Existence of Solution to the Nonlinear Dirac Equation

Muyi Chen

June 2023

Abstract

For nonlinear partial differential equations with compactly supported nonlinearity, we can study the scattering solutions. In this paper, for the compactly supported cubic nonlinearity, I will use fixed point arguments to show the existence of solutions to the nonlinear Helmholtz equation and the nonlinear Dirac equation.

1 Introduction

In this paper, I will discuss the existence of solutions to several partial differential equations (PDEs). The first four sections are devoted to notes about some basics taken from [5]. In section five, I will show the existence of an outgoing solution of the nonlinear stationary Schrödinger equation in 1-D. The leading order scattering matrix will also be shown. In section six, I first generalize the argument to the nonlinear Dirac equation in 1-D, then to the nonlinear Dirac equation in 2-D.

2 Postulate of quantum mechanics

In quantum mechanics, a particle in \mathbb{R}^3 is described by a complex-valued function, the wavefunction:

$$\psi(x,t), \quad (x,t) \in \mathbb{R}^3 \times \mathbb{R}.$$
 (2.1)

The square of the wave equation $\rho_t(x) = |\psi(x,t)|^2$ is interpreted as the **probability density** of the particle in time t. So ψ must be normalized. The position x of the particle is called observables, and its **expectation** is

$$\mathbb{E}_{\psi}(x) = \int_{\mathbb{R}^3} x |\psi(x, t)|^2 d^3 x.$$
 (2.2)

In real life, x can not be measured directly, and one will be able to measure certain functions of x. For example, check whether the particle is inside a certain area Ω . The probability of finding the particle in this area is

$$\mathbb{E}_{\psi}(\chi_{\Omega}) = \int_{\mathbb{R}^3} \chi_{\Omega}(x) |\psi(x,t)|^2 d^3 x = \int_{\Omega} |\psi(x,t)|^2 d^3 x.$$
 (2.3)

The **mean-square deviation(variance)** is given by $\Delta_{\psi}(x)^2 = \mathbb{E}_{\psi}(x^2) - \mathbb{E}_{\psi}(x)^2$, and is always non-zero.

In general, quantum mechanical systems are described by normalized vectors in Hilbert spaces. Measurable quantities are called observables and correspond to self-adjoint operators in the Hilbert space. The expectation of a self-adjoint operator A if the system is in state ψ is given by a real number

$$\mathbb{E}_{\psi}(A) = \langle \psi, A\psi \rangle = \langle A\psi, \psi \rangle \tag{2.4}$$

Similarly, the mean-square deviation is

$$\Delta_{\psi}(A)^{2} = \mathbb{E}_{\psi}(A^{2}) - \mathbb{E}_{\psi}(A)^{2} = \|(A - \mathbb{E}_{\psi}(A))\psi\|^{2}$$
(2.5)

We require that A is defined on the dense subset $\mathcal{D}(A) \in \mathcal{H}$, called the **domain** of A.

Now let's investigate the time evolution of a quantum mechanical system. Given initial state $\psi(0)$, there should be a unique $\psi(t) = U(t)\psi(0)$. Moreover, it follows from the experimental results that **superposition of states** holds: $U(t) (\alpha_1\psi_1(0) + \alpha_2\psi_2(0)) = \alpha_1\psi_1(t) + \alpha_2\psi_2(t)$. This implies U(t) is a linear operator. In addition, $||U(t)\psi|| = ||\psi|| = 1$ since $\psi(t)$ is a state for all t. So U(t) is unitary. Since we assumed the uniqueness of the solution,

$$U(0) = \mathbb{I}, \quad U(t+s) = U(t)U(s) \tag{2.6}$$

A family of U(t) is called a **one-parameter unitary group**. We also assume strong continuous:

$$\lim_{t \to t_0} U(t)\psi = U(t_0)\psi, \quad \psi \in \mathcal{H}. \tag{2.7}$$

Each such group has an **infinitesimal generator** defined by

$$H\psi = \lim_{t \to 0} \frac{\mathrm{i}}{t} (U(t)\psi - \psi), \quad \mathcal{D}(H) = \left\{ \psi \in \mathcal{H} \mid \lim_{t \to 0} \frac{1}{t} (U(t)\psi - \psi) \text{ exists } \right\}. \tag{2.8}$$

The operator H is called the **Hamiltonian**, which gives the energy of the system. If $\psi(0) \in \mathcal{D}(H)$, then $\psi(t)$ is a solution of the **Schrödinger equation**

$$i\frac{d}{dt}\psi(t) = H\psi(t). \tag{2.9}$$

3 The free Schrödinger equation

The free Schrödinger equation, corresponding to a free particle in \mathbb{R}^d , is given by

$$i\partial_t \psi(t, x) = -\Delta_x \psi(t, x) \tag{3.1}$$

where we set $\hbar = 1$ and m = 1/2. This is a special case of the Schrödinger equation when $H \equiv -\Delta$. We can find a special solution by separating $\psi(t, x) = \phi(x)T(t)$. Plugging into

the equation, we have $-\frac{\partial^2 \phi(x)}{\partial x^2} T(t) = i\phi(x) \frac{\partial T(t)}{\partial t}$. Putting all x dependent on the left side and all t dependent on the right side, we have $\frac{-\frac{\partial^2 \phi(x)}{\partial x^2}}{\phi(x)} = i \frac{\frac{\partial T(t)}{\partial t}}{T(t)} \equiv \lambda$. The equation

$$-\frac{\partial^2 \phi(x)}{\partial x^2} = \lambda \phi(x) \tag{3.2}$$

is called the time-independent Schrödinger equation.

Now $\psi(t,x) = e^{-i\lambda t}\phi(x)$ is solution to equation 3.1. To obtained solutions to $\phi(x)$, note plane waves on \mathbb{R}^d are solutions to equation 3.2:

$$\phi_k(x) = e^{ik \cdot x} = e^{i(k_1 x_1 + \dots + k_d x_d)} \tag{3.3}$$

In addition,

$$-\Delta_x \phi_k(x) = (k_1^2 + \dots + k_d^2) e^{ik \cdot x} = |k|^2 \phi_k(x)$$
(3.4)

Thus $\lambda = |k|^2$.

Thus a solution to The free Schrödinger equation is

$$\psi_k(t,x) = e^{-ik^2t + ikx} \tag{3.5}$$

However, notice that $\psi(t,\cdot) \notin L^2(\mathbb{R}^d)$ for all t,

$$\int dx |\psi_k(t,x)|^2 = +\infty \tag{3.6}$$

This does not make sense in quantum mechanics.

Since the Schrödinger equation is a linear equation, a linear combination of Eq. 3.5 is also a solution. We consider solutions of the form:

$$\psi(t,x) = \int_{\mathbb{R}^d} \rho(k)\psi_k(x,t)dk \equiv \int_{\mathbb{R}^d} \rho(k)e^{-i(k^2t - k \cdot x)}dk$$
 (3.7)

subject to the initial condition

$$\psi(0,x) = \psi_0(x) = \int_{\mathbb{R}^d} \rho(k)e^{ikx}dk \tag{3.8}$$

The question is for what class of $\rho(k)$ the function $\psi(t,x)$ makes sense in quantum mechanics, that is $\psi(t,\cdot) \in L^2(\mathbb{R}^d)$?

