Integrating spatial capture-recapture and telemetry data

Rahel Sollmann

UC Davis, Davis, CA, USA

Department of Wildlife, Fish, and Conservation Biology

Estimating abundance

- Inability to perform census \rightarrow Need to estimate N
- Gold standard: capture-recapture models
- Requires repeated 'capture' of identifiable individuals

	Occasion			
Individual	1	2	3	
1	0	1	1	•••
2	1	0	1	•••
•••	•••	•••	•••	•••
n	0	0	1	•••

- ullet Provides information about the probability of detecting an individual, p
- Allows estimating N = n/p

Traditional capture-recapture

Problem: Spatial nature of sampling not accommodated

- 1. Extent of area sampled
- Animal movement beyond trapping grid
- Ad hoc estimates of 'effective sampled area'
- Choice of area estimator influences density estimate

Traditional capture-recapture

Problem: Spatial nature of sampling not accommodated

- 1. Extent of area sampled
- Animal movement beyond trapping grid
- Ad hoc estimates of 'effective sampled area'
- Choice of area estimator influences density estimate

- 2. Exposure to trapping
- Home range location relative to traps influences trap exposure
- Induces heterogeneity in detection probability

Motivation for spatial capture-recapture

- To account for different exposure to the trap array
- Explicitly include individual location and movement into the model
- To eliminate ambiguity of effective area sampled
- Formally link abundance and area

(Efford, 2004; Royle and Young, 2008)

Data

Trap 2

	Occasion			
Ind.	1	2	3	•••
1	0	1	1	•••
2	1	0	1	•••
	•••	•••		
n	0	0	1	•••

Traditional capturerecapture

Trap 3	Occasion		
Ind.	1	2	3

Occasion

Spatial capture-recapture

	Ind.	1	2	3	•••	
Trap 1		Occasion				
Ind.	1	2	3	•••	•••	
1	0	1	1	•••	•••	
2	1	0	1	•••	•••	
•••	•••	•••		•••		
n	0	0	1	•••		

Trap encounter model

- Each individual i has an activity center s_i
- Encounter rate with trap j, $\lambda_{ij} = f(distance[j, \mathbf{s}_i])$
- Observation model, e.g.: $y_{ij} \sim Poisson(\lambda_{ij})$

Estimating s and N

- Locations of capture provide incomplete information about s
- s is modeled as the outcome of a spatial point process (SPP)

• Homogeneous PP: $[s_1, s_2, s_N]$ are uniformly distributed in

state-space S.

 S is pre-defined: Area that includes s of all animals exposed to sampling

- N = number of s in S
 → parameter of the SPP
- D = N/A(S)

SCR and space use

Half-normal trap encounter model

Bivariate normal model of space use

SCR and space use

Half-normal trap encounter model

Bivariate normal model of space use

- Most use near the activity center
- Decline in use with distance form s is symmetrical

•
$$N(\mu, \Sigma); \ \Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}$$

Distance to activity center

SCR and telemetry data

Telemetry data

- X,Y coordinate pairs that can be modeled with a bivariate normal distribution
- $\boldsymbol{l}_i \sim N(s_i, \Sigma); \ \Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}$
- where s_i = individual activity center
- and $\sigma \equiv$ scale parameter of the half-normal trap encounter model

SCR and telemetry data

Bivariate normal movement model for telemetry data

SCR and telemetry data

Integrated model

- Telemetry data helps estimate activity centers of collared individuals, scale parameter of detection function
- Improved parameter precision
- Particularly useful in sparse data situations
 - Few individuals in SCR data
 - Few spatial recaptures

SCR and telemetry data: Example 1

Spatial mark-resight to estimate Florida panther density

- Only portion of the population is marked (with radio-collars)
- Resighting with camera-traps: only marked individuals can be identified
- → Estimate number of unmarked animals to get abundance N
- Based on number of unmarked records per camera
- Assume unmarked records were generated by the same processes as marked records

