(1) MOS and Inverter with medium threshold voltages (30%)

A. Run SPICE to draw the I-V DC curves for PMOS and NMOS with minimum feature size using High Vt, Medium Vt, and Low Vt respectively. (24%)

(i) PMOS High V_t

(ii) PMOS Medium V_t

(iii) PMOS Low V_t

(ix) NMOS High V_t

(x) NMOS Medium V_t

(xi) NMOS Low V_t

B. Keep L equals to L_{min} , design the W of each transistor using medium V_t such that the logic threshold of inverter is at 0.5VDD. Discuss your design procedures and the way you choose your MOS dimensions. Run SPICE to verify your results. (6%)

(i) Discuss my design procedure.

$$\frac{\beta_p}{\beta_n} = \frac{\mu_p}{\mu_n} \times \frac{(t_{ox})_n}{(t_{ox})_p} = \frac{0.014}{0.05} \times \frac{1.15}{1.2} = 0.27$$

上式參數的值我是套製程檔內提供的值。

由上式的手算結果我推斷 NMOS 的 $\frac{w}{L}$ 要是 PMOS 的 0.27 倍。

(ii) HSPICE Simulation

下表是我實際跑 HSPICE 模擬時用的參數:

	W	L	W/L
PMOS	115n	32n	3.59
NMOS	64n	32n	2

由上表可知 NMOS 的 $\frac{w}{\iota}$ 為 PMOS 的 0.55 倍,跟我的手算值 (即 0.27) 有 段差距。

下圖是 Vin vs Vout

(2) Design a CMOS schmitt trigger shown at Fig. 1(b) such that V^+ = 0.54-0.57V and V^- = 0.36-0.33V with CT=VDD (70%)

A. Discuss the difference between Fig. 1(a) and (b). Give the W/L of each device (in table form) of Fig. 1(b) with CT=VDD and discuss your design procedures to determine the size of each transistor using medium V_t . (30%)

(i) Discuss the difference between Fig. 1(a) and (b).

In Fig. 1(b), this circuit is a Schmitt trigger with controllable hysteresis. We can modify V^+ and V^- using V_{CT} even though this circuit has been taped out. However, for the circuit in Fig. 1(a), we have to determine a specific value of V^+ and V^- before taped out. After taped out, the value of V^+ and V^- are fixed and cannot be modified.

(ii) Discuss my design procedures. Here's the formula of V- and V+

$$V^- = \frac{V_{DD} + V_{t_p} + \sqrt{\beta_{n_{eq}}/\beta_{p_{eq}}}V_{t_n}}{1 + \sqrt{\beta_{n_{eq}}/\beta_{p_{eq}}}}$$

$$V^{+} = \frac{V_{DD} + V_{t_p} + \sqrt{\frac{\beta_{n_{eq}}}{\beta_{p_{eq}}}} V_{t_n}}{1 + \sqrt{\frac{\beta_{n_{eq}}}{\beta_{p_{eq}}}}} + \frac{\sqrt{\frac{\beta_{n_{eq}}}{\beta_{p_{eq}}}} (V_{DD} - V_{t_n})}{(1 + \sqrt{K_n}) \left(1 + \sqrt{\frac{\beta_{n_{eq}}}{\beta_{p_{eq}}}}\right)}$$

$$= V^- + \frac{\sqrt{\beta_{n_{eq}}/\beta_{p_{eq}}} (V_{DD} - V_{t_n})}{(1 + \sqrt{K}) \left(1 + \sqrt{\beta_{n_{eq}}/\beta_{p_{eq}}}\right)}$$

$$\beta_{n_{eq}} = \frac{\beta_{N1}\beta_{N2}}{\beta_{N1} + \beta_{N2}}, \beta_{p_{eq}} = \frac{\beta_{P1}\beta_{P2}}{\beta_{P1} + \beta_{P2}}, K = \frac{(W/L)_{N1}}{(W/L)_{N3} \parallel (W/L)_{N4}}$$

從上面的兩個式子可知:

想要讓 V^- 變小就要把 $\beta_{n_{eq}}$ 調大,也就是說 N1 及 N2 的 $\frac{w}{L}$ 要調大,且 P1 及 P2 的 $\frac{w}{L}$ 要調小。

想要讓 V^+ 變大就要把 \sqrt{K} 調小,也就是說 N3 及 N4 的 $\frac{w}{\iota}$ 要調大,而且要比 N1 的 $\frac{w}{\iota}$ 還要大。

下表是我每個 MOS 的參數大小

	W	L	W/L
N1	90n	32n	2.8125
N2	50n	32n	1.5625
N3	800n	32n	25
N4	800n	32n	25
P1	64n	80n	0.8
P2	64n	80n	0.8
Р3	64n	32n	2
P4	64n	32n	2

B. Run SPICE to verify your results. Your report must have the figures of VTC, $I_{N2}\ vs\ V_{in}$, and $I_{N4}\ vs\ V_{in}$ (20%)

(i) $V_{in} \ vs \ V_{out}$

(ii) $I_{N2}\,vs\,V_{in}\,\&\,I_{N4}\,vs\,V_{in}$ while V_{in} decreasing from 0.9v to 0v

(iii) $I_{\rm N2} \ vs \ V_{in} \,\&\, I_{\rm N4} \ vs \ V_{in}$ while V_{in} increasing from 0v to 0.9v

C. Use the same size as in part A, and modify CT to 0.8VDD. Repeat part B to have figures to indicate the new V- and V+ (20%)

(i) V_{in} vs V_{out}

(ii) $I_{N2}\,vs\,V_{in}\,\&\,I_{N4}\,vs\,V_{in}$ while V_{in} decreasing from 0.9v to 0v

(iii) $I_{N2}\,vs\,V_{in}\,\&\,I_{N4}\,vs\,V_{in}$ while V_{in} increasing from 0v to 0.9v

