The Setting

We work in a compact, riemanian, orientable, smooth Manifold (M, g) of dimension m together with a Morse-Smale funktion

$$f: M \to \mathbb{R} \tag{1}$$

We assume that q is a critical point of index k+1 and p is a critical point of index k. we define f(q) = b and f(p) = a and assume that there is no kritical point in $f^{-1}(a,b) \subseteq M$. We define the sub and superlevelsets

$$M^t := \{x \in M | f(x) \le t\} \quad \text{and} \quad M_t := \{x \in M | f(x) \ge t\}, \tag{2}$$

and the constants

$$c \in (a, b)$$
 , $\varepsilon > 0$ small , $T > 0$ big . (3)

With this we define the sets:

$$N_q := \left\{ x \in M_c \middle| f(\varphi_{-T}(x)) \le b + \varepsilon \right\},\tag{4}$$

$$L_q := \left\{ x \in N_q | f(x) = c \right\},\tag{5}$$

$$N_p := \left\{ x \in M^c \middle| f(\varphi_T(x)) \ge a - \varepsilon \right\},\tag{6}$$

$$L_p := \left\{ x \in N_p \middle| f(\varphi_T(x)) = a - \varepsilon \right\},\tag{7}$$

and finally:

$$C := N_n \cup N_q \,, \tag{8}$$

$$B \coloneqq N_p \cup L_q \,, \tag{9}$$

$$A \coloneqq L_p \cup (L_q - N_p). \tag{10}$$

Lemma 0.0.1. We claim that

- 1. (N_q, L_q) is a regular index pair for q.
- 2. (C,B) is an index pair for q.
- 3. (N_p, L_p) is a regular index pair for p.
- 4. (B,A) is an index pair for p.
- 5. N_p is a tubular neighbourhood of $W(\rightarrow p) \cap M^c$.

Lemma 0.0.2. Let $\psi: U \to V$ be a chart. Then the gradient has the local form:

$$\operatorname{grad}(f) \circ \psi - 1 = \sum_{i,j} g^{ij} \frac{\partial f \circ \psi^{-1}}{\partial x^i} \frac{\partial}{\partial x^j}$$

Here, g^{ij} denotes the smooth functions given by the coordinates of the function $x \mapsto (g_{ij}(x))$ that defines the coordinate representation of the gradient in x.

Proof. Assume that $v, w \in \Gamma(TM)$ such that $v = \sum_i v^i \frac{\partial}{\partial x^i}$ and $w = \sum_i w^i \frac{\partial}{\partial x^i}$. Then $g(v, w) = \sum_{i,j} g_{ij} v^i w^i$. Suppose that $\operatorname{grad}(f) = \sum_j G^j \frac{\partial}{\partial x^i}$ and q is the coordinate map $T\mathbb{R} \to \mathbb{R}$ in each tangend space. Then by definition of the gradient we have:

$$\frac{\partial}{\partial x^{j}}(f) = q \circ \mathrm{d}f(\frac{\partial}{\partial x^{j}}) = q \circ \frac{\partial f}{\partial x^{j}} = g(\mathrm{grad}(f), \frac{\partial}{\partial x^{j}}) = \sum_{ij} g_{ij}G^{j}$$

Hence, \Box

Definition 0.0.3 (Jacobian of the Gradient). The gradient is a section into the tangent bundle, $\operatorname{grad}(f): M \to TM$. Let $\psi: M \supseteq U \to V \subseteq \mathbb{R}^m$ be a chart. The coordinate map q_{ψ} on TU assigns to a vector $v \in T_pM$ (where $p \in U$ with $\psi(p) = x$) its components with respect to the basis $\left(\frac{\partial}{\partial x^i}\Big|_p\right)$, i.e., $q_{\psi}(v) = (v^1, \dots, v^m)$ if $v = \sum_{i=1}^m v^i \frac{\partial}{\partial x^i}\Big|_p$. We define the Jacobian of the gradient with respect to the chart ψ as the Jacobian matrix of the coordinate representation of the gradient in this chart:

$$J(\operatorname{grad}(f))_{\psi}(x) \coloneqq J\left(q_{\psi} \circ \operatorname{grad}(f) \circ \psi^{-1}\right)(x) = \left(\frac{\partial (q_{\psi} \circ \operatorname{grad}(f) \circ \psi^{-1})_{i}}{\partial x_{j}}(x)\right)_{ij}$$

