Inferenza statistica parametrica: intervalli di confidenza

13 maggio 2019

Intervallo di confidenza e stima intervallare

Esempio. Sia X_1, \ldots, X_n un campione di dimensione n estratto da una popolazione con distribuzione $\mathcal{N}(\mu, \sigma^2 = 4)$, μ incognita.

L'M.L.E. di
$$\mu$$
 è $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

N.B. \overline{X}_n è una v.a. assolutamente continua, μ è un numero e $P_{\mu}(\overline{X}_n = \mu) = 0$ qualunque sia il valore di μ . Tuttavia ci aspettiamo che \overline{X}_n sia "vicina" a μ . Per quantificare questa vicinanza usiamo il modello probabilistico (quello gaussiano) che abbiamo ipotizzato per le X_i . Ricordiamo che

$$X_1,\ldots,X_n$$
 i.i.d. con $X_i\sim\mathcal{N}(\mu,4)\Rightarrow \frac{(\overline{X}_n-\mu)\sqrt{n}}{2}\sim\mathcal{N}(0,1).$

Cioè, quando μ è il valore della media della distribuzione gaussiana $\frac{(\overline{X}_n - \mu)\sqrt{n}}{2}$ è gaussiana standard.

Ne segue, per esempio, che

$$\mathbb{P}_{\mu}\left(-1.96 < \frac{(X_n - \mu)\sqrt{n}}{2} < 1.96\right) = \Phi(1.96) - \Phi(-1.96)$$
$$= 2\Phi(1.96) - 1 \simeq 0.95$$

per ogni μ . (Ricordiamo che \mathbb{P}_{μ} sta ad indicare che tale probabilità è calcolata per il valore μ del parametro incognito che è la media delle X_i).

Equivalentemente

$$\mathbb{P}_{\mu}\left(\overline{X}_{n}-1.96\frac{2}{\sqrt{n}}<\mu<\overline{X}_{n}+1.96\frac{2}{\sqrt{n}}\right)\simeq0.95,$$

cioè qualunque sia il "vero" valore del parametro incognito μ con probabilità pari a 0.95 il valore di \overline{X}_n è ad una distanza non superiore a $1.96\frac{2}{\sqrt{n}}$ da μ .

Se osserviamo $X_1=x_1,\ldots,X_n=x_n$ che fornisce $\overline{X}_n=\bar{x}_n$, dove $\bar{x}_n=\frac{1}{n}(x_1+\cdots+x_n)$ (oppure osserviamo direttamente il valore \bar{x}_n della statistica \overline{X}_n) allora sostituendo tale valore ottengo un vero e proprio intervallo di $\mathbb R$

$$\bar{x}_n - 1.96 \frac{2}{\sqrt{n}} < \mu < \bar{x}_n + 1.96 \frac{2}{\sqrt{n}}$$

L'intervallo "aleatorio"

$$\left(\overline{X}_n - 1.96 \frac{2}{\sqrt{n}} , \overline{X}_n + 1.96 \frac{2}{\sqrt{n}}\right)$$

è detto intervallo di confidenza per μ al 95% (o di livello di confidenza 0.95).

Diciamo che con confidenza del 95% la media μ della popolazione appartiene all'intervallo

$$\left(\bar{x}_n - 1.96 \frac{2}{\sqrt{n}}, \ \bar{x}_n + 1.96 \frac{2}{\sqrt{n}}\right).$$

Questo intervallo è detto stima intervallare al 95% (o di livello di confidenza 0.95).

Intervalli di confidenza in generale

Sia X_1,\ldots,X_n un campione aleatorio estratto da una popolazione con densità f_{θ} dipendente da un parametro incognito (o vettore di parametri incogniti) θ . Sia $k(\theta)$ una caratteristica della popolazione (funzione reale non costante di θ) e sia $\alpha \in (0,1)$ fissato.

