Members	Savannah Baron and Varsha Kishore			
Title	Predicting Political Ideology			
Hours	Savannah (8), Varsha (8)			
Predicting	Our goal is to classify the political ideology of sentences. In particular,			
	a binary classification problem to start (conservative/liberal) and a three			
	class problem later (conservative/liberal/neutral).			
Data	We will be using data from the Ideological Books Corpus (IBC). This data			
	set contains sentences from authors with known political standings. All			
	sentences are labeled as either liberal, conservative or neutral. There are			
	4062 sentences total, with 2025 of them being liberal, 1701 conservative,			
-	and 600 ne			
Features	Currently we are using bag of words for our features, so our feature space is			
	dependent upon the number of words we choose to use in our vocabulary.			
	We've been experimenting with using between 2000 and all (about 11000)			
	words, and have been experimenting with how to form and select these words in a variety of ways. Some examples of things we have tried so far			
	include removal of stop words, n-grams, using stem words, and Tf-Idf (Term			
	Frequency-Inverse Document Frequency).			
Models	So far, we are focusing on a textual classification problem. So, we are us-			
1,10,000	ing the ever popular SVM and Logistic Regression models to begin with			
	because these models have been used for other similar textual classification			
	problems. Using Logistic regression also gives us a direct probabilistic in-			
	terpretation and this might be useful in our analysis. An advantage we have			
	with SVM's is that we can use kernels to encode additional relationships			
	between words.			
	Model	Best Params	Average Accuracy	
	Random	N/A	50%	
	SVM	b	c	
Results	LogReg	Remove English Stop Words,	About 65%	
		Number of Features ≥ 1000 ,		
		Other features tried make lit-		
D 11		tle difference		
Problems	The lone professional paper that uses this dataset achieves a maximum			
	accuracy 69.3% (using recursive neural nets (RNN)). This is not that great,			
	so whether we'll be able to improve from where we are currently, or beyond			
	that far enough to get interesting results is an open question. Additionally,			
	we don't have a lot of data, which may limit the amount that our model will generalize.			
Future		unning to look into better featu	re extraction technique	s. This
	_	9	-	
	includes looking for negation in sentences, n-grams and specifically politically biased n-grams, and nltk chunking which groups parts of sentences.			
	We also plan to pursue multiclass classification to include neutral examples			
	using random forests. Finally, LDA seems as though it may be interesting			
	in conjunction with our supervised models if we used the results as inputs,			
	however tuning the number of topics in LDA is difficult and subjective, so			
	we plan to time box ourselves to 2 hours initially, and evaluate the results.			
	however tuning the number of topics in LDA is difficult and subjective, so			

Specific Questions	We feel like we don't have great intuition on how to improve the accuracy	
	of our models, or what sorts of features will perform best. This is per-	
	haps more of a "how to do machine learning" question than a specific one	
	though. Additionally, we wonder whether there are there other classifiers	
	that we haven't talked about that could give us better results with text	
	classification.	

Appendix: Example Visualizations:

ROC Plot For Log Reg with parameters as shown in title using 10-Fold cross validation. Area seems about as one might expect given the average performance of 0.65 found for this model.

1 of 10 confusion matrices for the same LogReg model as above. For most of the folds including this one, the confusion matrix shows that misclassifications are relatively balanced between the two classes, which is good given that the proportion of the classes is slightly unbalanced in the data. We are using class weights to offset this problem, which does seem to be working.

[('C', 0.1), ('stop_words', 'english'), ('ngram_range', (1, 3)), ('max_features', None), ('norm', None), ('vectorizer', 'tfidf')]

