Лекция 5: Упеория исключения

(5.1) Глеоремы об исключении и продолжении

Определение 5.1: Пусть $I < f_1, ..., f_g > c k[x_1, ..., x_n]$ — некоторий идеал. Тогда l-пи идеалом исключения для I наупвается

 $I_{\ell} := I_{\Lambda} \, k [x_{\ell+1}, ..., x_n].$

(Il spesemas ageaises & rousise &[x,...,x,]).

Теорема 5.1: (об исключении) Пусть $I < f_1, ..., f_s > c k[x_1, ..., x_n] - ugeal,$ набор G - его базис Грёбиера относительно $lex: x_1 > x_2 > ... > x_n$. Storga для всех $l \in \{0, ..., n-1\}$ перешчение $G_g:=G \land k[x_{l+1}, ..., x_n]$

является базисам Греблера l-го идеам исильтения Il.

Доказахельство: Пусть $l \in \{0,...,n-1\}$, по определению набор G_L состант из многосленов из идеяля I, метащих b $k[x_{l+1},...,x_n]$, поэтому $G_L \subset I_L$. Глогда, если выполняетае равенство

 $\langle U(I_{\ell}) \rangle = \langle U(G_{\ell}) \rangle,$

mo nator G_t absence taxucou Trètuera ugeau I_t . Brivienue < $V(G_t)>$ < $V(I_t)>$ orebugue. Нужно показан обратное: дле эного достаточно, гтоби дле многочлена $f\in I_t$ его етариний глен Uf делилае на некоторый Ug, где $g\in G_t$

Ecui $f \in I_{\ell}$, mo on nemus u b I. To onpegereturo bajuca Tpëthepa rangemar $g \in G$, m. τ . If genous na $l \cdot l g$. Firster surrous en $f \in k[x_{l+1},...,x_n]$, a greens u $l \cdot l g \in k[x_{l+1},...,x_n]$. Fockorsky un nemonsygen nekenkorpagneerium nomeniamma nopagok c $x_1 \cdot x_2 \cdot ... \cdot x_n$, mo bee ormanima nopagok c $x_1 \cdot x_2 \cdot ... \cdot x_n$, mo bee ormanima nopagok g $v \cdot x_n$ re zabuarm om $x_1,...,x_n$, unare one form on cmapme ren $l \cdot b(g)$. Jannoreer, $l \cdot g \in k[x_{l+1},...,x_n]$, a crigobomensuo u $g \in k[x_{l+1},...,x_n]$, a crigobomensuo u $g \in k[x_{l+1},...,x_n]$

Пример 5.1: Рассмотрим идеах $I = \langle x^q, y+z-1, x+y^q+z-1, x+y+z^q-1 \rangle \in \mathbb{C}[x,y,z],$ его базис Ipe 5 не ра относительно lex: x>y>z сосроит

 $g_1 = x + y + z^2 - 1$, $g_2 = y^2 - y - z^2 + \overline{z}$, $g_3 = 2yz^2 + z^4 - z^2$ $g_4 = \overline{z}^6 + 4z^5 - z^2$ Corracus mespens 5.1

$$\begin{split} I_1 &= I_1 \, \mathbb{C}[y,z] = \langle \, y^{\ell_1} y \, - \, z^{\ell_2} z \, , \, \, 2yz^{\ell_1} z^{\ell_2} - z^{\ell_2} , \, \, z^{\ell_2} + 4z^{\ell_3} - z^{\ell_2} \rangle, \\ I_2 &= I_1 \, \mathbb{C}[z] \, = \langle \, z^{\ell_1} + 4z^{\ell_2} - z^{\ell_2} \rangle. \end{split}$$

Любой многочлен, получающийся исключением хиу, являеся кратиям ди.

Наполичим, что для идеала $I=\langle f_1,...,f_5\rangle$ его аффикное многообразие $V(I):=\{(a_1,...,a_n)\in k^n:\, f(a_1,...,a_n)=0\ \text{для best } f\in I\}$

состоит из всевозможных решений систем $f_1=...=f_5=0$. Тусть $I_{\ell}-1$ -от пред исинотения для I. Тогда тогку $(a_{\ell+1},...,a_n)\in V(I_{\ell})$ будем наупвать тастични решением указанной системы. Если мы хочи реших систему, то нужно учет продолжать частичное решение до полного

Пример 5.2: Рассмотрим идеах $I = \langle xy-1, xz-1 \rangle \in \mathbb{C}[x,y,z]$ и систему $\begin{cases} xy = 1 \\ xz = 1 \end{cases}$

Hempyguo mainu, emo $I_1=\langle y-\bar{z}\rangle$. Cuegobasenono, unomecubo eacmena pewerwii cocrowi uz rocen (a,a), ege $a\in \mathbb{C}$, onu apodarnamae go narrax pewerwii $(\frac{1}{a},a,a)$, eaux $a\neq 0$.

