Um Novo Olhar sobre o Teorema Fundamental da Álgebra

Seminário de Álgebra, FCUL 30 de Abril de 2004

Luís Cruz-Filipe

Universidade de Nijmegen, Holanda Centro de Lógica e Computação, Portugal

duma

Formalização

Construtiva

duma

Formalização

- extracção de programas
- o quê, como, porquê

Construtiva

duma

Formalização

- extracção de programas
- o quê, como, porquê
- o quê, como, porquê
- interesse teórico e prático

Construtiva

duma

Formalização

- .. 6 o quê
 - 6 exemplos "naturais"

3

extracção de programas

o quê, como, porquê

- o quê, como, porquê
- interesse teórico e prático

Construtiva

1. Formalização de Matemática

- 1. Formalização de Matemática
- 2. Matemática Construtivista

- 1. Formalização de Matemática
- 2. Matemática Construtivista
- 3. Extracção de Programas

- 1. Formalização de Matemática
- 2. Matemática Construtivista
- 3. Extracção de Programas
- 4. O Teorema Fundamental da Álgebra

- 1. Formalização de Matemática
- 2. Matemática Construtivista
- 3. Extracção de Programas
- 4. O Teorema Fundamental da Álgebra
- 5. Conclusões &c.

O quê

O quê

Representação fidedigna de provas num computador

O quê

Representação fidedigna de provas num computador

Porquê

O quê

Representação fidedigna de provas num computador

Porquê

Garantia elevada de correcção

O quê

Representação fidedigna de provas num computador

Porquê

Garantia elevada de correcção

Apresentação e visualização de resultados

O quê

Representação fidedigna de provas num computador

Porquê

Garantia elevada de correcção

Apresentação e visualização de resultados

Troca de informação

O quê

Representação fidedigna de provas num computador

Porquê

Garantia elevada de correcção

Apresentação e visualização de resultados

Troca de informação

Aplicações

Lógica Intuicionista (Brouwer): rejeita $A \vee \neg A$

Lógica Intuicionista (Brouwer): rejeita $A \vee \neg A$

→ não há uma interpretação intuitiva deste axioma

Lógica Intuicionista (Brouwer): rejeita $A \vee \neg A$

- → não há uma interpretação intuitiva deste axioma
- \rightsquigarrow realizabilidade (Kleene): uma prova de $\forall x. \exists y. P(x, y)$ define uma função [computável]

Lógica Intuicionista (Brouwer): rejeita $A \vee \neg A$

→ não há uma interpretação intuitiva deste axioma

 \rightsquigarrow realizabilidade (Kleene): uma prova de $\forall x. \exists y. P(x,y)$ define uma função [computável]

Exemplos "naturais":

Lógica Intuicionista (Brouwer): rejeita $A \vee \neg A$

- → não há uma interpretação intuitiva deste axioma
- \rightsquigarrow realizabilidade (Kleene): uma prova de $\forall x. \exists y. P(x,y)$ define uma função [computável]

Exemplos "naturais":

isomorfismo de Curry—Howard

Lógica Intuicionista (Brouwer): rejeita $A \vee \neg A$

- → não há uma interpretação intuitiva deste axioma
- \rightsquigarrow realizabilidade (Kleene): uma prova de $\forall x. \exists y. P(x,y)$ define uma função [computável]

Exemplos "naturais":

- isomorfismo de Curry—Howard
- 6 lógica interna dum topos

Ideia: tornar explícito o algorimo implícito numa prova de $\forall x. \exists y. P(x,y)$

Ideia: tornar explícito o algorimo implícito numa prova de $\forall x. \exists y. P(x,y)$

→ distinção entre o algoritmo e as suas propriedades

Ideia: tornar explícito o algorimo implícito numa prova de $\forall x. \exists y. P(x,y)$

- → distinção entre o algoritmo e as suas propriedades
- \rightsquigarrow termos de prova podem influenciar o resultado dos cálculos (e.g. $\frac{1}{x}$)

Ideia: tornar explícito o algorimo implícito numa prova de $\forall x. \exists y. P(x,y)$

- → distinção entre o algoritmo e as suas propriedades
- \rightsquigarrow termos de prova podem influenciar o resultado dos cálculos (e.g. $\frac{1}{x}$)

Útil quando correcção é mais importante que eficiência

Teorema. Seja f um polinómio não constante de coeficientes complexos. Então f tem uma raíz.

Teorema. Seja f um polinómio não constante de coeficientes complexos. Então f tem uma raíz.

Prova. [H. Kneser, 1940] Nas condições do teorema, $|f(z)| \longrightarrow \infty$ quando $|z| \longrightarrow \infty$, logo |f| tem um mínimo em $z_0 \in \mathbb{C}$.

