TECHNIKA CYFROWA

WYKŁAD (16h – 6 spotkań)

LABORATORIUM (9h – 3 spotkania po 3h)

ZALICZENIE PRZEDMIOTU – ocena wagowa:

- pisemny egzamino-test z wykładu (10 pytań) waga oceny <u>0.6</u>
 warunek uczestnictwa: zaliczone laboratorium
- praca w trakcie laboratoriów waga oceny <u>0.4</u>

(50%, 60%, 70%, 80%, 90% => dst, +dst, db, +db, bdb)

dr inż. Rafał SZYMANOWSKI

R.Szymanowski@wit.edu.pl

ZAGADNIENIA (1) – cyfrowe układy logiczne

- 1) Kody.
- 2) Algebra Boole'a dla sygnałów binarnych.
- 3) Funkcje logiczne, formy boolowskie.
- 4) Bramki logiczne.
- 5) Synteza układów kombinacyjnych.
- 6) Kombinacyjne bloki funkcjonalne.
- 7) Układy arytmetyczne.
- 8) Przerzutniki.
- 9) Układy sekwencyjne.
- 10) Synteza układów sekwencyjnych.
- 11) Rejestry.
- 12) Liczniki.

ZAGADNIENIA (2) – cyfrowe układy scalone

- 1) Rodzaje cyfrowych układów scalonych.
- 2) Układy TTL, ECL i MOS.
- 3) Układy CMOS.
- 4) Przerzutniki scalone.
- 7) Pamięci scalone.
- 8) Układy programowalne (SPLD, CPLD i FPGA).
- 9) Systemy projektowe.
- 10) Język VHDL.

LABORATORIUM – projekty... (FPGA, VHDL)

- 1) Układy kombinacyjne...
- 2) Układy synchroniczne...
- 3) Indywidualne projekciki...

LITERATURA (uzupełniająca)

B. Wilkinson Układy cyfrowe WKŁ 2003, seria wydawnicza *Wiedzieć więcej*

A. Skorupski Podstawy techniki cyfrowej WKŁ 2004

ANALOGOWY ZAPIS INFORMACJI

wszystkie wartości napięć i prądów jakie tylko sobie wymyślimy

CYFROWY ZAPIS INFORMACJI

wartości napięć i prądów wyrażone tylko poprzez skończony zakres liczb, które zapisane są w postaci kodów!

Świat cyfrowy → **Świat "zer i jedynek"**

Zastosowanie układów cyfrowych:

- Sterowanie
- Obliczenia

Zalety układów cyfrowych:

- Łatwość przechowywania informacji
- Duże szybkości transmisji
- Łatwość detekcji stanów logicznych (dwóch poziomów napięć)
- Odporność na zakłocenia

Starożytni Rzymianie palec nazywali "digitus".

Palce służyły do liczenia, stąd podstawy dwuwartościowości.

digitus → digital → cyfrowy

Ogólnie w układach elektronicznych najłatwiej można określić dwie wykluczające się sytuacje:

układ włączony

układ wyłączony

Czyli jest napięcie albo go nie ma.

... lampa świeci lub jest wyłączona, oczy otwarte lub zamknięte, bilet skasowany lub nie ...

Ponadto w takim rozumowaniu działania nie ma sytuacji pośrednich. Zawsze istnieje tylko jedna z dwóch sytuacji.

Metody oznaczania dwóch stanów (sytuacji):

- 0 stan zero
- 1 stan jeden

```
L – Low – poziom L, poziom niski (napięcia)
```

H – High – poziom H, poziom wysoki (napięcia)

Sygnały wejściowe – sygnały cyfrowe (0, 1), informacje analogowe po przetworzeniu do postaci cyfrowej

Sygnały wyjściowe – sygnały cyfrowe (0, 1)

CYFROWY ZAPIS INFORMACJI

WSTĘP...

Znak – symbol graficzny

Alfabet – zbór znaków np. $A = \{a, b, ..., z\}, D = \{0, 1, ..., 9\}$

Słowo – skończony i uporządkowany łańcuch znaków określający pewną informację np. 234, akjn34k, str36, %, @, ق, ≥, alareg87

Długość słowa – liczba znaków tworzących słowo

CYFROWY ZAPIS INFORMACJI

Jeżeli alfabet zawiera tylko dwa znaki to nosi on nazwę alfabetu dwójkowego (binarnego)

$$B = \{0,1\}$$

Słowo dwójkowe o długości n = 1 to bit

Słowo dwójkowe o długości n = 8 to bajt

Słowo dwójkowe o długości n ma 2ⁿ kombinacji

CYFROWY ZAPIS INFORMACJI – Kody

Kod – słowo oznaczające pewną informację

Kod naturalny – to kod pozycyjny, w którym każdy znak a_i ma przypisaną pozycję i, przy czym tej pozycji przyporządkowana jest waga $w_i = p^i$, gdzie p to podstawa kodu

Kod liczbowy – kod naturalny, którego słowa oznaczają liczby

NATURALNY KOD DZIESIĘTNY

Podstawa: p = 10

Wagi: $w_0 = 1$, $w_1 = 10$, $w_2 = 100$, $w_3 = 1000$, ..., $w_{n-1} = 10^{n-1}$

np.

