Introduction to C* algebras

(No proofs, just the ideas)

Joel Sleeba

IISER Thiruvananthapuram

October 9, 2023

Things I learned during summer

Definition

- 1. A unital algebra (vector space + multiplication) ${\cal A}$
 - \circ (ab)c = a(bc)
 - $\circ (a + \lambda b)c = ac + \lambda bc$
 - \circ $a(b + \lambda c) = ab + \lambda ac$
 - \circ $1_A a = a = a1_A$
- 2. with an involution *
 - $\circ (\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*$
 - $(ab)^* = b^*a^*$
 - o a** a
- 3. and a complete norm $\|\cdot\|$ that satisfy
 - $||ab|| \le ||a|| ||b||$ (submultiplicativity)
 - $\circ \|a^*\| = \|a\|$
 - $\circ \|a^*a\| = \|a\|^2$

Definition

- 1. A unital algebra (vector space + multiplication) ${\cal A}$
 - \circ (ab)c = a(bc)
 - $\circ (a + \lambda b)c = ac + \lambda bc$
 - \circ $a(b + \lambda c) = ab + \lambda ac$
 - \circ $1_A a = a = a1_A$
- 2. with an involution *
 - $\circ (\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*$
 - $(ab)^* = b^*a^*$
 - $\circ a^{**} = a$
- 3. and a complete norm $\|\cdot\|$ that satisfy
 - $||ab|| \le ||a|| ||b||$ (submultiplicativity)
 - $\circ \|a^*\| = \|a\|$

Definition

- 1. A unital algebra (vector space + multiplication) ${\cal A}$
 - \circ (ab)c = a(bc)
 - \circ $(a + \lambda b)c = ac + \lambda bc$
 - \circ $a(b + \lambda c) = ab + \lambda ac$
 - \circ $1_A a = a = a1_A$
- 2. with an involution *
 - $\circ (\alpha \mathbf{a} + \beta \mathbf{b})^* = \overline{\alpha} \mathbf{a}^* + \overline{\beta} \mathbf{b}^*$
 - $(ab)^* = b^*a^*$
 - o $a^{**} = a$
- 3. and a complete norm $\|\cdot\|$ that satisfy
 - $||ab|| \le ||a|| ||b||$ (submultiplicativity)
 - $|a^*| = |a|$
 - $||a^*a|| = ||a||^2$

Examples

- 1. $\mathbb C$ with standard multiplication, conjugation, and standard norm.
- 2. B(X), complex valued bounded functions on X, with pointwise multiplication, conjugation, and supremum norm.
- 3. $B(\mathcal{H})$ for a Hilbert space \mathcal{H} with composition, adjoint, and operator norm.

Examples

- 1. $\mathbb C$ with standard multiplication, conjugation, and standard norm.
- 2. B(X), complex valued bounded functions on X, with pointwise multiplication, conjugation, and supremum norm.
- 3. $B(\mathcal{H})$ for a Hilbert space \mathcal{H} with composition, adjoint, and operator norm.

C* algebra

Definition (Invertible elements of A)

An element $a \in \mathcal{A}$ is called invertible if there is an element $z \in \mathcal{A}$ such that $az = 1_{\mathcal{A}} = za$. We denote the collection of invertible elements of \mathcal{A} by $G(\mathcal{A})$

Definition (Spectrum of an element)

We define the spectum of an element $a \in \mathcal{A}$ as the collection

$$\sigma(a) = \{ \lambda \in \mathbb{C} \mid 1_A \lambda - a \notin G(A) \}$$

$$r(a) = \sup\{|\lambda| \mid \lambda \in \sigma(a)\}$$

C* algebra

Definition (Invertible elements of A)

An element $a \in \mathcal{A}$ is called invertible if there is an element $z \in \mathcal{A}$ such that $az = 1_{\mathcal{A}} = za$. We denote the collection of invertible elements of \mathcal{A} by $G(\mathcal{A})$

Definition (Spectrum of an element)

