First Hit Prev

Previous Doc

Next Doc

Go to Doc#

Generate Collection

L13: Entry 3 of 20

File: JPAB

Print

Mar 16, 1999

PUB-NO: JP411070737A

DOCUMENT-IDENTIFIER: <u>JP 11070737 A</u> TITLE: OPTICAL RECORDING MEDIUM

PUBN-DATE: March 16, 1999

INVENTOR-INFORMATION:

NAME COUNTRY

YUZURIHARA, HAJIME

DEGUCHI, KOJI

SHINOZUKA, MICHIAKI SHIBAKUCHI, TAKASHI

HARIGAI, MASATO

KINOSHITA, MIKIO

KAGEYAMA, YOSHIYUKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

RICOH CO LTD

APPL-NO: JP09247690

APPL-DATE: August 28, 1997

INT-CL (IPC): <u>B41 M 5/26</u>; <u>C23 C 14/14</u>; <u>G11 B 7/24</u>

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a recording layer material enabling a high speed medium high in the repeating overwrite number of times, having long preserving life and free from linear velocity dependence and a compsn. therefor.

SOLUTION: In an optical recording medium wherein a first dielectric layer, a recording layer, a second dielectric layer and a reflecting radiation layer are successively laminated on a substrate in this order, the constitutional elements of the recording layer mainly comprise Ag, In, Sb and Te and the respective compositional ratios of AgαInβSbyTeδ α , β , γ , δ (atomic %) are $1\leqslant \alpha \leqslant 10$, $1<\beta \leqslant 20$, 35 $\leqslant \gamma \leqslant 70$ and $20 \leqslant \delta \leqslant 35$ and $\alpha+\beta+\gamma+\delta$ is 100 and there is relation of $65<3\beta+\gamma<115$ and $40<\alpha+2\delta<75$.

COPYRIGHT: (C) 1999, JPO

Previous Doc Next Doc Go to Doc#

First Hit

Previous Doc

Next Doc Go to Doc#

Generate Collection

Print

L13: Entry 16 of 20

File: DWPI

Mar 16, 1999

DERWENT-ACC-NO: 1999-248036

DERWENT-WEEK: 199921

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Optical recording medium for digital video disk random access memory media - has recording layer containing silver, indium, antimony and tellurium whose

composition ratio satisfies predefined relations

PATENT-ASSIGNEE:

ASSIGNEE

CODE

RICOH KK

RICO

PRIORITY-DATA: 1997JP-0247690 (August 28, 1997)

Search Selected

Search ALL

Clear

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

☐ JP 11070737 A

March 16, 1999

008

B41M005/26

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

JP 11070737A

August 28, 1997

1997JP-0247690

INT-CL (IPC): <u>B41</u> \underline{M} <u>5/26</u>; <u>C23</u> \underline{C} <u>14/14</u>; <u>G11</u> \underline{B} <u>7/24</u>

ABSTRACTED-PUB-NO: JP 11070737A

BASIC-ABSTRACT:

NOVELTY - A dielectric layer (2), recording layer (3), dielectric layer (4) and reflective heat dissipation layer (5) are sequentially formed on a substrate (1). The recording layer consists of silver, indium, antimony and tellurium. The composition ratio (atom %) of Ag (alpha) In (beta) Sb (gamma) Te (delta) satisfies the relations, 1 at most alpha < 10, 1 < beta at most 20, 35 at most gamma at most 70, 20 at most delta at most 35, alpha + beta + gamma + delta = 100, 65 < 3 beta + gamma < 115, 40 < alpha + 2 delta < 75.

USE - For digital video disk random access memory (DVD-RAM) media.

ADVANTAGE - A medium with high density recording characteristics, improved quality and good life and preservation characteristics is offered. Modulation degree and frequency of repetition over light characteristics are improved.

DESCRIPTION OF DRAWING(S) - The figure represents sectional drawing of the optical recording medium. (1) Substrate; (2,4) Dielectric layers; (3) Recording layer; (5) Reflective heat dissipation layer.