Teorema. Seja f um polinómio não constante de coeficientes complexos. Então f tem uma raíz.

Prova. [H. Kneser, 1940] Nas condições do teorema, $|f(z)| \longrightarrow \infty$ quando $|z| \longrightarrow \infty$, logo |f| tem um mínimo em $z_0 \in \mathbb{C}$.

Sejam
$$g(z) = f(z - z_0) = \sum_{i=0}^{n} a_i z^i \text{ com } g(0) \neq 0$$

Teorema. Seja f um polinómio não constante de coeficientes complexos. Então f tem uma raíz.

Prova. [H. Kneser, 1940] Nas condições do teorema, $|f(z)| \longrightarrow \infty$ quando $|z| \longrightarrow \infty$, logo |f| tem um mínimo em $z_0 \in \mathbb{C}$.

Sejam $g(z) = f(z - z_0) = \sum_{i=0}^n a_n z^n \text{ com } g(0) \neq 0 \text{ e } k > 0$ mínimo com $a_k \neq 0$;

Teorema. Seja f um polinómio não constante de coeficientes complexos. Então f tem uma raíz.

Prova. [H. Kneser, 1940] Nas condições do teorema, $|f(z)| \longrightarrow \infty$ quando $|z| \longrightarrow \infty$, logo |f| tem um mínimo em $z_0 \in \mathbb{C}$.

Sejam $g(z) = f(z - z_0) = \sum_{i=0}^{n} a_n z^n \text{ com } g(0) \neq 0 \text{ e } k > 0$ mínimo com $a_k \neq 0$; então $g(z) = a_0 + a_k z^k + O(z^{k+1})$.

Teorema. Seja f um polinómio não constante de coeficientes complexos. Então f tem uma raíz.

Prova. [H. Kneser, 1940] Nas condições do teorema, $|f(z)| \longrightarrow \infty$ quando $|z| \longrightarrow \infty$, logo |f| tem um mínimo em $z_0 \in \mathbb{C}$.

Sejam $g(z)=f(z-z_0)=\sum_{i=0}^n a_n z^n \ \text{com} \ g(0)\neq 0 \ \text{e} \ k>0$ mínimo com $a_k\neq 0$; então $g(z)=a_0+a_k z^k+O\left(z^{k+1}\right)$. Tomando ε suficientemente pequeno, em $z'=\varepsilon\sqrt[k]{-\frac{a_0}{a_k}}$ o termo em $O\left(z^{k+1}\right)$ é negligenciável,

Teorema. Seja f um polinómio não constante de coeficientes complexos. Então f tem uma raíz.

Prova. [H. Kneser, 1940] Nas condições do teorema, $|f(z)| \longrightarrow \infty$ quando $|z| \longrightarrow \infty$, logo |f| tem um mínimo em $z_0 \in \mathbb{C}$.

Sejam $g(z)=f(z-z_0)=\sum_{i=0}^n a_n z^n \ \text{com} \ g(0)\neq 0 \ \text{e} \ k>0$ mínimo com $a_k\neq 0$; então $g(z)=a_0+a_k z^k+O\left(z^{k+1}\right)$. Tomando ε suficientemente pequeno, em $z'=\varepsilon\sqrt[k]{-\frac{a_0}{a_k}}$ o termo em $O\left(z^{k+1}\right)$ é negligenciável, e $|g(z')|\approx |a_0|(1-\varepsilon^k)<|g(0)|$. Absurdo.

 \rightsquigarrow não é uma prova construtiva: provámos $\neg\neg\exists z.f(z)=0$, mais fraco que $\exists z.f(z)=0$.

 \rightsquigarrow não é uma prova construtiva: provámos $\neg\neg\exists z.f(z)=0$, mais fraco que $\exists z.f(z)=0$.

 \leadsto no entanto, dado z tal que |f(z)|>0 construímos um z' com |f(z)|>|f(z')|

 \rightsquigarrow não é uma prova construtiva: provámos $\neg\neg\exists z.f(z)=0$, mais fraco que $\exists z.f(z)=0$.

 \leadsto no entanto, dado z tal que |f(z)|>0 construímos um z' com |f(z)|>|f(z')|

 \rightsquigarrow poder-se-á usar esta construção para definir uma sucessão de Cauchy que convirja para uma raíz de f?

 \rightsquigarrow não é uma prova construtiva: provámos $\neg\neg\exists z.f(z)=0$, mais fraco que $\exists z.f(z)=0$.

 \leadsto no entanto, dado z tal que |f(z)|>0 construímos um z' com |f(z)|>|f(z')|

 \rightsquigarrow poder-se-á usar esta construção para definir uma sucessão de Cauchy que convirja para uma raíz de f?

