Connectedness of Fano schemes of matrices of bounded rank

Ahmad Mokhtar

November 2024

Motivation - Classification of matrices

 $\ensuremath{\mathbb{K}}$: any algebraically closed field

• $Q: n \times n$ matrix over \mathbb{K}

$$\mathbb{K}^n \xrightarrow{Q} \mathbb{K}^n$$

Motivation - Classification of matrices

 \mathbb{K} : any algebraically closed field

• $Q: n \times n$ matrix over \mathbb{K}

$$\mathbb{K}^n \xrightarrow{Q} \mathbb{K}^n$$

- Classify all Q up to a change of basis on \mathbb{K}^n
- Q changes to AQA^{-1} $A \in GL(n)$

Motivation - Classification of matrices

\mathbb{K} : any algebraically closed field

• $Q: n \times n$ matrix over \mathbb{K}

$$\mathbb{K}^n \xrightarrow{Q} \mathbb{K}^n$$

- Classify all Q up to a change of basis on \mathbb{K}^n
- -Q changes to AQA^{-1} $A \in GL(n)$

Motivation (cont'd)

• Q_1, Q_2 : $n \times n$ matrices over \mathbb{K}

Motivation (cont'd)

• Q_1, Q_2 : $n \times n$ matrices over \mathbb{K}

- Classify all (Q_1, Q_2) up to $(AQ_1A^{-1}, AQ_2A^{-1}), A \in GL(n)$
- Gelfand and Ponomarev (1969)

Motivation (cont'd)

• Q_1, Q_2 : $n \times n$ matrices over \mathbb{K}

- Classify all (Q_1, Q_2) up to $(AQ_1A^{-1}, AQ_2A^{-1}), A \in GL(n)$
- Gelfand and Ponomarev (1969)

$$\mathbb{K}^n \xrightarrow{Q_1} \mathbb{K}^m$$

- Classify (Q_1, Q_2) up to (AQ_1B^{-1}, AQ_2B^{-1}) , $(A, B) \in GL(m) \times GL(n)$
- Kronecker-Weierstrass Canonical form

- Fix m, n, k, r
- $M_{m,n}$: vector space of $m \times n$ matrices over \mathbb{K}

- Fix m, n, k, r
- $M_{m,n}$: vector space of $m \times n$ matrices over \mathbb{K}
 - Classify subspaces $L \subseteq M_{m,n}$ of dimension k+1 up to ALB^{-1}

- Fix m, n, k, r
- $M_{m,n}$: vector space of $m \times n$ matrices over \mathbb{K}
 - Classify subspaces $L \subseteq M_{m,n}$ of dimension k+1 up to ALB^{-1}
 - Sub-problem: impose rank(L) < r

- Fix m, n, k, r
- V: vector space of matrices over \mathbb{K}
 - Classify subspaces $L \subseteq V$ of dimension k+1 up to ALB^t
 - Sub-problem: impose rank(L) < r

- Fix m, n, k, r
- V: vector space of matrices over K
 - Classify subspaces $L \subseteq V$ of dimension k+1 up to ALB^t
 - Sub-problem: impose rank(L) < r

- Here *V* is one of
 - $M_{m,n}$: space of $m \times n$ rectangular matrices over \mathbb{K}
 - S_n : space of $n \times n$ symmetric matrices $(B = A, \operatorname{char} \mathbb{K} \neq 2)$
 - A_n : space of $n \times n$ alternating matrices (B = A)

- Fix m, n, k, r
- V: vector space of matrices over K
 - Classify subspaces $L \subseteq V$ of dimension k+1 up to ALB^t
 - Sub-problem: impose rank(L) < r

- Here V is one of
 - $M_{m,n}$: space of $m \times n$ rectangular matrices over \mathbb{K}
 - S_n : space of $n \times n$ symmetric matrices $(B = A, \operatorname{char} \mathbb{K} \neq 2)$
 - A_n : space of $n \times n$ alternating matrices (B = A)

