Statistical Methods in Artificial Intelligence CSE471 - Monsoon 2016 : Lecture 07

Avinash Sharma CVIT, IIIT Hyderabad

Lecture 07: Plan

- Recap
- Backpropagation in NN
- Learning Curves
- Practical Aspects of Backpropagation

Construction of NN Classifier

Feed Forward Operation in NN

•
$$net_j = \sum_{i=1}^d x_i w_{ji} + w_{j0} = \sum_{i=0}^d x_i w_{ji} = \mathbf{w}^T_j \mathbf{x}$$

- $y_j = f(net_j)$
- $y_j = sgn(net_j)$
- $net_k = \sum_{j=1}^{nH} y_j w_{kj} + w_{k0} = \sum_{j=0}^{nH} y_j w_{kj} = \mathbf{w}^T_k y$
- $z_k = f(net_k) = sgn(net_k)$
- $g_k(\mathbf{x}) = z_k = \sum_{j=1}^{nH} w_{kj} f(\sum_{i=1}^d x_i w_{ji} + w_{j0}) + w_{k0}$

Modelling the Non-linearity

Understanding Backpropagation

Backpropagation in NN

•
$$J(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{c} (t_k - z_k)^2 = \frac{1}{2} ||\mathbf{t} - \mathbf{z}||^2$$

•
$$\Delta \mathbf{w} = -\eta \frac{\partial J}{\partial \mathbf{w}}$$
, $\Delta w_{pq} = -\eta \frac{\partial J}{\partial w_{pq}}$

•
$$\mathbf{w}(m+1) = \mathbf{w}(m) + \Delta \mathbf{w}$$

•
$$\Delta w_{kj} = \eta \delta_k y_j = \eta (t_k - z_k) f'(net_k) y_j$$

•
$$\Delta w_{kj} = -\eta \frac{\partial J}{\partial w_{kj}} = -\eta \left(\frac{\partial J}{\partial net_k} * \frac{\partial net_k}{\partial w_{kj}} \right)$$

•
$$\Delta w_{kj} = -\eta \left(-\frac{\partial J}{\partial net_k} * -\frac{\partial net_k}{\partial w_{kj}} \right)$$

•
$$\Delta w_{kj} = -\eta \left(\left(-\frac{\partial J}{\partial z_k} * \frac{\partial z_k}{\partial net_k} \right) * - \frac{\partial net_k}{\partial w_{kj}} \right)$$

•
$$\Delta w_{kj} = -\eta \left((t_k - z_k) * f'(net_k) * -y_j \right)$$

•
$$\Delta w_{kj} = -\eta (\delta_k * -y_j) = \eta \delta_k y_j$$

$$\delta_k = -\frac{\partial J}{\partial net_k} = (t_k - z_k) * f'(net_k)$$

•
$$J(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{c} (t_k - z_k)^2 = \frac{1}{2} ||\mathbf{t} - \mathbf{z}||^2$$

•
$$\Delta \mathbf{w} = -\eta \frac{\partial J}{\partial \mathbf{w}}$$
, $\Delta w_{pq} = -\eta \frac{\partial J}{\partial w_{pq}}$

•
$$\mathbf{w}(m+1) = \mathbf{w}(m) + \Delta \mathbf{w}$$

•
$$\Delta w_{kj} = \eta \delta_k y_j = \eta (t_k - z_k) f'(net_k) y_j$$

•
$$\Delta w_{ji} = \eta \delta_j x_i = \eta \left[\sum_{k=1}^c w_{kj} \delta_k \right] f'(net_j) x_i$$

•
$$\Delta w_{ji} = -\eta \frac{\partial J}{\partial w_{ji}} = -\eta \left(\frac{\partial J}{\partial net_j} * \frac{\partial ne_j}{\partial w_{ji}} \right)$$

•
$$\Delta w_{ji} = -\eta \left(\left(\frac{\partial J}{\partial y_j} * \frac{\partial y_j}{\partial net_j} \right) * \frac{\partial ne_j}{\partial w_{ji}} \right)$$

•
$$\Delta w_{ji} = -\eta \left(\left(\left(\frac{\partial J}{\partial z_k} * \frac{\partial z_k}{\partial net_k} * \frac{\partial net_k}{\partial y_j} \right) * \frac{\partial y_j}{\partial net_j} \right) * \frac{\partial net_j}{\partial w_{ji}} \right)$$

