24.08.00

庁 8 PATENT OFFICE

JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 8月27日

REC'D 13 OCT 2000

WIPO

PCT

出 願 番 号 Application Number:

平成11年特許願第240791号

Applicant (s):

ヤマハ発動機株式会社

J400/05660

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 9月29日

特 許 庁 長 官 Commissioner, Patent Office

特平11-240791

【書類名】

特許願

【整理番号】

P16388

【提出日】

平成11年 8月27日

【あて先】

特許庁長官 殿

【国際特許分類】

B60L 11/18

【プルーフの要否】

要

【発明者】

【住所又は居所】

静岡県磐田市新貝2500番地 ヤマハ発動機株式会社

内

【氏名】

山田 稔明

【特許出願人】

【識別番号】

000010076

【氏名又は名称】

ヤマハ発動機株式会社

【代理人】

【識別番号】

100100284

【弁理士】

【氏名又は名称】

荒井 潤

【電話番号】

045-590-3321

【手数料の表示】

【予納台帳番号】

019415

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9407523

【書類名】

明細書

【発明の名称】 ハイブリッド駆動装置

【特許請求の範囲】

【請求項1】

装置駆動用の動力源の電源として第1および第2の電力供給源を有し、電源を 投入するメインスイッチおよび装置を運転制御する装置コントローラを備えたハ イブリッド駆動装置において、

前記動力源および第1、第2の電力供給源は、それぞれモジュールユニットと して構成され、各モジュールユニットごとにモジュールコントローラおよびその モジュールの状態を検出する検出手段を有し、前記モジュールコントローラは検 出した状態データを記憶する記憶手段を有することを特徴とするハイブリッド駆 動装置。

【請求項2】

前記装置コントローラは、前記各モジュールコントローラとの間で双方向にデ ータの送受信を行うことを特徴とする請求項1に記載のハイブリッド駆動装置。

【請求項3】

前記メインスイッチがオンからオフになった後、所定時間経過後に、次回運転 のために前記第1または第2の電力供給源の準備処理を施すことを特徴とする請 求項1または2に記載のハイブリッド駆動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、車両や船舶等の移動装置駆動用モータの電源としてバッテリおよび 燃料電池とを使用するハイブリッド駆動装置に関する。

[0002]

【従来の技術】

車両の低公害化のために車両駆動用として電動モータを用い、その電源として 一充電走行距離を伸ばすとともに定速走行時および加速等の高出力時に効率よく 安定した電力供給を行うために定速用および髙出力用の電池を組合せたハイブリ

特平11-240791

ッド方式の電気自動車が開発されている。このようなハイブリッド駆動車両において、メタノールを一次燃料とし、改質器(リフォーマ)および一酸化炭素を処理するためのシフト反応器等を含めた燃料電池を電力供給源とし、この電力供給源に加えてピーク負荷等を受持つ鉛蓄電池等の二次電池(バッテリ)を組合せて用いたハイブリッド駆動車両が考えられている。

[0003]

【発明が解決しようとする課題】

このようなハイブリッド駆動車両においては、メインスイッチオンによる電源 投入後、運転状態に応じて効率よく電力を供給して最適状態でモータを駆動制御 するために車両コントローラが備る。また、モータ、燃料電池およびバッテリ等 の各機器を構成するモジュールは、それぞれ車両の運転制御に必要なモジュール に対応したデータ、例えば温度や回転数あるいは電圧や電流等の状態を検出する ためのセンサを有し、その検出出力に応じて車両コントローラが必要電力や走行 可能距離等を演算し、バッテリや燃料電池の充放電やモータの駆動制御等を行う

[0004]

このような制御系を構成する場合、モジュールごとに車両への組込みやメンテナンスを容易にし、関連した制御系部品等も含めて容易に部品交換等ができモジュールの汎用性を高めるとともに、各モジュールごとに確実に制御データを取得して制御の信頼性を高めることが望まれる。

[0005]

本発明はこのような点を考慮したものであって、モータ等の動力源、燃料電池 およびバッテリ等の電力供給源等の各モジュールの組立性やメンテナンス性を向 上させるとともに信頼性の高い制御が可能なハイブリッド駆動装置の提供を目的 とする。

[0006]

