

Solid State Electronics EC210 Arab Academy for Science and Technology AAST – Cairo Fall 2014

Lecture 8 Band Theory: Kronig-Penny Model and Effective Mass

Lecture Notes Prepared by:

Dr. Amr Bayoumi, Dr. Nadia Rafat

Principles of

Electronic Materials and Devices

Third Edition

These PowerPoint color diagrams can only be used by instructors if the 3rd Edition has been adopted for his/her course. Permission is given to individuals who have purchased a copy of the third edition with CD-ROM Electronic Materials and Devices to use these slides in seminar, symposium and conference presentations provided that the book title, author and © McGraw-Hill are displayed under each diagram.

Pages

- Kasap:
 - P.355 (Kronig Penny)
 - P.303-304, p. 454-455 (Effective Mass)

Particle in a Crystalline Solid (Periodic Potential)

Original Structure
Problem

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

Periodic

Remember for the Hydrogen atom

$$U(r) = -\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}$$

Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

From *Principles of*

The electron PE, V(x), inside the crsytal is periodic with the same periodicity as that of the crystal, a. Far away outside the crsytal, by choice, V = 0 (the electron is free and PE = 0).

Bloch's Waves

If a periodic potential with period "a" can be defined as:

$$U(x+a) = U(x)$$

Then the wavefunction is periodic, and can be defined in terms of base function:

$$\Psi(x+a) = e^{ika} \, \Psi(x)$$

$$\Psi(x) = e^{ikx}u(x)$$

a can be replace by na

Kronig-Penney Model

Approximate crystal periodic Coulomb potential by

Wavefunction Periodic Boundary Conditions

$$\Psi_I(0) = \Psi_{II}(0)$$

$$\frac{d\Psi_I(0)}{dx} = \frac{d\Psi_{II}(0)}{dx}$$

 $\Psi_I(a) = e^{ik(a+b)}\Psi_{II}(-b)$

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

$$\frac{d\Psi_I(a)}{dx} = e^{ik(a+b)} \frac{d\Psi_{II}(-b)}{dx}$$

K-P Solution: Allowed Energies

Source: Dr. Fedawy's Lecture notes

Kronig-Penney Model

Source: Dr. M. Fedawy's Lecture notes

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

The *E-k* behavior for the electron along different directions in the two dimensional crystal. The energy gap along [10] is at π/a whereas it is at $\pi/2/a$ along [11].

- (a) Metal: For the electron in a metal there is no apparent energy gap because the 2nd BZ (Brillouin Zone) along [10] overlaps the 1st BZ along [11]. Bands overlap the energy gaps. Thus the electron can always find any energy by changing its direction.
- (b) Semiconductor or insulator: For the electron in a semiconductor there is an energy gap arising from the overlap of the energy gaps along [10] and [11] directions. The electron can never have an energy within this energy gap, E_g .

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

The E-k diagram of a direct bandgap semiconductor such as GaAs. The E-k curve consists of many discrete points each point corresponding to a possible state, wavefunction y k(x), that is allowed to exist in the crystal. The points are so close that we normally draw the E-k relationship as a continuous curve. In the energy range Ev to Ec there are no points (yk(x) solutions).

From Principles of Electronic Materials

and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

(a) In the absence of a field, over a long time, average of all k values is zero, there is no net momentum in any one particular direction. (b) In the presence of a field E in the -x direction, the electron accelerates in the +x direction increasing its k value along x until it is scattered to a random k value. Over a long time, average of all k values is along the +x direction. Thus the electron drifts along +x.

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

(a) In a full valence band there is no net contribution to the current. There are equal numbers of electrons (e.g. at *b* and *b'*) with opposite momenta. (b) If there is an empty state (*hole*) at *b* at the top of the band then the electron at *b'* contributes to the current.

-k

Effective Mass

In vacuum

$$F = q \varepsilon = m_0 a$$

where m_0 is the electron mass

In semiconductor

$$F_{ext} = (-q)\mathbf{E}$$

 $F_{ext} + F_{int} = m_{o}a$
 $F_{ext} = m_{n} * a$

where

 m_n^* is the electron effective mass

Effective Mass

Group Velocity defined as the velocity of the wavefunction of the electrons (analogous to speed of sinusoidal wave):

$$v_g = \frac{dx}{dt} = \frac{d\omega}{dk}$$

$$\omega = E/\hbar \to vg = \frac{1}{\hbar} \frac{dE}{dk}$$

$$\to dE = vg \, \hbar \, dk, \qquad dx = v_g \, dt$$

$$dE = F_{ext} \, dx = F_{ext} \, vg \, dt$$

$$F_{ext} = \frac{1}{v_a} \frac{dE}{dt} \to F_{ext} = \hbar \frac{dk}{dt}$$

Effective Mass (2)

Acceleration:

$$a = \frac{dv_g}{dt} = \frac{d}{dt} \left[\frac{1}{\hbar} \frac{dE}{dk} \right] = \frac{1}{\hbar} \frac{d}{dk} \left[\frac{dE}{dt} \right] = \frac{1}{\hbar} \frac{d}{dk} \left[\frac{dE}{dk} \frac{dk}{dt} \right]$$

$$a = \frac{1}{\hbar} \frac{d^2 E}{dk^2} \frac{dk}{dt} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2} \hbar \frac{dk}{dt} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2} F_{ext}$$

Using
$$F_{ext} = m^* a$$

$$m^* = \left[\frac{1}{\hbar^2} \frac{d^2 E}{dk^2}\right]^{-1} = \hbar^2 \left[\frac{d^2 E}{dk^2}\right]^{-1}$$