ET4020 - Xử lý tín hiệu số Biến đổi Fourier (Nhiều buổi)

TS. Đỗ Lê Phú Viện Điện tử - Viễn thông, Trường Đại học Bách Khoa Hà Nội

HK1 năm học 2013-2014

Tổng kết biến đổi Fourier

- Biến đổi Fourier tín hiệu liên tục
 - Tuần hoàn
 - Không tuần hoàn
- Biến đổi Fourier tín hiệu rời rạc
 - Tuần hoàn
 - Không tuần hoàn

Tín hiệu rời rạc không tuần hoàn

$$x(n) \xrightarrow{\mathrm{FT}} X(e^{j\omega}) = \mathrm{FT}\{x(n)\} = \sum_{x=-\infty}^{\infty} x(n)e^{-j\omega n}$$

- Tuần hoàn với chu kỳ 2π
- ▶ Phổ biên độ: $|X(e^{j\omega})|$, và phổ pha: $\arg\{X(e^{j\omega})\}$.
- Biến đổi ngược:

$$X(e^{j\omega}) \xrightarrow{\text{IFT}} X(n) = \text{IFT}\{X(e^{j\omega})\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Các tính chất của FT

Quan hệ với biến đổi z:

$$X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}$$

Điều kiện hội tụ:

$$\sum_{n=-\infty}^{\infty} |x(n)| < \infty$$

Một hệ thống LTI có đáp ứng tần số khi và chỉ khi nó ổn định.

- Tuyến tính, dịch thời gian, dịch tần số, chập, v.v.
- Các tính chất đối xứng
- Quan hệ Parseval

$$\sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

▶ Định lý Wiener - Khintchine: Nếu $x(n) \in \mathbb{R}$ thì

$$\operatorname{FT}\{r_{xx}(n)\} = S_{XX}(e^{j\omega}) := |X(e^{j\omega})|^2$$

trong đó $S_{XX}(e^{j\omega})$ là phổ mật độ năng lượng của x(n).

Ví dụ của FT và IFT

- 1. Tim $X(e^{j\omega})$, $|X(e^{j\omega})|$ và $\arg\{X(e^{j\omega})\}$ của các dãy sau đây:
 - (a) $x(n) = \delta(n)$
 - (b) $x(n) = \delta(n-2)$
 - (c) $x(n) = \delta(n-2) \delta(n)$
 - (d) $x(n) = rect_N(n)$
 - (e) $x(n) = (0.5)^n u(n)$
 - (f) x(n) = u(n)
- Xét bộ lọc thông thấp lý tưởng có đáp ứng tần số (trong một chu kỳ) như sau:

$$H_{lp}(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

- (a) Hãy tìm đáp ứng xung $h_{lp}(n)$ của bộ lọc này.
- (b) Giải bài toán cho trường hợp bộ lọc thông cao

Ví dụ phổ biên độ và pha

• rect₁₀(n)

Biến đổi Fourier rời rạc

Dãy tuần hoàn

Khái niệm

$$\tilde{x}(n) = \tilde{x}(n-N), \forall n$$

- ▶ Chu kỳ $N \in \mathbb{Z} \to \text{ký hiệu } \tilde{x}(n)_N$.
- ► Tồn tại khai triển Fourier
- Khác hệ số N so với khái niệm chuỗi Fourier cho tín hiệu tuần hoàn trong môn Tín hiệu và hệ thống!

Tính chất

- ► Tuyến tính, dịch thời gian, dịch tần số
- Đối ngẫu: Nếu

$$\tilde{x}(n) \stackrel{\mathrm{DFS}}{\longleftrightarrow} \tilde{X}(k)$$

thì

$$\tilde{X}(n) \stackrel{\mathrm{DFS}}{\longleftrightarrow} N\tilde{x}(-k)$$

Các tính chất đối xứng

Chập tuần hoàn

$$\tilde{x}_1(n) \stackrel{\text{DFS}}{\longleftrightarrow} \tilde{X}_1(k)$$
 $\tilde{x}_2(n) \stackrel{\text{DFS}}{\longleftrightarrow} \tilde{X}_2(k)$

