

Discretization Methods

Sina Malakouti

Nima Tavassoli

What is Discretization

- Discrete values are intervals in a continuous spectrum of values.
- A process of quantizing continuous attributes.

Why Discretization?

- Pre-Processing
- Easier to use
- Human interpretability
- Faster and more accurate models

Terms and Notations

- **Feature** or "Attribute" or "Variable" refers to an aspect of the data. Usually before collecting data, features are specified or chosen. Features can be discrete, continuous, or nominal.
- Instance or "Tuple" or "Record" or "Data point" refers to a single collection of feature values for all features
- **Cut-point** refers to a real value within the range of continuous values that divides the range into two intervals, one interval is less than or equal to the cut-point and the other interval is greater than that.
- Boundary refers to the candidate cut-points.

Discretization process

Types

Unsupervised Methods

- Class labels are not encountered
- Equal width intervals, arbitrarily cut-points, quantile points (IDA)

Supervised Methods

- Class labels are take into account
- Same class labeled intervals are desired
- MDLPC, Chi-merge, FUSINTER, PiD, LOFD

Types – Cont.'

Types – Cont.'

```
Merging Algorithm

S = Sorted values of feature f

Merging(S){

if StoppingCriterion() == SATISFIED

Return

T = GetBestAdjacentIntervals(S)

S = MergeAdjacentIntervals(S, T)

Merging(S)

}
```

```
Splitting Algorithm
 S = Sorted values of feature f
Splitting(S){
  if StoppingCriterion() == SATISFIED
     Return
  T = GetBestSplitPoint(S)
  S_1 = GetLeftPart(S, T)
  S_2 = GetRightPart(S, T)
  Splitting(S_1)
  Splitting(S_2)
```

MDLPC

- Minimum Description Length Principal Cut
- Fayad and Irani (1993)
- Top-Down
- Entropy Based

MDLPC- Steps

- 1. Sort examples in an ascending manner
- 2. Each runs of a same class forms an interval
- 3. The discretization points are necessarily taken from the boundaries
- 4. Best bi-partition split
- 5. Stop when no improvement is feasible

MDLPC- Criterion

•
$$\psi(d)=Gain(d)-\frac{\log_2(n-1)}{n}-\frac{\delta(d)}{n}$$
 where, n training size and d is boundary

we choose the discretization point d* that checks:

$$\begin{cases} d^* = \arg \max_d [\Psi(d)] \\ \Psi(d^*) > 0 \end{cases}$$

• $Gain(d_t) = h(\Omega) - h(\Omega_j)$, the entropy gain criterion;

•
$$\delta(d) = log_2(3^m - 2) - mh(\Omega) + \sum_{j=1}^2 m_j h(\Omega_j)$$
.

Notations are:

- $h(\Omega) = -\sum_{i=1}^{m} \frac{n_i}{n} Log_2 \frac{n_i}{n}$, the Shannon entropy;
- $h(\Omega_j) = -\sum_{i=1}^m \frac{n_{ij}}{n_{ij}} Log_2 \frac{n_{ij}}{n_{ij}}$, the conditional entropy;

MDLPC

Chi-Merge

- Kerber (1992)
- Bottom-up
- Entropy based

Chi-Merge - Steps

- 1. Sort examples in ascending manner
- 2. Each value forms an interval
- 3. To each interval I_j is associated a distribution T_j
- 4. Merge the pair of adjacent intervals
- 5. Stop when no improvement is possible

Chi-Merge -Criterion

• Statistical Criterion chi-squared test

$$\chi^{2}(T_{q}, T_{(q+1)}) = \sum_{i=1}^{m} \sum_{j=q}^{q+1} \frac{(n_{ij} - n_{.j} \sum_{k=q}^{q+1} n_{ik})^{2}}{n_{.j} \sum_{k=q}^{q+1} n_{ik}}$$

• Merge the pair of adjacent intervals that gives the smallest value of chi squared and checks the following:

$$\chi^2(T_q, T_{(q+1)}) < \chi^2(\alpha, m-1)$$

Where α is type I error and m -1 is degrees of freedom

Chi-Merge – Cont.'