Definizione: Intervallo di confidenza bilatero

Siano $T_1=t_1(X_1,\ldots,X_n)$ e $T_2=t_2(X_1,\ldots,X_n)$ due statistiche tali che $T_1< T_2$ e per le quali

$$P_{\theta}\Big(T_1 < k(\theta) < T_2\Big) = 1 - \alpha$$

per ogni θ . Allora

- (T_1, T_2) è detto intervallo di confidenza all' $(1 \alpha)100\%$ per $k(\theta)$.
- $1-\alpha$ è detto livello di confidenza.

- Se osservo $X_1 = x_1, \ldots, X_n = x_n$ e se $\bar{t}_1 = t_1(x_1, \ldots, x_n)$ e $\bar{t}_2 = t_2(x_1, \ldots, x_n)$ sono i valori corrispondenti all'osservazione campionaria delle statistiche T_1 e T_2 , allora l'intervallo dell'asse reale (\bar{t}_1, \bar{t}_2) è detto stima intervallare (o ancora intervallo di confidenza) di $k(\theta)$ con livello di confidenza 1α in corrispondenza dell'osservazione campionaria (x_1, \ldots, x_n) .
- Diremo che con confidenza $1-\alpha$

$$k(\theta) \in (\overline{t}_1, \overline{t}_2).$$

Questi intervalli sono detti bilateri ovviamente perché delimitati da due statistiche. Si ha un'analoga definizione per gli intervalli unilateri e verrà presentata più avanti.

Metodo della quantità pivotale

Definizione: Quantità pivotale

Sia X_1, \ldots, X_n un campione aleatorio estratto da una popolazione con densità f_θ con θ incognito. Sia $Q = q(X_1, \ldots, X_n; \theta)$ una v.a. funzione di X_1, \ldots, X_n e θ . Diciamo che Q è una quantità pivotale se la sua distribuzione non dipende da θ .

Quindi, data una quantità pivotale $Q = q(X_1, ..., X_n; \theta)$, è possibile determinare due numeri q_1 e q_2 che dipendono da α ma non da θ tali che:

$$\mathbb{P}_{\theta}(q_1 < Q < q_2) = \mathbb{P}_{\theta}(q_1 < q(X_1, \dots, X_n; \theta) < q_2) = 1 - \alpha$$

valii di confidenza iviedia di una gaussian

Se per ogni realizzazione campionaria $X_1 = x_1, \dots, X_n = x_n$

$$q_1 < q(x_1, ..., x_n; \theta) < q_2 \iff t_1(x_1, ..., x_n) < k(\theta) < t_2(x_1, ..., x_n)$$

per opportune funzioni t_1 e t_2 , allora

$$\mathbb{P}_{\theta}\Big(t_1(X_1,\ldots,X_n) < k(\theta) < t_2(X_1,\ldots,X_n)\Big)$$

$$= \mathbb{P}_{\theta}\Big(q_1 < q(X_1,\ldots,X_n;\theta) < q_2\Big)$$

$$= 1 - \alpha.$$

qualunque sia il valore di θ e quindi

$$\left(t_1(X_1,\ldots,X_n), t_2(X_1,\ldots,X_n)\right)$$

è un intervallo di confidenza di livello $1 - \alpha$ per $k(\theta)$.

Esempio iniziale. Sia X_1, \ldots, X_n un campione aleatorio estratto da una popolazione gaussiana di media μ incognita e varianza $\sigma_0^2 = 4$. Allora

$$q(X_1,\ldots,X_n;\mu)=\frac{\overline{X}_n-\mu}{2/\sqrt{n}}\sim \mathcal{N}(0,1)$$

quindi è una quantità pivotale. Inoltre, se

$$1 - \alpha = 0.95 \implies \alpha = 0.05 \implies z_{\alpha/2} = z_{0.025} \simeq 1.96$$

