此京師範大學

硕士学位论文

论文题目:北京师范大学硕士学位论文标题

作 者: 江涛

导 师: 余先川教授

系别年级: 信息科学与技术学院

学 号: 201621210026

学科专业: 计算机软件与理论

完成日期: 2019年3月

北京师范大学研究生院

北京师范大学学位论文原创性声明

本人郑重声明: 所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。

学位论文作者签名:

日期: 年 月 日

学位论文使用授权书

学位论文作者完全了解北京师范大学有关保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属北京师范大学。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许学位论文被查阅和借阅;学校可以公布学位论文的全部或部分内容,可以允许采用影印、缩印或其它复制手段保存、汇编学位论文。保密的学位论文在解密后适用于本授权书。

本人签名:	日期:	
导师签名:	日期 :	

北京师范大学硕士学位论文标题

摘要

论文的摘要是对论文研究内容和成果的高度概括。摘要应对论文所研究的问题及其研究目的进行描述,对研究方法和过程进行简单介绍,对研究成果和所得结论进行概括。摘要应具有独立性和自明性,其内容应包含与论文全文同等量的主要信息。使读者即使不阅读全文,通过摘要就能了解论文的总体内容和主要成果。

论文摘要的书写应力求精确、简明。切忌写成对论文书写内容进行提要的形式,尤其要避免"第1章.....;第2章.....;"这种或类似的陈述方式。

本文介绍北京师范大学论文模板 BNUThesis 的使用方法。本模板是在清华大学学位 论文模板 THUThesis 的基础上修改而来,尽可能满足我校的硕士、博士论文格式要求。

本文的创新点主要有:

- 用例子来解释模板的使用方法;
- 用废话来填充无关紧要的部分:
- 一边学习摸索一边编写新代码。

关键词是为了文献标引工作、用以表示全文主要内容信息的单词或术语。关键词不超过5个,每个关键词中间用分号分隔。(模板作者注:关键词分隔符不用考虑,模板会自动处理。英文关键词同理。)

关键词: TeX, LATeX, CJK, 模板, 论文

An Introduction to LATEX Thesis Template of Beijing Normal

University

ABSTRACT

An abstract of a dissertation is a summary and extraction of research work and contribution-

s. Included in an abstract should be description of research topic and research objective, brief

introduction to methodology and research process, and summarization of conclusion and contri-

butions of the research. An abstract should be characterized by independence and clarity and

carry identical information with the dissertation. It should be such that the general idea and major

contributions of the dissertation are conveyed without reading the dissertation.

An abstract should be concise and to the point. It is a misunderstanding to make an abstract an

outline of the dissertation and words "the first chapter", "the second chapter" and the like should

be avoided in the abstract.

Key words are terms used in a dissertation for indexing, reflecting core information of the

dissertation. An abstract may contain a maximum of 5 key words, with semi-colons used in

between to separate one another.

KEY WORDS: T_EX, L^AT_EX, CJK, template, thesis

 Π

目 录

摘 要		I
ABSTRACT	I	Ι
插图索引		7
	V	
• • • • • • • • • • • • • • • • • • • •	1 最及意义1	
	· 汉思文 ··································	
	т九塊似	
	。的高分辨率進怒影像分类与识别方法····································	
	- 休度字习技术影像以别与分类研九现状 · · · · · · · · · · · · · · · · · · ·	
	- 的王安问趣 · · · · · · · · · · · · · · · · · · ·	
	1织结构····································	
,		
	[与数据集介绍	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
]	
** * * * * * * * * * * * * * * * * * * *]	
2.1.2.1	一个图形	7
第3章 面向对	t象的遥感影像的区间二型模糊聚类分割算法	9
	9	
3.2 三角形模	類集值建模与相似性度量	9
3.3 面向对象	的改进型区间二型模糊遥感影像聚类方法14	4
3.3.1 算法	s整体框架 ······14	4
3.3.2 面向]对象的TFSV 模型 ······14	4
3.3.2.1	影像分割14	4
3.3.2.2	影像单元的TFSV 数据建模 · · · · · · · · 15	5
3.3.3 基于	TFSV 数据模型的面向对象模糊聚类方法 ······16	6
3.3.3.1	区间二型模糊隶属度16	5
3.3.3.2	TFSV-IT2FCM 算法······17	7
3.3.4 后处		9
3.4 实验结果	<u>1</u>	n

3.5	本章小结	20
第4章	方法二	21
4.1	封面相关······	21
4.2	字体命令	21
第5章	第五章	22
	封面相关	
5.2	字体命令	22
第6章	总结与展望	23
6.1	本文的主要内容 ·····	23
6.2	未来的期望	23
致谢		24
	献	
	^{**} 果	

插图索引

图 1	区间值相同但分布不同的数据比较9
图 2	三角形模糊集 $ ilde{A}$ 示意图 $\cdots \cdots 10$
图 3	\tilde{A} 和 \tilde{B} 位置关系示意图。 (a)相交; (b) \tilde{A} 包含集合 \tilde{B} ; (c)不相交11
图 4	不同位置下, $ ilde{A}$ 和 $ ilde{B}$ 两者间各种距离比较图。 $\cdots \cdots 12$
图 5	面向对象的改进型区间二型模糊遥感影像聚类算法框架图14
图 6	TFSV-IT2FCM 算法流程图······18

表格索引

± 1	表格排序测试	0
★ I	· 友格性序测[1:1] · · · · · · · · · · · · · · · · · · ·	×
~~ I		·

第1章 绪论

1.1 研究背景及意义

遥感技术是从各种传感器上收集地物目标的电磁辐射信息,经处理后成像,从而对地物进行探测和识别的一种技术。遥感影像数据被广泛应用在军事侦察、环境监测、植被分类、土地利用规划和矿产资源勘测等领域[1]。近年来,随着卫星遥感技术的发展和信息科技技术的完善,遥感影像分辨率不断提高,高分辨率影像信息量越来越丰富。同时全球遥感数据成爆发式增长,但相关统计表明,遥感数据 95% 是不精确的、非结构化的数据,人类能够利用的数据仅占 5% 左右[2],如何在有限时间内高效利用遥感数据是当前遥感技术发展所面临的挑战。

影像分类与目标识别是遥感影像分析和应用的重要内容,如何准确、快速地对遥感影像分类与识别是当前遥感应用领域的研究热点。传统的遥感影像分类方法从人工目视解译发展到人机交互解译,再到半自动解译,最后到当前基于机器学习模型和人工智能技术的全自动解译发展过程;影像分类模型则由传统的像元解译、局部结构特征提取发展到了面向对象识别的阶段;分类器也从单一的分类器发展为层叠或多个分类器相结合的方法^[3]。基于新兴理论提出的新技术、新方法在遥感影像分类与识别研究中取得了较好的识别效果,提升了影像识别的精度。然而,由于遥感影像存在混合像元,同物异谱和同谱异物等问题^[4],遥感影像数据固有的不确定性成为影像分类亟需解决的问题,如果能构建适当模型描述影像地物数据,进而提取目标地物特征信息,这将成为影像分类与目标识别的新思路^[5]。同时,遥感影像数据普遍存在样本少、数据分布不均衡等特点,获取有标签的影像数据是昂贵、耗时的,需要极大的时间和人力成本,研究基于少样本的半自动或全自动的影像分类与目标识别方法有着重要的意义。

模糊聚类的优势。。。

深度学习优势。。

本文将从刻画遥感影像数据的不确定性和少样本数据分类两个角度,对高分影像数据进行分析与处理,分别提出新的面向对象的区间二型模糊聚类方法用于遥感影像聚类和基于生成对抗网络的弱监督学习方法用于影像分类与识别,将影像数据分类与识别结果与验证集 ground-truth 图进行比对,验证本文提出的两种方法在遥感影像分类与识别中

的有效性。此外,本文综合提出的两种方法,形成一个完整的处理流程,实现高分影像 数据的信息提取与分类识别。

1.2 国内外研究现状

为了方便介绍,本文中将深度学习方法之前的遥感影像分类方法称为传统的遥感影像分类方法。本节内容主要介绍了传统的高分辨率遥感影像分类识别方法和基于深度学习技术^[6-8] 的遥感影像识别分类方法的研究进展和现状。

