Analiza și procesarea datelor prin tehnici de Învățare Automată

4. Tehnici de învățare supervizată 2: Regresie

Universitatea Transilvania din Brașov

FACULTATEA DE INGINERIE ELECTRICĂ ȘI ȘTIINȚA CALCULATOARELOR

Contact: horia@gmail.com

Tel: 0770171577

- Învățarea unei funcții discrete: Clasificare
 - Clasificare binară:
 - fiecare exemplu este clasificat ca adevărat (pozitiv) sau fals (negativ)
 - poate, de asemenea, clasifica în mai multe clase (3, 4, 5...)
- Învățarea unei funcții continue: Regresie
 - Regresie liniară
 - Regresie logistică

Regresie

- Tehnică de învățare supervizată
- Urmărește să determine corelația între variabile
- În contextul învățării automate: prezicerea unei variabile țintă continue în funcție de una sau mai multe variabile
- Utilizată în
 - predicție/prognoză
 - modelarea seriilor de timp
 - determinarea relației cauză-efect

Corelație

- Asociere liniară între două variabile
- Arată cum să determinăm atât natura, cât și puterea relației dintre două variabile
- Corelația este între -1 și +1
- Corelația zero indică faptul că nu există nicio relație între variabile
- Coeficientul de corelație Pearson
 - cea mai cunoscută măsură a dependenței dintre două mărimi

■ Să se determine funcția care trece prin punctele de mai jos

■ Modalități de aboradare

Briciul Iui Ocam

- Trebuie preferată cea mai simplă ipoteză consistentă cu datele
- \blacksquare În caz de egalitate, modelele mai simple tind să generalizeze mai bine decât cele complexe

William of Occam (1285-1347) – filozof englez

Entia non sunt multiplicanda praeter necessitatem

~ Cea mai simplă explicație este cea mai bună

Generalizarea

- Scopul este găsirea unui model pentru determinarea valorii clasei în funcție de valorile celorlalte atribute cu eroare cât mai mică
- Modelul trebuie să aibă capacitate de generalizare, care arată cât de bun este modelul pentru date **noi**
- De obicei există o mulțime de antrenare pentru crearea modelului și o mulțime de test pentru verificarea capacității de generalizare

Transilvania din Brasov Generalitatea unui model

- Subpotrivirea (*underfitting*): modelul este prea simplu și nu poate învăța distribuția datelor
- Suprapotrivirea (overfitting): modelul este prea complex și poate fi influențat de zgomot și date irelevante
- Un model suprapotrivit are performanțe foarte bune pe mulțimea de antrenare, dar performanțe slabe pe mulțimea

Regresie Liniară

- Regresia Liniară este utilizată pentru a prezice valoarea unei variabile pe baza valorilor uneia/mai multor variabile
- Este o metodă de învățare supervizată
- Scopul: determinarea relației liniare dintre o variabilă dependentă și una/mai multe variabile independente

Regresie Liniară

Samples with ONE independent variable

Samples with TWO independent variables

Given examples $(x_i, y_i)_{i=1...n}$ Predict y_{n+1} given a new point x_{n+1}

Regresia Liniară

Considerăm un model

$$y = a + bX + \varepsilon$$

, unde ${f a}$ și ${f b}$ sunt interceptarea și panta (cunoscuți drept coeficienți sau parametri), iar ${m \varepsilon}$ este termenul de eroare

- Regresie liniară simplă
 - o singură variabilă independentă este utilizată
- Regresie liniară multiplă
 - două sau mai multe variabile independente sunt folosite pentru predicție

Universitatea Transilvania din Brașov FACULTATEA DE INGINERIL ELECTRI DURI de regresie liniară FALULTATEA DE INGINERIL ELECTRI DURI de regresie liniară

Simple Linear Regression

Multiple Linear Regression

Pegresia Liniară simplă

Exemplu: Are înălțimea influență asupra greutății unei Variabilă independentă persoane?

Variabilă dependentă

Scop: prezicerea valorii variabilei dependente (y) pe baza variabilei independente (X)

Pegresia Liniară simplă

$$y_i = a + bX_i + \varepsilon_i$$

, unde y = variabila dependentă, x – variabila independentă, a – intercept, b – panta liniei, ε – termenul de eroare

- Model Simplu: doar un X
- Liniar în parametri: niciun parametru nu apare ca exponent sau este înmulțit/împărțit cu un alt parametru
- Liniar în variabila predictor (X): X apare doar la prima putere

Exemplu

- Predicția prețului pentru pizza
 - Care este prețul unei pizza de 20 inch?

