Bisección vs Falsa posición $M\acute{e}todos~num\acute{e}ricos$

David Isaac Oliva Villar

September 2025

Comparativa entre dos métodos numéricos según el número de iteraciones y su error en diferentes funciones

1 Bisección

Para la función:

$$f(c) = \frac{gm}{c}(1 - e^{\frac{c}{m*t}}) - v$$

con los parámetros de [4, 20], Es=0.1%

```
Evaluacion de f(c)=(gm/c)(1-exp(-ct/m))-v

En un intervalo [a,b]

Ingrese a:
4
Ingrese b:
20
Ingrese el error limite Es (%): 0.1

iter a b f(a) f(b) Error (%%)

0 4.000000 20.000000 34.190472 -8.3683844654 100.000000
1 12.000000 20.000000 6.113943 -8.3683844654 25.000000
2 2 12.000000 16.000000 6.113943 -2.2302607061 14.285714
3 14.000000 16.000000 1.611116 -2.2302607061 4.285714
3 14.000000 15.000000 1.611116 -0.3844580607 3.448276
5 14.500000 15.000000 0.5503608 -0.3844580607 1.694915
6 14.750000 14.875000 0.009830 -0.3844580607 0.840336
7 14.750000 14.875000 0.009830 -0.0221312061 0.211416
9 14.781250 14.812500 0.008303 -0.0221312061 0.105597
10 14.796875 14.812500 0.008303 -0.0221312061 0.0052770
```

Posteriormente, para la función:

$$f(x) = x^{10} - 1$$

Con los parámetros [0, 1.3], con Es=0.1%

```
Evaluacion de x^10 - 1
En un intervalo [a,b]
Ingrese a:
Ingrese b:
Ingrese el error limite Es (%): 0.1
iter
                                                 f(b)
                                                                    Error (%%)
                                                 12.7858491849
       0.000000
                   1.300000
                               -1.000000
                                                                    100.000000
                               -0.986537
                                                                    33.333333
       0.650000
                   1.300000
                                                 12.7858491849
                                                 12.7858491849
       0.975000
                   1.300000
                               -0.223670
                                                                    14.285714
       0.975000
                   1.137500
                               -0.223670
                                                 2.6267202172
                                                                    7.692308
       0.975000
                   1.056250
                               -0.223670
                                                 0.7284913861
                                                                    4.000000
                   1.015625
                               -0.223670
                                                 0.1677068465
                                                                    2.040816
       0.975000
       0.995313
                   1.015625
                               -0.045898
                                                 0.1677068465
                                                                    1.010101
                               -0.045898
                                                 0.0560531409
                                                                    0.507614
       0.995313
                   1.000391
                               -0.045898
                                                 0.0039131236
                                                                    0.254453
       0.997852
                   1.000391
                               -0.021278
                                                 0.0039131236
                                                                    0.127065
                   1.000391
                                                 0.0039131236
                                                                    0.063492
```

2 Falsa posición

Para la función:

$$f(c) = \frac{gm}{c} (1 - e^{\frac{c}{m*t}}) - v$$

con los parámetros de [4, 20], Es=0.1%

```
Evaluacion de f(c)=(gm/c)(1-exp(-ct/m))-v
En un intervalo [a,b]
Ingrese a:
Ingrese b:
Ingrese el error limite Es (%): 0.1
                                                                     Error (%%)
       4.000000
                   20.000000 34.190472
                                                  -8.3683844654
                                                                     100.000000
        4.000000
                                                   -3.6981472993
                    16.853906
                                34.190472
                                                                     8.042771
        4.000000
                    15.599291
                               34.190472
                                                   -1.5077099696
                    15.109396
                                34.190472
                                                   -0.5934193740
                                                                     1.270308
                    14.919868
                                34.190472
                                                   -0.2302586137
                                                                     0.492017
                    14.846819
                                34.190472
                                                   -0.0888467338
        4.000000
                    14.818705
                               34.190472
                                                   -0.0342078603
                                                                     0.073024
```

Posteriormente, para la función:

$$f(x) = x^{10} - 1$$

Con los parámetros [0, 1.3], con Es=0.1%

Evaluacion de x^10 - 1 En un intervalo [a,b]					
Ingrese a:					
Ingrese b:					
1.3					
Ingrese el error limite Es (%): 0.1					
iter	a 	ь 	f(a) 	f(b)	Error (%%)
0	0.000000	1.300000	-1.000000	12.7858491849	100.000000
1	0.094300	1.300000	-1.000000	12.7858491849	48.118299
2	0.181759	1.300000	-1.000000	12.7858491849	30.857040
3	0.262874	1.300000	-0.999998	12.7858491849	22.250800
4	0.338105	1.300000	-0.999980	12.7858491849	17.106298
5	0.407878	1.300000	-0.999873	12.7858491849	13.691820
6	0.472583	1.300000	-0.999444	12.7858491849	11.263907
7	0.532572	1.300000	-0.998164	12.7858491849	9.448877
8	0.588145	1.300000	-0.995047	12.7858491849	8.036883
9	0.639544	1.300000	-0.988553	12.7858491849	6.900017
10	0.686943	1.300000	-0.976600	12.7858491849	5.955710
11	0.730446	1.300000	-0.956760	12.7858491849	5.148990
12	0.770099	1.300000	-0.926639	12.7858491849	4.443285
13	0.805908	1.300000	-0.884428	12.7858491849	3.815178
14	0.837874	1.300000	-0.829476	12.7858491849	3.250906
15	0.866028	1.300000	-0.762689	12.7858491849	2.743495
16	0.890457	1.300000	-0.686577	12.7858491849	2.290170
17	0.911328	1.300000	-0.604862	12.7858491849	1.890054
18	0.928885	1.300000	-0.521791	12.7858491849	1.542381
19	0.943436	1.300000	-0.441369	12.7858491849	1.245420
20	0.955334	1.300000	-0.366783	12.7858491849	0.996077
21	0.964946	1.300000	-0.300113	12.7858491849	0.790035
22	0.972630	1.300000	-0.242338	12.7858491849	0.622185
23	0.978719	1.300000	-0.193544	12.7858491849	0.487114
24	0.983510	1.300000	-0.153187	12.7858491849	0.379533
25	0.987257	1.300000	-0.120366	12.7858491849	0.294566
26	0.990174	1.300000	-0.094031	12.7858491849	0.227915
27	0.992436	1.300000	-0.073121	12.7858491849	0.175916
28	0.994184	1.300000	-0.056657	12.7858491849	0.135521
29	0.995534	1.300000	-0.043777	12.7858491849	0.104246
30	0.996573	1.300000	-0.033751	12.7858491849	0.080096

3 Conclusión

No hay un método numérico definitivo que sea el más ótimo para cualquier función, ya que depende de esta el que un método en particular funcione de mejor manera y otorgue una aproximación más cercana en un menor número de iteraciones, visto fácilmente en estas dos funciones.