Hypothesis testing in public health

Seth D. Temple
Statistics Ph.D. candidate
UW Biostatistics Teaching Demo
January 18, 2024

Last class

Parameter:

- Feature of a population
- Model for data generation

Statistic:

- Feature of a sample
- Estimate parameter from data

Learning objectives

- Frame a research question as a statistical question
- Define Type 1 and Type 2 Error
- Discuss their importance in a research study

Participation* expectations

- Exercise 1
 - 1. Chatter in small group, or write response on notes (~60 sec.)
 - 2. Solicit responses for larger discussion
- Exercise 2
 - Think about your response privately (5 sec.)
 - Quick "Yes/No" poll after countdown

Show respect; no judgment

Example 1: Sodium homeostasis

- Sodium is important to biological processes
- Too little may lead to health consequences
- Lamotrigine helps treat bipolar disorder. It may affect sodium levels.

Research Question

Does lamotrigine affect levels of sodium?

Statistical Question

- μ_0 is "average" parameter based on prior study
- μ_D is parameter for population taking lamotrigine
- Does the sample mean \overline{X}_D sodium give enough evidence to reject that $\mu_D = \mu_0$?

Why do we care about hypothesis tests?

Reward

 Prescribe patients an effective treatment

Risk

Do harm to patients

Type 1 Error. We reject that $\mu_D = 140$ even though it is.

^{*} This definition generalizes to other hypothesis tests.

Type 2 Error. We fail to reject $\mu_D = 140$ given that $\mu_D = 138$.

^{*} This definition generalizes to other hypothesis tests, say $\mu_D \neq 140$.

Warm-up viral tests

Type 1 error

Type 2 error

Visualizing Type I,II errors

Hypothesis test calculation

- Collect blood work from 30 individuals
- $X_1, ..., X_{30}$ are their sodium levels
- Compute the mean

$$\bar{X}_D = \frac{X_1 + \dots + X_{30}}{30}$$

*** X_D is statistic estimating μ_D ***

Put the statistic on a common scale

Hypothesis test calculation

Sodium levels $X_1, ..., X_{30}$ from patients taking lamotrigine

$$\overline{X}_D = 138.42$$

$$Z_D = \sqrt{30} \times \frac{(X_D - 140)}{2.5} = -3.46$$

p-value: probability mean as extreme is 0.0005 !!!

p-value: the probability of observing a statistic as extreme as in our sample

Here our statistic is the mean Under the null model

Type 1 error simulations

- Assume model $N(\mu_0 = 140, \sigma = 2.5)$
- Run 1000 experiments
 - 1. Simulate 30 samples from model
 - 2. Compute Z_D statistic
 - 3. If $|Z_D| > 1.96$, add 1 to running count

I found
$$|Z_D| > 1.96$$
 to occur $\frac{53}{1000} \approx 0.05$.

Discussion activity (60 sec.)

Study effect of lamotrigine on # of mood swings

- 50 participants in Drug D group
- 50 participants in Placebo P group
- 1. How would you phrase the statistical question in this study?
- 2. How would you phrase the Type 1 error?

My answer key

- 1. Does the difference of sample means $\overline{X}_D \overline{X}_P$ give enough evidence to reject that $\mu_D \mu_P = \mathbf{0}$?
- 2. We reject initial assumption $\mu_D = \mu_P$ despite $\mu_D = \mu_P$.

Back to sodium homeostasis example

Alternative Hypothesis Experiment

- Run an experiment 1000 times
 - 1. Simulate 30 samples from model $N(\mu_D, \sigma = 2.5)$
 - 2. Compute $Z_D = \sqrt{30} \times (\bar{X}_D 140)/2.5$
 - 3. If $|Z_D| > 1.96$, add 1 to a running count

True Parameter μ_D	Type 2 Error	Power = 1 - Type 2
139.75	0.91	0.09
139.50	0.81	0.19
139.00	0.42	0.58
138.00	0.01	0.99

Sample Size Experiment

Same as before, except # of people varies The true drug effect μ_D is 139

Sample Size	Type 2 Error
10	0.77
20	0.57
30	0.42
50	0.28

Confidence level experiment

Same as before, except controlling Type 1 error varies. The true drug effect μ_D is 139

Confidence	Type 2 Error
0.10	0.29
0.05	0.41
0.01	0.65
0.001	0.86

My answer key

Type II error probability depends on specifying tolerance for Type I error.

We may want to make few Type 1 errors.

Beyond p-values

- Lamotrigine shows "significant" effect on mood! Why worry about sodium levels?
 - How effective is significant?
 - μ_0 is based on non-representative study. \odot
 - Prescription costs
 - Studies had few participants 😔
 - Electrolytes are effective supplement ©

Example 2: Genetic associations

- Genotypes AA (0), AB (1), BB (2)
- $(Y_1, ..., Y_n)$ sodium levels
- $(X_1, ..., X_n)$ genotypes
- ϵ_i random noise

$$Y_i = \beta_0 + \beta_1 \times X_i + \epsilon_i$$
Intercept Slope

Simulate additive genetic effect

- 1. Draw roughly $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ genotypes AA, AB, BB
- 2. Draw 50 errors $\epsilon \sim N(\mu = 0, \sigma = 2.5)$
- 3. Compute *Y*
 - Intercept $\beta_0 = 137$
 - Slope $\beta_1 = 3$
- 4. Compute p-value from average \overline{Y}

Studying one variant

Simulated additive effect model:

$$Y = 137 + 3 \times X + \epsilon$$

Parameter	Estimate	p-value
Slope	2.91	2e-16

Simulate no genetic effect

- 1. Draw roughly $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ genotypes AA, AB, BB
- 2. Draw 50 errors $\epsilon \sim N(\mu = 0, \sigma = 2.5)$
- 3. Compute *Y*
 - Intercept $\beta_0 = 140$
 - Slope $\beta_1 = 0$
- 4. Compute p-value from average \overline{Y}

Studying one variant

Simulated no effect model:

$$Y = 140 + \mathbf{0} \times X + \epsilon$$

Parameter	Estimate	p-value
Slope	-0.09	0.67

Simulate no genetic effect for 1000 genetic markers

Markers are independent

Is sodium metabolite associated w/ genotypes?

Why do we observe ~ 10 / 1000 "significant" associations?

- p-value threshold should be smaller
- Divide by # tests

Is sodium metabolite associated w/ genotypes?

Today's review

- Two examples of statistical analysis
 - Average sodium level (continuous)
 - Genetic association (linear relationship)
- Type 1 error is about controlling for false positives
 - Testing too many things
- Power is about identifying true positives

Next class: more types of hypothesis tests

My vision in this role

- Today: teaching undergrads in public health
- Able to teach grad courses (512, 513, 533, 570-1, ...)
- Passionate about statistical genetics
 - Broadening curriculum beyond human genomics
 - Outreach (workshops, online courses)
 - An undergraduate course
 - Mentoring student research
 - Promoting DEI

<u>sdtemple.github.io/files/teaching-demo-sdtemple.pdf</u> <u>sdtemple.github.io/files/teaching-demo-sdtemple.R</u>

Thank you for the invite

Appendix: my research

Current & future research

- Correlated binary random vector in light of unobserved process
- Recent selection in non-European or non-human studies
- Deep learning in population genetics