Lemma 0.0.4. Let g be a metric and $\varphi_t(x)$ be the flow associated to $-\operatorname{grad}(f)$ meaning

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t_0}\varphi_t(x) = -\mathrm{grad}(f)(\varphi_{t_0}(x))$$

Let furthermore, $\psi: U \to V$ be a chart. If t_0 is small enough and $x \in U$ such that $\varphi_t(x) \in U$, then

$$\frac{\partial}{\partial t}\psi\circ\varphi_{t_0}(\psi^{-1})(x)=$$

Lemma 0.0.5. Let $t \in \mathbb{R}$ be small enough and $\varphi_t : M \to M$ be the flow map corresponding to the negative gradient. Assume that U is the domain of a chart ψ and $p \in U$ such that $\varphi_t(p) \in U$. Then the linear map $d\varphi_t|_p : T_pM \to T_{\varphi_t(p)}M$ has a

local representation in the coordinates induced by ψ given by:

$$q_{\psi} \frac{\partial}{\partial x} \varphi_t(\psi^{-1}(x)) = \exp\left(q_{\psi} \circ \operatorname{grad}(f)\psi^{-1}\right).$$

Proof. For this we consider the function $(t,x) \mapsto \psi \circ \varphi_t(\psi^{-1}(x)) : \mathbb{R} \times U \to U$ For fixed x we can calculate

$$q_{\psi} \frac{\mathrm{d}}{\mathrm{d}t} \varphi_t(\psi^{-1}(x)) = -q_{\psi} \circ \operatorname{grad}(f)(\varphi_t(\psi^{-1}(x)))$$

and by changing the order of integration we have:

$$\frac{\partial}{\partial t} \frac{\partial}{\partial x} \psi \circ \varphi_t(\psi^{-1}(x)) = \frac{\partial}{\partial x} \frac{\partial}{\partial t} \psi \circ \varphi_t(\psi^{-1}(x))$$

$$= \frac{\partial}{\partial x} q_\psi \frac{\mathrm{d}}{\mathrm{d}t} \varphi_t(\psi^{-1}(x))$$

$$= -\frac{\partial}{\partial x} q_\psi \circ \operatorname{grad}(f) (\varphi_t(\psi^{-1}(x)))$$

$$= -\frac{\partial}{\partial x} q_\psi \circ \operatorname{grad}(f) (\psi^{-1} \circ \psi \circ \varphi_t(\psi^{-1}(x)))$$

$$= -\frac{\partial}{\partial x} (q_\psi \circ \operatorname{grad}(f) \psi^{-1}) \frac{\partial}{\partial x} (\psi \circ \varphi_t(\psi^{-1}(x)))$$

Hence by the theory of linear differential equation with $\frac{\partial}{\partial x}\psi \circ \varphi_0(\psi^{-1}(x)) = 1_m$ we have:

$$\frac{\partial}{\partial x}\psi\circ\varphi_t(\psi^{-1}(x))=\exp\left(q_\psi\circ\operatorname{grad}(f)\psi^{-1}\right).$$

Or written differently:

$$q_{\psi} \frac{\partial}{\partial x} \varphi_t(\psi^{-1}(x)) = \exp\left(q_{\psi} \circ \operatorname{grad}(f)\psi^{-1}\right).$$

Lemma 0.0.6. Let ψ be a coordinate system arround a critical point p. I.e. $\psi: p \in U \to V$ with $\psi(p) = 0$ and let $\left(\frac{\partial}{\partial x_1}\big|_x, \ldots, \frac{\partial}{\partial x_m}\big|_x\right)$ be the induced basis of T_xM Then the jacobean of the gradient

$$J(\operatorname{grad}(f))_{\psi}(0) = \sum_{k} g^{ki}(0) \frac{\partial^{2} f \circ \psi^{-1}}{\partial x_{j} \partial x_{k}}$$
(11)

where $(g^{ki}(x))$ denotes the matrix corresponding to the gradient in T_xM with respect to the basis $\left(\frac{\partial}{\partial x_1}\Big|_x,\ldots,\frac{\partial}{\partial x_m}\Big|_x\right)$.

