МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Лабораторная работа № 2 по курсу «Криптография»

Группа: М8О-308Б-21

Студент(ка): А. Ю. Гришин

Преподаватель: А. В. Борисов

Оценка:

Дата: 08.03.2024

ОГЛАВЛЕНИЕ

1	Тема	3
	Задание	
	Теория	
	Ход лабораторной работы	
	Выводы	
	Список используемой литературы	

1 Тема

Темой данной лабораторной работы является факторизация чисел. Основная цель работы — ознакомиться с основными подходами и методами решения задачи факторизации больших чисел, применяемых в криптоанализе.

2 Задание

Даны два положительных целых числа n_1 , n_2 . Необходимо разложить каждое из чисел n_1 и n_2 на нетривиальные сомножители.

 $n_1 = 352358118079150493187099355141629527101749106167997255509619 \\ 020528333722352217$

 $\begin{array}{l} n2 = 169512848540208376377324702550860778129688385180093459660532\\ 447790298998967239009844131423368703852254379652436293267451165908\\ 499087709446140576906830525398016548195227615126428227016930742498\\ 245134936446888445262636336633279210669749830015450428910904353831\\ 472217149085157720200293646951583784688447268570132055595467527047\\ 098171188345287615296763616072299194303173772767446223480396454652\\ 234970667881341234171270319084202556797982227882925483764275373954\\ 6649159 \end{array}$

3 Теория

Факторизация чисел тесно связана с асимметричным шифрованием. В частности, с алгоритмом RSA.

Ассиметричное шифрование

Идея ассиметричного шифрования основывается на использовании пары ключей вместо одного, как это было в симметричном. Пусть (P,Q) – пара ключей, где P – открытый ключ, а Q – закрытый. Открытый ключ используется в процессе обмена сообщениями только для шифрования. Его секретность никак не влияет на защищенность шифрования, поэтому P может распространяться публично. Закрытый же ключ предназначен для расшифровки сообщения. Такой ключ уже имеет критическое влияние на защищенность процесса обмена сообщениями и должен храниться у владельца в секрете.

Алгоритм RSA

Алгоритм RSA является непосредственной реализацией идеи ассиметричного шифрования и определяет алгоритм генерации пары открытого и закрытого ключей, а также шифрования и расшифрования сообщений. Основан такой метод на идее простых чисел и факторизации. Простой и закрытый ключ представляют собой пары из двух чисел: P = (n, e), Q = (n, q). Число n определяется как результат произведения двух простых чисел a, b.

Далее, для определения чисел e, d нам потребуется найти значение функции Эйлера: $\varphi(n) = (p-1)*(q-1)$. Число e определяется следующими условиями:

- 1. $e < \varphi(n)$
- 2. Числа e и $\varphi(n)$ взаимно простые. То есть, $\gcd(e, \varphi(n)) = 1$ Число d определяется как обратное числу e по модулю $\varphi(n)$.

Итого, как видим, все числа, которые представляют открытый и закрытый ключи, являются результатами некоторых операций над числами a, b. А следовательно, зная данную пару чисел, злоумышленник может получить всю необходимую ему информацию, в том числе и закрытый ключ.

4 Ход лабораторной работы

При выполнении лабораторной работы я начал с анализа условия задачи. Несмотря на то, что условие задачи «найти нетривиальные делители числа» довольно общее, можно наложить на искомые делители числа некоторые ограничения:

- 1. Искомые делители являются простыми числами, так как в противном случае делители можно было бы разложить на более простые множители, которые также будут являться делителями данного числа. Если бы это условие не выполнялось, то задача стала бы слишком простой и наивные алгоритмы факторизации были бы эффективны.
- 2. Так как искомые делители простые числа, то мы можем сделать вывод о том, что у данного числа будет ровно 2 простых делителя, так как мы не можем разложить простые числа на нетривиальные

множители и получить новую пару нетривиальный множителей для данного числа.

Итого, задача сводится к поиску двух простых чисел a, b < n: $a \neq b$ таких, что a * b = n, что является задачей «взлома» алгоритма RSA.

Факторизация первого числа

Для факторизации первого числа я сначала пробовал наивные алгоритмы поиска, которые перебирали все целые числа от 2 до \sqrt{n} , но очевидно, такой способ никаких результатов не дал. Далее, я решил использовать более оптимизированные алгоритмы, такие как алгоритм Ферма. Однако, такие алгоритмы также оказались недостаточно мощными для на столько большой длины числа. Также, были идеи распараллеливания вычисления и использования интерпретатора PyPy вместо стандартного CPython, однако такой подход давал прирост всего в 4-6 раз, что недостаточно по сравнению с объемом вычислений, которые необходимо было воспроизвести.

Далее, я обратился к самым оптимизированным на данный момент алгоритмам и библиотекам Python, которые их реализуют. Однако, такой способ тоже оказался слишком долгим.

Последним шагом было использование онлайн имплементации алгоритма метода эллиптической кривой (ECM) на сайте https://www.alpertron.com.ar/ECM.HTM, так как здесь алгоритм реализован на WebAssembly, что в разы оптимальнее использования таких высокоуровневых языков, как Javascript или Python. Такая реализация уже смогла найти делители числа за 4 минуты.