2364 =
$$2.1000 + 3.100 + 6.10 + 4.1 \Rightarrow$$

 $a_3 = 2, a_2 = 3, a_1 = 6, a_0 = 4$

NATURALNY KOD DWÓJKOWY (BINARNY)

Podstawa: p = 2

Wagi: $w_0 = 1$, $w_1 = 2$, $w_2 = 4$, $w_3 = 8$, ..., $w_{n-1} = 2^{n-1}$

np.

101001 ⇒ odpowiada liczbie dziesiętnej 41, ponieważ:

$$1.32 + 0.16 + 1.8 + 0.4 + 0.2 + 1.1 = 41$$

Reprezentacja kodu dziesiętnego w kodzie binarnym (4-bitowym)

Kod dziesiętny	Kod binarny
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

NATURALNY KOD DWÓJKOWO-DZIESIĘTNY – *kod BCD* (*BCD* – *Binary Coded Decimal*)

Każda cyfra w kodzie dziesiętnym jest reprezentowana przez 4-bitową liczbę dwójkową

np. $2364 \Rightarrow 0010 \ 0011 \ 0110 \ 0100$

KOD GRAY'A

Sąsiednie słowa kodu różnią się tylko wartością jednego bitu

np.

dla dwóch zmiennych: 00, 01, 11, 10

dla trzech zmiennych: 000, 001, 011, 010, 110, 111, 101, 100

KOD SZESTASTKOWY (hexadecimal)

Stosowany w celu skrócenia zapisu naturalnego kodu dwójkowego.

Znaki: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

gdzie A = 10_{10} , B = 11_{10} , C = 12_{10} , D = 13_{10} , E = 14_{10} , F = 15_{10} .

Każda "czwórka" bitów zamieniana jest jeden znak:

 $10011100000010000110000_2 = 9C0430_{16}$

KOD ÓSEMKOWY (OCT)

Stosowany w celu skrócenia zapisu naturalnego kodu dwójkowego.

Znaki: 0, 1, 2, 3, 4, 5, 6, 7

Każda "trójka" bitów zamieniana jest jeden znak:

 $100\ 111\ 000\ 000\ 010\ 000\ 110\ 000_2 = 17002060_8$

KOD ALFANUMERYCZNY ASCII

(American Standard Code for Information Interchange)

Siedmiobitowy kod alfanumeryczny ASCII ND – liczba dziesiętna, HEX – liczba szesnastkowa

ND	HEX	Znak	ND	HEX	Znak	ND	HEX	Znak	ND	HEX	Znak
0	00		32	20	SP	64	40	@	96	60	` `
1	01	☺	33	21	!	65	41	Α	97	61	a
2	02	•	34	22	"	66	42	В	98	62	b
3	03	•	35	23	#	67	43	\mathbf{C}	99	63	c
4	04	♦	36	24	\$	68	44	D	100	64	d
5	05	+	37	25	%	69	45	${f E}$,	101	65	e
6	06	•	38	26	&	70	46	\mathbf{F}	102	66	f
7	07	•	39	27	٠,	71	47	\mathbf{G}	103	67	g
8	08		40	28	(72	48	H	104	68	h
9	09	0	41	29)	73	49	Ι	105	69	i
10	0A	\odot	42	2A	*	74	4A	J	106	6A	j
11	0B	o*	43	2B	+	75	4B	K	107	6B	k
12	$\mathbf{0C}$	₽	44	2C	,	76	4C	${f L}$	108	6C	1
13	0D	þ	45	2D	_	77	4D	\mathbf{M}	109	6D	m
14	$0\mathbf{E}$	Л	46	$2\mathbf{E}$		78	4E	N	110	6E	n
15	$\mathbf{0F}$	₽	47	2F	/	79	4F	О	111	6F	0
16	10	▶ .	48	30	0	80	50	P	112	70	p
17	11	◀ -	49	31	1	81	51	\mathbf{Q}	113	71	\mathbf{q}
18	12	İ	50	32	2	82	52	\mathbf{R}	114	72	r
19	13	!!	51	33	3	83	53	S	115	73	s
20	14	9	52	34	4	84	54	${f T}$	116	74	t
21	15	§	53	35	5	85	55	U	117	75	u
22	16	-	54	36	6	86	56	V	118	76	\mathbf{v}
23	17	<u>‡</u>	55	37	7	87	57	W	119	77	w
24	18	†	56	38	8	88	58	X	120	78	X
25	19	1	57	39	9	89	59	Y	121	79	y
26	1A	→ 1	58	3A	:	90	5A	\mathbf{Z}	122	7A	\mathbf{z}
27	1B	←	59	3B	;	91	5B	[123	7B	{
28	1C	L	60	3C	<	92	5C	\	124	7C	1
29	1D	↔	61	3D	=	93	5D]	125	7D	}
30	1E	A	62	$3\mathbf{E}$	>	94	5E	^	126	$7\mathbf{E}$, ~
31	1F	V	63	3F	?	95	5F	_	127	7F	\mathbf{DEL}

