The boundedness and zero isolation problems for weighted automata over nonnegative rationals

Wojciech Czerwiński¹, Engel Lefaucheux², Filip Mazowiecki³, David Purser³ and Markus A. Whiteland⁴

¹University of Warsaw, Poland

²Inria Nancy, France

³MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS, GERMANY

⁴University of Liège, Belgium

Move seminar, Marseille

The boundedness and zero isolation problems for weighted automata over nonnegative rationals

Wojciech Czerwiński¹, Engel Lefaucheux², Filip Mazowiecki³, David Purser³ and Markus A. Whiteland⁴

¹University of Warsaw, Poland

²Inria Nancy, France

³MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS, GERMANY

⁴University of Liège, Belgium

Move seminar, Marseille

Outline

1. Introduction: weighted automata over positive rationals

2. Boundedness

3. Zero-isolation

Domain: $\mathbb{Q}_{\geq 0}$ (these generalise probabilistic automata)

Domain: $\mathbb{Q}_{\geq 0}$ (these generalise probabilistic automata)

• Example 1: \mathcal{A}

Domain: $\mathbb{Q}_{\geq 0}$ (these generalise probabilistic automata)

• Example 1: \mathcal{A}

Output: $A(a^n) = n \mod 2$

Domain: $\mathbb{Q}_{\geq 0}$ (these generalise probabilistic automata)

• Example 1: A

Output: $A(a^n) = n \mod 2$

• Example 2: \mathcal{B}

Domain: $\mathbb{Q}_{\geq 0}$ (these generalise probabilistic automata)

• Example 1: A

Output: $A(a^n) = n \mod 2$

• Example 2: \mathcal{B}

Output: $\mathcal{B}(a^n) = n$

Domain: $\mathbb{Q}_{>0}$ (these generalise probabilistic automata)

• Example 1: \mathcal{A}

Output:
$$A(a^n) = n \mod 2$$

• Example 2: B

Output:
$$\mathcal{B}(a^n) = n$$

Matrix definition

$$\mathcal{A}(a^n) = (1,0) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \mathcal{B}(a^n) = (1,0) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Domain: $\mathbb{Q}_{>0}$ (these generalise probabilistic automata)

• Example 1: A

Output:
$$A(a^n) = n \mod 2$$

• Example 2: B

Output:
$$\mathcal{B}(a^n) = n$$

Matrix definition

$$\mathcal{A}(a^n)=(1,0)egin{pmatrix} 0&1\1&0 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}, \quad \mathcal{B}(a^n)=(1,0)egin{pmatrix} 1&1\0&1 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}$$

In general $\mathcal{A}(abba) = I^{\mathsf{T}} M_a M_b M_b M_a F = I^{\mathsf{T}} M_{abba} F$

$$\mathcal{A}(a^n)=(1,0)egin{pmatrix} 0&1\1&0 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}, \quad \mathcal{B}(a^n)=(1,0)egin{pmatrix} 1&1\0&1 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}$$

$$\mathcal{A}(a^n)=(1,0)egin{pmatrix} 0&1\1&0 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}, \quad \mathcal{B}(a^n)=(1,0)egin{pmatrix} 1&1\0&1 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}$$

 \bullet \mathcal{A} as a CRA

$$\mathcal{A}(a^n)=(1,0)egin{pmatrix} 0&1\1&0 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}, \quad \mathcal{B}(a^n)=(1,0)egin{pmatrix} 1&1\0&1 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}$$

A as a CRA initialised (1,0)

$$\mathcal{A}(a^n)=(1,0)egin{pmatrix} 0&1\1&0 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}, \quad \mathcal{B}(a^n)=(1,0)egin{pmatrix} 1&1\0&1 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}$$

• \mathcal{A} as a CRA initialised (1,0) update $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$\mathcal{A}(a^n)=(1,0)egin{pmatrix} 0&1\1&0 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}, \quad \mathcal{B}(a^n)=(1,0)egin{pmatrix} 1&1\0&1 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}$$

• \mathcal{A} as a CRA initialised (1,0)

update
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 output: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\mathcal{A}(a^n)=(1,0)egin{pmatrix} 0&1\1&0 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}, \quad \mathcal{B}(a^n)=(1,0)egin{pmatrix} 1&1\0&1 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}$$

- \mathcal{A} as a CRA initialised (1,0) update $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ output: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- B as a CRA

$$\mathcal{A}(a^n)=(1,0)egin{pmatrix} 0&1\1&0 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}, \quad \mathcal{B}(a^n)=(1,0)egin{pmatrix} 1&1\0&1 \end{pmatrix}^negin{pmatrix} 0\1 \end{pmatrix}$$

- \mathcal{A} as a CRA initialised (1,0) update $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ output: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- \mathcal{B} as a CRA

Linear CRA = WA (CRA are nonlinear in general)

1. (WA) ambiguity: bound on accepting runs

1. (WA) ambiguity: bound on accepting runs

 $\mathcal{A}(a^n)$: 1 (even deterministic), $\mathcal{B}(a^n)$: n (every letter spawned a new run)

1. (WA) ambiguity: bound on accepting runs

```
\mathcal{A}(a^n): 1 (even deterministic), \mathcal{B}(a^n): n (every letter spawned a new run)
```

finitely-ambiguous WA \subsetneq polynomially-ambiguous WA \subsetneq WA

1. (WA) ambiguity: bound on accepting runs

 $\mathcal{A}(a^n)$: 1 (even deterministic), $\mathcal{B}(a^n)$: n (every letter spawned a new run)

finitely-ambiguous WA \subsetneq polynomially-ambiguous WA \subsetneq WA

2. Copyless restriction: registers used at most once (CRA)

 \mathcal{A} is copyless

$$\begin{cases} x := y \\ y := x \end{cases}$$

 ${\cal B}$ is not copyless

$$\begin{cases} x := x \\ y := x + y \end{cases}$$

1. (WA) ambiguity: bound on accepting runs

 $\mathcal{A}(a^n)$: 1 (even deterministic), $\mathcal{B}(a^n)$: n (every letter spawned a new run)

