Vetores aleatórios

MAE0221 - Probabilidade I Aline Duarte

Funções conjuntamente distribuídas

1. Suponha que estamos interessados em estudar a composição de famílias com três crianças, quanto ao sexo. Defina

X: número de meninos,

$$Y = \begin{cases} 1, & \text{se o primeiro filho for homem,} \\ 0, & \text{se o primeiro filho for mulher,} \end{cases}$$

Z : número de vezes em que houve variação do sexo entre um nascimento e outro, dentro da mesma família.

X e Y v.a. discretas

As probabilidades associadas aos pares de valores nas variáveis X e Y,

$$p(x,y) = P(X = x, Y = y)$$

denotam a probabilidade do evento $\{X=x\}\cap \{Y=y\}$. O conjunto dos valores p(x,y) é denominado a distribuição de probabilidade conjunta de X e Y. Sua representação pode ser feita através da tabela

X e Y v.a. discretas

As probabilidades associadas aos pares de valores nas variáveis X e Y,

$$p(x,y) = P(X = x, Y = y)$$

denotam a probabilidade do evento $\{X=x\} \cap \{Y=y\}$. O conjunto dos valores p(x,y) é denominado a distribuição de probabilidade conjunta de X e Y. Sua representação pode ser feita através da tabela

Tabela 8.3: Distribuição bidimensional da v.a. (X, Y).

(x, y)	p(x, y)
(0, 0)	1/8
(1,0)	2/8
(1, 1)	1/8
(2, 0)	1/8
(2, 1)	2/8
(3, 1)	1/8

Tabela 8.4: Distribuição conjunta das v.a. *X, Y e Z.*

v.u. A, 1 e Z.				
(x, y, z)	p(x, y, z)			
(0, 0, 0)	1/8			
(1, 0, 1)	1/8			
(1, 0, 2)	1/8			
(1, 1, 1)	1/8			
(2, 0, 1)	1/8			
(2, 1, 1)	1/8			
(2, 1, 2)	1/8			
(3, 1, 0)	1/8			

Representação em tabela de dupla entrada

Notem que

$$P(X = 1) = P(X = 1, Y = 0) + P(X = 1, Y = 1) = 2/8 + 1/8 = 3/8$$

da mesma forma

$$P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)$$

+ $P(X = 3, Y = 0)$
= $1/8 + 2/8 + 1/8 + 0 = 1/2$

Representação em tabela de dupla entrada

Notem que

$$P(X = 1) = P(X = 1, Y = 0) + P(X = 1, Y = 1) = 2/8 + 1/8 = 3/8$$

da mesma forma

$$P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0) + P(X = 3, Y = 0)$$

= $1/8 + 2/8 + 1/8 + 0 = 1/2$

Tabela 8.5: Distribuição conjunta de X e Y, como uma tabela de dupla entrada.

Y X	0	1	2	3	p(y)
0	1/8	2/8 1/8	1/8 2/8	0	1/2 1/2
1	0	1/8	2/8	1/8	1/2
p(x)	1/8	3/8	3/8	1/8	1

Distribuição Marginal

Se X e Y são v.a. discretas com função de distribuição conjunta p(x,y), a distribuição de X, (respec. de Y) pode ser obtida com

$$p_X(x) = \sum_y p(x, y)$$
 (respec. $p_Y(y) = \sum_x P(x, y)$)

Essas distribuições recebem o nome de marginais.

2. Suponha que 3 bolas sejam sorteadas de uma urna contendo 3 bolas vermelhas, 4 bolas brancas e 5 bolas azuis. Se X e Y representam, respectivamente, o número de bolas vermelhas e brancas escolhidas, determine a função de probabilidade conjunta de X e Y.

2. Suponha que 3 bolas sejam sorteadas de uma urna contendo 3 bolas vermelhas, 4 bolas brancas e 5 bolas azuis. Se X e Y representam, respectivamente, o número de bolas vermelhas e brancas escolhidas, determine a função de probabilidade conjunta de X e Y.

