$\label{eq:decomposition} DRAFT-Commentary\ Portfolio-DRAFT$

Student #1091

January 20, 2018

Contents

7	Pol	ynomials over a Ring
	7.1	Polynomials over a Ring
	7.2	Properties of Polynomial Rings
	7.3	Polynomial Functions and Roots
8	Fac	toring Polynomials
	8.1	Factors and Irreducible Polynomials
	8.2	Roots and Factors

iv CONTENTS

Chapter 7

Polynomials over a Ring

7.1 Polynomials over a Ring

Definition 1. Let A be a commutative ring with unity. For each nonnegative integer n and elements $a_0, a_1, \ldots, a_n \in A$ we can define a polynomial over A, a(x), by:

$$a(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 or $\sum_{i=0}^n a_i x^i$.

The set of all polynomials over a ring A is denoted A[x].

Definition 4. Suppose A is a commutative ring with unity and $a(x) \in A[x]$ with $a(x) = a_0 + a_1x + \cdots + a_nx^n$ for some nonnegative integer n.

- (i) The elements $a_0, a_1, \ldots, a_n \in A$ are the coefficients of a(x).
- (ii) For each $0 \le i \le n$, $a_i x^i$ is called a term of a(x).
- (iii) The largest nonnegative integer n with $a_n \neq 0_A$ (if one exists) is the degree of a(x), denoted deg(a(x)) = n. So for k > n we know $a_k = 0_A$.
- (iv) If all coefficients of a(x) are 0_A we say the degree of a(x) is $-\infty$.
- (v) For $n \geq 0$ if deg(a(x)) = n then a_n is called the leading coefficient of a(x).

Definition 5. Let A be a commutative ring with unity. For polynomials $a(x), b(x) \in A[x]$ we say a(x) = b(x) if and only if they have the same degree and if the degree is equal to $n \ge 0$ then for every $i \le n$, $a_i = b_i$.

Definition 6. Let A be a commutative ring with unity and let $a(x), b(x) \in A[x]$ as shown below.

$$a(x) = \sum_{i=0}^{n} a_i x^i$$
 $b(x) = \sum_{i=0}^{m} b_i x^i$

We define the new polynomial c(x) = a(x) + b(x) as follows where $k = \max\{n, m\}$.

$$c(x) = \sum_{i=0}^{k} c_i x^i$$
 and $c_i = a_i + b_i$

Remember, if i > n or i > m we assume $a = 0_A$ or $b = 0_A$, respectively.

Definition 8. Let A be a commutative ring with unity and polynomials $a(x), b(x) \in A[x]$ as shown below.

$$a(x) = \sum_{i=0}^{n} a_i x^i \qquad b(x) = \sum_{i=0}^{m} b_i x^i$$

Define the new polynomial d(x) = a(x)b(x) as follows.

$$d(x) = \sum_{i=0}^{n+m} d_i x^i \quad where \quad d_i = \sum_{j+t=i} a_j \cdot_A b_t$$

Note: $0 \le j \le n \text{ and } 0 \le t \le m.$

Theorem 11. Let A be a commutative ring with unity. The operations of polynomial addition and polynomial multiplication from Definitions 7.6 and 7.8 are associative in A[x].

Theorem 13. Let A be a commutative ring with unity. In A[x], polynomial addition and polynomial multiplication are both commutative.

Theorem 14. Let A be a commutative ring with unity. Then the distributive laws hold in A[x].

Theorem 15. Let A be a commutative ring with unity. Then the set A[x] of polynomials over A is a commutative ring with unity.

3

7.2 Properties of Polynomial Rings

Theorem 17. If A is an integral domain then A[x] is also an integral domain.

Theorem 20. Let A be an integral domain, and nonzero $a(x), b(x) \in A[x]$. If deg(a(x)) = n and deg(b(x)) = m, then deg(a(x)b(x)) = n + m.

Theorem 22. If A is a commutative ring with unity then char(A) = char(A[x]).

Theorem 24 (The Division Algorithm). Let K be a field and $a(x), b(x) \in K[x]$. If $b(x) \neq 0(x)$ then there exist unique polynomials $q(x), r(x) \in K[x]$, for which a(x) = b(x)q(x) + r(x) and either $\deg(r(x)) < \deg(b(x))$ or r(x) = 0(x).

Theorem 26. Let K be a field. Then every ideal of K[x] is a principal ideal.

Theorem 27. Let A be a commutative ring with unity. Then the function $f: A \to A[x]$ defined by $f(a) = a + 0_A x$ is an injective ring homomorphism.

Theorem 28. Let A and K be commutative rings with unity, and suppose that $f: A \to K$ is a ring homomorphism. Then the function $\overline{f}: A[x] \to K[x]$ defined below is also a ring homomorphism.

$$\bar{f}(a_0 + a_1x + \dots + a_nx^n) = f(a_0) + f(a_1)x + \dots + f(a_n)x^n$$

Theorem 30. Let A, K be commutative rings with unity, and suppose that $f: A \to K$ is an isomorphism. Then the extension $\bar{f}: A[x] \to K[x]$ is also an isomorphism.

