Intervals, Transformations, and Slope Solution (version 83)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-4,4) \cup (8,9)$
Negative	$(-10, -4) \cup (4, 8)$
Increasing	$(-7,1) \cup (7,9)$
Decreasing	$(-10, -7) \cup (1, 7)$
Domain	(-10,9)
Range	(-10, 10)

Intervals, Transformations, and Slope Solution (version 83)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=36$ and $x_2=54$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 31 & 36 \\ 36 & 58 \\ 54 & 31 \\ 58 & 54 \\ \end{array}$$

$$\frac{g(54) - g(36)}{54 - 36} = \frac{31 - 58}{54 - 36} = \frac{-27}{18}$$

The greatest common factor of -27 and 18 is 9. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-3}{2}$$

2