

HIGH-PERFORMANCE CMOS BUS INTERFACE REGISTERS

IDT54/74FCT821A/B/C IDT54/74FCT823A/B/C IDT54/74FCT824A/B/C IDT54/74FCT825A/B/C

FEATURES:

- Equivalent to AMD's Am29821-25 bipolar registers in pinout/function, speed and output drive over full temperature and voltage supply extremes
- IDT54/74FCT821A/823A/824A/825A equivalent to FAST™ speed
- IDT54/74FCT821B/823B/824B/825B 25% faster than FAST
- IDT54/74FCT821C/823C/824C/825C 40% faster than FAST
- Buffered common Clock Enable (EN) and asynchronous Clear input (CLR)
- IOL = 48mA (commercial) and 32mA (military)
- Clamp diodes on all inputs for ringing suppression
- CMOS power levels (1mW typ. static)
- · TTL input and output compatibility
- · CMOS output level compatible
- Substantially lower input current levels than AMD's bipolar Am29800 series (5μA max.)
- Product available in Radiation Tolerant and Radiation Enhanced versions
- Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT54/74FCT800 series is built using an advanced dual metal CMOS technology.

The IDT54/74FCT820 series bus interface registers are designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider address/data paths or buses carrying parity. The IDT54/74FCT821 are buffered, 10-bit wide versions of the popular '374 function. The IDT54/74FCT823 and IDT54/74FCT824 are 9-bit wide buffered registers with Clock Enable ($\overline{\text{EN}}$) and Clear ($\overline{\text{CLR}}$) – ideal for parity bus interfacing in high-performance microprogrammed systems. The IDT54/74FCT825 are 8-bit buffered registers with all the '823 controls plus multiple enables ($\overline{\text{OE}}_1$, $\overline{\text{OE}}_2$, $\overline{\text{OE}}_3$) to allow multiuser control of the interface, e.g., $\overline{\text{CS}}$, DMA and RD/ $\overline{\text{WR}}$. They are ideal for use as an output port requiring HIGH IOL/IOH.

All of the IDT54/74FCT800 high-performance interface family are designed for high-capacitance load drive capability, while providing low-capacitance bus loading at both inputs and outputs. All inputs have clamp diodes and all outputs are designed for low-capacitance bus loading in high-impedance state.

FUNCTIONAL BLOCK DIAGRAMS IDT54/74FCT821/823/825

IDT54/74FCT824

MILITARY AND COMMERCIAL TEMPERATURE RANGES

FAST is a trademark of National Semiconductor Co.

MAY 1992

PIN CONFIGURATIONS IDT54/74FCT821 10-BIT REGISTER

LOGIC SYMBOLS

IDT54/74FCT823/824 9-BIT REGISTERS

IDT54/74FCT825 8-BIT REGISTER

PRODUCT SELECTOR GUIDE

	Device							
_	10-Bit	9-Bit	8-Bit					
Non-inverting	54/74FCT821A/B/C	54/74FCT823A/B/C	54/74FCT825A/B/C					
Inverting		54/74FCT824A/B/C						

2608 tbl 01

PIN DESCRIPTION

Name	I/O	Description
Dı		The D flip-flop data inputs.
CLR	I	For both inverting and non-inverting registers, when the clear input is LOW and \overline{OE} is LOW, the QI outputs are LOW. When the clear input is HIGH, data can be entered into the register.
СР	I	Clock Pulse for the Register; enters data into the register on the LOW-to-HIGH transition.
Yı , <u>Y</u> ı	0	The register three-state outputs.
ĒN	I	Clock Enable. When the clock enable is LOW, data on the D I input is transferred to the QI output on the LOW-to-HIGH clock transition. When the clock enable is HIGH, the QI outputs do not change state, regardless of the data or clock input transitions.
ŌĒ	-	Output Control. When the \overline{OE} input is HIGH, the Y I outputs are in the high impedance state. When the \overline{OE} input is LOW, the TRUE register data is present at the Y I outputs.

