Hashing (Cryptography)

- a cryptographic **hash function** is a mathematical algorithm that maps data of arbitrary size (message) to a bit array of a fixed size (message digest or hash)
- all operations are public such as the h(x) hash-function
- there are no private keys here
- it is **deterministic** and random (pseudo-random)

fixed length
string (d bits)

h: $\{0,1\}^* \rightarrow \{0,1\}^d$

ASSOCIATIVE ARRAYS

NEED O(1) RUNING TIME

BUT HERE IT IS NOT THE CASE

data of **arbitrary size** (string with arbitrary length)

fixed length
string (d bits)

MD5 – d is 128 bits SHA1 – d is 160 bits SHA2 – d is 256 bits

h: $\{0,1\}^* \rightarrow \{0,1\}^d$

ASSOCIATIVE ARRAYS

NEED O(1) RUNING TIME

BUT HERE IT IS NOT THE CASE

data of **arbitrary size** (string with arbitrary length)

- a cryptographic **hash function** is a mathematical algorithm that maps data of arbitrary size (message) to a bit array of a fixed size (message digest or hash)
- all operations are public such as the h(x) hash-function
- there are no private keys here
- it is **deterministic** and random (pseudo-random)

- PRE-IMAGE RESISTANCE -

it is exponentially hard (computationally infeasible) to determine the **m** message from the **h(m)** message digest

- PRE-IMAGE RESISTANCE -

it is exponentially hard (computationally infeasible) to determine the **m** message from the **h(m)** message digest

- SECOND PRE-IMAGE RESISTANCE -

if m_1 is given then it is infeasible to find m_2 such that $h(m_1) = h(m_2)$ so the hashes are the same

- PRE-IMAGE RESISTANCE -

it is exponentially hard (computationally infeasible) to determine the **m** message from the **h(m)** message digest

- SECOND PRE-IMAGE RESISTANCE -

if m_1 is given then it is infeasible to find m_2 such that $h(m_1) = h(m_2)$ so the hashes are the same

- COLLISION RESISTANCE -

it is infeasible to find any m_1 and m_2 messages such that $h(m_1) = h(m_2)$. It is easier to break collision resistance than the second pre-image resistance.

- **1.) deterministic**: it means that if we apply to same hash-function (**SHA256**) on the exact same input then the output must be the same
- 2.) one-way: it is easy to generate the hash with the given hashing algorithm but on the other hand it is extremely hard (time-consuming) to restore the original input ~ it is like a trap-door function
- 3.) collision-free: there are no collisions in SHA256 (ok there are but with extremely low probability)

 It means that no two different inputs share the same output hash

 and this is good: we want to make these hashes unique, this

 is how we identify a block in the blockchain
- **4.)** avalanche effect: a little change in the input results in a completely different output hash ~ otherwise a cryptoanalyst can make predictions about the input based on the output exclusively

Breaking Second Pre-Image Resistance

If m_1 is given then we have to find m_2 such that $h(m_1) = h(m_2)$ so the hashes are the same

- \rightarrow we can use brute-force approach: pick a m_2 message and hash it then compare it with $h(m_1)$
- → what is the **running time** of this approach?

Best-case scenario: we find m_2 in the first iteration

Worst-case scenario: there are 2¹²⁸ possible messages all together and we have to try them all

Average-case scenario: $2^{128} / 2 = 2^{127}$