shamelessad5

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 1024 megabytes

Shor the Duck is once again back at promoting his curated collection of the best uniquely-Codebreaker problems and a more beginner-friendly place for people in Singapore's Informatics Olympiad or Competitive Programming community to chat/discuss!

Discord Server link: https://discord.gg/G5W5yMAn3u

Group/Collection link: https://codebreaker.xyz/group/shorsgcollection

This time, Shor the Duck is sucked into the mathematical world of NumberLand!

In NumberLand, there are N distinct numbers standing in a row, with their values represented by the array A.

Shor the Duck wants to choose a **subsequence** of these numbers (keeping their original order) for his advertisement (idk why). He considers a subsequence to be beautiful if the numbers in the sequence are **strictly increasing**. and that **no two odd (or even) numbers should be next to each other** in the final subsequence Shor chooses.

Help Shor find the number of beautiful sequences.

Input

The first line of the input will be N ($1 \le N \le 2000$) — the number of numbers.

The next line of the input will contain N space separated integers representing the array A. $(1 \le A_i \le 10^9)$.

Output

Output one integer representing the number of beautiful sequences. Since the answer might be large, output the answer modulo $10^9 + 7$.

Scoring

Subtask	Score	Additional constraints
1	14	$N \le 10$
2	30	$N \leq 2000, A_i = i \text{ for all } 1 \leq i \leq N$
3	16	$N \leq 2000$, A is strictly increasing.
4	40	No additional constraints
5	0	Sample Testcases

Examples

standard input	standard output
4	11
1 2 3 4	
6	25
1 8 9 15 16 100	
6	11
5 1 9 2 11 13	

Note

For sample testcase 1, $\{1,3,4\}$ and $\{1,2,4\}$ are examples for subsequences that are not beautiful as at least

one pair of adjacent integers in the sequence are either both odd or both even. For sample testcase $3, \{5, 2\}$ is not considered a beautiful subsequence as it is not strictly increasing.