Next Generation Sequencing (NGS)

HAMIDAH SUUBI NAMAGEMBE 26TH JUNE 2023

Introduction

- Next-Generation Sequencing (NGS) is a high-throughput DNA sequencing method that has transformed genomic research
- NGS enables faster, more costeffective, and more comprehensive analysis of genetic material

NGS Workflo W

NGS Technologies

Short-Read NGS

- Sequencing by synthesis (SBS) –

 i. Cyclic reversible chain termination (CRT): Illumina & Qiagen
 ii.Single nucleotide addition (SNA): Roche & Ion Torrent
- Sequencing by ligation (SBL)- Thermo Fisher & BGI

Long-Read NGS

- Realtime sequencing approaches Pacific Biosciences & Oxford Nanopore Technologies
- Synthetic approaches- Illumina & 10X Genomics

Short-Read NGS

Sequencing by Synthesis (SBS)- *Cyclic reversible chain termination* (CRT): Illumina

Nucleotide addition

Fluorophore-labelled, terminally blocked nucleotides hybridize to complementary base. Each cluster on a slide can incorporate a different base.

Imaging

Slides are imaged with either two or four laser channels. Each cluster emits a colour corresponding to the base incorporated during this cycle.

Cleavage

Fluorophores are cleaved and washed from flow cells and the 3'-OH group is regenerated. A new cycle begins with the addition of new nucleotides.

Short-Read NGS

Sequencing by ligation (SBL)- Thermo Fisher

Long-Read NGS

Single-molecule sequencing approaches-

ONT is based on the detection of changes in ionic current as DNA or RNA molecules pass through a nanopore

Ab Oxford Nanopore Technologies

ONT output (squiggles)
Each current shift as DNA
translocates through the
pore corresponds to a
particular k-mer

Bb 10X Genomics

Long-Read NGS

Synthetic approaches-10X Genomics -Gel Bead-in-Emulsion (GEM) Generation: DNA molecules are encapsulated within droplets

Emulsion PCR

Arbitrarily long DNA is mixed with beads loaded with barcoded primers, enzyme and dNTPs

GEMs

Each micelle has 1 barcode out of 750,000

Amplification

Long fragments are amplified such that the product is a barcoded fragment ~350 bp

The emulsion is broken and DNA is pooled, then it undergoes a standard library preparation

Linked reads

- All reads from the same GEM derive from the long fragment, thus they are linked
- Reads are dispersed across the long fragment and no GEM achieves full coverage of a fragment
- Stacking of linked reads from the same loci achieves continuous coverage

Short-read vs Long-read

Short-read NGS involves sequencing DNA fragments of relatively small lengths, typically ranging from 50 to 300 base pairs.

High-throughput: a large volume of sequences in a single run

Cost-effective: generally more affordable per base

High accuracy: Short reads typically have low error rates

- Long-read NGS-Long DNA fragments of thousands of base pairs
- Greater sequence continuity: better characterization of complex genomic regions, repetitive sequences, and structural variations
- Direct detection of modifications: such as DNA methylation

Applications of Short-read and Long-read platforms

- Long-read
- De novo genome assembly: for reconstructing complex genomes with high accuracy and resolving structural variations
- Characterizing repetitive regions:
 help resolve repetitive regions
- Studying RNA isoforms: provides insights into alternative splicing events and full-length isoforms in transcriptomics research

Data Quality Metrics

- Depth of coverage: how many sequence reads are present at a given position
- Base quality: have the correct bases been called in sequence reads)
- Mapping quality: have the reads been mapped to the correct position in the genome)

Table 1: Quality Scores and Base Calling Accuracy

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

Challenges and limitations

Data Storage: NGS generates large volumes of data that require substantial

storage capacity.

Computational Requirements:

Complex data analysis necessitates powerful computing

Cost: Although prices have decreased, NGS can still be relatively expensive.

Sample Quality: Poor sample quality may impact sequencing results and data interpretation.

References

- doi: 10.1177/1099800417750746
- https://irepertoire.com/ngs-overview-from-sample-to-sequencer-toresults/
- Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. doi:10.1038/nrg.2016.49

THANK YOU

NGS Technologies

Short-Read NGS

Sequencing by synthesis (SBS) – Cyclic reversible chain termination (CRT): Illumina & Qiagen, and Single nucleotide addition (SNA): Roche & Ion Torrent

Sequencing by ligation (SBL)- Thermo Fisher, BGI

Long-Read NGS

Realtime sequencing approaches – Pacific Biosciences, Oxford Nanopore Technologies

Synthetic approaches- Illumina, 10X Genomics

Short-Read NGS

Sequencing by Synthesis (SBS)

a Illumina

Nucleotide addition

Fluorophore-labelled, terminally blocked nucleotides hybridize to complementary base. Each cluster on a slide can incorporate a different base.

Slides are imaged with either two or four laser channels. Each cluster emits a colour corresponding to the base incorporated during this cycle.

Fluorophores are cleaved and washed from flow cells and the 3'-OH group is regenerated. A new cycle begins with the addition of new nucleotides.

Sequencing by Ligation (SBL)

Two-base-encoded probes

Probes with two known bases followed by degenerate or universal bases hybridize to a template; ligase immobilizes the complex and the slide is imaged

The fluorophore is cleaved from the probe along with several bases, revealing a 5' phosphate

Probe extension

10 rounds of hybridization, ligation, imaging and cleavage identify 2 out of every 5 bases

After a round of probe extension, all probes and anchors are removed and the cycle begins again with an offset

Long-Read NGS

Single-molecule sequencing approaches

Ab Oxford Nanopore Technologies

ONT output (squiggles)
Each current shift as DNA
translocates through the
pore corresponds to a
particular k-mer

Synthetic approaches

Bb 10X Genomics

Emulsion PCR

Arbitrarily long DNA is mixed with beads loaded with barcoded primers, enzyme and dNTPs

GEMs

Each micelle has 1 barcode out of 750,000

Amplification

Long fragments are amplified such that the product is a barcoded fragment ~350 bp

Pooling

The emulsion is broken and DNA is pooled, then it undergoes a standard library preparation

Linked reads

- All reads from the same GEM derive from the long fragment, thus they are linked
- Reads are dispersed across the long fragment and no GEM achieves full coverage of a fragment
- Stacking of linked reads from the same loci achieves continuous coverage

Short-read vs Long-read

Short-read NGS involves sequencing DNA fragments of relatively small lengths, typically ranging from 50 to 300 base pairs.

High-throughput: a large volume of sequences in a single run

Cost-effective: generally more affordable per base

High accuracy: Short reads typically have low error rates

- Long-read NGS-Long DNA fragments of thousands of base pairs.
- Greater sequence continuity: better characterization of complex genomic regions, repetitive sequences, and structural variations.
- Detection of long-range genomic information: includes intergenic regions, long-range interactions, and haplotype phasing.
- Direct detection of modifications: ONT platforms can detect DNA modifications, such as DNA methylation, directly.