แบบฝึกหัดบทที่ 2

1.1) อธิบายความสำคัญของ Data Modeling

การทำแบบจำลองข้อมูล (Data Modeling) คือ การสร้างแบบจำลองที่แสดงถึงโครงสร้างและความสัมพันธ์ของข้อมูล ในระบบฐานข้อมูล

แบบจำลองมี 3 ประเภท ได้แก่:

- 1. **Conceptual Data Model (CDM):** แสดงความสัมพันธ์ของข้อมูลในระดับสูง แสดงถึงความต้องการทางธุรกิจ โดยยังไม่คำนึงถึงโครงสร้างที่ใช้จัดเก็บข้อมล
- 2. **Logical Data Model (LDM):** แสดงการจัดระเบียบและโครงสร้างของข้อมูล แสดงรายละเอียดของข้อมูลใน ระดับที่ลึกขึ้น เช่น ชนิดข้อมูล ความสัมพันธ์ระหว่างตาราง แต่ยังไม่คำนึงถึงเทคโนโลยีที่ใช้ในการจัดเก็บข้อมูล
- 3. **Physical Data Model (PDM):** แสดงโครงสร้างข้อมูลในระดับที่ลึกที่สุด รวมถึงการกำหนดตาราง ชนิดข้อมูล ข้อจำกัดต่าง ๆ ที่ใช้ในการจัดเก็บข้อมูลในระบบฐานข้อมูลจริง โดยจะมีความแตกต่างกันไปตามเทคโนโลยีที่ใช้ เช่น Oracle, MySQL, PostgreSQL เป็นต้น

การทำแบบจำลองข้อมูลจะช่วยให้ผู้พัฒนาระบบสามารถเข้าใจความต้องการของธุรกิจ และออกแบบฐานข้อมูลที่ ตอบสนองต่อความต้องการเหล่านั้นได้อย่างมีประสิทธิภาพและถูกต้อง นอกจากนี้ยังช่วยให้การสื่อสารระหว่างผู้พัฒนา ระบบและผู้ใช้งานเป็นไปได้อย่างราบรื่น เนื่องจากมีแบบจำลองที่ชัดเจนในการอธิบายโครงสร้างและความสัมพันธ์ของ ข้อมูล

1.2) อธิบายลักษณะพื้นฐานของ Relational Data Model และความสำคัญของลักษณะ เหล่านี้ที่มีต่อผู้ใช้และผู้ออกแบบฐานข้อมูล

Relational Data Model (RDM) หรือ โมเดลข้อมูลเชิงสัมพันธ์ เป็นโมเดลข้อมูลที่ใช้ในการจัดเก็บและจัดการข้อมูลใน รูปแบบของสัมพันธ์ระหว่างข้อมูล (relation) หรือ ตาราง (tables)

มีลักษณะพื้นฐานคือ:

- มีโครงสร้างข้อมูลที่เป็นตาราง (tables) ซึ่งประกอบด้วยแถว (rows) และคอลัมน์ (columns)
- รองรับรูปแบบความสัมพันธ์ระหว่างข้อมูลทั้งแบบ 1:1, 1:M และ M:N
- รองรับการใช้คีย์หลัก (primary key) และคีย์ต่างประเทศ (foreign key) เพื่อสร้างความสัมพันธ์ระหว่างตาราง
- มีการควบคุมความถูกต้องของข้อมูล (data integrity)
- ใช้ SQL (Structured Query Language) ในการเข้าถึงและจัดการข้อมูล

ความสำคัญต่อผู้ใช้และผู้ออกแบบฐานข้อมูล:

- ช่วยให้ผู้ใช้สามารถเข้าถึงและจัดการข้อมูลได้อย่างมีประสิทธิภาพ โดยไม่ต้องรู้รายละเอียดของการจัดเก็บข้อมูล
- ช่วยให้ผู้ออกแบบฐานข้อมูลสามารถออกแบบโครงสร้างข้อมูลที่เหมาะสมกับความต้องการของธุรกิจ และสามารถ ปรับเปลี่ยนโครงสร้างได้ง่ายเมื่อมีการเปลี่ยนแปลงความต้องการ
- ช่วยให้การจัดการข้อมูลมีความยืดหยุ่นและสามารถปรับขนาดได้ตามความต้องการของระบบ

1.3) วาด ER จาก "A customer can make many payments." แต่ละการชำระเงินมาจาก ลูกค้าคนเดียว

1.4) วาด OO Model จาก ข้อ 3.

