

Idea for a bijection:

- Use the **even integers** in $\mathbb N$ to cover the **nonnegative integers** in $\mathbb Z$
- Use the **odd integers** in $\mathbb N$ to cover the **negative integers** in $\mathbb Z$

Z vs N

Are these sets the same size? How do you know?

$$\mathbb{N} = \{0,1,2,3,4,5,6,7...\}$$

$$\mathbb{Z} = \{...,-4,-3,-2,-1,0,1,2,3,4,...\}$$

Same size because there is a **bijection** $f: \mathbb{Z} \to \mathbb{N}$ given by

$$f(n) = \begin{cases} 2n & \text{if } n \ge 0 \\ -2n - 1 & \text{if } n < 0 \end{cases}$$

Equivalently, we could use the **bijection** $f: \mathbb{N} \to \mathbb{Z}$ given by

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$$

Proof: [0, 1] is Uncountable

- Let $f: \mathbb{Z}^+ \to [0,1]$ be arbitrary. The goal is to show f is not onto.
- Make a table of the digits of f(z). For example:

$z \in \mathbb{Z}^+$	f(z)∈ [0, 1]		digit 1 of f(z)	digit 2 of f(z)	digit 3 of f(z)	digit 4 of f(z)	
1	0	0.	0	0	0	0	
2	π/10	0.	3	1	4	1	
3	0.149	0.	1	4	9	0	
4	e/10	0.	2	7	1	8	
i	1						

 How can we generate a number in [0,1], but not in any row of the table (so not in range(f))?

Take the diagonal elements, and add 5 (mod 10): $0.5643 \dots$

or any int as long as different from original one

Additional Practice: Countability

Determine whether each set is countable or uncountable.

- a) {red, green, blue}
- countable

b) **N**

countable uncountable countable uncountable

uncountable

d) **R – Q** (the irrationals)

c) $N \times N$

- countable uncountable
- e) $\{x \in R \mid |x| = x\}$
- countable uncountable countable
- f) $\{x \in R \mid \sqrt{x} \text{ is rational}\}$
- countable

g) $\mathcal{P}(\mathbf{Z})$

ountable uncountable

• Each card has either a **0 or a 1** on the other side.

- You may flip over any number of cards for \$1 per flip
- If you can name a 5-bit string that you are certain is different from all 5 listed here, you win \$10.

Can you make money on this game? How much? What's your strategy?

A Game

- New: 1 0 0 1 0
 - 1. 0 ? ? ? ?
 - 2. [? 1 ? ? ?
 - 3. ? ? 1

Best strategy:

- Pay \$5 to flip over the cards along the main diagonal.
- Name the flipped bitstring as your guess:

 $01101 \rightarrow 10010$

· Make \$5 overall.

Diagonalization

- The strategy we used in the game is an example of a diagonalization argument
 - A powerful proof style, for showing impossibility of things!

Diagonalization

General format for diagonalization proofs:

- · Arrange items in a table
- Look at the elements along the main diagonal
- Manipulate each diagonal element and put them together to create a new row that is guaranteed not to be in the table
 - Is the new row the same as row *i* of the table?
 - No: its ith bit is different from the string in row i.

see 01101 → miess 10010

Proof: [0, 1] is Uncountable

 $[0,1] \text{ vs } |\mathbb{Z}^+|$

Theorem: $|\mathbb{Z}^+| < |[0,1]| \qquad \text{equivalently} \qquad \text{There is no onto function } f\colon \mathbb{Z}^+ \to [0,1]$

- Let $f: \mathbb{Z}^+ \to [0,1]$ be an arbitrary function.
- Imagine an infinite table with the digit expansion of f(1) in the first row, of f(2) in the second row...
- Let d be the "diagonal number" formed by taking digits from the diagonal of the table
- Let s be the "shifted diagonal number" formed by adding 5 to each digit (rollover $9 \rightarrow 0$)
- s cannot be in the table! For all i, s is different from the number in row i of the table, because its i^{th} digit is different
- So f is not **onto**.

$z \in \mathbb{Z}^+$	<i>f</i> (<i>z</i>)∈ [0, 1]		digit 1 of f(z)	digit 2 of f(z)	digit 3 of f(z)	digit 4 of f(z)	
1	0	0.	0	0	0	0	
2	$\pi/10$	0.	3	1	4	1	
3	0.149	0.	1	4	9	0	
4	e/10	0.	2	7	1	8	
:	:						

d = 0.0198... s = 0.5643...

7

THERE ARE DIFFERENT INFINITIES

Punchline: The number ∞ is not just one number!!

There are lots of different sets of size ∞ , with different sizes than each other

(1) Si: aleph null

Instead:

- $|\mathbb{Z}^+| = |\mathbb{N}| = \aleph_0$ = "aleph null"
- $|[0,1]| = |\mathbb{R}| = \aleph_1$ = "continuum" or "aleph one"
 - Actually, [Paul Cohen' 63] showed that it's **unprovable** whether $|\mathbb{R}|$ is the second smallest infinity, \aleph_1 , but it's standard to assume that it is.
- There is no largest infinity. There's always a bigger one. \aleph_0 , \aleph_1 , \aleph_2 , \aleph_3 , ...
 - Fun fact: taking a power set always makes it larger. |P([0,1])| > |[0,1]|

