

Московский государственный университет имени М. В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Математической Физики

Отчёт

«Исследование устойчивости стационарных состояний нелинейных систем второго порядка. Построение параметрического портрета системы. Автоколебания и множественность стационарных решений.»

Выполнила: студентка 601 группы Рыкова Галина Максимовна Рассматривается автокаталитическая химическая реакция, происходящая на поверхности катализатора и основанную на кинетической схеме Ленгмюра-Хиншельвуда:

$$\frac{dx}{dt} = k_1 z - k_{-1} x - k_3^0 (1 - y)^{\alpha} x y,
\frac{dy}{dt} = k_2 z^2 - k_{-2} y^2 - k_3^0 (1 - y)^{\alpha} x y, \tag{1}$$

Здесь z = 1 - x - y - концентрация свободных мест.

$$0 \le x \le 1, 0 \le y \le 1, \\
0 \le x + y \le 1$$
(2)

Базовый набор параметров: $\alpha=16; k_1=0,03; k_{-1}=0,01; k_{-2}=0,01; k_3^0=10; k_2=0,05.$

Однопараметрический анализ по k_2

Стационарные состояния удовлетворяют системе уравнений:

$$k_1 z - k_{-1} x - k_3^0 (1 - y)^{\alpha} x y = 0,$$

$$k_2 z^2 - k_{-2} y^2 - k_3^0 (1 - y)^{\alpha} x y = 0,$$
(3)

Из первого уравнения (3) выразим переменную через и подставим во второе уравнение (3). Из получившегося уравнения выразим параметр k_2 через остальные параметры и переменную. Пробегая с некоторым шагом весь диапазон значений переменной от 0 до 1, по полученным формулам найдем соответствующие значения переменной и параметра k_2 . Для исследования устойчивости стационарных решений, найдем элементы матрицы Якоби и вычислим ее след и определитель на стационаре. Отслеживая смены знака якобиана системы (3) на стационарном решении, мы находим точки бифуркации.

Двухпараметрический анализ по (k_1,k_2)

На плоскости параметров (k_1, k_2) построит параметрический портрет системы: проведем линии кратности и нейтральности. Дописав для системы стационаров условие вырожденности матрица Якоби, получим линию кратности. А если допишем к системе стационаров условие равенства нулю следа матрицы Якобы, получим линию нейтральности. На рисунке 13 показана эволюция решения стартовавшего из точки $(0.3,\ 0.25)$, находящейся внутри предельного цикла, при базовых параметрах. Решение выходит на колебательный режим.

Рис. 1: Однопараметрический анализ при $\alpha=10$

Рис. 2: Однопараметрический анализ при $\alpha=15$

Рис. 3: Однопараметрический анализ при $\alpha=18$

Рис. 4: Однопараметрический анализ при $\alpha=20$

Рис. 5: Однопараметрический анализ при $\alpha=25$

Рис. 6: Однопараметрический анализ при $k_3^0=1$

Рис. 7: Однопараметрический анализ при $k_3^0=5$

Рис. 8: Однопараметрический анализ при $k_3^0=10$

Рис. 9: Однопараметрический анализ при $k_3^0=50$

Рис. 10: Однопараметрический анализ при $k_3^0=100$

Рис. 11: Двухпараметрический анализ. Параметрический портрет системы.

Рис. 12: Двухпараметрический анализ. Фазовый портрет.

Рис. 13: Двухпараметрический анализ. Автоколебания x(t) и y(t).