연구진행방향

원광대학교 SW융합학과

복경수

◆ 연구 필요성

- ➤ 지능형 교통시스템(ITS)는 교통, 전자, 통신, 제어 등 첨단기술을 적용하여 교통시설, 수단의 실시간 관리 및 제어와 교통정보의 실시간 수집 및 활용
- ightharpoonup IoT 기술을 발전으로 V2X 기술을 통해 차량으로 부터 직접 교통 정보를 수집하고 활용
- 소셜 네트워킹 기능을 이용하여 사용자로부터 필요한 정보를 수집하기 위한 소셜 클라우딩 기술이 활용

◆ 연구 목적

- ▶ IoT 기술을 접목한 ITS에 사용자의 참여를 통한 서비스를 개발
- 도로 주변에 있는 사용자들의 이동 변화 및 제보 정보를 이용하여 교통 흐름에 영향을 미치는 요소들을 수집하고 교통 흐름을 예측
- 1차목표는 도로 주변에서 교통 흐름에 영향을 미치는 요소들을 수집하고 앱을 통해 제공
- 2차목표는 이종의 도로 주변 정보를 분석하여 이벤트 유형을 판별하고 이웃 차량에게 공유(V2X 기술 활용)
- ▶ 3차목표는 교통 흐름에 영향을 미치는 요소들을 AI 기술을 통해 분석하고 교통 흐름(속도, 정체구간 등)을 예측하여 선제 대응(도로 진입 전에 미리 전 달)

◆ 연구 수행 범위

구분	내용
사례 조사	 기존 서비스에서 활용가능한 데이터 분석 기존 교통 제보 서비스 분석 교통 제보 및 교통 속도 수집 방법 분석 지도 데이터 활용 서비스 관련 논문 조사
관련 논문 분석 (옵션)	■ 도로 교통 흐름 판별 논문 조사 ■ 이벤트 판별 및 교통 흐름 예측 논문 조사
도로 정보 수집	기존 서비스에서 제공하는 도로 정보 수집(속도, 이동량, 사고 정보 등)소셜 클라우드 기반의 교통 제보 앱 개발
도로 정보 제공	기존 서비스 및 앱을 통해 수집한 정보를 분류지도 서비스와 연계하여 분류된 정보를 표시
도로 정보 배포	 분류된 정보에 따라 위험성 레벨을 개발 차량의 위치를 기반으로 위험성 레벨에 따라 관련 정보 제공

◆ 사례 조사

구분		내용
실시간 교통	TBN 실시간교통정보 (제보 및 사건 사고)	https://www.tbn.or.kr/traffic/tr_text info.tbn?BOARD_ID=T001&area_c ode=1
	도로교통정보센터 (돌발정보)	https://www.its.go.kr/
	지역별 교통정보센터	
기상 정보	기상청	https://www.weather.go.kr/w/index.do
통계 정보	공동데이터포털	https://www.data.go.kr/index.do
	한국교통안전공단	http://www.ts2020.kr/main.do
교통 정보 앱	Waze	지역 내 주행 커뮤니티에 실시간 교 통정보를 제공
	국가교통정보센터	고속도로와 국도의 실시간 교통정보, 공사 및 사고정보, VMS 정보, CCTV 영상
	위드라이브 톡	교통 제보 서비스 및 이동 속도

◆ 관련 논문 조사

번호	내용
1	V2X 통신 기술 및 서비스 동향
2	협력주행을 위한 V2X 통신기술 현황
3	통신의 관점에서 접근한 차량 네트워킹의 인포테인먼트와 도로 안 전 서비스
4	정밀전자지도를 활용한 디지털 도로 이벤트 관리 시스템
5	Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks(옵션)
6	Trustworthy Event-Information Dissemination in Vehicular Ad Hoc Networks(옵션)

◆ 연구 필요성

- 온라인 소셜 네트워크를 이용하는 사용자가 빠르게 증가하면서 사용자들은 다양한 경로로 수많은 정보를 습득
- 사용자 참여형 서비스가 증가됨에 따라 온라인을 통해 다양한 콘텐츠가 생성되고 공유
- 많은 정보에 노출이 되면서 사용자들은 수많은 정보들 중에서 자신에게 적합한 정보만을 습득하기 어려움
- ▶ 대부분의 추천 서비스는 명시적 평가 점수만을 이용하여 콘텐츠를 추천

