# Topic 2 - Face Detection

Group 57

Jun 27, 2024

# Group Members

- NGUYEN DUY THAI 175906
- PHAM HOANG DUY 220607
- NGUYEN HOANG VINH QUANG 219130
- PHAN VAN TAN 219200
- TRUONG MINH NGHIA 164626

### Overview

- Introduction to Face Detection
- Importance of Face Detection
- Applications of Face Detection
- Face Detection Techniques
- Project Goals

### Introduction to Face Detection

 Definition: Technology to identify and locate human faces in images and videos.

### • Importance:

- Foundation for facial recognition, emotion detection, and security systems.
- Crucial in various applications like surveillance, user authentication, and personalized marketing.

#### How it Works:

- Uses algorithms and machine learning techniques.
- Detects facial features and distinguishes them from other objects.

#### Advancements:

- Deep learning has enhanced accuracy and efficiency.
- Modern systems are more robust and reliable.

## **Proposed Solution**

- Model Selection: Use YOLOv10-L, a state-of-the-art object detection model known for its speed and accuracy.
- Data Collection: Gather a dataset of diverse images containing faces, ensuring a balanced representation of different facial features.
- Data Annotation: Utilize the pre-labeled dataset downloaded from Kaggle, which includes about 32k images with clean labels in xywh (top-left x-coord, top-left y-coord, face-width, face-height) format for human face detection tasks.
- Environment Setup: Clone the YOLOv10-L repository and install dependencies in Google Colab for free GPU access.
- Model Configuration: Define the model architecture and configuration using a custom YAML file tailored for face detection.

## **Proposed Solution**

- **Training**: Train the YOLOv10-L model on the annotated dataset, optimizing for accuracy and performance.
- Evaluation: Assess the model's performance using metrics such as mAP (mean Average Precision) and adjust parameters as needed.
- **Inference**: Test the trained model on new images to validate its face detection capabilities.
- **Deployment**: Export the trained model weights for use in real-world applications.

## Architecture Model Evaluation

| Model    | Pros                                                                                       | Cons                                                          |
|----------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| VGG16    | - Simplicity<br>- Strong Feature Extraction                                                | - Computationally Intensive<br>- Not Specialized for Detectio |
| ResNet50 | <ul><li>Residual Connections</li><li>High Accuracy</li><li>Scalability</li></ul>           | <ul><li>Complexity</li><li>Resource Intensive</li></ul>       |
| YOLO     | <ul><li>Real-Time Performance</li><li>High Accuracy</li><li>Unified Architecture</li></ul> | - Complexity<br>- Resource Intensive                          |

### Architecture

#### YOLOv10 Detailed Structure:

- Backbone:
  - Uses CSPDarknet architecture for feature extraction.
  - Includes multiple convolutional layers and residual blocks.
- Neck:
  - PANet structure for path aggregation.
  - Enhances feature pyramid for better detection at various scales.
- Head:
  - Outputs bounding box coordinates, objectness scores, and class probabilities.
  - Utilizes anchor boxes for improved localization accuracy.
- Advantages:
  - Superior performance on small and large objects.
  - Optimized for both accuracy and speed.

# **Data Processing**

### • Preprocessing:

- Normalization: Adjust image pixel values to a common scale to improve model performance.
- Augmentation: Apply techniques such as rotation, flipping, and scaling to increase dataset diversity.
- Annotation: Label images with bounding boxes around faces using tools like LabelImg or CVAT.
- **Dataset Preparation**: Ensure balanced representation of various facial features and expressions.

# **Data Processing**

- Post-Processing:
  - Non-Max Suppression (NMS): Filter out overlapping bounding boxes to retain the best predictions.
  - Bounding Box Refinement: Adjust predicted boxes to better align with detected faces.
  - Confidence Thresholding: Discard predictions below a certain confidence level to reduce false positives.
  - Evaluation Metrics: Use metrics like mAP (mean Average Precision) to assess model accuracy.

### **Dataset**

#### Source:

- We used the Face Detection Dataset from Kaggle.
- This dataset is specifically curated for training and testing face detection models.

### • Dataset Composition:

- Training Set: 26,300 images with annotated face locations.
- Validation Set: 6,500 images with similar annotations.

#### Annotations:

 Each image comes with corresponding labels indicating face positions using bounding boxes.

### **Dataset**

### • Preparation:

- Downloaded and extracted the dataset using a simple helper script.
- Ensured the removal of duplicate images and corresponding labels.

### Directory Structure:

Organized as follows:

```
train
images
labels
valid
images
labels
test
images
data.yaml
```

### YAML Configuration:

 Defined paths for training and validation data in a data.yaml file.

