Comparative Analysis of NequIP and NequIP-LR - IV

GeTe

A) Effect of increasing the number of charge layers-total_layers6

- Adding charge-encoding increases the errors
- GeTe has strong electron-lattice interactions, which means modeling charge effects is important. The fact that n_charge = 0 (no charge layers) still gives relatively low errors suggests that Nequip's base architecture captures some charge effects even without explicit charge layers

Potential Reasons behind increasing errors in nequiplr-chagre_encoding

- 1) Since nequip-charge learns atomic charge distributions, it may struggle more with materials where charge is not well localized.
- 2) GeTe is a narrow-bandgap semiconductor (\sim 0.1-0.2 eV), meaning its electrons are more delocalized.
- 3) Increasing errors with added charge layers suggest that the long range model is overfitting on the movements of electrons, i.e, the model may learn non-physical charge distributions..
- 4) This is verified by the above plot.

Other examples:

- 1) (MAPI) is a hybrid perovskite, which generally has more localized ionic and electronic charge distributions.
- 2) i) 3bpa is an organic molecule with localized electron density around covalent bonds.
 - ii) Charges are well-defined on atoms (e.g., oxygen has a partial negative charge, hydrogen a partial positive charge).

Nequip-charge can easily learn stable charge distributions because they are consistent across the dataset. Verifiable by the plots in the previous report

How to improve:

We can try adding some constraints on GeTe long range interactions (like a fixed number of charge categories to a predefined range) to improve performance.

B) Effect of increasing the number of charge layers-total_layers4

C) Effect of increasing the number of charge layers-total layers4

- 1) Again we do not observe any improvement with addition of charge layers due to similar reasons.
- 2) We observe that a spike is seen as soon as a single charge layer is introduced but it becomes stable afterwards.
- 3) N_charge_layer = 1 fails to differentiate between charge interactions and delocalisation effects while increasing the number of layers gives an intelligent prediction.

We theorise that a long range machine learning based system in which charge equilibration is not used and charges are not determined dynamically should perform better.

No-QeQ branch results for GeTe

We see a considerable improvement in No-QeQ over charge-encoding-nequiplr and Nequip. These plots align with our hypothesis.

RMAX Variation curves don't give any consistent information as already their errors surpass the base Nequip model