

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МИРЭА – РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» РТУ МИРЭА

Институт	ИКБ			
Специалы	ность (направл		03.02 (информаци огии)	ионные системы и тех-
Кафедра:	КБ-3 «Разрабомирования»	отка програ	ммных решений	и системного програм-
Дисципли	на: "Безопасно	ость операці	ионных систем"	
		Практи	ческая работа	
			иа тему: еское занятие № 7	
Студен	подпись	13.12. Дата		енинников М.В. алы и фамилия
Группа	а: БСБО-16-23		Шифр:	23Б0107
Преподаватель:			13.12.2024	Иванова И. А.
		подпись	дата	инициалы и фамилия

Ход работы

До этого создал пользователя guest и задал ему пароль

```
$ 1s
dir1
1s -1 dir1
total 0
-rw-r--r-- 1 guest guest 0 Dec 12 11:57 dummy file
-rw-rw-r-- 1 guest guest 5 Dec 12 12:10 file1
-rw-rw-r-- 1 guest guest 14 Dec 12 12:04 real file
-r-x---- 1 guest guest 31 Dec 12 12:07 test.sh
stat dir1
 File: dir1
Size: 4096
                       Blocks: 0
                                         IO Block: 4096 directory
Device: 2h/2d Inode: 39406496739777619 Links: 1
Access: (0700/drwx-----) Uid: ( 1001/ guest) Gid: ( 1001/ guest)
Access: 2024-12-13 23:14:36.044867200 +0300
Modify: 2024-12-12 12:10:06.527283900 +0300
Change: 2024-12-12 12:10:06.527283900 +0300
Birth: -
nano dir1/test.sh
$ chmod 500 dir1/test.sh
$ chmod 000 dir1
$ 1s -1
total 0
d----- 1 guest guest 4096 Dec 13 23:15 dir1
$ echo "test">dir1/file1
-sh: 8: cannot create dir1/file1: Permission denied
$ sudo echo "test">dir1/file1
-sh: 9: cannot create dir1/file1: Permission denied
$ mv dir1/file1 dir1/file2
nv: failed to access 'dir1/file2': Permission denied
$ cat dir1/test.sh
cat: dir1/test.sh: Permission denied
$ chmod 700 dir1
$ 1s -1
total 0
drwx----- 1 guest guest 4096 Dec 13 23:15 dir1
$ echo "test">dir1/file1
$ cat dir1/test.sh
#! /bin/bash
echo "praktika 7"
5 mv dir1/file1 dir1/file2
5 rm dir1/file2
```

Задание для самостоятельной работы:

Таблица 1. Установленные права и разрешённые действия

Директории	Файлы	Удаление файла	Запись в файл	Чтение файла	Просмотр файлов	Переименование файла	Исполнение файла
0000/	0000/	2	120	6	2	<u> </u>	-
0100/	0000/	2	-	12	+	2	12
0200/	0000/	-	-	-	2	12	-
0300/	0000/	-	-	-	+	-	-
0400/	0000/	-	-	+	+	-	-
0500/	0000/	-		+	+	1.7	+
0600/	0000/	-	+	+	+		+
0700/	0700/	+	+	+	+	+	+

Таблица 2. Минимальные права для совершения операций

Операция	Минимальные права на директорию	Минимальные права на файл (поддиректорию)
Создание файла	W	-
Удаление файла	W	i e
Чтение файла	х	r
Запись в файл	х	W
Переименование файла	W	2.50
Создание поддиректории	W	829
Удаление поддиректории	W	

Ответы на вопросы

1. Конфигурация подсистемы защиты в ОС

Подсистема защиты обеспечивает конфиденциальность, целостность и доступность данных в системе. Она включает механизмы разграничения прав доступа, шифрование данных, системы аудита и контроля, а также настройку политик безопасности. Конфигурация осуществляется через файлы конфигурации, интерфейсы ОС или специальные инструменты администрирования, такие как SELinux или AppArmor.

2. Механизм идентификации пользователей в ОС

Идентификация пользователей — это процесс определения уникальности пользователя. В ОС каждый пользователь имеет уникальный идентификатор (например, UID в Linux), который связывается с его учетной записью.

3. Механизм аутентификации пользователей в ОС

Аутентификация — это подтверждение личности пользователя. Она может быть реализована через пароли, ключи, биометрические данные или токены. Пример: ввод пароля при входе в систему или использование команд sudo с подтверждением через аутентификацию.

4. Основные механизмы зашиты в ОС

- 1) Разграничение доступа (ACL, права на файлы и каталоги).
- 2) Шифрование данных (дисковое шифрование, SSL/TLS).
- 3) Аудит и мониторинг (журналы событий).
- 4) Изоляция процессов (контейнеризация, виртуализация).

5. Классификация угроз

- 1) Физические (кража оборудования).
- 2) Программные (вирусы, трояны, руткиты).
- 3) Сетевые (DoS-атаки, перехват данных).
- 4) Социальная инженерия (фишинг, взлом через доверие)

6. Авторизация. Разграничение доступа к объектам ОС

Авторизация — это проверка прав пользователя на выполнение операций с ресурсами. Механизмы:

- 1) POSIX-права: чтение, запись, выполнение.
- 2) ACL (Access Control Lists): гибкие списки прав доступа.
- 3) SELinux: мандатное управление доступом.

7. Аудит системы защиты

Аудит фиксирует действия пользователей и процессов для выявления попыток взлома, анализа инцидентов или оценки текущего уровня безопасности. Пример: команды journalctl и просмотр /var/log/auth.log в Linux.

8. Системы защиты программного обеспечения

Системы защиты ПО предотвращают копирование, модификацию или несанкционированное использование. Методы:

- 1) Лицензионные ключи.
- 2) Шифрование кода.
- 3) Программы-защитники (антивирусы, фаерволы).

9. Атаки на операционные системы

Популярные виды атак:

- 1) Эксплойты (использование уязвимостей).
- 2) Атаки на пароли (перебор, фишинг).
- 3) Руткиты (маскировка вредоносного ПО).
- 4) Межпроцессные атаки (например, переполнение буфера).

10. Защищенные операционные системы

Защищённые ОС имеют встроенные механизмы безопасности, например:

- 1) Windows c BitLocker.
- 2) Linux c SELinux/AppArmor.
- 3) Qubes OS (использует изоляцию через виртуальные машины).

11. Получение данных авторизации и другой ключевой информации

Методы:

- 1) Сниффинг (перехват данных в сети).
- 2) Кража через вредоносные программы.
- 3) Социальная инженерия.
- 4) Брутфорс.

12. Восстановление удаленных данных (сборка мусора)

Удалённые данные можно восстановить, если они не были перезаписаны. Используются программы вроде TestDisk, photorec. Также применяется анализ мусора (лог-файлы, временные данные).

13. Поиск и сбор информации

Методы:

- 1) Легальные: лог-файлы, системные утилиты (например, ps, top).
- 2) Неавторизованные: сканирование портов, исследование метаданных.

14. Аппаратная и биометрическая аутентификация

- 1) Аппаратная: использование USB-токенов, смарт-карт.
- 2) Биометрическая: сканирование отпечатков пальцев, сетчатки глаза, распознавание лиц.

15. Модели управления доступом

- 1) Discretionary Access Control (DAC): доступ определяется владельцем объекта.
- 2) Mandatory Access Control (MAC): доступ определяется политиками безопасности (например, SELinux).
- 3) Role-Based Access Control (RBAC): доступ предоставляется в зависимости от роли пользователя.