Scratch paper

Anonymous Università di Torino May 2019

Abstract Poche idee, ben confuse.

1 Introduction

2 Abstract samples

Let M be a structure of signature L. The multiset expansion of M is a many-sorted expansion that has a sort for M, which we call the home-sort, a sort for \mathbb{R} , and a sample-sort for the set of functions $s: M \to \mathbb{R}$ that have finite support (i.e. are almost always 0). We write $\overline{M} = \langle M, \mathbb{R}, M^s \rangle$ for the expansion above.

Below x, y, z are always tuples of variables of home-sort, x^s, y^s, z^s are tuples of sample-sort of the same the length of x, y, respectively z.

The language of \overline{M} is denoted by \overline{L} . We require that \overline{L} includes

- 1. *L*, that applies to the home-sort;
- 2. the language of ordered rings, that applies to the sort of \mathbb{R} ;
- 3. the language of real vector spaces, that applies to the sample-sort.

Moreover, for every $\varphi(x;z,z^s) \in \bar{L}$ there is a symbol for a function

$$\overline{\varphi}(x^{\mathrm{s}};z,z^{\mathrm{s}})$$
 : $(M^{\mathrm{s}})^{|x|} \times M^{|z|} \times (M^{\mathrm{s}})^{|z|} \longrightarrow \mathbb{R}.$

which is defined as follows

$$\overline{\varphi}(s;b,r) = \sum \{s(a) : \overline{M} \vDash \varphi(a;b,r)\}$$

When $\varphi(x)$ is the formula x = x we write $|x^s|$ for $\overline{\varphi}(x^s)$.

2.1 Definition Let U be a monster model of cardinality $\kappa > |L|$ and let $\overline{U} = \langle U, \mathbb{R}, U^s \rangle$ be the corresponding expansion. We denote by \overline{U}^* a saturated elementary extension of \overline{U} of cardinality κ . As all saturated models of cardinality κ are isomorphic, we can assume that $\overline{U}^* = \langle U, \mathbb{R}^*, U^{s*} \rangle$, where \mathbb{R}^* and U^{s*} are suitable saturated extensions of \mathbb{R} , respectively U^s . Elements U^s are called finite samples, elements in U^{s*} are called internal samples.

Finally, a global sample is a type $p(x^s)$ that is complete among formulas without quantifiers of sample-sort and with parameters in U, \overline{M} , where M is a model which will be clear from the context.

2.2 Notation For any global type $p(x^s) \in S(\mathcal{U}, \overline{M})$, formula $\varphi(x^s; z) \in \overline{L}(\overline{M})$, and

 $b \in \mathcal{U}^{|z|}$ we write $\varphi(p;b)$ for $\varphi(x^s;b) \in p$. We also write

$$\varphi(p;\mathcal{U}) = \{b \in \mathcal{U}^{|z|} : \varphi(p;b)\}$$

Sets of this form are called externally definable. This notation intentionally confuses p with any of its realizations in some elementary extension of $\overline{\mathcal{U}}$.

The following notions are standard

- **2.3 Definition** Let M be given. A global sample $p(x^s)$ is
 - 1. invariant if for every $\varphi(x^s;z) \in \overline{L}(\overline{M})$ the set $\varphi(p;\mathcal{U})$ is invariant over \overline{M} ;
 - 2. finitely satisfiable if for every $\varphi(x^s) \in p$ there is an $r \in M^s$ such that $\varphi(p) \leftrightarrow \varphi(r)$;
 - 3. definable if for every $\varphi(x^s;z) \in \overline{L}(\overline{M})$ the set $\varphi(p;\mathcal{U})$ is definable over \overline{M} .
- **2.4 Definition** Let M be given. A global sample is smooth if it is invariant and internal (i.e. realized in $\overline{\mathbb{U}}^*$).

We recall the following evident fact.

