第2节 抛物线定义与几何性质综合问题 (★★★)

内容提要

抛物线上的点到焦点的距离问题常用抛物线的定义求解,但除定义外,可能还需结合图形(如等腰、等边、直角三角形,矩形等)的几何性质才能求解问题,因此本节将归纳高考中抛物线常见的图形和几何条件的处理思路.

典型例题

类型 I: 定义与特殊图形

【例 1】已知抛物线 $C: y^2 = 12x$ 的焦点为 F,准线为 l,点 A 在 C 上,且 $AB \perp l$ 于 B,若 $\angle FAB = \frac{2\pi}{3}$,则 |BF| =

(A)
$$2\sqrt{3}$$
 (B) $4\sqrt{3}$ (C) $\frac{4\sqrt{3}}{3}$ (D) $\frac{8\sqrt{3}}{3}$

解析:如图,涉及抛物线上的点向准线作垂线,想到抛物线定义,

由题意,
$$|AB| = |AF|$$
,又 $\angle FAB = \frac{2\pi}{3}$,所以 $\angle ABF = \angle AFB = \frac{\pi}{6}$,

要求|BF|,注意到 ΔBFD 为直角三角形且|FD|已知,所以将条件转移到该三角形中来看,

记准线与x轴交于点D,抛物线的焦点为F(3,0),准线为l: x=-3,所以|FD|=6,

由
$$\angle ABF = \frac{\pi}{6}$$
 可得 $\angle DBF = \frac{\pi}{3}$,所以 $|BF| = \frac{|FD|}{\sin \angle DBF} = \frac{6}{\sin \frac{\pi}{2}} = 4\sqrt{3}$.

答案: B

【反思】利用抛物线的定义可知,抛物线上的点 A 与焦点 F,以及点 A 在准线上的射影 B 所围成的三角形 ABF 是等腰三角形,且 FB 为 $\angle AFO$ 的角平分线.

【例 2】已知抛物线 $C: y^2 = 4x$ 的焦点为 F,准线为 l,点 P 在 C 上, $PA \perp l$ 于 A,若 |PA| = |AF|,则 |AF| = 1

解析:如图,C的焦点为F(1,0),准线为l:x=-1,设l=x轴交于点D,由抛物线定义,|PA|=|PF|,又|PA|=|AF|,所以 ΔPAF 是正三角形,要算|AF|,图中已知的长度只有|FD|,故放到 ΔADF 中来看,

因为
$$\angle PAF = 60^{\circ}$$
,所以 $\angle DAF = 30^{\circ}$,又 $|FD| = 2$,所以 $|AF| = \frac{|FD|}{\sin \angle DAF} = \frac{2}{\sin 30^{\circ}} = 4$.

答案: 4

【变式】已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点为 F,准线为 l,以 F 为圆心作圆与 C 交于 A, B 两点,与 l 交于 D,E 两点, $|AB| = |DE| = 4\sqrt{3}$,则 $p = ____$.

解析:如图,可尝试通过分析几何关系,求出点A的坐标,代入抛物线方程求p,

因为 $|AB|=|DE|=4\sqrt{3}$,所以AB、DE是同一圆中等长的弦,结合对称性可得四边形ABED是矩形,

设准线 l 与 x 轴交于点 K, AB 与 x 轴交于点 I,则 |KF|=p, 因为 |AB|=|DE|, 所以 |FI|=|KF|=p,

故
$$|OI| = |OF| + |FI| = \frac{3p}{2}$$
,又 $|AI| = \frac{1}{2}|AB| = 2\sqrt{3}$,所以 $A(\frac{3p}{2}, 2\sqrt{3})$,

代入抛物线方程可得: $(2\sqrt{3})^2 = 2p \cdot \frac{3p}{2}$, 解得: p = 2.

答案: 2

《一数•高考数学核心方法》

【例 3】已知抛物线 $E: y^2 = 2px(p > 0)$ 的焦点为 F,点 A 是抛物线 E 的准线与坐标轴的交点,点 P 在抛物线 E 上,若 $\angle PAF = 30^\circ$,则 $\frac{|PA|}{|PF|} = ____$, $\sin \angle PFA = ____$.

