

#### **Al Training Course Series**

## **CNN-Based Image Classification**

#### Lecture 4



Student: Ting-Yu Chang

Student: Lyu-Ming Ho

Advisor: Juinn-Dar Huang, Ph.D.

**July 18, 2024** 

## **Outline**

- Computer vision
- Well-known CNN models
- CNN architecture search (Network Architecture Search, NAS)
- Exercise



## **Computer Vision**



## **Image Classification**

- Image Classification
  - Datasets (CIFAR-10, CIFAR-100, ImageNet)
  - Models (VGG, ResNet, HarDNet)



## **Object Detection**

- Object Detection
  - Dataset (PASCAL VOC, Coco)
  - Models (RCNN, SSD, YOLO)





## **Image Semantic Segmentation**

- Image Semantic Segmentation
  - Datasets (Cityscapes, PASCAL VOC)
  - Models (U-Net, FC-HarDNet)





## Multi-Object Tracking (MOT)

- Multi-Object Tracking
  - Dataset (MOT17)
  - Models (TrackFormer, FairMOT)



Frame t



Frame t+1



## **Super Resolution (SR)**

- Image Super Resolution
  - Dataset (Set5, Set12)
  - Models (Swin transformer, hybrid-attention transformer)

## Image Super Resolution





- Upscale original resolution of images to higher resolution
- Ex. 240 X 240 → 1080 X 1080



## Noise Reduction (NR)

- Image Noise Reduction (image denoising)
  - Dataset (SIDD)
  - Models (Restormer, U-former...)





## **CNN Models**



## **ImageNet**

- A large visual database designed for use in visual object recognition software research
  - More than 14 million images with more than 20,000 categories
  - 2010 ~ 2017 ILSVRC
- ILSVRC2012
  - Training set 1,281,167 images
  - Validation set 50,000 images
  - Test set 100,000 images



#### LeNet

- A convolutional neural network structure proposed by Yann LeCun et al. in 1989
- 5 CONV layers + 2 FC layers
- Handwriting recognition



Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

#### LeNet – Code

```
class LeNet(nn.Module):
    def init (self):
        super(LeNet, self). init ()
        self.conv1 = nn.Conv2d(in channels=1, out channels=6, kernel size=5, padding=2, stride=1)
        self.conv2 = nn.Conv2d(in channels=6, out channels=16, kernel size=5)
        self.fc1 = nn.Linear(in features=16*5*5, out features=120)
        self.fc2 = nn.Linear(in features=120, out features=84)
        self.fc3 = nn.Linear(in features=84, out features=10)
    def forward(self, x):
        x = F.sigmoid(self.conv1(x))
        x = F.avg pool2d(x, kernel size=2, stride=2)
        x = F.sigmoid(self.conv2(x))
        x = F.avg pool2d(x, kernel size=2, stride=2)
        x = torch.flatten(x, 1)
                                                                C3: f. maps 16@10x10
                                                    C1: feature maps
                                                                           S4: f. maps 16@5x5
        x = F.sigmoid(self.fc1(x))
                                          INPUT
                                                    6@28x28
                                          32x32
                                                                S2: f. maps
                                                                                     C5: layer F6: layer OUTPUT
        x = F.sigmoid(self.fc2(x))
                                                                6@14x14
        x = self.fc3(x)
        return x
```

Convolutions

Subsampling

Convolutions

Full connection

Full connection

Subsampling

#### **AlexNet**

- Alex Krizhevsky proposed an 8-layer neural network in 2012 and won 1<sup>st</sup> place in ILSVRC in the same year
  - Top5: 84.7% (2<sup>nd</sup> place: 73.9%)



#### AlexNet - Code

```
class AlexNet(nn.Module):
    def init (self, num classes):
        super(AlexNet, self). init ()
        self.conv1 = nn.Conv2d(in channels=3, out channels=64, kernel size=11, padding=2, stride=4)
        self.conv2 = nn.Conv2d(in channels=64, out channels=192, kernel size=5, padding=2)
        self.conv3 = nn.Conv2d(in channels=192, out channels=384, kernel size=3, padding=1)
        self.conv4 = nn.Conv2d(in channels=384, out channels=256, kernel size=3, padding=1)
        self.conv5 = nn.Conv2d(in channels=256, out channels=256, kernel size=3, padding=1)
        self.fc1 = nn.Linear(in features=256*6*6, out features=4096)
        self.fc2 = nn.Linear(in features=4096, out features=1024)
        self.fc3 = nn.Linear(in features=1024, out features=num classes)
    def forward(self, x):
       x = F.relu(self.conv1(x))
       x = F.max_pool2d(x, kernel_size=3, stride=2)
       x = F.relu(self.conv2(x))
       x = F.max pool2d(x, kernel size=3, stride=2)
       x = F.relu(self.conv3(x))
       x = F.relu(self.conv4(x))
       x = F.relu(self.conv5(x))
       x = F.max pool2d(x, kernel size=3, stride=2)
       x = torch.flatten(x, start dim=1)
       x = F.relu(self.fc1(x))
       x = F.dropout(x, p=0.5)
       x = F.relu(self.fc2(x))
       x = F.dropout(x, p=0.5)
       x = self.fc3(x)
        return x
```

