Лекция 2, 30.09.11

Элемент e некоторой полугруппы называется udemnomenmom, если $e^2=e$.

Лемма 1. B конечной полугруппе для любого элемента найдется его степень, которая является идемпотентом.

Доказательность Степеней a,a^2,a^3,\ldots . Поскольку последовательность бесконечна, а полугруппа конечна, найдутся такие натуральные числа n и k, что $a^n=a^{n+k}$. Понятно, что тогда $a^m=a^{m+k}$ для любого $m\geq n$. Рассмотрим элемент a^{nk} . Имеем

$$a^{nk} = a^{nk+k} = a^{nk+2k} = \dots = a^{nk+nk} = (a^{nk})^2.$$

П

Следовательно, a^{nk} – идемпотент.

Упражнение 1. Пусть полугруппа S имеет порядок n. Доказать, что для любого $a \in S$ элемент $a^{n!}$ – идемпотент.

Предложение 1. B конечной полугруппе $\mathscr{D} = \mathscr{J}$

Доказательство. Включение $\mathscr{D}\subseteq\mathscr{J}$ выполняется в силу того, что \mathscr{J} содержит \mathscr{L} и \mathscr{R} , а \mathscr{D} – наименьшее отношение эквивалентности, содержащее и \mathscr{L} , и \mathscr{R} .

Пусть $a \mathscr{J}b$. Найдутся такие $u,v,x,y\in S^1$, что uav=b и xby=a, откуда xuavy=a. Подставляя в левую часть этого равенства xuavy вместо a, получим $(xu)^2a(vy)^2=a$. Повторяя этот процесс, получим, что $(xu)^ka(vy)^k=a$ для любого k. По лемме 1 найдется такое k, что элементы $e=(xu)^k$ и $f=(vy)^k$ – идемпотенты. Равенство $(xu)^ka(vy)^k=a$ можно переписать как eaf=a. Домножая его слева на e, получим eaf=ea, откуда ea=a. Аналогично, домножая равенство eaf=a справа на f, получим eaf=af, откуда af=a.

Покажем, что $ua \mathcal{L} a$. Ясно, что $ua \in S^1a$. Обратно, имеем $a = ea = (xu)^k a = (xu)^{k-1}x \cdot ua \in S^1ua$. Аналогично проверяется, что $a \mathcal{R} av$. Учитывая, что отношение \mathcal{R} стабильно справа, получаем, что $ua \mathcal{R} uav = b$. Итак, $a \mathcal{L} ua \mathcal{R} b$, т.е. $a \mathcal{L} \mathcal{R} b$ и $a \mathcal{D} b$

Предложение 2. 1. Пусть e-uдемпотент. Тогда $a\leq_{\mathscr{R}} e$ тогда u только тогда, когда ea=a, u $a\leq_{\mathscr{L}} e$ тогда u только тогда, когда ae=a.

2. Если $a \leq_{\mathscr{R}} axy$, то $a\mathscr{R} ax\mathscr{R} axy$. Если $a \leq_{\mathscr{L}} yxa$, то $a\mathscr{L} xa\mathscr{L} yxa$.

В конечных полугруппах верны еще два свойства.

- 3. Если $a \leq_{\mathscr{I}} ax$, то $a\mathscr{R}ax$. Если $a \leq_{\mathscr{I}} xa$, то $a\mathscr{L}xa$.
- 4. Echu $a \leq_{\mathscr{L}} b$ u $a \not = b$, mo $a \mathscr{L} b$. Echu $a \leq_{\mathscr{R}} b$ u $a \not = b$, mo $a \mathscr{R} b$.

Доказательство. 1. Если $a \leq_{\mathscr{R}} e$, то найдется такой элемент $u \in S^1$, что a = eu. Умножив это равенство на e слева, получим ea = eu = a. Обратная импликация очевидна.

- 2. Ясно, что $a \ge_{\mathscr{R}} ax \ge_{\mathscr{R}} axy$. Поэтому если $a \le_{\mathscr{R}} axy$, то $a \mathscr{R} ax \mathscr{R} axy$.
- 3. Если $a \leq_{\mathscr{J}} ax$, то найдутся такие элементы $u,v \in S^1$, что a=uaxv. Подставляя в правую часть этого равенства uaxv вместо a, получим, что $a=u^ka(xv)^k$ для всех натуральных k. По лемме 1 найдется такое k, что $u^k=e$ идемпотент. Тогда $a=ea(xv)^k$, откуда a=ea и $a=a(xv)^k=ax\cdot v(xv)^{k-1}$. Мы видим, что $a\leq_{\mathscr{R}} ax$. Поскольку всегда выполняется $a\geq_{\mathscr{R}} ax$, заключаем, что $a\mathscr{R} ax$.
- 4. Если $a \leq_{\mathscr{L}} b$, то a = ub для некоторого $u \in S^1$. Поэтому $ub \mathscr{J} b$, откуда по предыдущему пункту имеем $b\mathscr{L} ub$, т. е. $a\mathscr{L} b$.

Пусть $a \in S$, договоримся обозначать

```
\mathscr{R}-класс, содержащий a, через R_a; \mathscr{L}-класс, содержащий a, через L_a; \mathscr{H}-класс, содержащий a, через H_a; \mathscr{D}-класс, содержащий a, через D_a.
```

Заметим, что $H_a = L_a \cap R_a$ для любого a.

Лемма 2. Пусть $L-\mathcal{L}$ -класс, $R-\mathcal{R}$ -класс. Тогда $R\cap L\neq\varnothing$ тогда u только тогда, когда L u R содержатся в одном D-классе.

