

Faculty of Information Engineering & Technology Communications Department

Course: Channel Coding [COMM 604]

Practical Assignment (Milestone 1)

Due Date: May 13th 2025

Consider a channel encoder/decoder system. Assume the information bits (i.e., bits input to the channel coding process) are extracted from a video stream. The channel coded bits are transmitted over a communication channel with probability of error p. You are asked to write a MATLAB code to simulate the transmission of the encoded bits over the communication channel.

NOTES:

- 1. You are allowed to use MATLAB built in functions for the encoder and decoder.
- 2. You are encouraged to work in teams that SHOULD NOT exceed 4 students (group members do not have to be in the same tutorial).
- 3. Each group will get a different set of Convolutional codes to compare.
- 4. Deadline for determining groups is April 23rd 2025 through https://docs.google.com/spreadsheets/d/1UQegW2PQgHIHZmV 9ttIkEsq https://docs.google.com/sp
 - If you do not send your group by the deadline above, it will be assumed that you will work individually.
- 5. Each group will be assigned a set of codes to use in the project that will be posted in cms after group formation.
- 6. Useful commands for the Practical Assignment will be uploaded on the course website.

EVALUATION AND DELIVERABLES:

- Each group should prepare the following:
 - o A SINGLE document with the following content:
 - The rate of all codes
 - Plot of the coded bit error probability against different values of p (Assume a range of p between 0.0001 and 0.2) for all codes.
 - Identify the code that exhibits the best performance and explain your opinion why it features such favorable performance.

Convention used for determining codes in email sent to groups:

1. Convolutional Codes:

K, g_i^(j)

K : Constraint Length

 $g_i^{(j)}$: Information about the structure of the convolution encoder circuit. Please note that the convention is to write $g_i^{(j)}$ in octal form (to the base of 8). i.e., $g_i^{(j)} = 7 \implies g_i^{(j)} (1 \ 1 \ 1), g_i^{(j)} = 12 \implies g_i^{(j)} (1 \ 0 \ 1 \ 0)$