AD-783 729

TRACE TRAJECTORY ANALYSIS AND ORBIT DETERMINATION PROGRAM. VOLUME VII. USER'S GUIDE, PART B: APPENDICES (REISSUE B)

Willard D. Downs, III, et al

Aerospace Corporation

Prepared for:

Space and Missile Systems Organization

31 May 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Approved

A. R. Sims, Director

Mathematics and Programming Subdivision

Information Processing Division Engineering Science Operations

DC. Wallen

D. C. Walker, Senior Staff Engineer

Project Management Staff

Information Processing Division Engineering Science Operations

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Technical Advisor

SAMSO/TM

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

AD-783729

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER SAMSO-TR-71-141, Vol. VII Reissue B. Part B	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Sublitio) TRACE Trajectory Analysis and Orbit Determination Program	S. TYPE OF REPORT & PERIOD COVERED
Volume VII: Usage Guide Part B: Appendices	Reissue B, Part B CONTRACT OF GRANT NUMBER(1)
7. AUTHOR(*) Willard D. Downs III, Robert H. Prislin, Dennis C. Walker, and Robert J. Mercer	F04701-70-C-0059 F04701-72-C-0073 F04701-73-C-0074
The Aerospace Corporation El Segundo, Calif. 90245	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Space and Missile Systems Organization Air Force Systems Command Los Angeles, Calif. 90045	12. REPORT DATE 31 May 1974 13. NUMBER OF PAGES 391
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Blo 'k 2" if di ferent from Report)

18. SUPPLEMENTARY NOTES

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. Department of Commerce
Springfield VA 22151

19. KEY WORDS (Continue on reverse elde if necessery and identify by block number)

Batch Least Squares Coordinate and Timekeeping Systems Covariance Analysis Data Generation Ephemeris Generation Multiple Arc Fitting Orbit Determination Powered Flight

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The TRACE Trajectory Analysis and Orbit Determination Program is a general-purpose orbital analysis program. It was written and continues to be developed specifically to assist technical personnel in the analysis and design of satellite orbits and tracking systems. Volume VII is intended to serve as in input usage guide that defines all input required to perform TRACE functions such as trajectory generation, data/observation generation, orbit determination, and statistical analysis. A comprehensive

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

19. KEY WORDS (Continued)

Recursive Filter
Sequential Batch
Simultaneous Vehicle
TRACE

TRACE66
Trajectory Analysis
Vehicle Attitude

20. ABSTRACT (Continued)

description for each specific input item is given, and input data structures are shown. The Usage Guide is published in two parts, A and B.

The TRACE documentation series is summarized as follows:

Volume I: General Program Objectives, Description, and Summary

Volume II: Coordinate and Timekeeping Systems with Associated

Transformations

Volume III: Trajectory Generation Equations and Methods

Volume IV: Measurement Data Generation and Observational

Measurement Partials

Volume V: Differential Correction Procedure and Techniques

Volume VI: Orbital Statistics via Covariance Analysis

Volume VII: Usage Guide, Parts A and B

Volume VIII: Not to be published

Volume IX: Detailed Program Structure

Volume X: Lunar Gravity Analysis
Volume XI: LGA Data Processor

Volume XII: Sequential Least Squares Procedures and Techniques

PREFACE

Certain volumes of the TRACE documentation series were published by The Aerospace Corporation as Technical Operating Reports. Volume III: Trajectory Generation Equations and Methods was published as TOR-0066(9320)-2, Vol. III, and Volume V: Differential Correction Procedure and Techniques was published as TOR-0066(9320)-2, Vol. V.

Volume I: General Program Objectives, Description, and Summary was published as TR-0059(9320)-1, Vol. I, and Volume X: Lunar Gravity Analysis was published as TR-0059(9320)-1, Vol. X. Future volumes in this series will be published as Technical Reports.

This report is published in two parts, A and P.

The TRACE Program could not have been developed to its present status without the assistance of many people working in the fields of astrodynamics and software design. The authors acknowledge with gratitude and analysis and/or programming efforts of A. B. Bierman, R. J. Farrar, W. A. Feess, E. H. Fletcher, R. B. Freund, T. P. Gabbard, C. G. Gibson, P. T. Gray, P. T. Guttman, J. A. Pearson, C. M. Price, W. F. Rearick, N. W. Rhodus, A. J. Rusick, L. J. Tedeschi, L. Wong, and K. R. Young. In addition, consultations with W. T. Kyner, A. Troesch, and H. H. Wertz have led to many significant improvements and added capabilities in the program.

This report supersedes the appendices to TR-0059(9320)-1, Vol. VII, 30 June 1971. M at 100

CONTENTS

AP	PENDICES	
Α.	DESCRIPTION OF THE GENERAL-PURPOSE INPUT ROUTINE GAIL1	A-1
в.	TRACE DATA DECK STRUCTURE EXAMPLES	B-1
c.	SAMPLE OUTPUT DESCRIPTIONS	C-1
5).	TRACE INPUT FORMS	D-1

A. DESCRIPTION OF THE GENERAL-PURPOSE INPUT ROUTINE GAIL!

A. 1	FUNCT	ION AND C	APABILITIES	A-1
	A. 1. 1	Purpose a	nd Description	A-1
	A. 1. 2	Method .		A-2
	A. 1.3	Usage		A - 2
		A. 1. 3. 1	Data Card Format	A-2
		A.1.3.2	Header Card Format	A-3
		A.1.3.3	Decimal Points	A-3
		A.1.3.4	Signs	A-3
		A. 1. 3. 5	Values (V. Subfield)	A-4
		A. 1. 3. 6	Location (L _i Subfield)	A-4
				A-4
			A. 1. 3. 6. 2 Single Numeric Entry	A-5
			A. 1.3. o. 3 Matrix Element Entry	A-6
			A. 1. 3. 6. 4 Blank Location	A-6
		A.1.3.7	Conversion Code (C, Subfield)	A-7
			A.1.3,7.1 Blank: Real Variable	A-7
			A. 1. 3. 7. 2 1: Integer	A-9
			A. 1. 3. 7. 3 D: Short Header (20 Characters)	A-9
			A. 1.3.7.4 H: Long Header (72 Characters)	A-9
			A. 1. 3. 7. 5 L: Sparse Matrix Input Definition	A-10
			A. 1. 3. 7. 6 M: Full Matrix Input Definition	A-11
			A.1.3,7.7 B: Octal	A-11
			A. 1. 3. 7. 8 E: End of Case	A-15
A. 2	ERROR	COMMENI	rs	A- 12
A. 3	SAMPL	E GAIL1 IN	PUT FORM	A - 14
			TABLE	
A - 1.	Errors	Recognizab	le by Input Subroutine	A-13

APPENDIX A

DESCRIPTION OF THE GENERAL-PURPOSE INPUT ROUTINE GAIL1

A. 1 FUNCTION AND CAPABILITIES

A. 1. 1 Purpose and Description

The purpose of GAIL1* is to read a set of Hollerith punched data and/or header cards into core with one FORTRAN cail statement. To achieve this, the data fields are converted to binary, while the header information is stored in Hollerith code; each piece of the data is converted and stored according to a specific conversion code. These data may be integers, real variables, arrays, alphanumeric data (short or long headers), matrices, or end-of-case indications.

The data cards can be printed as received, or they can be placed on a scratch I/O device and then listed when an end of file (EOF) is detected on the input file.

The subroutine will always return control to the driver program except in the case of tape errors, system malfunctions, or completely erroneous punched data cards that disobey all FORTRAN I/O format rules. Therefore, the user must supply and test a status cell after an exit from the subroutine to determine which of the following occurred:

- Normal end of case
- Some type of error
- End of file reached on the input device

GAIL1 was originally developed by R. B. Gladson of The Aerospace Corporation for the CDC 6000 computer series. It has been modified for IBM 360 and 370 computer series.

A. 1. 2 Method

All data fields are converted according to FORTRAN I/O format specifications. Real variables are converted by the F specification, whether or not the exponent (E or D) is included with the variable. Integers are converted by the I format, and alphanumeric data by the A format. This allows for alternate methods of entering real variables and integers from the FORTRAN standards. This variety of methods (Sec. A. 1. 3. 7) enables the user to enter numbers in a manner more reasonable and mathematical than did previous input routines.

A.1.3 Usage

A. 1. 3. 1 Data Card Format

The data card format consists of three fields, each containing three subfields; a conversion code; a location; and a value (as in the following example):

1	2	7	27	28	33	53	54	59	79	80
c_1	L ₁	v ₁	c_2	L ₂	V ₂	C3	L ₃	۸3	Till;	seq

Subfield	Data Field 1	Data Field 2	Data Field 3
Conversion Code (C;)	1	27	53
Location (L;)	2-6	28-32	54-58
Value (V _i)	7-26	33-52	59-78

Columns 79 and 80 are not processed by the routine and can be used for card sequencing if the user desires. The conversion code (C_i) is one of the alphabetic characters (Sec. A. 1. 3. 7); it specifies the type of conversion to be used on the value field. The location subfield specifies the cell in which the converted value subfield is to be stored.

A. 1. 3. 2 Header Card Format

The header card format consists of a conversion code in Column 1, a sequence number in Columns 2 through 6, and any Hollerith information in Columns 7 through 78. Columns 79 and 80 are not used.

A. 1.3.3 Decimal Points

The use of a decimal point is valid in both integer and real variable entries; however, it is not mandatory to enter one. If the decimal point is missing from an entry, it is assumed to be at the right of the last digit punched in the value field; for example:

$$321. = 321 = 321E0$$

A. 1.3.4 Signs

If signs (+ or -) are used, they are placed in a column by themselves and immediately precede the value. Overpunches are not valid; e.g.:

1 27 53	2 28 54	7 33 59	
С	LOCATION	VALUE	Valid
		+7.1621	
		171.1021	
1 27 53	2 28 54	7 33 59	
	2 28		Invalid

A. 1.3.5 Values (V; Subfield)

It is not necessary for the entire subfield to be filled, since the first blank following the first nonblank denotes the end of the value. Superfluous low-order zeros should be omitted.

If alphanemeric information is entered, it is stored in core as it appears in the value subfield. Thus, for this type of data entry, leading blanks are retained. If they appear, the blanks themselves are also stored in core.

A. 1.3.6 Location (L; Subfield)

The location is specified by either a variable, an array name, or the element subscripts in a single-dimension array or matrix.

A. 1. 3. 6. 1 Variable, Array, or Matrix Name

If the location contains at least one nonnumeric character that is not a comma as the third character, it is interpreted as a variable, array, or matrix name. The contents of the value subfield are stored in the cell for the variable or in the first cell of the array or matrix. This location then becomes the origin of all numeric and matrix element locations that follow until another variable, array, or matrix name is encountered. Care must be taken to enter an array or matrix name before entering numeric or matrix element locations.

A. 1. 3. 6. 2 Single Numeric Entry

If a location contains a single numeric value, the entry is treated as a subscript. With its previously established origin, this subscript is used to compute the location in which the entry in the value subfield is stored. For instance, if the established origin is NAME and the value in the location subfield of the input is 6, the entry in the value subfield is stored in cell NAME(6). (Single numeric entries must be left-justified, and leading zeros are optional.) In the following example,

1 27 53	2 28 54	7 33 59
c	LOCATION	VALUE
	NAME	3,716
	6	6.173

legitimate numeric entries would be shown as:

2. 53	2 28 54	7 33 59
С	LOCATION	VALUE
	5	
	12	
	03	

and illegitimate numeric entries would be shown as:

: 27 53	2 28 54	7 33 59
С	LOCATION	VALUE
	1	
	30 🛈 1	
	① 1	

- Not a valid subscript.Store as 30.
- Not recognized as a relative address; it is flagged as an error.

The symbol (1) indicates 1 space between digits, and (n) indicates n spaces.

A. 1. 3. 6. 3 Matrix Element Entry

A matrix element is stored by specifying two separate two-digit numeric entries, separated by a comma, in the location subfield. For example:

	03, 54	-3.17		
C	LOCATION		VALUE	
27 53	28 54	33 59		
1	2	7		

-3.17 goes to element (3,4) of the matrix

	2 28 54	7 33 59
С	LOCATION	VALUE
	15,01	+7.38

+7.38 goes to element (15,1) of the matrix

The elements are stored in the column major sort by using the formula

$$\phi RIGIN ((j-1)I + i)$$

where I is the total number of rows in the matrix and (i, j) is the element in question.

A. 1.3.6.4 Blank Location

If the location is left blank, the entry in the value subfield is stored in the cell immediately following the one in which the last value was stored. Thus, an entire array may be entered by using a name in the location subfield for the initial entry and leaving location subfields blank for the subsequent value subfield entries. The following is an example:

1 27 53	2 28 54	7 33 59
С	LOCATION	VALUE
	XYZ	4.0
		5.1
		6.2

4.0 stored in XYZ(1)

5.1 stored in XYZ(2)

6.2 stored in XYZ(3)

A. 1.3.7 Conversion Code (C; Subfield)

The entry in the conversion code subfield specifies the method of converting the data in the value subfield. Care should be taken to apply the proper code with each item of data; if the proper code is not applied, a premature termination will occur in a FORTRAN format statement. The eight conversion codes currently available are described in the following subsections.

A. 1.3.7.1 Blank: Real Variable

The number in the value subfield is converted to and stored as a real variable. Entries can be made to the value subfield by any of four methods: Three of them are in the normal FORTRAN E, D, and F types of real variable input formats, e.g.:

1	2	7	
27	28	33	
53	54	59	
С	LOCATION	VALUE	
		3.615	= 3.615
		.3615E01	= 3.615
		3615E-03	= 3.615
		3615D-03	= 3.615
		.3615D0i	= 3.615

The fourth method allows for the input of real variables in scientific nomenclature ($a \times 10^b$). The number is written in the value subfield and is followed by an X, then by a 10, and then by the power of ten to which the number is to be scaled (a sign must precede the exponent). Some examples follow:

• $14200 = 1.4200 \times 10^4$ is input as

1 27 53	2 28 54	7 33 59
С	LOCATION	VALUE
		1.4200X10+4

or, in the normal mode, as

		14200
С	LOCATION	VALUE
27 53	2 28 54	7 33 59

or as

27 53	2 28 54	7 33 59	
С	LOCATION	VALUE	
		1.4200E4	

• $.00762 = .762 \times 10^{-2}$ is input as

	2 28 54	7 33 59
C	LOCATION	VALUE
		.762X10-2

A. 1. 3. 7. 2 I: Integer

The number in the value subfield in converted to a fixed-point integer. A decimal point is allowable; if it is used, only the integer portion is converted. Before the value is converted by the FORTRAN I format, the decimal point and any digit(s) to the right are stripped off; e.g.:

	2 26 54	7 33 59
С	LOCATION	VALUE
I		71.35

is stored as 71.

A. 1. 3. 7. 3 D: Short Header (20 Characters)

The contents of the value subfield are interpreted as 20 alphanumeric characters. They are stored in two consecutive cells in ascending order, beginning at the location specified by the location subfield. The characters are stored in the same relative positions as in the value subfield; thus, leading, trailing, and embedded blanks are legitimate. For example:

TION			/ALUE			
AB	C(1)DE	F(2) G	HIJ(4	4) 234	4	
	AB	ABC(1) DE	ABC①DEF②G	ABC①DEF②GHIJ	ABC①DEF②GHIJ④23	ABC①DEF②GHIJ④234

is stored in two consecutive words, with ABC 1DEF 2G in the first word, and HIJ 4234 in the second.

A. 1.3.7.4 H: Long Header (72 Characters)

A card with an H in Column 1 is considered a long header card. If the location subfield is blank, the card is ignored (treated as a comments card). If the location subfield contains a left-justified integer 1, Columns 7 through 78 of the card are stored directly in seven consecutive words in ascending core storage.

The H conversion code is the only one for which a numeric location subfield is mandatory. If the location subfield is not blank or the integer 1, the header is not stored, an error comment is printed, and the error termination procedure is invoked.

A. 1. 3. 7. 5 L: Sparse Matrix Input Definition

This input specifies only that matrix elements may be following, either on the same and/or on subsequent cards. It does not store any items of data; it only warns the subroutine that matrix elements might be stored and indicates where. The location subfield must contain the name of the matrix in which the items are to be located in core.

The value subfield must contain two-digit integers separated by a comma. The entries are the size of the matrix [I max and J max], and the comma must be the third character of the subfield. If it is not, an error comment is printed, and an error flag set.

The I_{max} and J_{max} values are retained to compute the successive subscripted locations of the matrix elements until they are redefined. Blank location subfields may follow this definition if successive elements of the matrix are to be loaded. It must be remembered that the matrix is stored in column major. For example:

	2 28 54	7 33 59
С	LOCATION	VALUE
L	GØØD	03.07

A. 1, 3. 7. 6 M: Full Matrix Input Definition

The use of this conversion code is identical to that of L, except that the entire matrix is preset to zero before any of the elements are loaded. For example:

27 53	2 28 54	33 59
С	LOCATION	VALUE
M	GØØD	03,07

presets the 3 \times 7 matrix $G\phi\phi$ D to zero; it is prepared to store the matrix elements following it until another symbolic location name is encountered.

A.1.3.7.7 B: Octal

The value subfield is converted as a logical word. It is not necessary to include leading zeros, but the first octal digit must always occupy the left-most position in the subfield. If fewer than 20 digits are input, the value will be right-justified in the memory location. For example:

27 53	2 27 54	7 33 59	
С	LOCATION	VAL	UE
В		123	

is stored as 0000000000000000123_8 in core.

A. 1. 3. 7. 8 E: End of Case

This defines the end of case, when control is returned to the object program from which it was called. The rest of the subfield and the remaining fields on the card are ignored.

A. 2 ERROR COMMENTS

The input errors that the subroutine can recognize are listed in Table A-1. In each case, an appropriate error comment is printed, the remaining cards in the data set are scanned until an E conversion code is found, and the run is terminated. The errors are not listed in any specific order.

Table A-1. Errors Recognizable by Input Subroutine

Error Message	Type of lnput Error
HEADER CARD NO. EXCEEDS MAXIMUM NO. ALLOWABLE.	If the location subfield is not blank or the integer 1, the card is not stored; it is printed as shown, and the error termination procedure takes over.
Card Image (80 Ch	naracters)
ERROR ATTEMPTING TO COMPUTE NEXT STORAGE LOCATION FROM BLANK LOCATION FIELD. BASIC SYMBOLIC ORIGIN HAS NOT BEEN SET.	The first value input had a blank location subfield, and no symbolic origin had been established.
Field in Err	or
ERROR ATTEMPTING TO COMPUTE NEXT STORAGE LOCATION FOR A MATRIX ELEMENT, BASIC SYMPOLIC ORIGIN HAS NOT BEEN SET.	A matrix element is to be stored, but no location definition of the matrix has been made by a previous M or L card.
Field in Err	or —
MATRIX SIZE UNDEFINED.	A matrix element is to be stored, but no size definition of the matrix has been made by a previous M or L card.
Field ir Err	ror —
ERROR ATTEMPTING TO COMPUTE NEXT STORAGE LOCATION FOR NUMERIC LOCATION FIELD. BASIC SYMBOLIC ORIGIN HAS NOT BEEN SET.	The first value input had a numeric location subfield. No symbolic origin had been established before this point.
- Field in Err	ror —
UNDEFINED SYMBOL USED IN LOCATION FIELD.	A symbol not previously defined was used in the location subfield.
Field in Err	ror —
MISSANG COMMA IN MATRIX DEFINITION.	During an attempt to define a matrix (M or L conversion code), the third character in the value subfield was not a comma.
Field in Err	ror —
ILLEGAL CONVERSION CODE.	An undefined conversion code was entered
Field in Err	ror —
INVALID CHARACTER IN VALUE FIELD.	There is an invalid character in the value field.
Field in Err	or —

A.3 SAMPLE GALLI INPUT FORM

A sample GAIL1 input form is shown below.

GRAMMER _			KEYPUNCHER	VERIFIED		DATE		_ PAGE	OF
									177
									+
									┿
									ì
						· · · · · · · · · · · · · · · · · · ·	-		
		·····	····						
			_						
	27 5.	2	7			2 20 54	7 33		
	5.	28 5.4	7 33 59		53	54	59		
	-				. —	<u> </u>			
YMEOL	С	LOCATION	VALUE	SYMBOL	ع ا	LOCATION		VALUE	
	\vdash		i		1 🗀	 			
	⊢				┨┝				
j	L								
	F				ΙF	1			
	\vdash				i		<u> </u>		
		i			1		1		
	\vdash	L				<u> </u>			
		!			[I			
		 •			1 -	 			_
	<u></u>		ļ		⇃⇂				
		ļ				1			
	=				1 =	1	1		
	<u> </u>								
					1 [
	-				┨┝╌				
	L	L	<u> </u>		⇃닎	<u> </u>	<u> </u>		
	-		I		1 -		T		
	-				∤				
	1								
					1 [1			
		<u> </u>					<u> </u>		
				<u> </u>	1	†			
	-		 		∤				
						l			
			T		1 -	1			
	_			<u> </u>	1 -	 _			
	L					<u> </u>			
			<u> </u>		1 🗀				
							T		
	-				1 -				
	L	l		L	I L	l	L		
-	\vdash	1	T	-	1 🚝	T	r		
	\perp	L			1 📙				
		1	<u> </u>	-	1 -	 			
	<u></u>	l	<u> </u>		!	I	<u> </u>		
	\vdash		 		┪┝━	 			
	L-	<u> </u>	<u> </u>			<u> </u>			
	\vdash	 		———	1 -	 	 		

B. TRACE DATA DECK STRUCTURE EXAMPLES

3.1	ORBIT	DETERMINATION RUN (ITIN = 2)	B-1
	B.1.1	Single-Vehicle with OBSERVATION Card Input	B-1
	B. 1. 2	Multiplerc with OBSERVATION Card Input	B-2
	B. 1.3	Single-Vehicle with Card Image Observation File Input	B-4
	B. 1.4	Multiple-Arc with Card Image Ol servation File Input	B-5
	B. 1.5	Single-Vehicle Differential Correction with Binary Observation File Input	B-7
	B. 1.6	Multiple-Arc with Binary Observation File Input	B-8
В.2	EPHEM	IERIS GENERATION RUN (ITIN = 3)	B-10
	B. 2.1	Single-Vehicle	B-10
	B.2.2	Multiple-Arc	B-11
В.3	MEASUREMENT DATA GENERATION RUN (ITIN = 4)		
	B. 3. 1	Single-Vehicle	B-12
	B.3.2	Multiple-Arc	B-13
B. 4	COVAR	IANCE ANALYSIS RUN (ITIN = 5)	B-15
B.5	MULTIPLE ITINERARY		
	B.5.1	Ephemeris and Data Generation (ITIN = 34)	B-21
	B.5.2	Multiple Itinerary (ITIN = 3452345)	B-22
	B.5.3	Multiple Itinerary (ITIN = 323)	B-24
В,6	STACK	ED CASES (ITIN = 34 FOLLOWED BY ITIN = 2)	B-26
B. 7	SIMULTANEOUS VEHICLES		
	B.7.1	Orbit Determination (ITIN = 2, MULTV # 0)	B-28
	B.7.2	Data Generation (ITIN = 4, MULTV # 0)	B-30
	B. 7. 3	Covariance Analysis (ITIN = 5, MULTV = 1, 2)	B-31

FIGURES

B-1.	Deck Setup for a Single-Vehicle Orbit Determination Run with OPSERVATION Card Input	B-1
B-2.	Deck Setup for a Multiple-Arc Orbit Determination Run with OBSERVATION Card Input	B-3
B-3.	Deck Setup for a Single-Vehicle Orbit Determination Run with Card	B-4
B-4.	Deck Setup for a Multiple-Arc Orbit Determination Run with Card Image Observation File Input	B-6
B-5.	Deck Setup for a Single-Vehicle Differential Correction Run with Binary Observation File Input	B-7
B-6.	Deck Setup for a Multiple-Arc Orbit Determination Run with Binary Observation File Input	.3-9
B-7.	Deck Setup for a Single-Vehicle Ephemeris Generation Run	B- (
B-8.	Deck Setup for a Multiple-Arc Ephemeris Generation Run	B-1
B-9.	Deck Setup for a Single-Vehicle Data Generation Run	B-1
B-10.	Deck Setup for a Multiple-Arc Data Generation Run	B-1
B-11.	Deck Setup for a Covariance Analysis Run with OBSERVATION Card Input	B-10
B-12.	Deck Setup for a Covariance Analysis Run with Card Image Observation File Input	B-1
B-13.	Deck Setup for a Covariance Analysis Run with Binary Observation File Input	B- 18
B-14.	Deck Setup for a Covariance Analysis Run with Data Simulation	B-19
B-15.	Deck Setup for a Covariance Analysis Update Only Run	B-20
B-16.	Deck Setup for a Multiple-Itinerary Run (ITIN = 34)	B-2
B-17.	Deck Setup for a Multiple-Itinerary Run (ITIN = 3452345)	B- 2
B-18.	Deck Setup for a Multiple-Itinerary Run (ITIN = 323)	B-25
B-19.	Deck Setup for Stacked Cases (ITIN = 34, ITIN = 2)	B-2
B-20.	Deck Setup for a Simultaneous-Vehicle Differential Correction Run with OBSERVATION Card Input	B-2
B-21.	Deck Setup for a Simul' neous-Vehicle Data Generation Run	B-30
B-22.	Deck Setup for a Simultaneous-Vehicle Covariance Analysis Run with OBSERVATION Card Input	B-32

APPENDIX B

TRACE DATA DECK STRUCTURE EXAMPLES

B.1 ORBIT DETERMINATION RUN (ITIN=2)

B.1.1 Single-Vehicle with OBSERVATION Card Input

The deck setup for an orbit determination run for one vehicle is shown in Fig. B-1. All observational measurements are input in the OBSERVATION block.

Fig. B-1. Deck Setup for a Single-Vehicle Orbit Determination Run with OBSERVATION Card Input

B.1.2 Multiple-Arc with OBSERVATION Card Input

The deck setup for an orbit determination of more than one vehicle in which measurements from the many vehicles are used (but each observation is associated with only one vehicle) is shown in Fig. B-2. In this case, only one model group (MODEL, MASS, STATION, SENSOR, ATA, and CONSTRAINT data blocks) is input; it is followed by the VEHICLE blocks for all vehicles, and then by pairs of REJECT and OBSERVATION blocks for each vehicle.

Each OBSERVATION card should have a vehicle number (Sec. 15), and VEHID and BTIME are required in each VEHICLE block. For convenience, in the VEHICLE block, the input data not overridden carries over from one vehicle to the next (characteristic of GAIL1 input).

Fig. B-2. Deck Setup for a Multiple-Arc Orbit Determination Run with OBSERVATION Card Input

B.1.3 Single-Vehicle with Card Image Observation File Input

The deck setup for an orbit determination run for one vehicle, using observational measurements found on a card image observation file (TAPE4) is shown in Fig. B-3. This setup is indicated by the input item BCDIN \$\neq 0\$ (Sec. 11.2.1) in the VEHICLE data block and the fact that the OBSERVATION card is followed by the END \$\Omega\$F INPUT card.

Fig. B-3. Deck Setup for a Single-Vehicle Orbit Determination Run with Card Image Observation File Input

B. 1.4 Multiple-Arc with Card Image Observation File Input

In an orbit determination run with observational measurements from several vehicles (each item of data is associated with only one vehicle), the data deck requires only one set of model group data blocks (Fig. B-4). For each vehicle there must be a VEHICLE block followed by the pairs of REJECT and OBSERVATION blocks.

In the VEHICLE block, input data not overridden will carry over from one vehicle to the next. BTIME is required in each VEHICLE block to show the last integration time (more than likely, the last observation time). VEHID, which should match the vehicle number on the observation card images for that vehicle, is also required.

For this case, observations are input by the card image observation file (TAPE4). This is indicated by BCDIN #0 (Sec. 11.2.1) and by a single \$\Phi BSERVATION\$ card for each vehicle.

Fig. B-4. Deck Setup for a Multiple-Arc Orbit Determination Run with Card Image Observation File Input

B.1.5 Single-Vehicle Differential Correction with Binary Observation File Input

Orbit determination for one vehicle with an input binary observation file (TAPE3) requires one model group of input data blocks and the VEHICLE block only from the vehicle group (Fig. B-5). The input item BTIME (Sec. 11.2.1) in the VEHICLE block contains the last observation time (or a later time) on the file. This time is considered in determining the final integration time. Note that no REJECT or OBSERVATION data blocks are allowed when a binary observation file is used.

Fig. B-5. Deck Setup for a Single-Vehicle Differential Correction Run with Binary Observation File Input

B.1.6 Multiple-Arc with Binary Observation File Input

The deck setup for a multiple-arc orbit determination run with binary file observation input is shown in Fig. B-6. Observational measurements from many vehicles are used, but each item of data is associated with only one vehicle. One model group is input, and one VEHICLE block per vehicle is input. Each VEHICLE block contains the input item BTIME (Sec. 11.2.1), which indicates the last observation time (or a later time) on the binary observation file (TAPE3) for this vehicle. These times are considered in determining the final integration time for each vehicle.

Since all vehicles are assumed to be independent, a complete set of appropriate VEHICLE data should be provided for each. Input data not overridden is carried from one vehicle to the next. Again, note that no REJECT or OBSERVATION data blocks are allowed when a binary observation file is used.

Fig. B-6. Deck Setup for a Multiple-Arc Orbit Determination Run with Binary Observation File Input

B.2 EPHEMERIS GENERATION RUN (ITIN=3)

B.2.1 Single-Vehicle

The deck setup for a single-vehicle ephemeris generation run (Fig. B-7) consists of the following: the MODEL and the (optional) MASS data blocks from the model group and the VEHICLE block. The VEHICLE block must contain the input item PTIM (Sec. 11.3.1.1), which indicates the print times and the final integration time.

Fig. B-7. Deck Setup for a Single-Vehicle Ephemeris Generation Run

B.2.2 Multiple-Arc

The deck setup for an ephemeris generation run with several vehicles (Fig. B-8) consists of one set of MODEL and the (optional) MASS data blocks and one block of VEHICLE data per vehicle. The input item PTIM (Sec. 11.3.1.1) is specified in each VEHICLE block to indicate the print times and the final integration time for each vehicle. In the VEHICLE block, input data not overridden is carried over from one vehicle to the next.

Fig. B-8. Deck Setup for a Multiple-Arc Ephemeris Generation Run

B.3 MEASUREMENT DATA GENERATION RUN (ITIN=4)

B.3.1 Single-Vehicle

The deck setup for a single-vehicle measurement data generation run (ITIN=4) requires one set each of the model and vehicle groups of input data blocks, including MODEL, STATION, VEHICLE, DATA GENERATION, and the optional MASS and SENSOR blocks (Fig. B-9).

The DATA GENERATION input block includes both DATA GENERATION I and II cards (Sec. 12) unless the VEHICLE block contains the input item JRIST=1 (Sec. 11.4.1). In this case, the DATA GENERATION II cards are omitted.

Fig. B-9. Deck Setup for a Single-Vehicle Data Generation Run

B.3.2 Multiple-Arc

The multiple-arc data generation deck (Fig. B-10) contains one set of model group data blocks and one set per vehicle of the vehicle group data blocks (VEHICLE and DATA GENERATION cards). If the VEHICLE block contains the input item JRIST=1 (Sec. 11.4.1), the DATA GENERATION II cards are omitted from the DATA GENERATION data block (Sec. 12).

Note that all vehicles are assumed to be independent; therefore, a complete set of VEHICLE and DATA GENERATION blocks should be provided for each vehicle. For convenience, in the VEHICLE block, input data not overridden is carried over from one vehicle to the next.

Fig. B-10. Deck Setup for a Multiple-Arc Data Generation Run

B.4 COVARIANCE ANALYSIS RUN (ITIN=5)

Deck setups for single-vehicle covariance analysis runs always contain the same basic model groups of input data blocks (MODEL, MASS, STATION, SENSOR, ATA, and COVQ), whereas the vehicle data blocks (VEHICLE and DATA GENERATION) and observation data blocks (REJECT and OBSERVATION) are variable. Various deck setups for covariance runs are shown in Figs. B-11 through B-15.

Input/output options are specified in the MODEL data block by input items $\emptyset PB\emptyset X$ and $PRC\emptyset V$ (Sec. 2.5.1). The model P/Q parameter specifications are found in the input items $\emptyset PRAM$, MPRAM, and GPRAM (Sec. 2.1.5).

A priori input for the normal matrix A^TA or the variance-covariance matrix $(A^TA)^{-1}$ is specified in the ATA data block (Sec. 6). A priori input for Q-parameters is specified via the COVQ data block (Sec. 8).

Vehicle-dependent P- and Q-parameters and the print schedule are specified by input items VPRAM (Sec. 11.1.14) and PTIM (Sec. 11.5.1).

Observational measurement times may be specified by:

- OBSERVATION cards
- Card image observation file (TAPE4)
- Binary observation file (TAPE3)
- DATA GENERATION data block input.

When the observational measurement times are specified by card image tape or card images, measurement times may be rejected by inputs to the REJECT data block.

In case of an update to an input $A^{T}A$ or $(A^{T}A)^{-1}$ matrix, no measurement times are required $[\emptyset PB\emptyset X(D)]$ and $\emptyset PB\emptyset X(E)$, Sec. 2.5.1].

Fig. B-11. Deck Setup for a Covariance Analysis Run with OBSERVATION Card Input

Fig. B. 12. Deck Setup for a Covariance Analysis Run with Card Image Observation File Input

Fig. B-13. Deck Setup for a Covariance Analysis Run with Binary Observation File Input

Fig. B-14. Deck Setup for a Covariance Analysis Run with Data Simulation

Fig. B-15. Deck Setup for a Covariance Analysis Update Cnly Run

B.5 MULTIPLE ITINERARY

B.5.1 Ephemeris and Data Generation (ITIN=34)

The deck setup for a case in which an ephemeris generation and a data generation are desired for the same vehicle, using the same model group blocks, is shown in Fig. B-16. Included in the MODEL and VEHICLE data blocks are all input items required for both the ephemeris generation and the data generation runs. Even though an ephemeris generation run does not require STATION, SENSOR, or DATA GENERATION input blocks, they are included in the deck setup because a data generation run does require them.

Fig. B-16. Deck Setup for a Multiple-Itinerary Run (ITIN = 34)

B.5.2 Multiple Itinerary (ITIN=3452345)

The deck setup for Example B (Sec. 1.4.1) is shown in F.g. B-17. In this case, the initial ITIN functions 3, 4, and 5 cause the generation of the nominal ephemeris, the look angles, and the covariance analysis, respectively. Reconstruction takes place starting from the nominal initial values. When the iterations terminate, the trajectory for the converged solution is used to repeat the three processing functions.

The MODEL and VEHICLE data blocks contain the necessary input items for all functions. The STATION cards are necessary for ITIN functions 2, 4, and 5. The optional ATA data block can contain A^TA or (A^TA)⁻¹ (Sec. 6). It is used for the orbit determination and/or the covariance analysis functions. The DATA GENERATION cards are necessary to generate the look angles, and the OBSERVATION block contains the measurements used in the covariance analysis and orbit determination steps.

Fig. B-17. Deck Setup for a Multiple-Itinerary Run (ITIN = 3452345)

B.5.3 Multiple Itinerary (ITIN=323)

The deck setup for Example A (Sec. 1.4.1) is shown in Fig. B-18. A trajectory is generated from the input initial conditions, and an ephemeris is generated and output. Then, another trajectory is reconstructed from the observational data, and comparable ephemeris output is printed. The VEHICLE data specifies the nominal initial conditions for the trajectory, the amount of printed output, and the vehicle parameters to be differentially corrected in the reconstruction.

The observational measurements can be input by cards, card image file, or binary observation file (Sec. 11.2.1). If a card image file is used, the OBSERVATION block consists of a single card, with \$\phi\$BSERVATION in Columns 1 through 11. If the binary observation file is used, no REJECT or OBSERVATION data blocks are allowed.

Fig. B-18. Deck Setup for a Multiple-Itinerary Run (ITIN = 323)

B.6 STACKED CASES (ITIN=34 FOLLOWED BY ITIN=2)

This data deck setup is used for Cases A and B of Appendix C (Fig. B-19). In Case A, an ephemeris is generated, and observational measurements are simulated. These measurements are written on a card image observation file (TAPE4) and are then used in the orbit determination run of Case B. Note that in the first case, from the MODEL block to the first END ØF INPUT, the data block setup is as described in Secs. B.2.1 and B.3.1. The VEHICLE data also includes input item ETAPE#0 (Sec. 14.4.1), so the observations! measurements are written on the card image observation file.

The ITIN=2 function is considered an entirely new case because nothing is retained from the first case; new model, vehicle, and observation group inputs are therefore included. The STATION input must be repeated, and the \$\phi BSERVATION\$ card must be followed by the END \$\phi F INPUT card\$. Input item BCDIN\$\neq 0\$ (Sec. 11.2.1), specified in the second VEHICLE block, indicates that the observations are on the card image observation file, and BTIME (Sec. 11.2.1) indicates the time of the last observation.

Fig. B-19. Deck Setup for Stacked Cases (ITIN = 34, ITIN = 2)

B.7 <u>SIMULTANEOUS VEHICLES</u>

B.7.1 Orbit Determination (ITIN=2, MULTV #0)

The deck setup is shown (Fig. B-20) for many vehicles in simultaneous orbit that have the same model. The VEHICLE data blocks are input sequentially. Each requires a VEHID (Sec. 11.1.2) and the final integration time specified by BTIME (Sec. 11.2.1), but the integration times of the first vehicle must span those of any subsequent vehicles. Since the REJECT cards are timedependent, not vehicle-dependent, only one block is input.

Only one OBSERVATION block, containing the measurements from all vehicles, can be input. In this case, actual OBSERVATION cards are shown. If this data were input by the card image observation file (TAPE4), the block of cards would be replaced by a single OBSERVATION card. If it were input by the binary observation file (TAPE3), there would be no REJECT or OBSERVATION data blocks.

The optional ATA block may contain an A^TA or (A^TA)⁻¹ matrix (Sec. 6). If MULTV=2 or 3, the STAGE data block (Sec. 14) is optional, and if MULTV=2, the DEWM data block (Sec. 7) is optional.

Fig. B-20. Deck Setup for a Simultaneous-Vehicle Differential Correction Run with OBSERVATION Card Input

B.7.2 Data Generation (ITIN=4, MULTV #0)

The deck setup for generating data for vehicles simultaneously in orbit that have the same model is illustrated in Fig. B-21. Each VEHICLE data block contains a VEHID (Sec. 11.1.2).

Only one DATA GENERATION block is input; it contains DATA GENERATION I (Sec. 12.1) and II (Sec. 12.2.2) cards.

Fig. B-21. Deck Setup for a Simultaneous-Vehicle Data Generation Run

B.7.3 Covariance Analysis (ITIN=5, MULTV=1, 2)

The deck setup for a simultaneous-vehicle covariance analysis run (Fig. B-22) is basically the same as that for a single vehicle (Sec. B.4). The main difference is that, since the vehicles are in simultaneous orbit, all VEHICLE data blocks are input before the DATA GENERATION, REJECT, or OBSERVATION data blocks.

Each vehicle requires a VEHID (Sec. 11.1.2), and the first requires the input of PTIM (Sec. 11.5.1). The integration times of the first vehicle must span those of any subsequent vehicles.

Fig. B-22. Deck Setup for a Simultaneous-Vehicle Covariance Analysis Run with OBSERVATION Card Input

C. SAMPLE OUTPUT DESCRIPTIONS

C. 1	INTRODUCTION	C-1
C. 2	TEST CASE A: ECI SINGLE-VEHICLE EPHEMERIS GENERATION AND SIMULATED MEASUREMENT DATA GENERATION RUN (ITIN = 34)	C-3
C.3	TEST CASE B: ECI SINGLE-VEHICLE ORBIT DETERMINATION RUN (ITIN = 2)	C-31
C.4	TEST CASE C: ECI SIMULTANEOUS-VEHICLE COVARIANCE ANALYSIS RUN (ITIN = 5)	C-63
C.5	TEST CASE D: MCI SINGLE-VEHICLE EPHEMERIS GENERATION RUN (ITIN = 3)	C-141
C.6	TEST CASE E: ECI SINGLE-VEHICLE, POWERED FLIGHT EPHE MERIS GENERATION RUN (ITIN = 3)	C-159
C.7	TEST CASE F: ECI SIMULTANEOUS-VEHICLE ORBIT DETERMINATION RUN (ITIN = 2)	C-213
C.8	TEST CASE G: ECI SIMULTANEOUS-VEHICLE DATA GENERATION RUN (ITIN = 4)	C-305
	. TABLES	
C-1.	Definitions of Initialized Integration Quantities (Note: Repeated for User's Convenience)	C-12 C-168
C-2.	Definitions of Predetermined Event Table Quantities	C-172
C-3.	Definitions of Powered Flight Output Quantities	C-180

APPENDIX C

SAMPLE OUTPUT DESCRIPTIONS

C. 1 INTRODUCTION

The printed output produced by the TRACE Program is described here for typical differential correction, ephemeris generation, data generation, and covariance analysis runs. The samples that follow are of actual output listings, annotated to reference specific portions of the output data. Wherever applicable, the output items described are cross-referenced to the corresponding input definition section in this document. If an item occurs in more than one sample listing, a citation is given only for the first appearance.

The sample test cases included here are:

•	Test Case A	ECI single-vehicle ephemeris generation and simulated measurement data generation run (ITIN = 34)
•	Test Case B	ECI single-vehicle orbit determination run (ITIN = 2)
•	Test Case C	ECI simultaneous-vehicle covariance analysis run (ITIN = 5)
•	Test Case D	MCI single-vehicle ephemeris generation run (ITIN = 3)
•	Test Case E	ECI single-vehicle, powered flight ephemeris generation run (ITIN = 3).
•	Test Case F	ECI simultaneous-vehicle orbit determina- tion run (ITIN = 2)
•	Test Case G	ECI simultaneous-vehicle data generation run (ITIN = 4)

The symbol , used throughout the sample output, indicates that some output has been omitted. Note that many output pages without descriptive interruption have been included only to provide continuity. Cases A through D were run on TRACE Version 6.96 and Cases E through G on Version 7.27.

C.2 TEST CASE A: ECI SINGLE-VEHICLE EPHEMERIS GENERATION AND SIMULATED MEASUREMENT DATA GENERATION RUN (ITIN = 34)

> SEEE EEE EEE EEE EEFEFEEFEE SEEEEEEEEE REFERENCE SECTION SEEEEE TPACE - 66 (AD104A)(3) 000 000 000 000 000 000 000 000 000 000000000000 Program identification for accounting purposes: AD104A is the Aerospace IPD (Information Processing Division) identification number Identification number of the program version and its date VERSION 6.96 DESCRIPTION Date on which run is made (04/23/71) ~ ~ ~ ~ START CARR 299225955 ********** ITEM

CARD CARD CARD CARD CARD CARD CARD CARD	EC**2 = 4.9027777038E*12 H**3/SEC**2	SEC**2 = 3.9060310297E+14 N**3/SEC**2 CNN SNH SNH -1.56000000E-06 0. 1.54400000E-06 -7.65000000E-07	91.00E-03 GMLAT(DEG) = 7.03000000E+01. 91.00E-03 GMLNG(JEG) = 2.910000000E+02. AM(ER) = 2.725062770E-02. 4.900E+03 ERNH(N4/ER) = 3.443933600E+03. 5500E+03 AE(ER) = 1.000000000E+03. 57951E+01 SLT = 2.020176300E+03. FACTORS ************************************
MTERMS04,60 0 0 -0.765E-6 HAX 2.0	*** LUNA? 1RAVITY MODEL ************************************	FT**3/ N H S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= 4.37526 = 0.37526 = 0.37616 = 6.07611 = 5.72957 = 5.72957 = 3.35232 CONVERSION
INTERM4 1082.76E-5 -2.693E-6 -1.56E-6 1.544E-6 HMIN 2.0	eseseseseseseseseseseseseseseseseseses	ATTON WITH 4 TER ATTON WITH 4 TER SNY 5000E-03 0. 0030E-06 0.	.833393500E-03 OMEGE(RA .802325500E-05 OMEGL(RA .092573900E+07 ERKH(K4/ .253639700E+03 FTNM(FT/ .217409700E+01 DGREE(DE .003003900E-07 F
MODEL DATA INFORMI 0 02,00 0 03,00 0 04,00 0 11IN 34 RSPLT5 H0 2.0	serverese	3M = 5.53039350002-03 ER NO NORMALIZ NO MO CI 2 0 1.0627 3 0 -2.6930	3M(FP**3/MIN**2) = 5.6 GMKM(KM**3/MIN**2) = 0.6 SGM(FP**3/MIN**2) = 0.7 FPT(FT/ED) = 2.7 FTKM(FT/KM) = 3.3 SSURn(FT/SFC**2) = 3.3 SKFP = 2.03257360

9

ITEM	DESCRIPTION	REFERENCE SECTION
4	Card images of the input MODEL data:	
	NFØRM, NTERM, TERMS (geopotential inputs) ITIN (function indicator) RSPLT (rise/set plot indicator) H0, HMIN, HMAX (numerical integration inputs)	2.1.2.2 2.1 2.4.1.1 2.1.4
ĸ	Lunar gravity model, including the moon's gravitational constant in three unit systems. In this case, the moon's gravity model is spherical	2.1.2
9	Earth's gravity model, including the earth's gravitational constant in three unit systems. In this case, the gravity model is expressed by a spherical harmonic expansion with C and S coefficients, and there is no normalization	2.1.2 2.1.1
7	Input physical constants and OMEGL: OMEGL (lunar rotation rate)	2.1.1
∞	Input/output conversion factors for distance, velocity, and acceleration; always using er, er/min, and er/min ² internally	2.1.1

	•	•		<u> </u>
			a	
		3.0000000000000000000000000000000000000	9	
		000		00000
	* 100001=	000		. 260000000E+02 . 41000000E+02 . 84000000E+02
		000	HEIGHT Z LONGITUDE	00000
	100	8.0	KEI KEI	00000
			5	6.00000000E+02 9.41000000E+02 7.84000000E+02 3.9600000E+02
_	NPDOT PTNS	H		
<u> </u>	2 0	£ 5	LONGITUDE LATITUDE	2.3950000E+02 2.01700000E+02 2.01700000E+02 2.88350000E+02 2.91400000E+02
000		300	LONGITUDE Y LATITUBE	00000
906	00	E	LONGITUDO Y	0.0000
88		4	10 4	9000
1.000000000E-10		HS.		~~~~
200	PTAPE LEHSP	UDE ****CASH ALIITUDE(FI) * 3.00000000E+03	STATION LOCATIONS LATITUDE X RADIUS	
	E 4	TC I	¥ 3	* # # # #
	114	Ę.	ION LOCA LATITUDE X RADIUS	3.48000000E+01 5.78000000E+01 2.16000000E+01 4.29000000E+01 7.55000000E+01
Z W I		AL1	ION LO LATITU X RADIUS	00000
ē	I .	St	AT I	4 V 4 V 10
10E+	S	C. 25		m m m m m
000	TELEM CLASS	* # #	•	
000	# H S		TY PE	00000
1 6 2.09000000E+03		********** C		
H H H	* 00		DATEN	
I A A A A A A A A A A A A A A A A A A A	*	*************** CRAS+ ALTITUDE T) = 3.700000000E+05 HCI	**	
SKI	* 11 11	* H	- E	
00	**************************************	: F	**************************************	
) ÷	* 40 * +7	# # # E (F	* Cr. *	
, 0 2.00000000€+00	:	FCI CRASH ALTITUDE (FT)	AEF	
000	00	i i	* * U	
	•	¥ T	SIG	00000
	1 11 11	S#S		
E D D D D D D D D D D D D D D D D D D D	TAPE2	20	* 0	
HUNDER	TAPE	FC 1	STATION	000 005 006 006
	•	•	1 6	

ITEM	DESCRIPTION	REFERENCE SECTION
6	Integration inputs and ICENT	2.1.4
	ICENT (central force term evaluation indicator)	
10	Special options:	
	TAPE2	2.1.4
·	TABET	2.1.3
	NODPK TELEM	2.1.4
	CLASS	2.2.1, 2.4.1.6,
	LEMSP	2.5.1
	NPDØT = INTEG(13) (the period decay rate is printed at every	
	every n integration steps)	
11	ECI and MCI crash altitudes at which to stop integrating	2.1.4
12	Printout of the station locations as input. If CLASS \$ 0, the actual locations are left blank	4
13	Program segment identification. Frequently, when different segments are entered, a remark is printed indicating the segment and its time of entry (from the beginning of the run). The amount of time taken for the segment last executed is also printed	
* Inforr Gener El Se	Information Processing Division, TRACE66 Orbit Determination Program, Vol. III: Trajectory Generation Equations and Methods, TOR-0066(9320)-2, Vol. III, The Aerospace Corp., El Segundo, Calif. (25 April 1970). This report is Ref. 2 of Part A.	: Trajectory

3	AZIMUTH2 	(a)	(3)
	AZIMUTH1 -0.0 -0.0 -0.0 -0.0	AF, AG, N, L, CHI, PSI 1.38625022642E-02 -2.04/03623737E-03 3.51600202021E-02 3.516000000000000000000000000000000000000	M/CDA 8.62068966E+01(2)
	STOP TIME HR HR 22 - 0.0000 22 - 0.0000 22 - 0.0000 23 - 0.0000 4 + + + + + + + + + + + + + + + + + +		1.16000000E-02(Z)
6 0 90 25855. 91 4	**** X Z	10NS A,F,I,O,U,TAU 2.16545058467E+07 1.40128272088E-02 9.5525000000E+01 3.5159599932E+02 3.61314213347E-11 6.38058777822E+02	
IMNTH 8 H3 0 IICTYP2 3 90 6 258	T	<u> </u>	1 IME .2700000E+02(21)
н	START OA +R TART TYZ TYZ TYZ TYZ TYZ TYZ TYZ T	TIAL CONJI *R*V 100000E+02 100000E+01 50000E+07 50000E+07	T.270000
1964 0 0 21351065. •0116	XX	IVITIAL CONJII A,D,B,A,R,V 3.51600000000E+02 0. 9.00000000000E+01 3.5447500000E+02 2.13510550000E+02 2.58559140000E+04	
IYEAR 19 72NE 0 5EC 0 2 2 0 5 21 0RAS 0	200 000 000 000 000 000 000 000 000 000	, Z, JX, JY, DZ 1221173438E+DZ 1902823323E+DS 3651425026E+D2 527357753E+D3 7357947412E+O4	_
	C C C C C C C C C C C C C C C C C C C	X,Y,Z,JX,JY 2.112211734 2.112211734 3.11902823 -3.636514250 2.46273579474 2.573579474	* LOSKHEED
11 116 126 351.5 354.6 354.6 4 4 4	C.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RF MODEL **
HINTO TO T	A 14.1	70-170(16) EPOCH YR/WG/DAY 17NE, WR, MIN, SEC 1964, 8/16 0. 7.2700000000000000000000000000000000	. ATMOSPHERE

②

ITEM	DESCRIPTION	REFERENCE SECTION
41	Card images of the input VEHICLE data:	
	VELIN	11.1.1
	VEAL WITH DAY TANE HD MIN SEC	11.1.2
	, IC	11.1.3
	IDRAG	11.1.4
	DRAG	2.1.1.
	ETAPE	11.1.9
	PINCUE	11.3.1.2
		11.3.1.1
15	Output from the DATA GENERATION I and II cards	12
16	Printout of the VEHICLE input H1 header card	
17	Epoch time	1:1:1
		11.1.3
8	<u>Trajectory initial</u> conditions are printed in four coordinate frames based on BCI coordinates. The initial condition values shown are the results of transformations applied to the input values. The transformation for the input coordinate set (in this case, o, δ, β, A, r, and v) consists of the conversion from decimal to octal numbers, the conversion of units from ft, deg, and sec to er, rad, and min: and the performance of the corresponding inverse conversions for output. The three other types of element sets require coordinate system transformations, in addition to the number and unit system transformations noted above. Accuracy of the values printed is therefore subject to numerical truncation roundoff errors	11.1.4
	Quantities in the left-hand column are position and velocity components in the basic vernal equinox coordinate system in it and ti/sec. The second column gives the usual ADBARV spherical system coordinates (i.e., Type 2 initial conditions) in ft, ft/sec, and deg. The third column contains orbit seminnajor axis, eccentricity, inclination, right ascension of ascending node, argument of perigee, and time of last perigee passage in MME. Other units are ft and deg. The right-hand column gives the vehicle coordinates in the f and g element set (valid for orbits such that 0 \(\infty\) (Refs. 1 and 2)	
19	Names of any solar system bodies included in the computation of perturbative accelerations	2.1.2.3
20	Identification of the atmospheric model to be used	
21	Time at which to initially use the CD A/W indicated in the next column in MME	
22	The reciprocal of the ballistic coefficient Cn A/W	11.1.9
23	Ballistic coefficient W / C - A	11.1.9
,		11.1.9
£7	ine Di, DZ, and flux expressions for the Lockheed atmospheric density model (for this case)	2.1.2.4.1

0

9		0	, C) C	_		00	`				3	CROSS-TRACK
SECS., 3.5		.160000000	1 - nondangor-1	- DOUDUUULE	- ADDOOD OFF	2 - UUUUUUUUUUUUU	1.50000000E+00			•	6	-3.049966727469E+01 4.503734134621E+00 -1.368599519737E-03	IN-TRACK CRO
S CP SE		COAM	200	2 1	KWW	-	SORD			•	# 63	. 503734 . 503734	
NAS		162703F+00	3.244180258E+02	1623500F+06	DOUDDE + 02	DOCUMENT.	5.930000000E+02 1.000000000E+02	(B)		•	NSTEP		(EXTERNAL UNITS) RADIAL
SEGMENT 1		5.662	3.244	2.43	7.27	1 . 12	5.930	T TABLE			.250000	-3.636604250256F+02 -2.462703577627E+03 2.573579474117F+04	^
FOR SEG		AL DHG	A1 G-DF	TJDATE	TSTART	TSTOP	FLISHT	O EVENT	(6042503 703577 579474	UNITS
	<u> </u>		1 60				. a e	PREJET FRHINED TIES		ECT ECT	"	-3.636 -2.462 2.573	EXTERNAL
EXECUTION TIME	<u>1</u>	•		J	. [*]					*	•		Š
	R CASE	IDRAG	15	ISRP	SCAN	RECHP	NAASSX			*	0 0 0 0 0	2E+116	
.8 SECONDS.	INTEGRATION FOR	1	-	6	•		6	AS 30CI 4 TED	ST 1 2T 2	78.93500	727.00000	1122)1788379E+D7 1190?8238232E+D6	MAGNITUDE X Y Z
7.8		TOTAL	JNORM	4A JO2	VHASS	17	JNORMX		TPAJECTORY S	IS	(I	2.112 -3.119 0.	MAGNITUDE
SESMENT 10 AT	TRAJECTORY	0	-	0	0	0	-	100	d1 ***	RY TIME			
ENTER SESI		IVED	JVED	A LID	KVFP	LVED	IDENTY	TIME(MME) 727.0000 1320.0000		* * * * SEG11 FUTRY TIME			FORCES

	TEM	NCITATEDESC	REFERENCE
	25	Remark indicating the relative number of the vehicle being integrated (not VEHID)	
	97	Quantities associated with the current vehicle (Table C-1)	
	27	Event table, including times to start and stop integrating	
	28	Start of integration	
	59	Integration frame for the current vehicle (in this case, ECI)	
	30	Time T; step size H; number of integration steps from NSTEP to T; and position, velocity, and acceleration components in Columns 1, 2, and 3, respectively, for this event (epoch) print (in MME, min, ft, ft/sec, and ft/sec ²)	
	31	Forces at T	
C-1			

Table C-1. Definitions of initialized Integration Quantities

Symbol	Definition	Reference Section
IVEP	Number of C and S parameters (GPRAM)	2.1.5.2
JVEP	Number of other model parameters (OPRAM)	2.1.5.3
MVEP	Number of mass parameters (MPRAM)	2.1.5.1
KVEP	Number of vehicle-dependent parameters (VPRAM)	11.1.14
LVEP	Number of delayed parameters (i.e., THRUST, DRAG, etc.)	11.1.14
ICENTX	Central force flag for the moon	
ICENT	Central force flag for the earth	
JNORM	Normalization for the earth gravity model	2.1.2.2
MAJOR	Flag for the integration of the variational equations	
NMASS	Number of masses in the earth gravity model	
HN	Number of terms in the earth gravity model	2.1.2.2
JNORMX	Normalization for the lunar gravity model	2.1.2.2
IDRAG	Flag indicating the atmospheric model used	11.1.8
IR	Ratio of Runge-Kutta to Cowell step size (H0/IR)	2.1.4
ISRP	Flag for solar radiation pressure	2.1.2.6
NECS	Total number of equations to be integrated	
RECMP	Flag for recomputation of perturbations	2.1.4
NMASSX	Number of masses in the lunar gravity model	
NASA	Coordinate and timekeeping transformation option flag	2.1.4

Table C-1. Definitions of Initialized Integration Quantities (Continued)

Symbol	Definition	Reference Section
ALPHG	Right ascension of Greenwich (rad at midnight of epoch day)	
ALG-DEG	Right ascension of Greenwich (deg at midnight of epoch day)	
TJDATE	Julian date of epoch day	
TSTART	Trajectory start time (MME)	
TSTOP	Trajectory stop time (MME)	
FLIGHT	Duration of flight (TSTOP-TSTART, min)	
SSTEP	Number of integration steps specified per rev when the regularized time variable is used	11.1.6
CDAW	Reciprocal of the ballistic coefficient	
ER	Error control in integration (ER = 1. $^{-S}$, where S is the number of significant figures)	2.1.4
HMIN	Minimum absolute step size for integration	2.1.4
HMAX	Maximum absolute step size for integration	2.1.4
НО	Initial integration step size: A negative value indicates backward integration	2.1.4
XTN	Number of terms in the lunar gravity model	2.1.2.2
SORD	Power of the regularization transformation	11.1.6
CPAW	Solar radiation pressure coefficient	11.1.4
UTD	Correction that relates iteration time to ephemeris time, sec	2.1.4

	_	3		_												_												CROSS-TRACK -125906E-03 -827*04E-07
8 A 6 D	L	E+04	2E-01	10+3	E-02	E+04	E-01	E+04	E-02	E+04	E-01	E+04	E-02	E-01	P+0+3	E-02	E+04	E-01	E+04	E-02	E+04	E-02	-		E + 0	_	3	.125906E-
NSTEP #	9.155402131023	-2.499914410018E+01	05776816600	2.573513801870E+	9.162694120100E-	-2.500214730405E+	1.052970851538	2.573446021394	9.056326290414	-2.500511078411	1.070233889849E-01	2-573357343278	8.716727127885E-02	1.056429841835E+04	2.573269351510E+	7.865032799414E-02	-2.501098583350E+04	1.065998435399E-01	2,573181925916	-	-2.501399732251E+04	42505230697	9983346	44321964	-2.501711161410	E 644	1.478330439997E+01 -4.744146117512E+00 2.520901666549E+01	IN-TRACK 3.662527E-02 7 5.685813E-06 1
.500000	160321F+5	839274E+0	138242581735E+06	62617183232E+03	40165570270E+06	92907285641E+03	157478550731E+06	62027934117E+03	259487366782E+06	392890505067E+03	176721703786E+05	460866515690E+03	278795075491E+06	392411765957E+U3 195953658598F+06	459392224658E+03	298071998920E+06	391835442467E+03	45162695717E+06	458042725758E+03	17312624163E+06	91583030237E+03	34350508507E+86		1455E+	239496E+0	NSTEP	0 + 10 0 - 14	RADIAL -2.960652E+01 .6.484690E-08-
# #	7.228AR	39236	-3.138242		N	2.392907	-3,157478	-2.462027	3.259487	2.392890	-3.176721	-2.450866	3.278795	-3.195953	-2.	m	2.3	-3.2	-2.4	3.317312	m	N	-2-457180	3,336525	2.391889	1.000000	.175825556370E+04 .098591769807E+03 .277447810391E+04	17S) 20901E+01 51771E-06
= 755,250000	174212233991	538916113278E	111878462148E+	676358013866E+02	173661142815E+07	545031738123E+02	11560357750E+0	715253959224E+02	.173012707833E+07	550446520700E+02	.111248671667E+07	753122137674E+02	172366357365E+0	.5554262/819/E+U2	790299919716E+02	171717340606E+07	3.560585150084E+02	110628623951E+07	.827440448012E+02	171059451433E+07	566534977233E+0	309216343E+0	2910E+0	968E+0	573531955035E+02	II T	2.175825 -2.098591 -1.277447	(EXTERNAL 4.744146E+00 2 2.914771E-07 2
0009LE0 T	CUECU80307:+02	0	01324987515+02 2	- 00+=000000000	5088844192E+02 -2	000000000000000000000000000000000000000	01416155655+32 2	000000000000000000000000000000000000000	50014853125+02 -2	000000000000000000000000000000000000000	00334973455+02	000000000000000000000000000000000000000	8480034+115+03 -2	00000001100=+00 2981321133E+03	00+3060000000	7443861730E+03	00000000000E+00	19481287985+03	00000000000000	6406397356E+03 -2	00000000000000	09032871595+03 2	000000000000000000000000000000000000000	5351933197E+03 -2	000000000000000000000000000000000000000	1320,250000	-1,367370314174 E +U7 3,489513873940E+U6 -1,859775241439E+O <i>f</i>	30E 5E+01 1 9E-06-4
37.6	7.7	01 = 10	8.1	07 = 1.0	= 8.5	DT = 1.0	= 9.0	0.1 = 1.0	4.6 =	0T = 1.0	= 9.9	PT = 1.0	E .		OT = 1.0	= 1.1	E TO	= 1.1	DT = 1.0	= 1.2	0.1 = TC	= 1.2	0.1 = TC	1.3	:	-		FORCES 4A3NIT

*** TRAJECTORY TERMINATION (SE)

1.805 SECONDS TO INTEGRATE A SPAN OF 593.2500 MINUTES *** 1320.250 HINUTES FROM MIDNIGHT OF EPOCH *** 727.000 10 *** THIS CASE TOOK *** FROM

9.0 PP SECS. 1.9 CP SECS., ENTER SEGMENT 50 AT 80.7 SECONOS. EXECUTION TIME FOR SEGMENT 10 MAS

REFERENCE SECTION				
DESCRIPTION	Remark at trajectory termination Number of seconds to integrate the time span of the current vehicle			
ITEM	36	_		

REV COUNT PERIDO PER-DECAY NOD-RES

REV

*** TRACESS EPHEMERIS OUTPUT KEY ***

ALPHA (DEG) DELTA (DEG) BETA (DEG) AZIMUTH(DEG) LAT,... V, SO, YC, XC

Y, Y, Z, 2

ME, MY, ST, DT

JATE, ...

LATITUDE (DEG) LONGITUDE (DEG) ALTITUDE (NN) S-VEH-LAT(DEG)

DX (FT/SEC) DY (FT/SEC) DZ (FT/SEC) V (FT/SFC)

x (FT) y (FT) Z (FT) ? (FT)

MIN FROM HIONIS4T SEC FROM HIONIS4T STEP SIZE(MIN)

HO/DBY/YR 4R/HIN SEC

3 ECI TRAJECTORY

* *

ITEM	DESCRIPTION	REFERENCE SECTION
 38	TRACE ephemeris output key. Date column includes the current month, day, year, hour, minute, and second. The next column contains the times from epoch and midnight of current date and the current step size. The following columns contain the components and magnitude of the radius vector from body center to satellite (ft) and the components and magnitude of the velocity vector (ft/sec). LAT contains the latitude, longitude, altitude, and subvehicle latitude; ALPHA is self-explanatory; and REV always centains the rev count plus (at an ascending node) the period for one revolution, the period-decay rate, and the nodal regression. The remarks column is used to indicate the reason for printing (if other than the print time vector)	11.3.1
 39	The integration frame for this vehicle	11.1.6

		3		
		ASC NODE		NO D
	③	ASC.	(3)	DSC
	00.00 00 00 00 00 00 00 00 00 00 00 00 0	REV 1 00000 0 30000 0 000000	2 X X X X X X X X X X X X X X X X X X X	AEV 1.50000 0.00000 0.00000
	ALPHA 351.5999959 0.0000000 354.47499959 3.6136126103 1.698797616+02 3.513933426+03 6.999962256+01 6.999962256+01	ALPHA 351.5999959 0.0000000 90.0000000	ALPHA 177-13628383 45.06635191 89.43019977 187.82931795	ALPHA 171.57394639 00000605 89.99888575 185.52555726
	LAT 0.0000000 204.93437636 59.49962 0.00000000000000000000000000000000000	LAT; 0.00000000 204.93437636 69.99982 0.00000000	LAT: 45.25874547 22.19807322 164.46761 45.24996466	LAT 00000609 13.75145825 173.57223 00000609
	3x,3Y,DZ,V -3.63550425F+02 -2.46270358E+03 2.57357947E+04 3.60300000E+02 3.60300000E+02 3.60300000E+02 8.90112222F+01 8.90115033E+01	0x,0Y,0Z,V -3.63560425E+02 -2.45270358E+03 2.57357947E+04	DX, DY, DZ, V -1.76837291E+04 4.32596701F+03 -1.74819005F+04 2.52399240F+04	DX,DY,DZ,V 3.53894348E+02 2.39236543F+03 -2.4991441F+04 2.51158488F+04
+ 7	2.11220179E+07 -3.113012824E+06 9. 9. 13510650E+07 MFAU ANOM = 7C3ENTPIC = TRAE ANOM = KEPL PER = KEPL PER = NOOL PER =	D PPINTS (4) X,Y,Z,R 2,11270179E+07 -3,11992824E+06 9, 2,135106502+07	X,Y,Z,R -1.544[19605+07 7.724[39836+05 1.549635305+07 2.18898176E+07	X+1+Z+R -2.17431223E+07 3.22094829E+06 -2.32091378E+00 2.19903829E+07
+++ FPOCH PSINT	HE, MM, ST, 77 0.00000 727.00000 4262.00000 2.16545058-07 1.401282728-02 9.552500008-01 3.51600008-02 3.513142138-11	### PEQJESTED ME, MM, ST, OT 0.00000 727.900000 43620.00000	750.00000 \$550000 \$5500.00000000000000000	ME, MM, ST, PT 44-50561 771-50561 46290.33659
	0A75, 8/16/64 12/7 0.00000 A = = = = = = = = = = = = = = = = = = =	08759 8/16/64 12/7 0.80000	0ATE, #/16/64 12/40 0.00000	0ATF; 8/16/64 12/51 30.33659

*** CASE

ITEM	DESCRIPTION	REFERENCE SECTION
40	Number of the case on the trajectory file (TAPE2)	
41	Printing the input VEHICLE H1 header card	11.1.1
45	Epoch print (Item 38) plus three other columns. The first contains the classical elements a, e, i, Ω , ω , and τ in ft, deg, and MME. The second column contains the mean, eccentric, and true anomalies in deg and the Keplerian, anomalistic, and nodal periods in min. The last contains the radial distance and height above the oblate earth at both perigee and apogee in nmi. The nodal regression rate Ω and the rate of advance of the line of apsides ω are printed in deg/day	11.1.4
43	Output requested by PRCDE and PTIM follows	11.3.1.1
44	Ascending node print (Item 38)	11.3,1.2
45	Print requested by PTIM (Item 38)	11.3.1.1

ASC MODE	DSC NODE		PST-EVET	5.7 PP SECS.
REV, 7.00000 66.95515 01166	7.21919 0.001010 0.001010 0.001010 0.001010 0.001010	REV7.66061 0.00000 0.00000	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	
ALPHA:351.28640839 80000902 90.02172268 354.47846382	ALPHA; 325.17057615 77.62732140 89.20585407 333.35617307 ALPHA; 171.2603715409000265 89.47667859	ALPHA, 162.54791699 -57.46776205 90.64933992 190.29659789	ALPHA 162.2074534.2. -58.44804353 90.65737993 190.58496505 3.61240325+03 1.723229105+03 3.523198605+03 7.926117985+01 6.45137218E-01	1.2 CP SECS.,
LAT: 00000906 70.77953188 00000908	LAT: 77.70761100 39.87645005. 120.95062 77.7048930100000287 239.61090608	LAT, -57.64199647 227.22641232 156.74157 -57.6344482	LAT -58.61936726 226.62327764 156.24617 -58.6119360 APOGEE H HEIGHT H PERIGHT H O-DOT H	SEGMENT SO MAS
DX+JY+DZ+V -3.86509399E+02 -2.45718136E+03 2.57309983E+04 2.58509459E+04	0X,0Y,0Z,V 3,29627419E+03 5,24556129E+03 2,55978610E+04 0X,0Y,0Z,V 3,57354474E+02 2,39188904E+03 -2,50171116E+04	DX,DY,DZ,V 2.15332700E+04 -2.02713773E+03 -1.31505126E+04 2.53125855E+04	DX,DY,DZ,V 2.17582556E+04 -2.09859177E+03 -1.27744781E+04 2.53162358E+04 2.4234358E+04 2.415836E+02 2.41038959E+02 8.91501580E+01 8.90142174E+01	EXECUTION TIME FOR S
X+Y+2+R 2.11030922E+07 -3.23435018E+06 -3.3625350E+00 2.13495087E+07	X,Y,Z,R 3,79799708E+06 -2.64257032E+06 2.1092:800E+07 2.1593.7032E+07 X,Y,Z,R -2.17038659E+07 3.33652580E+06 -1.0918664E+00	X,Y,Z,R -1.11983977E+07 3.52054757E+06 -1.84033097E+07 2.1828467	X*Y*Z*R -1.08737031E+07 3.48950387E+06 -1.85977524E+07 2.182409956E+07 REAN ANDM = ECST ANDM = KESL PER = ANDM PER =	SECONDS.
ME,MM,ST,DT 533.90328 1260.90328 75654.19710 1.00000	ME,MM,ST,nT 553.00000 1280.00000 76800.00000 1.00000 HE,MM,ST,DT 578.35194 1305.35194 78321.11633	ME,MM,ST,DT 593.00000 1320.00000 79200.00050	ME, MM, ST, DT 1320.25000 1320.25000 79215.00000 1.00000 1.30320787E-02 9.55158746E+01 3.5125564E+02 3.57853864E+02	*** FND OF TRAJE ENTER SEGMENT 60 AT 82.0
DATE; B/16/64 21/ D 54-19710	DATE 8/16/64 21/20 0.00000 DATE 8/16/64 21/45	0ATE; 8/16/64 22/ 0 0.0000	DATE \$716/64 \$2/ 0 15.00000 A = E = I = U = TAU =	ENTER SEG

ITEM	DESCRIPTION	REFERENCE SECTION
46	Post-event prints. In this case, the event was termination. The output contains the items described in the ephemeris output key (Item 38) and the three additional columns in Item 42	
47	A remark indicating the end of the trajectory ephemeris	
-		

* VEHICLE CASE 1 * * * DATA GINERATION FOR VE410 1 * *

AUG. 16,1964 (1

5.5794568E+02(RN5) 1.7220949E+02(AZI) 2.769634IE+00(ELE) (1)
3.0839567E+02(RN5) 1.7349298E+02(AZI) 1.1207660E+01(ELE) (1)
8.6448078E+01(RN5) 1.8787277E+02(AZI) 1.57359071E+01(ELE) 005 12 HR 9 MIN 60.00 SE3 5.5794568E+02(RN5) 1.7220949E+02(AZI) 2.7696341E+00(ELE) (1)

005 12 HR 10 MIN 60.00 SE3 3.0839567E+02(RN5) 1.722998E+02(AZI) 1.1207660E+01(ELE) (1)

005 12 HR 11 MIN 60.00 SE3 8.0448076E+01(RN5) 1.87349298E+02(AZI) 5.7359071E+01(ELE)

005 12 HR 11 MIN 60.00 SE3 2.2308304E+02(RN5) 3.4729586E+02(AZI) 1.8427180E+01(ELE)

005 12 HR 12 MIN 60.00 SE3 2.2308304E+02(RN5) 3.4946770E+02(AZI) 5.8590576E-01(ELE)

005 12 HR 14 MIN 60.00 SE3 7.696673E+02(AZI) 5.8590576E-01(ELE)

005 12 HR 14 MIN 60.00 SE3 7.780458+02(RN5) 3.4946770E+02(AZI) 5.8590576E-01(ELE)

005 12 HR 12 HR 15 MIN 60.00 SE3 7.78070 = 0.00 DEGREES, AZIMUTH = 350.26 DEGREES (1)

005 12 HR 12 HR 15 MIN 60.00 SE3 7.88070 = 5.71 MIN, OF VEH. = 5.71 MIN, OF VEH 12 HR 18 HIV 13.00 SEC ELEVATION = 0.00 DEGREES, AZINJTH = 217.13 DEGREES MIN 60.00 SEC 5.32921235E+02(RN;) 2.2792592E+02(AZI) 2.8602274E+00(ELE)

MIN 60.00 SEC 5.3396100E+02(RN;) 2.4905712E+02(AZI) 6.3954642E+00(ELE)

12 HR 20 MIV 52.02 SEC ELEVATION = 7.79 DEGREES, AZINUTH = 273.67 DEGREES MIN 60.00 SEC 5.8689174E+02(RN;) 3.7755569F+02(AZI) 7.7513364E+00(ELE)

MIN 60.00 SEC 7.497595RF+02(RN;) 3.2004020E+02(AZI) 5.7174502E+00(ELE)

MIN 60.00 SEC 7.497595RF+02(RN;) 3.2004020E+02(AZI) 2.4155542E+00(ELE)

12 HR 23 MIV 44.72 SEC ELEVATION = 0.00 DEGREES, AZINUTH = 326.24 DEGREES IRILITY OF PASS = 5.53 MIN. 07 STAT. 5.53 HIN. OF VEH. = 11.32 4.24 DEGREES 25.05 DEGREES 79.35 DEGREES 15 4R 27 MIN 46.62 SEC ELEVATION = 0.00 DEGREES, AZINJTH = MIN 60.00 SF3 9.6357395E+02(RN3) 2.7675197E+01(AZI) 3.2563539E-01(ELE) MIN 60.00 SF3 9.680157E+02(RN3) 4.2787894E+01(AZI) 1.5396014E+00(ELE) 15 48 29 MIN 36.13 SEC ELEVATION = 1.75 DEGREES, AZINJTH = MIN 60.00 SEC 9.1169530E+02(RN3) 5.8771469E+01(AZI) 1.6615190E+00(ELE) MIN 60.00 SEC 9.7715671E+02(RN3) 7.359596E+01(AZI) 6.8709926E-01(ELE) 15 4R 31 MIN 26.30 SEC ELEVATION = 0.00 DEGREES, AZINUTH = ZII DOG TOTAL VISIRILITY OF PASS = T 12 HR 20 MI 0 MIN 60.00 SS3 1 MIN 50.00 SS3 2 MIN 50.00 SE3 T 12 HR 23 MI 004 12 HP 19 HI 004 PAX EL AT 1 004 12 HP 20 M 230 30 44 009 MAX EL 009 15 HR 009 15 HP 904 12 HR 9 PISE 009 15 HR OBS PISE 600

ITEM	DESCRIPTION	REFERENCE SECTION
48	Identification of the vehicle (Item 40) for which the program is simulating measurements (and its VEHID)	11.1.2
49	Date on which the data to follow applies	
50	Rise message. The time at which the vehicle becomes visible from a particular location is obtained by interpolation and is printed in hr, min, and sec (the elevation and local azimuth angles are printed in deg)	4 2 2 2
51	Simulated data showing the station; the time of day in hr, min, and sec; and the measurements generated, as indicated by the DATA GENERATION II card (Item 15). The time results from incrementing the START by Δt ; both are found on the DATA GENERATION I card	12
52	Maximum elevation point. The time of the maximum elevation angle is obtained by interpolation and is printed, with the corresponding elevation and azimuth angles, in deg	
53	Set message. When the vehicle is no longer visible from a station, the time of invisibility is obtained by interpolation and is printed, with the corresponding elevation and azimuth angles, in deg	12
45	Duration message. After each pass, a message is printed giving the elapsed time of visibility for the pass in min and the current totals for station and vehicle. The number of the pass for the station is also printed	

	F
	NO. OF
:	STA-
****** VISIBILITY SUMMARY *******	NO. 3F TOTAL VISIBILITY
HHARY	VISI
ITY SU	TOTAL
SIBIL	35
5	ON ON
*****	STA-
•	TAL VISTBILITY
	r A L

NO. OF TOTAL VISIBILITY PASSES TIME OF STATION 1 5.71	W 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
STA- NO. TION PAS	
TOTAL VISIBILITY TIME OF STATION 5.53	SAU SISSUADO SUF OCE SMIT VIT IDISTA SATOT OF ROBE
PASSES	retor TTV T
STA- TION 1004	TOTAL
TOTAL VISIBILITY TIME OF STATION 3.34 15.09	
NO. OF PASSES 1	TITAL NUMBER OF SASSES
STA- TION 001	IN INTER

REFERENCE	12	
NOT FOLIAN	Visibility Summary. After the data for the spans indicated by the DATA GENERATION I cards has been generated, a summary is printed. It includes the number of passes and the total visibility time for each station and vehicle	
TEM	S	

```
15 15 25
15 15 25
15 15 30
15 15 30
15 15 30
15 15 30
15 15 30
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 15 50
15 17 50
15 17 50
15 17 50
15 17 50
15 18 50
15 18 50
15 18 25
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
15 18 30
```

CONT'D NEXT

(3)

<u> </u>	ITEM	DESCRIPTION	REFERENCE SECTION
	56	Rise-set printer plot. When RSPLT is input \$0, the passes are given in a printer plot, using RSPLT as the scale. On the page shown, R means rise, S means set, X stands for rise and set in the same interval, and a + indicates continued visibility	2.4.1.1
C-2			

C.3 TEST CASE B: ECI SINGLE-VEHICLE ORBIT DETERMINATION RUN (ITIN = 2)

TPACE-66 (A01044)

	Θ	
FWNF	NOV	060112
CARD	CARD	CARC
I3 5 3 • 1		-0.765E-6 HMAX 2.0
12 2 2 2 2 • 1 I NTERM4	1082.76E-5 -2.693E-6 -1.56E-6	1.544E-6 HMIN 2.0 2 15.
MODEL DATA DITIN 2 IKSIG 1 SIGMA100 INFOPM1	0 02,00 0 05,00 0 04,00	n 02,02 H0 2.0 IMAXIT2 GPLOT6.

= 1.7313995407E+14 FT**3/SEC**2 = 4.9027777038E+12 M**3/SEC**2

************	+16 FT**3/SEC**2 = 3.9860318297E+14 W**3/SEC**2 ** N
*****	:+16 FT**3/SEC**2 = 3.986031 ** N H CNH ** 4 0 -1.5600000E-06 ** 2 2 1.5440000E-06
1300+	##3/S
* EART GRAVITY H	4076538841E+16 FT++3/S ERMS. ++ N H SNM ++ 4 D
老女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女	SM = 5.5303935000E-03 ER**3/MIN**2 = 1.4076538841E+16 FT**3/SEC**2 = 3.9860318297E+14 M**3/SEC**2 NO NORMALIZATION AITH 4 TERMS.

