Gendered Abuse Detection in Indic Languages

Natural language processing

CSE 556

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Group No. 8

Dushyant Singh(2022181)

Mridul Goel(2022303)

Sujal Soni(2022513)

Problem Statement and Motivation

The Problem:

- Gendered Abuse: Derogatory language targeting gender, often veiled in cultural or contextual expressions.
 - Example: Hindi slurs or Tamil phrases that traditional filters miss.
- Challenges:
 - Subtlety: Implicit insults evade keyword-based detection.
 - Multilingualism: Indic languages have diverse scripts, syntax, and slang.
 - o Imbalance: Abusive content is a minority class, complicating model training.

Motivation:

- **Social Impact**: Protect marginalized groups from online harassment.
- Technological Gap: Existing tools (e.g., English-focused BERT) underperform in Indic contexts.
- Research Opportunity: Leverage XLM-R and transfer learning for scalable, robust detection.

Objective:

- Build a classifier using the provided dataset only to detect gendered abuse (label 1)
- Use transfer learning from other open datasets for hatespeech and toxic language detection in Indic languages to build a classifier to detect gendered abuse (label 1)
- Build a multi-task classifier that jointly predicts both gendered abuse (label 1) and explicit language (label 3)

Related Work and Foundations

Early Approaches:

- Keyword-based filters and bag-of-words models (e.g., TF-IDF + Naive Bayes).
- Limitations: Missed context (e.g., "hot" as slang vs. temperature) and struggled with multilingualism.
- Statistical models (e.g., TF-IDF + SVM): Limited by shallow feature extraction.

Deep Learning Era:

- CNNs: Captured local patterns but struggled with long dependencies.
- LSTMs: Improved sequence modeling but computationally heavy.

Transformers:

- BERT: Strong for monolingual tasks, less effective for multilingual Indic data.
- XLM-R: Pretrained on 100+ languages, ideal for cross-lingual transfer.

Pros of XLM:

- Better handling of multilingual text.
- Richer semantic understanding.

Key Studies:

- ULI Dataset (arXiv:2311.09086): Labeled Indic language posts with annotator guidelines.
- Hate Speech Benchmarks:
 - Davidson et al. (English hate speech dataset).
 - Kaggle Hindi and Dreamspace Tamil datasets for pretraining.
- **Transfer Learning**: Prior work shows pretraining on related tasks boosts recall in low-resource settings.

Our Positioning:

- Extend XLM-R with custom GRU and attention layers.
- Focus on gendered abuse, explicit language, and their intersection.

Cons of XLM:

- High memory/computational cost.
- Limited by pretraining domain (e.g., news, Wikipedia).

Dataset and Preprocessing

Dataset Details:

- Source: ULI Dataset (train_en_l1.csv, train_hi_l1.csv, train_ta_l1.csv).
- Posts:
 - English: 7,638Hindi: 7,714
 - o Tamil: 7,914
- Splits: Train and test sets per language
- Labels: Binary (0 = non-abusive, 1 = abusive).
 - Label 1: Gendered abuse (not targeting marginalized genders/sexualities)
 - Label 2: Gendered abuse (targeting marginalized genders/sexualities)
 - Label 3: Explicit or aggressive content
- Aggregation:
 - Majority voting (e.g., [0, 0, 1, 1, 1, 0] → 1).
 - Handling NaNs: Dropped rows with <3 valid annotations to ensure reliability.
- Challenges:
 - Missing Annotations.
 - Imbalance: requiring mitigation strategies like class weights.

Preprocessing Pipeline:

Text Cleaning:

- Removed URLs (http://...), HTML tags (), digits, and special characters (#@!).
- \circ Example: "Check this out http://xyz.com \circ " \rightarrow "check this out [smiley]".

2. Emoji Handling:

- Converted emojis to text (e.g., ⇔ "laughing face") using Python's emoji library.
- o Preserves sentiment critical for abuse detection.

