Grade 8 Science

Cells Class 3

Classifying Organisms

Figure 1 A diatom is an example of a unicellular organism.

- Organisms a living system with parts that work together to carry out the processes of life
- Unicellular Organism an organism made up of only one cell
- Multicellular Organism an organism made up of more than one cell

Figure 7 All organisms can be placed into one of these five groups.

Plants

Plants

- Multicellular organisms
- Autotrophs make their own food using photosynthesis
- · Able to live on land or in water

Animals

Animals

- Multicellular Organisms
- Divided into:
 - Vertebrates animals with a backbone
 - Invertebrates animals without a backbone

Figure 3 A snail does not have a backbone. It is an invertebrate.

Fungi

Fungi

- Most are multicellular; some are unicellular
- Obtain nutrients from dead or decaying matter
- Cannot carry out photosynthesis

Figure 4 (a) Field mushrooms are multicellular fungi that are used as food by people all over the world. (b) Baker's yeast is a unicellular fungus that is used in the bread-making industry. The yeast produces bubbles of carbon dioxide gas, which cause the bread to rise.

Protists

Figure 5 *Volvox* is a common plant-like protist found in ponds.

- Both multicellular and unicellular
- Commonly found in wet or moist environments such as ponds, rivers and mud
- Some act like plants and can undergo photosynthesis
- Some act like animals and do not perform photosynthesis

Bacteria

- Unicellular without a nucleus
- Simplest and most abundant unicellular organisms on Earth
- Forms groups called bacterial colonies

Unicellular Organisms

Figure 1 Euglena have chloroplasts, which allow them to make food by photosynthesis, and a flagellum for locomotion.

Figure 2 The algae in this lichen make food for the fungus, which provides protection in return.

Also called micro-organisms

Nutrients

- Live in in bodies of water and move around to find food
- Some use photosynthesis to obtain food
- Some interact with other organisms to obtain nutrients

Paramecia

- Unicellular organisms (protist) found in aquatic environments
- Covered with cilia that create water currents to move the paramecium toward a food source

 Food that enters the oral groove is enclosed in a vacuole where it is slowly digested

- Nutrients diffuse through the vacuole's membrane into the cytoplasm
- Any remaining waste materials are eliminated through an anal pore

Amoeba

- Amoeba (protist) uses phagocytosis to feed on organisms
- Pseudopods extend around the food material and form a food vacuole
- Food particles diffuse through vacuole membrane into the cytoplasm
- Wastes are released out of the cell by exocytosis

Gas Exchange

- Most organisms need oxygen to survive
- In unicellular organisms, oxygen diffuses across the cell membrane into the cell while carbon dioxide diffuses out
- Some microorganisms such as yeast can survive without oxygen

Responding to the Environment

- Unicellular organisms can detect chemicals such as sugars in their environment and move toward them; chemotaxis
- Photosynthetic protists like Euglena can detect light using special sensors

Movement and Locomotion

Figure 5 A disease-fighting cell in the human body uses pseudopods to trap infecting bacteria

Figure 6 A bacterium uses its flagella for locomotion.

- Movement enables an organisms to change its form or shape using pseudopods
- Locomotion enables an organism to change its position in the environment using cilia and flagella
 - Create currents in the surrounding environment

www.BetaGlucans.info

Multicellular Organisms

- All multicellular organisms start as a single cell
- Cell divides and as the number of cell increases, each cell becomes better able to perform a function
- Groups of cells are specialized to do one job

very well

Figure 2 This tiny *Hydra* (a) is made up of several thousand cells, whereas a Canada goose (b) is made up of trillions of cells.

Cell Specialization and Differentiation

- Cell specialization takes place early in the development of a multicellular organism
- Cellular differentiation the process by which a cell becomes specialized to perform a specific function

Figure 3 Human cells are differentiated.

Purpose of Differentiation

 Cells divide to maximize the surface area to volume ratio for the diffusion of nutrients and wastes

Surface area increases while total

volume remains constant

	(a) ^{1‡}	(b)	(c)
Total surface area (height × width × number of sides × number of boxes)	6	150	750
Total volume (height × width × length × number of boxes)	1	125	125
Surface-to-volume ratio (area + volume)	6	1.2	6

Cell Division

- During cell division, cells split in half to form two smaller identical cells
- For plants, a new cell plate develops to form a cell wall between the two nuclei

Hierarchy of an Organism

Definitions

- Cell the smallest functioning unit of an organism
- Tissue a group of cells that perform a similar, limited function
- Organ a structure composed of different tissues to perform a complex function
- Organ System a system of one or more organs that work together to perform a vital bodily function

Animal Tissues

- Types:
 - **1. Epithelial Tissue** thin sheet that covers body surfaces and lines internal organs
 - **2. Connective Tissue** specialized tissue that provides support and protection
 - **3. Muscle Tissue** specialized tissue containing proteins that can contract and move
 - **4. Nerve Tissue** specialized tissue that conducts electrical signals from one part of the body to another

Table 1 Animal Tissue Types Description Example **Function** Type · thin sheets of tightly packed · protection from enithelial tissue cells covering surfaces and dehydration · lining of the digestive system lining internal organs · low-friction surfaces bone · various types of cells and support fibres held together by a tendons insulation liquid, a solid, or a gel, known blood as a matrix · muscles that make bones movement muscle tissue bundles of long cells called muscle fibres that contain specialized proteins capable muscles surrounding the of shortening or contracting digestive tract heart · long, thin cells with fine sensory branches at the ends · nerves in sensory organs · communication within the capable of conducting electrical impulses · coordination of body functions

Plant Tissues

- Types:
 - Protective (Dermal) prevents water loss and protects the plants
 - 2. Transport (Vascular) contains hollow, tube-like cells that move food and water through the plant
 - **3. Photosynthetic (Ground)** filler tissue that helps to transform the Sun's energy into sugar

