* 第

LCC Análise

- 2019/2020 ———

Ficha de exercícios 3

• Derivadas direcionais e vetor gradiente

1. Determine o vetor gradiente para cada uma das funções $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ dadas por:

(a)
$$f(x,y) = x^2 + xy$$
:

(d)
$$f(x,y) = x^2 - 5xy + 3y^2$$
;

(b)
$$f(x,y) = e^x \tan y + 2x^2y$$
;

(e)
$$f(x, y, z) = 3x^3y + 2yz$$
;

(c)
$$f(x,y) = x^3y^2$$
;

(f)
$$f(x, y, z) = x^2z + ye^{xz}$$

2. Para cada uma das funções do exercício 1, calcule a derivada direccional no ponto P segundo a direção do vetor \vec{v} .

(a)
$$P = (0,1) e \vec{v} = 3\vec{i} + 4\vec{j}$$
;

(d)
$$P = (3, -1) e \vec{v} = \vec{i} + \vec{j}$$
;

(b)
$$P = (0, \frac{\pi}{4}) \ e \ \vec{v} = -\frac{1}{\sqrt{2}} \vec{i} + \frac{1}{\sqrt{2}} \vec{j};$$

(e)
$$P = (-1, 0, 4)$$
 e $\vec{v} = \frac{1}{\sqrt{2}}\vec{i} - \frac{1}{\sqrt{2}}\vec{k}$;

(c)
$$P = (2, -1) e \vec{v} = 2\vec{i} + \vec{j}$$
;

(f)
$$P = (1, -2, 3) e \vec{v} = \vec{i} - 2\vec{j} + 3\vec{k}$$
.

3. O potencial eléctrico V num dado ponto (x,y) é dado por $V=\ln\sqrt{x^2+y^2}$. Determine a taxa de variação de V no ponto P=(1,1) segundo a direção definida por $\theta=\frac{\pi}{4}$.

4. Determine a derivada direccional de $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ no ponto P, segundo a direção indicada:

(a)
$$f(x,y) = x^2 - xy - 2y^2$$
, $P = (1,2)$, $\theta = \frac{\pi}{3}$;

(b)
$$f(x,y) = (x^2 - y)^3$$
, $P = (3,1)$, $\theta = \frac{3\pi}{4}$;

(c)
$$f(x, y, z) = xy + yz^2 + xz^3$$
, $P = (2, 0, 3)$, $\vec{v} = (-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})$;

(d)
$$f(x, y, z) = xy^3z^2$$
, $P = (2, -1, 4)$, $\vec{v} = \vec{i} + \vec{j} - \vec{k}$;

(e)
$$f(x,y,z) = z^2 e^{xy}$$
, $P = (-1,2,3)$, direção de P para $Q = (1,0,1)$;

(f)
$$f(x,y,z) = xy + yz + zx$$
, $P = (2,1,3)$, direção de P para $Q = (1,5,5)$.

5. Para as funções apresentadas nas alíneas (b) e (f) do exercício 1, indique a direção de maior crescimento da função a partir do ponto $P = \left(0, \frac{\pi}{4}\right)$ e $P = \left(1, -2, 3\right)$, respetivamente.

6. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = xe^y$. Determine a taxa de variação de f no ponto P = (2,0), na direção de P para Q = (5,4). Em que direção tem f, no ponto P, uma taxa de variação máxima? Qual é esse valor?

7. O potencial eléctrico V em (x,y,x) é dado por $V=x^2+4y^2+9z^2$. Determine a taxa de variação de V em P=(2,-1,3) na direção de P para a origem do sistema de coordenadas. Indique ainda a direção que produz a taxa máxima de variação de V em P. Qual o valor dessa taxa?

8. Sabendo que $D_{\vec{v}}f(a,b)=3\sqrt{2}$ e $D_{\vec{u}}f(a,b)=5$ sendo $\vec{v}=\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ e $\vec{u}=\left(\frac{3}{5},-\frac{4}{5}\right)$, determine $\nabla f(a,b)$. Qual a taxa máxima de variação em (a,b)?

9. Em que direção a partir do ponto (2,0) a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por f(x,y) = xy tem uma taxa de variação igual a -1?

