DERWENT-ACC-NO:

1988-029518

DERWENT-WEEK:

198805

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE:

Soldering tool - has controlled heating

provided by

semiconductor heating element

INVENTOR: KLOTZBUCHE, K; SCHUHWERK, R

PATENT-ASSIGNEE: KLOTZBUCHER K[KLOTI]

PRIORITY-DATA: 1986DE-3614886 (May 2, 1986)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

DE 3614886 A

January 28, 1988

N/A

015 N/A

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

DE 3614886A

N/A

1986DE-3614886

May 2, 1986

INT-CL (IPC): B23K003/04, H05B003/10

ABSTRACTED-PUB-NO: DE 3614886A

## BASIC-ABSTRACT:

A soldering tool has a controllable heating element consisting of a semiconductor material through which electric current flows and which is in

thermally conductive connection with the soldering tip.

The tool is pref. a soldering iron, the tip of which accommodates a heating

element in the form of a semiconductor wafer or is formed by the heating element.

USE/ADVANTAGE - The tool is useful for spot (de-)soldering, e.g. of packaged IC housings, and for microengraving or cutting, e.g. of wood, plastics

or body

tissue. It is inexpensive, provides spot heating, has good temp. controllability, has a small (e.g. miniaturised) and light construction,

provides rapid heating confined to the soldering tip and allows selective

soldering of individual leads of an IC package.

CHOSEN-DRAWING: Dwg.1/4

TITLE-TERMS: SOLDER TOOL CONTROL HEAT SEMICONDUCTOR HEAT ELEMENT

DERWENT-CLASS: LO3 M23 P55 V04 X24 X25

CPI-CODES: L03-H04A; M23-A03;

EPI-CODES: V04-V09; X24-A02; X25-B01B;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1988-013136
Non-CPI Secondary Accession Numbers: N1988-022034

(9) BUNDESREPUBLIK
DEUTSCHLAND

① Offenlegungsschrift① DE 3614886 A1

(5) Int. Cl. 4: B 23 K 3/04

H 05 B 3/10



DEUTSCHES PATENTAMT

 (21) Aktenzeichen:
 P 36 14 886.5

 (22) Anmeldetag:
 2. 5. 86

Offenlegungstag: 28. 1.88

Deliardene: genter

71) Anmelder:

Klotzbücher, Kurt, Prof. Dr.-Ing., 7987 Weingarten, DE; Schuhwerk, Roland, 7994 Langenargen, DE

Wertreter:

Riebling, G., Dipl.-Ing. Dr.-Ing.; Riebling, P., Dipl.-Ing. Dr.-Ing., Pat.-Anw., 8990 Lindau

(72) Erfinder:

gleich Anmelder

66 Entgegenhaltungen:

DE-OS 16 90 621 US 43 01 357

NL-Z.: »Philips technische Rundschau«, 30. Jg., 1969/70, Nr. 6/7, S. 192/200;

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Lötvorrichtung

Bei einer Lötvorrichtung, insbesondere in ihrer Ausbildung als Lötkolben, soll mit geringem Aufwand eine punktuelle Zuführung von Heizenergie an eine Löt- oder Entlötstelle ermöglicht werden, wobei eine günstige Regelbarkeit der Löttemperatur gewährleistet ist. Erfindungsgemäß ist das Heizelement aus einem elektrisch durchflossenen Halbleitermaterial gebildet, das wärmeleitend mit der Lötspitze verbunden ist. Damit ist die Ausbildung einer mikrofeinen Lötspitze möglich.

## Patentansprüche

1. Lötvorrichtung mit einem Heizelement regelbarer Heizleistung, dadurch gekennzeichnet, daß das Heizelement (10) aus einem elektrisch durchflosse- 5 nen Halbleitermaterial besteht, das wärmeleitend mit der Lötspitze (2) verbunden ist.

2. Lötvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Lötvorrichtung ein Lötkolben ist, dessen Lötspitze (2) das in Form eines Halb- 10 leiterplättchens (11) ausgebildete Heizelement (10)

aufnimmt.

3. Lötvorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Lötkolbenspitze (2) von dem als Halbleiterplättchen (11) ausgebildeten 15 Heizelement indirekt beheizt eine die Lötspitze (2) großflächig tragende wärmeleitende Hülse (4) am Ende einer wärmedämmenden Verlängerung (21) des Kolbenhalses (3) des Lötkolbens aufweist, innerhalb der das Halbleiterplättehen (11) über eine 20 elektrisch isolierende wärmeleitende Schicht (20) stirnseitig anliegend angeordnet und über eine zweipolige Kontaktstift-Anordnung (12) in einem mittig der Verlängerung (21) gelagerten Kontaktstiftträger (13) mit einer Stromquelle verbunden ist. 25 4. Lötvorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Kontaktstiftträger (13) als wärmedämmende Verlängerung des Kolbenhalses (3) ausgebildet ist, auf dem die die Lötspitze (2) großflächig tragende wärmeleitende Hülse (4) im 30 Abstand vom Kolbenhals (3) angeordnet ist.

5. Lötvorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Lötkolbenspitze (2) von dem als Halbleiterplättchen (11) ausgebildeten Heizelement direkt beheizt auf einem als Verlänge- 35 rung des Kolbenhalses (3) ausgebildeten wärmedämmenden Kunststoffrohr (21) aufgesetzt getragen wird, das Halbleiterplättchen (11) in einer dem Kunststoffrohr (21) angepaßten zylindrischen Ausnehmung (5) der Lötspitze (2) stirnseitig über eine 40 elektrisch isolierende wärmeleitende Schicht (20) anliegend angeordnet ist und über eine zweipolige Kontaktstift-Anordnung (12) in einem mittig des Kunststoffrohres (21) gelagerten Kontaktstiftträger (13) mit einer Stromquelle verbunden ist. 6. Lötvorrichtung nach Anspruch 5, dadurch ge-

kennzeichnet, daß der Kontaktstiftträger (13) unter Wegfall des Kunststoffrohres (21) als wärmedämmende Verlängerung des Kolbenhalses (3) ausgebildet ist, auf dem die Lötspitze (2) im Abstand vom 50

Kolbenhals (3) angeordnet ist.

7. Lötvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Halbleiterplättchen (11) innerhalb der Ausnehmung (5) wärmeübergangswiderstandsarm direkt an der Stirnseite 55 der Hülse (4) oder der Lötspitze (2) mittels Klebung, Hartlötung oder mechanischer Mittel besestigt und über eine zweipolige im Kontaktstiftträger (13) gelagerte Kontaktstift-Anordnung (12) mit einem Leiter (14a) direkt und mit dem anderen Lei- 60 ter (14b) über die Hülse (4) bzw. Lötspitze (2) als potential-führender Leiter mit einer Stromquelle verbunden ist.

8. Lötvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Halbleiterplätt- 65 chen (11) innerhalb der Ausnehmung (5) wärmeübergangs-widerstandsarm direkt an der Stirnseite der Hülse (4) oder der Lötspitze (2) mittels Kle-

bung, Hartlötung oder mechanischer Mittel befestigt und über eine einpolige im Kontaktstiftträger (13) gelagerte Kontaktstift-Anordnung (12) mit einem Leiter (14) direkt und über die auf dem Kolbenrohr (8) aufgesetzte und mit diesem elektrisch leitend verbundene Hülse (4) oder Lötspitze (2) als potential-führender Rückleiter mit einer Stromquelle verbunden ist.

9. Lötvorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß das als Halbleiterplättehen (11) ausgebildete Heizelement mit den zugeordneten Kontaktstiften (12) innerhalb der Ausnehmung (5) der Lötspitze (2) in einer elektrisch isolierenden und gut wärmeleitenden keramischen Vergußmasse (22) eingebettet ist, die Lötspitze (2) von einem als Verlängerung des Kolbenhalses (3) ausgebildeten wärmedämmenden Kunststoffrohr (21) aufgesteckt getragen wird, und die Kontaktstifte (12) einsteckbar in Kontaktbuchsen (15) ausgenommen sind, die in einem innenseitig des Kunststoffrohres (21) sest angeordneten Trägerelement (16) festgelegt mit einer Stromquelle verbunden sind.

10. Lötvorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß das als Halbleiterplättehen ausgebildete Heizelement auf eine als flaches Bauelement ausgebildete Lötspitze (2) potentialfrei mit einer Zwischenlage aus elektrisch isolierenden wärmeleitenden Material (20) aufgebracht ist, der halterungsseitige Teil der Lötspitze (2) einschließlich Halbleiterplättchen (11) und zugeordneten Kontaktstiften (12) in einer wärmedämmenden elektrisch isolierenden und den Kontaktstiften (12) als Träger (13) dienenden Vergußmasse (22) eingebettet und im Kolbenhals (3) aufgenommen festgelegt ist und die Kontaktstifte (12) das Halbleiterplättchen (11) mit einer Stromquelle elektrisch verbinden.

11. Lötvorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß das als Halbleiterplättchen (11) ausgebildete Heizelement auf eine als flaches Bauelement ausgebildete Lötspitze (2) direkt aufgebracht ist, der halterungsseitige Teil der Lötspitze einschließlich zugeordneten Kontaktstiften (12) in einer wärmedämmenden elektrisch isolierenden und den Kontaktstiften (12) als Träger (13) dienenden Vergußmasse (22) eingebettet und im Kolbenhals (3) aufgenommen festgelegt ist und ein Kontaktstift (12) das Halbleiterplättchen (11) und der andere Kontaktstift (12) die Lötspitze (2) mit einer Stromquelle elektrisch verbindet.

12. Lötvorrichtung nach Anspruch 10 und 11, dadurch gekennzeichnet, daß die wärmedämmende und isolierende Vergußmasse (22) zweischichtig aufgebaut den halterungsseitigen Teil der Lötspitze mit Halbleiterplättchen umschließt und der Kolbenhals (3) aus einem Kunststoffmaterial wie zum

Beispiel Teflon besteht.