- Classification methods
 - Canonical form
 - Moduli approach

Example (rectangular matrices)

•
$$V = M_{m,n}$$
 $m = n = r = 5$

$$\begin{pmatrix} * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \end{pmatrix}$$

0-compression space

Example (rectangular matrices)

•
$$V = M_{m,n}$$
 $m = n = r = 5$

$$\begin{pmatrix} * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \end{pmatrix} \qquad \begin{pmatrix} * & * & * & * & * \\ * & * & * & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & 0 & 0 \end{pmatrix}$$

0-compression space 1-compression space

Example (rectangular matrices)

•
$$V = M_{m,n}$$
 $m = n = r = 5$

$$\begin{pmatrix} * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \end{pmatrix}$$

$$\begin{pmatrix} * & * & * & * & * \\ * & * & * & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & 0 & 0 \end{pmatrix}$$

0-compression space 1-compression space

• For $0 \le s \le r - 1$, an s-compression space is

Example (symmetric/alternating case)

• $V = S_n$ or A_n n = r = 5

$$\begin{pmatrix} * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \\ * & * & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} * & * & * & * & * \\ * & * & * & 0 & 0 \\ * & * & * & 0 & 0 \\ * & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 \end{pmatrix}$$

0-compression space 1-compression space

• For $0 \le s \le \frac{r-1}{2}$, a sym/alt s-compression space is

Example of a non-compression space

$$\begin{pmatrix} 0 & 0 & 0 & 0 & a & b \\ 0 & 0 & 0 & -a & 0 & c \\ 0 & 0 & 0 & -b & -c & 0 \\ 0 & -a & -b & 0 & 0 & 0 \\ a & 0 & -c & 0 & 0 & 0 \\ b & c & 0 & 0 & 0 & 0 \end{pmatrix}_{6 \times 6}$$

a, b, c range over \mathbb{K}

• **Problem:** Fix r, k: classify (k + 1)-dimensional $L \subseteq V$ with $\operatorname{rank}(L) < r$ up to row/col operations

- **Problem:** Fix r, k: classify (k + 1)-dimensional $L \subseteq V$ with $\operatorname{rank}(L) < r$ up to row/col operations
- Dieudonné ('49): Maximum dimension of a linear space of singular matrices

- **Problem:** Fix r, k: classify (k + 1)-dimensional $L \subseteq V$ with $\operatorname{rank}(L) < r$ up to row/col operations
- Dieudonné ('49): Maximum dimension of a linear space of singular matrices
- Flanders ('82), Meshulam ('89): The maximum k for $L \subseteq V$ with $\mathrm{rank}(L) < r$

- **Problem:** Fix r, k: classify (k + 1)-dimensional $L \subseteq V$ with $\operatorname{rank}(L) < r$ up to row/col operations
- Dieudonné ('49): Maximum dimension of a linear space of singular matrices
- Flanders ('82), Meshulam ('89): The maximum k for $L \subseteq V$ with $\operatorname{rank}(L) < r$
- Atkinson & Lloyd ('80), Beasley ('87), Loewy & Radwan ('94), De Seguins Pazzis (2016): Subspaces near the maximum dimension are compression spaces.

- **Problem:** Fix r, k: classify (k + 1)-dimensional $L \subseteq V$ with $\operatorname{rank}(L) < r$ up to row/col operations
- Dieudonné ('49): Maximum dimension of a linear space of singular matrices
- Flanders ('82), Meshulam ('89): The maximum k for $L \subseteq V$ with $\operatorname{rank}(L) < r$
- Atkinson & Lloyd ('80), Beasley ('87), Loewy & Radwan ('94), De Seguins Pazzis (2016): Subspaces near the maximum dimension are compression spaces.
- Ilten & Chan (2015): Fano schemes of rectangular matrices of bounded rank

