Exercice 1 : Étude de fonction

Soit f la fonction définie pour $x \in \mathbb{R}$ par : $f(x) = 2 - 2x e^{-x}$.

1. (Calculer l'intégrale $I = \int_0^1 f(x) dx$.) On a $I = 2 \int_0^1 dx - 2 \int_0^1 x e^{-x} dx$. Calculons par parties $J = \int_0^1 x e^{-x} dx$.

Les fonctions u, v définies ci-dessous sont bien de classe C^1 sur [0;1]:

$$\begin{cases} u = x \\ v' = e^{-x} \end{cases} \rightsquigarrow \begin{cases} u' = 1 \\ v = -e^{-x} \end{cases}$$

Il vient donc:

$$J = \left[-x e^{-x} \right]_0^1 - \int_0^1 -e^{-x} = -e^{-1} - \left[e^{-x} \right]_0^1 = -e^{-1} - (e^{-1} - 1) = 1 - 2e^{-1}$$

Ainsi :
$$I = 2 - 2(\underbrace{1 - 2e^{-1}}_{=.I}) = 4e^{-1}$$
.

2. Étude de la fonction f

a) (Montrer que la fonction f est de classe C^2 sur \mathbb{R} .)

Les fonctions suivantes sont de classe \mathcal{C}^{∞} sur \mathbb{R} : $\begin{cases} x \mapsto -2x & (fonction \ polynomiale) \\ x \mapsto e^{-x} & (fonction \ exponentielle) \end{cases}$

Ainsi leur produit $x \mapsto -2x e^{-x}$ l'est aussi sur \mathbb{R} .

Par ajout de constante additive, la fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R} , donc aussi \mathcal{C}^2 .

b) (Faire le tableau de variations de f sur \mathbb{R} + limites en $\pm \infty$.)

On a: $\forall x \in \mathbb{R}, f(x) = 2 - 2x e^{-x}$

d'où:
$$f'(x) = -2(e^{-x} - x e^{-x})$$

= $2(x-1)e^{-x}$.

On obtient donc pour f' et f le tableau de signes-variations à droite.

x	$-\infty$	1	$+\infty$
x-1	_	Ó	+
e^{-x}		+	
f'(x)		+	
	$+\infty$		₄ 2
f(x)		S. 0. 2	

▶ Calcul de lim f

Pour $x \to -\infty$, on a $f(x) = 2 \underbrace{-2x}_{\to +\infty} \cdot \underbrace{e^{-x}}_{\to +\infty} \to +\infty$.

• Calcul de $\lim_{\to \infty} f$

Pour $x \to +\infty$, on a $f(x) = 2 \underbrace{-2x}_{\to -\infty} \cdot \underbrace{e^{-x}}_{\to 0}$.

On obtient une forme indéterminée. Par croissances comparées $\lim_{x\to +\infty} x\cdot \mathrm{e}^{-x}=0$. Ainsi $\lim f = 2$.

• Calcul de f(1)On a $f(1) = 2 - e^{-1}$. $\textbf{c)} \ \, (\textit{\'etudier le signe de la fonction } f'' \ + \ unique \ point \ d'inflexion.)$

On a : $\forall x \in \mathbb{R}, f'(x) = 2(x-1)e^{-x}$

d'où : $f''(x) = 2(e^{-x} - (x-1)e^{-x})$ $= 2(2-x)e^{-x}$

On trouve le tableau de signes ci-contre. La dérivée seconde f'' s'annule en changeant de

C'est donc l'unique point d'inflexion de f sur \mathbb{R} .

x	$-\infty$		2	$+\infty$
$2 e^{-x}$		+	+	
2-x		+	0 –	
f''(x)		+	ф –	
f(x)		convexe	concav	e
			infle	exion

- 3. Tracé de la fonction f sur [0;3] (On donne $e^{-1} \simeq 0.37$ et $e^{-2} \simeq 0.14$.)
 - a) (Tracer l'asymptote représentant la limite de f en $+\infty$.) L'asymptote est horizontale, à l'ordonnée y=2.
 - **b)** (Calculer f(0), f(1) et f(2) (+ approx).)

signe une seule fois : en 2.