FUSINTER

- Zighed, Loudcher (1998)
- Bottom-up
- Entropy based
- Main characteristic: sample size sensitiveness
- In contrast to Chi-Merge, find the partition with optimized measure
- Avoid thin partitioninig

FUSINTER- Steps

- 1. Sort examples in an ascending manner
- 2. Each runs of a same class forms an interval
- 3. The discretization points are necessarily taken from the boundaries
- 4. Merges two adjacent intervals
- 5. Stop when no improvement is feasible

$$\varphi(T)-\varphi(\ldots, \{T_j+T_{(j+1)}\}, \ldots) = Max_{i=1}^{k-1} (\varphi(T)-\varphi(\ldots, T_i+T_{(i+1)}, \ldots))$$
7. : If
$$\varphi(T)-\varphi(T_1, \ldots, T_j+T_{(j+1)}, \ldots, T_k) > 0$$

FUSINTER- Criterion

• Merges two adjacent intervals whose merging improve the criterion

Axioms

- 1. Minimality
- 2. Maximality
- 3. Sensitiveness to the sample size
- 4. Symmetry
- 5. Merging
- 6. Independence

FUSINTER- Criterion Cont.'

based on Shannon's entropy

$$\varphi_1(T) = \sum_{j=1}^k \alpha \frac{n_{.j}}{n} \left(-\sum_{i=1}^m \frac{n_{ij} + \lambda}{n_{.j} + m\lambda} log_2 \frac{n_{ij} + \lambda}{n_{.j} + m\lambda} \right) + (1 - \alpha) \frac{m\lambda}{n.j}$$

Based on quadratic entropy

$$\varphi_2(T) = \sum_{j=1}^k \alpha \frac{n_{.j}}{n} \left(\sum_{i=1}^m \frac{n_{ij} + \lambda}{n_{.j} + m\lambda} \left(1 - \frac{n_{ij} + \lambda}{n_{.j} + m\lambda} \right) \right) + (1 - \alpha) \frac{m\lambda}{n_{.j}}$$

$$= \sum_{j=1}^k \alpha H_j(h, \lambda) + (1 - \alpha) \frac{m\lambda}{n_{.j}}$$

FUSINTER- Parameters

- Parameters α and λ , controls the performance
- How set them?
 - By experiment: Cross validation
 - Theoretically: force the behavior of the method in particular situations
 - 1. Minimize the number of intervals having a too small size
 - 2. Choose λ by maximizing uncertainty prevent over-splitting

FUSINTER-Cont.'

Online Discretization

- Standard discretization algorithms: needs entire dataset in main memory
- Industry outputs data in form of batches or individual instances(online)

Challenges

- Interval labeling
- Constantly revise their time and memory requirement
- Concept drift
 - 1. External drift detector
 - 2. Self-adaptive strategy: sliding window, ensembles, build model incrementally
- Relation with online learner (1-step definition)

Ideas

- Unsupervised: equal width, equal frequency (IDA), and etc.
- Supervised : PiD, LOFD, and etc.
- PiD:
 - Two layer approach:
 - 1. Produce preliminary cut-points by summarizing data
 - 2. merge

Problems

- 1. Correspondence between layers as time passes
- 2. High skewness data
- 3. Repetitive values

LOFD

- Local Online Fusion Discretizer
- Ramirez, Garcia, and Herrera (2018)
- Supervised
- Online
- Local
- Bottom-up
- Entropy Based
- Self-adaptive

LOFD – Interval Labeling

Smooth Shifting

LOFD- Algorithm

High-informative splits:

- Hard to track distributions due to memory bound
- More accurately distribution of intervals -> wiser decisions
- Independent memory constrained Histogram

Bi-directional discretization:

- Both splits and merging (inserting and removing)
- Although, merges are naturally applied, splits are more complex

Extended merges:

- Local changes -> adjacent merges
- For splits, adjacent intervals are considered

LOFD- Algorithm - Cont.'