	•	· \$P\$	* PHYSICAL CONST	NTS +	***	****	***	********
M(EP##3/MIN##2)	и	5.533393500E-03	OMEGE(24D/MIN) = 4.375269100E-03 GMLAT(DEG)	in a	75269100E-03	GML AT (DEG)	= 7.	7.830000000E+0
	••	•0	OMESA(2AD/MIN) = 4.375269100E-03 GMLNG(DEG)	. 4.3	75269100E-03	GML NG (DEG)	H 2	2.910000000++B
GR (FR#+3/MIN##5)	11	6.802325500E-09	OMESL (RAD/HIN) =	0		AM (ER)	H	2-725062770F-R
QFT(FT/EP)	Ħ	2.092573900E+07	ERKH (KM/EP)	6.3	6.378164900E+03	ERNM (NM/ER)	147 141	3.4439335005+0
TXT(F' /KE)	Ħ	3.291839900E+03	FINH(FI/NH)	6.0	6.076115500E+03	AE (ER)	i i	A - DODO DODO DE + D
SURD (FT/SFC++2)	11	3.717403000F+01	DGREE(DEG)	5.7	5.729577951E+01	SLT	2	2.320176300F+0
KEP	n	1.073993096-07	"	3.3	3.352329869E-03 PI	Id	11	3-141592654E+0

#N##0#0

REFERENCE SECTION	are been	2.1 2.2.2 2.2.1 2.2.6		
DESCRIPTION	Card images of the input MODEL data. Those emphasized here are associated with a differential correction run, the others having been discussed earlier:			
	Card images of the associated with a discussed earlier:	ITIN MAXIT GPLOT KSIG, SIGMA		
ITEM	-			

O

*******	.61270 £00E+03	* * * * * * * * * * * * * * * * * * * *		***		***		***	o						PP SECS.			•		, W			@ @		4.5		_	10		_
*	7050					***	÷03	*	0						56.8														17	
经存储存储 医电子 化二甲基苯酚 医克勒氏 医克勒氏 医克勒氏试验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	23 = 5	******		"我的事的心境的特殊的现在分词 医克勒氏试验检试验检试验检试验检验	DT = 0 S =10000	****	= 3.000000000E+		HEIGHT Ž Longi tude	6.0000000000000	4 26000000000000000000000000000000000000	9.41000000E+02	7.84000000E+02	3.96000000E+02	.3 CP SECS., 2!		CARD	CAPD	0840	CARD	CARD	CARC CARC	CARD	CARD		CARD	CARD	CARD	CARD	CARD
FACTORS	+05 AF(1/0-ER/HIN**		2 .000000000E-10 .0000000E+00	*	O NPDD	****	AL TITUDE (FT)		LONGITUDE Y Latitude				2.86350000E+02		ENT D MAS 87	****			200					0	5 6		0	c (o o	
INPUT/DUTPUT CONVERSION	3.48762300E	RATION INPUTS	NSTEP # ER # 1.	AL OPTIONS ***	0 PTAPE 0 LEMSP	ALTITUDE ****	MCI CRASH	SNOTTANGE NCT	LATITUDE X RADIUS	RODOUGE + 0 1			+.29000000E+01		TIME FOR SEGME	TICLE DATA ***	HINHI	ŒΙ	IICTYF	o vo										
Index ********	F(I/O-FR/MIN) =	SELVE TARGET	1 8 00000000E+00	***** SPECIAL	TELEM :: CLASS ::	***** CRASH	00 00E+05	1812			· •		-0 4.2		EXECUTION	3A ******				21351000		6 .011		1 •	•••	• •	100000	10	• 0.1	
****	>	***	ISENT = IX = 2.	* * * * *	00	* * * * * * *	3.0000	****	04 T U M	-		7, ED	-	-	SECONDS.	* * * * * * * * * * * * * * * * * * * *	IYEAR	TZN	SEC 3	ıĸ		NRAG								
***	57380E+97	*	H H H	**	TAPE7 =	***	(FT) =	*****		•	٠.	44	+	₩.	87.3	* * * * *														
*******	2-03-5	***	1 0 2.0000000E+0	***	00	****	H ALTITUDE	*****	~				0 1		NT 01 AT		101	16	727		21350000	TIDRAG1	MVPPAMOL, 60	ALPHA	BETA	A7	۵	> 0	IN S	
格拉 经存货的 经存货 医环球 医甲基苯酚 医二甲基苯酚	JF(I/0-ER)	*****	I FORM NPCNP =	***	TAPE2 = PRHO =	***	ECI CRASH	***	STATION		1 1 5	500	900	600	ENTER SEGMENT	****	IVEHIDI	TOAY	Z L L) 	r	TIDE	MVPP	<u>د</u>	: c	ب د	c	06	TBCOING	CN

ITEM	DESCRIPTION	REFERENCE SECTION
м	Observations. Each line represents one OBSERVATION card (or card image) containing the station pass identification, the last two digits of the year; the month, day, hour, minute, and second; the data set type; the covariance code; three measurements; the system time in seconds from midnight; the vehicle identification (which should be the same as the input VEHID); and any pertinent message	11.2.1

If the observations are input by binary tape, nothing is printed at this point

AF, AG, N, L, CHI, PSI 1,42963433809E-02 -2,04739161253E-03 6,73737489112E-02 3,5151003590E+02 -1,62725471159E-01 1,0882155146E+00	M/COA E-02 1.0000000E+02	EDT IN THE DARAM MATPIX. 7 ARE P PARAMETERS AND 0 ARE 2 PARAMETERS	CONVERSION 5.72957795E+01 5.72957795E+01 5.72957795E+01 5.72957795E+01 3.4876250E+05 1.00000000E+00	CDAM 1.00000000E-02 ER 1.00000000E-02 HMIN 2.00000000E+00 HMAX 2.000000000E+00 HD 2.00000000E+00 NTX 0. SORD 1.50000000E+00
10NS A,F,I,O,U,TAU 2.16730437072E-07 1.4441834610E-02 9.5500000000E+01 3.5149999932E+02 3.51162206121E-01 6.3802A929616E+02	COA/W 15+02 1.03000000E-0	PARAMETERS AND 0	SIGN 000000000000000000000000000000000000	5.662162703E+00 3.244180258E+02 2.438623500E+05 7.2700000000E+02 1.3030000000E+02 5.7600000000E+02
A,9,9,4,4,4,7,5,150,000,000,000,000,000,000,000,000,0	TIME 7.2700000E+02 -1.55840000E+01 FLUX = 0.	MATPIK. 7 ARE P	1.000000000000000000000000000000000000	ASE 1 RAG 1 ALPHG 5. RAG 1 ALCHG 5. RAG 2 ALG-DEG 3. RP 1 TSDATE 2. RP 0 TSTOP 1. ASSX 0 FLISHT 5. SA 0 SSTEP 1.
X,Y,Z,)X,JY,DZ 2,11253783414E+07 -3,15721902173E+05 0. -3,6851152386E+02 -2,45051359318E+03 2,57353640070F+04	IS. LOЭКНЕТО 07+00 D2 =	* -	7.0 CJRRENT VALJE P 3.71591000E+02 P 9.10050000E+01 P 3.54501000E+02 P 2.1560000E+07 P 2.59550000E+07 P 1.10000000E+07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FFDCH YR/WO/DAY 17NF;HP;MIN;SFC 1964/ 8/16 0. 0. 7.2700000000F+02	NO PLANETARY PEPTURRATION ** ATMOSPHERE MODEL ** 01 = 5.930000	######################################	NAME 0001 ALPHA 0001 CELTA 0001 PETA 0001 A7 0001 V 0001 V	ENTER SEGMENT 10 AT TOAGETOSY INT JVEP 0 ICENT JVEP 0 MAJOR KVEP 7 NMASS LVEP 0 VT ICENTY 1 JNOPH)

REFERENCE SECTION	2.1.5 5 11.1.14			
DESCRIPTION	Parameter list indicating the quantities to be differentially corrected. Shown in tabular form are the name, P- or Q- parameter indicator, current value, input bound and sigma, and input/output conversion factor for each			
ITEM	4		 	

								(o)			
		*	0	846E+01 712E+00 762E-04	337E-03 491F-19	675E-06 860E-08 561E-03	243E-07 189E-08 150E-11	287E-08 660F-07 061E-09	.381E-03	255E-08 225E-07 103E-06	007E-07 380E-06 821E-05
		•	н	3.046630747846E+01 4.553085330712E+00 9.269647818762E-04	-7.83151004013E-U4 -5.241378230337E-03 -1.097983001491F-19	7.796797467675E=01 -1.165239188860E=01 -5.282946063561E=0	1.784801233243E=0 -2.667557346189E=0 1.576498526150E=1	-2.679811016287E-08 -1.793040486660F-07 -6.686192638061E-09	1.025158804091E-0 -1.545030064381E-0 8.273446422207E-0	9.054266773255E+08 6.029741570225E-07 4.823534210103E-06	4.179048465007E-07 2.785612136380E-06 -1.796317601821E-05
		•	NSTEP	W 4 0	-7.6	7.1.1	1.51	11.7	11.0	0.04	2.7
TABLE *		*	250000	E+02 E+03 E+04	E-03	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E-02	######################################		E-02 F-02 F-01	
EVENT		•	.25	-3.685310520857E+02 -2.450633503183E+03 2.573696400698E+04	7.026658280390E-03 -1.056682594666E-03 0.	-7.298456764874E-02 1.090761671814E-02 -6.469626979E-06	-7.332203652761E-02 1.095867875294E-02 -6.439841155098F-06	1.090761571814F+02 7.298456764874E-02 7.105664137797E-03		-1,425321210109E-02 -9,478007051295E+D2 9,953961945770E-01	
ETERMINED		• ECI	# T	-3.685; -2.4501 2.573(7.026 -1.056	1.090	1.095	1.090 7.298 7.105	•••	-1.425 -9.478 9.953	•••
* PREDET Quantities		•	0.0	96	00	0			## ##		
ASSOCIATED QU	E	•	727.00000	2.112537894141E+07 -3.157239021728E+06 0.	1.508758303287E-0 1.0095+944471E+0 0.	529732E+0			5.890158637619E-0 -1.478034111296E-0 0.		
A S 30	TORY START	* * * * * 88.39200	Ħ	2.112537 -3.157239 0.	1.508758 1.0095÷9 0.	-0. -0. 1.02073252	•••		5.890158 -1.478034 0.	•••	
TY9E TZF40 TST0P	TRAJECTORY	TIME IS	-	·					•		
TIME(MME) 727.0000 1303.0000	*	* * * * SEG11 ENTRY TIME			AL PH	DFLTA	REIL				DRAG
11		SF 61			A	č	č	A 7	٥	>	Ç

	ITEM	DESCRIPTION	REFERENCE SECTION
	Ŋ	Variational equations $\partial r/\partial p$, $\partial \dot{r}/\partial p$, and $\partial \dot{r}/\partial p$ at epoch in internal units (er, min, rad). They are also printed at trajectory termination	
C-41			

FDPCFS OPCTENTIAL MOSPHERIC TAL	MASNITUDE X Y Z 3.080465E+01-3.046633E+51 1.056905E-03 Z.\29158E-05 3.080465E+01-3.046631E+01	021	(EXTERNAL UNITS) RADIAL IN-TRACK 4.552973E+00 1.171815E-04-3.080465E+01 1.451160E-04 1.619194E-04-1.044146E-03 9.154040E-08-1.055032E-03 4.5530A5E+00-9.269648E-04-3.080465E+01-9.099163E-04	RADIAL IN-TRACK CROSS-TRACK 3.080465E+01 1.451160E-04 2.844807E-049.154040E-08-1.055032E-03-6.290061E-05-3.080465E+01-9.099163E-04 2.215801E-04
	STEP DOUBLED	T = 738,500000	# H H	NSTEP # 45
NONE T =	7155	-2.176 829889056+07	3.26298023	7
10	0+200000000000000	3.537911412926E+02		-2-497833032549E
	.161	2.112218520803E+07		
10	.0000	-3.725292228421E+02		2.573654906246E
	. 605	-2.176031672252E+07		•
= TO 1001	000	3.543221992190E+02	2.37.3711998480E+03	
		2 76446407000E+U/		-1.089142397749E-01
NONF T =	263	- 0-17548436407-0-		\$
10	900	3.547775373964E+02	2.3"9635130283E+03	
NONE T =	96.	2.111597154074E+07		Ť
	.000	-3.802618536119E+02		
NONE T =	.03	-2.174940212352E+07		-3.594279181329E-02
10	.00	3.551846390693E+02		
	.08	2.111292961254E+07		
DI	.00	-3.840137775150E+02		
	.127	-2.174394390575E+07		-2.6906858636535-04
10	00.	3.556059319688E+02	2.378469760292E+03	
	.172	2.110985991176E+07	-3.252795144275E+06	
10	.000	-3.877669615493E+02		2
	.217	-2.173840712948E+07		2,373125585496E-02
= T0	.00	3.561029504792E+02	2.3781675729746+03	-2.458873582126E+04
NODE T =	Š	2.110671153950E+07	-3.271871947250E+06	9.209807904329E-62
at ≃	• 0 0 0	-3.915807695113E+02	•	2.573355461179E+04
	T = 1303.00000	* * 0000	1.000000 NSTEP	.p = 625
	-2.128523953293E+07	•		2.816695826715E+01
	2.851378919969E+D(, o v	3.152604890545E+03	-3.773118593270E+00 -6.2048192277285488
	000000000000000000000000000000000000000	D		**************************************

6.484328686607E-04	1.090259254687E-03	6.238380127628E-03	-9.550779774932E-05	-1.46926634679E-01	-2.075062236619E+00	1.902624164764E-03	X Y Z (EXTERNAL UNITS) RADIAL 200-12-915696E+01-1-798890E-02-1-91044E-035-7741910E-07-5-53724E-07-3-3917696E+01-1-798890E-02-1-91044E-035-7741910E-07-6-553724E-07-3-391796E-06-1-217397E-08-3-513011E-05-166337E-07-2-916696E+01-3-773119E+00-6-204912E+00-2-908805E+81-1-799241E-02-1-910224E-03
4.445908917902E-03	-1.648846072365E-04	-2.835687948173E-03	-7.787934028991E-04	8.041463864869E-02	1.093134873450E+00	-8.612346895912E-04	
-1.329310329866E-86	4.892409574229E-03	1.904434799678E-02	2.945430374262E-05	-5.882053793044E-01	-7.873182542686E+00	5.765712037801E-03	
-9.08843665635E-03	6,923775588704E-02	2.127862353480E-01	-9.399691561485E-03	-8.641203558093E+00	-1.150413882949E+02	8.611654347690E-02	(EXTERNAL UNITS) 773118E+00-6.204916E+00-2.90808 553724E-07 3.391796E-06-1.21739 773119E+00-6.204912E+00-2.90880
-1.449786187164E-02	-1.076005899338E-02	-2.670819115936E-02	-7.026605970557E-02	1.141847806475E+00	1.524962195263E+01	-1.119862927215E-02	
7.194849538475E-06	-1.573248918873E-02	-6.517231652939E-02	-7.178167747321E-03	2.064367198044E+00	2.854457430755E+01	-2.31f321440878E-02	
-1.3623+2841631E-01 -1.017212811139E+00 3.071138860762E-04	-2.223629973567E-01 3.486738901393E-02 -1.029532701896E+00	-5.950846827238E-01 4.991370083584E-01 -4.166931554943E+00	2.073376603690E-02 1.633397159981E-01 -6.352352055773E-03	2.257134554561E+01 -1.577246371543E+01 1.25650101207E+02	2.921375565344E+02 -2.102592031205E+02 1.689179548620E+03	-1.700350615598E-01 1.512410902734E-01 -1.262437928033E+00	445NITUDE X Y Z 2.908305E+01 2.915696E+01-3. 3.519705E-04 5.741910E-07-6. 2.908805E+01 2.916696E+01-3.
ALPHA	DELTA	BETA	A7	œ′	>	ne ag	FOPCFS SEOPCTENTIAL ATMOSPHERIC TOTAL

*** TPAJECTORY TERMINATION

576.0000 MINUTES *** 6.931 SECONDS TO INTEGRATE A SPAN OF THIS CASE TOOK

	_
_	<u></u>
(4)	ć
	Ċ

														_		_				(9		Ś															_
	PP SECS.	ĺ		43800.00	43860.00	43920.00	43980.00	44040.00	44100.00	44340.00	00.00444	00.09555	44520.00	44580.00	55680.00	55740.00	55800.00	55860.00	61020.00	61080.00	61140.00	61200.00	61260.00	61320.00	66300.00	66360.00	66420.00	66480.00	66540.00	666600.00	66640.00	66720.00	66780.00	66340.00	66900.00	_	67 020 00	67086.00
:	11.2		H 30	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	R62	862	462	6.62	862	862	6 62	862	38623	862	862
*	. S. ,			1	ᇤ	Ē	ב	n L	딥	E F	E	Ę	ᇤ	13	ᇳ	7	<u>.</u>	E.	E.	H H	딥	E E	بد	1	ر العا	ᇤ	ב	<u>.</u> نيا	H	긊	۳	H	3	L.	Į.	7	F L	1
. OF EPOCH	SP SEC			638-0	81E-0	12F -0	7.56-0	19E-0	0-350	1E-0	80E-0	85E-0	47E-0	95E-0	0-340	0-346	42E-0	0-356	59E+0	0-380	27E-0	76E+0	18E+0	215+0	57E+0	•	69E+0	015+0	0+306	74E+0	98F+0	0.0E+0	0+36	56E+3	37E+0	3	125+1	5F+0
MIONIGH	7.1			ŝ	•	۲.	6.	1.7		4.6-	1.1	4	9	ř	2.		*	ŗ.		•	7	0.	1.4	3	•	2.5	~	•	m	4	۲.	2	٠,	•	*	5	۲.	
F 70 F	SAM 0			A 7	A 2	A 2	A Z	A 7	A 7	A Z	A Z	A Z	A7	24	A 2	A 7	A Z	A Z	A 2	A 7	A 7	A 7	A Z	A Z	A 2	A 7	A 7	A 7	A 7	A 7	Δ2	A 7	47	A 7	A 7	A7	A Z	A 7
SHINITES	SESWENT 1			7748r-0	0051E+0	1996F+n	24335+0	59ADE-0	4 055F-0	783F-1	9713F-0	065E-0	872E-0	3477E-0	ロナゴとちちち	9272F+0	207F+0	197E+1	318E+0	00225+0	014E+0	989F+0	5789E+0	7989E+0	8032E+0	128F+0	0+37676	9821E+0	8705+0	3043640	3667F+1	7185+0	87135+0	9210F+0	AF2E+0	585E	3975+0	396E+0
03.000	Pt F(0			.5	7	-3	-	5	٣	-1	Q.	1	-	~		m	٢	F .		1	æ	۲.	S	M	~	3	σ	-	-	α	P	~	-	P C	S		€	σ
13	1 1			O۲	~	n'	52.5	~	SNO		o.	n	œ	246		n	n	~	SAS	•	•	•	5 24G	n	C)	246	~		n				n		570		じアト	57.
0 10	FYECUTIO			1935+1	016+0	039E+0	736E+0	206F+0	0+357S	.7570E+94	7816E+0	983E+0	2055E+0	3516+0	982F + 0	641E+1	9452E+1	832E+1	218E+0	774E+3	4136+0	7150E+0	728E+3	0+36n	246E+0	531E+0	0.8E+3	054E+0	37776	507F+1	5874E+0	154E+0	298+3	0+3975 u	0E+1	0+36%6	+	615E+1
727.Eg	SECONDS.			300	.000	.0000	- 0100	- 00000	- 0:00	.00.	00000	.0000	7- 0 C G O .	.0000 -1	- 0160	- 00000	0160.	.0000	- 0600	- 0,60.	0010 -3	1 0:00	3830 3	0350	- 0160]	5- 0:00	0 1 D	د ردرو	0 L C U	119	0,[2- 0100	10000	110 -	0	0:0	ארננ
_	95.3		2	-	-	-	+1	-	-	-	~	~	~	~	~	2	~	M	r	S	ហ				2	N	^	∼	N	M	~	~	~	!* '	~	36	M	M
F 2 7 M	A.	TOUALS	3		5 1	5	5 1	5.1	5	5.1	5	5.1	5 1	5.	2	5	5 1	5 1	5	٠, *-	5.	5.1	5 -	٠,	5	5 1	5	ۍ -	5.1	۲,	, T	, c	٠,	•	e		-	٠
*	MENT 25	o da	FAR MO	J.	3	4	4	4	4	4	J	4	4	J	3	4	•	4	3	J.		3	3	T.	, T	F.5	7	.	7 4	4	t L	7 7	f.	T T	7	4	1	. ;
	THEAD	PATION	٠ ٧	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1	1	1	1 1	1 1	1 1	1	2 1	۲.	7	2 1	2	2 19	3 10	13	~	21 2	С	۳ ۲	£ 1	٠,	1		-	1		••
	ENTER	03 SF PV		ころいつ	0050	1290	0050	2653	0053	0040	0000	0040	0000	040	0000	660	0000	0060	0 0	0066	0000	2000	ن ما ت	u du G	0000	0600	0000	000	נוסט	0.000	0060	200	0600	0670	נישו	いんりり	960	ត្រូវ

ITEM

9

day, hour, minute, and second; three pairs of measurement residuals and identification; the modified Julian date; and the system time in seconds Observation residuals. Each line corresponds to one input observation set or card and contains the station-pass identification in year, month, from midnight

ments (modified by bias and/or refraction corrections) and the corresponding The residuals are the unnormalized differences between the input measure-The observation names are values for the same measurement types computed from the integrated trajectory position at the observation time. abbreviated as follows:

RNG	Range	CM3	Three-way cumulative doppler
AZ	Azimuth	DOP	Doppler
ıш	Elevation	TWD	Two-way doppler
TRA	Topocentric right ascension	SRR	SGLS range rate
TD	Topocentric declination	ΑX	X-antenna
THA	Topocentric hour angle	AY	Y-antenna
GRA	Geocentric right ascension	CC3	JPL two- or three-way doppler
GD	Geocentric declination	TNT	Tranet doppler
D	n	GCR	Geoceiver range difference
>	>	72	Vehicle-vehicle range
Ή	Height	V2D	Vehicle-vehicle range rate
×	· •×	S2	Station-vehicle-vehicle range
≯	¢	SSD	Station-vehicle-vehicle range rate
2	.40	S 3	Station-vehicle-vehicle
ሷ	<u>с</u>	-	range
α	a	S3D	Station-vehicle-vehicle
RD	Range rate		range rate
PD	P rate	V3	Vehicle-vehicle-vehicle range
QD	Q rate	TDA	Time difference of arrival
ACC	Accelerometer	TOA	Time of arrival
CM1	One-way cumulative doppler		Time-of-arrival counter

Ð

•	
	Θ
67140.0 67260.0 71760.0 71760.0 71760.0 72160.0 72260.0 72260.0 72260.0 77260.0 77260.0 77260.0 77260.0 77260.0 77260.0 77260.0 77260.0 77260.0 77260.0 77260.0 77260.0	14.66 E B B B B B B B B B B B B B B B B B B
ದೆ ದೆದೆದೆ ವೆದೆದೆ ವೆದೆದೆ ವೆದೆದೆ ವೆದೆ ವೆದ	04400 ·
235941100 235941100 21031000 21031000 21031000 21031000 21031000 21031000 21031000 21031000 2103100	7
	2.60000000 2.6000000 4.6000000
	MER 401
1. 16 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.5E+00 6 1.3E+00 6 1.5E+00 6 1.5E+01 -4 1.1E+02 -2 2.0E+02 -2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.45 1.56+01 1.36-01 1.56+00 1.16+00 2.07+01 2.07+01 7.07+01
3 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3	N TYO 8 AZ 5 AZ 15 AZ 33 AZ EXECUTION
	177 AN 377 AN 377 AN 377 A 405
	515 + 5 15 + 7 2 - + 1 + 7 3 - + 1 + 7 3 - + 1 + 7 3 - + 1 - 6 3 3 - 4 - 7 3 - 1 - 7 3 - 1
りしゅくりょれをおくりられをごく タッカをこりらるとりらってってってってってってってっている ション・ラット ちょうしょう ちゃん アーロション・ファート しゅうしゅう しゅう	2
	™ 4™™™ ™ 4™™™
	7 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA TANA TANA TANA TANA TANA TANA TANA T
00 50 00 00 00 00 00 00 00 00 00 00 00 0	177AL 0001 0005 0009 0009 1160 8170

REFERENCE SECTION	2.2.4 s	ب		
DESCRIPTION	Edit summary. The RMS of the residuals for each measurement type from each station is computed by the residuals editor. Included in the printout are the station identification, the number of residuals included in the RMS (i.e., the total number for that station and type minus the number deleted by the editor on this iteration), the RMS, the RMS divided by the input weighting sigma, and the mean value of the residuals. The measurement type indicators are the same as those used for residuals (Item 6)	Because of storage constraints, the residuals editor accumulates residuals and makes editing checks only for the first 6 measurement types for the first 30 stations		
ITEM				

<u> </u>			
SISHA 1.25190034E-04 2.10518024E-04 9.19896857E-05 7.312529695-05 5.73271117E+01 7.08926739E-02			6
000000000000000000000000000000000000000			<u> </u>
VALUE 19208723992E+ 10499953416E- 11648996747E+ 1640061987E+ 16969170890E+ 14282557692E+		66E-01 (B)	0001 DRAG 1.000000000
			0001 V 1.000000000
		n:	# F
30UND 1.00000000 1.00000000 1.00000000 1.00000000	11N5 2(1)	6	0001 8 1.900300000 999457483 .406561987
011	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	893E -07(÷ ; •
0RRECTION 3.292087245 1.131605806 -2.264351006 6.640065206 -1.230309296 -5.17542316	ONS USED IN (4716713914E+18322106976E+	7.26	0001 AZ 1.000000031 161605940 162982940
ပ		XT (AT	1.001 3ETA 1.001000000 234238491 615787104 .632569139 .054309304
H	TYINS ADUNDS. OLJTION FOR WEXT SOLU	= 2.37501378F Matrix De	0001 DELTA 1.000000000 533863245 .205133635 .850313741 845386506
	TIONS HIR STHISS	ATA)X) FLATION	0 W M G M H M
CJRRFN NS NS N	CORRECTER RMS FOIL	CORP	0001 ALPHA 1.000000 17763591 - 122165967 - 16989988 - 16989888 - 1658286
	ENT SOLUTION IS CORRECTION BOUND NEW VALUE SISHA 3.514999199796E+02 3.29208724E-01 1.00000000E+00 3.5182920872352E+02 1.2516034E-04 DELTA 1.113160499953416E-01 2.100000000E+00 1.00000000E+00 3.518292087235416E-01 2.10518024E-04 PETA 9.0004999995E+01 -2.26435.00E-01 1.000000000E+00 3.5456400661987E+02 7.312529677E-05 AZ 2.13599999996E+07 -1.23030829E+04 1.000000000E+00 3.5456400661987E+02 7.312529697-05 V 2.585999399996E+07 -1.23030829E+04 1.00000000E+00 2.58554824557692E+07 7.08926739E-01 V 2.58599939999999996E+04 -5.17544231E-01 1.00000000E-00 1.22434282701928E-03 8.45819883E-06	## SOLUTION IS CORRECTION	### SOLUTION IS CORRECTION

2.6 PP SECS.

.2 CP SECS.,

97.3 SECONDS. EXECUTION TIME FOR SEGMENT 30 MAS

ENTER SEGMENT 40 AT

REFERENCE	2.2.2		2.2,2			2.2.3							
DESCRIPTION	Iteration number. TRACE makes the differential correction, or orbit determination, by computing a series of differential corrections of the parameters selected by the user. The iteration number is advanced each time a set is recomputed and indicates the number of times the orbit determination algorithm has been performed	Observation count. The number of individual measurements included in the current (best) least squares computation is indicated	Convergence indicator. If the weighted RMS for all residuals is less than that for any previous iteration, the correction process is converging, and the message shown is printed. If the current RMS is greater than the smallest RMS obtained on previous iterations, the message	CURRENT ITERATION IS NOT GOOD (SOS X.XXXXXXXE±XX)	is printed at this point.	The current solution is shown, one parameter per line, starting with the name (Item 4). If the iteration has been successful (i.e., if the overal! RMS has been lowered), the current value is the parameter value used in the integration, partial derivatives, and residuals computations just completed. For the first iteration, it is the input value of the parameter. If an iteration is had, the value produced for the lowest RMS is recovered from memory and is printed as the current value.	The correction, the solution of the system of normal equations associated with the current (best) iteration, is also shown on the line, as is the bound, the current value of the number used to limit the correction size. In general, these hounds are automatically increased on a good iteration and decreased on a had one. The last two columns contain the new value (correct value plus correction) to be used for the next iteration and the a priori sigma for the parameter	indications that the correction sizes have been controlled by solving the system so that the constraint of the bounds is satisfied. The number of iterations to determine the Lagrange multiplier z is also shown. If the normal equations were solved without applying the bounds, nothing would be printed at this point	RMS. The quantity to be minimized in the differential correction process is the RMS of the normalized residuals for the current iteration	Predicted RMS. If the fitting process is converging in a completely linear manner, this will be the RMS on the next iteration; it may be compared with the current RMS (Item 13) to measure the degree to which the process has already converged	The equation being solved is A ^T WAAP = A ^T WB; therefore, the solution should also satisfy APT ATWB. By comparing the ratio of the two sides of the preceding equation to 1, an estimation of the quality of the matrix inversion may be obtained and, implicitly, of the normal matrix conditioning. This comparison is valid only when hounds are not hit	Determinant of the correlation matrix	Correlation matrix, the correlation coefficients for the parameter set. These values are computed directly from the covariance matrix (i.e., the inverse normal matrix). Row sequence is the same as column sequence
ITEM	ou)	σ	10			=		1.2	13	7	15	91	

APOGEE RADIUS APOGEE HEIGHT PERIGEE REGUS 0-DOT U-DOT 3613.73618 170.65918 3511.48367 68.40067 .6384569822	8.4 PP SECS. 8276-03 0006-10 0006+00 0006+00		0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MEAN ANOMOLY ECCENTRC ANON TRUE ANOVILY KEPLERIAN PER ANOMALY PER NODAL PERIOD 15.6209991 15.65011327 15.87348122 88.8339674 89.0346349	.2 CF SECS., 6.4 P CDAM 1.224342827E-03 ER 1.000000000E+00 HMIN 2.000000000E+00 HMAX 2.00000000E+00 HO 2.00000000E+00 NTX 0.		NSTEP = 0 -3.052702432160E+01 4.382852174980E+00 -6.077158946111E-02
AF AG N L CHI CHI PSI PSI PSI 9055185024774 005518754808 00574951437126 351.508462446 15608012581 1.0849975398	5.662162703E+00 3.244180258E+02 2.438523500E+06 7.27000000E+02 1.303000000E+03 5.76000000E+03	1ABLE *	z
A E I O O U TAU 21646835.097 • 01435106322 •• 95.433588709 • 351.839972422 344.240189981 723.1903256	ALS-DES TJDATE TSTART TSTART TSTART TSTART TSTART TSTART TSTART TSTART	ETERNINED EVENT	91917404 30441368 73925818
ALPHA OE. TA DE. TA BETA AZINJTH RADIUS VELOCITY • 113160500 • 99.778166900 354.566400251 21347695.917	134 FOR CASE	* PREDETE CLATEC QUANTITIES	0 727.000000 123784540 391711640 1559886404
X Y Y Y 7 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	DORY INTEGRATIONS STORY INTEGRATION AND STORY ST	TYPE ASSOCTSTOP TSTOP TPAJECTORY START	TMF IS 97.68200 T = 7 2.1130351 -3.0340213 4.2162171
# # # # # # # # # # # # # # # # # # #	7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000	7 7 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
VEAR/WO/DY RR/HIN SECONDS LATITUDE LONGITUDE HFISHT 1964/ 8/16 12/ 8/16 12/ 8/16 13/ 8/16 113/ 8/16 113/ 8/16	ENTEP SEGMENT IN TPAJECT IVEP 0 CHVEP 0 KYPP 0 KYPP 7 LVEP 1 LVEP 1	1 THE (HME) 727 00 1383 00 1	SE 611 F

2. ****

1 FOR ITERATION

** ** ORBITAL ELEMENTS FOR VEHICLE

REFERENCE SECTION				
DESCRIPTION	Initial conditions and characteristics for the next iteration are fully explained in the epoch print (Item 42) of the previous case			
ITEM	18			

-7.538634032513E-04. -5.251821922072E-03 5.072796977429E-10	1.013651645742E-05 -1.455639639346E-06 -5.288997732691E-03	2.910517841894E-08 -%.167985675079E-09 -5.589291141101E-11	-4.189457598863E-09 -2.924014878256E-08 -1.055755549733E-09	1,027953859891E-02 -1,478110678485E-03 3,530004569560E-05	1,249910573710E-08 9,763856694858E-08 -7,860128671986F-07	4.833824156621E-07 3.688586245117F-06 -2.390669173616E-05	IN-TRACK CROSS-TRACK E+01 3.3533C2E-04 2.680476E-04 E-07-1.718791E-04-1:02436CE-05 E+01 1.634510E-04 2.578042E-64	000 NSTEP = 39 000 NSTEP = 69 +06
6.968761729401E-03 -8.578672077264E-04 0.	~7.3052545567145-02 1.0489020888555-02 1.4127181552285-04	-7.338613986721E-02 1.050946047628E-02 1.393241626287F-04	1.047523697341E-02 7.305409839516E-02 7.019930643232E-03	•••	-1.157159435817E-02 -9.400100628776F-02 9.955048501673F-01	•••	(EKTERNAL UNITS) RADIAL IN-TRACK ÜRÜSS-TRACK 4.3828?5E+00-6.050145E-02-3.084011E+01 3.353362E-04 2.680478E-04 2.625072E-05-1.701378E-04-6.617043E-07-1.718791E-04-1.024360E-05 4.382852E+00-6.077159E-02-3.084011E+01 1.634510E-04 2.578042E-64	T = 737,000000 H = .5000000 2.174592635526E+07 3.1280446F1412E+06 4.36306536235E+02 2.341032215047E+03 2.112807778157E+07 -3.048921452957E+06 2.521640783086E+02 -2.437807435119E+03
1.449839349170E-01 1.009315738373E+00 0.	-1.9943344374375-03 2.8635387313325-04 1.0201525398305+00		• • •	9.898458827081E-01 -1.4212+0515554E-01 1.975022023389E+03	• • •	0	MASNITUDE X Y Z 3.084011E+01-3.052703E+01 4.1.721854E-04 3.4.0109E-06 2.3.084011E+01-3.052702E+01 4.	STEP DOUBLED T = STEP 0009LED T = 7.716776901297E+02 -2.1741.000000000000E+00 4.3638159E+02 2.112
AL PHA	DELTA	BETA	24	α	>	ORAG	FORCFS SEOPUTENTIAL ATMOSPHERIC TOTAL	NODF T = NOD

-1,009066847643E-01 7,112715583158E-02 -5,8028358860332E-01	-1.520343930412E+00 1.000672309522E+00 -8.008410938828E+00	2.136118776008E-93 -1.149855285102E-63 8.525382604848E-03	IN-TRACK 3E+01-1.142734E-02-1.238510E-03 5E-10-4.486663E-07 2.807590E-08 3E+01-1.142779E-02-1.238482E-03
-8.503537251800E+00	-1.176498466858E+U2	1.255965284188E-01	MAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRACK 2.910213E+01-1.142734E-02-1.238510E-034.059545E-07-1.38510E-034.055445E-07-1.38579E-07-1.8035676E-07-1.8035676E-08-08-08-08-08-08-08-08-08-08-08-08-08-
1.144803978440E+00	1.574794788511E+U1	-1.663381409215E-02	
1.296812247239E+00	1.887705432857F+U1	-2.315265667377E-02	
1.144856139165E+01	1.452254490322E+02	-9.783352270257E-02	MAGNITUDE X Y Z Z 310213E+01 2.857983E+01-3.84.495445E-07 4.833679E-08-7.82.910213E+01 2.857983E+01-3.8
-1.359557914992E+01	-1.862350275209E+02	1.920342548582E-01	
1.233937145524E+02	1.708391085917E+03	-1.84245451414E+00	
œ	>	DRAG	FORCES GEOPOTENTIAL ATMOSPHERIC TOTAL

*** TPAJECTORY TERMINATION

*** THIS CASE TOOK *** FROM

ORSERVATION RESIDUALS	TON RE	SI	UAL	S										
STAPASS	YFAR	9	MO DY	¥	Z	SEC							HJ0	ST
305001	1964	•	16	12	10	3.0000	3.0000 2.2688E+04	RNG	1.6215E+00	24	-3.3328F-01	딥	38623	38623 43800.000
005001	1964	•	15	12		0.000.0	1.7605E+04	SNS	2.9479E+00	AZ	-8.0831E-01	7	38623	43860.086
00 50 00 1	1964	•0	15	12	12	0.000.0	-6.9197E+03	SNS SNS	9.3419E+00	AZ	-4.2212E+00	딥	38623	43920.000
005001	1961	•	15	12		3.0000	-2.2796E+04	SNS	-4.0375E+00	AZ	-1.0205E+00	E,	38623	4390.000
005000	1964	•0	16	12		0.000.0	-1.5651E+04	SNS.	-1.9082E+00	A7	-6.6809E-01	딥	38623	44040.080
005001	1964	•0	16	12		3.0000	-1.1783E+04	SN.	-1.2258E+00	NZ	-5.1925E-01	EL	38623	44100.000
004001	1964	•	15	12		1.0000	3.0133E+04	SN S	1.0505E+00	AZ	-9.6596E-01	۳	38623	44340.000
0004001	1964	•	15	12	20	000000	4.3115E+04	₹11 <u>6</u>	1.0582E+00	AZ	-1.3543E+00	딥	38623	44400.000
004000	1964	•	16	12	21	0.000.0	5.8001E+04	8	6.19155-01	AZ	-1.6029E+00	L L	38623	44460.000

11.3 PP SECS.

7.0 CP SECS.,

ENTER SEGMENT 20 AT 104.5 SECONDS. EXECUTION TIME FOR SEGMENT 16 MAS 727.000 TO

1303.500 MINUTES FROM MIDNIGHT OF EPOCH

576.5000 HINUTES

6.885 SECONDS TO INTEGRATE A SPAN OF

8	00	60	00	4	7	중	5 0	00	00	00	0.0	00	0	•	9	90	•	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	0.0	00	00	00	00
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
445	S	96	5	58	50	10	10	11	12	12	13	63	63	9	99	60	99	99	67	67	99	1699	69	7.0	70	7	72	72	16	17	17	18	18	19	20	20	21	21	22	23	23	24
38623	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	862	867	862	862	862	862	862	862	862	862	862	862	862	862	862	862
EL	.	<u>.</u>	E	Ę	딥	ij	Ę	F	Ę	딥	7	T)	7	E	נו	딥	E	Ę	E	EL	Ę	برا درا	딥	E	Ę	E F	E	딥	E E	4	F	7	딥	۵	E	U	13	E C	ũ	Ę	H	EL
.4357E	.1507E+0	.0133E-0	8.4310E-0	-4095E-0	.9429E-0	1.0148E+0	1.1552E+0	1.2119E+0	1.1336E+0	-7480E-0	8.1401E-0	1.0434E+0	1.3589E+0	1.8453E+0	2.2312E+0	1.9183E+0	.3912E+0	1.0271E+0	7.9993E-0	5.3474E-0	5.9098E-0	67E-0	4.8610E-0	1.5507E+0	1.8625E+0	.2035E+0	8.3730E-0	6.2982E-0	.2301E+0	1.7714E+0	2.8249E+0	1.1511E+0	2.2512E+0	-4418E+0	1.0324E+0	.0225E-0	.0920E-0	7.0650E-0	8-1536E-0	.9165E-0	8.8289E-0	8.0346F-0
AZ	47	AZ	AZ	74	A7	AZ	A Z	AZ	AZ	AZ	AZ	AZ	77	AZ	YZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ	A7	AZ	AZ	A7	AZ	AZ	AZ	A Z	A7	AZ	AZ	A Z	A 7						
.8096E-0	-0475E-0	.c.369/3.	.8295E-0	.4860E-0	.8157E-0	.1618E-0	.4354E-0	.1954E-D	.0655E-0	.5173E-0	.6114E-0	.9155E-0	.6135E-0	.5496E-0	.11%GE-0	.2254E-0	.1121E-0	.4202E-0	.5305E-0	-9060E-	9-8217E-6	1.1402E-02	.1116E+0	.7652E+0	.1183E+0	.2775E+0	.1514E-0	.2426E-0	.3546E-0	.2603E-0	.3920E-0	.8495E-0	1.8402E-0	.8521E-0	.2113E-0	.2390E-0	.1514E-0	7.4698E-0	.2915E-0	9-3451E-0	.5563E-0	.1917E-0
RNG	SNS SNS	SE X	200	RNG	SN.	SN SN SN SN SN SN SN SN SN SN SN SN SN S	SN ~	S N S	SNS	S S S S	246	SNO	SNA	SNS	2	SNA	S	SNC	3 N C	RNG	3 A C	SNS	SN.	SNS	SNO	3 × C	SNS	S	SZ	SNS	S	3 2 3 3	S	SNS	5 0 0	SNS	SNS	SNS SNS	SNO	SNS	5	SNC
.5667E+0	.8526E+0	.1184E+0	6.8573E+0	.7751E+0	5.2159E+0	.5211E+0	8.4432E+0	.3558E+0	1.0744E+0	2.2753E+0	.3316E+0	.0690E+0	.6799E+0	1.1036E+0	2.8892E+0	.6325E+0	1.1609E+0	.8438E+0	.3292E+3	7.5649E+0	8.8371E+0	-1.0111E+05	1.0593E+0	4.1937E+0	.2485E+0	.4311E+0	.1036E+0	.2000E+0	.9279E+0	8.4590E+0	4.2404E+0	.3158E+0	3.2978E+0	7.7099E+0	0+3099c ·	.0179E+0	4.1328E+0	.7966E+0	4.9266E+D	.5070E+0	.4716E+0	.8674F+0
.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	-00-	.000	.000	.000	.000	.000	.000	.003	.000	.000	.000	.000	0.000.0	.000	.003	.000	.000	000	.000	.033	.000	.000	.003	.000	.000	.000	.000	.000	.00.	.000	.001	.003	. 000
22	23	28	59	30	31	25	58	29	0	#												35													C	-	~	M	ţ	S	G	•
+ -i	+1	7	+1	پسو	4	7	+	-	-	7	-	4	+1	4-1	4	+1	+	7	+	+	-4	18	-	-	7	-	-	-4	-	-	-	-	•	, •	~	~	0	2	2	r.	٧.	~
	+1	+1	41	+1	-	+1	7	+1	-	#1		+1	+	+	+1	+	-	+1	+1	+	uન	A 16	+	44	+1	+1	7	+1	•	+1	74	41	+1	44	#1	•1	+1	٠,	4	+1	+1	• •
₹96	996	496	796	496	964	496	796	195	796	964	496	496	964	964	496	496	496	796	964	496	796		196	496	495	196	196	964	496	964	495	496	496	964	796	964	496	496	964	964	496	446
00046	000000	00060	00060	00060	00060	00060	09000	00060	00060	00060	00060	90060	00060	00069	00060	00050	20063	00060	00060	16000	06000	0050001	06000	06000	06000	06000	06000	06000	30060	0006 u	09000	30063	1006	10061	00000	00060	36090	06000	00090	06000	06000	00090

-1.0323E+00 EL 38623 76920.000 -1.7782F+00 EL 38623 77690.000 -2.0151E+00 EL 38623 77040.000 -1.9004E+00 EL 38623 77220.000 -3.67427E-01 EL 38623 77220.000 -3.67427E-01 EL 38623 77500.000 -2.7621E-01 EL 38623 77500.000 -1.6173F+00 EL 38623 7760.000 -1.6173F+00 EL 38623 77900.000 -1.6173F+00 I.3E+00 -8.3E+00 -1.7 CP SECS., 10.0 PP SECS.	NEM VALUE 3.51602509263401E+02 1.20826357E-04 7.56111375938326E-03 2.02968458E-04 8.99936404363975E+01 8.98199728E-05 3.54474777407950E+02 7.36258673E-05 2.13531662862318E+07 5.47662656E+01 2.58530764631926E+04 6.77420654E-02 9.52155968620821E-03 6.02311948E-05
5.5421E-01 A7 5.6663E-01 A7 -9.2395E-02 A2 -1.4065E-01 A7 2.5720E-01 A7 2.5720E-01 A7 2.5720E-01 A7 2.5720E-01 A7 2.5520E-01 A7 2.5520E-01 A7 2.5556E-00 A7 1.9804E+00 A7	900UND 1.500000000E+00 1.50000000E+00 1.50000000E+00 1.50000000E+01 1.50000000E+01
**************************************	ORRECTION -2.26699461E1.05599386E- 2.15475537E9.16232540E- 5.46936314E+ -2.40599258E+ 8.29721686E-
15 21 22	5
0090005 1964 8 0090005 1964 8 0090005 1964 8 0090005 1964 8 0090005 1964 8 0010001 1964 8 001000	CETTA CELTA AZ AZ AZ AZ THIS

9.7959735872E+00 11 PREDICTED RMS FOR NEXT SOLUTIDA

CORPELATION MATRIX			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			005400
		DETERMINANT = 8.39750581E-07	8.39750581E-	07		
	1001	9001	0001	0061	0001	0001
	DEL TA	35TA	7 V	α	>	DRAG
1.000000000						
.126707585 1.	1.000000000					
.095784306	524526749	1.307000000				
.469347141 .	+172114292	201620817	1.000000000			
.105068389 .	.937164667		.113595954	1.000000000		
103952302	931937276		115757975	999467638	1.000000000	
.000335237	329568072	.534698927	096391574		.536827303	1.000000000

2.7 PP SECS.	APOGEE RADIUS 10. APOGEE HEIGHT 11. PERIGEE KADIUS 12. PERIGEE HEIGHT 13. DEATH OF THE	3613.28299 144 169.35013 17 3514.27767 70.3448 160 .8515526064 198 -4.2171138077
.2 CP SECS.,	MEAN ANONGLY ECCENTRC ANON TRUE ANOHOLY KEPLEZIAN PER ANOMALY PER NODAL PERIOD	.45143749 .45779644 .45779644 .46420017 88.9377396 89.0784160
FENT 30 MAS	A SE	.0137249932016 0021378323792 .0674629243904 351.598074400 16083438689
N TIME FOR SEGMENTION 3. ***	A M H O U O T A U	21653940.572 .01389049192 - .95.52522544 351.603240608 359.543396168 726.8884727
ENTER SESMENT 40 AT 106.4 SECONOS. EXECUTION TIME FOR SEGMENT 30 MAS	ALPHA DELTA BETA AZIMJTH RADIUS VELOCITY	351.602508852 .007561114 99.993640435 354.474776997 21353166.286 25853.0764632
40 AT 106.4 S Elfyents for veh	x y Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	21124233.035 -3118410.042 -2118410.893 -364.0479416 -2462.4712545 25732.9607125
ENTER SESHENT	YEAR/MO/DY HR/MIN SFCONDS LATITUGE LONGITUGE HFIGHT	1964/ 8/16 12/ 7 0.0000000 0075121 204.9368856 70.3456

END OF LEAST SQUARES PROCESS - MAXIMUM ITERATIONS (2) REACHES.

REFERENCE SECTION	2.2.2				
DESCRIPTION	Indication of the reason for ending the least-squares process. In this case, it was because the maximum number of iterations had been reached. Other reasons for endirg the process could be convergence or the lack of additional computer running time				
ITEM	19				
		 	 	С	- 59

DESCRIPTION	An example of the printer plot of the measurement residuals for the last iteration if GPLOT is input \$0 Its order is by station input,
	An
	DESCRIPTION

ITEM 20 then by measurement encounter

REFERENCE SECTION

2.2.1 11.1.2 15

and corresponding measurements are shown as follows (note that since Each page contains a maximum of six different measurements for a station. The first six, or fewer, lines contain the measurement type identifiers and the ranges of the residuals (the maximum negative value, a zero, and the maximum positive value) for the measurement only one character can be used as an identifier, some are repeated); between the maximum negative value and the zero. The identifiers types encountered first. The first line also has the VEHID printed

A Azimuth E Azimuth T Popocentric right ascension T T Propocentric declination T T Propocentric declination T T T T T T T T T T T T T T T T T T T	nt ascension lination r angle ascension nation) # # ·	inter-way cumulative uoppier
Azimuth Elevation Topocentric rigl Topocentric dec Topocentric decliu U V Height X X Z Range P Range P	nt ascension lination r angle ascension nation	* * -	
Elevation Topocentric rigly Topocentric dec Topocentric right Geocentric decli u v Height X X Z Range P	nt ascension lination r angle ascension nation	# ·	Range rate
Topocentric right Topocentric dectorection Geocentric right Geocentric right U V Height X X Z Range P Q G Range Range Range P	nt ascension lination r angle ascension nation		Doppler
Topocentric dec Topocentric hou Geocentric right Geocentric decli u v Height x y z Range P	lination r angle ascension nation	::-	Two-way doppler
Topocentric hou Geocentric right Geocentric decli u v v Height x y y z Z Range P Q Q Q Range rate	r angle ascension nation	တ	SGLS range rate
Geocentric right u V Height x Y Z Range P Q	ascension	+	X-antenna
Geocentric decli u v Height x y z Range P Q	nation	•	Y-antenna
u v v Height x y y z z Range P Q Q		'n	JPL two- or three-way doppler
v Height X y Z Range P Q		H	Tranet doppler
Height x y z Range P Q		Ü	Geoceiver range difference
x v z z Range O Range rate		>	Vehicle-vehicle range
v 2 2 Range Q 8 ange rate		+	Vehicle-vehicle range rate
z Range P Q Range rate		2	Station-vehicle-vehicle range
Range D Q Range rate		,	Station-vehicle-vehicle range
D Sange Table			rate
Q Range rate		6	Station-vehicle-vehicle
Range rate			range
		_	Station-vehicle-vehicle
P rate			range rate
Q rate		J	Vehicle-vehicle-vehicle range
Accelerometer		Ω	Time difference of arrival
One-way cumulative doppler	tive doppler	0	Time of arrival

The left-hand column contains the system time in sec, incremented by GPLOT(2); the measurement identifiers are used to show the placement of the residual. In the far right-hand margin, the station-pass identification is shown.

C.4 TEST CASE C: ECI SIMULTANEOUS-VEHICLE COVARIANCE ANALYSIS RUN (ITIN = 5)

EEEEEEEEEE EEEEFFEEEE EEEEEE EEEEEE TPACE-66 (AD104A)

															Z	7																				
4 N 10 4	: 0 0	~ •	σ	0 +	12	13	4	15	16	17	19	61	20	7	25	23	7	52	56	27	28	5	0	5	32	2 6) 40 M	43	- 60 M	39	0	3	45	43	3
	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARO	CARD	CARD	CARD	CARD	CARD	CARD	0240	Caro	CARD	CARD	CARD	CARD	2 4 4 6	240	CAPD	CAPD	CARD	CARD	CARD	CARD	CARD	CARD	CARD
	1.095677E-8	05,012.236F-8		OMEGA.43752695E-2				0	6	0	0	0	-8.97210795E-07	+1.62318557E-07	-2.66420655E-07	0.0	-4.64855128E-07	+1.58760806E-07	+4.18329853E-09	+2.37178570E-09	+2 • 56904982E - 08	-2.751190055-08	+4.45514785E-09	ə (+4+4C3000E=00	47 256 A 6 4 100 100 100 100 100 100 100 100 100 1	-1.89273502E-09	-2.98614379F-10		· PO	61	.01146	10.		
		0.5		O																											13	16	M	ø		
TTE DPRCOVCXX RXX	6	03,010	2	OMEGE 43752695=-2 OF 20925741				1082637=-2	+2.566379=-5	+1.625-6	+1.32565E-7	-6.49E-7	+1.56852217E-06	+2.09543973E-06	+5.4592634e=07	+7.66938326E+08	-5.78695539E-07	+7.379025355-08	+5.318767205-08	-6.53285555-09	-4.281742355-08	+1.21376US75-U	-2.01509731E-08	o (0 0 - 2 + 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	00-3860000000000000000000000000000000000	47.48AN64AN6	+4.921175495-10	-8-87768432E-11			I5 58	2 .01146	5 10.		
MODEL DATA H1 DATA RELAY SATELLITE MULTV1 POPBOX20110109	HOPRANGE, 50	MGPRAMO6,60 ro1,0102,00	HAS 5.5 4LTELNO	GM		INTEDM24	TERMS							P 03 , 01						30 6 3 D					ريروري و. 10- 10- 10-			90°90 E			SIG	74 19	SIGMAIC.	2. 4	A X GUNEGO	FND

ITEM	DESCRIPTION	KEFERENCE SECTION
`4	Card images of the input MODEL data. The inputs used during a covariance analysis run are emphasized here. The input item MULTV indicates that simultaneous vehicles are used:	
•	MULTV ØPBOX, PRCØV, PANDR ITIN ØPRAM GPRAM KLIG, SIGMA	2.1.6 2.1. 2.1.5.3 2.1.5.3 2.5.3

10€+03	• • •					
5.81278500E+03			\$0E+03	۵	222	
			3.00000000E+03	LONGITUDE HEIGHT P Q LATITUDE LONGITUDE	5.000000000E+02 5.00000000E+02 5.00000000E+02	SICHA 000000E.04 000000E-04 000000E-01 000000E-01 000000E-04 000000E-04 000000E-04 000000E-04 000000E-04
ER/HI		KP001 PTKS	£.		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Θ
E+05 AF(1/0-ER/HIN+42)	UTS ************************************	APE = 0 NP00T = 0 NP000 = 0 PTMS = 10000	10		1 1 1	
3. 48762308E+05	IK30T	IONS *** PTAPE LEMSP	MCI CR	CATION DE	05+01 05+01 0E+01	W
# #		SPECIAL OPTIONS = 0 PTI = 0 LEI CRAS+ ALYITUDE		STATION LOCATIONS LATITUDE X Radius		80JND 3.6000000000000000000000000000000000000
VF(I/O-ER/MIN)	**************************************		TC.			
-0/1).	1 8 6.4000	PE7 = 0 TELEMIJOR = 0 CLASS	3.000000000E+05	sesstsssssssssssssssssssssssssssssssss	0 0 0	NITIAL VALUE
	ISENT H		3.000	DATUM	000	IAL
57410E+07	• 1	- Z	u.	# CZ		H0000000000000000000000000000000000000
2.09257	50 00	: :	ALTITUDE (SIG REF	000	
£	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			918	000	PARAMEYER LOAG LOAG ARIA ABIA EBIA LOAG ALT ROAG ARIA RBIA RBIA RBIA
DF(1/0-ER)	IFORM = 1 MYN = 1.562	TAPF2 = 0 PRHO = 0	ECI CRA	STATION	40 M	STAPASS PARAMEYER P-0 1

REFERENCE SECTION	ហ			
DESCRIPTION	Sensor parameter information. Each line contains the station and pass identification, parameter name, P- or Q-parameter indicator, initial value, bound, and sigma			
ITEM	~			

337.7 PP SECS. 110.7 CP SECS., 110.7 SECONDS. EXECUTION TIME FOR SEGMENT 0 MAS ENTER SEGMENT OF AT

							9								_		,	u ^	, pr	e.	~	Ç.
CARD 1	CARD 2	CARD					CARD 8						CARC 14	CARD 15	CARD 16		AF, AG, N, L, CHI, PSI	ソローは対しているのののでは、1・0	4.17761658205E-03	2.19971722355E+02	-5.62366289025E-02	-6.70202045299E-02
IDAY 22	0 XI.	TOLHIOT	10.	-7.18F2		1.E7	1.E7	1.E7	1.63	1.E3	1.E3	6				SIONS	A, E, I, O, U, TAU	このののもものものののでものののできるののできるののできるののできるののできるのの	1.0000000000000000000000000000000000000	-1.40000000000E+02	1. 80800080000E+02	-7.18000000000E+02
F		Ä	8.01524E-2	180.		1.E10	1.E10	1.E10	071	1.610	1.E10		•			INITIAL CONDITIONS	A,0,8,4,R,V	20+38963/026/661.42	8.99978948803E+01	8.0000000008710E+01	1.494330388925+08	9.30855966659E+03
8 HINHI	IR O	IICTYP3	4434E8 8.			÷	+	+	•	,	7	•	30				X, Y, Z, 3X, 3Y, 0Z	-1.1451/2/4468E+U8 -0.60061628468E+07	-1.09412622380E+04	5.88925582835E+03	-7.02517998470E+03	1.61641425299E+03
IYEAR 1969	TZNE 0	SEC 0	IC 1.383443	-140.	HVPRAHO4, 60	×	> 0	2 0	C CX	<u>ک</u> 0	20 0	PT 1 0	15	DRAG 0	FNO	FPOCH	YR/MO/DAY	A DE OF STATES OF C	110000	.0	••	•0

NO PLANETARY PERTURBATIONS.

** NO ATMOSPHERE MODEL **

ITEM	DESCRIPTION	REFERENCE
٣	Card images of the input VEHICLE data. The items used by a simultaneous-vehicle or covariance analysis run are emphasized	
	VEHID VPRAM PTIM	11.1.2 11.1.14 11.5.1

****		Θ			
	CARD CARD CARD CARD CARD CARD	AF, AG, N.L, CHI, FSI -0.27566114034E-15 -1.06388513507E-13 b.17807601469E-13 8.83639549683E+61 4.21732323595E-92 1.13002839519E-62		CARD 1 CARD 2 CARD 3 -7.16E2 CARD 4 CARD 5	AF, AG, N, L, C'I, PSI -2.24851979148E-14 4.17607601469E-03 7.54915147128E+01 0.
***************	5 -7.71343693E2	110NS A,E,I,O,U,TAU 1.36334196000E+06 0. 5.0000000000000E+00 7.500000000000E+01 1.80000000000E+01 1.80000000000E+02		CARD CARD CARD CARD CARD CARD CARD CARD	TIONS A,E,I,C,U,TAU 1.36334196000E+06 0. 7.55000000000E+01 1.8000000000E+02 -7.1600000000E+02
VEHICLE DATA	0 180	INITIAL CONDITIONS A,D,3,A,2,U B.83143155734E+01 1.3 1.15423120500E+00 0.9 9,0000000000E+01 5.0 8.51347337324E+01 7.5 1.36334196000E+08 1.6 1.00874919013E+04 -7.7		VEHICLE DATA	INITIAL CONDI B,A,R,V 915147128E+01 000000000E+01 334196000E+01 334196000E+08
经存货 医外孢子 医非非体性 医 医格特氏性 医水子 医医生物 计 医皮肤	₩ 90	X,Y,Z,JX,DY,DZ 4.06703434460E+05 1.38245315789E+08 2.78671742142E+06 -1.00473057857E+04 2.78335870503E+07	J2BATIONS. 40DEL **		X,Y,Z,J 3.46559 1.33922 0. 9.76580 0.
***	IVEHID2 ITSTYP3 fc 1.38334190 FND 75	FPOCH YR/HO/DAY 12NE, HP, MIN, SFC 1969/ 8/22 0.0000000000000000000000000000000000	NO PLANETARY PERTURBATIONS ** NO ATMOSPHERE MONEL **	IVEHID3 IICTYP3 IC 1.3833419 F5.5 END	EPOCH YR/MO/DAY TZNE,HR,MIN,SFC 1969/ 8/22 0.00.00.00.00.00.00.00.00.00.00.00.00.0

ITEM	DESCRIPTION	REFERENCE
	— 1 C:	Case A: Items 17, 18, 19,
	Note that inputs not overridden carry over from vehicle to vehicle. In this example, the VPRAM matrix carries over	and 20

NO PLANFTARY PERTURBATIONS.
** NO ATMOSPHERE MODEL **

16 ARE Q PARAMETERS	CONVERSION	.09257410E+0	.09257410E+0	2.09257410E+07	.48762300E+0	3.48762300E+05	.48762300E+0	2.09257410E+07	.09257410E+0	+ 09257410E+0	3.48762300E+05	0	3.48762300E+85	0		.09257410E+0	0	3.48762300E+05		.09257410E+0	.09257410E+0	0	.72957795E+0	.09257410E+0	0	5.72957795E+01	0	5.72957795E+01	.72957795E+0	0	.09257410E+0
18 ARE P PARAMETERS AND 16 ARE	SIGNA	1.0000000E+07	1.03000000E+07	1.0000000E+07	1.0000000E+03	1.0000000E+03	1 . 00000000E+03	1.00000000E+07	1.00000000E+07	1.00000000E+07	•	•	1.00000000E+03	1.0000000E+07	1.00000000E+07	1.0000000E+07	1.00000000E+03	1.0000000E+03	1.0000000E+03	1.00000000E+02	5.0000000E+01	1.87000000E-04	1.37000000E-04	1.0000000E+02	5.0000000E+01	1.8700000E-04	-3700000E-0	2.02000000E-01	.00000000E-0	1.0000000E+02	
	BOUND	1.00000000E+10	.00	1.0000000E+10	1.0000000E+10	.0000000E+1	+	7		1.0000000000010			1.00000000000010	1.0000000E+19	1.00000000E+10	1.00000000+10		1.0000000E+10	,00000000E+1	1.0000000E+10	.,3000000E+1	.50000000E+0	3.50000000E+02	.3000000E+1	000000E+1	3.50000000E+02	.50000000E+0	3.50000000E+02	3.50000000E+02	1.0000000E+10	1.0000000E+10
PARAMETERS IN THE PARAM MATRIK.	PIG STREAT VALUE	P -1.14512224E+08		ŧ	5.38925533E+0	•	1.51641425E+0	4.167034345+0		2.78671742E+0	•	2.78335871E+0	8.35375878E+0	P 3.46539509E+07	P 1.13922796E+08	٥.	P -9.76580733E+03	2. #2715257E+0	D.		5.30000000E+0		4-30000000000+0	-0-	5.10000	-9.3000 n 0 0 0 0 E+0	4. 30090	-0-		0 - 0.	Q 5.30003000E+32
THE 34	NAME	×	>	. 2	×O	ŪΑ	20	×	>	2	ΩX	č	20	*	>	2	XO	ئ	20	RBIA	DLT.	LONG	LAT	RBIA	al T	LONG	LAT	FBIA	ABIA	RBIA	ALT
THFSE ARE		1000	0001	1000	0001	1000	1000	0005	2000	2000	2000	2003	0005	€ 000	0003	0000	£000	0003	0003	en	₽r,	M	ĸ	~	~	~	~	+ 1	4 4	+1	- -1

-	SNO	c	- 9. 30	9. 300000000000	104	×	000000000000000000000000000000000000000	1 - 87000000E-04	E-04	5.729	57795E+0	
1 =1	LAT	900	4 . 30	4.30000000E+01 5.33049462E-03	100	3.60	3.60000000F+02	1.3700000E-04	F-04	5.729	5.72957795E+0	
	02,00	U	-1.18	1.18263700E-03	9 PO			2.2360000	E-08	1.000	1.0000000E+00	_
ENTER SEGN	SEGMENT 10 AT		11.6 SI	111.6 SECTIOS.	EXECUTION	T NOI	TIME FOR SEGMENT	FENT 1 WAS	8. P	SECS.,	4.5	PP SEC
	TRAJECTORY		TEGRATI	INTEGRATION FOR CASE	CASE	+ 1						
IVEP	-	ICENT			IDRAG	0	AL PHG	5.761750222E+	OD COAM			
JVEP		JNORH		-	13	•	PLG-DEG	3.301239703E+02			1.000000000E-10	_
BALA	0	MA JOR			ISRP	6	TJDATE	2.44045550BE4			00000E-0	•
KVEP	£	NMASS			SUEN	27	TSTART	0.			6.40000000E+01	
LVEP	0	7	24		RECHP	0	TSTOP	3.000000000E+			00000E+0	_
ICENTX	-1	JNORMX			NYASSX	0	FLISHT	3.000000000E+01				
				-	NASA	0	SSTEP	1.0000000000E	.02 SORD		1.500000000E+0	0
					•	בטביב	DREAFTERNINE OF FRENT	TARIE +				
TIMELMME	TVOE	u	TO SOL	ASSOCIATED (-	1000		3104				
0000 0	-	u 0			1.1.2.2.2	2						
30.000		۵										
•	*** TRA	TRAJECTORY	Y START	_								
•	*	*	4	4	4	4					•	
SEG11 ENTRY TIME	Y TIME		.7010				•		•) }	
		# -		0.00000	000	J	ii	.125000	NSTEP	#	•	
		-1.	145122	1.145122244879E+0	804		5.8892558283	347E+03	4.830	82904724	2E-01	
		6 4	600616	9.600516352941E+07 + poki26223mestns	704	•	7.025179984701E+03	701E+03	4.050	4.050130141915E-01 4.61445603450E-05	5F-01	
		•	7460		•							
02,00 C		.0					0.		-2.444	-2.444496288923E-06	3E-06	
		0					•		-2.249	-2.149446786235F-06	5F-06	
		ຕ					0.		-7.00E	-7.00i904861358E-10	8E-10	
1.5		6					•		1.502	12500351	9E-02	
į							. 0		1.259	1.25989587 1988F-02	8F-02	
							•0		1.435	43122806	yE-06	
×		1.	00000	1.0000100000E+00	004		.0		1.156	1.156849534924E-05	4E-05	

2.243161066230F-05 2.555248807894E-09	2,243161066230E-05 3,619483449938E-06 2,142254137494E-09	2.555248807894E-09 2.142254137494E-09 -1.518797879918E-05			•••	UNITS) RADIAL IN-FRACK CROSS-TRACK 4.514416E-05-6.304004E-01-3.420336E-08-6.976752E-09 4.514416E-05-6.304004E-01-3.420336E-08-6.976752E-09	137E+07 -1.227973594797E-10 961E+03 1.616414409103E+03 .250000 NSTEP = 25 .500000 NSTEP = 11	NSTEP = 71	4.350762082148E-01 4.562150451684E-01 -1.222115672862E-02
• • •	, • • 60 °		1.000000000000000000000000000000000000	0. 1.000000000000E+00 0.	0. 0. 1.0000000000000000000000000	(EXTERNAL UNITS) RADIE 4.050130E-01 4.514416E-05-6.304	-1.1447234394A0E+08 -9.605370662137E+07 5.892525173075E+03 -7.022437834961E+03 7 = 3.250700 H = .2500000 7 = 7.500000 H = .5000000 T = 15.000000 H = 1.800800	4 = 1.000000	6.717059485659E+03 -6.249427521532E+03 1.605453243475F+03
• • •	1.0000300000000000000000000000000000000	0. 0. 1.6000380000000E.90		•••	•••	.ASNITUDE X Y Z 6.30%00%E-01%.830829E-01%. 6.30%00%E-01%.830829E-01%.	1.1281410& 3505-01 -1.144 1.2500000000005-01 5.893 STEP DOUBLED T STEP DOUBLED T S	T = 30.00000	-1.031537925203E+08 -1,079671375801E+uô 2.892052284940E+06
	>		χQ	۵۷	20	FORCES EOPOTENTIAL OTAL	NODE T = 01 = 01		

-1.067305128407E-03

TERMINATION TPAJECTORY

		THIS C	CASE T	1001	1.129	SECONDS	10	INTESARE	A SPAN OF	30.	30.0000	MINUTES	*** S3	
	•	84 ***	FROM		0.00.0	10	30.000		MINUTES FROM H	FROM MIDNIGHT	96	EPOCH .	:	
	TPA	TPAJECTORY	INTE	ORY INTEGRATION	FOR CASE	SE 2								
	•	,		•										
4 3	-	3	CEN	.	INAG			ALPMG	5.76175022		•			
JVEP	**	2	JNCRH	~ 4	ď			ALG-DES	3.30123970			1.00001	00000E-10	
4V EP	=	4 7	4A JOP	-	ISRP			TJOATE	2.44045550		ZILZ	1.5625	30000E-02	
(VEP	Ľ	T	VHASS	0	Nº OS	21		TSTART	9.			6.40000	6.40000000E+21	
VEP	Þ	7		54	R-CMP	Δ.		TSTOP	3.00000000			1.00000	000000E+00	
COENTY	+	27	UNDREK	0	NAASSX				3.00000000		J	0		
					NASAN	4			1.000000000E+02		0	1.50000	1.50000000E+00	
						* PREDET	DREDFERRATION	DEVENT	TARIF					
T TWE (MME) 0.0000 30.0000	000	TY2E T7F40 TST3P		AS 30CI 4 TED		QUANTITIES	1							
		TPAJEC	JECTORY	START										
T T T T T T T T T T T T T T T T T T T	RY T]	IMF IS	112.	112.85300		•	ECI	•	•	•		•	•	
		-	"	c	0.0000000000000000000000000000000000000	T	H	7	.125000	NSTEP	H G		0	
			4.06	7034344	4.067034344501E+06		-1.004	.004730578571E+04	15+04	-5	16274	-2.162744150928E-02	3E-02	
			2.78	6717421	1.386747421420E+06		8.553	2.f83358f856E+U2 8.553758781768E+02	8E+02	; ;	35151 48200	-7.351517941163E-61 -1.482002055073E-02	3E-51	
02,00 0							::			43	27443	1.274437767438E-07 4.332058961582E-06	SE-07	
			•							2	62327	.623271566750E-07	1E-07	
M S			6							9	72776	-6.727765114806E-04	5E-84	
							. .			2 -	28687 61014	-2.286876416886E-U2 -4.610143886837E-04	5E-02 7E-04	
;					1					1			1	
×				00000 0	1.000010000000E+00 0. 0.					d d w	90940 68746 40190	-1.909406277137E-09 1.687467803763E-06 3.401909643118E-08	7E-05 3E-06 3E-08	

1.687467803763E-06 3.821588824887E-05 1.15637687086E-06	3.401905643118E-08 1.156376870886E-06 -1.912181747751E-05				IN-TRACK CROSS-TRACK 9.718920E-08-1.118119E-06 9.718920E-88-1.118119E-06	NSTEP # 25	71	7.445408033301E-02 -7.314849971285E-01 -2.288719126977E-02	-4.483036949437E-07 4.372298978959E-06 4.050207347041E-07	2.373017363729E-03
- m -	ที่สีสุ	606	•••	000	RADIAL •356192E-01 •356192E-01	.250000 .508600 1.804000	NSTEP	24.2	***	8
		1.000000000000E+00 0. 0.	0. 1.000000000000E+00 0.	0. 0. 1.00000000000000000E+00	UNITS) 1.482002E-02-7 1.482002E-02-7	r # W	1.000000	-9.999653462887E+03 -1.043534496067E+03 8.214176207192E+02	-4.741633923443E-06 1.303970673660F-04 1.001955722692E-05	2.508374932340E-02
000	•••	1.000000	1.00000	0. 0. 1.00000	(EXTERNAL UN 51518E-01-1.4 51518E-01-1.4	3.250000 7.500000 15.200000	II T	-9.999653 -1.043534 8.214176	-4.741633 1.353970 1.001955	2.508374
). 1.0000990000000E+00	• 00 00 1003 0 0 00 E+0 0				MASNITUDE X Y Z (EXTERNAL UNITS) RADIAL 7.356192E-01-2.162744E-02-7.351518E-01-1.482002E-02-7.356192E-01 7.356192E-01-2.162744E-02-7.351518E-01-1.482002E-02-7.356192E-01	60 60 60 60 60 60 60 60 60 60 60 60 60 6	30.0000	1.400121703040E+07 1.375556473079E+08 4.298072445426E+06	-2.802572537901E-05 1.95292551034E-03 1.395939607512E-04	.482672897244E-01
0. 1.000030 0.	0.000010				MASNITUDE 7.356192E-01-2 7.356192E-01-2	STEP DOUGLED STEP DOUGLED STEP DOUGLED	n -	-1.400121 1.37556 4.298012	-2.802572 1.952935 1.39593	1.482672
>	2	ΧC	٥.	20	FOPCES SEOPOTENTIAL TOTAL				02,00 0	I.O

Ō

	-1.031835027654E+11 -2.461874755002F=04	-6.892533705414E-01	-2.31441681329E-02 -7.2464860263646-04
	10.10.10.10.10.10.10.10.10.10.10.10.10.1	30-36-670-16031-191	15 CO
×	9.914272990064E-01	-5.680081449113E-04	-1.839421018251E-05
	-3.635617942318E-P4	-6.145012900747E-05	-5.744386322036E-06
	-1.0735323934025-05	-1.785119061049E-06	-1.795199097829E-07
>	-3.693731264649E-04	-6.241723129230E-05	-5.873111043707E-06
		1-149388370508E-03	3.829710369053E-05
	6.163371735316E-04	4.427394692864E-05	1.793490631172E-06
2	-1.0867+5890223E-05	-1.807F19928568E-06	-1.824349837512E-07
	6.158452534138E-ņ4	60-320664 to 2554-4	1.782610832439E-06
	9.914119190898E-01	-5.715525417284E-04	-1.892465283486E-05
xG	2.991448215747E+01	9.915082636154E-01	-5.550210678596E-04
	-9.2677327754706-03	-1.485972548969E-03	-1.732620244910E-06
	-2.567657963390E-04	-4.299783690502E-05	-5.414942578455E-06
94	-9.296852322778E-03	-1.491780883369E-03	-1.742291272889E-04
	3.017196880907E+01	1.017148866298E+00	1.135887758193E-03
	6.627238215817E-03	7.092581074666E-04	5.341831321044E-05
20	-2.574248749686E-04	-4.312937141402E-05	-5.436843357366E-06
	6.624732105526E-03	7.087671875916E-04	5.333657382664E-05
	2.991409287218E+01	9.914167476987E-01	-5.710390014654E+04
FOPCES GEOPOTENTIAL TOTAL	MASNITUDE X Y 7 7 7.356196E-U1 7.445408E-02-7.37.37.356196E-01 7.445408E-02-7.3	DE X Y 7 (EKTERNAL UNITS) RADÍAL E-U1 7.445408E-02-7.314850E-01-2.285719E-02-7.395196E-01 E-01 7.445408E-02-7.314850E-01-2.285719E-02-7.356296E-01	L IN-TRACK CROSS-TRACK 96E-01 5.249624E-08-1.712987E-06 96E-01 5.249624E-08-1.712987E-06

*** TRAJECTORY TERMINATION

*	
	•
30.0000 HINUTES	FPOCH
0000	96
	S FROM MIDNIGHT OF EPOCH
AN OF	FROM
N S	TES
RATE	MINUTES
INTEG	0.000
2	30
SECONDS TO INTEGRATE A SPAN OF	0
35	_
1.132	0.000 TO
1007	
THIS CASE TOOK	- 30H
THIS	**

TRAJECTORY INTEGRATION FOR CASE 3

22E+00 CDAM 0. 03E+02 FR 1.000000000E-10 0CE+06 HMIN 1.562500000E-02 HMAX 6.400000000E+01 00E+01 H0 1.000000000E+00 00E+01 NTX 0.			NSTEP = 0	-1.84289424245E-01 -7.121605279939E-01 -1.006964949376E-08	1.088179954344E-06 4.205110486071E-06 0.	-5.732806837653E-03 -2.215356242819E-02 -3.132420288982E-10	-1.553511309570E-05 1.392937542766F-05 -4.344817468047E-13	1.392937542766E-05 3.468423879095E-05 1.386397852185E-12	-4.344817468047E-13
5.761750222E+0 3.301239703E+0 2.440455500E+0 0. 3.000000000E+0 3.00000000E+0	TARLE .	*	.125000	43E+03					
ALP46 ALG-DES TJDATE TSTART TSTART FLISHT SSTEP	PREDETERMINED EVENT TIES	ECI * *	•	9.765807326943E+03 2.527152569800E+03 0.					
0 8 0 7 6 0 0	REDET FRMI I E S	± •	ı	19.4 10.53	• • •			000	•0
IDRAG IDR IDRAG NEGS RECHP NMASSX NASS	QJANTI	*	.000000	3E+0? 3E+08			06+00	0 E+00	
### C # C	ASSOCIATED	* * * * * * * * * * * * * * * * * * *	0 • 0	3.465535089333E+0 1.339227954313E+0 0.			1.000010001000E+0 0. 0.	001101010100E+00	
LCFNT CNORW NABUR LNDRN LNDRN	9	* VI	F	3.46 1.33			1.00	1.00	0
+40004	F 000 #	* =			0				
TE KACE PER PER PER PER PER PER PER PER PER PE	TIME(MME) 0.00 30.00	SF G1 . FN			05,00	E O	×	>	2

			•	355-TRACK 16965E-08 16965E-08	25 41 57					
1.386397862185E-12 -1.914512569526E-05				IN-TRACK CROSS-TRACK 1.746302E-07-1.006965E-08 1.746302E-07-1.006965E-08	VSTEP #	71	-8.949604214476E-02 -7.301551530551E-01 -9.983033663556E-09	5.342934860491E+07 4.385942515059E-06 7.272527446215E-16	-2.814794016769E-03 -2.310621656102E-02 -3.197602452963E-10	-1.812069354333E-05 7.080467209392E-06
1 - 1 - 9	000	000	000	RADIAL .356191E-01 .356191E-01	.250000 .50000 1.00000	NSTEP	6.61	7 6 3	-2.3	7.0
	000000E+00	0. 1.00000000000000E+00 0.		1175) 06965E-08-7 06965E-08-7	***	1.000000	-1.001256909845E+04 1.227201690964E+03 -1.807336948206E-05	2.437527762037E-05 1.286730581928E-04 7.662493042071E-15	-1.284151381294E-01 -6.778813727344E-01 -9.464543733016E-09	-5.102966186224E-04 3.161725696603E-04
• •	1.0000000 0. 0.	0. 1.000000	0. 0. 1.00000	EXTERNAL UNITS 1605E-01-1.0069 1605E-01-1.0069	3.250000 7.500000 15.000000	11 T	-1.001256 1.227201 -1.807336	2.437527 1.286730 7.662493	-1.284151 -6.778813 -9.464543	-5.102966 3.161725
10E+00				DE X Y Z (EXTEPNAL UNITS) RADIAL E-01-1.642899E-01-7.121605E-01-1.006965E-08-7.356191E-01 E-01-1.842899E-01-7.121605E-01-1.006965E-08-7.356191E-01	H H H	0.00000.0	57E+07 53E+08 37E-02	74E-04 33E-03 32E-14	:5E+00 :5E+01 :5E-07	11E-01
0. 1.300339003000E+0				ITJOE X 191E-01-1.6428 191E-01-1.8428	0009LED 0009LED	30.0	1.682990735167E+07 1.373055756953E+08 -1.6289+2783407E-02	4.070947007474E-04 1.916539326183E-03 5.917821148882E-14	-2.144625248825E+00 -1.009679711925E+01 -1.414727134905E-07	9.925332139491E-01 5.257032259425E-03
				4A5NITU TIAL 7.356191 7.356191	STEP	-	·			
	X	2	20	FORCES SEOPOTENTIAL TOTAL				02,00 C	3.	×

