

(19)日本国特許庁(JP)

(12) 特 許 公 報(B2)

(11)特許出願公告番号

特公平6-29229

(24) (44)公告日 平成6年(1994)4月20日

(51)Int.Cl. ⁵ C 0 7 C 237/22	識別記号	庁内整理番号 7106-4H	FI.		技術表示箇所
A 6 1 K 31/165	AED				
31/27	ABE				
	ABJ				
	ABL				
				発明の数 2(全 8 頁)	最終頁に続く

(21)出願番号	特顯昭62-279525	(71)出願人	99999999
			サントリー株式会社
(22)出願日	昭和62年(1987)11月5日		大阪府大阪市北区堂島浜2丁目1番40号
		(72)発明者	樋口 直樹
(65)公開番号	特開平1-121257	l	大阪府三島郡島本町若山台1丁目1番1号
(43)公開日	平成 1年(1989)5月12日		サントリー株式会社基礎研究所内
		(72)発明者	齊藤 雅之
			大阪府三島郡島本町若山台1丁目1番1号
			サントリー株式会社基礎研究所内
		(72)発明者	岩澤 律夫
	·		大阪府三島郡島本町若山台1丁目1番1号
			サントリー株式会社基礎研究所内
	·	(72)発明者	角田 元男
			大阪府三島郡島本町若山台1丁目1番1号
			サントリー株式会社基礎研究所内
		(74)代理人	弁理士 湯浅 恭三 (外4名)
		審査官	佐藤 修

(54)【発明の名称】 システインプロティナーゼ阻害剤

1

【特許請求の範囲】

* *【請求項1】一般式(1)

(1)

【式中、 R_1 はベンジルオキシカルボニル基、又は4-フェニルブチリル基を表し、 R_2 はイソプロビル基、またはイソブチル基を表し、 R_3 はブチル基、ベンジル基、またはメチルチオエチル基を表し、 R_4 は水素原

子、またはクロロメチル基を表す。} で表わされる化合物

10 【請求項2】一般式(1)

BEST AVAILABLE COPY

(1)

【式中、R」はベンジルオキシカルボニル基、又は4-フェニルブチリル基を表し、R2はイソブロビル基、ま たはイソブチル基を表し、R。はブチル基、ベンジル 基、またはメチルチオエチル基を表し、R。は水素原 子、またはクロロメチル基を表す。) で表わされる化合*

*物を有効成分として含有するシスティンプロティナーゼ 阻害剤。

【発明の詳細な説明】

(産業上の利用分野)

本発明は一般式(1)

(1)

【式中、R」はベンジルオキシカルボニル基、または4 −フェニルブチリル基を表し、R₂はイソプロピル基、 基、またはメチルチオエチル基を表し、R。は水素原 子、またはクロロメチル基を表す。) で表わされる化合 物で、システインプロティナーゼ、特にパパイン及びカ ルバインに対して強い酸素阻害活性を示すシステインブ ロティナーゼ阻害剤に関するものである。

(従来の技術)

システインプロティナーゼの一種であるパパイン (E. C. 3. 4. 22. 2, PAPAIN) 及びカルパイン (E. C. 3. 4. 22. 17, CALPAIN) の活 にカルパインに関しては、筋ジストロフィー、或は白内 障等治療薬として、有効であることが知られている。と れら用途の開発をめざし、これまで様々なシステインブ※

※ロティナーゼ阻害剤が見いだされてきているが、(Sh imizu, B. S. J. Antibio/t., 25 またはイソブチル基を表し、R。はブチル基、ベンジル 20 巻、515頁、(1972)、特開昭60-28990 号、特開昭61-106600号、特開昭61-103 897号)、活性、特異性、生体内移行性等の面での改 善が強く望まれているのが現状である。

(発明が解決しようとする問題点)

そとで本発明者らは、システインプロティナーゼの中で も特にカルパインに対する阻害活性が強く、さらに生体 内移行性の高い化合物を見出すべく種々合成検討の結 果、本発明を完成した。

(問題点を解決するための手段)

性を特異的に阻害する薬剤は、抗炎症剤として、また特 30 本発明に従えば、強力なカルバイン阻害、あるいはパバ イン阻害活性を有する新規化合物である、 一般式(1)

(1)

{式中、R」はベンジルオキシカルボニル基、又は4 - 40★ - アシルーペプチジル - アルデヒド、あるいは、N - ア フェニルブチリル基を表し、R。はイソプロビル基、ま たはイソブチル基を表し、R。はブチル基、ベンジル 基、またはメチルチオエチル基を表し、R。は水素原 子、またはクロロメチル基を表す。)で表わされる、N★

シルーペプチジルークロロメチルケトンが供給される。 本発明の化合物は次のようにして製造することができ る。先ず、式(1)においてR₄が水素である本発明の 化合物を製造するには、次の一般式 (2)

(2)

5

(式中、R」、R。およびR。は、前配式(1)で与えられた意味を表し、そしてR。は低級アルキル基を表す。)で表される化合物を有機溶媒中還元剤を用いてアルデ*

* ヒドに酸化することにより、容易に製造される。又一般式(1)において、R。がクロロメチル基である本発明の化合物を製造するには、次の一般式(3)

$$R_{1} - NH - CH - CO - NH - CH - CO - OH$$
(3)

(式中、R₁, R₂ およびR。は、前記式(1)で与えられた意味を表す。)で表されるカルボン酸を、有機溶媒中クロロ炭酸エチル等を用いて活性エステルに導き、ジアゾメタンを反応させてジアゾメチルケトンとし、さらに塩酸処理することにより、容易に製造される。(実施例)

次に実施例及び阻害活性試験によって本発明を更に具体※

※的に説明するが、本発明の技術的範囲をこれらの実施例 によって限定するものでないことはいうまでもない。酸 素阻害活性試験及び実施例に於て化合物を特定するため にSUAM番号を用い、以下説明する。

実施例1

N-ベンジルオキシカルボニル-L-ロイシル-L-フェニルアラニナール (SUAM-14541)

