MATH 2161: Matrices and Vector Analysis

Md. Kawsar Ahmed Asif
Lecturer in Mathematics
Department of General Education
Canadian University of Bangladesh
Former Lecturer, World University of Bangladesh

Lecture Outline

Introduction to Matrices Basic Properties of Matrices Diagonal and Trace of Matrix Special Types of Matrices Matrix Operations Properties of Matrix Operations

Introduction to Matrices

Matrix: A matrix (plural *matrices*) is a rectangular array of numbers (real or complex) arranged in rows and columns, enclosed by a pairs of brackets (() or []) and generally denoted by capital letters (A, B, X or Y).

In other words, it is an ordered rectangular arrangement of numbers or functions which are represented as

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
Column

Basic Properties of Matrices

- The numbers in the array are called the entries or the elements of the matrix.
- Number of rows and columns that a matrix has is called its dimension or order.
- Matrix is enclosed by [] or ().
- Arr Matrix is also represented as $A = [a_{ij}]$, where i and j are the row and column number.
- * Symbolically depicted as: $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}_{3\times 3}$
- First subscript refers to row number (m) and Second subscript refers to column number (n).

Main Diagonal of Matrix

Main Diagonal: The diagonal from the top left corner to the bottom right corner of a square matrix is called the main diagonal or leading diagonal or principal diagonal.

In other words, it consists of the elements where the <u>row index</u> is equal to the <u>column index</u>. The main diagonal divides the matrix into two triangular regions: the upper triangular region and the lower triangular region.

If the matrix is A, then its main diagonal are the elements who's row number and column number are equal, a_{ii} .

$$A = \begin{bmatrix} \mathbf{1} & 8 & -1 & 9 \\ 0 & \mathbf{7} & 0 & 8 \\ 6 & 3 & \mathbf{5} & -2 \\ 2 & 4 & -2 & \mathbf{4} \end{bmatrix}_{4 \times 4}$$

Anti-Diagonal of Matrix

Anti-Diagonal: The *anti-diagonal* of an order n square matrix A is the collection of entries a_{ij} such that i+j=n+1 for all $1 \le i,j \le n$. That is, it runs from the top-right corner to the bottom-left corner of the matrix.

$$A = \begin{bmatrix} 1 & 8 & -1 & \mathbf{9} \\ 0 & 7 & \mathbf{0} & 8 \\ 6 & \mathbf{3} & 5 & -2 \\ \mathbf{2} & 4 & -2 & 4 \end{bmatrix}_{4 \times 4}$$

In other words, the diagonal opposite to the main diagonal is called anti-diagonal, counter diagonal or trailing diagonal.

Off-Diagonal of Matrix

Off-Diagonal: The *off-diagonal* of a matrix includes all the elements that are not part of the *main diagonal*. It encompasses all the entries that are above or below the *main diagonal*, regardless of whether they are part of the anti-diagonal or not. In other words, the *off-diagonal* elements are the ones for which the *row index* is not equal to the *column index*.

$$A = \begin{bmatrix} 1 & 8 & -1 & 9 \\ 0 & 7 & 0 & 8 \\ 6 & 3 & 5 & -2 \\ 2 & 4 & -2 & 4 \end{bmatrix}_{4 \times 4}$$

In summary, while the anti-diagonal is a specific diagonal that is opposite to the main diagonal, the off-diagonal includes all the elements that are not part of the main diagonal, regardless of their position or relation to the anti-diagonal.

Trace of Matrix

Trace: If A is a square matrix, then the *trace* of A, denoted by tr(A), is defined to be the sum of the entries on the *main diagonal* of A. The trace of A is undefined if A is not a square matrix.

Example: The following are examples of matrices and their traces.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + a_{33}$$
 and $tr(B) = (-1) + 5 + 7 + 0 = 11$

Submatrix of a Matrix

Sub-Matrix: A matrix which is obtained from a given matrix by deleting any number of rows and/or columns is called a *sub-matrix* of the given matrix.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

submatrices

For example, if
$$A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$
, a few submatrices of A are

[1], [2],
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, [1 5], $\begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix}$, A

However, the matrices
$$\begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$ are not submatrices of A .

Rectangular Matrix: A matrix having unequal number of rows and columns $(m \neq n)$ is called *rectangular matrix*.

For examples,
$$\begin{bmatrix} 1 & -1 & 2 & 7 \\ -2 & 3 & 5 & 0 \end{bmatrix}_{2\times4}$$
 and $\begin{bmatrix} 1-i & 2i & 3 \\ 0 & -2 & 4i \end{bmatrix}_{2\times3}$ are rectangular matrices.