We define the spectum of an element $a \in \mathcal{A}$ as the collection

$$\sigma(a) = \{ \lambda \in \mathbb{C} \mid 1_A \lambda - a \notin G(A) \}$$

$$r(a) = \sup\{|\lambda| \mid \lambda \in \sigma(a)\}$$

C* algebra

Definition (Invertible elements of A)

An element $a \in \mathcal{A}$ is called invertible if there is an element $z \in \mathcal{A}$ such that $az = 1_{\mathcal{A}} = za$. We denote the collection of invertible elements of \mathcal{A} by $G(\mathcal{A})$

Definition (Spectrum of an element)

We define the spectum of an element $a \in \mathcal{A}$ as the collection

$$\sigma(a) = \{\lambda \in \mathbb{C} \mid 1_{\mathcal{A}}\lambda - a \notin G(\mathcal{A})\}\$$

$$r(a) = \sup\{|\lambda| \mid \lambda \in \sigma(a)\}$$

C* algebra

Definition (Invertible elements of A)

An element $a \in \mathcal{A}$ is called invertible if there is an element $z \in \mathcal{A}$ such that $az = 1_{\mathcal{A}} = za$. We denote the collection of invertible elements of \mathcal{A} by $G(\mathcal{A})$

Definition (Spectrum of an element)

We define the spectum of an element $a \in \mathcal{A}$ as the collection

$$\sigma(a) = \{\lambda \in \mathbb{C} \mid 1_{\mathcal{A}}\lambda - a \notin G(\mathcal{A})\}\$$

$$r(a) = \sup\{|\lambda| \mid \lambda \in \sigma(a)\}$$

- G(A) is an open in A
- $r(a) \leq ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim ||a^n||^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \le ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \le ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim ||a^n||^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \leq ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \le ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \le ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- normal if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if a is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if a is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if a is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if *a* is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if *a* is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- **projection** if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if *a* is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- **projection** if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if *a* is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

- Every $a \in \mathcal{A}$ can be written as a = b + ic where $b, c \in \mathcal{A}_{sa}$ (Compare this with decomposition of a matrix to symmetric and skew-symmetric pairs)
- If $a, b \in A^+$, then $a + b, \alpha a \in A^+$ for $\alpha \ge 0$
- $A^+ = \{a^*a \mid a \in A\}$
- $a \leq b$ if $b a \in A^+$ defines a partial order in A_{sa}

C* algebra

- Every a ∈ A can be written as a = b + ic where b, c ∈ A_{sa}
 (Compare this with decomposition of a matrix to symmetric and skew-symmetric pairs)
- If $a, b \in A^+$, then $a + b, \alpha a \in A^+$ for $\alpha \ge 0$
- $A^+ = \{a^*a \mid a \in A\}$
- $a \leq b$ if $b a \in A^+$ defines a partial order in A_{sa}

C* algebra

We will now use \mathcal{A}_{sa} and \mathcal{A}^+ to denote hermitian and positive elements in \mathcal{A} respectively

- Every $a \in \mathcal{A}$ can be written as a = b + ic where $b, c \in \mathcal{A}_{sa}$ (Compare this with decomposition of a matrix to symmetric and skew-symmetric pairs)
- If $a, b \in \mathcal{A}^+$, then $a + b, \alpha a \in \mathcal{A}^+$ for $\alpha \ge 0$
- $A^+ = \{a^*a \mid a \in A\}$
- $a \leq b$ if $b-a \in \mathcal{A}^+$ defines a partial order in \mathcal{A}_{sa}

C* algebra

- Every $a \in \mathcal{A}$ can be written as a = b + ic where $b, c \in \mathcal{A}_{sa}$ (Compare this with decomposition of a matrix to symmetric and skew-symmetric pairs)
- If $a, b \in A^+$, then $a + b, \alpha a \in A^+$ for $\alpha \ge 0$
- $A^+ = \{a^*a \mid a \in A\}$
- $a \leq b$ if $b a \in A^+$ defines a partial order in A_{sa}

