Fiche exercices (avec corrigés) - Equations différentielles

Exercice 1

Donner l'ensemble des solutions des équations différentielles suivantes :

1.
$$y'(x) - 4y(x) = 3$$

pour
$$x \in \mathbb{R}$$

2.
$$y'(x) + y(x) = 2 e^x$$

pour
$$x \in \mathbb{R}$$

3.
$$y'(x) - \tan(x)y(x) = \sin(x)$$
 pour $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$

$$pour \ x \in]-\frac{\pi}{2}, \frac{\pi}{2}$$

$$4. \quad y'(x) = \frac{y(x)}{x} + x$$

pour
$$x \in \mathbb{R}_+^*$$

5.
$$(x^2 + 1)y'(x) + xy(x) = 0$$

$$pour \ x \in \mathbb{R}$$

Réponse:

1. L'équation est y'(x) - 4y(x) = 3: a(x) = -4 et f(x) = 3.

a) L'équation homogène est y'(x) - 4y(x) = 0.

Ici a(x) = -4 donc une primitive est A(x) = -4x.

La solution générale de l'équation homogène est $y(x) = C e^{-A(x)} = C e^{4x}$.

b) Une solution particulière vérifie $y_0'(x) - 4y_0(x) = 3$.

Cette solution s'écrit $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = 3 e^{-4x}$

$$\Rightarrow g(x) = -\frac{3}{4} e^{-4x} \Rightarrow y_0(x) = -\frac{3}{4} e^{-4x} e^{4x} = -\frac{3}{4}$$

c) La solution générale est $y(x) = Ce^{4x} - \frac{3}{4}$

2. L'équation est $y'(x) + y(x) = 2e^x : a(x) = 1$ et $f(x) = 2e^x$.

a) L'équation homogène est y'(x) + y(x) = 0.

Ici a(x) = 1 donc une primitive est A(x) = x.

La solution générale de l'équation homogène est $y(x) = C e^{-A(x)} = C e^{-x}$.

b) Une solution particulière vérifie $y_0'(x) + y_0(x) = 2e^x$.

Cette solution s'écrit $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = 2 e^x e^x = 2 e^{2x}$

$$\Rightarrow g(x) = e^{2x} \Rightarrow y_0(x) = e^{2x} e^{-x} = e^x$$

c) La solution générale est $y(x) = Ce^{-x} + e^{x}$

3. L'équation est $y'(x) - \tan(x) y(x) = \sin(x)$.

a) L'équation homogène est $y'(x) - \tan(x)y(x) = 0$: $a(x) = -\tan(x)$ et $f(x) = \sin(x)$

Ici $a(x) = -\tan(x) = -\frac{\sin(x)}{\cos(x)}$ donc une primitive est $A(x) = \ln|\cos(x)| = \ln(\cos(x))$ car on est sur l'intervalle $]-\pi/2,\pi/2[$ et donc $\cos(x)>0$. La solution générale de l'équation homogène est

$$y(x) = Ce^{-A(x)} = Ce^{-\ln(\cos(x))} = \frac{C}{e^{\ln(\cos(x))}} = \frac{C}{\cos(x)}$$

b) Une solution particulière vérifie $y_0'(x) - \tan(x)y_0(x) = \sin(x)$. Cette solution s'écrit $y_0(x) = g(x)e^{-A(x)}$ avec g(x) primitive de $\sin(x)e^{A(x)} = \sin(x)\cos(x)$

$$\Rightarrow g(x) = \frac{1}{2}\sin^2(x) \Rightarrow y_0(x) = \frac{g(x)}{\cos(x)} = \frac{\sin^2(x)}{2\cos(x)}$$

c) La solution générale est
$$y(x) = \frac{C}{\cos(x)} + \frac{\sin^2(x)}{2\cos(x)} = \frac{\sin^2(x) + C_1}{2\cos(x)}$$

- 4. L'équation est $y'(x) \frac{y(x)}{x} = x$: $a(x) = -\frac{1}{x}$ et f(x) = x.
 - a) L'équation homogène est $y'(x) \frac{y(x)}{x} = 0$.

Ici $a(x) = -\frac{1}{x}$ donc une primitive est $A(x) = -\ln|x| = -\ln(x)$ car on est sur l'intervalle $]0, +\infty[$.

