Motor power (connects to one motor terminal)
Motor power (connects to other motor terminal)
Encoder GND
Encoder Vcc
Encoder output A
Encoder output B

INSTRUCTIONS TO CHECK MOTORS

REQUIRED

- SIGLENT DC Power Supply (Obtain from Telecommunication Laboratory)
- KEITHLEY DC Power Supply (Obtain from Digital Laboratory)
- Tektronix Digital Oscilloscope
- POLOLU Motor
- Jumper wires

SIGLENT power supply

KEITHLEY power supply

PROCEDURE

- 1. Calibrate the oscilloscope
- 2. Go to Measure > Channel > Frequency to enable frequency measurement for both the channels
- 3. Connect the wires of POLOLU motor to the instruments as follows;

+VE terminal of SIGLENT power supply
-VE terminal of SIGLENT power supply
-VE terminal of KEITHLEY power supply
+VE terminal of KEITHLEY power supply
Channel 1 of oscilloscope
Channel 2 of oscilloscope

- 4. Connect GND terminal of Channel 1 of oscilloscope to the -VE terminal of the KEIHTLEY power supply
- 5. Set the SIGLENT DC Power Supply to parallel mode.
 - Select Current and set to 3A.
 - Select Voltage and set to 9V / 12V.
 - (This will provide a total of 6A parallel current from the two channels of the power supply)
- 6. Set the voltage of the KEITHLEY power supply to 5V and current to 0.1A to supply power to the encoder of the motor.
- 7. Make sure to hold the motor in your hand before supplying output to the motor
- 8. Switch ON the SIGLENT and KEITHLEY power supplies.
- 9. When the motor is working, check the waveform on the oscilloscope. It should have an approximate square waveform and the two waveforms taken from two encoder cables should have a phase difference of 90°
- 10. Note down the following measurements at 9V and 12V of the SIGLENT power supply.
 - a. Frequency reading in oscilloscope
 - b. Current reading in SIGLENT power supply

11. The encoder is a 48CPM encoder counting both edges of both outputs. To get the rpm value of the motor shaft, use the following equation

$$rpm = frequency \times \frac{60}{12}$$

- 12. To get the rpm of the motor, divide the motor shaft rpm by the gear ratio.
- 13. Readings for a WORKING motor should be in the following range:
 - a. At 9V
 - i. Frequency reading: 7200 7500
 - ii. Current reading: 0.16A 0.2A
 - b. At 12V
 - i. Frequency reading: 9700 10000
 - ii. Current reading: 0.18A 0.22A

NOTE: Please check the QR code of the **motor** and **its box** to make sure both matches.