45

13. Lötvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Lötspitze (2) und der Kontaktstiftträger (13) eine außermittig längsachsial ausgerichtete und an der Lötfläche (9) der Lötspitze (2) ausmündende Bohrung (7) für die Aufnahme eines das Innere des starren oder flexiblen Kolbenrohrs (8) mit der Lötfläche (9) verbindenden hitzebeständigen Führungsschlauchs (6) für die Zuführung eines Zinn-Lötdrahts (30) aufweist

14. Lötvorrichtung nach einem der Ansprüche 1 bis

12, dadurch gekennzeichnet, daß das Halbleiterelement (11) ringförmig ausgebildet ist und die Lötspitze und der Kontaktstiftträger (13) eine koaxial ausgerichtete und an der Lötfläche (9) der Lötspitze (2) ausmündende Bohrung (7) für die Aufnahme eines das Innere des starren oder flexiblen Kolbenrohrs (8) mit der Lötfläche (9) verbindenden hitzebeständigen Führungsschlauchs (6) für die Zuführung eines Zinn-Lötdrahts (30) aufweist.

15. Lötvorrichtung nach Anspruch 13 oder 14, da- 10 durch gekennzeichnet, daß der Kolbenhals (3) mit Lötspitze (2) und das Kolbenrohr (8) mit Griffstück (46) unstarr miteinander verbunden und längsachsial übergreifend geführt in Richtung 31 zueinander manuell und in Richtung (32) voneinander durch die 15 Kraft einer Feder (34) für den Transport des im Führungsschlauch (6) der Lötspitze (2) zuzuführenden Lötdrahtes (30) bewegbar ausgebildet sind und das im Kolbenrohr (8) aufgenommene Ende (33) des Kolbenhalses (3) um einen Drehpunkt (35) 20 schwenkbar gelagerte Arme (36) mit Greifkrallen (37) für den Eingriff mit dem Lötdraht (30) in einer Bewegungsrichtung aufweist.

16. Lötvorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß der Kolbenhals (3) mit 25 Lötspitze (2) und das Kolbenrohr (8) mit Griffstück (46) unstarr miteinander verbunden und längsachsial in Richtung (31) zueinander manuell und in Richtung (32) voneinander durch die Kraft eines das Kolbenhalsende (33) und das Kolbenstangenende 30 (38) vollständig umschließenden Federbalgs (39) für den Transport des im Führungsschlauch (6) der Lötspitze (2) zuzuführenden Lötdrahtes (30) bewegbar ausgebildet sind und das Kolbenhalsende (33) um einen Drehpunkt (35) schwenkbar gelager- 35 te Arme (36) mit Greifkrallen (37) für den Eingriff mit dem Lötdraht (30) in einer Bewegungsrichtung aufweist.

17. Lötvorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß für den Transport des 40 im Führungsschlauch (6) der Lötspitze (2) zuzuführenden Zinn-Lötdrahtes (30) ein Transportmechanismus im Griffstück (46) angeordnet ist, der aus einer über einen Druckknopf (41) mit Zahnstange (40) betätigbaren Reibrad/ Stützrollen-Anordnung 45 (50) besteht, die für den Transport zur Lötspitze (2) in Eingriff mit dem Lötdraht (30) ist.

18. Lötvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf dem Kolbenhals (3) eine diesen vollständig umgrei- 50 fende Manschette (42) angeordnet und innenseitig der Manschette (42) Absaugbohrungen (44) vorgesehen sind, die über einen inneren Absaugkanal mit einem zentral das Griffstück (46) durchgreifenden Vakuumschlauch (45) für das Absaugen von Löt- 55 dämpfen in luftschlüssiger Verbindung stehen.

19. Lötvorrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Lötkolbenspitze (2) und der Kontaktstiftträger (13) zur Verwendung als Heißluft-Lötkolben von einer Ausblasboh- 60 nungsgefahr am Lötkolben besteht. rung (48) durchgriffen sind, durch die griffseitig über einen Kanal (49) zugeführte Drucklust an den Halbleiterplättchen (11) vorbei aus der Lötkolbenspitze (2) austritt.

14, dadurch gekennzeichnet, daß zur Verwendung mit SMD- und DIL-Lötstellen der Anzahl der Lötstellen entsprechend zusammengefaßt mehrere in

der Heizleistung individuell regelbare Lötspitzen (2) in einer Aufnahme angeordnet sind.

21. Lötvorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß zur Verwendung mit SMD- und DIL-Lötstellen die in der Heizleistung individuell regelbaren Halbleiterplättchen (11) in dem Bestückungs- oder Greifwerkzeug in einer den Lötstellen entsprechenden Anzahl integriert angeordnet sind.

22. Lötvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß dem als Halbleiterplättchen (11) ausgebildeten Heizelement eine die Lötspitzentemperatur steuernde Regelstrecke vorgeschaltet ist.

23. Lötvorrichtung nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß der Kolbenhals (3) biegbar ist und in seiner gebogenen Form verbleibt.

24. Lötvorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß der im Griffstück (46) angeordnete Transportmechanismus elektrisch oder elektromagnetisch betätigt ist.