CHOSEN-DRAWING: Dwg.1/2

TIT LE-TERMS: OPTICAL RECORD MEDIUM DIGITAL VIDEO DISC RANDOM ACCESS MEMORY MEDIUM RECORD LAYER CONTAIN SILVER INDIUM ANTIMONY TELLURIUM COMPOSITION RATIO SATISFY

PREDEFINED RELATED

DERWENT-CLASS: L03 P75 T03 W04

CPI-CODES: L03-G04B;

EPI-CODES: T03-B01; W04-C01;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1999-072751 Non-CPI Secondary Accession Numbers: N1999-184918

<u>Previous Doc</u> <u>Next Doc</u> <u>Go to Doc#</u>

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-70737

(43)公開日 平成11年(1999)3月16日

(51) Int.CL.6	識別記号	ΡΙ	
B41M 5	5/26	B41M 5/26	X
C23C 14	I/14	C 2 3 C 14/14	Z
G11B 7	7/24 5 1 1	G11B 7/24	511

審査請求 未請求 請求項の数6 FD (全 8 頁)

(21)出願番号	特顧平9 -247690	(71)出題人 000008747
亿1/四联曲号	₹₹₩ ₹5 ~ 247 050	
		株式会社リコー
(22)出顧日	平成9年(1997)8月28日	東京都大田区中馬込1丁目3番6号
		(72)発明者 譲原 肇
		東京都大田区中馬込1丁目3番6号 株式
		会社リコー内
		(72)発明者 出口 浩司
		東京都大田区中馬込1丁目3番6号 株式
		会社リコー内
		(72)発明者 養婦 道明
		東京都大田区中馬込1丁目3番6号 株式
		Additional
		1
		(74)代理人 弁理士 池浦 敏明 (外1名)
		最終頁に続く

(54) 【発明の名称】 光記録媒体

(57)【要約】

【課題】 高速で、繰り返しオーバーライト回数が高く、保存寿命が高く、線速依存性のない媒体を可能にするための記録層材料及びその組成を提供すること。
【解決手段】 基板上に第1の誘電体層、記録層、第2の誘電体層、反射放熱層をその順に積層してなる光記録媒体の記録層において、記録層の構成元素が主にAg、In、Sb、Teであって、AgaIn β Sb γ Te δ O各組成比 α 、 β 、 γ 、 δ (原子%)が、 $1 \le \alpha < 1$ 0、 $1 < \beta \le 20$ 、 $35 \le \gamma \le 7$ 0、 $20 \le \delta \le 35$ で、 $\alpha + \beta + \gamma + \delta = 100$ であり、しかも65 $< 3\beta + \gamma < 115$ 且つ $40 < \alpha + 2\delta < 75$ なる関係があるものとする。

1

【特許請求の範囲】

【請求項1】 基板上に第1の誘電体層、記録層、第2の誘電体層、反射放熱層をその頃に積層してなる光記録媒体の記録層において、記録層の構成元素が主にAg、In、Sb、Teであって、 $Ag\alphaIn\betaSb\gamma Te\delta$ の各組成比 α 、 β 、 γ 、 δ (原子%) が

 $1 \le \alpha < 10$

 $1 < \beta \le 20$

35≦γ≤70

20≦δ≦35

 $\alpha + \beta + \gamma + \delta = 100$

であり、しかも

 $65 < 3\beta + \gamma < 115$

 $40 < \alpha + 2\delta < 75$

なる関係があることを特徴とする光記録媒体。

【請求項2】 請求項1記載の光記録媒体の記録層において、更に $3 \le \alpha + \beta < 15$ 且つ $\gamma > 55$ なる関係があることを特徴とする光記録媒体。

【請求項3】 請求項1又は2記載の光記録媒体の記録 層が、回転線速度1.4m/sec~11.2m/se 20 cで記録及び再生されるものであることを特徴とする光 記録媒体。

【請求項4】 請求項3記載の線速度で記録する記録方式がPWM (Pulse Width Modulation) 方式であることを特徴とする光記録媒体。

【請求項5】 請求項1又は2記載の光記録媒体において、記録層中に主要な元素であるAg、In、Sb及びTeのうちの少なくとも一つの構成元素の窒化物及び/又は酸化物あるいは窒素単体を含むことを特徴とする光記録媒体。

【請求項6】 請求項1又は2記載の光記録媒体の記録 層において、結晶化温度が150℃以上250℃以下で あることを特徴とする光記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光記録媒体、特に光 ビームを照射することにより記録層材料に相変化を生じ させ、情報の記録・再生を行い、且つ、書き換えが可能 である相変化型情報記録媒体に関し、光メモリー関連機 器、特に書き換え可能なDVD-RAMメディアに応用 40 可能なものである。

[0002]