## **AlexNet**

- Data augmentation
- Activation function (ReLU)





- Adopt dropout to avoid model overfitting
- Multiple GPUs in use



## **VGG-16**



#### **VGG-16 – Conv1**

```
VGG(
   (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU(inplace)
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU(inplace)
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
```

#### Code:

```
self.features = nn.Sequential(
    # conv1
    nn.Conv2d(3, 64, 3, padding=1),
    nn.ReLU(),
    nn.Conv2d(64, 64, 3, padding=1),
    nn.ReLU(),
    nn.ReLU(),
    nn.MaxPool2d(2, stride=2, return_indices=True)
)
```



## **VGG-16**

- 2 times 3x3conv vs. 1 times 5x5conv
- Same reception field, less # of parameters



#### **VGG-16**

```
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace)
    (4): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace)
    (7): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace)
    (16): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace)
    (23): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
    (24): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace)
    (28): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace)
    (30): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (avgpool): AdaptiveAvgPool2d(output size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in features=25088, out features=4096, bias=True)
    (1): ReLU(inplace)
    (2): Dropout(p=0.5)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace)
    (5): Dropout(p=0.5)
    (6): Linear(in features=4096, out features=1000, bias=True)
```

**#Layer increases** → accuracy increases

Q: always true?

#### Introduction to ResNet

- Reference: <a href="https://arxiv.org/abs/1512.03385">https://arxiv.org/abs/1512.03385</a>
- Propose a new convolution architecture to solve the degradation problem in deep networks



## **Problems of Deep Networks**

#### Degradation



#### Reason:

- Deep networks are not easy to train: gradient vanishing
- Efficiency of gradient update



## Residual Blocks (1/2)

- H(x) consists of residual part F(x) and identity part x
  - This reformulation is motivated by the counterintuitive phenomena about the degradation problem
  - If identity mappings are optimal, the solvers may simply drive the weights of the multiple nonlinear layers toward zero to approach identity mappings





## Residual Blocks (2/2)

#### Residual Learning

 Learn the residual mapping between the input and the output, rather than directly learning the output

#### Shortcut Connections

- Path that directly connects the input to the output
- Ensures that gradients can be directly backpropagated through these connections, thereby alleviating the vanishing gradient problem

#### Stacking Residual Blocks

 Contain several convolutional layers, activation functions, and regularization layers

## Two Types of Residual Blocks

- The left one is used in ResNet34
  - # of param. = 3\*3\*256\*256\*2 = 1179648
- The right one is also called Bottleneck design which is used in ResNet50/101/152
  - # of param. = 1\*1\*256\*64+3\*3\*64\*64+1\*1\*64\*256 = 69632







## **Architecture of ResNet34**

- Transformation of VGG19
  - shortcut connection



34-layer ResNet with Skip / Shortcut Connection (Top), 34-layer Plain Network (Middle), 19-layer VGG-19
(Bottom)

## **Architecture of ResNet34**

Shortcut connection



## Introduction to MobileNet V1

- Reference: https://arxiv.org/abs/1704.04861
- Google proposed In 2017, in order to use on mobile devices
  - Propose a new convolution operation to reduce #MACs



Figure 1. MobileNet models can be applied to various recognition tasks for efficient on device intelligence.

https://blog.csdn.net/uti

## **Convolution Layer**

Conventional convolution layer



- Depthwise separable convolution
  - MobileNet separates a conventional convolution layer into:
    - (1) Depthwise convolution
    - (2) Pointwise convolution



## **Recall: Depth-wise Convolution**

- Depth-wise (DW) convolution
  - Each channel is independent
  - Each input channel will generate only one output feature map
  - Feature map(fp): # of input channel = # of output channel

