浙江大学 2016 - 2017 学年 秋冬 学期《数学分析(乙) I》课程期末考试试卷

课程号:			,开课学院:		記 :	理学院考证		式试卷: <u>A 卷</u>	
考试形式: <u>闭卷</u> 考试日期: <u>2016</u> 年 <u>1</u> 月 <u>15</u> 日, 考试时间: <u>120</u> 分钟									
诚信考试,沉着应考,杜绝违纪。									
考生	姓名	:	学号:			所属院系:。			
题序		<u> </u>	111	四	五	六	七	八	总 分
得分									
评卷人									

一. (10 分) 请用数学语言完整叙述一致连续的概念,并证明 $f(x) = sin\left(\frac{1}{x}\right)$ 在(0,1)不是一致连续的。

二. (24分)导数与极限计算:

$$(1)\underset{n\to\infty}{lim}(n!)^{\frac{1}{n^2}}$$

$$(2)\lim_{n\to\infty}\frac{\sqrt[n]{n(n+1)\cdots(n+n)}}{n}$$

$$(3) \lim_{n \to \infty} (\sqrt[6]{n^6 + n^5} - \sqrt[6]{n^6 - n^5})$$

$$(4) \lim_{x \to 0} \frac{\frac{x^2}{2} + 1 - \sqrt{1 + x^2}}{(\cos x - e^{x^2}) \sin x^2}$$

(5)
$$\lim_{x\to 0} \frac{x - \int_0^x e^{t^2} dt}{x^2 \sin 2x}$$

三. (24分)导数与积分计算:

$$(1)\int \frac{x^2-x}{(x-2)^3}dx$$

$$(2)\int\frac{arcsin\sqrt{x}}{\sqrt{x(1-x)}}dx$$

$$(3) \int_{\frac{\pi}{2}}^{\pi} \frac{1}{1 + \sin^2 x} dx$$

(4) 设
$$y = \frac{1}{\sqrt{1-x^2}} \arcsin x$$
, 求 $y^{(n)}(0)$.

(5) **求摆线**
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 (a > 0), 当0 \le t \le 2\pi \shat{绕着 x 轴旋转曲面的表面积。

四. $(10 \ \beta)$ 利用 $\varepsilon - \delta$ 语言证明函数 $f(x) = x^2 + x \sin x$ 在 x = 1处是连续的。 $(6 \ \beta)$

五. (10 分)设 $f_n(x) = sinx + sin^2x + sin^3x + \cdots sin^nx$,证明:

- (1)任意 $n \in N$ 方程 $f_n(x) = 1$ 在 $(\frac{\pi}{6}, \frac{\pi}{2}]$ 内有且只有一个根。
- (2) 设 $x_n \in (\frac{\pi}{6}, \frac{\pi}{2}]$ 是方程 $f_n(x) = 1$ 的根,则计算 $\lim_{x\to 0} x_n$

六. (10 分) 设 f(x) 在 [0,1]上可导,且

$$\int_0^1 x f(x) dx = f(1).$$

证明 $\exists \xi \in (0,1)$ 使得:

$$f'(\xi) = -\frac{f(\xi)}{\xi}$$

七. $(6 \, f)$ 设 f(x) 与 g(x) 均为定义在 [a,b] 上的有界函数。证明:若仅在 [a,b] 中有限个点处 $f(x) \neq g(x)$,则当 f(x) 在 [a,b] 上可积时,g(x) 在 [a,b] 上也可积,且满足:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx$$

.

八. (6 分) 设f(x)在[a,b]上无界,证明 $\exists c \in [a,b]$ 使得对 $\forall \varepsilon > 0, f(x)$ 在 $(c - \varepsilon, c + \varepsilon) \cap [a,b]$ 上无界.