On the representation and analysis

of distributed search

in theorem proving

MARIA PAOLA BONACINA

DEPT. OF COMPUTER SCIENCE

THE UNIVERSITY OF IOWA

Research program

Area: Automated Reasoning

Emphasis: Control of Deduction

Directions:

* Combination of forward and backward reasoning, e.g.,

Twrget-oriented equational reasoning Lemmatization in Semantic strategies

* Distributed automated deduction, e.g.,

Clause-Diffusion methodology

Modified Clause-Diffusion

AGO-criteria

Combination of distributed search and multi-search

Systems built: Aquarius, Peers, Peers-mcd

* Strategy analysis, e.g.,

Search space reduction by contraction

Distributed search for contraction-based strategies

Motivation:

- · Applications
- · Impact on other areas in C.S.
- · Basic investigation

Theorem proving and parallelism

· More power:

faster proofs more proofs

· Search plan design:

investigation of new forms

of control of deduction

Many approaches:

Evaluation:

- · performance evaluation
- · amalysis?

Outline

Contraction - based T.P. strategies

Distributed search

Representation

Analysis

Comparison of distributed strategy and sequential base

Discussion

What are

contraction - based

strategies

and why are they

important?

Contraction-based strategies

History:

resolution

+

paramodulation

Knuth-Bendix

contraction-based

strategies

Forward reasoning:

generate and Keep clauses

Ordering - based:

well founded < on Terms and clauses

Good for equality reasoning

Contraction - based strategies

$$\xi = \langle \xi, \xi, \omega \rangle$$

Contraction - based strategies

Forward contraction normalize every new clauses w.r.t. existing ones

Backward contraction

normalize every existing clause w.r.t.

new insertions => inter-reduction

Eager contraction

E does not select expansion until

contraction exhausted

So +... Si +...

If If Ixe Si & applied to (x,q) deletes q

then Il>i Se + Sen deletes q and

then injul no expansion unless succeeds

soomer

Some results of CBS

- · Moufang identities in zings Anantharaman, Hsiang SBR2 1990
- · Axiomatization of Lukasiewicz manyvalued logic Anantharaman, Bonacina SBR 3 1989-91
 - Single axioms for groups
 W. Mc Cune
 - · Robbins algebras are Boolean

 EQP 1996

 W. Mc Cune
 - · Verification of cryptographic protocols

 C. Weidenbach

 C. Weidenbach

What is distributed search and why do we use it?

Parallelism at the term level

Parallelize the single inference (e.g., parallel rewriting)

Motivation: speed-up frequent operations
Good for: concurrent rewriting

Not for CBS:

· New equations generated dynamically

special pre-processing too onerous

· Many terms, equations, steps: too fine-grained

Parallelism at the clause level

Parallel inferences within one search (e.g., parallel resolution steps, or-parallelism)

Motivation: speed-up given search

Good for: expansion-oriented T.P.

(e.g., hyperresolution with

no contraction)

Not for CBS:

backward contraction causes conflicts

T.

do it sequentially: bottleneck

Parallelism at the seanch level

Parallel derivations:

deductive processes search in parallel the space of the problem

Heterogeneous systems:

different inference systems

motivation: combine forward / back ward

reasoning

Multi-search:

different search plans

motivation: search in different order

Distributed search:

subdivide search space

motivation: divide work

All need communication

Distributed strategy

e = < I, M, E>

I: inference rules (expansion rules, contraction rules)

M: communication operators (send, receive ...)

communication

Distributed-search plan

}: select rule | operator

§ : select premises

d: subdivision function

w: detects termination

Subdivision function &

Subdivide inferences among $p_0 p_1 \dots p_{m-1}$ Search space infinite unknown \Rightarrow dynamic subdivision: at each stage S_i of derivation subdivide inferences in S_i $d(S_0 \dots S_i, m, n, f, \bar{n}) = true / false$ means p_n is allowed / forbidden to apply f to \bar{n}

Two requirements:

d is total on generated clauses (partial function in general)

d monotonic: (w.r.t. i)

 $\bot \bot \bot \bot$ false false false ... $\bot \bot ...$

Paralle lization by subdivision

$$\ell = \langle I, \xi \rangle$$
 $\xi = \langle \xi, \xi, \omega \rangle$

S'and &' select imferences like & and & so that the difference is made by d: forbidden steps => different selections and by the presence of communication.