### Evaluation Metrics

### Average Precision (AP):

- Measures precision and recall at various thresholds.
- Calculates the weighted mean of precisions achieved at each threshold.
- Provides a comprehensive view of model performance across different confidence levels.

### AP@0.5:

- Measures precision and recall with a fixed Intersection over Union (IoU) threshold of 0.5.
- Indicates how well the model distinguishes true positives from false positives.
- Important for evaluating object detection models in real-world applications.

### **Evaluation Metrics**

### Mean Average Precision (mAP):

- Combines AP scores over multiple IoU thresholds (e.g., 0.5 to 0.95).
- Averages AP across all classes in the dataset.
- Offers a comprehensive metric for overall model performance comparison.

### • Importance:

- These metrics provide insights into the trade-offs between precision and recall.
- Essential for fine-tuning the model to achieve optimal detection accuracy.
- Used to benchmark performance against other models and datasets.

# Benchmark

# Model Comparison

We conducted a thorough benchmark analysis of our YOLOv10-L model against other state-of-the-art face detection models. Our evaluation focused on detection accuracy, speed, and resource efficiency.

- **Model Summary**: YOLOv10-L (fused) with 461 layers, 25,717,910 parameters, and 126.3 GFLOPs.
- Test Image: 640x640 pixels
- Detection Results: Detected 5 faces
- Inference Speed:
  - Preprocess: 12.3msInference: 158.4ms
  - Postprocess: 340.7ms
- Model Accuracy:
  - Precision (P): 0.862
  - Recall (R): 0.668
  - mAP@0.5: 0.735
  - mAP@0.5:0.95: 0.419

#### Command:

```
!yolo task=detect mode=train epochs=50 batch=12
imgsz=640 plots=True model='/content/drive/MyDrive/
face-detection-project/yolov10/weights/yolov101.pt'
data='/content/drive/MyDrive/face-detection-project/
merged/face-detect-datase.yaml' project='/content/
drive/MyDrive/face-detection-project/runs/detect/
train4/weights' name='train4' augment=True
hsv h=0.02 hsv s=0.8 hsv v=0.5 degrees=5 translate=0.2
scale=0.6 shear=2 perspective=0.001 flipud=0.1
fliplr=0.6 mosaic=1.0 mixup=0.2 copy_paste=0.1
auto_augment=randaugment erasing=0.5 crop_fraction=1.0
```

