INTRODUÇÃO

Este documento foi desenvolvido pelo aluno Dalton D'Angelis para a disciplina de AEDS 1-P do curso Ciência da Computação da UNIFAL-MG. Este projeto é um relatório baseado em um código criado na linguagem C + +, onde o mesmo tem como objetivo realizar uma comparação entre três algoritmos de ordenação, que ordenam vetores dispostos de três formas: crescente, aleatória e decrescente. Este código contém contadores que visam contabilizar, toda vez que o vetor for utilizado, as operações de leitura e escrita. Dessa maneira, no final da compilação, os algoritmos de ordenação citados acima podem ser comparados com base na quantidade de operações realizadas em cada vetor para ordená-los. Com isso, tem-se uma base de qual dos três algoritmos utilizar em situações de ordenação específicas. A comparação foi feita entre os métodos implementados variando o tamanho do vetor em intervalos regulares, de 100 em 100 unidades até 1.000, 1.000 em 1.000 unidades até 10.000, e de 10.000 em 10.000 unidades até 100.000. Os valores obtidos foram utilizados para ilustrar graficamente os resultados.

REFERENCIAL TEÓRICO

O referencial teórico deste projeto foram os algoritmos de ordenação disponibilizados na plataforma Google Classroom pelo professor Bressan, e as aulas práticas sobre criação de biblioteca local e implementação de funções realizadas pelo mesmo.

MATERIAL UTILIZADO

Os materiais utilizados no trabalho foram basicamente todos softwares virtuais. Dentre os recursos usados no projeto, estão:

NetBeans -> Para construção, edição, teste e compilação do código com os algoritmos de ordenação. Canva -> Para a construção e implementação dos gráficos de cada algoritmo.

MÉTODOS IMPLEMENTADOS

Os métodos implementados neste projeto foram os algoritmos de ordenação fornecidos pelo professor Bressan, as estratégias de criação de uma biblioteca local com algumas funções específicas, o uso de um menu de escolha que se mantém em loop até o usuário não desejar mais utilizá-lo, entre outras estratégias que melhoram a usabilidade geral do código.

Resultados Obtidos

Conclusão

Diante os resultados obtidos com a execução do código utilizando diferentes tamanhos de vetores. Tem-se as seguintes conclusões.

Nos vetores crescentes, o algoritmo de ordenação com maior destaque foi o "InsertionSort" que realizou pouquíssimas operações de leitura para concluir que o vetor já se encontrava ordenado, no entanto, os algoritmos "Bubble Sort" e "Selection Sort" tiveram um alto número de operações para realizar a mesma função.

Nos vetores decrescentes os métodos "Insertion Sort" e "Selection Sort" se destacaram mantendo um número de operações realizadas muito parecido de acordo com as mudanças de tamanho do vetor, já o "BubbleSort" realizou uma quantidade de operações muito maior que os dois citados anteriormente.

Nos vetores aleatórios, novamente os algoritmos de maior destaque foram o "Insertion" e "Selection", obtendo números de operações muito parecidos e com crescimento similar com relação ao aumento de tamanho do vetor principal, entretanto, o "BubbleSort" apresentou números extremamente maiores em comparação aos outros dois algoritmos.