7.3 Polynomial Functions and Roots

Definition 33. Let A be a commutative ring with unity and $a(x) \in A[x]$ with $a(x) \neq 0(x)$. If $c \in A$ and deg(a(x)) = n, we define the element $a(c) \in A$ as follows:

$$a(c) = a_0 +_A (a_1 \cdot_A c) +_A (a_2 \cdot_A c^2) +_A \cdots +_A (a_n \cdot_A c^n).$$

If a(x) = 0(x) we say $a(c) = 0_A$ for all $c \in A$.

Theorem 35. Let A be an integral domain. The substitution function h_c : $A[x] \to A$ defined by $h_c(a(x)) = a(c)$ is a ring homomorphism.

Definition 37. Let A be a commutative ring with unity, $c \in A$, and $a(x) \in A[x]$ $a(x) \neq 0(x)$. We say that c is a root of the polynomial a(x) exactly when $a(c) = 0_A$. We do not say any element of A is a root of 0(x) even though $0(c) = 0_A$ for each $c \in A$.

Chapter 8

Factoring Polynomials

8.1 Factors and Irreducible Polynomials

Definition 1. Let A be a commutative ring with unity and $a(x), d(x) \in A[x]$. We say that a(x) is a factor of d(x) if there exists a polynomial $b(x) \in A[x]$ with d(x) = a(x)b(x).

Definition 4. Let A be an integral domain. Polynomials $a(x), b(x) \in A[x]$ are called associates if there is a nonzero element $c \in A$ so that the constant polynomial c(x) = c has a(x) = c(x)b(x).

We will frequently write a(x) = cb(x) instead of first defining the constant polynomial c(x) = c.

Theorem 5. Let A be an integral domain and suppose $a(x), b(x) \in A[x]$ are associates. Then $c \in A$ is a root of a(x) if and only if c is a root of b(x).

Definition 7. Let A be an integral domain with $a(x) \in A[x]$ and deg(a(x)) > 0. We say that a(x) is irreducible over A if every factor of a(x) in A[x] is either a constant polynomial or an associate of a(x). If instead a nonconstant factor of a(x) which is not an associate of a(x) exists in A[x], we say that a(x) is reducible over A.

Theorem 8. Let K be a field and suppose $a(x), b(x) \in K[x]$ are associates. The polynomial a(x) is irreducible over K if and only if b(x) is irreducible over K.

Theorem 9. Let K be a field. Every polynomial in K[x] of degree 1 is irreducible over K.

Theorem 10. Suppose K is a field, and $p(x) \in K[x]$. If p(x) is irreducible over K then $\langle p(x) \rangle$ is a maximal ideal of K[x].

Theorem 11. Let K be a field, and assume that $p(x) \in K[x]$ is irreducible over K. If $a(x), b(x) \in K[x]$ and p(x) is a factor of the product a(x)b(x), then p(x) is a factor of at least one of a(x) or b(x).

Theorem 12. Let K and E be fields, and suppose that $\bar{f}: K \to E$ is an isomorphism. The polynomial $p(x) \in K[x]$ is irreducible over K if and only if $\langle p(x) \rangle$ is irreducible over E.

8.2 Roots and Factors

Theorem 13. Let K be a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. The element $c \in K$ is a root of a(x) if and only if b(x) = -c + x is a factor of a(x).

Theorem 17. Suppose K is a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. If the distinct elements $c_1, c_2, \ldots, c_n \in K$ are all roots of a(x), then the product $b(x) = (-c_1 + x)(-c_2 + x) \cdots (-c_n + x)$ is a factor of a(x).

Theorem 19. Let K be a field. If $c_1, c_2, \ldots, c_n \in K$ are distinct roots of the nonzero polynomial $a(x) \in K[x]$, then $\deg(a(x)) \geq n$.

Theorem 20. Suppose K is a field and $a(x) \in K[x]$. If deg(a(x)) > 0 then there exist a positive integer m and polynomials $b_1(x), b_2(x), \ldots, b_m(x) \in K[x]$ which are irreducible over K and $a(x) = b_1(x)b_2(x) \cdots b_m(x)$.

Theorem 22. Let K be a field and $a(x) \in K[x]$ with deg(a(x)) = 2 or deg(a(x)) = 3. The polynomial a(x) is reducible over K if and only if a(x) has a root in K.

Definition 24. Let K be a field and $a(x) \in K[x]$. Suppose $a(x) \neq 0(x)$, with deg(a(x)) = n. The polynomial a(x) is **monic** if $a_n = 1_K$.

Definition 26. Let K be a field and $a(x) \in K$ with $a(x) \neq 0(x)$. Suppose $c \in K$ is a root of a(x). If there is an integer m > 0 for which the polynomial $b(x) = (-c+x)^m$ is a factor of a(x) but $d(x) = (-c+x)^{m+1}$ is not a factor of a(x), then we say that c is a root of a(x) with multiplicity m.

Theorem 27. Let K be a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. If deg(a(x)) = n then there can be at most n distinct roots of a(x) in K.

Theorem 28. Let K be an infinite field. If $a(x), b(x) \in K[x]$, and $a(x) \neq b(x)$, then there must exist some $c \neq K$ for which $a(c) \neq b(c)$.