

We claim:

5

- A method of promoting angiogenesis in a subject animal comprising administering to the subject an angiogenic amount of a hedgehog polypeptide or agonist thereof.
- The method of claim 1, wherein the step of administering comprises contacting 2. the hedgehog polypeptide or agonist with a mesenchymal cell of the subject.
- The method of claim 1, comprising administering to the subject a polypeptide 10 including a hedgehog amino acid sequence, which hedgehog sequence directs the binding of the polypeptide to a patched receptor polypeptide and/or induces alkaline phosphatase activity in C3H10T1/2 cells.
- The method of claim 1, comprising administering to the subject a polypeptide 15 including a hedgehog amino acid sequence having at least 60% amino acid identity with SEQ ID No. 10-18 or 20.
- The method of claim 1, comprising administering to the subject a polypeptide 5. including a hedgehog amino acid sequence encoded by a coding sequence which 20 hybridizes under stringent conditions to any of SEQ ID No. 1-9 or 19.
 - The method of claim 1, comprising administering to the subject a polypeptide 6. including a hedgehog amino acid sequence represented by SEQ ID No. 26.
 - The method of any of claims 3-7, wherein the hedgehog sequence includes at least 50 resdiues of an extracellular domain of a hedgehog protein.
- The method of any of claims 3-7, wherein the polypeptide is derivatized with one or more chemical moieties. 30
 - 9. The method of claim 8, wherein the chemical moiety is a polyalkylene glycol polymer.
- 10. The method of claim 8, wherein the chemical moiety is a hydrophobic moiety. 35
 - 11. The method of claim 10, wherein the hydrophobic moiety is a lipid.
- The method of claim 8, wherein the chemical moiety is one or more phosphate 12. groups. 40
 - 13. The method of claim 8, wherein the chemical moiety is one or more acetyl groups.
- The method of claim 8, wherein the chemical moiety is one or more sugar or 14. 45 carbohydrate groups.
 - 15. The method of claim 8, wherein the chemical moieties are any combination of phosphate, acetyl, sugar, carbohydrate, or hydrophobic moieties.

30

35

- 16. The method of claim 4, wherein the method further comprises administering an agent that enhances agonistic properties of the hedgehog therapeutic.
- The method of claim 16, wherein the agent is an angiogenic factor selected from 17. 5 the group consisting of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), angiopoietin 1, angiopoietin 2, monocyte chemotactic protein-1 (MCP-1).
- 18. A method of inhibiting angiogenesis in a subject animal comprising 10 administering to the subject an antiangiogenic amount of a hedgehog antagonist.
 - The method of claim 18, comprising administering a polypeptide including one 19. or more antigen binding domains which bind to and inhibit hedgehog signalling.
 - 20. The method of claim 18, comprising administering a polypeptide including one or more antigen binding domains which bind to patched and inhibit hedgehog signalling.
- 21. The method of claim 18, comprising administering a polypeptide including one or more antigen binding domains which bind to smoothened and inhibit hedgehog 20 signalling.
- 22. The method of claim 19, 20 or 21, wherein the antigen binding domain is part of a an antibody structure selected from the group consisting of a humanized antibody homology, a human antibody homolog, a chimeric antibody homolog and fragments 25 thereof.
 - 23. The method of claim 18, comprising administering a functional antagonist of a hedgehog therapeutic.
 - The method of claim 18, or 20, wherein the subject has a condition selected from 24. the group consisting of a malignant tumor, retinopathy, macular degeneration, a nonmalignant tumor, rheumatoid arthritis, osteoarthritis, neovascular glaucoma, keloids, Crohn's disease, ulcerative colitis, and psoriasis.
 - 25. The method of claim 1, wherein the hedgehog agonist is a small organic molecule.
- 26. The method of claim 25, wherein the hedgehog agonist has a molecular weight less than 2500 amu. 40
 - The method of claim 25, wherein the hedgehog agonist is represented by general 27. formula (XII):

10

15

25

Formula XII

wherein, as valence and stability permit,

Ar and Ar' independently represent substituted or unsubstituted aryl or heteroaryl rings;

Y, independently for each occurrence, may be absent or represent -N(R)-, -O-, -S-, or -Se-;

X can be selected from -C(=O)-, -C(=S)-, $-S(O_2)$ -, -S(O)-, -C(=NCN)-, $-P(=O)(OR_2)$ -, and a methylene group optionally substituted with 1-2 groups such as lower alkyl, alkenyl, or alkynyl groups;

M represents, independently for each occurrence, a substituted or unsubstituted methylene group, such as -CH₂-, -CHF-, -CHOH-, -CH(Me)-, -C(=O)-, etc., or two M taken together represent substituted or unsubstituted ethene or ethyne;

R represents, independently for each occurrence, H or substituted or unsubstituted aryl, heterocyclyl, heteroaryl, aralkyl, heteroaralkyl, alkynyl, alkenyl, or alkyl, or two R taken together may form a 4- to 8-membered ring, e.g., with N;

Cy and Cy' independenly represent substituted or unsubstituted aryl, heterocyclyl, heteroaryl, or cycloalkyl, including polycyclic groups;

i represents, independently for each occurrence, an integer from 0 to 5, preferably from 0 to 2; and

n, individually for each occurrence, represents an integer from 0 to 10, preferably from 0 to 5.