finitely-ambiguous $WA \subseteq polynomially-ambiguous WA \subseteq WA$

2. Copyless restriction: registers used at most once (CRA)

 \mathcal{A} is copyless

$$\begin{cases} x := y \\ y := x \end{cases}$$

 \mathcal{B} is not copyless but can be (\mathcal{B}')

$$\begin{cases} x := x \\ y := x + y \end{cases} \qquad \begin{cases} y := y + 1 \end{cases}$$

$$\left\{y:=y+1\right\}$$

1. (WA) ambiguity: bound on accepting runs

 $\mathcal{A}(a^n)$: 1 (even deterministic), $\mathcal{B}(a^n)$: n (every letter spawned a new run)

finitely-ambiguous WA ⊊ polynomially-ambiguous WA ⊊ WA

2. Copyless restriction: registers used at most once (CRA)

 \mathcal{A} is copyless

$$\begin{cases} x := y \\ y := x \end{cases}$$

 \mathcal{B} is not copyless but can be (\mathcal{B}')

$$\begin{cases} x := x \\ y := x + y \end{cases} \qquad \begin{cases} y := y + 1 \end{cases}$$

$$\Big\{y:=y+1$$

copyless linear CRA \subseteq copyless CRA \subseteq linear CRA

1. (WA) ambiguity: bound on accepting runs

$$\mathcal{A}(a^n)$$
: 1 (even deterministic), $\mathcal{B}(a^n)$: n (every letter spawned a new run)

finitely-ambiguous WA \subseteq polynomially-ambiguous WA \subseteq WA

2. Copyless restriction: registers used at most once (CRA)

$$\mathcal{A}$$
 is copyless

$$\begin{cases} x := y \\ y := x \end{cases}$$

$$\mathcal{B}$$
 is not copyless but can be (\mathcal{B}')

$$y := x +$$

$$\begin{cases} x := x \\ y := x + y \end{cases} \qquad \begin{cases} y := y + 1 \end{cases}$$

copyless linear CRA \subseteq copyless CRA \subseteq linear CRA

Notation:

- $A \subseteq B$: for all (commutative) semirings A is contained in B
- $A \nsubseteq B$: there exists a (commutative) semiring s.t. A is not contained in B

I'll mostly focus on copyless linear CRA

I'll mostly focus on copyless linear CRA

• Introduced by [Alur et al., 2013] with the hope that equivalence problems will be decidable

I'll mostly focus on copyless linear CRA

- Introduced by [Alur et al., 2013] with the hope that equivalence problems will be decidable
- They're not [Almagor et al. 2018] but the class is interesting

Given WA \mathcal{A} and $c \in \mathbb{Q}_{>0}$:

Is
$$A(w) \ge c$$
 (or $A(w) \le c$) for all $w \in \Sigma^*$?

Given WA \mathcal{A} and $c \in \mathbb{Q}_{\geq 0}$:

Is $A(w) \ge c$ (or $A(w) \le c$) for all $w \in \Sigma^*$?

Theorem (Paz 1971, Daviaud et al. 2018)

Both (\leq, \geq) threshold problems are undecidable, even for linearly-ambiguous probabilistic automata.

Given WA \mathcal{A} and $c \in \mathbb{Q}_{>0}$:

Is
$$\mathcal{A}(w) \geq c$$
 (or $\mathcal{A}(w) \leq c$) for all $w \in \Sigma^*$?

Theorem (Paz 1971, Daviaud et al. 2018)

Both (\leq, \geq) threshold problems are undecidable, even for linearly-ambiguous probabilistic automata.

 \leq -threshold and \geq -threshold are "the same" for probabilistic automata

$$\mathcal{A}(w) \leq \frac{1}{2}$$
 iff $1 - \mathcal{A}(w) \geq \frac{1}{2}$.

Given WA \mathcal{A} and $c \in \mathbb{Q}_{>0}$:

Is
$$A(w) \geq c$$
 (or $A(w) \leq c$) for all $w \in \Sigma^*$?

Theorem (Paz 1971, Daviaud et al. 2018)

Both (\leq, \geq) threshold problems are undecidable, even for linearly-ambiguous probabilistic automata.

 \leq -threshold and \geq -threshold are "the same" for probabilistic automata $\mathcal{A}(w) \leq \frac{1}{2}$ iff $1 - \mathcal{A}(w) \geq \frac{1}{2}$.

Theorem (Daviaud et al. 2018)

For finitely-ambiguous WA over $\mathbb{Q}_{\geq 0}$

- <-threshold is trivially decidable</pre>
- \geq -threshold nontrivially decidable (subject to Schanuel's conjecture)

Outline

1. Introduction: weighted automata over positive rationals

2. Boundedness

3. Zero-isolation

The boundedness problem

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{\geq 0}$ such that $\mathcal{A}(w) \leq c$ for all $w \in \Sigma^*$?

The boundedness problem

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{\geq 0}$ such that $\mathcal{A}(w) \leq c$ for all $w \in \Sigma^*$?

Like \leq -threshold but c quantified existentially

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{\geq 0}$ such that $\mathcal{A}(w) \leq c$ for all $w \in \Sigma^*$?

Like \leq -threshold but c quantified existentially

Theorem (Folklore?)

Boundedness is undecidable for WA (= linear CRA)

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{>0}$ such that $\mathcal{A}(w) \leq c$ for all $w \in \Sigma^*$?

Like \leq -threshold but c quantified existentially

Theorem (Folklore?)

Boundedness is undecidable for WA (= linear CRA)

<u>Proof:</u> reduction from threshold for $A(w) \leq 1$

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{>0}$ such that $\mathcal{A}(w) \leq c$ for all $w \in \Sigma^*$?

Like \leq -threshold but c quantified existentially

Theorem (Folklore?)

Boundedness is undecidable for WA (= linear CRA)

<u>Proof:</u> reduction from threshold for $A(w) \leq 1$

Unclear if it works for subclasses (copyless CRA)?

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{\geq 0}$ such that $\mathcal{A}(w) \leq c$ for all $w \in \Sigma^*$?

