华东理工大学

概率论与数理统计

作业簿 (第五册)

学	院	专	业	
学	号	姓	名	任课教师

第8次作业

- 一. 填空题:
- 1. 设随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} ae^{-(x+y)}, & 0 < x,y < +\infty \\ 0, & \text{其他} \end{cases}$,则 a = x + y + y + y = x + y + y = x $\underline{1}$, $P(X \le 2, Y \le 1) = \underline{1 - e^{-1} - e^{-2} + e^{-3}}$
- 2. 若二维随机变量(X,Y)的联合分布列为

X	0	1
0	1_	1_
	6	4
1	1	1
	3	4

联合分布函数 则 随 机 变 量 (X,Y)的 为

$$F(x,y) = \begin{cases} 0, & x < 0 \text{ or } y < 0 \\ 1/6, & 0 \le x < 1, 0 \le y < 1 \\ 5/12, & 0 \le x < 1, y \ge 1 \\ 1/2, & x \ge 1, 0 \le y < 1 \\ 1, & x \ge 1, y \ge 1 \end{cases}$$
3. 设随机变量 $X_i \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$, $i = 1, 2$, 且满足 $P(X_1 X_2 = 0) = 1$,

则
$$P(X_1 = X_2) = 0$$
.

二. 选择题

(1)设(X,Y)服从二维均匀的分布,联合密度函数为

$$f(x,y) = \begin{cases} A, & 0 < x < 1, |y| < x \\ 0, & 其它 \end{cases}$$
, 则常数 $A = (B)$.

- (A) $\frac{1}{2}$ (B) 1 (C) 2 (D) 4.

(2) 设(X, Y) 的分布函数为F(x,y),则 $P\{X \ge a, Y > b\} = (C)$

- A. F(a,b)
- B. 1 F(a,b)
- C. $1 + F(a 0,b) F(+\infty,b) F(a 0,+\infty)$
- D. $1+F(a,b)-F(+\infty,b)-F(a,+\infty)$

(3) 设 $F_1(x)$, $F_2(x)$ 为两个分布函数, 其相应的概率密度为 $f_1(x)$, $f_2(x)$ 是连续 函数,则可以作为某个连续随机变量的概率密度函数的是(D)

A. $f_1(x) f_2(x)$

B. $2f_1(x)F_2(x)$

C. $f_1(x)F_2(x)$

D. $f_1(x)F_2(x) + f_2(x)F_1(x)$

三. 计算题

1. 设二维随机向量(ξ , η)仅取(1,1),(2,3),(4,5)三个点,且取它们的概率相同, $求(\xi,\eta)$ 的联合分布列。

解:

ξη	1	3	5
1	$\frac{1}{3}$	0	0
2	0	$\frac{1}{3}$	0
4	0	0	$\frac{1}{3}$

2. 某箱装有100件产品,其中一、二、三等品分别为80,10,10件,现在从 中随机抽取一件,记 $X_i = \begin{cases} 1 & \text{抽到}i$ 等品 $0 & \text{其他 } \end{cases}$, (i = 1, 2, 3)

试求随机变量 X₁和 X₂,的联合概率分布。

解: 令 A_i ="抽到i等品", i=1,2,3,则 A_1 , A_2 , A_3 两两不相容.

$$P(A_1) = 0.8$$
, $P(A_2) = P(A_3) = 0.1$

$$P(X_1 = 0, X_2 = 0) = P(A_3) = 0.1$$

$$P(X_1 = 0, X_2 = 1) = P(A_2) = 0.1$$

$$P(X_1 = 1, X_2 = 0) = P(A_1) = 0.8$$

$$P(X_1 = 1, X_2 = 1) = P(\phi) = 0$$

3. 将一硬币抛掷 3 次, X 表示 3 次中出现正面的次数, Y 表示 3 次中出现正面次数与反面次数之差的绝对值,求 X 和 Y 的联合分布率。

解: 当连抛三次出现三次反面时,(X,Y)的取值为(0,3);

出现一次正面两次反面时,(X,Y)的取值为(1,1);

出现两次正面一次反面时,(X,Y)的取值为(2,1);

