Ultra-high Efficiency Filter Tests

Seong Chan Kim, Zhengyang (James) Zhang, Xinjiao Tian, Sheng-Chieh (Shawn) Chen, and David Y. H. Pui

Particle Technology Laboratory
University of Minnesota

CFR 52nd Review Meeting, Mechanical Engineering Donaldson Company, Inc.

October 6th, 2017

Background

- As ultra-clean environment becomes very critical in more and more industrial applications, ultra-high efficiency (UHE) filters are required in many devices and facilities.
- With this reason, a proper filter test method needs to be developed to measure UHE filter efficiency up to nine-9s (99.999999%).
- This study is to establish an UHE filter test setup and provide with a reliable test procedure.

Filter Pressure Drop Test

UHE filter pressure drop test setup (SEMI 90120393B-STD)

UHE filter sample A

Inlet pressure: 14.5 psi 0.9 43.5 psi 0.8 0.7 Pressure drop (psi) 72.5 psi 0.3 0.2 0.1 20 40 80 100 120 Flow rate (slpm) • Inlet Pressure: 14.5 psi • Inlet Pressure: 43.5 psi • Inlet Pressure: 72.5 psi

UHE filter sample B

Filtration Efficiency Test

Filtration efficiency test setup

Test particle size distribution

Blue: Aerosol flow 1.5 lpm, DMA sheath flow 15 lpm Red: Aerosol flow 1.5 lpm, DMA sheath flow 5 lpm

Background particle count

- 1. Filter test setups always have "background particle counts" due to a particle counter false count, outgassing, a particle resuspension from surface, residual particles in dead space, leakage and etc.
- 2. Background particle count is critical for UHE filter efficiency test due to extremely low particle penetration.
- 3. Measured downstream particle counts without particle generation for extended sampling time for background monitoring. 28 particles were detected for 33,377 sec. of monitoring (= 0.0001 #/cc).
- 4. Background count (0.001 #/cc) is much lower than TSI UCPC 3776 specifications (0.01 #/cc), which means there is no significant error sources in the test setup other than UCPC false count.

Upstream particle count

- 1. Should be high enough to measure 9-nines efficiency (>109 particles), and the sampling time needs to be decided based on the upstream particle concentration.
- 2. Should be low enough not to have UCPC coincidence error (3x10⁵ #/cc) and particle coagulations (10⁶ #/cc).
- 3. "As a rule of thumb, coagulation is neglected in laboratory experiments and occupational hygiene work if the concentration is lower than 10⁹/m³ [10⁶/cm³]", Aerosol Technology by William C. Hinds

Downstream particle count

- Measured upstream sampling time when the particle count reached 99,999,999 (UCPC max. display) and decided the minimum downstream sampling time 10 times higher than this.
- 2. After downstream particle counting, measured upstream particle concentration again to make sure the concentration is stable over the sampling time.
- 3. If downstream particle concentration is lower than background count (0.001 #/cc), the filtration efficiency is considered as higher than 99.999999%.

UHE filter efficiency test result

UHE filter sample A (Filtration flowrate: 5 slpm)

S	ize	Upstream (#/cc)	Downstream			Background	Efficiency
(r	(nm)		Time (sec.)	Counts (#)	Concentration (#/cc)	(#/cc)	(%)
3	3.4	2.18x10 ⁵	5,500	4	8.73x10 ⁻⁴	0.001	> 99.9999999
	10	2.73x10 ⁵	4,390	3	8.20x10 ⁻⁴	0.001	> 99.9999999
	20	2.85x10 ⁵	4,210	2	5.70x10 ⁻⁴	0.001	> 99.9999999

UHE filter sample B (Filtration flowrate: 5 slpm)

Size	Upstream (#/cc)	Downstream			Background	Efficiency
(nm)		Time (sec.)	Counts (#)	Concentration (#/cc)	(#/cc)	(%)
3.4	2.50x10 ⁵	4,800	4	1.00x10 ⁻³	0.001	> 99.9999999
10	2.82x10 ⁵	4,250	5	1.41x10 ⁻³	0.001	99.999999
20	2.67x10 ⁵	4,500	1	2.67x10 ⁻⁴	0.001	> 99.9999999

Conclusions

- UHE filter test setup and procedure was established to measure filtration efficiency up to nine-9s by
 - 1. Adjusting DMA sheath flow ratio
 - 2. Measuring background particle counts
 - 3. Increasing particle sampling time.
- Sample A and B show filtration efficiencies of higher than nine-9s in diffusion dominant particle size range.

Thank You.

