

CO₂ capture: an overview (II)

CO₂ capture processes and facilities

E. Lorenceau, LIPhy – CNRS and UGA

A CO₂ capture facility is designed to trap CO₂ molecules to prevent their release into the atmosphere.

Overview of the Carbon Capture facilities

The existence of these facilities with their limited potential should not obscure the urgent need to drastically limit the use of fossil fuels...

Overview of the Carbon Capture facilities

Different types of industrial carbon capture facilities

Part of an industrial plant equipped with a unit dedicated to carbon capture, utilization and storage (CCUS).

CO₂ is separated from other emitted gases, treated and transported

- to a long term storage location (CCS)
- to be used as a carbon source (CCU)

CO₂ capture from concentrated sources emitted by industry and the energy sector

Fuel combustion in air

 $CH_4 + 2O_2 +$ excess of $O_2 +$ exces of $O_2 +$ exces of $O_2 +$ exces of $O_2 +$ exces of $O_2 +$

 $CO_2 \sim 8 \text{ to } 15 \text{ (% vol)}$ $O_2 \sim 2 \text{ to } 8 \text{ (% vol)}$ $H_2O \sim 8-10 \text{ (% vol)}$ $N_2 \sim 70 \text{ to } 76 \text{ (% vol)}$ + other gases

Different types of industrial carbon capture facilities

Autonomous unit of direct Air Capture technologies (DAC)

CO₂ from air is separated from other air gases, treated and transported

- to a long term storage location
- to be used as a carbon source

CO₂ capture from diluted sources – CO₂ present in air

 $CO_2 \sim 0.04\%$ $O_2 \sim 21 \text{ (% vol)}$ $N_2 \sim 78 \text{ (% vol)}$ $H_2O \sim 0-10 \text{ (% vol)}$ + other gases

Different types of industrial carbon capture facilities

Concentrated sources of CO2

- Post-Combustion Capture a family of technologies implemented after combustion takes place.
- *Pre-Combustion Capture*, where carbon is removed <u>prior to combustion</u>, leaving a carbon-free fuel hydrogen to burn.
- Capture by *Oxyfuel Combustion*, where <u>fuel is burned in oxygen</u>, without nitrogen.

Diluted sources of CO2

• *Direct Air Capture* a family of technologies capturing CO₂ from ambient air

Post Combustion CO₂ capture

- One separation unit
- Possible to retrofit CCS facilities to existing power stations or CO₂ -emitting industries

Post-combustion capture: Example of Petra Nova

Industry: Carbon capture unit installed in 2017 on one of the boilers of a coal burning power plant in Texas (entered commercial service in 1977) -> cleaner coal plant

Carbon Capture Technology: Amine based absorption

Target: 1.4 10⁶ tons of CO₂/yr used for injection in enhance oil recovery – 33% of emitted CO₂

Business plan: \$1 billion to install the CCS unit paid by NRG Energy and JX Nippon Oil (\$190 million grant from US government, \$250 million loan from the Japanese government). Expected profit from enhanced oil recovery rates(X50) ... But oil prices drop and Petra Nova shut down in 2020. Sold to Eneos japanese (to gain expertise in CCUS) – dormant project

Carbon capture costs linked to energy prices. Becomes prohibitive when energy prices are too low.

Precombustion capture

No large-scale commercial CCS power stations using Pre-Combustion Capture in operation in 2023!

Precombustion capture: Example of Kemper County CCS

Industry: 2010 – Mississippi Power launches the Kemper project combining Coal precombustion (IGCC) and Carbon Capture -> "clean" coal plant

Carbon Capture Technology: unknown

Target: Capture 65% of the CO_2 produced by the monthly use of 375,000 tonnes of mined coal – 3 10^6 tons CO_2 /yr

Business plan and schedule:

- August 2014: Combined cycle unit in commercial operation Cost \$2.4 billion (Mississippi power -> Electricity cost increases)
- October 2014: Delay of two years + Extra Cost \$4 billion
- September 2016: Two over three gasifiers produces syngas (No CCS)
- March 2017: Leakage in syngas machinery (No CCS)
- June 2017: Operation suspended (No CCS)
- October 2021: Gasification structure demolished now only gasfired plant.

