

Proyecto Final Métodos Numéricos 2019

Solución Numérica al Problema de la Cinemática Inversa

Marco Antonio Esquivel Basaldua

CIMAT Descripción de Posición y Orientación

• Se expresa mediante la aplicación de matrices de transformación homogénea.

$$T = egin{bmatrix} R & P \ 0 & 1 \end{bmatrix}$$

CIMAT Cinemática Directa e Inversa

- En cinemática directa se conoce el valor de las articulaciones y se desea conocer la posición del efector final.
- En cinemática inversa se conoce la posición del efector final y se desean conocer los valores de las articulaciones.

Figure 1: Process of manipulation of the structure through a) forward b) inverse kinematics.

El Problema de la Cinemática Inversa

- Las ecuaciones cinemáticas son no lineales
- Puede no haber solución
- Puede haber más de una solución

CIMAT Definición del Problema

• Se tiene un brazo articulado de 3 grados de libertad, cuyos eslabones tienen longitud.

$$l_1, l_2, l_3$$

$$P = egin{bmatrix} l_3C heta_1C heta_2C heta_3 - l_3C heta_1S heta_2S heta_3 + l_2C heta_1C heta_2 \ l_3S heta_1C heta_2C heta_3 - l_3S heta_1S heta_2S heta_3 + l_2S heta_1C heta_2 \ l_1 + l_2S heta_2 + l_3C heta_2S heta_3 + l_3S heta_2C heta_3 \end{bmatrix}$$

Posición inicial del manipulador:

$$P_0 = \left[egin{array}{c} 0 \ -l_3 \ l_1 + l_2 \end{array}
ight]$$

CIMAT Solución numérica

- Las coordenadas del efector final se expresan por P
- La cinemática directa del efector final es $P = f(\theta)$
- La posición deseada del efector final es x_d
- Sea $g(\theta_d) = x_d f(\theta_d)$, el objetivo es usar el método de Newton-Raphson para encontrar θ_d tal que:

$$g(\theta_d) = x_d - f(\theta_d) = 0.$$

Solución numérica

$$x_d = f(heta_d) = f(heta_0) + rac{\partial f}{\partial heta}ig|_{ heta_0} (heta_d - heta_0) + h.\,o.\,t.$$

Truncando la expansión de Taylor:

$$J(\theta_0)\Delta\theta = x_d - f(\theta_0)$$

$$egin{align} \Delta heta &= J^{-1}(heta_0)(x_d - f(heta_0)) \ (heta_1 - heta_0) &= J^{-1}(heta_0)(x_d - f(heta_0)) \ heta_1 &= heta_0 + J^{-1}(heta_0)(x_d - f(heta_0)) \ heta_{i+1} &= heta_i + J^{-1}(heta_i)(x_d - f(heta_i)) \ \end{pmatrix}$$

Se obtiene el set: $\{\theta_0, \theta_1, \theta_2, \ldots\}$, hasta converger a θ_d

Para el calculo de la inversa se utiliza la factorización LU por el método de Doolittle y la solución de sistemas de ecuaciones lineales.

CIMAT Solución numérica

El algoritmo iterativo de Newton-Raphson para encontrar $heta_d$ es:

- 1. Dado x_d y la estimación inicial $heta_0$, inicializar i=0
- 2. Definir $e=x_d-f(heta_i)$. Mientras $||e||>\epsilon$, para un valor pequeño de ϵ
 - \circ Definir $heta_{i+1} = heta_i + J^{-1}(heta_i)e$
 - Incrementar i

CIMAT Resultados

Para un ejemplo en el que:

$$l_1=3,\ l_2=2,\ l_3=2$$

solicitando que se pase por los puntos:

$$P_1=\left[egin{array}{c}2\-3\3\end{array}
ight],\;P_2=\left[egin{array}{c}0\-2\2\end{array}
ight],\;P_3=\left[egin{array}{c}0\-2\5\end{array}
ight],$$

Con los valores de las longitudes dadas se tiene un valor P_0 :

$$P_0 = \left[egin{array}{c} 0 \ -2 \ 5 \end{array}
ight],$$

```
→ CODIGO ./a.out
Visited points:
-2.44929e-16 -2 5
1.99318 -2.9777 2.98835
0.208905 -2.08772 2.10641
-2.07174e-16 -1.97703 4.40638
```

Para un valor $\epsilon = 0.1$

	angles.txt
1	1.5708 1.5708 1.5708
2	1.6708 1.6208 1.6208
3	1.75614 1.69991 1.63712
4	1.83087 1.79347 1.63065
5	1.89688 1.89866 1.60178
6	1.95508 2.01276 1.55047
7	2.00648 2.13363 1.47668
8	2.05198 2.26014 1.37988
9	2.09239 2.39243 1.25838
10	2.12842 2.53232 1.10829
11	2.16067 2.6843 0.921095
12	2.12793 2.61251 1.1143
13	2.09184 2.56526 1.27329
14	2.05141 2.53194 1.41224
15	2.00586 2.51134 1.53404
16	1.9544 2.50263 1.64088
17	1.89611 2.5055 1.7337
18	1.83002 2.51971 1.81277
19	1.75513 2.54484 1.87781
20	1.67053 2.58009 1.92827
21	1.57562 2.62401 1.96342
22	1.57077 2.46655 2.03598 1.5708 2.30154 2.08431
23	
24 25	1.5708 2.14008 2.10636 1.5708 1.98921 2.10189
26	1.5708 1.85616 2.07116
27	1.5708 1.74639 2.01559
28	1.5708 1.6624 1.93728
29	1.5708 1.60421 1.83815
30	1.5708 1.57049 1.71934
31	1.5708 1.55971 1.58079
51	113700 1133371 1130073

Para un valor $\,\epsilon=1 imes10^-12$, se obtiene un set de 122 tríos de ángulos

```
→ CODIGO ./a.out
Visited points:
-2.44929e-16 -2 5
2 -3 3
0.2 -2.1 2.1
2.01609e-16 -2 4.96
```


CIMAT Resultados

CIMAT Conclusiones

- En la actualidad prácticamente todos los manipuladores cuentan con un algoritmo de cinemática inversa.
- Se aplica para tener una solución más generalizada.
- Con este método iterativo se obtiene una transición suave entre los puntos.
- El programa presenta los siguientes puntos de mejora:
 - Blindar el programa para puntos fuera del espacio de trabajo.
 - Generalizar para n eslabones.
 - Mejorar la visualización de resultados

CIMAT Fuentes

- Craig, John J. "Robótica". PEARSON EDUCATION, México, 2006.
- Kevin M. Lynch and Frank C. Park. "Modern Robotics: Mechanics, Planning and Control". 2017
- Lukas Barinka, Roman Berka. "Inverse kinematics Basic Methods".
 Dept. of Computer science and Engineering, Czech Technical University.