Ejercicio 6

Se dispone de un receptor superheterodino de doble conversión, con las siguientes características:

- Filtro de RF con frecuencia central en 110 MHz, ancho de banda de 3 MHz y atenuación fuera de la banda de paso de 30 dB.
- Filtro de 1^{er} FI con frecuencia central de 10,7 MHz, ancho de banda de 250 KHz y atenuación fuera de la banda de paso de 30 dB.
- Filtro de 2da FI con frecuencia central de 455 KHz, ancho de banda de 10 KHz y atenuación fuera de la banda de paso de 45 dB.
- Segundo oscilador local con frecuencia 10,245 MHz

Se ajusta el primer oscilador local a frecuencia 120,7 MHz con el siguiente espectro en antena:

- a) Indique la frecuencia de la señal que se desea recibir y si es posible recibir la señal al menos 40 dB por encima de las interferencias con el receptor propuesto.
- b) Calcule a cuántos decibeles en relación a la potencia de portadora de la señal deseada se encuentra la principal fuente de interferencia a la entrada del detector, explique a qué corresponde y proponga los cambios que deberían hacerse al receptor para reducirla.
- c) Ídem inciso b) para la segunda mayor fuente de interferencia.
- d) Idem inciso b) para la tercera mayor fuente de interferencia.

NOTA: Considere los filtros brickwall ideales y la frecuencia central como la media aritmética de las frecuencias de corte.

 \mathbf{a}

La frecuencia de la señal que se desea recibir, considerando el centro de la banda de paso del filtro RF, es f=110MHz.

Para saber la diferencia entre la señal y las interferencias, podemos plantear los siguiente:

La a la entrada del receptor:

Luego de la etapa de RF:

Luego del primer filtro FI:

Luego del segundo filtro FI:

Se puede observar que la menor diferencia entre la señal y la interferencia en 20KHz (109, 98MHz en la entrada) es de 35dB. Por lo tanto, no se puede recibir la señal 40dB por encima de las interferencias.

b)

Analizando la salida del detector, la principal fuente de interferencia se encuentra en 20Hz con una amplitud de -25dB. Esta señal de interferencia, en la entrada se corresponde a la frecuencia f = 109,98MHz y en relación a la portadora, se encuentra a una diferencia de 10dB.

c)

Analizando la salida del detector, la segunda fuente de interferencia se encuentra en -910KHz con una amplitud de -35dB. Esta señal de interferencia, en la entrada se corresponde a la frecuencia f=110,91MHz y en relación a la portadora, se encuentra a una diferencia de 30dB.

d)

Analizando la salida del detector, la tercera fuente de interferencia se encuentra en -20, 4MHz con una amplitud de -55dB. Esta señal de interferencia, en la entrada se corresponde a la frecuencia f=130, 49MHz y en relación a la portadora, se encuentra a una diferencia de 40dB.