Számítási modellek

1. előadás

Számítási modellek – a kezdetek

- ► Alex Thue 1910-es évek, sztringek algebrai, kombinatorikai tulajdonságai → a sztringeket átíró szabályrendszer
- Alan Turing és kortársai 1930-as évek közepe: Turing gép, kiszámíthatóság; első számítási modellek (matematikai gépek) és kifejező erejük
- 40-es évek: véges automata formalizálása, 50-es évek vége: veremautomata formalizálása
- Noam Chomsky 1950-es évek a formális grammatika fogalma
- ▶ 1950-es évek: Backus-Naur Forma
- gépi fordítási projektek, matematikai nyelvészethez kapcsolódó munkák, 1950-es 60-as évek
- Rabin és Scott: formális eszközök kifejlesztése számítási modellek kifejezőerejének és korlátainak vizsgálatára
- Chomsky-féle nyelvhierarchia, 1956-64
- 60-as évek: időigény, tárigény, bonyolultsági osztályok,
 NP-teljesség
- új, nemkonvencionális modellek

Alapfogalmak, jelölések

ábécé, betű, szó, szó hossza

Ábécé: Egy véges, nemüres halmaz. Az ábécé elemeit **betűk**nek nevezzük.

Egy V ábécé elemeiből képzett véges sorozatokat V feletti szavaknak vagy sztringeknek nevezzük. Egy $u=t_1\cdots t_n$ szóban lévő betűk számát (n) a szó hosszának nevezzük. Jelölés: |u|=n. A 0 hosszú sorozat jelölése ε , ezt üres szónak nevezzük $(|\varepsilon|=0)$.

Példa:

Legyen $V = \{a, b\}$, ekkor a és b a V ábécé két betűje. abba és aabba egy-egy V feletti szó. |aabba| = 5. aabba és baaba különböző szavak, bár mindkettő 5 hosszú valamint 3 a-t és 2 b-t tartalmaz. A betűk sorrendje számít!

Alapfogalmak, jelölések

az összes szavak halmaza

V* jelöli a V ábécé feletti szavak halmazát, beleértve az üres szót is.

 $V^+ = V^* \setminus \{\varepsilon\}$ a V ábécé feletti, nemüres szavak halmazát jelöli.

Példa: $V = \{a, b\}$, ekkor $V^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}.$

V* szavainak egy lehetséges felsorolása a hosszlexikografikus (shortlex) rendezés szerinti:

- Feltesszük, hogy az ábécé rendezett. (A fenti példában, mondjuk a előbb van, mint b.)
- A rövidebb szó mindig megelőzi a hosszabbat.
- Az azonos hosszúságú szavak az ábécé rendezettsége alapján meghatározott ábécésorrendben követik egymást.

Ez a rendezés egyértelműen meghatározza a szavak sorrendjét.

Műveletek szavakon

konkatenáció

Legyen V egy ábécé továbbá legyenek $u = s_1 \cdots s_n$ és $v = t_1 \cdots t_k$ V feletti szavak (azaz legyen $s_1, \ldots, s_n, t_1, \ldots, t_k \in V$). Ekkor az $uv := s_1 \cdots s_n t_1 \cdots t_k$ szót az u és v szavak konkatenáltjának nevezzük. (Az u szó betűi után írjuk a v szó betűit.)

Nyilván |uv| = |u| + |v|.

Példa:

Legyen $V = \{a, b\}$, valamint u = abb és v = aaaba egy-egy V feletti szó. Ekkor uv = abbaaaba illetve vu = aaabaabb.

Azaz a konkatenáció **általában nem kommutatív**, de asszociatív (azaz u(vw) = (uv)w teljesül minden $u, v, w \in V^*$ -ra)

Műveletek szavakon

i-edik hatvány

Legyen i nemnegatív egész szám és legyen u egy V ábécé feletti szó ($u \in V^*$). Az u szó i-edik hatványa alatt az u szó i darab példányának konkatenáltját értjük és u^i -vel jelöljük.

Konvenció szerint $u^0 := \varepsilon$. Ekkor $u^{n+k} = u^n u^k$ teljesül $(k, n \in \mathbb{N})$

Példa:

Legyen $V = \{a, b\}$ és legyen u = abb. Ekkor $u^0 = \varepsilon$, $u^1 = abb$, $u^2 = abbabb$ és $u^3 = abbabbabb$.

$$(ab)^3 \neq a^3b^3$$
 !!!!

$$(ab)^3 = ababab, \quad a^3b^3 = aaabbb.$$

Műveletek szavakon

tükörkép

Legyen u egy V ábécé feletti szó. Az u szó u^{-1} -gyel jelölt **tükörképén** vagy fordítottján azt a szót értjük, amelyet úgy kapunk, hogy u betűit fordított sorrendben írjuk le. Azaz ha $u = a_1 \cdots a_n, \ a_i \in V, \ 1 \leqslant i \leqslant n$, akkor $u^{-1} = a_n \cdots a_1$.

Példa:

Legyen $V = \{a, b\}$, valamint u = abba és v = baabba egy-egy V ábécé feletti szó. Ekkor $u^{-1} = abba$ és $v^{-1} = abbaab$.

