

物理 試卷二 試題答題簿

本試卷必須用中文作答 一小時完卷(上午十一時四十五分至下午十二時四十五分)

考生須知

- (一) 宣布開考後,考生須首先在第 1 頁之適當位置填寫考生編號;並在第 1、3、5 及 7 頁之適當位置貼上電腦條碼。
- (二) 本試卷共有甲、乙、丙和丁**四部**。每部有八條多項選擇題和一條佔10分的結構式題目。考生須選答任何**兩部**中的**全部**試題。
- (三) 結構式題目的答案須寫在所提供的**答題簿**中。 多項選擇題應以HB鉛筆把與答案相應的圓圈塗 滿。每題只可填畫**一個**答案,若填畫多個答案, 則該題**不給分**。
- (四) 如有需要,可要求派發方格紙及補充答題紙。每一紙張均須填寫考生編號、填畫試題編號方格,貼上電腦條碼,並用繩縛於**答題簿內**。
- (五) 考試完畢,試題答題簿及答題簿須分別繳交。
- (六) 本試卷的附圖未必依比例繪成。
- (七) 試題答題簿最後兩頁附有本科常用的數據、公式 和關係式以供參考。
- (八) 試場主任宣布停筆後,考生不會獲得額外時間貼上 電腦條碼及填畫試題編號方格。

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2020 請在此貼上電腦條碼

考生編號					

1

甲部:天文學和航天科學

Q.1:多項選擇題

- 1.1 下列哪項是依大至小的次序排列?
 - 星團 > 星系 > 行星系統 A.
 - B. 星團 > 行星系統 > 星系
 - C. 星系 > 行星系統 > 星團
 - 星系 > 星團 > 行星系統 D.
- 1.2 兩衛星 X 和 Y 依順時針方向繞地球旋轉,如圖所示。X 的圓形軌道的直徑相等於 Y 的橢 圓軌道長軸的長度。兩軌道於 P和 O相交。

在圖示一刻,兩衛星跟地球在同一直線上。以下哪些推斷正確?

- X和 Y經過 P時有相同的加速度。 (1)
- (2)在圖示一刻,X的速率大於 Y。
- (3) 無論是在P還是在Q,兩衛星都不會相遇。
- A. 只有(1)和(2)
- B. 只有(1)和(3)
- C. 只有(2)和(3)
- D. (1)、(2)和(3)
- 1.3 火星的質量為地球的 0.107 倍,火星的半徑為地球的 0.532 倍。火星的逃逸速度以地球的 逃逸速度 vE表達為多少?
 - A. $0.201 \nu_{\rm E}$
 - B. $0.378 \nu_{E}$
 - C. $0.449 v_{\rm E}$
 - D $0.615 v_{\rm F}$
- 恆星P的光度是恆星Q的兩倍,而P的亮度為Q的八倍。就恆星P和Q分別跟地球的距離 可推斷出什麼?
 - P跟地球的距離是 Q的 2 倍。
 - Q跟地球的距離是 P的 2 倍。 B.
 - P跟地球的距離是 O的 4 倍。 C.
 - Q跟地球的距離是 P的 4倍。 D.
- 1.5 從側向觀察一雙星系統時,其中一恆星的鈣 K 譜線的波長跟在實驗室所錄得者 (λ=393.4 nm) 相差 ±0.3 nm。該恆星的週期為 69 小時。求它的軌道半徑。
 - $2.5 \times 10^{6} \,\mathrm{m}$ A.
 - $1.5 \times 10^{8} \, \text{m}$ B
 - C. $9.0 \times 10^{9} \, \text{m}$
 - $5.6 \times 10^{10} \,\mathrm{m}$

- C
- - \bigcirc \bigcirc

C

D

D

D

 \bigcirc

C

- - A
- \bigcirc

D

C

1.6 下圖顯示在約7個月的時段內,火星在夜空背景從右下到左上的運動。

沿該路徑火星於哪一點最接近地球?