【課題を解決するための手段】

前記目的を達成するため、本発明においては、装置駆動用の動力源の電源として第1および第2の電力供給源を有し、電源を投入するメインスイッチおよび装

置を運転制御する装置コントローラを備えたハイブリッド駆動装置において、前記動力源および第1、第2の電力供給源は、それぞれモジュールユニットとして構成され、各モジュールユニットごとにモジュールコントローラおよび各モジュールの状態を検出する検出手段を有し、前記モジュールコントローラは検出した状態データを記憶する記憶手段を有することを特徴とするハイブリッド駆動装置を提供する。

[0007]

この構成によれば、モータ等の動力源、燃料電池等の第1電力供給源およびバッテリ等の第2電力供給源を構成する各機器(モジュール)は、それぞれモータユニット、燃料電池ユニットおよびバッテリユニット等のモジュールユニットとしてそれぞれの関連機器や部材とともに一体的に組合わされて構成され、それぞれユニットごとに車両等の装置に組込まれる。このモジュールユニットには各モジュールを制御するモジュールコントローラが含まれる。このモジュールコントローラは各モジュールの状態検出手段からの検出データの記憶手段を有し、各モジュールコニットごとに装置コントローラとデータのやり取りが可能である。

[0008]

このようにモータ、燃料電池およびバッテリ等に関し、これらを各々コントローラを含むモジュールユニットとして構成することにより、各モジュールの組立性やメンテナンス性が高まるとともに各モジュールに対応した制御系がモジュールごとに一体化されるため、制御の信頼性が向上し、また制御系を含めて部品交換等に容易に対処することができ、各モジュールの汎用性が高まり部品管理上も有利になる。

[0009]

好ましい構成例では、前記装置コントローラは、前記各モジュールコントローラとの間で双方向にデータの送受信を行うことを特徴としている。

[0010]

この構成によれば、データの蓄積を各モジュールコントローラ内で行い、必要なときに装置コントローラ側からモジュールコントローラ側へデータ要求を行って必要なデータを受け取ることができ、装置コントローラ側のメモリ構成を簡素

特平11-240791

化するとともにモジュールごとに同一回線を用いて効率よく制御を行うことがで きる。

[0011]

さらに好ましい構成例では、前記メインスイッチがオンからオフになった後、 所定時間経過後に、次回運転のために前記第1または第2電力供給源の準備処理 を施すことを特徴としている。

[0012]

この構成によれば、一旦運転を終了してメインスイッチをオフにした後、タイマーに基づいて所定時間経過した後、電力供給源の容量が検出され、この容量を通常運転を行うのに必要十分な状態に最適化し、あるいは一旦運転を終了してメインスイッチをオフにしたとき、第1あるいは第2電力供給源の残容量が検出され、ユーザーが入力した次回乗車予定時刻から、検知した電力残容量を最適容量までに容量増加させるに要する時間分先行した時刻から容量増加処理を行い、次回運転時に運転が安定して確実に開始され通常運転が続行できる最適な状態で次回運転まで待機することができる。

[0013]

【発明の実施の形態】

以下図面を参照して本発明の実施の形態について説明する。

図1は、本発明の実施の形態に係るハイブリッド駆動車両の全体構成図である。この実施形態のハイブリッド駆動車両1は、自動二輪車に適用されている。ハイブリッド駆動車両1には、ハイブリッド駆動装置2が備えられている。ハイブリッド駆動装置2は、電動モータユニット3、変速機4、車両コントローラ5、バッテリユニット6及び燃料電池ユニット7を有している。

[0014]

燃料電池ユニット7は、シート8の後方で駆動輪9の上方位置に配置されている。シート8の前方で、操向輪11を操向するフロントフォーク12との間には、メタノールタンク13が配置されている。メタノールタンク13には、燃料注入キャップ14が設けられている。

燃料電池ユニット7の燃料電池とバッテリユニット6のバッテリとによるハイブリッド式により電動モータユニット3の電動モータを駆動し、駆動輪9を回転させる。

[0016]

図2(A)はハイブリッド駆動式の自動二輪車の別の形状例の図であり、同図(B)はその燃料電池用の水素供給装置の構成図である。

このハイブリッド駆動車両1は、シート8の下部に車両コントローラ5およびバッテリユニット6を有し、車両コントローラ5の下部に電動モータユニット3が備り、その前方に燃料電池ユニット7が設けられる。シート8の後方の荷台上に、燃料電池ユニット7に電力発生用の水素を供給するための水素供給装置15が備る。

