

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО» ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ КАФЕДРА ІНФОРМАТИКИ ТА ПРОГРАМНОЇ ІНЖЕНЕРІЇ

Курсова робота з дисципліни «Моделювання систем»

Тема: Імітаційна модель роботи регулювальної ділянки цеху на основі формалізму мережа Петрі

Керівник:	Виконавець:
асистент кафедри ІПІ	Чапча Святослав
Дифучина Олександра Юріївна	Олександрович
«Допущено до захисту» ———————————————————————————————————	студент IV курсу групи IT-04 залікова книжка № IT-0425 «25» грудня 2023 р.
Члени комісії:	
	Інна СТЕЦЕНКО
	Олександра ДИФУЧИНА

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Кафедра інформатики та програмної інженерії

Дисципліна «Моделювання систем»

Спеціальність Інженерія програмного забезпечення

ЗАВДАННЯ

на курсову роботу студента
Чапчи Святослава Олександровича
(прізвище, ім'я, по батькові)

- 1. Тема роботи: <u>Імітаційна модель роботи регулювальної ділянки цеху</u> на основі формалізму мережа Петрі
- 2. Термін здачі студентом закінченої роботи "25" грудня 2023 р.
- 3. Вихідні дані до проекту

Завдання № 10 з Навчального Посібника

- 4. Зміст розрахунково-пояснювальної записки (перелік питань, що розробляються)
- Вступ. 1. Розробка концептуальної моделі 2. Розробка формалізованої моделі 3. Програмна реалізація моделі 4. Проведення експериментів 5. Інтерпретація результатів експериментів. Висновки. Список використаних джерел. Додатки.
- 5. Перелік графічного матеріалу (з точним зазначенням обов'язкових креслень) Графічного матеріалу не має.
- 6. Дата видачі завдання "<u>12</u>" <u>вересня</u> 20<u>23</u> р.

РЕФЕРАТ

Курсова робота: 64с., 12 рис., 6 табл., 2 додатка, 7 джерело літератури.

Об'єкт дослідження – регулювальна ділянка цеху.

Мета роботи – визначення оптимального режиму роботи регулювальної ділянки цеху.

Метод дослідження — імітаційне моделювання роботи регулювальної ділянки. Проведено дослідження різних режимів роботи регулювальної ділянки цеху і розроблена програмна реалізація імітаційної моделі системи. Розроблено план і проведені експерименти з імітаційною моделлю. Результати моделювання використані для визначення оптимального режиму роботи регулювальної ділянки цеху.

Ключові слова: ІМІТАЦІЙНА МОДЕЛЬ, МОВА МОДЕЛЮВАННЯ, ПЛАНУВАННЯ ЕКСПЕРИМЕНТІВ, ДИСПЕРСІЙНИЙ АНАЛІЗ, РЕГУЛЮВАЛЬНА ДІЛЯНКА ЦЕХУ, МЕРЕЖА ПЕТРІ

3MICT

ВСТУП	6
ПОСТАНОВКА ЗАВДАННЯ	8
РОЗДІЛ 1. КОНЦЕПТУАЛЬНА МОДЕЛЬ	9
1.1 Дослідження можливих видів моделювання	9
1.2 Ціль моделювання	10
1.3 Концептуальна модель	11
1.4 Вхідні та вихідні дані, параметри моделі	11
1.5 Обмеження	12
1.6 Цільова функція	13
РОЗДІЛ 2. ФОРМАЛІЗОВАНА МОДЕЛЬ	14
2.1 Елементи мережі Петрі	14
2.2 Побудова формалізованої моделі	14
2.3 Обчислення вихідних характеристики	15
РОЗДІЛ З. РЕАЛІЗАЦІЯ МОДЕЛІ	17
3.1 Опис програмної реалізації імітаційної моделі	18
3.2 Оцінка адекватності моделі	19
3.3 Верифікація моделі	21
РОЗДІЛ 4. ПРОВЕДЕННЯ ЕКСПЕРИМЕНТІВ НА МОДЕЛІ	23
4.1 Постановка задачі	23
4.2 Тактичне планування	23
4.3 Стратегічне планування	24
РОЗДІЛ 5. ІНТЕРПРЕТАЦІЯ РЕЗУЛЬТАТІВ МОДЕЛЮВАННЯ	28
висновок	29

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ	30
Додаток А. Лістинг коду	31
Додаток Б. Результати проведення експериментів	44

ВСТУП

В Україні цехи є важливим елементом економіки. Вони забезпечують робочими місцями тисячі людей та виробляють значну частину промислової продукції. У зв'язку з війною та іншими геополітичними факторами зростає потреба в локальному виробництві товарів та послуг. Цехи можуть допомогти забезпечити цю потребу.

Метою дослідження ϵ визначення оптимального режиму роботи регулювальної ділянки цеху.

Для того, щоб вирішити поставлену задачу, потрібно створити модель роботи регулювальної ділянки. Для цього ми використаємо метод імітаційного моделювання.

Модель - це абстрактне відображення об'єкта, системи або концепції, призначене для наукового вивчення. У сучасному світі практично неможливо знайти галузь людського життя, де не використовуються різноманітні методи моделювання.

В загальному випадку модель складається з X - множини вхідних змінних системи, Y - множини вихідних змінних системи, P - множини параметрів та F - функції, функціоналу, алгоритму або формального представлення залежності змінних Y від змінних X.

Різні методи моделювання використовуються у всіх сферах людської діяльності і є невід'ємною частиною нашого життя. Основна мета моделювання полягає в тому, щоб знайти значення вихідних змінних Y при відомих значеннях вхідних змінних X, враховуючи відому модель F та визначені параметри P.

Імітаційне моделювання — це метод, який дозволяє досліднику отримати інформацію про властивості реальної системи, багаторазово запускаючи її модель. Імітаційне моделювання враховує зміну властивостей об'єктів у часі, тому їм можна вирішити будь-яке завдання.

Основна перевага імітаційного моделювання — це можливість розробки моделей з мінімальною витратою часу на програмування. Також імітаційне моделювання дозволяє вирішувати складніші завдання, ніж аналітичне дослідження, оскільки воно враховує випадкові дії та інші фактори. Алгоритми імітації мереж Петрі та мереж масового обслуговування, які побудовані на основі універсальних мов програмування, мають високу гнучкість.

Імітаційне моделювання складається з таких етапів:

- 1. Формулювання проблеми та змістовної постановки задачі;
- 2. Розробка концептуальної моделі;
- 3. Розробка імітаційної моделі;
- 4. Оцінка адекватності моделі;
- 5. Планування та проведення експерименту;
- 6. Оцінка точності результатів моделювання;
- 7. Інтерпретація результатів моделювання і прийняття рішення.

Для розв'язання поставленої задачі ми побудуємо концептуальну модель, формалізовану модель із формалізмом мережа Петрі, які відображатимуть роботу регулювальної ділянки. Також ми виконаємо програмну реалізацію моделі зі вказаним формалізмом та проведемо перевірку й експерименти.

ПОСТАНОВКА ЗАВДАННЯ

На регулювальну ділянку цеху через випадкові інтервали часу надходять по два агрегати в середньому через кожні 30 хвилин. Первинне регулювання здійснюється для двох агрегатів одночасно і займає біля 30 хвилин. Якщо в момент приходу агрегатів попередня партія не була оброблена, агрегати на регулювання не приймаються. Агрегати, які одержали відмову, після первинного регулювання надходять у проміжний накопичувач. З накопичувача агрегати, що пройшли первинне регулювання, надходять попарно на вторинне регулювання, яке виконується в середньому за 30 хвилин, а ті, що не пройшли первинне регулювання, надходять на повне регулювання, що займає 100 хвилин для одного агрегату. Всі величини задані середніми значеннями, розподілені за експоненціальним законом.

Визначити ймовірність відмови в первинному регулюванні і завантаження накопичувача агрегатами, що потребують повного регулювання. Визначити параметри і ввести в систему накопичувач, що забезпечує безвідмовне обслуговування агрегатів, що надходять.

РОЗДІЛ 1. КОНЦЕПТУАЛЬНА МОДЕЛЬ

1.1 Дослідження можливих видів моделювання

Щоб вирішити поставлене завдання, потрібно створити модель системи. Існує багато різних методів моделювання, але найпопулярнішими ϵ аналітичне, імітаційне та статистичне моделювання [1].

Аналітичне моделювання ϵ найстарішим і найпростішим методом моделювання. Воно використовується, коли залежність між вхідними та вихідними змінними системи можна описати аналітичними функціями. Це означа ϵ , що можна знайти формули або рівняння, які визначають, як зміняться вихідні змінні системи в залежності від змін вхідних змінних.

Унікальність аналітичного моделювання полягає в тому, що воно дозволяє отримати точніші результати, ніж інші методи моделювання. Це пов'язано з тим, що аналітичні функції зазвичай є точними апроксимаціями реальних систем. Однак аналітичне моделювання має і свої обмеження. Воно може бути застосоване лише до систем, для яких залежність між вхідними та вихідними змінними можна описати аналітичними функціями. Якщо така залежність не існує, то аналітичне моделювання неможливо використовувати.

Імітаційне моделювання є найскладнішим методом моделювання. Воно використовується, коли систему моделюють шляхом її імітації в часі. Цей метод дозволяє враховувати випадковість та інші фактори, що неможливо зробити за допомогою аналітичних або математичних методів [2].

Унікальність імітаційного моделювання полягає в тому, що воно дозволяє моделювати системи, які є занадто складними або непередбачуваними для інших методів моделювання. Це пов'язано з тим, що імітаційне моделювання дозволяє моделювати систему в її реальному середовищі, з урахуванням всіх випадкових факторів, але воно може бути застосоване лише до систем, для яких можна

розробити модель імітації. Якщо така модель не може бути розроблена, то імітаційне моделювання неможливо використовувати.

Статистичне моделювання - це метод, який використовується для створення математичної моделі ймовірнісного розподілу даних. Ця модель може використовуватися для прогнозування майбутніх даних, аналізу даних або для отримання інформації про дані. Статистичне моделювання є унікальним методом моделювання, оскільки воно дозволяє враховувати випадковість. Це означає, що статистичні моделі можуть бути використані для моделювання систем, які є занадто складними або непередбачуваними для інших методів моделювання [3].

З переваг статистичного моделювання варто зазначити, що воно враховує випадковість, має широкий спектр застосувань та статистичні моделі можна тестувати на основі даних, які не використовувались для навчання. Але статистичне моделювання також має і недоліки: воно залежить від даних, статистичні моделі не можуть гарантувати точність своїх прогнозів і вони можуть бути складними для інтерпретації.

1.2 Ціль моделювання

На регулювальну ділянку цеху через випадкові інтервали часу надходять по два агрегати в середньому через кожні 30 хвилин. Первинне регулювання здійснюється для двох агрегатів одночасно і займає біля 30 хвилин. Якщо в момент приходу агрегатів попередня партія не була оброблена, агрегати на регулювання не приймаються. Агрегати, які одержали відмову, після первинного регулювання надходять у проміжний накопичувач. З накопичувача агрегати, що пройшли первинне регулювання, надходять попарно на вторинне регулювання, яке виконується в середньому за 30 хвилин, а ті, що не пройшли первинне регулювання, надходять на повне регулювання, що займає 100 хвилин для одного агрегату.

Головною ціллю ϵ визначити ймовірність відмови в первинному регулюванні і завантаження накопичувача агрегатами, що потребують повного регулювання.

Також потрібно визначити параметри і розмір накопичувача, щоб було забезпечено безвідмовне обслуговування агрегатів, що надходять.

1.3 Концептуальна модель

Концептуальна схема моделі, згідно з постановкою задачі, має вигляд, зображений на рисунку 1.1.

Рисунок 1.1 – Концептуальна модель

1.4 Вхідні та вихідні дані, параметри моделі

Вхідні та вихідні дані та параметри моделі, згідно з постановкою задачі, зображені у таблицях 1.1-1.2

T ~	11 5 '	•	•
Таблина	I I — К улпил	параметри молеп	1
таолици	т.т Блідіп	параметри моделі	L

Параметри	Значення	Опис
T1	30(exp)	Періодичність поступання агрегатів
T2	30(exp)	Час здійснення первинного регулювання
T3	30(exp)	Час здійснення вторинного регулювання
T4	100(exp)	Час здійснення повного регулювання
N1	2	Кількість агрегатів, що поступають до регулювальної
		ділянки кожні Т1 одиниць часу

N2	2	Кількість агрегатів, що поступають до первинного
		регулювання і обробляються Т2 одиниць часу
N3	2	Кількість агрегатів, що поступають до вторинного
		регулювання і обробляються ТЗ одиниць часу
N4	1	Кількість агрегатів, що обробляються Т4 одиниць
		часу на повному регулюванні.
Q	1440	Час моделювання

Таблиця 1.2 – Вихідні параметри моделі

Параметри	Опис									
Q1 mean	Середня довжина черги оброблених первинним регулюванням у									
	накопичувачі									
Q1 max	Максимальна довжина черги оброблених первинним									
	регулюванням у накопичувачі									
Q2 mean	Середня довжина черги необроблених первинним регулюванням									
	у накопичувачі									
Q2 max	Максимальна довжина черги необроблених первинним									
	регулюванням у накопичувачі									
M1	Кількість агрегатів з вторинного регулювання									
M2	Кількість агрегатів з повного регулювання									
P	Ймовірність відмови в первинному регулюванні									

1.5 Обмеження

Для системи існують наступні обмеження:

- T1 > 0
- T2 > 0
- T3 > 0

$\bullet \qquad T4 > 0$

1.6 Цільова функція

В нашому випадку ціллю моделювання ϵ визначення ймовірності відмови в первинному регулюванні та завантаження накопичувача агрегатами. Таким чином цільова функція матиме вигляд:

$$P = M_{skipped} / (M_{skipped} + M_{processed}) \rightarrow min$$

Інша ціль нашого моделювання — це визначення оптимального розміру накопичувача, при якому буде забезпечено безвідмовне обслуговування агрегатів. Для цього дізнаємось ймовірність того, що агрегат залишиться в накопичувачі та теоретично виміряємо якого розміру має бути накопичувач для безвідмовної роботи регулювальної ділянки.

РОЗДІЛ 2. ФОРМАЛІЗОВАНА МОДЕЛЬ

2.1 Елементи мережі Петрі

Після того, як ми створили концептуальну модель, нам потрібно визначити, як її формалізувати. Для цього існує два основних способи: мережі Петрі та мережі масового обслуговування.

Мережі Петрі - це потужний інструмент для моделювання дискретних процесів, які мають складні взаємозв'язки. Вони використовуються, коли потрібно моделювати систему з спільними ресурсами, які обслуговують багато процесів, або коли потрібно моделювати паралельні процеси. Важливою перевагою мереж Петрі є їхня універсальність, яка дозволяє моделювати як процеси управління, так і функціонування об'єктів управління [6].

На зображенні 2.1[4] показані компоненти формалізації мережі Петрі.

ЕЛЕМЕНТИ МЕРЕЖІ ПЕТРІ

Рисунок 2.1 – Елементи мережі Петрі

2.2 Побудова формалізованої моделі

Генератор приблизно кожні 30 хвилин створює по два агрегати і після цього, агрегати потрапляють у позицію Р2. Якщо первинне регулювання вільне, то агрегати попарно обробляються приблизно 30 хвилин і після цього потрапляють до накопичувача. Якщо первинне регулювання зайняте, агрегати також потрапляють в накопичувач. З накопичувача агрегати які обробились потраплять у вторинне регулювання, якщо воно вільне вони обробляються приблизно 30 хвилин, а якщо ні, вони просто чекають обробки. З накопичувача агрегати, які не обробились потрапляють у повне регулювання, якщо воно вільне один агрегат обробляється 100 хвилин, а якщо зайнятий, агрегати просто чекають обробки. Одиницею модельного часу є 1 хвилина.

