GE2262 Business Statistics

Topic 3 Discrete & Continuous Probability Distributions

Reference

Levine, D.M., Krehbiel, T.C. and Berenson, M.L., *Business Statistics: A First Course*, Pearson Education Ltd, Chapter 3 & 5 & 6

Outline

- Discrete Probability Distribution
- Binomial Distribution
- Continuous Probability Distribution
- Normal Distribution

Random Variables

Random Variable

outcomes of an experiment with probabilistic occurrence

Discrete Random Variable

produces outcomes that come from a **counting process**

(e.g. number of courses you are taking in this semester)

Continuous Random Variable

produce outcomes that come from a **measurement**

(e.g. your annual salary, or your weight)

Discrete Probability Distributions

- A probability distribution for a discrete variable is a mutually exclusive listing of all possible numerical outcomes for that variable and a probability of occurrence associated with each outcome
 - The probabilities are obtained based on either priori knowledge (priori probability) or empirical approach (empirical probability)
 - Examples
 - Probability of selecting a black card from a deck of cards
 - Probability of a respondent who will purchase a HDTV
- The probability distribution of a variable forms a theoretical model which allows us to derive statistics and probabilities for the events related to the variable

Discrete Probability Distribution

Experiment: Toss 2 coins let X = No. of heads

Discrete Probability Distribution

Probability Distribution			
X Value, x_i	Probability, $P(X = x_i)$		
0	1/4 = 0.25		
1	2/4 = 0.50		
2	<u>1/4 = 0.25</u>		
Total	1		

- Mutually exclusive (Nothing in common)
- Collectively exhaustive (Nothing left out)

$$0 \le P(X = x_i) \le 1 \qquad \sum P(X = x_i) = 1$$

$$\sum P(X = x_i) = 1$$

Discrete Random Variables – Measuring Center

Cont'd

- Expected value (Mean)
 - Weighted average of all possible values of X
 - Corresponding probability is treated as weight

$$\mu = E(X) = \sum_{i=1}^{N} x_i P(X = x_i)$$

E.g. Toss 2 coins, count the number of heads

X = number of heads

Compute the expected value of X:

compare the expected value of X.	
$\mu = x_1 P(X = x_1) + x_2 P(X = x_2) + x_3 P(X = x_3) + x_3 P(X = x_3) + x_4 P(X = x_3) + x_5 P(X = x_3) + $	$P(X=x_3)$

X	P(X)
0	0.25
1	0.50
2	0.25

Discrete Random Variables – Measuring Variation

Cont'd

- Variance
 - Weighted average squared deviation about the mean

$$\sigma^2 = \sum_{i=1}^{N} [x_i - E(X)]^2 P(X = x_i)$$

- Standard deviation
 - Square root of variance

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{i=1}^{N} [x_i - E(X)]^2 P(P = x_i)}$$

E.g. Toss 2 coins, count the number of heads

X = number of heads

Compute the variance of X:

X	P(X)
0	0.25
1	0.50
2	0.25

$$\sigma^2 = (x_1 - \mu)^2 P(X = x_1) + (x_2 - \mu)^2 P(X = x_2) + (x_3 - \mu)^2 P(X = x_3)$$

Discrete Random Variables – Example

Cont'd

Roll a fair die once. What is the expected value of the number rolled?

Number Rolled (x _i)	Probability $P(X = x_i)$	$x_i P(X = x_i)$
1	1/6	(1)(1/6) = 1/6
2	1/6	(2)(1/6) = 2/6
3	1/6	(3)(1/6) = 3/6
4	1/6	(4)(1/6) = 4/6
5	1/6	(5)(1/6) = 5/6
6	1/6	(6)(1/6) = 6/6
		$\mu = E(X) = 3.5$

• The expected value of the number rolled is 3.5

Discrete Random Variables – Example

- For the results of rolling a fair die, the expected value of the number rolled is 3.5
- Since you can never obtain a number of 3.5 by rolling a die, so what is the meaning of these statistics?
- How much money should we be willing to put up in order to have the opportunity of rolling a fair die if we were to be paid, in dollars, the amount on the face of the die?
 - On any particular roll, our payoff will be \$1.0, \$2.0, ..., or \$6.0, but over many many rolls, the payoff can be expected to average out to \$3.5 per roll
 - □ If you pay less than \$3.5 for a roll, you are going to make a profit in long run
 - □ If you pay more than \$3.5 for a roll, you are going to loss in long run

