eecs376.org

EECS 376: Foundations of Computer Science

Lecture 02 - Potential Method and Divide and Conquer

5/8/2

Agenda

- · Runtime analysis of Euclid's algorithm
 - New analysis tool: Potential method
- Divide & Conquer algorithmic paradigm
 - Mergesort
 - Master Theorem
 - · Karatuba's Integer Multiplication

The Potential Method

Today we will analyze the running time of Euclid's algorithm using the **potential method**.

... But first, a toy example to illustrate this method

A Flipping Game

- 3 x 3 board covered with two-sided chips: V /
- Two players, R (row) and C (column), alternately perform "flips":
 - R flips every chip in a row with #@ > # 🔽
 - C flips every chip in a column with # ♠ > # ☑
- If no flip is possible, then the game ends.
- Question: Must the game always end?

R flips row 3

C flips column 1

总殿定≤9

Let's formalize this reasoning into a general-purpose method

Intuitively, a potential function argument says:

If I start with a finite amount of water in a leaky bucket, the eventually water must stop leaking out.

4 steps of the argument:

- 1. Define unit of time i = 0.1,2,... (e.g. iteration of algo recursion depth)
- Define potential function Φ(i) as non-negative interger (i.e. amount of water in bucket at timestep i)
- Bound initial potential $\Phi(o)$

(i.e. water is finite)

Show potential decreases Φ(i+1) < Φ(i)
 (i.e. water is leaking)

• Conclude: Bound the total time in term of Φ(0) (i.e. water must stop)

Dispotential method 18:

1-B-/t set A来表示 states (比如unit of time /iteration)
0,1,2,....

- 2. p:A → R 被放着一个 potential function.

 if (1)它是 strictly decreasing with states be
 (2)也是 bounded below 的
- 3. 通过这个def,我们可以求 number of steps be upper bound (DO) by: establish y be deaease 速度,从而用 yco)来称 y (n)

Analyzing Euclid's Algorithm via a Bad Potential Function

Unit of time = one recursive call.
 Potential function Φ(i) = y_i.
 We have Φ(i+1) ≤ Φ(i) - 1. Why:

So, the total number of calls is at most Φ(o) = y.

But the runtime bound $y = O(10^n)$ looks bad like before...

But the runtime bound $y = O(10^n)$ looks bad like before...

What's wrong? Not algorithm. Just need new Φ that decreases faster.

Pause and Think: What is a good potential function?

13

Analyzing Euclid's Algorithm via a Potential Function

Finding the right potential function can be a fine art.

- 1. Unit of time = one recursive call.
- 2. New potential function $\Phi(i) = x_i + y_i$
- OClos) 3. Claim 1: $\Phi(i+1) \le 3/4 \Phi(i)$. (will show)
- 4. Claim 2. Thus: total # recursive calls is $O(\log (x+y)) = O(n)$. (will show)

Grade-school algorithm

Euclid running time = (# recursive calls) × (time to mod of *n*-digit numbers) $= O(n) \times poly(n) = poly(n)$

Analyzing Euclid's Algorithm via a Potential Function

Claim 1. $\Phi(i+1) \le 3/4 \Phi(i)$.

Idea: The larger number is halved in each call: $x \rightarrow x \mod y$.

Proof. Show $(x \mod y) + y \le \frac{3}{4}(x+y)$ for all integers $x \ge y \ge 0$.

Let's first show: If $x \ge 2y$, then

If x < 2y, then

x mod y \leq x/2. x mod y < y \leq x/2.

 $x \mod y = x-y \le x - x/2 = x/2$.

• This implies: $(x \mod y) + y \le y + x/2 \le \frac{3}{4} (x+y)$.

