Projet SFPN: Manipulation de suites P-récursives avec SageMath

Mathis Caristan & Aurélien Lamoureux Sous la responsabilité de Marc Mezzarobba

Université Pierre & Marie Curie

29/05/2017

Introduction

Second Section

Contexte & problématique

Les suites P-récursives sont des objets couramment utilisés en mathématiques et en sciences.

Problématique

- La question se pose de comment représenter et manipuler informatiquement ces objets.
- Les suites sont infinies.

Contexte & problématique

Les suites P-récursives sont des objets couramment utilisés en mathématiques et en sciences.

Problématique

- La question se pose de comment représenter et manipuler informatiquement ces objets.
- Les suites sont infinies.

Solution

Il est nécessaire d'utiliser les propriétés mathématiques des suites P-récursives.

Suites P-récursives

Définition formelle

Une suite P-récursive sur un corps $\mathbb K$ vérifie la propriété suivante :

$$\sum_{i=0}^k P_i(n)u_{n+i}=0$$

où les P_i sont des polynômes en n, et k est l'ordre de la récurrence.

Une suite P-récursive peut être représentée exactement avec sa relation de récurrence, et ses conditions initiales*

Exemples

Fibonacci :
$$F_{n+2} - F_{n+1} - F_n = 0$$
, $F_0 = 0, F_1 = 1$
Factorielle : $(n+1)! - (n+1)(n!) = 0$, $0! = 1$

SageMath & Python

SageMath, qu'est-ce que c'est?

- Un logiciel de calcul formel
- Opensource
- Construit sur un ensmble d'outil pré-éxistant et Python
- Basé sur Python
- Doté d'une syntaxe spécifique pour la ligne de commande

Python?

- C'est le langage sur lequel est basé Sage
- Python 2.7.9
- Les idiomes Sage sont transformés en Python pur
- Possibilité d'écrire des modules pour Sage en Python

La bibliothèque OreAlgebra

- Implémente l'algèbre d'Ore
- Non intégrée au projet Sage, et développée par la communauté
- Contient une partie des outils nécessaires à la réalisation du projet
 - Définir une algèbre dans laquelle travailler
 R. <n> = PolynomialRing(ZZ)
 A. <Sn> = OreAlgebra(R)
 - Les fonctions lclm et to_list pour +/x
 annihilSum = annihil1.lclm(annihil2)
 annihilProd = annihil1.symmetric_product(annihil2)
 - La fonction forward_matrix_bsplit pour le calcul d'un terme

Objectifs du module

Objectifs principaux

Objectifs du module

Objectifs principaux

Objectifs importants

Objectifs du module

Objectifs principaux

Objectifs importants

Objectifs secondaires

Constructeur

C'est la méthode

Bullet Points

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus eu
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris at libero
- Nam cursus est eget velit posuere pellentesque
- Vestibulum faucibus velit a augue condimentum quis convallis nulla gravida

Blocks of Highlighted Text

Block 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Block 2

Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Vestibulum quis magna at risus dictum tempor eu vitae velit.

Block 3

Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum neque consectetur orci, sed blandit justo nisi ac lacus.

Multiple Columns

Heading

- Statement
- 2 Explanation
- Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Theorem

Theorem (Mass-energy equivalence)

 $E = mc^2$

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation :

This statement requires citation [Smith, 2012].

References

John Smith (2012)

Title of the publication

Journal Name 12(3), 45 - 678.

The End