General Chemistry 1 (CHEM 1141)

Shawnee State University – Fall 2021 October 21, 2021

Exam 2A

Name ___ K EY

Please write your full name, and the exam version (2 A) that you have of (Bubble in the best answer choice for each question on the green & white s	
Please ☑ check the box next to your correct section number.	
Section #: ☐ 1. (Mon Lab, 11:10 AM − 1:55 PM) ☐ 2. (Wed Lab, 11:10 AM − 1:55 PM) ☐ 3. (Mon Lab, 2:30 PM − 5:20 PM) ☐ 4. (Wed Lab, 2:30 PM − 5:20 PM) ☐ Napper	
Multiple Choice:	/ 50
Q21: Q22:	/ 10 / 10
Q23:	/ 10
Q24:	/ 10
Q25:	/ 10
BONUS:	/ 3
TOTAL:	/ 100

You are only allowed to use a TI30-XIIS or equivalent non-programmable calculator on this exam!

(This means no cell phones, no smart phones, no smart watches, no iPads, or any other such devices will be allowed!)

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q21. [10 pts.] Write the balanced molecular, full-ionic, and net-ionic chemical equations for the following reaction: Be sure to include state symbols and charges where necessary.

Molecular: $(NH_4)_2SO_4(aq) + 2AgNO_3(aq) \longrightarrow 2NH_4NO_3(aq) + Ag_2SO_4(s)$

Full-Ionic: 2 NH 4 (05) + SO4 (07) + 2Ag (05) + 2NO3 (07) -> 2NH 4 (05) + 2NO3 (07) + Ag 2 SO4(5)

Net-Ionic: 2A5 (1921 + 504-(1821 -> A5250415)

Q22. [10 pts.] An organic compound is found to contain 63.1 % C, 7.43 % H, and 29.5 % N by mass. Calculate its empirical formula?

Assume 100.9 sample:

$$63 \cdot \lg C \times \frac{10001 \, C}{12.015 \, C} = 5.25 \, \text{mol} \, C$$

$$7.435 \, H \times \frac{10001 \, H}{1.0085 \, H} = 7.37 \, \text{mol} \, H$$

$$29.55 \, N \times \frac{10001 \, N}{14 \, \text{olg} \, N} = 2.11 \, \text{mol} \, N$$

$$50 : \, C_5 \, H_7 \, N_2$$

Q23. [10 pts.] In a titration experiment, what volume (in mL) of 0.520 M LiOH would be required to neutralize 35.0 mL of 1.50 M H_2SO_4 ?

Hint: start by writing out a balanced chemical equation!

Q24. [10 pts.] Answer each of the questions listed below the reaction equation.

$$\int A1 + Cr_2O_3 \rightarrow Al_2O_3 + \mathcal{L} Cr$$

Provide a correctly balanced equation for this reaction by writing the correct coefficients in front of each reactant and product.

Show how to determine (by calculation) the theoretical yield (in grams) of Cr that could be produced by the reaction of 40.0 g of Cr₂O₃ with 8.00 g of Al.

The limiting reactant for this equation is

A

Given the above conditions, a CHEM 1141 student carries out this reaction and obtains 12.5 g of Cr. Show how to determine (and then calculate) the percent yield for this reaction.

$$7. \text{ yield} = \frac{\text{achiel}}{\text{Theorehical}} \times 100$$

$$= \frac{12.5g}{15.4g} \times 100 = 81.2\% \text{ (5s.f.)}$$

Q25. [10 pts.] From the given list of possible answers, choose the correct answer for each of the questions below.

solute

CaCl₂

Arrhenius base

 Ag_2SO_4

Possible Answers

Arrhenius acid

NaNO₃

A species that produces hydrogen ions when dissolved in water?	Arrhenius acid
Which is an ionic compound that is insoluble in water?	Ag2504 KMn04
Which compound contains an atom with an oxidation state of +7?	KMn04
Which compound contains an atom with an oxidation state of -1?	CaClz
Which is usually the smaller component present in a solution?	Solute

BONUS QUESTIONS

Give a definition for the term, "electrolyte"

Soluble solute that forms elec-conductive solution when dissolved in water. Typically sol. ionic compound.

Give an example of a strong base:

NaOH

Give an example of a weak base:

NH3 (ammonia)

dilute

FeSO₄

solvent

KMnO₄

Partial List of Solubility Rules

TABLE 4.2

Solubility Rules for Common Ionic Compounds in Water at 25°C

Soluble Compounds	Exceptions						
Halides (Cl ⁻ , Br ⁻ , I ⁻) Sulfates (SO ₄ ²⁻)	Halides of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Sulfates of Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺						
Insoluble Compounds	Exceptions						
Carbonates (CO_3^{2-}) , phosphates (PO_4^{3-}) , chromates (CrO_4^{2-}) , and sulfides (S^{2-})	Compounds containing alkali metal ions and the ammonium ion						
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba ²⁺ ion						

Useful Information:

 $M_1V_1=M_2V_2$ $N_A = 6.022 \times 10^{23}$

Periodic Table

1 IA																	18 VIIIA
1 H 1.01	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He 4.00
3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
6.94 11	9.01	3	4	•		7	0	9	10	11	12	10.81	12.01 14	14.01 15	16.00 16	19.00 17	20.18
Na 22.99	Mg 24.31 20	IIIB	4 IVB	5 VB	6 VIB	VIIB	8	VIIIB	10	11 IB	12 IIB	Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
19 K 39.1	Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	Kr 83.80
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
85.47 55	87.62 56	88.91 57	91.22 72	92.91 73	95.94 74	(98) 75	101.07 76	102.91 77	106.42 78	107.87	112.41 80	114.82 81	118.71 82	121.76 83	127.6 84	126.9 85	131.29 86
Cs 132.9	Ba 137.3	La* 138.9	Hf 178.5	Ta 180.9	W 183.9	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	Pb 207.2	Bi 209	Po (209)	At (210)	(222)
87 Fr (223)	88 Ra (226)	89 Ac^ (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (264)	108 Hs (265)	109 Mt (268)	110 Ds (271)	111 Rg (272)							
(220)	(520)	(427)				,								- (0		 -	,
		*	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0	
		٨	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
			232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	