Notação Assintótica: Ω, Θ

André Vignatti

DINF- UFPR

Limitantes Inferiores

Considere o seguinte trecho de código:

```
void main () {
     /* trecho que le N da entrada padrao */
     for (i = 0 ; i < N; i++)
         puzzle(i);
}
int puzzle (int N) {
    if (N == 1) return 1;
    if (N \% 2 == 0) return puzzle(N/2);
    else return puzzle(3*N+1);
}
Testar puzzle(3): 3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1.
```

Limitantes Inferiores

- O programa chama puzzle $\geq N$ vezes.
- Cada chamada de puzzle executa ≥ 1 comando.
- Qual o número máximo de comandos executado por puzzle?
 - Difícil responder!

Mas pode ser útil saber um limitante inferior para o número de passos de um algoritmo. Usamos então a notação Ω .

Limitantes Inferiores: Notação Ω

Definição

 $f(n) \in \Omega(g(n))$ se existe constantes c > 0 e n_0 tal que $f(n) \ge cg(n)$, para todo $n \ge n_0$.

g(n) é dito ser um limitante inferior assintótico para f(n).

Exemplo

Seja f(n) = 5. É verdade que $f(n) = \Omega(1)$?

SIM. Tomando c = 1, $n_0 = 0$ então $5 \ge c$ para $n \ge n_0$.

Exemplo

Seja $f(n) = \sqrt{n}$. É verdade que $f(n) = \Omega(1)$?

SIM. Tomando $c=1, n_0=1$ então $\sqrt{n} \ge c$ para $n \ge n_0$.

Exemplo

Seja f(n) = 1/n. É verdade que $f(n) = \Omega(1)$?

NÃO. Não existe c, n_0 pois $\frac{1}{n}$ sempre pode ser menor que uma constante fixa c.

Exemplo

As funções a seguir são $\Omega(n^2)$

- \bullet n^2
- $n^2 + n$
- \bullet $n^2 n$
- $1000n^2 + 1000n$
- $1000n^2 1000n$
- \bullet n^3
- $n^{2.000000001}$
- 2^{2ⁿ}

Definição - Tempo de Execução de um Algoritmo:

- Um algoritmo é dito $\Omega(f(n))$ se TODAS as instâncias executam em tempo $\Omega(f(n))$.
- Um algoritmo é dito O(g(n)), se TODAS as instâncias executam em tempo O(g(n)).

Exemplo

- InsertionSort é $O(n^2)$ pois TODOS os vetores passados como entrada fazem o algoritmo executar em tempo $O(n^2)$.
- InsertionSort NÃO é O(n) pois existem algumas instâncias (vetor ordenado ao inverso) que executam em tempo $O(n^2)$.
- InsertionSort é $\Omega(n)$ pois TODOS os vetores passados como entrada fazem o algoritmo executar em tempo $\Omega(n)$.
- InsertionSort NÃO é $\Omega(n^2)$ pois existem algumas instâncias (vetor ordenado) que executam em tempo $\Omega(n)$.

Pergunta:

InsertionSort é $O(n^3)$?

Pergunta:

InsertionSort é $\Omega(1)$?

Ambas as respostas são SIM, mas não diz muita coisa sobre o algoritmo...

- É sempre mais interessante encontrar a menor função f(n) tal que o algoritmo é O(f(n)).
- É sempre mais interessante encontrar a maior função g(n) tal que o algoritmo é $\Omega(g(n))$.

Como O limita por cima, pode ter sido feita uma análise folgada.

Exemplo

Supondo análise $O(n^3)$ do InsertionSort (o que NÃO está errado). Podemos melhorar a análise?

• Não conseguimos encontrar vetor que gaste tempo $\Omega(n^3)!$

Como saber que a análise de O(f(n)) não está folgada?

Um jeito: achar uma instância que execute em $\Omega(f(n))$.

• Neste caso, não haveria "espaço" para melhorias na análise.

Exemplo

Supondo análise $O(n^2)$ e $\Omega(n)$ do InsertionSort. Podemos melhorar?

- ullet Vetor ordenado gasta tempo $O(n)\Longrightarrow$ não dá pra aumentar $\Omega(n)$
- Vetor ordenado ao inverso gasta tempo $\Omega(n^2) \Longrightarrow$ não dá pra diminuir $O(n^2)$.

Ao comparar **melhor caso** X **pior caso** dificilmente temos uma análise justa (i.e., sem folgas).

Solução:

Solução: fazer a análise justa do melhor caso separadamente do pior caso.

Análise de Algoritmos não justa (no sentido de apertado)

InsertionSort executa em tempo $O(n^2)$ e $\Omega(n)$.

NÃO dá pra deixar a análise mais justa!

Vamos separar por melhor e pior caso:

Pior Caso

- O pior caso do InsertionSort executa em $O(n^2)$ e $\Omega(n^2)$. Isto porque:
 - No pior caso, **TODAS** as instâncias executam em $O(n^2)$.
 - No pior caso, **TODAS** as instâncias executam em tempo $\Omega(n^2)$.

Melhor Caso

- O melhor caso do InsertionSort executa em O(n) e $\Omega(n)$. Isto porque:
 - No melhor caso, **TODAS** as instâncias executam em O(n).
 - No melhor caso, **TODAS** as instâncias executam em tempo $\Omega(n)$.

Notação Θ

Definição

$$f(n) = \Theta(g(n))$$
 se $f(n) = O(g(n))$ e $f(n) = \Omega(g(n))$.

• Neste caso, dizemos que g(n) é um limitante assintótico justo (apertado) para f(n).

Definição Equivalente

 $f(n) \in \Theta(g(n))$ se existe constantes $c_1, c_2 > 0$ e n_0 tal que $c_1g(n) \le f(n) \le c_2g(n)$, para todo $n \ge n_0$.

Notação Θ

Exemplo

Mostre que a soma dos n primeiros inteiros é $\Theta(n^2)$.

- Limite Superior: $1+2+\ldots+n \le n+n+\ldots+n=n^2$. Então, tomando $c=1, n_0=1$, a soma é $O(n^2)$.
- Limite Inferior:

$$1 + 2 + \ldots + n \ge \lceil n/2 \rceil + (\lceil n/2 \rceil + 1) + \ldots + n$$

$$\ge \lceil n/2 \rceil + \lceil n/2 \rceil + \ldots + \lceil n/2 \rceil$$

$$= (n - \lceil n/2 \rceil + 1) \lceil n/2 \rceil$$

$$\ge (n/2)(n/2) = n^2/4,$$

assim, tomando c = 1/4, $n_0 = 1$ a soma é $\Theta(n^2)$.

Fato útil: o termo dominante de um polinômio determina sua complexidade assintótica:

Teorema

Seja $f(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0$ onde a_0, \ldots, a_k são números reais, e $a_k \neq 0$. Então $f(n) = \Theta(n^k)$.

Demonstração.

Exercício.

Observação Importante:

Knuth observou: muito autores usam de forma errada O como se fosse Θ !

 Sempre se lembre disso quando você ver a notação O sendo usada!

Outro **erro clássico**: O serve para expressar o **pior caso**, Ω serve para expressar o **melhor caso**.