L-フェニルアラニンエチルエステル塩酸塩 (4.6g, 20 mmol) 及びN-ベンジルオキシカルボニル-L-ロ 30 イシン (5.4g, 20 mmol) を乾燥塩化メチレン100 m & に溶解しトリエチルアミン (2.0g, 20 mmol) を加えた。この溶液に1-エチル-3-(3-ジメチルアミノフロビル) カルボジイミド塩酸塩 (WSCD) (4.2g, 22 mmol) を加え、一昼夜室温で攪拌した。反応終了後反応液を1N塩酸、飽和食塩水、飽和炭酸水酸ナトリウム、及び飽和食塩水の順で洗浄し、無水硫酸ナトリウム上で乾燥した。

溶媒を溜去し、残渣をシリカゲルを用いた中圧カラムクロマトグラフィーで精製すると、NーベンジルオキシカルボニルーLーロイシルーLーフェニルアラニンエチルエステル(8.4g, 結晶)を得た。このNーベンジルオキシカルボニルーLーロイシルーLーフェニルアラニンエチルエステル(2.2g, 5 mmol)と水素化ホウ素ナトリウム(570mg, 15 mmol)を第三ブチルアルコール(50mℓ)に懸濁し、窒素雰囲気下に加熱還流(90℃)した。ついで還流下無水メタノール(8 mℓ)を滴下した。滴下終了後1時間還流攬拌した後室温に戻し、氷冷下に水を(30mℓ)加えた。メタノールと第三ブチルアルコールを減圧密去したのち、酢酸エチルで

3回抽出し、飽和食塩水で洗浄後無水硫酸マグネシウム 上で乾燥した。酢酸エチルを減圧溜去して得られた残渣 をシリカゲルを用いた中圧カラムクロマトグラフィーで 精製すると、N-ベンジルオキシカルボニルーL-ロイ シル-L-フェニルアラニノール (1.5g、結晶) を得 た。このN-ベンジルオキシカルボニル-L-ロイシル -L-フェニルアラニノール (1.2g, 3 mmol) とトリ エチルアミン (1.2g, 12mmol) を無水ジメチルスル ホキシド(8mℓ)に溶解し、攪拌下に三酸化硫黄ービ リジン錯体 (1.9g, 12 mmol) のジメチルスルホキシ ド (8 m l) 溶液を加えた。室温で10分間攪拌後氷水 (120m &) に注ぎ、酢酸エチルで3回抽出し、10 %クエン酸水溶液、飽和食塩水、飽和炭酸水素ナトリウ ム溶液、及び飽和食塩水の順で洗浄し、無水硫酸ナトリ ウム上で乾燥した。酢酸エチルを減圧溜去して得られる 残渣をシリカゲルを用いた中圧カラムクロマトグラフィ ーで精製すると、目的化合物N-ベンジルオキシカルボ ニルーレーロイシルーレーフェニルアラニナール (0.6) g, 油状物)を得た。

滴下した。滴下終了後1時間還流攪拌した後室温に戻 1 H − NMR: CDCl, 中、TMS基準 0.80-1.00(6H,m),1.22-1.72(3H,m),3.12(2H,m),4.16(1 三ブチルアルコールを減圧溜去したのち、酢酸エチルで 50 H,m),4.66(1H,m),5.08(2H,s),5.12(1H,m),5.64(1H,m),

7.16-7.34(10H,m), 9.56(1H,s)

IRスペクトル;測定形状はフィルム、波数 (cm-1);33 30,3270,3030,2960,1730,1680,1650,1530,1240,1040,75 0.740.700

*実施例2

N-ベンジルオキシカルボニル-L-ロイシル-L-ノ ルロイシナール (SUAM-14542)

実施例1において、L-フェニルアラニンエチルエステ ル塩酸塩の代わりにL-ノルロイシンメチルエステル塩 酸塩(3.6g, 20mmol)を用いることにより目的化合 物N-ベンジルオキシカルボニル-L-ロイシル-L-ノルロイシナール (0.5g, 粉末物) を得た。融点; 9 3℃

1H-NMR; CDC I, 中、TMS基準 0.80-1.00(9H,m), 1.22-1.28(9H,m), 4.12-4.58(2H,m), 5.% $\times 12(2H,s)$,5.22(1H,d,J=8.0),6.57(1H,d,J=7.0),7.36 (5H,s),9.54(1H,s)

IRスペクトル; 測定形状は K B r 、波数 (cm⁻¹) ; 332 20 0,3030,2950,1720,1680,1640,1530,1230,1050,740,700 実施例3

N-ベンジルオキシカルボニル-L-ロイカル-L-メ チオニナール (SUAM-14543)

実施例1において、L-フェニルアラニンエチルエステ ル塩酸塩の代わりにL-メチオニンメチルエステル塩酸 塩(4.0g, 20mmol) を用いることにより目的化合物 チオニナール (0.5g, 油状物) を得た。屈折率; (D 線、25℃);1.5342

1H-NMR; DMSO-d。中、TMS基準 0.94(6H,d,J=6.0),1.42-2.58(5H,m),2.06(3H,s),4.084.62(2H,m), 5.10(2H,s), 5.37(1H,d,J=7.0), 6.95(1H,d,d)J=6.0), 7.34(5H,s), 9.56(1H,d, J=2.0)

IRスペクトル;測定形状はフィルム、波数(cm⁻¹);33 N-ベンジルオキシカルボニル-L-ロイシル-L-メ 40 00,3070,2950,1720,1700,1660,1530,1240,1040,740,700 実施例4

> N- (4-フェニル) プタノイル-L-ロイシル-L-フェニルアラニナール (SUAM-14544)

(5)