	-2.214233915733E-10	-1.5576651608145-11	-5.973181391956E-13
>	5.251231741357E-03	3.152017735133F-04	6.951250815456E-06
	1.016137602155E+00	1.092830260297E-03	3.807937322965E-05
	6.144238209723E-10	4.061547379242E-11	1.317067303713E-12
2	-2,215154120324E-10	-1.559210221234E-11	-5.994337175659E-13
	6,146077081433E-10	4.064573851100E-11	1.321091283946E-12
	9,913970555523E-01	-5.727059617717E-04	-1.898043935721E-05
×	2.992313041991E+01	9.921252091104E-01	-5.470746835051E-04
	4.732637541441E-02	4.20582250293F-03	2.093005529613F-04
	-2.353651543415E-09	-2.482414436165E-10	-1.82364774703E-11
٨	4.729770487385E-02	4.199991983422F-03	2.083297562321E-04
	3.016339232585E+01	1.016551615658F+00	1.129608695166E-03
	6.088616203347E-09	6.031274802878F-10	3.939547750913E-11
20	-2.354115772231E-09	-2,483360037071E-10	-1.825260519300E-11
	6.089525257188E-09	6,033090279937E-10	3.94256661087E-11
	2.991372110278E+01	9,913970528152E-01	-5.727063261363E-04
FORCES	445NITUOE X Y Z	445NITUOE X Y Z (EXTERNAL UNITS) RADIAL	IN-TRACK CRUSS-TRACK
SECPOTENTIAL	7.356195E-01-8.949604E-02-7.	7.356195E-01-8.949604E-02-7.301552E-01-9.983034E-09-7.356195E-01	5E-01 1.746305E-07-1.006966E-08
TOTAL	7.356195E-01-8.949604E-02-7.	7.356195E-01-8.949604E-02-7.301552E-01-9.983034E-09-7.356195E-01	5E-01 1.746305E-07-1.006966E-08

*** TRAJECTORY TERMINATION

30.0000 MINUTES *** * * 30.000 MINUTES FROM MIDNIGHT OF EPOCH 1.137 SECONDS TO INTESTATE A SPAN OF 0.000 TO *** THIS CASE TOOK *** FROM

SECS.	-9.839002780E+00)	•	•0	•0	•	-6.211610330E-01 J	
3.5 CP SEGS., 17.8 PP SEGS.	-1.125646282E+01	•	• 1	•	•	1.000000000E+00	3.571280823E-04
3.5 CP SE					_		
ENT 10 MAS 10 SFG24.	-9.396491570E-02	ò	•	•	•	0.	-2.196830241E+00
JUTION TIME FOR SEGM FOR SE322, SEG23, AN	-6.574089152E-01	•0	•0	•	•	•	7.055398750E-01
115.1 SECONOS. EXE(1 WILL INDLUDE THAT 0 15 0.0000	-7.521539222E-01	-1.411202182E+00	.0	•0	0.	•0	2.461772464F-01
ENTER SEGMENT 21 AT 115.1 SECONDS. EXECUTION TIME FOR SEGMENT 10 MAS RJNNING TIME FOR SEG21 WILL INCLUDE THAT FOR SEG22, SEG23, AND SFG24.	PAPTIALS FOR RNG						

9

REFERENCE	th respect Case B: a. The Items 4 and arameter 6	
DESCRIPTION	Partial derivatives of the measurement (in this case, range) with respect to all parameters at the observation time shown on the first line. The partials are printed across the page in the order shown in the parameter list. The units are internal units	
ITEM	ស ភាព ភូដ	

PARTIALS FOR AZ	-1.273004078E-01 9.256145215E-01	1.367271389E-01 0.	6.170396870E-02 0.	-1.911401324E+00 0.	2.053488895E+00 0.
		•	•	•	•
	• •	• •	• •	• •	• •
	.0	0.	1.00000000E+00	•0	•0
	1.336087338E+00	-7.641923509E+01	-1.422546047E-02	2.454676206E-06	
PARTIALS FOR EL	2.153833637E-02	-4.558491113E-02	1.456813612E-01	3.239806600E-01	-6.855916569E-01
	2.1977113535+00	•0	•0	•0	•
	•0	0,	°0	,,	•
	• 0	•0	•0-	•0	•0
	•	•0	•0	•	•0
	•0	1.00000000E+00	•	0.	-1.210363503E-01
	-3.437679833E-01	-9.905326916E-01	-3.125024284E-02	5.415401331E-06	
1 1969 8 22	0 15 0.0000				
PARTIALS FOR RD	1.970208850E-03	-3.045492045E-03	7.317243200E-04	-7.174194756E-01	-6.986737655E-01
		•	•	.0	•6
	•0	•0	•0	•0	•0
	•0	••	•	.0	•
	• 6	•	•	•0	•0
	•0	.0	•	9.	-3.402956952E-04
	5.439230197E-04	-6.497490595E-04	-2.931596728E-01	4.764305084E-05	
2 1969 8 22	0 15 0.0000				
PARTIALS FOR S2	10359060E-0	-9.131539610E-01	-6.015897430E-03	-5.9723743136+00	-1.377284910E+01
	-1.234851861E-01	4.127522528E-01	1.923351610E+00	-6.161133578E-02	6.198561629E+U0
	2-876754710E+01	-9.281750174E-01	•0	•0	•0
	•0	•	0.	•	•
	•0	•0	1.000000000E+00	6.908732761E-01	3.450543492E-01
	-5.473487325E-01	•	•	.0	•0
	•0	•0	-6.927454010E+00	1.257255710E-03	
3 1969 6 22	0 15 9.0000				
PARTIALS FOR S3		-%.131539810E-01	-8.015897430E-03	-5.972374313E+00	-1.377284910E+01
	-1.234851861E-01	-5.921544118E-01	9.957147359E-01	1.221985379E-01	-8.895918843E+00
	1.459335783E+01	1.834238643E+00	1.206307960E+00	9.034322187E-01	-2.062590273E-01
	1.810305479E+01	1.349817808E+01	-3.098335541E+80	1.00000000E+00	7,610603832E-01
	2.078613361E-01	-5.821478754E-01	•	•	•
	•	• 63	•0	0.	•
	•0	•	-7.504468632E+UO	1.371840296E-03	

		<u> </u>	
••	<u>n</u>	MEAN 3.8E+01	12.7 PP SEC
	5.495521975E-03	N TYP RMS RMS/SIG MEAN 2 EL 3.8E+01 3.3E+03 -3.8E+01	
001		2.8E+01	.7 CP SECS.,
	224E+U1	N TYP 2 EL	.7
0.0	-3.002659224E+U1	HFAN 1.65+02	T 21 MAS
		N TYP RMS RMS/SIG 2 AZ 1.5E+02 1.4E+04	OR SEGMEN
-5.821478526E-01		1.5E+02	ON TIME F
	Š	N TY	EXECUTION
.0786136135-01		RMS/SI3 MEAN 1.4E+07 -1.4F+08 8.8E+02 1.7E+02 4.1E+07 -4.1E+08 4.5E+07 -4.5E+08	ENTER SEGMENT 72 AT 115.9 SECONDS. EXECUTION TIME FOR SEGMENT 21 MAS
0.0	:	RMS/SIG 1.6E+07 - 8.8E+02 6.1E+07 -	115.9
	HMAZY	N TYP RMS RM 2 RNG 1.455+18 1. 2 RD 1.85+102 8. 2 S2 4.15+18 4. 2 S3 4.55+108 4.	72 AT
	TOTAL EDIT SUMMARY	2 82 82 83 83 83 83 83 83 83 83 83 83 83 83 83	SEGMENT
	TOTAL	STA 1 2 3	ENTER

Case B: Item 7						
asurement types encoun-						
he restriction to the first 6 mea 30 stations still holds						
Edit ummary. Ti						
9						
_	Edit ammary. The restriction to the first 6 measurement types encountered for the first 30 stations still holds	Edit ammary. The restriction to the first 6 measurement types encountered for the first 30 stations still holds	Edit ammary. The restriction to the first 6 measurement types encountered for the first 30 stations still holds	Edit cummary. The restriction to the first 6 measurement types encountered for the first 30 stations still holds	Edit cummary. The restriction to the first 6 measurement types encountered for the first 30 stations still holds	Edit cummary. The restriction to the first 6 measurement types encountered for the first 30 stations still holds

Χ.	•
1	10
7	7
1	≂
1	_ =
7	
7	
Ι.	~
1	_
1	_
1	_ =
	ã
1	=
	- 5
1	5
1	_
Ι.	0
7	7
Ž.	=
ž	100
7	-
2	5
1	~~
7	7
-	=
	•
****	E COVARIANCE ANALYSIS INPUT AND OUTPUT OPTION
7	
	10
•	- 5
•	- 1
-	=
-	7
•	=
•	_
•	144
ė	Ü
ě	Ž
•	•
	-
	n
٠	4
	>
	0
	ပ
٠	ندا
	_
	C
	\vdash
	IS VEHICLE
	w
	>
٠	
	S
*	_
	C
	let
	Z
٠	•
	-
	ب
	2
	I
	H
**************************************	SIMUL TANEOUS

REFERENCE SECTION	the 2.5.1			
DESCRIPTION	Indicates input/output options requested by OPBOX and PRCGV for the simultaneous-vehicle error analysis run			
DES	tes input/output options requ taneous-vehicle error analys			
ITEM	7 <u>Indica</u> simult			

																(Θ	}																
10.5 PP SECS.			0002 Y	0003 DX								1.00009E+14			•		~		•				•		•		•	1.00000E+06	•	•		0.	•	
CP SECS.,	EPOCH DATE		0002 X								1.00000E+14	.0	ć		0.		0.		0.		•		••			1.00000E+14	•		0.	•			9°	
MAS .4 C	FROM MIDNIGHT OF E		0001 DZ							1.00000E+46	0	•	É	3	90		•	•	•		ě		 0:	1.00000E+14	•	•	•	•	•	•		•0	••	
	HINUTES FROH H		0001 DY						1.00000E+06	0.	•	0.	ć	;	0.		0.		0.		0.	1.00000E+14	•	••	••	0.	0.	0.	0.	•		•	•	
EXECUTION TIME FOR SEGMENT 72	H	TERS	0001 DX					1.00000E+06	0.	.0		.0			. 0	٠	٥.		••	1.000 COE+06	.0	.0	.0	••	•	9.	•	••	.0	•		••	•	
	•	P PARAHETERS	2 T 000	٥٨			1.00000E+14				•	•			•		•	1.00000E+06	•	•		•		•	•	•	•	•	••			.0	•	
116.3 SECONDS.	HATRICES AT	F 0.R	>	8002 OX		1.062003+14		•	•	•		•		1		1.00000E+06				•	•	•		•	•	•	•	•	•	•		•0		1.00000F+06
73 AT	COVARIANCE HA	ATA (INVERSE)		3002 Z	+14		•		•	•	•		0	.00000E+14	•	•		•	•	•	•		•	•		•		•			.00000E+06	•	•	
ENTER SEGMENT							2 1000	0001 PX			0000 x		0002 2		0002 DX		0902 DY		20 20 00		0003 X		0003 Y	(2 2000		0003 DX		0003 CY			20 2000		

ITEM	EM DESCRIPTION	REFERENCE SECTION
∞	Time statement, determined by PTIM, that applies to items 9 through 14. Valid until another time statement is made	
6	$(A^TA)^{-1}$ for P-parameters, identified by parameter name (PRCQV (A) = C). This is the covariance matrix of P-parameters, based on measurement uncertainties (observation weights) only	
ر _		

		(9)											(a)	a
•						1.000	0.00	0.00	0.00	0.000	0.00	0.000	1.000000E+33 1.000000E+03 1.000000E+03	1.000000E+00 1.000000E+00 1.000000E+00
					1.000	0.000	0.000	0.00	0.00	0.00.0	0.000	0.00.0	1.0000	1.000
				1.000	0.000	0.000	0.00	0.000	0.0.0	0.00 ·	0.000	0.000	1.000000E+03 1.000000E+03 1.000000E+03	1.000000E+00 1.000000E+00 1.000000E+00
				1.000	000.0	0.00	0.00.0	0.000	0.000	0.00.0	0.00	0.000	1.000	1.0000
			1.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	0.000	0.000	1.000000E+03 1.000000E+03 1.000000E+03	1.000000E+00 1.000000E+00 1.000000E+00
			1.000	0.000	0.000	0.000	0.000	000.0	00000	0.000	0.000	0.00	1.000000E+0: 1.000000E+0: 1.000000E+0:	1.000000E+0 1.000000E+0
		1.000	0.000	00000	0.000	0.00	0.000	0.00	000.0	000.0	0.000	1.000	1.000000E+07 1.000000E+07 1.000000E+07	1.000000E+00 1.000000E+00 1.000000E+00
		1.000	000000	00000	0.000	0.000	0.000	0.00.0	000.0	0.000	~~	0.000	1.000000E+0 1.000000E+0 1.000000E+0	1.0000 1.0000 1.0000
		000	0.000	00000	0.000	0.00.0	0.00.0	0.00.0	0.00.0	0.00	0000	0.000	.000000E+07 .000000E+07 .000000E+07	.000000E+00 .000000E+00
TRIX	1.000	0.000	0.000	0.000	0.000	000.0	0.000	006.0	0.000	000	000	0.000	1.0000	1.0000 1.0000
ATION HATE	0.000	00	00.	00	00	.00	0.00.0	000	000	000		000	00E+07 00E+07 00E+07	00E+00 00E+00 00E+00
CORREL ATION	0.000	000	0.000	0.000	8	8	0.000		0.00	000	0000	88	1.000000E+ 1.000000E+ 1.000000E+	1.000000E+00 1.000000E+00 1.00000E+00
	× > ~ č	70	×►	7 0x	70	20	×	>	2	XQ	٥٨	Zū	DIAS	PIVOT RATIOS
	00001	0001	2000	2000	0000	1000	0003	8008	00003	0000	0003	0803	SORT	PIVOI

REFERENCE SECTION	2.5.1	2.5.1		
RE S	2	2		
DESCRIPTION	Correlation matrix for P-parameters, i.e., the matrix of Item 9 normalized to 1s on the diagonal $(PRCQV(A) = C)$	Square roots of the diagonal elements of $(A^TA)^{-1}$ (Item 9) in the order shown in the header of Item 9	Pivot ratios encountered in the inversion of A^TA are determined by referencing the original diagonal elements of the A^TA matrix to the diagonal element used in pivoting that particular row and column. These will be printed if Items 9, 10, or 11 are printed	
ITEM	10	11	12	

													(9)																					
	LAT 02,00																																			3 DX
	~		•		0	•	0	.	. c	• =	6	•	•	•			•	•	ċ	•	ė	•	0	6	.	• •	•	• •		•	•	•	•	ċ		000
	CONC																																			×N
	~	•	• •	.0	9.	•				• -		0	0	0	•	•	0	•	•	0	0	•	0						•				•	•		0002
	ALT																																			Z0
	84		• •	•	0.	•	•	•	.	•		•	•	•	•	•	•	•	•	•	0	•	0	•	6		•	•	• •	•			•	•		0001
	RP I A																																			۵×
	~ +	•	• •	0	•	•	9	6		• •		•	•	ů.	•	•	•	•	0	0	•	•		•	•	•		• •	• •	•	• •	•	•	•		0001
	LAT																																		②	0X 02
	M ↔		• •			•	0	• C3				9	•	0	9	•	•		0	•	•	•	•	•	•		<u>.</u>	•		•	• •	•		•	ARAHETERS	0001
	LONG																																		PARA	20
	M H	6	• •			•	•	•		• -			•	•	•	•	•	ċ	•		•	•	÷	•	•	•	.	•	• • c	• •	• •	• •	•	•	AND	0001
	ALT																																		FOR P	×0 020
HATPIX	M ↔	•	• •		• 0	•			• •	•		0	0	•	•	•	•			•	•	•	•	•	.		•	• •	•	•	•		•		ERSE)	0001 0002 0003
DPJQ MAT	REBEA EBEA																																		ATA (INVERSE)	X Z C
, C	₩ #		• •	•	•	•	0	•	• •	• -		0	•	•	•	0	•		•	0	0.		0	•	•	•	Ė	٠ د د	• • •	•	•	• =			A	0001 0002 0003
		*	>		2 1		X.		DY	5	×		*		7 2		X		5 D¥		20 2		×		>- N:		~		X 0		S 34		20 2			
		0001	0001		0001		0001		0001	200	2000		0005		0005		0005		0005		2000		0003		2000		0003		0000		0003		0003			

The 3P/3Q matrix printed when \$\phi \text{DQX}(C \frac{Q-parameter lists, respectively}{\text{Indicates that the next covariance matrix}} of the \$Q\$-parameters. Since \$PRC\$\phi V(G)=B \text{printed, but the correlation matrix (Item printed, but the correlation matrix (Item than the corresponding to the than the corresponding to the than the correlation matrix (Item than the corresponding to the than the corresponding to the than the correlation matrix (Item than the corresponding to the than the correlation matrix (Item than the corresponding to the the	P.EFERENCE SECTION	= 1; P and Z represent P- and 2.5.1	Since PRCQV(G)=B, the (A A) ⁻¹ matrix is not ation matrix (Item 10) is	
	DESCRIPTION	The 3P/3Q matrix printed when \$\phi PB \phi X(C) = 1; P and Z represent P- and Q-parameter lists, respectively	Indicates that the next covariance matrix printed will include the effects of the Q-parameters. Since $PRCOV(G)=B$, the $(A^TA)^{-1}$ matrix is not printed, but the correlation matrix (Item 10) is	

								(2)	
	1.000	0.000	0.00	0.00	0.00	0.00	0.00	1.000000E+03 1.000000E+03 1.000000E+03	
	1.000	0.000	000.0	0.000	0 00 0	0 • 0 0 0	0.00.0	1.0000	e
	0.000	0.000	0.00	0 • 0 0 0	0.000	00000	00000	1.000000E+03 1.000000E+03 1.000000E+03	HHOED (16)
1. 000	0000	0.000	0.000	0000	0.000	0.00.0	0.000	1.0000	
1.000 0.000	000000000000000000000000000000000000000	0.000	0.000	0.00	0.00	0.00	0.000	1.000000E+03 1.000000E+03 1.000000E+03	
1. 0.000 0.000	0000	0.00.0	00000	0.000	0.000	000.0	0.00	1.0000	AT
1.000 0.000 0.000 0.000	000	0.000	0.000	0.000	000.0	000-0	1.000	1.000000E+07 1.000000E+07 1.000000E+07	PARTITIONS
4.00 0.00 0.00 0.00 0.00 0.00	0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00.0	0.00.0	0.00.0	000.0	1.200	0.000.0	1.0000	MATRIX PA
40000 0000 0000 0000	0.000	000*0	000.0	00000	0.0	0.0	0.0000	.000000E+07 .000000E+07 .000000E+07	COPRELATION .
4000 •••••• •••• •000 •000 000 000 000	0.000	0.000	9.100	1.730	0.000	0.100	0.000	1.0000	AND COPRE
	000	0.000	00.	000	.00	00.	0.00.0	005+07 005+07 005+07	COVATIANCE 1
1.000 0.000 0.000 0.000 0.000 0.000 0.000	000	00.	00.	00.00	00.	80	0.000	1.0000	STATE COVA
0001 Y 0001 7 0001 7 0001 9Y 0001 CZ 0002 X	002	0003 x	0003 Y	2 2000	0003 PX	0003 57	0003 37	SORT FIAG	8

REFERENCE SECTION		2.5.1				
DESCRIPTION	Square roots of the diagonal elements of the (ATA)-1 matrix, with the Q-parameter effects included	Indicates time of the state covariance matrix partitions, as indicated by $PRCOV(B)$ through (F) and $PRCOV(H)$ through (L)				
ITEM	15	16		 	 	

(E)	<u> </u>	(a)	®	
0. 0. 0. 0. 1.0000000E+06	0. 0. 1.4961188E-10 0. 1.0000000E+06	0. 0. 0. 1.0000000E+06	0. 0. 1.4961188E-10 0. 1.0000000E+06	• • •
1 0. 0. 1. 1.0000000E+06 1.0000000E+03	1. 0. 0. 4.5966431E-09 1.0000000E+06	1.00.00000 E+05 1.00.00000 E+05 0.000000 E+05	10000000000000000000000000000000000000	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
FS 1 AND 0. 0. 1.0000000E+05 1.00000000000000000000000000000000000	FS 1 AND 0.00.00.00.00.00.00.00.00.00.00.00.00.0	5S 1 AND 0. 0. 1.00000000E+06 1.00000000	ES 1 AND 0. 0. 1.00000000E+06 1.0000000E+03 .0000000	ES 2 AND 0.00.
PAPAMETERS VEHICLES 0 0 0 0 1.00000000E+14 0 1.0000000E+14 0 1.00000000E+14 0 0.0000000000000000000000000000000000	F-01 1.6784558E-03 E-11 1.6784558E-03 E+14 -6.250000E+14 1.0000000E+14 E+07 1.0000000E+007 0.0000000	PA?AMETERS VEHICLES 0 1-14 0.0 1-0000000E+14 0 E+07 1.00000000000000000000000000000000000	PAPAMETERS VEHICLES E-01 1.6784568E-03 0 E+14 -6.25000000E-02 0 E+07 1.0000000E+04 1 0.00000000000000000000000000000000000	PARAMETERS VEHICLES 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAPAH 1.0001000E+14 1.0001000E+07 0.00010000 9.0001000	5.4713543E-01 1.0000000E+14 1.0000000E+07 0.0000000 0.00000000	0.000000000000000000000000000000000000	5.4719543E-01 1.0000000E+14 1.0000000E+07 0.0000000 0.0000000	Р РАЗАН 0. 1.000000E+14
1.00000005+14 1.000000005+14 1.00000000 0.0000000 0.0000000	1.00000005+14 1.00000005+14 1.0000000 0.0000000 0.0000000 0.0000000	CAPTESIAN FOR 1.00000005+14 1.000000000000 0.0000000 0.0000000 0.000000	1.0000000 F+07 1.0000000 F+07 0.0000000 0.0000000	CARTESIAN FOR 1.00000005+14 1.0000000E+07

ITEM	DESCRIPTION	REFERENCE SECTION
11	Cartesian covariance matrix for Satellite i with respect to itself in an upper triangular format. The lower triangular matrix printed is the normalized correlation matrix. The top item of each column is the square root of the diagonal element (of that column) in the unnormalized matrix. It is identified as a P-parameter matrix, indicating that only the effects of measurement uncertainties are included	2. 5. 1 [ØPBØX(H), PRCØV(B)]
18	Orbit plane matrices (Item 17)	2. 5. 1 [ØPBØX(H), PRCØV(C)]
19	Cartesian matrices (Item 17), but including both P- and Q-parameter effects	2.5.1 [ØPBØX(H), PRCØV(H)]
20	Orbit plane matrices (Item 17), but including both P- and Q-parameter effects	2.5.1 [Ø PB Ø X(H), PRC Ø V(I)]

0. 0. 1.00000000E+06 1.0000000E+03	0. 0. -1.1641532E-10 -4.6566129E-10 1.000000E+06	0. 0. 0. 1.003000E+06 1.000000E+08	0. 0. 0. -1.1641532E-10 -4.6566129E-10 1.000000E+06	••
0. 1.00000000E+06 1.0000000E+03 0.000000	2. 0. 0. 2.9103030E-10 1.0000000E+05 1.0000000E+03	2 0.00 00 00 00 00 00 00 00 00 00 00 00 0	2.9103630E-13 2.9103630E-13 1.0000000E+46 0.0000000	e e e
1.0000000E+06 1.0000000E+03 0.0030000	1.0000000E+06 1.0000000E+06 0.0000000	FS 2 AND 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	ES 2 AND 0.000 1.000000000000000000000000000000	ES 3 AND 0.00
1.0000000E+07 0.000000 0.0000000 0.0000000	PARAMETERS VEHICLES E-02 0. E+14 -3.1250300E-02 0 E+17 1.0000300E+14 0 E+07 1.0000300E+07 1 0.0000300	ETERS VEHICLES 0. 1.0000000E+14 0 1.0000000E+007 1 0.0000000 0 0.0000000 0	ETERS VEHICLES 0.1.250006-02 0 1.00000006+14 0 1.010000000 1 0.0000000 0 0.0000000 0	PARAMETERS VEHICLES 0. E+14 0.
1.8099000E+97 9.0099000 9.0099000 9.0099000	1.6601563E-02 1.0001000E+14 1.0001000E+07 0010000 0.0001000	P ANJ 2 PA?AMETERS 0.1.0000000E+14 0.1.00 1.0000000E+07 1.00 0.0000000 0.00 0.0000000 0.00 0.0000000 0.00	P AND 2 PARAMETERS 1.6601563E-02 0. 1.0000000E+14 -3.12 1.0000000E+07 1.00 0.0000000 0.00 0.0000000 0.00	P PARAM 0. 1.0000000E+14
0.000000000000000000000000000000000000	1.00000005+14 1.00000005+14 1.0000000 0.0000000 0.0000000 0.0000000	CAPTESTAN FOR 1.0000000F+14 1.00000000 0.0000000 0.0000000 0.0000000	0REIT PLNE FOR 1.0000000E+14 1.00000000 .0000000 0.0000000	CAPTESIAN FOR

0. 0. 1.00000000F+06 1.0000002E+03	0. 0. 0. 1.0000000000000000000000000000	0. 0. 0. 1.0000000E+06	0. 0. 0. 1.0000000E+06
0. 1.0000000E+06 1.0000000E+03 0.0000000	3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	3.0.000000E+06.1.0000000E+06.05.0000000E+03.0000000	3 0. 0. 0. 1.0000000E+06 1.0000000E+03
1.0000000F+06 1.0000000F+03 0.0000000	5. 3 AND 0.000 0.0	ES 3 AND 0.0000000E+06 1.00000000000000000000000000000000000	ES 3 AND 0.000 0.0
1.00000000E+14. 1.000000000 0.0000000 0.0000000	ETERS VFHICLES 0.000100E+14 0 1.0000100E+14 1 1.00000000000000000000000000000000000	TTERS VEHICLES 0.0000000E+14 0 1.0000000E+14 1 1.00000000000000000000000000000000000	1.00000000 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1.00000000E+17 0.3007000 0.3007000 0.0007000	P PARAMETERS 0. 1.0031010E+14 0. 1.0031030E+17 1.00 0.0031030 0.00 0.0031030 0.00	9 AND 2 PAPAMFTERS 1.0009000E+14 0. 1.0009000E+07 1.00 2.000000 0.00 1.00090000	0 AND 2 PARAMETERS 0.1.0000000E+14 0.1.00 1.0000000E+07 1.00 0.0000000 0.00 0.0000000 0.00
1.000000000000000000000000000000000000	1.0000000 FDR 14.14.14.14.14.000000000000000000000000	CAPTESIAN FOR 1.000000000000000000000000000000000000	1.0000000 = +14 1.0000000 = +14 0.0000000 0.0000000 0.0000000 0.0000000

CAPTESTAN	FOR	D	PCPAMETERS	VEHICLES	OMA S	1	
CCASSE	N T F					-	
r.		3.	0.				
c.		1.	0.	C.		C.	0.
r.		9.	0.	0.		0•	0.
0.		J.	0.	0.		c.	0. 0.
r.		n.	0.	0.		0.	0.
c.		C.	. 0∙	0.		0.	0.
COPPELAT	TON		4				
0.000000	-	0.0037000	0.00000				
0.0000000		0.0000000	0.00003		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000000	0.0000000
0.000000	•	0.00000000	0.00000		0000000	0.0000000 0.0000000	0.0000000
0.0000000		9.0593090	0.00000		0000000	0.000000	0.0000000
0.000000		3.00000000	0.00000		0000000	0.000000	0.0000000
0.0000000	1	7.0001020	0.00000		0000000	0.0000000	0.000000
OPRIT PLNE	FOR	ь	PAPAMETERS	WEU TO LEG	2 400		
			CHIATEIRES	VEHICLES	2 400	1	
CLABSTON	ĻĖ	-					
0.		J.	0.	0.		0.	0.
0.		n. n.	0.	0.		0.	0.
n.		7.	o.	0.		0 •	0.
0.		i.	9.	0.		0.	0.
e.		a.	2.	0.		0.	0.
			· ·	0.		C.	0.
COPFELAT	ION						
0.0000000		7.0007070	0.00000	00 0.0	000000	0.000000	0.0000000
C.0000000		0.00000000	0.000000		000000	0.0000000	0.0000000
0.000000		0.0007890	0.00033	0.0	000000	0.0000000	0.0000000
0.0000000		0.000000	0.990930		000000	0.0000000	0.0000000
0.0000000 0.000000		7.0077000	0.000001		000000	0.0000000	0.0000000
(• e u nu uu n		7.0001000	0.000000	0.0	00000	0.0000000	0.0000000
CAPTESTAN	FOR	2 AND Q	PAPAMETERS	VFHICLES	2 AND	1	}
COVADIAN	. -					•	
C. CLANSIAN:	JF.						
c.		7.	0.	0.		0 •	0.
č.		0. 0.	0.	0.		0.	0.
c.		2.	0.	0.		c.	0.
0.		0.	0 • 0 •	0.		0.	0.
e.		9.	0.	0.		0.	0.
			٠.	0.		0.	0.
COPPELATI	ON						
0.0000000		0.0007000	0.000000	0 0.0	000000	0.000000	
0.0000000		0.0000000	0.000020		000000	0.0000000 0.0000000	0.0000000
0.000000		0.0007000	0.000000		000000	0.0000000	0.0000000
0.0000000		0.0000000	0.000000	0 0.0	000000	0.0000000	0.0000000
0.0000000		0.0001000	0.300000	0 0.0	000000	0.0000000	0.0000000
0.000000		a.90000no	0.00000	0 0.0	000000	0.0000000	0.000000
OPPIT PLNE	FUR	P AN) 3 P	A PAMETERS	VEHICLES	2 AND	1	
COVARIANO	· E					-	
0.	-	0.	0.	ā			
0.		9.	0.	0. 0.		0.	0.
0.		n.	0.	0.		0.	0.
0.		9.	0.	0.		0. 0.	0.
0.		1.	0.	0.		0.	0.
C.		7.	0 •	0.		0.	0.
COPPELATI	ON						
0.0000000		7.2027000	0 000000				
0.0000000		0.0003000	0.000 31 00 0.000 00 00		00000	0.000000	0.0000000
0.0000000		3.0000000	0.0000000		00000	0.0000000	0.0000000
0.0000000		0.0000000	0.0989900		00000	0.0000000	0.0000000
0.0000000		9.0000000	0.0000000		00000	0.0000000	0.0000000
0.0000000		0.0007000	0.000000		00050	0.0000 0 00	0.0000000
				- 0.00		4 • 44 44 4 4 4	0.0000000

CAPTESIAN FOR	FOR	a	PARAMETERS VEHICLES 3 AND 1	VEHICLES	m	AND	#	
COVARIANCE	ш							
.0		0.	•	•			•	•
•		0	•	•			•0	•
•		0.	.0	6			.0	•
•		•	•	•			0.	•
•		0	•	•			•0	•
•		•	•	•			•0	•
CORRELATION 0.00000000	NO	0.6300000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	0000	9	0.000000	0.000000

			000000	
	CLES 3 AND 0.00.00.00.00.00.00.00.00.00.00.00.00.0	0 0.0000000 0 0.0000000 0 0.0000000 0 0.0000000 0 0.0000000		
000000000000000000000000000000000000000	PARAMETERS VEHICLE	0.0000000 0.0000000 0.0000000 0.0000000 0.000000		
0.0000000000000000000000000000000000000	d	00000000000000000000000000000000000000		0.0000000 0.0000000 0.0000000 0.00000000
0.0000000 0.0000000 0.0000000 0.0000000	COVARIANCE 0.00.00.00.00.00.00.00.00.00.00.00.00.0	COPPELATION 0.0000000 0.0000000 0.0000000 0.000000 0.000000	COVARIANDE 0. 0. 0.	CORPELATION 0.0000000 0.000000 0.000000 0.000000 0.000000

			:	•	•		•		0.000000	0.000000	0.0000000	0.0000000	0.0000000	0.0000000			.0			•		•	0.					•	0.00000000			
-		•	•	<u>-</u>	0.	0.	•		0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.00000000	~		•			•		.0	.•0					00000000	0.00000000	•	,	
VEHICLES 3 AND		•	•0	° 0	•0		0.		0.000000	0.000000	0.000000	0.000000	0.0000000	0.0000000	VEHICLES 3 AND		•	•		•	•	•0	0,		2000000				0.00000000	SENTOLES 3 AND	,	
PARAMETERS VEH		.0	•0	•	0.	.0	• 0		0.0000000	0.00000.0	0.0000000	0.0000000	00000000	000000000	PAZAMETERS VEH;		•	0.	, .	•	••	•	•0						0.0000000	PASAMFTERS VEH		
P AND Q P		•0	0.	0.	•	.0	.0		0.00000000	0.0000000	0.00000000	0.00000000	0.00000000	0.0000000	ā.			.0		•	••	•0	•0		0,000,000	0.000000		9	00000000	a		
ORBIT PLNE FOR	COVALIANCE	0.	0.	0.	•0	0.	0	CORRELATION	0.0000000	0.000000	0.0000000	0.000000	0.000000	00000000	CAPTESTAN FOR	COVACIANCE	0.	.0		•	• •	•	0.	CORPELATION	0.000000			0.000000	00000000	OPPIT PLAF FOR		COVARIANCE

				90000
	~			0 0 0 0 0
	VEHICLES 3 AND	000000		VEHICLES 3 AND 0.00.00.00.00.00.00.00.00.00.00.00.00.0
	PARAMETERS VEH		7,500 04000000000000000000000000000000000	PARAMETERS VEH;
	P AND Q		0.00000000 0.0000000 0.0000000 0.0000000	0 00000
 CORRELATION 0.0000000 0.0000000 0.0000000 0.0000000	CARTESIAN FOR	COVARIANCE 0.00.00.00.00.00.00.00.00.00.00.00.00.0	CORRELATION 0.0000000 0.0000000 0.0000000 0.0000000	COVATIANCE COVATIANCE 0.00.00.00.00.00.00.00.00.00.00.00.00.

			3 0 ×	4.30231E+12	2.19633E+12	3406E+08	9271E+07 0446E+12	5376E+12	1.18309E+12 6.25285E+07 9.95984E+05
			00002	n,	2.1		1.9	5.1	1.1
0.		EPOCH DATE	0002 X 0003 Z	7.60206E+13	4.45137E+12	2.56069E+00-1.45203E+06-1.45406E+06	3.12931E+13-6.9044E+12		-5.36032E+12 9.86246E+13 2.83191E+08- 7.56176E+07
0.		MIDNIGHT OF	0001 DZ 0003 Y	1			2.21733E+00-2.53874E+00-9.66537E-03 9.99932E+05 9.34992E+05 1.07601E+06-9.15048E+04	->-41541E+U7 5.08940E+13 7.52724E+05-8.75865E+05-1.33712E+04 2.33164E+13. -4.12697E+07-3.60614E+13 7.19750E+13	2,09989E+03-6,68831E+04,8,315,00E+12-6,276,13E+12-3,18611E+01-1,86213E+004,35216E+08
0.		MINUTES FROM	0001 DY 0003 X	4.34672E+05 4.87127E+05 5.66192E+05 7.03628E+04-6.15027E+04 5.82422E+05 6.87427E+05 1.47751E+05-1.88544E+05	1.18188F+04-1.50363E+04	1.505505701.1.405405701 3.72067E+01 4.20588E+01	•	.E+07 5.08940E+13 .E+05-8.75865E+05 ?E+07-3.60614E+13	E+04-2,09989E+03- E+06
0.		1.5000000000E+01 PARAMETERS	0001 Z 0001 DX 0002 DY 0002 DZ	1 1 1		2.57392E+03-3.72067E+01.9.9.92470E+05	2.471155+00 2.217335+00· 1.825496+02 3.999326+05 5.95473E+07-9.34992E+09	Z.735515+08-6.49518E+07-5.415&1E+07 8.311152+08 2.34831E+05 7.52724E+05-(2.113235+08-4.39960E+07-4.12697E+07-:	5.25016E+07 1.13195E+04-2.09989E+03-6.68831E+04.1.01820E+07 9.1989E+06 8.31580E+12 6.27613E+12 1.56221E+07 9.1980E+01 3.18611E+01-1.86213E+004.95056E+02-4.89451E+02-4.35216E+08-3.32488E+08
•0	0.000000000000000000000000000000000000	TRICES AT SE) FOR P	0001 Y 0001 0002 OX 0002 0003 92	39438011	1.635852+07=7	1.303617U4=6 9.9374E+05 3.67383E+04=2 1.30367E+03 9	2.314525+03 3.593965+02 9.141095+08		6-7.633885+86 5 2-4.753265+07 1 4-2.822145+04 1 7 2.47395+03-4
.0	CORRELATION 0.00.000000 0.00000000 0.00000000 0.000000	COVARIANCE MA ATACINVER	0001 X 0002 Z 0003 DY	71611111111111111111111111111111111111	-1.30249E+0 9.91881E+1	1.10.10.20.20.7 3.04.952E+0 3.75.854E+0 1.99298E+0	-2.02055E+03 -7.31579E+06 7.95618E+08-	-5.48 h8 5E+1 -7.27 552 E+0 -4.58 690 E+1	+ + + +
			>	******	2 2	× 6	x 0	>	N X
			ž		0002	2000	2000	0003	00003

4.67322E+07 3.00220E+03 1.04823E+07 6.77993E+02							1.000	900-	005				- 000	.000		9.914957E+02	9.999658E+02	7.167872E+07
1 1							1.000	600	005	,,		- 100	000	.000		9.914	9.999	7.167
2.11548E+08-4.67322E+07 5.53336E+07-3.00220E+03 4.74797E+07 1.04623E+07 1.27453E+07 6.77993E+02						1.000	.000	.039	• 025	800		200.	-005	000		7.524574E+02	81E+02	9.647004E+09
, ,					1.000	.004	.002	084	054			• • • • •	+00	.001		7,5249	9.962281E+0	9.6470
00-1.751 08-2.467 00-1.858 07 5-693					1.000	069	416	467	293	780		030	023	•005		6.592966E+02	9.9903646+02	5.573979E+02
1.67363E+00-1.93421E+00-1.75161E-01 2.11548E+08 -3.6542FE+02-3.25158E+08-2.46756E+08 5.5336E+07 2.38779E+00-2.69468E+00-1.85846E-01-4.74797E+07 9.10051E+01 7.51766E+07 5.69381E+07-1.27453E+07				1.000	. 651	025	617	.503	315	- 062		• 0.33	• 624	005		6.5929	9.9903	5.5739
63E+00-1 2FE+02-3 79E+00-2 51E+01 7			;	1.000	000	000	0000	000-	000-				000	000	1.000	8.937646E+05	9. 959324E+05	5.822979E+04
			1.200	000	0000	000	000	000	000-				000,-	000-	000.	8.9376	9.9593	5.8229
2.10196E+03 7.2594E+01 1.83381E+03-4.01785E+02 2.34371E+03 1.8723E+02 4.31756E+02 9.38095E+01			1.000	000	0000	000	000.	000	000	6		1.000	000	000.	.001	.60E+05	2.074201E+06	3.121352E+00
03 2 101962 + 03 - 4 00 00 00 00 00 00 00 00 00 00 00 00 0	99365 <u>5</u> +05 41TRIX	•	.108	. 900	000	000	000.	. 100	. 300	600	1.000	000	. 000		001	5.7831	2.0742	3.1213
m r u m d	E+02 9.999	1.000	.981	200	000	000	000.	0.00	000	1.000		0000-	000	000.	.007	889E+05	380E+06	1.000000E+00
81126E 11377E 97878E 108595	93611E+ CORREL	1.000	-1.000	. 107	000	- 000	- 600	000	1.000	965-	117	051	- 000	- 000	. 011	5.9423	8.7189805	
7 DY	-	×≻f	, č č	Z X	> ~	ž	70 02	×	>	,		Ϋ́	υ¥	20		DIAG		PIVOT RATIOS
£0.00		000	0000	00	00	0	00		000	-		5000	0003	0003		SORT		PIVO

3,748249E+10 1,520903E+0 6,545311E+09 3,455491E+0		2 LONG 2 LAT GM 02.00	7.80648E-01 4.05204E+0	1		.00548E-02-	.30283E-03 5	ų.	.62948E+03 1 .61938E+04 4	40	4	M M	69598E+01 1.10034E-0		5675E+01-2.70867E-03	2.20038E+04-3.49 052 E+04 2.9349CE+07-5.65024E+03	1.68738E+04-2,66749E+04	.85076E+03	.96318E+06 9.50472E+0: .94912E-01-3.10914E-0:
.		2 ALT	3.84250E-05 7	. 4. 6	2.64153E-06 3	4.44900E-08 1	1.15911E-09-3	2.88000E=09 3	50068E+01 Z.30606E+01-9.62948E+03 09430E+01-1.44624E-01-2.61938E+04	.16827E+04-5 .23975E-01-5	1.50665E+05 5 2.55568E-02 4	.22602E+03 1	.93249E-02-4	32453E+00 4	3.14686E-02 1	1.19927E-01 2 6.57237E+04 2	~ 2	102496-02-3	1.15718E+04-4.96318E+06 1.06605E-06 1.94912E-01.
4.199575E+09 1.175047E+10		2 RBIA 1 LONG	-7.75560E-06 3	7.54815E+00-5.93667E-05-4.	7.25517E-06	-	6.48182E-09	6.67424E+01-	3:	3.07754E-02 4.55747E+84-1.16827E+84-5.14986E+86 1.12764E+84-4.68654E-81-3.23975E-01-5.91378E+84	3.68497E-02 2.	1.02692E-02-8.29786E-03-1.21035E+04.3.22602E+03 1.72902E+06- 1.67152E-01-4.51607E-01-1.88484E-06-1.32622E-06-2.37883E-01	2.14921E-07 3.18425E-01-7.93249E-02-4.69598E+01.8.52043F-02-4.09296F-06-2.43216F-06-5.42572E-01	-4.75493E+00 1	.85397E-08-1.16436E-01 3	1.73981E-01 2.38342E+05	1.33126E-01		4.09382E+04- 1.54838E-06
1,807008E+10 4,195380E+10		3 LAT	1.262		01-2.69904E+00		- 61.		E IV		01-3.79354E-01- 03 1.03891E+04	02-8.29786E-03	07 2.14921E-07 02 8.52043F-02		08-7-85397E-08	2 0 ←	2.32935E+04 5.45937E+04 1.33126E-01	03-1.50055E+04	E-02 2.91738E-02 E-01 9.11457E-01
0 2.757727E+06 1 5.827461E+11 5.827461E+11 coidiffoning.		ALT 3 LONG	-06-2-503	. r. a	0	0.00	. 10187E - 08-2.45183E-03	.27373E+U1-5.U1474E-U6 .67+95E-U9-1.29763E-U4	.09516=+00-7.55124E-07 .83193E-01 1.83504E+04	- 20	05-	.253935+03 1.02692E- .693365-06 1.67152E-	.15187E-01-2.52990E-07	00	.953355-02-9.71464E-08-7	.13569E-01-3.13871E+04 .63136E+05 2.05307E-01-	0 1-	20	803042+04-3.65622E-028338335=02
1.031872E+00 4.494169E+11 A PIVOT RATIO EXCESOS 10**5 C+ECK ATA MATPIX FOR ILL CO	DPDQ MATRIX	3 RBIA 3		-4.10495E-05-1.71 7.38315E+05-1.33	7.21551E-16 4.44	1.046225-07 5.75	-1.374595-08-2.10	-4.22238E+01 5.27 -1.59490E-09-4.67	-2.70105E+01 4.09 2.33352E-01 1.83	-2,19788E+04 3,09 -5,35631E-02-4,11	2.59103E+05-3.73 -4.75240E-02-3.68	5.79101E+03-8.25 2.20449E-06 1.69	-1.551035-01 2.15 -4.318315-07-3.20	2.286831+00-3.25	5.49158E-02-7.95	-4.10956E-01-3.13 1.12956E+05-1.63		94281E-02 5.	20.0
ATA :			×	>	2	×	Ď	20	×	>	2	ž	<u>}</u>	,	3	×	>	2	XQ
A PIV			0001	0001	0001	0001	0001	0001	0000	2000	0000	2000	60.02		7000	0003	0003	0000	0000

REFERENCE SECTION		
DESCRIPTION	A remark printed when the ATA matrix is inverted if a pivot ratio exceeds 105. It hints that the ATA may be ill-conditioned	
ITEM	22	

542E-01 703E-02 211E-02 950E-03	×							1.000	008	- 005	. 001	000	- 000	. 000	9.915107E+02
+00+ +004- +	00002							1.000	600	005	.001	000	000	000	9.915
5.16675E-01 1.26298E-06 8.74711E-07 1.59626E-01-2.53642E-01-1.10765E-06-1.53908E+00 4.35296E-01 1.95535E+02-3.65703E-02-1.40773E-01-2.62087E-07-1.81147E-07-3.31229E-02 5.25211E-02 2.47328E-07 3.53863E-01-9.60879E-02-5.05561E+01 9.41950E-03 ETERS	0002 X 0003 Z						1.000	.000	.039	• 025	005	.002	.002	000	7.525788E+02
711E-07 296E-01 147E-07- 879E-02-	D2 Y						900.	001	084	+50	.010	009	+00	.001	7.525
106 0.74 +00 4.35 -07-1.01 -01-9.60	0000					1.000	069	-:415	466	292	.057	030	023	.005	6.596158E+02
-06-2,14964E-01 5,16675E-01 1,26298E-06 +00 1,38986E-06-1,10765E-06-1,53908E+00 -07 5,07943E-02-1,40773E-01-2,62087E-07- -01+3,07621E-07 2,47328E-07 3,53863E-01- P AND Q PARAMETERS	0001 0Y				1.000	400	025	017	.503	.315	062	.033	.024	005	6.596
675E-01 765E-06- 773E-01- 328E-07	0 X Z				1.000	000-	000.	0000-	000	000	000	000	700	1.000	1.004285E+06
6E-01 5.16 3E-06-1.10 3E-02-1.40 1E-07 2.47 PARAMETERS	0001			1.000	290-	001	000	000	.000	000	.000	.000	000	000	1.004
16307E-06-2,14964E-01 05501E+00 1,38986E-06 09526E-07 5,07943E-02 41374E-01-3,07621E-07	0001 Z			1.000	107	001	000	.000	300	.000	.000			.000	•439833E+05
33875-86- 55815-00 15265-07 13745-01-	×0 × 26	HATRIX	•	.101	887	007	0000	000	001	001	000.		000	. 000	7.439
-1- 5- 2- 8- 8- 8-	0001 0002 0003	Z	1.000	.882	~ 0	**	- 0	00	.002	.002			000	.000	.378695E+05
-2.87436E-06 7.37147E-01 6.59625E-07 -1.69743E-01	0001 x 0002 2 0003 DY	CORRELATI	1.000	920	. 101	015	. 900	- 000	002	- 001	000	. 000	000	. 000	6.378
00 03 PZ			0001 X 0001 Y	111	100	20	25	25	X 2000	0003 Y	2 2000	0003 DX	0003 DY	20 2000	SORT DIAG

0.718964E+06 7.134112E+06	16 2.076192E+06	06 9.959324E+0	+06 9.990364E+0	.E+02 \$.962284E+0 !E+02 9.989385E+0	14E+02	9.999658E >02 9.999427E+02
STATE COVARIANCE	E AND SORRELATION	MATRIX	PARITITIONS AT 1.	1.500000000E+01	MMOED	
CARTESIAN FOR 3.2175436E+08 1.7937529E+0498211821070885 .0012336	-3.6067085E+00 -5.100 4.1914982E+08 -4.52 2.0473149E+04 7.27 0820075 2.69 0020026 .000	-5.1024804E+07 -5.5297136E+07 -7.27009&2E+08 2.6979426E+04 .0003494	ES 1 AND -2.7082945E+04 6.2252845E+03 4.3609561E+05 5.6037536F+02	1.6578030E+04 -1.9063559E+04 5.4383081E+03 -4.8863923E+05 5.6810087E+05 7.5372467E+05	2.4263728E+03 -3.4465145E+03 4.6664559E+03 -7.0230478E+04 -6.130055E+04 9.8642773E+05	66 E + 03 S E + 03 S E + 03 S E + 04 S E + 04 S E + 05 E +
0RRIT PLNE FOR 2.96273405+05 4729304 -0073151 0001098	3.751996E+07 7.3241417E+00 2.7053152E+04 0149936 .0092272	242AMETERS VEHICLES E+07 7.0223517E+07 -2 E+00 -3.6698800E+06 -4 7.2760224E+08 -5 E+04 2.6974103E+04 000016 .000016	ES 1 AND -4.4261645E+03 -4.4261641E+04 -5.2670306E+02 1.1090322E+04 1.0907943E+02 .4720054	1 3.2425201E+02 6.1262670E+03 6.2363640E+04 9.9268444E+05 9.9633551E+02	6.0705633E+02 4.3502473E+03 3.9236209E+03 9.5165149E+03 -4.926390E+03 9.8604146E+05	38 + 02 38 + 03 39 + 03 69 + 03 66 + 03 66 + 05
CARTESIAN FOR 6.22001395+10 2.49399565+05 -0741042 0145141 0178514 00022254	P ANJ Q PAPAM -7.1403303E+10 8.6394210E+10 2.9391192F-05 2402132 0292845 0189554 0029077	PAPAMETERS VEHICLES E+10 1.6742502E+09 4 E+10 -3.2655184F+10 -5 2.1393226F+11 3 F.05 4.6252812E+05 00001855 -	65 1 AND 4.5846001E+06 5.6863541E+06 3.0695054E+06 4.3647236E+05 6.6066055E+02 9609513 1069383	3.3563025E+06 -4.1999294E+06 2.5054640E+05 -4.0855900E+05 5.6030829E+05 7.530622E+05	5.5123725E+05 1.5101347E+05 -7.0169303E+06 -6.1341510E+04 9.0644313E+05	80088888888888888888888888888888888888
0PPIT PLNE FOR 2.68220835+09 6.17400415+04	P ANJ Q PA?AM 1.1571932E+10 1.5695296E+11	PA?AMETERS VEMICLFS E+10 2.1456475E+10 -7 E+11 3.4073570E+10 -9 2.0298145E+11 -7	FS 1 AND -7.2146624E+05 -9.5157091E+06 -2.3165101E+06	1 9.0954600E+04 1.3155750E+05 3.1210067E+05	1.8545199E+05 1.1250127E+06 1.3087766E+06	9E+05 7E+06 6E+06

.5641743	3.9604666E+05	'	1.2473137E+04	5.1313587E+04	9.5096076E+04
-124747	. 195444	4.5055463E+05 0460483	4 44683206402	9.9269543E+05	-4.9831336E+U3
.0019177	0033340	2565000	•	9.9634102E+02	***************************************
.003500.	.0024606	.0029254	.8574802	0050367	9.9300313E+02
CAPTESIAN FOR	MASAN	PAZAMETERS VEHICLES	ES 2 AND	~	
7.61053495+13	-1.6288492F+13	1745	.162	-3.0299905E+08	1.3216039E+07
	3.5903182E+12	2.2519239F+12	-6.7715842E+07	6.7798093E+07	1.0688901E+07
8.72383795+06		9.9558389F+13	1.7985559E+07	7.3707056E+07	4.1820151E+08
9853870	1.8948135E+36		9.97622345+05	-1.3567849E+03	5.4543889E+01
.0517171	.1131100	9.9778350E+0F		9.8498301E+05	5.4700879E+01
.0362981	0357800	.0018947	9.9881046F+02		9.9797595E+05
0349857	.0351526	.0074431		9.9246310E+02	
.0015155	.0055469	.0419553	.0000547	.0000552	9.9898746E+02
DERTT PINE FOR	MAGAG	DAPAMETERS VEHTOLE	CNA C	•	
u	A 2 4 G 4	200	200	7 60236.6.05407	4 SUNGERBREAGY
211-66/6620046	1.50461366413	214305050505	3 466 3 3 6 0 5 4 0 5	7.6922440E+U7	10 130 0C4 34 2 1
207540075406	· +1949041417	-2.9356344E412	5.155339UE+UG	2004104E+00	-1.18713295+07
On a constant		1 - 0 0 0 2 3 0 0 E + 1 +	70.76707046.60	1.206018UE+U/	4.18/2435408
********	8-5121505E+116		9.8510818E+05	1.8315264E+03	Z-3123263E+UZ
.1310526	034740	1.0002955E+0/	•	7.77494436+02	-6.393U632E+U1
2690151	1040100	9066600	9. 97.3261 BE + U.C		7.3/3/006E+U5
.034359	0045450	9012861	.0018476	9.9874643E+02	,
.0055478	0011798	.0419025	.0002332	0000637	9.989883E+02
			6	r	
-	EXYXL YOUR	1	DNA N	2	
/•b18548/2+13	-1.5234194E+13	2.25211255+12	3.1528212F+88 -6.7717793F+07	-3.0292179E+05 6.7951823F+07	1.3215736E+07 1.0692555F+07
8.72384135+DE		O CHERTORETT	1 70855156+17	7-47104706407	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
- 9842692	1.59704555	25 27707 23E4 T3	9. 9.5224F+0S	-1 . 456.820 46+0*	5.4544045401
JE 17169	1149708	9.9778357F+116		9-8498584F+05	5-476727F+11
0362981	O E M L C MC - I	.0018947	9. 9881 03.6F+02		9. 9797595F+US
0349871	0360930	.0074435	1	9.92464515+02	
.0015164	. 9055421	.0419553	.0000547	.0000552	9.98987465+02
DPRIT PLNE FOR	D AND Q PARAMETERS	ETERS VEHICLES	ES 2 AND	CJ.	
5.0341812F+12	1.9042550E+13	2.9387430E+12	8.3963136E+07	7.6918836E+07	1.2424516E+07
	7.41593276+13	-2.9536373E+12	3.15640635+08	2.9974748E+08	-1.1871329E+07

4.1872493E+88 2.3123278E+82 -6.3530638E+81 9.9797868E+05 9.989883E+82	3.549959EE+67 2.716046EE+07 4.1398687E+08 2.5247148E+62 5.7554781E+02 9.9796212E+05	3.3304398E+07 -2.9811847E+67 4.1398887E+08 -1.4870627E+62 9.9796212E+05	3.5498540E+67 2.7159649E+67 4.1396905E+08 2.5246418E+02 5.7553082E+02 9.9598054E+02 9.9698054E+02
-1.2868154E+07 1.6314611E+03 9.9749443E+05 9.9674643E+02 8000637	3 -4.9555165E+08 1.1619530E+89 1.3776963E+08 -1.7962520E+63 1.0037179E+06	3 1.4011883E+08 2.6343999E+08 3.84942814E+03 9.9712662E+05 9.985626E+05	3 1.1819727E+09 1.3776539E+08 -1.7960722E+03 1.0018574E+03 .0085751
5.5405890E+07 9.8511097E+05 9.9252787E+02 .0016476	1.4277494E+08 3.4237504E+07 6.1108247E+07 9.9620641E+09 9.9610141E+05 0017983	1.0612886E+09 6.6990658E+08 1.6676912E+08 1.0027977E+06 1.0013979E+03 .0030496	1.4278605E+08 3.4245938E+07 6.1106338E+07 9.9620649E+05 9.9610144E+02 0017982 002532 1.0613136E+09
1.0005908E+14 1.0002953E+07 .0055807 0012881	FARMETERS VEHICL E+13 6.4276345E+12 E+13 6.4011415E+12 9.8986190E+13 E+06 9.9491804E+06 .0061537 .0138217	PARAMETERS VEHICL E+13 7.6605084E+12 E+13 -7.0862562E+12 9.8986190E+13 E+6 9.9491804E+06 .0147293 0034568	FARMETERS VEHICLES E+13 6.4019328E+12 3 E+13 6.4019328E+12 3 9.8986237E+13 6 9.9491827E+16 9.0138212 0.0138212 0.0416528 PARAMETERS VEHICLES E+13 7.8603321E+12 1
8.6121616E+06 0342860 .0370435 .0348486	P PARAH 7.2805002E+13 7.2805002E+13 8.5325433E+06 70754026 1392645 .0031864	9 PARAM 3.8077557E+13 6.4795676E+13 8.0495363E+05 0864618 .0327741	P ANJ Q PARAMETERS 7.2605923E+13 6.40 6.532593E+06 9.89 6.5325973E+06 9.94 0040211 004 01362659 01
2.2436981E+06 .9854816 .1309390 .0377035 .0343252	CAPTESIAN FOR 5.06292325413 7.11542215406 6021277 0695155 0695155	0R8IT PLN FOR 5.8638558E413 7.6573818E406 .1031754 .1383996 .0183243	CARTESIAN FOR 5.0630830E+13 7.1155344E+06 6020944 .1190447 .0201050 0695108 .0049940

-2.9810664E+07 4.1398965E+08 6.1251675E+02 -1.4070227E+02 9.9796212E+05		-1.3448435E+85 2.8172856E+04 8.0536665E+03 3.2920418E+00 2.8325075E+00	92000000 92000000 92000000 92000000 92000000 92000000 920000000 92000000 92000000 92000000 92000000		-6.022623E+03 -2.026956E+04 5.943900E+03 1.219114E+01 3.6749056E-01	
2.6344511E+08 -3.4341956E+07 3.0493235E+03 9.9712664E+05 0001410		6.7375314E+05 -1.5208875E+05 -1.7347943E+04 -1.8101439E+01 4.8461576E+01 -2.5225904E+00		1	2.2444095E+05 8.8274587E+05 -5.6316699E+04 -5.3534847E+01 -2.1573836E+01 6.4853808E+01	.0000013 .0000027 0000000
6.6988348E+08 1.4674439E+08 1.0027981E+06 1.0013981E+03 .0030499	ES 2 AND	-5.7085902E+05 i.1551890E+05 1.3643679E+04 1.5411378E+01 -3.5973200E+01 2.2038050E+00		ES 2 AND	2:1637573E+04 4.465335E+04 -2.445433E+03 -1.427929EF+00 -1.0963108E+00 2.4532861E-01	0000554 0001150 0000005
-7.0860351E+12 9.8986237E+13 9.9491827E+86 .0147288 0034567	PARAMETERS VEHICLES	2.6064191E+06 -2.9962556E+07 -6.8108335E+05 7.6393604E+00 -5.5121137E+02	0000134 0000139 0000125 0000021 0000023	PAZAMETERS VEHICLES	-3.8553223E+05 -1.4692637E+05 -2.4304708E+03 -1.4150869E+01 -3.1988959E-01 3.8244596E-01	.00000. .0000047 .00000000.
6.4737806E+13 8.0437084E+06 0834781 .0327744 0337071	9 8 8	-1.0595572E+07 1.2823772E+08 2.8437946E+06 -2.9352397E+01 2.3264094E+03 5.5381141E+01	0031868 0033055 0005865 0001065 0001150	PA2A9	-1.7071423E+08 -7.8652167E+06 1.2632631E+06 -3.0901438E+03 7.2419108E+01	0000167 0000338 0000006
7.65767255+06 .6177004 .1031708 .1384013 .0183233	CARTESIAN FOR	COVASIANCE 6.9345990E+06 -1.0831504E+06 -2.4000922E+06 2.4704863E+01 -1.9641803E+01 -4.6799327E+01	CCRRELATION .0000571 .0000593 .0000111 .0001025	DRBIT PLNE FOR	COVARIANCE -0.9585977E+06 -4.2530105E+05 6.5781894E+04 '1.6285789E+02 2.7535057E+00	CORRELATION00134880029138000054

.0000065		-1.(02385%+05 -2.6216529E+05 1.583011E+03 3.3600461E+00 -2.4491887E+00	0000376 0000396 0000136 0000022 0000041		-2.6946647E+05 -3.2641239E+04 7.8838342E+03 7.4095292E+00 4.7838349E-01	. 0000001 . 0000001 . 0000022 . 0000055	
.00000217	FI.	7.8356927E+05 -1.4765808E+06 -4.6767197E+04 -1.7795963E+01 1.6411591E+01 -3.0941809E+00	0015910 0016768 0005849 0001043 0000219	•	-8.1314371E+04 8.6860064E+05 -5.4056464E+04 -5.9072546E+01 -2.144342E+01 6.4850854E+00	.0000221 .0000392 .000077 0000182 0000216	
0000541 .0000124	LES 2 AND	-4.2283156F+05 -1.6705065E+06 -2.5820093E+04 1.5822968E+01 -6.8400543F+01 1.4329710E+00	.0000199 .0000211 .000076 .0000240 0000236	LES 2 AND	2.233139E+06 1.4698314E+05 -1.8794398E+04 3.8629511E+01 -2.0329611F+00 2.4743495E-01	0019669 0016872 0003475 0003475 0000597	LES 3 AND
0000057 .0000000	PAZAMETERS VEHICLES	1.2508071E+09 -1.4682790E+10 -3.3032415E+08 3.5873131E+03 -2.5849245E+05	0001934 00002940 0000715 0000039 0000052	PARAMETERS VEHICLES	-8.4749913E+09 -4.2657753E+08 6.1238609E+07 -1.5541071E+05 3.4602115E+03	.0000388 .0000583 .0000136 0000168	PARAMETERS VEHICLES
.0001029	P AND 2 PARA	-2.2310125E+09 2.6947660E+10 5.9814394E+08 -5.1954654E+03 4.6912853E+05	0453360 0453310 0157337 0013329 0013325	P AND Q PARA	-3.6620775E+10 -1.6937524E+09 2.7073002E+08 -5.6323391E+05 1.5511296E+04 -3.670565E+01	0002910 0004956 0001099 .0001528 .0001012	D PA? AP
.0001005 0000027	CARTESTAN FOR	CCVARIANCE 1.7929353E+09 -2.1709684E+10 -4.8132437E+08 4.9646370E+03 -3.9360451E+05 -9.3774215E+03	CORPELATION .0008241 .0008701 .0003100 .0001191	OPRIT PLNE FOR	COVARIANSE -2.7339520E+09 -1.2975681E+08 2.0074590E+07 -4.9700173E+94 1.1454750E+63 7.1896143E+00	CORRELATION - 0235277 - 0412113 - 0043839 - 0063125 - 0000354	CAPTESIAN FOR

-9.3143039E+04 -1.3701253E+04 -6.7029143E+04 -1.5277315E+00 -5.7775586E-01	. 0000003 . 0000003 . 0000003 . 000003	-1.6235477E+05 -1.9951150E+05 -6.0107033E+04 -1.2271795E+00 -4.69557E+00 -6.667717E-01 -0000010 -0000010 -00000135	-2.1919485E+85 -1.6934715E+85 -4.532186E+04
1.1031335E+06 -8.6119579E+05 -4.5173460E+03 2.4755126E+01 -5.4083370E+00		3.5621658E+05 1.6623049E+05 6.6245082E+05 2.0495404E+00 3.3492600E+01 3.5220987E+00 .0000119 .0000337	1 5.277<640E+05 -1.3179879E+06 9.4469452E+04
-9.5853022F+05 7.6735626F+05 1.340363E+04 -2.1467343E+01 5.5762450E+00 2.3323757E+00	0000162 0000169 000034 000325 000329	3.1336702F+04 6.2719971E+04 6.6719971E+04 6.6506858E-02 1.2980074E+00 1.3417492E-01 0000225 0000069	-1.7344136F+06 1.7344136F+06 1.468048E+09
-1.2973435F+07 -9.8167056E+06 2.2473+30E+06 -9.2290050E+01 -2.1116079F+02 9.0181450E+00		F+07 -6.9181319F+04 3 E+07 -6.9181319F+04 3 E+07 3.5375742E+04 -7 E+03 -3.5651900E+00 6 E+02 2.3602907E+00 1 E+01 5.9594340E-01 1 E+01 5.9594340E-01 1 -00000270000001100000001	PARAMETERS VEHICLES E+10 -6.3640370E+09 -1 E+09 -4.8224169E+09 1 E+09 1.0991525E+09 1
5.57131715+07 4.2308831E+07 -9.5814814E+05 3.8687840E+02 3.0141211E+02 -1.6473753E+01	0002336 0007422 0001426 0051370 0051370	-6.8997043E+07 5.2210135E+07 1.2723825E+07 1.2718436E+03 2.8159102E+03 2.8159102E+03 4.8484593E+01 00002046 00002048 -00002048 -00002048	P ANJ Q PARAM 1.1707609E+10 9.8887466E+19 -2.0137731E+09
COVATIANSE -4.7072205+07 -3.6747314-07 -3.26525105+02 -7.61352995+02 3.07526775+01	0003688 0003688 000676 000676 0002057	COVATIANCE -3.6119072F+06 3.260349.7F+06 6.6810547F+01 1.6944146F+01 2.5914387F+00 CORPELATION000159200033290001122	CAPTESIAN FOR COVARIANCE -9.4336096E+09 -7.1635924E+09 1.6221027E+09

-2.4072221E+80 -2.6195112E+80 2.1819919E-01	64000000000000000000000000000000000000	-2.8865861E+89 -1.0398416E+09 -4.8460640E+04 -3.191118?E+00 -4.0969125E+00	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-2.7988726E+07 4.7706077E+06 -2.0952384E+02 -4.5707086E+02 1.8132437E+01
2.0754286E+01 -1.5720116E+01 -2.3050970E+00	- 00006108 - 0000634 - 0000230 - 0000105 - 0000208	1 7.3269624E+05 1.7542074E+06 2.3454186E+04 -2.2868040E-01 3.3997695E+01 3.6091494E+00	.0000882 .0001530 .0000321 .0000211 .000041	-1.3570345E+08 -9.7512713E+07 2.2273272E+07 -8.6890320E+02 -2.1477007E+03
-2.6881928E+01 -6.9801579E+00 2.8421303E+00	0002630 0002773 0000971 0000408 0000276	9.2461217E+09 -7.4310476E+09 -1.7220284E+09 1.6546038L+01 -2.3557267E+00	- 00006880 - 00006880 - 0001404 - 0001479 - 000032 - 000032	1,2962352E+08 1,0170649E+08 -2,2136259E+07 9,0067624E+02 2,1737610E+03 -9,8655506E+01
-4.4829563E+04 -1.0332926E+05 4.3192140E+03	.0006537 .0005887 .0002389 .000023 .0000126	PARAMETERS VEHICLES E+10 -3.4006298E+09 9 E+10 3.0768329E+09 -7 E+09 6.3352011E+08 -1 E+09 1.4460859E+04 -2 E+04 2.5428107E+03 -4	.0003958000141300015500001054000000240000049	-6.0675953E+12 -4.6791397E+12 1.0245682E+12 -4.3062959E+07 -1.0112271E+08 4.2641135E+06
6.1352974E+04 1.8944432E+35 -7.6819706E+03	0033663 0035444 0012219 0002316 0002049	P AND Q PARAM -1.4794515E+10 1.3342984E+10 2.7297776E+09 6.0490028E+09 1.0424517E+04	.0023868 .0061853 .0008486 .0008187 -0000130	-7.0437679E+12 -5.2893328E+12 1.2042102E+12 -5.0548372E+07 -1.153714E+08 4.8618707E+06
-6.5476689£+84 -1.5260734E+05 6.1720029E+03	CORRELATION0053160005596100193370003689000986	COVALIANCE -1.1022504E+09 9.950583E+08 2.039584E+08 -2.038803E+04 4.5505331E+03	CORPELATION002779300487820098570010814000380000380	COVARIANCE 3.1709093E+13 2.378979E+13 -5.422933E+12 2.2762675E+08 5.1910930E+08 -2.1875391E+07

	-1.2069571E+07 1.1696893E+07 2.3062947E+06 -2.4034054E+02 6.5626646E+01	.0025518 .0025518 .0002598 .000083 .000083	-2.7967139E+07 -2.1304163E+07 4.7703346E+06 -2.0551200E+02 -4.5704517E+02	0025542 00064276 0006991
.0593944 0607751 0101159 0021723 0021600	2 -1.2116719E+06 1.0570563E+08 2.1596085E+07 -2.2481974E+03 4.7016263E+02 9.6399917E+01	.0146681 .0147860 .0012062 .0084772 .0084714	-1.3563666E+08 -9.7462013E+07 2.2261783E+07 -0.6643669E+02 -2.1466199E+03	.0593938 0606723 0101158 0021723
.0261421 0267280 0043240 .0009037 0008772	ES 3 AND -1.2612934E+08 1.1953547E+08 2.3170555E+07 -2.3652476E+03 4.7293946E+02 9.7430944E+01	0647186 0642854 0057595 0023797 0022479 002402	1.2982267E+D8 1.01705886408 -2.2138113E+07 9.0087235E+02 2.1737473E+03	.0261419 0266830 0043240 0009937
0624798 .0638776 .0103208 0022278 .0022557	PARAMETERS VEHICLES E+13 -3.0946338E+12 -1 E+13 2.6861559E+12 1 E+12 5.3697096E+11 2 E+08 -5.7692753E+07 -2 E+08 1.2047932E+07 4 E+07 2.2966157E+06 9	.0638557 .0634560 .0053456 .0021734 .0002401	-6.06751.45E+12 -4.6791277E+12 1.0245541E+12 -4.3062391E+07 -1.0112139E+08 4.2640500E+06	0624791 .0637589 .0103207 0022278
.3195837 -3271035 -0549602 -0119339 -0115150	PARAM -2.9331922E+13 2.6802400E+13 5.4397275E+12 -5.5441033E+08 1.2717354E+08 2.1953896E+07	.3890160 .3856208 .0333600 .01%9616 .0131482 .0016546	-7.0400897E+12 -5.2857404E+12 1.2035774E+12 -5.0522799E+07 -1.1531191E+08 4.8594540E+06	.3195785 3255439 0549591 .0119337
.5224418 0854628 0185671 0192156 0039375	COVATIANSE -7.70301525+12 7.02005995+12 1.42446505+12 -1.45289426+08 3.32633775+07 5.75371035+06	CORRELATION4487632445811040400701584560158456	COVATIANCE 3.1708788E+13 2.3788748E+13 -5.4228814E+12 2.2762463F+08 5.1910437E+08	CORRELATION .5108159 5215451 0854603 .0182657

.0000182		-1.2869568E+07 1.169689E+07 2.386294E+06 -2.4034048E+02 6.5628833E+01 7.6318213E+00	.0025659 .0025516 .0002296 .000962 .000966	DATE	X 0002 Y Z 0003 DX	787E+13 006E+13 4.16315E+12	3.62444E+12 2.34449E+12 4.50141E+08-2.20514E+08	3.84385E+09-1.08679E+09
0004567	N	-1.2118864E+U8 1.0570694E+U8 2.1596353E+U7 -2.2482243E+U3 4.7015859E+U2 9.640U943E+01	.0148492 .0147879 .0012062 .0004769	MIDNIGHT OF EPOCH	0001 DZ 0002	1.63858E+01 1.43736E+22 1.71392E+03 -7.75487E+03-3.86454E+04 5.06787E+13 -3.18653E+03-1.07060E+03-1.43006E+13		
0002061	LES 3 AND	-1.2606707E+08 1.1947931E+08 2.3159069E+07 -2.3640991E+03 4.7268483E+02	0646358 0642851 0057596 0023786 0022479	HINUTES FROH M	0001 DY 0003 X	1 1	1.46479E+03 7.281!3E+02 4.45781E+03 4.13523E-01-2.07000\-01-1.26241E+00	843895+03-8.04082E+03~2.22292E+00 1.52633E+00 7.52866E+00
.0004800	PA?AMETERS VEHICLE	-3.09%6592E+12 2.6861788±+12 5.3697565E+11 -5.7693221E+07 1.20%8036E+07 2.29653%6E+06	.0637832 .0634895 .0053956 .0023453	000000000E+01 Parameters	Z 0001 DX DY 3002 DZ	61362E+D8 37305E+U4 4.66406E+U9 07262E+U4 4.66406E+U5 7.26134E+U1 35+31E > U4-1.89425E+U5-3.14774E+U1 97344E+U5-2.31668E+U6-3.43168E+U2 55370E+U7 4.16309E+U7 1.12133E+U4	255925+06-5.48692E+06-1.46479E+03 373435+02 1.54137E+03 4.13523E-01.	182E+03~2.222928
0024993	P ANS 3 PARAN	-2,9391753E+13 2,6802257E+13 5,4395981E+12 -5,5440740E+08 1,2717289E+08 2,1953784E+07	.3895119 .3855193 .0337600 .0149544 .0131483	1055 AT 3.	01. Y 0001 02. DX 0002 03. DZ	617625+08 373055+08 072625+04 35+315+04-1.89 973445+05-2.31 565705+07		
0039372	ORPIT PLNE FOR	COVARIANSE -7.7003770E+12 7.0169590E+12 1.42383065+12 -1.45226005+08 3.32693197+07 5.75128745+06	COPRELATION 4481733 4485734 0404006 0155858 0153476	CCVARJANCF MATR ATACINVERSE	0001 X 00 0002 Z 00 0003 JY 00	-2.37417E+08 26.54772E+08 28.6984E+04 3.6.2055+04-3.4.64290E+05-11.85173E+07 15.03252E+07 6.	-1.711575+05 1. 9.854725+13 3.608545+01-3.	3.445052+03-2.
					E	0001 7 0001 7 0001 7 0001 7 0001 7 0002 7	00 02 7 00 02 AX	0002 FY

4.02533E+07 6.74867E+12 4.16280E+12 9.50224E+11 1.84893E+07 7.55464E+05 3.39029E+07 2.42572E+05	5.74956E+04		1.000	. 042	1062	.011	640
4 4 4 4 4 4 4	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1.000	049.	.218	036	061
2 2.48984E-01-1.53085E+08 4 3-4.10669E+04 2.38545E+13-6 3 9.35131E+03 1.29090E+13-4 1-2.62447E+13 9.74399E+12 1.12205E+13 9.74399E+12 1.2.57250E+00-1.95255E+08 1.2.5631E+00-2.46944E+08 1.2.55631E+00-2.46944E+08 1.2.56333E+01 5.68577E+07-7	5.58212E+08-1.34627E+08	# 000	073	163	.274	250	.214
2.46964E-01-1 -4.10669E+04 2 9.35131E+03 1 5.10374E+13 3 1.12205E+13 9 2.57250E+00-1 2.5631E+00-2 2.5631E+00-5 2.35980E+09 5			006	051	115	.019	053
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000 .116	.020	601	286	940.	.010
3.840166-02 9.447056+03- 2.024216+13 2.1595406+13 7.340208+13 7.340208+13 1.482216+09 1.582336+09	3.30461E		022	609.	.254	045	032
1 11	1.95464E+03-3.80461E+08-9.95464E+03-3.80461E+08	# I I I	000.	000	000	000	.000
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000	.001	000	000.	000	000.
**T0372=+04 2.99027E+05 **17703E+02-3.13700E+02-9.47468E-02 **15545=+04 1.41218E+04 9.92108E+05 **37555=+07 3.94439E+07 1.08077E+04 **070512=+07-1.71637E+09-2.31143E+09 **070512=+07-1.71637E+09-2.31143E+09 **070512=+07-1.71637E+09-4.43865E+08 **07074E+08-1.95245E+08-4.43865E+08 **07074E+08-1.95242E+08 1.06393E+08 **07075=+05-2.91394E+05-4.25591E+04 **5574E+02-3.00774E+03-4.25597E-01 **1785E+05-3.9838E+04-4.19965E+04	7.59474E+03	00000000000000000000000000000000000000	000	.000	000	.000	1.000
779372 1155451 1155451 3755031 875451 875451 875451 87545 87545 87575 87	4.073431104 4.073431104 9.8644911405 ON MATRIX		300	.900	000	000	
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00	.300	.000		.398
1. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	1.06012E 1.06012E 5.72059E	1.000 1.837 1.658 1.617 1.779 1.000	000	50.00	000	00	.310
26 20 00 00 00 00 00 00 00 00 00 00 00 00	3 7 3	00001 Y X 00001 Y X 00001 Y X 00000	200	V F000	0003 Y	Z £000	0003 PX

9+0 6	. 010	4.139949E+01 9.960463E+02 9.932010E+02	4.384970E+05 8.817966E+08 2.029161E+09			BIA 3 ALT 3 LONG 3 LAT 2 RBIA 2 ALT 2 LONG 2 LAT BIA 1 ALT 1 LONG 1 LAT 6H 02,00 16E-07-9.62416E-08-1.07344E-02 2.77248E-02-7.590201E-08-5.34169E-06-1.28714E-02 1.69283E-02 1.69282E-02 1	19010E+03 42651E-02 59587F+05	77770E-02 90565E+04	90119E+01 46189E-07	18667E-07 93748E+01	08919E+04 29233E+03 46643E+03	51173E+04 69874E+03	70436E-01
069	.014	4.00	400			6 -02 1.	-02-4-	+00 4	-06-1	-06-5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	+08-2.	-01-3
.211	046	4.047937E+00 5.468333E+02 8.711585E+02	0.856481E+03 9.176784E+08 2.861656E+10			2 LONG 6H 1.28714E	2.60470E	3.99831E	1.07537E	4.33584E	2.80761E 1.33414E 5.96598E	2.26058E	1.37964E 3.28304E 2.96219E
052	.011	5.466	9.176 2.061			2 ALT 1 LAT 5.34169E-08-	17E-07	194E-08-	31E-12-	32E-11-	51E-01- 24E+04 87E-01-	01E+05	27E-06
610.	- 00*	197E+1,2	1.104760E+01 3.553952E+05 3.629283E+10			2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07 1.663	01 2.657	12-5.29	11-1-82	01-1-607 06-2-382	05 1.52 82 1.27	2.125/6E+U4 9.0018/E+U3 2.57045E-O6 2.10727E-O6 5.72372F+O0-2.99631F+O0
0 10	.008	8.521352E+8J 9.339897E+1,2 8.691744E+02	1.1047 3.5539 3.6292			2 RBIA 1 LONG 1 SG261E-	33144E-	.53989E-	22609E	58214E-	.20610E- .43916E+	.38421E+	57045E-
.000	1.000	919305E+04 927094E+06 870707E+06	2.595729E+02 2.332865E+05 9.103338E+10			LAT ALT 46E-02-7	20E-02 2 06E-01-1	38E-02-7 60E-01-2	23E-06 1	37E-05-1	07E+04-2 23E-01-3 11E+04-4	49E-01-5	14E-U3-2 25E-02 2 42E-05 5
900.	990-	5.9193 9.9270 9.8707	2.5957 2.3326 9.1033			3 1 02 2 • 772	02-5.048 01-7.000	03-2-421	05 1.767 05 7.444 06 7.444	05 4 521 06-1 167	04-4.032 01-1.082 03 1.181	01-3.778	03-2-866 03-2-866
000	0000	.617287E+04 .040379E+06 .144043E+06	.816559E+00 .706543E+03 .367208E+11	(5		3 LONG 1 RBIA 07344E-	.86347E-	.37512E-	.56679E-	.64680E-	.43891E+ .45223E- .95103E+	.69449E-	. 53070E-
000		1.6172 2.0403 7.1440	4.816559E 1.706543E 4.367208E	0++5. L conditionins		ALT ABIA 16E-06-1	915-07 1	235-07 9 48E+05 7	625-11-3	235-10-1 76E+01 7	875-01 1 935+94 1 285-02-3	15E+05 4 29E-02-3	1.711405104 1 3.606085-07 6 4.369835+00-2
.000	0.00	39E+84 96E+06 83E+06	00E+00 38E+00 85E+11	11	HATZIX	A 3 A 1 -07-9-624	07 1.772 05-1.335	07 1.043 06-5.659	11-3.045	10-1.674 00-1.919	01 1.391 04-1.101 02-4.153	05-3.665	07 3.606 01 4.369
000	0.000-	1.655839E+ 7.118896E+ 5.499283E+	1.000000E+0 1.064036E+0 5.163285E+1	A PIVOT RATIO EXCEEDS CHECK ATA MATPIX FOR	₩ ₽C40	3 281A 1 EBIA -1.36186E-0	2.42393E-0 7.74029E+0	1.30531E-0 -2.25138E+0 5.26020E+1	-6.95094E+01 -3.354145-11 -6.014795+01	-2.26479E-10	1.88921E-01 7.70703E+04 -5.59664E-02	2.59128E+05 5.25513E-02	1.66660E-0
ρ¥	20	186	PIVOT RATIOS	T RATI				×		6 2- 20	•	•	, , , ,
0003 0	0003 0	SCRT DIA	PIVOT	A PIVO CHECK		0001 X	0001 Y	0001 7		00010	0002 X	0002 7	0002 DX

