Particle spectrograph

Wave operator and propagator

,								
S==								
$\iiint \int \int$	$(2t_1 \alpha$	$\sigma''_{\alpha} \omega'_{t}$	$f 9 + \theta_{\theta}$	$\alpha \beta \tau_{\alpha \beta} +$	$\iiint (\frac{1}{6} (2 t_1 \ \omega^{\alpha \prime} \ \omega^{ \theta}_{ $	$\frac{4}{x}$ - 4 t_1	$\omega_{\alpha}^{\ \ \theta} \partial_{i} f^{\alpha i}$	$+4t_1\omega$
$\partial' f^{\alpha}$	$-2t_1\partial_{,J}$	$\epsilon^{ heta}_{ heta}\partial' f^{lpha}$	α^{-2t_1}	$\partial_i f^{\alpha i} \partial_{\theta} f_{\theta}$	$\partial' f^{\alpha}_{\ \alpha} - 2 t_1 \partial_i f^{\theta}_{\ \theta} \partial' f^{\alpha}_{\ \alpha} - 2 t_1 \partial_i f^{\alpha i} \partial_\theta f^{\ \theta}_{\ \alpha} + 4 t_1 \partial' f^{\alpha}_{\ \alpha} \partial_\theta f^{\ \theta}_{\ \rho} -$	$\alpha^{\partial\theta f'}$	- -	
$6t_1\partial_{\scriptscriptstyle lpha}$	$f_{'\theta} g^{\theta} f$	$^{lpha\prime}$ - 3 t_1 ,	$\partial_{\alpha}f_{\ heta_{1}}\partial^{\epsilon}$	$f^{\alpha\prime} + 3t$	$6t_1\partial_{\alpha}f_{'\theta}\partial^{\theta}f^{\alpha\prime} - 3t_1\partial_{\alpha}f_{\theta\prime}\partial^{\theta}f^{\alpha\prime} + 3t_1\partial_{\beta}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + 3t_1\partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} +$	$+3t_{1}$	$\partial_{\theta}f_{\alpha_{I}}\partial^{\theta}f^{\alpha_{I}}$ -	
$3t_1\partial_{\epsilon}$	$f_{\alpha} \partial_{\theta} f$	$\alpha' + 6t_1$	$\omega_{\alpha\theta_{I}}$ ($\omega^{\alpha l\theta}$ + 3	$3t_1\partial_\theta f_{,\alpha}\partial^\theta f^{\alpha\prime} + 6t_1\;\omega_{\alpha\theta\prime}\;(\omega^{\alpha\prime\theta} + 2\partial^\theta f^{\alpha\prime}) + 8r_2\partial_\beta\omega_{\alpha\prime\theta}\partial^\theta\omega^{\alpha\beta\prime}$	$^{2}\partial_{eta}\omega_{c}$	$^{\prime\prime}$	
$4 r_2 \partial_{\mathcal{E}}$	$\omega_{\alpha \theta}, \partial^{\epsilon}$	$\omega^{\alpha\beta\prime}$ +	$4 r_2 \partial_{\beta} u$	$\sigma_{i\theta\alpha}^{}\partial^{\theta}\omega_{c}^{}$	$4r_2\partial_\beta\omega_{\alpha\theta_l}\partial^\theta\omega^{\alpha\beta_l} + 4r_2\partial_\beta\omega_{_l\theta\alpha}\partial^\theta\omega^{\alpha\beta_l} - 2r_2\partial_\imath\omega_{\alpha\beta\theta}\partial^\theta\omega^{\alpha\beta_l} +$	$\eta_{ heta} = \eta_{ heta}$	'αβı +	
$2r_2\partial_{\epsilon}$	$\omega_{lphaeta_{l}}\partial^{\epsilon}$	′ω ^{αβ′} - 4	$r_2 \partial_{\theta} \omega_{\theta}$	$_{lpha_{ec{eta}}eta_{ec{eta}}\omega_{lpha_{ec{eta}}}$	$2r_2\partial_\theta\omega_{\alphaeta_l}\partial^\theta\omega^{lphaeta_l}-4r_2\partial_\theta\omega_{lpha_leta}\partial^\theta\omega^{lphaeta_l})][t,\kappa,y,z]dzdydxdt$] d'z d	ydxdt	
	$\omega_1^{\#1}{}_+\alpha\beta$	$\omega_{1}^{\#1} \ \omega_{1}^{\#2} \ \omega_{1}^{\#2} \ f_{1}^{\#1} \ \omega_{1}^{\#1}$	$f_1^{\#1}$	$\omega_{1}^{\#1}{}_{\alpha}$	$\omega_{1^{-}}^{\#2}{}_{\alpha}$	$f_{1^{ ext{-}}}^{\#1}$	$f_{1^-}^{\#2} \alpha$	
$\omega_1^{\#1} + \alpha^{eta}$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	
$\omega_1^{\#2} + ^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	
$f_{1}^{\#1} + \alpha \beta$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_{1}^{\#_1} +^\alpha$	0	0	0	9 6	$\frac{t_1}{3\sqrt{2}}$	0	<i>ikt</i> 1 3	
$\omega_{1}^{\#2} +^{lpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	1 <u>7</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	
$f_{1^-}^{\#1} \dagger^\alpha$	0	0	0	0	0	0	0	
$f_1^{\#2} + ^{lpha}$	0	0	0	$-\frac{1}{3}\bar{l}kt_1$	$-\frac{1}{3}\overline{l}kt_1\left -\frac{1}{3}\overline{l}\sqrt{2}kt_1\right $	0	$\frac{2k^2t_1}{3}$	

	0	0	0	0	$\tau_{0}^{\#1}$	t C) 0	0	()	$\omega_2^{\#1}_{+lphaeta}$)		باري	-
	0	0	0	0		t C) 0	0	()	$\omega_2^{\#1}$	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	
#	$\omega_{0}^{*+} +$	$f_0^{\#1}$ †	$f_0^{\#2} \uparrow$	$\omega_{0^{\text{-}}}^{\#1}\dagger$		† C	0	0	$\frac{1}{k^2 r}$	<u>l</u> 2 ^{-t} 1		$\omega_{2}^{\#1} + \alpha^{eta}$	$f_2^{#1} + \alpha^{\beta}$	
וובומנסוא	Multiplicities										$\sigma_{2^{-}}^{\#1} lpha_{eta\chi}$	0	0	
jange ge	Multip	1	1	1	т	m	т	т	0 5	20	$ au_2^{\#1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	
ondice collocialitis/gauge gellerators	rreps			0	$+2ik\sigma_{1}^{\#1}\alpha=0$	0 ==	== $\sigma_{1}^{\#2}\alpha$	$+ik \sigma_1^{\#_2^2\alpha\beta} == 0$	$-2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	Total constraints:	$\sigma_{2}^{\#1}$	$\frac{2}{(1+2k^2)^2t_1}$ -	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	
שורע	SO(3) irreps	$\tau_{0}^{\#2} == 0$	$\tau_{0}^{\#1} == 0$	$\sigma_{0}^{\#1} == 0$	L	$\tau_1^{\#1}{}^{\alpha}=$	$\sigma_{1}^{\#1}\alpha$ =	$t_1^{\#1}\alpha\beta$	$t_2^{\#1}\alpha\beta$	Total c		$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_2^{\#1} + \alpha \beta$	

0

 $f_{2}^{\#1}$

*t*1 2

0

0

0

 $\sigma_{0}^{#1} + 0$

0

0

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$