学 院

班 级

学 号

姓 名

东 北 大 学 研 究 生 考 试 试 卷

2016 — 2017 学年第 1 学期

课程名称:应用数理统计(开卷)

说明: 1、共八题。可以使用计算器,小数点后保留两位;

2、样本都是简单随机样本。样本均值与样本方差分别定义为:

$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$$
, $S^2 = \frac{1}{n-1} \sum_{k=1}^{n} (X_k - \overline{X})^2$;

3、分位点 Q_{α} 取为上侧分位点, 即: $\mathbf{P}(X > Q_{\alpha}) = \alpha$.

一、(15 分)假设三个样本 X_1, X_2, X_3 来自总体 $N(0, \sigma^2)$,定义统计量

$$Y_1 = X_1 + X_2 + X_3, Y_2 = X_1 + X_2 - 2X_3.$$

1、(5分) 计算**P**(| Y_2 |>2√3 σ); 2、(5分) 证明 Y_1 , Y_2 相互独立;

3、(5分) 计算 $P(|Y_2| < \sqrt{2}|Y_1|)$.

总 分	I	11	=	四	五	*	七	八

二、(10 分)样本 X_1, X_2, \cdots, X_n 来自参数 λ 的泊松总体,已知参数 λ 的先验密度函数为: $\pi(\lambda) = 5 \exp(-5\lambda), \lambda > 0$ 。在平方损失函数下具体推导出 λ 的Bayes 估计.

		_
学	院	
班	级	
学	号	
姓	名	
		J

三、(15 分)设 X_1, X_2, \cdots, X_n 是来自总体 $N(\mu_0, \sigma^2)$ 的简单随机样本,其中 μ_0 已知,

- 1、(5分)求 σ^2 的矩估计;
- 2、(5分)比较 σ^2 的矩估计与样本方差 S^2 哪个更有效;
- 3、(5分)利用 σ^2 的矩估计,求 σ^2 置信度为 $1-\alpha$ 的置信区间.

四、 $(15\, \mathcal{G})$ 设 X_1, X_2, \cdots, X_n 是来自总体 $N(\mu_1, \sigma^2)$ 的简单随机样本, $Y_1, Y_2, \cdots Y_m$ 是来自总体 $N(\mu_2, \sigma^2)$ 的简单随机样本,且总体 X 与 Y 相互独立, μ_1, μ_2 未知,对于

$$\boldsymbol{H}_0: \boldsymbol{\sigma}^2 \geq \boldsymbol{\sigma}_0^2 \quad \Leftrightarrow \boldsymbol{H}_1: \boldsymbol{\sigma}^2 < \boldsymbol{\sigma}_0^2$$

利用全部样本在检验水平 α 下构造原假设的拒绝域.

学 院

班 级

学 号

姓 名

五、(10分)调查性别对患色盲的影响,收集到的数据如下

	男	女
正常	45 + x	45-x
色盲	5	5

问x在什么范围内能够得到性别对色盲有显著性影响的结论. ($\alpha = 0.025$)

六、(10 分) 设 X_1, X_2, \dots, X_n (n>1) 是来自总体 X 的一组简单随机样本,总体 X 的密度函数为:

$$f(x,\theta) = \begin{cases} \beta^{-\alpha} \alpha x^{\alpha-1}, & 0 < x < \beta \\ 0, & \text{其他.} \end{cases}$$

其中 α, β 是未知参数, $\alpha > 0, \beta > 0$. 求未知参数 α, β 的极大似然估计 $\hat{\alpha}, \hat{\beta}$.

学 院

班 级

学 号

姓名

封

七、(10分)某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响,现取一批粮食分成若干份,分别用三种不同方法储藏,经过一段时间后测得的含水率如下表所示. 假设各方法储藏的粮食的含水率服从正态分布,且方差相等,在显著性水平 $\alpha=0.05$ 下检验这三种储藏方法对含水率有无显著影响?

储藏方法	含水率数据					
方法 1	7.4	8.3	7.6	8.4	8.3	
方法 2	5.4	7.4	7.1	6.8	5.3	
方法3	7.9	9.5	9.4	9.8	8.4	

八、(15 分)设变量 X 和 Y 满足线性回归的假设条件 $Y = \beta_0 + \beta_1 X + \varepsilon$,其中 ε 服从 $N(0,\sigma^2)$. 现随机抽取一组样本 (x_i,y_i) , $i=1,\ldots,n$,并记回归系数 β_0,β_1 的最小二乘估计值为 $\hat{\beta}_0,\hat{\beta}_1$,

- 1、(10分)求 $\hat{\boldsymbol{\beta}}_{0}$ - $\hat{\boldsymbol{\beta}}_{1}$ 的概率分布;
- 2、(5分) 求 $\boldsymbol{\beta}_0 \boldsymbol{\beta}_1$ 的置信度为 $1-\boldsymbol{\alpha}$ 的置信区间.