10. A temperatura T num dado ponto (x,y) do plano é dada por $T(x,y)=x^2e^{-y}$. Em que direção a partir do ponto (2,1) a temperatura aumenta mais rapidamente? Qual a taxa de crescimento nessa direção?

11. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por $f(x,y,z) = \operatorname{sen}\left(\frac{xz}{x^2+y^2}\right)$. Determine $\overrightarrow{\nabla} f(2,1,0)$. Qual a taxa de variação de f no ponto (2,1,0) segundo a direção do vetor $\overrightarrow{u}=(1,1,1)$? Qual a taxa máxima de variação no mesmo ponto?

1

- 12. Considere $f(x,y)=100-x^2-y^2$. Em que direção nos devemos afastar de P para que os valores de f aumentem o mais rapidamente possível? Esboce o gráfico de f e interprete o resultado.
- Plano tangente e reta normal a uma superfície. Reta tangente a uma curva de nível
- 13. Determine a equação do plano tangente à superfície $x^2 + y^2 xyz = 7$ no ponto (2,3,1) por dois processos diferentes:
 - (a) considerando a superfície como a superfície de nível de uma função de 3 variáveis f(x,y,z);
 - (b) considerando a superfície como o gráfico de uma função de 2 variáveis g(x,y).
- 14. Determine uma equação do plano tangente à superfície S de equação
 - (a) $x^2 2y^2 + z^2 = 3$, no ponto P = (-1, 1, 2).
 - (b) $z = 4x^2 + y^2$, no ponto P = (1, 1, 5).
- **15.** Seja S uma superfície de equação F(x,y,z)=0 e P um ponto pertencente a S tal que o vetor $\overrightarrow{\nabla} F|_P$ é não nulo. A reta que passa em P e tem a direção de $\overrightarrow{
 abla}F|_P$ é chamada a *reta normal a* S *em* P.

Determine as equações paramétricas da reta normal à superfície de equação

- (a) $x^2 y^2 2z^2 = 2$ no ponto $(\sqrt{10}, 0, -2)$.
- (b) $4x^2 + 9y^2 + z^2 49 = 0$ no ponto (1, -2, 3).
- (c) $z = 3x^2 + 2y^2$ no ponto (1, 1, 5).
- **16.** Considere a equação de uma superfície esférica S de centro em (a,b,c) e raio r>0,

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,$$

e um ponto $P = (x_0, y_0, z_0)$ pertencente a S. Prove que a reta normal a S em P_0 passa pelo centro de S.

- 17. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por $f(x,y) = x^2y^3$. Indique, para o ponto (-1,2), um vetor
 - (a) com a direção e sentido de maior crescimento de f;
 - (b) com a direção e sentido de maior decrescimento de f;
 - (c) com a direção em que a variação de f é nula.
- 18. Atendendo à figura ao lado, indique, justificando, qual é maior:

(b) $||\nabla f||$ em Q.

19. Determine uma equação do plano tangente e uma equação da reta normal a cada uma das seguintes superfícies, no ponto P indicado:

(a) $z = x^2 + y^2$ sendo P = (1, -2, 5); (c) xyz = 1 sendo P = (1, 1, 1);

(b) $(x-1)^2 + (y-2)^2 + z^2 = 3$ e P = (0,1,-1); (d) $z = e^{x+y}$ sendo $P = (1,2,e^3)$.

- **20.** Determine a direção segundo a qual a função $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ definda por $f(x,y)=x^4y-x^2y^3$ tem o maior decrescimento a partir do ponto P = (2, -3).
- 21. Determine um vetor normal e uma equação da reta tangente a cada uma das seguintes curvas no ponto (2,3):

(a) $x^2 + y^2 = 13$;

(b) $y = x^2 - 1$;

(c) $(y-x)^2 + 2 = xy - 3$.

22. Para $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por $f(x,y) = x^2 + 4y^2$, determine o vetor gradiente $\overrightarrow{\nabla} f(2,1)$ e use este vetor para encontrar a reta tangente à curva de nível f(x,y)=8 no ponto (2,1). Esboce a curva de nível, o vetor tangente e o vetor gradiente.

2