COT 3100C: INTRODUCTION TO DISCRETE STRUCTURES

SUMMER 2024

Basic Structures: Sets and Functions

Part-3

Mesut Ozdag, Ph.D. mesut.ozdag@ucf.edu

Outline

Sets

- The Language of Sets.
- Set Operations.
- Set Identities.

Functions

- Types of Functions.
- Operations on Functions.
- Computability.

Section Functions

Section Summary₃

Definition of a Function.

- Domain, Codomain.
- Image, Preimage.

Injection, Surjection, Bijection.

Inverse Function.

Function Composition.

Graphing Functions.

Floor, Ceiling, Factorial.

Partial Functions.

Functions₁

Definition: Let A and B be nonempty sets. A *function* f from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

 Functions are sometimes called mappings or transformations.

Assignment of Grades in a Discrete Structures Class.

Functions₂

A function $f: A \rightarrow B$ can also be defined as a subset of $A \times B$ (a relation). This subset is restricted to be a relation where no two elements of the relation have the same first element.

Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$. f(a) = b.

$$\forall x \Big[x \in A \to \exists y \Big[y \in B \land (x,y) \in f \Big] \Big]$$
and
$$\forall x, y_1, y_2 \Big[\Big[(x,y_1) \in f \land (x,y_2) \in f \Big] \to y_1 = y_2 \Big]$$

Functions₃

Given a function $f: A \rightarrow B$:

We say f maps A to B or f is a mapping from A to B.

A is called the **domain** of f.

B is called the *codomain* of *f*.

- - then *b* is called the *image* of *a* under *f*.
 - *a* is called the *preimage* of *b*.
- \square The **range** of f is the set of all images of points in **A** under f. We denote it by f(A).
- Two functions are *equal* when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

The Function f Maps A to B.

Questions

$$f(a) = ?$$

The image of d is?

The domain of f is?

The codomain of f is? B

The preimage of y is? **b**

$$f(A) = ? \qquad \{y,z\}$$

The preimage(s) of z is (are) ? $\{a,c,d\}$

Question on Functions and Sets

Definition: If $f:A \rightarrow B$ and S is a subset of A, then

$$f(S) = \{f(s) \mid s \in S\}$$

$$f$$
{a,b,c,} is? {y,z}
 f {c,d} is? {z}

Functions

Definition: Let f_1 and f_2 be functions from A to R. Then f_1+f_2 and f1.f2 are also functions from A to R defined for all $x \in A$ by

- $(f_1+f_2)(x) = f_1(x)+f_2(x)$
- $(f_1.f_2)(x) = f_1(x).f_2(x)$

Example: Let f_1 and f_2 be functions from R to R such that $f_1(x) = x^2$ and $f_2(x) = x - x^2$. What are the functions $f_1 + f_2$ and $f_1.f_2$?

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + (x - x^2) = x$$
$$(f_1 f_2)(x) = x^2(x - x^2) = x^3 - x^4.$$

Injections

Definition: A function f is said to be **one-to-one**, or **injective**, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.

A function is said to be an *injection* if it is one-to-one.

$$\forall a \forall b (f(a) = f(b) \rightarrow a = b)$$

$$\forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$$

Injection - Examples

Determine whether the function f from {a, b, c, d} to {1, 2, 3, 4, 5}
 with f(a)=4, f(b)=5, f(c)=1, and f(d)=3 is one-to-one.

• Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one.

No e.g.,
$$f(1) = f(-1) = 1$$
, but $1 = -1$

Surjections

Definition: A function f from A to B is called **onto** or **surjective**, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

- A function f is called a surjection if it is onto.
- f's range and codomain are equal.
- $\forall y \exists x (f(x) = y)$

Surjection - Examples

Let f be the function from {a, b, c, d} to {1, 2, 3} defined by f(a)=3, f(b)=2, f(c)=1, and f(d)=3. Is f an onto function?

Is the function f(x)=x² from the set of integers to the set of integers onto?

No e.g., no integer x with $x^2 = -1$

Bijections

Definition: A function f is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto (surjective and injective).

Example: Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f $\{a\}$ = 4, f $\{b\}$ = 2, f $\{c\}$ = 1, and f $\{d\}$ = 3. Is f a bijection?

Yes

Showing that f is one-to-one or onto

Suppose that $f: A \rightarrow B$.

To show that f is injective Show that if f(x)=f(y) for arbitrary $x,y\in A$, then x=y.

To show that f is not injective Find particular elements $x,y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x)=y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Examples

Inverse Functions

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1} , is the function from B to A defined as

$$f^{-1}(y) = x \text{ iff } f(x) = y$$

No inverse exists unless f is a bijection. Why?

FIGURE: The Function f⁻¹ is the inverse of Function f

Inverse Functions₂

Questions₁

Example 1: Let f be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$.

Questions₂

Example 2: Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence.

Format: f(x) = y; therefore, f(x)=y=x+1.

 $f^{-1}(y) = x$, so, rewrite x in terms of y.

$$x = y-1$$

$$f^{-1}(y)=y-1.$$

Questions₃

Example 3: Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x) = x^2$ Is f invertible, and if so, what is its inverse?

Solution: The function f is not invertible because it is not one-to-one. f(-2) = f(2) = 4.

Composition₁

Definition: Let $f: B \rightarrow C$, $g: A \rightarrow B$. The composition of f with g, denoted $f \circ g$ is the function from A to C defined by $(f \circ g)(a) = f(g(a))$

Composition₂

Composition₃

Example 1: $f(x)=x^2$ and g(x)=2x+1.

$$f \circ g = ?$$

$$g \circ f = ?$$

$$f(x)=x^2$$
 and $g(x)=2x+1$,
then

$$f(g(x)) = (2x+1)^2$$

and

$$g(f(x)) = 2x^2 + 1$$

