Computable, strong, and uniform reductions

Damir D. Dzhafarov University of Connecticut

August 5, 2015

Problems.

A problem is a Π^1_2 statement of second-order arithmetic, thought of as

for every
$$X \in Inst(P)$$
, there is a $Y \in Soln(P, X)$,

where Inst(P) and Soln(P, X) are arithmetically-definable sets.

Examples.

 RT^n_k . Every coloring $c:[\omega]^n \to k$ has an infinite homogeneous set.

COH. Every family of sets $X = \langle X_0, X_1, ... \rangle$ has an infinite X-cohesive set Y, meaning that for each i, either $Y \cap X_i$ or $Y \cap \overline{X_i}$ is finite.

DNR_n: For every set X there is an $f:\omega\to n$ such that $f(e)\neq\Phi_e^X(e)$ for all e.

Reductions.

Let P and Q be problems.

P is strongly computably reducible to Q, written $P \leq_{sc} Q$, if every $X \in Inst(P)$ computes an $\widehat{X} \in Inst(Q)$, such that every $\widehat{Y} \in Soln(Q, \widehat{X})$ computes a $Y \in Soln(P, X)$.

Reductions.

Let P and Q be problems.

P is computably reducible to Q, written $P \leq_c Q$, if every $X \in Inst(P)$ computes an $\widehat{X} \in Inst(Q)$, such that every $\widehat{Y} \in Soln(Q, \widehat{X})$, together with X, computes a $Y \in Soln(P, X)$.

Reductions.

Let P and Q be problems.

P is uniformly reducible to Q, written $P \leq_u Q$, if

there are fixed functionals Φ and Ψ

witnessing the computations in both directions of a computable reduction.

 \leq_c , \leq_{sc} extend Muchnik reducibility. \leq_u extends Medvedev reducibility. In the context where they are both defined, \leq_u agrees with Weihrauch reducibility.

As a finer metric.

Most implications between combinatorial problems are actually formalizations of uniform and/or strong reductions.

Each of \leq_u and \leq_{sc} implies \leq_c , and \leq_c implies provability in RCA.

Theorem (Cholak, Jockusch, and Slaman). $RCA_0 \vdash RT_2^2 \rightarrow COH$.

The proof is a formalization in RCA_0 of a strong uniform reduction.

These reducibilities offer a way to tease apart subtle differences between various principles that provability over RCA_0 alone does not see.

Theorem (Jockusch). If n < m, then $DNR_n \equiv_c DNR_m$ but $DNR_n \nleq_u DNR_m$.

Theorem (Patey). If j > k, then $RT_j^n \nleq_c RT_k^n$.

Two versions of Ramsey's theorem.

A coloring c, henceforth always $[\omega]^2 \to 2$, is stable if $\lim_y c(x, y)$ exists for all x.

SRT₂². Every stable coloring has an infinite homogeneous set.

A set L is limit-homogeneous for a stable coloring c if there is an $i \in \{0, 1\}$ such that $\lim_{y} c(x, y) = i$ for all $x \in L$.

 D_2^2 . Every stable coloring has an infinite limit-homogeneous set.

Observation. $SRT_2^2 \equiv_c D_2^2$.

Pf. Let c be a coloring. Every infinite limit-homogeneous set L for c can be computable thinned to an infinite homogeneous set with the same color.

Theorem (Chong, Lempp, and Yang). $RCA_0 \vdash SRT_2^2 \leftrightarrow D_2^2$.

Two versions of Ramsey's theorem.

Theorem (Hirschfeldt and Jockusch). SRT_2^2 is uniformly reducible to two applications of D_2^2 .

Question (Hirschfeldt and Jockusch). Can this be improved to \leq_u or \leq_{sc} ?

If L is limit-homogeneous, but we do not know what color $i \in \{0, 1\}$ the elements in it limit to, then thinning it to a homogeneous set seems difficult.

Theorem (Dzhafarov). There is a stable coloring c such that every other stable coloring d has an infinite limit-homogeneous set L that computes no infinite homogeneous set for c.

Corollary. $SRT_2^2 \nleq_{sc} D_2^2$.

Theorem (Dzhafarov). $SRT_2^2 \nleq_u D_2^2$.

COH and D_2^2 .

Open question (Chong, Slaman, and Yang). Does SRT_2^2 (or D_2^2) imply COH in ω -models of RCA_0 ? Is COH $\leq_c SRT_2^2$? Equivalently, is COH $\leq_c D_2^2$?

Theorem (Dzhafarov). COH $\nleq_{sc} D_2^2$.

The proof is a computable forcing argument. Any 3-generic yields a family $\langle X_0, X_1, \ldots \rangle$ witnessing the theorem, so we can find one computable in $\emptyset^{(3)}$.

Theorem (Hirschfeldt and Jockusch; Patey). There is a family of sets $X = \langle X_0, X_1, \ldots \rangle$ such that every stable coloring d has an infinite limit-homogeneous set L that computes no infinite X-cohesive set.

The X built by Hirschfeld and Jockusch is non-hyperarithmetical. Patey's is Δ_2^0 .

Question. Given the differences between SRT_2^2 and D_2^2 under \leq_u and \leq_{sc} , what relationships hold between COH and SRT_2^2 ?

