Kalkulus

Minimumkérdések és válaszok

Az írásbeli vizsga során az előadáson elhangzott anyagot fogom számonkérni. Az Önöknek leadott elméleti anyag megtalálható az egyes előadásjegyzetekben. Ezek a https://elearning.unideb.hu/ oldalról tölthetőek le. Ennek a dokumentumnak a célja csupán annyi, hogy egy egyfajta **minimkövetelmény**t határoljon körül. Ez azt jelenti, hogy addig nem érdemes írásbeli vizsgára jelentkezniük, ameddig az itt található elméleti kérdésekre nem tudnak **pontosan** válaszolni.

Valós számsorozatok

- 1. Legyen $(x_n)_{n\in\mathbb{N}}$ egy valós számsorozat. Mit értünk azon, hogy az $(x_n)_{n\in\mathbb{N}}$ sorozat konvergens? **Válasz.** Azt mondjuk, hogy az $(x_n)_{n\in\mathbb{N}}$ valós számsorozat konvergens, ha létezik olyan $x\in\mathbb{R}$, hogy minden $\varepsilon>0$ esetén van olyan N>0 szám, hogy ha $n\in\mathbb{N}$ olyan, hogy n>N, akkor $|x_n-x|<\varepsilon$ teljesül.
- 2. Legyen $(x_n)_{n\in\mathbb{N}}$ egy valós számsorozat. Mit értünk azon, hogy az $(x_n)_{n\in\mathbb{N}}$ sorozat Cauchy-sorozat? **Válasz.** Az $(x_n)_{n\in\mathbb{N}}$ sorozatot Cauchy-sorozatnak hívjuk, ha bármely $\varepsilon>0$ esetén van olyan N>0 szám, hogy ha $n,m\in\mathbb{N}$ olyanok, hogy n,m>N, akkor $|x_n-x_m|<\varepsilon$ teljesül.
- 3. Ismertesse a valós számsorozatokra vonatkozó Cauchy-féle konvergenciakritériumot. **Válasz.** Bármely valós számsorozat akkor és csak akkor konvergens, ha Cauchy-sorozat.
- Ismertesse a Bolzano–Weierstrass-féle kiválasztási tételt.
 Válasz. Bármely korlátos valós számsorozatnak létezik konvergens részsorozata.
- 5. Fogalmazza meg a Rendőr-elvet.

Válasz. Legyenek $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ és $(z_n)_{n\in\mathbb{N}}$ olyan valós számsorozatok, hogy

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n$$

és legfeljebb véges sok $n \in \mathbb{N}$ kivételével

$$x_n \leqslant y_n \leqslant z_n$$

teljesül. Ekkor az $(y_n)_{n\in\mathbb{N}}$ sorozat is konvergens és

$$\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=\lim_{n\to\infty}z_n.$$

6. Legyen $r \in \mathbb{Q}$, r > 0 és

$$x_n = \frac{1}{n^r} \quad (n \in \mathbb{N}).$$

Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke? **Válasz.** A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat konvergens és

$$\lim_{n\to\infty}\frac{1}{n^r}=0.$$

1

7. Legyen $r \in \mathbb{Q}$, r > 0 és

$$x_n = n^r \quad (n \in \mathbb{N}).$$

Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke? **Válasz.** A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat divergens és

$$\lim_{n\to\infty}n^r=+\infty.$$

8. Legyen $k \in \mathbb{N}$ és $a_0, a_1, \ldots, a_{k-1} \in \mathbb{R}$ és $a_k \in \mathbb{R} \setminus \{0\}$. Tekintsük az

$$x_n = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 \qquad (n \in \mathbb{N})$$

sorozatot. Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke? **Válasz.** A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat divergens és

$$\lim_{n\to\infty} x_n = \begin{cases} +\infty, & \text{ha } a_k > 0 \\ -\infty, & \text{ha } a_k < 0. \end{cases}$$