Po, Pi... Pn-1: different derivations:

$$S = S_0^\circ + S_1^\circ + \dots S_i^\circ + \dots$$

$$S = S_0^{n} + S_1^{n} + \dots + S_i^{n} + \dots$$

$$S = S_0^{m-1} + S_1^{m-1} + \dots + S_i^{m-1} + \dots$$

distributed

Fairness of distributed derivations

∀£ persistent non-redundant
∀f expansion rule
∃ph such that

- (1) Pu has & (fairness of communication)
- (2) Pu is allowed to apply f to \$\overline{\pi}\$ at some stage (fairness of subdivision)
- and (3) all local derivations are fair (local fairness)

the distributed derivation is fair

we cam How that gua ran tee a parafletization 69 Subdivision based contraction also strategy based? contraction -

distributed Eagen contraction denivation in USi and $\psi \in S_i^j$? if qesi What is forbidden? if the step What Propagation of clauses up to redundancy: persistent now-redundant q E USh (i finst stage)

then $\forall P_{k} \; \exists j \; \varphi \in S_{j}^{k} \; (detay: j-i>0)$

sufficient for fairness of

communication */

/* also

<u>Lager</u> contraction in distributed derivation

Distributed global contraction: $\forall p_k \ \forall i \ \forall \varphi \in S_i^k$ if If Ix e USi & applied to x defetes q them Il, i Pn deletes q at stage l un less it halts sooner.

Global eager contraction: (t) isjet) mo expansion in between no communication

Lemmas:

Local eager contraction

Propagation of clauses up to redundancy

Distributed

global

contraction

Local eager

contraction Shobal

=> eager

Immediate propagation contraction

of clauses up to redunda ney

Contraction - based strategies

Sequential: contraction rules eager contraction

Distributed: contraction rules

distributed global contraction

4: contraction - based

C': parallelization by subdivision of C

Is & contraction - based?

Sufficient conditions: (two sets)

- 1) & propagates clauses up to redundancy does not subdivide contractions
- 2) E' propagates clauses up to redundancy d subdivides generations, not deletions, by contraction

How can we represent distributed search in the search space of a T.P. problem?

Example: expansion

Marking relative to Pn: have one per process.

Example: contraction

$$m(n(x+y)) + y = x+y$$

$$m(n(x)) + e = x+e$$

$$m(n(x)) + e = x+e$$

$$m(n(x)) + y = x+y$$

$$m(n(x)) + y = x+y$$

$$m(n(x)) + e = x+e$$

$$m(n(x)) + e = x+e$$

$$m(n(x)) + e = x+e$$

$$m(n(x)) + e = x+y$$

Example: communication

From P; and applies it to subsume 7QVP

Representation of search space

Closure: 5x

Marked search graph $G(S_{\mathbf{I}}^*) = \langle V, E, \ell, h, \overline{s}, \overline{c} \rangle$

Vertices V: clauses $(\ell:V \longrightarrow \mathcal{Z}/=)$

Hyperarcs E: inferences (h: E -> I)

Marking 5 of vertices: sn: V -> Z

S*(v): # of variants of clause

(-1 if all deleted by Pr.)

Marking & of arcs: cr: E -> N × Bool

The (cr(e)) = # of times prexecuted e or received clauses generated by e

Evolution of search space

1) all premises present (sk(v) > 1)

2) are altowed $(\pi_2(c^n(e)) = true)$

 $S_{i+1}^{n}(v) = \begin{cases} S_{i}^{n}(v) + 1 & \text{if generated or received} \\ S_{i+1}^{n}(v) = \\ S_{i}^{n}(v) - 1 & \text{if deleted} \\ (-1 & \text{if last variant}) \end{cases}$

 $TI_A(C_{i+1}^{n}(e)) = TI_A(C_{i}^{n}(e)) + 1$ if executed or received

$$T_{2}\left(c_{i+1}^{n}(e)\right) = \begin{cases} d\left(S_{0}...S_{i+1}, m, \kappa, f, \bar{x}\right) & \text{if } \pm \bot \\ \text{true} & \text{otherwise} \end{cases}$$

How to analyze

T.P. strategies?

