Week 2

Families of Carbon Compounds / Acids and Bases

2.1 Families of Carbon Compounds

- 10/7: Hydrocarbons:
 - Alkanes (C_nH_{2n+2}) and cycloalkanes C_nH_{2n} .
 - Alkenes (C_nH_{2n}) .
 - Alkynes (C_nH_{2n-2}) .
 - Aromatic:
 - Contains a benzene ring.
 - All bonds $\sim 140 \,\text{Å}$.
 - All carbons sp^2 .
 - Planar.
 - $-\pi$ electrons above and below the ring.
 - Special stabilization.
 - Covers drawing dipoles.
 - Polar and nonpolar molecules:
 - Dipole = distance \times change between charges.
 - $-\mu = r \times Q$
 - $-1D = 3.336 \times 10^{-30} \,\mathrm{C}\,\mathrm{m}.$
 - Analyzes molecules by drawing a Lewis structure, drawing a dipole along each bond, and drawing and labeling a net dipole, if applicable.
 - Goes through a number of examples.
 - Acetonitrile is a strong polar solvent.
 - Functional group: A common arrangement that determines shape, bonding physical and reactivity of organic compounds.
 - Families of carbon compounds:
 - Hydrocarbons: Aliphatic, aromatic.
 - Methyl, ethyl, propyl, R = alkyl groups.

- Phenyl: Ph- or ϕ -.
- Benzyl: $Ph-CH_2$ -, $C_6H_5CH_2$ -, Bn-
- Compounds with R-Z where Z is a heteroatom.
 - If Z is a halogen X, then the halogroup makes it an alkyl halide or haloalkane.
- Alkenyl halide: X = .
- Aryl halide: Ph−X.
- Alcohols or phenols: R-OH.
- Ether: R-O-R'.
- Amines: NH₂R, NHRR', NRR'R".
- Thiols or mercathols: R-SH.
- Carbonyl group: R-CO-R'.
- Aldehyde: R-COH.
- Ketone: R-CO-R'.
- Carboxylic acid derivatives:
 - Acid: R-COOH.
 - \blacksquare Ester: R-COOR'.
 - Acid chloride: R-COCl.
 - Acid halide: R-COX.
 - Amide: $R-CONH_2$.
 - Acid anhydride: R-COOCO-R'.
- Nitrile: $R-C \equiv N$.
- Acrylonitrile: $=-C\equiv N$.

2.2 Discussion Section

- ACS in-text citations should be in superscripts as a list of number with no brackets or parentheses.
- Molecular formulas are C₂H₆O, not C₂H₅OH or CH₃CH₂OH.
- Make a table if you have a lot of data to put in (make it readable!).
- Distillation:
 - We need a boiling chip and stir bar inside the flask.
 - Vapor comes up from a round-bottomed flask, encounters a rubber stopper and gets diverted through a condenser instead.
 - Make use of countercurrent exchange and increase pressure by inflowing water in the gravitationally lower portion of the condenser.
 - Boiling chip is a coarse material with a lof of micropores inside.
 - The surface energy is reduced when the fluid is inside the micropores; within, it can more easily become a gas.
- As the mole fraction χ of a substance A increases...
- Raoult's law:

$$P_{\text{total}} = \frac{P_A \chi_A}{P_B \chi_B} = \frac{P_A \chi_A}{P_B (1 - \chi_A)}$$

• Dalton's law: The total pressure is equal to the sum of the partial pressures.