Discrete Random Variables – Exercise

Cont'd

 Assume the following table shows the return per \$1,000 for an investment under different economic conditions

Return in amount, Y _i	Economic Condition	P (Y _i)
-\$200	Recession	0.2
+ 50	Stable Economy	0.5
+ 350	Expanding Economy	0.3

Compute the expected return and standard deviation

Calculating the Mean and Variance in Calculator (For Casio fx-50F)

Date Set:

X _j	20	30	40	50	60	75
P(X _j)	0.1	0.1	0.15	0.25	0.2	0.2

Change to "Lin" mode

MODE MODE

1

Clear previous data

SHIFT CLR

EXE

Input data

SHIFT 0.1

SHIFT 0.1

SHIFT 0.15

M+

50 SHIFT 0.25 M+

SHIFT 0.2 M+

SHIFT , 0.2

Calculate descriptive statistics

Mean:

SHIFT

2 1 1 EXE

= 50.5

Population standard deviation:

SHIFT

2 1 2 EXE

= 17.02204453

Binomial Distribution

- A mathematical model is a mathematical expression representing some underlying phenomenon
- With such mathematical expressions are available, the exact probability of occurrence of any particular outcome of the random variable can be computed
- For discrete random variables, this mathematical expression is known as a probability distribution function
- One of the such probability distribution functions is called Binomial Distribution
 - A very important mathematical model used in many business situations

Binomial Distribution

Cont'd

What is the probability that, among 3 students, any 2 of them getting a pass in the test, with the probability of passing the test equals 0.7?

Student	Α	В	С	Probability
Case 1	Р	Р	F	$0.7 \times 0.7 \times 0.3 = 0.147$
Case 2	Р	F	Р	$0.7 \times 0.3 \times 0.7 = 0.147$
Case 3	F	Р	Р	$0.3 \times 0.7 \times 0.7 = 0.147$

P(Any 2 getting pass) = 0.147 + 0.147 + 0.147 = 0.441

What is the probability that, among **30** students, any **20** of them getting a pass in the test, with the probability of passing the test equals 0.7?

Binomial Distribution – Conditions

- 'n' repetition of identical trials
 - E.g. totally 3 students
- 2 mutually exclusive outcomes (success and failure) in each trial
 - □ E.g. getting a pass or fail in the test
- Constant probability of success, π , in each trial
 - E.g. probability of getting a pass in the test for each student is
 0.7, which is constant
- Trials are independent
 - E.g. the outcome of one student does not affect the outcome of the others

Binomial Distribution

Cont'd

The binomial probability for a discrete random variable X is computed as

$$P(X = x) = \frac{n!}{x! (n-x)!} \pi^x (1-\pi)^{(n-x)}$$

Probability mass function

where P(X = x) = probability that X = x events of interest (e.g. success)

n = number of observations

 π = probability of an event of interest

X = number of events of interest in the sample (X = 0, 1, 2, ..., n)

$$n! = n (n-1) (n-2) ... (1) ; 0! = 1$$

$$\frac{n!}{x!(n-x)!}$$
 = no. of combinations of x successes out of n trials

 π^x = total probability of having x successes

$$(1-\pi)^{(n-x)}$$
= total probability of having $(n-x)$ failures

Binomial Distribution – Example

What is the probability that, among 3 students, any 2 of them getting a pass in the test, with the probability of passing the test equals 0.7?

Cont'd

X = no. of students passing the test out of 3 students X follows Binomial distribution (n = 3, X = 2, π = 0.7)

$$P(X = 2) = \frac{n!}{x! (n - x)!} \pi^{x} (1 - \pi)^{(n - x)}$$
$$= \frac{3!}{2!(3 - 2)!} 0.7^{2} (1 - 0.7)^{(3 - 2)}$$
$$= 0.441$$

What is the probability that, among **30** students, any **20** of them getting a pass in the test, with the probability of passing the test equals 0.7?

Binomial Distribution

- Possible applications for the Binomial Distribution
 - A manufacturing plant labels items as either defective or acceptable
 - A firm bidding for contracts will either get a contract or not
 - A marketing research firm receives survey responses of "yes, I will buy" or "no, I will not"
 - New job applicants either accept the offer or reject it

Binomial Distribution – Exercise

Cont'd

An experiment about the interest of going to the cinema is conducted in a secondary school. Five students are selected randomly.

