$11a_{109} (K11a_{109})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{45} - 11u^{43} + \dots + 4b - 2u, \ u^{45} - 10u^{43} + \dots + 4a - 4, \ u^{47} + 2u^{46} + \dots + 4u + 2 \rangle \\ I_2^u &= \langle 110u^5a^2 - 28u^5a + \dots - 169a + 180, \\ &- 2u^4a^2 - u^5a + 2u^3a^2 + 4u^4a + u^5 + 2a^2u^2 + 2u^3a + u^4 + a^3 - 2a^2u - 5u^2a - u^3 + 4au + 2u^2 + a - 1, \\ u^6 - u^5 - u^4 + 2u^3 - u + 1 \rangle \\ I_3^u &= \langle u^3 + u^2 + b - u + 1, \ u^3 - 2u^2 + 2a + 6, \ u^4 - 2u^2 + 2 \rangle \end{split}$$

 $I_1^v = \langle a, b+1, v-1 \rangle$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 70 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

²All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{45} - 11u^{43} + \dots + 4b - 2u, u^{45} - 10u^{43} + \dots + 4a - 4, u^{47} + 2u^{46} + \dots + 4u + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{45} + \frac{5}{2}u^{43} + \dots - \frac{1}{2}u^{3} + 1 \\ -\frac{1}{4}u^{45} + \frac{11}{4}u^{43} + \dots + \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{46} + \frac{11}{2}u^{44} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -u^{46} - u^{45} + \dots - \frac{7}{2}u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{46} - \frac{3}{4}u^{45} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -\frac{3}{4}u^{45} + \frac{33}{4}u^{43} + \dots - \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{11} + 2u^{9} - 2u^{7} + u^{3} \\ -u^{11} + 3u^{9} - 4u^{7} + 3u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{4}u^{34} + 2u^{32} + \dots + \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{4}u^{36} + 2u^{34} + \dots + \frac{1}{2}u^{2} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{4}u^{34} + 2u^{32} + \dots + \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{4}u^{36} + 2u^{34} + \dots + \frac{1}{2}u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^{46} + 22u^{44} + \cdots 4u^2 + 2u$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{47} + 2u^{46} + \dots - 5u + 5$
c_2	$u^{47} + 18u^{46} + \dots + 445u + 25$
<i>c</i> ₃	$u^{47} + 6u^{46} + \dots + 736u + 128$
c_4, c_8	$u^{47} + 2u^{46} + \dots + 4u + 2$
c_6, c_{10}, c_{11}	$u^{47} - 2u^{46} + \dots + 23u + 5$
c_7	$u^{47} - 2u^{46} + \dots - 3652u + 3866$
<i>c</i> ₉	$u^{47} + 22u^{46} + \dots + 8u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{47} - 18y^{46} + \dots + 445y - 25$
c_2	$y^{47} + 30y^{46} + \dots - 49175y - 625$
<i>c</i> ₃	$y^{47} + 10y^{46} + \dots - 154624y - 16384$
c_4, c_8	$y^{47} - 22y^{46} + \dots + 8y - 4$
c_6, c_{10}, c_{11}	$y^{47} - 50y^{46} + \dots - 211y - 25$
	$y^{47} - 14y^{46} + \dots + 245188856y - 14945956$
<i>c</i> ₉	$y^{47} + 6y^{46} + \dots - 96y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.637057 + 0.718687I		
a = -0.721070 + 1.203990I	7.88170 - 7.13370I	4.69775 + 5.86187I
b = 0.0489452 - 0.0612350I		
u = 0.637057 - 0.718687I		
a = -0.721070 - 1.203990I	7.88170 + 7.13370I	4.69775 - 5.86187I
b = 0.0489452 + 0.0612350I		
u = -0.571455 + 0.734273I		
a = 0.246152 + 0.401075I	9.33252 + 1.08584I	6.61100 - 0.78668I
b = 0.880555 + 0.625675I		
u = -0.571455 - 0.734273I		
a = 0.246152 - 0.401075I	9.33252 - 1.08584I	6.61100 + 0.78668I
b = 0.880555 - 0.625675I		
u = 1.006040 + 0.471862I		
a = 0.029772 - 0.657677I	-0.11745 - 4.26570I	1.86221 + 7.53589I
b = 0.257242 - 0.932477I		
u = 1.006040 - 0.471862I		
a = 0.029772 + 0.657677I	-0.11745 + 4.26570I	1.86221 - 7.53589I
b = 0.257242 + 0.932477I		
u = -0.406762 + 0.786472I		
a = 0.118369 - 0.344190I	8.45114 - 3.90837I	6.00297 + 1.23296I
b = 0.192922 - 0.870022I		
u = -0.406762 - 0.786472I		
a = 0.118369 + 0.344190I	8.45114 + 3.90837I	6.00297 - 1.23296I
b = 0.192922 + 0.870022I		
u = 0.359333 + 0.808292I		
a = -0.860558 - 0.927434I	6.36842 + 9.89029I	3.34606 - 5.56719I
b = 2.13804 - 0.70182I		