実施例1の合成中間体であるN-ベンジルオキシカルボ 10*酸エチルを減圧溜去して得られた残渣をシリカゲルを用 ニルーL-ロイシル-L-フェニルアラニンエチルエス テル (2.2g, 5 mmol) をエチルアルコール (5 0 m 2) に溶解し、少量のパラジウム炭素を加え、水素雰囲 気下で室温で24時間攪拌した。反応終了後パラジウム 炭素を濾過し、エチルアルコールを減圧溜去した。との 残渣をテトラヒドロフラン50mlに溶解し、トリエチ ルアルミン (1.0g, 10 mmol) を加えた。この溶液に 氷冷下(4-フェニル)ブタノイルクロリド(0.9g. 5 mmo1)を滴下し、1時間攪拌した。その後室温に戻し て更に1時間攪拌した。反応終了後テトラヒドロフラン を減圧溜去し、残渣を50mℓの酢酸エチルに溶解し た。この溶液を1N塩酸、飽和食塩水、飽和炭酸水素ナ トリウム、及び飽和食塩水の順で洗浄し、無水硫酸ナト リウム上で乾燥した。溶媒を減圧溜去して得られる残渣 をシリカゲルを用いた中圧カラムクロマトグラフィーで 精製すると、N- (4-フェニル) ブタノイル-L-ロ イシル-L-フェニルアラニンエチルエステル (2.0 g、結晶)を得た。このN-(4-フェニル)ブタノイ ルーしーロイシルーLーフェニルアラニンエチルエステ ル (1.4g, 3 mmol) と水酸化ホウ素ナトリウム (34 0 mg, 9 mmo1) を第三プチルアルコール (30 m &) に懸濁し、窒素雰囲気下に加熱還流(90℃)した。つ いで還流下無水メタノール(5mℓ)を滴下した。滴下 終了後1時間還流攪拌した後室温に戻し、氷冷下に水を (30m &) 加えた。メタノールと第三ブチルアルコー ルを減圧溜去したのち、酢酸エチルで3回抽出し、飽和 食塩水で洗浄後無水硫酸マグネシウム上で乾燥した。酢米

いた中圧カラムクロマトグラフィーで精製すると、N-(4-フェニル) ブタノイルーL-ロイシルーL-フェ ニルアラニノール(1.2g, 結晶)を得た。とのN-(4-フェニル) ブタノイルーレーロイシルーレーフェ ニルアラニノール (1.1g, 2.5mmol) とトリエチルアミ ン (1.0g, 10 mmol) を無水ジメチルスルホキシド (8 mℓ) に溶解し、撹拌下に三酸化硫黄-ビリジン錯 体 (1.6g, 10mmol) のジメチルスルホキシド (8m 2) 溶液を加えた。室温で10分間攪拌後氷水(120 20 m &) に注ぎ、酢酸エチルで3回抽出し、10%クエン 酸水溶液、飽和食塩水、飽和炭酸水素ナトリウム溶液、 及び飽和食塩水の順で洗浄し、無水硫酸ナトリウム上で 乾燥した。酢酸エチルを減圧溜去して得られる残渣をシ リカゲルを用いた中圧カラムクロマトグラフィーで精製 すると、目的化合物N-(4-フェニル)プタノイルー L-ロイシル-L-フェニルアラニナール(0.6g、油 状物)を得た。

1H-NMR; CDC1, 中、TMS基準 0.80-1.00(6H,m), 1.52-2.26(7H,m), 2.52-2.72(2H,m), 3.30 12(2H,m), 4.40-4.76(2H,m), 5.72(1H,d) = 7.0, 6.68(1)H,d,J=6.0), 7.14-7.26(10H,m), 9.58(1H,s)IRスペクトル;測定形状はフィルム、波数(cm-1);37 20,3060,2950,1730,1630,1540,1240,740,700

N-(4-フェニル) ブタノイル-L-ロイシル-L-ノルロイシナール (SUAM-14545)

実施例4において、実施例1の合成中間体N-ベンジル オキシカルボニルーLーロイシルーLーフェニルアラニ ンエチルエステルの代わりに実施例3の合成中間体であ るN-ベンジルオキシカルボニル-L-ロイシル-L- 50 g, 油状物)を得た。

ノルロイシンメチルエステル (5.3g, 12 mmol) を用 いることにより、目的化合物N-(4-フェニル)ブタ ノイルーLーロイシルーLーノルロイシナール(0.6

特公平6-29229

屈折率(D線、25℃);1.5123 1H-NMR; CDC1。中、TMS基準 $0.80-1.00(6H,m), 1.24-2.32(13H,m), 2.57-2.72(2H,m), \cdot$

4.30-4.63(2H,m), 6.02(1H,d,J=8.0), 6.28(1H,d,J=7.

0), 7.18-7.23(5H,m), 9.54(1H,s)

* IRスペクトル; 測定形状はフィルム、波数 (cm-1); 32 70,3060,2950,1730,1630,1540,1240,740,700 実施例6

N- (4-フェニル) ブタノイル-L-ロイシル-L-メチオニナール (SUAM-14546)

実施例4において、実施例1の合成中間体N-ベンジル オキシカルボニルーLーロイシルーL-フェニルアラニ ンエチルエステルの代わりに実施例2の合成中間体であ るN-ベンジルオキシカルボニル-L-ロイシル-L-メチオニンメチルエステル (2.1g, 5 mmol) を用いる ととにより、目的化合物N-(4-フェニル) ブタノイ ルーレーロイシルーレーメチオニナール(0.5g,油状 物)を得た。

屈折率(D線、25℃);1.5327

※1H-NMR; CDC1,中、TMS基準 0.80-1.00(6H,m), 1.40-2.80(11H,m), 2.03-2.06(total-3)H,both-s, 4.39-4.60(2H,m), 6.02(1H,d,J=8.0), 7.18-7.22(6H,m),9.55,9.58(total-1H,both-s), IRスペクトル;測定形状はフィルム、波数 (cm⁻¹);32

70,3060,2950,1730,1630,1540,1240,740,700 実施例7

N-ベンジルオキシカルボニル-L-ロイシル-L-フ ェニルアラニルクロロメチル (SUAM-11705)