1.2.1 传统的高分辨率遥感影像分类与识别方法

早在1957年,卫星遥感技术就应用到遥感影像分类与识别任务中。目标地物的分类与识别一直以来都是遥感影像分析中的一个基础任务,对于研究目标物体或现象的发展过程与分布规律有着重要意义^[9]。遥感影像分类方法依据是否使用地物类别先验知识分为监督分类和非监督分类。监督分类是指利用样本已有先验类别训练分类模型,模型能够建立样本特征到类别标签的决策映射规则;非监督分类是指在缺乏样本类别先验知识的前提下,只根据样本数据本身特性进行分类,根据样本相似度划分类别,如聚类^[10]。根据分类单元不同,遥感影像的分类方法可划分为基于像元和面向对象的分类。基于像元的分类方法以像元的光谱信息作为主要依据进行分类,常见的基于像元的遥感影像分类方法有:最小距离分析法^[11],最大似然分类法^[12],K-均值聚类法^[13]和 ISODATA 聚类法^[14]等。随着遥感技术不断发展与成熟,遥感影像空间分辨率不断提高。一般地,我们将空间分辨率高于 5m 遥感影像称作高分辨率遥感影像^[15]。高分影像相比低分辨率影像来说光谱信息相对匮乏,而高分影像的几何、纹理等信息却更加丰富。基于像元的分类方法应用到高分辨率影像中会导致影像解译速度慢,同时椒盐噪声极易产生,因而其不适用于高分影像分类^[16]。

面向对象的高分辨率影像分类方法将影像中邻域同质像元组成的对象作为分类单元,充分利用影像地物的形状、纹理等特征,更适合高分影像分类与识别^[15]。早在1976年,Kettig 和 Robert^[17] 就将面向对象的思想引入遥感影像研究领域中。随后,Lobo等人^[18] 将面向对象分类方法应用到遥感影像分类中,通过实验证明了在高分影像识别任务中面向对象的分类方法比基于像元的方法识别速度更快,分类精度更高。Baatz^[19] 基于高分辨率遥感影像特性,系统地提出高分影像的面向对象分类方法。之后,面向对象分类方法被广泛应用到高分影像分类识别任务中,发展迅速。 Geneletti^[20]和 Guo^[21] 分别从非监督分类的研究方向表明面向对象分类方法是基于像元方法的有效替

代。在工业应用领域,德国 Definiens 公司于2009 年开发的 Ecognition 影像分析软件极大的推动了面向对象的高分影像分类方法的商业发展,同时也表明了面向对象的高分影像方法的成熟。

一般的,面向对象的遥感影像分类方法通常包含三个部分:影像分割,特征提取和 分类识别。高分影像因其空间分辨率高,纹理、形状等空间信息相对丰富,分割方法和 精度便成为影像分割的关键要素。Canny 通过提出 Canny 算子[22] 检测出影像所有边缘 点,并将边缘点依次连接形成边界从而实现影像边缘分割。Otsu 基于灰度直方图动态计 算图像分割中的阈值范围,形成不同目标间差异最大化,实现阈值分割^[23]。 Vincent ^[24] 等结合沉浸模型提出影像的分水岭分割。 Achanta 和 Radhakrishna [25] 基于K-均值聚类方 法,采用简单的迭代聚类高效地生成影像分割单元,提出 SLIC 超像素分割算法,该方 法目前被广泛应用到影像分割中。在特征提取阶段,最初采用影像的光谱、纹理和形状 等低阶特征信息,但低阶特征无法获得较好的分类效果。文献[26]中引入词包模型的中 层语义特征实现对遥感影像信息更好的表达,实验结果表明该方法分类效果更好。随 后, Lienou 等[27] 将主题模型应用到词包模型的单词语义分析中, 改进了前者的分类精 度。He 等人[28] 针对遥感影像同物异谱的现象,结合模糊数学中不确定性理论的相关方 法,设计一种区间值特征来提取目标地物的特征,用于面向对象的非监督分类。目前, 在特征提取的方面研究者做了大量工作,然而,高级特征的表达仍需要复杂的人工设计 和反复实验验证。分类识别阶段是针对特征提取阶段获得的分割对象的特征,利用分类 器对待识别目标进行分类识别。目前,常用的机器学习分类方法包含随机森林[29],支持 向量机[30],决策树[31]和神经网络模型[32]等。在这些分类器基础上,通过结合不同分类 器延申而出的集成学习[33]的方法也被应用到高分影像分类中。

然而,传统的高分影像的分类与识别方法只应用到影像中、低层特征,无法充分表达影像信息,而采用的影像分类器大多是只有 1~2 层的浅层结构模型,无法充分学习和表达遥感影像复杂的数据结构和特征信息。因此,研究结构更复杂,表达能力更强的分类识别模型具有必要的意义。

1.2.2 基于深度学习技术影像识别与分类研究现状

深度学习的概念源于人工神经网络,最早由 Geoffrey Hinton^[6] 教授于2006年提出。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,从大量数据中自动学习数据的特征表示。深度学习利用多层网络模型学习抽象概念完成自我学习^[34]。深度学习最早应用于图像处理领域,目前在自然语言处理语、音识别、搜索推荐、

游戏AI 和自动驾驶等领域广泛应用,且均表现出卓越的效果[7]。2012 年, Alex 等人 在ILSVRC 图像识别大赛中提出了基于卷积神经网络(Convolutional Neuro Network, CNN) 结构的AlexNet^[8] 模型,对ImageNet 数据集上千万级的自然图像进行分类,大幅提升了 图像分类精度。AlexNet 的提出首次证明了 CNN 在复杂模型下的有效性,并极大推动了 有监督深度学习领域的发展。在2014年 ILSVRC 大赛上,基于 CNN 结构, Google 研究 团队提出的 GoogLeNet^[35] 和牛津大学学者提出的 VGGNet^[36] 分别荣获当年 ImageNet 识 别大赛的一、二名。这两者在 AlexNet 的基础上均探索了网络深度与性能的关系,实验 结果也证明了增加网络深度在一定程度上会影响网络最终的性能,使得分类错误率大幅 下降。另外,GoogLeNet 中提出的 Inception 结构和 VGGNet 中提出的小卷积核多层网络 结构也大幅优化了网络参数的数量,提升了训练学习速度的同时使得网络分类效果更优 秀,且具有优秀的扩展泛化能力。之后,何凯明在 ResNet^[37] 网络模型中创造性地提出 了残差学习(Residual Learning)的概念,解决了深度学习随着网络层数加深网络退化问 题,使得更深层次网络模型得以训练,同时 ResNet 一并刷新了当年 ILSVRC 和 COCO 2015 图像识别大赛的最优记录。在非监督学习领域,深度学习算法模型近十年也发展 迅速。2006年, Hinton 对传统自动编码器结构进行改进,提出了深度自编码网络(Deep AutoEncoder, DAE) [6]。DAE 网络利用无监督逐层贪心训练算法完成对隐含层的预训练, 然后用 BP 算法对整个网络参数进行调整,显著降低了深层自编码结构的性能指数,且大 幅提升自编码器的学习能力。之后,基于 DAE 理论相继提出的栈式自动编码器(stacked AutoEncoder, stacked AE)[38]、降噪编码器(Denoise Autoencoder, dAE)[39] 和稀疏自编码 器(Sparse AutoEncoder, SAE)^[40] 等均取得了不错的效果。2014年,Goodfellow 结合二人零 和博弈的思想,创造性地提出了生成对抗网络(Generative Adversarial Net,GAN)[41] 模 型,极大地促进了无监督学习和计算机视觉领域(如图片生成、风格迁移和图像分割 等)的发展。GAN 模型框架由两个"对抗"模型组成: 捕获数据分布的生成模型 G 和估计 样本来自训练数据而不是 G 的概率的判别模型 D。随后,基于GAN 网络的一系列无监督 学习方法如 $CGAN^{[42]}$ 、 $DCGAN^{[43]}$ 、 $InfoGAN^{[44]}$ 和 $WGAN^{[45]}$ 等被相继提出,不仅提升 GAN 模型生成与识别精度,同时极大丰富了GAN 网络的应用场景。

