Nondeterministic Finite Automata (NFA)

- NFAs are just like DFAs, except that:
 - There may be multiple transitions from the same state with the same character label
 - A transition may be an ε -transition
- Thus, the formal definition of NFAs are the same as DFAs, except for the transition function:

$$\delta: \mathbf{Q} \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(\mathbf{Q})$$

A Quick Question

Does the following NFA accept the word aaa?

A Quick Question

Does the following NFA accept the word aaa?

 Yes – An NFA accepts a word w if there exists at least one transition path for w that ends in an accept state

Another Example

What language does this NFA recognize?

Yet Another Example - ε-transitions

• ε-transitions allow us to automatically move into the next state without matching a character

One More Example

What language does this NFA recognize?

NFAs are Equivalent to DFAs!

- In other words, they both recognize the same class of languages
- Proof idea: Show that you can convert any NFA into an equivalent DFA
 - The other direction (DFA → NFA) follows automatically from the definitions

Proof (Idea) by Construction

- Converting an NFA into a DFA:
 - States: $\mathcal{P}(Q)$ (represent new DFA states as subsets of the original set of NFA states Q)
 - ullet Alphabet Σ stays the same
 - Transition function: δ ({q_n, q_{n1},..., q_{nk}}, c) maps to the set of states of the NFA that are reachable from any of q_n, q_{n1},..., q_{nk} by reading the character c
 - Start state { q₀ }
 - Accept/final states are those subsets of Q that contain any final state of the NFA

Proof (Idea) by Construction

- Converting an NFA into a DFA:
 - States: $\mathcal{P}(Q)$ (represent new DFA states as subsets of the original set of NFA states Q)
 - ullet Alphabet Σ stays the same
 - Transition function: δ ({q_n, q_{n1},..., q_{nk}}, c) maps to the set of states of the NFA that are reachable from any of q_n, q_{n1},..., q_{nk} by reading the character c
 - Start state { q₀ }
 - Accept/final states are that any final state of the NF.

One c transition, along with any number of ϵ -transitions before and after

Conversion Example

• Step I – Create the transition table, starting with $\{q_0\}$, and keep generating subsets of reachable states for each character for each subset

Conversion Example

 Step 2 – Flag each subset that contains an accept state – these will represent our new accept states

Conversion Example

Step 3 – Use the table to create the new DFA