Jakub Żuk

February 1, 2025

Contents

1	$\mathbf{W}\mathbf{p}$	rowadzenie	1
	1.1	Wstęp do projektu	1
	1.2	Opis matematyczny problemu	2
2	Pod	lejście numeryczne	2
	2.1	Dyskretyzacja danych	2
	2.2	Symulacja	3
3	Jak	ustawienie źródeł ciepła wpływa na efektywność ogrzewania mieszkania?	3
	3.1	Opis doświadczenia i plan mieszkania	3
	3.2	Wyniki symulacji	5
	3.3	Wnioski	6
4	Czy	wyłączanie kaloryferów przed wyjściem do pracy pozwoli oszczędzić na	
	ogra	zewaniu?	7
	4.1	Opis doświadczenia i plan mieszkania	7
	4.2	Wyniki symulacji dla mieszkania z równomiernym układem grzejników	9
	4.3	Wnioski	13
	4.4	Kaloryfery pod oknami	13
	4.5	Wyniki symulacji dla mieszkania z grzejnikami pod oknami	14
R	efere	nces	20

1 Wprowadzenie

1.1 Wstęp do projektu

Celem projektu było zbadanie metodami numerycznymi rozchodzenia się ciepła w mieszkaniu. Zagadnienie to zostało zamodelowane przy użyciu równania ciepła z odpowiednimi warunkami brzegowymi. Projekt sprowadza się do rozważań na temat dwóch problemów:

- 1. Jak ustawienie grzejików wpływa na efektywność ogrzewania?
- 2. Czy wyłączenie grzejników przed wyjściem do pracy pozwala oszczędzić na ogrzewaniu?

1.2 Opis matematyczny problemu

Najważniejsze założenia:

- ściany są doskonałymi izolatorami (warunek Neumanna na ścianach)
- okna wcale nie izolują (warunek Dirichleta na oknach)
- włączenie grzejnika o godzinie 0:00 jest pierwszym uruchomieniem grzejnika (temperatura początkowa jest równa temperaturze otoczenia)
- $\bullet\,$ współczynnik dyfuzji wyrażony w jednostkach SI wynosi $0.025\frac{m^2}{\varsigma}$
- temperatura w przejściach między pokojami jest ustalana jako średnia temperatura w przejściu
- mieszkanie jest dwuwymiarowe (nie bierzemy pod uwagi objętości, tylko powierzchnię)
- grzejniki działają jak ogrzewanie podłogowe, zależą tylko od powierzchni podłogi jaką zajmują
- termostat mierzy średnią temperaturę w pobliżu kaloryfera i działa zgodnie z koncepcją histerezy [1]

Powyższe założenia zapisujemy matematycznie w poniższej postaci:

$$\begin{cases} u_t = \alpha \Delta u + f_i(x, u), & x \in R_i, t \ge 0, \quad i \in \{1, 2, 3\} \\ u = T_{out}(t), & x \in W_i, t \ge 0, \quad i \in \{1, 2, \dots, N_{windows}\} \\ \nabla u \cdot n = 0, & x \in S_i, t \ge 0, \quad i \in \{1, 2, \dots, N_{walls}\} \\ u = \frac{1}{|D_i|} \int_{D_i} u \, dx, & x \in D_i, t \ge 0, \quad i \in \{1, 2, \dots, N_{doors}\} \\ u(x, 0) = 0 \end{cases}$$

gdzie u jest temperaturą w punkcie x i czasie t. Dolny indeks (u_t oznacza pochodną cząstkową u po t).

2 Podejście numeryczne

2.1 Dyskretyzacja danych

Do numerycznego wyrażenia naszego zagadnienia będziemy potrzebowali zmienić notację ciągłą na dyskretną co zaczniemy od wyrażenia rozkładu temperatury w domu w postaci macierzy. Ustalmy parametry symulacji:

• Krok odległości: $h_x = 0.5m$

• Krok czasu: $h_t = 0.5s$

• Wymiary domu: 20×15 m

• Rozważany okres czasu: 24h = 86400s

W związku z tym, przy tak ustalonym kroku, rozkład temperatury będzie w czasie t macierzą o wymiarach 40×30 . Macierz tę zapiszemy w postaci długiego wektora w większej macierzy $u = [u_{t_1}, u_{t_2}, \dots, u_{t_n}]$, której kolumny u_{t_i} będą reprezentowały temperaturę w całym układzie w czasie $t_i = t_1 + (i-1)h_t$.