Теорена 5.2 (об продолжении) буст $I=\langle f_1,...,f_5\rangle \in \mathbb{C}[x_1,...,x_5]_{\gamma}$ для всех $1\leq i\leq 3$ образующие идеала замистваются в виде $f_i=g_i(x_2,...,x_n)x_1^{N_i}+$ глент, в которпх степень $x_1< N_i$,

где $V_i \geq 0$ и $g_i \in \mathbb{C}[x_2,...,x_n]$ ненульбой. Гогда, если тактное решение $(a_2,...,a_n) \in V(I_1)$, т. $(a_2,...,a_n) \notin V(g_{1,...,g_s})$, то существует $a_1 \in \mathbb{C}_q$ для которых $(a_1,a_2,...,a_n) \in V(I)$.

Lugaroue: Sych $I=\langle f_1,...,f_5\rangle \in \mathbb{C}[x_1,...,x_5],$ gue renoroporo $i\in\{1,...,5\}$ $f_i=\ell\ x^N\ +\ \underset{cmenens}{\text{renens}}\ x_1< N_i\ ,$

rge $C \in C - \{0\}$ u N > 0. Storga, eccu $(a_1, ..., a_n) \in V(I_1)$, no cycleobyem $a_1 \in C$, m.z. $(a_1, a_2, ..., a_n) \in V(I_1)$.

5.2 Геонетрия исключения

Paccumpun omoбражение проекции $\mathcal{T}_{\ell}:\ \mathcal{L}^{n}\to \mathcal{L}^{n-\ell},\quad \mathcal{S}_{\ell}(a_{1},...,a_{n})=(a_{l+1},...,a_{n}).$

Nemma 5.1: Nyers
$$I_l=\langle f_1,...,f_5\rangle \wedge \mathbb{C}[x_{l+1},...,x_n]-1$$
-oni ugeal ucknowledle ugeala $I=\langle f_1,...,f_5\rangle$, a $V=V(f_1,...,f_5)$. Torga $\mathcal{T}_L(V)\subset V(I_l)\subset \mathbb{C}^{n-l}$.

Dokazares6crbo: Borrepeu npombarcioni $f \in I_{\ell}$. B cuy $I_{\ell} \subset I$ smown unoroznem zarujesemen b $(a_1,...,a_n) \in V$ bolle row, on zabucui ronsko or $x_{\ell+1},...,x_n$, norozny

 $f(a_1,...,a_n) = f(f(a_1,...,a_n)) = 0$, m.e. f zaroymetce be been termed object $f_L(V)$

Такии Образаи,

 $I_L(V)=\{(a_{l+1},...,a_n)\in V(I_l):\exists a_{1},...,a_{l}\in \mathbb{C} \text{ co choisthan } (a_{1},...,a_{n})\in V\}$, the summertee been taken persent, kotopae repopulational go nowant.

Signue p 5.2 (npoquimence) B From engrae $V(I_1)$ — 9000 nprime y=2 ha niochoon $C_{9,2}$ $f_{1,1}(V)=\{(a,a)\in C^2: a\neq 0\}$ he shirefal airispanceckie intercooppanie (9000 holy-airispanceckoe intercesso)

Teopena 5.2': B yciobuxx meopena 5.2 unessex pabenoto $V(I_1) = f_1(V) \cup \left(V(g_1,...,g_s) \cap V(I_1)\right)$

Prince 5.3: Paccuompus cucmery
$$\begin{cases} (y-z) x^2 + xy = 1 \\ (y-z) x^2 + xz = 1 \end{cases}$$

Мокио покозать, ещо $\langle xy-1, xz-1 \rangle = \langle (y-z)x^1+x-1, (y-z)x^2+xz-1 \rangle =: \overline{I}$. Идеал исключения $I_1 = \langle y-z \rangle$ говпадает с $\langle g_1, g_2 \rangle = \langle y-z \rangle$, поэтому меорема о продолжении не даёт инхакой информации ∂ $J_i(V)$ в этом случае.

 T_{eopena} 5.3: (о заможании) S_{ijero} $I=\langle f_1,...,f_s \rangle \subset \mathbb{C}[x_1,...,x_n], \ V=V(I)\subset \mathbb{C}^n$ S_{iorga} 1) $V(I_\ell)-$ это наименьши аффинное многообразие, ∞ держануе $F_{\ell}(V)\subset \mathbb{C}^n$

I Ec. $V \neq \emptyset$, no equyeotbye? apprune unonoopeque $W \nsubseteq V(I_{\ell})$, m.r. $V(I_{\ell}) - W \subset \mathcal{F}_{\ell}(V)$.

