COMP1022Q Introduction to Computing with Excel VBA

Starting to Use Excel

David Rossiter

Outcomes

- After completing this presentation, you are expected to be able to:
 - 1. Understand the basics of Excel, i.e. worksheets, cells and formulas
 - 2. Apply different ways of referring to cells in formulas, i.e. relative and absolute cell references, and cell labels
 - 3. Understand the basics of Excel charts

Excel Basics

- You have probably used Excel before
- Even so, we will start from the basics
- Excel is all about numbers and formulas, and displaying the numbers and the results of the formulas in charts (usually)
- All numbers and formulas go into cells in a worksheet

• Cells in an Excel worksheet are arranged in rows and columns

Rows are referred to using numbers, from 1 onwards

Columns are referred to using letters A ... Z, then AA ... ZZ and so on

At the start, Excel gives you 1 empty worksheet to play with

Getting Cells in a Worksheet

- So each cell is on a particular row and a particular column
- The combination of the column letter and the row number is called *cell address*, or *cell reference*
- For example,

- this cell 2 is cell C3

Most Common Steps

 This particular example produces a simple quadratic graph

Copying and Pasting Formulas

• In the previous example, you need to type every one of those formulas:

• Instead of typing, Excel allows you to use copy and paste to quickly add similar formulas to your cells, which is shown on the next slide

Copying and Pasting Formulas

• First, you simply enter the formula in the first cell, and press Enter:

• Then select the cell and copy it

 Select the other cells where you want the formula to go

_		
1	x	x * x
2	0	0
3	1	
4	2	
5	3	
6	4	
7	5	
8	6	

- Then select paste
- The formulas are copied to the cells, and automatically

altered by Excel

Δ	Α	В
1	x	x * x
2	0	=A2*A2
3	1	=A3*A3
4	2	=A4*A4
5	3	=A5*A5
6	4	=A6*A6
7	5	=A7*A7
8	6	=A8*A8

Referencing Cells

- The type of cell reference we have seen so far is called 'relative referencing' i.e. A8
- When you use relative referencing you get an 'automatic change when pasting' behaviour
- However, sometimes you don't want the formulas to be automatically changed

1	Α	В	
1	x	x * x	
2	0	=A2*A2	
3	1	=A3*A3	
4	2	=A4*A4	
5	3	=A5*A5	1 . <i>/</i> /
6	4	=A6*A6	
7	5	=A7*A7	
8	6	=A8*A8	
	1		

The cell A2 is automatically changed to A3, A4,... when the formula in B2 is copied and pasted

Referencing Cells Example

- In our next example, we will look at problems with automatic change of formulas when copying and pasting
- This is our intended result:

1	А	В	С	D	Е	F	G	Н	I
1									
2		IQ	Difference to Average HK IQ		Average HK IQ	107			
3	Julia	110	3		(From http://en.wi	kipedia.org/	/wiki/IQ_and	d_the_Weal	th_of_Nations)
4	Chan	57	-50						
5	Li	90	-17						
6	Kwong	120	13						
7	Richard	133	26						
8	Angel	108	1						
9	Fong	88	-19						

Problems with Automatic Change

- In the example we want to know how different the intelligence (IQ) is of some people compared to the average HK people
- In the third column, for the first person, we could enter the formula: =B3-F2

• The result for the first person is correctly shown:

2		IQ	Difference to Average HK IQ
3	Julia	110	3
4	Chan	57	
5	Li	90	
6	Kwong	120	
_			

Problems with Automatic Change

• But if we copy and paste that formula into the cells underneath it, we get nonsense results!

These values are all wrong

Press Ctrl and `when
you want to see/ hide all
the formulas (next slide)

2		IQ	Difference to Average HK IQ					
3	Julia	110	3					
4	Chan	57	57					
5	Li	90	90					
6	Kwong	120	120					
7	Richard	133	133					
8	Angel	108	108					
9	Fong	88	88					
_			4					

2		IQ	Difference to Average HK IQ
3	Julia	110	=B1-F2
4	Chan	57	=Be-F3
5	Li	90	=B5-F4
6	Kwong	120	=B6-F5
7	Richard	133	=B ¹ '-F6
8	Angel	108	=B 3 -F7
9	Fong	88	=B9-F8

- You can see that the reference to cell F2 was automatically changed by Excel
 - but in this situation we don't want it to be changed...!