25. Lötvorrichtung nach Anspruch 1 und einem der Ansprüche 2-24, dadurch gekennzeichnet, daß das Heizelement (10) die Lötspitze (2) selbst bildet.

## Beschreibung

Die Erfindung betrifft eine Lötvorrichtung mit einem Heizelement regelbarer Heizleistung, insbesondere eine eine Lötvorrichtung für punktförmige Lötungen.

Es ist bekannt, zur punktförmigen Erzeugung von Wärme, zum Beispiel für Löt- oder Entlötzwecke Lötkolben zu verwenden, die in bekannter Weise bereits Regelorgane einschließen.

Eine bekannte Ausführungsform sieht dafür vor, daß ein Magnet mit einem Wärmeelement wärmeleitend verbunden ist, und der Magnet in der Art eines Reedkontaktes auf einen schaltbaren Kontakt wirkt. Die Regelung erfolgt dabei derart, daß das Wärmeleitelement den Magneten aufheizt, wobei der Magnet sein Magnetkraft verliert und den Reedkontakt betätigt. Der Nachteil ist hierbei, daß diese Regelung relativ langsam erfolgt und sehr aufwendig ist. Außerdem ist es nicht möglich, mit einem derartigen Lötkolben die Löthitze punktförmig einer Lötstelle zuzuführen.

Es sind ferner elektrisch beheizte Lötkolben mit sogenannten Heizwicklungen bekannt, wobei diese Heizwicklungen in der Nähe der Lötspitze angeordnet sind. Der Nachteil ist hierbei, daß die Lötspitze eine relativ hohe Wärmekapazität hat, und deshalb die Regelzeiten relativ lang sind.

Bei den bisher bekannten mit Heizwendeln beheizten Lötkolben besteht daher der Nachteil, daß die Lötspitze ständig beheizt wird und hierdurch verzundert, wodurch ein erhöhter Aufwand beim Lötvorgang erforderlich ist, d.h., die Lötspitze muß vor einem Lötvorgang jeweils entzundert werden.

Ein weiterer Nachteil ist, daß die Lötspitze relativ groß gehalten werden muß, und, daß damit Verbren-

Vorliegender Erfindung lag daher die Aufgabe zugrunde, eine Lötvorrichtung oder Lötkolben der eingangs genannten Art so weiterzubilden, daß mit geringem Aufwand eine punktuelle Zuführung von Heizener-20. Lötvorrichtung nach einem der Ansprüche 1 bis 65 gie an eine Löt- oder Entlötstelle ermöglicht werden kann, wobei eine günstige Regelbarkeit der Löttemperatur gewährleistet werden sollte.

Zur Lösung dieser Aufgabe ist die Erfindung dadurch

gekennzeichnet, daß das Heizelement aus einem elektrisch durchflossenen Halbleitermaterial besteht, das wärmeleitend mit der Lötspitze verbunden ist.

Mit der Verwendung eines Heizelements aus einem Halbleitermaterial wird insbesondere der wesentliche Vorteil erzielt, daß ein sehr leichter und kleiner Lötkolben bzw. eine I.ötvorrichtung gebaut werden kann, da das Heizelement dadurch derart miniaturisiert zur Verfügung steht, daß es selbst als Lötspitze ausgeführt oder in eine Lötspitze integriert werden kann, wodurch sehr 10 Fig. 8, kleine und leichte Lötspitzen für den Einsatz in Lötkolben und Lötvorrichtungen hergestellt werden können.

Damit wird auch der Vorteil eines raschen Aufheizens erzielt, und, die Wärme wird nur an der Stelle erzeugt, wo sie benötigt wird, d.h., die anderen Teile eines Löt- 15 der Fig. 10, kolbens bleiben kalt. Es besteht eine geringere Verbrennungsgefahr, und nachdem ein solches Halbleitermaterial sehr gut regelbar ist, kann nach Durchführung des Lötvorganges die Heizleistung weggenommen bzw. abgeschaltet werden, wodurch auch die Gefahr einer Ver- 20 zunderung nicht mehr gegeben ist. Mit Vorteil kann die erfindungsgemäss beschriebene punktuelle Wärmezufuhr zu einer - gegebenenfalls - mikrofeinen Spitze auch für Gravier- und Trennwerkzeuge, z.B. für Holz und Kunststoffe, sowie im medizinischen Bereich für 25 Körpergewebe eingesetzt werden. Die Ersindung soll also nicht auf Verwendung als Lötvorrichtung allein beschränkt werden. Nachdem man nun die Lötspitzentemperatur unmittelbar an der Lötspitze selbst regeln kann, ergibt sich eine äusserst stabile Löttemperatur, die 30 stück als dritte Ausführungsform, praktisch stufenlos regelbar ist, wodurch weitere wesentliche Vorteile erzielt werden.

