

Programação Paralela

Introdução a Cluster Computing

Aula 6 Alessandro L. Koerich

> Pontificia Universidade Católica do Paraná (PUCPR) Ciência da Computação – 6º Período

Programa do PA

6. Programação Utilizando o Modelo de Passagem de Mensagens (MPI)

7. Cluster Computing

Programação Paralela

Programação Paralela

Aula Anterior

- * Organização Física de Plataformas Paralelas
 - * Arquitetura ideal
 - * Arquiteturas convencionais
 - * Topologias de rede

Introdução

Programação paralela na prática usando MPI

Ciência da Computação

* Começar a escrever programas paralelos o mais rápido possível.

sandro L. Koerich (alekoe@ppgia.pucpr.br)

PUCP

Ciência da Computação

Programação Parale

200

Alessandro L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR

Ciência da Computação

Programação Parale

2004

2004

Cluster

Acesso ao Cluster (da PUC)

Acesso ao Cluster (Exterior)

Somente via Espec

- * Do exterior a Espec: ssh login@espec.ppgia.pucpr.br
- * Da Espec ao Cluster ssh LoginCluster@10.32.1.231

Usuários e Contas

- * abner cluster
- * camilla cluster
- # gustavo cluster
- cluster # leo
- * bastian cluster
- * canesso cluster
- * luiz cluster
- cluster * oscar

Alessandro L. Koerich (alekoe@ppgia.pucpr.br) Ciência da Computação

Alessandro L. Koerich (alekoe@ppgia.pucpr.br)

Ciência da Computação

Usuários e Contas

* Diretório HOME:

/cluster/home/login

* OBS: Exportado para todas as máquinas via NFS

* Senha:

cluster

Não alterar a senha agora!!!!

Procedimento

Programação

* Escrever o código fonte na estação local e fazer um sftp no nó Master

ou

* acessar o nó *Master* via ssh e utilizar o *vi*

Procedimento

<u>Compilação</u>

* Acessar o nó *Master* via ssh e utilizar o seguinte comando:

mpicc -Wall -O2 nome.c -o nome

Procedimento

Execução

- * Acessar o nó *Master* via ssh
 - * Inicializar o cluster

lamboot –v .rhosts

Obs:

- * O cluster deve ser inicializado somente uma vez.
- Utilize wipe –v para desmontá–lo.
- * O arquivo .rhosts deve conter o nome de todas as máquinas que participarão do cluster.

Procedimento

Execução (cont.)

- * Acessar o nó *Master* via ssh
 - * Executar o programa mpirun –v –np 12 N programa

Processos

- * Os processos envolvidos na execução de um programa paralelo são identificados por uma sequência de inteiros não negativos.
- * Se houverem p processos, eles terão ranks 0, 1, 2, ..., p-1

Koerich (alekoe@ppgia.pucpr.bi

Programação MPI

- * Cada processo (exceto o processo zero (o)), envia uma mensagem para o processo zero.
- * O processo zero (o) recebe a mensagem.
- Ver código na pasta /cluster/home/AULA15/greetings.c
- * Copiá-o para sua pasta home.

Programação MPI

Programação MPI

- * Exemplo: Hello World!!!
- * Compile: *mpicc* –*Wall* –*O2 greetings.c* –*o greetings*
- * Executar o programa: $mpirun -v -np \ 2 \ N \ greetings$
 - * Varie o parâmetro -np de 2 a 20 e veja o resultado

Programação MPI

- * Se executarmos apenas um processo em cada processador (i.e. -np 7)
 - * O usuário emite uma diretiva para o SO que tem o efeito de colocar uma cópia do programa executável em cada nó (processador)
 - * Cada processador começa a executar sua cópia
 - * Diferentes processos podem executar diferentes instruções se ramificando do programa com base nos ranks dos processos.

Programação MPI

* Evitamos de escrever vários programas incluindo a instrução de ramificação:

```
if (my_rank != 0)
else
```

Ciência da Computação

Programação Paralela

essandro L. Koerich (alekoe@ppgia.pucpr.br)

Ciência da Computação

Alessandro L. Koerich (alekoe@ppgia.pucpr.br)