由于深度学习在图像分类识别的巨大成功与广泛应用,研究学者逐渐将深度学习理论引入遥感影像分类,基于深度学习理论的研究方法逐渐成为遥感影像发展的下一个趋势。文献^[46] 利用迁移学习知识,首次将深度卷积神经网络应用到高分辨率遥感影像场景分类中,能有效学习影像的高级特征表示。 Marco 等人^[47] 将预训练的 GoogLeNet 网络

参数,迁移到 UC Merced 土地利用数据集 ① 上,文中提出的方法在 UC Merced 数据集上获得了 10% 的分类识别精度提升,实验结果也表明了 CNN 结构在遥感影像上的成功。2016年,Romero 等人^[48] 使用贪婪分层无监督预训练,结合稀疏表示理论,实现对高分影像土地利用和土地覆盖的无监督分类。 Kampffmeyer 等^[49] 则使用 CNN 结构量化遥感影像像素尺度上的不确定性,对图像上每个像素进行分类,完成遥感影像的类别分类和语义分割。文献^[50] 基于全卷积网络(Fully convolutional network,FCN)结构,对影像进行四层卷积下采样提取特征,接着四层反卷积对特征图上采样回初始影像分辨率,输出所有像素点类别,实现遥感影像的像素级分类。 U-Net^[51] 网络结合反卷积与跳跃网络的优势,对 FCN 结构加以改进。文献^[52] 基于 U-Net 网络完成对海陆影像水域-陆地分割识别。文献^[53] 则在 U-Net 基础上结合残差学习的思想,完成对遥感影像道路信息的提取。

1.2.3 存在的主要问题

结合高分影像研究现状可知,影像分类与识别方法都比较成熟。传统机器学习分类方法只能提取浅层特征,且分类器结构相对简单。基于深度学习理论的影像分类方法具有很大的应用潜力,但是其需要大量标记好的训练样本,且对于遥感影像同物异谱、同谱异物等不确定性难以刻画。

1.3 本文的组织结构

本文主要从表征遥感影像不确定性和少样本影像分类两个角度对高分影像进行分类 与识别研究。论文依据研究内容可划分为六个章节,各章节依次为:

- 第1章:介绍矿产资源预测的背景及地球化学找矿的意义,调研了国内外地球化学异义,调研了国内外地球化学异常提取、元素组合常提取、元素组合异常提取的现状,对的现状,对经典方法和主流方法做了分析和介绍,归纳了一些方法存在的不足,并针对这些问题,提出了解决方案,引出本文的主要研究内容。
- 第2章:详细介绍了研究区整体的概况,包括地层、侵入岩等地质信息,在研究区内选取了四块比较典型的选区作为实验对象,从地质背景和地化特征角度对这些地区进行介绍,为后面章节的实验部分提供依据。此外,本章此外,本章还针对数据特点详细介绍了数据预处理的方法。
- 第3章: 阐述了本文提出的算法基于空间第三章: 阐述了本文提出的算法基于空间第三章: 阐述了本文提出的算法基于空间邻域约束聚类的地球化学异常提取方法的原理、

① 数据集访问链接:http://weegee.vision.ucmerced.edu/datasets/landuse.html

算法流程,并将该应用在理、算法流程,并将该应用在高贝沟、孤山岭孤山岭、长水地 区的球化学异常提取上,对地区的球化学异常提取上,对地区的球化学异常提取上,对 基于邻域约束聚类及局部相关系数的地球化学异常提取。

第4章:介绍矿产资源预测的背景及地球化学找矿的意义,调研了国内外地球化学异义,调研了国内外地球化学异常提取、元素组合常提取、元素组合异常提取的现状,对的现状,对经典方法和主流方法做了分析和介绍,归纳了一些方法存在的不足,并针对这些问题,提出了解决方案,引出本文的主要研究内容。

第5章:详细介绍了研究区整体的概况,包括地层、侵入岩等地质信息,在研究区内选取了四块比较典型的选区作为实验对象,从地质背景和地化特征角度对这些地区进行介绍,为后面章节的实验部分提供依据。此外,本章此外,本章还针对数据特点详细介绍了数据预处理的方法。

第6章: 阐述了本文提出的算法基于空间第三章: 阐述了本文提出的算法基于空间第三章: 阐述了本文提出的算法基于空间邻域约束聚类的地球化学异常提取方法的原理、算法流程,并将该应用在理、算法流程,并将该应用在高贝沟、孤山岭孤山岭、长水地区的球化学异常提取上,对地区的球化学异常提取上,对地区的球化学异常提取上,对基于邻域约束聚类及局部相关系数的地球化学异常提取。hh

1.4 本文主要创新点

本文研究内容主要有三个创新点:

- (1) 首次从地球化学异常的形态角度提取,提出基于空间邻域约束聚类的地球化学异常 提取方法。
- (2) 将元素组合异常与空间位置综考虑,提出基于局部相关系数的地球化学将元素组合异常与空间位置综考虑,提出基于局部相关系数的地球化学合异常提取方法。
- (3) 将综合本章提出的两种方法分析全区数据,结合地质信息进行综合分析,探索异常与矿点的关系,预测出找矿靶区,更好的指导找矿。

第2章 研究区与数据集介绍

2.1 数据集

在第??章中我们学习了贝叶斯公式(??),这里我们复习一下:

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$
(2-1)

2.1.1 绘图

本模板不再预先装载任何绘图包(如 pstricks, pgf 等),完全由你自己来决定。个人觉得 pgf 不错,不依赖于 Postscript。此外还有很多针对 LATEX 的 GUI 作图工具,如 XFig(jFig), WinFig, Tpx, Ipe, Dia, Inkscape, LaTeXPiX, jPicEdt, jaxdraw 等等。

2.1.2 插图

强烈推荐《 $ext{LMT}_{ ext{E}}$ X 2_{ε} 插图指南》! 关于子图形的使用细节请参看 subfig 的说明文档。

2.1.2.1 一个图形

一般图形都是处在浮动环境中。之所以称为浮动是指最终排版效果图形的位置不一定与源文件中的位置对应^①,这也是刚使用 LAT_EX 同学可能遇到的问题。如果要强制固定浮动图形的位置,请使用 float 宏包,

大学之道,在明明德,在亲民,在止于至善。知止而后有定;定而后能静;静而后能安;安而后能虑;虑而后能得。物有本末,事有终始。知所先后,则近道矣。古之欲明明德于天下者,先治其国;欲治其国者,先齐其家;欲齐其家者,先修其身;欲修其身者,先正其心;欲正其心者,先诚其意;欲诚其意者,先致其知;致知在格物。物格而后知至;知至而后意诚;意诚而后心正;心正而后身修;身修而后家齐;家齐而后国治;国治而后天下平。自天子以至于庶人,壹是皆以修身为本。其本乱而未治者否矣。其所厚者薄,而其所薄者厚,未之有也!

——《大学》

① This is not a bug, but a feature of LATEX!