Like \leq -threshold but c quantified existentially

Theorem (Folklore?)

Boundedness is undecidable for WA (= linear CRA)

<u>Proof:</u> reduction from threshold for $A(w) \leq 1$

Unclear if it works for subclasses (copyless CRA)?

Theorem (our result)

Boundedness is decidable for linear copyless CRA in polynomial time.

How can a WA \mathcal{A} be unbounded?

How can a WA \mathcal{A} be unbounded?

• First pattern is there a loop of value > 1? $aba \mid \frac{7}{6}$

How can a WA \mathcal{A} be unbounded?

• First pattern is there a loop of value > 1? $aba \mid \frac{7}{6}$

Second pattern
 Is there a word w, which is a
 "linearly-ambiguous witness" with 1

How can a WA \mathcal{A} be unbounded?

• First pattern is there a loop of value > 1? $aba \mid \frac{7}{6}$

Second pattern
 Is there a word w, which is a
 "linearly-ambiguous witness" with 1

Inspired by patterns characterising ambiguity [Weber and Seidl, 1991]

Theorem (main contribution)

A copyless linear CRA $\mathcal A$ is bounded iff the previous patterns don't occur.

Theorem (main contribution)

A copyless linear CRA ${\cal A}$ is bounded iff the previous patterns don't occur.

 $(\implies$ is trivial)

Theorem (main contribution)

A copyless linear CRA ${\mathcal A}$ is bounded iff the previous patterns don't occur. (\Longrightarrow is trivial)

Conjecture

Theorem (main contribution)

A copyless linear CRA ${\mathcal A}$ is bounded iff the previous patterns don't occur. (\Longrightarrow is trivial)

Conjecture

The same characterisation works for polynomially ambiguous WA.

• Checking patterns: reachability questions in weighted graphs (e.g. Dijkstra).

Theorem (main contribution)

A copyless linear CRA ${\mathcal A}$ is bounded iff the previous patterns don't occur. (\Longrightarrow is trivial)

Conjecture

- Checking patterns: reachability questions in weighted graphs (e.g. Dijkstra).
- Rough intuition behind the lemma. If no such patterns occur then:

Theorem (main contribution)

A copyless linear CRA ${\mathcal A}$ is bounded iff the previous patterns don't occur. (\Longrightarrow is trivial)

Conjecture

- Checking patterns: reachability questions in weighted graphs (e.g. Dijkstra).
- Rough intuition behind the lemma. If no such patterns occur then:
 - all runs have bounded value (no loops > 1)

Theorem (main contribution)

A copyless linear CRA ${\mathcal A}$ is bounded iff the previous patterns don't occur. (\Longrightarrow is trivial)

Conjecture

- Checking patterns: reachability questions in weighted graphs (e.g. Dijkstra).
- Rough intuition behind the lemma. If no such patterns occur then:
 - all runs have bounded value (no loops > 1)
 - either there aren't many runs

Theorem (main contribution)

A copyless linear CRA ${\mathcal A}$ is bounded iff the previous patterns don't occur. (\Longrightarrow is trivial)

Conjecture

- Checking patterns: reachability questions in weighted graphs (e.g. Dijkstra).
- Rough intuition behind the lemma. If no such patterns occur then:
 - all runs have bounded value (no loops > 1)
 - either there aren't many runs
 - if there are many (polynomially) their value becomes small (exponentially)

Lemma

Suppose \mathcal{A} without patterns. For every natural $k \geq 2$ and $w \in \Sigma^*$: the number of runs of value $> \frac{1}{k}$ is poly $\log k$ (does not depend on |w|)

Lemma

Suppose \mathcal{A} without patterns. For every natural $k \geq 2$ and $w \in \Sigma^*$: the number of runs of value $> \frac{1}{k}$ is poly $\log k$ (does not depend on |w|)

Lemma

Suppose \mathcal{A} without patterns. For every natural $k \geq 2$ and $w \in \Sigma^*$: the number of runs of value $> \frac{1}{k}$ is poly $\log k$ (does not depend on |w|)

Then we can prove that no patterns $\implies \mathcal{A}$ is bounded

ullet No patterns \Longrightarrow value of runs are bounded (w.l.o.g. by 1)

Lemma

Suppose \mathcal{A} without patterns. For every natural $k \geq 2$ and $w \in \Sigma^*$: the number of runs of value $> \frac{1}{k}$ is poly $\log k$ (does not depend on |w|)

- No patterns \implies value of runs are bounded (w.l.o.g. by 1)
- $\exists c > 0$: for every w if a run has a positive value then it's at least $\frac{1}{c^{|w|}}$

Lemma

Suppose \mathcal{A} without patterns. For every natural $k \geq 2$ and $w \in \Sigma^*$: the number of runs of value $> \frac{1}{k}$ is poly $\log k$ (does not depend on |w|)

- ullet No patterns \Longrightarrow value of runs are bounded (w.l.o.g. by 1)
- $\exists c > 0$: for every w if a run has a positive value then it's at least $\frac{1}{c^{|w|}}$
- Put $k=c^i$ in the lemma. Then we get poly(i) runs of value $>\frac{1}{c^i}$

Lemma

Suppose \mathcal{A} without patterns. For every natural $k \geq 2$ and $w \in \Sigma^*$: the number of runs of value $> \frac{1}{k}$ is poly $\log k$ (does not depend on |w|)

- ullet No patterns \Longrightarrow value of runs are bounded (w.l.o.g. by 1)
- $\exists c > 0$: for every w if a run has a positive value then it's at least $\frac{1}{c^{|w|}}$
- Put $k=c^i$ in the lemma. Then we get poly(i) runs of value $>\frac{1}{c^i}$

$$\bullet \ \mathcal{A}(w) \ \leq \ \sum_{i=0}^{|w|} \frac{\mathsf{poly}(i)}{c^i} \ \leq \ \sum_{i=0}^{+\infty} \frac{\mathsf{poly}(i)}{c^i} \ < \ +\infty$$