Problema: requisitos opostos sobre ε

Três problemas:

Três problemas:

1. igualdade não é decidível;

Três problemas:

- 1. igualdade não é decidível;
- 2. não é possível encontrar $k \operatorname{com} \sqrt[k]{\frac{|b_0|}{|b_k|}}$ mínimo

Três problemas:

- 1. igualdade não é decidível;
- 2. não é possível encontrar $k \operatorname{com} \sqrt[k]{\frac{|b_0|}{|b_k|}}$ mínimo;
- 3. não é possível encontrar k_j com $|b_{k_j}| r_j^{k_j}$ máximo.

Para resolver (1):

Para resolver (1):

reescrever o resultado como

"se
$$|f(z_i)| < c$$
 então $|f(z_{i+1})| < qc$ "

com q como atrás.

Para resolver (1):

reescrever o resultado como

"se
$$|f(z_i)| < c$$
 então $|f(z_{i+1})| < qc$ "

com q como atrás.

Agora podemos decidir se $|f(z_i)| < qc$ ou $|f(z_i)| > 0$, e o raciocínio anterior é válido.

Para resolver (2):

Para resolver (2): calcular um mínimo "a menos de ε "; isto é, definir ao mesmo tempo r_0 e k_0 tais que, dado $\varepsilon > 0$,

$$a_{k_0} r_0^{k_0} = a_0 - \varepsilon$$

$$a_i r_0^i - \varepsilon < a_{k_0} r_0^{k_0}$$

Para resolver (2): calcular um mínimo "a menos de ε "; isto é, definir ao mesmo tempo r_0 e k_0 tais que, dado $\varepsilon > 0$,

$$a_{k_0} r_0^{k_0} = a_0 - \varepsilon$$

$$a_i r_0^i - \varepsilon < a_{k_0} r_0^{k_0}$$

(Inicializar $k_0 = n$, $r_0 = \sqrt[n]{a_0 - \varepsilon}$. Para cada i até 1:

- 6 se $a_i r_0^i < a_0$ não fazer nada;
- se $a_i r_0^i > a_0 \varepsilon$, redefinir $k_0 = i$ e $r_0 = \sqrt[i]{(a_0 \varepsilon)/a_i}$.

Para resolver (2): calcular um mínimo "a menos de ε "; isto é, definir ao mesmo tempo r_0 e k_0 tais que, dado $\varepsilon > 0$,

$$a_{k_0} r_0^{k_0} = a_0 - \varepsilon$$

$$a_i r_0^i - \varepsilon < a_{k_0} r_0^{k_0}$$

(Inicializar $k_0 = n$, $r_0 = \sqrt[n]{a_0 - \varepsilon}$. Para cada i até 1:

- 6 se $a_i r_0^i < a_0$ não fazer nada;
- se $a_i r_0^i > a_0 \varepsilon$, redefinir $k_0 = i$ e $r_0 = \sqrt[i]{(a_0 \varepsilon)/a_i}$.

Quando i atinge 0, k_0 e r_0 satisfazem as condições acima.)

Ideia: dado $f(z) = \sum_{i=0}^n a_n z^n$, aplicar o raciocínio anterior a f/a_n .

Ideia: dado $f(z) = \sum_{i=0}^{n} a_n z^n$, aplicar o raciocínio anterior a f/a_n .

Problema: mesmo que f não seja constante não é possível garantir que $a_n \neq 0$.

Ideia: dado $f(z) = \sum_{i=0}^{n} a_n z^n$, aplicar o raciocínio anterior a f/a_n .

Problema: mesmo que f não seja constante não é possível garantir que $a_n \neq 0$.

 \rightarrow abordagem diferente, por indução em n.

→ a prova original de M. Kneser corresponde a aplicar o método de Newton–Raphson para encontrar uma raíz do polinómio

→ a prova original de M. Kneser corresponde a aplicar o método de Newton-Raphson para encontrar uma raíz do polinómio

 \rightsquigarrow a versão apresentada (e formalizada) é ligeiramente menos eficiente porque os k_i s começam em 0 e não em -1

- → a prova original de M. Kneser corresponde a aplicar o método de Newton–Raphson para encontrar uma raíz do polinómio
- \leadsto a versão apresentada (e formalizada) é ligeiramente menos eficiente porque os k_i s começam em 0 e não em -1
- \leadsto de momento, a aritmética básica é ineficiente; calcular raízes quadradas em $\mathbb R$ demora demasiado

6 Formalizar matemática é útil

- Formalizar matemática é útil
- "Esquecer" o princípio do terceiro excluído não é muito dramático

- Formalizar matemática é útil
- "Esquecer" o princípio do terceiro excluído não é muito dramático
- Extracção de programas pode vir a ser "a" maneira certa de programar