

BUNDESREPUBLIK DEUTSCHLAND

**PRIORITY
DOCUMENT**SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 10 2004 004 705.7

Anmeldetag: 30. Januar 2004

Anmelder/Inhaber: ROBERT BOSCH GMBH, 70469 Stuttgart/DE

Bezeichnung: Hochdruckpumpe, insbesondere für eine Kraftstoff-einspritzeinrichtung einer Brennkraftmaschine

IPC: F 04 B 1/04

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 22. Dezember 2004
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Kahle

R. 307341

5 16.01.2004 Gu/Os

ROBERT BOSCH GMBH, 70442 Stuttgart

10 Hochdruckpumpe, insbesondere für eine
Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine

Stand der Technik

15 Die Erfindung geht aus von einer Hochdruckpumpe,
insbesondere für eine Kraftstoffeinspritzeinrichtung einer
Brennkraftmaschine nach der Gattung des Anspruchs 1.

20 Eine solche Hochdruckpumpe ist durch die DE 199 07 311 A1
bekannt. Diese Hochdruckpumpe weist ein Gehäuse und mehrere
im Gehäuse angeordnete Pumpenelemente auf. Die
Pumpenelemente weisen jeweils einen durch eine Antriebswelle
der Hochdruckpumpe in einer Hubbewegung angetriebenen
Pumpenkolben auf. Der Pumpenkolben ist in einer
Zylinderbohrung eines Gehäuseteils der Hochdruckpumpe dicht
geführt und begrenzt in der Zylinderbohrung einen
Pumpenarbeitsraum. Der Pumpenkolben stützt sich über ein
Stützelement in Form eines Stößels an der Antriebswelle ab.
Der Pumpenkolben wird durch eine vorgespannte Rückstellfeder
zum Stößel hin beaufschlagt und der Stößel wird durch die
Rückstellfeder zur Antriebswelle hin beaufschlagt. Im Stößel
ist eine Rolle drehbar gelagert, über die der Stößel an
einem Nocken der Antriebswelle anliegt. Der Stößel ist in
einer Bohrung eines anderen Gehäuseteils der Hochdruckpumpe,
als dem Gehäuseteil, in dem die Zylinderbohrung ausgebildet
ist, verschiebbar geführt, wobei die Bohrung und der Stößel
einen wesentlich größeren Durchmesser aufweisen als die
Zylinderbohrung. Nachteilig bei dieser bekannten

Hochdruckpumpe ist, dass die Zylinderbohrung, in der der Pumpenkolben geführt ist, und die Bohrung, in der der Stößel geführt ist, in verschiedenen Gehäuseteilen angeordnet sind, so dass zur Sicherstellung einer exakten Ausrichtung der 5 Zylinderbohrung und der Bohrung für den Stößel aufwendige Zentriermaßnahmen der beiden Gehäuseteile zueinander erforderlich sind. Außerdem weist der Stößel wegen des großen Durchmessers ein hohes Gewicht auf, was wiederum eine Rückstellfeder mit hoher Steifigkeit und entsprechend hohem 10 Gewicht erfordert, um ein Abspringen des Stößels von der Antriebswelle bei hohen Drehzahlen zu vermeiden, wodurch die Hochdruckpumpe insgesamt ein hohes Gewicht aufweist.

Vorteile der Erfindung

15 Die erfindungsgemäße Hochdruckpumpe mit den Merkmalen gemäß Anspruch 1 hat demgegenüber den Vorteil, dass die Zylinderbohrung für den Pumpenkolben und die Aufnahme für das Stützelement am selben Gehäuseteil angeordnet sind und daher keine aufwendigen Zentriermaßnahmen bei der Montage 20 der Hochdruckpumpe erforderlich sind. Außerdem kann das Stützelement kompakt ausgebildet werden, wodurch dessen Gewicht gering ist und die Rückstellfeder mit entsprechend geringer Steifigkeit ausgebildet werden kann, wodurch das Gewicht der Hochdruckpumpe gering gehalten werden kann.

In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Hochdruckpumpe angegeben. Die gemäß Anspruch 3 ausgebildete 30 Aufnahme ist einfach herstellbar.

