- Lettau and Ludvigson (2001, JPE), "이론적 모형 vs. 실증적 모형"
 - Lettau, Martin, and Sydney Ludvigson, 2001, "Resurrecting the (C)CAPM: A
 Cross-Sectional Test When Risk Premia Are Time-Varying," Journal of
 Political Economy, vol. 109, no. 6, pp. 1238-1287

Abstract

- about CAPM+CCAPM=(C)CAPM
- cross-section of average stock returns
- conditioning variable: log consumption-wealth ratio
- a. conditional specification \ge unconditional specification (in explanation, existing)
- b. Fama-French model≈conditional specification (in explanation)
- possible to explain "value premium"

1 Introduction

- CAPM⇒failed in empirical
 - [∃]cross-sectional explanation?
 - ✓ Fama and French (1992, JF), Fama and French (1993, JFE): [₹] explanation
 - ✓ failure of CAPM: figure 1a (CAPM) ⇔ figure 1b (Fama-French)
 - FF (1993), Fama and French (1995, JF)
 - \checkmark Fama-French model: SMB, HML \rightarrow proxies for unobeserved common risk
 - \checkmark interpretation \rightarrow controversial
- Why did CAPM fail?
 - $^{\sharp}$ effects of time-varying investment opportunities in the model?
 - ✓ intertemporal CAPM → Breeden (1979, JFE)
 - ✓ unfortunately, dissapointing empirically
 - research \rightarrow portfolio-based models substituted CAPM
 - ✓ [∄]additional performance than CAPM
- strong points of consumption-based framework?
 - ✓ Merton (1973, Econometrica): [#]hedging component of asset demand
 - ✓ Roll_(1977): [∄]adequate proxy for market returns?
- paper's main point
 - conditional CCAPM
 - ✓ stochastic discount factor=conditional (scaled) factor model

• Figure 1a: the relationship measured by CAPM

- Figure 1b: measured by Fama-French
- Figure 1c: measured by Consumption CAPM
- Figure 1d: measured by Scaled CCAPM (main topic of the paper)

2 Linear Factor Models with Time-varying Coefficients

• $^{\exists}$ arbitrage $\Rightarrow {}^{\exists}$ SDF M_{t+1} s.t.

$$1 = E_t[M_{t+1}(1\!+\!R_{i,t+1})]$$

$$M_{t+1} = a_t + b_t R_{e,t+1}$$
 conditional linear factor model

$$M_{t+1} = a + bR_{e,t+1}$$
 unconditional model

- conditional moment $E_t(\cdot) \rightarrow \text{time-varying} \Rightarrow \text{parameter } b_t \text{ will not be constant.}$
- scaling for a_t and b_t ?

$$\checkmark a_t = \gamma_0 + \gamma_1 z_t$$

$$\checkmark b_t = \eta_0 + \eta_1 z_t$$

$$\checkmark \ \Rightarrow \ M_{t+1} = (\gamma_0 + \gamma_1 z_t) + (\eta_0 + \eta_1 z_t) R_{e,t+1} = \gamma_0 + \gamma_1 z_t + \eta_0 R_{e,t+1} + \eta_1 (z_t R_{e,t+1})$$

$$1 = E_t\{[\gamma_0 + \gamma_1 z_t + \eta_0 R_{e,t+1} + \eta_1 (z_t R_{e,t+1})](1 + R_{i,t+1})\}$$

- A. Application of Conditional Factor Pricing to the (C)CAPM
 - 1. Consumption CAPM: $M_{t+1} \approx a_t + b_t \Delta c_{t+1}$
 - 2. CAPM and Human Capital CAPM: $M_{t+1} = a_t + b_{vwt}R_{vw,t+1} + b_{\Delta yt}\Delta y_{t+1}$
- B. The Conditioning Variable

$$c_t - w_t \approx E_t \sum_{i=1}^{\infty} \rho_w^i (r_{m,t+i} - \Delta c_{t+i})$$
 log consumption-wealth ratio $\Rightarrow cay_t := c_t - \omega a_t - (1 - \omega)y_t$ observable proxy

$$\Rightarrow \ cay_t \quad := \quad c_t \!\!-\! \omega a_t \!\!-\! (1 \!-\! \omega) y_t$$

observable proxy

$$:= c_t - \omega a_t - (1 - \omega) y_t$$

$$\approx E_t \sum_{i=1}^{\infty} \rho_w^i (r_{m,t+i} - \Delta c_{t+i}) - (1 - \omega) \nu_t$$

