Tema 3

El teorema de Picard-Lindelöf y el teorema de Cauchy-Peano

Ecuación integral de Volterra

Sean $D \subset \mathbb{R} \times \mathbb{R}^d$ un conjunto abierto, $(t_0, x_0) \in D$ y $f : D \to \mathbb{R}^d$ una función continua. Se considera el P.V.I.

$$(P) \left\{ \begin{array}{l} x' = f(t,x) \\ x(t_0) = x_0. \end{array} \right.$$

Integrando en la ecuación integral se obtiene la llamada ecuación integral de Volterra

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds.$$
 (V)

Dados un intervalo $J \subset \mathbb{R}$ se dice que una función $\varphi : J \to \mathbb{R}^d$ es una solución de (V) si se cumple:

- \bullet $t_0 \in J$,
- **3** Para todo $t \in J$ se cumple $\varphi(t) = x_0 + \int_{t_0}^t f(s, \varphi(s)) ds$.

Dados un intervalo abierto $I\subset\mathbb{R}$ y una función $\varphi:I\to\mathbb{R}^d$, son equivalentes:

- \bullet $\varphi: I \to \mathbb{R}^d$ es una solución de (P).
- ② $\varphi: I \to \mathbb{R}^d$ es una solución de (V).

Dados $a,b\in\mathbb{R}^+$ denotamos por $\mathcal{R}_{a,b}(t_0,x_0)$ o simplemente $\mathcal{R}_{a,b}$ al conjunto

$$\mathcal{R}_{a,b} = \left\{ (t,x) \in \mathbb{R} \times \mathbb{R}^d \ : \ |t - t_0| \le a \ \land \ \|x - x_0\| \le b \right\}$$

es decir:
$$\mathcal{R}_{a,b}(t_0,x_0)=[t_0-a,t_0+a]\times \overline{B}(x_0,b).$$

Observa que la familia $\mathcal{R}_{a,b}(t_0,x_0)$, con $a,b\in\mathbb{R}^+$, constituye una base de entornos del punto (t_0,x_0) en $\mathbb{R}\times\mathbb{R}^d$.

El espacio de funciones continuas $C([t_0-a,t_0+a],\mathbb{R}^d)$ con la norma del máximo

$$\|\varphi\|_{\infty} := \max_{t \in [t_0-a,t_0+a]} \|\varphi(t)\|$$

es un espacio de Banach. En este espacio, consideramos la bola cerrada centrada en la función constante

$$\varphi_0: [t_0 - a, t_0 + a] \to \mathbb{R}^d, \ \varphi_0(t) = x_0$$

y de radio b a la que denotamos

$$E_{a,b}(t_0,x_0) = \{ \varphi \in C([t_0-a,t_0+a],\mathbb{R}^d) : \|\varphi-\varphi_0\|_{\infty} \leq b \}$$

Por tanto, si $\varphi \in E_{a,b}(t_0,x_0)$ entonces su gráfica está contenida en $\mathcal{R}_{a,b}(t_0,x_0)$:

$$(t, \varphi(t)) \in \mathcal{R}_{\mathsf{a}, \mathsf{b}} \quad \forall t \in [t_0 - \mathsf{a}, t_0 + \mathsf{a}]$$

Puesto que $E_{a,b}(t_0, x_0)$ es un subconjunto cerrado de $C([t_0 - a, t_0 + a], \mathbb{R}^d)$, hereda la estructura de espacio métrico completo cuando consideramos la distancia inducida por la norma del máximo d_{∞} :

$$d_{\infty}(\varphi,\psi) = \|\varphi - \psi\|_{\infty}$$

Fijamos $a,b\in\mathbb{R}^+$ tales que $\mathcal{R}_{a,b}\subset D$ y para simplificar la notación, escribimos

$$E=E_{a,b}(t_0,x_0)$$

En este espacio de funciones definimos el *operador integral de Volterra*:

$$V: E \rightarrow C([t_0 - a, t_0 + a], \mathbb{R}^d)$$

 $\varphi \mapsto V(\varphi)$

donde para cada $t \in [t_0 - a, t_0 + a]$ se define

$$V(\varphi)(t) = x_0 + \int_{t_0}^t f(s, \varphi(s)) ds$$

Lema 1

Sea $M \ge 0$ tal que

$$||f(t,x)|| \leq M \qquad \forall (t,x) \in \mathcal{R}_{a,b}.$$

Entonces $\forall \varphi \in E$ se verifica que $\|V(\varphi)(t) - x_0\| \leq Ma$ $\forall t \in [t_0 - a, t_0 + a]$.

Corolario

Sea $M \ge 0$ tal que

$$||f(t,x)|| \leq M \qquad \forall (t,x) \in \mathcal{R}_{a,b}.$$

Si $Ma \leq b$ entonces $V(E) \subset E$.

Lema 2

Sea $M \ge 0$ tal que $Ma \le b$ y

$$||f(t,x)|| \leq M \quad \forall (t,x) \in \mathcal{R}_{a,b}.$$

Si $\varphi : [t_0 - a, t_0 + a] \to \mathbb{R}^d$ es solución de (V), entonces $\varphi \in E$.

Lema 3

Sea L > 0 tal que

$$||f(t,x)-f(t,y)|| \leq L ||x-y|| \qquad \forall (t,x), (t,y) \in \mathcal{R}_{a,b}.$$

Si
$$\varphi, \psi \in E$$
 entonces $\|V(\varphi) - V(\psi)\|_{\infty} \leq La \|\varphi - \psi\|_{\infty}$.

Sean $M, L \ge 0$ tales que

$$||f(t,x)|| \leq M \quad \forall (t,x) \in \mathcal{R}_{a,b}.$$

)

$$||f(t,x)-f(t,y)|| \le L ||x-y||$$
 $\forall (t,x), (t,y) \in \mathcal{R}_{a,b}.$

Si $Ma \le b$ y La < 1 entonces existe una única función $\varphi : [t_0 - a, t_0 + a] \to \mathbb{R}^d$ que es solución de (V).

Basta aplicar el teorema del punto fijo de Banach:

Teorema del punto fijo de Banach

Si (E, d) es un espacio métrico completo y $F : E \to E$ es una aplicación contractiva, entonces existe un único $p \in E$ tal que F(p) = p.

Además, si tomamos cualquier $x_0 \in E$ y definimos por recurrencia

$$x_{n+1} = F(x_n)$$
 $n \ge 0$

entonces $x_n \to p$.

Norma de Bielecki

En el espacio de funciones

$$E = C([t_0 - a, t_0 + a], \overline{B}(x_0, b))$$

y dada una constante R>0 consideramos la siguiente norma (llamada norma de Bielecki) que es equivalente a la norma del máximo $\|\cdot\|_{\infty}$

$$\|\varphi\|_{B} := \max_{t \in [t_0-a,t_0+a]} \mathrm{e}^{-R|t-t_0|} \, \|\varphi(t)\| \ .$$

Lema 4

Sea $L \ge 0$ tal que

$$||f(t,x)-f(t,y)|| \le L ||x-y|| \qquad \forall (t,x), (t,y) \in \mathcal{R}_{a,b}.$$

Si $\varphi, \psi \in E$ entonces $\|V(\varphi) - V(\psi)\|_{B} \leq \frac{L}{R} \|\varphi - \psi\|_{B}$.

Sean $M, L \ge 0$ tales que

$$||f(t,x)|| \leq M \qquad \forall (t,x) \in \mathcal{R}_{a,b}.$$

У

$$||f(t,x)-f(t,y)|| \le L ||x-y|| \qquad \forall (t,x), (t,y) \in \mathcal{R}_{a,b}.$$

Si $Ma \leq b$ entonces existe una única función $\varphi : [t_0 - a, t_0 + a] \to \mathbb{R}^d$ que es solución de (V).

