Álgebra Linear I - Lista 6

Distâncias

- 1) Considere a reta r que passa por (1,0,1) e por (0,1,1). Calcule a distância do ponto (2,1,2) à reta r.
 - $\mathbf{2}$) Ache o ponto P do conjunto

$$\{(x, y, z) \in \mathbb{R}^3 \mid (x, y, z) = (1 + 2t, t, 1 - t), t \in \mathbb{R} \}$$

que está mais próximo do ponto Q = (-1, 0, 0), e determine a distância entre eles. Que propriedade verificam os vetores \overline{PQ} e (2, 1 - 1) (o vetor diretor da reta?).

- 3) Encontre o ponto do plano definido por x + 2y + 3z = 6 mais próximo do ponto (1, 3, 0). Ache a distância entre o ponto e o plano.
 - 4) Ache a distância entre os planos:
- a) 3x + y 5z = 4 e 3x + y 5z = 2;
- **b)** 2x 4y + z = -12 e 2x 4y + z = 1.
 - 5)
- a) Ache a distância entre a reta $\{t(1, -8, -1) \mid t \in \mathbb{R}\}$ e e o plano 3x + y 5z = 2.
- **b)** Considere o plano π que contém aos pontos A=(1,2,3) e B=(2,3,4) e é paralelo à reta r

$$\{(x,y,z) = (1,2,4) + t(1,0,-1) \mid t \in \mathbb{R}\}.$$

Calcule a distância da reta r ao plano π .

6) Considere r_1 a reta que passa pelos pontos (1,0,0) e (0,2,0), e r_2 a reta

$$\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-4}{3}.$$

Encontre a distância entre r_1 e r_2 .

7)

- Encontre a equação do plano cujos pontos são todos equidistantes de A = (1, 4, 2) a B = (0, 2, -2). Encontre uma reta que seja equidistante dos pontos A e B. Estude quantas possibilidades há para tal reta.
- Encontre a equação do plano que equidista dos planos x + y + 2z = 3 e 3x + 3y + 6z = 0.
- 8) Considere as retas r_1 de equações paramétricas

$$x = 1 + t$$
, $y = 1 + 2t$, $z = 1 + 2t$, $t \in \mathbb{R}$

e r_2 cujas equações cartesianas são

$$y - z = 0$$
, $2x - y = 2$.

- a) Calcule a distância entre as retas r_1 e r_2 .
- b) Determine, se possível, um ponto P da reta r_2 tal que a distância entre P e r_1 seja 1/3.
- c) Considere os pontos $A = (1, 1, 1) \in r_1$ e $B = (2, 2, 2) \in r_2$. Determine um ponto C de r_1 tal que o triângulo de vértices A, B, C seja retângulo.
 - 9) Considere o plano

$$\pi: x + y - z = 1$$
,

e os pontos A = (1, 0, 0) e B = (0, 1, 0) do plano. Determine pontos C e D de π tais que os pontos A, B, C, D sejam os vértices de um quadrado (contido em π).

10) Considere as retas

$$r = (1 + t, 2t, 1 - t), t \in \mathbb{R}, \quad s = (2t, 1 + t, t), t \in \mathbb{R}.$$

- Determine a reta perpendicular comum ℓ a r e s (ou seja, uma reta perpendicular a r e s que intercepta as duas retas).
- Determine pontos $P \in r$ e $Q \in S$ tais que a distância entre P e Q seja igual a distância entre as retas r e s.
- **11)** Considere os pontos A = (1, 0, 1) e B = (0, 1, 1).
- 1. Determine o ponto M do segmento AB tal que dist(AM) = dist(MB) (isto é, M é o ponto médio do segmento AB).
- 2. Determine a relação entre os vetores \overline{AM} e \overline{BM} .
- 3. Determine (em termos de distância) a propriedade que verificam os pontos do plano π que contém o ponto M e é ortogonal ao vetor \overline{AB} .
- 4. Determine o ponto T do segmento AB tal que dist(AT) = 2 dist(BT).
- 5. Estude a veracidade da seguinte afirmação: considere o plano ρ que contém o ponto T e é ortogonal ao vetor \overline{AB} . Então todo ponto X de ρ verifica $\operatorname{dist}(AX) = 2\operatorname{dist}(BX)$.