Part III Combinatorics

Based on lectures by Prof B. Bollobás

Michaelmas 2016 University of Cambridge

Contents

1	Introduction	1
2	Sperner Systems	2
3	The Kruskal-Katona Theorem	4
4	Intersecting Families	8
5	Correlation Inequalities	12
	5.1 The Ahlswede-Daykin Four Functions Theorem	13

1 Introduction

Let X, Y, \ldots be sets

Definition. We call $A \subset \mathcal{P}(X)$ a set system or family of sets. A is naturally identified with a bipartite graph $G_A(U,W)$ with U = A, $W = \bigcup_{A \in A} A$ or W = X. Indeed, $Ax \in E(G_A) \iff x \in A$.

Definition. Given $A \in \mathcal{P}(X)$, a **set of distinct representatives** (SDR) is an injection $f : A \to X$ s.t. $f(A) \in A \ \forall A \in A$. In its bipartite graph, an SDR corresponds to a complete matching $U \to W$.

Theorem 1 (Hall, 1935). A set system \mathcal{A} has an SDR if $\forall \mathcal{A}' \subset \mathcal{A}$, $|\bigcup_{A \in \mathcal{A}'} A| \geq |\mathcal{A}|'$.

Theorem 1'. A bipartite graph G(U,W) has a complete matching $U \to W$ if $\forall S \subset U, |\Gamma(S)| \geq |S|$

Corollary 2. Suppose G(U,W) bipartite, $d(u) \ge d(w) \ \forall u \in U, \ w \in W$. Then $\exists \ a \ complete \ matching \ U \to W$.

Definition. A bipartite graph G(U, W) is (r, s)-regular if d(u) = r and $d(w) = s \ \forall u \in U, \ w \in W$.

Instant from Cor 2: if G(U, W) is (r, s)-regular then \exists a complete matching from U to W if $|U| \leq |W|$.

Corollary 3. Let $0 \le i, j \le n$, $\binom{n}{i} \le \binom{n}{j}$. Then \exists a complete matching $f:[n]^{(i)} \to [n]^{(j)}$ s.t. $f(A) \subset A$ if $j \le i$, and $f(A) \supset A$ if $i \le j$.

Theorem 4. Let G = G(U, W) be a connected (r, s)-regular graph. Then for $\emptyset \neq A \subset U$,

$$\frac{|\Gamma(A)|}{|W|} \ge \frac{|A|}{|U|}$$

Also, equality holds iff A = U.

The **cube** $Q^n \cong \mathcal{P}(n) \cong [2]^n = \text{set of all } 0, 1 \text{ sequences of length } n. Q^n \text{ is also a graph: } AB \text{ is an edge if } |A \triangle B| = 1. \text{ It is also a poset: } A < B \text{ if } A \subset B.$ $Q^n \text{ has a natural orientation: } \overrightarrow{AB} \text{ if } A = B \cup \{a\}.$

The order on $Q^n \cong \mathcal{P}(n)$ is induced by this oriented graph.

2 Sperner Systems

Definition. A set system $A \subset \mathcal{P}(n)$ is **Sperner** if $A, B \in \mathcal{A}$, $A \neq B \implies A \not\subset B$

Theorem 1 (Sperner, 1928). If $A \subset \mathcal{P}(n)$ is Sperner then

$$|\mathcal{A}| \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

Definition. The weight w(A) of a set $A \in \mathcal{P}(n)$ is $w(A) = \frac{1}{\binom{n}{|A|}}$

Theorem 2. Let A be a Sperner system on X, |X| = n. Then

$$w(\mathcal{A}) = \sum_{A \in \mathcal{A}} w(A) \le 1$$

Corollary 3. If $A \in \mathcal{P}(n)$ is a Sperner system then $|A| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$, with equality $\iff A$ is $X^{\lfloor n/2 \rfloor}$ or $X^{\lceil n/2 \rceil}$.

Definition. $A \in \mathcal{P}(n)$ is **k-Sperner** if it does not contain

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{k+1}$$

Note that Sperner = 1-Sperner.

Corollary 4 (Erdős, 1945). If $A \subset \mathcal{P}(n)$ is k-Sperner then |A| is at most the sum of the k largest binomial coefficients.

Theorem 5 (Erdős, 1945). Let $x_1, \ldots, x_n \in \mathbb{R}$, $x_i \geq 1$. Then the number of sums $\sum_{i=1}^{n} \pm x_i$ in an open interval J of length 2k is at most the sum of the k largest binomial coefficients.

Definition. A chain $A_o \subset A_1 \subset \cdots \subset A_k$ is **symmetric** if $|A_{i+1}| = |A_i| + 1 \ \forall i$ and $|A_o| + |A_k| = n$.

Theorem 6 (Kleitman and Katona). $\mathcal{P}(n)$ has a decomposition into symmetric chains.

Take such a partition $\mathcal{P}(n) = \bigcup_{i=1}^k \mathcal{C}_i$, $j = \binom{n}{\lfloor \frac{n}{2} \rfloor}$. There is one chain of length n+1, n-1 chains of length n-1, etc: there are $\binom{n}{i} - \binom{n}{i-1}$ chains of length n+1-2i.

