Approaches to Mechanising Behavioural Types

António Ravara with the contributions in the spreadsheet

NOVA-LINCS and Dep of Informatics School of Science and Technology, NOVA University of Lisboa, PT Univ of Malta, Malta

June 4, 2020

Representations of Binders

Five approaches

- ▶ de Bruijn indices
- polymorphic HOAS
- proof-assistant binders / separation logic
- nominal sets
- syntactic

de Bruijn indices

Common cons: not necessarily "human-readable" (should we care? it's to be checked by machines...)

- type level (Uma & Ornela) well-scoped by construction, easily mechanised
- tree-shaped (James & Robert)
 metatheory just like STλC (well-known)
- co-indices (Robert) simple in the linear case, readily translated to BCI combinators
- Agda-binders in types (Luca²)
 + just Agda functions heavy notation, limited inference
- proof of context membership in types (Edwin)
 + well-scoped by construction, type-driven implementation of context manipulation
 sometimes costly at compile-time

Other Representations of Binders

- polymorphic HOAS (Uma & Ornela why another approach?)
 - + transparent to the user
 - cannot reason about in host language
- proof-assistant binders (Jonas et al.)
 - + Binders like HOAS, no meta theory needed ("apart" from SL)
 - semantic approach
- nominal sets (Kirstin)
 - + binders treated just like in paper proofs
 - requires equivariance proofs, not "easily" portable
- syntactic (Petros / Antonio et al.)
 - + quick & easy, no libraries required
 - nightmare to reason about

Dealing with linearity - I

(almost) as many approaches as entries in the sheet...

- leftover typing on partial commutative monoids (Uma & Ornela)
 - + no extrinsic context splits
 - needs to be cancelative
- predicate on processes with polymorphic channels (Uma & Ornela)
 - + trivial to define
 - user loses access to channel type info
- semiring usage annotations (James & Robert / Lucas)
 - + standard linear algebra
 - no clear general approach, users have to supply proofs
- linear co-de Bruijn indices (Robert)
 - + no algebra
 - (no algebra) only syntactic linearity, user supplies permutations

Dealing with linearity - II

(almost) as many approaches as entries in the sheet...

- separation logic (Iris) (Jonas et al.)
 - + resource reasoning encapsulated
 - unclear how to do other properties than safety
- quantitative type theory (Edwin)
 - + session types definable directly
 - "read only"operations are syntactically noisy
- ▶ linear logic (Petros)
 - + correct-by-construction
 - allowed patterns severely limited
- ▶ addition relation + proof of well-formedness (Antonio et al.)
 - + operations on types are partial functions, natural to implement
 - operations on type environments require proofs; non-determinism in the type system complicates soundness proofs

Questions / Challenges

Are each of the approaches scalable?

- from linear types to binary session types
- from binary to multiparty session types
- from protocol to functional correctness
- from safety to liveness properties
- **.**..

How to relate these approaches?

- Encodings?
- Sharing definitions and results
- Characterisations to find the right setting to the problem of interest
- **.**...