Now we use the Fourier transform to solve the free Schrödinger equation. We get

$$i\partial_t \hat{\psi}(t,k) = |k|^2 \hat{\psi}(t,k) \tag{3.9}$$

The solution of this ordinary differential equation is

$$\hat{\psi}(t,k) = e^{-i|k|^2 t} \hat{\psi}(0,k) \tag{3.10}$$

Then we take the inverse Fourier transform to get:

$$\psi(t,x) = (\mathcal{F}^{-1}e^{-i|k|^2t}\mathcal{F}\psi_0)(x)$$
(3.11)

Theorem 3.1. (Existence of a unique global solution for the free Schrödinger equation) Let $\psi_0 \in \mathcal{S}(\mathbb{R}^d)$ (\mathcal{S} denotes the Schwartz space). Then, there exists a global solution $\psi \in \mathcal{C}(\mathbb{R}_t, \mathcal{S}(R)^d)$ of the free Schrödinger equation for $t \neq 0$, given by the expression

$$\psi(t,x) = \frac{1}{(2\pi i t)^{d/2}} \int_{\mathbb{R}^d} e^{i\frac{|x-y|^2}{t}} \psi_0(y) dy$$
 (3.12)

with initial condition $\psi(0,x) = \psi_0(x)$. Moreover, $||\psi(t,\cdot)||_{L^2(\mathbb{R}^d)} = ||\psi_0||_{L^2(\mathbb{R}^d)}$

Remark 3.1. Eq. 3.12 implies that

$$\sup_{x \in \mathbb{R}^d} |\psi(t, x)| \le \frac{||\psi_0||_{L^1}}{(2\pi t)^{d/2}} \to 0 \tag{3.13}$$

as $t \to \infty$. However, the above theorem tells us that the L^2 norm stays constant. This means the solution is flattened in space.

4 Quantum dynamics

In the finite-dimensional case, the solution of the Schrödinger equation

$$i\frac{d}{dt}\psi(t) = H\psi(t) \tag{4.1}$$

is given by

$$\psi(t) = e^{-itH}\psi(0) \tag{4.2}$$

We want to generalize this to self-adjoint operators using the spectral theorem.

4.1 Existence and uniqueness of the solution

For self-adjoint operator H, we define

$$U(t) = e^{-iHt} := \int e^{-i\lambda t} dP(\lambda)$$
(4.3)

where P is the projection-valued measure associated to $(H, \mathcal{D}(H))$.

Theorem 4.1. Let H be a self-adjoint operator and let $U(t) = e^{-iHt}$. Then

- (i) U(t) is a strongly continuous one-parameter unitary group.
- (ii) the limit $\lim_{t\to 0} \frac{1}{t}(U(t)\psi \psi)$ exists if and only if $\psi \in \mathcal{D}(H)$. In this case $\lim_{t\to 0} \frac{1}{t}(U(t)\psi \psi) = -iH\psi$.
- (iii) $U(t)\mathcal{D}(H) = \mathcal{D}(H)$ and HU(t) = U(t)H

This theorem implies $U(t)\psi(0)$ is indeed the solution to 4.1. In fact it is also the only solution.

Lemma 4.2. Let $\psi_0 \equiv \psi(0) \in \mathcal{D}(H)$, and $\psi(t)$ be the solution to 4.1. Then $\psi(t) = U(t)\psi_0$

Now we know self-adjoint corresponds to a one-parameter unitary group. The Stone's theorem tells us the converse.

Theorem 4.3. (Stone) Let U(t) be a weakly continuous one-parameter unitary group. Let $H: \mathcal{D}(H)$ be the generator of U(t). Then H is self-adjoint and $U(t) = e^{-iHt}$.

4.2 The RAGE theorem

In this section, we want to understand the asymptotic behavior of a quantum system, based on the spectral properties of a self-adjoint operator H. Let $\mathcal{H}_{ac}, \mathcal{H}_{sc}$, and \mathcal{H}_{pp} be the absolutely continuous, singularly continuous, pure point spectral subspaces of H, respectively. We know $\mathcal{H} = \mathcal{H}_{ac} \bigoplus \mathcal{H}_{sc} \bigoplus \mathcal{H}_{pp}$.

Firstly, let's make some simple observation. Let $\psi \in \mathcal{H}_{ac}$, then the measure μ_{ψ} is absolutely continuous. For all $\varphi \in \mathcal{H}$, we have

$$|\mu_{\varphi,\psi}(\Omega)| = |\langle \varphi, P(\Omega)\psi \rangle| \le ||\langle \varphi, P(\Omega)\varphi \rangle||^{1/2} ||\langle \psi, P(\Omega)\psi \rangle||^{1/2} = \mu_{\varphi}(\Omega)^{1/2} \mu_{\psi}(\Omega)^{1/2}$$
(4.4)

Hence, $\mu_{\varphi,\psi}$ is also absolutely continuous. Define $U(t)=e^{-iHt}$ as before, by the Riemann-Lebesgue lemma, we have

$$\langle \varphi, U(t)\psi \rangle = \int e^{-i\lambda t} d\mu_{\varphi,\psi} \to 0$$
 (4.5)

as $t \to 0$. This implies, if we start from the absolutely continuous spectral subspace, then the probability of finding the system in any state φ is zero. However, if ψ is an eigenvector of H, then

$$|\langle \varphi, U(t)\psi \rangle| = |\langle \varphi, \psi \rangle| \tag{4.6}$$

shows the state is unchanged as time evolves.

We have a theorem that gives us more comprehensive understanding of the long-term behavior of the system.

Theorem 4.4 (Wiener). Let μ be a finite complex Borel measure on \mathbb{R} and

$$\hat{\mu}(t) := \int_{\mathbb{R}} e^{-it\lambda} d\mu(\lambda). \tag{4.7}$$

Then,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T |\hat{\mu}(t)|^2 dt = \sum_{\lambda \in \mathbb{R}} |\mu(\{\lambda\})|^2, \tag{4.8}$$

where the sum on the right-hand side is finite.

Remark 4.1. Since every Borel measure can be decomposed as $\mu = \mu_{ac} + \mu_{sc} + \mu_{pp}$, and since μ_{ac} and μ_{sc} are continuous, $\mu(\{\lambda\}) = \mu_{pp}(\lambda)$. Then, $\sum_{\lambda \in \mathbb{R}} |\mu(\{\lambda\})|^2 = \sum_{\lambda \in \mathbb{R}} |\mu_{pp}(\{\lambda\})|^2$. Note the support of μ_{pp} is a countable set.

Now let's apply this theorem to study the long-term behavior of the system. Let $\psi \in \mathcal{H}_{ac} \bigoplus \mathcal{H}_{sc}$, and $\varphi \in \mathcal{H}$. Then, the measure $\mu_{\varphi,\psi}(\{\lambda\}) = 0$. By the Theorem 4.4, we have

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T |\langle \varphi, e^{-iHt} \psi \rangle|^2 dt = 0 \tag{4.9}$$

The average of probability finding the system in φ tends to zero.

