# Control of an inverted pendulum

Consider the system depicted in the Figure, composed by a pendulum fixed on a cart and controlled through a DC motor.



The model parameters are given as

$$M=10 \; kg, \; m=2 \; kg, \; L=1m, \; R_r=0.1m, \; R_a=10 \; \Omega, \; k_c=2 rac{V \cdot s}{rad'} \; k_e=2 rac{N \cdot m}{A}$$

The goal of this work is to stabilize the pendulum in its vertical position (around  $\theta = 0$ ) acting on the motor voltage V. Measurements of the position z and of angle  $\theta$  are available.

# System Model

To derive the dynamical model the system can be decomposed as follows.



• DC motor:

$$F = \frac{\tau_m}{R_r} = \frac{k_c}{R_r} \cdot \frac{V - k_e \omega}{R_a} = \frac{k_c}{R_a R_r} \cdot \left(V - k_e \frac{\dot{z}}{R_r}\right)$$

Cart:

$$M \ddot{z} + N_H = F$$

• Pendulum:

$$m\ddot{z} + mL\dot{\theta}^{2}\sin\theta - mL\ddot{\theta}\cos\theta - N_{H} = 0$$
  
$$mL^{2}\ddot{\theta} - mL\ddot{z}\cos\theta - mgL\sin\theta = 0$$

Re-arranging the terms to remove the dependency on  $N_H$  we get

$$(M+m)\ddot{z} + mL\dot{\theta}^{2}\sin\theta - mL\ddot{\theta}\cos\theta = \frac{k_{c}}{R_{a}R_{r}}\cdot\left(V - k_{e}\frac{\dot{z}}{R_{r}}\right)$$
$$\ddot{\theta} - \frac{\cos\theta}{L}\ddot{z} - \frac{g}{L}\sin\theta = 0$$

Isolating  $\ddot{z}$  and  $\ddot{\theta}$  we get

$$\begin{cases} \ddot{z} = \frac{1}{M+m-m\cos^2\theta} \left( -\frac{k_c k_e}{R_a R_r^2} \dot{z} - mL \, \dot{\theta}^2 \sin\theta + mg \sin\theta \cos\theta + \frac{k_c}{R_a R_r} V \right) \\ \ddot{\theta} = \frac{g}{L} \sin\theta + \frac{\cos\theta}{L(M+m-m\cos^2\theta)} \left( -\frac{k_c k_e}{R_a R_r^2} \dot{z} - mL \, \dot{\theta}^2 \sin\theta + mg \sin\theta \cos\theta + \frac{k_c}{R_a R_r} V \right) \end{cases}$$

In state-space form, denoting  $x_1=z$ ,  $x_2=\dot{z}$ ,  $x_3=\theta$ ,  $x_4=\dot{\theta}$ , u=V

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = \frac{1}{M + m - m\cos^2 x_3} \left( -\frac{k_e k_c}{R_a R_r^2} x_2 - mL x_4^2 \sin x_3 + mg \sin x_3 \cos x_3 + \frac{k_c}{R_a R_r} u \right) \\ \dot{x}_3 = x_4 \\ \dot{x}_4 = \frac{g}{L} \sin x_3 + \frac{\cos x_3}{L(M + m - m\cos^2 x_3)} \left( -\frac{k_e k_c}{R_a R_r^2} x_2 - mL x_4^2 \sin x_3 + mg \sin x_3 \cos x_3 + \frac{k_c}{R_a R_r} u \right) \end{cases}$$

## Equilibrium and linearization

We are now interested in linearizing the system model around the vertical pendulum position with zero input, i.e.  $\bar{x} = (0,0,0,0)$  and  $\bar{u} = 0$ ; the resulting linearized model is the following

$$\begin{cases} \delta \dot{x}_1 = \delta x_2 \\ \delta \dot{x}_2 = -\frac{k_e k_c}{M R_a R_r^2} \delta x_2 + \frac{mg}{M} \delta x_3 + \frac{k_c}{M R_a R_r} \delta u \\ \delta \dot{x}_3 = \delta x_4 \\ \delta \dot{x}_4 = -\frac{k_e k_c}{L M R_a R_r^2} \delta x_2 + \frac{(m+M)g}{L M} \delta x_3 + \frac{k_c}{L M R_a R_r} \delta u \end{cases}$$

Substituting the parameters values the linearized system model can be written as

$$\delta \dot{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -4 & 1.962 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -4 & 11.772 & 0 \end{bmatrix} \delta x + \begin{bmatrix} 0 \\ 0.2 \\ 0 \\ 0.2 \end{bmatrix} \delta v$$
$$\delta y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \delta x$$

### **Tasks**

Given the nonlinear model and its linearization the goal is to compute a controller that stabilizes the pendulum in the vertical position without incurring in large oscillations of the cart.

- 1. Linearize the system with Simulink, using the Time-Based Linearization block.
  - <u>Hint:</u> Select all the four states  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$  (in the correct order) as outputs of the linearized system. This will ensure that the states of the identified system match the real system states. Then, overwrite the C matrix to consider the fact that only the position and the angle are measured.
- 2. Analyze the linearized system. Then, enlarge the system to ensure robust asymptotic zeroerror regulation of as many outputs as possible.
- 3. Design an LQ control law for the enlarged system (assuming that the state is measured). Test the closed-loop performances in Simulink, considering

$$x(0) = [0, 0, 0.2, 0]'$$
  
 $z^{0}(t) = 0.25 \cdot \text{step}(t - 30)$ 

Tune the Q and R matrices to achieve the smoothest possible performances.

- 4. Consider now that only the position of the cart and the angle of the pendulum are measured, i.e.  $y = [x_1, x_3]'$ . Design a Kalman Filter and test the resulting LQG control scheme in Simulink (with the same x(0) and  $z^0(t)$ ).
- 5. Test the robustness of the control system to:
  - White noise acting on the system outputs
  - Perturbation forces applied horizontally to the mass m
  - Saturation of the control variable to  $\pm 24V$

Hint: Use the system mask and the pendulum animation to introduce these disturbances.

### **Inverted pendulum parameters**



It is possible to configure the Simulink model of the inverted pendulum from the block mask. One can change:

- The physical/electrical parameters of the system
- The initial conditions
- Enable/disable the 2D animation of the pendulum (disable it if the simulation on your pc is too slow)
- The time step of the animation (the lower the time step, the slower the simulation; default: 0.075)
- The variance of the white noise on the outputs' measurements ([0, 0] means no noise)
- The maximum perturbing force that is possible to apply on the mass m through the animation's slider (default: 0.3)
- Enable/disable the saturation of the control variable (at  $\pm 24V$ )



If the Animation is enabled, the Pendulum Visualization figure should appear. Note that:

- The blue triangle corresponds to z = 0
- The left and right yellow triangles correspond to z = -L and z = L, respectively
- At the bottom, a force can be applied to perturb the system by applying a force on the mass m: If the slider is moved, an increasing force is applied in the corresponding direction. To remove the disturbance, move the slider to the middle position