Ha $u = u^{-1}$, akkor u-t palindrom tulajdonságúnak, vagy palindrómának nevezzük.

Tehát abba egy palindróma.

Alapfogalmak, jelölések

részszó, prefix, suffix

Legyen V egy ábécé és legyenek u és v szavak V felett. Az u szó a v szó részszava, ha v = xuy teljesül, valamely $x, y \in V^*$ szavakra.

Ha $x = \varepsilon$, akkor u-t a v szó **prefixének**, ha pedig $y = \varepsilon$, akkor u-t a v szó **suffixének** nevezzük.

Példa:

Legyen $V = \{a, b\}$ és u = abba.

u részszavai: ε , a, b, ab, bb, ba, abb, bba, abba.

u prefixei: ε , a, ab, abb, abba.

u suffixei: ε , a, ba, bba, abba.

abb nem suffixe u-nak!!! A suffix nem a tükörkép szó prefixe!!!

Alapfogalmak, jelölések

nyelv

Legyen V egy ábécé, V^* egy L részhalmazát V feletti nyelvnek nevezzük.

Az üres nyelv (nyelv, amely egyetlen szót sem tartalmaz) jelölése \emptyset . Egy V ábécé feletti nyelv véges nyelv, ha véges számú szót tartalmaz, ellenkező esetben végtelen.

Példák:

Legyen $V = \{a, b\}$ egy ábécé.

- ▶ $L_1 = \{a, ba, \varepsilon\}.$
- $L_2 = \{a^i b^i \mid i \ge 0\}.$
- ► $L_3 = \{uu^{-1} \mid u \in V^*\}.$
- ▶ $L_4 = \{u \mid u \in \{a, b\}^+, u\text{-ban ugyanannyi } a \text{ van, mint } b\}.$

 L_1 véges nyelv, a többi végtelen.

halmazműveletek

Legyen V egy ábécé és legyenek L_1, L_2 nyelvek V felett (vagyis $L_1 \subseteq V^*$ és $L_2 \subseteq V^*$).

 $L_1 \cup L_2 = \{u \mid u \in L_1 \text{ vagy } u \in L_2\}$ (az L_1 és az L_2 nyelv uniója)

 $L_1 \cap L_2 = \{u \mid u \in L_1 \text{ és } u \in L_2\} \text{ (az } L_1 \text{ és } L_2 \text{ nyelv metszete)}$

 $L_1 - L_2 = \{u \mid u \in L_1 \text{ és } u \notin L_2\}$ (az L_1 és az L_2 nyelv különbsége)

Az $L \subseteq V^*$ nyelv komplementere a V ábécére nézve az $\bar{L} = V^* - L$ nyelv.

konkatenáció

Legyen V egy ábécé és $L_1, L_2 \subseteq V^*$. Az L_1 és az L_2 nyelvek konkatenációján az $L_1L_2 = \{u_1u_2 \mid u_1 \in L_1, u_2 \in L_2\}$ nyelvet értjük. Asszociatív, de nyilván nem kommutatív művelet.

Példák:

$$V = \{a, b\}, L_1 = \{ab, bb\}, L_2 = \{\varepsilon, a, bba\},$$
 $L_1L_2 = \{ab\varepsilon, bb\varepsilon, aba, bba, abbba, bbbba\}$
 $= \{ab, bb, aba, bba, abbba, bbbba\}.$ (mindenkit mindenkivel!)
 $L_3 = \{a^{2n}b^{2n} \mid n \in \mathbb{N}\}, L_4 = \{a^{3n}b^{3n} \mid n \in \mathbb{N}\}$
 $L_3L_4 = \{a^{2n}b^{2n}a^{3k}b^{3k} \mid n, k \in \mathbb{N}\}.$

tükörkép nyelv, i-edik hatvány

Legyen V egy ábécé és legyen $L \subseteq V^*$. Ekkor $L^{-1} = \{u^{-1} \mid u \in L\}$ a tükörképe (megfordítása) az L nyelvnek.

Egy L nyelv i-edik hatványát $L^0 := \{\varepsilon\}$ és $L^i := LL^{i-1}$ $(i \ge 1)$ definiálják. Azaz L^i jelöli az L i-edik iterációját a konkatenáció műveletére nézve.

Kleene lezárt

Az L nyelv **iteratív lezártja** (vagy röviden lezártja vagy Kleene-lezártja) alatt az $L^* = \bigcup_{i \ge 0} L^i$ nyelvet értjük.

Az L nyelv **pozitív lezártja** alatt az $L^+ = \bigcup_{i \ge 1} L^i$ nyelvet értjük.

Észrevétel:

Nyilvánvalóan, $L^+ = L^*$, ha $\varepsilon \in L$ és $L^+ = L^* - \{\varepsilon\}$ ha $\varepsilon \notin L$.

Példa: $L = \{a, bb\}$.

Ezen szavak uniója együttesen alkotja L^* -t. L^+ ettől csak annyiban tér el, hogy nincs benne az ε szó.