(infatti
$$1 - \Phi(1.96) \simeq 1 - 0.9750 = 0.025$$
). Quindi

$$0.95 = \mathbb{P}_{\mu} \left(-1.96 < \frac{\overline{X}_{n} - \mu}{2/\sqrt{n}} < 1.96 \right) = \mathbb{P}_{\mu} \left(q_{1} < q(X_{1}, \dots, X_{n}; \mu) < q_{2} \right)$$

$$= \mathbb{P}_{\mu} \left(\overline{X}_{n} - \frac{2}{\sqrt{n}} 1.96 < \mu < \overline{X}_{n} + \frac{2}{\sqrt{n}} 1.96 \right)$$

$$= \mathbb{P}_{\mu} \left(t_{1}(X_{1}, \dots, X_{n}) < \mu < t_{2}(X_{1}, \dots, X_{n}) \right)$$

$$\left(\overline{X}_n - \frac{2}{\sqrt{n}} \ 1.96 \ , \ \overline{X}_n + \frac{2}{\sqrt{n}} \ 1.96\right)$$

è un intervallo di confidenza di livello $1 - \alpha = 0.95$.

Se osserviamo $\overline{X}_n = \overline{x}_n = 9$ e se n = 9, sostituendo questi valori otteniamo

$$\left(\bar{x}_n - 1.96 \frac{2}{\sqrt{n}}, \ \bar{x}_n + 1.96 \frac{2}{\sqrt{n}}\right) = (9 - 1.96 \times \frac{2}{3}, 9 + 1.96 \times \frac{2}{3})$$

= (7.69, 10.31)

(stima intervallare per μ al livello di confidenza del 95%).

Attenzione: confidenza non probabilità

Se osserviamo $\overline{X}_n = \overline{x}_n$ e costruiamo la stima intervallare, per esempio bilatera e al 95% di μ , diciamo che:

con confidenza 0.95 μ appartiene a questo intervallo.

Non stiamo affermando che la probabilità che

$$\mu \in \left(\bar{x}_n - 1.96 \frac{\sigma_0}{\sqrt{n}}, \ \bar{x}_n + 1.96 \frac{\sigma_0}{\sqrt{n}}\right)$$

è 0.95. Infatti in questo enunciato non vi è nulla di aleatorio.

Stiamo affermando invece che la probabilità che l'intervallo di estremi aleatori

$$\left(\overline{X}_n - 1.96 \frac{\sigma_0}{\sqrt{n}} \; , \; \overline{X}_n + 1.96 \frac{\sigma_0}{\sqrt{n}}\right)$$

contenga il valore μ è pari a 0.95.

Analogamente...

Definizione: Intervallo di confidenza illimitato superiormente

Sia $T_1=t_1(X_1,\ldots,X_n)$ una statistica tale che

$$\mathbb{P}_{\theta}\Big(T_1 < k(\theta)\Big) = 1 - \alpha$$

per ogni θ . Allora

- $(T_1, +\infty)$ è detto intervallo di confidenza unilatero (non limitato superiormente) all' $(1-\alpha)100\%$ per $k(\theta)$.
- Se osservo $X_1 = x_1, \ldots, X_n = x_n$ e sia $\bar{t}_1 = t_1(x_1, \ldots, x_n)$, allora l'intervallo dell'asse reale $(\bar{t}_1, +\infty)$ è detto stima intervallare unilatera (o ancora intervallo di confidenza unilatero) di $k(\theta)$ con livello di confidenza 1α in corrispondenza dell'osservazione campionaria (x_1, \ldots, x_n) .
- Diremo che con confidenza 1α vale $k(\theta) \in (\bar{t}_1, +\infty)$.

