Proiectarea algoritmilor: Căutare peste șiruri

Ștefan Ciobâcă, Dorel Lucanu

Faculty of Computer Science
Alexandru Ioan Cuza University, Iași, Romania
dlucanu@info.uaic.ro

PA 2015/2016

1 / 34

Algoritmul Knuth-Morris-Pratt

Expresii regulate

Plan

1 Algoritmul Knuth-Morris-Pratt

Expresii regulate

Intuiția²

Intuiția³

Intuiția³

Pentru pattern-ul *ababaca*, dacă la o poziție i se potrivesc exact 5 caractere, nu există nicio șansă ca pattern-ul să se potrivească la poziția i+1.

? ? ? ?	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	?	?	?	?	?	?	?	?
	=	=	=	=	=	=	=	\neq							
	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	?							
					=	=	=								
					<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	?			

?	?	?	?	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	?	?	?	?	?	?	?	?
				=	=	=	=	=	=	=	#							
				<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	?							
								=	=	=								
								<i>X</i> ₁	<i>X</i> 2	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₁	<i>X</i> 2	<i>X</i> 3	?			

?	?	?	?	<i>x</i> ₁		X _k		<i>x</i> ₁		X _k	?	?	?	?
				=	=	=	=	=	=	=	\neq			
				<i>x</i> ₁		X _k		<i>x</i> ₁		X _k	?			

?	?	?	?	<i>x</i> ₁		X _k		<i>x</i> ₁		X _k	?	?	?	?
				=	=	=	=	=	=	=	\neq			
				<i>x</i> ₁		X _k		<i>x</i> ₁		X _k	?			

Ne interesează cea mai mare valoarea a lui k astfel încât $x_1 ldots x_k$ să fie atât prefix cât și sufix al părții din pattern care s-a potrivit.

 $oldsymbol{0}$ $s \sqsubset t$ dacă s este prefix al lui t

- 2 $s \equiv t \operatorname{dac} s$ este sufix al lui t

- ② $s \supset t$ dacă s este sufix al lui t
- **3** Exemple: $\epsilon \sqsubset aba$

- ② $s \supset t$ dacă s este sufix al lui t
- **3** Exemple: $\epsilon \sqsubset aba$, $aba \sqsubset ababa$

- 2 $s \supset t$ dacă s este sufix al lui t
- **3** Exemple: $\epsilon \sqsubset aba$, $aba \sqsubset ababa$, $aba \sqsubset ababa$

- 2 $s \supset t$ dacă s este sufix al lui t
- **3** Exemple: $\epsilon \sqsubset aba$, $aba \sqsubset ababa$, $aba \sqsubset aba$, $aa \sqsupset abaa$.

•
$$t[0..m-1]$$
 (patternul)

- t[0..m-1] (patternul)

- t[0..m-1] (patternul)
- $lackbox{0}$ Funcția eșec $f:\{0,\ldots,m-1\} o\mathbb{N}$

- t[0..m-1] (patternul)
- $lacksquare{3}$ Funcția eșec $f:\{0,\ldots,m-1\}
 ightarrow \mathbb{N}$
- f(i) = cel mai lung prefix propriu al t[0..i-1] care este si sufix al t[0..i-1]

- t[0..m-1] (patternul)
- $lacksquare{3}$ Funcția eșec $f:\{0,\ldots,m-1\}
 ightarrow \mathbb{N}$
- f(i) = cel mai lung prefix propriu al t[0..i-1] care este si sufix al t[0..i-1]
- Exemplu:

i	0	1	2	3	4	5	6
t[i]	а	b	а	b	а	С	а
f(i)	-1						

- t[0..m-1] (patternul)
- $lacksquare{3}$ Funcția eșec $f:\{0,\ldots,m-1\}
 ightarrow \mathbb{N}$
- f(i) = cel mai lung prefix propriu al t[0..i-1] care este si sufix al t[0..i-1]
- Exemplu:

i	0	1	2	3	4	5	6
t[i]	а	b	а	b	а	С	а
f(i)	-1	0					

- t[0..m-1] (patternul)
- $lacksquare{3}$ Funcția eșec $f:\{0,\ldots,m-1\}
 ightarrow \mathbb{N}$
- f(i) = cel mai lung prefix propriu al t[0..i-1] care este si sufix al t[0..i-1]
- Semplu:

i	0	1	2	3	4	5	6
t[i]	а	b	а	b	а	С	а
f(i)	-1	0	0				

- t[0..m-1] (patternul)
- $lacksquare{3}$ Funcția eșec $f:\{0,\ldots,m-1\}
 ightarrow \mathbb{N}$
- f(i) = cel mai lung prefix propriu al t[0..i-1] care este si sufix al t[0..i-1]
- Exemplu:

i	0	1	2	3	4	5	6
t[i]	а	b	а	b	а	С	а
f(i)	-1	0	0	1			

- t[0..m-1] (patternul)
- **3** Funcția eșec $f: \{0, \ldots, m-1\} \rightarrow \mathbb{N}$
- f(i) = cel mai lung prefix propriu al t[0..i-1] care este si sufix al t[0..i-1]
- Semplu:

i	0	1	2	3	4	5	6
t[i]	а	b	а	b	а	С	а
f(i)	-1	0	0	1	2		

- t[0..m-1] (patternul)
- $lacksquare{3}$ Funcția eșec $f:\{0,\ldots,m-1\}
 ightarrow \mathbb{N}$
- f(i) = cel mai lung prefix propriu al t[0..i-1] care este si sufix al t[0..i-1]
- Semplu:

i	0	1	2	3	4	5	6
t[i]	а	b	а	b	а	С	а
f(i)	-1	0	0	1	2	3	

- t[0..m-1] (patternul)
- $lacksquare{3}$ Funcția eșec $f:\{0,\ldots,m-1\}
 ightarrow \mathbb{N}$
- f(i) = cel mai lung prefix propriu al t[0..i-1] care este si sufix al t[0..i-1]
- Semplu:

i	0	1	2	3	4	5	6
t[i]	а	b	а	b	а	С	а
f(i)	-1	0	0	1	2	3	0

- t[0..m-1] (patternul)
- $lacksquare{3}$ Funcția eșec $f:\{0,\ldots,m-1\}
 ightarrow \mathbb{N}$
- f(i) = cel mai lung prefix propriu al t[0..i-1] care este si sufix al t[0..i-1]
- Semplu:

i	0	1	2	3	4	5	6
t[i]	а	b	а	b	а	С	а
f(i)	-1	0	0	1	2	3	0

Exemplu pe tablă.

Algoritmul KMP

compute f[0..m-1];

(vom vedea mai târziu cum)

```
• compute f[0..m-1]; (vom vedea mai târziu cum)

• i = 0; (încerc să găsesc o potrivire pe poziția i = 0)
```

```
    compute f[0..m-1]; (vom vedea mai târziu cum)
    i = 0; (încerc să găsesc o potrivire pe poziția i = 0)
    k = 0; (pentru moment sunt k = 0 poziții care se potrivesc)
```

```
compute f[0..m-1]; (vom vedea mai târziu cum)
i = 0; (încerc să găsesc o potrivire pe poziția i = 0)
k = 0; (pentru moment sunt k = 0 poziții care se potrivesc)
while (i + m <= n)</li>
```

```
compute f[0..m-1]; (vom vedea mai târziu cum)
i = 0; (încerc să găsesc o potrivire pe poziția i = 0)
k = 0; (pentru moment sunt k = 0 poziții care se potrivesc)
while (i + m <= n)</li>
if k == m (s-au potrivit toate cele m caractere)
```

```
    compute f[0..m-1]; (vom vedea mai târziu cum)
    i = 0; (încerc să găsesc o potrivire pe poziția i = 0)
    k = 0; (pentru moment sunt k = 0 poziții care se potrivesc)
    while (i + m <= n)</li>
    if k == m (s-au potrivit toate cele m caractere)
    return i:
```

```
0 compute f[0..m-1];
                                           (vom vedea mai târziu cum)
                          (încerc să găsesc o potrivire pe poziția i = 0)
\mathbf{2} i = 0;
0 k = 0;
                   (pentru moment sunt k=0 poziții care se potrivesc)
while (i + m <= n)</pre>
    \mathbf{0} if k == m
                                     (s-au potrivit toate cele m caractere)
          • return i:
    else
         (încă un caracter se potrivește)
                  k = k + 1:
         else
                                                            (nepotrivire)
```

```
0 compute f[0..m-1];
                                           (vom vedea mai târziu cum)
                           (încerc să găsesc o potrivire pe poziția i = 0)
\mathbf{2} i = 0;
0 k = 0;
                  (pentru moment sunt k=0 poziții care se potrivesc)
while (i + m <= n)</pre>
    \mathbf{0} if k == m
                                     (s-au potrivit toate cele m caractere)
          • return i:
    else
         (încă un caracter se potrivește)
                  k = k + 1:
         else
                                                            (nepotrivire)
                   i = i + k - f[k]:
```

```
0 compute f[0..m-1];
                                           (vom vedea mai târziu cum)
                           (încerc să găsesc o potrivire pe poziția i = 0)
\mathbf{2} i = 0;
0 k = 0;
                  (pentru moment sunt k=0 poziții care se potrivesc)
while (i + m <= n)</pre>
    \mathbf{0} if k == m
                                     (s-au potrivit toate cele m caractere)
          • return i:
    else
         (încă un caracter se potrivește)
                  k = k + 1:
         else
                                                            (nepotrivire)
                   i = i + k - f[k]; k = max(f[k], 0);
```

```
0 compute f[0..m-1];
                                           (vom vedea mai târziu cum)
                           (încerc să găsesc o potrivire pe poziția i = 0)
\mathbf{2} i = 0;
0 k = 0;
                  (pentru moment sunt k=0 poziții care se potrivesc)
while (i + m <= n)</pre>
    \mathbf{0} if k == m
                                     (s-au potrivit toate cele m caractere)
          • return i:
    else
         (încă un caracter se potrivește)
                  k = k + 1:
         else
                                                            (nepotrivire)
                   i = i + k - f[k]; k = max(f[k], 0);
```

