Методы оптимизации Лекция 6: Подходы к построению солверов для решения задач оптимизации

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

26 октября 2021 г.

▶ Двойственность для задач с обобщёнными неравенствами

- ▶ Двойственность для задач с обобщёнными неравенствами
- Коническая двойственность

- Двойственность для задач с обобщёнными неравенствами
- Коническая двойственность
- ▶ Двойственная задача для SDP

- Двойственность для задач с обобщёнными неравенствами
- Коническая двойственность
- ▶ Двойственная задача для SDP
- ▶ Условие Слейтера для SDP

Задача оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m$

$$h_j(\mathbf{x}) = 0, \ j = 1, \dots, p$$

ightharpoonup Возможность эффективного решения сильно зависит от свойств f_0, f_i, h_j

Задача оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m$
 $h_j(\mathbf{x}) = 0, \ j = 1, \dots, p$

- ▶ Возможность эффективного решения сильно зависит от свойств f_0, f_i, h_j
- Если f_0, f_i, h_j аффинны, то это задача линейного программирования (LP), которая может быть решена крайне быстро

Задача оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m$

$$h_j(\mathbf{x}) = 0, \ j = 1, \dots, p$$

- Возможность эффективного решения сильно зависит от свойств f_0, f_i, h_j
- Если f_0, f_i, h_j аффинны, то это задача линейного программирования (LP), которая может быть решена крайне быстро
- ightharpoonup Простые на первый взгляд задачи с нелинейными f_i,h_j могут быть очень сложными для решения

Задача выпуклой оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

 $lacktriangledown f_0, f_i$ выпуклые функции: для всех \mathbf{x}, \mathbf{y} и $lpha \in [0,1]$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

Ограничения типа равенств аффинны

▶ Подмножество задач оптимизации: LP – частный случай

- Подмножество задач оптимизации: LP частный случай
- ▶ Могут выглядеть очень сложно, однако решаются также эффективно как и задача LP

- ▶ Подмножество задач оптимизации: LP частный случай
- ▶ Могут выглядеть очень сложно, однако решаются также эффективно как и задача LP
- ▶ Встречаются гораздо чаще, чем можно было бы подумать

- Подмножество задач оптимизации: LP частный случай
- Могут выглядеть очень сложно, однако решаются также эффективно как и задача LP
- ▶ Встречаются гораздо чаще, чем можно было бы подумать
- Очень много приложений

ightharpoonup Надеяться/предполагать/делать вид, что f_i выпуклы

- ightharpoonup Надеяться/предполагать/делать вид, что f_i выпуклы
 - Просто для пользователя

- ightharpoonup Надеяться/предполагать/делать вид, что f_i выпуклы
 - Просто для пользователя
 - Теряется часть преимуществ выпуклых задач

- ightharpoonup Надеяться/предполагать/делать вид, что f_i выпуклы
 - Просто для пользователя
 - Теряется часть преимуществ выпуклых задач
- Проверка выпуклости задачи перед решением

- ightharpoonup Надеяться/предполагать/делать вид, что f_i выпуклы
 - Просто для пользователя
 - Теряется часть преимуществ выпуклых задач
- Проверка выпуклости задачи перед решением
 - в общем случае может быть затруднительна

- ightharpoonup Надеяться/предполагать/делать вид, что f_i выпуклы
 - Просто для пользователя
 - Теряется часть преимуществ выпуклых задач
- Проверка выпуклости задачи перед решением
 - в общем случае может быть затруднительна
- ▶ Построение выпуклой задачи из элементарных блоков

- ightharpoonup Надеяться/предполагать/делать вид, что f_i выпуклы
 - Просто для пользователя
 - Теряется часть преимуществ выпуклых задач
- Проверка выпуклости задачи перед решением
 - в общем случае может быть затруднительна
- ▶ Построение выпуклой задачи из элементарных блоков
 - ullet пользователь следует фиксированному набору правил при определении f_i

- ightharpoonup Надеяться/предполагать/делать вид, что f_i выпуклы
 - Просто для пользователя
 - Теряется часть преимуществ выпуклых задач
- Проверка выпуклости задачи перед решением
 - в общем случае может быть затруднительна
- ▶ Построение выпуклой задачи из элементарных блоков
 - пользователь следует фиксированному набору правил при определении f_i
 - выпуклость проверяется автоматически

▶ Определение, критерии первого или второго порядка, например $f''(\mathbf{x}) \succeq 0$

- ightharpoonup Определение, критерии первого или второго порядка, например $f''(\mathbf{x})\succeq 0$
- ightharpoonup Исчисление выпуклых функций: построение f специальным образом

- ightharpoonup Определение, критерии первого или второго порядка, например $f''(\mathbf{x})\succeq 0$
- ightharpoonup Исчисление выпуклых функций: построение f специальным образом
 - Дан набор простых функций, выпуклость которых известна

- ▶ Определение, критерии первого или второго порядка, например $f''(\mathbf{x}) \succeq 0$
- ightharpoonup Исчисление выпуклых функций: построение f специальным образом
 - Дан набор простых функций, выпуклость которых известна
 - Даны сочетания и преобразования, не меняющие выпуклость