- f(0) = 2.
- ► $f(1) = 2 2e^{-1}$ $\simeq 2 - 2 \times 0.37 = 1.26.$
- ► $f(2) = 2 4 e^{-2}$ $\simeq 2 - 4 \times 0.14 = 1.44$

- **c)** (f'(0), f'(1) et f'(2) ?)
 - f'(0) = -2.
 - f'(1) = 0.
 - $f'(2) = 2e^{-2} \simeq 0.28.$
- **4. L'équation** f(x) = x. On définit la fonction $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) x \end{cases}$
 - a) (Montrer que pour $x \ge 1$, on a $0 \le f'(x) \le 2e^{-2}$.)

 On a trouvé le tableau de signes ci-contre pour

la dérivée seconde f''. On en déduit le tableau de variations pour f'. On obtient bien l'inégalité :

 $\forall x\geqslant 1,\quad 0\leqslant f'(x)\leqslant 2\,\mathrm{e}^{-2}\,.$

b) (En déduire que la fonction g est strictement décroissante $sur [1; +\infty[.]$

La fonction g est dérivable et on a $\forall x \ge 1, \ g'(x) = f'(x) - 1$. Par la question précédente :

$$\forall x \ge 1, \quad g'(x) \le 2 e^{-2} - 1 < 0.$$

Ainsi la fonction g est bien strictement décroissante sur $[1\,;+\infty[$. $(sur\,]0\,;+\infty[$ aussi.)

c) (Montrer que l'équation g(x) = 0 admet une unique solution ℓ sur $[0; +\infty[]$.)

Sur l'intervalle $]0; +\infty[$, la fonction q est \rightarrow continue

▶ strictement décroissante.

Par le théorème de la bijection monotone, la fonction g réalise donc une bijection $]0\,;+\infty[\,\to\,]\lim_{+\infty}g\,;g(0)[.$ Or $\left\{ \begin{array}{c} g(0)=2\\ \lim_{x\to+\infty}g(x)=-\infty \end{array} \right\}$ donc $0\in]\lim_{+\infty}g\,;g(0)[,$ et il existe un

unique $\ell \in]0; +\infty[$ tel que $g(\ell) = 0.$

 $+\infty$

d) (Montrer que $\ell \in [1;2]$.)

Calculons
$$\begin{cases} g(1) = 1 - 2e^{-1} > 0 \\ g(2) = -4e^{-2} < 0 \end{cases}$$

Ainsi, la fonction g change de signes entre 1 et 2, donc s'y annule, et $1 < \ell < 2$.

e) (Étudier le signe de g(x) pour $x \ge 0$.)

La fonction g est st^t décroissante, et s'annule en ℓ . On trouve donc le tableau de signes ci-contre. Remarquons que $g(x) \ge 0 \iff f(x) \ge x$.

\overline{x}	1		ℓ		$+\infty$
g(x)		+	þ	_	

- **5. Étude de la suite** (u_n) définie par $u_0 = 2$, et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - **a)** (Montrer que $\forall n \geq 0$, on a $u_n \geq \ell$.)
 - Hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : $u_n \geqslant \ell$ (H_n)

- ▶ Initialisation On a bien d'après la question 4.d) : $u_0 = 2 \geqslant \ell$ (H_0)
- ▶ Hérédité Soit $n \in \mathbb{N}$ un entier.

On suppose (H_n) soit : $u_n \geqslant \ell$.

D'après la question 4.d), et (H_n) , on a : $u_n \ge \ell \ge 1$.

La fonction f est croissante sur $[1; +\infty[, (Q 2.b)), d$ 'où : $u_{n+1} = f(u_n) \ge f(\ell) = \ell$. Ainsi, il vient bien : $u_{n+1} \ge \ell$ (H_{n+1})

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

▶ héréditaire

On a donc bien pour tout
$$n \in \mathbb{N}$$
, $u_n \geqslant \ell$ (H_n)

b) (Étudier le sens de variation de la suite (u_n) .)

