Linguagens Formais e Autômatos

Aula 08 - Expressões regulares

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John
 E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed.
 original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002
 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 3 Seções 3.1 e 3.4
- Introdução à teoria da computação / Michael Sipser; tradução técnica Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira.
 São Paulo: Thomson Learning, 2007 (Título original: Introduction to the theory of computation. "Tradução da segunda edição norte-americana" -ISBN 978-85-221-0499-4)
 - Capítulo 1 Seção 1.3

- Autômatos denotam linguagens
- Autômatos possuem duas notações
 - Diagrama de estados
 - Tabela de transições
- Vimos apenas uma notação para linguagens
 - Notações de conjuntos / formadores de conjuntos
 - Ex: {w | regra sobre w}
- Existe outra notação
 - Expressões regulares

- Notação algébrica
- Definição de álgebra (by wikipedia)
 - Um conjunto A e uma coleção de operações sobre A
 - Operações k-árias
 - 0-árias: ex: constantes, 2, x, y
 - 1-árias: ex: -10
 - 2-árias: ex: 2+2, 3*y

- Na teoria da computação
- Álgebra envolve
 - Conjunto A = alfabeto
 - Operações = operações regulares
- Operações regulares
 - Operações sobre membros de um alfabeto
 - Linguagens regulares são fechadas sob as operações regulares

Conjuntos fechados sob uma operação

Exemplo:

- \circ N = {1,2,3,...} (conjunto de números naturais)
- N é fechado sob multiplicação
- Ou seja: para quaisquer x e y em N
 - x * y também está em N
- N não é fechado sob divisão
 - Contra-exemplo: 1 e 2 estão em N, mas ½ não está!

• Definição:

 Uma coleção de objetos é fechada sob alguma operação se, aplicando-se essa operação a membros da coleção, recebe-se um objeto ainda na coleção

- Operações que:
 - Aplicadas sobre elementos de linguagens regulares
 - Resultam em linguagens regulares
- Em outras palavras:
 - Sejam L1 e L2 duas linguagens regulares
 - L1 op_{req} L2 é regular

- São 3 as operações regulares:
 - União: A U B = $\{x \mid x \in A \text{ ou } x \in B\}$
 - Concatenação: A.B = {xy | x ∈ A e y ∈ B}
 - Estrela (ou fechamento, ou fechamento de Kleene):
 A* = {x₁x₂...x₂ | k ≥ 0 e cada xᵢ ∈ A}
- União e concatenação são operações binárias
- Estrela é uma operação unária

- União
 - \circ L = {001, 10, 111} e M = { ϵ , 001}
 - \circ L U M = { ϵ , 10, 001, 111}
- Concatenação
 - \circ L = {001, 10, 111} e M = { ϵ , 001}
 - \circ L.M (ou LM) = {001,10,111,001001,10001,111001}
- Estrela
 - \circ L = {0, 11}
 - L* = {ε, 0, 00, 000, 000, 11, 011, 1111, 00011011, ...
 (não há uma ordem lógica aqui)}

- Teorema: A classe de linguagens regulares é fechada sob a operação de união
 - Em outras palavras: se A1 e A2 são linguagens regulares, A1 U A2 é regular
- Prova:
 - Construção
 - A1 é regular, existe um autômato M1
 - A2 é regular, existe um autômato M2
 - Construímos um autômato M que simula M1 e M2, aceitando se uma das simulações aceita

$$L(M) = L(M1) \cup L(M2)$$

- Teorema: A classe de linguagens regulares é fechada sob a operação de concatenação
 - Em outras palavras, se A1 e A2 são linguagens regulares, A1.A2 é regular

Prova:

- Construção
- A1 é regular, existe um autômato M1
- A2 é regular, existe um autômato M2
- Construímos um autômato M que simula M1 e em seguida M2, passando de M1 para M2 quando M1 aceita, e aceitando quando M2 aceita

$$L(M) = L(M1) \cdot L(M2)$$

- Teorema: A classe de linguagens regulares é fechada sob a operação de estrela
 - Em outras palavras, se A é uma linguagem regular,
 A* é regular
- Prova:
 - Construção
 - A é regular, existe um autômato M
 - Construímos um autômato M' que simula M, com a possibilidade de ir direto para o estado de aceitação, e a possibilidade de voltar de um estado de aceitação para o inicial

$$L(M') = L(M)^*$$

- Existe ainda uma "quarta operação regular"
 - Constantes (operações 0-árias)
 - A diferença é sutil
- As operações operam sobre conjuntos
 - Mas muitas vezes as usaremos com símbolos
 - Ou seja, em uma concatenação, ao invés de dizer {a}.{b}, queremos dizer a.b, ou simplesmente ab
- Por isso, iremos considerar que uma constante é uma operação
 - Toma como entrada um símbolo
 - E o resultado é uma linguagem (conjunto), cujo único elemento é aquele símbolo

- Conceito de "variáveis"
 - Símbolos que representam linguagens regulares
 - Ex: a.b, onde a = {w | w contém número par de 0s} eb = {0,11,101}

