Anticipez les besoins en consommation électrique de bâtiments

Projet n°4 – Parcours Data Scientist – Jérémy Vangansberg

Le cadre du projet

- La ville de Seattle souhaite atteindre son objectif de ville neutre en émission de carbone en 2050
- Elle s'intéresse donc à la performance énergétique des bâtiments non destinés à l'habitation
- En tant que Data Scientist, je vais utiliser des algorithmes afin de prédire les émissions de CO2 et la consommation totale d'énergie en fonction de certaines variables

Table des matières

- A. La problématique
- B. La présentation des données
- C. La préparation des données
- D. Les modélisations
- E. Le modèle final

La problématique

Problématique

- La ville de Seattle souhaite créer un outil qui permet de prédire la consommation d'énergie et les émissions de CO2 d'un bâtiment à partir de ses données déclaratives
- En effet, la ville dispose d'un jeu de données comprenant des relevés de consommation et des données déclaratives par bâtiment
- L'objectif est de se passer des relevés qui sont couteux à obtenir

Objectif: prédire une variable continue

- Lorsque l'on souhaite prédire le résultat d'une variable continue, nous nous trouvons dans un cas de régression
- Je vais tester plusieurs algorithmes de régression, évaluer leurs performances et sélectionner le meilleur

L'enjeux de la fuite de données

- Le data leakage ou leakage est un concept de statistiques et de machine learning qui caractérise des données qui ne devraient pas être disponible au moment de la prédiction
- Dans notre cas, ce sont les données relatives aux relevés de consommation et d'émissions
- Cependant, il est possible de déduire certaines variables à partir de ces informations

L'intérêt d'Energy Star Score?

- L'Energy Star Score ou ESS est une note de 1 à 100 qui permet de mesurer la performance énergétique d'un bâtiment
- Cette information est fastidieuse à obtenir
- J'ai donc tenté d'évaluer son intérêt dans les modélisations

Pistes

Avant de vous présenter les données, voici l'hypothèse que j'ai envisagée :

A priori, quels seront les variables les plus **importantes** pour effectuer cette prédiction ?

- La surface d'un bâtiment
- L'année de construction du bâtiment
- Les variables déduites à partir des relevés

La présentation des données

Les données

• Deux jeux de données :

○ 2015 : 45 colonnes et 3376 lignes

○ 2016 : 47 colonnes et 3340 lignes

Les données

- Consolider les jeux de données ? (moyenne)
- Utiliser une année pour entraîner les données et une autre pour les tester ?
 - 3284 entrées sont communes aux 2 datasets (soit 97% et 98% des jeux de données)
- L'année 2016 a été retenu car ce sont les données les plus récentes à notre disposition

Les caractéristiques du jeu de données

INFORMATIONS SUR LES VARIABLES

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3376 entries, 0 to 3375 Data columns (total 46 columns):

Data	columns (cocal 40 columns).		
#	Column	Non-Null Count	Dtype
0	OSEBuildingID	3376 non-null	int64
1	DataYear	3376 non-null	int64
2	BuildingType	3376 non-null	object
3	PrimaryPropertyType	3376 non-null	object
4	PropertyName	3376 non-null	object
5	Address	3376 non-null	object
6	City	3376 non-null	object
7	State	3376 non-null	object
8	ZipCode	3360 non-null	float64
9	TaxParcelIdentificationNumber	3376 non-null	object
10	CouncilDistrictCode	3376 non-null	int64
11	Neighborhood	3376 non-null	object
12	Latitude	3376 non-null	float64
13	Longitude	3376 non-null	float64
14	YearBuilt	3376 non-null	int64
15	NumberofBuildings	3368 non-null	float64
16	NumberofFloors	3376 non-null	int64
17	PropertyGFATotal	3376 non-null	int64
18	PropertyGFAParking	3376 non-null	int64
19	PropertyGFABuilding(s)	3376 non-null	int64
20	ListOfAllPropertyUseTypes	3367 non-null	object
21	LargestPropertyUseType	3356 non-null	object
22	LargestPropertyUseTypeGFA	3356 non-null	float64
23	SecondLargestPropertyUseType	1679 non-null	object
24	SecondLargestPropertyUseTypeGFA	1679 non-null	float64
25	ThirdLargestPropertyUseType	596 non-null	object
26	ThirdLargestPropertyUseTypeGFA	596 non-null	float64
27	YearsENERGYSTARCertified	119 non-null	object
28	ENERGYSTARScore	2533 non-null	float64
29	SiteEUI(kBtu/sf)	3369 non-null	float64
30	SiteEUIWN(kBtu/sf)	3370 non-null	float64
31	SourceEUI(kBtu/sf)	3367 non-null	float64
32	SourceEUIWN(kBtu/sf)	3367 non-null	float64
33	SiteEnergyUse(kBtu)	3371 non-null	float64
34	SiteEnergyUseWN(kBtu)	3370 non-null	float64
35	SteamUse(kBtu)	3367 non-null	float64
36	Electricity(kWh)	3367 non-null	float64
37	Electricity(kBtu)	3367 non-null	float64
38	NaturalGas(therms)	3367 non-null	float64
39	NaturalGas(kBtu)	3367 non-null	float64
40	DefaultData	3376 non-null	bool
41	Comments	0 non-null	float64
42	ComplianceStatus	3376 non-null	object
43	Outlier	32 non-null	object
44	TotalGHGEmissions	3367 non-null	float64
45	GHGEmissionsIntensity	3367 non-null	float64

