State	
	Finished
Completed on	Monday, 30 October 2023, 9:14 PM
	14 mins 43 secs
Grade	10.00 out of 10.00 (100 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
The probability of e	rror for detection can be evaluated as
Select one:	
\bigcirc Pr(\mathcal{H}_0) P_{FA} +	$\Pr(\mathcal{H}_1) P_D$
\bigcirc Pr(\mathcal{H}_1) P_{FA} +	
	$\Pr(\mathcal{H}_1) P_{MD} \checkmark$
\bigcirc Pr(\mathcal{H}_1) P_{FA} +	$\Pr(\mathcal{H}_0) P_{MD}$
Your answer is corre	ect.
The correct answer	is: $\Pr(\mathcal{H}_0) P_{FA} + \Pr(\mathcal{H}_1) P_{MD}$
Question 2 Correct	
Mark 1.00 out of 1.00	
Wark 1.00 odt 01 1.00	
▼ Flag guestion	
▼ Flag question	
	rror for the ML detector in the signal detection problem is
	rror for the ML detector in the signal detection problem is
The probability of e	rror for the ML detector in the signal detection problem is
Select one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$	rror for the ML detector in the signal detection problem is
The probability of e	rror for the ML detector in the signal detection problem is
The probability of each one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$	rror for the ML detector in the signal detection problem is
The probability of each one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$	rror for the ML detector in the signal detection problem is
The probability of each one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$	rror for the ML detector in the signal detection problem is
The probability of each one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$	rror for the ML detector in the signal detection problem is
The probability of each one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$	
The probability of each Select one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ Your answer is corrected.	ect.
The probability of each one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ $Q\left(\frac{\ \vec{s}\ }{2\sigma}\right) \checkmark$	ect.
The probability of each Select one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ Your answer is corrected.	ect.
The probability of each Select one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ Your answer is correct answer.	ect.
The probability of each Select one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma}\right)$ Your answer is correct The correct answer	ect.
The probability of each Select one: $Q\left(\frac{\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{2\ \vec{s}\ }{\sigma}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma^2}\right)$ $Q\left(\frac{\ \vec{s}\ ^2}{2\sigma}\right)$ Your answer is correct answer.	ect.

Started on Monday, 30 October 2023, 9:00 PM

Select one:

O Q(1)

\bigcirc $Q(2)$
\bigcirc $Q(2\sqrt{2})$
Your answer is correct.
The correct answer is: $Q(2\sqrt{2})$
Question 4
Correct
Mark 1.00 out of 1.00
♥ Flag question
Let detector choose \mathcal{H}_1 when $\bar{\mathbf{y}} \in R_1$ and \mathcal{H}_0 when $\bar{\mathbf{y}} \in R_0$. We must have
Select one:
$\int_{R_1}^{\square} p(\bar{\mathbf{y}}; \mathcal{H}_0) d\bar{\mathbf{y}} + \int_{R_1}^{\square} p(\bar{\mathbf{y}}; \mathcal{H}_1) d\bar{\mathbf{y}} = 1$
Your answer is correct.
The correct answer is: $\int_{R_1}^{\square} p(\bar{\mathbf{y}}; \mathcal{H}_0) d\bar{\mathbf{y}} + \int_{R_0}^{\square} p(\bar{\mathbf{y}}; \mathcal{H}_0) d\bar{\mathbf{y}} = 1$
Question 5
Question
Correct
Correct Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
Mark 1.00 out of 1.00 Remove flag
Mark 1.00 out of 1.00 Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the
Mark 1.00 out of 1.00 Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one:
Mark 1.00 out of 1.00 Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one: Maximum Likelihood
Mark 1.00 out of 1.00 Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one: Maximum Likelihood Minimum Mean Squared Error
Mark 1.00 out of 1.00 ▼ Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one:
Mark 1.00 out of 1.00 ▼ Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one:
Mark 1.00 out of 1.00 ▼ Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one: Maximum Likelihood Minimum Mean Squared Error Likelihood Ratio Test ✓ Maximum Aposteriori Probability Rule Your answer is correct.
Mark 1.00 out of 1.00 ▼ Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one:
Mark 1.00 out of 1.00 ▼ Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one: Maximum Likelihood Minimum Mean Squared Error Likelihood Ratio Test ✓ Maximum Aposteriori Probability Rule Your answer is correct.
Mark 1.00 out of 1.00 ▼ Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one: Maximum Likelihood Minimum Mean Squared Error Likelihood Ratio Test ✓ Maximum Aposteriori Probability Rule Your answer is correct.
Mark 1.00 out of 1.00 Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one: Maximum Likelihood Minimum Mean Squared Error Likelihood Ratio Test Maximum Aposteriori Probability Rule Your answer is correct. The correct answer is: Likelihood Ratio Test
Mark 1.00 out of 1.00 ▼ Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one:
Mark 1.00 out of 1.00 Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one: Maximum Likelihood Minimum Mean Squared Error Likelihood Ratio Test Maximum Aposteriori Probability Rule Your answer is correct. The correct answer is: Likelihood Ratio Test
Mark 1.00 out of 1.00 ▼ Remove flag The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the Select one:

 $Q(\sqrt{2})$

Select one:

- $Q\left(\frac{\gamma}{\sigma \|\bar{s}_1 + \bar{s}_0\|}\right)$
- $Q\left(\frac{\gamma}{\sigma \|\bar{s}_1\|}\right)$
- $\bigcirc Q\left(\frac{\gamma}{\sigma\|\tilde{s}_0\|}\right)$

Your answer is correct.

The correct answer is: $Q\left(\frac{\gamma}{\sigma ||\tilde{s}_1 - \tilde{s}_0||}\right)$

Question 7

Correct

Mark 1.00 out of 1.00

Consider the generalized signal detection problem with

$$\bar{\mathbf{s}}_{\mathbf{0}} = \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}, \bar{\mathbf{s}}_{\mathbf{1}} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

Let $\sigma^2 = 8$. The probability of error for the ML detector with equiprobable signals is

Select one:

- $Q(\sqrt{2})$
- $Q\left(\frac{1}{\sqrt{2}}\right)$
- Q(1)
- $Q\left(\frac{1}{2}\right) \checkmark$

Your answer is correct.

The correct answer is: $Q\left(\frac{1}{2}\right)$

Question **8**

Correct

Mark 1.00 out of 1.00

For same energy per bit E_b ,

Select one:

- ASK is 3 dB more efficient than BPSK
- Both ASK and BPSK have the same BER
- BPSK is 3 dB more efficient than ASK
- There is no relation between BER of BPSK and ASK

Your answer is correct.

The correct answer is: BPSK is 3 dB more efficient than ASK

Select one:

- In general a polyhedron
- Always square
- Always rectangle
- Always a parallelogram

Your answer is correct.

The correct answer is: In general a polyhedron

Question 10

Correct

Mark 1.00 out of 1.00

ℙ Flag question

The union bound on the probability of error for an M - ary constellation is

Select one:

$$\bigcirc \quad \frac{1}{M} \sum_{i} N_{min}^{i} Q \left(\frac{d_{min}^{i}}{\sigma} \right)$$

$$\bigcirc \quad \frac{1}{M} \sum_{i} Q \left(\frac{d_{min}^{i}}{2\sigma} \right)$$

$$\bigcirc \frac{1}{M}\sum_{i}N_{min}^{i}Q\left(d_{min}^{i}\right)$$

Your answer is correct.

The correct answer is: $\frac{1}{M}\sum_{i}N_{min}^{i}Q\left(\frac{d_{min}^{i}}{2\sigma}\right)$

Finish review