WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZK. 2021/2022

KLUCZ OCENIANIA - ETAP REJONOWY

Poprawne rozwiązanie zadań innym sposobem niż podany poniżej powoduje przyznanie maksymalnej liczby punktów.

Wielkość, którą uczeń ma wyznaczyć w zadaniu musi być opatrzona prawidłową jednostką. Uczeń może nie obliczać wielkości pośrednich, wówczas jeśli wielkość końcową obliczy prawidłowo otrzymuje max liczbę punktów.

	Treść	Punktacja
1.	Zaznaczenie prawidłowej odpowiedzi A	1
	Razem 1.	1
2.	A. Zaznaczenie prawidłowej odpowiedzi F	1
	B. Zaznaczenie prawidłowej odpowiedzi P	1
	C. Zaznaczenie prawidłowej odpowiedzi P	1
	D. Zaznaczenie prawidłowej odpowiedzi P	1
	E. Zaznaczenie prawidłowej odpowiedzi P	1
	F. Zaznaczenie prawidłowej odpowiedzi F	1
	Razem 2.	6
3.	Zaznaczenie prawidłowej odpowiedzi D	1
	Razem 3.	1
4.	Zaznaczenie prawidłowej odpowiedzi C	1
	Razem 4.	1
5.	Zaznaczenie prawidłowej odpowiedzi B	1
	Razem 5.	1
6.	I sposób	
	Ustalenie, że prędkość początkowa była równa 0	1
	Zastosowanie wzoru na przyspieszenie a= $\frac{v_k - v_p}{t}$	1
	Zastosowanie wzoru na przyspieszenie a-	1
	Obliczenie szybkości końcowej $v_k = at = 3 \cdot 4 = 12m/s$	
	Zastosowanie wzoru na szybkość średnią w ruchu jednostajnie	1
	przyspieszonym $v_{\text{sr}} = \frac{v_k + v_p}{2}$	
	Obliczenie prędkości średniej $v_{\text{śr}} = \frac{12+0}{2} = 6 \text{ m/s}$	1
	Obliczenie prędkości stedniej v _{sr} – – o m/s	
	TT (I	
	II sposób	
	Ustalenie, że prędkość początkowa była równa 0 (1p)	
	Zastosowanie wzoru na drogę w ruchu jednostajnie przyspieszonym $s = at^2/2$	
	(1p)	
	Obliczenie drogi $s = 3 \cdot 4^2/2 = 24 \text{ m } (1p)$	
	Zastosowanie wzoru na szybkość średnią $v_{sr} = s/t$ (1p)	
	Obliczenie prędkości średniej $v_{\text{śr}}$ =24/4= 6m/s (1p)	-
	Razem 6.	5
7.	Zapisanie równaniem wartości siły wypadkowej dwóch sił poziomych o	
	jednakowych zwrotach F ₁ +F ₂ =50N	1

Zapisanie równaniem wartości siły wypadkowej dwóch sił poziomych o przeciwnych zwrotach F ₁ -F ₂ =20N	1
Rozwiązanie układu równań i wyznaczenie wartości jednej siły, np.: $F_1 = 50N$ - F_2 , $50N$ - F_2 - F_2 = $20N$, $2F_2$ = $30N$, F_2 = $15N$	1 1
Wyznaczenie wartości drugiej siły, np.: $F_1=50N$ - F_2 , $F_1=50N$ - $15N$, $F_1=35N$	
Razem 7.	4
8. Zastosowanie zasady zachowania energii ΔE _p =W	1
Zastosowanie wzoru na energię potencjalną ΔE _p =mgh	1
Wyznaczenie i obliczenie głębokości studni W=mgh, h= $\frac{W}{mg}$, h= $\frac{950}{10\ 10}$ =9,5m	1
	1
Razem 8.	3
9. Zauważenie, że na wysokości 3m prędkość początkowa piłki jest równa 0	
Obliczenie z wykresu drogi s=3-05=2,5m	
Zastosowanie wzoru na drogę w ruchu jednostajnie przyspieszonym s= ½at²	1
Obliczenie czasu trwanie ruchu piłki do osiągnięcia wysokości 0,5m t= $\sqrt{\frac{2s}{a}}$,	
$t = \sqrt{\frac{22,5}{10}} = \sqrt{\frac{5}{10}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} s$	1
Zastosowanie wzoru na prędkość końcową w ruchu jednostajnie	
przyspieszonym v=gt	1
Obliczenie prędkości końcowej v= $10 \frac{\sqrt{2}}{2} m/s = 5 \sqrt{2} m/s$	1
Obliczenie prędkości koncowej v= $10 \frac{1}{2} m/s = 3 \sqrt{2} m/s$	
II sposób Zastosowanie zasady zachowania energii $\Delta E_p = \Delta E_k$ (1p) Odczytanie z wykresu zmiany energii potencjalnej przy przemieszczeniu piłki z wysokości maksymalnej na wysokość 0,5m $\Delta E_p = 8J$ (1p) Zauważenie, że na wysokości 3m $E_k = 0$, więc zmiana energii kinetycznej ΔE_k jest równa energii kinetycznej na wysokości 0,5 m; $\Delta E_k = E_k$ (1p) Zastosowanie wzoru na energię potencjalną $E_p = mgh$ w celu obliczenia masy piłki i obliczenie masy piłki $m = E_p/gh = 9,6/10 \cdot 3 = 0,32kg$ (1p) Zastosowanie wzoru na energię kinetyczną $E_k = mv^2/2$ (1p) Obliczenie prędkości piłki $E_k = mv^2/2$, $2E_k = mv^2$, $v^2 = 2E_k/m$, $v = \sqrt{\frac{2Ek}{m}} = \sqrt{\frac{28}{0.32}} = \sqrt{\frac{16}{0.32}} = \sqrt{\frac{1}{0.02}} = \frac{10}{\sqrt{2}}$ m/s= $5\sqrt{2}$ m/s (1p)	
Razem 9.	6
10. Zastosowanie zasady zachowania energii $\Delta E_p = \Delta E_k$	1
Zapisanie ubytku energii kinetycznej $\Delta E_k = \frac{1}{2} m v_1^2 - \frac{1}{2} m v_2^2$	1
Obliczenie ubytku energii kinetycznej $\Delta E_k = \frac{1}{2} \cdot 2 \cdot 6^2 - \frac{1}{2} \cdot 2 \cdot 5_2^2$, $\Delta E_k = 36-25$	
=11J	1
Zastosowanie wzoru na energię potencjalną $\Delta E_p = E_p$ =mgh i obliczenie	
wysokości h = $\Delta E_p/mg = \Delta E_k/mg = 11/20 = 0,55m$	1
II sposób	
Zastosowanie wzoru na prędkość w ruchu jednostajnie opóźnionym $v_k=v_p$ -gt	
(1p)	
Obliczenie czasu ruchu $t = (v_k - v_p)/(-g) = 0.1s(1p)$	
(', 'p/' () ', 'P/	.L.

