LCD AND KEYBOARD INTERFACING

The 8051 Microcontroller and Embedded Systems: Using Assembly and C Mazidi, Mazidi and McKinlay

LCD Operation

- LCD is finding widespread use replacing LEDs
 - > The declining prices of LCD
 - The ability to display numbers, characters, and graphics
 - Incorporation of a refreshing controller into the LCD, thereby relieving the CPU of the task of refreshing the LCD
 - Ease of programming for characters and graphics

LCD Pin Descriptions

- Send displayed information or instruction command codes to the LCD
- Read the contents of the LCD's internal registers

Pin Descriptions for LCD

Pin	Symbol	I/O	Descriptions					
1	VSS		Ground					
2	VCC		+5V power supply					
3	VEE		Power supply to contr	Power supply to control contrast				
4	RS	I	RS=0 to select command register, RS=1 to select data register					
5	R/W	I	R/W=0 for write, R/W=1 for read	used by the				
6	Е	I/O	Enable	LCD to latch				
7	DB0	I/O	The 8-bit data bus	information				
8	DB1	I/O	The 8-bit data bus	presented to				
9	DB2	I/O	The 8-bit data bus	its data bus				
10	DB3	I/O	The 8-bit data bus					
11	DB4	I/O	The 8-bit data bus					
12	DB5	I/O	The 8-bit data bus					
13	DB6	I/O	The 8-bit data bus					
14	DB7	I/O	The 8-bit data bus					

LCD Command Codes

LCD Command Codes

Code (Hex)	Command to LCD Instruction Register
1	Clear display screen
2	Return home
4	Decrement cursor (shift cursor to left)
6	Increment cursor (shift cursor to right)
5	Shift display right
7	Shift display left
8	Display off, cursor off
Α	Display off, cursor on
С	Display on, cursor off
Е	Display on, cursor blinking
F	Display on, cursor blinking
10	Shift cursor position to left
14	Shift cursor position to right
18	Shift the entire display to the left
1C	Shift the entire display to the right
80	Force cursor to beginning to 1st line
C0	Force cursor to beginning to 2nd line
38	2 lines and 5x7 matrix

Sending Data/ Commands to LCDs w/ Time Delay

```
8051
P1.0
D0
V<sub>EE</sub>
LCD
P1.7
D7
V<sub>SS</sub>
RS R/W E

P2.0
P2.1
P2.2
```

To send any of the commands to the LCD, make pin RS=0. For data, make RS=1. Then send a high-to-low pulse to the E pin to enable the internal latch of the LCD. This is shown in the code below.

```
; calls a time delay before sending next data/command
;P1.0-P1.7 are connected to LCD data pins D0-D7
; P2.0 is connected to RS pin of LCD
;P2.1 is connected to R/W pin of LCD
;P2.2 is connected to E pin of LCD
       ORG
              0 H
       MOV
            A,#38H ; INIT. LCD 2 LINES, 5X7 MATRIX
       ACALL COMNWRT ; call command subroutine
       ACALL DELAY ; give LCD some time
       MOV A, \#0EH ; display on, cursor on
       ACALL COMNWRT ; call command subroutine
       ACALL DELAY ; give LCD some time
       MOV
           A, \#01 ; clear LCD
       ACALL COMNWRT ; call command subroutine
       ACALL DELAY
                      ; give LCD some time
       MOV
           A, #06H ; shift cursor right
       ACALL COMNWRT ; call command subroutine
       ACALL DELAY
                      ; give LCD some time
       MOV A, \#84H; cursor at line 1, pos. 4
       ACALL COMNWRT ; call command subroutine
       ACALL DELAY
                      ; give LCD some time
```