表 1 表格排序测试

111	222
222	333

古之学者必有师。师者,所以传道受业解惑也。人非生而知之者,孰能无惑?惑而不从师,其为惑也,终不解矣。生乎吾前,其闻道也固先乎吾,吾从而师之;生乎吾後,其闻道也亦先乎吾,吾从而师之。吾师道也,夫庸知其年之先後生於吾乎!是故无贵无贱无长无少,道之所存,师之所存也。

嗟乎!师道之不传也久矣,欲人之无惑也难矣。古之圣人,其出人也远矣,犹且从师而问焉;今之众人,其下圣人也亦远矣,而耻学於师。是故圣益圣,愚益愚。圣人之所以为圣,愚人之所以为愚,其皆出於此乎?爱其子,择师而教之,於其身也,则耻师焉,惑焉。彼童子之师,授之书而习其句读者,非吾所谓传其道、解其惑者也。句读之不知,惑之不解,或师焉,或不焉,小学而大遗,吾未见其明也。巫医、乐师、百工之人不耻相师,士大夫之族曰"师"曰"弟子"之云者,则群聚而笑之。问之,则曰:彼与彼年相若也,道相似也,位卑则足羞,官盛则近谀。呜呼!师道之不复,可知矣。巫医、乐师、百工之人。吾子不齿,今其智乃反不能及,其可怪也欤!圣人无常师。孔子师郯子、苌子、师襄、老聃。郯子之徒,其贤不及孔子。孔子曰:"三人行,必有我师。"是故弟子不必不如师,师不必贤於弟子。闻道有先後,术业有专攻,如是而已。

李氏子蟠,年十七,好古文、六艺,经传皆通习之,不拘於时,学於余。余嘉其能 行古道,作师说以贻之。

第3章 面向对象的遥感影像的区间二型模糊聚类分割算法

3.1 引言

由于遥感影像数据具有同物异谱、同谱异物等固有的不确定性,结合模糊数学理论对不确定信息刻画的优点,模糊C-均值聚类(Fuzzy c-means clustering, FCM)分割方法被广泛应用到遥感影像分析中^[54]。同时,随着遥感影像空间分辨率的提高,高分影像数据具有更多的信息多样性和复杂性,遥感影像聚类方法由传统的基于像元发展为面向对象的聚类分割。本章内容从遥感影像特征信息表达和目标地物类别关系两个角度来表征遥感影像分类中的不确定性信息。首先设计了三角形模糊集值信息表达模型来表征影像分割单元信息,其次提出一种新的区间值度量方法计算两个三角形模糊集值数据的相异性,最后,改进了已有的二型模糊集合聚类分割方法来对影像数据建模,以刻画遥感影像数据的不确定性 ©。

图 1 区间值相同但分布不同的数据比较

3.2 三角形模糊集值建模与相似性度量

当前,面向对象分割方法中对影像单元多采取均值数据建模^[56] 和区间值数据建模^[28]。然而,这两种信息表达模型无法区分具有相同均值和区间值但内部分布不一致的分割单元。如图 1 所示,每组模拟数据内的点集可以看作一个影像分割单元像素点集合,具有相同的均值和区间值的影像单元内像素点的分布差异明显。

① 本章部分内容来自作者2018年发表于 SCI 期刊 Computers & Geosciences 上的文章[55]。

模糊集(Fuzzy sets,FS)是 Zadeh 教授 1965年提出的概念,通过建立适当的隶属度函数(Membership function,MF)来描述对象的不确定性^[57]。常见的隶属度函数有:三角形MF,梯形MF,截断高斯MF和钟形MF等。FS 最常用和最基本的 MF 是三角形MF。因此,文中利用三角形模糊集来定义三角形模糊集值数据模型。

定义 3.1: 三角形模糊集值(Triangular Fuzzy Set Valued, TFSV)模型的定义

三角形模糊集值数据由以下三个关键参数组成: $(a^-,0)$, $(a^m,1)$ 和 $(a^+,0)$ 。如图 2 所示,几何上, $(a^-,0)$ 和 $(a^+,0)$ 组成三角形MF的下边缘;代数上, $(a^-,0)$ 和 $(a^+,0)$ 形成一个区间值,确保一定的变化范围。 $(a^m,1)$ 是TFSV 数据的顶点,表征 FS 的最高置信度。

图 2 三角形模糊集 Ã 示意图

聚类是根据某种相似性或距离将相似的对象聚为一类的无监督学习方法,相似性度量是聚类的核心要素。对于两个TFSV数据 \tilde{A} 和 \tilde{B} ,常见的相似性度量方法有以下几种:

(1) 欧式距离(Euclidean distance)

$$d_E(\tilde{A}, \tilde{B}) = \sqrt{\sum_{x \in X} |\tilde{A}(x) - \tilde{B}(x)|^2}, x \in X$$
 (3-1)

 \tilde{A} 和 \tilde{B} 的欧式距离 $d_{E}(\tilde{A}, \tilde{B})$ 被看作是集合对应元素差值平方和的平方根。

(2) 城市距离(City-block distance)

$$d_C(\tilde{A}, \tilde{B}) = \sum_{x \in X} |\tilde{A}(x) - \tilde{B}(x)|, x \in X$$
(3-2)

 \tilde{A} 和 \tilde{B} 的城市距离 $d_C(\tilde{A}, \tilde{B})$ 被看作是集合对应元素差值绝对值的和。

(3) 豪斯多夫距离(Hausdorff distance)

豪斯多夫距离最开始为区间或普通集合设计,两个普通集合 A 与 B 的豪斯多夫距离为:

$$d_H(A, B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} |a - b|, \sup_{b \in B} \inf_{a \in A} |a - b| \right\}$$
 (3-3)

将其推广到模糊集,可以考虑模糊集 \tilde{A} 和 \tilde{B} 的一个 $\alpha-cut$ 截集 $^{[57]}$ $d^{\alpha}_{H}(\tilde{A},\tilde{B})$,则有:

$$d_{H}^{\alpha}(\tilde{A}, \tilde{B}) = \max \left\{ \sup_{a \in \tilde{A}_{\alpha}} \inf_{b \in \tilde{B}_{\alpha}} |a - b|, \sup_{b \in \tilde{B}_{\alpha}} \inf_{a \in \tilde{A}_{\alpha}} |a - b| \right\}$$
(3-4)

其中, inf 和 sup 分别表示取集合的最大下界和最小上界。模糊集是度量空间的非空紧致和有限子集, 所以等式 3-4 中的 inf 和 sup 操作可分别替换为 min 和 max 操作,即

$$d_{H}^{\alpha}(\tilde{A}, \tilde{B}) = \max \left\{ \max_{a \in \tilde{A}_{\alpha}} \min_{b \in \tilde{B}_{\alpha}} |a - b|, \max_{b \in \tilde{B}_{\alpha}} \min_{a \in \tilde{A}_{\alpha}} |a - b| \right\}$$
(3-5)

然后对 \tilde{A} 和 \tilde{B} 所有可能的 α – cut 截集积分,就可得到模糊集 \tilde{A} 和 \tilde{B} 的豪斯多夫距离:

$$d_{H}(\tilde{A}, \tilde{B}) = \int_{0}^{1} d_{H}^{\alpha}(\tilde{A}, \tilde{B}) d\alpha = \int_{0}^{1} \max \left\{ \max_{a \in \tilde{A}_{\alpha}} \min_{b \in \tilde{B}_{\alpha}} |a - b|, \max_{b \in \tilde{B}_{\alpha}} \min_{a \in \tilde{A}_{\alpha}} |a - b| \right\} d\alpha$$
 (3-6)

那么,如何选择合适的距离来度量两个模糊集的相似性呢?对于模糊集 \tilde{A} 和 \tilde{B} ,如图 3 所示,我们考虑在同一坐标系内, \tilde{A} 和 \tilde{B} 只存在三种位置关系:相交、包含和不相交。

图 3 \tilde{A} 和 \tilde{B} 位置关系示意图。 (a)相交; (b) \tilde{A} 包含集合 \tilde{B} ; (c)不相交.

为了比较各种位置关系下两个模糊集间上述各种距离的大小关系。文中设计以下实验: 如图 4(a) 所示, \tilde{B} 固定不动,将 \tilde{A} 沿X 轴从左向右移动,分别计算各相对位置下 \tilde{A} 和 \tilde{B} 对应位置的距离。结果如图 4(b) 所示(图中0-cut 和1-cut 截集的豪斯多夫距离后面会讨论), \tilde{A} 位于(a,b) 区间内时, \tilde{A} 和 \tilde{B} 相交,以上四种距离均可度量 \tilde{A} 和 \tilde{B} 的相似性。然而,在两者不相交时(图中 \tilde{A} 位于 $(-\infty,a)$ 和 $(b,+\infty)$ 区间内)无论 \tilde{A} 和 \tilde{B} 相距多远,欧

式距离和城市距离均为一固定常量,只有豪斯多夫距离可以精确度量上述三种位置下两个模糊集的相似性。

图 4 不同位置下, \tilde{A} 和 \tilde{B} 两者间各种距离比较图。

然而,计算两个模糊集之间的豪斯多夫距离具有较高的计算复杂度,导致其在模糊 聚类迭代更新中难以适用。另外, Zadeh 教授在可能性分布理论^[58] 中提到:模糊集作为 一个弹性约束值,若使用区间距离度量,而不是一个单一固定值来度量两个模糊集间相似性 可以获取产生更高的识别能力。因此,文中尝试引入一种新的基于豪斯多夫距离的区间距 离度量方法来度量三角形模糊集的相似性。

首先,考虑模糊集合的特性,文献^[58] 中定义了模糊集的 α – cut 截集并提出了模糊集的 α – cut 截集表现定理,其中提到任何模糊集都可以由它指定的 α – cut 截集来表示。在所有的截集中,有两个截集是最重要与最具有代表性的,它们就是0 – cut 和1 – cut 截集,分别代表模糊集和的支撑集和置信集合。模糊集 \tilde{A} 的支持集0 – cut 包含 \tilde{A} 中非零的所有元素,体现了模糊集的可能性;而 \tilde{A} 的置信集1 – cut 包含元素的隶属度均为1,这表明1 – cut 截集中所有元素都有最高的隶属度和置信度,体现了模糊集的必要性。此外,最近一些关于 α – cut 截集的研究对任一模糊集,仅使用0 – cut 和1 – cut 截集就可近似拟合模糊集的质心;此外,任意其他 α – cut 截集 $(0 \le \alpha \le 1)$ 都可以表示为0 – cut 和1 – cut 截集的广义线性组合[59]。

根据公式3-5, 我们分别可以获得 \tilde{A} 和 \tilde{B} 的0 – cut 和1 – cut 的豪斯多夫距离为 $d_H^0(\tilde{A}, \tilde{B})$ 和 $d_H^1(\tilde{A}, \tilde{B})$ 。基于上面提到的可能性分布理论和模糊集的 α – cut 截集表现定理,我们可以定义两个三角形模糊集间 \tilde{A} 和 \tilde{B} 间一种新的区间值距离 $d_I(\tilde{A}, \tilde{B})$ 为下式:

$$d_I(\tilde{A}, \tilde{B}) = [\min\{d_0(\tilde{A}, \tilde{B}), d_1(\tilde{A}, \tilde{B})\}, \max\{d_0(\tilde{A}, \tilde{B}), d_1(\tilde{A}, \tilde{B})\}]$$
(3-7)

图 4 中的结果(0 - cut 和1 - cut)也表明 $d_I(\tilde{A}, \tilde{B})$ 能够度量两个模糊集不相交时的相似性,另外,还可以看出文中新定义的距离 $d_I(\tilde{A}, \tilde{B})$ 是 $d_H(\tilde{A}, \tilde{B})$ 的弹性膨胀,即有:

$$d_H(\tilde{A}, \tilde{B}) \in d_I(\tilde{A}, \tilde{B}) \tag{3-8}$$

公式 3-8的证明步骤由于篇幅过大,可参考本文作者已发表文章[55]的附录一。

- 一个相似性度量能够定位为距离,当且仅当其能满足距离度量三个条件,即非负性、对称性和三角不等式。假定 \tilde{A} 、 \tilde{B} 和 \tilde{C} 是任意三个三角形模糊集,则需要满足以下特性:
 - (1) 非负性: $d_I(\tilde{A}, \tilde{A}) = 0$
 - (2) 对称性: $d_I(\tilde{A}, \tilde{B}) = d_I(\tilde{B}, \tilde{A})$
 - (3) 三角不等式: $d_I(\tilde{A}, \tilde{C}) \leq d_I(\tilde{A}, \tilde{B}) + d_I(\tilde{B}, \tilde{C})$

证明过程较复杂,可参考本文作者已发表文章[55]的附录二。

综上所述,本节针对面向对象分割单元定义了TFSV数据模型,同时,结合模糊集与可能性分布定理特性,针对新提出的TFSV数据类型,本文新提出了一种区间值的距离度量方法,来度量两个TFSV数据间的相似性。

3.3 面向对象的改进型区间二型模糊遥感影像聚类方法

3.3.1 算法整体框架

本章提出基于三角形模糊集值的区间二型模糊聚类方法(Triangular Fuzzy Set Valued Interval Type 2 Fuzzy Clustering Method, TFSV-IT2FCM)主要用于提高高分辨率遥感影像无监督聚类分割精度。图 5 展示了该面向对象分类方法的总体处理流程,具体可分为以下几点:

Step 1: 影像分割与对分割单元的TFSV 数据建模 高分影像被分割为具有同质性的像素单元集合.对分割单元提取特征,并构建 TFSV 模型;

Step 2: 模糊聚类分析

使用TFSV-IT2FCM 算法对高分影像分割单元的TFSV 模型数据聚类,IT2FCM 算法的距离度量使用文中新提出的区间距离 d_{I} :

Step 3: 聚类结果的后处理

使用类别组合方法对聚类分割的结果处理,得到高分影像最终得分割结果。

图 5 面向对象的改进型区间二型模糊遥感影像聚类算法框架图

3.3.2 面向对象的TFSV 模型

3.3.2.1 影像分割

目前,遥感影像常用的像元分割算法包含基于分水岭的算法,基于直方图的方法和聚类方法等^[60]。简单线性迭代聚类(SLIC)算法具有高计算效率和可选数量的分段单元^[25],因此本章使用SLIC 超像素分割算法提取遥感影像的分割单元。 SLIC 算法的关键步骤如下:

- (I) 计算遥感影像梯度获取影像梯度图;
- (II) 初始化梯度图中的聚类中心;

- (III) 将遥感影像从SPOT5 格式转换为CIELAB 颜色空间计算像元间的相似度;
- (IV) 使用SLIC 算法对CIELAB 彩色图像进行分割,以获得影像同质性分割单元。

对高分影像I,使用SLIC分割算法获得影像分割单元SS,为:

$$SS = \{B_1, B_2, \cdots, B_n\}$$
 (3-9)

其中 $B_i(1 \le i \le n)$ 表示第i 个分割单元,n 表示分割单元的总数。 $B_i(i = 1, 2, \dots, n)$ 是一个 $j \times p$ 矩阵,其中j 表示每个波段包含的像素数目,p 表示图像通道数。

3.3.2.2 影像单元的TFSV 数据建模

尽管文献^[28] 中已经证明:对于影像分割单元,区间值的特征比均值特征更有效,但是影像分割单元的不确定性不能被充分的表达。因此,文中使用定义 3.1 的TFSV 数据模型 \tilde{A}_i 来提取影像单元 B_i 的特征:

1) 基于影像分割单元 B_i 内像素的均值和方差特性,可以获得一个p维的区间值向量,记为 X_i ,如下:

$$X_i = [X_i^{down}, X_i^{up}] = [\max\{0, \mu_i - \alpha \times \sigma_i\}, \mu_i + \alpha \times \sigma_i]$$
(3-10)

其中 $\mu_i = [\mu_1, \mu_2, \cdots, \mu_p]^T$, $\sigma_i = [\sigma_1, \sigma_2, \cdots, \sigma_p]^T$ 是第i个分割单元 B_i 的均值和方差, α 是控制区间值大小的超参数,p 是遥感影像的波段数。

- 2) 分割单元是邻近同质像素点的集合,基于统计学特性,等式3-10 中的向量 $X_i = [X_i^{down}, X_i^{up}]$ 除了少数异常点外包含分割单元 B_i 中的绝大部分点。因此,从 X_i 中导出参数 $(X_i^{down}, 0)$ 和 $(X_i^{up}, 0)$ 来构造 \tilde{A}_i 的底边。
- 3) \tilde{A}_i 的顶点由(med_i , 1) 组成。因中值不受极值的影响,并且对噪声点和异常值具有很高的鲁棒性,这里 med_i 取 B_i 的中值。

类似地,影像的每个分割单元都可以被表征为一个 TFSV 数据模型,分割单元的集合 $SS = \{B_1, B_2, \cdots, B_n\}$ 可以被表示为:

$$SS \to {\tilde{A_1}, \tilde{A_2}, \cdots, \tilde{A_n}}$$
 (3-11)

其中SS 是一个 $n \times p$ 矩阵, \tilde{A}_i 是 B_i 对应的p 维TFSV 数据,n 表示分割单元的数目。

3.3.3 基于TFSV 数据模型的面向对象模糊聚类方法

3.3.3.1 区间二型模糊隶属度

区间二型模糊聚类算法(Interval type 2 fuzzy clustering method, IT2FCM) 使用一个区间值来表示隶属度值。文献^[61] 中使用两个模糊化指数 m_1 和 m_2 得到区间二型隶属度函数(Interval type 2 membership function,IT2MF) 的上界和下界,从而将一型模糊集(Type 1 fuzzy sets, T1FS) 扩展为二型模糊集(Type 2 fuzzy sets, T2FS)。然而,IT2FCM 算法对模糊指数 m_1 和 m_2 的取值敏感。与传统FCM 算法相比,不恰当的 m_1 和 m_2 取值会导致更差的实验结果。因此,基于公式 3-7 中新定义的区间值距离度量,类似FCM 算法,本文仅使用一个模糊指数m来表达IT2MF。

假定样本 $\tilde{X} = (\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_p)^T$ 和聚类中心 $\tilde{V} = (\tilde{V}_1, \tilde{V}_2, \dots, \tilde{V}_p)^T$ 是两个形如公式 3-11 的p 维TFSV 数据,其中 \tilde{X}_i ($1 \le i \le p$) 是一个一维TFSV,由 $(X_i^{down}, 0)$, $(X_i^{up}, 0)$ 和 $(X_i^{med}, 1)$ 这三个参数构成;类似地, \tilde{V}_i 由 $(V_i^{down}, 0)$, $(V_i^{up}, 0)$ 和 $(V_i^{med}, 1)$ 三个参数组成。 \tilde{X}_i 和 \tilde{V}_i 的0 - cut 和1 - cut 豪斯多夫距离分别为:

$$d_0(\tilde{X}_i, \tilde{Y}_i) = \max\left\{|X_i^{down} - Y_i^{down}|, |X_i^{up} - Y_i^{up}|\right\}$$
(3-12)

和

$$d_1(\tilde{X}_i, \tilde{V}_i) = \left\{ |X_i^{med} - V_i^{med}| \right\}$$
 (3-13)

 \tilde{X}_i 和 \tilde{V}_i 的区间值距离 $d_I(\tilde{X}_i, \tilde{V}_i)$ 即为:

$$d_{I}(\tilde{X}_{i}, \tilde{V}_{i}) = [\min\{d_{0}(\tilde{X}_{i}, \tilde{V}_{i}), d_{1}(\tilde{X}_{i}, \tilde{V}_{i}), \max\{d_{0}(\tilde{X}_{i}, \tilde{V}_{i}), d_{1}(\tilde{X}_{i}, \tilde{V}_{i})\}]$$
(3-14)

从而, \tilde{X} 和 \tilde{V} 间的区间值距离 $d_I(\tilde{X}, \tilde{V})$ 可以被表示为:

$$d_I(\tilde{X}, \tilde{V}) = \max\{d_I(\tilde{X}_i, \tilde{V}_i)\}, i = 1.2.\dots, p$$
 (3-15)

与FCM 算法类似,新提出的面向对象的TFSV-IT2FCM 算法求解需要最小化以下目标函数:

$$J(U;V) = \sum_{j=1}^{n} \sum_{i=1}^{K} (U_{ij})^{m} d^{2}(X_{i}, V_{j})$$
(3-16)

其中m(m > 1) 是模糊指数, $d^2(X_i, V_j) = d_I(\tilde{X}_i, \tilde{V}_j)$ 是依据公式 3-7 定义的样本 X_i 和 V_j 间的区间值距离。为了最小化目标函数J,有:

$$U_{ij} = \frac{1}{\sum_{k=1}^{K} \left(\frac{d_{ji}}{d_{ki}}\right)^{\frac{2}{m-1}}}$$
(3-17)

在TFSV-IT2FCM 算法中,模糊指数m 的上界和下界以及区间值 $d^2(X_i, V_j)$ 用来描述不确定性。区间隶属度的上界 \overline{u}_{ij} 和下界 \underline{u}_{ij} 分别为:

$$\overline{u}_{ij} = \max\left\{\frac{1}{\sum_{k=1}^{K} {d_{ji}^0 \choose d_{ki}^0}^{\frac{2}{m-1}}}, \frac{1}{\sum_{k=1}^{K} {d_{ji}^1 \choose d_{ki}^1}^{\frac{2}{m-1}}}\right\}$$
(3-18)

和

$$\underline{u}_{ij} = \min\left\{\frac{1}{\sum_{k=1}^{K} \left(\frac{d_{ji}^0}{d_{ki}^0}\right)^{\frac{2}{m-1}}}, \frac{1}{\sum_{k=1}^{K} \left(\frac{d_{ji}^1}{d_{ki}^1}\right)^{\frac{2}{m-1}}}\right\}$$
(3-19)

其中 d_{ji}^0 和 d_{ji}^1 分别是 \tilde{X}_i 和 \tilde{V}_j 的0-cut 距离和1-cut 距离度量,由区间值距离 $d_I(\tilde{X}_i,\tilde{V}_j)$ 计算得出。

3.3.3.2 TFSV-IT2FCM 算法

与FCM 算法不同,文中提出的TFSV-IT2FCM 算法核心是一个IT2FS,无法直接通过降型去模糊化,需要先计算IT2FS 的质心将IT2FS 转换为T1FS,再去模糊化得到明确集^[62]。文中使用EKM 降型算法^[63] 降型和去模糊化,从而获取精确的聚类中心。降型后的聚类中心点可表示为

$$V_i = [V_i^L, V_i^R] \tag{3-20}$$

通过去模糊化后得到的明确集聚类中心为:

$$V_{j} = \frac{V_{j}^{L} + V_{j}^{R}}{2} \tag{3-21}$$

图 6 TFSV-IT2FCM 算法流程图

整个TFSV-IT2FCM 算法框架如图 6 所示, 算法的详细描述如下:

(1) 初始化

初始化实验聚类参数个数 $K(2 \le K \le N)$,在实验1、2、3 中分别设置K = 5、5 和6。 初始化模糊指数m = 2.0 (1 < $m < \infty$),迭代阈值 $\varepsilon = 0.0001$ ($\varepsilon > 0$),最大迭代次数T = 500,初始 t = 1,初始化区间膨胀参数 $\alpha = 0.8$ 。其中超参数m 和 α 依赖具体的问题和实验数据。在本实验中,当m = 2.0 和 $\alpha = 0.8$ 能取得最优实验效果。

(2) TFSV 数据建模

使用SLIC 算法获取影像的分割单元 $SS = \{B_1, B_2, \cdots, B_n\}$,然后转化为TFSV 类型数据 $\{\tilde{X}_1, \tilde{X}_2, \cdots, \tilde{X}_n\}$ 作为训练样本。初始化TFSV 的聚类中心 $\tilde{V} = \{\tilde{V}_1, \tilde{V}_2, \cdots, \tilde{V}_K\}$ 为 \tilde{V}^0 ,其中 \tilde{V}^0_k , $(1 \le k \le K)$ 由参数 $(v_k^l, 0)$ 、 $(v_k^r, 0)$ 和 $(v_k^{mid}, 1)$ 构成。

(3) 聚类迭代更新

在TFSV-IT2FCM 算法迭代中得到模糊划分矩阵 $U = [U_{ij}]_{n \times K}$,其中 $U_{ij} = [\underline{u}_{ij}, \overline{u}_{ij}]$ 如公式3-18 和3-19 所示。聚类中心 $[\tilde{v}_i, \tilde{v}_r]$ 由EKM 算法降型获取。然后,将降型后的聚类中心去模糊化,得到明确集的聚类中心为

$$\tilde{v} = \frac{\tilde{v}_l + \tilde{v}_r}{2} \tag{3-22}$$

(4) 迭代中止

如果迭代过程满足 $\|\tilde{\boldsymbol{V}}^t - \tilde{\boldsymbol{V}}^{t+1}\| \le \varepsilon$ 或 $t \ge T$ 即停止迭代,否则,令t = t+1 并跳到步骤 (3) 。距离 $\|\tilde{\boldsymbol{V}}^t - \tilde{\boldsymbol{V}}^{t+1}\|$ 可由 $d_I(\tilde{\boldsymbol{V}}^t, \tilde{\boldsymbol{V}}^{t+1})$ 取均值得到,即

$$\|\tilde{V}^t - \tilde{V}^{t+1}\| = \frac{d_0(\tilde{V}^t, \tilde{V}^{t+1}) + d_1(\tilde{V}^t, \tilde{V}^{t+1})}{2}$$
(3-23)