La solution générale de l'équation homogène est

$$y(x) = C e^{-A(x)} = C e^{\ln(x)} = C x$$

b) Une solution particulière vérifie $y_0'(x) - \frac{y_0(x)}{x} = x$. Cette solution s'écrit $y_0(x) = g(x) \mathrm{e}^{-A(x)}$ avec g(x) primitive de $x \mathrm{e}^{A(x)} = \frac{x}{x} = 1$ $\Rightarrow g(x) = x \Rightarrow y_0(x) = x \mathrm{e}^{\ln(x)} = x \, x = x^2$

- c) La solution générale est $y(x) = Cx + x^2$
- 5. L'équation est $y'(x) \frac{x}{x^2 + 1}y(x) = 0$ qui est une équation homogène. Ici $a(x) = -\frac{x}{x^2 + 1}$ donc une primitive est $A(x) = -\frac{1}{2}\ln(x^2 + 1)$. La solution générale de l'équation (homogène) est

$$y(x) = C e^{-A(x)} = C e^{\frac{1}{2}\ln(x^2+1)} = C (x^2+1)^{\frac{1}{2}} = C \sqrt{x^2+1}$$

Exercice 2

Résoudre les problèmes de Cauchy suivants :

1.
$$y'(x) - 2y(x) = 4$$
 , $y(0) = 0$, $x \in \mathbb{R}$

2.
$$y'(x) = \frac{y(x)+1}{x}$$
 , $y(1) = 0$, $x > 0$
3. $y'(x) - 2y(x) = 2x$, $y(0) = \frac{1}{4}$, $x \in \mathbb{R}$
4. $x^2y'(x) - (2x-1)y(x) = x^2$, $y(1) = 1$, $x > 0$

3.
$$y'(x) - 2y(x) = 2x$$
 , $y(0) = \frac{1}{4}$, $x \in \mathbb{R}$

4.
$$x^2y'(x) - (2x-1)y(x) = x^2$$
, $y(1) = 1$, $x > 0$

5.
$$(x+1)y'(x) - xy(x) + 1 = 0$$
, $y(0) = 2$, $x > -1$

Réponse :

1. L'équation est
$$y'(x) - 2y(x) = 1$$
: $a(x) = -2$ et $f(x) = 4$.

a) L'équation homogène est
$$y'(x) - 2y(x) = 0$$
.
Ici $a(x) = -2$ donc une primitive est $A(x) = -2x$.

La solution générale de l'équation homogène est

$$y(x) = C e^{-A(x)} = C e^{2x}$$

b) Une solution particulière vérifie $y'_0(x) - 2y_0(x) = 1$. Cette solution s'écrit $y_0(x) = g(x)e^{-A(x)}$ avec g(x) primitive de $f(x)e^{A(x)} = 4e^{-2x}$

$$\Rightarrow g(x) = -2 e^{-2x}$$

$$\Rightarrow y_0(x) = -2 e^{-2x} e^{2x} = -2$$

c) La solution générale est
$$y(x) = C e^{2x} - 2$$

d)
$$y(0) = 0 \iff C - 2 = 0 \iff C = 2$$

d) $y(0) = 0 \iff C - 2 = 0 \iff C = 2$. La solution est donc $y(x) = 2e^{2x} - 2$

2. L'équation est
$$y'(x) - \frac{y(x)}{x} = \frac{1}{x}$$
: $a(x) = -\frac{1}{x}$ et $f(x) = \frac{1}{x}$.

a) L'équation homogène est
$$y'(x) - \frac{y(x)}{x} = 0$$
.

Ici $a(x) = -\frac{1}{x}$ donc une primitive est $A(x) = -\ln|x| = -\ln(x)$ car on est sur l'intervalle $]0,+\infty[$.

La solution générale de l'équation homogène est

$$y(x) = C e^{-A(x)} = C e^{\ln(x)} = C x$$

b) Une solution particulière vérifie
$$y_0'(x) - \frac{y_0(x)}{x} = \frac{1}{x}$$
.

Cette solution s'écrit $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = \frac{1}{x} \frac{1}{x} = \frac{1}{x^2}$

$$\Rightarrow g(x) = -\frac{1}{x}$$

$$\Rightarrow y_0(x) = -\frac{1}{x}x = -1$$

- c) La solution générale est y(x) = C x 1
- d) $y(1) = 0 \iff C 1 = 0 \iff C = 1$. La solution est donc y(x) = x - 1
- 3. L'équation est y'(x) 2y(x) = 2x: a(x) = -2 et f(x) = 2x.
 - a) L'équation homogène est y'(x) 2y(x) = 0.
 - Ici a(x) = -2 donc une primitive est A(x) = -2x.