64 64 64 64 64 66 66 66 66 66 66 66 66 6	×	1.000	.042
	200 000 000	1.000	.640
5.67442E-01-2.40011E-05 1.00242E-05 4.36547E+00 6.40969E+00-2.33805E+04 2.54448E-01 1.96434E-07-1.49435E-02 1.596434E-07-1.49435E-02 1.596434E-07-1.49435E-02 1.596434E-07-1.49435E-02 1.25939E-01 1.24939E-01 1.24939E-01 1.24939E-01 1.24939E-01 1.24939E-01 1.34939E-01 1.24939E-01 1.25939E-01 1.25939E-01 1.25939E-01 1.27533E-01 1.25939E-01 1.25939B-01 1.25939E-01 1.25939E-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939E-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939B-01 1.25939E-01 1.25939B-01 1.25938B-01 1.2	× 2 0000 0000	00 00 00 00 00 00 00 00 00 00 00 00 00	183
99696 99696	Z	000000000000000000000000000000000000000	051
	0000 0000	1.000 .116 -116	601
4.566444 1.0069366 1.0069366 1.0069366 1.0069366 1.006936 1.	X X X X X X X X X X X X X X X X X X X	1.900 095 1.800 056 	.609
7242E-05 7782E-05 7782E-07 7782E-07 7782E-07 7885E-01 8984E-01 8986E-01	ZQ	41	.001
1E-05-30 9E-07-5-11 9E-07-5-11 9E-07-5-11 9E-07-5-11 9E-01-2-30 9E-01-1-64 9E-03-1-64 9E-07-1-64 1E-07-1-10 7E-07-1-10 7E-07-1-10 7E-07-1-10	0000	1	007
1.2	0001 Z 0002 DY	1 1 1 1 1 1 1 1 1 1	006
744428 - 011- 7533428 - 011- 75336 - 011- 75336 - 011- 7536 - 011-	1 Y 2 DX 3 DZ HATRIX	1.000 1.1471 1.0000 1.0000 1.0000	005
2 00000000000 ×	1 X 0001 2 Z 0032 3 DV 0003 CORRELATION H	1111 000000000000000000000000000000000	.007
-1.66013E+0 -2.64013E+0 -4.5233E=0 -3.126233E=0 -3.12626=0 -2.6536E=0 -2.6536E=0 -2.75337=0 -2.75337=0 -2.75337=0 -2.7537=0 -2.7537=0 -2.76237=0 -2.76237=0 -2.76237=0 -2.76237=0 -2.76237=0 -2.76237=0 -2.76237=0 -2.76237=0	9001 X 9002 Z 9003 DV CORRE	11 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.006
2 0 X 3 3 X 3 3 X 3 3 0 X 3 3 0 X 3 3 0 X 3 3 0 X 3 3 0 X 3 3 0 X 3 3 0 X 3 0		011 X 011 7 011 0X 011 0X 02 1 X 02 1 X 02 0X 02 0X	× >-
0003 0003 0003 0003			0003

. 011	048	049	. 010	4.161849E+01 9.960463E+02 9.932011E+02		
036	061	069	.014	4.1618 9.9604 9.932	0	-1.5356568E05 -5.4513164E104 -3.44230512E105 -3.44230512E105 -1.4584082E102 -1.556827E103 -1.9970407E104 -1.9970407E104 -1.9970407E104 -1.9970407E104 -1.5096838E105 -1.5096838E105 -1.5096838E105 -1.3030894E106 -1.3030894E106
2.047	.214	.211	064	1.750148E+01 5.468413E+02 8.711595E+02	MMOED	-1.55868E+ -7.55868E+ -7.5586512E+ -7.558613EE+ 1.755827E+ 1.755827E+ -7.586695EE+ -7.586695EE+ -7.586695EE+ -7.586695EE+ -7.5866969EE+ -7.5866969EE+ -7.586696EE+ -7.586696EE
.019	053	052	.011	5.4684 8.7119	3.000000000E+01	1 -3341856E+03 -5.0278636E+03 -5.0278659E+04 -3.1832935E+01 -2.1832935E+01 -2.2023958E+01 -2.432058E+03 -2.432058E+03 -2.432058E+06 -2.43208E+06 -2.4320
.048	.010	.019	+000-	53E+01 11E+02 55E+02	3.00000	
045	032	0.00	.008	2.062853E+01 9.339901E+02 8.691755E+02	A	1 AHD 5205168E+0 5345976E+0 5345976E+0 5091275E+0 3116359 3736315 373646:E>0 7323646E+0 533746:E>0 7323646E+0 533746:E>0 7323646E+0 533746:E>0 7323646E+0 533746:E>0 7323646E+0 533746:E>0 732366E+0 732366E+0 732366E+0 732366E+0 732366E+0 7324631E+0 74431E+0
000	.000	.000	1.000	4.680919E+05 9.927094E+05 9.870712E+06	PARTITIONS	
.001	001	1.001	0000	4.680 9.927 9.870	MATREX P	05
.001	1.000	001	.000	.093228E+05 .042353E+06 .144174E+06	CORRELATION	
	000.		- 90	MNIN	ONE	1.9779915E+08 1.9162336E+08 1.3842809E+04 2.024344321121701085110108511012187302491853024007024918502491850249185024918502491850249185
1.000	.001	.001	000-	2.331531E+05 7.115913E+06 5.499440E+06	ARIANCE	
550	001	001	000	2.331 7.115 5.499	STATE SOVARIA	CARTESIAN FOR 1.93.78948E+08 1.33920829E+04 1.34853299 1.24853299 1.25653849 1.2655849 1.26523855 1.2462151F+03 1.3465935 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125 1.26149125
0003 7	0003 EX	0003 DY	ZO 2000	SORT DIAG		

-4.3066653E+02 3.9940895E+01 1.7619041E+03 4.1975041E+03	-1.5345161E+05 -1.8663139E+06 -5.6679600E+05 2.8767719E+02 -3.5179945E+01 1.8166191E+03	-1.4371358E+08 4.5161370E+07 7.6011696E+08 2.9573657E+04 1.4363980E+04 9.8564079E+05	7.1922790E+07 1.\$2\$9108E+08 7.7204580E+08 2.2114580E+04 -2.2259905E+04 9.8894463E+05 9.9445695E+05	-1.4371197E+08 4.5184722E+07
2,7106469E+02 3,6431590E+02 1,9087051E+01	1 -1.6429767E+05 -6.6493119E+05 -1.3476150E+05 4.0897672E+01 1.7995868E+01 4.2421537E+00	2 3.4773012E+09 -5.2168989E+08 1.0481017E+08 -7.6397188E+04 2.6136268E+05 5.1123642E+02	2 4.5444216E+18 -4.5264637E+18 1.3576694E+18 8.2769488E+19 9.1988729E+12	2 3.4772715E+19 -5.2169022E+08
3.4519835E+02 1.8579514E+01 .7643631 5522244	FS 1 AND -7.5854122F+05 -9.8017970F+06 -2.4816375E+06 6.3680297E+02 2.5234955F+01 .3820407	ES 2 AND 1.5211476F+09 -2.1902841E+08 3.4338042E+08 8.5404862E+05 9.2414762E+02 -1617016 -0322353	ES 234615E+08 -3.2116127E+09 3.815550E+09 2.8421278E+05 5.3311611E+02 .2798882 .0417079	ES 2 AND 1.5211418E+09 -2.1911644F+08
4.6046104E+05 .2258814 .4394679 0620523	PARAMETERS VEHICLE E+10 2.1031839E+10 E+11 3.3389114E+10 2.0124362E+11 E+55 4.4860854E+05 2192140 7081282 0296434	PA2AMETERS VEHICLES E+12 3.9686477E+12 1 E+12 2.4813391E+12 -2 9.9779704E+13 3 E+06 9.9889791E+06 9 .0371374 9	PAGAMETERS VEHICLES E+13 3.9702101E+12 -8 E+13 -6.9103222E+11 -3 9.9991558E+13 3 E+06 9.9995779E+06 -0715926 -0776382	PARAMETERS VEHICLES ie+12 3.9686515E+12 1 ie+12 2.4816414E+12 -2
2,7837201E+05 -,2329706 -,8918757 -,9527012	D AND Q PARAM 1.1432274E+10 1.5434906E+11 3.9353569E+05 .1837788 9857535 3981950	-8.0642735512 1.2933865E+12 1.1375352E+06 .2137734 2033502 8970681	PAGAM 1.3467305E+13 5.1631479E+13 7.1855048E+06 0095174 8394333 .2759922 .0213543	-> AND Q PBRAN-9.0635165E+12
9810333 . 0349575 . 8703673 . 8887948 1177634	0PPIT PLNE FOR 2.6202313:+09 5.1189195:+04 .5673725 .9159828 5872281 7565154	CARTESIAN FOR 5.4232313E+13 7.3642592E+06 -953553 . 0235110 . 2235120 . 9235150 + 0196556	3.6829691°+12 3.6829691°+12 1.9191053;+06 .9763272 .268868 8049489 .2602507	CARTESTAN FOR 5.4232538F+13

7.6011794E+08	2.9573361€+04	1.4364187E+84	9.85640676+05		9.9279447E+82			7.1938398E+07	1.5258771E+88	7.7204618E+08	2.2111861E+84	-2.2259723E+04	9.8894466E+85		9.9445697E+02			-3.2538613E+88	5.4426187E+08	7.8328052E+88	5.7171170E+04	5.8256413E+84	9.8897333E+05		9.9044898E+82		5.0864289E+88	3.8918487E+08	7.8328052E+88	6.4779147E+84	-4.9658983E+84	9.8097333E+85		9.9044,098E+02	-3.2531024E+08	
1.84813215+88	-7.6397725E+04	2.6136848E+05		5.1124218E+82	.8283004		2	4.5453006E+08	1.8189572E+09	-4.5264418E+08	1.3576699E+05	8.2789591E+85		9.0938785E+02	0246006	M	2	8.603599+E+08	· 2.8103371E+08	9.2211095E+08	-2.9547439E+05	7.2506712E+05		8.5158873E+02	.0690758	•	2.1674425E+89	2.5450611E+89	-5.9282378E+08	249822430E+05	7.6790014E+05		8.7629912E+02	8572159	3-6043756E+08	
3.437.671E+08	8.5404987E+05		9.2414819E+02	1617088	, 6322329		ES 2 AND	-8.2343366E+08	-3.2117847E+09	3.8165557E+08	2.8421865E+05		5.3312168E+02	.2798853	.0417074	~ CA4	DAR C CT	2.3848586E+09	-2.5138399E+09	7.0947847E+08	6.9611045E+05		8.3433234F+02	4159026	. 0691846	ES 3 AND	-4-41244176+05	-1.2067573E+84	1.8015768E+09	6.53277435+05		8.0825579E+02	.4097628	. 0809204	ES 3 AND 2.3848819E+09	1
9.9779717E+13		9.9889798E+06	.0371970	.0205243	.0766479		PAZAMETERS VEHICLES	3.9703971E+12	-6.9106584E+11	9.9991562E+13		9.9995781E+06	.0715320	0497493	.0776382	n formal of the case of the ca		5.3646343E+12	1.3549892E+13	9.8460349E+13		9.9227188E+06	.0856378	.1391348	.0715598	PARAMETERS VEHICLES	1.4101305E+13	-3.6762375E+12	9.8460349E+13		9.9227188E+06	.1248834	0680857	.0715598	PADAMETERS VEHICLES	1 1
	1.1409473E+06	.2177471	2079106	8943767	.0338902		AND O DARA	1.3451816E+13	5.1631930E+13		7.1855362E+06	0096179	8394187	.2759881	.0213538	0	TY THE	-2.3817105E+13	4.6287769E+13		5.8035115E+0 &	.2007114	442 9589	0495105	.0807693	A PACA	2-4137076E+13	4.3137646E+13		6.5673927E+06	0554140	227 4 412	.4:22347	.0594196	-2.3808235F+13	
7.36427448+06	9595855	.0539502	.2235106	.9235960	0196564		OPRIT PLNE FOR	3.69052355+12		1.921073574.5	.9752153	.2465847	8040045	.2500344	.0375557	OCO NATORIO		3.7245357=+13		6.1029793E+05	5734378	.0885855	.4683604	.1655576	0538173	OPRIT PLNE FOR	4.0493480 F+13		6.35637325+06	.5796429	.2235824	1858857	.3891220	.0795224	CARTESIAN FOR 3.72482138+13	1

5.4425434E+08 7.032822E+08 5.7170863E+04 5.8255964E+04 9.8097338E+05	5.0063408E+08 3.8910804E+08 7.0326222E+08 6.4778664E+04 -4.9658733E+05 9.8097338E+05	-4.0640668E+04 1.2684075E+04 4.8614804E+03 -8.9877067E-01 7.6940846E+00	. 0000152 . 0000148 . 0000039 . 0000086 . 0000070	1.7431795E+04
-2.8093463E+08 9.2208869E+08 -2.9547162E+05 7.2507207E+05 8.5151164E+02	2.1674032E+09 2.5450780E+09 2.922200E+08 7.6790130E+05 6.762978E+05	1 -0.1240811E+03 -1.5820805E+03 7.7654782E+02 -1.2608278E-01 1.4914903E+00 2.8508172E-02		S 2 AND 1 6.4650181E+03 -2.4010691E+03
-2.5137905E+09 7.0946735E+08 6.9611223E+05 8.3433341E+02 4158968 .0691841	-4.4113075E+08 -4.2066248E+09 1.0015534E+09 6.5328301E+05 8.0825925E+02	1.1909740E+04-6.9105460E+03 3.0540392E+03 3.0540392E+03 -2.3378132E+00	- 0000 0609 - 0000 1050 - 0000 1050 - 0000 332	ES 2 AND 6.4650181E+03
1.3549412E+13 9.3460456E+13 9.9227242E+06 .08:6953 .1091318	PAAMETERS VEHICLES E+13 1.4101377E+13 -4 E+13 -3.6759404E+12 -1 E+06 9.9227242E+06 -1248799 8 -1680847	PARAMETERS VEHICLES E+05 -2.9135322E+07 1 E+07 -5.356549E+06 -6 E+06 2.7709021E+06 -1 E+02 -4.5706182E+02 3 E+03 5.3717277E+03 -2 E+02 1.0370547E+02 -7	0000227 .0000210 .0000104 0000187 .0000189	PARAMETERS VEHICLES E+n7 1.2148580E+07 6
4.6289908E+13 5.3035687E+06 .2005995 .4428394 0484922	P AND Q PAPAM 2.4195296E+13 4.3132055E+13 6.5674999E+06 2573492 -4427301	PARAM 2.9449001E+05 5.9950272E+07 2.9093E19E+06 -7.7942755E+02 1.0461929E+03 2.0354249E+02	3035511 .0038091 0001764 0007139 0003389	-8.2249597E+17
6.1031314E+06 5733652 .0885773 .4683543 .1655679	FRIT PLNE FOR 4.0406056 + 13 6.3565756	COVARIANSE 3.12323905+06 -5.73156575+07 -3.1591471F+06 8.1295620F+02 -1.6500722F+03	CORRELATION .0000305 .00004482 .00014482 .0001328	

4.1128104E+04 1.2019700E+03 8.0928454E+06 1.1438717E-01 -4.1385660E-02	0000041 00000055 0000011 .0000016 0000029		3.9787846+05 4.8064544E+05 1.9494230E+04 -5.5625344E+00 8.4311686E-01 1.4661769E+00	0002719 .0002702 0002623 0002479	6.1591467E+05 -6.8014209E+04 1.0595635E+04 2.8602480E+00 6.8419719E+00
-6.8370488E+03 -1.8921858E+02 -1.3624322E+00 -1.0115450E-02 8.0499974E-03	0000174 00000543 0000179 0000039	1	-2.0094045E+05 -1.6254091E+06 -5.8768303E+04 1.7622769E+01 6.4643878E+00	0012516 0003203 0003472 0003472	1.3376933E+05 -6.8392068E+04 2.5493703E+03 -7.8125594E+00 1.6773461E+00 3.5281451E-01
2.5564149E+03 2.2524963E+02 6.9654083E-01 6.785499E-02	.0003305 .0001050 .0003937 .0003139	ES 2 AND	-1.2402219E+05 -1.4625283E+06 -5.8759995E+04 1.6887681E+01 -3.2982160E+00 -4.4690406E+00	.0011060 .0010962 .0009905 .0009935 .0009991	2.1612656F+06 -4.4987975E+05 5.3131244F+04 -1.1199628E+00 2.5223731F+01 4.5093504E+00
2.6064919E+07 6.0711496E+05 5.6521594E+03 7.0660722E+01 -2.8776739E+01	0000013 0000111 .000030 000067 000067	PARAMETERS VEHICLES	-6.6122571E+09 -1.2137929E+10 8.6431540E+07 3.853176 ⁻ -104 1.0621093E+06 -1.3059782E+04	0003554 .0003718 .0000188 0003166	PARAMETERS VEHICLES E+12 -5.5318355E+19 2 E+18 -5.1045140E+17 5 E+18 -5.1045140E+17 5 E+18 -1.0679347E+16 -1 E+18 -2.1668442E+16 4
1.1240000E+07 -2.1195159E+06 -1.0533869E+03 -9.4392402E+02 -1.6033321E+02	.0001665 .0000818 .0001451 .0007845 0003380	D AND Q PARAM	2.1359723E+09 2.4454244E+10 9.7711146E+08 -2.8155152E+05 4.5522657E+05 7.4590888E+04	0745954 0771838 0231040 0689929 0745377	P AND Q PARAM -3.4215789E+13 5.9751266E+09 -8.4327316E+08 -1.1027380E+04 -3.9837282E+05
3.2847022E+06 -3.5453554E+04 4.8391383E+02 -4.3420236E+01 -1.1312092E+01	CORPELATION00050310002351 .00023510004445	CAPTESIAN FOR	COVATIANCE -1.30726356+09 -2.2436256+09 -9.62198366+08 2.69935976+05 -1.6868081F+05	CORPELATION -, COGS 734 -, 0010432 -, 001950 -, 001950 -, 0014295 -, 001285	COVACIANSE -2.3483103F+09 1.015464E+09 -4.97145464E+07 1.0160626F+07 1.0160626F+07 -2.6950820F+04

0801150 0001817 0001686 .0001797 .0000836	-3.6094135E+04 1.4014430E+04 -3.7037926E+03 2.9673554E+00 2.5799959E+00	0000160 0000132 0000143 0000214 0000259	9.8390697E+03 3.9255611E+04 -3.6400340E+03 3.0474027E+00 -2.7459871E+00	000013 .0000158
0006216 0011135 -0011084 .0010985	1 -8.7797011E+03 6.2647240E+02 -2.2015746E+02 5.2499057E-01 4.0581661E-01	0001581 .0001482 .0001186 0001161 .000729	-1.4087183E+03 -6.6890432E+03 5.5496434E+02 -5.0272685E-01 4.5328522E-01	0000529 .0000611 0000805
.0037233 .0006525 .0044656 000632 0034545	9.4384103F+03 1.4623386E+03 1.4623386E+03 -9.3378403E-01 -8.5921878F-01 1.8071642F-01	0001092 .0000931 .0001315 .0001533 .000056	3.7491541E+03 1.3369839E+03 -9.2257022E+02 3.8671669E-01 -2.7790057E-01	.0000342 0001562 .0000981
0009371 0002142 0000114 .0002106 .000925	PARAMETERS VEHICLES E+07 -3.1441182E+07 9 E+07 2.5006973E+06 -5 E+06 -8.6192845E+05 1 E+03 1.4683916E+03 -9 E+03 1.4683916E+03 -8 E+02 -3.7750439E+02 1	.0000524 0000533 0000033 0000954 000090	7.1111316E+06 2.7021943E+07 -2.6314535E+06 2.1344342E+03 -1.8987911E+03 -4.2035352E+02	.0000103
.0027502 .0024564 .0029771 0022437	PA?AI 2.2433560E+07 3.2459390E+07 -7.3257214E+96 1.0757745E+93 1.7455359E+93	003371 .9095448 .9097138 0061017 .0097496	-4.815453E+07 2.7940878E+07 9.9912867E+06 -2.4121402E+03 1.0239537E+03 2.1453347E+02	.0002257 .0002226 .0001528
CORPELATTON - 6238894 - 0452468 - 0164189 - 0164144 - 0164144	CAPTESIAN FOR CCVARIANCE -1.81554155+07 -3.19302486+07 7.2395136E+06 -1.26875445+03 -1.8737562E+03	COPPELATION00021370002653000193000018170003506000424	COVARIANDE 4.0708517F+05 2.7938005E+05 7.5987195F+01 -1.2724545F+02	COPPELATION000107700039640009415

8410000 · -		2.1636300E+09 2.5206294E+09 -5.6964837E+04 5.95902E+04 1.1715756E+04	001967 0011671 0071723 001175		2.4249670E+85 -1.5405704E+05 -5.0212464E+04 -4.4402149E+00 -6.9645641E-01	- 00001494 - 00001494 - 00001491 - 00001421
0000762 0001630 0000741	.	-0.0355705E+05 -0.4270991E+05 1.8673897E+05 -1.5040705E+01 -3.6327432E+01 2.2222067E+00	0026147 .0025301 .0000713 0022722 0022351		7.7789851E+04 -9.8561522E+04 -1.4303279E+04 8.1283956E-01 1.3286231E+00 3.3208189E-01	- 0002596 - 0008390 - 00087301 - 00083974 - 0001109
.0001150 0002210 .0000891	ES 3 AND	-6.6512593E+05 -7.6930121E+05 1.7271647E+05 -1.0177074E+01 -3.5947322E+01 2.789522E+00	0014502 .0012956 .0001499 0014727 00099447	ES 3 AND	1.2640391E+06 -8.9739305E+05 -2.5683337E+05 5.3069577E+01 -1.7699408E+01 -3.5504179E+00	0006241 0027101 0005769 002370 0002370
0000223 .0000199 0000091	PARAMETERS VEHICLES	-1.1247565E+10 1.1265800E+09 2.3016841E+05 2.7939600E+04 -5.5700899E+04	.0010244 .0010469 .0002518 .0009360 .0009965	PPRAMETERS VEHICLES	-3.1479570E+09 8.1955842E+09 6.4981908E+08 2.0917799E+05 -2.8701045E+05	.0005109 .0010623 .0001011 0010257 0003417
.0000409 0003518 .0001413	D AND Q DARA	1.1192143E+10 1.2872958E+10 -2.0852031E+09 3.0054090E+05 5.9899544E+05	- 0055508 - 0068052 - 0015762 - 0050865 - 0064893	P AND Q PERAM	-2.0015227E+10 1.4049993E+10 4.0713392E+09 -8.623096E+05 2.8907493E+05 5.8256275E+04	.0045545 .0054340 .0027817 0054148 0035377
.0001417 0000787 .0000366	CARTESIAN FOR	COVARIANCE -9.5888520E+09 -1.1928532E+10 2.6795368E+09 -3.2072065E+05 -5.6692160E+05	CORPELATION - 0059599 0055958 0006024 0058657 00068980 0008525	ORBIT PLNE FOR	20VATANCE -1.3652682E+09 1.5311329E+09 2.5948243F+08 -2.5822972E+04 -1.2095153E+04 -3.2930006E+03	CORPELATION00419590079991001103900788020078818

	1.8014646E+08 -4.3770901E+00 1.0321171E+08 -4.1525955E+04 -4.3489009E+04	.00025956 .0002612 .0103211 .0103213		-2.7129238E+08 -1.0475984E+08 6.6711463E+07 -2.8941321E+04 2.0914424E+04	.0000149 0014731 .0204312 .0251546 .0408641	1.8615669E+08 -4.3769665E+88
2	1.7413755E+09 7.2744922E+08 -1.595832E+08 -4.0939931E+04 -1.0478753E+84	.09754704 0951857 0626287 0891838 0546713	~	~2.0234636E+09 -9.0223646E+08 4.9247107E+08 -2.2307450E+15 1.6355908E+05	.0108025 0008118 0536160 122167 2091326	2 1.7413449E+09 7.2745509E+88
ES 3 AND	-8.2197762E+08 2.0249311E+09 -4.7166368E+08 1.9200818E+05 2.0080918F+05	.0024261 0205160 0669327 .2490229 0959812	ES 3 AND	7.2253027E+08 -1.7454422E+09 -1.0774311E+06 -3.9331202E+04 5.7072649E+04	1068851 0895340 0891724 0912761 3033287	ES 3 AND -6.2201590E+08 2.0246845E+09
PARAMETERS VEHICLES	-3.3545699E+12 -9.9709359E+12 2.2769325E+12 -5.5782561E+08 -7.0281540E+08 1.0211158E+08	0509045 .0559755 .0229720 0514352 0314587	PARAMETERS VEHICLES	.6.5829534E+12 3.6226599E+11 1.9408642E+12 -7.2071049E+18 4.6981564E+08 1.0331038E+08	.0564783 .0534006 .0195506 0203675 .0545459	PARAMETERS VEHICLES [E+12 -3.3544447E+12 -8 [E+12 -9.9708343E+12 2
P PARAN	-3.4395954E+12 -2.8034893E+12 6.3182045E+11 -1.9471392E+07 -9.3138514E+07 2.94282715+15	.3306273 3628895 1457183 .3220593 .2091451	ARAM d	-1.9471883E+13 1.9600803E+13 3.8074465E+12 -5.1997125E+08 -5.1115869E+06	.4075830 .4153590 .0055164 4985293 150404	P AND Q PARAM -3.4359649E+12 -2.8044183E+12
CAPTESIAN FOR	COVARIANSE 2.2099148E+13 1.6565361E+13 -3.7197699E+12 1.4906768E+07 4.7325437F+08 1.8933087E+07	CORRELATION . 4917049 4954505 0550267 1457393 .5581215	ORBIT PLNE FOR	COVARIANCE -5.4445418E+12 5.1369829E+12 1.0755021E+12 -1.6579252E+08 1.8166733E+07	CORRELATION44632674263255136035034966330429119	CARTESIAN FOR COVARIANSE 2.2099656F+13 1.6565725F+13

1.0320893E+08 -4.1525639E+04	-4.368413E+04	7.94240106+03		.0025959	.0002484	.0103210	0401478	.018510?	.0000773			-2.7124325E+08	-1.047664E+98	6-6709613E+07	-2.8940939E+04	2.0014303E+04	6.6070975E+03		.0008069	0014730	.0104311	. 0251625	.0400639	.0046775	
-1.5958678E+08 -4.0937866E+04	-1.0477024E+04	9.3729922E+03		.0754714	0956767	0826275	.2551799	0240669	0514427	2		-2.0234121E+09	-9.0227242E+08	4.9246061E+08	-2.2307227E+05	1.6355833E+05	3.6105230E+04		.0107517	0008112	.0536157	.1221615	.2051314	.0239996	
-4.7165319E+08 1.9200696E+05	2.0080692E+05	- 3. 6/47896E+U4		.0024258	0203600	0669320	.2490209	0959752	0501323	ES 3 AND		7.2253794E+08	-1.7454148E+09	-1.0774571E+08	-3.9328983E+04	5.7070717E+04	1.3286445E+04		1066505	0895350	0891714	0912716	3033242	0360061	
2.2768961E+12 -5.5782101E+08	-7.0280726E+08	1.UZ11U94E+U8		0509055	.0557274	.0229716	0514340	0314586	.0104768	PARAMETERS VEHICLES		-8.5828540E+12	3.6219315E+11	1.9408418E+12	-7.2070555E+08	4.6981484E+08	1.0331001E+08		.0563732	.0534027	.0195504	0203677	.0545447	*0067500*	
6.3090745E+11 -1.9381267E+07	-9.2952797E+07	C. 50 / 4 5 / 5 E+U 5		.3305263	3612718	1467125	. 3220442	.2091397	0647994	P AND Q PARAM		-1.9472752E+13	1.9601572E+13	3.80751.81E+12	-5.1999950E+08	-5.1079 851E+ 96	-1.0483338E+07		. 4059175	.4153667	.0055152	4925082	1503905	0150412	
-3.7195558E+12 1.4904914E+07	4.7325349E+08	1.0933925E+U/	CORRELATION	.4917030	4934355	0550233	1457424	.5580916	.0297330	DRRIT PLNE FOR	COVARIANCE	-5.4401219E+12	5.1339354F+12	1.0745013F+12	-1.65598945+08	1.8099837E+07	1.5353686 + 106	CORRELATION	4454935	4263290	1350289	.2132117	3498430	0423331	

** A PINARY PLOT FILE HAS BEEN GENERATED ON TAPEL2 AITH THE FOLLOWING COMMENTS AND RECORD FORMAT **

VALUE 000E+01		00E+0	09E+0	00E+0	00E+0	00 E+0	0+500	00E+0	005+0	20+5000	00E+0	095+0	00E+0	99E+0	00 E+0	005+0	30E+3	0+300	00E+0		00E+0	000E+07	035+0	00 E+0	00E+0	00 E+0		00E+0	000E+07	07E+0	0+200
3.00C	*	.00	.00	.00	.00	.00	.00	.00	.00	00	.90	.00	.00	.00	.00	.00	000	.00	.00		.00	1.000	.00	.00	. 30	٠ ت		.00	1,000	.00	.00
1IN VALUE	ER EFF	.65584F+04	.61779E+0	.91930E+0	.52175E+0	.04794E+0	.13995F+0	.11930F+0	.04038E+0	9.92719F+06	.33370E+0	.46933E+0	.96746F+0	.49378F+0	.14504E+0	.87071E+0	.53174F+0	.71158E+0	.93201E+0		. 39278E+0	38428E	.65343E+0	.50912E+0	10355E+0	.15413F+0	12	2.74522F+0	.9112UE	.69294F+0	.16220F+0
ARAMETFR Ime (min)	HITH		>	2		۵۸			>	7		٥٨		*	>	7		>		P - PAPAMETER	*	>	2		> C		P - PAPAMETER		 	ر	Q.C.
090 P/	41	000	000	000	000	000	000	0 0 0	000	2010 0.	000	000	000	000	0 0 0	000	000	300	000	(x)		21 1					נננו	26 1			

		SONT'E	
1.00000E+07 1.00000E+07 1.00000E+07 1.00000E+03 1.00000E+03	1.00000E+07 1.00000E+07 1.00030E+07 1.00000E+03 1.00000E+03	1.000000000000000000000000000000000000	1.00000E+07 1.00000E+07 1.00000E+07 1.00000E+03 1.00000E+03 1.00000E+03 1.00000E+07 1.00000E+07 1.00000E+07
EFF3TS * 1.3554F+06 9.97730E+06 9.24148E+05 5.11236E+02 9.927;4E+02	EFF53TS * 1919.1E+06 7.18550E+06 9.99358E+06 5.33116F+02 9.09837E+02	EFFESTS # 6.00	Q PARAMETER EFFE 2.33193E+05 3.09323E+05 4.68032E+05 2.06295E+01 4.16191E+06 2.04235E+06 9.92709E+06 9.33390E+02
P - PARAMETER X Y Y Y Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	P PARAMETER P T T T T D D P D T D T D T D T D T D T	P - PAPAMETER X	INVERSE 41TH P+ 2 2 2 00x 00x 4 4 7 7 00x 00x
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* C(CP)	900000 + 666666 0000000000000000000000000000000	* W W W W W W W W W W W W W W W W W W W

	(3)	
1.00000E+03 1.00000E+03 1.00000E+07 1.00000E+07 1.00000E+07 1.00000E+03 1.00000E+03	1.0000050000000000000000000000000000000	1.000000000000000000000000000000000000
5.46841E+02 9.96046F+02 5.49344F+06 7.14+17E+06 3.97071F+06 9.59175F+02 3.71160F+02	EFF.3TC & 2.434.0005 2.789.42E+05 4.504.01E+05 1.857.3EE+01 1.908.1F+01 4.1975.0E+01 5.1188.2E+04 3.935.4E+05 4.485.0E+05 4.242.15E+00 4.262.18E+00	EFFLOTS * 7.354.7E+06 9.144.9E+06 9.27.9E+06 9.27.9E+02 9.927.9E+02 1.021.07E+06 7.18554F+06 5.331.2F+02 9.99958E+06 5.331.2F+02
> C	P+C PAPAMETER P PAPAMETER P P PAPAMETER P P P P P P P P P P P P P P P P P P P	0 + 0 PAPAMETTR X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
66 0000 68 0000 70 0003 71 0003 72 0003 73 0003		

_						(3						
	1.000000+07	00000		.00000E+0		0000E+0		1.00000E+07	+30000	.00000.	0	43C00	90000 E+
EFFF 375 +	10313E+0	.80357E+	272E+	.34333E+	.51512	3.904415+02	EFFF3TS *	6.35558F+06	.56750E+0		.08239E	3105+0	3.90%41E+02
P+C PAPAMETER	×	>	2	χū	40	70	P+C PAPAMETER	Ω	-	L	90	10	Ü
(2)	₩, EC	r. 60	100 3	101	102 3	103 3	(du) .	174 3	105 3	106 3	107 3		100 3

ITEM	DESCRIPTION	REFERENCE SECTION
23	The record formats of TAPE12, containing the square roots of the diagonal elements of the matrices indicated. The minimum and maximum values on the tape for the computations are also printed	2.5.1 [QPBQX(F)]

C.5 TEST CASE D: MCI SINGLE-VEHICLE EPHEMERIS GENERATION RUN (ITIN = 3)

CARD CARD CARD CARD CARD CARD CARD CARD	SNM SNM ************************************
.69444446E-3 .69444446E-3 -1	027792902E+1 860318297E+1 6MLAT (DEG) 6MLNG (DEG) AM (ER) ERNM (MM / ER) SLT
21 1 2 6944 18	GRAVILY HODEL ************************************
	EARTH EARTH PHYSIC PHYS
2 0 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 ER**3/MIN**2 = 1.731400LU ALIZATION WITH 1 TERMS. CNY 0. SNM 0. ***********************************
8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SM = 6.80232870105-05 NO NORMAL N

ITEM	Card images of the ing associated with a run PLANT ICENM LNØRM, NTL SGM, AM	
DESCRIPTION	Card images of the input MODEL data. Emphasis is on the variables associated with a run in the lunar integration mode: PLANT ICENM LNØRM, NTL SGM, AM	
α,		
REFERENCE SECTION	2.1.3 2.1.2.2 2.1.1	

3.141592654E+00	# # # #0	• • • • • • • • • • • • • • • • • • •			SECS.	******			
926	* U		;	•	9	*		(.
115	2005		: :	2	~	*	- 0 m 3	₩ A Ø W	00000000000
3.1	**************************************			3.00000000E+03	430.1	***	CARD	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	* 6		00	000	· · ·	* *			
	2) #		= 10000	000	SECS.	*			
			H II	m	6				
3 PI	FACTORS extrement/contentstores to AF(I/O-ER/MIN**2) = 5.81270500E+03	在我们的 CE+1000000000000000000000000000000000000	NPDOT PINS	CRASH ALTITUDE(FT) = 3.00000000E+03	121.7	******	8 •4688333333E3	-4.8269172572 1.010441446E-2	
3,352329869E-03	TORS	00		ALTITUDE(FT)	v	*	3333	9172	
986	FAC.	*	00	n Li	MAS	*	6.6	826 104	
5232	Z O	. 000		ALT.	6	*	1.8	1.0	•
3,3	∞ +	00 *	u 0.	CRASH	SEGMENT	****	IDAY		
	300 K	PUT 2.			w		O E	010	m
	JT C	ION INP	G	MCI	F0.	DATA			
	INPUT/OUTPUT CONVERSI In) = 3.48762300E+05		00	ALTITUDE MCI	3 E	CLE		F 3	E3
	17/0	INTESRAT			TIME	VEHICLE		1.1061755345 -1.885658509E-	2.642833333553 2876. 3876.
	d (x	1 6 .0000000E+00	11.11	CRAS4				1755 5654	8333
u.		6	TELEH	E+0	ECU.	*		. 68	842 76. 0.
	essessessesses INP E+j7 VF(I/D-ER/MIN)	19	본러	3.00,000000000.5	Ä	****	3 0	41	3 W W W W W W W W W W W W W W W W W W W
)E0	j.	2.0		0.000	Sc.	*	HE	o J	00222
000	>		70	0	SECONDS.	*	Ħ.		10 8.14 14 14
003000000E-01	* * * * * * * * * * * * * * * * * * *	IOENT IAAA HAAA			SE	*		٣	
1.00			F-84	"				لغة	
#	2.09257380	0 +	TAPE7 NOOPR	(F)	ä			523	×
	* * *	. 00 .		UDE	►	*		369	
	. 2	100000000000000000000000000000000000000	00		0.1	*	1967 1967 0	-11 -3.3136952336 7.05817720489	X 33 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	**************************************	IFOPM = 1 NPCMP = 0 HMIN = 2.00000000000000000000000000000000000		ECI CRASH ALTITUDE (FT)	SEGMENT	******	101 101 101 100	9	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	**************************************	11111	11 11	RAS	EGH	*	IVEHIDA IVEAR 1 TZNE 0 SFC 0	ICTYP-	66 5 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
a .	11/6	TEOPE STATE	TAPE2 PRHO	O I	5 S		HH	-	
CKEP	, L	1 725	78	ŭ	INTER				

ITEM	DESCRIPTION	REFERENCE SECTION
. 2	Card images of the input VEHICLE data. The variables associated with a lunar integration run are emphasized:	
····	IC T Y P PHASE	11.1.4

	I,PSI				©	
•	AF, AG, N, L, CHI, PSI 0. 0. 0. 0.			R(ER/HIN)	# # # # # # # # # # # # # # # # # # #	0.4000000000000000000000000000000000000
AT PRESENT. ****	A,E,I,O,U,TAU -1.07315621590E+07 1.09681141984E+00 3.87507025093E+01 3.35391443309E+02 9.09284281607E+01 2.88904557605E+03	ES ARE USED FOR PLANETARY PERTURBATIONS MODEL **	sessessessessesses PLANETARY TAPE CONSTANTS sessessessessesses	VEL. SCALE FACTOR(ER/MIN)	22 44 44 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KAIE (KAU/HSUTS) = 6.
SET IS UNAVAILABLE AT	76+02 -1,0 66+02 -1,0 66+02 36+03 36+03 36+03 36+03 36+03 36+03 36+03	SNOI	TAPE CONST	(ER)	3	NOTALLON KALE CA
ELEMENT SET IS U	A,0,8,4,8,V 2,829074,877E+02 -3,37887309789E+01 1,77947341526E+02 5,97802462480E+01 1,24685322263E+08 4,34867242779E+03	PLANETARY PERTURBATIONS	*** PLANETARY	DIST. SCALE FACTOR(ER)	2.34548550E:04 1.00002516E+00 1.00000000E+00 6.9444446E-04 2.3/543650E+04 2.3/548550E+04	
F AND G	X,Y,Z,Z,Y,OZ 2,31475398135E+07 -1,01005805972E+08 -6,93415182702E+07 -6,57645633490E+02 3,52403882722E+03 2,46162611579E+03	USED FOR PLANE		MASS(EM) DIST	3.32951300E+05 1.22999000E-02 0.14979000E-01 1.07621010E-01 3.17867100E+02 9.51290000=+01	• 03000000000.
***** HYPERBOLIC ORBIT.	1 1 20+			MAS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ii
AH SECTION	VR/HD/OAY VRME,HP,HIN,SEC 1967/ 4/18 9. 0. 2.46883333330E+03	X X +		BOOY	SUN HOON VENUS HARS JUPITER SATURN	

REFERENCE SECTION	2.1.3			
DESCRIPTION	A table of planetary constants, as preset or input, and of options requiring the planetary ephemeris tape. In this case, the options are moon perturbations and eclipsing			
ITEM	m		 	

•		*** ****		***	ECLIPSING	G CONSTANTS			
RE = 1.	,00000,	1.000000005+00		1.09121800E+02	02 RM	**	2.72506390E-01 ERAU	U = 2.34548650E+04	⊙
	PL AVETARY	PRESENTATION AND THE STREET ST	S FILE E41	FILE INITIALIZED WITH	# H H H	BCDY(IES).	•	file Initialized with 6 BCDY(IES).	
ENTER SE	SEGMENT 10 AT	10 AT 1	122.3 SECONOS.	OS. EXECU	EXECUTION TIME	E FOR SEGMENT	NT 1 WAS	5 CP SECS., 3.6	PP SECS.
	TPA	JECTORY IN	TPAJECTORY INTEGRATION	FOR CASE	-				
IVEP	0	ICFNI		IDRAG	-	At P46	3.5853285045+00	COAM 0.	
JVFD		MACAL		13	, eo	AL G-0E3	2.054241915F+02	F. B.	1.0
MVEP	0	MAJOR	0	ISRP	6	TJOATE	2.439598500E+06	NIMI	00
KVEP	0	MAMASS		NEDS	M	TSTART	2.468833333E+03	HAX	000
LVEP	0	7	6	RECHO	0		3.2688333335+03	2	
ITENTX	-	JNORMX		NAASSX	0	-	8.00000000E+02	XIX	
				NASA	6		1.000000000E+02	SORD	00
				•	PREDETTRMINED	TNED FVENT	TARIF		
TIME (MME)		TYSE	ASSOCIATED	QUANTI	IES				
3268	3268.8333 1	12F20							
	*	*** TRAJECTORY	Y START						
	•	* * * *	* * * *			#CI		9	
SEG12 EN	ENTRY TIME IS		122.45500					יי	
9	CESSIC	PRECESSION MATRIX FR	FROM MEE-FPOCH	10	MFF-DATE				
o.	566666	10-32566666666666666		9451503042	7E-05	4.5619121	_		
1-1	1494516	-1.0494516030427E-0		9. 999939999944E-01	4E-01	-2.3937529	2.3937529677164E-13 (1)		
	171619	0-34046701	-6.3	93753UUB282UE-13	UE-13	65656666	1999989E-01 J		
135	ENOGRA	SEL ENOGRAPHIC MATRIX	X FROM	MEE-DATE TO	MF-DATE				
80	791576	8.57915763657845-01		5.1353198153613E-01		-1.6292525	_		
3	1153677	-4.81536778088006-01		9717353143 6387511642	5E-01 7F-01	-3.7860096	.7850096950385E-01 (8)		
•		,		1101111000	40.0	1101111111	_		

ITI	ITEM	REFERENCE SECTION
	The constants for the determination of eclipsing, requested by PRCDE(H), are the radii of the earth, sun, and moon (in er) and the number of er/au (au = astronomical unit)	11.3.1
	5 Indicates the planetary ephemeris file TAPE7 has been initialized (i. e., read) to the date of epoch, with two bodies (sun and moon)	16
	6 Output comment specifying the coordinate system in which the numerical integration will be performed	11.1.6
. , ,	7 Precession matrix used to rotate from MEE of miduight day of epoch to MEE of current date, printed whenever LEMSP = 0	2.1.4
	8 Selenographic matrix from MEE to MF, printed when LEMSP = 0	2.1.4
···		

	<u> </u>		CROSS-TRACK 1.387779E-16 2.982365E-04 2.982365E-04	25 41 57		S			
NSTEP = 0	-3.433679901877E-04 8.731074964758E-03 6.079749704093E-03	7.263048026485E-03 3.72608404297E-03 2.978264333465E-03	IN-TRACK 3.659467E-17 1.611891E-03-	ASTED II	•	PROCESS 247 STEP	NSTEP = 247	-3.687047484945E+00 3.640811386103E+00 1.754145097956E+00	-3.678980319840E+00
			UNITS) RADIAL 6.193624E-03-1.113595E-02 1.138740E-04 6,190841E-04 6.079750E-03-1.051788E-02	.500000 1.000000 2.000000	2880.8333 (10	SECONDS TO PRO	0	1 8 8 8 8	
.25000	-6.576466334896E+U 3.524038827223E+O 2.461626115785E+O	2.605945998745E+03 9.355392952157E+02 1.226209106591E+03	UNITS) 6.193624E-03 1.138740E-04 6.079750E-03	TIT MAGG	I BMIL	2.80800 SI	2.00000	-2.685598080283E+03 7.046579359872E+03 4.555337144496E+03	-4.440455848847F+93
n I	6.576 3.524 2.461	-2.605 9.355 1.226	(EXTERNAL UNITS) 9.021985E-03 6.193624E-03-1.113696E-02 2.90910\langle 04-1.138740E-04-6.190841E-04 8.731075E-03-6.079750E-03-1.051788E-02	= 2475.333333 = 2493.6333333 = 2500.6333333	-76344.0	IN SF312 WAS	11 T	-2.685 7.046 4.555	044.4-
2458.83333	2.314753981350E+07 -1.010058059718E+08 -6.934151827016E+07	9.39305628989E+08 5.322938584899E+08 3.2389+9691360E+08	MASNITUDE X Y Z (EXTERNAL UNITS) 1.113596E-02-2.067551E-03 9.021985E-03 6.193624E-03- 1.752257E-03 1.724183E-03-2.909101E-04-1.138740E-04- 1.054485E-02-3.433680E-04 8.731075E-03 6.079750E-03-	1 1 1 1 1 1 1 1 1	ALTITUDE =	125.25430 TOTAL TIME	2980.833333	3.791575050137E+06 -3.74&130529623E+06 -1.803119931510E+06	+004756867417E+09
A7 T =	2,31,47 -1,0100 -6,9341	-9.3930 5.3229 3.2309	MASNITUDE 1.113596E-02 1.752257E-01 1.054485E-02	STEP DOUBLED STEP DOUBLED STEP DOUBLED	*	SI	AT T =	3.7916 -3.746 -1.8033	-1.0044
I VECTORS		I VEGTORS	FOPCES SELENOPOTENTI STHEP ROITES TOTAL		*** CRASH	Sec12 FXIT TIME	I VECTORS		I VECTORS
MOH		ECI	FOPC SELENC STHEP TOTAL			Sr 51	HUI		Lus

ITEM	DESCRIPTION	REFERENCE SECTION
	The vectors r, r, and r in the integration coordinate frame and in the ECI frame at epoch	Case A: Item 30
	Indicates when and where the vehicle crashed into the moon	2.1.3

5.640676741008E+08 4.338720210359F+03 3.636268229247E+00 3.591575464350E+08 3.245180355422E+03 1.751256984947E+10

FORCES 4ASNITJDE X Y Z (EKFERNAL UNITS) RADIAL IN-TRACK CROSS-TRACK SELENOPOTENTI 5,470625E+00 7,203194E-09 4,973799E-14 DIHER BODIFS 8,470625E+00 7,203194E-09 4,973799E-14 DIHER BODIFS 8,737533E-05 7,797226E-05-3,102316E-05-2,433802E-05 8,100298E-05 2,806469E-05-1,689197E-05 TOTAL 5,470544E+00 3,640811E+00 1,754145E+00-5,470544E+00 2,807190E-05-1,689197E-05

** VEHIOLE CRASHED

412.0000 MINUTES 2.876 SECONDS TO INTEGRATE A SPAN OF THIS CASE TOOK

*

2886,833 MINUTES FROM MIDNIGHT OF EPOCH 2458.833 FROM

49.1 PP SECS. 3.0 CP SECS., EXECUTION TIME FOR SEGMENT 10 MAS 125.3 SECONDS. ENTER SEGMENT SO AT

REFERENCE DESCRIPTION	Remark giving reason for termination (in this case, because the vehicle crashed)				
ITEM	11 Re vel				

*** TRACESS EPHEMERIS OUTPUT KEY ***

JATE,	HF, MM, ST, DT	X 9. Y 9. Z 9. R	0x,0x,0x,v	LAT,	AL PHA,		REV	REMARKS
HOZDAY/YR HR/Min Sec	MIN FROM EPOCH MIN FROM MIDNIGHT SEC FROM MIDNIGHT STEP SIZE(MIN) DIST TO MODN(ER)	x (FT) y (FT) 7 (FT) R (FT) LAT-MOON(DEG)	x (f7) DX (FT/SEC) y (FT) DY (FT/SEC) y (FT) DZ (FT/SEC) R (FT) V (FT/SEC) LAT-MOON(DEG) LDN-MDON(DEG)	LATITUDE (DEG) LDNGITUDE(DEG) ALTITUDE (NH) S-YEH-LAT(DEG) LAT-EARTH(DEG)	ALPHA (DEG) RE DELTA (DEG) PE BETA (DEG) PE AZIMUTH(DEG) ND LON-EARTH(DEG)	(DEG) (DEG) (DEG) (DEG)	REV COUNT PERIOD PER-DECAY NDD-REG	• • • • •
		SPECIAL O SPECIAL O C APDGE-PERIGEE D HODN - FIX	SPECIAL OUTPUT DPTIONS REQUESTED FIX	SPECIAL OUTPUT DPTIONS REQUESTED C APDGE-PERIGEE U MOON - FIX + + + + + + + + + + + + + + + + + + +	(3)			

MSI TRAJECTORY

>	DESCRIPTION Key to additional ephemeris output provided in lunar runs	REFERENCE SECTION
ey to additional	Key to additional ephemeris output provided in lunar runs Special output options requested by PRCDE	11.3.1.2

+	
1.1	
Sil	
S	
C	
-	

THIS ROOM PRINT

		(3			
	H U X	+03	L X	+03	#CI	ŭ.
	77972 0.00000 0.00000	2.60926@66E+03	REV	2.61038237E+03	REV77972 0.00000 0.00000	QEV
	ALPHA, 262.9074.8736 -33.78873096 177.94734153 69.78024625	9.09284232E+01	ALPHA, 311.6484989. -12.17957226 177.65893199 282.52768331 -6.51581120	1.05503772E+02	ALPHA, 282.90748738 -33.78873098 177.94734153 69.78024625	ALPHA 311.54849893 -12.17957226 177.65893199 262.52768331 -6.52038602
	LA7, -33,76673098 -77,09251221 19582,12025 -33,78873098	3.39391443E+02 9.	LAT; -12.17957226 -48.35150066 19582.12025 -12.17957226 -6.56148470	2.68132925E+02 1.	LAT -33.78473098 -77.09251221 19582.12025 -33.78573098	LAT,12.17957226 -48.35150066 19582.12025 -12.17957226 -6.56148314
	0x,0Y,0Z,V -6.57546633E+02 3.52403083E+03 2.46162612E+03 4.34967243E+03	0.1	JX, JY, DZ, V -2.94728354E+03 3.05296783E+03 9.54549037E+02 4.34951224E+03 4.23325212E+01	20	0x,0Y,0Z,V -6.57546633E+02 3.52403883E+03 2.46162612E+03 4.34857243E+03	0x,0x,0x,0x,0x,0x,0x,0x,0x,0x,0x,0x,0x,0
3	X,Y,Z,R 2,31,Y5398E+07 -1,01006806E+08 -6,934;5183E+07 1,24585322E+08	NTS (A,E 11,25+30	X,Y,Z,R 3.09956508E+07 -9.10722076E+07 -2.63056484E+07 1.2459532E+08 1.89276533E+01	NTS (A,E 8170E+10 PRINTS	X,Y,Z,P 2.31,75396E+07 -1.01006R06E+08 -5.93415183E+07 1.24635322E+08	X,Y,Z,R 9.09356508E+07 -9.10722076E+07 -2.53055484E+07 1.24635322E+08 1.89276533E+01
	76, 17, 57, 57, 57, 57, 57, 57, 57, 57, 57, 5	¥.	ME, MM, ST, DT 0.0000 2468.8333 61730.0000 .2500 59.15394	CLASSICAL ELEME 055E+07 1.1243 *** REQJESTED	ME, MM, ST, DT 0.9000 2+69.93333 61730.0000	MF, MM, ST, DT 0.00000 2468.9333 61730.0000 .25000 59.15398
	DATE 4/19/67 17/8 50.00000	CLASSIC -1.07315622E+07	DATE, 4/19/67 17/ 8 50.00000	CLASSIC -1.07267055E+07	DATE, 4/19/67 17/8 50.00000	0ATE, 4/19/67 17/8 50.00000

REFERENCE SECTION				
DESCRIPTION	Epoch print in lunar mode in MCI and MF (moon-fixed) coordinate frames (Item 38 of Case A plus one line at the end of the MF output, as in Item 12 of this case). The classical elements in MCI and MF coordinate frames are also shown			
ITEM	4.			

* VEMICLE CRASHED

*** END OF TRAJECTORY ***

C.6 TEST CASE E: ECISINGLE-VEHICLE POWERED FLIGHT EPHEMERIS GENERATION RUN (ITIN = 3)

Θ			
40000000000000000000000000000000000000	3/SEC**2	.783090865. .783090865. .20103030065. .3463933655. .10793655.	.314159265E+*1
00000000000000000000000000000000000000	######################################	GMLAT(073) = GMLAT(073) = GMLNG(076) = GMLNG(076) = GMN(EF) = GMN(PT = 1
MTERMS04,69 0. 0. 0. 10 0.015525 1FTNS 169 01TIR 3	+ XC +	323033 4 4 4 4 6 6 9 1 1 5 - 6 6 9 1 1 5 - 6 6 9 1 5 5 1 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5	= .335232987E=f2
43 2.63 E-6 12.63 E-6 12.63 0625 1.553 193 625-2	*** EF 'H * 1437792018 TEPMS. SNM PERTURBATIO	CS *** \$0.10.10.10.50.50.50 *** PHYSICAL DMEGA(RAD/ OME 3L(RAD/ ERKY(KM/ER FINA(FILNA	UGREE (UES) F
H H H H H H H H H H H H H H H H H H H	ANIN*+2 = 10	ZDNAL H EJ3 EJ3	
MCDEL DATA HI TRPX MDDEL INFORMI D 02,00 0 13,00 0 14,00 CRASH3. LEMSPJ END	GM = .5531336200E-32 ER4+3 NO NORMALIZATI N	######################################	6508J(F1755C++2) = CKEP = =

	ITEM	DESCRIPTION	REFERENCE SECTION
	4	Card images of the input MODEL data. Emphasis is given to the varialles associated with a powered flight run (ITIN = 3), the others having been discussed earlier:	
		NPCMP, PTNS, ER, CRASH	2.1.4
· · · · · · · · · · · · ·			
C 14			
4			

.*************************************
ECI CGASH ALTITUDE = G.

REFERENCE SECTION	2.1.3	2.1.3		
A DESCRIPTION	Crash altitude table. ECI and MCI crash altitudes at which to stop integrating for the sun and moon, respectively	Integrating for solar system bodies		
ITEM	7			C 163

,		•
ĺ	~	

	ITEM	DESCRIPTION	REFERENCE SECTION
	8	Card images of input VEHICLE data. Emphasis is given to the variables associated with a powered flight run (ITIN = 3), the others having been discussed earlier:	
		AL, DL, IØTPF, NPFRP, PFRP, DALPH, KDRAG ALTPR CDAS	11.1.5 11.3.1.2 11.1.8
· · · · · ·			
C-165			

INITIAL CONDITIONS	<pre>x,y,z,0x,0v,0Z 4,0,3,4,R,V36312964977=+3736312964977=+37316312964977=+37316312964977=+37316312964977=+37316312964977=+37316312964977=+37316312964977=+37316312992=+103163129439=+123163129439=+123163129439=+123163129439=+123163129439=+123163129439=+123163129439=+123163129439=+133163129313939=+133163129439=+133163129439=+133163129439=+133163129439=+133163129439=+133163129439=+133163129439=+133163129439=+133163129439=+133163129439=+133163129313939=+133163129439=+134163129439=+134163</pre>
	×1 CIII
EPOCH	YR/MC/DAY ZNE, HR, MIN, SEC 1971/ 1/ 1 C. 0.

NO PLANETARY PEKTURBATIONS.

NO ATMOSPHERE MODEL

3 C S •	נכ ע•	********* TRAJECTORY INTEGRATION FOR CASE 1 . *****************	. 87000000E.32	.999932724E+72 ER .1700F0000E-13	.1953125005-92	.6400000375+02	.125000000000	•	. 1=0000C0rE+01	UTD .35988889995+92
.2 CP SECS.	· i CP SECK.	****	CDAW	E.	NHWI	H VAX	ï	NTX J	SORC	UTD
		CASE 1 .**	.174521183E+41	999932724E+92	.244E 95257E+#7		.6700777395+72	.699033339E+92	.130073363E+03	
EGMENT	EGMENT	CN FOF		ی		RI C.				L
FOR S	FCRS	FEGRATI	ALPHG	ALG-	TJDATE	TSTA	TSTO	FLIGHT	SSTEP	CPAW
NTIN	BKIT N	RY IN	۲۰,	ď	•	P ()	~	c -	c	c
12.9 SECONDS. EXECUTION TIME FOR SEGMENT 1 WAS	12.8 SECCNDS. EXECUTION TIME FCR SEGMENT 2 WAS	TRAJECTO	IORAG	I.	ISRF	NEGS	RECMP	NAASSX	NASA	NZING
SECONDS.	SECCNDS.	******	-	+4	ī	٠	m	J		
		*******	CENT	NON	MAJOR	MASS	_	UNORMX		
AT	ΑT	*	H	_	Σ	7.	Z	7		
SO THE	INT 1	****	_,	ر.،	.,	ر.،		+		
EGME	EGME	* * * *								
ENTER SEGMENT 62 AT	ENTER SEGMENT 1' AT	1 學 \$P\$	IVER	SWEP	MVEP	KVEP	LVEP	ICENTX		

 \odot

REFERENCE SECTION		
DESCRIPTION	Quantities associated with the current vehiale (Table C-1)	
ITEM	4	

Table C-1. Definitions of Initialized Integration Quantities

Svmbol	Definition	Reference Section
IVEP	Number of C and S parameters (GPRAM)	2.1.5.2
JVEP	Number of other model parameters (PPRAM)	2.1.5.3
MVEP	Number of mass parameters (MPRAM)	2.1.5.1
KVEP	Number of vehicle-dependent parameters (VPRAM)	11.1.14
LVEP	Number of delayed parameters (i.e., THRUST, DRAG, etc.)	11.1.14
ICENTX	Central force flag for the moon	
ICENT	Central force flag for the earth	
JNORM	Normalization for the earth gravity model	2.1.2.2
M£.JOR	Flag for the integration of the variational equations	
\	Number of masses in the earth gravity model	
LZ	Number of terms in the earth gravity model	2.1.2.2
JNORMX	Normalization for the lunar gravity model	2.1.2.2
IDRAG	Flag indicating the atmospheric model used	11.1.8
IR	Ratio of Runge-Kutta to Cowell step size (H0/IR)	2.1.4
ISRP	Flag for solar radiation pressure	2.1.2.6
NEQS	Total number of equations to be integrated	
RECMP	Flag for recomputation of perturbations	2.1.4
NMASSX	Number of masses in the lunar gravity model	
NASA	Coordinate and timekeeping transformation option flag	2.1.4

Table C-1. Definitions of Initialized Integration Quantities (Continued)

		•
Symbol	Definition	Reference Section
ALPHG	Right ascension of Greenwich (rad at midnight of epoch day)	
ALC-DEG	Right ascension of Greenwich (deg at midnight of epoch day)	
TJDATE	Julian date of epoch day	
TSTART	Trajectory star' :ime (MME)	
TSTOP	Trajectory stop time (MME)	
FLIGHT	Duration of flight (TSTOP-TSTART, min)	
SSTEP	Number of integration steps specified per rev when the regularized time variable is used	11, 1, 6
CDAW	Reciprocal of the ballistic coefficient	
ER	Error control in integration (ER = 1. $^{-5}$, where S is the number of significant figures)	2.1.4
HMIN	Minimum absolute step size for integration	2.1.4
HMAX	Maximum absolute step size for integration	2.1.4
H0	Initial integration step size: A negative value indicates backward integration	2.1.4
NTX	Number of terms in the lunar gravity mcdel	2.1.2.2
SORD	Power of the regularization transformation	11.1.6
CPAW	Solar radiation presture coefficient	11.1.4
UTD	Correction that relates iteration time to ephemeris time, sec	2.1.4

		<u>♥ 8</u>	
TABLE *	RATES, WR, WP, WY, LIFTZ, LIFTAL CONSTANT 5. 7. 7. 0.	RATES, WR, WP, WY, LIFTZ, LIFTAL. CONSTANT 15999 9009E+01 9. 9. 3. RATES, WR, WP, WY, LIFTZ, LIFTAL	7. 7. 9. 7. 6RAVITY TURN 7. 0. 7.
PREDETERMINED EVENT ITIES OL 0.	ISP, AE, WD, WD, DRAG BETA . 29166667E+D3 . 6000000E+04 . 40000000E+06 . 2400)000E+06 . 2400)000E+06	.SP, AE, WO, WD, DRAG .BETA .29166667E+03 .6100000E+04 .3760000E+06 .24603000E+06 .80003000E+06 .80003000E+06 .80003000E+02 .80003000E+03	.60063000E+04 .37363000E+06 .24003000E+02 0.800300E+02 0.800300E+03 .2216667E+03 .2400300E+04 .3600300E+04 .2400300E+04
* PRED ASSOCIATED GUANTITIES AL OL . \$9993272E+L2 0.	TF, WF, DV, HF, AA AZ . 1666667E+00	TF, WF, DV, HF, AA 2.13333336+00 TF, WF, CV, HF, AA AZ 2.77513336+00	TF WF, DV, HF, AA AZ
TYPE O TZERO	T, ST, SDT 0.009390 0.00930	1,ST;SDT .166667 16.000000 1.000000 1.001000	11.101010 5.651810 7.51.50T 16.651810 93.349210
TIME (MME) 0.0000	STAGE NO. 1 Primary	STAGE NO. 2 SECONDARY STAGE	0 10 0

Table C-2. Definitions of Predetermined Event Table Quantities

Symbol	Definition	Reference Section
TZERØ	Time to start integration	
AL	Right ascension of launch $\alpha_{\rm I}$, deg	11.1.15
DL	Declination of launch δ_1 , deg	11.1.15
STAGE	Stage number	11.1.15
Т	Start time of this stage, minutes from epoch	11.1.15
ST	Start time t, sec	11.1.15
SDT	Δt , sec, where the start time of the next stage is t + Δt , min	11.1.15
TF	Termination time for this stage, minutes from epoch	
WF	Final weight, 15	11.1.15
DV	Achieved change in velocity during this stage, ft/sec	11.1.15
HF	Cutoff altitude for this stage, ft	11.1.15
AA	Cutoff angle of attack for this stage, deg	11.1.15
AZ	Roll axis azimuth at the start of this stage	11.1.15
ISP	Specific impulse, sec	11.1.15
AE	Exit area, ft ²	11.1.15
wo	Initial vehicle weight for this stage, 1b	11.1.15
WD	Weight flow rate, lb/sec	11.1.15
DRAG	Drag reference area, C _D A or A	11.1.15
BETA	Roll axis pitch attitude at the start of this stage	11.1.15

Table C-2. Definitions of Predetermined Event Table Quantities (Continued)

Reference Section	11.1.15	(1)			11.1.15					And (1.1.15)	WF, 11.15
Definition	= CONSTANT; WR, WP, WY are constant throughout this stage	= GRAVITY TURN; this is c gravity turn stage (Item 11)	= FREE FLIGHT: this is a free flight stage (Item 12)	Roll axis turning rate, deg/sec	Pitch axis turning rate, deg/sec	Yaw axis turning rate, deg/sec	Constant lift reference area coefficient $C_{L0}A$ or A	Lift slope reference area coefficient $C_{\underline{L}_{\alpha}}A$ or A	Time to stop integration (Item 5)	Certain primary parameters (ISP, AE, WO, WD, DRAG, LIFTZ, and LIFTAL) are defined for a primary stage and are held constant until the next primary stage is reached	
Symbol	RATES			WR	WP	WY	LIFTZ	LIFTAL	TSTØP	PRIMARY ^a	SECONDARY

^aPrimary parameters define the vehicle configuration.

^bSecondary parameters control maneuvering of the vehicle specified by the primary parameters. . As Here and the best to the second

		(9)	
CONSTANT CONSTANT C. C	RATES, WR, WP, HY, LIFTZ, LIFTAL FREE FLIGHT 10. 10. 10. 10.	RATES, WR, WP, WY, LIFTZ, LIFTAL CONSTANT 5. 5. 6. 6. 6.	RATES, WR, WP, WY, LIFTZ, LIFTAL FREE FLIGHT 0. 0. 0.
ISP, AE, MJ, MD, DRAG BETA .54000006+02 .600000000000 .37570000E+04 .800000000E+04	ISP, AE, WJ, WO, DRAG BETA 0. 13374580E+06 C. 80000000E+02	ISP, AE, MO, MO, DRAG BETA .3000000E+04 .500000E+04 .1154850E+06 .756u0000E+03 .6500000E+03	ISP, AE, MO, WD, DRAG C. (. 12003000E+05 0. 50003000E+02
TF 9 WF, DV 9 HF, A A AZ	TF, WF, DV, HF, AA A2 . 1866667E+01	TF 9W F 9 DV 9 HF 9 AA	TF, WF, DV, HF, AA 25 CCC CJE + CZ
T, ST, SOT 1, 833333 116, 60000	T, ST, SOT 1, 943333 110.50201	1,81,80T 1,866667 112,69616 135, 63696	8 4.116667 8 247.39.090 3353.093000 ARY 66.0000 TSTOP
STAGE NO. 5 Primary	STAGE NO. 6 PRIMARY	STAGE NO. 7 Primary	STAGE NO. 3 PRIMARY 66.00

\odot	

	* * * * * * * *	NSTEP = 0	002,00 v,00x	29518\229789E+01 .1675210:7208E+02 129863715188E-03
	ECI * * * * *	н = .015625	XD,YO,ZO	150277773754E+04 264798324310E+03 13459535204CE-10
*** POWERED FLIGHT	* * * * * * * * * * * * * * * * * * *	1SEC = 0.00000. = 5	Z. Y. X	36312964977.5+37 .206925554466+38

CROSS-TRACK -1.298687E-04 2.159191E-22 -3.231174E-27 -1.298687E-04
IN-FRACK 1.147514E-18 -1.523623E-15 -3.979039E-13
Decoration Carternal Units Radial IN-TRACK CROSS-TRACK CROSS
(EXTERNAL UNITS) 71343E+31-1.298687E-0 5.412E-17 2.159191E-2 46544E+01 0. 7520E+01-1.298687E-0
(EXTERNA 3.17.1343E+JJ 2.65%412E-17 4.846544E+JJ 1.67520E+PJ
2 4E+05- 6E-16 7E+00
X 5.588:9 1.556641 3.53641 2.9518c
MAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRACK 3.22[2[0][6+0]] 5.588[94][6+0] 3.22[2[0][6+0]] 1.14;5][4][6+1] 1.298637[6+0] 1.52[2[0][6+0]] 1.14;5][4][6+1][6+1][6+1][6+1][6+1][6+1][6+1][6+1
FORCES GEOPOTENTIAL ATMOSPHERIC THRUST

ITEM	DESCRIPTION	REFERENCE SECTION
9	Powered flight. This notation indicates that the vehicle is thrusting, i.e., that ISP and WD are nonzero. If ISP and WD are zero, the vehicle's trajectory is controlled by external forces only, i.e., the pull of the earth or the moon. In this case, the vehicle is considered to be in free flight.	
7	Trajectory print at the beginning of this stage:	

TSEC = time from epoch, sec

T = time from epoch, min

H = integration step size

NSTEP = number of integration steps

X, Y, Z = vehicle position at time t, ft

XD, YD, ZD = vehicle velocity at time t, ft/sec

XDD, YDD, ZDD = vehicle acceleration at time t, ft/sec

<u>•</u>	•	•	(a)
XI, WR, WP, WY17353254E+00 .98482814E+90 9.	11 ,200 5474E+91 7535E-92	CK CROSS-TRACK 6E-10-1.298405E-fu 1E-04 4.125050E-07 7E-02-1.294443E-04	XI, MR, MP, MY17353254E+0G -984 82814E+0G 0.
ISP, W, CDAW, CLAW . 25492 674E+F3 . 4.10CPOFDE+F5 . 44PQP9P9E-92.	525 NSTEP = 1: XCO,YOO,ZOO 35064,446474E+71 .200344323840E+71 129419177535E-13	RADIAL IN-TRACK 3.21992]E+01 1.104126E-10. 5.952132E-72 1.016091E-04 5.259764E+71-3.835217E-02. 2.133893E+71-3.825755E-02.	ISP,W,CDAW,CLAY .25611673E+03 .3760000E+16 .45615542E-04 0.
LAT, LONG, R, V, AA	H = .01562 XD,YD,ZD 153495633531E+04 815050274655E+02 129721395149E-32	MAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL 3.219920E+01 5.616729E+00-3.177659E+01-1.298305E-04-3.219921E+01 5.952140E-02 1.027157E-02-5.862842E-02 4.124370E-07-5.952132E-02 5.25976EE+01-9.127445E+00 5.179965E+11 0. 5.259764E+01.294181E+04 2.133893E+01.	LAT,LONG,R,V,AA 17888378E-97 .36000000000000000000000000000000000000
H, RHO, M ACH, P, VA -, 743431568-07 -, 354651238-02 -, 146959728-02 -, 9535, 5908-05	.166567	Y	H,RHO,MACH,P,VA .968326252+03 .23143607E-02 .16828525490 .14219973E+02
C. CT. ST. STAU C. CT. ST. STAU C. CT. ST. ST. STAU S. CT. ST. ST. ST. ST. ST. ST. ST. ST. ST. S	1 .06309C	MAGNITUDE X 3.219920E+01 5.610 5.952140E-02 1.027 5.25976EE+01-9.127 2.033896E+01-3.576	T,ST,STAU .166.67 10.000 10.0000
STAGE NO. 1 Constant	N N N N N N N N N N N N N N N N N N N	FORCES GEOPOTENTIAL ATMOSPHERIC THRUST TOTAL	STAGE FO. 1 CONSTANT

REFERENCE	ng of	Item 7	Item 8		
DESCRIPTION	Quantities associated with the powered flight output at the beginning of this stage (Table C-3)	Trajectory print at the end of this stage	Powered flight output at the end of this stage		
ITEM	œ	6	10		

Table C-3. Definitions of Powered Flight Output Quantities

Symbol	Definition	Reference Section
T	Time from epoch, min	
ST	Time from epoch, sec	
STAU	Time from the beginning of this stage, sec	
H	Vehicle altitude, ft	
кнф	Atmospheric density at altitude h, slug/ft	
МАСН	Mach number (the ratio of the speed of the body to the speed of sound in the surrounding atmosphere)	11.1.15
ሲ	Pressure at altitude h, 1b/in	
VA	Absolute value of the relative velocity vector	
LAT	Vehicle geodetic latitude, deg	
LØNG	Vehicle geodetic longitude, deg	
R	Vehicle geocentric radius, ft	11.1.14
^	Vehicle velocity, ft/sec	11.1.14
AA	Angle of attack, deg	11.1.15
ISP	$(ISP_i \cdot \dot{w} - Ae P(h))/\dot{w}$, where ISP_i (in sec), \dot{w} , and Ae are input quantities for the i^{th} stage and $P(h)$ is computed.	11.1.15
Μ	Current vehicle weight, 1b	
CDAW	$^{\mathrm{C}_{\mathrm{D}}\mathrm{A/W}}$	
CLAW	$(C_{L_0} + C_{L_\alpha} \cdot \alpha)A/W$, where α is the angle of attack	11.1.15
XI	Roll axis = $\frac{\xi}{\xi} = \begin{cases} \xi_1 \\ \xi_3 \end{cases}$	11.1.15
WR	Roll axis turning rate, deg/sec	11.1.15
WP	Pitch axis turning rate, deg/sec	11.1.15
WY	Yaw axis turning rate, deg/sec	11.5.15

•	11	200	5474E+U1 5640E+U2 7535E=U3	RADIAL I'-TRACK CROSS-TR 3.219921E+C1 1.10+125E-10-1.298405E 5.352132E-D2 1.015091E-04 4.1250505 5.259764E+C1-3.835217E-02-1.6296C3E 2.133893E+Fi-3.825056E-02-1.294443E	XI,WR,WP,W 17353254E+0 .98482814E+0 3. 0.	.625239748153E-73
	NSTEP =	x00, Y00, Z00	35064]446474E+0 .20034+323840E+0 129418077535E-0	I%=TRACK 16+01 1.10+125E 2E=02 1.015091E 4E+(1-3.835217E 3E+fi=3.825056E	ISP, W, CDAW, CLAW . 25611673E+0? . 376FF000E+96 . 45615542E-94	
	.0 1 1953		1E+04 5E+12 9E-02	RADIAL E-04-3.21992 E-07-5.95213 5.25976 E-04 2.133893	e e	.206764797969E+08
ECI * * *	ıı	XD,Y0,2D	153495603531E+04 815050274055E+12 129721395149E-02	RNAL UNITS) +01-1.298305 -02 4.124376 +01 0. +01-1.294181	LAT,LONG,R,V,AA -17388378E-U7 -3600000E+33 -20926646E+18 -15371184E+94	
* * * * * * * * * * * * * * * * * * * *	.166667			Z (EXTE PCC-3.173659E -C2-5.862842E +OO 5.179965E	H, RHO, MACH, P, VA • 90.832625E+03 • 23143607E-02 • 162199735+00 • 142199735+02	364683744C89E+07 153570390157E+04
12.96800	# -	X, Y, Z	-,36464 80,54873E+17 ,2 ⁿ E ⁿ c4966957E+18 -,648979943981E-12	MAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL 3.215920E+01 5.61(729E+01-3.17)659E+01-1.298305E-04-3.219920E+01 5.952149E-02 1.027157E-02 8.852842E-12 4.12437GE-07-5.952132E-02 5.259766E+(1-9.127455E+00 5.179965E+01 0. 5.259764E+01-2.[33896E+01-3.5764.4E+00 2.003443E+01-1.294181E-04 2.133893E+1-	1,ST,STAU H,R? .166667 10.007160	173215222 99 E+0 0 1 9531250 00 00 E=0 2
* S H	17.300000		9 : · · · · · · · · · · · · · · · · · ·	MAGNITUDE 3.21.9206+ 5.95.2149E- 5.25.9766E- 2.1.33896E+	1, S	.1732152
SEG18 ENTRY TIME	TSEC =			FORCES GEOPOTENTIAL ATMOSPHERIC THRUST	STAGE NO. 2 CONSTANT	= T = 00N

POWERED FLIGHT

STAGE	T,ST,STAL	H,RHO, MACH, P, VA	LAT, LONG, R, V, AA	I SP, W, CDAW, CLAW	XI, HR, HP, HY
NO. 3 CONSTANT	. 183333 11.01:00:0 0.00:00:0	*11058C6CG+04 *23CG341E-02 *18683C94E+06 *14113162E+02 *20779307E+03	.20937778E-05 .36000CCE+03 .20926844E+08 .15397068E+94 .436535C1E+01	.25637126E+03 .373609C0E+05 .45775654E+04	17287220E+00 .98178057E+00 .87155743E-01 7. 0.
* * * *	STEP DOUBLED STEP DOUBLED STEP DOUBLED STEP DOUBLED	# # # # 	.1979681 H = .214583 H = .247786 H =	.000977 NSTEP .001953 NSTEP .001996 NSTEP	45 45 45 45 45 45 45 45 45 45 45 45 45 4
TSEC =	16.65380C T = X,Y,Z	= .277513 Z	H ± .co.3 xo,∀o,zo	.c03996 NSTEP = XDD,YDD,ZDD	191 200
	365676933541E+117 .206964188510E+118 .885024034732E+12		155951933440E+04 .590891818731E+72 .289348449908E+72	391945831400E+0 .224672727221E+A .4811647°9747E+0	400E+01 221E+72 747E+01
FORCES GEOPOTENTIAL ATHOSPHERIC THRUST TOTAL	MAGNITUDE X 3.2193922+U15.6 1.819448E-U13.1 5.539249E+U1-9.5 2.33686E+G1-3.9	Y Z (EXTE 25178E+00-3.1698578 17549E-(2-1.7855108 75821E+00 5.4344493 19468E+00 2.246727E	FNAL UNITS) =-0.1-2.663727E-04-3. =-0.1-1.586009E-02-1. =-0.1 4.827774E+00.5.	X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRAC 5.625178E+00-3.169867E+31-2.663727E-04-3.219392E+61-2.470050E-06-1.30296BE-0 3.117549E-62-1.785510E-01-1.586009E-02-1.912516E-01 2.016433E-04-1.586599E-0 9.575821E+00 5.434495+01 4.827774E+00 5.518169E+61 2.458690E-02 4.827942E+0 3.519468E+00 2.246727E+31 4.811647E+09 2.283651E+01 2.478527E-02 4.811946E+0	CROSS-TRAC E-06-1.302168E-1 E-04-1.586599E-1 E-02 4.827942E+1 E-02 4.811946E+1
STAGE NO. 3 Constant	T,S%,STAU . 277543 16.650300 5.65 800	H,RHO,MACH,P,VA .26210510E+04 .21998930E-02 .30102963E+00 .13356512C+02 .33193661E+03	LAT, LCNG, R, V, AA .24392663E-03 .3599999E+03 .20928359E+03 .15609066E+04 .88776889E-01	ISP, W, CDAM, CLAW , 25827539 E+03 , 35073808 E+06 , 4666[853E-0+	XI, WR, WP; WY 17287220E+00 .98118057E+00 .87155743E-01 0.