- A. 在①和②之間某處
- B. 在②和③之間某處
- C. 在③和④之間某處
- D. 在轉向點②或在轉向點③

- A B C D
- 1.7 一距離太陽 4.2 光年的恆星,於相隔 6 個月從地球觀察。估算觀察所得這恆星位置的最大角差。
 - A. 0.8 弧秒
 - B. 1.3 弧秒
 - C. 1.6 弧秒
 - D. 2.6 弧秒

- A B C D
- 1.8 恆星 P 的表面溫度較恆星 Q 的高,然而恆星 Q 的半徑較大。以下哪一線圖顯示 P 和 Q 表面所發射電磁輻射的光譜強度 I (單位 W m^{-2} 每 nm) 跟波長 λ (單位 nm) 的分布?設兩恆星皆為黑體輻射。

Q.1: 結構式題目

在非常久遠之前,距離地球約 50 kpc 的某恆星 X 發生爆炸,因而形成了超新星 1987A (SN 1987A)。該超新星的光最先在 1987 年到達地球。

(b) 於 SN 1987A 亮度最大時,其視星等為 +2.9。SN 1987A 於亮度最大時的「絕對星等」是少於、 大於還是等於 +2.9?解釋你的答案。 (2分)

恆星 X未爆炸之前,其光度約為太陽的 40000 倍,而它的表面溫度是太陽的 3.1 倍。

(ii) 恆星 X位於赫羅圖上 $A \cdot B \cdot C \cdot D$ 哪一區域?解釋這恆星的類型是否屬於「紅巨星」。 (2分)

(d) SN 1987A 的一個特點是有一圓環狀的氣體圍繞着該超新星。這些氣體是早於恆星 X 爆炸前一段時間從恆星噴出,而環上每點均以恆定速率遠離超新星向外擴張,如圖 1.1 所示。

在包含着該環的平面上,假設有一遙遠的觀察者觀測來自環狀氣體的某譜線,發現該譜線所覆蓋波長在界限 L_1 和 L_2 之間,如圖 1.1 所示。在實驗室觀測該譜線時波長為 L_0 。指出分別源於環上 Q點和 R點的波長。解釋你的答案。 (3分)

乙部:原子世界

Q.2:多項選擇題

- 2.1 下列哪項有關盧瑟福散射實驗的敍述正確?
 - (1) 使用薄金箔會令每一α粒子最可能只被一個金原子核散射。
 - (2) 如果以 β 粒子取代 α 粒子射向金箔,箔內的金原子核和電子均可令 β 粒子偏折。
 - (3) 使用金箔是由於金有自由電子。
 - A. 只有(1)
 - B. 只有(3)
 - C. 只有(1)和(2)
 - D. 只有(2)和(3)

2.2

在以上所示實驗中,於彩色背景中可觀察到一些暗線。下列哪項為正確解釋?

A. 光源沒有發射出跟暗線對應的光子。

- A B
- C D

C

D

- B. 蒸氣沒有發射出跟暗線對應的光子。

- C. 來自光源並跟暗線對應的光子會被蒸氣吸收。
- D. 來自光源並跟暗線對應的光子被蒸氣散射回 光源。
- 2.3 下圖所示氫光譜的發射譜線源於電子從受激能級躍遷至基態 (n = 1)。已知基態的能級為 $E_1 = -13.6 \text{ eV}$ 。

下列哪項敍述正確?

