Question Number	Scheme	Marks
10(a)	$\alpha + \beta = -3$ $\alpha\beta = -5$	B1
(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta, = 19$	M1,A1
(ii)	$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2, = 19^2 - 50 = 311$	M1,A1(5)
	OR: $\alpha^4 + \beta^4 = (\alpha + \beta)^4 - 4\alpha\beta(\alpha^2 + \beta^2) - 6\alpha^2\beta^2$, $= 19^2 - 50 = 311$	
(b)	$(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2 = 19 + 10 \text{ OR}$	
	$\left(\alpha - \beta\right)^2 = \left(\alpha + \beta\right)^2 - 4\alpha\beta = 9 - (-20)$	M1
	$\alpha - \beta = \sqrt{29} *$	A1 cso (2)
(c)	$\begin{vmatrix} \alpha - \beta = \sqrt{29} \\ \alpha^4 - \beta^4 = (\alpha^2 - \beta^2)(\alpha^2 + \beta^2) = (\alpha - \beta)(\alpha + \beta)(\alpha^2 + \beta^2) \end{vmatrix}$	M1A1A1 (3)
	$\alpha^{4} - \beta^{4} = \sqrt{29} \times (-3) \times 19 = -57\sqrt{29} \left(-\sqrt{94221}\right)$, ,
(d)		M1A1 (2)
(e)	$2\beta^4 = \alpha^4 + \beta^4 - \left(\alpha^4 - \beta^4\right)$	M1
	$\beta^4 = \frac{1}{2} \left(311 + 57\sqrt{29} \right), = \frac{311}{2} + \frac{57}{2} \sqrt{29}$	A1,A1 (3)
	$p = \frac{311}{2}$ $q = \frac{57}{2}$	[15]
ALT	$\beta^4 = \left(\frac{-3 - \sqrt{29}}{2}\right)^4$ and use a correct binomial expansion M1A1	
	Correct final answer A1	
(a)B1	Correct sum and product of roots, seen explicitly or used (in (a)) Must be	a clear that sum
	Correct sum and product of roots, seen explicitly or used (in (a)). Must be clear that sum is negative	
(i)M1	Correct algebra, ready for substitution of sum and product $G_{n+1} = \frac{1}{2} - \frac{1}{2}$	
A1 (ii)M1	Correct answer, condone use of $\alpha + \beta = 3$. Correct algebra, ready for substitution	
A1	Correct answer, condone use of $\alpha + \beta = 3$.	
(b)M1	Correct algebra and substitution of their values	
A1cso	Correct answer from correct working. Must have seen sum = -3 here if not shown in (a)	
(c)	Factorise to 2 quadratic brackets or 2 linear and one quadratic bracket	
M1 A1	Factorise to 2 quadratic brackets or 2 linear and one quadratic bracket Obtain 2 linear and 1 quadratic brackets with 2 of the 3 brackets correct	
A1	Third correct bracket Accept $(\alpha^2 + \beta^2)$ or $((\alpha + \beta)^2 - 2\alpha\beta)$	
(d)M1	Substitute their values for each of the 3 brackets obtained in (c)	
A1	Correct answer as shown or equivalent exact value	
(e) M1	Correct expression for $2\beta^4$ or β^4	
	Substitute their numbers to obtain a numerical expression for β^4 The expression must be	
A1ft	exact but need not be simplified	
A 1	NB A correct numerical expression for their values implies M1	
A1	Correct answer in the required form. p and q need not be shown explicitly	•