解析: 涉及|PF|, 常用抛物线定义转化为P到准线的距离,

如图,作PQ 上准线于Q,因为 $\angle PAF=30^{\circ}$,所以 $\angle PAQ=60^{\circ}$,设|PF|=m,则|PQ|=m,

所以
$$|PA| = \frac{|PQ|}{\sin \angle PAQ} = \frac{m}{\sin 60^{\circ}} = \frac{2\sqrt{3}m}{3}$$
,故 $\frac{|PA|}{|PF|} = \frac{2\sqrt{3}}{3}$,

在 ΔPAF 中,PA和PF所对的角恰好分别是 $\angle PFA$ 和 $\angle PAF$,故可用正弦定理求 $\sin \angle PFA$,

由正弦定理,
$$\frac{|PA|}{\sin \angle PFA} = \frac{|PF|}{\sin \angle PAF}$$
,所以
$$\sin \angle PFA = \frac{|PA|\sin \angle PAF}{|PF|} = \frac{2\sqrt{3}m}{3} \times \frac{1}{2} = \frac{\sqrt{3}}{3}.$$

答案: $\frac{2\sqrt{3}}{3}$, $\frac{\sqrt{3}}{3}$

【变式】已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点为F(1,0),准线与x轴交于点A,点M在第一象限且在抛物 线 C 上,则当 $\frac{|MF|}{|MA|}$ 取得最小值时,直线 AM 的方程为_____.

解析: 涉及|MF|, 想到用定义转化为M到准线的距离,如图 1,作MN 工准线于N,则|MF|=|MN|,

所以 $\frac{|MF|}{|MA|} = \frac{|MN|}{|MA|} = \sin \angle MAN$,要使 $\sin \angle MAN$ 最小,只需 $\angle MAN$ 最小,此时的情形如图 2,

图 2 中直线 AM 与抛物线相切,可联立方程用判别式 $\Delta = 0$ 求直线的方程,

抛物线 C 的准线为 x = -1 ,所以 A(-1,0) ,故可设图 2 中切线 AM 的方程为 x = my - 1 ,

联立
$$\begin{cases} x = my - 1 \\ y^2 = 4x \end{cases}$$
 消去 x 整理得: $y^2 - 4my + 4 = 0$,

因为直线 AM 与抛物线相切,所以 $\Delta = (-4m)^2 - 4 \times 1 \times 4 = 0$,解得: $m = \pm 1$,

因为M在第一象限,所以m=1,故直线AM的方程为x=y-1,即x-y+1=0.

答案: x-y+1=0

类型II: 定义与线段比例、相似相关

【例 4】设抛物线 $y^2 = 4x$ 的焦点为 F,不经过焦点的直线上有三个不同的点 A, B, C,其中点 A, B 在抛 物线上,点 C 在 y 轴上, B 在线段 AC 上,则 ΔBCF 与 ΔACF 的面积之比是 ()

$$(A) \frac{|BF|-1}{|AF|-1}$$

(A)
$$\frac{|BF|-1}{|AF|-1}$$
 (B) $\frac{|BF|^2-1}{|AF|^2-1}$ (C) $\frac{|BF|+1}{|AF|+1}$ (D) $\frac{|BF|^2+1}{|AF|^2+1}$

(C)
$$\frac{\left|BF\right|+1}{\left|AF\right|+1}$$

(D)
$$\frac{|BF|^2 + 1}{|AF|^2 + 1}$$

解析:如图,两个三角形有相同的高 (点 F 到直线 AC 的距离),故只需分析底边之比 $\frac{|BC|}{|AC|}$. 选项中有 |AF|

和|BF|,由此想到抛物线定义,故过A,B向准线作垂线,作出来就发现可用相似比来分析 $\frac{|BC|}{|AC|}$,

过 A, B 作抛物线准线 x=-1 的垂线分别交 y 轴于 M, N,垂足分别为 D, E,则 $\Delta CBN \hookrightarrow \Delta CAM$,

所以
$$\frac{|BC|}{|AC|} = \frac{|BN|}{|AM|} = \frac{|BE|-1}{|AD|-1}$$
 ①,

由抛物线定义,|BE| = |BF|,|AD| = |AF|,

代入①得:
$$\frac{|BC|}{|AC|} = \frac{|BF|-1}{|AF|-1}, \quad \text{所以} \frac{S_{\Delta BCF}}{S_{\Delta ACF}} = \frac{|BF|-1}{|AF|-1}.$$

答案: A

【反思】抛物线中与焦点 F 有关的线段比例问题中,过抛物线上的点向准线作垂线,借助抛物线定义来分析图形的几何特征,是常规操作.

