Inverse Problems in Geophysics Part 11: Probability and Likelihood

2. MGPY+MGIN

Thomas Günther thomas.guenther@geophysik.tu-freiberg.de

Recap non-linear

undirected search methods

- grid search
- random sampling (Monte Carlo)
- simulated annealing

directed search methods

- gradients (steepest descent)
- Newtons method (linearization)

Objective function for VES

Probability and likelihood

random variables: probability through many repetitions

maximum p(d) is most likely

expectation: $\langle d \rangle = \int d \cdot p(d) \, \mathrm{d}d$

Probability density function

Variance

$$\sigma^2 = \int (d - \langle d
angle)^2 p(d) \, \mathrm{d}d$$

 σ is a measure of the width of the distribution

related to standard deviation and mean of sampling

$$\sigma_{est}^2 = rac{1}{N-1} \sum_{i=1}^N (d_i - \langle d
angle)^2 \quad ext{with} \quad \langle d
angle = rac{1}{N} \sum_{i=1}^N d_i .$$

Correlated data

independent: $p(\mathbf{d}) = p(d_1)p(d_2)\dots p(d_N)$

uncorrelated data (Menke, 2012)

correlated data (Menke, 2012)

Covariance

(measure of correlation between data)

$$\operatorname{cov}(d_1,d_2) = \int\!\int\!(d_1 - \langle d_1
angle)(d_2 - \langle d_2
angle)p(d_1,d_2)\,\mathrm{d}d_1\,\mathrm{d}d_2$$

$$\langle d_i
angle = \int \ldots \int d_i p(\mathbf{d}) \, \mathrm{d} d_1 \ldots \mathrm{d} d_N$$

Covariance propagation

Linear problem $\mathbf{m} = \mathbf{M}\mathbf{d}$, e.g. $\mathbf{m} = \mathbf{G}^{\dagger}\mathbf{d}$

Mean value $\langle \mathbf{m}
angle = \mathbf{M} \, \langle \mathbf{d}
angle + \mathbf{n}$ and covariance

$$ext{cov}(\mathbf{m}) = \mathbf{M} ext{cov}(\mathbf{d}) \mathbf{M}^T$$

Least-squares: $\mathbf{M} = (\mathbf{G}^T\mathbf{G})^{-1}\mathbf{G}^T$, uncorrelated data: $\mathrm{cov}(\mathbf{d}) = \sigma_d^2\mathbf{I}$

$$\Rightarrow \operatorname{cov}(\mathbf{m}) = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \sigma_d^2 \mathbf{I} ((\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T)^T = \sigma_d^2 (\mathbf{G}^T \mathbf{G})^{-1}$$

A priori knowledge

accurate prior model (Menke, 2012)

accurate data (Menke, 2012)

Bayes' theorem

Conditional probability

$$p(d_1|d_2) = p(d_1,d_2)/p(d_2)$$

$$p(\mathbf{m}|\mathbf{d})p(\mathbf{d}) = p(\mathbf{d}|\mathbf{m})p(\mathbf{m})$$

$$p(\mathbf{m}|\mathbf{d}) = rac{p(\mathbf{d}|\mathbf{m})p(\mathbf{m})}{p(\mathbf{d})}$$

posterior distribution \propto likelihood x prior distribution

Bayes theorem simple example

joint probability & conditional probabilities (Menke, 2015)

A priori (Menke, 2012)

A: a priori pdf $p_a(\mathbf{m}, \mathbf{d})$, B: conditional pdf $p_g(\mathbf{m}, \mathbf{d})$, C: product $p_t(\mathbf{m}, \mathbf{d}) = p_a(\mathbf{m}, \mathbf{d})p_g(\mathbf{m}, \mathbf{d})$, white: theory

A priori and likelihood

Bayes view in nonlinear problems

Highly nonlinear problems

Monte Carlo methods

- Monte Carlos search: randomly draw solutions from grid
- accept solution only if better than old
- Markow-Chain-Monte-Carlo
- Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970)

Monte Carlo method

Simulate Annealing

Test parameter

$$t=e^{-(\Phi(\mathbf{m})-\Phi(\mathbf{m}^p))/T}$$

Simulated Annealing

Particle swarm optimization

Alternatives to grid search

(i) Monte Carlo search

draw random samples and accept them if the error is improved

undirected search (Newtons method is directed)

(i) Simulated annealing

decrease temperature controlling particle movements:

high T: undirected, low T: search in vicinity of current model

Monte Carlo vs. Simulated Annealing

Monte Carlo method

Simulated Annealing

Newtons method (Menke, 2012)

linearize with value, slope and curvature of Φ_d