LCD **INTERFACING** Sending Data/ Commands to LCDs w/ Time Delay (cont') 8051 P1.0 — D0 $\leq 10 k$ **LCD** V_{SS} P1.7 D7 RS R/W E P2.0 P2.1 P2.2

```
MOV
              A,#'N'
                        ; display letter N
                        ; call display subroutine
        ACALL DATAWRT
                        ; give LCD some time
        ACALL DELAY
              A,#'0'
                         ; display letter 0
        VOM
        ACALL DATAWRT
                        ; call display subroutine
AGAIN:
        SJMP AGAIN
                        ;stay here
COMNWRT:
                        ; send command to LCD
        MOV
            P1,A
                        ; copy reg A to port 1
             P2.0
                        ;RS=0 for command
        CLR
             P2.1
        CLR
                        ;R/W=0 for write
              P2.2
        SETB
                        ;E=1 for high pulse
                        ; give LCD some time
        ACALL DELAY
              P2.2
        CLR
                        ;E=0 for H-to-L pulse
        RET
DATAWRT:
                        ; write data to LCD
        MOV
              P1,A
                        ; copy reg A to port 1
              P2.0
                        ;RS=1 for data
        SETB
              P2.1
        CLR
                        ;R/W=0 for write
              P2.2
                        ;E=1 for high pulse
        SETB
        ACALL DELAY
                        ; give LCD some time
              P2.2
                        ;E=0 for H-to-L pulse
        CLR
        RET
DELAY:
        MOV
              R3,#50
                       ;50 or higher for fast CPUs
HERE2:
        MOV
              R4,#255
                       R4 = 255
HERE:
        DJNZ
              R4, HERE
                        ;stay until R4 becomes 0
        DJNZ
              R3, HERE2
        RET
        END
```

```
Sending Data/
Commands to
LCDs w/ Time
     Delay
      (cont')
8051
 P1.0 D0
        LCD
           V_{SS}
 P1.7 D7
      RS R/W E
 P2.0
 P2.1
 P2.2
```

```
; Check busy flag before sending data, command to LCD
;p1=data pin
; P2.0 connected to RS pin
; P2.1 connected to R/W pin
;P2.2 connected to E pin
    ORG
          0 H
                     ; init. LCD 2 lines ,5x7 matrix
    MOV A, #38H
    ACALL COMMAND
                      :issue command
    MOV A, #OEH
                     ;LCD on, cursor on
    ACALL COMMAND
                     ; issue command
    MOV A, \#01H ; clear LCD command
    ACALL COMMAND ; issue command
    MOV A, #06H ; shift cursor right
    ACALL COMMAND
                     ; issue command
    MOV A, #86H
                     ;cursor: line 1, pos. 6
    ACALL COMMAND
                   command subroutine
    MOV A, #'N'
                      ; display letter N
    ACALL DATA DISPLAY
    MOV A, #'O'
                      ; display letter 0
    ACALL DATA DISPLAY
HERE:SJMP
          HERE
                 ;STAY HERE
```

LCD **INTERFACING** Sending Codes and Data to LCDs w/ Busy Flag (cont') 8051 P1.0 — D0 **LCD** V_{SS} P1.7 D7 RS R/W E P2.0

P2.1

P2.2

```
COMMAND:
     ACALL READY
                         ; is LCD ready?
                         ; issue command code
     MOV
         P1,A
     CLR P2.0
                         ;RS=0 for command
           P2.1
                         ;R/W=0 to write to LCD
     CLR
     SETB
           P2.2
                         ;E=1 for H-to-L pulse
     CLR P2.2
                         ;E=0, latch in
     RET
DATA DISPLAY:
     ACALL READY
                         ; is LCD ready?
                         ; issue data
     MOV
           P1,A
     SETB
           P2.0
                         ;RS=1 for data
     CLR P2.1
                         ;R/W = 0 to write to LCD
          P2.2
     SETB
                         ;E=1 for H-to-L pulse
     CLR
           P2.2
                  To read the command register, we make R/W=1,
     RET
READY:
                   RS=0, and a H-to-L pulse for the E pin.
           P1.7
     SETB
           P2.0
                         ; RS=0 access command reg
     CLR
           P2.1
     SETB
                         ;R/W=1 read command req
; read command reg and check busy flag
BACK: SETB
           P2.2
                       ;E=1 for H-to-L pulse
     CLR
           P2.2
                        ;E=0 H-to-L pulse
           P1.7,BACK ;stay until busy flag=0
     JB
     RET
                    If bit 7 (busy flag) is high, the LCD is busy
     END
                     and no information should be issued to it.
```

Sending Codes and Data to LCDs w/ Busy Flag (cont')

LCD Timing for Read

Note: Read requires an L-to-H pulse for the E pin

Sending Codes and Data to LCDs w/ Busy Flag (cont')

LCD Timing for Write

LCD Data Sheet

The upper address range can go as high as 0100111 for the 40-character-wide LCD, which corresponds to locations 0 to 39

One can put data at any location in the LCD and the following shows address locations and how they are accessed

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	Α	Α	Α	Α	Α	Α	Α

- AAAAAAA=000_0000 to 010_0111 for line1
- AAAAAAA=100_0000 to 110_0111 for line2

LCD Addressing for the LCDs of 40×2 size

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Line1 (min)	1	8	0	0	0	0	0	0
Line1 (max)	1	7 0	1	0	0	1	1	1
Line2 (min)	1	1	0	0	0	0	0	0
Line2 (max)	1	1	1	0	0	1	1	1