Лабораторная работа N_2 2.1.3 Определение C_p/C_v по скорости звука в газе Мещеряков Всеволод, Б02-001, 18.02.2021

Введение

Цель работы: определение показателя адиабаты воздуха.

В работе используется: звуковой генератор; электронный осциллограф; теплоизолированная труба, обогреваемая водой из термостата; термостат.

Теоретическая справка

Главная используемая формула, обозначающая связь скорости звука в газе с его параметрами. R – газовая постоянная, T – температура газа, μ – молярная масса газа, γ – показатель адиабаты, искомый в данной работе:

$$c = \sqrt{\gamma \frac{RT}{\mu}}. (1)$$

Описание экспериментальной установки

На рисунке 1 схематично изображена экспериментальная установка. В трубе телефоном Т возбуждаются звуковые колебания, улавливаются микрофоном М. Телефон принимает частоту со звукового генератора ГЗ, микрофон транслирует частоту осциллографу ЭО. Температура газа в трубе регулируется водой, которая омывается водой термостата по ее длине. Она принимается равной температуре циркуллирующей воды. Такая установка демонстрирует зависимость скорости звука в газе от температуры газа.

 $M\Phi TH$, 2021

Рис. 1 — Схема экспериментальной установки

Ход работы

Сделаем предварительную оценку диапазона частот, в котором будет идти работа. Из условия резонанса в трубе получим цепочку равенств:

$$c = \lambda_n f_n, \ L = n \frac{\lambda_n}{2} \to f_n = c \frac{n}{2L}.$$
 (2)

В формуле (2) n – целое число, c – скорость звука, λ_n – длина волны n-ного резонанса, f_n – частота n-ного резонанса, L – длина трубы. В ней должно укладываться целое число полуволн.

Тогда из формул (1) и (2) получаем приблизительное значение, от которого дальше стоит работать:

$$f_1 \approx 217 \, \Gamma$$
ц.

Будем искать резонансные частоты, при этом увеличивая температуру газа. Результаты измерений выведем в таблице 1 приложения.

 $M\Phi TH$, 2021 2

Для каждой каждой температуры найдем значения коэффициентов $k_i = C_i/2L = f_{n_i}/n_i$ из формулы (2). k_i определяется коэффициентом наклоном графика зависимости $f_{n_i}(n_i)$. Построим их по МНК для каждого графика - рисунок 2 приложения.

Из каждого графика мы можем вычислить коэффициент наклона, который из формулы (2) равен c/2L. Из формулы (1) видим, что скорость звука зависит от корня из температуры, что оказывается неудобным для получения модели. Для удобства получим линейную зависимость c^2 от T - формула (3).

$$c^{2} = \left(\frac{2Lf_{n}}{n}\right)^{2} = \frac{\gamma R}{\mu}T = (2Lk_{i})^{2} \to (2Lk_{i})^{2} = \frac{\gamma R}{\mu}T.$$
 (3)

Пользуясь формулой (3), мы можем построить зависимость левой части от температуры, из коэффициента пропорциональности которой можем получить искомое значение $C_p/C_v = \gamma$. Значения k_i для каждой температуры получаем из графиков, приведенных на рисунке 2 приложения. Результаты отражены в таблице 2 приложения.

Данные описанной зависимости приведем в таблице 3 приложения, из которой методом наименьших квадратов, получим итоговое значение искомой величины.

Погрешность, которую даёт МНК, основывается на случайных отклонениях от наилучшего значения коэффициента. Она не учитывает погрешность приборов, что оказывается критичным ввиду плохо работающего генератора. Его погрешность можно оценить в 5 Гц. Учтем это проведением аналогичных вычислений для граничных частот: к имеющимся резонансным частотам прибавим и вычтем 5 Герц. Из исходных данных получаем следующее коэффициента наклона, из которого вычисляем искомый показатель адиабаты:

$$\gamma = (143 \pm 2) \cdot 10^{-2}.\tag{4}$$

 $M\Phi TH$, 2021 3

Обсуждение результатов

Экспериментально было получено (4) значение показателя адиабаты воздуха. Справочники диктуют следующее число: 1,4. Как видно, оно близко к полученному. Небольшое расхождение обсуловлено неточностью определения резонансых частот. Во-первых, регистрация резонанса происходит глазом экспериментатора, что уже является довольно грубым способом. Во-вторых, имеет место весомая погрешность звукового генератора. Но все же вкупе эти факторы отклоняют результат от истинного на 1-2%.

Использованная литература

1. Лабораторный практикум по общей физике: учебное пособие. В трёх томах. Т.1. Термодинамика и молекулярная физика. 3-е изд., испр. / Гладун А.Д., Александров Д.А., Игошин Ф.Ф. и др.; Под ред. А.Д.Гладуна. – М.:МФТИ, 2012 – 292с.

 $M\Phi T H$, 2021

Приложение

Таблица 1 — Частоты (в Γ ų) последовательных резонансов npu разных температурах

n \ T [K]	293	298	303	308	313	318	323	328	333
1	226	201	205	211	212	215	221	221	225
2	445	448	456	457	459	464	466	469	475
3	655	659	665	659	674	680	693	696	701
4	869	874	881	884	892	902	908	917	921
5	1080	1091	1099	1101	1114	1126	1128	1132	1139

Таблица 2 — Коэффициенты k_i , вычисленные МНК для каждой температуры

$T_i[K]$	293	298	303	308	313	318	323	328	333
	217,44			220,81	223,49	225,82	$227,\!35$	228,72	$230,\!20$
$\sigma_{k_i}[\Gamma$ ц]	0,92	1,27	1,33	1,15	1,05	1,01	1,19	1,25	1,35
ε_{k_i}	0,42%	0,58%	$0,\!60\%$	0,52%	0,47%	0.45%	$0,\!52\%$	0,54%	$0,\!59\%$

Таблица 3 — $Bычисление \gamma$

$f(T)_i$	121037,2	122342,2	124543,8	124821,1	127863,2	130546,4	132326,6	133925,1	135659,6
$\varepsilon_{f(T)_i}$	0.85%	1,16%	1,20%	1,04%	0,94%	0,89%	1,05%	1,09%	1,17%
$\sigma_{f(T)_i}$	1025,3	1420,3	1500,3	1303,7	1200,4	1166,8	1386,1	1458,1	1591,1
T_i	293	298	303	308	313	318	323	328	333

 $M\Phi$ ТИ, 2021 5

Рис. 2 — Графики зависимости резонансной частоты от порядка резонанса при разных температурах

 $M\Phi$ ТИ, 2021 6

Рис. 3 — График зависимости квадрата скорости звука от температуры, коэффициент наклона которой определяет показатель адиабаты

МФТИ, 2021