List of topics in this lecture

- OU process (continued), solution of particle position X(t)
- Behavior of X(t), diffusion coefficient, converging to W(t)
- Going backward in time using Bayes theorem
- Time reversibility of an equilibrium system
- Different interpretations of stochastic integrals

Recap

Ornstein-Uhlenbeck process (OU):

$$mdY = \underbrace{-bYdt}_{\text{dissipation}} + \underbrace{qdW}_{\text{fluctuation}}$$
, $q = \sqrt{2k_{_B}Tb}$

Four goals of the discussion

Goal 1: Solve for Y(t), the particle velocity

$$(Y(t_0+t)|Y(t_0)=y_0) \sim N(e^{-\beta t}y_0, \frac{\gamma^2}{2\beta}(1-e^{-2\beta t}))$$
 for $t>0$

Equilibrium:
$$Y(t) \sim N\left(0, \frac{\gamma^2}{2\beta}\right)$$
 for large $t > 0$

Goal 2A: Y(t) is a colored noise

Goal 2B: Y(t) converges to a white noise as "m converges to zero"

<u>Goal 3:</u> Fluctuation-dissipation theorem: $q = \sqrt{2k_{\rm B}Tb}$.

Goal 4: Study the behavior of X(t), the particle position

$$Y(t) = e^{-\beta t}Y(0) + e^{-\beta t}G(t), \qquad G(t) \equiv \int_0^t \gamma e^{\beta s} dW(s)$$

$$X(t) - X(0) = \int_{0}^{t} Y(s) ds = \frac{1}{\beta} (1 - e^{-\beta t}) Y(0) + \frac{\gamma}{\beta} G_{2}(t)$$

where $G_2(t) \equiv \int_0^t (1 - e^{-\beta(t-s)}) dW(s) \sim \text{normal}$.

<u>Goal 4</u>: (continued): We calculate the mean and variance of $G_2(t)$.

$$E(G_2(t)) = \int_0^t (1 - e^{-\beta(t-s)}) E(dW(s)) = 0$$

$$\operatorname{var}(G_2(t)) = \int_0^t (1 - e^{-\beta(t-s)})^2 ds = t - \frac{2}{\beta} (1 - e^{-\beta t}) + \frac{1}{2\beta} (1 - e^{-2\beta t})$$

We write out the distribution of (X(t) - X(0)).

$$\left(X(t) - X(0)\right) \sim \frac{\left(1 - e^{-\beta t}\right)}{\beta} Y(0) + \left(\frac{\gamma}{\beta}\right) \underbrace{N\left(0, \left(t - \frac{2(1 - e^{-\beta t})}{\beta} + \frac{(1 - e^{-2\beta t})}{2\beta}\right)\right)}_{\text{containing } dW' \text{s in } [0, t]} \tag{E01}$$

Remark:

We cannot integrate G(t) directly because $G(t_1)$ and $G(t_2)$ are not independent. We need to write the integral as a sum of dW's.

In Goal 4, we discuss two cases for X(t).

Goal 4A: finite m

We show that over long time, (X(t) - X(0)) demonstrates a diffusion behavior.

The diffusion coefficient is defined as

$$D \equiv \lim_{t \to \infty} \frac{1}{2t} \operatorname{var} \left(X(t) - X(0) \right)$$

We use (E01) to show the limit exists and to calculate the limit.

$$D \equiv \lim_{t \to \infty} \frac{1}{2t} \operatorname{var} \left(X(t) - X(0) \right) = \frac{1}{2} \left(\frac{\gamma}{\beta} \right)^2$$

Substituting $\beta = \frac{b}{m}$, $\gamma = \frac{q}{m}$, and $q = \sqrt{2k_B T b}$, we have

$$\left(\frac{\gamma}{\beta}\right)^2 = \frac{q^2}{h^2} = \frac{2k_B T b}{h^2} = \frac{2k_B T}{h}$$
 (E02)

Thus, we arrive at $D = \frac{k_B T}{b}$.

This is called the Einstein-Smoluchowski relation.

It relates the drag coefficient to the diffusion coefficient.

<u>Remark:</u> The diffusion coefficient is independent of the mass density of the particle. It is affected by the particle size via the drag coefficient *b*.

Goal 4B: $m \rightarrow 0$ (while b and q stay unchanged)

We show that (X(t) - X(0)) converges to $\sqrt{2D}W(t)$ on any discrete time grid.

