Introductory Mathematics: Algebra and Analysis Solutions

Michael Rocke

May 21, 2020

0.1 Chapter 1

0.1.1 Exercises

Notes

 $\mathbb{N} = \text{Set of Natural numbers}, \{1, 2, 3, ..\}$

 $\mathbb{Z} = \text{Set of Integers}, \{..., -2, -1, 0, 1, 2, ..\}$

 $\mathbb{Q}=$ Set of Rational Numbers, $Q=\{\frac{a}{b}|a,b\in\mathbb{Z},b\neq0\}$

 $\mathbb{R} = \mathrm{Set} \ \mathrm{of} \ \mathrm{Real} \ \mathrm{numbers}$

1.1

 $A = \{1,2,3\}, B = \{1,2\}, C = \{1,3\}, D = \{2,3\}, E = \{1\}, F = \{2\}, G = \{3\}, H = \emptyset$

a)
$$A \cap B = B$$

b)
$$A \cup C = A$$

c)
$$A \cap (B \cap C) = E$$

d)
$$(C \cup A) \cap B = B$$

e)
$$A \setminus B = G$$

f)
$$C \setminus A = H$$

g)
$$(D \setminus F) \cup (F \setminus D) = G$$

h)
$$G \setminus A = H$$

$$j) A \cup ((B \setminus C) \setminus F) = A$$

k)
$$H \cup H = H$$

$$1) A \cap A = A$$

$$m) ((B \cup C) \cap C) \cup H = C$$

1.2

- a) i and ii are the same, iii is different
- b) i and ii are the same, iii is different
- c) $i = \{1, 2, 3, 4, 5, 6, 7\}, ii = \{1, 2, 3, 4, 5, 6, 7, -1, -2, -3, -4, -5, -6, -7\}, iii = \{1, 2, 3, 4, 5, 6, 7\},$ so i and iii are the same, ii is different
- d) $i = \{0, 1, 2, 3, ...\}, ii = \{1, 2, 3, ...\}, iii = \{1, 2, 3, ...\}$, ii and iii are the same, i is different
- e) i and iii are the same, ii is different
- f) ii and iii are same, i is different
- g) ii and iii are same, i is different
- h) i and iii are same, ii is different
- j) $i = \emptyset, ii = \emptyset, iii = \{\emptyset\}$ i and ii are same, iii are different
- k) ii and iii are the same, i is different
- 1) ii and iii are the same, i is different
- m) $i=\{\emptyset,\{\emptyset\},0\}, ii=\{\emptyset,\{\emptyset\},0\}, iii=\{\emptyset,0\}$ i and ii are same, iii different

1.3

a)

Figure 1: $A \cap B \cap C$

Figure 2: $A \cap B \cap C'$

Figure 3: $A \cap B' \cap C$

Figure 4: $A' \cap B \cap C$

Figure 5: $A \cap B' \cap C'$

Figure 6: $A' \cap B \cap C'$

Figure 7: $A' \cap B' \cap C$

Figure 8: $A' \cap B' \cap C'$

b)

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13: $(A' \cup B \cup C)'$

Figure 14: $(A \cup B' \cup C)'$

Figure 15: $(A \cup B \cup C')'$

Figure 16: $(A \cup B \cup C)'$

1.4

a) Prove that 1, 2, 3 = 1, 1, 2, 3

Proof. Lets define the following sets $A = \{1, 2, 3\}$ and $B = \{1, 1, 2, 3\}$. For two sets to be equal, every element in one set must belong to the other, meeting the property $A = A \cup B = B$. Just looking empirically, A contains the elements 1, 2, 3 and B contains the same elements. We can also prove this by defining both sets as follows $A = \{a | a \in \mathbb{N}, 1 \le a \le 3\}$ and $B = \{b | b \in \mathbb{N}, 1 \le b \le 3\}$ which is the same definition

- b) Using P(A) to represent the Power Set of A. How many elements are there in the set $P(\{1,2,3\})$? $2^3 = 8$. These are: $\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}$
 - c) Deterime the cardinality of $P(\emptyset)$? $2^0 = 1$ resulting in $\{\emptyset\}$
 - d) $P(P(\emptyset))$? $2^1 = 2 \{\emptyset, \{\emptyset\}\}$
- e) $P(P(P(P(P(\emptyset))))))$? Using substitution, we can see $P(P(P(P(\{\emptyset, \{\emptyset\}\})))))$, and the cardinality of a powerset is defined 2^n where n is the cardinality of the argument set. This becomes the following

$$A_1 = P(\emptyset), |A_1| = 2^0 = 1$$

$$A_2 = P(A_1), |A_2| = 2^1 = 2$$

$$A_4 = P(A_2), |A_4| = 2^2 = 4$$

$$A_16 = P(A_4), |A_16| = 2^4 = 16$$

$$A_65536 = P(A_16), |A_65536| = 2^16 = 65536$$

1.5

a) Draw Venn diagrams illustrating the truth to De Morgan's laws $(A \cup B)' = A' \cap B'$

b) Prove De Morgan's laws.

Proof. First we prove $(A \cup B)' = A' \cap B'$.