

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Best-first search

- Idea: use an evaluation function *f(n)* for each node
 - f(n) provides an estimate for the total cost.
 - → Expand the node n with smallest f(n).
- Implementation:

Order the nodes in fringe increasing order of cost.

- Special cases:
 - greedy best-first search
 - A* search

G

Greedy best-first search

- f(n) = estimate of cost from n to goal
- e.g., $f_{SLD}(n)$ = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal.

Greedy best-first search example | Straight-line distance to Birchired | Straight-line distance to Birchire

Properties of greedy best-first search

- Complete? No can get stuck in loops.
- Time? $O(b^n)$, but a good heuristic can give dramatic improvement
- <u>Space?</u> *O(b^m)* keeps all nodes in memory
- Optimal? No
 e.g. Arad→Sibiu→Rimnicu
 Virea→Pitesti→Bucharest is shorter!

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t$ so far to reach n
- h(n) = estimated cost from n to goal
- *f*(*n*) = estimated total cost of path through *n* to goal
- Best First search has *f*(*n*)=*h*(*n*)

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If *h(n)* is admissible, A* using TREE-SEARCH is optimal

Optimality of A* (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

We want to prove: f(n) < f(G2) (then A* will prefer n over G2)

- $f(G_2) = g(G_2)$
- f(G) = g(G)
- $g(G_2) > g(G)$
- $f(G_2) > f(G)$
- since $h(G_2) = 0$
- since h(G) = 0
- since G₂ is suboptimal
- from above

Optimality of A* (proof)

• Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2)$ > f(G) copied from last slide
- h(n) ≤ $h^*(n)$ since h is admissible (*under*-estimate)
- $g(n) + h(n) \le g(n) + h*(n)$ from above
- f(n) $\leq f(G)$ since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G)
- f(n) < f(G2) from top line.

Hence: n is preferred over G2

Consistent heuristics

 A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n,a,n') + h(n')$$

$$c(n,a,n')$$
 $h(n)$
 $h(n')$

■ If *h* is consistent, we have

$$\begin{array}{ll} f(n') & = g(n') + h(n') \\ & = g(n) + c(n,a,n') + h(n') \\ & \geq g(n) + h(n) = f(n) \\ f(n') & \geq f(n) \end{array}$$

It's the triangle inequality!

• i.e., f(n) is non-decreasing along any path.

keeps all checked nodes

If h(n) is consistent, A*using GRAPH-SEARCH is optimal states

in memory to avoid repeated

Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i contains all nodes with f≤f_i where f_i < f_{i+1}

Properties of A*

- Complete? Yes (unless there are infinitely many nodes with $f \le f(G)$, i.e. path-cost $> \varepsilon$)
- Time/Space? Exponential b^d

except if:
$$|h(n)-h^*(n)| \le O(\log h^*(n))$$

- Optimal? Yes
- Optimally Efficient: Yes (no algorithm with the same heuristic is guaranteed to expand fewer nodes)

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

• $h_1(S) = ?$

■ $h_2(S) = ?$

Admissible heuristics

E.g., for the 8-puzzle:

• $h_1(n)$ = number of misplaced tiles

• $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

- $\underline{h_1(S)} = ?$ 8 $\underline{h_2(S)} = ?$ 3+1+2+2+3+3+2 = 18