Chapitre 6

Séries numériques et vectorielles

Dans ce chapitre E désigne un espace vectoriel normé de dimension finie.

I Séries à valeurs dans un espace vectoriel normé de dimension finie

I. A Définitions et propriétés générales

Définition 1.1

Soit E un espace vectoriel normé de dimension finie, $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E, on appelle **série de terme général** u_n et on note $\sum u_n$ la suite $(S_n)_{n\in\mathbb{N}}$ définie par : $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n u_k$.

Pour $n \in \mathbb{N}$, S_n s'appelle somme partielle de la série.

La série $\sum u_n$ est dite **convergente** lorsque la suite des sommes partielles $(S_n)_{n\in\mathbb{N}}$ converge et dans ce cas on appelle **somme de la série** et on note $\sum_{n=0}^{+\infty} u_n$ la limite de la suite des sommes partielles.

On dit que la série $\sum u_n$ diverge lorsqu'elle ne converge pas.

Attention: Ne pas confondre:

- $\sum u_k$ désigne la série, c'est à dire la suite vectorielle des sommes partielles;
- $S_n = \sum_{k=0}^n u_k$ désigne une somme partielle : c'est un vecteur ;
- $\sum_{k=0}^{+\infty} u_k$ désigne la somme de la série, c'est à dire la limite des sommes partielles.

Exemples 1.2 : • les séries géométriques : pour $z \in \mathbb{C}$, la série $\sum z^n$ converge si et seulement si ______; et dans ce cas

$$\sum_{n=0}^{+\infty} z^n = \underline{\qquad}.$$

• Pour tout $z \in \mathbb{C}$, la série $\sum \frac{z^n}{n!}$ converge et

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z.$$

• la série harmonique : $\sum \frac{1}{n}$ diverge.

Proposition 1.3

Soit $\sum u_n$ une série d'éléments de E et $k \in \mathbb{N}$.

La série $\sum_{n\geqslant 0} u_n$ converge si et seulement si la série $\sum_{n\geqslant k+1} u_n$ converge.

Dans ce cas on appelle **reste d'ordre** k et on note $R_k = \sum_{n=k+1}^{+\infty} u_n$ et :

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{k} u_n + \sum_{n=k+1}^{+\infty} u_n = S_k + R_k.$$

Remarque 1.4: La suite des restes $(R_n)_{n\in\mathbb{N}}$ converge vers 0_E .

Proposition 1.5 (linéarité de la somme)

Soit deux séries $\sum u_n$ et $\sum v_n$ convergentes et $\lambda \in \mathbb{K}$, alors : les séries $\sum (u_n + v_n)$ et $\sum (\lambda u_n)$ convergent et :

$$\sum_{n=0}^{+\infty} (u_n + v_n) = \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n \text{ et } \sum_{n=0}^{+\infty} (\lambda u_n) = \lambda \sum_{n=0}^{+\infty} u_n$$

Attention : On ne peut faire de telles manipulations que si on sait que les séries convergent. En pratique, on passe par les sommes partielles pour éviter de telles difficultés.

Théorème 1.6 (critère de divergence grossière)

- Si une série $\sum u_n$ converge, alors $(u_n)_{n\in\mathbb{N}}$ converge vers 0_E .
- Si $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0_E , alors la série $\sum u_n$ diverge. On dit alors qu'elle **diverge grossièrement**.

Attention: La réciproque est fausse!

contre exemple

Méthode 1.7 (Télescopage)

La formule suivante peut permettre de déterminer la nature d'une série, mais aussi de calculer sa somme :

$$\sum_{n=0}^{N} (u_{n+1} - u_n) = u_{N+1} - u_0$$

Ou à l'inverse permettre de montrer la convergence d'une suite en l'exprimant sous la forme d'une série.

Exemples 1.8 : • Série $\sum \frac{1}{n(n+1)}$.

I. B Série absolument convergente

Définition 1.9

Soit E un espace vectoriel normé de dimension finie et $\sum u_n$ une série d'éléments de E. La série $\sum u_n$ est dite absolument convergente lorsque la série des normes : $\sum \|u_n\|$ est convergente.

Exemple 1.10 : La série réelle $\sum \frac{(-1)^n}{n^2}$ converge absolument.

Rappel: Une série réelle ou complexe absolument convergente est convergente.

Théorème 1.11

Dans un espace vectoriel normé de dimension finie, toute série absolument convergente est convergente.