Nyelvcsaládok

Ha X egy halmaz, jelölje $\mathcal{P}(X)$ az X halmaz hatványhalmazát, azaz $\mathcal{P}(X) = \{A \mid A \subseteq X\}$.

Nyelvcsalád (vagy nyelvosztály) alatt nyelveknek egy halmazát értjük.

Tehát ha V egy ábécé:

- $a \in V$: betű
- $u \in V^*$: szó
- $L \subseteq V^*$ vagy $L \in \mathcal{P}(V^*)$: nyelv
- $\mathcal{L} \subseteq P(V^*)$ vagy $\mathcal{L} \in \mathcal{P}(\mathcal{P}(V^*))$: nyelvcsalád

Példa: $V = \{a, b\}$

- véges nyelvek nyelvcsaládja
- csak b betűvel kezdődő szavakat tartalmazó nyelvek nyelvcsaládja
- reguláris kifejezésekkel leírható nyelvek nyelvcsaládja

Grammatikák

Definíció

Egy $G = \langle N, T, P, S \rangle$ rendezett négyest **grammatikának** (generatív grammatikán vagy (generatív) nyelvtannak) nevezünk ha

- N és T diszjunkt véges ábécék (azaz $N \cap T = \emptyset$). N elemeit nemterminális, T elemeit pedig terminális szimbólumoknak nevezzük.
- $S \in N$ a grammatika kezdőszimbóluma.
- ▶ P rendezett (x, y) párok véges halmaza, ahol $x, y \in (N \cup T)^*$ és x legalább egy nemterminális szimbólumot tartalmaz.

A P halmaz elemeit **szabályoknak** (vagy átírási szabályoknak vagy produkcióknak) hívjuk. A gyakorlatban az (x, y) jelölés helyett szinte mindig az $x \to y$ jelölést használjuk amennyiben \to nem eleme $N \cup T$ -nek.

Grammatikák

Példák:

 $G_1 = \langle \{S, A, B\}, \{a, b, c\}, \{S \rightarrow c, S \rightarrow AB, A \rightarrow aA, B \rightarrow \varepsilon, abb \rightarrow aSb\}, S \rangle$ **nem** grammatika, mivel minden szabály baloldalának tartalmaznia kell legalább egy *N*-beli szimbólumot.

$$G_2 = \langle \{S, A, B, C\}, \{a, b, c\}, \{S \rightarrow a, S \rightarrow AB, A \rightarrow Ab, B \rightarrow \varepsilon, aCA \rightarrow aSc\}, S \rangle$$
 grammatika.

Generatív grammatikák

egylépéses levezetés

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy generatív grammatika és legyen $u, v \in (N \cup T)^*$. A v szó közvetlenül vagy **egy lépésben** levezethető az u szóból G -ben, jelölése $u \Rightarrow_G v$, ha $u = u_1 x u_2$ és $v = u_1 y u_2$, ahol $u_1, u_2 \in (N \cup T)^*$ és $x \to y \in P$.

Példa:

$$G_2 = \langle \{S, A, B, C\}, \{a, b, c\}, \{S \rightarrow a, S \rightarrow AB, A \rightarrow Ab, B \rightarrow \varepsilon, aCA \rightarrow aSc\}, S \rangle.$$

Ekkor $BBaCAa \Rightarrow BBaSca$, $ABB \Rightarrow AbBB$, $BB \Rightarrow B$.

Reláció reflexív, tranzitív lezártja

- Legyenek $X_1, ... X_n$ halmazok és $R \subseteq X_1 \times \cdots \times X_n$, ekkor R-et n-változós relációnak nevezzük.
- ▶ $R \subseteq X \times Y$ és $S \subseteq Y \times Z$ bináris relációk **kompozíciója** $R \circ S = \{(x, z) \subseteq X \times Z \mid \exists y \in Y : (x, y) \in R \land (y, z) \in S\}$
- ▶ $R^1 := R$, $R^i := R \circ R^{i-1}$ ($i \ge 2$) definiálja R i-edik hatványát
- ▶ Ha $R \subseteq X \times X$, akkor $S := R \cup \{(x,x) \mid x \in X\}$ az R reláció reflexív lezártja
- ▶ Ha $R \subseteq X \times X$, akkor $R^+ := \bigcup_{i=1,2,...} R^i$ az R reláció tranzitív lezártja
- ▶ Ha $R \subseteq X \times X$, akkor $R^* := R^+ \cup \{(x,x) \mid x \in X\}$ az R reláció reflexív, tranzitív lezártja

Reláció reflexív, tranzitív lezártja

Példa:

$$X = \{1,2,3,4,5\}, \ R = \{(1,2),(2,3),(3,4),(2,5)\} \ \text{ekkor}$$

$$S = \{(1,2),(2,3),(3,4),(2,5),(1,1),(2,2),(3,3),(4,4),(5,5)\} \ \text{az}$$

$$R \ \text{reflex\'{i}v lez\'{a}rtja}$$

$$R^1 = R = \{(1,2),(2,3),(3,4),(2,5)\}$$

$$R^2 = \{(1,3),(2,4),(1,5)\}$$

$$R^3 = \{(1,4)\}$$

$$R^4 = R^5 = \ldots = \emptyset$$

$$R^+ = \{(1,2),(2,3),(3,4),(2,5),(1,3),(2,4),(1,5),(1,4)\} \ \text{az} \ R$$

$$\text{tranzit\'{i}v lez\'{a}rtja}$$

$$R^* = \{(1,2),(2,3),(3,4),(2,5),(1,3),(2,4),(1,5),(1,4),(1,1),(2,2),(3,3),(4,4),(5,5)\} \ \text{az} \ R \ \text{reflex\'{i}v, tranzit\'{i}v lez\'{a}rtja}$$