# Kernel: # of kernel's input channel = 1 $D_K$ ...

# of fp's input channal





kernel size

## **Pointwise Convolution**

- Pointwise (PW) convolution
  - Similar to conventional convolution layer
  - kernel size: 1\*1





## **Benefits of DW & PW Convolution**

Reducing #MACs in convolution layers

Definition: M-input channel N-output channel  $D_k$ -kernel size  $D_f$ -feature map size

- Conventional convolution
  - $= D_k \times D_k \times M \times (N \times D_f \times D_f)$
- Depthwise convolution

$$= D_k \times D_k \times (\mathbb{M} \times D_f \times D_f)$$

Pointwise convolution  $= M \times (N \times D_f \times D_f)$ 

Total = 
$$(D_k \times D_k + N) \times M \times D_f \times D_f$$

## **Depth-Wise Separable Convolution**

- Depth-wise separable convolution
  - = depth-wise convolution + point-wise convolution (used to change channel dimension)

 When number of input channel and output channel is huge, the advantage of depth-wise separable in terms of computation cost and parameters is unneglectable.

## **MobileNet Architecture**

- Red frame: conventional conv.
  - Reduce size of feature map by convolution with stride 2
- Blue frame: depthwise conv. + pointwise conv.
- Blue frame with the formula, # of MAC will be:
- ✓ DW convolution
  - Depth-wise Conv. =3.6M
  - Pointwise Conv. =25.7M
- ✓ If conventional Conv.
  - Convolution = 231.2M

| Table | 1. MobileNet | Body | Architecture |
|-------|--------------|------|--------------|
|-------|--------------|------|--------------|

| Type / Stride   | Filter Shape                         | Input Size                 |  |
|-----------------|--------------------------------------|----------------------------|--|
| Conv/s2         | $3 \times 3 \times 3 \times 32$      | $224 \times 224 \times 3$  |  |
| Conv dw / s1    | $3 \times 3 \times 32$ dw            | $112 \times 112 \times 32$ |  |
| Conv/s1         | $1 \times 1 \times 32 \times 64$     | $112 \times 112 \times 32$ |  |
| Conv dw / s2    | $3 \times 3 \times 64$ dw            | $112 \times 112 \times 64$ |  |
| Conv/s1         | $1 \times 1 \times 64 \times 128$    | $56 \times 56 \times 64$   |  |
| Conv dw / s1    | $3 \times 3 \times 128 \mathrm{dw}$  | $56 \times 56 \times 128$  |  |
| Conv/s1         | $1 \times 1 \times 128 \times 128$   | $56 \times 56 \times 128$  |  |
| Conv dw / s2    | $3 \times 3 \times 128 \mathrm{dw}$  | $56 \times 56 \times 128$  |  |
| Conv/s1         | $1 \times 1 \times 128 \times 256$   | $28 \times 28 \times 128$  |  |
| Conv dw / s1    | $3 \times 3 \times 256 \text{ dw}$   | $28 \times 28 \times 256$  |  |
| Conv/s1         | $1 \times 1 \times 256 \times 256$   | $28 \times 28 \times 256$  |  |
| Conv dw / s2    | $3 \times 3 \times 256 \mathrm{dw}$  | $28 \times 28 \times 256$  |  |
| Conv/s1         | $1 \times 1 \times 256 \times 512$   | $14 \times 14 \times 256$  |  |
| 5× Conv dw / s1 | $3 \times 3 \times 512 \mathrm{dw}$  | $14 \times 14 \times 512$  |  |
| Conv/sl         | $1 \times 1 \times 512 \times 512$   | $14 \times 14 \times 512$  |  |
| Conv dw / s2    | $3 \times 3 \times 512 \mathrm{dw}$  | $14 \times 14 \times 512$  |  |
| Conv/s1         | $1 \times 1 \times 512 \times 1024$  | $7 \times 7 \times 512$    |  |
| Conv dw / s2    | $3 \times 3 \times 1024 \text{ dw}$  | $7 \times 7 \times 1024$   |  |
| Conv/s1         | $1 \times 1 \times 1024 \times 1024$ | $7 \times 7 \times 1024$   |  |
| Avg Pool / s1   | Pool 7 × 7                           | $7 \times 7 \times 1024$   |  |
| FC/sl           | $1024 \times 1000$                   | $1 \times 1 \times 1024$   |  |
| Softmax / s1    | Classifier                           | $1 \times 1 \times 1000$   |  |