La solution générale de l'équation homogène est

$$y(x) = C e^{-A(x)} = C e^{2x}$$

b) Une solution particulière vérifie $y_0'(x) - 2y_0(x) = 2x$. Cette solution s'écrit $y_0(x) = g(x) e^{-A(x)}$ avec g(x) primitive de $f(x) e^{A(x)} = 2 x e^{-2x}$

$$\Rightarrow g(x) = \int_{c}^{x} 2t e^{-2t} dt$$

Posons u(t) = t, $v'(t) = 2e^{-2t} \Rightarrow u'(t) = 1$, $v(t) = -e^{-2t}$:

$$g(x) = \left[-t e^{-2t} \right]_c^x + \int_c^x e^{-2t} dt = \left[-t e^{-2t} - \frac{1}{2} e^{-2t} \right]_c^x = -x e^{-2x} - \frac{1}{2} e^{-2x} = -\frac{2x+1}{2} e^{-2x}$$
$$\Rightarrow y_0(x) = -\frac{2x+1}{2} e^{-2x} e^{2x} = -\frac{2x+1}{2}$$

- c) La solution générale est $y(x) = Ce^{2x} \frac{2x+1}{2}$

d) $y(0) = \frac{1}{4} \iff C - \frac{1}{2} = \frac{1}{4} \iff C = \frac{3}{4}$. La solution est donc $y(x) = \frac{3}{4}e^{2x} - \frac{2x+1}{2}$

- 4. L'équation est $y'(x) \frac{2x-1}{x^2}y(x) = 1$: $a(x) = -\frac{2x-1}{x^2}$ et f(x) = 1.
 - a) L'équation homogène est $y'(x) \frac{2x-1}{x^2}y(x) = 0$.

Ici $a(x) = -\frac{2x-1}{x^2} = -\frac{2}{x} + \frac{1}{x^2}$ donc une primitive est $A(x) = -2\ln|x| - \frac{1}{x} = -2\ln(x) - \frac{1}{x}$

La solution générale de l'équation homogène est

$$y(x) = C e^{-A(x)} = C e^{2\ln(x)+1/x} = C x^2 e^{1/x}$$

b) Une solution particulière vérifie $y_0'(x) - \frac{2x-1}{x^2}y_0(x) = 1$.

Cette solution s'écrit $y_0(x) = g(x)e^{-A(x)}$ avec g(x) primitive de $f(x)e^{A(x)} = \frac{1}{x^2}e^{-1/x}$.

g(x) est de la forme $u'(x)e^{u(x)}$ avec u(x) = -1/x:

$$\Rightarrow y(x) = e^{u(x)} = e^{-1/x} \Rightarrow y_0(x) = e^{-1/x} x^2 e^{1/x} = x^2$$

c) La solution générale est $y(x) = C x^2 e^{1/x} + x^2$

d)
$$y(1) = 1 \iff Ce + 1 = 1 \iff C = 0$$
.
La solution est donc $y(x) = x^2$

5. L'équation est
$$y'(x) - \frac{x}{x+1}y(x) = -\frac{1}{x+1}$$
: $a(x) = -\frac{x}{x+1}$ et $f(x) = -\frac{1}{x+1}$.

a) L'équation homogène est
$$y'(x) - \frac{x}{x+1}y(x) = 0$$
.

Ici $a(x) = -\frac{x}{x+1} = \frac{1}{x+1} - 1$ donc une primitive est $A(x) = \ln|x+1| - x = \ln(x+1) - x$. La solution générale de l'équation homogène est

$$y(x) = Ce^{-A(x)} = Ce^{-\ln(x+1)+x} = C\frac{e^x}{x+1}$$

b) Une solution particulière vérifie $y_0'(x) - \frac{x}{x+1}y_0(x) = -\frac{1}{x+1}$.