▶ При x>0: x^p для $p<0,\; p\geq 1$ и x^{-p} для $p\in [0,1]$

- ▶ При x>0: x^p для $p<0,\; p\geq 1$ и x^{-p} для $p\in [0,1]$
- $ightharpoonup e^x$, $-\log x$, $x\log x$

- ▶ При x>0: x^p для $p<0,\; p\geq 1$ и x^{-p} для $p\in [0,1]$
- $ightharpoonup e^x$, $-\log x$, $x\log x$
- $\triangleright \langle \mathbf{a}, \mathbf{x} \rangle + b$

- ▶ При x>0: x^p для $p<0,\; p\geq 1$ и x^{-p} для $p\in [0,1]$
- $ightharpoonup e^x$, $-\log x$, $x\log x$
- $\triangleright \langle \mathbf{a}, \mathbf{x} \rangle + b$
- ▶ ||x|| любая норма

- ▶ При x>0: x^p для $p<0,\; p\geq 1$ и x^{-p} для $p\in [0,1]$
- $ightharpoonup e^x$, $-\log x$, $x\log x$
- $\triangleright \langle \mathbf{a}, \mathbf{x} \rangle + b$
- ▶ ||x|| любая норма
- $\max\{x_1,\ldots,x_n\} \text{ u } \log(e^{x_1}+\ldots+e^{x_n})$

- ▶ При x>0: x^p для $p<0,\; p\geq 1$ и x^{-p} для $p\in [0,1]$
- $ightharpoonup e^x$, $-\log x$, $x\log x$
- $\triangleright \langle \mathbf{a}, \mathbf{x} \rangle + b$
- ▶ ||x|| любая норма
- $\max\{x_1,\ldots,x_n\} \text{ u } \log(e^{x_1}+\ldots+e^{x_n})$
- ▶ $\log \det \mathbf{X}^{-1}$ для $\mathbf{X} \in \mathbb{S}^n_{++}$

> Умножение на неотрицательную константу: f выпукла и lpha>0, тогда lpha f выпукла

- > Умножение на неотрицательную константу: f выпукла и $\alpha>0$, тогда αf выпукла
- lacktriangle Сложение: f,g выпуклы, тогда f+g выпукла

- > Умножение на неотрицательную константу: f выпукла и lpha>0, тогда lpha f выпукла
- lacktriangle Сложение: f,g выпуклы, тогда f+g выпукла
- lacktriangle Композиция с аффинной функцией: f выпукла, тогда $f(\mathbf{A}\mathbf{x}+\mathbf{b})$ также выпукла

- Умножение на неотрицательную константу: f выпукла и lpha>0, тогда lpha f выпукла
- lacktriangle Сложение: f,g выпуклы, тогда f+g выпукла
- Композиция с аффинной функцией: f выпукла, тогда $f(\mathbf{A}\mathbf{x}+\mathbf{b})$ также выпукла
- lacktriangle Взятие максимума: f_1,\dots,f_m выпуклы, тогда $\max_{i=1,\dots,m}\{f_i(\mathbf{x})\}$ выпукла

- Умножение на неотрицательную константу: f выпукла и lpha>0, тогда lpha f выпукла
- lacktriangle Сложение: f,g выпуклы, тогда f+g выпукла
- Композиция с аффинной функцией: f выпукла, тогда $f(\mathbf{A}\mathbf{x}+\mathbf{b})$ также выпукла
- ightharpoonup Взятие максимума: f_1,\ldots,f_m выпуклы, тогда $\max_{i=1,\ldots,m}\left\{f_i(\mathbf{x})
 ight\}$ выпукла
- lacktriangleright Композиция: если h выпукла и возрастает, f выпукла, тогда $g(\mathbf{x}) = h(f(\mathbf{x}))$ выпукла

Правила исчисления выпуклых функций

- Умножение на неотрицательную константу: f выпукла и lpha>0, тогда lpha f выпукла
- lacktriangle Сложение: f,g выпуклы, тогда f+g выпукла
- Композиция с аффинной функцией: f выпукла, тогда $f(\mathbf{A}\mathbf{x}+\mathbf{b})$ также выпукла
- lacktriangle Взятие максимума: f_1,\dots,f_m выпуклы, тогда $\max_{i=1,\dots,m} \{f_i(\mathbf{x})\}$ выпукла
- lacktriangle Композиция: если h выпукла и возрастает, f выпукла, тогда $g(\mathbf{x}) = h(f(\mathbf{x}))$ выпукла
- И многие другие...

$$f(\mathbf{x}) = \max_{i=1,\dots,m} (\langle \mathbf{a}_i, \mathbf{x} \rangle + b_i)$$

$$f(\mathbf{x}) = \max_{i=1,\dots,m} (\langle \mathbf{a}_i, \mathbf{x} \rangle + b_i)$$

lacktriangleright ℓ_1 регуляризация задачи наименьших квадратов

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}, \quad \lambda > 0$$

- $f(\mathbf{x}) = \max_{i=1,\dots,m} (\langle \mathbf{a}_i, \mathbf{x} \rangle + b_i)$
- $lacktriangleright \ell_1$ регуляризация задачи наименьших квадратов

