STA237 Exercises

Contents

1	$\mathbf{E}\mathbf{x}\mathbf{e}$	rcises	
	1.1	Probability	2
	1.2	Conditional Probability	4
		Random Variables	
	1 4	Continuous Random Variables	19

1 Exercises

1.1 Probability

- 1. Suppose $P(A) = 0.5, P(A \cap B) = 0.2, \text{ and } P(A \cup B) = 0.7.$ Find:
 - (a) P(B)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$0.7 = 0.5 + P(B) - 0.2$$
$$0.7 = 0.3 + P(B)$$
$$P(B) = 0.4$$

(b) P(exactly one of two events occurs)

This means the probability of no elements from the intersection. Let this area be P(O).

$$P(A \cup B) = P(O) + P(A \cap B)$$

 $0.7 = P(O) + 0.2$
 $P(O) = 0.5$

(c) P(neither event occurs)

This means the probability of no elements in A, B. Call this probability P(X).

$$P(X) = P(\Omega) - P(A \cup B)$$
$$= 1 - 0.7$$
$$= 0.3$$

2. Suppose we throw a coin two times. The sample space for this experiment is:

$$\Omega = \{H, T\} \times \{H, T\} = \{(H, H), (H, T), (T, H), (T, T)\}$$

If it is a fair coin, then all four outcomes have equal possibilities:

$$P((H,H)) = P((H,T)) = P((T,H)) = P((T,T)) = \frac{1}{4}$$

What is the probability of getting at least one tail?

Looking at the sample space, the probability is $\frac{3}{4}$.

Alternatively, we can solve as follows, where RP represents the required probability:

$$P(\Omega) = RP + P(HH)$$

$$1 = RP + P(HH)$$

$$= RP + P(H)P(H)$$
Since it is independent.
$$= RP + \frac{1}{2} \cdot \frac{1}{2}$$

$$1 = RP + \frac{1}{4}$$

$$RP = \frac{3}{4}$$

Suppose we wanted to throw three coins, what would happen to the sample space?

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

Then, there are $2 \cdot 2 \cdot 2 = 2^3$ possibilities (to keep on with this pattern, flipping a coin 6 times would have 2^6 possibilities, and so on).

What is the probability of at least one head appearing in a 3-coin toss?

$$P(X) = 1 - P(TTT)$$

$$= 1 - P(T)P(T)P(T)$$

$$= 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= 1 - \frac{1}{8}$$

$$= \frac{7}{8}$$

3. A survey of students in a class was asked about their birth order (1 = oldest/only child), and which college of the university they were enrolled in.

Birth Order	1 or Only	2 or More	Total
Arts	Science	34	23
57		'	
Agriculture	52	41	93
Human Ecology	15	28	43
Other	12	17	30
Total	113	110	223

Suppose we selected a random student from this class.

- (a) What is the probability we select a Human Ecology student? P(Human Ecology) = $\frac{43}{223}$
- (b) What is the probability we select a first-born student? P(First Born) = $\frac{113}{223}$
- (c) What is the probability that the student is a first-born and a Human Ecology student? $P(C) = P(A \cap B) = \frac{15}{223}$
- (d) What is the probability that the student is a first born or a Human Ecology student?

$$P(D) = P(A \cup B)$$

$$= P(A) + P(B) - P(\cap B)$$

$$= \frac{43}{223} + \frac{113}{223} - \frac{15}{223}$$

$$= \frac{141}{223}$$

4. A sample space consists of 5 simple events, E_1, E_2, E_3, E_4, E_5 .

(a) If $P(E_1) = P(E_2) = 0.15$, $P(E_3) = 0.4$, and $P(E_4) = 2P(E_5)$, find the probabilities of E_4 and E_5 .

$$1 = 0.15 + 0.15 + 0.4 + 2P(E_5) + 2P(E_5)$$
$$0.3 = 3P(E_5)$$
$$P(E_5) = 0.1$$

Then:

$$P(E_4) = 2(0.1)$$

= 0.2

5. If A, B are events, $B \subset A$, P(A) = 0.6 and P(B) = 0.2, then find $P(A \cap B^c)$. To visualize:

$$P(A) = P(A \cap B^c) + P(B)0.6$$
 = $P(A \cap B^c) + 0.2$
 $P(AcapB^c) = 0.4$

6. An experiment involves tossing a pair of dice and observing the numbers on the upper faces. Find the number of sample points in Ω and the sample space for the experiment The sample points are $\Omega_{\{m,n\}} = \{1,2,3,4,5,6\}$.