Specifically, we show that for $t_2 > t_1 > 0$, as $m \to 0$, we have

•
$$X(t_1) - X(0) \to \sqrt{2D} N(0, t_1)$$

•
$$X(t_1 + t_2) - X(t_1) \rightarrow \sqrt{2D} N(0, t_2)$$

• $(X(t_1)-X(0))$ and $(X(t_1+t_2)-X(t_1))$ are independent.

Using (E01), we write $(X(t_1)-X(0))$ as

$$\left(X(t_1) - X(0)\right) \sim (1 - e^{-\beta t_1}) \frac{Y(0)}{\beta} + \sqrt{2D} \underbrace{N\left(0, \left(t_1 - \frac{2(1 - e^{-\beta t_1})}{\beta} + \frac{(1 - e^{-2\beta t_1})}{2\beta}\right)\right)}_{\text{containing } dW' \text{s in } [0, t_1]}$$

As $m \rightarrow 0$, we have

$$\beta = \frac{b}{m} = O(m^{-1}), \quad \gamma = \frac{q}{m} = O(m^{-1}), \quad \frac{\gamma}{\beta} = O(1)$$

$$2D = \left(\frac{\gamma}{\beta}\right)^2 = O(1) \quad \text{and} \quad \frac{1}{\beta}(1 - e^{-\beta t_1}) = O(m) \to 0$$

<u>Caution:</u> $\lim_{m\to 0} |Y(0)| = \infty$. The Maxwell-Boltzmann distribution gives

$$Y(0) \sim N\left(0, \frac{\gamma^2}{\beta}\right) = O\left(\sqrt{\frac{\gamma^2}{\beta}}\right) = O(m^{-0.5})$$

$$==> \frac{Y(0)}{\beta} = O(m^{0.5}) \rightarrow 0$$

Taking the limit as $m \to 0$, we obtain

•
$$(X(t_1) - X(0)) \xrightarrow{\text{as } m \to 0} \sqrt{2D} \underbrace{N(0, t_1)}_{\text{containing } dW's}$$

Similarly, we have

$$\left(X(t_1+t_2)-X(t_1)\right) \sim (1-e^{-\beta t_2})\frac{Y(t_1)}{\beta} + \sqrt{2D} \underbrace{N\!\left(0,\left(t_2-\frac{2(1-e^{-\beta t_2})}{\beta}+\frac{(1-e^{-2\beta t_2})}{2\beta}\right)\right)}_{\text{containing } dW'\text{s in } [t_1,t_1+t_2]}$$

$$\bullet \quad \left(X(t_1 + t_2) - X(t_1) \right) \xrightarrow{\text{as } m \to 0} \sqrt{2D} \underbrace{N(0, t_2)}_{\substack{\text{containing } dW's \\ \text{in}[t_1, t_1 + t_2]}}$$

Notice that
$$(X(t_1+t_2)-X(t_1))-(1-e^{-\beta t_2})\frac{Y(t_1)}{\beta}$$
 contains dW 's in $[t_1, t_1+t_2]$.

Since
$$(1 - e^{-\beta t_2}) \frac{Y(t_1)}{\beta} = O(m^{0.5}) \to 0$$
 as $m \to 0$, we arrive at

• $(X(t_1)-X(0))$ and $(X(t_1+t_2)-X(t_1))$ are independent in the limit of $m \to 0$.

Therefore, as $m \to 0$, (X(t) - X(0)) converges to $\sqrt{2D}W(t)$ on any discrete time grid.

Remarks:

1. The diffusion coefficient of the standard Wiener process is 1/2 (not 1).

$$D_{\text{Wiener}} \equiv \frac{1}{2t} \text{var}(W(t)) = \frac{1}{2}$$

- 2. In the limit of $m \to 0$, (X(t) X(0)) exhibits the behavior of a scaled Wiener process, called the <u>Brownian motion</u>, named after Scottish botanist Robert Brown.
- 3. The derivation above is for the "simplified story". The real story where radius $a \to 0$ while ρ_{mass} is fixed, is presented in Appendix A.

Going backward in time in an equilibrium OU process

In the discussion of Goals #1–4 above, we focused on going forward in time.

$$E(Y(t)|Y(0)) = e^{-\beta t}Y(0) \qquad \text{for } t > 0$$

Question:

What happens for (-t) < 0? Do we have

$$E(Y(-t)|Y(0)) = e^{+\beta t}Y(0) ?$$

which diverges to infinity as $t \to +\infty$. That seems unreasonable.