* * * * * * * * * * * * * * * * * * *	POWERED F### [15 IS	0 FLIGHT * * * * * * 13.17130	HT # 7130	*	*	ECI •	*	*	*	*	•	*	
TSEC =	16.653	3890	-	II	.277513	II		.007455	NSTEP	II Q.		101	
			X,Y,X	,2		xo,	02,0Y,0X			xco,yoo,zoo	200		
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	67.69 15.41	765676933541E+J7 .206654128517E+J8 .885724634732E+J2		-,155951933440E ,590891818731E ,289348449968E	.155951933440E+04 .590891818731E+U2 .289348449968E+02	7 7 7 7 7 7 7 7 7	1004	391945641149E+O .224672044732E+O .431243101494E+O	149E	+01 +02 +01	
FORCES GEOPOTENTIAL ATMOSPHERIC THRUST	#AGNIT 3.21939 1.8194- 5.53924	MAGNITUDE 3.219392E+01 1.819+49E-01 5.339249E+01 2.330873E+01	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X 2 Y 2 X 339 2 E + 00 - 139 2 E + 00 - 14 4 5 E - 01 3 + 117 5 4 9 E - 02 - 02 4 9 E + 11 - 9 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 5 9 E + 60 3 5 75 8 75 8 75 8 75 8 75 8 75 8 75 8	W 4 W VI	EXTERNAL UNITS 1867E+01-2.6637 1510E-01-1.5869 1443E+11 4.8124	(EXTERNAL UNITS) .169867E+01-2.663727E-0 .785510E-01-1.586006-0 .434443E+01 4.828557E+0	2 W C C		IN-TRACK -2.470050E-06- 2.017433E-04- 2.460175E-02	0 4 N N	CROSS-TRACK -1.3U2063E-04 -1.586599E-07 4.828726E-0 4.812730E+00	7 1 0 0 0
STAGE NO. 4 Gravity turn	=	T,ST,STAL 277513 16.657900 6.00700	,5 TA L 77513 5-900 (-) CO		H, RHO, MACH, P, VA 262105103404 219989363777 3006296367 133565128402 3319366128403	۲	LAT, LONG, R, V, AA .24392663E-13 .35999999E+103 .20928359E+104 .15619466E+14	AAA 00033334	ISP, W, CDAW, CLAW , 25827539E+13 , 36003808E+16 , 46660853E-04	, CLA¥ 9E+ñ3 8E+06 3E-04	1 01	XI, WR, MP, WY 17287198E+00 .96107935E+00 .87169895E-01 0.	
e * * *	S S S S S S S S S S S S S S S S S S S	g 8 9 0 0	5 5 6 6 5 5 5 6 5 5 6 6	⊱ ⊢ ⊢ ⊢	ппьп	.290209 .340013	* * * * *		.001977 .001953 .003906	N N N N N N N N N N N N N N N N N N N	• &	126 142 158	

REFERENCE SECTION					
DESCRIPTION	Gravity turn. This notation indicates that the pitch plane is fixed, i.e., that the pitch axis is fixed throughout the stage (the vehicle's body orientation is defined by the roll, pitch, and yaw axes)				
ITEM	.			 	

			CROSS-TRAC • 40 00 3E-04 • 112762E-01 • 536115E+01 • 786973E+01	19 E + 00 17 E + 00 17 E + 00 17 E + 00 19 E +
241	c	1E+01 6E+02 2E+92	CROS 05-1-40 02-5-112 00 1-536	XI, WR, WP, WY -16673889E+00 -94627297E+0f -27746616E+00 10-
NSTEP =	X00, Y00, 200	-,523071513431E+01 .301543083636E+02 .180934763362E+92	IN-TRACK 01-2.33 935E- 01 2.892963E+ 01 2.8179[6E+	ISP,W,CDAK,CLAW .27067544E+13 .31110958E+06 .91145875E-F4
.C07913 N		at M M	RADIAL -3.215672E+ -1.792509E+ 6.45557E+ 3.161635E+	
"	XD, Y0, ZD	165353137363E+04 .599829537238E+13 .254268688923E+13	(EXTERNAL UNITS) 1653672÷31=3.997464E=03- 766295E+30=5.16869E=01- 357418E+31 1.861434E+01 315431E+01 1.809348E+01	LAT, LCNG, R, V, AA .69159383E-02 .3599984E+03 .20940442E+03 .17772490 E+04
.617357			(EXTER - RE + 00 - 3, 16536727 - 9E - 01 - 1, 766295 - 5E + 01 b, 357418E - 5E + 01 3, 015431E	H, RHO, MACH, P, VA .14703844E+05 .15106449E=02 .86695869E+06 .83964901E+01
37.041425 T -	Z, Y, X	- 264948650576E+37 .20612855987E+38 .251071623358E+34	MAGNITUCE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRACK 3.215672E+01-2.337937E-05-1.40003E-04.1.40003E-04.1.40003E-04.1.40003E-04.1.40003E-04.1.40003E-04.1.40003E-04.1.406508E+03.215638E+03.21539E-04-1.766295E+04-05.112762E-04.1.406508E+04.1.401.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	T,ST,STAU H . £17357 37.041425 20.39'625
TSEC = 3			FORCES GEOPOTENTIAL 3 ATMOSPHERIC 1 THRUST 6 TOTAL 3	STAGE NO. 4 Gravity turn

341	x00, Y00, Z00	982785276440E+01 .56860°526852E+02 .668531214065E+02	DE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRACK E+01 5.727514E+00-3.13866E+01-7.520497E-02-3.190506E+01-3.0°3464E*04-2.128450E-04.E+01 1.861784E+01-1.389365E+00-8.254415E-01-1.107023E+00-6.641848E-01-4.858907E-01.E+02-1.574155E+01 8.923608E+31 6.775377E+01 9.986935E+01 5.473739E+01 3.950199E+01 E+01-9.8278E+01 5.47373E+01 5.785727E+01 5.47373E+01 3.901589E+01	N XI, MR, MP, WY	313903212E+90 .789n3208E+00 .59841329E+00 9.	NSTEP = 304
313 NSTEP =	xoo,	. 98278 . 568678 . 66851	RADIAL .1905C6E+C1-3.C. .107C2TE+C0-6.64 .785727E+C1 5.47	ISP, H, CDAH, CLAH	.29120340E+03 .19860058E+06 .17803128E-03	.015625 N
H = .007513	X0,Y0,ZD	198734950895E+04 .252901478822E+04 .212483079985E+04	(EXTERNAL UNITS) 3866E+01-7.520497E-02-3.89369E+00-8.254415E-01-1.33608E+31 6.775377E+019.86035E+01 6.88312E+01 5.	LAT, LONG, R, V, DA	.13529935E+09 .3599976E+03 .21022733E+08 .38549163E+14 .23619894E+00	1.429857 H =
1.398607	26,	.377394742125E+07 .206811551825E+08 .49311155{605E+05	7 27514E+00-3.1385666 .861784E-01-1.3893696 .574159E+01 8.9336086 .27853E+00 5.686035E	AL H, RHO, MACH, P, VA	27 . 369950942+05 28200033E-04 35906034E+01 .18306482+04 .395030648E+04	II
83.916425 T	X, Y, X	-,3772947 ,2068115 ,4931115	MAGNITUDE X Y Z 3.190506E+01 5.727514E+00 1.379395E+0 ^c 1.861784E-01 1.132224E+[2-1.574159E+01 8.831190E+01-9.E27853E+00	T,ST,STAL	1.398607 83.915425 67.265625	STEP DOUGLED
TSEC =			FORCES GEOPOTENTIAL ATMOSPHERIC THRUST TOTAL	STAGE	NO. 4 GRAVITY TURN	

			V - M - M	
334	200	1936E+132 1931E+13 1454E+13	MAGNITUTE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRACY 3.161173E+01-7.155289E-04-2.408080E-04 1.096775E-01 5.73289F-04-2.408080E-04 1.096775E-01 1.343257E-02-7.89168E-72-7.497224E-02-8.951137E-02-7.022966E-02-2.479635E-02 1.655963E+02-2.097406E+01 1.193315E+02 1.131977E+02 1.215666E+02 1.362614E+02 3.677242E+01 1.438899E+02-1.522853E+01 8.786555E+01 1.129244E+02 8.987438E+01 1.061975E+02 3.674738E+01	XI, HR, HP, WV 12665776E+00 .71880538E+00 .68357636E+00 0.
NSTEP =	002, 00 Y, 00 x	15228531936E+N2 .078655526931E+N2 .112924426454E+N3	IN-TRACK 3E+01-7.155289E 7E-02-7.02966E 6E+02-1.062946E 8E+01-1.061975E	ISP, W, CDAM, CLAW .29165760E+03 .1360000E+06 .24902211E-93
.015525		3 3 3 5 5 5 6 + +	9ADIAL 01-3.16117 02-8.95113 02-1.21566 02-8.98743	
" T	X0,Y0,20	23652033241E+94 .436610387306E+94 .441316756336E+04	(EXTERNAL UNITS) 108736E+01-1.983311E- 891688E-72-7.497224E- 193315E+02 1.131977E+ 786555E+01 1.129244E+	LAT, LONG, R, V, AA .36051912E+0f .35995448E+03 .21119885E+78 .66221561E+04
1.833333		•	2 (EXTE E-C0-3.108736F E-02-7.891608 E+01 1.193315F E+01 8.786555F	H,RHO,MACH,P,VA .194149585+06 .65685542E-06 .611846915+01 .362767465-02
= 	X 9 Y 9 Z	382962956769E+17 2026935;5782E+18 132°: 1167426E+16	TE +01 15.732095 E+01 15.732095 E+02-2.097406 E+02-1.522853	> S
117 - 903930			MAGNITU: 3,1611731 1,0967751 1,6559631	F 11
TSEC =			FORCES GEOPOTENTIAL ATHOSPHERIC ANCEST	STAGE NO. 4 GRAVITY TURN

* * * * * * * * * * * * * * * * * * * *	NSTEP = 334	002,00 Y,00X	-,33283 65 6 5 8 8 6 9 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
************** ECI *********************	H = .0 0.1953	XD,YD,20	-,230522033241E+14 -,436610387306E+04 -,44316756336E+04
* * * * * * * * * * * * * * * * * * * *	1.833333		
TME IS 13.50200	11 .300030 T =	Z, Y, X	-,382962958769E+17 -291693535782E+18 -132001167426E+16
* * * * SEG18 ENTRY TIME	rsec = 11		

POWERED FLIGHT

H, RHO, MACH, P, VA LAT, LONG, R, V, AA .194149585+V6 .36051912E+JU .65685542E-J6 .35999448E+J3 .61184691E+V1 .2111988EE+J3 .36276746E-J2 .66221561E+J4 .64560562E+P4 .24337381E+OD

MAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL 3.161173E+01-7.1552 89E-04-2.408080E-04 1.09677E+01 5.752 89E-04-2.408080E-04 1.09677E-01 1.343257E-02-7.891688E-02-7.497224E-02-8.951137E-02-7.02966E-02-2.479635E-02 4.799342E+01-6.078358E+00 3.449577E+01 3.280511E+01 3.523045E+01 3.073494E+01 1.065678E+01 3.270347E+01-3.328337E-01 3.329795E+00 3.253181E+01 3.538208E+00 3.072401E+01 1.065174E+01

FORCES GEOPOTENTIAL ATHOSPHERIC THRUST

STAGE NO. 5 CONSTANT

TSEC =	11 . 603836 383 - 203 - 136	00C T = X,Y,Z 3831 1276599E+37 -203719738754E+38 -134654956746E+36	1.843333	H = XD,YD,ZD XD,YD,ZD 230545103455E+34 .436827993374E+34	.9 1953 5E+114 5E+114 2E+114	XDD,YC XDD,YC 43673' 8 -3339722	STEP = 33 XDD,YDC,ZDD 43673:85741E+0n .392689255161E+01 .330372257944E+02	33 6 33 6 32 1 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
FORCES GEOPOTENTIAL ATMOSPHERIC THRUST	MAGNI 3.1603 1.00064 4.8799	X Y 1 5.731847E+ 1 1.229866E- 1-6.180376E+ 1-4.367309E-	Z (EXTE LL-3.1L7841E .C2-7.229698 .Ug 3.5C7758E .L1 3.926883E	MAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRAC [®] 3.160320E+01 5.7398.2E-04-2.436814E-0.4.03.160320E+01 5.7398.2E-04-2.436814E-0.4.03.6490E-01 1.229866E-02-7.228688E-02-6.894616E-02-7.375664E-0.460791E-02-2.271563E-02-4.879313E-02-4.879313E+01 3.332233E+01-6.180376E+00 3.507758E+01 3.335841E+01 3.582877E+01 3.132467E+01 1.979313E+01 3.332233E+01-4.3673C9E-01 1.077017E+01	RADIAL -01-3-16132 -02-7-37566 -01 3-58287 -01 4-15181	IN-TRACK 1E-11-7.273982E WE-16.460791E 7E+01 3.132467E 1E+70 3.125926E	RACK 98.25-04-2 7.915-02-2 4.615+01 9.265+01	CROSS-TRACK -436314E-01 -271563E-72 -179313E+01
STAGE NO. 5 Constant	1,584 11166	T,ST,STAL H,RH 1.843333 111.600000 .5	H,RHO,MACH,P,VA •196:9408E+06 •59038429E=C6 •61531630E+01 •32390C35E=02 •64711681E+64	LAIJLCNG,R,V,AA .36771767E+03 .35999437E+03 .211227295+38 .66368035E+94	S # 0	ISP, W, CDAW, CLAW • 53994 927 E + 172 • 13374580 E + 105 • 25376629E - 173 0.		XI, WR, WP, WY -12665776E+00 -7188^538E+00 -6835~636E+00

FORCES MAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRACY GEOPOTENTIAL 3.167329E+01-3.15739E+01-3.15739E+01-3.15739E-04-2.436314E-04 ATHOSPHERIC 1.026490E-01.2729866E-02-7.223688E-02-6.894616E-02-7.375664E-02-6.46 791E-02-2.271563E-07 ATHOSPHERIC 1.026490E-01.2729866E-02-7.223688E-02-6.894616E-02-7.375664E-02-6.46 791E-02-2.271563E-07 ATHOSPHERIC 1.026490E-01.3.157664E-02-7.375664E-02-6.46 791E-02-2.271563E-07 ATHOSPHERIC 1.026490E-01.3.15769E+01-2.771360E-01-3.157696E+01-3.157696E+01-3.157696E+01-3.157696E+01-3.157696E+01-3.157696E+01-3.157696E+01-3.157696E+01-3.157696E+01-3.157696E+01-3.15769E+01-3.	= 336 14546184E+01 14546184E+01 1593332E+02 8 0 30631E+00 8 0 30631E+00 8 0 30631E+00 73952E-04-2,436314E-04 73952E-04-2,436314E-04 73952E-04-2,295931E-04 739531E-02-2,295931E-07 83531E-02-2,295931E-07 83531E-02-2,295931E-07 83531E-02-2,295931E-07 83531E-02-2,295931E-07 83531E-02-2,295931E-07 83531E-02-2,295931E-07 83531E-039539E+00 835765E+00 8	244 NSTEP 2 244 NSTEP 2 -31157 -311	ECI + + + + + + + + + + + + + + + + + + +	1.84333 1.843333 1.843333 1.842333 1.656136 1.666136 1.84711636966 1.45616 - 3.11506966 1.45616 - 3.11506966 1.45616 - 3.11506966 1.45616 - 3.11506966 1.45616 - 3.11506966 1.45616 - 3.11506966 1.45616 - 3.11506966 1.46616 - 3.11506966 1.46616 - 3.11506966 1.46616 - 3.1150696 1.46616 - 3.11506 1.46616 -	FLIGHT (12) 3831'3831'207713831'207711346.2151581346.2151581346.2161581146.614	### F # # # # # # # TIM DESTINAL PHERIC
	NSTEP = 361	997146	1.849681 H =	# T	STEP DOUR ED	+ 4
	1.5 46184E+01 n5 933932E+02 8.037631E+39	. 5744. - 3115. - 5711.	230545103455E+04 436827993374E+34 4432852376(2E+34	•	-,3831'12765 ,2377197387 ,1346,49567	
3831'1276599E+172305451D3455E+04 .574414546184E+01 .237719738754E+18 .436827993374E+1431150593332E+02 .1346>4956746E+16 .4432852376[2E+1427118'0 70631E+19	, v 0 0, 20 L	x00x	XD,YD,ZD		Z, Y, X	
xD,YD,ZD 230545103455E+04 .436827993374E+74 3115959332E+0 .4432852376(2E+34 27118'03951E+3		NSTEP	н	1.84333	-	"
= 11 .653030 T = 1.843333 H = .107244 NSTEP = XD0,YD0,ZD1 XD,YD0,ZD1 XD3,YD0,ZD1 -3831719738754E+38 4388237662E+34 -331159593392E+ -331159593392E+ -343285237662E+34 -331159593393E+ -327118°039631E+	*	*	*	* * * * * * * * * * * * * * * * * * * *	13.5661	* * * * * * * * * * * * * * * * * * *
# # # # # # # # # # # # # # # # # # #						

ITEM 12 Free flight. This notation indicates that the vehicle is not thrusting; its acceleration is caused by external bodies only. When the vehicle is thrusting, i.e., when ISP and WD are nonzero, it is considered to be in powered flight	REFERENCE SECTION			
ITEM 12	DESCRIPTION	Free flight. This notation indicates that the vehicle is not thrusting; its acceleration is caused by external bodies only. When the vehicle is thrusting, i.e., when ISP and WD are nonzero, it is considered to be in powered flight		
	ITEM	12		

386	0,200	.574073159275E+01 .311139471337E+02 .264903737812E+90	4AGNITUCE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRAC¢ 3.158340E+01-7.543195E-04-2.527058E-0-7.7795F0E-0 9.451416E-03-5.563053E-01-5.355461E-02-5.67779E-02-5.61586.C-02-1.765153E-02 3.164023E+01-5.01582E-01-3.1535E+01-2.649038E-01-3.164013E+ ¹ 1-5.092P92E-02-1.790423E-07	XI, WR, WP, WY 12665776E+0f .71880533E+0f .68357636E+0f
NSTEP =	XCO, Y OC, 200	.574073159275E+01 311139471337E+02 264903737812E+90	IN-TR/ 43E+01-7.5431 79E-52-5.01586 13E+^1-5.0922	1SP, W, CDAW, CLP:J 1. 13374580E+F5 25294121E+O? 1.
.100977		40+ 40+ 40+ 30+	RADIAL -01-3.1593(-02-5.6777 -01-3.1640	
" T	XD,Y0,ZD	229741172949E+04 .432469532185E+04 .4432477E6411E+14	NAL UNITS) +01-2-113492E -02-5-355461E +01-2-649038E	LAT, LONG, R, V, AA .38454428E+Ur .35999412E+U3 .2112933EE+U8 .66051456E+34 .45772162E+GF
1.866667		•	Z (EXTER 0-3.105832E 3-5.563053E 0-3.111395E	H, RHO, MACH, P, VA -2036c3315+06 -461158325-06 -518154878+01 -248135405-02 -643881365+04
н	Z6 X6 X	383423476890E+17 .207781589512E+18 .140861685853E+16	Y .73128JE+0 .451416E-C .740732E+C	ŕ
112.00000 T	×	383423 .207779 .140860		T,ST,STAL 1.866667 112.03030 1.400060
TSEC =			FORCES SEOPOTENTIAL ATMOSPHERIC TOTAL	STAGE 40. 6 FREE FLIGHT

*	386	122	GNITUDE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TR 58341E+01 5.73128JE+BC-3.105832E+31-2.113492E-01-3.15334JE+F1-7.543195E-04-2.527058E 39775E-02 1.09459JE-D2-6.442698E-02-6.202281E-02-6.575565E-F2-5.810139E-02-2.044263E 68362E+81-7.938986E+00 4.505516E+01 4.284699E+01 4.6332343E+01 4.015198E+01 1.384271E	XI, MR, MP, M - 12665776E+0 - 71880538E+0 - 68357636E+0	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
*		98E+1	3000	1 000 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
*	P = 400,Y00,200	219675022102E+n .1353242^1796E+0 .425736149216E+n	1-7 R ACK 431956- 1101396- 1220436- 151986-		NSTEP NSTEP NSTEP NSTEP NSTEP
* *	NSTEP ADO	- 2196 - 1353 - 4257	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P, W, COAW, CLA - 29998015E+0 - 11548560E+0 - 29293695E-0	
*			10 1AL 15 33 43 E 57 55 65 E 53 32 43 E 53 32 55 E	ISP,4,COAW,CLA4 .29998015E+03 .115485GE+06 .29293695E-03	.0002488 .009488 .009977 .001953
*	.00122	E + 34 E + 04 E + 04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	> B	11 11 11 11 11
* * *	= x0,Y0,ZD	.229741172949E+14 .432469532185E+N4 .443247766411E+14	NITS) 113492E 202281E 284699E 257361E	LAT, LONG, R, V, AA .38454428E+UU .35999412E+U3 .2112933E+78 .66051456E+04	IIIII
ECI	# 0 I	229741172949E+14 .432469532185E+14 .443247766411E+14	ERNAL U E+01-2. E-02-6. E+01-6.	TA	1.869840 1.873991 1.882292 1.858893 1.932056
* *	1.866667	•	CEXTE 1058328 442698 5055168	RHO,MACH,P,VA -20360331E+06 -46115832E-06 -61815497E+01 -24818540E-02 -64388106E+64	
*	÷	EE + 37 EE + 18 E ← 16	2 2 3 3 4 5 5 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	H, RHO, MACH, P, VA - 20360331E+06 - 46115832E-06 - 61 215497E+01 - 2481 8540E-02 - 64388106E+64	
* * * 50	T = X,Y,Z	-,383423476899E+177820789512E+178 -140861685853E+76	X 5.73128 1.106459 7.53898		
13.73800	6	38342 .20776 .14096	TUDE 43E+01 65E-02 62E+91- 20E+(1-	T,ST,STAU 1.866667 112.00000 C	16000 16000 16000 16000
* * # # IS	112.0005		MAGNI 3.15 E3 9.01.97 6.2683 4.43693		STEP STEP STEP STEP
* * * * * SEG18 ENTRY TIME	TSEC =		FORCES GEOPOTENTIAL ATHOSPHERIC THRUST TOTAL	STAGE NO. 7 Constant	
SEG	-		GE AT TH	COO	* * * * *

984		+++	X Y Z (EXTERNAL UNITS) RADIAL 3.1491 GE+01-3.1491 GE+01-8.87 T33E-04-2.789860E-04.3.548245E-01-3.1491 GE+01-8.87 T33E-04-2.789860E-04.3.596350E-03-2.125757E-02-2.131455E-02-2.172825E-02-2.006839E-02-6.653651E-07-8.289515E+00 4.218965E+01 4.478447E+01 4.473881E+01 4.912664E+01 4.218998E+01 1.368571E+01 -2.557431E+00 1.367877E+01	XI, WR, WP, WY -12665776E+00 -71887538E+00 -68357636E+00 0.	4 8 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	002	3816 2756 1916	7 H H H H + + + + + + + + + + + + + + +	1.000	H H H
# @:	x00, Y 00, Z00	255743145381E+01 .160586177275E+02 .444624615191E+02	IN-TRAC -8-87'133 -2-706833 4-218989	M, CCLAW 90 E+03 57 E+06 87 E-03	NSTEP NSTEP NSTEP
976 NSTEP		;	10 1AL 1491:6E+11. 172825E-02. 312664E+11. 561385E+01.	ISP, 4, CDAH, CLAH . 29999490 E+03 . 11060: 27E+06 . 30164087E-03 9.	017613
.303996	Q	47E+34 56E+34 94E+64	5E - 01 - 3.5 5E - 02 - 3.5 6E - 01 4.6 6E + 01 1.6	7° V° DA 04E+10 69E+10 44E+08 29E+04 46E+04	# # II II
#	XD,YD,2D	-,231285933147E+14 ,442215320756E+94 ,471544839794E+64	EQNAL UNITS E+01-2.54824 E-?2-2.13145 E+01 4.47388 E+01 4.46E26	LAT, LONG, R, V, AA • 4650604E+10 • 35992289E+(3 • 21160244E+108 • 68658729E+104 • 15741246E+01	1.998503 2.568815 2.831315
1.975965			2 (EXT +60-3.395460 -63-2.125757 +00 4.76447	H, RHO, MACH, P, VA -234511265+06 -138884246-06 -697244225+01 -637473805-03	H H H
# _	7, Y, X	.384922588343E+J7 .2181649586f7E+U8 .1786?2656257E+J6	UDE X Y Z EE+01 5.728487E+GD-2E-02 3.596350E-03-4E+01-8.289515E+008E+008E+01-2.557431E+00		ED ED
16	×	38492 23876 1786	CDE 6E+01 2E-02 4E+01- 8E+01-	1,51,514U 1,975965 118,993966 6,933906	DOUBLED DOUBLED DOUBLED
118.56399		•••	MAGNIT UDE 3.14910 EE+01 5 3.031712E-02 3 6.544814E+01-8 4.734288E+01-2	1 1	STEP
TSEC =			FORCES GEOPOTENTIAL ATMOSPHERIC THRUST	STAGE NO. 7 Constant	•••

.25 û NSTEP = 586	X00, Y00, Z00	861493221388E+01 .511206184833E+02 .76279)813285E+02	RADIAL IN-TRACK CROSS-TRA *947253E+f1-2.527709E-03-4.387555E- *729490E-07-7.7382 6E-07-1.504130E- *428973E+01 7.36177E+01 1.383926E- *389829E+f1 7.361520E+01 1.383882E-	ISP, W, CDA W, CLAW X3. WR, WP, WN, WP, WN, WP, WP, WP, WP, WP, WP, WP, WP, WP, WP
03122ú	XD, YO, ZO	262491720264E+O4 .631051391112E+14 .827314231983E+O4	(EXTERNAL UNITS) R 993037E+31-7.995558E-01-3. 427877E-37-8.054691E-07-6. 105099E+31 7.707864E+01 8. 112962E+31 7.627508E+01 5.	/A LAT, LONG, R, V, AA .150 880 C4 E + 01 11 .35997403E + 03 .2151 C369 E + 08 .792 60581 E + 01
18 . 378906 T = 3.006315	Z, Y, X		MAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRA 3.047258E+015.6E6731E+00-2.993037E+31-7.995558E-01-3.947258E+f1-2.527709E-03-4.387555E- 1.035905E-36 1.E55633E-07-6.427877E-37-8.054691E-07-6.729490E-07-7.7362.6E-07-1.504130E- 1.127579E+02-1.428166E+01 8.105099E+31 7.707864E+01 8.428978E+01 7.36173E+01 1.383926E+ 9.222816E+01-8.E14932E+00 5.112962E+31 7.627508E+01 5.389829E+f1 7.361520E+01 1.383882E-	T,ST,STAU H,RHO,MACH,P,VA 3.006315 .584679412+06 186.274966 .120362832+02 68.373966 .120362832+02 .326858246-07
TSEC =			FORCES GEOPOTENTI'L ATHOSPHERIC THRUST	STAGE MO. 7 Constant

225		E + 0 3 E + 0 3 E + 0 3 E + 0 3 E + 0 3 E + 0 3 E + 0 5 E + 0	CPDSS-TRACK 3-3.617778E-0b 7-2.062929E-08 2.3.90619E+01 2.2.890574E+01	XI, MR, MP, MY -12665776E+00 .71889538E+00 .68357636E+00 0.
9 NSTEP =	002,00, v00, z00	-,58982°2168852+02 ,337494301321E+03 ,345867499614E+03	IAL IN-TRACK 2607E+01-5.154654E-0. 1549E-67-2.187214E-0 7646E+02 3.229519E+0 1385E+02 3.229558E+0	ISP, M, CDAM, CLAW .3300C000E+n3 .14235307E+05 .21355813E+22 0 0
н = .031259	X0,Y0,Z0	409508972969E+04 .148220688719E+05 .181294576360E+05	HAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TRACK 2.862677E+01 5.429254E+00-2.805118E+01-1.762413E+30-2.862677E+01-5.154654E-03-3.617778E-3.046219E-07 3.212708E-08-1.936998E-37-2.321154E-07-2.101549E-07-2.187214E-07-2.06292E-085.08458E+02-6.441128E+01 3.655455E+32 3.47629E+02 3.917646E+02 3.229611E+02 2.890619E+014-0868322E+02-6.498232E+01 3.374943E+32 3.4586F+06 3.531385E+02 3.22958E+02 2.8906574E+01	LAT, LONG, R, V, DA I. .35430573E+01 .35992879E+03 .22192103E+06 .23772689E+05 .66601955E+11
. 4.116667		•	Y Z (EXTER 9254E+00~2.805116E+ 2708E-08-1.936998E- 1128E+01 3.374943E+	H,RHO,MACH,P,VA .12666332E+U7 .156943095-13 .264618332+02 .712124775-19
247.000000 T =	X, Y, X	4209°2756395E+17 .21146669866E+18 .1362296;1196E+17	MAGNITUDE X 2.86 260 7E+01 5.42 3.0+6219E-07 3.21 5.64 4.868322E+12-5.89	T,ST,STAL 4.11667 247.00030 135.03'000
TSEC =			FORCES GEOPOTENTIAL ATMOSPHERIC THRUST TOTAL	STAGE NO. 7 CONSTANT

*** FREE FLIGHT

A55.125EUC T = 7.585417 H = XD, YD, 22	759
4	H
4	
4	. 500000
4	: :
4	16.585417
4	#
4	-
4	DOKAL ED
S NTIAL ERIC	STEP
FORCES GEOPOTENTIAL ATMOSPHERIC TOTAL STAGE NO. 8 FREE FLIGHT	•

822		22	CROSS-TR 1.807568E 1.112176E	XI, MR, WP, W -12665776E+0 -71889538E+0 -68357636E+0 0.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
•	00	106+1 35E+0 17E+3	-02-1 -02-1	1 606 406 X040 X040	
W	x 00, Y 00, 200	.233621780400E+01 660601992485E+01 152533668317E+22	IN-TRACK .06376EE- .665074E- .063766E-		N N N N N N N N N N N N N N N N N N N
NSTEP	×	1.66	GNITUDE X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK CROSS-TR 79335+01 2.335218E+00-6.606020E+00-1.525837E+01-1.579033E+01-1.063766E-02-1.807568E 83489E-14-5.176835E-15 1.969874E-14 4.394857E-15 1.24,7432E-14-1.656774E-14-1.112176E 7933E+61 2.336218E+00-6.606020E+00-1.525837E+01-1.679033E+01-1.063766E-02-1.807568E	1SP, W, CDAW, CLAW 9. 10000000E+05 1900000E-72	.031250 .071253 .073946 .073813
.503199			RADIAL 1.57903 1.24743 1.67903	พ.ศ ค.	• • • •
r.		# # # # # # # # # # # # # # # # # # #	+ 1 + 0 + 1 0 + 1 0 1 1 1 1 1 1 1 1 1 1	<pre></pre>	
	0,20	92127 95027 83446	15) 5837E 4857E 5837E	1,LONG,R,V,AA .65443395E+02 .35742859E+03 .28937958E+08 .16382031E+05	riri
H	x0,Y0,Z0	.32106?992127E+04 156926695027E+05 343549083446E+?4	(EXTERNAL UNITS C602CE+00-1.52563 69874E-14 4.39465 06020E+00-1.52583	LAT, LONG, R, V, AA .65443395E+02 .35742859E+03 .28937958E+08 .16382031E+05 .14878560E+03	58.116667 58.337370 58.385198 58.452604
17			EXTER 020E+ 874E- 020E+	+++07 ++07 ++05 ++05 ++05	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
48.(85417			6.606 1.969 6.606	ACH,P 1690E 75655 4787E 6787E 6782E	
4 8		.4032; 8077577E+07 .114713387665E+08 .262898693199E+08	Y 2 -218E+00- 835E-15 -218E+00-	H,RHO,MACH,P,VA - 80701690E+37 - 25697565E-20 - 18424087E+02 - 25564934E-15 - 16286782E+35	⊢ ⊢ ⊢ ţ;
H	Ze Ye X	30 775 33 676 86 931	X 2-335 5-170 2-336	14 C C C C C C C C C C C C C C C C C C C	0000
0	Ä	-,4032.3077572E+0 .114~13367665E+0 .262898693199E+0	GNITUDE 7933E+01 93489E-14- 79033E+61	T, ST, STAL 48.095417 2885.125300 2638.125300	HALVED DOUGLED DOUGLED
5.125000		•	MAGNITUDE 1.67933E+ 2.093489E- 1.67933E+	2887 2886 3886 4	STEP STEP STEP STEP
2885.					Q, 0, 0, 0
n			SES TENTIA PHERIC	. LI GHT	
TSEC			FORCES GEOPOTENTIAL ATHOSPHERIC TOTAL	STAGE NO. 8 FREE FLIGHT	

TSEC =	3521.687500	50C T =	3561E+334 875E+36 820E+36	80	58.694792		:4 = .0 XD,YD,ZD 140043390622E+03 .396515264094E+03 396445296446E+03	.00 22 E + 03 194 E + 03 46 E + 03	.007813 03	XDTEP XDT	STEP = 92 XDD,YDD,ZDD 341867 985106E+01 -769078914648E+01 -272822308426E+02	9000 6666 6666 6666 6666 6666 6666 6666	922 01 02
FORCES GEOPOTENTIAL ATHOSPHERIC TOTAL	MAGNITUDE 3.219367E+01 7.931473E+01 2.855393E+01	UDE X 7E+01 2,56 3E+00 8,56 3E+01 3,41	Y 12390E+0 12898E-0 18680E+0	2 1-6 0-7-6	(EXT 452522 233167 699789	ERNAL E+00- E+00- E+00-	(EXTERNAL UNITS 52622E+00-3.20556 33167E+00 4.77339) 32 + 0 1 + 3 56 = + 0 1 + 4 32 = + 0 1 - 2	RADIAL -219067 -492453	X Y Z (EXTERNAL UNITS) RADIAL IN-TRACK 2.562390E+00-1.452622E+00-3.205563&+01-3.219067E+01 7.514.197E-03 8.562898E-01-6.239167E+00 4.77339&E+00 4.492453E+00-6.426181E+00 3.418680E+00-7.699789E+00-2.728223E+01-2.778822E+01-6.413667E+00	IN-TRACK • 514 19°E • 426181E • 413667E		CROSS-TRACK 5.882027E-03 1.325098E+00 1.330980E+00
STAGE NO. 8 FREE FLIGHT	F R G K	T,S%,STAU 58.694792 3521.68~56 3274.68750	т « Т. • • • • • • • • • • • • • • • • • • •	7118 5494 5695 2695	H, RHO, MACH, P, VA -22711804E+05 -11549419E-02 -62980809E+01 -60269508E+01 -65624157E+03		LAT, LCNG, R, V, AA .84, T68075E+02 .35743894E+02 .208783198E+03 .57793138E+03 .80313335E+02	9LCNG,R,V,AA 84768075E+02 35743894E+02 20878888E+02 57793198E+03	ISP 10.	15P, W, CDAW, CLAW 0. 11900005-475 99751835E-03	A CO	**************************************	XI, HR, WP, WY 126577(E+00 .7188"938L700 .68357636E+00 0.
	STEP	DOUBLED		# ⊢	S.	58.905729	62,	n x	.015625	529	NSTEP	• "	846
*** CRASH	### HS	ALT	ALTITUDE	**	-73.7	۲.	TIME	11	59.26510	01			

971	0	11E+01 11E+01 05+00	CROSS-TRACK 03 1.316452E-03 00 5.685878E+06	XI, MR, WP, WY 12665776E+00 .71880538E+00 .68357636E+00 0.		res eee	* * *	
и	X00,Y00,Z00	.155265287701E+01 837465445471E+01 .60656'861740E+00	1N-TRACK 535701E- 378252E4 369716E4			1 MINUTES	E> OCH	SECS
NSTEP	OX		RADIAL 3.226081E+F1 9.535701E-03 3.235761E:F1-6.378252E+00 9.699672E-02-6.368716E+00	ISP, W, CDAM, CLAM 9. 110° 000 E + 05 130 649° 5E - 02 0.		59.2651	MINUTES FROM MIDNIGHT OF	2.0 CP
.0 15625		0 0 M	RADIAL -3.22608 3.23578 9.69967			SFAN OF	FROM MID	10 WAS
•	0,20	-,445051684661E+02 ,469037335772E+02 -,799623660046E+03	UNITS) 3.212428E+01 3.273084E+01 6.065609E-01	L AT, LONG, R, V, AA • 64744933E+02 • 35445970E+02 • 20856108E+08 • 80223295E+03 • 12160724E+03			MINUTES	
II	xo,Yo,Zo	4450516 4690373 7996230	(EXTERNAL UNITS) 69169E+00-3.212428 05486E+00 3.273084 74654E+00 6.065609	121.		INTEGR	59.265	FOR SE
59.265104		111	MAGNITUDE X Y Z (EXTERNAL UNITS) RADIAL XN-TRACK 3.226382E+01 2.575318E+03-1.469169E+00-3.212428E+01-3.226081E+F1 9.535701E-0 3.346699E+11-1.022455E+00-6.905486E+00 3.273084E+01 3.235781E:F1-6.378252E+0 8.538977E+00 1.552863E+00-8.374654E+00 6.065609E-01 9.699672E-02-6.363716E+00	H,RHO,MACH,P,VA 73664165E+02 .23820223E-02 .73214290E+90 .14735135E+02		SECONDS TO INTEGRATE A		14.9 SECONUS. EXECUTION TIME FOR SEGMENT
6 16		548E+37 547E+36 752E+38	7 5318E+03- 2455E+00- 2863E+00-	H9RHO - 7366 - 62382 - 7321 - 1473		2.038	C. 600 TO	NUS. EXEC
H	X, Y, X	167228474648E+17 -952864961547E+16 -297672681752E+19	+01 2.575 +01 2.575 +01-1.02 +00 1.552	7,5%,57AL 59.265164 3555.906250 3338.906256	CRASHED	10 CK	-	4.9 SE CO!
3555.906250		₩ Φ Ñ	MAGNITUDE 3.226382E+01 3.346699E+11 8.538977E+00	ិស្សា សេស - ស ស C ស M M M	VEHICLE CR	THIS CASE TOCK	FROM	;-
				.IGHT	***	12 ***	* * *	SEGMENT SC
TSEC =			FORCES GEOPOTENTIAL ATHOSPHERIC TOTAL	STAGE NO. 8 FREE FLIGHT				ENTER SE

OATE,	HE, MM, ST, DT	a, xD	X,X0 - BF	ADBARV	LAT,	REV	REMARK
YR/HC/DAY	MIN FROM EPOCH	X (FT)	x (FT)	ALPHA (OE	Ī	REV COUNT	•
HEMIN	MIN FROM MIENIGH	T Y (FT)	Y (FT)	DELTA (OEG)	G) LONCITUDE (DEG)	PERIOO	•
SEC	SEC FROM MIDNIGH	2 (FT)	2 (FT)	BETA (DE	_	PERIOO-OECA	_
	STEP SIZE(MIN)	XO (FT/SEC)	XO (FT/SEC)	AZIMUTH(0EG)		NOD-REG	•
	UTC - IT	YO(FT/SEC)	YD (FT/ SEC)	R (FT)			
	UT1 - IT	17	20 (FT/SEC)	V (F 1/ SEC)	(DE 6)		
		* * * * * *	******	* * * * * *	* * * *		
					•		
		. SPE	SPECIAL OUTPUT OPTIONS RECUESTED	TICNS RECUES	TEO .		

ECI TRAJECTORY

AFOGEE-PERIGEE SPECIAL ALTITUOES

	+++ CASE 1					
	*** STAGE NO. 1		POWERED FLIGHT.			
	*** EPOCH PRINT	-				
DATE; 71/ 1/ 1 0/ 0 0.0000 IT	ME, MM, ST, DT, 0.00000 0.000000 0.00000 0.01563 0.000000	X,XD -266082555E+00 0. 1.15027774E+04 264798324E+03 134595352E-10	X,XD - BF -209257360E+08 -148686311E-06 0. -121001230E-10 -953505180E-05 -134595352E-10	A D B A R V 99-99327240 0-0000100 90-0000000 20-925738E+09 15255289E+04	1.47 BF 0.00000000 3.60.0000000 0.00000000 1.80.00000000	000
	.10401007E400 .99553893E400 .59538039E-12 .36000000E+03	ACCENTRIC TRUE PER PER III	. 1600000E+03 . 1600000E+03 . 160000E+03 . 2994727E+02 . 2993367E+02	4.4	. 04459500054-14 - 727595050-17 - 5970166361-04 - 345796361-04 - 2346681611-7	

	REV	REV	REV	REV 550012 PRE-EVNT 0.00000 0.00000
	LAT: 8F 0.0000000 0000000 0.1000000 0.10000000	LAT BF 0.00000000 360.0000000 00000000 0.00000000 00000914	LAT BF0010000000000000000000000000000000000	LAT, BF nn n n n n n n n n n n n n n n n n n
	ADBARV 99.99327240 0.0000000 90.0000000 20925738=+16	ADBARV 99.59327241 0.0000000 96.00000000 90.01000000 .209257365+06	ADBARV 99.59327240 100111000 90.00011001 .219257385+13	ADBARV 100.035%5726 000%9092 83.00%45863 90.00094871 .209265465+98
	x,x0 - BF -209257380£+08 -148686311E-06 0. -121001230E-10 -953505180E-05 -134595352E-10	x,x0 - 8F .239257380E+08 -148686311E-06 f. -121001230E-10 .953505180E-05 -134595352E-10	x,x0 - 8F .209257380E+68 -148686311E-06 -951221801E-23 -121001230E-10 .953545180E-05 -134595352E-10	X,XD - BF .219266463E+08 115198329E+01 648979944E-G2 .1872[8891E+03 319594589E+00
PRINTS	X,XD .206(82555E+08 0. 1.15027774E+04 264798324E+63	x,xD .206082555E+08 0. 15027774E+04 264798324E+03	X,XD -363129650E+07 -216082555E+08 -951225545E-23 -150277774E+04 -264798324E+03	X, XD 364648055E+07 -216164967E+68 648979944E-02 153495614E+04 815056274E+05
*** REQUESTED	ME, MM, ST, DT; 0.10000 0.10000 0.10000 0.1563 0.1563 0.1563	ME, MM, ST, DT, 00000 00000 00000 00000 00000 00000	ME, MM, ST, DT,	ME, MH, ST, DT, 16667 1667 100960 .01563
	DATE; 71/ 1/ 1 0/ 0 0.00000	DATE; 71/ 1/ 1 0/ 9 9.00000	DATE 71/ 1/ 1 0/ 3 .00000 IT	DATE, 71/ 1/ 1 0/ 0 10.00000

	** STAGE NO2	POWERED FLIGHT	.16HF			
DATE; 71/ 1/ 1 0/ 0 10,0000	ME, MM, ST, DT,1 6667 .15.4 0000 .30195 0.00090	X, XD 364648055E+0? 206064967E+0? 648979944E-02 153455604E+04 815(50274E+02	x,xD = BF -219266463E+D8 105198329E+D1 648979944E-D2 .187208891E+D3 319594589E+D0	ADBARV 160.03505026 (CO09902 63.00445663 90.00004571 .2792646E+96	LAT BF 00000002 355.99999712 -14949126 00000012 175.97909818	REV .50012 PST-EWN. 0.90000 0.00000
0ATE 71/ 1/ 1/ 1/ 0/ 3 9.65268	HE, MM, ST, DT, 16088 16088 9.65268 -30195	X,XD -364594764E-07 -216(65262E-08 -380570178E-01 -153374241E+04 -884386592E+02 -275116281E+00	X,XD - BF -209265325E+08 944889931E+00 380570178E-01 .180131102E+03 297220364E+00 -275116281E+00	ADBARV 100.03359944 00000010 83.26653577 89.98966829 .20926583E+08 .15362901E+04	LAT, BF 0000010 355,99999741 .13899276 000.0110 .00468976	REV 1.00000 ASC NOD 0.00000 0.00000
DATE; 71/ 1/ 1 0/ 0 11.00000	ME, MM, ST, DT,	.264801727E+07 .206064253E+08 .759617574E+00 -153802E+64 -613:13300E+02	X,XD - BF -209268438E+08 -140552410E+01 -759617574E+00 -207779937E+03 -388646428E+00	ADBARV 100.03922736 .0009208 82.2449256 89.9139397 .20926844=+08 .153970685+04	LAT, BF .00000209 359.99999615 .18199226 .0000209 .08649693	REV 1.30002 PRE-EVN 0.00000 0.00000
DATE; 71/1/1 0/0 11.00000	** STAGE NO3 ME,MM,ST,DT, 183333 11.30000 00324 00324	X,XD 364 8017276+07 -2060642536+081 .7596175746+00 1538482276+00 1538482276+00 2303172506+01	X,XD = BF .239268438E+08 140552410E+01 .759617574E+00 .207779937E+03 388646428E+00		LAT 9F .00000209 355.99999615 .18139226 .000009 .08649693	REV 1.00002 PST-EVN 0.00000 0.00000
DATE: 71/ 1/ 1 0/ 0 15.65080	ME, MM, ST, DT, 27751 27751 16.69080 0.00000	X, XD -3656769346107 -2760641396107 -3859519336104 -5968518196105 -289348495105	x,xD - BF -209283591E+U8 497880143E+01 -885024035E+01 -31671819E+03 -915797851E+00	ADBARV 1£ 6.06282704 00028229 77.76944163 38.51321737 22992859E+18	LAT; . 9F .00024333 359.9996637 .43176952 .00024393 1.08678565	REV 1.00006 PRE-FVN 0.00000 0.00000

POWERED FLIGHT	X,XI; X,XD - BF ADBARV LAT;, gF REV; 769345+07 .219283591E+08 1fc.(6282704 .00024393 1.00008 PST-FVNT 24.35E+08497880143E+01 .0172429 359.59938537 0.00000 24.35E+02 .85324035E+02 77.76944963 .43136952 0.00000 51933E+14 .331671819E+03 88.91321737 .00024393 0.00030 91819E+02915797851E+00 .219243595 1.08678265 48452E+12 .239348+50E+02 .15649766E+04 359.98721493	X,XD	X,XD	X,XD X,XD = BF ADBARV LAT; BF REV; 11272F407 .21122299E+08 1f0.44973745 .36771767 1.00154 PRE-EVNT 19739E+08277550356E+04 .36525644 355.99477005 0.00000 54957E+06 .134654957E+06 44.39599709 32.4215625 0.00000 451.3E+04 .471396926E+04 18.5215861 .36769451 0.00000
POWERED FLIGHT	X, XU 265676934=+07 216.64129E+08 497.8801 459.551933E+02 596.891319E+02 596.891319E+02 599.348452E+02 299.348452E+02	x,x0 x,x0 -382962957646 -217693536646 -132001167646 -431601167646 -4711725 -436616387644 -6521912 -441316756546	X,XD X,YO X,YO 2111947 .217 (935 36 E+0 8 23 36 198 .132001167 E+0 8 4711725 366 10 38 7 E+0 4 6521912 + +131675 E+0 4 4+13167	X,XD
** STAGE NOT	HE, HH, ST, DT, 27751 26.65089 30049 30049	11.84333 11.84333 11.66000 0.06000 0.06000000000000000000	## STAGE NOS ME,MM,ST,DT, 1.83333 11.00100 0.10000	ME,MM,ST,DT; 1.84333 116.6000 116.6000
	DATE, 71/ 1/ 1 0/ 0 16.65083	DATE 71/ 1/ 1 0/ 1 50.00603	DATE, 71/ 1/ 1 0/ 1 50.00000	DATE; 71/ 1/ 1 0/ 1 50.60300

DATE, ME, 71/1/1 0/1 50.60700						
E.	ME, MM, ST, DT, 1.84333 1.84333 1.6.6000 0.0000000000000000000000000000	X, XD -,3931C1277E+U7 -,207719739E+U8 -,23654545FU6 -,436827993E+U4 -,443285238E+U4	X,XD - BF -2112299E+08 -217550356E+04 -134654957E+06 -471395004E+05 -443285238E+64	ADBARV 160.44973745 .3625644 44.3599799 18.5217561 .21122729E+18	LAT, BF .36771767 359.9437705 32.421356.55 .36769451 71.47933142 359.87278.667	REV 1.00154 PST-EVNT 0.00000 0.00000
DATE HE, 71/1/1 1 0/1 1 52.00000	ME, MM, ST, DT, 1, 8 6667 1, 8 6667 1, 2, 0 0 0 0 0 0, 0 0 0 0 0	X,XD 382423477E+L7 .277780590E+L8 140861686E+D6 229741173E+C4 .432469532E+C4	X,XD - BF -211288685E+08 -216829048E+04 -140860686E+06 -46679315E+04 -667517840E+02 -443247766E+04	ADBARV 100.45533689 .38197044 44.64689220 18.52144592 .211293385+78	LAT, BF .38454428 359,99412018 33.50879573 .38451526 71.47898162	REV 1.00156 PRE-EVNT 0.00000 0.00000
*	STAGE NO?	POWERED FL	FLIGHT			
DATE HE, 71/1/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44,ST,DT, 1.86667 112.0030900312	7,XD -2383423477E+07 -217786590E+68 -140 E66 696E+06 229741173E+04 -432469532E+04	X,XD - BF .211288685E+08 216829048E+04 .140861686E+16 .466979315E+04 667717340E+02	ADBAPV 130,45533689 • 3819794 44.6469020 18.52144592 •211293385+98	LAT 8F .38454428 .385.99412418 .33.50879573 .38451926 71.47898°62	REV 1.00156 PST-EWNT 0.00000 0.00000
DATE; HE, 71/ 1/ 1 6/ 2 30.55537 IT	HE, HH, ST, DT, 2 . 50 926 2 . 50 926 15 55 53 7 00000 00000	X,392502172E+67 -249585412E+08 -346419427E+08 242912805E+04 -513751169E+04	X, XD - BF .213229035E+03 560987777E+04 .346419427E+06 .549683473E+04 114406799E+03 .632016311E+04	ADBARV 16 0. 677 229 86 930 765 57 48.796 724 39 13.03154002 .2132 571 95+08 .84993614E+04	LAT, BF .937.3644 355.98432596 65.83132101 .93691791 77.06326725	REV 1.00304 ALTITUDE 0.00000 0.00000
DATE HE, 71/ 1/ 1 0/ 4 7.000CC	ME, MM, ST, DT, 11667 4.11667 247.00303 0.03125 0.00000	x, xD -,42(9)2756E+07 -217 466699E+69 -13629621E+67 -,4395689E+05 -148226689E+05 -181294576E+05	X,XD - BF .221512326E+18 .275284719E+15 .136229621E+17 .153296421E+15 -,430311423E+13 .191294576E+15	ADBARV 10r.95434915 3.51943193 46.33324252 4.01477358 .221921035+78	LAT; BF 3.543f5730 355.92879242 208.46052340 3.54169824 85.99288726	REV, 1.01010 PRE-EVNT 0.0000 0.00000

FLIGHT
FREE
80N
STAGE
_

DATE, 71/ 1/ 1 9/ 4 7.00000	ME, MM, ST, DT, 4.11667 4.11567 247.30300 .97391	X, XO -, L2D9D2756E+07 .21746699E+08 .136229621E+07 -, 195289973E+09 .14822689E+05	X,XD - BF -221502326E+08 -275284719E+05 -136229621E+07 -153296421E+05 -430311423E+03 -131294576E+05	ADBARV 1f 0.95494915 3.51947193 46.3324252 4.11477358 .221921035+78	LAT BF 3.54305730 355.928.9242 208.46052340 3.54159824 85.39288726	PEV, 1.01010 0.00000 0.00000 0.00000 0.00000
DATE; 717 17 1 1 0/19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HE, MH, ST, DT, 1 .	X, XD .254 (56666±40 .755 101321E+67 .250593693E+64 .694337280E+05	X,XD - BF .260410757E+08 285896245E+06 .755101321E+07 .730032520E+04 955244885E+03	ADBARV 101.87111194 16.16941149 50.37397244 4.17329854 .271152575+98	LAT; BF 16.27262178 359.37639410 1019.56372963 16.24833785 86.00253432	REV 1.04520 n.9000 0.59000
DATE, 71/ 1/ 1 0/20 0.00000	ME, MM, ST, DT, 26.00900 20.00000 12700000 7.00000	X, XD .269176814E+07 .269176814E+08 .165032787E+68 63(2)3950E+03 152293522E+04	X,XD - BF .276216554E+08 917136380E+06 .165032787E+08 137313681E+04 17635374E+04	ADBARV 103.19523679 36.84341194 65.13077897 4.67151321 .321853555+98 .13059101E+95	LAT; BF 31.01306534 35.09927732 1856.86055739 30.953+7740 85.98811216 355.69736548	REV 1.78676 0.00000 0.70090
DATE, 71/ 1/ 1 0/30 0.00500	ME, MM, ST, DT, 31, 40000 37, 50000 18C), 40000 50000 0.00000	X,X0 6253C1387E+07 -241491464E+08 .229489003E+08 .817797859E+03 744407445E+03	X,XD ~ BF .248964075E+08 135186798E+07 .229489000E+08 744067525E+04 345639678E+03 .839962769E+03	ADBARV 104.40571346 42.62707544 88.80033478 5.45554143 .33886733E+08 .11252579E+95	LAT, BF 42.81895468 355.89199746 2138.41488247 42.74537274 85.97824763	REV 1.11891 0.70700 0.70700
DATE, 71/ 1/ 1/ 1 0/30 27.64823 IT	ME, MM, ST, DT, 3C, 46080 3C, 46080 1827, 64828 50000 1,00000	X, XD .23940043E+07 .231779503E+08 .85967865E+03 768434860E+04	X,XD - BF .246872878E+U8 136082056E+U7 .231779503E+U8 768607748E+U4 331786151E+03 .816887289E+04	ADBARV 104.47423928 43.15651870 89.9999998 5.50227972 .33889990E+18	LAT, BF 43.3425598 356.84491671 2139.056.9936 43.26388890 85.90722200	REV 1.12037 BETA =90 0.00000 0.00000

REV; 1.15147 0.00000 0.00000	REV, 1.19104 0.00000 0.00000	REV, 1.23762 ALTITUDE 0.00000 0.00000	REV, 1.11341 BETA =9n 0.00000 0.00000	REV, 1.24073 BET& =9° 0.0000° 0.0000° 0.0000°	REV; CRASH. 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
LAT, EF 54.46367021 356.28131809 1909.07518547 54.39869198 85.97384661	LAT, eF 68.499n617 358.36589214 1132.30783299 68.46658268 85.97558611	LAT,., BF 84.06338754 28.34241935 65.839°5548 84.06234336 85.97661146	LAT, AF 40.82340990 349.86113391 320587.53125710 4f.63314918 41.77011922 275.96732891	LAT, EF 84.78n39672 35.90365360 4.10932927 84.78035423 93.34536740	LAT, . BF 84.74496754 35.44641190 00707070 84.7449659 90.72249595
ADBARV 106.30196864 54.28147881 113.01680808 6.88479785 .324791795 .127476585+08	ADBARV 110.89338712 68.36754050 128.77783877 16.94809311 .277451135+08	ADBARV 142,80980743 84,02337916 133,94875247 42,27186987 -21256394E+98 -24880283E+15	ADBARV 104.41408869 40.63314858 .000311837 1.58747422 .26594922E+17 .178771715+15	ADBARV 150.56035928 84.74542153 89.59999768 219.68295260 .218811465+18	ADBARV 150.29613526 84.70975662 170.15115798 188.08189942 .20856181E+08
X,XD - BF .189215416E+08 122979671E+07 .263696781E+08 123394318E+05 .825788879E+03	x,xD - BF .132241106E+08 291676494E+06 .257969635E+08 165352889E+08 .233391386E+04 528348324E+04	X,XD - BF .194796138E+07 .105073019E+07 .211408533E+08 188284286E+05 .335071274E+04	X,XD - BF -198675710E+17 -355285970E+16 -173189692E+17 -133550268E+15 -238824198E+14 -116418560E+15	X,XD - BF .154898791E+07 .112143172E+07 .207933952E+08 .592691162E+03 147758025E+03	X,XD - BF .156655643E+07 .111520467E+07 .237673427E+08 .143355999E+03 937581765E+02
X,XD .181991311E+08 .263696781E+08 .212152567E+04 122645884E+05	x,xD .9555716982Ec07 .955571695E+67 .257909635E+58 .348247104E+64 164337566E+05	X, XD176316907E+07 .133784248E+07 .211448533E+08 .46509C148E+64186539368E+05	X,XD 532465122E+16 .195474318E+17 .173189692E+17 337717893E+14 .131?98287E+15	X, XD -166539C23E+C7 -939917806E+C6 -207533952E+08 -181513069E+03 -78851345E+03 -561831513E+02	x, xC 157 628.59E+07 .952860555E+06 .217 673427E+08 46501753E+02 .476852404E+62
ME, MM, ST, DT,	ME, HH, ST, DT, 57. 53000 3000. 50000 3000. 50000	ME, MH, ST, DT, 57.73839 57.73839 3464.36322 60000	ME, 71,52121 71,52121 71,52121 4231,27278 03125	ME, MM, ST, DT, 58.49359 58.49359 3509.61531 3509.61531	не, нн, ST, DT, •. 89.26359 59.26355 3555, 81367 3555, 81367 1.00000
DATE; 71/1/1/1 0/43 0.09000	DATE; 71/1/1 0/50 0.00000	DATE; 71/ 1/ 1 0/57 44.30322	DATE, 71/ 1/ 1 1/10 31.27278 IT	DATE; 71/ 1/ 1 0/58 29.61531 IT	DATE; 71/ 1/ 1 0/59 15.81307 IT

REV, 1.24061 PRE-EVNT 0.00000 0.00000		REV 1.24061 PRE-EVNT 0.00000 0.00000	
LAT, BF 84.74493305 35.44536389 -01212356 84.74493222 90.72247930			207.61874875 .343406362+04 .15781792F+01 .47475385E-71 -,343243795+74 -,186053855+11
AOBARV 15C - 29673254 84.70 972190 170.19291151 187.86028726 .2C 8561085+08		ADBARV 150.29603254 84.70972190 170.89291151 187.86028726 .20856108E+08	. 86 2232955+03 APOGE = HEIGHT = PERIGE = HEIGHT = 0+001 = 0-001 = 0-001 = 0+0
x,x0 - 8F .156656975E+07 .111519594E+07 .277672682E+68 .142585416E+03 935627250E+03		X,X0 - 6F .156556975E+07 .111519594E+07 .20767268EE+08 .142585416E+03	+£3799623160E+03 .862 = .18493051G+03 AF = .18246567E+03 HE = .29742324E+02 HE = .29790353E+62 O- = .29790353E+62 O- = .31748549E+08 U- EXECUTION TIME FOR SEGMENT
X, XO -167028475E+67 -952864962E+06 -207672682E+08 -445161685E+02 -459037336E+02	RASHED	167028475E+07 .952864962±06 .277672682E+18 459037336E+02	MEAN ANOR ECCENTRIC TRUE ANOR KEPL PER ANOM PER NCOL PER AJECT (RY ***
ME,MM,ST,OT; 59.26510 59.26510 3555.90625 01563 0.0000	** VEHICLE CRASHED	ME, MM, ST, OT, 59. 26510 59. 26513 3555. 96625 01563	1.00100 A = .10433;28E+C3 E = .93997235E+C0 I = .90722479E+C2 O = .3224688E+G3 TAU = .43986596E+G3 *** ENO OF TRAJE EXIT SEGMENT 50 AT 15.3
DATE; 71/ 1/ 1/ 1/ 1/ 0/59 15.90625 IT		DATE; 71/ 1/ 1 0/59 15,90625	EXIT SEGN

C.7 TEST CAST F: ECI SIMULTANEOUS-VEHICLE ORBIT DETERMINATION RUN (ITIN = 2)

	ITEM	DESCRIPTION	REFERENCE SECTION
	- -1	Card images of the input MODEL data. Emphasis is given to the variables associated with an SLS run (MULTV=2), the others having been discussed earlier:	
		MULTV, LPACK PANDR, PATA, GPLØT, SSPR, MVET ELEDD, KEDIT, FEDIT, NEDIT JSGLS GMKM, ERKM, F, ØMEGE, ØMEGA, GSUBO, FTNM, FTKM, SLT, PI, DGREE MSGLS, FREQ, CNTI, ISGLS, PSGLS D1, D2 CLASS LGT UTD, LEMSP ACØN, RCØN	2.2.11.1 2.2.11.3 2.2.11.3 2.2.11.4 2.2.2.9 2.2.2.1 2.2.3.1 2.2.3.1 2.2.3.1 2.2.3.1 2.2.3.1 2.3.3.1 3.3.3.1 3.
C-215			

									\mathbf{G}	•										_
124	24	*	4.5	94	47	4	64	20	51	25	53	24	22	36	57	20	53	9	61	62
CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD
1.050450E-11 -3.565277E-13	1.202446E-13	F .3352891869E-2	GSUBO . 120 876 5 40 4E+2	SLT 2820.185179	1.047197551216	CNT1 1048754.	IPSGL S2	ILGT -1	RCON 1.E-3	DITIN 2	LEMSP3	FLUX 0.		IKSIG 1	14 37	0		ELEGOO	KEDIT.5	
-6.224239E-13	-1.858297E-13	ERKF -6378.145	OMEGA.4375269088E-2	FTK# 3280.839895	DGREE57.295779512	FREG 1.779736E9	IJS6LS6	CL ASS1	ACON G.	PATA 3	DOP30X4001	02 -15.738	DSSPR XX	07	I3 3	2 0		ILPACK1	FEDITS	
08,06	80.80	GHKH 398611.2	OMEGE . 437526 5088E-2	FTNM 6076, 115486	PI 3.1415926536	PSGLS2	ISGLS0	PLANTO	PAXITS	UTD 41.1579	I FUL TV2	01 7.18	JFANDR XX	GPL 07 4	12 2	SIGMA20	,1	TPVET 2	NEDITS	CNS

SOUGE + 15 M ++ 3'/ SEC++		SNA	.42338450E-09	. 34510300E-98	.10572740E-08	29059790E-08	.21846490E-08	. +0337720E-n8	20 252870E-08	192269 20 E-98	29300270E-14	. 49244 970 E-10	16493670E-09	41 1521 30 E-09	65909100E-10	31036890E-12	53915169E-10	.7 25 89000E-19	.18584580E-1"	26756140E-11	35852770E-12	.12C24440E-12	
11		I Z	. 5056 8239E-F7	.30284230E-08	. 1397 92 10E-n7	. 55550120E-08	55451610E-09	44323730E-08	34014530E-08	11580420E-08	2917 8001E-09	8953740JE-1P	83592000E-10	14245380E-F9	20331643E-10	.14589719E-10	. 31993730E-11	31557700E-10	62242390E-12	. 16257313E-11	. 86573809E-12	18582973E-12	
+3/SE		I	m	m	m	(∾)	m	3	4	*	*	4	rv	w	ß	'n	ø	9	9	^	ę -	60	
114		z	4	S.	9	~	40	4	ß	9	^	4 0	R	9	^	80	9	2	60	~	4 0	4 0	
E+17		*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	4	*	*	*	*	*
= .1407646853	41 TERMS.	E Z S	0.	0.	•		•0	٥.	•	. 230 94831E-06	41813653E-C6	14246870E-06	.786950C3E-07	.68152200E-67	32 991 2C 1E-07	77367600E-06	23186339E-06	. 950 846C 3E-C 7	54514J3JE-E7	19273743E-07	.600093918-08	30989903E-08	136403615-66
.5530417752E-02 ER**3/MIN**2	NO NORMALIZATION WITH	E	5 108270 0E-02	. 267600 0E-05	. 14000300E-05	. 280C0030E-U7	0 370000' 3E-06	- 593000C1E-06	C700000:0E-07	1 .19918560E-05	153442080E-06	1 .11684640E-C6	127467373E-12	1 .9220740 3E -07	110135590E-06	2 .15370680E-05	2 .41627173E-16	2 .932884 3E-U7	2 .434750, rE-67	220(0 62836-07	2 .456442236-07	2 .774717 0E-68	7 - 407555. AF-C7
		z	N	3	+	5	ø	~	00	M	t	S	9	-	6 0	N	M	t	'n	ø	~	ď	۲
	152E-12 ER**3/MIN**2 = .1407646853E+17 FT**3/SEC**2	52E-02 ER**3/MIN**2 = .1407646853E+17 FT**3/SEC**2 = . NORHALIZATION WITH 41 TERMS.	152E-02 ER**3/MIN**2 = .1497646853E+17 FT**3/SEC**2 = .1497646853E+17 FT**3/SEC**2 = NORMALIZATION WITH 41 TERMS.	752E-D2 ER**3/MIN**2 = .1497646853E+17 FT**3/SEC**2 = .100RHALLIZATION WITH 41 TERMS.	/52E-02 ER**3/MIN**2 = .1407646853E+17 FT**3/SEC**2 = .100RMALIZATION WITH 41 TERMS.	SOME SOME	52E-02 ER**3/MIN**2 = .1407646853E+17 FT**3/SEC**2 = 0 NORMALIZATION WITH 41 TERMS.	SCE-02 ER**3/MIN**2	SNH	SNH	SCE-02 ER*3/MIN*2	SNH	52E-02 ER**3/HIN**2 = .1407646853E+17 FT**3/SEC**2 = .1407646853E+17 FT**3/SEC**2 = .1407646853E+17 FT**3/SEC**2 = .108270 NHTH 41 TERMS.	52E-02 ER**3/HIN**2 = .1407646853E+17 FT**3/SEC**2 = .1407646853E+17 FT**3/SEC**2 = .1407646853E+17 FT**3/SEC**2 = .1082710 WITH 41 TERMS.	SCE-02 ER**3/HIN**2	SCE-02 ER*3/HIN*2	SCE-02 ER*3/HIN*2	52E-02 ER**3/HIN**2 = .1407646853E+17 FT**3/SEC**2 = .1407646853E+17 FT**3/SEC**2 = .1407646853E+17 FT**3/SEC**2 = .108270	52E-02 ER**3/HIN**2 = .1407646853E+17 FT**3/SEC**2 = .1407646853E+17 FT**3/SEC**2 = .1008710	52E-02 ER*3/HIN*2 = .1407646853E+17 FT**3/SEC**2 = .1407646853E+17 FT**3/SEC**2 = .100 NUTH 41 TERMS.	SCE-02 ER*3/HIN*2	SCE-02 ER*3/HIN*2	SCE-02 ER*3/HIN*2

* * * * *	.5530417744c-32 ER**?/MIN**2 = .1437646851E+17 FT**3/SEC**2 = .3986011994E+15 M**3/SEC**2	**** ZONAL HARRCNICS ***	.1082549000E-02 EJ3 =243500000000E-05 EJ4 =1232000001E-05	,这种,我们的,我们的,我们的,我们的,我们的,我们的,我们的,我们们,CONSTANTS,我们的,我们的特殊的,我们的,我们的,我们的,我们的,我们的,我们的) = .953941775E-02 OMEGE(RAD/MIN) = .437526999E-02 GMLAT(DEG) =	= .398601200E+06 OMEGA(RAD/MIN) = .437526939E-02 GMLNG(DEG) = .	#3/HIN+#2) : .68233650E+04 OMEGL(RAD/MIN) = 0. AM(ER) = .272506277E+0P	= .139256726E+08 ERKM(KM/ER) = .637214571E+04 ERNM(NM/ER) = .	= .326083589E+04 FTNM(FT/NM) = .607£11549E+0	$(c^{+}2) = .32^{\circ} 876640E+02 DGREE(DEG) = .572557795E+02 SLT(ER/4IN) = .$	= .10: 00 000 0E-10 F =	**************************************	ER) = .209256738+08 VF(I/O-ER/MIN) = .34876121E+06 AF(I/O-ER/MIN*+2) = .58126868E+04	reseaseaseaseaseaseaseaseaseaseaseaseasea	ICENT = 1 NSTEP = 2
	GM = .5530417744		EJ2 = .108254900		GM(ER##3/MIN##2)	GMKM (KN** 3/ SEC*+ 2)	SGM (ER##3/MIN##2)	ERFT (FT/ER)	FTXH(FT/KH)	GSUB3 (FT/SEC++2)	CKEP	**************************************	OF(I/O-ER) = .		NPCMP = 0 HMIN = .156256

					<u> </u>	*				(,		
•						* 6 * * * *								
• • • • •				G.										
				۵									•	
	9						CARD	CARO	CARD	CARD	CARD	CARD	CARD	CARO
	3000			UDE		*								
=10 0	ALTITUDE TABLE sessessessessessessessessessessessesses		000	HEISHT Z Longitude		•								
NPDOT PTNS	M,		H H H			*	4	.	v -	. ~	+	~	۰ م	ا ا
N T			ALTITUDE ALTITUDE ALTITUDE	W		•	495+4	55E+	315+	56E-	89E+	10E-	-2.65828841E-2	2. 8 27 J 7 2 6 5 E
o n	TUDE	u u	ALTI ALTI ALTI	L CNGITUDE Y LATITUDE		* * *	28595495	3228	5177	8320	0783	605 €	5828	7.662
	TABLE ************************************	TABL	CRASH	LCMGITUDE V LATITUDE		***	4.7	5.75	1.11996531E+2 6.18612784F+1	8.79	6.12	7.63	9.2-	8
u a.	RASH	JOES						90		1 16				27
	FABLI CI CI	ודגַדוּ	8007 (2) 8007 (4) 8007 (6)	ETIO		INPUT	,	•	,		_			•
OPTIONS U PTA 1 LEM	TUBE.	SH FF	6 6 6	STATION LOCATIONS Latitude X Radius		ATA II							~ 1	<u>.</u>
IAL U	ALTITUD (IN FT)	A N		TION LO LATITU X RADIUS			3E .	5.46561358E+3	35+1	7.94214544E-2	~	3E-2	-1.03299161E-2	8 5 1
SPECIAL = =		TARY	ω 3 *			• • • • • • •	6001	6135	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1454	2618	2609	2991	• 29 + 7 1 7 8 3 E
TEL EM	CRA	L ANE	0 E + 0 + 0 + 0	• • • W		*	.682	• 465	1 1 1 1	.945	.317	.782	1 - 03	Z • Z >
F 0	300000000E+0E	TERP	- 34 60 0 0 3 0 0 E +0 4	DATUM TYPE	999999	* * *	+1	.						
C TELEM 0 CLASS	00.00	z t	36.60	DATUM	940500	* * *	2	R)	• -	1 7	17	0	23	9
1111	3 30 0		CO	ž	, . , .									
			# H # H	RA-RB	000000		+ 4	\$ (7 F	4 7	++	+ -!	36-2	111
•	# II		ALTITUDE ALTITUDE ALTITUDE ALTITUDE	e úz			7257	6526	6226	0718	160	9 6 2 7 E	956	-9.5/123/205-5 2.690099675-7
D 0	117.00		A PLI	REF	999999	***	54827	51307	40434	15 90 6	7 19 0	1213	6752	50069
	4		CRASH CRASH CRASH CRASH	NI C	00000		9.	2.		2	9	1.6	4 6	2.6
TAPE2 = 0 PRHD = 0	CRASH ALTITUDE		3888	**************************************		***	ATA	J (. =	P ==	16	19	22	E 28
TAPEZ PRHD	ECI C	*	80DY(1) 80DY(3) 80DY(5) 80DY(7)	**************************************	313 343 37 37 393	***								w
•		•		ST	The trains the trains	¥								

REFERENCE SECTION	4	9				
DESCRIPTION	Printout of the station locations as input. If CLASS \$\pi\$ 0, the actual locations are left blank	Card images of the input A^TA matrix data. In this case, $(A^TA)^{-1}$ is input because $\partial PB\partial X(A)$ =4				
ITEM	2	m				
					 C 21	

	-		_												(•													
402400	ì	'.	⊶ (N 1	ο.	+ u	n .	0 1	~ æ	0	10	11	12	13	14	4	16	17	18	13	20	21	22	23	54	52	92	27	28	2 0
000000 000000 000000000000000000000000	*		CARD	S S S S S S S S S S S S S S S S S S S	D W W	S A A C	2 4 4 4	2 6	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD
TYES 89.5 00 .3017					•						26	2545.474	17.18572	9	12	† d	86.945165659	25690.5594806	721.18592	[4		. 2307999	43277.185	59427.551	75572,998	5313,522	21449.936	375 80.475	53706.294	
OSDEW FERI PRESI KOCS	SEGMENT R CASE											w	ø	HINKI	Ŧ	IICTY	m	v	m			ហ	m	9	თ	12	#	18	21	
6 .0346 5.0 5.0	EXECUTION TIME		;	- 2G -	• 02	25.	• -	•	. 7		_	0					-					30.16990	•6	54044.693	70191.651	86334.067	16071.740	32264.094	48331.657	
P1 9 80 0 80 0 80 0 80 0 80 0 80 0 80 0 8	1.5 SECONDS.									DRA	. ~	2	5	IYEA	12N	SEC	~	0	2	ιn	7 2 3	•	2	S	6 0	11	14	17	20	
PDMT 0 ADMT 2 SDRG .0355 PSTSD28.CE-5 KDRS .3017 END	SEGMENT 01 AT		VPRAND4,							IIORAGI	START1970	0 7	4 12	IVEHID6820	IDAY 26	HIN T			FTIM 0.		I NPKCK1	3 15717854	•	48611.25						
	4T 0 4T 2 4G .0355 4G .0355 4G .0355 4G .0355 4G .0355 4G .0355 6G .0346 6G .0367 6G .0367 6G .0367 6G .0367 6G .0367	4T 2 4G .0355 5DG .0346 FERI 89.5 FERI 89.5 FORESOU AS .3017 FERI 89.5 PRESOU PRESOU ADPH 5.0 FORESOU ADD 5.0 FORESOU ADD 5.0 FORESOURING MAS 1.5 CP SECS.	#OHT 0 ADHT 2 SDCG .0346 FERI 8 SDRG .0355 SDCG .0346 FERI 8 PSISD28.CE-5 KDTS .3017 KDCS . END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT	#OHT 0 ADHT 2 SDCG .0346 SDCG .0346 FERI 8 PSISD28.CE-5 KDTS .3017 KDCS . END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT ####################################	#DWT 0 ADWT 2 SDCG .0346 SDCG .0346 FERI 8 PSISD28.CE-5 KDTS .3017 KDCS . END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT WYPRAM04,6 D X 200.	#OWT 0 AOWT 2 SOCG .0346 FERI 8 FSTSD28.CG-5 FORS .3017 END KORS .3017 END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT ####################################	#DWT 0 ADWT 2 SDCG .0346 FERI 8 FSTSD28.CG-5 FORS .3017 FNDRS .301	#OWT 0 ADMT 2 SDEG .0346 FERI 8 PSTSD28.CE-5 KDTS .3017 KDCS . END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR CASE 1 MVPRAM04,6-7 D Y 200 D D Y 200 D D D D D D D D D D D D D D D D D D	#OHT 0 ADMT 2 SDEG .0346 FERI 8 FSTSD28.CE-5 KDTS .3017 KDCS .3017 ENO SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT HWPRAMO4,67 D X D X D X D X D X D X D X D X D X D X	#OWT 0 ADWT 2 SDRG .0346 FERI 8 FSTSD28.CE-5 KDTS .3017 KDRS .3017 END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT WYPRAMO4,67 D X D X D X D X D X D X D X D X D X D X	#OWT 0 ADMT 2 SDRG .0346 FERI 8 PSTSD28.CE-5 CDPH 5.0 KDRS .3017 END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT HYPRAMO4,67 D X D X D X D X D X D X D X D	#OHT 0 ADMT 2 SDEG .0346 FERI 8 FSTSD28.CE-5 FORS .3017 END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT HYPRAM04,67 D X D X D X D X D X D X D X D X D X D X	#OHT 0 ADMT 2 SDEG .0346 FERI 8 FERI 8 FSTSD28.CE-5 FORS .3017 FOR	PTYP 1 ADMT 2 SDCG .0346 FERI 8 FSTSD28.CG-5 DPH 5.0 KDRS .3017 KDRS .3017 KDCS . END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT HYPRAM04,6-7 D X D X D X D DX L1. D DX L	PTYP 1 SDEG .0346 FERI 8 SDEG .0346 FSTSD28.CG-5 KDRS .3017 KDRS .3017 END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR CASE 1 MYPRAMD4,6-7 D	PTYP 1 SDEG .0346 FERI 8 SDEG .0346 FERI 8 PSTSD28.CE-5 KDRS .3017 KDRS .3017 END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT WYPRAMO4,6-7 D	PTYP 1 SDEG .0346 FERI 8 PSTSD28.CE-5 KDTS .3017 KDCS . KDCS .0346 PRESD0 KDCS .3017 KDCS . KDCS .0366 KDCS .0366 CDC .007 CDC	PTYP 1 SDEG .0355 SDCG .0346 FERI 8 FSTSD28.CE-5 DPH 5.0 FRESD0 KDRS .3017 END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT HYPRAH04,67 D X D X D X D X D X D X D X D X D X D X	PTYP 1 SDRG .0355 SDCG .C346 FERI 8 FERI 8 FORESOO KORS .3017 KOCS . KOTS .3017 KOCS . KOTS .3017 KOCS . KOTS .3017 KOCS . KOCS . KOTS .3017 KOCS . K	PTYP 1 SDEG .0346 FERI 8 PSTSD28.CE-5 SDCG .0346 FERI 8 PSTSD28.CE-5 SDCG .0346 FERI 8 PSTSD28.CE-5 SDCG .0346 FERI 8 PRESDO RDCS .3017 KDCS .3017 KDCS .3017 KDCS .3017 KDCS .3017 KDCS .0317 KDCS .0	PTYP 1 SDRG .0355 SDRG .0346 FERI 8 FOR SEGMENT TO A T 1.5 SECONDS. EXECUTION TIME FOR SEGMENT TO A X D X D X D X D X D X D X D X	PTYP 1 SDG .0355 SDG .0346 PSTSD28.CE-5 DPH 5.0 PRESD0 RDS .3017 KNOS .3017 KNOS .3017 END SEGMENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGMENT ***********************************	PTYP 1 SDG .0355 SDG .0366 FERI 8 FERI 8 FERI 8 FERI 8 FORS .0355 FORS .0355 FORS .0356 FORS .0366 FORS .0367 FORS .3017 FORS	PUMT 0 ADMT 2 SDEG .0346 FERI 8 FERI 8 FORS .0355 FORS .0346 FORS .0365 FORS .0365 FORS .0365 FORS .0367 FORS .0368 FORS .0368 FORS .0368 FORS .0368 FORS .0368 FORS .0368 FORS .03690 FORS .0368 FORS	PDMT 0 ADMT 2 SDCG .0346 FERI 8 FERI 8 FERI 8 FORS .3017 FOR	PUNT 0 ADHT 2 SDEG .0355 SDEG .0356 FERI 8 FERI 8 FORS .3017 FORS	PTYP 1 SDCG 0355 SDCG 0346 FFER1 8 FFE	PTYP 1 SDCG 0355 SDCG 0355 SDCG 0356 FFES 0 FOR SCHENT FOR S	PTYP 1 ADMT 0 ADMT 2 SDCG 0.346 FFER 18 FFER 18 FOR SCHENT 0 SECHENT 01 AT 1.5 SECONDS. EXECUTION TIME FOR SEGNENT HYPRAMD4,6- D X MYPRAMD4,6- D X D X D X D X D X D X D X D	### ### ### ### ### ### ### ### ### ##

4. rv	REFERENCE SECTION SECTION
ις	_
START NCDAW NPKCK, DNØDE	Card images of the input VEHICLE data. Emphasis is on the variables associated with an SLS run (MULTV=2), the others having been discussed earlier:
C	RT)AW ;CK, PKCK 11
C	
C	
C	
-221	