A. 譜線 X 的頻率最高。

- A B
- C D

- B. 在:
- 在這光譜線系中,譜線最短的波長約為 90 nm。
- 0
- 0 0

- C. 這些譜線是在紅外區域。
- D. 有些譜線也會在其他氫光譜線系中出現。

2.4	以下	有關玻爾原子模型的敍述,哪些正確?				
	(1) (2) (3)	它可解釋為什麼 α粒子能被薄金箔反彈。 它可提供單電離氦原子 (He ⁺)的原子光譜。 該模型的一項假設為氫原子的電子的角動量是量子化	的。			
	A. B. C. D.	只有(1)和(2) 只有(1)和(3) 只有(2)和(3) (1)、(2)和(3)	A O	В	С	D O
2.5		子有三個能級: X 、 Y 和 Z 。當該原子從 X 躍遷至 Y ,係子吸收了波長為 λ_2 的光子,便從 Y 躍遷至 Z ,而 $\lambda_1 > \lambda_2$			A 33 19 1	
	200	$Z X Y \circ$ $Z Y X \circ$ $X Z Y \circ$ $X Y Z \circ$	A O	В	С	D
2.6	到的日	子束以電勢差 V 加速並射向一晶體薄層,所得衍射圖標圖樣相似。應以多少電勢差將電子束加速,方得到跟以 業相似?				
	A.	<u>V</u>	A	В	С	D
	В.	$\frac{4}{V}$	O	O	O	0
	C.	2V				
	D.	4V				
2.7	下列。	那項有關掃描隧穿顯微鏡 (STM)的敍述正確?				
	(1) (2) (3)	STM 所產生的三維影像能揭示樣品的內部結構。 對於 STM 成像,樣品的表面必須是導電的。 STM 的解像能力受瑞利判據所限。				
	A. B. C. D.	只有(1) 只有(2) 只有(3) (1)、(2)和(3)	A O	В	С	D
2.8	就材料	科於 大塊形式 和 納米大小 的比較,下列哪些敍述正確?				
	(1) (2) (3)	大部分材料於上述狀態展示不同的顏色。 大部分材料於納米大小時有較低熔點。 材料於納米大小時作為催化劑效率一般較高。				
	B. C.	只有(1)和(2) 只有(1)和(3) 只有(2)和(3) (1)、(2)和(3)	A O	В	С	D O

Q.2:結構式題目

為演示光電效應,圖 2.1 所示光電池的電極 A 和 C 接駁着電勢差 V,其讀數以高電阻伏特計讀取。該電勢差可從 0 V 調校至 2.5 V。

圖 2.1

當波長為 300 nm 的單色光照射電極 C,內阻可略的微安計顯示有讀數。

- (a) (i) 指出該入射光屬於電磁波譜的哪一部分(紫外線、藍色、綠色、紅色還是紅外線)。 (1分)
 - (ii) 根據波動理論,光電發射應有一「時間延遲」才出現。然而實驗結果顯示光電發射 是即時的。指出這實驗結果的含義。 (1分)
- (b) 調校所施電勢差,直至在 V= 1.7 V時微安計讀數剛下降至零。
 - (i) 若所用入射光的波長相同但強度較高,指出並解釋微安計讀數會否改變。 (2分)
 - (ii) 計算電極 C的功函數,以 eV表達。 (3分)
- (c) 現調校所施電勢差直至 V= 0.8 V 而微安計顯示 0.4 μA。
 - (i) 估算每秒鐘到達電極 A 的光電子數目。 (1分)
 - (ii) 指出到達 A 的光電子的最大動能,以 eV 表達。解釋為什麼到達 A 的光電子不是全部 皆擁有這數量的動能。 (2分)

丙部:能量及能源的使用

Q.3:多項選擇題

3.1 點光源 S 發射一定的光通量,一照度計如圖示放置在點光源正下方 $0.5 \, \mathrm{m}$ 處。

如果 S所發射的光通量加倍並將照度計降低至 S之下 1 m處, 照度計讀數的變化為何?