Рисунок 2.2 – Схема мережі Петрі, що відповідає моделі

2.3 Обчислення вихідних характеристики

Визначення середньої довжини черги агрегатів у накопичувачі:

$$Q_{mean} = \frac{\sum_{k=1}^{n} (Q1_k + Q2_k) \cdot \Delta t_k}{T_{mod}}$$
 (2.1),

де Q1 — черга оброблених первинним регулюванням агрегатів у накопичувачі, Q2 — черга необроблених первинним регулюванням агрегатів у

накопичувачі T_{mod} — час моделювання, Δt_k — зміна часу під час k-того спостереження

Визначення ймовірності пропуску первинного регулювання:

$$P = \frac{M_{skipped}}{M_{skipped} + M_{processed}}$$
 (2.2),

де $M_{skipped}$ — кількість пропусків первинного регулювання, $M_{processed}$ — кількість обробок первинним регулюванням.

РОЗДІЛ З. РЕАЛІЗАЦІЯ МОДЕЛІ

Для програмної реалізації даного підходу було обрано програмне забезпечення РеtriObjectModelPaint. Це програмне забезпечення має вбудовані засоби генерації випадкових величин за експоненційним, рівномірним і нормальним законами розподілу. Крім того, до коду програми можна додавати додаткові спеціальні класи та методи, що дозволяє підлаштувати програмну реалізацію конкретної задачі та розробити функціонал для підрахунку статистичних даних, виведення звітів у зручному форматі та автоматизованого багаторазового проведення експериментів з ітеративним зміненням параметрів моделювання.

Програмне забезпечення має графічний інтерфейс, що дозволяє створити та візуалізувати модель. Можливість збереження візуального представлення як методу (у вигляді програмного коду) значно спрощує програмну реалізацію поставленої задачі. Крім того, програмне забезпечення дозволяє зберегти модель у вигляді файлу, що дозволяє проаналізувати модель багаторазово, не створюючи саму модель заново.

Програмне забезпечення для моделювання Петрі-об'єктів розроблено на мові Java[8]. Воно складається з пакету PetriObjLib, який реалізує алгоритм симуляції Петрі-об'єктів, і пакетів, що забезпечують графічне представлення мережі. Якщо мережа Петрі містить перехід без вхідних або вихідних місць, виникне помилка.

Після підготовки списку Петрі-об'єктів та визначення зв'язків між ними модель може бути створена за допомогою класу PetriObjModel. Метод go(double time) цього класу ініціює моделювання. Якщо генератор затримки поверне від'ємне значення, виникне помилка.

Основними завданнями програмного забезпечення ϵ забезпечення правильного алгоритму моделювання та правильних результатів, включаючи

середні значення маркерів у місцях мережі Петрі, середнє значення буферів у переходах та стан мережі Петрі в кінці моделювання.

Для вирішення задачі були розроблені додаткові основні методи, які наведені у Додатку А.

Таблиця 3.1 – Основні методи

Назва функції	Опис
CreateAdjSectionNet	Метод, що створює об'єкту регулювальної ділянки цеху
getModel	Метод, що збирає Петрі-об`єкти в модель і виконує
	прив`язку
showStatistics	Метод, який проводить експерименти і виводить
	статистику з отриманих даних. Також метод включає у
	собі цільові функції та дисперсійний аналіз
validateModel	Метод, в якому ми порівнюємо теоретичний і
	практичний час надходження та обробок
chebishevExperiment	Метод, в якому ми знаходимо достатню кількість
	експериментів для подальшого аналізу
timeExperiment	Метод, в якому ми проводимо експеримент з часом для
	майбутньої побудови графіку залежності
firstExperiment	Метод, в якому модель спрацьовує один раз і виводить
	статистику з отримних даних

3.1 Опис програмної реалізації імітаційної моделі

Проведемо пробний експеримент завдяки створеному раніше методу firstExperiment з наступними вхідними даними:

Таблиця 3.2 – Вхідні дані у пробному експерименті

Параметри	Значення

T1	30(exp)
T2	30(exp)
T3	30(exp) 30(exp) 100(exp)
T4	100(exp)
N1	2
N2	2
N3	2
N4	1
Q	1440

Рисунок 3.1 – Результат пробного експерименту

Як можемо побачити, за час моделювання в один день (1440 хвилин) 48 агрегатів пройшли вторинне регулювання, 15 агрегатів пройшли повне регулювання, 40 агрегатів залишись у накопичувачі. Відсоток того, що первинне регулювання зайняте у час надходження становить 53%, а середнє завантаження проміжного накопичувача становить 38.8%.

3.2 Оцінка адекватності моделі

Використаємо створений раніше метод validateModel, який порівнює теоретичні та практичні значення часу надходження, часу обробки первинним регулюванням, вторинним регулюванням і повним регулюванням.

```
Theoretical T1 = 30(exp); Factual T1 = 34.285714285714285
Theoretical T2 = 30(exp); Factual T2 = 34.285714285714285
Theoretical T3 = 30(exp); Factual T3 = 34.285714285714285
Theoretical T4 = 100(exp); Factual T4 = 144.0
```

Рисунок 3.2 – Результат оцінки адекватності моделі

Виконаємо пробний експеримент з минулого пункту ще раз, щоб оцінити модель на адекватність.

-----Solo Experiment------

MaxQ1: 10

MeanQ1: 1.219979713547636

LeftQ1: 0 MaxQ2: 32

MeanQ2: 14.059646787612325

LeftQ2: 30 NumOfFull: 17 NumOfSecond: 58

Failure Prob: 0.44761904761904764 Storage Load: 0.13390139797726022

BUILD SUCCESSFUL (total time: 0 seconds)

Рисунок 3.3 – Результат пробного експерименту

Як можемо побачити, за 1440 хвилин 58 агрегати пройшли вторинну обробку, 17 агрегатів пройшло повну обробку та 30 агрегатів залишились у накопучивачі, тобто усього 105 агрегатів надійшло на регулювальну ділянку цеху.

Перевіримо час надходження агрегатів з часом 30 хвилин:

$$\frac{1440}{30} * 2 = 96 \tag{3.1}$$

Як можемо побачити, практичне та теоретичні значення майже співпадають. Також обрахуємо приблизний час надходження агрегатів:

$$\frac{1440}{(17+58+30) \div 2} = 27.42 \tag{3.2}$$

Також зробимо це для обробки агрегатів у кожному регулюванні. Для вторинного регулювання:

$$\frac{1440}{58} = 24.83\tag{3.3}$$

Для первинного регулювання:

$$\frac{1440}{30+0} = 48\tag{3.4}$$

Для повного регулювання:

$$\frac{1440}{17} = 84.7\tag{3.5}$$

Як можемо побачити, теоретичні значення майже співпадають з практичними, тому можемо зробити висновок, що програма функціонує правильно. Отже, модель ϵ адекватною.

3.3 Верифікація моделі

Зробимо верифікацію моделі завдяки методу showStatistics. Для цього ми створимо кілька різних наборів вхідних значень і порівняємо результати.

Таблиця 3.3 – Набори вхідних значень для експериментів

Час	Час обробки	Час обробки	Час обробки
надходження	пер.рег.	втор.рег.	пов. рег.
10	60	20	20
100	30	30	100
40	40	40	140
30	30	30	100
20	20	20	80

Для генерації верифікаційної таблиці, проведемо експерименти поступово змінюючи параметри часу надходження, обробки та розмір вільного ресурсу у первинному, вторинному та повному регулюванні.

Create	First	Second	Full	First	Second	Full	Max	Mean	Left	Max	Mean	Left	Num Of	Num	Failure	Storage
Delay	Delay	Delay	Delay	Queue	Queue	Queue	Q1	Q1	Q1	Q2	Q2	Q2	Second	Of Full	Probability	Load
10	60	20	20	1	1	2	2	0.0909	0	83	34.94	82	42	136	0.8384615	0.31923
100	30	30	100	2	2	1	2	0	0	2	0.02	0	26	2	0.0714286	0.07143
40	40	40	140	3	1	1	30	14.078	28	2	0.21	0	60	2	0.0222222	0.02222
30	30	30	100	1	1	1	4	0.292	0	40	17.7	40	44	15	0.555556	0.40404
20	20	50	80	1	3	2	2	0	0	50	17.2	50	66	28	0.5416667	0.34722

Рисунок 3.5 – Верифікація моделі

Як можемо побачити, якщо час первинного регулювання більший за час надходження, то відсоток відмови буде більшим, як і завантаження накопичувача, а коли час надходження більший за час первинного регулювання, відсотки будуть майже нульовими. Також при збільшенні ресурсів, при однаковому часі, відсоток також буде нульовим, адже агрегати майже і не будуть потрапляти до повного регулювання.

Це відповідає очікуванням, тому модель ϵ адекватною.

РОЗДІЛ 4. ПРОВЕДЕННЯ ЕКСПЕРИМЕНТІВ НА МОДЕЛІ

4.1 Постановка задачі

Основна ціль моделювання даної системи є визначення відсотку відмови первинного регулювання, якщо агрегати прийшли у момент, коли регулювання вже зайняте. Також необхідно визначити приблизний розмір накопичувача, щоб програма працювала безвідмовно.

Значення цільової функції — мінімізація ймовірності пропуску первинного регулювання, а також розрахування приблизного розміру накопичувача. Експерименти будемо проводити послідовно, задаючи різні вхідні дані.

4.2 Тактичне планування

Проведемо пробний прогін завдяки методу timeExperiment та побудуємо графік залежності ймовірності пропуску первинного регулювання від часу моделювання.

Рисунок 4.1 – Графік залежності ймовірності пропуску первинного регулювання від часу моделювання

На рисунку 4.1 можемо побачити, що в цілому час моделювання не сильно впливає на роботу моделі, але після приблизно 40000 од.часу графік більш стабільний та коливається у діапазоні від 40 до 60 відсотків. Тому візьмемо тривалість прогону в 40000 одиниць модельного часу для наступних експериментів, щоб перехідні процеси мало впливали на результат. Для визначення кількості необхідних експериментів за нерівністю Чебишева, скористаємося формулою:

$$N = \frac{\sigma^2}{\varepsilon^2 (1 - \beta)} \tag{4.1}$$

N – кількість прогонів, ε – точність оцінки (5% від середнього значення), β - довірча ймовірність (0.95), σ – дисперсія.

Скористаємось згаданим у третьому розділі методом chebishevExperiment для пошуку достатньої для заданої точності кількості експериментів відповідно до формули (4.1).

Failure Probability = 0.4990702274168806
Standard Deviation = 0.01397925292419724
Enough number of experiments by Chebishev: 6.276746476926137

Рисунок 4.2 – Результат пошуку мінімальної кількості експериментів

4.3 Стратегічне планування

Для дослідження впливу факторів на значення цільової функції ймовірність пропуску первинного регулювання, проведемо факторний експеримент.

Згідно з результатами експериментів Чебишева для кожної комбінації заданих параметрів потрібно провести 6 прогонів. Можливі комбінації зазначені у таблиці 4.1

Таблиця 4.1 – Набори вхідних значень для експериментів

Час	Час обробки	Час обробки	Час обробки			
надходження	пер.рег.	втор.рег.	пов. рег.			
20	20	20	60			
30	30	30	100			
40	40	40	140			

Далі проведемо тестування для всіх комбінацій часу надходження та обробки. Для кожного з цих варіантів також проведемо по 50 запусків. Результати цих запусків наведені в додатку Б.

На підставі отриманих даних з додатку Б проведемо аналіз дисперсії. Суть дисперсійного аналізу полягає в тому, що ми порівнюємо дисперсію, яка виникає внаслідок впливу факторів, з дисперсією, яка пояснюється випадковими причинами. Якщо різниця між цими видами дисперсії велика, то фактори справді впливають на відгук моделі.

Спочатку, обрахуємо середні значення за формулами[4]:

$$\underline{y_j} = \frac{1}{p} \sum_{i=1}^p y_{ij} \qquad \underline{y} = \frac{1}{q} \sum_{j=1}^q \underline{y_j}$$
 (4.2),

Де р – кількість прогонів у кожному експерименті, q – рівень фактора, а y_{ij} – ймовірність пропуску первинного регулювання j-ого експерименту в i-тому спостереженні

Далі введемо величини[4]:

$$S_{\phi \text{акт}} = p \cdot \sum_{j=1}^{q} * (\underline{y_j} - \underline{y})$$
 $S_{\text{залиш}} = \sum_{j=1}^{q} * \sum_{i=1}^{p} * (\underline{y_{ij}} - \underline{y_j})^2$ (4.3),

Наступним кроком буде визначити загальну, факторну та залишкову дисперсії[4]:

$$d_{\phi \text{акт}} = S_{\phi \text{акт}} \qquad d_{\text{залиш}} = \frac{S_{\text{залиш}}}{q \cdot (p-1)}$$
 (4.4),

Далі знаходимо критерій Фішера[4]:

$$F = \frac{d_{\phi \text{акт}}}{d_{\text{залиш}}} \tag{4.5}$$

-----Analysis Of Variance-----

Sum of Squares: 1682857.6685424028

Degrees of Freedom: 405.0 Mean Square: 693.7443903207102

F: 2425.760398241832

F-critical (alpha=0.05): 1.41805107 Influence is worthy of attention

Рисунок 4.3 – Отримані результати проведення дисперсійного аналізу

Як можемо побачити, критерій Фішера 2425.7604 при критичному значенні 1.418, а це означає, що вплив на режим роботи регулювальної ділянки є значним.

Тепер використаємо отримані дані для того щоб порахувати оптимальний розмір накопичувача, щоб регулювальна ділянка працювала безвідмовно. Для цього ми порахуємо кількість агрегатів які пройшли вторинне та повне регулювання та максимальну кількість агрегатів які були у накопичувачі. Завдяки цьому ми порахуємо відсоток на те, що агрегати залишаться у накопичувачі.

Для того, щоб віднайти оптимальний розмір накопичувача, я порахував теоретичний час надходження за формулою (3.1) і помножив його на знайдений раніше відсоток. Після цього, результат було округлено.

Рисунок 4.4 – Пошук оптимального розміру накопичувача

Скористаємось згаданим у третьому розділі методом showStatistics для того, щоб порахувати оптимальний розмір накопичувача.

Failure Probability: 0.5002626756290645

Storage Load: 0.1832901276327242 Storage Avg Max: 1060.4115226337449 Stuck Probability: 0.36737123339593675

Advice For Size: 1060

Рисунок 4.5 – Результат пошуку оптимального розміру накопичувача при часу моделювання 40000хв

Як можемо побачити, якщо регулювальна ділянка буде працювати 40000 хвилин, відсоток агрегатів, що не дійшли до кінця буде становити 36.7%, а також рекомендовано мати накопичувач з розміром 80. Але якщо регулювальна ділянка буде працювати більше або менше, цей розмір відповідно буде змінюватись. Також ми розрахували завантаження накопичувача, яке становить 36.58%.

Проведемо експеримент, щоб довести, що визначений розмір накопичувача ϵ оптимальним, для цього скористаємось вхідними даними зазначеними в умові задачі. Ми запустимо їх 81 раз, щоб подивитися чи помістяться агрегати у наш накопичувач.

		J-4											
Α	В	С	D	E	F	G	н	1	J	K	L	М	N
CreateDelay	FirstRegDelay	SecondRegDelay	FullRegDelay	MaxQ1	MeanQ1	LeftQ1	MaxQ2	MeanQ2	LeftQ2	NumOfSecond	NumOfFull	Fprob	Sload
30	30	30	100	12	0.642657	0	1092	528.7845	1092	1386	385	0.515892	0.184696
30	30	30	100	10	0.599954	0	1074	523.5394	1074	1346	393	0.521507	0.186114
30	30	30	100	10	0.695685	0	1040	498.2367	1040	1350	431	0.521446	0.176617
30	30	30	100	10	0.567131	0	1034	477.759	1031	1312	392	0.520293	0.174683
30	30	30	100	10	0.444554	0	1027	498.286	1025	1290	406	0.52591	0.183126
30	30	30	100	12	0.530804	0	1016	520.2796	1016	1324	423	0.520811	0.188302
30	30	30	100	12	0.733656	0	1012	486.4837	1012	1334	383	0.511176	0.178264
30	30	30	100	12	0.585303	0	1005	501.9321	1005	1326	404	0.515174	0.183522
30	30	30	100	10	0.503671	0	1003	464.6733	1003	1294	382	0.516984	0.17345
30	30	30	100	14	0.890062	4	1001	468.1992	1001	1304	404	0.517877	0.172576
30	30	30	100	16	0.678782	2	999	463.5025	999	1306	384	0.513935	0.172242
30	30	30	100	8	0.526168	0	999	497.8306	999	1322	368	0.508367	0.185136
30	30	30	100	10	0.604825	0	996	484.9455	996	1304	413	0.519351	0.178749
30	30	30	100	12	0.597282	0	991	480.5214	991	1360	402	0.505993	0.17454
30	30	30	100	12	0.559104	0	989	505.1335	989	1374	394	0.501632	0.183219

Рисунок 4.6 – Результати проведення експерименту

Повні результати проведення експерименту наведені в Додатку В. Як можемо побачити по результатам експерименту, лише в 2 випадках з 81 можливих кількість агрегатів які залишились у накопичувачі були більшими за оптимальний розмір. Тому розрахунки виявились вірними.