Sehr wichtig ist auch, daß man eine derartige Lötvorrichtung oder einen Lötkolben so miniaturisieren kann, daß zum Beispiel der Verwendungsbereich des Verlö- 35 tens und Entlötens von DIL-Gehäuseformen problemlos abgedeckt werden kann, wobei jedem Beinchen des DIL-Gehäuses eine eigene Lötspitze zuzuordnen wäre, was wiederum ermöglicht, eine individuelle Löttemperatur jedem Beinchen zuzuordnen, d.h., Beinchen die 40 nicht verlötet werden sollen, bleiben dann einfach kalt. Durch diese sich daraus ergebenden individuellen Temperatur- Zuordnungsmöglichkeiten, können die Module geschont werden, da nur die Teile verlötet werden, die tatsächlich verlötet werden sollen.

Die Miniaturisierung wird vorwiegend durch elektrische Heizelemente erreicht, die in Form eines Halbleiterplättchens ausgebildet sind und vom Strom volumenmässig durchflossen werden. Es sind dies Halbleiterren Anmeldung, deren Flächengröße unter 1 cm², in einer bevorzugten Ausführung bei etwa 10 mm² bis 5 mm² liegt.

Nachfolgend werden nun einige wichtige Ausführungsbeispiele der Erfindung anhand der Zeichnungen 55 beschrieben.

In den Zeichnungen zeigt

Fig. 1 eine Lötkolben-Ausführungsform im Schnitt als prinzipieller Aufbau, mit indirekte beheizter Lötspitze, potentialfrei,

Fig. 2 eine Darstellung ähnlich der der Fig. 1, mit direkt beheizter Lötspitze, potentialfrei,

Fig. 3 eine Lötspitze mit Wärmedämmung, direkt beheizt, nicht potentialfrei,

Fig. 4 eine Lötspitze ähnlich der der Fig. 3, ohne Wär- 65 medämmung, Kolbenrohr als Rückleiter,

Fig. 5 eine Lötspitze in einer Radialbauweise, das Heizelement eingebettet in einer Vergußmasse,

Fig. 6 eine Lötspitze, wärmedämmend auf einen Kontaktstiftträger angeordnet, mit direkt beheizter Lötspit-ZC,

Fig. 7 eine Darstellung ähnlich der Figur, die Lötspit-5 ze jedoch indirekt beheizt,

Fig. 8 eine Lötspitze in Flachbauweise, direkt beheizt, mit vergossenem integrierten Halbleiter-Heizelement, potentialfrei,

Fig. 9 eine um 90° gedrehte Ansicht der Lötspitze der

Fig. 10 eine Lötspitze in Flachbauweise, direkt beheizt, mit vergossenem integrierten Halbleiter-Heizelement, nicht potentialfrei,

Fig. 11 eine um 90° gedrehte Ansicht der Lötspitze

Fig. 12 eine indirekt beheizte Lötspitze mit Lötzinnzufuhr, isoliert, potentialfrei,

Fig. 13 eine direkt beheizte Lötspitze mit Lötzinnzufuhr, isoliert potentialfrei,

Fig. 14 eine direkt beheizte Lötspitze mit ringförmigen Halbleiter-Heizelement und längsachsial mittiger Lötzinnzufuhr,

Fig. 15 eine Schnittansicht entlang der Schnittlinie A-A durch das ringförmige Halbleiter-Heizelement,

Fig. 16 ein Lötzinn-Transportmechanismus in einer ersten Ausführungsform,

Fig. 17 ein Lötzinn-Transportmechnismus in einer zweiten Ausführungsform,

Fig. 18 ein Lötzinn-Transportmechanismus im Griff-

Fig. 19 eine integrierte Absaugvorrichtung für Lötdämpfe,

Fig. 20 eine Ausführungsform für die Verwendung der Lötspitze als Heißluft-Lötkolben,

Fig. 21 Lötvorrichtung gemäß der Erfindung in einer Ausführungsform für DIL-Kontaktlötungen,

Fig. 22 eine Draufsicht auf den Gegenstand der Fig. 21,

Fig. 23 eine Ausführungsform mit einer auf eine Temperatur eingeregelten Lötbacke, während die andere Lötbacke eine andere Temperatur Temperatur haben kann,

Fig. 24 eine um 90 Grad geschwenkte Ansicht der Ausführungsform der Fig. 23, und

Fig. 25 ein Schaltbild eines Regelkreises. 45 In allen Figuren haben gleiche Elemente die gleichen Bezugsziffern. Die Fig. 1 zeigt im Schnitt eine erste Ausführungsform eines Lötkolbens mit indirekt beheizter Lötspitze 2. Die Lötspitze 2 ist hier im Paßsitz auf einer plättchen aus dem dem Offenbarungsgehalt einer frühe- 50 Hülse 4 angeordnet, die innenseitig das als Halbleiterplättchen 11 ausgebildete Heizelement über eine elektrisch isolierende, gut wärmeleitende Zwischenschicht 20 stirnseitig trägt. Die Hülse 4 sitzt im Paßsitz auf einem wärmedämmenden, hitzebeständigen Kunststoffrohr 21, das wiederum auf dem Kolbenhals 3 des Kolbenrohrs 8 angeordnet ist. Innenseitig des Kunststoffrohres ist ein Kontaktstiftträger 13 aus einem elektrisch isolierenden Material angeordnet, der die vom Heizelement 11 zu den Anschlußdrähten 14 führenden Kontakt-60 stifte 12 aufnimmt. Die Kontaktstife 12 sind mit dem Halbleiterplättchen 11 entweder in Preßkontakt, durch Federdruck oder temperaturbeständig verlötet. Die Hülse 4 besteht aus einem gut wärmeleitenden Material, wie zum Beispiel Kupfer. Das Kunststoffrohr 21 besteht hier vorzugsweise aus Tellon. Der das Kunststoffrohr 21 aufnehmende Kolbenhals 3 kann starr ausgebildet aus Metall oder flexibel aus einem Plastikmaterial gefertigt sein. Ebenso ist die Verwendung eines biegsamen Me-