Let E be a normed space, let $x_1, \ldots, x_n \in E$, $||x_i|| \ge 1 \ \forall i$, for $A \in \mathcal{P}(n)$ let $x_A = \sum i \in Ax_i$.

Conjecture (Erdős, 1945). If $A \in \mathcal{P}(n)$ s.t. $||x_A - x_B|| < 1$ then $|A| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$

Definition. Call $\mathcal{D} \in \mathcal{P}(n)$ scattered if $||x_A - x_B|| \ge 1 \ \forall A, B \in \mathcal{D}$. Call a partition $\mathcal{P}(n) = \bigcup_{i=1}^s \mathcal{D}_i$ symmetric if there are precisely $\binom{n}{i} - \binom{n}{i-1}$ sets \mathcal{D}_i of cardinality n+1-2i.

Theorem 7. (Kleitman, 1970) E, $(x_i)_1^n$ as before. Then $\mathcal{P}(n)$ has a symmetric partition into scattered sets.

Theorem 8. (Kleitman, 1970) If $A \in \mathcal{P}(n)$ s.t. $||x_A - x_B|| < 1$ then $|A| \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$

3 The Kruskal-Katona Theorem

We know: if $A \subset X^{(r)}$ then ∂A (the **lower shadow** of A), defined by

$$\partial \mathcal{A} = \{ B \in X^{(r-1)} \mid B \subset A \text{ for some } A \in \mathcal{A} \}$$

satisfies

$$|\partial \mathcal{A}| \ge |\mathcal{A}| \frac{\binom{n}{r-1}}{\binom{n}{r}}$$
$$= |\mathcal{A}| \frac{r}{n-r+1}$$

with equality $\iff \mathcal{A} \text{ is } \emptyset \text{ or } X^{(r)}$.

What about in between? What is $\mathcal{B} \in X^{(r)}$ s.t. $|\mathcal{B}| = |\mathcal{A}|$ and $|\partial \mathcal{B}| \leq |\partial \mathcal{A}|$? $\exists \mathcal{B}_1, \mathcal{B}_2, \dots \in X^{(r)}$ s.t. $|\mathcal{B}_m| = m$ and $|\partial \mathcal{B}_m| \leq |\partial \mathcal{A}| \ \forall \mathcal{A} \subset X^{(r)}$ where $|\mathcal{A}| = m$.

Incredibly luckily, we have a sequence of nested extremal sets. Equivalently, \exists total order on $X^{(r)}$ s.t. the first m sets form \mathcal{B}_m .

Definition. Define the colex total order on $X^{(r)}$ by A < B if $\max(A\Delta B) \in B$.

Aim: given m and r, would like to find $\mathcal{B} \subset X^{(r)}$, $|\mathcal{B}| = m$ s.t. $|\partial \mathcal{B}| \leq |\partial \mathcal{A}| \ \forall \mathcal{A} \subset X^{(r)}$, $|\mathcal{A}| = m$.

Define $\mathcal{B}^{(r)}(m_r,\ldots,m_s), m_r > m_{r-1} > \cdots > m_s \geq s$ as follows:

$$\mathcal{B}^{(r)} = [m_r]^{(r)} \cup ([m_{r-1}]^{(r-1)} + \{m_r + 1\})$$

$$\cup ([m_{r-2}]^{(r-2)} + \{m_{r-1} + 1, m_r + 1\})$$

$$\cup \dots$$

$$\cup ([m_s]^{(s)} + \{m_{s+1} + 1, m_{s+2} + 1, \dots, m_r + 1\})$$

Set
$$b^{(r)}(m_r,\ldots,m_s) = \left| \mathcal{B}^{(r)}(m_r,\ldots,m_s) \right| = \sum_{j=s}^r {m_j \choose j}$$
.

$$\partial \mathcal{B}^{(r)}(m_r,\ldots,m_s) = \mathcal{B}^{(r-1)}(m_r,\ldots,m_s)$$

This has cardinality $b^{(r-1)}(m_r, \ldots, m_s) = \sum_{j=s}^r \binom{m_j}{j-1}$.

Lemma 1. For $l, r \in \mathbb{N}$ $\exists ! m_r > \cdots > m_s$ s.t. $l = \sum_{j=s}^r {m_j \choose j}$; the initial segment of $X^{(r)}$ in colex, consisting of l sets, is $\mathcal{B}^{(r)}(m_r, \ldots, m_s)$.