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}, \quad \lambda > 0$$

Логарифмический барьер

$$-\sum_{i=1}^{m}\log(-f_i(\mathbf{x}))$$

при $\{ \mathbf{x} \mid f_i(\mathbf{x}) < 0 \}$ и выпуклых $f_i(\mathbf{x})$

- $f(\mathbf{x}) = \max_{i=1,\dots,m} (\langle \mathbf{a}_i, \mathbf{x} \rangle + b_i)$
- $lacktriangleright \ell_1$ регуляризация задачи наименьших квадратов

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}, \quad \lambda > 0$$

Логарифмический барьер

$$-\sum_{i=1}^{m}\log(-f_i(\mathbf{x}))$$

при $\{ \mathbf{x} \mid f_i(\mathbf{x}) < 0 \}$ и выпуклых $f_i(\mathbf{x})$

▶ Максимальное собственное значение $\mathbf{A} \in \mathbb{S}^n$:

$$\lambda_{\max}(\mathbf{A}) = \sup_{\|\mathbf{x}\|_2 = 1} (\mathbf{x}^{\top} \mathbf{A} \mathbf{x})$$

▶ Использовать «стандартный» солвер (для LP, QP, SDP...)

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь
 - задача *должна быть* в стандартной форме для выбранного солвера

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь
 - задача *должна быть* в стандартной форме для выбранного солвера
 - сложность разработки компенсируется количеством пользователей

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь
 - задача *должна быть* в стандартной форме для выбранного солвера
 - сложность разработки компенсируется количеством пользователей
- ▶ Придумать и/или реализовать метод самостоятельно

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь
 - задача *должна быть* в стандартной форме для выбранного солвера
 - сложность разработки компенсируется количеством пользователей
- Придумать и/или реализовать метод самостоятельно
 - Трудоёмко

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь
 - задача *должна быть* в стандартной форме для выбранного солвера
 - сложность разработки компенсируется количеством пользователей
- ▶ Придумать и/или реализовать метод самостоятельно
 - Трудоёмко
 - Может быть эффективнее для конкретной задачи

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь
 - задача *должна быть* в стандартной форме для выбранного солвера
 - сложность разработки компенсируется количеством пользователей
- Придумать и/или реализовать метод самостоятельно
 - Трудоёмко
 - Может быть эффективнее для конкретной задачи
- Преобразовать задачу к стандартному виду и использовать стандартный солвер

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь
 - задача *должна быть* в стандартной форме для выбранного солвера
 - сложность разработки компенсируется количеством пользователей
- Придумать и/или реализовать метод самостоятельно
 - Трудоёмко
 - Может быть эффективнее для конкретной задачи
- Преобразовать задачу к стандартному виду и использовать стандартный солвер
 - Расширяет множество задач, подходящих для решения

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь
 - задача *должна быть* в стандартной форме для выбранного солвера
 - сложность разработки компенсируется количеством пользователей
- Придумать и/или реализовать метод самостоятельно
 - Трудоёмко
 - Может быть эффективнее для конкретной задачи
- Преобразовать задачу к стандартному виду и использовать стандартный солвер
 - Расширяет множество задач, подходящих для решения
 - Преобразование может быть громоздким

Субградиентный метод, метод эллипсоидов, проксимальный метод и их вариации

▶ В основном разработаны в СССР в 1960-1970-ых годах, подробнее см. заметки Б.Т. Поляка

- ▶ В основном разработаны в СССР в 1960-1970-ых годах, подробнее см. заметки Б.Т. Поляка
- ightharpoonup Универсальные методы решения задач выпуклой оптимизации, даже для недифференцируемых f_i

- ▶ В основном разработаны в СССР в 1960-1970-ых годах, подробнее см. заметки Б.Т. Поляка
- ightharpoonup Универсальные методы решения задач выпуклой оптимизации, даже для недифференцируемых f_i
- Метод эллипсоидов эффективен в теории (полиномиален)

- ▶ В основном разработаны в СССР в 1960-1970-ых годах, подробнее см. заметки Б.Т. Поляка
- ightharpoonup Универсальные методы решения задач выпуклой оптимизации, даже для недифференцируемых f_i
- Метод эллипсоидов эффективен в теории (полиномиален)
- ▶ На практике такие методы могут быть медленными

► Interior-Point Polynomial Algorithms in Convex Programming, Y. Nesterov, A. Nemirovskii, 1994

- ► Interior-Point Polynomial Algorithms in Convex Programming, Y. Nesterov, A. Nemirovskii, 1994
- Обзор про IPM см. тут

- ► Interior-Point Polynomial Algorithms in Convex Programming, Y. Nesterov, A. Nemirovskii, 1994
- Обзор про IPM см. тут
- ightharpoonup Применим для гладких f_i и задач в конической форме (LP, SOCP, SDP)