Methodological problems

T.P. is only semi-decidable

Search space is infinite

algorithm analysis does not apply.

Complexity proportional neither to input (e.g., input length) nor to output (e.g., proof length).

Need to analyze the search process:

for all factors (communication,
overlap, parallel searches, subdivision)

find suitable representation and
measure benefit/cost.

Measuring search complexity

ancestor
graph of $\varphi = \ell(u)$ (ato(φ))

where ti ancestor-graph of Ni

WE to is relevant to u in the for put if $-W \in \{V_1, V_{n+1}\}$ and $T_1(C^k(e)) = 0$ or -W is relevant to v; in the for some in

A notion of distance in search spaces

Past distance:

Future distance:

$$fdist_{GK}(t) = \begin{cases} 0 & \text{if } s^{k}(\varphi) < 0 & \text{or} \\ \exists w \in Rev_{GK}(t) & s^{k}(w) < 0 \end{cases}$$

$$|\{w \mid w \in t, s(w) = 0\}|$$

Global distance:

$$f$$
 dist_G $(\varphi) = min f$ dist_G (t) $t \in at_G(\varphi)$

Dynamic distance:

fdist_G(t) measures the part of t that Ph needs to traverse to reach p via t if a , then unreachable (redundant)

Bounded search spaces

At stage i (17,0) of a derivation define the <u>bounded search space</u> reachable (by process Pn) within distance j (j>0) from the start:

$$Space(G^{k}, j) = \sum_{\substack{v \in V \\ v \neq T}} mul_{G^{k}}(v_{i}j) \cdot \ell(v)$$

where

$$mul_{6}(v,j) = |\{t: t \in at_{6}(v), t \in allowed for P_{n} \}|$$

$$0 < gdist_{6}(t) < j\}|$$

Ancestor-graph forbidden for P_{κ} if $\exists e \ T_{\kappa}(c^{\kappa}(e)) = 0$ and $T_{\varepsilon}(c^{\kappa}(e)) = false$, allowed otherwise.

Analysis of the search process im distributed search

Subdivision

Ancestor graph forbidden for Pn if $\exists e \ \pi_1(c^n(e)) = 0$ and $\pi_2(c^n(e)) = false$, allowed otherwise.

generates or receives P (d becomes defined)

orbidden

Communication

for bidden

Pn and Pa overlap on t if t is allowed for both

Contraction and communication

Sequential contraction - based:

if a defeted φ is re-generated, it is defeted again (monotonic) before being used (eager).

 Ω

Pdist; (t) = or them Vj>i Pdist; (t) = or

Im parallel:

assume focal eager contraction:

if a defeted or unreachable p is re-generated or received, it is defeted again before being used.

 \triangle

fdist_G, (q) = 00 + hen Vj fdist_G, (q) = 00

PK

Pa

Q'
R° (not redundant)

v generates R from

f dist $(t) = \infty$

Q and sends it

receives R

Q1

R

fdist(t) # ∞

Q still deleted but

no longer relevant

Pt: Pate contraction

Pr: contraction undone

Evolution of bounded search spaces

- 1) if S_{i+1}^{k} generates ψ $\forall j$ Space $(G_{i+1}^{k}, j) \leq_{mue} Space <math>(G_{i,j}^{k})$ because of subdivision
- 2) if S_{i+1}^{n} replaces ψ by ψ' $\forall j$ Space (G_{i+1}^{n}, j) \forall_{mne} space (G_{i-1}^{n}, j) because of contraction and