2608 tbl 10

FUNCTION TABLE⁽¹⁾ IDT54/74FCT821/823/825

		Inputs				rnal/ puts	
ŌĒ	CLR	ĒΝ	Di	СР	Qı	Υı	Function
Н	Н	L	L	1	L	Z	High Z
Н	Н	L	Н	1	Н	Z	
Н	L	Х	Χ	Х	L	Z	Clear
L	L	Χ	Χ	Х	L	L	
Н	Н	Н	Х	Х	NC	Z	Hold
L	Н	Н	Χ	Х	NC	NC	
Н	Н	L	L	1	L	Z	Load
Н	Н	L	Н	1	Н	Z	
L	Н	L	L	↑	L	L	
L	Н	L	Н	1	Н	Н	

NOTE:

2608 tbl 02

FUNCTION TABLE⁽¹⁾ IDT54/74FCT824

		Inputs				rnal/ puts	
ŌĒ	CLR	E	Di	СР	ā	Υı	Function
Н	Η	L	L	1	Н	Z	High Z
Н	Н	L	Н	1	L	Z	
Н	L	Χ	Х	Х	L	Z	Clear
L	L	Χ	Χ	Χ	L	L	
Н	Н	Н	Х	Х	NC	Z	Hold
L	Н	Н	Χ	Χ	NC	NC	
Н	Н	L	L	1	Н	Z	Load
Н	Н	L	Н	1	L	Z	
L	Н	L	L	↑	Н	Н	
L	Н	L	Н	1	L	L	

NOTE

2608 tbl 03

7.19 3

H = HIGH, L = LOW, X = Don't Care, NC = No Change, ↑ = LOW-to-HIGH Transition, Z = High Impedance

H = HIGH, L = LOW, X = Don't Care, NC = No Change, ↑ = LOW-to-HIGH Transition, Z = High Impedance

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	–0.5 to Vcc	-0.5 to Vcc	V
Та	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	0.5	0.5	W
lout	DC Output Current	120	120	mA

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input	VIN = 0V	6	10	pF
	Capacitance				
COUT	Output	Vout = 0V	8	12	рF
	Capacitance				

NOTE: 1. This parameter is measured at characterization but not tested.

- NOTES: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Input and Vcc terminals only.
- Outputs and I/O terminals only.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: VLC = 0.2V; VHC = VCC - 0.2V

Commercial: TA = 0°C to +70°C, VCC = $5.0V \pm 5\%$; Military: TA = -55°C to +125°C, VCC = $5.0V \pm 10\%$

Symbol	Parameter	Test Cor	Min.	Typ. ⁽²⁾	Max.	Unit	
VIH	Input HIGH Level	Guaranteed Logic HIGI	H Level	2.0	_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW	/ Level	_		0.8	V
Iгн	Input HIGH Current	Vcc = Max.	VI = VCC	_	_	5	μΑ
			VI = 2.7V	_		5 ⁽⁴⁾	
lıL	Input LOW Current		VI = 0.5V	_	_	-5 ⁽⁴⁾	
			Vı = GND	_	_	- 5	
lozн	Off State (High Impedance)	Vcc = Max.	Vo = Vcc	_		10	μΑ
	Output Current		Vo = 2.7V	_	_	10 ⁽⁴⁾	
lozL	1		Vo = 0.5V	_	_	-10 ⁽⁴⁾	
			Vo = GND	_	_	-10	
VIK	Clamp Diode Voltage	Vcc = Min., In = -18mA	\	_	-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max.(3), Vo = GN	ND	-75	-120	_	mA
Voн	Output HIGH Voltage	Vcc = 3V, Vin = VLc or	VHC, IOH = -32μA	Vнс	Vcc	_	V
Ì		Vcc = Min.	Іон = -300μА	Vнс	Vcc	_	
		VIN = VIH or VIL	IOH = −15mA MIL.	2.4	4.3	_	
			Iон = -24mA COM'L.	2.4	4.3	_	
Vol	Output LOW Voltage	Vcc = 3V, Vin = VLc or	VHC, IOL = 300μA	_	GND	VLC	V
		Vcc = Min.	Ιοι = 300μΑ	_	GND	VLC ⁽⁴⁾	
		VIN = VIH or VIL	IOL = 32mA MIL.	_	0.3	0.5	
			IOL = 48mA COM'L.	_	0.3	0.5	

NOTES:

- For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
 Typical values are at Vcc = 5.0V, +25°C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.
- 4. This parameter is guaranteed but not tested.