o return -1;

```
0 compute f[0..m-1];
                                           (vom vedea mai târziu cum)
                           (încerc să găsesc o potrivire pe poziția i = 0)
\mathbf{2} i = 0;
0 k = 0;
                  (pentru moment sunt k=0 poziții care se potrivesc)
while (i + m <= n)</pre>
    \mathbf{0} if k == m
                                     (s-au potrivit toate cele m caractere)
          • return i:
    else
         (încă un caracter se potrivește)
                  k = k + 1:
         else
                                                            (nepotrivire)
                   i = i + k - f[k]; k = max(f[k], 0);
```

o return -1;

1	b	l	l			
-1	0	0	1	2	3	0

а	b	а	b	а	С	а
-1	0	0	1	2	3	0

① Observație: pentru orice k, f[k] < k.

а	b	а	b	а	С	а
-1	0	0	1	2	3	0

- **①** Observație: pentru orice k, f[k] < k.
- ② Observație la fiecare iterație a buclei while, valoarea expresiei 2i + k crește cu cel puțin o unitate (vezi pe tablă).

а	b	а	b	а	С	а
-1	0	0	1	2	3	0

- ① Observație: pentru orice k, f[k] < k.
- ② Observație la fiecare iterație a buclei while, valoarea expresiei 2i + k crește cu cel puțin o unitate (vezi pe tablă).
- **3** Observație: ce valoarea poate avea 2i + k (maxim)?

а	b	а	b	а	С	а
-1	0	0	1	2	3	0

- **①** Observație: pentru orice k, f[k] < k.
- ② Observație la fiecare iterație a buclei while, valoarea expresiei 2i + k crește cu cel puțin o unitate (vezi pe tablă).
- **3** Observație: ce valoarea poate avea 2i + k (maxim)?
- Concluzie: câte iterații ale buclei while sunt executate?

Algoritmul KMP (prezentare alternativă)

```
KMP(s, n, t, m, f) {
 i = 0:
 k = 0:
  while (i < n) {
    while (k != -1) \&\& (p[k] != s[i])
      k = f[k];
    if (k = m-1)
      return i-m+1; /* gasit p in s */
    else {
      i = i+1;
      k = k+1;
  return -1; /* p nu apare in s */
```

Algoritmul KMP (prezentare alternativă)

```
KMP(s, n, t, m, f) {
  i = 0:
 k = 0:
  while (i < n) {
    while (k != -1) \&\& (p[k] != s[i])
      k = f[k];
    if (k = m-1)
      return i-m+1; /* gasit p in s */
    else {
      i = i+1;
      k = k+1;
  return -1; /* p nu apare in s */
}
```

Corelație: variabila i din acest program "ține minte" valoarea i+k din programul precedent.

а	b	а	b	а	С	а
-1	0	0	1	2	3	0

а	b	a	b	a	С	a
-1	0	0	1	2	3	0

O implementare naivă poate avea complexitatea $O(m^3)$ (exercițiu pentru acasă).

a	b	a	b	a	С	a
-1	0	0	1	2	3	0

O implementare naivă poate avea complexitatea $O(m^3)$ (exercițiu pentru acasă).

Dacă presupunem că f[0..i-1] a fost deja calculat, cum calculăm eficient f[i]?

а	b	а	b	а	С	а
-1	0	0	1	2	3	0

O implementare naivă poate avea complexitatea $O(m^3)$ (exercițiu pentru acasă).

Dacă presupunem că f[0..i-1] a fost deja calculat, cum calculăm eficient f[i]?

1 Dacă t[i-1] = t[f[i-1]], atunci f[i] = f[i-1] + 1.

а	b	а	b	а	С	а
-1	0	0	1	2	3	0

O implementare naivă poate avea complexitatea $O(m^3)$ (exercițiu pentru acasă).

Dacă presupunem că f[0..i-1] a fost deja calculat, cum calculăm eficient f[i]?