(5) 硬划分

区间二型的模糊划分矩阵 $U = [U_{ij}]_{n \times K}$ 可以降型为

$$U_{ij} = \frac{\underline{u}_{ij} + \overline{u}_{ij}}{2} \tag{3-24}$$

其中 $U_{ij} = [\underline{u}_{ij}, \overline{u}_{ij}]$ 。然后,求出 \tilde{X}_i 到聚类中心 \tilde{V}_k 的最大隶属度 U_{ik} ,其中 $k = 1, 2, \cdots, K$ 。根据最大隶属度原则,将 \tilde{X}_i 划分到类别 \tilde{V}_k 。

3.3.4 后处理

经过像元分割与非监督模糊聚类,可以得到遥感影像的初始分类结果。使用CORINE

地物覆被处理系统^① 对初始聚类结果进行人工类别合并,实现基于高分影像识别的高级地物覆被分类^[64]。

3.4 实验结果

结果数据图表 balabala。。。。

3.5 本章小结

总结 balabala..

① CORINE (Coordination of Information on the Environment) 是欧洲委员会于1985年提出的环境信息协调系统,其包含44个类别的地物覆被,常用于地物覆被的后处理。官方网址: https://land.copernicus.eu/pan-european/corine-land-cover.

第4章 方法二

小老鼠偷吃热凉粉;短长虫环绕矮高粱。①

4.1 封面相关

封面的例子请参看 cover.tex。主要符号表参看 denation.tex,附录和个人简历分别参看 appendix01.tex 和 resume.tex。里面的命令都非常简单,一看即会。②

4.2 字体命令

苏轼(1037-1101),北宋文学家、书画家。字子瞻,号东坡居士,眉州眉山(今属四川)人

① 韩愈(768-824),字退之,河南河阳(今河南孟县)人,自称郡望昌黎,世称韩昌黎。幼孤贫刻苦好学,德宗贞元八年进士。曾任监察御史,因上疏请免关中赋役,贬为阳山县令。后随宰相裴度平定淮西迁刑部侍郎,又因上表谏迎佛骨,贬潮州刺史。做过吏部侍郎,死谥文公,故世称韩吏部、韩文公。是唐代古文运动领袖,与柳宗元合称韩柳。诗力求险怪新奇,雄浑重气势。

② 你说还是看不懂?怎么会呢?

第5章 第五章

小老鼠偷吃热凉粉;短长虫环绕矮高粱。①

5.1 封面相关

封面的例子请参看 cover.tex。主要符号表参看 denation.tex,附录和个人简历分别参看 appendix01.tex 和 resume.tex。里面的命令都非常简单,一看即会。②

5.2 字体命令

苏轼(1037-1101),北宋文学家、书画家。字子瞻,号东坡居士,眉州眉山(今属四川)人

① 韩愈(768-824),字退之,河南河阳(今河南孟县)人,自称郡望昌黎,世称韩昌黎。幼孤贫刻苦好学,德宗贞元八年进士。曾任监察御史,因上疏请免关中赋役,贬为阳山县令。后随宰相裴度平定淮西迁刑部侍郎,又因上表谏迎佛骨,贬潮州刺史。做过吏部侍郎,死谥文公,故世称韩吏部、韩文公。是唐代古文运动领袖,与柳宗元合称韩柳。诗力求险怪新奇,雄浑重气势。

② 你说还是看不懂?怎么会呢?

第6章 总结与展望

小老鼠偷吃热凉粉;短长虫环绕矮高粱。①

6.1 本文的主要内容

封面的例子请参看 cover.tex。主要符号表参看 denation.tex,附录和个人简历分别参看 appendix01.tex 和 resume.tex。里面的命令都非常简单,一看即会。②

6.2 未来的期望

苏轼(1037-1101),北宋文学家、书画家。字子瞻,号东坡居士,眉州眉山(今属四川)人

① 韩愈(768-824),字退之,河南河阳(今河南孟县)人,自称郡望昌黎,世称韩昌黎。幼孤贫刻苦好学,德宗贞元八年进士。曾任监察御史,因上疏请免关中赋役,贬为阳山县令。后随宰相裴度平定淮西迁刑部侍郎,又因上表谏迎佛骨,贬潮州刺史。做过吏部侍郎,死谥文公,故世称韩吏部、韩文公。是唐代古文运动领袖,与柳宗元合称韩柳。诗力求险怪新奇,雄浑重气势。

② 你说还是看不懂?怎么会呢?

致 谢

衷心感谢导师 xxx 教授和物理系 xxx 副教授对本人的精心指导。他们的言传身教将使我终生受益。

在美国麻省理工学院化学系进行九个月的合作研究期间,承蒙 xxx 教授热心指导与帮助,不胜感激。感谢 xx 实验室主任 xx 教授,以及实验室全体老师和同学们的热情帮助和支持!本课题承蒙国家自然科学基金资助,特此致谢。

感谢清华的薛瑞尼及相关同学,他们制作维护的清华学位论文模板极大的方便 了LATEX用户的论文写作。

> 江涛 2019年 3月

参考文献

- [1] 李石华, 王金亮, 毕艳, et al. 遥感图像分类方法研究综述[J]. 国土资源遥感, 2005, 2(5):1-6.
- [2] 张俊,于庆国,侯家槐. 面向对象的高分辨率影像分类与信息提取[J]. 遥感技术与应用, 2010, 25(1):112–117.
- [3] 李德仁, 童庆禧, 李荣兴, et al. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学: 地球科学, 2012, 42(6):805-813.
- [4] 邬伦, 承继成, 史文中, et al. 地理信息系统数据的不确定性问题[D]. 2006.
- [5] Hui He, Xianchuan Yu. A comparison of PCA/ICA for data preprocessing in remote sensing imagery classification[C]. Proceedings of MIPPR 2005: Image Analysis Techniques, volume 6044. International Society for Optics and Photonics, 2005. 604408.
- [6] Geoffrey E Hinton, Simon Osindero, Yee-Whye Teh. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527–1554.
- [7] Yoshua Bengio, et al. Learning deep architectures for AI[J]. Foundations and trends® in Machine Learning, 2009, 2(1):1–127.
- [8] Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton. ImageNet Classification with Deep Convolutional Neural Networks[C]. In: F. Pereira, C. J. C. Burges, L. Bottou, et al., (eds.). Proceedings of Advances in Neural Information Processing Systems 25. Curran Associates, Inc., 2012: 1097–1105.
- [9] John R Jensen, Kalmesh Lulla. Introductory digital image processing: a remote sensing perspective[J]. 1987.
- [10] MBDY Djukanovic, Borivoje Babic, Dijan J Sobajic, et al. Unsupervised/supervised learning concept for 24-hour load forecasting[C]. Proceedings of IEE Proceedings C (Generation, Transmission and Distribution), volume 140. IET, 1993. 311–318.
- [11] AG Wacker, DA Landgrebe. Minimum distance classification in remote sensing[J]. 1972.
- [12] Alan H Strahler. The use of prior probabilities in maximum likelihood classification of remotely sensed data[J]. Remote sensing of Environment, 1980, 10(2):135–163.
- [13] Peter M Atkinson, P Lewis. Geostatistical classification for remote sensing: an introduction[J]. Computers & Geosciences, 2000, 26(4):361–371.
- [14] Frank Paul, Andreas Kääb, Max Maisch, et al. The new remote-sensing-derived Swiss glacier inventory: I. Methods[J]. Annals of Glaciology, 2002, 34:355–361.

