UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS DE ENERGIA

NOME COMPLETO

TÍTULO EM PORTUGUÊS

DISSERTAÇÃO

NOME COMPLETO

TÍTULO EM PORTUGUÊS

Title in English

Dissertação apresentada ao Programa de Pósgraduação em Sistemas de Energia da Universidade Tecnológica Federal do Paraná como requisito parcial para obtenção do título de "Mestre em Engenharia Elétrica" — Área de Concentração: Automação e Sistemas de Energia.

Orientador: Nome do Orientador

Coorientador: Nome do Coorientador

AGRADECIMENTOS

Texto dos agradecimentos.

RESUMO

SOBRENOME, Nome. **Título em Português**. 2020. 19 f. Dissertação (Mestrado em Sistemas de Energia) – Universidade Tecnológica Federal do Paraná, Curitiba, 2020.

Texto do resumo (máximo de 500 palavras).

Palavra-chave 1. Palavra-chave 2. ...

ABSTRACT

SOBRENOME, Nome. **Title in English**. 2020. 19 f. Dissertação (Mestrado em Sistemas de Energia) — Universidade Tecnológica Federal do Paraná, Curitiba, 2020.

Abstract text (maximum of 500 words).

Keywords: Keyword 1. Keyword 2. ...

LISTA DE FIGURAS

Figura 1 – Exemplo de uma figura		14
----------------------------------	--	----

LISTA DE TABELAS

Tabela 1 – E	Exemplo de uma	tabela		15
--------------	----------------	--------	--	----

LISTA DE SIGLAS

DAELT	Departamento Acadêmico de Eletrotécnica
PPGSE	Programa de Pós-graduação em Sistemas de Energia
UTFPR	Universidade Tecnológica Federal do Paraná

LISTA DE SÍMBOLOS

- v velocidade
- f frequência

SUMÁRIO

1 INTRODUÇÃO	12
1.1 MOTIVAÇÃO	12
1.2 OBJETIVOS	12
1.2.1 Objetivo Geral	12
1.2.2 Objetivos Específicos	13
2 DESENVOLVIMENTO	
2.1 FIGURAS	
2.2 TABELAS	
2.3 EQUAÇÕES	15
2.4 SIGLAS E SÍMBOLOS	
3 CONCLUSÃO	16
REFERÊNCIAS	
Apêndice A – NOME DO APÊNDICE	18
Anexo A - NOME DO ANEXO	19

1 INTRODUÇÃO

O presente documento é um exemplo de uso do estilo de formatação LATEX elaborado para atender às Normas para Elaboração de Trabalhos Acadêmicos da UTFPR. O estilo de formatação normas-utf-tex.cls tem por base o pacote ABNTEX – cuja leitura da documentação (ABNTEX, 2009) é fortemente sugerida – e o estilo de formatação LATEX da UFPR.

Para melhor entendimento do uso do estilo de formatação normas-utf-tex.cls, aconselha-se que o potencial usuário analise os comandos existentes no arquivo TEX (modelo_*.tex) e os resultados obtidos no arquivo PDF (modelo_*.pdf) depois do processamento pelo software LATEX + BIBTEX (LATEX, 2009; BIBTEX, 2009). Recomenda-se a consulta ao material de referência do software para a sua correta utilização (LAMPORT, 1986; BUERGER, 1989; KOPKA; DALY, 2003; MITTELBACH et al., 2004).

1.1 MOTIVAÇÃO

Uma do estilo principais vantagens do de formatação uso normas-utf-tex.cls para LATEX é a formatação automática dos elementos que compõem um documento acadêmico, tais como capa, folha de rosto, dedicatória, agradecimentos, epígrafe, resumo, abstract, listas de figuras, tabelas, siglas e símbolos, sumário, capítulos, referências, etc. Outras grandes vantagens do uso do LATEX para formatação de documentos acadêmicos dizem respeito à facilidade de gerenciamento de referências cruzadas e bibliográficas, além da formatação – inclusive de equações matemáticas – correta e esteticamente perfeita.