On a $\forall n \in \mathbb{N}, u_n \geqslant \ell$. Donc, $\forall n \in \mathbb{N}, u_{n+1} - u_n = g(u_n) \leqslant 0$.

(d'après **4.e**))

Ainsi la suite (u_n) est décroissante.

- c) (Montrer que la suite (u_n) converge, et préciser sa limite.)
 - ▶ Convergence de (u_n) La suite (u_n) est ▶ décroissante, par **5.b**), et

► minorée par ℓ , par **5.a**).

Par le théorème de la limite monotone, la suite (u_n) converge et $\lim(u_n) \ge \ell$.

- ▶ Limite de (u_n) ▶ La suite (u_n) satisfait $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$, et
 - ▶ la fonction f est continue sur \mathbb{R} .

D'après le théorème du point fixe, la limite $\lim(u_n)$ est un point fixe ≥ 1 de f.

D'après la question 4.c), le seul point fixe de f qui soit ≥ 1 est le réel ℓ .

Ainsi $\lim (u_n) = \ell$.

d) (Montrer grâce à la question 4.a) que $\forall n \in \mathbb{N}$, on $a \ 0 \leqslant u_{n+1} - \ell \leqslant 2 e^{-2}(u_n - \ell)$.) La fonction f est dérivable sur $[1; +\infty[$, et $\forall x \geqslant 1, 0 \leqslant f'(x) \leqslant 2 e^{-2}$. Ainsi, d'après l'inégalité des accroissements finis, pour $1 \leqslant a \leqslant b$, on a:

$$0 \leqslant f(b) - f(a) \leqslant 2 e^{-2}$$
.

On applique, pour $n \in \mathbb{N}$, entre $a = \ell$, et $b = u_n$:

(on a bien $1 \leq \ell \leq u_n$)

$$0 \leqslant \underbrace{u_{n+1} - \ell}_{f(u_n) - f(\ell)} \leqslant 2 e^{-2} (u_n - \ell).$$

- **e)** (En déduire que $\forall n \in \mathbb{N}$, on $a: 0 \leq u_n \ell \leq 2^n e^{-2n}$.)
 - Hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : $0 \leq u_n - \ell \leq 2^n e^{-2n} (H_n)$

- ▶ Initialisation On a $\ell \geqslant 1$, donc : $0 \leqslant u_0 \ell \leqslant 2 1 = 1$ (H_0)
- ▶ **Hérédité** Soit $n \in \mathbb{N}$ un entier.

On suppose (H_n) soit : $0 \le u_n - \ell \le 2^n e^{-2n}$

D'après la question 5.d) $0 \leqslant u_{n+1} - \ell \leqslant 2 e^{-2} (u_n - \ell) \leqslant 2 e^{-2} 2^n e^{-2n} = 2^{n+1} e^{-2(n+1)}$.

Ainsi, il vient bien : $0 \le u_{n+1} - \ell \le 2^{n+1} e^{-2(n+1)}$ (H_{n+1})

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

▶ héréditaire

On a donc bien pour tout $n \in \mathbb{N}$, $0 \leqslant u_n - \ell \leqslant 2^n e^{-2n}$ (H_n)

f) (Combien de termes de (u_n) calculer pour approcher ℓ avec une précision $\leq 10^{-3}$?)

(on rappelle $\ln(2) \simeq 0.69$ et $\ln(10) \simeq 2.3$) Pour $n \in \mathbb{N}$, l'erreur commise en approchant ℓ par u_n est $\leq 2^n \, \mathrm{e}^{-2n}$.

Pour que celle-ci soit $\leq 10^{-3}$, on souhaite donc avoir :

$$2^n e^{-2n} \le 10^{-3} \iff n \ln(2 e^{-2}) \le -3 \ln(10) \iff n[2 - \ln(2)] \ge 3 \ln(10)$$

$$\iff n \geqslant \frac{3\ln(10)}{2-\ln(2)} \simeq \frac{3\times 2,3}{2-0.7} = \frac{6,9}{0.6} = 11,5$$

Pour obtenir ℓ avec une précision $\leq 10^{-3}$, il suffit donc de calculer u_{12} .