Livello Logico-Digitale

Prof. Ing. Donato Impedovo

Applicazioni basate su regole booleane:

- Regole di funzionamento di centraline di controllo (ad esempio dei semafori..)
- Regole di movimentazione apparati meccanici

Algebra di Boole

Considerato un insieme S di elementi:

- Ognuno degli elementi può assumere solo uno dei due valori: 0, 1
- Nel quale esiste almeno una coppia di elementi X,Y \in S \Rightarrow ' X \neq Y
- Per i quali sia definita una legge di composizione, detta somma logica (+), tale che Z = X + Y, con $X,Y,Z \in S$
- Per i quali sia definita una legge di composizione, detta prodotto logico (•), tale che $Z = X \cdot Y$, con $X,Y, Z \in S$
- Che contenga un elemento neutro rispetto alla somma (o zero), indicato dal simbolo 0, tale che X + 0 = X
- Che contenga un elemento neutro rispetto al prodotto (o unità), indicato dal simbolo 1, tale che X • 1 = X

Continua...

Algebra di Boole

Considerato un insieme S di elementi:

...continua

- Per il quale valgono le proprietà commutative delle operazioni ($+ e \cdot$), tali che X + Y = Y + X e $X \cdot Y = Y \cdot X$
- Per il quale valgono le proprietà distributive della operazione +rispetto alla operazione •e della operazione •rispetto alla operazione +, cioè $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$, $X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$
- Preso $X \in S \Rightarrow \exists (\underline{X} \in S) \Rightarrow (X + \underline{X} = 1) e (X \cdot \underline{X} = 0)$ \underline{X} è detto complemento di X

Le proprietà suddette definiscono su S una struttura algebrica comunemente detta Algebra di Boole.

Operatore OR

Somma logica (OR): il valore della somma logica è 1 se il valore di almeno uno degli
operandi è 1.

Α	В	A+B A∪B A.OR.B
0	0	0
0	1	1
1	0	1
1	1	1

Date n variabili booleane indipendenti la loro somma logica (OR) è

$$x_1 + x_2 + ... + x_n = \begin{cases} 1 \text{ se almeno una } x_i \text{vale 1} \\ 0 \text{ se } x_1 = x_2 = ... = x_n = 0 \end{cases}$$

Operatore AND

Frodotte | Paje (AND): il valore del prodotto logico è 1 se il valore di tutti gli operandi è 1.

Date n variabili booleane indipendenti il loro prodotto logico (AND) è

$$x_1 \cdot x_2 \cdot ... \cdot x_n = \begin{cases} 0 \text{ se almeno una } x_i \text{ vale } 0 \\ 1 \text{ se } x_1 = x_2 = ... = x_n = 1 \end{cases}$$

Operatore NOT

 Operatore di negazione (NOT): l'operatore inverte il valore della costante su cui opera. OPERAZIONE UNARIA.

Α	<u>A</u> !A NOT(A)
0	1
1	0

L'elemento <u>A</u> = NOT(A) viene detto <u>complemento d</u>i A. Il complemento è unico.

PORTE

Funzioni logiche

• Una variabile y è una funzione delle n variabili indipendenti $x_1, x_2, ..., x_n$, se esiste un criterio che fa corrispondere in modo univoco ad ognuna delle 2^n configurazioni delle xun valore di y

$$y = F(x_1, x_2, ..., x_n)$$

- Una rappresentazione esplicita di una funzione è la tabella di verità, in cui si elencano tutte le possibili combinazioni di $x_1,...,x_n$, con associato il valore di y
- Per costruire la tabella della verità di un'espressione booleana occorre:
 - semplificare, se possibile, l'espressione mediante i teoremi dell'algebra booleana
 - calcolare i termini parziali della funzione riducendoli alle operazioni fondamentali

1	F(a, b,	c) = a	$a \cdot b + c$
a	b	c	$\mathbf{a} \cdot \mathbf{b}$	$a \cdot b + c$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Idempotenza

$$A.or.A=A$$

Proprietà dell'idempotenza:

$$A + A = A$$

$$A \cdot A = A$$

Proprietà dell'elemento neutro per OR e AND:

$$A + 0 = A$$

$$A \cdot 1 = A$$

Proprietà dell'elemento nullo per OR e AND:

$$A + 1 = 1$$

$$A \cdot 0 = 0$$

Proprietà dell'elemento complementare per OR e AND:

$$A + \overline{A} = 1$$

$$A \cdot \overline{A} = 0$$

Α	\overline{A}	A + A
0	1	1
1	0	1

Α	$\overline{\mathbf{A}}$	A·Ā
0	1	0
1	0	0

OR e AND godono delle seguenti proprietà:

Commutativa
$$A+B=B+A$$
 $A \cdot B=B \cdot A$

Associativa $A + (B + C) = (A + B) + C = A + B + C$
 $A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$

Assorbimento $A \cdot (A + B) = A \cdot (1)$ $A + (A \cdot B) = A \cdot (2)$
Dimostrazione (1): $A \cdot (A+B) = A \cdot A + A \cdot B = A + A \cdot B = A \cdot (1+B) = A \cdot 1 = A$
Dimostrazione (2): $A + (A \cdot B) = (A+A) \cdot (A+B) = A \cdot (A+B)$...vedi sopra

Distributiva
$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

 $A + (B \cdot C) = (A + B) \cdot (A + C)$ (*)

Dimostrazione di (*): (A +B)
$$\cdot$$
 (A +C)= A \cdot A +A \cdot C +B \cdot A +B \cdot C = = A +A \cdot C +B \cdot A +B \cdot C = A(1+C) +B \cdot A +B \cdot C = A+B \cdot A +B \cdot C = A(1+B) +B \cdot C = A+B \cdot C

DE MORGAN

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

Α	В	Α	<u>B</u>	A+B	<u>A+B</u>	AB	<u>AB</u>	AB	A+B
0	0	1	1	0	1	0	1	1	1
0	1	1	0	1	1	0	1	0	0
1	0	0	1	1	1	0	1	0	0
1	1	0	0	1	0	1	0	0	0

Nome	Forma AND	Forma OR				
Elemento neutro	1A = A	0 + A = A				
Assorbimento	0A = 0	1 + A = 1				
Idempotenza	AA = A	A + A = A				
Complementazione	$A\overline{A} = 0$	$A + \overline{A} = 1$				
Proprietà commutativa	AB = BA	A + B = B + A				
Proprietà associativa	(AB)C = A(BC)	(A + B) + C = A + (B + C)				
Proprietà distributiva	A + BC = (A + B)(A + C)	A(B+C) = AB + AC				
Legge di assorbimento	A(A+B) = A	A + AB = A				
Legge di De Morgan	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{AB}$				

Figura 3.6 Identità dell'algebra booleana.

XOR

· La funzione XOR verifica la disuguaglianza di due variabili

Verificare l'equivalenza delle seguenti funzioni logiche:

•
$$\overline{A}\overline{B}\overline{C} + B\overline{C} + A(B + \overline{BC}) \equiv A + \overline{C}$$

$$egin{aligned} R &= rac{a \overline{b} + \overline{a} b}{\overline{a} \overline{b} + a b} \ T &= (a + b) \left(\overline{a} + \overline{b}
ight) \end{aligned}$$

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + \overline{a}$$

Esprimere in forma simbolica la seguente preposizione logica: Il passaggio di un astronauta da una nave di servizio ad un satellite artificiale, è permesso se:

- La nave e il satellite sono uniti e alla stessa pressione interna, oppure se
- Sono separati e l'astronauta indossa la tuta pressurizzata. In entrambi i casi occorre che le pile solari funzionino e giunga il consenso del controllo da terra.

variabili

```
P,passaggiodell'astronauta;
U, nave e satellite uniti;
I, stessa pressione interna;
T, l'astronauta indossa la tuta pressurizzata;
S, pile solari funzionanti;
C, consenso da terra
```

NB: veicoli separati = non uniti
$$(U = 0).$$

$$P = UISC + \overline{U}TSC =$$

$$= SC(UI + \overline{U}T)$$

Esprimere in forma simbolica la seguente preposizione logica: l'avanzamento di un nastro trasportatore è permesso secondo due modi di funzionamento:

- 1. È inserito l'interruttore di alimentazione e vi sono pezzi da trasportare
- 2. È inserito l'interruttore, vi sono pezzi da trasportare e il numero di pezzi già trasportato è inferiore ad un limite N (prefissato)

Inoltre l'avanzamento si deve arrestare automaticamente in caso di incidente (es. caduta di un pacco, ecc.).