Proof. Let q_{ψ} denote the koordinate funktion $TU \to R^m$ induced from the basis $\left(\frac{\partial}{\partial x_1}\Big|_x, \dots, \frac{\partial}{\partial x_m}\Big|_x\right)$. then the gradient in ψ reads:

$$q_{\psi} \circ \operatorname{grad}(f) = \left(\sum_{k} g^{k1} \frac{\partial f \circ}{\partial x_{k}}, \dots, \sum_{k} g^{km} \frac{\partial f \circ}{\partial x_{k}}\right)$$

Hence, we can differentiate:

$$\frac{\partial}{\partial x} Q \circ \operatorname{grad}(f) \circ \psi^{-1} = \left(\frac{\partial}{\partial x_j} \sum_{k} g^{ki} \frac{\partial f \circ \psi^{-1}}{\partial x_k} \right)_{ij}$$
$$= \left(\sum_{k} \left[\frac{\partial g^{ki}}{\partial x_j} \frac{\partial f \circ \psi^{-1}}{\partial x_k} + g^{ki} \frac{\partial^2 f \circ \psi}{\partial x_j} \right] \right)_{ij}.$$

and now in $p = \psi^{-1}(0)$ we have

$$\frac{\partial}{\partial x} Q \circ \operatorname{grad}(f) \circ \psi^{-1} \Big|_{0} = \left(\sum_{k} \left[g^{ki}(0) \frac{\partial^{2} f \circ \psi^{-1}}{\partial x_{j} \partial x_{k}} \right] \right)_{ij}.$$

Theorem 0.0.7 (Sylvesters Law of Inertia). Let $A \in \text{Mat}(n, \mathbb{R})$ be symmetric and let $T, T' \in \text{GL}(n, \mathbb{R})$ and $k, k', l, l' \in \mathbb{N}$ such that

$$T^{t} \circ A \circ T = \begin{pmatrix} 1_{k} & 0 & 0 \\ 0 & -1_{l} & 0 \\ 0 & 0 & 0_{n-k-l} \end{pmatrix} \text{ and } T'^{T} \circ A \circ T' = \begin{pmatrix} 1_{k'} & 0 & 0 \\ 0 & -1_{l'} & 0 \\ 0 & 0 & 0_{n-k'-l'} \end{pmatrix}$$

then k = k', l = l' and rank(A) = k + l.

Proof. Since T, T' are invertible we have that

$$k + l = \operatorname{rank}(T^t \circ A \circ T) = \operatorname{rank}(A) = \operatorname{rank}(T'^T \circ A \circ T') = k' + l'. \tag{12}$$

Hence it suffices to show that k = k'. Which we will do by proofing the claim:

$$k = \max \left\{ \dim(U) \middle| U \subseteq \mathbb{R}^n \text{subspace such that } x^t A x > 0 \ \forall x \in U \smallsetminus \{0\} \right\}$$

So we start by showing " \leq ": Denote the first k colonus of T with $x_1,...,x_k$. They form a basis of \mathbb{R}^n and with $0 \neq x = \sum_{i=1}^k \lambda i x^i$ we have that by bilinearity

$$x^{T} A x = \sum_{i=1}^{k} \lambda_{i} x_{i}^{T} A x = \sum_{i,j=1}^{k} \lambda_{i} \lambda_{j} x_{i}^{T} A x_{j} = \sum_{i=1}^{k} (\lambda_{i})^{2} \ge 0.$$
 (13)

This conculdes the first inequality.

Now let U be any k-dimensional subspace such that for all non zero $x \in U$ $x^T A x > 0$. By a calculation analog to the one above we have that for any $x \in W := \operatorname{span}(x_{k+1}, \dots x_n)$ the number $x^t A x$ is less or equal to zero. Hence, $W \cap U = \{0\}$ and with this we conclude:

$$\dim(U) = \dim(U+W) - \dim(W) + \dim(U\cap W) \le (k+(n-k)) - (n-k) + 0 = k.$$
 (14)

This is the last inequality proving the statement.