- ✓ justification of cay: Lettau and Ludvigson (2001, JF)
- 3 Econometric Specification and Tests
- from 1963:3 to 1998:3 \rightarrow 141 observations & 25 portfolios

4 Empirical Results

TABLE 1
FAMA-MACBETH REGRESSIONS USING 25 FAMA-FRENCH PORTFOLIOS: λ_j COEFFICIENT ESTIMATES ON BETAS IN CROSS-SECTIONAL REGRESSION

				Factor	'S _{f+1}		$\widehat{cay}_{\iota} \cdot \mathbf{F}$	actors,+1	R^2
Row	Constant	\widehat{cay}_{ι}	$R_{\iota \omega}$	Δу	SMB	HML	$R_{\nu\nu}$	Δy	(\bar{R}^2)
1	4.18		32						.01
	(4.47)		(27)						03
	(4.45)		(27)						
2	3.21		-1.41	1.26					.58
	(3.37)		(-1.20)	(3.42)					.54
	(1.87)		(67)	(1.90)					
3	1.87		1.33		.47	1.46			.80
	(1.31)		(.83)		(.94)	(3.24)			.77
	(1.21)		(.76)		(.86)	(2.98)			
4	3.70	52	06				1.14		.31
	(3.88)	(22)	(05)				(3.59)		.21
	(2.61)	(15)	(03)				(2.41)		
5	3.70		08				1.16		.31
	(3.86)		(07)				(3.58)		.25
	(2.60)		(44)				(2.41)		
6	5.18	44	-1.99	.56			.34	17	.77
	(5.59)	(-1.60)	(-1.73)	(2.12)			(1.67)	(-2.40)	.71
	(3.32)	(95)	(-1.02)	(1.26)			(.99)	(-1.42)	
7	3.81	, ,	-2.22	.59			.63	08	.75
	(4.02)		(-1.88)	(2.20)			(2.79)	(-2.52)	.70
	(2.80)		(-1.31)	(1.53)			(1.94)	(-1.75)	

- Row 1: CAPM
- Row 2: Human Capital CAPM (hereafter HC-CAPM)
- Row 3: Fama-French Model (hearafter FFM)
- Row 4, Row 5: Scaled CAPM (Hereafter S-CAPM)
- Row 6, Row 7: Scaled HC-CAPM (Hereafter S-HC-CAPM)

$$\begin{split} E(R_{i,t+1}) &= 5.18 - 0.44 \beta_{cay,i,t} - 1.99 \beta_{vw,i,t} + 0.34 \beta_{cay,i,t} \beta_{vw,i,t} + 0.56 \beta_{\Delta y,i,t} - 0.17 \beta_{cay,i,t} \beta_{\Delta y,i,t} \\ &\approx (5.18 - 0.44 \beta_{cay,i,t}) + (-1.99 + 0.34 \beta_{cay,i,t}) \beta_{vw,i,t} + (0.56 - 0.17 \beta_{cay,i,t}) \beta_{\Delta y,i,t} \\ &\approx 3.81 + (-2.22 + 0.63 \beta_{cay,i,t}) \beta_{vw,i,t} + (0.59 - 0.08 \beta_{cay,i,t}) \beta_{\Delta y,i,t} \end{split}$$

- ✓ counter-intuitive results for Row 1: i.e. high beta, low expected returns, but not significant
- ✓ Row 3: powerful FFM, intuitive and value premium capture
- ✓ Row 6, Row 7: S-HC-CAPM, *cay* factors can make additional explanation for expected stock returns, almost same as FFM's R-squared

TABLE 2
FAMA-MACBETH REGRESSIONS USING 25 FAMA-FRENCH PORTFOLIOS: TESTS FOR JOINT SIGNIFICANCE

	ALL			f_{t+1} AND $\widehat{cay}_t \cdot f_{t+1}$ FOR EACH FACTOR f		
Row		$Factors_{t+1}$	$\widehat{cay}_t \cdot \text{Factors}_{t+1}$	R_{vw}	Δy	
1	.798					
	.798					
2	.000					
	.022					
3	.000					
	.002					
4	.000	.963	.000			
	.000	.975	.016			
5	.000	.948	.000			
	.003	.965	.016			
6	.000	.001	.000	.008	.000	
	.000	.092	.021	.079	.040	
7	.000	.001	.000	.001	.000	
	.001	.032	.002	.012	.004	