<u>Answer:</u> $t_{new} = -t_{old}$ does not work in stochastic differential equations.

Recall that when we scale dW, it is best to work with $\frac{dW}{\sqrt{dt}}$

$$dW(t) = \sqrt{dt} \cdot \frac{dW(t)}{\sqrt{dt}}, \quad \frac{dW(t)}{\sqrt{dt}} \sim N(0,1)$$
 independent of t and dt

It is clear that this works only for dt > 0, not for $t_{\text{new}} = -t_{\text{old}}$.

Key point:

In stochastic differential equations, scaling $t_{\text{new}} = -t_{\text{old}}$ does not work!

Bayes theorem describes $Pr(A \mid B)$ in terms of $Pr(B \mid A)$. We use Bayes theorem to calculate the backward time evolution based on the forward time evolution.

Bayes theorem for densities:

$$\rho(Y(-t) = y_1 | Y(0) = y_2) \propto \rho(Y(0) = y_2 | Y(-t) = y_1) \cdot \rho(Y(-t) = y_1)$$

Backward time evolution in an equilibrium OU process

We assume that the equilibrium has been reached long time ago (at $t = -\infty$) and Y(t) is already a stationary process for all t (including negative t). In particular, the unconstrained Y(t) has the equilibrium distribution for all t.

$$Y(-t) \sim N\left(0, \frac{\gamma^2}{2\beta}\right)$$

$$= > \rho(Y(-t) = y_1) \propto \exp\left(\frac{-y_1^2}{2\gamma^2/(2\beta)}\right)$$

For the forward time evolution, we already derived

$$\left(Y(t_1 + t) \middle| Y(t_1) = y_1 \right) \sim N \left(e^{-\beta t} y_1, \frac{\gamma^2}{2\beta} \left(1 - e^{-2\beta t} \right) \right) \quad \text{for } t > 0 \text{ and any } t_1$$

$$= > \quad \rho \left(Y(0) = y_2 \middle| Y(-t) = y_1 \right) \propto \exp \left(\frac{-(y_2 - e^{-\beta t} y_1)^2}{2(1 - e^{-2\beta t}) \gamma^2 / (2\beta)} \right)$$

Substituting into Bayes theorem, we obtain

$$\rho(Y(-t) = y_1 | Y(0) = y_2) \propto \rho(Y(0) = y_2 | Y(-t) = y_1) \cdot \rho(Y(-t) = y_1)$$

$$\sim \exp\left(\frac{-(y_2 - e^{-\beta t}y_1)^2}{2(1 - e^{-2\beta t})\gamma^2/(2\beta)}\right) \cdot \exp\left(\frac{-y_1^2}{2\gamma^2/(2\beta)}\right)$$

Note that here y_1 is the independent variable of the PDF and we only need to keep track factors that depend on y_1 .

$$\rho(Y(-t) = y_1 | Y(0) = y_2) \propto \exp\left(\frac{-\left[e^{-2\beta t}y_1^2 - 2e^{-\beta t}y_2 \cdot y_1 + (1 - e^{-2\beta t})y_1^2\right]}{2(1 - e^{-2\beta t})\gamma^2/(2\beta)}\right)$$

$$\propto \exp\left(\frac{-\left[y_{1}^{2}-2e^{-\beta t}y_{2}\cdot y_{1}\right]}{2(1-e^{-2\beta t})\gamma^{2}/(2\beta)}\right) \propto \exp\left(\frac{-(y_{1}-e^{-\beta t}y_{2})^{2}}{2(1-e^{-2\beta t})\gamma^{2}/(2\beta)}\right)$$

We recognize that this is a normal distribution.

It follows that in an equilibrium system, the backward time evolution is described by

$$(Y(-t)|Y(0) = y_2) \sim N\left(e^{-\beta t}y_2, \frac{\gamma^2}{2\beta}(1 - e^{-2\beta t})\right)$$
 for $t > 0$

We compare it with the forward time evolution

$$(Y(t)|Y(0) = y_2) \sim N\left(e^{-\beta t}y_2, \frac{\gamma^2}{2\beta}(1 - e^{-2\beta t})\right)$$
 for $t > 0$

Conclusions/remarks:

- At equilibrium, the evolution of going backward in time is statistically the same as the evolution of going forward in time. This is called the <u>time reversibility of</u> <u>equilibrium</u>.
- The time reversibility of equilibrium is a universal law applicable to all thermodynamic systems.
- The intuitive meaning of time reversibility is that if we are given a time series of a system in equilibrium, we won't be able to tell the direction of the time no matter how long and how detailed the time series is.
- Bayes theorem is very powerful in expressing the backward time evolution in terms of the forward time evolution.

