$$t_{x} = \frac{Lm + c_{1}mt_{1} - c_{0}m_{0}(t_{nn} - t_{0}) - \lambda m_{0}}{c_{1}m + c_{1}m_{0}} =$$

$$= \frac{2200m + 4,2 \cdot 100m - 2,1 \cdot 300 \cdot 10 - 330 \cdot 300}{4,2m + 4,2 \cdot 300} = \frac{2620m - 105300}{4,2m + 1260}$$
(7)

Это участок на графике обозначен «2-3». Конечная температура достигнет температуры конденсации $t_1=100\,^{\circ}C$, если масса впускаемого пара превысит значение m_3 , которое также можно определить из уравнения (6), в котором следует положить $t_x=t_1$:

$$Lm_3 = c_0 m_0 (t_{nx} - t_0) + \lambda m_0 + c_1 m_0 (t_1 - t_{nx}).$$
(8)

Или

$$Lm_{3} = c_{0}m_{0}(t_{nn} - t_{0}) + \lambda m_{0} + c_{1}m_{0}(t_{1} - t_{nn})$$

$$m_{3} = \frac{c_{0}m_{0}(t_{nn} - t_{0}) + \lambda m_{0} + c_{1}m_{0}(t_{1} - t_{nn})}{L} = \frac{2,1 \cdot 300 \cdot 10 + 330 \cdot 300 + 4,2 \cdot 300 \cdot 100}{2200} \approx 105 \,\varepsilon$$

$$(9)$$

При дальнейшем увеличении массы пара конечная температура не превысит $t_1 = 100^{\circ}C$. Требуемый график показан на рисунке.

Отметим, что наклонные участки, строго говоря, не прямолинейны. Однако эти отклонения незначительны.

Задание 3. «Опыт Араго»

1. Необходимо, чтобы лучи отражённые от зеркальца 31, попали на зеркало 32. Это возможно при

$$\frac{90^{\circ} - \theta}{2} < \varphi < 45^{\circ} \tag{1},$$

$$40^{\circ} < \varphi < 45^{\circ}$$
 (2),

и, т.к. зеркальце двухстороннее,

$$\frac{90^{\circ} - \theta}{2} + 180^{\circ} < \varphi < 45^{\circ} + 180^{\circ} \tag{3},$$

$$220^{\circ} < \varphi < 225^{\circ}$$
 (4).

2. Ход лучей показан на рисунке.

После отражения от сферического зеркала лучи идут под углом

$$\delta = \frac{d}{R} \tag{5}$$

по отношению к первоначальному направлению. После вторичного отражения от зеркальца, пучок расходится под углом равным 2δ . Тогда диаметр пятна на экране

$$D = d + 2\frac{d}{R}L = 25_{MM} \tag{6}$$

3. При вращении зеркальца, за время τ , необходимое свету для того, чтобы «слетать» от зеркальца 31 до зеркала 32 и обратно, зеркальце повернётся на угол ξ . Лазерный луч повернётся на угол 2ξ и пятно сместиться на некоторое расстояние. Направление смещения зависит от направления вращения зеркальца. Величина

$$\tau = 2\frac{R}{c} \tag{7},$$

тогда

$$\xi = 2\pi \cdot \nu \cdot \tau \tag{8}.$$

Величина смещения:

$$x = 2\xi L = 8\pi \cdot v \cdot \frac{R}{c} L = 8,4 \text{MM}$$
 (9).

- 4. При вращении зеркальца пятно будет состоять из двух одинаковых пятен, центры которых не совпадают. При увеличении скорости вращения расстояние между центрами пятен будет увеличиваться. Пятна будут сдвигаться в одну и ту же сторону.
- 5. Пятна будут разделены, если расстояние между их центрами станет равно диаметру D.

$$\Delta x = 8\pi \cdot v' \cdot \frac{R}{c} L \cdot (n-1) = D \tag{10}.$$

Откуда и получаем значение частоты вращения:

$$v' = \frac{D \cdot c}{8\pi (n-1) \cdot R \cdot L} = 5.0 \cdot 10^3 \, \frac{o6}{c}$$
 (11).