Zeichnung

Zwei Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung 35 näher erläutert. Es zeigen Figur 1 eine Hochdruckpumpe für

eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
in einem Längsschnitt, Figur 2 einen in Figur 1 mit II
bezeichneten Ausschnitt der Hochdruckpumpe in vergrößerter
Darstellung gemäß einem ersten Ausführungsbeispiel, Figur 3
5 den Ausschnitt II in einer Ansicht in Pfeilrichtung III in
Figur 2, Figur 4 den Ausschnitt II der Hochdruckpumpe gemäß
einem zweiten Ausführungsbeispiel und Figur 5 den Ausschnitt
in einer Ansicht in Pfeilrichtung V in Figur 4.

10 Beschreibung der Ausführungsbeispiele

In den Figuren 1 bis 5 ist eine Hochdruckpumpe für eine
Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
dargestellt. Die Hochdruckpumpe weist ein mehrteiliges
15 Gehäuse 10 auf, in dem eine durch die Brennkraftmaschine
rotierend antreibbare Antriebswelle 12 angeordnet ist. Die
Antriebswelle 12 ist in einem Grundkörper 14 des Gehäuses 10
über zwei in Richtung der Drehachse 13 der Antriebswelle 12
voneinander beabstandete Lagerstellen drehbar gelagert. Der
Grundkörper 14 des Gehäuses 10 kann wiederum mehrteilig
20 ausgebildet sein und die Lagerstellen können in
verschiedenen Teilen des Grundkörpers 14 angeordnet sein.

In einem zwischen den beiden Lagerstellen liegenden Bereich
weist die Antriebswelle 12 wenigstens einen Nocken 16 auf,
wobei der Nocken 16 auch als Mehrfachnocken ausgebildet sein
kann. Die Hochdruckpumpe weist wenigstens ein oder mehrere
im Gehäuse 10 angeordnete Pumpenelemente 18 mit jeweils
einem Pumpenkolben 20 auf, der durch den Nocken 16 der
Antriebswelle 12 in einer Hubbewegung in zumindest annähernd
30 radialer Richtung zur Drehachse 13 der Antriebsewelle 12
angetrieben wird. Im Bereich jedes Pumpenelements 18 ist ein
mit dem Grundkörper 14 verbundenes Gehäuseteil 22
vorgesehen, das als Zylinderkopf ausgebildet ist. Das
Gehäuseteil 22 weist einen an einer Außenseite des
35 Grundkörpers 14 anliegenden Flansch 24 und einen durch eine

Öffnung 15 im Grundkörper 14 zur Antriebswelle 12 hin
durchragenden, zumindest annähernd zylinderförmigen Ansatz
26 mit gegenüber dem Flansch 24 kleinerem Durchmesser auf.
Der Pumpenkolben 20 ist in einer im Ansatz 26 ausgebildeten
5 Zylinderbohrung 28 im Gehäuseteil 22 dicht verschiebbar
geführt und begrenzt mit seiner der Antriebswelle 12
abgewandten Stirnseite in der Zylinderbohrung 28 einen
abgewandten Stirnseite in der Zylinderbohrung 28 einen
Pumpenarbeitsraum 30. Die Zylinderbohrung 28 kann sich bis
in den Flansch 24 hinein erstrecken, in dem dann der
10 Pumpenarbeitsraum 30 angeordnet ist. Der Pumpenarbeitsraum
30 weist über einen im Gehäuse 10 verlaufenden
Kraftstoffzulaufkanal 32 eine Verbindung mit einem
Kraftstoffzulauf, beispielsweise einer Förderpumpe auf. An
der Mündung des Kraftstoffzulaufkanals 32 in den
15 Pumpenarbeitsraum 30 ist ein in den Pumpenarbeitsraum 30
öffnendes Einlassventil 34 angeordnet. Der Pumpenarbeitsraum
30 weist ausserdem über einen im Gehäuse 10 verlaufenden
Kraftstoffablaufkanal 36 eine Verbindung mit einem Auslass
auf, der beispielsweise mit einem Hochdruckspeicher 110
verbunden ist. Mit dem Hochdruckspeicher 110 sind ein oder
20 vorzugsweise mehrere an den Zylindern der Brennkraftmaschine
angeordnete Injektoren 120 verbunden, durch die Kraftstoff
in die Zylinder der Brennkraftmaschine eingespritzt wird. An
der Mündung des Kraftstoffablaufkanals 36 in den
25 Pumpenarbeitsraum 30 ist ein aus dem Pumpenarbeitsraum 30
öffnendes Auslassventil 38 angeordnet.