### **Performance**

- MobileNet
- DW&PW Convolution vs. Conventional Convolution

Table 4. Depthwise Separable vs Full Convolution MobileNet

| Model          | ImageNet | Million   | Million    |
|----------------|----------|-----------|------------|
|                | Accuracy | Mult-Adds | Parameters |
| Conv MobileNet | 71.7%    | 4866      | 29.3       |
| MobileNet      | 70.6%    | 569       | 4.2        |

## Concatenate

Assume there are 2 inputs, which size is 32x32 with CH=64



### Introduction to DenseNet

- Connect all layers (with matching feature-map sizes) directly with each other
  - Channel-wise concatenation
  - Alleviate the vanishing-gradient problem
  - Strengthen feature propagation & encourage feature reuse





### **Growth Rate**

- The number of output feature maps of a DenseBlock is defined as the growth rate
- Output feature map = Input channel + k\*(layer-1)
  - Ex :

Input channel = 6

Growth rate(k) = 4

Output channel = 22



### **Transition Layer**

- Dense Block is a group of layers connected to all their previous layers
  - The feature maps of each layer has the same size
- Transition layer is used to connect 2 DenseBlock
  - Down-sample the feature maps with Pooling layer



### Introduction to HarDNet (ICCV'19, NTHU)

- The goals of most current models:
  - High Accuracy
  - Low Computation (MACs, flops)
- #MACs may not be able to accurately predict the execution time
- Times of accessing the feature maps from memory may be the major factor in execution time
- Analyze how execution time can be reduced by reducing DRAM accesses without accuracy drop

#### **Harmonic DenseNet**



- Layers with an index divided by a larger power of two are more influential than those that divided by a smaller power of two -- amplify these key layers by m
- Gradient vanishing problem of back propagation can be solved by concatenating previous layers



#### **Harmonic DenseNet**



- Multiplier m
- Each block has a growth rate k; layers of block should be 2(m) to the power of n
- If block input=100 => k=20, m=2, layer(n)=8

|                  | 1   | 2   | 3  | 4   | 5  | 6   | 7  | 8   | Block<br>out |
|------------------|-----|-----|----|-----|----|-----|----|-----|--------------|
| Input<br>channel | 100 | 120 | 40 | 160 | 80 | 100 | 40 | 240 |              |
| Output channel   | 20  | 40  | 20 | 80  | 20 | 40  | 20 | 160 | 240          |

#### **HarDNet Architecture**



#### Conclusion

- Gradient vanishing
  - concat dimention
  - Skip connection (resnet)
  - Activation alternative (sigmod → relu, ... etc)
- Reduce MAC(mult-add count) & parameters
  - Depthwise-separable convolution
  - Nn.Conv2(64, 256, 3,3) → nn.Conv2d(64, 64, 3,3,) & nn.Conv2d(64, 256, 1, 1)
- Change feature map size
  - Option1 : convolution stride
  - Option 2: maxpooling, avgpooling(will introduce another computation cost)



### Introduction to EfficientNet (1/2)

 Propose a more efficient way to augment the dimensions of the model with a more principled way



Figure 2. **Model Scaling.** (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

### Introduction to EfficientNet (2/2)

EfficientNet-B0 baseline network

| Stage i | Operator $\hat{\mathcal{F}}_i$ | Resolution $\hat{H}_i \times \hat{W}_i$ | #Channels $\hat{C}_i$ | #Layers $\hat{L}_i$ |
|---------|--------------------------------|-----------------------------------------|-----------------------|---------------------|
| 1       | Conv3x3                        | $224 \times 224$                        | 32                    | 1                   |
| 2       | MBConv1, k3x3                  | $112 \times 112$                        | 16                    | 1                   |
| 3       | MBConv6, k3x3                  | $112 \times 112$                        | 24                    | 2                   |
| 4       | MBConv6, k5x5                  | $56 \times 56$                          | 40                    | 2                   |
| 5       | MBConv6, k3x3                  | $28 \times 28$                          | 80                    | 3                   |
| 6       | MBConv6, k5x5                  | $14 \times 14$                          | 112                   | 3                   |
| 7       | MBConv6, k5x5                  | $14 \times 14$                          | 192                   | 4                   |
| 8       | MBConv6, k3x3                  | $7 \times 7$                            | 320                   | 1                   |
| 9       | Conv1x1 & Pooling & FC         | $7 \times 7$                            | 1280                  | 1                   |

