INFDTA01-2 Data Mining - Week 5

Giulia Costantini

Agenda

- Forecasting
 - definition, applications
 - exponential smoothing (ES)
 - moving average (simple and weighted)
 - simple exponential smoothing
 - double exponential smoothing (Holt's trend-corrected ES)
 - ▶ triple exponential smoothing (multiplicative Holt-Winters ES) [next lesson]
 - measuring forecast accuracy [next lesson]
 - summary
- Practical assignment part 3

Week	Topic
4	Introduction; Intro clustering
2	Clustering; Intro genetic algorithms
3	Genetic algorithms
4	Practicum; (optional) GA + regression case study
5	Forecasting (SES, DES)
6	Forecasting (TES)
7	Linear programming; outliers; summary/practicum
8	Check assignments + oral check

What is forecasting?

- process of making statements about events whose actual outcomes (typically) have not yet been observed
- estimation of some variable of interest at some specified future date

Past data is used to predict a future outcome

- central issues are risk and uncertainty
 - ▶ the future often looks nothing like the past
 - "only guarantee with forecasting: your forecast is wrong!"
 - indicate the degree of uncertainty of a forecast (prediction intervals)

Why forecasting?

- ► Typical forecasting problem → taking some data point over time and projecting that data into the future
 - Sales
 - Demand
 - Supply
 - Carbon emissions
 - Population
 - ..

How to do forecasting?

- A lot of methods
 - Naïve approach
 - ► Time series
 - ▶ Moving average, weighted moving average, ES, ARMA, ARIMA, extrapolation, trend estimation, growth curve, etc...
 - Causal/econometric (regression analysis)
 - Judgmental
 - ▶ Delphi, statistical surveys, scenario building, etc...
 - Artificial intelligence
 - ▶ Neural networks, machine learning, pattern recognition, etc...
 - Other
 - ► Simulation, probability forecasting, etc...

Time series

- ▶ Data with natural temporal ordering → time series
 - sequence of data points
 - measured at successive points in time
 - spaced at uniform time intervals
- Time interval can be anything
 - Year
 - Month
 - Week
 - Day
 - ► Hour
 - ..

Naïve approach

Forecast for any future period

historical average

Features

- simple & cost-effective
- used as benchmark for comparison with more sophisticated models

Example

- ▶ Data points = { 55, 63, 48, 50, 56 }
- ► Average = $54.4 \rightarrow$ forecast for all future values

Time series

- Smoothing
 - ► Help us see patterns (i.e., trends)
 - ▶ Smooth out the irregular roughness to see a clearer signal
- \blacktriangleright $\{x_t\}$ = data sequence
- $ightharpoonup \{s_t\}$ = output sequence from smoothing

Examples

Time series

Smoothing

- \blacktriangleright We **know** the original time series x_t (blue dots)
- \blacktriangleright We want to **find a smoothed** version of it s_t (red dots)
- There are various techniques possible (moving avg, SES, DES, etc...)

Smoothing coefficient (alpha)				
0,4				
			Smoothed	
	Time	Demand	sequence	
	t ₩	x_t	s_t 🕌	
	1	34	34,3	
	2	32	34,2	
	3	36	33,3	
	4	32	34,4	
	5	37	33,4	
	6	31	34,9	
	7	36	33,3	
	8	32	34,4	
	9	37	33,4	
	10	34		
	11	32	34,9	
			34,5	
	12	38	33,5	
	13	35	35,3	
	14	41	35,2	
	15	36	37,5	
	16	42	36,9	
	17	37	38,9	
	18	42	38,2	
	19	38	39,7	
	20	43	39,0	
	21	39	40,6	
	22	43	40,0	
	23	38	41,2	
	24	44	39,9	

Giulia Costantini - INFDTA01-2

- SMA (simple moving average)
 - simplest way to smooth a time series
 - \blacktriangleright (unweighted) mean of the previous k data points

$$s_{t} = \frac{1}{k} \sum_{i=0}^{k-1} x_{t-i} = \frac{x_{t} + x_{t-1} + x_{t-2} + \dots + x_{t-k+1}}{k}$$

Example

- ▶ Suppose k = 4

Smoothed sequence

...