Normalization:

- Lowercased text (e.g., "WOMEN" → "women").
- Replaced contractions (e.g., "can't" → "cannot").

4. Tokenization:

- XLM-R tokenizer splits text into subwords (e.g., "playing" →
 ["play", "##ing"]).
- Max lengths: English=128, Hindi=150, Tamil=160 (due to script complexity).

5. Language-Specific Steps:

- Hindi: Normalized Devanagari Unicode (e.g., "हिन्दी" → consistent glyphs).
- o **Tamil**: Handled agglutination (e.g., "வேலைக்கு" split into morphemes).

Model Architecture

1. Input:

- Token IDs and attention masks from XLM-R tokenizer.
- Padding to max sequence length per language.

XLM-RoBERTa:

- These are pretrained on 100+ languages, outputs 768-dimensional embeddings per token.
- o Why Chosen: Superior cross-lingual transfer and handling of code-switching (e.g., "Bro, ये too much है").

3. Bidirectional GRU (512 units, 2 layers):

- It processes embeddings bidirectionally, capturing past/future context.
- \circ $\;$ Example: "She is useless" \rightarrow GRU links "useless" to "she" for gendered intent.

4. Multi-Head Attention (4 heads, key_dim=64):

- It focuses on critical tokens (e.g., slurs or pronouns) across the sequence.
- Attention weights reveal model focus (e.g., "she" and "useless" weighted higher).

5. Global Average Pooling:

- It aggregates sequence into a fixed 512-D vector, emphasizing overall context.
- Why Not Max Pooling: Avoids over-focusing on single extreme tokens.

6. **Dropout (0.2)**:

It prevents overfitting, tested with 0.1-0.3 (0.2 optimal).

Dense Output:

- Binary: Sigmoid (0-1 probability).
- Multi-Class: Softmax (4 classes).

Model Architecture

Why This architecture is used?

- **Purpose-Built for Indic Languages:** It is especially built for detecting gendered abuse in Hindi, Tamil, and Indian English to progress in this task.
- **Multilingual Understanding:** The architecture uses pretrained **XLM-RoBERTa**, a model that understands multiple languages effectively which helps to maintain consistency across dataset and It can also understand mixed languages.
- Context-Aware Processing: It includes a Bidirectional GRU to understand sentence meaning in both directions.
- Focus on Important Words: It uses Multi-Head Attention to highlight key parts of the text that indicate abuse and get more contextually aware meaning.
- Simplified and Stable Outputs: It uses Global Average Pooling and Dropout to reduce complexity and prevent overfitting.
- Flexible Output Layer: It can adapts to different tasks which is required in our project
 - Binary classification (e.g., is this abusive?)
 - Multi-class classification (e.g., Predicting gendered abuse and hat speech?)

Task Wise Analysis

Task 1: Binary Classification: Gendered Abuse Detection

Detect gendered abuse in posts using the ULI dataset (English, Hindi, Tamil).

Model

- Architecture: XLM-R + BiGRU + Multi-Head Attention (Section 3.3)
- Output: Sigmoid for binary predictions
- Training: Preprocessed multilingual data

Threshold Optimization

- Challenge: Class imbalance (fewer abusive instances) solved using class weights.
- Process:
 - Evaluated thresholds beyond default 0.5
 - Computed precision, recall at each threshold
 - Selected threshold with highest F1-score
- Outcome: Balanced detection of abuse vs. false positives

Task 2: Transfer Learning for Hate Speech Detection

 Detect gendered abuse (0 = non-abusive, 1 = abusive) using only ULI data.