Variabili

M, modo di funzionamento (M= 1, primo modo; M= 0,secondo modo); I, posizione interruttore; P,ci sono pezzi da portare; N, i pezzi trasportati sono meno di N; C, c'è stato un incidente; A, avanzamento del nastro

$$A = (IPM + IP\overline{M}N)\overline{C}$$

Progettare una rete combinatoria a tre ingressi che restituisca 1 solo se almeno due degli ingressi valgono 1

- 1. Si identificano le variabili logiche
- 2. Si crea la parte sinistra della tavola di verità che ha un numero di righe pari a 2^N (N numero di variabili
- 3. Si scrivono tutte le combinazioni
- 4. Si interpreta ogni riga in base al problema e si riporta il valore che deve assumere l'output
- 5. Si considerano solo le righe in cui l'output vale 1 e si scrive la funzione come somma di prodotti logici

- Si scriva, utilizzando gli operatori booleani AND, OR, NOT, la funzione booleana che ritorna in uscita il valore 1 se sono veri due dei quattro input
- Scrivere, utilizzando gli operatori booleani AND, OR e NOT, lafunzione logica che riceve in ingresso un numero binario su quattro bit e restituisce VERO se e solo se il numero in ingresso è compreso tra 4 e 7.
- Progettare una rete combinatoria che realizzi un'ALU ad 1 bit capace di eseguire le operazioni logiche bit a bit di AND, OR, NOT, XOR


```
f = AB se \alpha = 0 \beta = 0

f = A + B se \alpha = 0 \beta = 1

f = \overline{A} se \alpha = 1 \beta = 0

f = A \text{ xor } B se \alpha = 1 \beta = 1
```

$$f = \overline{\alpha}\overline{\beta}AB + \overline{\alpha}\beta\overline{A}B + \overline{\alpha}\beta A\overline{B} + \overline{\alpha}\beta AB + \alpha \overline{\beta}\overline{A}B + \alpha \overline{\beta}\overline{A}B + \alpha \beta \overline{A}B + \alpha \beta \overline{A}B$$

Trovare le espressioni per le funzioni booleane

$$f(x_1,x_2)$$
 e $g(x_1,x_2)$

Definite come segue

$$f(x_1, x_2) = 0$$
 se e solo se $x_1 = 1$ e $x_2 = 0$

$$g(x_1, x_2) = \{$$

$$\overline{x}_1 \text{ se } x_2 = 0$$

$$\overline{x}_1 \text{ se } x_2 = 1$$

Verificare se la funzione g è equivalente alla seguente:

$$h(x_1,x_2) = \overline{f(x_1,x_2) \bullet f(x_2,x_1)}$$

Per vari motivi come il cambiamento di tensione di alimentazione del chip, accoppiamento tra le piste, fenomeni atmosferici o altre cause, i valori sulle linee di trasmissione possono essere modificati e i dati trasmessi errati.

I codici di rilevazione e/ocorrezione degli errori sono codici che consentono la rilevazione e/o correzione degli errori inuna parola.

Esempio

Parola originaria (trasmessa) 100100

Parola finale (ricevuta) 1001 0

Date due parole di codice :

A:
$$a_{n-1}a_{n-2}...a_{i}...a_{1}a_{0}$$

e

B:
$$b_{n-1}b_{n-2}...b_1...b_1b_0$$

La <u>distanza di Hamming</u> tra A e B è definita come:

$$H(A,B) = \sum_{i=0}^{n-1} d_h(a_i,b_i)$$

$$dove \\
d_h(a_i,b_i) = 0 \quad se \quad a_i = b_i \\
d_h(a_i,b_i) = 1 \quad se \quad a_i \neq b_i$$

Si definisce distanza di Hamming di un codice la minima distanza tra due parole di un codice.

Esempio. Il codice di quattro parole valide:

000000000

1111100000

0000011111

1111111111

ha distanza di Hamming pari a 5.

Significato della **distanza di Hamming:** se tra due parole di codice vi è una distanza di Hamming pari a *d*, allora saranno necessari *d* errori singoli per trasformare una parola nell'altra.