Lemma 0.0.8. Assume that $\psi: U \to V$ is a chart and $L: \mathbb{R}^m \to \mathbb{R}^m$ a linear function. Then the diagramm

$$T_p M \xrightarrow{q_{\psi|_p}} \mathbb{R}^m \downarrow_L$$

$$\mathbb{R}^m$$

commutes for all $p \in U$.

Proof. We show this by showing the inverse: For any $v \in \mathbb{R}^m$ we have the two $(q_{\psi}|_p)^{-1} \circ L^{-1}(v)$ and $(q_{\psi \circ L}|p)^{-1}$ and claim that they are the same. Assume that $L^{-1} = (\lambda_{ij})_{ij}$, $\psi(p) = x_0$, $L(x_0) = \tilde{x_0}$, $(v^1, \dots v^m) = v \in \mathbb{R}^m$ and denote the basis of T_pM coming from the chart ψ by $\left(\frac{\partial}{\partial x^i}|_p\right)_i$ and the one coming from $L^{-1} \circ \psi$ by $\left(\frac{\partial}{\partial \tilde{x}^i}|_p\right)_i$. We now calculate for $f_p \in \mathcal{E}_pM$:

$$\left[(q_{\psi \circ L}|_{p})^{-1}(v) \right] (f_{p}) = \sum_{i} v^{i} \frac{\partial}{\partial \tilde{x}^{i}}|_{p} (f_{p})$$

$$= \sum_{i} v^{i} \frac{\partial}{\partial x^{i}}|_{\tilde{x}_{0}} (f \circ \psi^{-1} \circ L^{-1})$$

$$= \sum_{i} v^{i} \sum_{j} \frac{\partial f \circ \psi^{-1}}{\partial x^{j}}|_{x_{0}} \cdot \frac{\partial L_{j}^{-1}}{\partial x^{i}}|_{\tilde{x}_{0}}$$

$$= \sum_{i,j} v^{i} \frac{\partial}{\partial x^{j}}|_{p} (f_{p}) \cdot \lambda_{ji}$$

$$= \sum_{i,j} v^{i} q_{\psi}|_{p}^{-1} (e_{j}) (f_{p}) \cdot \lambda_{ji}$$

$$= \left[q_{\psi}|_{p}^{-1} (\sum_{i,j} v^{i} \lambda_{ji} e^{j}) \right] (f_{p})$$

$$= \left[q_{\psi}|_{p}^{-1} (L^{-1}(v)) \right] (f_{p})$$

This concludes the proof.

Theorem 0.0.9 (Simultaneous Diagonalisation of Quadratic Forms). Let p be a critical point of a Morse function f on a manifold M and let g(p) be the Riemannian metric on T_pM . Then there exists a Morse chart ψ arround p such that the representation of g(p) in the basis induced by the Morse chart is given by a a diagonal matrix $diag(\mu_1, \ldots \mu_m)$ with $\mu_i > 0$ for all i.

Proof. The quadratic form of $f \circ \psi^{-1} - f(p)$ in the coordinates of any Morse chart ψ is $q_H(v) = v^T H v$. The quadratic form induced by the Riemannian metric g(p) is $q_G(v) = v^T G v$, where $v \in \mathbb{R}^m$ are the coordinate vectors with respect to the Morse chart. To be precise this means for $v, w \in \mathbb{R}^m$:

$$g \circ (q_{\psi}|_p \oplus q_{\psi}|_p)(v, w) = v^T G w$$
 and $f \circ \psi^{-1}(v) = f(p) + v^T H v$.

We now aim to manipulate ψ such that G becomes diagonal: Since g(p) is positive definite, G is also positive definite, and H is symmetric.

