Bhagawat Chapagain - I pledge my honor that I have abided by the Stevens Honor System.

(1) For a language $J_k = \{w \in \{0,1,2\}^* | \text{ the } k^{th} \text{ symbol of } w \text{ is } 1.\}$, the respective machine for each k can be found by observing the first few cases. Namely, if we observe cases of J for small values of k, we can spot a pattern.

k = 1:

k = 2:

k = 3:

For each case of k, we see that the machine for J_{k-1} is present in the the machine diagram. We know that this will always be the case because we cannot use ϵ to remain at the the same position in the input string in in NFAs. Due to this, we know that we need to travel k states, however, we must also include two (2) states for acceptance and rejection. Therefore there must be minimum of k+2 states in J_k 's language.

(2)

(3) As proven in class, if A, B are regular then $A \circ B$ must be regular. If we have $A \star B = \{w \in \Sigma^* | w = a_1b_1 \dots a_kb_k \text{ for some } k \geq 1 \text{ and symbols } a_1, \dots, a_k, b_k, \dots, b_k \in \Sigma \text{ such that } a_1 \dots a_k \in A \text{ and } b_1, \dots, b_k \in B.$ If $A \star B$ is found by merging of all pairs of strings in A, B that have the same length, each a_k must be associated with an equally sized b_k but since $\Sigma^* := \{a_1, \dots, a_k, b_k, \dots, b_k\}^*$, it is every combination of $\{a, b\}$ generated infinitely. Therefore, there are equally as many a_k, b_k of the same size than those that are not. Therefore $|A \circ B| = |A \star B|$ and $A \star B \subseteq A \circ B$. Since $A \star B$ belongs to the same finite equivalence class as $A \circ B$, it must be regular.

(4) $((00)^*1)^* = \{\{00,0000,000000,\ldots\} \circ 1\}^* = \{001,00001,0000001,\ldots\}^*$ $((000)^*1)^* = \{\{000,000000,000000000,\ldots\} \circ 1\}^* = \{0001,000001,000000001,\ldots\}^*$ $\{001,00001,0000001,\ldots\}^* \cap \{0001,0000001,000000001,\ldots\}^* = \{00)^* \cap (000)^* \circ 1^*$

The intersection between $(00)^*$ and $(000)^*$ would just be a set of zeroes concatenated by the smallest common factor between two and three zeroes.

⁽⁵⁾ Setting up the State-Elimination method and we get this:

