FUNCIÓN EXPONENCIAL Y LOGARITMICA

INTRODUCCION

Las funciones exponenciales y logarítmicas pueden ser utilizadas para modelar distintas situaciones de la vida diaria. Algunas de estas situaciones son: crecimiento de bacterias en un cultivo, el crecimiento de una población de una ciudad, el tiempo que toma un objeto para llegar a cierta temperatura, etc.

Supongamos que a nivel experimental se observa que el número de bacterias de un cultivo se duplica cada día. Si hay 1000 ejemplares al inicio, podemos establecer una relación entre el tiempo transcurrido y la cantidad de bacterias en la población.

t	0	1	2	3	4
f(t)	1000	2000	4000	8000	16000

t es tiempo transcurrido expresado en días f(t) es la cantidad de bacterias después de t días transcurridos

La función que representa dicha situación está dada por:

$$f(t) = 1000 \cdot 2^t$$
 , $t = 0,1,2,3,4,...$

Su gráfico se muestra en la figura dada a continuación:

Una de las primeras características que podemos observar es que el crecimiento de la población de bacterias es muy rápido.

Función Exponencial

Definición:

Se llama "función exponencial de base a" a la función real definida por:

$$f_a: \mathbb{R} \to \mathbb{R}$$
 tal que $f_a(x) = a^x$

donde a es la base de la función, $a \in \mathbb{R}^+$, $a \neq 1$.

Observaciones:

Son válidas todas las propiedades de las potencias, para cualquier exponente real y base positiva.

1)
$$a^m \cdot a^n = a^{m+n}$$

$$2) \ \frac{a^m}{a^n} = a^{m-n}$$

3)
$$a^{-m} = \frac{1}{a^m} = (\frac{1}{a})^m$$

4)
$$(a^m)^n = a^{m \cdot n}$$

5)
$$(a \cdot b)^m = a^m \cdot b^m$$

Propiedades:

- 1) $Dom(f_a) = \mathbb{R}$.
- 2) $Rec(f_a) = \mathbb{R}^+$.
- 3) a) Si a > 0 entonces f_a es una función creciente.
 - b) Si a < 0 entonces f_a es una función decreciente.
- 4) La gráfica de la función f_a pasa por el punto (0,1).
- 5) El $eje\ x$ es una asíntota de la gráfica de f_a .
- 6) La función f_a es inyectiva en su dominio.
- 7) Si se restringe el conjunto de llegada en la definición dada, se obtiene que:

$$f_a\colon \mathbb{R} \to \mathbb{R}^+$$
 tal que $f_a(x) = a^x$ es sobreyectiva.

8) Como la función redefinida (dada en 7)) es biyectiva, tiene inversa.

La inversa de f_a se llama "función logarítmica en base a".

Observación:

Una de las bases empleada para la función exponencial es el número irracional $e=2,71828\dots$

A continuación se muestra en un gráfico las gráficas de las funciones exponenciales $y=e^x$ y $y=e^{-x}$.

Ver que, como $\,e>1\,$, la gráfica de la función $y=e^x\,$ posee las características de la función exponencial de base mayor que $\,1\,$.

De igual modo, como e>1 entonces $e^{-1}<1$. Luego, la función $y=e^{-x}=(e^{-1})^x$ posee las características de la función exponencial de base menor que 1.

Nota:

Las propiedades dadas se deben utilizar para obtener las características de las funciones exponenciales cuyo argumento es distinto de \boldsymbol{x} .

Ejercicio:

Obtener las características de la función $y = 3^{x-1}$ y graficarla.

Función Logarítmica

Dado que la función exponencial

$$f_a: \mathbb{R} \to \mathbb{R}^+$$
 tal que $f_a(x) = a^x$

es biyectiva, tiene función inversa y es la que se define a continuación.

Definición:

Se llama "función logarítmica de base a" ($a \in \mathbb{R}^+$, $a \neq 1$), a la función definida por:

$$log_a: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
 tal que $y = log_a(x) \iff a^y = x$

a se llama "la base del logaritmo"

x se llama "el argumento"

y se llama "el valor del logaritmo".

Observaciones:

- 1) $log_a(x)$ es el exponente al cual hay que elevar la base a para obtener x .
- 2) Si $y = log_a(x)$ entonces $x = a^y = a^{log_a(x)}$.