Cette solution s'écrit $y_0(x) = g(x)e^{-A(x)}$

avec g(x) primitive de $-\frac{1}{x+1}e^{A(x)} = -\frac{(x+1)e^{-x}}{x+1} = -e^{-x}$.

$$\Rightarrow g(x) = e^{-x} \Rightarrow y_0(x) = e^{-x} \frac{e^x}{x+1} = \frac{1}{x+1}$$

c) La solution générale est
$$y(x) = C \frac{e^x}{x+1} + \frac{1}{x+1} = \frac{Ce^x + 1}{x+1}$$

d)
$$y(0) = 2 \iff C + 1 = 2 \iff C = 1$$

d) $y(0) = 2 \iff C + 1 = 2 \iff C = 1$. La solution est donc $y(x) = \frac{e^x + 1}{x + 1}$

Exercice 3

Soit λ un réel non nul, on s'intéresse aux solutions de l'équation différentielle

$$y'(x) - \lambda y(x) = f(x)$$

avec f(x) une fonction particulière.

Déterminer l'expression de la solution générale lorsque :

1.
$$f(x) = a \text{ avec } a \in \mathbb{R}^*$$

2.
$$f(x) = \alpha e^{\omega x}$$
 avec $\alpha \in \mathbb{R}^*$ et $\omega \in \mathbb{R}^*$

3.
$$f(x) = ax^2 + bx + c$$
 avec $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ et $c \in \mathbb{R}$ (indication: chercher la solution particulière sous la forme $y_0(x) = \alpha x^2 + \beta x + \gamma$)

Réponse :

a) La solution de l'équation homogène $y'(x) - \lambda y(x) = 0$ est

$$y(x) = Ce^{\lambda x}$$

$$\operatorname{car} a(x) = -\lambda \Rightarrow A(x) = -\lambda x \Rightarrow e^{-A(x)} = e^{\lambda x}$$

b) Solution particulière de
$$y_0'(x) - \lambda y_0(x) = f(x)$$
: $y_0(x) = g(x)e^{-A(x)} = g(x)e^{\lambda x}$ avec $g(x)$ primitive de $f(x)e^{A(x)} = f(x)e^{-\lambda x}$

f(x) = a : g(x) primitive de $ae^{-\lambda x}$

$$g(x) = -\frac{a}{\lambda} e^{-\lambda x} \Rightarrow y_0(x) = -\frac{a}{\lambda} e^{-\lambda x} e^{\lambda x} = -\frac{a}{\lambda}$$

2. $f(x) = \alpha e^{\omega x}$: g(x) primitive de $\alpha e^{(\omega - \lambda)x}$ $-\sin \omega = \lambda$, g(x) primitive de α :

$$q(x) = \alpha x \Rightarrow y_0(x) = \alpha x e^{\lambda x}$$

$$-\sin\omega\neq\lambda$$
,

$$g(x) = \frac{\alpha}{\omega - \lambda} e^{(\omega - \lambda)x} \Rightarrow y_0(x) = \frac{\alpha}{\omega - \lambda} e^{(\omega - \lambda)x} e^{\lambda x} = \frac{\alpha}{\omega - \lambda} e^{\omega x}$$

3. On cherche $y_0(x)$ sous la forme $\alpha x^2 + \beta x + \gamma$:

$$y_0'(x) = 2\alpha x + \beta$$

$$\Rightarrow y_0'(x) - \lambda y_0(x) = \underbrace{-\alpha \lambda}_{=a} x^2 + \underbrace{(2\alpha - \beta \lambda)}_{=b} x + \underbrace{(\beta - \gamma \lambda)}_{=c}$$

$$\Rightarrow \left\{ \begin{array}{rcl} -\alpha\lambda & = & a \\ 2\alpha - \beta\lambda & = & b \\ \beta - \gamma\lambda & = & c \end{array} \right\} \Rightarrow \left\{ \begin{array}{rcl} \alpha & = & -a/\lambda \\ \beta & = & -b/\lambda - a/\lambda^2 \\ \gamma & = & -c/\lambda - b/\lambda^2 - a/\lambda^3 \end{array} \right.$$

Exercice 4

Résoudre les équations différentielles suivantes :

1.
$$y''(x) - 5y'(x) + 6y(x) = 0$$

2.
$$y''(x) - y'(x) = 0$$

2.
$$y''(x) - y''(x) = 0$$

3. $y''(x) + 4y'(x) + 4y(x) = 0$

4.
$$y''(x) + 4y(x) + 13y(x) = 0$$

Réponse:

1. L'équation caractéristique est $r^2 - 5r + 6 = 0$:

$$\Delta = 1 > 0 \Rightarrow r_1 = 2$$
 et $r_2 = 3$

La solution générale est $y(x) = C_1 e^{2x} + C_2 e^{3x}$

2. L'équation caractéristique est $r^2 - 1 = 0$:

$$\Delta = 4 > 0 \Rightarrow r_1 = -1 \text{ et } r_2 = 1$$

La solution générale est $y(x) = C_1 e^{-x} + C_2 e^{x}$

3. L'équation caractéristique est $r^2 + 4r + 4 = 0$:

$$\Delta = 0 \Rightarrow r = -2$$

La solution générale est $y(x) = (C_1x + C_2)e^{-2x}$

4. L'équation caractéristique est $r^2 + 4r + 13 = 0$:

$$\Delta = -36 < 0 \Rightarrow r = -2 \pm 3i$$

La solution générale est $y(x) = (C_1 \cos(3x) + C_2 \sin(3x))e^{-2x}$

ce 5

ésoudre les équations différentielles suivantes :

order les equations differences survaines :
1.
$$y''(x) - 5y'(x) + 4y(x) = 0$$
 , $y(0) = 5$, $y'(0) = 8$

$$\frac{2}{3} \cdot \frac{y'(x) + 2y'(x) + y(x) = 0}{y''(x) + 2y'(x) + y(x) = 0} \quad , \quad y(0) = 1 \quad , \quad y'(0) = 0$$

Réponse :

1. L'équation caractéristique est $r^2 - 5r + 4 = 0$:

$$\Delta = 9 > 0 \Rightarrow r_1 = 1 \text{ et } r_2 = 4$$

La solution générale est

$$y(x) = C_1 e^x + C_2 e^{4x} \Rightarrow y'(x) = C_1 e^x + 4C_2 e^{4x}$$

$$\Rightarrow \begin{cases} y(0) = C_1 + C_2 = 5 \\ y'(0) = C_1 + 4C_2 = 8 \end{cases} \Rightarrow \begin{cases} C_1 = 1 \\ C_2 = 1 \end{cases}$$

La solution est $y(x) = e^x + e^{4x}$

2. L'équation caractéristique est $r^2 + 4 = 0$:

$$\Delta = -16 < 0 \Rightarrow r = \pm 2i$$

La solution générale est

$$y(x) = C_1 \cos(2x) + C_2 \sin(2x) \Rightarrow y'(x) = -2C_1 \sin(2x) + 2C_2 \cos(2x)$$

$$\Rightarrow \begin{cases} y(0) = C_1 = 0 \\ y'(0) = 2C_2 = 2 \end{cases} \Rightarrow \begin{cases} C_1 = 0 \\ C_2 = 1 \end{cases}$$

La solution est $y(x) = \sin(2x)$

3. L'équation caractéristique est $r^2 + 2r + 1 = 0$:

$$\Delta = 0 \Rightarrow r = -1$$

La solution générale est

$$y(x) = (C_1 x + C_2) e^{-x} \Rightarrow y'(x) = C_1 e^{-x} - (C_1 x + C_2) e^{-x}$$
$$\Rightarrow \begin{cases} y(0) = C_2 = 1 \\ y'(0) = C_1 - C_2 = 0 \end{cases} \Rightarrow \begin{cases} C_1 = 1 \\ C_2 = 1 \end{cases}$$

La solution est $y(x) = (x+1)e^{-x}$

4. L'équation caractéristique est $r^2 + 3r = 0$:

$$\Delta = 9 > 0 \Rightarrow r_1 = 0 \text{ et } r_2 = -3$$

La solution générale est

$$y(x) = C_1 + C_2 e^{-3x}$$

$$\Rightarrow \begin{cases} y(0) = C_1 + C_2 = 0 \\ y(1) = C_1 + C_2 e^{-3} = 1 \end{cases} \Rightarrow C_1 = -C_2 = \frac{e^3}{e^3 - 1}$$

La solution est $y(x) = \frac{e^3}{e^3 - 1} (1 - e^{-3x})$

ésoudre les équations différentielles suivantes :

- 1. $y''(x) 3y'(x) + 2y(x) = 4x^2$ (indication: chercher la solution particulière sous la forme $y_0(x) = ax^2 + bx + c$)
- 2. $y''(x) + 2y'(x) + y(x) = 4x e^x$
- 3. $y''(x) + y(x) = \cos(x)$

Réponse:

1. a) L'équation homogène est y''(x) - 3y'(x) + 3y(x) = 0 l'équation caractéristique est $r^2 - 3r + 2 = 0$:

$$\Delta = 1 > 0 \Rightarrow r_1 = 1$$
 et $r_2 = 2$

La solution générale de l'équation homogène est

$$y(x) = C_1 e^x + C_2 e^{2x}$$

b)
$$y_0(x) = ax^2 + bx + c \Rightarrow y_0'(x) = 2ax + b \Rightarrow y_0''(x) = 2a$$

$$\Rightarrow y_0''(x) - 3y_0'(x) + 2y_0(x) = 2ax^2 + (2b - 6a)x + 2c - 3b + 2a = 4x^2$$

$$\Rightarrow \begin{cases} 2a = 4 \\ 2b - 6a = 0 \\ 2c - 3b + 2a = 0 \end{cases} \Rightarrow \begin{cases} a = 2 \\ b = 6 \\ c = 7 \end{cases}$$

- c) La solution générale de l'équation est $y(x) = C_1 e^x + C_2 e^{2x} + 2x^2 + 6x + 7$
- 2. a) L'équation homogène est y''(x) + 2y'(x) + y(x) = 0 l'équation caractéristique est $r^2 + 2r + 1 = 0$:

$$\Delta = 0 \Rightarrow r = -1$$

La solution générale de l'équation homogène est

$$y(x) = (C_1 x + C_2) \mathrm{e}^{-x}$$

b) Le second membre est $f(x) = 4xe^x$.

On cherche la solution particulière sous la forme $C_1(x)y_1(x) + C_2(x)y_2(x)$ avec

$$y_1(x) = xe^{-x} (C_1 = 1 \text{ et } C_2 = 0)$$

$$y_2(x) = e^{-x} (C_1 = 0 \text{ et } C_2 = 1)$$

· . . .

$$\begin{cases} C'_1(x)y_1(x) + C'_2(x)y_2(x) = 0 \\ C'_1(x)y'_1(x) + C'_2(x)y'_2(x) = f(x) \end{cases}$$

$$\Rightarrow \begin{cases} C'_1(x)xe^{-x} + C'_2(x)e^{-x} = 0 \\ C'_1(x)(1-x)e^{-x} - C'_2(x)e^{-x} = 4xe^x \end{cases}$$

$$\Rightarrow \begin{cases} C'_1(x)x + C'_2(x) = 0 & (1) \\ C'_1(x)(1-x) - C'_2(x) = 4xe^{2x} & (2) \end{cases}$$

$$(1) + (2) : C'_1(x) = 4xe^{2x} \Rightarrow C_1(x) = \int_c^x 4te^{2t} dt$$

On pose
$$u(t) = 2t$$
, $v'(t) = 2e^{2t} \Rightarrow u'(t) = 2$, $v(t) = e^{2t}$

$$C_1(x) = \left[2te^{2t}\right]_c^x - \int_c^x 2e^{2t} dt = \left[2te^{2t} - e^2t\right]_c^x = (2x - 1)e^{2x}$$

et donc
$$C_2'(x) = -xC_1'(x) = -4x^2e^{2x}$$

$$C_2(x) = -\int_c^x 4t^2e^{2t} dt$$

On pose $u(t) = 2t^2$, $v'(t) = 2e^{2t} \Rightarrow u'(t) = 4t$, $v(t) = e^{2t}$

$$\Rightarrow C_2(x) = -\left[2t^2e^{2t}\right]_c^x + \int_c^x 4e^{2t} dt = \left[-2t^2e^{2t} + (2t-1)e^{2t}\right]_c^x = (-2x^2 + 2x - 1)e^{2x}$$

Une solution particulière est donc

$$y_0(x) = C_1(x)y_1(x) + C_2(x)y_2(x) = (2x - 1)e^{2x}xe^{-x} + (-2x^2 + 2x - 1)e^{2x}e^{-x}$$
$$= (x - 1)e^x$$

- c) La solution générale de l'équation est $y(x) = (C_1x + C_2)e^{-x} + (x-1)e^{x}$
- 3. a) L'équation homogène est y''(x) + y(x) = 0 l'équation caractéristique est $r^2 + 1 = 0$:

$$\Delta = -4 < 0 \Rightarrow r = \pm i$$

La solution générale de l'équation homogène est

$$y(x) = C_1 \cos(x) + C_2 \sin(x)$$

b) Le second membre est $f(x) = \cos(x)$.

