

KLAUSUR Digitaltechnik 1

Sommersemester 2023

Prüfungsfach:	Digitaltechnik 1	
Studiengang:	Technische Informatik	
Semestergruppe:	TIB2, IEP2	
Fachnummer:	1052032	
Erlaubte Hilfsmittel:	keine	
Zeit:	90 min.	
Tragen Sie hier bitte Ih	ren Daten ein:	
Name:	Vorname:	Matrikelnummer:
Wichtiger Hinweis für	die Bearbeitung der Aufgaben:	
•	<i>6</i>	

Viel Erfolg wünscht Ihnen

Jonas Fuhrmann und Michael Koidis

Schreiben Sie bitte Ihre Lösungen möglichst auf die Aufgabenblätter.

Sollte der vorgesehene Platz nicht reichen, verwenden Sie bitte jeweils die Rückseite.

Prüfungsfach: Digitaltechnik 1	Sommersemester 2023	HOCHSCHULE
Name, Vorname:	MatNr.:	ESSLINGEN
Boolesche Algebra		
.1 Boolesche Gleichung		(7 Punkte
chaltungsanalyse		
Gegeben ist die boolesche Gleichung: $Y = A \land A$	$C \vee B \wedge \overline{C} \vee A \wedge \overline{B} \vee B \wedge \overline{A}$	
Zeichnen Sie dazugehörige Schaltung		

wie ist die Funktionslange i und die Schachteitiele k der Schaltung i

1 = k =

Funktionstabelle

Bestimmen Sie die Funktionstabelle der booleschen Gleichung $Y = A \wedge C \vee B \wedge \overline{C} \vee A \wedge \overline{B} \vee B \wedge \overline{A}$

	C	В	A			
0	0	0	0			
1	0	0	1			
2	0	1	0			
3	0	1	1			
4	1	0	0			
5	1	0	1			
6	1	1	0			
7	1	1	1			

Prüfungsfach:	Digitaltechnik 1	Sommersemester 2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

1.2 Minimierung (6 Punkte)

Bestimmen Sie die disjunktive Minimalform Y_{DMF} der boolschen Gleichung $Y = A \wedge C \vee B \wedge \overline{C} \vee A \wedge \overline{B} \vee B \wedge \overline{A}$. Übertragen Sie zuerst Ihre Lösung aus Aufgabe 1.1 in die Tabelle 1, füllen dann das KV-Diagramm aus und bestimmen danach die disjunktive Minimalform Y_{DMF} .

	C	В	\boldsymbol{A}	Y
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

 $Y_{DMF} =$

Tabelle 1: Ergebnis aus Aufgabe 1.1

1 =

k =

ichnen Sie die Schaltung der oben bestimmten disjunktiven Minimalform <i>Y_{DMF}</i> ?						

HS Esslingen, Fakultät Informatik und Informationstechnik Seite 3 von 10 © Prof. Dr. R. Marchthaler, M. Sc. Jonas Fuhrmann, M. Sc. Michael Koidis

Prüfungsfach:	Digitaltechnik 1	Sommersemester 2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

2 Zahlendarstellung und Codierung

2.1 Festkommadarstellung

(12 Punkte)

Füllen Sie bitte nachfolgende Tabelle vollständig aus:

		Zahlenwerte (Dezimalzahlen)					
Binärwerte	Hex	Betragszahl	Betragszahl Ganze Zahl Ganze Zahl Ganze Zal				
(8 Bit)	Werte	(dualcodiert)	(Betrag-Vorzeichen)	(2-er Komplement)	(Dual-Offset-Code)		
0001 0010	12						
		138					
			-127				
				+0			
					-8		

Tabelle 2: Umrechnung von Festkommazahlen

Prüfungsfach:	Digitaltechnik 1	Sommersemester 2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

2.2 Zahlendarstellung nach IEEE 754

(5 Punkte)

Wandeln Sie die Dezimalzahl $(25,625)_{10}$ in eine Gleitkommazahl in einfacher Genauigkeit nach IEEE 754 in hexadezimaler Schreibweise um.

