R.F. POWER TRIODE

QUICK REFERENCE DATA											
λ	Freq.	C telegr.		C grounded grid		C _a r	nod.		B mod. ²)		
(m)		v _a (V)	W _o (W)	v _a (V)	W _o ¹) (W)	v _a (V)	W _O (W)		V _a (V)	w _o (W)	
3	100	4000 3500 3000 2500	1690 1430 1175 950	4000 3500 3000 2500	1950 1650 1375 1120	3000	1050		4000 3500 3000 2500	2290 2440 2310 2000	

HEATING: direct; filament thoriated tungsten

Filament voltage

 $V_{\mathbf{f}}$ 10 V

Filament current

9.9 A

CAPACITANCES

Anode to all other elements except grid

 $C_a =$ 0.17 pF

Grid to all other elements except anode

 $C_g =$ 8.0 pF

Anode to grid

Cag = 7.0 pF

TYPICAL CHARACTERISTICS

Amplification factor

μ 28

Mutual conductance

 $S(I_a = 125 \text{ mA}) = 4.5 \text{ mA/V}$

TEMPERATURE LIMITS (Absolute limits)

Temperature of anode seal

 ^{0}C max. 220

Temperature of bottom pin seals

max, 180 °C

max. 250 °C Bulb temperature

¹⁾ Power transferred from driving stage included

COOLING

In general cooling of the tube is not necessary at normal ambient temperature at frequencies below 50 $\,MHz\,.$

When the tube is used at or near the limiting values at frequencies above 50 Mc/s, it will be necessary to direct a low-velocity air flow on the anode seal and the bottom of the envelope.

MECHANICAL DATA

Dimensions in mm

Socket

: 2422 512 00001

Anode connector: 40626

Net mass

: 420 g

Mounting position: vertical with base up or down

R.F. CLASS C TELEGRAPHY

LIMITING VALUES (Absolute limits)

Frequency					f		up to	100	MHz			
Anode voltage					va	=	max.	4000	V			
Anode dissipation					W_a	=	max.	450	W			
Grid dissipation					Wg	=	max.	50	W			
Grid current					I_g	=	max.	115	mA			
Cathode current					$\bar{I_k}$	=	max.	650	m A			
OPERATING CONDITIONS (controlled)												
Wavelength	λ	=	3	3			3	3	m			
Anode voltage	V_a	=	4000	3500		30	00	2500	V			
Grid voltage	v_g	=	-350	-300		-2	50	-200	V			
Anode current	I_a	=	535	535		5.	35	535	mA			
Grid current	I_g	=	115	115		1	15	115	mA			
Peak grid A.C. voltage	\vec{v}_{g_p}	=	580	520		4	60	405	V			
Grid input power	w_{ig}	=	60	54			48	42	W			
Anode input power	Wia	=	2140	1880		16	00	1340	W			
Anode dissipation	w_a	æ	450	450		4	2 5	390	W			
Output power	W_{o}	=	1690	1430		11	75	950	W			
Efficiency	η	=	79	76		73	.5	71	%			
OPERATING CONDITIONS	(self e	xci	ted)									
Wavelength	λ	=	3	3			3	3	m			
Anode voltage	v_a	=	4000	3500		30	00	2500	V			
Grid resistor	R_{g}	=	3000	2600		22	00	1800	Ω			
Anode current	I_a	=	535	535		5.	35	535	mA			
Grid current	I_g	=	115	115		1	15	115	mA			
Peak grid A.C. voltage	$\tilde{v_{g_p}}$	=	580	520		4	60	405	V			
Grid input power	Wig	=	60	54			48	42	W			
Anode input power	w_{ia}	=	2140	1880		16	00	1340	W			
Anode dissipation	w_a	=	450	450		4	25	390	w			
Output power	W_{o}	=	1630	1376		11	27	908	W			
Efficiency	η	=	76.5	73		70	.5	67.5	%			

Grounded grid circuit, two tubes

Wavelength	λ	=	3	3	3	3	m
Anode voltage	v_a	=	4000	3500	3000	2500	V
Grid voltage	v_{g}	=	-350	-300	~250	-200	V
Anode current	I_a	=	2x535	2x535	2x535	2x535	mA
Grid current	I_g	=	2x115	2x115	2x115	2x115	mA
Peak grid voltage	v_{gp}	:=	580	520	460	405	V
Grid input power	Wig	=	2x320	2x274	2x248	2x212	W
Anode input power	w_{ia}	=	2x2140	2x1880	2x1600	2x1340	W
Anode dissipation	w_a	=	2x450	2x450	2x425	2x390	W
Output power	W_{o}	=	3380+520	2860+440	2350+400	1900+340	W^1)
Efficiency	η	=	79	76	73.5	71	% ²)

¹⁾ Power transferred from driving stage included

 $^{^{2}}$) Pure tube efficiency

R.F. CLASS C ANODE MODULATION

LIMITING VALUES (Absolute limits)