Ж

実施例1の合成中間体であるN-ベンジルオキシカルボ ニルーL-ロイシル-L-フェニルアラニンエチルエス テル (2.6g, 6 mmol) を少量のメチルアルコールに溶 解し、1 N水酸化ナトリウム水溶液を10 m & 加えた。 この懸濁液を透明な溶液になるまで室温で攪拌した。メ チルアルコールを減圧溜去し、水と酢酸エチルに分配し た。水層を10 N塩酸で酸性にし、酢酸エチルで3回抽 出、有機層を無水硫酸ナトリウム上で乾燥した。溶媒を 減圧溜去するとN-ベンジルオキシカルボニル-L-ロ イシル-L-フェニルアラニン (2.4g, 結晶) が得ら れた。このN-ベンジルオキシカルボニル-L-ロイシ ルーL-フェニルアラニン (2.1g, 5 mmol) を乾燥テ トラヒドロフラン(20mℓ)に溶解し、トリエチルア ミン (0.5g, 5 mmo1)を加え、-10℃に冷却した。 この溶液にクロロ炭酸エチル(0.6g, 5 mmol)を加

え、-10℃で20分間撹拌した。室温に戻し、過剰の ジアゾメタンのエーテル溶液を加えて更に30分間攪拌 した。との反応液に塩酸ガスを約10分間吹き込んだ。 反応終了後溶媒を溜去し、酢酸エチル (50m &)を加 40 え、飽和食塩水、飽和炭酸水素ナトリウム溶液、及び飽 和食塩水の順で洗浄し無水硫酸ナトリウム上で乾燥し た。溶媒を減圧溜去して得られた残渣をシリカゲルを用 いた中圧カラムクロマトグラフィーで精製すると、目的 化合物N-(4-フェニル) ブタノイル-L-ロイシル -L-フェニルアラニルクロロメチル (1.5g, 結晶) を得た。

融点;140℃

1H-NMR; DMSO-d。中、TMS基準 0.80(6H,dd, J = 4.0, J = 7.0), 1.00-1.70(3H,m), 2.70-3.450 0(2H,m), 3.95(1H,m), 4.45(2H,dd, J = 5.0, J = 16.0), 4.50

14

N-ベンジルオキシカルボニル-L-ロイシル-L-ノ

ルロイシルクロロメチル (SUAM-11706)

,d,] * 実施例8

(1H,m),5.00(2H,S)7.21(5H,s),7.28(5H,s),7.41(1H,d,J = 8.0),8.42(1H,d,J=8.0)

IRスペクトル; 測定形状はKBr、波数 (cm⁻¹); 331 0,3280,2950,1730,1685,1540,1265,1240,700

*

実施例7 において、実施例1の合成中間体NーベンジルオキシカルボニルーLーロイシルーLーフェニルアラニンエチルエステルのかわりに実施例2の合成中間体であるNーベンジルオキシカルボニルーLーロイシルーLーノルロイシンメチルエステル(2.4g、6 mmol)を用いることにより、目的化合物Nー(4ーフェニル)ブタノイルーLーロイシルーLーノルロイシルクロロメチル(1.6g、結晶)を得た。

融点;111℃

※ 1 H-NMR; DMSO-d。中、TMS基準 0.80-1.00(9H,m),1.00-1.90(9H,m),4.04(1H,m),4.30(1 H,m),4.54(2H,s),5.00(2H,S),7.36(5H,s),7.46(1H,d,J = 8.0),8.36(1H,d,J = 8.0)

20 IRスペクトル: 測定形状はKBr、波数(cm⁻¹); 330 0,2950,1740,1680,1660,1640,1530,1280,1240,690 実施例9

N- (4-フェニル) ブタノイル-L-ロイシル-L-ノルロイシルクロロメチル (SUAM-11707)

Ж

実施例7 において、実施例1の合成中間体N-ベンジルオキシカルボニルーLーロイシルーLーフェニルアラニンエチルエステルのかわりに実施例6の合成中間体であるN-(4-フェニル)ブタノイルーLーロイシルーLーノルロイシンメチルエステル(2.4g, 6 mmo1)を用いることにより、目的化合物N-(4-フェニル)ブタノイルーLーロイシルーLーノルロイシルクロロメチル(1.0g, 結晶)を得た。

融点;114℃

1 H-NMR; DMSO-d。中、TMS基準 0.80-1.00(9H,m),1.00-2.40(15H,m),4.30(2H,m),4.52(2 H,s),7.20(2H,s),8.00(1H,d,J=8.0),8.32(1H,d,J=8.0)

IRスペクトル;測定形状はKBr、波数(cm⁻¹);330 0,2950,1730,1630,1530,690

試験例

本発明物質の酸素阻害活性

本発明物質の酸素阻害活性は以下のように測定した。 抗パパイン活性は各種濃度に調製した本発明化合物、パ パイン (0.015u n i t)、およびEGTA (0.88mg) のクエン酸緩衝液溶液 (20 mM, pH=6.2、1 m l) を3 0℃で5分間プレインキュベートし、基質溶液(1m ℓ)を加えて反応を開始した。基質としてはカゼインの 1%クエン酸緩衝液溶液を用い、30℃で20分間反応 させた。ついで反応液に6.5トリクロロ酢酸(3 m &) を加えて反応を停止させ、酵素により加水分解されたカ ゼインのトリクロロ酢酸可溶画分中の蛋白質量をローリ ·フォリン(Lowry-Folin)法により測定 し、対照液との比較より阻害活性を求めた。抗カルバイ ン活性は、カルパイン I、およびIIそれぞれについて、 各種濃度に調製した本発明化合物、カルパイン1、また はII (0.33unit)、およびCaCl2 (0.22mg) のイミダゾール - 塩酸緩衝液溶液 (50 mM.pH= 7.5.]