Żeby pracować na tak zdyskretyzowanych danych, potrzebujemy wyrazić laplasjan jako macierz drugich pochodnych. Robimy to przy pomocy metody opisanej dokładnie na stronie [3]. Teraz możemy przejść do symulacji.

2.2 Symulacja

Program wykonujący symulacje został napisany obiektowo:

Sama symulacja od strony matematycznej jest przeprowadzona w oparciu o metodę różnic skończonych opisaną również na stronie [3].

3 Jak ustawienie źródeł ciepła wpływa na efektywność ogrzewania mieszkania?

3.1 Opis doświadczenia i plan mieszkania

Pierwsze doświadczenie polega na określeniu jakościowym (równomierność i stopień ogrzania mieszkania) i ilościowym (zużyta energia) czy i w jaki sposób położenie źródeł ciepła wpływa na efektywność ogrzewania. Rozważamy dwa przypadki:

- 1. Ustawienie grzejników przy oknach
- 2. Ustawienie grzejników z dala od okien

Poniżej przedstawiamy najważniejsze założenia towarzyszące doświadczeniu:

- temperatura dobowa zmienia się nieznacznie (amplituda wynosi 4°C)
- zmieniamy jedynie położenie grzejników, ich parametry i rozmiar pozostają niezmienione
- cały dzień staramy się utrzymać temperaturę pokojową w każdym pokoju (termostat działa zgodnie z założeniami całego projektu)

Plan mieszkania gdy kaloryfery znajdują się przy oknach

Plan mieszkania gdy kaloryfery znajdują się dalej od okien

3.2 Wyniki symulacji

Mapy ciepła mieszkania przez całą dobę dla przypadku ustawienia kaloryferów pod oknami

Mapy ciepła mieszkania przez całą dobę dla przypadku ustawienia kaloryferów daleko od okien

Położenie kaloryferów	Temperatura średnia $[{}^{\circ}C]$	Zużycie energii [kJ]
pod oknami	18.60	8164
dalej od okien	19.01	2353

3.3 Wnioski

Jak widać po mapach ciepła, bardziej pożądane efekty otrzymujemy w przypadku gdy kaloryfery znajdują się pod oknami. Rozkład temperatury jest wówczas niemal jednostajny w całym mieszkaniu. W przypadku grzejników z dala od okien mamy bardzo dużą amplitudę temperatur w każdym z pokojów. Korzystniejsze dla rozkładu temperatury położenie kaloryferów jest jednak okupione dużo większym kosztem.

Mapa ciepła mieszkania po ustabilizowaniu się dla przypadku ustawienia kaloryferów daleko od okien

Chociaż średnia temperatura w mieszkaniu jest wyższa, znaczna część pomieszczeń jest zbyt zimna, zdecydowanie poniżej pożądanej temperatury. Wynika z tego, że wybór umiejscowienia kaloryferów pod oknami, chociaż znacząco droższy, jest zwyczajnie lepszy, gdyż drugie rozwiązanie nie spełnia jakościowo wymagań stawianych ogrzewaniu w mieszkaniach.

4 Czy wyłączanie kaloryferów przed wyjściem do pracy pozwoli oszczędzić na ogrzewaniu?

4.1 Opis doświadczenia i plan mieszkania

Następujące doświadczenie będzie polegało na porównaniu zużycia energii (czyli zarazem kosztu ogrzewania) gdy wyłączymy kaloryfer przed wyjściem do pracy/na uczelnię, czy zostawimy włączony. Interesować nas będzie całkwite zużycie energii oraz moment, w którym po powrocie do domu, średnia temperatura wróci do oczekiwanej przez nas temperatury pokojowej przy jednoczesnym zagwarantowaniu minimalnej średniej temperatury 17°C w każdym pomieszczeniu. Poniżej sformułowane zostały najważniejsze założenia towarzyszące doświadczeniu:

- wychodzimy z domu o godzinie 7:00 i wtedy obniżamy maksymalną temperaturę w termostacie
- wracamy do domu o godzinie 17:00 i wtedy przywracamy domyślny tryb na termostacie
- doświadczenie trwa do spełnienia równocześnie dwóch warunków:
 - -średnia temperatura w całym domu jest wyższa niż $18^{\circ}C$
 - średnia temperatura w każdym pokoju jest wyższa niż $19^{\circ}C$

Doświadczenie przeprowadzimy w trzech różnych warunkach pogodowych. Dla uzyskania większych amplitud dobowych temperatury oraz większego zróżnicowania zakresu temperatur, posłużyłem się danych z Jekaterynburga w dniach 17.04, 27.02 i 17.02 roku 2024. Mają one obrazować kolejno: dzień chłodny, zimny i bardzo zimny.

