Fetch Stage

Byte	0	1	2	3	4	5	6	7	8	9
rmmovq rA, D(rB)	4	0 rA	rB				D			
mrmovq D(rB), rA	5	0 rA	rB				D			

Instructions	Fetch
rrmovq rA, rB	:(0)e::Fm & M[Pc] TA::FB & M, [Pc+1] NAIP & PC+10
irmovq V, rB	(OJE: FM & M[Pc] VOIC & Mp[Pc+)] TA: TB & M, [Pc+1] VOID PCTIO
rmmovq rA, D(rB)	icode:ifun ← M1[PC] rA:rB ← M1[PC+1] valC ← M8[PC + 2] valP ← PC + 10
mrmovq D(rB), rA	icode:ifun ← M1[PC] rA:rB ← M1[PC+1] valC ← M8[PC + 2] valP ← PC + 10
OPq rA, rB	Code: Fin ← M, [Pc] Ca: FB ← h, [Pc+i] Valp ← Pc+2
jXX Dest	icode: in < M, [Pc] UD < PC+9 Vel C < My [Pc+]
cmovXX rA, rB	Code: Fin ← M, [Pc] (a: [B ← h, [Pc+1] Valp ← Pc+2
call Dest	Code: For EMICTED VEIP EPC+9
ret	icade: For & MI (PC) VAIP & PC+1
pushq rA	icale: For & M, (PC) Valper PC+2 TA: TB = M, (PC+1)
pop rA	icode: Fin & M.[Pc] Valper Pc+2 TA: TB & N. [Pc+1]

Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the control signals, as well as the register and control word connections, are not shown.

Decode Stage

Byte	0	1	2	3	4	5	6	7	8	9
rmmovq rA, D(rB)	4	0 rA	rB				D			
mrmovq D(rB), rA	5	0 rA	rВ				D			

Instructions	Decode
rrmovq rA, rB	Vait C R[ra] Vai B C R[rB]
irmovq V, rB	X
rmmovq rA, D(rB)	$valA \leftarrow R[rA]$ $valB \leftarrow R[rB]$
mrmovq D(rB), rA	valB ← R[rB]
OPq rA, rB	Vai A = R(TA) Vai B = R(TB)
jXX Dest	*
cmovXX rA, rB	JOIA - R[TA] JOIG - O
call Dest	Val B & R[1.158]
ret	Vai A & R[V. rst] Vai B & R[V.rst]
pushq rA	ValA ER[ra] ValB ER[v.rsp]
pop rA	Val A L R[V.OS) Val B L R[V.OS)

Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the control signals, as well as the register and control word connections, are not shown.

Execute Stage

Byte	0	1	2	3	4	5	6	7	8	9
rmmovq rA, D(rB)	4 0	rA	rB				D			
mrmovq D(rB), rA	5 0	rA	rB				D			

Instructions	Execute
rrmovq rA, rB	VAIE - VAID + VAIC
irmovq V, rB	VAIE ~ VAIB+ VAIC
rmmovq rA, D(rB)	valE ← valB + valC
mrmovq D(rB), rA	valE ← valB + valC
OPq rA, rB	VOIE C VOIB OP NOIA SEX CC
jXX Dest	CNS & cons (Cliffy)
cmovXX rA, rB	It! (on) (CC ifm) (B & DXF
call Dest	NaIE < Nai B+ -8
ret	ValE & VolB+8
pushq rA	V91 C & V01 + -8
pop rA	VOIE - VOIB+8

Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the control signals, as well as the register and control word connections, are not shown.

Memory Stage

Byte	0		1		2	3	4	5	6	7	8	9
rmmovq rA, D(rB)	4	0	rA	rB					D			
mrmovq D(rB), rA	5	0	rA	rB					D			

Instructions	Memory
rrmovq rA, rB	χ
irmovq V, rB	X
rmmovq rA, D(rB)	M ₈ [valE] ← valA
mrmovq D(rB), rA	valM ← M ₈ [valE]
OPq rA, rB	×
jXX Dest	χ
cmovXX rA, rB	X
call Dest	Mr[VasE] < ValP
ret	VOIM = MY[VOIA]
pushq rA	Mg[vile] ~ VolA
pop rA	VAIM = ME (VCIA)

Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the control signals, as well as the register and control word connections, are not shown.

Write back Stage

Byte	0	1	2	3	4	5	6	7	8	9
rmmovq rA, D(rB)	4 0	rA	rB				D			
mrmovq D(rB), rA	5 0	rA	rB				D			

Instructions	Write back
rrmovq rA, rB	R[rB] VaiE
irmovq V, rB	R [TB] = Vale
rmmovq rA, D(rB)	
mrmovq D(rB), rA	$R[rA] \leftarrow valM$
OPq rA, rB	R(B) < WIE
jXX Dest	X
cmovXX rA, rB	R(1B) = Vale
call Dest	R[150] L VAIE
ret	R(:sp) & Val E
pushq rA	R[v.r.sp] = vole
pop rA	RCVISP) C WIE RETA) X JAIM

Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the control signals, as well as the register and control word connections, are not shown.

PC update Stage

Byte	0	1	2	3	4	5	6	7	8	9	
rmmovq rA, D(rB)	4 (rA rE					D]
							_				7
mrmovq D(rB), rA	5 (rArE					D				

Instructions	PC update
rrmovq rA, rB	DC E ValP
irmovq V, rB	PLKUOIP
rmmovq rA, D(rB)	PC ← valP
mrmovq D(rB), rA	PC ← valP
OPq rA, rB	PC EVOIP
jXX Dest	PC = CNo? Valc: ValP
cmovXX rA, rB	PC ← VaiP
call Dest	PC EVAIC
ret	PC WIM
pushq rA	PC = ValP
pop rA	PC - VaiP

Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the control signals, as well as the register and control word connections, are not shown.