Definizione: Intervallo di confidenza illimitato inferiormente

Sia $T_2 = t_2(X_1, \dots, X_n)$ una statistica tale che

$$\mathbb{P}_{\theta}\Big(k(\theta) < T_2\Big) = 1 - \alpha$$

per ogni θ . Allora

- $\left(-\infty, T_2\right)$ è detto intervallo di confidenza unilatero (non limitato inferiormente) all' $(1-\alpha)100\%$ per $k(\theta)$.
- Se osservo $X_1 = x_1, \ldots, X_n = x_n$ e sia $\bar{t}_2 = t_2(x_1, \ldots, x_n)$ allora l'intervallo dell'asse reale $(-\infty, \bar{t}_2)$ è detto stima intervallare unilatera (o ancora intervallo di confidenza unilatero) di $k(\theta)$ con livello di confidenza 1α in corrispondenza dell'osservazione campionaria (x_1, \ldots, x_n) .
- Diremo che con confidenza 1α vale $k(\theta) \in (-\infty, \overline{t}_2)$.

ESEMPIO: Intervalli di confidenza di livello $1-\alpha$ per la media di una popolazione gaussiana

Ricordiamo che:

se $\alpha \in (0,1)$ si definisce quantile (di coda destra) di ordine α di una distribuzione gaussiana standard l'unico numero z_{α} tale che

$$1 - \Phi(z_{\alpha}) = \mathbb{P}(Z > z_{\alpha}) = \alpha$$
 (o $\Phi(z_{\alpha}) = \mathbb{P}(Z \le z_{\alpha}) = 1 - \alpha$)

dove $Z \sim \mathcal{N}(0,1)$. Quindi

$$\mathbb{P}(-z_{\alpha/2} < Z < z_{\alpha/2}) = \mathbb{P}(Z < z_{\alpha/2}) - \mathbb{P}(Z < -z_{\alpha/2})$$

$$= \Phi(z_{\alpha/2}) - \Phi(-z_{\alpha/2}) = 2\Phi(z_{\alpha/2}) - 1$$

$$= 2(1 - \alpha/2) - 1 = 1 - \alpha.$$

Analoghe definizioni e proprietà valgono per la t di Student.

Sia X_1, \ldots, X_n un campione di dimensione n estratto da una popolazione con distribuzione $\mathcal{N}(\mu, \sigma^2)$.

1. μ incognita e $\sigma^2 = \sigma_0^2$ nota.

Se X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma_0^2)$, allora $\overline{X}_n \sim \mathcal{N}(\mu, \sigma_0^2/n)$. Ne segue che $\frac{(X_n-\mu)\sqrt{n}}{\sigma_0}\sim \mathcal{N}(0,1)$ e quindi è una quantità pivotale e, per ogni μ ,

$$1 - \alpha = \mathbb{P}_{\mu} \left(-z_{\alpha/2} < \frac{(X_n - \mu)\sqrt{n}}{\sigma_0} < z_{\alpha/2} \right)$$
$$= \mathbb{P}_{\mu} \left(\overline{X}_n - z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}} < \mu < \overline{X}_n + z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}} \right).$$

L'intervallo (con estremi dati da due statistiche)

$$\left(\overline{X}_n - z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}} \; , \; \overline{X}_n + z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}} \right).$$

è quindi un intervallo di confidenza (bilatero) per μ di livello $(1 - \alpha)$ (o anche all' $(1 - \alpha)100\%$).

Se osserviamo $X_1 = x_1, \dots, X_n = x_n$, che fornisce la stima della media campionaria $\overline{X}_n = \overline{x}_n$, dove $\overline{x}_n = \frac{1}{n}(x_1 + \dots + x_n)$, allora l'intervallo dell'asse reale

$$\left(\bar{x}_n-z_{\alpha/2}\frac{\sigma_0}{\sqrt{n}}\;,\;\bar{x}_n+z_{\alpha/2}\frac{\sigma_0}{\sqrt{n}}\right).$$

è una stima intervallare per μ di livello di confidenza $1-\alpha$. Diremo che con confidenza pari a $1-\alpha$

$$\mu \in \left(\bar{x}_n - z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}, \ \bar{x}_n + z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}\right).$$

$$\mathbb{P}(Z > z_{\alpha}) = \alpha = \mathbb{P}(Z < -z_{\alpha})$$

se $Z \sim \mathcal{N}(0,1)$.

