11.1 习题

张志聪

2024年12月21日

11.1.1

X 空集或单点集, 命题显然是真的。

X 非空且不是单点集,证明如下:

• $(a) \implies (b)$

因为 X 是有界的,由命题 5.5.9 (最小上界的存在性)可知,X 存在最小上界 M 与最大下界 m,此时 X 只会是以下情况中的一个: [m,M]、(m,M)、[M,m)、(m,M],否则不满足连通性。

反证法,假设 $x, y \in X, x < y$,存在介于 x, y 之间的元素 $c \in X$,但不属于 [m, M]、(m, M)、[M, m)、(m, M],于是可得 c < m 或 c > M,这与 M, m 是 X 的最小上界,最大下界矛盾。

[m,M]、(m,M)、[M,m)、(m,M] 都是有界区间,于是 (b) 成立。

• $(b) \implies (a)$

由定义 9.1.1 (区间) 和例 9.1.3 中有界区间的定义,可知有界区间,一定是有界的并且是连通的。

11.1.2

反证法, 假设 $X = I \cap J$, X 不是有界区间。

由引理 11.1.4 可知,X 不会是有界的并且是连通的。因为任意 $x \in X$ 都有 $x \in I \cap J$,而 I 与 J 都是有界的,所以 X 也是有界的。

如果假设成立,那么 X 不是连通的,即存在 $x,y \in X, x < y$ 的元素,有界区间 [x,y] 不是 X 的子集。即存在 $c \in [x,y]$ 但 $c \notin X$ 。

因为 $x,y \in X$,所以 $x,y \in I$,由 I 是连通的可知 $c \in I$ 。类似地, $c \in J$,综上 $c \in I \cap J$,即 $c \in X$,这与 $c \notin X$ 矛盾。

11.1.3

说明 1. 没采用书中提示的证明方式,主要是没搞懂 $\sup I_j$ 的含义,可能是定义 8.5.12 中严格上界的意思。不用在这概念,也能证明。

反证法,不存在形如 $I_j=(c,b)$ 或 $I_j=[c,b)$ 的区间 I_j ,其中 $a\leq c\leq b$ 。 现在证明如果没有形如 I_j 的区间,那么 I 会存在一个洞。 I_i 是 I 划分中的任意区间元素, I_j 的左右端点 L,R 满足,

$$\begin{cases} a \le L \le b \\ a \le R \le b \\ L \le R \end{cases}$$

因为 I_i 都不是形如 [c,b) 和 (c,b) 的区间,由此可知,

由于 I_i 的任意性和划分的基数是有限的,可取所有 I_i 的右端点的最大值为 M,满足

取 $x \in (M,b)$, 此时 x 不在任何一个划分元素中,与定义 11.1.10 (划分)矛盾。

11.1.4

先证明 P#P' 也是 I 的一个划分。

反证法,假设 P#P' 不是 I 的一个划分。由定义 11.1.16 (公共加细)可知,P#P' 中的元素都会是 I 的子集,于是如果假设成立,

• 存在 $x \in I$, $x \notin P \# P'$ 。

由定义 11.1.10 (划分) 可知,P 中存在元素 P_i ,使得 $x \in P_i$ 。类似地,P' 中存在元素 P'_i ,使得 $x \in P'_i$ 。综上可得 $x \in P_i \cap P'_i$ 。

由定义 11.1.16 (公共加细) 可知, $P_i \cap P_i' \in P\#P'$, 此时可得 $x \in P\#P'$, 存在矛盾。

• 存在 $x \in I$, x 属于 P # P' 中的多个元素。 由定义 11.1.16 (公共加细) 可知,有多个属于 P 的区间包含 x,这与定义 11.1.10 (划分) 矛盾。

接下来证明,P#P' 比 P 更细, 也比 P' 更细。

P#P' 中的任意元素 X,由定义 11.1.16 (公共加细) 可知,存在 $K\in P$, $J\in P'$ 使得 $X\subseteq K, X\subseteq J$,由 X 的任意性,结合定义 11.1.14 可知,P#P' 比 P 更细,也比 P' 更细。