1. IP Address Classes

Classes	Range	Usage	Bits	N/H	Default
				Portions	Mask
A	1 - 126	Unicast	0	8/24	255.0.0.0
В	128 - 191	Broadcast	10	16/16	255.255.0.0
С	192 - 223	communication	110	24/8	255.255.255.0
D	224 - 239	Multicast	1110	N/A	N/A
Е	240 - 255	Research and	1111	N/A	N/A
		Development			

• Important Notes:

- i. Classes **D** and **E** cannot be assigned to end-users.
- ii. Class **E** is reserved by **IANA** for research purposes.
- iii. Class A, B, and C are assignable to hosts.
- iv. 127.x.x.x is reserved for loopback (localhost).

2. Identifying Class from Decimal

- Example: 10.170.200.235
 - i. First octet = $10 \rightarrow$ Falls in $1-126 \rightarrow$ Class A.

3. Identifying Class from Binary

To find the class in **binary format**, we check the **first few bits of the first octet**

- Class A: $0xxxxxxx \rightarrow \text{first bit is } 0$
- Class B: $10xxxxxx \rightarrow starts$ with 10
- Class C: $110xxxxx \rightarrow starts$ with 110
- Class D: $1110xxxx \rightarrow starts$ with 1110
- Class E: $1111xxxx \rightarrow starts$ with 1111

128	64	32	16	8	4	2	1		
7	6	5	4	3	2	1	0		
2	2	2	2	2	2	2	2		
0	0	0	0	0	0	0	0	Off	0
1	1	1	1	1	1	1	1	On	255

- **OFF** $(0) \rightarrow$ no value added
- **ON** (1) \rightarrow value included

• Example Conversion: 10.170.200.235

128	64	32	16	8	4	2	1		
7	6	5	4	3	2	1	0		
2	2	2	2	2	2	2	2		
0	0	0	0	0	0	0	0	Off	0
1	1	1	1	1	1	1	1	On	255

For 10:

128	64	32	16	8	4	2	1
0	0	0	0	1	0	1	0

For 170:

128	64	32	16	8	4	2	1
_ 1	0	1	0	1	0	1	0
For 200:	<u>1a1</u>	mn	nac		ah	ad	ev

128	64	32	16	8	4	2	1
1	1	0	0	1	0	0	0

For 235:

128	64	32	16	8	4	2	1
1	1	1	0	1	0	1	1

So the IP in binary is:

- 00001010.10101010.11001000.11101011
- Below its done in Hand Written format

```
Lets convert this IP to binary
IP = 10.170.200.234
This Ip belongs to class A because if we look at
the first oxtet we see to which lies between
1-126 and class A addresses are also from 1-136
possibilities either 0 or 1.
      Omeaning off and I meaning on.
    So: 10-170-200-235 in binary for that
 lets do
                  128 . 64 32 16 8 4 2 31
                     2 2 2 2 2 2 2
00 So for 10 what bits
  Should be on .to.
        Lo.
 make
.00 now for 170 .
                                               attrat.
 which bits (hould.
                         1.0 101010.
                                               8+2=10.
2.30 be on to make 170
                                              160+10=170
                              7 6 5 4 3 2 1 0
100 goo.
                                              128+64+8.
                              22 2 2 2 2 2 2 2
3.30
                                              - 200.
                              11001000
4.00
  For 235.
                            128 64 32 16 8 4 2 1
        128+64+32+8+2+1= 235
5.00
```

4. Network ID

• In Network ID the Host portion is all 0

Example:

- A: $10.170.200.255 \rightarrow \text{Network ID: } 10.0.0.0$
- B: 190.16.10.10 \rightarrow Network ID: 190.16.0.0
- C: 192.168.0.1 \rightarrow Network ID: 192.168.0.0

5. Broad Cast ID

• In Broad Cast ID the Host portion is all 1

Example:

- A: 10.170.200.255 → Broadcast ID: 10.255.255.255
- B: 190.16.10.10 → Broadcast ID: 190.16.255.255
- C: 192.168.0.1 → Broadcast ID: 192.168.0.255

6. Usable Host Addresses

Formula: $2^n - 2$, where n = number of host bits.

- Class A: $2^24 2 = 16,777,214$ hosts
- Class B: $2^16 2 = 65,534$ hosts
- Class C: $2^8 2 = 254$ hosts

(-2 because Network ID and Broadcast ID are not usable by hosts.)

7. Subnet Masks

Subnet mask = **network portion ON (1), host portion OFF (0).**

- Class A: 255.0.0.0 (/8)
- Class B: 255.255.0.0 (/16)
- Class C: 255.255.255.0 (/24)

Examples (given IPs):

- $10.170.200.255 \rightarrow \text{Subnet mask: } 255.0.0.0$
- $171.16.0.0 \rightarrow \text{Subnet mask: } 255.255.0.0$

• $171.16.0.0 \rightarrow \text{Subnet mask: } 255.255.0.0$

8. Private vs Public Addresses

• **Public IPs:** Used on internet.

• **Private IPs:** Used inside local networks; require NAT (Network Address Translation) to connect to internet.

Private IP Ranges:

• Class A: 10.0.0.0 – 10.255.255.255

• **Class B:** 172.16.0.0 – 172.31.255.255 (16 private networks)

• Class C: 192.168.0.0 – 192.168.255.255 (256 private networks)

9. IPv6 vs IPv4

• IPv4: 32-bit (\approx 4.3 billion addresses)

• IPv6: 128-bit (almost unlimited addresses)

⚠ Note: IPv6 is **many times larger** (2^128 addresses).

MuhammadTahadev