Final Project Submission

Please fill out:

- · Student name: Guofa Shou
- · Student pace: self paced
- Scheduled project review date/time:
- Instructor name:
- · Blog post URL:

Business Understanding

I firstly do the business understanding by the following questions and answers

In [1]:

```
# Q: Who are the stakeholders in this project? Who will be directly affected by the creatio
# A: The stakeholders are the house buyer or seller.
# For house buyer, they will know the price of the house based on the characteristi
# and also, what's the investment value for the house
# For house seller, they may know whether they can somehouse do something to sell t
# Q: What business problem(s) will this Data Science project solve for the organization?
# A: A linear regression model will be built based on related features, which could predict
# Q: What data sources are available to us?
# A: We have the kc_house_data.csv which includes many characteristics of the house
```

Data Understanding

Now, I import the data and examine what data are available.

In [2]:

```
# import necessary libraries
# Warning off
import warnings
warnings.filterwarnings('ignore')
# import pandas and numpy
import pandas as pd
import numpy as np
# import data visualization
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')
%matplotlib inline
# import linear regression related modules
from statsmodels.formula.api import ols
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm
import scipy.stats as stats
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```

In [3]:

```
# Loading kc_house_data.csv data
df = pd.read_csv('./data/kc_house_data.csv')
df.head() # checking the head for information
```

Out[3]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterf
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	

5 rows × 21 columns

```
In [4]:
```

```
# Describe the dataset using 5-point statistics
df.describe()
# What data is available to us?
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype			
0	id	21597 non-null	int64			
1	date	21597 non-null	object			
2	price	21597 non-null	float64			
3	bedrooms	21597 non-null	int64			
4	bathrooms	21597 non-null	float64			
5	sqft_living	21597 non-null	int64			
6	sqft_lot	21597 non-null	int64			
7	floors	21597 non-null	float64			
8	waterfront	19221 non-null	float64			
9	view	21534 non-null	float64			
10	condition	21597 non-null	int64			
11	grade	21597 non-null	int64			
12	sqft_above	21597 non-null	int64			
13	sqft_basement	21597 non-null	object			
14	yr_built	21597 non-null	int64			
15	yr_renovated	17755 non-null	float64			
16	zipcode	21597 non-null	int64			
17	lat	21597 non-null	float64			
18	long	21597 non-null	float64			
19	sqft_living15	21597 non-null	int64			
20	sqft_lot15	21597 non-null	int64			
dtyp	es: float64(8),	int64(11), object(2)				
memo	ry usage: 3.5+ N	МВ				

In [5]:

```
# We have potentially 19 predictors excluding the id and the target,i.e.,the price
# We have a total of 21597 rows, while some rows have null values in some predictors
# Several predictors' data type need to be changed
```

Data Preparation

Deal with data types and missing data

Deal with data types: sqft_basement & date

In [6]:

```
# sqft basement: Numerical Data Stored as Strings need to be reformat to float
print(df.sqft basement.unique())
df.sqft basement.value counts()
# there is '?' in the sqft_basement, need to be repalce as nan before reformat to float
df.sqft_basement = df.sqft_basement.map(lambda x: float(x.replace('?', 'nan')))
df.sqft basement.unique()
['0.0' '400.0' '910.0' '1530.0' '?' '730.0' '1700.0' '300.0' '970.0'
 '760.0' '720.0' '700.0' '820.0' '780.0' '790.0' '330.0' '1620.0' '360.0'
 '588.0' '1510.0' '410.0' '990.0' '600.0' '560.0' '550.0' '1000.0'
 '1600.0' '500.0' '1040.0' '880.0' '1010.0' '240.0' '265.0' '290.0'
 '800.0' '540.0' '710.0' '840.0' '380.0' '770.0' '480.0' '570.0' '1490.0'
 '620.0' '1250.0' '1270.0' '120.0' '650.0' '180.0' '1130.0' '450.0'
 '1640.0' '1460.0' '1020.0' '1030.0' '750.0' '640.0' '1070.0' '490.0'
 '1310.0' '630.0' '2000.0' '390.0' '430.0' '850.0' '210.0' '1430.0'
 '1950.0' '440.0' '220.0' '1160.0' '860.0' '580.0' '2060.0' '1820.0'
 '1180.0' '200.0' '1150.0' '1200.0' '680.0' '530.0' '1450.0' '1170.0'
 '1080.0' '960.0' '280.0' '870.0' '1100.0' '460.0' '1400.0' '660.0'
 '1220.0' '900.0' '420.0' '1580.0' '1380.0' '475.0' '690.0' '270.0'
 '350.0' '935.0' '1370.0' '980.0' '1470.0' '160.0' '950.0' '50.0' '740.0'
 '1780.0' '1900.0' '340.0' '470.0' '370.0' '140.0' '1760.0' '130.0'
 '520.0' '890.0' '1110.0' '150.0' '1720.0' '810.0' '190.0' '1290.0'
 '670.0' '1800.0' '1120.0' '1810.0' '60.0' '1050.0' '940.0' '310.0'
 '930.0' '1390.0' '610.0' '1830.0' '1300.0' '510.0' '1330.0' '1590.0'
 '920.0' '1320.0' '1420.0' '1240.0' '1960.0' '1560.0' '2020.0' '1190.0'
 '2110.0' '1280.0' '250.0' '2390.0' '1230.0' '170.0' '830.0' '1260.0'
 '1410.0' '1340.0' '590.0' '1500.0' '1140.0' '260.0' '100.0' '320.0'
 '1480.0' '1060.0' '1284.0' '1670.0' '1350.0' '2570.0' '1090.0' '110.0'
 '2500.0' '90.0' '1940.0' '1550.0' '2350.0' '2490.0' '1481.0' '1360.0'
 '1135.0' '1520.0' '1850.0' '1660.0' '2130.0' '2600.0' '1690.0' '243.0'
 '1210.0' '1024.0' '1798.0' '1610.0' '1440.0' '1570.0' '1650.0' '704.0'
 '1910.0' '1630.0' '2360.0' '1852.0' '2090.0' '2400.0' '1790.0' '2150.0'
 '230.0' '70.0' '1680.0' '2100.0' '3000.0' '1870.0' '1710.0' '2030.0'
 '875.0' '1540.0' '2850.0' '2170.0' '506.0' '906.0' '145.0' '2040.0'
 '784.0' '1750.0' '374.0' '518.0' '2720.0' '2730.0' '1840.0' '3480.0'
 '2160.0' '1920.0' '2330.0' '1860.0' '2050.0' '4820.0' '1913.0' '80.0'
 '2010.0' '3260.0' '2200.0' '415.0' '1730.0' '652.0' '2196.0' '1930.0'
 '515.0' '40.0' '2080.0' '2580.0' '1548.0' '1740.0' '235.0' '861.0'
 '1890.0' '2220.0' '792.0' '2070.0' '4130.0' '2250.0' '2240.0' '1990.0'
 '768.0' '2550.0' '435.0' '1008.0' '2300.0' '2610.0' '666.0' '3500.0'
 '172.0' '1816.0' '2190.0' '1245.0' '1525.0' '1880.0' '862.0' '946.0'
 '1281.0' '414.0' '2180.0' '276.0' '1248.0' '602.0' '516.0' '176.0'
 '225.0' '1275.0' '266.0' '283.0' '65.0' '2310.0' '10.0' '1770.0' '2120.0'
 '295.0' '207.0' '915.0' '556.0' '417.0' '143.0' '508.0' '2810.0' '20.0'
 '274.0' '248.0']
Out[6]:
                     910., 1530.,
        0., 400.,
                                   nan,
                                          730., 1700., 300., 970.,
array([
                     700., 820., 780.,
              720.,
                                          790., 330., 1620.,
        760.,
        588., 1510., 410., 990., 600.,
                                          560., 550., 1000., 1600.,
        500., 1040., 880., 1010., 240., 265., 290., 800., 540.,
       710., 840., 380., 770., 480., 570., 1490., 620., 1250.,
       1270., 120.,
                     650., 180., 1130., 450., 1640., 1460., 1020.,
       1030., 750., 640., 1070., 490., 1310., 630., 2000., 390.,
       430., 850., 210., 1430., 1950., 440., 220., 1160., 860.,
        580., 2060., 1820., 1180., 200., 1150., 1200., 680., 530.,
       1450., 1170., 1080., 960., 280., 870., 1100., 460., 1400.,
```