50 m ℓ) を 30 ℃ で 5 分間 プレインキュベート し、基質溶

*

液(1mℓ)を加えて反応を開始した。基質としてはカ ゼインの0.4%イミダゾール塩酸緩衝液溶液を用い、3 0℃で30分間反応させた。ついで反応液に5%トリク ロロ酢酸 (3mℓ)を加えて反応を停止させ、酵素によ り加水分解されたカゼインのトリクロロ酢酸可溶画分中 の蛋白質量をロス・シャッツ(Roos-Schat z) 法により測定し、対照液との比較より阻害活性を求 めた。

このようにして得られた本発明化合物のパパイン、カル パイン I、およびIIに対する活性阻害作用を表 I、IIお 10 よびIIIに示す。

表 I パパインに対する阻害活性

SUAM番号	ID50(μg/tube)
14544	0.015
14545	0.011
14546	0.015
11706	0,010
11707	0, 021
ロイペプチン	0.045

表
カルパイン
| に対する阻害活性

SUAM番号	ID50(μg/tube)
14541	0.080
14542	0.038
14545	0.030
14546	0,030
11706	0, 12
11707	0.060
ロイペプチン	0. 18

30

20

表Ⅲ カルパインⅡに対する阻害活性

16

SUAM番号	ID50(μg/tube)
14541	0,028
14542	0,025
14543	0.019
14544	0,024
14545	0, 24
14546	0.056
11706	0.095
11707	0, 12
ロイペプチン	0,80

(発明の効果)

本発明の新規化合物はパパイン、カルパイン【およびカ ルパインII等のシステインプロティナーゼに対し、非常 に優れた阻害活性を有するばかりでなく、その合成も容 易であるから、抗炎症剤、筋ジストロフィーあるいは白 内障治療薬としての用途が期待できる。

*

フロントページの続き

(51)Int.Cl.	識別記号	庁内整理番号	FI	技術表示箇所
CO7C 271/22		7188-4H		
323/41		7419 4H		
C 1 2 N 9/99				

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] General formula (1)

R₁ - NH - CH - CO - NH - CH - CO - R₄

$$(1)$$

R1 expresses a benzyloxycarbonyl radical or 4-phenyl butyryl radical among (type, R2 expresses an isopropyl group or an isobutyl radical, R3 expresses butyl, benzyl, or a methylthio ethyl group, and R4 expresses a hydrogen atom or a chloro methyl group. The compound expressed with). [Claim 2] General formula (1)

R1 expresses a benzyloxycarbonyl radical or 4-phenyl butyryl radical among (type, R2 expresses an isopropyl group or an isobutyl radical, R3 expresses butyl, benzyl, or a methylthio ethyl group, and R4 expresses a hydrogen atom or a chloro methyl group. Cysteine proteinase inhibitor which contains the compound expressed with) as an active principle.

[Translation done.]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

(Field of the Invention)

This invention is a general formula (1).

(1)

R1 expresses a benzyloxycarbonyl radical or 4-phenyl butyryl radical among (type, R2 expresses an isopropyl group or an isobutyl radical, R3 expresses butyl, benzyl, or a methylthio ethyl group, and R4 expresses a hydrogen atom or a chloro methyl group. It is the compound expressed with) and is related with the cysteine proteinase inhibitor in which strong oxygen inhibition activity is shown to cysteine proteinase especially a papain, and calpain. (Prior art)

It is known that the drugs which check specifically the activity of the papain (E. C.3.4.22.2, PAPAIN) which is a kind of cysteine proteinase, and calpain (E. C.3.4.22.17, CALPAIN) are effective as remedies, such as myotrophia dystonica or a cataract, about calpain especially as an anti-inflammatory agent. Although cysteine proteinase inhibitor various until now has been found out aiming at development of these applications, the present condition is that an improvement in fields, such as (Shimizu, B. et al., J.Antibio/t., 25 volumes, 515 pages, (1972), JP,60-28990,A, JP,61-106600,A and JP,61-103897,A), activity, singularity, and living body internal transmigration nature, is desired strongly.

(Trouble which invention tends to solve)

Then, especially this invention persons completed this invention variously as a result of a synthetic examination so that the inhibition activity over calpain may be strong and may find out a compound with still higher living body internal transmigration nature also in cysteine proteinase.

(Means for solving a trouble)

The general formula which will be the new molecular entity which has powerful calpain inhibition or papain inhibition activity if this invention is followed (1)

$$R_{1} - NH - CH - CO - NH - CH - CO - R_{4}$$

R1 expresses a benzyloxycarbonyl radical or 4-phenyl butyryl radical among [type, R2 expresses an isopropyl group or an isobutyl radical, R3 expresses butyl, benzyl, or a methylthio ethyl group, and R4 expresses a hydrogen atom or a chloro methyl group. The N-acyl-peptidyl-aldehyde expressed with] or an N-acyl-peptidyl-chloro methyl ketone is supplied.

The compound of this invention can be manufactured as follows. First, in order to manufacture the compound of this invention whose R4 is hydrogen in a formula (1), it is the following general formula (2).

R1, R2, and R3 express among [type the semantics given by said formula (1), and R5 expresses a low-grade alkyl group. The compound expressed with] is returned even to the alcoholic body using the reducing agent in an organic solvent, and it is easily manufactured by oxidizing to an aldehyde using an oxidizing agent further. Moreover, in order to manufacture the compound of this invention whose R4 is a chloro methyl group in a general formula (1), it is the following general formula (3).

R1, R2, and R3 express among (type the semantics given by said formula (1). It is easily manufactured by leading the carboxylic acid expressed with) to activity ester using the chloro ethyl carbonate in an organic solvent etc., making diazomethane react, considering as a diazo methyl ketone, and carrying out hydrochloric-acid processing further. (Example)

Next, although an example and an inhibition activity trial explain this invention still more concretely, it cannot be overemphasized that it is not what limits the technical range of this invention according to these examples. Since a compound is specified in an oxygen inhibition activity trial and an example, a SUAM number is used, and it explains below.

1N-benzyloxycarbonyl-L-leucyl [of examples]-L-phenyl ARANINARU (SUAM-14541)

An L-phenylalanine ethyl ester hydrochloride (4.6g, 20mmol) and N-benzyloxycarbonyl-L-leucine (5.4g, 20mmol) were dissolved in 100m [of desiccation methylene chlorides] **, and triethylamine (2.0g, 20mmol) was added. The 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (WSCD) (4.2g, 22mmol) was added to this solution, and it stirred at the room temperature one whole day and night. The reaction mixture after reaction termination was washed in order of 1-N hydrochloric acid, saturation brine, saturation aerated water acid sodium, and saturation brine, and it dried on anhydrous sodium sulfate.

