類別資料分析期末考

姓名:葉冠宏 學號:108753208

Problem1

1. The dataset "loan.txt" contains 1000 applicants' 11 variables. The loan department reviewed each applicant's profile and decided whether the applicant is creditable.

Y=0 if not creditability; 1 if creditiability.

AcctBal 1: 0 if no account or \$0 in account; 1 if account balance > \$0.

DuraCred: in months

PrevPay: 0 if delayed payment; 1 if no delayed payment.

CredAmnt: in \$100

Savings: 0 if none or low in savings; 1 if some savings.

CurrEmpl: 0 if length of current employment < 4 years; 1 if at least 4 years.

Gender: 0 if male; 1 if female.

Age: in years.

House: 0 if not owned; 1 if owned.

Logistic regression model is expected to provide a bank manager guidance for making a decision whether to approve a loan to a prospective applicant based on his/her profiles.

(a) Report descriptive analysis for each variable.

DuraCre, CredAmnt, Age 都是 numerical data

AcctBal, PrevPay, Savings, CurrEmpl, Gender, House 都是 binary data

DuraCard:

可以看到 DuraCard 的平均是 20.9, 中位數是 18, 眾數是 24, 標準差是 12, range 是 68

The SAS System The UNIVARIATE Procedure Variable: DuraCred

Moments				
N	1000	Sum Weights	1000	
Mean	20.903	Sum Observations	20903	
Std Deviation	12.0588145	Variance	145.415006	
Skewness	1.09418417	Kurtosis	0.91978136	
Uncorrected SS	582205	Corrected SS	145269.591	
Coeff Variation	57.689396	Std Error Mean	0.3813332	

	Basic S	Statistical Measures	
Loc	ation	Variability	
Mean	20.90300	Std Deviation	12.05881
Median	18.00000	Variance	145.41501
Mode	24.00000	Range	68.00000
		Interquartile Range	12.00000

Test	s fo	or Locatio	n: Mu0=0	
Test	Statistic		p Valo	ie
Student's t	t	54.81558	Pr > t	<.0001
Sign	М	500	Pr >= M	<.0001
Signed Rank	S	250250	Pr >= S	<.0001

Level	Quantile
100% Max	72
99%	60
95%	48
90%	36
75% Q3	24
50% Median	18
25% Q1	12
10%	9
5%	6
1%	6
0% Min	4

Extre	me Ol	bservat	ions
Lowest		Highest	
Value	Obs	Value	Obs
4	545	60	808
4	538	60	812
4	537	60	848
4	531	60	891
4	239	72	720

CredAmnt:

可以看到 CredAmnt 的平均是 3271, 中位數是 2319, 眾數是 1258, 標準差是 2823, range 是 18174

The SAS System
The UNIVARIATE Procedure
Variable: CredAmnt

	Mo	ments	
N	1000	Sum Weights	1000
Mean	3271.248	Sum Observations	3271248
Std Deviation	2822.75176	Variance	7967927.5
Skewness	1.94959429	Kurtosis	4.29248061
Uncorrected SS	1.8661E10	Corrected SS	7959959570
Coeff Variation	86.2897512	Std Error Mean	89.2632483

	Basic S	tatistical Measures	
Loc	ation	Variability	
Mean	3271.248	Std Deviation	2823
Median	2319.500	Variance	7967927
Mode	1258.000	Range	18174
		Interquartile Range	2608

Note: The mode displayed is the smallest of 5 modes with a count of 3.

Tests	s fo	r Locatio	on: Mu0=0	
Test Statistic		p Valu	ie	
Student's t	t	36.6472	Pr > t	<.0001
Sign	М	500	Pr >= M	<.0001
Signed Rank	S	250250	Pr >= S	<.0001

Level	Quantile
100% Max	18424.0
99%	14248.5
95%	9214.0
90%	7201.0
75% Q3	3972.5
50% Median	2319.5
25% Q1	1365.0
10%	933.5
5%	708.5
1%	417.5
0% Min	250.0

Extreme Observations					
Lowest		Highest			
Value	Obs	Value	Obs		
250	313	15653	696		
276	384	15672	811		
338	287	15857	646		
339	301	15945	963		
343	374	18424	977		

Age:

可以看到 Age 的平均是 35.54, 中位數是 33, 眾數是 27, 標準差是 11.35, range 是 56

The SAS System The UNIVARIATE Procedure Variable: Age

	Moi	ments	
N	1000	Sum Weights	1000
Mean	35.542	Sum Observations	35542
Std Deviation	11.3526701	Variance	128.883119
Skewness	1.02471202	Kurtosis	0.62052948
Uncorrected SS	1391988	Corrected SS	128754.236
Coeff Variation	31.9415625	Std Error Mean	0.35900295

	Basic S	Statistical Measures	
Loc	ation	Variability	
Mean	35.54200	Std Deviation	11.35267
Median	33.00000	Variance	128.88312
Mode	27.00000	Range	56.00000
		Interquartile Range	15.00000

Tests for Location: Mu0=0										
Test	S	Statistic	p Value							
Student's t	t	99.00197	Pr > t	<.0001						
Sign	М	500	Pr >= M	<.0001						
Signed Rank	s	250250	Pr >= S	<.0001						

Level	Quantile		
100% Max	75.0		
99%	67.5		
95%	60.0		
90%	52.0		
75% Q3	42.0		
50% Median	33.0		
25% Q1	27.0		
10%	23.0		
5%	22.0		
1%	20.0		
0% Min	19.0		

Lowe	est	High	est
Value	Obs	Value	Obs
19	820	74	214
19	299	74	260
20	990	74	815
20	988	75	603
20	926	75	625

AcctBal:

可以看到 AcctBal 有 606 個 0,394 個 1。

在 AcctBal 為 0 時,DuraCred 的平均是 21.519,最高數值是 72。在 AcctBal 為 1 時,DuraCred 的平均是 19.95,最高數值是 60。所以在 account balance>\$0 時 DuraCred 的平均比較低。

在 AcctBal 為 0 時,CredAmnt 的平均是 3361,最高數值是 18424。在 AcctBal 為 1 時, CredAmnt 的平均是 3133,最高數值是 15653。所以在 account balance>\$0 時 CredAmnt 的平均比較低。