tallmaterials möglich, welches nach der Biegung in seiner Form verbleibt. Statt der Verwendung eines Kunststoffrohres 21 kann auch ein Rohr aus anderen Materialien, wie z.B. einem wärmedämmenden Glaskeramikmaterial, verwendet werden.

In der Fig. 2 ist eine Ausführungsform ähnlich der der Fig. 1 gezeigt. Die Lötspitze 2 sitzt hier direkt auf dem wärmedämmenden und hitzebeständigen Kunststoffrohr, das zum Beispiel aus Teflon bestehen kann. Das als Halbleiterplättchen 11 ausgebildete Heizelement liegt 10 innenseitig mit einer Zwischenschicht aus gut wärmeleitendem, elektrisch isolierenden Material an der Lötspitze 2 direkt an. Das wärmeleitende, elektrisch isolierende Material kann hier zum Beispiel Keramik, ALN etc. sein.

Die Fig. 3 zeigt wiederum eine direkt beheizte Löt- 15 spitze 2 mit Wärmedämmung der Lötspitze 2, jedoch nicht potentialfrei. Der Kontaktstift 12 der Leitung 14a ist hier direkt mit dem Halbleiterelement verbunden. während der Kontaktstift 12 der Leitung 14b an der metallischen Lötspitze 2 über ein Anschlußkontakt- 20 plättchen 17 elektrisch verbunden ist. Beide Kontaktstifte 12 sind wiederum in einem Kontaktstiftträger 13 aus hitzebeständigem, elektrisch leitenden Material.

Die Fig. 4 zeigt eine weitere Variante, die im Vergleich zu der Ausführungsform der Fig. 2 nicht potenti- 25 alfrei ist, d.h. die Lötspitze dient als Rückleiter für das Halbleiterplättchen 11, welches hier ebenfalls direkt in-

nenseitig der Lötspitze 2 angebracht ist.

Bei dem Ausführungsbeispiel gemäß Fig. 5 ist die Wärmedämmung durch ein Kunststoffrohr 3 in Form 30 des Kolbenhalses gegeben. In diesem Kunststoffrohr 3 ist bei dieser Ausführungsform ein Kontaktbuchsenträger 16 mit Kontaktbuchsen 15 vorgesehen, in dem die Kontaktstifte 12 elektrisch verbindend eingesteckt sind. Das Halbleiterelement 11 als Heizelement ist bei dieser 35 Ausführungsform in der innenseitigen Ausnehmung der Lötspitze 2 in einer elektrisch isolierenden und gut wärmeleitenden Vergußmasse 22 eingebettet. Die Lötspitze 2 sitzt hier auch paßgenau auf einem wärmedämmenden Kunststoffrohr 3.

Die Fig. 6 und 7 zeigen Ausführungsformen von Lötspitzen 2, die auf dem Kontaktstiftträger 13 paßgenau angeordnet sind, der somit das wärmedämmende Element zwischen der Lötspitze 2 und dem Kolbenhals 3 beheizte Lötspitze 2, mit dem Halbleiter-Heizelement direkt an der Lötspitze 2 über eine elektrisch isolierende und gut wärmeleitende Zwischenschicht 20 anliegend. Die Ausführungsform der Fig. 7 zeigt hingegen die Variante der indirekt beheizten Leitspitze 2 mit einer Hül- 50 betätigter Transportmechanismus verwendet werden. se 4 auf dem Kontaktstiftträger 13, und der Lötspitze 2 auf der Hülse 4 angeordnet.

Die Fig. 8 bis 11 zeigen Lötspitzen 2 in Flachbauweise. Das flache Lötspitzenelement 2 ist hier mitsamt des Halbleiter-Heizelements 11 und den Kontaktstiften 12 55 in einer wärmedämmenden und elektrisch isolierenden Vergußmasse eingebettet, die gleichzeitig als Tragelement innerhalb des Kolbenhalses 3 dient. Die Vergußmasse 22 ist vorzugsweise Keramikmaterial, und kann selbstverständlich auch zweischichtig angeordnet oder 60 dung stehen. in den Kolbenhals 3 eingebracht sein. Diese Figuren zeigen wiederum alle Varianten direkt beheizter Lötspitzen mit und ohne Isolation in jeweils zwei Ansichten.