C* algebra

- Every $a \in \mathcal{A}$ can be written as a = b + ic where $b, c \in \mathcal{A}_{sa}$ (Compare this with decomposition of a matrix to symmetric and skew-symmetric pairs)
- If $a, b \in A^+$, then $a + b, \alpha a \in A^+$ for $\alpha \ge 0$
- $\mathcal{A}^+ = \{a^*a \mid a \in \mathcal{A}\}$
- $a \leq b$ if $b a \in A^+$ defines a partial order in A_{sa}

C* algebra

- Every $a \in \mathcal{A}$ can be written as a = b + ic where $b, c \in \mathcal{A}_{sa}$ (Compare this with decomposition of a matrix to symmetric and skew-symmetric pairs)
- If $a, b \in A^+$, then $a + b, \alpha a \in A^+$ for $\alpha \ge 0$
- $\mathcal{A}^+ = \{a^*a \mid a \in \mathcal{A}\}$
- $a \leq b$ if $b-a \in \mathcal{A}^+$ defines a partial order in $\mathcal{A}_{\mathit{sa}}$

C* algebra

Definition (Homomorphisms between C* algebras)

An involutive multiplicative bounded linear map between C* algebras is called a homomorphism.

Let $\phi: A \to B$ be a linear map between C* algebras A, B.

- $\phi \in \mathcal{B}(\mathcal{A}, \mathcal{B})$ (bounded)
- $\phi(ab) = \phi(a)\phi(b)$ (multiplicative)
- $\phi(a^*) = \phi(a)^*$ (involutive)

- If $\phi: \mathcal{A} \to \mathcal{B}$, then ϕ is norm decreasing. $(\|\phi(a)\| \le \|a\|)$
- Every injective *-homomorphisms are isometric.

C* algebra

Definition (Homomorphisms between C* algebras)

An involutive multiplicative bounded linear map between C* algebras is called a homomorphism.

Let $\phi: \mathcal{A} \to \mathcal{B}$ be a linear map between C* algebras \mathcal{A}, \mathcal{B} .

- $\phi \in \mathcal{B}(\mathcal{A}, \mathcal{B})$ (bounded)
- $\phi(ab) = \phi(a)\phi(b)$ (multiplicative)
- $\phi(a^*) = \phi(a)^*$ (involutive)

- If $\phi: A \to B$, then ϕ is norm decreasing. $(\|\phi(a)\| \le \|a\|)$
- Every injective *-homomorphisms are isometric.

C* algebra

Definition (Homomorphisms between C* algebras)

An involutive multiplicative bounded linear map between C* algebras is called a homomorphism.

Let $\phi: \mathcal{A} \to \mathcal{B}$ be a linear map between C* algebras \mathcal{A}, \mathcal{B} .

- $\phi \in \mathcal{B}(\mathcal{A}, \mathcal{B})$ (bounded)
- $\phi(ab) = \phi(a)\phi(b)$ (multiplicative)
- $\phi(a^*) = \phi(a)^*$ (involutive)

- If $\phi: \mathcal{A} \to \mathcal{B}$, then ϕ is norm decreasing. $(\|\phi(a)\| \le \|a\|)$
- Every injective *-homomorphisms are isometric.

C* algebra

Definition (Homomorphisms between C* algebras)

An involutive multiplicative bounded linear map between C* algebras is called a homomorphism.

Let $\phi: \mathcal{A} \to \mathcal{B}$ be a linear map between C* algebras \mathcal{A}, \mathcal{B} .

- $\phi \in \mathcal{B}(\mathcal{A}, \mathcal{B})$ (bounded)
- $\phi(ab) = \phi(a)\phi(b)$ (multiplicative)
- $\phi(a^*) = \phi(a)^*$ (involutive)

- If $\phi: \mathcal{A} \to \mathcal{B}$, then ϕ is norm decreasing. $(\|\phi(a)\| \le \|a\|)$
- Every injective *-homomorphisms are isometric.

