Statistical Physics Homework 4

1. Consider a dilute, ultracold gas of 173 Yb atoms in a shallow optical trap. The ytterbium atoms have a total hyperfine spin F = 5/2 in the electronic ground state. We have $N = 10^7$ atoms in a volume of $V = (100 \mu \text{m})^3$. The optical trap is so shallow, that we can assume the system to be homogeneous. The atomic interaction can be modeled by s-wave scattering, which is a zero-range potential,

$$V(\mathbf{r} - \mathbf{r}') = \frac{4\pi\hbar^2 a}{m} \delta(\mathbf{r} - \mathbf{r}'). \tag{1}$$

The s-wave scattering length of $^{173}{\rm Yb}$ is $a=10\,{\rm nm}$. And, of course, the molar mass is $m=173\,{\rm g/mol}$.

Calculate the Fermi energy

- (a) first by neglecting the interaction,
- (b) then by taking the interaction into account up to first order in the self energy.

Submission: at the beginning of the practice class on 16 Nov.