Jupyter Notebook Assignment Report

Student: Nishal Sukumar Assignment: Nishal Sukumar Assignment 1 Date: 2025-04-11 19:56

Cell 1 (code)

```
\# Import libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import fetch\_california\_housing
from sklearn.model\_selection import train\_test\_split
from sklearn.linear\_model import LinearRegression
from sklearn.metrics import mean\_squared\_error, r2\_score
```

Cell 2 (code)

```
\# Load California housing dataset
california = fetch\_california\_housing()
df = pd.DataFrame(california.data, columns=california.feature\_names)
df['Target'] = california.target
```

Cell 3 (markdown)

```
\ —- EDA —-
```

Cell 4 (code)

```
\# Basic Info
print("Shape of dataset:", df.shape)
print("\\nFirst 5 rows:\\n", df.head())
print("\\nSummary statistics:\\n", df.describe())
```

stdout: Shape of dataset: (20640, 9)

First 5 rows:

```
MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
             41.0 6.984127
                                           322.0 2.555556
0 8.3252
                             1.023810
                                                              37.88
             21.0 6.238137
1 8.3014
                             0.971880
                                          2401.0 2.109842
                                                              37.86
2 7.2574
             52.0 8.288136
                            1.073446
                                           496.0 2.802260
                                                              37.85
3 5.6431
             52.0 5.817352 1.073059
                                           558.0 2.547945
                                                              37.85
4 3.8462
             52.0 6.281853
                            1.081081
                                           565.0 2.181467
                                                              37.85
```

```
Longitude Target
0
    -122.23
              4.526
    -122.22
              3.585
1
2
    -122.24
              3.521
3
    -122.25
              3.413
4
    -122.25
              3.422
```

Summary statistics:

Dammar :	, bodorborob.					
	${\tt MedInc}$	${ t House Age}$	AveRooms	AveBedrms	Population	\
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	
std	1.899822	12.585558	2.474173	0.473911	1132.462122	
min	0.499900	1.000000	0.846154	0.333333	3.000000	
25%	2.563400	18.000000	4.440716	1.006079	787.000000	
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	
max	15.000100	52.000000	141.909091	34.066667	35682.000000	
	AveOccup	Latitude	Longitude	Target		
count	20640.000000	20640.000000	20640.000000	20640.000000		
mean	3.070655	35.631861	-119.569704	2.068558		
std	10.386050	2.135952	2.003532	1.153956		
min	0.692308	32.540000	-124.350000	0.149990		
25%	2.429741	33.930000	-121.800000	1.196000		
50%	2.818116	34.260000	-118.490000	1.797000		
75%	3.282261	37.710000	-118.010000	2.647250		
max	1243.333333	41.950000	-114.310000	5.000010		

Cell 5 (code)

```
\# Check for missing values
print("\\nMissing values:\\n", df.isnull().sum())
```

stdout:

Missing values: ${\tt MedInc}$ 0 HouseAge 0 AveRooms 0 AveBedrms 0 Population 0 AveOccup 0 Latitude 0 Longitude 0 Target 0 dtype: int64

Cell 6 (code)

```
\# Correlation heatmap
```

```
plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```

<Figure size 1000x800 with 2 Axes>

Figure 1: Output Image 1

Cell 7 (code)

```
\# Distribution of the target variable
sns.histplot(df['Target'], kde=True)
plt.title("Distribution of Target (Median House Value)")
plt.show()
```

<Figure size 640x480 with 1 Axes>

Figure 2: Output Image 2