Datasets: were preprocessed

English: <u>Davidson et al. (GitHub)</u>

Hindi: Kaggle Multi-labeled Hate Speech

• Tamil: <u>Dreamspace Academy Dataset</u>

Approach:

- The Model with architecture as mentioned earlier was trained on these indic datasets.
- Then they were finetuned on train_*_I1.csv and finally tested on test_*_I1.csv

Benefits

- Improves generalization across languages
- Enhances recall for underrepresented abusive cases
- Adapts to specific gendered abuse patterns

Task 3: Multi-Class Classification: Gendered + Explicit Language

- **0**: Neutral (no abuse) **1**: Gendered abuse only
- 2: Explicit language 3: Both gendered and explicit

Label Generation: label_1: Aggregated from 6 annotators (max frequency) for gendered abuse, label_3: Aggregated from 6 annotators (max frequency) for explicit language

Logic: Label 0: Neither label_1 nor label_3 positive, Label 1: Only label_1 positive, Label 2: Only label_3 positive, Label 3: Both label_1 and label_3 positive

Layers:

- XLM-R for multilingual embeddings
- Bi-GRU to capture context
- Multi-Head Attention for key token focus
- Global Average Pooling

Output: Softmax for 4-class prediction

Training: 5 epochs, categorical cross-entropy, class weights

Evaluation

Metrics: F1-Score: Balances precision/recall, ideal for imbalanced data.

- Baseline 1 (Table 1):
 - o Tamil outperforms others (T1: 0.79, T2: 0.78, T3: 0.21) across all tasks.
 - English and Hindi show moderate performance (T1: 0.68-0.60, T2: 0.53-0.69, T3: 0.20-0.21).
 - Task 3 (explicit/aggressive) is consistently weak across languages (0.20-0.21).
- Baseline 2 (Table 2):
 - Tamil again leads (T1: 0.85, T2: 0.75, T3: 0.39).
 - English improves significantly (T1: 0.85, T2: 0.65, T3: 0.32).
 - Hindi shows steady performance (T1: 0.78, T2: 0.65, T3: 0.27).
 - Task 3 remains the weakest, with Tamil at 0.39.
- XLM-BiGRU (Table 3):
 - o Tamil excels (T1: 0.78, T2: 0.53, T3: 0.42).
 - o English performs well (T1: 0.66, T2: 0.72, T3: 0.43).
 - o Hindi lags (T1: 0.59, T2: 0.45, T3: 0.40).
 - Task 3 shows slight improvement across all languages.

Insights

- Language Performance: Tamil consistently outperforms English and Hindi, possibly due to dataset quality or annotation consistency.
- **Task Difficulty**: Task 3 (explicit/aggressive content) is the hardest to detect, with low F1 scores across all models and languages, suggesting a need for better feature engineering or data.
- **Model Improvement**: Baseline 2 and XLM-BiGRU show better results than Baseline 1, indicating that advanced architectures (e.g., BiGRU) enhance detection, especially for Task 2.

Language	T1	T2	T3
English	0.68	0.53	0.20
Hindi	0.60	0.69	0.20
Tamil	0.79	0.78	0.21

Table 1: Macro F1 score of Baseline 1 across English, Hindi, and Tamil on Tasks 1, 2, and 3

Language	T1	T2	T3
English	0.85	0.65	0.32
Hindi	0.78	0.65	0.27
Tamil	0.85	0.75	0.39

Table 2: Macro F1 score of Baseline 2 across English, Hindi, and Tamil on Tasks 1, 2, and 3

Language	T1	T2	T3
English	0.66	0.72	0.43
Hindi	0.59	0.45	0.40
Tamil	0.78	0.53	0.42

Table 3: Macro F1 score of XLM-BiGRU across English, Hindi, and Tamil on Tasks 1, 2, and 3

Conclusion and Future Works

Conclusion:

- Built a high-performing system for gendered abuse detection, leveraging XLM-R, BiGRU, and attention.
- Transfer learning and threshold optimization were key to success.
- Contributes to NLP for social good in underrepresented languages.

Future Directions:

- More Languages: Add Bengali, Telugu, Marathi with new datasets.
- **Real-World Deployment**: API integration for platforms like Twitter.
- **Model Enhancements**: Test GPT-style models or graph networks.
- **User Feedback**: Active learning with moderator input.
- **Ethical Considerations**: Mitigate bias (e.g., over-flagging neutral female mentions).