Lemma

Suppose \mathcal{A} without patterns. For every natural $k \geq 2$ and $w \in \Sigma^*$: the number of runs of value $> \frac{1}{k}$ is poly $\log k$ (does not depend on |w|)

Then we can prove that no patterns $\implies \mathcal{A}$ is bounded

- ullet No patterns \Longrightarrow value of runs are bounded (w.l.o.g. by 1)
- $\exists c > 0$: for every w if a run has a positive value then it's at least $\frac{1}{c^{|w|}}$
- Put $k=c^i$ in the lemma. Then we get poly(i) runs of value $>\frac{1}{c^i}$

$$\bullet \ \mathcal{A}(w) \ \leq \ \sum_{i=0}^{|w|} \frac{\mathsf{poly}(i)}{c^i} \ \leq \ \sum_{i=0}^{+\infty} \frac{\mathsf{poly}(i)}{c^i} \ < \ +\infty$$

Remains to prove the lemma

Copyless linear CRA as WA

Lemma

For boundedness: copyless linear CRA can be reduced to WA of the form:

Copyless linear CRA as WA

Lemma

For boundedness: copyless linear CRA can be reduced to WA of the form:

Intuition: copyless linear CRA are almost deterministic WA constants are problematic, e.g. x := x + 1

Copyless linear CRA as WA

Lemma

For boundedness: copyless linear CRA can be reduced to WA of the form:

Intuition: copyless linear CRA are almost deterministic WA constants are problematic, e.g. x := x + 1

For the rest of this part we work with this model.

Lemma

- ${\cal A}$ has no loops > 1:
- 1. if a run has small value it's value cannot become ≥ 1
- 2. for every c > 0 the number of runs with value > c is finite

Lemma

- \mathcal{A} has no loops > 1:
- 1. if a run has small value it's value cannot become ≥ 1
- 2. for every c > 0 the number of runs with value > c is finite

Let c > 0 be the threshold in 1

Lemma

 ${\cal A}$ has no loops > 1:

- 1. if a run has small value it's value cannot become ≥ 1
- 2. for every c > 0 the number of runs with value > c is finite

Let c > 0 be the threshold in 1

Recall that $\mathcal{A}(w) = I^{\mathsf{T}} M_w F$ and $\{M_w \mid w \in \Sigma^*\}$ is an infinite monoid

Lemma

 \mathcal{A} has no loops > 1:

- 1. if a run has small value it's value cannot become ≥ 1
- 2. for every c > 0 the number of runs with value > c is finite

Let c > 0 be the threshold in 1

Recall that $\mathcal{A}(w) = I^{\mathsf{T}} M_w F$ and $\{M_w \mid w \in \Sigma^*\}$ is an infinite monoid

Lemma

 \mathcal{A} has no loops > 1:

- 1. if a run has small value it's value cannot become ≥ 1
- 2. for every c > 0 the number of runs with value > c is finite

Let c > 0 be the threshold in 1

Recall that $\mathcal{A}(w) = I^\mathsf{T} M_w F$ and $\{M_w \mid w \in \Sigma^*\}$ is an infinite monoid

Lemma

 \mathcal{A} has no loops > 1:

- 1. if a run has small value it's value cannot become ≥ 1
- 2. for every c > 0 the number of runs with value > c is finite

Let c > 0 be the threshold in 1

Recall that $\mathcal{A}(w) = I^{\mathsf{T}} M_w F$ and $\{M_w \mid w \in \Sigma^*\}$ is an infinite monoid

Lemma

 \mathcal{A} has no loops > 1:

- 1. if a run has small value it's value cannot become ≥ 1
- 2. for every c > 0 the number of runs with value > c is finite

Let c > 0 be the threshold in 1

Recall that $\mathcal{A}(w) = I^{\mathsf{T}} M_w F$ and $\{M_w \mid w \in \Sigma^*\}$ is an infinite monoid

Lemma

 \mathcal{A} has no loops > 1:

- 1. if a run has small value it's value cannot become ≥ 1
- 2. for every c > 0 the number of runs with value > c is finite

Let c > 0 be the threshold in 1

Recall that $\mathcal{A}(w) = I^{\mathsf{T}} M_w F$ and $\{M_w \mid w \in \Sigma^*\}$ is an infinite monoid

Abstraction: \overline{M}_w : replace values < c and transitions from p with ϵ

We get a finite monoid $\{\overline{M}_w \mid w \in \Sigma\}$ (with the matrix product).

Simon's Factorisation Forest Theorem

Let
$$s_1, \ldots, s_n \in \mathcal{M}$$

 \mathcal{M} finite monoid (intuitively $|\mathcal{M}| << n$)

Simon's Factorisation Forest Theorem

Let
$$s_1, \ldots, s_n \in \mathcal{M}$$

$$\mathcal{M}$$
 finite monoid (intuitively $|\mathcal{M}| << n$)

Idempotent: $s \cdot s = s$

$$s_{i,j} = s_i \cdot \ldots \cdot s_j \quad (i \leq j)$$

Let
$$s_1, \ldots, s_n \in \mathcal{M}$$

 \mathcal{M} finite monoid (intuitively $|\mathcal{M}| << n$)

Idempotent: $s \cdot s = s$

$$s_{i,j} = s_i \cdot \ldots \cdot s_j \quad (i \leq j)$$

Factorisation of $s_1 \cdot \ldots \cdot s_n$

Let
$$s_1, \ldots, s_n \in \mathcal{M}$$

 \mathcal{M} finite monoid (intuitively $|\mathcal{M}| << n$)

Idempotent: $s \cdot s = s$

$$s_{i,j} = s_i \cdot \ldots \cdot s_j \quad (i \leq j)$$

Factorisation of $s_1 \cdot \ldots \cdot s_n$

• Nodes: $s_{i,j}$ (leaves $s_i = s_{i,i}$, root $s_{1,n}$)

Let
$$s_1, \ldots, s_n \in \mathcal{M}$$

 \mathcal{M} finite monoid (intuitively $|\mathcal{M}| << n$)