9. Tekintsük az

$$x_n = \sqrt[n]{n}$$
 $(n \in \mathbb{N})$

sorozatot. Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke? **Válasz.** A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat konvergens és

$$\lim_{n\to\infty} \sqrt[n]{n} = 1.$$

10. Tekintsük az

$$x_n = \sqrt[n]{n!} \qquad (n \in \mathbb{N})$$

sorozatot. Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke? **Válasz.** A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat divergens és

$$\lim_{n\to\infty}\sqrt[n]{n!}=+\infty.$$

11. Legyen $a \in \mathbb{R}$ és tekintsük az

$$x_n = \frac{a^n}{n!} \qquad (n \in \mathbb{N})$$

sorozatot. Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke? A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat minden $a\in\mathbb{R}$ esetén konvergens és

$$\lim_{n\to\infty}\frac{a^n}{n!}=0.$$

12. Tekintsük az

$$x_n = \frac{n!}{n^n} \qquad (n \in \mathbb{N})$$

sorozatot. Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke? **Válasz.** A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat konvergens és

$$\lim_{n\to\infty}\frac{n!}{n^n}=0.$$

13. Legyen $k \in \mathbb{N}$ és tekintsük az

$$x_n = \frac{n^k}{n!} \qquad (n \in \mathbb{N})$$

Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke?

Válasz. A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat minden $k\in\mathbb{N}$ esetén konvergens és

$$\lim_{n\to\infty}\frac{n^k}{n!}=0.$$

14. Tekintsük az

$$x_n = \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N})$$

sorozatot. Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke?

Válasz. A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat konvergens és

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$

15. Legyen $(p_n)_{n\in\mathbb{N}}$ egy olyan sorozat, mely vagy $+\infty$ -hez, vagy $-\infty$ -hez divergál, és tekintsük az

$$x_n = \left(1 + \frac{1}{p_n}\right)^{p_n} \qquad (n \in \mathbb{N})$$

Konvergens-e az $(x_n)_{n\in\mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke?

Válasz. A fent megadott $(x_n)_{n\in\mathbb{N}}$ sorozat konvergens és

$$\lim_{n\to\infty}\left(1+\frac{1}{p_n}\right)^{p_n}=e.$$

16. Tekintsük az $x_n = q^n$, $n \in \mathbb{N}$ úgynevezett geometriai sorozatot. Konvergens-e az $(x_n)_{n \in \mathbb{N}}$ sorozat, és ha igen, akkor mi a határértéke?

Válasz.

ha |q| < 1, akkor az $(x_n)_{n \in \mathbb{N}}$ sorozat konvergens és $\lim_{n \to \infty} x_n = 0$;

ha q=1, akkor az $(x_n)_{n\in\mathbb{N}}$ sorozat konvergens és határértéke 1;

ha q > 1, akkor az $(x_n)_{n \in \mathbb{N}}$ sorozat $+\infty$ -hez divergál;

ha q = -1, akkor az $(x_n)_{n \in \mathbb{N}}$ sorozat korlátos és divergens;

ha q<-1 , akkor az $(x_n)_{n\in\mathbb{N}}$ sorozat nem korlátos és divergens.

Valós sorok és elemi függvények

17. Ismertesse az Összehasonlító kritérium I. változatát.

Válasz. Legyenek $\sum_{n=1}^{\infty} x_n$ és $\sum_{n=1}^{\infty} y_n$ olyan nemnegatív tagú sorok, hogy $x_n \le y_n$ teljesül minden $n \in \mathbb{N}$ esetén. Ekkor,

- (i) ha $\sum_{n=1}^{\infty} y_n$ konvergens, akkor $\sum_{n=1}^{\infty} x_n$ is konvergens;
- (ii) ha $\sum_{n=1}^{\infty} x_n$ divergens, akkor $\sum_{n=1}^{\infty} y_n$ is divergens.
- 18. Fogalmazza meg a Cauchy-féle gyökkritériumot.

Válasz. Legyen $\sum_{n=1}^{\infty} x_n$ egy valós sor.

- (i) Ha $\lim_{n\to\infty} \sqrt[n]{|x_n|} < 1$, akkor a $\sum_{n=1}^{\infty} x_n$ sor abszolút konvergens.
- (ii) Ha $\lim_{n\to\infty} \sqrt[n]{|x_n|} > 1$, akkor a $\sum_{n=1}^{\infty} x_n$ sor divergens.
- 19. Ismertesse a D'Alembert-féle hányadoskritériumot.

Válasz. Legyen $\sum_{n=1}^{\infty} x_n$ egy olyan valós sor, melynek minden tagja nullától különböző.