- **1** Dacă t[i-1] = t[f[i-1]], atunci f[i] = f[i-1] + 1.
- ② (altfel,) dacă t[i-1] = t[f[f[i-1]]], atunci f[i] = f[f[i-1]] + 1.

а	b	а	b	а	С	а
-1	0	0	1	2	3	0

O implementare naivă poate avea complexitatea $O(m^3)$ (exercițiu pentru acasă).

Dacă presupunem că f[0..i-1] a fost deja calculat, cum calculăm eficient f[i]?

- **1** Dacă t[i-1] = t[f[i-1]], atunci f[i] = f[i-1] + 1.
- ② (altfel,) dacă t[i-1] = t[f[f[i-1]]], atunci f[i] = f[f[i-1]] + 1.
- etc.

• f [0] = -1; (deoarece
$$t[0..-1] = \epsilon$$
 nu are niciun prefix propriu)

```
• f[0] = -1; (deoarece t[0..-1] = \epsilon nu are niciun prefix propriu)

• k = -1;
```

```
① f[0] = -1; (deoarece t[0..-1] = \epsilon nu are niciun prefix propriu)
② k = -1;
③ for (i = 1; i < m; ++i) (calculez f[i])
```

```
• f[0] = -1; (decarece t[0..-1] = \epsilon nu are niciun prefix propriu)
```

- for (i = 1; i < m; ++i) (calculez f[i]) (stiu că t[0..i-2] are un prefix propriu de lungime k care este și sufix)

```
2 k = -1;

3 for (i = 1; i < m; ++i) (calculez f[i]) (stiu că t[0..i-2] are un prefix propriu de lungime k care este și sufix)
```

```
① while k != -1 \&\& t[k] != t[i - 1]
```

```
    f [0] = -1; (deoarece t[0.. - 1] = ∈ nu are niciun prefix propriu)
    k = -1;
    for (i = 1; i < m; ++i) (calculez f[i]) (știu că t[0..i - 2] are un prefix propriu de lungime k care este și sufix)</li>
    while k != -1 && t[k] != t[i - 1] (iau un prefix mai mic)
```

```
    f[0] = -1; (deoarece t[0.. - 1] = ∈ nu are niciun prefix propriu)
    k = -1;
    for (i = 1; i < m; ++i) (calculez f[i]) (știu că t[0..i - 2] are un prefix propriu de lungime k care este și sufix)</li>
    while k != -1 && t[k] != t[i - 1] (iau un prefix mai mic)
    k = f[k] (iau un prefix mai mic)
    k = k + 1; (adaug caracterul t[k] = t[i - 1])
```

```
• f[0] = -1; (deoarece t[0..-1] = \epsilon nu are niciun prefix propriu)
• k = -1;
• for (i = 1; i < m; ++i) (calculez f[i])
• (stiu că t[0..i-2] are un prefix propriu de lungime k care este și sufix)
• while k != -1 && t[k] != t[i-1]
• k = f[k] (iau un prefix mai mic)
• k = k + 1; (adaug caracterul t[k] = t[i-1])
• t[i] = k:
```

Plan

Algoritmul Knuth-Morris-Pratt

Expresii regulate

Definiție

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută.

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat.

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

Mulțimea expresiilor regulate peste alfabetul Σ este definită recursiv astfel:

 \bullet ε , empty sunt expresii regulate

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

Mulțimea expresiilor regulate peste alfabetul Σ este definită recursiv astfel:

 \bullet ε , empty sunt expresii regulate

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

- \bullet ε , empty sunt expresii regulate
- orice caracter din Σ este o expresie regulată;

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

- \bullet ε , empty sunt expresii regulate
- orice caracter din Σ este o expresie regulată;

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

- ε , empty sunt expresii regulate
- orice caracter din Σ este o expresie regulată;
- dacă e_1 , e_2 sunt expresii regulate, atunci e_1e_2 și $e_1 + e_2$ sunt expresii regulate;

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

- ε , empty sunt expresii regulate
- orice caracter din Σ este o expresie regulată;
- dacă e_1 , e_2 sunt expresii regulate, atunci e_1e_2 și $e_1 + e_2$ sunt expresii regulate;

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

- ε , empty sunt expresii regulate
- orice caracter din Σ este o expresie regulată;
- dacă e_1 , e_2 sunt expresii regulate, atunci e_1e_2 și $e_1 + e_2$ sunt expresii regulate;
- dacă e este expresie regulată, atunci (e) și e* sunt expresii regulate.

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

- ε , empty sunt expresii regulate
- orice caracter din Σ este o expresie regulată;
- dacă e_1 , e_2 sunt expresii regulate, atunci e_1e_2 și $e_1 + e_2$ sunt expresii regulate;
- dacă e este expresie regulată, atunci (e) și e* sunt expresii regulate.