【従来の技術】半導体レーザビーム照射により情報の記録・再生及び消去が可能な光記録媒体には、熱を利用して磁化の反転を行ない記録消去する光磁気記録方式と、結晶と非晶質の可逆的相変化を利用し記録消去する相変化光記録方式がある。後者は単一ビームによるオーバーライトが可能であること、CD-ROM、CD-Rメディアとの互換性の点で有利であることから、書き換え可能なメディアとして今日、CD-RWメディアとして標50、大容量(4.7GB)、高速(高線速)記録再生、録り返しオーバーライト回数が高いこと等の高い仕様を要求されている。高線速(現CDの4倍から5倍あるいはそれ以上)で大容量な仕様が媒体に要求されてくると、記録周波数が高くなり、記録消去パワーも高くなる傾向にある。記録層材料の特性においては、結晶化速度の向上、融点の低下、熱吸収率の向上等により、低記録能なメディアとして今日、CD-RWメディアとして標50、消去パワーを図ることや、記録マーク長が短くなるこ

準規格が確立され、世に出ようとしている。そして、相 変化光記録媒体の大容量化の研究が行われ、DVD−R OMメディアの発売とともに書き換え可能なDVDメディアとしてDVD−RAMと称されるメディアの開発が 行われている。

2

【0003】相変化記録媒体の記録層に用いられる材料 には、カルコゲン系のGe-Sb-Te、In-Sb-Te、Ge-Se-Te、Ge-Te-Bi、Sb-S e-Te、In-Te-Auがこれまでに調べられてい 10 るが、Ge-Sb-Teが実用レベルに達している。し かし、この材料にしても記録感度、消去感度の向上とオ ーバライト時の消し残りによる消去比の低下等、特性の 向上は望まれる。 そこで、 オーバライト時の消去比を一 段と向上させることができた材料として、Ag-In-Sb-Te系がある(特開平4-78031号公報、特 願平8-103832号)。この系において消去比が向 上したのは、消去時に微結晶AgSbTeュとアモルフ ァスIn-Sbの2相状態になっていることによる。 【0004】また、記録媒体に要求される繰り返し回数 の向上は、上記記録材料だけでは達成できず、この上下 の保護層、更に放熱層を積層することで向上が図られて いる。これまで、保護層材料としてZnS・SiO 2 (特公平7-114031号公報) をはじめ、金属酸 化物、金属硫化物、金属窒化物の単体若しくは混合物が 考えられている。更に、反射放熱層の放熱を良くするこ とで、オーバーライト繰り返し回数が飛躍的に向上する が、メディア特性を総合的に見た場合、繰り返し回数の み向上しても他の特性が劣るといった問題がある。今 日、相変化型光記録媒体は、DVD-ROMに相当する 大容量のDVD-RAMの開発が期待、要求され、コン ピュータのデータ用メモリーから一般家庭で使用するビ デオディスクに使用用途が拡大しており、大容量で高速 記録再生、更なる繰り返し回数の向上、長期保存性と高 い仕様が求められている。これらをすべて満足する媒体 の開発が今後の課題となる。また、DVD-RAMとD VD-ROMとの互換性も大きな課題となってくる。 【0005】相変化型記録媒体は、前述のように、既に 商品化されてパーソナルコンピュータの外部メモリーに 使われている。そして今日、DVD-ROMメディア、 プレーヤーが世に出始め、更に今後大容量で書き換え可 能なDVD-RAMメディアの商品化が期待されてい る。DVD-RAMメディアは、ROMとの互換性を始 め、大容量(4.7GB)、高速(高線速)記録再生、 繰り返しオーバーライト回数が高いこと等の高い仕様を 要求されている。 高線速 (現CDの4倍から5倍あるい はそれ以上)で大容量な仕様が媒体に要求されてくる と、記録周波数が高くなり、記録消去パワーも高くなる 傾向にある。記録層材料の特性においては、結晶化速度 の向上、融点の低下、熱吸収率の向上等により、低記録

3

とによりマークエッジをシャープにするため、記録スト ラテジー、層構成により更に冷却、徐冷の制御の正確さ が要求されてくる。

【0006】一方、繰り返しオーバーライト回数が更に 高いことも要求されている。これまで相変化記録媒体の 繰り返し特性の劣化は、高速で多数回の溶融、冷却を繰 り返すために体積変化に伴う物質流動、更には短時間に おける急激で大きな温度差による変化を繰り返すため に、記録層だけでなくその上下に存在する保護層、更に は反射放熱層までに影響が及び、膜全体が局所的な膜厚 10 変動を生じたり、局所的にボイドが生じることで回数が 制限される。従って、この場合は記録層のみならず、保 護層材料及び反射放熱層の熱物性を改良する必要があ る。そのために熱伝導率を高くし、熱膨張係数を低減さ せ熱応力を抑制するか、あるいは熱応力緩和させる材 料、構成を考える必要がある。更に、保存性も高くする 必要がある。保存特性の向上として窒素添加した例(特 開平4-78031号公報)がある。