- ► Interior-Point Polynomial Algorithms in Convex Programming, Y. Nesterov, A. Nemirovskii, 1994
- Обзор про IPM см. тут
- ightharpoonup Применим для гладких f_i и задач в конической форме (LP, SOCP, SDP)
- Чрезвычайно эффективный метод: необходимо сделать несколько десятков итераций, практически независимо от размерности задачи

- ► Interior-Point Polynomial Algorithms in Convex Programming, Y. Nesterov, A. Nemirovskii, 1994
- Обзор про IPM см. тут
- ightharpoonup Применим для гладких f_i и задач в конической форме (LP, SOCP, SDP)
- Чрезвычайно эффективный метод: необходимо сделать несколько десятков итераций, практически независимо от размерности задачи
- ► На каждой итерации надо решить некоторую линейную систему

lacktriangle Пример: ℓ_1 регуляризация задачи наименьших квадратов

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}, \quad \lambda > 0$$

lacktriangle Пример: ℓ_1 регуляризация задачи наименьших квадратов

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1, \quad \lambda > 0$$

ightharpoonup Задача выпукла, но f негладкая!

lacktriangle Пример: ℓ_1 регуляризация задачи наименьших квадратов

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}, \quad \lambda > 0$$

- ightharpoonup Задача выпукла, но f негладкая!
- Основная идея: изменить задачу так, чтобы IPM можно было применять

lacktriangle Пример: ℓ_1 регуляризация задачи наименьших квадратов

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1, \quad \lambda > 0$$

- ▶ Задача выпукла, но f негладкая!
- Основная идея: изменить задачу так, чтобы IPM можно было применять
- Даже если в новой задаче будет больше переменных и ограничений, она может быть эффективна решена с помощью IPM

ightharpoonup Исходная задача: n переменных, нет ограничений

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}, \quad \lambda > 0$$

lacktriangle Исходная задача: n переменных, нет ограничений

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}, \quad \lambda > 0$$

lacktriangle Введём новую переменную $\mathbf{t} \in \mathbb{R}^n$ и новые ограничения $|x_i| \leq t_i$:

$$\begin{split} \min_{(\mathbf{x}, \mathbf{t})} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \mathbf{1}^\top \mathbf{t} \\ \text{s.t. } -\mathbf{t} \leq \mathbf{x} \leq \mathbf{t} \end{split}$$

lacktriangle Исходная задача: n переменных, нет ограничений

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}, \quad \lambda > 0$$

lacktriangle Введём новую переменную $\mathbf{t} \in \mathbb{R}^n$ и новые ограничения $|x_i| \leq t_i$:

$$\begin{aligned} \min_{(\mathbf{x}, \mathbf{t})} \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 + \lambda \mathbf{1}^\top \mathbf{t} \\ \text{s.t. } -\mathbf{t} \leq \mathbf{x} \leq \mathbf{t} \end{aligned}$$

 \blacktriangleright В новой задаче 2n переменных и 2n ограничений, но она гладкая!

lacktriangle Исходная задача: n переменных, нет ограничений

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}, \quad \lambda > 0$$

lacktriangle Введём новую переменную $\mathbf{t} \in \mathbb{R}^n$ и новые ограничения $|x_i| \leq t_i$:

$$\begin{aligned} \min_{(\mathbf{x}, \mathbf{t})} \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 + \lambda \mathbf{1}^\top \mathbf{t} \\ \text{s.t.} \quad -\mathbf{t} < \mathbf{x} < \mathbf{t} \end{aligned}$$

- ▶ В новой задаче 2n переменных и 2n ограничений, но она гладкая!
- Важно: задачи эквивалентны! Решив одну, получаем решение другой и наоборот

Почему такое переформулирование корректно?

lacktriangle Покажем, что для решения гладкой задачи $|x_i^*|=t_i^*$

Почему такое переформулирование корректно?

- ▶ Покажем, что для решения гладкой задачи $|x_i^*| = t_i^*$
- ▶ Для этого запишем условия ККТ, так как задача выпукла и выполнено условие Слейтера

- lacktriangle Покажем, что для решения гладкой задачи $|x_i^*|=t_i^*$
- Для этого запишем условия ККТ, так как задача выпукла и выполнено условие Слейтера
 - Допустимость в прямой задаче: $x_i^* t_i^* \leq 0, \; -x_i^* t_i^* \leq 0$

- ▶ Покажем, что для решения гладкой задачи $|x_i^*| = t_i^*$
- Для этого запишем условия ККТ, так как задача выпукла и выполнено условие Слейтера
 - ullet Допустимость в прямой задаче: $x_i^* t_i^* \leq 0, \; -x_i^* t_i^* \leq 0$
 - ullet Допустимость в двойственной задаче: $\mu_i^* \geq 0, \; \nu_i^* \geq 0$