Consider the generalized eigenvalue problem $Hv = \lambda Gv$. Since H and G are real symmetric matrices and G is positive definite, this problem has m real eigenvalues $\lambda_1, \ldots, \lambda_m$ and corresponding eigenvectors v_1, \ldots, v_m , which can be chosen to be orthogonal with respect to the bilinear form defined by G, such that $v_i^T Gv_j = \delta_{ij}$, since if v_i and v_j are different eigenvectors with respect to different eigenvalues, we can calculate:

$$v_j^T H v_i = (H v_j)^T v_i = \lambda_j (G v_j)^T v_i = \lambda_j v_j^T G(v_i) \quad \text{and} \quad v_j^T H v_i = v_j^T \lambda_i G(v_i) = \lambda_i v_j^T G(v_i).$$

Hence we have the equality

$$\lambda_j (Gv_j)^T v_i = \lambda_i v_j^T G(v_i) \Leftrightarrow \underbrace{(\lambda_j - \lambda_i)}_{\neq 0} v_j^T G(v_i) = 0$$

Hence all eigenspaces are orthogonal and we can use Gram Schmitt to make the bases of the eigenspaces orthogonal and by rescaling orthonormal.

Let $L = [v_1|...|v_m]$ be the matrix whose columns are these G-orthonormal eigenvectors. The linear change of coordinates y = Lz leads to new coordinates z. In these new coordinates, the quadratic forms transform as follows:

$$q_G(y) = y^T G y = (Lz)^T G(Lz) = z^T L^T G L z = z^T I z = \sum_{i=1}^m z_i^2$$

 $q_H(y) = y^T H y = (Lz)^T H(Lz) = z^T L^T H L z$

Since $Hv_i = \lambda_i Gv_i$, we have $L^T H L = \operatorname{diag}(\lambda_1, \ldots, \lambda_m)$. The eigenvalues λ_i are real and have the same signature as the eigenvalues of H (l negative, m-l positive). This is true to sysvesters law of inertia. By a further scaling of the v_i and a reordering the matrix $L^T H L$ can be brought into the form $\operatorname{diag}(-1, \ldots, -1, 1, \ldots, 1)$. (by doing this however,

the matrix L^TGL becomes $L^TGL = \operatorname{diag}(\mu_1, \dots \mu_m)$ with $\mu_j > 0 \ \forall j$). If ψ is the Morse chart we started with, then $L^{-1} \circ \psi$ is the new Morse chart:

$$f \circ (\psi^{-1} \circ L)(y) = f \circ \psi^{-1}(L(y)) = q_H(L(y)) = \sum_{i=1}^l -y_i^2 + \sum_{i=l+1}^m y_i^1$$

Furthermore, we want to inspect the metric $g|_p:T_pM^2\to\mathbb{R}$ with respect to the chart $L^{-1}\circ\psi$ -induced basis $\left(\frac{\partial}{\partial x^1}|_p,\ldots,\frac{\partial}{\partial x^m}|_p\right)$. By the lemma 0.0.8

$$g(q_{L^{-1} \circ \psi}\big|_p^{-1}, q_{L^{-1} \circ \psi}\big|_p^{-1})(v, w) = g(q_{\psi}\big|_p^{-1}, q_{\psi}\big|_p^{-1})(Lv, Lw) = (Lv)^T GLW = v^T L^T GLw$$

Proof. The statements 1-4 are easy to proof by the definitions. The regularity can be derived from a general fact for pairs (X,Y) in metric spaces: If Y is closed in X and there is a neighbourhood of Y that is open in X such that Y is a strong deformation retract of U. So the only thing left to show is, that N_p is a tubular neighbourhood in [MorseTheorySalmbon] in the proof of lemma 3.2 Salamon claims this to be true without a proof (page 119 in the attached source). Similar, in [banyaga2004lectures] Banyaga claims this (also without any argument). I find this difficult to proof, since we cannot use the flow for the map from the normal bundle, as points leave N_p along the flow: The Set N_p is sketched in the figure below.