We can also consider $|\langle \varphi, e^{-iHt}\psi \rangle|^2$ as $|P_{\varphi}U(t)\psi|^2$, where P_{φ} denotes the orthogonal projection onto φ . Inspired by this, we extend to a more general class of operators, the compact operators, which generalize the finite rank operators. An operator $K \in \mathcal{L}(\mathcal{H})$ is called a **finite rank operator** if its range is of finite dimension. Every finite rank operator can be written as a linear combination of projection operators.

Definition 4.1. An operator $K \in \mathcal{L}(\mathcal{H})$ is called compact if K maps every unit ball in \mathcal{H} to a pre-compact set.

Definition 4.2. An operator $K : \mathcal{D}(K) \to \mathcal{H}$ is called relatively compact with respect to an self-adjoint operator H if there exists $z \in \rho(H)$, such that $KR_z(H) = K(z-H)^{-1}$ is compact.

The notion of a relatively compact operator gives us the following theorem, which is handy to our goal, the RAGE theorem.

Theorem 4.5. Let H be a self-adjoint operator, K be relatively compact with respect to H. Then, for all $\psi \in \mathcal{D}(H)$,

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} |Ke^{-iHt} P_{c}(H)\psi|^{2} dt = 0, \tag{4.10}$$

and

$$\lim_{t \to \infty} ||Ke^{-iHt} P_{ac}(H)\psi||^2 = 0, \tag{4.11}$$

where $P_c(H) = P_{ac}(H) + P_{sc}(H)$ is the orthogonal projection onto $\mathcal{H}_{ac} \bigoplus \mathcal{H}_{sc}$. Furthermore, if K is bounded, then the result holds true for all $\psi \in \mathcal{H}$.

Finally, we have the RAGE theorem, which tells us $||Ke^{-iHt}\psi||$ can be used to identify the spectral subspaces \mathcal{H}_c and \mathcal{H}_{pp} of H.

Theorem 4.6. (RAGE) Let H be a self-adjoint operator and K_n be a sequence of relatively compact operators with respect to H, converging strongly to the identity. Then,

$$\mathcal{H}_c = \{ \psi \in \mathcal{H} | \lim_{n \to \infty} \lim_{T \to \infty} \frac{1}{T} \int_0^T ||K_n e^{-iHt} \psi|| = 0 \}$$
 (4.12)

$$\mathcal{H}_{pp} = \{ \psi \in \mathcal{H} | \lim_{n \to \infty} \sup_{t \ge 0} ||(\mathbb{I} - K_n)e^{-iHt}\psi|| = 0 \}$$
(4.13)

5 Nonlinear stationary Schrödinger equation in 1-D

In this section, we consider the nonlinear stationary Schrödinger equation defined on R:

$$(-\Delta - k^2)u = f(u) \tag{5.1}$$

where f represents the nonlinearity of the form

$$f(u) = V(x)u + w(x)|u|^{2}u$$
(5.2)

with w(x) and V(x) compactly supported and bounded. Our first task is to show the existence of a solution by contraction mapping. The second task is to approximate the scattering matrix.

5.1 Existence of the outgoing solution

Let's first consider the case $V(x) \equiv 0$. The solution outside the support of the perturbation is just the superposition of plane waves. We decompose $u = u_{out} + u_{in}$, where $u_{in} = Ae^{ikx}$ is the incoming solution that solves the unperturbed equation, and u_{out} is a correction. Plugging into 5.1:

$$(-\Delta - k^2)(u_{out} + u_{in}) = f(u_{out} + u_{in}). \tag{5.3}$$

Let's now rewrite our problem:

$$(-\Delta - k^2)\tilde{u} = f(u_{out} + Ae^{ikx}) \tag{5.4}$$

for $\tilde{u} \in X$, for some complete metric space X. \tilde{u} is then given by

$$\tilde{u} = (-\Delta - k^2)_{out}^{-1} f(u_{out} + Ae^{ikx})$$
 (5.5)

where we used the outgoing condition $(-\Delta - k^2)_{out}^{-1} = \lim_{\varepsilon \to 0^+} (-\Delta - (k^2 + i\varepsilon))^{-1}$. If we show $T(u_{out}) := (-\Delta - k^2)_{out}^{-1} f(u_{out} + Ae^{ikx})$ is a contraction X, then the above equation has a unique fixed point in X satisfying $u_{out} = (-\Delta - k^2)_{out}^{-1} f(u_{out} + Ae^{ikx})$.

We need to first discuss the function space we should work with. The function u must be twice differentiable, and thus must be bounded on any compact domain. This implies that our nonlinear term $V(x)u + w(x)|u|^2u$ is bounded on any compact domain. Outside the compact domain of perturbation, the solution is a plane wave. Since every term is in $L^{\infty}(\mathbb{R})$, we consider $u \in L^{\infty}(\mathbb{R})$.

Now we define the outgoing Green's function. If $k^2 \notin \sigma(-\Delta) \equiv [0, \infty)$, then the solution is:

$$\tilde{u} = \left[(-\Delta - k^2)^{-1} (f(u_{out} + Ae^{ikx})) \right] (x)$$
(5.6)

with the corresponding Green's function:

$$G(x; k^2) = \frac{1}{2\sqrt{-k^2}} e^{-|x|\sqrt{-k^2}}.$$
 (5.7)

The outgoing Green's function when $k \in (0, \infty)$ is

$$G_{out}(x;k^2) = \lim_{\varepsilon \to 0^+} G(x;k^2 + i\varepsilon) = -\frac{1}{2ik} e^{i|k||x|}.$$
 (5.8)

We will use a variance of the fixed point argument.

Theorem 5.1. Let (X,d) be a complete metric space, and $A: X \to X$. Furthermore, assume there exists $a \in X$ and r > 0 such that

- (i) the ball B(a,r) is an invariant set for A.
- (ii) the map A is a contraction on B(a,r).

Then, there exists a unique fixed point of A inside B(a,r).

Now let me introduce the first existence theorem.

Theorem 5.2. For an incoming solution $u_{in} = Ae^{ikx}$ with the amplitude A small enough, there exists an outgoing solution u_{out} for eqn. 5.1.

