*표지

연구계획 발표 자료

팀 명	OUTLIERs	
연구주제	AlphaSolar: 심층 강화학습을 이용한 태양광 발전기 채산성 개선	
지도교사	배준호	
학생	1. 허예찬	2. 이다민

연구주제 선정 및 목적

- •기후 위기를 극복하기 위한 노력 동참 필요성
- •무공해, 친환경 대체 에너지 태양광
- 발전 효율이 낮은 태양광 발전의 생산량 극대화 필요성
- •날씨 변화 및 주변 환경 요인을 고려하여 인공지능 모델을 설계
- 강화학습을 이용한 태양광 발전 채산성 최적화

태양광 에너지

친환경 에너지원

기후 변화

지구 온난화

인공지능

강화학습을 이용한 채산성 향상

선행 연구와의 차별점

센서 제어방식

광센서로 최대 일사량을 추적

프로그램 제어방식

컴퓨터로 태양의 연중 이동경로를 추적

혼합 제어방식

프로그램 제어방식 중심 운영 센서로 설치 위치에 의한 편차 보정

연구 계획 및 내용

- 태양광 발전의 채산성 개선을 위한 인공지능 강화학습 모델을 설계하여 적용
- Python, TensorFlow, OpenAl Gym, Ray 등을 사용하여 시뮬레이션/강화 학습 구현
- 병렬처리와 분산강화학습을 활용한 효율적인 컴퓨팅 자원 사용
- pysolar를 사용한 태양 위치, 태양광 발전 시뮬레이션
- 채산성을 보상으로 줘 AI가 채산성을 최대화하도록 학습

연구 진행 세부사항

- 태양광 발전의 채산성이 떨어지는 겨울 구간에 특히 개선을 보임
- 일관된 전기 생산이 힘든 태양광 발전의 문제점을 개선
- •최대 월별 80%가량의 초과성능, 일별 115% 가량의 초과성능
- •기존 고정 각도 태양광 발전을 크게 초과하는 성능을 냄

월별 일평균 초과성능 (%)

벤치마크(고정) 대비 일별 초과성능 (%)

주제에 대한 예측 결과

27% 1

수학적 최적해, AI, 기존 방법의 발전량