SER. Séries numériques

QCOP SER. 1

- 3. \blacklozenge On a arctan(12n!) $\longrightarrow \frac{\pi}{2} \neq 0$.
 - $\bullet \ \, \text{On a } \ln \left(\frac{n+1}{n} \right) = \ln \left(1 + \frac{1}{n} \right) \longrightarrow 0 \, \text{ mais} \\ \sum_{n=1}^{N} \ln \left(\frac{n+1}{n} \right) = \sum_{n=1}^{N} \ln (n+1) \ln (n) = \ln (N+1) \longrightarrow +\infty.$

Résultat. Les deux séries divergent.

QCOP SER.2

- 1. Résultat. La suite $(U_N)_N$ est croissante.
- 2. Utiliser le théorème de la limite monotone.
- **3.** On peut utiliser $u_n := -\frac{1}{n}$.

QCOP SER.3

- 1. Résultat. $a^n \longrightarrow 0 \iff |a| < 1$.
- 2. Résultat. $\sum_{k=0}^{n} a^k = \frac{1-a^{n+1}}{1-a}$.
- 3. Calculer la limite de $\sum_{k=0}^{n} a^k$, en traitant séparément la cas a=1.
- **4.** Résultat. $\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$ et $\sum_{n=1}^{+\infty} a^n = \frac{a}{1-a}$.

QCOP SER.4

2. Il s'agit de voir que $u_{n+2} - 2u_{n+1} + u_n = u_{n+2} - u_{n+1} - (u_{n+1} - u_n)$. En posant $v_n := u_{n+1} - u_n$, on peut utiliser ce qui précède avec la suite $(v_n)_n$.

QCOP SER.6

4. On peut utiliser $u_n \coloneqq \frac{(-1)^n}{\sqrt{n}}$ et $v_n \coloneqq \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$.

QCOP SER.7

- 2. Utiliser la définition de $\phi(\cdot)$ version « à partir d'un certain rang ».
- **3.** Utiliser ce qui précède. Le résultat de cette question doit être un réflexe : si $|u_n| = o\left(\frac{1}{n^2}\right)$, alors $\sum_n |u_n|$ converge.

QCOP SER.8

- **2.** Utiliser la définition de $\mathcal{O}(\cdot)$ version « à partir d'un certain rang ».
- 3. Utiliser ce qui précède.

QCOP SER.9

- 1. Utiliser la décroissance de f sur les segment [k, k+1] de façon à encadrer $\int_k^{k+1} f(t) dt$ par deux valeurs de f. On peut ensuite sommer ces inégalités de façon à faire apparaître $\sum_{k=n}^m f(k)$.
- 2. a) La formule précédent nous permet de minorer H_n par une quantité de l'ordre de ln(n). Puisque $ln(n) \longrightarrow +\infty$, on obtient la divergence par minoration.
 - **b)** Montrer, toujours à l'aide de l'inégalité précédente, que $\frac{\mathsf{H}_n}{\mathsf{ln}(n)} \longrightarrow 1$.

QCOP SER. 10

1. Utiliser la contraposée de « $\sum_n u_n$ converge $\implies u_n \longrightarrow 0$ ».

QCOP SER.11

3. On peut utiliser $u_n := \frac{(-1)^n}{n}$.