- **2.5 Fact** Let M be given. Let $p(x^s)$ be a finitely satisfiable global sample. Then p is invariant. \Box
- **2.6 Definition** Let M be given. A global sample $p(x^s)$ is uniformly (finitely) satisfiable if for every $\varphi(x^s;z) \in \bar{L}(\overline{M})$ there is a finite $R \subseteq M^s$ such that for every $b \in \mathcal{U}^{|z|}$ we have $p \vdash \varphi(x^s;b) \leftrightarrow \varphi(r;b)$ for some $r \in R$.

Let $p(x^s)$ be a global sample. The support of $p(x^s)$ is the set of those $a \subseteq \mathcal{U}$ such that $p(x^s) \vdash x^s(a) \neq 0$.

2.7 Lemma Let M be given. The support of a uniformly satisfiable samples is a finite subset of M.

Proof. Apply Definition 2.6 to the formula $x^{s}(z) \neq 0$. Then for every $b \in \mathcal{U}^{|z|}$ there is an $r \in R$.

$$p(x^{s}) \vdash x^{s}(b) \neq 0 \rightarrow r(b) \neq 0.$$

As each $r \in R$ has finite support, and R is finite, the lemma follows.

2.8 Fact Let M be given. Let $p(x^s)$ be a global type with finite support, say $A = \{a_1, \ldots, a_n\}$. Then there is type q(y), where $y = y_1, \ldots, y_n$ is a tuple of variables of real-sort, with parameters in \mathbb{U} , \overline{M} and no variable of sample sort such that $p(x^s)$ is equivalent to

$$\exists y \ [q(y) \cup \{x^{s}(a_{i}) = y_{i} : i = 1,...,n\}]$$

- **2.9 Lemma** Let M be given. For every smooth global sample $p(x^s)$ the following hold
 - 1. $p(x^s)$ is definable;
 - 2. $p(x^s)$ is uniformly finitely satisfiable.

Proof. Let $s \in \overline{\mathcal{U}}^{s*}$ be an internal sample that realizes $p(x^s)$. Let $\varphi(x^s;z) \in L$ be given.

- 1. As $\varphi(p;\mathcal{U}) = \varphi(s;\mathcal{U})$ is definable in $\overline{\mathcal{U}}^*$, by invariance it is definable in \overline{M} .
- 2. First we prove that $p(x^s)$ is finitely satisfiable. Let $b \in \mathcal{U}^{|z|}$ be given and pick $b' \equiv_{\overline{M}} b$ be such that $s \downarrow_{\overline{M}} b'$. By invariance, $\varphi(s;b') \leftrightarrow \varphi(s;b)$. Therefore there is an $r \in M^s$ such that $\varphi(r;b') \leftrightarrow \varphi(s;b)$. This proves finite satisfiability. By finite satisfiability, the following type is inconsistent

$$q(z) = \left\{ \varphi(s;z) \leftrightarrow \varphi(r;z) \ : \ r \in M^{\rm s} \right\}$$
 Hence compatness yields the required $R \subseteq M^{\rm s}$. \Box

- **2.10 Lemma** Let M be given. Let $p(x^s)$ be a global type, then the following are equivalent
 - 1. $p(x^s)$ is smooth;
 - 2. $p(x^s)$ is uniformly finitely satisfiable.

Proof. Implication $1\Rightarrow 2$ has been proved in Lemma 2.9. Here we prove $2\Rightarrow 1$. By Lemma 2.7, $p(x^s)$ has a finite support $A\subseteq M$. Now apply Fact 2.8. As the type q(y) is relized in $\overline{\mathbb{U}}^*$, so is $p(x^s)$. Invariance is clear by finite satisfiability.

3 Recycle bin

Below, ε always ranges over the positive standard reals. If a and b are (hyper)reals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε .

3.1 Lemma Let M be given. Let $p(x^s)$ be smooth. Then for every ε there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathcal{U}^{|z|}$ we have $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_j(x)$ and $\bar{\vartheta}_i(p) \approx_{\varepsilon} \bar{\vartheta}_j(p)$ for some i, j.