When the solvent was distilled out and the medium-voltage column chromatography using silica gel refined residue, Nbenzyloxycarbonyl-L-leucyl-L-phenylalanine ethyl ester (8.4g, crystal) was obtained. This N-benzyloxycarbonyl-L-leucyl-Lphenylalanine ethyl ester (2.2g, 5mmol) and sodium borohydride (570mg, 15mmol) were suspended in tertiary butyl alcohol (50m**), and heating reflux (90 degrees C) was carried out to the bottom of nitrogen-gas-atmosphere mind. Subsequently, the bottom of reflux anhydrous methanol (8m**) was dropped. After carrying out reflux stirring for after [dropping termination] 1 hour, it returned to the room temperature, and water was added to the bottom of ice-cooling (30m**). After carrying out reduced pressure distilling out of a methanol and the tertiary butyl alcohol, ethyl acetate extracted 3 times and it dried on after [washing] sulfuric anhydride magnesium with saturation brine. When the medium-voltage column chromatography using silica gel refined the residue obtained by carrying out reduced pressure distilling out of the ethyl acetate, N-benzyloxycarbonyl-L-leucyl-L-phenyl ARANI Norian (1.5g, crystal) was obtained. This N-benzyloxycarbonyl-L-leucyl-L-phenyl ARANI Norian (1.2g, 3mmol) and triethylamine (1.2g, 12mmol) were dissolved in anhydrous dimethyl sulfoxide (8m**), and the dimethyl sulfoxide (8m**) solution of a sulfur-trioxide-pyridine complex (1.9g, 12mmol) was added to the bottom of stirring. It flowed into the iced water after stirring (120m**) for 10 minutes at the room temperature, ethyl acetate extracted 3 times, and it washed in order of 10% citric-acid water solution, saturation brine, a saturation sodium-hydrogencarbonate solution, and saturation brine, and dried on anhydrous sodium sulfate. When the medium-voltage column chromatography using silica gel refined the residue obtained by carrying out reduced pressure distilling out of the ethyl acetate, purpose compound Nbenzyloxycarbonyl-L-leucyl-L-phenyl ARANINARU (0.6g, oily matter) was obtained.

Inside of 1 H-NMR;CDCl3, TMS criteria 0.80-1.00 (6H, m), 3.12 (2H, m) 1.22-1.72 (3H, m), 4.16 (1H, m), 4.66 (1H, m), 5.08 (2H, s), 5.12 (1H, m), A measurement configuration 5.64 (1H, m), 7.16-7.34 (10H, m), 9.56 (1H, s) IR spectra; A film, Wave number (cm-1); 3330, 3270, 3030, 2960, 1730, 1680, 1650, 1530, 1240, 1040, 750, 740, 2N-benzyloxycarbonyl-L-leucyl [of 700 examples]-L-NORUROI Cynal (SUAM-14542)

In the example 1, purpose compound N-benzyloxycarbonyl-L-leucyl-L-NORUROI Cynal (0.5g, powder object) was obtained by using L-norleucine methyl ester hydrochloride (3.6g, 20mmol) instead of an L-phenylalanine ethyl ester hydrochloride. Melting point; inside of 93-degree-C1 H-NMR;CDCI3, TMS criteria 0.80-1.00 (9H, m), 1.22-1.28 (9H, m), 4.12-4.58 (2H, m), 5.12 (2H, s), 5.22 (1H, d, J= 8.0), 6.57 (1H, d, J= 7.0), A measurement configuration 7.36 (5H, s), 9.54 (1H, s) IR spectra; KBr, Wave number (cm-1); 3320, 3030, 2950, 1720, 1680, 1640, 1530, 1230, 1050, 740, 3N-benzyloxycarbonyl [of 700 examples]-L-Roy Carew L-MECHIONINARU (SUAM-14543)

In the example 1, purpose compound N-benzyloxycarbonyl-L-leucyl-L-MECHIONINARU (0.5g, oily matter) was obtained by using a L-methionine methyl ester hydrochloride (4.0g, 20mmol) instead of an L-phenylalanine ethyl ester hydrochloride. Refractive index; (a D line, 25 degrees C) inside of;1.53421 H-NMR;DMSO-d6, TMS criteria 0.94 (6H, d, J= 6.0), 1.42- 2.58 (5H, m), 2.06 (3H, s), and 4.08-4.62 (2H, m) - 5.10 (2H, s), 5.37 (1H, d, J= 7.0), 6.95 (1H, d, J= 6.0), A measurement configuration 7.34 (5H, s), 9.56 (1H, d, J= 2.0) IR spectra; A film, Wave number (cm-1); 3300, 3070, 2950, 1720, 1700, 1660, 1530, 1240, 1040, 740, 4N-(4-phenyl) butanoyl-L-leucyl [of 700 examples]-L-phenyl ARANINARU (SUAM-14544)

The N-benzyloxycarbonyl-L-leucyl-L-phenylalanine ethyl ester (2.2g, 5mmol) which is the synthetic intermediate product of an example 1 was dissolved in ethyl alcohol (50m**), a small amount of palladium carbon was added, and it stirred at the room temperature under the hydrogen ambient atmosphere for 24 hours. The palladium carbon after reaction termination was filtered and reduced pressure distilling out of the ethyl alcohol was carried out. This residue was dissolved in tetrahydrofuran 50m**, and triethyl ulmin (1.0g, 10mmol) was added. The bottom (4-phenyl) butanoyl chloride of ice-cooling (0.9g, 5mmol) was dropped at this solution, and it stirred for 1 hour. It returned to the room temperature after that, and stirred for further 1 hour. Reduced pressure distilling out of the tetrahydrofuran after reaction termination was carried out, and residue was dissolved in the ethyl acetate of 50m**. This solution was washed in order of 1-N hydrochloric acid, saturation brine, a saturation sodium hydrogencarbonate, and saturation brine, and it dried on anhydrous sodium sulfate. When the medium-voltage column chromatography using silica gel refined the residue obtained by carrying out reduced pressure distilling out of the solvent, N-(4-phenyl) butanoyl-L-leucyl-L-phenylalanine ethyl ester (2.0g, crystal) was obtained. This N-(4-phenyl) butanoyl-L-leucyl-L-phenylalanine ethyl ester (1.4g, 3mmol) and hydroxylation boron sodium (340mg, 9mmol) were suspended in tertiary butyl alcohol (30m**), and heating reflux (90 degrees C) was carried out to the bottom of nitrogen-gas-atmosphere mind. Subsequently, the bottom of reflux anhydrous methanol (5m**) was dropped. After carrying out reflux stirring for after [dropping termination] 1 hour, it returned to the room temperature, and water was added to the bottom of ice-cooling (30m**). After carrying out reduced pressure