Definition. Let $i \neq j \in X$, $A \in \mathcal{P}(X)$. Define the **ij-compression**

$$A_{ij} = C_{ij}(A) = \begin{cases} (A \setminus \{j\}) \cup \{i\} & \text{if } j \in A, i \notin A \\ A & \text{otherwise} \end{cases}$$

Given $A \subset \mathcal{P}(n), A \in \mathcal{A}$

$$C_{i,j,\mathcal{A}}(A) = \begin{cases} A_{ij} & \text{if } A_{ij} \notin \mathcal{A} \\ A & \text{otherwise} \end{cases}$$

Also,

$$C_{ij}(\mathcal{A}) = \{C_{i,j,\mathcal{A}} \mid A \in \mathcal{A}\}$$
$$= \{C_{ij}(A) \mid A \in \mathcal{A}\} \cup \{A \in \mathcal{A} \mid C_{ij}(A) \in \mathcal{A}\}$$

For $A \in X^{(r)}$,

$$\mathcal{A}_{ij} = \{ A \in \mathcal{A} \mid \{i, j\} \subset A \}$$

$$\mathcal{A}_i = \{ A \in \mathcal{A} \mid i \in A, j \notin A \}$$

$$\mathcal{A}_{\emptyset} = \{ A \in \mathcal{A} \mid A \cap \{i, j\} = \emptyset \}$$

$$\mathcal{A}_j = \{ A \in \mathcal{A} \mid i \notin A, j \in A \}$$

 $C_{ij}: \mathcal{A} \mapsto C_{ij}(\mathcal{A})$ keeps $\mathcal{A}_{\emptyset} \cup \mathcal{A}_{i} \cup \mathcal{A}_{ij}$ fixed, and maps \mathcal{A}_{j} into sets like those in \mathcal{A}_{i} .

Lemma 2. For $A \subset X^{(r)}$, $\partial C_{ij}(A) \subseteq C_{ij}(\partial A)$. In particular, the cardinality decreases.

Proof. Let $B \in \partial C_{ij}(A)$ and let $A \in A$ s.t. $B \subset C_{i,j,A}(A)$.

- i. Suppose B meets $\{i,j\}$ in 0 or 2 elements. Then $B\subset A$ so $B\in\partial A$ and $B\in C_{ij}(\partial\mathcal{A})$
- ii. Suppose $i \in B$, $j \notin B$. Then either B or $(B \setminus \{i\}) \cup \{j\}$ belongs to ∂A , so $B \in C_{ij}(\partial A)$.
- iii. Suppose $j \in B$, $i \notin B$. Then both B and $(B \setminus \{j\}) \cup \{i\}$ belong to ∂A , so both belong to $C_{ij}(\partial A)$.

Definition. Call $A \subset X^{(r)}$ left-compressed if $C_{ij}(A) = A \ \forall i < j$.

Lemma 3. Let $A \subset X^{(r)}$. Then \exists a left-compressed family $\mathcal{B} \subset X^r$ s.t. $|\mathcal{B}| = |A|$ and $|\partial \mathcal{B}| \leq |\partial A|$.

Proof. Define $A_0 = A, A_1, \ldots$ as follows: having reached A_k , if A_k is not left-compressed, pick i < j s.t. $C_{ij}(A_k) \neq A_k$, and set $A_{k+1} = C_{ij}(A_k)$

This sequence has to end because

$$\sum_{A \in \mathcal{A}_{k+1}} \sum_{a \in A} a < \sum_{A \in \mathcal{A}_k} \sum_{a \in A} a$$

let A_l be the last term: this will do for \mathcal{B} .

Theorem 4 (Kruskal-Katona, 1963 and 1968). Let $A \subset X^{(r)}$, m = |A|. Then

$$|\partial \mathcal{A}| \ge \left| \partial \mathcal{B}_m^{(r)} \right|$$

$$= \left| \partial \mathcal{B}^{(r)}(m_r, m_{r-1}, \dots, m_s) \right|$$

$$= b^{(r-1)}(m_r, \dots, m_s)$$

Proof. Induction on r and then m (or on r+m). $r=1 \checkmark m=1 \checkmark$

Induction step: we may assume that \mathcal{A} is left-compressed. Set $Y = X \setminus \{1\}$. Then $\mathcal{A} = (\mathcal{A}_1 + \{1\}) \cup \mathcal{A}_0$, where $\mathcal{A}_1 \subset Y^{(r-1)}$, $\mathcal{A}_0 \subset Y^{(r)}$.

$$m = |\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1|, \ \partial \mathcal{A}_0 \subset \mathcal{A}_1, \ \partial (\mathcal{A}_1 + \{1\}) = \mathcal{A}_1 \cup (\partial \mathcal{A}_1 + \{1\}).$$

In particular, $|\partial A| = |A_1| + |\partial A_1|$.

For $\mathcal{A} = \mathcal{B}^{(r)}(m_r, \dots, m_s)$,

$$|\mathcal{A}_1| = b^{(r-1)}(m_r - 1, \dots, m_s - 1)$$

$$|\mathcal{A}_0| = b^{(r)}(m_r - 1, \dots, m_s - 1)$$

Suppose $|\mathcal{A}_0| > b^{(r)}(m_r - 1, \dots, m_s - 1)$. Then by the induction hypothesis, $|\partial \mathcal{A}_0| \geq b^{(r-1)}(m_r - 1, \dots, m_s - 1)$. Hence $|\mathcal{A}_1| \geq b^{(r-1)}(m_r - 1, \dots, m_s - 1)$ and so $|\partial \mathcal{A}| \geq b^{(r-1)}(m_r, \dots, m_s)$.