在 AcctBal 為 0 時,Age 的平均是 34.98,最高數值是 75。在 AcctBal 為 1 時,Age 的平均是 36.40,最高數值是 74。所以在 account balance>\$0 時 Age 的平均比較高。

The SAS System

The MEANS Procedure

AcctBal	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
0	606	DuraCred	606	21.5198020	12.4916675	4.0000000	72.0000000
		CredAmnt	606	3361.06	2983.07	276.0000000	18424.00
		Age	606	34.9834983	11.6811521	19.0000000	75.0000000
1	394	DuraCred	394	19.9543147	11.3109168	4.0000000	60.0000000
		CredAmnt	394	3133.11	2554.16	250.0000000	15653.00
		Age	394	36.4010152	10.7862224	19.0000000	74.0000000

PrevPay:

可以看到 PrevPay 有 89 個 0,911 個 1。

在 PrevPay 為 0 時,DuraCred 的平均是 25,最高數值是 60。在 PrevPay 為 1 時,DuraCred 的平均是 20.5,最高數值是 72。所以在 no delayed payment 時 DuraCred 的平均比較低。

在 PrevPay 為 0 時,CredAmnt 的平均是 4226.13,最高數值是 18424。在 PrevPay 為 1 時,CredAmnt 的平均是 3177.96,最高數值是 15857。所以在 no delayed payment 時 CredAmnt 的平均比較低。

在 PrevPay 為 0 時,Age 的平均是 35.26,最高數值是 74。在 PrevPay 為 1 時,Age 的平均是 35.56,最高數值是 75。所以在 no delayed payment 時 Age 略高一些。

The	SAS	System
The M	EANS	Procedure

PrevPay	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
0	89	DuraCred	89	25.0224719	14.2158503	6.0000000	60.0000000
		CredAmnt	89	4226.13	3789.23	339.00000000	18424.00
		Age	89	35.2696629	10.5202878	22.0000000	74.0000000
1	911	DuraCred	911	20.5005488	11.7589222	4.0000000	72.0000000
		CredAmnt	911	3177.96	2694.59	250.0000000	15857.00
		Age	911	35.5686059	11.4357960	19.0000000	75.0000000

CurrEmpl:

可以看到 CurrEmpl 有 573 個 0,427 個 1。

在 CurrEmpl 為 0 時,DuraCred 的平均是 20.1,最高數值是 72。在 CurrEmpl 為 1 時,DuraCred 的平均是 21.96,最高數值是 60。所以在 length of current employment >=4 years 時 DuraCred 的平均比較高。

在 CurrEmpl 為 0 時,CredAmnt 的平均是 3191.52,最高數值是 18424。在 CurrEmpl 為 1 時,CredAmnt 的平均是 3378.24,最高數值是 15653。所以在 length of current employment >=4 years 時 CredAmnt 的平均比較高。

在 CurrEmpl 為 0 時,Age 的平均是 33.022,最高數值是 75。在 CurrEmpl 為 1 時,Age 的平均是 38.92,最高數值是 74。所以在 length of current employment >=4 years 時 Age 比較高。

The	SAS	System

The MEANS Procedure

CurrEmpl	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
0	573	DuraCred	573	20.1082024	11.6513521	4.0000000	72.0000000
		CredAmnt	573	3191.52	2762.22	250.0000000	18424.00
		Age	573	33.0226876	10.6746796	19.0000000	75.0000000
1	427	DuraCred	427	21.9695550	12.5195251	4.0000000	60.0000000
		CredAmnt	427	3378.24	2901.82	338.0000000	15653.00
		Age	427	38.9227166	11.3686053	20.0000000	74.0000000

Savings:

可以看到 Savings 有 603 個 0, 397 個 1。

在 Savings 為 0 時, DuraCred 的平均是 20.44,最高數值是 60。在 Savings 為 1 時, DuraCred 的平均是 21.60,最高數值是 72。所以如果有 some savings 時 DuraCred 的平均比較高。

在 Savings 為 0 時,CredAmnt 的平均是 3187.82,最高數值是 18424。在 Savings 為 1 時,CredAmnt 的平均是 3397.97,最高數值是 14782。所以如果有 some savings 時 CredAmnt 的平均比較高。

在 Savings 為 0 時,Age 的平均是 35.13,最高數值是 75。在 Savings 為 1 時,Age 的平均是 36.15,最高數值是 75。所以如果有 some savings 時 Age 比較高。

	The SAS System													
	The MEANS Procedure													
Savings	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum							
0	603	DuraCred CredAmnt Age	603 603 603	20.4411277 3187.82 35.1376451	11.7411634 2787.71 11.4931422	4.0000000 276.0000000 19.0000000	60.0000000 18424.00 75.0000000							
1	397	DuraCred CredAmnt Age	397 397 397	21.6045340 3397.97 36.1561713	12.5082712 2874.06 11.1221770	4.0000000 250.0000000 19.0000000	72.0000000 14782.00 75.0000000							

Gender:

可以看到 Gender 有 908 個 0,92 個 1。

在 Gender 為 0 時, DuraCred 的平均是 21.22,最高數值是 60。在 Gender 為 1 時, DuraCred 的平均是 17.7,最高數值是 72。 所以女性的 DuraCred 平均比較低。

在 Gender 為 0 時,CredAmnt 的平均是 3395.44,最高數值是 18424。在 Gender 為 1 時,CredAmnt 的平均是 2045.54,最高數值是 9398。所以女性的 CredAmnt 平均比較低。

在 Gender 為 0 時,Age 的平均是 36.07,最高數值是 75。在 Gender 為 1 時,Age 的平均是 30.34,最高數值是 61。所以女性的 Age 平均比較低。

The SAS System

The MEANS Procedure

Gender	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
0	908	DuraCred	908	21.2268722	12.1891227	4.0000000	60.0000000
941		CredAmnt	908	3395.44	2882.85	250.0000000	18424.00
		Age	908	36.0682819	11.4850829	19.0000000	75.0000000
1	92	DuraCred	92	17.7065217	10.2050817	6.0000000	72.0000000
		CredAmnt	92	2045.54	1721.92	276.0000000	9398.00
		Age	92	30.3478261	8.3737355	20.0000000	61.0000000

House:

可以看到 House 有 893 個 0, 107 個 1。

在 House 為 0 時,DuraCred 的平均是 20.14,最高數值是 72。在 House 為 1 時,DuraCred 的平均是 27.26,最高數值是 60。所以如果有房子 DuraCred 的平均比較高。

