1. Teil: Multiple-Choice

1.	Bei den folgenden Fragen ist jeweils genau eine Antwort richtig; diese ist anzukreuzer bzw. einzusetzen. Beweise oder Begründungen sind hier nicht erforderlich.
	Für eine richtige Antwort bekommen Sie jeweils 2 Punkte ; für eine falsche Antwort be kommen Sie dieselbe Punktzahl abgezogen. Sollte sich dadurch für diese Aufgabe insgesammen eine negative Punktzahl ergeben, wird die ganze Aufgabe mit 0 Punkten gewertet.
	(a) Es sei k ein Körper, $A \in M(n \times m, k)$ eine Matrix mit n Zeilen und m Spalten, wobe $n < m$ ist. Es sei $\lambda \in k^*, c \in k, v \in k^n, w \in k^m$. Welcher der folgenden Ausdrücke is nicht sinnvoll?
	$\Box {}^{t}(\lambda A) \cdot v \qquad \Box c \cdot A \cdot (\lambda v) \qquad \Box \lambda^{-1} \cdot c \qquad \Box (\lambda A) \cdot (c \cdot w)$
	(b) Es sei V ein endlich-dimensionaler Vektorraum über einem Körper k und U, W Untervektorräume von V . Welche der folgenden Aussagen ist korrekt?
	$\Box \dim(U+W) = \dim U + \dim W$ $\Box \dim(U+W) = \dim U + \dim W - \dim(U\cap W)$ $\Box \dim(U+W) = \dim U + \dim W + \dim(U\cap W)$
	(c) Welche Dimension hat der Vektorraum der linearen Abbildungen $\mathbb{R}^3 \to \mathbb{R}^4$?
	(d) Es sei k ein Körper. Ist die Menge der invertierbaren $(n \times n)$ -Matrizen eine Untergruppe von $(M(n \times n, k), +)$?
	\square Ja \square Nein
	(e) Es sei k ein Körper. Es sei $A \in M(4 \times 3, k)$. Was lässt sich über den Rang von Asagen?
	\square Rang $(A) \ge 4$ \square Rang $(A) \ge 3$
	\square Rang $(A) \ge 2$ \square Rang $(A) \le 3$
	□ Es läßt sich keine allgemeine Aussage treffen.

Es sei ein homogenes lineares Gleichungssystem mit n Gleichungen und m Unber kannten über IR gegeben. Es gibt mindestens zwei Lösungen, wenn
Die Gruppe $GL_2(\mathbb{R})$ wirke auf \mathbb{R}^2 . Es sei O die Bahn durch den Vektor $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Dani gilt:
$\square \ O = \{0\} \qquad \square \ O = \{\lambda \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} \mid \lambda \in \mathbb{R}\} \qquad \square \ O = \mathbb{R}^2 \setminus \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \square \ \mathbb{R}^2 \setminus \{0\}$
Welche der folgenden Abbildungen $\mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ definiert eine Gruppenwirkung de Gruppe ($\mathbb{R}, +$) auf \mathbb{R}^2 ? $\Box \ (t, v) \mapsto t \cdot v \qquad \Box \ (t, v) \mapsto e^t \cdot v \qquad \Box \ (t, v) \mapsto t + v$
Es sei $A=\begin{pmatrix}1&-2\\2&-4\end{pmatrix}$. Für welche der folgenden Matrizen B gibt es Matrizen $T_1,T_2\in GL_2(\mathbb{R})$, so dass $T_1AT_2=B$? $\square \ B=\begin{pmatrix}0&0\\1&0\end{pmatrix}$
$ \Box B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \Box B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Box B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $
Es sei $f: \mathbb{R}^n \to \mathbb{R}^m$ linear und $f^*: (\mathbb{R}^m)^* \to (\mathbb{R}^n)^*$ die duale Abbildung. Welche der folgenden Aussagen ist korrekt? $\Box f$ ist injektiv $\Rightarrow n < m$ $\Box f^*$ ist injektiv $\Rightarrow n \leq m$ $\Box f$ ist surjektiv $\Rightarrow n \geq m$

2. Teil: Rechenaufgaben

2. (16 Punkte) Es sei $F: \mathbb{R}^4 \to \mathbb{R}^4$ die lineare Abbildung, die bezüglich der kanonischen Basis des \mathbb{R}^4 durch die Matrix

$$\begin{pmatrix} 2 & 1 & -2 & 1 \\ 4 & 1 & -2 & -3 \\ 1 & -1 & 2 & -3 \\ 2 & 2 & -4 & -5 \end{pmatrix}$$

beschrieben wird. Bestimmen Sie den Rang der Matrix sowie eine Basis des Bildes von F.