But if
$$|A_0| \le b^{(r)}(m_r - 1, \dots, m_s - 1)$$
, $|A_1|$ is again $\ge b^{(r-1)}(m_r - 1, \dots, m_s - 1)$. Done as before.

Soft version:

Theorem 5 (Lovász, 1979). If $A \subset X^{(r)}$ satisfies $|A| = {X \choose r}$ then $|\partial A| \ge {X \choose r-1}$.

Proof. Induction on r and $m = |\mathcal{A}|$. As before, $\mathcal{A}_0, \mathcal{A}_1$. Note that $\mathcal{A}_1 \geq {X-1 \choose r-1}$ since otherwise $\mathcal{A}_0 > {X-1 \choose r}$. But then $|\partial \mathcal{A}_0| \geq {X-1 \choose r-1}$, contradicting the fact that $\partial \mathcal{A}_0 \subset \mathcal{A}_1$.

But if $|\mathcal{A}_1| \geq {X-1 \choose r-1}$ then

$$|\mathcal{A}_1| + |\partial \mathcal{A}_1| \ge {X-1 \choose r-1} + {X-1 \choose r-2} = {X \choose r-1}$$

Definition. Define the uniform probability measure on $X^{(r)}$, |X| = n as $\mathbb{P}_{n,r}(A) = \frac{1}{\binom{n}{r}}$, and for $A \subset X^{(r)}$, $\mathbb{P}_{n,r}(A) = \frac{|A|}{\binom{n}{r}}$.

Definition. $A \subset \mathcal{P}(n)$ is monotone decreasing if $A \subset B \in \mathcal{A} \implies A \in \mathcal{A}$.

Theorem 6. If $1 \le s < r \le n$, $A \subset \mathcal{P}(n)$ decreasing, then $\mathbb{P}_s(A)^r \ge \mathbb{P}_r(A)^s$. $/\mathbb{P}_k(\mathcal{A}) = \mathbb{P}_k(\mathcal{A}_k), \ \mathcal{A}_k = \mathcal{A} \cap X^{(k)}/\mathcal{A}_k$

Proof. $\mathbb{P}_k(\mathcal{A}) = \frac{|\mathcal{A}_k|}{\binom{n}{k}}$, if $|\mathcal{A}_r| = \binom{X}{r}$ then we know $|\mathcal{A}_s| \geq \binom{X}{s}$. Hence, the inequality holds if

$$\prod_{i=0}^{s-1} \left(\frac{X-i}{n-i}\right)^r \ge \prod_{i=0}^{r-1} \left(\frac{X-i}{n-i}\right)^s$$

since $\frac{\binom{X}{r}}{\binom{n}{r}} = \prod_{i=0}^{r-1} \frac{X-i}{n-i}$. But this is

$$\prod_{i=0}^{s-1} \left(\frac{X-i}{n-i} \right)^{r-s} \ge \prod_{i=s}^{r-1} \left(\frac{X-i}{n-i} \right)^{s}$$

Every factor on the left is larger than every factor on the right:

$$\frac{X-i}{n-i} > \frac{X-j}{n-j}$$

for $i \leq s - 1$, $j \geq s$.

Definition (Erdős and Rényi, 1960). Given an increasing family ('property of sets') $A(n) \subset P(n)$, a function $k^*(n)$ is a **threshold function** for A(n) if $\mathbb{P}_{k(n)}(\mathcal{A}(n)) \to 0 \text{ if } \frac{k}{k^*} \to 0, \text{ and } \mathbb{P}_{k(n)}(\mathcal{A}(n)) \to 1 \text{ if } \frac{k}{k^*} \to 1.$

Erdős and Rényi: for many monotone increasing graph properties, ∃ a threshold.

Corollary 7. Let $A \subset \mathcal{P}(n)$, $k_1 < k < k_2$

- i. If \mathcal{A} is decreasing, $\mathbb{P}_{k_2}(\mathcal{A})^{k/k_2} \leq \mathcal{P}_k(\mathcal{A}) \leq \mathcal{P}_{k_1}(\mathcal{A})^{k/k_1}$
- ii. If \mathcal{A} is increasing, $(1 \mathbb{P}_{k_2}(\mathcal{A}))^{k/k_2} \leq 1 \mathcal{P}_k(\mathcal{A}) \leq (1 \mathcal{P}_{k_1}(\mathcal{A}))^{k/k_1}$

Proof. i. This is precisely Theorem 6

ii. Set $\mathcal{A}^c = \mathcal{P}(n) \setminus \mathcal{A}$. Then \mathcal{A}^c is decreasing and

$$\mathbb{P}_k(\mathcal{A}^c) = 1 - \mathbb{P}_k(\mathcal{A})$$

Apply (i) to \mathcal{A}^c .

Theorem 8. Every monotone increasing function has a threshold.