Tabela 6	.1 Pt	X = i.	Y = i3

1	j 0	1	2	3	Soma da linha = $P(X = i)$
0	$\frac{10}{220}$	$\frac{40}{220}$	30 220	4 220	$\frac{84}{220}$
1	$\frac{30}{220}$	$\frac{60}{220}$	$\frac{18}{220}$	0	$\frac{108}{220}$
2	$\frac{15}{220}$	$\frac{12}{220}$	0	0	$\frac{27}{220}$
3	$\frac{1}{220}$	0	0	0	$\frac{1}{220}$
Soma da coluna = $P{Y = j}$	$\frac{56}{220}$	$\frac{112}{220}$	$\frac{48}{220}$	$\frac{4}{220}$	

3. Suponha que 15% das famílias de certa comunidade não tenham filhos, 20% tenham 1 filho, 35% tenham 2 filhos e 30% tenham 3. Suponha também que, em cada família, cada filho tenha a mesma probabilidade (independente) de ser menino ou menina. Determine a função de probabilidade conjunta do número de meninos e o número de meninas de uma família dessa comunidade.

3. Suponha que 15% das famílias de certa comunidade não tenham filhos, 20% tenham 1 filho, 35% tenham 2 filhos e 30% tenham 3. Suponha também que, em cada família, cada filho tenha a mesma probabilidade (independente) de ser menino ou menina. Determine a função de probabilidade conjunta do número de meninos e o número de meninas de uma família dessa comunidade.

,	0	1	2	3	Soma da linha = $P\{B = i\}$
0	0,15	0,10	0,0875	0,0375	0,3750
1	0,10	0,175	0,1125	0	0,3875
2	0,0875	0,1125	0	0	0,2000
3	0,0375	0	0	0	0,0375
Soma da coluna = $P\{G = j\}$	0,3750	0,3875	0,2000	0,375	

X e Y contínuas

Se X eY são v.a. contínuas sua função densidade (de probabilidade) conjunta f(x,y), satisfaz, para todos os x e y reais,

- (i) $f(x, y) \ge 0$
- (ii) $\iint f(x,y) dx dy = 1$
- (iii) $P(a \le X \le b, c \le Y \le d) = \int_c^d \int_a^b f(x, y) dx dy$

4. Num concurso público para engenheiros, a prova de conhecimentos específicos consta de uma parte teórica e uma parte prática, que devem ser feitas nessa ordem. O prazo máximo para completar a prova (em ambas partes) é de duas horas. Sejam Y o tempo gasto para completar a parte teórica, e X o tempo gasto para completar toda a prova, ambos medidos em horas. Admita que o vetor aleatório (X, Y) tem uma função de densidade conjunta dada pela expressão

$$f(x,y) = \begin{cases} \frac{1}{2}xy & 0 \le y \le x \le 2\\ 0 & c.c. \end{cases}$$

Verifique que f(x, y) é uma densidade conjunta e a probabilidade de que um candidato termine a prova toda em no máximo uma hora.

(a) Domínio de f(.,.)

(b) Representação espacial de f(.,.)

5. A função densidade conjunta de X e Y é dada por

$$f(x,y) = \begin{cases} 2e^{-x-2y} & 0 < x < \infty, \ 0 < y < \infty \\ 0 & c.c. \end{cases}.$$

Calcule

- (a) P(X > 1, Y < 1)
- (b) P(X < Y)
- (c) P(X < a)

Distribuição Marginal

Se X e Y são v.a. contínuas com f.d.p conjunta f(x, y), a f.d.p de X, (respec. de Y) pode ser obtida com

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 (respec. $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$)

Essas distribuições recebem o nome de marginais.

6. Determine as f.d.p de X e Y, no exemplo do concurso público

FDA

Para quaisquer variáveis aleatórias X e Y, a função distribuição acumulada conjunta de X e Y é definida como

$$F(a, b) = P(X \le a, Y \le b) - \infty \le a, b \le \infty$$

$$F(a,b) = \sum_{k: x_k \le a} \sum_{\ell: y_\ell \le b} p(x_k, y_\ell)$$

ullet Se X e Y são v.a. contínuas com função densidade de probabilidade conjunta f(x,y) então

$$F(a,b) = \int_{-\infty}^{b} \int_{-\infty}^{a} f(x,y) dxdy \implies f(x,y) = \frac{\partial^{2} F(x,y)}{\partial x \partial y}$$

- 7. Determine as f.d.a de X e Y, no exemplo do concurso público.
- 8. Determine a f.d.a do Exemplo 5.
- 9. Suponha que um dado honesto seja jogado 9 vezes. Qual a probabilidade probabilidade de que a face 1 apareça três vezes, as faces 2 e 3 apareçam duas vezes cada, as faces 4 e 5 apareçam 1 vez cada, e a face 6 não apareça nenhuma vez.