出现三次正面时,(X,Y)的取值为(3,3)。

并且
$$P{X = 0, Y = 3} = (\frac{1}{2})^3 = \frac{1}{8}; P{X = 1, Y = 1} = {3 \choose 1}(\frac{1}{2})^3 = \frac{3}{8};$$

$$P{X = 2, Y = 1} = {3 \choose 1} (\frac{1}{2})^3 = \frac{3}{8}; P{X = 3, Y = 3} = (\frac{1}{2})^3 = \frac{1}{8}$$

所以,(X,Y)的联合概率分布为:

Y	1	3
0	0	1/8
1	3/8	0
2	3/8	0
3	0	1/8

4. 设随机向量(X,Y)的联合概率密度函数为

$$p(x,y) = \begin{cases} A(6-x-y), & 0 < x < 2, 2 < y < 4 \\ 0, & \text{ #.de} \end{cases}$$

(1) 确定常数 A; (2) 求 $P{X<1,Y<3}, P{X+Y<4}$

解: (1) 根据规范性有
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x,y) dx dy = 1$$
 ∴ $A = \frac{1}{8}$
(2) $P\{X < 1, Y < 3\} = \frac{1}{8} \int_{0}^{1} \int_{2}^{3} (6 - x - y) dx dy = \frac{3}{8}$
 $P(X + Y \le 4) = \frac{1}{8} \int_{0}^{2} \int_{2}^{4-x} (6 - x - y) dy dx = \frac{2}{3}$

5. 若随机变量 X, Y 的概率分布分别为

		1				1
P	$\frac{1}{3}$	$\frac{2}{3}$	P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

且满足 $P(X^2 = Y^2) = 1$ 。求二维随机变量(X, Y)的联合概率分布。

解: 由于
$$P(X^2 = Y^2) = 1$$
, 故 $P(X^2 \neq Y^2) = 0$ 。故有

$$P(X = 0, Y = 1) = P(X = 1, Y = 0) = P(X = 0, Y = -1) = 0$$
,

易得(X, Y)的联合概率分布如下:

Y	0	1
-1	0	$\frac{1}{3}$
0	$\frac{1}{3}$	0
1	0	$\frac{1}{3}$

第9次作业

一. 填空题:

1. 如果随机向量 (ξ,η) 的联合分布列为

η ξ	0	1
0	0.1	b
1	a	0. 4

并且
$$P(\xi = 1 \mid \eta = 1) = \frac{2}{3}$$
,则 $a = 0.3$, $b = 0.2$.

2. (ξ,η) 的联合分布列为

η	0	1	2
-1	$\frac{1}{15}$	t	$\frac{1}{5}$
1	S	$\frac{1}{5}$	$\frac{3}{10}$

若 ξ,η 相互独立,则 (s, t) = (0.1, $\frac{2}{15}$) 。

3. 设(X,Y)在以原点为中心,r为半径的圆域 R上服从均匀分布,求 X的边缘概

率密度为
$$p_X(x) = \begin{cases} \frac{2\sqrt{r^2 - x^2}}{\pi r^2}, & |x| \le r \\ 0, & |x| > r \end{cases}$$

二. 选择题

(1)设随机变量X服从正态分布 $N(\mu,4^2)$,随机变量Y服从正态分布 $N(\mu,5^2)$,

记
$$p_1 = P\{X \le \mu - 4\}$$
 , $p_2 = P\{Y \ge \mu + 5\}$, 则 (A)

- (A) 对任何实数 μ , 都有 $p_1 = p_2$
- (B) 对任何实数 μ , 都有 $p_1 < p_2$
- (C) 仅对 μ 的个别值, 有 $p_1 = p_2$
- (D) 对任何实数 μ , 都有 $p_1 > p_2$

(2) 设随机变量X的可能取值为 x_1,x_2 ,Y的可能取值为 y_1,y_2,y_3 ,若

$$P(X = x_1, Y = y_1) = P(X = x_1)P(Y = y_1)$$
,则随机变量 X 和 Y (C)

A. 一定独立 B. 一定不独立 C. 不一定独立 D. 以上答案都不对

(3). 设随机变量 X, Y 相互独立,服从相同的两点分布 $\begin{bmatrix} -1 & 1 \\ 1/2 & 1/2 \end{bmatrix}$,则(A)