在 House 為 0 時,CredAmnt 的平均是 3078.34,最高數值是 18424。在 House 為 1 時,CredAmnt 的平均是 4881.21,最高數值是 14782。所以如果有房子 CredAmnt 的平均比較高。

在 House 為 0 時,Age 的平均是 34.53,最高數值是 75。在 House 為 1 時,Age 的平均是 43.93,最高數值是 75。所以如果有房子 Age 的平均比較高。

The SAS System

The MEANS Procedure

House	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
0	893	DuraCred	893	20.1410974	11.4277915	4.0000000	72.0000000
		CredAmnt	893	3078.34	2640.19	250.0000000	18424.00
		Age	893	34.5363942	10.8284662	19.0000000	75.0000000
1	107	DuraCred	107	27.2616822	15.0266031	6.0000000	60.0000000
		CredAmnt	107	4881.21	3675.00	700.0000000	14782.00
		Age	107	43.9345794	12.1789108	22.0000000	75.0000000

Y:

可以看到 Y 有 300 個 0(信用不好), 700 個 1(信用好)。

在 Y 為 0 時,DuraCred 的平均是 24.86,最高數值是 72。在 Y 為 1 時,DuraCred 的平均是 19.2,最高數值是 60。所以信用較好的人 DuraCred 的平均比較低。

在 Y 為 0 時,CredAmnt 的平均是 3938,最高數值是 18424。在 Y 為 1 時,CredAmnt 的平均是 2985.44,最高數值是 15857。所以信用較好的人 CredAmnt 的平均比較低。

在 Y 為 0 時,Age 的平均是 33.96,最高數值是 74。在 Y 為 1 時,Age 的平均是 36.22,最高數值是 75。所以信用較好的人 Age 的平均比較高。

The SAS System

The MEANS Procedure

Y	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
0	300	DuraCred CredAmnt Age	300 300	24.8600000 3938.13 33.9600000	13.2826389 3535.82 11.2251986	6.0000000 433.0000000 19.0000000	72.0000000 18424.00 74.0000000
1	700	DuraCred CredAmnt Age	700 700 700	19.2071429 2985.44 36.2200000	11.0795643 2401.50 11.3474279	4.0000000 250.0000000 19.0000000	60.0000000 15857.00 75.0000000

- (b) Let "Creditability" be the response variable, Y, fit a logistic regression using **EVENT='0'**, with all other variables in the model. Use $\alpha = 0.05$.
- (b1) Remove nonsignificant variables and verify that models with and without these variables do not differ significantly. What is the final model at this stage?

ANS:

Final model at this stage:

Log(PI(Y=0|X) / (1-PI(Y=0|X))) = 0.1077 + 0.0395 * DuraCred -1.5073 * AcctBal -1.0533 * PrevPay -0.6120 * Savings -0.4705 * CurrEmpl

以下為 with nonsignificant variables 到 without nonsignificant variables,其他變數 beta 值的前後變化:

DuraCred 0.0338->0.0395 (16.8%)

AcctBal -1.4932->-1.5073 (-0.9%)

PrevPay -1.0431->-1.0533 (-0.97%)

Savings -0.6126->-0.6120 (0.09%)

CurrEmpl -0.4071->-0.4705 (-15.57%)

=>可以發現 beta 的前後變化都不超過 20% => do not differ significantly.

作法:

首先,fit the univariate logistic model for each covariate。最後我們發現 Gender is insignificant

PROC LOGISTIC DATA=loan; MODEL Y(EVENT='0')=DuraCred; PROC LOGISTIC DATA=loan; MODEL Y (EVENT='0') = CredAmnt; PROC LOGISTIC DATA=loan; MODEL Y(EVENT='0') = Age; PROC LOGISTIC DATA=loan; MODEL Y (EVENT='0') =AcctBal; PROC LOGISTIC DATA=loan; MODEL Y (EVENT='0') = PrevPay: PROC LOGISTIC DATA=loan; MODEL Y (EVENT='0') = Savings; PROC LOGISTIC DATA=loan; MODEL Y (EVENT='0') = CurrEmpl; PROC LOGISTIC DATA=loan; MODEL Y (EVENT='0') = House; PROC LOGISTIC DATA=loan; MODEL Y (EVENT='0') = Gender;

接著我們用上一步得到的那些 significant 的 covariate 一起在 fit 一次 model. 然後我們用 alpha=0.05 去篩選,得到最後的 covariate 就是 DuraCred , AcctBal, PrevPay , Savings, CurrEmpl。 然後我們去一個一個看之前被篩掉的 covariate 如果加回去 fit 是不是還是 insignificant, 結果 CredAmnt, Age, Gender, House 都還是 insignificant.

以下為此階段的最終模型 fit 的結果:

Convergenc	e criterion (GCON	V=1E-8) satisfied
	Model Fit Statis	tics
Criterion	Intercept Only	Intercept and Covariates
AIC	1223.729	1037.252
SC	1228.636	1066.699
-2 Log L	1221.729	1025.252

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	196.4763	5	<.0001				
Score	181.6117	5	<.0001				
Wald	146.8989	5	<.0001				

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	0.1077	0.2855	0.1423	0.7060		
DuraCred	1	0.0395	0.00632	39.0797	<.0001		
AcctBal	1	-1.5073	0.1848	66.5381	<.0001		
PrevPay	1	-1.0533	0.2508	17.6370	<.0001		
Savings	1	-0.6120	0.1666	13.5003	0.0002		
CurrEmpl	1	-0.4705	0.1596	8.6941	0.0032		

Odds Ratio Estimates						
Effect	Point Estimate		95% Wald Confidence Limits 1.027 1.053			
DuraCred	1.040	1.027	1.053			
AcctBal	0.222	0.154	0.318			
PrevPay	0.349	0.213	0.570			
Savings	0.542	0.391	0.752			
CurrEmpl	0.625	0.457	0.854			

Association of Pre Observe	dicted P		and
Percent Concordant	76.3	Somers' D	0.538
Percent Discordant	22.6	Gamma	0.544
Percent Tied	1.1	Tau-a	0.226
Pairs	210000	С	0.769

(b2) Add interactions between 2 variables in (b1), and fit the model. Then, remove nonsignificant variables or interactions, and verify that models with and without these variables do not differ significantly. Be cautious that if an interaction between A and B is significant, then both A and B should be kept in the model no matter being significant or not.