Photographic data

Two 9-month sampling seasons

Collared individuals

	Individuals	Pictures
Season 1	2	2
Season 2	2	15

	Pictures
Season 1	131
Season 2	176

Telemetry data

Average 99.5 (SD 10.6) locations/season

Model results

Movement and detection

Parameter	Mean (SE)	CI
σ	4.45 (0.11)	4.24 - 4.68
λ_o	0.09 (0.02)	0.06 - 0.14

Density

Occasion	Density [per 100 km²]	CI
1	1.51	0.81 - 2.73
2	1.46	0.76 - 2.97

SCR and telemetry data: Example 2

 Camera trap mark-resight study to estimate raccoon abundance on South Core Banks (36 km island, NC)

Lack of spatial resightings

- Low number of spatial resightings due to camera-trap spacing
- Data to estimate σ extremely sparse

Telemetry data

- More and higher resolution location data
- Inform parameters of location and movement

Results

	Range	
λ_o	0.016 - 0.192	

	Mean	SE
σ	0.492	0.010
N	304.455	35.274

- σ small compared to 1.8-km trap spacing
- N reasonable considering later removal of 150 individuals

SCR and space use

Half-normal trap encounter model

- → Bivariate normal model of space use
- → Isometric home ranges

What if animals use different habitats within their home

ranges differently?

- → 3rd order habitat selection
- → asymmetric home ranges
- → expected trap encounter rate varies by type of habitat

SCR and habitat selection

Space use within home range: third order habitat selection

No selection

→ isometric home range

Selection for *X*="green" → irregular home range

SCR and habitat selection

- Space use within home range: third order habitat selection
- Can be incorporated into SCR

Concept

- Trap encounter rate is proportional to space use
- Encounter model can be modified to incorporate spatial covariates, X

$$\lambda_{ij} = \exp(\alpha_0 + \alpha_1 X - f(distance[j, \mathbf{s}_i]))$$

- SCR estimates α_1 (along with other parameters) from encounter data
- Royle et al. 2013, MEE

SCR and habitat selection

 Distribution of telemetry locations across grid cells (in discrete space) provides additional (often more) information on habitat use

Trap encounter model

•
$$\lambda_{ij} = \exp(\alpha_0 + \alpha_1 X - f(distance[j, \mathbf{s}_i]))$$

Telemetry model (for locations l)

$$\pi_g = \frac{\exp(\alpha_1 X - f(distance[g, \mathbf{s}_i]))}{\sum \exp(\alpha_1 X - f(distance[g, \mathbf{s}_i]))}$$

- where π_g is the use intensity of grid cell x $l_i \sim Multinomial(\boldsymbol{\pi}, n)$
- where n = number of telemetry locations

SCR and habitat selection: Example

- Habitat associations in a recolonizing, low-density black bear population (Sollmann et al. 2016, Ecosphere)
- 92 black bears detected across 5 hair snare grids
- 20 individuals with GPS collars (4 64 locations)
- Space use a function of slope, percent forest

SCR and habitat selection: Example

- Densities ranged from 0.84 ± 0.51 to 10.26 ± 2.40 individuals/100km² across grids
- Both percent forest and slope had a positive effect on bear space use
- > In line with other studies of black bear habitat use

Incorporating telemetry data into SCR can...

- Improve precision of parameter estimates when SCR data are sparse
- Offset lack of spatial recaptures due to inappropriate trap spacing
- Improve estimates of covariate effects on space use (resource selection functions, 3rd order habitat selection)

Upcoming R exercises

- Simulate sparse SCR data and telemetry locations assuming isometric home ranges (no habitat selection)
- Fit SCR model with and without telemetry data
- Simulate SCR data and telemetry locations assuming habitat selection
- Fit SCR model with and without telemetry data
- R package: oSCR (Sutherland, Royle and Linden)

Acknowledgments

Florida Panther Project

- B. Gardner
- D. Shindle
- D. Onorato
- A. O'Connell
- R. Chandler
- A. Royle

Raccoon Project

- B. Gardner
- A. Parson
- J. Stocking,
- B. T. McClintock
- A. O'Connell
- K. Pollock
- T. Simons
- Funding: Natural Resource
 Preservation Program

Workshop material

- D. Linden
- C. Sutherland
- A. Royle

Black Bear Project

- B. Gardner
- J. Belant
- C. Wilton
- J. Beringer

Funding: Federal Aid in Wildlife Restoration Act;

Safari Club; Wildlife Research

Center - MSU; DFER - NCSU