Going backward in time in non-equilibrium OU process (optional)

Suppose the system starts with Y(0) = 0.

For $t_1 > 0$ and $t_2 > 0$, we use Bayes theorem to calculate $\rho(Y(t_1) = y_1 | Y(t_1 + t_2) = y_2)$.

Bayes theorem for densities:

$$\rho(Y(t_1) = y_1 | Y(t_1 + t_2) = y_2) \propto \rho(Y(t_1 + t_2) = y_2 | Y(t_1) = y_1) \cdot \rho(Y(t_1) = y_1)$$

We already derived

•
$$(Y(t_1)|Y(0)=0) \sim N\left(0, \frac{\gamma^2}{2\beta}(1-e^{-2\beta t_1})\right)$$
 for $t_1 > 0$

==>
$$\rho(Y(t_1) = y_1) \propto \exp\left(\frac{-y_1^2}{2(1 - e^{-2\beta t_1})\gamma^2/(2\beta)}\right)$$

•
$$\left(Y(t_1+t_2)\big|Y(t_1)=y_1\right) \sim N\left(e^{-\beta t_2}y_1, \frac{\gamma^2}{2\beta}(1-e^{-2\beta t_2})\right) \text{ for } t_1 > 0, t_2 > 0$$

==> $\rho\left(Y(t_1+t_2)=y_2\big|Y(t_1)=y_1\right) \propto \exp\left(\frac{-(y_2-e^{-\beta t_2}y_1)^2}{2(1-e^{-2\beta t_2})\gamma^2/(2\beta)}\right)$

Substituting into Bayes theorem, we obtain

$$\rho \Big(Y(t_1) = y_1 \Big| Y(t_1 + t_2) = y_2 \Big) \propto \rho \Big(Y(t_1 + t_2) = y_2 \Big| Y(t_1) = y_1 \Big) \cdot \rho \Big(Y(t_1) = y_1 \Big)$$

$$\sim \exp \left(\frac{-(y_2 - e^{-\beta t_2} y_1)^2}{2(1 - e^{-2\beta t_2}) \gamma^2 / (2\beta)} \right) \cdot \exp \left(\frac{-y_1^2}{2(1 - e^{-2\beta t_1}) \gamma^2 / (2\beta)} \right)$$

(we only need to keep track factors that depend on y_1).

It follows that

$$\left(Y(t_1) \middle| Y(t_1 + t_2) = y_2 \right) \sim N \left(\frac{(1 - e^{-2\beta t_1})}{(1 - e^{-2\beta (t_1 + t_2)})} e^{-\beta t_2} y_2, \frac{(1 - e^{-2\beta t_1})}{(1 - e^{-2\beta (t_1 + t_2)})} \frac{\gamma^2}{2\beta} (1 - e^{-2\beta t_2}) \right)$$

We discuss two special cases for t_1 and t_2

$$\begin{array}{ll} \underline{\text{Case i})} & t_1 \to +\infty \text{ while } t_2 = \text{fixed} \\ & \frac{(1-e^{-2\beta t_1})}{(1-e^{-2\beta(t_1+t_2)})} e^{-\beta t_2} y_2 \to e^{-\beta t_2} y_2 \quad \text{ for large } t_1 \\ & \frac{(1-e^{-2\beta t_1})}{(1-e^{-2\beta(t_1+t_2)})} \frac{\gamma^2}{2\beta} (1-e^{-2\beta t_2}) \to \frac{\gamma^2}{2\beta} (1-e^{-2\beta t_2}) \quad \text{ for large } t_1 \\ & = > \quad \left(Y(t_1) \middle| Y(t_1+t_2) = y_2 \right) \sim N \left(e^{-\beta t_2} y_2, \frac{\gamma^2}{2\beta} (1-e^{-2\beta t_2}) \right) \quad \text{for large } t_1 \end{array}$$

This is the same as the equilibrium case, not a surprise at all.