660., 1220., 900., 420., 1580., 1380., 475., 690., 270.,

```
350., 935., 1370., 980., 1470.,
                                   160.,
                                         950.,
                                                  50.,
1780., 1900.,
              340.,
                     470.,
                            370.,
                                   140., 1760., 130.,
 890., 1110.,
              150., 1720.,
                            810.,
                                   190., 1290.,
                                                 670., 1800.,
1120., 1810.,
               60., 1050.,
                           940.,
                                   310., 930., 1390.,
1830., 1300.,
              510., 1330., 1590.,
                                   920., 1320., 1420., 1240.,
1960., 1560., 2020., 1190., 2110., 1280., 250., 2390., 1230.,
 170., 830., 1260., 1410., 1340.,
                                  590., 1500., 1140.,
100., 320., 1480., 1060., 1284., 1670., 1350., 2570., 1090.,
               90., 1940., 1550., 2350., 2490., 1481., 1360.,
110., 2500.,
1135., 1520., 1850., 1660., 2130., 2600., 1690., 243., 1210.,
1024., 1798., 1610., 1440., 1570., 1650., 704., 1910., 1630.,
2360., 1852., 2090., 2400., 1790., 2150., 230.,
                                                  70., 1680.,
2100., 3000., 1870., 1710., 2030., 875., 1540., 2850., 2170.,
              145., 2040., 784., 1750.,
                                         374.,
       906.,
                                                518., 2720.,
2730., 1840., 3480., 2160., 1920., 2330., 1860., 2050., 4820.,
        80., 2010., 3260., 2200., 415., 1730., 652., 2196.,
1930., 515.,
               40., 2080., 2580., 1548., 1740.,
                                                235.,
              792., 2070., 4130., 2250., 2240., 1990.,
1890., 2220.,
2550., 435., 1008., 2300., 2610.,
                                   666., 3500.,
                                                 172., 1816.,
2190., 1245., 1525., 1880., 862.,
                                   946., 1281.,
                                                 414., 2180.,
                           176.,
 276., 1248.,
              602., 516.,
                                   225., 1275.,
                                                 266.,
 65., 2310.,
              10., 1770., 2120.,
                                   295., 207.,
                                                 915.,
                                                        556.,
 417., 143., 508., 2810.,
                                   274., 248.])
                             20.,
```

In [7]:

```
# For the sold date, since day is not important for the regression model,
# I only extract year and month for the sold date, and add two columns as year_sold and mon
df['year_sold'] = pd.DatetimeIndex(df['date']).year
df['month_sold'] = pd.DatetimeIndex(df['date']).month

# Based on the yr_built and month_sold, I create another column as age_sold of the house
df['age_sold'] = df['year_sold'] - df['yr_built'] + 1
df.head()
```

Out[7]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterf
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	1
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	

5 rows × 24 columns

Deal with null values

In [8]:

```
# Get the percentage value of null data for each column
df.isnull().sum()*100/df.shape[0]
bathrooms
                 0.000000
sqft_living
                 0.000000
sqft_lot
                 0.000000
floors
                 0.000000
waterfront
               11.001528
view
                 0.291707
condition
                 0.000000
grade
                 0.000000
                 0.000000
sqft_above
sqft_basement
                 2.102144
yr_built
                 0.000000
yr_renovated 17.789508
zipcode
                 0.000000
lat
                 0.000000
long
                 0.000000
sqft_living15
                 0.000000
sqft_lot15
                 0.000000
year_sold
                 0.000000
month_sold
                 0.000000
age sold
                 0.000000
```

```
In [9]:
```

```
# There are some null data in waterfront, view, yr_renovated, sqft_basement
# 1) since the percentage of null data in view is low, I just drop these rows
# 2) For waterfront and yr_renovated, the percentage of null data is high,I will assign and
# waterfront is a categorical variable
df.waterfront.value_counts()
# replace nan as a value:
# Originally I used 2.0 as a third category,
# but late I found the price for this missing data is similar as for waterfront == 0
# Therefore, I fill the null as 0
df.waterfront = df.waterfront.fillna(0)
df.waterfront.value_counts()
# yr_renovated has 17011/17755~96% without renovation,
# and only 4% with renovation based on the non-null data
df.yr_renovated.value_counts()
# take a look of histogram
fig, axs = plt.subplots(2,figsize=(12,8))
df['yr_renovated'].hist(ax = axs[0]);
axs[0].set_title('All non-null data')
axs[0].set_xlabel('Year')
# with renovation
df[df.yr_renovated > 0].yr_renovated.hist(ax = axs[1])
# dfwrenov['yr_renovated'].hist(ax = axs[1]);
axs[1].set_title('Renovation data')
axs[0].set_xlabel('Year')
# Based on renovated data, I create a caterogrial variable as is_renovated
ds_renovated = df['yr_renovated']
ds_renovated[ds_renovated >0] = 1
# replace nan as a value:
# Originally I used 2.0 as a third category,
# but late I found the price for this missing data is similar as for is_renovated == 0
# Therefore, I fill the null as 0
ds_renovated = ds_renovated.fillna(0)
ds renovated
df['is_renovated'] = ds_renovated
del ds_renovated
df.is_renovated.value_counts()
# assign as -1 to make sure these rows are not dropped in the following operation
df.yr_renovated = df.yr_renovated.fillna(-1)
# for view and sqft_basement, I just drop those rows with null value, since they are only a
df.dropna(inplace=True)
print(df.info())
print(df.shape)
df.is renovated.value counts()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21082 entries, 0 to 21596
Data columns (total 25 columns):
                   Non-Null Count Dtype
 #
     Column
                    -----
- - -
     ____
                   21082 non-null int64
 0
     id
 1
     date
                   21082 non-null object
 2
    price
                   21082 non-null float64
 3
    bedrooms
                  21082 non-null int64
 4
                    21082 non-null float64
     bathrooms
     sqft_living
                    21082 non-null
                                   int64
```

```
21082 non-null int64
   sqft_lot
6
7
   floors
                   21082 non-null float64
8
                                  float64
   waterfront
                   21082 non-null
9
                   21082 non-null float64
   view
                   21082 non-null int64
10
   condition
                   21082 non-null int64
11
   grade
   sqft_above
                   21082 non-null
                                   int64
    caft hacamant
                   21002 non-null
                                   £1~~+61
```

