Precision medicine: NGS variant analysis and interpretation for translational research

Exercise 3: Prioritization and variant filtering

Fátima Al-Shahrour ● Javier Perales ● Elena Piñeiro

September 28, 2016

Additional annotations and prioritization

VEP_parser

Adds annotations from additional data sources.

Changes vcf format into a tabular format.

Parsing

Parsing

Formatting and filtering annotations in which we are interested.

Computes a score for each variant. Cancer oriented.

Execution: Command line and files

Command line execution

epineiro@epineiro:~/ExerciseDay2/VEP_parser\$ perl VEP_parser.pl

Output files

vep_data_sorted.csv

chr	loc mut	gene	feature	feature_type	consequence	principal	poly_effect	poly_score
3	178921553 T/A	ENS G00000121879	ENST00000468036	Transcript	downstream_gene_variant			
3	178921553 T/A	ENS G00000121879	ENST00000477735	Transcript	downstream_gene_variant			
3	178921553 T/A	ENS G00000121879	ENST00000263967	Transcript	missense_variant	PRINCIPAL:1	probably_damaging	1
4	1808898 -/C	ENS G00000068078	ENST00000469068	Transcript	downstream_gene_variant			
4	1808898 -/C	ENS G00000068078	ENST00000474521	Transcript	downstream_gene_variant			
4	1808898 -/C	ENS G00000068078	ENST00000507588	Transcript	downstream_gene_variant			
4	1808898 -/C	ENS G00000068078	ENST00000481110	Transcript	frameshift_variant		inferred	1
4	1808898 -/C	ENS G00000068078	ENST00000352904	Transcript	frameshift_variant		inferred	1
4	1808898 -/C	ENS G00000068078	ENST00000412135	Transcript	frameshift_variant		inferred	1
4	1808898 -/C	ENS G00000068078	ENST00000260795	Transcript	frameshift_variant	PRINCIPAL:3	inferred	1
4	1808898 -/C	ENS G00000068078	ENST00000440486	Transcript	frameshift_variant	PRINCIPAL:3	inferred	1
4	1808898 -/C	ENS G00000068078	ENST00000340107	Transcript	frameshift_variant	ALTERNATIVE:2	inferred	1

Excel generator

Selection of principal isoform:

PRINCIPAL:1 - Transcript(s) expected to code for the main functional isoform based solely on the core modules in the APPRIS database

PRINCIPAL:2 - Where the APPRIS core modules are unable to choose a clear principal variant (approximately 25% of human protein coding genes), the database chooses two or more of the CDS variants as "candidates" to be the principal variant PRINCIPAL:3 - Where the APPRIS core modules are unable to choose a clear principal variant and more than one of the variants have distinct CCDS identifiers, APPRIS selects the variant with lowest CCDS identifier as the principal variant PRINCIPAL:4 - Where the APPRIS core modules are unable to choose a clear principal CDS and there is more than one variant with a distinct (but consecutive) CCDS identifiers, APPRIS selects the longest CCDS isoform as the principal variant PRINCIPAL:5 - Where the APPRIS core modules are unable to choose a clear principal variant and none of the candidate variants are annotated by CCDS, APPRIS selects the longest of the candidate isoforms as the principal variant REST (ALTERNATIVE:1 (Candidate transcript(s) models that are conserved in at least three tested non-primate species), ALTERNATIVE:2 (Candidate transcript(s) models that appear to be conserved in fewer than three tested non-primate species), NO LABEL (Non-candidate transcripts are not flagged and are considered as "MINOR" transcripts))

Flag possible artifacts:

Germline variants defined as somatic - Filtered in normal sample Very low coverage variants

