Department of Al, University of Seoul Machine Learning and Artificial Intelligence Lab

Deep Learning

Numerical Computation

Kyungwoo Song

Numerical Computation

Overflow and Underflow

Overflow and Underflow

- We need to represent infinitely many real numbers with a finite number of bit patterns
- For almost all real numbers, we incur some approximation error
- Underflow
 - Numbers near zero are rounded to zero
 - $\frac{1}{x}$, $\log x$, ...
- Overflow
 - Overflow occurs when number with large magnitude are approximated as ∞ or -∞

```
import numpy as np import torch
```

```
[48] z = 65504 * 2
x1 = np.asarray(1.0+z,dtype=np.float16)
x2 = np.asarray(1.0+z,dtype=np.float32)
x3 = np.asarray(1.0+z,dtype=np.float64)
print(x1,x2,x3)
```

inf 131009.0 131009.0

```
z = 3.4e39
x1 = np.asarray(1.0+z,dtype=np.float16)
x2 = np.asarray(1.0+z,dtype=np.float32)
x3 = np.asarray(1.0+z,dtype=np.float64)
print(x1,x2,x3)
```

inf inf 3.4e+39

```
z = 1.8e308
x1 = np.asarray(1.0+z,dtype=np.float16)
x2 = np.asarray(1.0+z,dtype=np.float32)
x3 = np.asarray(1.0+z,dtype=np.float64)
print(x1,x2,x3)
```

inf inf inf

Softmax function

Overflow and Underflow

- Softmax function
 - $softmax(x)_i = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)}$
- When all of the x_i are equal to some constant c
 - If c is very negative, exp(c) will underflow
 - If c is very large and positive, exp(c) will overflow
- Simple algebra solves the numeric problem
 - $softmax(x)_i = softmax(x+c)_i$
 - $z = x \max_i x_i$
 - Largest argument to exp being 0
 - => rules out the possibility of overflow in the numerator
 - ❖=> rules out the possibility of underflow in the denominator

Matrix Norm

Poor Conditioning

- $||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}$
 - $= \max_{\|x\|=1} \|Ax\|_p (\|cx\| = \|c\| \|x\|)$
 - maximum amount by which Ax can lengthen any unit-norm input
- For p=2, $||A||_p=\sqrt{\lambda_{\max(A^TA)}}=\max_i\sigma_i$ (The largest singular value)
 - σ_i : singular value
- Why?

•
$$\sup_{\|x\|_2=1} \|Ax\|_2 = \sup_{\|x\|_2=1} \|U\Sigma V^T x\|_2$$
 (by SVD)
$$= \sup_{\|x\|_2=1} \|\Sigma V^T x\|_2$$

$$= \sup_{\|y\|_2=1} \|\Sigma y\|_2 \ (y = V^T x)$$

$$= \sup_{\|y\|_2=1} \|\Sigma y\|_2 \ (y = V^T x)$$

$$= \sup_{\|y\|_2=1} \|\Sigma y\|_2 \ (y = V^T x)$$
when $y = (1, ..., 0)^T$

- ❖U and V are unitary matrix, $U^T = U^{-1}$ (정확하게는 conjugate transpose)
- $||ux_0||_2^2 = x_0^T U^T U x_0 = x_0^T x_0 = ||x_0||_2^2$ for some vector x_0
- $||y||_2 = ||V^T x||_2 = ||x||_2 = 1$

https://math.stackexchange.com/questions/586663/why-does-the-spectral-norm-equal-the-largest-singular-value

Condition Number

Poor Conditioning

- Condition number of a matrix A
 - How numerically stable any computations involving A will be
 - $\kappa(A) = ||A|| \cdot ||A^{-1}||$
 - $\kappa(A) \ge 1$
 - |A|: l_2 norm unless stated otherwise
- A is well-conditioned if $\kappa(A)$ is small
- A is ill-conditioned if $\kappa(A)$ is large
 - A large condition number means A is nearly singular (non-invertible)
 - A better measure of nearness to singularity than the size of the determinant
 - Example) $A = 0.1I_{100 \times 100}$
 - $det(A) = 10^{-100}$
 - $\star \kappa(A) = 1$
 - \triangleright A is well-conditioned (Ax is stable)

$$\kappa(A) = \frac{\sigma_{max}}{\sigma_{min}}$$
 for l_2 norm

- $\sigma_{max}(A^{-1}) = 1/\sigma_{min}(A)$
- The ratio of the largest to smallest singular values

Condition Number

Poor Conditioning

- Consider a linear system of equations
 - Ax = b
 - If A is non-singular, the unique solution is $x = A^{-1}b$
 - Suppose we change b to $b + \Delta b$
 - The new solution must satisfy

• A is well-conditioned if a small Δb results in a small Δx

• Example)
$$A = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 + 10^{-10} & 1 - 10^{-10} \end{pmatrix}$$
, $A^{-1} = \begin{pmatrix} 1 - 10^{10} & 10^{10} \\ 1 + 10^{10} & -10^{10} \end{pmatrix}$

• Solution for b = (1,1) is x = (1,1)

$$\Delta x = A^{-1} \Delta b = \begin{pmatrix} \Delta b_1 - 10^{10} (\Delta b_1 - \Delta b_2) \\ \Delta b_1 + 10^{10} (\Delta b_1 - \Delta b_2) \end{pmatrix}$$

- ❖Small change in b lead to an extremely large change in x
- $\kappa(A) = 2 \times 10^{10} => \text{ill-conditioned}$

Source:

Gradient Descent

- Optimization
 - Minimizing or maximizing some function f(x) by altering x
 - The function we want to minimize or maximize: objective function or criterion
 - When we are minimizing it, we also call it
 - Cost function, loss function, error function
 - $x^* = argmin f(x)$
- Suppose we have a function y = f(x)
 - Derivative of this function: f'(x), $\frac{dy}{dx}$
 - How to scale a small change in the input in order to obtain the corresponding change in the output: $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$
 - $f(x \epsilon \operatorname{sign}(f'(x)))$ is less than f(x) for small enough ϵ
 - *We can thus reduce f(x) by moving x in small steps with opposite sign of the derivative
 - Gradient descent

Local Minima, Maxima, Saddle Points

- $\bullet \ f'(x) = 0$
 - Points where f'(x) = 0 are known as critical points or stationary points
 - Local minimum: points where f(x) is lower than at all neighboring points
 - Local maximum: points where f(x) is higher than at all neighboring points
 - Saddle points: neither maxima nor minima
 - Global minimum: A points that obtains the absolute lowest value of f(x)
- In context of deep learning, there are many local minima and many saddle points

Directional Derivative

- For functions with multiple inputs, $\frac{\partial}{\partial x_i} f(x)$
 - How f changes as only the variable x_i increases at point x
 - Gradient: derivative with respect to a vector, $\nabla_x f(x)$
- Directional Derivative
 - ullet Directional derivative in direction u (a unit vector) is the slope of the function f in direction u
 - Derivative of the function $f(x + \alpha u)$ w.r.t. α evaluated at $\alpha = 0$

 - We would like to find the direction in which f decreases the fastest
 - $* \min_{u,u^T u=1} u^T \nabla_x f(x) = \min_{u,u^T u=1} ||u||_2 ||\nabla_x f(x)||_2 \cos \theta$
 - $\triangleright \theta$: angle between u and the gradient
 - \triangleright It simplifies to $\min_{\eta} \cos \theta$
 - \triangleright It is minimized when u points in the opposite direction as the gradient.

Steepest descent or Gradient descent

- Directional Derivative

 - We would like to find the direction in which f decreases the fastest
 - $* \min_{u,u^T u = 1} u^T \nabla_x f(x) = \min_{u,u^T u = 1} ||u||_2 ||\nabla_x f(x)||_2 \cos \theta$
 - $\triangleright \theta$: angle between u and the gradient
 - \triangleright It simplifies to $\min_{u} \cos \theta$
 - \triangleright It is minimized when u points in the opposite direction as the gradient.
- $x' = x \epsilon \nabla_x f(x)$
 - ϵ : learning rate, positive scalar
 - •1) set ϵ to a small constant
 - *2) Solve the 1d minimization problem, $\epsilon_t = argmin_{\epsilon>0}L(x \epsilon \nabla_x f(x))$
 - *3) evaluate $f(x \epsilon \nabla_x f(x))$ for several values of ϵ , and choose the one

- Gradient
 - $f: \mathbb{R}^n \to \mathbb{R}$
 - $\nabla f(x)$: 1 × n matrix
- Jacobian matrix
 - $f: \mathbb{R}^m \to \mathbb{R}^n$
 - Jacobian matrix, $J \in \mathbb{R}^{n \times m}$
- Hessian Matrix
 - Second derivative (measuring curvature)
 - Jacobian of the gradient
 - $f: \mathbb{R}^n \to \mathbb{R}$
 - $H(f)(x)_{i,j} = \frac{\partial^2}{\partial x_i \partial x_j} f(x) = \frac{\partial^2}{\partial x_j \partial x_i} f(x) \Rightarrow$ Hessian matrix is real and symmetric

Gradient-Based Optimization

- Second derivative
 - Tells us how well we can expect a gradient descent step to perform

•
$$f(x) \approx f(x^{(0)}) + (x - x^{(0)})^T g + \frac{1}{2} (x - x^{(0)})^T H(x - x^{(0)})$$

- Taylor series approximation
- g: gradient, H: Hessian at $x^{(0)}$
- If we use a learning rate of ϵ , the new point will be given by $x^{(0)} \epsilon g$

$$\Rightarrow f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g^T g + \frac{1}{2} \epsilon^2 g^T H g$$

- $f(x^{(0)})$: original value of the function
- $\bullet \epsilon g^T g$: expected improvement due to the slope of the function
- $\frac{1}{2} \epsilon^2 g^T Hg$: correction we must apply to account for the curvature of the function
- $\bullet \text{If } \frac{1}{2} \epsilon^2 g^T H g$
 - > is too large, the gradient descent step move uphill
 - \triangleright is zero or negative, increasing ϵ will decrease f forever (under the Taylor approximation)
- *****Optimal step size: $e^* = \frac{g^T g}{g^T H g}$ (if $g^T H g$ is positive)

Source:

- Second derivative
 - Determine whether a critical point is a local maximum, minimum, saddle point
 - Critical Point, f'(x) = 0
 - ❖When f''(x) > 0: local minimum
 - ❖When f''(x) < 0: local maximum
 - ❖When f''(x) = 0: saddle point or a flat region
 - Multiple dimension 에서도 동일하게 가능합니다.

- Hessian matrix is real and symmetric => Eigendecomposition
- When the Hessian is positive definite: local minimum
 - All eigenvalues are positive
- When the Hessian is negative definite: local maximum
 - All eigenvalues are negative
- When the Hessian has at least one positive eigenvalue and negative eigenvalue: Saddle Point

Gradient-Based Optimization

- Second derivative
 - Positive eigenvalue
 - \bullet If x is an eigenvector of A then $x \neq 0$ and $Ax = \lambda x$.
 - $x^T A x = \lambda x^T x$
 - \Rightarrow If $\lambda > 0$, then as $x^T x > 0$ we must have $x^T A x > 0$
 - Positive definite
 - $x^T Ax > 0$ for all vectors $x \neq 0$
 - 특정한 방향에 대한 second derivative
 - $d^T H d$ where d is unit vector
 - ❖얼마나 서로 second derivative가 다른지 측정 ⇒ Condition number of the Hessian
 - When the Hessian has a poor condition number, gradient descent performs poorly
 - > The derivative increases rapidly in one direction, while in another direction, it increases slowly
 - Gradient descent is unaware of this change in the derivative

Condition number: 5 The most curvature: $[1,1]^T$ The least curvature: $[1,-1]^T$ 아니 교수님. 갑자기 왜 전체 vector로 확장 된 것이죠?

Eigenvectors of a symmetric $n \times n$ matrix span all of \mathbb{R}^n

⇒ any vector can be represented as a linear combination of the eigenvectors

Source: https://www.math.utah.edu/~zwick/Classes/Fall2012_2270/Lectures/Lecture33_with_Examples.pdf