← Index

← Données déclaratives

← ESS

Relevé de consommation

Autres Données déclaratives

Relevé d'émissions

dtypes: bool(1), float64(22), int64(8), object(15)

memory usage: 1.2+ MB

La préparation des données

Variables catégorielles : Pré-sélection

LES VARIABLES CATÉGORIELLES : TAUX DE REMPLISSAGE ET CARDINALITÉ

Nom de la variable	Taux de remplissage (%)	Cardinalité
BuildingType	100	8
PrimaryPropertyType	100	24
PropertyName	100	3362
Address	100	3354
City	100	1
State	100	1
TaxParcelIdentificationNumber	100	3268
Neighborhood	100	19
ListOfAllPropertyUseTypes	100	467
LargestPropertyUseType	99	57
SecondLargestPropertyUseType	50	51
ThirdLargestPropertyUseType	18	45
YearsENERGYSTARCertified	4	66
ComplianceStatus	100	4
Outlier	1	3

Leakage: Les données relatives aux relevés

- Objectif: Prévoir la consommation et les émissions sans les informations des relevés
- Ces variables ont été supprimées
- Cependant de nouvelles variables ont été créées :
 - La consommation/émission moyen par type de bâtiment
- Suite à cette modification, j'estime que la variable
 « PrimaryPropertyType » n'est plus utile car elle est colinéaire à ce nouvel ensemble de variables

Les données spatiales

VUE DE SEATTLE SUR GOOGLE MAP

SCATTER PLOT: LONGITUDE ET LATITUDE

Focus sur les bâtiments non-résidentiels

- « BuildingType » valeurs conservées :
 - O 'NonResidential'
 - 'Nonresidential COS'
 - 'Nonresidential WA'
- Suite à cette opération, le jeu de données passe de 3376 entrées à 1544
- Envisager des solutions pour séparer les données avec une stratification en fonction du type de bâtiment

Retravail des catégories

RÉPARTITION AVANT NETTOYAGE

RÉPARTITION APRÈS NETTOYAGE (GROUPE MINIMUM: 12)

- 'Small- and Mid-Sized Office', 'Large Office', 'Office'
 → 'Office'
- 'Non-Refrigerated Warehouse', 'Warehouse' → 'Warehouse'
- 'Hospital', 'Laboratory' → 'HospitalAndLaboraty'

Pipeline

- Données numériques
 - Transformation en log + 1 :
 - ☐ 'PropertyGFABuilding(s)'
 - ☐ 'NumberofBuildings'
 - ☐ 'NumberofFloors'
 - ☐ 'ENERGYSTARScore'
 - Transformation avec Standard Scaler

$$z = \frac{x - \mu}{\sigma}$$

- Données catégorielles
 - Transformation avec one hot encoder

DISTRIBUTION

Les modélisations

Séparation en train/test set

- Etant donné que le jeu de données est **petit**, une séparation des données par utilisation du hasard peut conduire à un déséquilibre important
- J'ai donc utilisé une **méthode de stratification** afin d'avoir un train set représentatif du test set
- En général, la stratification est plutôt utilisé dans le cas d'une classification
- J'ai stratifié les données en fonction de « PrimaryPropertyType »