ЕРОСН		INITIAL CONDITIONS	11085	
YR/HC/DAY	X, Y, Z, OX, OY, OZ	A, D, 8, A, R, V	A, E, 1, 0;1, TAU	AF, AG, N, L, CHI, PSI
TZNE, HR, MIN, SEC	. 2146903 7556E+08	.53370435033E+01	. 21 60 0 27 6 17 0 E+0 8	.12286862127E-01
1970/ 6/26	. 19942843795E+07	55147600000E03	.21406144937E-01	17528721006E-01
.0	20 753064537E+03	.88946165659E+02	.10884744563E+03	.66784616507E-01
.12000000019E+02	.12377377639E+0+	.19884744963E+03	.185307231755+03	.31 944959249E+01
.10000000000E+.1	82186686159E+0+	. 21561464324E+U8	.11972153345E+03	12931050634E+00
.17185020000E+U2	24318976487E+05	.25690559481E+05	.70 f77 366628E+03	13929146541E+01

NO PLANETARY PERTURBATIONS. ** NO ATMOSPHERE MODEL **

SECS	٥	7	VV	1 F 1 F 2	CHT.	30	F	T K	THE SECONDS - EXPLITTION TIME FOR SECRENT 1 MAS - 1 CD SECS.	FX	SONO	SF C	4		10 0		CEC	ENTED SECMENT
. 20925673E+0		5	50000000E+02	. 50		. 1000000 GE+05	 0	000	• 10	.1200¢co0E+04	000) 0 0 Z	7	ø		RBIA	•	313
.20925673E+0		707	50110000E+02	. 50		10000000E+05	000	000	. 10	.148 COC OO E + 34	000	78.0	7	œ		RBIA		243
.20925673E+0		20	50100000E+02	.50		10000000E+05	000	000	, 16	.1 26 00 00 0 + 0 4	000	20 00	71	0		RBIA	•	353
.20925673E+0		207	5000000E+02	.50		.10003060E+05	000	000	.10	.1 20 00 00 0 E + 04	003	2002	•	o		8		363
.20925673E+0		2	50000000E+F2	6 N		. 10000000E+05	000	000	. 10	.140 (00 COE+34	000	9	٠.	œ		RBIA		377
.20925673E+0		202	. 5090 00 00E+0 2	.50		.10030000E+05	000	000	.10	.120 (0000E+34	000	20 6		o		RBIA	~	393
.10630000E+0				•		.10000000E+00	000	000	.10	.92174627E-92	627	217	6	٥		ORAG	0	682
.34876121E+0				ċ		.10000000E+01	000	000	. 10	24308976E+05	946	430	1.2	٥		20	0.	682
.34 876 121E+0				•		.10000000E+01	000	000	. 10	82186686E+04	9899	2186	8	۵		٥	0	682
.34876121E+0				•		10000000E+01	000	000	. 10	.123773782+34	378	2377		۵		č	0	682
.20925673E+0				÷		2C 0 0 0 C 0 0 E + 0 2	000	000	. 20	20753(65E+33	36 65	07.5	5.	۵		2	0	682
.20925673E+0				•		20000000E+02	000	000	• 20	•199 (2844E+17	844	27 66	• 1	Q.		>	0	6820
.20925673E+0				ċ		200000000E+02	000	000	. 20	.21469C38E+18	C 38	1469	2	٥		×	0	682
CONVERSION			SIGMA				BOUND	80		CURRENT VALUE	۲ ×	RREP	5	D/0	¥	MAN		
6 ARE O PARAMETERS	ARE	9	S AND	FAHETER	FA	RE P	7 A		13 PARAMETERS IN THE PARAM MATRIX. 7 ARE P PARAMETERS AND	FARAM	THE	H	T.8 FS	ARAME	13 P	THE	ARE	THESE ARE

	•		CONT
			ME SY P D
			00000000000000000000000000000000000000
***	SEC 0.0000 0.0000 0.0000 0.0000		
•	ZHOEEMO		
	ERAPOTE STANDED TO THE STANDED TO TH	• • • • • • • • • • • • • • • • • • •	60000000000000000000000000000000000000
•••••••	TUPOAT 6 26 6 26 6 26 6 26 6 26 6 26		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		• • • • • • •	1003 1000E+0 1000E+0 1000E+0 1000E+0 1000E+0
	SEC (* 0000 0.0000 0.0000 0.0000 0.0000	+ + + + + + + + + + + +	FIELD 3 4. C70000E+C 5. 09499000E+C 0. 14799000E+C 6. 69309001E+O 0. 17299000E+O 1. 51539000E+O 1. 96359000E+C 1. 27740990E+C 1. 27740990E+C 1. 29909309E+C
**************************************	T00000	FOR CASE 1 1 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	FIELD 2 11338000E+C2 17219300E+C2 42646000E+C2 574087000E+C2 20920033E+C1 69412000E+02 81266000E+C2 81266000E+C2
TUPUT	F 00 0 0 0 0 0	•	
DATA STAGING I	**************************************	**************************************	FIELD 1 -1.66357133E+04 -1.46059925E+04 -4.42319686E+03 -7.1175852E=406 -3.0812664E+03 -3.0812664E+03 -1.3176362E+06 -2.24899318=+04 1.3941925E+06 -2.24899318=+04 1.3941929E+06 -3.2941929E+06 2.31371122=+04 -3.29320539E+06 -3.29320539E+06 -3.29320539E+06 -3.29320539E+06 -3.29320539E+06 -3.29320539E+06 -3.29320539E+06
:	# X000000		F 40 40 40 40 40 40 40 40 40 40 40 40 40
		* * * * * * * * * * * * * * * * * * *	
	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• • • • • •	$\begin{array}{c} \mathbf{v} \\ $
***	AF1010000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * * * * * * *	NO EL		STAP ASS YR 3993 16 70 3993 16 70 3993 16 70 3993 16 70 3993 16 70 3993 16 70 31 31 31 31 31 31 31 31 31 31 31 31 31

		(
CP SECS.	*****************			* * * * * * *	NSTEP # 30	NSTEP = 46	5 9666 9999758E-02	. 239278350350E+05	156772048110E-02	243083525139E+95	1 N :460622573E-02	.238298363451E+05	102826795647E-01	76958174E	N3TEP = 476	.920682420941E-02	. 238319337227E+05	83453992349E	243069111568E+05		250 MINUTES ***	OF EPDCH ***	CP SECS.	CP SEGS.
•1	1 ****			* * *	.250000	.500000	10E+07	71E+04	1 8E+07	9 25+04	93E+07	4 3E +0 4	48E < 07	87E+114	1.000001	37E+07	33E+04	3 85+07	9 NE+04		279,6250	MINUTES FROM MIDNIGHT	1.4	•
2 MAS	CASE	3LE *		* * * *	•		2[6721431610E+07	.814209479171E+04	.26 5 580 494 71 86+07	14941141	213361809193E+07	.814270198243E+04	.212517332048E<07	.821173714187E+n4	-	220038223137E+07	.814299617733E+04	.219036484338E+07	1836995990E+04		SFAN OF	S FROM M	10 WAS	81 MAS
SEGMENT	ION FOR	VENT TAE		*		I	20	.81	.20	821	21	.81	.213	821	" T	22	.81	•216	820		⋖	TINUTES	SEGMENT	SEGMENT
FCR	INTEGRAT	MINED E		ECI *	725,161417	729.411417	5 9E+08	746+03	53E+08	19 3E + 04	40E+08	.10E+03	4 9E + 08	77E+04	944.911417	33 99 JE + 08	57E+03	15 2E + 08	8 1E+04		O INTEG	1000.011	TIME FCR	FCR
EXECUTION TIME	TRAJECTORY INTEGRATION FOR	* PREDETERMINED EVENT TABLE ITITIES		* * * *	= 725	= 729	218988769959E+08	293957797174E+C3	214626327053E+08	.126203942993E+04	218897494540E+08	319621427110E+03	214559397449E+08	128685	446 =	218804	34484468C157E+03	214491984352E+08	131171317581E		SECONDS TO INTEGRATE	T0 16	EXECUTION TI	EXECUTION TIME
	**** TR	* PRED ASSOCIATED CUANTITIES		* * *	-	-	63		~		~		63	٠ د	-	~		6.3		LION	1.494	721.286 T		
1.7 SECONDS.		ASS OC IA	STAFT	* * * * * *	1. # 66 JU DOUR. 5D	DOU'LED	154957E+	.50303600696E+	\$ 79897 E+	-300 00 B	29 E633 E+I	10 CG 30'E+I	39 ST 42 E+1	10 CC OV E+	DO BLED	.946662334323E+I	+305 CO	90460717663E+	• 1 090 060 60. 30 E+	TERMINA	7 0 0K	12	3.2 SE CONDS.	3.2 SECONDS.
10 AT	****	TYPE TZERO TSTOP	TRAJECTORY	*	STEP	STEP DO	.767215124957E+	.503036	.811021379897 E+D	. 5 600 06	.3569435	. 5 000 000	.900745	.500000	STEP DE	.946662	.1030066	. 990466.	. 1 090 060	TRAJECTORY TERMINATION	THIS CASE TOOK	F FROM	81 AT	82 AT
SEGMENT	经收益债 医骨骨 医骨骨 医骨骨 医甲状腺 医甲状腺素 医甲状腺素 医甲状腺素	TIME(MME) 721.2864 TZ 1000.0000 TS	* * *		I ENIKT LINE			= 10	NODE T =	5		= 10	NODE T =	DT =			= 1 0		= 10	* * *	*	*	SEGMENT	ENTER SEGMENT
ENTER		TIM T		3	\$ col 1	•	Z		Z		Z		Z		•	Z		Z					ENTER	ENTE

REFERENCE SECTION	11.2.2	
	This	
DESCRIPTION	Predetermined event table indicating the first integration time spantime span covers all stages TSTART, TSTΦP	
ITEM	œ	
<u> </u>	·	C-229

•					######################################		
***	H F				SIGNA 2.257842441+93 2.217453345+93 2.23959855+93 2.2966195255+89 2.296619635+89 2.26619635+89 2.26619635+99		
医格洛氏管 医电子电子 医电子性 医乳蛋白蛋白 医二角蛋白 医克雷奇氏 医皮耳氏氏征 医克里氏氏征 医克耳氏氏征 医二甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲	r	S)	SECS.		α α α	7.5./SIGHAD	
* * * * * * * *		47	<u>و</u> ن د,		7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
• • • • • • • •	AL UNITS		HAS		#EM VALUE -21469037555645E+98 -1594284379499E+97 20753754537446E+93 -123773763971E+04 62186686159199E+94 24308976486797E+05	C./SIGHAP	
1 *****	- EXTERNAL	A.	SEGMENT 62		**EM VALUE - 21469037 - 16942843 - 20753754 - 12377377 - 62186686 - 24368976 - 92174652	α α α	
STAGE	RESIDUALS	7 ¥ P	TIME FOR			TOTAL	
格格外语的 经格格特别 医克勒特氏 医水杨醇 医骨髓 医骨髓 医乳腺素素	U	CTED STATISTICS TYP RMS	SECONDS. EXECUTION 1	IN THIS SOLUTION	VALUE CORRECTION 03755645E+D3 -0.847794992E+D7 -0.064537446E+D3 -0.3776392(1E+b4 -0.65193199E+C4 -C.975+E775+3 -0.62938252E-J2 -0.	SIGMA DEWT .25784244E+03 .21745334E+03 .23965889E+03 .55195925E+00 .27633415E+00 .51866171E-03	
****	OY HR MN SE	OF PREDICTED RMS	RMS = 7.	1 WERE USED S	CURRENT VALU -1146903755 -1594284779 -247536453 -1237376376 -3218668515 -24373763 -32139754	SIGMA ZERO	••••
哈格尔特格特特 医马格勒氏试验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	YEAR HO	SUMMARY	RESIDUA	ITERATION NUMBER 0 MEASUREMENTS CURRENT SOLUTION I	κ γ 0 χ 0 σ 0 σ γ 0 σ γ	× 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0	L RMS = 800 S
****	STAPASS	STA TY	PREDICTEO ENTER SEG	ITERATI 0 H CURRENT	A A A A B B B B B B B B B B B B B B B B	6 8 2 0 6 8 2 0 6 8 2 0 6 8 2 0 6 8 2 0 6 8 2 0 6 8 2 0 6 8 2 0 6 8 2 0 6 2 0	RESIDUAL RESIOUAL APRIORI APRIORI TOTAL

•

REFERENCE SECTION	2.2.3										2.2.11.1	ग ?; ?;					.; .; .;
DESCRIPTION	the presents of those is so any one parameter per line, starting with the name (lest Case B. Rem 4)	The correct salve is the parameter value used in the integration partial derivations, and residuals computation stormpicted. For the inestitent it is the input value of the parameter. If an iteration is bad, the content of the forested to the interest to the current value.	the correction is the least squares correction to be applied to the current value for the next iteration	The new value is the sum of the current value plas the correction. This value will be used on concreence of this state and villue updated to the new state for all movedable parameters. The current value is used to be contributed to be seen to be contributed.	The tradition is the waller used to a react the parameters at this stage. This value includes the direction of reaction	SIGMA is the square not of the quagonal elements of the covariance matrix (ATA)-1 for the parameters at the end of this iteration	SIGMA ZERC is the square richter diagonal elements of the initial $(\mathbf{A}^{T}A)^{-1}$ before seweighting for this starc	SIGMA DEWT is the square rect of the diagonal elements, if the dewerthted (ATA)-1 at the start of this iteration	f. C. ISIGNIAD is the total correction/SIGMA ZERO	T. C. (SIGMAD is the total correction/SIGMA DEW T	The current value, correction, new value, futa, currection and SIGMA are normal least squares output. SIGMA ZERO, SIGMA DEWT, T. C. /SIGMAN, and T	Residual RMS is the weighted root mean square residuals for the current iteration	Residual SCS is the sum of squares of the normalized measurement residuals for the current iteration	A priori RMS is the weighted root mean square total of the parameter currections for the previous iterations for the current stage	A priori SOS is the sum of the squares of the total parameter corrections for the previous iterations for the correct stage	Total SCS is the sum of the residual SCS + a priver SCS	Predicted 505 is the predicted sum of the normalized measurement residuals squared
NELL	•																

. 93397E+07 .26901E-06 . 25 901E- F6 DR AG 5320 DRAG 582° 0846 682 . 19966E+04 -. 64479E+05 .76361E-01 -.28209E-04 . 76683E-01 -. 390615-04 გ 4 20 20 20 6820 5823 . .4280 EE+93 . .41722E+93 . --21921E+95 .17826E-11 -.229475-14 3 .13583E+91 .35508E-11 -.77576E-34 FROM MIDNIGHT OF EPOCH ď ٥ ŏ 682C 6820 682F .30466E+00 .79421E-01 .14214E+00 -.95712E-04 -17085E-03 .82365E-03 .45841E-03 .45841E-03 -65688E-03 .16370E-03 .45841E-03 .44390E+03 -84361E+00 .17592E-02 .35395E+00 .44390E+03 -20597E+00 -.20510E+01 -.34265E+02 -.25873E+00 -.21456E+0C -.40959E+01 -.34107E+03 -70757E+02 .79235E+01 .42212E+01 .34712E+04 .32479E+01 .44267E+00 .32502E+00 -.66394E-03 -21748 1.00000 --14916 --19676 ă á ŏ SKECHTION TINE 6820 6829 6823 .48510 1.30300 .93191 .21748 -.33433 -.14916 .11191E+63 .11191E+63 .26591E+02 .61268E+62 .14791E+67 21726E+64 .28152E+63 .20548E+03 -.45517E+67 MINUTES 1 1.00C00 35355 84528 1.10000 3 .95976 .28941 .4851C 1 3 .67185 .92346 .93191 1 -.09159 -.21368 -.33433 -7 7 7 6820 6820 511.2 SECCMOS . 47236E+05 . 54656E+04 . 42434E+02 . 61861E+02 . 43173E+01 - 4337E+01 .21730E+06 .49c44E+06 .75470E+03 .15119E+03 .53557E+02 -15666E+02 6827 ₹ > > 6827 7 682 .27234E-92 .17085E-03 -.65088E-03 .66483E+05 .1682EE+05 .56131E+05 .145.43E+03 .34564E+02 .67719E+12 .55687E +15 .67521E+15 .20658E+16 .32434E+13 .50349E+12 5 . + 5. 54E - 31 *** 6753E ENTER SEGMENT 84 AT ATA INVERSE UPDATED 1.060.0 .30v16 .96759 .90676 .95043 MATPIX 39642.-682C X SEGMENT CORRELATION INVERSE AG × × 2 × 2 × 0 × 0 × 0 × 0 × 0 0 × 0 0 × 0 0 × 0 0 × 0 0 × 0 0 × 0 DR AG Œ DRI × > ~ × × × 60 0 72.20 ENTER 6.820 6820 6820 6820 6820 6820 6820 6820 6829 6820 6820 6820 6820 6820 6820 6820 6820 **5820 6820** 6820 6820 6820 6820 ATA

CONVERGED

LEAST SQUARES PRODESS

Ш	
S	1
u	7
ER	t
L	6
A 교	
4	

SECTION

 $A \stackrel{T}{A}$ is the current $A \stackrel{T}{A}$ matrix for this iteration

DESCRIPTION

ITEM

10

ATB is the right-hand side of the normal matrix equation for the generalized least squares (GLS) problem when a priori statistics are included in the GLS solution of the linear system. The equation to be solved is

$$(C_0^{-1} + A^T WA)\Delta P = A^T WB$$

where

$$A = \frac{\partial O_c}{\partial P}$$

W = observation weighting matrix

P = vector of parameter corrections

= residual vector (A^{TWO}_{mc}) for the last iteration

It is ATA inverse is the covariance for the parameter set at this iteration. the inverse of the ATA matrix above

Correlation matrix, the correlation coefficients for the parameter set. These values are computed directly from the covariance matrix

 $\frac{T}{A}$ inverse updated is the covariance for the parameter set updated to the time of the next iteration

AND G DEWEIGHTING	MATRICES	FOR VEHICLE 6326	ני				
ORBIT PLANE COOKJINATE .33140E+£5 28250E-18 .33	JINATE SYSTEM 5 8 .39768£+16					(3)	
63892E 38775E R SET	-1, -,39775E+03 +,2 ,33054E-21 0, COORDINATE SYSTEM	. 514316+05 6. 6. 60694E-10	.46832E+06 74757E-13).	•45369E-01	, 43098E-01		
.76445E-11 .179472E-11 .1 .224449E-10 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	158412-99 25451E-99 16992E-10 179562-11 FOR VCHI	.820906-09 .530526-10 .480416-11 .149626-14 CLE I FOR NE	. 33296E-11 . 28536E-12 4650+E-15 NEXT DATA STAGE	.383665-12 .569756-14	.371n5E-12	(2)	
YEAR/HC/DY HR/HIN SECONUS LATITUDE LONGITUDE HEIGHT	x 7 7 8 7 1 1 2 2 2 2 1 2	ALPHF DELTA EETA AZIMUTH RACIUS VELOCITY	А Э Н С О И Б Р О О И С О О И С О О И С О И И С О И И С О И С О И С О И С О И С О И С О И С О И С О И С О И С О И И С О И И С О И И С О И И С О И И С О И И С О И И С О И И С О И И И И	P P P P P P P P P P P P P P P P P P P	MEAN ANCHALY ECCENT <u>AC ANOM</u> TRUE ANOMALY KEPLERIAN PER ANOMALY PER NODAL PERIOD	APOGEE RADIUS APOGEE HEIGHT PERIGEE RADIUS PERIGEE HEIGHT 0-00T	
1970/ 6/26 21 13/31 2 1.2588030 .0015603 12 248.4688068 -82 104.6003 -243	21462602.415 2060102.054 593.249 1262.7637294 -8214.9716254 24308.3525001 2	5.482511795 .011549899 86.948443245 198.847926491 21561236.311 25699.9725442	21738793.913 .0 2134291985 108.847926486 185.481982716 119.645021943 796.4870267	. (122805196989 (174559177234 . 0667914375674 3.371622844 13355668938	989 58.21461818 234 59.235°5346 674 60.353334034 844 89.8318739 935 89.5979428	3664.19°37 228.11°14 3511.019979 7*.95979 2.79256528°9 -2.0666975725	
SQUARES PRO	LEAST SQUARES PROCESS CONVERGED	ċ					

.0 CP SECS.

3.3 SECCNDS. EXECUTION TIME FOR SEGMENT 84 MAS

EXIT SEGMENT 94 AT

L	ITEM	DESCRIPTION	REFERENCE SECTION
	11	Deweighting matrix in the orbit plane coordinate system (RTC). The values in this matrix are used to deweight the A ^T A matrix. This deweighting allows for the uncertainty in the unmodeled parameters. Units are external	
	12	Parameter set coordinate system is the RTC deweighting matrix converted to the parameter set coordinate system (ECI). This converted matrix is added to the updated A $^{\rm T}$ A inverse matrix. Units are external	
C-23			
35			

.1 CP SECS.	**************************************
"	-
AA	S
25	S
MENT	FOR
SEGI	ICh
F 08	GRAT
EME	INTE
z	7
UTIO	ECTO
EXEC	TRAJ
3.3 SECONDS. EXECUTION TIME FOR SEGMENT 84 MAS	********
m	* * * *
T A	* * * *
1,	*
ENTER SEGMENT 16 AT	****
SEG	***
r ER	* * *
Ä	•

* PREDETERMINED EVENT TABLE *	ISSOCIATED GUANTITIES		
		r zero	LSTOP
	TIME (MME)	811.0210 TZERO	882.0000 ISTOP

TRAJECTORY START

NTRY II	ME IS 3.36790	* ID3 * * * * *		* * * * * * * * * * * * * * * * * * * *
NODE T =	.811621379896E+03	.214626327051E+08	. 20 5 58 0 494 77 n E+P7	.161588981064E-
= 10	. 12500000 1030 6+00	.126203943514E+04	821494114187E+04	243183525152E
•	STEP DOUMED	T = 814.895930	H # .2500fr	NSTEP #
•	STEP DOUGLED	T = 819,145980	10000c° # #	NOTED H
= 1 300N	. 3569432966385+03	21889749455GE+08	213361899386E+07	53~143593949E-
= 10	.5030000003336.6+07	31962143L717E+03	.814270199170E+n4	. 2 38 298363442E

+++ TRAJECTORY TERMINATION

*			
TES	:		
MINU	HO CH	E CS.	ECS.
71.1250 MINUTES ***	882.146 MINUTES FROM MIDNIGHT OF EPOCH ***	.5 CP SECS.	.1 CP SECS.
AN OF	FROM	0 WAS	1 WAS
RATE A SF	FINUTES	SEGMENT 1	SEGNENT &
INTEG	146	8	FOR
10	882	TIME	TIME
.483 SECONDS TO INTEGRATE A SFAN OF	10	EXECUTION	EXECUTION
8 4	811.021 TO	3.9 SECONUS. EXECUTION TIME FOR SEGMENT 10 MAS	3.9 SECCNDS. EXECUTION TIME FOR SEGMENT & MAS
10CK		3.9	3,0
THIS CASE TOCK	FROM	81 AT	AT
THI	:	81	82 AT
*	•	GMENT	ENTER SEGMENT
		ENTER SE	ENTER

******	* * * * * * *	*****	经存货条件 医格特特氏 医牙髓 医牙髓 医牙髓	STAGE		****	
STAPASS	YEAR HO	DY HR MM SEC	ũ	RESIDUALS	- EXTERNAL UNITS	5	# E
STA TYP	SUMMARY	OF PREDICTED STATISTICS THS TYP	AT ISTICS RMS	<u>~</u>	S. S.	TYP	10
PREDICTED	RESIDUAL	L RMS = 0.					
ENTER SEG	SEGMENT 83	AT 3.9 SECONDS.	EXECUTION	TIME FOR	SEGMENT 82 MAS	.0 CP SECS.	
ITERATION NUMBER D HEASUREMEN CURRENT SOLUTION	ICN NUMBER HEASUREMENTS IT SOLUTION I	1 S WERE USED IN THIS IS	HIS SOLUTION				
		CURRENT VALUE -214626:/415330E+08 -20600025544027E+07			NEW VALUE .21462602415330E+98 .20600020544027E+07	-000	v
6827 6,20 6820 6820 0 6820 0	2 0 x 0 y 0 R A G	.58324941754139E+03 .12627637289684E+04 82148716253522E+04 2430835250073E+05	4	• •	.56324941F54139E+73 .12627637289694E+04 62148716253522E+04 24308352500073E+75	2440 2440 200 200 200 200 200 200 200 20	.139944531 .191124531 .42129593 .34901961 .58941494
6820 X 6820 X 6820 X 6820 Z 6820 6820 0 0 6820 0 0 6820 0 0 6820 0 0 0 6820 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIGMA ZERO .235 9119E+ C3 .46615033E+03 .121619265+04 .18021646E+01 .36169763E+00 .27691647E+00	SIGMA DEWT .298599C8E+03 .5354G718E+03 .13559432E+04 .19112453E+01 .42129759E+00 .34901561E+00	TOTAL C	CORR. T.C./SIGMAD	.4A0 T.C./SIGHA	IG MA D
RESIDUAL RESIDUAL APRIORI APRIORI TOTAL PREDICTED	M M M M M M M M M M M M M M M M M M M						

Seites LEAST SQUARES PRODESS CONVERGED SESSES

ATA

			;						
		682U X	682 Y	682C Z	6820 DX	682f DY	6820 07		6.92
6820	×	.16114E-02							
6820	>	.16688E-03	. 360 29 E-04						
6820	7	.879625-05 .51395E-C6 .14741E-04	. 51395E-C6	-14749E-04					
6820	ă	.32316E-02	35638E-C2	10851E-C1	.95554E+01				
6820	οV	43220E+00	\$1557 E-L 1	97442E-C+	20794E+01	.12850F+03			
6820	20	12583E+01	12158 E+00	33604E-02	73308E+01	-3369AF+03	9860	3F+03	
6820	6820 DRAG	•93853=12 •8:820E+6127226E+61 •18668E+1425541E+0575004E+05	. 8 :8 2 CE + C 1	27226E+C1	•18668E+04	25541E+05	- 7500	4F+85	-
	ATE	-0-	٠	ب		.0.	-0-	?	•

ц
U
œ
u
>
2
F
4
۳

		6320 x	682 ₹	682G Z	6820 DX	E825 DY	>	6820 07	0.7	6420 DRAG
6820	×	.89161E+C5							i i	
6820	_	.640415+05	. 28666 E+16							
6820	2	•19587E+06	.66989E+C6	.18386E+07						
6820	XO	.31122E+03	.87971E+L3	.25379E+04	.36529F+01					
6820	٨	.616165+12	.16430 E+[3	.31659E+03	47678F+00	1774	CF + AA			
6820	6820 DZ	.992195+02	.57 66E+C2	+26549E+03	.32496E+00	3660	1F = 9.5	121	AIFFOR	
6820	DR AG	45064E-311566E+01 -	15566E+0L	45517E+01	L45517E+0166094E-0377576E-0430061E-04 .34741E-06	7757	+6-39	300	61E-04	. 34 741E-06
CORR	ELATIO	ORRELATION MATRIX								

						1.00001
					1.0000	14613
				1.00000	24891	31241
			1.30000	59212	.48716	58671
		1.6066	.9 7929	.55+19	.4:422	56 553
	1.00000	.84009	.85871	.72839	.39538	49643
1.00000	.40058		.54534	38684.	.95204	25605
×	>	7	č	Ç	20	DR AG
6820	6820	6820	6820	6820	6.920	6320

.0 CP SECS.

4.0 SECONDS. EXECUTION TIME FOR SEGMENT 83 WAS

ENTER SEGMENT 84 AT

32 692" DRAG	59E+02 .7E-02 .34741E-06		317346-61	
6829 02	.12469E+02 14747E-02		3173	
6820 DY	.15454E+01 .42122E+01 4996EE-03		.35908E-01	.53885E-12
6820 DX	.11142E+00 .49529E-01 .13719E+00		.37047E+00 18000E-01	.31126E-12 79310E-13
6 820 Z	.88340E+05 95064E+02 62902E+02 20265E+03 41728E-02	EHICLE 6820	.24916E+05	
682n ¥	.18600E+06 .15117E+05 32306E+02 44852E+03 11553E+04	TRICES FOR V	9 54	
6820 X	.35809E+07 .10697E+07 .13759E+05 71989E+05 37618E+04 10880E+05	G AND G DEWEIGHTING MATRICES FOR VEHICLE ORBIT PLANE COORDINATE SYSTEM	.26229E+05 79673E+04 0.3 15384E+023	PARAMETER SET COORDINATE SYSTEM *877976-09 *770936-10 -114276-10 *348156-11 -161806-10 -161806-10
3	6020 Y 6020 Y 6020 DX 6020 DY 6020 OY 6020 ORAG	G AND G DE	. 26 . 15 . 15	PARAMETER .87 10 34

. 34741E-06

879.00 MINUTES FROM MIDNIGHT OF EPOCH

ATA INVERSE UPDATED TO

YEAR/HO/OY	×	ALPHA	ব	AF	MEAN ANOMALY	APOGEE RADIUS
HRIMIN	> -	DELTA	W	AG	ECCENT C ANOM	APOGEE HEIGHT
SECONOS	2	BETA		z	TRUE ANOMALY	PERIGEE RACIUS
LATITUDE	X 00 T	AZINUTH	0	ر	KEPLERIAN PER	PERIGEE HEIGHT
LONGITUDE	YOOT	RACIUS	יכ	CHI	ANOMALY PER	100-0
HEIGHT	T002	VELOCITY	TAU	PSI	NODAL PERIOD	U-001
1970/ 6/26	-861872.839	97.158392672	21737616.110	.0115440762591	336,1237,8221	3647.59745
14/39	6862499.928	71.116301417	.01957929703	0158140182847	329.555 35415	211. 36878
0.0000000	2:226527.828	90.568518390	108.876805463	.0670735003855	328.9820 3717	3507.50556
71.2343408	25757 .4637672	271.463539434	185.611644975	276.252955968	89.4539728	71.27:89
323,1634043	2523 .8380376	21370691.979	120.517427874	13677847464	89.5929160	2.8239257459
83.5838	-29,3564957	25880.4813975	796.9597671	-1.39206143348	89.7249242	-2.0400888599
LEAST SGUARES	LEAST SQUARES PROCESS CONVERGEC.	,E.C.				

I FOR NEXT DATA STAGE ***

**** ORBITAL ELEMENTS FOR VEHICLE

.0 CP SECS.

4.0 SECONDS. EXECUTION TIME FOR SEGMENT 84 MAS

EXIT SEGMENT 84 AT

经银币的 计电子 医多种性 医多种性 医多种性 医多种性 医多种性性 医多种性 SECS .1 CP + EL MAS EXECUTION TIME FOR SEGMENT 4. C SE CONDS. **** ENTER SEGMENT 10 AT

TRAJECTORY INTEGRATION FOR CASE

TIME (MME) TYPE 879.0000 TZERO 903.7449 TSTOP

ASSOCIATED QUANTITIES

* PRECETERMINEC EVENT TABLE

NSTEP = 25 NSTEP = 52 ~.122432195041E-04 -.243076958233E+05 * * * * * * H = .250000 H = .500000 .212517332371E+07 -.621173714214E+04 ******* T = 882.250000 T = 889.250000 .214559397444£+08 .128685767449E+04 ECI * * * * * * # *** ** ** ** ** TRAJECTORY START ***

TRAJECTORY TERMINATION

** ** 24.7500 MINUTES MINUTES FROM MICHIGHT OF EPOCH .253 SECONDS TO INTEGRATE A SFAN OF 903.750 879.030 THIS CASE TOCK FROM ***

.3 CP SECS. MAS 2 4.3 SECONDS. EXECUTION TIME FOR SEGMENT ENTER SEGMENT 81 AT

.1 CP SECS. 4.4 SECONDS. EXECUTION TIME FOR SEGMENT & MAS AT ENTER SEGMENT 82

H H H	879.333	879.321	879.600	185.618	880.467	980.454	881.200	881.187	881.400	881,387		002-160	891-188	891.733	891,721	892,667	892.654	807.067		******	196.468	960.468
e Line	~- 207868E-01 EL	• • • • • • • • • • • • • • • • • • •	.422514E-02 E.		975779E-02 EL	• • •	.214578E-01 EL		. 221082E-01 EL		0.		•	362221E-01 EL	9.	Û. 827994E-03 EL		9. 622461F-02 FI			967884E-n2 EL	•••
RESIDUALS – EXTERNAL UNITO	.137560E+01 AZ		.134860E+00 AZ		.140222E+00 AZ		1.142777E+00 AZ	• • •	.118419E+00 AZ	• •	0.	T	•	.445570E-01 AZ	• •	0. .765811E-02 AZ		0. 3561876-07 A7			296810E-01 AZ	•••
RESID	•	.116394E+02 SRR	0	.144143E+02 SRR	568419E+#3 RNG	.236239E+02 SRR		.218359E+03 SRR	.741683E+03 RNG	.118599E+04 .1549C4E+02 SRR	.248938E+02		.891136E+01 SRR	580 432E+03 RNG	.143692E+04 .323296E+02 SRR	.622789E+02 .119407E+04 RNG	.238760E+04 .106648E+92 SRR			• +	.137674E+04 RNG	186451E+04 186451E+00 SRR 154078E+01
VEAR HO DY HR MN SEC	26 1	PREDICTED FESTIVALS 1970 6 26 14 39 19,2503 PREDICTED RESIDUALS	126	6 2 b		126	ي وي ر	6 26 0101FD	9 2 9	5 26		TED RES	1970 6 26 14 51 11.2533 PREDICTED RESIMUALS	6 26	1970 6 26 14 51 43.2484	5 26	DICTED 6 26	0IC	TED RESIDUA 26 14 53	DICTED RESIDUA	6 26	DICTED RESIDUA
STAPASS	393 16	393 16	393 16	393 16	393 16	393 16	393 16	393 16	393 16	393 16	313 16		313 16	313 16	313 16	313 16	313 16	313 16	313 16		313 16	313 16

4	
\circ	Z
Z	0
ы	H
ĸ	Ü
Ή	ũ
EΕ	S
7	

DESCRIPTION

ITEM

Residuals - External Units. Each line corresponds to one input observation set or card and contains the station-pass identification in year, month, day, hour, minute, and second; three pairs of measurement residuals and identification; and the time in MME 1 3

The residuals are the unnormalized differences between the input measurements (modified by bias and/or refraction corrections) and the corresponding values for the same measured types computed from the integrated trajectory position at the observation time. The observation names are abbreviated as follows:

Three-way cumulative doppler	Doppler	Two-way doppler	SGLS range rate	X-antenna	Y-antenna	JPL two- or three-way doppler	Tranet doppler	Georeiver range difference	Vehicle-vehirle range	Vehicle-vehicle range rate	Station-vehicle-vehicle range	Station-vehicle-vehicle range rate	Station-vehicle-vehicle-vehicle range	Station-vehicle-vehicle-vehicle range rate	Vehicle-vehicle-vehicle range	Time differences of arriva!	Time of arrival	Time-of-arrival counter	Accelerometer	
CM3	HOO	TWD	SRR	X.A.	ΥA	CC3	HZH	GCR	1.2	Y2D	5.5	S2D	53	S3D	1.3	TDA	TOA	z	ACC	
Range	Aximuth	Elevation	Topo, entric right	ascension	Topocentric declination	Topocentric hour angle	Geocentric right ascension	Geocentric declination	n	>	Height				۵.	a	Range rate	P rate	Q rate	One-way cumulative doppier
RNG	AZ	EL	TRA		TD	THA	GRA	GD	:_	ン	11	×	<i>></i> -	2	۵	a	RD	PD	00	UNU

Predicted residuals for each observation (\emptyset) = \underline{r} · $([C_0]\underline{r})$ where C_0 = everyhed initial covariance matrix (ATA)-1 for this iteration

न विक् विक्

P = parameter set

E)			
				SIGHA • 366642375+11 • 123369105+12 • 389665455+12 • 419301567-11 • 410570265-11 • 410570265-11 • 41725790795-11 • 41725790795-11 • 417297905-11 • 417297905-11
Ž.			. N. C. S. C	26946076E+04 -15963546E+03 -85484888E+03 -10253528E+01 -31997651E+01 -31997651E+01 -24751907E=03 1.C./SIGMAD 00 -35388898E+00 1.C./SIGMAD -25251318E+01 -25251318E+01 01 -25251318E+01 01 -25251318E+01 01 -36962321E+00 -41994028E+00 01 -41994028E+00
TYP		,	.1.	****
A A N		1	SEGMENT C2	NEM VALUE E+0465917823167636E+06 E+03 -66626599639133E+97 E+01 -2525653206271E+95 E+01 -32256526931496E+02 E+01 -3225626931496E+02 E-03 -34649817679362E-02 TOTAL CORR. T.C./SIGMAD -26946076E+03 -37007322E -31997551E+0190614546E -31997551E+0190614546E -24751907E-03 -41994728E
44	0 P	!	R	A 20 20 20 20 20 20 20 20 20 20 20 20 20
TISTICS RMS	.311255E+02 .915407E+03	311616+03 (18)	ONDS. EXECUTION TIME THIS SOLUTION	E+16
4	R R S R G	21622	SEC(66 9 5 6 6 6 9 6 6 6 9 6 6 6 9 6 6 6 6 9 6 6 6 6 9 9 6 6 6 6 9
DF PREDICTED STR	.246498E+04	RMS =	AT 4.5 1 S WERE USED IS	CURRENT VALUE - 86167283924646 - 8624999275575 - 27 22057747376723 - 29 056499775734 - 29 056499775739 - 31 05569573412 - 31 055696769696769696769
SUMMARY DF TYP RMS	RNG SRR	RESIDUA	GMENT 83 ON NUMBER EASUREMENT SDLUTION	X X X X X X X X X X X X X X X X X X X
STA T	313 R	O	ENTER SE ITERATIC 18 ME	NAME 6820 7 6820 7 6820 6820 06820

	ITEM	DESCRIPTION	REFERENCE SECTION
	14	Sunimary of predicted statistics contains the station data type and the RMS value for each data type	Item 9
	15	Predicted residual RMS is the resulting RMS value calculated from the RMS values of each data type	Item 14
. :			

.32037E+*			
6820 DRAG . 29194E+86 16188E+87	6820 DRAG	.16952 E-0 6	SE CS•
6820 DZ 21591E+05 56580E+06 56580E+06	20 0289	.72725E-02 .23858E-06	
6820 DY .17560E+05 .61962E+04 57531E+05 .14167E+05	682f DY	.16057E-02 16055E-02 .10326E-04	1.00000 Gment e3 Mas
6820 DX •20191E+05 •90214E+04 •13102E+05 •44+31E+06 •53025E+05	6820 DX	.17581E-02 12867E-02 .31680E-02 38768E-05	10000 4742 1.00000 1859745970 1.00000 22456 .61085 .00679 1.00000 EXECUTION TIME FOR SEGMENT 63
.67521E-01 15916E+02 15566E+02 376019E+02 99403E+03	6820 2	.15184E+04 10674E+01 .16065E+00 30263E+01 54736E-02	1.5 1.5 1.5 1.5
6823 Y 35232E-01 22C25E-01 22C372E+01 23403E+02 453606E+03 -3656E+03	6827 ▼	- 45220E+03 - 4386E+02 - 2583E+00 - 37172E+00 - 3583E+00	1.69000 -17446 1.00000 -50037 -65329 1 -73386 -91141 -34659 -34118 -
.46267E-01 .12552E-01 -10536E-01 .19273E+02 -16679E+02 -76409E+01 -42191E+03		.50115E+01 .20719E+03 11061E+00 84013E-01 34376E+00	X 0548400 E
6820 X 6820 Y 6820 DX 6820 DX 6820 DY 6820 DZ 6820 DZ	H	6820 Y 6820 Z 6820 DX 6820 DY 6820 DZ	ELATION X Y Z Z DX DX DZ DZ R R SEGMI

	APOGEE RADTUS APOGEE HELTHT PERIGEE RADIUS PERIGEE HEISHT 0-101	3647.45625 211.21625 3307.6655 71.3655 2.8238278259 -2.0803574733
	MEAN ANDMALY ECCENT & C ANDM TRUE NCMALY KEPLERIAN PER ANDMALY PER NODAL PERIOD	339.05894682 329.49039975 328.91695641 85.4532373 89.5921573 89.7241692
•	AG AG CHI	.[115444785030 [157724523242 -[670741516302 276.263819861 1367842616
I FOR ITERATION 2. ++++	TA D D TE A	21737496.946 (1954597749 108.875801391 185.611994202 120.539870828
VEHICLE I FOR I	ALPHA DELTA BETA AZIMUTH RACIUS VELOCITY	97.136179080 71.117991789 90.568645043 271.442104951 21371443.584 25879.5177238
**** ORBITAL ELLMENTS FOR VEH	x 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-859178.232 6862659.563 20221382.676 25756.5321628 2519.9121453
**** ORBITAL	YEAR/MC/OY HR/MIN SECONDS LATITUDE LONGITUDE HEIGHT	1970/ 6/26 14/39 0.0300030 71.2355249 323.0810937 83.7077

TCTAL EDIT SUMMARY

PEAN	5 EL 1.9E-02 0. 7.4E-03	5 SRR 1.9E+01 1.9E+02 1.8E+91			******** TRAJECTORY INTEGRATION FOR CASE 1 ***********************************
RMS/SIG		1.96+02			*****
RHS	1.96-02	1.96+01		S.S.	
TYP	-	SE		SEC	
z	r.	Į,		.f CP SECS.	
4E AN	3.15-93	3.45-03		WAS WAS	ASE 1
N TYP RMS RMS/SIG MEAN	•			4.5 SECONDS. EXECUTION TIME FOR SECRENT 84 MAS 4.5 SECONDS. EXECUTION TIME FOR SEGMENT 84 MAS	ICN FOR C
R	2.4E-02	5 EL 1.7E-02 0.		HE FOR SI	INTEGRAT
TYP	A2	3		片	R ▼
				EXECUTION EXECUTION	TRAJECTO
MEAN	4.3E+1	1.35-1	2 • 2 £ + 1	CONDS. F	
RMS/S IG	5 RNG 1.2E+33 5.8E+01 4.3E+02 5 SRR 1.6E+01 1.6E+02 1.1E+01	0	3.0E+31	4.5 SEC	*****
RMS	1.2E+33 1.6E+31	1.48-01	6.16+02	te AT	***
TYP	R NG	2 V	2NG	N B	
				EXIT SEGMENT 84 AT ENTER SEGMENT 10 AT	
STA	313	393	393	EXIT	

TIME(MME) TYPE ASSOCIATED QUANTITIES

879.0100 TZERO
973.7449 TSTOP

*** TRAJECTORY START

NSTED = 25 NSTED = 52 -144713230605E-94 --243060029515E+95 H = .250009 H = .500000 .0125289799685467 -.8211466977785404 T = 982.250000 T = 889.250000 .21455729934E+08 .128587890605E+04 .901745091723E+63 4.5711C 0009LED DCURLED * * * * * * * SEG11 ENTRY TIME IS

* STEP

* STEP NODE T =

** TRAJECTORY TEPMINATION

*** 24.750r MINUTES 903.756 MINUTES FROM MIDNIGHT OF £20CH .253 SECONDS TO INTEGRATE A SFAN OF 879.333 TO THIS CASE TOOK FROM **

CP SECS. EXECUTION TIME FCR SEGMENT & WAS 4.9 SECONDS. AT ENTER SECHENT 82

4.8 SECONDS. EXECUTION TIME FOR SEGRENT 10 MAS

ENTER SEGMENT 81 AT

.3 CP SECS.

REFERENCE SECTION	Total edit summary is fully explained in Case B, Item 7.	
ITEM	16 Total edit summary is f	

				[, _	E Y		SE C	U			•	21004534			F	AAL	EXTERNAL UNITS	:TS					BME
<u>د</u>	4	2	~	4	4	0	ć	200	é				1	. 10714AF + 0.1	4	•	^		2834	398319F-01	ū	•	5,33
393	١σ	73 6	1 ~	9 4			6	250 3		42553	10-1	SAR				C .				,		•	9.321
M6	9	0.2	~	. 5		1 M	9	196.0	5	10.			6	.989787E-01	E - 0		A Z	1	5830	1583C2E-01	EL	•	9-600
56	13	20	~	4	4	8	'n	2643		305583E	E-01		0)		!)	}		•0	785.6
93	5 19	20	~	9	-	0	9.	0000	-	146891E+02	E+02	RNG	80	.869654E-01	6-0		AZ	2	1968	.289018E-F1	1 5	•	880.467
93	61 9	2	N	4			7.5	2438	•	230042E	E-01	S R	•									•	80.454
93	6 19	70	N	4	3	41.1	12.0	2 200	3	616428E+0	E+01	RNG	0	.904593E-0	E-0	ᆏ	AZ	•	3223	.832230E-02	김 2	•	81.200
93	61 9	20	~	6 1	3		1.	2384	•	.170665E-03	20-3	SRR	•					•		-		•	681.187
93	6 19	20	2		3		24.0	0000	•	.352911E+01	E+01	220	•	.694075E-0	6-0	1 A	2	• 11	1656	. 106563E-01	13 1	2	181.400
93	61 9	20	~		3	**	3.5	2371	•	390293E-0	E-01	SRR										æ.	11.387
13	61 9	20	N		.7	14	2.5	7330		222 335E+0	E+1)2	RNG	2	291823E-01	E-0		AZ	1	3315	133159E-01	1 E.	Q.	91.200
13	6 19	7.0	N	6 1	4	+	1.2	2533		659466E-01	10-3	SRR	•									-0	11.188
13	6 19	20	~		.7	-1	4.0	3000		246368E+0	E+05	RNG		382235E-01	E-0	4	2	- 97	2442	. 974428E-02	2 EL	•	11.733
13	6 19	20	. 1			*	3.6	13.2484	•	368395E-D	E-91		•					.0				*0	191.721
13	61 9	20	N		#	~	40.0	3003	i	1898115+0	20+3			334623E-01	E-0		A2	9.	5315	.663150E-0	2 EL	•	12.667
13	6 19	20	8	9	3	8	ů	2320	•	.9775096-01	E-01	SRR	6									•	15.654
13	19	70	N	9		P7		1300	2.2	201657E+0	E+02	RN G	2	229135E-0	E-0	1 A	~	- 2	2406	. 254060E···	لر افا	•	33.067
13	61 9	20	N	5 1		(-2)	3.5	2365	•	104250E	E-01	SRR	•									•	193.454
13	19	04	N	5 1	* N	•		3300	:	184 JC 6E	ç	SN	Ď.	349994E-01	E-0	⋖	2	•	3763	. 837636E-02	2 6	•	194.467
13	6 19	20	0	44			3	2596	in.	38472	E	SRR	•									•	150.16
NTER	SEGMEN	T 83	AT		R	•	SE (SE CONDS.		EXECUTION TIME	LONI		FCR	FCR SEGMENT		23	MAS			.1 CP SECS	SECS		
ITERAT 18 CURRET	TICN NU MEASUR NT SOLU	N NUMBER ASUREMENTS SOLUTION 1		0 R	PERE U	SED	Ĥ	THI	S SI	USED IN THIS SOLUTION	z												
AME			ว	R	URREAT		VA L UE	4.1		CORR	CORRECTION	Z	Ž	NEK VA	VAL UE				-	TOTAL CORR.	COR	ď	SIGMA
820	×		i	85	917	528	167	7636E	+06		99991	.3599910E+0		8591	778	716	7725	10+31		.26949676E+	1964	40+39	.866479
6820	>			,68	626	595	63	1133E	+07	•	45037	.15458372E+0	+	.6862	658	017	9761	E+0.		.158	7060	.15 8090 42E+03	.123323
820	2		Ĭ	. 26	221	382	67.6	540 BE	+10		6856	.87685625E+0	0	.2022	138	355	3264	E+0		.85572574E+0	7257	4E+03	.389710
820	۵X		Ī	.25	756	532	36	2771E	+05		34124	-40341242E-0	m	.2575	653	942	6183	TE +0!		87137 105E+0	37 10	5E+00	. 419301
820	Δ		•	,25	198	121	45	.25198121452761E+04	70+3	۱	43491	.33434910E-0	2	.25198088017790E+34	808	89.1	7790	1E+3		10292058E+0	9205	8E+01	.410302
820	20		•	.32	256	265	83	3496F	+02		16233	.18162331E-0	2	3225	777	5	7435	F+0.		31979489E+B	7948	OF A D 1	. 85.2
000							,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							,								

		•81625E+`1	
T.C./SIGMAD • 8537030E+00 • 34152024E+00 • 25377645E+01 - 25597875E+01 - 9108935E+00 • 41303753E+00 • 41303753E+00		6920 DRAG .28914E+08 .13779E+04	692° DRAG
7.6.7 SISMAR - 873662666-0 - 366491456-0 - 287989016-0 - 287989016-0 - 8279188-0 - 939631526-0 - 433037536-0		6829 DZ -21619E+C5 -56051E+06	6820 DZ -72742E-02 -30184E-02
		6820 OY .17517E+05 .61794E+04 5703EE+05	6820 DY 16835E-72 -16031E-02 -10285E-04
101AL CORR- 26949676E+04 3 .15699042E+03 3 .85572574E+03 187130105E+03 131979489E+01 24345049E+01		6820 DX ,20240E+05 ,90207E+04 13147E+05 43967E+06	6823 DX -17501E-02 -12873E-02 -31672E-05
SIGMA LEWT • 46290205E+04 • 33612934E+03 • 33637129E+00 • 12692153E+01 • 357e2622E+01 • 58941494E-03		6620 Z -6755E-01 -1698E+62 -15509E+62 -37054E+02 -37054E+02 -16760E-01	.15187E+04 10677E+01 30310E+01 30310E+01 54754E-02
ZGRO 53062E+04 36.02E+03 22.09 E+03 7996.E+00 31.27.E+01 11.026E+01 41.494E-03 340.28611E+0	997736082E+00 95678883E+01 815927481E+02 487141259E+02	C823 Y - 35183E-61 - 37246E+01 - 20327E+02 - 63387E+02 - 66118E-01	6820 Y - 15215E+03 - 64416E+62 - 25994E+00 - 37126E+00 - 16532E-02
A PER STANDARD STANDA	SSS	6820 X .46320E-01 .12528E-01 .194610E-01 .194610E-01 .1669E+02 -76831E+01 -41838E+01	6820 X 6820 X .75679E +02 .48999E +01 -11676 E +03 -34426E +01 -34426E +01
××××××××××××××××××××××××××××××××××××××	APRIORI APRIORI TOTAL PREDICTED	6820 X 6820 Y 6820 DX 6820 DX 6820 DY 6820 DZ ATB	ATA INVERS 6820 X 6820 Y 6820 DX 6820 DX 6820 DX 6820 DY

1.00c00 -1756# 1.00c0c -507756534T 1.00C00 -73372 -1018974873 1.100C0 -3468691189 .8856545982 1.00000 -3255891189 .8856545982 1.00000	5.9 SECONDS. EXECUTION TIME FCR SEGMENT 83 WAS .0 CP SECS. TS FOR THICLE 1 FOR ITERATION 3. ****	X ALPHA A AF MEAN ANOHALY APOGEE RADTUS Y DELTA E AG ECCENTRC ANOM APOGEE RADTUS XDOT AZIMUTH 0 L REPLERIAN PER PERIOR PERIGEE HEIGHT YDOT AZIMUTH 0 CHI REPLERIAN PER PERIOR PERIGEE HEIGHT YDOT RADIUS U CHI REPLERIAN PER PERIOR D-DOT -859177.87 97.13617771C 21737497.734 CI115444430051 33C.05906030 3647.45059 6862658.018 71.117996552 .01954597623 -0157724792175 320.49050718 3547.45059 2C221383.553 9L.568643087 108.8754666 .0670741479820 320.49050718 31.21665 2519.4662 271.442112057 120.589749135 -1367944093 89.453421 -2.8238267735 2519.4666 25879.517974 -13679419932 -13679421255 2.8238267735 -32.2544466 25879.517974 796.9865193 -13679419932 89.764174
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.9 SECONDS. TS FOR WHICLE	
GORRELATION MATRIX 6820 X 1.000.00 6820 Y 0.04585 6820 DX30+70 6820 DY23495 6820 DY23495	ENTER SEGMENT 84 AT	YEAR/HO/DY SECONDS LATITUDE LONGITUDE HEIGHT 1970/ 6/2685 14/39 686 0.010000 2022 71.2355296 25756 323.0810893 2519

ENTER SEGNENT 10 AT	17 16	AT		5." SECONDS.	EXECUTION TIME FOR SEGMENT & MAS	TIME	F 0R S	EGNENT	Z	MAS	•	8	.e CP SECS.	,	
中央 医原体 经收入证券 医骨骨 医甲状状腺 医甲状腺 医甲状腺素 医甲状腺素 医甲状腺素	*	***	***	******	TRAJECTORY INTEGRATION FOR CASE	Y INTE	GRATI	ON FOR	CAS	#	***	*	******		*
TIME (MME) 879.0000 903.7449	TYPE TZERO TSTOP	780 7	Š	SOCIATED (* PREDE Associated quantities	PREDETERMINED EVENT TABLF ITIES	ED EV	ENT TA	BLF						
*	TR	*** TRAJECTORY START	RY ST	ART											
* *	* 1		* * * *	* * * * * * * * * * * * * * * * * * * *	•		ECI .		*		* * * * * * * * * * * *	*	•	•	
SECT. ENING LINE 13	1	STEP	0048 60	300	H H	862.250000	000	= 3	H H	2.8	.250000		NSTEP		
NODE T =		9007	45093	.900745093793E+C3	.214557320665E+08 .128583828185E+04	20 66 5E	83	2.0	2527 1146	.212527764462E+07 821146372638E+04	E+67	1 1	-, 729249380990 -, 243780023988	9300	9068
		AJĒCTO	RY TE	TRAJECTORY TERMINATION											
•		THIS CASE TOCK	E 100		.255 SECONDS TO INTEGRATE A SFAN OF	S TO I	NTEGR	ATE A	SFAR	9	24.	24.7500	H	HINUTES	*
	*	FROM	_	679.00g TO	0 T0	903.750		MINUTES FROM MIDNIGHT OF EPOCH	S FR	MIN HO	NIGHT	P	EPOCH	*	_
ENTER SEGNENT 81 AT	1T 81	AT	£.	5.3 SECOMOS.	EXECUTION TIME FOR SEGMENT 10 MAS	TIME	FOR S	EGMENT	9	MAS	*	9	.3 CP SECS.		
ENTER SEGMENT 82 AT	IT 82	AT	5.4	5.4 SECONDS.	EXECUTION TIME FOR SEGMENT 61	TIME	F S S	EGMENT	ij	MAS	7	S	.1 CF SECS.		

STAPASS		YEAR	오	ο	Œ.	Ĩ	SEC		-	RESIDUALS -	ALS - EXTERNA	EXTERNAL UNITS				MME
393		1970	9	26	14	39	20.0000				.107165E+00	AZ 3	398429E-01	1 EL	87	879.333
393	16	1970	9	26	7	8	19, 2503		362891E-01	SRR	0.0000000000000000000000000000000000000	0.	0.	ū		879.321
200		1970	9 4	2 0	7 7	n b	35.2492	>	.388371E-01		. 303332C-U1	J	315407		0	679.587
393		1970	9	26	1	3	28.0000		127559E+02	RNG	.869688E-01	AZ 2	289209E-01	1 EL	80	880.467
393		1970	9	26	1.4	40	27. 2438		.275882E-01	SRR	•				88	880.454
393		1970	9	56	14	4 5	12.0000		221059E+01	RNG	.904432E-01	AZ .8	. 830291E-02	2 EL	8	881.200
393		197	9	56	7	† 1	11-2384		311691E-02	SRR	•				8	881.187
393		1970	9	56	14	4.5	24.0000		.543241E+01	RNG	.693073E-01	AZ .1	.106378E-01	1 EL	88	881.400
393		1970	9	56	77	4.5	23. 2371	•	438627E-01	SRR	•	•			8	881.387
313		1970	9	56	14	51	12.0000		.231003E+02		290535E -01	AZ1	133693E-01	1 EL	8	891.200
313		1970	9	56	7 7	2	11.2533		473738E-01	SRR	•				6.8	891-188
313		1970	9	5	7	27	1393. ***		175E+02	RNG	380592E-01	AZ9	988287E-02	2 EL	8	891:733
313		1970	9	56	7	51	43.2484		.734349E-01	SRR	•	•			60	891.721
313		1970	9	5	14	55	2 40.0ft	•	170611E+02	RNG	335851E-01	AZ .6	.653932E-02	2 EL	8	892.667
313		1976	9	5 6	4	50	39.232		.802365E-01	SRR	•	•			69	892.654
313		1970	9	5 6	7	53	0000.*7		185782E+#2	RNG	230127E-01	AZ2	259586E-02	2 EL	8	893.067
313		1974	9	56	14	2	3.2365		338924E-03	SRR	•				68	893.054
313		1970	9	56	14	54	4. CC C C		171638E+02	RNG	35056E-01	AZ8	840312E-C2	딥	€0	34.467
313		1970	9	56	14	24	3,2296		344210E-02	SRR	•	•			6 9	94.454
ENTER	SEGMENT		83 A	AT		5.5	SECONDS.		EXECUTION TIME		FOR SEGNENT &2	MAS	.1 CP SECS.	SECS.		
ITERA		NUMBER	œ		m											
18 H CURRENT	B MEAST ENT SOL	1EASUREMENT SOLUTION	N N	SIS	85 ER	S	IS WERE USED IN THIS SOLUTION IS	IS SOLU	TION							
NAME				S	CURRENT		VALUE	ပ	CORRECTION	z	NEW VALUE		TOTAL	CORR.		SIGNA
6820	×			:	\$5 C	177	. 85 517 78716 7725E+0	9	.478355	54E-03	•	19919E+0		. 26949680E+04	+0+3	.8664
6820	>			•	989	569	6862658 179761E+07		.1553£49	38E-03		78207E+0		.1580 90 26E+03	E+03	.1233
6820	7			•	202	21 36	20 221 18355 5264E+08		.374305	38E-02		57007E+0		.85572948E+03	E+03	.3897
6850	ŏ				257	265	25756532466183E+65		.3932310	31E-05		62351E+0		37489	100	.4193
6620) Y				251	386	251980 68 11 7790 E+14		81119420E-07	20E-07	. 251980 880 1697 9E+04	16979E+0	410292059E+01	92059	E+01	.4103
0290	700	9			326		CC+16C+		2017100	30E-02	•	01404140			70	0760.
0289	Š	AG		•	946	7160	46 (913185 E769E-0	v		2/E-08		0171ce-7		・2454441CE-US	20-1	.411/

计操作 化设置 经收益的 医性性性 医性性性 医生物性 医生物 医生物 医生物 医生物 医生物 医生物 医生物 医生物

m

STAGE

			.78592€÷	
557031E+00 3537031E+00 3451991E+00 22550974E+01 81089941E+00 89371791E+00		682 ° DRAG	. 41490 E+00 . 41490 E+00 6927 DRAG	. 16953E-06
T.G./SIGMA0 .87066282E+00 .36649199E+0: .28791027E+0: 26102618E+0: 92791691E+0: 93563343E+0:		6829 02	.21619E+05 .56054E+06 .30988E-02	.72742E-02 .30196E-06
- 111		w	.61704E+94 5703EE+95 23512E-01 6820 DY	.10835E-02 16091E-02 10289E-04
TOTAL CORR2694968E+ft .15899026E+03 .98572946E+63 .687130488E+ft .10292059E+ft .1 -31979570E+03 .24344497E-03		6820 DX -20240E+05 -90208E+06	131476+05 439666+06 233916-01 233916-01	.17581E-02 12873E-0? -31672E-02 38723E-05
SIGNA DENT • 31267975E+04 • 46290205E+03 • 33612934E+03 • 33637129E+00 • 12692153E+01 • 3576262E+01	RGED *****	6820 Z • 67555E - 01 • 15509E + 02 • 15509E + 02	.37054E+02 .98555E+03 88262E-05 6820 Z	.15187E+04 .10677E+01 .16593E+01 30310E+01
ZERO 53062E+04 55062E+03 5209 E+03 7996 E+01 1122E+11 11496E-03	.66:775665E+00 .785924119E+01 .100189503!E+01 .7612936101E+01 .148717722E+92 .148717777E+62	6629 Y 35153E-61 27983E-61 37247E+01	.15357E+02 .16167E+03 20918E-04 6829 Y	.15209E+03 84+17E+02 .25894E+00 37129 F+00 .35854E+00
'n	RMS = .78 RMS = .16 SOS = .76 SOS = .76 D SOS = .14	5555	76838E+01 29748E+01 29748E-04 29748E-04	.756.79E+02 .49U00E+U1 .20715E+03 11070E+00 3529E+00 34426E+00
NAME 6820 Y 6820 Y 6820 Z 6820 DX 6820 DX 6820 DY	RESIDUAL RESIDUAL APRIORI APRIORI TOTAL PREDICTED	ATA 68820 × 6820 7 6820 2 6820 0×	DZ DRAG ATB INVERS	6820 X 6820 Y 6820 Z 6820 DX 6820 DZ 6820 DZ

					.e CP SECS.	
					٠	
					ENTER SECHENT 84 AT 5.5 SECONDS. EXECUTION TIME FOR SEGMENT #3 WAS	
				00	2	8
				000	ENT	EP (
				-	EGM	P.
	-1/255 1.4660U -5007565342 1.98600		0000	860	S S	900.74 MINUTES FROM MIDNIGHT OF EPOCH
			: 0	90.	F	ONI
		8	82	2 0	TIME	Ī
		000	459	609	N O	780
		÷	i	•	ÜŢĪ	ES
	000	4823	8565	2430	EXEC	INUI
	1.0	7	Ď	- 2	•	¥
9	1 C	161	681	123	SONO	10.7
6	55	1) 7	11 0	34.1	SECO	05
	a i	~	i	80	r.	
900	000	334	46.8	255	N	
1.0		7	m.			10
1.00000	169	495	234	4 0	4 AT	ATED
000	300	.23	946	33	ò +	90
ન	•				N EN	SE
× > r	×	Š	20	DRAG	SEG	ATA INVERSE UPDATED TO
6620 Y	28	20	20	20	TER	A
8 8 8	9	99	9	99	W.	V

6320 DRAG							. 16953E-06
6829 02						. 52821E-92	459657E-0554047E-05
682f DY					.65730E-03	.122986-12	59657E-05
6824 DX				.23166E-0	.33877E-0	990516-02	41516E-04
6 820 Z			.56034E+04	.10604E+02	.15167E+01		- 111955E-01
¥ (289		.48176E+03	140 64E+04	25618E+C1	26673E+0U	13525E+(:1	. 2655C E-02
6820 x	.75352E+04	14908E+04	.60784E+34	.13201E+92	.19277E+01	.51825E+01 13525E+01	23175E-01
	×	>	7	č	۵	20	ORAG
	6620	5820	6.820	6820	6820	6820	6820

6 AND G DEWEIGHTING MATFIGES ACT VEHICLE 6820

ORBIT PLANE GOORDINATE SYSTEM

		•
	.10712E-01	0.
	-, 2040 2E - 01	٦.
74329E+04	00	.58474E+01
.13242E+95	.17437E+C220776E+02 91552E+L1 .11281E+32	.0
.78246E+C4 96415E+C4 6.		

.6027 .21336 .2244 .54659 .1159	6-11 86-11 86-12 86-12 6-11	.19750E-10 .61595E-11 .11550E-11 .11236E-11 .34357E-12	2.00 PB B B B B B B B B B B B B B B B B B	576-11 .325626-12 116-12 .781116-13 916-11 .157936-12 1 FOR NEXT OATA STAGE	.97225E-13 .16999E-13 .876	. £ 7612E-13	
YEAR/HG/DY HP/HIN SECONDS	× > N	××N	ALPH6 OELTA EETA	∢ ₩H.	ц 97.	HEAN ANOMALY ECCENTIC ANOM TRUE ANOMALY	
LONGITUDE LONGITUDE HEIGHT	X501 Y507 Z5C7		AZIPUTH RACIUS VELOCITY	TAU	CHI PSI	KEPLEPIAN PER ANOMALY PER NODAL PERIOD	PERIGEE HEIGHT 0-00T U-00T
1970/ 6/26 15/ 6 44.694.030 .604.7562 ?26.1519367	21455717. 2125373. 282. 1286.1.91 -8211.4289	1124 1643 1671 1637	5.657183506 .010751111 88.95141998C 198.8~8776950 21560724.37C	21797285.075 .C2127520963 118.448776951 185.656927094 119.615715412 886.2C34378	-017369364762 -06679337789 3.55343457 -1173735145	58.23776095 59.3292068 6(.33349092 89.325473 69.6636302	3663,69784 227,68846 3511,8467 74,96829 2,7933472359 -2,0669631941
SGUA	TYP RMS RNG 2.1E+01	CONVERGE TO THE THE STEC T 1.00+30	TOTAL ECIT SUMMARY G MEAN N T C -6.6E-31 5 A	YP R#S 2 3.2E-02	RHS/SIG MEAN 0.	N TYP RMS	RMS/SIG HERE
20 00 00 00 00 00 00 00 00 00 00 00 00 0	SRR 5.36-02 AZ 9.16-02 RNG 8.16+00	5.3E-91 C. 4.1E-31	2.1E-12 9.1E-12 -3.2E+00	5 EL 2.4E-02 0.	-1.35-92	5 SRR 3.3E-02	3.3E-01 -3.4E-

		_
-		•
4	4-	21
١	٧-	-,
	•	•

				_			_					_`	~		_		_			_	_	-						_		`	
	•••	•	• •	•	•	•	• •	•	٠	• 1	•	• •	•	:					•	# :	+ 4	*	*	*		•	•	* :	• •	*	
	:												*	:					3												
	:					(N																							49年中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央中央市场的中央市场的	
	:							-						:					:											* * *	
ਜ	:													:	4				•												
PAGE	:													•	PAGE				•												
2	:	•												:	A				•		N									*	
313	•					1	m							***********	393														1	:	
M 7	:	m												:																*	•
STATION	:													•	STATION										2					***	2
TA	:													:	TAT															# 6	r S
	•													:		ن ج		10	*:												•
IMUM 40 9136 10E + 0 2 21 256903E - 0 1 83 984781E - C 11 8420 65E + 0 0	:													:	•	. 11 601 / 22E+UU . 26.8124.35F-01	1	11 7355 63E+0 2	:	•	Ċ									*	
0000 0000 0000	:													:		72	79	63	•											*	
XIMUM •40913610E •21256903E •83984781E •11942965E	•							~						:	E	127	1	35	#3°		M									* 4	Î
H3281	:													į	E.	1 %	627	11	:											# 3	
. 4091 - 2125 - 8398 - 1184	:													10	MAXIMUM	•	•	• •	:											-	
5474	:													FLOT		35	2	1	:										M	SECRENT	ב ב
HEAN 65713998E+EO 31753814E-01 5542365E-G2 .21503126E-01		*	• •	٠	٠	•	• •	• •	٠	*	•	• •	• •	9		.93591862E-G1 13133237F-C1	33686846F-02	31790344E+11	*	# :	+ 1		*	*	*	*	#	*	N #	90	ב ע
299														QN3		200	E	30	•		-										
75 75 50 50 50 50 50 50 50 50 50 50 50 50 50	:														3	7 M	99	730	:						0						
MEAN 1.65 1.31	:					1	-							****	MEAN	. 93591862E	1	31	:											11 14	Ę
# 1 1 1	:							m					۳		Ŧ	٠	•	•	•											* * 7	
9699	:	2													;	501		9	:											CONO. BY THE PARTY OF THE PARTY	2
TA 2093823E-00 27881689E-03 19583569E-03													- 1			1	M	.29927194E+0[:											# 5	5
150 382 164	•					9	0						•	•	į	.56853711E	200	719	*						4					* *	EAC
TA 8314 2099 27 699 1958	•							-						:	4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	992	:												•
CELT .2	:													*****	CELT				2											****	200
	•													•					•												ב כ
\$ 7 m Y	:	-												*	,		•	+	:						۴,				~	* 0	
INIMUM -422278908 -422567256 -194832118 -77414358E	, M													:	•	.63156516E	184	.18691632E												* *	•
75578 85278	:													:	Ξ,	.5367896	791	916	:											*	
1922 1925														*	3	7 6	0	9	*										_	*	
MINIMUM 4222 4225 1948														*	HINIMA				•										~	*	
	:													************					•											* *	
SY MB	:													*	SYMB			ı m	:											**************************************	2
	* * *	5	* *		*	5.	* 1	* *	5.	* ·	, *	* 1			S				•	*	* *		*	*	*. 3	*.	*.		• •	. * 2	5
TYPE RNG AZ EL SRR	53472	505	51	53.0	124	52	56	58	59	160	61	62	663	Ď	PE	7 -	9	RNS	39 Z	77	7.8		8 1	921	83	198	95	96	52876	,	
TA A B S	N 10 10	53.	53	500	53	5	53	2 6	53	53	5	5	200	3	T	< ₺	ı V	, ez	Ŗ.	50	52	ָה ת ה	1 6	52	52	25	25	52	2 2	7 X X	1
																														14	

REFERENCE SECTION	2.2.1 11.1.2 15			
DESCRIPTION	An example of the printer plot of the measurement residuals for the last iteration (see Case B, Item 20, for a full explanation)			
ITEM	17			

CP SECS.	******				NSTEP = 25		.163423225258	NOTED 8 162	17434E	. 7 38 329 37 38 37 E+95			589911761112E-A			243365075935E+B	188487221395E+0	0.238364978995E+U	•	34927577355E=13	E+3	14772m489619E+00	2437436126226+95	153 969776460E-91	. 238 419 324156E+05	134185454353E+90	?43733933899E+05	19 0 25 7 516 31 9E+00	.239448042447E+05
SEGMENT OF WAS .1	CASE 1 +	VENT TABLE .				H ₩ .500000	12527	8211463728395+64 H = 1-803900		.8142457121926+04														246518216583	.61410130	.24517.4969039	818 382963 "5"	2531589398	.813598037347
EXECUTION TIME FOR	TRAJECTORY INTEGRATION FOR	* PREDETERMINED EVENT TABLE. ASSOCIATED QUANTITIES		* 103 * * * * *	T = 982.25000	T = 889.250000	.214557320668E+88	.12858J828242E+U4 T = 944.750000	218803714357E+08	345967455384E+03	.214489766159E+08	.1310643378576+04	218766977C4JE+08	371226613584E+03	.214421025123E+08	.133502110587E+04	2 18 60 8 9 87 7 2 2 E + 0 8	- 396803041540E+03	. 7 14 35 44 61 1 / 8E + U 8 . 1 75 9 8 5 3 90 7 3F + D4	218505733E+08	4219[43°5512E+03	. 214287958496E+08	.138359662734E+04	218+C0481221E+C8	447 49+361867E+03	.214216538875E+08	.140 70 5124634E+04	218293481 956E+08	473738187344E+03
10 AT 5.6 SE CONDS.	************	TYPE ASSOCIATED TZERO TSTOP	TRAJECTORY START	*	Sit	STEP OOUPLED	00745093793E+0	• 5 000 00 000 30 E+00	466585881	5000000 . 9CE+6		. 103636967065+61	.1L3636699922E+54	.103000-300306+01	. 1 C 3 C 1 6 3 9 15 6 3 E + L 4	. 100000000 JCE+01	12636552771E+C	. 1(3000003)06+61		. 121575693757E+04	03000000 3GE+L	25954792133E+C	. 1030 360 CO 70 E+61	. 131543842259E+L4	. 1 300 300 000 30 6+0 1	.134922819215E+F4	00000000	.139511939:74E+C4	0 30 30 00
ENTER SEGMENT 10 AT	************	TIME (MME) 1789.000 TZ 1621.2182 TS	***	* 6	SEGII ENIKY IIME	•	NO0E T =	= 10 +	NOUE T =	= 10	N00E T =	= <u>1</u> 0	NODE T =	= TO	NODE T =	= 10	100k	_	NOUE L		10	NODE T =	= TO	NODE T =	= 10	NODE T =	= TO	= 1 300N	= 10

	R Y
-23869289168E-01 -2243722798899E+05 -426112096486E-05 -238474219967E-05 -23505778219E-05 -24310299338E+05 -1356111149E-05 -235612783445E+05 -235612783445E+05 -224299605462E+05 -242996054645E+05 -242996054645E+05	REV R REV COUNT PERIOD PERIOD-DECAY NOD-REG
750	LAT: LATITUDE (DEG) LONGITUDE (NM) S-VEM-LAT(DEG) 1 (DEG)
	-
-251756139895E+07-3164697441595E+04-32598562947275+77-312346991137E+04-3564698931392E+04-3564698931392E+04-364698931392E+04-361759952722E+04-364698931392E+04-364698931392E+04-364759952722E+04-364759952722E+04-36475995272	ADBARV ALPHA (DEG) DELTA (DEG) EETA (DEG) AZIPUTH(DEG) R (FT)
.214142223518E+06 .2517561896 .143189662466E+046164697441 218185158357E+082598562947 .21406899350E+08 .25637486911 .2140683788776E+94817371237 21817237483E+062664698931 524419908623E+08 .2664698931 .21399+565329E+08 .2664698931 .14875649023E+048175999527 N	x, x0 - 8F x (FT; y (FT) z (FT) x0 (FT/SEC) y0 (FT/SEC) 20 (FT/SEC)
ž • G	x, x0 x (FT) y (FT) z (FT) x0 (FT/SEC) y0 (FT/SEC)
.163889773766561 .103060000 305404 .12385981410506 .15285981410506 .15285981410506 .15745233 35640 .15745233 35640 .16182135867640 .16182135867640 .10300000 30560	HE,MM,ST,DT MIN FROM EPDCH MIN FROM MICNIGHT SEC FROM MICNIGHT STEP SIZE(MIN) UTL - IT
N N O O C T I I I I I I I I I I I I I I I I I I	VR/HO/DAY YHR/HIN SEC

TRAJECTORY

CASE

*** EPOCH PRINT

NODE REV...
1.50000 DSC N
0.00000 REV...
.50000 DSC .
0.00000 LAT... BF 71.23552964 323.f6108931 83.70774713 71.23274551 118.87579657 LAT;.. BF -.0000 n39 226,15078160 104,51754274 -.00000 039 108,84667950 46,150°8174 203.835'5595 104.48516846 -.00000693 108.8503879 23.835'5821 .364745845+74 .211218425+73 .350760572+74 .713656905+72 51.55699698 97.1360771 71.11799655 9C.56864319 271.44211206 .213714445+08 5.93139148 -.0000599 88.95178468 198.85054353 .21563575+38 ADBARV 5.65692696 -.(0010139 88.95141266 198.84877695 .215617346+08 H H H H APOGEE
HEIGHT
HEIGHT
O-DOT ADBARV ADBARV x,xD - BF .552943352E+C7 -.41544736E+07 .21221335E+16 -.164917950E+15 -.216E58767E+05 .33005946E+03 .32949051E+03 .32891708E+03 .99453242E+02 .99692362E+02 x,xD - BF -.1+9364771E+G8 -.155488551E+C8 -.147473157E+C0 -.744391549E+G4 -.649884239E+C4 -.243786024E+G5 -.137216942E+68 -.871272125E+67 -.259150197E+61 -.4+1879149E+64 -.833922557E+64 - 8F -89.7141 (18) ox ex .214489767E+0e .219(46382E+07 -.259156.97E+01 .131064051E+04 -.32081[268E+04 -.859177872E+66 -.862658\26+07 .212213836E+\8 .257565325E+05 .25196\883E+04 .214557321E+C8 .212527759E+G7 -.147473157E+OC -.821146374E+64 -.243086624E+65 ME AN ANCY ECCENTRIC TRUE ANOM KE FL PER AN CM PER NCOL PER DELTA V = **REINTS** AE, MM, ST, DT, ...
21.74509
97.74509
5464.77563
65000 ME, HM, ST, DT, ...
111.4550 991.4590 594275391 1.00109 ME, MM, ST, DT, ...
0.00300
87.9.00300
52743.0000 *** REGUESTED .21737498E+f 8 .19545974E-01 .10887580E+63 .18561199E+63 12500 .013 .79698652E+0 NODE DATE ... DATE,... 70/ 6/26 DATE ... 00000-44.70563 27,53971 DEL TA 14/39 0 16/30 T O I E P I

ITEM	DESCRIPTION	REFERENCE SECTION
18	Uelta Node is the difference between the predicted node time and the input node time	2.2.11.1
	Delta V is the difference in velocity at the predicted and input node times	

-.011 CELTA V =

DELTA NODE =

0ATE; 70/ 6/26 10/ 9:3519 11	ME.HM.ST.DT 201.16392 1080.16392 64859.83519 1.30000	X, XD -214421628E+66 -225584116E+07 -487416521E+01 -133501531E+04 -820411288E+04 -243065077E+05	X,XD - BF 215528327E+08 572707417E+06 497416517E+01 73133886E+03 -985501748E+04 243065077E+05	ADBARV 6.01577563 6.0121295 80.9531934 198.8599714 .21563447E+78	LAT; eF 	REV: 2.50000 09.70841 0.30000 17480	NODE
DEL TA NO	NODE =936	DELTA V =	9000				
DATE; 70/ 6/26 19/29 51.57806	ME, MM, ST, DT, 29 . 85963 1169.85963 70151.57806 1.00000	X	X, XD - BF 211570499E+08 .765241429E+07 357806384E+01 .376464178E+04 .939449343E+04 2+3754490E+05	ADBARV 6.18021193 00011951 68.95336590 198.856398 21567754E+78	LAT BF (0000957 159-21125520 104-5203191 200'0957 106-8414-924 339-21125844	REV 3.59000 DSC 89.69853 10988	200 PE
DELTA NO	NODE =073	CELTA V = -	.6312				
DATE; 70/ 6/26 20/59 32.87528	ME, MM, ST, DT,	X,XD .214287958E+08 .2386C2036E+07 -159996576E+07 -319456211E+04	x,x0 = BF 157434689E+08 147319236E+08 15996576E+00 440159544E+04 243543612E+05	ADBARV 6.3531992 (0099943 88.55541135 198.9495557 .21561224E+98 .25685933E+05	LAT, o PF - 000-0043 136.90177593 104.59832840 - 400,97743 108.830-1744	REV, 4.50000 DSC W 89.59101 10752 .17449	4007
DATE: 73/ 6/26 22/29 13.69145	9 Ā		* x x 0 = BF - 8 37 38 33 7E + 07 - 1960 52 93 4E + 08 - 1905 33 9E + 04 - 453 145 00 E + 04	A DB AR V 6 - 52 8 65 2 3 9 • 17 0 17 4 8 0 8 8 - 95 8 7 5 5 1 8 1 9 8 - 64 8 9 5 7 3 7	LAT:. EF .fc.19493 114.59476720 114.66130#13 .f000443	5.5000° USC 89.58138 nr912	M 00 M
70/ 6/26 23/58 53.86424 IT	1438.8974 1438.89774 2438.89774 1.366.0 0.0000	-24303338668 -214142238668 -214142238667 -211309176407 -1+31857226404 -318497376404	-24303332E-05 -24303333E-05 -21544451E-06 -531000947E+08 -934165349E+04 -859814746E+03	.256847875643 6847513671 03701141 88.55938690 199.84851399 .215617735478	294.592741 294.55976556 92.29275736 174.67714663 - 109.714663 272.2925459	6.5001 DSC 89.67197 00991	E002

	700 X	N OO E	
	080	280	
	REV 7.5000C DSC 89.66484 00713	REV 6.50000 DSC 69.65710 00775 .17475	
	LAI: BF000.0358 69.99075918 104.7552276000009368 118.84712996	LAT BF 000'1259 47.69055227 104.8434478 000'1259 12 5.84563644	
	ADBARV 6.88[29536 0[[7]366 0[[7]366 00.5596531 196.84691289 .21562177E+08	ADBARV 7.0549826 00011251 88.96197225 198.8481415 .215627165+38	
4803°-	X,XD = BF .737797002E+07 .202606282E+08 137648336E+01 .943119771E+04 293925337E+04	x, xD - BF .145146072E+08 .153460620E+08 -470774157E+01 .751035070E+04 -629802934E+04	0043
CELTA V = -	X, XD .214 C69Cule+C8 .2583C4619E+O7 .137648336E+O1 .145653643E+G4 .217937142E+U4	DELT / V = X9 XD	DELTAV = -
16 =203	ME,MM,ST,DT; 649.55981 1526.55981 5313.56890 1.07000 0.10100	ME, MH, ST, DT; 739.21396 1614.21396 10692.83771 2.00100	E =255
DELTA NODE =	DATE, 70/ 6/27 1/26 33.58890	DATE HE, 70, 6/27 2/58 12.83771 1	DELTA NODE =

69639794F+0		70750326E+0	1364713E+0	89737334E+0	11976E+	9644152E+0
10	1 :	**	#	44	11	#
2	200	CENT	UE ANO	PE	ANCH PER	7
21783407640	2. 3.42. 5.4	0530278E-0	10884909E+C	7055112+0	1848199E+	33909E+D

4m10u5 1111111

TRAJECTORY TERMINATION

\$

. 222793475+73 . 222793475+73 . 351149945+74 . 755871635+72 . 279941035+71

APOGEE HEIGHT FERIGEE HEIGHT 0-DOT .2 CP SECS. 6.8 SECCNDS. EXECUTION TIME FOR SEGNENT 50 MAS EXIT SEGMENT 50 AT

*** END OF TRAJECTORY ***

ENTER SEGMENT 1" AT	1. A	£ 9 1			TIME F	OR SEGH		50 HAS		8	.3 CP SECS.
艾洛特 转移 经存货 经条件 经经济 医阿拉特氏 医甲基氏 医甲基氏性 医克勒特氏 医二甲基甲基二甲基甲基二甲基甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二	* * * *	****	***	TRAJECTORY INTEGRATION FOR CASE	INTEG	RATION	FOR	I SE	1		
TINE(HME) 900.7449 993.4592	TYPE TZERO TSTOP		ASS OC IATED	* PREDETERMINED EVENT TABLE Quantities	ERMINE	O EVENT	TABLE	•			
*	TRAJ	TRAJECTORY STA	TA 2T								
*	*	* * *	* * * * *	* * * * *	ECI	*	*	*	* * *	*	* * * * *
SEG11 ENTRY TIME IS	I HI.	1S 6.855	5500 37 93 E+1. 3	,214557320664E+08	0 66 4E +	60	.2125	277641	•212527764462E+ñ7	·	.351589407213E+94
= 10	•	. 1256 000 00	3. 3¢ E+C;	.128583 82816 9E + D4	81696+		.82114	+6372	821146372636E+04	ĭ	243780023907E+05
*	ST	EP DOUEL	ELED	1 = 1	904.7.46900	00	II		.250000	_	11
•	ST	STEP DOUR	BL ED	1 = 90	908 - 994 900	00	" "		.50000r	_	NSTEP = 47
*	ST		EL E0	76 = 1	006 966 . 946		# =	**	1.003000	_	N3 TEP = 118
NODE T =	•	.946658583	190 87 E+6 3	218803714253E+08	4253E+		.22005	96246	220050624666E+07	ĭ	-,295738854977E-01
= 10	•	. 10339699		345907508787E+03	8787E+	03	.81424	5711	.814245711879E+04	•	.238329373956E+05
= T 300N	•	.990458993c		.214+89766135E+08	6135E+		.2199	16465	.21994646560 35+07	ř	1259439 05337E+D 0
= 10	•	. 1000000000		.131364349429E+D4	9429E+		.8208	10236	820 810 236 293E+04	ĭ	243072204145E+05
*	TRAJ	TRAJECTORY LER	ERMINATION								
**	THIS	*** THIS CASE '00K		.473 SECONDS TO INTEGRATE A SFAN OF	TO IN	TEGRATE	A SF	1N 0F	93.	93.2500	MINUTES ***
	*	FROM	501 . 745	7. 10	993,955		UTES F	ROM	HINUTES FROM KIDNIGHT OF EPOCH	96	*** H20di
ENTER SEGMENT	81	AT 7.3	3 SE CONDS.	EXECUTION TIME	TIME F	FCR SEGMENT	ENT 10	HAS	i.	8	SEC S.
ENTER SEGMENT 82	. 82 A	AT 7.4	4 SECONDS.	EXECUTION TIME FCR SEGMENT	TIME F	CR SEGM	EN7 81	NAS	1.	•1 CP	SEC 5.