2608 tbl 06

7.19 4

POWER SUPPLY CHARACTERISTICS

VLC = 0.2V; VHC = VCC - 0.2V

Symbol	Parameter	Test Con	Min.	Typ. ⁽²⁾	Max.	Unit	
Icc	Quiescent Power Supply Current	Vcc = Max. Vin ≥ Vhc; V in ≤ VLc		_	0.2	1.5	mA
ΔΙCC	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. $Vin = 3.4V^{(3)}$			0.5	2.0	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OE = EN = GND One Input Toggling 50% Duty Cycle	VIN ≥ VHC VIN ≤ VLC	_	0.15	0.25	mA/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fcp = 10MHz 50% Duty Cycle $\overline{OE} = \overline{EN} = GND$ One Bit Toggling at f i = 5MHz	VIN ≥ VHC VIN ≤ VLC (FCT) VIN = 3.4V VIN = GND	_	2.2	6.0	mA
		50% Duty Cycle Vcc = Max. Outputs Open fcP = 10MHz 50% Duty Cycle OE = EN = GND	$VIN \ge VHC$ $VIN \le VLC$ (FCT) $VIN = 3.4V$	 -	4.0	7.8 ⁽⁵⁾	
		Eight Bits Toggling at f i = 2.5MHz 50% Duty Cycle	VIN = GND		0.2	10.0	

NOTES:

2608 tbl 07

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V); all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2 + fiNi)$

Icc = Quiescent Current

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Input Frequency

Ni = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

7.19 5

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

		Test	1	23A/82	CT82 ⁻ 4A/825	-		23B/82	FCT82 ² 4B/825 M	-	82	-	FCT82 ⁻ 4C/825		
Parameter	Description	Conditions ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH tPHL	Propagation Delay CP to Y I (OE = LOW)	CL = 50pF $RL = 500\Omega$	_	10.0	_	11.5		7.5	_	8.5	_	6.0	_	7.0	ns
		$C_L = 300 pF^{(3)}$ $R_L = 500 \Omega$	_	20.0	_	20.0	_	15.0	_	16.0	_	12.5	_	13.5	
tsu	Set-up Time HIGH or LOW D i to CP	$C_L = 50pF$ $R_L = 500\Omega$	4.0	_	4.0	_	3.0		3.0		3.0	_	3.0	_	ns
tH	Hold Time HIGH or LOW D I to CP		2.0	_	2.0	_	1.5		1.5		1.5	_	1.5	_	ns
tsu	Set-up Time HIGH or LOW EN to CP		4.0	_	4.0	_	3.0	_	3.0	_	3.0	_	3.0	_	ns
tH	Hold Time HIGH or LOW EN to CP		2.0	_	2.0	_	0	_	0	_	0	_	0	_	ns
tPHL	Propagation Delay, CLR to Yı		_	14.0	_	15.0	_	9.0	_	9.5	_	8.0	_	8.5	ns
trem	Recovery Time CLR to CP		6.0	_	7.0	_	6.0	_	6.0	_	6.0		6.0	_	ns
tw	CP Pulse Width HIGH or LOW		7.0	_	7.0	_	6.0	-	6.0	-	6.0	_	6.0	_	ns
tw	CLR Pulse Width LOW		6.0	ı	7.0	1	6.0	1	6.0		6.0	_	6.0	_	ns
tPZH tPZL	Output Enable Time OE to Yı	CL = 50pF $RL = 500\Omega$		12.0	_	13.0	1	8.0		9.0	_	7.0	_	8.0	ns
		$C_L = 300 pF^{(3)}$ $R_L = 500 \Omega$	_	23.0		25.0		15.0		16.0	_	12.5		13.5	
tPHZ tPLZ	Output Disable Time OE to Yı	$CL = 5pF^{(3)}$ $RL = 500\Omega$	_	7.0	_	8.0	_	6.5	_	7.0	_	6.2	_	6.2	ns
		CL = 50pF $RL = 500\Omega$	_	8.0	_	9.0		7.5	_	8.0	_	6.5	_	6.5	

NOTES:

2608 tbl* 08

- 1. See test circuit and waveforms.
- Minimum limits are guaranteed but not tested on Propagation Delays.
 This parameter is guaranteed but not tested.

7.19 6

TEST CIRCUITS AND WAVEFORMS TEST CIRCUITS FOR ALL OUTPUTS

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

2608 tbl 09

 $\mathsf{CL} = \mathsf{Load}$ capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zo∪T of the Pulse Generator.

SET-UP, HOLD AND RELEASE TIMES

PULSE WIDTH

PROPAGATION DELAY

ENABLE AND DISABLE TIMES

NOTES 2608 drw 01

- Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0 MHz; Zo \leq 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.

7.19 7

ORDERING INFORMATION

2608 cnv* 11

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com