- (i) Ha $\lim_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} < 1$, akkor a $\sum_{n=1}^{\infty} x_n$ sor abszolút konvergens.
- (ii) Ha $\lim_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} > 1$, akkor a $\sum_{n=1}^{\infty} x_n$ sor divergens.
- 20. Definiálja az exponenciális függvényt.

Válasz. Az

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad (x \in \mathbb{R})$$

módon megadott exp: $\mathbb{R} \to \mathbb{R}$ függvényt exponenciális függvénynek nevezzük.

21. Definiálja a sinus hiperbolicus függvényt.

Válasz. A

$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \qquad (x \in \mathbb{R})$$

módon megadott sinh: $\mathbb{R} \to \mathbb{R}$ függvényt sinus hiperbolicus függvénynek nevezzük.

22. Definiálja a cosinus hiperbolicus függvényt.

Válasz. A

$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \qquad (x \in \mathbb{R})$$

módon megadott cosh: $\mathbb{R} \to \mathbb{R}$ függvényt cosinus hiperbolicus függvénynek nevezzük.

23. Definiálja a sinus függvényt.

Válasz. A

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad (x \in \mathbb{R})$$

módon megadott sin: $\mathbb{R} \to \mathbb{R}$ függvényt sinus függvénynek nevezzük.

24. Definiálja a cosinus függvényt.

Válasz. A

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \qquad (x \in \mathbb{R})$$

módon megadott $\cos : \mathbb{R} \to \mathbb{R}$ függvényt cosinus függvénynek nevezzük.

Valós függvények folytonossága

25. Legyen $D \subset \mathbb{R}$ nemüres halmaz, $x_0 \in D$ és $f: D \to \mathbb{R}$ függvény. Mit értünk azon, hogy az f függvény folytonos az x_0 pontban?

Válasz. Legyen $D \subset \mathbb{R}$ nemüres halmaz, $x_0 \in D$, azt mondjuk, hogy az $f: D \to \mathbb{R}$ függvény folytonos az $x_0 \in D$ pontban, ha bármely $\varepsilon > 0$ esetén van olyan $\delta > 0$, hogy ha $x \in D$ olyan, hogy $|x - x_0| < \delta$, akkor $|f(x) - f(x_0)| < \varepsilon$ teljesül.

26. Ismertesse a folytonosságra vonatkozó Átviteli elvet.

Válasz. Legyen $D \subset \mathbb{R}$ nemüres halmaz és $x_0 \in D$. Az $f: D \to \mathbb{R}$ függvény pontosan akkor folytonos az $x_0 \in D$ pontban, ha minden $(x_n)_{n \in \mathbb{N}}$ D halmazbeli, x_0 -hoz konvergáló sorozat esetén az $(f(x_n))_{n \in \mathbb{N}}$ sorozat $f(x_0)$ -hoz konvergál.

