

PZT Piezoelectric Materials

Technical Data (Typical Values)

Property	Symbol	Units	Material Type		(Typical Values)	
		_	3195	3195HD	3203	3203HD
Dielectric Constant (1KHz)	K ₃ ^T		1800	1900	3250	3800
Dielectric Loss Factor (1KHz)	$tan\delta_{\text{e}}$	%	1.8	1.8	2.0	2.4
Density	р	g/cm ³	7.7	7.8	7.7	7.8
Curie Point	T _c	°C	350	350	235	225
Mechanical Quality Factor	Q_{m}		80	80	30	30
Coercive Field*	E _c	KV/cm	14.9	12.0	10.6	8.0
Remanent Polarization	P_{r}	μCoul/cm ²	39.2	39.0	37.2	39.0
Coupling Coefficients	K_p		.63	.65	.69	.75
	K ₃₃		.70	.72	.73	.75
	K ₃₁		.35	.36	.41	.43
	K_{t}		.49	.48	.53	.55
	K ₁₅			.59		.72
Piezoelectric Charge	d ₃₁	<u>Coul.</u> x 10 ⁻¹²	-175	-190	-275	-320
Coefficient		Newton				
(Displacement Coefficient)	d ₃₃	(or) meters x 10 ⁻¹² volt	2 350	390	550	650
Piezoelectric Voltage	g ₃₃		24.2	24.0	19.0	19.0
Coefficient	•	volt meters x 10 -	3			
(Voltage Coefficient)	9 ₃₁	Newton	-11.0	-11.3	-9.6	-9.5
Elastic Modulus	YE 11		6.9	6.7	6.3	6.2
		Newton x 10 ¹⁰ meter ²				
	YE 33	meter-	5.5	5.3	5.0	4.9
Frequency Constants Radial	N _r	KHz-cm	202		192	
Resonant Thickness	N_{tr}	KHz-cm	204	211	191	202
Anti-Resonant Thickness	N_{ta}	KHZ-cm	229	236	222	236
Formulas: Disc Cap	acitance =	d 2 x K ^T ₃	Disc $K_3^T = 5$	5.662 x c x t	f _r (radial) = Nr/2.54 d
		5.67 x t	3 -	d ²	\mathbf{f}_{r} (length	n) = Nr/2.54 I
Plate Cap	pacitance =	$I \times W \times K_3^T$	Plate $K_3^T =$	4.447 x c x t	=) = Nr/2.54 w
		4.45 x t		l x w	f _t (thickr	ness) = Nt/2.54 t

Note: Formula length, width, and diameter are for electroded area only.

Definitions

 $tan\delta_e$ - Dielectric Loss Factor C - Capacitance (nF) I - Length (in.) p - Mass Density of Ceramic w - Width (in.) T_{c.} - Curie Point d - Diameter (in.) d₃₃ - Direct Charge Coefficient t - Thickness (10 -3 in.) d₃₁ - Transverse Charge Coefficient E_c - Coercive Field g₃₃ - Direct Voltage Coefficient

g₃₁ - Transverse Voltage Coefficient K_p - Planar Electromechanical Coupling Coefficient

K₃₃ - Direct Electromechanical **Coupling Coefficient**

K₃₁ - Transverse Electromechanical Coupling Coefficient

- Free Dielectric Constant Measured Along Poling Axis *Measured at less than 1 Hz.

N_r - Radial Frequency Constant N_t - Thickness Mode

Frequency Constant Pr - Remanent Polarization

Q_m - Mechancial Q (Quality Factor)

Y₃₃ - Direct Youngs Modulus

YE - Elastic Modulus

f_r - Resonant Frequency

fa - Anti-Resonant Frequency

CTS PZT Piezoelectric Materials, with a fine grain and low porosity microstructure are especially suited for medical ultrasound, ink jet, and other demanding applications. A wide variety of sizes, shapes and metallizations are available, and custom programs are welcome.

Physical and Mechanical Properties

Physical and Mechanical Propert	3203 HD (PZT Type 5H)	3195 HD (PZT Type 5A)		
Property	Symbol	Units	Value	Value
Thermal Expansion (Perpendicular to poling)	α	ppm / °C	3.5	3.0
Specific Heat	C _p	J / Kg - °C J/ mol - °C	420 138	440 145
Thermal Conductivity	K_d	watts / cm ² - °C watts / m ² - °K	1.9 - 2.3 1.2	1.9 - 2.3 1.2
with Au Electrodes		watts / m ² - °K	1.45	1.45
Poisson's Ratio	υ		0.31	0.31
Elastic Constants Short Circuit	S ₁₁ S ₃₃	x 10 ⁻¹² m ² /N	16.6 21.0	16.2 18.6
Elastic Constants Open Circuit	S ₁₁ S ₃₃	x 10 ⁻¹² m ² / N	13.9 8.8	14.6 9.6
Elastic Constants Short Circuit	Y ₁₁ Y ₃₃	x 10 ⁻¹⁰ N / m ²	6.2 4.9	6.7 5.3
Elastic Constants Open Circuit	$Y_{11}^{D} \\ Y_{33}^{D}$	x 10 ⁻¹⁰ N /m ²	7.0 11.0	6.8 10.6

Piezoelectric Products

CTS Wireless Components 4800 Alameda Blvd. N.E. Albuquerque NM 87113

(505) 348-4213 FAX: (505) 348-4617

(505) 348-4260

Specifications subject to change without notice 4/2000