A.	減少 25%		A	В	C	D
B.	減少 50%		\bigcirc	\bigcirc	\bigcirc	\bigcirc
C.	保持不變			\circ		
D.	增加 50%					

3.2 太陽爐以面積為 9 m² 的反射板收集陽光,將一塊質量為 2 kg 的鐵加熱。太陽爐的效率為50%。估算將該塊鐵從 30℃加熱至 90℃需時多久。

已知: 鐵的比熱容 = 450 J kg^{-1} °C⁻¹ 地面上每單位面積接收到太陽輻射的功率 = 1000 W m^{-2}

A.	12 s		A	В	C	D
B.	24 s		\bigcirc	0	\bigcirc	\bigcirc
C.	48 s		O	\cup	\cup	\cup
D	96 s					

3.3 一容量為 40 kW h 的電動車電池組初始時完全放電。現以端電壓 220 V 和平均電流 32 A 將其充電,估算將該電池組完全充電需時多久。設充電期間有 20% 的能量散失。

A.	4.6 小時		A	В	C	D
B.	5.7 小時		\bigcirc	\circ	\bigcirc	\bigcirc
C.	6.8 小時		\circ	\circ	\circ	\circ
D.	7.1 小時					

3.4 一微波爐的「最終能源效益」低於 100% 的原因為何?

- (1) 電能從發電廠傳送至微波爐期間有部分能量散失了。
- (2) 微波爐未能將全部電能轉換為微波的能量。
- (3) 有些微波被爐身吸收了而沒有到達爐中食物。

A.	只有(1)和(2)	A	В	C	D
B.	只有(1)和(3)	\bigcirc	\bigcirc	\circ	\bigcirc
C.	只有 (2) 和 (3)	0	\circ	\circ	
D.	(1)、(2)和(3)				

3.5	夏天	時,熱通	通過一定	厚度的	牆壁流	入房屋	屋。以下!	哪些可:	減低牆雪	き毎單位	江面積的	烈熱流率	₹ ?
	(1) (2) (3)	增加牆	表面和 壁的厚 較大的	度									
	A. B. C. D.	只有(1) 只有(1) 只有(2) (1)、(2)	和(3) 和(3)						A	В	С	D	
3.6	從窗:	間以冷卻 流入房間 仍為 31 %	的熱流	率跟由位	傳導而	流入的	1之比為	1:4。女	1果冷卻	能力增	至 2P 7		
	A. B. C. D.	21 °C 22 °C 23 °C 25 °C							A O	В	c O	D	
3.7	下圖	為雪櫃的	簡化示	意圖。									
	製冷	劑從哪方	外面	膨脹閥	膨脹	(C) 機	E哪部件		雪櫃隔雪 (V) 中的2		哥?		
			冷劑流 張閥的方		45.50		主該部件 度較高	中					
	A.	2	$V \rightarrow V \rightarrow I$	7			X		Α	В	C	D	
	В.		$X \rightarrow V \rightarrow Y$				Y		\circ	\circ	\bigcirc	\bigcirc	
	C. D.		Y→V→X Y→V→X				X Y						
		那項是「 風能 天然氣					1						
	(3) A. B. C. D.	核能 只有(1) 只有(2) 只有(2) (1)、(2)	和(3)						A O	В	С	D O	

Q.3:結構式題目

世界上的核電廠大多採用壓水式反應堆。在反應堆內,能量從鈾-235 原子核 ($^{235}_{92}$ U) 的裂變產生。以下為一個典型的裂變反應:

$$^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{144}_{56}Ba + ^{90}_{36}Kr + 2^{1}_{0}n$$

(a) 根據圖 3.1 的結合能曲線,解釋為什麼鈾-235 原子核有進行裂變的傾向。 (2分)

圖 3.1

(b) 一鈾-235 原子核的結合能為 1783 MeV。

(ii) 求一鈾-235 原子核裂變所釋出的能量,以 MeV 為單位。 已知: $^{144}_{56}$ Ba 原子核的每個核子結合能 = 8.27 MeV 每核子 $^{90}_{36}$ Kr 原子核的每個核子結合能 = 8.59 MeV 每核子 (2 分)

- (c) (i) 倘一核電廠反應堆的燃料棒所含鈾-235 原子核全部進行了裂變,會釋出總能量 $1.30\times10^{30}\,\mathrm{MeV}$ 。已知核電廠的平均輸出功率為 500 MW,而將核能轉換成電能的效率為 40%。估算燃料棒可用多久,以年為單位。(取 1年= 3.15×10^7 秒) (2分)
 - (ii) 指出一原因為何早於 (c)(i) 所估算時間到達之前,燃料棒通常已被更換。 (1分)
- (d) 解釋以下各項在一裂變反應堆中的作用:
 - (i) 減速劑
 - (ii) 控制棒

(2分)

丁部:醫學物理學

O.4:多項選擇題

1.1	党阳	沒洁的粉雕部	篮云期季近度的咖啡	,下列哪項敍述正確?
4.1	虽眼明促酰有	选 经 时 初	即王醌有如處的物體	, 下列 哪 損 敕 処 止 惟 ?