- [15] 张永生, 巩丹超, 刘军, et al. 高分辨率遥感卫星应用[J]. 科学出版社, 北京, 2004.
- [16] Thomas Blaschke. Object based image analysis for remote sensing[J]. ISPRS journal of photogrammetry and remote sensing, 2010, 65(1):2–16.
- [17] Robert Lawrence Kettig, DA Landgrebe. Classification of multispectral image data by extraction and classification of homogeneous objects[J]. IEEE Transactions on geoscience Electronics, 1976, 14(1):19–26.
- [18] A Lobo, O Chic, A Casterad. Classification of Mediterranean crops with multisensor data: per-pixel versus per-object statistics and image segmentation[J]. International Journal of Remote Sensing, 1996, 17(12):2385–2400.
- [19] Martin Baatz. Object-oriented and multi-scale image analysis in semantic networks[C]. Proceedings of Proc. the 2nd International Symposium on Operationalization of Remote Sensing, Enschede, ITC, Aug. 1999, 1999.
- [20] D Geneletti, BGH Gorte. A method for object-oriented land cover classification combining Landsat TM data and aerial photographs[J]. International Journal of Remote Sensing, 2003, 24(6):1273–1286.
- [21] Qinghua Guo, Maggi Kelly, Peng Gong, et al. An object-based classification approach in mapping tree mortality using high spatial resolution imagery[J]. GIScience & Remote Sensing, 2007, 44(1):24–47.
- [22] John Canny. A computational approach to edge detection[C]. Proceedings of Readings in computer vision. Elsevier, 1987: 184–203.
- [23] Nobuyuki Otsu. A threshold selection method from gray-level histograms[J]. IEEE transactions on systems, man, and cybernetics, 1979, 9(1):62–66.
- [24] Luc Vincent, Pierre Soille. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991, (6):583–598.
- [25] Radhakrishna Achanta, Appu Shaji, Kevin Smith, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 34(11):2274–2282.
- [26] Lior Weizman, Jacob Goldberger. Urban-area segmentation using visual words[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3):388–392.
- [27] Marie Lienou, Henri Maitre, Mihai Datcu. Semantic annotation of satellite images using latent Dirichlet allocation[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1):28–32.
- [28] Hui He, Tianheng Liang, Dan Hu, et al. Remote sensing clustering analysis based on object-based interval modeling[J]. Computers & Geosciences, 2016, 94:131–139.

- [29] Mahesh Pal. Random forest classifier for remote sensing classification[J]. International Journal of Remote Sensing, 2005, 26(1):217–222.
- [30] Johan AK Suykens, Joos Vandewalle. Least squares support vector machine classifiers[J]. Neural processing letters, 1999, 9(3):293–300.
- [31] Mark A Friedl, Carla E Brodley. Decision tree classification of land cover from remotely sensed data[J]. Remote sensing of environment, 1997, 61(3):399–409.
- [32] Simon Haykin. Neural networks[M], volume 2. Prentice hall New York, 1994.
- [33] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm[C]. Proceedings of icml, volume 96. Citeseer, 1996. 148–156.
- [34] Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learning[J]. nature, 2015, 521(7553):436.
- [35] Christian Szegedy, Wei Liu, Yangqing Jia, et al. Going deeper with convolutions[C]. Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. 1–9.
- [36] Karen Simonyan, Andrew Zisserman. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
- [37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. Deep residual learning for image recognition[C]. Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. 770–778.
- [38] Yoshua Bengio, Pascal Lamblin, Dan Popovici, et al. Greedy layer-wise training of deep networks[C]. Proceedings of Advances in neural information processing systems, 2007. 153–160.
- [39] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, et al. Extracting and composing robust features with denoising autoencoders[C]. Proceedings of Proceedings of the 25th international conference on Machine learning. ACM, 2008. 1096–1103.
- [40] Andrew Ng, et al. Sparse autoencoder[J]. CS294A Lecture notes, 2011, 72(2011):1–19.
- [41] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, et al. Generative adversarial nets[C]. Proceedings of Advances in neural information processing systems, 2014. 2672–2680.
- [42] Mehdi Mirza, Simon Osindero. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
- [43] Alec Radford, Luke Metz, Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
- [44] Xi Chen, Yan Duan, Rein Houthooft, et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[C]. Proceedings of Advances in neural information processing systems, 2016. 2172–2180.

- [45] Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein gan[J]. arXiv preprint arXiv:1701.07875, 2017.
- [46] Fan Hu, Gui-Song Xia, Jingwen Hu, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680–14707.
- [47] Marco Castelluccio, Giovanni Poggi, Carlo Sansone, et al. Land use classification in remote sensing images by convolutional neural networks[J]. arXiv preprint arXiv:1508.00092, 2015.
- [48] Adriana Romero, Carlo Gatta, Gustau Camps-Valls. Unsupervised deep feature extraction for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1349–1362.
- [49] Michael Kampffmeyer, Arnt-Borre Salberg, Robert Jenssen. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks[C]. Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2016. 1–9.
- [50] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, et al. Fully convolutional neural networks for remote sensing image classification[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016. 5071–5074.
- [51] Olaf Ronneberger, Philipp Fischer, Thomas Brox. U-net: Convolutional networks for biomedical image segmentation[C]. Proceedings of International Conference on Medical image computing and computer-assisted intervention. Springer, 2015. 234–241.
- [52] Ruirui Li, Wenjie Liu, Lei Yang, et al. Deepunet: A deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, (99):1–9.
- [53] Zhengxin Zhang, Qingjie Liu, Yunhong Wang. Road extraction by deep residual u-net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):749–753.
- [54] James C Bezdek, Robert Ehrlich, William Full. FCM: The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2-3):191–203.
- [55] Tao Jiang, Dan Hu, Xianchuan Yu. Enhanced IT2FCM algorithm using object-based triangular fuzzy set modeling for remote-sensing clustering[J]. Computers & geosciences, 2018, 118:14–26.
- [56] XC Yu, WJ An, Hui He. A method of auto classification based on object oriented unsupervised classification[J]. Progress in Geophysics, 2012, 27(2):744–749.
- [57] Lotfi A Zadeh. Fuzzy sets[J]. Information and control, 1965, 8(3):338–353.
- [58] Lotfi Asker Zadeh. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy sets and systems, 1978, 1(1):3–28.

- [59] Feilong Liu. An efficient centroid type-reduction strategy for general type-2 fuzzy logic system[J]. Information Sciences, 2008, 178(9):2224–2236.
- [60] Jos BTM Roerdink, Arnold Meijster. The watershed transform: Definitions, algorithms and parallelization strategies[J]. Fundamenta informaticae, 2000, 41(1, 2):187–228.
- [61] Cheul Hwang, Frank Chung-Hoon Rhee. Uncertain fuzzy clustering: Interval type-2 fuzzy approach to *c*-means[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(1):107–120.
- [62] Nilesh N Karnik, Jerry M Mendel. Centroid of a type-2 fuzzy set[J]. Information Sciences, 2001, 132(1-4):195–220.
- [63] Dongrui Wu, Jerry M Mendel. Enhanced karnik–mendel algorithms[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(4):923–934.
- [64] Jing-hua Zhang, Zhiming Feng, Lu-guang Jiang. Progress on studies of land use/land cover classification systems[J]. Resources Science, 2011, 33(6):1195–1203.

学术成果

- 1. **Tao Jiang**, Dan Hu, and Xianchuan Yu. Enhanced IT2FCM algorithm using object-based triangular fuzzy set modeling for remote-sensing clustering[J]. Computers & geosciences, 2018, 118: 14-26. (SCI 三区收录, 检索号:GQ6TC.)
- 2. Dan Hu, **Tao Jiang**, and Xianchuan Yu. The construction of non-convex fuzzy sets. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, 2017, pp. 1175-1181. (EI 收录, 检索号:20183005590187.)

研究生期间主要参与项目

- (1) 自适应循优 *n* 型模糊系统及其应用研究,国家自然科学基金面上项目 (11471045),2015.01-2018.12.
- (2) 基于深度学习的遥感崩滑地质灾害信息提取, 北京市自然科学基金 (L172029), 2017.10-2019.12.