Assume the probability of going to cinema within a week is 0.1.

X = no. of students going to cinema out of 5 students X follows Binomial distribution ($n=5, \pi=0.1$)

The probability of 3 students going to the cinema out of these 5 students:

Binomial Distribution – Exercise

Cont'd

What is the probability that there are 3 or more students going to the cinema within a week?

$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$$

What is the probability that there are less than 3 students going to the cinema?

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$$

Binomial Distribution Mean and Standard Deviation

Binomial Probability Distribution:

X _i	P(X _i)
0	0.59049
1	0.32805
2	0.0729
3	0.0081
4	0.00045
5	0.00001

$$\mu = \sum x_i P(X = x_i)$$

$$\sigma^2 = \sum (x_i - \mu)^2 P(X = x_i)$$

Binomial Distribution Mean and Standard Deviation

Cont'd

If X follows a Binomial Distribution of size n and probability π , it can be shown that

$$\mu = n\pi$$
= (5)(0.1)
= 0.5

$$\sigma^2 = n\pi(1 - \pi)$$
= (5)(0.1)(1-0.1)
= 0.45

$$\sigma = \sqrt{n\pi(1-\pi)}$$

$$= \sqrt{(5)(0.1)(1-0.1)}$$

$$= 0.6708$$

Binomial Distribution

- The shape of a Binomial Distribution depends on the values of n and π
 - Whenever $\pi=0.5$, the distribution is symmetrical, regardless of how large or small the value of n
 - Whenever $\pi \neq 0.5$, the distribution is skewed
 - π < 0.5, right-skewed; π > 0.5, left-skewed

$$n = 4$$
, $\pi = 0.1$

$$n = 4$$
, $\pi = 0.5$

Binomial Distribution in Excel

Using Excel to find out the probability that 2 students out of 5

going to cinema within 1 week

 \Box Type the required information (n, X, π)

Use BINOM.DIST function

(n, X, π)	2			
. (10) 11) 10)	3	Number of trials	n	5
	4	Probability	π	0.1
	5	Total number of successes in n trial	X	2
	6			
	7	P (X=2)		
	^	` '		
Function Arguments				? ×
BINOM.DIST				
Numbe	er_s	C5 s = 2		
Ti	rials	C3 S = 5		
Probabilit	y_s [C4 S = 0.1		
Cumula	tive [D = FALSE		
		= 0.0729		
Returns the individual ter	m binom	al distribution probability.		
	Cum	Ilative is a logical value: for the cumulative distribution fun probability mass function, use FALSE.	ction, use TR	UE; for the
С	umu	lative:		
where 1 is us	ed t	o calculate P(X≤2)		
		o calculate P(X=2)	K]	Cancel
0 13 US	eu ti			
				24

Binomial Distribution

Binomial Distribution in Excel

Cont'd

 Using Excel to find out the probability that 2 students out of 5 going to cinema with 1 week

- A continuous variable is a variable that can be assume any value on a continuum (can assume an uncountable number of values)
- Examples
 - Time required to travel from home to campus
 - Temperature of a drink
 - Height, in inches
- These can potentially take on any value depending only on the ability to precisely and accurately measure
- In practice, a discrete numerical variable with large range of values is often considered as a continuous variable

Example

- The probability distribution as shown is obtained by categorizing the amount of soft drink (X) in 10,000 1liter bottles filled on a recent day
 - P(X < 1.025) = 0.0048
 - $P(1.025 \le X < 1.030) = 0.0122$
 - P(X < 1.030) = 0.0048 + 0.0122= 0.0170
 - P(X < 1.042) = ?
 - $P(1.032 \le X < 1.042) = ?$
 - P(X = 1.042) = ?