- (1) 眼部晶體「凸」的程度減少。
- 眼部晶體的焦強增加。 (2)
- 圍繞晶體的睫狀肌收縮。 (3)
- A. 只有(1)
- 只有(3) B.
- C. 只有(1)和(2)
- 只有(2)和(3) D.
- 4.2 圖示聽覺正常人士就響度 (以方為單位) 跟聲強級 (以 dB 為單位) 的關係。下列哪項敍述 不能從這圖推斷得到?

- 耳朵對頻率於 2000 Hz 至 5000 Hz 的聲音最靈敏。 A.
- 40 dB的60 Hz 聲音是聽不到的。 B.
- 聽覺靈敏度會隨聲音的頻率上升而一直增加。 C.
- 頻率低於 1000 Hz 的聲音, 其聲強級 (以 dB 為單位) 的數值不會小於其響度 (以 D. 方為單位)。

A	В	C	D
\circ	\circ	\circ	\circ

В

C

D

- 4.3 一醫生懷疑一病者肝臟有腫瘤。以下哪個方法可用以偵測腫瘤並量度其大小?
 - 以內窺鏡檢查 (1)
 - (2) 進行超聲波 B-掃描
 - 進行電腦斷層造影 (CT) (3)
 - 只有(1) A.
 - B. 只有(3)
 - C. 只有(1)和(2)

- A В C D

只有(2)和(3) D.

4.4	下列有關	超聲	波換	能器内	的壓電	記晶體	的敍述	,	哪項正確	?
-----	------	----	----	-----	-----	-----	-----	---	------	---

- 壓電晶體將電訊號轉換成機械振動,反之亦然。 (1)
- (2)壓電晶體的厚度為任意的。
- 只有(1)正確。 A.

D

- 只有(2)正確。 B.
- (1)和(2)皆正確。 C.
- D. (1)和(2)皆不正確。
- 4.5 根據以下所提供的資料,求超聲波從空氣入射進皮膚時透射的能量所佔比例。

	聲阻抗 / kg m ⁻² s ⁻¹
空氣	430
軟組織	1.5×10 ⁶

- 5.7×10^{-4} A.
- 1.1×10^{-3} B.
- 2.8×10^{-3} C.
- 1.0×10^{-2} D.
- 4.6 以下哪一項是放射性核素成像 (RNI) 流程的正確排序?
 - 藉血液流動將藥物帶往目標器官。 (1)
 - 將藥物注射入病者體內。 (2)
 - 以放射性同位素標記藥物。 (3)
 - 以電腦重構影像。 (4)
 - 以伽瑪照相機掃描病者。 (5)
 - A. $(2) \rightarrow (3) \rightarrow (1) \rightarrow (5) \rightarrow (4)$
 - $(2) \rightarrow (3) \rightarrow (1) \rightarrow (4) \rightarrow (5)$ B.
 - $(3) \rightarrow (2) \rightarrow (1) \rightarrow (5) \rightarrow (4)$ C.

- C D
- $(3) \rightarrow (2) \rightarrow (1) \rightarrow (4) \rightarrow (5)$ D.
- 4.7 放射性核素成像可用以探究腎臟的疾病。以下哪一放射性同位素最為合適?