How to do Ctrl'

- To show/hide all the formulas in a worksheet:
 - Hold down the Ctrl key
 - While the Ctrl button is being held down, press the `key

Absolute Referencing of Cells

• Whenever you want the reference to a cell to be fixed, you use '\$'

• Now when the cell is copied and pasted, the reference to cell F2 does not get changed by Excel, as shown on the next slide

Absolute Referencing of Cells

- The formula in row 3 is copied and pasted to row 4 and row 9 in the same column
- You can see the second part of the formula hasn't been changed
- Referring to cells in this way is called 'absolute referencing'

2		IQ	Difference to Average HK IQ				
3	Julia	110		=B3-\$F\$2			
4	Chan	57		=B4-\$F\$2			
5	Li	90		=B5-\$F\$2			
6	Kwong	120		=B6-\$F\$2			
7	Richard	133		=B7-\$F\$2	7		
8	Angel	108		=B8-\$F\$2			
9	Fong	88		=B9-\$F\$2			

2		IQ	Difference to Average HK IQ
3	Julia	110	3
4	Chan	57	-50
5	Li	90	-17
6	Kwong	120	13
7	Richard	133	26
8	Angel	108	1
9	Fong	88	-19

Writing References to Cells

• When you write an Excel formula which contains a reference to a cell, you should choose the appropriate way to write it. You can choose from:

- Fixing both column and row i.e. \$D\$6

– Fixing only the column i.e. \$D6

- Fixing only the row i.e. D\$6

Not fixing anything
 i.e. D6

• Remember - the differences are important when you copy and paste the cell

Ways to Enter Formulas – Method 1

• Previously you learnt you can copy formulas into lots of cells quickly by copying and pasting of a formula from one cell to the others

		IQ	Difference to Average HK IQ			IQ	Difference to Average HK IQ		IQ	Difference to Average HK IQ
	Julia	110	=B3-\$F\$2		Julia	110	3	Julia	110	3
	Chan	57	I I		Chan	57		Chan	57	-50
	Li	90			Li	90		Li	90	-17
	Kwong	120			Kwong	120		Kwong	120	13
	Richard	133		,	Richard	133		Richard	133	26
	Angel	108		;	Angel	108		Angel	108	1
	Fong	88		1	Fong	88		Fong	88	-19
_										Ī

Writing a formula in one cell

Copying the formula i.e. right click > Copy

Selecting all other cells, from that cell pasting the formula i.e. right click > Paste

 This method works fine but we will show two alternative methods which are even quicker

Method 2 – Quicker Way

- 1. Select the cell you want to copy
- 2. Click on the small square in the bottom right corner of the cell without letting go of the mouse button
- 3. Drag downwards to select all the cells you want to copy the formula to
- 4. Let go of the mouse button

	IQ	Difference to Average HK IQ
Julia	110	3
Chan	57	-50
Li	90	-17
Kwong	120	13
Richard	133	26
Angel	108	1
Fong	88	-19

Method 3 – Super Quick Way

1. Select the cell you want to copy

2. Double-click on the small square in the bottom right corner of the cell

• This method copies the formula to the cells——— underneath which have a cell to the left which is not empty

Labeling Cells

- We can make any cell easier to reference by using a label
- To do that, you click on the cell and then enter a label for the cell in the *name box*

• From now onwards that cell can be referred to by using the label, without the need to type the location i.e. \$F\$2

Using a Cell Label

• For example, now you can enter this:

=B3-averageIQ

• Then copy and paste like before:

2		IQ	Difference to Average HK IQ		2		IQ	Difference to Average HK IQ
3	Julia	110	=B3-averageIQ		3	Julia	110	3
4	Chan	57	=B4-averageIQ		4	Chan	57	-50
5	Li	90	=B5-averageIQ		5	Li	90	-17
6	Kwong	120	=B6-averageIQ	└ √	6	Kwong	120	13
7	Richard	133	=B7-averageIQ	,	7	Richard	133	26
8	Angel	108	=B8-averageIQ		8	Angel	108	1
9	Fong	88	=B9-averageIQ		9	Fong	88	-19