Les modèles envisagés

- Modèles linéaires :
 - Régression linéaire
 - Lasso
- Modèles non-linéaires :
 - Random Forest Regressor
 - Gradient Boosting Regressor

Les métriques et outils d'évaluation

- R²
- RMSE
- Validation Curves
- Temps d'entraînement

Les variantes

• Les modèles ont été entraînés enfin de prédire la valeur de deux variables cibles:

○ Target 1 : Emissions de CO2

○ Target 2 : Consommation d'énergie totale

 Afin d'évaluer l'intérêt de la variable Energy Star Score, chaque modèle a une version avec et sans cette variable

Baseline: Dummy Regressor

- Stratégie utilisée : la moyenne
- Score Target 1 :
 - RMSE : 1,54
 - $\circ R^2 : -0,0016$
- Score Target 2 :
 - RMSE : 1,58
 - $\circ R^2 : -6,51$

Régression linéaire (1)

• Bref définition :

Algorithme de régression le plus répandu. Il cherche à **minimiser la somme des moindres carrés** en optimisant les coefficients associés à chaque variable

Hyperparamètres : ∅

RÉCAPITULATIF DES SCORES

Target	R ²	RMSE
N°1	0,575	1,002
N°1 (ESS)	0,598	0,974
N°2	0,583	1,019
N°2 (ESS)	0,614	0,984

Régression linéaire (2)

TARGET 1

TARGET 2

TARGET 1 ESS

TARGET 2 ESS

Lasso (1)

• Bref définition :

C'est un algorithme de régression linéaire avec un terme de régularisation qui permet de réduire l'overfitting

• Hyperparamètre : alpha

RÉCAPITULATIF DES SCORES

Target	R ²	RMSE
N°1	0,575	1,002
N°1 (ESS)	0,598	0,974
N°2	0,578	1,028
N°2 (ESS)	0,603	0,997

Lasso (2)

TARGET 1

TARGET 2

TARGET 1 ESS

TARGET 2 ESS

Lasso (3)

TARGET 1: COEFFICIENTS

	features	coefs
10	NaturalGas(kBtu)_mean_property_type	1.527322
0	YearBuilt	0.824314
3	PropertyGFABuilding(s)	0.519850
11	ComplianceStatus_Compliant	0.116515
13	ComplianceStatus_Non-Compliant	0.058373
1	NumberofBuildings	0.057067
6	SourceEUI(kBtu/sf)_mean_property_type	0.028426
8	SteamUse(kBtu)_mean_property_type	0.004421
4	Latitude	0.000000
12	ComplianceStatus_Error - Correct Default Data	-0.013927
2	NumberofFloors	-0.041677
7	SiteEUI(kBtu/sf)_mean_property_type	-0.049575
9	Electricity(kBtu)_mean_property_type	-1.098427
5	Longitude	-1.189855

TARGET 2: COEFFICIENTS

	features	coefs
0	YearBuilt	0.850800
3	PropertyGFABuilding(s)	0.553800
10	Natural Gas (kBtu)_mean_property_type	0.502111
6	SourceEUI(kBtu/sf)_mean_property_type	0.117584
1	NumberofBuildings	0.041505
2	NumberofFloors	0.038806
11	ComplianceStatus_Compliant	0.023170
13	ComplianceStatus_Non-Compliant	0.003975
8	SteamUse(kBtu)_mean_property_type	0.000224
4	Latitude	-0.000000
9	Electricity(kBtu)_mean_property_type	0.000000
7	SiteEUI(kBtu/sf)_mean_property_type	-0.024896
12	ComplianceStatus_Error - Correct Default Data	-0.032265
5	Longitude	-0.834754

Random Forest (1)

• Bref définition :

Méthode ensembliste et parallèle. Cet algorithme combine plusieurs arbres de décision simple (apprenants faibles) afin d'effectuer une prédiction.