Mieszkanie wygląda jednakowo w temperaturach chłodnych i zimnych. Z racji bardzo zimnych nocy w Jekaterynburgu, dla bardzo niskich temperatur w rogu drugiego pokoju umieszczamy dodatkowe źródło ciepła (na przykład farelkę).

Ustawienia termostatu sa następujące:

Pokrętło	Temperatura maksymalna $[{}^{\circ}C]$
0	7
1	12
2	15
3	19
4	23
5	28

Na potrzeby doświadczenia przyjmujemy temperaturę pokojową $19^{\circ}C$ i takie wybieramy początkowe ustawienie grzejników (trzecie pokrętło). Temperatura początkowa w każdym przypadku jest równa temperaturze otoczenia.

Plan mieszkania w temperaturach chłodnych i zimnych

Plan mieszkania w temperaturach bardzo zimnych z dostawioną farelką

$4.2\,$ Wyniki symulacji dla mieszkania z równomiernym układem grzejników

Chłodny dzień:

Pokrętło	Temperatura o 7:00 $[{}^{\circ}C]$	Temperatura o 17:00 $[{}^{\circ}C]$	$\operatorname{Czas}\left[s\right]$	Zużyta energia [kJ]
0	19.05	8.00	391	1164
1	19.05	12.04	247	1427
2	19.05	15.07	139	1594
3	19.05	19.05	0	1819

Zimny dzień:

ſ	Pokrętło	Temperatura o 7:00 [° C]	Temperatura o 17:00 [° C]	$\operatorname{Czas}\left[s\right]$	Zużyta energia [kJ]
	0	19.07	7.06	479	2240
	1	19.07	12.07	278	2518
	2	19.07	15.09	158	2687
	3	19.07	19.07	0	2913

Bardzo zimny dzień:

Pokrętło	Temperatura o 7:00 $[{}^{\circ}C]$	Temperatura o 17:00 $[{}^{\circ}C]$	Czas[s]	Zużyta energia [kJ]
0	19.13	7.10	632	4667
1				
2				
3			0	

Bardzo zimny dzień z dostawioną farelką:

Pokrętło	Temperatura o 7:00 $[{}^{\circ}C]$	Temperatura o 17:00 $[{}^{\circ}C]$	Czas[s]	Zużyta energia [kJ]
0	19.15	7.10	629	5012
1	19,15	12.12	368	5315
2	19.15	15.11	210	5497
3	19.15	19.12	0	5740

Mapy ciepła mieszkania w chłodny dzień z pokrętłem ustawionym na 0

Mapy ciepła mieszkania w chłodny dzień z pokrętłem ustawionym na $3\,$

Mapy ciepła mieszkania w zimny dzień z pokrętłem ustawionym na $\boldsymbol{0}$

Mapy ciepła mieszkania w bardzo zimny dzień z pokrętłem ustawionym na $\boldsymbol{0}$

Wykres zużytej energii i średniej temperatury w chłodny dzień z pokrętłem ustawionym na $0\,$

Wykres zużytej energii i średniej temperatury w bardzo zimny dzień z pokrętłem ustawionym na $0\,$

4.3 Wnioski

Jak widać na powyższych tabelach, w warunkach zadanych w doświadczeniu (założenia projektu, projekt mieszkania i temperatury w Jekaterynburgu) zmniejszanie ogrzewania przed wyjściem jest wskazane dla oszczędności energii. Nawet w bardzo zimnych warunkach, czas oczekiwania na nagrzanie pomieszczenia do pożądanej temperatury jest nieduży a różnica w zużyciu energii znacząca. Doskonale izolujące ściany pomagają w utryzmaniu tej tezy, która w rzeczywistej sytuacji i przy mniejszym mieszkaniu może się różnić.

Zgodnie z oczekiwaniami koszt ogrzewania rośnie radykalnie wraz ze spadkiem temperatury otoczenia, jednak przy włączonych kaloryferach temperatura w mieszkaniu utrzymuje się cały czas na podobnym poziomie dzięki działaniu termostatu i jest to niezależne od temperatury zewnętrznej.

Na wykresie zużytej energii i średniej temperatury w mieszkaniu można zauważyć jak ostro rośnie zużywana energia w krótkich momentach niemal skokowego wzrostu temperatury. Utrzymanie już osiągniętej temperatury ma koszt będący w przybliżeniu funkcją liniową z nachyleniem zależnym od tego jak wysoki poziom temperatury chcemy utrzymać.

