Amazon Networking VPC - Part 2

VPC Endpoints

VPC Endpoints (AWS PrivateLink)

- Every AWS service is publicly exposed (public URL)
- VPC Endpoints (powered by AWS PrivateLink) allows you to connect to AWS services using a private network instead of using the public Internet
- They're redundant and scale horizontally
- They remove the need of IGW, NATGW, ... to access AWS Services
- In case of issues:
 - Check DNS Setting Resolution in your VPC
 - Check Route Tables

Types of Endpoints

- Interface Endpoints (powered by PrivateLink)
 - Provisions an ENI (private IP address) as an entry point (must attach a Security Group)
 - Supports most AWS services
 - \$ per hour + \$ per GB of data processed

Gateway Endpoints

- Provisions a gateway and must be used <u>as a target in a route table (does not use security groups)</u>
- Supports both S3 and DynamoDB
- Free

Gateway or Interface Endpoint for S3?

- Gateway is most likely going to be preferred all the time at the exam
- Cost: free for Gateway, \$ for interface endpoint
- Interface Endpoint is preferred access is required from onpremises (Site to Site VPN or Direct Connect), a different VPC or a different region

Lambda in VPC accessing DynamoDB

- DynamoDB is a public service from AWS
- Option 1: Access from the public internet
 - Because Lambda is in aVPC, it needs a NAT Gateway in a public subnet and an internet gateway
- Option 2 (better & free): Access from the private VPC network
 - Deploy a VPC Gateway endpoint for DynamoDB
 - Change the Route Tables

VPC Flow Logs

- Capture information about IP traffic going into your interfaces:
 - VPC Flow Logs
 - Subnet Flow Logs
 - Elastic Network Interface (ENI) Flow Logs
- Helps to monitor & troubleshoot connectivity issues
- Flow logs data can go to S3, CloudWatch Logs, and Kinesis Data Firehose
- Captures network information from AWS managed interfaces too: ELB, RDS, ElastiCache, Redshift, WorkSpaces, NATGW, Transit Gateway...

VPC Flow Logs

VPC Flow Logs Syntax

 version
 interface-id
 dstaddr
 dstport
 packets
 start
 action

 2
 123456789010
 eni-1235b8ca123456789
 172.31.16.139
 172.31.16.21
 20641
 22
 6
 20
 4249
 1418530010
 1418530070
 ACCEPT
 0K

 2
 123456789010
 eni-1235b8ca123456789
 172.31.9.69
 172.31.9.12
 49761
 3389
 6
 20
 4249
 1418530010
 1418530070
 REJECT
 0K

 account-id
 srcaddr
 srcport protocol bytes
 end
 log-status

- srcaddr & dstaddr help identify problematic IP
- srcport & dstport help identity problematic ports
- Action success or failure of the request due to Security Group / NACL
- Can be used for analytics on usage patterns, or malicious behavior
- Query VPC flow logs using Athena on S3 or CloudWatch Logs Insights
- Flow Logs examples: https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs-records-examples.html

VPC Flow Logs - Troubleshoot SG & NACL issues

Look at the "ACTION" field

Incoming Requests

- Inbound REJECT => NACL or SG
- Inbound ACCEPT, Outbound REJECT => NACL

Outgoing Requests

- Outbound REJECT => NACL or SG
- Outbound ACCEPT, Inbound REJECT => NACL

VPC Flow Logs - Architectures

AWS Site-to-Site VPN

AWS Site-to-Site VPN

- Virtual Private Gateway (VGW)
 - VPN concentrator on the AWS side of the VPN connection
 - VGW is created and attached to the VPC from which you want to create the Site-to-Site VPN connection
 - Possibility to customize the ASN (Autonomous System Number)
- Customer Gateway (CGW)
 - Software application or physical device on customer side of the VPN connection
 - https://docs.aws.amazon.com/vpn/latest/s2svpn/your-cgw.html#DevicesTested

Site-to-Site VPN Connections

- Customer Gateway Device (On-premises)
 - What IP address to use?
 - Public Internet-routable IP address for your Customer Gateway device
 - If it's behind a NAT device that's enabled for NAT traversal (NAT-T), use the public IP address of the NAT device
- Important step: enable Route Propagation for the Virtual Private Gateway in the route table that is associated with your subnets
- If you need to ping your EC2 instances from on-premises, make sure you add the ICMP protocol on the inbound of your security groups

AWS VPN CloudHub

- Provide secure communication between multiple sites, if you have multiple VPN connections
- Low-cost hub-and-spoke model for primary or secondary network connectivity between different locations (VPN only)
- It's aVPN connection so it goes over the public Internet
- To set it up, connect multiple VPN connections on the same VGW, setup dynamic routing and configure route tables

Direct Connect (DX)

- Provides a dedicated <u>private</u> connection from a remote network to your VPC
- Dedicated connection must be setup between your DC and AWS Direct Connect locations
- You need to setup a Virtual Private Gateway on your VPC
- Access public resources (S3) and private (EC2) on same connection
- Use Cases:
 - Increase bandwidth throughput working with large data sets lower cost
 - More consistent network experience applications using real-time data feeds
 - Hybrid Environments (on prem + cloud)
- Supports both IPv4 and IPv6