Deal with outliers if existed in some columns

In [10]:

In [11]:

```
Number of rows based on price : 21082 \rightarrow 19951

Number of rows based on bedrooms : 19951 \rightarrow 19502

Number of rows based on bathrooms : 19502 \rightarrow 19437

Number of rows based on sqft_living : 19437 \rightarrow 19181

Number of rows based on sqft_lot : 19181 \rightarrow 17163

Number of rows based on sqft_above : 17163 \rightarrow 16697

Number of rows based on sqft_basement : 16697 \rightarrow 16401

Number of rows based on sqft_living15 : 16401 \rightarrow 16195

Number of rows based on sqft_lot15 : 16195 \rightarrow 15831
```

In [12]:

```
# boxplot for the remaining data
fig, axs = plt.subplots(2,5, figsize = (15,6))
for colii in range(len(x_cols)):
    sns.boxplot(df[x_cols[colii]],ax = axs[colii//5, colii%5])
plt.tight_layout()
# now looks all good
```


In [13]:

```
# visualization of the final data
# with its histogram:
df.hist(figsize = (20,18));
print(df.waterfront.value_counts())
print(df.condition.value_counts())
print(df.is_renovated.value_counts())
# Looks good
df.bathrooms.value_counts()
```

```
1.0
Name: waterfront, dtype: int64
3
     10263
4
      4160
5
      1283
2
       110
1
        15
Name: condition, dtype: int64
0.0
       15385
         446
1.0
Name: is_renovated, dtype: int64
```

Out[13]:

2.50 3954 1.00 3296 1.75 2464 2.00 1590 2.25 1558 1.50 1254 2.75 702 3.00 431 3.50 271 3.25 226 28 3.75 0.75 28 4.00 21 1.25 6 2 0.50

Name: bathrooms, dtype: int64

In [14]:

```
# df.zipcode.value_counts()
# I only keep the first four digits since if I only keep the first three digits,it will onl
df['zipcode4'] = df.zipcode//10 * 10
df.zipcode4.value_counts()
```

Out[14]:

98110	2051
98050	1831
98030	1767
98100	1594
98000	1488
98020	1243
98120	931
98130	689
98040	629
98140	588
98070	524
98190	465
98170	407
98160	369
98150	366
98010	337
98090	229
98060	209
98180	114
Nama.	zincode/

Name: zipcode4, dtype: int64

In [15]:

```
# visualization of categorical variables
cat_vars = ['bedrooms', 'bathrooms', 'floors', 'waterfront', 'is_renovated', 'condition', 'view',
plt.figure(figsize=(20, 12))
for idx in range(len(cat_vars)):
    plt.subplot(3,3,idx+1)
    sns.boxplot(x = cat_vars[idx], y = 'price', data = df)
```



```
In [16]:
```

```
# For all these categorical variables, I implemented the one hot encoding .get_dummies() me
# and drop one column for redundant information
for cat_var in cat_vars:
# cat_var = cat_vars[0]
    tmp_dums = pd.get_dummies(df[cat_var], prefix=cat_var)
    print(tmp_dums.head())
    del tmp_dums[tmp_dums.columns[0]]
    print(tmp_dums.head())
    df = pd.concat([df,tmp_dums],axis = 1)
    del tmp dums
df.head()
   bedrooms_2
               bedrooms_3
                                          bedrooms 5
                             bedrooms 4
0
             0
                         1
                                      0
                                                   0
            0
                                                   0
1
                         1
                                      0
2
             1
                         0
                                      0
                                                   0
3
             0
                         0
                                      1
                                                   0
4
             0
                         1
                                                   0
                                      0
               bedrooms_4
   bedrooms 3
                             bedrooms 5
0
             1
                         0
                                      0
1
            1
                         0
2
            0
                                      0
                         0
3
            0
                         1
                                      0
4
                         0
                                      0
             1
   bathrooms_0.5
                   bathrooms_0.75
                                    bathrooms_1.0
                                                    bathrooms_1.25
0
                                                 1
1
                0
                                 0
                                                 0
                                                                  0
2
                0
                                 0
                                                 1
                                                                  0
3
                0
                                 0
                                                                  0
                                                 0
4
                                 0
                                                 0
                                                                  0
```

Modeling

After finishing the data preparation, now I start to build the regression model

In [17]:

```
# drop id, date, yr renovated, lat, long, zipcode from df
# the id has not related to the house price
# the date has been transformed into sold_year and sold_month
# the yr_renovated has been transformed into is_renovated
# the lat and long indicate similar information as zipcode
# zipcode has been transformed into zipcode4 and dummy variables
# I keep zipcode4 try to take a look which one is better based on either zipcode4 or zipcod
drop_vars = ['id','date','yr_renovated','lat','long','zipcode']
df.drop(drop_vars, axis = 1, inplace = True)
print(df.head())
# drop all caterogical variables
df.drop(cat_vars, axis = 1, inplace = True)
df.head()
      price bedrooms
                        bathrooms sqft_living sqft_lot floors
                                                                    waterfront
\
   221900.0
                     3
                             1.00
                                                               1.0
                                                                            0.0
0
                                           1180
                                                      5650
1
   538000.0
                     3
                             2.25
                                           2570
                                                      7242
                                                               2.0
                                                                            0.0
                     2
                                                                            0.0
2
  180000.0
                             1.00
                                            770
                                                     10000
                                                               1.0
                     4
                             3.00
3
  604000.0
                                           1960
                                                      5000
                                                               1.0
                                                                            0.0
                     3
4
   510000.0
                             2.00
                                           1680
                                                      8080
                                                               1.0
                                                                            0.0
         condition grade
                            . . .
                                zipcode4_98100
                                                   zipcode4_98110
    0.0
                         7
0
                  3
                                               0
                  3
                         7
                                               0
1
    0.0
                                                                0
2
                  3
                                               0
                                                                0
    0.0
                         6
3
    0.0
                  5
                         7
                                               0
                                                                0
                             . . .
4
    0.0
                  3
                         8
                                               0
                                                                0
   zipcode4 98120 zipcode4 98130
                                    zipcode4 98140
                                                      zipcode4 98150
0
                 0
                                  0
                                                   0
                                                   0
1
                 1
                                  0
                                                                    0
2
                 0
                                  0
                                                   0
                                                                    0
3
                 0
                                  1
                                                   0
                                                                    0
4
                 0
                                  0
                                                   0
                                                                    0
   zipcode4_98160
                    zipcode4_98170
                                     zipcode4_98180
                                                      zipcode4 98190
0
                 0
                                  1
                 0
                                  0
                                                   0
                                                                    0
1
2
                 0
                                  0
                                                   0
                                                                    0
                 0
                                                   0
3
                                  0
                                                                    0
                 0
                                                                    0
[5 rows x 77 columns]
```

