ECO326 Advanced Microeconomic Theory A Course in Game Theory

Tianyu Du

December 20, 2018

This work is licensed under a Creative Commons "Attribution-NonCommercial 4.0 International" license.

Github Page https://github.com/TianyuDu/Spikey_UofT_Notes Note Page TianyuDu.com/notes

Readme this note is based on the course content of ECO326 Advanced Microeconomics - Game Theory, this note contains all materials covered during lectures and mentioned in the course syllabus. However, notations, statements of theorems and proofs are following the book A Course in Game Theory by Osborne and Rubinstein, so they might be, to some extent, more mathematical than the required text for ECO326, An Introduction to Game Theory.

Contents

1	Lecture 1. Games and Dominant Strategies	2
2	Lecture 2. Iterated Elimination and Rationalizability 2.1 Iterated Elimination of Strictly Dominated Strategies(Actions) 2.2 Rationalizability	
3	Lecture 3. Nash Equilibrium	9

1 Lecture 1. Games and Dominant Strategies

Assumption 1.1 (pg.4). Assume that each decision-maker is *rational* in the sense that he is aware of his alternatives, forms expectation about any

unknowns, has clear preferences, and chooses his action deliberately after some process of optimization.

Definition 1.1 (pg.4). A model of rational choice consists

- A set A of actions.
- A set C of consequences.
- A consequence function $g: A \to C$.
- A preference relation \succeq on C.

Definition 1.2 (pg.7). A **preference relation** is a <u>complete reflexive and</u> transitive binary relation.

Definition 1.3 (11.1). A strategic game consists of

- a finite set of **players** N.
- for each player $i \in N$, an actions $A_i \neq \emptyset$.
- for each player $i \in N$, a **preference relation** \succeq_i defined on $A \equiv \times_{i \in N} A_i$.

and can be written as a triple $\langle N, (A_i), (\succsim_i) \rangle$.

Definition 1.4 (pg.11). A strategic game $\langle N, (A_i), (\succsim_i) \rangle$ is **finite** if

$$|A_i| < \aleph_0 \ \forall i \in N$$

2 Lecture 2. Iterated Elimination and Rationalizability

2.1 Iterated Elimination of Strictly Dominated Strategies (Actions)

Definition 2.1 (60.2). The set $X \subseteq A$ of outcomes of a <u>finite</u> strategic game $\langle N, (A_i), (u_i) \rangle$ survives iterated elimination of <u>strictly</u> dominated actions if $X = \times_{j \in N} X_j$ and there is a collection $\overline{((X_j^t)_{j \in N})_{t=0}^T}$ of sets that satisfies the following conditions for each $j \in N$.

- $X_j^0 = A_j$ and $X_j^T = X_j$.
- $X_j^{t+1} \subseteq X_j^t$ for each $t = 0, \dots, T-1$.

- For each t = 0, ..., T-1 every action of player j in $X_j^t \setminus X_j^{t+1}$ is <u>strictly dominated</u> in the game $\langle N, (X_i^t), (u_i^t) \rangle$, where u_i^t for each $i \in N$ is the function u_i restricted to $\times_{j \in N} X_j^t$.
- No action in X_t^T is strictly dominated in game $\langle N, (X_i^T), (u_i^T) \rangle$.

Proposition 2.1 (61.2). If $X = \times_{j \in N} X_j$ survives iterated elimination of strictly dominated actions in a finite strategic game $\langle N, (A_i), (u_i) \rangle$ then X_j is the set of player j's rationalizable actions for each $j \in N$.

2.2 Rationalizability

Definition 2.2 (pg. 54). A **belief** of player i (about the actions of the other players) is a probability measure, μ_i , on $A_{-i} = \times_{j \in N \setminus \{i\}} A_j$.

Definition 2.3 (59.1). An action of player i in a strategic game is a **never** best response if it is not a best response to any belief of player i.