Idea: Show it locally in a morse chart arround p. Hopefully we can archive, that in such a chart the property $\varphi_T(x) \geq a - \varepsilon$ translates to $x = \psi(x_s, x_u)$ where $||x_u|| \leq T_x$. Then assume T to be big enough such that for any $x \in N_p$ there is a chart U arround a point $x_p \in W(\to p)$ and a t_0 such that $\varphi_{t_0}(U)$ lives in said morse chart. Finally check if the property required arround said x_p can be furmulated such that U has a tubular structure. So lets start this procedure! Let

$$\psi: p \in V \to U \subseteq \mathbb{R}^m$$

be a morse chart. Here the function f is of the form

$$f \circ \psi^{-1}(x_s, x_u) = a + x^{s^2} - x^{u^2}$$
.

where x^{s^2} and x^{u^2} denotes the sum of all the squares from the morse lemma. Without restrictions we call $x^s = (x^1, \dots x^l \text{ and } x^u : (x^{l+1}, \dots x^m)$. Now we inspect the set

$$\psi^{-1}(N_p \cap V) = \left\{ (x^s, x^u) \in U \mid f \circ \varphi_T(\psi^{-1}(x^s, x^u)) \ge a - \varepsilon \right\}. \tag{15}$$

First we inspect the gradient in those local coordinats, i.e. $x = \psi^{-1}(u)$:

$$\operatorname{grad}(f)(x) = g^{ik} \frac{\partial f}{x^k} \frac{\partial}{x^i}$$

For now assume that $g_{ik} = \text{diag}(1, ... 1)$, i.e. that we work with the euklidean metric. Then the gradient is:

$$\sum_{i,k} \frac{\partial f \circ \psi^{-1}}{\partial x^k} \frac{\partial}{\partial x^i} = 2 \frac{\partial}{x^s} - 2 \frac{\partial}{x^u}.$$

Hence, the flow corresponding to $\psi_*(-\text{grad}(f))$ is of the form

$$t \mapsto \varphi_t(x) = (e^{-2t}x^s, e^{2t}x^u)$$
.

Assume that ε is small enough, such that all $x \in \psi(N_p \cap V) \setminus W(\to p)$ flow through $f^{-1}(a-\varepsilon)$ inside of U, i.e. we can formulate the property:

$$f \circ \varphi_T(\psi^{-1}(x^s, x^u)) \ge a - \varepsilon \quad \Leftrightarrow \quad f\left(\psi^{-1}(e^{-2T}x^s, e^{2T}x^u)\right) = a + \left(e^{-2T}x^s\right)^2 - \left(e^{2T}x^u\right)^2 \ge a - \varepsilon \tag{16}$$

This however reads:

$$a + (e^{-2T}x^s)^2 - (e^{2T}x^u)^2 \ge a - \varepsilon \iff (e^{2T}x^u)^2 \le \varepsilon + (e^{-2T}x^s)^2$$

And hence we have that:

$$\psi(N_p \cap V) = \{(x^s, x^u) \in U \mid ||x^u|| \le R(x^s)\}$$

where $R(x^s)$ is a smooth function. Now let g be a general metric, and ψ a Morse chart centered in p such that g(p) is a diagonal quadratic form with respect to that morse chart. We now want to interlinear approximate $\psi \circ \varphi_t \circ \psi^{-1} : U \to U$ which leads to the need of its jacobean. By lemma ?? together with the local form of the gradient we have the form:

$$q_{\psi} \frac{\partial}{\partial x} \Big|_{0} \varphi_{t}(\psi^{-1}(x)) = \exp\left(\sum_{k} \left(g^{ki}(0) \frac{\partial^{2}(f \circ \psi^{-1})}{\partial x^{j} \partial x^{k}}\right)_{ij}\right).$$

Now $g^{ki}(0) = \delta_{ik}\mu_k$ with $\mu_i > 0$ for all i and $\frac{\partial^2 (f \circ \psi^{-1})}{\partial x^j \partial x^k} = s_k 2\delta_{jk}$ where $s_k = -1$ if $k \le l$ and $s_k = 1$ else. Hence:

$$q_{\psi} \frac{\partial}{\partial x} \Big|_{0} \varphi_{t}(\psi^{-1}(x)) = \exp\left(\operatorname{diag}(-2\mu_{1}, \dots, -2\mu_{l}, 2\mu_{l+1}, \dots, 2\mu_{m})\right)$$