Case ii)
$$t_1 = t_2 = h$$

$$\frac{(1 - e^{-2\beta t_1})}{(1 - e^{-2\beta (t_1 + t_2)})} e^{-\beta t_2} y_2 = \frac{e^{-\beta h} y_2}{1 + e^{-2\beta h}}$$

$$\frac{(1 - e^{-2\beta t_1})}{(1 - e^{-2\beta (t_1 + t_2)})} \frac{\gamma^2}{2\beta} (1 - e^{-2\beta t_2}) = \frac{\gamma^2}{2\beta} \left(\frac{1 - e^{-2\beta h}}{1 + e^{-2\beta h}} \right)$$

$$\left(Y(h) \middle| Y(2h) = y_2 \right) \sim N \left(\frac{e^{-\beta h} y_2}{1 + e^{-2\beta h}}, \frac{\gamma^2}{2\beta} \left(\frac{1 - e^{-2\beta h}}{1 + e^{-2\beta h}} \right) \right)$$

We compare it with the forward time evolution

$$\rho\left(Y(2h)\big|Y(h)=y_1\right) \sim N\left(e^{-\beta h}y_1, \frac{\gamma^2}{2\beta}\left(1-e^{-2\beta h}\right)\right)$$

When βh is not large, this case clearly demonstrates the difference between forward time evolution and backward time evolution in a non-equilibrium system.

Different interpretations of stochastic integrals

Beauty of the deterministic calculus

Consider the integral of a deterministic function f(s).

$$\int_{0}^{L} f(s)ds = \lim_{N \to \infty} \sum_{j=0}^{N-1} f(\tilde{s}_{j}) \Delta s$$

where $\Delta s = \frac{t}{N}$, $s_j = j \Delta s$, $\tilde{s}_j \in [s_j s_{j+1}]$

Note: When f(s) is piecewise continuous, the choice of $\tilde{s}_j \in [s_j, s_{j+1}]$ does not affect the limit. We can use any $\tilde{s}_j \in [s_j, s_{j+1}]$. In particular,

$$\lim_{N \to \infty} \sum_{j=0}^{N-1} f(s_j) \Delta s = \lim_{N \to \infty} \sum_{j=0}^{N-1} f(s_{j+1}) \Delta s = \lim_{N \to \infty} \sum_{j=0}^{N-1} f(s_{j+1/2}) \Delta s$$

A simple stochastic integral

$$\int_{0}^{\tau} f(s)dW(s) = \lim_{N \to \infty} \sum_{j=0}^{N-1} f(\tilde{s}_{j}) \Delta W_{j}$$

where $\tilde{s}_j \in [s_j s_{j+1}], \quad \Delta W_j = W(s_{j+1}) - W(s_j)$

The Riemann sum, $\lim_{N\to\infty}\sum_{j=0}^{N-1}f(\tilde{s}_j)\Delta W_j$, is a normal RV with mean = 0 and

variance =
$$\lim_{N \to \infty} \sum_{j=0}^{N-1} f(\tilde{s}_j)^2 \Delta s = \int_0^t f(s)^2 ds$$

When f(s) is piecewise continuous, the choice of $\tilde{s}_j \in [s_j, s_{j+1}]$ does not affect the limit. We can use any $\tilde{s}_i \in [s_i, s_{j+1}]$.

Another simple stochastic integral

$$\int_{0}^{t} f(s, W(s)) ds = \lim_{N \to \infty} \sum_{j=0}^{N-1} f(\tilde{s}_{j}, W(\tilde{s}_{j})) \Delta s$$

When f(s, w) is smooth, the choice of $\tilde{s}_j \in [s_j, s_{j+1}]$ does not affect the limit (homework problem).

A more complicated stochastic integral:

$$\int_{0}^{t} f(s, W(s)) dW(s) = \lim_{N \to \infty} \sum_{j=0}^{N-1} f(\tilde{s}_{j}, W(\tilde{s}_{j})) \Delta W_{j}$$

where
$$\tilde{s}_j \in [s_j s_{j+1}], \quad \Delta W_j = W(s_{j+1}) - W(s_j)$$

Note that

- f(s, W(s)) is not a deterministic function of s.
- $f(\tilde{s_j}, W(\tilde{s_j}))$ is a random variable, potentially correlated with ΔW_j depending on the choice of $\tilde{s_j} \in [s_j, s_{j+1}]$.
- As a result, <u>different choices</u> of $\tilde{s}_j \in [s_j, s_{j+1}]$ lead to <u>different results</u>.
- Thus, integral $\int_{0}^{t} f(s, W(s))dW(s)$ is subject to <u>different interpretations</u>.

Appendix A The limit of X(t) as radius $a \to 0$ while ρ_{mass} is fixed.

