Training Data

SAMPLING, LABELING AND SOLUTIONS FOR IMBALANCES

STUDENT: PAULO EDUARDO DA SILVA JUNIOR

Summary

- Importance of Training Data;
- 2. Data Sampling;
- 3. Data Labeling;
- 4. Imbalance Classification and Solutions;

Importance of Training Data

- 1. Data quality is essential for model performance.
- Data collection is challenging and can compromise ML operations.

Data Sampling

- Non-Probability Sampling: Convenience, Snowball.
- 2. Simple Random Sampling: Equal Chance of Selection.
- 3. Stratified Sampling: Inclusion of All Classes.
- Weighted and Reservoir Sampling: Prioritization and Continuous Flow.

Data Labeling

- 1. Manual: Necessary for specific data, but time-consuming.
- 2. Natural: Based on system signals, such as clicks.
- 3. Weak Supervision: Fast labeling via heuristics.
- 4. Implicit and Explicit Labeling: Feedback and lack of response.

Table 4-3. The advantages of programmatic labeling over hand labeling

Hand labeling	Programmatic labeling
Expensive : Especially when subject matter expertise required	Cost saving : Expertise can be versioned, shared, and reused across an organization
Lack of privacy: Need to ship data to human annotators	Privacy : Create LFs using a cleared data subsample and then apply LFs to other data without looking at individual samples
Slow : Time required scales linearly with number of labels needed	Fast: Easily scale from 1K to 1M samples
Nonadaptive : Every change requires relabeling the data	Adaptive: When changes happen, just reapply LFs!

Imbalance Classification and Solutions

- 1. Undersampling and Oversampling: Balancing Classes.
- 2. Cost-Sensitive Learning: Increased Weight for Minority Class Errors.

Figure 4-8. ML works well in situations where the classes are balanced. Source: Adapted from an image by Andrew Ng^{26}

Conclusion

Training data requires an iterative and structured process.

Effective sampling and labeling ensures robust models.

Class balance is essential to avoid bias in the model.