- lacktriangle Покажем, что для решения гладкой задачи $|x_i^*|=t_i^*$
- Для этого запишем условия ККТ, так как задача выпукла и выполнено условие Слейтера
 - ullet Допустимость в прямой задаче: $x_i^* t_i^* \leq 0, \; -x_i^* t_i^* \leq 0$
 - ullet Допустимость в двойственной задаче: $\mu_i^* \geq 0, \; \nu_i^* \geq 0$
 - Дополняющая нежёсткость:

$$\mu_i^*(x_i^* - t_i^*) = 0, \ \nu_i^*(-x_i^* - t_i^*) = 0$$

- lacktriangle Покажем, что для решения гладкой задачи $|x_i^*|=t_i^*$
- Для этого запишем условия ККТ, так как задача выпукла и выполнено условие Слейтера
 - ullet Допустимость в прямой задаче: $x_i^* t_i^* \leq 0, \; -x_i^* t_i^* \leq 0$
 - ullet Допустимость в двойственной задаче: $\mu_i^* \geq 0, \; \nu_i^* \geq 0$
 - Дополняющая нежёсткость:

$$\mu_i^*(x_i^* - t_i^*) = 0, \ \nu_i^*(-x_i^* - t_i^*) = 0$$

ullet Стационарность Лагранжиана по переменным (\mathbf{x},\mathbf{t}) :

$$\begin{bmatrix} \mathbf{A}^{\top} (\mathbf{A} \mathbf{x}^* - \mathbf{b}) + \boldsymbol{\mu}^* - \boldsymbol{\nu}^* \\ \lambda \mathbf{1} - \boldsymbol{\mu}^* - \boldsymbol{\nu}^* \end{bmatrix} = 0$$

- lacktriangle Покажем, что для решения гладкой задачи $|x_i^*|=t_i^*$
- Для этого запишем условия ККТ, так как задача выпукла и выполнено условие Слейтера
 - ullet Допустимость в прямой задаче: $x_i^* t_i^* \leq 0, \; -x_i^* t_i^* \leq 0$
 - ullet Допустимость в двойственной задаче: $\mu_i^* \geq 0, \; \nu_i^* \geq 0$
 - Дополняющая нежёсткость:

$$\mu_i^*(x_i^* - t_i^*) = 0, \ \nu_i^*(-x_i^* - t_i^*) = 0$$

ullet Стационарность Лагранжиана по переменным (\mathbf{x},\mathbf{t}) :

$$\begin{bmatrix} \mathbf{A}^{\top} (\mathbf{A} \mathbf{x}^* - \mathbf{b}) + \boldsymbol{\mu}^* - \boldsymbol{\nu}^* \\ \lambda \mathbf{1} - \boldsymbol{\mu}^* - \boldsymbol{\nu}^* \end{bmatrix} = 0$$

▶ Имеем, что $oldsymbol{\mu}^* + oldsymbol{
u}^* = \lambda oldsymbol{1}$, где $\lambda > 0$

- lacktriangle Покажем, что для решения гладкой задачи $|x_i^*|=t_i^*$
- Для этого запишем условия ККТ, так как задача выпукла и выполнено условие Слейтера
 - ullet Допустимость в прямой задаче: $x_i^* t_i^* \leq 0, \; -x_i^* t_i^* \leq 0$
 - ullet Допустимость в двойственной задаче: $\mu_i^* \geq 0, \; \nu_i^* \geq 0$
 - Дополняющая нежёсткость:
 - $\mu_i^*(x_i^* t_i^*) = 0, \ \nu_i^*(-x_i^* t_i^*) = 0$
 - ullet Стационарность Лагранжиана по переменным (\mathbf{x},\mathbf{t}) :

$$\begin{bmatrix} \mathbf{A}^{\top} (\mathbf{A} \mathbf{x}^* - \mathbf{b}) + \boldsymbol{\mu}^* - \boldsymbol{\nu}^* \\ \lambda \mathbf{1} - \boldsymbol{\mu}^* - \boldsymbol{\nu}^* \end{bmatrix} = 0$$

- lacktriangle Имеем, что $oldsymbol{\mu}^* + oldsymbol{
 u}^* = \lambda oldsymbol{1}$, где $\lambda > 0$
- lacktriangle Значит μ_i^* и ν_i^* не могут равны нулю одновременно

- lacktriangle Покажем, что для решения гладкой задачи $|x_i^*|=t_i^*$
- Для этого запишем условия ККТ, так как задача выпукла и выполнено условие Слейтера
 - ullet Допустимость в прямой задаче: $x_i^* t_i^* \leq 0, \; -x_i^* t_i^* \leq 0$
 - ullet Допустимость в двойственной задаче: $\mu_i^* \geq 0, \ \nu_i^* \geq 0$
 - Дополняющая нежёсткость:
 - $\mu_i^*(x_i^* t_i^*) = 0, \ \nu_i^*(-x_i^* t_i^*) = 0$
 - ullet Стационарность Лагранжиана по переменным (\mathbf{x},\mathbf{t}) :

$$\begin{bmatrix} \mathbf{A}^{\top} (\mathbf{A} \mathbf{x}^* - \mathbf{b}) + \boldsymbol{\mu}^* - \boldsymbol{\nu}^* \\ \lambda \mathbf{1} - \boldsymbol{\mu}^* - \boldsymbol{\nu}^* \end{bmatrix} = 0$$