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție

Mulțimea expresiilor regulate peste alfabetul Σ este definită recursiv astfel:

- ε , empty sunt expresii regulate
- orice caracter din Σ este o expresie regulată;
- dacă e_1 , e_2 sunt expresii regulate, atunci e_1e_2 și $e_1 + e_2$ sunt expresii regulate;
- dacă e este expresie regulată, atunci (e) și e* sunt expresii regulate.

Arborele sintactic abstract: pe tabla.

Legătura cu pachetul <regex> din C++

<regex></regex>	expresia regulata
[abc]	a + b + c
\d sau [[:digit:]]	$0 + 1 + \cdots + 9$
[[:digit:]]*	$(0+1+\cdots+9)^*$
[[:digit:]]+	$(0+1+\cdots+9)(0+1+\cdots+9)^*$

Definiție

Definiție

Mulțimea de șiruri (limbajul) L(e) definit de o expresie regulată e este definit recursiv astfel:

• $L(\varepsilon) =$

Definiție

Mulțimea de șiruri (limbajul) L(e) definit de o expresie regulată e este definit recursiv astfel:

• $L(\varepsilon) = \{\varepsilon\}$

Definiție

Mulțimea de șiruri (limbajul) L(e) definit de o expresie regulată e este definit recursiv astfel:

• $L(\varepsilon) = \{\varepsilon\}$ (ε este şirul vid (de lungime zero)),

Definiție

Mulțimea de șiruri (limbajul) L(e) definit de o expresie regulată e este definit recursiv astfel:

• $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) =$

Definiție

Mulțimea de șiruri (limbajul) L(e) definit de o expresie regulată e este definit recursiv astfel:

• $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$

Definiție

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter

Definiție

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci L(e) = {e};

Definiție

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci L(e) = {e};
- $dac \check{a} e = e_1 e_2$

Definiție

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci L(e) = {e};
- dacă $e = e_1 e_2$ atunci $L(e) = L(e_1)L(e_2) = \{w_1 w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2)\};$

Definiție

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci L(e) = {e};
- $dac \check{a} \ e = e_1 e_2 \ atunci \ L(e) = L(e_1) L(e_2) = \{ w_1 w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2) \};$
- $dac \check{a} e = e_1 + e_2$

Definiție

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci L(e) = {e};
- $dac \check{a} \ e = e_1 e_2 \ atunci \ L(e) = L(e_1) L(e_2) = \{ w_1 w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2) \};$
- $dac \check{a} e = e_1 + e_2 \ atunci \ L(e) = L(e_1) \cup L(e_2);$

Definiție

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci L(e) = {e};
- $dac \check{a} \ e = e_1 e_2 \ atunci \ L(e) = L(e_1) L(e_2) = \{ w_1 w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2) \};$
- $dac \check{a} e = e_1 + e_2 \ atunci \ L(e) = L(e_1) \cup L(e_2);$
- $dac \check{a} e = e_1^*$

Definiție

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci L(e) = {e};
- dacă $e = e_1 e_2$ atunci $L(e) = L(e_1)L(e_2) = \{w_1 w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2)\};$
- $dac \check{a} e = e_1 + e_2 \ atunci \ L(e) = L(e_1) \cup L(e_2);$
- dacă $e = e_1^*$ atunci $L(e) = \bigcup_k L(e_1^k)$, unde $L(e_1^0) = \{\varepsilon\}, L(e_1^{k+1}) = L(e_1^k)L(e_1)$;

Definiție

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci L(e) = {e};
- $dac \check{a} \ e = e_1 e_2 \ atunci \ L(e) = L(e_1) L(e_2) = \{ w_1 w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2) \};$
- $dac \check{a} e = e_1 + e_2 \ atunci \ L(e) = L(e_1) \cup L(e_2);$
- dacă $e = e_1^*$ atunci $L(e) = \bigcup_k L(e_1^k)$, unde $L(e_1^0) = \{\varepsilon\}$, $L(e_1^{k+1}) = L(e_1^k)L(e_1)$;
- $dac \check{a} e = (e_1)$

Definiție

Mulțimea de șiruri (limbajul) L(e) definit de o expresie regulată e este definit recursiv astfel:

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci L(e) = {e};
- dacă $e = e_1e_2$ atunci $L(e) = L(e_1)L(e_2) = \{w_1w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2)\};$
- $dac \check{a} e = e_1 + e_2 \ atunci \ L(e) = L(e_1) \cup L(e_2);$
- dacă $e = e_1^*$ atunci $L(e) = \bigcup_k L(e_1^k)$, unde $L(e_1^0) = \{\varepsilon\}$, $L(e_1^{k+1}) = L(e_1^k)L(e_1)$;
- dacă $e = (e_1)$ atunci $L(e) = L(e_1)$.