Diameter	Price
6	7
8	9
10	13
14	17.5
18	18

Calculare

x	У	X ²	ху
3	8	9	24
9	6	81	54
5	4	25	20
3	2	9	6
∑x = 20	Σy = 20	$\sum x^2 = 124$	∑xy = 104

Х	У
3	8
9	6
5	4
3	2

$$a = \frac{\sum y \sum x^2 - \sum x \sum xy}{n \sum x^2 - (\sum x)^2} = \frac{20 * 124 - 20 * 104}{4 * 124 - 20^2} = \frac{400}{96} = 4.17$$

$$b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2} = \frac{4 * 104 - 20 * 20}{4 * 124 - 20^2} = \frac{16}{96} = 0.166$$

$$y = 4.17 + 0.166x$$

 Ş. L. Dr. Ing. Horia Modran
 2024-2025
 17

Eroare

True value

Error epsilon

$$y = b \cdot x + a + \epsilon$$

Eroare

■ Graficul *Scatterplot* arată că punctele nu sunt pe o linie și astfel, pe lângă relație, descriem și eroarea ${m \epsilon}$:

$$y_i = a + b_1 X_i + \varepsilon_i$$

- distanța dintre valoarea estimată și valoarea adevărată trebuie să fie cât mai mică (implicit și eroarea arepsilon)
- Coeficientul de regresie b poate avea acum semne diferite:
 - b > 0: există o corelație pozitivă între x și y (cu cât x mai mare, cu atât y mai mare)
 - b < 0: există o corelație negativă între x și y
 - b = 0: nu există nicio corelație între x și y

S. L. Dr. Ing. Horia Modran

Transilvania din Brașov Gresia Liniară multiplă

$$y = a + b_1 X_1 + b_2 X_2 + \cdots + b_n X_n + \varepsilon$$

, unde y = variabila dependentă, x - variabila independentă, a - intercept, b_1, b_2, \ldots, b_n - pantele, ε - termenul de eroare

- Coeficienții pot fi interpretați ca la regresia simplă
- Mai multe variabile independente
- O singură variabilă dependentă
- Utilizată adeasea în cercetări de piață

Transilvania din Brașov Gresia Liniară multiplă

lacktriangle Predicție Y după x_1 și x_2

$$X = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 5 \\ 1 & 3 & 8 \\ 1 & 4 & 2 \end{pmatrix} \quad y = \begin{pmatrix} 1 \\ 6 \\ 8 \\ 12 \end{pmatrix}$$

x1 Product 1 Sales	x2 Product 2 Sales	Y Weekly Sales				
1	4	1				
2	5	6				
3	8	8				
4	2	12				

$$y = a + b_1 x_1 + b_2 x_2$$

$$b = ((X^T X)^{-1} X^T) Y \text{ , unde } a = \begin{pmatrix} a \\ b_1 \\ b_2 \end{pmatrix}$$

Exemplu calcul

$$X^{T}X = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 5 & 8 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 5 \\ 1 & 3 & 8 \\ 1 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 10 & 19 \\ 10 & 30 & 46 \\ 19 & 46 & 109 \end{pmatrix}$$

$$(X^T X)^{-1} = \begin{pmatrix} 4 & 10 & 19 \\ 10 & 30 & 46 \\ 19 & 46 & 109 \end{pmatrix}^{-1} = \begin{pmatrix} 3.15 & -0.59 & -0.30 \\ -0.59 & 0.2 & 0.016 \\ -0.3 & 0.016 & 0.054 \end{pmatrix}$$

$$(X^T X)^{-1} X^T = \begin{pmatrix} 3.15 & -0.59 & -0.30 \\ -0.59 & 0.2 & 0.016 \\ -0.3 & 0.016 & 0.054 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 5 & 8 & 2 \end{pmatrix} = \begin{pmatrix} 0.05 & 0.47 & -1.02 & 0.19 \\ -0.32 & -0.098 & 0.155 & 0.26 \\ -0.065 & 0.05 & 0.185 & -0.125 \end{pmatrix}$$