- 28. The method of any of claims 3 7, comprising administering a nucleic acid sequence encoding the polypeptide.
- 29. The method of claim 29, wherein the nucleic acid sequences encoding the polypeptide are introduced via a viral vector, via lipofection, and/or as naked DNA.
- 30. The method of claim 18, wherein the hedgehog antagonist is a small organic molecule.
 - 31. The method of claim 30, wherein the hedgehog antagonist has a molecular weight less than 2500 amu.
- 35 32. The method of claim 30, wherein the hedgehog antagonist is represented by one or more of formulas I XI.

1 · 🚗

10

15

20

25

30

33. The method of claim 30, wherein the hedgehog antagonist is represented by general formula (I):

wherein, as valence and stability permit,

 R_1 and R_2 , independently for each occurrence, represent H, lower alkyl, aryl (e.g., substituted or unsubstituted), aralkyl (e.g., substituted or unsubstituted, e.g., - $(CH_2)_n$ aryl), or heteroaryl (e.g., substituted or unsubstituted), or heteroaralkyl (e.g., substituted or unsubstituted, e.g., - $(CH_2)_n$ heteroaralkyl-);

L, independently for each occurrence, is absent or represents -(CH₂)_n-alkyl, -alkenyl-, -alkynyl-, -(CH₂)_nalkenyl-, -(CH₂)_nalkynyl-, -(CH₂)_nO(CH₂)_p-, -(CH₂)_nNR₂(CH₂)_p-, -(CH₂)_nS(CH₂)_p-, -(CH₂)_nalkenyl(CH₂)_p-, -(CH₂)_nalkenyl(CH₂)_p-, -O(CH₂)_n-, -NR₂(CH₂)_n-, or -S(CH₂)_n-;

 X_1 and X_2 can be selected, independently, from -N(R₈)-, -O-, -S-, -Se-, -N=N-, -ON=CH-, -(R₈)N-N(R₈)-, -ON(R₈)-, a heterocycle, or a direct bond between L and Y₁ or Y₂, respectively;

 Y_1 and Y_2 can be selected, independently, from -C(=O)-, -C(=S)-, -S(O₂)-, -S(O)-, -C(=NCN)-, -P(=O)(OR₂)-, a heteroaromatic group, or a direct bond between X_1 and Z_1 or X_2 and Z_2 , respectively;

 Z_1 and Z_2 can be selected, independently, from -N(R₈)-, -O-, -S-, -Se-, -N=N-, -ON=CH-, -R₈N-NR₈-, -ONR₈-, a heterocycle, or a direct bond between Y₁ or Y₂, respectively, and L;

 R_8 , independently for each occurrence, represents H, lower alkyl, $-(CH_2)_n$ aryl (e.g., substituted or unsubstituted), $-(CH_2)_n$ heteroaryl (e.g., substituted or unsubstituted), or two R_8 taken together may form a 4- to 8-membered ring, e.g., with X_1 and Z_1 or X_2 and Z_1 , which ring may include one or more carbonyls;

p represents, independently for each occurrence, an integer from 0 to 10, preferably from 0 to 3; and n, individually for each occurrence, represents an integer from 0 to 10, preferably from 0 to 5.

34. The method of claim 30, wherein the hedgehog antagonist is represented by general formula (VI):

Formula VI

5 wherein, as valence and stability permit,

 R_{1} , R_{2} , R_{3} , and R_{4} , independently for each occurrence, represent H, lower alkyl, - $(CH_{2})_{n}$ aryl (e.g., substituted or unsubstituted), or - $(CH_{2})_{n}$ heteroaryl (e.g., substituted or unsubstituted);

L, independently for each occurrence, is absent or represents - $(CH_2)_n$ -, -alkenyl-, -alkynyl-, - $(CH_2)_n$ alkenyl-, - $(CH_2)_n$ O(CH₂)_p-, - $(CH_2)_n$ NR₈(CH₂)_p-, - $(CH_2)_n$ S(CH₂)_p-, - $(CH_2)_n$ alkenyl(CH₂)_p-, - $(CH_2)_n$ alkynyl(CH₂)_p-, -O(CH₂)_n-, NR₈(CH₂)_n-, or -S(CH₂)_n-;

X and D, independently, can be selected from $-N(R_8)$ -, -O-, -S-, $-(R_8)N-N(R_8)$ -, -O-, or a direct bond;

Y and Z, independently, can be selected from O or S;

E represents O, S, or NR₅, wherein R₅ represents LR₈ or -(C=O)LR₈.

 R_8 , independently for each occurrence, represents H, lower alkyl, - $(CH_2)_n$ aryl (e.g., substituted or unsubstituted), - $(CH_2)_n$ heteroaryl (e.g., substituted or unsubstituted), or two R_8 taken together may form a 4- to 8-membered ring;

p represents, independently for each occurrence, an integer from 0 to 10, preferably from 0 to 3;

n, individually for each occurrence, represents an integer from 0 to 10, preferably from 0 to 5; and

q and r represent, independently for each occurrence, an integer from 0-2.

25

20

10

15