Reláció reflexív, tranzitív lezártja

Észrevételek:

- A bináris relációk éppen az irányított gráfok (a reláció elemei megfeleltethetők az irányított éleknek).
- A bináris relációk reflexív, tranzitív lezártja egy olyan gráfnak felel meg, melyben u-ból v-be pontosan akkor van él, ha az eredeti gráfban van (véges) irányított út.
- $ightharpoonup
 ightharpoonup _G$ egy bináris reláció a végtelen $X = (N \cup T)^*$ halmaz felett.
- A \Rightarrow_G egylépéses levezetés reláció tehát természetes módon megad egy végtelen irányított gráfot az $(N \cup T)^*$ csúcshalmazon.
- A \Rightarrow_G^* reflexív tranzitív lezárt gráfban u-ból v-be pontosan akkor van irányított él, ha véges sok egylépéses levezetésen át el lehet jutni u-ból v-be

Grammatikák

többlépéses levezetés

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika és legyen $u, v \in (N \cup T)^*$. u-ból (több lépésben)levezethető v, ha $(u, v) \in \Rightarrow_G^*$. $(\Rightarrow_G^* a \Rightarrow_G \text{ reflex}(v \text{ tranzit}(v \text{ lezártja}))$ u-ból k lépésben levezethető v, ha $(u, v) \in \Rightarrow_G^k$. $(\Rightarrow_G^k a \Rightarrow_G v)$

A kezdőszimbólumból levezethető szavakat mondatformának nevezzük.

Megadunk egy alternatív, közvetlen definíciót is:

Definíció

k-adik hatványa).

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika és legyen $u, v \in (N \cup T)^*$. u-ból (több lépésben) **levezethető** v, ha u = v vagy van olyan $n \geqslant 1$ és $w_0, \ldots w_n \in (N \cup T)^*$, hogy $w_{i-1} \Rightarrow_G w_i$ $(1 \leqslant i \leqslant n)$ és $w_0 = u$ és $w_n = v$. Jelölés: $u \Rightarrow_G^* v$.

Grammatikák

többlépéses levezetés

Ha egyértelmű melyik nyelvtanról van szó, akkor \Rightarrow_G helyett röviden \Rightarrow -t írhatunk.

Példa:

$$G_2 = \langle \{S, A, B, C\}, \{a, b, c\}, \{S \rightarrow a, S \rightarrow AB, A \rightarrow Ab, B \rightarrow \varepsilon, aCA \rightarrow aSc\}, S \rangle.$$

Ekkor $BBaCAa \Rightarrow BBaSca$ és $BBaSca \Rightarrow BBaABca$, tehát $BBaCAa \Rightarrow^* BBaABca$.

 $S \Rightarrow AB \Rightarrow AbB \Rightarrow AbbB$, tehát AbbB egy mondatforma.

Generált nyelv

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy tetszőleges generatív grammatika. A G grammatika által **generált** L(G) **nyelv** alatt az $L(G) = \{w \mid S \Rightarrow_G^* w, w \in T^*\}$ szavakból álló halmazt értjük.

Példák:

• $G = \langle N, T, P, S \rangle$, ahol $N = \{S, A, B\}, T = \{a, b\}$ és $P = \{S \rightarrow aSb, S \rightarrow ab, S \rightarrow ba\}$.

Ekkor $L(G) = \{a^n abb^n, a^n bab^n \mid n \geqslant 0\}.$

• $G_1 = \langle N, T, P, S \rangle$, ahol $N = \{S, A, B\}, T = \{a, b\}$ és $P = \{S \rightarrow ASB, S \rightarrow \varepsilon, AB \rightarrow BA, BA \rightarrow AB, A \rightarrow a, B \rightarrow b\}$.

Ekkor $L(G_1) = \{u \in \{a, b\}^* \mid u$ -ban ugyanannyi a van, mint $b\}$.

Ekvivalens grammatikák

Minden grammatika generál egy nyelvet, de ugyanazat a nyelvet több különböző grammatika is generálhatja.

Két grammatika ekvivalens, ha ugyanazt a nyelvet generálják.

Példa:

$$G_2 = \langle N, T, P, S \rangle$$
, ahol $N = \{S, A, B\}, T = \{a, b\}$ és $P = \{S \rightarrow SS, S \rightarrow aSb, S \rightarrow bSa, S \rightarrow \varepsilon\}$.

Belátható, hogy

 $L(G_2) = \{u \in \{a, b\}^* \mid u$ -ban ugyanannyi a van, mint $b\}$. Így ez a grammatika ekvivalens az előzővel.