Proof. We may assume \mathcal{A} is non-trivial. Set $k^*(n) = \max \{k \mid \mathbb{P}_k(\mathcal{A}) \leq \frac{1}{2}\}$. Then, for $k < k^*$,

$$\mathbb{P}_k(\mathcal{A}) \le 1 - (1 - \mathbb{P}_{k*}(\mathcal{A}))^{k/k^*} \le 1 - 2^{-k/k^*}$$

For $k > k^* + 1$,

$$\mathbb{P}_k(\mathcal{A}) \ge 1 - (1 - \mathbb{P}_{k*}(\mathcal{A}))^{k/(k^*+1)} \ge 1 - 2^{-k/(k^*+1)}$$

This is essentially best possible, but only for lop-sided systems A.

Definition. $A \subset \mathcal{P}(n)$ is **symmetric** if $\forall x, y, \in X \exists a \text{ permutation } \pi \text{ of } X$ mapping x onto y, keeping A invariant.

Definition. Another measure on $\mathcal{P}(n)$: the **binomial measure**. Let 0 .

$$\mathbb{P}_{n,p}(A) = \mathbb{P}_p(A) = p^{|A|} (1-p)^{n-|A|}$$

 $\mathbb{P}_{n,p}$ is very similar to $\mathbb{P}_{n,k}$ for $k \sim pn$.

Theorem 9 (Friedgut and Kaloi, 1996). There is an absolute constant $c_0 > 0$ s.t. if $A \subset \mathcal{P}(n)$ is a symmetric increasing family and $\mathbb{P}_p(A) > \epsilon > 0$ then $\mathbb{P}_{p'}(A) > 1 - \epsilon$ provided $p' \geq p + c_0 \frac{\log 1/\epsilon}{\log n}$

4 Intersecting Families

Definition. $A \subset \mathcal{P}(n)$ is intersecting if $A \cap B \neq \emptyset \ \forall A, B \in \mathcal{A}$.

Suppose $A \subset X^{(r)}$. If $r > \frac{n}{2}$, A is intersecting. If $r = \frac{n}{2}$, we can take families of size $\frac{1}{2} \binom{n}{r}$. $r < \frac{n}{2}$?

Let

$$X_x^{(r)} = \{ A \in X^{(r)} \, | \, x \in A \}$$

for any $x \in X$.

Theorem 1 (Erdős, Ko and Rado 1961). Let $n > 2r \ge 4$ and let $\mathcal{A} \subset X^{(r)}$ be an intersecting family. Then $|\mathcal{A}| \le \binom{n-1}{r-1}$ with equality $\iff \mathcal{A} = X_x^{(r)}$.

Proof. We may assume $|\mathcal{A}| \geq {n-1 \choose r-1}$. Take $\mathcal{B} = \{X \setminus A \mid A \in \mathcal{A}\} \subset X^{(n-r)}$. For $A \in \mathcal{A}$ and $B \in \mathcal{B}$ we have $A \not\subset B$.

Let $C = \partial \dots \partial \mathcal{B}$ (shadow n - r times). Then $C \subset X^{(r)}$ and $C \cap \mathcal{A} = \emptyset$, $\therefore |\mathcal{A}| + |\mathcal{C}| \leq \binom{n}{r}$.

By Kruskal-Katona, since
$$|B| \ge \binom{n-1}{r-1} = \binom{n-1}{n-r}$$
, have $|\mathcal{C}| \ge \binom{n-1}{r}$.
Hence $|\mathcal{A}| \le \binom{n}{r} - \binom{n-1}{r} = \binom{n-1}{r-1}$.

Definition. We call A *l*-intersecting if $|A \cap B| \ge l \ \forall A, B \in A$.

Let

$$\mathcal{F}_0 = \{ A \in X^{(r)} \mid A \supset [l] \}$$

Lemma 2. Let $2 \le l < r$ and $n \ge \frac{4}{3}lr^3$. Let $\mathcal{A} \subset X^{(r)}$ be l-intersecting, **not** fixed by an l-set (i.e. $\mathcal{A} \not\subset \mathcal{F}' \cong \mathcal{F}_0$). Then

$$|\mathcal{A}| \le (r-l) \binom{n-l-1}{r-l-1} + \sum_{t=1}^{t_0} \binom{l}{t} \binom{r-l}{t}^2 \binom{n-l-2t}{r-l-t}$$

where $t_0 = \min\{l, r - l\}$.

Proof. We may assume \mathcal{A} is maximal l-intersecting. So $\exists A_1, A_2 \in \mathcal{A}$ s.t. $A_1 \cap A_2 = B$, |B| = l.

Let
$$\mathcal{A}_t = \{A \in \mathcal{A} \mid |B \setminus A| = t\}.$$

 $|\mathcal{A}_0| \leq (r-l) \binom{n-l-1}{r-l-1}$
 $|\mathcal{A}_t| \leq \binom{l}{t} \binom{r-l}{t}^2 \binom{n-l-2t}{r-l-t}$

Theorem 3. Suppose $2 \le l < r < n$ and $n \ge \frac{3}{2}lr^3$. Let $\mathcal{A} \subset X^{(r)}$ be l-intersecting. Then $|\mathcal{A}| \le \binom{n-l}{r-l}$ and equality holds only if

$$\mathcal{A} \cong \{ A \in X^{(r)} \, | \, A \supset L \}$$

for some $L \in X^{(l)}$.