Direct Connect Diagram

Direct Connect Gateway

• If you want to setup a Direct Connect to one or more VPC in many different regions (same account), you must use a Direct Connect Gateway

Direct Connect - Connection Types

- Dedicated Connections: 1Gbps,10 Gbps and 100 Gbps capacity
 - Physical ethernet port dedicated to a customer
 - Request made to AWS first, then completed by AWS Direct Connect Partners
- Hosted Connections: 50Mbps, 500 Mbps, to 10 Gbps
 - Connection requests are made via AWS Direct Connect Partners
 - Capacity can be added or removed on demand
 - 1, 2, 5, 10 Gbps available at select AWS Direct Connect Partners
- Lead times are often longer than 1 month to establish a new connection

Direct Connect - Encryption

- Data in transit is <u>not encrypted</u> but is private
- AWS Direct Connect + VPN provides an IPsec-encrypted private connection
- Good for an extra level of security, but slightly more complex to put in place

Direct Connect - Resiliency

High Resiliency for Critical Workloads

One connection at multiple locations

Maximum Resiliency for Critical Workloads

Maximum resilience is achieved by separate connections terminating on separate devices in more than one location.

Site-to-Site VPN connection as a backup

• In case Direct Connect fails, you can set up a backup Direct Connect connection (expensive), or a Site-to-Site VPN connection

Network topologies can become complicated

Transit Gateway

- For having transitive peering between thousands of VPC and on-premises, hub-and-spoke (star) connection
- Regional resource, can work cross-region
- Share cross-account using Resource Access Manager (RAM)
- You can peer Transit Gateways across regions
- Route Tables: limit which VPC can talk with other VPC
- Works with Direct Connect Gateway, VPN connections
- Supports IP Multicast (not supported by any other AWS service)

Transit Gateway: Site-to-Site VPN ECMP

- ECMP = Equal-cost multi-path routing
- Routing strategy to allow to forward a packet over multiple best path
- Use case: create multiple Siteto-Site VPN connections to increase the bandwidth of your connection to AWS

Transit Gateway: throughput with ECMP

VPN to virtual private gateway

$$1x \stackrel{\frown}{P} = 1x$$

VPN to transit gateway

$$1x \quad \overrightarrow{P} = 1x \quad \overrightarrow{PC} \quad \overrightarrow{P$$

$$1x = 2.5 \text{ Gbps (ECMP)} - 2 \text{ tunnels used}$$

$$3x = 7.5 \text{ Gbps (ECMP)}$$

+\$\$ per GB of TGW processed data

Transit Gateway - Share Direct Connect between multiple accounts

VPC - Traffic Mirroring

- Allows you to capture and inspect network traffic in your VPC
- Route the traffic to security appliances that you manage
- Capture the traffic
 - From (Source) ENIs
 - To (Targets) an ENI or a Network Load Balancer
- Capture all packets or capture the packets of your interest (optionally, truncate packets)
- Source and Target can be in the same VPC or different VPCs (VPC Peering)
- Use cases: content inspection, threat monitoring, troubleshooting, ...

EC2 instances with Security Appliances

What is IPv6?

- IPv4 designed to provide 4.3 Billion addresses (they'll be exhausted soon)
- IPv6 is the successor of IPv4
- IPv6 is designed to provide 3.4×10^{-5} unique IP addresses
- Every IPv6 address in AWS is public and Internet-routable (no private range)
- Format -+ x.x.x.x.x.x.x.x.x (\underline{x} is hexadecimal, range can be from 0000 to ffff)
- Examples:
 - 2001:db8:3333:4444:5555:6666:7777:8888
 - 2001:db8:3333:4444:cccc:dddd:eeee:ffff
 - ::- + all 8 segments are zero
 - 2001:db8::-+ the last 6 segments are zero
 - ::1234:5678 + the first 6 segments are zero
 - 2001:db8::1234:5678 + the middle 4 segments are zero

IPv6 in VPC

- IPv4 cannot be disabled for your VPC and subnets
- You can enable IPv6 (they're public IP addresses) to operate in dual-stack mode
- Your EC2 instances will get at least a private internal IPv4 and a public IPv6
- They can communicate using either IPv4 or IPv6 to the internet through an Internet Gateway

IPv6 Troubleshooting

- IPv4 cannot be disabled for your VPC and subnets
- So, if you cannot launch an EC2 instance in your subnet
 - It's not because it cannot acquire an IPv6 (the space is very large)
 - It's because there are no available IPv4 in your subnet
- Solution: create a new IPv4 CIDR in your subnet

Egress-only Internet Gateway

- Used for IPv6 only
- (similar to a NAT Gateway but for IPv6)
- Allows instances in your VPC outbound connections over IPv6 while preventing the internet to initiate an IPv6 connection to your instances
- You must update the Route Tables

IPv6 Routing

Route Table

VPC Section Summary (1/3)

