CS 103: Mathematical Foundations of Computing Problem Set #6

Cheng Jia Wei Andy, Xiang Qiuyu August 9, 2024

Due Friday, August 11 at 4:00 pm Pacific

Some symbols you may want to use here:

- The empty string is denoted ε .
- Alphabets are denoted Σ .
- The language of an automaton is denoted $\mathcal{L}(D)$.
- You can say two strings are distinguishable relative to L by writing $x \not\equiv_L y$.
- You can write a character in monospace in text mode and inmathmode.
- The Optional Fun Problem uses the notation \mathscr{F} .

Problems One and Two are to be answered by editing the appropriate files (RegularExpressions.regexes and Grammars.cfgs, respectively). Do not put your answers to Problems One and Two in this file.

Problem Three: Finite Languages

Pick an arbitrary finite language L. Let n be the number of strings in L, that is |L| = n. We can view L as containing n strings, that is, $L = \{s_1, s_2, \ldots, s_n\}$. A trivial regular expression for L would then be $s_1|s_2|\ldots|s_n$, which ensures that only the n strings in L are accepted.

Consider the edge case where |L| = 0. The regular expression for L would then be \emptyset , implying that no strings are accepted, as required.

Problem Four: Distinguishability

i.

- 1. w = a2. $w = \varepsilon$ 3. $w = \varepsilon$
- 4. No such w.

ii.

- 1. aa and aaa. Both already contain the substring aa.
- 2. Yes.
- 3. aa and aaa.
- 4. Yes.
- 5. Not a distinguishing set. The two strings abba and abbababba.
- 6. Yes
- 7. Not a distinguising set. The two strings are ε and b.

iii.

```
Let S = \{ab, a, b, baa\}.

ab and a: abba \in L while aba \notin L. w = ba
ab and b: aba \notin L while ba \in L. w = a
ab and baa: aba \notin L while baaa \in L. w = a

a and b: aa \notin L while ba \in L. w = a.

a and baa: aa \notin L while baaa \in L. w = a.

b and baa: bb \notin L while baab \in L. w = b.
```

iv.

Theorem: L is not regular.

Proof: Let $S = \{a^n b^n | n \in \mathbb{N}\}$. We will prove that S is infinite and that S is a distinguishing set for L.

To see that S is infinite, observe that S contains one string for each natural number.

To see that S is a distinguishing set for L, pick arbitrary strings $a^n b^n, a^m b^m \in S$ such that $n \neq m$. Let

 $w=a^nb^n$. It is trivial that $w\in \Sigma *$. Observe that $a^nb^na^nb^n\notin L$ and $a^mb^ma^nb^n\in L$. Therefore, we see that $a^na^n\not\equiv_L a^mb^m$, implying that S is a distinguishing set, as required.

Since S is infinite and a distinguishing set for L, by the Myhill-Nerode Theorem, we see that L is not regular.

Problem Five: Brzozowksi's Theorem

i.

- 1. *aab*
- $2.\ bbbaaa$
- 3. *bba*

ii.

Proof: We want to show that L is not regular. It is given that S is infinite, hence, we only need to show that S is a distinguishing set for L. To do so, pick arbitrary strings $x,y \in S$ such that $x \neq y$. Since $x \neq y$, we know that $\partial_x L \neq \partial_y L$. Since $\partial_x L \neq \partial_y L$, we know that, without loss of generality, there exists a string w such that $w \in \partial_x L$ and $w \notin \partial_y L$. This implies that $xw \in L$ and $yw \notin L$, which tells us that $x \not\equiv_L y$. Hence, we see that S is a distinguishing set for L as required.

Since S is infinite and a distinguishing set for L, by the Myhill-Nerode Theorem, we see that L is not regular.

CS 103: Mathematical Foundations of Computing — Summer 2024

Optional Fun Problem: Birget's Theorem

Write your answer to the Optional Fun Problem here.