

MODÈLES MICROMÉCANIQUES DU DOMMAGE INTRA-LAMINAIRE DANS LES STRATIFIÉS AVEC COUCHES FINES

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna²

¹EEIGM, Université de Lorraine, Nancy, France ²Division of Materials Science, Luleà University of Technology, Luleà, Suède

Journée de l'Équipe 304, Nancy (FR), 5 juillet 2017

Sommaire

- Les composites stratifiés avec couches extrêmement minces
- Objectifs & Approche
- Les modèles micromécaniques
- Résultats prĺiminaires & Perspectives
- Conclusions
- Annexes & Bibliographie

LES STRATIFIÉS AVEC COUCHES MINCES

Introduction à la technologie Spread Tow

- Développée initialement au Japon entre 1995 et 1998
- Au cours de la dernière décennie, son domaine d'application s'est élargi à partir des équipements sportifs jusqu'à structures primaires, comme Solar Impulse 2
- Un nombre réduit de producteurs: NTPT (USA-CH), Oxeon (SE),
 Chomarat (FR), Hexcel (USA), Technomax (JP)

(a) By North Thin Ply Technology.

(b) By TeXtreme.

Fondements de la technologie Spread Tow

Une définition visuelle des fissures transversales

(c) Par Dr. R. Olsson, Swerea, SE.

(d) Par Prof. Dr. E. K. Gamstedt, KTH, SE.

Pour une définition visuelle des fissures transversales.

L'effet thin ply

Mesures de la contrainte transversale maximale in-situ par D. L. Flaggs & M. H. Kural, 1982 [1].

Objectifs & Approche

Objectifs

- Étudier les effets de la fraction volumétrique des fibres, l'épaisseur du pli mince et des plis proches sur l'initiation des fissures
- Inférer une relation comme

$$G_{*c} = G_{*c} \left(heta_{decollement}, \Delta heta_{decollement}, E_{(..)},
u_{(..)}, G_{()}, \mathit{VF}_f, t_{\mathit{pli}}, rac{t_{\mathit{pli}}}{t_{\mathit{plis} \; \mathit{proches}}}
ight)$$

Approche

- Conception et catégorisation des Volumes Élémentaires Représentatifs (VERs)
- Génération automatique de la géométrie et du modèle aux Éléments Finis
- Simulation avec la Méthode aux Éléments Finis (avec Abagus)

Les stratifiés avec couches minces Objectifs & Approche Les modèles Résultats Conclusions Annexes & Bibliographie Conception des VERs Le maillage Évaluation numérique de G_c

Les stratifiés avec couches minces Objectifs & Approche Les modèles Résultats Conclusions Annexes & Bibliographie Conception des VERs Le maillage Évaluation numérique de G_c

De l'échelle macroscopique à l'échelle microscopique

Les stratifiés avec couches minces Objectifs & Approche Les modèles Résultats Conclusions Annexes & Bibliographie Conception des VERs Le maillage Évaluation numérique de Gc

Volumes Élémentaires Représentatifs (VERs)

- ✓ Espace 2D
- ✓ Solide élastique linéaire
- ✓ Piloté en déplacement
- ✓ Conditions aux limites de Dirichlet
- ✓ Mécanique linéaire élastique de la rupture
- ✓ Interactions de contact

Les stratifiés avec couches minces Objectifs & Approche Les modèles Résultats Conclusions Annexes & Bibliographie Conception des VERs Le maillage Évaluation numérique de G_C

Conception et génération du maillage

Pourquoi un bon maillage est fondamental

- 1. La discrétisation géométrique a un effet très fort sur la solution des problèmes MEF non-linéaires
- 2. Le dommage génére changements de la géométrie, avec génération des surfaces et division du domaine
- 3. Les variables descriptives du dommage dépendent de la topologie locale et du raffinement du maillage

Procdure à 4 étapes pour la génération du maillage

- 1. La frontière est génerée avec représentations analytiques
- La frontière est divis en 4 coins (c_i) et 4 bords (e_i)
- 3. Application de la mèthode de transfinite interpolation avec polynômes multidimensionnelle de Lagrange

$$P_1(x, p_j) = \sum_{j=1}^n p_j \prod_{k=1}^n \frac{x - x_k}{x_j - x_k} \quad P_2(x, y, p_j, q_j) = P_1(x, p_j) \otimes P_1(y, q_j)$$

$$r(\xi, \eta) = P_1(\xi, e_2, e_4) + P_1(\eta, e_1, e_3) - P_2(\xi, \eta, c_1, c_2, c_3, c_4)$$

