

Разработка навигационной системы автономного мобильного робота на основе данных с видеокамеры

Выпускная квалификационная работа студента группы Б19-601 Нальберского Дмитрия Вячеславовича

Цель и задачи

<u>Цель</u>: разработать систему навигации автономного мобильного робота на основе данных с видеокамеры.

Задачи:

- 1. Ознакомление с общими подходами в навигации
- 2. Выбор датчиков системы
- 3. Выбор алгоритма навигации
- 4. Разработка навигационной системы
- 5. Проведение экспериментальных исследований
- 6. Анализ результатов

Актуальность

При благоприятных обстоятельствах наблюдение за роботом можно вести, например, при помощи непосредственного визуального контакта, с дрона или при помощи глобальной навигационной спутниковой системы.

Рисунок 1. Визуальный контроль положения

Выбор основного датчика

Таблица 1. Сравнение датчиков, применяемых в навигации

	Радар	Камера	Ультразвук	Лидар
Дальность	+ + +	+ +	+	+ ++
Точность	+ +	+ +	+	+ + +
Разрешение	+	+ + +	+	+ + +
Измерение скорости	+ + +	_	_	_
Устойчивость к внешним факторам	+ +	+++	+ +	+
Независимость от освещенности	+ + +	-	+ + +	+ + +
Стоимость	+ +	+ +	+ + +	+

Робот

Платформой для испытаний навигационной системы стал робот «Макет»

- Масса: ~50 кг.
- Скорость около 4 км/ч;
- Гусеничный ход;
- Изменяемая геометрия для повышения проходимости;
- Амортизация отсутствует.

Рисунок 2. Робот «Макет»

Навигационная система

Состав аппаратной части навигационной системы:

- Процессорная плата на основе Intel Core i7;
- 2 камеры Basler;
- Инерциальный измерительный модуль XSens;
- Периферийные устройства.

Рисунок 3. Схема навигационной системы

Программное обеспечение

Состав программной части навигационной системы:

- Операционная система Ubuntu;
- Robot operating system;
- ROS-драйвера для датчиков;
- Программная реализация алгоритма ORB-SLAM3;
- Вспомогательные утилиты.

Рисунок 4. Логотипы фирм используемых компонентов

Алгоритм ORB-SLAM3

Основные этапы работы:

- 1. Выделение особых точек
- Вычисление положения особых точек в пространстве и поз робота
- 3. Добавление точек в карту
- 4. Детекция и замыкание петель

Рисунок 5. Схема работы алгоритма ORB-SLAM3*

Выделение особых точек

Рисунок 6. Кадр с камеры робота с извлеченными особыми точками

Вычисление положения точек и поз робота

Рисунок 7. Вычисление положения особых точек и поз робота

Замыкание петель

Рисунок 8. Карта до и после замыкания петель

Модификации

В визуализатор алгоритма были добавлены следующие функции:

- Добавлены верхние и нижние пороги по вертикальной координате получаемого облака точек
- Добавлена сетка с масштабом 1 м
- Опробована функция изменения окраски пути в соответствии с показаниями сторонних датчиков

Калибровка системы

Для правильной работы системы необходимо знать взаимное расположение компонентов системы, внутренние параметры камеры и коэффициенты искажений камеры.

Рисунок 10. Калибровка системы

Демонстрация работы

Рисунок 9. Демонстрация работы

Экспериментальные исследования

Рисунок 11. План ЦРАР

Рисунок 12. Построенная карта

Анализ результатов

В облаке точек выделены контуры центрального здания. По сетке измерены размеры здания, и было проведено сравнение с реальными размерами.

Таблица 2. Оценка погрешности составленной карты

Размеры здания	Длина, м	Ширина, м
Реальные	54	13
Измеренные по сетке	48	10
Относительная погрешность	11%	23%

Дальнейшие действия

- Испытания на полигоне;
- Разработка модуля планирования движения на основе разработанной системы навигации.
- Внедрение данных с инерциального измерительного модуля в систему навигации

Рисунок 13. Планирование пути

Спасибо за внимание!