Capacity of Multi-antenna Gaussian Channels (I. E. Telatar, 1999)

Mattia Lecci¹²

¹Università degli Studi di Padova Department of Information Engineering (DEI-UniPD)

²Universitat Politècnica de Catalunya Escola Tècnica Superior d'Engenyeria de Telecomunicació de Barcelona (UPC-ETSETB)

January 2018

Overview

- Notation used in the course
 - Subsection one
 - Subsection two

Second section

Table of Contents

- Notation used in the course
 - Subsection one
 - Subsection two

2 Second section

Test cite [1]

ullet Lowercase letters, x,y,... are used for constants and values of random variables.

- Lowercase letters, x, y, ... are used for constants and values of random variables.
- Sequences or column vectors are $x_i^j = (x_i, x_{i+1}, ... x_j)$. In case i = 1 then $x^j = (x_1, x_2, ... x_j)$.

- Lowercase letters, x, y, \dots are used for constants and values of random variables.
- Sequences or column vectors are $x_i^j = (x_i, x_{i+1}, ... x_j)$. In case i = 1 then $x^j = (x_1, x_2, ... x_j)$.
- Let $\alpha, \beta \in [0, 1]$. Then $\bar{\alpha} = (1 \alpha)$ and $\alpha * \beta = \alpha \bar{\beta} + \beta \bar{\alpha}$.

- ullet Lowercase letters, x,y,\ldots are used for constants and values of random variables.
- Sequences or column vectors are $x_i^j = (x_i, x_{i+1}, ... x_j)$. In case i = 1 then $x^j = (x_1, x_2, ... x_j)$.
- Let $\alpha, \beta \in [0, 1]$. Then $\bar{\alpha} = (1 \alpha)$ and $\alpha * \beta = \alpha \bar{\beta} + \beta \bar{\alpha}$.
- ullet Calligraphic letters $\mathcal{X},\mathcal{Y},...$ are used for finite sets and $|\mathcal{X}|$ denotes the cardinality of the set \mathcal{X} .

- Lowercase letters, x, y, \dots are used for constants and values of random variables.
- Sequences or column vectors are $x_i^j = (x_i, x_{i+1}, ... x_j)$. In case i = 1 then $x^j = (x_1, x_2, ... x_j)$.
- Let $\alpha, \beta \in [0, 1]$. Then $\bar{\alpha} = (1 \alpha)$ and $\alpha * \beta = \alpha \bar{\beta} + \beta \bar{\alpha}$.
- Calligraphic letters $\mathcal{X}, \mathcal{Y}, ...$ are used for finite sets and $|\mathcal{X}|$ denotes the cardinality of the set \mathcal{X} .
- ullet $[i:2^a]=\{i,i+1,...,2^{\lceil a \rceil}\}$, where $\lceil a \rceil$ is the smallest integer $\geq a.$

Notation for probability and random variables I

• The probability of an event \mathcal{A} is $P(\mathcal{A})$ and the conditional probability of \mathcal{A} given \mathcal{B} is $P(\mathcal{A}|\mathcal{B})$.

Notation for probability and random variables II

- $X^n \sim p(x^n)$ means that $p(x^n)$ is the probability mass function (pmf) of the discrete random vector X^n .
- $X^n \sim f(x^n)$ means that $f(x^n)$ is the probability density function (pdf) of the continuous random vector X^n .
- $(X^n,Y^n)\sim p(x^n,y^n)$ means that $p(x^n,y^n)$ is the joint pmf of X^n and Y^n .
- Given a random variable X, the expected value of a function g(X) is denoted by $\mathsf{E}_X(g(X))$ or simply $\mathsf{E}(g(X))$.

Notation for probability and random variables (and III)

- $X \sim \text{Bern}(p)$ means X is a Bernoulli random variable with parameter $p \in [0,1]$, i.e., X=1 with probability p and X=0 with probability 1-p.
- $X \sim \mathsf{Unif}(\mathcal{A})$ means X is a discrete uniform random variable over the set \mathcal{A} .
- $X \sim \mathsf{Unif}[i:j]$ for integers j > i means X is a discrete uniform random variable over [i:j].
- $X \sim \mathsf{Unif}[a,b]$ for b > a means X is a continuous uniform random variable over [a,b].
- $X \sim N(\mu, \sigma^2)$ means X is a Gaussian random variable with mean μ and variance σ^2 .

Common functions

- The function $\log p$ is assumed to be the base 2 logarithm function of p.
- The binary entropy function: $H(p) = -p \log p \bar{p} \log \bar{p}$ for $p \in [0,1]$.
- The Gaussian capacity: $C(x) = \frac{1}{2} \log(1+x)$, for $x \ge 0$.
- $[x]^+ = \max\{x, 0\}.$

This is a text in second frame. For the sake of showing an example.

• Text visible on slide 1

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slides 3

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 4

Table of Contents

- Notation used in the course
 - Subsection one
 - Subsection two

Second section

Second section January 2018 10 / 13

In this slide, some important text will be highlighted beause it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. "Examples" is fixed as block title.

Second section January 2018 11 / 13

Two-column slide

This is a text in first column.

$$E = mc^2$$

- First item
- Second item

This text will be in the second column and on a second thought this is a nice looking layout in some cases.

Second section January 2018 12 / 13

References

E. Telatar, "Capacity of multi-antenna gaussian channels," *European Transactions on Telecommunications*, vol. 10, no. 6, pp. 585–595, 1999.

Second section January 2018 13 / 13