

캡스톤디자인 | 계획발표

SAR 영상 분석 및 의미론적 분할 연구 (SAR image analysis and semantic segmentation research)

팀 명: SkyPixel 이지상, 서형원

INDEX

I. 배경 및 필요성

Ⅱ. 데이터셋

Ⅲ. 연구 목표 및 계획

IV. 연구의 활용성

V. 참고문헌

I. 배경 및 필요성

• 위성 영상이란?

- 인공위성에서 촬영된 이미지
- 가시광선을 이용한 일반적인 위성 영상 (Electro-Optica)
 - 기상 조건과 낮/밤에 따른 제약
 - 비전문가도 레이블링 작업 수행 가능

EO 센서

EO 이미지

[표1-1] 위성영상 활용분야

분야	분류기준
지도제작	지도제작, 고도값 추출, 변화탐지 등
환경	환경계획, 환경모델링 및 모니터링, 환경영향평가, 피복분류 등
해양	빙하탐지, 어업관리, 갯벌생태계조사 등
지질자원	선구조 추출, 광물탐지, 지질재해조사 등
임업	산림피복분류, 산림재해 모니터링, 산림자원 정보 구축 등
수자원	수질관리, 수자원재해 모니터링, 습지변화탐지 등
농업	작황분석, 농업재해 모니터링 등
기상·기후	대기보정, 기상모니터링, 대기오염분석 등
기타	영상자료의 전처리 기법 또는 알고리즘 개발, 정확도 평가 등

labeling

MASK 이미지

3

I. 배경 및 필요성

- SAR(Synthetic Aperture Radar)
 - 전자기파를 이용하여 반사된 후방산란계수를 이미지로 표현한 것
 - 입사파 방향으로 반사되는 후방산란의 강도는 표면 상태에 영향을 받음
 - 기상 조건과 낮/밤에 관계없이 이미지 취득이 가능
 - 복잡한 이미징 메커니즘
 - 레이블링에 전문가 필요

EO 이미지

SAR 이미지

l. 배경 및 필요성

- 위성영상에서의 Segmentation/Detection
 - EO에서의 Segmentation/Detection
 - 간단한 이미징 메커니즘, 충분한 데이터셋으로 인해 높은 성능
 - SAR에서의 Segmentation/Detection
 - 복잡한 이미징 메커니즘, 데이터셋의 부족으로 인한 낮은 성능

Object Detection

Image Segmentation

I. 배경 및 필요성

- · UDA(Unsupervised Domain Adaptation)의 필요성
 - 레이블이 있는 소스 도메인 → 레이블이 없거나 부족한 타겟 도메인으로 지식 전달
 - 레이블이 존재하는 EO 이미지(소스 도메인)로 학습, 레이블이 존재하지 않는 SAR 이미지(타겟 도메인)로 추론
 - EO 이미지와 SAR 이미지의 특성 분포를 정렬하여 도메인 차이로 인한 성능 하락 방지
 - 값 비싼 SAR 이미지의 레이블링 비용 필요 없이 SAR 이미지의 활용성을 높일 수 있음

II. 데이터셋

SpaceNet 6

- 동일한 좌표에서의 Optical, SAR, Building Segmentation Label 제공
- 1. Domain Adaptation 연구 데이터 활용 가능
 - 동일한 좌표에서의 Optical / SAR 데이터
- 2. Segmentation 학습 데이터 활용 가능
 - Building Segmentation Label 제공
- 3. 해상도, 이미지 수
 - 900 × 900, 3401 장

scaled SAR image (2-98scaled_gamma0.7)

MASK (Label)

III. 연구 목표 및 계획

• 연구 목표

- 기존의 SAR 이미지의 UDA 연구는 노이즈가 적은 Ship Detection Task 수행
- SpaceNet 6 데이터셋을 사용하여 복잡한 도시 환경에서의 UDA를 통한 Building Segmentation 수행
- 평가 지표(IoU)를 통해 연구의 성과를 정량적으로 평가하여 실사용 가능한 수준까지 성능 향상

Ship Detection

Building Segmentation

III. 연구 목표 및 계획

• 연구 계획

- UDA(Unsupervised Domain Adaptation) 연구 논문 탐색
- SAR 데이터셋 구축, 분석 및 전처리
- UDA 모델 설계
 - Object Detection, Segmentation Backbone Network 탐색
 - Pretrained Model은 Hugging Face 사용
- 타 논문 재현 및 비교 실험 수행
- 실제 효용성 검증
 - SIA에서 제공한 SAR 이미지를 이용하여 성능 평가 진행

Ⅲ. 연구 목표 및 계획

• 역할 분담

이지상	서형원	
관련 논문 탐색 및 재현		
데이터셋 탐색 및 수집		
논문 작성 및 자료 제작		
EO to SAR Domain Adaptation Detection 연구	SAR Image Scaling 방법 탐색	
생성 모델을 이용한 Image-to-Image 연구	SAR Segmentation 데이터 증대 연구	

IV. 연구의 활용성

· SAR 영상의 장점

- 구름이 많거나 비가 오는 등 기상 조건의 영향을 받지 않음
- 레이더 신호를 사용하기 때문에 일광의 유무와 관계 없이 야간에도 데이터 수집 가능

· SAR 영상의 활용성

- 국방 분야 → 전투기, 전차, 전함 등 **야간 이동** 조기 탐지 가능
- 재난 관리 > 홍수, 산사태, 지진 등에 의한 지형 변화 모니터링하여 <mark>재난 대응</mark>에 도움

V. 참고문헌

SAR Image Dataset

• Shermeyer, J.; Hogan, D.; Brown, J.; Van Etten, A.; Weir, N.; Pacifici, F.; Hänsch, R.; Bastidas, A.; Soenen, S.; Bacastow, T.; Lewis, R. SpaceNet 6: Multi-Sensor All Weather Mapping Dataset. arXiv, 2020

UDA for Segmentation

• Zou Y.; Yu Z.; B.V.K. Kumar V.; Wang J.; Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training. ECCV 2018.

UDA for Detection From EO to SAR Images

- Shi, Y.; Guo, Y. Unsupervised Domain Adaptation Based on Progressive Transfer for Ship Detection: From Optical to SAR Images. IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 2022.
- Yang, Y.; Chen, J.; Sun, L.; Zhou, Z.; Huang, Z.; Wu, B. Unsupervised Domain-Adaptive SAR Ship Detection Based on Cross-Domain Feature Interaction and Data Contribution Balance. Remote Sensing, 2024.

Q/A