4. Le maillage est raffin avec l'application d'un opérateur elliptique global

$$g^{11}\underline{r}_{,\xi\xi} + 2g^{12}\underline{r}_{,\xi\eta} + g^{22}\underline{r}_{,\eta\eta} = 0$$

Les stratifiés avec couches minces Objectifs & Approche Les modèles Résultats Conclusions Annexes & Bibliographie Conception des VERs Le maillage Évaluation numérique de G_c

Discrétisation angulaire

Discrétisation de l'interface fibre/matrice: $\delta = \frac{360^{\circ}}{4N_{\alpha}}$.

Les stratifiés avec couches minces Objectifs & Approche Les modèles Résultats Conclusions Annexes & Bibliographie Conception des VERs Le maillage Évaluation numérique de G_c

Technique de fermeture virtuelle de fissure (VCCT)

$$G_{I} = \frac{Z_{C}\Delta w_{C}}{2B\Delta a}$$
 $G_{II} = \frac{X_{C}\Delta u_{C}}{2B\Delta a} \iff$ Logiciels internes et fonction *DEBOND en Abaqus

Les stratifiés avec couches minces Objectifs & Approche Les modèles Résultats Conclusions Annexes & Bibliographie Conception des VERs Le maillage Évaluation numérique de G_C

Évaluation de l'intégrale J

$$J_{i} = \lim_{\varepsilon \to 0} \int_{\Gamma_{-}} \left(W\left(\Gamma\right) n_{i} - n_{j} \sigma_{jk} \frac{\partial u_{k}\left(\Gamma, X_{i}\right)}{\partial X_{i}} \right) d\Gamma \Longleftrightarrow \text{*CONTOUR INTEGRAL en Abaqus}$$

$$\sigma_0$$
 pour $Vf_f=0.001$, $\frac{L}{R_f}\sim 28$ et $\delta=0.4^\circ$

En rouge MEF en petites déformations, en vert MEF en grands déformations, en noir $\sigma_0 = \frac{E}{1-\omega^2} \varepsilon$.

$$G_0$$
 pour $Vf_f=0.001$, $\frac{L}{R_f}\sim 28$ et $\delta=0.4^\circ$

En rouge MEF en petites déformations, en vert MEF en grands déformations, en noir G_0 avec $\sigma_0 = \frac{E}{1-\nu^2} \varepsilon$.

$$\sigma_0$$
 pour $Vf_f=0.000079$, $\frac{L}{R_t}\sim 100$ et $\delta=0.4^\circ$

En rouge MEF en petites déformations, en noir $\sigma_0 = \frac{E}{1-\nu^2}\varepsilon$.

$$G_0$$
 pour $Vf_f=0.000079$, $\frac{L}{R_f}\sim 100$ et $\delta=0.4^\circ$

En rouge MEF en petites déformations, en noir G_0 avec $\sigma_0 = \frac{E}{1-\nu^2}\varepsilon$.

$$\frac{G_{(\cdot\cdot)}}{G_0}$$
 pour $V_f=0.001$, $\frac{L}{B_f}\sim 28$ et $\delta=0.4^\circ$

En rouge MEF en petites déformations, en vert MEF en grands déformations, en noir résultats BEM.

 $\frac{G_{(\cdot\cdot)}}{G_0}$ pour $V_f=0.001$, $\frac{L}{R_f}\sim 28$ et $\delta=0.4^\circ$, petites déformations

De bleu jusqu'a rouge intégrales J calculées sur contours plus loin de l'extrémité de la fissure, en noir résultats BEM.

 $\frac{G_{(\cdot\cdot)}}{G_0}$ pour $V_f=0.001$, $\frac{L}{R_f}\sim 28$ et $\delta=0.4^\circ$, petites déformations

De bleu jusqu'a rouge intégrales J calculées sur contours plus loin de l'extrémité de la fissure, en vert méthode VCCT par le logiciel interne, en noir résultats BEM.

 $\frac{G_{(\cdot,\cdot)}}{G_0}$ pour $V_f=0.001$, $\frac{L}{R_f}\sim 28$ et $\delta=0.4^\circ$, grands déformations

De bleu jusqu'a rouge intégrales J calculées sur contours plus loin de l'extrémité de la fissure, en noir résultats BEM.

$$\frac{G_{(\cdot\cdot)}}{G_0}$$
 pour $V_f=0.001$, $\frac{L}{R_f}\sim 28$ et $\delta=0.4^\circ$, grands déformations

De bleu jusqu'a rouge intégrales J calculées sur contours plus loin de l'extrémité de la fissure, en vert méthode VCCT par le logiciel interne, en noir résultats BEM.