Idempotent: $s \cdot s = s$

$$s_{i,j} = s_i \cdot \ldots \cdot s_j \quad (i \leq j)$$

Factorisation of $s_1 \cdot \ldots \cdot s_n$

- Nodes: $s_{i,j}$ (leaves $s_i = s_{i,i}$, root $s_{1,n}$)
- Edges: indices match either two children

Let
$$s_1, \ldots, s_n \in \mathcal{M}$$

 \mathcal{M} finite monoid (intuitively $|\mathcal{M}| << n$)

Idempotent: $s \cdot s = s$

$$s_{i,j} = s_i \cdot \ldots \cdot s_j \quad (i \leq j)$$

Factorisation of $s_1 \cdot \ldots \cdot s_n$

- Nodes: $s_{i,j}$ (leaves $s_i = s_{i,i}$, root $s_{1,n}$)
- Edges: indices match $s_{1,2}$ either two children / or the same idempotent $(s_{1,4}=s_{1,2}=s_3=s_4)$ s_1 s_2

Let
$$s_1, \ldots, s_n \in \mathcal{M}$$

$$\mathcal{M}$$
 finite monoid (intuitively $|\mathcal{M}| << n$)

Idempotent: $s \cdot s = s$

$$s_{i,j} = s_i \cdot \ldots \cdot s_j \quad (i \leq j)$$

Factorisation of $s_1 \cdot \ldots \cdot s_n$

- Nodes: $s_{i,i}$ (leaves $s_i = s_{i,i}$, root $s_{1,n}$)
- Edges: indices match either two children or the same idempotent $(s_{1,4}=s_{1,2}=s_3=s_4)$ s_1

Theorem (Simon 1990)

There is always a factorisation of height at most $9|\mathcal{M}|$.

$$\mathcal{M} = \{\overline{M}_w\}$$

Consider a factorisation of $\overline{M}_{a_1} \cdot \ldots \cdot \overline{M}_{a_n}$

$$\mathcal{M} = \{\overline{M}_w\}$$

Consider a factorisation of $\overline{M}_{a_1} \cdot \ldots \cdot \overline{M}_{a_n}$

Lemma

Let $\overline{M}_{a_i...a_i}$ a node of height $0 \le i \le 9|\mathcal{M}|$.

The number of runs on $a_i \dots a_j$ of value $> \frac{1}{k}$ is $\mathcal{O}(\log^i k)$.

$$\mathcal{M} = \{\overline{M}_w\}$$

Consider a factorisation of $\overline{M}_{a_1} \cdot \ldots \cdot \overline{M}_{a_n}$

Lemma

Let $\overline{M}_{a_i...a_i}$ a node of height $0 \le i \le 9|\mathcal{M}|$.

The number of runs on $a_i \dots a_j$ of value $> \frac{1}{k}$ is $\mathcal{O}(\log^i k)$.

• Base case: number of runs on a_i is $\mathcal{O}(1)$.

$$\mathcal{M} = \{\overline{M}_w\}$$

Consider a factorisation of $\overline{M}_{a_1} \cdot \ldots \cdot \overline{M}_{a_n}$

Lemma

Let $\overline{M}_{a_i...a_i}$ a node of height $0 \le i \le 9|\mathcal{M}|$.

The number of runs on $a_i \dots a_j$ of value $> \frac{1}{k}$ is $\mathcal{O}(\log^i k)$.

- Base case: number of runs on a_i is $\mathcal{O}(1)$.
- Induction step with two children: $2\mathcal{O}(\log^i k) < \mathcal{O}(\log^{i+1} k)$.

$$\mathcal{M} = \{\overline{M}_w\}$$

Consider a factorisation of $\overline{M}_{a_1} \cdot \ldots \cdot \overline{M}_{a_n}$

Lemma

Let $\overline{M}_{a_i...a_i}$ a node of height $0 \le i \le 9|\mathcal{M}|$.

The number of runs on $a_i \dots a_j$ of value $> \frac{1}{k}$ is $\mathcal{O}(\log^i k)$.

- Base case: number of runs on a_i is $\mathcal{O}(1)$.
- Induction step with two children: $2\mathcal{O}(\log^i k) < \mathcal{O}(\log^{i+1} k)$.
- Induction step with idempotents: $s_1 \cdot \ldots \cdot s_\ell = s_\ell$

$$\mathcal{M} = \{\overline{M}_w\}$$

Consider a factorisation of $\overline{M}_{a_1} \cdot \ldots \cdot \overline{M}_{a_n}$

Lemma

Let $\overline{M}_{a_i...a_i}$ a node of height $0 \le i \le 9|\mathcal{M}|$.

The number of runs on $a_i \dots a_j$ of value $> \frac{1}{k}$ is $\mathcal{O}(\log^i k)$.

- Base case: number of runs on a_i is $\mathcal{O}(1)$.
- Induction step with two children: $2\mathcal{O}(\log^i k) < \mathcal{O}(\log^{i+1} k)$.
- Induction step with idempotents: $s_1 \cdot \ldots \cdot s_\ell = s_\ell$

this has to be ϵ

$$\mathcal{M} = \{\overline{M}_w\}$$

Consider a factorisation of $\overline{M}_{a_1} \cdot \ldots \cdot \overline{M}_{a_n}$

Lemma

Let $\overline{M}_{a_i...a_i}$ a node of height $0 \le i \le 9|\mathcal{M}|$.

The number of runs on $a_i \dots a_j$ of value $> \frac{1}{k}$ is $\mathcal{O}(\log^i k)$.

- Base case: number of runs on a_i is $\mathcal{O}(1)$.
- Induction step with two children: $2\mathcal{O}(\log^i k) < \mathcal{O}(\log^{i+1} k)$.
- Induction step with idempotents: $s_1 \cdot \ldots \cdot s_\ell = s_\ell$

$$\mathcal{M} = \{\overline{M}_w\}$$

Consider a factorisation of $\overline{M}_{a_1} \cdot \ldots \cdot \overline{M}_{a_n}$

Lemma

Let $\overline{M}_{a_i...a_i}$ a node of height $0 \le i \le 9|\mathcal{M}|$.