Ans:

Final model:

```
\label{eq:log_point} $$ \log( PI(Y=0|X) / (1-PI(Y=0|X)) ) = 1.0005 + 0.00162*DuraCred -1.1853* AcctBal -2.4353*PrevPay + 0.0635*Savings -0.2848*CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*Savings - 1.0170 * AcctBal * CurrEmpl + 0.0575*DuraCred*PrevPay -0.0292*DuraCred*PrevPay -0
```

Beta 值加上 interaction 前後變化:

DuraCred 0.0395->0.00162 (-95.89%)

AcctBal -1.5073->-1.1853 (-21.36%)

PrevPay -1.0533->-2.4353 (131.206%)

Savings -0.6120->0.0635 (-110.37%)

CurrEmpl -0.4705->-0.2848 (-39.46%)

=>可以發現 beta 值變化還蠻大的,因為 interaction 的加入,有 Confounding effect

作法:

我們一個個加(b1)階段各種 interaction 的排列組合,去看看是否 significant。結果最終得出了 DuraCred*PrevPay, DuraCred*Savings , AcctBal * CurrEmpl 這些排列組合都是 significant. 即便把 這三個 interaction 同時加入 model 也都還是 significant.

```
/*STEP6: Explore possible interaction, add one pair one by one to see if it is significant.*/
/*
PROC LOGISTIC DATA=loan;
MODEL Y(EVENT='0')=DuraCred AcctBal PrevPay Savings CurrEmpl;

DuraCred*AcctBal (x)
DuraCred*CurrEmpl (x)
AcctBal*PrevPay (x)
AcctBal*Savings (x)
PrevPay*Savings (x)
PrevPay*CurrEmpl (x)
Savings*CurrEmpl (x)

DuraCred*PrevPay (o)

DuraCred*Savings (o)
AcctBal*CurrEmpl (o)
```

最終模型 fit 後的統計數據如下:

The SAS System

The LOGISTIC Procedure

Model Information				
Data Set	WORK.LOAN			
Response Variable	Υ			
Number of Response Levels	2			
Model	binary logit			
Optimization Technique	Fisher's scoring			

Number of Observations Read	1000
Number of Observations Used	1000

Respo	Response Profile					
Ordered Value	٧	Total Frequency				
1	0	300				
2	1	700				

Probability modeled is Y='0'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion	Intercept Only	Intercept an Covariate			
AIC	1223.729	1020.711			
SC	1228.636	1064.881			
-2 Log L	1221.729	1002.711			

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio	219.0177	8	<.0001			
Score	200.1792	8	<.0001			
Wald	153.2273	8	<.0001			

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.0005	0.5026	3.9630	0.0465
DuraCred	1	0.00162	0.0176	0.0085	0.9264
AcctBal	1	-1.1853	0.2232	28.2111	<.0001
PrevPay	1	-2.4353	0.5080	22.9814	<.0001
Savings	1	0.0635	0.3398	0.0349	0.8518
CurrEmpl	1	-0.2848	0.1824	2.4388	0.1184
DuraCred*PrevPay	1	0.0575	0.0180	10.2325	0.0014
DuraCred*Savings	1	-0.0292	0.0131	4.9883	0.0255
AcctBal*CurrEmpl	1	-1.0170	0.4145	6.0198	0.0141

Association of Predicted Probabilities and Observed Responses						
Percent Concordant	77.7	Somers' D	0.564			
Percent Discordant	21.3	Gamma	0.570			
Percent Tied	1.1	Tau-a	0.237			
Pairs	210000	С	0.782			

(b3)Provide classification table, goodness-of-fit test, ROC curve, and AUC for the model in (b2). ANS:

Roc curve 如下,AUC 值是 0.7820,是一個 acceptable discrimination。

Classification table:

Classification Table									
	Correct		Inco	rrect	Percentages				
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	Pos Pred	Neg Pred
0.000	300	0	700	0	30.0	100.0	0.0	30.0	
0.050	291	114	586	9	40.5	97.0	16.3	33.2	92.7
0.100	286	190	510	14	47.6	95.3	27.1	35.9	93.1
0.150	277	278	422	23	55.5	92.3	39.7	39.6	92.4
0.200	267	321	379	33	58.8	89.0	45.9	41.3	90.7
0.250	253	386	31 4	47	63.9	84.3	55.1	44.6	89.1
0.300	211	467	233	89	67.8	70.3	66.7	47.5	84.0
0.350	183	560	140	117	74.3	61.0	80.0	56.7	82.7
0.400	165	586	114	135	75.1	55.0	83.7	59.1	81.3
0.450	125	613	87	175	73.8	41.7	87.6	59.0	77.8
0.500	104	640	60	196	74.4	34.7	91.4	63.4	76.6
0.550	97	653	47	203	75.0	32.3	93.3	67.4	76.3
0.600	81	660	40	219	74.1	27.0	94.3	66.9	75.1
0 650	75	670	30	225	74.5	25.0	95.7	71 4	74.9

0.700	44	687	13	256	73.1	14.7	98.1	77.2	72.9
0.750	21	691	9	279	71.2	7.0	98.7	70.0	71.2
0.800	11	699	1	289	71 .0	3.7	99.9	91.7	70.7
0.850	4	700	0	296	70.4	1.3	100.0	100.0	70.3
0.900	0	700	0	300	70.0	0.0	1 00.0		70.0
0.950	0	700	0	300	70.0	0.0	1 00.0		70.0
1.000	0	700	0	300	70.0	0.0	100.0		70.0

goodness-of-fit test: 可以發現 pr=0.0897, 略高於 alpha=0.05

		γ:	= 0	Y = 1		
Group	Total	Observed	Expected	Observed	Expected	
1	110	7	3.74	103	106.26	
2	103	7	7.91	96	95.09	
3	99	9	12.71	90	86.29	
4	99	15	20.13	84	78.87	
5	99	32	25.62	67	73.38	
6	82	21	24.26	61	57.74	
7	102	31	34.54	71	67.46	
8	102	52	41.85	50	60.15	
9	99	51	53.46	48	45.54	
10	105	75	75.77	30	29.23	

Hosmer and Lemes	show Go Fest	odness-of-Fit
Chi-Square	DF	Pr > ChiSq
13.7080	8	0.0897

(c)Use stepwise selection by specifying the option "SELECTION= Forward slentry=0.15 slstay=0.20".

