Solving the Shallow Water Equations

CFD Final Project
May 12, 2013
Noah Brenowitz

Outline

- Finite Volume Methods for Conservation Laws
 - 1st Order
 - High Resolution
- Shallow Water Equations
 - With Rotation
- Results

Conservation Laws

$$q_t + \nabla \cdot f(q) = 0$$
$$q_t + A(u) \cdot q_x + B(u) \cdot q_y = 0$$

- Called hyperbolic if A and B are diagonalizable with real eigenvalues
- Examples include (Burger's Equation, Traffic Flow, Shallow water, Gas Dynamics, etc.)

Finite Volume Methods for Conservation laws

- Nodes represent averages over a cell
- Solve a Riemann problem on each interface
- Upwinding is by characteristic decomposition
- Second order accuracy achieved using fully discrete (Lax-Wendroff) scheme
 - Regularity is enforced using flux-limiters
 - This is Leveque's approach
- Higher order accuracy can be obtained using WENO
 - Very costly for higher dimensions. Easier to use finite differencing

First Order Scheme

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[f_{i+1/2} - f_{i-1/2} \right]$$

$$= Q_i^n - \frac{\Delta t}{\Delta x} \left[A_{i-1/2}^+ \Delta Q_{i-1/2} + A_{1+1/2}^- \Delta Q_{i+1/2} \right]$$

• Diagonalize A A = LSR $A^{\pm} = LS^{\pm}R$

• Where $x^+ = max(0, x)$ $x^- = min(0, x)$

How to find $A_{i-1/2}$

- For linear problems this is easy
- For nonlinear problems, we need to solve a Riemann problem on each interface
 - Impossible analytically and/or computationally costly
- Solution: Use an approximate Riemann solver

Roe Averaging

Need to find a diagonalizable matrix with

$$\hat{A}(Q_{\ell},Q_r) \to A(q)$$

- Simple averaging does not guarantee that A is diagonalizeable
- Roe averaging assumption:

 Q_i and Q_{i+1} are connected by one characteristic.

$$f(Q_{i+1}) - f(Q_i) = s(Q_{i+1} - Q_i)$$

Roe Averaging Continued

This implies that

$$f(Q_{i+1}) - f(Q_i) = \hat{A}(Q_{i+1} - Q_i)$$

- Roe devised some tricks to help find such an A_hat.
- Diagonalize A_hat and form the right going and left going fluctuations at each interface
- This can violate entropy condition!
 - Use "entropy" fix

Second Order (1D)

Use fully discrete Lax-Wendroff style scheme with flux limiter

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[A_{i-1/2}^+ \Delta Q_{i-1/2} + A_{1+1/2}^- \Delta Q_{i+1/2} \right] - \frac{\Delta t}{\Delta x} \left[\tilde{F}_{i+1/2} - \tilde{F}_{i-1/2} \right]$$

 The higher order correction terms are flux limited and depend only on the solution to the Riemann problem at the two neighboring interfaces

2D Higher Order Scheme

- Similar flux correction terms
- Tricky part is to upwind properly.
 - Characteristics can be diagonal!
- The solution is to split the left and right fluctuations into left-up/left-down and rightup/right-down fluctuations.
- "Right-up" from interface (i-1/2,j) is (i,j+1/2)
 - Draw picture

Shallow Water Equations

Fig 3.1 in Vallis

Shallow Water Equations

Without Rotation

$$\frac{Du}{Dt} = -g\nabla h$$

$$\frac{Dh}{Dt} + h\nabla \cdot u = 0$$

With Rotation

$$\frac{Du}{Dt} + f \times u = -g\nabla h$$

$$\frac{Dh}{Dt} + h\nabla \cdot u = 0$$

Derivation (on board)

SWE Conservation Form

Without Rotation

$$\begin{pmatrix} h \\ hu \\ hv \end{pmatrix}_{t} + \begin{pmatrix} hu \\ \frac{1}{2}gh^{2} + hu^{2} \\ huv \end{pmatrix}_{x} + \begin{pmatrix} hv \\ huv \\ \frac{1}{2}gh^{2} + hv^{2} \end{pmatrix}_{y} = 0$$

With Rotation

$$\begin{pmatrix} h \\ hu \\ hv \end{pmatrix}_{t} + \begin{pmatrix} hu \\ \frac{1}{2}gh^{2} + hu^{2} \\ huv \end{pmatrix}_{x} + \begin{pmatrix} hv \\ huv \\ \frac{1}{2}gh^{2} + hv^{2} \end{pmatrix}_{y} = f \begin{pmatrix} 0 \\ hv \\ -hu \end{pmatrix}$$

Roe Averaging for SWE

$$\hat{u} = \frac{\sqrt{h_l}u_l + \sqrt{h_r}u_r}{\sqrt{h_l} + \sqrt{h_r}} \qquad \bar{h} = \frac{h_l + h_r}{2}$$

$$\hat{A} = \begin{pmatrix} 0 & 1 & 0 \\ -\hat{u}^2 + g\bar{h} & 2\hat{u} & 0 \\ -\hat{u}\hat{v} & \hat{v} & \hat{u} \end{pmatrix}$$

$$\hat{B} = \begin{pmatrix} 0 & 1 & 0 \\ -\hat{u}\hat{v} & \hat{v} & \hat{u} \\ -\hat{v}^2 + g\bar{h} & 0 & 2\hat{v} \end{pmatrix}$$

Roe Averaging for SWE

- Eigenvalues and Eigenvectors of the above are easy to calculate
- A and B are very similar
- Easy to implement and cheap computationally

What about this $f \times u$ term?

Just use a Godunov splitting approach

$$q^* = q^n + \Delta t \cdot (\text{flux terms})$$

 $q^{n+1} = q^* + \Delta t \cdot (-hf \times u)$

- Or Strang Splitting (2nd order in time)
 - Advance homogenous problem dt/2
 - Advance source problem dt
 - Advance homogenous problem dt/2

Results

- 1D Dam Break
- 2D Radial Dam Break
- 2D Smooth Radial Dam Break

Dam Break Problem in 1D

Radial Dam Break Problem

Radial Dam Break Problem

Radial Dam Break Problem

Corner Fixing Helps

Corner Fixing Helps

Corner Fixing Helps

Geostrophic Adjustment: Dam break with f=.01

F=.3

F=1

WENO on uniform advection with n=100

WENO r=3 (order 5)

1st order upwind

References

- [1] G.-S. Jiang and C.-W. Shu. Efficient Implementation of Weighted ENO Schemes. *Journal of Computational Physics*, 126(1):202–228, June 1996.
- [2] A. Kuo and L. Polvani. Time-dependent fully nonlinear geostrophic adjustment. *Journal of physical oceanography*, (Stoker 1958):1614–1634, 1997.
- [3] R. LeVeque. Finite volume methods for hyperbolic problems, 2002.
- [4] C.-W. Shu. High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. *SIAM Review*, 51(1):82–126, Feb. 2009.
- [5] C.-W. Shu. WENO methods, May 2011.
- [6] G. K. Vallis. *Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation*. Cambridge University Press, Cambridge, 2006.
- [7] Y. Xing and C.-W. Shu. High order finite difference WENO schemes with the exact conservation property for the shallow water equations. *Journal of Computational Physics*, 208(1):206–227, Sept. 2005.
- [8] X. Zhang and C.-W. Shu. Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 467(2134):2752–2776, May 2011.

Repository

• https://github.com/nbren12/cfd-final