Sub Code: BAST-105 ROLL NO......

EVEN SEMESTER EXAMINATION, 2023 – 24 First yr B.Tech. MATHEMATICS-II

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equ al marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.	Answer any four parts of the following.	5x4=20
Q 2.	a) Solve $\frac{dy}{dx} = (x+y)^2$.	
	b) Solve $p - \frac{1}{n} - \frac{x}{y} + \frac{y}{x} = 0$.	
	c) Solve $y \log y dx + (x - \log y) dy = 0$.	
	d) Solve $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x.$	
	e) Solve $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = Cos2x$	
	f) Solve $\frac{dx^3}{dt} = 7x - y, \frac{dy}{dt} = 2x + 5y$	
	Answer any four parts of the following. Answer are four parts of the following.	5x4=20
	a) Prove that the function $u = e^{-x}(x \sin y - y \cos y)$ is harmonic.	JX4-20
	b) Solve by the method of variation of parameter $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$.	
	c) Prove that $\int_{-1}^{1} P_m(x) P_n(x) dx = 0$ for $m \neq n$	
	d) Prove that $x J'_{n}(x) = n J_{n}(x) - x J_{n+1}(x)$	
	e) Express $f(x) = x^3 + 2x^2 - x - 3$ in terms of Legendre's polynomials.	
	f) Eliminate the arbitrary constant f from the relation $z = y^2 + 2f(\frac{1}{x} + \log y)$.	
Q 3.	Answer any two parts of the following.	10x2=20
	a) Solve $(D^3 - 3D^2D' - 4DD'^2 + 12D'^3)z = \sin(y + 2x)$	
	b) Find the Fourier series expansion for the function $f(x) = x. Sinx$, $-\pi < x < \pi$.	
	Hence deduce that $\frac{\pi^{-2}}{4} = \frac{1}{13} - \frac{1}{35} + \frac{1}{57} - \frac{1}{79} + \cdots \dots \dots \dots \dots$	
	c) By using the changing of independent variable method, Solve	
	$x \frac{d^2y}{dx^2} + (4x^2 - 1) \frac{dy}{dx} + 4x^3 y = 2x^3$	
Q 4.	Answer any two parts of the following.	10x2 = 20
	a) Test the series $x + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \frac{4^4x^4}{4!} + \cdots \dots \infty$	
	b) Examine the convergence of the series $\sum (\sqrt[3]{n^3 + 1} - n)$	
	c) If $f(x) = \begin{cases} \pi x & 0 < x < 1 \\ \pi(2 - x) & 1 < x < 2 \end{cases}$,	
	using half range cosine, show that $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots = \frac{\pi^4}{96}$	
Q 5.	Answer any two parts of the following.	10x2 = 20
	a) Solve $\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$	
	b) Apply Cauchy-Residue theorem to evaluate $\int_C \frac{3z^2+z+1}{(z^2-1)(z+3)} dz$ where $ z =2$.	
	c) Evaluate using Cauchy integral formula $\int_C \frac{z-1}{(z+1)^2(z-2)} dz$ where $ z-i =$	
	2.	
