Test Integraalrekening Partiële integratie

Opgave 1. Partiële integratie is het toepassen van de regel $\int u dv = uv - \int v du$. In de integraal $\int e^{2x} \cos(5x) dx$ opgevat als $\int u dv$ neem je $u = e^{2x}$ en $dv = \cos(5x) dx$. Wat wordt $\int v du$?

$$a 10 \int e^{2x} \sin(5x) dx$$

$$b \stackrel{2}{=} \int e^{2x} \sin(5x) dx$$

$$c \frac{5}{2} \int e^{2x} \sin(5x) dx$$

Oplossing. b

Verantwoording: Je bekomt $du = 2e^{2x}dx$ en uit $\int \cos(5x)dx = \frac{1}{5}\sin(5x) + C$ bekom je dat je kan nemen $v = \frac{1}{5}\sin(5x)$.

Opgave 2. Partiële integratie is het toepassen van de regel $\int u dv = uv - \int v du$. In de integraal $\int x^2 \arcsin(3x) dx$ opgevat als $\int u dv$ neem je $u = \arcsin(3x)$ en $dv = x^2 dx$. Wat wordt $\int v du$?

$$a \int \frac{x^3}{\sqrt{1-9x^2}} dx$$

$$b \int x^3 \arccos(3x) dx$$

$$c \int \frac{6x}{\sqrt{1-9x^2}} dx$$

Oplossing. a

Verantwoording : Je bekomt $du=\frac{1}{\sqrt{1-9x^2}}3dx$ en uit $\int x^2dx=\frac{x^3}{3}+C$ vind je dat je kan nemen $v=\frac{x^3}{3}$.

Opgave 3. Partiële integratie is het toepassen van de regel $\int u dv = uv - \int v du$. In de integraal $\int \sqrt[3]{x} \ln x dx$ opgevat als $\int u dv$ neem je $u = \ln x$ en $dv = \sqrt[3]{x} dx$. Wat wordt $\int v du$?

$$a \frac{1}{3} \int \frac{dx}{\sqrt[3]{x^5}} dx$$

$$b \frac{4}{3} \int \sqrt[3]{x^7} dx$$

$$c \frac{3}{4} \int \sqrt[3]{x} dx$$

Oplossing. c

Verantwoording : Je bekomt $du = \frac{1}{x}dx$ en uit $\int \sqrt[3]{x}dx = \frac{3\sqrt[3]{x^4}}{4} + C$ vind je dat je kan nemen $v = \frac{3\sqrt[3]{x^4}}{4}$.

Opgave 4. Partiële integratie is het toepassen van de regel $\int u dv = uv - \int v du$. In de integraal $\int x^3 e^{4x} dx$ opgevat als $\int u dv$ neem je $u = x^3$ en $dv = e^{4x} dx$. Wat wordt $\int v du$?

$$a \frac{1}{4} \int x^4 e^{4x} dx$$

$$b \ 3 \int x^2 e^{4x} dx$$

$$c \frac{3}{4} \int x^2 e^{4x} dx$$

Oplossing. c

Verantwoording : Je bekomt $du=3x^2dx$ en uit $\int e^{4x}dx=\frac{e^{4x}}{4}+C$ vind je dat je kan nemen $v=\frac{e^{4x}}{4}$.

Opgave 5. Partiële integratie is het toepassen van de regel $\int u dv = uv - \int v du$. In de integraal $\int \sin\left(\frac{x}{3}\right) e^{-2x/5} dx$ opgevat als $\int u dv$ neem je $u = \sin\left(\frac{x}{3}\right)$ en $dv = e^{-2x/5} dx$.

Je bekomt $\int \sin\left(\frac{x}{3}\right) e^{-2x/5} dx = a.f\left(\frac{x}{3}\right) e^{-2x/5} + b \int g\left(\frac{x}{3}\right) e^{-2x/5} dx$. Hierin staat f en g voor de functie \sin of \cos . Wat zijn f en g en de waarden van a en b?

$$f$$
 is \cdots ; g is \cdots ; $a = \cdots$; $b = \cdots$

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing. f is \sin ; g is \cos ; $a = \frac{-5}{2}$; $b = \frac{-5}{6}$

Verantwoording : Je bekomt $du=\frac{1}{3}\cos\left(\frac{x}{3}\right)dx$ en uit $\int e^{-2x/5}dx=-\frac{5}{2}e^{-2x/5}+C$ vind je dat je kan nemen $v=-\frac{5}{2}e^{-2x/5}$.

Opgave 6. Partiële integratie is het toepassen van de regel $\int u dv = uv - \int v du$. In de integraal $\int x^3 \cos\left(\frac{2x}{5}\right) dx$ opgevat als $\int u dv$ neem je $u = x^3$ en $dv = \cos\left(\frac{2x}{5}\right) dx$.