1.5) อธิบายความแตกต่างของ Object และคลาส ใน Object-oriented Data Model (OODM)

- Class คือ คำอธิบายหรือแม่แบบ (blueprint) ของวัตถุ (object) ที่มีคุณสมบัติ (attribute/property) และ พฤติกรรม (behavior/method) ที่เหมือนกัน เช่น คลาส "รถยนต์" อาจมีคุณสมบัติ เช่น ยี่ห้อ, รุ่น, สี และ พฤติกรรม เช่น ขับเคลื่อน, หยุด
- **Object** คือ อินสแตนซ์ (instance) ของคลาส ซึ่งเป็นวัตถุที่มีคุณสมบัติและพฤติกรรมตามที่กำหนดในคลาส โดย แต่ละวัตถุจะมีค่าของคุณสมบัติที่แตกต่างกัน เช่น วัตถุ "รถยนต์1" อาจมีคุณสมบัติ ยี่ห้อ = "Toyota", รุ่น = "Corolla", สี = "แดง"

1.6) อะไรคือ relationship และอธิบายชนิดของ relationship พร้อมยกตัวอย่าง

Relationship คือ ความสัมพันธ์ระหว่างเอนทิตี (entity) ในฐานข้อมูล ซึ่งแสดงถึงการเชื่อมโยงข้อมูลระหว่างตาราง ต่าง ๆ ในระบบฐานข้อมูล

ชนิดของ relationship มี 3 ประเภทหลัก ได้แก่:

- 1. **One-to-One (1:1):** ความสัมพันธ์ระหว่างเอนทิตีสองตัวที่แต่ละตัวมีความสัมพันธ์กับอีกตัวหนึ่งเพียงตัวเดียว เช่น หนึ่งบุคคลมีหนึ่งบัตรประชาชน
- 2. **One-to-Many (1:N):** ความสัมพันธ์ระหว่างเอนทิตีหนึ่งตัวที่มีความสัมพันธ์กับหลายตัว เช่น หนึ่งลูกค้าสามารถทำการสั่งซื้อได้หลายรายการ
- 3. **Many-to-Many (M:N):** ความสัมพันธ์ระหว่างเอนทิตีสองตัวที่แต่ละตัวสามารถมีความสัมพันธ์กับอีกตัวหนึ่งได้ หลายตัว เช่น หลักสูตรหนึ่งสามารถมีนักเรียนหลายคนลงทะเบียน และนักเรียนหนึ่งคนสามารถลงทะเบียนใน หลักสูตรหลายหลักสูตร

1.7) ตารางคืออะไร และมีบทบาทสำคัญอย่างไรใน relational data model

ตาราง (table) คือ โครงสร้างพื้นฐานที่ใช้ในการจัดเก็บข้อมูลใน Relational Data Model โดยข้อมูลจะถูกจัดเก็บใน รูปแบบของแถว (rows) และคอลัมน์ (columns)

- **ตาราง (Tables):** ข้อมูลจะถูกจัดเก็บในรูปแบบของตาราง ซึ่งประกอบด้วยแถว (rows) และคอลัมน์ (columns) โดยแต่ละตารางจะแทนข้อมูลของเอนทิตี (entity) หนึ่ง ๆ เช่น ตารางลูกค้า, ตารางสินค้า เป็นต้น
- **แถว (Rows):** แต่ละแถวในตารางจะแทนข้อมูลของเอนทิตีนั้น ๆ หนึ่งรายการ เช่น ข้อมูลของลูกค้าแต่ละคน ข้อมูล ของสินค้าแต่ละรายการ เป็นต้น
- คอลัมน์ (Columns): แต่ละคอลัมน์ในตารางจะแทนคุณสมบัติ (attribute) ของเอนทิตี เช่น ชื่อ, ที่อยู่, เบอร์ โทรศัพท์, ราคาสินค้า, จำนวนสินค้าคงเหลือ เป็นต้น

บทบาทสำคัญของตารางใน Relational Data Model คือ:

- จัดระเบียบข้อมูลให้อยู่ในรูปแบบที่เข้าใจง่าย
- ช่วยให้สามารถเข้าถึงและจัดการข้อมูลได้อย่างมีประสิทธิภาพ
- ช่วยให้สามารถสร้างความสัมพันธ์ระหว่างข้อมูลในตารางต่าง ๆ ได้อย่างชัดเจน

1.8) ER diagram คืออะไร จงยกตัวอย่างประกอบ

ER diagram (Entity-Relationship Diagram) คือ แผนภาพที่ใช้ในการแสดงความสัมพันธ์ระหว่างเอนทิตี (entity) และความสัมพันธ์ (relationship) ในฐานข้อมูล

ER diagram ประกอบด้วยองค์ประกอบหลัก 3 ประเภท ได้แก่ เอนทิตี (entity), แอตทริบิวต์ (attribute) และความ สัมพันธ์ (relationship)

ตัวอย่าง:

- เอนทิตี: ลูกค้า (Customer), สินค้า (Product), การสั่งซื้อ (Order)
- แอตทริบิวต์: ชื่อลูกค้า (Customer Name), รหัสสินค้า (Product ID), วันที่สั่งซื้อ (Order Date)
- ความสัมพันธ์:
 - Customer 1:N Order (ลูกค้าสามารถทำการสั่งซื้อได้หลายรายการ โดยแต่ละรายการสั่งซื้อจะมีลูกค้าเพียงคน เดียว)
 - Order M:N Product (รายการสั่งซื้อสามารถมีสินค้าหลายรายการ และสินค้าหนึ่งรายการสามารถอยู่ได้ในหลาย รายการสั่งซื้อ)

2.1) Identify each relationship type and write all of the business rules. Relationship Types:

- 1. **REGION 1:N STORE:** One-to-Many (ภูมิภาคหนึ่งสามารถมีร้านค้าได้หลายร้าน)
- 2. STORE 1:N EMPLOYEE: One-to-Many (ร้านค้าหนึ่งสามารถจ้างพนักงานได้หลายคน)
- 3. JOB 1:N EMPLOYEE: One-to-Many (ตำแหน่งงานหนึ่งสามารถถูกมอบหมายให้พนักงานได้หลายคน)

Business Rules:

- 1. ภูมิภาคหนึ่งสามารถมีร้านค้าหลายร้าน แต่แต่ละร้านจะอยู่ในภูมิภาคเดียวเท่านั้น
- 2. ร้านค้าหนึ่งสามารถมีพนักงานหลายคน แต่พนักงานแต่ละคนจะทำงานในร้านค้าเดียวเท่านั้น
- 3. พนักงานแต่ละคนจะได้รับมอบหมายตำแหน่งงานเพียงตำแหน่งเดียว แต่ตำแหน่งงานหนึ่งสามารถมีพนักงานได้ หลายคน
- 4. แต่ละภูมิภาคจะถูกระบุโดยรหัส REGION_CODE ที่ไม่ซ้ำกัน และมีคำอธิบาย
- 5. แต่ละร้านค้าจะมีรหัส STORE CODE ที่ไม่ซ้ำกัน มีชื่อ และบันทึกยอดขายสะสมประจำปี
- 6. แต่ละตำแหน่งงานจะถูกระบุโดยรหัส JOB_CODE ที่ไม่ซ้ำกัน และมีคำอธิบายกับค่าจ้างพื้นฐาน
- 7. แต่ละพนักงานจะมีรหัส EMP_CODE ที่ไม่ซ้ำกัน และมีข้อมูลประกอบด้วยตำแหน่ง ชื่อ-นามสกุล อักษรย่อ และวัน เกิด

2.2) Create the basic Crow's Foot ERD for DealCo.

2.3) Identify each relationship type and write all of the business rules. Relationship Types:

- 1. **COURSE 1:N CLASS:** One-to-Many (รายวิชาหนึ่งสามารถมีคลาสเรียนหลายคลาสได้)
- 2. CLASS 1:N ENROLL: One-to-Many (คลาสเรียนหนึ่งสามารถมีนักเรียนลงทะเบียนได้หลายคน)
- 3. **STUDENT 1:N ENROLL:** One-to-Many (นักเรียนหนึ่งคนสามารถลงทะเบียนในหลายคลาสได้)

Business Rules:

- 1. รายวิชาหนึ่งสามารถมีคลาสเรียนหลายคลาส แต่แต่ละคลาสจะต้องอิงจากรายวิชาหนึ่งรายวิชาเท่านั้น
- 2. คลาสเรียนหนึ่งสามารถมีนักเรียนลงทะเบียนได้หลายคน แต่แต่ละข้อมูลการลงทะเบียนจะอ้างอิงถึงคลาสเดียวเท่า นั้น
- 3. นักเรียนหนึ่งคนสามารถลงทะเบียนในหลายคลาส แต่แต่ละข้อมูลการลงทะเบียนจะอ้างอิงถึงนักเรียนเพียงคนเดียว
- 4. รายวิชาทุกวิชาจะมีรหัส CRS_CODE ที่ไม่ซ้ำกัน และจะระบุภาควิชา คำอธิบายรายวิชา และจำนวนหน่วยกิต
- 5. คลาสเรียนแต่ละคลาสจะมีรหัส CLASS_CODE ที่ไม่ซ้ำกัน และมีข้อมูลเกี่ยวกับ section เวลาเรียน ห้องเรียน และ รหัสอาจารย์ผู้สอน
- 6. ข้อมูลการลงทะเบียนจะใช้ CLASS_CODE และ STU_NUM เป็นคีย์รวม และจะเก็บเกรดของนักเรียนในคลาสนั้น
- 7. นักเรียนแต่ละคนจะมีรหัส STU_NUM ที่ไม่ซ้ำกัน และมีข้อมูลส่วนตัวและข้อมูลทางการศึกษา เช่น ชื่อ วันเกิด GPA และเบอร์โทรศัพท์

2.4) Create the basic Crow's Foot ERD for Tiny College.

2.5) Create the UML class diagram that reflects the entities and relationships you identified in the relational diagram.

2.6) CREATE OO MODEL