TD 1

September 2, 2024

Exercise 1

Consider X, Z two independent random variables $X \sim \mathcal{N}(0,1), Z \sim \mathcal{N}(0,1)$. We denote $\epsilon = 1$ if $\operatorname{sg}(X) = \operatorname{sg}(Z)$ and $\epsilon = -1$ otherwise. Then we denote $Y = \epsilon Z$. In other words, Y = Z if X and Z have the same sign and Y = -Z otherwise.

- 1 Write a code to generate N samples of X, Z, ϵ, Y and plot $\{(x_1, y_1), \dots, (x_n, y_n)\}$ samples for N = 1000.
- 2 Plot histogram of samples $\{y_1, \ldots, y_n\}$. Prove that Y follows a normal distribution.
- 3 Print empirical correlation of x_i and y_i . Compute formal expression of Cov(X, Y).
- 4 Plot histogram of samples $\{x_1 + y_1, \dots, x_n + y_n\}$. What do you observe?
- 5 Is (X,Y) a Gaussian vector? (Justify) Compute the joint density $f_{X,Y}$.
- 6 Compute the density f_{X+Y} . Is X+Y Gaussian?

Exercise 2

Consider $X \sim \mathcal{N}(0,1), N \sim \mathcal{N}(0,\sigma_N^2)$ independent and W = -X + N.

- Write a code to generate N samples of X, N, W and plot $\{(x_1, w_1), \dots, (x_n, w_n)\}$ samples for $\sigma_N = 0.25$ and N = 1000.
- 2 Compute the density f_W . Is (X, W) a Gaussian vector? (Justify)
- 3 What are equi-probability curves for (X, W) joint distribution?
- 4 What is the covariance matrix associated with (X, W)? Deduce the joint density $f_{X,W}$.
- 5 Assume now that σ_N is unknown. What would be an unbiased estimator of σ_N ? (using samples from (X,W))

Exercise 3

We consider same random variables as previous exercises. Let B be a Bernouilli variable of parameter 0.5. Finally, V = Y if B = 0 and V = W otherwise.

This is a particular case of **mixture** of random variables. Let (X_1, \ldots, X_d) be random variables of densities (f_1, \ldots, f_d) and consider an independent discrete random variable A with values in $\{1, \ldots, d\}$ associated with probabilities (p_1, \ldots, p_d) . Then U is defined by $U = X_i$ iif A = i.

- 1 Prove that $\sum_{k=1}^{d} p_k f_k$ is still a probability density and that it corresponds to the distribution of U.
- 2 Deduce that $\mathbb{E}[U] = \sum_{k=1}^d p_k \mathbb{E}[X_k]$ and $Var(U) = \sum_{k=1}^d p_k Var(X_k)$.
- 3 Write a code to generate N samples of B, V and plot $\{(x_1, v_1), \dots, (x_n, v_n)\}$ samples for N = 1000. What is $\mathbb{E}[V]$ and Var(V)?
- 4 Plot histogram of $\{v_1, \ldots, v_n\}$ samples and compute the density f_V .
- 5 Show that $Cov(X, V) = \frac{1}{2}(Cov(X, Y) + Cov(X, W))$.
- 6 How can we modify the definition of W to obtain Cov(X, V) = 0?
- 7 In this case, are X and W independent ? Is (X, V) a Gaussian vector ?
- 8 Compute densities $f_{X,V}$ and f_{X+V} .
- 9 Plot histogram of $\{x_1 + v_1, \dots, x_n + v_n\}$ samples as well as the function f_{X+V} and compare them for $10^2, 10^3$ and 10^4 samples.
- 10 Assume now that samples coming from W are not observable. How can find an estimator of σ_N defined on samples from (X, V)?
- We denote $\chi^2_{\beta}(n)$ the β -quantile of khi-squared distribution with n liberty degrees. What would be a confidence interval of probability $1-\alpha$? (Justify)