The number of runs on $a_i \dots a_j$ of value $> \frac{1}{k}$ is $\mathcal{O}(\log^i k)$.

- Base case: number of runs on a_i is $\mathcal{O}(1)$.
- Induction step with two children: $2\mathcal{O}(\log^i k) < \mathcal{O}(\log^{i+1} k)$.
- Induction step with idempotents: $s_1 \cdot \ldots \cdot s_\ell = s$

Outline

1. Introduction: weighted automata over positive rationals

2. Boundedness

3. Zero-isolation

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{\geq 0} \setminus \{0\}$ such that $\mathcal{A}(w) \geq c$ for all $w \in \Sigma^*$?

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{\geq 0} \setminus \{0\}$ such that $\mathcal{A}(w) \geq c$ for all $w \in \Sigma^*$?

Like \geq -threshold but c quantified existentially

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{\geq 0} \setminus \{0\}$ such that $\mathcal{A}(w) \geq c$ for all $w \in \Sigma^*$?

Like \geq -threshold but c quantified existentially

Theorem (Gimbert and Oualhadj 2010)

Zero isolation is undecidable for probabilistic automata.

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{\geq 0} \setminus \{0\}$ such that $\mathcal{A}(w) \geq c$ for all $w \in \Sigma^*$?

Like \geq -threshold but c quantified existentially

Theorem (Gimbert and Oualhadj 2010)

Zero isolation is undecidable for probabilistic automata.

We can improve to copyless CRA over $\mathbb{Q}_{>0}$

Given A over $\mathbb{Q}_{>0}$:

is there $c \in \mathbb{Q}_{\geq 0} \setminus \{0\}$ such that $\mathcal{A}(w) \geq c$ for all $w \in \Sigma^*$?

Like \geq -threshold but c quantified existentially

Theorem (Gimbert and Oualhadj 2010)

Zero isolation is undecidable for probabilistic automata.

We can improve to copyless CRA over $\mathbb{Q}_{>0}$

Theorem (our result)

Zero isolation is decidable for MonoCRA (to be defined) subject to Schanuel's conjecture.

fin-amb WA poly-amb WA

WA = linear CRA

 $\mathsf{MonoCRA} \subsetneq \mathsf{copyless\ linear\ CRA}$

copyless CRA

$$MonoCRA \subsetneq copyless linear CRA$$

$$PTime$$

copyless CRA

Boundedness

MonoCRA ⊊ copyless linear CRA decidable PTime (3d, Schanuel)

copyless CRA Undecidable

- Boundedness
- Zero isolation

MonoCRA ⊊ copyless linear CRA decidable PTime (3d, Schanuel)

copyless CRA Undecidable

- Boundedness
- Zero isolation

What are MonoCRA? (over
$$\mathbb{Q}_{\geq 0}$$
)
$$\begin{cases} x := a_x \cdot x + b_x \\ y := a_y \cdot y + b_y \end{cases}$$

MonoCRA ⊊ copyless linear CRA decidable PTime (3d, Schanuel)

copyless CRA Undecidable

- Boundedness
- Zero isolation

What are MonoCRA? (over
$$\mathbb{Q}_{\geq 0}$$
)
$$\begin{cases} x := a_x \cdot x + b_x \\ y := a_y \cdot y + b_y \end{cases} \not\ni \mathcal{A}(a^n) = n \mod 2$$

$$\ni \mathcal{B}'(a^n) = n$$

Let $\mathcal A$ be a MonoCRA over $\mathbb Q_{\geq 0}$

$$\begin{cases} x := a_x \cdot x + b_x \\ y := a_y \cdot y + b_y \end{cases}$$

Let ${\mathcal A}$ be a MonoCRA over ${\mathbb Q}_{\geq 0}$

$$\begin{cases} x := a_x \cdot x + b_x \\ y := a_y \cdot y + b_y \end{cases}$$

Let \mathcal{A}_{\log} be \mathcal{A} , where every $a \in \mathbb{Q}_{\geq 0}$ is replaced with $-\log a$ $(-\log 0 = +\infty)$

Let ${\mathcal A}$ be a MonoCRA over ${\mathbb Q}_{\geq 0}$

$$\begin{cases} x := a_x \cdot x + b_x \\ y := a_y \cdot y + b_y \end{cases}$$

Let \mathcal{A}_{\log} be \mathcal{A} , where every $a \in \mathbb{Q}_{\geq 0}$ is replaced with $-\log a$ $(-\log 0 = +\infty)$

Theorem

For MonoCRA \mathcal{A} over $\mathbb{Q}_{\geq 0}$ is zero isolated iff \mathcal{A} over $\mathbb{R}(\min, +)$ is bounded.

Let ${\mathcal A}$ be a MonoCRA over ${\mathbb Q}_{\geq 0}$

$$\begin{cases} x := a_x \cdot x + b_x \\ y := a_y \cdot y + b_y \end{cases}$$

Let \mathcal{A}_{\log} be \mathcal{A} , where every $a\in\mathbb{Q}_{\geq 0}$ is replaced with $-\log a$ $(-\log 0=+\infty)$

Theorem

For MonoCRA \mathcal{A} over $\mathbb{Q}_{\geq 0}$ is zero isolated iff \mathcal{A} over $\mathbb{R}(\min, +)$ is bounded.

Proof intuition:

$$a < 1 \text{ iff } -\log a > 0$$

$$\begin{cases} x := \min(-\log a_x + x, -\log b_x) \\ y := \min(-\log a_y + y, -\log b_y) \end{cases}$$

Let ${\mathcal A}$ be a MonoCRA over ${\mathbb Q}_{\geq 0}$

$$\begin{cases} x := a_x \cdot x + b_x \\ y := a_y \cdot y + b_y \end{cases}$$

Let \mathcal{A}_{\log} be \mathcal{A} , where every $a \in \mathbb{Q}_{\geq 0}$ is replaced with $-\log a$ $(-\log 0 = +\infty)$

Theorem

For MonoCRA \mathcal{A} over $\mathbb{Q}_{\geq 0}$ is zero isolated iff \mathcal{A} over $\mathbb{R}(\min, +)$ is bounded.