Zwischen dem Pumpenkolben 20 und dem Nocken 16 der
Antriebswelle 12 ist ein Stützelement 40 angeordnet. Das
30 Stützelement 40 weist auf seiner dem Nocken 16 zugewandten
Seite eine konkave Vertiefung 42 auf, in der eine
zylinderförmige Rolle 44 drehbar gelagert ist. Die Drehachse
45 der Rolle 44 ist dabei zumindest annähernd parallel zur
Drehachse 13 der Antriebswelle 12 und die Rolle 44 rollt auf
dem Nocken 16 der Antriebswelle 12 ab. Das Stützelement 40
35 ist in einer Aufnahme 46 des Gehäuseteils 22 in Richtung der

Hubbewegung des Pumpenkolbens 20, das ist entlang dessen Längsachse 21, verschiebbar geführt.

In den Figuren 2 und 3 ist die Hochdruckpumpe gemäß einem ersten Ausführungsbeispiel dargestellt. Die Aufnahme 46 für das Stützelement 40 ist dabei als ein im Ansatz 26 des Gehäuseteils 22 ausgebildeter, sich an die Zylinderbohrung 28 anschließender Schlitz ausgebildet, der bis zu dem der Antriebswelle 12 zugewandten Stirnende des Ansatzes 26 reicht. Der Schlitz 46 ist durch zwei zumindest annähernd parallel zueinander verlaufende Wände 48 des Ansatzes 26 begrenzt. Das Stützelement 40 ist im Querschnitt zumindest annähernd rechteckförmig ausgebildet und ist zwischen den beiden Wänden 48 mit geringem Spiel angeordnet. Die dem Stützelement 40 zugewandten Flächen der Wände 46 und/oder die den Wänden 46 zugewandten Flächen 41 des Stützelements 40 sind vorzugsweise derart bearbeitet, dass diese eben sind und eine geringe Oberflächenrauhigkeit aufweisen, beispielsweise sind diese Flächen geschliffen. Zwischen den parallelen Wänden 48 ist das Stützelement 40 in Richtung der Längsachse 21 des Pumpenkolbens 20 verschiebbar, jedoch um die Längsachse 21 unverdrehbar geführt.

Der Pumpenkolben 20 ist mit dem Stützelement 40 in Richtung von dessen Längsachse 21 gekoppelt. Das Stützelement 40 kann dabei beispielsweise auf seiner dem Pumpenkolben 20 zugewandten Seite eine Bohrung 50 aufweisen, in die das Ende des Pumpenkolbens 20 hineinragt. Die Bohrung 50 weist an ihrem Umfang eine Ringnut 52 auf, in die ein radial elastischer Federring 54 eingelegt ist. Der Pumpenkolben 20 weist in seinem Endbereich ebenfalls eine Ringnut 56 auf, in die beim Einschieben des Pumpenkolbens 20 in die Bohrung 50 der Federring 54 einrastet, wodurch die Kopplung des Pumpenkolbens 20 mit dem Stützelement 40 erreicht wird.

Das Stützelement 40 ragt seitlich durch den Schlitz 46 aus dem Ansatz 26 heraus und auf den aus dem Schlitz 46 ragenden Enden des Stützelements 40 liegt ein Federteller 58 auf. Der Federteller 58 kann mit dem Stützelement 40 verbunden sein, beispielsweise mittels einer Rastverbindung. Zwischen dem Federteller 58 und dem Gehäuseteil 22 ist eine vorgespannte Rückstellfeder 60 angeordnet, die als Schraubendruckfeder ausgebildet ist, die den Ansatz 26 umgibt. Durch die Rückstellfeder 60 werden das Stützelement 40 und der mit diesem gekoppelte Pumpenkolben 20 zum Nocken 16 der Antriebswelle 12 hin beaufschlagt, so dass die Anlage der Rolle 44 am Nocken 16 auch beim zur Antriebswelle 12 hin gerichteten Saughub des Pumpenkolbens 20 und auch bei hoher Drehzahl der Antriebswelle 12 sichergestellt ist.

