机器学习-协同过滤

目录 Contents

01	协同过滤要解决的问题	
02	推荐数据的准备	
03	相似度度量	
04	邻域大小	
05	基于用户的CF	
06	基于物品的CF	

协同过滤要解决的问题

协同过滤算法主要用于推荐系统,推荐系统是信息过载所采用的措施,面对海量的数据信息,从中快速推荐出符合用户特点的物品。一些人的"选择恐惧症"、没有明确需求的人。

解决如何从大量信息中找到自己感兴趣的信息。

解决如何让自己生产的信息脱颖而出,受到大众的喜爱。

协同过滤要解决的问题

	I1	I2	I3	I4	I5	16	I7	I8	I9
U1		1		5	3			2	
U2			2				5		4
U3	3	5		2		4			
U4			3		5		2		1
U5		2		1	2			5	
U6	5		3			5		1	2

推荐数据的准备

用户ID、物品ID、偏好值

偏好值就是用户对物品的喜爱 程度,推荐系统所做的事就是 根据这些数据为用户推荐他还 没有见过的物品,并且猜测这 个物品用户喜欢的概率比较大。

用户ID和物品ID一般通过系统的业务数据库就可以获得,偏好值的采集一般会有很多办法,比如评分、投票、转发、保存出评分、投票的这些行为签、页面停留时间等等,然后系统根据用户的这些行为流水,采取减噪、归一化、一加级等方法综合给出偏好值。一样。

用户行为	类型	特征	作用
评分	显式	整数量化的偏好,可能的取值是 [0, n]; n 一般取值为5或者是10	通过用户对物品的评分,可以精 确的得到用户的偏好
投票	显式	布尔量化的偏好,取值是0或1	通过用户对物品的投票,可以较 精确的得到用户的偏好
转发	显式	布尔量化的偏好,取值是0或1	通过用户对物品的投票,可以精确的得到用户的偏好。 如果是站内,同时可以推理得到 被转发人的偏好(不精确)
保存书签	显示	布尔量化的偏好,取值是0或1	通过用户对物品的投票,可以精 确的得到用户的偏好。
标记标签 (Tag)	显示	一些单词,需要对单词进行分析, 得到偏好	通过分析用户的标签,可以得到 用户对项目的理解,同时可以分 析出用户的情感:喜欢还是讨厌
评论	显示	一段文字,需要进行文本分析, 得到偏好	通过分析用户的评论,可以得到 用户的情感:喜欢还是讨厌
点击流(查看)	隐式	一组用户的点击,用户对物品感 兴趣,需要进行分析,得到偏好	用户的点击一定程度上反映了用 户的注意力,所以它也可以从一 定程度上反映用户的喜好。
页面停留时间	隐式	一组时间信息,噪音大,需要进 行去噪,分析,得到偏好	用户的页面停留时间一定程度上 反映了用户的注意力和喜好,但 噪音偏大,不好利用。
购买	隐式	布尔量化的偏好,取值是0或1	用户的购买是很明确的说明这个 项目它感兴趣。

协同过滤的意思

协同是什么意思?

过滤是什么意思?

相似度度量

皮尔逊相关系数是介于1到-1之间的数,他衡量两个一一对应的序列之间的 线性相关性。也就是两个序列一起增大或者一起减小的可能性。两个序列正相 关值就趋近1,否者趋近于0。

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

数学含义:两个序列协方差与二者方差乘积的比值

如果比较两个人的相似度,那么他们所有共同评价过的物品可以看做两个人的特征序列,这两个特征序列的相似度就可以用皮尔逊相关系数去衡量。物品的相似度比较也是如此。

皮尔逊对于稀疏矩阵表现不好,可以通过引入权重进行优化。

相似度度量

欧几里德距离,这个距离就是平时我们理解的距离,如果是两个平面上的点,也就是(X1,Y1),和(X2,Y2),那这俩点距离就是 $\sqrt{(x1-x2)^2+(y1-y2)^2}$,如果是三维空间中呢? $\sqrt{(x1-x2)^2+(y1-y2)^2+(z1-z2)^2}$;推广到高维空间公式就以此类推。可以看出,欧几里德距离真的是数学加减乘除算出来的距离,因此这就是只能用于连续型变量的原因。

$$d(x,y) = \sqrt{(\sum (x_i - y_i)^2)}$$

协同过滤要解决的问题

有了相似度的比较,那么比较多少个用户或者物品为好呢?一般会有基于 固定大小的邻域以及基于阈值的领域。具体的数值一般是通过对模型的评 比分数进行调整优化。

基于用户的CF

用户/物品	物品A	物品B	物品C	物品D
用户A	√		√	推荐
用户B		√		
用户C	√		√	√

for每个其他用户W 计算用户u和用户W的相似度s 按相似度排序后,将位置靠前的用户作为邻域n for (n中用户有偏好,而u中用户无偏好的)每个物品i for (n中用户对i有偏好的)每个其他用户V 计算用户u和用户V的相似度s 按权重s将V对i的偏好并入平均值