Hinweis: Eine Gleitkommazahl in einfacher Genauigkeit (32 Bit) ist nach IEEE 754 wie folgt codiert:

- Das Bit 31 (MSB) kennzeichnet das Vorzeichen.
- Die nächsten 8 Bit 30...23 geben den Exponenten an (Offsetdarstellung um 127).
- Die nächsten 23 Bit 22...0 geben die normalisierte Mantisse ohne die Vorkomma–Eins an.

Abbildung 1: Darstellung von Gleitkommazahl in einfacher Genauigkeit (32 Bit) nach IEEE 754

normalisierte Zahl	土	0 < Exponent < max	Mantisse beliebig
denormalisierte Zahl	士	0000 0000	Mantisse nicht alle Bits 0
Null	±	0000 0000	00
Unendlich	士	1111 1111	00
NaN	士	1111 1111	Mantisse nicht alle Bits 0

Tabelle 3: Sonderfälle Gleitkommazahl in einfacher Genauigkeit (32 Bit) nach IEEE 754

Prüfungsfach:	Digitaltechnik 1	Sommersemester 2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

2.3	Blockcodes	(11 Punkte)
Gege	eben ist die Generatormatrix und die Codeworte $\mathbf{X_0}$ bis $\mathbf{X_3}$	
Erze	ugen sie die Partity-Check-Matrix H^T aus der obigen Generatormatrix G.	
Wie	lautet die mit Hilfe der Generatormatrix G gezeugten Codeworte Y ₀ bis Y ₃ ?	
Wie	groß ist die Hammingdistanz des mit der Generatormatrix G erzeugten Codes?	
Wie	viele Bitfehler können sicher erkannt werden und wie viele Fehler können korrigiert werden?	

Prüfungsfach:	Digitaltechnik 1	Sommersemester 2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

2.4 VHDL (9 Punkte)

Gegeben ist die in VHDL beschriebene Komponente DECREMENTER. Vervollständigen Sie die Komponente so, dass die Funktion Y = (X) - 1 ausgeführt und die Condition Flags, Carry (CF), Overflow (OF), Zero (ZF) und Negative (NF) korrekt berechnet werden!

Tipp: Das Overflow Flag ist dann gesetzt, wenn das MSB des Operanden 1 und das MSB des Ergebnisses 0 entspricht.

```
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY ADDER IS
                 -- 3 Bit Wortaddierer
   PORT(IN1, IN2 : IN STD_LOGIC_VECTOR(2 downto 0);
        C_IN
                 : IN STD_LOGIC;
                  : OUT STD_LOGIC_VECTOR(2 downto 0);
                 : OUT STD_LOGIC;
END ADDER;
ARCHITECTURE BEHAV OF ADDER IS
   SIGNAL result: STD_LOGIC_VECTOR(3 downto 0);
BEGIN
   result <= STD_LOGIC_VECTOR(UNSIGNED('0' & IN1) + UNSIGNED(IN2) + C_IN);
          <= result(2 downto 0);</pre>
   C_OUT
          <= result(3);
END BEHAV;
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY DECREMENTER IS
   PORT(X : IN STD_LOGIC_VECTOR(2 downto 0);
        Y : OUT STD_LOGIC_VECTOR(2 downto 0);
        CF, OF, ZF, NF : OUT STD_LOGIC
   );
END DECREMENTER;
ARCHITECTURE FUNC OF DECREMENTER IS
   SIGNAL SUM : STD_LOGIC_VECTOR(2 downto 0);
   SIGNAL
           _____: STD_LOGIC;
BEGIN
   ADD: ENTITY work.ADDER PORT MAP( => X,
            IN2
                  =>
           C_IN
                  =>
           SUM
                  => SUM,
           C_OUT =>
   );
   Y
      <= SUM
   CF <=
   OF <=
   ZF <=
END FUNC:
```

Prüfungsfach:	Digitaltechnik 1	Sommersemester 2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

3 Hardware

Die in Abbildung 2 dargestellte 8 Bit-ALU enthält neben einem 8 Bit Addierer eine 8 Bit-Logik-Einheit, ein 8-faches AND-Gatter sowie einen Block "Status" zur Bildung des Carry-Flags (CF), Overflow-Flags (OF), Zero-Flags (Z) und Negativ-Flags (N).

Abbildung 2: Aufbau 8-Bit ALU

Die Signale haben folgende Bitbreite:

Signalname	A	В	X	Y	R	K	AR	C_0	C ₇	C_8	CF	OF	Z	N
Breite in Bit	8	8	8	8	8	4	1	1	1	1	1	1	1	1

Tabelle 4: Bitbreite der Signale

AR=0 sperrt das 8-fach AND-Gatter, d.h. $\mathbf{A} = \mathbf{0}$. AR=1 schaltet \mathbf{X} nach \mathbf{A} durch, d.h. $\mathbf{A} = \mathbf{X}$. Die gültigen Steuerworte \mathbf{K} sind der Tabelle 5 zu entnehmen.

Steuerwort (K)	Ergebnis für Stelle B_i	Logik-Funktion
$(0000) = 0_H$	$B_i = 0$	Kontradiktion
$(0001) = 1_H$	$B_i = 1$	Tautologie
$(0010) = 2_H$	$B_i = X_i$	Identität X
$(0011) = 3_H$	$B_i = Y_i$	Identität Y
$(0100) = 4_H$	$B_i = \overline{X}_i$	Bitweise Invertierung X
$(0101) = 5_H$	$B_i = \overline{Y}_i$	Bitweise Invertierung Y
$(1000) = 8_H$	$B_i = X_i \vee Y_i$	OR
$(1001) = 9_H$	$B_i = X_i \wedge Y_i$	AND

Tabelle 5: Wirkung des Steuersignals (K) auf B_i in Abhängigkeit von X_i und Y_i (i = 0, ..., 7).

Prüfungsfach:	Digitaltechnik 1	Sommersemester 2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

3.1 ALU (9 Punkte)

Mit Hilfe der ALU in Abbildung 2 soll die Operation " sll_1 " $\mathbf{R}=(\mathbf{X})*2$ mit $\mathbf{X}=(43)_{16}$ durchgeführt werden. Welche Werte müssen die Signale \mathbf{K} , \mathbf{AR} und $\mathbf{C_0}$ annehmen, wenn die in Tabelle 5 aufgeführten Steuerworte zur Verfügung stehen?

$$K = AR = C_0 =$$

Führen Sie ein, sll_1 " mit $\mathbf{X} = (\mathbf{43})_{\mathbf{16}}$ so durch, wie sie die obige Schaltung ausführt, und vervollständigen Sie die nachfolgende Tabelle 6:

		Dezimaler Wert als		
		Betragszahl	Ganze Zahl	
	Binärwerte	im Dualcode i	m 2er Kompl.	
Operand 1 X=	=			
Operand 1 A=	=			
Operand 2 B=	=			
Übertrag C=	=			
Ergebnis R=	=			

Tabelle 6: Schema für die Operation " sll_1 "

Bestimmen Sie die Status-Flags und tragen Sie diese in die Tabelle 7 ein.

CF	OF	Z	N

Tabelle 7: Statuswort der ALU nach der Operation

Platz für Nebenrechnungen:

Prüfungsfach:	Digitaltechnik 1	Sommersemester 2023	HOCHSCHULE
Name, Vorname:		MatNr.:	ESSLINGEN

3.2 Speicherelemente

(7 Punkte)

Tabelle 8: Verkürzte Funktionstabelle eines Jump-Kill-FlipFlops

Wie nennt man die in der Schaltung in Abbildung 3 verwendete Art der Taktsteuerung?

Ergänzen Sie im folgenden Impulsdiagramm das Zeitverhalten der Schaltung aus Abbildung 3. Die Gatterlaufzeiten können vernachlässigt werden. *Tipp: Eine Verzögerung kann dabei helfen Fehler zu vermeiden*.