Valós függvények határértéke

- 27. Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$ és $\alpha \in \mathbb{R}$. Mikor mondjuk azt, hogy az f függvénynek **az** x_0 **pontban a határértéke** α ?
 - **Válasz.** Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$ és $\alpha \in \mathbb{R}$. Azt mondjuk, hogy az f függvénynek **az** x_0 **pontban a határértéke** α , ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ és $|x x_0| < \delta$, akkor $|f(x) \alpha| < \varepsilon$. Erre a $\lim_{x \to x_0} f(x) = \alpha$ jelölést alkalmazzuk.
- 28. Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$. Mit jelent az, hogy az f függvénynek az x_0 pontban a határértéke $+\infty$?
 - **Válasz.** Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$. az f függvénynek **az** x_0 **pontban a határértéke** $+\infty$, ha tetszőleges $K \in \mathbb{R}$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ és $|x x_0| < \delta$, akkor f(x) > K. Erre a $\lim_{x \to x_0} f(x) = +\infty$ jelölést alkalmazzuk.
- 29. Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$. Mikor mondjuk azt, hogy az f függvénynek **az** x_0 **pontban a** határértéke $-\infty$?
 - **Válasz.** Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$. Azt mondjuk, hogy az f függvénynek **az** x_0 **pontban** a határértéke $-\infty$, ha tetszőleges $k \in \mathbb{R}$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ és $|x x_0| < \delta$, akkor f(x) < k. Erre a $\lim_{x \to x_0} f(x) = -\infty$ jelölést alkalmazzuk.
- 30. Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f:D \to \mathbb{R}$. Mikor mondjuk azt, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke α ?
 - **Válasz.** Legyen $\varnothing \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f:D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke α , ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $K \in \mathbb{R}$, hogy ha $x \in D$ és $x \geqslant K$, akkor $|f(x) \alpha| < \varepsilon$. Erre a $\lim_{x \to +\infty} f(x) = \alpha$ jelölést alkalmazzuk.
- 31. Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f:D \to \mathbb{R}$. Mikor mondjuk azt, hogy az f függvénynek $\mathbf{a} \infty$ -ben a határértéke α ?
 - **Válasz.** Legyen $\varnothing \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f:D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} \infty$ -ben a határértéke α , ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $k \in \mathbb{R}$, hogy ha $x \in D$ és $x \leqslant k$, akkor $|f(x) \alpha| < \varepsilon$. Erre a $\lim_{x \to -\infty} f(x) = \alpha$ jelölést alkalmazzuk.
- 32. Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f:D \to \mathbb{R}$. Mikor mondjuk azt, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke $+\infty$?
 - **Válasz.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f:D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke $+\infty$, ha tetszőleges $K \in \mathbb{R}$ esetén létezik olyan $K^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \geqslant K^*$, akkor $f(x) \geqslant K$. Erre a $\lim_{x \to +\infty} f(x) = +\infty$ jelölést alkalmazzuk.
- 33. Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f:D \to \mathbb{R}$. Mikor mondjuk azt, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke $-\infty$? Válasz. Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f:D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke $-\infty$, ha tetszőleges $k \in \mathbb{R}$ esetén létezik olyan $K^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \geqslant K^*$, akkor $f(x) \leqslant k$. Erre a $\lim_{x \to +\infty} f(x) = -\infty$ jelölést alkalmazzuk.
- 34. Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f:D \to \mathbb{R}$. Mikor mondjuk azt, hogy az f függvénynek $\mathbf{a} \infty$ -ben a határértéke $+\infty$?
 - **Válasz.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f:D \to \mathbb{R}$. Azt mondjuk,

hogy az f függvénynek **a** $-\infty$ -ben a határértéke $+\infty$, ha tetszőleges $K \in \mathbb{R}$ esetén létezik olyan $k^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \leq k^*$, akkor $f(x) \geq K$. Erre a $\lim_{x \to -\infty} f(x) = +\infty$ jelölést alkalmazzuk.

35. Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f: D \to \mathbb{R}$. Mikor mondjuk azt, hogy az f függvénynek $\mathbf{a} - \infty$ -ben a határértéke $-\infty$?

Válasz. Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} - \infty$ -ben a határértéke $-\infty$, ha tetszőleges $k \in \mathbb{R}$ esetén létezik olyan $k^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \leq k^*$, akkor $f(x) \leq k$. Erre a $\lim_{x \to -\infty} f(x) = -\infty$ jelölést alkalmazzuk.

Valós függvények differenciálszámítása

36. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$ és $f: I \to \mathbb{R}$ függvény. Mit értünk azon, hogy az f függvény differenciálható az x_0 pontban?

Válasz. Legyen $I \subset \mathbb{R}$ nemüres, nyílt halmaz és $x_0 \in I$. Azt mondjuk, hogy az $f: I \to \mathbb{R}$ függvény differenciálható az $x_0 \in I$ pontban, ha létezik és véges a

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

határérték.

37. Ismertesse az összeg differenciálási szabályát.

Válasz. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$ és $f, g: I \to \mathbb{R}$ olyan függvények, melyek differenciálhatóak az x_0 pontban. Ekkor az f + g függvény is differenciálható az x_0 pontban és

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

38. Ismertesse a szorzat differenciálási szabályát.

Válasz. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$ és $f,g:I \to \mathbb{R}$ olyan függvények, melyek differenciálhatóak az x_0 pontban. Ekkor az $f \cdot g$ függvény is differenciálható az x_0 pontban és

$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0).$$

39. Ismertesse a hányados differenciálási szabályát.

Válasz. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$ és $f,g:D \to \mathbb{R}$ olyan függvények, melyek differenciálhatóak az x_0 pontban és tegyük fel, hogy $g(x) \neq 0$ teljesül az x_0 pont valamely környezetében. Ekkor az $\frac{f}{g}$ függvény is differenciálható az x_0 pontban és