Je bekomt $\int x^3 \cos\left(\frac{2x}{5}\right) dx = a.x^b.f\left(\frac{2x}{5}\right) + c\int x^d.g\left(\frac{2x}{5}\right) dx$. Hierin staat f en g voor de functie sin of cos. Wat zijn f en g en de waarden van a; b; c en d?

$$f$$
 is \cdots ; g is \cdots ; $a = \cdots$; $b = \cdots$; $c = \cdots$; $d = \cdots$

Oplossing.
$$f$$
 en g zijn \sin ; $a = \frac{5}{2}$; $b = 3$; $c = \frac{-15}{2}$; $d = 2$

Verantwoording: Je bekomt $du = 3x^2 dx$ en uit $\int \cos\left(\frac{2x}{5}\right) = \frac{5}{2}\sin\left(\frac{2x}{5}\right) + C$ vind je dat je kan nemen $v = \frac{5}{2}\sin\left(\frac{2x}{5}\right)$

Opgave 7. Bij het toepassen van partiële integratie $\int u dv = uv - \int v du$ bekom je

$$\int x^3 \ln^2 x dx = \frac{x^4 \ln^2 x}{4} - \frac{1}{2} \int x^3 \ln x dx .$$

Wat neem je voor u?

 $a \ u = x^3$

 $b u = \ln^2 x$

 $c u = \ln x$

Oplossing. b

Verantwoording : Neem je $u=\ln^2 x$ dan is $du=\frac{2\ln x}{x}dx$ en dan moet je ook nemen $dv=x^3dx$. Uit $\int x^3dx=\frac{x^4}{4}+C$ vind je dan dat je $v=\frac{x^4}{4}$ kan nemen.

Opgave 8. Bij het toepassen van partiële integratie $\int u dv = uv - \int v du$ bekom je

$$\int e^{-x} \cos\left(\frac{3x}{7}\right) dx = -e^{-x} \cos\left(\frac{3x}{7}\right) - \frac{3}{7} \int e^{-x} \sin\left(\frac{3x}{7}\right) dx .$$

Wat neem je voor u?

 $a \ u = sin\left(\frac{3x}{7}\right)$

 $b\ u=e^{-x}$

 $c \ u = \cos\left(\frac{3x}{7}\right)$

Oplossing. c

Verantwoording : Neem je $u=\cos\left(\frac{3x}{7}\right)$ dan bekom je $du=-\frac{3}{7}\sin\left(\frac{3x}{7}\right)dx$ en dan moet je $dv=e^{-x}dx$ nemen. Uit $\int e^{-x}dx=-e^{-x}+C$ bekom je dat je $v=-e^{-x}$ kan nemen.

Opgave 9. Bij het toepassen van partiële integratie $\int u dv = uv - \int v du$ bekom je

$$\int x \arctan(5x) dx = \frac{x^2 \arctan(5x)}{2} - \frac{5}{2} \int \frac{x^2 dx}{1 + 25x^2} dx .$$

Wat neem je voor u?

 $a \ u = x \arctan(5x)$

 $b \ u = \arctan(5x)$

c u = x

Oplossing. b

Verantwoording : Neem je $u=\arctan(5x)$ dan bekom je $du=\frac{5dx}{1+25x^2}$ en dan moet je dv=xdx nemen. Uit $\int xdx=\frac{x^2}{2}+C$ vind je dat je $v=\frac{x^2}{2}$ kan nemen.

Opgave 10.

$$\int x^2 \cos\left(\frac{x}{5}\right) dx = ax^3 \sin\left(\frac{x}{5}\right) + bx^3 \cos\left(\frac{x}{5}\right) + cx^2 \sin\left(\frac{x}{5}\right) + dx^2 \cos\left(\frac{x}{5}\right) +$$

$$+ex \sin\left(\frac{x}{5}\right) + fx \cos\left(\frac{x}{5}\right) + g \sin\left(\frac{x}{5}\right) + h \cos\left(\frac{x}{5}\right) + C$$

$$a = \dots; b = \dots; c = \dots; d = \dots; e = \dots; f = \dots; g = \dots; h = \dots$$

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing.
$$a = b = d = e = h = 0$$
; $c = 5$; $f = 50$; $g = -250$

Verantwoording: Stel $u=x^2$, dan is du=2xdx en stel $dv=\cos\left(\frac{x}{5}\right)dx$ en dus $v=5\sin\left(\frac{x}{5}\right)$. Dit geeft

$$\int x^2 \cos\left(\frac{x}{5}\right) dx = 5x^2 \sin\left(\frac{x}{5}\right) - 10 \int x \sin\left(\frac{x}{5}\right) dx$$

Je stelt daarna u=x en dus du=dx en $dv=\sin\left(\frac{x}{5}\right)dx$ en dus $v=-5\cos\left(\frac{x}{5}\right)$. Dit geeft

$$\int x \sin\left(\frac{x}{5}\right) dx = -5x \cos\left(\frac{x}{5}\right) + 5 \int \cos\left(\frac{x}{5}\right) dx =$$
$$= -5x \cos\left(\frac{x}{5}\right) + 25 \sin\left(\frac{x}{5}\right) + C.$$