Optional Challeng Show $\Phi(i+1) \le 2/3 \Phi(i)$. Show $\Phi(i+1) \le \varphi \Phi(i)$ where

Further proof: φ(i+1) ≤ 3 9 (i)

Goal: Show Xintyin < 3 (Xityi)

where $x_{i+1} = y_i$, $y_{i+1} = x_i \mod y_i$ (write $x_i = q_i y_i + r_i$ by div also,

then yi+=ri) 田面即は: Yi+riら言(yi+7ii)

Pt. 71+41 = 8141+ 11+41

-> Gorollary 12 Vi, y(i) = 7i +yi

(Bá Yizht)

via a Potential Function

<(3) (7xty)

Analyzing Euclid's Algorithm

Claim 2: Total # recursive calls is $1 + \log_{4/3}(x+y) = O(\log(x+y))$.

Proof. $\Phi(o) = x+y$, $\Phi(1) \leq (x+y) \cdot 2 \cdot \frac{2}{3} \cdot \dots$ $\Phi(i) \leq (x+y) \cdot (\sqrt[3]{3}) \rightarrow (2)$

When $|i| > \log_{4/3}(x+y)$: $(4/3)^{i} > (4/3)^{\log_{4/3}(x+y)} = (x+y)^{\log_{4/3}4/3} = x+y$.

BP O Clog (5x+4)) So, after $1 + \log_{4/3}(x+y)$ recursive calls, $\Phi(i) < 1$.

- So $\Phi(i) = 0$ as $\Phi(i)$ is always an integer,
- At this point the algorithm terminates.

Euclid (Dry) perform

Analyzing Euclid's Algorithm via a Potential Function

Finding the right potential function can be a fine art.

- 1. Unit of time = one recursive call.
- 2. New potential function $\Phi(i) = x_i + y_i$.
- $\sqrt{3}$. Claim 1: $\Phi(i+1) \le 3/4 \Phi(i)$. (will show)
- **4.** Claim 2. Thus: total # recursive calls is $O(\log (x+y)) = O(n)$. (will show)

Euclid running time = (# recursive calls) × (time to mod of *n*-digit numbers)

 $= O(n) \times poly(n) = poly(n)$

(2) Next: Introduction to Divide and Conquer

Overview: Divide-and-Conquer Algorithms

Main Idea:

- 1. Divide the problem into smaller sub-problems (creative step)
- 2. Conquer (solve) each sub-problem recursively (easy step)
- 3. Combine the solutions (creative step)

https://www.youtube.com/watch?v=ZRPoEKHXTJg

Mergesort

Input: 3 Array of numbers

Output: Sorted

Discovered by John von Neumann in 1945

Mergesort

Mergesort

Correctness

- Strong induction on size of list, n.
- Base case:
 - MS is correct on lists of size 1.
- Inductive step:
 - Suppose **MS** is correct on lists of size < n.
 - Then **MS** is correct on 1st/2nd half, by assumption.
 - Since Merge is correct, MS is correct on n.

Recurrence of Running Time

Let T(n) be worst-case running time on input of size n

The Master Theorem

3

Master Theorem

(Runtime of Divide and Conquer Algorithms)

- Given an input of size n, an algorithm
 - makes ${\it k}$ recursive calls,
 - Each on an input of size n/b, and
 - then "combines" the results in $O(n^d)$ time.
- Let T(n) be the runtime of the algorithm on inputs of size n.

• Theorem: if $T(n) = kT(n/b) + O(n^d)$ then, $\begin{cases} O(n^d) & \text{if } k < b^d \end{cases}$

 $T(n) = \begin{cases} O(n^{d}) & \text{if } k < b^{d} \\ O(n^{d} \log n) & \text{if } k = b^{d} \\ O(n^{\log_{b} k}) & \text{if } k > b^{d} \end{cases}$

5/8/24

Will prove the theorem if time permitted

Example: MergeSort

- On an input of size n, the **MergeSort** algorithm makes
 - $k = \frac{2}{100}$ recursive calls,
 - each on an input of size n/b = n/2,
 - and then spends $O(n^d) = O(n^1)$ time "combining" the results.