Beim Saughub des Pumpenkolbens 20, bei dem sich dieser radial nach innen bewegt, wird der Pumpenarbeitsraum 30 durch den Kraftstoffzulaufkanal 32 bei geöffnetem Einlassventil 34 mit Kraftstoff befüllt, wobei das Auslassventil 38 geschlossen ist. Beim Förderhub des Pumpenkolbens 20, bei dem sich dieser radial nach aussen bewegt, wird durch den Pumpenkolben 20 Kraftstoff unter Hochdruck durch den Kraftstoffablaufkanal 36 bei geöffnetem Auslassventil 38 zum Hochdruckspeicher 110 gefördert, wobei das Einlassventil 34 geschlossen ist. Das Stützelement 40 wird in der Aufnahme 46 um die Längsachse 21 des Pumpenkolbens 20 unverdrehbar geführt und nimmt eventuell auftretende Querkräfte auf, so dass diese nicht auf den Pumpenkolben 20 wirken. Die Aufnahme 46 kann zur Zylinderbohrung 28 sehr genau ausgerichtet werden, da diese am selben Gehäuseteil 22 ausgebildet ist wie die Zylinderbohrung 28. Das Stützelement 40 kann kompakt ausgebildet werden, da dieses nur die Vertiefung 42 für die Aufnahme der Rolle 44 aufzuweisen braucht und über seine seitlichen, ebenen Flächen 41 geführt wird. Die Herstellung

des Schlitzes 46 als Aufnahme für das Stützelement 40 und des rechteckförmigen Stützelements 40 ist einfach möglich.

In den Figuren 4 und 5 ist die Hochdruckpumpe
5 ausschnittsweise gemäß einem zweiten Ausführungsbeispiel
dargestellt, bei dem der grundsätzliche Aufbau der
Hochdruckpumpe gegenüber dem ersten Ausführungsbeispiel
unverändert ist und lediglich das Gehäuseteil 22 modifiziert
ist. Das Gehäuseteil 122 weist den Flansch 124 und den von
10 diesem abstehenden zylinderförmigen Ansatz 126 auf. Im
Ansatz 126 ist von dessen der Antriebswelle 12 zugewandter
Stirnseite her eine Ringnut 170 eingebracht, durch die
innerhalb des Ansatzes 126 ein innerer, zumindest annähernd
zylinderförmiger Ansatz 172 gebildet wird, in dem die
15 Zylinderbohrung 28 angeordnet ist, in der der Pumpenkolben
20 geführt ist. Die Ringnut 170 reicht in der Tiefe bis nahe
an den Flansch 124 des Gehäuseteils 122. Der innere Ansatz
172 endet mit größerem Abstand von der Antriebswelle 12 als
20 sein über den inneren Ansatz 172 hinausragenden Endbereich
zwei einander diametral gegenüberliegende Schlitze 146 auf.
Das Stützelement 140 ist im Querschnitt zumindest annähernd
rechteckförmig ausgebildet, in dem über den inneren Ansatz
172 hinausragenden Endbereich des äußeren Ansatzes 126
angeordnet und ragt mit seinen seitlichen Enden in die
Schlitze 146 hinein. Das Stützelement 140 ist in den eine
Aufnahme für dieses bildenden Schlitzen 146 des äußeren
Ansatzes 126 in Richtung der Hubbewegung des Pumpenkolbens
20 über seine in die Schlitze 146 ragenden ebenen
Seitenflächen 141 verschiebbar geführt. Der Pumpenkolben 20
kann wie beim ersten Ausführungsbeispiel mit dem Stützelement
140 gekoppelt sein. Am Stützelement 140 liegt ein
Federteller 158 an, an dem sich die vorgespannte
Rückstellfeder 160 abstützt, die sich andererseits am Grund
35 der Ringnut 170 abstützt. Der Federteller 158 kann mit dem
Stützelement 140 verbunden sein, beispielsweise mittels

einer Rastverbindung. Die Rückstellfeder 160 ist in der Ringnut 170 angeordnet und umgibt den inneren Ansatz 172. Alternativ kann sich der Federteller 158 auch am Pumpenkolben 20 abstützen, beispielsweise über einen Sicherungsring oder an einem im Durchmesser vergrößerten Kolbenfuß des Pumpenkolbens 20. Dabei wird der Pumpenkolben 20 durch die Rückstellfeder 160 in Anlage am Stützelement 140 gehalten und braucht nicht zusätzlich mit dem Stützelement 140 gekoppelt zu sein.