Frequency	f		up to	100	MHz
Anode voltage	v _a	=	max.	3000	v
Anode dissipation	w_a	=	max.	300	W
Grid dissipation	$\mathbf{w}_{\mathbf{g}}$	=	max.	50	w
Grid current	$I_{\mathbf{g}}$	E	max.	115	mA
Cathode current	I_k	=	max.	550	mA
OPERATING CONDITIONS					
Wavelength	λ	::		3	m
Anode voltage	v _a	=	300	0	V
Grid voltage	$v_{\mathbf{g}}$	_ =	-37	5	V
Anode current	Ia	=	45	0	m A
Grid current	$I_{\mathbf{g}}$	=	8	5	mA
Peak grid A.C. voltage	v_{g_p}	=	58	0	V
Grid input power	w_{ig}	=	4	2	W
Anode input power	w_{ia}	=	135	0	W
Anode dissipation	w_a	=	30	0	w
Output power	w_{o}	=	105	0	W
Efficiency	η	=	7	8	%
Modulation factor	m	=	10	0	%
Modulation power	w_{mod}	=	67	5 .	W

A.F. CLASS B AMPLIFIER AND MODULATOR

LIMITING VALUES (Absolute limits)

Anode voltage	v_a	=	max.	4000	V
Anode dissipation	w_a	=	max.	450	W
Grid dissipation	W_{g}	=	max.	50	W
Cathode current	I_k	=	max.	700	mA
Peak cathode current	$I_{k_{D}}$	=	max.	5	A
Grid current	$I_{\mathbf{g}}^{\mathbf{r}}$	=	max.	130	mA
Grid circuit resistance	R_g	=	max.	50	$k\boldsymbol{\Omega}$

OPERATING CONDITIONS two tubes

OPERATING CONDITIONS, two tubes												
Anode voltage	v _a	=	40	00	35	500	v					
Grid voltage	v_{g}	=	-1	35	-1	.14	v					
Load resistance	R _{aa} ~	=	14	.5	10	.2	$k\Omega$					
Peak grid to grid voltage	v_{ggp}	=	0	566	0	563	v					
Anode current	Ia	=	2x70	2x368	2x70	2x442	mA					
Grid current	I_g	=	0	2x93	0	2x115	mA					
Grid input power	\widetilde{w}_{ig}	=	0	2x24	0	2x29	W					
Anode input power	Wia	=	2x280	2x1474	2x245	2x1550	W					
Anode dissipation	w_a	=	2x280	2x329	2x245	2x330	W					
Output power	W_{o}	=	0	2290	0	2440	W					
Total distortion	d_{tot}	=	-	5	_	5	%					
Efficiency	η	=	-	77.7	-	78.8	%					
Anode voltage	V_a	=	30	00	25	00	V					
Anode voltage Grid voltage	v_a v_g	=		00 94		00 75	V V					
O	V _a V _g R _{aa} ~		(-							
Grid voltage	V _g R _{aa} ~	=	(94	-	75	v					
Grid voltage Load resistance	v_g	= =	7	.5	5	75	V kΩ					
Grid voltage Load resistance Peak grid to grid voltage	V_g R_{aa} V_{ggp} I_a	= = = = = = = = = = = = = = = = = = = =	7	94 .5 560	5	75 . 2 530	V kΩ V					
Grid voltage Load resistance Peak grid to grid voltage Anode current	V _g R _{aa} ~ V _{ggp} I _a I _g	= = = =	$ \begin{array}{r} 7 \\ \hline 0 \\ 2x70 \end{array} $	94 .5 560 2x500	5 0 2x70	75 . 2 530 2x555	V kΩ V mA					
Grid voltage Load resistance Peak grid to grid voltage Anode current Grid current	V_g R_{aa} V_{ggp} I_a I_g W_{ig}	= = = = =	7 0 2x70 0	560 2x500 2x130	5 0 2x70 0	75 .2 530 2x555 2x126	V kΩ V mA					
Grid voltage Load resistance Peak grid to grid voltage Anode current Grid current Grid input power	Vg Raa~ Vggp Ia Ig Wig Wig		7 0 2x70 0	560 2x500 2x130 2x33	5 0 2x70 0 0	75 .2 530 2x555 2x126 2x30	V kΩ V mA mA					
Grid voltage Load resistance Peak grid to grid voltage Anode current Grid current Grid input power Anode input power	V_g R_{aa} V_{ggp} I_a I_g W_{ig}		7 0 2x70 0 0 2x210	560 2x500 2x130 2x33 2x1500	5 0 2x70 0 0 2x175	75 530 2x555 2x126 2x30 2x1387	V kΩ V mA mA W					
Grid voltage Load resistance Peak grid to grid voltage Anode current Grid current Grid input power Anode input power Anode dissipation	V_g R_{aa} V_{ggp} I_a I_g W_{ig} W_{ia} W_a		7 0 2x70 0 0 2x210 2x210	560 2x500 2x130 2x33 2x1500 2x345	5 0 2x70 0 0 2x175 2x175	75 .2 530 2x555 2x126 2x30 2x1387 2x387	V kΩ V mA mA W W					
Grid voltage Load resistance Peak grid to grid voltage Anode current Grid current Grid input power Anode input power Anode dissipation Output power	Vg Raa~ Vggp Ia Ig Wig Wia Wa Wo		7 0 2x70 0 0 2x210 2x210	560 2x500 2x130 2x33 2x1500 2x345 2310	5 0 2x70 0 0 2x175 2x175	75 .2 530 2x555 2x126 2x30 2x1387 2x387 2000	V kΩ V mA mA W W					