A.
$$P\{X=Y\}=\frac{1}{2}$$
 B. $P\{X=Y\}=\frac{1}{3}$ C. $P\{X=Y\}=0$ D. $P\{X=Y\}=\frac{1}{4}$

三. 计算题

1. 设随机变量 ξ , η 的联合分布列为

ξ η	0	1	2
0	$\frac{1}{6}$	$\frac{2}{9}$	$\frac{1}{36}$
1	$\frac{1}{3}$	$\frac{1}{6}$	0
2	$\frac{1}{12}$	0	0

- (1) 求边缘分布列;
- (2) 在 $\eta=1$ 的条件下, ξ 的条件分布列;
- (3) 问 ξ 和 η 是否独立?

解: (1)

ξ	0	1	2
Р	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{12}$

η	0	1	2
P	$\frac{7}{12}$	$\frac{7}{18}$	$\frac{1}{36}$

(2)
$$P(\xi = 0 \mid \eta = 1) = \frac{P(\xi = 0, \eta = 1)}{P(\eta = 1)} = \frac{4}{7}$$

$$P(\xi = 1 \mid \eta = 1) = \frac{P(\xi = 1, \eta = 1)}{P(\eta = 1)} = \frac{3}{7}$$

$$P(\xi = 2 \mid \eta = 1) = \frac{P(\xi = 0, \eta = 1)}{P(\eta = 1)} = 0$$

(3) :
$$P(\xi = 0, \eta = 0) \neq P(\xi = 0)P(\eta = 0)$$

.: ξ和η不独立

2. 设二维连续型随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} Axy & (x,y) \in G \\ 0 & \text{其他} \end{cases}$$

其中 $G = \{(x, y) \mid 0 \le x \le 2, 0 < y \le x\}$,

- (1) 求系数 A;
- (2) X和Y的边缘密度函数;
- (3) $f_{X|Y}(x|y)$;
- (4) X和Y是否独立,为什么?

解: (1) 根据规范性
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$$
 : $A = \frac{1}{2}$

(2)
$$f_X(x) = \begin{cases} \int_{-\infty}^{+\infty} f(x, y) dy = \int_0^x \frac{1}{2} xy dy = \frac{x^3}{4}, & 0 \le x \le 2 \\ 0, & 其他 \end{cases}$$

$$f_{Y}(y) = \begin{cases} \int_{-\infty}^{+\infty} f(x, y) dx = \int_{y}^{2} \frac{1}{2} xy dx = y - \frac{y^{3}}{4}, & 0 \le y \le 2\\ 0, & \text{ #...} \end{cases}$$

(3)
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = f_{X|Y}(x|y) = \begin{cases} \frac{2x}{4-y^2} & (x,y) \in G \\ 0 & 其他 \end{cases}$$

(4) :: G 不是矩形区间, :: X 和 Y 不独立

3. 设随机变量
$$(X, Y)$$
 的联合密度为: $\phi(x,y) = \begin{cases} C & |x| < 1, |y| < 1 \\ 0 & 其它 \end{cases}$

试求: ①常数C; ② $P\{X+Y>\frac{1}{2}\}$ 及 $P\{X^2+Y^2\leq 1\}$; ③X和Y的边缘密度函数

解: ①
$$:: \int_{-\infty}^{+\infty} \phi(x,y) dx dy = 1, :: 4C = 1$$
,得常数 $C = \frac{1}{4}$;

(2)
$$P\{X+Y>\frac{1}{2}\}=\iint_{x+y>\frac{1}{2}}\phi(x,y)dxdy=\frac{9}{32};$$

$$P\{X^2 + Y^2 \le 1\} = \iint_{x^2 + y^2 \le 1} \phi(x, y) dx dy = \iint_{x^2 + y^2 \le 1} \frac{1}{4} dx dy = \frac{\pi}{4} \quad ;$$

