

CS343 Graph Data Science Spring 2024

Paths and Shortest Paths

Muhammad Qasim Pasta

qasim.pasta@sse.habib.edu.pk

Graph Data Science

Uses multi-disciplinary workflows that may include statistics, queries, algorithms, and machine learning.

Graph Statistics are basic measures related to a graph.

Graph Analytics is the direct use of graph statistics, queries, and algorithms to answer specific questions.

Graph Enhanced ML and AI is the use of graph data to improve predictions from machine learning or artificial intelligence.

Graph Analytics

- Analysing and extracting insights from graph
- Try to infer meaning based on the network structure: various algorithms, techniques, and methods to understand the structure, properties, and patterns within graphs.

Path Analytics

- analysing paths or routes between nodes
 - finding shortest path
 - common paths
 - detecting patterns in the sequences of nodes
- Transportation Planning:
 - shortest routes between locations to optimize logistics and transportation networks.
- Network Security:
 - potential attack paths in computer networks to identify vulnerabilities.
- Recommendation Systems:
 - user navigation paths to improve recommendations in e-commerce or content platforms.

Connectivity Analytics

- Analysing the connectivity patterns within a graph
 - identifying connected components,
 - measuring the overall connectivity
 - robustness of the graph.
- Network Robustness Analysis:
 - Resilience of a network to failures or attacks by analysing its connectivity properties
- Transportation Planning:
 - identify disconnected regions or islands within the network.

Community Analytics

- Identifying communities or groups of based on topological properties demonstrating similar behaviours
- Partition graph into groups based on certain criteria
- Marketing:
 - market segments or customer groups with similar purchasing behaviour for targeted advertising campaigns.
- Fraud Detection:
 - groups of colluding entities in financial networks by identifying tightly-knit communities.
- Collaboration Networks:
 - Analysing co-authorship networks in academia to identify research communities and trends.

Centrality Analytics

- Quantify the importance or influence of nodes within a graph
- Some centrality metrics: degree, betweenness, and eigenvector
- Influencer Marketing:
 - influential individuals in social networks for targeted marketing campaigns.
- Urban Planning:
 - critical infrastructure nodes such as transportation hubs or power distribution centres.
- Epidemiology:
 - individuals with high betweenness centrality in disease transmission networks to prioritize vaccination efforts.

Graph Traversing in Cypher

Graph Traversing in Cypher

Graph Traversing in Cypher

Path in Cypher

We can assign a variable to path

This will return the number of paths between A and E

This will return the length of each path between A and E

Path in Cypher

We can limit the length of paths we are interested in

This will return paths of size 2 between nodes A and E

- This will return paths of having length between 2 and 5 starting from A and ending at E

Path in Cypher: Shortest Paths

 We have ShortestPath() and AllShortestPath() functions – we can provide maximum but not minimum

```
MATCH q = ShortestPath(m:MyNode{Name:'A'})
-[*]- (n:MyNode{Name:"E"}))
RETURN COUNT(q)
```

Returns the shortest path between node A and E

```
MATCH q = AllShortestPaths(m:MyNode{Name:'A'})
-[*]- (n:MyNode{Name:"E"}))
RETURN COUNT(q)
```

Returns all shortest paths between node A and E (must be of same size)

Practice

- Returns the shortest path between the Eminem node and the Charlton Heston node
- Returns the shortest path between the Eminem node and the Charlton Heston node considering only ACTED_IN relationship
- Retrieve all Person nodes that are exactly two hops away from Eminem using the ACTED_IN relationship.
- Retrieve all Person nodes that are up to four hops away from Eminem using the ACTED_IN relationship.
- Return a list of actors that are up to 6 hops away from Tom Hanks