[0007]

【発明が解決しようとする課題】従って、本発明は上記 20 のような状況に鑑みてなされたものであって、高速で、 繰り返しオーバーライト回数が高く、保存寿命が高く且 つ線速依存性のない媒体を可能にするための記録層材 料、組成を提供することを、その目的とする。

[0008]

【課題を解決するための手段】本発明者らは、上記目的 を達成するために、鋭意検討を重ねた結果、基板上に第 1の誘電体層、記録層、第2の誘電体層、反射放熱層を その頃に積層してなる光記録媒体において、線速1. 4 $m/sec\sim11.2m/sec$ の幅広い設速で、しか 30 $40<\alpha+2\delta<75$ も繰り返しオーバーライト回数が1万回以上を可能にす る相変化型光記録媒体の記録層材料組成比及び各元素と の関係を見出し、本発明に到達した。

【0009】即ち、本発明によれば、第一に、基板上に 第1の誘電体層、記録層、第2の誘電体層、反射放熱層 をその頃に積層してなる光記録媒体の記録層において、 記録層の構成元素が主にAg、In、Sb、Teであっ て、AgαInβSbγTeδの各組成比α、β、γ、 δ (原子%) が

 $1 \le \alpha < 10$

 $1 < \beta \le 20$

35≦γ≤70

20≦δ≦35

 $\alpha + \beta + \gamma + \delta = 100$

であり、しかも

 $65 < 3\beta + r < 115$

 $40 < \alpha + 2\delta < 75$

なる関係があることを特徴とする光記録媒体が提供され る。第二に、上記第一に記載した光記録媒体の記録層に あることを特徴とする光記録媒体が提供される。第三 に、上記第一又は第二に記載した光記録媒体の記録層 が、回転線速度1.4m/sec~11.2m/sec で記録及び再生されるものであることを特徴とする光記 録媒体が提供される。第四に、上記第三に記載した線速 度で記録する記録方式がPWM(PulseWidth

1

Modulation) 方式であることを特徴とする 光記録媒体が提供される。第五に、上記第一又は第二に 記載した光記録媒体において、記録層中に主要な元素で あるAg、In、Sb及びTeのうちの少なくとも一つ の構成元素の窒化物及び/又は酸化物あるいは窒素単体 を含むことを特徴とする光記録媒体が提供される。第六 に、上記第一又は第二に記載した光記録媒体の記録層に おいて、結晶化温度が150℃以上250℃以下である ことを特徴とする光記録媒体が提供される。

[0010]

【発明の実施の形態】以下、本発明を更に詳細に説明す る。本発明の光記録媒体は、基板上に第1の誘電体層、 記録層、第2の誘電体層、反射放熱層をその順に積層し てなる光記録媒体の記録層において、記録層の構成元素 が主にAg、In、Sb、Teであって、AgαInβ $Sb \gamma Te \delta O$ 各組成比 $\alpha \setminus \beta \setminus \gamma \setminus \delta$ (原子%) が $1 \le \alpha < 10$

 $1 < \beta \le 20$

 $35 \le \gamma \le 70$

20≦δ≦35

 $\alpha + \beta + \gamma + \delta = 100$

であり、しかも

 $65 < 3\beta + \gamma < 115$

なる関係があることを特徴とする。

【0011】即ち、本発明者らの一部が先に出願したA g、In、Te、Sbを含む記録材料を用いた光記録媒 体 (特願平8-103832号) においては、記録層中 のInの組成比が7≤β≤20であったが、本発明者ら はそれより少ない組成比においても繰り返しオーバーラ イト特性及び保存性の優れた記録材料であることを見出 し、更に各元素の組成範囲、物性について最適化したも のである。