(c1)Based on the original 9 predictors, report only the model in the last step. Remove nonsignificant variables and verify that models with and without these variables do not differ significantly. What is the model at this stage?

ANS:

Final model at this stage:

Log(PI(Y=0|X) / (1-PI(Y=0|X))) = 0.4949 + 0.0391* DuraCred -1.5029* AcctBal -1.0580* PrevPay -0.6156* Savings -0.4031* CurrEmpl -0.0115*Age

Remove nonsignificant variables 的 Beta 前後變化,可以發現只有 age 的變化超過 20%:

DuraCred 0.0337->0.0391 (16%)

Age -0.0152->-0.0115 (-24%)

AcctBal -1.4949->-1.5029 (0.53%)

PrevPay -1.0384->-1.0580 (1.88%)

Savings -0.6120->-0.6156 (0.58%)

CurrEmpl -0.4096->-0.4031 (-1.58%)

作法:

以下為 model at last step 的統計數據:

Step 6. Effect Age entered:

Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied.

 Model Fit Statistics

 Criterion
 Intercept Only
 Intercept and Covariates

 AIC
 1223.729
 1036.648

 SC
 1228.636
 1071.003

 -2 Log L
 1221.729
 1022.648

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio	199.0803	6	<.0001			
Score	183.3552	6	<.0001			
Wald	148.6329	6	<.0001			

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	0.4949	0.3745	1.7463	0.1863	
DuraCred	1	0.0391	0.00632	38.2315	<.0001	
Age	1	-0.0115	0.00720	2.5555	0.1099	
AcctBal	1	-1.5029	0.1849	66.0440	<.0001	
PrevPay	1	-1.0580	0.2508	17.7949	<.0001	
Savings	1	-0.6156	0.1669	13.6115	0.0002	
CurrEmpl	1	-0.4031	0.1651	5.9616	0.0146	

Odds Ratio Estimates							
Effect	Point Estimate	95% Wald Confidence Limits					
DuraCred	1.040	1.027	1.053				
Age	0.989	0.975	1.003				
AcctBal	0.222	0.155	0.320				
PrevPay	0.347	0.212	0.568				
Savings	0.540	0.390	0.749				
CurrEmpl	0.668	0.484	0.924				

Association of Pre Observe	dicted P		and
Percent Concordant	77.0	Somers' D	0.541
Percent Discordant	22.9	Gamma	0.541
Percent Tied	0.0	Tau-a	0.228
Pairs	210000	С	0.771

Residual Cl	ni-S	quare Test
Chi-Square	DF	Pr > ChiSq
2.6105	3	0.4556

Analysis of Effects Eligible for Entry							
Effect	DF	Score Chi-Square	Pr > ChiSq				
CredAmnt	1	0.7772	0.3780				
Gender	1	0.2646	0.6070				
House	1	1.8948	0.1687				

Note: No (additional) effects met the 0.15 significance level for entry into the model.

Summary of Forward Selection							
Step	Effect Entered	DF	Number In	Score Chi-Square	Pr > ChiSq		
1	AcctBal	1	1	103.9648	<.0001		
2	DuraCred	1	2	40.9520	<.0001		
3	PrevPay	1	3	18.8406	<.0001		
4	Savings	1	4	15.1634	<.0001		
5	CurrEmpl	1	5	8.7626	0.0031		
6	Age	1	6	2.5664	0.1092		

Partition for the Hosmer and Lemeshow Test								
		γ:	= 0	Y = 1				
Group	Total	Observed	Expected	Observed	Expected			
1	101	3	5.28	98	95.72			
2	100	14	8.40	86	91.60			
3	100	7	12.12	93	87.88			
4	100	14	17.05	86	82.95			
5	100	29	24.66	71	75.34			
6	100	29	30.81	71	69.19			
7	101	37	36.99	64	64.01			
8	100	47	43.07	53	56.93			
9	100	53	53.12	47	46.88			
10	98	67	68.49	31	29.51			

Hosmer and Lemeshow Goodness-of-Fit Test						
Chi-Square	DF	Pr > ChiSq				
10.1324	8	0.2559				

(c2) Add interactions between 2 variables in (c1), and fit the model. Then, remove nonsignificant variables or interactions, and verify that models with and without these variables do not differ significantly. Be cautious that if an interaction between A and B is significant, then both A and B should be kept in the model no matter being significant or not.

ANS:

Final model:

 $\label{log} \begin{tabular}{ll} Log(\ PI(Y=0|X) \ / \ (1-PI(Y=0|X) \) \) = 0.9458 + 0.00313*DuraCred -1.2147* \ AcctBal -2.0333*PrevPay + 0.2352*Savings + 0.8370*CurrEmpl -0.0106*Age + 0.0556* \ DuraCred*PrevPay - 0.0295*DuraCred*Savings -0.9592*AcctBal*CurrEmpl -1.0402* \ PrevPay*CurrEmpl - 0.4384*Savings*CurrEmpl; \end{tabular}$

加入 interaction 前後 beta 的變化如下,可以發現變化都很大:

DuraCred 0.0391->0.00313 (-91.99%)

AcctBal -1.5029->-1.2147 (-19.17%)

PrevPay -1.0580->-2.0333 (92.18%)

Savings -0.6156->0.2352 (-138.20%)

CurrEmpl -0.4031->0.8370 (-307.64%)

Age -0.0115->-0.0106 (-7.8260%)

作法:

我們去把上一步的 variables 做各種排列組合的 interaction, 用 slentry=0.15 當作篩選標準,看看各種排列組合是否 significant。得出有 DuraCred*PrevPay ,DuraCred*Savings ,AcctBal*CurrEmpl , PrevPay*CurrEmpl , Savings*CurrEmpl , PrevPay* Savings 這些 interaction 是 significant。