u = 0.359333 - 0.808292I		
a = -0.860558 + 0.927434I	6.36842 - 9.89029I	3.34606 + 5.56719I
b = 2.13804 + 0.70182I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.099960 + 0.219524I		
a = 2.12278 + 0.02040I	-4.03460 + 3.27231I	-6.93849 - 3.87386I
b = 1.40098 + 1.56081I		
u = 1.099960 - 0.219524I		
a = 2.12278 - 0.02040I	-4.03460 - 3.27231I	-6.93849 + 3.87386I
b = 1.40098 - 1.56081I		
u = 1.117490 + 0.132112I		
a = 0.871978 + 0.879966I	3.39185 + 1.64022I	0.179783 - 0.219910I
b = 0.365572 + 0.512413I		
u = 1.117490 - 0.132112I		
a = 0.871978 - 0.879966I	3.39185 - 1.64022I	0.179783 + 0.219910I
b = 0.365572 - 0.512413I		
u = -0.998163 + 0.550991I		
a = -0.315047 + 0.102429I	0.241182 + 1.057240I	0.289576 + 0.557042I
b = -0.898334 - 0.169658I		
u = -0.998163 - 0.550991I		
a = -0.315047 - 0.102429I	0.241182 - 1.057240I	0.289576 - 0.557042I
b = -0.898334 + 0.169658I		
u = -0.568933 + 0.644352I		
a = -0.15650 - 1.49843I	1.50796 + 3.62695I	2.13655 - 6.26888I
b = -0.187633 - 0.331112I		
u = -0.568933 - 0.644352I	_	
a = -0.15650 + 1.49843I	1.50796 - 3.62695I	2.13655 + 6.26888I
b = -0.187633 + 0.331112I		
u = 0.951297 + 0.631945I		
a = 0.093242 - 0.484467I	6.94963 + 1.98085I	3.48623 - 0.28252I
b = -0.390493 + 0.618210I		
u = 0.951297 - 0.631945I	0.04000 4.000077	0.40000 0.000707
a = 0.093242 + 0.484467I	6.94963 - 1.98085I	3.48623 + 0.28252I
b = -0.390493 - 0.618210I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.108720 + 0.363808I		
a = -2.65417 + 0.58730I	-5.47077 - 3.68113I	-9.62046 + 4.56447I
b = -2.29701 - 1.20468I		
u = 1.108720 - 0.363808I		
a = -2.65417 - 0.58730I	-5.47077 + 3.68113I	-9.62046 - 4.56447I
b = -2.29701 + 1.20468I		
u = -0.365235 + 0.745543I		
a = -0.561966 + 1.294290I	0.49152 - 5.74739I	0.29552 + 5.57964I
b = 1.96786 + 0.35399I		
u = -0.365235 - 0.745543I		
a = -0.561966 - 1.294290I	0.49152 + 5.74739I	0.29552 - 5.57964I
b = 1.96786 - 0.35399I		
u = -1.165410 + 0.187983I		
a = 2.28007 + 0.42466I	1.38638 - 7.13549I	-2.46560 + 4.47635I
b = 2.08406 - 1.07708I		
u = -1.165410 - 0.187983I		
a = 2.28007 - 0.42466I	1.38638 + 7.13549I	-2.46560 - 4.47635I
b = 2.08406 + 1.07708I		
u = -1.005960 + 0.623496I		
a = 1.24908 + 0.75581I	8.04432 + 4.08182I	4.48123 - 4.68553I
b = 1.063390 - 0.194010I		
u = -1.005960 - 0.623496I		
a = 1.24908 - 0.75581I	8.04432 - 4.08182I	4.48123 + 4.68553I
b = 1.063390 + 0.194010I		
u = -1.111110 + 0.494738I		
a = -1.83321 - 1.25072I	-4.58829 + 3.84650I	-8.76666 - 3.56046I
b = -2.10148 + 0.95562I		
u = -1.1111110 - 0.494738I		
a = -1.83321 + 1.25072I	-4.58829 - 3.84650I	-8.76666 + 3.56046I
b = -2.10148 - 0.95562I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.176480 + 0.396630I		
a = -2.40697 - 0.03813I	-1.23516 + 6.21145I	-1.74487 - 7.02826I
b = -2.05844 + 1.68830I		
u = -1.176480 - 0.396630I		
a = -2.40697 + 0.03813I	-1.23516 - 6.21145I	-1.74487 + 7.02826I
b = -2.05844 - 1.68830I		
u = 0.066156 + 0.753461I		
a = 0.967191 + 0.143999I	2.42833 - 2.22486I	2.96572 + 3.27842I
b = -1.41080 - 0.53958I		
u = 0.066156 - 0.753461I		
a = 0.967191 - 0.143999I	2.42833 + 2.22486I	2.96572 - 3.27842I
b = -1.41080 + 0.53958I		
u = -1.111590 + 0.573138I		
a = 2.03891 + 1.83979I	-1.69804 + 10.75150I	-2.97142 - 9.27459I
b = 3.12984 - 0.32101I		
u = -1.111590 - 0.573138I		
a = 2.03891 - 1.83979I	-1.69804 - 10.75150I	-2.97142 + 9.27459I
b = 3.12984 + 0.32101I		
u = 1.168440 + 0.464509I		
a = -1.31459 + 1.24173I	-0.77532 - 2.18171I	0
b = -2.05354 - 0.47643I		
u = 1.168440 - 0.464509I		
a = -1.31459 - 1.24173I	-0.77532 + 2.18171I	0
b = -2.05354 + 0.47643I		
u = -1.108280 + 0.598698I		
a = -0.816787 + 0.770371I	6.36874 + 9.11603I	3.03425 - 5.54417I
b = -0.110572 + 0.781750I		
u = -1.108280 - 0.598698I		
a = -0.816787 - 0.770371I	6.36874 - 9.11603I	3.03425 + 5.54417I
b = -0.110572 - 0.781750I		
	1	