Attention: La réciproque est fausse!

contre exemple :

II Rappels et compléments sur les séries numériques

II. A Comparaison des séries à termes positifs

Théorème 2.1

Soit $\sum u_n$ et $\sum v_n$ deux séries réelles à termes positifs à partir d'un certain rang. On suppose : $\forall n \in \mathbb{N}, u_n \leqslant v_n$ (ou à partir d'un certain rang), ou $u_n = \underset{n \to +\infty}{o} (v_n)$ ou $u_n = \underset{n \to +\infty}{O} (v_n)$.

- Si $\sum v_n$ converge, alors $\sum u_n$ converge;
- Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

Corollaire 2.2

Soit $\sum u_n$ et $\sum v_n$ deux séries réelles à termes positifs à partir d'un certain rang. On suppose : $u_n \underset{n \to +\infty}{\sim} v_n$, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Méthode 2.3 $(n^{\alpha} \times u_n)$

Soit $\sum_{n\geq 0} \overline{u_n}$ une série à termes positifs.

Pour déterminer la nature de la série on commence par essayer de trouver un équivalent simple du terme général, si cela ne suffit pas on essaie de comparer à une série de Riemann.

- S'il existe $\alpha > 1$ tel que $n^{\alpha} \times u_n \xrightarrow[n \to +\infty]{} 0$, alors $\sum_{n \ge 0} u_n$ converge;
- si $n \times u_n \xrightarrow[n \to +\infty]{} +\infty$ ou $n \times u_n \xrightarrow[n \to +\infty]{} \ell \neq 0$, alors $\sum_{n \geqslant 0} u_n$ diverge.

Corollaire 2.4

Soit $\sum u_n$ une série de termes dans un espace vectoriel normé E de dimension finie et $\sum v_n$ une série réelle à termes positifs à partir d'un certain rang.

On suppose : $\forall n \in \mathbb{N}, ||u_n|| \leq v_n$ (ou à partir d'un certain rang),

ou
$$||u_n|| = o_{n \to +\infty}(v_n)$$
 ou $||u_n|| = O_{n \to +\infty}(v_n)$.

Si $\sum v_n$ converge, alors $\sum u_n$ converge absolument.

Attention : La suite $(u_n)_{n\in\mathbb{N}}$ est à valeurs vectorielles, mais la suite de référence $(v_n)_{n\in\mathbb{N}}$ est positive (au moins à partir d'un certain rang).

Contre exemple : $u_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$ et $v_n = \frac{(-1)^n}{\sqrt{n}}$

Exemples 2.5 : Déterminer la nature des séries suivantes :

$$\sum_{n \geqslant 1} \frac{\ln(n)}{n^3} \quad ; \quad \sum_{n \geqslant 2} \frac{1}{\ln(n)} \quad ; \quad \sum_{n \geqslant 1} \frac{\sin(n)}{n^2} \text{ et } \sum_{n \geqslant 2} \ln\left(1 - \frac{3}{n^2 + 2}\right)$$

II. B Sommation des relations de comparaison

Proposition 2.6 (sommes partielles de séries divergentes)

Soit $\sum v_n$ une série divergente à termes positifs et $\sum u_n$ une série numérique.

- Si $u_n = \underset{n \to +\infty}{o} (v_n)$, alors $\sum_{k=0}^n u_k = \underset{n \to +\infty}{o} \left(\sum_{k=0}^n v_k\right)$;
- Si $u_n = \underset{n \to +\infty}{O}(v_n)$, alors $\sum_{k=0}^n u_k = \underset{n \to +\infty}{O}\left(\sum_{k=0}^n v_k\right)$.

Corollaire 2.7 (théorème de Cesàro)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $u_n \xrightarrow[n\to+\infty]{} \ell \in \mathbb{R} \cup \{\pm\infty\}$, alors : $\underbrace{u_1+\dots+u_n}_{n} \xrightarrow[n\to+\infty]{} \ell.$

Proposition 2.8 (restes de séries convergentes)

Soit $\sum v_n$ une série convergente à termes positifs et $\sum u_n$ une série numérique.

• Si
$$u_n = \underset{n \to +\infty}{o}(v_n)$$
, alors $\sum_{k=n}^{+\infty} u_k = \underset{n \to +\infty}{o}\left(\sum_{k=n}^{+\infty} v_k\right)$;

• Si
$$u_n = \underset{n \to +\infty}{O} (v_n)$$
, alors $\sum_{k=n}^{+\infty} u_k = \underset{n \to +\infty}{O} \left(\sum_{k=n}^{+\infty} v_k \right)$.

Proposition 2.9

Soit $\sum v_n$ une série à termes positifs et $\sum u_n$ une série réelle telles que $u_n \underset{n \to +\infty}{\sim} v_n$.

