HW22: 03/10/2014

Math 542-Modern Algebra II

Taylor Lee

March 10, 2014

Problem:

(Mon Mar 3) Prove for any prime p and positive integer n that p divides $\begin{pmatrix} p^n \\ k \end{pmatrix}$ for any k with $0 < k < p^n$.

Solution:

First note that $p^n!$ can be divided by p^c where

$$c = \frac{n(n+1)}{2}$$

.

Also note that $p^n!$ is the smallest number with this property. Suppose p does not divide p^n choose k, then this implies that $p^n|k!(p^n-k)!$. However, since $\binom{p^n}{k}$ must be an integer, this implies that $k!(p^n-k)!$ must equal $p^n!$. This is not true, however, since k! is the product of the first k integers, and

$$\frac{p^n!}{(p^n-k)!}$$

is the product of the integers from $p^n - k + 1$ to p^n , which makes it clear that

$$k! \neq \frac{p^n!}{(p^n - k)!}$$

And hence we have a contradiction, and p must divide $\begin{pmatrix} p^n \\ k \end{pmatrix}$.