- lacktriangle Имеем, что $oldsymbol{\mu}^* + oldsymbol{
 u}^* = \lambda oldsymbol{1}$, где $\lambda > 0$
- lacktriangle Значит μ_i^* и u_i^* не могут равны нулю одновременно
- ▶ Из дополняющей нежёсткости следует, что $x_i^* = t_i^*$ или $x_i^* = -t_i^*$

lacktriangle Дана выпуклая задача P_0

- lacktriangle Дана выпуклая задача P_0
- Выполняются последовательные эквивалентные преобразования

$$P_0 \to P_1 \to \ldots \to P_K$$

где P_K – задача, которую можно решать IPM

- lacktriangle Дана выпуклая задача P_0
- Выполняются последовательные эквивалентные преобразования

$$P_0 \to P_1 \to \ldots \to P_K$$

где P_K – задача, которую можно решать IPM

ightharpoonup Эффективное решение P_K

- lacktriangle Дана выпуклая задача P_0
- Выполняются последовательные эквивалентные преобразования

$$P_0 \to P_1 \to \ldots \to P_K$$

где P_K – задача, которую можно решать IPM

- ightharpoonup Эффективное решение P_K
- lacktriangle Обратное преобразование решения P_K в решение P_0

- ightharpoonup Дана выпуклая задача P_0
- Выполняются последовательные эквивалентные преобразования

$$P_0 \to P_1 \to \ldots \to P_K$$
,

где P_K – задача, которую можно решать IPM

- ightharpoonup Эффективное решение P_K
- lacktriangle Обратное преобразование решения P_K в решение P_0
- $ightharpoonup P_K$ может иметь больше ограничений и/или переменных, но наличие определённой структуры и высокая эффективность IPM компенсируют это

 Правила преобразования выпуклых функций порождают преобразования задач

- Правила преобразования выпуклых функций порождают преобразования задач

- Правила преобразования выпуклых функций порождают преобразования задач
- $\max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$
 - Вводим новую переменную $t = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$

- Правила преобразования выпуклых функций порождают преобразования задач
- - Вводим новую переменную $t = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$
 - Добавляем ограничения $f_1(\mathbf{x}) \leq t, \; f_2(\mathbf{x}) \leq t$

- Правила преобразования выпуклых функций порождают преобразования задач
- - Вводим новую переменную $t = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$
 - ullet Добавляем ограничения $f_1(\mathbf{x}) \leq t, \ f_2(\mathbf{x}) \leq t$
- $\blacktriangleright h(f(\mathbf{x}))$

- Правила преобразования выпуклых функций порождают преобразования задач
- - Вводим новую переменную $t = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$
 - ullet Добавляем ограничения $f_1(\mathbf{x}) \leq t, \ f_2(\mathbf{x}) \leq t$
- $h(f(\mathbf{x}))$
 - Вводим новую переменную $t=f(\mathbf{x})$

- Правила преобразования выпуклых функций порождают преобразования задач
- - Вводим новую переменную $t = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$
 - ullet Добавляем ограничения $f_1(\mathbf{x}) \leq t, \ f_2(\mathbf{x}) \leq t$
- $\blacktriangleright h(f(\mathbf{x}))$
 - Вводим новую переменную $t=f(\mathbf{x})$
 - Добавляем ограничение $f(\mathbf{x}) \leq t$

lacktriangle Пусть в задаче есть ограничение $f(\mathbf{x}) \leq t$

- lacktriangle Пусть в задаче есть ограничение $f(\mathbf{x}) \leq t$
- Рассмотрим конус

$$K = \{ (\mathbf{x}, y, z) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \mid yf(\mathbf{x}/y) \le z \}$$

- lacktriangle Пусть в задаче есть ограничение $f(\mathbf{x}) \leq t$
- Рассмотрим конус

$$K = \{ (\mathbf{x}, y, z) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \mid yf(\mathbf{x}/y) \le z \}$$

 $lacktriangledown\ K \cup \{0,0,0\}$ — выпуклый конус при выпуклой функции f

- lacktriangle Пусть в задаче есть ограничение $f(\mathbf{x}) \leq t$
- Рассмотрим конус

$$K = \{ (\mathbf{x}, y, z) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \mid yf(\mathbf{x}/y) \le z \}$$

- $lacktriangleright K \cup \{0,0,0\}$ выпуклый конус при выпуклой функции f
- ▶ Тогда $f(\mathbf{x}) \leq t \Leftrightarrow (\mathbf{x}, 1, t) \in K$

- lacktriangle Пусть в задаче есть ограничение $f(\mathbf{x}) \leq t$
- Рассмотрим конус

$$K = \{ (\mathbf{x}, y, z) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \mid yf(\mathbf{x}/y) \le z \}$$

- $lacktriangleright K \cup \{0,0,0\}$ выпуклый конус при выпуклой функции f
- ▶ Тогда $f(\mathbf{x}) \leq t \Leftrightarrow (\mathbf{x}, 1, t) \in K$

Перспективное преобразование

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ выпуклая функция. Тогда $g:\mathbb{R}^{n+1} \to \mathbb{R}$ такая что $g(\mathbf{x},t)=tf(\mathbf{x}/t)$ также выпукла для t>0.

