UAV Velocity Prediction Using Audio data

Team TN

Eunyoung Bang

JeongYoun Seo

Yeongmin Seo

Raymond Zeng

K-SQ 2nd floor, Purdue University

05/27/2022

Polytechnic Institute

Members

Eunyoung Bang
University: Kangwon National

Major: Computer Engineering

Interest field : Machine Learning, Deep Learning

Yeongmin Seo

University: DaeguCatholic

Major : Cyber Security

Interest field: Security,

Machine Learning

JeongYoun Seo

University: Sangmyung

Major : Human Intelligence

Information Engineering

Interest field : AI, Deep

Learning

Raymond Zeng

University: Purdue

Major : Cyber Security

Interest field : Cyber Security

AGENDA

Introduction

Motivation
Related work
Purpose of project

02

Technical details

Overview

Dataset

Feature extraction

Classifiers

03

Research Progress

Puture Plan

Conclusion

Introduction

Motivation Related work Purpose of project

What a drone picking up blood samples tells about healthcare in India [1]

Will drones transform farmers' lives in Thailand? [2]

FBI says PA electricity station likely 'target' of drone incident [3]

Did this police drone crash help DJI improve the M300? [4]

Because of the malicious UAVs

How to Predict?

How to Predict?

Why Audio data?

Audio data obtain relatively results at less cost than other methods.

Even with noise limitations, it provides good results for distinguishing the drone's sound [9], [10], [11].

How to Experiment

The U.S. FAA set UAV speed limit **100mph.**

100mph over speed
UAV is
a high probability that
malicious UAV

Related work

Discovering speed changes of vehicles from audio data [5]

Related work

Single Node Detection on Direction of Approach [8]

Purpose of project

Our goal is

Purpose of project

Our goal is

UAV Velocity Prediction Using Audio data

Technical details

Overview
Dataset
Feature extraction
Classifiers

Overview

Drone Information

Item No.	X5UW	X8SW			
Charging time	About 130 minutes	About 150 minutes			
Controlling distance	About 50 meters	About 70 meters			
Flying time	About 7 minutes	About 9 minutes			
Product Size	32 X 32 X 7 cm	50 X 50 X 19 cm			

Drone Information

Stability

Controlled condition

Microphone	Speed gun	Place
Dell XPS15 9570 Samsung Galaxy A51	Bushnell Velocity Speed Gun (Accuracy: +/- 1 mph)	K-SW 2th floor

How to collect a dataset?

How many collect Dataset?

Speed	Low	High
X5UW	30	30
X8SW	30	30

(Unit: min)

Feature extraction

A Feature Engineering Focused System for Acoustic UAV Detection [6]

Feature	Accuracy average (SVM, GNB, KNN, NN)				
Chroma_stft	0.878				
Mel	0.831				
MFCC	0.994				
Contrast	0.854				
tonnetz	0.731				

Feature extraction

Time (s)

MFCC

Classifiers

Classify Model

Research progress

Detailed Schedule Future Plan Conclusion

Detailed Schedule

Weekend	4 (~6/5)	5 (~6/12)	6 (~6/19)	7 (~6/26)	8 (~7/3)	9 (~7/10)	10 (~7/17)	11 (~7/24)	12 (~8/2)
Collect Dataset									
Feature extraction									
Writing code									
Preparing presentation									
Writing a paper									

Future Plan

Collecting Dataset.

Writing training code for models.

Regular meeting with Yaqin Wang.

Conclusion

Our 'UAV Velocity Prediction Using an Audio data' right now

Choose Machine learning and Deep learning models.

Collected half of our dataset

Writing Paper introduction

Conclusion

Our 'UAV Velocity Prediction Using an Audio data' in the future

Write Feature Extraction code

Write Machine Learning and Deep Learning Code

Finish Final Presentation and the paper

REFERENCE

- [1] "What a drone picking up blood samples tells about healthcare in India," bbc.com. https://www.bbc.com/news/world-asia-india-61267750 (accessed May. 1, 2022)
- [2] "Will drone transform farmers' lives in Thailand?," cnn.com. https://www.cnn.com/2019/07/03/asia/bug-away-thailand-drones-intl/index.html (accessed May. 1, 2022)
- [3] B. Crumley, "FBI says PA electricity station likely 'target' of drone incident," dronedj.com. https://dronedj.com/2021/11/04/fbi-says-pa-electricity-station-likely-target-of-drone-incident/ (accessed May. 17, 2022)
- [4] "Did this police drone crash help DJI improve the M300?," dronedj.com. https://dronedj.com/2022/04/08/uk-police-drone-crash-dji/ (accessed May. 21, 2022)
- [5] E. Kubera, A. Wieczorkowska, A Kuranc, T. Słowik "Discovering Speed Changes of Vehicles from Audio Data." in *Proc. Sensors*, Jul. 2019, doi:10.3390/s19143067
- [6] Wang, Y., Fagian, F. E., Ho, K. E., & Matson, E. T. "A Feature Engineering Focused System for Acoustic UAV Detection," *In 2021 Fifth IEEE Inter. Conf. on Robotic Comput. (IRC)*, 2020, pp. 125-130.

REFERENCE

- [7] H. Fayek, Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What's In-Between, haythamfayek, last modified 05/09, 2022, accessed Apr 21, 2016, https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
- [8] S. Seo, S. Yeo, H. Han, Y. Ko, K. E. Ho and E. T. Matson, "Single Node Detection on Direction of Approach," 2020 IEEE Int. Inst. and Meas. Technol. Conf. (I2MTC), 2020, pp. 1-6, doi: 10.1109/I2MTC43012.2020.9129016.
- [9] E. E. Case, A. M. Zelnio, and B. D. Rigling, "Low-cost acoustic array for small uav detection and tracking," *in 2008 IEEE Nat. Aerosp. and Electronics Conf. IEEE*, 2008, pp. 110-113.
- [10] A. Bernardini, F. Mangiatordi, E. Pallotti, and L. Capodiferro, "Drone detection by acoustic signature identification," Electronic Imaging, vol. 2017, no. 10, pp. 60-64, 2017.
- [11] Y. Seo, B. Jang, and S. Im, "Drone detection using convolutional neural networks with acoustic stft features," in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2018, pp. 1-6.
- [12] "MFCC Python: completely different result from librosa vs python_speech_features vs tensorflow.signal", stackoverflow.com,
- https://stackoverflow.com/questions/60492462/mfcc-python-completely-different-result-from-librosa-vs-python-speech-features (accessed Mar 2, 2020)

Thank you for listening

Q8₄A

Team TN

Eunyoung Bang (yeong35@kangwon.ac.kr) Jeongyoun Seo (201810773@sangmyung.kr) Yeongmin Seo (dudals1003@cu.ac.kr) Raymond Zeng (zeng172@purdue.edu)

Mentor

Eric T. Matson Anthony H. Smith Yaqin Wang Minji Lee