Proof. Consider $B_{L^{\infty}}(-Ae^{ikx}, r)$, we want to show T is invariant on this ball for suitable r. Let $v \in B_{L^{\infty}}(-Ae^{ikx}, r)$, we have

$$||T(v)||_{L^{\infty}} = \operatorname{ess\,sup} \left| \int_{\mathbb{R}} -\frac{1}{2ik} e^{ik|x-y|} w(y) \left| v + A e^{iky} \right|^2 (v + A e^{iky}) dy \right|$$

$$\leq \frac{1}{2k} \int_{\mathbb{R}} |w(y)| \left| v + A e^{iky} \right|^3 dy$$

$$\leq \frac{||w||_{L^1}}{2k} ||v + A e^{iky}||_{L^{\infty}}^3$$

$$\leq \frac{||w||_{L^1}}{2k} r^3.$$

Thus r needs to satisfy

$$\frac{\|w\|_{L^1}}{2k}r^3 + |A| \le r. {(5.9)}$$

For contraction, let $v, \tilde{v} \in B_{L^{\infty}}(-Ae^{ikx}, r)$ and set $a(x) = v(x) + Ae^{ikx}$, $b(x) = \tilde{v}(x) + Ae^{ikx}$. Note $||a||_{L^{\infty}} \leq r$ and $||b||_{L^{\infty}} \leq r$. Then,

$$||T(v) - T(\tilde{v})||_{L^{\infty}} \leq \frac{||w||_{L^{1}}}{2k} ||v + Ae^{ikx}|^{2} (v + Ae^{ikx}) - |\tilde{v} + Ae^{ikx}|^{2} (\tilde{v} + Ae^{ikx}) ||_{L^{\infty}}$$

$$= \frac{||w||_{L^{1}}}{2k} ||a|^{2} - |b|^{2} b||_{L^{\infty}}$$

$$= \frac{||w||_{L^{1}}}{2k} ||(|a|^{2} + |b|^{2}) (a - b) + ab (\overline{a} - \overline{b}) ||_{L^{\infty}}$$

$$\leq \frac{||w||_{L^{1}}}{2k} 3r^{2} ||v - \tilde{v}||_{L^{\infty}}.$$

We then require

$$r < \sqrt{\frac{2k}{3\|w\|_{L^1}}}. (5.10)$$

For suitable $|A| \neq 0$, M and $||w||_{\infty}$ such that there exists a r satisfies 5.9 and 5.10, the contraction mapping gives us a non-trivial outgoing solution, since $u_{out} = 0$ is not a fixed point. The global solution $u_{in} + u_{out}$ is also not trivial since $u_{out} = Ae^{ikx}$ is not a fixed point.

Remark 5.1. When there exists a r such that 5.9 and 5.10 are satisfied? Consider

$$r^{3} - \frac{2k}{\|w\|_{L^{1}}}r + \frac{2k}{\|w\|_{L^{1}}}|A| = 0.$$
 (5.11)

Define $p:=-\frac{2k}{\|w\|_{L^1}}$ and $q:=\frac{2k}{\|w\|_{L^1}}|A|$. We want to find the intersection of $r^3+q=-pr$. In order to have a real r>0 to exist, we must have two intersections in the first quadrant. The last intersection must lay in the third quadrant. This implies that all three roots must be real. Thus p and q must satisfy $4p^3+27q^2\leq 0$. In our case, $-\left(\frac{2k}{3\|w\|_{L^1}}\right)^3+\left(\frac{k|A|}{\|w\|_{L^1}}\right)^2=-D\leq 0$, for some $D\geq 0$. Equivalently, $|A|\leq \sqrt{\frac{8k}{27\|w\|_{L^1}}}$.

In addition, using the Cardano formula, the root of 5.11 is given by

$$x = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}.$$
 (5.12)

This reduces to

$$x_n = 2R^{\frac{1}{3}}\cos(\frac{\theta}{3} + \frac{2\pi}{3}n), \quad n = 0, 1, 2$$
 (5.13)

where $R = \sqrt{\frac{|A|^2 k^2}{(\|w\|_{L^1})^2} + D} = \sqrt{\left(\frac{2k}{3\|w\|_{L^1}}\right)^3}$ and $\theta = \tan^{-1}\left(\frac{\sqrt{D}}{-\frac{k|A|}{\|w\|_{L^1}}}\right)$. Then $\theta \in (\frac{1}{2}\pi, \frac{3}{2}\pi]$ and we have two roots greater then zero.

If we apply the constraint 5.10, the second largest root $x_1 = 2R^{\frac{1}{3}}\cos(\frac{\theta}{3} - \frac{2\pi}{3})$ must be less than $\sqrt{\frac{2k}{3\|w\|_{L^1}}}$, so there exists a r to have a contraction. Noticing $\cos(\frac{\theta}{3} - \frac{2\pi}{3}) < \frac{1}{2}$, so $x_1 < R^{\frac{1}{3}} \le \sqrt{\left(\frac{2k}{3\|w\|_{L^1}}\right)}$.

To summarize, our fixed point argument works as long as $|A| \leq \sqrt{\frac{8k}{27||w||_{L^1}}}$, or a bound on a form of energy

$$|\lambda|^2 ||w||_{L^1} \le \frac{8k}{27}.$$

Now consider $V(x) \not\equiv 0$. The fixed argument gives us a similar result. Considering $v \in B_{L^{\infty}}(-Ae^{ikx}, r)$, then

$$T(v) \le \frac{\|V\|_{L^1}}{2k}r + \frac{\|w\|_{L^1}}{2k}r^3.$$

To have T invariant on $B_{L^{\infty}}(-Ae^{ikx}, r)$, we require

$$\frac{\|V\|_{L^1}}{2k}r + \frac{\|w\|_{L^1}}{2k}r^3 + |A| \le r. \tag{5.14}$$

Let $v, \tilde{v} \in B_{L^{\infty}}(-Ae^{ikx}, r),$

$$||T(v) - T(\tilde{v})||_{L^{\infty}} \le \frac{||V||_{L^{1}}}{2k} ||v - \tilde{v}||_{L^{\infty}} + \frac{||w||_{L^{1}}}{2k} 3r^{2} ||v - \tilde{v}||_{L^{\infty}}$$
$$= \left(\frac{||V||_{L^{1}}}{2k} + 3r^{2} \frac{||w||_{L^{1}}}{2k}\right) ||v - \tilde{v}||_{L^{\infty}}.$$

To have T contraction, we require

$$\left(\frac{\|V\|_{L^1}}{2k} + 3r^2 \frac{\|w\|_{L^1}}{2k}\right) \le 1.$$
(5.15)

For A small, there exists a r satisfies the inequalities.

5.2 Scattering matrix

Consider the case $V \equiv 0$. We approximate the scattering matrix by approximating the fixed point, assuming the incoming wave Ae^{ikx} we sent in is small (i.e. |A| small).

Let's start from $u_0 = 0$, the first iteration gives

$$u_1(x) = T(u_0)(x) = -\frac{1}{2ik}|A|^2 \int_{\mathbb{R}} e^{ik|x-y|} w(y) A e^{iky} dy.$$
 (5.16)

For the next iteration, defining $h(y) := e^{-iky} \int_{\mathbb{R}} e^{ik|x-y|} w(x) e^{ikx} dx$, and keeping order up to $|A|^5$, we use the approximation

$$u_2 = u_1 + \frac{1}{4k^2} |A|^4 \int_{\mathbb{R}} e^{ik|x-y|} w(y) A e^{iky} \left(\overline{h(y)} - 2h(y) \right) dy + \mathcal{O}(|A|^7).$$
 (5.17)

We will use $u_{out} = u_1 + \frac{1}{4k^2} |A|^4 \int_{\mathbb{R}} e^{ik|x-y|} w(y) A e^{iky} \left(\overline{h(y)} - 2h(y)\right) dy$ as an approximation to the outgoing solution. When x is at the right of the perturbation which corresponds to transmission, we have

$$u_{out} = Ae^{ikx} \left\{ -\frac{1}{2ik} |A|^2 \int_{\mathbb{R}} w(y) dy + \frac{1}{4k^2} |A|^4 \int_{\mathbb{R}} w(y) \left(\overline{h(y)} - 2h(y) \right) dy \right\}$$

