

Fonte dei dati: The Cancer Genome Atlas

Collaborazione tra il National Cancer Institute e il National Human Genome Research Institute

Mappe estese multidimensionali (espressioni geiche, mutazioni geniche, epigenetica) di 33 tipi di tumore, dei quali 10 rari

Primo dataset pubblico di questo genere, oltre 2 petabytes con 9976 geni associati a 33 tipi di tumore

- Tumori più osservati: carcinoma della mammella (brca), carcinoma della prostata (prad)
- Tumore meno osservato: colangiocarcinoma (chol)

Panoramica sui dati

Dataset analizzato:

- 4476 osservazioni: campioni di materiale genetico di 30 diverse tipologie di cancro
- 9956 attributi:
 - o *Id*: identificativo campione materiale genetico
 - 9954 geni: livello di espressione genica, inteso come numero di copie di RNA prodotte a partire dal gene
 - Label: tipologia di tumore (30 livelli)

Osservazione:

Rispetto al dataset originale del progetto Atlas sono stati eliminati:

- circa 30 geni
- 3 tipi di tumore, tra i più rari
- enorme numero di osservazioni

tuttavia la proporzione delle osservazioni rispetto alle label rispecchia abbastanza quella dei dati originali

Contesto: alcuni concetti base

- ☐ Genoma: totalità dell'informazione ereditaria di un organismo (è codificata nel DNA)
- Geni: regione del DNA che viene tradotta in RNA. Alcuni tipi di RNA (mRNA) codificano per le componenti delle proteine; l'insieme delle proteine funzionali (proteoma) determina l'operatività della cellula (omeostasi).

(Il genoma umano è costituiti da circa 20'000-25'000 geni)

Obiettivo

Identificare espressioni geniche peculiari per i tipi di tumore con lo scopo di individuare quali sono le porzioni del patrimonio genetico sono peculiari per una specifica tipologia di cancro

- PREVENZIONE: Individuare pazienti che hanno alto rischio di essere soggetti ad un tumore
- ✓ TERAPIE: possibilità effettuare cure mirate

- Modelli supervisionati: predire la classe di tumore associata a un particolare tipo di campione di materiale genetico
- Modelli non supervisionati: individuare similarità nei livelli di espressione genica

Preprocessing

No missing values

Problemi:

• Sbilanciamento variabile target

Numero elevato di features:
9954 espressioni geniche

Over sampling bilanciato

• PCA: 136 componenti principali

• Decision Tree: 85 geni

Procedimento

Confronto modelli

	Accuracy	Sensitivity
SVM	0.932	0.898
RF	0.931	0.868
KNN	0.904	0.863
NB	0.888	0.867
NN	0.854	0.759

Confronto modelli

Analizzando i risultati per classi

Obiettivo: individuare i tumori con espressioni geniche caratteristiche e trovare tumori con espressioni geniche simili

- sono stati generati clustering con k = 2,...,30

Risultati:

- distinzione tra cluster non ottima (max SSB/SST = 0,38, max Jaccard = 0,44)
- alcuni tumori sono stati ben identificati da un unico cluster

I tumori ov, pcpg sono ben rappresentati in un unico cluster

Heat map e clustering gerarchico

Obiettivo:

- rappresentazione visiva espressione genica
- Identificare pattern comuni

Riduzione dimensionalità

- Undersampling
- Features selection con decision tree

Esempio

Identificare geni espressi nelle diverse tipologie di cancro

30 tipologie cancro

Si considera il livello medio di espressione genetica

116 geni (decision tree)

Esempio

Identificare geni espressi nelle diverse tipologie di cancro

Esempio: cancro al fegato Geni espressi:

- SLC45A3
- TMOD2
- A1BG
- CYB561
- AMPD2
- BSCL2
- EPHB2
- C20orf194
- TCEA2
- ASRGL1
- TMEM259
- ABCD4

Grazie per l'attenzione

Classificazione: RF

Random Forest:

- creazione di n di alberi
- ciascun albero, partendo da un subset casuale dei dati, fornisce una classificazione
- la classificazione che ha ricevuto più "voti" fornisce la classificazione finale

PREPROCESSING:

Due dataset: originale (senza modifiche) e con oversampling parziale

Due modalità di feature selection su ogni dataset: Decision Tree e PCA

Classificazione: RF

TUNING

Stabilire il numero ottimale di alberi

Metrica utilizzata:

Accuracy

Classificatore scelto:

Random Forest con 300 alberi su dataset bilanciato e precedente feature selection tramite Decision Tree

Classificazione: RF

Risultati

Accuracy = 93.13%

Sensitivity = 80.23%

Risultati per classi:

Accuracy & Sensitivity classe minoritaria (chol) = 69.96% & 40%

Accuracy & Sensitivity classe maggioritaria (brca) = 99.10% & 98.79%

L'algoritmo addestra una rete MLP (Multi-Layer Perceptron) e la utilizza per la classificazione.

PREPROCESSING:

Due dataset: originale (senza modifiche) e con oversampling parziale.

