

Today's Class

- o Null vs. alternative hypothesis
- Hypothesis Testing
- Type of Errors
- P-Values

Bottled Water

- UCLA bottled water has the water volume of 20 Fl Oz on the label. We assumed it is true.
- o But is it?
- Assumption
 - Quantity of Water = 20 Oz

Null vs. Alternative Hypotheses

- We always test two contradictory hypotheses:
 - Null hypothesis (H₀) is the belief that is initially assumed to be true (prior belief)
 - Alternative hypothesis (H_a) is the assertion that is contradictory to H₀

• • •

Hypothesis Testing

- o The claim is the alternative hypothesis, H_a
- The counterclaim is stated as the null hypothesis, H₀
 - supposed to be true unless proven otherwise
- The hypotheses test assesses how probable the observable differences are assuming H₀

• • •

Hypothesis Testing

- The result of a hypotheses test is either:
 - The null hypothesis is rejected
 - This is a strong result
 - It indicates that your alternative hypothesis has convincing data behind it
 - The null hypothesis fails to be rejected
 - · This is a weak result
 - It DOES NOT imply that the null hypothesis is true
 - Only that there is not a convincing amount of data to support the alternative

Errors in Hypothesis Testing

• H_0 : μ = 20 Oz

o H_a : $\mu \neq 20$ Oz

	Actual Condition	
	μ = 20 Oz	μ ≠ 20 Oz
Do not reject H ₀	Correct	Type II error
Reject H ₀	Type I error	Correct

Errors in Hypothesis Testing

	H ₀ is True	H ₀ is False
Do not reject H ₀	Correct	Type II error
Reject H ₀	Type I error	Correct

- o In the prosecution of an accused person,
 - H₀: the person is innocent
 - H_a: the person is guilty
- Which of the following is Type I error?
 - A: the error of convicting an innocent person
 - B: the error of not convicting a guilty person

Type I and II Errors: Medical Example

- In diagnostic testing for corona virus,
 - H₀: the tested person is corona virus-free
 - H_a: the person is infected
- Which of the following is Type I error?
 - A: the test gives a false positive result
 - B: the test gives a false negative result

- o In the developing public policy,
 - H₀: Adding fluoride to water/toothpaste has no effect on cavities
 - H_a: Adding fluoride to water/toothpaste protects against cavities
- Which of the following is Type I error?
 - A: detecting an effect (adding fluoride protects against cavities) that is not present.
 - B: failing to detect an effect that is present

Hypothesis Testing Procedure

- 1. Establish hypotheses: null & alternative
- Determine appropriate statistical test and sampling distribution
- 3. Choose the Type I error rate (significance level, α)
- 4. State the decision rule (rejection region)
- 5. Gather sample data
- Calculate test statistics
- 7. State statistical conclusion: Decide whether H₀ should be rejected

• • •

Example Hypothesis Testing

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz assuming that the population STD to be 2 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz
- Is this difference statistically significant at a significance level of .01?

Solution

- o Step 1: Establish hypothesis
 - H_0 : $\mu = 20 \text{ Oz}$
 - H_a: μ ≠ 20 Oz
- Step 2: Determine appropriate statistical test and sampling distribution
 - a two-tailed test
 - σ is known: use z-distribution
- Step 3: Specify the Type I error rate (significance level)
 - $\alpha = 0.01$

Solution, Cnt'd

- o Step 4: State the decision rule
 - If z >

 $z_{.005}$), reject H_0

If z <

-z_{.005}), reject H₀ o Step 5: Gather data

- n = 36, \bar{X} = 19
- Step 6: Calculate test statistic

•
$$\mu_0 = 20 \text{ Oz}$$
, $\sigma = 2 \text{ Oz}$

•
$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{19 - 20}{\frac{2}{\sqrt{36}}} = -3$$

- Step 7: State statistical conclusion
 - Z = -3 < -2.58: reject the H₀ at the 1% level
 - It is very unlikely that the mean is actually 20 Oz

Hypothesis Testing: Normal with Known STD

•
$$H_0$$
: $μ = μ_0$

• Test statistic:
$$z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Alternative Hypothesis	Rejection region for level α
H_a : $\mu > \mu_0$	$z > z_{\alpha}$
H_a : μ < μ ₀	$z < -z_{\alpha}$
H _a : μ ≠ μ ₀	$z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$

Example

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz and the sample STD to be 2 Oz
- Is this difference statistically significant at a significance level of .01?

Solution

- o Step 1: Establish hypothesis
 - H_0 : $\mu = 20 \text{ Oz}$
 - H_a: μ ≠ 20 Oz
- Step 2: Determine appropriate statistical test and sampling distribution
 - a two-tailed test
 - σ is unknown, n<40: use t-distribution
- Step 3: Specify the Type I error rate (significance level)
 - $\alpha = 0.01$

- $t > (= t_{35, 0.005}), \text{ reject } H_0$ (= $-t_{35, 0.005}), \text{ reject } H_0$ For df=35, If t >
- Step 5: Gather data • n = 36, \bar{X} = 19
- Step 6: Calculate test statistic
 - μ_0 = 20 Oz, s = 2 Oz

•
$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{19 - 20}{\frac{2}{\sqrt{36}}} = -3$$

- Step 7: State statistical conclusion
 - t = -3 < -2.724: reject the H₀ at the 1% level
 - It is very unlikely that the mean is actually 20 Oz

Hypothesis Testing: Normal with Unknown STD

• H_0 : $\mu = \mu_0$

• Our test statistic is: $t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$

Alternative Hypothesis	Rejection region for level α test
H_a : μ > $μ_0$	$t \ge t_{\alpha, n-1}$
H _a : μ < μ ₀	t ≤ - t _{α, n-1}
H_a : $\mu \neq \mu_0$	$t \ge t_{\alpha/2, n-1}$ or $t \le -t_{\alpha/2, n-1}$