

语音信号处理概述

主讲人 宋辉

清华大学电子工程系 博士 滴滴Al Labs 语音技术部

- 1. 语音交互
 - 2. 复杂的声学环境
 - 3. 前端语音信号处理
 - 4. 课程安排
- 5. 推荐阅读

voice user interface

<mark>语音交互(VUI)</mark>是指人与人/设备通过自然语音进行信息传递的过程。

● 语音交互的优势:

- 输入效率高。相比键盘输入,语音输入的速度是传统输入方式的3倍以上。 在百度做的测试
- 解放双手和双眼,更安全。例如车载场景通过语音点播音乐和导航。
- **使用门槛低。**人类本就是先有语音再有文字,对于那些无法用文字交互的人来说,语音交互会为其带来极大的便利。
- 传递更多的声学信息。声纹、性别、年龄、情感等。

● 语音交互的劣势:

信息接收效率低、复杂的声学环境、心理负担。

\$ 人机语音交互

- 1952年,贝尔实验室,阿拉伯数字识别系统Audrey
- 1962年, IBM-Shoebox
- 2011年, iphone4s, Siri问世
- 2014年, win8, Cortana
- 2014年, Amazon发布echo音箱 an_kao
- 2016年,Google发布Google Home

♦ 人机语音交互流程

				家庭场景				车载场景	外出场景	办公场景	医疗场景	教育场景	出行场景
	音箱	电视	空调	灯	平板电脑	冰箱	洗衣机	汽车	耳机	电脑	病历录入	学习平板	耳机
1加分项													
1.1 需要复杂的信息输入	2	2	2	0	2	1	1	2	2	2	2	2	2
1.2 使用对象双手或双眼被占用	0	0	0	1	0	0	0	2	2	0	2	0	2
1.3 使用对象为非文字使用者 (需要文字输入)	1	2	0	0	1	0	0	1	1	0	0	2	1
1.4 需要跨短距离空间的操作	1	1	0	2	0	2	0	0	0	0	0	0	0
1.5 原信息输入的工具比较受限	0	2	1	2	0	1	2	0	0	1	1	0	1
1.6 跨意图指令输入	2	2	0	0	2	0	0	2	2	1	0	1	1
1.7 使用频次	2	2	2	2	2	1	0	2	2	2	2	2	2
1.8 原设备和声音的关联度高	2	2	0	0	2	0	0	2	2	1	0	2	2
1.9 需要声音传递额外信息	1	1	0	0	1	0	0	1	0	0	0	2	1
2 减分项													
2.1环境私密程度低	0	0	0	0	0	0	0	0	1	2	0	1	1
2.2 环境嘈杂	0	0	0	0	0	0	0	1	1	1	0	1	1
2.3 涉及到多层次交互 (屏幕可弥补)	1	0	0	0	0	0	0	0	0	0	0	0	0
2.4 涉及到多条目选择 (屏幕可弥补)	1	0	0	0	0	1	0	0	0	0	0	0	0
2.5 涉及到重要/隐私信息传达 (屏幕可弥补)	0	0	0	0	0	0	0	0	0	0	0	0	0
综合得分	9	14	5	7	10	4	3	11	9	4	7	9	10

总结起来就是: 家里、车里、路上。

2. 复杂的声学环境

现实中的语音交互系统,无一例外的会受到各种环境不利因素的影响,极大影响了交互成功率和用户体验。

- 方向性干扰 人声干扰
- 环境噪声 (散射噪声)
- 远讲产生的混响 多径效应
- 声学回声 设备自身的声音

痛点:人和机器都听不清

2. 复杂的声学环境

- 一个成功的语音交互产品,意味着对语音交互的场合和使用模式无约束。
- 前端语音信号处理的意义:
 - 面对噪声、干扰、声学回声、混响等不利因素的影响,运用信号处理、机器学习等手段,提高目标语音的信噪比或主观听觉感受,增强语音交互后续环节的稳健性。
 - 让人听清:更高的信噪比,更好的主观听觉感受和可懂度,更低的处理延时。
 - **让机器听清**: 更好的声学模型适配, 更高的语音识别性能。 *必是更高的SNR

总结:语音信号处理的目标,是为了让人和机器更容易听清语音,让语音交互更加自然和 无约束。

回声消除: 语音通话

免提通话

电话/视频会议

你知道苹果手机有几个麦克风吗?