Die Fig. 12 und 13 zeigen Lötspitzen-Aussührungsformen mit Lötdraht-Zuführung zur Lötspitze 2, vor- 65 zugsweise zur Lötfläche 9 dieser Lötspitze. Durch die Lötspitze 2 und den Kontaktstiftträger 13 führt hier eine Bohrung 7, die an der Lötfläche 9 der Lötspitze 2 aus-

mündet. In dieser Bohrung ist ein hitzebeständiger Schlauch 6 als Führung für den Zinn-Lötdraht 30 von etwa der Lötspitze 2 bis in das Griffstück 46 des Lötkolbens führend angeordnet. Die Ausführungsform der 5 Fig. 12 zeigt hier eine indirekt behizte Lötspitze 2, während die Fig. 13 die direkt beheizte Ausführungsform ohne die in der Fig. 12 zwischengeordnete Hülse 4 zeigt. Beide Ausführungsformen haben gemeinsam die Bohrung 7 oder Schlauchführung 6 außermittig, um für die Anschlüsse zum Halbleiter-Heizelement 11 und diesem selbst Raum zu geben.

Die Fig. 14 zeigt eine andere Ausführungsform einer Lötkolbenspitze mit Lötdrahtzuführung zur Lötfläche 9 der Lötspitze 2. Die Bohrung 7 mit Führungschlauch 6 ist hier längsachsial mittig die Lötspitze 2 und den Kontaktstiftträger 13 durchgreifend angeordnet. Diese Ausführungsform sieht hier ein ringförmiges Halbleiterelement 11 in direktem Kontakt mit der Lötspitze 2 vor.

Die Fig. 15 zeigt eine Schnittansicht entlang der Schnittlinie A-A der Fig. 14, aus der die Lage des Schlauches 6 mit Lötdraht 30 koaxial innerhalb des ringförmigen Halbleiter-Heizelements 11 ersichtlich ist.

Die Fig. 16 bis 18 zeigen Lötdraht-Transport-Anordnungen. Die Fig. 16 zeigt eine Ausführungsform, in der der Kolbenhals 3 mit Lötspitze, und das Kolbenrohr 8 mit Griffstück 46 unstarr miteinander und achsial übergreifend geführt in einer Richtung 31 zueinander manuell und in der Richtung 32 voneinander durch die Kraft einer Ringfeder 34 für den Transport des Lötdrahtes 30 zur Lötfläche der Lötspitze 2 bewegbar ausgebildet sind, wobei am Ende des Kolbenhalses 3 um einen Drehpunkt 33 schwenkbar gelagerte Arme 36 mit Greifkrallen 37 für den Eingriff mit dem Lötdraht 30 in einer Bewegungsrichtung angeordnet sind.

Die Fig. 17 zeigt eine ähnlich funktionierende Ausführungsform des Transportmechanismus für den Lötdraht. Ein ähnlicher Arm 36 mit Drehpunkt 35 am Ende des Kolbenhalses 3 kommt hier in Eingriff mit dem Lötdraht 30, wenn Kolbenhals 3 und Kolbenrohr 8 zu- und 40 voneinander bewegt werden, wobei ein Federbalg 39 die entsprechende rückstellende Federkraft bewirkt.

Die Fig. 18 zeigt schließlich einen Transportmechanismus im Griffteil 46, der aus einer vom Lötdraht durchlaufenden Reibrad/Stützrollen-Anordnung 50 beist. Die Ausführungsform der Fig. 6 zeigt eine direkt 45 steht, die von einem das Griffstück 46 von aussen durchgreifenden Druckknopf 41 mit Zahnstange 40 betätigbar ist. Statt der beschriebenen mechanisch betätigten Transportmechanismen kann auch ein elektromotorisch oder ein elektromagnetisch mittels eines Hubmagneten

Die Fig. 19 und 20 zeigen zwei Ausführungsformen einer Lötkolbenspitze, die Fig. 19 eine Anordnung mit einer mittig den Kolbenhals 3 und das Kolbenrohr 8 durchgreifenden Absaugkanal, der mit einen das Griffstück 46 mittig durchgreifenden Vakuumschlauch 45 luftschlüssig verbunden ist. Der Kolbenhals 3 weist eine diesen vollständig umgreifende Manschette 42 auf, wobei innenseitig der Manschette 42 Absaugbohrungen 44 angeordnet sind, die mit dem Absaugkanal in Verbin-

Die Fig. 20 zeigt, daß das Lötkolbenprinzip dieser Erfindung auch für eine Heißluftpistole verwendet werden kann. Die Lötkolbenspitze 2 durchgreift hier ein Kanal 49, der griffseitig mit Druckluft beaufschlagt wird. Die griffseitig einkommende Druckluft wird an den Halbleiter-Heizelementen 11 vorbeigeführt, und erwärmt sich dort je nach eingeregelter Temperatur. Der Kontaktstistträger 13 als auch die Lötspitze 2 weisen

50

entsprechende, den Lötdrahtzuführungsöffnungen ähnliche Bohrungen auf.

In den Fig. 21 bis 25 sind Ausführungsbeispiele zur Verwendung einer derartigen Lötvorrichtung für DIL-Gehäuse gezeigt. Es ist selbstverständlich auch möglich, 5 mit einer derartigen Ausführungsform SMD-Lötstellen und Bauelemente zu verlöten.