#### **Problem Formulation**

Define a CNN model as the following formula:

$$\mathcal{N} = \bigodot_{i=1...s} \mathcal{F}_i^{L_i} ig( X_{\langle H_i, W_i, C_i \rangle} ig)$$
 Fi: i stage Li: depth of i

- d, w, r represent the magnification of the three dimensions of depth, width, and resolution in the CNN model
- Find the three parameters d, w, r that can have the largest accuracy under the limitations (memory, flops).

$$\begin{aligned} \max_{d,w,r} & Accuracy \big( \mathcal{N}(d,w,r) \big) \\ s.t. & \mathcal{N}(d,w,r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot\hat{L}_i} \big( X_{\langle r\cdot\hat{H}_i,r\cdot\hat{W}_i,w\cdot\hat{C}_i \rangle} \big) \\ & \operatorname{Memory}(\mathcal{N}) \leq \operatorname{target\_memory} \\ & \operatorname{FLOPS}(\mathcal{N}) \leq \operatorname{target\_flops} \end{aligned}$$



### EfficientNet – Depth



ACC: 77.3%



ACC: 79%

+1.4B FLOPS



### EfficientNet – Scaling Dimensions

- Depth (d)
  - Deeper network can capture more rich features
  - Difficult to train due to the vanishing gradient problem
- Width (w)
  - Wider network can capture more fine-grained features
  - Wide but have shallow depth struggle to capture higherlevel features (saturation).
- Resolution (r)
  - Capture more fine-grained patterns from higher resolution input images.



# EfficientNet - Compound



| Model                                    | FLOPS | Top-1 Acc. |
|------------------------------------------|-------|------------|
| Baseline model (EfficientNet-B0)         | 0.4B  | 77.3%      |
| Scale model by depth (d=4)               | 1.8B  | 79.0%      |
| Scale model by width $(w=2)$             | 1.8B  | 78.9%      |
| Scale model by resolution $(r=2)$        | 1.9B  | 79.1%      |
| Compound Scale ( $d=1.4, w=1.2, r=1.3$ ) | 1.8B  | 81.1%      |

### EfficientNet – Compound Scaling

 From the blue line in the chart (d=1, r=1), it can be seen that the accuracy quickly saturates, whereas the red line (d=2, r=1.3) shows that higher accuracy can be achieved at the same FLOPS.



### **Contribution EfficientNet**

| Model                                                                                                       | FLOPS                | Top-1 Acc.                     |
|-------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|
| Baseline MobileNetV1 (Howard et al., 2017)                                                                  | 0.6B                 | 70.6%                          |
| Scale MobileNetV1 by width (w=2) Scale MobileNetV1 by resolution (r=2) compound scale (d=1.4, w=1.2, r=1.3) | 2.2B<br>2.2B<br>2.3B | 74.2%<br>72.7%<br><b>75.6%</b> |
| Baseline MobileNetV2 (Sandler et al., 2018)                                                                 | 0.3B                 | 72.0%                          |
| Scale MobileNetV2 by depth ( <i>d</i> =4)                                                                   | 1.2B                 | 76.8%                          |
| Scale MobileNetV2 by width ( $w$ =2)                                                                        | 1.1B                 | 76.4%                          |
| Scale MobileNetV2 by resolution $(r=2)$                                                                     | 1.2B                 | 74.8%                          |
| MobileNetV2 compound scale                                                                                  | 1.3B                 | 77.4%                          |
| Baseline ResNet-50 (He et al., 2016)                                                                        | 4.1B                 | 76.0%                          |
| Scale ResNet-50 by depth (d=4)                                                                              | 16.2B                | 78.1%                          |
| Scale ResNet-50 by width $(w=2)$                                                                            | 14.7B                | 77.7%                          |
| Scale ResNet-50 by resolution $(r=2)$                                                                       | 16.4B                | 77.5%                          |
| ResNet-50 compound scale                                                                                    | 16.7B                | <b>78.8%</b>                   |

# **CNN** on ImageNet

- CNN-based
  - https://paperswithcode.com/sota/image-classificationon-imagenet



### Introduction to Once-for-All

- Efficiently design neural network models on different platforms
  - constraints: latency, energy
- Design models with different sizes separately (human-based, NAS)
  - 1. repeat the network design process
  - 2. retrain the network from scratch
    - linear growth O(N): expensive!!!
- Once-for-all network
  - 1. Select parts from once-for-all models as new small models
  - 2. Generate different depths, widths, and kernel sizes without retraining
    - constant growth O(1)