17 1970 6 26 16 7 20.0000 0778996E-01 AZ104679E-01 EL PREDICTE RESIBUALS 022259GE+01 O0000 00000	STAPASS	SS	YEAR HO DY HR														
5.26 16 7 19.2528 .519859E+00 SRR 0. CTEO RESIDUALS	393	17	6 26 0101	16	~	20.0	9900	•		٠. و	78958E-			104679E	-01	EL	967.333
6 26 16 8 4,0000 .446224E+03 RNG .747379E-01 AZ274641E-01 EL CTED RESIBUALS .679492E+03 RNG .747379E-01 AZ274641E-01 EL CTED RESIBUALS .501805E+01 RNG .927567E-01 AZ .460399E-02 EL CTED RESIBUALS .521804E+03 RNG .927567E-01 AZ .460399E-02 EL CTED RESIBUALS .52486624495E+03 RNG .927567E-01 AZ .460399E-02 EL CTED RESIBUALS .775019E+03 RNG .775619E+03 RNG .775919E+03 RNG .7	393	17	6 26 01CTE0	16 RES	7	19.2	925	.519859E+89	SR	•							967.321
CTED RESIBUALS CTED RESIBUALS	393	17	6 26 01CTF0	16 25	e I	4.0	000	.448224E+03	RNG 0	•	47379E-	91			-01	1	968.967
CTED RESIDUALS -528162E+03 RNG -927967E-01 AZ -460399E-02 EL CTED RESIDUALS -528162E+03 RNG -528162E+01 AZ -528162E+03 RNG -528162E+01 AZ -528162E+01 RNG -528162E-01 AZ -570409E-02 EL CTED RESIDUALS -521027E+03 RNG -75650E-01 AZ -770409E-02 EL CTED RESIDUALS -521027E+03 RNG -75650E-01 AZ -770409E-02 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-02 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -11563E-01 EL CTED RESIDUALS -516391E+01 SRR 0 -113286E+00 AZ -113286E+0	393	17	6 25 DICTED	16 RES	8	3.2 JALS	235	140781E+00 -501885E+91	SRR	•••							968.054
CTED RESIDUALS624195E+00 SRR 0. CTED RESIDUALS756196+01 Ro756196+01 Ro756196+01 Ro756196+01 Ro756196+01 Ro776196-01 AZ7764096-02 EL7764096-02 EL	393	17	6 26 DICTED	16 RES	1 1 E	28. C	600	.431812E+03	S S	0	27567E-	0.1	AZ	. 46039 SE.	20-	13 13	968.467
CTED RESIBUALS 6.26.16 9 0.0.000 CTED RESIBUALS 6.26.16 6 9 0.0.000 6.26.16 6 9 0.0.000 6.26.16 6 9 0.0000 6.26.16 10 4.0000 6.26.16 10 3.2352 6.26.16 10 3.	393	11	6 26 OTCTF0	16 PF	9	27.2	984	624195E+00 .775019F+01	SRR					•••			968.454
6 26 16 E 59.2444334749E+01 SRR 0. CTED RESIBUALS .117638E+02 0. 6 26 16 10 4.000	393	17	6 26 010TFD	16.	6	3.0	000	.363979E+03	RNG		56500E-	0.1	2 4	770405E-	2	E t	969.068
6 26 16 10 4.000 .673896F+02 RNG .113288E+00 AZ .338583E-01 EL CTED RESIDUALS .516391E+03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	393	11	6 26 01 CTF 0	16 RES	1.00	59.2	***	334749E+01	SRR								968.587
### SECONDS. EXECUTION THE FOR SECONDS. ### SECONDS. EXECUTION ###################################	393	17	6 26	16	5	4	203	.673896E+02	RNG	•	13288E+		A Z	. 338583E	-	٤t	970.467
RMS TYP RMS TYP *A SECONDS. EXECUTION TIME FCR SEGMENT 62 WAS *1 To 4 SECONDS. EXECUTION ** To 4 SECONDS. EXECUTION	393	17	6 26 DICTED	AES RES			352	-,449521E+03 -,449521E+01 -,804813E+01	SRR	•••				•••			970.054
*765986E+01 RNG .513694E+03 AL RMS = .59E0568927E+02 AT 7.4 SECONDS. EXECUTION TIME FCR SEGMENT 62 MAS .1 CP TS WERE USED IN THIS SOLUTION	STA	TYP	RHS	PRE	DIC	CTED TY	STATI	STICS RMS	_	TYP	Œ	S)		TYP		ž.	
AL RMS = .5960568927E+02 AT 7.4 SECONDS. EXECUTION TIME FCR SEGMENT 82 MAS .1 CP 1 TS WERE USED IN THIS SOLUTION	393	SRR		186E	+01		്ര	.513694E+0	m								
AT 7.4 SECONDS. EXECUTION TIME FCR SEGMENT &2 MAS .1 CP 1 TS WERE USED IN THIS SOLUTION	RED1	CTED	RESIDUAL RM			. 596	05689	327E+02									
TS	NTER	SEG	93		7.4	SE C	ONDS.		IME	FCR	SEGMENT			•1 CF	SE	cs.	
	TER	TICH	TS	₩ ₩	USE	NI O	THIS	SOLUTION									

SIGNA .78929819:+"2 .76947084:+"2 .11451517E+93 .44335061E-91 .93705791:-"1	D of of c of of D	.45200E+';
TOTAL :034. 46831099E+02 2086508YE+03 19185345E+00 368847:4E+00 1831393E-02 24673299E-03	1.C. / SIGNAD 3 8559428 E+91 21836548 E+91 11820952 E-91 76574955 E+91 14516251 E-91 49562295 E+01	6 2 0 0 R A G 17 4 6 4 5 4 5 + 0 8 16 - 3 3 4 2 7 E + 0 6
	1.C./SIGMAD 53949616E+01 95961286E+01 -21327019E-01 14381317E+02 25198699E-01 59936746E+0	6820 DZ -05 -07 -07 -07 -16251E+08 -0514254E+06
NEW VALUE • 21455670282464E+08 • 21251644729618E+97 • 28423960005292E+93 • 12859672436397E+94 - 824317974107534E+94 - 243189004212928E+94 • 92141246731143E+95	101AL CORR. 46831099E+02 20835087E+03 19185345C+C0 3686704E+00 18313993E-00 24678299E-03	6820 0Y E+06 E+06 • 74115E+05 E+07 • 52793E+07 E+07 • 52186E+97
CORRECTION 46631:99E+02 20865487E+03 19195345E+00 368847945E+00 18313993E+00		6820 0X E-C1 E-C1
VALUE 731238283E+87 - 731238283E+87 - 319719755 8919769135+34 - 607281429E+35 - 607281429E+35 -	S 64 66 66 66 66 66 66 66 66 66 66 66 66	495 Dee-01 33768e-01 935 28e402 1915e+63 1915e+63 13254e+03 13254e+03 13254e+03 13254e+03 13254e+03 13291e+03
.21455 .21455 .21253 .12861 .243(8	SIGHA ZEFO *86855515+02 *219490895+02 *74856145E+02 *15220332E+06 *25647653E=01 *72678355=01 *41173920E=03 *2241036669E+04 *4520020818E+04 *4520020818E+04 *4520020818E+04	6820 X 682° Y 682° Y 65287 9 65287 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
CURRENT SOLUTION IS NAME 6820 X 6820 X 6820 DX 6820 0Y 6820 OX 6820 DX	6820 X 6820 Y 6820 Z 6820 DX 6820 DX 6820 DX 6820 DX 6820 DX APRIORI RMS = APRIORI SOS	X Y Z 00X DDY DRAG ATB
CURR N N O O O O O O O O O O	NAME 6820 6820 6820 6820 6820 6820 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ATA 6620 6620 6620 6620 6620 6620 6620

6327 DRAG	.1,762E-06		SECS.	ECCENT?C ANOMALY APOGEE RADIUS TRUE ANOMALY PERIGEE RADIUS KEPLERIAN PER PERIGEE HEIGHT ANDMALY PER O-DOT NODAL PERIOD U-OT	56.257119726 3663.89459 59.376276671 60.35227594 3511.066.7 85.3228781 74.97784 89.683958 2.7934261179 89.161255 -2.9667979488	TYP RMS "RMS/SIG 4EAN SRR 2.5E+00 2.5E+01 -1.5E+0
6820 DZ	.87808E-02		₫	HEAN ECCENT TRUE KEPLER ANDM		Z W
682C DY	.19656E-02 .35492E-02 .12856E-15	1.06308	GHENT P3 WAS	AAA CHIL RAB	.0122907120147 [173637330889 .[667981268134 3.553539325 13779505544	RMS/SIG MEAN 01.4E-
6820 DX	.21932E-01 .55049E-02 .13585E-01 .32074E-05	20000 65432 1.00000 29663 .05457	TIME FOR SEGMENT	E I I I I I I I I I I I I I I I I I I I	21797336.563 .02127269999 106.849501195 195.65636129 119.636995905	TYP RMS R EL 2.0L-02 0
6620 Z	.13114E+05 .16196E+02 .45008E+01 .10233E+02	1.00000 .83843 1.30000 .97892 .85432	• EXECUTION TIME 1 FOR ITERATION	ALPMA DELTA BETA Aziputh Radius Velocity	5.65664001 .010755345 88.951761166 198.849501195 21560661.200 25689.811289A	MEAN N T
682º Y	.59259E+04 .20135E+04 .42725E+01 .16927E+01 .22693E+01	100 101 .00000 203 .95496 72 .95496 69 .6551	7.5 SECONDS.	AZ R	200 H	RMS/SIG M
3	.157926+04 .157926+04 .111966+02 .308046+01 .734315+01	MATRIX -00000 -260 2 1.00000 -95483 -22903 -95780 -37903 -99282 -31472 -05446 -00169	IT 54 AT 7. ELEMENTS FOR	× × × × × × × × × × × × × × × × × × ×	21455670 2125164 21265984 1285.967 -8211.797	TYP RMS R AZ 8.8E-02 0
,	6620 7 6620 7 6620 0X 6620 0Y 6620 0Z 6:30 0RAG	50RRELATION MATRIX 6820 X 1.00CL0 6820 Y .26U Z 6820 DX .995483 6820 DY .60C26 6820 DY .69C82 6820 DZ .99282	ENTER SEGNENT	YEAR/HOLD HR/HIN SECONDS LATITUDE LONGITUDE HEIGHT	1970/ 6/26 15/ 0 44.6940010 .0007634 226.1505472 104.5057	N A E E E E E E E E E E E E E E E E E E

ATA INVERSE

.1 CP ScCS.	*****
S	+
Ì	ASE
±	2
SFEN	N F0
SE(TIC
FCR	GRA
INE	INT
NO	ORY
TU	JE CT
EXE(TRA
7.5 SECONOS. EXECUTION TIME FOR SEGMENT 84 MAS	**************************************
un •	*

AT	* * *
듺	**
ENTER SEGMENT 10 AT	******
TER	* * *
8	*

* PREDETERMINED EVENT TABLE 906.7449 TZERO 993.4592 ISTOP

TRAJECTORY START

- 2433601625045E-U4 - 243360142222E+05 N'TEP = 31 NSTEP = 47 -.296414957399E-01 -.238317650507E+05 -.126176140433E+00 -.243072204709E+05 H = .250000 H = 1.000000 -.220331937 E41E+N7 .814268754 826E+E4 -212506845015E+07 --321183276665E+04 -. 820 84 6337 396E+04 .21.556853175E+08 .123.61444365E+04 7 = 904.744900 7 = 908.994900 --218845759248E+08 --346005828944E+03 .214489503620E+08 .131048471597E+04 EC I .946658421521E+C3 . 993459328121E+03 .10367C007 30E+C1 * * * * * * * 11 11 10 10 NODE NODE

*** TRAJECTORY TERMINATION

93.250r MINUTES 993,955 MINUTES FROM MIONIGHT OF EDOCH .5 CP SECS. .1 CP SECS. MAS MAS .474 SECONOS TO INTEGRATE A SFAN OF EXECUTION TIME FOR SEGMENT 19 돲 EXECUTION TIME FCR SEGNENT 926.745 8.1 SECCNDS. SE CONOS. THIS CASE TOCK 8 • C FROM AT AT 81 82 ENTER SEGMENT ENTER SEGMENT

一般で

393	7	1970	 .	200				E 0 4 M	29.0000 19.2528 4.0000	0 0 o h		507 425 119	0. 507401E-01 -4255(2E+01 119395E+00	<u> </u>		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			656 531	196 66	.765619E-01		A2 A2	ièiè	111	119794E-01 0. 291289E-01 0.	1197946-01 0. 291289E-01 0.		7 7		96	967.333 967.321 968.867 968.867	33	
		1970 1970 1970 1970 1970	~~~~~	000000	000000	HH WWWWW	0000000 0000000	6 4 6 6 4 M	23.000 0.000 0.000 4.000 4.000 3.000 3.000	င်ကာသောနေတာ့လ		4 C C C C C C C C C C C C C C C C C C C	-, 374171E+00 -341970E+00 -, 269536E+01 -, 14590E+00 -, 701154E+01 -, 666441E-02			S R S R S R S R S R S R S R S R S R S R		0.00	285	93(1476	.955793E-01 .828947E-01 .123622E+00		A Z A Z A Z	0100	2 6 8	560 846 135	.205608E-02 0. 906464E-02 0.301353E-01		בו בו		95.	956.454 966.454 968.968 970.967	44444 200000	
ENTER SE TTERATION 9 HE CURRENT	S A S	ENT 83 NUMBER	83 ER ON	⊢ ∨	NER (w	8 J1 USED	SE	6 J1 SECCNDS. EXECUTI USED IN THIS SOLUTION	DS	· · ·	EXE	EXECUTION TIME	OI N	z	IME	14	&	SEG	Ψ.	FOR SEGMENT 82		MAS			1	.1 CP SECS.	S	cs.					
6 6 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× + × × × × × × × × × × × × × × × × × ×	X 4 5 5 5 5 5 5 7 7 7 8 8 8 8 8 8 8 8 8 8 8		3	CURRENT VALUE 2145567 2824645+08 21251644729518E+07 •2842396:0055056+03 •1285967343 6397E+0482117978107534E+042430806421 3628E+05 -921412467311436-02	40100101 40100101	ENT VALUE 45567 220 25164729 42396:105 85967343 117978107 30806421 141246731	125 P. 12	ENT VALUE 45567'2024642+08 25164-729518E+07 42396:105262E+03 859673436397E+04 117978107534E+04 30807421:828E+05	4 8 8 7 4 8 W	0000000 000000		CORRECTION -92491650 -16091504 -87796232 -24579873 -50299954 -12568941	0RRECTION -92491652E-01 -16091504E-31 -87796232E-01 -24579673E-03 -50299954E-04 -12568941E-03 -88942603E-07	28 29 37 30 30 30 30 30 30 30 30 30 30 30 30 30	N 2 4 2 W 2 4 W W W W W W W W W W W W W W	0000000 44404V	Z 11	T	1310401010101010101010101010101010101010	**************************************	64634 66634 66694	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	655666 674400		TOTAL CORR. 4673 d6 G4E+02 20 663 478E+03 -164 C5 266 30 191617 55E+00 3677 674E+00 170570 99E-02	73 8 6 6 5 1 1 6 6 5 3 6 6 5 3 6 6 5 3 6 6 5 3 6 6 5 3 6 6 5 5 6 5 6	53476E 53476E 53756E 53755E 57099E		NA POPUM	N	016MA • 78938817+ • 114818117+ • 148094287+ • 443385497- • 93704837- • 328347487-	0400000
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× > ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			2	16H 212 212 25 25 25	652552 652552 64466	1A ZEFO 1945251E+02 19491895+02 1956045 E+02 5220332E+07 5647 E53 E-01		22225	v	100	640004 640004 640004 6404	SIGHA DEWT • 12145175E+03 • 95551246E+02 • 13505311E+03 • 2505431E+00 • 11173(54E+00		M N M O O O	£11.111	100 PT	TOTAL CORR. 46738608E+62 26653478E+63 -16642526E+61 19160765E+60 36879674E+00	TOTAL CORR. 46738608+62 2663478E+f3 .16842526E+f1 19167075E+f0 17057099E-02			+:::::::	538 953 125 143 234	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T.C./SIGMAG 53843065E 95953955E 22499567E 14379356E	T.C./SIGMA9 53043065E+80 9505395E+01 .2249967E-01 12508957E+01 1437936E+02 2346927E+0		7.C. /SIGMAD 36433273E+89 2163485E+81 .12471039E-91 76476699E+81 33007693E-81	T.C. /SIGMAD 36433273E+89 2183485E+81 -12471839E-91 35476859E+81 3301693E-81	11 CT	4 5 6 6 6 5 4 4 6 6 6 6 6 6 6 6 6 6 6 6	505500		

				.15784E+			
			632 ° DRAG	.57351E+02	682° DRAG	.107816-06	
			6829 DZ -71243E+07 -16261E+08	. 24675E+0	•	.87806E-92	
			682C DY -74107E+06 -2278cE+07 -5221cE+07		•	.12792E-96	1.61039
			6820 DX 18985E+06 36473E+06 11547E+07	-,36341E+01	ũ	.13585E-01 .32044E-05	.09000 .55429 1.00000 .37879 .05451
	RGED *****		.30672E-01 -37299EE+02 -13251E+03 -43251E+03	.10488E-02	6820 Z •13114E+05 •16196E+02 •45008E+61	.10339E-62	1.00000 .83841 1.09 .97591 .35
1324313099E+01 1578424666E+02 1453812521E+01 1479499593E+02 3657524259E+02	PRUCESS CONVERGED		6820 Y - 49481E-01 - 33752E-01 - 93483E+62 - 18639E+63	22579E-62	.59208E+84 .21185E+64 .42725E+01 .16927E+01	.22692E+01 43631E-64	.22507 1.0000 .37484 .95498 .496.9 .86655 .31472 .55353
SDS II . 11. SOS II . 11. SOS II . 11. SDS II . 33.	LEAST SQUARES		6820 X •67866E+01 •65260E+00 •47907E+00 •25351E+04 •25351E+04 •180507E+04	27693E-0	6820 X •62300E+04 •15792E+04 •37208E+04 •11196E+02 •30864E+01	.734315+0 .14102E-J Matrix	26663 1.00 96483 .20 95780 .37 99282 .49
RESIDUAL RESIDUAL APRIGRI APRIGRI TOTAL PREDICTED	37 ******	ATA	6820 X 6820 Y 6820 Z 6820 DX 6820 DX 6820 DX		6 6 2 C C C C C C C C C C C C C C C C C		6820 X 6820 Y 6820 Z 6820 DX 6820 DX 6820 DZ

. P CP SECS.	
8.2 SECCNDS. EXECUTION TIME FOR SEGMENT 83 MAS	996.46 MINUTES FROM MIDNIGHT OF EPOCH
ENTER SEGMENT 84 AT 8.2	ATA INVERSE UPDATED TO

692" DRAG							. 1078 1E-06
20 6289						.87277E-02	. 92745E-06
682C DY					.24916E-02	.38137E-02	1555 &E-05
6820 DX				.33597E-01	. 85 92 6E-02	.15859E-01	.1300 3E-04
6820 Z			.21586E+05	.25567E+02	.69484E+01	.12150E+02	27 £22E -03
¥ _289		. 706C3 E+C4	.51398E+04	. 7 93 67 5+61	.25718E+01	.29442E+01	14985E-02
	.64488E+04	.22545E +04	.10446E+05	.14193E+02	.33610E+01	.71493E+01	67963E-02
	×	~	7	ă	<u>~</u>	20	DR AG
	6820	6820	6820	6820	6826	6620	6820

G AND G DEWEIGHTING MATRICES FOR VEHICLE 6820

ORBIT PLANE COORDINATE SYSTEM

				.43098E-01
			.45369E-31	•
		. 40 83 2E + 00	74757E-13	• 0
	.31481E+05	0.		.60694E-10
39768E+96	0.	138775E+03	.33054E-21	.0
28250E-18	•	.63892E-10	38775E+G2	•

PARAMETER SET COORDINATE SYSTEM

					. 37105E-12
				.38724E-12	.56828E-14
			.33260E-11	. 30 32 6E-12	55433E-15
	-	• 5205/E-US	.50821E-10	.51080E-11	.47902E-15
	2 E - 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 &	たのーはのもちなり。	.16972E- 1.(.19085E-11	.51039E-12
11 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11-316-11		1909UE-11	.15218E-11	.50021E-11

BLTAL	**** ORBITAL ELEMENTS FOR	VE HI CLE		1 FOR NEXT DATA STAGE	AGE ***					
	×		ALPHA	⋖		AF	MEAN	HEAN ANOMALY	APOGEE	RADTUS
	>		OEL TA	ш		AG	ECCENT	ECCENTRC ANDM	APOGEE	HEISHT
	2		BETA	-		z	TRUE	TRUE ANOMALY	PERIGEE	RADTUS
	XOOT		AZIMUTH	0		د	KEPLERI	KEPLERIAN PER	PERIGEE	HEIGHT
	YDOT		RADIUS	>		CHI	ANOM	ANOMALY PER		0-f0T
	Z00 T		VELOCITY	TAU		IS d	NOOAL	NOOAL PERIOD		100-0
	21448940.28	ī.	5.836716977	21796005.085		.0122908967746	58.37	56.37509577	366	3663.35866
	2196322.22	7.	.000496226	.02124174705		0173247199113	59.45	292033	22	227.28738
	186,731		88.952055837	108.851268834		.r 66 80 4 257 1570	60.47	60.47652666	351	3513.96353
	1310.716806		198.851268834	185.830547549		3.728592319	89.6	89.8146355	7	74.89225
	-8208.444695	-	21560485.867	119,522948988		1420 299 2182	89.0	5757341	2.794	2.7942694148
	-24307 . 220531	10	25689.2489736	975.8954835		-1.35087350274	89.	89.7078954	-2.066	-2.0668271786
	LEAST SQUARES PROCESS CCNV	FER GE C.								
		101	TCTAL EDIT SUHMARY	ARY						
	RAS	RMS/SIG	MEAN	N TYP RMS	RHS/SIG	IG MEAN	Z T Y	RHS	RMS/SIG	MEAN
	8.85-02		۷.	~	02 0.	-1-	5 SRR	ò	2.5E+01	2.5E+01 -1.6F+98
ഥ	3.6E+02 1.8	E+ 9.1	3.3E +12							

	•	7
н [*]		
PAGE		
393		
STATION 393	e e e e e e e e e e e e e e e e e e e	.1 CP SE3S.
6000	N 19	: :
XIMUM •11634326E+80 •39362267E-01 •29821545E+01 •63512972E+03	2	AS
MAXIMU • 1160 • 120 • 12	™ m	* 7
E		10 1
MEAN . 86 86 5617E-01 - 14 34 7512E-02 - 1617 5644E+01 . 32 78 2596E+03		**************************************
¥ '' '	•	* z
.58955283E-03 .58955283E-03 .81594036E-03 .77994378E-01		**************************************
CELTA .58 .61 .77	•	# 3
79758-71 17698-41 28336+1 21968+72	₩.	2 ********* 8.2 SEC
MINIMUM • 57387975 • 42231769 • 55172833 • 20522196		
N I I	•	4 4 A J
SYMB 0 1 1 3 3		N IN

AZ AZ EL SRR RNG		58200.* **********************************

												REMAZI	• • • •
:83251352040E-01 243122684018E+05	.184823510083E-91 .238469054249E+35	192848794083E+00 243110155487E+05	166571505540E+00 -238496698736E+05	.190298708107E-01	468055256516E-01	. 2 3 #525 1 81 497E+05	-,793433913315E-01 -,242982 75 954 5E+05		*** S3.	* * *		REV, R	REV COUNT PERIOD PERIOD-DECAY NOD-REG
		•							81C.250° HINUTES		1. P CP SECS	LAT,	LATITUDE (DEG) LONGITUDE (NW) ALTITUDE (NW) S-VEH-LAT(DEG) I (DEG)
.251737365455E+0 81850437135F+0	259842659783E+07 -813865422107E+84	-258286156986E+f7 817571391562E+f4	266457146476E+07 .81340£329923E+04	.264819264741E+07 817F4364668E+64	273067911266E+0	.813757464437E+0	.271241376866E+07 817111856921E+04			MINUTES FROM MIONIGHT OF EDOCH	10 MAS	ADBARV LA	ALTHA (DEG) LA DELTA (DEG) LO BETA (DEG) AL AZIMUTH(DEG) S- R (FT) I
.214143930173E+08 .143191618436F+04					217962812645E+08	55C 156266870E+03	•213917629830E+08 •150503006250E+04		.965 SECONDS TO INTEGRATE A SFAN OF	1710.995 HI	9.3 SECONDS. EXECUTION TIME FOR SEGMENT *** TRACE66 EPHEMERIS OUTPUT	X, X0 - 8F A	x (FT) Y (FT) Z (FT) Z (FT) E X0 (FT/SEC) A Y0 (FT/SEC) V (FT/SEC)
					•	•	0000 3CE+C1 .233	TERMINATION	.965 SI	500.745 TO	ECONDS. EXECUT	0×*x	x (FT) · Z (FT) x0 (FT/SEC) Y0 (FT/SEC) Z0 (FT/SEC)
143890341775E+04	.14847	.15285	.15744	.16182	. 16640	. 10000	.173786 .16000C	TRAJECTORY	THIS CASE TOCK	*** FROM	50 AT	HE, HH, ST, DT	MIN FROM EPOCH MIN FROM MICNIGHT SEC FROM MIDNIGHT STEP SIZE(MIN) UTC = IT UT1 = IT
NODE T			= 7 300N = T	NOOF T		0	# 10 T = 10	*	•		INTER SEGMENT	DATE,	YR/HO/GAY HR/HIN SEC IT

ECI TRAJECTORY

A W O D D O O O O O O O O O O O O O O O O		REV	REV
			4900 8
LAT; BF .00076044 226.15054724 104.50568751 106.64950120 46.15026536	.36536945E+74 .22760581E+73 .35110666E+74 .74977836E+72 .27934261E+01	LAT BF .000C0 010 226.15024-52 104.50659261 .0000000 106.84953486 46.15024952	LAT BF0001264 203.834;3338 104.4773334 -01011263 108.84877665 23.834.3767
ACBARV 5.6564410 0.0075524 88.95176117 198.84950127 .215616615+08 .256898115+08	APOGEE HEIGHT HE	ADBARV 5.6563613 01011010 83.95175381 198.84951119 .215696675408 .256898055408	ADBARV 5.83054327 00001255 88.5205194 198.85125394 .21561490E+08
X,XD - BF 149364904E+06 155487417E+06 .294239600E+03 744424983E+04 .64989865E+04 243080042E+05	.56260157E+02 .59308276E+02 .60362206E+02 .8962353E+02 .89683959E+02	X,XD - BF 149365774E+08 155486657E+08 .249685575E-04 744424894E+64 .64989899E+64 .64989899E+64	-89.7141 X,XD - 8F 08197217459E+08 67871248832E+07 04441223725+04 046439F3313E+04 05243072205E+05
X, XD .214556703E+08 .212516447E+07 .284239603E+03 .128596734E+04 821179781E+04	ME AN ANOM ECCENTRIC ETRUE ANCH EXCEL PER ENOM NODL PER E	X X X X X X X X X X X X X X X X X X X	DELTA V = -89 x, XD 214489536E+08 219025757E+07 -47228752E+01 -131(47915E+04 -826846896E+04 -243072235E+05
ME, MH, ST, DT,	.21797339E+08 .2127290E-01 .10884951E+03 .1956539E+03 .11953700E+03	### REQUESTED ME,MM,ST,DT; 00019 90(.74509 54044.70569 .12500 6.00000	ME, MM, ST, DT, 89. 71443 990.45933 59427.55988 00000
DATE; 70/ 6/26 15/ 0 44.69400	A M H O U M M M M M M M M M M M M M M M M M M	DATE: 70. 6/26 15. 0 44.70569	DATE; H 70, 6/2 6 16/30 27.55988

*** CASE

*** EPOCH PRINT

DELTA NODE	0E = 30	CELTA V = -89	-89.7052				
DATE: 73/ 6/26 18/ 3 9.88961	ME, MM, ST, DT, 179, 41993 1080, 16483 64809, 88981 1,00000 1,00000	X,XD .214426973E+68 .225563950E+67 49959499E+61 .13349282E+64 826446546E+04 +.243(69587E+65	x,xD - BF 215528138E+08 572420969E+06 419559499E+01 7311345377E+03 243065057E+05	ADBARV 6.00524419 00011988 86.55338154 198.65171352 .215604145+98	LAT BF 00001096 181.52136740 104.46438428 00071796 198.84372393 1.52136411	REV 2.5000° DSC 89.70894 0.00000 .17461	400 E
DELTA MODE DATE: M 70/ 6/20 19/29 51.66184	DE = .019 ME,MM,ST,DT, 269.11646 1169.86136 70191.6184 1.00000	DELT & V = X, XD 214.354620E+ 21.261355E+ 3135976345E+ 419596379E+ 419596379E+	-89.6963 X,XD - BF C8211569164E+08 07 .765274995E+07 00912413357E+00 04 .316496424E+04 04 .939474601E+04 0524305449E+05	ADBARV 6.17970566 07070542 68.65349062 198.65161676 .21567495+78	LAT BF 00009244 159.2172353 104.51999436 00000244 10 6.83489710	REV: 3.51000 DSC 69.69931174.86	×000
DELTA NODE DATE: H 70/ 6/26 20/59 33.04319	ME, MH, ST, DT, 358,80582 1259,55072 75573,04319 1.00000	X,XD .214288330E+ .23858266E+ .162767581E+ .138254675E+ -819491698E+	-89.6866 X.XD - BF 08157431650E+08 67 .147322709E+08 01 .162767580E+01 04 .640200186E+04 04 .752659943E+04 052430433549E+05	ADBARV 6.35298685 00000433 88.55544874 196.65029451 21561240E+08	LAT BF .00000435 136.89984942 104.6096574 .00010435 106.82137302	REV 4.5000 DSC 89.69293 00727	NOD K
DELTA NODE DATE: H 70, 6/26 22/29 13.93845 IT	E. HH. S. T. S. C.	11	-89.6802 X,XD - 8F 07 -897332123E+07 07 -196055704E+08 01 -10682636E+01 04 -45777263E+04 05 -243033845E+05	ADBARV 6.52612349 6.9261234 88.9572605 196.84962701 .21561514E+06 .25684685E+05	LAT». 9F .00000286 114.59321131 104.64674163 .0000286 108.80471249 294.59321734	REV 5.58000 DSC 89.66316 00687 .17266	2 0 0 0
DEL TA NODE	OE = .089	OELT / V = -89	-89.6688				

# GO	NODE	2 0 0	200 ×
280	280	200	200
6.50000 69.67349 00966 .17518	REV 7.50000 89.6661 10638	REV 6.50000 69.65912 00750	REV: 9.5000 89.6495100961
LAT: 9F - 000 0194 92.29050370 104.68671713 - 00000194 108.84898599 272.29050495	LAT: BF -, nnng1074 09.98/34783 104.76339940 -, f.0' 174 108.84642285 245.98835147	LAT BF00001198 47.58753614 104.86063967000.1197 108.84221351	LAT; BF -000:0266 25,38927320 104,91796446 -000102666 10 83369697
ADBARV 6.70467415 00000103 88.55926911 198.24874451 .215617615+08	A DBARV 6.87975210 00001987 88.55966903 198.84764484 .21562257E+18	ADBARV 7.05446814 00001199 88.56159726 198.8488739 -21562819E+08	ADBARV 7.22901183 10001264 88.96277893 198.98016274 .21563166E+18
x,xD - BF 861778912E+U6 -215445325E+U8 399226012E+U0 .994202325E+U4 .861547767E+U3	-89.6603 x,x0 - BF 103 .737884687E+07 07 .212603940E+08 61431596464E+01 04293868518E+04 05243010156E+05	-89.6509 X,XD - BF 00 .145154875E+08 07 .159453987E+08 61447732963E+01 0462955848E+64 0462995881E+05	-89.6388 X,XD - BF 19486504E+E8 10 -92455565E+07 10 -99493675E+04 14871556180E+04 L5242982759E+05
X,XD .2141430336+68 .2517373546+07 -3892260126+00 .1431905786+04 -6185043926+04	DELTA V = -89. X,XD .214070031E+08 .258286727E+07 -40159646E+61 .145658878E+04 -617971359E+04	DELTA V = -89. X, XD 2.13595841E+08 .264819113E+07 .447732963E+61 .146765295E+04 1.917543706E+04	DELTA W = -89. X9X0 -213517630E+08 -271341346E+07 -954936475E+04 -817111871E+04 -242582755E+65
ME,MM,ST,DT, 538-15852 1438-90342 86334-20508 1.00000	ME, HH, ST, DT, 627.8 2241 1528.5 6731 5314.03862 1.30000	ME, MH, ST, DT, 717.47862 1618.22352 10693.41117 1.00000	ME, MM, ST, DT, ME, MM, S
DATE, 70/ 6/26 23/58 54.20508	DELTA NODE DATE: M 70, 6/27 1/28 34.03862	DELTA NODE DATE: H 70/ 6/27 2/58 13.4117 IT	DELTA NODE DATE: ME 70, 6/27 4/27 52.18270 IT DELTA NODE

** TRAJECTORY TERMINATION

CHARLES STORY OF THE STORY

*****	* TRAJECTORY INTEGRATION FOR CASE 1	经存货的经济 医骨 医骨柱 经存货的 医神经神经 医神经神经 医神经神经神经神经神经神经神经神经神经神经神经神经神经
.3 CP SECS.		ENTER SEGMENT 10 AT 9.5 SECONDS.
.3 CP SECS.	EXECUTION TIME FOR SEGMENT 50 WAS	EXIT SEGMENT 50 AT 9.5 SECONDS.
	•	*** END OF TRASECTORY ***
20768795E+41	R = .89637770E+02 U-DCT =	TAU = .1693 237 E+04 NODL PER
.279933255+1	= .89605599E+02	U = .11837888E+65 ANCH PER
.75297496E+n2	R = .89741261E+62 HEIGHT =	0 = .18722902E-J3 KEPL PER
.35111943E+14	= .66220110E+02	I = .10865036E+f3 TRUE ANCH
.22332311E+03	,	E = .20643942E-01 .C.CENTRI
.36592199E+14	= .64068895E+02	A = .21784133E+08 MEAN ANOM

* PREOETERMINED EVENT TABLE * ASSOCIATED GUANTITIES

TIME(MME) TYPE ASSOCIATED GUANTITIES 990.4592 TZERO 1067.0233 TSTOP

TRAJECTORY START

*

NSTEP = 31 NSTEP = 47 NSTEP = 69 -.996434377020E=01 -236336021656E+05 -.24372205316E+05 -219025916574E+07 --820846836465E+04 .500000 -.226677558081E+07 1.000000 III T = 994.459200 T = 1020.209200 -.218709586538E+08 -.371291430118E+03 .214489503527E+08 .131949502891E+04 ECI SEG11 ENTRY TIME IS 9.56500 NODE T = .9904553284355463 DT = .125010*0000E+00 STEP DOUBLED STEP DOUBLED ∦ ₩ - 10 MODE

* TRAJECTORY TERMINATION

*** *** 76.7500 MINUTES 1067.209 MINUTES FROM MIDNIGHT OF EDOCH . & CP SECS. .1 CP SECS. MAS EXECUTION TIME FOR SEGMENT & MAS .392 SECONDS TO INTEGRATE A SFAN OF Ë EXECUTION TIME FCR SEGMENT 990.459 TO 10 . SECONDS. TO TO SECONDS. THIS CASE TOCK *** FROM 81 AT ENTER SEGMENT 82 AT ENTER SEGMENT **

***	******	74 场外 计存储 计分析 计电子 经存货 计设计设计 计计算计算 医动物性	****	STAGE	********** 5	***	*******	医乳腺 化化氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲
STAPASS	YEAR HO	DY HR HN SEC		RESIDUALS	S - EXTERNAL UNITS	ITS		ние
STA TYP	SUMMARY OF P RNS	PREOI	CTED STATISTICS TYP RHS	TYP	ar Ar	TYP	S.	
PREDICTE	PREDICTED RESIDUAL	L RMS = 7.				,		
ENTER SE	SEGMENT 83	AT 10.0 SEC	SE CONDS. EXECUTION TIME	INE FOR	SEGMENT &2 WAS	•	CP SECS.	
ITERATION NUMBER O MEASUREHEN CURRENT SOLUTION	TION NUMBER MEASUREMENTS AT SOLUTION IS	1 WERE USED	IN THIS SOLUTION					
	×				NEW VALUE .21448949284574E+0		TOTAL CORR.	SIGHA . 19991533F+83
	~ ~	.219032222394 .1867305980 36			.21903222239459E+07 .18673055803602E+03		• .	.276396065+#3
	× 6	- 829 644695 10	68168238E+04 -0. 46951080E+04 -0.	3	.13107168068238E+O 82084446951780E+J	9 O	• •	.66193016E+#U .22269565E+00
6020	DZ Orag	243072205319 -92142136157	20531520E+05 -0. 36157169E-02 -0.	•	24307220531520E+0 .92142136157169E-0	0E+05 0	••	.23277673E+BO .43152294E-93
NAME 6820	×	SIGMA ZERO .80364656E+02	S	TOTAL C	CORP. T.C./	.C./SIGMAD	T.C./SIGHAD	
	~ ^	.84025871E+02	.27673606E+0		•		•	
	ž	.1832956-E+00						
	70	.49916415E-01	1 .22269565E+00	•			• e	
6.820	DRAG	. 328 34 745E- E3						
RESIDUAL RESIDUAL	RHS =	::						
APRIORI APRIORI	RMS SOS	•••						
TOTAL PREDICTED	# # SOS # 0	••						

CONVERGED
PROCESS
SQUARES
LEAST

ATA

682 n DRAG					.12492E+06
20 0299				.28076E+04	13977E+06
6620 DY			.35021E+93	.95440E+93	47603E+95
6820 DX		.32051E+02	23336E+02	71543E+02	'261E+03 .17276E+0252806E+0J .55206E+0447603E+9513977E+06 .12492E+08 -000.
6820 2		.31664E-04	12496E-01	27134E-01	52806E+03
6820 Y	. 72260 E-04	454 21 E-03	12293E+00	354436+00	. 17276E+02
6820 X	.42654E-02 .43729E-03 .72280E-04	.35167E-04	11819E+01	34489E+01	.17261E+03
	5820 X				820 DRAG ATB

1 0Z 632" DRAG		.53860E-01 .92745E-06 .18621E-0
682C OY 6829 02		.49593E-01 .45049E-02 15558E-05
6620 DX	2.00 tal.	.14467E+02 .16500E+02 .44227E+02 .45460E-01 .43655E+02 .66731E+01 .12154E+02 .15792E-01 -67963E-0227622E-0313003E-04
6820 2	.38103E+06	.44227E+02 .12154E+02 27622E-03
€830 ¥	. 16395E+05 . 11654E+66	.16500E+C2 .66731E+01 14935E-02
× 0299	14426E+05 93284E+03	.14467E+02 .43655E+02 67963E-02
	×××č	00 AG
	6820 6820 6820	6820 6820 6820

ATA INVERSE

. 18 621E-06

CORRELATION MATRIX

1.04303 -30.653 1.00000 -16280 -08716 1.00000 -20455291619 .00926
34003 30653 4552
1
1.00000 .95601 .32173 .08684
1.00000 .66304 .72040 .26807 .10493
1.000:00 02611 00756 .00197 .32496 94692
× 7 7 0 0 0 0 0 0 0 0 0
6 8 2 0 6 2 0 6 2

.0 CP SECS. 11.1 SECCNOS. EXECUTION TIME FOR SEGMENT 63 WAS ENTER SEGMENT 84 AT

	682	नं			
	6829 DZ	.81388E+00 15291E-03		.322f4E-01	.25299E-11
OF EPOCH	6820 OY	.1642 EE + 119 .2923 GE + 119 6477 GE - 114		.46454E-01	.59577E-12
FROM MIDNIGHT	6820 OX	.16470E+00 .11297E+00 .29466E+00		.38%10E+00 98%30E-02	.63768E-12 .32176E-12 .92234E-12
1064.92 MINUTES F	2 3289	.16949E+16 .92422E+12 .12477E+13 .34171E+13 -63494E-01	EHICLE 6820	.28070E+05 .46071E+01 0	.18460E-09 .32239E-11 .67533E-11
1064.	¥ 1289	. 33116E+65 . 15288E+65 . 184385E+12 . 185385E+12 . 18932E+12 - 61493E+12	FRIGES FOR V System	00	.553416-10 .110615-10 872636-12 .125185-11
INVERSE UPDATED TO	6820 X .70452E+06	31,55E+05 29886E+06 29719E+03 28220E+03 725;0E+03	G AND G OEWEIGHTING MATRIDES FOR VEHICLE CRBIT PLANE COOROINATE SYSTEM	.29549E+C5 30492E+C4 0. 0.84176E+C1 34574E+C2 0. TER SET COORDINATE SYSTEM	.78319E-09 -24473E-10 .55 -29040E-09 .11 -18272E-10 -87 -16232E-11 .12
ATA INVERSE	6820 X	6820 Y 6820 Z 6820 OX 6820 OY 6820 DZ 6820 ORAG	G AND G OEM CRBIT PLANE	.295 304 0.841 345 0. PARAHETER S	- 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

CUANTITIES 1 + 1 + + + ECI 1 = 1067.273299 1 = 10423970673E+06 213489802319E+06 133489802319E+06 23 TO 1083.523	* * * * * * * * * * * * * * * * * * *
* 2 • 0 •	CTORY START - + + + + + + + + + + + + + + + + + +

STAPASS	155	YEAR HO DY HR MN SEC	•	ZES IDU	RESIDUALS – EXTERNAL UNITS	UNITS	H
343	16	1970 6 26 17 44 23.0000	101891E+04	S S S	753545E-02 AZ	124282E-01 EL	1064.333
343	18	PREDICTED RESIDUALS 1970 6 26 17 44 19.2525		SR		•••	1064.321
343	18	1970 6 26 17 44 40.0000	•	RNG	758193E-01 AZ	210287E-01 EL	1064.667
343	18	1970 6 26 17 44 39,2512 BECTTED DESTRUCTED	.791119E+U3	SRR			1064.654
343	18	1970 6 26 17 45 564000C		RNG	.266531E-01 AZ	524774E-C1 EL	1065.933
343	18	1970 6 26 17 45 55, 2392		SRR			1065.921
343	18	1970 6 26 17 46 36.0000		S S S	.420406E-01 AZ	651275E-01 EL	1066.600
343	18	1970 6 26 17 46 35.2336		SRR			1966.587
343	1.6	1970 6 26 17 47 32-0000		R S S	361294E-01 AZ	661090E-01 EL	1067.533
343	41	1970 6 26 17 47 31.2308 PREDICTED RESIDUALS	.298569E+01 .244620E+01	S. S.	• • •	•••	1067.521
STA	TYP	SUMMARY OF PREDICTED STATISTICS RMS TYP R	ISTICS RMS	TYP	P R#S	TYP	S
343	RNG	.772325E+03 SFR	.890966E+01	=			

ITERATION NUMBER 1
10 MEASUREMENTS WERE USED IN THIS SOLUTION

.0 CP SECS.

10.5 SECONDS. EXECUTION TIME FCR SEGMENT & WAS

. 68t5373075E+02

PREDICTED RESIDUAL RMS =

ENTER SEGMENT 83 AT

SIGNA - 29649735E+32 - 395049735E+32 - 12497134E+93 - 282592661+39 - 215953311+89	O M M M M M M M M M M M M M M M M M M M	06 .77043E+'S
1150 7256E+04 -1150 7256E+04 -163642102E+03 -20868619E+00 -47301194E+00 -14303469E+00	1.C. / SIG MAD -1.1.24.85.14E+01 -7.3567279E-02 -16714608E+01 4239858E+00 37215276E+00 13510559E+01 13510559E+01	692" DRAG
	T.C./SIGMA0 -13709627E+01 -13046709E+01 -213166708E+01 -51421968E+07 -11670379E+01 -33812759E+01	6820 DZ 6820 DZ -93689E+03 -34013E+04
NEW VALUE • 7593443666913E+07 • 71631257743959E+07 • 1658680199004E+08 • 2409462595733E+95 • 77239501008648E+03 • 9591900057893E+94		682C Df .29645E+03 .82272E+05 .1C100E+05
Z 11	TOTAL CORR11507256E+04. 383642102E+0360868619E+00. 1473614E+014590979E+0.3.	6820 DX -43095E+04 -19689E+04 -25321E+06 -57163E+04
0 11111	SIGNA DENT • 10234573E+04 • 24645168E+03 • 50641317E+03 • 49520179E+00 • 48656132E+00 • 43152294E-03 5	6820 2 • 12439E-01 • 20907E+01 • 87915E+00 • 59693E+00
CURRENT VALUE *7592252410693E+07 *71831276326262543E+07 •18581636626026E+08 *24094838643523E+05 -77192199415643523E+05 -97192199415084E+03	2850 35991E+03 37891E+03 63391E+07 30984E+00 15315E+07 52294E+07 52294E+07 643715E+07 04371827E+05	6827 Y 1988 96 E-01 - 775 96 E-02 - 775 96 E-01 - 175 96 E-01 - 177 9 6 E-01 - 177 9 6 E-01
	11 11 11 11 11 11 11 11 11 11 11 11 11	6820 x 45635E-01 47635E-01 47635E-01 14339E+01 25336E+01 25336E+01
CURRENT SOLUTION IS NAME 6820	6820 X 6820 Y 6820 Y 6820 DX RESIDUAL SO APRIORI SO APREDICTED SO APRIORI SO	6620 X 6620 X 6620 Z 6620 Z 6620 DX 6620 DY 6620 DZ 6620 DZ

6929 DRAG.		secs.	MEAN ANCMALY APOGEE RADIUS ECCENTRC ANOM APOGEE HELTHIT TRUE ANOMALY PERIGEE RACTUS KEPLERTAN PER PERIGEE HEIGHT ANOMALY PER PERIOD U-'OT	355.77927599 3648.44899 355.63515102 212.7434 356.44433 89.4891116 2.8211594619 89.677338 2.8211594619	YP RMS RMS/SIG PEAN il 4.9E-02 04.3E-72 secs.
6820 02 45636E-01		90 6.	ECENT FCENT FPLEN NOOPL		2 % S
6820 DY 68 .79855-91 -61675E-92		GHENT CO MAS	PC ASS	.t107339327918 0163491764333 0670483125976 299.065985331 1457776778	RMS/SIG MEAN 12 01.16-0 Segment 84 mas
6820 DX .15618E-01 .43912E-02 .24655E-01	1.59000 19106 1.00000 1691619348	IN TIME FCR SEGMENT	∝мноот О Т О	21743146,308 • [1955793658 108,875[79839 185,98234950 117,30425930 475,5843667	RMS
6820 Z 3 .15606E+04 0 -26060E+01 1 .23439E+01 0 -31440E+01 3 -53197E-02	1.30000 .12434 .91354	DS. EXECUTION TIME 1 FOR ITERATION	ALPHA DELTA BETA AZIPUTH RADIUS VELOCITY	4.05413599 64.0045934 286.090669 15094-951 5:1793895 EDIT SUMMA	MEAN N TYP •6E+32 5 AZ 4. •5E+3C SE+3C
6827 Y 03 • 86634E+03 03 • 86634E+03 01 - 87321E+00 01 - 86136E+01 06 • 65437E+00	1.00000 34789 1.00000 0488152785 94880 .26996 -1067136853	19.5 SECONDS S FOR VEHICLE	x x x x x x x x x x x x x x x x x x x	67 73 73 73 73 79	RMS/SIG 2 4.9E+31 1 1 1.1E+72 9 10.5 SECOND
6820 X -87911E+03 -6046E+03 -17610E+01 -52524E+01 -89767E+06	1.006J0 .48566 .59202 47525 47629	R SEGMENT 84 AT ORBITAL ELEMENTS		42 1 0	N TYP RMS 5 RNG 9.76+3 5 SRR 1.16+3 1ENT 84 AT
6820 × 6820 × 6820 V 6820 OX	CORRELATION (6820 X 6820 DX 6820 DRAG	ENTER SEG	VEAR/MC/DY HR/MIN SECONDS LATITUDE LONGITUDE HEIGHT	1970/ 6/20 17/44 1.397920 60.8642163 222.971960 73.530	STA N T 343 5 R 343 5 S

ENTER SEGMENT 1C AT	∓ ₩	CAT	10	2	SE CONDS.	10.15 SECONDS. EXECUTION TIME FOR SEGMENT & MAS	ĭ ⊢	H H	S. N	EGMEN	2	MAS	7.	<u>ه</u>	.1 CP SECS.		
奇奇 医格洛斯 我说,我不会给你的我的我的我们,我们我们的我们的我们的人的人,我们就会会会	***	*	***		*****	TRAJECTORY INTEGRATION FOR CASE	Z 1	NTEG	RATI	ON FO	5	E C	7		化甲基苯酚 经存货的现在分词 化苯甲苯甲苯甲甲苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	*	
TIME(MME) TYPE 1064.0233 TZERO 1083.1645 TSTOP	3 TZE	TYPE TZERO TSTOP	-	ASSA	OCIATED O	* PREDETERMINED EVENT TABLE Associated quantities	ETER	A II K	0 EV	FN	4916	*					
*	<u>-</u>	RAJEC	*** TRAJECTORY START	STA	RT												
•	+	*	* * * * * * * * * *	*	*	* * * * *	*	EC I	*	*	*	*	* * * * * * * * * *	*	* * * *	*	٠
SEGAL ENTRY TIME IS	I	STEP	•	.0.5760C	0.0 0.0	T = 10	167.	1067.273259	65	I	11	•	.250006		NSTEP		
*		STEP		DOUBL ED	60	1 = 10	371.	1071,523299	66	I			.50000		NSTEP	#	
N00E T =	je i	.10	180163	959	.108016365486E+04	.214420373113E+08	3731	13E+	80	. 2	2557	30397	.225573039794E+07	•	303975478830	5478	830E
. TO	#	.50	.500000000 0 0 E+C@	700	90 E+6€	.133527768483E+D4	768¢	8 3E +	7 0		50 42	7575	820457575669E+04	•	243864633952E	94633	952E
*		RAJEC	STORY	TEX.	TRAJECTORY TERMINATION												
*		HIS C	THIS CASE TOCK	0 CK		.214 SECONDS TO INTEGRATE A SFAN OF	JS T	NHO	TEGR	ATE A	SFA	N 0	67	0005-67	HINUTES	JTES	
		*** FROM	40		1964.023 TC	10	10	83.5	23	MINUT	ES F	ROM	1083.523 MINUTES FROM MIDNIGHT OF EPOCH +++	9	EP OCH	:	
ENTER SEGMENT 81	60	1 AT	10	60	10.8 SECONDS.	EXECUTION TIME FOR SEGMENT 15 WAS	ILZ	A A	OR S	EGMEN.	10	MAS	**	8	.2 CP SECS.		
ENTER SEGMENT 82 AT	NT 8	Z AT	10	יט	SE CONDS.	10.9 SECONDS. EXECUTION TIME FOR SEGMENT 81 MAS	II z	A A	8	EGFEN	1	MAS	•	8	.1 CP SECS.		

DRAG	.25438E+08 11216E+02 .37792E+°	68 2 1 DRAG	.164285-06	
6820 DRAG		6829		
6820 02	.93680E+03 10\$43E+06 93047E+0	6620 DZ	.46638E-01	
6820 DY	.29638E+03 .82292E+02 10096E+05	662f DY	.79861E-01 61666E-02 79253E-05	
6820 0X	.43090E+04 18967E+03 18967E+04 .25316E+06	×0 0299	.15620E-01 .43922E-02 .24657E-01 13125E-04	1.00000 -10104 1.00000
2 0289	.124346-01 .209296+01 879246+00 .597866+00 .307666+00	6820 2	.15610E+04 26069E+01 .23425E+01 31448E+01	1.00000 .12436 1.00000 .91355 -10104
6820 Y	. 19864 E-01 . 19633E-12 - 17609E+00 . 15533E+01 . 64200E+00 . 13439E+63	⊱ 28 9	-81545E+03 -38972E+03 -47305E+00 -46596E+00 -55443E+00 -56270E-03	0000 34756 1.00000 6487952793 54880 .20980
6820 X		6820 X		CORRELATION MATRIX 6820 X 1.00030 6820 Y .46083 1.00 6820 DX -47519 -64 6820 DX -62689 -94 6820 DZ -147313 -10
×	7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	INVERSE	7 2 0 0 0 0 0 0 0 0 0 0 0 0	ELATIO
6620		ATA 1	6 6 8 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	66 66 66 66 66 66 66 66 66 66 66 66 66

ATA

	APOGEE RADJUS APOGEE HEIGHT PERIGEE RADJUS PERIGEE HEIGHT 0-NOT	3646.44912 212.71263 212.71263 3508.47129 72.724891 2.8211591592 -2.8786364671	
. O CP SECS.	MEAN ANOMALY ECCENTRC ANOM TRUE AND MALY KEPLERIAN PER ANOMALY PER NODAL PERIOD	355.77973727 355.69563177 355.61063936 89.4881134 89.67.7356	of CP SECS.
HENT 63 WAS	AAF CHI PSI	8978 7686 7686 7686 7687 7867 8867 8952	
ON TIME FOR SEGIERATION 3. ###	A M H D D T A D D D D D D D D	21743146.599 •01955756163 - 108.875078675 185.982347975 117.303779372 975.5842512	A TIME FOR SEGME
.9 SECONDS. EXECUTION TIME FOR SEGMENT 83 WAS	ALPHA DELTA BETA AZIMUTH RADIUS VELOCITY	43.409411209 60.640047161 90.084121532 221.28698941 21319094.431 25945.1801773	9 SECCHDS. EXECUTION TIME FOR SEGMENT 84 MAS
B4 AT 10.9 S	X X Z Z X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z	93442 934242 93429 93739 4.63222 2.39322 1.89658	10.
ENTER SEGMENT 84 AT 10	YEAR/MO/DY HR/MIN SECONDS LATITUDE LONGITUDE HEIGHT	1970 / 6/26 17/44 1.3979200 60.8042175 222.9719584 73.5308	EXTI SEGMENI 84 AI

TIME (MME) TYPE ASS 1064.0233 TZERO 1064.0233 TZERO 1063.1645 TSTOP *** TRAJECTORY STA *** TRAJECTORY TA *** TRAJECTORY TER *** TRAJECTORY TER *** TRAJECTORY TER *** TRAJECTORY TER *** TRAJECTORY TER
--

1083.523 MINUTES FROM MIDNIGHT OF EPOCH

.2 CP SECS. .1 CP SECS.

11.2 SECONDS. EXECUTION TIME FOR SEGMENT IN WAS 11.3 SECONDS. EXECUTION TIME FOR SEGMENT & MAS

1064.023 TO

+** FROM

ENTER SEGMENT 81 AT ENTER SEGMENT 82 AT

STAPASS YEAR MD DY HR MN SEC RESIDUALS - EATERMAL UNITS MME	1970 6 26 17 44 20.0000 .229047E+02 RNG282855E-01 AZ106324E-01 EL 1064.333 1970 6 26 17 44 40.0000 .16306TE+02 RNG104513E+00 AZ106781E-01 EL 1064.321 1970 6 26 17 45 56.0000622021E+01 RNG210811E-01 AZ380096E-01 EL 1065.933 1970 6 26 17 45 56.0000622021E+01 RNG210811E-01 AZ380096E-01 EL 1065.933 1970 6 26 17 45 35.236 .6895414E-01 SRR 0. 0. 0. 0. 1066.867 1970 6 26 17 45 32.0000450345E+01 RNG461437E-01 AZ567614E-01 EL 1067.533 1970 6 26 17 47 32.0000450345E+01 RNG461437E-01 AZ567614E-01 EL 1067.533	83 AT 11.3 SECONDS. EXECUTION TIME FOR SEGMENT 82 MAS .0 CP SECS. BER 3 MENTS WERE USED IN THIS SOLUTION	CURRENT VALUE	SIGMA ZERO SIGMA DEWT TOTAL CORR. T.C./SIGMAD T.C./SIGMAD -8393591E+03 -10234573E+04 -11505509E+04 -13707545E+01 -11241807E+01 -18197897 E+03 -24845168E+0325934686E+01 -14251480E-0110438523E-01 -4116934 E+03 -50041317E+0383665082E+0320322182E+0116719201E+01 -4053081E+00 -49220109E+0020642413E+0011645223E+0137035727E+00 -40530584E+00 -48656132E+0047199235E+0011645223E+0137035727E+00 -40530584E+00 -1059058E+0114273780E+0115821903E+0113477804E+91	RMS = .6139667263E+00 SOS = .3756924346E+01 RMS = .665107299E+00 SOS = .3956973196E+01 SOS = .6855097244E+01 SOS = .6855097244E+01 SOS = .6855097244E+01
0	************	- v	0 11	v	UAR
2		HER OF			
YEAL		GMENT N NUM ASURE SOLUT	X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	X 7 2 0 0 0 0 0 0 0 0 0 0	ر ه
STAPASS		NTER TERAT	NAME 6820 6820 6820 6820 6820 6820	NAME 66820 66820 66820 66820 66820 76820	RESIDUAL RESIDUAL APRIORI TOTAL PREDICTE

6683		6820 X	6827 Y	6828 2	6820 DX	682E DY	6820 DZ	6829 ORAG	
6828	~		. 19864 E-01						
6820		13198E-01	. 50833 E-02	.12434E-01					
6820			27619E+00	.20929E+01	.43090E+04				
6820		.14332E+91	.15533E+01	87923E+00	18967E+03	.29638E+83			
6820		25322E+01	.64290 E+00	59786E+03	19687E+04	.82292E+02	.93680E+03		
6820		.86061E+02	£3439E+03	.3C760E+03	.25316E+06	10 9 6E+05		. 2543 8E+0 8	
í	ATB	.41392E-05	15r 72E-05	23650E-C5	.72438E-03	.10835E-03	49068E-03	•	.37585E+*
ATA	INVERSE	Įų.							
		,							
•		662U X	1 1799	7 0299	20 DX	10 0299	20 0299	5527 URAG	
6820		.87927E+03							
6820	>	.40464E+03	. 605 45 E+03						
6828			36972E+33	.15610E+04					
6820		17610E+01	£7335E+00	26069E+01	.15629E-81				
6620	ŏ	52532E +01	76° 96E+01	.23425E+01	. 43922E-12	.79861E-01			
6828		89735E+00	.65443E+00	31448E+01	.24657E-01	61666E-02	.46638E-01		
6820	DR AG	17784E-02	. \$0276E-03	53233E-02	13125E-84	79253E-05	16948E-04	. 16428E-06	
CORR	ELATIO	CORRELATION HATRIX							
6828		1.0000							
6828	>	+	10000						
6828		i							
6820	ă	i							
6820		•		.12436 1.0000					
6820	70	•				1			
6820	1000	14797 .0	04376 + 33242	25910u6919	5919 19362	1.08000			

ATA

•		6824 DRAG							.16428E-0
.0 CP SECS.		6829							•16
CP								-01	10-
•		20						4396	1563E
		6628						. 42	-19
MAS	-2						-01	-01	10-
T 83	POCH	٥					491E	67 EE	S43E
GHEN	OF E	6820					30	.14	16
R SE	GHT					+00	-01	-01	10-
E F0	IONI	×				238E	51 6E	353E	130E
11.3 SECONDS. EXECUTION TIME FOR SEGMENT 83 MAS	1886.16 MINUTES FROM MIDNIGHT OF EPOCH	6820 DX				.15	. 42	. 76	33922E-0111780E-C125810E-0167130E-0416543E-0419563E-04
TION	SFR				+05	+05	+05	+02	-01
XECU	KUTE	2			.46872E+05	375E	314E	562E	810E
• •	E HI	3820 Z			94.	.79	. 15	.43	25
SONO	1.08			+05	70+	+02	÷C2	+C1	-61
SEC	10	>		207E	209E	827E	478E	3945	780 E
11.3		6820 ₹		.65	. 34	.31827E+02	. 35	. 63	11
	2		105	105	+05	402	+0 5	102	-01
AT	TEO	· ×	.99E	OOE	62E	110E	93E	17E	22E
17 84	UP DA	820 X	.35499E+05	.109	.392	.729	.170	.375	.339
GMEN	RSE	9							
R SE	INVE		×	>	7	ă	ð	20	DRAG
ENTER SEGMENT 84 AT	ATA INVERSE UPDATED TO		6828	6820	6820	6828	6820	6820	6820

6 AND G DEWEIGHTING MATRICES FOR VEHICLE 6826

ORBIT PLANE COORDINATE SYSTEM

. 99104E-62 .59505E-02 .25101E-01 -.11651E-01 0. .41290E+04 .49990E+01 .40423E+94 -.86338E+31 .46549E+01 .43466E+04 -.40126E+04 0. -99574E+01

PARAMETER SET COORDINATE SYSTEM

.52310E-13 .85921E-13 -.42134E-15 .19853E-12 .43619E-13 .91182E-13 .92512E-11 .11146E-11 .10441E-12 .64756E-12 .10038E-10 .84679E-12 .44673E-12 .75130E-12 .93055E-11 .29501E-11 .86308E-11 .12938E-11 .28967E-12

	APOGEE RADTUS	E HEIGHT				U-00T	3662,97539	226.92318	3518.87238	74-82-17	2.7950204713	-2.0671152148					
	APOGE	APOGEE	PERIGEE	PERIGE			90	~	35		2.79	-2.06			SHS/STG	0)
	HEAN ANOMALY	ECCENT & C ANOM	TRUE ANOMALY	KEPLERIAN PER	ANOMAL Y PER	NOOAL PERIOO	58.53440816	59.55167132	60.63468846	89.3057269	89.5 668466	89.6990060					
	MEAN	ECCENT	TRUE	KEPLER	ANOM	NOOAL	58.5	59.5	9.09	89.	89.	89.			7.0	5 EL	
	Ą	£6	z	ند	CHI	PSI	.0122834546163	-0172817768107	.066 210 883 9665	3.90 866 3117	14627750850	-1.39045372068			NE AN	5	1 1
****								ı							RHS/SIG		
ATA STAGE	4	ندا	H	0	>	TAU	21794563.777	.02120243080	108.852063768	186.005499332	119.398763628	1065.5659717			S E	5 AZ 5.4E-02 0.	
EXT 0							211	•	108	1.86	119	10		IARY	N TYP	5 AZ	
LE 1 FOR NEXT DATA STAGE ***	ALPHA	OEL TA	BETA	AZIMUTH	RADIUS	VELOCITY	6.004383877	003266904	88.952610047	198.852063799	21560399.619	25688.5299652		TCTAL EDIT SUMMARY	MEAN		
OR VEHICLE							63	104		1378 1	1403	608 29	ER GEO.	.D.E	RHS/SIG		
S FOR	×	>	7	701	YDOT	701	10.9.0	315,1	-1229,335	154331	13434	19109	CON		ď		
ELEMENTS FI				×	7	12	21442	2255315.	-1	1333 . 754.	-8704.7343	.54306.	PROCES		S E S	RNG 1.4E +01	1
		ER/HIN	NON	UDE	300	HEIGHT	126		000				UARES		N TYP	S RNG	-
**** ORBITAL	VEAP./MU/OY	HR	SECONDS	LATITUDE	LONGI TUDE	FEI	1978/ 6/26	18/ 0	9.8700000	8032889	101.5205828	104.4612	LEAST SCUARES PROCESS CONVERGED.		STA	343	

	•	• •	٠		•	٠		٠	•	•	٠	•	٠	٠		٠	•		٠	:	
	:																			:	
	:																			į	
	:																			:	
ન	•																			:	
44	:																			:	
AGE	፣																			:	
•														-						:	
STATION 343 PAGE																				水水水水 医异丙基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	
P)	:													_						:	S
ŎI	:													-						i	SEC
TAT	:	~																		:	.1 CP SECS.
																				:	-
0000	:																			:	•
25 E	:									_										:	
XIMUM *30107122E+02 •41673742E-01 •6533697E-03	:									m										:	"
130 HC										-										:	MA
* 3010 * 3010 * 4167 * 6553	:																			:	84
Z Z	+																			0	E
1111	:																			ď	Ä
<u> </u>	*	• •	*	۰	٠	*	٠		٠	٠	٠	٠	٠	*	٠	٠	*	٠	*	9	E.G
81 21 65 65 69	:									2										Ş	~
33.7 91.7 90.9	:																		-	w •	5
HEAN 337818E+01 -38917213E-01 -34909652E-01 -15254093E-01																				:	4 SECONDS. EXECUTION TIME FOR SEGMENT 84 MAS
ZWWW.	:																			:	F
0000	:																				ŏ
+	:																		•	:	5
191	:																			:	EC
ELTA .52546681E+00 .15718191E-02 .71150079E-03	:	P-)												2					1		Ĵ
1505 1505 1505	:													_						:	
DELTA 52 15 71	:													0						į	Š
	:																			:	033
2 + 1 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	:																		2	:	S
598 528 528 528	:																				11.4
4609	:																		m	•	-
MINIMUM 22439559 11550817 704846921																			-	***	
H W T L ®	:																		3334.5		AT
吾	:	-																		:	78
9	:																		0.0000000000000000000000000000000000000	****	EXIT SEGMENT 84 AT
SYMB D 1 2 3			*	*	*																Ä
- •	50	90	2	.01	.01	20.	20.	9	20	50.	0	5	.06	9	5	2	10.		0.		E G
RNG AZ EL SRR	63860	63870 63880	6.3890	63 300	63910	63920	63930	63940	63950	63960	63970	63980	63990	64000	64010	64020	640 30	04049	64050		⊬
H	9	0 0	Ó	¥	•	9	ø	9	9	ف	Ó	ø	•	9	Ö	ø	ø	ø	ف		X
																					W

CP SEGS.	**********			* * * * * * * * *			5	04942020949	NOTE THE PROPERTY OF THE PROPE	238361856031E+05	116927430991E+0	243054003159E+0		. 238 388 596710E+0	168020966610E+80 2430434493466486	179400456070E+00	. 23841597884E+85	.233712681076E-01	244944194496+69	10-30/12666146140-	10-34990000000000000000000000000000000000	243022270766E+05	.114598971397E-01	.238470651492E+05	-	176E+0	7128986515E	. 23 8498592982E+45
SEGNENT 84 MAS .1	FOR CASE 1	VENT TABLE *		****		I I .500000	2557300	620457386845E+04	COPOOP'T S I				239954349100E+07		.238591508462E+07	2465105539816+07	.814142907676E+04	.2451439205165467	819029397584E+04	253151635767E+U7	. 251 246 397 60 SE+07	818515918341E+04	259849755109E+07	.813689361458E+04	8 20E+0	817583928043E+U4	66463922821	.813624973796E+04
EXECUTION TIME FOR	TRAJECTORY INTEGRATION	* PREDETERMINED EVENT QUANTITIES		* * * * * * * * * * * * * * * * * * *	T = 1067.273299	T = 1071.523299	.214420405147E+08	133527982039E+04	1099.023399	- 21461063061E-166	. 214353907077E+08	.136012302726E+04	218507760784E+08	42165215390 1E+03	. 214287470693E+08	-130307 JG167 JG +0.	447234823581E+03	.214216117478E+08	.140734666221E+04	218295752978E+08	ののもになる コープ・ログラン・コープ・コープ・コープ・コープ・コープ・コープ・コープ・コープ・コープ・コープ	1432194025485+04	218187'587642E+08	499017620021E+03	. 214068712948E+08	4568576395 2E+0	180749t0176E	\$24136099269E+03
10 AT 11.4 SECONDS.	中南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南	TYPE ASSOCIATED ZERO STOP	TRAJECTORY START	* `	1	Q.	100016365706E+0	20	DOUBLED	. 1 1 25 U 55 CU4 11 E+U 4	.116985971938E+04	. 1.0000000000 0 E+61	.121575741890E+C4	. 10000000000000.	. 1 25954842675E+64	. 1 40 50 00 00 00 ET C. 1 40 54 54 54 54 54 54 54 54 54 54 54 54 54	.10000000000000000000000000000000000000	.134922918673E+04	. 1600000 000 00 00 E+01	.139511229908E+04	• 1 030 00 30 cc d bE+6 1		-148477776°54E+04	. 1000000000 00 E+01	. 152856200160E+04	.1 000 00 00 00 00 E + OT	57443554648	.100000000° 10E+61
ENTER SEGNENT	*********	TIME (MME) 1864.0233 T 1890.4973 T	*	SFG11 ENTRY TI		•	NODE T =			MOUE H		= 10		5	= T G	NOOF T	6	NODE T =	5	= L 300N	1 T TOOM	- 1	NODE T =	10		± 10	_	ot =

NODE		.161821685088E+04	.213994367270E+08	.264 £28399 292E+07	.243835445813E-01
		• 1 000 000 000 10 E+0 1	.148089881692E+04	61755557226E+04	242995496028E+05
		.166408354931E+04	217958962602E+08	273074355062E+07	212157618508E-01
		• 100000000000 E+01	550046114581E+03	.813782797751E+04	.238527373047E+05
		.170766150670E+04	. 21391599980 8E + 08	.271350556792E+07	1 14127474058E-00
	= 10	. 1 000 000 000 00 E+0 1	.150524649161E+04	817124063287E+04	242982391742E+05
		.175372245239E+04	217843490327E+08	279665859553E+07	932234178636E-02
		. 1000500000 0CE+01	575642917481E+03	.813756447812E+04	.238552246979E+05
NODE		.179749767323E+64	. 21363+988072E+08	.277 84 6378 426E+07	131203734526E+00
		. 10000000000CE+01	.152916060997E+04	816674010473E+04	242971469914E+05
	***	TRAJECTORY TERMINATION			

TO CHANGE TO ENTER THE TANK THE CONTROL OF THE CONT	:	
	POCH	EC S
	OF E	.9 CP SECS
	1801.023 MINUTES FROM MIDNIGHT OF EPOCH ***	_
	ROM	HAS
	ESF	# F
	MINUT	SEGNENT
	023	FOR
	1801	TIME I
	0	50 AT 12.3 SE (ONDS. EXECUTION TIME FOR SEGNENT 19 MAS
1	-	EXE
	1064.023 TD	. SONDS
	•	12.3 St
	ROM	**
)	*** FROM	T A
	*	
		NTER SEGMENT
		ENTER

DATE,	ME, HM, ST, OT	0×*x	x, xD - BF	ADBARV	LAT,	REV	REMARK
VR/HO/DAY HR/HIN SEC IT	MIN FROM EPOCH AIN FROM MICNIGHT SEC FROM MIONIGHT STEP SIZE(MIN) UTC - IT	X (FT) Y (FT) Z (FT) XD(FT/SEC) YD(FT/SEC)	x (FT) y (FT) Z (FT) xD(FT/sEC) yD(FT/SEC)	ALPHA (DEG) DELTA (DEG) BETA (DEG) AZIMUTH(DEG) R	LATITUDE (DEG) LDNGITUDE (DEG) ALTITUDE (NH) S-VEH-LAT(DEG) I (DEG)	REV COUNT PERIOD PERIOD-DECAY NDD-REG	· · · · · · · · · · · · · · · · · · ·
	UT1 - IT	ZD (FT/SEC)	2D (FT/SEC)	V (FT/SEC)	(050)		

ECI TRAJECTORY .