Exemplu: Fie alfabetul $A = \{a, b, c\}$. Avem L(a(b+a)c) =

Definiție

Mulțimea de șiruri (limbajul) L(e) definit de o expresie regulată e este definit recursiv astfel:

- $L(\varepsilon) = \{\varepsilon\}$ (ε este șirul vid (de lungime zero)), $L(\mathit{empty}) = \emptyset$
- dacă e este un caracter atunci $L(e) = \{e\};$
- dacă $e = e_1e_2$ atunci $L(e) = L(e_1)L(e_2) = \{w_1w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2)\};$
- $dac \check{a} e = e_1 + e_2 \ atunci \ L(e) = L(e_1) \cup L(e_2);$
- dacă $e = e_1^*$ atunci $L(e) = \bigcup_k L(e_1^k)$, unde $L(e_1^0) = \{\varepsilon\}$, $L(e_1^{k+1}) = L(e_1^k)L(e_1)$;
- dacă $e = (e_1)$ atunci $L(e) = L(e_1)$.

Exemplu: Fie alfabetul $A = \{a, b, c\}$. Avem $L(a(b+a)c) = \{abc, aac\}$ și $L((ab)^*) = \{\varepsilon, ab, abab, ababab, \ldots\} = \{(ab)^k \mid k \ge 0\}$. sfex

- cazul de baza

e este o litera (un simbol) $a \in \Sigma$

- cazul de baza

e este o litera (un simbol) $a \in \Sigma$

start
$$\longrightarrow \bigcirc \xrightarrow{a} \bigcirc$$

- cazul de baza

e este o litera (un simbol) $a \in \Sigma$

start
$$\rightarrow \bigcirc \xrightarrow{a} \bigcirc$$

e este ε

- cazul de baza

e este o litera (un simbol) $a \in \Sigma$

$$\rightarrow \bigcirc \xrightarrow{a} \bigcirc$$

 $e \text{ este } \varepsilon$ $\text{start} \longrightarrow \bigcirc$

cazul de baza

e este o litera (un simbol) $a \in \Sigma$

$$start \rightarrow \bigcirc \xrightarrow{a} \bigcirc$$

$$e \text{ este } \varepsilon$$

$$\text{start} \longrightarrow \bigcirc$$

e este empty

cazul de baza

e este o litera (un simbol) $a \in \Sigma$

$$start \rightarrow \bigcirc \xrightarrow{a} \bigcirc$$

$$e \text{ este } \varepsilon$$

$$\text{start} \longrightarrow \bigcirc$$

$$e$$
 este $empty$ start \rightarrow

cazul de baza

e este o litera (un simbol) $a \in \Sigma$

start
$$\rightarrow \bigcirc \xrightarrow{a} \bigcirc$$

$$e \text{ este } \varepsilon$$

$$\text{start} \longrightarrow \bigcirc$$

$$e$$
 este $empty$ start \rightarrow

pentru cazul inductiv presupunem:

start
$$\rightarrow \bigcirc M_1 \longrightarrow \bigcirc$$

 $e = e_1 e_2$:

$$e = e_1^*$$
:

Exemplu

Detaliile procesului de construție pe tablă

 Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite:

• Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M = (Q, \Sigma, \delta, q_0, Q_f)$,

• Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M = (Q, \Sigma, \delta, q_0, Q_f)$, unde Q este mulțimea de stări,

• Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M = (Q, \Sigma, \delta, q_0, Q_f)$, unde Q este mulțimea de stări, Σ alfabetul,

• Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M = (Q, \Sigma, \delta, q_0, Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta : Q \times A \rightarrow Q$ tranzițiile,

• Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M = (Q, \Sigma, \delta, q_0, Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta: Q \times A \rightarrow \mathcal{Q}$ tranzițiile, $q_0 \in Q$ starea inițială,

• Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M=(Q,\Sigma,\delta,q_0,Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta:Q\times A\to \mathcal{Q}$ tranzițiile, $q_0\in Q$ starea inițială, $Q_f\subset Q$ stările finale

- Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M=(Q,\Sigma,\delta,q_0,Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta:Q\times A\to \mathcal{Q}$ tranzițiile, $q_0\in Q$ starea inițială, $Q_f\subseteq Q$ stările finale
- limbajul acceptat L(M) este mulțimea de cuvinre ce descriu parcursuri de la starea inițială la o stare finală

- Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M=(Q,\Sigma,\delta,q_0,Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta:Q\times A\to \mathcal{Q}$ tranzițiile, $q_0\in Q$ starea inițială, $Q_f\subseteq Q$ stările finale
- limbajul acceptat L(M) este mulțimea de cuvinre ce descriu parcursuri de la starea inițială la o stare finală
- dacă M(e) este automatul asociat lui e, atunci L(M(e)) = L(e)

- Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M=(Q,\Sigma,\delta,q_0,Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta:Q\times A\to \mathcal{Q}$ tranzițiile, $q_0\in Q$ starea inițială, $Q_f\subseteq Q$ stările finale
- limbajul acceptat L(M) este mulțimea de cuvinre ce descriu parcursuri de la starea inițială la o stare finală
- dacă M(e) este automatul asociat lui e, atunci L(M(e)) = L(e)
- tranzițiile neetichetate se numesc și ε -tranziții (sau spontane)

- Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M=(Q,\Sigma,\delta,q_0,Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta:Q\times A\to \mathcal{Q}$ tranzițiile, $q_0\in Q$ starea inițială, $Q_f\subseteq Q$ stările finale
- limbajul acceptat L(M) este mulțimea de cuvinre ce descriu parcursuri de la starea inițială la o stare finală
- dacă M(e) este automatul asociat lui e, atunci L(M(e)) = L(e)
- tranzițiile neetichetate se numesc și ε -tranziții (sau spontane)
- automatul construit direct din definiție este în general nedeterminist (și neminimal)

- Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M=(Q,\Sigma,\delta,q_0,Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta:Q\times A\to \mathcal{Q}$ tranzițiile, $q_0\in Q$ starea inițială, $Q_f\subseteq Q$ stările finale
- limbajul acceptat L(M) este mulțimea de cuvinre ce descriu parcursuri de la starea inițială la o stare finală
- dacă M(e) este automatul asociat lui e, atunci L(M(e)) = L(e)
- tranzițiile neetichetate se numesc și ε -tranziții (sau spontane)
- automatul construit direct din definiție este în general nedeterminist (și neminimal)
- costisitor de aplicat în practică

- Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M=(Q,\Sigma,\delta,q_0,Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta:Q\times A\to \mathcal{Q}$ tranzițiile, $q_0\in Q$ starea inițială, $Q_f\subseteq Q$ stările finale
- limbajul acceptat L(M) este mulțimea de cuvinre ce descriu parcursuri de la starea inițială la o stare finală
- dacă M(e) este automatul asociat lui e, atunci L(M(e)) = L(e)
- ullet tranzițiile neetichetate se numesc și arepsilon-tranziții (sau spontane)
- automatul construit direct din definiție este în general nedeterminist (și neminimal)
- costisitor de aplicat în practică
- se poate construi un automat echivalent determinist?

- Automatele asociate expresiilor regulate sunt cazuri particulare de automate finite: $M=(Q,\Sigma,\delta,q_0,Q_f)$, unde Q este mulțimea de stări, Σ alfabetul, $\delta:Q\times A\to Q$ tranzițiile, $q_0\in Q$ starea inițială, $Q_f\subseteq Q$ stările finale
- limbajul acceptat L(M) este mulțimea de cuvinre ce descriu parcursuri de la starea inițială la o stare finală
- dacă M(e) este automatul asociat lui e, atunci L(M(e)) = L(e)
- ullet tranzițiile neetichetate se numesc și arepsilon-tranziții (sau spontane)
- automatul construit direct din definiție este în general nedeterminist (și neminimal)
- costisitor de aplicat în practică
- se poate construi un automat echivalent determinist?
- răspunsul este afirmativ (automatele finite nedeterministe au aceeași pute de acceptare ca și cele deterministe), dar cu anumite costuri (a se vedea slide-urilr următoare)

Construcția unui automat determinist echivalent

Fie N un automat nedeterminist cu mulțimea de stări Q. Construim un automat determinist D astfel:

- mulțimea de stări este $\mathcal{P}(Q)$ (număr exponențial de stări!!!)
- există tranziție etichetată cu a de la Q_1 la Q_2 dacă și numai dacă Q_2 este mulțimea tuturor stărilor q_2 cu proprietatea că există $q_1 \in Q_1$ și tranziție etichetată cu a de la q_1 la q_2 în N
- ullet starea inițială a lui D este $\{q_0\}$, unde q_0 este starea inițială a lui N
- ullet o submulțime Q_f este stare finală dacă și numai dacă include o stare finală q_f a lui N

Exemplu pe tablă.

Construcția de mai sus se poate îmbunătăți utilizând un algoritm bazat pe derivativele Brzozowski.

