Devoir surveillé n°5 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit (u_n) une suite complexe telle que (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent. Montrer que (u_n) converge.

II. Étude d'une suite récurrente.

On considère la fonction

$$f: \mathbb{R}_{+}^{*} \to \mathbb{R} x \mapsto \frac{e^{-x}}{r}.$$

On considère aussi la suite u définie par récurrence de la manière suivante :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- 1) a) Dresser le tableau de variations de f, limites comprises.
 - b) Vérifier que la suite u est bien définie et à valeurs strictement positives.
- 2) À la fin de l'exécution de chacun de ces scripts, n a pour valeur 5 à gauche et 6 à droite.

Que peut-on en déduire quant aux valeurs de u_5 et u_6 ? Que peut-on conjecturer?

3) a) Étudier les variations de la fonction

$$g: \mathbb{R}_+ \to \mathbb{R} \\ x \mapsto e^{-x} - x^2.$$

- b) En déduire que, sur \mathbb{R}_+^* , l'équation f(x) = x admet une unique solution, que l'on notera dorénavant α .
- c) Montrer que $\frac{1}{e} < \alpha < 1$.
- 4) a) Montrer que $u_2 > u_0$ et que $u_1 > u_3$.
 - **b)** En déduire les sens de variations des suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$.
- 5) On considère la fonction

$$h: \mathbb{R}_{+} \to \mathbb{R} \qquad .$$

$$x \mapsto \begin{cases} (f \circ f)(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- a) Expliciter h(x) pour tout x > 0 et vérifier que h est continue en 0
- **b)** Résoudre sur \mathbb{R}_+ l'équation h(x) = x.
- c) En déduire la limite de la suite $(u_{2n+1})_{n\in\mathbb{N}}$
- d) Est-ce que la suite $(u_{2n})_{n\in\mathbb{N}}$ converge? Déterminer sa limite.
- e) Est-ce que la suite u converge? Admet-elle une limite?

III. Une équation de Pell-Fermat.

On appelle équation de Pell-Fermat toute équation de la forme $x^2 - dy^2 = 1$ où les inconnues x et y sont des entiers, et où $d \in \mathbb{N}$ n'est pas un carré parfait. Nous allons résoudre cette équation pour d = 7. Cette méthode pourrait se généraliser à n'importe quelle valeur de d.

On appelle morphisme d'anneaux toute application φ entre deux anneaux A_1 et A_2 , qui est un morphisme de groupes pour la loi +, un morphisme entre magmas pour la loi \times , c'est-à-dire : $\forall x, y \in A_1$, $\varphi(x \times y) = \varphi(x) \times \varphi(y)$, et tel que $\varphi(1_{A_1}) = 1_{A_2}$. Si $A_1 = A_2$, on parle bien entendu d'endomorphisme d'anneaux.

On note $\mathbb{Z}[\sqrt{7}]$ l'ensemble $\{a + b\sqrt{7} \mid a, b \in \mathbb{Z} \}$.

- 1) a) Montrer que $\mathbb{Z}[\sqrt{7}]$ est un sous-groupe de $(\mathbb{R},+)$.
 - **b)** Montrer aussi que $\mathbb{Z}[\sqrt{7}]$ est stable par la loi \times , puis en déduire que $(\mathbb{Z}[\sqrt{7}], +, \times)$ est un anneau commutatif.
- 2) a) Montrer que $\sqrt{7}$ est irrationnel.
 - b) Montrer

$$\forall x \in \mathbb{Z}[\sqrt{7}] \quad \exists ! (a,b) \in \mathbb{Z}^2 \quad x = a + b\sqrt{7}$$

L'élément $a - b\sqrt{7}$ de $\mathbb{Z}[\sqrt{7}]$ est appelé $conjugu\acute{e}$ de $x = a + b\sqrt{7}$ et est noté \overline{x} (ne pas le confondre avec le conjugué complexe!).

c) On considère l'application $\varphi:\mathbb{Z}[\sqrt{7}]\to\mathbb{Z}[\sqrt{7}]$. Montrer que φ est un $x\mapsto\overline{x}$ endomorphisme d'anneaux.

- 3) Pour tout $x \in \mathbb{Z}[\sqrt{7}]$, on pose $N(x) = x\overline{x}$. Ce réel est appelé norme de x.
 - a) Montrer que pour tout $x \in \mathbb{Z}[\sqrt{7}], N(x) \in \mathbb{Z}$.
 - **b)** Montrer que pour tout $x, x' \in \mathbb{Z}[\sqrt{7}], N(xx') = N(x)N(x').$
 - c) Soit $x \in \mathbb{Z}[\sqrt{7}]$. Montrer que x est inversible si et seulement si $N(x) = \pm 1$.
 - **d)** On pose $G = \{ x \in \mathbb{Z}[\sqrt{7}] \mid N(x) = 1 \}$. Montrer que (G, \times) est un groupe.
 - e) Expliquer en quoi la détermination des éléments de G est équivalente à la détermination des solutions entières de l'équation $x^2 7y^2 = 1$.
- 4) Soit $x \in G \cap]1, +\infty[$. On note $x = a + b\sqrt{7}$, avec $a, b \in \mathbb{Z}$.
 - a) Calculer $x + \overline{x}$ et en déduire que a > 0.
 - b) Montrer que $x^2 = 1 + 2bx\sqrt{7}$ et en déduire que b > 0.
 - c) Montrer que $b \ge 3$ et $a \ge 8$.
 - d) En déduire que $G \cap]1, +\infty[$ contient un plus petit élément $x_0 = a_0 + b_0 \sqrt{7}$ pour l'ordre naturel sur \mathbb{R} .
 - e) Montrer qu'il existe un entier naturel n tel que $x_0^n \leqslant x < x_0^{n+1}$.
 - f) En déduire que $x = x_0^n$.
 - **g)** Montrer finalement que $G = \{ \pm x_0^n \mid n \in \mathbb{Z} \}.$
- 5) En déduire toutes les solutions de l'équation $x^2 7y^2 = 1$.

— FIN —