- Construindo expressões regulares
 - Assim como aritmética
 - Expressões elementares (constantes e/ou variáveis)
 - Operadores que formam expressões mais complexas
- Operadores possuem precedência
 - Ex: multiplicação sobre adição, etc
- Métodos para agrupar operadores
 - Ex: parêntesis, colchetes, chaves, etc

- Constantes:
 - ε e Ø são expressões regulares

 - $L(\emptyset) = \emptyset$
 - Se a é um símbolo qualquer, a é uma expressão regular
 - $L(a) = \{a\}$
- União
 - Se E e F são expressões regulares, E + F é uma expressão regular
 - \blacksquare L(E+F) = L(E) U L(F)

- Concatenação
 - Se E e F são expressões regulares, EF é uma expressão regular
 - L(EF) = L(E).L(F)
- Estrela
 - Se E é uma expressão regular, E* é uma expressão regular
 - $L(E^*) = (L(E))^*$
- Parêntesis
 - Se E é uma expressão regular, (E) é uma expressão regular
 - L((E)) = L(E)

- Precedência
 - Estrela → concatenação → união
 - o Ex: 01*+1
- Parêntesis
 - Mudam a precedência
 - Ex: (01)*+1 ou 0(1*+1)

Exemplos de expressões regulares

- Alfabeto = {0,1}
 - 0*10* = {w | w contém um único 1}
 - \circ 01 + 10 = {01,10}
 - (ε + 0)1* = {w | w é uma sequência de zero ou mais
 1s, começando opcionalmente com 0}
 - (0+1)* = Conjunto das partes do alfabeto ou conjunto de todas as cadeias possíveis sobre o alfabeto, incluindo a cadeia vazia (|w| ≥ 0)
 - (0+1)(0+1)* = Idem ao exemplo acima, mas sem a cadeia vazia (|w| ≥ 1)

Exercícios

- Escreva expressões regulares correspondentes às seguintes linguagens:
 - {w | w começa com um 1 e termina com um 0}
 - Resp: 1(0+1)*0
 - (w | w contém pelo menos três 1s)
 - Resp: 0*10*10*1(0+1)*
 - {w | o comprimento de w é no máximo 5}
 - **Resp**: (0+1+ε)(0+1+ε)(0+1+ε)(0+1+ε)
 - {w | toda posição ímpar de w é um 1}
 - Resp: $(1(0+1))^* + 1((0+1)1)^*$ ou $(1(0+1))^*(1+ε)$

- É possível (e muitas vezes necessário) simplificar expressões regulares
 - \circ Ex: 1*0 + 1*0(ε+0+1)*(ε+0+1) = 1*0(0+1)*
- Existem algumas leis algébricas que facilitam esse processo

- Associatividade e comutatividade
 - \circ L+M=M+L
 - \blacksquare Ex: 0+1=1+0
 - \circ (L+M)+N=L+(M+N)
 - \blacksquare Ex: (a* + bc) + a = a* + (bc + a)
 - (LM)N=L(MN)
 - \blacksquare Ex: (00(1+0))111=00((1+0)111)

- Identidades (elemento neutro) e aniquiladores
 - Ø+L=L+Ø=L (Ø é identidade para união)
 - εL=Lε=L (ε é identidade para concatenação)
 - ØL=LØ=Ø (Ø é aniquilador para concatenação)
- Exs:
 - $\epsilon a(b+c)+aa\epsilon = a(b+c)+aa$
 - $\emptyset(\epsilon+1)^*(1+0(01^*10(0+1))) + 01 = \emptyset + 01 = 01$

- Leis distributivas
 - \circ L(M+N)=LM+LN
 - \circ (M+N)L=ML+NL
 - Exs:
 - 0(0+1) = 00 + 01
 - \bullet (0+1)(0+1) = (0+1)0 + (0+1)1
 - (0+1)(0+1) = 0(0+1) + 1(0+1)

- Lei da idempotência
 - 0 L+L=L
 - Exs:
 - $(0+1+\epsilon) + (0+1+\epsilon) = (0+1+\epsilon)$
 - $(0+1+\epsilon)+01*0+(\epsilon+0+1)+(\epsilon+1+0)=(0+1+\epsilon)+01*0$

- Leis envolvendo fechamentos
 - (L*)*=L*
 - Ex:((01)*)*=(01)*
 - Ø*=ε
 - **3=*3** Ο
- Operadores de fechamento adicionais
 - L⁺=LL*=L*L
 - 0 L*=L+ε
 - L?=ε+L

Exemplos de simplificação

```
0+010
0<u>ε</u>+010
0<u>(ε+10)</u>
0(10)?
```

```
a+(b+c+\epsilon)a(b+c)+ca+ba

a+(b+c)?a(b+c)+ca+ba

a+(b+c)?a(b+c)+(c+b)a

\epsilon a+(b+c)?a(b+c)+(c+b)a

\epsilon a+(c+b)a+(b+c)?a(b+c)

(\epsilon+c+b)a+(b+c)?a(b+c)

(b+c)?a+(b+c)?a(b+c)

(b+c)?a(\epsilon+b+c)

(b+c)?a(\epsilon+b+c)

(b+c)?a(\epsilon+b+c)
```

Fim

Aula 08 - Expressões regulares