

Number Systems and Conversions

OBJECTIVES

 The purpose of this applied session is to get to know each other, to know our expectations from this subject and to practice conversions between different number systems.

INSTRUCTIONS

Work in small groups for activities 4 and 5.

Activity 1: Introduction

Introduce yourself to the group. Tell the others a bit about your prior knowledge in this subject area, like:

- what kinds of computers you have worked with,
- whether you've ever looked inside a computer,
- any programming knowledge,
- whether you have done binary numbers in High School, etc.

Activity 2: Expectations from FIT1047

What are your expectations from this subject?

Explain the different topics covered: Computer Systems, Operating Systems, Networks & Security. Can you see how those topics are related to each other?

What challenges do you expect? Your TA will also share their expectations of challenges in this unit.

Activity 3: Explore a Computer System

Find some images online of

- a computer motherboard and identify all the locations for different important components like CPU, Memory, I/O devices;
- an integrated circuit and discuss the purpose of the pins on its outside;
- a memory chip and discuss what kind of data it stores.

Sample Solution:

[Image: https://en.wikipedia.org/wiki/John_von_Neumann.]

The Von Neumann architecture consists of a Central Processing Unit (CPU), the memory, and the input/output devices. Identify and discuss about some common parts of a usual PC or laptop that might relate to the von Neumann Model.

A computer motherboard [Image source: https://www.computerhope.com/issues/ch000504.htm]

An Integrated Circuit (IC) chip

VLSI or IC chips in memory cards.

Activity 4: Bits, Bytes and Numbers

Task 4.1: Bit, Byte and Word Construct a bit, a byte, and a word.

Sample Solution:

- (i) A bit -> '0' or '1'
- (ii) Bytes and words are fundamental data types in computer architecture. A byte consists of 8 bits.

-								
	1	0	1	0	1	1	0	0

A Word consists of 8 Bits or 16 bits or 32 bits or 64 bits.

Task 4.2: Build a Table of Number Systems

Build a table of Number Systems consisting of- Base 10, Base 8, Base 16 & Base 2 numbers. This table will contain 16 numbers only (decimal numbers 0-15). Represent Base-2 numbers using 4 bits.

Use appropriate notations to differentiate between different number systems:

- (a) subscripts "10" for Decimal Numbers- 4510,
- (b) subscripts "8" for Octal Numbers- 458,
- (c) subscripts "16" for Hexadecimal Numbers- 45₁₆,
- (d) subscripts "2" for Binary Numbers- 10102.

Sample Solution:

Hexadecimal NS	Decimal NS	Octal NS	Binary NS
[0 - 9, A - F]	[0-9]	[0-7]	[0-1]
0 ₁₆	0 ₁₀	08	00002
1 ₁₆	1 ₁₀	18	00012
2 ₁₆	2 ₁₀	28	00102
3 ₁₆	3 ₁₀	38	00112
4 ₁₆	4 ₁₀	48	01002
5 ₁₆	5 ₁₀	58	01012
6 ₁₆	6 ₁₀	68	01102
7 ₁₆	7 ₁₀	7 ₈	01112
8 ₁₆	8 ₁₀	108	10002
9 ₁₆	9 ₁₀	118	10012
A ₁₆	10 ₁₀	128	10102
B ₁₆	11 ₁₀	138	10112
C ₁₆	1210	148	11002
D ₁₆	13 ₁₀	158	11012
E ₁₆	14 ₁₀	168	11102
F ₁₆	15 ₁₀	178	11112

Activity 5: Number System Conversions

Task 5.1: Binary to Decimal and Decimal to Binary

(i) Convert the Decimal number 165_{10} to a Binary number using Division & Remainder operations.

Sample Solution:

Base	Decimal	Remainder		
2	165			
2	82	1		
2	41	0		
2	20	1		
2	10	0		
2	5	0		
2	2	1		
2	1	0		
	0	1		

 $165_{10} = 10100101_2$

(ii) Convert the Binary number 11000101_2 to a Decimal number using step (or place) value and multiplication process.

Sample Solution:

	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	2 ⁰
	128	64	32	16	8	4	2	1
	1	1	0	0	0	1	0	1

$$= 1 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 128 + 64 + 0 + 0 + 0 + 4 + 2 + 1$$

= 197₁₀

Task 5.2: Binary to Hexadecimal and Hexadecimal to Binary

(i) Convert the Binary number **11101010₂** to a Hexadecimal number using the Number Systems table.

Sample Solution:

Arrange the binary number in groups of 4-bit (starting from the right). Convert each 4-bit binary number to its corresponding hexadecimal digit using the number system table that we have built before.

1110 10102 -> Hexadecimal Number

```
1110<sub>2</sub> -> E<sub>16</sub>
1010<sub>2</sub> -> A<sub>16</sub>
1110 1010<sub>2</sub> -> EA<sub>16</sub>
```

(ii) Convert the Hexadecimal number **FA01**₁₆ to a Binary number using the Number Systems table.

Sample Solution:

Convert each hexadecimal digit to its corresponding 4-bit binary number using the number system table.

FA01₁₆ -> Binary Number

```
F<sub>16</sub> -> 1111<sub>2</sub>
A<sub>16</sub> -> 1010<sub>2</sub>
0<sub>16</sub> -> 0000<sub>2</sub>
1<sub>16</sub> -> 0001<sub>2</sub>
```

FA01₁₆ -> 1111 1010 0000 0001₂

Task 5.3: Hexadecimal to Decimal and Decimal to Hexadecimal

(i) Convert the Hexadecimal number $1AF_{16}$ to a decimal number using place value and multiplication operations.

Sample Solution:

			16 ²	16 ¹	16 ⁰
			256	16	1
			1	Α	F
			1	10	15

$$= 1 \times 16^{2} + 10 \times 16^{1} + 15 \times 16^{0}$$

$$= 256 + 160 + 15$$

$$=431_{10}$$

(ii) Convert the Decimal number 151_{10} to a Hexadecimal number using division and remainder operations.

Sample Solution:

Base	Decimal	Remainder		
16	151			
16	9	7		
	0	9		