Derivativele Brzozowski

Derivativele unei expresii regulate (Brzozowski, 1964):

$$\begin{split} \delta_{a}(\textit{empty}) &= \textit{empty} & \varepsilon?(\textit{empty}) = \textit{empty} \\ \delta_{a}(\varepsilon) &= \textit{empty} & \varepsilon?(\varepsilon) = \varepsilon \\ \delta_{a}(b) &= \begin{cases} \varepsilon &, b = a \\ \textit{empty} &, b \neq a \end{cases} & \varepsilon?(b) = \textit{empty} \\ \delta_{a}(e_{1}e_{2}) &= \delta_{a}(e_{1})e_{2} + \varepsilon?(e_{1})\delta_{a}(e_{2}) & \varepsilon?(e_{1}e_{2}) = \varepsilon?(e_{1})\varepsilon?(e_{2}) \\ \delta_{a}(e_{1} + e_{2}) &= \delta_{a}(e_{1}) + \delta_{a}(e_{2}) & \varepsilon?(e_{1} + e_{2}) = \varepsilon?(e_{1}) + \varepsilon?(e_{2}) \\ \delta_{a}(e^{*}) &= \delta_{a}(e)e^{*} & \varepsilon?(e^{*}) = \varepsilon \end{split}$$

Extensia la cuvinte: $\delta_{\varepsilon}(e) = e$, $\delta_{wa}(e) = \delta_{a}(\delta_{w}(e))$

Simplificări

concatenarea și + sunt asociative, + este și comutativă

$$e + e = e$$

$$e + empty = empty + e = e$$

$$e \ empty = empty \ e = empty$$

$$e\varepsilon = \varepsilon e = e$$

Proprietatea fundamentală

Theorem (Brzozowski)

Mulțimea derivatelor unei expresii $\{\delta_w(e) \mid w \in A^*\}$ este finită.

Exemplu:

```
\{\delta_w((ab + a)^* b a) \mid w \in A^*\} = \{(b + \varepsilon)((a b + a)^* b a), (a b + a)^* b a, a, \varepsilon, empty\}
```

Construcția automatului (Brzozowski)

- mulţimea de stări este mulţimea derivatelor
- există tranziție etichetată cu a de la q_1 la q_2 dacă și numai dacă q_1 corespunde unei derivate $\delta_w(e)$ și q_2 corespunde derivatei $\delta_{wa}(e)$ pentru un $w \in A^*$;
- starea inițială este $e=\delta_{arepsilon}(e)$
- o stare q este finală (de acceptare) dacă și numai dacă corespunde unei derivate $\delta_w(e)$ și ε ? $(\delta_w(e)) = \varepsilon$.

Exemplu

$$e = (a b + a)^* b a$$

Construcția unui automat determinist

(Berry, Setti: From Regular Expressions To Deterministic Automata, 1986)

- O continuare a lui *a* în *e* este orice expresie $\delta_{wa}(e) \neq empty$.
 - se marchează simbolurile din e ca fiind distincte; fie e' expresia obținută (de exemplu $e = (ab + b)^*ba$ este transformată în $e' = (a_1b_2 + b_3)^*b_4a_5$)
 - se construiește automatul M' pentru e' urmând ideea din algoritmul lui Brzozowski:
 - M' are o stare pentru fiecare continuare a unui simbol marcat în e'
 - există tranziție de la q_1 la q_2 dacă și numai dacă q_1 corespunde unei continuări C, C, C poate genera un cuvânt care începe cu a $(\delta_{wa}(e) \neq empty)$ și q_2 corespunde continuării lui a
 - \bullet starea inițială este e'
 - q este o stare finală (de acceptare) dacă și numai dacă ea corespunde unei continuări C și ε ? $(C) = \varepsilon$
 - se elimină mărcile din M'
 - se determinizează M' construind M ale cărui stări sunt submulțimi de stări ale lui M'

Construcții mai performante

- utilizând funcțiile first și follow (Berry, Setti, 1986)
- paralelizare (Myer, A Four Russians Algorithm for Regular Expression Pattern Matching)
- o altă construcție pentru automatul nedeterminist este Glushkov-McNaughton-Yamada (1960-1961), care poate fi si paralelizată (Navarro & Raffinot, 2004)

Complexitatea căutării cu expresii regulate

Presupunem că lungimea expresiei regulate este m (numărul de caractere fără operatori) și $m_{\Sigma} = |\Sigma \cup \{\cdot, +, *\}|$.

Theorem (Thomson, 1968)

Problema căutării cu expresii regulate poate fi rezolvată în timpul O(mn) cu automate nedeterministe și spațiu O(m).

Theorem (Kleene, 1956)

Problema căutării cu expresii regulate poate fi rezolvată în timpul $O(n+2^{m_{\Sigma}})$ cu automate deterministe și spațiu $O(2^{m_{\Sigma}})$.

Theorem (Myers, 1992)

Problema căutării cu expresii regulate poate fi rezolvată în timpul $O(mn/\log n)$ cu automate deterministe și spațiu $O(mn/\log n)$.