篩選進來之後,我們同時加入那些 significant 的 variables 去 fit 那個 model,然後用 slstay=0.2 去做篩選,結果 PrevPay* Savings 被篩掉了。

```
PROC LOGISTIC DATA=loan;
MODEL Y(EVENT='0')=DuraCred Age AcctBal PrevPay Savings CurrEmpl;

slentry=0.15

DuraCred*Age (x) 0.84

DuraCred*AcctBal (x) 0.4

DuraCred*CurrEmpl (x) 0.72

Age*AcctBal (x) 0.45

Age*PrevPay (x) 0.1536

Age*PrevPay (x) 0.1536

Age*Savings (x) 0.56

Age*CurrEmpl (x) 0.3225

AcctBal*PrevPay (x) 0.807

AcctBal*Savings (x) 0.47

AcctBal*CurrEmpl (o) 0.01

PrevPay*Savings (o) 0.1239

PrevPay*Savings (o) 0.0239

PrevPay*Savings (o) 0.0557

DuraCred*PrevPay (o) 0.0018

DuraCred*PrevPay (o) 0.0018

*/

/*

PROC LOGISTIC DATA=loan;

MODEL Y(EVENT='0')=DuraCred Age AcctBal PrevPay Savings CurrEmpl AcctBal*CurrEmpl PrevPay*Savings PrevPay*CurrEmpl Savings*/
```

以下為最終模型的統計數據:

The SAS System The LOGISTIC Procedure

Model Information				
Data Set	WORK.LOAN			
Response Variable	Y			
Number of Response Levels	2			
Model	binary logit			
Ontimization Technique	Fisher's scoring			

Number of Observations Read	1000
Number of Observations Used	1000

Respo	nse	e Profile
Ordered Value	Υ	Total Frequency
1	0	300
2	1	700

Probability modeled is Y='0'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	1223.729	1019.256			
SC	1228.636	1078.149			
-2 Log L	1221.729	995.256			

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	226.4731	11	<.0001		
Score	204.6882	11	<.0001		
Wald	153.8296	11	<.0001		

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	0.9458	0.5634	2.8185	0.0932		
DuraCred	1	0.00313	0.0176	0.0315	0.8591		
AcctBal	1	-1.2147	0.2228	29.7114	<.0001		
PrevPay	1	-2.0333	0.5294	14.7523	0.0001		
Savings	1	0.2352	0.3547	0.4398	0.5072		
CurrEmpl	1	0.8370	0.5259	2.5335	0.1115		
Age	1	-0.0106	0.00734	2.0835	0.1489		
DuraCred*PrevPay	1	0.0556	0.0181	9.4423	0.0021		
DuraCred*Savings	1	-0.0295	0.0133	4.9316	0.0264		
AcctBal*CurrEmpl	1	-0.9592	0.4214	5.1809	0.0228		
PrevPay*CurrEmpl	1	-1.0402	0.5327	3.8131	0.0509		
Savings*CurrEmpl	1	-0.4384	0.3530	1.5423	0.2143		

	Odds Ratio Estimates								
Effect	Point Estimate	95% Wald Confidence Limits							
Age	0.989	0.975	1.004						

Association of Pre Observe	dicted P d Respo		and
Percent Concordant	78.5	Somers' D	0.571
Percent Discordant	21.4	Gamma	0.571
Percent Tied	0.0	Tau-a	0.240
Pairs	210000	С	0.785

(c3) Provide classification table, goodness-of-fit test, ROC curve, and AUC for the model in (c2). Ans:

ROC curve 如下,AUC 為 0.7855,是 acceptable discrimination。

goodness-of-fit test 結果如下,可以看到 pr=0.0579,略高於 0.05:

Р	artition	n for the H	osmer and	Lemeshow	Test	
		γ:	= o	Y = 1		
Group	Total	Observed	Expected	Observed	Expected	
1	100	5	2.77	95	97.23	
2	100	7	6.87	93	93.13	
3	100	11	12.59	89	87.41	
4	100	15	18.18	85	81.82	
5	100	22	24.55	78	75.45	
6	100	36	30.40	64	69.60	
7	100	26	35.23	74	64.77	
8	100	54	41.52	46	58.48	
9	100	53	55.28	47	44.72	
10	100	71	72.61	29	27.39	

Hosmer and Lemeshow Goodness-of-Fit Test					
Chi-Square	DF	Pr > ChiSq			
15.0657	8	0.0579			

Classification Table:

			C	lassific	ation Tab	le					
	Cor	rect	Inco	Incorrect		Percentages					
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	Pos Pred	Neg Pred		
0.000	300	0	700	0	30.0	100.0	0.0	30.0	,		
0.050	293	122	578	7	41.5	97.7	17.4	33.6	94.6		
0.100	288	180	520	12	46.8	96.0	25.7	35.6	93.8		
0.150	274	270	430	26	54.4	91.3	38.6	38.9	91.2		
0.200	263	336	364	37	59.9	87.7	48.0	41.9	90.1		
0.250	246	412	288	54	65.8	82.0	58.9	46.1	88.4		
0.300	217	461	239	83	67.8	72.3	65.9	47.6	84.7		
0.350	187	532	168	113	71.9	62.3	76.0	52.7	82.5		
0.400	161	593	107	139	75.4	53.7	84.7	60.1	81.0		
0.450	127	620	80	173	74.7	42.3	88.6	61.4	78.2		
0.500	115	630	70	185	74.5	38.3	90.0	62.2	77.3		
0.550	94	649	51	206	74.3	31.3	92.7	64.8	75.9		
0.600	83	658	42	217	74.1	27.7	94.0	66.4	75.2		
0.650	66	669	31	234	73.5	22.0	95.6	68.0	74.1		
0.700	42	692	8	258	73.4	14.0	98.9	84.0	72.8		
0.750	30	696	4	270	72.6	10.0	99.4	88.2	72.0		
0.850	3	700	0	297	70.3	1.0	100.0	100.0	70.2		
0.900	0	700	0	300	70.0	0.0	100.0		70.0		
0.950	0	700	0	300	70.0	0.0	100.0		70.0		
1.000	0	700	0	300	70.0	0.0	100.0		70.0		

Problem2: The following table displays primary food choice for a sample of alligators, classified by length (≤2.3 meters, >2.3 meters) and by the lake in Florida in which they were caught.

Lake		Primary Food Choice							
	Size	Fish	Invertebrate	Reptile	Bird	Other			
Hancock	<2.3	23	4	2	2	8			
	>2.3	7	0	1	3	5			
Oklawaha	< 2.3	5	11	1	0	3			
	>2.3	13	8	6	1	0			
Trafford	< 2.3	5	11	2	1	5			
	>2.3	8	7	6	3	5			
George	< 2.3	16	19	1	2	3			
	>2.3	17	1	0	1	3			

(a)Fit a model to describe effects of length and lake on primary food choice.Report the prediction equations.