Recall that in the "simplified story", as $m \to 0$ while b and q are fixed, we have

$$2D = O(1)$$
 and $(X(t) - X(0))$ converges to $\sqrt{2D}W(t)$

Now we consider the real story. As $a \to 0$ while ρ_{mass} is fixed, we have

$$m = O(a^{3}), \quad b = O(a), \quad q = \sqrt{2k_{B}Tb} = O(\sqrt{a})$$

 $\beta = \frac{b}{m} = O(a^{-2}), \quad \gamma = \frac{q}{m} = O(a^{-2.5})$
 $\frac{\gamma}{\beta} = O(a^{-0.5}), \quad D = \frac{1}{2} \left(\frac{\gamma}{\beta}\right)^{2} = O(a^{-1}) \to \infty$

The behavior of diffusion coefficient *D* suggests scaling the displacement by \sqrt{a} .

We show that $\sqrt{a}(X(t_1)-X(0))$ converges to cW(t) on any discrete time grid where coefficient $c \equiv \sqrt{a}\sqrt{2D} = O(1)$. Specifically, we show that for $t_2 > t_1 > 0$, as $a \to 0$,

•
$$\sqrt{a}(X(t_1)-X(0)) \rightarrow cN(0,t_1)$$

•
$$\sqrt{a}\left(X(t_1+t_2)-X(t_1)\right) \rightarrow cN(0,t_2)$$

• $(X(t_1)-X(0))$ and $(X(t_1+t_2)-X(t_1))$ are independent.

Using (E01), we write $\sqrt{a}(X(t_1)-X(0))$ as

$$\sqrt{a}(X(t_1) - X(0)) \sim (1 - e^{-\beta t_1}) \frac{\sqrt{a}Y(0)}{\beta} + c N \left(0, \left(t_1 - \frac{2(1 - e^{-\beta t_1})}{\beta} + \frac{(1 - e^{-2\beta t_1})}{2\beta}\right)\right)$$
containing dW 's in $[0, t_1]$

The Maxwell-Boltzmann distribution gives

$$Y(t) \sim N\left(0, \frac{\gamma^{2}}{\beta}\right) = O\left(\sqrt{\frac{\gamma^{2}}{\beta}}\right) = O\left(\sqrt{\frac{a^{-5}}{a^{-2}}}\right) = O(a^{-1.5})$$

$$= > \frac{\sqrt{a}Y(t)}{\beta} = \frac{\sqrt{a}O(a^{-1.5})}{O(a^{-2})} = O(a) \to 0$$

Taking the limit as $a \to 0$ and using $\frac{1}{\beta}(1-e^{-\beta t_1}) \to 0$, we obtain

$$\bullet \quad \sqrt[]{a} \Big(X(t_1) - X(0) \Big) \xrightarrow{\text{as } a \to 0} \underbrace{c \, N(0, t_1)}_{\text{containing } dW's}$$

Similarly, we have

$$\sqrt{a}\left(X(t_1+t_2)-X(t_1)\right) \sim (1-e^{-\beta t_2})\frac{\sqrt{a}Y(t_1)}{\beta} + cN\left(0,\left(t_2-\frac{2(1-e^{-\beta t_2})}{\beta}+\frac{(1-e^{-2\beta t_2})}{2\beta}\right)\right)$$
containing dW's in [t_1,t_1+t_2]

$$\bullet \quad \sqrt{a} \left(X(t_1 + t_2) - X(t_1) \right) \xrightarrow{\text{as } a \to 0} \underbrace{c^2 N(0, t_2)}_{\text{containing } dW's \text{in } [t_1, t_1 + t_2]}$$

Again,
$$\sqrt{a}(X(t_1+t_2)-X(t_1))-(1-e^{-\beta t_2})\frac{\sqrt{a}Y(t_1)}{\beta}$$
 contains dW 's in $[t_1, t_1+t_2]$.

Since
$$(1-e^{-\beta t_2})\frac{\sqrt{a}Y(t_1)}{\beta} = O(a) \rightarrow 0$$
 as $a \rightarrow 0$, we arrive at

• $(X(t_1)-X(0))$ and $(X(t_1+t_2)-X(t_1))$ are independent in the limit of $a\to 0$. Therefore, we conclude that $\sqrt{a}\big(X(t)-X(0)\big)$ converges to cW(t) as $a\to 0$. In other words, for a particle of small radius a, the displacement (X(t)-X(0)) is approximately $\frac{c}{\sqrt{a}}W(t)$ with the magnitude diverging to ∞ as $a\to 0$.