:= $Ae^{ikx} T_-$. (5.18)

When x is at the left of the perturbation which corresponds to reflection, we have

$$u_{out} = Ae^{-ikx} \left\{ -\frac{1}{2ik} |A|^2 \int_{\mathbb{R}} w(y)e^{2iky} dy + \frac{1}{4k^2} |A|^4 \int_{\mathbb{R}} w(y)e^{2iky} \left(\overline{h(y)} - 2h(y) \right) dy \right\}$$

:= $Ae^{-ikx} R_-$. (5.19)

Now assume incoming wave from right $u_{in} = e^{-ikx}$. Note that the Green's function is unchanged. Then,

$$u_{out} = -\frac{1}{2ik}|A|^2 \int_{\mathbb{R}} e^{ik|x-y|} w(y) A e^{-iky} dy + \frac{1}{4k^2}|A|^4 \int_{\mathbb{R}} e^{ik|x-y|} w(y) A e^{-iky} \left(\overline{g(y)} - 2g(y)\right) dy$$
(5.20)

where $g(y) = e^{iky} \int_{\mathbb{R}} e^{ik|x-y|} w(x) e^{-ikx} dx$. When x is at the left of the perturbation which corresponds to transmission, we have

$$u_{out} = Ae^{-ikx} \left\{ -\frac{1}{2ik} |A|^2 \int_{\mathbb{R}} w(y) dy + \frac{1}{4k^2} |A|^4 \int_{\mathbb{R}} w(y) \left(\overline{g(y)} - 2g(y) \right) dy \right\}$$

$$:= Ae^{-ikx}T_{+}. (5.21)$$

When x is at the right of the perturbation which corresponds to reflection, we have

$$u_{out} = Ae^{ikx} \left\{ -\frac{1}{2ik} |A|^2 \int_{\mathbb{R}} w(y)e^{-2iky} dy + \frac{1}{4k^2} |A|^4 \int_{\mathbb{R}} w(y)e^{-2iky} \left(\overline{g(y)} - 2g(y) \right) dy \right\}$$

:= $Ae^{ikx} R_+$. (5.22)

The scattering matrix is given by the coefficients given above.

In the case $V \not\equiv 0$, we compute the linearized solution:

$$u_{out} = -\frac{1}{2ik} \int_{\mathbb{R}} e^{ik|x-y|} \left[V(y) + w(y)|A|^2 \right] A e^{iky}.$$
 (5.23)

The scattering coefficients are:

$$T_{-} = -\frac{1}{2ik} \int_{\mathbb{R}} \left[V(y) + w(y) |A|^{2} \right] dy$$

$$R_{-} = -\frac{1}{2ik} \int_{\mathbb{R}} e^{2iky} \left[V(y) + w(y) |A|^{2} \right] dy$$

$$T_{+} = -\frac{1}{2ik} \int_{\mathbb{R}} \left[V(y) + w(y) |A|^{2} \right] dy$$

$$R_{+} = -\frac{1}{2ik} \int_{\mathbb{R}} e^{-2iky} \left[V(y) + w(y) |A|^{2} \right] dy$$

We see, in the linear approximation, that the reflection coefficient is given by the Fourier transform of $V(y) + w(y)|A|^2$. Using two different incoming solutions, we have a system of equations. We can recover potential by taking the inverse Fourier transform of the reflection coefficients.

6 Non-linear Stationary Dirac equation

We now turn our focus to the non-linear stationary Dirac equation with a linear domain wall:

$$(H - E) \psi(x, y) = f(\psi)(x, y), \quad H = D_x \sigma_3 - D_y \sigma_2 + y \sigma_1, \quad f(\psi) = w(x, y) (\psi^* C \psi) \psi$$
 (6.1)

where w(x, y) is compactly supported and bounded, and C is a constant matrix. We decompose $\psi = \psi_{in} + \psi_{out}$ as before.

6.1 One-dimensional non-linear Dirac equation

We consider Eqn. 6.1 in 1-D:

$$(D_x \sigma_3 - k)\psi = w(x) (\psi^* C \psi) \psi. \tag{6.2}$$

Outside the support of w(x), solution is $\psi_{in} = \begin{pmatrix} A_1 e^{-ikx} \\ A_2 e^{ikx} \end{pmatrix}$. Observe that $(D_x \sigma_3 - k)(D_x \sigma_3 + k) = (-\Delta - k^2)I_2$, so $(D_x \sigma_3 - k)_{out}^{-1} = (D_x \sigma_3 + k) \left[(-\Delta - k^2)_{out}^{-1} I_2 \right]$ (applying $(D_x \sigma_3 + k)$ does not change the outgoing condition). Thus the outgoing Green's function of $D_x \sigma_3 - k$ is given by:

$$G_{out}(x;k) = \begin{bmatrix} D_x + k & 0 \\ 0 & -D_x + k \end{bmatrix} \begin{bmatrix} -\frac{1}{2ik} e^{i|k||x|} & 0 \\ 0 & -\frac{1}{2ik} e^{i|k||x|} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{i}{2} e^{i|k||x|} (1 - sign(k)sign(x)) & 0 \\ 0 & \frac{i}{2} e^{i|k||x|} (1 + sign(k)sign(x)) \end{bmatrix}.$$
(6.3)

Define T:

$$T(\psi) = (D_x \sigma_3 - k)_{out}^{-1} f(\psi + \psi_{in})$$
(6.4)

for $\psi \in L^{\infty}(\mathbb{R}, \mathbb{C}^2)$. $L^{\infty}(\mathbb{R}, \mathbb{C}^2)$ is a Banach space with respect to $\|\psi\| = \operatorname{ess\,sup}_x \|\psi\|$, where the later norm can be any l_p norm. Indeed, let ψ^n be a Cauchy sequence in $L^{\infty}(\mathbb{R}, \mathbb{C}^2)$, and let $\begin{pmatrix} \tilde{\psi}_1 \\ \tilde{\psi}_2 \end{pmatrix}$ be the elementwise limit of $\begin{pmatrix} \psi_1^n \\ \psi_2^n \end{pmatrix}$ in L^{∞} , then obviously $\begin{pmatrix} \tilde{\psi}_1 \\ \tilde{\psi}_2 \end{pmatrix}$ is also the limit of ψ^n in $L^{\infty}(\mathbb{R}, \mathbb{C}^2)$.

Theorem 6.1. For an incoming solution $\psi_{in} = \begin{pmatrix} A_1 e^{-ikx} \\ A_2 e^{ikx} \end{pmatrix}$ with amplitude small enough, there exists an outgoing solution ψ_{out} of eqn. 6.2.

