

# Binary Prediction of Poisonous Mushrooms

**ARTIFICIAL INTELLIGENCE** 

Bruno Drumond Tomás Sucena Lopes up201202666 up202108701



### **GOAL**

Develop a machine learning model to predict whether a mushroom is **poisonous** or **edible** based on its physical characteristics (e.g., cap shape, veil type, gill color).

### WHY THIS MATTERS

- Mushroom foraging is **risky** due to toxic species.
- A reliable model can support education, safety applications, and preliminary field classification tools.

#### **DATASET DESCRIPTION**

- Based on the **UCI Mushroom Dataset**
- Contains over **3 million samples** and **21 features**
- **Categorical and quantitative data**



| Data                                                | columns (cocal 22 columns). |         |
|-----------------------------------------------------|-----------------------------|---------|
| #                                                   | Column                      | Dtype   |
|                                                     |                             |         |
| 0                                                   | id                          | int64   |
| 1                                                   | class                       | object  |
| 2                                                   | cap-diameter                | float64 |
| 3                                                   | cap-shape                   | object  |
| 4                                                   | cap-surface                 | object  |
| 5                                                   | cap-color                   | object  |
| 6                                                   | does-bruise-or-bleed        | object  |
| 7                                                   | gill-attachment             | object  |
| 8                                                   | gill-spacing                | object  |
| 9                                                   | gill-color                  | object  |
| 10                                                  | stem-height                 | float64 |
| 11                                                  | stem-width                  | float64 |
| 12                                                  | stem-root                   | object  |
| 13                                                  | stem-surface                | object  |
| 14                                                  | stem-color                  | object  |
| 15                                                  | veil-type                   | object  |
| 16                                                  | veil-color                  | object  |
| 17                                                  | has-ring                    | object  |
| 18                                                  | ring-type                   | object  |
| 19                                                  | spore-print-color           | object  |
| 20                                                  | habitat                     | object  |
| 21                                                  | season                      | object  |
| <pre>dtypes: float64(3), int64(1), object(18)</pre> |                             |         |
| memory usage: 523.2+ MB                             |                             |         |





# **Related Work and References**

# **EXISTING RESEARCH**

- Many studies have used the UCI Mushroom Dataset for binary classification challenges.
- Most approaches explore Decision Trees, Random Forests, or Naive Bayes due to categorical features.
- The existing work confirms that a simple model with categorical preprocessing can yield high accuracy.

### **KEY REFERENCES**

- <a href="https://www.kaggle.com/code/annastasy/ps4e8-data-cleaning-and-eda-of-mushrooms">https://www.kaggle.com/code/annastasy/ps4e8-data-cleaning-and-eda-of-mushrooms</a>
- <a href="https://github.com/Kolwankar-Siddhiraj/MushroomClassificationProjectML">https://github.com/Kolwankar-Siddhiraj/MushroomClassificationProjectML</a>
- https://ai.plainenglish.io/mushroom-classification-using-machine-learning-with-deploymentusing-fastapi-16ff80bc4cef
- https://medium.com/analytics-vidhya/mushroom-classification-using-different-classifiers-aa
  338c1cd0ff







# Tools and Algorithms





**Python** (using the Jupyter Notebook) since it offers robust tools and community support



# **Libraries**

**Pandas/Numpy:** Data manipulation and preprocessing

**Matplotlib/Seaborn:** Visualization and data inspection

**Scikit-learn:** Machine learning models and performance metrics



# **Algorithms Used**

**Decision Tree:** Easy to interpret and handles categorical inputs well

**Random Forest:** Reduces overfitting and improves accuracy and robustness

**Logistic Regression:** Interpretable model and establishes a reliable performance baseline





# **Checkpoint Progress**



**Initial Evaluation** 

To be continued...

Calculated accuracy score on test set





The decision tree model was successfully trained with initial promising accuracy!



# **Data Preprocessing**

## **IMPUTING MISSING VALUES**

## Quantitative Data

- Assessed the skewness of each column to determine if it was more appropriate to impute with the average or the median.
- As all columns were right-skewed, the **median** was chosen.

# Qualitative Data

- Computed the percentage of missing values from each column.
- Replaced missing values with the **mode** if the percentage was low, otherwise with a new value - *Unspecified*.

## **HANDLING OUTLIERS**

# Quantitative Data

 $\circ$  Removed all rows with values outside the range  $[Q_{0.10}, Q_{0.90}]$ .