Доказательство. Пусть $a \in L \cap R$. Тогда ясно, что L и R содержатся в D_a . Обратно, пусть L и R содержатся в \mathscr{D} -классе D. Возьмем произвольные $x \in L$ и $y \in R$. Тогда $x \mathscr{D} y$, т.е. существует такой элемент a, что $x \mathscr{L} a \mathscr{R} y$. Тогда $a \in L \cap R$, откуда $L \cap R \neq \varnothing$.

Лемма 2 подсказывает, что \mathscr{D} -классы удобно мыслить себе как прямоугольные таблицы (по традиции именуемые egg-box $\kappa apmun\kappa amu$), в которых строки изображают \mathscr{R} -классы, столбцы — \mathscr{L} -классы, а ячейки — \mathscr{H} -классы.

Рис. 1: Egg-box картинка

Следующий важный результат показывает, что элементы каждого \mathscr{D} -класса распределены по ячейкам соответствующей egg-box картинки равномерно.

Предложение 3 (Лемма Грина). Пусть $a \mathscr{R} b$, m. e. существуют $u,v \in S^1$, такие что au = b u bv = a. Рассмотрим отображения $\rho_u : S \to S$, задаваемое правилом $x \rho u = xu$, u $\rho_u : S \to S$, задаваемое правилом $x \rho v = xv$. Тогда ограничение ρ_u на класс L_a — это биекция L_a на L_b , ограничение ρ_v на класс L_b — обратная κ ней биекция, u оба ограничения сохраняют \mathscr{H} -классы.

Доказательство. Возьмем произвольный элемент $x \in L_a$. Из $x \mathcal{L} a$ следует, что $xu \mathcal{L} au = b$, поскольку отношение \mathcal{L} стабильно справа. Следовательно, $L_a \rho_u \subseteq L_b$. Далее, существует элемент $t \in S^1$, такой, что x = ta. Имеем

$$x\rho_u\rho_v = xuv = tauv = tbv = ta = x,$$

т.е. ограничение ρ_v на класс L_b – обратное отображение к ограничению ρ_u на класс L_a .

Получается, что ограничение ρ_v на класс L_b отображает L_b на L_a , следовательно, ограничения ρ_u и ρ_v на соответственно L_a на L_b – взаимно обратные биекции. Поскольку xuv=x, имеем $x\mathcal{R}xu$, и если $x\,\mathcal{H}\,y$, то $xu\,\mathcal{H}\,yu$. Обратно, если $xu\,\mathcal{H}\,yu$, то $x\,\mathcal{H}\,y$

Предложение 4 (Теорема Миллера-Клиффорда). Пусть $a, b \in S$, тогда $ab \in R_a \cap L_b$ тогда и только тогда, когда пересечение $R_b \cap L_a$ содержит идемпотент.

Доказательство. Пусть $ab \in R_a \cap L_b$. По лемме Грина $\rho_b|_{L_a}$ — биекция L_a на L_b . Поэтому в $R_b \cap L_a$ найдется такой элемент e, что $e\rho_b = eb = b$. Поскольку $e \mathscr{R} b$, имеем e = bx для некоторого $x \in S^1$. Отсюда $e^2 = e(bx) = (eb)x = bx = e$, т. е. e — идемпотент.

Обратно, пусть e — идемпотент из $R_b \cap L_a$. Имеем eb = b и ae = a. Умножив отношение $e\mathscr{R}b$ слева на a, получим $a = ae, \mathscr{R}ab$. Аналогично, умножив отношение $e\mathscr{L}a$ справа на b, получим $b = eb\mathscr{L}ab$. Следовательно $ab \in R_a \cap L_b$.

Следствие 1. Пусть $H-\mathcal{H}$ -класс, тогда следующие условия эквивалентни:

- 1. Н содержит идемпотент.
- 2. Cywecmeywm $a, b \in H$, makue, umo $ab \in H$.
- 3. H rpynna.

Доказательство. Импликации $1 \Rightarrow 2$ и $3 \Rightarrow 1$ очевидны.

 $2\Rightarrow 3$. Имеем $H=R_a\cap L_b=R_b\cap L_a$. По теореме Миллера-Клиффорда в H найдется идемпотент e. Применяя ту же теорему в обратную сторону, заключаем, что для любых $g,h\in H$ произведение gh принадлежит H, т.е. H — полугруппа. Для любого $h\in H$ отображение $\rho_h|_H$ — биекция H на H. Отсюда, в частности, следует, что ge=g для любого $g\in H$. В силу симметричных рассуждений eg=g для любого $g\in H$, т. е. e — единица в H. Наконец, из того, что $\rho_h|_H$ — биекция H на H, следует, что для любого $h\in H$ существует элемент h', такой, что h'h=e. Следовательно H — группа. \square

Заметим, что если H – группа, то H – максимальная подгруппа. Действительно, если G – какая-то подгруппа полугруппы S, то любые два элемента $g,h\in G$ делят друг друга и справа, и слева: $g=h\cdot h^{-1}g$, $h=g\cdot g^{-1}h$ и аналогично слева. Поэтому G содержится в некотором \mathscr{H} -классе H. Поскольку H содержит идемпотент (а именно, единицу подгруппы G), по только что доказанному следствию H есть подгруппа. Итак, каждая подгруппа полугруппы содержится ровно в одной максимальной подгруппе, а именно, в \mathscr{H} -классе единицы этой подгруппы.