Proof. Suppose A is not fixed by an l-set. Then by Lemma 2,

$$|A| \le (r-l) \binom{n-l-1}{r-l-1} + \sum_{t=1}^{t_0} \binom{l}{t} \binom{r-l}{t}^2 \binom{n-l-t}{r-l-t}$$
$$= (r-l) \binom{n-l-1}{r-l-1} + \sum_{t=1}^{t_0} S_t$$

Note

$$\frac{S_{t+1}}{S_t} = \frac{l-t}{t+1} \frac{(r-l-t)^2}{(t+1)^2} \frac{r-l-t}{n-l-t}$$
$$\leq \frac{lr^3}{(t+1)^3 n} \leq \frac{2}{3(t+1)^3} \leq \frac{1}{12}$$

Thus

$$\begin{aligned} \frac{|\mathcal{A}|}{\binom{n-l}{r-l}} &\leq (r-l)\frac{r-l}{n-l} + \frac{12}{11}l(r-l)^2\frac{r-l}{n-l} \\ &= (1 + \frac{12}{11}l(r-l))\frac{(r-l)^2}{n-l} \\ &< \frac{3}{2}l\frac{r^3}{n} \leq 1 \end{aligned}$$

If r = l + 2 then <.

Suppose $\mathcal{P}(X)\supset\mathcal{A}$ is intersecting. $\mathcal{A}\leq 2^{n-1}.$ Binomial probability measure:

$$\mathbb{P}_p(A) = p^{|A|} (1 - p)^{n - |A|}$$
$$\mathbb{P}_p(A) = \sum_{A \in A} \mathbb{P}_p(A)$$

 \mathcal{A} intersecting $\Longrightarrow \mathbb{P}_{\frac{1}{2}}(\mathcal{A}) \leq \frac{1}{2}$.

Theorem 4. Let $0 and let <math>A \subset \mathcal{P}(X)$ be intersecting. Then $\mathbb{P}_p(A) \le p$.

Proof. Set $N_k = |\mathcal{A}_k|$. $A \in \mathcal{A} \implies A^c = X \setminus A \notin \mathcal{A}$.

Hence $N_k + N_{n-k} \leq {n \choose k}$. Also, for $k \leq \frac{n}{2}$, $p^k (1-p)^{n-k} \geq p^{n-k} (1-p)^k$, so

$$N_k p^k (1-p)^{n-k} + N_{n-k} p^{n-k} (1-p)^k \le \binom{n-1}{k-1} p^k (1-p)^{n-k} + \left(\binom{n}{k} - \binom{n-1}{k-1}\right) p^{n-k} (1-p)^k$$

$$\le \binom{n-1}{k-1} p^k (1-p)^{n-k} + \binom{n-1}{n-k-1} p^{n-k} (1-p)^k$$

Thus

$$\mathbb{P}_p(\mathcal{A}) = \sum_{k=1}^n p^k (1-p)^{n-k}$$

$$\leq p \sum_{k=1}^n k = 1^n \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k} = p$$

\/ 4 - 4

Definition. $A \subset \mathcal{P}(X)$ is k-wise-intersecting if $A_1 \cap \cdots \cap A_k \neq \emptyset \ \forall A_i \in \mathcal{A}$.

Theorem 5. Let $ks \ge n$, let $A \subset X^{(s)}$ be such that X is **not** the union of k sets from A. Then $|A| \le {n-1 \choose s}$.

Proof. Apply Katona's circle method. Let Π be the set of all (n-1)! cyclic orders on X. For $\pi \in \Pi$, let $\mathcal{A}_{\pi} = \{A \in \mathcal{A} \mid A \text{ is a } \pi\text{-arc}\}.$

Claim: $|\mathcal{A}_{\pi}| \leq n - s$.

Proof of claim: we may assume $X = \mathbb{Z}_n$ is given by π ; we may assume one of the arcs in \mathcal{A}_{π} ends in n. Associate with each arc its end point, except for the one ending in n, to which we associate all ks - n + 1 numbers in [n, ks].

Thus, if $l = |\mathcal{A}_{\pi}|$, and L is the set of elements associated with our arcs, then |L| = l + (ks - n).

For $1 \le i \le s$, let $K_i = \{i, i+s, i+2s, \ldots, i+(k-1)s\}$. Then K_1, \ldots, K_s partition [ks] into s sets of k elements each. Can $K_i \subset L$ happen? No, as then the corresponding k arcs would cover X.

Hence, $|L \cap K_i| \leq k-1 \ \forall i$, so $l+ks-n=|L| \leq (k-1)s$, i.e. $l \leq n-s$.