$$= ((X^T \ X)^{-1} \ X^T) \ Y = \begin{pmatrix} 0.05 & 0.47 & -1.02 & 0.19 \\ -0.32 & -0.098 & 0.155 & 0.26 \\ -0.065 & 0.05 & 0.185 & -0.125 \end{pmatrix} \begin{pmatrix} 1 \\ 6 \\ 8 \\ 12 \end{pmatrix} = \begin{pmatrix} -1.69 \\ 3.48 \\ -0.05 \end{pmatrix}$$

$$y = -1.69 + 3.48x_1 - 0.05x_2$$

Proportion de la Propor

- Presupunem că toate variabilele sunt variabile continue
- Variabile categoriale:
 - Variabile ordinale codifică datele cu valori continue
 - Evaluation: Excellent (5), Very good (4), Good (3), Poor (2), Very poor (1)
 - Variabile nominale de utilizează *dummy variables*
 - Department: Computer, Biology, Physics

	Computer	Biology	Physics
Computer	1	0	0
Biology	0	1	0
Physics	0	0	1

Funcție cost

- Funcția de cost este necesară pentru a calcula diferența dintre valorile reale și cele prezise
- Pentru modelul de regresie liniară, funcția de cost va fi minimul Erorii Pătratice Medie Rădăcină (engl. *Root Mean Square Error* RMSE) a modelului, obținută prin scăderea valorilor prezise din valorile reale
- Este o valoare numerică care indică succesul sau eșecul unui anumit model, fără a fi nevoie să înțelegem funcționarea interioară a unui model

Transilvania din Brașov FACULTATEA DE INGINERIE ELECTRIC TIPUTI de funcție cost și știința calculatoarelor

- Eroare Medie (*Mean Error*) aceste erori pot fi negative sau pozitive
 - prin urmare, se pot anula reciproc în timpul însumării, iar eroarea medie a modelului poate fi zero
- Eroare medie pătratică (*Mean Squared Error* MSE) MSE reprezintă diferența medie pătrată dintre predicții și rezultatele așteptate

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2$$

n – nr. de puncte y_i – valoarea reală

 $\widehat{y_i}$ - valoarea prezisă

Transilvania din Brașov FACULTATEA DE INGINERIE ELECTRIT TIPUri de funcție cost

■ Eroare absolută medie (*Mean Absolute Error* – MAE) – MAE calculează valoarea absolută a diferenței (nu există posibilitate de erori negative)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\widehat{y}_i - y_i|$$
 n - nr. de puncte y_i - valoarea reală \widehat{y}_i - valoarea prezisă

■ Root Mean Squared Error - unul dintre cei doi indicatori principali de performanță pentru un model de regresie

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} |\widehat{y}_i - y_i|}{n}}$$

Transilvania din Brașov FACULTICA Eficient de determinare

Coeficientul de determinare (R^2) este proporția variației variabilei dependente care este datorată variabilelor independente

$$SS_{res} = \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$$

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \overline{y_i})^2$$

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \overline{y_i})^2$$

$$y_i - \text{valoarea reală}$$

$$\widehat{y_i} - \text{valoarea medie}$$

$$\overline{y_i} - \text{valoarea medie}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}}$$

Transilvania din Brașov eficient de determinare

■ Exemplu de valori pentru R²

 $R^2 = 1$ Toată variația valorilor y este explicată de valorile x

 $R^2 = 0.83$ 83 % din variația valorilor y este explicată de valorile x

 $R^2 = 0$ Variația valorilor y nu este influențată deloc de valorile x

Universitatea Transilvania Transilvania Pentru clasificare

- Pentru clasificare binară
 - se codifică etichetele clasei ca y=0,1 sau {-1,1}
 - \blacksquare se aplică: $\mathbf{y} = \mathbf{X} * \mathbf{b} + \mathbf{e}$
 - se determină de care clasă este mai apropiată predicția
 - dacă clasa 1 este codificată la 1 și clasa 2 este 1

class 1 if
$$f(x) \ge 0$$

class 2 if $f(x) < 0$

■ Modelel liniare NU sunt optimizate pentru clasificare

Regresie Logistică

- Prezice rezultatele pe o variabilă de rezultat binară
 - de exemplu, dacă un pacient are sau nu o boală
 - dacă un nou solicitant va reuși sau nu
 - rezultatul nu este continuu sau distribuit normal
- când avem un răspuns de tip variabilă binară
 - codificăm "boală" ca 1 și "fără boală" ca 0, putem doar să potrivim o linie prin acele puncte așa cum am face cu regresia liniară? Posibil! Dar există anumite probleme.