 Subdivision
- 3) if Sit Site receives y

 Yj Flri space (Gitaij) race (Geij)

 because of subdivision,

 Subdivision undone and contraction

 undone

Now - monotonic bounded search spaces

Parallel bounded search spaces

Capture overlap of the processes

Example

P. P.

No overlap:

gmule (q,j) = 4

pmulg (q, j) = 2

Overlap:

"average"

Minimize overlap

- 1) Overlap due to inaccurate subdivision
- 2) Overlap due to communication

Two properties of d:

No arc-duplication: avoid (1)

No clause-duplication: minimize (2)

Lemma: local eager contraction +

no clause-duplication =>

Pa: allowed to generate p

Fr VK+h Vine tj

mulgi (qij) s1

How to compare

a distributed - search

contraction - based

strategy with its

sequential base?

Analysis of 4 vs. 4'

E= < I, E> sequential contraction-based

C'= (I, E') contraction-based parallelization by subdivision of E

Same I => same initial search space

Lemmas:

2)
$$\varphi \in R(S_i) \Rightarrow \forall P_k \exists_j \varphi \in R(S_j^k)$$

3)
$$fdist_{G_i}(\varphi) = \infty \implies \forall P_n \exists j \quad \forall P_{\gg j}$$

either $fdist_{G_e^{\bowtie}}(\varphi) = \infty$
or $\forall t \in at_G(\varphi) \quad t \quad for \, bidden$

 \triangle

Theorem:

$$fdist_{G_i}(\varphi) = \infty \implies \exists n \ \forall i \gg n \ \forall j$$

$$pmul_{G_i}(\varphi,j) = 0$$

A limit lemma

Local eager contraction +
immediate propagation
(hence global eager contraction)

if si(y) = -1 y ∈ Rev_{gi}(t) for Ph then:

1)
$$\forall P_{R} \ \forall j \ s_{j}^{R}(\psi) = -1 \implies \psi \in \operatorname{Rev}_{G_{j}^{R}}(E)$$

(what is relevant for a process is relevant for all: no late contraction)

2) ∀j≈i y∈ Rev_Gu(t) (what is refevant remains refevant: no contraction undone)

$$\bigcirc$$

fdist; (t) = 00 them \finity = 0

A limit theorem

Assume:

immediate propagation of clauses up to redundancy no clause - duplication

Lemma:

$$fdist_{G_i}(\varphi) \neq \infty \quad \forall i \Rightarrow \exists z \quad \forall i \geqslant z \quad \forall j$$

$$pmul_{G_i}(\varphi,j) \leqslant mul_{G_i}(\varphi,j)$$

Theorem:

Significance:

- 1) "limit theorem that strategies may approximate (e.g., by reducing overlap)
- 2) "negative" result which contributes to explain intrinsic difficulty of parallel theorem proving

Discussion

Strategy analysis: study of search in infinite search spaces

Model: marked search graph
Measure: bounded search spaces
Already applied to analysis of contraction
Now: distributed search

Analytic comparison:

"Limit theorem" explains nature of problem (overlap + communication/contraction)

When adopting asynchronous distributed rearch one expects that contraction may be delayed, but synchronizing on every inference is hopefess, and one may conjecture subdivision compensates for late contraction: not so in general (worst-case scenario).

Relevant to problems where eager contraction is important: not a small class based on experience.

Directions for future work

On analysis of parallel search:

Reordering of search relevant to both distributed search multi-search

On analysis of theorem proving:

- · Comparison of search plans
- · Subgoal reduction strategies
- · Reasoning modulo a theory

Distributed search for CBS

(lause - Diffusion (1992) Aquarius (Otter 2.2) 1992 (ops 1/93)1993-94 Peers Modified Clause - Diffusion (1994-96) Peers-mcd (EQP 0.9) 1996-98 (EQP 0.9d) 1999 + hybrid mode 2000 distributed search + Hybrid mode: multi-search Levi Commutator Problem in group theory: super-linear speed-up Robbins algebras are Boolean: super-linear speed-up Moufang identities in alternative zings without cancellation laws built-in

(EQP cannot do)