- lacktriangle Пусть в задаче есть ограничение $f(\mathbf{x}) \leq t$
- ▶ Рассмотрим конус

$$K = \{ (\mathbf{x}, y, z) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \mid yf(\mathbf{x}/y) \le z \}$$

- $lacktriangleright K \cup \{0,0,0\}$ выпуклый конус при выпуклой функции f
- ▶ Тогда $f(\mathbf{x}) \leq t \Leftrightarrow (\mathbf{x}, 1, t) \in K$

Перспективное преобразование

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ выпуклая функция. Тогда $g:\mathbb{R}^{n+1} \to \mathbb{R}$ такая что $g(\mathbf{x},t)=tf(\mathbf{x}/t)$ также выпукла для t>0.

- $lackbox(\mathbf{x},t,s)\in \mathrm{epi}(g).$ Тогда $f(\mathbf{x}/t)\leq s/t, t>0$
- ▶ Значит $(\mathbf{x}/t, s/t) \in \operatorname{epi}(f)$
- ▶ Тогда надграфик для g есть обратное преобразование от P(u,v,w)=(u/w,v/w), w>0 для надграфика f, который выпуклый

Определение

Перспективным отображением множества $C\subset \mathbb{R}^n \times \mathbb{R}_{++}$ называется функция $P(\mathbf{x})=(x_1/x_{n+1},\dots,x_n/x_{n+1}).$

Определение

Перспективным отображением множества $C \subset \mathbb{R}^n \times \mathbb{R}_{++}$ называется функция $P(\mathbf{x}) = (x_1/x_{n+1}, \dots, x_n/x_{n+1}).$

Утверждение

Перспективне отображение выпуклого множества даёт выпуклое множество.

Определение

Перспективным отображением множества $C \subset \mathbb{R}^n \times \mathbb{R}_{++}$ называется функция $P(\mathbf{x}) = (x_1/x_{n+1}, \dots, x_n/x_{n+1}).$

Утверждение

Перспективне отображение выпуклого множества даёт выпуклое множество.

Определение

Перспективным отображением множества $C \subset \mathbb{R}^n \times \mathbb{R}_{++}$ называется функция $P(\mathbf{x}) = (x_1/x_{n+1}, \dots, x_n/x_{n+1}).$

Утверждение

Перспективне отображение выпуклого множества даёт выпуклое множество.

Доказательство

▶ Пусть $\mathbf{x}=(\hat{\mathbf{x}},x_{n+1}), \mathbf{y}=(\hat{\mathbf{y}},y_{n+1})\in C$ и $x_{n+1}>0,y_{n+1}>0$

Определение

Перспективным отображением множества $C \subset \mathbb{R}^n \times \mathbb{R}_{++}$ называется функция $P(\mathbf{x}) = (x_1/x_{n+1}, \dots, x_n/x_{n+1}).$

Утверждение

Перспективне отображение выпуклого множества даёт выпуклое множество.

- ▶ Пусть $\mathbf{x} = (\hat{\mathbf{x}}, x_{n+1}), \mathbf{y} = (\hat{\mathbf{y}}, y_{n+1}) \in C$ и $x_{n+1} > 0, y_{n+1} > 0$
- ► Тогда $P(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) = \frac{\alpha \hat{\mathbf{x}} + (1 \alpha)\hat{\mathbf{y}}}{\alpha x_{n+1} + (1 \alpha)y_{n+1}}$

Определение

Перспективным отображением множества $C \subset \mathbb{R}^n \times \mathbb{R}_{++}$ называется функция $P(\mathbf{x}) = (x_1/x_{n+1}, \dots, x_n/x_{n+1}).$

Утверждение

Перспективне отображение выпуклого множества даёт выпуклое множество.

- ▶ Пусть $\mathbf{x} = (\hat{\mathbf{x}}, x_{n+1}), \mathbf{y} = (\hat{\mathbf{y}}, y_{n+1}) \in C$ и $x_{n+1} > 0, y_{n+1} > 0$
- ▶ Тогда $P(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) = \frac{\alpha \hat{\mathbf{x}} + (1 \alpha)\hat{\mathbf{y}}}{\alpha x_{n+1} + (1 \alpha)y_{n+1}}$
- $P(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) = \beta P(\mathbf{x}) + (1 \beta)P(\mathbf{y}), \ \beta \in [0, 1]$

Определение

Перспективным отображением множества $C \subset \mathbb{R}^n \times \mathbb{R}_{++}$ называется функция $P(\mathbf{x}) = (x_1/x_{n+1}, \dots, x_n/x_{n+1}).$

Утверждение

Перспективне отображение выпуклого множества даёт выпуклое множество.