Je bekomt

$$\int x^2 \cos\left(\frac{x}{5}\right) dx = 5x^2 \sin\left(\frac{x}{5}\right) + 50x \cos\left(\frac{x}{5}\right) - 250 \sin\left(\frac{x}{5}\right) + C.$$

Opgave 11.

$$\int x \arctan(6x) dx = ax^2 \arctan(6x) + bx \arctan(6x) + c \arctan(6x) + dx^2 + ex + C$$

$$a = \cdots$$
; $b = \cdots$; $c = \cdots$; $d = \cdots$; $e = \cdots$

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing.
$$b = d = 0$$
; $a = \frac{1}{2}$; $c = \frac{1}{72}$; $e = -\frac{1}{12}$

Verantwoording : Stel $u=\arctan(6x)$ en dus $du=\frac{6dx}{1+36x^2}$ en stel dv=xdx en dus $v=\frac{x^2}{2}$. Je bekomt

$$\int x \arctan(6x) dx = \frac{x^2 \arctan(6x)}{2} - 3 \int \frac{x^2 dx}{1 + 36x^2}$$

De resterende integraal herschrijf je als

$$\int \frac{x^2 dx}{1 + 36x^2} = \frac{1}{36} \int \frac{36x^2 dx}{1 + 36x^2} = \frac{1}{36} \left(\int \frac{1 + 36x^2 dx}{1 + 36x^2} - \int \frac{dx}{1 + 36x^2} \right) =$$

$$= \frac{1}{36} \left(\int dx - \int \frac{dx}{1 + 36x^2} \right) = \frac{1}{36} \left(x - \int \frac{dx}{1 + 36x^2} \right).$$

Deze laatste integraal los je als volgt op door gebruik te maken van substitutie t=6x en dt=6dx:

$$\int \frac{dx}{1+36x^2} = \int \frac{dx}{1+(6x)^2} = \frac{1}{6} \int \frac{dt}{1+t^2} = \frac{1}{6} \arctan(t) + C = \frac{1}{6} \arctan(6x) + C \ .$$

Je bekomt

$$\int x \arctan(6x) dx = \frac{x^2 \arctan(6x)}{2} - \frac{x}{12} + \frac{\arctan(6x)}{72} + C.$$

Opgave 12.

$$\int e^{-3x} \sin\left(\frac{9x}{5}\right) dx = e^{-3x} \left(a\cos\left(\frac{9x}{5}\right) + b\sin\left(\frac{9x}{5}\right)\right) + C$$

Wat zijn a en b?

$$a = \cdots : b = \cdots$$

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing.
$$a = \frac{-15}{52}$$
; $b = \frac{-25}{52}$

Verantwoording : Je neemt $u=e^{-3x}$ en dus $du=-3e^{-3x}dx$ en $dv=\sin\left(\frac{9x}{5}\right)dx$ en dus $v=-\frac{5}{9}\cos\left(\frac{9x}{5}\right)$. Je bekomt

$$\int e^{-3x} \sin\left(\frac{9x}{5}\right) dx = -\frac{5}{9}e^{-3x} \cos\left(\frac{9x}{5}\right) - \frac{5}{3} \int e^{-3x} \cos\left(\frac{9x}{5}\right) dx .$$

Voor de nieuwe integraal neem je opnieuw $u=e^{-3x}$ en dus $du=-3e^{-3x}dx$ en $dv=\cos\left(\frac{9x}{5}\right)dx$ en dus $v=\frac{5}{9}\sin\left(\frac{9x}{5}\right)$ Je bekomt

$$\int e^{-3x} \cos\left(\frac{9x}{5}\right) dx = \frac{5}{9}e^{-3x} \sin\left(\frac{9x}{5}\right) + \frac{5}{3} \int e^{-3x} \sin\left(\frac{9x}{5}\right) dx$$

 ${\rm en} \ {\rm dus}$

$$\int e^{-3x} \sin\left(\frac{9x}{5}\right) dx = -\frac{5}{9} e^{-3x} \cos\left(\frac{9x}{5}\right) - \frac{25}{27} e^{-3x} \sin\left(\frac{9x}{5}\right) - \frac{25}{27} \int e^{-3x} \sin\left(\frac{9x}{5}\right) dx \ .$$

Hieruit bekom je

$$\left(1 + \frac{25}{27}\right) \int e^{-3x} \sin\left(\frac{9x}{5}\right) dx = -\frac{5}{9}e^{-3x} \cos\left(\frac{9x}{5}\right) - \frac{25}{27}e^{-3x} \sin\left(\frac{9x}{5}\right) + C$$

en daaruit

$$\int e^{-3x} \sin\left(\frac{9x}{5}\right) dx = -\frac{15}{52} e^{-3x} \cos\left(\frac{9x}{5}\right) - \frac{25}{52} e^{-3x} \sin\left(\frac{9x}{5}\right) + C \ .$$