Study-Algorithm Anian

Input: Old bond vectors d, unconstrained bond vectors d' **Output:** constrained bond vectors d'

while
$$\frac{|d-d'|}{|d|}$$
 > tolerance do

for each bond vector i do

$$f_i^c \leftarrow \frac{\mu}{2(\Delta t)^2} \frac{d^2 - d'^2}{d' \cdot d} d$$

$$\Delta r_{i,0} \leftarrow + \frac{(\Delta t)^2}{m_i} f_i^c$$

$$\Delta r_{i,1} \leftarrow -\frac{(\Delta t)^2}{m_i} f_i^c$$

$$d'_i \leftarrow d'_i + \Delta r_i$$

Running Time: $\Theta(June + July + August)$

Study-Algorithm Anian

Input: Old bond vectors d, unconstrained bond vectors d' **Output:** constrained bond vectors d'

while
$$\frac{|d-d'|}{|d|}$$
 > tolerance do

for each bond vector i do

$$f_i^c \leftarrow \frac{\mu}{2(\Delta t)^2} \frac{d^2 - d'^2}{d' \cdot d} d$$

$$\Delta r_{i,0} \leftarrow + \frac{(\Delta t)^2}{m_i} f_i^c$$

$$\Delta r_{i,1} \leftarrow -\frac{(\Delta t)^2}{m_i} f_i^c$$

$$d'_i \leftarrow d'_i + \Delta r_i$$

Running Time: $\Theta(June + July + August)$

Study-Algorithm Anian

Input: Old bond vectors d, unconstrained bond vectors d' **Output:** constrained bond vectors d'

while
$$\frac{|d-d'|}{|d|}$$
 > tolerance do

for each bond vector i do

$$f_i^c \leftarrow \frac{\mu}{2(\Delta t)^2} \frac{d^2 - d'^2}{d' \cdot d} d$$

$$\Delta r_{i,0} \leftarrow + \frac{(\Delta t)^2}{m_i} f_i^c$$

$$\Delta r_{i,1} \leftarrow -\frac{(\Delta t)^2}{m_i} f_i^c$$

$$d'_i \leftarrow d'_i + \Delta r_i$$

Running Time: $\Theta(June + July + August)$

Study-Algorithm Anian (Brute-Force)

Input: Old bond vectors d, unconstrained bond vectors d' **Output:** constrained bond vectors d'

while $\frac{|d-d'|}{|d|}$ > tolerance do

 ${f for}$ each bond vector i ${f do}$

$$f_i^c \leftarrow \frac{\mu}{2(\Delta t)^2} \frac{d^2 - d'^2}{d' \cdot d} d$$

$$\Delta r_{i,0} \leftarrow + \frac{(\Delta t)^2}{m_i} f_i^c$$

$$\Delta r_{i,1} \leftarrow -\frac{(\Delta t)^2}{m_i} f_i^c$$

$$d'_i \leftarrow d'_i + \Delta r_i$$

Running Time: $\Theta(June + July + August)$

$$K_0 = 1750 \frac{\text{N}}{\text{m}} = 1.05 \cdot 10^6 \frac{\text{u}}{\text{ps}^2}$$

 $r_0 = 120 \,\text{pm}$

$$\varepsilon_0 = 1.8 \frac{\text{u}}{\text{ps}^2}$$
 $\sigma = 70 \,\text{pm} \text{ (Atomic radius: Carbon)}$

