The 'Graph' part

Treat the ontology as a graph

Vertices and edges

The 'Graph' part

Different graphs

For example:

Using different relations

The 'Graph' part

Different graphs

For example:

- Using different relations
- Reasoning (Deductive closure)

The 'embeddings' part

Definition

Let $KG = (V, E, L; \vdash)$ be an ontology graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . An ontology graph embedding is a function $f_n : L(V) \cup L(E) \mapsto \mathbf{R}^n$.

What is an embedding?

Definition

Let $KG = (V, E, L; \vdash)$ be an ontology graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . An ontology graph embedding is a function $f_n : L(V) \cup L(E) \mapsto \mathbf{R}^n$.

- ★ Preserve some structure of the graph in Rⁿ
- ★ This structure is preserved under operations in Rⁿ
- ★ These operations represent operations between the entities (connectedness, similarity, and others)

What is an embedding?

You can think of this as:

A mapping of entities to some numerical representation in some Rⁿ

Why embeddings?

- Represent entities in a compact dimension
- Visualize entities and their relations
- Cluster entities
- Compute semantic similarity

Graph Embeddings

We'd like to capture:

- Graph structure
- Adjacency
- Hub-nodes and communities

How do we capture the graph?

To capture the graph:

Traverse it using walks

How do we capture the graph?

To capture the graph:

Traverse it using walks

Why walks?

Exploring!

For a given node, walks will:

Why walks?

Exploring!

For a given node, walks will:

Capture directly adjacent nodes very well

Why walks?

Exploring!

For a given node, walks will:

Capture directly adjacent nodes very well

Capture nodes with multiple paths better

Variables to consider:

Walk length

- How long should you go?
- How many nodes and edges?

Variables to consider:

Walk direction

- Randomly (Random walk)
- With a bias (Node2Vec)

Variables to consider:

Walk direction

- Randomly (Random walk)
 - Candidate nodes have equal probabilities of getting chosen

Variables to consider:

Walk direction

- With a bias (Node2Vec)
 - P probability to go back to previous node
 - Q probability to explore further nodes

Walks → embeddings

How do we go from walks to embeddings?

Walks → embeddings

How do we go from walks to embeddings?

Generate many such walks

(Many walks will give us an idea about the graph adjacency and structure)

GO:1900117 regulates GO:0097194 Part of GO:0006915 is a GO:0012501

Walks → embeddings

How do we go from walks to embeddings?

- Generate many such walks
- Each walk is a sentence
- Sentences form a corpus

GO:1900117 regulates GO:0097194 Part of GO:0006915 is a GO:0012501

Word2Vec

- Well-known method
- Generates embeddings that capture co-occurrences based on a corpus
- Embeddings are in the form of n-dimensional vectors

GO:1900117 regulates GO:0097194 Part of GO:0006915 is a GO:0012501

Word2Vec captures co-occurrences

Given a node:

 Capture the nodes it frequently co-occurred with in the given walks

PROJECTION

OUTPUT

INPUT

Skip-gram

Figure from the original paper: Efficient Estimation of Word Representations in Vector Space, Mikolov et al.

Word2Vec captures co-occurrences

Given a node:

- Capture the nodes it frequently co-occurred with in the given walks
- Minimize the cross-entropy loss

PROJECTION

OUTPUT

INPUT

Skip-gram

Figure from the original paper: Efficient Estimation of Word Representations in Vector Space, Mikolov et al.

 You can this of it as a factorization of a Pointwise Mutual Information (PMI) matrix

	GO:xxxxxx	GO:xxxxxj	GO:xxxxxz	GO:xxxxxy	GO:xxxxxi	
GO:xxxxxx	0	2	1	1	4	
GO:xxxxxj	2	0	1	1	2	
GO:xxxxxz	1	1	0	2	2]
GO:xxxxxy	1	1	2	0	3	
GO:xxxxxi	4	2	2	3	0	

$$ext{pmi}(x;y) \equiv \log rac{p(x,y)}{p(x)p(y)}$$

You can this of it as an efficient factorization of a Pointwise Mutual Information (PMI) matrix