ALGEBRA BOOLE'A

George Boole (1815 – 1864) opracował algebrę dotyczącą logiki matematycznej w oparciu o rachunek zdań i teorię mnogości (zbiorów), które to mogą być prawdziwe lub fałszywe. Inne zdania nie istnieją.

Trzy operacje logiczne

KONIUNKCJA, iloczyn logiczny (Λ) $\rightarrow p \Lambda q$ czyli "p i q" ALTERNATYWA, suma logiczna (V) $\rightarrow p V q$ czyli "p lub q" NEGACJA (\neg) $\rightarrow \neg q$ czyli "nie q", "nieprawda, że q"

Algebra Boole'a → **zmienne binarne** → **Shannon**

W oparciu o algebrę Boole'a, w roku 1938 Shannon sformułował algebrę dla zmiennych binarnych.

```
Trzy operacje: suma logiczna (+)
iloczyn logiczny (•)
negacja (', -, /)

(B, +, •, ', 0, 1) gdzie B = {0, 1}
```

suma logiczna (dodawanie logiczne, *lub*, OR): a + b iloczyn logiczny (mnożenie logiczne, *i*, AND): a • b negacja logiczna (dopełnienie, NOT): a', /a, \overline{a}

Algebra Boole'a → przełączanie... (nareszcie elektronika?)

Np.:
$$(a + b) \cdot c = c(a + b)$$

$$(a \cdot \overline{c}) + b = a\overline{c} + b$$

Kontrolka zamkniętych drzwi w samochodzie...

Podział...

Układ kombinacyjny – układ cyfrowy realizujący poprzez swoje działanie *n* funkcji logicznych dla *m* sygnałów dwuwartościowych (0, 1)

Do opisu działań logicznych wykonywanych przez układ kombinacyjny stosujemy algebrę Boole'a, która określa trzy podstawowe operacje logiczne:

negacja

X	$f(x) = \overline{x}$
0	1
1	0

suma logiczna

$\mathbf{x}_1 \mathbf{x}_0$	$f(x) = x_1 + x_0$	
0 0	0	
0 1	1	
1 0	1	
11	1	

iloczyn logiczny

X ₁ X ₀	$f(x) = x_1 \cdot x_0$
0 0	0
0 1	0
1 0	0
11	1

Ponadto operacje sumy i iloczynu mają następujące tożsamości:

1.
$$x + 0 = x$$

2.
$$x+1=1$$

3.
$$x \cdot 0 = 0$$

4.
$$x \cdot 1 = x$$

5.
$$x + x = x$$

$$6. \quad x + \overline{x} = 1$$

7.
$$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$$

8.
$$\mathbf{x} \cdot \overline{\mathbf{x}} = \mathbf{0}$$

oraz prawa:

sklejania
$$X_1X_2 + X_1\overline{X}_2 = X_1$$

rozdzielczości
$$X_1(X_2 + X_3) = X_1X_2 + X_1X_3$$

 $X_1 + X_2X_3 = (X_1 + X_2)(X_1 + X_3)$

pochłaniania
$$X_1(X_1 + X_2) = X_1$$

 $X_1 + X_1X_2 = X_1$

de Morgana
$$\frac{\overline{X_1X_2} = \overline{X_1} + \overline{X_2}}{\overline{X_1} + \overline{X_2}} = \overline{X_1} + \overline{X_2}$$

Metody opisu działania układów kombinacyjnych

1. tablica zależności, tablica prawdy, tablica wartości funkcji logicznej

$\mathbf{X}_2 \mathbf{X}_1 \mathbf{X}_0$	У
000	0
001	0
010	1
011	1
100	0
101	0
110	0
111	1

$\mathbf{x}_1 \mathbf{x}_0$	$y_1 y_0$
0 0	0 0
0 1	0 1
1 0	1 0
11	1 1

Metody opisu działania układów kombinacyjnych – cd.