【0012】Ag、In、Sb及びTeを含む4元系の 相変化型記録材料を主成分として含有する材料は、記録 (アモルファス) 感度、消去 (結晶化) 感度、及び消去 比が極めて良好なため、記録層の材料として適してい る。特にこの材料の特徴は、未記録状態である結晶化状 態において、AgSbTez結晶相とInSbアモルフ ァス相の混相状態になっていることで消去比が高く、高 感度な光記録媒体を得ることが可能になっている。この ように相変化記録媒体を今後書き換え型DVD(DVD -RAM) に展開していくために、更に各構成元素の組 おいて、更に $3 \le \alpha + \beta < 15$ 且つ $\tau > 55$ なる関係が 50 成比の範囲を検討した結果、繰り返しオーバーライト回 数が高く、広い線速度での記録再生ができ、しかも信頼 性の高い媒体を提供するが可能になった。

【0013】本発明の光記録媒体は、基本的に図1に示 されるように、基板1上に第1の誘電体層2、記録層 3、第2の誘電体層4及び反射放熱層5をその順に積層 した構成からなり、更に保護のため反射放熱層5の上に UV硬化樹脂6を積層することが好ましい。

【0014】本発明において、第1及び第2の誘電体層 (保護層) 2及び4としては、SiOx、ZnO、Sn O2, A12O3, TiO2, In2O3, MgO, Zr O2、Ta2O5等の金属酸化物、Si3N4、A1N、T iN、BN、ZrN等の窒化物、ZnS、TaS₄、等 の硫化物、SiC、TaC、B4C、WC、TiC、Z rC等の炭化物が挙げられる。これらの材料は、単体で 保護層として用いることができるし、また混合物として 用いることもできる。例えば混合物としては、ZnSと SiOx, Ta2O5とSiOxが挙げられる。これら材 科物性は、熱伝導率、比熱、熱膨張係数、屈折率及び基 板材料あるいは記録層材料との密着性等があり、融点が 高く、熱伝導率が高く、熱膨張係数が小さく、密着性が 20 良いといったことが要求される。特に第2の誘電体層 は、繰り返しオーバーライト特性を左右する。

【0015】誘電体からなる保護層は更に膜厚が重要で あるが、第1の誘電体層2の膜厚は50~250 nmの 範囲として、75 nm~200 nmが好ましい。50 n mより薄くなると、耐環境性保護機能の低下、耐熱性低 下、畜熱効果の低下となり好ましくない。一方、250 nmより厚くなると、スパッタ方法等による膜作製過程 において、膜温度の上昇により膜剥離やクラックが発生 したり、記録時の感度の低下をもたらすので好ましくな 30 $\alpha+\beta \le 10$, $\gamma > 58$ い。第2の誘導体層4の膜厚は10nm~100nmの 範囲とし、15mm~50mmが好ましい。第2の誘電 体層の場合、10 nmより薄いと、基本的に耐熱性が低 下し好ましくない。100mmを越えると、記録感度の 低下、温度上昇による膜剥離、変形、放熱性の低下によ り繰り返しオーバーライト特性が悪くなる。

【0016】反射放熱層5としては、AI、Au、C u、Ag、Cr、Sn、Zn、In、Pd、Zr、F e, Co, Ni, Si, Ge, Sb, Ta, W, Ti, Pb等の金属を中心とした材料の単体、あるいは合金、 混合物を用いることができる。必要に応じて、異なる金 属、合金又は混合物を複数積層しても良い。この層は、 熱を効率的に逃がすことが重要であり、膜厚は30 nm ~250nmとする。好ましくは50nm~150nm が良い。膜厚が厚すぎると、放熱効率が良すぎて感度が 悪くなり、薄すぎると、感度は良いが繰り返しオーバー ライト特性が悪くなる。特性としては、熱伝導率が高 く、高融点で保護層材料との密着性が良いこと等が要求 される。

【0017】上記で述べた材料、構成による光記録媒体 50 明する。

は、波長が680nm、635nmの半導体レーザー で、NAO. 6又はO. 63か、あるいは650nmの 半導体レーザーでNAO. 6のピックアップを用い記録 再生する。記録方法はPulse Width Mod ulationで変調コードがEFMあるいはEFM+ [8/16RLL(2, 10)] 方式で記録する。パル スは、先頭バルスとその後のマルチパルス部に分かれ

6

る。マルチパルス部は、加熱、冷却を繰り返し行い、各 パワーの関係は、加熱(記録)パワー>消去パワー>冷 10 却パワーとなっていて、冷却パワーは読み出しパワー程 度まで下げる。