Conclusions

Conclusions

- Développement des modèles VER pour l'étude du processus de fissuration
- Procédure numérique pour la création automatique de la géométrie et modèle MEF
- Analyses avec $VF_f \rightarrow 0$ (matrice infinie) pour la validation des modèles

Actions à suivre

- Étudier les effets de VF_f , t_{pli} , $\frac{t_{pli}}{t_{olis\ oroches}}$ et propriétés du matériau
- Étudier l'effet des diffèrent conditions limites

▲ ANNEXES & BIBLIOGRAPHIE

Spread Tow Technology: Implications

- Strong reduction in ply's thickness and weight
- Reduction in laminate's thickness and weight
- Higher fiber volume fraction and more homogeneous fiber distribution
- Ply thickness to fiber diameter ratio decreases of at least 1 order of magnitude, from > 100 to ≤ 10
- Increased load at damage onset and increased ultimate strength, in particular for transverse cracking

RVEs: Variations on a Theme

RVEs: First Variation on a Theme

Isolated RVE with zero vertical displacement BC.

RVEs: Second Variation on a Theme

Isolated RVE with homogeneous displacement BC.

RVEs: Third Variation on a Theme

Bounded RVE.

Topological transformation

(b)

(c)

Mesh parameters

Finite Element Model in Abaqus

Method

ABAQUS/STD static analysis + VCCT + J-integral.

Type

Static, i.e. no inertial effects. Relaxation until equilibrium.

Elements

CPE4/CPE8

Interface

Tied surface constraint & contact mechanics

Input variables

 R_f , V_f , material properties, interface properties.

Control variables

 θ , $\Delta\theta$, $\bar{\varepsilon}_X$.

Output variables

Stress field, crack tip stress, stress intensity factors, energy release rates, a.

Evaluation of G_0

$$G_0 = \pi R_f \sigma_0^2 \frac{1 + k_m}{8G_m} \tag{1}$$

$$k_m = 3 - 4\nu_m \tag{2}$$

$$\sigma_0^{undamaged} = \frac{E_m}{1 - \nu_m^2} \varepsilon_{xx} \tag{3}$$

Bibliographie

Parvizi A., Bailey J.E; *On multiple transverse cracking in glass fibre epoxy cross-ply laminates.* Journal of Materials Science, 1978; 13:2131-2136.

Bibliographie

Miguel Herráez, Diego Mora, Fernando Naya, Claudio S. Lopes, Carlos González, Javier LLorca; *Transverse cracking of cross-ply laminates: A computational micromechanics perspective.* Composites Science and Technology, 2015; 110:196-204.

Luis Pablo Canal, Carlos González, Javier Segurado, Javier LLorca; *Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling.* Composites Science and Technology, 2012; 72(11):1223-1232.

Bibliographie

- Stephen W. Tsai; *Thin ply composites.* JEC Magazine 18, 2005.
- Znedek P. Bazant; Size Effect Theory and its Application to Fracture of Fiber Composites and Sandwich Plates. in Continuum Damage Mechanics of Materials and Structures, eds. O. Allix and F. Hild, 2002.
- Robin Amacher, Wayne Smith, Clemens Dransfeld, John Botsis, Joël Cugnoni; *Thin Ply: from Size-Effect Characterization to Real Life Design* CAMX 2014, 2014
- Ralf Cuntze; The World-Wide-Failure-Exercises -I and II for UD-materials.

Bibliographie

Pedro P. Camanho, Carlos G. Dávila, Silvestre T. Pinho, Lorenzo Iannucci, Paul Robinson; *Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear.* Composites Part A: Applied Science and Manufacturing, vol. 37, n. 2, 2006.

Bibliographie

- J. A. Nairn; The Initiation and Growth of Delaminations Induced by Matrix Microcracks in Laminated Composites. International Journal of Fracture, vol. 57, 1992.
- Joel Cugnoni, Robin Amacher, John Botsis; *Thin ply technology advantages. An overview of the TPT-TECA project.* 2014.

Bibliographie

Donald L. Flaggs, Murat H. Kural; *Experimental Determination of the In Situ Transverse Lamina Strength in Graphite/Epoxy Laminates.* Journal of Composite Materials, vol. 16, n. 2, 1982.