Nếu $\tilde{X}_3(k) = \tilde{X}_1(k)\tilde{X}_2(k)$ \longrightarrow Chập tuần hoàn:

$$\tilde{x}_3(n)_N = \tilde{x}_1(n)(\tilde{*})_N \tilde{x}_2(n) = \sum_{m=0}^{N-1} \tilde{x}_1(m) \tilde{x}_2(n-m)$$

Năm bước tính chập tuần hoàn

```
Tim \tilde{x}_3(n_0), \forall n_0 \in [0, (N-1)]
```

- (1) Lấy đối xứng $\tilde{x}_2(m) \rightarrow \tilde{x}_2(-m)$
- (2) Dịch theo trục thời gian đi n₀ mẫu
- (3) Nhân: $\tilde{v}_{n_0}(m) = \tilde{x}_1(m)\tilde{x}_2(n_0 m)$ trong đoạn [0, (N-1)]
- (4) Tính tổng: Cộng tất cả thành phần khác không của $\tilde{v}_{n_0}(m)$ trong đoạn $[0,(N-1)] \to \tilde{x}_3(n_0)$
- (5) Kết quả là một dãy tuần hoàn với chu kỳ N: $\tilde{x}_3(n_0) = \tilde{x}_3(n_0 + rn), \quad \forall r \in \mathbb{Z}.$

Ví dụ tính chập tuần hoàn

Kết quả tính chập tuần hoàn

Biến đổi Fourier rời rạc cho dãy không tuần hoàn

Xét tín hiệu x(n) có chiều dài hữu hạn N, nếu lấy đủ mẫu (tối thiểu N / một chu kỳ) của phổ $X(e^{j\omega})$, thì có thể khôi phục lại được x(n).

→ Biến đổi Fourier rời rạc DFT cho dãy có chiều dài hữu hạn!

Cho x(n) với chiều dài hữu hạn N: x(n) = 0, $\forall n < 0, n > N - 1$, ta có dãy tuần hoàn $\tilde{x}(n)$:

$$\tilde{x}(n) = x(n \mod N)$$

Lấy một chu kỳ từ DFS $\{\tilde{X}(k)\}$:

$$X(k) = \begin{cases} \tilde{X}(k), & 0 \le k \le (N-1) \\ 0, & k \text{ còn lại} \end{cases}$$

Cặp biến đổi Fourier rời rạc

$$X(k) = DFT\{x(n)\} = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}, \forall k \in [0, N-1]$$

$$x(n) = \text{IDFT}\{X(k)\} = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}, \forall n \in [0, N-1]$$

Ví dụ: Tìm DFT N-điểm của $x(n) = rect_M(n)$ cho ba trường hợp: M = 1, M = N và 1 < M < N.

Dạng ma trận

Xét ma trận $\mathbf{W}_{N\times N}$ trong đó $W_{kn}=W_N^{kn}$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_N^1 & W_N^2 & \cdots & W_N^{(N-1)} \\ 1 & W_N^2 & W_N^4 & \cdots & W_N^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{(N-1)} & W_N^{(N-1)2} & \cdots & W_N^{(N-1)^2} \end{bmatrix}$$

và

$$X = [X(0), X(1), \dots, X(N-1)]^T$$

 $x = [x(0), x(1), \dots, x(N-1)]^T$

DFT và IDFT có thể được biểu diễn dưới dạng:

$$X = Wx$$

 $x = \frac{1}{N}W^{H}X$

Dịch vòng: chu kỳ của t/h tuần hoàn sau dịch

Dịch vòng: Đặt lên vòng tròn và xoay quanh tâm

Tính chất dịch

▶ Dịch thời gian

DFT
$$\{x(n - n_0)_N\} = e^{-j(2\pi/N)kn_0}X(k)$$

▶ Dịch tần số

DFT
$$\{e^{j(2\pi/N)k_0n}x(n)\}=X(k-k_0)N$$

Tính chất đối ngẫu

Nếu

$$DFT\{x(n)\} = X(k)$$

thì

$$DFT\{X(n)\} = Nx(-k)_N$$

Tính chất đảo trục thời gian

Nếu

$$DFT\{x(n)\} = X(k)$$

thì

$$DFT\{x(-n)_N\} = X(-k)_N$$

Tính chất đối xứng

- (a) DFT $\{x^*(n)\} = X^*(-k)_N$
- (b) DFT $\{x^*(-n)_N\} = X^*(k)$
- (c) DFT{Re[x(n)]} = $\frac{1}{2}[X(k) + X^*(-k)_N]$
- (d) DFT $\{\frac{1}{2}[x(n) + x^*(-n)_N]\} = \text{Re}[X(k)]$
- (e) Nếu $x(n) \in \mathbb{R}$
 - $X(k) = X^*(-k)_N = X^*(N-k)$
 - $\operatorname{Re}[X(k)] = \operatorname{Re}[X(N-k)]$
 - $\blacktriangleright \operatorname{Im}[X(k)] = -\operatorname{Im}[X(N-k)]$
 - |X(k)| = |X(N-k)|
 - $\Rightarrow \arg\{X(k)\} = -\arg\{X(N-k)\}$

Định nghĩa chập vòng

$$x_3(n)_N = x_1(n)(*)_N x_2(n) = \sum_{m=0}^{N-1} x_1(m) x_2(n-m)_N, \quad \forall n \in [0, N-1]$$

Áp dụng DFT ta có:

DFT
$$\{x_1(n)(*)Nx_2(n)\} = X_1(k)X_2(k)$$

Cách tính chập vòng:

- ▶ Miền thời gian
- ► Miền tần số

Ví dụ: Tính chập vòng 5-điểm (N = 5) của hai dãy sau:

$$x_1(n) = \text{rect}_4(n) + 0.5\delta(n-4)$$

$$x_2(n) = \begin{cases} 1 - \frac{n}{4}, & 0 \le n \le 4 \\ 0, & n \text{ còn lại} \end{cases}$$

Ma trận chập vòng

$$\begin{aligned} \mathbf{x}_3 &= \mathbf{X}_2 \cdot \mathbf{x}_1 \\ \text{trong d\'o} \ \mathbf{x}_3 &= [x_3(0), x_3(1), \cdots, x_3(N-1)]^T, \\ \mathbf{x}_1 &= [x_1(0), x_1(1), \cdots, x_1(N-1)]^T \ \text{và} \ \mathbf{X}_2 \ \text{là (circulant matrix):} \end{aligned}$$

$$\mathbf{X}_{2} = \begin{bmatrix} x_{2}(0) & x_{2}(N-1) & \cdots & x_{2}(1) \\ x_{2}(1) & x_{2}(0) & \cdots & x_{2}(2) \\ \vdots & \vdots & \ddots & \vdots \\ x_{2}(N-1) & x_{2}(N-2) & \cdots & x_{2}(0) \end{bmatrix}$$

- ▶ Dạng ma trận của chập tuyến tính → ma trận Toeplitz!
- Làm thế nào để tính chập vòng bằng Matlab?

Quan hệ chập vòng và chập

Cho hai dãy có chiều dài hữu hạn, x(n): $[0 \cdots (N-1)]$ và h(n): $[0 \cdots (M-1)]$. Nếu

$$y_1(n) = x(n) * h(n)$$

và

$$y_2(n) = x(n)(*)_L h(n)$$

- (a) Với những giá trị nào của L thì $y_1(n) = y_2(n)$, $\forall n$?
- (b) Nếu L = N thì tại những thời điểm n nào ta có $y_1(n) = y_2(n)$?

Quan hệ Parseval

$$\sum_{n=0}^{N-1} x(n)y^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)Y^*(k)$$

Nếu x(n) = y(n):

$$\sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$$

Bài tập

- Viết chương trình Matlab để vẽ phổ biên độ và phổ pha của một dãy có chiều dài hữu hạn bất kỳ
- Sử dụng hàm freqz trong Matlab để vẽ đáp ứng tần số của một hệ thống LTI từ phương trình sai phân tuyến tính hệ số hằng.
- 3. Lấy mẫu tần số. Cho dãy x(n) có chiều dài hữu hạn L với phổ $X(e^{j\omega})$ (chu kỳ 2π). Để biểu diễn phổ tín hiệu, người ta lấy các mẫu tại tần số $\omega = k \frac{2\pi}{N}$ để thu được $X(e^{jk \frac{2\pi}{N}})$ với chu kỳ lấy mẫu $\frac{2\pi}{N}$. Với những giá trị nào của N thì ta có thể tái tạo lại hoàn toàn x(n) từ các mẫu $X(e^{jk \frac{2\pi}{N}})$?