The sample space is taking the cross product of the sample points (i.e., $\Omega_1 \times \Omega_2$). Then:

$$\Omega\{(1,1),(1,2),...,(6,6)\}$$

There is a $m \cdot n = 6 \cdot 6 = 36$ chance for a single probability.

7. The names of three employees are randomly drawn without replacement from a bowl containing the names of 30 employees of a small company. The person whose names is drawn first receives \$100, and the individuals whose names are drawn second and third receive \$50 and \$25, respectively. How many samples are associated with this experiment? There are 30 employees and 3 people are picked. So, r = 3, n = 30. Hence:

$$\begin{split} \Omega &= P_3^{30} \\ &= \frac{30!}{(30-3)!} \\ &= \frac{30!}{27!} \end{split}$$

8. Find the number of ways of selecting two applicants out of five. Here, n=5, r=2.

$${5 \choose 2} = \frac{5!}{2!(5-2)!}$$

$$= \frac{5!}{2!3!}$$

$$= \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}$$

$$= 10$$

1.2 Conditional Probability

1. Let $N = R^c$ be the event 'born in a month without r', and L is the event 'born in a long month'. What is the conditional probability P(N|L)?

$$P(R^c|L) = \frac{3}{7}$$

Note that $P(R|L) + P(R^c|L) = \frac{4}{7} + \frac{3}{7} = 1$.

2. A survey asked: 'Are you currently in a relationship?', and 'Are you involved in club sports?'. The survey found that 33% were in a relationship, and 25% were involved in sport. 11% said yes to both. Suppose you meet a student who is on a sports team. What is the probability they are also in a relationship?

Let A be students in a relationship, and B be students in a club sport.

$$P(A) = 0.33, P(B) = 0.25, P(A \cap B) = 0.11.$$
 We have:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{0.11}{0.25}$$
$$= 0.44$$

We know that $P(A|B) \neq P(A)$, A and B must be dependent events.

- 3. A bowl contains 6 red and 4 blue balls, A child selects two balls at random. What is the probability at least one of them is red?

We have:

- (a) $\{R, R\} = \frac{6}{10}, \frac{5}{9}$ (b) $\{R, B\} = \frac{6}{10}, \frac{4}{9}$ (c) $\{B, R\} = \frac{4}{10}, \frac{6}{9}$ (d) $\{B, B\} = \frac{4}{10}, \frac{3}{9}$

Note that P(at least one red) + P(no red) = 1, so:

$$P(one_R) = 1 - P(no_R)$$

$$= 1 - P(BB)$$

$$= 1 - P(B_1 \cap B_2)$$

$$= 1 - P(B_2|B_1)P(B_1)$$

$$= 1 - \frac{3}{9} \cdot \frac{4}{10}$$

$$= 1 - \frac{2}{15}$$

$$= \frac{13}{15}$$

- 4. A recent highway safety study found that in 77% of all accidents, the driver was wearing a seatbelt. Accident reports indicated that 92% of those drivers did not experience serious injury (defined as hospitalization or death), but only 63% of the non-belted were okay.
 - (a) What is the probability that a driver was seriously injured?
 - (b) What is the probability that a driver who was seriously injured was not wearing a seatbelt?

Let B is those that are wearing a seat bet, and NB is for those who did not wear a seat belt. Then, let I represent those who experienced a serious injury.

We have
$$P(B) = 0.77$$
, $P(NB) = 1 - 0.77 = 0.23$, and $P(I^c|B) = 0.92$, $P(I^c|NB) = 0.63$.
Then, $P(I|B) = 0.08$, $P(I|NB) = 0.37$.

[a)]Want to find P(I):

$$P(I) = P(B \cap I) + P(NB \cap I)$$

$$= P(I|B)P(B) + P(I|NB)P(NB)$$

$$= 0.08 \cdot 0.77 + 0.37 \cdot 0.23$$

$$= 0.0616 + 0.0851$$

$$= 0.1467$$

Want to find P(NB|I).

$$P(I|NB) = \frac{P(NB \cap I)}{P(I)}$$

$$= \frac{P(I|NB)P(I)}{0.1467}$$

$$= \frac{0.23 \cdot 0.37}{0.1467}$$

$$= \frac{0.0851}{0.1467}$$

$$= 0.58$$

(b) A student figures he has a 30% chance of being let out of class late. If he leaves class late, there is a 45% chance he will miss the bus. What is the probability that he is let out of class late and misses the bus?