2. kanoniczny zapis funkcji logicznej

$\mathbf{X}_2 \mathbf{X}_1 \mathbf{X}_0$	У
000	0
001	0
010	1
011	1
100	0
101	0
110	0
111	1

Kanoniczna postać sumacyjna

$$\mathbf{y} = \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2} \mathbf{x}_{1} \mathbf{x}_{0} + \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{0}$$

$$(dla\ y=1)$$

Metody opisu działania układów kombinacyjnych – cd.

2. kanoniczny zapis funkcji logicznej – cd.

$\mathbf{X}_2 \mathbf{X}_1 \mathbf{X}_0$	У
000	0
001	0
010	1
011	1
100	0
101	0
110	0
111	1

Kanoniczna postać iloczynowa

$$y = (\mathbf{X}_2 + \mathbf{X}_1 + \mathbf{X}_0)(\mathbf{X}_2 + \mathbf{X}_1 + \overline{\mathbf{X}}_0)$$
$$(\overline{\mathbf{X}}_2 + \mathbf{X}_1 + \mathbf{X}_0)(\overline{\mathbf{X}}_2 + \mathbf{X}_1 + \overline{\mathbf{X}}_0)$$
$$(\overline{\mathbf{X}}_2 + \overline{\mathbf{X}}_1 + \mathbf{X}_0)$$

$$(dla\ y=0)$$

Metody opisu działania układów kombinacyjnych – cd.

3. zbiory iloczynów i sum

Zbiór sum (dla y = 1)

$$y = \sum (010, 011, 111) x_2 x_1 x_0$$

$$T_3 = \{ 010, 011, 111 \} / T - True /$$

Zbiór iloczynów (dla y = 0)

$$y = \prod (000, 001, 100, 101, 110) x_2 x_1 x_0$$

$$F_3 = \{ 000, 001, 100, 101, 110 \} / F - False /$$

Metody opisu działania układów kombinacyjnych – cd.

4. dziesiętna postać zbiorów iloczynów i sum

Zbiór sum (dla y = 1)

$$y = \sum (2, 3, 7) x_2 x_1 x_0$$

$$T_3 = \{ 2, 3, 7 \}$$

Zbiór iloczynów (dla y = 0)

$$y = \prod (0, 1, 4, 5, 6) x_2 x_1 x_0$$

$$F_3 = \{ 0, 1, 4, 5, 6 \}$$

Metody opisu działania układów kombinacyjnych – cd.

5. siatka Karnaugh

Liczba kratek jest równa 2ⁿ

(n – liczba sygnałów wejściowych)

Metody opisu działania układów kombinacyjnych – cd.

5. siatka Karnaugh – cd.

$$x' \mapsto 0$$

$$x \mapsto 1$$

$$X_3'X_2'X_1'X_0' \mapsto 0000_2 \mapsto 0_{10}$$

$$X_3'X_2'X_1'X_0 \mapsto 0001_2 \mapsto 1_{10}$$

. . .

$$X_3 X_2 X_1' X_0' \mapsto 1100_2 \mapsto 12_{10}$$

. .

Metody opisu działania układów kombinacyjnych – cd.

5. siatka Karnaugh – *cd.*

$\mathbf{X}_2 \mathbf{X}_1 \mathbf{X}_0$	У
000	0
001	0
010	1
011	1
100	0
101	0
110	0
111	1

Zapis funkcji y w postaci tablicy prawdy i siatki Karnaugh

UKŁADY KOMBINACYJNE Bramki logiczne

Bramki podstawowe

Nazwa bramki	Symbol graficzny	Funkcja logiczna	Tablica prawdy
Suma (OR)	a b	y = a + b	ab y 00 0 01 1 10 1 11 1
lloczyn (AND)	ау	y = a b	ab y 00 0 01 0 10 0 11 1
Negacja (NOT)	ау	y = x	a y 0 1 1 0

UKŁADY KOMBINACYJNE Bramki logiczne – *cd.*

Bramki uniwersalne

Nazwa bramki	Symbol graficzny	Funkcja logiczna	Tablica prawdy
Negacja sumy (NOR)		$y = \overline{a + b} = \overline{a} \overline{b}$	ab y 00 1 01 0 10 0 11 0
Negacja iloczynu (NAND)	a b y	$y = \overline{ab} = \overline{a} + \overline{b}$	ab y 00 1 01 1 10 1 11 0
Suma modulo 2 (XOR)	а b — у	y = a b + a b = a⊕b	a b y 0 0 0 0 1 1 1 0 1 1

Bramki logiczne – układ kombinacyjny

Np.:
$$T_3 = \{0,4,5,7\}$$

$$y = x_2'x_1'x_0' + x_2x_1'x_0' + x_2x_1'x_0 + x_2x_1x_0$$
 (postać kanoniczna funkcji logicznej)

Rysujemy wejścia z lewej strony a wyjścia z prawej strony schematu!