Distribuição Multinomial

Considere uma sequência de n experimentos independentes e idênticos é realizada. Suponha que cada experimento assuma r resultados possíveis com probabilidades $p_1, p_2, ..., p_r$, com $\sum_{k=1}^r p_k = 1$. Defina X_k a variável que descreve o número de vezes que o k-ésimo resultado apareceu nas n realizações, nesse caso se $\sum_{k=1}^r n_k = n$ temos

$$P(X_1 = n_1, \dots, X_r = n_r) = \frac{n!}{n_1! \, n_2! \, \dots \, n_r!} p_1^{n_1} p_2^{n_2} \, \dots \, p_r^{n_r}$$

Variáveis independentes

Independência entre duas v.a.

Duas v.a. X e Y são ditas independentes se para quaisquer dois conjuntos A e B vale que

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Independência entre duas v.a.

Duas v.a. X e Y são ditas independentes se para quaisquer dois conjuntos A e B vale que

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Em particular, se $A=(-\infty,a]$ e $B=(-\infty,b]$ temos, para todo a e b,

$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$$

Independência entre duas v.a.

Duas v.a. X e Y são ditas independentes se para quaisquer dois conjuntos A e B vale que

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Em particular, se $A=(-\infty,a]$ e $B=(-\infty,b]$ temos, para todo a e b,

$$F(a,b) = P(X \le a, Y \le b) = P(X \le a)P(Y \le b) = F_X(a)F_Y(b)$$

De forma equivalente

• Se X e Y são v.a. discretas a condição de independência pode ser reescrita como

$$p(x,y) = p_X(x)p_Y(y)$$
 para todo x e y

• Se X e Y são v.a. contínuas a condição de independência pode ser reescrita como

$$f(x,y) = f_X(x)f_Y(y)$$
 para todo x e y

- 10. Suponha que n + m tentativas independentes com mesma probabilidade de sucesso p sejam realizadas. Defina X como o número de sucessos nas primeiras n tentativas e Y como o número de sucessos nas m tentativas finais. Mostre que X e Y são independentes.
- 11. Considere a população de todos os apartamentos que, em determinado dia, estejam anunciados para venda no site de uma imobiliária. Sejam X e Y, respectivamente, o número de vagas de garagem e o número de varandas correspondentes a um apartamento anunciado nesse site. A tabela a seguir apresenta a função de probabilidade conjunta e as marginais para essas duas v.a.,s discretas, X e Y. Verifique se X e Y são independentes.

X		Y		$P(X = x_i)$
	0	1	2	
0	0,20	0,15	0,15	0,50
1	0,16	0,12	0,12	0,40
2	0,04	0,03	0,03	0,10
$P(Y = y_j)$	0,40	0,30	0,30	1,00

12. Sejam X e Y v.a. contínuas com f.d.p conjunta dada por

$$f(x,y) = \begin{cases} 6xy^2 & \text{se } 0 \le x, y \le 1\\ 0 & \text{c.c.} \end{cases}$$

Mostre que X e Y são independentes.

13. Verifique se as v.a. X e Y cuja função densidade conjunta é dada abaixo são independentes

$$f(x,y) = \begin{cases} 6e^{-2x}e^{-3y} & \text{se } 0 \le x, y \le \infty \\ 0 & \text{c.c.} \end{cases}$$

14. Um homem e uma mulher decidem se encontrar em certo lugar. Se cada um deles chega independentemente em um tempo uniformemente distribuído entre 12:00 e 13:00, determine a probabilidade de que o primeiro a chegar tenha que esperar mais de 10 minutos.