РОЗДІЛ 5. ІНТЕРПРЕТАЦІЯ РЕЗУЛЬТАТІВ МОДЕЛЮВАННЯ

У дослідженні було проведено перевірку моделі, розраховано приблизний час виконання процесів у системі, побудовано графік залежності ймовірності пропуску первинного регулювання від часу моделювання, визначено оптимальну кількість експериментів та проведено дисперсійний аналіз. Це дозволило краще зрозуміти залежність ймовірності пропуску первинного регулювання від вхідних параметрів системи.

Цільові завдання дослідження — визначити ймовірність відмови в первинному регулюванні та завантаження накопичувача агрегатами, що потребують повного регулювання. Визначити параметри та ввести в систему накопичувач, що забезпечує безвідмовне обслуговування агрегатів, що надходять.

Ймовірність відмови становить приблизно 30-50%. Для її зменшення рекомендовано забирати більше агрегатів на первинне регулювання або приймати менше агрегатів. Для зменшення завантаження на накопичувач рекомендовано пришвидшити час обробки повним регулюванням або забрати більше агрегатів. Відсоток, який залишається у накопичувачі, становить приблизно 30-40%. Завантаження накопичувача агрегатами, які очікують повного регулювання в середньому виходить приблизно 15-20%.

Рекомендований розмір накопичувача для безвідмовної роботи ділянки залежить від часу роботи, оскільки час повного регулювання напряму впливає на результат. При часі роботи в 1440 хвилин, що дорівнює одному дню, рекомендовано поставити накопичувач, який вміщає 40 агрегатів. При часі роботи в 40000 хвилин, цей розмір збільшується до 1060. Для оптимізації розміру необхідно пришвидшити час обробки вторинним та повним регулюванням або додавати додаткові ресурси, тобто обробляти більше агрегатів.

ВИСНОВОК

У цій роботі розглянута проблема визначення оптимального режиму роботи регулювальної ділянки цеху, який забезпечує мінімальну ймовірність того, що обладнання не буде відрегульоване вчасно. Було досліджено можливі методи розв'язання цієї проблеми, розроблено концептуальну та формалізовану моделі, виконано програмну реалізацію моделі та розв'язано поставлену задачу. Також проведено аналіз експериментально отриманих даних.

Для розв'язання поставленої задачі було використано мову програмування Java, бібліотеку PetriObjModelPaint та розроблену імітаційну модель. Простота зміни вхідних даних та результати моделювання дозволяють дослідити роботу регулювальної ділянки.

Відповідно до проведених експериментів, ми можемо сказати, що рекомендований розмір накопичувача за один день дорівнюватиме 30. Також відсоток відмови дорівнює 30-50%, але його можна покращити, якщо пришвидшити первинну обробку, або виділити на неї додаткові ресурси. При тестуванні ми перевірили, що модель ϵ адекватною

•

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1. Основні види моделювання. Формальні методи побудови моделей ПНС ХНЕУ ім. С. Кузнеця 2017. 18 с.
- 2. Імітаційне моделювання [Електронний ресурс] Режим доступу до ресурсу: https://stud.com.ua/98833/informatika/imitatsiyne_modelyuvannya// студо та інші -педії не наводимо у джерелах, осікльки немає відповідального автора
- 3. An Introduction to Statistical Learning / Daniela Witten, Gareth M. James, Trevor Hastie, Robert Tibshirani. 2013 440 c.
- 4. Стеценко І.В. Моделювання систем: Навчальний посібник / І.В. Стеценко; М-во освіти і науки України, Черк. держ. технол. ун-т. Черкаси: ЧДТУ, 2011. 407с.
- 5. Імітаційне моделювання систем та процесів: Електронне навчальне видання. Конспект лекцій / В.Б. Неруш, В.В. Курдеча. К.: НН ІТС НТУУ «КПІ», 2012. 115 с.
- 6. Веб-сервіс моделювання дискретно-подійних систем / Дифучин А.Ю; КПІ ім. Ігоря Сікорського Київ, 2018. 95 с.
- 7. Стеценко І. В. бібліотека «PetriObjModelPaint» URL: https://github.com/StetsenkoInna/PetriObjModelPaint
- 8. Мова програмування Java [Електронний ресурс] Режим доступу до ресурсу: https://www.java.com/en/

Додаток А. Лістинг коду

```
package LibNet;
import PetriObj.PetriObjModel;
import PetriObj.PetriSim;
import PetriObj.ArcIn;
import PetriObj.ArcOut;
import PetriObj.ExceptionInvalidNetStructure;
import PetriObj.ExceptionInvalidTimeDelay;
import PetriObj.PetriNet;
import PetriObj.PetriP;
import PetriObj.PetriT;
import java.util.ArrayList;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;
/**
 * @author white
 */
public class coursework1 {
    public static void main(String[] args) throws
ExceptionInvalidTimeDelay, ExceptionInvalidNetStructure {
        int timeModeling = 1440;
        int numOfExp = 6;
        firstExperiment(timeModeling);
        //showStatistics(numOfExp, timeModeling);
        //validateModel(timeModeling);
        //chebishevExperiment(timeModeling);
        //timeExperiment(numOfExp);
    }
```

```
public static void firstExperiment(int timeModeling)throws
        ExceptionInvalidTimeDelay, ExceptionInvalidNetStructure {
        PetriObjModel model = getModel(30, 30, 1, 30, 1, 100, 1);
        model.setIsProtokol(false);
       model.go(timeModeling);
        double total =
(double) (model.getListObj().get(0).getNet().getListP()[6].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getMark()
        + model.getListObj().get(0).getNet().getListP()[3].getMark()) +
model.getListObj().get(0).getNet().getListP()[2].getMark();
        double failureProbability =
(model.getListObj().get(0).getNet().getListP()[6].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getMark())/ total;
        double storageLoad =
model.getListObj().get(0).getNet().getListP()[4].getMean()/total;
        System.out.println();
        System.out.println("~~~~~~~Solo
Experiment~~~~~~~");
        System.out.println("MaxQ1: " +
model.getListObj().get(0).getNet().getListP()[2].getObservedMax());
        System.out.println("MeanQ1: " +
model.getListObj().get(0).getNet().getListP()[2].getMean());
        System.out.println("LeftQ1: " +
model.getListObj().get(0).getNet().getListP()[2].getMark());
        System.out.println("MaxQ2: " +
model.getListObj().get(0).getNet().getListP()[4].getObservedMax());
        System.out.println("MeanQ2: " +
model.getListObj().get(0).getNet().getListP()[4].getMean());
        System.out.println("LeftQ2: " +
model.getListObj().get(0).getNet().getListP()[4].getMark());
        System.out.println("NumOfFull: " +
model.getListObj().get(0).getNet().getListP()[6].getMark());
        System.out.println("NumOfSecond: " +
model.getListObj().get(0).getNet().getListP()[3].getMark());
        System.out.println("Failure Prob: " + failureProbability);
        System.out.println("Storage Load: " + storageLoad);
```

```
~");
   }
   public static void showStatistics(int numOfExp, int timeModeling)
throws
       ExceptionInvalidTimeDelay, ExceptionInvalidNetStructure {
       JFrame frame = new JFrame();
       String[] columnNames = {"CreateDelay", "FirstRegDelay",
"SecondRegDelay", "FullRegDelay", "MaxQ1", "MeanQ1", "LeftQ1", "MaxQ2"
,"MeanQ2" ,"LeftQ2", "NumOfSecond" ,"NumOfFull", "FProb", "SLoad"};
       double[] createDelay = {20.0, 30.0, 40.0};
       double[] firstRegDelay = {20.0, 30.0, 40.0};
       double[] secondRegDelay = \{20.0, 30.0, 40.0\};
       double[] fullRegDelay = {60.0, 100.0, 140.0};
       //double[] createDelay = {30.0, 30.0, 30.0};
       //double[] firstRegDelay = {30.0, 30.0, 30.0};
       //double[] secondRegDelay = {30.0, 30.0, 30.0};
       //double[] fullRegDelay = {100.0, 100.0, 100.0};
       int numOfSituations = 81;
       Object[][] data = new
Object[numOfSituations*numOfExp][columnNames.length];
       int index = 0;
       ArrayList<Double> probabilities = new ArrayList<>();
       ArrayList<Double> groupDeviation = new ArrayList<>();
       ArrayList<Double> probabilitiesAvg = new ArrayList<>();
       ArrayList<Double> difference = new ArrayList<>();
       int totalSumOfProcessed = 0;
       int totalSumOfStucked = 0;
       int totalSumInStorage = 0;
```

```
double totalSumInStorageMean = 0;
        for(int i1 = 0; i1 < createDelay.length; i1++) {</pre>
            for(int i2 = 0; i2 < firstRegDelay.length; i2++) {</pre>
                for(int i3 = 0; i3 < secondRegDelay.length; i3++) {</pre>
                    for(int i4 = 0; i4 < fullRegDelay.length; i4++) {</pre>
                         for (int j = 0; j < numOfExp; <math>j++) {
                             PetriObjModel model =
getModel(createDelay[i1], firstRegDelay[i2], 1, secondRegDelay[i3], 1,
fullRegDelay[i4], 1);
                             model.setIsProtokol(false);
                             model.go(timeModeling);
                             double total =
((double) (model.getListObj().get(0).getNet().getListP()[6].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getMark()
model.getListObj().get(0).getNet().getListP()[3].getMark()) +
model.getListObj().get(0).getNet().getListP()[2].getMark());
                             double failureProbability =
(model.getListObj().get(0).getNet().getListP()[6].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getMark())
                             / total;
                             double storageLoad =
model.getListObj().get(0).getNet().getListP()[4].getMean()/total;
                             totalSumOfProcessed = totalSumOfProcessed +
model.getListObj().get(0).getNet().getListP()[3].getMark()+
model.getListObj().get(0).getNet().getListP()[6].getObservedMax();
                             totalSumOfStucked = totalSumOfStucked +
model.getListObj().get(0).getNet().getListP()[2].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getObservedMax();
                             totalSumInStorage = totalSumInStorage +
model.getListObj().get(0).getNet().getListP()[4].getObservedMax();
                             totalSumInStorageMean =
totalSumInStorageMean +
model.getListObj().get(0).getNet().getListP()[4].getMean();
```

```
data[index] = new Object[]{createDelay[i1],
firstRegDelay[i2], secondRegDelay[i3], fullRegDelay[i4],
model.getListObj().get(0).getNet().getListP()[2].getObservedMax(),
model.getListObj().get(0).getNet().getListP()[2].getMean(),
model.getListObj().get(0).getNet().getListP()[2].getMark(),
model.getListObj().get(0).getNet().getListP()[4].getObservedMax(),
model.getListObj().get(0).getNet().getListP()[4].getMean(),
model.getListObj().get(0).getNet().getListP()[4].getMark(),
model.getListObj().get(0).getNet().getListP()[3].getMark(),
model.getListObj().get(0).getNet().getListP()[6].getMark(),
                                 failureProbability, storageLoad
                             };
                             index++;
                            probabilities.add(failureProbability);
                        double total =
probabilities.stream().mapToDouble(Double::doubleValue).sum();
                        double failureProbability = total / numOfExp;
                        for (int j = 0; j < numOfExp; <math>j++) {
                            probabilitiesAvg.add(failureProbability);
                         }
                    }
                }
            }
        }
        JTable table = new JTable(data, columnNames);
        JScrollPane sp = new JScrollPane(table);
```

```
frame.add(sp);
       frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
       frame.setSize(1920,1080);
       frame.setLocationRelativeTo(null);
       frame.setVisible(true);
       double total =
probabilities.stream().mapToDouble(Double::doubleValue).sum();
       double failureProbability = total / probabilities.size();
       double storageLoad = (double) totalSumInStorageMean /
(totalSumOfStucked + totalSumOfProcessed);
       double storageAvg = (double) totalSumInStorage /
(numOfSituations * numOfExp);
       double stuckProbability = (double) totalSumOfStucked /
(totalSumOfStucked + totalSumOfProcessed);
       long adviceForSize = (long) ((Math.round(((totalSumOfStucked +
totalSumOfProcessed) / (numOfSituations * numOfExp)) *
stuckProbability) +5) /10) *10;
       System.out.println();
       System.out.println("~~~~~~~~~Main
Goals ~~~~~~ ");
       System.out.println("Failure Probability: " +
failureProbability);
       System.out.println("Storage Load: " + storageLoad);
       System.out.println("Storage Avg Max: " + storageAvg);
       System.out.println("Stuck Probability : " + stuckProbability);
       System.out.println("Advice For Size : " + adviceForSize);
~");
       for (int i = 0; i < probabilities.size(); i++) {</pre>
           groupDeviation.add(Math.pow((probabilities.get(i) -
probabilitiesAvg.get(i)), 2));
           difference.add(Math.pow((probabilitiesAvg.get(i) -
failureProbability), 2));
       }
```

```
double sFactual =
difference.stream().mapToDouble(Double::doubleValue).sum() * numOfExp;
       double sResidual =
groupDeviation.stream().mapToDouble(Double::doubleValue).sum();
       double degreesOfFreedom = numOfSituations * (numOfExp - 1);
       double dFactual = sFactual;
       double dResidual = sResidual / degreesOfFreedom;
       double f = dFactual / dResidual;
       double fCritical = 1.41805107; //a=0.05; k1=49; k2=200
       System.out.println();
       System.out.println("~~~~~~~Analysis Of
Variance~~~~~~~~");
       System.out.println("Sum of Squares: " + dFactual);
       System.out.println("Degrees of Freedom: " + degreesOfFreedom);
       System.out.println("Mean Square: " + dResidual);
       System.out.println("F: " + f);
       System.out.println("F-critical (alpha=0.05): " + fCritical);
       if (f > fCritical) {
           System.out.println("Influence is worthy of attention");
       } else {
           System.out.println("Influence is not worthy of attention");
       }
~");
   }
   public static void validateModel(int timeModeling) throws
ExceptionInvalidTimeDelay, ExceptionInvalidNetStructure {
       PetriObjModel model = getModel(30, 30, 1, 30, 1, 100, 1);
       model.setIsProtokol(false);
       model.go(timeModeling);
       System.out.println();
```

```
System.out.println("~~~~~~Model
Validation~~~~~~~~~");
       double practicalT1 = timeModeling /
(double) ((model.getListObj().get(0).getNet().getListP()[3].getMark() +
model.getListObj().get(0).getNet().getListP()[6].getMark()+
model.getListObj().get(0).getNet().getListP()[2].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getMark())/2);
       System.out.println("Theoretical T1 = 30(exp); Factual T1 = " +
practicalT1);
       double practicalT2 = timeModeling /
(double) (model.getListObj().get(0).getNet().getListP()[2].getMark()+
model.getListObj().get(0).getNet().getListP()[3].getMark());
       System.out.println("Theoretical T2 = 30(exp); Factual T2 = "+
practicalT2);
       double practicalT3 = timeModeling /
(double) ((model.getListObj().get(0).getNet().getListP()[3].getMark()));
       System.out.println("Theoretical T3 = 30(exp); Factual T3 = " +
practicalT3);
       double practicalT4 = timeModeling /
(double) ((model.getListObj().get(0).getNet().getListP()[6].getMark()));
       System.out.println("Theoretical T4 = 100(exp); Factual T4 = " +
practicalT4);
~");
   }
   public static void chebishevExperiment(int timeModeling) throws
ExceptionInvalidTimeDelay, ExceptionInvalidNetStructure {
       int runAmount = 100;
       ArrayList<Double> probabilities = new ArrayList<>();
       for (int i = 0; i < runAmount; i++) {
           PetriObjModel model = getModel(30, 30, 1, 30, 1, 100, 1);
           model.setIsProtokol(false);
```

```
model.go(timeModeling);
           double failureProbability =
(model.getListObj().get(0).getNet().getListP()[6].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getMark())
((double) (model.getListObj().get(0).getNet().getListP()[6].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getMark()
model.getListObj().get(0).getNet().getListP()[3].getMark()) +
model.getListObj().get(0).getNet().getListP()[2].getMark());
           probabilities.add(failureProbability);
       }
       double total =
probabilities.stream().mapToDouble(Double::doubleValue).sum();
       double avg = total / probabilities.size();
       double sum = 0;
       for (Double finProb : probabilities) {
           sum += Math.pow((finProb - avg), 2);
       }
       double stdDev = Math.sqrt(sum / (probabilities.size()-1));
       double numOfExp = Math.pow(stdDev, 2) / (Math.pow((0.05 * avg),
2) * (1 - 0.95));
       System.out.println();
       System.out.println("~~~~~~Chebyshev
Test~~~~~");
       System.out.println("Failure Probability = " + avg);
       System.out.println("Standard Deviation = " + stdDev);
       System.out.println("Enough number of experiments by Chebishev: "
+ numOfExp);
~");
   }
   public static void timeExperiment(int numOfExp) throws
ExceptionInvalidTimeDelay, ExceptionInvalidNetStructure {
       int timeModelingMax = 100000;
```

```
int timeModelingStep = 100;
        int timeModelingStart = 100;
        JFrame frame = new JFrame();
        Object[][] data = new Object[(timeModelingMax-
timeModelingStep) *numOfExp][2];
        String[] columnNames = {"CreateDelay",
"FirstRegDelay", "SecondRegDelay"};
        int index = 0;
        for (int i = 0; i < numOfExp; i++) {
            int t = timeModelingStart;
            while (t <= timeModelingMax) {</pre>
                PetriObjModel model = getModel(30, 30, 1, 30, 1, 100,
1);
                model.setIsProtokol(false);
                model.go(t);
                double total =
(double) (model.getListObj().get(0).getNet().getListP()[6].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getMark()
model.getListObj().get(0).getNet().getListP()[3].getMark()) +
model.getListObj().get(0).getNet().getListP()[2].getMark();
                double failureProbability =
(model.getListObj().get(0).getNet().getListP()[6].getMark() +
model.getListObj().get(0).getNet().getListP()[4].getMark())
                    / total;
                double storageLoad =
model.getListObj().get(0).getNet().getListP()[4].getMean()/total;
                data[index] = new Object[]{t, failureProbability,
storageLoad);
                t += timeModelingStep;
                index++;
            }
        }
```

```
JTable table = new JTable(data, columnNames);
        JScrollPane sp = new JScrollPane(table);
        frame.add(sp);
        frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
        frame.setSize(1920,1080);
        frame.setLocationRelativeTo(null);
        frame.setVisible(true);
    }
    public static PetriObjModel getModel(double createDelay, double
firstRegDelay, int firstRegQ, double secondRegDelay, int secondRegQ,
double fullRegDelay, int fullRegQ) throws ExceptionInvalidTimeDelay,
ExceptionInvalidNetStructure {
        ArrayList<PetriSim> list = new ArrayList<>();
        list.add(new PetriSim(CreateAdjSectionNet(createDelay,
firstRegDelay, firstRegQ, secondRegDelay, secondRegQ, fullRegDelay,
fullReqQ)));
        return new PetriObjModel(list);
    }
    public static PetriNet CreateAdjSectionNet(double createDelay,
double firstRegDelay, int firstRegQ, double secondRegDelay, int
secondRegQ, double fullRegDelay, int fullRegQ) throws
ExceptionInvalidNetStructure, ExceptionInvalidTimeDelay {
     ArrayList<PetriP> d_P = new ArrayList<>();
     ArrayList<PetriT> d T = new ArrayList<>();
     ArrayList<ArcIn> d In = new ArrayList<>();
     ArrayList<ArcOut> d Out = new ArrayList<>();
     d P.add(new PetriP("Генератор",1));
     d P.add(new PetriP("P2",0));
     d P.add(new PetriP("Накопичувач", 0));
     d P.add(new PetriP("Агрегати з вторинного", 0));
     d P.add(new PetriP("Накопичувач",0));
     d P.add(new PetriP("Первинне регулювання вільне", firstRegQ ));
```

```
d_P.add(new PetriP("Агрегати з повного",0));
d P.add(new PetriP("Вторинне регулювання вільне", secondRegQ));
d P.add(new PetriP("Повне регулювання вільне", fullRegQ));
d_T.add(new PetriT("Надходження", createDelay));
d T.get(0).setDistribution("exp", d T.get(0).getTimeServ());
d T.get(0).setParamDeviation(0.0);
d T.add(new PetriT("Первинне регулювання", firstRegDelay));
d T.get(1).setDistribution("exp", d T.get(1).getTimeServ());
d T.get(1).setParamDeviation(0.0);
d T.get(1).setPriority(10);
d T.add(new PetriT("Вторинне регулювання", secondRegDelay));
d_T.get(2).setDistribution("exp", d_T.get(2).getTimeServ());
d T.get(2).setParamDeviation(0.0);
d T.add(new PetriT("Відмова", 0.0));
d T.add(new PetriT("Повне регулювання", fullRegDelay));
d T.get(4).setDistribution("exp", d T.get(4).getTimeServ());
d T.get(4).setParamDeviation(0.0);
d In.add(new ArcIn(d P.get(1),d T.get(1),2));
d In.add(new ArcIn(d P.get(2),d T.get(2),2));
d In.add(new ArcIn(d P.get(1),d T.get(3),2));
d In.add(new ArcIn(d P.get(4),d T.get(4),1));
d In.add(new ArcIn(d P.get(7),d T.get(2),1));
d_In.add(new ArcIn(d_P.get(8),d_T.get(4),1));
d_In.add(new ArcIn(d_P.get(5),d_T.get(1),1));
d In.add(new ArcIn(d P.get(0),d T.get(0),1));
d Out.add(new ArcOut(d T.get(0),d P.get(1),2));
d_Out.add(new ArcOut(d_T.get(1),d_P.get(2),2));
d_Out.add(new ArcOut(d_T.get(2),d_P.get(3),2));
d_Out.add(new ArcOut(d_T.get(3),d_P.get(4),2));
d Out.add(new ArcOut(d T.get(4),d P.get(6),1));
d_Out.add(new ArcOut(d_T.get(2),d_P.get(7),1));
d_Out.add(new ArcOut(d_T.get(4),d_P.get(8),1));
d Out.add(new ArcOut(d T.get(1),d P.get(5),1));
```

```
d_Out.add(new ArcOut(d_T.get(0),d_P.get(0),1));
    PetriNet d_Net = new
PetriNet("coursework_v1.pns",d_P,d_T,d_In,d_Out);
    PetriP.initNext();
    PetriT.initNext();
    ArcIn.initNext();
    ArcOut.initNext();
    return d_Net;
}
```