Α	В	H(A,B)
101	111	1
1100	0011	4
100011	100101	2

La distanza di Hamming gioca un ruolo chiave nella rilevazione e correzione di errori in un codice:

- Per rilevare d errori singoli è necessario un codice con distanza di Hamming d+1 (infatti in questo modo non esiste alcun modo in cui d errori singoli possono cambiare una parola valida in un'altra parola valida);
- Per correggere d errori singoli è necessario un codice con distanza di Hamming 2d+1 (infatti in questo modo anche con d cambiamenti la parola di codice originaria continua ad essere "più vicina" rispetto a tutte le altre non esiste alcun modo in cui d errori singoli possono cambiare una parola valida in un'altra parola valida);

Esempio. Dato il codice con distanza di Hamming pari a 5: 0000000000 1111100000

0000011111

11111111111

In questo caso è possibile:

- rilevare fino a 4 errori (d+1=5): 0000000001; 1111000011; 1010101000 (Non è possibile rilevare i 5 errori che modificano 0000000000 in 0000011111 !!!)
- correggere fino a 2 errori (2d+1=5): 0011111111
 0000010101 20000011111 (Non è possibile correggere i 3 errori de modificano 0000000000 in 0000000111 !!!)

- Nei codici a rilevazione e/o correzione di errori si utilizzano alcuni bit extra (ridondanti) che vengono aggiunti alla parola stessa. Questi bit ridondanti si chiamano anche "bit di contro lo"
- L'idea è quella di creare codici con distanza di Hamming maggiore al fine di poter rilevare e/ocorreggere errori.

Data una parola di m bit di dati, si aggiungono r bit extra di controllo. Si ottiene così una unità di n=m+rbit(codeword)

Con una parola di m bit tutte le 2^m combinazioni sono legali ma, per via di come sono calcolati i bit di controllo, solo 2^m delle 2ⁿ parole di codice sono valide.

Error Correcting Codes Bit di parità

Esempio: Codice con controllo di parità

Dato +1 bit "di parità"

Il bit di parità viene scelto in modo tale che il numero di bit 1 nella parola di codice sia pari (oppure dispari)

Dato	bit di parità
1001011	0
1011	1
1111011	0
1011001111	1

Un codice con bit di parità ha distanza di Hamming pari a 2: ogni singolo errore genera una parola di codice la cui parità è errata.

Esempio: A: 10011 1 (parity bit)
B: 10001 0 (parity bit)

Servono due errori singoli per modificare una parola di codice valida in un'altra parola valida.

NB: so che si è verificato un errore singolo...ma non so dove!!

Codice di Hamming

Problema: Si vuole realizzare un codice con *m* bit dati ed *r* bit di controllo, che sia capace di correggere tutti gli errori singoli.

Esempio: Codice di Hamming

Ciascuna delle 2^m parole legali A ha:

- n (n=m+r) parole illegali a distanza 1 da essa.
- richiede quindi (n+1) stringhe di bit ad essa dedicate (1 per la parolacorretta ed n per i possibili errori).

Quindi per poter rappresentare 2^m parole abbiamo bisogno di (n+1)· 2^m stringhe differenti.

Allora dovrà essere:

$$(n+1) \cdot 2^m \leq 2^n$$

Ovvero

$$(m+r+1) \le (2^n / 2^m) = 2^r$$

Number of check bits for a code that can correct a single error $(m+r+1) \le 2^r$

Word size	Check bits	Total size	Percent overhead
8	4	12	50
16	5	21	31
32	6	38	19
64	7	71	11
128	8	136	6
256	9	265	4
512	10	522	2

- Nel codice di Hamming gli r bit di parità sono aggiunti a una parola di mbit, formando una nuova parola di n bit (n=m+r).
- I bit sono numerati da 1 (MSD Most Significant Digit).
- Tutti I bit la cui posizione è potenza di 2 sono bit di parità (1,2, 4,8, 16, ecc.)
- Quelli restanti sono usati per i dati.

Ciascun bit di parità controlla posizioni specifiche dei bit ed è impostato in modo che sia pari il numero totale dei bit che hanno valore 1 nelle posizioni controllate.

- Il bit 1 controlla i bit dispar: 1,3,5,7,9,11,13,15,17,19,21
- il bit 2 controlla i bit : 2,3,6,7,10,11,14,15,18,19
- II bit 4 controlla i bit: 4,5,6,7,12,13,14,15,20,21
- Il bit 8 controlla i bit: 8,9,10,11,12,13,14,15
- il bit 16 controlla i bit: 16,17,18,19,20,21.

In particolare il bit di posto b è controllato dai bit di controllo $b_1,b_2,...,b_j$ tale che $b=b_1+b_2+...+b_j$.

	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2	2
1	*		*		*		*		*		*		*		*		*		*		*
2		*	*			*	*			*	*			*	*			*	*		
4				*	*	*	*					*	*	*	*					*	*
8								*	*	*	*	*	*	*	*						
16																*	*	*	*	*	*