Independência

De forma geral, n variáveis aleatórias, X_1, \ldots, X_n são ditas independentes se para quaisquer conjuntos A_1, \ldots, A_n vale que

$$P(X_1 \in A_1, X_2 \in A_2, \dots X_n \in A_n) = P(X_1 \in A_1)P(X_2 \in A_2) \dots P(X_n \in A_n)$$

$$= \prod_{i=1}^{n} P(X_i \in A_i)$$

Tomando $A_i = (-\infty, a_i], i = 1..., n$, temos

$$F(a_1, ..., a_n) = \prod_{i=1}^n P(X_i \le a_i) = \prod_{i=1}^n F_{X_i}(a_i)$$

• Se X_1, \ldots, X_n são v.a. discretas com função de probabilidade $p_{X_i}, i=1,\ldots,n$, a condição de independência pode ser reescrita como

$$p(x_1,\ldots,x_n)=p_{X_1}(x_1)p_{X_2}(x_2)\ldots p_{X_n}(x_n)=\prod_{i=1}^n p_{X_i}(x_i)$$

• Se X_1,\ldots,X_n são v.a. contínuas com função densidade de probabilidade $f_{X_i}, i=1,\ldots,n$, a condição de independência pode ser reescrita como

$$f(x_1,\ldots,x_n)=f_{X_1}(x_1)f_{X_2}(x_2)\ldots f_{X_n}(x_n)=\prod_{i=1}^n f_{X_i}(x_i)$$

15. Sejam X, Y, Z variáveis aleatórias independentes e uniformemente distribuídas em (0,1). Calcule $P(X \ge YZ)$.

Funções de variáveis aleatórias (soma, produto e quociente)

16. Considere a função de probabilidade conjunta de X e Y dada por

X / Y	0	1	2
0	1/4	1/8	1/8
1	1/4	0	1/4

Vamos determinar a função de probabilidade de X+Y e X-Y.

16. Considere a função de probabilidade conjunta de X e Y dada por

X / Y	0	1	2
0	1/4	1/8	1/8
1	1/4	0	1/4

Vamos determinar a função de probabilidade de X+Y e X-Y.

(X,Y)	p(x,y)	X+Y	X-Y
(0,0)	1/4	0	0
(0,1)	1/8	1	-1
(0,2)	1/8	2	-2
(1,0)	1/4	1	1
(1,2)	1/4	3	-1

Logo

X+Y	0	1	2	3
prob	1/4	3/8	1/8	1/4

X-Y	-2	-1	0	1
prob	1/8	3/8	1/4	1/4

17. Sejam X e Y v.a. contínuas cuja f.d.p conjunta é dada por

$$f(x,y) = e^{-(x+y)}, \quad 0 \le x, y < -\infty.$$

Determine a função de distribuição acumulada de Z = 2X + Y.

18. Sejam $X \sim Poisson(\lambda_1)$ e $Y \sim Poisson(\lambda_2)$, variáveis aleatórias independentes e seja Z = X + Y. Determine a função de probabilidade de Z.

Soma de v.a. independentes

Proposição

Dadas duas v.a. contínuas X e Y e independentes com f.d.p f_X e f_Y a função de distribuição acumulada de Z=X+Y, chamada de convolução, é dada por

$$F_Z(z) = \int_{-\infty}^{\infty} F_X(z-y) f_Y(y) dy = \int_{-\infty}^{\infty} F_Y(z-x) f_X(x) dx.$$

Além disso a f.p.d de Z é dada por

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) dy = \int_{-\infty}^{\infty} f_Y(z-x) f_X(x) dx.$$

- 19. Se X e Y são variáveis aleatórias independentes, ambas uniformemente distribuídas em (0,1), calcule a função densidade de probabilidade de X + Y.
- 20. Sejam X e Y v.a.'s independentes com a mesma distribuição $Exp(\lambda)$ e seja Z = X + Y. Obtenha a função de densidade de Z.
- 21. Sejam X e Y variáveis aleatórias binomiais independentes com respectivos parâmetros (n, p) e (m, p). Calcule a distribuição de X + Y.
- 22. Determine a f.d.p da soma de duas Normais padrão independentes.