Then for every $b \in \mathcal{U}^{|z|}$ there is an $r \in R$

$$p(x^{s}) \vdash x^{s}(b) > 0 \leftrightarrow r(b) > 0$$
 such that

As Write $\operatorname{supp}(R)$ for the union of $\operatorname{supp}(r)$ for $r \in R$. Then $p \vdash \operatorname{supp}(x^s) \subseteq \operatorname{supp}(R)$. In particular $p \vdash \operatorname{supp}(x^s) = A$ for some finite $A \subseteq M$.

$$\varphi(p;z) \leftrightarrow r(z) > 0$$

Let $p(x^s)$ be global sample that is uniformly finitely satisfiable w.r.t. all $\varphi(x^s;z) \in L$. Then there is an $r \in M^s$ such that

$$x^{s}(z_i) \approx_{\varepsilon} \mu_i$$

3.2 Fact Let M and $\varphi(x;z) \in L$ be given. Let $p(x^s)$ be a definable, uniformly finitely satisfiable global sample. Then there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathcal{U}^{|z|}$ we have $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_i(x)$ and $\bar{\vartheta}_i(p) \approx_{\varepsilon} \bar{\vartheta}_i(p)$ for some i,j.

Proof. Let
$$\psi_r(z)$$
, for $r \in R \subseteq M^s$

Let

Pick finite $F \subseteq \mathbb{R}$ such that for every b we have $\overline{\varphi}(p;b) \approx_{\varepsilon} \mu$ for some $\mu \in F$. By Definition 2.6 there is a finite set $R \subseteq M^s$ such that for every $b \in \mathcal{U}^{|z|}$ and every $\mu \in F$ we have $\varphi(p;b) \approx_{\varepsilon} \mu \leftrightarrow \varphi(r;b) \approx_{\varepsilon} \mu$ for some $r \in R$. Therefore for every $b \in \mathcal{U}^{|z|}$ we have that $\varphi(p;b) \approx_{2\varepsilon} \varphi(r;b)$ for some $r \in R$. Let $A \subseteq \mathcal{U}^{|z|}$ be a finite set containing supp(r) for all $r \in R$. Let $\vartheta_i(x)$ enumerate the formulas $x \in B$ and $x \notin B$, as B ranges over the subsets of A.

We prove that these formulas are as required by the proposition. Fix some $b \in \mathcal{U}^{|z|}$ and let $r \in R$ be such that $\varphi(p;b) \approx_{2\varepsilon} \varphi(r;b)$. Let

$$B_0 = \{a \in \operatorname{supp}(r) : \varphi(a;b)\}$$

 $B_1 = \{a \in \operatorname{supp}(r) : \neg \varphi(a;b)\}$

Clearly, $x \in B_0 \to \varphi(x;b) \to x \notin B_1$.

3.3 Definition Let $\varphi(x^s; z) \in L$ and M be given. We say that $p(x^s)$ is weakly approximable if there are some finitely many $r_i \in M^s$, say $0 \le i < n$, such that for every $b \in \mathcal{U}^{|z|}$ we have $\varphi(p; b) \leftrightarrow \varphi(r_i; b)$ for some i.

Let $\varphi(x;z) \in L$ and M be given. Let $\mathcal{B} = \varphi(p;\mathcal{U})$. Let $p(x^s)$ be weakly approximable. Then there is a finite cover of \mathcal{B} , say $\mathcal{B}_1, \ldots, \mathcal{B}_n$, such that all the types $p_i(x) = \{\varphi(x;b) : b \in \mathcal{B}_i\}$ are consistent.

3.4 Fact Let M be given. Let $p(x^s)$ be global sample. Suppose for every $\varphi(x) \in L(\mathfrak{U})$ and ε there are $\vartheta_1(x), \vartheta_2(x) \in L(M)$ such that $\vartheta_1(x) \to \varphi(x) \to \vartheta_2(x)$ and $\bar{\vartheta}_2(p) \approx_{\varepsilon} \bar{\vartheta}_1(p)$. Then p is finitely satisfiable.

Proof. Let $\varphi_i(x)$, for $0 \le i < n$, be given. We claim that there is an $r \in \overline{M}$ such that $\overline{\varphi}_i(p) \approx_{3\varepsilon} \overline{\varphi}_i(r)$ for every i.