Notación:

- 1) En el caso particular en que la base de la función logarítmica sea a=10, la función se denota por $y=\log{(x)}$ y se llama "logaritmo vulgar" o "de Briggs" (Henry Brigg, 1560-1631).
- 2) Si la base de la función logarítmica sea a=e=2,71828..., la función se denota por $y=\ln{(x)}$ y se llama "logaritmo natural" o "de Napier" (John Napier, 1550-1617).

Propiedades:

1) $Dom(log_a) = \mathbb{R}^+$

- 2) $Rec(log_a) = \mathbb{R}$
- 3) a) Si a > 0 entonces log_a es una función creciente.
 - b) Si a < 0 entonces log_a es una función decreciente.
- 4) La gráfica de la función log_a pasa por el punto (1,01).
- 5) El $eje\ y$ es una asíntota de la gráfica de log_a .
- 6) Como la función log_a es la función inversa de f_a , se tiene que debe ser biyectiva.

Nota:

Las propiedades dadas se deben utilizar para obtener las características de las funciones logarítmicas cuyo argumento es distinto de \boldsymbol{x} .

Ejemplo:

Obtener las características de la función dada y graficarla.

$$y = f(x) = \ln(x^2 - 4)$$

Solución:

1) Como la función logarítmica está definida para los números reales positivos, se concluye que $x^2 - 4 > 0$.

Luego: al resolver la inecuación dada antes, se obtiene que:

$$Dom(f) = (-\infty, -2) \cup (2, +\infty).$$

- 2) Intersección con el $eje\ x$ en: $x=\sqrt{5}$; $x=-\sqrt{5}$.
- 3) La función es decreciente en el intervalo $(-\infty, -2)$.
- 4) La función es creciente en el intervalo $(2, +\infty)$.
- 5) Observar que la función dada es par (luego, su gráfica es simétrica con respecto al *eje y* .
- 6) Gráfica de la función dada:

Propiedades:

Para todo a > 0 , $a \neq 1$, se cumplen:

1)
$$log_a(1) = 0$$

2)
$$log_a(a) = 1$$

3)
$$log_a(a^n) = n$$

4)
$$log_a(x \cdot y) = log_a(x) + log_a(y)$$

5)
$$log_a\left(\frac{x}{y}\right) = log_a(x) - log_a(y)$$

6)
$$log_a(x^n) = n \cdot log_a(x)$$

7)
$$log_a(\sqrt[n]{x^m}) = \frac{m}{n} \cdot log_a(x)$$

8)
$$log_a(\sqrt{x}) = \frac{1}{2} \cdot log_a(x)$$

9)
$$a^{log_a(x)} = x$$
 , para $x \in \mathbb{R}^+$

Observaciones:

1) No existe una fórmula para obtener el logaritmo de una suma o de una diferencia.

2)
$$(log_a(x)) \cdot (log_a(x)) = (log_a(x))^2$$

$$log_a(x \cdot x) = log_a(x^2)$$

Luego:
$$(log_a(x))^2 \neq log_a(x^2)$$

Teorema del Cambio de Base

Sean a y b números reales positivos no nulos. Luego:

$$log_a(x) = \frac{log_b(x)}{log_b(a)}$$

Observación:

Para a y b números reales positivos no nulos, se cumple:

$$log_a(b) = \frac{1}{log_b(a)}$$

Ejemplos:

1)
$$log_{\frac{1}{5}}(625) = -4$$

2)
$$\ln(1000) = \frac{3}{\log(e)}$$

3)
$$log_3(5) \cdot log_5(8) \cdot log_8(17) \cdot log_{17}(9) = 2$$

Ecuaciones Exponenciales y Logarítmicas

Definición:

- 1) Se llama "ecuación exponencial en la variable x" a una ecuación en que la variable es o forma parte del exponente de una potencia.
- 2) Se llama "ecuación logarítmica en la variable x" a una ecuación en que la variable es o forma parte del argumento de una expresión logarítmica.

Observación:

Para determinar el conjunto solución de una ecuación exponencial o logarítmica se utilizan las propiedades dadas de las potencias y de los logaritmos.

Ejemplos:

- 1) La ecuación $2^{3x+1} = 8$ tiene por solución a $x = \frac{2}{3}$.
- 2) La ecuación $3^{x-1} = 7$ tiene por solución a $x = log_3(7) + 1$.
- 3) La ecuación $\log (3x + 1) = 2$ tiene por solución a x = 33.
- 4) La ecuación $\ln{(2x-1)}=2$ tiene por solución a $x=\frac{e^2+1}{2}$.