5

10

16.01.2004 Gu/Os

5

ROBERT BOSCH GMBH, 70442 Stuttgart

Ansprüche

- 10 1. Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, mit einem Gehäuse (10,14,22;122), mit wenigstens einem Pumpenelement (18), das einen durch eine Antriebswelle (12) in einer Hubbewegung angetriebenen Pumpenkolben (20) aufweist, wobei der Pumpenkolben (20) in einer Zylinderbohrung (28) eines Gehäuseteils (22;122) verschiebbar geführt ist und in dieser einen Pumpenarbeitsraum (30) begrenzt, wobei sich der Pumpenkolben (20) über ein Stützelement (40;140) an der Antriebswelle (12) abstützt und wobei der Pumpenkolben (20) und das Stützelement (40;140) durch eine vorgespannte Rückstellfeder (60;160) zur Antriebswelle (12) hin beaufschlagt sind, dadurch gekennzeichnet, dass das Stützelement (40;140) in einer in dem Gehäuseteil (22;122), in dem die Zylinderbohrung (28) ausgebildet ist, ausgebildeten Aufnahme (46;146) in Richtung der Längsachse (21) des Pumpenkolbens (20) verschiebbar und um die Längsachse (21) unverdrehbar geführt ist.
- 20 2. Hochdruckpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Aufnahme (46;146) im Gehäuseteil (22;122) an die Zylinderbohrung (28) zur Antriebswelle (12) hin anschließend ausgebildet ist.
- 30 3. Hochdruckpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Aufnahme (46;146) als wenigstens

ein im Gehäuseteil (22;122) vorgesehener Schlitz ausgebildet ist.

4. Hochdruckpumpe nach einem der Ansprüche 1 bis 3, dadurch 5 gekennzeichnet, dass das Stützelement (40;140) im Querschnitt zumindest annähernd rechteckförmig ausgebildet ist.

5. Hochdruckpumpe nach einem der vorstehenden Ansprüche, 10 dadurch gekennzeichnet, dass das Gehäuseteil (22;122) einen zur Antriebswelle (12) hin weisenden vorzugsweise zumindest annähernd zylinderförmigen Ansatz (26;126,172) aufweist, in dem die Zylinderbohrung (28) und die Aufnahme (46;146) angeordnet sind.

15 6. Hochdruckpumpe nach Anspruch 5, dadurch gekennzeichnet, dass die Rückstellfeder (60) als Schraubendruckfeder ausgebildet ist und den Ansatz (26) des Gehäuseteils (22) umgibt.

20 7. Hochdruckpumpe nach Anspruch 5, dadurch gekennzeichnet, dass der Ansatz (126,172) des Gehäuseteils (122) eine zur Antriebswelle (12) hin offene Ringnut (170) aufweist, durch die der Ansatz in einen inneren Ansatz (172) und einen diesen umgebenden äußeren Ansatz (126) unterteilt wird und dass die als Schraubendruckfeder ausgebildete Rückstellfeder (160) in der Ringnut (170) angeordnet ist.

30 8. Hochdruckpumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sich die Rückstellfeder (60;160) zumindest mittelbar am Stützelement (40;140) abstützt und dass der Pumpenkolben (20) in Richtung seiner Längsachse (21) mit dem Stützelement (40;140) gekoppelt ist.

16.01.2004 Gu/Os

5

ROBERT BOSCH GMBH, 70442 Stuttgart

Hochdruckpumpe, insbesondere für eine
Kraftstofffeinspritzeinrichtung einer Brennkraftmaschine

10

Zusammenfassung

Die Hochdruckpumpe weist ein Gehäuse (10,14,22) auf, in dem wenigstens ein Pumpenelement (18) angeordnet ist, das einen durch eine Antriebswelle (12) in einer Hubbewegung angetriebenen Pumpenkolben (20) aufweist, wobei der Pumpenkolben (20) in einer Zylinderbohrung (28) eines Gehäuseteils (22) verschiebbar geführt ist und in dieser einen Pumpenarbeitsraum (30) begrenzt. Der Pumpenkolben (20) stützt sich über ein Stützelement (40) an der Antriebswelle (12) ab, wobei der Pumpenkolben (20) und das Stützelement (40) durch eine vorgespannte Rückstellfeder (60) zur Antriebswelle (12) hin beaufschlagt sind. Das Stützelement (40) ist in einer in dem Gehäuseteil (22), in dem die Zylinderbohrung (28) ausgebildet ist, ausgebildeten Aufnahme (46) in Richtung der Längsachse (21) des Pumpenkolbens (20) verschiebbar und um die Längsachse (21) unverdrehbar geführt.

Fig. 1

2 / 3

Fig. 2

Fig. 3

3 / 3

Fig. 4

Fig. 5