- ▶ Пусть $\mathbf{x} = (\hat{\mathbf{x}}, x_{n+1}), \mathbf{y} = (\hat{\mathbf{y}}, y_{n+1}) \in C$ и $x_{n+1} > 0, y_{n+1} > 0$
- ▶ Тогда $P(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) = \frac{\alpha \hat{\mathbf{x}} + (1 \alpha)\hat{\mathbf{y}}}{\alpha x_{n+1} + (1 \alpha)y_{n+1}}$
- $P(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) = \beta P(\mathbf{x}) + (1 \beta)P(\mathbf{y}), \ \beta \in [0, 1]$
- ▶ Значит образ также является выпуклым множеством

От доказательства выпуклости к применимости IPM

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

ightharpoonup Построение f_i из элементарных функций и правил преобразований даёт доказательство выпуклости

От доказательства выпуклости к применимости ІРМ

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

- ightharpoonup Построение f_i из элементарных функций и правил преобразований даёт доказательство выпуклости
- Аналогичный разбор даёт преобразование задачи к форме, состоящей из элементарных функций и аффинных равенств

От доказательства выпуклости к применимости ІРМ

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i=1,\ldots,m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

- ightharpoonup Построение f_i из элементарных функций и правил преобразований даёт доказательство выпуклости
- Аналогичный разбор даёт преобразование задачи к форме, состоящей из элементарных функций и аффинных равенств
- ► Если элементарные функции подходят для IPM, преобразование автоматически даёт форму задачи, которая может быть решена IPM

Disciplined convex programming (DCP)

 Задаются искомые переменные и фиксированные параметры

- Задаются искомые переменные и фиксированные параметры
- ▶ Целевая функция и ограничения строятся из элементарных функций с помощью правил композиций и сочетаний

- Задаются искомые переменные и фиксированные параметры
- Целевая функция и ограничения строятся из элементарных функций с помощью правил композиций и сочетаний
- Задача выпукла по построению

- Задаются искомые переменные и фиксированные параметры
- Целевая функция и ограничения строятся из элементарных функций с помощью правил композиций и сочетаний
- Задача выпукла по построению
- ▶ Автоматически разбирается на элементы

- Задаются искомые переменные и фиксированные параметры
- ▶ Целевая функция и ограничения строятся из элементарных функций с помощью правил композиций и сочетаний
- Задача выпукла по построению
- Автоматически разбирается на элементы
- Приводится к форме для запуска IPM

- Задаются искомые переменные и фиксированные параметры
- Целевая функция и ограничения строятся из элементарных функций с помощью правил композиций и сочетаний
- Задача выпукла по построению
- Автоматически разбирается на элементы
- Приводится к форме для запуска IPM
- Решается некоторым стандартным пакетом для IPM

- Задаются искомые переменные и фиксированные параметры
- ▶ Целевая функция и ограничения строятся из элементарных функций с помощью правил композиций и сочетаний
- Задача выпукла по построению
- Автоматически разбирается на элементы
- Приводится к форме для запуска IPM
- Решается некоторым стандартным пакетом для IPM
- Восстанавливается решение исходной задачи

Пример разбора выражения и проверка его на выпуклость

Больше примеров можно найти на сайте

История

- ▶ Системы AMPL, GAMS 1970-ые
- ▶ Пакеты для задач SDP/LMI: sdpsol (Wu, Boyd), lmilab (Gahinet, Nemirovsky), lmitool (El Ghaoui) 1990-ые
- ▶ yalmip (Löfberg 2000-)
- automated convexity checking (Crusius PhD thesis 2002)
- disciplined convex programming (DCP) (Grant, Boyd, Ye 2004)
- cvx (Grant, Boyd, Ye 2005) для MATLAB
- cvxopt (Dahl, Vandenberghe 2005)
- Convex.jl (M. Udell, et. al. 2014) для Julia
- ► cvxpy (Diamond, Boyd 2016) для Python

Pro:

▶ Проверка выпуклости и генерация преобразования задачи для IPM

Pro:

- Проверка выпуклости и генерация преобразования задачи для IPM
- ▶ Построение задачи: элементарные выпуклые функции + правила композиций и преобразований

Contra:

Pro:

- Проверка выпуклости и генерация преобразования задачи для IPM
- ▶ Построение задачи: элементарные выпуклые функции + правила композиций и преобразований
- ▶ Очень похоже на математическую нотацию

Contra:

Pro:

- Проверка выпуклости и генерация преобразования задачи для IPM
- ▶ Построение задачи: элементарные выпуклые функции + правила композиций и преобразований
- ▶ Очень похоже на математическую нотацию

Contra:

▶ He про «plug & play» или «try my code»

Pro:

- Проверка выпуклости и генерация преобразования задачи для IPM
- Построение задачи: элементарные выпуклые функции + правила композиций и преобразований
- ▶ Очень похоже на математическую нотацию

Contra:

- ▶ He про «plug & play» или «try my code»
- Нельзя записать произвольную задачу и надеяться, что она будет выпукла

Солверы для решения общих задач оптимизации

- ► ipopt
- ► Pyomo
- ► Gurobi

Правила построения выпуклых функций

- Правила построения выпуклых функций
- Сведение задач к стандартной форме

- Правила построения выпуклых функций
- ▶ Сведение задач к стандартной форме
- Disciplined convex programming

- Правила построения выпуклых функций
- ▶ Сведение задач к стандартной форме
- Disciplined convex programming
- Примеры

- Правила построения выпуклых функций
- ▶ Сведение задач к стандартной форме
- Disciplined convex programming
- Примеры
- Солверы для решения задач оптимизации