

- Nuclear Radiation Sensor: Low Voltage, SMD/SMT
- Detects Beta and Gamma Radiation and X-Rays

Description

The function of the RD3024 radiation sensor is based on an array of customized PIN diodes. The integrated pulse discriminator with a temperature compensated threshold level provides true TTL signal output. The RD3024 is capable of detecting beta radiation (electrons), gamma radiation (photons) and X-rays.

The RD3024 low voltage solid state radiation sensor, in combination with high immunity to RF fields make it a good choice for new state-of-the-art designs of battery powered applications using WiFi, GSM and Bluetooth communication.

Features and Benefits

- Detects beta and gamma radiation and X-rays
- Low power requirement (3.0V to 5.0V; 400µA) for battery powered applications
- Detector sensitivity: 5.8 cpm/µSv/h
- High immunity to RF and electrostatic fields
- Linear response over wide temperature range (-30°C to 50°C)
- Surface-mount package allows compact designs
- Swiss made

Application Areas

- Equipment for detecting radioactivity in medical environment
- Radiation monitors for nuclear safeguards and security
- Gamma detector to detect illicit nuclear material
- Student projects

Absolute Maximum Ratings

Supply voltage, V_{CC}
Output short-circuit current
Storage temperature range

6.0 V
continuous
-65°C to 110°C

Electrical characteristics

at $V_{CC} = 4.0V$, $T_A = 25$ °C (unless otherwise noted)

Measurement range of radiation

dose equivalent rate (Cs-137 & Co-60) 0.1 µSv/h to 100 mSv/h

Sensitivity 5.8 cpm \pm 15% for 1 μ Sv/h radiation dose rate

Energy response: 50 KeV to above 2 MeV

Output pulse level Equal to supply voltage (positive going)

Output pulse width 40 µs to 150 µs

Supply voltage range, V_{CC} 3.0 V to 5.0 V

Supply current, I_S 400 µA TYP, 450 µA MAX

Linear temperature range -30°C to 50°C

Typical Sensor Energy Response

Standard Sensitivity Response upon Gamma Radiation Incidence Angle with respect to Calibration Direction

RD3024 Sensor Linearity

dH*(10) / dt = Radiation dose equivalent rate for Cs-137 and Co-60 (mSv/h)

Typical Sensor Sensitivity vs. Supply Voltage

RD3024 Typical Sensor Sensitivity vs. Temperature

RD3024 Functional Block Diagram

Connection Descriptions

GND Power supply and output signal ground VCC +3.0 to +5.0V power supply Output signal

Dimensions and Footprint Details (in millimeters)

RD3024 Outer Dimensions

RD3024 Recommended Footprint Details

Application Information

Susceptibility to Strong Microwave Signals

In order to prevent generation of false output pulses by strong microwave signals

- a) connect a 0.01µF capacitor as close as possible to the sensor between the pins GND and VCC
- b) keep the sensor at least 30 cm (1 foot) away from microwave, cellular phone, etc.

Susceptibility to Noise on Power Source

In situations where a high noise level on the power source could be a problem, an RC filter as shown below is recommended.

Simple Nuclear Radiation Detector using the RD3024

This simple battery-powered monitoring device with a LED diode indicates beta and gamma radiation, and X-rays. Output pulses from the RD3024 (40 μ s to 150 μ s) are converted into 10ms pulses (IC1-A & IC1-B) to provide a suitable drive for the LED. The LED can optionally be replaced by a headphone, a loudspeaker or a pulse counter. This experimental nuclear radiation detector runs on stand-by for eight months on thee AA batteries.

Disclaimer

Neither the whole nor any part of the information contained in, or the product described in this datasheet, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder.

This product and its documentation are supplied on an as is basis and no warranty as to their suitability for any particular purpose is either made or implied. Teviso Sensor Technologies will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected.

This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury.

This document provides preliminary information that may be subject to change without notice.