1.2 OBJETIVOS

1.2.1 Objetivo Geral

Prover um modelo de formatação LATEX que atenda às Normas para Elaboração de Trabalhos Acadêmicos da UTFPR (UTFPR, 2008).

1.2.2 Objetivos Específicos

- Obter documentos acadêmicos automaticamente formatados com correção e perfeição estética.
- Desonerar autores da tediosa tarefa de formatar documentos acadêmicos, permitindo sua concentração no conteúdo do mesmo.
- Desonerar orientadores e examinadores da tediosa tarefa de conferir a formatação de documentos acadêmicos, permitindo sua concentração no conteúdo do mesmo.

2 DESENVOLVIMENTO

A seguir ilustra-se a forma de incluir figuras, tabelas, equações, siglas e símbolos no documento, obtendo indexação automática em suas respectivas listas. A numeração sequencial de figuras, tabelas e equações ocorre de modo automático. Referências cruzadas são obtidas através dos comandos \label{} e \ref{}. Por exemplo, não é necessário saber que o número deste capítulo é 2 para colocar o seu número no texto. Isto facilita muito a inserção, remoção ou relocação de elementos numerados no texto (fato corriqueiro na escrita e correção de um documento acadêmico) sem a necessidade de renumerá-los todos.

2.1 FIGURAS

Na figura 1 é apresentado um exemplo de gráfico flutuante. Esta figura aparece automaticamente na lista de figuras. Para uso avançado de gráficos no IAT_EX, recomendase a consulta de literatura especializada (GOOSSENS et al., 2007).

Figura 1 – Exemplo de uma figura onde aparece uma imagem sem nenhum significado especial.

Fonte: Adaptado de (ABNTEX, 2009)

2.2 TABELAS

Também é apresentado o exemplo da tabela 1, que aparece automaticamente na lista de tabelas. Informações sobre a construção de tabelas no LATEX podem ser encontradas na literatura especializada (LAMPORT, 1986; BUERGER, 1989; KOPKA; DALY, 2003; MITTELBACH et al., 2004).

Tabela 1 – Exemplo de uma tabela mostrando a correlação entre x e y.

Fonte: Autoria própria.

2.3 EQUAÇÕES

A transformada de Laplace é dada na equação (1), enquanto a equação (2) apresenta a formulação da transformada discreta de Fourier bidimensional¹.

$$X(s) = \int_{t=-\infty}^{\infty} x(t) e^{-st} dt$$
 (1)

$$F(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \exp\left[-j2\pi \left(\frac{um}{M} + \frac{vn}{N}\right)\right]$$
 (2)

2.4 SIGLAS E SÍMBOLOS

O pacote ABNTEX permite ainda a definição de siglas e símbolos com indexação automática através dos comandos $sigla{}{}$ e $simbolo{}{}$. Por exemplo, o significado das siglas PPGSE, DAELT e UTFPR aparecem automaticamente na lista de siglas, bem como o significado dos símbolos λ , v e f aparecem automaticamente na lista de símbolos. Mais detalhes sobre o uso destes e outros comandos do ABNTEX são encontrados na sua documentação específica (ABNTEX, 2009).

¹Deve-se reparar na formatação esteticamente perfeita destas equações!

3 CONCLUSÃO

Espera-se que o uso do estilo de formatação LATEX adequado às Normas para Elaboração de Trabalhos Acadêmicos da UTFPR (normas-utf-tex.cls) facilite a escrita de documentos no âmbito desta instituição e aumente a produtividade de seus autores. Para usuários iniciantes em LATEX, além da bibliografia especializada já citada, existe ainda uma série de recursos (CTAN, 2009) e fontes de informação (TEX-BR, 2009; WIKIBOOKS, 2009) disponíveis na Internet.