[0017]

水素供給装置15は、図2(B)に示すように、メタノールタンク13とともに水素ボンベ16を備え、燃焼用空気を供給するファン17およびバーナー18を有し、後述のように、一次燃料を加熱して気化させ触媒を通して水素を得る改質器19を備えている。

[0018]

図3は、本発明に係るハイブリッド駆動車両の概略構成図である。

このハイブリッド駆動車両1には、メインスイッチSW1、シート8、スタンド20、フットレスト21、アクセルグリップ22、ブレーキ23、表示装置24、灯火器やウインカ等のランプユニット25、ユーザ入力装置26、不揮発性メモリ27、タイマ28が備えられ、さらに電動モータユニット3、変速機4、車両コントローラ5、バッテリユニット6及び燃料電池ユニット7が備えられている。

[0019]

—メインスイッチSW1から Θ N/OFF信号が車両コントローラ5へ送られ、電動車両が駆動される。またシート8、スタンド20、フットレスト21およびブレーキ23には、それぞれセンサS1 \sim S4が設けられ、これらのセンサS1

 \sim S 4 からON/OFF信号が車両コントローラ 5 へ送られ、それぞれの動作状態が検知される。

[0020]

アクセルグリップ22は、出力設定手段を構成し、このアクセルグリップ22 にはアクセル開度センサS5が設けられ、ユーザのグリップ操作によりアクセル 開度センサS5からアクセル開度信号が車両コントローラ5へ送られる。アクセ ル開度に応じて電動モータの制御が行われる。車両コントローラ5は、アクセル グリップ22により構成される出力設定手段の出力設定値に基づき電動モータの 出力を制御する制御手段を構成する。

[0021]

ユーザ入力装置26からユーザは、種々のデータを車両コントローラ5へ入力でき、例えば車両の運転特性を変更することができる。また不揮発性メモリ27およびタイマ28と車両コントローラ5との間でデータ授受が行われ、車両運転停止時にそのときの運転状態情報を不揮発性メモリ27に記憶し、運転開始時に記憶されている運転状態情報を車両コントローラ5が読み込み制御する。

[0022]

表示装置24は、車両コントローラ5から表示ON/OFF信号により駆動され、表示装置24には電動車両の運転状態が表示される。灯火器やウインカ等のランプユニット25は、DC/DC変換器25a、灯火器やウインカ等のランプ25bから構成される。車両コントローラ5からの起動ON/OFF信号によりDC/DC変換器25aを駆動してランプ25bを点灯する。

[0023]

電動モータユニット3には、モータドライバ30、駆動輪9に連結される電動モータ31、エンコーダ32、回生電流センサS11および回生エネルギ制御手段33が備えられている。車両コントローラ5からのデューティ信号によりモータドライバ30が電動モータ31を制御し、この電動モータ31の出力により駆動輪9が駆動される。電動モータ31の磁極位置及び回転数をエンコーダ32が検出する。エンコーダ32からモータ回転数情報がモータドライバ30内のメモリに格納され必要に応じて車両コントローラ5へ送られる。電動モータ31の出

力を変速機4により変速して駆動輪9を駆動し、変速機4は車両コントローラ5からの変速命令信号により制御される。電動モータ31にはモータ電圧センサまたはモータ電流センサS7が設けられ、このモータ電圧またはモータ電流の情報はモータドライバ内のメモリに格納され必要に応じて車両コントローラ5へ送られる。

[0024]

バッテリユニット6には、バッテリ60、バッテリコントローラ61及びバッテリリレー62が備えられる。燃料電池ユニット7には、発電手段を構成する燃料電池70、燃料電池コントローラ71、逆流防止素子72および燃料電池リレー73が備えられる。燃料電池70の出力電流をバッテリ60に供給可能とする第1の電力供給路L1と、バッテリ60からの出力電流を電動モータ31に供給可能とする第2の電力供給路L2とが備えられ、電力調整部80を介して電力が供給される。

[0025]

