

Online-Zertifikatslehrgang

Data Analyst IHK

Die neue Generation digitaler IHK-Weiterbildungen

IHK■Die Weiterbildung

INHALT

KNIME Knotenund ihre KonfigurationModul 3

Data Analyst_(ІНК)

Variablen: Beispiel Configuration Knoten

Single Selection Configuration

Auswahl in der Komponentensteuerung

Knoten CASE Switch Start

Knoten Create File/Folder Variables

Schleifen: Beispiel Group Loop

Zugriff auf Datenbanken und Tabellen

Verbindung zur Datenbank herstellen

- Adäquaten Datenbanktreiber auswählen
- URL der DB angeben
- Anmeldedaten angeben (User & Passwort)

Tabellen in der Datenbank auswählen

- Tabellen in der Datenbank auswählen über select a Table
 - → Metadaten abfragen
 - → Tabelle auswählen

Daten extrahieren

 Tabellen aus der Datenbank nach KNIME exportieren

DB Connector

Datenbankverbindung als Ausgangspunkt

DB Table Selector

Tabellenselektion

DB Reader

KNIME Table

Query-Knoten in KNIME

Viele Transformationen funktionieren analog wie mit den herkömmlichen Knoten:

- Zeilen und Spalten filtern
- Join Tabellen / Abfragen
- Stichproben extrahieren
- Binning von numerischen Spalten
- Sortieren
- Aggregieren
- Partitionieren

Beispiel Row Filter

Die Konfiguration der Knoten unterscheiden sich leicht von den herkömmlich Knoten, da sie der Logik und der Skriptsprache der Datenbank folgen:

RESTful Web Services in KNMIE

GET Request baut eine Verbindung zur No SQL Datenbank auf:

- Den Link setzt man unter URL
- Username und Passwort können im Register "Authentication" hinterlegt werden

Key-Value Paare extrahieren

JSON Path

Extrahiert die Key-Value Paare aus der geladenen Datenbank

Querys für die Key-Value Paare (Java)

Die Querys können durch Anklicken zusammengestellt werden:

- Add JSON Path: extrahiert eine Kategorie mit allen Inhalten
- Add single query: extrahiert ein einzelnes Key-Value Paar
- Add colection query: extrahiert alle vorhanden Kombinationen zu einem Schlüssel (Key)

Auswahlbereich der Key-Value Paare. Beispiel. Author: "Rick Riordan"

Listen in Zeilen umwandeln

Ungroup

Mit Ungroup werden die gruppierten Kategorien (in Listen zusammengefasst) auf Zeilen verteilt.

Listen sind mit [] zusammengefasst und ihre Elemente durch Trennzeichen (meist Semikolon) getrennt.

Auswahl der gruppierten Spalten

Datentypen umwandeln: String to Date&Time

String to Date&Time

Auswahl der Spalten mit dem Datum im String-Format

Beschreibung des Datumformates

Achtung: Hier muss jedes Zeichen erfasst werden. Fehlende oder falsche Elemente in den Formeln funktionieren nicht.

Zur Orientierung steht unter der Formel die erste Zeile der Spalte als Beispiel.

Knoten Partitioning

Partitioning

Konfiguration der ersten Partition, die zweite enthält den Rest

Auswahl der Größe der ersten (oberen) Partition

Modus der Zeilenauswahl

Behält bei Stratified Sampling das Verhältnis der Attribute innerhalb einer Spalte in beiden Partitionen bei.

Erstellen von Modellen: Learner

Learner erstellen aus den eingegebenen Daten ein Modell zur Vorhersage.

Das Modell wird über den quadratischen Datenausgang an den Knoten "Predictor" übergeben.

Naive Bayes

Naive Bayes Learner

Spalte, die vorhergesagt werden soll

Start- und Grenzwerte für Wahrscheinlichkeit und Abweichung

Grenze von einzigartigen Wert pro Spalte. Wird dieser Wert überschritten, wird die Spalte für die Erstellung des Modells ignoriert.

Decision Tree

Decision Tree Learner

Spalte, die vorhergesagt werden soll

Qualitätsmaß mit der die Verteilung der Verzeigungen bestimmt wird

Mindestmenge an Datensätzen für Verzweigungen

Festlegung der ersten Verzweigung auf ein definiertes Merkmal

Random Forest

Spalte, die vorhergesagt werden soll

Auswahl der Merkmale für die Erstellung des Modells

Qualitätsmaß mit der die Verteilung der Verzeigungen bestimmt wird

Begrenzung der Anzahl der Verzweigungen

Mindestmenge an Datensätzen für Verzweigungen

Anzahl der erstellten Einzelmodelle (Bäume)

K-Nearest Neighbor

Linear Regression

Spalte, die vorhergesagt werden soll

Auswahl der Merkmale für die Erstellung des Modells

Vorhersagen Predictor: Beispiel Random Forest

Vorhersage bewerten: Scorer

Scorer

Spalte(Klasse) mit gelernten Werten

Spalte(Klasse) mit vorhergesagten Werten

Verteilung der Vorhersagen in Confusion Matrix

Qualitätswerte der Vorsage z.B.: Genauigkeit und Fehler

K-Means

k-Means

Anzahl der Cluster

Auswahl des ersten Mittelpunktes

Anzahl der Iterationen zur Optimierung des Modells

Auswahl der Merkmale für die Erstellung des Modells

DBSCAN

Wert für Epsilon

Mindestzahl an Punkten innerhalb von Epsilon für einen Kernpunkt

Numeric Distances

Numeric Distances

Auswahl der Merkmale für die Berechnung der Entfernungen

Methode der Berechnung

PCA

PCA

Anzahl von Spalten, auf die die Merkmale reduziert werden sollen

Mindestwert des Informationsgehaltes, der erhalten bleiben soll

Auswahl der Merkmale für die Dimensionsreduktion

Knoten Normalizer

Normalizer

Neuronale Netze: Beispiel MLPerceptron

RProp MLP Learner

Parameter Optimization Start

Parameter Optimization Loop Start

Parameter mit Start- und Stoppwert und Intervallgröße

Wichtig: Die Parameter sind Variablen, die auch an den Learner übergeben werden müssen!

Optimierungsmethode:

- Zufall
- Raster (Brute Force)
- Algorithmisch (Hillclimbing, Bayes)

Parameter Optimization Loop End

Parameter Optimization Loop End

Knoten X-Partitioner

X-Partitioner

Anzahl der Validierungsblöcke (k)

Knoten X-Aggregator

X-Aggregator

Spalte(Klasse) mit gelernten Werten

Spalte(Klasse) mit vorhergesagten Werten