Out[17]:

	price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_lot1
0	221900.0	1180	5650	1180	0.0	1955	1340	565
1	538000.0	2570	7242	2170	400.0	1951	1690	763
2	180000.0	770	10000	770	0.0	1933	2720	806
3	604000.0	1960	5000	1050	910.0	1965	1360	500
4	510000.0	1680	8080	1680	0.0	1987	1800	750

```
5 rows × 68 columns
```

In [18]:

```
# transform column names as string
df.columns = df.columns.astype(str)
df.head()
```

Out[18]:

	price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_lot15
0	221900.0	1180	5650	1180	0.0	1955	1340	5650
1	538000.0	2570	7242	2170	400.0	1951	1690	7639
2	180000.0	770	10000	770	0.0	1933	2720	8062
3	604000.0	1960	5000	1050	910.0	1965	1360	5000
4	510000.0	1680	8080	1680	0.0	1987	1800	7503

5 rows × 68 columns

In [19]:

Out[19]:

	price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_lot1
0	221900.0	0.192982	0.295865	0.257353	0.000000	0.478261	0.284585	0.35499
1	538000.0	0.599415	0.387681	0.621324	0.314961	0.443478	0.422925	0.49623
2	180000.0	0.073099	0.546744	0.106618	0.000000	0.286957	0.830040	0.52627
3	604000.0	0.421053	0.258377	0.209559	0.716535	0.565217	0.292490	0.30883
4	510000.0	0.339181	0.436011	0.441176	0.000000	0.756522	0.466403	0.48657

5 rows × 68 columns

In [20]:

```
df scl.columns
```

Out[20]:

```
Index(['price', 'sqft_living', 'sqft_lot', 'sqft_above', 'sqft_basement',
         'yr_built', 'sqft_living15', 'sqft_lot15', 'year_sold', 'month_sold',
         'age_sold', 'bedrooms_3', 'bedrooms_4', 'bedrooms_5', 'bathrooms_0.7
5',
         'bathrooms_1.0', 'bathrooms_1.25', 'bathrooms_1.5', 'bathrooms_1.75',
         'bathrooms_2.0', 'bathrooms_2.25', 'bathrooms_2.5', 'bathrooms_2.75', 'bathrooms_3.0', 'bathrooms_3.25', 'bathrooms_3.5', 'bathrooms_3.75',
         'bathrooms_4.0', 'floors_1.5', 'floors_2.0', 'floors_2.5', 'floors_3.
0',
         'floors_3.5', 'waterfront_1.0', 'is_renovated_1.0', 'condition_2',
         'condition_3', 'condition_4', 'condition_5', 'view_1.0', 'view_2.0', 'view_3.0', 'view_4.0', 'grade_5', 'grade_6', 'grade_7', 'grade_8', 'grade_9', 'grade_10', 'grade_11', 'zipcode4_98010', 'zipcode4_9802
0',
         'zipcode4_98030', 'zipcode4_98040', 'zipcode4_98050', 'zipcode4_9806
0',
         'zipcode4_98070', 'zipcode4_98090', 'zipcode4_98100', 'zipcode4_9811
0',
         'zipcode4_98120', 'zipcode4_98130', 'zipcode4_98140', 'zipcode4_9815
0',
         'zipcode4_98160', 'zipcode4_98170', 'zipcode4_98180', 'zipcode4_9819
0'],
       dtype='object')
```

In [21]:

mean = 446934.39 and std dev = 188664.37

In [22]:

it looks the target is skewed right, therefore, I used a log transformation to make it mo

In [23]:

```
#Using the log1p function applies log(1+x) to all elements of the column
df_scl['price_log1p'] = np.log1p(df_scl['price'])
#Check the new distribution after log transformation
sns.distplot(df_scl['price_log1p'] , fit=stats.norm);
# Get the fitted parameters used by the function
(mu, sigma) = stats.norm.fit(df_scl['price_log1p'])
print( '\n mean = {:.2f} and std dev = {:.2f}\n'.format(mu, sigma))
#NPlotting the distribution
plt.legend(['Normal dist. (\$\mu=\$ {:.2f} and \$\sigma=\$ {:.2f} )'.format(mu, sigma)],
            loc='best')
plt.ylabel('Frequency')
plt.title('Distribution of Log(1+price)')
#Also the QQ plot
fig = plt.figure()
res = stats.probplot(df_scl['price_log1p'], plot=plt)
plt.show()
```

mean = 12.92 and std dev = 0.42

In [24]:

```
# scale for the target variable
tar_vars = ['price','price_log1p']
df_scl[num_vars] = scaler.fit_transform(df[num_vars])
df_scl.head()
```

Out[24]:

	price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_lot1
0	221900.0	0.192982	0.295865	0.257353	0.000000	0.478261	0.284585	0.35499
1	538000.0	0.599415	0.387681	0.621324	0.314961	0.443478	0.422925	0.49623
2	180000.0	0.073099	0.546744	0.106618	0.000000	0.286957	0.830040	0.52627
3	604000.0	0.421053	0.258377	0.209559	0.716535	0.565217	0.292490	0.30883
4	510000.0	0.339181	0.436011	0.441176	0.000000	0.756522	0.466403	0.48657

5 rows × 69 columns

In [25]:

```
# Splitting the Data into Training and Testing
df_train, df_test = train_test_split(df, train_size = 0.8, test_size = 0.2, random_state =
print(len(df_train), len(df_test))
df_train.head()
df.columns
```