◆ 연구목표

- 소셜 미디어를 통해 사용자들 사이의 정보가 상호 교류되면서 암시적 관계성이 생성됨에 따라 해당 정보를 이용하여 콘텐츠를 추천
- 대용량의 소셜 미디어에서 개인 성향 및 상황에 맞는 신뢰성 있는 콘텐츠를 추천
- ▶ 명시적 점수와 암시적 점수를 고려하여 추천 정확도 개선
- ▶ 1차목표: 개인의 성향 및 콘텐츠의 품질(신뢰성)를 고려한 협업 필터링 기반 의 추천
- 2차목표 : 딥러닝 기술을 적용하여 콘텐츠 분류 및 콘텐츠 신뢰도를 예측하고 추천
- ▶ 3차목표: IoT 기술(사용자 주변 정보)를 결합하여 개인 성향 및 상황에 적합한 콘텐츠를 추천

◆ 연구 수행 범위

구분	내용
관련 논문 분석	소셜 미디어에 대한 협업 필터링 기반 추천 기법콘텐츠 품질(신뢰성)을 판별하기 위한 기법
사례 조사	 소셜 기반의 콘텐츠 생성(업로딩) 및 공유 서비스 사용자 성향 및 콘텐츠 품질로 활용 가능한 데이터 유형 판별
소셜 미디어 추천	 사용자의 행위(생성 및 사용 내역 등) 분석을 통한 성향 판별 암시적 행위를 고려한 콘텐츠 신뢰성 판별 협업 필터링을 통해 콘텐츠 추천 기법 개발
성능 평가	 소셜 미디어(동영상, 음악, 사진 등)에서 실험에 활용 가능한 데이터 수집 기존 기법과 제안 기법에 대한 성능 비교(추천 정확도, 오류률, 계산 시간 등)

◆ 관련 논문 분석

번호	내용
1	 추천 시스템 기법 연구동향 분석 협업 필터링 추천 시스템의 예측 정확도 향상에 관한 연구 (pp.11~40 내용만)
2	■ 사용자의 소셜 카테고리를 이용한 유튜브 동영상 추천 알고리 즘
3	■ 소셜 네트워크 환경에서 사용자 행위를 고려한 콘텐츠 추천 기법 ■ Personalized content recommendation scheme based on trust in online social networks
4	 An Adaptive Social Network-Aware Collaborative Filtering Algorithm for Improved Rating Prediction Accuracy
5	 Modeling Trust-Aware Recommendations With Temporal Dynamics in Social Networks
6	■ Building user profiles based on sequences for content and collaborative filtering(옵션)

◆ 사례 조사

구분		내용
동영상	유튜브	https://www.youtube.com/
	네이버TV	https://tv.naver.com/
	판도라TV	http://www.pandora.tv/
	페이스북 Watch	https://www.facebook.com/watch/
	카카오TV	https://tv.kakao.com
	아프리카TV	http://afreecatv.com/
음악	벅스뮤직	https://music.bugs.co.kr/
	멜론	https://www.melon.com/
	last.fm	https://www.last.fm/
사진	플리커	https://www.flickr.com/
	인스타그램	https://www.instagram.com/

진행 일정

◆ 소셜 차량 네트워크 서비스

구분	일정
사례 조사 및 분석	현재~4월 10일
기능 정의	4월11일~5월1일
설계	5월2일~5월15일
1차개발(제고 앱 개발)	5월16일~7월31일
2차개발(기존 서비스 데이터 연동)	7월17일~8월28일
3차개발(통합 및 배포)	8월29일~9월30일

진행 일정

◆ 소셜 추천 서비스

구분	일정
사례 조사 및 분석	현재~5월15일
아이디어 정리 및 설계	5월16일~7월17일
알고리즘 개발	7월18일~8월21일
성능 평가	8월22일~9월30일