Im Ausführungsbeispiel nach Fig. 21 und 22 ist erkennbar, daß jedem DIL-Kontakt eine eigene Lötspitze regelbares Halbleiterplättchen zugeordnet. Dmit ist es - wie in der Beschreibungseinleitung erwähnt - möglich, jedem DIL-Kontakt seine eigene Löttemperatur und Lötdauer zuzuordnen, was besonders schonend für die thermische Einwirkung auf das DIL-Modul ist.

Die Fig. 22 zeigt die Anordnung nach Fig. 21 in der Draufsicht, wo erkennbar ist, daß die Lötspitzen con der Seite her an die DIL-Kontakte angreifen, und daß jedem Beinchen eine eigene Lötspitze zugeordnet ist.

In den Fig. 23 und 24 ist gezeigt, daß eine Lötbacke 20 ist. vorhanden ist, in der ein oder mehrere Heizelemente angeordnet sind, d.h. zum Beispiel, daß an der linken Seite des DIL-Gehäuses eine Lötbacke mit einer bestimmten Temperatur vorgesehen ist, während auf die andere Lötbacke mit einer anderen Temperatur beauf- 25 schlagt werden kann.

Dieses Ausführungsbeispiel unterscheidet sich von dem Ausführungsbeispiel der Fig. 21, 22 dadurch, daß eben nur jeder Seite des Moduls, d.h. jeder Reihe von Beinchen eine individuelle Lötspitze zugeordnet ist, 30 während im obengenannten Ausführungsbeispiel jedem Beinchen für sich allein eine Lötspitze zugeordnet ist.

Wichtig bei diesen Ausführungsbeispielen nach den Fig. 21 bis 24 ist - was zeichnerisch nicht näher dargestellt ist -, daß ein derartiger Lötkolben oder auch 35 Lötvorrichtung auch als Entlötwerkzeug verwendet werden kann. Dies kann auf einfache Weise dadurch erfolgen, daß zum Beispiel die Lötspitzen unter die Beinchen greifen, und, mit entsprechender Erhitzung der Beinchen des DIL-Gehäuses kann dann eine beson- 40 ders thermisch schonende Auslötung des möglich erfolgen, da für jedes Beinchen eine individuelle Entlöttemperatur und Entlötzeit zugeordnet werden kann. So können zum Beispiel auch auf der Platine einige Beinchen nicht entlötet werden, wenn diese nicht verlötet 45 waren, d.h. diese Beinchen werden dann einfach von der Lötspitze nicht thermisch beaufschlagt, was auch bedeutet, daß, bei einigen Lötspitzen nicht in Funktion, auch die thermische Belastung des Moduls bedeutend klein gehalten werden kann.

In der Fig. 25 ist schließlich ein Schaltdiagramm dargestellt. Eine bevorzugte Ausführungsform zur Regelung der Lötspitzentemperatur besteht in der sogenannten Vollwellenregelung, wie sie in dieser Fig. 25 dargestellt ist. Das Heizelement wird hierbei vom Strom 55 durchflossen und liegt im Regelweg einer Regelstrecke, wobei die Heizenergie z.B. durch einen entsprechenden Wechelstrom-Transformator erzeugt wird. Es ist jedoch in anderen Ausführungen durchaus auch möglich, statt des Transformators eine niedrigere Wechselspannung 60 unmittelbar anzulegen, oder auch eine Gleichspannung, was dann von den einzelnen Elementen der Regelstrekke abhängt.

In der dargestellten Regelstrecke ist das Heizelement 10 vom Strom durchflossen, und zwar liegt es an den 65 Leitungen 100 und 101, die im Stromfluß der Sekundärwicklung des Transformators 102 auch die Regelstrecke 103 einschließen, deren innere Schaltelemente hier nicht

weiter interessierend sind.

Von der Leitung 100 abzweigend ist ein erster Pfad 104 stromaufwärts der Regelstrecke, und ein zweiter Pfad 105 stromabwärts der Regelstrecke, beide Strompfade 104 und 105 bilden eine elektrische Information über die Temperatur des Heizelements, die über diese beiden Leitungen 104 und 105 elektrisch erfasst werden.

Über die Leitung 107 wird dem Regler 106 das Massepotential mitgeteilt. Über die Leitung 108 wirkt der zugeordnet ist, und jeder Lötspitze ist ein individuell 10 Regler auf die Regelstrecke 103, und beeinflußt diese im Sinne eines Ist-Sollwert-Vergleichs, um die gewünschte Temperatur des Heizelements einzustellen.

Weitere Ausführungsformen sind selbstverständlich möglich. Das Schaltdiagramm zeigt hier nur eine bevor-15 zugte Ausführungsform.

In einer anderen Ausführungsform ist vorgesehen, daß die Erfassung der Ist-Temperatur durch einen weiteren Meßwertaufnehmer erfolgt, der getrennt von den stromdurchflossenen Halbleiterplättchen angeordnet







ORIGINAL INSPECTED

CHOCKEICHI 1









FIG 14



FIG 15



## NACHGEREICHT





ORIGINAL INSPECTED





ORIGINAL INSPECTED