放射性 同位素	發射出的輻射	半衰期			-	-
A.	γ	20.3 分鐘	A	В	C	D
B.	γ	6.0 小時	\circ	\circ	\circ	\circ
C.	$\beta \cdot \gamma$	2.7 日				
D.	eta	3.3 小時				

4.8 圖示為人類手臂的截面的簡化圖。中央的空腔是充滿骨髓的骨髓腔。骨髓的線衰減係數 跟肌肉的大致相同。

以下哪圖最能代表手臂的 X 射線放射攝影成像?

A.

В.

C.

D.

A	В	C	D
\bigcirc	\bigcirc	\bigcirc	

Q.4: 結構式題目

(a) 簡要指出 X 射線如何產生。

(1分)

(b) 下表列出一 X 射線束在軟組織和骨的線衰減係數。

	線衰減係數	
	$\mu_{\rm s} = 0.51 \ {\rm cm}^{-1}$	
骨	$\mu_{\rm b} = 2.46~{\rm cm}^{-1}$	

(i) 指出令骨的線衰減係數較軟組織為高的一個因素。

(1分)

- (ii) 強度為 I_0 的 X 射線束通過 5.6 cm 厚的軟組織後衰減至強度 I_0 同一 X 射線束通過多厚的 骨會有相同程度的衰減 ? 寫出你的計算步驟。 (2分)
- (iii) 解釋為什麼乳房的 X 射線放射攝影成像一般採用較低能量的 X-射線 (~20 keV), 而檢查 含骨骼的結構則採用能量約 100 keV 的 X 射線。 (2 分)
- (c) 醫學檢查例如 X 射線放射攝影成像和電腦斷層造影 (CT) 所涉的輻射暴露,普遍為公眾所關注。以下是輻射劑量的相關資訊:

來源/項目	等效劑量	
一次 X 射線放射攝影成像	0.1 – 0.2 mSv	
一次 CT 掃描	1 – 10 mSv	
一個人平均每週的天然本底劑量	約 0.05 mSv	

(i) 指出人體暴露於致電離輻射的一項潛在危害。

(1分)

(ii) 解釋為什麼一次 CT 掃描的等效劑量較一次 X 射線放射攝影成像為高。

(2分)

(iii) 寫出構成天然本底劑量的一個來源。

(1分)

試卷完

本試卷所引資料的來源,將於香港考試及評核局稍後出版的《香港中學文憑考試試題專輯》內列明。

數據、公式和關係式

數據

 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ $N_{\text{A}} = 6.02 \times 10^{23} \text{ mol}^{-1}$ $g = 9.81 \text{ m s}^{-2}$ (接近地球) $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ $c = 3.00 \times 10^8 \text{ m s}^{-1}$ $q_{\text{e}} = 1.60 \times 10^{-19} \text{ C}$ $m_{\text{e}} = 9.11 \times 10^{-31} \text{ kg}$ $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$ $u = 1.661 \times 10^{-27} \text{ kg}$ $AU = 1.50 \times 10^{11} \text{ m}$ $ly = 9.46 \times 10^{15} \text{ m}$

(1 u 相當於 931 MeV)

直線運動

匀加速運動:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

數學

 σ = 5.67 × 10⁻⁸ W m⁻² K⁻⁴

 $h = 6.63 \times 10^{-34} \,\mathrm{J s}$

直線方程
$$y = mx + c$$

弧長 $= r \theta$

 $pc = 3.09 \times 10^{16} \text{ m} = 3.26 \text{ ly} = 206265 \text{ AU}$

柱體表面面積 = $2\pi rh + 2\pi r^2$

 $= \pi r^2 h$

球體表面面積 = $4\pi r^2$

球體體積 = $\frac{4}{3}\pi r^3$

細小角度

柱體體積

 $\sin \theta \approx \tan \theta \approx \theta$ (角度以 radians 表達)