Ans:

Fit 的 model equation 如下:

The SAS System

The LOGISTIC Procedure

Model Information					
Data Set	WORK.GATOR				
Response Variable	food				
Number of Response Levels	5				
Frequency Variable	count				
Model	generalized logit				
Optimization Technique	Newton-Raphson				

Number of Observations Read	40
Number of Observations Used	36
Sum of Frequencies Read	219
Sum of Frequencies Used	219

Response Profile							
Ordered Value	food	Total Frequency					
1	bird	13					
2	fish	94					
3	inverteb	61					
4	other	32					
5	reptile	19					

Logits modeled use food='fish' as the reference category.

Note: 4 observations having nonpositive frequencies or weights were excluded since they do not contribute to the analysis.

Class	Value	Design Variables			
lake	Hancock	1	0	0	
	Oklawaha	0	1	C	
	Trafford	0	0	1	
	George	0	0	0	
size	<=2.3	1			
	>2.3	0			

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Deviance and Pearson Goodness-of-Fit Statistics							
Criterion	Value	DF	Value/DF	Pr > ChiSq			
Deviance	17.0798	12	1.4233	0.1466			
Pearson	15.0429	12	1.2536	0.2391			

Number of unique profiles: 8

Model Fit Statistics						
Criterion	Intercept Only	Intercept and Covariates				
AIC	612.363	580.080				
sc	625.919	647.862				
-2 Log L	604.363	540.080				

Testing Global Null Hypothesis: BETA=0								
Test	Chi-Square	DF	Pr > ChiSq					
Likelihood Ratio	64.2826	16	<.0001					
Score	57.2475	16	<.0001					
Wald	49.7584	16	<.0001					

Type 3 Analysis of Effects							
Effect	DF	Wald Chi-Square	Pr > ChiSq				
lake	12	35.4890	0.0004				
size	4	18.7593	0.0009				

Parameter		food	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		bird	1	-2.0931	0.6622	9.9894	0.0016
Intercept		inverteb	1	-1.5490	0.4249	13.2890	0.0003
Intercept		other	1	-1.9043	0.5258	13.1150	0.0003
Intercept		reptile	1	-3.3139	1.0528	9.9081	0.0016
lake	Hancock	bird	1	0.6951	0.7813	0.7916	0.3736
lake	Hancock	inverteb	1	-1.6583	0.6129	7.3216	0.0068
lake	Hancock	other	1	0.8262	0.5575	2.1959	0.1384
lake	Hancock	reptile	1	1.2422	1.1852	1.0985	0.2946
lake	Oklawaha	bird	1	-0.6532	1.2021	0.2953	0.5869
lake	Oklawaha	inverteb	1	0.9372	0.4719	3.9443	0.0470
lake	Oklawaha	other	1	0.00565	0.7766	0.0001	0.9942
lake	Oklawaha	reptile	1	2.4583	1.1179	4.8360	0.0279
lake	Trafford	bird	1	1.0878	0.8417	1.6703	0.1962
lake	Trafford	inverteb	1	1.1220	0.4905	5.2321	0.0222
lake	Trafford	other	1	1.5164	0,6214	5.9541	0.0147
lake	Trafford	reptile	1	2.9347	1.1161	6.9131	0.0086

size	<=2.3	bird	1	-0.6307	0.6425	0.9635	0.3263
size	<=2.3	inverteb	1	1.4582	0.3959	13.5634	0.0002
size	<=2.3	other	1	0.3316	0.4483	0.5471	0.4595
size	<=2.3	reptile	1	-0.3513	0.5800	0.3668	0.5448

Odds Ratio Estimates				
Effect	food	Point Estimate	95% Wald Confidence Limits	
lake Hancock vs George	bird	2.004	0.433	9.266
lake Hancock vs George	inverteb	0.190	0.057	0.633
lake Hancock vs George	other	2.285	0.766	6.814
lake Hancock vs George	reptile	3.463	0.339	35.343
lake Oklawaha vs George	bird	0.520	0.049	5.490
lake Oklawaha vs George	inverteb	2.553	1.012	6.437
lake Oklawaha vs George	other	1.006	0.219	4.608
lake Oklawaha vs George	reptile	11.685	1.306	104.508
lake Trafford vs George	bird	2.968	0.570	15.447
lake Trafford vs George	inverteb	3.071	1.174	8.032
lake Trafford vs George	other	4.556	1.348	15.400
lake Trafford vs George	reptile	18.815	2.111	167.717
size <=2.3 vs >2.3	bird	0.532	0.151	1.875
size <=2.3 vs >2.3	inverteb	4.298	1.978	9.339
size <=2.3 vs >2.3	other	1.393	0.579	3.354
size <=2.3 vs >2.3	reptile	0.704	0.226	2.194

(b) Using the fit of your model, estimate the probability that the primary food choice is "fish," for each length in Lake Oklawaha. Interpret the effect of length.

Based on (a), the probability estimate for forh find choice is given below
7+ -1.509+0938X+1.4582y -33 39+2.45BX-0.35By -2.093 -0.6534X-0.6307y
-1.904)+0.00300×10.00
where & specifies oklawaha lake and y specifies (=2.) where & specifies oklawaha lake and y specifies (=2.)
where & specific opportunitions of the size of the size is more than 2.3, then length has no effect on the probability of choosing fish as primary food choice. The probability of choosing fish as primary food choice.
=) If the size is more than 2.3, then leigth has more than 2.3, then probability of the probability of the length is less than 2.3, then the probability of primary food choice depends on the length.

Problem3: The following table results from a clinical trial for the treatment of small-cell lung cancer. Patients were randomly assigned to two treatment groups. The sequential therapy\administered the same combination of chemotherapeutic agents in each treatment cycle. The alternating therapy used three different combinations, alternating from cycle to cycle.

		Response to Chemotherapy				
Therapy	Gender	Progressive Disease	No Change	Partial Remission	Complete Remission	
Sequential	Male	28	45	29	26	
	Female	4	12	5	2	
Alternating	Male	41	44	20	20	
	Female	12	7	3	1	

Source: Holtbrugge, W. and Schumacher, M., Appl. Statist., 40: 249-259, 1991.