Gelfand Spectrum

C* algebra

Definition

If $\mathcal A$ is a C* algebra, we define the Gelfand specturm of $\mathcal A$ to be the collection of all * homomorphims from $\mathcal A \to \mathbb C$ and denote it by $\Omega(\mathcal A)$. Since $\Omega(\mathcal A) \subset \mathcal A^*$, the dual space of $\mathcal A$, we can endow $\Omega(\mathcal A)$ with the weak * topology from $\mathcal A^*$

Note that by the norm decreasing property of the *-homomorphisms we see that $\Omega(\mathcal{A})$ is a subset of the closed unit ball of \mathcal{A}^*

Gelfand Spectrum

C* algebra

Definition

If $\mathcal A$ is a C* algebra, we define the Gelfand specturm of $\mathcal A$ to be the collection of all * homomorphims from $\mathcal A \to \mathbb C$ and denote it by $\Omega(\mathcal A)$. Since $\Omega(\mathcal A) \subset \mathcal A^*$, the dual space of $\mathcal A$, we can endow $\Omega(\mathcal A)$ with the weak * topology from $\mathcal A^*$

Note that by the norm decreasing property of the *-homomorphisms we see that $\Omega(\mathcal{A})$ is a subset of the closed unit ball of \mathcal{A}^*

Gelfand Spectrum

C* algebra

Definition

If $\mathcal A$ is a C* algebra, we define the Gelfand specturm of $\mathcal A$ to be the collection of all * homomorphims from $\mathcal A \to \mathbb C$ and denote it by $\Omega(\mathcal A)$. Since $\Omega(\mathcal A) \subset \mathcal A^*$, the dual space of $\mathcal A$, we can endow $\Omega(\mathcal A)$ with the weak * topology from $\mathcal A^*$

Note that by the norm decreasing property of the *-homomorphisms we see that $\Omega(\mathcal{A})$ is a subset of the closed unit ball of \mathcal{A}^*

Gelfand Transform

Abelian C* algebra

Assuming ${\cal A}$ to be abelian gives us extra results

1. $\Omega(A)$ to be compact.

2.
$$\sigma(a) = \Omega(A)a = \{\tau(a) \mid \tau \in \Omega(A)\}$$

Definition (Gelfand Transform)

Given any abelian C* algebra \mathcal{A} , we define the Gelfand transform of $a \in \mathcal{A}$ as the map

$$\hat{a}:C(\Omega(A))\to\mathbb{C}:=\hat{a}(f)=f(a)$$

Gelfand Transform

Abelian C* algebra

Assuming ${\mathcal A}$ to be abelian gives us extra results

- 1. $\Omega(A)$ to be compact.
- 2. $\sigma(a) = \Omega(A)a = \{\tau(a) \mid \tau \in \Omega(A)\}$

Definition (Gelfand Transform)

Given any abelian C* algebra \mathcal{A} , we define the Gelfand transform of $a \in \mathcal{A}$ as the map

$$\hat{a}: C(\Omega(A)) \to \mathbb{C} := \hat{a}(f) = f(a)$$

Gelfand Transform

Abelian C* algebra

Assuming ${\mathcal A}$ to be abelian gives us extra results

- 1. $\Omega(A)$ to be compact.
- 2. $\sigma(a) = \Omega(A)a = \{\tau(a) \mid \tau \in \Omega(A)\}$

Definition (Gelfand Transform)

Given any abelian C* algebra \mathcal{A} , we define the Gelfand transform of $a \in \mathcal{A}$ as the map

$$\hat{a}:C(\Omega(A))\to\mathbb{C}:=\hat{a}(f)=f(a)$$

Gelfand Representation

Abelian C* algebra

If the C* algebra is abelian, we can represent the abstract C* algebra with a concrete a C* algebra of continuous functions in a compact space. This is given by the Gelfand representation.

Theorem (Gelfand)

For any abelian C* algebra A, Gelfand representation, defined as

$$A \to C(\Omega(A)) : a \to \hat{a}$$

is an isometric *-isomorphism

Gelfand Representation

Abelian C* algebra

If the C* algebra is abelian, we can represent the abstract C* algebra with a concrete a C* algebra of continuous functions in a compact space. This is given by the Gelfand representation.