Додаток Б. Результати проведення експериментів

		Secon								Num Of			
Creat eD	First RegD	d RegD	Full RegD	Q1 Max	Q1 Mean	Q1 Left	Q1 Max	Q1 Mean	Q2 Left	Secon d	Num OfFull	Fprob	Sload
20	20	20	60	14	0.617 568	0	1419	738.9 033	1419	2070	704	0.506 32	0.176 223
20	20	20	60	12	0.570 558	0	1355	664.7 98	1354	2026	633	0.495 141	0.165 661
20	20	20	60	12	0.590 149	0	1398	714.0 358	1396	2030	653	0.502	0.175 052
20	20	20	60	16	0.644 48	0	1241	598.8 579	1241	2092	684	0.479 213	0.149 081
20	20	20	60	10	0.566 498	2	1356	692.3 079	1355	2038	650	0.495 674	0.171 152
20	20	20	60	10	0.600 321	0	1357	658.2 157	1357	2046	640	0.493 94	0.162 804
20	20	20	100	12	0.581 677	0	1688	798.8 629	1688	2034	389	0.505	0.194 323
20	20	20	100	14	0.814 193	0	1494	737.5 063	1494	2030	401	0.482 803	0.187
20	20	20	100	12	0.627 182	0	1523	735.7 562	1523	2004	394	0.488 906	0.187 645
20	20	20	100	14	0.623 664	2	1586	777.9 309	1586	1994	421	0.501 374	0.194 337
20	20	20	100	12	0.552 798	2	1591	767.0 025	1591	2024	420	0.498 142	0.189 993
20	20	20	100	12	0.821 965	0	1431	763.8 056	1430	1978	437	0.485 566	0.198 649
20	20	20	140	12	0.517 709	0	1823	879.6 084	1823	2008	300	0.513 919	0.212 929
20	20	20	140	12	0.593 449	0	1837	882.1 713	1837	1994	258	0.512	0.215 743
20	20	20	140	12	0.619	2	1743	869.8 116	1743	2028	294	0.500 861	0.213 871
20	20	20	140	10	0.489 331	0	1785	898.7 792	1784	1952	293	0.515 513	0.223 077
20	20	20	140	10	0.572 955	2	1724	874.3 009	1723	1950	320	0.511 389	0.218 849
20	20	20	140	16	0.687 281	0	1700	892.0 079	1699	1920	254	0.504 26	0.230 314
20	20	30	60	24	2.978 666	2	1242	625.5 936	1242	1950	693	0.497 813	0.160 945
20	20	30	60	22	3.174 827	0	1361	720.1 69	1361	2054	660	0.495 951	0.176 729
20	20	30	60	22	2.935 006	0	1384	692.0 479	1384	2022	713	0.509 104	0.168 014
20	20	30	60	24	3.135 433	0	1361	691.8 08	1358	2018	665	0.500 619	0.171 197
20	20	30	60	26	3.780 32	0	1322	711.2 893	1321	1998	664	0.498 368	0.178 581
20	20	30	60	28	3.355 833	0	1407	692.7 931	1403	2022	660	0.505 018	0.169 594

20	20	30	100	18	2.299 375	0	1491	758.0 2	1491	1998	386	0.484 387	0.195 618
20	20	30	100	28	3.714 095	0	1548	763.3 747	1548	2052	377	0.484 033	0.191 947
20	20	30	100	32	2.423 596	4	1650	793.3 447	1650	1910	407	0.518 006	0.199 785
20	20	30	100	28	5.389 828	0	1582	788.9 155	1582	2054	395	0.490 449	0.195 712
20	20	30	100	18	2.042 394	0	1659	853.2 949	1658	1940	395	0.514	0.213 698
20	20	30	100	26	3.386	0	1602	842.6 99	1601	2074	414	0.492	0.206 089
20	20	30	140	22	2.756	6	1635	834.7	1635	1918	320	786 0.503	0.215
20	20	30	140	32	2.866	0	1780	452 877.9	1779	1958	274	996 0.511	196 0.218
20	20	30	140	42	616 4.417	0	1750	752 878.7	1750	1968	263	0.505	892 0.220
20	20	30	140	30	794 3.763	0	1679	479 873.4	1679	2008	292	652 0.495	735 0.219
20	20	30	140	24	854 3.588	0	1715	866.9	1714	2018	303	351 0.499	513 0.214
20	20	30	140	20	342 2.900	2	1698	136 811.0	1698	1920	275	876 0.506	848 0.208
20	20	40	60	84	091 35.89	68	1176	922 555.7	1175	1990	684	547 0.474	239 0.141
					666 23.49			023 668.1				598 0.502	869 0.168
20	20	40	60	66	116 61.53	4	1301	301 585.3	1300	1966	689	4 0.476	762 0.150
20	20	40	60	154	512	58	1219	886	1219	1974	630	424	834
20	20	40	60	156	77.58 457	156	1257	648.9 859	1257	1956	646	0.473 973	0.161
20	20	40	60	82	21.42 443	28	1403	700.4 07	1401	1976	666	0.507 738	0.172 048
20	20	40	60	102	38.67 341	26	1304	646.4 883	1304	1958	657	0.497 085	0.163 875
20	20	40	100	138	53.11 113	132	1605	792.3 402	1603	1938	400	0.491 775	0.194 535
20	20	40	100	58	24.17 195	6	1688	818.9 748	1688	2012	421	0.511 025	0.198 443
20	20	40	100	80	41.50 782	24	1478	766.3 66	1478	1942	401	0.488 687	0.199 315
20	20	40	100	96	47.65 862	58	1361	697.9 083	1361	1972	430	0.468 725	0.182 651
20	20	40	100	108	40.53 663	50	1667	821.9 075	1666	1928	409	0.511 966	0.202 79
20	20	40	100	66	26.93 779	14	1502	750.2 102	1500	1968	407	0.490 357	0.192 906
20	20	40	140	100	60.42 372	92	1828	930.8 737	1825	1862	292	0.520	0.228 66
20	20	40	140	50	22.54 361	14	1549	754.0 361	1548	2024	315	0.477 57	0.193 293
20	20	40	140	42	14.34 701	20	1730	873.7 929	1729	1930	288	0.508 445	0.220 265
20	20	40	140	54	23.34	52	1684	825.5 07	1684	1942	291	0.497	0.207 989
	l .				0-1-1	<u> </u>	<u> </u>	07				000	203