• $X \subseteq \mathbb{P}^n$: projective scheme, $k \in \mathbb{Z}_{\geqslant 0}$

- $X \subseteq \mathbb{P}^n$: projective scheme, $k \in \mathbb{Z}_{\geqslant 0}$
- $\mathbf{F}_k(X) \subseteq \operatorname{Gr}(k+1,n+1)$: Fano scheme of k-planes lying on X

- $X \subseteq \mathbb{P}^n$: projective scheme, $k \in \mathbb{Z}_{\geqslant 0}$
- $\mathbf{F}_k(X) \subseteq \operatorname{Gr}(k+1,n+1)$: Fano scheme of k-planes lying on X
- Fano schemes of symmetric matrices of bounded rank

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{12} & x_{22} & & x_{2n} \\ \vdots & & \ddots & \vdots \\ x_{1n} & x_{2n} & \cdots & x_{nn} \end{pmatrix}$$

- $X \subseteq \mathbb{P}^n$: projective scheme, $k \in \mathbb{Z}_{\geqslant 0}$
- $\mathbf{F}_k(X) \subseteq \operatorname{Gr}(k+1,n+1)$: Fano scheme of k-planes lying on X
- Fano schemes of symmetric matrices of bounded rank

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{12} & x_{22} & & x_{2n} \\ \vdots & & \ddots & \vdots \\ x_{1n} & x_{2n} & \cdots & x_{nn} \end{pmatrix}$$

• $SD_n^r \subseteq \mathbb{P}S_n$: defined by $r \times r$ minors

- $X \subseteq \mathbb{P}^n$: projective scheme, $k \in \mathbb{Z}_{\geqslant 0}$
- $\mathbf{F}_k(X) \subseteq \operatorname{Gr}(k+1,n+1)$: Fano scheme of k-planes lying on X
- Fano schemes of symmetric matrices of bounded rank

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{12} & x_{22} & & x_{2n} \\ \vdots & & \ddots & \vdots \\ x_{1n} & x_{2n} & \cdots & x_{nn} \end{pmatrix}$$

• $SD_n^r \subseteq \mathbb{P}S_n$: defined by $r \times r$ minors

- $X \subseteq \mathbb{P}^n$: projective scheme, $k \in \mathbb{Z}_{\geqslant 0}$
- $\mathbf{F}_k(X) \subseteq \operatorname{Gr}(k+1,n+1)$: Fano scheme of k-planes lying on X
- Fano schemes of symmetric matrices of bounded rank

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{12} & x_{22} & & x_{2n} \\ \vdots & & \ddots & \vdots \\ x_{1n} & x_{2n} & \cdots & x_{nn} \end{pmatrix}$$

- $SD_n^r \subseteq \mathbb{P}S_n$: defined by $r \times r$ minors
- $\mathbf{F}_k(\mathrm{SD}_n^r)$: parameterizes k-planes on SD_n^r

- $X \subseteq \mathbb{P}^n$: projective scheme, $k \in \mathbb{Z}_{\geqslant 0}$
- $\mathbf{F}_k(X) \subseteq \operatorname{Gr}(k+1,n+1)$: Fano scheme of k-planes lying on X
- Fano schemes of symmetric matrices of bounded rank

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{12} & x_{22} & & x_{2n} \\ \vdots & & \ddots & \vdots \\ x_{1n} & x_{2n} & \cdots & x_{nn} \end{pmatrix}$$

- $SD_n^r \subseteq \mathbb{P}S_n$: defined by $r \times r$ minors
- $\mathbf{F}_k(\mathrm{SD}_n^r)$: parameterizes k-planes on SD_n^r

- irreducible
- smooth
- connected

- irreducible
- smooth
- connected
- If not irreducible, what are the irreducible components?