- CIDR IP Range
- VPC Virtual Private Cloud => we define a list of IPv4 & IPv6 CIDR
- Subnets tied to an AZ, we define a CIDR
- Internet Gateway at the VPC level, provide IPv4 & IPv6 Internet Access
- Route Tables must be edited to add routes from subnets to the IGW,VPC Peering Connections,VPC Endpoints, ...
- Bastion Host public EC2 instance to SSH into, that has SSH connectivity to EC2 instances in private subnets
- NAT Instances gives Internet access to EC2 instances in private subnets. Old, must be setup in a public subnet, disable Source / Destination check flag
- NAT Gateway managed by AWS, provides scalable Internet access to private EC2 instances, when the target is an IPv4 address

VPC Section Summary (2/3)

- NACL stateless, subnet rules for inbound and outbound, don't forget Ephemeral Ports
- Security Groups stateful, operate at the EC2 instance level
- VPC Peering connect two VPCs with non overlapping CIDR, non-transitive
- VPC Endpoints provide private access to AWS Services (S3, DynamoDB, CloudFormation, SSM) within aVPC
- VPC Flow Logs can be setup at the VPC / Subnet / ENI Level, for ACCEPT and REJECT traffic, helps identifying attacks, analyze using Athena or CloudWatch Logs Insights
- Site-to-Site VPN setup a Customer Gateway on DC, a Virtual Private Gateway on VPC, and site-to-site VPN over public Internet
- AWS VPN CloudHub hub-and-spoke VPN model to connect your sites

VPC Section Summary (3/3)

- Direct Connect setup a Virtual Private Gateway on VPC, and establish a direct private connection to an AWS Direct Connect Location
- Direct Connect Gateway setup a Direct Connect to many VPCs in different AWS regions
- AWS PrivateLink / VPC Endpoint Services:
 - Connect services privately from your service VPC to customers VPC
 - Doesn't need VPC Peering, public Internet, NAT Gateway, Route Tables
 - Must be used with Network Load Balancer & ENI
- ClassicLink connect EC2-Classic EC2 instances privately to your VPC
- Transit Gateway transitive peering connections for VPC, VPN & DX
- Traffic Mirroring copy network traffic from ENIs for further analysis
- Egress-only Internet Gateway like a NAT Gateway, but for IPv6 targets

Networking Costs in AWS per GB - Simplified

- Use Private IP instead of Public IP for good savings and better network performance
- Use same AZ for maximum savings (at the cost of high availability)

Minimizing egress traffic network cost

- Egress traffic: outbound traffic (from AWS to outside)
- <u>Ingress traffic:</u> inbound traffic - from outside to AWS (typically free)
- Try to keep as much internet traffic within AWS to minimize costs
- Direct Connect location that are co-located in the same AWS Region result in lower cost for egress network

Egress cost is high

Egress cost is minimized

S3 Data Transfer Pricing - Analysis for USA

- S3 ingress: free
- S3 to Internet: \$0.09 per GB
- S3 Transfer Acceleration:
 - Faster transfer times (50 to 500% better)
 - Additional cost on top of Data Transfer Pricing: +\$0.04 to \$0.08 per GB
- S3 to CloudFront: \$0.00 per GB
- CloudFront to Internet: \$0.085 per GB (slightly cheaper than S3)
 - Caching capability (lower latency)
 - Reduce costs associated with S3 Requests Pricing (7x cheaper with CloudFront)
- S3 Cross Region Replication: \$0.02 per GB

Pricing: NAT Gateway vs Gateway VPC Endpoint

Destination	Target
10.0.0.0/16	Local
0.0.0.0/0	igw-id

Subnet 2 route table

Destination	Target
10.0.0.0/16	Local
pl-id for Amazon S3	vpce-id

Network Protection on AWS

- To protect network on AWS, we've seen
 - Network Access Control Lists (NACLs)
 - Amazon VPC security groups
 - AWS WAF (protect against malicious requests)
 - AWS Shield & AWS Shield Advanced
 - AWS Firewall Manager (to manage them across accounts)
- But what if we want to protect in a sophisticated way our entire VPC?

AWS Network Firewall

- Protect your entire Amazon VPC
- From Layer 3 to Layer 7 protection
- Any direction, you can inspect
 - VPC to VPC traffic
 - Outbound to internet
 - Inbound from internet
 - To / from Direct Connect & Site-to-Site VPN
- Internally, the AWS Network Firewall uses the AWS Gateway Load Balancer
- Rules can be centrally managed crossaccount by AWS Firewall Manager to apply to many VPCs

Network Firewall - Fine Grained Controls

- Supports 1000s of rules
 - IP & port example: 10,000s of IPs filtering
 - Protocol example: block the SMB protocol for outbound communications
 - Stateful domain list rule groups: only allow outbound traffic to *.mycorp.com or third-party software repo
 - General pattern matching using regex
- Traffic filtering: Allow, drop, or alert for the traffic that matches the rules
- Active flow inspection to protect against network threats with intrusionprevention capabilities (like Gateway Load Balancer, but all managed by AWS)
- Send logs of rule matches to Amazon S3, CloudWatch Logs, Kinesis Data Firehose