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

40. Ismertesse az összetett függvény differenciálási szabályát.

Válasz. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in D$ és $g: I \to \mathbb{R}$ és $f: g(D) \to \mathbb{R}$ olyan függvények, hogy g differenciálható az x_0 pontban, f pedig differenciálható a $g(x_0)$ pontban. Ekkor az $f \circ g$ függvény differenciálható az x_0 pontban, továbbá

$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

41. Fogalmazza meg a Rolle-féle középértéktételt.

Válasz. Legyenek $a, b \in \mathbb{R}$, a < b és $f : [a, b] \to \mathbb{R}$ olyan függvény, mely folytonos az [a, b] intervallumon és differenciálható az]a, b[intervallumon. Tegyük fel továbbá, hogy f(a) = f(b) teljesül. Ekkor van olyan $\xi \in]a, b[$, hogy $f'(\xi) = 0$.

42. Ismertesse a lokális szélsőérték szükségességére vonatkozó tételt.

Válasz. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $f: D \to \mathbb{R}$ differenciálható függvény. Ha az f függvénynek az $x_0 \in D$ pontban lokális szélsőértékhelye van, akkor $f'(x_0) = 0$.

43. Ismertesse a lokális szélsőérték szükségességére és elégségességére vonatkozó tételt.

Legyen $k \in \mathbb{N}$, $k \ge 2$, $x_0 \in \mathbb{R}$, r > 0 és $f: [x_0 - r, x_0 + r] \to \mathbb{R}$ olyan k-szor differenciálható függvény, hogy

$$f'(x_0) = \ldots = f^{(k-1)}(x_0) = 0$$

és $f^{(k)}(x_0) \neq 0$. Ekkor, ha

- (i) ha k páratlan, akkor az x_0 pont nem szélsőértékhelye az f függvénynek;
- (ii) ha k páros, és
 - $f^{(k)}(x_0) > 0$, akkor az x_0 pont szigorú lokális minimumhelye az f függvénynek;
 - $f^{(k)}(x_0) < 0$, akkor az x_0 pont szigorú lokális maximumhelye az f függvénynek.

Határozatlan integrál és Riemann-integrál

44. Legyen $]a,b[\subset \mathbb{R}$ nemüres, nyílt intervallum, $f:]a,b[\to \mathbb{R}$ függvény. Hogyan van értelmezve az f függvény primitív függvénye?

Válasz. Legyen $]a,b[\subset \mathbb{R}$ nemüres, nyílt intervallum, $f:]a,b[\to \mathbb{R}$ függvény. Az $F:]a,b[\to \mathbb{R}$ függvény az f függvény **primitív függvény**ének vagy **határozatlan integrál**jának nevezzük, ha az F függvény differenciálható az]a,b[intervallumon és

$$F'(x) = f(x)$$

teljesül minden $x \in]a,b[$ esetén. Az F függvényre az $\int f$ vagy az $\int f(x)dx$ jelölést használjuk.

45. Ismertesse a határozatlan integrál linearitására vonatkozó állítást.

Válasz. Legyenek $f, g:]a, b[\to \mathbb{R}$ olyan függvények, melyekre létezik $\int f$ és $\int g$, legyenek továbbá $\alpha, \beta \in \mathbb{R}$ tetszőleges konstansok. Ekkor létezik $\int \alpha \cdot f + \beta \cdot g$ is, és létezik olyan $C \in \mathbb{R}$, hogy

$$\int \alpha \cdot f(x) + \beta \cdot g(x)dx = \alpha \int f(x)dx + \beta \int g(x)dx + C.$$

46. Ismertesse a parciális integrálás tételét határozatlan integrálra.

Válasz. Ha az $f, g:]a, b[\to \mathbb{R}$ függvények differenciálhatóak]a, b[-n, és létezik $\int f' \cdot g$, akkor létezik $\int f \cdot g'$ is, és létezik olyan $C \in \mathbb{R}$ konstans, hogy

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx + C. \quad (x \in]a, b[)$$

47. Ismertesse a helyettesítéses integrálás tételét határozatlan integrálra.

Válasz. Ha $f:]a, b[\to \mathbb{R}, g:]c, d[\to]a, b[$ olyan függvények, melyek esetén létezik $g':]c, d[\to \mathbb{R}$ és létezik $\int f$ is, akkor létezik $\int (f \circ g) \cdot g'$ is, és van olyan $C \in \mathbb{R}$, hogy

$$\int f(g(x)) \cdot g'(x) dx = \left(\left(\int f \right) \circ g \right) (x) + C = \left. \int f(t) dt \right|_{t=g(x)} + C. \quad (x \in]c, d[)$$