Доказачельство: Гумк 1) будет доказан позднег, когда ил познакомимая с теореной Гильберта о нумях

Яункт 2) докатем для слугая $\ell=1$. Рассиотрим разложение $V(I_1)=\mathfrak{K}_1(V)\cup \left(V(g_1,...,g_5)\cap V(I_1)\right)$

из теореип 5.2. Обозначии серез W адганное многообродие $V(g_1,...,g_s) \cap V(I_1)$ (см. предложение 1.2. Из разложения следует, что $V(I_1) - W \subset J_1(V)$. Если $W \neq V(I_1)$, то узбертдение доказано

Если $W = V(I_1)_1$, то можно показай, $V = V(f_1,...,f_5,f_1,...,g_5)$. Включение $V(f_4,...,f_5,f_1,...,g_5) \subset V(f_4,...,f_5) = V$. Для доказательства обратного включения рассмотрим $T.(a_1,...,a_n) \in V$. Катурий f_i^* -очи данументая в этой токке, а многочения g_i^* -оче занументая в $(a_2,...,a_n)_1$, т.к. $f_1(V) \subset V(I_1) = W$. Следовайсьью, $V(f_4,...,f_5) = V(f_4,...,f_5,f_4,...,g_5)$.

Uтак $V(I) = V(\tilde{I})$, где $\tilde{I} = \langle f_1, ..., f_5, g_1, ..., g_5 \rangle$. Идеал I и \tilde{I} при этом мотут не совпадат, соответствующие пдеалы исключения I_1 и \tilde{I}_1 тоже мотут но совпадать. Однако согласно пункту I $V(I_1)$ и $V(\tilde{I}_1)$ явеаютая наименьшими многообрязиями, содержащими I_1 (V). Яоттому $V(I_1) = V(\tilde{I}_1)$.

Banunen ospazyonne ngeana I & beige

 $f_i = g_i(x_2, ..., x_n) x_i^{N_i} + \underset{\text{omeneuse}}{\text{characterist}} x_i^{co} < N_i, \quad i = 1, S$

где $N_i > 0$ и $g_i \in \mathbb{C}[x_2,...,x_n]$ ненульне. Введём миотогленог $\widetilde{f_i} = f_i - g_i x_1^{n_i}$

que $i \in \{1,5\}$ uno vecien f_i unto regretor, unto uner comenens no x_i emporo une une x_i fi. Janemun, x_i

 $\widetilde{I} = \langle \widehat{f_1}, ..., \widehat{f_s}, g_1, ..., g_s \rangle$

Figure tun teoperny 5.2 \times unotoo \mathcal{L} for \mathcal{L} $\mathcal{L$

sge \widetilde{W} востоий всех састичным решений, зануляющих старише коэффициент иногоченя $\widetilde{f}_1,...,\widetilde{f}_5,\;g_1,...,g_5$.

в общем смугае может оказалься, гто $\widetilde{W}=V(1_1)$. Тогда мл смова должног повториль описанное выше рассуждение. Если на каки-то шаге мл получим арфинисе многообразия меньшее чем $V(I_1)$, то теорема доказана.

Пусть на катдом шаге мы всегда помучаем $V(I_1)$. Заметим, что на катдой итерации степени образующих по x_1 уменьшаются (мм остаются нумевыми). Яоэтому в какоей-то момент все образующие будут иметь степень 0 по x_2 . Это озмачает, что V задаётся пумями многочень из $I[x_2,...,x_n]$. Тогда для частного решения $(a_2,...,a_n)$ точка $(a_1,a_2,...,a_n)$ будет метать в V для всеж $a_1 \in I$. Таким образом катдое част ное решение продолжаемо, т.е. $f_1(V) = V(I_1)$. Это озмачает, что $W = \emptyset$, т.к. $V \neq \emptyset$.

Uтак, теорена о занакании утвертдает, сто $I_{\ell}(V)$ запоняет $V(I_{\ell})$ за исключением точек, мытация в некотором иногообразии меньшем от $V(I_{\ell})$. К сотальныю, это точии могут нь заполняй указаные многообразии.