Proof intuition:

$$a < 1 \text{ iff } -\log a > 0$$

$$\begin{cases} x := \min(-\log a_x + x, -\log b_x) \\ y := \min(-\log a_y + y, -\log b_y) \end{cases}$$

both b > 0 and $-\log b < +\infty$ are annoying

Let ${\mathcal A}$ be a MonoCRA over ${\mathbb Q}_{\geq 0}$

$$\begin{cases} x := a_x \cdot x + b_x \\ y := a_y \cdot y + b_y \end{cases}$$

Let \mathcal{A}_{\log} be \mathcal{A} , where every $a\in\mathbb{Q}_{\geq 0}$ is replaced with $-\log a$ $(-\log 0=+\infty)$

Theorem

For MonoCRA \mathcal{A} over $\mathbb{Q}_{\geq 0}$ is zero isolated iff \mathcal{A} over $\mathbb{R}(\min, +)$ is bounded.

Proof intuition:

$$a < 1 \text{ iff } -\log a > 0$$

$$\begin{cases} x := \min(-\log a_x + x, -\log b_x) \\ y := \min(-\log a_y + y, -\log b_y) \end{cases}$$

both b > 0 and $-\log b < +\infty$ are annoying

This is just a syntactic translation if $\mathbb{Q}(+,\cdot)$ is changed to $\mathbb{Q}(\max,\cdot)$.

An orthant in \mathbb{R}^d is defined by $\epsilon_1 x_1 \geq 0, \ldots, \epsilon_d x_d \geq 0 \quad (\epsilon_i \in \{-1,1\})$

An orthant in \mathbb{R}^d is defined by $\epsilon_1 x_1 \geq 0, \ldots, \epsilon_d x_d \geq 0 \quad (\epsilon_i \in \{-1,1\})$

e.g. in d = 2there are 4 orthants (quadrants)

An orthant in \mathbb{R}^d is defined by $\epsilon_1 x_1 \geq 0, \ldots, \epsilon_d x_d \geq 0 \quad (\epsilon_i \in \{-1,1\})$

e.g. in
$$d = 2$$

there are 4 orthants (quadrants)

• VAS: finite set of vectors over \mathbb{Z}^d runs: positive orthant (A_1)

An orthant in \mathbb{R}^d is defined by $\epsilon_1 x_1 \geq 0, \ldots, \epsilon_d x_d \geq 0 \quad (\epsilon_i \in \{-1, 1\})$

e.g. in
$$d = 2$$

there are 4 orthants (quadrants)

- VAS: finite set of vectors over \mathbb{Z}^d runs: positive orthant (A_1)
- \mathbb{Z} -VAS: finite set of vectors over \mathbb{Z}^d runs: all orthants

An orthant in \mathbb{R}^d is defined by $\epsilon_1 x_1 \geq 0, \ldots, \epsilon_d x_d \geq 0 \quad (\epsilon_i \in \{-1, 1\})$

e.g. in d = 2there are 4 orthants (quadrants)

- VAS: finite set of vectors over \mathbb{Z}^d runs: positive orthant (A_1)
- \mathbb{Z} -VAS: finite set of vectors over \mathbb{Z}^d runs: all orthants
- OVAS: finite set of vectors per orthant: T_{A_1} , T_{A_2} , T_{A_3} , T_{A_4}

An orthant in \mathbb{R}^d is defined by $\epsilon_1 x_1 \geq 0, \ldots, \epsilon_d x_d \geq 0 \quad (\epsilon_i \in \{-1, 1\})$

e.g. in
$$d = 2$$

there are 4 orthants (quadrants)

- VAS: finite set of vectors over \mathbb{Z}^d runs: positive orthant (A_1)
- \mathbb{Z} -VAS: finite set of vectors over \mathbb{Z}^d runs: all orthants
- OVAS: finite set of vectors per orthant: T_{A_1} , T_{A_2} , T_{A_3} , T_{A_4}

 T_{A_i} are monotonic

$$T_{A_3}$$
 T_{A_2}
 T_{A_4}
 T_{A_4}

• Coverability: given OVAS, point *p* is there a path to the positive orthant?

• Coverability: given OVAS, point *p* is there a path to the positive orthant?

• Coverability: given OVAS, point *p* is there a path to the positive orthant?

Universal coverability: coverability for any initial point?

• Coverability: given OVAS, point p is there a path to the positive orthant?

 Universal coverability: coverability for any initial point?

Theorem

Coverability is undecidable. Universal coverability is decidable in dimension 3.

Fix a MonoCRA \mathcal{A} over $\mathbb{R}(\min, +)$

Fix a MonoCRA \mathcal{A} over $\mathbb{R}(\min, +)$

• For every $\sigma \in \Sigma$

$$\begin{cases} x := \min(a_x + x, b_x) \\ y := \min(a_y + y, b_y) \end{cases}$$

Fix a MonoCRA \mathcal{A} over $\mathbb{R}(\min, +)$

• For every $\sigma \in \Sigma$ let $\mathbf{v}_{\sigma} = (a_{\mathsf{x}}, a_{\mathsf{y}})$