COH and SRT_2^2 : the *u* case.

Theorem (Dzhafarov). There is a computable family of sets $X = \langle X_0, X_1, \ldots \rangle$ such that for every stable coloring $d \leq_T X$ and every functional Ψ , there is an infinite homogeneous set H for d with Ψ^H not an infinite X-cohesive set.

Corollary. COH \nleq_u SRT $_2^2$. (Hence, also COH \nleq_u D $_2^2$.)

The proof involves uniformly computably building, for each pair Φ and Ψ , a certain coloring $c_{(\Phi,\Psi)}:\omega\to 3$, and then pasting these colorings together.

Under a suitable coding, we can view $X = \langle c_n : n \in \omega \rangle$ as a family of sets.

The construction ensures that if $d = \Phi^X$ then for every Ψ there is an infinite homogeneous set H for d such that no finite modification of Ψ^H is homogeneous for $c_{\langle \Phi, \Psi \rangle}$. Thus, Ψ^H cannot be cohesive for $\langle c_n : n \in \omega \rangle$.

COH and SRT_2^2 : the sc case.

The sc case appears quite close to the full c case.

Recall that whether COH $\leq_{\rm c}$ SRT $_2^2$ is equivalent to whether COH $\leq_{\rm c}$ D $_2^2$.

What could be the role of X in the reduction on the left?

An obvious guess is that X thins out L to a homogeneous set.

If that were all, we would get the reduction on the right.

COH and SRT_2^2 : the sc case.

Theorem (Dzhafarov). There exists a family of sets $X = \langle X_0, X_1, \ldots \rangle$ and a collection \mathcal{C} of subsets of ω such that:

- for all $Y \in \mathcal{C}$, there is no $(X \oplus Y)$ -computable infinite X-cohesive set; and for every stable coloring $d \leq_T X$, one of the following is true:
- d has an $(X \oplus Y)$ -computable infinite homogeneous set for some $Y \in C$;
- -d has infinite homogeneous sets of both colors computing no X-cohesive set.

Corollary. COH $\nleq_{sc} SRT_2^2$.

The proof introduces a new method (tree labeling) to build homogeneous sets.

But it uses ω many iterates of the hyperjump, so X is quite complex. Also, the proof does not seem to work to show COH $\nleq_{sc} SRT^2_{\iota}$ for any k > 2.

Hypothetical

Suppose there is a Δ_2^0 family X witnessing that COH $\nleq_{sc} SRT_3^2$. Then X has a self-modulus (i.e., a function $m \equiv_T X$ such that $X \leq_T f$ for every $f \geq^* m$.)

Let $c: [\omega]^2 \to 2$ be an arbitrary X-computable stable coloring.

Define $d: [\omega]^2 \to 3$ by d(x, y) = c(x, y) if y - x > m(x) and d(x, y) = 2 else.

Then c and d have the same limit-homogeneous sets. And every infinite homogeneous set for d dominates m and therefore computes X.

By assumption, let H be an infinite homogeneous set for d that computes no infinite X-cohesive set. Then also H is limit-homogeneous for c and $X \oplus H$ computes no infinite X-cohesive set.

We conclude that COH $\nleq_c D_2^2$.

COH and SRT_k for k > 2.

Question. Is it the case that COH $\leq_{sc} SRT_k^2$ for any k > 2?

For k = 3, this question was also asked by Hirschfeldt and Jockusch.

Theorem (Hirschfeldt and Jockusch). $RT_3^1 \nleq_{sc} D_2^2$.

Question (Hirschfeldt and Jockusch). Is it the case that $RT_3^1 \leq_{sc} SRT_2^2$?

By simplifying the tree labeling method used to show that COH $\nleq_{sc} SRT_2^2$, we obtain a negative answer.

Theorem (Dzhafarov, Patey, Solomon, Westrick). If j > k then $RT_j^1 \nleq_{sc} SRT_k^2$.

We now paste together various colorings $c:\omega o j$ to obtain a family of sets.

Corollary. COH $\nleq_{sc} SRT_k^2$ for all $k \ge 2$.

A nicer instance of COH.

Above, we wanted a family X witnessing that COH $\nleq_{sc} SRT_3^2$ which has a self-modulus. By a result of Solovay, all such sets are hyperarithmetical.

Question. Is there a hyperarithmetical family X witnessing that COH $\nleq_{sc} SRT_3^2$?

Theorem (Dzhafarov, Patey, Solomon, Westrick). For every j > k, there is a $\emptyset^{(\omega)}$ -computable coloring $c : \omega \to j$ witnessing that $RT_i^1 \nleq_{sc} SRT_k^2$.

Corollary. There is a $\emptyset^{(\omega)}$ -computable family X witnessing that COH $\nleq_{sc} SRT_3^2$.

Alas, not every hyperarithmetical set has a self-modulus. But $\emptyset^{(\omega)}$ does.

Proposition (Dzhafarov, Patey, Solomon, Westrick). There is a $\emptyset^{(\omega)}$ -computable family X witnessing that COH $\nleq_{sc} SRT_3^2$ such that $\emptyset^{(n)} \leq_T X$ for all n.

Open question. Can X be chosen with $X \equiv_T \emptyset^{(\omega)}$ or with a self-modulus?