Let L be the chance he leaves class late. Let M be the chance he misses the bus. P(L) = 0.3, P(M|L) = 0.45. We want to find $P(L \cap M)$:

$$P(L \cap M) = P(M|L)P(L)$$
$$= 0.45 \cdot 0.3$$
$$= 0.135$$

- 6. Leah flies from Moncton to Vancouver with a connection in Montreal. The probability her flight leaves on time is 15%. If the flight is on time, the chance her luggage makes the connecting flight in Montreal is 95%. But, if the flight is delayed, the probability the luggage will make it is only 65%.
 - (a) Are the first flight leaving on time and the luggage making the connection independent events? Explain.
 - (b) What is the probability that Leah's luggage arrives in Vancouver with her?

Let F be the chance her flight leaves on time. Let L be the luggage being in the connecting flight. P(F) = 0.15, P(L|F) = 0.95, $P(L|F^{C}) = 0.65$.

[a)] We have P(L|F) = 0.95 and P(L) = 0.695, so they are not equal. Therefore, they are dependent events.

$$P(L) = P(L|F)P(F) + P(L|F^c)P(F^c)$$

$$= 0.95 \cdot 0.15 + 0.65 \cdot 0.85$$

$$= 0.1425 + 0.5525$$

$$= 0.695$$

- (a) The Ontario Lottery association claims your odds of winning a price on an Instant Win Crossword game are 1 in 3.09. This means that any ticket has 32.4% chance of winning a prize. Every Friday, you buy one Crossword game.
 - (a) What is the probability you don't win a prize next Friday?
 - (b) What is the probability you don't win a prize 6 Fridays in a row?
 - (c) If you haven't won a prize for the past 6 Fridays, what is the probability you win a prize on your next game?
 - (d) What is the probability you win on two of your next three games?

Let W be the chance you win a prize. P(W) = 0.324.

(a) Want to find $P(W^c)$. $P(W^c) = 1 - 0.324 = 0.676$

(b) Want to find $P(W_1^c...W_6^c)$:

$$P(W_1^c...W_6^c) = P(W_1^c) \cdot ... \cdot P(W_2^c)$$

$$= P(W^c)^6$$

$$= 0.676^6$$

$$= 0.0954$$

- (c) Want to find $P((W_1^c...W_6^c)^c)$. So: $P((W_1^c...W_6^c)^c) = 1 0.0954 = 0.9046$.
- (d) Want to find $P(W_1W_2W_3^c)$:

$$P(W_1 W_2 W_3^c) = 0.324 \cdot 0.3424 \cdot 0.676$$
$$= 0.071$$

1.3 Random Variables

1. Suppose we roll two dice. List the outcomes:

(a)
$$\{X = 8\} = \{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)\}.$$

 $P(X = 8) = \frac{5}{36}$

(b)
$$\{X = 3\} = \{(1, 2), (2, 1)\}.$$

 $P(X = 3) = \frac{2}{36} = \frac{1}{18}$

(c)
$$\{X = 13\} = \{\}$$

 $P(X = 13) = 0$

2. Suppose the death rate in a year is 1 out of 1000 people, and that 2 out of 1000 people suffer some kind of disability. Then, we display the probability model for X = company payout in a table:

Policyholder Outcome	Payout x	P(X = x)
Death	10000	1/1000
Disability	5000	2/1000
Neither	0	

What is P(X=0)?

We have X = 0,5000,10000, and $P(X = 10000) = \frac{1}{1000}$, $P(X = 5000) = \frac{2}{1000}$. We calculate:

$$P(X = 0) = 1 - \frac{1}{1000} - \frac{2}{1000}$$
$$= \frac{997}{1000}$$

3. Take the previous example, and determine E(X), where X is the company payout. Recall: X=0,5000,10000, and $P(X=10000)=\frac{1}{1000},\ P(X=5000)=\frac{2}{1000},\ \text{and}\ P(X=0)=\frac{997}{1000}.$ To calculate E(X):

$$E(X) = (10000 \cdot \frac{1}{1000}) + (5000 \cdot \frac{2}{1000}) + (0 \cdot \frac{997}{1000})$$

$$= 10 + 10$$

$$= 20$$

Next, suppose we wanted to calculate the variance of X. We have:

(a) 10000 - 20 = 9980

(b)
$$5000 - 20 = 4980$$

(c)
$$0 - 20 = -20$$

So, we have:

$$\sigma^{2} = \sum_{x} (x - \mu)^{2} P(x)$$

$$= (9980^{2} \cdot \frac{1}{1000}) + (4980^{2} \cdot \frac{2}{1000}) + ((-20)^{2} \cdot \frac{997}{1000})$$

$$= 149600$$

Then:

$$\begin{split} \sigma &= SD(X) = \sqrt{V(X)} \\ &= \sqrt{149600} \\ &= \$386.78 \end{split}$$

- 4. If E(X) = 10 and V(X) = 3, then:
 - (a) Calculate E(9x + 11).

$$E[9x + 11] = 9E(x) + 11$$
$$= (9 \cdot 10) + 11$$
$$= 90 + 11 = 101$$

(b) Calculate V(9x + 11).

$$V(9x + 11) = 92V(x)$$
$$= 92 \cdot 3$$
$$= 243$$

(c)

$$\sigma^{2} = E(X - \mu)^{2}$$

$$= E(x^{2} - 2\mu x + \mu^{2})$$

$$= E(x^{2}) - 2\mu E(X) + \mu^{2}$$

$$= E(x^{2}) - 2\mu^{2} + \mu^{2}$$

$$= E(x^{2}) - \mu^{2}$$

(d) If E(X) = 10 and $E(X^2) = 160$:

$$\sigma^2 = 160 - 10^2 = 60$$

5. The probability distribution for a random variable Y is given by the following table. Find the mean, variance, and standard deviation of Y.

$$\begin{array}{c|c} y & p(y) \\ \hline 0 & 1/8 \\ 1 & 1/4 \\ 2 & 3/8 \\ 3 & 1/4 \\ \end{array}$$

Then:

$$F(0) = P(Y \le 0)$$

= $P(Y = 0) = \frac{1}{8}$

$$F(1) = P(Y \le 1)$$

$$= P(Y = 0) + P(Y = 1)$$

$$= \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$$

$$F(2) = P(Y \le 2)$$

$$= \frac{3}{8} + \frac{1}{4} + \frac{1}{8} = \frac{6}{8}$$

$$F(3) = P(Y \le 3)$$
$$= \frac{6}{8} + \frac{1}{4} = 1$$

6. Suppose we toss a coin n times. Let n = 5, and X be the number of heads in n trials. Suppose we wanted to find the probability of P(SFFSS); we have:

$$P(SFFSS) = P(S)P(F)P(F)P(S)P(S)$$
$$= p \cdot (1-p) \cdot (1-p) \cdot p \cdot p$$
$$= p^{3}(1-p)^{5-3}$$

Then, since we know it is independent, we can write this as P(X=3). Thus, we have:

$$P(X=3) = {5 \choose 3} p^3 (1-p)^{5-3}$$

- 7. A tennis player makes successful first serves 70% of the time. Assume each serve is independent of the others. If she serves, what is the probability she gets:
 - (a) All six serves in?
 - (b) Four serves in?
 - (c) At least four serves in?
 - (d) No more than four serves in?

We have P(S) = 0.7 and P(F) = 0.3. Let X be the number of successful serves. Let n = 6, then $X \sim B(6, 0.7)$. We have:

$$P(X=x) = \binom{6}{k} 0.7^x 0.3^{6-x}$$

To solve each part, we can just plug in values:

(a)

$$P(X = 6) = {6 \choose 6} 0.7^{6} 0.3^{6-6}$$
$$= \frac{6!}{6!0!} \cdot 0.7^{6}$$
$$= 0.7^{6} = 0.118$$

(b)

$$P(X = 4) = {6 \choose 4} 0.7^4 0.3^{6-4}$$
$$= \frac{6!}{4!2!} 0.7^4 \cdot 0.3^2$$
$$= 0.324$$

(c)

$$P(X \ge 4) = P(X = 4) + P(X = 5) + P(X = 6)$$
$$= 0.744$$

(d)

$$P(X \le 4) = P(X = 4) + P(X = 3) + \dots + P(X = 0)$$

= 0.580

- 8. Suppose that a lot of 5000 electrical fuses contain 5% defectives.
 - (a) If a sample of 5 fuses is tested, find the probability of observing at least one defective.
 - (b) If n = 20 fuses are randomly sampled from this lot, find the probability that at most 6 defectives are observed.
 - (c) If n=20 fuses are randomly sampled, find the probability that at least four defectives will be observed.

