Political books: the dynamics that generate the network

Valeria Secchini

University of Torino

valeria.secchini@edu.unito.it

September 18, 2019

Data

Data are about US political books, sold by the online bookseller Amazon.com. Compiled by Valdis Krebs, unpublished, http://www.orgnet.com/.

Data

- Nodes are the political books (N = 105)
- Edges represent frequent co-purchasing of books by the same buyers
- Nodes have been given values "I", "n", or "c" to indicate whether they are "liberal", "neutral", or "conservative".

The Network

Figure: Network of co-purchasing political US books. Liberals = red, Conservative = blue, Neutral = green

Characteristics of the network

Medium degree

$$< k > = 8.481$$

(1)

Diameter

$$D=7$$

Claustering coefficient

$$C = 0.489$$

(3)

Assortativity coefficient

$$Q = 0.723$$

(4)

5 / 13

Degree Distribution

Degree distribution

$$P(k) \alpha k^{-\gamma}$$
 with $\gamma \simeq -2.2$ (5)

With saturation and cut-off and not well defined trend because of low number of nodes

Log-log plot of P(k) for data

Division in communities

Figure: First community

Figure: Third community

Figure: Second community

Figure: Fourth community

Recreating the network

Copying model with:

- $\alpha = 0.99$
- Medium number of links for each added node < m > = 4.5

adding:

- Fitness, giving a different initial k_i to every added node (randomly, from uniform distribution from 2 to 7)
- different probability of attachment depending on color's node

Preferetial attachment

- i = added node
- i = randomly choosen node
- Preferential attachment $\pi(k_i) = \frac{k_i}{\sum_j k_j} \beta \alpha$

- If j = blue/red and i of the same color $\Rightarrow \beta = 0.99$
- If j = blue/red and $i = \text{green} \Rightarrow \beta = 0.009$
- If j = blue/red and $i = \text{red/blue} \Rightarrow \beta = 0.001$
- If $j = \text{green and } i = \text{green} \Rightarrow \beta = 0.6$
- If $j = \text{green and } i = \text{red/blue} \Rightarrow \beta = 0.4$

Graph image of created and data networks

Figure: Network created with copying model

Figure: Network from data

Networks attributes

Characteristics	Created	Data
Mean degree	8.6 ± 0.4	8.5
Diameter	5	7
Claustering Coefficient	$0.30 \pm\! 0.02$	0.49
Assortativity	0.74 ± 0.03	0.72
γ	$\simeq 2.2$	$\simeq 2.2$

Table: Networks attributes

Degree distribution

Figure: P(k) created network

Figure: P(k) network from data

Thank you