$$\begin{cases} x := \min(a_x + x, b_x) \\ y := \min(a_y + y, b_y) \end{cases}$$

Fix a MonoCRA \mathcal{A} over $\mathbb{R}(\min, +)$

• For every
$$\sigma \in \Sigma$$

let $\mathbf{v}_{\sigma} = (a_{x}, a_{y})$

• b_x , b_y determine where \boldsymbol{v}_{σ} is available

$$\begin{cases} x := \min(a_x + x, b_x) \\ y := \min(a_y + y, b_y) \end{cases}$$

Fix a MonoCRA \mathcal{A} over $\mathbb{R}(\min, +)$

• For every
$$\sigma \in \Sigma$$

let $\mathbf{v}_{\sigma} = (a_{x}, a_{y})$

 $\begin{cases} x := \min(a_x + x, b_x) \\ y := \min(a_y + y, b_y) \end{cases}$

• b_x , b_y determine where v_σ is available

$$b_{\mathsf{x}} = +\infty$$
 and $b_{\mathsf{v}} < +\infty$

Fix a MonoCRA \mathcal{A} over $\mathbb{R}(\min, +)$

• For every
$$\sigma \in \Sigma$$

let $\mathbf{v}_{\sigma} = (a_{x}, a_{y})$

• b_x , b_y determine where \mathbf{v}_{σ} is available

$$b_{x}=+\infty$$
 and $b_{y}<+\infty$

$$b_{\scriptscriptstyle X} < +\infty$$
 and $b_{\scriptscriptstyle Y} = +\infty$

Fix a MonoCRA \mathcal{A} over $\mathbb{R}(\min, +)$

• For every
$$\sigma \in \Sigma$$

let $\mathbf{v}_{\sigma} = (a_{x}, a_{y})$

• b_x , b_y determine where

$$oldsymbol{v}_\sigma$$
 is available

$$b_{x}=+\infty$$
 and $b_{y}<+\infty$

$$b_{\scriptscriptstyle X} < +\infty$$
 and $b_{\scriptscriptstyle Y} = +\infty$

Intuition: if $\mathcal{A}(w\sigma w')$ is big then $\mathcal{A}(w')$ big on \mathbf{y} or \mathbf{x}

Theorem

Boundedness for MonoCRA is equivalent to universal coverability for OVAS.

Theorem

Boundedness for MonoCRA is equivalent to universal coverability for OVAS.

Recall I mentioned Schanuel's conjecture for zero isolation

Theorem

Boundedness for MonoCRA is equivalent to universal coverability for OVAS.

Recall I mentioned Schanuel's conjecture for zero isolation

This is because universal coverability is decidable over \mathbb{Q} .

Over $\log(\mathbb{Q}_{\geq 0})$ we need the theory of reals with the exponent.

Theorem

Boundedness for MonoCRA is equivalent to universal coverability for OVAS.

Recall I mentioned Schanuel's conjecture for zero isolation

This is because universal coverability is decidable over \mathbb{Q} .

Over $\log(\mathbb{Q}_{>0})$ we need the theory of reals with the exponent.

Decidable subject to Schanuel's conjecture [Macintyre and Wilkie, 1996].

Theorem

Boundedness for MonoCRA is equivalent to universal coverability for OVAS.

Recall I mentioned Schanuel's conjecture for zero isolation

This is because universal coverability is decidable over \mathbb{Q} .

Over $\log(\mathbb{Q}_{>0})$ we need the theory of reals with the exponent.

Decidable subject to Schanuel's conjecture [Macintyre and Wilkie, 1996].

Theorem (60% sure)

≤-threshold for MonoCRA is equivalent to coverability for OVAS.

Theorem

Boundedness for MonoCRA is equivalent to universal coverability for OVAS.

Recall I mentioned Schanuel's conjecture for zero isolation

This is because universal coverability is decidable over \mathbb{Q} .

Over $\log(\mathbb{Q}_{>0})$ we need the theory of reals with the exponent.

Decidable subject to Schanuel's conjecture [Macintyre and Wilkie, 1996].

Theorem (60% sure)

≤-threshold for MonoCRA is equivalent to coverability for OVAS.

So the MonoCRA class is not that trivial.

• Intersections of neighbour orthants are 2d planes

- Intersections of neighbour orthants are 2d planes
- We can think that the run jumps between these planes

- Intersections of neighbour orthants are 2d planes
- We can think that the run jumps between these planes

The coverability sets on these planes
 are invariants expressible in the theory of reals

- Intersections of neighbour orthants are 2d planes
- We can think that the run jumps between these planes

- The coverability sets on these planes
 are invariants expressible in the theory of reals
- Thus decidable (depending on the encoding subject to Schanuel)

• Boundedness proof is inspired by [Simon 1994] proof of Hashiguchi's theorem: decidability of boundedness for $\mathbb{N}(\min, +)$

Boundedness proof is inspired by [Simon 1994]
 proof of Hashiguchi's theorem: decidability of boundedness for N(min, +)

Zero isolation relies on that we can work in 2d
 we believe it should work in more dimensions

- Boundedness proof is inspired by [Simon 1994]
 proof of Hashiguchi's theorem: decidability of boundedness for ℕ(min, +)
- Zero isolation relies on that we can work in 2d
 we believe it should work in more dimensions
- 1-letter alphabet over $\mathbb Q$ boundedness is equivalent to positivity of LRS (hard) zero-isolation is also hard (Ben and Joël hard)

- Boundedness proof is inspired by [Simon 1994]
 proof of Hashiguchi's theorem: decidability of boundedness for N(min, +)
- Zero isolation relies on that we can work in 2d
 we believe it should work in more dimensions
- 1-letter alphabet over $\mathbb Q$ boundedness is equivalent to positivity of LRS (hard) zero-isolation is also hard (Ben and Joël hard)
- Many open problems left :)

Bibliography

- [Almagor et al. 2018] Weak Cost Register Automata Are Still Powerful
 DLT 2018. S. Almagor, M. Cadilhac, F. Mazowiecki, G. A. Pérez.
- [Alur et al. 2013] Regular Functions and Cost Register Automata
 LICS 2013. R. Alur, L. D'Antoni, J. V. Deshmukh, M. Raghothaman, Y. Yuan.
- [Daviaud et al. 2018] When is Containment Decidable for Probabilistic Automata?
 ICALP 2018. L. Daviaud, M. Jurdziński, R. Lazić, F. Mazowiecki, G. A. Pérez, J. Worrell.
- [Gimbert and Oualhadj 2010] Probabilistic Automata on Finite Words: Decidable and Undecidable Problems. ICALP 2010. H. Gimbert and Y. Oualhadj.
- [Simon 1990] Factorization Forests of Finite Height.
 TOCS 1990. I. Simon.
- [Simon 1994] On Semigroups of Matrices over the Tropical Semiring RAIRO 1994. I. Simon.