【0018】さて、本発明において記録層を構成する元 素がAg、In、Sb、Teであり、各組成比α、β、 γ、δ (原子%) が

 $1 \le \alpha < 10$

 $1 < \beta \le 20$

 $35 \le \gamma \le 70$

20≦δ≦35

 $\alpha + \beta + \gamma + \delta = 100$

なる関係以外に、Ag、In、Sb、Teの組成比α、 β 、 γ 、 δ の間に

65<3 β + γ <115 且つ 40< α +2 δ <75 で更に、

 $3 \le \alpha + \beta < 15$ 且つ $\tau > 55$

の関係を満たす組成範囲にあるとき、低線速から高線速 で記録再生可能であり、繰り返しオーバーライト回数が 向上し、初期化 (結晶化) が高速、低パワーで可能とな り、しかも保存特性を劣化させることがないことが見出 された。特に、α、βにおいては

が好ましい。

【0019】更に、これらの範囲において、結晶化温度 が150℃以上250℃以下になる組成があり、初期化 プロセスにおいて低パワーで、高速結晶化が可能になる ことがわかった。結晶化温度は150℃以上200℃以 下が好ましく、150℃より低くなると保存性が悪くな り、250℃を越えると初期化がしにくくなってくる。 【0020】次に、窒素添加効果について述べる。A g、In、Sb及びTe以外に窒素(N)を微量含有す 40 ると繰り返しオーバーライト回数、変調度、保存特性が 向上する効果がある。しかし、微量であることが好まし く、入れすぎると繰り返しオーバーライト回数が減少 し、また結晶化温度の上昇により初期化がしにくくな る。従って、微量が好ましい。但し、記録層組成による 記録再生特性は、これら組成はもちろんのこと、保護 層、反射放熱層の特性、膜厚の最適化、記録条件により 更に向上が可能となる。

[0021]

【実施例】以下、実施例により本発明を更に具体的に説

【0022】実施例1~15

基板厚0.6mm、トラックピッチ1.48μm、溝幅 0.68µm、溝深さ60nmのポリカーボネート基板 を用い、高温で脱水処理した後スパッタにより成膜し た。第1の誘電体層(第1の保護層)として、乙nS・ SiOzターゲットを用い膜厚170nmの厚さにつけ た。次に、所定の組成比のAgInSbTeターゲット をアルゴンガス圧3×10-3torr、RFパワー30 OmWでスパッタし膜厚18nmつけ記録層とした。更 に、その上に第2の誘電体層(第2の保護層)として第 10 8%以下を満たす線速のうち、最大の線速を表1に示 1の誘電体層と同様ZnS·SiOzを厚さ20nmつ けた。更に、その上にA1Ti合金膜を反射放熱層とし て厚さ120nmつけた。その上に紫外線硬化型樹脂膜 を保護膜としてつけ、媒体とした。成膜後の記録層は非 晶質であり、結晶化させるための初期化を施した。

【0023】記録は、波長入=635nm、NAO. 6*

*で行い、記録方式はパルス変調法を用い、変調方式はE FM+[8/16(2, 10) RLL] 変調方式で行っ た。記録パワー/消去パワーの比を約2~2.2にし、 ボトムパワーを再生パワーと同じかそれより低くし記録 した。記録パワーを最大15mWまでかけた。再生は入 =650nm, NAO. 6で行った。 線密度は0. 4 µ m/bitとし、グルーブに記録した。各記録層組成に 対し記録再生を行い、DATA to CLKジッター を測定し、ジッターσ/Tw (Yw:ウィンドウ幅)が す。表1から、Ag-In-Sb-Te系記録層材料は 広い線速において記録再生可能であることがわかる。な お、線速は他の保護層、反射層、記録層の膜厚により変 わる。

8

[0024]

【表1】

	11 111 , 112	10.04	130		
	Ag(at%)	In (at%)	S b (at%)	Te(at%)	(3)数(c/s)
実給例1	3.6	11.0	58.4	27.0	6.5
実趋例2	3.8	7.0	61.0	28.2	5.0
実造[3	4.0	3.0	63.6	29.4	3.5
実趋例4	6.0	4.0	63.0	27.0	4.5
実均例5	5.5	5.0	60.0	29.5	3.0
类监例6	5.6	4.0	64.0	26.4	5.0
実路例7	2.0	4.0	64.0	30.0	4.0
実益例8	5.0	5.0	60.0	30.0	3.0
実際例9	3.8	11.8	62.4	22.0	9.5
実造例10	6.0	9.0	56.0	29.0	4.0
実造例11	3.0	12.0	59.0	26.0	7.5
実造例12	8.0	7.5	59.0	26.5	4.5
実监例13	4.5	11.5	59.4	24.6	8.0
支 热闭14	2.3	12.7	61.5	23.4	9.0
夹烙切15	0.9	11.3	65.0	22.8	10.0