		Relative
Amount of Fill (liters)	Frequency	Frequency
< 1.025	48	0.0048
1.025 < 1.030	122	0.0122
1.030 < 1.035	325	0.0325
1.035 < 1.040	695	0.0695
1.040 < 1.045	1198	0.1198
1.045 < 1.050	1664	0.1664
1.050 < 1.055	1896	0.1896
1.055 < 1.060	1664	0.1664
1.060 < 1.065	1198	0.1198
1.065 < 1.070	695	0.0695
1.070 < 1.075	325	0.0325
1.075 < 1.080	122	0.0122
1.080 or above	48	0.0048
	_	1.0000

Example

Cont'd

 Any required probabilities concerning the amount of soft drink filled can be obtained either from the raw data observed or from the relative frequency histogram

- Treat the relative frequency as the area of of each group P(X < 1.042) =the area on the left of 1.042 = 0.0048 + 0.0122 + 0.0325 + 0.0695 + (1.042-1.040)/0.005*0.1198 <math>= 0.1190 + 0.0479 = 0.1669
- The area under a single point is 0. Hence, P(X = 1.042) = 0

- Computing the probability of a continuous variable over a specified interval is like determining the area of the corresponding relative frequency histogram over the same interval
 - It is time consuming to construct such relative frequency histogram as many data values need to be collected
 - Sometimes it may not be possible to get the required data points
- Is there an alternative way to compute probabilities of a continuous variable without involving the relative frequency histogram?

- The figure below shows the relative frequency histogram and percentage polygon for the distribution of the amount filled in 10,000 bottles
 - Polygon is a graph made by joining the middle top points of each class interval of relative frequency histogram

- Determining the area of a relative frequency histogram over an interval is approximately equivalent to finding the area under the polygon over the same interval
 - If we can assume that the polygon actually follows some known mathematical curve, then finding the area under such curve becomes very easy

Cont'd

Probability Density Function

- A probability density function, or density function of a continuous random variable is a function that describes the relative likelihood for this random variable to take on a given value
- One may consider a density function is an approximation to the percentage polygon of its relative frequency distribution
- A density function, f, for a random variable X has the following features:
 - $f(x) \ge 0$ for all x of X
 - The area bounded by the curve of f(x) and the x-axis is equal to 1
- The most important form of density function is called the Normal Density Function

Normal Distribution

Cont'd

- If the density function of a continuous random variable can be best described by normal density function, we say the random variable follows a Normal Distribution
- The Normal Density Function is defined as:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\left(\frac{1}{2}\right)\left[\frac{x-\mu}{\sigma}\right]^2}$$

where x= any value that the continuous random variable X can take in the range of $-\infty$ to $+\infty$

 $\mu =$ mean of the population

 $\sigma =$ standard deviation of the population

e = the mathematical constant approximated by 2.71828...

 $\pi =$ the mathematical constant approximated by 3.14159...

• Often denoted as $X \sim N(\mu, \sigma^2)$

Normal Distribution

- For $X \sim N(\mu, \sigma^2)$
 - Has an infinite theoretical range, i.e.
 - $-\infty$ to $+\infty$
 - Bell shaped
 - \square Symmetrical about $X = \mu$
 - Mean, median and mode are identical
 - $lue{}$ The spread is determined by σ
 - For smaller σ , the X values are clustered more closely around μ
 - For larger σ , the X values are more spread out and away from μ
 - Follows the Empirical Rule

The Empirical Rule

- The Empirical Rule said that
 - \blacksquare Area within $\mu \pm \sigma$ equals 68% approximately
 - \Box Area within $\mu \pm 2\sigma$ equals 95% approximately
 - \blacksquare Area within $\mu \pm 3\sigma$ equals 99.7% approximately

Normal Distribution

Cont'd

• Changing μ shifts the distribution left or right

ullet Changing σ increases or decreases the spread

Computing Normal Probabilities

- The total area under the curve is 1
- Probability is measured by the area under the curve
- Note that the probability of any individual value is zero by definition, i.e. P(X = a) = 0

Computing Normal Probabilities

Cont'd

Area under the curve is computed as

$$P(a \le X \le b) = \frac{1}{\sqrt{2\pi}\sigma} \int_{a}^{b} e^{-(\frac{1}{2})[\frac{x-\mu}{\sigma}]^{2}} dx$$

• Varying the parameters μ and σ , we obtain different Normal Distributions

The Standardized Normal Distribution

- When a random variable Z follows a Normal Distribution with $\mu=0$ and $\sigma=1$, we say Z follows a Standard Normal Distribution
- Often denoted as $Z \sim N(0, 1^2)$
- An advantage of Z distribution is that the probabilities for Z are available on standard normal tables
 - $lue{}$ A table gives the probability that Z is between the $-\infty$ and a desired value for Z