Double counting:

$$s!(n-s)! |\mathcal{A}| = \sum_{A \in \mathcal{A}} |\{\pi \in \Pi : A \text{ is a } \pi\text{-arc}\}|$$
$$= \sum_{\pi \in \Pi} |\mathcal{A}_{\pi}| \le (n-1)!(n-s)$$

Corollary 6 (Equivalent to Theorem 5). Let $2 \le k, r < n, kr \le (k-1)n$. Let $A \subset X^{(r)}$ be k-wise intersecting. Then $|A| \le {n-1 \choose r-1}$.

Proof. Note that $\mathcal{A}^c = \{X \setminus A \mid A \in \mathcal{A}\} \subset X^{(s)}, s = n - r$, satisfies the conditions of Theorem 5, so $|\mathcal{A}| = |\mathcal{A}^c| \leq \binom{n-1}{s} = \binom{n-1}{r-1}$.

Theorem 7. Let $2 \le k, r < n$, $kr \le (k-1)n$; let $A \subset X^{(\le r)}$ be a k-wise intersecting Sperner family. Then

$$\sum_{j=1}^{n} |A_j| / {\binom{n-1}{j-1}} = \sum_{A \in \mathcal{A}} {\binom{n-1}{|A|-1}}^{-1} \le 1$$

Proof. Set $l = \min\{j \mid A\} \neq \emptyset\}$, $m = \max\{j \mid A_j \neq \emptyset\}$.

Induction on m-l: m=l is exactly Corollary 6.

Induction step: $m-l \geq 1$. Let \mathcal{A}_l^+ be the upper shadow of \mathcal{A}_l at level l+1. Then $\mathcal{A}' = (\mathcal{A} \setminus \mathcal{A}_l) \cup \mathcal{A}_l^+$ is again k-wise intersecting Sperner, with a smaller difference m-l. Thus, we're done if

$$\left|\mathcal{A}_{l}^{+}\right| / {n-1 \choose l} \ge \left|\mathcal{A}_{l}\right| / {n-1 \choose l-1}$$

 \mathcal{A}_l^+ is the cardinality of the lower shadow of \mathcal{A}_l^c . Set $|\mathcal{A}_l| = \binom{x}{n-l}$. Then, by the weak Kruskal-Katona theorem, $|\mathcal{A}_l^+| \geq \binom{x}{n-l-1}$. We know $\binom{x}{n-l} \geq \binom{n-1}{l-1} = \binom{n-1}{n-l}$, so $x \leq n-1$.

Would like:

$$\binom{x}{n-l} / \binom{n-1}{l-1} \le \binom{x}{n-l-1} / \binom{n-1}{l}$$

$$\binom{x}{n-l} / \binom{n-1}{n-l} \stackrel{?}{\le} \binom{x}{n-l-1} / \binom{n-1}{n-l-1}$$

$$x - (n-l) + 1 \stackrel{?}{\le} n - (n-l) = l$$

$$x \le n-1 \checkmark$$

5 Correlation Inequalities

Let $0 , <math>\mathcal{G}(n, p)$ the probability space of all $2^{\binom{n}{2}}$ graphs on [n] such that $\mathbb{P}_p(G_{n,p} = H) = p^{e(H)}(1-p)^{\binom{n}{2}-e(H)}$.

This is really the weighted cube Q_p^n . $\mathbf{p}=(p_1,\ldots,p_n)$, random subset of X=[n]: $\mathbb{P}_{\mathbf{p}}(A)=\prod_{i\in A}p_i\prod_{i\notin A}(1-p_i)$. For $\mathcal{G}(n,p)$, consider $Q_{\mathbf{p}}^{\binom{n}{2}}$.

Theorem 1. Let $A, B \in Q_{\mathbf{p}}^n$. If both are up-sets or both are down-sets, then $\mathbb{P}_{\mathbf{p}}(A \cap B) \geq \mathbb{P}_{\mathbf{p}}(A)\mathbb{P}_{\mathbf{p}}(B)$. IF one is an up-set and the other is a down-set, then the inequality reverses.

Proof. Induction on n. n = 1: \checkmark . Let $n \ge 1$.

Let
$$A_i = \{ \mathbf{x} \in \{0, 1\}^{n-1} \mid (x_1, \dots, x_{n-1}, i) \in A \}$$
, similary B_i .

Then
$$\mathbb{P}_{\mathbf{p}}(A) = (1 - p_n)\mathbb{P}_{\mathbf{p}'}(A_0) + p_n\mathbb{P}_{\mathbf{p}'}(A_1) \quad (\mathbf{p}' = (p_1, p_2, \dots, p_{n-1}))$$

Also (*): $(\mathbb{P}_{\mathbf{p}'}(A_1) - \mathbb{P}_{\mathbf{p}'}(A_0))(\mathbb{P}_{\mathbf{p}'}(B_1) - \mathbb{P}_{\mathbf{p}'}(B_0)) \ge 0 - (*)$ since both are up/down sets.

