ENPM808A-INTRODUCTION TO MACHINE LEARNING

FINAL PROJECT

SUBMITTED BY

SHARMITHA GANESAN

(UID: 117518931)

PROBLEM STATEMENT

• Through an efficient machine learning algorithm, the action commands for the robot to move around should be predicted.

DATA PRE-PROCESSING

- A field of view of 30 degrees is taken as one value and hence the laser data is brought down to 9 columns.
- The current robot position, the local goal and the final goal positional data has x, y and q values contributing 3 columns each.
- A testing dataset, a training dataset and a validation dataset are segregated from the given data set for further learning.

MODEL SELECTION AND VALIDATION

- For this project, LINEAR REGRESSION FROM SKLEARN and NEURAL NETWORKS FROM KERAS TENSORFLOW are taken and compared.
- .Then, the validation error E_val is calculated for both models.
- The model with better E_val is considered to be the best model to implement and test out with the testing data.

SELECTION OF THE PREDICTION MODEL

SELECTION OF THE PREDICTION MODEL

- From the learning curves and Eval values of both the models, the performance of the neural network model is better.
- The regularization of the neural network model is observed after purposefully overfitting the data.

TESTING THE DATA AND EVALUATING OUT OF SAMPLE ERROR

Etest for lin vel 0.0843801184253638

Etest for ang vel 0.04773384888149761

Eout for translational velocity 0.30887426586226197

Eout for rotational velocity 0.2722279963183958