Grammatikák Chomsky féle osztályozása

Legyen $G = \langle N, T, P, S \rangle$ egy generatív grammatika. A G generatív grammatika i-típusú (i = 0, 1, 2, 3), ha P szabályhalmazára teljesülnek a következők:

- i = 0: nincs korlátozás,
- i=1: P minden szabálya $u_1Au_2 \rightarrow u_1vu_2$ alakú, ahol $u_1, u_2, v \in (N \cup T)^*, A \in N$, és $v \neq \varepsilon$, kivéve az $S \rightarrow \varepsilon$ alakú szabályt, feltéve, hogy P-ben ilyen szabály létezik. Ha P tartalmazza az $S \rightarrow \varepsilon$ szabályt, akkor S nem fordul elő P egyetlen szabályának jobb oldalán sem,
- i=2: P minden szabálya $A \rightarrow v$ alakú, ahol $A \in N$ és $v \in (N \cup T)^*$,
- ▶ i = 3: P minden szabálya vagy $A \rightarrow uB$ vagy $A \rightarrow u$, alakú, ahol $A, B \in N$ és $u \in T^*$.

Grammatikaosztályba sorolás

Példa: Legyen $G = \langle N, T, P, S \rangle$, ahol $N = \{S, A, B\}, T = \{a, b\}$ és $P = \{S \rightarrow ASB, S \rightarrow \varepsilon, AB \rightarrow BA, BA \rightarrow AB, A \rightarrow a, B \rightarrow b\}$. Szabályról szabályra nézzük meg, hogy az adott szabály melyik típusba engedi sorolni a grammatikát.

$$S \rightarrow ASB$$
 0, 1, 2
 $S \rightarrow \varepsilon$ 0, 1, 2, 3
 $AB \rightarrow BA$ 0
 $BA \rightarrow AB$ 0
 $A \rightarrow a$ 0, 1, 2, 3

 $B \to b$ 0, 1, 2, 3

Az első 2 szabály nem lehet együtt 1-típusú grammatikában.

A 3. és 4. szabály a 0-son kívül mindent kizár, így a grammatika csak a 0-típusba skatulyázható.

Nyelvek Chomsky féle osztályozása

Noam Chomsky (1928 –) amerikai nyelvész, filozófus, politikai aktivista. A generatív nyelvtan elméletének megalkotója, kidolgozója a róla elnevezett Chomsky-hierarchiának. (Wikipédia)

Egy L nyelvet i-típusúnak mondunk, ahol i = 0, 1, 2, 3, ha i-típusú grammatikával generálható. \mathcal{L}_i (i = 0, 1, 2, 3) jelöli az i-típusú nyelvek nyelvosztályát.

Példa: A korábbi 0-típusú G_1 és 2-típusú G_2 grammatikák egyaránt $L = \{u \in \{a,b\}^* \mid u\text{-ban ugyanannyi } a \text{ van, mint } b\}\text{-t generálják,}$ így $L \in \mathcal{L}_2$.

A Chomsky féle grammatikaosztályok elnevezése

- A 0-típusú grammatikákat mondatszerkezetű (phrase-structure) grammatikáknak is nevezzük, ami nyelvészeti eredetükre utal.
- A 1-típusú grammatikák a környezetfüggő (context-sensitive) grammatikák, mert szabályai olyanok, hogy, egy A nemterminális valamely előfordulása egy v szóval csak u_1 és u_2 kontextus jelenlétében helyettesíthető.
- 2-típusú grammatikákat környezetfüggetlen (context-free) grammatikáknak mondjuk, mert szabályai olyanok, hogy az A nemterminális v-vel való helyettesítése bármely kontextusban megengedett.
- A 3-típusú grammatikákat **reguláris** (regular) vagy véges állapotú (finite state) grammatikáknak hívjuk, a véges állapotú automatákkal való kapcsolatuk miatt.

A 0,1,2,3-típusú nyelvek osztályait rendre **rekurzíven felsorolható**, **környezetfüggő**, **környezetfüggetlen**, valamint **reguláris** nyelvosztálynak is mondjuk.

A Chomsky-féle hierarchia

A grammatikák alakjából nyilvánvaló, hogy $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_0$ és $\mathcal{L}_1 \subseteq \mathcal{L}_0$.

Tétel (Chomsky-féle nyelvhierarchia)

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$
.

Itt az \mathcal{L}_2 és az \mathcal{L}_1 nyelvosztályok közötti tartalmazási reláció nem látható azonnal a megfelelő grammatikák definíciójából.

Szintén \mathcal{L}_1 -et tudják generálni a **hossznemcsökkentő** grammatikák. Ezek $p \to q$ szabályaira $|p| \leqslant |q|$ teljesül kivéve az $S \to \varepsilon$ alakú szabályt, feltéve, hogy P-ben ilyen szabály létezik. Ha P tartalmazza az $S \to \varepsilon$ szabályt, akkor S nem fordul elő P egyetlen szabályának jobb oldalán sem.

