SQL CASE STUDY

DATA IN MOTION HUMAN RESOURCES


```
-- Create tables and insert data for analysis
-- Create 'departments' table
CREATE TABLE departments (
  id INT IDENTITY(1,1) PRIMARY KEY,
  name VARCHAR(50),
  manager_id INT
);
--Create 'employees' table
CREATE TABLE employees (
  id INT IDENTITY(1,1) PRIMARY KEY,
  name VARCHAR(50),
  hire_date DATE,
  job_title VARCHAR(50),
  department_id INT REFERENCES departments(id)
);
-- Create 'projects' table
CREATE TABLE projects (
  id INT IDENTITY(1,1) PRIMARY KEY,
  name VARCHAR(50),
  start_date DATE,
  end_date DATE,
  department_id INT REFERENCES departments(id)
);
-- Insert data into 'departments'
INSERT INTO departments (name, manager_id)
VALUES ('HR', 1), ('IT', 2), ('Sales', 3);
-- Insert data into 'employees'
INSERT INTO employees (name, hire_date, job_title, department_id)
```

```
VALUES ('John Doe', '2018-06-20', 'HR Manager', 1),
    ('Jane Smith', '2019-07-15', 'IT Manager', 2),
    ('Alice Johnson', '2020-01-10', 'Sales Manager', 3),
    ('Bob Miller', '2021-04-30', 'HR Associate', 1),
    ('Charlie Brown', '2022-10-01', 'IT Associate', 2),
    ('Dave Davis', '2023-03-15', 'Sales Associate', 3);
-- Insert data into 'projects'
INSERT INTO projects (name, start_date, end_date, department_id)
VALUES ('HR Project 1', '2023-01-01', '2023-06-30', 1),
    ('IT Project 1', '2023-02-01', '2023-07-31', 2),
    ('Sales Project 1', '2023-03-01', '2023-08-31', 3);
UPDATE departments
SET manager_id = (SELECT id FROM employees WHERE name = 'John Doe')
WHERE name = 'HR';
UPDATE departments
SET manager_id = (SELECT id FROM employees WHERE name = 'Jane Smith')
WHERE name = 'IT';
UPDATE departments
SET manager_id = (SELECT id FROM employees WHERE name = 'Alice Johnson')
WHERE name = 'Sales';
-- SQL Challenge Questions
--1. Find the longest ongoing project for each department.
SELECT d.name AS department_name,
    p.name AS project_name,
    p.start_date AS project_start_date,
    p.end_date AS project_end_date,
    DATEDIFF(DAY, p.start_date, GETDATE()) AS project_duration_days
FROM departments d
LEFT JOIN projects p ON d.id = p.department_id
WHERE p.end_date <= GETDATE()
```

ORDER BY d.name, project_duration_days DESC;

Results Messages

	department_n ∨	project ∨	project_start ∨	project_end_date	project_d ∨
1	HR	HR Project 1	2023-01-01	2023-06-30	250
2	IT	IT Project 1	2023-02-01	2023-07-31	219
3	Sales	Sales Proje…	2023-03-01	2023-08-31	191

--2. Find all employees who are not managers.

SELECT e.name AS employee_name, e.job_title

FROM employees e

LEFT JOIN departments d ON e.id = d.manager_id

WHERE d.id IS NULL;

Results Messages

	employee_name 🗸	job_title
1	Bob Miller	HR Associate
2	Charlie Brown	IT Associate
3	Dave Davis	Sales Associate

--3. Find all employees who have been hired after the start of a project in their department.

SELECT e.name AS employee_name, e.hire_date, p.name AS project_name, p.start_date AS project_start_date FROM employees e

INNER JOIN projects p ON e.department_id = p.department_id

WHERE e.hire_date > p.start_date;

Results Messages

	employee_name 🗸	hire_date 🗸	project_name 🗸	project_start_date
1	Dave Davis	2023-03-15	Sales Project 1	2023-03-01

--4. Rank employees within each department based on their hire date (earliest hire gets the highest rank).

SELECT e.name AS employee_name, e.hire_date, d.name AS department_name,

RANK() OVER (PARTITION BY e.department_id ORDER BY e.hire_date) AS hire_rank

FROM employees e

INNER JOIN departments d ON e.department_id = d.id

ORDER BY e.department_id, hire_rank;

Results Messages

	employee_name 🗸	hire_date 🗸	department_name	hire_rank 🗸
1	John Doe	2018-06-20	HR	1
2	Bob Miller	2021-04-30	HR	2
3	Jane Smith	2019-07-15	IT	1
4	Charlie Brown	2022-10-01	IT	2
5	Alice Johnson	2020-01-10	Sales	1
6	Dave Davis	2023-03-15	Sales	2

--5. Find the duration between the hire date of each employee and the hire date of the next employee hired in the same department.

```
WITH EmployeeWithNextHire AS (

SELECT e.name AS employee_name, e.hire_date, d.name AS department_name,

LEAD(e.hire_date) OVER (PARTITION BY e.department_id ORDER BY e.hire_date) AS next_hire_date

FROM employees e

INNER JOIN departments d ON e.department_id = d.id
)
```

SELECT employee_name, hire_date, department_name,

DATEDIFF(DAY, hire_date, next_hire_date) AS hire_duration_days

FROM EmployeeWithNextHire;

Results Messages

	employee_name 🗸	hire_date 🗸	department_name	hire_duration_days
1	John Doe	2018-06-20	HR	1045
2	Bob Miller	2021-04-30	HR	NULL
3	Jane Smith	2019-07-15	IT	1174
4	Charlie Brown	2022-10-01	IT	NULL
5	Alice Johnson	2020-01-10	Sales	1160
6	Dave Davis	2023-03-15	Sales	NULL