|                                                                                                  | Class                                                                                                      | Images                                                                                            | Instances                                                                                                   | Box(P                                                                                      |                                                                                  | mAP50                                                                              | mAP50-95):                                                                                                    | 100% 342                                                      |                                   |                            |              |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------|----------------------------|--------------|
|                                                                                                  |                                                                                                            | 5460                                                                                              | 46458                                                                                                       | 0.862                                                                                      | 0.668                                                                            | 0.735                                                                              | 0.419                                                                                                         | 1                                                             | <b>↑</b> ⊖ [                      | <b>■</b> ₹                 | *            |
| Epoch                                                                                            | GPU_mem                                                                                                    | box_om                                                                                            | cls_om                                                                                                      | dfl_om                                                                                     | box_oo                                                                           | cls_oo                                                                             | dfl_oo                                                                                                        | Instances                                                     |                                   |                            |              |
|                                                                                                  | 12.7G                                                                                                      | 1.176                                                                                             | 0.5165                                                                                                      | 1.108                                                                                      | 1.419                                                                            | 0.6591                                                                             | 1.071                                                                                                         |                                                               | 640:                              | 100%                       | 328          |
|                                                                                                  |                                                                                                            | Images                                                                                            | Instances                                                                                                   | Box(P                                                                                      |                                                                                  | mAP50                                                                              | mAP50-95):                                                                                                    | 100% 342/342                                                  | [01:42<00                         | 9:00,                      |              |
|                                                                                                  |                                                                                                            | 5460                                                                                              | 46458                                                                                                       | 0.861                                                                                      | 0.668                                                                            | 0.735                                                                              | 0.419                                                                                                         |                                                               |                                   |                            |              |
| Epoch                                                                                            | GPU_mem                                                                                                    | box_om                                                                                            | cls_om                                                                                                      | dfl_om                                                                                     | box_oo                                                                           | cls_oo                                                                             | dfl_oo                                                                                                        | Instances                                                     |                                   |                            |              |
| 50/50                                                                                            | 14.7G                                                                                                      |                                                                                                   | 0.5122                                                                                                      |                                                                                            | 1.417                                                                            | 0.6588                                                                             | 1.065                                                                                                         |                                                               | 640:                              | 100%                       | 328          |
|                                                                                                  | Class                                                                                                      | Images                                                                                            | Instances                                                                                                   | Box(P                                                                                      | R                                                                                | mAP50                                                                              | -4050 05).                                                                                                    | 100% 342/342                                                  | [01 · 42/00                       |                            |              |
|                                                                                                  |                                                                                                            | TillaRea                                                                                          | Thistances                                                                                                  | BOX(F                                                                                      |                                                                                  | MAP50                                                                              | MAP50-95):                                                                                                    | 100% 342/342                                                  |                                   |                            |              |
|                                                                                                  | all pleted in 1 ipped from                                                                                 | 5460<br>3.777 hour<br>/content/d                                                                  | 46458<br>s.<br>rive/MyDrive                                                                                 | 0.859<br>/face-detec                                                                       | 0.669                                                                            | 0.735<br>t/runs/det                                                                | 0.42                                                                                                          | weights/train                                                 | 46/weights                        | /last                      | t.pi         |
| optimizer str<br>Optimizer str<br>Validating /c<br>Oltralytics Y                                 | all spleted in 1 sipped from sipped from content/driv OLOV8.1.34 sary (fused)                              | 5460  3.777 hour /content/d /content/d e/MyDrive/ / Python : 461 laye                             | 46458 s. rive/MyDrive rive/MyDrive face-detecti -3.10.12 tono                                               | 0.859<br>/face-detec<br>/face-detec<br>on-project/<br>:h-2.3.0+cu1<br>parameters           | 0.669<br>tion-projection-project<br>runs/detect,<br>21 CUDA:0 (<br>, 0 gradien   | 0.735<br>t/runs/det<br>t/runs/det<br>/train4/we<br>NVIDIA L4<br>ts, 126.3          | 0.42<br>ect/train4/<br>ect/train4/<br>eights/train<br>, 22700MiB)<br>GFLOPs                                   | weights/train<br>weights/train<br>46/weights/be               | 46/weights<br>46/weights<br>st.pt | s/last<br>s/best           | t.pt         |
| ptimizer str<br>ptimizer str<br>/alidating /c<br>/ltralytics \<br>/OLOv101 summ                  | all spleted in 1 sipped from sipped from content/driv OLOv8.1.34 sary (fused) Class                        | 5460  3.777 hour /content/d /content/d /content/d / Python : 461 laye Images                      | 46458  rive/MyDrive rive/MyDrive face-detecti -3.10.12 toro rs, 25717910 Instances                          | 0.859<br>/face-detec<br>/face-detec<br>on-project/<br>:h-2.3.0+cu1<br>parameters<br>Box(P  | 0.669<br>tion-projection-project<br>runs/detect<br>21 CUDA:0 (                   | 0.735<br>t/runs/det<br>t/runs/det<br>/train4/we<br>NVIDIA L4<br>ts, 126.3          | 0.42<br>ect/train4/<br>ect/train4/<br>eights/train<br>, 22700MiB)                                             | weights/train<br>weights/train<br>46/weights/be               | 46/weights<br>46/weights<br>st.pt | s/last<br>s/best           | t.pt         |
| ptimizer str<br>ptimizer str<br>/alidating /c<br>/ltralytics \<br>/OLOv101 summ                  | all sipped from sipped from content/driv OLOV8.1.34 wary (fused) Class cov2d(input,                        | 5460 3.777 hour /content/d /content/d /content/d /e/MyDrive/ / Python : 461 laye Images weight, b | 46458 s. rive/MyDrive rive/MyDrive face-detecti -3.10.12 tore 2.52717910 Instances ias, self.st             | 0.859 /face-detec /face-detec on-project/ th-2.3.0+cu1 parameters Box(P                    | 0.669<br>tion-project<br>runs/detect,<br>121 CUDA:0 (<br>, 0 gradien<br>R        | 0.735<br>t/runs/det<br>t/runs/det<br>/train4/we<br>NVIDIA L4<br>ts, 126.3<br>mAP50 | 0.42<br>ect/train4/<br>ect/train4/<br>ights/train<br>, 22700MiB)<br>GFLOPs<br>mAP50-95):                      | weights/train<br>weights/train<br>46/weights/be<br>0% 0/342 [ | 46/weights<br>46/weights<br>st.pt | s/last<br>s/best<br>Pit/s] | t.pt<br>t.pt |
| ptimizer str<br>ptimizer str<br>/alidating /c<br>/ltralytics \<br>/OLOv101 summ                  | all spleted in 1 sipped from sipped from content/driv OLOv8.1.34 sary (fused) Class                        | 5460 3.777 hour /content/d /content/d /content/d /e/MyDrive/ / Python : 461 laye Images weight, b | 46458  rive/MyDrive rive/MyDrive face-detecti -3.10.12 toro rs, 25717910 Instances                          | 0.859<br>/face-detec<br>/face-detec<br>on-project/<br>:h-2.3.0+cu1<br>parameters<br>Box(P  | 0.669<br>tion-projection-project<br>runs/detect,<br>21 CUDA:0 (<br>, 0 gradien   | 0.735<br>t/runs/det<br>t/runs/det<br>/train4/we<br>NVIDIA L4<br>ts, 126.3          | 0.42<br>ect/train4/<br>ect/train4/<br>ights/train<br>, 22700MiB)<br>GFLOPs<br>mAP50-95):                      | weights/train<br>weights/train<br>46/weights/be               | 46/weights<br>46/weights<br>st.pt | s/last<br>s/best<br>Pit/s] | t.p1<br>t.p1 |
| optimizer str<br>Optimizer str<br>Validating /c<br>VItralytics Y<br>VOLOV101 summ<br>return F.cc | all spleted in 1 sipped from sipped from content/driv OLOv8.1.34 Hary (fused) Class env2d(input, Class all | 5460 3.777 hour /content/d /content/d /content/d / Python: 461 laye Images weight, b Images 5460  | 46458 s. rive/MyDrive rive/MyDrive face-detecti -3.10.12 torc rs. 25717910 Instances ias, self.st Instances | 0.859  /face-detec /face-detec on-project/ th-2.3.0+cud parameters Box(P ride, Box(P 0.486 | 0.669  tion-projection-project runs/detect. 121 CUDA:0 ( , 0 gradient R  R  0.64 | 0.735  t/runs/det  t/runs/det  /train4/we  NVIDIA L4  ts, 126.3  mAP50  0.393      | ect/train4/<br>ect/train4/<br>ect/train4/<br>ights/train<br>, 22700MiB)<br>GFLOPS<br>mAP50-95):<br>mAP50-95): | weights/train<br>weights/train<br>46/weights/be<br>0% 0/342 [ | 46/weights<br>46/weights<br>st.pt | s/last<br>s/best<br>Pit/s] | t.p<br>t.p   |

