Week 14 Quantile Regression¹ STAT 111

Zhengfei Li (Alex)

Swarthmore College Instructed by Prof. Phil Everson

2025-04-30

¹Acknowledge Prof. Daifeng He's ECON135 Syllabus for suggested readings

The Engel Dataset

- **Description:** 235 sampled households on annual household income (income) and food expenditure (foodexp) for 1857 Belgian working-class households in Belgian francs.
- **Source:** Available in R's quantreg package data(engel)
- ▶ **Goal:** We wish to capture differential spending behavior at the low versus high end of the income distribution

income	foodexp
420.1577	255.8394
541.4117	310.9587
901.1575	485.6800
639.0802	402.9974
750.8756	495.5608

OLS Fit & Its Limitations

► FoodExp ~ Income

- **OLS:** Conditional mean $E[\text{foodexp} \mid \text{income}]$ via minimizing squared error.
- **Limitation:** Non-constant variance.

OLS on log-log scale

▶ log(FoodExp) ~ log(Income)

- > stabilizes variance and linearizes correlation
- Restricted functional-form
- Assume multiplicative error

Quantile Regression

▶ Target: The τ -th conditional quantile $Q_{\tau}(Y\mid X)$, defined by $P(Y\leq Q_{\tau}\mid X)=\tau.$

$$Q_{\tau}(Y \mid X) = X^{\top} \beta_{\tau}$$

Quantile Regression with Engel Dataset

```
ols_mod <- lm(foodexp ~ income, data = engel)
taus <- c(0.05, 0.5, 0.95)
qr_mod <- rq(foodexp ~ income, tau = taus, data = engel)
ols_sum <- summary(ols_mod)
qr_sum <- summary(qr_mod, se = "boot", B = 999)</pre>
```

Table 2: Coefficient estimates with two-decimal precision

Term	Model	Estimate	SE	p_value
income	OLS	0.49	0.01	0
income	tau=0.05	0.34	0.04	0
income	tau=0.5	0.56	0.03	0
income	tau=0.95	0.71	0.03	0

Engel Curves

Quantile Regression Estimators

- Assumptions: Linearity, additivity (in our setup here), independence of observation, large sample size
- **Estimator:**

$$\hat{\beta}_{\tau} = \arg\min_{b} \sum_{i=1}^{n} \rho_{\tau}(y_i - X_i'b),$$

where $\rho_{\tau}(u) = u \left(\tau - I\{u < 0\}\right)$ is the check loss.

- Interpretation: Coefficients shift the τ -th conditional quantile, revealing heterogeneous covariate effects across the distribution.
- Coefficient usually calculated by Linear Programming

Check Loss Function

Estimator:

$$\hat{\beta}_{\tau} = \arg\min_{b} \sum_{i=1}^{n} \rho_{\tau}(y_i - X_i'b),$$

where $\rho_{\tau}(u) = u \left(\tau - I\{u < 0\} \right)$ is the check loss.

Why the Check Loss Recovers Quantiles

Estimator:

$$\hat{\beta}_{\tau} = \arg\min_{b} \sum_{i=1}^{n} \rho_{\tau}(y_{i} - X_{i}'b),$$

where $\rho_{\tau}(u) = u \left(\tau - I\{u < 0\}\right)$ is the check loss.

1. Population objective:

$$L(c) = E[\rho_{\tau}(Y - c)].$$

2. First-order condition:

$$\frac{d}{dc}L(c) = P(Y \le c) - \tau.$$

3. Solution: Setting derivative to zero gives $P(Y \le c^*) = \tau$, so we have unique minimizer $c^* = Q_\tau(Y)$.

Asymptotic Normality & SEs

▶ Under regularity (i.i.d, moment existence, continuity, etc),

$$\sqrt{n}(\hat{\beta}_{\tau} - \beta_{\tau}) \stackrel{d}{\to} N\left(0, \frac{\tau(1-\tau)}{f_{V|Y}(Q_{\tau})^2}\Omega^{-1}\right),$$

where $\Omega = E[XX']$ and $f_{Y|X}$ is the conditional density at Q_τ

- Standard errors: Estimate the sparsity $s(\tau) = 1/f_{Y|X}(Q_{\tau})$ via:
 - \blacktriangleright kernel: $\hat{f}_{Y|X}(Q_{\tau}\mid x) = \frac{1}{n\,h}\sum_{i=1}^{n}K\!\!\left(\frac{y_{i}-X_{i}\prime\hat{\beta}_{\tau}}{h}\right)$
 - or bootstrap: take empirical SD from coefficient estimates of repeated sample draw with replacement
 - summary.rq() in quantreg provides multiple options.

Summary: Comparing CEF vs CQF

Feature	CEF (OLS)	CQF (Quantile)
Target	$E[Y \mid X]$	$Q_{\tau}(Y\mid X)$
Loss	$(Y - m)^2$	$ \rho_{\tau}(Y-q) $
Robustness	Sensitive to outliers,	Robust to outliers,
	variance	tail-specific effects
Assumptions	Homoskedasticity for	No need for constant
	efficiency	variance, Error distribution
		shape unspecified
Inference	Closed-form SEs via	Requires sparsity estimation
	OLS theory	or bootstrap

A taste of Bayesian Quantile Regression

- **Prior**: Common prior for β could be uniform or gaussian.
- Inverse-gamma prior is typically used on σ .
- Asymmetric Laplace pseudo-likelihood
 - $f(u \mid \sigma, \tau) = \frac{\tau(1-\tau)}{\sigma} \exp\bigl[-\rho_\tau(u)/\sigma\bigr], \text{where } \rho_\tau(u) = u(\tau I\{u < 0\}), \text{ parameterized by } \mu, \text{ scale } \sigma, \text{ and } \tau$
 - **Posterior** $p(\beta, \sigma, ... \mid y) \propto p(\beta) p(\sigma) \prod_{i=1}^{n} f(y_i x_i^{\top} \beta \mid \sigma, \tau),$
- There is no closed form for the posterior distribution, but usually explored via MCMC.

References

- 1. Koenker, R., & Hallock, K. F. (2001). Quantile Regression.
 - The Journal of Economic Perspectives, 15(4), 143–156. http://www.istor.org/stable/2696522
- 2. Angrist, J. D., & Jörn-Steffen Pischke. (2008). Mostly harmless econometrics: An empiricist's companion. (1st ed., pp. xiii–xiii). Princeton University Press. https://doi.org/10.1515/9781400829828
- 3. Wikipedia (2025). "Quantile regression."