Theorem (Gelfand)

For any abelian C* algebra A, Gelfand representation, defined as

$$\mathcal{A} \to \mathcal{C}(\Omega(\mathcal{A})) : a \to \hat{a}$$

is an isometric *-isomorphism

Gelfand Representation

Abelian C* algebra

If the C* algebra is abelian, we can represent the abstract C* algebra with a concrete a C* algebra of continuous functions in a compact space. This is given by the Gelfand representation.

Theorem (Gelfand)

For any abelian C^* algebra A, Gelfand representation, defined as

$$\mathcal{A}
ightarrow \mathcal{C}(\Omega(\mathcal{A}))$$
 : $a
ightarrow \hat{a}$

is an isometric *-isomorphism.

towards a more general representation

Definition (States of a C* algebra)

Given a C* algebra \mathcal{A} , a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ is called a **state** if

- 1. $\phi(a) \in \mathbb{R}^+$ for all $a \in \mathcal{A}^+$ (positive)
- 2. $\phi(1_A) = 1$

Definition (Representation of a C* algebra)

Given a C* algebra $\mathcal A$ and a Hilbert space H, a map $\pi:\mathcal A\to\mathcal B(H)$ is called a representation if it is a *-homomorphism. If π is injective we call the representation faithful.

towards a more general representation

Definition (States of a C* algebra)

Given a C* algebra \mathcal{A} , a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ is called a **state** if

- 1. $\phi(a) \in \mathbb{R}^+$ for all $a \in \mathcal{A}^+$ (positive)
- 2. $\phi(1_A) = 1$

Definition (Representation of a C* algebra)

Given a C* algebra $\mathcal A$ and a Hilbert space H, a map $\pi:\mathcal A\to B(H)$ is called a representation if it is a *-homomorphism. If π is injective we call the representation faithful.

towards a more general representation

Definition (States of a C* algebra)

Given a C* algebra \mathcal{A} , a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ is called a **state** if

- 1. $\phi(a) \in \mathbb{R}^+$ for all $a \in \mathcal{A}^+$ (positive)
- 2. $\phi(1_A) = 1$

Definition (Representation of a C^* algebra)

Given a C* algebra $\mathcal A$ and a Hilbert space H, a map $\pi:\mathcal A\to B(H)$ is called a representation if it is a *-homomorphism. If π is injective we call the representation faithful.

towards a more general representation

Definition (States of a C* algebra)

Given a C* algebra \mathcal{A} , a linear functional $\phi:\mathcal{A}\to\mathbb{C}$ is called a state if

- 1. $\phi(a) \in \mathbb{R}^+$ for all $a \in \mathcal{A}^+$ (positive)
- 2. $\phi(1_A) = 1$

Definition (Representation of a C* algebra)

Given a C* algebra $\mathcal A$ and a Hilbert space H, a map $\pi:\mathcal A\to\mathcal B(H)$ is called a representation if it is a *-homomorphism. If π is injective we call the representation faithful.

towards a more general representation

Definition (States of a C* algebra)

Given a C* algebra \mathcal{A} , a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ is called a **state** if

- 1. $\phi(a) \in \mathbb{R}^+$ for all $a \in \mathcal{A}^+$ (positive)
- 2. $\phi(1_A) = 1$

Definition (Representation of a C* algebra)

Given a C* algebra $\mathcal A$ and a Hilbert space H, a map $\pi:\mathcal A\to\mathcal B(H)$ is called a representation if it is a *-homomorphism. If π is injective we call the representation faithful.

GNS Constructions

towards a more general representation

Given any representation (H, π) of a C* algebra \mathcal{A} to a Hilbert space H, it can be verified that

$$\phi: \mathcal{A} \to \mathbb{C} := a \to \langle \pi(a)\xi, \xi \rangle$$

is a state for any unit vector $\xi \in H$.

The reverse is also true.