天文學和航天科學		能量和能源的使用	
$U = -\frac{GMm}{r}$ 引力 引力 $P = \sigma A T^4$ 斯特	勢能	$E = \frac{\Phi}{A}$	照明度
			傳導中能量的傳遞率
$\left \frac{\Delta f}{f_0}\right \approx \frac{v}{c} \approx \left \frac{\Delta \lambda}{\lambda_0}\right $ 多普勒效應		$\frac{Q}{t} = \kappa \frac{A(T_{\rm H} - T_{\rm C})}{d}$ $U = \frac{\kappa}{d}$	熱傳送係數 U-值
		$P = \frac{1}{2} \rho A v^3$	風力渦輪機的最大功率
原子世界		醫學物理學	
$\frac{1}{2} m_{\rm e} v_{\rm max}^2 = hf - \phi$	愛恩斯坦光電方程	$\theta \approx \frac{1.22\lambda}{d}$	瑞利判據 (解像能力)
$E_{\rm n} = -\frac{1}{n^2} \left\{ \frac{m_{\rm e} q_{\rm e}^4}{8h^2 \varepsilon_0^2} \right\} = -\frac{13.6}{n^2} \text{eV}$	氫原子能級方程	焦強 = $\frac{1}{f}$	透鏡的焦強
$\lambda = \frac{h}{p} = \frac{h}{mv}$	德布羅意公式	$L = 10 \log \frac{I}{I_0}$	強度級 (dB)
T		$Z = \rho c$	聲阻抗
$\theta \approx \frac{1.22\lambda}{d}$	瑞利判據 (解像能力)	$\alpha = \frac{I_{\rm r}}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$	反射聲強係數
		$I = I_0 e^{-\mu x}$	經過介質傳送的強度

A1.
$$E = mc \Delta T$$

A1. $E = mc \Delta T$ 加熱和冷卻時的能量轉移

A2.
$$E = l \Delta m$$

A2. $E = l \Delta m$ 物態變化時的能量轉移

A3.
$$pV = nRT$$

A3. pV = nRT 理想氣體物態方程

A4.
$$pV = \frac{1}{3} Nmc^{-2}$$
 分子運動論方程

A5.
$$E_{\rm K} = \frac{3RT}{2N_{\rm A}}$$
 氣體分子動能

B1.
$$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$$
 \uparrow

B2. 力矩 =
$$F \times d$$
 力矩

B3.
$$E_P = mgh$$
 重力勢能

B4.
$$E_{\rm K} = \frac{1}{2} m v^2$$
 動能

B6.
$$a = \frac{v^2}{r} = \omega^2 r$$
 向心加速度

B7.
$$F = \frac{Gm_1m_2}{r^2}$$
 牛頓萬有引力定律

C1.
$$\Delta y = \frac{\lambda D}{a}$$
 雙縫干涉實驗中條紋的間距

C2. $d \sin \theta = n\lambda$ 衍射光柵方程

C3.
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
 單塊透鏡方程

D1.
$$F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$$

庫倫定律

D2.
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
 點電荷的電場強度

D3.
$$E = \frac{V}{d}$$

D3. $E = \frac{V}{d}$ 平行板間的電場 (數值)

D4.
$$R = \frac{\rho l}{A}$$
 電阻和電阻率

D5.
$$R = R_1 + R_2$$

串聯電阻器

D6.
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 並聯電阻器

D7.
$$P = IV = I^2R$$
 電路中的功率

D8.
$$F = BQv \sin \theta$$
 磁場對運動電荷的作用力

D9.
$$F = BIl \sin \theta$$
 磁場對載流導體的作用力

D10.
$$B = \frac{\mu_0 I}{2\pi r}$$
 長直導線所產生的磁場

D11.
$$B = \frac{\mu_0 NI}{l}$$
 螺線管中的磁場

D13.
$$\frac{V_s}{V_p} \approx \frac{N_s}{N_p}$$
 變壓器副電壓和 原電壓之比

E1.
$$N = N_0 e^{-kt}$$

放射衰變定律

E2.
$$t_{\frac{1}{2}} = \frac{\ln 2}{k}$$

E3.
$$A = kN$$

放射强度和未衰變的

E4.
$$\Delta E = \Delta mc^2$$

質能關係式