【0025】実施例16~25及び比較例1~8 基板厚0.6mm、トラックピッチ0.74 μm、溝幅 O. 5 µm、溝深さ65 nmのポリカーボネート基板を 用い、高温で脱水処理した後スパッタにより成膜した。 第1の誘導体層として、ZnS·SiOzターゲットを 用い膜厚170 nmの厚さにつけた。次に、所定の組成 比のAgInSbTeターゲットをアルゴンガス圧3× 40 10-3torr、RFパワー300mWでスパッタし膜 厚18 nmつけ記録層とした。更に、その上に第2の誘 導体層として第1の誘電体層と同様ZnS・SiO₂を 厚さ20nmつけた。更に、その上にAlTi合金膜を 反射放熱層として厚さ120 nmつけた。その上に紫外 線硬化型樹脂膜を保護膜としてつけ媒体とした。

【0026】記録再生条件は、波長635mm、NA 0.6で記録し、650nm、NAO.6で再生する。 記録方式はパルス変調法を用い、変調方式はEFM+

[8/16(2, 10) RLL] 変調方式で行った。記※50

※録パワー/消去パワーの比を約2~2.2にし、再生パ ワーを1mW、ボトムパワーを再生パワーと同じかそれ より低くし、グループに記録した。線密度O.35µm /b i t と し、 オーバーライトも同様の条件で行った。 ジッターはDATA to CLKによるジッターを測 定した。 線速はCLVで記録再生とも3.5m/sec (DVD-ROM相当)、6m/secで行った。ジッ ターσ/Tw (Tw:ウィンドウ幅)が14%未満とな るオーバーライト (O/W) 回数を表2に示す。 更に、 図2に実施例18 (3.5m/sec)及び実施例23 (6 m/s e c) における繰り返しオーバーライト特性 を示す。また、線速3.5m/secから6m/sec で同様の測定による比較例を行った。 その結果も表2に 併せ示す。実施例においては、記録密度が高くなっても 繰り返しオーバーライト回数が一万回を越え、優れた特 性が得られた。

[0027]

【表2】

	A g (at%)	In (at%)	S b (at%)	T e (at %)	0/1 国数	
突旋例16	3.6	11.0	58.4	27.0	5,000	
実施例17	3.8	7.0	61.0	28.2	20,000	
実施例18	4.0	3.2	63.4	29,4	35,000	
実施例19	6.0	4.0	63.0	27.0	22,000	
実施例20	7.0	6.0	61.0	26.0	10,000	
突施例21	5.6	4.0	64.0	26.4	21,000	ン
実施例22	6.0	5.3	62.3	26.4	16,000	
実施例23	3.8	7.7	63.8	24.7	10,000	
実施例24	6.0	4.8	65.0	24.2	12,000	$\left(\cdot \right)$
実施例25	4.1	9.6	59.5	26.8	8,000	
比較例1	4.0	15.0	56.0	25.0	1,000	
比較何2	7.0	11.0	60.0	22.0	3,500	
比較何3	6.0	21.0	53.0	20.0	500	
比較例4	4.0	11.0	57.0	28.0	4,500	
比較例5	3.6	12.8	58.2	25.4	3,000	
比較何6	5.6	10.8	57.2	26.4	4,000	
比較例7	8.0	8.0	57.0	27.0	3,500	
比較何8	3.9	11.8	54.8	29.5	3,000	

【0028】実施例26~29

実施例1~25における光記録媒体と同様の作製方法 で、たた記録層を作製する際に、Arガスと窒素ガスの 混合ガスを導入し、窒素ガス量0.5sccm~1.5 sccmで作製した。表3に実施例24に窒素を入れた 場合を実施例26~29として示す(但し、実施例26 は窒素不添加の場合を示す)。窒素含有量に対する変調 度、繰り返しオーバーライト回数の各増加率を示す。記 30 【0029】 録層中に流量に比例して、窒素が膜を構成する各元素の*

9

*どれかと結合し窒化物が形成されるか、又は窒素が単体 で含まれている。この窒素量の範囲において、変調度、 繰り返しオーバーライト回数を増加させることができ る。測定条件は実施例24と同様である。ジッター最小 となるところの記録パワー、消去パワーで記録させた。 更に、高温・高湿度の環境下において、窒素含有量の増 加とともに保存性を向上させる効果もある。