双麦收音

通话收音

录制视频、 主动降噪

● 18:01 ● 7 ▼ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18:01 ● 7 ■ \$ 46% ■ 18

thinkpad

波束形成

回声消除

Siri

车载

家居

◯ 分而治之——针对不同的干扰因素,采用不同的信号处理算法

○ 声学回声消除——消除设备自身的干扰

- △消除设备自身产生的回声干扰
- △ 最早应用于全双工语音通信、视频会议
- △ 在语音交互中起到打断唤醒的作用
- △ 主要模块

时延估计 参看信号和输入信号的时间对齐

线性回声消除

双讲检测 控制线性回声消除滤波器的工作

残余回声抑制

🚺 声学回声消除——音频示例

解混响远场:近场信号卷积RIR

- △ <u>盲反卷积法 [Neely and Allen, 1979]</u> 估计RIR的逆滤波器
- △ 加权预测误差 [Takuya, 2012] 线性预测特性 消除晚期混响,适用于单通道和多通道场景
- △ 麦克风阵列波束形成 空间信息

有混响

去混响

🚺 语音分离——旨在解决"鸡尾酒会问题"

- △ <u>听觉场景分析法 [Hu and Wang, 2004]</u> CASA TF-mask 本质上是对人的听觉特性的模拟,具体手段是二分类+监督学习
- △ <u>非负矩阵分解 [Lee and Seung, 2001]</u>
 基于统计独立假设,语音信号的稀疏性与谐波特性

fix beamforming, adaptive beamforming, ICA 独立成分分析

△ 基于深度学习的语音分离

Deep clustering [Hershey, 2016] Deep attractor network [Luo and Chen, 2017] Permutation invariant training [Yu, 2017]

🚺 语音分离——音频示例

○ 波束形成——用于多通道语音增强、信号分离、去混响、声源定位

🚺 波束形成——音频示例

🚺 噪声抑制——消除或抑制环境噪声,增强语音信号

△ 基于统计模型的方法

最小均方误差MMSE、最大似然估计ML、最大后验估计MAP

△ 基于子空间的方法

利用语音和噪声的不相关性,借助特征值/奇异值分解手段分解到子空间处理

△ 语音增强的核心在于噪声估计

递归平均、最小值追踪、直方图统计是比较常用的噪声估计手段

△ 基于深度学习的语音增强方法 phase: complex neural network

两大类方法: masking && mapping

通过DNN、CNN、RNN或者GAN, 在频域或时域实现 (多为频域)

● 噪声抑制——音频示例

增强前

增强后

● 幅度控制

- △自动调整信号的动态范围
- △常用的两种方法

动态范围控制(Dynamic Range Control)

自动增益控制(Automatic Gain Control)

● 幅度控制——音频示例

AGC前

AGC后

3. 前端信号处理的技术路线

ó 传统的前端信号处理方案

处理依据—— "规则"

客观物理模型,即声音传播的物理规律 语音信号的时域、频域和空域特性

- 针对不同的干扰因素,采用不同的信号处理算法加以解决
- 优化目标:抑制干扰信号,提取目标信号
- 优化准则:

MSE(Mean Square Error)准则

3. 前端信号处理的技术路线

信号处理与深度学习相结合的方案

● 处理依据——"规则+学

习客观物理模型

语音信号的时域、频域、空域特性

海量音频数据先验信息

- 既保留了声音传播的物理规律和信号本身的时域、频域、空域特性,又引入了先验数据统计建模的方法。
- 优化准则:

MSE准则

3. 前端信号处理的技术路线

- 基于深度学习的前后端联合优化方案
 - 处理依据——"端到端联合建模"
 输入多通道麦克风信号,输出语音识别结果
 利用近场数据,仿真得到海量的带有各种干扰的训练数据
 - 将前端信号处理与后端ASR声学模型联合建模,用一套深度学习模型完成语音增强和语音识别任务。
 - 优化准则: filter-and-sum 识别准确率

\$ 4. 课程安排

第1章 语音信号处理概述

- 语音交互
- 复杂的声学环境
- 前端语音信号处理
- 课程安排
- 推荐阅读

第4章 自适应滤波方法 (二)

- RLS算法
 - 基本RLS算法
 - RLS的衍生算法
- o AP算法
- 实战

第2章 数字信号处理中的几个关键概念

- 数字信号及其基本运算
- o 采样定理
- 时频分析与傅里叶变换
- 实战

第5章 声学回声消除和噪声抑制技术

- 子带分解——FFTbank
- 声学回声消除AEC
- 噪声抑制NS
- 实战

第3章 自适应滤波方法(一)

- LMS算法
- 基本LMS算法
- LMS的衍生算法
- 实战

· L+:

\$ 4. 课程安排

第6章 阵列信号处理 (一)

- 阵列信号处理的基本概念
- 几种经典的波束形成算法
 - Delay-and-sum
 - MVDR、LCMV、GSC
- 实战

第8章 深度学习用于语音分离

- 语音分离的常用模型
- 训练目标与特征
- 单通道语音分离算法
- 实战

第7章 阵列信号处理 (二)

- 声源定位技术
 - 基于最大输出功率的可控波束形成技术
 - 高分辨率谱估计技术
 - 基于到达时间差的方法
- 波束形成——GSC算法的实际应用
- 实战

第9章 深度学习在语音信号处理中的其他应用

- 多通道语音分离技术
 - NN-BF算法
- End2end方法
- o实战

理论与实践兼顾

立足传统技术,辐射前沿进展

🚺 公式较多,重在理解

○ 实战巩固

\$ 5. 推荐阅读

- -- 奥本海姆, 《信号与系统》, 电子工业出版社
- -- 奥本海姆, 《离散时间信号处理》 (Discrete Time Signal Processing, Third Edition)
- -- 郑君里, 《信号与系统》, 电子工业出版社, 高等教育本科国家级规范教材
- -- 赵力, 《语音信号处理》, 机械工业出版社
- -- 韩纪庆, 《语音信号处理》, 机械工业出版社

\$ 5. 推荐阅读

- -- 张贤达, 《现代信号处理》, 清华大学出版社
- -- 张贤达, 《矩阵分析与应用》, 清华大学出版社
- -- Van Trees, 检测、估计和调制理论 (IV)《Optimum array processing》
- -- Signals and Systems: an Introduction to Analog and Digital Signal Processing. 1987 Lecture. Alan V. Oppenheim

5. 推荐开源项目

-- Athena-signal

https://github.com/athena-team/athena-signal

💲 5. 推荐开源项目

-- Python for Signal Processing

https://github.com/unpingco/Python-for-Signal-Processing

《Python for Signal Processing: Featuring IPython Notebooks》对应源码,包含信号处理12大类(采样定理、傅里叶变换、滤波器等)、随机过程15大类(高斯马尔科夫、最大似然等)

-- Speex

https://www.speex.org

A Free Codec For Free Speech。专门语音压缩而设计的,包含超过9种算法:AEC、NS、VAD等,不过现在被Opus替代。

-- Google WebRTC

https://webrtc.org

一个免费的开放式项目,通过简单的API为浏览器和移动应用程序提供实时通信(RTC)功能。

-- VOICEBOX: Speech Processing Toolbox for MATLAB

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

语音处理工具箱,由MATLAB程序组成。超过100个函数,包含语音增强、ASR等在内。

感谢聆听 Thanks for Listening