Zastosowanie wzoru na drogę w ruchu jednostajnie opóźnionym	
$h=s=v_p t - gt^2/2 \ (1p)$	
Obliczenie drogi $h=6 \cdot 0.1 - 10 \cdot (0.1)^2/2 = 0.6 - 1/20 = 0.6 - 0.05 = 0.55m (1p)$	
Razem 10.	4
11. Zastosowanie wzoru na pęd p=mv	1
Obliczenie masy rowerzysty m=p/v, m=180/3=60 kg	1
Zastosowanie wzoru na energię kinetyczną E _k = ½mv²	1
Obliczenie energii kinetycznej $E_k = \frac{1}{2}$ 60 3 ² =270J	1
Razem 11.	4
12. Zamiana h na s 0,5h= 1800s	1
Zastosowanie wzoru na moc P=W/t	1
Obliczenie mocy P=15120 kJ/1800s=8,4 kW	1
Razem 12.	3
13. Zastosowanie wzoru na objętość prostopadłościanu V=abc	1
Obliczenie objętości kostki masła V= 7cmx9,5cmx2,8cm, V=186,2 cm ³	1
Zastosowanie wzoru na gęstość d=m/V	1
Obliczenie gęstości masła d=200g/186,2 cm ³ =1,07 g/cm ³	1
200g/100,2 cm =1,07 g/cm	1
Uczań moża ta gastość obliczna w impuch jednostkach un 1074 11ka/m³ i	
Uczeń może tę gęstość obliczyć w innych jednostkach, np. 1074,11kg/m³ i	
jest ona uznawana o ile jest poprawna.	4
Razem 13.	4
14. Zmierzę linijką wysokość h i średnicę D szklanki by wyznaczyć jej objętość	1
Objętość szklanki wyznaczę ze wzoru na objętość walca $V = \frac{1}{4}\pi D^2 h$	1
Ustawię pustą szklankę na wadze i odczytam jej masę (m)	1
Nasypię cukru tak, by całkowicie wypełnił szklankę i zważę szklankę z	
cukrem (M)	1
Obliczę masę cukru m _{cukru} =M-m	1
Obliczę gęstość cukru d= m_{cukru} /V lub d= (M-m)/ $\frac{1}{4\pi}D^2h$	1
Razem 14	6
15. Zaznaczenie prawidłowej odpowiedzi C	1
Razem 15.	1
16. Zaznaczenie prawidłowej odpowiedzi B	1
Razem 16.	1
17. Podanie odpowiedzi "najpłytsze ślady w asfaltowym chodniku kobieta	
pozostawi idąc w klapkach"	1
Podanie uzasadnienia " obcasy klapek mają największą powierzchnię, a więc	
ciśnienie wywierane przez ciężar kobiety będzie najmniejsze"	1
Razem 17.	2
18. Poprawne wpisanie 4 lub 5 temperatur – 4p	
Poprawne wpisanie 3 temperatur – 3p	
Poprawne wpisanie 2 temperatur – 2p	
Poprawne wpisanie 2 temperatur – 2p Poprawne wpisanie 1 temperatury – 1p	
Poprawne wpisanie 2 temperatur – 2p Poprawne wpisanie 1 temperatury – 1p	
Poprawne wpisanie 1 temperatury – 1p A 80 → B 20	
Poprawne wpisanie 1 temperatury – 1p A 80 → B 20	

