MACS - Quantification des incertitudes pour la simulation

DM5 - Année 2022-2023

1 Indices de Sobol fonction produit

On considère la fonction :

$$y: \begin{cases} [-1,1]^3 \to \mathbb{R} \\ \boldsymbol{x} = (x_1, x_2, x_3) \mapsto y(\boldsymbol{x}) = (0.1 + x_1)(1 + x_2)(5 + x_3). \end{cases}$$

- 1. En supposant que x est uniformément distribué sur $[-1,1]^3$, donner la densité du vecteur aléatoire x, que l'on note f_x . Peut on en déduire que x_1, x_2, x_3 sont statistiquement indépendants?
 - 2. Calculer la moyenne de y(x).
- 3. Pour $a, b \in \mathbb{R}$ et Z, W deux variables aléatoires indépendantes et uniformément réparties sur [-1, 1], calculer $\mathbb{E}[(a+Z)^2]$, $\operatorname{Var}(a+Z)$ et $\operatorname{Var}((a+Z)(b+W))$.
 - 4. Calculer la variance de y(x).
 - 5^* . Calculer les indices de Sobol d'ordre 1 associés à x_1, x_2, x_3 , respectivement notés S_1, S_2, S_3 .
- 6. En déduire quelle est la variable dont l'influence individuelle sur la variance de y(x) est la plus forte.
 - 7*. Calculer les indices de Sobol totaux associés à x_1, x_2, x_3 , respectivement notés T_1, T_2, T_3 .
- 8. A la vue de ces résultats, est-il raisonnable de fixer une/plusieurs composante(s) de x à sa/leur valeur(s) moyenne(s). Si oui, la(les)quelle(s)?