## **Example of Once-for-All Network**



### **Progressive Shrinking**

- It is difficult to train an once-for-all network that can support all sub-networks
- Start by training the entire once-for-all network, and then fine-tune smaller sub-networks
  - Sub-networks can have good initial values by retaining important parameters in the larger model
  - Parameters are sorted to prevent the sub-networks from affecting the performance of the overall network



#### **Elastic Resolution**

- Model has not seen photos of a certain size during training, its accuracy can significantly decrease
- To support elastic resolution, we randomly scale photos up or down during training



#### **Elastic Kernel Size**

- The sub-kernels that close to the center are preserved in different networks
  - Transform matrix (trained)
  - Different sizes and distributions
  - 25x25, 9x9 size MLP



### **Elastic Depth**

- Origin: N layers
  - Target: D layers
    - Keep the first D layers, and skip the last N-D layers
    - The previous layers will be shared among models of different sizes



#### **Elastic Width**

- Channel sorting operation
  - Sort by importance of different channels (L1 norm of channels weight)
  - Preserve the accuracy of larger sub-networks



## **Experiments (vs. EfficientNet)**



Figure 9: OFA achieves 80.0% top1 accuracy with 595M MACs and 80.1% top1 accuracy with 143ms Pixel1 latency, setting a new SOTA ImageNet top1 accuracy on the mobile setting.

# Case Study



### Example (HarDNet-39DS) (1/2)

- HarDNet
  - main.py (training API)
  - hardnet.py (model)
  - Confirm that main.py has imported the correct model file

```
=> loading checkpoint 'checkpoint.pth.tar'
=> loaded checkpoint 'checkpoint.pth.tar' (epoch 131)
Parameters= 3529270
         0/196] Time: 22.214
                                                          Acc@1: 79.30
Test:
                                 Loss: 7.5311e-01
                                                                                    95.31
Test:
                        0.100
                                 Loss: 9.1498e-01
                                                                  76.74
                                                                                    92.79
                                                                  76.26
                                                                                    92.56
Test:
                        0.178
                                 Loss: 9.3457e-01
                                                                  77.37
Test:
        30/196] Time:
                        0.090
                                 Loss: 8.9900e-01
                                                                                    92.80
Test:
        40/196] Time:
                        0.114
                                                           Acc@1:
                                                                  75.09
                                                                                    92.62
                                 Loss: 9.6639e-01
Test:
        50/196 Time:
                        0.515
                                                                  75.08
                                                                                    93.05
                                 Loss: 9.4871e-01
Test:
                        0.100
                                                                   74.71
                                                                                    93.01
        60/1961 Time:
                                 Loss: 9.6274e-01
Test:
        70/196] Time:
                        0.258
                                                                  75.19
                                                                                    93.17
                                 Loss: 9.4381e-01
Test:
        80/196] Time:
                        3.000
                                 Loss: 9.6088e-01
                                                                   74.92
                                                                                    92.94
Test:
        90/196 Time:
                        0.217
                                                                  73.83
                                                                                    92.15
                                 Loss: 1.0185e+00
Test:
       [100/196] Time:
                        0.100
                                                                   72.56
                                                                                    91.34
                                 Loss: 1.0806e+00
                                                                   72.09
Test:
       [110/196] Time:
                        0.188
                                                                                    90.90
                                 Loss: 1.1058e+00
Test:
       [120/196] Time:
                        0.101
                                                                   71.66
                                                                           Acc@5:
                                                                                    90.42
                                 Loss: 1.1330e+00
Test:
                        2.417
                                                                   70.88
                                                                           Acc@5:
                                                                                    90.01
       [130/196]
                Time:
                                 Loss: 1.1664e+00
                                                                           Acc@5:
Test:
       [140/196]
                        0.095
                                                                   70.37
                                                                                    89.72
                Time:
                                 Loss: 1.1925e+00
                                                                   69.90
                                                                           Acc@5:
Test:
       150/196]
                Time:
                        0.183
                                  Loss: 1.2155e+00
                                                           Acc@1:
                                                                                    89.35
                                                                           Accã5:
                                                           Acc@1:
                                                                   69.56
Test:
       [160/196]
                        2.494
                                 Loss: 1.2349e+00
                                                                                    89.03
                Time:
                                                                           Acc@5:
Test:
                                                                   69.03
       [170/196]
                        1.606
                                  Loss: 1.2578e+00
                                                                                    88.73
                Time:
Test:
                        0.170
                                                                   68.76
                                                                                    88.50
                                 Loss: 1.2733e+00
                                  Loss: 1.2742e+00
                                                                   68.67
                                                                                    88.51
```