•
$$\Delta w_{ji} = -\eta \left(\left(\left(-\sum_{k=1}^{c} (t_k - z_k) * f'(net_k) * w_{kj} \right) * f'(net_j) \right) * x_i \right)$$

•
$$\Delta w_{ji} = \eta \delta_j x_i = \eta \left(\left[\sum_{k=1}^c w_{kj} \, \delta_k \right] f'(net_j) \right) x_i$$

Where,
$$\delta_k = (t_k - z_k) * f'(net_k)$$

Sensitivity Backpropagation:

$$\delta_k = (t_k - z_k) * f'(net_k),$$

$$\delta_j = \left[\sum_{k=1}^c w_{kj} \, \delta_k\right] * f'(net_j)$$

Backpropagation in NN

Stochastic Backpropagation

- 1. Initialize nH, \mathbf{w} , θ (threshold), η , m=0
- 2. do m = m + 1
- 3. randomly choose \mathbf{x}^m
- $4. w_{ji} = w_{ji} + \eta \delta_j x_i$
- $5. w_{kj} = w_{kj} + \eta \delta_k y_j$
- 6. until $|\nabla J(\mathbf{w})| < \theta$
- 7. return w

Learning Curves

- Activation Function
 - $-f(\cdot)$ should be **Non-linear**
 - $-f(\cdot)$ should **Saturate**
 - $-f(\cdot)$ should be **Continuous & Smooth**
 - $-f'(\cdot)$ should be **Defined**
 - $-f(\cdot)$ can have **Monotonicity**
 - $-f(\cdot)$ can be *linear for small values of net*

Linear

$$y = x$$

Logistic (Sigmoid) O/P: 0 to 1

$$y = \frac{1}{1 + \exp(-x)} = \frac{\exp(x)}{1 + \exp(x)}$$

Hyperbolic Tangent O/P: -1 to +1

$$y = a \left[\frac{\exp(bx) - \exp(-bx)}{\exp(bx) + \exp(-bx)} \right]$$

$$a = 1.716, b = 2/3$$

$$y = a \left[\frac{e^{bx} - e^{-bx}}{e^{bx} + e^{-bx}} \right]$$

Activation Function centered on zero and antisymmetric leads to faster convergence

- Sigmoid as activation function
 - Smooth, Differentiable, Nonlinear and Saturating
 - Admit to linear model for small network weights
 - Derivative of Sigmoid function can be represented in terms of function itself.

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \qquad \sigma'(x) = -\left\{\frac{1}{(1 + e^{-x})}\right\}^2 e^{-x} (-1)$$

$$\sigma'(x) = \frac{1}{(1+e^{-x})} \times \frac{e^{-x}}{(1+e^{-x})}$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Scaling of Input

$$- X = [x_1, \cdots, x_m]^T_{m \times d}$$

$$-\widetilde{X} = X - mean(X)$$
 (Centering of Data)

$$-X_{Norm}=\widetilde{X}/\sigma$$
 (Colu

(Column-wise division by Standard Deviation of each dimension)

Scaling of Input (Standardize)

```
-X = [x_1, \cdots, x_m]^T_{m \times d}
-\widetilde{X} = X - mean(X) (Centering of Data)
-X_{Norm} = \widetilde{X}/\sigma (Column-wise division by Standard Deviation of each dimension)
```

Target Values

- Use +1 and -1 or any real value in this range as output
- Related to saturation value of the activation function
- Probabilistic Interpretation is not valid for category labels.

Training with Noise

 Add random noise to original training samples for generating more training samples

Manufacturing Data

 Add translation and rotation transforms to original training data to generate more rich training data samples

Number of Hidden Units

- Too few leads to high test error due to lack of expressibility
- Too many leads to overfitting to training data
- Choose such that total number of weights = n/10.

Weight Initialization

- Do not initialize with zero weights
- Use both random positive & negative weights as data is standardized
- Consider the saturation value of net activation function while choosing range for initial weights.

$$-1/\sqrt{d} < w_{ii} < +1/\sqrt{d}$$
 and $-1/\sqrt{nH} < w_{kj} < +1/\sqrt{nH}$