Homework 2

Due: Sunday, 11:59PM, October 10, 2021

1. Programming Assignment

The linear regression is formulated as

$$\min_{\boldsymbol{\theta}} \quad \mathcal{L}(\boldsymbol{\theta}) := \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \mathbf{x}_n^{\mathsf{T}} \boldsymbol{\theta} \right)^2$$
 (1)

where $\{\mathbf{x}_n, y_n\}_{n=1}^N$ are given training data.

1.1 Dataset

Air Quality dataset collects 9,358 instances of hourly averaged responses from five chemical sensors located in an area of Italy. The averaged sensor response $\mathbf{x}_n \in \mathbb{R}^{13}$ contains the hourly concentrations of e.g., CO, Non Metanic Hydrocarbons, and Nitrogen Dioxide (NO2), where the goal is to predict the concentration of polluting chemicals $y_n \in \mathbb{R}$ in the air.

Download: https://archive.ics.uci.edu/ml/datasets/Air+quality

1.2 Algorithm

- 1. Gradient descent algorithm.
- 2. Stochastic gradient descent algorithm (one sample per iteration).
- 3. Mini-batch stochastic gradient descent algorithm (50 samples per iteration).

1.3 Submitted results

- 1. Well documented MATLAB/Python codes.
- 2a. Plots of iteration index vs objective error for a fixed stepsize.
- 2b. Plots of CPU time vs objective error for a fixed stepsize.
- 3. Brief discussions of your findings relative to the convergence theory.

2. Programming Assignment

The ℓ_2 regularized logistic regression is formulated as

$$\min_{\boldsymbol{\theta}} \quad \mathcal{L}(\boldsymbol{\theta}) := \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp(-y_n \mathbf{x}_n^{\top} \boldsymbol{\theta}) \right) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|^2$$
 (2)

where $\{\mathbf{x}_n, y_n\}_{n=1}^N$ are given training data, and $\lambda > 0$ is the regularization constant.

2.1 Dataset

Ionosphere dataset is to predict whether it is a "good" radar return or not – it is "good" if the features in \mathbf{x}_n show evidence of some type of structure in the ionosphere.

Download: https://archive.ics.uci.edu/ml/datasets/ionosphere

2.2 Algorithm

- 1. Gradient descent algorithm.
- 2. Stochastic gradient descent algorithm (one sample per iteration).
- 3. Mini-batch stochastic gradient descent algorithm (50 samples per iteration).

2.3 Submitted results

- 1. Well documented MATLAB/Python codes.
- 2a. For $\lambda = 0$, plots of iteration index vs objective error for a fixed stepsize.
- 2b. For $\lambda = 0$, plots of CPU time vs objective error for a fixed stepsize.
- 3a. For $\lambda = 0.01$, plots of iteration index vs objective error for a fixed stepsize.
- 3b. For $\lambda = 0.01$, plots of CPU time vs objective error for a fixed stepsize.
- 4. Brief discussions of your findings relative to the convergence theory.