relazioni

Quindi, usando ancora la quantità pivotale $\frac{(\overline{X}_n - \mu)\sqrt{n}}{\sigma_0} \sim \mathcal{N}(0,1)$, per ogni μ vale

$$1 - \alpha = \mathbb{P}_{\mu} \left(\frac{(\overline{X}_n - \mu) \sqrt{n}}{\sigma_0} < z_{\alpha} \right) = \mathbb{P}_{\mu} \left(\mu > \overline{X}_n - \frac{\sigma_0}{\sqrt{n}} z_{\alpha} \right)$$

е

$$1 - \alpha = \mathbb{P}_{\mu} \left(\frac{(\overline{X}_n - \mu) \sqrt{n}}{\sigma_0} > -z_{\alpha} \right) = \mathbb{P}_{\mu} \left(\mu < \overline{X}_n + \frac{\sigma_0}{\sqrt{n}} z_{\alpha} \right).$$

Possiamo concludere gli intervalli unilateri (illimitato superiormente e inferiormente rispettivamente) di livello $1-\alpha$ per μ sono

$$\left(\overline{X}_n - \frac{\sigma_0}{\sqrt{n}} z_\alpha , +\infty\right)$$
 e $\left(-\infty, \overline{X}_n + \frac{\sigma_0}{\sqrt{n}} z_\alpha\right)$.

Sia X_1, \ldots, X_n un campione di dimensione n estratto da una popolazione con distribuzione $\mathcal{N}(\mu, \sigma^2)$ con

2. μ e σ^2 incognite.

Se la varianza σ^2 del campione è incognita l'intervallo precedentemente costruito

$$\left(\bar{x}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{x}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

non è più un intervallo noto dell'asse reale poiché contiene il parametro σ che è incognito. Tale intervallo è stato costruito partendo dalla v.a. $\frac{(\overline{X}_n - \mu)\sqrt{n}}{\sigma}$ che oltre al parametro μ contiene un altro parametro incognito σ .

$$X_1,\ldots,X_n \ i.i.d. \sim \mathcal{N}(\mu,\sigma^2) \ \Rightarrow \frac{(\overline{X}_n-\mu)\sqrt{n}}{S_n} \ \sim \ t(n-1),$$

dove
$$S_n = \sqrt{S_n^2} := \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2}$$
 è la deviazione

standard campionaria. Quindi $\frac{(\overline{X}_n - \mu)\sqrt{n}}{S_n}$ è una quantità pivotale funzione solo del parametro μ .

Ricordiamo che:

Per $\alpha \in (0,1)$, si definisce quantile (di coda destra) di ordine α di una distribuzione t-Student con k gradi di libertà (in simboli t(k)) l'unico numero $t_{\alpha,k}$ tale che

$$\mathbb{P}(T_k > t_{\alpha,k}) = \alpha$$
 (o $\mathbb{P}(T_k \le t_{\alpha,k}) = 1 - \alpha$)

dove $T_k \sim t(k)$. Per la simmetria della densità vale

$$-t_{\alpha,k}=t_{1-\alpha,k}$$

Quindi, sempre dalla simmetria della densità t-Student rispetto allo zero, se $\alpha \in (0,1)$:

$$\mathbb{P}_{(\mu,\sigma^2)}\Big(-t_{\alpha/2,n-1} < \frac{(\overline{X}_n - \mu)\sqrt{n}}{S_n} < t_{\alpha/2,n-1}\Big) = 1 - \alpha$$

o equivalentemente

$$\mathbb{P}_{(\mu,\sigma^2)}\left(\overline{X}_n - \frac{S_n}{\sqrt{n}}t_{\alpha/2,n-1} < \mu < \overline{X}_n + \frac{S_n}{\sqrt{n}}t_{\alpha/2,n-1}\right) = 1 - \alpha$$

per ogni μ e σ^2 .