Figure 1: Train model



Figure 2: Train model result

# Comparison with Other Models

### • Accuracy and Speed:

- Our model showed competitive precision and recall rates compared to other leading models.
- The average precision (mAP@0.5) was 73.5%, while the mAP@0.5:0.95 reached 41.9%.
- The inference speed was efficient, making our model suitable for real-time applications.

#### Resource Utilization:

- The model demonstrated efficient GPU memory usage, with a peak of 17.2G during training.
- The combination of precision, speed, and resource efficiency highlights the robustness of our model for face detection tasks.

### Test Environment

- Hardware: NVIDIA L4 GPU
- **Software**: Ultralytics YOLOv8.1.34, Python 3.10.12, Torch 2.3.0+cu121

#### Detection Performance:

- Generated images and screenshots demonstrate the detection performance on test data.
- Model: YOLOv10
- Confidence threshold: 0.25
- Results show the model identifying multiple faces with high accuracy.

#### • Inference Details:

- Model: YOLOv10I
- Parameters: 46 layers, 25,717,910 parameters, 126.3 GFLOPs
- Inference speed: 158.4ms per image
- Command:
  - !yolo task=detect mode=predict conf=0.25 save=True
    model="/content/drive/MyDrive/face-detection-project/
    runs/detect/train4/weights/train46/weights/best.pt"
    source="/content/drive/MyDrive/face-detection-project/
    test/12\_Group\_Group\_12\_Group\_Group\_12\_2.jpg"
    project="/content/drive/MyDrive/face-detection-project/
    runs/detect/predict" name="prediction\_results"
- Results saved to: /content/drive/MyDrive/face-detection-project/runs/ detect/predict/prediction\_results4
- Learn more at: Ultralytics Documentation



Figure 3: Google Colab workspace



Figure 4: Test image 1

#### • Inference Details:

- Model: YOLOv10I
- Parameters: 461 layers, 25,717,910 parameters, 126.3 GFLOPs
- Inference speed: 155.5ms per image
- Command:
  - !yolo task=detect mode=predict conf=0.25 save=True
    model="/content/drive/MyDrive/face-detection-project/
    runs/detect/train4/weights/train46/weights/best.pt"
    source="/content/drive/MyDrive/face-detection-project/
    test/runs/AOS-group.png"
    project="/content/drive/MyDrive/face-detection-project/
    runs/detect/predict" name="prediction\_results"
- Results saved to: /content/drive/MyDrive/face-detection-project/runs/ detect/predict/prediction\_results5
- Learn more at: Ultralytics Documentation



### Conclusion

- Face detection is a vital technology
- Wide range of applications
- Project aims to contribute to this field

# Questions?

• Open for any questions or discussions

### References

- Dataset: Face Detection Dataset
- Information: Train set 26,300 images, Test set 6,500 images
- Evaluation Metric: AP, AP@0.5