

Projeto e Análise de Algoritmos Busca em cadeias (Força bruta e RK)

Bruno Prado

Departamento de Computação / UFS

- O que é uma cadeia?
 - ▶ É uma sequência de símbolos T com tamanho n
 - lacktriangle Os símbolos são definidos por um alfabeto finito \sum

- Aplicações multidisciplinares
 - Biologia: representação da cadeia de DNA, sendo composta pelos símbolos A, C, G, T
 - Computação: armazenamento de texto através do tipo string, adotando o padrão de codificação ASCII

- O que é uma busca em cadeia?
 - É o processo para encontrar todas as ocorrências de um padrão em uma cadeia T que possui n símbolos
 - ▶ Para a busca é utilizada a cadeia de padrão P com quantidade de símbolos $m \le n$
 - ▶ As cadeias P e T utilizam um alfabeto finito \sum

$$\sum_{|T| = n = 10, |P| = m = 4} \{0, 1\}$$

$$0 \le s \le n - m$$

- Notação e terminologia
 - É definido por ∑* todos os conjuntos de cadeias de tamanho finito que podem ser construídas do alfabeto finito ∑
 - lacktriangle Uma cadeia vazia é denotada pelo símbolo arepsilon
 - ightharpoonup O tamanho de uma cadeia x é definida por |x|
 - A concatenação de duas cadeias x e y resulta em uma cadeia xy com os caracteres de x seguidos dos caracteres de y, com tamanho total de |x| + |y|

- Notação e terminologia
 - Prefixo
 - A cadeia w é um prefixo da cadeia x se x = wy, para alguma cadeia y ∈ ∑*
 - ▶ Denotado por $w \sqsubset x$, com $|w| \le |x|$

- Sufixo
 - A cadeia w é sufixo da cadeia x se x = yw, para alguma cadeia y ∈ ∑*
 - ▶ Denotado por $w \sqsupset x$, com $|w| \le |x|$

- Força bruta
 - Realiza a busca por um padrão na cadeia através do seu deslocamento e comparação dos símbolos
 - ▶ Texto T = "araradearacaju" e padrão P = "ara"

- Força bruta
 - ▶ Implementação em C

```
void busca fb(int pos(), char T(), char P()) {
    int i, j, s;
    unsigned int n = strlen(T);
    unsigned int m = strlen(P);
    for(s = 0; s \le n - m; s++) 
         for(i = 0, j = 0; i < m \&\& j == 0; i++) {
              if(P(i) != T(s + i))
                   i++;
         if(i == 0)
              inserir(pos, s);
```

- Força bruta
 - Execução do algoritmo

- Força bruta
 - Execução do algoritmo

- Força bruta
 - Execução do algoritmo

- Força bruta
 - Análise de complexidade
 - ▶ Espaço O(n-m+1)
 - ▶ Tempo $O((n-m+1) \times m)$

- Rabin-Karp (RK)
 - A busca na cadeia de símbolos é feita com o preprocessamento do padrão de texto
 - ▶ O alfabeto $\sum = \{a, b, ..., y, z\}$ com 26 símbolos e as cadeias podem ser vistas como números representados em base $b = |\sum| = 26$

Cadeia P → Número p

- Rabin-Karp (RK)
 - A comparação das cadeias é feita comparando as representações numéricas do texto t e do padrão p
 - Como o alfabeto e o padrão de busca pode conter muitos símbolos, o valor numérico pode ser muito grande para ser representado
 - É aplicada a operação de módulo utilizando um número primo q para armazenar o número gerado, atendendo a restrição de que o valor de b x q é representável em uma palavra do sistema

$$b \times q \le 2^{32} - 1$$

- ► Rabin-Karp (RK)
 - Cada subcadeia de T de tamanho m tem seu valor numérico t_i calculado e comparado com o valor de p
 - Com b = 26 e q = 5, o valor de p = 442 mod 5 = 2

- Rabin-Karp (RK)
 - Implementação em C

```
void busca_rk(int pos(), char T(), char P(), int b, int q) {
    unsigned int n = strlen(T);
    unsigned int m = strlen(P);
    unsigned int i, s, h = pow(b, m - 1) % q, t = 0, p = 0;
    for(i = 0; i < m; i++) {
         p = (b * p + v(P(i))) % q;
         t = (b * t + v(T(i))) % a;
    for(s = 0; s \le n - m; s++) 
         if((p == t) \&\& igual(P, m, T, s))
              inserir(pos, s);
         t = (b * (t - v(T(s)) * h) + v(T(s + m))) % q;
```

- Rabin-Karp (RK)
 - Execução do algoritmo

$$p = 2$$

 $t = (0 \times 26^2 + 17 \times 26^1 + 0 \times 26^0) \mod 5$
 $= 442 \mod 5$
 $= 2$

- ► Rabin-Karp (RK)
 - Execução do algoritmo

$$p = 2$$

 $t = 17 \times 26^2 + 0 \times 26^1 + 17 \times 26^0$) mod 5
= 11509 mod 5
= 4

- ► Rabin-Karp (RK)
 - Execução do algoritmo

$$p = 2$$

 $t = (0 \times 26^2 + 17 \times 26^1 + 0 \times 26^0) \mod 5$
 $= 442 \mod 5$
 $= 2$

- ► Rabin-Karp (RK)
 - Execução do algoritmo

$$p = 2$$

 $t = (17 \times 26^2 + 0 \times 26^1 + 3 \times 26^0) \mod 5$
 $= 11495 \mod 5$
 $= 0$

- ► Rabin-Karp (RK)
 - Execução do algoritmo

$$p = 2$$

 $t = (0 \times 26^2 + 3 \times 26^1 + 4 \times 26^0) \mod 5$
 $= 82 \mod 5$
 $= 2$

- ► Rabin-Karp (RK)
 - Execução do algoritmo

$$p = 2$$

 $t = (0 \times 26^2 + 17 \times 26^1 + 0 \times 26^0) \mod 5$
 $= 442 \mod 5$
 $= 2$

- ► Rabin-Karp (RK)
 - Execução do algoritmo

$$p = 2$$

 $t = (0 \times 26^2 + 9 \times 26^1 + 20 \times 26^0) \mod 5$
 $= 254 \mod 5$
 $= 4$

- Rabin-Karp (RK)
 - Análise de complexidade
 - Espaço O(n-m+1)
 - ► Tempo $\Theta(m) + O((n-m+1) \times m)$

Exemplo

- - Execute passo a passo a busca na cadeia
 - Faça uma análise comparativa dos algoritmos
 - Princípio de funcionamento
 - Vantagens e desvantagens