Possiamo concludere che

$$\left(\overline{X}_n - \frac{S_n}{\sqrt{n}}t_{\alpha/2,n-1}, \overline{X}_n + \frac{S_n}{\sqrt{n}}t_{\alpha/2,n-1}\right)$$

è un intervallo di confidenza di livello $1-\alpha$ (o anche all' $(1 - \alpha)100\%$) per μ .

Inoltre, se osserviamo i valori $\overline{X}_n = \overline{x}_n$ e $S_n = s_n$ per la media e la deviazione standard campionarie, diciamo che con confidenza $1-\alpha$

$$\mu \in \left(\bar{x}_n - \frac{s_n}{\sqrt{n}}t_{\alpha/2, n-1}, \ \bar{x}_n + \frac{s_n}{\sqrt{n}}t_{\alpha/2, n-1}\right).$$

Riassumendo

1 Gli intervalli di confidenza per μ (incognita) si basano sulla quantità pivotale:

se
$$\sigma^2 = \sigma_0^2$$
 nota $\Rightarrow \frac{(\overline{X}_n - \mu)\sqrt{n}}{\sigma_0} \sim \mathcal{N}(0, 1);$
se σ^2 incognita $\Rightarrow \frac{(\overline{X}_n - \mu)\sqrt{n}}{S} \sim t(n - 1).$

2 La misura dell'intervallo (bilatero) di livello $1 - \alpha$ è:

se
$$\sigma^2 = \sigma_0^2$$
 nota $\Rightarrow 2z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}$;
se σ^2 incognita $\Rightarrow 2t_{\alpha/2,n-1} \frac{S_n}{\sqrt{n}}$.

Si può dimostrare che

$$t_{\alpha/2,n-1}\mathbb{E}_{(\mu,\sigma^2)}(S_n)\geq z_{\alpha/2}\sigma$$

quindi, se la varianza è nota, anche se si potrebbero usare entrambi gli intervalli di confidenza, è preferibile scegliere il primo.

Analogamente, gli intervalli di confidenza unilateri si ottengono osservando che, comunque fissati μ e σ^2 ,

$$1 - \alpha = \mathbb{P}_{(\mu,\sigma^2)} \left(\frac{(X_n - \mu)\sqrt{n}}{S_n} < t_{\alpha,n-1} \right)$$
$$= \mathbb{P}_{(\mu,\sigma^2)} \left(\mu > \overline{X}_n - \frac{S_n}{\sqrt{n}} t_{\alpha,n-1} \right).$$

Quindi

$$\left(\overline{X}_n - \frac{S_n}{\sqrt{n}} t_{\alpha, n-1}, +\infty\right)$$

è un intervallo di confidenza (non limitato superiormente) per μ di livello $1-\alpha$. Inoltre se osserviamo $\overline{X}_n=\bar{x}_n$ e $S_n=s_n$, diciamo che con confidenza $1-\alpha$

$$\mu \in (\bar{x}_n - \frac{s_n}{\sqrt{n}} t_{\alpha,n-1}, +\infty)$$

Analogamente per ogni μ e σ^2

$$1 - \alpha = \mathbb{P}_{(\mu,\sigma^2)} \left(\frac{(X_n - \mu)\sqrt{n}}{S_n} > -t_{\alpha,n-1} \right)$$
$$= \mathbb{P}_{(\mu,\sigma^2)} \left(\mu < \overline{X}_n + \frac{S_n}{\sqrt{n}} t_{\alpha,n-1} \right).$$

Quindi

$$\left(-\infty, \overline{X}_n + \frac{S_n}{\sqrt{n}} t_{\alpha,n-1}\right)$$

è un intervallo di confidenza (non limitato inferiormente) per μ di livello $1 - \alpha$. Inoltre, se osserviamo $\overline{X}_n = \bar{x}_n$ e $S_n = s_n$, diciamo che con confidenza $1-\alpha$.