- Si $\sum v_n$ diverge, alors $\sum u_n$ diverge et $\sum_{k=0}^n u_k \sim \sum_{k=0}^n v_k$.
- Si $\sum v_n$ converge, alors $\sum u_n$ converge et $\sum_{k=n}^{+\infty} u_k \sim \sum_{n\to+\infty}^{+\infty} \sum_{k=n}^{+\infty} v_k$.

Exemples 2.10 : • Déterminer un équivalent des restes de la série $\sum \frac{1}{n^2}$;

• Déterminer un équivalent des sommes partielles de la série harmonique, puis un développement asymptotique à 3 termes (exercice 5).

II. C Règle de D'Alembert

Lemme 2.11

Soit $\sum u_n$ une série de réels strictement positifs.

- Si $\exists n_0 \in \mathbb{N}, \exists k \in]0; 1[\mid \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow \frac{u_{n+1}}{u_n} \leqslant k, \text{ alors } \sum u_n \text{ converge.}$
- Si $\exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow \frac{u_{n+1}}{u_n} \geqslant 1$, alors $\sum u_n$ diverge grossièrement.

Théorème 2.12 (Règle de D'Alembert)

Soit $\sum u_n$ une série de réels strictement positifs. On suppose que $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R} \cup \{+\infty\}.$

- Si $\ell < 1$, alors $\sum u_n$ converge;
- Si $\ell > 1$, alors $\sum u_n$ diverge grossièrement.

Attention : On ne peut rien dire lorsque $\ell = 1$.

Exemple 2.13 : Nature des séries $\sum \frac{x^n}{n!}$ et $\sum \frac{n^n}{n!}$.

II. D Séries réelles alternées

Théorème 2.14 (séries alternées)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que :

- $\forall n \in \mathbb{N}, u_n \geqslant 0$;
- la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante;
- la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0.

Alors : la série $\sum (-1)^n u_n$ converge et pour tout $n \in \mathbb{N}$:

- la somme de la série est comprise entre $S_n = \sum_{k=0}^n (-1)^k u_k$ et $S_{n+1} = \sum_{k=0}^{n+1} (-1)^k u_k$;
- le reste $R_n = \sum_{k=n+1}^{+\infty} (-1)^k u_k$ est du signe du terme suivant : $R_n(-1)^{n+1} \ge 0$;
- $|R_n| \leqslant u_{n+1}$.

Exemple 2.15: $\sum \frac{(-1)^n}{n}$ converge.

II. E Comparaison série-intégrale

Théorème 2.16

Soit $k \in \mathbb{N}$ et f une fonction continue et décroissante sur [k; k+1], alors :

$$f(k+1) \leqslant \int_{k}^{k+1} f(t) dt \leqslant f(k).$$

Méthode 2.17 (Comparaison série intégrale)

Soit f une fonction positive, continue et décroissante sur \mathbb{R}^+

$$\sum_{k=1}^{n} f(k) \leqslant \int_{0}^{n} f(t) \, \mathrm{d}t.$$

$$\sum_{k=1}^{n} f(k) \leqslant \int_{0}^{n} f(t) dt.$$
$$\sum_{k=0}^{n} f(k) \leqslant f(0) + \int_{0}^{n} f(t) dt.$$

et

$$\sum_{k=0}^{n-1} f(k) \geqslant \int_0^n f(t) \, \mathrm{d}t.$$

$$\sum_{k=0}^{n-1} f(k) \geqslant \int_0^n f(t) dt.$$
$$\sum_{k=0}^n f(k) \geqslant f(n) + \int_0^n f(t) dt.$$

Remarques 2.18 : • Si f est croissante, alors le sens des inégalités est renversé.

• Si f est continue et décroissante et positive sur \mathbb{R}^+ , alors $\sum f(n)$ converge si et seulement si la suite $(\int_0^n f(t) dt)$ converge et dans ce cas on obtient également un encadrement des restes.

Exemple 2.19: Convergence des séries de Riemann, équivalent des sommes partielles dans le cas divergent et des restes dans le cas convergent.

Application: exponentielle de matrice

Théorème 3.1

Soit $p \in \mathbb{N}^*$ et $M \in \mathcal{M}_p(\mathbb{K})$, la série exponentielle $\sum \frac{M^n}{n!}$ converge absolument, on note e^M sa limite.

Remarques 3.2: • Si $M = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, alors $e^M = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$.

• Si N est nilpotente d'indice q, alors $e^N = \sum_{k=0}^{q-1} \frac{N^k}{k!}$.

Théorème 3.3

Soit $A, B \in \mathcal{M}_p(\mathbb{K})$ des matrices qui commutent.

Alors: $e^{A+B} = e^A \times e^B$