Let $\theta_{i,1}(x)$ and $\theta_{i,2}(x)$ be as in the fact. As $\theta_{i,1}(p) \leq \varphi_i(p) \leq \theta_{i,2}(p)$, then $\theta_{i,1}(p) \approx_{\varepsilon} \varphi_i(p)$. By elementarity there is an $r \in \overline{M}$ such that $\theta_{i,1}(r) \approx_{\varepsilon} \theta_{i,1}(p)$ and $\theta_{i,2}(r) \approx_{\varepsilon} \theta_{i,2}(p)$. Then the claim follows immediately.

- **3.5 Lemma** The following are equivalent for every global sample $p(x^s)$
 - 1. p is smooth and invariant;
 - 2. for every finite $B \subseteq \mathcal{U}^{|z|}$ and every ε , there is an $r \in \overline{M}$ such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ for all $b \in B$;
 - 2. for every $\varphi_i(x;z) \in L$, every $b_i \in \mathcal{U}^{|z|}$, and every ε , there is an $r \in \overline{M}$ such that

 $\bar{\varphi}_i(p;b_i) \approx_{\varepsilon} \bar{\varphi}_i(r;b_i)$, for every $0 \leq i < n$;

- 2. for every $\psi_0(x), \ldots, \psi_{n-1}(x) \in L(\mathcal{U})$ and every ε , there is an $r \in \overline{M}$ such that $\overline{\psi}_i(p) \approx_{\varepsilon} \overline{\psi}_i(r)$, for every i < n;
- 4. there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathcal{U}^{|z|}$ we have that $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_i(x)$ and $\bar{\vartheta}_i(p) \bar{\vartheta}_i(p) < \varepsilon$ for some i,j.

Proof. Let *s* be an internal sample that realizes $p(x^s)$.

1 \Rightarrow 2. Let B and ε be given. Let $\bar{b} = \langle b_i : i < n \rangle$ be an enumeration of B. Let $\mu_i \in \mathbb{R}$ be such that $\bar{\varphi}(p;b_i) \approx \mu_i$ for every i < n. Let \bar{b}' be such that $s \downarrow_{\overline{M}} \bar{b}' \equiv_{\overline{M}} \bar{b}$. By invariance, $\bar{\varphi}(s;b_i') \approx \mu_i$. Therefore there is an $r \in \overline{M}$ such that $\bar{\varphi}(r;b_i') \approx_{\varepsilon} \mu_i$ for every i < n. As $\bar{b}' \equiv_{\overline{M}} \bar{b}$, we obtain $\bar{\varphi}(r;b_i) \approx_{\varepsilon} \mu_i$.

1 \Rightarrow 2. Let $\psi_i(x) = \varphi_i(x;b_i)$ for some $\varphi_i(x;z) \in L$ and $b_i \in \mathcal{U}^{|z|}$. Let $\bar{b} = \langle b_i : i < n \rangle$. Let $\mu_i \in \mathbb{R}$ be such that $\bar{\varphi}_i(p;b_i) \approx \mu_i$. Let \bar{b}' be such that $s \downarrow_{\bar{M}} \bar{b}' \equiv_{\bar{M}} \bar{b}$. By invariance, $\bar{\varphi}_i(s;b_i') \approx \mu_i$. Therefore there is an $r \in \bar{M}$ such that $\bar{\varphi}_i(r;b_i') \approx_{\varepsilon} \mu_i$ for every i < n. As $\bar{b}' \equiv_{\bar{M}} \bar{b}$, we obtain $\bar{\varphi}_i(r;b_i) \approx_{\varepsilon} \mu_i$.

1⇒3. By smoothness we it suffices to prove 3 with s for p. The type

$$p(z) = \left\{ \overline{\varphi}(s; z) \not\approx_{\varepsilon} \overline{\varphi}(r; z) : r \in \overline{M} \right\}$$

is inconsistent by 2. Hence compatness yields the required $r_1, \ldots, r_n \in \overline{M}$.