③
$$X$$
和 Y 的边缘密度函数分别为: $\varphi_X(x) = \begin{cases} \frac{1}{2}, & |x| < 1\\ 0, & 其他 \end{cases}$

$$\varphi_{Y}(y) = \begin{cases} \frac{1}{2}, & |y| < 1\\ 0, & 其他 \end{cases}$$

第10次作业

- 一. 选择题:
- 1. 设随机变量 ξ 和 η 相互独立,且 ξ ~ N(-2,4) , η ~ N(1,8) ,则 ξ + 2η 的密度函数 p(z) 为 (C)。

A,
$$\frac{1}{6\sqrt{2\pi}}e^{\frac{-(z-4)^2}{72}}$$
 B, $\frac{1}{2\sqrt{6\pi}}e^{\frac{z^2}{24}}$ C, $\frac{1}{6\sqrt{2\pi}}e^{\frac{z^2}{72}}$ D, $\frac{1}{2\sqrt{6\pi}}e^{\frac{-(z-4)^2}{24}}$

2. 设随机变量(ξ,η)的联合密度函数为p(x,y),则 $\xi+\eta$ 的分布函数F(z)=(D)。

A,
$$F(z) = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{y} p(z - x, y) dx$$
 B, $F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} p(z - x, y) dy$

C,
$$F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{x} p(z-x,y)dy$$
 D, $F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} p(x,y)dy$

3. 设随机变量 ξ 和 η 相互独立,其密度函数分别为 $p_1(x)$ 与 $p_2(y)$,则 $\frac{\eta}{\xi}$ 的密度函

数p(z)为(A)。

A,
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(x) p_2(zx) dx$$
 B, $p(z) = \int_{-\infty}^{+\infty} p_1(x) p_2(z-x) dx$

C,
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(zx) p_2(x) dx$$
 D, $p(z) = \int_{-\infty}^{+\infty} p_1(z-x) p_2(x) dx$

4. 设随机变量 ξ 和 η 相互独立,其分布函数分别为 $F_{\varepsilon}(x)$ 与 $F_{\eta}(y)$,则

$$ζ = \max(ξ, η)$$
 的分布函数 $F_ζ(z)$ 等于 (B)

- A. $\max\{F_{\xi}(z), F_{\eta}(z)\}$ B. $F_{\xi}(z)F_{\eta}(z)$
- C. $\frac{1}{2}[F_{\xi}(z) + F_{\eta}(z)]$ D. $F_{\xi}(z) + F_{\eta}(z) F_{\xi}(z)F_{\eta}(z)$

5. 设随机变量 ξ 和 η 相互独立,且 $\xi \sim P(\lambda)$, $\eta \sim P(\lambda)$,则下列(B)不成立。

A.
$$P\{\xi + \eta = 1\} = 2\lambda e^{-2\lambda}$$
 B. $P\{\xi + \eta = 0\} = e^{-\lambda}$

B.
$$P\{\xi + \eta = 0\} = e^{-\lambda}$$

C.
$$E(\xi + \eta) = 2\lambda$$
 D. $D(\xi + \eta) = 2\lambda$

D.
$$D(\xi + \eta) = 2\lambda$$

- 二. 填空题:
- 1. 设随机变量 ξ 和 η 相互独立,且 ξ ~N(-2,4) η ~N(-2,12) ,则 ξ - η 的密度函

数
$$p(z) = \frac{1}{4\sqrt{2\pi}}e^{-\frac{z^2}{32}}$$

2. 设随机变量 ξ 和 η 独立同分布,均服从(0,1) 上的均匀分布,则 $\max(\xi,\eta)$ 的密

度函数
$$p(z) = \begin{cases} 2z, & 0 < z < 1, \\ 0, & 其他. \end{cases}$$

- 3. 设随机变量 ξ 和 η 相互独立,且 $\xi \sim E(1)$, $\eta \sim E(2)$,则 $P\{\min(\xi,\eta) \leq 1\} =$ $1 - e^{-3}$
- 4. 设随机变量 ξ 和 η 相互独立,且 $\xi \sim B(2,0.4)$, $\eta \sim B(3,0.4)$, 则 $\xi + \eta$ 服 从参数为__(5,0.4)___的二项分布