 $R.F.\ CLASS\ C$ OSCILLATOR FOR INDUSTRIAL USE $\$ with anode voltage from two-phase half-wave rectifier without filter

LIMITING VALUES (Absolute limits)

Frequency	f		up to	100	MHz
Anode voltage	va	=	max.	3600	V
Negative grid voltage	-Vg	=	max.	320	V
Anode current	Ia	=	max.	475	m A
Grid current	I_g	=	max.	100	m A
Anode input power	w_{ia}	=	max.	2200	W
Anode dissipation	$\mathbf{w}_{\mathbf{a}}$	=	max.	450	W
Grid dissipation	$W_{\mathfrak{Q}}$	=	max.	50	W

OPERATING CONDITIONS

Transformer voltage	v_{tr}	=	4000 ¹)	3350 ²)	V_{RMS}
Anode voltage	v_a	=	3600	3000	V 3)
Anode current	I_a	=	450	400	mA
Grid current	I_g	=	100	85	mA
Grid resistor	R_g	=	3.0	3.0	$k\Omega$
Anode input power	w_{ia}	=	2000	1480	W
Anode dissipation	w_a	=	450	400	W
Output power	$W_{\rm O}$	=	1500	1040	W
Efficiency	η	=	75	70	%

¹⁾ Care must be taken that under these operating conditions the absolute limiting values are not exceeded by variation of the supply voltage or the load or by tolerances in the circuit elements.

²⁾ Under these conditions normal deviations of voltages and load are permissible. The absolute limiting values of the tube must, however, not be exceeded.

³⁾ D.C. value

 $R.F.\ CLASS\ C\ OSCILLATOR\ FOR\ INDUSTRIAL\ USE\ with anode voltage from three-phase half-wave rectifier without filter$

LIMITING VALUES (Absolute limits)

Frequency	f	_	up to	100	MHz
Anode voltage	v _a	=	max.	4000	V
Negative grid voltage	$-v_g$	=	max.	500	v
Anode current	Ia	=	max.	535	mA
Grid current	I_g	=	max.	115	mA
Anode input power	w_{ia}	=	max.	2200	W
Anode dissipation	w_a	=	max.	450	w
Grid dissipation	W _{cr}	=	max.	50	w

OPERATING CONDITIONS

Transformer voltage	v_{tr}	=	3400 ¹)	2900 ²)	v_{RMS}
Anode voltage	v_a	=	4000	3400	v ³)
Anode current	I_a	=	535	450	m A
Grid current	I_g	=	115	100	m A
Grid resistor	R_g	=	3.0	3.0	k Ω
Anode input power	w_{ia}	=	2140	1530	W
Anode dissipation	w_a	=	450	390	W
Output power	\mathbf{w}_{o}	×	1630	1090	w
Efficiency	η	=	76.5	71	%

¹⁾ Care must be taken that under these operating conditions the absolute limiting values are not exceeded by variation of the supply voltage or the load or by tolerances in the circuit elements.

²⁾ Under these conditions normal deviations of voltages and load are permissible. The absolute limiting values of the tube must, however, not be exceeded.

³⁾ D.C. value.

R.F. CLASS C OSCILLATOR FOR INDUSTRIAL USE with self rectification LIMITING VALUES (Absolute limits)

_								
Frequency				f		up to	100	MHz
Transformer voltage				v_{tr}	=	max.	4500	V _{RMS}
Negative grid voltage				$-v_g$	=	max.	500	V
Anode current				Ia	=	max.	280	mA
Grid current				$I_{\mathbf{g}}$	=	max.	55	mA
Anode input power				w_{ia}	=	max.	1450	W
Anode dissipation				w_a	=	max.	450	W
Grid dissipation				w_g	=	max.	50	W
OPERATING CONDITIO	ONS							
Transformer voltage		v_{tr}	=	4500 ¹)		3	800 ²)	VRMS
Anode current		T	=	280			240	m A

Transformer voltage	v_{tr}	=	4500 ¹)	3800 ²)	VRMS
Anode current	I_a	=	280	240	mA
Grid current	I_g	=	55	47	mA
Grid resistor	R_g	=	3.4	3.4	kΩ
Anode input power	w_{ia}	=	1400	1010	W
Anode dissipation	w_a	=	350	295	W
Output power	$W_{\rm o}$	=	1000	670	W
Efficiency	η	=	71.5	66	%

¹⁾ Care must be taken that under these operating conditions the absolute limiting values are not exceeded by variation of the supply voltage or the load or by tolerances in the circuit elements.

²⁾ Under these conditions normal deviations of voltages and load are permissible. The absolute limiting values of the tube must, however, not be exceeded.