12664 3167

Out[25]:

```
Index(['price', 'sqft_living', 'sqft_lot', 'sqft_above', 'sqft_basement',
         'yr_built', 'sqft_living15', 'sqft_lot15', 'year_sold', 'month_sold',
         'age_sold', 'bedrooms_3', 'bedrooms_4', 'bedrooms_5', 'bathrooms_0.7
5',
        'bathrooms_1.0', 'bathrooms_1.25', 'bathrooms_1.5', 'bathrooms_1.75', 'bathrooms_2.0', 'bathrooms_2.25', 'bathrooms_2.5', 'bathrooms_3.0', 'bathrooms_3.25', 'bathrooms_3.5', 'bathrooms_3.75',
         'bathrooms_4.0', 'floors_1.5', 'floors_2.0', 'floors_2.5', 'floors_3.
0',
         'floors_3.5', 'waterfront_1.0', 'is_renovated_1.0', 'condition_2',
         'condition_3', 'condition_4', 'condition_5', 'view_1.0', 'view_2.0', 'view_3.0', 'view_4.0', 'grade_5', 'grade_6', 'grade_7', 'grade_8',
         'grade_9', 'grade_10', 'grade_11', 'zipcode4_98010', 'zipcode4_9802
0',
         'zipcode4_98030', 'zipcode4_98040', 'zipcode4_98050', 'zipcode4_9806
0',
         'zipcode4_98070', 'zipcode4_98090', 'zipcode4_98100', 'zipcode4_9811
0',
         'zipcode4 98120', 'zipcode4 98130', 'zipcode4 98140', 'zipcode4 9815
0',
         'zipcode4 98160', 'zipcode4 98170', 'zipcode4 98180', 'zipcode4 9819
0',
         'price_log1p'],
       dtype='object')
```

Checking for Multicollinearity

In [26]:

```
print((num_vars))

['sqft_living', 'sqft_lot', 'sqft_above', 'sqft_basement', 'yr_built', 'sqft
_living15', 'sqft_lot15', 'year_sold', 'age_sold', 'month_sold']
```

In [27]:

```
# Check the correlation coefficients to see which variables are highly correlated
num_vars.append('price')
num_vars.append('price_log1p')
corr = df_train[num_vars].corr()
corr
```

Out[27]:

	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_
sqft_living	1.000000	0.171593	0.818302	0.371526	0.318520	0.695589	0.15
sqft_lot	0.171593	1.000000	0.133727	0.074555	-0.079902	0.221833	0.87
sqft_above	0.818302	0.133727	1.000000	-0.229627	0.443562	0.670615	0.11
sqft_basement	0.371526	0.074555	-0.229627	1.000000	-0.177117	0.094622	0.06
yr_built	0.318520	-0.079902	0.443562	-0.177117	1.000000	0.321349	-0.06
sqft_living15	0.695589	0.221833	0.670615	0.094622	0.321349	1.000000	0.23
sqft_lot15	0.151181	0.876250	0.116469	0.067866	-0.063158	0.235881	1.00
year_sold	-0.024536	0.003379	-0.017244	-0.013693	0.002188	-0.006656	0.00
age_sold	-0.318876	0.079948	-0.443793	0.176886	-0.999877	-0.321425	0.06
month_sold	0.006327	-0.006723	-0.000200	0.011037	-0.008915	-0.008937	-0.00
price	0.518899	-0.089302	0.399563	0.233251	-0.052032	0.442030	-0.10
price_log1p	0.517514	-0.109111	0.396783	0.235396	-0.018664	0.449107	-0.12
4							•

In [28]:

```
# Using heatmap to visualzation of the correlation coefficients
sns.set(rc = {'figure.figsize':(16,8)})
sns.heatmap(corr, center=0, annot=True);
```


In [29]:

price is correlated to sqrt_living the most.

In [30]:

```
# Fitting the actual model with all available features, zipcode with dummy values
import statsmodels.api as sm
# price vs price_log1p
outcome1 = 'price'
outcome2 = 'price_log1p'
x_cols = list(df_train.columns)
x_cols.remove(outcome1)
x_cols.remove(outcome2)
model1 = sm.OLS(df_train[outcome1],sm.add_constant(df_train[x_cols])).fit()
print(model1.summary())
model2 = sm.OLS(df_train[outcome2],sm.add_constant(df_train[x_cols])).fit()
print(model2.summary())
                  3171.6347
                               4448.456
                                             0.713
                                                         0.476
                                                                 -5548.017
floors_1.5
1.19e+04
floors 2.0
                                             0.245
                                                         0.806
                  1003.3286
                               4088.102
                                                                 -7009.974
9016.631
floors 2.5
                  4.317e+04
                               1.56e+04
                                             2.770
                                                         0.006
                                                                  1.26e+04
7.37e+04
floors 3.0
                  2.674e+04
                               7787.800
                                             3.433
                                                         0.001
                                                                  1.15e+04
4.2e+04
floors 3.5
                  5.797e+04
                               6.02e+04
                                             0.963
                                                         0.336
                                                                    -6e+04
1.76e+05
waterfront_1.0
                  2.057e+05
                               4.28e+04
                                             4.801
                                                         0.000
                                                                  1.22e+05
2.9e+05
is_renovated_1.0 3.781e+04
                               6703.863
                                             5.641
                                                         0.000
                                                                  2.47e+04
5.1e+04
condition 2
                   4.22e+04
                                3.7e + 04
                                             1.142
                                                         0.253
                                                                 -3.02e+04
1.15e+05
condition_3
                  9.213e+04
                               3.48e + 04
                                             2.647
                                                         0.008
                                                                  2.39e+04
1.6e+05
                                                         0.001
                                                                  4.82e+04
condition_4
                  1.164e+05
                               3.48e + 04
                                             3.345
1.85e+05
```

In [31]:

```
# Based on the R-squared values from two models,
# I choose to use outcome = 'price_log1p' and zipcode_dummies for regression model
# price_log1p
outcome = 'price_log1p'
x_cols = list(df_train.columns)
x_cols.remove(outcome)
x_cols.remove('price')
model0 = sm.OLS(df_train[outcome],sm.add_constant(df_train[x_cols])).fit()
print(model0.summary())
```

OLS Regression Results

		•	ion Results			
====	=======	=======	=========	=======	=======	
Dep. Variable: 0.598	pri	ce_log1p	R-squared:			
Model:		OLS	Adj. R-squar	ed:		
0.595 Method:	Least	Squares	F-statistic:	2		
92.2 Date:	Mon, 29	Nov 2021	Prob (F-statistic):			
0.00 Time:		20:17:22	Log-Likeliho	Log-Likelihood:		
32.8 No. Observations:		12664	AIC:		2	
796. Df Residuals:		12599	BIC:		3	
280. Df Model:		64				
Covariance Type:		onrobust 	=========			
=======						
0.975]	coef	std err	t	P> t	[0.025	
const	7.4111	0.082	90.876	0.000	7.251	
7.571						
sqft_living 0.223	0.1990	0.012	15.974	0.000	0.175	
sqft_lot -0.024	-0.0778	0.028	-2.814	0.005	-0.132	
sqft_above 0.329	0.2990	0.015	19.764	0.000	0.269	
sqft_basement 0.150	0.1290	0.011	12.253	0.000	0.108	
yr_built 3.548	3.4663	0.041	83.645	0.000	3.385	
sqft_living15 0.503	0.4635	0.020	23.218	0.000	0.424	
sqft_lot15 -0.040	-0.0924	0.027	-3.486	0.000	-0.144	
year_sold 0.027	0.0106	0.008	1.280	0.201	-0.006	
month_sold 0.035	0.0086	0.014	0.632	0.527	-0.018	
age_sold 3.992	3.9109	0.042	94.086	0.000	3.829	
bedrooms_3 -0.016	-0.0321	0.008	-4.033	0.000	-0.048	

