équivalentes

- (i) f est surjective.
- (ii) f(A) = B (ou encore Im f = B).
- (iii) Pour tout $y \in B$, l'équation f(x) = y, d'inconnue $x \in A$, admet au moins une solution.
- (iv) Tout élément de B a au moins un antécédent par f.

Montrer que l'application
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 est surjective. $(x_1, x_2, x_3) \mapsto (x_2 + x_3, 2x_1 - x_3)$

Démonstration. Soit $f:A\to B$ et $g:B\to C$ deux applications surjectives. Nous allons montrer que $g\circ f:A\to C$ est surjective, c'est-à-dire

$$\forall z \in C, \exists x \in A, g \circ f(x) = z.$$

² Soit $z \in C$. On cherche $x \in A$ tel que $g \circ f(x) = z$.

Puisque par hypothèse g est surjective, z a un antécédent au moins par g; c'est-à-dire qu'il existe $y \in B$ tel que z = g(y). Puisque B est aussi l'espace d'arrivée de f et que f est surjective, g a au moins un antécédent dans g: il existe g: g tel que g: g: On constate que

$$g \circ f(x) = g(f(x)) = g(y) = z,$$

ce qui montre que z a au moins un antécédent par $g \circ f$.

Ceci étant vrai pour tout élément de C, l'application $g \circ f$ est surjective.

^{2:} Rappelons que dans les assertions quantifiées, les «variables» sont muettes. Il sera ici un peu plus pratique d'utiliser z plutôt que y.

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 4.1 Injection
- 4.2 Surjection
- 4.3 Bijection
- 4.4 En résumé
- 4.5 Bijection réciproque d'une bijection
- Familles

D Soit f une application de A dans B. On dit que f est une **bijection**, ou que f est une application **bijective**, si

$$\forall y \in B, \exists ! x \in A, y = f(x).$$

Montrer à l'aide de la définition que que l'application f: $\mathbb{R}^2 \to \mathbb{R}^2$ est bijective. $(x_1, x_2) \mapsto (x_1 + x_2, x_1 + 2x_2)$

- C Les assertions suivantes sont équivalentes
 - (i) f est bijective.
 - (ii) f est à la fois injective et surjective.
 - (iii) Pour tout $y \in B$, l'équation f(x) = y, d'inconnue $x \in A$, admet une et une seule solution.

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 4.1 Injection
- 4.2 Surjection
- 4.3 Bijection
- 4.4 En résumé
- 4.5 Bijection réciproque d'une bijection
- 5. Familles

- 1. $\mathbb{R} \to \mathbb{R}$ n'est ni injective, ni surjective.
 - $x \mapsto x^2$
- 2. $[0, +\infty[$ $\rightarrow \mathbb{R}$ est injective mais n'est pas surjective.
 - $x \mapsto x^2$
- 3. $\mathbb{R} \rightarrow [0, +\infty[$ est surjective mais n'est pas injective.
 - $x \mapsto x^2$
- 4. $[0, +\infty[$ \rightarrow $[0, +\infty[$ est bijective.
 - $x \mapsto x^2$

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 4.1 Injection
- 4.2 Surjection
- 4.3 Bijection
- 4.4 En résumé
- 4.5 Bijection réciproque d'une bijection
- 5. Familles

T et définition

Soient A et B deux ensembles. Soit f une bijection de A vers B. Il existe une application unique g de B vers A qui est une bijection telle que

$$g \circ f = \operatorname{Id}_A$$
 et $f \circ g = \operatorname{Id}_B$.

L'application g est appelée **application réciproque** de l'application f et on la note f^{-1} .

- Soit $f: A \rightarrow B$ une application bijective.
 - 1. $\forall x \in A, f^{-1}(f(x)) = x$.
 - 2. $\forall y \in B, f(f^{-1}(y)) = y$.
- Soit $f: A \rightarrow B$ une application bijective.

$$\forall x \in A, \forall y \in B, (y = f(x) \iff x = f^{-1}(y))$$

Ε

Montrer que l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ est bijective et expliciter sa bijection réciproque.