distilling out of a methanol and the tertiary best alcohol, ethyl acetate extracted 3 times and it dried on after [washing] sulfuric anhydride magnesium with saturation brine. When the medium-voltage column chromatography using silica gel refined the residue obtained by carrying out reduced pressure distilling out of the ethyl acetate, N-(4-phenyl) butanoyl-L-leucyl-L-phenyl ARANI Norian (1.2g, crystal) was obtained. This N-(4-phenyl) butanoyl-L-leucyl-L-phenyl ARANI Norian (1.1g, 2.5mmol) and triethylamine (1.0g, 10mmol) were dissolved in anhydrous dimethyl sulfoxide (8m**), and the dimethyl sulfoxide (8m**) solution of a sulfur-trioxide-pyridine complex (1.6g, 10mmol) was added to the bottom of stirring. It flowed into the iced water after stirring (120m**) for 10 minutes at the room temperature, ethyl acetate extracted 3 times, and it washed in order of 10% citric-acid water solution, saturation brine, a saturation sodium-hydrogencarbonate solution, and saturation brine, and dried on anhydrous sodium sulfate. When the medium-voltage column chromatography using silica gel refined the residue obtained by carrying out reduced pressure distilling out of the ethyl acetate, purpose compound N-(4-phenyl) butanoyl-L-leucyl-L-phenyl ARANINARU (0.6g, oily matter) was obtained.

Inside of 1 H-NMR;CDCl3, TMS criteria 0.80-1.00 (6H, m), 1.52-2.26 (7H, m), 2.52-2.72 (2H, m), 3.12 (2H, m) and 4.40-4.76 (2H, m) and 5.72 (1H, d, J= 7.0) -- 6.68 (1H, d, J= 6.0) 7.14-7.26 (10H, m), A measurement configuration 9.58 (1H, s) IR spectra; A film, Wave number (cm-1): 3720, 3060, 2950, 1730, 1630, 1540, 1240, 740, 5N-(4-phenyl) butanoyl-L-leucyl [of 700 examples]-L-NORUROI Cynal (SUAM-14545)

In the example 4, purpose compound N-(4-phenyl) butanoyl-L-leucyl-L-NORUROI Cynal (0.6g, oily matter) was obtained by using the N-benzyloxycarbonyl-L-leucyl-L-norleucine methyl ester (5.3g, 12mmol) which is the synthetic intermediate product of an example 3 instead of the synthetic intermediate-product N-benzyloxycarbonyl-L-leucyl-L-phenylalanine ethyl ester of an example 1. Refractive index (a D line, 25 degrees C); inside of 1.51231 H-NMR;CDCl3, The TMS criteria 0.80-1.00 (6H, m), 1.24-2.32 (13H, m), 2.57-2.72 (2H, m), 4.30-4.63 (2H, m), 6.02 (1H, d, J= 8.0) 6.28 (1H, d, J= 7.0), A measurement configuration 7.18-7.23 (5H, m), 9.54 (1H, s) IR spectra; A film, Wave number (cm-1); 3270, 3060, 2950, 1730, 1630, 1540, 1240, 740, 6N-(4-phenyl) butanoyl-L-leucyl [of 700 examples]-L-MECHIONINARU (SUAM-14546)

In the example 4, purpose compound N-(4-phenyl) butanoyl-L-leucyl-L-MECHIONINARU (0.5g, oily matter) was obtained by using the N-benzyloxycarbonyl-L-leucyl-L-methionine methyl ester (2.1g, 5mmol) which is the synthetic intermediate product of an example 2 instead of the synthetic intermediate-product N-benzyloxycarbonyl-L-leucyl-L-phenylalanine ethyl ester of an example 1. Refractive index (a D line, 25 degrees C); inside of 1.53271 H-NMR;CDCl3, The TMS criteria 0.80-1.00 (6H, m), 1.40-2.80 (11H, m), 2.03-2.06 (total-3H, both-s), 4.39-4.60 (2H, m), 6.02 (1H, d, J= 8.0) 7.18-7.22 (6H, m), A measurement configuration 9.55, 9.58 (total-1H, both-s), an IR spectrum; A film, Wave number (cm-1); 3270, 3060, 2950, 1730, 1630, 1540, 1240, 740, 7N-benzyloxycarbonyl-L-leucyl [of 700 examples]-L-phenyl alanyl chloro methyl (SUAM-11705)

10m** The N-benzyloxycarbonyl-L-leucyl-L-phenylalanine ethyl ester (2.6g, 6mmol) which is the synthetic intermediate product of an

example 1 was dissolved in a small amount or methyl alcohol, and 1-N sodium-hydroxide water solution was added. This suspension was stirred at the room temperature until it became a transparent solution. Reduced pressure distilling out of the methyl alcohol was carried out, and it distributed to water and ethyl acetate. The water layer was made into acidity with 10-N hydrochloric acid, and the extract and the organic layer were dried on anhydrous sodium sulfate 3 times with ethyl acetate. When reduced pressure distilling out of the solvent was carried out, N-benzyloxycarbonyl-L-leucyl-L-phenylalanine (2.4g, crystal) was obtained. This N-benzyloxycarbonyl-L-leucyl-L-phenylalanine (2.1g, 5mmol) was dissolved in the desiccation tetrahydrofuran (20m**), triethylamine (0.5g, 5mmol) was added, and it cooled at -10 degrees C. Chloro ethyl carbonate (0.6g, 5mmol) was added to this solution, and it stirred for 20 minutes at -10 degrees C. It returned to the room temperature, the ether solution of superfluous diazomethane was added, and it stirred for 30 more minutes. Hydrochloric acid gas was blown into this reaction mixture for about 10 minutes. The solvent after reaction termination was distilled out, ethyl acetate (50m**) was added, and it washed in order of saturation brine, a saturation sodium-hydrogencarbonate solution, and saturation brine, and dried on anhydrous sodium sulfate. When the medium-voltage column chromatography using silica gel refined the residue obtained by carrying out reduced pressure distilling out of the solvent, purpose compound N-(4-phenyl) butanoyl-L-leucyl-L-phenyl alanyl chloro methyl (1.5g, crystal) was obtained.