• The formulas are now much easier to read

Making an Appropriate Chart

- Let's assume you have finished preparing the data
- Usually you want to display it in a chart
- Excel has lots of different types of charts
- The best chart to use depends on the type of data, how much there is, and what aspect you want to show
- For example, you might want to show relative differences or absolute values, or both at the same time
- A guide is shown on the next slide
- Lots of actual examples are given on the course web site

Examples of Excel Charts

Example 1 Three Sets of Data Across Time

• The data you need to display:

Month	Domestic	Commerical	Industrial		
January	1,487	1,021	80		
February	1,569	1,037	82		
March	1,507	927	71		
April	1,537	988	76		
May	1,409	937	76		
June	1,283	942	<i>7</i> 7		
July	1,089	890	73		
August	1,047	926	79		
September	978	914	78		
October	951	890	72		
November	1,135	976	78		
December	1,280	941	75		

- This data is comprised of three sets of data across time
- We want to show the values of the three data across time
- You can use the guide to get an idea of an appropriate chart:

imples of Excel Charts

imple box to see an example Excel file of that type

• A chart which displays the data effectively:

Example 2 Three Sets of Data across Values

in a Category •

• The data you need to display:

Age	No schooling	Secondary School	Post-Secondary
15 - 24	1,903	619,619	278,077
25 - 34	6,779	572,208	434,956
35 - 44	15,830	774,197	341,496
45 - 54	38,473	645,033	179,543
55 - 64	54,761	287,893	71,432
65+	305,564	156,826	55,969

• You can use the guide to get an idea of an appropriate chart:

Examples of Excel Cl

- This data is comprised of three sets of data across values in a category
- We want to show the values of the three data, but using a line may not be so good for this data (not much data)
- A chart which displays the data effectively:

Hong Kong Resident Educational Attainment in 2006

Example 3 Two Sets of Data Across Values in a Category

The data you need to display:

World Regions	2000	2010		
Africa	4,514,400	110,931,700		
Asia	114,304,000	825,094,396		
Europe	105,096,093	475,069,448		
Middle East	3,284,800 63,240,9			
North America	108,096,800	266,224,500		
Latin America/Caribbean	18,068,919	204,689,836		
Oceania / Australia	7,620,480	21,263,990		

• You can use the guide to get an idea of an appropriate chart:

• This data is comprised of two sets of data across values in a category

- We want to show the *change in composition* between the two sets (not the absolute values)
 - A chart which displays the data effectively:

World Internet Users in 2000 and 2010

Example 4 Nine Sets of Data Across Values in a Category

• The data you need to display:

Cause of Death	2001	2002	2003	2004	2005	2006	2007	2008	2009
Malignant neoplasms	11,406	11,658	11,510	11,791	12,310	12,093	12,316	12,456	12,839
Diseases of heart	4,703	4,969	5,311	5,866	5,868	5,619	6,372	6,777	6,414
Pneumonia	3,026	3,194	3,877	3,676	4,291	4,201	4,978	5,486	5,312
Cerebrovascular diseases	3,130	3,218	3,462	3,416	3,434	3,302	3,513	3,691	3,443
External causes of morbidity and mortality	1,844	2,068	2,044	2,243	2,150	1,961	1,854	1,766	1,938
Chronic lower respiratory diseases	2,114	2,075	2,102	2,123	2,261	1,924	2,096	2,103	1,912
Nephritis, nephrotic syndrome and nephrosis	1,053	1,055	1,184	1,182	1,261	1,287	1,347	1,419	1,448
Septicaemia	424	467	572	615	701	676	737	797	736
Dementia	252	289	256	276	283	288	317	495	638
Diabetes mellitus	676	574	783	728	602	511	506	548	492
All other causes	4,677	4,749	5,322	5,405	5,522	5,553	5,927	5,992	5,875
All causes	33,305	34,316	36,423	37,321	38,683	37,415	39,963	41,530	41,047

• You can use the guide to get an idea of an appropriate chart:

- This data is comprised of nine sets of data across values in a category
- We want to show the relative values as well as the absolute values
- A chart which displays the data effectively:

