



# Reduce the E-R diagram to Database Schema or Conversion

#### Rule 1: For Strong **Entities** with Only **Simple Attributes**:

- ► Each attribute (except multi-valued and composite attribute) turns into a column (attribute) in the table.
- ▶ **Table name** can be same as **entity name**.
- ▶ The **primary key** of the table will be the **key attribute** of the entity set.
- It is highly recommended that every table should start with its primary key attribute, conventionally named as TablenameID.

Schema: Person (PersonID, Name, Address, City)



| Person ID | Name | Address | City |
|-----------|------|---------|------|
|           |      |         |      |
|           |      |         |      |
|           |      |         |      |

**Person** 

Rule 2: For Strong **Entities** with Composite **Attributes**:

- A strong entity set with any number of composite attributes will require only one table in relational model.
- While conversion, simple attributes of the composite attributes are taken into account and not the composite attribute itself.

Schema: Person (PersonID, F\_Name, M\_Name, L\_Name, Age, City, Street, House No.)

**Person** 

| Person ID | F_name | M_Name | L_Name | Age | City | Street | House No. |
|-----------|--------|--------|--------|-----|------|--------|-----------|
|           |        |        |        |     |      |        |           |



#### Rule 3: For Strong Entities with Multi-valued Attributes:

- For each multivalued attribute A, create a new table.
- ▶ Add the primary key column into multi-value attribute's table.
- If the multivalued attribute is composite, we include its simple components.

| Person    |      |
|-----------|------|
| Person ID | Name |
|           |      |
|           |      |
|           |      |





#### Rule 4: For Binary Relationship With Weak Entity Set

Weak entity set always appears in association with identifying relationship with total participation constraint.



#### Rule 5: For Binary Relationships With Cardinality Ratios-

#### **Rule 5.1-1:1 Mapping Cardinality**

#### **Case-I Partial Participation Constraint from both side -**

- ▶ Place the **primary key** of any **one table** in to the **another table** as a **foreign key**.
- ▶ Place the primary key (RollNo) of the Student table in the Books table as Foreign key.

OR

▶ Place the primary key (BookID) of the Books table in the Student table as Foreign key.



► Rule 5.1: For Binary Relationship With 1:1 Cardinality Constraint Case-II Total Participation Constraint at one side-



Two tables are required-



▶ The relationship Manage will have the start date of the employees who manage a particular Dept. Since Emp is partially participating here, which means not every employee is a manager.

| E_No | E_Name |
|------|--------|
| 1    | Α      |
| 2    | В      |
| 3    | С      |
| 4    | В      |

| <u>D_No</u> | D_Name | Start date | E_No |
|-------------|--------|------------|------|
| 11          | CSE    | 14/05/2022 | 1    |
| 22          | IT     | 24/02/2022 | 2    |
| 33          | ECE    | 3/05/2022  | 3    |

FK



▶ This relationship manage will have the start date of the employees who manage a particular Dept. Since Emp is partially participating here, which means not every employee is a manager.

| E_No | E_Name | Start date |
|------|--------|------------|
| 1    | А      | Null       |
| 2    | В      | Null       |
| 3    | С      | 14/05/2022 |
| 4    | В      | 24/02/2022 |
|      |        |            |

|          | <u>D_No</u> | D_Name |
|----------|-------------|--------|
|          | 11          | CSE    |
|          | 22          | IT     |
| <b>\</b> | 33          | ECE    |
|          |             |        |

- To avoid null values we keep Start Date in Dept (total participation)

| <u>D_No</u> | D_Name | Start date | E_No |
|-------------|--------|------------|------|
| 11          | CSE    | 14/05/2022 | 1    |
| 22          | IT     | 24/02/2022 | 2    |
| 33          | ECE    | 3/05/2022  | 3    |

Why E\_No is added here?

If we want to know the name of manager of CSE department, then D\_Name→

E\_No → E\_Name

FK

► Rule 5.1: For Binary Relationship With 1:1 Cardinality Constraint Case-III Total Participation Constraint From Both Sides-



Only one table is required-

#### **Rule 5.2- 1:N Mapping Cardinality**:

- ▶ Place the primary key of table having 1 mapping into the another table having many cardinality as a Foreign key.
- ▶ Place the primary key of the Person table PersonID in the table House as Foreign key.







Every employee have a department, each department have multiple employees.

| E_No | E_Name | Start date | D_No | <u>D_No</u> | D_Name |
|------|--------|------------|------|-------------|--------|
| 1    | Α      | 01/01/2022 | 11   | 11          | CSE    |
| 2    | В      | 3/05/2022  | 22   | 22          | IT     |
| 3    | С      | 14/05/2022 | 33   | 33          | ECE    |
| 4    | В      | 24/02/2022 | 44   |             |        |

We can't keep start date in department table because in a department there will be multiple employees and each employee's start date will be different.

| E_No | E_Name | D_No |
|------|--------|------|
| 1    | Α      | 11   |
| 2    | В      | 22   |
| 3    | С      | 33   |
| 4    | В      | 44   |

| <u>D_No</u> | D_Name | Star te                                  |
|-------------|--------|------------------------------------------|
| 11          | CSE    | 01/01/2022,<br>02/02/2022,<br>03/02/2022 |
| 22          | IT     |                                          |
| 33          | ECE    |                                          |

\*\* For Binary Relationship With 1:n Cardinality Constraint and Participation Constraint on any side does not affect the number of tables!!



Two tables will be required - A ( $\underline{a1}$ , a2) BR ( $\underline{b1}$ , b2, a1, r1)

#### **Rule 5.3- N:N Mapping Cardinality**:

- Convert both **entities** in to **table** with proper attribute.
- Create a separate table for relationship.
- Attributes of the table are-
- Primary key attributes of the participating entity sets (of both entities table) as foreign key
- Its own descriptive attributes if any.
  three tables will be required in relational model.





Schema: A (<u>a1</u>, a2) B (<u>b1</u>, b2) R (a1, b1, r1)

- Conversion of n-ary relationship
- ▶ For each n-ary relationship type R, where n>2, create a new relationship S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.

▶ Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.



# **Summery of Symbols used in E-R diagram**



# Problems on mapping of E-R diagram to Relational model

Q.1 Find the minimum number of tables required for the following ER diagram in relational model-



- 1. MR1 (<u>m1</u>, m2, m3, p1)
- 2. P (<u>p1</u>, p2)
- 3. NR2 (<u>n1, p1</u>, n2)

#### Q.2 Find the minimum number of tables required for the following ER diagram in relational model-



- 1. E1 (<u>a1</u>, a2)
- 2. E2 R1 R2 (<u>b1</u>, b2, b3, a1, c1)
- 3. E3 (<u>c1</u>, c2)

#### Q.3 Find the minimum number of tables required for the following ER diagram in relational model-



- 1. E2 R1 (<u>b1</u>, a1)
- 2. E1 (<u>a1</u>)
- 3. R2 (<u>a1, b1</u>)

#### Q.4 Find the minimum number of tables required for the following ER diagram in relational model-



- 1. A R1 R2 (<u>a1</u>, a2, b1, c1)
- 2. B (<u>b1</u>, b2)
- 3. C (<u>c1</u>, c2)
- 4. R3 (<u>b1, c1</u>)

#### Q.5 Find the minimum number of tables required for the following ER diagram in relational model-



- 1. A (<u>a1</u>, a2)
- 2. B R1 R4 R5 (<u>b1</u>, b2, a1, c1, d1)
- 3. C R3 (<u>c1</u>, c2, d1)
- 4. D (<u>d1</u>, d2)
- 5. R2 (a1, c1)