- irreducible
- smooth
- connected
- If not irreducible, what are the irreducible components?
- Provide a unified framework for proving previous results (geometric proofs)

- irreducible
- smooth
- connected
- If not irreducible, what are the irreducible components?
- Provide a unified framework for proving previous results (geometric proofs)
- Improve previous results

Connectedness - Theorem (M.)

- Fix m, n, r, k
- Let X =

vanishing of $r \times r$ minors of the generic $m \times n$ matrix vanishing of $r \times r$ minors of the generic $n \times n$ symmetric matrix vanishing of $r \times r$ Pfaffians of the generic $n \times n$ alternating matrix

Connectedness - Theorem (M.)

- Fix m, n, r, k
- Let X =

vanishing of $r \times r$ minors of the generic $m \times n$ matrix vanishing of $r \times r$ minors of the generic $n \times n$ symmetric matrix vanishing of $r \times r$ Pfaffians of the generic $n \times n$ alternating matrix

Connectedness - Example

• Theorem (M.) There is a graph $\mathcal G$ associated to the scheme $\mathbf F_k(X)$ such that

connected components of $\mathbf{F}_k(X)$ connected components of \mathcal{G}

• Example: $\mathbf{F}_k(\mathrm{SD}_{15}^{15})$

$$k = 70$$

k = 71

Thank you!

Example: $\mathbf{F}_1(SD_3^3)$

R=QQ[x_1..x_6];
Fano(1,ideal(det(genericSymmetricMatrix(R,x_1,3))))

Example: $\mathbf{F}_1(SD_3^3)$

- R=QQ[x_1..x_6];
 Fano(1,ideal(det(genericSymmetricMatrix(R,x_1,3))))
- Output: 70 generators in 15 variables

$$x_{9}x_{12} - x_{8}x_{13} + x_{5}x_{14}$$

$$x_{9}x_{11} - x_{7}x_{13} + x_{4}x_{14}$$

$$x_{8}x_{11} - x_{7}x_{12} + x_{2}x_{14}$$

$$\vdots$$

$$3x_{1}x_{2}x_{4} - x_{0}x_{2}x_{5} - 2x_{0}x_{2}x_{7} - 2x_{0}x_{6}x_{7} + 2x_{0}x_{3}x_{1}1 - x_{0}^{2}x_{1}3$$

$$3x_{1}^{2}x_{4} - 2x_{0}x_{1}x_{5} - x_{0}x_{6}^{2} - 4x_{0}x_{1}x_{7} + 2x_{0}^{2}x_{8} + x_{0}x_{3}x_{1}0 + x_{0}^{2}x_{1}1$$

$$x_{1}^{2}x_{3} - 2x_{0}x_{1}x_{6} + x_{0}^{2}x_{1}0$$

Example: $\mathbf{F}_1(SD_3^3)$

- R=QQ[x_1..x_6];
 Fano(1,ideal(det(genericSymmetricMatrix(R,x_1,3))))
- Output: 70 generators in 15 variables

$$x_{9}x_{12} - x_{8}x_{13} + x_{5}x_{14}$$

$$x_{9}x_{11} - x_{7}x_{13} + x_{4}x_{14}$$

$$x_{8}x_{11} - x_{7}x_{12} + x_{2}x_{14}$$

$$\vdots$$

$$3x_{1}x_{2}x_{4} - x_{0}x_{2}x_{5} - 2x_{0}x_{2}x_{7} - 2x_{0}x_{6}x_{7} + 2x_{0}x_{3}x_{1}1 - x_{0}^{2}x_{1}3$$

$$3x_{1}^{2}x_{4} - 2x_{0}x_{1}x_{5} - x_{0}x_{6}^{2} - 4x_{0}x_{1}x_{7} + 2x_{0}^{2}x_{8} + x_{0}x_{3}x_{1}0 + x_{0}^{2}x_{1}1$$

$$x_{1}^{2}x_{3} - 2x_{0}x_{1}x_{6} + x_{0}^{2}x_{1}0$$