Funciones lipschitzianas

Sean $D \subset \mathbb{R} \times \mathbb{R}^d$ un conjunto y $f: D \to \mathbb{R}^N$ una función continua.

Diremos que la función f es (globalmente) lipschitziana respecto de la variable x (en D) si existe una constante $L \ge 0$ tal que:

$$||f(t,x)-f(t,y)|| \le L ||x-y||$$
 $\forall (t,x), (t,y) \in D.$

La constante L recibe el nombre de constante de lipschitz.

Diremos que la función f es localmente lipschitziana respecto de la variable x si para todo $(t_0, x_0) \in D$ existe un entorno \mathcal{U} de (t_0, x_0) en D tal que $f|_{\mathcal{U}}$ es lipschitziana respecto de la variable x en \mathcal{U} .

Teorema de Picard-Lindelöf

Sean $D \subset \mathbb{R} \times \mathbb{R}^d$ un conjunto abierto, $(t_0, x_0) \in D$ y $f : D \to \mathbb{R}^d$ una función continua. Se considera el P.V.I.

$$(P) \begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

Teorema de Picard-Lindelöf [Versión local]

Si la función f es lipschitziana respecto de la variable x en un entorno del punto (t_0, x_0) entonces el PVI (P) tiene solución y verifica la propiedad de unicidad local.

Teorema de Picard-Lindelöf [Versión global]

Si la función f es localmente lipschitziana respecto de la variable x entonces el PVI (P) tiene una única solución maximal.

Iterantes de Picard

Calculamos a, b, M, L > 0 tales que:

- \bullet $a \leq b/M$
- $\mathbf{Q} \quad \mathcal{R}_{a,b} \subset D$

Definimos la sucesión de funciones $\phi_n : [t_0 - a, t_0 + a] \to \mathbb{R}^d$ (llamadas **iterantes de Picard**) como sigue:

$$\phi_0(t) = x_0 ,$$

$$\phi_{k+1}(t) = x_0 + \int_{t_0}^t f(s, \phi_k(s)) ds, \quad k \in \mathbb{N} .$$

Esta sucesión está bien definida y converge uniformemente hacia la única solución de (*).

El contraejemplo de Müller (1927)

Se considera el P.V.I.

$$(*) \begin{cases} x' = f(t, x) \\ x(0) = 0 \end{cases}$$

donde $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ es la función

$$f(t,x) = \begin{cases} 0 & \text{si } t \le 0 \\ 2t & \text{si } t > 0 \text{ y } x < 0 \\ 2t - \frac{4x}{t} & \text{si } t > 0 \text{ y } 0 \le x \le t^2 \\ -2t & \text{si } t > 0 \text{ y } x > t^2 \end{cases}.$$

- (i) Prueba que (*) tiene una única solución.
- (ii) Calcula dicha solución.
- (iii) Calcula la sucesión de iterantes de Picard y responde: ¿es convergente?, ¿tiene alguna parcial convergente?, ¿alguna parcial converge hacia la solución del problema (*)?

Gráficas del contraejemplo de Müller (1927)

El teorema de Cauchy-peano

Lema 5

Sean $M \ge 0$ tal que

$$||f(t,x)|| \leq M \qquad \forall (t,x) \in \mathcal{R}_{a,b}.$$

Existe una sucesión de funciones $f_n:D\to\mathbb{R}^d$ localmente lispchitzianas tales que $\forall n\in\mathbb{Z}^+$

$$||f_n(t,x)|| \leq M \qquad \forall (t,x) \in \mathcal{R}_{a,b}.$$

y ademas f_n converge uniformemente hacia f en $\mathcal{R}_{a,b}$

Sea $M \ge 0$ tal que

$$||f(t,x)|| \leq M \quad \forall (t,x) \in \mathcal{R}_{a,b}.$$

Si $Ma \leq b$ entonces existe una función $\varphi : [t_0 - a, t_0 + a] \to \mathbb{R}^d$ que es solución de (V).

Teorema de Cauchy-Peano

Si la función f es continua entonces el PVI (P) tiene solución.