We know this event is independent; we have P(F) = 0.05 and P(S) = 0.95 for 5000 fuses. Let X be the number of defectives in n fuses.

(a) n = 5, we want to find $P(X \ge 1)$. Using the binomial distribution table, we have:

$$P(X \ge 1) = 1 - P(X \le 0)$$

= 1 - 0.774
= 0.226

(b)

9. Suppose the probability of an engine malfunction during a one-hour period is p = 0.02. Find the probability that the engine will survive for two hours.

We have p = P(S) = 0.02, so q = P(F) = 0.98. Let Y be the number of one-hour intervals until a malfunction occurs. We have:

$$P(y) = 0.98^{y-1} \cdot 0.02$$
 For $y = 1, 2, ...$

$$= P(Y \ge 3)$$

$$= 1 - P(Y \le 2)$$

$$= 1 - P(Y = 1) - P(Y = 2)$$

$$= 1 - (0.98^{1} \cdot 0.02) - (0.98^{0} \cdot 0.02)$$

$$= 0.9604$$

10. If the probability of an engine malfunction is p = 0.02 and Y is the number of one-hour intervals until the first malfunction, find the mean and standard deviation of Y.

$$E(Y) = \frac{1}{p}$$

$$= \frac{1}{0.02}$$

$$= 50V(Y) = \frac{1 - 0.02}{0.02^2}$$

$$= 2450$$

- 11. Suppose a professor randomly selects 3 new teaching assistants from a total of 10 applicants 6 male, 4 female. Let X be the number of females who are hired.
 - (a) Find the probability that no females are hired.
 - (b) Find the probability that at least 2 females are hired.

Here, r = 4, then N - r = 6. Set n = 3; we use hypergeometric distribution. First, calculate x:

$$\max\{0, n - (N - r)\} : n - (N - r)$$

$$: 3 - 6 = -3$$

$$= 0$$

$$\min\{r, n\} : \min 4, 3$$

$$= 3$$

Hence, x = 0, 1, 2, 3.

$$P(X = x) = \frac{\binom{4}{x} \binom{6}{3-x}}{\binom{10}{3}}$$

(a)

$$P(X = 0) = \frac{\binom{4}{0}\binom{6}{3}}{\binom{10}{3}}$$
$$= \frac{6!}{3!3!} \cdot \frac{7!3!}{10!}$$
$$= \frac{1}{6}$$

(b) We want to find $P(X \ge 2)$, i.e., 1 - P(X = 0) - P(x = 1).

$$P(X \ge 2 = 1 - \frac{1}{6} - \frac{\binom{4}{1}\binom{6}{2}}{\binom{10}{3}}$$
$$= 1 - \frac{1}{6} - \frac{1}{2}$$

- 12. Suppose there are X number of blue whale sightings per week. Assume X follows a Poisson distribution and the number of weekly sightings is 2.5.
 - (a) Find the mean and standard deviation of X.

$$E(X) = 2.5$$

$$\sigma^2 = V(X) = 2.5$$

$$\sigma \approx 1.58$$

(b) Find the probability that 5 sightings are made in one week.

$$P(X=5) = \frac{2.5^5 e^{-2.5}}{5!}$$

We can use a Poisson Table:

$$P(X = 5 = P(X \le 5) - P(X \le 4)$$
$$= 0.958 - 0.891$$
$$= 0.067$$

(c) Find the probability that there are fewer than 2 sightings made per week. Use a Poisson Table:

$$P(X < 2) = P(\le 1)$$

= 0.287

1.4 Continuous Random Variables

1. Suppose that:

$$F(y) = \begin{cases} 0 & y < 0 \\ y & 0 \le y \le 1 \\ 0 & y > 1 \end{cases}$$

Find the probability density function for Y.

Take the derivative, and get:

$$f(y) = \begin{cases} 0 & y < 0 \\ 1 & 0 \le y \le 1 \\ 0 & y > 1 \end{cases}$$

We can also write this as f(y) = 1 if $0 \le y \le 1$, and 0 otherwise.