基于物品的CF

用户/物品	物品A	物品B	物品C
用户A	4		√
用户B	√	√	√
用户C	√		推荐

for每个其他物品j for对i和j均有偏好的每个用户u 将物品对(i与j)间的偏好值差异加入u的偏好

> for用户u未表达过偏好的每个物品i for用户u表达过偏好的每个物品j 找到j与i之间的平均偏好值差异 添加该差异到u对j的偏好值 添加其至平均值

Return值最高的物品(按平均差异排序)

ALS优化

V	v1	v2	v3	v4	v5	v6	v7
u1	3	?	5	5	?	4	?
u2	5	?	t.tn: ? //h1/	ng csdn n	et/ ?	?	?
u3	5	5	?	?	5	5	?
u4	?	4	4	?	2	5	?
u5	?	5	?	5	3	3	?

既然要打分,那么?

	item 1	item 2	item 3	item 4			class 1	class 2	class 3			item 1	item 2	item 3	item 4
user 1	R11	R12	R13	R14	_	user 1	P11	P12	P13		class 1	Q11	Q12	Q13	Q14
user 2	R21	R22	R23	R24	.7)	user 2	P21	P22	P23	×	class 2	Q21	Q22	Q23	Q24
user 3	R31	R32	R33	R34	0.00	user 3	P31	P32	P33	Ser	class 3	Q31	Q32	Q33	Q34
		P						D					O		

P: 用户是不是有一些隐含的特征?

Q: 物品是不是有一些隐含的特征?

如果Match?

ALS优化

>/5	v1	v2	v3	v4	v5	v6	v7
u1	3	?	5	5	?	4	?
u2	5	?	t.tn: ? //h1/	ng csdn n	et/ ?	?	?
u3	5	5	?	?	5	5	?
u4	?	4	4	?	2	5	?
u5	?	5	?	5	3	3	?

既然要打分,那么?

损失函数:吉洪诺夫正则化

$$\min_{x_*, y_*} \sum_{u, i \text{ is known}} (r_{ui} - x_u^T y_i)^2$$

$$\min_{x_*, y_*} \sum_{u, i \text{ is known}} (r_{ui} - x_u^T y_i)^2 \qquad \min_{x_*, y_*} L(X, Y) = \min_{x_*, y_*} \sum_{u, i \text{ is known}} (r_{ui} - x_u^T y_i)^2 + \lambda (|x_u|^2 + |y_i|^2)$$

$$\frac{\partial C}{\partial v_{j}} = \frac{\partial}{\partial v_{j}} \left[\sum_{i=1}^{m} \left[(a_{i,j} - (u_{i}^{(0)})^{T} v_{j})^{2} + \lambda (\|u_{i}^{(0)}\|^{2} + \|v_{j}\|^{2}) \right] \right]
= \sum_{i=1}^{m} \left[2(a_{i,j} - (u_{i}^{(0)})^{T} v_{ij}) (-u_{i}^{(0)}) + 2\lambda v_{j} \right]
= 2\sum_{i=1}^{m} \left[((u_{i}^{(0)})^{T} u_{i}^{(0)} + \lambda) v_{j} - a_{i,j} u_{i}^{(0)} \right] \qquad \frac{\partial C}{\partial v_{j}} = 0$$

协同过滤推荐架构

- ①. 查询的是与该用户相似的用户,所以一来直接查了关系数据源。以及相似用户与该用户的相似度。
- ②. 对数据集进行优化,得到相似用户和相似度。
- ③. 查询关系数据源,得到相似用户即邻居偏好过的物品;如步骤④;图中由于空间小,没有把所有邻居的偏好关系都列出来,用……表示。其次还要得到该用户偏好过的
- ④. 被推荐的Item集合是由该用户的所有邻居的偏好过的物品的并集,同时再去掉该用户自己偏好过的物品。作用就是得到你的相似用户喜欢的物品,而你还没喜欢过的。
- ⑤. 集合优化同基于物品的协同过滤算法的 步骤②。
- ⑥. 也是对应类似的,依次计算被推荐集合中Item_i 的推荐值,计算的方式略有不同,Value_1_i表示邻居1对,Item_i的偏好值,乘以该用户与邻居1的相似度 Similarity1;若某个邻居对Item_i偏好过,就重复上述运算,然后取平均值;得到Item_i的推荐值。⑦、⑧. 与上一个算法的最后两部完全类似,只是步骤 ⑧你竖着看,判断两个用户相似的法子和判断两个物品相似的法子一样。