Square Matrix: A matrix with the equal number of rows and columns (m = n) is called a square matrix.

For examples,
$$\begin{bmatrix} 1 & 3 \\ 5 & 2 \end{bmatrix}_{2\times 2}$$
 and $\begin{bmatrix} 2 & -3 & 1 \\ 0 & 1 & -5 \\ 7 & -2 & 6 \end{bmatrix}_{3\times 3}$ are square matrices.

Horizontal Matrix: If in a matrix the number of columns is more than the number of rows (n > m), then it is called a *horizontal matrix*.

For examples,
$$\begin{bmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 3 & 2 & 3 \\ 2 & 5 & 7 & 9 \end{bmatrix}$ are horizontal matrices.

Vertical Matrix: If in a matrix the number of rows is more than the number of columns (m > n), then it is called a *vertical matrix*.

For examples,
$$\begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 6 & 5 \end{bmatrix}$$
 and $\begin{bmatrix} 2 & 3 \\ 3 & 5 \\ 4 & 6 \\ 5 & 7 \end{bmatrix}$ are vertical matrices.

Row Matrix: A matrix having only one row is called a row matrix.

For examples, $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and $\begin{bmatrix} 2 & 4 & -1 & 0 \end{bmatrix}$ are row matrices. These are also called row vector.

Column Matrix: A matrix having only one column is called a column matrix.

For examples,
$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $\begin{bmatrix} i \\ 4 \\ 0 \\ -2 \end{bmatrix}$ are column matrices. These are also called column vector.

Diagonal Matrix: A square matrix whose elements $a_{ij} = 0$ when $i \neq j$ is called a diagonal matrix.

For examples,
$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}_{2\times 2}$$
 and $\begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3\times 3}$ are diagonal matrices.

Scalar Matrix: A diagonal matrix whose diagonal elements are all equal is called a scalar matrix.

For examples,
$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}_{2 \times 2}$$
 and $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}_{3 \times 3}$ are scalar matrices.

Identity or Unit Matrix: A square matrix whose elements $a_{ij} = 0$, if $i \neq j$ and $a_{ij} = 1$, if i = j is called an *identity matrix*.

For examples,
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3\times 3}$$
 is an identity matrix of order 3.

Zero or Null Matrix: A matrix in which every element is zero is called a zero or null matrix.

For examples,
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ are zero matrices.

Equal Matrix: Two matrices are said to be equal if

- (a) Each matrix has same number of rows and columns.
- (b) Corresponding elements within each matrix are equal.

For example,

$$A = \begin{bmatrix} 11 & x \\ y & 44 \end{bmatrix} \qquad B = \begin{bmatrix} 11 & 22 \\ 33 & 44 \end{bmatrix} \qquad C = \begin{bmatrix} l & m & n \\ o & p & q \\ r & s & t \end{bmatrix}$$

A and B matrices are equal. Matrix C is not equal to A or B.

Upper Triangular Matrix: A square matrix in which all the elements **below** the diagonal are **zero** is known as the **upper triangular matrix**.

For examples,
$$\begin{bmatrix} 2 & 3 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 7 \end{bmatrix}$$
 and $\begin{bmatrix} 3 & -5 & 7 \\ 0 & 4 & 1 \\ 0 & 0 & 9 \end{bmatrix}$ are upper triangular matrices.

Lower Triangular Matrix: A square matrix in which all the elements *above* the diagonal are **zero** is known as the *lower triangular matrix*.

For examples,
$$\begin{bmatrix} 2 & 0 & 0 \\ 3 & 1 & 0 \\ 5 & -2 & 7 \end{bmatrix}$$
 and $\begin{bmatrix} 3 & 0 & 0 \\ -5 & 4 & 0 \\ 7 & 1 & 9 \end{bmatrix}$ are lower triangular matrices.

Commutative Matrices: If A and B are two square matrices such that AB = BA, then A and B are said to be *commutative matrices* or are said to commute. If AB = -BA, then the matrices A and B are said to be *anti-commutative matrices*.

For examples,
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\begin{bmatrix} 5 & 7 \\ 7 & 5 \end{bmatrix}$ are commutative matrices.
$$\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 1 \\ 4 & -1 \end{bmatrix}$ are anti-commutative matrices.

Transpose Matrix: If the rows and columns in a matrix A are interchanged, the new matrix is called the *transpose* of the original matrix A. The transposed matrix is denoted by A^T .

For example, if
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}_{2\times 3}$$
, then $A^T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}_{3\times 2}$.