2. Let Y be a continuous random variable with probability density function given by:

$$f(y) = \begin{cases} 3y^2 & 0 \le y \le 10\\ \text{otherwise} \end{cases}$$

Find F(y).

To find F(y) we take the anti-derivative.

For y < 0, we have:

$$F(y) = P(Y \le y)$$
$$= \int_{-\infty}^{y} 0 dt$$
$$= 0$$

For $0 \le y \le 1$, we have:

$$F9Y0 = \int_{-\infty}^{y} f(t)dt$$

$$= \int_{-\infty}^{0} 0dt + \int_{0}^{y} 3t^{2}dt$$

$$= t^{3}|_{0}^{y}$$

$$= y^{3}$$

For y > 1:

$$F(y) = \int_{-\infty}^{0} 0dt + \int_{0}^{1} 3t^{2}dt + \int_{1}^{\infty} 0dt$$

= 1

Hence, we have:

$$F(y) = \begin{cases} 0 & y < 0 \\ y^3 & 0 \le y \le 1 \\ 1 & y > 1 \end{cases}$$

3. Given $f(y) = cy^2, 0 \le y \le 2, f(y) = 0$ elsewhere, find the value of c for which f(y) is a valid density function.

For a probability density function $\int_{-\infty}^{\infty} f(y)dy = 1$, and have $\int_{0}^{2} cy^{2}dy = 1$. Then:

$$c\frac{y^{3}}{3}|_{0}^{2} = 1$$

$$c\frac{8}{3} = 1$$

$$c = \frac{3}{8}$$

4. Find $P(1 \le Y \le 2)$ from the previous example.

We have:

$$f(y) = \frac{3}{8}y^2$$
 for $0 \le y \le 2$

$$P(1 \le Y \le 2) = \int_{1}^{2} \frac{3}{8} y^{2} dy$$
$$= \frac{1}{8} [y^{3}]_{1}^{2}$$
$$= \frac{1}{8} (8 - 1)$$
$$= \frac{7}{8}$$

How about for $P(1 \le Y \le 5)$? We know that it is valid only for $0 \le y \le 2$, so we split it up:

$$P(1 \le Y \le 5) = P(1 \le Y \le 2) + P(2 \le Y \le 5)$$

5. From the previous example, find $\mu=E(Y)$ and $\sigma^2=V(Y)$. We have $f(y)=\frac{3}{8}y^2$ for $0\leq y\leq 2$, and 0 otherwise. To find the expected value:

$$\mu = E(Y) = \int_0^2 y \cdot \frac{3}{8} y^2 dy$$

$$= \frac{3}{8} \int_0^2 y^3 dy$$

$$= \frac{3}{8} \left[\frac{y^4}{4} \right]_0^2$$

$$= \frac{3}{8} (4 - 0)$$

$$= \frac{3}{2}$$

Thus, $\mu = E(Y) = 1.5$.

Then, find the variance. Find $E(Y^2)$:

$$E(Y^{2}) = \int_{0}^{2} y^{2} \cdot \frac{3}{8} y^{2} dy$$

$$= \frac{3}{8} \int_{0}^{2} y^{4} dy$$

$$= \frac{3}{8} \left[\frac{y^{5}}{5} \right]_{0}^{2}$$

$$= \frac{3}{8} (\frac{32}{5} - 0)$$

$$= \frac{12}{5}$$

Hence, $E(Y^2) = 2.4$. Now, we can calculate V(Y):

$$V(Y) = E(Y^{2}) - \mu^{2}$$
$$= 2.4 - 1.5^{2}$$
$$= 0.15$$

6. Esme is taking a train from Minneapolis to Boston, a distance of roughly 1400 miles. Her position is uniformly distributed between the two cities. What is the probability that she is past Chicago, which is 400 miles from Minneapolis?

Let X be Esme's location, where it follows the uniform probability distribution on the interval (0, 1400). We have $f(x) = \frac{1}{1400}$ if $0 \le x \le 1400$, and 0 otherwise. We want to find P(X > 400), so:

$$\int_{400}^{1} 400 \frac{1}{1400} dx = \frac{1}{1400} [x]_{400}^{1400}$$
$$= \frac{1400 - 400}{1400}$$
$$= \frac{10}{14}$$