Proof. We first show T is invariant on $B_{\|\cdot\|}(-\psi_{in},r)$ for suitable r. Let $\psi \in B_{\|\cdot\|}(-\psi_{in},r)$ and σ_c be the largest singular value of C, we have:

$$||T(\psi)|| = ||G_{out}(x;k) * w(x) [(\psi + \psi_{in})^* C(\psi + \psi_{in})] (\psi + \psi_{in})||$$

$$\leq \left[\left(\int_{\mathbb{R}} |w(y)| |(\psi + \psi_{in})^* C(\psi + \psi_{in})| |\psi_1 + A_1 e^{-iky}| dy \right)^2 + \left(\int_{\mathbb{R}} |w(y)| |(\psi + \psi_{in})^* C(\psi + \psi_{in})| |\psi_2 + A_2 e^{iky}| dy \right)^2 \right]^{\frac{1}{2}}$$

$$\leq \sigma_c ||w||_{L^1} \left[\text{ess sup} \left(|(\psi + \psi_{in})|^2 |\psi_1 + A_1 e^{-iky}| \right)^2 + \text{ess sup} \left(|(\psi + \psi_{in})|^2 |\psi_2 + A_2 e^{iky}| \right)^2 \right]^{\frac{1}{2}}$$

$$\leq \sigma_c ||w||_{L^1} \left[2 \text{ess sup} \left[\left(|(\psi + \psi_{in})|^2 |\psi_1 + A_1 e^{-iky}| \right)^2 + \left(|(\psi + \psi_{in})|^2 |\psi_2 + A_2 e^{iky}| \right)^2 \right]^{\frac{1}{2}}$$

$$\leq \sqrt{2} \sigma_c ||w||_{L^1} r^3.$$

We then require $\sqrt{2}\sigma_c ||w||_{L^1} r^3 + \sqrt{|A_1|^2 + |A_2|^2} \le r$.

Let $\psi, \phi \in B_{\|\cdot\|}(-\psi_{in}, r)$, we show T is a contraction. For simplicity, let's write $a := \psi + \psi_{in}$ and $b := \phi + \psi_{in}$, then by the Hölder inequality, $\|T(\psi) - T(\phi)\|$ is bounded by

$$||w||_{L^{1}} \left[\left(\operatorname{ess\,sup}_{y} |((a^{*}Ca) \, a_{1} - (b^{*}Cb) \, b_{1}| \right)^{2} + \left(\operatorname{ess\,sup}_{y} |(a^{*}Ca) \, a_{2} - (b^{*}Cb) \, b_{2}| \right)^{2} \right]^{\frac{1}{2}}$$

$$\leq \sqrt{2} \|w\|_{L^{1}} \operatorname{ess\,sup}_{y} \left[\left| (a^{*}Ca) a_{1} - (b^{*}Cb) b_{1} \right|^{2} + \left| (a^{*}Ca) a_{2} - (b^{*}Cb) b_{2} \right|^{2} \right]^{\frac{1}{2}} \\
= \sqrt{2} \|w\|_{L^{1}} \operatorname{ess\,sup}_{y} \left| (a^{*}Ca) a - (b^{*}Cb) b \right|. \tag{6.5}$$

Since we want $||T(\psi) - T(\phi)||$ to be bounded by some factor of $||\psi - \phi|| = ||a - b||$, we rewrite 6.5 as $\sqrt{2}||w||_{L^1}$ ess $\sup_y |(a^*Ca + b^*Cb)(a - b) + (a^*Ca)b - (b^*Cb)a|$ which is bounded by

$$\sqrt{2}||w||_{L^1}\operatorname{ess\,sup}_{y}\left[|(a^*Ca+b^*Cb)(a-b)|+|(a^*Ca)b-(b^*Cb)a|\right]. \tag{6.6}$$

Note the first part,

$$|(a^*Ca + b^*Cb)(a - b)| \le \sigma_c(|a|^2 + |b|^2)|a - b|. \tag{6.7}$$

Expanding the second part, $|(a^*Ca)b - (b^*Cb)a|$, we obtain

$$[|a^*Ca|^2|b|^2 + |b^*Cb|^2|a|^2 - a^*C^*ab^*Cbb^*a - b^*C^*ba^*Caa^*b]^{\frac{1}{2}}$$

$$= [|a^2||b|^2(a^*CC^*a) + |a|^2|b|^2(b^*CC^*b) - |a^2||b|^2(b^*CC^*a) - |a^2||b|^2(a^*CC^*b)]^{\frac{1}{2}}$$

$$= |a||b||C^*a - C^*b|.$$
(6.8)

Thus,

$$|(a^*Ca)b - (b^*Cb)a| \le \sigma_c |a||b||a - b|. \tag{6.9}$$

Plug 6.7 and 6.9 into 6.6, we obtain

$$||T(\psi) - T(\phi)|| \le \sqrt{2}\sigma_c ||w||_{L^1} \operatorname{ess\,sup}_y \left[(|a|^2 + |b|^2)|a - b| + |a||b||a - b| \right]$$

$$\le 3\sqrt{2}\sigma_c ||w||_{L^1} r^2 ||a - b||$$

$$= 3\sqrt{2}\sigma_c ||w||_{L^1} r^2 ||\psi - \phi||.$$

Thus we require $3\sqrt{2}\sigma_c ||w||_{L^1} r^2 \leq 1$.

We restrict the parameters to be

$$|\lambda|^2 ||w||_{L^1} \le \frac{4\sqrt{2}}{27\sigma_A}.$$

We compute the leading order approximation of the scattering matrix. The reflection coefficients are both zero. The transmission coefficients are:

$$T_{+} = \begin{pmatrix} i \int_{\mathbb{R}} w(y) \begin{pmatrix} A_{1}e^{-iky} \\ A_{2}e^{iky} \end{pmatrix}^{*} C \begin{pmatrix} A_{1}e^{-iky} \\ A_{2}e^{iky} \end{pmatrix} dy \\ i \int_{\mathbb{R}} w(y) \begin{pmatrix} A_{1}e^{-iky} \\ A_{2}e^{iky} \end{pmatrix}^{*} C \begin{pmatrix} A_{1}e^{-iky} \\ A_{2}e^{iky} \end{pmatrix} dy \end{pmatrix}$$

$$T_{-} = \begin{pmatrix} i \int_{\mathbb{R}} w(y) \begin{pmatrix} A_{1}e^{iky} \\ A_{2}e^{-iky} \end{pmatrix}^{*} C \begin{pmatrix} A_{1}e^{iky} \\ A_{2}e^{-iky} \end{pmatrix} dy \\ i \int_{\mathbb{R}} w(y) \begin{pmatrix} A_{1}e^{iky} \\ A_{2}e^{-iky} \end{pmatrix}^{*} C \begin{pmatrix} A_{1}e^{iky} \\ A_{2}e^{-iky} \end{pmatrix} dy \end{pmatrix}.$$

13

6.2 Two-dimensional non-linear Dirac equation

We now consider eqn. 6.1 in two dimensions. The solutions satisfying the unperturbed equation and the Green's function to (H - E) are given in [2], and we will introduce them here.

