Математика для Data Science. Теория вероятностей. Условия задач

Содержание

Теорема Ба																																		2
Задача 1																										 								2
Задача 2																										 								2
Задача 1 Задача 2 Задача 3																																		2
Правило су																																		2
Задача 1																										 								2
Задача 2																																		2
Биномиаль																																		2
Задача 1																										 								2
Задача 1 Задача 2																																		2
Случайная	ве	ли	чі	на	a i	1 I	SM	ìT(эм	a	ги	(Ч	ec	KO	ре	O	ж	иĮ	ца	ні	ие													3
Задача 2																										 								3
Задача 3																																		
Задача 4																										 								3
Залача 5																																		

Замечание. Вот этим цветом отмечены ссылки на страницы внутри этого файла.

Теорема Байеса

Задача 1

Докажите теорему Байеса:
$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$
 при при $P(A), P(B) \neq 0$.

Задача 2

- 1. Мы держим в руках монетку. С вероятностью $\frac{99}{100}$ она честная. С вероятностью $\frac{1}{100}$ это нечестная монетка, которая всегда выпадает орлом вверх. Мы подбросили монетку 5 раз, и все разы она выпала орлом вверх. Ясно, что это наблюдение свидетельствует в пользу нечестности монетки. Какова вероятность того, что монетка нечестная?
- 2. Тот же вопрос, что и в пункте 1, но мы подбросили монетку 20 раз и все разы выпал орёл. Сравните ответ с ответом из пункта 1.

Задача 3

Вы покупаете одинаковые аккумуляторы у трёх поставщиков: X, Y и Z. На основании предыдущих покупок у этих поставщиков вы знаете, какова доля брака в продукции каждого из них.

- У Х вы купили 600 аккумуляторов. Среди аккумуляторов, которые вы покупаете у X, доля брака 0.1.
- Y Вы купили 300 аккумуляторов. Среди аккумуляторов, которые вы покупаете у Y, доля брака 0.2.
- У Z вы купили 100 аккумуляторов. Среди аккумуляторов, которые вы покупаете у Z, доля брака 0.05.

Задача. Вы смотрите на один из ваших аккумуляторов, который оказался бракованным. Какова вероятность, что его вам продал Y?

Попробуйте интерпретировать эту задачу через теорему Байеса. Что будет скрытым состоянием? Что будет наблюдением?

Правило суммы

Задача 1

Докажите правило суммы. Напомним его: если события A и B несовместны, то $P(A \cup B) = P(A) + P(B)$.

Задача 2

Докажите, что
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

Биномиальные коэффициенты

Задача 1

Докажите, что для любых n и k таких, что $k \leq n$ выполнено соотношение $\binom{n}{k} = \binom{n}{n-k}$. Попробуйте доказать двумя способами: явно через формулу и через комбинаторный смысл.

Задача 2

Докажите, что для всех $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{n} + \binom{n}{n-1} + \binom{n}{n-2} + \dots + \binom{n}{k} + \dots + \binom{n}{1} + \binom{n}{0} = 2^n$$

Это можно сделать двумя способами соответствующими двум интерпретациями биномиальных коэффициентов: коэффициенты в биноме Ньютона и число способов выбрать подмножество фиксированного размера. Попробуйте придумать оба.

Случайная величина и математическое ожидание

Задача 2

- 1. Докажите, что для любой случайной величины X и числа $c \in \mathbb{R}$ выполнено $E[cX] = c \cdot E[X]$.
- 2. Докажите, что для любых случайных величин X и Y выполнено E[X+Y]=E[X]+E[Y].
- 3. Из предыдущих двух пунктов выведите, что E[aX+bY]=aE[X]+bE[Y] для любых чисел $a,b\in\mathbb{R}$

Другими словами, в пунктах 1 и 2 мы доказали, что операция взятия математического ожидания перестановочна с операцией умножения на число и с операцией сложения. Эти операции можно менять местами, и от этого результат вычислений не изменится.

Задача 3

Пять лучников одновременно стреляют в одну мишень. Первый стрелок попадает с вероятностью 0.9, второй попадает с вероятностью 0.7, третий попадает с вероятностью 0.3, четвёртый с вероятностью 0.5 и пятый с вероятностью 0.8. Их вероятности попасть вполне могут быть не независимы – например, сильный порыв ветра повлияет на выстрел каждого из лучников.

Найдите E[A], где A – число стрел, попавших в мишень.

Задача 4

- 1. Приведите пример случайных величин X и Y, таких что E[X] = E[Y] = 1 и $E[X \cdot Y] = 1$.
- 2. Приведите пример случайных величин X и Y, таких что E[X] = E[Y] = 1 и $E[X \cdot Y] = 1000$.
- 3. Приведите пример случайных величин X и Y, таких что E[X] = E[Y] = 1 и $E[X \cdot Y] = 0$.

Задача 5

Приведите пример случайной величины X, для которой не выполнено $E[X^2] = E[X] \cdot E[X]$.

Как мы увидели в этой и предыдущей задачах, математическое ожидание НЕ перестановочно с умножением, то есть не всегда выполнено $E[X \cdot Y] = E[X] \cdot E[Y]$.