So, $T(n) = kT(n/b) + O(n^d) = \begin{cases} O(n^d) & \text{if } k < b^d \\ O(n^d \log n) & \text{if } k = b^d \end{cases}$ From step effect $O(n^{\log_b k})$ if $k > b^d$

∴The runtime of **MergeSort** is $O(n \log n)$.

(Another example of divide and conquer)

Karatsuba's integer multiplication

5/8/24 38

General Goal: Fast Integer Arithmetic

- Goal:
 - implement basic arithmetic operations, e.g., +, -, *, /, \ll , etc
 - on big integers with a non-constant number of digits
- Many programming languages support this.
- Want: fast algo in term of the input size (n = # digits)?

Integer Addition

- Given n-digit integers x and v
- Goal: compute x + y and x y
- Easy: add digits one at a time and keep a "carry" digit
- Q: What's the runtime?

• O(n). Nice!

5/8/24

Today's Goal: Integer Multiplication

躯×鳃⇒D(n²)

- ullet Given $n\text{-digit }positive ext{ integers }x ext{ and }y$
- Goal: compute x * y
- Easy: do "grade-school" method
- Q: What's the runtime?
 - $0(n^2)$. Yikes!

	\mathcal{V}	
	3	4
	3	9
3	0	6
0	2	
2	2	-

	T		•	•	• •	•					
							1	2	3	4	5
	×						5	4	3	2	1
	+	П					1	2	3	4	5
_	+					2	4	6	9	0	
	+				3	7	0	3	5		
	+			4	9	3	8	0			
_	+		6	1	7	2	5				
	-	П	6	7	0	5	q	2	44	4	5

Splitting a Number

- Let's try to apply Divide & Conquer approach for Multiplication.
- Starting point: we can "divide" number...
- $376280 = 376 \cdot 10^3 + 280$
- Observation 1: N an n-digit number (assume n is even)
- N can be split into n/2 low-order digits & n/2 high-order digits:

•
$$N = a \cdot 10^{\frac{n}{2}} + b$$
• $n/2$ digits $\rightarrow -n/2$ digits $\rightarrow N$
 $a \qquad b$

5/8/24

Divide and Conquer Multiplication

- Input: x and y two n-digit numbers (assume n is a power of 2)
- Split x and y into n/2 low-order digits & n/2 high-order digits:
- $\bullet \ x = a \cdot 10^{n/2} + b$
- $y = c \cdot 10^{n/2} + d$

←n/2 digits→←n/2 digits						
\boldsymbol{x}	а	b				
ν	с	d				

• Compute $x \times y = a \times c \cdot 10^n + (a \times d + b \times c) \cdot 10^{n/2} + b \times d$

5/8/24 43

Divide and Conquer?

Analysis

- · Correctness: Clear
 - Input: x and y
 - We correctly compute

```
x \times y = \mathbf{a} \times \mathbf{c} \cdot 10^n + (\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c}) \cdot 10^{\frac{n}{2}} + \mathbf{b} \times \mathbf{d}
where x = a \cdot 10^{n/2} + b
                   y = c \cdot 10^{n/2} + d
```

- · Runtime:
 - 4 (recursive) multiplications of n/2-digit numbers
 - $\text{if } \left(k/b^d \right) < 1$ $\text{if } \left(k/b^d \right) = 1$ $O(n^d)$ • 2 left shifts (0(n) time)• 3 additions (0(n) time)if $(k/b^d) > 1$
- T(n) = time to multiply two n-digit numbers
 - T(n) = 4T(n/2) + O(n). So $k = 4, b = 2, d = 1 \Longrightarrow k/b^d = 2 > 1$
- Conclusion: $T(n) = O(n^{\log_2 4}) = O(n^2)$.

Divide and Conquer Multiplication

Conclusion:

5/8/24

- Simple, well-known long-multiplication algorithm: $O(n^2)$
- Complicated and scary Divide and Conquer algorithm: $\mathrm{O}(n^2)$

(Earlier, Gauss used the same trick in a different context)

Karatsuba's idea!

 $O(n^2)$

Around 1956, the famous Soviet mathematician Andrey Kolmogorov conjectured that this is the best possible way to multiply two numbers together.