Razem 18.	4
19. Podanie odpowiedzi "Ciała różnią się ciepłem właściwym."	1
Oraz " Im mniejsze jest ciepło właściwe, tym większy jest przyrost	
temperatury ciała, w przypadku dostarczenia tej samej ilości energii (lub	
wzorem $Q = m c \Delta t$; $\Delta t = Q / m c$)".	1
Razem 19.	2
20. Zastosowanie wzoru na energię cieplną $Q = m c \Delta t lub m = Q/c \Delta t$	1
Obliczenie masy wody m=10,92 /4,2 ·52= 0,05 kg	1
Razem 20.	2
21. Zastosowanie wzoru na ciepło właściwe c= $Q/m \Delta t$ lub $Q = m c \Delta t$	1
Odczytanie z wykresu przyrostu temperatury $\Delta t = 100^{\circ}$ C lub $\Delta t = 100$ K	1
Obliczenie ilości dostarczonego ciepła Q = $2\frac{kJ}{min}$ 10 min= 20kJ	1
Zamiana kJ na J, 20kJ= 20000 J	1
Obliczenie ciepła właściwego c= $\frac{20\ 000J}{0.4\ kg\ 100\ K}$ = $500\frac{J}{kg\ K}$	1
Razem 21.	5
22. Wpisanie prawidłowych odpowiedzi	
A – skraplanie,	1
B – parowanie,	1
C – topnienie,	1
D - sublimacja	1
Razem 22.	4
23. Narysowanie pionowych wektorów sił o jednakowej długości i przeciwnych	
zwrotach siła wyporu	1
Podanie nazw sił "siła wyporu" i "siła ciężkości"	1
Wykorzystanie warunku równowagi sił F _w =F _c	1
Zastosowanie wzoru na siłę ciężkości F _c =m _p g	1
Wykorzystanie wzoru na gęstość $d_p=m_p/V$ lub $m_p=d_p$ V siła ciężkości czyli $F_c=d_p$ V g	1
Wykorzystanie wzoru na siłę wyporu $F_w = d_w \frac{2}{3} Vg$	1
l woda l	
Obliczenie gęstości plastiku d_p V $g = d_w \frac{2}{3}$ V g , $d_p = d_w \frac{2}{3}$,	
$d_p = 1000\frac{2}{3} = 666, (6) \text{ kg/m}^3$	1
Razem 23.	7
24. Zaznaczenie prawidłowej odpowiedzi D	1
Razem 24.	1
25. Zastosowanie wzoru na natężenie prądu elektrycznego I=Q/t	1
Obliczenie natężenia prądu elektrycznego I=10C/2s=5A	1
Razem 25.	2
26. Podanie odpowiedzi "większy jest opór R ₂ " Podanie uzasadnienia " Im mniejsze jest natężenie prądu przy tym samym	1
napięciu, tym większy jest opór, $R = \frac{U}{I}$ (A) R3	1
· /	-
Narysowanie dowolnego odcinka pomiędzy	
osią I a wykresem R ₁	
Podanie odpowiedzi "rośnie"	1
a saunt supervisual "Tesme	1
U(V)	

Razem 26.	4
27. Zastosowanie wzoru na natężenie prądu I=Q/t	1
Obliczenie natężenia prądu elektrycznego I=176C/40s=4,4A	1
Zastosowanie prawa Ohma U= RI lub R=U/I	1
Obliczenie oporności R= 230V/4,4A=52,27 Ω	1
Razem 27.	4
28. Narysowanie schematu (może być bez oznaczeń)	1
Zastosowanie wzoru na oporność zastępczą dwóch szeregowo połączonych	
oporników $R=R_1+R_2$	1
Obliczenie oporności zastępczej R=5+10=15Ω	1
Zastosowanie prawa Ohma dla układu oporników I=U/R	1
Obliczenie natężenia prądu I=4,5V/15Ω=0,3A	1
Podanie odpowiedzi " w opornikach połączonych szeregowo płyną	1
jednakowe prądy 0,3A"	1
Razem 28.	6
29. Zastosowanie wzoru na prędkość fali v=λ/T	1
Obliczenie okresu drgań $T = \lambda/v$, $T = 15m/3m/s = 5s$	1
Zastosowanie wzoru na częstotliwość f=1/T	1
Obliczenie częstotliwości f=1/5=0,2 Hz	1
Razem 29.	4
30. Podanie odpowiedzi:	
a) "równoległe",	1
b) "skupione" lub "zbieżne"	1
Razem 30.	2
Razem	100