Método Jacobiano bivariado

De forma geral, se jam X_1 e X_2 v.a.'s contínuas com f.d.p conjunta $f(x_1,x_2)$ e g_1 e g_2 duas funções em \mathbb{R} . Considere as variáveis $Y_1=g_1(X_1,X_2)$ e $Y_2=g_2(X_1,X_2)$ e suponha que

- (i) As equações $y_1 = g_1(x_1, y_1)$ e $y_2 = g_2(x_1, x_2)$ podem ser unicamente solucionadas para x_1 e x_2 em termos de y_1 e y_2 , com soluções dadas por $x_1 = h_1(y_1, y_2)$ e $x_2 = h_2(y_1, y_2)$.
- (ii) g_1 e g_2 têm derivadas parciais contínuas em todos os pontos (x_1, x_2) e são tais que, para todo (x_1, x_2) , o determinante 2×2

$$J(x_1, x_2) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} \end{vmatrix} = \frac{\partial g_1}{\partial x_1} \frac{\partial g_2}{\partial x_2} - \frac{\partial g_1}{\partial x_2} \frac{\partial g_2}{\partial x_1} \neq 0$$

Nessas condições

$$f_{(Y_1,Y_2)}(y_1,y_2) = f_{(X_1,X_2)}(h_1(y_1,y_2),h_2(y_1,y_2))|J(h_1(y_1,y_2),h_2(y_1,y_2))|^{-1}$$

23. Sejam X_1 e X_2 variáveis aleatórias conjuntamente contínuas com função densidade de probabilidade f. Sejam $Y=X_1+X_2$ e $Y_2=X_1-X_2$. Determine a função densidade conjunta de Y_1 e Y_2 em termos de f.

Distribuição do produto e quociente de variáveis aleatórias

Sejam X e Y v.a. contínuas com f.d.p conjunta f. A função densidade do produto e do quociente entre X e Y são, respectivamente, dadas por

$$f_{XY}(u) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{u}{x}\right) dx;$$

$$f_{X/Y}(v) = \int_{-\infty}^{+\infty} |y| f(vy, y) dy;$$

24 Sejam X e Y v.a. com f.d.p conjunta

$$f(x,y) = \frac{1}{x^2y^2}, x \ge 1, y \ge 1.$$

Defina Z = XY e W = X/Y e determine a f.d.p conjunta de Z e W.

25 Sejam X e Y v.a. independentes com distribuição Exponencial de parâmetro λ . Defina Z=X+Y e W=X/Y e mostre que Z e W são independentes.

Método Jacobiano geral

Sejam X_1,\ldots,X_n v.a.'s contínuas com f.d.p conjunta f e g_1,\ldots,g_n funções em $\mathbb R$ com derivadas parciais contínuas em todos os pontos. Considere as variáveis $Y_1=g_1(X_1,\ldots,X_n),\ldots,Y_n=g_n(X_1,\ldots,X_n)$. Suponha que

- (i) o sistema de equações $y_i = g_i(x_1, ..., x_n), i = 1, ..., n$, tenha soluções e seja dada por $x_i = h_i(y_1, ..., y_n)$;
- (ii) para todo (x_1, \ldots, x_n) , o determinante $n \times n$

$$J(x_1,\ldots,x_n) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \frac{\partial g_2}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n} \\ \vdots & & & \\ \frac{\partial g_n}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n} \end{vmatrix} \neq 0$$

Nessas condições $f_{(Y_1,\ldots,Y_n)}(y_1,\ldots,y_n)$ é dada por

$$f(h_1(y_1,\ldots,y_n),\ldots,h_n(y_1,\ldots,y_n))|J(h_1(y_1,\ldots,y_n),\ldots,h_n(y_1,\ldots,y_n))|^{-1}$$

26 Sejam X_1, \ldots, X_n v.a.'s exponenciais de taxa λ independentes. Defina

$$Y_i = X_1 + \ldots, X_i, i = 1 \ldots, n.$$

Determine a f.d.p conjunta de Y_1, \ldots, Y_n .

De volta ao exemplo 1.

Determine a E[X+Y] e E[XY] no exemplo dos filhos.