6.2.1 Solution to the unperturbed equation

The operator H in 6.1 is translational invariable in x direction, thus we take the Fourier transform in x. Denoting ξ the Fourier variable,

$$\hat{H}(\xi) - E = \xi \sigma_3 - D_y \sigma_2 + y \sigma_3 - E = \begin{pmatrix} \xi & \partial_y + y \\ -\partial_y + y & -\xi \end{pmatrix} - E.$$

Note $\mathbf{a} = \partial_y + y$ is the creation operator, and $\mathbf{a}^* = -\partial_y + y$ is the annilation operator. It is useful to look at the block diagonal matrix:

$$\hat{H}(\xi)^2 = \begin{pmatrix} \xi^2 + \mathbf{a}\mathbf{a}^* & 0\\ 0 & \xi^2 + \mathbf{a}^*\mathbf{a} \end{pmatrix}.$$

We define $\varphi_n(y) = a_n(\mathbf{a}^*)^n \varphi_0(y)$ (a_n s are the normalizing constants), then $\varphi_n(y)$ are Hermite functions that form an orthonormal basis of $L^2(\mathbb{R}_y)$, and satisfy the following properties:

$$\mathbf{a}^* \mathbf{a} \varphi_n = 2n \varphi_n, \quad \mathbf{a} \varphi_n = \sqrt{2n} \varphi_{n-1}, \quad \mathbf{a}^* \varphi_n = \sqrt{2n+2} \varphi_{n+1}, \quad \varphi_0 = \pi^{-\frac{1}{4}} e^{-\frac{1}{2}y^2}.$$

We define a set M consisting of indices $m=(n,\epsilon_m)$, where $\mathbb{N}\ni n\geq 1$ and $\epsilon_m=\pm 1$. In the case n=1, we define m=(0,-1). The eigenvalue of $\hat{H}(\xi)$ are $E_m=\epsilon_m(2n+\xi^2)^{\frac{1}{2}}$. Now for any $\xi\in\mathbb{R}$ and m, we define

$$\phi_m = c_m \begin{pmatrix} \mathbf{a} \varphi_n \\ (E_m - \xi) \varphi_n \end{pmatrix}, \quad n \ge 1,$$

where $c_m = \frac{1}{\sqrt{(2n+(E_m-\xi)^2)}}$ is the normalizing constant. In the case n=0, m=(0,-1) and $E_0(\xi) = -\xi$, we define

$$\phi_0 = \begin{pmatrix} 0 \\ \varphi_0 \end{pmatrix}.$$

The above family of eigenvectors ϕ_m form a basis of $L^2(\mathbb{R}, \mathbb{C}^2)$.

The above discussion characterized the spectrum decomposition of $\hat{H}(\xi)$. While to solve eqn. 6.1 for fixed a $E \in \mathbb{R}$, we need to reverse the map $E_m = \epsilon_m (2n + \xi^2)^{\frac{1}{2}}$:

$$\xi_m = \epsilon_m \sqrt{(E^2 - 2n)} = \begin{cases} \epsilon_m \sqrt{(E^2 - 2n)}, & E^2 \ge 2n \\ i\epsilon_m \sqrt{(2n - E^2)}, & E^2 \le 2n. \end{cases}$$

Then, $\phi_m(x, y; E)$ satisfy:

$$(\hat{H}(\xi_m) - E)\phi_m = \begin{pmatrix} \xi_m - E & \mathbf{a} \\ \mathbf{a}^* & -(\xi_m + E) \end{pmatrix} \phi_m = 0.$$

In the physical domain, the generalized eigenvectors

$$\psi_m(x, y; E) = e^{i\xi_m x} \phi_m(y; E) \tag{6.10}$$

satisfy $(H-E)\psi_m = 0$. Linear combinations of these eigenvectors then give the solutions to the unperturbed equation.

6.2.2 Outgoing Green's function

To construct the Outgoing Green's function to (H - E), we need to solve $(H - E)G = \delta(x - x_0)\delta(y - y_0)I$. Since H is translational invariable in the x direction, we assume $x_0 = 0$. Note that $(H + E)(H - E)G = (H + E)\delta(x)\delta(y - y_0)I$, then

$$G = (H + E)(H^2 - E^2)^{-1}\delta(x)\delta(y - y_0)I.$$

As in the one-dimensional case, we need to first find $(H^2 - E^2)^{-1}\delta(x)\delta(y - y_0)I$, then apply (H + E) on it. Noting $H^2 - E^2$ is diagonal

$$H^{2} - E^{2} = \begin{pmatrix} D_{x}^{2} - E^{2} + \mathbf{a}\mathbf{a}^{*} & 0\\ 0 & D_{x}^{2} - E^{2} + \mathbf{a}^{*}\mathbf{a} \end{pmatrix},$$

we thus need to solve

$$(-\partial_x^2 - \partial_y^2 + y^2 \pm 1 - E^2)G_{\pm} = \delta(x)\delta(y - y_0).$$

Recall that $\varphi_n(y)$ are the eigenfunctions to $-\partial_y^2 + y^2 \pm 1$, we expand G_- in the basis of Hermite functions $\varphi_n(y)$:

$$G_{-} = \sum_{n} G_{-,n}(x)\varphi_{n}(y).$$

Then,

$$(-\partial_x^2 - E^2 + 2n)G_{-,n}(x) = \delta(x)\varphi_n(y_0)$$

is the Helmholtz equation, and the outgoing Green's function when $2n < E^2$ is given in 5.8. Assuming $E \neq 2n$ for $n \in \mathbb{N}$, we have

$$G_{-,n}(x) = \frac{\varphi_n(y_0)}{2\sqrt{|E^2 - 2n|}} \begin{cases} e^{-\sqrt{2n - E^2}|x|}, & 2n > E^2 \\ ie^{i\sqrt{E^2 - 2n}|x|}, & 2n < E^2 \end{cases}$$

The computation of G_+ is similar by replacing 2n to 2n+2. Define $\theta_n=i\sqrt{E-2n}$, then

$$G_{-}(x, y; y_0) = \sum_{n \ge 0} \frac{-e^{\theta_n |x|}}{2\theta_n} \varphi_n(y) \varphi_n(y_0)$$

$$G_{+}(x, y; y_0) = \sum_{n>0} \frac{-e^{\theta_{n+1}|x|}}{2\theta_{n+1}} \varphi_n(y) \varphi_n(y_0).$$

Since applying H+E does not change the outgoing condition, the outgoing Green's function of H-E is:

$$G(x, y; y_0) = \begin{pmatrix} (D_x + E)G_+ & \mathbf{a}G_- \\ \mathbf{a}^*G_+ & (-D_x + E)G_- \end{pmatrix} (x, y; y_0).$$
 (6.11)

Remark 6.1. As stated in [2], the Green's function G has $\frac{1}{r}$ singularity.

6.2.3 Contraction mapping

Let's first notice that the Green's function blows up like $\frac{1}{r}$ near the singularity, which implies G is integrable any compact interval for fixed x and y. Now let's introduce the main theorem.

Theorem 6.2. For an incoming solution with amplitude small enough, there exists an outgoing solution of eqn. 6.1.