$$\mu \in (-\infty, \bar{x}_n + \frac{s_n}{\sqrt{n}} t_{\alpha,n-1}).$$

ESEMPIO: Intervalli di confidenza di livello $1 - \alpha$ per la varianza di una popolazione gaussiana

Ricordiamo che:

se $\alpha \in (0,1)$ si definisce quantile (di coda destra) di ordine α di una distribuzione chi-quadrato con k gradi di libertà (in simboli $\chi^2(k)$) l'unico numero $\chi^2_{\alpha,k}$ tale che

$$\mathbb{P}(C_k > \chi^2_{\alpha,k}) = \alpha$$
 (o $\mathbb{P}(C_k \le \chi^2_{\alpha,k}) = 1 - \alpha$)

dove $C_k \sim \chi^2(k)$. Quindi

$$\mathbb{P}(\chi_{1-\alpha/2,k}^2 < C_k < \chi_{\alpha/2,k}^2) = \mathbb{P}(C_k < \chi_{\alpha/2,k}^2) - \mathbb{P}(C_k < \chi_{1-\alpha/2,k}^2)$$
$$= (1 - \alpha/2) - \alpha/2 = 1 - \alpha.$$

Sia X_1, \ldots, X_n un campione di dimensione n estratto da una popolazione con distribuzione $\mathcal{N}(\mu, \sigma^2)$ con

1. μ e σ^2 incognite.

Possiamo costruire un intervallo di confidenza per σ^2 usando il fatto che

$$X_1,\ldots,X_n \ i.i.d. \sim \mathcal{N}(\mu,\sigma^2) \Rightarrow \frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1)$$

e quindi è una quantità pivotale funzione solo di σ^2 . Fissato $\alpha \in (0,1)$, per ogni μ e σ^2

$$1 - \alpha = \mathbb{P}_{(\mu,\sigma^2)} \left(\chi_{1-\alpha/2,n-1}^2 < \frac{(n-1)S_n^2}{\sigma^2} < \chi_{\alpha/2,n-1}^2 \right)$$
$$= \mathbb{P}_{(\mu,\sigma^2)} \left(\frac{(n-1)S_n^2}{\chi_{\alpha/2,n-1}^2} < \sigma^2 < \frac{(n-1)S_n^2}{\chi_{1-\alpha/2,n-1}^2} \right).$$

è un intervallo di confidenza di livello $1-\alpha$ per σ^2 e, se osserviamo il valore $S_n^2=s_n^2$, otteniamo la stima intervallare per σ^2 di livello di confidenza $1-\alpha$:

$$\left(\frac{(n-1)s_n^2}{\chi_{\alpha/2,n-1}^2}, \frac{(n-1)s_n^2}{\chi_{1-\alpha/2,n-1}^2}\right).$$

2. $\mu = \mu_0$ nota e σ^2 incognite.

Possiamo costruire un intervallo di confidenza usando il fatto che

$$X_1,\ldots,X_n \text{ i.i.d. } \sim \mathcal{N}(\mu_0,\sigma^2) \Rightarrow \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\sigma^2} \sim \chi^2(n)$$

in quanto è la somma di n v.a. che sono quadrati di gaussiane standard indipendenti. Quindi è una quantità pivotale funzione solo di σ^2 (μ_0 è nota).

Se $\alpha \in (0,1)$ e indichiamo con $T_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0)^2$

$$1 - \alpha = \mathbb{P}_{\sigma^2} \left(\chi_{1 - \alpha/2, n}^2 < \frac{n T_n^2}{\sigma^2} < \chi_{\alpha/2, n}^2 \right)$$
$$= \mathbb{P}_{\sigma^2} \left(\frac{n T_n^2}{\chi_{\alpha/2, n}^2} < \sigma^2 < \frac{n T_n^2}{\chi_{1 - \alpha/2, n}^2} \right)$$

per ogni σ^2 .

$$\left(\frac{nT_n^2}{\chi_{\alpha/2,n}^2}\,,\,\frac{nT_n^2}{\chi_{1-\alpha/2,n}^2}\right)$$

e, se osserviamo il valore $T_n^2 = t_n^2$, otteniamo una stima intervallare bilatera per σ^2 di livello di confidenza $1 - \alpha$:

$$\left(\frac{nt_n^2}{\chi_{\alpha/2,n}^2}, \frac{nt_n^2}{\chi_{1-\alpha/2,n}^2}\right).$$

Esercizio. Costruire intervalli di confidenza unilateri per la varianza di una popolazione gaussiana di livello $1-\alpha$.

