Projekt 3 techniki programowania

Łukasz Śledziński 203753 Agata Fruczek 203748

Budowa:

Folder projektu:

build	31.05.2025 20:08	Folder plików
matplotplusplus	29.05.2025 22:14	Folder plików
src src	31.05.2025 20:04	Folder plików
igitignore	31.05.2025 21:00	Dokument tekstowy
CMakeLists	30.05.2025 21:56	Dokument tekstowy

folder zawiera plik build, który tworzymy przy pomocy cmakea, cmakelists. Src w którym znajdują się pliki c++, biblioteke matplotplusplus i .gitignore.

Folder src:

	.vs	31.05.2025 20:04	Folder plików		
	nain.cpp	31.05.2025 18:35	C++ Source	5 KB	
	nodule.cpp	31.05.2025 20:04	C++ Source	2 KB	
	🗫 signal.cpp	31.05.2025 17:08	C++ Source	3 KB	
	signal.h	31.05.2025 17:08	C/C++ Header	1 KB	

Folder build zawiera folder Debug, w którym mamy plik select_signal.pyd z programem w pythonie odpowiadającym za działanie programu.

Odpalenie programu:

Aby odpalić program wchodzimy w git basha następnie podajemy komendy:

- conda activate signal_env aby odpalić środowisko
- cd tp3/build/Debug aby dostać się do folderu z programem python
- python select_signal.pyd aby odpalić program

następnie program nas pyta typ sygnału i o dane następnie odpala wykres jednej w wybranych funkcji (sinus, cosinus, kwadratowy ,piłowy) następnie wykres transformacji DFT oraz odwrotnej transformacji DFT

Przykłady wykresów funkcji razem z transformacją DFT i jej odwrotnością:

Sinus

```
Wybierz typ sygnału: sin
Podaj amplitudę: 1
Podaj częstotliwość: 2
Podaj czas trwania: 6
Podaj częstotliwość próbkowania: 100
```


• Cosinus

```
Dostępne typy sygnałów: sin, cos, square, sawtooth, lub napisz quit aby wyjsc
Wybierz typ sygnału: cos
Podaj amplitudę: 1
Podaj częstotliwość: 1
Podaj czas trwania: 5
Podaj częstotliwość próbkowania: 100
```


prostokątny

```
Dostępne typy sygnałów: sin, cos, square, sawtooth, lub napisz quit aby wyjsc
Wybierz typ sygnału: square
Podaj amplitudę: 3
Podaj częstotliwość: 5
Podaj czas trwania: 3
Podaj częstotliwość próbkowania: 100
```


Piłokształtny

Wybierz typ sygnału: sawtooth Podaj amplitudę: 3 Podaj częstotliwość: 2 Podaj czas trwania: 10 Podaj częstotliwość próbkowania: 100

