ML2016 HW2 Report

R05921040 謝友恆

Objective

由抽取過之 feature 使用 logistic regression 進行 spam classification。

Data Preprocessing

為了使每一維度的資料更新速率接近,先將各維度資料 normalize。

Logistic Regression

Logistic Regression 中要最小化的誤差值定義是:

$$E(w) = \Sigma - (y^{n} \times \ln \sigma(x^{n} \cdot w) + (1 - y^{n}) \times \ln(1 - \sigma(x^{n} \cdot w)))$$

經過微分得到 gradient 值為:

$$\nabla E(\mathbf{w}) = \Sigma (y^n - \sigma(x^n \cdot \mathbf{w})) \times x^n$$

Python Code 如下:

```
def error(x, w, b, y):
    return (-(y*np.log(logistic(x.dot(w)+b)+eta) + (1-y)*np.log(1-logistic(x.dot(w)+b)+eta))).mean()

def gradDes(x, w, b, y):
    return (-(y-logistic(x.dot(w)+b)).transpose()*x.transpose()).mean(axis = 1)

def gradDesb(x, w, b, y):
    return (-(y-logistic(x.dot(w)+b))).mean()
```

另外使用 Adagrad 加速更新速度,整體 code 如下:

```
#random columns for stochastic gradient descent
r = np.random.randint(4001,size=200)
#calculate gradient descent for w and b
gdw = gradDes(train_data[r,:], w, b, y[r])
gdb = gradDesb(train_data[r,:], w, b, y[r])
#adagrad for w and b
gdwSum = gdwSum + np.square(gdw)
gdbSum = gdbSum + np.square(gdb)
#update parameter value
w = w - alpha * gdw / np.sqrt(gdwSum+eta).astype(float)
b = b - alpha * gdb / np.sqrt(gdbSum+eta).astype(float)
```

Other method

Neural Network

一開始選用了一層 hidden layer 的 NN,其誤差項的定義跟 logistic 版本一樣,而 gradient 項∇L(w)則透過 backpropagation 修正為:

$$\delta_{j} = \begin{cases} (o_{j} - y_{j}) & \text{if } j \text{ is at output layer} \\ (\Sigma_{L} \delta_{l} w_{jl}) o_{j} (1 - o_{j}) & \text{if } j \text{ is hidden layer} \end{cases}$$

$$\nabla E(w_{ij}) = o_{i} \times \delta_{j}$$

其中L = the set of all neuron receives input from j Python 的 NN code 如下:

```
#calculate gradient descent for w
r = np.random.randint(dataLen, size = dataNum)
o_input = logistic(train_data[r,:].dot(w_input[i].T))
o = logistic(np.column_stack((o_input, np.ones(dataNum))).dot(w[i]))
#delta of the output layer
delta_o = (o-y[r])
#back propagation of output layer
gdw = (np.column_stack((o_input, np.ones(dataNum))).T * delta_o.T).mean(axis = 1)
gdwSum = gdwSum + np.square(gdw)
#back propagation of hidden layer
gdwi = ((train_data[r,:].T).dot(delta_o[:,None].dot(w[i][:nNum,None].T) * o_input * ( 1 - o_input)))/dataNum
gdwi = gdwi.T
gdwiSum = gdwiSum + np.square(gdwi)
#update weight value
w[i] = w[i] - alpha * gdw / np.sqrt(gdwSum +eta)
w_input[i] = w_input[i] - alpha * gdwi / np.sqrt(gdwiSum + eta)
```

然而用 NN 之後並不是很能抓到 learning rate、neuron number、iteration number 的設定,試過用 cross validation 來找最適當的範圍,但在 public set 上表現也不是很理想。因此便改用下個方法。

Neuron Network with Boosting

Boosting 是將 sample 分割成不同部分,每部分各自的得到一個 model,再透過這些 model 的 voting 來決定最終的結果,在這次的實作由於有用 stochastic 的方式同時 sample 數量也不多的情況下,便沒有切割 sample。而對於每個不同的 model 我們隨機給予他使用的 neuron 數量(2 到 25 之間),以及 iteration number(12000~18000)還有 learning rate(1-2)。由於希望將 training time 控制在十分鐘以內,設定 model 數量為 25,而使用這個方式在 public 與 private set 上都能有相對好一點的效果。

Discussion

Logistic Regression vs NN

Logistic Regression 其實就是只有 output layer 的 NN,因此就表達模型的能力而言 NN 應該是超越 Logistic Regression 的。因此 NN 可以在training error 上大幅度超越 Logistic Regression,NN 甚至可以将 crossentropy 壓到 0.01 以下,但這樣意義並不大,因為這次的模型相對簡單,這樣做反而會 overfit。因此使用 NN 最大的問題是如何找到適當的停止點,就此而言使用 cross validation 應該是不錯的方法。

Normalization

這次使用了兩種 normalization 的方法,一種是 L2 norm,讓整個 feature vector 的平方和等於一,另一種是減去平均,並除以標準差,兩者相比較的結果後者 normalize 的方式相對好一些,推測是因為 L2 norm 會受最大最小值影響,另一種方式並不會。

Efficiency

由於 model 較為簡單,logistic regression 執行的速度較 NN 快了十倍左右,而 NN 執行速度則正比於使用的 neuron 數量。但整體而言執行時間皆不會太久,logistic 可以在十幾秒內完成十萬個 iteration,而 NN 單一model 需要時間約為 15 秒左右(15000 iteration)。

Boosting

會想使用 boosting 主要原因是若是用單一的 nn,則出來結果跟 neuron 數量,iteration 數量,learning rate 有直接關係,同時很難區分是否不小心overfit。而慢慢調參數的作法過於耗時,因此以多次取平均的方式希望找到較好的結果。而在實際實驗中的確如此。但 Boosting 並不能超越選用model(NN)的極限,只是讓結果較不受實驗過程中的雜訊影響。

討論對象: b01901001, b01901169