(a)Fit a cumulative logit model with main effects for treatment and gender. Interpret the estimated treatment effect

ANS:

解釋:

Based on the table of analysis of maximum likelihood estimates, the estimated effect of therapy is -0.5807. The estimated odds that a sequential therapy's response is in progressive disease direction rather than the complete remission direction equal exp(-0.5807)=0.5595 times the estimated odds for alternating therapy.

The estimated effect of gender is -0.5414. The estimated odds that a male's response is in progressive disease direction rather than the complete remission direction equal

exp(-0.5414)=0.5819 times the estimated odds for females.

所 fit 的 model 統計數據如下:

The SAS Sy		
Model Inform	ation	
Data Set	WORK.LU	JNGCANCER
Response Variable	response	,
Number of Response Levels	4	
Frequency Variable	value	
Model	cumulati	ve logit
Optimization Technique	Fisher's	scoring
Number of Observation	ns Read	16
Number of Observation	16	
Sum of Frequencies	299	
Sum of Frequencies	299	

Response Profile				
Ordered Value	response	Total Frequency		
1	prog	85		
2	no	108		
3	partial	57		
4	complete	49		

Probabilities modeled are cumulated over the lower Ordered Values.

Class	Level Info	rmation
Class	Value	Design Variables
therapy	sequenti	1
	alternat	0
gender	male	1
	female	0

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional Odds Assumption			
Chi-Square	DF	Pr > ChiSq	
2.9280	4	0.5699	

Deviance and Pearson Goodness-of-Fit Statistics				
Criterion	Value	DF	Value/DF	Pr > ChiSq
Deviance	5.5677	7	0.7954	0.5910
Pearson	5.3527	7	0.7647	0.6170

Number of unique profiles: 4

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	805.968	799.057		
SC	817.069	817.559		
-2 Log L	799.968	789.057		

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	10.9113	2	0.0043	
Score	10.6693	2	0.0048	
Wald	10.7442	2	0.0046	

Type 3 Analysis of Effects				
Effect	DF	Wald Chi-Square	Pr > ChiSq	
therapy	1	7.5131	0.0061	
gender	1	3.3619	0.0667	

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	prog	1	-0.1960	0.2947	0.4424	0.5060
Intercept	no	1	1.3713	0.3059	20.0903	<.0001
Intercept	partial	1	2.4221	0.3276	54.6609	<.0001
therapy	sequenti	1	-0.5807	0.2119	7.5131	0.0061
gender	male	1	-0.5414	0.2953	3.3619	0.0667

Odds Ratio Estimates					
Effect	Point Estimate	95% Wald Confidence Limits			
therapy sequenti vs alternat	0.560	0.369	0.848		
gender male vs female	0.582	0.326	1.038		

Association of Pred Observe			and
Percent Concordant	39.0	Somers' D	0.149
Percent Discordant	24.1	Gamma	0.236
Percent Tied	36.9	Tau-a	0.109
Pairs	32431	С	0.575

(b) Fit the model that also contains an interaction term between treatment and gender. Interpret the interaction term by showing how the estimated treatment effect varies by gender.

ANS:

解釋如下:

Based on the table of analysis of maximum likelihood estimates, the estimated effect of interaction between therapy and gender is 0.5906. The estimated odds that a sequential therapy's response by a male is in progressive disease direction rather than the complete remission direction equal $\exp(0.5906)=1.8$ times the estimated odds for alternating therapy's response by female.

所 fit 的 model 統計數據如下:

The SAS System
The LOGISTIC Procedure
VIII 1990 M. 1990

Model Information				
Data Set	WORK.LUNGCANCER			
Response Variable	response			
Number of Response Levels	4			
Frequency Variable	value			
Model	cumulative logit			
Optimization Technique	Fisher's scoring			

Number of Observations Read	16
Number of Observations Used	16
Sum of Frequencies Read	299
Sum of Frequencies Used	299

Response Profile				
Ordered Value	response	Total Frequency		
1	prog	85		
2	no	108		
3	partial	57		
4	complete	49		

Probabilities modeled are cumulated over the lower Ordered Values.

Class	Level Info	rmation
Class	Value	Design Variables
therapy	sequenti	1
	alternat	0
gender	male	1
	female	0

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional Odds Assumption			
Chi-Square	DF	Pr > ChiSq	
3.8245	6	0.7004	

Deviance and Pearson Goodness-of-Fit Statistics					
Criterion	Value	DF	Value/DF	Pr > ChiSq	
Deviance	4.5209	6	0.7535	0.6066	
Pearson	4.4151	6	0.7359	0.6207	

Number of unique profiles: 4

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	805.968	800.010		
sc	817.069	822.213		
-2 Log L	799.968	788.010		

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio	11.9581	3	0.0075			
Score	11.5405	3	0.0091			
Wald	11.5767	3	0.0090			

Joint Tests					
Effect	DF	Wald Chi-Square	Pr > ChiSq		
therapy	1	3.8490	0.0498		
gender	1	4.0268	0.0448		
therapy*gender	1	0.9901	0.3197		

Note: Under full-rank parameterizations, Type 3 effect tests are replaced by joint tests. The joint test for an effect is a test that all the parameters associated with that effect are zero. Such joint tests might not be equivalent to Type 3 effect tests under GLM parameterization.

Analysis of Maximum Likelihood Estimates							
Parameter			DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	prog		1	0.0770	0.3986	0.0373	0.8468
Intercept	no		1	1.6484	0.4102	16.1462	<.0001
Intercept	partial		1	2.6978	0.4260	40.1002	<.0001
therapy	sequenti		1	-1.0786	0.5498	3.8490	0.0498
gender	male		1	-0.8646	0.4309	4.0268	0.0448
therapy*gender	sequenti	male	1	0.5906	0.5935	0.9901	0.3197

Association of Pred Observed			and
Percent Concordant	39.0	Somers' D	0.149
Percent Discordant	24.1	Gamma	0.236
Percent Tied	36.9	Tau-a	0.109
Pairs	32431	С	0.575

(c) Does the interaction model give a significantly better fit?

ANS:

Based on the tables in (a), (b), we compare the AIC and SC values between the model with and without interaction.

The model with the smallest AIC is considered the best. SC penalizes the number of predictors in the model and smallest SC is more desirable.

The value of AIC and SC is smallest for the model without interaction. So this model is a better fit. Thus the model with interaction doesn't give a significantly better fit than the model without interaction.