

# Statistical tools and Data Management

Christopher Maronga





**KEMRI** Wellcome Trust

### Session assumption

Already installed R and Rstdio

Know how to use R at it's basics (NOT required)

Have atleast handled a messy dataset once before

Basic understanding of dataset components(variables/rows/cells)

#### The tool of trade

This session will focus on learning the basics of data wrangling using R statistical software

#### Why R?

There are other cormercial statistical tools such as STATA, SAS and SPSS that can employed in data management We chose R over the rest because:-

- Open source (free to use)
- Relates to other languages and systems
- Its flexible, fun and easy to learn
- Outstanding visualization
- Advanced statistical language(a tool for Machine Learning)

Supports user defined extensions (packages) and its cross-platform

Why should I care about cleaning my data??

## Why should I care about cleaning my data?

- Messy data is everywhere and most real world datasets start off messy in nature
- As data grows bigger, number of things that can go wrong grows in the same magnitude



#### Preamble

What are some of the issues you get to deal with when it comes to data management??

What are some of the domains for inclusion into your error-checking plan??

- ....
- ....
- ....

## The almost familiar data cycle?



## Session Objectives

By the end of the presentation:-

- Get introduced to R for data wrangling
- Be able to read data into R from whichever source it's stored
- Explore your raw data with the aim of deeply understanding it
- Tidy/reshape your data to required format
- Explore toolkit for general data housekeeping in R
- Prepare a dataset for analysis
- Fundamentals of reproducible research

## Follow up plan

In the next couple of minutes, we will explore data munging tasks like:-

- General data validation checks (missing values, outlier values etc.)
- Identifying and removing duplicates
- Manipulating variables
- Creating new variables
- subsetting/filtering data
- Reshaping and Merging datasets

Data cleaning and reshaping is one of the task that we spend much time on while undertaking data management activities

We will introduce a complete toolkit of R packages for cleaning, manipulating, reshaping and visualizing your data

## Getting data into R

Research data can come in different flavours:-

- Flat files (.xlsx,.csv,.txt)
- Data on web-based databases (REDCap, MySQL databases and OpenClinica)
- Data from other statistical softwares (STATA, SAS and SPSS)

We will briefly cover how to read your data into R from the first 2 sources above and begin managing it

```
library(readxl) # for reading .xlsx files
read_excel()

library(readr) # for reading .csv and .txt files
read_csv() and read_tsv()
```

**NOTE:** Alot of functions are available for reading flat files into R, just Google them

## Reading flat files

Lets see how this works with a practical example

## Connecting R to Web-based databases (1/2)

Special packages and functions are available to help you connect and fetch data stored in your web-based databases from within R software

#### Connecting to REDCap

```
library(redcapAPI) # load required package
# create a connection
con<-redcapConnection(url='https://redcaplink/api/',
                      token = 'your account token here')
# export data
my_data <- exportRecords (con, fields = NULL, forms = null,
                       records = NULL, events = NULL,
                       labels = TRUE, dates = TRUE,
                       survey = FALSE, factors=F, dag = T,
                       checkboxLabels = TRUE)
?redcapAPI # get more help
```

## Connecting to REDCap

Lets see how this works with a practical example

## Connecting R to Web-based databases (2/2)

#### Connecting to MySQL dabases

```
library(DBI) # provides the interface
library(RMySQL) # implements the process
# create a connection
con <- dbConnect(MySQL(),
                 host= "hostname",
                 dbname = "databasename",
                 user = "username",
                 password = "password")
# list database tables
dbase_tables <- dbListTables(con)</pre>
# export data
my data <- dbGetQuery(con, "SQL query here")
# close database connection
dbDisconnect(con) # remember to close connection
```

## Connecting to MySQL dabases

Lets see how this works with a practical example

## Cleaning data in R

Steps invloved in cleaning data

Explore the raw data

Tidy/reshape your data

Perform general housekeeping

Preparing for final analysis

## Cleaning data in R – Sources of errors

#### Possible sources of error

- Experimental error
- Data entry error
- Valid measurement (might be) etc.

#### Identifying errors:-

- Focus on context ("tidy datasets are all alike but every messy dataset is messy in its own way" Hadley Wickham)
- Possible ranges

## Cleaning data in R – Exploring raw data

This step is for understanding the structure of your data. Looking through the data components (what variables, types and scope)

- class()
- dim()
- names()
- str() or glimpse()
- summary()
- head()
- tail()

You can also visualize data to quickly identify extreme or suspicious values in your data

- histogram
- scatterplots
- boxplots

## Cleaning data in R - Tidying data

#### Violations of priniciples of tidy data

- Column headers are values, not variables
- Variables stored in both rows and columns
- Multiple variables are stored in one column

tidyr() functions to reshape and restored tidy data

- gather()
- spread()
- separate()
- unite()

gather() and spread() outputs gives rise to most commonly reffered
types of datasets

- wide datasets more columns than rows
- long datasets more rows than columns

## Data Cleaning in R – General Housekeeping

We will explore a sample dataset using dplyr functions among others

#### dplyr functions

- select(): Subset columns
- filter() : Subset rows
- arrange(): Reorders rows
- mutate(): Add columns to existing data
- summarise(): Summarizing data set

#### additional functions

- summary(): printing general summary
- is.na(): checking for missing values
- merge(): to merge 2 datasets

## Data Warehousing

Lets see how this works with a practical example

## Cleaning data in R – Prepare for data analysis

Properly licensing your data for an analysis

Type conversion at its basic ( putting variables into their required formats )

- character
- integer
- logical
- factor
- string manipulation

Its extremely important to know how to convert your variables from one type to another just incase you require it

- as.\* family of functions for type conversion
- dealing with missing values na.omit() and complete.cases()
- outliers/obvious errors histograms and boxplots

## Exporting datasets/saving files (Output)

R allows you to save or export datasets from the workspace into .csv or tab delimeted

```
write.csv(dataset_name, "dest_folder/preferred_name.csv")
```

You can also save an entire workspace and load it later to an R session like this

```
save(list = ls(),file = "pref_name.RDA") # save datasets in we
load("pref_name.RDA") # load back items into workspace
```

## Reports authoring, visualization and reproducible research

Two most powerful tools for report authoring, visualization and process automation

- Rmarkdown is file format for making dynamic documents with R
- Shiny is an open source R package that provides an elegant and powerful web framework for building web applications using R

**NOTE:** R Shiny and creating reports dashboards is beyond the scope of this workshop

## R shiny dashboard workflow

#### How does it work?



## R Shiny framework (1/2)



## R Shiny framework (2/2)





## Version control scripts and projects within RStudio

Rstudio IDE supports version control systems such as Git and SVN. Enables vesrion control data analysis/management codes as well documents withing the R project.





## Acknowledgements



**KEMRI** Wellcome Trust

