Assignment 3

<u>Problem 1</u>. In a group (G, *), if $(a * b)^2 = a^2 * b^2$ for all $a, b \in G$ then show that G is abelian group.

<u>Problem 2</u>. Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a * b = $\frac{ab}{2}$.

Problem 3. Let R be a group of all real numbers under addition and R⁺ be a group of all positive real numbers under multiplication. Show that the mapping $f: R^+ \to R$ defined by $f(x) = \log_{10} x$ for all $x \in R$ is an isomorphism.

<u>Problem 4</u>: Consider the groups $(G_1, *)$ and (G_2, \oplus) with identity elements e_1 and e_2 respectively. If $f: G_1 \to G_2$ is a group homomorphism, then prove that

- (1) If H_1 is a sub group of G_1 and $H_2 = f(H_1)$, then H_2 is a sub group of G_2 .
- (2) If f is an isomorphism from G_1 onto G_2 , then f^{-1} is an isomorphism from G_2 onto G_1 .

<u>Problem 5</u>: If G is a group of order p, where p is a prime number. Then what are the number of sub groups of G?

). Proof: Given that
$$(a * b)^{2} = a^{2} * b^{2}$$
 $\Rightarrow (a * b)^{2} (a * b) = (a * a)^{2} (b * b)$
 $\Rightarrow (a * b)^{2} b = a^{2} (a * b)^{2} b$
 $\Rightarrow (a * b)^{2} b = (a * b)^{2} b$
 $\Rightarrow (a * b)^{2} b = (a * b)^{2} b$

Hence, G is abelian group

2. Let $A = Set$ of all postive rational numbers let a, b, c be any three elements of A
 $a * b \in A$ for all $a, b \in A$
 $(a * b)^{2} (a * b)^{2} (a$

Let e be the identity element

We have ate=(ae)/2 $a^{\dagger}e=a$ (ae)/2=a=2 and 2E/3

i. Identity element exists, and 2' is the identity element in A

3 let a, b F Rt

Now, $t(a.b) = log_{10}(a.b)$ = $log_{10} a + log_{10} b$ = t(a) + t(b)

: fis an homomorphism

For any a, LER, Let, flat= flb) => 29=25 => a=b

: tis one to one

take any CFR+

Then log 2(ER and + Cloy C) = 2 (42) = (

=) Every element in Athas a pre image in R

tis onlo

et is a bijection

Hence , fis an isomorphism

4. (1) Hz = f(Hi) is the image of Hi under to this is a subject of G.
Let XiYEHz

Then x = f(a), y = f(b) for some $a, b \in H$,

Since, H_1 is a subgroup of G_1 , we have $a \notin b^{-1} \in H$,

Con sequently $x \notin y^{-1} = f(a) \notin [f(b)]^{-1}$ $= f(a) \oplus f(b^{-1})$ $= f(a \notin b^{-1}) \in f(H_1) = H_2$

Hence, Hz is a subgroup of 62

(2) Sin ce f: 6,762 is an isomorphism, tis a bijection : f-1:6276, exists and is a Lijection

Let $x,y + G_2$ Then $x \oplus y \in G_1$ and there exists a, b $\in G$, such that x = f(a) and y = f(b) $= f^{-1}(x \oplus y) = f^{-1}(f(a) \oplus f(b))$ $= f^{-1}(f(a \times b))$ $= f^{-1}(x)^{x} f^{-1}(y)$

f is an isomorphism

5. it is 2