Tabela 8.5: Distribuição conjunta de X e Y, como uma tabela de dupla entrada.

X	0	1	2	3	p(y)
0	1/8	2/8	1/8 2/8	0	1/2
1	0	2/8 1/8	2/8	1/8	1/2
p(x)	1/8	3/8	3/8	1/8	1

De volta ao exemplo 1.

Determine a E[X+Y] e E[XY] no exemplo dos filhos.

Tabela 8.5: Distribuição conjunta de X e Y, como uma tabela de dupla entrada.

X	0	1	2	3	p(y)
0	1/8	2/8 1/8	1/8 2/8	0	1/2
1	0	1/8	2/8	1/8	1/2
p(x)	1/8	3/8	3/8	1/8	1

(x_i, y_j)	X+ Y	XY	$p(x_i, y_j)$
(0, 0)	0	0	1/8
(0, 1)	1	0	0
(1,0)	1	0	2/8
(1, 1)	2	1	1/8
(2, 0)	2	0	1/8
(2, 1)	3	2	2/8
(3, 0)	3	0	0
(3, 1)	4	3	1/8

De volta ao exemplo 1.

Determine a E[X+Y] e E[XY] no exemplo dos filhos.

(x_i, y_j)	<i>X</i> + <i>Y</i>	XY	$p(x_i, y_j)$
(0, 0)	0	0	1/8
(0, 1)	1	0	0
(1, 0)	1	0	2/8
(1, 1)	2	1	1/8
(2, 0)	2	0	1/8
(2, 1)	3	2	2/8
(3, 0)	3	0	0
(3, 1)	4	3	1/8

Tabela 8.10: Distribuição de X+Y.

<i>x</i> + <i>y</i>	0	1	2	3	4
p(x+y)	1/8	2/8	2/8	2/8	1/8

Tabela 8.11: Distribuição de XY.

ху	0	1	2	3
p(xy)	4/8	1/8	2/8	1/8

Valor esperado de um vetor aleatório

Seja (X_1,\ldots,X_n) um vetor aleatório com função de probabilidade conjunta $p(x_1,\ldots,x_n)$ e $g:\mathbb{R}^n\to\mathbb{R}$. O valor esperado de $g(X_1,\ldots,X_n)$ é dado por

$$E[g(X_1,\ldots,X_n)]=\sum_{x_1}\ldots\sum_{x_n}g(x_1,\ldots,x_n)p(x_1,\ldots,x_n)$$

Analogamente,

Valor esperado de um vetor aleatório

Seja (X_1,\ldots,X_n) um vetor aleatório com função densidade de probabilidade conjunta $f(x_1,\ldots,x_n)$ e $g:\mathbb{R}^n\to\mathbb{R}$. O valor esperado de $g(X_1,\ldots,X_n)$ é dado por

$$E[g(X_1,\ldots,X_n)] = \int \ldots \int g(x_1,\ldots,x_n)f(x_1,\ldots,x_n)dx_1,\ldots,dx_n$$

- 27 Sejam X e Y v.a.'s quaisquer. Determine E(g(X,Y)) para os seguintes casos
 - (a) g(x, y) = x
 - (b) g(x, y) = y
 - (c) $g(x, y) = ax + by \text{ com } a, b \in \mathbb{R}$
- 28 Sejam X e Y v.a.'s independentes com f.p.d conjunta f. Suponha que EX e EY sejam finitos e determine E(XY).

Proposição

Se X e Y são v.a. com EX e EY bem definidos, temos

$$E[aX + bY] = aEX + bEY, \ a, b \in \mathbb{R}$$

De forma geral, se $X_1 \dots X_n$ são v.a. com esperança finita então

$$E\Big[\sum_{k=1}^n X_k\Big] = \sum_{k=1}^n EX_k$$

- 21. (cont) Sejam X e Y variáveis aleatórias binomiais independentes com respectivos parâmetros (n, p) e (m, p). Determine E[X + Y].
- 18. (cont) Sejam X_1, \ldots, X_n v.a.'s independentes com distribuição $Poi(\lambda_i), i = 1, \ldots, n$. Determine $E[X_1 + \ldots + X_n]$.