バッテリコントローラ61には、バッテリ60の充電状態を検知する検知手段が備えられ、この検知手段は、バッテリ温度センサS12、バッテリ電圧センサS13、バッテリ電流センサS14から構成され、これらの情報は、バッテリコントローラ61内のメモリに格納され必要に応じて車両コントローラ5へ入力される。バッテリリレー62は、車両コントローラ5からのON/OFF信号により作動して第2の電力供給路L2からの電力供給を制御する。

[0026]

燃料電池コントローラ71へ車両コントローラ5から通信データが送られ、これにより燃料電池コントローラ71が燃料電池70を制御する。燃料電池コントローラ71には、燃料電池70の状態を検知する検知手段が備えられる。この検知手段は、各種温度センサS21、燃料電池電圧センサS22、燃料電池電流センサS23から構成され、これらの情報はこの燃料電池コントローラ71内のメモリに格納され必要に応じて車両コントローラ5へ入力される。整流ダイオード(逆流防止素子)72を介して燃料電池コントローラに接続された燃料電池リレー73は、車両コントローラ5からのON/OFF信号により作動して第1の電

力供給路L1から電力供給を制御する。

[0027]

図4は、本発明の実施の形態に係る燃料電池ユニットの要部構成図である。

この実施形態の燃料電池ユニット7は、メタノールタンク102、改質装置(リフォーマ)103、シフトコンバータ104、選択酸化反応器105、燃料電池(セル)70、水分回収熱交換器107、水タンク108及び燃料電池コントローラ71から構成されている。燃料電池コントローラ71は、バルブ、ポンプ、ファン等の各機器及びセンサと接続されている。改質装置103、シフトコンバータ104、選択酸化反応器105、燃料電池70の各部には温度センサTr,Tb,Ts,Tp,Tcが備えられ、これらの温度検出により各部が燃料電池コントローラ71(図3)によって適正温度に制御される。

[0028]

改質装置(リフォーマ)103には、加熱器(バーナー)110、蒸発器111、触媒層112が備えられている。加熱器110には、温度センサTbの温度検出によりバーナーポンプ113が駆動されてメタノールタンク102からメタノールが供給され、またバーナーファン114の駆動で空気が供給され、これらの燃焼作用により蒸発器111を加熱する。なお、図中二重丸は空気取入れ口を示す。蒸発器111には、メタノールポンプ115の駆動でメタノールタンク102から供給されるメタノールと、水ポンプ116の駆動で水タンク108から供給される水が混合して供給される。加熱器110により蒸発器111を加熱してメタノールと水の混合燃料を気化し、この蒸発器111で気化した燃料を触媒層112に供給する。

[0029]

バーナー110にはさらに燃料電池(セル)70からの剰余(またはバイパスした)水素ガスが配管201を通して供給され燃焼する。このバーナー110の燃焼熱により、メタノールと水からなる一次燃料(原料)を気化させるとともに触媒層112を加熱して触媒層112を触媒反応に必要な反応温度に維持する。燃焼ガスおよび反応に寄与しなかった空気は排気通路202を通して外部に排出される。

[0030]

触媒層112は例えばCu系の触媒からなり、約300℃の触媒反応温度でメタノールと水の混合気を、以下のように、水素と二酸化炭素に分解する。

[0031]

 $CH_3OH + H_2O \rightarrow 3H_2 + CO_2$

この触媒層112において、微量(約1%)の一酸化炭素が発生する。

[0032]

 $CH_3OH \rightarrow 2H_2 + CO$

このCOはセル70内で触媒に吸着して起電力反応を低下させるため、後段側のシフトコンバータ104および選択酸化反応器105においてその濃度を低下させセル70内での濃度を100ppm~数10ppm程度にする。

[0033]

シフトコンバータ104内では、反応温度が約200℃程度で、水による以下 の反応、すなわち

 $CO+H_2O\rightarrow H_2+CO_2$

の化学反応によりCOから CO_2 に変換させ濃度を約0.1%程度まで低下させる。

[0034]

これをさらに選択酸化反応器 105 内において、白金系触媒を用いて約120 での触媒反応温度で

 $2CO+O_2\rightarrow 2CO_2$

の酸化反応によりCOからCO2に化学変化させ、濃度をさらにその1/10あるいはそれ以下にする。これによりセル70内でのCO濃度を数10ppm程度に低下させることができる。

[0035]

