Math 136 - Linear Algebra

Winter 2016

Lecture 29: March 16, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

29.1 More Determinants!

Corollary 29.1 If A is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then $detEA = detE \ detA$

Theorem 29.2 Addition to the Invertible Matrix Theorem An $n \times n$ matrix A is invertible if and only if $\det A \neq 0$

Proof: Let R be the RREF of A, then there exists k elementary matrices $E_1 \dots E_k$ such that $A = E_1 E_2 \dots E_k R$ Then,

$$A = det(E_1 E_2 \dots E_k R) = det(E_1) det(E_2) \dots det(E_k) det(R)$$

Thus,

 $det A \neq 0 \iff det R \neq 0$ since the determinant of an elementary marix is non zero $\therefore det R \neq 0 \iff rank R = n \iff A$ is invertible

Theorem 29.3 If A and B are $n \times n$, then det(AB) = det(A) det(B)

Proof: Write A as $A = E_1 E_2 \dots E_k R$ such that R is the RREF of A. If A is invertible, then

$$R = I_n$$

 $det A = det(E_1)det(E_2)\dots det(E_k)det(R)$
 $det(AB) = E_1E_2\dots E_kB = det(E_1)det(E_2)\dots det(E_k)det(B) = detAdetB$

If AB is non-invertible, then E has at least one row of zeros and RB also contains one row of zeros which implies det(RB) = 0

$$det(AB) = E_1E_2 \dots E_kRB = det(E_1)det(E_2) \dots det(E_k)det(RB) = 0$$

While,

$$det A = det(E_1)det(E_2)\dots det(E_k)det(R) = det(E_1)det(E_2)\dots det(E_k)det(R) = 0$$

 $\implies det(AB) = 0 = detAdetB$

Corollary 29.4 If A is an invertible matrix, then $det A^{-1} = \frac{1}{det A}$

Theorem 29.5 False Expansion Theorem If A is an $n \times n$ matrix with cofactors C_{ij} , then

$$\sum_{k=1}^{n} (A)_{ik}(C)_{jk} = 0, \text{ whenever } i \neq j$$

Theorem 29.6 If A is invertible, then $(A^{-1})_{ij} = \frac{1}{\det A} C_{ij}$

Quick Fact: for any two matricies $A_{m \times n}$ $B_{n \times s}$, If A contains a row of zeros, then AB also contains a row of zeros. (This is very useful in alot of proofs)

End of Lecture Notes Notes by: Harsh Mistry