Due modalità di preprocessing su ogni dataset: Standardizzazione o PCA

FEATURE SELECTION:

Due insiemi di variabili utilizzate:

Selezionate da Decision Tree (121 colonne)

Selezionate da Random Forest

TUNING

Stabilire il numero di layers e il valore di decay ottimali

Metriche utilizzate:

- 1. Accuracy
- 2. Sensitivity media

Metodi di validazione:

1. 10-fold cross validation

RISULTATI

Migliore Accuracy: 85%

- dataset originale
- feature selection con Random Forest
- Preprocessing: PCA
- -84-6-30, 1 hidden layer, decay = 0.1

Migliore Sensitivity media 75%

Stesso dataset

L'algoritmo classifica le osservazioni secondo il t. di Bayes, ovvero assegnando ad ogni nuova osservazione la classe che massimizza la probabilità a posteriori della variabile target, date le variabili esplicative, condizionalmente indipendenti tra loro

$$P(\omega/A) = \frac{P(A/\omega)P(\omega)}{P(A)}$$

Prob posteriori ∞ likelihood x Prob priori

- w_i categoria del target con j = 1, ... k
- A variabile esplicativa
- P(A) probabilità del campione
- P(w) probabilità a priori del class attribute
- P(w|A) probabilità a posteriori del class attribute rispetto alla variabile esplicativa
- P(A|w) verosimiglianza della variabile esplicativa dato il class attibute

PREPROCESSING

Dimensionalità del dataset ridotta con:

- 1. PCA
- Feature selection con Decision Tree

RISULTATI

Migliori Accuracy: 88.8%

- dataset originale
- feature selection con Decision tree

Sensitivity:

- più elevata: 1 (su 5 variabili)
- più bassa: 0.28 (class attribute read)

Risultati ottenuti dal classificatore non soddisfacenti..

...provo a migliorarne la performance agendo su:

multicollinearità dei predittori

→ eliminate una serie di var correlate dal set di variabili del Decision Tree

binarizzazione della variabile target

→ create 30 var target binarie, una per ciascuna classe di Label

Multicollinearità

 nessun aumento della performance, in termini di accuracy, dopo aver eliminato le variabili collineari (10 su 121)

Binarizzazione della variabile target

- binarizzazione delle 14 classi meno rappresentate (<100 osservazioni) della variabile target Label
- costruzione del modello e predizione per ciascuna delle 14 variabili target considerate
- stesso processo eseguito anche per la variabile **brca**, la più rappresentata, per confronto
- → Forte impatto su tutte le metriche, performance del modello notevolmente migliorata!

Multicollinearità

 nessun aumento della performance, in termini di accuracy, dopo aver eliminato le variabili collineari (10 su 121)

Binarizzazione della variabile target

- binarizzazione delle 14 classi meno rappresentate (<100 osservazioni) della variabile target Label
- costruzione del modello e predizione per ciascuna delle 14 variabili target considerate
- stesso processo eseguito anche per la variabile **brca**, la più rappresentata, per confronto
- → Forte impatto su tutte le metriche, performance del modello notevolmente migliorata!

L'algoritmo classifica il dato in base alla maggioranza dei voti dei suoi k vicini, secondo la distanza euclidea.

PREPROCESSING

Dimensionalità

La dimensionalità del dataset è stata ridotta con:

- 1. PCA
- 2. Feature Selection con Decision Tree
- 3. Feature Selection con Decision Tree + PCA

Varianza

E' stata effettuata una standardizzazione degli attributi

TUNING

Stabilire il valore di K ottimale

Metriche utilizzate:

- 1. Accuracy
- 2. Sensitivity media

Metodi di validazione:

- 1. 10-fold cross validation
- Bootstrap

RISULTATI

Migliore Accuracy: 90%

- dataset originale
- feature selection con Decision Tree + PCA
- -K = 5

Migliore Sensitivity media tra le classi meno rappresentate: 86%

Migliore Sensitivity minima: 50%

- dataset oversampling selettivo
- PCA
- -K = 3

Classificazione: SVM

L'algoritmo SVM classifica le osservazioni individuando l'iperpiano che massimizza la distanza tra gli elementi più vicini di due classi

Variabile multiclasse: - vengono comparate le classi a coppie

- assegnazione finale dell'osservazione alla classe maggiormente individuata nel corso del confronto a coppie

PREPROCESSING

La dimensionalità del dataset è stata ridotta con:

- 1. PCA
- 2. Feature Selection con Decision Tree

Classificazione: SVM

TUNING

Stabilire la funzione di costo

Metriche utilizzate:

- 1. Accuracy
- 2. Sensitivity media

Metodi di validazione:

10-fold cross validation

Classificazione: SVM

RISULTATI

Migliore Accuracy: 93.23% Miglior Sensitivity: 89.89%

- dataset originale

- PCA

- costo = 10

INDICI SUPERVISED

L'indice di Jaccard non indica una buona corrispondenza fra tipi di tumore e cluster:

- Clustering poco affidabile
- Espressioni geniche simili fra tumori diversi

INDICI UNSUPERVISED

La qualità del clustering non è buona -> non si associano espressioni geniche simili a tumori diversi

FEATURE SELECTION

INDICI SUPERVISED

L'indice di Jaccard non indica una buona corrispondenza fra tipi di tumore e cluster:

- Clustering poco affidabile
- Espressioni geniche simili fra tumori diversi

INDICI UNSUPERVISED

La qualità del clustering è migliorata, ma non è ottima -> non si associano espressioni geniche simili a tumori diversi

I tumori ov, pcpg sono ben rappresentati in un unico cluster

CASO GENI SELEZIONATI

Percentuale di record nel cluster maggioritario

Il tumore ov è ben rappresentato in un unico cluster