前記改質装置103により、原料を改質して前述のように水素を製造し、得られた水素をシフトコンバータ104、選択酸化反応器105を介して燃料電池70に供給する。改質装置103とシフトコンバータ104との間には、脈動や圧力変動を吸収するためのバッファタンク117および切換弁117a,117b

が設けられ、これらの切換弁117a, 117bの作動で水素が改質装置103の加熱器110に戻される。シフトコンバータ104は温度センサTsの温度検出により冷却用空気ファン118で冷却される。冷却空気は排気通路203を通して外部に排出される。

[0036]

シフトコンバータ104と選択酸化反応器105との間には、バッファタンク124及び切換弁124a, 124bが設けられ、これらの切換弁の作動で水素が改質装置の加熱器110に戻される。

[0037]

シフトコンバータ104から送られる水素に、反応用空気ポンプ119の駆動で供給される空気を混合して選択酸化反応器105に供給する。選択酸化反応器105は温度センサTpの温度検出により冷却用空気ファン120で冷却される。冷却空気は排気通路204を通して外部に排出される。

[0038]

選択酸化反応器105と燃料電池70との間には、バッファタンク121および切換弁121a, 121bが設けられ、これらの切換弁の作動で水素が改質装置103の加熱器110に戻される。

[0039]

前述のシフトコンバータ104に対する切換弁117a, 117b、選択酸化 反応器105に対する切換弁124a, 124bおよび燃料電池70に対する切 換弁121a, 121bの流量調整により、燃料電池70に供給される水素の量 が調整され、起電力を調整することができる。この場合、酸素は過剰に供給され ているため、水素の量により起電力が制御される。

[0040]

このような起電力の調整は、前述の燃料電池ユニット7のセンサS21~23 のデータおよび他の各種センサからの運転状態の検出データに基づき、車両コントローラ5が必要起電力を演算し、これに基づいて切換弁動作後のセル内の水素 量が実際に変化するまでの時間遅れ等を考慮して各切換弁の流量を車両コントローラ5または燃料電池コントローラ71が演算し、これに基づいて各切換弁のO N/OFF制御あるいは開度制御を燃料電池コントローラ71が行う。この場合、メタノール等の一次燃料の供給量を多くすることにより気化する水素量を増やして起電力を高めることができるが、この場合には、発電に寄与する水素量の増加までに時間遅れが発生する。このような時間遅れはバッテリからの電力によりカバーされる。

[0041]

燃料電池70には、冷却加湿ポンプ122の駆動で水タンク108から水が供給され、また温度センサTcの温度検出により加圧空気ポンプ123の駆動で水分回収熱交換器107から空気が供給され、これらの水、空気および水素から燃料電池70で以下のように発電を行う。

[0042]

燃料電池70は、冷却および加湿用の水通路205が形成されたセル膜(図示しない)の両面側に例えば白金系の多孔質触媒層(図示しない)を設けて電極を形成したものである。一方の電極には、水素通路206を通して選択酸化反応器105から水素が供給され、他方の電極には酸素通路207を通して酸素(空気)が供給される。水素側電極の水素通路206からセル膜を通して水素イオンが酸素側電極に移動し、酸素と結合して水が形成される。この水素イオン(+)の移動に伴う電子(-)の移動により電極間に起電力が発生する。

[0043]

この起電力発生は発熱反応であり、これを冷却するため及び水素イオンを円滑に酸素電極側に移動させるために、水タンク108からポンプ122により両電極間のセル膜の水通路205に水が供給される。水通路205を通過して高温となった水は熱交換器107で空気と熱交換され水タンク108に戻る。水タンク108には放熱フィン208が設けられ水を冷却する。209はオーバーフロー管である。

[0044]

熱交換器107には空気が導入される。この空気は高温の水と熱交換され高温空気となって空気ポンプ123により酸素通路207に供給される。このような高温空気を送り込むことにより、水素イオンとの結合反応が促進され効率よく起

特平11-240791

電力反応が行われる。このため、この熱交換器107への空気取入れ口(図中二重丸で示す)は、前述の高温触媒反応を起こす選択酸化反応器105あるいは触媒層112の近傍に設けることが望ましい。

[0045]

酸素通路207を通過して水素イオンと結合した空気中の酸素は水となって水 タンク108に回収される。残りの空気(酸素および窒素)は排気通路210を 通して外部に排出される。

[0046]