三. 计算题

1. 设随机变量 ξ 、 η 相互独立,其密度函数分别为

$$p_{\xi}(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \not\exists \text{th} \end{cases}, \quad p_{\eta}(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

 $求\xi+\eta$ 的概率密度函数。

解: 由 ξ , η 相互独立得联合密度函数为

$$p(x,y) = \begin{cases} e^{-y}, & 0 \le x \le 1, y > 0, \\ 0, & 其他, \end{cases}$$

密度函数中非零部分对应的(x,y)落在区域D中,利用卷积公式,

2. 设随机变量 (ξ,η) 的联合概率密度函数为

$$p(x,y) = \begin{cases} 2 - x - y, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{#th} \end{cases}$$

求 $\xi + \eta$ 的概率密度函数。

解: 利用卷积公式, 当 $z \le 0$ 或 $z \ge 2$ 时, $p_{\zeta}(z) = 0$,

当
$$0 < z < 1$$
 时, $p_{\zeta}(z) = \int_0^z (2-z) dx = 2z - z^2$,
当 $1 \le z < 2$ 时, $p_{\zeta}(z) = \int_{z-1}^1 (2-z) dx = (2-z)^2$,

故
$$p_{\zeta}(z) = \begin{cases} 2z - z^2, & 0 < z < 1, \\ (2 - z)^2, & 1 \le z < 2, \\ 0, & 其他. \end{cases}$$

解:由 ξ,η 相互独立得联合密度函数为

$$p(x,y) = \begin{cases} 1, & 0 \le x \le 1, 0 \le y \le 1, \\ 0, & 其他, \end{cases}$$

先求分布函数 当 $z \le -1$ 时, $F_{\zeta}(z) = 0$,

$$\stackrel{\underline{}}{=}$$
 -1 < z < 0 $\stackrel{\underline{}}{=}$, $F_{\zeta}(z) = \int_{0}^{z+1} dx \int_{x-z}^{1} 1 dy = \frac{1}{2} (z+1)^{2}$,

当
$$0 \le z < 1$$
时, $F_{\xi}(z) = 1 - \int_{z}^{1} dx \int_{0}^{x-z} 1 dy = 1 - \frac{1}{2} (1-z)^{2}$,

当 $z \ge 1$ 时, $F_{\zeta}(z) = 1$,

故
$$\xi - \eta$$
 的概率密度函数为 $p_{\xi}(z) = \begin{cases} 1+z & -1 \le z < 0 \\ 1-z & 0 \le z < 1 \\ 0 & 其他 \end{cases}$

4. 已知随机变量 ξ 、 η 的概率分布分别为

而且 $P\{\xi\eta=0\}=1$ 。

- (1)求 ξ 、 η 的联合概率分布;
- (2)问 ξ 、 η 是否独立?
- (3)求 $\zeta = \max(\xi, \eta)$ 的概率分布。

解: 由于 $P(\xi \eta = 0) = 1$,可以得到 $P(\xi = -1, \eta = 1) = P(\xi = 1, \eta = 1) = 0$,

从而

$$\begin{split} P(\xi = 0, \eta = 1) &= P(\eta = 1) = \frac{1}{2}, \\ P(\xi = -1, \eta = 0) &= P(\xi = -1) = \frac{1}{4}, \\ P(\xi = 1, \eta = 0) &= P(\xi = 1) = \frac{1}{4}, \\ P(\xi = 0, \eta = 0) &= P(\xi = 0) - P(\xi = 0, \eta = 1) = 0, \end{split}$$

汇总到联合分布列,即

ξη	0	1
-1	$\frac{1}{4}$	0
0	0	$\frac{1}{2}$
1	$\frac{1}{4}$	0

(2)由于 $P(\xi = i, \eta = j) \neq P(\xi = i) \cdot P(\eta = j)$,故 ξ, η 不独立.