3. Es sei $F:\mathbb{R}^2 \to \mathbb{R}^2$ die lineare Abbildung, die bezüglich der Standardbasis durch die Matrix

$$A = \begin{pmatrix} 5 & 4 \\ -1 & 1 \end{pmatrix}$$

gegeben ist.

- (a) (5 Punkte) Zeigen Sie: $U = \{v \in \mathbb{R}^2 \mid A \cdot v = 3 \cdot v\}$ ist ein Untervektorraum von \mathbb{R}^2 .
- (b) (8 Punkte) Geben Sie eine Basis von U an. Hinweis: Es kann helfen, die Abbildung $F - 3 \cdot Id$ zu betrachten.
- (c) (5 Punkte) Geben Sie die Matrix der Abbildung F bezüglich der Basis $\left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ an.

Hinweis: Sie müssen nicht zeigen, dass es sich hierbei um eine Basis handelt.

3. Teil: Definitionen und Sätze

- 4. Es seien V,W endlich-dimensionale Vektorräume über einem Körper k .
 - (a) Vervollständigen Sie die folgenden Definitionen der jeweils unterstrichenen Begriffe: (je 2 Punkte)
 - (i) "Es sei G eine Gruppe, M eine Menge. Eine Abbilding $\varphi: G \times M \to M$ heißt Gruppenwirkung, falls …"
 - (ii) "Die zu einer linearen Abbildung $F:V\to W$ duale Abbildung ist …"
 - (iii) "Eine endliche Teilmenge $\{v_1,\dots,v_n\}$ von V heißt linear unabhängig, falls …"
 - (b) (4 Punkte) Geben Sie die Dimensionsformel für eine lineare Abbildung $F: V \to W$ an.
 - (c) (4 Punkte) Formulieren Sie den Basisaustauschsatz.

4. Teil: Kleine Beweise

- 5. Es seien V,W endlich-dimensionale Vektorräume über einem Körper k .
 - (a) (10 Punkte) Beweisen Sie: Wenn V n-dimensional ist, dann ist eine endliche Teilmenge $\{v_1, \ldots, v_n\}$ von V genau dann linear unabhängig, wenn sie ein Erzeugendensystem ist. [Ein Verweis auf die entsprechende Aussage der Vorlesung gilt nicht als Beweis.]

- (c) Es sei $F:V\to V$ ein Endomorphismus mit der Eigenschaft, dass $F\circ F=F.$ Beweisen Sie:
 - (i) (4 Punkte) Für alle $v \in Im(f)$ gilt: v = f(v).
 - (ii) (3 Punkte) $Kerf \cap Imf = \{0\}.$
 - (iii) (3 Punkte) Kerf + Imf = V. (Hinweis: Dimensionsformeln)
 - (iv) (3 Punkte) Es existiert eine Basis B von V, so dass

$$M_B^B(f) = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix},$$

wobei E die Einheitsmatrix geeigneter Größe, und 0 Null-Matrizen geeigneter Größe bezeichnen.

6. (4 Punkte) Es sei $n \in \mathbb{N} \setminus \{0\}$, und $\{e_1, \ldots, e_n\}$ die kanonische Basis des \mathbb{R}^n . Es sei S_n die symmetrische Gruppe. Wir definieren eine Abbildung $\rho: S_n \to GL_n(\mathbb{R})$ durch

$$\rho(\sigma) = \left(e_{\sigma(1)}, e_{\sigma(2)}, \dots, e_{\sigma(n)}\right).$$

(Also: die i.te Spalte der Matrix $\rho(\sigma)$ ist genau der $\sigma(i).$ te Einheitsvektor.)

Zeigen Sie: ρ ist ein Gruppenhomorphismus.

Hinweis: Wenn j gegeben ist, was ist $\rho(\sigma) \cdot (\rho(\tau) \cdot e_j)$?