• For specification

$$\begin{array}{lll} E(R_{i,t+1}) & = & E(R_{0,t}) + \beta_{vwi}\lambda_{vw} & static \ CAPM \\ & = & E(R_{0,t}) + \beta_{vwi}\lambda_{vw} + \beta_{SMBi}\lambda_{SMB} + \beta_{HMLi}\lambda_{HML} & FFM \\ & = & E(R_{0,t}) + \beta_{zi}\lambda_z + \beta_{vwi}\lambda_{vw} + \beta_{vwzi}\lambda_{vwz} & S\text{-CAPM} \\ & = & E(R_{0,t}) + \beta_{zi}\lambda_z + \beta_{vwi}\lambda_{vw} + \beta_{vwzi}\lambda_{vwz} + \beta_{\Delta y}\lambda_{\Delta y} + \beta_{vyzi}\lambda_{\Delta yz} & S\text{-HC-CAPM} \\ & = & E(R_{0,t}) + \beta_{zi}\lambda_z + \beta_{\Delta ci}\lambda_{\Delta c} + \beta_{\Delta czi}\lambda_{\Delta cz} & S\text{-CAPM} \end{array}$$

TABLE 3
Consumption CAPM: Fama-MacBeth Regressions using 25 Fama-French Portfolios

A. λ, Coefficient Estimates of Betas	S IN CROSS-SECTIONAL REGRESSIONS
--------------------------------------	----------------------------------

Row	Constant	cay,	Δc_{i+1}	$\widehat{cay}_{\iota} \cdot \Delta c_{\iota+1}$	R^2 (\bar{R}^2)
1	3.24		.22		.16
	(4.93)		(1.27)		.13
	(4.46)		(1.15)		
2	4.28	13	.02	.06	.70
	(6.10)	(43)	(.20)	(3.12)	.66
	(4.24)	(30)	(.14)	(2.17)	
3	4.10	` ′	02	.07	.69
	(6.82)		(14)	(3.20)	.66
	(5.14)		(10)	(2.41)	

B. Tests for Joint Significance

Row	All	Δc_{t+1}	$\widehat{cay}_{\iota} \cdot \Delta c_{\iota+1}$	Δc_{i+1} and $\widehat{cay}_i \cdot \Delta c_{i+1}$
1	.205			
	.249			
2	.000	.840	.002	.000
	.001	.888	.030	.009
3	.000	.893	.001	.000
	.001	.919	.016	.001

- Row 1, Row 2 in Panel A: CCAPM and S-CCAPM
- $\bullet \;\;$ Row 1, Row 2 in Panel B: CCAPM and S-CCAPM

TABLE 4
PRICING ERRORS

=					НС-САРМ			
Portfolio	CAPM	CAPM Scaled	CCAPM	CCAPM Scaled	Scaled	Fama-French		
		A. Individual Portfolios						
S1B1	-1.0378	-1.1857	-1.7303	-1.0083	6451	8611		
S1B2	.2601	.0859	3686	1109	0435	.0055		
S1B3	.3494	.1532	0105	0809	1852	0276		
S1B4	.9048	1.0021	.4774	.3803	.5386	.3722		
S1B5	1.3108	.7976	.8278	.3704	.3504	.1555		
S2B1	7860	7558	-1.0749	0362	1149	1416		
S2B2	0189	.3796	0847	2823	2661	.0478		
S2B3	.6786	.8639	.5696	.5310	.7516	.5134		
S2B4	.7561	.6316	.7800	.0964	.0753	.3244		
S2B5	1.0436	.4944	.7576	.3070	0309	.0757		
S3B1	8062	2985	7324	.3645	0300	0310		
S3B2	0659	.1049	.1019	0868	.1712	.2053		
S3B3	.0486	.2463	.1996	4457	0357	0291		
S3B4	.4098	.0956	.6398	.2218	1837	.1066		
S3B5	.9036	1.1403	.8631	.4109	.7183	.0225		
S4B1	6513	1532	3754	.4252	.1218	.4184		
S4B2	8487	2545	6870	3924	4210	5041		
S4B3	1903	2714	.1383	0626	2180	1749		
S4B4	.2339	3943	.4651	.0130	3444	0347		
S4B5	.7553	2413	.6952	.3610	.0678	0073		
S5B1	7959	9014	4572	.4159	.6455	.5342		
S5B2	8186	7850	2918	7343	2759	.0035		
S5B3	9287	3369	6240	4895	1888	1980		
S5B4	4252	2523	.0760	.1226	2116	2715		
S5B5	2811	1650	1547	2901	2457	5043		
		B. Pric	ing Errors	of Aggregated P	ortfolios			
S1	.872	.784	.899	.513	.416	.421		
S2	.740	.649	.731	.305	.362	.257		
S3	.573	.542	.590	.334	.341	.094		
S4	.601	.274	.516	.306	.269	.333		
S5	.697	.572	.378	.458	.356	.336		
B1	.825	.762	1.004	.549	.415	.484		
B 2	.541	.411	.377	.398	.267	.253		
В3	.545	.451	.393	.382	.370	.239		
B4	.599	.571	.542	.209	.314	.276		
B5	.924	.673	.709	.351	.375	.211		
Average	.705	.589	.648	.393	.352	.308		
χ^2	63.67*	27.24	53.03*	33.88	27.54	45.33*		