### Example (HarDNet-39DS) (2/2)

- Download model from github

```
(base) [M112tychang@adar10 M112tychang]$ git clone <a href="https://github.com/PingoLH/Pytorch-HarDNet.git">https://github.com/PingoLH/Pytorch-HarDNet.git</a> Cloning into 'Pytorch-HarDNet'...
remote: Enumerating objects: 168, done.
remote: Counting objects: 100% (30/30), done.
remote: Compressing objects: 100% (15/15), done.
remote: Total 168 (delta 25), reused 15 (delta 15), pack-reused 138
Receiving objects: 100% (168/168), 197.06 MiB | 16.99 MiB/s, done.
Resolving deltas: 100% (68/68), done.
(base) [M112tychang@adar10 M112tychang]$ ls
```

### **Argument Parser**

```
parser.add argument('-a', '--arch', metavar='ARCH', default='hardnet39ds',
                    choices=model names,
                    help='model architecture: ' +
                        ' | '.join(model names) +
                        ' (default: hardnet39ds)')
parser.add argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add argument('-e', '--evaluate', dest='evaluate', action='store true',
                    help='evaluate model on validation set')
parser.add argument('--pretrained', dest='pretrained', action='store true',
                    help='use pre-trained model')
parser.add argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
```

### Data Loader (1/2)

- Data Pre-processing
  - Resize
  - Center crop
  - Numpy to tensor

```
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
train dataset = datasets.ImageFolder(
    traindir,
    transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize,
    1))
train loader = torch.utils.data.DataLoader(
    train dataset, batch size=args.batch size, shuffle=(train sampler is None),
    num workers=args.workers, pin memory=True, sampler=train sampler)
```

### Data Loader (2/2)

- Data Pre-processing
  - Center crop
  - Numpy to tensor

### **Criterion and Optimizer**

- Loss function
  - Cross entropy
- Optimizer
  - SGD with momentum

#### **Model Creation**

```
print("=> creating model '{}'".format(args.arch))
model = HarDNet(depth_wise, arch, pretrained=False)
print(model)
```

```
HarDNet(
  (base): ModuleList(
    (0): ConvLayer(
       (conv): Conv2d(3, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
       (norm): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU6(inplace=True)
    (1): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
    (2): ConvLayer(
       (conv): Conv2d(24, 48, kernel size=(1, 1), stride=(1, 1), bias=False)
       (norm): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU6(inplace=True)
    (3): DWConvLayer(
       (dwconv): Conv2d(48, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=48, bias=False)
      (norm): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (4): HarDBlock(
      (layers): ModuleList(
        (0): CombConvLayer(
          (layer1): ConvLayer(
             (conv): Conv2d(48, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
             (norm): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
             (relu): ReLU6(inplace=True)
```

## Module vs. Sequential (1/2)

#### nn.Module

```
class HarDBlock(nn.Module):
    def __init__(self, in_channels, growth_rate, grmul, n_layers, keepBase=False, residual_out=False, dwconv=False):
        super().__init__()
        self.keepBase = keepBase
        self.links = []
        layers_ = []
        self.out_channels = 0 # if upsample else in_channels
        for i in range(n_layers):
            outch, inch, link = self.get_link(i+1, in_channels, growth_rate, grmul)
            self.links.append(link)
            use_relu = residual_out
```

#### nn.Sequential

## Module vs. Sequential (2/2)

#### nn.Module

- Add any subclass of nn.Module to the list
- Define different layers in no order
- Define the order between layers on your own

#### nn.Sequential

- layers must be executed in order
- Ensure the output channels of the previous layer are the same as the input channels of the next layer

#### **Model Invocation**

Use the whole model

```
# compute output
output = model(input)
loss = criterion(output, target)
```

- Use one of layers (debug)
  - Not recommended

```
output=model.base[1](output)
output=model.base[2](output)
output=model.base[3](output)
output=model.base[4](output)
output=model.base[5](output)
```



# Checkpoint

- Read parameters
  - torch.load()
  - model.load\_state\_dict()

```
checkpoint = torch.load('checkpoint.pth.tar')

for ele in checkpoint['state_dict']:
    print(ele)

model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
```

- Save parameters
  - torch.save()
  - model.state\_dict()

# Parallelism (1/4)

#### **Data Parallel**

- Single-process, multi-thread
- Divide training data into one or more subsets and then distribute them to different computing units for execution
- Copy the neural network model to different computing units
- After the calculations are completed, data will be sent back to the main computing unit for updating, and the model will be updated uniformly. And then copied out.