 Hyperparamètres principaux : n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf

RÉCAPITULATIF DES SCORES

Target	R ²	RMSE
N°1	0,557	1,023
N°1 (ESS)	0,580	0,995
N°2	0,574	1,032
N°2 (ESS)	0,607	0,997

Random Forest (2)

TARGET 1

TARGET 2

TARGET 1 ESS

TARGET 2 ESS

Gradient Boosting Regressor (1)

Définitions

Méthode ensembliste séquentielle. Cette algorithme combine plusieurs apprenants faibles. De manière successive, les arbres vont accorder plus de poids aux erreurs faites par les estimateurs précédents

 Hyperparamètres: n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, subsample, learning_rate

RÉCAPITULATIF DES SCORES

Target	R ²	RMSE
N°1	0,589	0,985
N°1 (ESS)	0,608	0,962
N°2	0,592	1,101
N°2 (ESS)	0,625	0,969

Gradient Boosting Regressor (2)

TARGET 1

TARGET 2

TARGET 1 ESS

TARGET 2 ESS

Comparatif des scores (début de l'échelle ≠0)

TARGET 1: RMSE

TARGET 2: RMSE

TARGET 1: R²

TARGET 2: R²

Comparatif des scores (début de l'échelle à 0)

TARGET 1: RMSE

Bilan:

- 1. La différence de performance entre les algorithmes est faible
- 2. L'intérêt de la variable ESS est limité

Autres indicateurs de performance : temps

- Les temps d'exécution des algorithmes sont très courts (– d'une seconde). C'est donc un estimateur trivial
- Toutefois, la recherche d'hyperparamètre peut atteindre jusqu'à 5 minutes par recherche.

Le modèle finale

Le modèle final : Gradient Boosting

- Stratégie d'optimisation des paramètres en plusieurs étapes :
 - 1. Choix d'un learning rate assez élevé : 0,1
 - 2. Recherche du nombre d'estimateurs : de 10 à 150 par palier de 5
 - 3. Recherche des paramètres spécifiques aux arbres :
 - min_samples_split : de 2 à 40 par palier de 2
 - min_samples_leaf : de 1 à 10 par palier de 1
 - max_depth : de 2 à 8 par palier de 1
 - Subsample : [0.6,0.7,0.8,0.85,0.9]
 - 4. Réduction du learning rate et augmentation proportionnelle du nombre d'estimateurs : division du learning rate par deux et multiplication du nombre d'estimateurs par deux

L'importance des variables

TARGET 1

TARGET 2

Les erreurs

TARGET 1: ERREUR PAR CATÉGORIE

PrimaryPropertyType	
K-12 School	0.462860
Medical Office	0.574584
Office	0.592915
Hotel	0.601901
Worship Facility	0.650862
Self-Storage Facility	0.684444
Mixed Use Property	0.725369
Retail Store	0.735587
Refrigerated Warehouse	0.827915
Other	0.857088
Warehouse	0.875245
HospitalAndLaboraty	0.912684
University	0.917669
Residence Hall	0.920644
11022001100 11022	
Senior Care Community	0.926131
	0.926131 0.932522
Senior Care Community	
Senior Care Community Distribution Center	0.932522

TARGET 2 : ERREUR PAR CATÉGORIE

PrimaryPropertyType	
Supermarket / Grocery Store	0.313725
Office	0.371728
Worship Facility	0.384909
Hotel	0.386181
Residence Hall	0.396569
University	0.409546
Mixed Use Property	0.444804
Refrigerated Warehouse	0.474045
Retail Store	0.487051
K-12 School	0.494121
Medical Office	0.539435
HospitalAndLaboraty	0.588498
Senior Care Community	0.648775
Warehouse	0.652931
Distribution Center	0.755905
Self-Storage Facility	0.850614
Other	0.868855
Restaurant	1.076984
Name: error, dtvpe: float64	

Variables modifiées
Top/Bot erreur

Conclusion

- ESS a un intérêt limité
- Le faible nombre de données d'entraînement rend les modèles instables
- Le meilleur modèle explique environ 62 % de la variance (R²)

Pistes d'approfondissements

- Tester d'autres modèles comme XGBoost
- Calculer le taux d'évolution des variables entre les années