このように燃料電池70で用いられた水および発電により生成した水は、水分回収熱交換器107で冷却空気との間で熱交換され水タンク108に戻される。また、燃料電池70で発電のために用いられた水素の余剰分は、バルブ211および配管201を通して、改質装置103の加熱器110に戻される。

[0047]

前述のように、燃料電池ユニット7では、加熱器110によって蒸発器111を加熱し、この蒸発器111で気化した原料を触媒層112に供給するようにした改質装置103により、原料を改質して水素を製造し、得られた水素をシフトコンバータ104および選択酸化反応器105を介して燃料電池70に供給して発電を行う。この場合、選択酸化反応器105から得られた水素を前述の図2(B)に示すように、一旦水素ボンベ16に貯蔵してもよい。

[0048]

このような燃料電池70の出力は、前述の図3に示したように、逆流防止素子72および燃料電池リレー73を介して電力調整部80に接続され、この電力調整部80はバッテリ60と電動モータ31とに接続される。

[0049]

図5は、本発明に係るハイブリッド駆動車両の電源制御系のブロック構成図である。

車両コントローラ5は、双方向通信ライン220, 221, 222を介してそれぞれ電動モータユニット3、バッテリユニット6および燃料電池ユニット7に接続される。燃料電池ユニット7は、(+)側電流ライン223aおよび(-)

側電流ライン223bを介して電動モータユニット3に接続される。 (+) 側電流ライン223a上にはスイッチ225が設けられる。このスイッチ225は、車両コントローラ5によりON/OFF駆動される。

[0050]

バッテリユニット6は、(+) 側電流ライン224aおよび(-) 側電流ライン224bを介して電動モータユニット3に接続される。(+) 側電流ライン224a上にはスイッチ226が設けられる。このスイッチ226は、車両コントローラ5によりON/OFF駆動される。

[0051]

電動モータユニット3は、電動モータ31 (図3) とともにコントローラ (モータドライバ30) およびエンコーダやセンサ等をモジュールとして一体化したものである。このような電動モータユニット3は、一体部材として車両に着脱可能である。したがって、双方向通信ライン220および電流ライン223a, 223b, 224a, 224bはそれぞれカプラ (図示しない)を介して電動モータユニット3のコントローラとなるモータドライバ30に接続されている。

[0052]

モータドライバ30はメモリを有し、電動モータユニット3の運転状態、例えば回転数、スロットル開度、走行速度、要求負荷、温度、シフト位置等の検出データが常時書換えられて格納される。

[0053]

バッテリユニット6は、前述の図3に示したようにバッテリ60とともに、バッテリコントローラ61やセンサS12~14およびリレー62等をモジュールとして一体化したものである。このバッテリユニット6は、一体部材として車両に着脱可能である。したがって、双方向通信ライン221や電流ライン224a, 224bはカプラ(図示しない)を介してこのバッテリユニット6のバッテリコントローラ61に接続される。

[0054]

このバッテリコントローラ61はメモリを有し、このバッテリユニットの温度、電圧、電流等の状態データおよびバッテリ60の残量データを検出して常時書

特平11-240791

換えながら格納する。これにより、運転中に車両コントローラとの間で双方向通信によりデータの授受を行って必要な電力を供給するとともに、バッテリ60を交換した場合に、直ちにその残量を車両コントローラ側で確認することができ、走行可能距離等の演算処理を行うことができる。

[0055]

燃料電池ユニット7は、前述の燃料電池70やリフォーマ等とともに、燃料電池コントローラ71およびセンサS21~23 (図3) やリレー73等をモジュールとして一体化したものである。この燃料電池ユニット7は、一体部材として車両に着脱可能である。したがって、双方向通信ライン222や電流ライン223a,223bはカプラ(図示しない)を介してこの燃料電池ユニット7の燃料電池コントローラ71に接続される。

[0056]

燃料電池コントローラ71はメモリを有し、この燃料電池ユニット7の温度、電圧、電流等の状態データおよび燃料電池の容量データ(具体的にはメタノールタンクの残量)等の検出データを常時書換えながら格納する。これにより、運転中に車両コントローラとの間で双方向通信によりデータの授受を行って必要な電力を供給するとともに、走行可能距離等の演算処理を行うことができる。

[0057]