3⇒2. Clear.

2 \Rightarrow 1 Assume 2. We prove that p is invariant. Pick some $b \equiv_{\overline{M}} b'$ and some ε . Let $r,r' \in \overline{M}$ be such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ and $\overline{\varphi}(p;b') \not\approx_{\varepsilon} \overline{\varphi}(r';b')$. As $\overline{\varphi}(r;b) \approx \overline{\varphi}(r';b')$ follows from $b \equiv_{\overline{M}} b'$, we obtain $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(p;b')$.

We prove that p is smooth.

$$p(x^s) = \left\{ \bar{\varphi}(x^s; b) \approx_{\varepsilon} \mu_b : b \in \mathcal{U}^{|z|} \right\}$$

- **3.6 Definition** Let $\varphi(x;z) \in L$ and M be given. A global sample $p(x^s)$ is
 - 1. invariant if $\bar{\varphi}(p;b) \approx \bar{\varphi}(p;b')$ for every $b \equiv_{\overline{M}} b'$;
 - 2. (pointwise) approximable if, for every $b \in \mathbb{U}^{|z|}$ and every ε , there is an $r \in \overline{M}$ such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$;
 - 3. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(p;b) < \varepsilon\}$ is definable over \overline{M} .

The following is a useful characterization of smooth samples.

4 Old stuff/garbage

We write $\operatorname{supp}(p)$ for the support of p, that is, the set of those a in \mathcal{U} such that $p \vdash (a \in x^s) > \varepsilon$ for some standard positive ε . If s is a smooth sample $\operatorname{supp}(s)$ is defined to be $\operatorname{supp}(p)$ for $p(x^s) = \operatorname{tp}(s/\overline{\mathcal{U}})$.

Let s be an external sample. For every formula $\varphi(x;z) \in L$ and every $b \in \mathcal{U}^{|z|}$ we define

$$\operatorname{Av}_{x/s}\varphi(x;b) = \frac{\left|\left\{a \in s : \varphi(a;b)\right\}\right|}{|s|},$$

When possible we abbreviate $\operatorname{Av}_{x/s} \varphi(x;b)$ with $\overline{\varphi}(s;b)$.

We write $\operatorname{ft}(a)$, for the standard part of the hyperrational number a. That is, the unique real number μ such that $\mu \approx a$.

The standard part of Av_s induces a finite probability measure on the algebra of definable subsets of $\mathfrak{U}^{|x|}$. This measure has an unique extension to a Lebesgue probability measure on a σ -algebra. This is known as the Loeb measure.

All definitions and facts in this section are relative to some given formula $\varphi(x;z) \in L$ and some model M.

- **4.1 Definition** Let $\varphi(x;z) \in L$ and M be given. We say that a sample s is smooth if, for every $s' \equiv_M s$ and every $b \in \mathbb{U}^{|z|}$, we have $\bar{\varphi}(s';b) \approx \bar{\varphi}(s;b)$.
- **4.2 Definition** Let $\varphi(x;z) \in L$ and M be given. An external sample s is
 - 1. invariant if, for every $b, b' \in \mathcal{U}^{|z|}$ such that $b \equiv_M b'$, we have $\bar{\varphi}(s;b) \approx \bar{\varphi}(s;b')$;
 - 2. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(s;b) < \varepsilon\}$ is definable over M;
 - 3. finitely satisfiable if, for all $b \in \mathcal{U}^{|z|}$ there is an $r \in \overline{M}$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$;

4. generically stable if all of the above hold.

Smooth roughly means internal and invariant.

- **4.3 Fact** Let $\varphi(x;z) \in L$ and M be given. The following are equivalent for every external sample s
 - 1. s is smooth;
 - 2. there is an invariant internal sample $s' \equiv_M s$.