#### Model Parallel

- Multi-process
- The model is divided into several small models that can be executed in different GPUs independently



## Parallelism (2/4)

- DistributedDataParallel
  - multi-process, multi-thread
  - Similar to data parallel, data is divided into different computing units; the model is also copied to the different computing units
  - After the calculations, parameters do not return to the main computing unit for updating. Only the gradients will be passed to each computing unit for updating

## Data Parallelism (3/4)

- Without Data Parallel
  - Model

```
HarDNet(
(base): ModuleList(
(0): onvLayer(
(conv): Conv2d(3, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(norm): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU6(inplace=True)
)
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): ConvLayer(
(conv): Conv2d(24, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU6(inplace=True)
)
(3): DWConvLayer(
(dwconv): Conv2d(48, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=48, bias=False)
(norm): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

```
base.0.conv.weight
base.0.norm.weight
base.0.norm.bias
base.0.norm.running_mean
base.0.norm.running_var
base.0.norm.num_batches_tracked
base.2.conv.weight
base.2.norm.weight
base.2.norm.bias
```

## Data Parallelism (4/4)

- Data Parallel
  - Model

```
module.pase.0.conv.weight
module.pase.0.norm.weight
module.pase.0.norm.bias
module.pase.0.norm.running_mean
module.pase.0.norm.running_var
module.pase.0.norm.num_batches_tracked
module.pase.2.conv.weight
module.pase.2.norm.weight
module.pase.2.norm.bias
module.pase.2.norm.running_mean
```



#### **Exercise**

- 1 (50%): Please explain the pros and cons of "regular convolution" and "depth-wise separable convolution"?
  - List at least 3 pros and cons respectively
  - What's the main reason for us to use dw-separable convolution rather than regular convolution sometimes?
- 2 (50%): Please report the parameters of AlexNet by manual calculations. Show the actual "FLOPS / parameters" reported by code. Attached with Screenshot.
- 3 (5%): With hw4.py, train a CNN-based model without pretrained weights. (Dataset: MNIST)
  - Please provide some images about your exercise
  - Give a short summary of why you choose the model and how to improve and implement it.
- Please submit your Report as hw4.pdf file.



## References (1/3)

#### ResNet

- Paper: https://arxiv.org/pdf/1512.03385.pdf
- https://github.com/kuangliu/pytorchcifar/blob/master/models/resnet.py

#### MobileNet

- Paper: https://arxiv.org/pdf/1704.04861.pdf
- https://github.com/wjc852456/pytorch-mobilenet-v1

#### VGG-16

- Paper: https://arxiv.org/pdf/1409.1556.pdf
- https://github.com/ashushekar/VGG16



# References (2/3)

- DataParallel
  - https://ithelp.ithome.com.tw/articles/10226382
- Module and Sequential
  - https://zhuanlan.zhihu.com/p/64990232
- DenseNet
  - https://zhuanlan.zhihu.com/p/37189203
- HarDNet
  - https://github.com/PingoLH/Pytorch-HarDNet

## References (3/3)

- Network In Network
  - https://arxiv.org/pdf/1312.4400.pdf
- GoogLeNet (Inception-V1, 2014)
  - https://wmathor.com/usr/uploads/2020/01/3184187721.pdf
- EfficientNet
  - https://arxiv.org/pdf/1905.11946.pdf
- Convolutional Neural Networks (台大李弘毅)
  - https://www.youtube.com/watch?v=OP5HcXJg2Aw&list=PLJV\_el3uV TsMhtt7\_Y6sgTHGHp1Vb2P2J&index=9

#### **Appendix**

# Python Modules Import Packages for Model Structure and FLOPS

#### Packages torchsummary & thop

- Package torchsummary
  - Installation : pip install torchsummary
  - Function: Show the structure of a PyTorch model
- Package thop
  - Installation : pip install thop
  - Function: Calculate the FLOPS of a PyTorch model

# **Installing Packages**

#### Commands

chmod +x install\_packages.sh
./install\_packages.sh



# info.py

#### Model structure

from torchsummary import summary summary(model, (1,32,32))

#### FLOPS

```
from thop import profile flops, params = profile(model, inputs=(torch.randn(1,1,32,32).to(device),)) print("FLOPS: ", flops, " / Params: ", params)
```

Thank you