On cherche la solution particulière sous la forme $C_1(x)y_1(x) + C_2(x)y_2(x)$ avec

$$y_1(x) = \cos(x) \ (C_1 = 1 \text{ et } C_2 = 0)$$

$$y_2(x) = \sin(x) \ (C_1 = 0 \text{ et } C_2 = 1)$$

$$\begin{cases} C'_1(x)y_1(x) + C'_2(x)y_2(x) = 0\\ C'_1(x)y'_1(x) + C'_2(x)y'_2(x) = f(x) \end{cases}$$

$$\Rightarrow \begin{cases} C'_1(x)\cos(x) + C'_2(x)\sin(x) = 0\\ -C'_1(x)\sin(x) + C'_2(x)\cos(x) = \cos(x) \end{cases} (2)$$

$$\cos(x)(1) - \sin(x)(2) : C'_1(x) = -\sin(x)\cos(x) = -\frac{\sin(2x)}{2} \Rightarrow C_1(x) = \frac{\cos(2x)}{4}$$

$$\sin(x)(1) + \cos(x)(2)$$
 : $C_2'(x) = \cos^2(x) = \frac{\cos(2x) + 1}{2} \Rightarrow C_2(x) = \frac{\sin(2x)}{4} + \frac{x}{2}$

Une solution particulière est donc

$$y_0(x) = C_1(x)y_1(x) + C_2(x)y_2(x) = \frac{\cos(2x)\cos(x) + \sin(2x)\sin(x)}{4} + \frac{x\sin(x)}{2}$$
$$= \frac{\cos(x)}{4} + \frac{x\sin(x)}{2}$$

c) La solution générale de l'équation est

$$y(x) = C_1 \cos(x) + C_2 \sin(x) + \frac{\cos(x)}{4} + \frac{x \sin(x)}{2} = C_3 \cos(x) + \left(C_2 + \frac{x}{2}\right) \sin(x)$$

Exercice 7

: . . P

On considère l'équation différentielle $|x|y'(x) + (x-1)y(x) = x^3$.

1. Donner l'ensemble des solutions de l'équation précédente pour $x \in]0, +\infty[$.

2. Donner l'ensemble des solutions de l'équation précédente pour $x \in]-\infty, 0[$.

ponse:

1. pour $x \in]0, +\infty[$, l'équation est

$$xy'(x) + (x-1)y(x) = x^3 \iff y'(x) + \frac{x-1}{x}y(x) = x^2$$

a) l'équation homogène est $y'(x) + \frac{x-1}{r}y(x) = 0$

$$a(x) = \frac{x-1}{x} = 1 - \frac{1}{x} \Rightarrow A(x) = x - \ln|x| = x - \ln(x)$$

La solution générale de l'équation homogène est $y'(x) = C_1 e^{-A(x)} = C_1 x e^{-x}$

b) une solution particulière est $y_0(x) = g(x)e^{-A(x)}$ avec g(x) primitive de $f(x)e^{A(x)} = x^2 \frac{e^x}{x} = xe^x$

$$\Rightarrow g(x) = (x-1)e^x \text{ et } y_0(x) = (x-1)e^x xe^{-x} = x(x-1)$$

- c) la solution générale pour $x \in]0, +\infty[$ est $y(x) = C_1 x e^{-x} + x(x-1)$
- 2. pour $x \in]-\infty, 0[$, l'équation est

$$-xy'(x) + (x-1)y(x) = x^3 \iff y'(x) + \frac{1-x}{x}y(x) = -x^2$$

a) l'équation homogène est $y'(x) + \frac{1-x}{x}y(x) = 0$

$$a(x) = \frac{1-x}{x} = \frac{1}{x} - 1 \Rightarrow A(x) = \ln|x| - x = \ln(-x) - x$$

La solution générale de l'équation homogène est $y'(x) = C_2 e^{-A(x)} = -C_2 \frac{e^x}{x}$

b) une solution particulière est $y_0(x) = g(x)e^{-A(x)}$ avec g(x) primitive de $f(x)e^{A(x)} = -x^2(-xe^{-x}) = x^3e^{-x}$

$$\Rightarrow g(x) = -(x^3 + 3x^2 + 6x + 6)e^{-x}$$

$$\Rightarrow y_0(x) = -(x^3 + 3x^2 + 6x + 6)\left(-\frac{e^x}{x}\right) = \frac{x^3 + 3x^2 + 6x + 6}{x}$$

c) la solution générale pour $x \in]-\infty,0[$ est $y(x)=\frac{x^3+3x^2+6x+6-C_2e^x}{x}$