LA 10	1137-4	.,					
	Ag(at%)	In(at%)	Sb(at%)	Te(at%)	No (sccn)	0小增加率	变演皮增加率
実施例26	6	4.8	65	24.2	0.0	1.0	1.00
実施例27	6	4.8	65	24.2	0.5	1,2	1.05
実施例28	6	4.8	66	24.2	1.0	1.5	1.09
実施例29	6	4.8	65	24.2	1.5	1.7	1,18

【0030】実施例30~34

本発明の記録層組成において、記録層単体の膜について が10℃/minの場合の結晶化温度である。但し、窒 素は含まれていない。この結果から結晶化温度が150 ℃から200℃付近と低く、これにより初期化(結晶 化)がトラック上で均一に行なえること、しかも初期化※

※を行う際のレーザーパワが低くできることがわかる。ま た、実施例30において活性化エネルギーを求めたとこ 結晶化温度をDSC法により分析した。表4は昇温速度 40 ろ、約1.7 e V と高く、保存特性も比較的良いことが わかる。

[0031]

【表4】

	A g (at%)	In (at %)	S b (at%)	T e (st%)	裁量化温度(℃)
実施例30	4.0	3.3	63.3	29.4	156.7
実施例31	5,6	10.3	58.1	26.0	202.0
実施例32	5,5	6.5	59.0	29.0	188.5
実施例33	4.0	10.8	58.7	26.5	207.0
実施例34	5.6	3.9	64.0	26.5	156.8

[0032]

【発明の効果】請求項1の光記録媒体は、基板上に第1 の順に積層してなる光記録媒体の記録層において、記録 層の構成元素が主にAg、In、Sb、Teであって、 Aga In BSbγTeδの各組成比α、β、γ、δ (原子%)が

 $1 \le \alpha < 10$

 $1 < \beta \leq 20$

 $35 ≤ \gamma ≤ 70$

20≦δ≦35

 $\alpha + \beta + \gamma + \delta = 100$

であり、しかも

 $65 < 3\beta + r < 115$

 $40 < \alpha + 2\delta < 75$

なる組成条件にしたことから、低線速から高線速で記録 再生特性の優れた媒体を設計することが可能となり、高 密度・大容量が要求されているDVD-RAMに十分適 応できるものとなる。

【0033】請求項2の光記録媒体は、請求項1の記録 層組成の条件に、更に3≦α+β<15且つγ>55と いう条件を付加したことから、高密度記録、繰り返しオ ーバーライト特性の向上が図られ、更に保存性が向上す 30 1 基板 るという効果が加わる。

【0034】請求項3の光記録媒体は、回転線速度1. 4m/sec~11.2m/secで記録及び再生され るものであることから、高密度・大容量が要求されるD VD-RAMに十分適用できるものとなる。

【0035】請求項4の光記録媒体は、請求項3記載の*

* 線速度で記録する記録方式がPWM (Pulse Wi dth Modulation) 方式であることから、 の誘電体層、記録層、第2の誘電体層、反射放熱層をそ 10 高密度記録及び繰り返しオーバーライト特性の優れたも のとなる。

> 【0036】請求項5の光記録媒体は、記録層中に主要 な元素であるAg、In、Sb及びTeのうちの少なく とも一つの構成元素の窒化物及び/又は酸化物あるいは 窒素単体を含むものとしたことから、変調度及び繰り返 しオーバーライト特性が向上し、更に保存特性の優れた ものになるという効果が加わる。

【0037】請求項6の光記録媒体は、記録層の結晶化 温度が150℃以上250℃以下であることから、初期 20 化プロセスにおいて結晶化がより低いパワーで均一に行 え、記録再生特性、繰り返しオーバーライト特性のばら つきが少なく、保存性の良好なものになるという効果が 加わる。

【図面の簡単な説明】

【図1】本発明の光記録媒体の一例を示す模式断面図で

【図2】実施例18及び23における繰り返しオーバー ライト特性を示すグラフである。

【符号の説明】

- - 2 第1の誘電体層(第1の保護層)
 - 3 記録層
 - 4 第2の誘電体層(第2の保護層)
 - 5 反射放熱層
 - 6 UV硬化樹脂

【図1】

【図2】

フロントページの続き

(72)発明者 芝口 孝

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 針谷 眞人

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72) 発明者 木下 幹夫

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 影山 喜之

東京都大田区中馬込1丁目3番6号 株式

会社リコー内