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.132790 + 0.591464I		
a = 2.36607 - 1.55769I	4.0697 - 15.1191I	0. + 9.40367I
b = 3.12191 + 1.03804I		
u = 1.132790 - 0.591464I		
a = 2.36607 + 1.55769I	4.0697 + 15.1191I	0 9.40367I
b = 3.12191 - 1.03804I		
u = -0.664931		
a = 1.02381	-1.34703	-7.25790
b = -0.379109		
u = 0.448712 + 0.454594I		
a = 1.225200 - 0.260236I	1.43130 + 0.33753I	6.95713 - 1.01845I
b = 0.412150 + 0.326959I		
u = 0.448712 - 0.454594I		
a = 1.225200 + 0.260236I	1.43130 - 0.33753I	6.95713 + 1.01845I
b = 0.412150 - 0.326959I		
u = -0.174154 + 0.607070I		
a = 1.020160 - 0.035294I	-2.04844 + 0.43724I	-5.38341 - 0.85631I
b = -1.365630 + 0.008684I		
u = -0.174154 - 0.607070I		
a = 1.020160 + 0.035294I	-2.04844 - 0.43724I	-5.38341 + 0.85631I
b = -1.365630 - 0.008684I		

 $\text{II. } I_2^u = \langle 110u^5a^2 - 28u^5a + \cdots - 169a + 180, \ -u^5a + u^5 + \cdots + a - 1, \ u^6 - u^5 - u^4 + 2u^3 - u + 1 \rangle$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.607735a^{2}u^{5} + 0.154696au^{5} + \dots + 0.933702a - 0.994475 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.232044a^{2}u^{5} - 0.359116au^{5} + \dots + 1.01105a + 0.165746 \\ -0.243094a^{2}u^{5} + 0.861878au^{5} + \dots - 1.22652a + 1.60221 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.607735a^{2}u^{5} + 0.154696au^{5} + \dots + 1.93370a - 0.994475 \\ -1.02762a^{2}u^{5} + 0.552486au^{5} + \dots - 0.0939227a - 0.408840 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{4} - 2u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.607735a^{2}u^{5} + 0.154696au^{5} + \dots + 0.933702a - 0.994475 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.607735a^{2}u^{5} + 0.154696au^{5} + \dots + 0.933702a - 0.994475 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^4 4u^2 + 4u + 2$