Тогное описание $f_{\ell}(V)$ таково: существуют аффиниле многообразия $Z_i \subset W_i \subset \mathbb{C}_i^{n-1}$ где i=1,...,m, m.r. $f_{\ell}(V) = \bigcup_{i=1}^{m} (W_i - Z_i).$

Chegarbue: Figato
$$V = V(f_1,...,f_5) \subset \mathbb{C}^n$$
, give necomposed $i \in \{1,...,5\}$

$$f_i = C x_1^N + \text{ Claraenore } C x_1, \\ f \text{ cmenerul } < N,$$

$$ege \quad C \in \mathbb{C} - \{0\} \text{ in } N > 0. \quad \text{Fiorga} \quad f_1(V) = V(I_1).$$

б3) Герекод от параметризации к явному заданию

Рассиотрим пошномиальное отобратение (5.1) $F: k^m \to k^n$, $F(t_1,...,t_m) = (f_1(t_1,...,t_m),...,f_n(t_1,...,t_m)),$ где $f_i \in k[t_1,...,t_m]$, i=1,...,n. Образ $F(k^m)$ может и не боль аффинили месьообразием. Нама задага состой в том, стобы найти нашигношее аффинис многообразие, содержащее $F(k^m)$.

Пусть $V = V(x_1 - f_1, ..., x_n - f_n) \in \mathbb{R}^{n+m}$, его точки могут богт записам в виде $(t_1, ..., t_m, f_1(t_1, ..., t_m), ..., f_n(t_1, ..., t_m))$, т.е. V - это градом отобратения F. Рассмотрим два отображения

 $i: k^{n} \rightarrow k^{n+m},$ $i(t_1,...,t_m) = (t_1,...,t_m, f_1(t_1,...,t_m),...,f_n(t_1,...,t_m)).$

u

 $\mathcal{F}_m: \, \boldsymbol{k}^{n+m} \to \boldsymbol{k}^n, \\ \mathcal{F}_m\left(\,\boldsymbol{t}_1, ..., \, \boldsymbol{t}_m, \, \boldsymbol{x}_1, ..., \, \boldsymbol{x}_n\right) = (\boldsymbol{x}_1, ..., \, \boldsymbol{x}_n).$

Гогда у нас ест следующае коммутативная диагранна

Inospanerue $F = I_m \circ i$. Kak un ornerum borne $i(k^m) = V_j$ no этому $F(k^m) = F_m \left(i(k^m)\right) = F_m \left(V\right)$.

Teopena 5.4. Pyet k - beckoverne nove, omobjamenne $f: k^m \rightarrow k^n$ uneer bug (5.1). Thorga, ecun $I = \langle x_i - f_1, ..., x_n - f_n \rangle \subset k[t_1, ..., t_m, x_i, ..., x_n]$ $n := I \land k[x_1, ..., x_n] - ew m-oni ugear ucknownus, mo sunoroofpajul <math>V(I_m)$ - nannensure agopuruse susoroofpajul k^n , cogepranyel objag $F(k^m)$

Porazarassorbo: Π_{V} crop $V = V(I) \subset k^{n+m}$, raw non otherwise $F(k^m) = I_m(V)$. Echi k = C, mo meopene 5.3 o zanaranum $V(I_m)$ — это наименьше адфинное миногообразие, содержащее $I_m(V) = F(C^m)$.

Гредположим, что k - подполе поле ℓ . Оно содержит Z (н даже ℓ), поэтому бесконечно. Будем мененувай обозначение $V_{\ell}(I_m)$ для минособрация в k^n , аналогично для $V_{\ell}(I_m)$ с ℓ^n . Замения, что перегод и быниому полю не изменяе гадем I_m . Итак, требуется докнусть, что многообрадия $V_{\ell}(I_m)$ наименими в ℓ^n содержаще ℓ^n

Mot znaen, two $F(k^m) = J_m(V_k)$ remus b $V_k(J_m)$ no remue 5.1. Passinospina reposible the unicrosospogue $Z_k := V_k(g_1,...,g_5) \in k^n$, m.t. $F(k^m) \in Z_k$. Hymono no kayasi bu nicroenie $V_k(I_m) \in Z_k$. Sockassny $g_i = 0$ na Z_k , mo $g_i = 0$ is a $F(k^m)$. Uncress cribasus, kosmozuyse $g_i \circ F$ mongestenno palna nymo na k^m . Debuguo, two $g_i \circ F \in k[t_1,...,t_m]$, nortorny b cury bechonethostic north no npegionennio (1,2,...,1).

Tanum oбразон, все g_i o F замумяются на C_i^m а змасит g_i -ге замумяются на $F(C_i^m)$. Это озмагает, что $F(C_i^m) \subset Z_C := V_C(g_1,...,g_s)$. Янемовку теорома верма дме ном C_i , то $V_C(I_m) \subset Z_C \subset C_i^m$. Опсуда срозу смедует, что и $V_L(I_m) \subset Z_L$.