Р

Soient A et B deux ensembles, f une application de A dans B, g une application de B dans A. Si

$$g \circ f = \operatorname{Id}_A \qquad \qquad et \qquad \qquad f \circ g = \operatorname{Id}_B,$$

alors f et g sont bijectives et on a $g = f^{-1}$.

$$A \xrightarrow{f} B \xrightarrow{g} C$$

Alors gof est bijective et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Démonstration.

$$\left(f^{-1} \circ g^{-1}\right) \circ \left(g \circ f\right) = f^{-1} \circ \left(g^{-1} \circ g\right) \circ f = f^{-1} \circ \operatorname{Id}_{B} \circ f = f^{-1} \circ \left(\operatorname{Id}_{B} \circ f\right) = f^{-1} \circ f = \operatorname{Id}_{A}$$

et

Т

$$(g \circ f) \circ \left(f^{-1} \circ g^{-1}\right) = g \circ \left(f \circ f^{-1}\right) \circ g^{-1} = g \circ \operatorname{Id}_B \circ g^{-1} = \left(g \circ \operatorname{Id}_B\right) \circ g^{-1} = g \circ g^{-1} = \operatorname{Id}_C.$$

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles
- 5.1 Familles d'éléments d'un ensemble
- 5.2 Famille d'ensembles
- 5.3 Partitions d'un ensemble

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles
- 5.1 Familles d'éléments d'un ensemble
- 5.2 Famille d'ensembles
- 5.3 Partitions d'un ensemble

Soit A un ensemble. On appelle famille d'éléments de A indexée par l'ensemble I toute application de I dans A notée

$$\begin{array}{ccc} I & \to & A \\ i & \mapsto & x_i \end{array}$$

L'ensemble I qui est appelé ensemble des indices. On utilise généralement la notation $(x_i)_{i\in I}$ pour désigner une telle famille.

Une suite est une famille dont l'ensemble des indices est \mathbb{N} (ou $\{ n \in \mathbb{N} \mid n \geq n_0 \}$).

D

Si $I = \{1, 2, 3\}$, alors l'ensemble des familles d'éléments de A indexées par I est l'ensemble des triplets (x_1, x_2, x_3) où x, y, z sont trois éléments quelconques de A.

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles
- 5.1 Familles d'éléments d'un ensemble
- 5.2 Famille d'ensembles
- 5.3 Partitions d'un ensemble

- D Considérons une famille d'ensemble $\mathcal{A} = (A_i)_{i \in I}$.
 - On appelle intersection de la famille \mathcal{A} l'ensemble $\bigcap_{i \in I} A_i$ dont chacun de ses éléments appartienne à tous les ensembles de \mathcal{A} .

$$x \in \bigcap_{i \in I} A_i \iff \forall i \in I, x \in A_i.$$

On appelle **réunion de la famille** \mathcal{A} l'ensemble $\bigcup_{i \in I} A_i$ dont chacun de ses éléments appartienne à au moins un des ensembles de \mathcal{A} .

$$x \in \bigcup_{i \in I} A_i \iff \exists i \in I, x \in A_i.$$

E Montrer les égalités suivantes.

1.
$$\bigcup_{k\in\mathbb{N}} [-k, k] = \mathbb{R}.$$

2.
$$\bigcap_{k \in \mathbb{N}^k} \left[0, \frac{1}{k} \right] = \{ 0 \}.$$

- 1. Définition ensembliste d'une application
- 2. Image directe et image réciproque
- 3. Opérations sur les applications
- 4. Injection, surjection, bijection
- 5. Familles
- 5.1 Familles d'éléments d'un ensemble
- 5.2 Famille d'ensembles
- 5.3 Partitions d'un ensemble

D

Une partition d'un ensemble E est une famille $(E_i)_{i \in I}$ de parties de E telle que

- $\forall i \in I, E_i \neq \emptyset,$
- $\forall (i,j) \in I^2, i \neq j \implies E_i \cap E_j = \emptyset.$