PRAKTIK INSTRUMENTASI

Dosen: -Gilang Nugraha Putu Pratama M.Eng.

Laporan disusun guna memenuhi salah satu tugas mata kuliah

Praktik Instrumentasi

JOB 8:

PRAKTIKUM PENGUAT INVERTING DAN NON-INVERTING

Disusun Oleh:

Nama: M.Nurdin Prastya.H

NIM : 20507334047

Kelas : GK1

Program Studi DIV Teknik Elektronika

Jurusan Pendidikan Teknik Elektronika dan Informatika

Falkutas Teknik

Universitas Negeri Yogyakarta 2021

FAKULTAS TEKNIK UNIVERSITAS **NEGERI YOGYAKARTA**

LAB SHEET PRAKTIK INSTRUMENTASI

Semester 3	PRAKTIKUM INVERTING DAN NON-INVERTING		200 menit	
NA	MA	NIM/KELAS	Tgl:	
M.NURDIN	PRASTYA.H	20507334047/GK1	20/11/2021	Hal 1 dari 5.

File inverting

M.NURDIN PRASTYA.H

Komponen:

- 1. MINRES1K
- 2. MINRES10K
- 3. 741 (Op-Amp)

Langkah Kerja:

1. Check pada properties dari tegangan sumber tegangan DC, pastikan tegangan masukan tidak bernilai 0 volt.

No.	Sumber	Tegangan
1.	Tegangan sumber Op-Amp Positif	12 volt
2.	Tegangan sumber Op-Amp Negatif	-12 volt
3.	Tegangan masukan	1 volt

2. Amati besarnya tegangan keluaran dan isi tabel berikut.

Tegangan keluaran	Vout = -(Rf/Rin) * Vin Vout = -(10k/1k) * 1 Vout = -10 volt
Penguatan tegangan	T.peguatan = vout/vin = 10/1 = 10 kali kali

3. Ganti DC voltmeter dengan Digital Oscilloscope dan sumber tegangan DC dengan sumber

- 4. Sumber AC dapat diakses dari menu Generators lalu pilih SINE.
- 5. Check properties sumber SINE lalu atur Frequency ke 1 kHz.
- 6. Simulasikan dan amati tampilan oscilloscope.
- 7. Ambil screenshot tampilan oscilloscope.
- 8. Amati berapa volt/div parameter pada oscilloscope untuk channel A dan B.
- 9. Hitung tegangan peak-to-peak pada channel A dan B, lalu isi tabel berikut.

Channel	Volt/Div	Peak-to-peak
Channel A Input	0,5 volt/div	T.gelombang x volt/div = 4div x 0,5 volt/div = 2 volt Peak-to-peak
Channel B Output	2 volt/div	T.gelombang x volt/div = 5div x 2volt/div = 10 volt Peak-to-peak

10. Buat analisis dan kesimpulan.

Jawab

- 1. Penguat inverting berfungsi untuk memperkuat teggangan yang berasal dari suatu sensor atau transduser yang uumnya sangat kecil dengan menggunakan input negative dari Op-Amp.
- 2. Penguat inverting bekerja dengan cara membalikan contohnya apabila input positif maka output akan negative dan sebaliknya
- 3. Besarnya penguatan inverting berbanding dengan besarnya Rf terhadap Rin yaitu jika Rf semakin besar maka penguatan semakin besar juga namun apabila Rin semakin kecil maka penguatan akan semakin kecil juga.
- 4. Jika amplitudo input pada posisi lembah maka amplitude output pada posisi bukit dan sebaliknya hal itu karena inverting.

File noninverting

Komponen:

- 1. MINRES1K
- 2. MINRES10K
- 3. 741 (Op-Amp)

Langkah Kerja:

2. Check pada properties dari tegangan sumber tegangan DC, pastikan tegangan masukan tidak bernilai 0 volt.

No.	Sumber	Tegangan
1.	Tegangan sumber Op-Amp Positif	12 volt
2.	Tegangan sumber Op-Amp Negatif	-12 volt
3.	Tegangan masukan	1 volt

3. Amati besarnya tegangan keluaran dan isi tabel berikut.

Tegangan keluaran	Vout = $(1 + Rf/RG) * Vin$ Vout = $(1 + 10k / 1k) * 1volt$ Vout = $(1 + 10) * 1 volt$ Vout = 11 volt
Penguatan tegangan	T.peguatan = vout/vin = 11/1 = 11 kali kali

4. Ganti DC voltmeter dengan Digital Oscilloscope dan sumber tegangan DC dengan sumber tegangan SINE AC.

- 5. Sumber AC dapat diakses dari menu Generators lalu pilih SINE.
- 6. Check properties sumber SINE lalu atur Frequency ke 1 kHz.
- 7. Simulasikan dan amati tampilan oscilloscope.
- 8. Ambil screenshot tampilan oscilloscope.
- 9. Amati berapa volt/div parameter pada oscilloscope untuk channel A dan B.
- 10. Hitung tegangan peak-to-peak pada channel A dan B, lalu isi tabel berikut.

Channel	Volt/Div	Peak-to-peak
Channel A Input	2 volt/div	T.gel x volt/div = 2div x 1volt/div = 2 volt Peak-to-peak
Channel B Output	2,5 volt/div	T.gel x volt/div = 2,5 div x 5 volt/div = 12,5 volt Peak-to-peak

11. Buat analisis dan kesimpulan.

Jawab

- 1. Non-inverting merupakan penguat sinyal yang mempunyai karakteristik dasar sinyal output yang dikuatkan memiliki fasa yang sama dengan sinyal input.
- 2. Prinsip kerja non-inverting adalah memperkuat teggangan dari suatu sensor atau transduser yang sangat kecil.
- 3. Penguat non inverting apabila input positif maka output akan positif juga dan sebaliknya
- 4. Pada penguat non inverting ini besarnya output keluaran pasti lebih besar dari 1 namun tidak akan melebihi besar catu daya yang masuk ke Op-Amp