Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4 2020/21

2.º teste - turmas TP4A-4, TP4A-3

- Este teste termina com a palavra FIM e a indicação da cotação das questões.
- Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas.

Duração: 1h15

- 1. Calcula as primitivas das seguintes funções:
 - (a) $\arccos x$;
- (b) $\frac{x+3}{x^4-x^2}$; (c) $\frac{1+x}{\sqrt{4-3x^2}}$.

Sugestão: Na alínea (a) utiliza primitivação por partes e na alínea (c) faz uma mudança de variável $x = a \sin t, t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, para um valor de a conveniente.

- 2. Seja $\mathcal A$ a região do semiplano $x \leq 0$ delimitada pelos gráficos das funções y = -x e $y = 1 + (x+1)^2$.
 - (a) Calcula os pontos de interseção dos gráficos acima indicados. Nota: Para efeitos da resolução das alíneas seguintes informa-se que as soluções são (-2,2) e (-1,1), mas nenhuma cotação terás na presente alínea se apenas verificares que estes pontos satisfazem as duas equações.
 - (b) Representa geometricamente a região A.
 - (c) Calcula a área da região A.
- 3. Seja f uma função contínua em \mathbb{R} e $\varphi(x):=\int_0^x f(t)\,dt$ o seu integral indefinido com origem no ponto 0.
 - (a) Se φ tem um máximo num ponto a, qual o valor de f(a)? Justifica cuidadosamente a
 - (b) Mostra que, se b > 0 e I = [0, b],

$$\max_{x \in I} |\varphi(x)| \le b \, \max_{x \in I} |f(x)|$$

e dá um exemplo de uma função f para a qual se tem mesmo **igualdade** qualquer que seja o b > 0.

FIM

Cotação:

1. 10; 2. 7; 3. 3.