(3)
$$P(\zeta = 0) = P(\xi = -1, \eta = 0) + P(\xi = 0, \eta = 0) = \frac{1}{4},$$

 $P(\zeta = 1) = P(\xi = -1, \eta = 1) + P(\xi = 0, \eta = 1) + P(\xi = 1, \eta = 0) + P(\xi = 1, \eta = 1) = \frac{3}{4}$

5. 电子仪器由 4 个相互独立的部件 L_i (i = 1,2,3,4) 组成,连接方式如图所示。设各个部件的使用寿命 ξ_i 服从指数分布 E(1),求仪器使用寿命 ζ 的概率密度。

解: 设各并联组的使用寿命为 $\eta_j(j=1,2)$,则

$$\zeta = \min\{\eta_1, \eta_2\}, \quad \eta_1 = \max\{\xi_1, \xi_2\}, \quad \eta_2 = \max\{\xi_3, \xi_4\}$$

由 ξ_i 独立同分布知 η_1,η_2 也独立同分布。现

$$F_{\xi}(x) = \begin{cases} 1 - e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

所以

$$F_{\eta}(y) = F_{\xi}^{2}(y) = \begin{cases} (1 - e^{-y})^{2} & y > 0\\ 0 & y \le 0 \end{cases}$$

从而

$$F_{\zeta}(z) = 1 - \left[1 - F_{\eta}(z)\right]^{2} = \begin{cases} 1 - \left[1 - (1 - e^{-z})^{2}\right]^{2} & z > 0 \\ 0 & z \le 0 \end{cases} = \begin{cases} 1 - e^{-2z}(2 - e^{-z})^{2} & z > 0 \\ 0 & z \le 0 \end{cases}$$

$$\therefore p_{\zeta}(z) = = \begin{cases} 4e^{-2z}(1 - e^{-z})(2 - e^{-z}) & z > 0 \\ 0 & z \le 0 \end{cases}$$

6. 上题中的电子部件 L_i (i = 1,2,3,4) 组成,按下列方式联接,求仪器使用寿命 ζ 的概率密度。

解: 设各串联组的使用寿命为 $\eta_i(j=1,2)$,则

$$\zeta = \max\{\eta_1, \eta_2\}, \quad \eta_1 = \min\{\xi_1, \xi_2\}, \quad \eta_2 = \min\{\xi_3, \xi_4\}$$

由 ξ_i 独立同分布知 η_1,η_2 也独立同分布。现

$$F_{\xi}(x) = \begin{cases} 1 - e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$
所以
$$F_{\eta_i}(y) = 1 - (1 - F_{\xi}(y))^2 = \begin{cases} 1 - e^{-2y} & y > 0 \\ 0 & y \le 0 \end{cases}$$
从而
$$F_{\zeta}(z) = \left[F_{\eta}(z) \right]^2 = \begin{cases} (1 - e^{-2z})^2 & z > 0 \\ 0 & z \le 0 \end{cases}$$

$$\therefore p_{\zeta}(z) == \begin{cases} 4e^{-2z}(1 - e^{-2z}) & z > 0 \\ 0 & z \le 0 \end{cases}$$

7. 将上题中的串联部分加上一个开关,先用上面部分,如果坏了,合上开关再用下面部分,求仪器使用寿命 ζ 的概率密度。

解: 设各串联组的使用寿命为 $\eta_i(j=1,2)$,则

$$\zeta = \eta_1 + \eta_2$$
, $\eta_1 = \min\{\xi_1, \xi_2\}$, $\eta_2 = \min\{\xi_3, \xi_4\}$

由 ξ_i 独立同分布知 η_1,η_2 也独立同分布。现

$$F_{\xi}(x) = \begin{cases} 1 - e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

$$F_{\eta_i}(y) = 1 - (1 - F_{\xi}(y))^2 = \begin{cases} 1 - e^{-2y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

从而 η_i 的概率密度为

$$\therefore p_{\eta_i}(y) == \begin{cases} 2 e^{-2y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

由 (η_1,η_2) 的联合密度函数为

$$p(x,y) = \begin{cases} 4e^{-2(x+y)}, & x > 0, y > 0, \\ 0, & \text{其他}, \end{cases}$$

 $\zeta = \eta_1 + \eta_2$ 利用卷积公式,

当
$$z \le 0$$
时, $p_{\zeta}(z) = 0$,

当
$$z > 0$$
时, $p_{\zeta}(z) = \int_0^z 4e^{-2z} dx = 4ze^{-2z}$