딥러닝 모델 구현해 보기

학습 내용

- 첫번째 데이터 셋 : 자전거 공유 업체 시간대별 데이터
- 두번째 데이터 셋 : 타이타닉 데이터 셋

In [1]:

```
import tensorflow as tf
import keras
```

In [2]:

```
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
```

In [3]:

```
print("tf version : {}".format(tf.__version__))
print("keras version : {}".format(keras.__version__))
print("numpy version : {}".format(np.__version__))
print("matplotlib version : {}".format(matplotlib.__version__))
print("pandas version : {}".format(pd.__version__))
```

```
tf version: 2.9.0
keras version: 2.9.0
numpy version: 1.22.4
matplotlib version: 3.5.2
pandas version: 1.4.2
```

데이터 셋 불러오기

```
In [4]:
```

```
## train 데이터 셋 , test 데이터 셋
## train 은 학습을 위한 입력 데이터 셋
## test 은 예측을 위한 새로운 데이터 셋(평가)
## parse_dates : datetime 컬럼을 시간형으로 불러올 수 있음
train = pd.read_csv("./bike/bike_mod_tr.csv", parse_dates=['datetime'])
test = pd.read_csv("./bike/bike_mod_test.csv", parse_dates=['datetime'])
```

데이터 탐색

In [5]:

```
train.columns
```

Out[5]:

In [6]:

```
test.columns
```

Out[6]:

```
In [7]:
```

```
print(train.info())
print()
print(test.info())
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10886 entries, 0 to 10885 Data columns (total 19 columns):

Data	columns (to	tal 19 columns)	:			
#	Column	Non-Null Count	Dtype			
0	datetime	10886 non-null	datetime64[ns]			
		10886 non-null				
2	holiday	10886 non-null	int64			
3	workingday	10886 non-null	int64			
4	weather	10886 non-null	int64			
5	temp	10886 non-null	float64			
6	atemp	10886 non-null	float64			
7	humidity	10886 non-null	int64			
8	windspeed	10886 non-null	float64			
9	casual	10886 non-null	int64			
10	registered	10886 non-null	int64			
11	count	10886 non-null	int64			
12	year	10886 non-null	int64			
13	month	10886 non-null	int64			
14	day	10886 non-null	int64			
15	hour	10886 non-null	int64			
16	minute	10886 non-null	int64			
17	second	10886 non-null	int64			
18	dayofweek	10886 non-null	int64			
<pre>dtypes: datetime64[ns](1), float64(3), int64(15)</pre>						
memory usage: 1.6 MB						

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6493 entries, 0 to 6492 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype		
0	datetime	6493 non-null	datetime64[ns]		
1	season	6493 non-null	int64		
2	holiday	6493 non-null	int64		
3	workingday	6493 non-null	int64		
4	weather	6493 non-null	int64		
5	temp	6493 non-null	float64		
6	atemp	6493 non-null	float64		
7	humidity	6493 non-null	int64		
8	windspeed	6493 non-null	float64		
9	year	6493 non-null	int64		
10	month	6493 non-null	int64		
11	day	6493 non-null	int64		
12	dayofweek	6493 non-null	int64		
13	hour	6493 non-null	int64		
14	minute	6493 non-null	int64		
15	second	6493 non-null	int64		
dtypes: datetime64[ns](1), float64(3), int64(12)					

memory usage: 811.8 KB

None

None

모델을 위한 데이터 선택

- X : hour, temp : 시간, 온도
- y: count 자전거 시간대별 렌탈 대수

```
In [8]:
```

```
input_col = [ 'hour', 'temp']
labeled_col = ['count']
```

In [9]:

```
X = train[ input_col ]
y = train[ labeled_col ]
X_val = test[input_col]
```

In [10]:

```
from sklearn.model_selection import train_test_split
```

In [11]:

In [12]:

```
print(X_train.shape)
print(X_test.shape)
```

(8164, 2) (2722, 2)

In [13]:

```
### 난수 발생 패턴 결정 0
seed = 0
np.random.seed(seed)
```

딥러닝 구조 결정

- 케라스 라이브러리 중에서 Sequential 함수는 딥러닝의 구조를 한층 한층 쉽게 쌓아올릴 수 있다.
- Sequential() 함수 선언 후, 신경망의 층을 쌓기 위해 model.add() 함수를 사용한다
- input_dim 입력층 노드의 수
- activation 활성화 함수 선언 (relu, sigmoid)
- Dense() 함수를 이용하여 각 층에 세부 내용을 설정해 준다.

In [14]:

```
from keras.models import Sequential
from keras.layers import Dense
```

In [15]:

```
model = Sequential()
model.add(Dense(30, input_dim=2, activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(1))
```

2022-05-23 15:36:42.420342: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate them in other operations.

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

In [16]:

```
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 30)	90
dense_1 (Dense)	(None, 15)	465
dense_2 (Dense)	(None, 15)	240
dense_3 (Dense)	(None, 1)	16

Total params: 811
Trainable params: 811
Non-trainable params: 0

미니배치의 이해

- 이미지를 하나씩 학습시키는 것보다 여러 개를 한꺼번에 학습시키는 쪽이 효과가 좋다.
- 많은 메모리와 높은 컴퓨터 성능이 필요하므로 일반적으로 데이터를 적당한 크기로 잘라서 학습시킨다.
 - 미니배치라고 한다.

딥러닝 실행

In [17]:

```
model.compile(loss = 'mean_squared_error', optimizer='rmsprop')
model.fit(X_train, y_train, epochs=20, batch_size=10)
```

```
Epoch 1/20
734
Epoch 2/20
Epoch 3/20
Epoch 4/20
215
Epoch 5/20
043
Epoch 6/20
590
Epoch 7/20
695
Epoch 8/20
817/817 [=============] - 1s 1ms/step - loss: 19235.4
531
Epoch 9/20
980
Epoch 10/20
750
Epoch 11/20
863
Epoch 12/20
871
Epoch 13/20
Epoch 14/20
817/817 [=============] - 1s 1ms/step - loss: 18971.6
641
Epoch 15/20
203
Epoch 16/20
817/817 [=============] - 1s 1ms/step - loss: 18858.1
797
Epoch 17/20
090
Epoch 18/20
148
Epoch 19/20
```

```
22. 5. 23. 오후 3:38
                           ch01_02_Neural_Net_Bike - Jupyter Notebook
 Epoch 20/20
 176
 Out[17]:
 <keras.callbacks.History at 0x7fe1b9f4f940>
 In [18]:
 ### 평가 확인
 model.evaluate(X test, y test)
 Out[18]:
 18372.322265625
 In [19]:
 pred = model.predict(X_val)
 203/203 [============ ] - 0s 1ms/step
 In [20]:
 sub = pd.read_csv("./bike/sampleSubmission.csv")
 sub['count'] = pred
 sub.loc[sub['count']<0, 'count'] = 0</pre>
 In [21]:
 sub.to csv("nn sub 0528.csv", index=False)
```

점수: 1.04514

실습

- 변수를 추가를 통해 성능을 향상시켜보자(5-10분) epoch수도 증가
- (예) ['hour', 'temp', 'dayofweek', 'workingday', 'season', 'weather']
 - (예) 100epoch, ['hour', 'temp', 'dayofweek', 'workingday', 'season', 'weather'] => 0.82071
 - (예) 300epoch, ['hour', 'temp', 'dayofweek', 'workingday', 'season', 'weather'] => 0.70710
- input_col = ['hour', 'temp', 'weather', 'season', 'holiday', 'temp', 'workingday', 'windspeed'] 300epoch

(도전실습) 타이타닉 데이터 셋에 대해서 딥러닝 신경망 모델을 만들어보기