20										I I				
20	20	20	40	140	214		208	1765		1764	1816	265		
20 30 20 60 8 961 0 1861 401 1860 1514 647 477 31	20	20	40	140	58		22	1634		1632	1930	283		
20 30 20 60 8 302 0 16/0 33 1608 199 603 188 472 20 30 20 60 10 0.277 0 1704 346 1704 1552 635 1313 256 2016 2	20	30	20	60	8		0	1861		1860	1514	647		
20 30 20 60 8 435 0 1644 841.2 1641 1600 644 0.588 0.216 535	20	30	20	60	8		0	1670		1668	1592	663		
20 30 20 60 10 945 0 1704 8492 1704 1552 635 131 0.526	20	30	20	60	8	0.276	0	1644	841.2	1641	1600	644	0.588	0.216
20 30 20 60 6 878 0 1802 215 1801 1544 672 6.615 4.89 20 30 20 60 10 0.366 0 1544 477 1544 1618 657 3.29 468 20 30 20 100 10 3.366 0 2014 4174 2013 1568 386 0.604 0.255 20 30 20 100 8 0.271 0 1983 976.7 1983 1544 388 0.605 0.249 20 30 20 100 6 0.205 0 1979 1035 1978 1518 381 0.608 0.267 20 30 20 100 6 0.325 0 1894 958.8 1892 1598 429 0.592 0.244 20 30 20 100 8 0.335 0 1894 976.7 1892 1598 429 0.592 0.246 20 30 20 100 8 0.335 0 1894 976.7 1892 1598 429 0.592 0.246 20 30 20 100 8 0.334 0 1974 196.0 1974 1590 417 0.600 0.242 20 30 20 100 10 0.324 0 1974 966.0 1974 1590 417 0.600 0.242 20 30 20 140 14 0.266 2 2 2123 481 2123 1586 260 0.600 0.270 20 30 20 140 10 0.287 0 2285 1558 302 1255 0710 20 30 20 140 10 0.230 0 2014 744 2014 1584 301 0.593 0.260 20 30 20 140 10 0.230 0 2014 744 2014 1584 301 0.593 0.260 20 30 20 140 10 0.230 0 2014 744 2014 1584 301 0.593 0.260 20 30 20 140 10 0.230 0 2014 744 2014 1584 301 0.593 0.260 20 30 20 140 10 0.230 0 2014 744 2014 1584 304 0.593 0.260 20 30 30 60 140 6 0.195 0 303 2069 1584 324 0.601 0.760 20 30 30 60 140 6 0.195 0 387 0 3056 2218 1492 283 0.626 0.772 20 30 30 60 140 16 0.195 0 387 0 385.0 3734 1594 279 0.621 0.744 20 30 30 60 14 14 1500 0.908 0 1636 885 1558 1558 0.607 0.286 20 30 30 60 18 1.009 0 1872 935.4 1870 1636 666 0.594 0.213 20 30 30 60 18 1.009 0 1636 80.9 1636 1604 657 0.586	20	30	20	60	10	0.277	0	1704	849.2	1704	1552	635	0.601	0.218
20 30 20 60 10 0.366 0 1544 447 1544 1618 657 0.576 0.203 208 208 329 468 329 468 329 468 329 468 329 329 468 329 32	20	30	20	60	6	0.172	0	1802	889.7	1801	1544	672	0.615	0.221
20 30 20 100 10 366 0 2014 474 2013 1568 386 0.604 0.255 739 224 20 30 20 100 8 869 0 1983 976.7 1983 1544 388 619 488 619 610	20	30	20	60	10	0.386	0	1544	777.0	1544	1618	657	0.576	0.203
20 30 20 100 8 869 0 1983 976.7 1983 1544 388 0.605 0.249 488 20 30 20 100 6 697 0 1979 1035. 1978 1518 381 46 021 20 30 20 100 6 0.325 0 1894 958.8 271 1892 1598 429 0.592 0.244 243 6611 243 243 6611 243 243 6611 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6611 243 243 6612 243 6612 243 243 6612 243 243 6612 243 243 6612 243 243 6612 243 243 6612 243	20	30	20	100	10	0.384	0	2014	1012.	2013	1568	386	0.604	0.255
20 30 20 100 6 697 0 1979 1035. 1978 1518 381 0.608 0.267	20	30	20	100	8	0.271	0	1983	976.7	1983	1544	388	0.605	0.249
20 30 20 100 6 895 0 1894 958.8 271 1892 1598 429 0.592 0.244 661	20	30	20	100	6	0.205	0	1979	1035.	1978	1518	381	0.608	0.267
20 30 20 100 8 507 0 1994 988.2 1994 1634 383 0.592 0.246			20		6	0.325	0	1894	958.8	1892			0.592	0.244
20 30 20 100 10 0.324 (92) 0 1974 (112) <th< td=""><td></td><td></td><td></td><td></td><td></td><td>0.338</td><td></td><td></td><td>988.2</td><td></td><td></td><td></td><td>0.592</td><td>0.246</td></th<>						0.338			988.2				0.592	0.246
20 30 20 140 14 0.266 922 2 2123 1074. 2123 1586 260 0.600 0.270						0.324							0.600	0.242
20 30 20 140 10 0.287 0 2285 1151. 2285 1558 302 0.624 0.277 701														
20 30 20 140 6 0.229 by 140 0.291 by 1015. Fight 2014 by 1015. Fight 2014 by 1584 by 15														
20 30 20 140 6 926 0 2014 744 2014 1584 301 742 514 20 30 20 140 12 0.373 754 0 2069 1034. 033 2069 1584 324 0.601 71 0.260 0.272 20 30 20 140 10 0.230 022 0 2220 507 1086. 507 2218 1492 283 346 0.626 103 0.272 346 0.601 108 0.681 103 0.626 0.272 0.621 346 0.627 108 0.626 0.272 0.627 346 0.605 108 0.626 0.274 0.627 108 0.681 0.68 0.627 108 0.682 0.697 0.198 0.699 0.198 0.699 0.198 1558 0.198 1558 0.198 1584 0.198 737 0.198 0.690 0.198 0.697 0.198 1651 0.198 0.685 0.198 0.198 0.198 0.198 0.198 1661 0.198 1677 0.198 1678 0.198 1678 0.198 1678 0.198 1678 0.198 1678 0.198 1678 0.198 1774 0.198 1678 0.198 1679 0.198 1678 0.198 1679 0.198 </td <td></td>														
20 30 20 140 12 754 0 2069 033 2069 1584 324 71 003 20 30 20 140 10 0.230 0 2220 1086. 2218 1492 283 346 103 20 30 20 140 6 0.195 153 0 2334 1153. 2334 1594 279 0.621 0.274 20 30 30 60 10 0.908 6 1558 763.9 1558 1584 737 734 651 20 30 30 60 20 2.030 877 0 1872 935.4 1870 1632 637 702 007 20 30 30 60 20 1.457 8 1714 853.5 1713 1616 666 0.594 0.213 20 30 30 60 18 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>926</td><td></td><td></td><td>744</td><td></td><td></td><td></td><td>742</td><td>514</td></t<>						926			744				742	514
20 30 20 140 10 022 0 2220 507 2218 1492 283 346 103 20 30 20 140 6 0.195 0 2334 1153. 2334 1594 279 0.621 0.274 20 30 30 60 10 0.908 6 1558 763.9 1558 1584 737 0.590 0.196 20 30 30 60 20 2.030 0 1872 935.4 1870 1632 637 702 007 20 30 30 60 20 1.457 8 1714 853.5 1713 1616 666 0.594 0.213 20 30 30 60 18 1.000 0 1774 843.9 1774 1592 685 0.607 0.208 20 30 30 60 10 0.978 0	20	30	20	140	12	754	0	2069	033	2069	1584	324	71	003
20 30 20 140 6 153 0 2334 005 2334 1594 279 108 068 20 30 30 60 10 0.908 6 1558 763.9 1558 1584 737 0.590 0.196 20 30 30 60 20 2030 0 1872 935.4 1870 1632 637 702 007 20 30 30 60 20 1.457 8 1714 853.5 1713 1616 666 0.594 0.213 20 30 30 60 18 1.000 1774 843.9 1774 1592 685 0.607 0.208 20 30 30 60 10 0.978 0 1737 858.0 1736 1512 643 0.611 0.220 20 30 30 60 18 1.099 0 1636	20	30	20	140	10	022	0	2220	507	2218	1492	283	346	103
20 30 30 60 10 182 6 1558 885 1558 1584 737 734 651 20 30 30 60 20 2.030 877 0 1872 935.4 443 1870 1632 637 702 702 007 20 30 30 60 20 1.457 402 8 1714 853.5 298 1713 1616 666 0.594 304 0.213 20 20 30 30 60 18 1.000 589 0 1774 843.9 676 1774 1592 685 0.607 011 0.208 336 20 30 30 60 10 0.978 327 0 1737 63 1736 1512 643 0.611 411 0.220 525 20 30 30 60 18 1.099 992 0 1636 461 1636 1604 657 0.588 401 0.205 529 20 30 30 100 12	20	30	20	140	6	153	0	2334	005	2334	1594	279	108	068
20 30 30 60 20 877 0 1872 443 1870 1632 637 702 007 20 30 30 60 20 1.457 402 8 1714 853.5 298 1713 1616 666 0.594 0.213 20 30 30 60 18 1.000 589 0 1774 843.9 676 1774 1592 685 0.607 011 0.208 336 20 30 30 60 10 0.978 327 0 1737 858.0 63 1736 1512 643 0.611 411 0.220 20 30 30 60 18 1.099 992 0 1636 800.9 461 1636 1604 657 0.588 401 0.205 529 20 30 30 100 12 0.923 337 0 2035 1102 266 2035 1620 364 0.596 915 0.274 915 20 30 30 100 16 0.971 0 1890 961.2 1890 1560 409 0.595 0.249	20	30	30	60	10	182	6	1558	885	1558	1584	737	734	651
20 30 30 60 20 402 8 1714 298 1713 1616 666 304 223 20 30 30 60 18 1.000 0 1774 843.9 1774 1592 685 0.607 0.208 20 30 30 60 10 0.978 0 1737 858.0 1736 1512 643 0.611 0.220 20 30 30 60 18 1.099 0 1636 800.9 1636 1604 657 0.588 0.205 20 30 30 100 12 0.923 0 2035 1102 2035 1620 364 0.596 0.274 20 30 30 100 16 0.971 0 1890 961.2 1890 1560 409 0.595 0.249	20	30	30	60	20		0	1872		1870	1632	637		
20 30 30 60 18 589 0 1774 676 1774 1592 685 011 336 20 30 30 60 10 0.978 327 0 1737 858.0 63 1736 1512 643 0.611 0.220 20 30 30 60 18 1.099 992 0 1636 800.9 461 1636 1604 657 0.588 0.205 20 30 30 100 12 0.923 337 0 2035 1102. 2035 1620 364 0.596 0.274 20 30 30 100 16 0.971 0 1890 961.2 1890 1560 409 0.595 0.249	20	30	30	60	20		8	1714		1713	1616	666		
20 30 30 60 10 327 0 1737 63 1736 1512 643 411 525 20 30 30 60 18 1.099 992 0 1636 800.9 461 1636 1604 657 0.588 401 0.205 529 20 30 30 100 12 0.923 337 0 2035 1102. 266 2035 1620 364 0.596 915 0.274 20 30 30 100 16 0.971 0 1890 961.2 1890 1560 409 0.595 0.249	20	30	30	60	18		0	1774		1774	1592	685		
20 30 30 60 18 1.099 992 0 1636 800.9 461 1636 1604 657 0.588 0.205 401 529 20 30 30 100 12 0.923 337 0 2035 1102 266 2035 1620 364 0.596 0.274 915 264 20 30 30 100 16 0.971 0 1890 961.2 1890 1560 409 0.595 0.249	20	30	30	60	10	0.978	0	1737		1736	1512	643	0.611	0.220
20 30 30 100 12 0.923 0 2035 1102. 2035 1620 364 0.596 0.274 20 30 30 100 16 0.971 0 1890 961.2 1890 1560 409 0.595 0.249	20	30	30	60	18	1.099	0	1636	800.9	1636	1604	657	0.588	0.205
20 30 30 100 16 0.971 0 1890 961.2 1890 1560 409 0.595 0.249	20	30	30	100	12	0.923	0	2035	1102.	2035	1620	364	0.596	0.274
	20	30	30	100	16	0.971	0	1890	961.2	1890	1560	409	0.595	0.249

20	30	30	100	16	0.933 925	0	2067	1038. 423	2067	1558	414	0.614 261	0.257 099
20	30	30	100	16	1.467 015	4	2189	1092. 544	2189	1592	396	0.618 273	0.261 312
20	30	30	100	14	0.830 571	0	2102	1053. 637	2100	1548	409	0.618 437	0.259 708
20	30	30	100	14	1.148 487	0	2002	1002. 001	2002	1552	399	0.607 387	0.253 479
20	30	30	140	22	1.275 551	0	2013	974.7 745	2012	1570	317	0.597 333	0.250 006
20	30	30	140	12	1.565 351	4	2109	1033. 015	2109	1666	294	0.589 983	0.253 625
20	30	30	140	12	1.371 318	0	2230	1151. 364	2230	1660	259	0.599 904	0.277 504
20	30	30	140	22	1.482 092	0	2037	1016. 994	2037	1644	318	0.588 897	0.254 312
20	30	30	140	18	1.199 664	0	2134	1094. 42	2134	1560	285	0.607 942	0.275 049
20	30	30	140	18	1.862 164	10	2201	1091. 605	2201	1606	288	0.606 334	0.265 921
20	30	40	60	32	5.738 383	0	1731	869.3 304	1730	1568	671	0.604 938	0.219
20	30	40	60	16	2.701 485	2	1499	765.7 546	1496	1600	695	0.577 643	0.201 886
20	30	40	60	14	2.609 237	6	1788	896.3 759	1787	1556	690	0.613 271	0.221 93
20	30	40	60	22	3.500 977	0	1787	871.7 21	1782	1640	665	0.598 728	0.213 291
20	30	40	60	30	4.545 813	0	1653	826.4 945	1651	1598	678	0.593 074	0.210 465
20	30	40	60	24	4.190 533	0	1642	831.6 883	1640	1638	709	0.589 165	0.208 6
20	30	40	100	32	3.614 419	0	1960	920.1 986	1960	1518	415	0.610 069	0.236 373
20	30	40	100	26	3.442 976	0	1934	1004. 085	1934	1656	381	0.582 977	0.252 854
20	30	40	100	22	3.548 3	10	1909	957.6 07	1909	1564	416	0.596 307	0.245 603
20	30	40	100	26	3.590 109	0	1808	916.7 982	1808	1616	407	0.578 178	0.239 31
20	30	40	100	22	3.397 389	0	1945	971.4 672	1945	1588	410	0.597 261	0.246 378
20	30	40	100	26	4.532 07	0	1959	966.4 07	1958	1532	401	0.606 271	0.248 37
20	30	40	140	16	2.709 624	2	2165	1113. 617	2165	1566	286	0.609 853	0.277 088
20	30	40	140	22	2.903 122	6	1974	991.5 365	1974	1542	271	0.591 88	0.261 412
20	30	40	140	22	3.966 3	8	2246	1125. 532	2246	1506	289	0.626 081	0.277 978
20	30	40	140	20	3.669 377	16	2186	1060. 771	2186	1604	315	0.606 892	0.257 406
20	30	40	140	26	5.328 471	12	2130	1023. 852	2130	1646	283	0.592 729	0.251 499
20	30	40	140	28	3.112 326	6	2136	1090. 561	2133	1552	290	0.608 641	0.273 941

					1								
20	40	20	60	6	0.152 343	0	1877	928.8 874	1877	1358	668	0.652 063	0.237 993
20	40	20	60	6	0.142 185	0	2025	972.4 044	2025	1312	652	0.671 096	0.243 771
20	40	20	60	6	0.171 709	2	1981	1023. 327	1980	1320	697	0.669 417	0.255 896
20	40	20	60	8	0.174 966	2	2067	1032. 901	2067	1304	682	0.677 928	0.254 723
20	40	20	60	6	0.139 831	4	2009	969.8 765	2009	1286	680	0.675 798	0.243 749
20	40	20	60	4	0.121	0	2044	996.3 394	2044	1360	631	0.662 949	0.246 924
20	40	20	100	8	0.174 562	0	2264	1107. 835	2264	1308	437	0.673 734	0.276
20	40	20	100	6	0.129 048	0	2327	1178. 73	2327	1402	406	0.660 943	0.285 062
20	40	20	100	8	0.152	0	2310	1153.	2308	1342	389	0.667	0.285
20	40	20	100	6	0.169	0	2414	734 1195.	2414	1356	399	0.674	0.286
20	40	20	100	8	927 0.179	0	2330	674 1179.	2330	1388	417	742 0.664	0.285
20	40	20	100	6	521 0.174	0	2266	262 1123.	2266	1374	385	329 0.658	0.279
20	40	20	140	10	577 0.251	0	2340	789 1151.	2340	1374	275	634 0.655	202 0.288
20	40	20	140	6	997 0.132	0	2390	566 1224.	2390	1292	259	553 0.672	0.310
20	40	20	140	8	25 0.196	0	2347	191 1129.	2346	1340	281	164 0.662	629 0.284
					994 0.148			951 1175.				213 0.658	838 0.297
20	40	20	140	6	145 0.224	0	2330	898 1125.	2330	1350	277	832 0.657	169 0.277
20	40	20	140	8	933 0.179	0	2410	231 1168.	2409	1388	260	875 0.657	355 0.286
20	40	20	140	8	711	0	2396	737	2395	1396	290	927 0.659	385 0.236
20	40	30	60	12	773 0.540	0	1969	7 1043.	1969	1360	668	745 0.683	82 0.256
20	40	30	60	12	934	0	2128	773 975.0	2128	1290	653	125	392
20	40	30	60	14	0.603	6	1970	461	1970	1348	629	0.657 475	0.246
20	40	30	60	16	0.402 482	0	1921	992.1 292	1921	1304	694	0.667 262	0.253 159
20	40	30	60	16	0.853 772	0	2052	1005. 559	2050	1380	601	0.657 653	0.249 456
20	40	30	60	12	0.627 681	4	1838	916.0 351	1836	1346	687	0.651 433	0.236 518
20	40	30	100	16	0.707 954	0	2238	1162. 9	2238	1288	399	0.671 847	0.296 28
20	40	30	100	10	0.568 211	0	2302	1136. 317	2302	1318	373	0.669 922	0.284 577
20	40	30	100	8	0.675 821	0	2197	1085. 663	2197	1352	408	0.658 327	0.274 365
20	40	30	100	14	0.737 081	0	2317	1142. 462	2316	1338	385	0.668 73	0.282 858