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_6 \\ c_{10}, c_{11}$	$u^{18} - 6u^{16} + \dots + u + 1$
c_2	$u^{18} + 12u^{17} + \dots + u + 1$
c_3	$ (u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)^3 $
c_4, c_8	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^3$
C ₇	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^3$
<i>c</i> 9	$(u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^3$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_{10}, c_{11}	$y^{18} - 12y^{17} + \dots - y + 1$
c_2	$y^{18} - 12y^{17} + \dots + 7y + 1$
c_3, c_9	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^3$
c_4, c_7, c_8	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^3$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.002190 + 0.295542I		
a = 0.348652 - 0.303516I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = -0.0836886 + 0.0822976I		
u = -1.002190 + 0.295542I		
a = 1.54157 - 0.67011I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = 0.02798 - 1.89773I		
u = -1.002190 + 0.295542I		
a = -3.26061 - 1.15289I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = -2.46071 + 0.67711I		
u = -1.002190 - 0.295542I		
a = 0.348652 + 0.303516I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = -0.0836886 - 0.0822976I		
u = -1.002190 - 0.295542I		
a = 1.54157 + 0.67011I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = 0.02798 + 1.89773I		
u = -1.002190 - 0.295542I		
a = -3.26061 + 1.15289I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = -2.46071 - 0.67711I		
u = 0.428243 + 0.664531I		
a = 0.466201 + 0.792945I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = -0.025081 + 0.674941I		
u = 0.428243 + 0.664531I		
a = 1.083770 - 0.074988I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = -1.56679 + 0.56745I		
u = 0.428243 + 0.664531I		
a = 0.285996 - 1.259370I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = 1.42596 - 0.05764I		
u = 0.428243 - 0.664531I		
a = 0.466201 - 0.792945I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = -0.025081 - 0.674941I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.428243 - 0.664531I		
a = 1.083770 + 0.074988I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = -1.56679 - 0.56745I		
u = 0.428243 - 0.664531I		
a = 0.285996 + 1.259370I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = 1.42596 + 0.05764I		
u = 1.073950 + 0.558752I		
a = -0.789928 - 0.420050I	-5.69302I	0. + 5.51057I
b = -0.640192 - 0.601752I		
u = 1.073950 + 0.558752I		
a = 1.29540 - 1.82419I	-5.69302I	0. + 5.51057I
b = 2.40293 - 0.55520I		
u = 1.073950 + 0.558752I		
a = -1.97105 + 1.48173I	-5.69302I	0. + 5.51057I
b = -2.08041 - 1.24333I		
u = 1.073950 - 0.558752I		
a = -0.789928 + 0.420050I	5.69302I	0 5.51057I
b = -0.640192 + 0.601752I		
u = 1.073950 - 0.558752I		
a = 1.29540 + 1.82419I	5.69302I	05.51057I
b = 2.40293 + 0.55520I		
u = 1.073950 - 0.558752I		
a = -1.97105 - 1.48173I	5.69302I	0 5.51057I
b = -2.08041 + 1.24333I		

III.
$$I_3^u = \langle u^3 + u^2 + b - u + 1, \ u^3 - 2u^2 + 2a + 6, \ u^4 - 2u^2 + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} - 3\\-u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} - 2\\-u^{3} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} - 2\\-u^{3} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3}\\-u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3}\\-u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3}\\-u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{3}{2}u^{3} + u^{2} - 2\\-2u^{3} + 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{3}{2}u^{3} + u^{2} - 2\\-2u^{3} + 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 8$