Transilvania din Braşdu Gresie Liniară: Probleme

- Problema potrivirii unei linii regulate de regresie la o variabilă dependentă binară
 - linia pare să simplifice prea mult relația
 - oferă predicții care nu pot fi valori observabile ale lui Y pentru valorile extreme ale lui X
 - abordarea este analogă cu potrivirea unui model liniar la probabilitatea evenimentului
- Produce predicții neobservabile

pentru valori extreme ale variabilei dependente

31

Regresie Logistică

- Se începe cu ecuația Regresiei Liniare
- Se vor determina coeficienții de regresie

Regresie Logistică

Rezultatul calcului ar fi un model liniar (similar cu Regresia Linieară) -> intervalul de valori este de la $-\infty$ $la + \infty$

Funcția logistică

- Modelul logistic se bazează pe funcția logistică
- Are valori doar între 0 și 1

Funcția logistică

Ecuația funției logistice

$$\hat{y} = b_1 \cdot x_1 + b_2 \cdot x_2 + \ldots + b_k \cdot x_k + a$$

$$f(z) = rac{1}{1 + e^{-z}} = rac{1}{1 + e^{-(b_1 \cdot x_1 + ... + b_k \cdot x_k + a)}}$$

■ Graficul funcției va arăta astfel:

Transilvania din Brașov FACULTATEA DE INGINERI/ ELECTRICA DO ORDA DI II STIINTA CALCULATOARELOR DE PRODUCTION DE L'ALCONDITION DE L'ALCONDITIO

- Funcția logistică este perfectă pentru a descrie probabilitatea P(y=1|x)
- Probabilitatea ca pentru valori date ale variabilei independente, variabila dependentă binară y să fie 0 sau 1 este dată de ecuația:

$$P(y = 1 | x_1, x_2, ..., x_n) = \frac{1}{1 + e^{-(b_1 x_1 + b_2 x_2 + \dots + b_n x_n + a)}}$$

$$P(y = 0 | x_1, x_2, ..., x_n) = 1 - P(y = 1)$$

$$= 1 - \frac{1}{1 + e^{-(b_1 x_1 + b_2 x_2 + ... + b_n x_n + a)}}$$

Exemplu

Exemplu - tabelul arată numărul de ore de studiu pentru un student și dacă a promovat examenul (1) sau nu (0)

Study Hours (x _k)	0.5	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass (<i>y_k</i>)	0	0	0	0	0	0	0	1	0	1	0	1	0	1	1	1	1	1	1

Ecuație de regresie:
$$\widehat{y}_i = a + b_1 X_i$$

Determinăm valorile pentru:

$$a = -4.1$$

$$b_1 = 1.5$$

De exemplu, pentru x = 2: $\hat{y}_i = a + b_1 * 2 = -4.1 + 1.5 * 2 = -1.1$

Aplicăm funcția logistică:
$$P(y = 1|x) = \frac{1}{1+e^{-\hat{y}}} = \frac{1}{1+e^{1.1}} \approx 0.25 \rightarrow clasa 0$$

Similar pentru x = 4: $\hat{y}_i = a + b_1 * 4 = -4.1 + 1.5 * 4 = 1.9$

$$P(y = 1|x) = \frac{1}{1 + e^{-\hat{y}}} = \frac{1}{1 + e^{-1.9}} \approx 0.87 \rightarrow clasa 1$$

 Ş. L. Dr. Ing. Horia Modran
 2024-2025

37

Proposition de Logistică Multinomială

- De regulă regresia logistică este aplicată în probleme de clasificare binară
- Regresia logistică multinomială este o metodă de clasificare care generalizează regresia logistică la problema de clasificare multiclasă
- Modul de funcționare este același ca și în regresia logistică, singura diferență fiind că variabilele dependente sunt mai degrabă categorice decât binare, adică există n rezultate posibile și nu doar două

Transilvania din Brașov Indicatori de performanță

Fiind algoritm de clasificare, se aplică aceeași indicatori de performanță specifici algoritmilor de clasificare:

- Precizie
- Recall
- Scor F1

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Universitatea Transilvania din Brașov FACULTATEA DE INGINERIE ELECTRICĂ ȘI ȘTIINȚA CALCULATOARELOR

ÎNTREBĂRI?