Grammatikák a gyakorlatban

BNF (Backus-Naur Form) John Backus, Peter Naur ALGOL 60

A BNF egy széles körben használt metanyelv melynek segítségével szabályok alkothatók meg (például egy programozási nyelv szintaktikai szabályai). Építőkövei:

- (név), fogalmak (vagy más néven nemterminálisok)
- ::=, a szabályok bal- és jobboldalának elválasztászára
- a sztringek alkotóelemei (terminálisok)

Egy szabály bal- és jobboldalból áll, köztük ::=, baloldalon pontosan 1 fogalom, jobboldalon terminálisok és fogalmak véges sorozata állhat.

A BNF megfelel a környezetfüggetlen grammatikának. Példa:

```
\begin{split} &\langle \mathsf{azonosito}\rangle ::= \langle \mathsf{betű}\rangle | \langle \mathsf{betű}\rangle \langle \mathsf{azvég}\rangle \\ &\langle \mathsf{azvég}\rangle ::= \langle \mathsf{betű}\rangle | \langle \mathsf{számjegy}\rangle | \langle \mathsf{betű}\rangle \langle \mathsf{azvég}\rangle | \langle \mathsf{számjegy}\rangle \langle \mathsf{azvég}\rangle \\ &\langle \mathsf{betű}\rangle ::= a \mid \cdots \mid z \\ &\langle \mathsf{számjegy}\rangle ::= 0 \mid \cdots \mid 9 \end{split}
```

Kontrollált környezetfüggetlen grammatikák

BNF-fel nem írható le teljeskörűen a programozási nyelvek szintaxisa (lásd pl. deklaráció fogalma, az $\{uu \mid u \in V^*\}$ nyelv nem környezetfüggetlen).

Módosítható-e úgy a környezetfüggetlen grammatikák modellje, hogy a természetes, egyszerű szabályalakot megtartsuk, de a modell kifejező ereje nőjön?

Tudnánk-e nem környezetfüggetlen nyelveket generálni környezetfüggetlen grammatikákkal azáltal, hogy például a produkciós szabályok alkalmazhatóságára feltételeket szabunk.

A válasz igen, nézzünk erre néhány példát!

3 példát nézünk, a programozott grammatikák és a mátrixgrammatikák esetén az alkalmazott szabályok sorrendiségére vonatkozik a kontroll, míg a véletlen szövegfeltételekkel adott grammatikák esetében a szabályok alkalmazhatósága az aktuális mondatforma tulajdonságaitól függ.

Progamozott grammatikák

Környezetfüggetlen programozott grammatikán egy $G = \langle N, T, P, S \rangle$ négyest értünk, ahol

- N és T diszjunkt véges ábécék,
- $S \in N$ a kezdőszimbólum
- ▶ P rendezett hármasok véges halmaza, melyek $r = (p, \sigma, \phi)$ alakúak, ahol p egy környezetfüggetlen szabály, $\sigma, \phi \subseteq P$.

 σ -t az r szabály siker-halmazának, ϕ a szabály kudarc-halmazának nevezzük.

Programozott grammatikák

Jelölje Q a megengedett szabályok halmazát. Kezdetben Q:=P.

Egy $u \in (N \cup T)^*$ mondatformából egy lépésben levezethető a $v \in (N \cup T)^*$ mondatforma, ha van olyan $r = (A \to w, \sigma, \phi) \in Q$, melyre a következők egyike teljesül

- u = xAy és v = xwy valamely $x, y \in (N \cup T)^*$ -ra, ekkor a szabályalkalmazás **sikeres** és $Q := \sigma$,
- u nem tartalmazza A-t és v=u, ekkor a szabályalkalmazás sikertelen és $Q:=\phi$.

Tehát adott mindig megengedett szabályok egy $Q \subseteq P$ részhalmaza. Választunk egy $r \in Q$ szabályt. Amennyiben sikerül a kiválasztott szabályt alkalmazni, akkor az adott szabály siker-halmazából, ha nem járunk sikerrel, akkor pedig a kudarc-halmazából kell a következő szabályt választani.

Az így kapott \Rightarrow reláció reflexív, tranzitív lezártjaként definiáljuk \Rightarrow *-t. $L(G) := \{ w \in T^* \mid S \Rightarrow^* w \}$.

Programozott grammatikák

Ha $r=(p,\sigma,\varnothing)$ minden $r\in P$ szabályra fennáll, akkor a programozott grammatika előfordulásellenőrzés nélküli, egyébként előfordulásellenőrzéses.

Példa: Legyen
$$G = \langle \{S, A\}, \{a\}, S, \{r_1, r_2, r_3\} \rangle$$
, ahol $r_1 = (S \to AA, \{r_1\}, \{r_2\})$ $r_2 = (A \to S, \{r_2\}, \{r_1, r_3\})$ $r_3 = (S \to a, \{r_3\}, \emptyset)$ $S \stackrel{r_1}{\Rightarrow} AA \text{ (siker: } \{r_1\}) \stackrel{r_1}{\Rightarrow} AA \text{ (kudarc: } \{r_2\}) \stackrel{r_2}{\Rightarrow} SA \text{ (siker: } \{r_2\}) \stackrel{r_2}{\Rightarrow} SS \text{ (siker: } \{r_2\}) \stackrel{r_3}{\Rightarrow} aS.$

Az SS-en kudarccal végződött $A \rightarrow S$ átírás után választhattuk volna az r_1 szabályt is, ez újra megduplázta volna az S-ek számát.