в случае, когда пале k не содержится b \mathbb{C} , мп можем рассмотреть алгебранчески замкнутого поле, зказання выше россумдения с замкного немя \mathbb{C} на K доказывают теорему вые такко k.

Пример 54: Рассиотрии в 123 скрученную мублому, она задаётся параме тризацией

$$x = t$$
, $y = t^3$, $z = t^3$

Очевидно, что касабелькая повержнося в \mathbb{R}^3 к спругенной избиле задаётая параметризацией

$$x = t + u$$
, $y = t^2 + 2tu$, $z = t^3 + 3t^2u$.

Paccuompun agea $I = \langle x-t-u, y-t^2-1tu, z-t^3-3t^2u \rangle \subset \mathbb{R}[t_1u, x, y, z]$. Ero Eague $Ip \in \mathcal{E}$ super some cui auser lex: t>u>z>y>z (cm. repuner roga que S in S in

 $g_1 = t + n - x,$ $g_2 = u^2 - x^2 + y,$ $g_3 = 2ux^2 - 2uy - 2x^3 + 3xy - 2,$ $g_4 = uxy - uz - x^2y - xz + 2y^2,$ $g_5 = 2ux^2 - 2uy^2 + 2x^2z - xy^2 - yz,$ $g_6 = 2uy^3 - 2uz^2 - 4x^2yz + xy^3 - 2xz^2 + 5y^2z,$ $g_7 = 4x^3z - 3x^2y^2 - 6xyz + 4y^3 + z^2.$

Сидовательно, $I_{1}=I \cap \mathbb{R}[x,y,z]=<4x^{3}z-3x^{2}y^{2}-6xyz+4y^{3}+z^{2}>$. Многообразие V(97) является написны шил содержащим касательную новержность к скрученной кубике.

Eсме жотем понять запомяят ме эта повержность всё многообрацие $V(g_7)$, по нумено впяснит, всеме ме тастное решение (x,y,z) в $V(g_7) = V(I_2)$ подпимается до (t,u,x,y,z) в V(I).

Myore $(x,y,z)\in V(I_2)$. Ugeas $I_2\subset I_2$, the nephric region increases always buy $I_1=\langle g_2,\ldots,g_7\rangle$.

Ягосновну g_2 имеет постояннямі нешумевом когродициент при U_2^2 то по емед съмо ту Теоремя 5.2 решение $(x,y,z) \in V(I_2)$ продемаются до $(u,x,y,z) \in V(I_1) \subset \mathbb{C}^4$ Анамочично, в симу того, что g_1 имеет постояниям нешумевом когродициент при сториней степени по t, это решение мотет боля продомнено до m. $(t,u,x,y,z) \in V(I) \subset \mathbb{C}^5$. Таким Оргуги, мог покозами, что $V(g_1)$ совнадает с касательной поверхностью в G_2^3 .

Пусть точка $(x,y,z) \in \mathbb{R}^3$ запучай многочен g_{7} , Как видно из системя $g_1 = \dots = g_6 = g_7 = 0$

параметр и зависи от z, y, z роционально над \mathbb{Q} , следовательно, $u \in \mathbb{R}$. В свою очередь параметр t=x-u, поотому он тоше принадления \mathbb{R} . Мог ноказам, что касательная новержност к скругонной пубихе в \mathbb{R}^3 ест аффинисе мно мобразие, определёние знавнением $4x^3z-3x^2y^2-6xyz+4y^3+z^2=0$

Рассиотрим теперь слугай рациональной параметризации.

Teopena 5.5: Type k - Securezroe roce, omosponence $F: k^m W \rightarrow k^n m.z.$ $F(t_1,...,t_m) = \left(\frac{f_1(t_1,...,t_m)}{g_1(t_1,...,t_m)}, \ldots, \frac{f_n(t_1,...,t_m)}{g_n(t_1,...,t_m)}\right),$

rge be $f_{i}, g_{i} \in k[t_{1},...,t_{m}], a W = V(g_{1},g_{2},...,g_{n}) \in k^{m}$ Torga, ecul ugeal $J = \langle g_{1}x_{1} - f_{1},...,g_{n}x_{n} - f_{n}, 1 - g_{1},...,g_{n}y \rangle \in k[y_{1}t_{1},...,t_{m},x_{i},...,x_{n}],$ a $J_{m+1} = J_{n} k[x_{2},...,x_{n}]$ ero $(m+1)-\sigma n^{-1}$ ugeal ucknowner, mo $V(J_{m+1})$ — naunenswee approxima encoopyrate, copymanyee $F(k^{m}-W)$.