Execution Excel generator

Directory structure

Excel report.pl

VEP parser.pl

Output file

Command line execution

Output file

	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М	N
1	chr	loc	mut	gene_hgr	tumorpor*	role_drive	zygosity	var_freq	coverage	gene	feature	conseque	functiona	cosmic_i
2	3	17892155>	T/A	PIK3CA	PRAD:Ne≯	CGC:onco	Heterozyg	0.11	625	ENSG000▶	ENST000▶	missense)	probably_	COSM754
3	4	1808898	-/C	FGFR3	NB:Near 9	CGC:onco	Heterozyg	0.16	924	ENSG000	ENST000₽	frameshift.	inferred/inf	erred/inferre
4	4	1808898	-/C	LETM1			Heterozyg•	0.16	924	ENSG000▶	ENST000₽	downstrear	n_gene_va	riant
5	5	14943359	T/G	HMGXB3			Heterozyg	0.94	158	ENSG000▶	ENST000₽	downstrear	n_gene_va	riant
6	5	14943359	T/G	CSF1R			Heterozyg	0.94	158	ENSG000▶	ENST000₽	3_prime_U	TR_variant	
7	5	14943359)	G/A	HMGXB3			Heterozyg	0.82	184	ENSG000▶	ENST000₽	downstrear	n_gene_va	riant
8	5	14943359)	G/A	CSF1R			Heterozyg	0.82	184			3_prime_U		
9	12	25378562	C/T	KRAS	OV:Near 9	CGC:onco	Heterozyg	0.25	581	ENSG000▶	ENST000₽	missense	possibly_0	COSM194
10	12	25378562	C/T	AC087239	1		Heterozyg	0.25	581			upstream_		

Things to do

Programs are in ExerciceDay2 folder (VEP_parser y el Excel_report)

Our input file is the vcf file annotated in the previous practice with the VEP.

Execute VEP_parser

- Without consequence filtering.
- Sample code and rootname = patientCHP
- Output folder = CHP_analysis
- Database directory = databases folder inside PracticeDay2 folder

perl VEP_parser.pl - f=/home/participant/ExerciceDay2/CHP_analysis/patientCHP.onlyTumor.cleanNOTPASS.vep.vcf - o=/home/participant/ExerciceDay2/CHP_analysis/-sp=patientCHP-r=patientCHP-v=FALSE - d=/home/participant/ExerciceDay2/VEP_parser/databases/

Check that all output files have been generated in the new folder in CHP_analysis. Open the file vep_data_sorted.csv to check that it has been generated correctly.

Databases versions

- Cosmic Release v76 hg19
- Pfam 29.0 (Nov 2015)
- UniProt release 2016_03 (12/04/2016)
- InterPro 56.0 (13/04/2016)
- Clinvar 1.36 (01/09/2016)
- CGC (Cosmic v76) → The corresponding assembly is GRCH38 (but we search at gene level)
- APPRIS (gen19.ensembl74 13/04/2016)
- ExAC 0.3 (Uses HG19 coordinates)
- KEGG (12/04/2016)

Execute Excel_report

- Output folder= CHP_analysis
- Tumor case name = patientCHP
- Tumor sample name = patientCHP-tumor
- Normal sample name = patientCHP-normal
- vepfile1 = vep_data_sorted.csv file from VEP_parser
- rubioseq = path to output file in RUbioSeq including the folder name

perl Excel_report.pl --output=/home/participant/ ExerciseDay2/ CHP_analysis/ --case=patientCHP -- tsample=patientCHP-tumor --nsample=patientCHP-normal --vepfile1=/home/participant/ExerciseDay2/CHP_analysis/patientCHP_20160228_175748_VEP/vep_data_sorted.csv --rubioseq=/home/participant/ExerciseDay2/CHP_analysis/RSresults/

Check that the output file has been generated

Play with results

Open the Analysis.patientCHP.xls file and check the results

Have indels the same nomenclature in vcf file? What happens with the coordinates?

Which variants seem false positives? What annotations support this assumption?

Which variants seem more relevant in the pathology? Which annotations support this assumption?

Which threshold could be established for the vscore according to this data?