Novel Method for Detecting Ultralight Dark Matter In preparation

Hajime Fukuda, T.T. Yanagida, S. Matsumoto

June 20, 2017

Kavli IPMU, U. Tokyo

Introduction

- Dark matter is one of the most rigid new physics
- Which mass range?

Particle DM Mass Range

Particle DM Mass Range

Ultralight DM

- DM for $10^{-22} \, \text{eV} \lesssim m_{\text{DM}} \lesssim \text{eV}$
- Must be Bosonic
- Several interesting astrophysical signature
 - e.g. Hu, et al., 2000
- Moduli d.o.f.? ALP?

Most Important Point

- Does DM have non-gravitational interaction?
 How could we detect them?
 - Production ×
 - Indirect Detection × (or △)
 - Direct Detection

Direct Detection

- One recoil may be small
 - Not enough to detect itself
- However, n_{DM} is quite large
- What is an appropriate target?
 - Measurement must be precise enough
 - Large enhancement

Enhancement Effect

- The cross section gets enhanced by
 - Stimulated emission
 - We don't include since DM distribution is unknown
 - Coherent effect on the target

Coherent Effect

e.g. Coulomb scattering

• For qR < 1, $\sigma \propto Z^2$!

Coherent Effect

- Naively, $\sigma \propto N_{\rm targ}^2$
 - The interaction must be "spin-independent"
- The larger, the better
- Use planets as the target!, $N \sim 10^{50-58}$
 - Measurement is very accurate, $\Delta v/v\Delta t \lesssim 10^{-(17-19)} \, \mathrm{s}^{-1}$

Real Cross Section

- Unfortunately, simple $N_{\rm targ}^2$ scaling is wrong
- What happens in the coherence:

$$\mathcal{A}_{\text{tot}} = \sum e^{ik\Delta r_i} \mathcal{A}_i \sim N\mathcal{A} \quad (k\Delta r_i \to 0)$$

- Each scattering must be nearly independent
- The incident wave is too disturbed for large N

Real Cross Section

- How the planets look like to DM?
 - Uniform sphere → Constant potential sphere
- Schrödinger eq. with $V(r) = V_0 \Theta(R r)$
 - V_0 must be $V_0(\rho_{\text{targ}})$
 - Matching V_0 for small enough r with N^2 enhancement

Real Cross Section (for the Sun)

Final Result

- For the best target, we need one order more
 - $\sigma \sim m_{\rm DM}^2/\Lambda^4, \Lambda \sim 10^{13} \, {\rm GeV} \, (m \lesssim 10^{-14} \, {\rm eV})$

Summary

- For ultralight DM $m \ll eV$, the celestial bodies in the solar system can be good targets for the direct detection
- We need a few order more accuracy, but then we may reach as much as 10¹³ GeV