Proof. 1 \Rightarrow 2. Let s be smooth and let $s' \equiv_M s$ be any internal sample. If $b, b' \in \mathcal{U}^{|z|}$ and $b \equiv_M b'$, then b' = fb for some $f \in \operatorname{Aut}(\bar{\mathcal{U}}^*/M)$. Then $\bar{\varphi}(s'; fb) \approx \bar{\varphi}(f^{-1}s'; b)$. Moreover, by smothness $\bar{\varphi}(f^{-1}s'; b) \approx \bar{\varphi}(s'; b)$. The infariace in s' follows.

2 \Rightarrow 1. It suffices to prove that if s is internal and invariant then it is smooth. Suppose for a contradiction that there is an $s'\equiv_M s$ such that $\bar{\varphi}(s';b)\not\approx_{\varepsilon}\bar{\varphi}(s;b)$. Pick a internal sample $s''\equiv_{M,s} s'$. Then $\bar{\varphi}(s'';b)\not\approx_{\varepsilon}\bar{\varphi}(s;b)$. As $s''\equiv_M s$ are both in $\bar{\mathbb{U}}^*$, then s''=fs for some $f\in \operatorname{Aut}(\bar{\mathbb{U}}^*/M)$. Hence we obtan $\bar{\varphi}(s;f^{-1}b)\not\approx_{\varepsilon}\bar{\varphi}(s;b)$ which contradics the invariance of s.

4.4 Definition Let $\varphi(x;z) \in L$ and M be given. Let $\mathbb{B} \subseteq \mathbb{U}^{|z|}$ be arbitrary. We say that s is (uniformly) approximable on \mathbb{B} if for every ε there is a finite sample $r \in \overline{M}$ such that

	$\overline{\varphi}(s,b) \approx_{\varepsilon} \overline{\varphi}(r,b)$ for every $b \in \mathcal{B}$. (The sample r depends on ε , not on b .)	
4.5	Lemma Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on $\mathbb B$ and such that $\bar{\varphi}(s;b) > \varepsilon$ for every $b \in \mathbb B$. Then there is a finite cover of $\mathbb B$, say $\mathbb B_1, \ldots, \mathbb B_n$, such that all the types $p_i(x) = \{\varphi(x;b) : b \in \mathbb B_i\}$ are consistent.	
	Proof . Let $r \in \overline{M}$ be as in Definition 4.4. As r is finite, we may assume that $\operatorname{supp}(r) = \{a_1, \ldots, a_n\}$. Let $\mathcal{B}_i = \{b \in \mathcal{B} : \varphi(a_i; b)\}$. As $\overline{\varphi}(r; b) > 0$ for all $b \in \mathcal{B}$, these \mathcal{B}_i are the required cover of \mathcal{B} .	
4.6	Corollary Let $\varphi(x;z) \in L$ and M be given. If s be approximable on $\langle b_i : i < \omega \rangle$, where $\langle b_i : i < \omega \rangle$ is a sequence of indiscernibles such that $\overline{\varphi}(s;b_i) > \varepsilon$ for every $i < \omega$, then the type $\{\varphi(x;b_i) : i < \omega\}$ is consistent.	
4.7	Corollary Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on $\mathfrak C$. Then for every ε there is a pair of distict $c,c' \in \mathfrak C$ such that $\operatorname{Av}_{x/s} \big[\varphi(x;c) \not\leftrightarrow \varphi(x;c') \big] < \varepsilon$	
	Proof . Suppose for a contradiction that $\operatorname{Av}_{x/s}[\varphi(x;c) \not\Leftrightarrow \varphi(x;c')] \geq \varepsilon$ for all distict $c,c' \in \mathfrak{C}$. Apply Lemma 4.5 to the folmula $\psi(x;z,z') = [\varphi(x;z) \not\Leftrightarrow \varphi(x;z')]$ and the set $\mathcal{B} = \{\langle c,c' \rangle \in \mathfrak{C}^2 : c \neq c' \}$. The sets \mathcal{B}_i obtained from Lemma 4.5 induce a finite coloring of the complete graph on \mathfrak{C} . By the Ramsey theorem there is an infinite monochromatic set $A \subseteq \mathfrak{C}$. Hence $\{\varphi(x;a) \not\Leftrightarrow \varphi(x;a') : a,a' \in A, a \neq a' \}$ is consistent. As $ A > 2$, this is impossible.	
5	The nip formulas	
5. 1	Theorem Let $\varphi(x;z) \in L$ and M be given and assume that $\varphi(x;z)$ is nip. Then every sample is approximable on M over M .	
	Proof . Questo è Vapnik-Chervonenkis.	
	For smooth samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. (The difference is that below b ranges over $\mathfrak{U}^{ z }$.)	
5.2	Corollary Let $\varphi(x;z) \in L$ be nip. Every smooth sample s is approximable on U over M .	
	Proof . By Theorem 5.1, there is an $r \in \overline{M}$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ for all $b \in$	
	$M^{ z }$.	