11/23/21, 0.221 10			Student - Oc	ipyter Notebook	
bedrooms_4 -0.033	-0.0521	0.010	-5.354	0.000	-0.071
bedrooms_5 -0.042	-0.0706	0.015	-4.865	0.000	-0.099
bathrooms_0.75 0.633	0.5217	0.057	9.211	0.000	0.411
bathrooms_1.0	0.4406	0.016	28.375	0.000	0.410
0.471 bathrooms_1.25	0.3941	0.113	3.487	0.000	0.173
0.616 bathrooms_1.5	0.4780	0.016	30.355	0.000	0.447
0.509 bathrooms_1.75	0.5278	0.015	35.846	0.000	0.499
0.557 bathrooms_2.0 0.542	0.5126	0.015	33.835	0.000	0.483
bathrooms_2.25 0.570	0.5407	0.015	35.917	0.000	0.511
bathrooms_2.5 0.550	0.5223	0.014	36.528	0.000	0.494
bathrooms_2.75 0.589	0.5557	0.017	32.447	0.000	0.522
bathrooms_3.0 0.553	0.5152	0.019	26.900	0.000	0.478
bathrooms_3.25 0.590	0.5440	0.023	23.279	0.000	0.498
bathrooms_3.5 0.660	0.6175	0.022	28.266	0.000	0.575
bathrooms_3.75 0.763	0.6515	0.057	11.499	0.000	0.540
bathrooms_4.0 0.709	0.5895	0.061	9.652	0.000	0.470
floors_1.5 0.025	0.0050	0.010	0.496	0.620	-0.015
floors_2.0	0.0009	0.009	0.100	0.920	-0.017
0.019 floors_2.5	0.1053	0.035	3.000	0.003	0.036
0.174 floors_3.0	0.0625	0.018	3.563	0.000	0.028
0.097 floors_3.5	0.1584	0.136	1.168	0.243	-0.107
0.424 waterfront_1.0	0.4592	0.096	4.759	0.000	0.270
0.648 is_renovated_1.0	0.0588	0.015	3.895	0.000	0.029
0.088 condition_2	0.1079	0.083	1.296	0.195	-0.055
0.271 condition_3	0.2959	0.078	3.775	0.000	0.142
0.450 condition_4	0.3486	0.078	4.447	0.000	0.195
0.502 condition_5	0.4024	0.079	5.112	0.000	0.248
0.557 view_1.0	0.0883	0.022	3.972	0.000	0.045
0.132 view_2.0	0.0708	0.014	5.002	0.000	0.043
0.099 view_3.0	0.0474	0.023	2.027	0.043	0.002
0.093 view_4.0	0.1608	0.044	3.626	0.000	0.074

0.248					
grade_5	0.1653	0.103	1.611	0.107	-0.036
0.366 grade_6 0.580	0.3826	0.101	3.804	0.000	0.185
grade_7 0.791	0.5938	0.101	5.904	0.000	0.397
grade_8 0.974	0.7762	0.101	7.694	0.000	0.578
grade_9 1.142	0.9431	0.101	9.296	0.000	0.744
grade_10 1.247	1.0432	0.104	10.057	0.000	0.840
grade_11 1.430	1.1208	0.158	7.100	0.000	0.811
zipcode4_98010 0.047	0.0102	0.019	0.553	0.580	-0.026
zipcode4_98020 -0.075	-0.0981	0.012	-8.330	0.000	-0.121
zipcode4_98030 -0.018	-0.0395	0.011	-3.676	0.000	-0.061
zipcode4_98040 -0.077	-0.1049	0.014	-7.274	0.000	-0.133
zipcode4_98050 0.020	-0.0005	0.011	-0.048	0.962	-0.021
zipcode4_98060 0.105	0.0572	0.024	2.357	0.018	0.010
zipcode4_98070 0.150	0.1197	0.015	7.787	0.000	0.090
zipcode4_98090 -0.346	-0.3880	0.021	-18.110	0.000	-0.430 0.177
zipcode4_98100 0.228 zipcode4_98110	0.2025 0.2520	0.013 0.012	15.688 20.850	0.000 0.000	0.228
0.276 zipcode4_98120	0.1689	0.012	12.315	0.000	0.142
0.196 zipcode4_98130	0.1026	0.014	7.011	0.000	0.074
0.131 zipcode4 98140	0.0298	0.015	1.912	0.056	-0.001
0.060 zipcode4 98150	0.0728	0.018	4.116	0.000	0.038
0.107 zipcode4_98160	-0.1670	0.018	-9.306	0.000	-0.202
-0.132 zipcode4_98170	-0.0816	0.017	-4.751	0.000	-0.115
-0.048 zipcode4_98180	-0.2412	0.030	-8.131	0.000	-0.299
-0.183 zipcode4_98190	0.0203	0.016	1.238	0.216	-0.012
0.052 =========	=========	=======	:========		
====					
Omnibus:		80.580	Durbin-Watso	on:	
2.027 Prob(Omnibus):		0.000	Jarque-Bera	(JB):	11
2.468 Skew:		-0.071	Prob(JB):		3.78
e-25 Kurtosis: e+16		3.439	Cond. No.		1.15
CT10					

==== Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.16e-28. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

In [32]:

```
# Remove the insignificant Features and rerun the model
summary = model0.summary()
p_table = summary.tables[1]
p_table = pd.DataFrame(p_table.data)
p_table.columns = p_table.iloc[0]
p_table = p_table.drop(0)
p_table = p_table.set_index(p_table.columns[0])
p_{t} = p_{t
x_{cols} = list(p_{table}[p_{table}['P>|t|'] < 0.05].index)
x cols.remove('const')
print(len(p_table), len(x_cols))
p_table.head()
x_cols
```

```
68 56
Out[32]:
['sqft_living',
 'sqft_lot',
 'sqft_above',
 'sqft_basement',
 'yr_built',
 'sqft_living15',
 'sqft_lot15',
 'age_sold',
 'bedrooms 3',
 'bedrooms_4',
 'bedrooms_5',
 'bathrooms_0.75',
 'bathrooms_1.0',
 'bathrooms_1.25'
 'bathrooms_1.5',
 'bathrooms_1.75',
 'bathrooms_2.0',
 'bathrooms_2.25',
 'bathrooms_2.5'
 'bathrooms 2.75',
 'bathrooms 3.0',
 'bathrooms_3.25'
 'bathrooms_3.5',
 'bathrooms_3.75',
 'bathrooms_4.0',
 'floors_2.5',
 'floors 3.0',
 'waterfront 1.0',
 'is_renovated_1.0',
 'condition_3',
 'condition 4',
 'condition_5',
 'view 1.0',
 'view_2.0',
 'view 3.0',
 'view 4.0',
 'grade_6',
 'grade_7',
 'grade_8',
 'grade_9',
```

```
'grade_10',
'grade_11',
'zipcode4 98020',
'zipcode4_98030',
'zipcode4_98040',
'zipcode4_98060',
'zipcode4_98070',
'zipcode4_98090',
'zipcode4_98100',
'zipcode4_98110',
'zipcode4_98120',
'zipcode4_98130',
'zipcode4_98150',
'zipcode4_98160',
'zipcode4_98170',
'zipcode4_98180']
```

