Plant Disease Classification using K-Nearest Neighbors (KNN)

This project implements a K-Nearest Neighbors (KNN) classifier for identifying plant diseases based on leaf images from the PlantVillage dataset. The pipeline covers the complete process from data preprocessing to model evaluation and prediction.

1. Objective

The goal is to accurately classify plant diseases using image data through the KNN algorithm. We aim to:

- Load and preprocess the PlantVillage dataset
- Flatten and normalize image data
- Train a KNN classifier
- Evaluate its performance
- Tune hyperparameters (k-value)
- Predict diseases from new images

2. Dataset Description

- Source: Kaggle dataset "emmarex/plantdisease"
- Structure: Directory-based where each sub-folder represents a plant disease class
- Input: Colored leaf images
- Output: Disease label (e.g., "Tomato____Early_blight")

3. Preprocessing Steps

- Resize each image to 64x64 pixels using OpenCV
- Flatten images into 1D arrays

- Encode labels using LabelEncoder
- Normalize the data using StandardScaler
- Reduce dimensionality using PCA (50 components)

4. Model Training

- Algorithm: K-Nearest Neighbors (KNN)
- Parameters:
 - Number of neighbors: 12
 - o Distance metric: Cosine
- Dataset split: 80% training, 20% testing
- Trained on the PCA-transformed data

5. Evaluation Results

- Accuracy: ~68%
- Classification Report: Precision, recall, and F1-score for each disease class
- Confusion Matrix: Visual representation using Seaborn heatmap
- Labels restored to original disease names for interpretability

6. Hyperparameter Tuning

- Method: 5-fold cross-validation on a subset of 1000 samples
- Explored k-values from 1 to 19
- Best performing K: Displayed along with its cross-validated accuracy

Visualization: Line plot of accuracy versus K

7. Image Prediction Utility

A custom function predict_image(image_path) was implemented to classify any new image using the trained pipeline. It applies the same preprocessing steps (resize, flatten, scale, PCA) before predicting the disease label.

8. Conclusion

This KNN-based approach provides a decent baseline for plant disease classification with moderate accuracy. Despite its simplicity, the model performs well on a diverse set of plant disease images. Future improvements could include using more complex classifiers (e.g., CNNs), data augmentation, and deeper feature extraction.

Libraries Used:

- opencv-python
- scikit-learn
- matplotlib, seaborn
- kagglehub for dataset download

Note: The entire pipeline is reproducible and can be extended further for advanced classification tasks using deep learning.