Symmetric Matrix: A matrix equal to its transpose, i. e. a square matrix such that $a_{ij} = a_{ji}$ for $1 \le i, j \le n$ is said to be *symmetric*. In a short, a square matrix A will be symmetric if $A^T = A$.

For examples,
$$A = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & 7 \\ -3 & 7 & 3 \end{bmatrix}$ are symmetric matrices.

Skew-Symmetric Matrix: A matrix equal to the negative of its transpose, i. e. a square matrix in which $a_{ij} = -a_{ji}$ and $a_{ii} = 0$ is said to be *skew-symmetric*. In a short, a square matrix A will be skew-symmetric if $A^T = -A$.

For examples,
$$A = \begin{bmatrix} 0 & h & g \\ -h & 0 & f \\ -g & -f & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{bmatrix}$ are skew-symmetric matrices.

[1] Addition and Subtraction of Matrices

If A and B are the matrices of same order, then the addition or subtraction of A and B can be obtained by adding or subtracting the corresponding elements of A and B. Matrices of different order cannot be added or subtracted.

For example, consider matrix A and matrix B as below:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \end{bmatrix}_{2 \times 3} \qquad B = \begin{bmatrix} 5 & 6 & 7 \\ 3 & 4 & 5 \end{bmatrix}_{2 \times 3}$$

Thus,
$$A + B = \begin{bmatrix} 1+5 & 2+6 & 3+7 \\ 7+3 & 8+4 & 9+5 \end{bmatrix} = \begin{bmatrix} 6 & 8 & 10 \\ 10 & 12 & 14 \end{bmatrix}$$

And,
$$A - B = \begin{bmatrix} 1 - 5 & 2 - 6 & 3 - 7 \\ 7 - 3 & 8 - 4 & 9 - 5 \end{bmatrix} = \begin{bmatrix} -4 & -4 & -4 \\ 4 & 4 & 4 \end{bmatrix}$$

[2] Scalar Multiplication of Matrices

If A is any matrix and k is any scalar, then the product kA or Ak is the matrix obtained by multiplying each element of A by k.

For example, consider matrix A and scalar k as below:

Scalar,
$$k = 5$$
 and Matrix, $A = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$

Then,
$$kA = 5A = 5\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 10 & 20 \\ 30 & 25 \end{bmatrix}$$

[3] Matrix Multiplication

- \clubsuit Matrix product AB is defined only when the number of columns of A is equal to number of rows of B.
- Suppose, A is a matrix of order $i \times j$ and B is a matrix of order $j \times k$. Then the matrix product AB results in a matrix, say C of order $i \times k$.
- * Each element in C can be computed according to: $C_{ik} = \sum_{j} A_{ij} B_{jk}$

```
where, C_{ik} is (i,k)^{th} element of C
A_{ij} is (i,j)^{th} element of A
B_{jk} is (j,k)^{th} element of B
\sum_{i} is summation sign, which indicates that the a_{ij} b_{jk} terms should be summed over j.
```

For example,
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{bmatrix}_{2 \times 3}$$
 $B = \begin{bmatrix} 6 & 7 \\ 8 & 9 \\ 10 & 11 \end{bmatrix}_{3 \times 2}$

Suppose, AB = C of order 2×2 . Using formula $C_{ik} = \sum_{j} A_{ij} B_{jk}$, we get

$$AB = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{bmatrix} \times \begin{bmatrix} 6 & 7 \\ 8 & 9 \\ 10 & 11 \end{bmatrix}$$

$$= \begin{bmatrix} 0+8+20 & 0+9+22 \\ 18+32+50 & 21+36+55 \end{bmatrix}$$

$$= \begin{bmatrix} 28 & 31 \\ 100 & 112 \end{bmatrix}_{2\times 2} = C \text{ (Resultant Matrix)}$$

Properties of Matrix Addition, Scalar and Matrix Multiplication

Properties of Matrix Addition

For three matrices A, B and C of same order, Commutative Law: A + B = B + AAssociative Law: (A + B) + C = A + (B + C)Additive Identity: A + 0 = 0 + A = A

Properties of Scalar Multiplication

For three matrices A, B, C and scalars c, kAssociative Law: (ck)A = c(kA)Distributive Law: k(A + B) = kA + kBScalar Identity: 1A = A

Properties of Matrix Multiplication

For three matrices A, B and CAssociative Law: A(BC) = (AB)CDistributive Law: A(B+C) = AB + ACMultiplicative Identity: AI = IA = A

Next Lecture

- Matrix Multiplication
- Minors and Cofactors
- Determinant of Matrix
- Inverse of Matrix
- Rank of Matrix