- Choice of k: arbitrary
 - ► Small value → less smoothing; more responsive to recent changes
 - ► Large value → greater smoothing effect
 - Demo excel
- Problems
 - \triangleright Cannot be used on the first k-1 terms
 - ► Consider only the last *k* observations (previous ones are ignored completely)
 - \triangleright Every observation in the last k counts the same (has the same weigth)

- WMA (weighted moving average)
 - \triangleright Similar to SMA but each value of the average has a different weight w_i

$$s_{t} = \sum_{i=0}^{k-1} w_{i} x_{t-i} = w_{1} x_{t} + w_{2} x_{t-1} + w_{3} x_{t-2} + \dots + w_{k-1} x_{t-k+1}$$

- Weighting factors
 - $\blacktriangleright \{w_1, w_2, ... w_{k-1}\}$ such that $\sum_{i=0}^{k-1} w_i = 1$
 - give more weight to recent terms
 - ▶ ... but the other two problems remain!

- SES (simple exponential smoothing)
 - Commonly applied to financial market and economic data
 - Current smoothed statistics = weighted average of
 - \blacktriangleright the previous observation x_{t-1} and
 - \blacktriangleright the previous smoothed statistic s_{t-1}

$$s_t = \alpha x_{t-1} + (1 - \alpha) s_{t-1}$$

- Not many observations needed to start
 - one at least, depending on how we initialize s
- Every observations counts, proportionally to time
 - ► Less recent count (exponentially) less
- Initialization
 - $> s_1 = x_1$
 - $ightharpoonup s_1 = \text{average of the first 12 values of } x_t \text{ (better!)}$
 - **...**

$$s_t = \alpha x_{t-1} + (1 - \alpha)s_{t-1}$$

- $ightharpoonup \alpha = data smoothing factor$

 - ► Large values → less smooth, greater weight to recent changes
 - ► Small values → more smooth, less responsive to change
 - How to choose it?
 - Statistician judgment
 - ▶ Optimizing it, by minimizing the standard error of the smoothed statistics with respect to the time series (*method of least squares*): minimize $\sqrt{\frac{\sum (s_i x_i)^2}{n-1}}$ (n = number of observations in the time series)

- So, what is the forecast???
 - $ightharpoonup s_{n+1} =$ last value available of the smoothed statistic
 - $ightharpoonup f_{n+m} = ext{forecast for } m ext{ time periods into the future}$

$$f_{n+m} = s_{n+1} \ \forall m \in \{1, 2, 3, \dots\}$$

Examples:

Figure 8-9: Graphing the final simple exponential smoothing forecast

Giulia Costantini - INFDTA01-2

$$s_t = \alpha x_{t-1} + (1 - \alpha) s_{t-1}$$
 $f_{n+m} = s_{n+1} \ \forall m \in \{1, 2, 3, ...\}$

Exercise

- Download from N@tschool the Excel file "Week 5 SES and DES exercise.xlsx"
- ► Go the first sheet and insert the formula of SES to compute the <u>smoothed sequence</u> associated to the time series
- Fill in also the " $\frac{squared\ error}{}$ " column and use it to compute the error measure $\sqrt{\frac{\sum (s_i-x_i)^2}{n-1}}$
- ► Compute the forecast for the following year (from 37 to 48)
- ightharpoonup Try different values for the smoothing factor α and see how that changes the shape of the smoothing sequence, the forecasts and the value of the error measure