4.4 Kaloryfery pod oknami

W powyższych przypadkach właściwie za każdym razem, zwłaszcza w najzimniejsze dni, rozkład temperatury jest bardzo niekorzystny. Z poprzedniego doświadczenia wiemy jednak jak spróbować zaradzić takiemu problemowi. Bardzo często w mieszkaniach, zwłaszcza w blokach, kaloryfery znajdują się pod oknami. W pierwszym doświadczeniu wykazaliśmy czemu tak jest. Jednostajny rozkład temperatur w mieszkaniu jest ważniejszy dla użytkownika pomimo niemal czterokrotnie wyższych kosztów.

Rozważmy więc ponownie ustawienie kaloryferów pod oknami i przeprowadźmy na takim przypadku doświadczenie z wyciszaniem termostatu na czas nieobecności domowników. Tym razem przypuśćmy, że rozpoczynamy od temperatury pokojowej $(19^{\circ}C)$.

4.5 Wyniki symulacji dla mieszkania z grzejnikami pod oknami

Mapy ciepła mieszkania w zimny dzień z pokrętłem ustawionym na $\boldsymbol{0}$

Wykres zużytej energii i średniej temperatury w zimny dzień z pokrętłem ustawionym na $0\,$

Chłodny dzień:

Pokrętło	Temperatura o 7:00 [° C]	Temperatura o 17:00 [° C]	Czas[s]	Zużyta energia [kJ]
0	18.62	6.95	751	6179
1	18.62	11.88	441	6972
2	18.62	14.82	240	7450
3	18.62	18.74	0	8088

Zimny dzień:

Pokrętło	Temperatura o 7:00 [° C]	Temperatura o 17:00 $[{}^{\circ}C]$	$\operatorname{Czas}\left[s\right]$	Zużyta energia [kJ]
0	18.62	6.95	751	6179
1	18.62	11.88	441	6972
2	18.62	14.82	240	7450
3	18.62	18.74	0	8088

Z powyższej tabeli wnioskujemy, że przy takim ustawieniu kaloryferów, czasy oczekiwania na ustabilizowanie się temperatury staje się uciążliwy i nieakceptowalny. Dla niższych temperatur ten czas rośnie jeszcze bardziej a nawet taki układ kaloryferów w mieszkaniu okazuje się niewystarczający do utrzymania temperatury pokojowej przy bardzo zimnych nocach na Uralu.

Mapy ciepła mieszkania w zimny dzień z pokrętłem ustawionym na $2\,$

Wykres zużytej energii i średniej temperatury w zimny dzień z pokrętłem ustawionym na $2\,$

Oziębianie się mieszkania po przekręceniu termostatu na 0\$17\$

Nagrzewanie się mieszkania po przekręceniu termostatu na 3 $18\,$

Mapy ciepła wskazują na bardzo dobry, niemal jednostajny rozkład temperatury w całym mieszkaniu. Zgodnie z wynikami pierwszego eksperymentu koszty ogrzewania mieszkania z tak ustawionymi kaloryferami są bardzo wysokie. Jest to logiczne, gdyż sąsiedztwo żródła ciepła i żródła zimna wymaga ciągłego dostarczania energii. Przy założeniach projektu o czułości termostatu co pół sekundy w całym pokoju powoduje to co chwila impulsy wszystkich kaloryferów, które w kolejnej chwili natychmiast ustają, żeby włączyć się ponownie w kolejnym kroku.

To zjawisko jest szczególnie wyraźnie widoczne tutaj, jednak występowało w każdym poprzednim przypadku (wahania są nieduże w stosunku do całej skali temperatury). Jest to jedna z wad tego modelu. Symulacje można poprawić lepiej modelując pracę termostatu oraz modyfikując warunki brzegowe (na przykład tak: [2]).

Wykres zużytej energii i średniej temperatury w zimny dzień z pokrętłem ustawionym na $3\,$

Ten sam wykres bliżej, termostat próbuje utrzymać stałą temperaturę powodując w każdej zdyskretyxowanej chwili wahania temperatury.

References

- [1] Dani Schaub James Diebel Jacob Norda. *Działanie termostatu*. 2024. URL: https://www.elektrobock.cz/pl/wyjasnienie-koncepcji-sterowania/c117.
- [2] Eduard Marušić-Paloka and Igor Pažanin. "The Robin boundary condition for modelling heat transfer". eng. In: *Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences* 480.2286 (2024). ISSN: 1364-5021.
- [3] Maciej Tadej. Heat equation. 2024. URL: https://tadej.math.uni.wroc.pl/teaching/num_met-lab-i-2425.