Name: Christian Miranda and Zachary Huang

Date: 06/02/2025

Hitachi SH-2 CPU Design

The Hitachi SH-2 is implemented in the sh2_cpu.vhd file, and tested in sh2_cpu_tb.vhd.

Control Unit and Instruction Register

The control unit and instruction register are implemented in sh2_control.vhd. They are tested in sh2_cpu_tb.vhd.

General-Purpose Registers

The register array is implemented in sh2_reg.vhd and tested in sh2_reg_tb.vhd.

ALU

The ALU is implemented in sh2_alu.vhd and tested in sh2_alu_tb.vhd.

Status Register

The status register is implemented in sh2_cpu.vhd, and tested along with the entire CPU in sh2_cpu_tb.vhd.

Data Memory Access Unit

The data memory access unit (DMAU) is implemented in sh2_dmau.vhd. Its test bench is located in the dmau_test/ directory. It can be tested by invoking make run from within the dmau_test/ directory.

Program Memory Access Unit

The data memory access unit (PMAU) is implemented in sh2_pmau.vhd. Its test bench is located in the pmau_test/ directory. It can be tested by invoking make run from within the pmau_test/ directory.

Design Testing

Each instruction is tested by assembling an assembly file that uses the instruction under test and writes expected results to memory. The actual memory contents are compared with the expected memory contents to check for correctness.

The assembly files are located in the asm and are postfixed with .asm. Each assembly file has an associated .expect file which describes the expect memory contents, as well as a .dump file that shows the memory contents after the tests are run.

The SH-2 CPU can be tested by invoking make test from the top level directory. This compiles any .vhd files that have changed and then enters the asm/ directory and compiles and .asm files that have changed. Assembling the assembly files generates binary .bin files which are read by the test bench and then decoded and run by the CPU.

Testing requires ghdl with either the GCC or LLVM backend. The AS macro-assembler, linked below, is required for assembling the assembly files, although it is possible to test the SH-2 CPU without this by invoking make test-bin, which uses the supplied binaries for each assembly file.

http://john.ccac.rwth-aachen.de:8000/as/download.html

Extra Credit - Multi-bit shift Instructions (20 points)

All shift instructions are implemented.

Extra Credit - Implementation (60 points)

The SH-2 CPU design was implemented for the Xilinx Spartan 3E XC3S1200EFGG3204C.

The resource usage summary is provided below. It is in SH2CPU.syr in the $ise_work/$ directory.

Device utilization summary:

Selected Device : 3s1200efg320-4

Number of Slices:	2612	out of	8672	30%
Number of Slice Flip Flops:	1005	out of	17344	5%
Number of 4 input LUTs:	4967	out of	17344	28%
Number of IOs:	77			
Number of bonded IOBs:	75	out of	250	30%
Number of GCLKs:	3	out of	24	12%

The timing report is in SH2CPU.par in the ise_work/ directory.

Constraint	Check	:	Worst Case Slack	Best Case Achievable	0 .	Timing Score
Autotimespec constraint for clock net clock_IBUF	SETUP HOLD		N/A 1.064ns	32.470ns	N/A O	0
Autotimespec constraint for clock net con trol_unit/state_FSM_FFd2	SETUP HOLD	 	N/A 1.390ns	5.782ns	N/A O	0

Thus our maximum clock speed is around $30.8~\mathrm{MHz}.$