20	40	30	100	16	0.651 295	2	2187	1104. 539	2187	1336	394	0.658 586	0.281 842
20	40	30	100	10	0.653 281	0	2179	1095. 608	2179	1360	438	0.658 034	0.275 486
20	40	30	140	10	0.470 619	0	2457	1201. 384	2457	1252	282	0.686 294	0.301 023
20	40	30	140	10	0.497 931	0	2494	1272. 581	2494	1286	293	0.684 262	0.312 443
20	40	30	140	10	0.562 65	0	2434	1254. 616	2434	1376	287	0.664 144	0.306 228
20	40	30	140	14	0.526 249	0	2371	1168. 474	2371	1308	300	0.671 274	0.293 66
20	40	30	140	22	0.706 567	0	2316	1147. 76	2315	1284	280	0.668 987	0.295 891
20	40	30	140	10	0.688 253	0	2282	1119. 754	2282	1376	297	0.652 086	0.283 124
20	40	40	60	16	1.442 887	0	2076	1032. 875	2074	1358	669	0.668 861	0.251 859
20	40	40	60	24	2.050 878	0	1987	965.3 419	1986	1330	667	0.666 081	0.242 366
20	40	40	60	20	1.478 184	0	1981	972.5 77	1979	1324	680	0.667 587	0.244 182
20	40	40	60	16	1.604 921	0	2026	1022. 244	2026	1308	663	0.672 755	0.255 753
20	40	40	60	24	2.127 792	0	2072	1046. 535	2072	1354	671	0.669 514	0.255 439
20	40	40	60	18	1.957 385	0	2110	1029. 015	2110	1312	687	0.680 701	0.250 43
20	40	40	100	12	1.672 632	8	2177	1098. 713	2177	1314	404	0.661 286	0.281 505
20	40	40	100	16	1.070 446	0	2288	1162. 784	2288	1352	369	0.662 759	0.290 043
20	40	40	100	16	1.915 177	0	2280	1125. 201	2279	1348	398	0.665 093	0.279 553
20	40	40	100	16	1.923 752	8	2243	1132. 277	2242	1324	401	0.664 906	0.284 849
20	40	40	100	16	1.487 667	2	2176	1123. 259	2176	1304	407	0.664 181	0.288 83
20	40	40	100	18	1.663 469	2	2248	1125. 187	2248	1302	429	0.672 444	0.282 639
20	40	40	140	14	1.685 969	0	2442	1186. 62	2441	1344	286	0.669 86	0.291 481
20	40	40	140	14	1.606 964	6	2513	1257. 486	2513	1312	278	0.679 241	0.306 032
20	40	40	140	22	1.737 155	0	2452	1223. 869	2452	1286	297	0.681 289	0.303 313
20	40	40	140	12	1.499 352	0	2400	1231. 244	2400	1314	271	0.670 263	0.308 97
20	40	40	140	20	2.408 315	0	2207	1060. 171	2207	1354	302	0.649 495	0.274 442
20	40	40	140	12	1.384 091	0	2292	1162. 473	2291	1356	290	0.655 575	0.295 269
30	20	20	60	12	0.440 923	0	386	205.1 724	385	1716	726	0.392 996	0.072 576
30	20	20	60	8	0.210 929	0	530	257.9 33	528	1548	611	0.423 893	0.095 993

	I					1			· · · · · · · · · · · · · · · · · · ·				
30	20	20	60	8	0.269 121	0	410	241.2 785	389	1536	686	0.411 72	0.092 408
30	20	20	60	12	0.297 167	0	475	229.5 047	467	1590	630	0.408 262	0.085 413
30	20	20	60	6	0.202 739	0	355	186.3 908	351	1530	666	0.399 293	0.073 181
30	20	20	60	8	0.232 771	0	312	169.3 015	308	1556	653	0.381 804	0.067 263
30	20	20	100	8	0.409 248	0	696	328.2 243	696	1608	407	0.406 861	0.121 071
30	20	20	100	8	0.305 827	0	778	357.8 154	778	1634	381	0.414 966	0.128 112
30	20	20	100	8	0.273 765	0	663	333.0 488	662	1620	411	0.398	0.123 672
30	20	20	100	6	0.281 142	4	598	292.9 025	596	1540	383	0.388	0.116 093
30	20	20	100	8	0.288	0	644	312.7 323	644	1626	365	0.382 922	0.118 684
30	20	20	100	8	0.354	0	790	396.5 885	790	1614	367	0.417	0.143 121
30	20	20	140	12	0.319	0	756	366.0	755	1614	282	539 0.391	0.138
30	20	20	140	8	992 0.248	0	732	255 365.2	732	1578	257	0.385	0.142
30	20	20	140	12	0.315	0	792	728 399.0	791	1574	282	0.405	296 0.150
30	20	20	140	10	878 0.341	0	786	79 365.5	786	1696	283	365 0.386	767 0.132
30	20	20	140	8	904	0	742	554 364.6	742	1616	299	618 0.391	208 0.137
30	20	20	140	8	78 0.294	4	778	349 370.1	778	1610	257	795 0.390	236 0.139
30	20	30	60	12	841 1.239	0	419	28 246.7	413	1554	644	713 0.404	724 0.094
30	20	30	60	20	836 1.691	4	463	178 224.7	461	1618	654	826 0.407	492 0.082
30	20	30	60	14	095 1.137	6	498	069 250.5	495		664	38 0.415	0.089
					532 1.469			404 247.6		1624		561 0.409	832 0.090
30	20	30	60	28	471 1.778	0	479	509 240.9	478	1612	641	74 0.398	681 0.086
30	20	30	60	18	06 1.285	4	472	715 217.1	471	1678	644	641 0.395	154 0.079
30	20	30	60	16	485 0.923	0	425	048 355.6	408	1642	665	212 0.431	965 0.132
30	20	30	100	16	213 1.373	0	715	606 373.9	706	1528	455	759 0.396	265 0.137
30	20	30	100	14	861 1.158	0	722	901	721	1638	354	0.370	851 0.097
30	20	30	100	12	1.138 19 1.046	0	544	037 351.6	544	1592	393	502 0.412	787 0.129
30	20	30	100	12	875	4	711	261	711	1586	406	634	895
30	20	30	100	16	0.939	0	697	325.3 92	694	1576	409	0.411 721	0.121
30	20	30	100	12	1.017 835	2	715	357.3 112	714	1556	387	0.414 065	0.134 378

			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·							ı
30	20	30	140	12	0.943 238	0	748	353.3 097	748	1568	303	0.401 298	0.134 903
30	20	30	140	16	0.924 919	6	828	428.9 635	827	1526	304	0.424 709	0.161 083
30	20	30	140	12	1.054 246	0	795	393.2 738	793	1578	300	0.409 21	0.147 238
30	20	30	140	18	1.620 293	0	662	312.8 352	662	1640	283	0.365 571	0.121 019
30	20	30	140	18	1.245 618	0	708	351.5 043	708	1608	329	0.392 06	0.132 894
30	20	30	140	14	1.075 742	2	747	377.4 651	744	1560	291	0.398 537	0.145 347
30	20	40	60	34	6.004 802	0	445	195.1 273	444	1598	647	0.405 727	0.072 565
30	20	40	60	20	2.862 467	12	438	200.3 231	437	1504	642	0.415	0.077 196
30	20	40	60	20	2.757 42	0	331	130.3 662	316	1530	663	0.390 195	0.051 959
30	20	40	60	30	5.992 793	8	374	160.0 172	370	1644	681	0.388 827	0.059
30	20	40	60	30	3.932 779	0	392	191.3 365	392	1544	657	0.404 551	0.073 79
30	20	40	60	22	3.353 006	2	566	318.5 468	561	1696	674	0.421 071	0.108 608
30	20	40	100	36	5.444 849	8	646	330.0 604	645	1556	402	0.400 996	0.126 412
30	20	40	100	24	4.082 441	6	694	335.1 012	693	1646	368	0.391 08	0.123 517
30	20	40	100	60	12.29 918	0	686	356.0 592	686	1616	407	0.403 47	0.131 436
30	20	40	100	20	3.111 111	0	674	322.1 436	671	1552	372	0.401 927	0.124 14
30	20	40	100	28	4.702 771	0	757	371.3 748	757	1632	388	0.412 315	0.133 732
30	20	40	100	30	4.021 539	4	754	343.3 44	754	1590	423	0.424 756	0.123 906
30	20	40	140	18	3.121 817	0	699	354.6 47	699	1582	254	0.375 937	0.139 9
30	20	40	140	28	4.927 578	0	738	364.2 847	738	1696	285	0.376 241	0.133 977
30	20	40	140	22	3.555 9	0	783	377.3 507	779	1584	274	0.399 317	0.143 098
30	20	40	140	30	6.338 139	4	736	352.8 972	730	1668	271	0.374 486	0.132 023
30	20	40	140	24	3.036 829	14	775	369.8 235	775	1648	300	0.392 766	0.135 12
30	20	40	140	24	4.116 645	0	790	378.2 604	790	1656	285	0.393 629	0.138 506
30	30	20	60	6	0.175 888	0	687	326.2 173	683	1286	678	0.514 167	0.123 24
30	30	20	60	6	0.129 577	6	730	378.4 017	718	1278	659	0.517 475	0.142 203
30	30	20	60	6	0.159 169	0	665	332.6 853	665	1316	692	0.507 669	0.124 461
30	30	20	60	6	0.218 259	0	644	311.1 521	644	1420	637	0.474 269	0.115 199

									1				
30	30	20	60	6	0.202 056	0	689	330.6 771	688	1386	653	0.491 749	0.121 26
30	30	20	60	6	0.147 511	0	630	319.7 518	627	1258	688	0.511 077	0.124 272
30	30	20	100	6	0.150 014	0	913	456.8 631	912	1316	379	0.495 205	0.175 245
30	30	20	100	6	0.170 808	0	922	478.2 825	920	1376	407	0.490 936	0.176 945
30	30	20	100	6	0.217 62	0	996	498.1 012	996	1366	381	0.502 005	0.181
30	30	20	100	6	0.144	0	941	425.9 549	941	1318	414	0.506 921	0.159 355
30	30	20	100	6	0.157 001	0	905	435.9 145	901	1306	404	0.499	0.166 953
30	30	20	100	8	0.170 203	0	890	454.8 684	890	1306	397	0.496 336	0.175 422
30	30	20	140	8	0.133	0	967	448.9	967	1328	288	0.485	0.173
30	30	20	140	8	0.152	0	990	264 467.3	990	1328	251	0.483	0.181
30	30	20	140	6	0.139	0	1147	765 545.2	1147	1372	272	0.508	929 0.195
30	30	20	140	8	804 0.187	2	1033	991 513.7	1033	1352	272	0.490	378 0.193
30	30	20	140	6	603 0.189	0	1075	958 521.0	1073	1368	280	786 0.497	229 0.191
30	30	20	140	8	372 0.242	0	1146	337 567.6	1146	1384	313	244 0.513	486 0.199
30	30	30	60	14	6 0.722	0	608	56 318.5	607	1352	676	19 0.486	668 0.120
30	30	30	60	10	863 0.716	0	818	603 442.6	814	1374	625	907 0.511	896 0.157
					814 0.582			981 342.8				554 0.514	376 0.128
30	30	30	60	12	997 0.573	6	719	057 318.9	719	1286	648	103 0.487	923 0.124
30	30	30	60	8	563 0.465	0	607	569 347.9	605	1310	642	681 0.530	739 0.130
30	30	30	60	10	262 0.551	0	705	631 310.0	703	1252	712	559 0.488	47 0.116
30	30	30	60	12	545 0.610	0	616	449 461.0	616	1366	687	198 0.496	165 0.170
30	30	30	100	14	112 0.487	0	936	316 522.4	936	1360	403	0.509	816 0.192
30	30	30	100	10	773	0	999	737	999	1330	382	406	724
30	30	30	100	10	0.672 639	0	1067	548.3 141	1066	1364	385	0.515 453	0.194 783
30	30	30	100	10	0.611 379	0	858	445.2 474	857	1372	414	0.480	0.168 463
30	30	30	100	16	0.888 586	0	954	475.5 311	950	1360	415	0.500 917	0.174 507
30	30	30	100	8	0.469 526	0	1006	477.1 676	1006	1354	359	0.502 023	0.175 494
30	30	30	140	14	0.771 936	2	1016	529.7 947	1015	1352	264	0.485 758	0.201 213
30	30	30	140	18	0.818 8	2	975	522.3 867	975	1402	278	0.471 584	0.196 608

30 30 30 140 8 0.552 0							
36 36 36 146 77 0	1085	554.0 142	1085	1318	286	0.509 855	0.206 03
30 30 30 140 14 0.709 0 0	1015	508.2 141	1013	1298	306	0.504 012	0.194 197
30 30 30 140 14 0.807 134 0	1087	535.3 605	1087	1346	278	0.503 504	0.197 477
30 30 30 140 10 0.637 384 0	983	501.5 974	983	1364	340	0.492 371	0.186 676
30 30 40 60 14 1.609 0	704	353.8 672	699	1350	646	0.499 072	0.131 305
30 30 40 60 16 1.485 606 6	697	307.2 758	697	1304	620	0.501 332	0.116 968
30 30 40 60 18 2.037 341 4	815	400.6 233	814	1342	645	0.520 143	0.142 825
30 30 40 60 16 1.628 119 2	590	298.2 233	589	1354	682	0.483 822	0.113 522
30 30 40 60 18 1.412 2	644	328.6 993	644	1308	701	0.506 591	0.123 804
30 30 40 60 22 2.087 139 0	609	300.0 058	605	1308	644	0.488 463	0.117 327
30 30 40 100 20 2.401 737 0	927	499.1 556	927	1330	422	0.503 546	0.186 322
30 30 40 100 18 1.852 766 0	1013	469.7 924	1013	1340	366	0.507 172	0.172 781
30 30 40 100 12 1.309 418 2	1016	445.6 433	1015	1330	390	0.513	0.162 822
30 30 40 100 14 1.390 0	801	398.0 15	798	1404	447	0.469 989	0.150 251
30 30 40 100 16 1.466 666 0	972	470.1 455	972	1314	399	0.510 615	0.175 101
30 30 40 100 14 1.106 096 0	975	481.4 869	973	1316	392	0.509 138	0.179 592
30 30 40 140 14 1.235 564 0	1031	515.5 641	1030	1266	289	0.510 251	0.199 445
30 30 40 140 16 2.119 345 4	1091	510.7 241	1091	1382	272	0.495 817	0.185 785
30 30 40 140 22 2.546 952 6	1143	564.0 203	1142	1322	307	0.521 786	0.203 104
30 30 40 140 22 2.258 069 10	1074	537.3 636	1074	1346	289	0.501 287	0.197 633
30 30 40 140 20 1.631 0	1058	539.5 224	1058	1330	265	0.498 681	0.203 363
30 30 40 140 16 1.701 2	871	416.3 395	871	1342	302	0.466 031	0.165 411
30 40 20 60 6 0.089 818 0	743	394.8 283	740	1046	669	0.573 931	0.160 826
30 40 20 60 6 0.094 101 0	937	477.4 198	936	1124	629	0.582 001	0.177 545
30 40 20 60 8 0.099 375 6	917	461.0 779	917	1138	614	0.572 336	0.172 366
30 40 20 60 4 0.038 0	965	494.5 168	962	1068	675	0.605 176	0.182 816
30 40 20 60 8 0.137 0	898	414.7 988	893	1136	680	0.580 657	0.153 119
30 40 20 60 6 0.123 0	937	460.5 878	937	1158	654	0.578 756	0.167 547

