Classification of ligand-binding paris pockets in proteins

Context

- A lot of proteins ⇒ around 100 000 types
- All proteins bind with ligand:

Context

Important to understand protein-ligand interactions

Molecular function

Evolutionary history

New medications

Context

Important to understand protein-ligand interactions

Problem ⇒ Great similarity between ligand-binding pockets in proteins

Objective

Be able to discriminate proteins in function of electrostatic interaction potential between the protein and its ligand

Objective

Be able to discriminate proteins in function of electrostatic interaction potential between the protein and its ligand

Neural Network inspired from Pu et al. (2018), **DeepDrug3D**: Classification of ligand-binding pockets in proteins with a convolutional neural network.

Materials and methods: Data generation

Materials and methods: Data generation

Each voxels can have **14** different electrostatic interaction potentials

Materials and methods: Data train

Pocket Data (shuffled

Hemes

x 300

Nucleotides

x 300

Steroïds

x 69

Controls

x 300

Materials and methods: Data train

Pocket Data (shuffled

Class Data (shuffled

Hemes

x 300

[1, 0, 0, 0]

Nucleotides

x 300

[0, 1, 0, 0]

Steroïds

x 69

[0, 0, 1, 0]

Controls

x 300

[0, 0, 0, 1]

Materials and methods: Data train

Pocket Data (shuffled

Class Data (shuffled

Hemes

x 300

[1, 0, 0, 0]

Nucleotides

x 300

[0, 1, 0, 0]

Steroïds

x 69

[0, 0, 1, 0]

Controls

x 300

[0, 0, 0, 1]

Running the training of the model

Materials and methods: Neural Network

3 different models:

Model A:

1 x 3D convolution with **16** neurons

Model B:

2 x 3D convolution with 4 and 16 neurons

Model C:

2 x 3D convolution with 16 and 16 neurons

Materials and methods: Neural Network

3 different models:

Model A:

1 x 3D convolution with **16** neurons

Model B:

2 x 3D convolution with 4 and 16 neurons

Model C:

2 x 3D convolution with 16 and 16 neurons

Model with one convolution layer 16 neurons

Global accuracy = 0.30

Model with one convolution layer 16 neurons

This model is not learning!

Global accuracy = 0.30

Model with double convolution layer of 4 and 16 neurons

Global accuracy = 0.80

Model with double convolution layer of 4 and 16 neurons

Global accuracy = 0.80

Model with double convolution layer of 16 and 16 neurons

Global accuracy = 0.90

Discussion

- Implemented model C pretty good
- Not enough data on steroïds (discrimination accuracy biased)
- Hemes and Nucleotides discrimination close from Pu and his team

Necessity to implement double convolution layer and learning data set

shuffling