Bramki logiczne – układ kombinacyjny

Np.:
$$T_3 = \{0,4,5,7\} \Rightarrow F_3 = \{1,2,3,6\}$$

 $y = (x_2 + x_1 + x_0')(x_2 + x_1' + x_0)(x_2 + x_1' + x_0')(x_2' + x_1' + x_0)$

(postać kanoniczna funkcji logicznej)

Minimalizacja funkcji logicznych

Celem minimalizacji jest zmniejszenie liczby bramek. Stosujemy metodę w oparciu o prawo sklejania algebry Boole'a:

$$x_1 x_2 + x_1 \overline{x}_2 = x_1 (x_2 + \overline{x}_2) = x_1$$

> Siatki Karnaugh

Sklejamy (zakreślamy) taką liczbę kratek, która jest potęgą liczby 2, czyli 1, 2, 4, 8, 16, 32, itd.

Minimalizacja funkcji logicznych – cd.

Minimalizacja funkcji logicznych – cd.

Przykład

Dana jest funkcja logiczna $y = \sum (0, 2, 4, 5)x_2x_1x_0$

Postać sumacyjna (bez minimalizacji)

$$\mathbf{y} = \overline{\mathbf{X}}_{2} \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0} + \overline{\mathbf{X}}_{2} \mathbf{X}_{1} \overline{\mathbf{X}}_{0}$$
$$+ \mathbf{X}_{2} \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0} + \mathbf{X}_{2} \overline{\mathbf{X}}_{1} \mathbf{X}_{0}$$

Przykład – cd.

Minimalizacja "siatką Karnaugh"

$$\mathbf{y} = \overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{0} + \mathbf{x}_{2}\overline{\mathbf{x}}_{1}$$

Przykład – cd.

Minimalizacja "siatką Karnaugh"

$$\mathbf{y} = \left(\mathbf{x}_2 + \overline{\mathbf{x}}_0\right) \left(\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\right)$$

Bramka logiczna NOT

nieparzysta liczba negacji \rightarrow to pojedyncza negacja parzysta liczba negacji \rightarrow to brak negacji

Bramki logiczne NAND i NOR

Bramki logiczne jako negatory

Negacja z bramek NAND i NOR

Bramka XOR jako sterowana negacja

Bramki logiczne – nie używane wejścia

Bramki logiczne – zwiększenie liczby wejść funkcji AND, OR i XOR przy użyciu bramek dwuwejściowych

Bramki logiczne

Układy *AND-OR* można zamienić na równoważne struktury zrealizowane tylko z bramek *NAND*

Bramki logiczne

Układy *OR-AND* można zamienić na równoważne struktury zrealizowane tylko z bramek *NOR*

UKŁADY WIELOWYJŚCIOWE

Należy wykonać syntezę dla każdego wyjścia osobno.

Rysowanie przebiegów czasowych ilustrujących działanie układu kombinacyjnego

W zakresie stałych wartości sygnałów wejściowych określamy wartości sygnałów wyjściowych

PRZYKŁAD SYNTEZY

KROWODOPÓJ – nalewanie wody do koryta gdy jej poziom jest niski, koniec nalewania gdy poziom wody osiągnie odpowiednią wartość...

P1, P2 – czujniki poziomu wody Z – zawór

Stany układu:

P1=0 – woda poniżej P1

P1=1 – woda powyżej P1

P2=0 – woda poniżej P2

P2=1 – woda powyżej P2

Z=0 – zawór zamknięty

Z=1 – zawór otwarty

Możliwe sytuacje → **Działanie**:

P1=0, P2=0 – woda poniżej P1 → nalewanie wody Z=1

P1=1, P2=0 – woda pomiędzy P1 a P2 → nalewanie wody gdy koryto było puste (Z=1) albo woda była nalana do pełna (Z=0)

P1=1, P2=1 – pełne koryto → koniec nalewania, zmykamy zawór Z=0

P1=0, P2=1 – sytuacja nie możliwa! → brak reakcji układu sterującego

" – " oznacza dowolny stan logiczny

$$Z = Z \cdot \overline{P2} + \overline{P1}$$