30	40	20	100	8	0.120 058	0	1140	580.2 724	1138	1126	387	0.575 255	0.218 888
30	40	20	100	6	0.145 907	0	1040	506.6 916	1038	1154	397	0.554 268	0.195 709
30	40	20	100	8	0.134 774	0	1115	569.7 023	1115	1224	420	0.556 361	0.206 489
30	40	20	100	6	0.081 062	0	1066	528.7 048	1066	1124	411	0.567 859	0.203 27
30	40	20	100	10	0.176 814	0	1017	538.6 898	1013	1176	368	0.540 086	0.210 673
30	40	20	100	6	0.106 339	0	1132	590.8 951	1131	1120	394	0.576 56	0.223 401
30	40	20	140	6	0.084 987	0	1265	615.9 448	1264	1148	283	0.574 026	0.228 551
30	40	20	140	6	0.120 586	0	1202	605.4 657	1202	1170	285	0.559 654	0.227 876
30	40	20	140	6	0.063 08	0	1292	645.0 502	1292	1124	285	0.583 858	0.238 819
30	40	20	140	6	0.105 925	0	1220	585.3 538	1220	1158	289	0.565 804	0.219 48
30	40	20	140	6	0.103 03	0	1257	602.9 127	1257	1200	276	0.560 922	0.220 605
30	40	20	140	6	0.125 42	0	1129	582.7 99	1128	1152	285	0.550 877	0.227 212
30	40	30	60	8	0.284 083	2	996	487.9 302	994	1072	693	0.611 011	0.176 722
30	40	30	60	8	0.285 681	0	775	407.8 386	771	1080	684	0.573 964	0.160 883
30	40	30	60	10	0.414 007	0	884	468.3 919	883	1162	688	0.574 826	0.171 384
30	40	30	60	10	0.474 455	2	720	399.0 725	719	1172	666	0.541 227	0.155 949
30	40	30	60	8	0.368 63	0	852	408.8 251	844	1156	687	0.569 78	0.152 149
30	40	30	60	12	0.437 388	0	808	431.5 262	805	1116	702	0.574 533	0.164 516
30	40	30	100	10	0.408 519	0	1086	533.8 505	1086	1132	421	0.571 05	0.202 293
30	40	30	100	10	0.462 436	0	1246	625.0 191	1246	1140	387	0.588 893	0.225 395
30	40	30	100	14	0.445 408	0	1133	601.8 128	1132	1126	397	0.575 895	0.226 672
30	40	30	100	14	0.406 473	0	1288	616.0 611	1288	1166	403	0.591 88	0.215 632
30	40	30	100	10	0.395 167	0	1226	606.9 028	1226	1052	377	0.603 766	0.228 589
30	40	30	100	8	0.233 174	0	1034	514.5 479	1033	1156	410	0.555 214	0.197 979
30	40	30	140	6	0.317 142	0	1284	648.6 589	1284	1108	269	0.583 615	0.243 765
30	40	30	140	10	0.375 248	0	1255	643.2 229	1255	1128	292	0.578 318	0.240 457
30	40	30	140	8	0.376 265	0	1153	574.4 923	1153	1150	282	0.555 126	0.222 241
30	40	30	140	8	0.354 587	0	1154	581.5 519	1153	1156	320	0.560 289	0.221 207

30	40	30	140	10	0.286 204	0	1350	671.3 216	1350	1116	249	0.588 95	0.247 264
30	40	30	140	10	0.435 308	0	1245	623.9 809	1245	1158	296	0.570 952	0.231 19
30	40	40	60	12	1.032 357	0	999	530.5 039	996	1180	613	0.576 909	0.190 213
30	40	40	60	12	0.681 265	0	795	409.8 856	791	1150	678	0.560 901	0.156 505
30	40	40	60	12	1.078 38	0	978	477.9 157	978	1168	651	0.582 41	0.170 867
30	40	40	60	14	1.007 854	0	891	468.6 135	891	1084	682	0.592 021	0.176 369
30	40	40	60	10	0.985 928	0	873	403.3 42	871	1170	666	0.567 787	0.149
30	40	40	60	16	1.288 504	4	783	373.4 632	782	1190	639	0.543 403	0.142 816
30	40	40	100	10	1.061 357	0	1288	653.5 421	1287	1166	378	0.588 131	0.230 852
30	40	40	100	12	1.144 295	0	1066	525.3 263	1060	1144	393	0.559 492	0.202 282
30	40	40	100	10	0.880 332	0	1017	532.9 926	1017	1120	424	0.562 671	0.208 119
30	40	40	100	18	1.455 473	0	1165	559.0 647	1165	1212	362	0.557 503	0.204 113
30	40	40	100	10	0.682 272	0	1129	566.6 918	1127	1120	386	0.574 63	0.215 227
30	40	40	100	10	0.777 194	0	1048	567.3 292	1048	1130	381	0.558 421	0.221
30	40	40	140	16	1.257 188	6	1401	714.4 337	1397	1136	280	0.594 892	0.253 435
30	40	40	140	16	1.097 189	0	1270	651.2 064	1269	1116	280	0.581 238	0.244 355
30	40	40	140	10	0.720 821	0	1197	599.5 817	1196	1122	277	0.567 63	0.231 053
30	40	40	140	14	1.149 14	0	1261	596.9 536	1261	1158	292	0.572 851	0.220 197
30	40	40	140	16	1.309 163	0	1268	651.0 966	1268	1130	269	0.576 303	0.244 131
30	40	40	140	16	1.182 082	2	1186	596.3 573	1186	1132	283	0.564 349	0.229 104
40	20	20	60	10	0.250 052	0	91	40.38 991	60	1352	627	0.336 93	0.019 809
40	20	20	60	6	0.209 928	0	33	13.48 331	7	1286	624	0.329 16	0.007 034
40	20	20	60	8	0.153 524	0	37	10.76 398	24	1254	625	0.341 04	0.005 656
40	20	20	60	6	0.149 421	0	73	43.33 318	0	1332	655	0.329 643	0.021 808
40	20	20	60	6	0.141 309	0	89	36.77 889	87	1262	650	0.368 684	0.018 399
40	20	20	60	4	0.129 869	0	45	15.25 022	16	1310	655	0.338 718	0.007 698
40	20	20	100	8	0.134 461	0	296	141.6 791	291	1338	400	0.340 562	0.069 827
40	20	20	100	6	0.197 515	0	169	86.91 142	168	1340	403	0.298 796	0.045 48

40	20	20	100	6	0.235 88	0	318	156.5 45	315	1366	408	0.346 099	0.074 938
40	20	20	100	8	0.157 723	0	363	175.0 498	362	1296	373	0.361 891	0.086 189
40	20	20	100	10	0.223 253	0	191	96.11 557	191	1334	420	0.314 139	0.049 417
40	20	20	100	8	0.154 189	0	310	136.3 736	309	1342	364	0.333 995	0.067 679
40	20	20	140	6	0.243 349	0	388	207.8 742	386	1446	307	0.323 983	0.097 183
40	20	20	140	6	0.211 797	0	380	189.2 46	379	1420	310	0.326 695	0.089
40	20	20	140	6	0.172 125	0	434	230.3 457	433	1318	262	0.345 256	0.114 429
40	20	20	140	6	0.129 198	0	315	142.3 557	314	1366	317	0.315 974	0.071 285
40	20	20	140	6	0.220	0	378	176.3	378	1418	307	0.325	0.083
40	20	20	140	6	0.131	0	354	197.9	354	1286	273	725 0.327	0.103
40	20	30	60	10	0.692	2	46	399 13.68	21	1384	668	0.332	0.006
40	20	30	60	10	0.572	2	39	71 15.48	12	1342	699	0.345	596 0.007
40	20	30	60	14	034 0.595	2	50	537 19.01	31	1266	620	985 0.339	535 0.009
40	20	30	60	10	696 0.785	0	90	042 32.92	82	1276	605	239 0.349	906 0.016
40	20	30	60	10	075 0.651	4	56	49 16.70	1	1370	634	975 0.316	773 0.008
40	20	30	60	10	746 0.497	0	56	635 14.14	14	1358	581	078 0.304	316 0.007
				10	454 0.434			245 110.0				659 0.320	241 0.053
40	20	30	100		89 0.766	0	267	678 110.9	265	1404	398	755 0.309	25 0.058
40	20	30	100	12	302 1.059	0	208	192 152.8	206	1314	383	511 0.343	287 0.073
40	20	30	100	16	998 0.590	0	313	339 172.8	312	1372	405	226 0.350	161 0.084
40	20	30	100	10	086 0.435	0	336	058 137.1	336	1330	381	269 0.324	419 0.067
40	20	30	100	8	137	0	279	712 147.5	279	1370	378	124	672
40	20	30	100	12	751 0.431	4	312	174 186.3	311	1274	358	606	767 0.094
40	20	30	140	10	0.431 149 0.383	0	401	729 192.9	399	1308	262	703 0.334	0.094 654 0.099
40	20	30	140	10	452	0	381	563	380	1290	267	022	616
40	20	30	140	14	0.659	0	426	200.7	426	1354	265	0.337 897	0.098
40	20	30	140	12	0.698	0	353	172.0 871	353	1438	272	0.302 957	0.083
40	20	30	140	8	0.398 442	0	335	158.8 862	335	1260	286	0.330 144	0.084 469
40	20	30	140	14	0.548 948	0	419	216.1 733	416	1310	259	0.340 05	0.108 903

40	20	40	60	26	2.964 046	0	31	9.799 616	2	1394	647	0.317 67	0.004 797
40	20	40	60	14	1.947 091	0	48	21.24 084	18	1364	613	0.316 291	0.010 647
40	20	40	60	16	1.664 016	0	106	48.32 362	74	1320	647	0.353 258	0.023 676
40	20	40	60	14	1.594 337	0	66	35.97 039	33	1292	644	0.343 829	0.018 268
40	20	40	60	20	1.378 584	0	56	27.99 327	22	1350	641	0.329 359	0.013 906
40	20	40	60	18	1.591 757	6	54	16.86 516	17	1364	576	0.302 089	0.008 592
40	20	40	100	18	1.987 672	0	268	138.4 487	268	1366	403	0.329 406	0.067 967
40	20	40	100	16	1.576 759	0	269	109.0 475	264	1352	409	0.332 346	0.053 851
40	20	40	100	20	1.684 93	0	288	138.7 026	285	1256	398	0.352 243	0.071 533
40	20	40	100	20	2.452 081	0	270	117.0 421	267	1398	402	0.323 657	0.056 624
40	20	40	100	16	1.738 028	2	180	87.39 466	180	1332	415	0.308 45	0.045 306
40	20	40	100	16	2.234 253	0	275	137.1 101	272	1440	391	0.315 264	0.065 197
40	20	40	140	16	1.579 126	0	352	185.1 515	352	1298	285	0.329 199	0.095 686
40	20	40	140	16	1.763 488	0	464	216.8 109	463	1344	270	0.352 913	0.104 387
40	20	40	140	18	2.186 364	0	353	184.6 499	353	1380	296	0.319 862	0.091 005
40	20	40	140	10	0.921 516	0	380	199.5 962	378	1324	269	0.328 26	0.101 266
40	20	40	140	16	1.595 857	0	389	214.5 04	388	1348	279	0.331 017	0.106 454
40	20	40	140	14	1.558 852	0	390	203.9 326	388	1298	291	0.343 45	0.103 153
40	30	20	60	6	0.096 548	0	166	88.80 601	166	1056	663	0.439 788	0.047 112
40	30	20	60	6	0.157 03	0	342	184.8 64	335	1130	618	0.457 513	0.088 749
40	30	20	60	6	0.095 997	0	157	86.82 928	148	1182	659	0.405 732	0.043 655
40	30	20	60	4	0.104 035	0	247	111.1 592	242	1090	647	0.449 217	0.056 169
40	30	20	60	8	0.131 311	0	133	49.77 914	130	1176	619	0.389 091	0.025 859
40	30	20	60	8	0.121 67	0	229	121.4 167	225	1126	658	0.439 522	0.060 436
40	30	20	100	6	0.086 967	0	504	257.3 765	499	1130	384	0.438 649	0.127 857
40	30	20	100	6	0.102 34	0	498	223.9 022	498	1188	393	0.428 571	0.107 697
40	30	20	100	6	0.117 398	0	469	266.9 953	469	1158	370	0.420 13	0.133 698
40	30	20	100	4	0.097 712	0	479	255.0 394	474	1114	417	0.444 389	0.127 202

		,							1	,			
40	30	20	100	6	0.126 357	0	418	214.2 334	418	1152	377	0.408 32	0.110 033
40	30	20	100	6	0.130 515	0	402	185.4 015	398	1180	423	0.410 295	0.092 654
40	30	20	140	8	0.115 572	0	584	283.3 744	584	1124	299	0.439 96	0.141 193
40	30	20	140	6	0.079 792	0	548	282.7 927	548	1108	293	0.431 503	0.145 096
40	30	20	140	6	0.083 919	0	557	282.1 568	556	1100	295	0.436 187	0.144 622
40	30	20	140	4	0.122 92	0	605	271.4 268	602	1146	275	0.433 515	0.134 17
40	30	20	140	4	0.067 441	0	523	246.2 458	523	1116	310	0.427 399	0.126 345
40	30	20	140	6	0.093 323	0	654	329.8 209	652	1126	267	0.449 389	0.161 282
40	30	30	60	10	0.522 889	0	242	142.8 166	238	1152	657	0.437 225	0.069 769
40	30	30	60	8	0.304 899	0	241	124.7 513	233	1134	660	0.440 553	0.061 545
40	30	30	60	12	0.319 447	2	390	195.5 084	390	1132	641	0.476 212	0.090
40	30	30	60	12	0.544 342	2	216	80.34 275	216	1152	635	0.424 439	0.040 071
40	30	30	60	8	0.468 173	2	208	87.20 194	198	1152	675	0.430 686	0.043
40	30	30	60	8	0.348 962	0	175	99.39 846	152	1102	687	0.432 251	0.051
40	30	30	100	8	0.345 598	0	490	233.9 098	488	1128	411	0.443 513	0.115 397
40	30	30	100	10	0.390 614	0	424	231.7 066	424	1164	411	0.417 709	0.115 911
40	30	30	100	10	0.306 763	0	495	247.5	494	1138	387	0.436 355	0.122 585
40	30	30	100	16	0.549 031	0	393	203.9 856	393	1172	454	0.419 515	0.101 033
40	30	30	100	8	0.407 235	0	527	266.3 33	527	1136	392	0.447 202	0.129 602
40	30	30	100	10	0.361 457	4	429	230.3 974	426	1130	389	0.418 163	0.118 213
40	30	30	140	8	0.424 304	0	537	266.8 702	537	1164	286	0.414 192	0.134 308
40	30	30	140	10	0.381 314	0	495	244.5 85	492	1154	313	0.410 924	0.124 852
40	30	30	140	10	0.353 969	0	597	296.5 188	592	1136	303	0.440 67	0.145 996
40	30	30	140	8	0.341 865	0	606	275.9 012	605	1070	292	0.456 024	0.140 265
40	30	30	140	10	0.378 067	0	510	259.9 775	510	1124	305	0.420 32	0.134 078
40	30	30	140	6	0.325 287	0	608	307.9 941	608	1090	311	0.457 442	0.153 307
40	30	40	60	12	0.909 508	8	255	144.1 998	253	1120	662	0.447 871	0.070 582
40	30	40	60	10	0.891 807	0	245	122.8 956	245	1120	646	0.443 063	0.061 112

	1		-		,								ı
40	30	40	60	10	0.923 928	0	210	93.65 841	201	1152	652	0.425 436	0.046 712
40	30	40	60	12	1.103 503	0	207	103.8 323	200	1172	621	0.411 942	0.052 099
40	30	40	60	10	1.009 457	4	165	67.82 595	163	1192	672	0.411 128	0.033 395
40	30	40	60	20	1.678 691	0	217	115.3 447	214	1178	663	0.426 764	0.056 129
40	30	40	100	10	0.940 481	0	466	236.9 464	465	1158	400	0.427 583	0.117 126
40	30	40	100	10	0.682	2	557	302.1 352	553	1118	390	0.457 101	0.146 454
40	30	40	100	12	1.196 283	0	466	236.9 779	466	1180	375	0.416 131	0.117 258
40	30	40	100	18	1.045 477	0	502	242.2 791	498	1166	381	0.429 829	0.118 474
40	30	40	100	18	1.149	0	454	246.0	452	1134	461	0.446	0.120
40	30	40	100	12	0.927	0	520	270.1	520	1162	399	0.441	0.129
40	30	40	140	20	475 1.499	0	505	941 270.3	503	1214	298	0.397	0.134
40	30	40	140	18	1.279	0	603	206 339.9	602	1080	265	519 0.445	0.174
40	30	40	140	10	221 0.886	2	620	86 303.6	617	1176	286	0.433	62 0.145
40	30	40	140	14	394 0.987	0	451	282 193.5	448	1140	311	926 0.399	905 0.101
40	30	40	140	14	775 1.195	2	598	058 310.3	598	1112	263	684 0.435	899 0.157
40	30	40	140	12	677 1.039	4	605	893 314.0	600	1150	253	949 0.425	159 0.156
40	40	20		4	405 0.060	0	281	602 126.5	273	986	678	012 0.490	482 0.065
			60	·	958 0.053			021 166.3				965 0.497	308 0.089
40	40	20	60	4	897 0.080	0	311	586 160.0	311	936	616	585 0.483	296 0.081
40	40	20	60	4	721 0.063	0	309	876 153.8	308	1012	641	937 0.498	636 0.077
40	40	20	60	6	968 0.107	0	338	759 172.6	337	1000	658	747 0.486	131 0.085
40	40	20	60	6	952 0.074	0	359	163 191.8	358	1040	627	42	243
40	40	20	60	4	825 0.070	0	324	534	322	936	661	246 0.511	976 0.141
40	40	20	100	4	0.070 845 0.083	0	574	759 289.4	574	940	409	0.511 18 0.503	641 0.147
40	40	20	100	6	31	0	600	707	598	974	389	315	614
40	40	20	100	6	0.076 297	0	586	283.6 424	586	1044	379	0.480	0.141
40	40	20	100	4	0.046	0	546	278.3 759	546	970	405	0.495	0.144 912
40	40	20	100	6	0.076 184	0	571	267.6 119	567	1002	406	0.492 658	0.135 5
40	40	20	100	4	0.068 957	0	654	305.2 079	654	982	369	0.510 224	0.152 223