なお、図5の実施形態では、ハイブリッド駆動車両を構成する2つの電力供給源として燃料電池およびバッテリを用いたが、2つの燃料電池あるいは2つのバッテリ(二次電池)を用いてもよく、またエンジン式発電機やキャパシタを用いることもできる。また、本発明は車両以外にも船舶その他の装置に適用可能でありる。

[0058]

図6は、本発明に係るハイブリッド駆動車両の制御系のデータ通信の説明図である。

車両コントローラ5は、モータドライバ(電動モータのコントローラ)30、 バッテリコントローラ61および燃料電池コントローラ71の各々に対し、各コ ントローラのメモリに蓄積されている各種データの要求信号を発信する。このデ ータ要求に対し、各コントローラ30,61,71から車両コントローラ5に対し必要なデータを返信する。データの内容としては、温度、電圧、電流、エラー情報、容量等の状態情報、要求出力等の制御情報などが送受信される。

[0059]

この場合、車両コントローラ5は、各コントローラ30,61,71からのデータに基づいて各ユニットに対する最適な駆動量を演算し、この駆動量のデータを運転指令データとして各コントローラ30,61,71に送信して、電動モータユニット3、バッテリユニット6および燃料電池ユニット7を駆動制御することができる。

[0060]

図7は、本発明に係るハイブリッド駆動車両の非走行時の電力供給系の制御フローチャートである。

各ステップの動作は以下のとおりである。

[0061]

S101:車両の電源投入用のメインスイッチがOFFか否かを検出して車両の使用終了を判別する。車両使用中(走行中)であれば、走行時の制御プログラムにしたがって、車両コントローラが前述の図6に示したように、モータユニット、燃料電池ユニットおよびバッテリユニットの各コントローラとの間でそれぞれ必要なデータの送受信を行って車両の駆動制御を行う。

[0062]

S101-A:次回使用時刻と現在の残量から、タイマーカウントの設定値を 決定する。すなわち、メインスイッチがOFFの場合、タイマーを動作させると ともに、現在の電池容量から放電あるいは充電の必要性を判断し、さらにその放 電あるいは充電動作の必要時間を算出し、この必要時間に余裕(例えば、数分な いし数十分)を持たせた時間分、次回使用時刻に先行させて設定時刻とし、メイ ンスイッチOFFの時刻からこの設定時刻までの時間差を設定値として算出する

[0063]

S102:メインスイッチがOFFの場合、車両コントローラからモータユニ

ット、燃料電池ユニットおよびバッテリユニットの各コントローラに終了信号を 送信する。

[0064]

S103:タイマによりメインスイッチがOFFになってからの経過時間をカウントする。

S104:経過時間が所定の設定値(ステップS101-Aで算出される値) か否かを判別する。設定値に達してなければ設定値に達するまでカウントを続け る。

[0065]

S105:メインスイッチOFF後所定の設定時間が経過したら、燃料電池およびバッテリの容量を検出する。この場合、燃料電池についてはメタノールタンクの残量を検出する。

S106:検出したバッテリの容量を所定の設定値Aと比較する。この設定値 Aは、次回走行開始が支障なくできる必要最小限の容量値に設定する。

[0066]

S107:バッテリの容量が設定値A以下である場合、燃料電池コントローラを介して、燃料電池ユニットを動作させ、バッテリに充電してその容量を設定値Aより大きくする。

S108:バッテリ容量が所定の設定値Aより大きい場合、このバッテリ容量 を所定の設定値Bと比較する。

S109:バッテリ容量が設定値Bより大きい場合、バッテリコントローラに対し放電指令を発信して設定値Bになるまで放電させる。

S110:バッテリ容量が設定値B以下(設定値Aより大)の場合、燃料電池 およびバッテリを次回走行開始時のために待機させる。

[0067]

【発明の効果】

以上説明したように、本発明においては、モータ、燃料電池およびバッテリ等 について、これらをコントローラを含むモジュールユニットとして構成すること により、各モジュールの組立性やメンテナンス性が高まるとともに各モジュール に対応した制御系がモジュールごとに一体化されるため、制御の信頼性が向上し、また制御系を含めて部品交換等に容易に対処することができ、各モジュールの 汎用性が高まり部品管理上も有利になる。

[0068]