- **5.3 Definition ??** We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x;z_1,...z_n) \in L$ such that for every finite set $B \subseteq \mathcal{U}$ and every $a \in \mathcal{U}^{|x|}$ there are $b_1,...,b_n \in B$ such that $\psi(a;b_1,...,b_n)$ and $\psi(x;b_1,...,b_n)$ decides all formulas $\varphi(x;b)$ for $b \in B$.
- **5.4 Definition ??*** We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x_1,...,x_n;z) \in L$ such that for every finite set $A \subseteq \mathcal{U}^{|x|}$ and every $b \in \mathcal{U}^{|z|}$ there are $a_1,...,a_n \in A$ such that $\psi(a_1,...,a_n,z)$ and $\psi(a_1,...,a_n,z)$ decides all formulas $\varphi(a;z)$ for $a \in A$.

For every finite sample $r \in \overline{M}$ and every $\mu \in \mathbb{R}$ there is a formula $\psi(z) \in L(\operatorname{supp} r)$ such that $\overline{\varphi}(r;z) = \mu \leftrightarrow \psi(z)$. The formula $\psi(z)$ depends on r.

When $\varphi(x;z)$ is distal

If $\varphi(x;z)$ is distal then there is a formula ψ such that for every $r\in M^f$ there is $r_0\in M$

- 5.5 Theorem (false) The following are equivalent
 - 1. $\varphi(x;z) \in L$ is distal;
 - 2. for every sample $s \in \mathcal{U}_*^{f_*}$, if s is generically stable then s is smooth.

There is a formula $\psi(x_1, ..., x_n; z)$ such that for every $r \in \overline{M}$

there are a_1, \ldots, a_n such that $\varphi(r; b) = \mu \psi(x_1, \ldots, x_n; z)$

We say that p(x) is honestly definable if for every $\varphi(x,y) \in L$ there is a formula $\psi(y,z) \in L$ such that for every finite A, there is a b such that

$$A \subseteq \psi(\mathcal{U}, b) \subseteq \varphi(p, \mathcal{U})$$

For $\varphi(x,y) \in L$ and $m \in M$ let

$$\varphi_m(x,y) = \varphi(m,y) \leftrightarrow \varphi(x,y)$$

$$A \subseteq \psi_{m,\varphi}(\mathcal{U}) \subseteq \varphi_m(p,\mathcal{U})$$

If p(x) is generically stable (definition as in the OP) then for every $\varphi(x,y) \in L$ and $m \in M$ there is a formula $\vartheta_{\varphi,m}(y)$ such that for every a in the monster model

$$\vartheta_{\varphi,m}(a) \Leftrightarrow [\varphi(m,a) \leftrightarrow \varphi(x,a)] \in p$$

Let q(x) be an M-invariant global type such that $q_{\uparrow M}(x) = p_{\uparrow M}(x)$. Then both q and p contain the formulas

$$\forall y \left[\vartheta_{\varphi,m}(y) \to \left[\varphi(m,y) \leftrightarrow \varphi(x,y)\right]\right]$$

We write $p(x) \sim_M q(x)$ if $\varphi(p; \mathcal{U}) \neq \emptyset \Leftrightarrow \varphi(q; \mathcal{U}) \neq \emptyset$ for every $\varphi(x, z) \in L(M)$