Proof. As in the previous proof, we define the solution operator

$$T(\psi) := G * f(\psi + \psi_{in})(x, y).$$

Also, we use the uniform bound on the integral of G

$$\max\left\{\left(\|(D_x+E)G_+\|_{L^1(x_0,y_0)}+\|\mathbf{a}^*G_+\|_{L^1(x_0,y_0)}\right),\left(\|(-D_x+E)G_-\|_{L^1(x_0,y_0)}+\|\mathbf{a}G_-\|_{L^1(x_0,y_0)}\right)\right\}< c$$

where the integral is taken over the compact support of w(x, y). The incoming solution is the superposition of 6.10

$$\psi_{in} = \sum_{m \in M} \alpha_m \psi_m.$$

We first show T is invariant in $B(-\psi_{in}, r)$ for some r > 0. Using the norm we introduced in the one-dimensional case, we have

$$||T(\psi)|| = \operatorname{ess\,sup}_{(x,y)} \left[\left| \int (D_x + E)G_+(x, y; x_0, y_0)[f(\psi)(x_0, y_0)]_1 dx_0 dy_0 \right| \right. \\ \left. + \int \mathbf{a}G_-(x, y; x_0, y_0)[f(\psi)(x_0, y_0)]_2 dx_0 dy_0 \right| \\ \left. + \left| \int (-D_x + E)G_-(x, y; x_0, y_0)[f(\psi)(x_0, y_0)]_2 dx_0 dy_0 \right| \\ \left. + \int \mathbf{a}^* G_+(x, y; x_0, y_0)[f(\psi)(x_0, y_0)]_1 dx_0 dy_0 \right| \right].$$

Using the Hölder inequality and rearranging terms, denoting σ_c as the largest singular value of C, we bound

$$||T(\psi)|| \leq \sigma_{c} \operatorname{ess\,sup}_{(x,y)} \left[||(D_{x} + E)G_{+}(x, y; x_{0}, y_{0})w(x_{0}, y_{0})||_{L^{1}(x_{0}, y_{0})} \operatorname{ess\,sup}_{(x_{0}, y_{0})} \left[|\psi + \psi_{in}|^{2} |\psi_{1} + \psi_{in,1}| \right] \right. \\ + ||\mathbf{a}^{*}G_{+}(x, y; x_{0}, y_{0})w(x_{0}, y_{0})||_{L^{1}(x_{0}, y_{0})} \operatorname{ess\,sup}_{(x_{0}, y_{0})} \left[|\psi + \psi_{in}|^{2} |\psi_{1} + \psi_{in,1}| \right] \\ + ||(-D_{x} + E)G_{-}(x, y; x_{0}, y_{0})w(x_{0}, y_{0})||_{L^{1}(x_{0}, y_{0})} \operatorname{ess\,sup}_{(x_{0}, y_{0})} \left[|\psi + \psi_{in}|^{2} |\psi_{2} + \psi_{in,2}| \right] \\ + ||\mathbf{a}G_{-}(x, y; x_{0}, y_{0})w(x_{0}, y_{0})||_{L^{1}(x_{0}, y_{0})} \operatorname{ess\,sup}_{(x_{0}, y_{0})} \left[|\psi + \psi_{in}|^{2} |\psi_{2} + \psi_{in,2}| \right] \right].$$

We apply the Hölder inequality again, and use the bound c to obtain

$$||T(\psi)|| \le \sigma_c c ||w||_{L^{\infty}} \left[\underset{(x_0, y_0)}{\text{ess sup}} \left[|\psi + \psi_{in}|^2 |\psi_1 + \psi_{in, 1}| \right] + \underset{(x_0, y_0)}{\text{ess sup}} \left[|\psi + \psi_{in}|^2 |\psi_2 + \psi_{in, 2}| \right] \right]$$

$$\le 2\sigma_c c ||w||_{L^{\infty}} r^3.$$

Thus we need

$$2\sigma_c c \|w\|_{L^{\infty}} r^3 + \sum_{m \in M} |\alpha_m| \le r.$$

Let $\psi, \phi \in B(-\psi_{in}, r)$, we show T is a contraction. Similarly, let's write $a(x_0, y_0) := (\psi + \psi_{in})(x_0, y_0)$ and $b(x_0, y_0) := (\phi + \psi_{in})(x_0, y_0)$, then

$$||T(\psi) - T(\phi)|| = \underset{(x,y)}{\operatorname{ess \, sup}} \left[\left| \int (D_x + E)G_+(x,y;x_0,y_0)w(x_0,y_0)[(a^*Ca)a_1 - (b^*Cb)b_1]dx_0dy_0 \right. \right.$$

$$\left. \int \mathbf{a}G_-(x,y;x_0,y_0)w(x_0,y_0)[(a^*Ca)a_2 - (b^*Cb)b_2]dx_0dy_0 \right|$$

$$\left| \int (-D_x + E)G_-(x,y;x_0,y_0)w(x_0,y_0)[(a^*Ca)a_2 - (b^*Cb)b_2]dx_0dy_0 \right.$$

$$\left. \int \mathbf{a}^*G_+(x,y;x_0,y_0)w(x_0,y_0)[(a^*Ca)a_1 - (b^*Cb)b_1]dx_0dy_0 \right| \right].$$

Similar to calculating the operator norm of T, we obtain

$$||T(\psi) - T(\phi)|| \le 2c||w||_{L^{\infty}} \underset{(x_0, y_0)}{\text{ess sup}} [|(a^*Ca)a_1 - (b^*Cb)b_1| + |(a^*Ca)a_2 - (b^*Cb)b_2|]$$

$$= 2c||w||_{L^{\infty}} \underset{(x_0, y_0)}{\text{ess sup}} ||(a^*Ca)a - (b^*Cb)b||.$$

which we have already shown the bound in 1-D case. Thus,

$$||T(\psi) - T(\phi)|| \le 6\sigma_c c ||w||_{L^{\infty}} r^2 ||\psi - \phi||.$$

We require

$$6\sigma_c c \|w\|_{L^{\infty}} r^2 < 1.$$

Combining two inequalities, we have the bound

$$\left(\sum_{m} |\alpha_m|\right)^2 \|w\|_{L^{\infty}} \le \frac{2}{27\sigma_c c}.$$

6.3 Conclusion

We have successfully shown the existence of a solution to the nonlinear Helmholtz equation and nonlinear Dirac equation using fixed point arguments. The solutions are not trivial, as $u_{out} = -u_{in}$ is not a fixed point. This argument generalizes to other PDEs if the Green's functions are integrable on a compact domain.

In this paper, we assumed that nonlinearity is compactly supported. In future work, I want to apply a similar argument when the nonlinearity is fast-decaying to zero.

References

- [1] Tuncay Aktosun. Inverse scattering transform and the theory of solitons. In *Encyclopedia of Complexity and Systems Science*, pages 4960–4971. Springer New York, 2009.
- [2] Guillaume Bal, Jeremy G. Hoskins, and Zhongjian Wang. Asymmetric transport computations in dirac models of topological insulators. *Journal of Computational Physics*, 487:112151, 2023.
- [3] Andrea Mondino. Fixed point methods for nonlinear pdes, 2022. https://courses.maths.ox.ac.uk/pluginfile.php/22783/mod_resource/content/1/lecture-notes-2022.pdf.
- [4] Roman G. Novikov. Multidimensional inverse scattering for the schrödinger equation. In Paula Cerejeiras and Michael Reissig, editors, *Mathematical Analysis*, its Applications and Computation, pages 75–98, Cham, 2022. Springer International Publishing.
- [5] G. Teschl and American Mathematical Society. *Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators*. Graduate studies in mathematics. American Mathematical Society, 2009.