Given any state ϕ of a C* algebra \mathcal{A} , we can construct a Hilbert space H_{ϕ} , a map π_{ϕ} , and a unit vector $\xi_{\phi} \in H_{\phi}$ such that (H_{ϕ}, π_{ϕ}) is a representation for \mathcal{A} and

$$\phi(a) = \langle \pi_{\phi}(a)\xi_{\phi}, \xi_{\phi}\rangle_{H_{\phi}}$$

GNS Constructions

towards a more general representation

Given any representation (H, π) of a C* algebra \mathcal{A} to a Hilbert space H, it can be verified that

$$\phi: \mathcal{A} \to \mathbb{C} := \mathbf{a} \to \langle \pi(\mathbf{a})\xi, \xi \rangle$$

is a state for any unit vector $\xi \in H$.

The reverse is also true.

Given any state ϕ of a C* algebra \mathcal{A} , we can construct a Hilbert space H_{ϕ} , a map π_{ϕ} , and a unit vector $\xi_{\phi} \in H_{\phi}$ such that (H_{ϕ}, π_{ϕ}) is a representation for \mathcal{A} and

$$\phi(a) = \langle \pi_{\phi}(a)\xi_{\phi}, \xi_{\phi}\rangle_{H_{\phi}}$$

GNS Constructions

towards a more general representation

Given any representation (H, π) of a C* algebra \mathcal{A} to a Hilbert space H, it can be verified that

$$\phi: \mathcal{A} \to \mathbb{C} := a \to \langle \pi(a)\xi, \xi \rangle$$

is a state for any unit vector $\xi \in H$.

The reverse is also true.

Given any state ϕ of a C* algebra \mathcal{A} , we can construct a Hilbert space H_{ϕ} , a map π_{ϕ} , and a unit vector $\xi_{\phi} \in H_{\phi}$ such that (H_{ϕ}, π_{ϕ}) is a representation for \mathcal{A} and

$$\phi(a) = \langle \pi_{\phi}(a)\xi_{\phi}, \xi_{\phi}\rangle_{\mathcal{H}_{\phi}}$$

Universal Representation

the general representation

Definition (Universal Representation)

Let S(A) be the collection of all states of a C* algebra A. For any $\phi \in S(A)$ let $(H_{\phi}, \pi_{\phi}, \xi_{\phi})$ be the corresponding GNS representation, Let

$$H = \bigoplus_{\phi \in S(\mathcal{A})} H_{\phi}, \qquad \pi = \bigoplus_{\phi \in S(\mathcal{A})} \pi_{\phi}, \qquad \xi = \bigoplus_{\phi \in S(\mathcal{A})} \xi_{\phi}$$

Then (H, π) is called the universal representation of the C* algebra \mathcal{A} .

Universal Representation

the general representation

Definition (Universal Representation)

Let S(A) be the collection of all states of a C* algebra A. For any $\phi \in S(A)$ let $(H_{\phi}, \pi_{\phi}, \xi_{\phi})$ be the corresponding GNS representation, Let

$$H = \bigoplus_{\phi \in S(\mathcal{A})} H_{\phi}, \qquad \pi = \bigoplus_{\phi \in S(\mathcal{A})} \pi_{\phi}, \qquad \xi = \bigoplus_{\phi \in S(\mathcal{A})} \xi_{\phi}$$

Then (H, π) is called the universal representation of the C* algebra A.

Gelfand Naimark Theorem

the general representation

Theorem (Gelfand Naimark Theorem)

Given any C^* algebra A, its universal representation is faithful.

Along with the fact that injective *-homomorphisms are isometric and image of a C* homomorphism is a C* subalgebra, we see that every C* algebra is isometrically isomorphic to a subalgebra of operators in a Hilbert space.

Gelfand Naimark Theorem

the general representation

Theorem (Gelfand Naimark Theorem)

Given any C^* algebra A, its universal representation is faithful.

Along with the fact that injective *-homomorphisms are isometric and image of a C* homomorphism is a C* subalgebra, we see that every C* algebra is isometrically isomorphic to a subalgebra of operators in a Hilbert space.

References

- C* Algebras and Operator Theory Gerald Murphy
- Functional Analysis; Spectral Theory V. S. Sunder
- For More

https://joelsleeba.github.io/resources/

Thank you for listening!

Joel Sleeba

joelsleeba1@gmail.com joelsleeba.github.io