G egy előfordulásellenőrzéses programozott grammatika és $L(G) = \{a^{2^n} \mid n \geqslant 0\}.$

Mátrixgrammatikák

Előfordulásellenőrzéses környezetfüggetlen mátrixgrammatikán egy $G = \langle N, T, M, S, F \rangle$ ötöst értünk, ahol

- N és T diszjunkt véges ábécék,
- $S \in N$ a kezdőszimbólum,
- ▶ $M = \{m_1, m_2, \dots, m_n\}$, $n \ge 1$, sorozatok véges halmaza
- $m_i = (p_{i_1}, \dots p_{i_{k(i)}}), k(i) \geqslant 1, 1 \leqslant i \leqslant n$, ahol minden $p_{i_i}, 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant k(i)$, egy környezetfüggetlen szabály, és
- F M-beli sorozatok szabályainak egy részhalmaza, azaz $F \subseteq \{p_{i_j} \mid 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant k(i)\}.$

M elemeit mátrixoknak nevezzük.

Ha $F = \emptyset$, akkor a mátrixgrammatikát előfordulásellenőrzés nélkülinek nevezzük.

Mátrixgrammatikák

Legyen $G = \langle N, T, M, S, F \rangle$ egy tetszőleges mátrixgrammatika. Ekkor $u \in (N \cup T)^*$ -ból **egy lépésben levezethető** a $v \in (N \cup T)^*$ szó az $m_i = (A_{i_1} \rightarrow v_{i_1}, \dots A_{i_{k(i)}} \rightarrow v_{i_{k(i)}}) \in M$ mátrix szerint, ha léteznek $w_1, \dots, w_{k(i)+1} \in (N \cup T)^*$ szavak a következő feltételekkel:

- $w_1 = u \text{ \'es } w_{k(i)+1} = v$
- ha $w_j = x_j A_{i_j} y_j$, valamely $x_j, y_j \in (N \cup T)^*$ -ra, akkor $w_{j+1} = x_j v_{i_i} y_j \ (1 \leqslant j \leqslant k(i))$
- ha A_{i_j} nem fordul elő w_j -ben akkor $w_{j+1}=w_j$ és $A_{i_j}\to v_{i_j}\in F$ $(1\leqslant j\leqslant k(i))$

Jelölés: \Rightarrow_{m_i} vagy röviden \Rightarrow ,

 \Rightarrow^* (többlépéses levezetés) és L(G) (generált nyelv) definíciója a szokásos.

Mátrixgrammatikák

1. Példa: u = XYAX, v = XYCX.

- F bármi, $m = (A \rightarrow B, B \rightarrow C)$, ekkor $u \Rightarrow v$,
- ▶ $F = \emptyset$, $m = (A \rightarrow B, E \rightarrow F, B \rightarrow C)$, ekkor $u \Rightarrow v$,
- ▶ $F \supseteq \{E \rightarrow F\}$, $m = (A \rightarrow B, E \rightarrow F, B \rightarrow C)$, ekkor $u \Rightarrow v$.

2. Példa:

Legyen $G = \langle N, T, M, S, \emptyset \rangle$ egy mátrixgrammatika előfordulásellenőrzés nélkül, ahol $N = \{S, A, B\}, T = \{a, b\}$, és $M = \{m_1, m_2, m_3, m_4, m_5\}$, ahol

$$m_1 = (S \rightarrow AB),$$

 $m_2 = (A \rightarrow bA, B \rightarrow bB),$ $m_4 = (A \rightarrow aA, B \rightarrow aB),$
 $m_3 = (A \rightarrow b, B \rightarrow b),$ $m_5 = (A \rightarrow a, B \rightarrow a).$

 $S \stackrel{m_1}{\Longrightarrow} AB \stackrel{m_4}{\Longrightarrow} aAaB \stackrel{m_4}{\Longrightarrow} aaAaaB \stackrel{m_2}{\Longrightarrow} aabAaabB \stackrel{m_4}{\Longrightarrow} aabaAaabaB \stackrel{m_3}{\Longrightarrow} aababaabab.$

Könnyen látható, hogy $L(G) = \{ww \mid w \in \{a, b\}^+\}.$

Környezetfüggetlen véletlen szövegfeltételekkel adott grammatikán (random context grammar) egy $G = \langle N, T, P, S \rangle$ négyest értünk, ahol

- N és T diszjunkt véges ábécék,
- ▶ $S \in N$ a kezdőszimbólum (axióma),
- ▶ P rendezett hármasok véges halmaza, amelyek (p, Q, R), alakúak, ahol p egy környezetfüggetlen szabály, $Q, R \subseteq N$.

elnevezés: Q-t az (p, Q, R) hármas megengedő (permitting), R-et pedig tiltó (forbidding) kontextusának nevezzük.