Recomenda-se o editor de textos Kile como ferramenta de composição de documentos em LATEX para usuários Linux. Para usuários Windows recomenda-se o editor TexnicCenter (TexnicCenter, 2009) ou Texmaker. O LATEX normalmente já faz parte da maioria das distribuições Linux, mas no sistema operacional Windows é necessário instalar o software MikTEX (MIKTEX, 2009).

Além disso, recomenda-se o uso de um gerenciador de referências como o JabRef (JABREF, 2009) ou Mendeley (MENDELEY, 2009) para a catalogação bibliográfica em um arquivo BIBTEX, de forma a facilitar citações através do comando \cite{} e outros comandos correlatos do pacote ABNTEX. A lista de referências deste documento foi gerada automaticamente pelo software LATEX + BIBTEX a partir do arquivo reflatex.bib, que por sua vez foi composto com o gerenciador de referências JabRef.

O estilo de formatação LATEX da UTFPR e este exemplo de utilização foram elaborados por Diogo Rosa Kuiaski (diogo.kuiaski@gmail.com) e Hugo Vieira Neto (hvieir@utfpr.edu.br), com contribuições de César Vargas Benitez. A adaptação para o PPGSE foi feita por Glauber Brante (gbrante@utfpr.edu.br). Sugestões de melhorias são bem-vindas.

REFERÊNCIAS

ABNTEX. **Absurdas normas para T_EX**. 2009. Disponível em: http://sourceforge.net/apps/mediawiki/abntex/index.php. Acesso em: 8 nov. 2009.

BIBTEX. **BibT_EX.org**. 2009. Disponível em: http://www.bibtex.org. Acesso em: 8 nov. 2009.

BUERGER, D. J. LATEX for scientists and engineers. Singapura: McGraw-Hill, 1989.

CTAN. The comprehensive TeX archive network. 2009. Disponível em: http://www.ctan.org. Acesso em: 8 nov. 2009.

GOOSSENS, M.; MITTELBACH, F.; RAHTZ, S.; ROEGEL, D.; VOSS, H. **The LATEX** graphics companion. 2. ed. Boston: Addison-Wesley, 2007.

JABREF. **JabRef reference manager**. 2009. Disponível em: http://jabref.sourceforge. net. Acesso em: 8 nov. 2009.

KOPKA, H.; DALY, P. W. Guide to LATEX. 4. ed. Boston: Addison-Wesley, 2003.

LAMPORT, L. LATEX: a document preparation system. Reading: Addison-Wesley, 1986.

LATEX. **The LATEX project**. 2009. Disponível em: http://www.latex-project.org. Acesso em: 8 nov. 2009.

MENDELEY. **Mendeley:** academic software for research papers. 2009. Disponível em: http://www.mendeley.com. Acesso em: 1° ago. 2020.

MIKTEX. **The MiKT_EX project**. 2009. Disponível em: http://www.miktex.org. Acesso em: 8 nov. 2009.

MITTELBACH, F.; GOOSSENS, M.; BRAAMS, J.; CARLISLE, D.; ROWLEY, C. **The LATEX companion**. 2. ed. Boston: Addison-Wesley, 2004.

TEX-BR. Comunidade T_EX-Br. 2009. Disponível em: http://www.tex-br.org/index. php. Acesso em: 8 nov. 2009.

TEXNICCENTER. **TeXnicCenter:** the center of your LATEX universe. 2009. Disponível em: http://www.texniccenter.org. Acesso em: 8 nov. 2009.

UTFPR. Normas para elaboração de trabalhos acadêmicos. Curitiba: Universidade Tecnológica Federal do Paraná, 2008.

WIKIBOOKS. LATEX. 2009. Disponível em: http://en.wikibooks.org/wiki/LaTeX. Acesso em: 8 nov. 2009.

APÊNDICE A – NOME DO APÊNDICE

Use o comando \apendice e depois comandos \chapter{} para gerar títulos de apêndices.

ANEXO A - NOME DO ANEXO

Use o comando \anexo e depois comandos \chapter{} para gerar títulos de anexos.