In [33]:

```
model1 = sm.OLS(df_train[outcome],sm.add_constant(df_train[x_cols])).fit()
model1.summary()
```

Out[33]:

OLS Regression Results

Covariance Type:

Dep. Variable: price_log1p 0.597 R-squared: Model: OLS Adj. R-squared: 0.595 Method: Least Squares F-statistic: 346.1 **Date:** Mon, 29 Nov 2021 Prob (F-statistic): 0.00 Time: 20:17:22 Log-Likelihood: -1338.6 No. Observations: 12664 AIC: 2787.

Df Residuals: 12609 **BIC:** 3197.

nonrobust

Df Model: 54

coef std err t P>|t| [0.025 0.975]

In [34]:

```
#Investigate the multicollinearity
X = df_train[x_cols]
vif = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
list(zip(x_cols, vif))
Out[34]:
[('sqft_living', inf),
 ('sqft_lot', 4.4995804101299735),
 ('sqft_above', inf),
 ('sqft_basement', inf),
 ('yr_built', 4103.132983616809),
  'sqft_living15', 2.5431537832302866),
 ('sqft_lot15', 4.836025286454643),
 ('age sold', 4099.501361429564),
 ('bedrooms_3', 2.7069399668204577),
  'bedrooms_4', 3.3141080224916215),
 ('bedrooms_5', 1.7361806873495171),
 ('bathrooms_0.75', inf),
 ('bathrooms_1.0', inf),
 ('bathrooms_1.25', inf),
 ('bathrooms_1.5', inf),
 ('bathrooms_1.75', inf),
 ('bathrooms_2.0', inf),
 ('bathrooms_2.25', inf),
 ('bathrooms 2.5', inf),
 ('bathrooms_2.75', inf),
  'bathrooms_3.0', inf),
 ('bathrooms_3.25', inf),
 ('bathrooms_3.5', inf),
 ('bathrooms_3.75', inf),
 ('bathrooms_4.0', inf),
 ('floors_2.5', 1.0246523246789685),
 ('floors_3.0', 1.3126704425082636),
 ('waterfront_1.0', 1.2795480725939763),
 ('is_renovated_1.0', 1.1253660521675157),
 ('condition_3', 29.920305515976235),
 ('condition_4', 25.607740699477684),
 ('condition_5', 10.533070572233484),
 ('view_1.0', 1.0267454284677653),
 ('view_2.0', 1.0520787448834443),
 ('view_3.0', 1.0305314281174274),
 ('view_4.0', 1.2906407182338993),
 ('grade 6', 10.10594671186921),
 ('grade_7', 25.89827117911191),
  'grade_8', 23.394130817481837),
 ('grade_9', 10.366094723906771),
 ('grade_10', 2.524304330103752),
 ('grade_11', 1.0570029683571713),
 ('zipcode4_98020', 1.1819103339272004),
 ('zipcode4_98030', 1.2586787715494137),
 ('zipcode4_98040', 1.1176732237079565),
 ('zipcode4_98060', 1.0768308768310408),
 ('zipcode4_98070', 1.1459057466214961),
 ('zipcode4_98090', 1.0496299409335486),
 ('zipcode4_98100', 1.726496655559761),
 ('zipcode4_98110', 1.7619121578675512),
 ('zipcode4_98120', 1.3014561096137194),
```

('zipcode4 98130', 1.1753453970279395),

```
('zipcode4_98150', 1.0818651745323111), ('zipcode4_98160', 1.1061181260156652), ('zipcode4_98170', 1.1045760146328905), ('zipcode4_98180', 1.0318036460611795)]
```

In [35]:

```
# remove the features with vif >=5
vif_scores = list(zip(x_cols, vif))
x_cols = [x for x,vif in vif_scores if vif < 5]
print(len(vif_scores), len(x_cols))
x_cols</pre>
```

56 30

Out[35]:

```
['sqft_lot',
 'sqft_living15',
 'sqft_lot15',
 'bedrooms_3',
 'bedrooms_4',
 'bedrooms_5',
 'floors 2.5',
 'floors_3.0',
 'waterfront_1.0',
 'is_renovated_1.0',
 'view_1.0',
 'view_2.0',
 'view_3.0',
 'view_4.0',
 'grade_10',
 'grade_11',
 'zipcode4_98020',
 'zipcode4_98030',
 'zipcode4_98040',
 'zipcode4 98060',
 'zipcode4_98070'
 'zipcode4_98090',
 'zipcode4_98100',
 'zipcode4 98110',
 'zipcode4 98120',
 'zipcode4_98130',
 'zipcode4 98150',
 'zipcode4_98160',
 'zipcode4_98170',
 'zipcode4 98180']
```

In [36]:

```
# Refit model with subset features
model2 = sm.OLS(df_train[outcome],sm.add_constant(df_train[x_cols])).fit()
model2.summary()
```

Out[36]:

OLS Regression Results

0.449	R-squared:	price_log1p	Dep. Variable:
0.447	Adj. R-squared:	OLS	Model:
342.6	F-statistic:	Least Squares	Method:
0.00	Prob (F-statistic):	Mon, 29 Nov 2021	Date:
-3325.9	Log-Likelihood:	20:17:25	Time:
6714.	AIC:	12664	No. Observations:
6945.	BIC:	12633	Df Residuals:
		30	Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	12.3034	0.013	939.565	0.000	12.278	12.329
sqft_lot	0.0019	0.032	0.061	0.951	-0.060	0.064
sqft_living15	1.0967	0.017	62.711	0.000	1.062	1.131
sqft_lot15	-0.1448	0.030	-4.819	0.000	-0.204	-0.086
bedrooms_3	0.0838	0.008	9.855	0.000	0.067	0.100
bedrooms_4	0.1500	0.010	15.497	0.000	0.131	0.169
bedrooms_5	0.1632	0.015	10.968	0.000	0.134	0.192
floors_2.5	0.2261	0.040	5.682	0.000	0.148	0.304
floors_3.0	0.0568	0.017	3.423	0.001	0.024	0.089
waterfront_1.0	0.3989	0.113	3.545	0.000	0.178	0.620
is_renovated_1.0	0.1923	0.017	11.532	0.000	0.160	0.225
view_1.0	0.1377	0.026	5.345	0.000	0.087	0.188
view_2.0	0.1483	0.016	9.056	0.000	0.116	0.180
view_3.0	0.1173	0.027	4.324	0.000	0.064	0.170
view_4.0	0.2436	0.051	4.730	0.000	0.143	0.344
grade_10	0.2589	0.026	9.868	0.000	0.207	0.310
grade_11	0.4181	0.141	2.961	0.003	0.141	0.695
zipcode4_98020	-0.1122	0.011	-9.881	0.000	-0.134	-0.090
zipcode4_98030	-0.0860	0.010	-8.718	0.000	-0.105	-0.067
zipcode4_98040	-0.1567	0.015	-10.469	0.000	-0.186	-0.127
zipcode4_98060	-0.0552	0.027	-2.061	0.039	-0.108	-0.003
zipcode4_98070	0.1285	0.016	7.933	0.000	0.097	0.160
zipcode4_98090	-0.4208	0.024	-17.744	0.000	-0.467	-0.374

zipcode4_98100	0.3045	0.011	26.970	0.000	0.282	0.327
zipcode4_98110	0.3558	0.010	35.292	0.000	0.336	0.376
zipcode4_98120	0.2334	0.013	17.816	0.000	0.208	0.259
zipcode4_98130	0.1495	0.015	10.127	0.000	0.121	0.178
zipcode4_98150	0.0563	0.019	2.944	0.003	0.019	0.094
zipcode4_98160	-0.2256	0.019	-11.681	0.000	-0.263	-0.188
zipcode4_98170	-0.0977	0.018	-5.360	0.000	-0.133	-0.062
zipcode4_98180	-0.2792	0.034	-8.272	0.000	-0.345	-0.213

 Omnibus:
 48.135
 Durbin-Watson:
 2.022

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 59.797

 Skew:
 -0.069
 Prob(JB):
 1.04e-13

 Kurtosis:
 3.307
 Cond. No.
 70.9

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [37]:

```
# checking normality
fig = sm.graphics.qqplot(model2.resid, dist=stats.norm, line='45', fit=True)
```


In [38]:

```
#Check Homoscedasticity Assumption
plt.figure(figsize = (8,6))
plt.scatter(model2.predict(sm.add_constant(df_train[x_cols])), model2.resid)
plt.plot(model2.predict(sm.add_constant(df_train[x_cols])), [0 for i in range(len(df_train[
```

Out[38]:

[<matplotlib.lines.Line2D at 0x1a4a10c5f40>]

In [39]:

model2 seems pretty good in terms of normality, Homoscedasticity, and R-squared values

Evaluation

In [40]:

```
from sklearn.linear_model import LinearRegression

final_model = LinearRegression()
# Fit the model on X_train_final and y_train
final_model.fit(df_train[x_cols], df_train[outcome])

# Score the model on X_test_final and y_test
# (use the built-in .score method)
print( "Test score: ", final_model.score(df_test[x_cols], df_test[outcome]))
print( "Train score: ", final_model.score(df_train[x_cols], df_train[outcome]))
```

Test score: 0.44378007421545485 Train score: 0.44859642929281374

In [41]:

Train score: 0.44648159473484395 Validation score: 0.4500640604866031

In [42]:

```
# train and validation scores are similar
```

In [43]:

MSE: 0.10077497430795615 RMSE: 0.3174507431208126 MAE: 0.251980604965677 R-Squared: 0.44378007421545485

In [44]:

```
# visualization of real and predicted values for each value
preds = final_model.predict(df_test[x_cols])
fig, axs = plt.subplots(1,2, figsize = (16,8))
perfect_line = np.arange(min(preds.min(),df_test[outcome].min())*0.99, max(preds.max(),df_t
axs[0].plot(perfect_line,perfect_line, linestyle="--", color="black", label="Perfect Fit")
axs[0].scatter(df_test[outcome], preds, alpha=0.5)
axs[0].set_xlabel("Actual Price")
axs[0].set_ylabel("Predicted Price")
axs[0].legend();
axs[0].set_xlim([min(preds.min(),df_test[outcome].min())*0.99, max(preds.max(),df_test[outc
axs[0].set_ylim([min(preds.min(),df_test[outcome].min())*0.99, max(preds.max(),df_test[outc
axs[1].scatter(df_test[outcome], np.divide((df_test[outcome] - preds),df_test[outcome]) * 1
axs[1].set_xlabel("Actual Price")
axs[1].set_ylabel("(Predicted Price - actual price)/actual price * 100")
```

Out[44]:

Text(0, 0.5, '(Predicted Price - actual price)/actual price * 100')

In [45]:

From above values and plots, the fitted regression model can predict house price very wel

Summary about the model

```
In [46]:
```

```
# the beta coefficients
print(pd.Series(final_model.coef_, index=x_cols, name="Coefficients"))
print()
print("Intercept:", final_model.intercept_)
saft lot
                     0.001943
sqft_living15
                     1.096717
sqft_lot15
                    -0.144789
bedrooms_3
                   0.083760
bedrooms_4
                   0.149979
bedrooms_5
                   0.163189
floors 2.5
                   0.226109
floors_3.0
                   0.056801
floors_3.0 0.398927
waterfront_1.0 0.398927
is_renovated_1.0 0.192348
            0.137734
view_1.0
view_2.0
                   0.148326
view_3.0
                   0.117277
view 4.0
                   0.243554
grade_10
                   0.258860
                   0.418129
grade_11
zipcode4_98040
                  -0.156698
zipcode4_98060 -0.055208
zipcode4_98070 0.128485
zipcode4_98090 -0.420847
zipcode4_98100 0.304544
zipcode4_98110 0.355810
zipcode4_98120 0.233377
zipcode4_98130
                   0.149527
                   0.056281
zipcode4_98150
zipcode4_98160 -0.225556
zipcode4_98170
                  -0.097728
zipcode4_98180 -0.279241
Name: Coefficients, dtype: float64
```

Intercept: 12.30344679761995

From coefficients described above, I observed:

- 1) The grade and sqft_living15 have the strongest relationship with the house price
- 2) It is interesting to see the sqft_lot15 has the negative relationship with the house price
- 3) Waterfront_1.0 and grade_11 also have postive relationship with the price
- 4) For some zipcode, e.g., 98100 and 98110, they have high positive relationship with the price

To address the business question:

- 1) For buyer, they will know the house price is higher for a house with high grade and sqrt_living15
- 2) For seller, if they want to sell their house with a higher price, they could add waterfront, improve the grade.

In []:		