ESEMPIO: Intervalli di confidenza di livello $1-\alpha$ per la media di una popolazione esponenziale

Sia X_1, \ldots, X_n un campione di dimensione n estratto da una popolazione con distribuzione esponenziale di media θ incognita (in simboli $\mathcal{E}(1/\theta)$).

L'M.L.E di θ è \overline{X}_n . Inoltre,

$$X_1,\ldots,X_n \ i.i.d. \sim \mathcal{E}(1/\theta) \Rightarrow n\overline{X}_n = \sum_{i=1}^n X_i \sim \Gamma(n,1/\theta)$$

quindi la sua f.g.m. è

$$m_{\sum_{i=1}^n X_i}(t) = \left(\frac{1/\theta}{1/\theta - t}\right)^n = \left(\frac{1}{1 - \theta t}\right)^n.$$

Mostriamo che

$$Q_n = q(X_1, \ldots, X_n; \theta) = \frac{2}{\theta} \sum_{i=1}^n X_i = \frac{2}{\theta} n \overline{X}_n \sim \chi^2(2n)$$

e quindi è una quantità pivotale.

Calcoliamo a questo scopo la f.g.m.: se t < 1/2

$$m_{Q_n}(t) = \mathbb{E}_{\theta}\left[e^{rac{2t}{ heta}\sum_{i=1}^n X_i}
ight] = m_{\sum_{i=1}^n X_i}\left(rac{2t}{ heta}
ight)$$

$$= \left(rac{1}{1- heta^{2t}}
ight)^n = \left(rac{1}{1-2t}
ight)^n = \left(rac{1/2}{1/2-t}
ight)^{2n/2},$$

che è la f.g.m. di una v.a. con densità $\chi^2(2n)$. Quindi

$$\frac{2}{\theta}n\overline{X}_n\sim\chi^2(2n)$$

è una quantità pivotale, cioè è una funzione del campione e del parametro θ e con distribuzione che non dipende da θ .

Si può usare per costruire un intervallo di confidenza per θ . Fissato $\alpha \in (0,1)$, per ogni $\theta > 0$

$$1 - \alpha = \mathbb{P}_{\theta} \left(\chi_{1 - \alpha/2, 2n}^{2} < \frac{2}{\theta} \sum_{i=1}^{n} X_{i} < \chi_{\alpha/2, 2n}^{2} \right)$$
$$= \mathbb{P}_{\theta} \left(\frac{2 \sum_{i=1}^{n} X_{i}}{\chi_{\alpha/2, 2n}^{2}} < \theta < \frac{2 \sum_{i=1}^{n} X_{i}}{\chi_{1 - \alpha/2, 2n}^{2}} \right).$$

In conclusione

$$\left(\frac{2\sum_{i=1}^{n}X_{i}}{\chi_{\alpha/2,2n}^{2}}, \frac{2\sum_{i=1}^{n}X_{i}}{\chi_{1-\alpha/2,2n}^{2}}\right)$$

è un intervallo di confidenza bilatero per θ di livello $1-\alpha$.

Esercizio. Costruire un intervallo di confidenza di livello 0.95 per θ e determinare la stima intervallare corrispondente ad una osservazione della media campionaria $\overline{X}_n = 2.64$ per un campione di dimensione n = 6.

Costruire l'analogo intervallo di confidenza e relativa stima intervallare per il parametro dell'esponenziale $1/\theta$.