Melting point; inside of 140-degree-C1 H-NMR;DMSO-d6, TMS criteria 0.80 (6H, dd, J= 4.0, J= 7.0), 1.00-1.70 (3H, m), 2.70-3.40 (2H, m), 3.95 (1H, m) 4.45 (2H, dd, J= 5.0, J= 16.0), 4.50 (1H, m) 5.00 (2H, S) 7.21 (5H, s), A measurement configuration 7.28 (5H, s), 7.41 (1H, d, J= 8.0), 8.42 (1H, d, J= 8.0) IR spectra; KBr, Wave number (cm-1); 3310, 3280, 2950, 1730, 1685, 1540, 1265, 1240, 8N-benzyloxycarbonyl-L-leucyl [of 700 examples]-L-NORUROI sill chloro methyl (SUAM-11706)

In the example 7, purpose compound N-(4-phenyl) butanoyl-L-leucyl-L-NORUROI sill chloro methyl (1.6g, crystal) was obtained by using the N-benzyloxycarbonyl-L-leucyl-L-norleucine methyl ester (2.4g, 6mmol) which is the synthetic intermediate product of an example 2 instead of the synthetic intermediate-product·N-benzyloxycarbonyl-L-leucyl-L-phenylalanine ethyl ester of an example 1. Melting point; inside of 111-degree-C1 H-NMR;DMSO-d6, TMS criteria 0.80-1.00 (9H, m), 4.04 (1H, m) 1.00-1.90 (9H, m), 4.30 (1H, m), 4.54 (2H, s), 5.00 (2H, S), 7.36 (5H, s), A measurement configuration 7.46 (1H, d, J= 8.0), 8.36 (1H, d, J= 8.0) IR spectra; KBr, Wave number (cm-1); 3300, 2950, 1740, 1680, 1660, 1640, 1530, 1280, 1240, 9N-(4-phenyl) butanoyl-L-leucyl [of 690 examples]-L-NORUROI sill chloro methyl (SUAM-11707)

In the example 7, purpose compound N-(4-phenyl) butanoyl-L-leucyl-L-NORUROI sill chloro methyl (1.0g, crystal) was obtained by using the N-(4-phenyl) butanoyl-L-leucyl-L-norleucine methyl ester (2.4g, 6mmol) which is the synthetic intermediate product of an example 6 instead of the synthetic intermediate-product N-benzyloxycarbonyl-L-leucyl-L-phenylalanine ethyl ester of an example 1. Melting point; inside of 114-degree-C1 H-NMR;DMSO-d6, TMS criteria 0.80-1.00 (9H, m), 4.30 (2H, m) 1.00-2.40 (15H, m), 4.52 (2H, s), A measurement configuration 7.20 (2H, s), 8.00 (1H, d, J= 8.0), 8.32 (1H, d, J= 8.0) IR spectra; KBr, Wave number (cm-1); the oxygen inhibition activity of the oxygen inhibition activity this invention matter of 3300, 2950, 1730, 1630, 1530, and the example this invention matter of 690 trials was measured as follows.

Anti-papain activity pre incubated this invention compound prepared to various concentration, the papain (0.015unit), and the citrate-buffer-solution solution (20mM, pH=6.2, 1m**) of EGTA (0.88mg) for 5 minutes at 30 degrees C, added the substrate solution (1m**), and started the reaction. It was made to react for 20 minutes at 30 degrees C, using 1% citrate-buffer-solution solution of casein as a substrate, subsequently, the amount of protein in the trichloroacetic-acid meltable fraction of the casein which added 6.5 trichloroacetic acids (3m**) to reaction mixture, was made to suspend a reaction, and was hydrolyzed with the enzyme — Raleigh FORIN (Lowry-Folin) — it measured by law and inhibition activity was searched for from the comparison with the contrast solution. About each of calpains I and II, anti-calpain activity pre incubated this invention compound, Calpain I, or the imidazole-hydrochloric-acid buffer-solution solution (50mM, pH=7.5, 1m**) of II (0.33unit) and CaCl2 (0.22mg) prepared to various concentration for 5 minutes at 30 degrees C, added the substrate solution (1m**), and started the reaction. It was made to react for 30 minutes at 30 degrees C, using 0.4% imidazole hydrochloric-acid buffer-solution solution of casein as a substrate, subsequently, the amount of protein in the trichloroacetic-acid meltable fraction of the casein which added the trichloroacetic acid (3m**) to reaction mixture 5%, was made to suspend a reaction, and was hydrolyzed with the enzyme — loss SHATTSU (Roos-Schatz) — it measured by law and inhibition activity was searched for from the comparison with the contrast solution.

Thus, the activity inhibitory action to the paper of the obtained this invention compound and Calpains I and II is shown in Tables I, II, and III.

表 】 パパインに対する阻害活性

SUAM番号	ID50(μg/tube)
14544	0,015
14545	0.011
14546	0,015
11706	0.010
11707	0,021
ロイペプチン	0.045

表 『 カルパイン 』に対する阻害活性

SUAM番号	ID50(μg/tube)
14541	0,080
14542	0.038
14545	0,030
14546	0,030
11706	0.12
11707	0.060
ロイペプチン	0.18

表Ⅲ カルパインⅡに対する阻害活性

SUAM番号	ID50(μg/tube)
14541	0,028
14542	0,025
14543	0,019
14544	0,024
14545	0, 24
14546	0,056
11706	0.095
11707	0, 12
ロイペプチン	0,80

(Effect of the invention)

Since the composition is also easy, the new molecular entity of this invention not only has the inhibition activity which was very excellent to cysteine proteinases, such as a papain, Calpain I, and Calpain II, but can expect the application as an anti-inflammatory agent, myotrophia dystonica, or a cataract remedy.

[Translation done.]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.