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_{10} \\ c_{11}$	$(u+1)^4$
c_3, c_7	$u^4 + 2u^2 + 2$
c_4, c_8	$u^4 - 2u^2 + 2$
c_5,c_6	$(u-1)^4$
<i>C</i> 9	$(u^2 + 2u + 2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_{10}, c_{11}	$(y-1)^4$
c_3, c_7	$(y^2 + 2y + 2)^2$
c_4, c_8	$(y^2 - 2y + 2)^2$
<i>c</i> ₉	$(y^2+4)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.098680 + 0.455090I		
a = -2.32180 + 0.22311I	-2.46740 - 3.66386I	-4.00000 + 4.00000I
b = -1.54491 - 2.09868I		
u = 1.098680 - 0.455090I		
a = -2.32180 - 0.22311I	-2.46740 + 3.66386I	-4.00000 - 4.00000I
b = -1.54491 + 2.09868I		
u = -1.098680 + 0.455090I		
a = -1.67820 - 1.77689I	-2.46740 + 3.66386I	-4.00000 - 4.00000I
b = -2.45509 - 0.09868I		
u = -1.098680 - 0.455090I		
a = -1.67820 + 1.77689I	-2.46740 - 3.66386I	-4.00000 + 4.00000I
b = -2.45509 + 0.09868I		

IV.
$$I_1^v = \langle a, b+1, v-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_{10}, c_{11}	u-1
c_2, c_5, c_6	u+1
c_3, c_4, c_7 c_8, c_9	u

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{10}, c_{11}$	y-1
c_3, c_4, c_7 c_8, c_9	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)(u+1)^4(u^{18}-6u^{16}+\cdots+u+1)(u^{47}+2u^{46}+\cdots-5u+5)$
c_2	$((u+1)^5)(u^{18}+12u^{17}+\cdots+u+1)(u^{47}+18u^{46}+\cdots+445u+25)$
c_3	$u(u^{4} + 2u^{2} + 2)(u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1)^{3}$ $\cdot (u^{47} + 6u^{46} + \dots + 736u + 128)$
c_4, c_8	$u(u^4 - 2u^2 + 2)(u^6 - u^5 + \dots - u + 1)^3(u^{47} + 2u^{46} + \dots + 4u + 2)$
c_5	$((u-1)^4)(u+1)(u^{18}-6u^{16}+\cdots+u+1)(u^{47}+2u^{46}+\cdots-5u+5)$
c_6	$((u-1)^4)(u+1)(u^{18}-6u^{16}+\cdots+u+1)(u^{47}-2u^{46}+\cdots+23u+5)$
c_7	$u(u^{4} + 2u^{2} + 2)(u^{6} + u^{5} - u^{4} - 2u^{3} + u + 1)^{3}$ $\cdot (u^{47} - 2u^{46} + \dots - 3652u + 3866)$
c_9	$u(u^{2} + 2u + 2)^{2}(u^{6} + 3u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + u + 1)^{3}$ $\cdot (u^{47} + 22u^{46} + \dots + 8u + 4)$
c_{10}, c_{11}	$(u-1)(u+1)^4(u^{18}-6u^{16}+\cdots+u+1)(u^{47}-2u^{46}+\cdots+23u+5)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$((y-1)^5)(y^{18} - 12y^{17} + \dots - y + 1)(y^{47} - 18y^{46} + \dots + 445y - 25)$
c_2	$((y-1)^5)(y^{18} - 12y^{17} + \dots + 7y + 1)$ $\cdot (y^{47} + 30y^{46} + \dots - 49175y - 625)$
c_3	$y(y^{2} + 2y + 2)^{2}(y^{6} + y^{5} + 5y^{4} + 6y^{2} + 3y + 1)^{3}$ $\cdot (y^{47} + 10y^{46} + \dots - 154624y - 16384)$
c_4, c_8	$y(y^{2} - 2y + 2)^{2}(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)^{3}$ $\cdot (y^{47} - 22y^{46} + \dots + 8y - 4)$
c_6, c_{10}, c_{11}	$((y-1)^5)(y^{18} - 12y^{17} + \dots - y + 1)(y^{47} - 50y^{46} + \dots - 211y - 25)$
<i>C</i> ₇	$y(y^{2} + 2y + 2)^{2}(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)^{3}$ $\cdot (y^{47} - 14y^{46} + \dots + 245188856y - 14945956)$
<i>c</i> ₉	$y(y^{2}+4)^{2}(y^{6}+y^{5}+5y^{4}+6y^{2}+3y+1)^{3}$ $\cdot (y^{47}+6y^{46}+\cdots-96y-16)$