Egy környezetfüggetlen véletlen szövegfeltételekkel adott grammatika **előfordulásellenőrzés nélküli**, ha minden $(p, Q, R) \in P$ esetén $R = \emptyset$. **Előfordulásellenőrzéses**: amennyiben $R \neq \emptyset$ is megengedett.

Más elnevezés az előfordulásellenőrzés nélküli esetre: környezetfüggetlen megengedő véletlen szövegfeltételekkel adott grammatika (permitting random context grammar, pRC grammar).

Hasonlóan definálható a környezetfüggetlen tiltó véletlen szövegfeltételekkel adott grammatika (forbidding random context grammar, fRC grammar).

Legyen $G = \langle N, T, P, S \rangle$ egy tetszőleges véletlen szövegfeltételekkel adott grammatika. Ekkor az v szó **egy lépésben levezethető** u-ból $(u, v \in (N \cup T)^*)$, ha létezik $(A \to w, Q, R) \in P$ $x, y \in (N \cup T)^*$, hogy

- u = xAy és v = xwy
- minden Q-beli nemterminális előfordul xy-ban
- semelyik R-beli nemterminális sem fordul elő xy-ban

Jelölés: \Rightarrow . \Rightarrow * (többlépéses levezetés) és L(G) (generált nyelv) definíciója a szokásos.

Példa:

- ▶ A BABaC mondatformára az $(A \rightarrow XY, \{C\}, \{A\})$ szabály alkalmazható, mivel C van, A viszont nincs a BBaC környezetben. $BABaC \Rightarrow BXYBaC$.
- ▶ A BABaC mondatformára az $(A \rightarrow XY, \{A, B\}, \{X\})$ szabály nem alkalmazható, mert nincs az átírandón felül további A a szóban, azaz a BBaC környezetben.

Példa: Legyen $G = \langle N, T, P, S \rangle$ egy véletlen szövegfeltételekkel adott grammatika, ahol $N = \{S, X, Y, A\}, T = \{a\}$, és $P = \{r_1, r_2, r_3, r_4, r_5\}$, ahol

$$r_1 = (S \rightarrow XX, \varnothing, \{Y, A\}),$$

 $r_2 = (X \rightarrow Y, \varnothing, \{S\}),$
 $r_3 = (Y \rightarrow S, \varnothing, \{X\}),$
 $r_4 = (S \rightarrow A, \varnothing, \{X, Y\}),$
 $r_5 = (A \rightarrow a, \varnothing, \{S\}).$

$$S \Rightarrow XX \Rightarrow XY \Rightarrow YY \Rightarrow YS \Rightarrow SS \Rightarrow SXX \Rightarrow XXXXX \Rightarrow$$

 $XYXX \Rightarrow XYYX \Rightarrow XYYY \Rightarrow YYYY \Rightarrow YYSY \Rightarrow SYSY \Rightarrow$
 $SSSY \Rightarrow SSSS \Rightarrow SSAS \Rightarrow SSAA \Rightarrow ASAA \Rightarrow AAAA \Rightarrow$
 $AAAa \Rightarrow aAAa \Rightarrow aaAa \Rightarrow aaaa$.

Végig kényszerpályán a levezetés, egyedül csupa S-nél van opció, ez mindig 2-hatványnál fordul elő.

Tehát
$$L(G) = \{a^{2^n} | n \ge 0\}.$$

Nyelvcsaládok, kifejező erő

 $\mathcal{L}(\mathsf{PR}_{\mathsf{ac}})$, illetve $\mathcal{L}(\mathsf{PR}_{\mathsf{ac}}^{\varepsilon})$ jelöli rendre az előfordulásellenőrzéses ε -mentes környezetfüggetlen szabályokból, valamint a tetszőleges környezetfüggetlen szabályokból álló programozott grammatikák által generált nyelvek osztályát.

Ha a grammatika előfordulásellenőrzés nélküli, akkor az ac index hiányzik.

Hasonlóképpen: $\mathcal{L}(\mathsf{MAT}_{\mathsf{ac}})$, $\mathcal{L}(\mathsf{MAT}_{\mathsf{ac}}^{\varepsilon})$, $\mathcal{L}(\mathsf{RC}_{\mathsf{ac}})$, illetve $\mathcal{L}(\mathsf{RC}_{\mathsf{ac}}^{\varepsilon})$.

Tétel

Fennállnak a következők

$$\mathcal{L}_2 \subset \mathcal{L}(\mathsf{PR}_\mathsf{ac}) = \mathcal{L}(\mathsf{MAT}_\mathsf{ac}) = \mathcal{L}(\mathsf{RC}_\mathsf{ac}) \subset \mathcal{L}_1$$

és

$$\mathcal{L}(\mathsf{PR}^{\varepsilon}_{\mathsf{ac}}) = \mathcal{L}(\mathsf{MAT}^{\varepsilon}_{\mathsf{ac}}) = \mathcal{L}(\mathsf{RC}^{\varepsilon}_{\mathsf{ac}}) = \mathcal{L}_{0}.$$

Nyelvcsaládok, kifejező erő

