DUNIS TECHNOLOGIES LIMITED CODING FUNDAMENTAL LESSON 3 SOFTWARE DEVELOPMENT PROCESS

By now you are expected to have understanding of what software really is. However, for the purpose of emphasis, software is a set of instructions written or developed using one or more programming languages. The development of these set of instructions usually requires a standard process that must be followed. These are also referred to as SOFTWARE LIFE CYCLE.

Software Engineering process also known as SOFTWARE LIFE CYCLE; involves grouping the process of developing software into distinct phases. These phases are as follows

- 1. **ANALYSIS** GETTING NECESSARY

 REQUIREMENTS OF WHAT YOU WANT THE

 SOFTWARE TO DO
- DESIGN- THIS INVOLVE DEVELOPING
 ALGORITHM AND FLOW CHART

- 3. **IMPLEMENTATION** INVOLVES DEVELOPING YOUR DESIGN USING THE REQUIRED PROGRAMMING LANGUAGES OR TOOLS
- 4. **DEPLOYMENT & TESTING** CHECKING OUT YOUR CODES IF THEY WORKED ACCORDING TO YOUR DESIGN AND REQUIREMENTS.

Each of the process or phase can be further divided into sub process making up to about 5 to 6 process or phases. Notwithstanding these four phases or processes are considered the major ones

To explain and demonstrate these processes, you are going to be introduced firstly to a simple software tool called ALICE for the purpose of mastering these processes easily after which we would build

CODING FUNDAMENTAL LESSON 3 upon it using JAVA, a traditional programming language.

Here's a diagram representation of software development lifecycle

ALGORITHM

The first process in building or developing a software is more of investigation and documentation; analysis what and what the software would require. The next phase however can be cumbersome without some form of breaking down the task to be done

CODING FUNDAMENTAL LESSON 3 into simple, clear, finite, steps that can be followed in designing the software. These steps are called ALGORITHM.

An Algorithm, is a step by step procedure, which defines a set of instructions to be executed in a certain order to get the desired output. To simplification, it can also be defined as a set of instructions that can be followed to solve a problem or perform a task. Note that Algorithms are generally language independent meaning that they are not written in a programming language but can be implemented or translated into any programming language of one's choice. Mostly they are written in a universal language like English or using a graphical representation called FLOW CHART

FLOWCHART

DUNIS TECHNOLOGIES LIMITED CODING FUNDAMENTAL LESSON 3 A flowchart represents an algorithm in a graphical manner. There is a standard set of rules that we must follow when we draw flowchart.

We use shapes to draw flowchart.

S/	NAME	SYMBOL/SHAP	DESCRIPTION
N		ES COM	
1.	ARROW		ARROWS
		Cha.	ARE DRAWN
	1).		FROM ONE
	CI Re		вох то
	KKO),		ANOTHER TO
	S		REPRESENT
			THE FLOW
			BETWEEN
			BOXES. THEY
			ARE BROKEN

		UP BY THE
		CONDITION
		BOXES.
CONNECTOR		IF ARROWS
		HAVE
		DIVIDED,
	$O_{I_{\sigma}}$	THEY MUST
	Mar	FIRST COME
	Kla.	TOGETHER
		BEFORE
CHIA		PERFORMING
		ANY
		COMMON
		ACTIONS. A
		CONNECTOR
		IS USED TO
	CONNECTOR	CONNECTOR

OR
,
ΤΙΟ
ITS
Г
IM.
OR .

			END
			PROGRAM
4.	INPUT/OUTP		INPUT
	UT		STATEMENT
			EITHER
			READS FROM
		(O)	ANOTHER
			FILE OR
		OF IA.	RECEIVES
			INPUT FROM
	CHIA		THE USER.
	CLEP.		Оитрит
			STATEMENT
			OUTPUT
			INFORMATIO
			N ONTO THE

	SCREEN.
	INPUT
	STATEMENT
	ARE NOT
	ALWAYS AT
	THE
	BEGINNING
	OF AN
	ALGORITHM
	AND OUTPUT
	STATEMENT
	IS NOT
16/	ALWAYS
	LOCATED AT
	THE END OF

			AN
			ALGORITHM.
5.	CONDITIONA	DIAMOND	A DECISION
	L		TO BE MADE
			ORA
			CONDITION
		(O)	TO BE MET.
			E.G. YES/NO
		OF IA.	TRUE/FALSE
6.	END	OVAL	THE END
	CHI		SYMBOL IS
			USED LIKE
11			THE START
00			SYMBOL. ALL
			BRANCHES
			OF THE CODE

			MUST
			ULTIMATELY
			LEAD TO THE
			END.
7.	Process	PECTANCLE	THIS IS A
			PROCESS OR
		$(O)_{I_{\sigma}}$	INSTRUCTION
		Mar	TO BE
		Offia.	CARRIED OUT

IN SUMMARY

Oval	Flow Line	Parallelogram
The start or end of the program.	The direction of logic flow in a program.	An input or output operation. GET for input, PUT for output.
START		GET X
END		РИТЧ

Rectangle	Diamond
A process or statement to be carried out.	A decision to be made. Usually branches to Y/N or True/False.
x ← x + 1	x = 5? Yes
$ \begin{array}{c} x \leftarrow x + 1 \\ y \leftarrow x + 7 \\ z \leftarrow y - 9 \end{array} $	No