$$\mathbb{P}_{\mathbf{p}}(A \cap B) = (1 - p_n) \mathbb{P}_{\mathbf{p}'}(A_0 \cap B_0) + p_n \mathbb{P}_{\mathbf{p}'}(A_1 \cap B_1)$$

$$\geq (1 - p_n) \mathbb{P}_{\mathbf{p}'}(A_0) \mathbb{P}_{\mathbf{p}'}(B_0) + p_n \mathbb{P}_{\mathbf{p}'}(A_1) \mathbb{P}_{\mathbf{p}'}(B_1) \text{ by induction}$$

$$\stackrel{?}{\geq} ((1 - p_n) \mathbb{P}(A_0) + p_n \mathbb{P}(A_1))((1 - p_n) \mathbb{P}(B_0) + p_n \mathbb{P}(B_1))$$

This holds if $\mathbb{P}(A_0)\mathbb{P}(B_0) - \mathbb{P}(A_0)\mathbb{P}(B_1) - \mathbb{P}(A_1)\mathbb{P}(B_0) + \mathbb{P}(A_1)\mathbb{P}(B_1) \ge 0$, which is exactly (*).

If A is an up-set, B a down-set then

$$\begin{split} \mathbb{P}(A \cap B) &= \mathbb{P}(A) - \mathbb{P}(A \cap B^c) \\ &\leq \mathbb{P}(A) - \mathbb{P}(B)(1 - \mathbb{P}(B)) \\ &= \mathbb{P}(A)\mathbb{P}(B) \end{split}$$

Definition. Let $A, B \in \mathbb{Q}^n = \{0, 1\}^n$.

$$A \square B = \{ z \in Q^n \mid \exists \text{ disjoint } I, J \in [n] \text{ s.t. } x | I = z | I \implies x \in A,$$
$$y | J = z | J \implies y \in B \}$$

If A and B are increasing then

$$A \square B = \{ x + y \mid x \in A, \ y \in B \}$$

$$\mathcal{A} \square \mathcal{B} = \{ A \cup B \mid A \cap B = \emptyset, \ A \in \mathcal{A}, \ B \in \mathcal{B} \}$$

Theorem 2. If A and B are up-sets in $Q_{\mathbf{p}}^n$, then

$$\mathbb{P}_{\mathbf{p}}(A\square B) \leq \mathbb{P}_{\mathbf{p}}(A)\mathbb{P}_{\mathbf{p}}(B)$$

Proof. Put $C = A \square B$. Induction on n: $n = 0 \checkmark$. So let $n \ge 1$.

Let $C_0 = A_0 \square B_0$, $C_1 = (A_0 \square B_1) \cup (A_1 \square B_0) \subseteq A_1 \square B_1$. Then we have $C_0 \subset (A_0 \square B_1) \cap (A_1 \square B_0)$.

$$\mathbb{P}_{\mathbf{p}'}(C_0) \leq \mathbb{P}_{\mathbf{p}'}(A_0)\mathbb{P}_{\mathbf{p}'}(B_0), \ \mathbb{P}(C_1) \leq \mathbb{P}(A_1)\mathbb{P}(B_1).$$

$$\mathbb{P}(C_0) + \mathbb{P}(C_1) \leq \mathbb{P}((A_0 \square B_1) \cap (A_1 \square B_0)) + \mathbb{P}((A_0 \square B_1) \cup (A_1 \square B_0))$$
$$= \mathbb{P}(A_0 \square B_1) + \mathbb{P}(A_1 \square B_0)$$
$$\leq \mathbb{P}(A_0) \mathbb{P}(B_1) + \mathbb{P}(A_1) \mathbb{P}(B_0)$$

Multiply then by $(1 - p_n)^2$, p_n^2 , $p_n(1 - p_n)$ and add them:

$$\mathbb{P}(C_0)((1-p_n)^2 + (1-p_n)p_n) + \mathbb{P}(C_1)(p_n^2 + p_n(1-p_n)) \le \mathbb{P}_{\mathbf{p}}(A)\mathbb{P}_{\mathbf{p}}(B)$$
Obtain $\mathbb{P}(C) \le \mathbb{P}(A)\mathbb{P}(B)$.

The full Van den Berg - Kesten conjecture that $\mathbb{P}(A \square B) \leq \mathbb{P}(A)\mathbb{P}(B)$ was proved by Reimer.

5.1 The Ahlswede-Daykin Four Functions Theorem

Theorem 3. let $\alpha, \beta, \gamma, \delta : \mathcal{P}(X) \to \mathbb{R}^+$. Suppose $\alpha(A)\beta(B) \leq \gamma(A \cup B)\delta(A \cap B) \ \forall A, B \subset X$.

Then $\alpha(\mathcal{A})\beta(\mathcal{B}) \leq \gamma(\mathcal{A} \vee \mathcal{B})\delta(\mathcal{A} \wedge \mathcal{B})$ where $\mathcal{A} \vee \mathcal{B} = \{A \cup B \mid A \in \mathcal{A}, B \in \mathcal{B}\},\ \mathcal{A} \wedge \mathcal{B} = \{A \cap B \mid A \in \mathcal{A}, B \in \mathcal{B}\}$