Value 108762353292448487441247663685513658893167646930627178946128889967643172154127		
Only evaluate Prime Factor Help Category: Basic Math		
Config Wizard From file Blockly mode % ^ ans sqrt(iroot(Random(Abs(Sign(
Type one numerical expression or loop per line. Example: x=3;x=n(x);c<=100;x-1		
Press the Help button to get help about this application. Press it again to return to the factorization. You can also watch <u>videos</u> . Keyboard users can press CTRL+ENTER to start factorization. This is the WebAssembly version.		
• 108762 353292 448487 441247 663685 513658 893167 646930 627178 946128 889967 643172 154127 (78 digits) = 260 951289 862485 772644 727258 162652 873363 (39 digits) × 416 791782 672403 295662 841737 728685 758229 (39 digits)		
Number of divisors: 4		
Sum of divisors: 108762 353292 448487 441247 663685 513658 893845 390003 162068 014436 458963 534510 785720 (78 digits)		
Euler's totient: 108762 353292 448487 441247 663685 513658 892489 903858 092289 877821 320971 751833 522536 (78 digits)		
Möbius: 1		
$n = a^2 + b^2 + c^2 + d^2$		
a = 239 074080 045861 450400 255053 982332 195057 (39 digits)		
b = 190 022588 683200 185168 728902 103210 643383 (39 digits)		
c = 120 565223 426036 028735 316368 841543 630165 (39 digits)		
d = 31 006132 184438 184620 169994 974763 849158 (38 digits)		
List of divisors:		
 1 260 951289 862485 772644 727258 162652 873363 (39 digits) 416 791782 672403 295662 841737 728685 758229 (39 digits) 108762 353292 448487 441247 663685 513658 893167 646930 627178 946128 889967 643172 154127 (78 digits) 		

Факторизация второго числа

Длина второго числа оказалась непосильной для любого из перечисленных методов. На этом этапе стал актуальным поиск альтернативного подхода к решению задачи, так как решение «напрямую», как это было при факторизации первого числа, уже не смог справиться.

Начальной идеей было использование статистического анализа не в рамках только данного числа, а в рамках всех предоставленных чисел из других вариантов.

Я решил провести анализ таких чисел и узнать, нет ли между ними каких-либо закономерностей или связей. Среди множества возможных вариантов результативной оказалась идея о том, что некоторые числа могут иметь одно общее число, через которое оно было образовано. Иными словами, если n_1, n_2 — рассматриваемые нами числа, то $\exists a : n_1 = a * k_1, n_2 = a * k_2$.

И так, если у двух чисел есть такое число a, то оно является их наибольшим общим делителем, так как:

- 1. Никакие другие нетривиальные делители кроме смежного $\frac{n}{a}$ не существуют в силу вышеописанных рассуждений;
- 2. Если $a < \frac{n}{a}$, то мы просто в рассуждении множители местами и все выводы сохраняют свой смысл.

Оставался открытым вопрос об эффективном поиске наибольшего общего делителя для двух чисел. Однако, такая задача просто и эффективно решается алгоритмом Евклида в силу его итеративности и простоты в вычислениях. Итого, задачу можно решить через следующий алгоритм

```
def find_first_delimeter(target_number: int, numbers: Iterable[int]) -> int:
   for number in numbers:
       if (d := gcd(number, target_number)) != 1:
           return d
   raise ValueError(f"Can't find delimeter for {target_number}")
   target_number = 123 # целевое число, которое было дано в соответствующем варианте задания
   numbers = [ 456, 789, ... ] # остальные числа из других вариантов
   # поиск делителей
   a = find_first_delimeter(target_number, numbers)
   b = target_number // a
   # вывод результата в консоль для пользователя
   print(f'n: {target_number}')
   print(f'a: {a}')
   print(f'b: {b}')
   # проверка полученного результата
   print('Check:')
   print(f'a * b = \{a * b\}')
   print('Result: {}'.format(["FAILED", "SUCCESS"][a * b == target_number])
```

5 Выводы

В ходе выполнения данной лабораторной работы я ознакомился с основными алгоритмами и методами решения задачи факторизации числа. Я рассмотрел использование такой задачи на практике и ознакомился с реальными примерами.

Также, я на практике убедился, что не всегда «прямое» решение сможет привести к какому-либо результату или привести за разумное время.

Задача факторизации числа с использованием простых делителей является хорошим примером одной из главный идей криптографических функций, которые часто ассоциируют с их кратким описанием «легко вычисляются в одну сторону и неразумно сложно в обратную».

Использование таких функций, подходов, методов оказывает огромное влияние на криптостойкость и эффективность шифров, так как с одной стороны мы можем быстро зашифровать или расшифровать данные, имея нужную нам информацию, но получить такую информацию для злоумышленников становится практически нерешаемой задачей.

6 Список используемой литературы

- Видео про ассиметричное шифрование: https://youtu.be/qgofSZFTuVc?si=sBlzrXmsqN6nXnik
- Статья с описанием алгоритма RSA: https://habr.com/ru/articles/745820/
- Статья с описанием алгоритма Ферма на Wikipedia:
 <a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%BE%D0%B4_%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B8_MD0%BE%D1%80%D0%B8%D0%B8_MD0%B8_MD0%B5%D1%80%D0%BC%D0%B0
 Статья с описанием алгоритма Ферма на Wikipedia:
 <a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D1%80%D0%BE%D0%B8MD0%BE%D1%80%D0%B8%D0%B8MD0%BE%D1%80%D0%B8MD0%B8MD0%B8MD0%B8MD0%B8MD0%B8MD0%B5%D1%80%D0%B5%D1%80%D0%B5%D1%80%D0%B5%D1%80%D0%B5%D1%80%D0%B5%D1%80%D0%B5%D1%80%D0%B6