[•] Aggregate level of pricing error is significantly eliminated in S-HC-CAPM

[•] compare with FFM

- direct line: growth firm's beta comparison
- dot line: value firm's beta comparison
- $\exists 2 \text{ states} = \{\text{good, bad}\}\$
 - ✓ Figure 2a. small-growth vs. small-value
 - $\checkmark\,$ Figure 2b. semismall-growth vs. semismall-value
 - ✓ Figure 2c. semilarge-growth vs. semilarge-value
 - $\checkmark\,$ Figure 2d. large-growth vs. large-value

- Meaning of figure 2 is straightforward that all stocks have their own consumption beta that frequently changes over time by time: good-state means that investors' expectation is positive so consumption is grown up and vice versa.
- Value stock can give the investors more profitability in serious condition: that is investors' overlook for the overall economy is bad.
- Such a relationship can be justified in "Conditional linear factor model" framework, because this means that the "factor loading" of the portfolio can changes over time in intertemporal manner.

TABLE 6 Fama-MacBeth Regressions including Characteristics A. λ_i Estimates on Betas in Cross-Sectional Regressions Including Size

]	Factors,+1			$\widehat{cay}_{t} \cdot \operatorname{Factors}_{t+1}$			R^2
Row	Constant	R_{vw}	Δy	Δc	R_{vw}	Δy	Δc	Size	(\tilde{R}^2)
1	14.18	-3.60						57	.70
	(4.77)	(-2.78)						(-3.46)	.67
	(4.35)	(-2.54)						(-3.15)	
2	13.10	-3.05			.82			49	.75
	(4.71)	(-2.49)			(3.14)			(-3.24)	.73
	(3.79)	(-2.01)			(2.52)			(-2.61)	
3	12.03	-3.00	.51					41	.74
	(4.56)	(-2.52)	(2.00)					(-2.81)	.70
	(3.73)	(-2.06)	(1.63)					(-2.30)	
4	10.33	-2.68	.33		.59	02		33	.80
	(3.78)	(-2.33)	(1.36)		(2.63)	(59)		(-1.93)	.76
	(2.97)	(-1.84)	(1.07)		(2.07)	(46)		(-1.52)	
5	5.59			.04				18	.22
	(2.04)			(.35)				(-1.11)	.15
	(2.03)			(.35)				(-1.10)	
6	6.09			16			.08	15	.72
	(2.21)			(-1.45)			(3.23)	(87)	.68
	(1.66)			(-1.09)			(2.42)	(65)	

- # 1: CAPM
- # 2: S-CAPM
- # 3: HC-CAPM
- # 4: S-HC-CAPM
- # 5: CCAPM
- # 6: S-CCAPM
 - \checkmark Higher explanations than other models are consistently observed in both of scaled model S-HC-CAPM and S-CCAPM

5 Alternative Estimation Methodologies

6 Conclusion

- Instead of assuming that the parameters of this function are fixed over time, this paper models the parameters as time-varying by scaling them with a proxy for the log consumption-wealth ratio.
- These scaled multifactor versions of the CCAM can explain a substantial fraction of the cross-sectional variation in average returns of size & B/M sorted pfo.
- (scaled) Consumption factor is important.
- High B/M pfo. \rightarrow high correlated with scaled consumptions factors
- Eliminates residual size and B/M effects that remain in the CAPM
- The data suggest that the Fama-French factors are mimicking portfolios for risk factors associated with time-variation in risk remia. Once the (C)CAPM is modified to account for such time variation, it performs about as well as the Fama-French model in explaining the cross-sectional variation in average returns.
- The success of the (C)CAM model tested here rest with its relative accuracy rather than its ability to furnish a flawless description of reality.
 - ✓ key component: conditioning information
 - ✓ The conditional linear factor models ≠ unconditional models: i.e. investors' discount factor will not merely depend unconditionally on consumption growth or the market return, but instead will be a function of these factors conditional on information about future returns.
- justification for requiring more than one factor to explain
 - ✓ we can mitigate a common criticism of multifactor models that multiple factors are chosen without regard to economic theory.