Neural Word Embedding as Implicit Matrix Factorization by Levy Omer and Goldberg Yoav

Walks → embeddings

```
GO:1900117 regulates GO:0097194 Part of GO:0006915 is a GO:0012501 ....

GO:1900117 regulates GO:0097194 is a GO:0009987 is a GO:0008150
```

Word2Vec

```
[0.50929456, 0.6771953 , 0.91371871, 0.48265797, 0.18390237]
[0.9146623 , 0.7340195 , 0.78049964, 0.54384624, 0.01162719]
[0.22451245, 0.97085067, 0.79003223, 0.74382914, 0.26143969]
[0.11487895, 0.43190008, 0.86119749, 0.96533036, 0.56099287]
[0.77668599, 0.52129723, 0.71529702, 0.82580858, 0.40596435]
```

What do these vectors capture?

Remember: Co-occurrence

- The graph structure
- Adjacency
- Hub-nodes and communities

```
GO:1900117 regulates GO:0097194 Part of GO:0006915 is a GO:0012501 ....

GO:1900117 regulates GO:0097194 is a GO:0009987 is a GO:0008150
```

Word2Vec

[0.50929456, 0.6771953 , 0.91371871, 0.48265797, 0.18390237]
[0.9146623 , 0.7340195 , 0.78049964, 0.54384624, 0.01162719]
[0.22451245, 0.97085067, 0.79003223, 0.74382914, 0.26143969]
[0.11487895, 0.43190008, 0.86119749, 0.96533036, 0.56099287]
[0.77668599, 0.52129723, 0.71529702, 0.82580858, 0.40596435]

More parameters

Again we are faced with more parameters:

- How many walks per node?
- Restart probability

Recall:

Length of walk

GO:1900117 regulates GO:0097194 Part of GO:0006915 is a GO:0012501

Ontology graph embedding methods

Many methods

- OWL2Vec
 - Recall

Axiom of condition 1	Axiom or triple(s) of condition 2	Projected triple(s)
$A \sqsubseteq \Box r.D$	$D \equiv B \mid B_1 \sqcup \sqcup B_n \mid B_1 \sqcap \sqcap B_n$	$\langle A, r, B \rangle$ or
or		**
$\Box r.D \sqsubseteq A$		
$\exists r. \top \sqsubseteq A \text{ (domain)}$	$\top \sqsubseteq \forall r.B \text{ (range)}$	$\langle A, r, B_i \rangle$ for $i \in 1,, n$
$A \sqsubseteq \exists r.\{b\}$	B(b)	
$r \sqsubseteq r'$	$\langle A, r', B \rangle$ has been projected	
$r' \equiv r^-$	$\langle B, r', A \rangle$ has been projected	
$s_1 \circ \dots \circ s_n \sqsubseteq r$	$\langle A, s_1, C_1 \rangle \langle C_n, s_n, B \rangle$ have been projected	
$B \sqsubseteq A$	_	$\langle B, rdfs: subClassOf, A \rangle$
		$\langle A, rdfs: subClassOf^-, B \rangle$
A(a)	-	$\langle a, rdf: type, A \rangle$
		$\langle A, rdf : type^-, a \rangle$
r(a, b)	-	$\langle a, r, b \rangle$

Ontology graph embedding methods

Many methods

DL2Vec

Condition 1	Condition 2	Triple(s)
$A \sqsubseteq QR_0 \ \dots QR_mD$ $A \equiv QR_0 \ \dots QR_mD$ $\dots QR_mD$	$D:$ $=B_1\sqcup$ $\ldots\sqcup B_n$ \mid $B_1\sqcap$ $\ldots\sqcap B_n$	$\langle A, \ (R_0 \ \dots R_m), \ B_i angle$ for
$A \sqsubseteq B$		$egin{array}{l} i \in 1 \ \dots n \ \langle A, \ SubClassOf, \end{array}$
$A \equiv B$		$B angle \ \langle A, \ Equivalent To, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
		$B\rangle$

Ontology graph embedding methods