- Trend in the data? SES is <u>not</u> good at all!
 - ► Holt's trend-corrected exponential smoothing is better
 - ▶ Also called *double* exponential smoothing (two smoothing factors)
- $ightharpoonup s_t$ is (as before) the smoothed statistic (*level*) at time t
- **b**_t is our best estimate of the \underline{trend} at time t
- ► Forecast for the next time step $t + 1 \Rightarrow f_{t+1} = s_t + b_t$

Update equations

$$s_{t} = \alpha x_{t} + (1 - \alpha)(s_{t-1} + b_{t-1})$$

$$b_{t} = \beta(s_{t} - s_{t-1}) + (1 - \beta)b_{t-1}$$

$$f_{t+1} = s_{t} + b_{t}$$

- Smoothing factors
 - ▶ $0 < \alpha < 1$ is the *data* smoothing factor
 - ▶ $0 < \beta < 1$ is the *trend* smoothing factor
 - Can be optimized minimizing the error, similarly as before...
 - Standard error = $\sqrt{\frac{\sum (f_i x_i)^2}{n-2}}$

Initialization

- $> s_2 = x_2$, $b_2 = x_2 x_1$
 - ▶ $f_3 = s_2 + b_2$: the first forecast available is at t = 3!
- other possibility: fit a regression model on the first half of the data and use slope & intercept as starting values for s and b

- And the forecast??? Given
 - \blacktriangleright the final value of the smoothed statistics, s_n
 - \blacktriangleright the final estimate of the trend, b_n
 - \blacktriangleright the number of time intervals m into the future you want to forecast

$$f_{n+m} = s_n + mb_n$$

Figure 8-19: Graph of optimal Holt's forecast

Giulia Costantini - INFDTA01-2

- Example
 - ▶ time interval = months
 - \rightarrow n = 36 (3 years of data)
 - $ightharpoonup s_n = 280, b_n = 26$

$$f_{n+m} = s_n + mb_n$$

What's the forecast for month 39?

$$f_{39} = s_n + (39 - 36) \times b_n = 280 + 3 \times 26 = 358$$

- What's the forecast for the first month of the fourth year?
 - First month of fourth year = month 37!

$$f_{37} = s_n + (37 - 36) \times b_n = 280 + 26 = 306$$

$$s_{t} = \alpha x_{t} + (1 - \alpha)(s_{t-1} + b_{t-1})$$

$$b_{t} = \beta(s_{t} - s_{t-1}) + (1 - \beta)b_{t-1} \qquad f_{n+m} = s_{n} + mb_{n}$$

$$f_{t+1} = s_t + b_t$$
 equivalent to $f_t = s_{t-1} + b_{t-1}$

- Exercise
 - Go back to the Excel file "Week 5 SES and DES exercise.xlsx"
 - Go the second sheet and insert the formulas of DES to compute the <u>smoothed and</u> <u>trend sequences</u> associated to the time series, plus the <u>forecast</u>
 - Fill in also the " $\frac{squared\ error}{}$ " column and use it to compute the error measure $\sqrt{\frac{\sum (f_i x_i)^2}{n-2}}$
 - ► Compute the forecast for the following year (from 37 to 48)
 - ▶ Try different values for the smoothing factors α, β and see how those change the plot, the forecasts and the value of the error measure

Summary

- Forecasting
 - Using past data to predict future values
- Simple exponential smoothing
 - when the level of the time series changes slowly in time
 - \blacktriangleright one smoothing factor α (data)
- Double exponential smoothing
 - when there is a linear trend in the data
 - \blacktriangleright two smoothing factors α , β (data; trend)

Practical assignment - Part 3

- Implement SES and DES to do forecasting on the data series of Chapter 8 (Sword)
 - ▶ Find the **optimal** values of the smoothing parameters (α for SES; α and β for DES)
 - ▶ Using the optimal values of the parameters, compute the **forecasts** for the demand of the following year (time steps 37-48)
 - ▶ Visualize the results (without using Excel), similarly to figures 8-9 and 8-19 of the book
 - ▶ Detailed description of the assignment is on N@tschool