48. Legyen $\alpha \in \mathbb{R}$. Mennyivel egyenlő

$$\int x^{\alpha} dx?$$

Válasz.

$$\int x^{\alpha} dx = \begin{cases} \frac{1}{\alpha + 1} x^{\alpha + 1} + C & \text{ha } \alpha \neq -1, \\ \ln|x| + C & \text{ha } \alpha = -1, \end{cases}$$

49. Mennyivel egyenlő

$$\int e^x dx?$$

Válasz.

$$\int e^x dx = e^x + C$$

$$\int e^x dx = e^x$$

50. Mennyivel egyenlő

$$\int \cos(x)dx?$$

Válasz.

$$\int \cos(x) \, dx = \sin(x) + C$$

51. Mennyivel egyenlő

$$\int \sin(x)dx?$$

Válasz.

$$\int \sin(x) \, dx = -\cos(x) + C$$

52. Mennyivel egyenlő

$$\int \cosh(x)dx?$$

Válasz.

$$\int \cosh(x) \, dx = \sinh(x) + C$$

53. Mennyivel egyenlő

$$\int \sinh(x)dx?$$

Válasz.

$$\int \sinh(x) \, dx = \cosh(x) + C$$

54. Ismertesse a Riemann-integrál linearitására vonatkozó tételt.

Válasz. Legyenek $f, g: [a, b] \to \mathbb{R}$ Riemann-integrálható függvények, $\lambda \in \mathbb{R}$. Ekkor

(i) az f + g függvény is Riemann-integrálható és

$$\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx;$$

(ii) a $\lambda \cdot f$ függvény is Riemann-integrálható és

$$\int_{a}^{b} (\lambda \cdot f)(x) dx = \lambda \int_{a}^{b} f(x) dx;$$

55. Ismertesse a Riemann-integrál monotonitására vonatkozó tételt.

Válasz. Legyenek $f,g:[a,b] \to \mathbb{R}$ Riemann-integrálható függvények. Ha minden $x \in [a,b]$ esetén $f(x) \leq g(x)$ teljesül, akkor

$$\int_{a}^{b} f(x)dx \leqslant \int_{a}^{b} g(x)dx.$$

56. Ismertesse a Riemann-integrál intervallum additivitásáról szóló tételt.

Válasz. Legyen $f:[a,b] \to \mathbb{R}$ Riemann-integrálható függvény. Ha $c \in]a,b[$, akkor az f függvény Riemann-integrálható az [a,c] és [c,b] intervallumok mindegyikén és

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$

57. Fogalmazza meg a Riemann-integrálra vonatkozó középértéktételt.

Válasz. Legyenek $f, g: [a, b] \to \mathbb{R}$ Riemann-integrálható függvények. Tegyük fel továbbá, hogy az f függvény folytonos, a g függvény pedig nemnegatív. Ekkor van olyan $\xi \in]a, b[$, melyre

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx$$

teljesül.

58. Legyen $f: [a, b] \to \mathbb{R}$ egy Riemann-integrálható függvény. Hogyan van értelmezve az f függvény felsőhatárfüggvénye (integrálfüggvénye)?

Válasz. Legyen $f: [a, b] \to \mathbb{R}$ egy Riemann-integrálható függvény. Ekkor az

$$F(x) = \int_{a}^{x} f(t)dt \qquad (x \in [a, b])$$

módon megadott $F:[a,b] \to \mathbb{R}$ függvényt az f függvény **felsőhatárfüggvény**ének vagy **integrálfüggvény**ének hívjuk.

59. Ismertesse a Newton-Leibniz-formulát.

Válasz. Legyen $f:[a,b]\to\mathbb{R}$ egy folytonos függvény és jelölje $F:[a,b]\to\mathbb{R}$ az f függvény egy primitív függvényét. Ekkor

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

60. Ismertesse a Riemann-integrálra vonatkozó parciális integrálás tételét.

Válasz. Legyenek $f,g:[a,b] \to \mathbb{R}$ olyan differenciálható függvények, melyek deriváltjai Riemannintegrálhatóak. Ekkor

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx.$$

9