			X 00 K	- W - C - C - Z
	•		080	080
	0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			# 4000 # 4000 > 9000 > 9000 • 2000
	LAT BF 60.60421747 222.97199640 73.53012355 60.60076690 108.87507666 5.54499517	.364.64491E +04 .21270963E+03 .35084743E+04 .72734801E+02 .28211592E+01	LAT: EF 3000006 104.45724719 .00000006 108.84336396	LAT:
	ADBARV 43.40 941121 60.64604716 90.8412153 221.26608944 .21319994E+86 .25945180E+86	APPOGEE HEIGHT PERIGEE HEIGHT O-DOT N-DOT	ADS ARV 6.00549935 000000066 86.95264149 196.85296376 .21563358E+03	ADBARV 5.17996209 00001205 88.95279507 296.05196623 -215606875+08
	X,XD = 8F 76486644E+07 712494034E+07 .185808000E+06 246075916E+05 .151403765E+04	.35577974 E+83 .35569562E+03 .35561069E+03 .89488113E+02 .89670736E+82	X,XD = BF 51557613E+06 572626326E+06 .230045380E=01 731569387E+03 95550169E+04	0009 X,XD - BF -201569485E408 -765249304E+07 107009356E+01 .306461904E+04 .939502721E+74
_	X, XD .759344289E+87 .716312501E+07 .165068000E+08 .240946322E+09 -7723990E+03	ME AN ANOM ECCENTRIC II TRUE ARCH BER H ANOM PER H NOOL PER H	X, XD -214420405E+06 -225573007E+07 -230045380E-01 -133527985E+04 -3820457386E+04	DELTA V = X*XD .'14353908E+06 .23210438958E+07107809356E+01 .136012187E+04820077404E+04
*** EPDCH PRINT	ME,MM,ST,DT, 0.00000 1064.0230 63841.39792 0.00000	-21743147E+08 -19557962E-01 -10887508E+03 -18598235E+03 -11736378E+03 -97556425E+03	ME, MM, ST, DT; 16, 14036 1080, 16366 64869, 81942 65000	ME, MM, ST, DT; 165.8 3642 1169.8 85972 70191.5 89972 0.00000
	DATE, 70, 6/26 17/44 1.39792 IT	4m×o⊃Ž Zco⊬m≽	DATE; 70/ 6/26 18/ 3 9.81942	DELTA NODS DATE: M 70/ 6/26 19/29 51.58320

II

CELTA V

-.968

DELTA NODE

H

The Real Property lies and the last

DELTA NODE =	10 2 DELTA	n >	0017				
TO TELLE NE NE ST. OT	1	X•X	X, XD - 8F	ADBARV	LAT BF	REV,	
	55	13594367E+08	.145148497E+88 .159457968E+88	7.05476158	\$120 C000° \$7.6895044	6.58880 DSC 89.65779	NOOE
12		04 E16 52 3E+30	. 804616523E+00	88.96119198	104.838:3728	00767	
	7	48089974E+04	.761061880E+04	198.84921886	.00000215	.17476	
000 0 · 0	6	17 555575E+04	629825321E+04	. 21 5 6 26 8 3E + U 8	10066100-901		
00000.0		~ .242 595496E+05	542995496E+05	.25680749E+05	227.68960070		
DELTA NODE =	082 CELT	LTAV = -	0014				
ATE ME. MM. N.T. DIT.		OXXX	x - x0 - BF	ADBARV	LAT BF	REV	
0/ 6/27 643.83821		.213916000E+08	.194799850E+08	7 . 22 9 3 9 8 2 9	0000 0 283	7.50000 DSC	HOUE
7		.271 :50 525E+07	.924628832E+07	00 0 00 2 61	25.39162634	89.64801	
1 1	•	712519E+01	105712610E+01	88.96243023	104.69325314	90978	
	•	150 524536E+04	.465155802E+04	198.85059759	00009283	.17482	
0.000 0		8 17 1 240 7 8E+04	871542997E+04	.21563016E+98	108.85076564		
00000		42 982 392E+05	242982392E+05	.2567955E+15	205.39162729		
DELTA NODE =	050 DELTA V		0008				
ATE ME.MM.ST.DT.	•	X, XD	X, XD - BF	A D B AR V	LAT , BF	REV,	
		.213 834991E+08	.215317973E+08	7.40324268	00011245	8.5000 DSC	NOOF
		-277.846226E+07	.116429879E+07	00 0 912 37	3.09516673	89.63890	
9.86358 21449.86058	r	1.465457682E+01	465457882E+01	88.96437666	104.93226575	01600	
		52915515E+04	.996256937E+03	198.85127777	00011245	.17436	
0.0000	8	16 (74083E+04	982865865E+04	.21563253E+08	10 6. 848 908 96		
0.000	1,3	42971470E+05	242971470E+05	.2567 % 99E+ 95	183.09517795		
DELTA NODE = .	.025 DELT	LTAV = -89	-89.6236				

z	
D	
Ž	
IE RM IN	
1	
_	
TOR	
5	
ŭ	
RAD	
Ë	

365787645	. 22299649=+93	.351167305+14	.75603138E+02	.286100772+11	20714 803E +91	
H	H	H	Ħ	H		
APOGE	HEIGHT	PERIGEE	HEIGHT	0-007	100-n	
. 6988 87 10F +82	.70994953E+02	.72104969E+02	.89721271E+02	.89595851E+02	. 896280 18E+02	
	11	11	Ħ	11	11	
MONA NA PH	TRIC	ANOM	PER	PFR	NOCL PER	*
NA P	CCEN	SUE	7	E	占	×
1	Ü	#	¥	Z	O Z	JEC TO
_	.29420730E-01				.17826052E+C4 NO	*** END OF TRAJECTORY
_		.1968-125E+03				*** END OF TRAJECTO

.2 CP SECS.

12.6 SECONOS. EXECUTION TIME FOR SEGMENT 55 MAS

EXIT SEGMENT 50 AT

C.8 TEST CASE G: ECI SIMULTANEOUS-VEHICLE DATA GENERATION RUN (ITIN = 4)

H

ij

EJ2

REFERENCE SECTION	2.1.4 2.1.4 2.1.4		
E			
DESCRIPTION)EL data:		
	Card images of the input MODEL data: ITIN MULTV LEMSP		
ITEM	1 Card imi		

(IN FT) PCI CRASH ALTITUDE = .30C001009E+04	e***** INTERPLANETARY CRASH ALTITUDES TABLE ************************************				# MAS .2 CP SECS.	
			۵			400400
3E+04	***					CARD CARD CARD CARD
• 30 COO! 0 OJE+ 04		***	HEIGHT Z Z LONGIT UDE		SEC S.	
36		000	3	•••	8	
		323			.2	
JOE =		ALTITUDE ALTITUDE ALTITUDE	LONGITUDE Y Y LATITUDE	12050000E+03 75800000E+02 0.	,	2 1 88. 2988214 16361. 7713
LTIT	ABL E		COGITUDE Y LATITUDE	8 8 8	S HAS	2 88,298821, 16361,771
SH A	ES T	CRASH CRASH CRASH		77.0	E	€
PCI CRASH ALTITUDE	110	800Y (2) 800Y (4) 800Y (6)	STATION LOCATIONS LATITUDE X Radius	2 2	FOR SEGNENT	IDAY
Š	. F	900	OCAT TUDE	100E	F 08	
F L Z	CRASH (IN FT)		ION LO Latitu X Radius	.34760000E+02 .36800000E+02		
Ľ	ARY		STAT		ON T	5133 991.
	ANE T	30+3 40+3			CUTI	3 3.73445133 134623991. 248
) E+0 (rerp	00	TYPE	999	EXE	1PE3 1H 1 3.7 134 134
.300 000 00 0 E+8 6	Ä	.30000000E+06 .300000000E+04	BF DATUM TYPE		*2 SECONDS. EXECUTION TIME FOR SEGMEN ************** VEHICLE DATA FOR CASE	IBTAPES ENNTH 1 3
3000		98	VO.	9 9 9	338	
•		* 11 * 11		*****		
E =		ALT ITUDE ALT ITUDE ALTITUDE ALT ITUDE	. A			14 973 6126 96.758 6126 86.6729057
LITUE	* *		19 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	449	01 AT	973 5. 75 8 .6729
H AL1	**	CRASH CRASH CRASH CRASH CRASH	SIG	999	ENT (
ECI CRASH ALTITUDE	*		Z		SEGMENT	IVEHIDA IYEAR - IC - IC - PTIH 0
ECI	医水体 电影中 汽车 电电子电子 医电子电子 医电子	800Y(1) 800Y(3) 800Y(5) 800Y(7)	STATION SIG REF RA-R	AND OUR	ENTER SEGMENT 01 AT	

REFERENCE SECTION	4 Item 4		11.4	
DESCRIPTION	Printout of station locations as input. If CLASS \$0, the actual locations are left blank. This example has a "dummy" station DUM, which is used to illustrate Data Set Types A and R	Card images of input VEHICLE data. Emphasis is on the variable associated with simultaneous-vehicle data generation (ITIN=4), the others having been discussed earlier:	BTAPE	
ITEM	7	e		

AF, A G, N, L, CM I, PSI -, 23217399798E-81 -, 17 2749498E-82 -, 2599335228-83 -, 258428-83 -, 258428-83		CARD 1 7.0381996 CARD 2 201.03766 CARD 3	AF, AG, NyL, CHI, PSI 2285836862E+00 .194034856E+00 .41782100334E-02 .2600968736E+03 1943991042E+00		CARD 1 CARD 2 3744.772 CARD 3 CARD 4
110NS A, E. 1, 0,U. TAU A, 0 00 0 229570 E= 01 A, 99999990 2E+ 01 2159000 1307 E+ 03 -350740 4,667 E+ 03 -16426790 668 E+ 03		n r ø	110NS A,E,1,0,U,TAU -1363121661E+09 -2961195851E+00 -296614029E+02 -27601139933E+03 -4799667647E+03	ı	m
INLTIAL CONDITIONS A,D,B,A,R,V -,96/59612698E+82 .1 .37344513508E+82 .1 .8629861400E+01 .4 .86572995780E+02 .2 .1346239910E+89 .3 .1346239910E+89 .3		* VEHICLE DATA FOR CASE 22.9501321 166569812.	INITIAL CONDITION A, D, B, A, R, V 28061978 300E+03 22950132100E+02 77036199600E+02 72446793000E+02 16656961200E+02		* VEHICLE DATA FOR CASE -28.6 96853470.
X,Y; Z,DX; DY, DZ - 15 F91 18115 8E + 88 - 13 3406 9577 E + 49 - 87683 74 5275 E + 67 - 16236 56 386 1E + 85 - 16813 6432 14E + 05 - 14813 6432 14E + 05	JRBATIONS. Hodel **	水体 电电子电子 医骨 医骨骨 医骨骨	X,Y,Z,DX,DY,DZ -28267416204E+08 15075769770E+09 -64950535290E+06 -76284083965E+06 -66307942090E+03	JRBATIONS. Hodel **	
EPOCH *R/mu/DAY 2NE: HR; MIN, SEC 1973/ 1/ 1		IVEMID3 IC 280.619763 ENDEN9783	EPOCH YR/H0/DAY ZNE,HR,MIN,SEG 1973/ 1/ 1 0.		IVEHIO2 IC ~100. END

			Ò		
•					
AZIMITUZ (DEG.) -0.0 -0.0			V3 STA 2/3		
# _					
AZIMUTH1 (OE6.) -0.0 -0.0		g.	4 2		
75 Y		T U R2 A RC E TOP	V		
ME WATER OF THE CO. O. O		v ⊈	123		
F eee		R H	-		
STOP HR.		404	STA 2/3		AND VTS
N NOOD		400 T	2		
8837-2-53		9	72	m ~	
TIME TIN 15.0000 15.0000			H (N 44	mm
		2 > 0	٧1		*****
HR + HR - 0 - 1		E S	123	××	
4	~	S.		× ⊣ ⇒¥	Q K X X
0000	ADEF	8 20 8 20 8 20	STA 2/3		AND
3 ~	KEYZHEADER	~ 8	2	m = = m 0	
MAX.RANGE (N.MI.)	KEY	۲8 2 > >			
X Z P P P	Ħ	4 R M M	٧2	m m n n n n m +	H 6
	GENERATION D D	SET TYPE -	7 .	ю мынююныя	1 N N 4
MAX.ELE. (DEG.) -0.00	KER	-	123	×	
X G I I I				CXXXXXX CXXXXX	
•	A TA B	SE I IZZZ	STA		O ST
MIN.ELE CDEG.X -0.00	E E	A N N N N N N N N N N N N N N N N N N N	8	M H H M N	* P
Z O O O O	T	ATIC ATIC ATIC E 1	-		
	OUS VEH	THIRD STATON OBSERVATION OBSERVATION OBSERVATION VEHICLE 1 ID VEHICLE 2 ID VEHICLE 3 ID	V 2	0 M 4 M M 4 M F	n 10
A		7HI 0885 0887 0887 7EHI 7EHI			V
ION INTERVAL S 900.00	DATA GEMERATION SIMULTANEOUS VE STA PRIMAR STA 2 SECOND	11111111	7		- 17 11 11
4 _	4 5 °	м	123	× × ×× ××××××××	
NO E	SIMUL STA	STA 01 02 03 V2 V3	0+ >	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
STATION VTS AND JUH		*****			VTS VTS OUT
S			ω >	><0><>>	1><0

REFERENCE SECTION 12.2.2 15.1 Time difference of arrival of signal transmitted from vehicle to Station 1 minus vehicle to Station 2 Time of signal transmitted from Station 1 to Vehicle 1 plus time from Vehicle 1 Time from Wehicle 1 Time from Vehicle 2 Time from Vehicle 2 minus time from Vehicle 2 currently not used ~ Dobservation output for Data Set Type U. I. TOP is entered. A and E contain vehicle-vehicle topocentric right ascension and declination. Miles time from venture Two-way range C-band range L-band range Vehicle-vehicle azimuth Vehicle-vehicle elevation Topocentric Vehicle-vehicle range and range rate data generated between Vehicle 1 (ID No. 1) and Vehicle 2 (ID No. 2). S E Vehicle-vehicle-vehicle range data generated between Vehicle 1 (ID No. 1), Vehicle 2 (ID No. 3), and Vehicle 3 (ID No. 2) Time-of-arrival data generated between Vehicle 1 (ID No. 2) to Station VTS minus Vehicle 1 (ID No. 2) and Station AND. Time-of-arrival data generated between Vehicle 1 (ID No. 1) to Station VTS minus Vehicle (ID No. 1) and Station AND. **^** Station-vehicle range rate data generated between Station AND and Vehicle 1 (ID No. 1). 3WR Station-vehicle R, A, E data generated between Station VTS and Vehicle 1 (ID No. 1). DESCRIPTION Station-vehicle A, E data generated between Station VTS and Vehicle 1 (ID No. 3). Station-vehicle R data generated between Station VTS and Vehicle 1 (ID No. 2). a Þ The observation names are abbreviated as follows for each data set type: Station-vehicle range
Station-vehicle azimuth
Station-vehicle azimuth
Station-vehicle range rate
Vehicle-vehicle range rate
Vehicle-vehicle range rate
Station-vehicle-vehicle range sum
Station-vincle vehicle-vehicle range aum
Station-vehicle-vehicle-vehicle range aum
Station-vehicle-vehicle-vehicle range aum Vehicle-vehicle-vehicle range sum Vehicle-vehicle-vehicle range rate sum Time difference of arrival of two signals. Time from station to Vehicle 1 minus station to Vehicle 2 to Vehicle 1 Consider the following segments of DATA GENERATION II printout: Simultaneous-vehicle DATA GENERATION II key/header printout × 2 > *Observation output for Data Set Type 1. > v3 v3b TDOA JE ZOL 222822 ITEM 4

THE WHOLE ARREST

EPOCH		INITIAL CONDITIONS	SNOIL	
YR/HO/BAY	X,Y,Z,DX, DY,DZ	e, G.B.A.R.V	A,E,I,P,U, AU	AF. AG.N.L.CHI, PSI
TZNE, HR, MIN, SEC	- 14766293955E+08	- 100000000E+03	.1363313361E+09	52069000-54E-01
-1973/ 1/ 1	83743 81 444 8E+08	- 2860000000E+02	. 29595342290E+00	29529797564E+00
•	46362967502E+08	- 90 0 0000000 E+02	. 28600000000E+02	.41781232924E-02
9.	.13535 9580 29E+15	003000000000°	. 3500 0 000 0 00 E + 0 3	. 260 00400000E+03
•	23867546102E+04	36853470000E+08	. 27 00 0 00 0 0 0 E + 0 3	44262365465E-01
	484 864 7259£-13	. 3744772000E+05	14360514470E+04	.25102434855E+00
NO PLANETARY PERTU	TURBATION S.			
SA NO ATMOSPHERE	N. ODEL **			

	247.0000 MINUTES *** MIDNIGHT OF EPOCH *** 2 ********************************	*	RATE A SFAN OF 247.8800 MINUTES *** MINUTES FROM MIDNIGHT OF EPOCH ***	•	243.0000 HINUTES *** IIDNIGHT OF ZPOCH ***
*** TRAJECTORY STARF # # # # # # # # # # # # # # # # # # #	*** THIS CASE TOCK .067 SECONDS TO INTEGRATE A SPAN OF 247.000 **********************************	*** TRAJECTORY START * * * * * * * * * * * * * * * * * * *	*** THIS CASE TOOK .066 SECONDS TO INTEGRATE A SFAN OF *** FROH 0.000 TO 2 /.000 MINUTES FROM ************************************	T -	*** TRAJECTORY TERMINATION *** THIS CASE TOCK .072 SECONDS TO INTEGRATE A SFAN OF 243.0000 *** FROM D.000 TO 243.000 MINUTES FROM MIDNIGHT OF ENTER SEGMENT 10 MAS .3 CP

```
S-V1-V2-V3
VS1-VS2
VS1-VS2
VS1-VS2
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
                                                          S-V1-V2-V3
S-V1-V2-V3
SV1V2-SV2
SV1V2-SV2
SV1V1-V2-V3
SV1V1-V3-V3
SV1V1-V3-V3
SV1V1-V3-V3
SV1V1-V3-V3
      RAPE ROLL TO A A STANDA A STAN
                                                                                                                                                                                                                                                                              TOOA
SWR
SWR
                                                                                                                                                                                                           .20000000E+11
.10000000E+11
.10000000E+11
.1000000E+01
                                      .20000000E+01
.20000000E+01
.10000000E+01
.10000000E+1
.3000000E+01
                                                                                                    .30000000E+11
.30000000E+11
.20000000E+11
.20000000E+11
.30000000E+11
.46073076E+02
.30000000E+01
.2000000E+01
.2000000E+01
.2000000E+01
.30000000E+01
      30000000E+
                                                                                                                                            -10469559E+04
-13792611E+03
-2799136E+03
-300000E+01
-9649652E+02
-1000600E+01
-147871E+03
-27769671E+03
                                                                                                                 .20000000E+01
.20000000E+01
-.15868900E+33
                                      .30000000E+01
.10000000E+91
.10000000E+91
                                                                                                     -.14185904E+03
                                                           .30000000E+01
                                                                        . 10000 0 00E+ 91
                                                                                                                                                                                                                                                     .30000000E+01
.10000000E+31
                                                                                                                                                                                                                                                                                      . 101C0000E+01
    SPE
                                                                                 VTS
VTS
VTS
                                                                                                                                                                                                                          N O O O
                                                                                                                                                                                                                                                                                              VTS
```

ITEM) E	DESCRIPTION	TIOL	タ					REFERENCE SECTION
ហ	DATA GEN secondary generated and station	DATA GENERAT secondary station generated observand station and v	NERAT station observan	VERATION II station, year observations,	ION II output. 1, year, mont. ations, vehicle	month, vehicle	ج و <u>و</u>	output. Each line continue continue continue day, hour, vehicle ID number, sequence numbers.	line co: hour, mber,	rrespone minute, observa The outp	rresponds to a priminute, second, observation data	imar data abbr otion	y station set type, eviations is:	ຕໍ່ ຄູ່ ຜູ້	Item 4
	STA	ST2	>	Σ	Ω	Н	Z	SEC	OT	OB1	OB2 (V3)	OB3 (V2)	V 1		
	Primary station ID	Secondary station ID	Хеаг	Month	рау	чон	Minute	Second	Observation type	Observation data for all data set types	Observation data for Data Set Types 1, J, K, T, and U V3 ID No. for Data Set Types L, M, N, and O Zero for other data set types	Observation data for Data Set Types 1 and T V D Wo. for Data Set Types J, K, L, M, N, O, P, S, and U Zero for other data set types	VI ID No.	Observation data sets	Station and vehicle sequence Nos.

•	R	R RD	R RD S-V1-1	8	RAE	œ	RAE	2 RD S-V1-V2-V3	œ	œ	10	10	Õ	RD S-V1	S-V	RD S-V1-V2-V	TOOA SVIV2-SV2	R S-VI	TOOA SVIV	2 RD S-V1-V2-V3	3MR S1V	SWR SIVI	3MR STV1	R RD V1-V2	MULT VIEVE-VI	R V1-V2-V	RD V1-V2-V	R RD V1-12	HIRT VI	R R0 V1-	RAS S-V1	R RD S-V1	R RD S-V1-	RD S-V1.	RAE S-V1	es ex	RAE S-V1	RD S-V1	R RD S-V1-V
(ZA)	. 45901570E+' 2	E+3	1	E T	4	0+0	t	Ē	Ę	.30000000E+3	•	•	.	•	1000000 100000	2500000055	C+300000	\$00000	9	.3000000E+0	•	•0		ů	0000000E+0	1000001		10000E+0	10C10E+1	10000E+0	32510E+7	10000E+0	000000	10000E+0	102712+7	10070E+ 0	\$2226E+1	000001	000000
082	38751	0385837E	5435345E	300CC 0 0 0E	6745979E	1000C 0 00E	5616627E	3000000	306	-1000C 0 00E	••	.0	•	•	m	00000000000	•	.300C0000E+01	0.	.10000030E+01		••	•	22264991E+03	•	3000000E+0	. 20000000E+61	.1486823(E+1)	•	00 792 426+0	3831957E+1	•	ç	0000 0 00E+0	0	0000000E+3	5199145E	0	.45436889E+02
081	1908033€ +0	5E+0	9317728E+0	5357078E+0	15182447E+0	361904485+0	3991238E+0	.43460611E+03	2697431E+0	0C21472E+0	4255651E-0	50 345E-0	2450442E-0	4319331E+0	2959550E+0	2080722E+0	0351092E+0	23913938E+0	9553368E+0	Ó	4258108E+0	0497605E+0	8584647E+0	ó	9231125E+0	322348E+0	_	196949E+0	999225E+0	598307E+0	336148€+0	243759E+0	93.0217E+0	3810E+0	5391717E+0	6201577E+0	1846886E+0	5184476E+0	0+308+06
10	+4	¥	¥	I	7	ر	7	I	¥	ب	0	o	o	1	ر	I	Œ	ر	a.	I	œ	Œ	œ	7	S	z	0	7	v	7	-1	¥	¥	I	+	ر	7	I	¥
SEC	00000	3.00000	30000	C	20000	30 660	00000	0.000000	30306	2000c	00000	0000	16000	2000	30000	0000	0200	0000	0000	0.000000	3.30000	2. 00000	0.0000000	r. 0.0000	9. 3.COCLJ	30000	0.30 0000	7.0000c	0.00000	r.00001.	0000 00.0	0.00000.0	00000	0.000	36400	00000	200 00	000	0000
I								12																															
I	0	0	0	د،	0	0	O	3	0	0	o	0	0	O	0	3	G	0	0	0	0	0	0	ت	ca	0	0	0	9	ပ	ů	0	0	0	0	0	5	ပ	0
G	-1	-	+	-	-	-	-4	-	-	-	7	-1	-1	-	-1		-	-4	7	-	-	-1	-1	-	-4	-	-	-1	-1	-1	-	-	+4	-1	-	-1	-	-	-
I	-	-	+	-	-	-	-	7	~	-	-1	-1	-	-	-1	-1	-1	-	7	-	-	-1	-	-1	-1	-	-	~	-	-1	-1	-1	-1	-	-	-4	-	-	-1
>	73	73						73																															
\$12											AND	AND	AND								VTS	VTS	VTS																
STA	VTS	VTS	VTS	VTS	VTS	VTS	VTS	VTS	VTS	VTS	VTS	VTS	VTS	AND	AND	ANO	AND	DNA	AND	ANO	AND	ANO	AND	DOM	E O	¥ O O	E O O	E	E O O	E 0	VTS	VTS	VTS	VTS	MS	VTS	VTS	VTS	VIS

```
SS-V1-V2-V3
SS-V1-V3-V3
SS-V1-
$1V1-$1V?
V1-V2
V1-V2-V3
V1-V2-V3
                                                                          V1-V?
1EV2-V1V2
V1-V?
                                                                                                                                                                                                                                                                                                                               S-V1-V2-V3
SV1V2-V2-V3
SV1V2-V2-V3
SV1V1-V2-V3
SV1V1-SV2-V3
SV1V1-SV2-V3
SV1V1-SV2-V3
V1-SV2-V3
V1-V2-V3
V1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      V1EV2-V1V2
S-V1-V2
S-V1-V2
S-V1-V2
S-V1-V2
S-V1-V2
S-V1-V2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      V1-V2
                                                                                              7
 RANGE TO A PART OF THE CALL OF
  -108643546+94
-137573476+93
-379558026+03
-368000006+91
-96679066+92
-100000006+91
-143851306+91
-30000006+91
0.
-.56217159E+72
-.200CC00E+11
-.24695997E+73
0.
                                                                                                                                                                                                                                                                                                                                                                                                         -11095609E+04
-13726339E+03
-47683223E+03
-21002149E+02
-30000000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .200CCCODE+91
.200CC005E+91
-.29826952E+03
                                                                                                                                                                                                                                                                                                                                                                                     (E+01
                                                                                                                                                                                                                                                                                                                                               .3000CC00E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .26558766E+02
                                                                                                                                                                                                                                                                                                                                                                                 .300000.
VTS
                                                                                                                                                                                                                                                                                      ANDONA
                                                                                                                                                                                                                                                                                                                                                                                                                                               VTS
VTS
VTS
    DOUGH A PROPOSITION OF THE PROPO
```

```
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
VS1-VS2
VS1-VS2
VS1-VS2
VS1-VS2
                                                                                                                                                                                                                S-VI-V2-V3
S-VI-V2-V3
S-VI-V2-V3
S-VI-V2-V3
S-VI-V2-V3
S-VI-V2-V3
S-VI-S-V3
S-VI-S-V3
S-VI-V2-V3
V1-V2-V3
V3-V3-V3
V3-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S-V1-V2
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      S-V1-V2-V3
S-V1-V2-V3
VS1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      VS1-V52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       S-V1-12-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SV1V2-- V2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 S-V1
      RRAPE

THOOPA TOOPA TOOP
        44880000048044800
.20000000E+11
.87925600E+11
.10000000E+31
.3000000E+31
0.3000000E+31
                                                                                                                                                                                                                .2000000641
.20000006401
.10000006411
.30000006401
                                                                                                                                                                                                                                                                                                                                                                                                                                 .3000000E+11
.3000000E+01
.3000000E+01
.200000E+01
.300000E+01
.300000E+01
.200000E+01
.200000E+01
.200000E+01
.300000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .20000000E+31
.2000000E+01
.1000000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ....
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -11355277E+04
-13699719E+93
-57015129E+03
-30000000E+01
-96618204E+02
-130000000E+91
-13625511E+93
-13625511E+93
-13625511E+93
-13625511E+93
    .30000000E+01
.10000000E+91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  . 20000000E+01
. 20000000E+91
                                                                                                                                                                                                                                                                                                                                                                                                                .11081460E+93
                                                                                                                                                                                                                                                                                                                          .1000CC 00E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .30000000E+01
.10660000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   . 30000 C 0 1E+11
                                                                                                                                                                                                                                                                                        . 3000C C 0 0E
    THE KIRCOLY TARGET ON CONCINCT TO COLUMN THE COLUMN THE
    oldsymbol{u} and old
        ANDAN
                                                                                                                          ANDON
                                                                                                                                                                                                                                                                                                                                                                   VTS
VTS
VTS
        VALUE OF STATES OF STATES
```

```
V1-12
V1EV2-V1V2
V1-V
SV1V2-5V2
S-V1-V2-V3
S1V1-S1V2
S1V1-S1V2
                                                                                                         V1EV2-V1V2
V1-V2-V3
V1-V2-V3
                                                                                                                                                                                                                                                                                                                           S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                        S-V1-V2-V3
VS1-VS2
VS1-VS2
VS1-VS2
S-V1
                                                                                                                                                                                                                V1EV2-V1V2
V1-V2
S-V1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SV1V2-5V2
S-V1-V2-V3
S1V1-S1V2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    V1EV2-V1V2
V1-V2-V3
V1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      S-V1-V2-V3
S-V1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       S-V1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          $1V1-$1V2
$1V1-$1V2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SV 1V2-SV2
                                                                                                                                                                                                                                                                                   S-V1-V2
S-V1-V2
                                                                                                                                                                                               11-12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   V1-17
   TOOA A TOOA A SHE TOOA
 .30000000E+31
.3000000E+01
0.
                                                                                                         .3000000E+31
.3000000E+31
.3000000E+31
.3000000E+1
.2000000E+1
.2000000E+1
.46330219E+3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    . 20000000E+1
. 20000000E+0
. 10000000E+0
. 1000000E+1
. 3000000E+1
                                                                                                                                                  .2000CC00E+01
.2000CC0JE+01
-.38724718E+03
                                                                                                                                                                                                                                      -11593280E+04
-13677603E+03
-58877525E+03
-368676111E+02
-10011001E+01
-1327370E+13
-1327370E+13
-1327370E+01
-1327370E+01
-1327370E+01
-1327370E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .27168059E+33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            .200000000E+01
.2000000E+01
-.4227687E+03
                                                                                         .15299603E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -.11816177E+04
-1366C084E+73
                      . 100CCC 00E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .300COCCCCE+91
.1000CCOCE+91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   . 30010000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            .100CCC00E+31
 -19478731E + 0
-24551756E + 03
-34671756E + 03
-34671776E + 03
-346717776E + 03
-346717776E + 03
-3467177776E + 03
-34671777776E + 03
-3467177
     N A A A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        VTS
VTS
VTS
         A CALLER OF THE CONTROL OF THE CONTR
```

```
S-41-42

S-41-42

S-41-42

S-41-42-43

S-41-43

S-41-4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S-V1-V2
S-V1-V2
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
VSI-VS2
VSI-VS2
VSI-VS2
VSI-VS2
VSI-VS2
VSI-VS2
     .20000000E+01
.200000000E+01
.20000000E+01
.10400000E+02
.10400000E+02
.10400000E+02
.10400000E+02
.0000000E+01
.0000000E+01
                                                                                                                                                                                                                .0000000E+31
.20000000E+01
.10000000E+71
.30000000E+71
.30000000E+71
                                                                                                                                                                                                                                                                                                                                                                  .3000000E+11
.30000000E+
.3000000E+01
.2000000E+01
.2000000E+01
.3000000E+01
.2000000E+01
.2000000E+01
.2000000E+01
.1000000E+01
.1000000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5000
                                                                                                                                                                                                                                                       .3000f000E+01
0.
10000000E+01
  - 55559274E+02

- 300C000EE+01

- 9707944E+02

- 1000000E+91

- 1294196E+03

- 3056090E+91

- 1000000E+91
                                                                                                                                                                                                                                                                                                                                                      .34560303E+03
0.
                                                                                                                                                                                                                                                                                                                                                                                                  . 20000000E+01
. 2000000E+01
-.4929014E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                -12026578E+04
-13647218E+04
-01284375E+03
-30000000E+01
-37444505E+02
-1050500E+01
-12632100E+91
-12632100E+91
-1105650E+01
                                                                                                                                                                                                                   .30000000E+01
.10000000E+01
    19343687E + 093433767E + 093433767E + 09343767E + 0934376767973E + 0934376767973E + 09343767972E + 093437679E + 09343767972E + 09343767972E + 09343767972E + 09343767972E + 09343767972E + 093457679972E + 09345767972E + 0934576792E + 0934576792E + 0934576792E + 0934576792E + 093457679972E + 0934576792E + 0934576792
        A A A A O O O
                                                                                                                                                       VATS A VA
```

S-V1-V2-V S-V1-V2-V A SV1V2-CV2	ผพ	S-V1-V		S1V1-S1V	V1-V2	V1EV2-V1V	77	V1-V2-V	V1-V2	V1EV2	7 7	S-V1-V	S-V1	S-V1-V	S-V1		S-V1	S	S-V1-V2	S-V1-V2-	AST.	VS1-VS	W51-W5	S-V1-V2-V	S-V1-V	SV1V2-SV2	S-V1-V		S-V1-V	S1 V1-	S1V1-S1V	S1V1-S1V	V1-V2	VIEVZ-VIV	V1-V2-V3
780 100	7 <u>0</u> 2	2	N EE	M	œ	킾	œ	80	œ	5	2 A C	α α	8	8	RAE	œ	RAE	8	œ	œ	10	101	ò	g a	80	100	œ	100	8	35	SE SE	35	8 80 E	2	x &
4 M W	0 N	~	≓ M	~	-	4	-	+1	ન		N +	1 -1	-	+	M	M	~	~	~	~	-1 (P) (1	N •	4 +-	110	~	~	~	~	+1 (M	~	┥,	н •	ri +1
000000E+ 000000E+	0009000E+0	. 30000000E+0	• •		- 30000000E+1	000000	00000E+U	0000+0	000000E+0	000000E+1	. 30000000E+'1	3000000E+1	0000000E+0	000000E+1	804E+0	00 00 00 0E+0	2528176E+1	0000000E+;	000	• 30000000E+0	•	•		- 200000000	00000	**************************************	000000E+0	100000000	.30000000E+1	•	•	•	0000000	DOCCE+0	. 3000000E+01
+ +	.30000000E+01	.1030CC00E+31	• •		.41367313E+93		0000000000	. 20000 C 0 0E+01	6459475E+0	•	122232325E+94	771709E+0	63967282E+0	00000E+9	912020E+0	00000E+0	3439455+0	00CC01E+9	.12530574E+0	• 10000000E+0	0	0	D	300000000000000000000000000000000000000	. 10000 C 0 0E + 91		. 30000 C 00E + 01		.10000000E+01	•	•	•	.47498540E+03		. 2000C 0 0E +01
213932 117150 578041	4.15289E+0	856871E+0	+758452E+0	1527397E+0	+000243E+0	1338112E+0	1195348E+0	18650046+0	1702719E+0	3780630E+0	.12785324E+09	19644140E+0	9332331E+0	3041250E+0	929667E+0	732420E+0	575846E+0	015015E+0	.23250342E+09	*30690409E+09	14894119E-03		57181029E-0		2468045E+0	9489490 3E-0	4581741E+0	8785724E+0	10 256E +0	4830718E	9	0933207E+0	4400675E+0	0402845240	76517233E+03
7.00 F9C9 H	. 300000	2000000		.000000	. 100000		0000000	. 3acooo	000000	. 60 600	. 100000	00000	. 00 0000	. 0 5 0 5 0 0	900000	. 00000	. 96 (060	. 36 6000	.00000	. 9.0000	. 347500	. 30000			.00000	. 30 0000	. 000000	.00000.	. 10 0000	.00000	. 3 (6000	. 96 (000	000000	000000	000000
1 2 15 1 2 15 1 2 15	2 2	2 1	2 0	2 4	2 1	2 1	2 1	2 1	2 1	2	0 C	2 0	2	2 3	2 3	2	2	2	(U)	(C)	2	2 (, c	9 10) N	2 3	2 3	2	2	2	2	2	6 () (0 N
ਜਜਜ								•																					•			•			
444																																			
			VTS	VTS																	2	-								VTS	VIS	VIS			
A A A A	A P P	AND	N A	Š	50	POR	E O	2	5		E 0	VIS	VTS	VIS	MIS	VTS	VTS	X V	VTS	M	VTS	STA.	2 5	2 2	2	DNA	AND	AND	2	AND	N N	N N	3		

```
S-441-42

S-441-
 V1-V7
EV2-V1V2
V1-V2
 REPARCE TO A MARKET TO A A MAR
                  . 20000000E+1
. 29000000E+1
. 30000000E+01
. 30000000E+02
. 20000000E+01
. 20000000E+01
. 20000000E+01
. 1379057E+02
. 1000000E+01
                                                                                                                                                                                                                                                                    .2000000E+11
.2000000E+11
.10000000E+01
.10000000E+01
.3000000E+01
                                                                                                                                                                                                                                                                                                                                                                                                              .30000006+01
.300000006+01
.300000006+01
.200000006+01
.200000006+01
.300000006+01
.200000006+01
.200000006+01
.151642796+12
.151642796+12
.151642796+12
                                                                                                                                                                                                           ....
                                                                                                                                                                                                                                                                                                                                                                    000
  - 46669897E+03

- 12401577E+04

- 13635547E+03

- 93326283E+03

- 49545634E+03

- 1000ff00E+01

- 120717E+03

- 13013821E+04

- 13013821E+04

- 1000ff00E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -12554545E+04
-13636730E+03
-9789113E+03
-300CC00E+01
-99205832E+02
-1064C00E+01
-11831110E+93
-3004C009E+91
-13332861E+04
                                                                                                                                                                                                                                                                                                                                                                                                                                              .20000000E+01
.2000000E+01
-.45398721E+93
                                                                                                                                                                                                                                                                      .3000C000E+01
.100C000E+01
0.
                                                                                                                                                                                                                                                                                                                    .3000C C 00E+91
                                                                                                                                                                                                                                                                                                                                                  . 10000000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                   +03
                                                                                                                                                                                                                                                                                                                                                                                                                  .52882125E
 .1262581E +0 8
.12674496E +0 9
.12674496E +0 9
.19725706E +0 9
.19725706E +0 9
.19725706E +0 9
.25615338E +0 9
.26315706E +0 9
.2631506E +0 9
.2641506E +0 9
      ANGR
     VATS STAND DOUGH AND DOUGH
```

```
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S-V1-S-V2
S-V1-S-V3
S-V1-S-V3
S-V1-S-V3
S-V1-S-V3
S-V1-S-V3
S-V1-S-V3
        S-V1-42-V3
S-V1-V2-V3
VS1-VS2
VS1-VS2
VS1-VS2
                                                     1A-S
.20000000E+01
.20000000E+01
.10000000E+01
.3000000E+01
.3000000EE+01
                                   . 20000000E+01
. 20000000E+01
. 10000000E+01
. 3000000E+01
. 3000000E+01
                                                   -12673426E+04
-13642543E+04
-10145519E+04
-22379283E+04
-3000000E+01
-11006472E+03
-1166400E+01
-3000000E+01
-13516759E+04
                                 .57464421E+03
                                        .20000000E+01
.20000000E+01
-.42531559E+03
          .300000000E+01
.10000000E+91
                                                                                                         . 10000000E+01
                  30000000E+01
                      . 10000000E+01
                                                                                             .3000C000E+01
.1000C00fe+01
                                                                                                     .30000000E+01
-14289828E-03
-65583320E-03
-65583320E-03
-340713342E-03
-111786598E-03
-121786598E-03
-1227651E-04
-12576561E-04
-1257661E-04
-12376E-04
-12377E-00
-12577E-00
-12577E-00
-12577E-00
-12577E-00
-1167753E-00
じひひたしまなしなまなな なついとじついつ コメメギ イレイエメ
                                                                               JOOOK-JEGJEEKKK
VTS
VTS
VTS
                                                                                                              VTS
VTS
KTS
SAS
```

```
S-V1

S-V1-V2-V3

S-V1-V3-V3

S-V1-V3

                                                                                                                                                                                                                                                                                                                                                                                                                                      S-V1-V2-V3
S-V1-V2-V3
S-V1-V2-V3
S1V1-S1V2
S1V1-S1V2
S1V1-S1V2
S1V1-S1V2
V1-V2-V1
V1-V2-V3
V1-V2-V3
V1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           V1EV2-V1V2
V1EV2-V1V2
V1-V2
S-V1
                                                                                                                                                            S-V1-V2
S-V1-V?
S-V1-V?
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    S-V1-V2
S-V1-V2
S-V1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S-V1-V2-V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        S-V1
                                                                                                                                 S-V1
                 RAFERRATE RAFERRATE RAFERRATE RAFERRATE RAGINAL TODA AUMR ROPERRATE RAFERRATE RAFERRAT
                                                                                                                                                                                                                                                                                                                                                                                                     .20000000E+)1
.20000000E+)1
.10000000E+)1
.30000000E+01
.30000000E+01
              .30000000E+01
.30000000E+01
.30000000E+01
.20000000E+01
.30000000E+01
.30000000E+12
.3000000E+01
.2000000E+01
.3000000E+01
.3000000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -12748707E+94
-13652920E+93
-10398193E+04
-30060000E+01
-10109263E+93
-1000000E+01
-11397144E+93
-3000C000E+91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -.12770729E+04
-.13667774E+03
-.10547731E+04
-.15316026E+03
-.3000000E+01
-.1021545E+01
.612089555+03
0.
                                                  .2000CCGGE+01
.2000CGGGE+01
-.360C63GSE+93
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .200000000E+01
.20000000E+01
-.31827148E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                            .30000000E+01.
                                                                                                                                                                                                                                                                                                                                                                                                        .30000000E+01
.10000000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ·64094564E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 . 10000000E+61
                 -.75884816E+09
-.2050666E+009
-.15169669E+009
-.15169669E+009
-.15349146E+009
-.19349146E+009
-.19349146E+009
-.19349146E+009
-.1934916E+009
-.193466E+009
-.1551569669E+009
-.1551569669E+009
-.1551569669E+009
-.15515696E+009
-.15619306E+009
                      フリアウフリフィメド オースドメーログクトード ローチェススペンシ とりつり フィメメド オー
                  200
                    DDDUMAN A VALLE OF THE CONTROL OF TH
```

```
S-V1
S-V1-V2-V3
S-V1-V2-V3
V31-V5
VS1-V52
VS1-V52
VS1-V52
                                                                                           S-41

                                                                                                                                                                                                                                                                                                                            S-V1-V2-V3
SY1V2-SV2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S-V1-V2-V3
 . 20000000E+11
. 20000000E+01
. 10000000E+01
. 30000000E+01
. 30000000E+01
                                                                                                                                                                                                                               .19751365E+12
.10000000E+01
.30000000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .20000000E+11
.20000000E+11
.10000000E+11
                                                                                                                                                                                                                                                                                                               -12736272E+04
-1368699E+03
-10595292E+04
-2369756E+03
-3000000E+01
-1036465E+03
-1000000E+01
-11032976E+01
-11032976E+01
-11032976E+01
 .11206942E+03
.30000000E+01
.13591647E+04
.1000000E+01
                                                                                                                                  . 3000f 0 0 GE+01.
                                                                                                                                                                                                                                                         . 2000f 000E+01
. 2000f 000E+01
-. 24045636E+03
                                                                                                                                                                                                                            .66115652E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        . 3000C 000E+91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .3000000000+01
                                                                                                           .300000000E+01
.10000000E+01
                                                                                                                                                                           . 100000000E+01
  - 11744971E+09
- 313549611E+09
- 313549611E+09
- 313549611E+09
- 314643866E+09
- 314643866E+09
- 314643866E+09
- 314643866E+09
- 314643866E+09
- 31464386E+09
     マドド しりりしょう にしんけん なんりいい こうさん オギーコ イド・プロウロトコギケ
  SSS
  VYTS X TAN AND DOUGH AND D
```

```
RAULY PARKET AND LY PARKET AND
                                                     N = P N = = = = = = N
. 30000C90E+)1
                                                                                                                             .3000000E+11
.3000000E+01
.3000000E+01
.3000000E+01
.2000000E+01
.3000000E+01
                                                                                                                                                                                                                                                                                             SECS.
                                                                                                                                                                                                                                                                                                 9
                                                                                                                                                                                                                                                                                                 :0
                                                                                                              .67276291E+03
0.
                                                                                                                                                                      .2000C 0 0 CE + 01
.200C 0 0 GE + 01
+.14779 0 6 2 E + 93
                                                                                                                                                                                                                                                                                             0
                                                 . 1000cc 005+01
                                                                                                                                                                                                                                                    -.12618947E+04
                                                                                                                                                                                                                                                                                                 61
                                                                                                                                                                                                                                                                                               SEGMENT
                                                 .25274636E+00
.32614652E+00
.2367706E+00
.7763633E+00
.20454045E+00
.19754045E+00
.19754045E+00
.19754045E+00
.19754045E+00
                                                                                                                                                                                                                                                                                                 FOR
                                                                                                                                                                                                                                                                                               EXECUTION TIME
                                                       * # # # 7 1 2 0 7 10 7
                                                                                                                                                                                                                                                                                                 S ECONDS.
                                                     1.2
                                                        0000000000
                                                                                                                                                                                                                                                                                                  A
                                                                                                                                                                                                                                                                                                    61
                                                                                                                                                                                                                                                                                                 SE GMENT
```

D. TRACE INPUT FORMS

INTRODUCTION	D-1
Engineering Request Form	D-2
Orbit and Force Model Specifications	D-3
Gravity Model Specification	D-4
Atmosphere and CD Tables	D-5
Event Specifications	D-6
Parameter Specifications	D-7
Orbit Determination Specifications	D-8
Trajectory Output Specifications	D-9
Covariance Analysis Specifications	D-10
DATA GENERATION I Specification Sheet	D-11
Simultaneous-Vehicle DATA GENERATION II Specification Sheet	D-12
STATION Cards	D-13
Sensor Parameter Cards	D-14
VEHICLE Input	D-15
DATA GENERATION I	D-16
DA' A GENERATION II	D-17
Simultaneous-Vehicle DATA GENERATION II Cards	D-18
SimuItaneous-Vehicle STAGE Input	D-19
OBSERVATION Data	D-20

APPENDIX D TRACE INPUT FORMS

INTRODUCTION

The engineering specification forms and load sheets that follow are very useful in expediting the preparation of TRACE input. Some of these forms bear former TRACE designations (TRACE-66 and TRACE66), which will be removed when the forms are updated.

TRAJECTORY ANALYSIS AND PROGRAMMING DEPARTMENT

TRACE66 (AD104A)

ENGINEERING REQUEST FORM

REQUESTER	TELEPHONEOATE
PROBLEM NUMBER OR J O.	OUE OATF
PROJECT	
PE OF TRACE RUN:	
EPHEMERIS GENERATION	()
EPHEMERIS GENERATION ORBIT DETERMINATION	()
DATA GENERATION COVARIANCE ANALYSIS	()
COVARIANCE ANALYSIS	
NERAL INSTRUCTIONS:	
IF A RERUN, USE OATA DECK	K LABELEO
NEW OATA OECK TO BE SAVE	ED: () YES () NO
POSITION (TO BE COMPLETE	ED BY PRODUCTION COORDINATOR)
	RUN 10 DATE
SET UP BY	RUN IO DATE
SET UP BY	RUN IO DATE
SET UP BY	RUN IO DATE
SET UP BY	RUN IO DATE
SET UP BY	RUN IO DATE
SET UP BY	RUN IO DATE
SET UP BY	RUN IO DATE
SET UP BY	RUN IO DATE
SET UP BY TAPE SAVEO IF REQUIRED JOB DISPOSITION AND RESUL	RUN IODATE
SET UP BY TAPE SAVEO IF REQUIRED JOB DISPOSITION AND RESUL	RUN IO DATE
SET UP BY	RUN IODATE
SET UP BY	RUN IODATE
SET UP BY	RUN IODATE
SET UP BY TAPE SAVEO IF REQUIRED JOB DISPOSITION AND RESUL FE: ALL SPECIFIED INPUT	RUN IODATE
SET UP BY	RUN IODATE
SET UP BY TAPE SAVEO IF REQUIRED _ JOB DISPOSITION AND RESUL FE: ALL SPECIFIED INPUT	RUN IODATE
SET UP BY TAPE SAVEO IF REQUIRED JOB DISPOSITION AND RESUL FE: ALL SPECIFIED INPUT TIME OF RUN:	
SET UP BY TAPE SAVEO IF REQUIRED _ JOB DISPOSITION AND RESUL FE: ALL SPECIFIED INPUT	
SET UP BY TAPE SAVEO IF REQUIRED _ JOB DISPOSITION AND RESUL FE: ALL SPECIFIED INPUT TIME OF RUN: CP OATE JOB COMPLETED	TSI UNITS MUST BE CONSISTENT.
SET UP BY TAPE SAVEO IF REQUIRED JOB DISPOSITION AND RESUL FE: ALL SPECIFIED INPUT TIME OF RUN:	TSI UNITS MUST BE CONSISTENT.

D-2

TRACE 66 ORBIT AND FORCE MODEL SPECIFICATIONS

RUN TITLE:								
EPOCH:			CONDIT		SF D		VALU	ES
YEAR	-11 1 -2	131	115	1.6	•-	<u>-8</u>		
MONTH	. a		A R] . [4,	*188 —		
DAY	, δ		δ δ	١,	4,6	, , , _		
TIME ZONE	ιβ		B hp	.	n	2 BF —		
HOUR	* A	Ω	A h_	Ω	ł.	Š115 —		
MINUTE	у г	4.	ı ip	1.7	X	^ў н —		
SECOND	ž v		v zí	';	Ψ	411 -		
	CONDITIO	NS ARE	ASSEME	D TO I	BE IN	IFRNAL.	IN OF THE IN	
	TO THE A	ITIAL C	ONDETEC ARTIER	NS AR	NCH	PESTL THR D TYPEST	IOUGII 18, COR Through 8.	RESPONDING
GRAVITY MODEL: CHECK ONE.								
SPHERICAL ()		NDARD		()			STANDARD OTHER (AT	
3			•. •	` '			OTHER	TACID ()
SUN-MOON ATTRACTIONS: NO () YES	()						
DRAG COEFFICIENT: CDA/W	=		FT*/L	Н				
SEGMENTED DRAG COEFFICIENTS:		" D	A. W) =					
(C _D A/▼) _z = t _g = .		MME	K	DA WO	• -		· '6 *	AP.1
(C _D A/W) ₃ = t ₅ =		MME	"	DA W)	, ⁻ -		. !, -	MMI
(C _D A/W) ₄ = t ₄ =		MME			•		•	MMI
((DA/A) = t =		MME	") A W)	, ⁼ -		. '9 =	MMI
$C_{\overline{\mathbf{D}}}$ TABLES: INDICATE THE OPTIO	N TO BE	JSED A	ND ATT	ACH 1	[ABL	ES IF ANY		
() NONE	() c _D :	1(1				() (_D =	((h)	
IINEAR WEIGHT LOSS: NO ()	YES ()	٧.	-				W _{MIN} = _	1.88
₩ ≠LBS/MIN		t _a			M	4F	t ₁ =	MME
INSTANTANEOUS WEIGHT CHANGES:	NO ()	YES ()	AIT	ACH 1	TABLES		
ATMOSPHERE MODEL: CHECK ONE ARDC 1959 ()	AND PPOV	IDE INF		EQ1'11			()	
EXPONENTIAL (), Po	=				-		h =	
N81 (); s			(, =			· = _	
	*		(·	
n	=			7				
госкигев-дассива (-); ва	•		D	-			FLUX	
EMSC 1967 (). F	, ,		F,	, -			. kp	
JACCHIA 1964 (-); F ₁	· • •		F,	, -				
FACCINA 1964 (MOD) (); F	, , *		F,	• , "			· -	
CRL (); i u			+,	0 7			. k	
II ap, Fig. 7 hp, OR kc ARE TO I				E 4 C II	1 4 1	118		
SOLAR RADIATION PRESSURE: NO								
A W = FT -/LB	•						r*	
	()							
	()							
ORBIT ADJUSTS: NO) () ((; n				5191 F			
AEROSPACE FORM 6134 REV 9-71								

GRAVITY MODEL SPECIFICATION

Check	one:	No normalizat APL normalizat KAULA normaliz	tion ()				
n	m	C _{nm}	S	n	m	C nm	S _{nm}
_							
				_			
			-				
			-	 —			ماند ساید میدود
			-				
	—		-	_			
				_			
				_			
				_			
				_			
	_						
				_			
				_			
							
				_			
. —				_			
				—			
				-			
				-			
				_			
			-	—			
				l			

AEROSPACE FORM 4475

TRACE66 ATMOSPHERE AND C_D TABLES

Check one: () $\mathbf{a_p}$ = f(t); with a maximum of 50 entries () $\mathbf{k_p}$ = f(t); with a maximum of 50 entries () $\mathbf{k_c}$ = f(t); with a maximum of 50 entries () $\mathbf{F_{10.7}}$ = f(t); with a maximum of 12 entries () $\mathbf{C_D}$ = f(t); with a maximum of 25 entries () $\mathbf{C_D}$ = f(h); with a maximum of 25 entries

r(MME) or h(ft)	f(t) ot f(h)	t(MME) or h(ft)	f(t) or f(h)
· · · · · · · · · · · · · · · · · · ·			

			and the state of t
	_		

AEROSPACE FORM 4489

TRACE66 EVENT SPECIFICATIONS

2 T/Ψ C FT/SEC A/GO V (2 FT/SEC 3 A (FT/SEC ²)	T MME	SCALE FACTOR	BIAS FT/SEC ²	_ -	T MME	SCALE FACTOR	BIAS FT/SEC ²
7 T (LB) $\theta_Y^*(DEG)$ $\theta_P^*(DEG)$ $2V(2FT/SEC)$ 8 T (LB) $\theta_Y^*(DEG)$ $\theta_P^*(DEG)$ $2V(2FT/SEC)$ T _S (NME) T _F (NME) TYPE P ₁ P ₂ P ₃ P ₄ NSTANTANEOUS WEIGHT CHANGES: T(MME) $\Delta W(LBS)$ T (NME) $\Delta W(LBS)$ T (MME) $\Delta W(LBS)$ T (MME) ORBIT ADJUSTS: T(MMF) TYPE P ₁ P ₂ I ₃ TYPE P ₁ P ₃ P ₃ P ₄ 1 $\Delta R(ET/SEC)$ $\Delta T(ET/SEC)$ $\Delta C(ET/SEC)$ 1 $\Delta R(ET/SEC)$ $\Delta T(ET/SEC)$ $\Delta C(ET/SEC)$ 2 K (ET/SEC) $\theta_Y^*(DEG)$ $\theta_P^*(DEG)$	TYPE 1 2 3 4 5	P ₁ T ₁ (FT/SEC ²) T/W A (FT/SEC ²) A (FT/SEC ²) A (FT/SEC ²)		$\begin{array}{ll} \mathbf{T_{8}} & \text{(I/MIN)} \\ \mathbf{C} & \text{FT/SEC} \\ \mathbf{a} \\ \boldsymbol{\theta_{Y}^{*}} & \text{(DEG)} \\ \boldsymbol{\theta_{Y}} & \text{(DEG)} \end{array}$		OT USED OT USED OT USED OT USED OT USED	V (2 FT/SEC V (2 FT/SEC Y V (2 FT/SEC V (2 FT/SEC)
T _S (MME) T _F (MME) TYPE P ₁ P ₂ P ₃ P ₄ NSTANTANEOUS Ψ::IGHT CHANGES: T(MME) ΔΨ(LBS) T(MME) ΔΨ(LBS) T(MME) ORBIT ADJUSTS: T(MME) TYPE P ₁ P ₂ P ₃ P ₄ 1 ΔR(FT/SEC) ΔT(FT/SEC) ΔC(FT/SEC) 2 K (FT/SEC) θ _Y (DEG) θ _P (DEG)							:V(: FT/SEC
NSTANTANEOUS ΨCIGHT CHANGES: T(MME) ΔΨ(LBS) T(MME) ΔΨ(LBS) ORBIT ADJUSTS: T(MME) TYPE P, P2 I ΔR(FT/SEC) ΔT(FT/SEC) 1 ΔR(FT/SEC) ΔT(FT/SEC) Φ _Q (DEG)							2 V (2FT/SEC)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NSTANTANEOUS V	LIGHT CHANGES:					
					∆w(t.BS)	T(MME)	Δ v (1. BS)
	T(MME)	Δ V (LBS)	T(MME)	1, TH			
	T(MME)	Δ V (LBS)	T(MME)	1	PE P AR(FT/SE	P ₂ C) ΔT(ET/SEC)	P, AC(FT/SE
	T(MME)	Δ V (LBS)	T(MME)	1	PE P AR(FT/SE	P ₂ C) ΔT(ET/SEC)	P ₃ AC(FT/SE Ø _p (DEG)
	T(MME)	Δ V (LBS)	T(MME)	1	PE P, AŘ(FT/SE K (FT/SE	P ₂ (c) Δτ(ετ/sec) (c) θ _γ (DEG)	P ₃ Ac(FT/SE Ø _p (DEG)
	PRBIT ADJUSTS: T(MMF) TYPE	Δ W (LBS)	P ₂	1	PE P, AŘ(FT/SE K (FT/SE	P ₂ (c) Δτ(ετ/sec) (c) θ _γ (DEG)	P ₃ Ac(FT/SE Ø _p (DEG)
	PRBIT ADJUSTS: T(MMF) TYPE	Δ W (LBS)	P ₃	1	PE P, AŘ(FT/SE K (FT/SE	P ₂ (c) Δτ(ετ/sec) (c) θ _γ (DEG)	P ₃ Ac(FT/SE Ø _p (DEG)
	PRBIT ADJUSTS: T(MMF) TYPE	ΔΨ(LBS)	P ₃	1	PE P, AŘ(FT/SE K (FT/SE	P ₂ (c) Δτ(ετ/sec) (c) θ _γ (DEG)	P _j AC(FT/SE
	PRBIT ADJUSTS: T(MMF) TYPE	ΔΨ(LBS)	P ₂	1	PE P, AŘ(FT/SE K (FT/SE	P ₂ (c) Δτ(ετ/sec) (c) θ _γ (DEG)	P ₃ ΛC(FT/SE) θ _p (DEG)

AEROSPACE FORM 4141 NEV 5-71

TRACE-66 PARAMETER SPECIFICATIONS

PARAMETER IDENTIFICATION	P/Q	INITIAL VALUE *	BOUND	STANDARD DEVIATION
				
	_		-	
	_			
				
				
	_			
	_			
	—			
				
				
				
				
		 -		
	_			
			· · · · · · · · · · · · · · · · · · ·	
				
	_			
	_			
	 -			
				
		-		÷

AEPOSPACE FORM 4146

^{*} THIS VALUE FIELD IS USED ONLY FOR OBSERVATION BIASES AND SCALE FACTORS.

TRACE66 ORBIT DETERMINATION SPECIFICATIONS

ALL PARAMETERS MUST BE SPECIFIED ON THE TRACE66 PARAMETER SPECIFICATION FORM.

OBSERV	ATIONS AR	E TO BE INP	UT BY;					
((31) BINARY		E TAPE ARE BE				ATA TO BE USED USED ARE GIVEN	
В	EGINNING	YEAR	MONTH_	DAY	=	HOUR	MIN	SEC
E	ND	YEAR	MONTH_	DAY	h	HOUR	MIN	SEC
STATION	INPUTS:	ELEVATION A	ND RANGE DAT CORRECTIONS	A A "V" IND	ICATES THE	E NOMINAL	E REFRACTION CO VALUES ARE TO REFRACTION IS	
STA NAME	LAT (DEG)	_	ONG DEG)	HEIGHT (FEET)		ROMETER Q	η _Ε (312 ± 10 ⁻⁶)	η _R (350 ± 10 ⁻⁴)
OBSERV	ATION VEI	GHTS (σ's):						
STA	DATA TYPE	σ	DATA TYPE	•	DATA TYPE		DATA TYPE	ø
		<u></u>						
								-
								-
-	THE KEYC	MAXIMUM N RELATIVE ABSOLUTE	S FOR THE FO UMBER OF ITE CONVERGENCE CONVERGENCE MA EDITOR	RATIONS TEST (-001)	OTREA IN	AN NOMEN	AL.	
OPTIONS	S: CHECK	THE OPTION	S DESIRED AN	ID SUPPLY T	HE REQUIP	RED INPUT	7	
(OF LIGHT COL						
,	() N	EGATIVE COR	RECTION					
-	•		PARTIAL DERI	VATIVES				
			RELATION MAT		- 1011			
			I MATRIX AFTE HON MATRICES		TION			
,)" AFTER EAC		OR LAST I	TERATION	ONLY	
•			AST ITERATIO	N				
		SOLUTION VE	CTOR BSERVATION RI	ESIDUALS AFT	ER LAST IT	ERATION		
(SEC E OBSERVATION	RESIDUAL TA	/nF			

AEROSPACE FORM 4187 REV 5-71

TRACE-66 TRAJECTORY OUTPUT SPECIFICATIONS

OUTPUT TIMES: TIMES ARE GIVEN AS MINUTES FROM EPOCH () OR MIDNIGHT () SPECIAL OUTPUT TIMES: (V) SPECIAL β = 90 LAT. LONG. MIN , MAX. ALTITUOE SPECIAL LATITUOES SPECIAL LONGITUDES () SPECIAL ALTITUDES OBSERVATION TIMES OUTPUT REQUESTED: (V) STANOARO **ECLIPSING** a) EVERY TIME a) STANOARD b) NOOES ONLY b) OPTIONAL ELEMENTS VARIATIONAL EQUATIONS a) EVERY TIME () a) STANDARO () b) NOOES ONLY b) OPTION B c) OPTION C () GEOMAGNETIC LAT. AND LONG. () GROUNO TRACK TAPE () SUN-MOON ANGLES DIFFERENCE TAPF () a) STANOARO () b) OPTION Y c) OPTION Z

AEROSPACE FORM 4140 REV 6-66

TRACE66

COVARIANCE ANALYSIS SPECIFICATIONS

ALL PARAMETERS MUST BE SPECIFIED ON THE TRACE66 PARAMETER SPECIFICATION FORM. OBSERVATION GENERATION SPECIFICATIONS MUST BE SUPPLIED ON THE TRACE66 DATA GENERATION SPECIFICATIONS - SHEET 1.

IF OBSERVAT	TIONS ARE TO I	BE INPUT RATI	HER THAN GEN	ERATED, INI	DICATE THE	SOURCE	
() (ARDS	() C	ARD IKAGE TAPE		() BIN	ARY OBSERVATE	ON TAPE
						A TO BE USED I ARE GIVEN BY:	S A SUBSET OF
BEGINNING	YEAR	MONTH	DAY	HOUR	М.	IN SE	C.
END						IN. SI	
STATION INP	ELEVATI	ON AND RANGE	DATA. A "V" IN	DICATES THE	E NOMINAL VA	FERACTION CORR LUES ARE TO BE BE USED, IT MUS	USED, A "O"
STA NAME	LAT (DEG)	LONG (DEG)	HEIGHT (FEET)	INTERFE P	ROMETER Q	(312 × 10-5)	7 R (350 = 10 ⁻⁶)
OBSERVATIO	N WEIGHTS (o'	s):					
	OATA		DA1.			DATA	
STA	TYPE	σ	1 YP	t.	σ	TYPE	σ
OUTPUT TIM	ES: TIMES AR	E GIVEN IN MIN	NUTES FROM EL	POCH () OR	MIDNIGHT ()	
FROM		TO	LVFR	Y			

OUTPUT REQ) <u>P</u> Q					
((P ₀) = (A ^T A	,,	() ()				H_COVARIANCE H= 4 "D" IS USED	
ORBIT PLAN		\circ				THE DIAGONAL	•
SPHERICAL		6 6		U.L. BL PRINT		THE DIRECTORY.	
LLEMENT		()					
P' RIOD, A. I	PFR	() ()					
I QUINOCTÍAI		() ()					
	NT COVARIANCE	()					
PRINT ∂P ∂Q SAVE PLOT T		$\dot{\circ}$					
INPUT A PRI	ORI UNCERTAL	NTIES	P PARAMETE	R Q	PARAMETER		
	PRIORI INFORMA	TION	()				
	ATRIX GIVEN		()		()		
(A ¹ A)* σ* s G	*1 MATRIX GIVES	N	()		()		
	AATRIX GIVEN		, ,		$\dot{\circ}$		

AEROSPACE FORM 4130 REV 5-71

TRACE66 DATA GENERATION SPECIFICATION SHEET 1

STATIONS				 	 	
SUPPLY VALUES FOR						
Δt (SEC)				 	 	
E MIN (DEG)				 	 	
E MAX (DEG)				 	 	
R MAX (NM)						
START TIME				 	 	
FROM (DAY				 	 	
MIDNIGHT HR						
OF EPOCH MIN					 	
STOP TIME FROM (DAY						
MIDNIGHT HR						
OF EPOCH MIN				 	 	
A, (DEG)				 	 	
A, (DEG)				 	 	
-						
INDICATE THE REQUE	STED DAT	A HTIW A	"√"			
RANGE				 	 	
AZIMUTH					 	
ELEVATION				 		
RANGE RATE				 		
INTERFEROMETER P				 		
INTERFEROMETER Q					 	
INTERFEROMETER P					 	
INTERFEROMETER Q				 	 	
AZIMUTH RATE				 	 	
ELEVATION RATE				 	 	
f.				 	 	
LATITUDE				 	 	
LONGITUDE				 	 	
SURFACE RANGE				 	 	
HEIGHT DOPPLER RATE				 	 	
LOOK ANGLE				 	 	
KAPPA				 	 	
ASPECT ANGLES				 	 	
ATTENUATION				 	 	
£, ŷ, £						
TOPOCENTRIC RT.					 	
ASC. AND DEC.						
GEOCENTRIC RT.				 		
ASC. AND DEC.						
HOUR ANGLE						
u, v						
Ä						
Ë				 	 	
TWO-WAY DOPPLER				 	 	
ANTENNA X, Y ANGLES	s			 		
TRANET DOPPLER				 	 	
GEOCEIVER RANGE						
Ranging or Diff(s) SGLS RANGE RATE				 	 	
SULS KANGE RATE						

AE" JSPACE FORM 4136 REV 5-71

TRACE66 SIMULTANEOUS VEHICLE DATA GENERATION II SPECIFICATION SHEET MEASUREMENT TYPE KEY

SYMBOL	DEFINITION
R	Range
AZ	Azimilia
EL	Élevation
Ŕ	Range tate
Ax, Ay	Antenna angles
V2	Vehicle to vehicle tang.
V2D	Vehicle to vehicle range tate
S2	Station to vehicle to vehicle range sum
S2D	Station to vehicle to vehicle range tate sum
S3	Station to vehicle to vehicle to vehicle range sum
S3D	Station to vehicle to vehicle to vehicle range rate sum
V3	Vehicle to vehicle to vehicle range sum
V3D	Vehicle to vehicle to vehicle range rate sum
TDOA	Time difference of arrival
TOA	Time of arrival
3WR	Three way range
MP	Multi-path

INDICATE THE DESIRED MEASUREMENTS BY THEIR TYPES AND SUPPLY THE NECESSARY STATIONS AND VEHICLE IDENTIFICATION NUMBERS.

TYPE	STA	STA 2	VEHICLE I	VEHICLE 2	VEHICLE 3

					•
					

AEROSPACE FORM 4460

02 69 89 ö 4 65 44 PAGE 47/48 49 50 31 52 53 54 55 54 57 58 59 40 61 EXP स्टब्स्ट क्रिजाडाडाडाडाडाडाडाडाडाडाडाड FIELD 3 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 VERIFIED 2. THE EXPONENT FIELDS ARE OPTIONAL, BUT IF USED MUST BE DF THE FORM TXX. E XP. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 15 16 17 18 19 20 21 22 23 24 25 26 STATION CARDS
1. THE LOCATION FIELDS MUST HAVE A DECIMAL POINT, KEYPUNCHED FIELD) 12 - 12 **≅** o • 1 2 3 E 57 PROGRAMMER MENDERACE FORM

TRACE - 66: SENSOR PARAMETER CARDS
1. THE INITIAL VALUE, BOUND AND SIGNA FIELDS MUST HAVE A DECIMAL POINT
2. THE EXPONENT FIELDS ARE OPTIONAL, BUT IF USED MUST BE OF THE FORM 2 XX.

A STREET OF THE PARTY OF THE PA

1. 7. 7. 5. 5. 5. 10	PROG	PROGRAMMER			KETPUNCHED		VERIFIED			3	:
14	ST	PASS		0	INITIAL VALUE	EXP		SIGMA	EXP		
1	* *	3 4 5 6 7		[2]	16, 17 18, 19, 20, 21, 22, 23, 24, 25, 26, 277.	8.30	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	48 49 50 51 52 53 54 55 57 59 59	29 19 08		
1	1										
1				I							
1	1										
1				Ĭ					-		
1											
10 D 18 P 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				L							
1	-										
1. [a] [b] [b] [b] [b] [b] [b] [c] [c] [c] [c] [c] [c] [c] [c] [c] [c				Ļ							
1. [b] [b] [b] [b] [b] [b] [c] [c] [c] [c] [c] [c] [c] [c] [c] [c									_		
1. (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c									E		
1. 16 (7) 18 (9) \$\times 1. 22 \times 2. 22											
14. [b]											
14. [b]		9									
14. [b]	+			Γ							
1. 16 T. 18 19 \$\infty 2.122 24 25 25 25 25 25 25 25 25 25 25 25 25 25				\Box							
1. 16 17 18 19 \$\times 2.1 27 24 25 25 25 25 25 25 25 25 25 25 25 25 25	•			1							
14. 16.17 18 19 \$\infty 2.12 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24											
14 16 17 18 19 \$\infty 2 1 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25		-									
14 16 17 18 19 \$\infty 2 1 22 24 25 26 27 28 29 20 24 24 24 24 24 24 24 24 24 24 24 24 24		-									
14 16 17 18 19 \$\infty 2 1 22 24 25 26 27 28 39 26 41 42 42 44 46 46 46 46 46 46 46 46 46 46 46 46	1	-		L							
14. 16.17 18 19 \$\infty 2.12 22 22 22 22 22 22 22 22 22 22 22 22 2											
[4] [1617] [8] [9] \$23.27 \$28 \$27 \$28 \$29 \$29 \$29 \$29 \$29 \$29 \$29 \$29 \$29 \$29											
[4] [6] 7 [8] 10 70 21 22 22 22 22 22 22 22 22 22 22 22 22											
14 16 17 18 19 20 21 22 22 22 22 22 22 22 22 22 22 22 22											
	1.2	3 4 5 5 7	9 10 11 12	12	16 17 18 19 20 21 22 23 24 25 26 27 3	0. 29	32 33 34 35 32 77 38 39 40 41 42 43 44 45 46	48 47 50 51 52 53 54 55 56 57 58 59	2919 09		

TRACE 66 - VEHICLE INPUT

ROGRAMMER			KEYPUNCHEDVE	RIFIED DATEPAGEOF_
2	,			27
				Time to the second seco
H 1				
				
	T	2	7	
		20 94	33	HI: HEADER TO APPEAR ON OUTPU
SYMBOL	c	LOCATION	VALUE	HI: HEADER TO APPEAR ON OUTPU
	Ī	VEHID		VEHID VEHICLE NUMBER
	1	YEAR		0 ≤ VEHID ≤ 9999
	1	MATH	L	
	1	DAY	. De	YEAR/MNTH/DAY: EPOCH DATE
		TZNE		TZNE/HR/MIN/SEC: EPOCH TIME
		HR		LCTVD TVDF OF INITIAL CONDUCTIONS
		MIN		ICTYP TYPE OF INITIAL CONDITIONS
		SEC		1 x, y, z, i, ŷ, i 2 α, δ, β, Λ, τ,
).	1	ICTYP		3 a, e, i, Ω, ω, 7
0		ic		4 λ, δ, β, Λ, τ,
1		2		5 $\mathbf{Z}_{\mathbf{p}}$, $\delta_{\mathbf{p}}$, $h_{\mathbf{p}}$, $h_{\mathbf{a}}$, i_1 z
2		3		6 a. c, i, Ω, ω, i
3		4	· · · · · · · · · · · · · · · · · · ·	7 a _f , a _g , N, L, X, V
4		5		8 *BF, YBF, ZBF, *BF, YBF, Z
5		6		Negative value of ICTYP indicates that
6	1	IDRAG		initial canditions are in internal units.
7		DRAG		NOTE: Above initial canditions refer to
	Г			Earth as the central bads. If ICTYP = ICTYP + 10 sine above
				initial canditians refe. to the Maan as the central bady.
				IC: INITIAL CONDITION INPUT
				IDRAG: ATMOSPHERE MODEL
				0 ARDC 1959
				1 LOCKHEED JACCHIA
				2 JACCHIA 1964
				3 U. S. STANDARD 1962
				7 EXPONENTIAL
				8 CAMBRIDGE RESEARCH LABOP
				9 NWL
				DRAG: CDA/W (FT2/LB)
	L			
	i			

TRACE - 66: DATA GENERATION I

A DECIMAL POINT MUST BE USED IN ALL FIELDS FLACCED BY AN *

1 THE EXPONENT IS TO BE USED IN THE R_{ms}, FIELD, IT MUST BE DF THE FORM *XX

PROGRAMMER	WME R		KEYPUNCHED		VERIFIED	1ED	DATE		PAGE D	Dr.
						START TIME	15	STDP TIME		
rs.	ΔΤ (800)	Emin (deg)	Emez (deg)	Rmax (nm)* EXP.	DY	*	DY HR	. WIN	A1 (400)*	A2 (deg)*
1,2,3	5 6 7 8 9 10 11 12	14 15 16 17 18 19	21 22 23 24 25 26	28 79 30 31 32 33 34 35 36	36 39 41 42	12 44 45 46 47 48 49 50	52 53	58 59 60 61 62 63 64	64 67 68 69 70 71	73 74 75 76 77 78
		1			I I]]			
							-I			
						-			-	
1 -										
			-							
			-							
					E					
										=
-										
1, 2, 3	1 2 3 5 6 7 8 9 10 11 12	14 15 16 17 16 19	21 22 23 24 25 26	28 29 30 31 32 33 54 35 36	38 38	42 44 45 46 47 48 49 50	52 53	58 59 60 61 62 63 64	66 67 68 19 70 71	73 74 75 76 77 78

44 (5) 44 (47) 49 (50) 53 (52) 53 (54) 55 (54) 58 DATE 41 42 43 TIME DE VERINAL SAT.TRACKER DOPPLER S CEDCEIRES
S VALENNY
S VACENEE
S VALENNY
S VACETENOMETE
S VACETENOMETE
S VACETENOMETE KEYPUNCHED AZMUTIN MATE

Z ELEVATION WATE

LATITUDE

LATI MTUMISA PROGRAMMER BONVE ---

DATA GENERATION II

क्ष्मक्ष्मक कि कि कि कि मिन्न क्ष्मिक कि कि कि E > **~** ~ > TRACE 66 SIMULTANEOUS VEHICLE DATA GENERATION II CARDS នាជាមានប្រាស់ ខេត្ត នេះ

TRACE 66 - SIMULTANEOUS VEHICLE STAGE INPUT
1. A DECIMAL POINT MUST BE USED IN ALL PIELDS FLAGGED BY AN *.

				 0.1	
96			यत्रात्र		(a) (c) (c)
FAGE	176	SEC	<u>ភិក្ខុការ ភាពការ ក្</u> ពុក្យា ក្រុកការ ក្រុកការ ក្រុកការ ក្រុកការ ក្រុកការ ក្រុកការ ក្រុកការ ការ ការ ការ ការ ការ ការ ការ ការ ការ		का स्यास्त्रस्य स्वर्थास्यास्यास्यास्य का क्रांस्त्रका का का का का का का का
	TUPDATE	y do	5 5 7 7 7		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4		YRM	\$ \$		9
VERIFIED DATE	TCMD	RMODYHRMN SEC.	20 20 20 20 20 20 20 20 20 20 20 20 20 2		医多数医医过滤器 美俚的复数形式 医红色
VERIF	L				
KEYPUNCHED	TBEGIN	YANODYHRMN SEC.	1122 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 39 34 35 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36		1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3
			11511		
		.11	11 12 13 14 15 16 17		1 2 3 4 0 2 2 9 11 12 13 14 15 16 17
			6 0		6 9 2 9
PROCPAMMER	E	.7	1 2 3 4		123

TRACE66 OBSERVATION DATA

1. A DECIMAL POINT MUST BE USED IN ALL FIELDS FLAGGED BY AN *.

2. THE EXPONENT FIELDS ARE OPTIONAL, BUT IF USED, MUST BE OF THE FORM ± XX.

*	13		4	-	-	ļ		-								-	<u> </u>			├	-	-			4
VEH #	27.00.07.00	1	ł		4	-	-	-	-	-		\vdash	-	-	\vdash		-	-	_	-	-	-	-		1
	И	1	_																						
			_				_		_	_	_		,	_		_	_				_				_
E.	끪	+	┥			-	\vdash	\vdash	-	├		-	-	-		_	⊢	-	\vdash	-	-	H	}		4
	13	-+-	- †		_	-	-		-		┢	\vdash	 	-			-	-					1		1
_	7	十	┪																Т	_					1
	7		٦																						1
	2		4			<u> </u>	<u> </u>		L_	L_	L-	L.	-		L .		_				L_			_	
*	13		-1	_	-	-		-	_	_			-		-	_		-	<u> </u>	-	ļ	<u> </u>	-	_	4
OBSERVATION	13	+	-		_	-	ł	-				-	├			-	-	 	\vdash				-	-	4
ž	13	+	7	_		<u> </u>	\vdash			\vdash			1	\vdash		-	_		-	-	\vdash	-	-	\vdash	1
SEI	3		1																						1
8	3		\Box																						
	3	_	4	_			 	<u> </u>	_			<u>L</u> .	—					_		<u> </u>		_	_	_	4
			┥		-	-				-						-	-	-	-	1-	ļ		-	 	4
	3	-	┪	-		_	-	-	_		\vdash		\vdash		-	-	-		\vdash	\vdash	t	-	-		1
EXP	S.		7										1									T -	1		1
_	3								_																
	13		4								_			_			_							_	_
	捌		4	_	\vdash	-	-	-	-	-	-	\vdash	-	-	-	-	-		 	-	-	-	\vdash	-	4
~	TO THE PROPERTY OF THE PROPERT	-	+		-	 	-	-	_	-	-	-	—	-	-	1	-	-	-	\vdash			-		+
¥	3		コ																						1
OBSERVATION	3		1										\Box	匚							\Box				1
È	121	+	-		_	-	\vdash	-	-		-	-	├	_		_	<u> </u>	├-	-	_	₩-	-	-	-	4
35	3	-	┪	-	\vdash	-	⊢	-	-	-		\vdash	\vdash	\vdash		-	-	-	-	-	-	-	┥	-	7
ō			1		-	-	-	_	-					_	_	-	-	-	\vdash	+	 	-	\vdash	\vdash	+
	6		╗																	Ι_					1
	3		I]
EXP	3		-		-	_	<u> </u>	-		_	_	<u> </u>	↓_	_		_	_	_	_	_	_		<u> </u>	_	4
2		-+-	┪			-	-	-	-	\vdash		-	 	⊢		-	-	-	-	-	-	-	\vdash	-	1
-		_	┪	_		\vdash	┢		_	-			-		_	-	_	_		-	-	_	Н	-	1
	Ĭ.	+	┪			t	-		_			_		_				-					-	_	1
•	9																								1
-	8		\Box			L			L.,		_														1
Ş	8	-			_	-	-	<u> </u>	ļ		<u> </u>	!	₩	<u> </u>			-	-	_	-	-	_	-		4
3	3		-+		-		-	-	-	-	-	-	-	-	-		-	\vdash	-	-	-	-	-		ł
O. SERVATION		+	-		\vdash	-	-	-	-	-	 						-	\vdash	-	-	 	\vdash		-	i
3	A		1																						1
	B		. [_			_	_	_	L	L_	<u> </u>	ļ.,			<u> </u>	1
	2		-1		ļ	-				_									_	—	-	-	-	_	1
_	8	-+-	-	_	-	├	-	-	-	-	⊢	-	-	_	-	\vdash	_	-	_	-	├-	-	-	-	ł
ME		1	t				1	} -		1					= 5,		-			-		-		_	1
Ē		+	-	_																					1
ŭ	8	\top																							1
	N.		4				-					_	-					_	_		<u> </u>	-	_	-	ļ
•	3	1	ł			-	+	-		ł		-	-				-		-		-			-	ł
Š	2	+-	+	_		-			-			-	 	-		-			-	-	-	<u> </u>	-	-	t
SECONDS	8	+	-			İ			Γ-																İ
3	[-																								Į
	R	_	_	-		-	-	ļ	_	ļ	L _	<u> </u>	 _	<u> </u>	-	\vdash	-	-	-	-	-	-	_	_	ļ
Ţ	 	+	-		\vdash	-	\vdash	\vdash	-	-	-	-	-	-	-	_	_	_	\vdash	-	-	-	-		ł
1		+	+	_	\vdash	-				_	 -	 	†		-			_		—		-			t
*	2		_1										1							I					j
I	2																								Į
*	1	\perp	7		L-		-						_	_						-	+				
٥	2	+	4	_	-	-	-	-	-	-	-	-	-	-	-	-	-	_	\vdash	-	_	-	-	-	ł
S.	 	-	-	_	-	-	-		-	\vdash	1	-	-			-	-		-	-	-	-	_	-	ł
	힏	+	-	_		\vdash										1 .									t
۶	9 10 11 12 13 14 15 16 17 10	\Box	╛																						ľ
			Ξ			,		_			_		_				_								
	-	-	4			-	-	-	\vdash	—			_	_	-		-	-	_	-	-				ļ
3	-	+	4				-	-	-	-	-	 	+-	-	-	-	-		-		-	_		-	ł
•	1234567	+	+			1	1		1-	<u> </u>	<u> </u>	_	1	_						1					j
	m		J																	\equiv					
			-						1	1	1	1		1		1								1 7	n