また、装置全体を制御する装置(車両)コントローラは、前記モータ、バッテリおよび燃料電池等の各モジュールコントローラとの間で双方向にデータの送受信を行うように構成すれば、データの蓄積を各モジュールコントローラ内で行い、必要なときに装置コントローラ側からモジュールコントローラ側へデータ要求を行って必要なデータを受け取ることができ、装置コントローラ側のメモリ構成を簡素化するとともにモジュールごとに同一回線を用いて効率よく制御を行うことができる。

[0069]

さらに、メインスイッチがオンからオフになった後、所定時間経過後に、次回 運転のための前記燃料電池やバッテリ等の電力供給源の準備処理を施す構成とす れば、一旦運転を終了してメインスイッチをオフにした後、タイマーに基づいて 所定時間経過した後、燃料電池やバッテリの容量が検出され、この容量を通常運 転を行うのに必要十分な状態に最適化し、次回の運転が安定して確実に開始され 通常運転が続行できる最適な状態で次回運転まで待機することができる。

【図面の簡単な説明】

- 【図1】 本発明の実施の形態に係るハイブリッド駆動車両の外観図。
- 【図2】 本発明の別の実施の形態に係るハイブリッド駆動車両の構成図。
- 【図3】 本発明の実施の形態に係るハイブリッド駆動車両の制御系の構成図。
- 【図4】 本発明に係る燃料電池ユニットの要部構成図。
- 【図5】 本発明に係るハイブリッド駆動車両の電源制御系の構成図。
- 【図6】 本発明に係るハイブリッド駆動車両の制御系の説明図。
- 【図7】 本発明に係るハイブリッド駆動車両の待機時の動作フローチャート。

【符号の説明】

- 1:ハイブリッド駆動車両、2:ハイブリッド駆動装置、
- 3:電動モータユニット、4:変速機、5:車両コントローラ、

特平11~240791

- 6:バッテリユニット、7:燃料電池ユニット、8:シート、9:駆動輪、
- 11:操向輪、12:フロントフォーク、13:メタノールタンク、
- 14:燃料注入キャップ、15:水素供給装置、16:水素ボンベ、
- 17:ファン、18:バーナー、19:改質器、20:スタンド、
- 21:フットレスト、22:アクセルグリップ、23:ブレーキ、
- 24:表示装置、25:ランプユニット、26:ユーザ入力装置、
- 27:不揮発性メモリ、28:タイマー、30:モータドライバ、
- 31:電動モータ、32:エンコーダ、33:回生エネルギ制御手段、
- 60:バッテリ、61:バッテリコントローラ、62:バッテリリレー、
- 70:燃料電池、71:燃料電池コントローラ、72:逆流防止素子、
- 73:燃料電池リレー、80:電力調整部、102:メタノールタンク、
- 103:改質装置、104:シフトコンバータ、105:選択酸化反応器、
- 107:水分回収熱交換器、108:水タンク、110:加熱器、
- 111:蒸発器、112:触媒層、113:バーナーポンプ、
- 114:バーナーファン、115:メタノールポンプ、116:水ポンプ、
- 117:バッファタンク、118:冷却用空気ファン、119:空気ポンプ、
- 120:冷却用空気ファン、121:バッファタンク、
- 122:冷却加湿ポンプ、123:加圧空気ポンプ、
- 124:バッファタンク、220, 221, 222:双方向通信ライン、
- 223a, 223b, 224a, 224b:電流ライン、
- 225, 226:スイッチ

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【書類名】

要約書

【要約】

【課題】 モータ、燃料電池およびバッテリの各モジュールの組立性やメンテナンス性を向上させるとともに信頼性の高い制御が可能なハイブリッド駆動車両を 提供する。

【解決手段】 車両駆動用のモータの電源としてバッテリおよび燃料電池を有し、電源を投入するメインスイッチおよび車両を運転制御する車両コントローラ5を備えたハイブリッド駆動車両において、前記モータ31、バッテリ60および燃料電池70は、それぞれモジュールユニット3,6,7として構成され、各モジュールユニットごとにモジュールコントローラ30,61,71および各モジュールの状態を検出する検出手段を有し、前記モジュールコントローラは検出した状態データを記憶する記憶手段を有する。

【選択図】

図 5

出願。人履歷情報。

識別番号

[000010076]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

静岡県磐田市新貝2500番地

氏 名

ヤマハ発動機株式会社

THIS PAGE BLANK (USPTO)