【变式 1】过抛物线 $y^2 = 2px(p > 0)$ 的焦点 F 且斜率 k > 0的直线交抛物线于 A, B 两点,交其准线 l 于点 C (B 在 F, C 之间),且 |BC| = 2|BF|, |AF| = 12,则直线 AB 的方程为_____.

解析:如图,作AA'」准线于A',BB'」准线于B',设准线与x轴交于点H,

先求直线 AB 的倾斜角 θ ,可将 |BC|=2|BF| 转化为 |BB'| 和 |BC| 的关系,求得 $\angle CBB'$,该角等于 θ ,

由抛物线定义,|BF| = |BB'|,代入|BC| = 2|BF|可得|BC| = 2|BB'|,所以 $\cos \angle CBB' = \frac{|BB'|}{|BC|} = \frac{1}{2}$,

故 $\angle CBB' = 60^{\circ}$,又 BB' // x 轴,所以 $\theta = 60^{\circ}$,故直线 AB 的斜率 $k = \tan 60^{\circ} = \sqrt{3}$,

求直线 AB 的方程还差 F 的坐标, 先求 |HF|, 可利用相似比转化为求 |AA'|,

因为AA' //x轴,所以 $\angle CAA' = \theta = 60^{\circ}$,故 $|AA'| = |AC|\cos\angle CAA' = \frac{1}{2}|AC|$ ①,

由抛物线定义, $\left|AA'\right|=\left|AF\right|$,代入①可得 $\left|AF\right|=\frac{1}{2}\left|AC\right|$,所以F为AC中点,

结合 FH//AA' 可得 $|FH| = \frac{1}{2}|AA'| = \frac{1}{2}|AF| = 6$, 所以 F(3,0),

故直线 AB 的方程为 $y = \sqrt{3}(x-3)$,即 $y = \sqrt{3}x-3\sqrt{3}$.

答案: $y = \sqrt{3}x - 3\sqrt{3}$

【变式 2】如图,过抛物线 $y^2=4x$ 的焦点 F 作直线与抛物线及其准线分别交于 $A \setminus B \setminus C$ 三点,若 $\overrightarrow{FC}=4\overrightarrow{FB}$,则 |AB|=_____.

解析: 抛物线的准线为x = -1,焦点为F(1,0),设准线与x轴交于点H,则|FH| = 2,

如图,作AA' \bot 准线于A' ,BB' \bot 准线于B' ,则|AF| = |AA'| ,|BF| = |BB'| ,

题干给出 $\overrightarrow{FC} = 4\overrightarrow{FB}$ 这种线段比例式,可先设|BF|,并求其它线段的长,再用相似比建立方程,

设
$$|BF|=m$$
,则 $|BB'|=m$,因为 $\overrightarrow{FC}=4\overrightarrow{FB}$,所以 $|BC|=3|BF|=3m$, $|CF|=4m$,

因为
$$\Delta CBB' \hookrightarrow \Delta CFH$$
,所以 $\frac{|BB'|}{|FH|} = \frac{|BC|}{|CF|}$,即 $\frac{m}{2} = \frac{3m}{4m}$,解得: $m = \frac{3}{2}$,所以 $|BF| = \frac{3}{2}$, $|CF| = 6$,

还需求出|AF|,做法和求|BF|类似,可设其为未知数,利用相似比来建立方程求解,

$$\mathcal{C}[AF] = |AA'| = n$$
,则 $|AC| = |AF| + |CF| = n + 6$,由 $\Delta CFH \hookrightarrow \Delta CAA'$ 可得 $\frac{|CF|}{|AC|} = \frac{|FH|}{|AA'|}$,

即
$$\frac{6}{n+6} = \frac{2}{n}$$
,解得: $n=3$,所以 $|AF|=3$,故 $|AB|=|AF|+|BF|=3+\frac{3}{2}=\frac{9}{2}$.

答案: $\frac{9}{2}$

【反思】 抛物线小题中出现未知长度的比例关系时,往往可设一段长,利用定义以及相似等几何性质求解

其它线段的长.

强化训练

- 1.(2022•合肥模拟•★★)已知抛物线 $C: y^2 = 4\sqrt{3}x$ 的焦点为 F,准线为 l,过抛物线上一点 P 作准线的 垂线,垂足为 Q,若 $\angle PFQ = 60^{\circ}$,则 |PF| = (
- (A) $4\sqrt{3}$ (B) $2\sqrt{3}$ (C) $\sqrt{3}$ (D) 6

- 2. (2022 •岳阳模拟 •★★★) 过抛物线 $C: y^2 = 2px(p>0)$ 的焦点 F 且斜率 k>0 直线与 C 交于 A,B 两点, A 在第一象限,过A 作准线的垂线,垂足为H,若 $\angle HFB$ 被x 轴平分,则k = .

- 3.(2022·汕头模拟·★★★)已知抛物线 $C: y^2 = 6x$ 的焦点为F, A为C上一点且在第一象限,以F为 圆心,FA 为半径的圆与抛物线 C 的准线交于 M,N 两点,且 A,F,M 三点共线,则 $|AF| = _____$.
- 4. $(2022 \cdot \text{北京模拟 · ★★★)已知抛物线 C 的焦点为 F,准线为 l,过 F 的直线 m 与 C 交于点 A 和 B,$ 点 A 在 l 上的投影为 D,若 |AB| = |BD|,则 $\frac{|AB|}{|AF|} = ($)
- (A) $\frac{3}{2}$ (B) 2 (C) $\frac{5}{2}$ (D) 3
- 5.(2022•开平模拟•★★★)已知抛物线 $C: y^2 = 16x$ 的焦点为 F,M 是 C 上一点,FM 的延长线交 y 轴 于点 N,若 $3\overrightarrow{FM} = 2\overrightarrow{MN}$,则 $|FN| = ____$.

- 7. $(2022 \cdot \text{巫山模拟} \cdot \bigstar \star \star \star)$ 抛物线 $E: y^2 = 4x$ 的焦点为 F,过 F 的直线与 E 交于 A, B 两点,延长 FB 交 E 的准线 l 于点 C,过 A, B 作 l 的垂线,垂足分别为 M, N,若 |BC| = 2|BN|,则 ΔAFM 的面积为()

 (A) $4\sqrt{3}$ (B) 4 (C) $2\sqrt{3}$ (D) 2
- 8. $(2022 \cdot 齐齐哈尔模拟 \cdot \star \star \star \star \star)$ 已知抛物线 $C: y^2 = 2px(p > 0)$ 的准线 x = -1 与 x 轴交于点 A,F 为 C 的焦点,B 是 C 上第一象限内的一点,则当 $\frac{|BF|}{|AB|}$ 取得最小值时, ΔABF 的面积为()
- (A) 2 (B) 3 (C) 4 (D) 6

《一数•高考数学核心方法》

- 9. $(2022 \cdot 昆明模拟 \cdot ★★★★)$ 已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点为 F,第一象限的 A,B 两点在抛物线上,且 $FA \perp AB$, |AF| = 7, |BF| = 25,若直线 AB 的倾斜角为 θ ,则 $\cos \theta = _____$.
- 10. $(2022 \cdot 湖北模拟 \cdot \star \star \star \star \star)$ 已知抛物线 C 的焦点为 F,点 A,B 在抛物线上,以 AB 为直径的圆过点 F,过线段 AB 的中点 P 作 C 的准线的垂线,垂足为 Q,则 $\frac{|PQ|}{|AB|}$ 的最大值为(
- (A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{\sqrt{2}}{2}$ (D) 1