

IUT GEII – Mathématiques (Ma3)

Introduction aux séries entières

Andrés F. López-Lopera Laboratoire de Mathématiques pour l'Ingénieur (LMI) Université Polytechnique Hauts-de-France (UPHF)

Thèmes

- 1. Séries entières
 - Séries entières réelles
 - Domaine de convergence

1

Séries entières

Séries entières

· Les séries entières font intervenir la notion de variable dans les séries

$$\sum_{n=0}^{\infty} (c_n x^n) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

- \cdot Pour une valeur donnée de la variable x, la série entière est une série numérique
- \cdot Dans un certain sens, on peut donc dire que les séries numériques sont un cas particulier des séries entières

Séries entières

Définition

 \cdot On appelle série entière, toute série dont le terme général est de la forme

$$u_n(x)=c_nx^n,$$

où (c_n) est une suite numérique et la variable $x \in \mathbb{R}$ (ou $x \in \mathbb{C}$)

· On note

$$S(x) = \sum_{n=0}^{\infty} (c_n x^n)$$

Séries entières réelles

- · Soit $S(x) = \sum_{n=0}^{\infty} (a_n x^n)$ une série entière de la variable x
- \cdot On dit que S est une série entière réelle si le terme général général est de la forme

$$u_n(x)=a_nx^n,$$

où (a_n) est une suite numérique et la variable $x \in \mathbb{R}$

4

Lemme de convergence d'Abel

Si un série entière converge en x_0 , alors elle converge pour tout x vérifient $|x|<|x_0|$

- · A toute série entière de la variable réelle $\sum_{n=0}^{\infty} (a_n x^n)$ on peut associer un unique nombre $R \in \mathbb{R}^+$ (éventuellement infini) tel que :
 - $\sum\limits_{n=0}^{\infty}(a_nx^n)$ est absolument convergente $\forall x\in\mathbb{R}$ vérifient |x|< R
 - $\sum_{n=0}^{\infty} (a_n x^n)$ est divergente $\forall x \in \mathbb{R}$ vérifient |x| > R
- · R est appelé rayon de convergence de la série entière

· On appelle intervalle de convergence à l'intervalle ouvert] -R,R[

Remarques

- · Aux bornes, la série entière peut-être convergente ou divergente
 - Il est alors nécessaire d'en faire l'étude pour x = -R et x = R
- \cdot Si R=0, la série ne converge que pour x=0, si $R=\infty$ la série converge $\forall x\in\mathbb{R}$

Critère de d'Alembert

· Soit la série entière $S(x) = \sum_{n=0}^{\infty} (a_n x^n)$. Si

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\ell,$$

alors $R = \frac{1}{L}$

Remarque : Si $\ell = 0$, alors $R = \infty$

Critère de Cauchy

· Soit la série entière $S(x) = \sum_{n=0}^{\infty} (a_n x^n)$. Si

$$\lim_{n\to\infty} \left(\sqrt[n]{|a_n|}\right) = \ell,$$

alors $R = \frac{1}{L}$

Exercice. Déterminer le rayon de convergence *R* de la série entière suivante :

$$S(x) = \sum_{n=0}^{\infty} \left(\frac{x^n}{(n+1)3^n} \right)$$

Étudier la série aux bornes de son rayon de convergence

Exercice. Déterminer le rayon de convergence R de la série entière suivante :

$$S(x) = \sum_{n=0}^{\infty} \left(\frac{x^n}{(n+1)3^n} \right)$$

Étudier la série aux bornes de son rayon de convergence

Solution

$$\cdot \operatorname{Soit} a_n = \frac{1}{(n+1)3^n}$$

· Utilisons le critère de d'Alembert en étudiant $\frac{a_{n+1}}{a_n}$, on a

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1+1)3^{n+1}}}{\frac{1}{(n+1)3^n}} = \frac{n+1}{3(n+2)},$$

d'où
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{3} = \ell$$
. Alors, $R = \frac{1}{\ell} = 3$

Solution (continuation)

· Pour R = 3, on obtient

$$S(3) = \sum_{n=0}^{\infty} \frac{3^n}{(n+1)3^n} = \sum_{n=0}^{\infty} \frac{1}{n+1}$$

D'après le critère d'équivalence :

$$\lim_{n\to\infty}\frac{1}{n+1}\sim \lim_{n\to\infty}\frac{1}{n},$$

d'où on peut conclure (d'après Riemann) que la série numérique $\sum\limits_{n=0}^{\infty} \frac{1}{n+1}$ est divergente

9

Solution (continuation)

· Pour R = -3, on obtient

$$S(-3) = \sum_{n=0}^{\infty} \frac{(-3)^n}{(n+1)3^n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$$

D'après le critère de Leibniz pour les séries alternées :

$$\lim_{n\to\infty}\left|\frac{(-1)^n}{n+1}\right|=0,$$

et $\left| \frac{(-1)^n}{n+1} \right|$ est une suite décroissante alors $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ est convergente

· En conclusion, la série entière $\sum_{n=0}^{\infty} \left(\frac{x^n}{(n+1)3^n} \right)$ converge pour $x \in [-3,3[$