- Split:
- When the new value is a boundary point
- Merge:
- Resulting interval's quadratic entropy is lower than sum of the parts
- Data Structures:
 - Red-black tree, Queue, and Histogram

LOFD- Algorithm - Cont.'

Algorithm 1 LOFD algorithm

```
    INPUT: D, initTh, maxHist

// D is the input dataset.

    // initTh Number of instances before initializing intervals

4: // maxHist Maximum number of elements in interval histograms
5: I = \text{On the first batch } (i = 1 \dots initTh), \text{ apply the static discretization}
   process explained in [20].
6: for i = initTh + 1 \rightarrow N do
     for A \in M do
        ceil = retrieve the ceiling interval that contains D_{iA}
        if ceil \neq null then
          isBound = check if D_{iA} is boundary
10:
          Insert D_{iA} into ceil and update its criterion
11:
          if isBound == true then
12:
             (ceil, new) = split ceil into two intervals with D_{iA} as cutpoint
13:
             Evaluate local merges between ceil, new, and the surrounding in-
14:
            tervals until no improvement is achieved.
            Insert the resulting set into I_A
15:
16:
          end if
        else
17:
          last = Create a new interval on the right side with D_{iA} as upper
18:
          limit
          Insert last into I_A
19:
          Evaluate merge with the old maximum interval
20:
        end if
21:
     end for
22:
     add D_i to the timestamped queue
23:
     for int \in I_A do
24:
        if |histogram(int)| > maxHist then
25:
          Remove old points from the timestamped queue, and subsequently,
26:
          from the local histograms until |histogram(int)| \le maxHist. Re-
          move empty intervals.
        end if
27:
     end for
29: end for
```


Table 8: Number of intervals generated by discretizer. Best value (lowest) by row is highlighted in bold.

	PiD	IDA	OC	LOFD
airlines	17	48	29	39
elecNormNew	81	54	33	50
kddcup_10	300	138	158	153
poker-lsn	51	55	43	42
covtypeNorm	344	330	96	82
blips	1,924	126	120	552
sudden_drift	22	24	18	28
gradual_drift_med	17	24	18	30
gradual_recurring_drift	1,829	126	120	504
incremental_fast	1,085	66	60	55
incremental_slow	313	66	60	75
MEAN	543.91	96.09	68.64	146.36

Table 6: Classification test accuracy on discretized data. Hoeffding tree used as learner.

	PiD	IDA	OC	HT	LOFD
airlines	64.3951	64.5158	65.3619	65.0784	65.0008
elecNormNew	79.8442	79.8354	70.2132	79.1954	80.7645
kddcup_10	99.8389	99.7929	99.8368	99.7413	99.5120
poker-Isn	57.9820	69.8381	55.4892	76.0685	76.1936
covtypeNorm	77.6671	75.8652	70.1681	80.3119	81.8190
blips	73.6652	86.0112	35.7974	90.9808	79.3036
sudden_drift	69.5128	82.9856	61.3936	84.8418	86.7238
gradual_drift_med	64.6858	84.1394	51.1838	85.5088	86.5246
gradual_recurring_drift	68.2206	83.7164	35.6192	88.3368	77.8664
incremental_fast	71.1508	78.6526	50.6528	82.7748	77.0852
incremental_slow	66.3744	76.7644	50.5308	83.1052	70.9906
MEAN	72.1215	80.1924	58.7497	83.2676	80.1622

References

- [1] D. A. Zighed, S. Rabas´eda, R. Rakotomalala, FUSINTER: A method660 for discretization of continuous attributes, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (3) (1998) 307–326.
- [2] S. Ramirez-Gallegoa, S. Garciaa, F. Herreraa, b Online Entropy-Based Discretization for Data Streaming Classification, 2018
- [3] Huan Liu, Farhad Hussain, Chew lim Tan, Manoranjan Dash Discretization: An Enabling Technique, (2002), 393-423

THANK YOU:D