Failure not related to CCS but rather i) complex technologies ii) Rise of natural gas ressources (gas fracturing) iii) Uncertain financing plan

Vulnerability of technological choices based on energy price forecasts

Capture by Oxyfuel combustion

Combustion in pure oxygen leads to very high temperature

-> Fraction of the combustion gas diverted back to dilute O₂

- Two gas separation units
- Heat can also be used in steel and cement industries

No large-scale commercial CCS power stations using Oxyfuel in operation in 2023!

Capture by Oxyfuel Lacq Pilot

Industry: One boiler of the gas energy plant has been retrofitted into an oxy-fuel boiler associated to CCS. In operation from 2010 to 2013 – Air Liquide and Total

Carbon Capture Technology: Combination of Membrane and Cryogenics technologies

Target: $60 \ 10^3 \text{ tons } CO_2/\text{yr} - \text{Achieved } 17 \ 10^3 \text{ tons } CO_2/\text{yr injected}$.

Economics: Cost € 60 millions (Total)

Possible to retrofit an air boiler into an oxycombustion boiler

Air Liquide extensive industrial experience of full oxy-combustion for industries -> K6 project in 2024 – Technology readiness of the process ?

https://www.globalccsinstitute.com/news-media/insights/total-publishes-lacq-ccs-pilot-report/

Direct air Capture

Direct air Capture

Carbon Capture Technology: Temperature swing adsorption on solid sorbents - Carbon capture efficiencies of 85.4% and 93.1%

Goal: Orca 4 103 tons of CO₂/yr - Mammoth 36 103 tons of CO₂/yr

Economics: 1) Fund raising -2018: \$30.8 millions -2020: \$110 millions -2022: \$650 millions 2) Commercialization of CO_2 offesetting

Business model durability? Resources cost?

Overview of the type of carbon capture facilities

Credit: Scottish Carbon Capture & Storage, http://sccs.org.uk/resources/global-ccs-map

What is the energy cost of carbon capture?

Table 3Thermal and electric energy consumption for the studied MEA-based CO₂ capture system.

Thermal (MJth/s)		
Reboiler heat duty	484.6	
Stripper condenser cooling	188,5	
Lean liquid cooling	234.0	
Compressor cooling	78,3	
Electric energy consumption (MJe/s)		
Gas blower	8,2	
Pumps	10.0	
CO ₂ compression	45.8	
Total	64.0	

What is the energy cost of carbon capture?

Fig. 2. Energy cost for different methods for CO_2 capture.

Fig. 3. Target energy penalties for different methods of CO₂ capture.

Lowest E/ton of CO₂ is for coal-based power plants, and for all modes of power generation, followed by fuel oil and natural gas, but ... energy density of natural gas is higher than fuel and oil!

Lowest energy penalty for gas in pre-combustion process around 10%

What is the energy cost of direct air capture?

Status of the Leading DAC Companies

	Cimeworks	Carbon Engineering	Global Thermostat	Trees
Location	Switzerland	Canada	United States	
System type	Solid sorbent	Liquid solvent	Solid sorbent	
Thermal energy needs	80-120°C / 176-248°F	900°C / 1652°F	105-120°C / 221-248°F	
Thermal energy source	Non-fossil energy resources (geothermal, waste heat, etc.)	Natural gas with CCS	Energy resource agnostic	
Projects	15 plants around Europe with a collective capacity of just under 6,000 tCO ₂ /yr	Pilot plant in Canada; developing 1 MtCO ₂ /yr capacity plant in Southwest United States	2 plants in the United States with a collective capacity of 1,500 tCO ₂ /yr	
Investments	Most recent round of funding, in March 2022, reached \$650 million	Received \$70 million in total investment from governments and corporates	Received investments of \$68 million in most recent round of funding in 2019	
Resource				
Energy	2 000 kWh/t00 ₂	2 400 kWh/tco ₂		0 kWh/tco ₂
Land	66 km²/t00 ₂	1 km²/t00 ₂		$862 \text{km}^2/\text{t} \cos_2$
Water LOSS	-1 tH₂0/tCO₂	4 tH ₂ 0/tCO ₂		

CCS and **DAC** supporting policies

Carbon tax: applied to the production of greenhouse gas emissions directly or fuels that emit these gases when they're burned.

Emission trading system: carbon price changes over time. A maximum level of pollution (a 'cap') is defined and manufacturers need licenses to emit greenhouse gases.

Summary

MOOC - Climate change: Carbon Capture and Storage – University of Edinburgh