Introducción al Procesamiento de Señales Curso 2013

Clase 7

Javier G. García

26 de septiembre de 2013

Análisis Frecuencial

Motivación:

1) Respuesta de sistemas lineales a exponenciales complejas:

$$x(t) = e^{j2\pi f_0 t}$$

$$y(t) = \int_{-\infty}^{+\infty} x(t-\tau)h(\tau)d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} e^{j2\pi f_0(t-\tau)} h(\tau) d\tau$$

$$y(t) = e^{j2\pi f_0 t} \int_{-\infty}^{+\infty} e^{-j2\pi f_0 \tau} h(\tau) d\tau$$

$$y(t) = H(f_0)e^{j2\pi f_0 t}$$

con

$$H(f_0) = \int_{-\infty}^{+\infty} h(au) e^{-j2\pi f_0 au} d au$$

Análisis Frecuencial

 $H(f_0)$ es un número complejo (Ojo!! Tiene parte real e imaginaria - o módulo y fase -).

Conclusión: En un SLIT cuando entra una exponencial compleja, sale una exponencial compleja de la misma frecuencia. Pero su amplitud y fase cambian de acuerdo a $H(f_0)$, que depende del sistema en cuestión.

Las exponenciales complejas son *autofunciones* de los SLIT. Además:

- Aprovecha los conocimientos sobre funciones periódicas.
- Transformación (casi) biunívoca entre 2 dominios (o puntos de vista).
- Permite describir el reparto de energía o de potencia.

Transformada de Fourier

Definición:

Transformada de Fourier directa (o integral de Fourier o ecuación de análisis):

$$X(t) = \mathcal{F}\{x(\cdot)\}(t) \triangleq \int_{-\infty}^{+\infty} x(t)e^{-j2\pi t}dt$$

Transformada de Fourier inversa (o ecuación de síntesis):

$$x(t) = \mathcal{F}^{-1}\{X(\cdot)\}(t) \triangleq \int_{-\infty}^{+\infty} X(t)e^{j2\pi t t}dt$$

Transformada de Fourier

Interpretación:

Medida de parecido con exponenciales complejas de frecuencia fija:

Transformada de Fourier - Existencia

Condiciones de Dirichlet:

Si queremos que:

$$X(f) = \mathcal{F}\{\mathcal{F}^{-1}\{X(\cdot)\}(t)\}(f)$$

$$x(t) = \mathcal{F}^{-1}\{\mathcal{F}\{x(\cdot)\}(t)\}(t)$$

Es suficiente que se cumplan simultáneamente:

- ▶ x es absolutamente integrable $\int |x| < \infty$.
- x tiene un número finito de máximos y mínimos dentro de cualquier intervalo finito.
- x tiene un número finito de discontinuidades finitas dentro de cualquier intervalo finito.

Transformada de Fourier - Existencia 2

Si x(t) es discontinua en t_0 se obtiene:

$$\hat{x}(t_0) = \mathcal{F}^{-1}\{\mathcal{F}\{x(\cdot)\}(t)\}(t_0) = \frac{x(t_0^+) + x(t_0^-)}{2}$$

Hay señales de uso frecuente (constantes, escalón, senoidales) que no cumplen con las condiciones de Dirichlet (CD). Para incluir a esas señales se recurre al uso de distribuciones (delta de Dirac).

Transformada de Fourier - Algunos ejemplos

•
$$x(t) = e^{-\alpha t}u(t), \quad \alpha > 0$$

$$e^{-\alpha t}u(t) \supset \frac{1}{\alpha + j2\pi f} \quad \alpha > 0$$

$$m{x}(t) = m{e}^{-lpha|t|}, \quad lpha > 0$$
 $m{e}^{-lpha|t|} \supset rac{2lpha}{lpha^2 + 4\pi^2 f^2} \quad lpha > 0$

•
$$x(t) = \delta(t)$$
 $\delta(t) \supset 1$

► Cajón:
$$x(t) = \Box(t)$$

$$\Box(t) \supset \operatorname{sinc}(f) = \frac{\operatorname{sen}(\pi f)}{\pi f}$$

Transformada de Fourier - Simetrías

$$X(t) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi tt}dt$$

Como:

$$e^{-j2\pi ft} = \underbrace{\cos(j2\pi ft)}_{par} - \underbrace{j\underbrace{\sin(j2\pi ft)}_{impar}}$$

y usando que $\int_{-\infty}^{+\infty} x_{impar} = 0$ Si x es real $\Leftrightarrow X$ es Hermítica, es decir $X(f) = X^*(-f)$