	I					1			1				
40	40	20	140	2	0.053 952	0	703	341.9 738	703	1014	294	0.495 773	0.170 052
40	40	20	140	6	0.097 495	0	759	376.7 1	758	1020	301	0.509 38	0.181 198
40	40	20	140	8	0.087 161	0	708	360.2 543	708	998	277	0.496 722	0.181 671
40	40	20	140	4	0.068 07	0	623	300.7 537	623	1070	286	0.459 323	0.151 973
40	40	20	140	6	0.081	0	676	367.0 617	676	1056	273	0.473 317	0.183 073
40	40	20	140	6	0.085 343	4	741	385.8 876	741	1056	286	0.492	0.184 901
40	40	30	60	8	0.239	0	427	209.5 086	419	1004	628	0.510 483	0.102 149
40	40	30	60	6	0.218 664	2	331	198.4 795	327	1008	676	0.498 261	0.098 599
40	40	30	60	8	0.278	0	382	170.3	376	1002	635	0.502	0.084
40	40	30	60	6	0.209	0	352	079 167.2	346	992	653	0.501	0.084
40	40	30	60	6	529 0.242	0	287	802 160.2	285	988	632	758 0.481	0.084
40	40	30	60	6	971 0.206	0	277	412 152.7	274	1040	689	365 0.480	0.076
40	40	30	100	6	396 0.184	0	668	112 316.1	667	984	410	779 0.522	241 0.153
40	40	30	100	8	021 0.372	0	543	952 274.4	543	986	414	562 0.492	418 0.141
40	40	30	100	6	282 0.244	0	672	86 336.8	670	1032	371	537 0.502	269 0.162
40	40	30	100	6	089 0.213	0	649	45 313.2	647	984	402	171 0.515	492 0.154
40	40	30	100	8	461 0.241	0	656	111 331.9	656	974		986 0.516	063 0.164
					78 0.209			761 202.9			383	145 0.460	916 0.109
40	40	30	100	6	871 0.223	0	462	63 325.7	462	1000	393	916 0.507	414 0.167
40	40	30	140	14	98 0.256	0	663	366 313.1	661	956	326	977 0.488	646 0.161
40	40	30	140	8	52 0.419	2	655	844 327.3	653	988	292	372 0.478	852 0.170
40	40	30	140	14	831	0	648	83 435.8	648	1000	271	895 0.514	601
40	40	30	140	8	663	0	815	329 343.9	815	1020	264	054 0.481	638
40	40	30	140	10	951 0.276	0	704	951 407.5	702	1060	281	155 0.512	0.108 377 0.202
40	40	30	140	12	386	0	741	584	739	984	294	147	062
40	40	40	60	10	0.518	0	252	123.4	249	958	674	0.490 696	0.065
40	40	40	60	12	0.506	0	318	140.1 351	317	1050	658	0.481	0.069
40	40	40	60	14	0.599 439	0	285	170.2 354	285	1054	644	0.468 482	0.085 847
40	40	40	60	10	0.539 23	0	358	162.5 612	357	984	640	0.503 281	0.082 06

40	40	40	60	0	0.617	0	264	178.3	262	1000	CCE	0.490	0.085
40	40	40	60	8	08	0	364	164	362	1066	665	683	197
40	40	40	60	8	0.404	0	365	158.7	360	930	671	0.525	0.080
40	40	40	00	0	109	Ū	303	133	300		071	752	935
40	40	40	100	8	0.520	0	584	289.7	583	996	400	0.496	0.146
					829			719		330		716	423
40	40	40	100	16	0.695	0	657	331.1	657	992	368	0.508	0.164
					829			816				18	195
40	40	40	100	10	0.615	0	675	314.1	673	1046	362	0.497	0.150
					964			715				357	971
40	40	40	100	10	0.519	0	604	277.6	604	956	395	0.510	0.142
					929			313				997	011
40	40	40	100	22	0.795	14	665	346.0	665	1010	418	0.514	0.164
					697			285				001	228
40	40	40	100	12	0.559 862	0	617	323.0	616	960	393	0.512 443	0.164 08
					0.485			741 379.7					0.194
40	40	40	140	8	326	0	744	438	744	948	265	0.515 585	0.194
					0.697			418.0				0.521	0.206
40	40	40	140	14	805	0	768	604	762	968	291	0.321	858
					0.814			397.7				0.529	0.188
40	40	40	140	12	112	0	814	072	814	990	301	691	935
					0.643			368.6				0.502	0.180
40	40	40	140	10	322	0	759	422	759	1014	264	209	973
	_			_	0.740			317.3				0.474	0.156
40	40	40	140	10	056	0	677	752	677	1066	286	618	42
					0.576	_		370.7				0.512	0.183
40	40	40	140	12	471	0	750	315	750	988	287	099	077

Creat	FirstR	Secon	FullRe							Num Of			
е	eg	dReg	g	MaxQ	Mean	LeftQ	MaxQ	Mean	LeftQ	Secon	Num		
Delay	Delay	Delay	Delay	1	Q1	1	2	Q2	2	d	OfFull	Fprob	Sload
30	30	30	100	10	0.533	0	935	496.7	932	1342	411	0.500	0.185
30	30	30	100	10	473	U	933	474	932	1342	411	186	800
30	30	30	100	16	0.678	2	999	463.5	999	1306	384	0.513	0.172
30	30	30	100	10	782	2	333	025	333	1300	304	935	242
30	30	30	100	10	0.463	0	882	462.1	882	1322	445	0.500	0.174
	30	30	100	10	884	U	002	824	002	1322	443	944	474
30	30	30	100	14	0.892	0	856	457.3	854	1382	343	0.464	0.177
	30	30	100	14	977	U	830	964	054	1302	343	133	354
30	30	30	100	16	0.662	0	864	414.0	863	1346	426	0.489	0.157
	30	30	100	10	255	- U	004	339	003	1540	420	184	129
30	30	30	100	12	0.747	0	883	450.9	883	1328	392	0.489	0.173
	30		100		057	Ŭ	000	087		1020	332	819	227
30	30	30	100	12	0.481	0	904	469.2	903	1284	374	0.498	0.183
	30	30	100		134		304	357	303	1204	3,4	633	224
30	30	30	100	10	0.643	0	947	461.8	946	1344	407	0.501	0.171
	30		100	10	223		347	62	340	1511	407	669	25
30	30	30	100	12	0.585	0	1005	501.9	1005	1326	404	0.515	0.183
	30	30	100	12	303		1003	321	1003	1520	704	174	522
30	30	30	100	8	0.450	0	885	449.4	885	1260	396	0.504	0.176
	30	30	100	J	623		303	071	303	1200	330	132	862

		· ·											
30	30	30	100	8	0.526 168	0	999	497.8 306	999	1322	368	0.508 367	0.185 136
30	30	30	100	12	0.623 9	0	930	455.6 263	930	1338	423	0.502 787	0.169 315
30	30	30	100	10	0.695 685	0	1040	498.2 367	1040	1350	431	0.521 446	0.176 617
30	30	30	100	24	0.845 356	0	838	424.0 96	838	1332	405	0.482 718	0.164 697
30	30	30	100	10	0.572 801	0	864	437.1 871	860	1292	419	0.497 472	0.170 046
30	30	30	100	12	0.503 196	0	912	466.5 077	912	1276	375	0.502 146	0.182 016
30	30	30	100	10	0.477 743	2	856	414.3	856	1310	423	0.493 632	0.159 931
30	30	30	100	16	0.557 061	0	904	422.0 929	903	1338	396	0.492 605	0.160 066
30	30	30	100	10	0.581	0	949	465.6	947	1300	394	0.507	0.176
30	30	30	100	16	571 0.640	0	982	503.2	982	1250	415	762 0.527	313 0.190
30	30	30	100	10	0.604	0	996	878 484.9	996	1304	413	767 0.519	0.178
30	30	30	100	12	825 0.733	0	1012	455 486.4	1012	1334	383	351 0.511	749 0.178
30	30	30	100	14	656 0.889	0	877	837 447.1	877	1320	446	176 0.500	264 0.169
30	30	30	100	12	12 0.576	0	862	534 465.5	862	1270	409	568 0.500	184 0.183
30	30	30	100	10	401 0.554	0	900	234 476.1	899	1330	390	197 0.492	205 0.181
					661 0.770			791 439.2	949			173 0.505	817 0.159
30	30	30	100	20	095 0.498	2	953	545 476.0		1362	446	618 0.515	208 0.176
30	30	30	100	8	16 0.681	0	982	689 454.6	981	1304	408	782 0.499	78 0.168
30	30	30	100	12	91	0	961	676 421.7	960	1350	387	444 0.493	583 0.162
30	30	30	100	12	87 0.530	0	898	222	897	1318	388	661	014
30	30	30	100	12	804 0.539	0	1016	796 429.9	1016	1324	423	811 0.482	302 0.162
30	30	30	100	8	339	0	898	877	898	1372	383	85	0.102 076 0.156
30	30	30	100	8	0.511	0	881	402.6 104	881	1302	394	0.494 761	232
30	30	30	100	14	0.835	0	989	486.6 239	988	1346	389	0.505	0.178 709
30	30	30	100	8	0.551	0	952	474.7 939	952	1342	407	0.503	0.175 784
30	30	30	100	14	0.543 82	2	982	519.8 403	981	1264	374	0.516 978	0.198 337
30	30	30	100	10	0.617 124	0	906	437.0 513	902	1298	377	0.496 314	0.169 597
30	30	30	100	12	0.559 104	0	989	505.1 335	989	1374	394	0.501 632	0.183 219
30	30	30	100	12	0.405 115	0	897	453.8 194	897	1290	406	0.502 507	0.175 017

					1								•
30	30	30	100	10	0.590 494	0	903	439.1 188	903	1372	394	0.485 95	0.164 526
30	30	30	100	12	0.835 107	0	862	453.7 757	862	1294	393	0.492 35	0.178 021
30	30	30	100	12	0.556 776	0	952	480.4 291	952	1338	401	0.502 787	0.178 532
30	30	30	100	16	0.726 363	0	849	437.9 492	846	1306	365	0.481 128	0.173 997
30	30	30	100	10	0.437 454	0	888	459.5 908	888	1264	401	0.504 896	0.180 02
30	30	30	100	10	0.641 211	0	912	472.9 656	912	1346	409	0.495 313	0.177
30	30	30	100	10	0.567 131	0	1034	477.7 59	1031	1312	392	0.520 293	0.174 683
30	30	30	100	12	0.571 45	2	973	453.7 021	973	1318	380	0.506 173	0.169 735
30	30	30	100	14	0.890 062	4	1001	468.1 992	1001	1304	404	0.517 877	0.172 576
30	30	30	100	10	0.665 589	0	841	420.3 484	840	1354	373	0.472 536	0.163 751
30	30	30	100	8	0.494 358	0	788	387.9 274	788	1304	415	0.479 856	0.154 738
30	30	30	100	14	0.668 09	0	826	378.2 96	821	1330	386	0.475 759	0.149 112
30	30	30	100	10	0.455 92	0	922	471.3 096	922	1268	393	0.509 098	0.182 466
30	30	30	100	10	0.570 989	0	941	461.4 729	938	1342	383	0.496 057	0.173 291
30	30	30	100	10	0.502 797	2	946	464.7 573	946	1324	399	0.503 557	0.174 001
30	30	30	100	8	0.454 313	0	929	446.3 363	928	1324	371	0.495 234	0.170 163
30	30	30	100	10	0.607 09	6	936	462.3 234	935	1346	402	0.497 211	0.171 931
30	30	30	100	12	0.856 824	0	853	442.5 559	853	1376	402	0.477 005	0.168 208
30	30	30	100	10	0.552 754	2	977	492.8 779	977	1354	374	0.499 076	0.182 075
30	30	30	100	10	0.588 637	6	959	425.6 67	956	1288	409	0.513 351	0.160 085
30	30	30	100	10	0.522 669	0	986	477.8 268	986	1306	375	0.510 311	0.179 163
30	30	30	100	12	0.706 868	0	892	454.9 413	892	1330	389	0.490 617	0.174 24
30	30	30	100	12	0.650 03	0	948	493.7 8	948	1298	407	0.510 743	0.186 121
30	30	30	100	8	0.469 491	0	919	453.8 642	919	1386	406	0.488 75	0.167 416
30	30	30	100	14	0.680 558	0	916	473.4 643	916	1382	397	0.487 199	0.175 682
30	30	30	100	16	0.618 92	0	925	452.6 236	925	1290	428	0.511 918	0.171 254
30	30	30	100	12	0.764 697	0	851	400.4 134	851	1350	460	0.492 672	0.150 475
30	30	30	100	12	0.597 282	0	991	480.5 214	991	1360	402	0.505 993	0.174 545

20	30	30	100	10	0.565	0	856	446.6	0.5	1320	420	0.490	0.172
30	30	30	100	10	95	U	830	961	853	1320	420	937	27
20	30	30	100	10	0.488	2	846	443.1	846	1296	412	0.492	0.173
30	30	30	100	10	205	2	840	636	840	1296	413	374	314
20	30	30	100	10	0.599	0	1074	523.5	1074	1346	393	0.521	0.186
30	30	30	100	10	954	U	1074	394	1074	1340	393	507	114
30	30	30	100	10	0.554	2	974	497.8	973	1322	378	0.505	0.186
30	30	30	100	10	243	2	374	309	3/3	1322	376	047	105
30	30	30	100	10	0.531	0	955	455.9	951	1360	376	0.493	0.169
30	30	30	100	10	254	O	933	64	931	1300	370	859	693
30	30	30	100	10	0.503	0	1003	464.6	1003	1294	382	0.516	0.173
30	30	30	100	10	671	U	1003	733	1003	1234	362	984	45
30	30	30	100	14	0.707	0	921	465.9	921	1364	404	0.492	0.173
30	30	30	100	14	413	U	921	654	921	1304	404	748	286
30	30	30	100	10	0.447	0	922	438.2	922	1352	375	0.489	0.165
	30	30	100	10	671		322	543	322	1332	3/3	619	441
30	30	30	100	8	0.593	0	901	449.5	900	1312	381	0.494	0.173
30	30	30	100		107	0	301	755	300	1312	301	022	38
30	30	30	100	12	0.642	0	1092	528.7	1092	1386	385	0.515	0.184
	30	30	100	12	657		1032	845	1032	1300	303	892	696
30	30	30	100	10	0.518	0	945	460.7	945	1362	380	0.493	0.171
	30	30	100		739		343	577	343	1302	300	115	477
30	30	30	100	12	0.551	0	971	467.5	971	1290	376	0.510	0.177
	30	30	100	12	302		371	121	371	1230	370	808	289
30	30	30	100	10	0.444	0	1027	498.2	1025	1290	406	0.525	0.183
	30	50	100	10	554		1027	86	1023	1230	400	91	126
30	30	30	100	12	0.647	0	908	469.2	908	1332	405	0.496	0.177
30	30	30	100	12	635	J	500	993	500	1332	703	408	429
30	30	30	100	12	0.591	0	796	392.2	794	1348	415	0.472	0.153
30	30	30	100	12	757	0	, 50	407	, 54	1540	413	82	399