Definition 2.4 (59.2). The action $a_i \in A_i$ of player i in the strategic game $\langle N, (A_i), (u_i) \rangle$ is **strictly dominated** if there is a mixed strategy α_i of player i such that

$$U_i(a_{-i}, \alpha_i) > u_i(a_{-i}, a_i)$$

for all $a_{-i} \in A_{-i}$, where $U_i(a_{-i}, \alpha_i)$ is the payoff of player i if he uses the mixed strategy α_i and the other players' vector of actions is a_{-i} .

3 Lecture 3. Nash Equilibrium

Definition 3.1 (14.1). A Nash equilibrium of a strategic game $\langle N, (A_i), (\succeq_i) \rangle$ is a profile $a^* \in A$ of actions with property that for every player $i \in N$

$$(a_i^*, a_{-i}^*) \succsim_i (a_i, a_{-i}^*) \ \forall a_i \in A_i$$

Definition 3.2 (pg.15). The **best-response function** for a player i is defined as

$$B_i(a_{-i}) = \{ a_i \in A_i : (a_i, a_{-i}) \succsim_i (a'_i, a_{-i}) \ \forall a'_i \in A_i \}$$

Remark 3.1. The best-response of a_{-i} can be written as

$$B_i(a_{-i}) = \bigcap_{a_i' \in A_i} \{ a_i \in A_i : (a_i, a_{-i}) \succsim_i (a_i', a_{-i}) \}$$

where each of them is the upper contour set of a_i' .

Thus, if \succeq_i is quasi-concave, then $B_i(a_{-i})$ is an intersection of convex sets and therefore itself convex.

Remark 3.2 (pg.15). So a Nash equilibrium is a profile $a^* \in A$ such that

$$a_i^* \in B_i(a_{-i}^*) \ \forall i \in N$$

Lemma 3.1 (pg.19). A strategic game $\langle N, (A_i), (\succeq_i) \rangle$ has a Nash equilibrium if equivalent to the following statement:

Define set-valued function $B:A\to A$ by

$$B(a) = \times_{i \in N} B_i(a_{-i})$$

and there exists $a^* \in A$ such that $a^* \in B(a^*)$.

Lemma 3.2 (20.1 Kakutani's fixed point theorem). Let X be a <u>compact</u> convex subset of \mathbb{R}^n and let $f: X \to X$ be a set-valued function for which

- for all $x \in X$ the set f(x) is non-empty and convex.
- the graph of f is closed. (i.e. for all sequences $\{x_n\}$ and $\{y_n\}$ such that $y_n \in f(x_n)$ for all $n, x_n \to x$ and $y_n \to y$ then $y \in f(x)$)

Then there exists $x^* \in X$ such that $x^* \in f(x^*)$.

Definition 3.3 (pg.20). A preference relation \succeq_i over A is quasi-concave on A_i if for every $a^* \in A$ the upper contour set over a_i^* , given other players' strategies

$$\{a_i \in A_i : (a_{-i}^*, a_i) \succsim_i a^*\}$$

is convex.

Proposition 3.1 (20.3). The strategic game $\langle N, (A_i), (\succeq_i) \rangle$ has a Nash equilibrium if for all $i \in N$,

• the set A_i of actions of player i is a nonempty <u>compact convex</u> subset of a Euclidian space

and the preference relation \succsim_i is

- continuous
- quasi-concave on A_i .

Proof. Let $B:A\to A$ be a correspondence defined as

$$B(a) := \times_{i \in N} B_i(a_{-i})$$

Note that for each $a \in A$ and for each $i \in N$,

 $B_i(a_{-i}) \neq \emptyset$ since preference \succeq_i is continuous and A_i is compact (EVT).

Also $B_i(a_{-i})$ is convex since it's basically an intersection of upper contour sets and each of those upper contour is convex since \succeq_i is quasi-concave. So the Cartesian product of the finite collection of B_i is non-empty and convex.

Also the graph B is closed since \succeq_i is continuous. So there exists $a^* \in A$ such that $a^* \in B(a^*)$. So Nash equilibrium presents.