Just a few years later, Kolmogorov's conjecture was shown to be spectacularly wrong.

In 1960, Anatoly Karatsuba, a 23-year-old mathematics student in Russia, discovered a sneaky algebraic trick that reduces the number of multiplications needed.

A Neat Trick

```
Previous slow algo
 Mult(x, y): // x, y are n-digit positive integers
                                                            // split x, y
// = ac
 t_1 \leftarrow \mathbf{Mult}(a, c)
                                                            // = ac
// = ad + bc
// = bd
 t_1 \leftarrow \mathsf{Mult}(a,d) + \mathsf{Mult}(b,c)

t_3 \leftarrow \mathsf{Mult}(b,d)
 return (t_1 \ll n) + (t_2 \ll n/2) + t_3
```

· Let's stare at this identity again:

```
xy = (a \cdot 10^{n/2} + b)(c \cdot 10^{n/2} + d)
    = ac \cdot 10^n + (ad + bc) \cdot 10^{n/2} + bd
```

- Think:
 - Could we write ad + bc in terms of ac (t_1) , bd (t_3) ,
 - and something else that only uses one multiplication (not two)? ad + bc = (a + b)(c + d) ac bd
- So: can compute $t_2 = ad + bc$ as $(a+b)(c+d) t_1 t_3$, using only a one recursive call to Mult (not two)!

Karatsuba's Algorithm

```
Karatsuba(x, y): // x, y are n-digit positive integers
if n = 1 then return x \cdot y
                                                              // base case: hard-
code
                                                              //x = a \cdot 10^{n/2} + b
(a,b) \leftarrow \text{split digits of } x \text{ into halves}
(c,d) \leftarrow \text{split digits of } y \text{ into halves}
                                                              //y = c \cdot 10^{n/2} + d
t_1 \leftarrow \mathsf{Karatsuba}(a, c)
                                                              // = ac
t_4 \leftarrow \mathsf{Karatsuba}(a+b,c+d)
                                                              // = (a+b)(c+d)
t_3 \leftarrow \mathsf{Karatsuba}(b, d)
                                                              // = bd
t_2 \leftarrow t_4 - t_1 - t_3
                                                              // = ad + bc
return (t_1 \ll n) + (t_2 \ll n/2) + t_3
```

Next: The runtime of **Karatsuba** is $O(n^{1.585})$.

Example: Karatsuba

- On an input of size n, the **Mult** algorithm makes
 - k = 3 recursive calls,
 - each on an input of size n/b = n/2, and then
- spends $O(n^d) = O(n^1)$ time "combining" the results. Let T(n) be the runtime of the algorithm on inputs of size n.
- · Then we can write:

$$T(n) = kT(n/b) + O(n^d)$$

$$= \begin{cases} O(n^d \log n) & \text{if } k < b^d \\ O(n^{\log_b k}) & \text{if } k > b^d \end{cases}$$

∴The runtime of **Mult** is $O(n^{\log_2 3})$.

Question: It is possible to do even better than Karatsuba multiplication?

Answer: Yes - the best known result is O(n log n) by Harvey and van der Hoeven. It's from 2019!

Unfortunately, the hidden constants are enormous:

"...the proof given in our paper only works for ludicrously large numbers. Even if each digit was written on a hydrogen atom, there would not be nearly enough room available in the observable universe to write them down." - David Harvey

Open problem: Can this be improved to O(n)? Conjecture: No (but we don't know—maybe possible!)

Upshot: Divide-and-Conquer Algorithms

Main Idea:

- 1. **Divide** the problem into smaller sub-problems (creative step)
- 2. Conquer (solve) each sub-problem recursively (easy step)
- 3. Combine the solutions (creative step)

Designing the Algorithm + Proving Correctness: an "art"

• Depends on problem structure, ad-hoc, creative

Running time Analysis: "mechanical"

- Express runtime using a recurrence
- Can often solve using the "Master Theorem"