The Standardized Normal Distribution

Cont'd

For any $X \sim N(\mu, \sigma^2)$, it can be standardized to $Z \sim N(0, 1^2)$ with the following formula

$$Z = \frac{X - \mu}{\sigma}$$

Standardization of Normal Distributions

The idea of standardization is

Step 1: *X*

Step 2: $X - \mu$

Step 3: $Z = \frac{X - \mu}{\sigma}$

 μ

The Standardized Normal Table

The column gives the value of Z to the second decimal point

The Cumulative Standardized Normal Distribution
Entry represents area under the cumulative standardized normal distribution from -∞ to Z

						· ·				
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-6.0	0.000000	001								
-5.5	0.00000019									
-5.0	0.00000287									
-4.5	0.00003398									
-4.0	0.000031671									
-3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003
-3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005
-3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	80000.0	80000.0	0.00008
-3.6	0.00016	0.00015	0.00015	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011
-3.5	0.00023	0.00022	0.00022	0.00021	0.00020	0.00019	0.00019	0.00018	0.00017	0.00017
-3.4	0.00034	0.00032	0.00031	0.00030	0.00029	0.00028	0.00027	0.00026	0.00025	0.00024
\uparrow	•					\uparrow				

The row shows the value of *Z* to the first decimal point

The value within the table gives the probability from $Z = -\infty$ up to the desired Z value P(Z < -3.45) = 0.00028

Computing Normal Probabilities – Example

- A set of final exam scores was normally distributed with a population mean 73 and population standard deviation 8
 - What is the probability of getting a score not higher than 91 on this exam?

Let the score be X, and $X \sim N(73, 8^2)$ $P(X \le 91)$

$$= P\left(Z \le \frac{91-73}{8}\right) = P(Z \le 2.25) = 0.9878 \qquad X = 91$$

2. If the passing score is 50, what is the chance that a student can pass the exam?

3. What percentage of students scored between 50 and 91?

4. What percentage of students scored below 45 or above 85?

5. What is the probability for a student to score exactly 85?

Not an area,

but just a line!!!

Computing Normal Probabilities in Excel

Step 1: Type the given information (μ, σ, X)

Step 2: Insert the "NORM.DIST" function

Computing Normal Probabilities in Excel

Recovering *X* Values from Known Probabilities

- With a given (cumulative) probability, we can use the Z table to recover the Z value
- With μ and σ of the X variable, we can recover the X value

Recovering *X* Values – Example

- Given that the exam scores, X, follow normal distribution with mean 73 and standard deviation 8, i.e. $X \sim N(73, 8^2)$
- 1. What is the minimum score a student needs in order to be in the top 5% of the class?

For
$$P(Z \ge a) = 0.05$$
, $a = 1.645$
As $Z = \frac{X - \mu}{\sigma}$,
hence $X = \mu + Z\sigma$
 $= 73 + 1.645 \times 8 = 86.16$

0.05

Recovering *X* Values – Exercise

Cont'd

2. The middle 50% of the students scored between what two scores?

Recovering X Values in Excel

Step 1: Type the given information (μ, σ, P)

Step 2: Insert the "NORM.S.INV" function for recovering Z value; "NORM.INV" for recovering X value

Normal Distribution

Population Mean

Population Standard Deviation

73

8

 $\sigma =$

Recovering X Values in Excel

Importance of Normal Distribution

- Most common continuous distribution used in statistics
- Provides the basis for statistical inference because of its relationship to the Central Limit Theorem
 - □ To be discussed in Topic 4
- Can be used to approximate various discrete probability distributions, such as Binomial distribution, for large sample size, therefore, simplifying computations
 - □ To be discussed in Topic 7

You Sometimes Get More Than You Pay For

- According to McDonald's "fact sheet", their ice cream cones weigh 3.7 ounces and contain 170 calories
- Do the ice cream cones really weigh exactly 3.7 ounces?
- To get 3.7 ounces for every cone would require a very fine-tuned machine, or an employee with a very good skill and sense of timing
- Thus, we expect some natural variation in the weight of these cones

You Sometimes Get More Than You Pay For

- If you buy one ice cream cone everyday through out the week, you may be surprised that they all weighed more than 3.7 ounces
- How likely this would happened?