

Subject Incharge :_____

PARSHUARATH CHARGABLE PROFES

A.P. SHAH INSTITUTE OF TECHNOLOGY

Semester: TI Subject: DS (+T Academic Year: 20:22-20:23
Relations
Let A and B be non-empty sets A relation R from A to B is a subset of A × B. If R, RCA×B and (a,b) & R, we can say that a is related to b by R, like can write like a R b. If a is not related to b by R, like can juste a R b.
The can justice a po.
$P = \{(1, \tau), (2, 3)\}$ and $B = \{\tau, s\}$ $R = \{(1, \tau), (2, 3), (3, \tau)\}$ is a relation
is P &s a velation represents &1
is R &s a relation represents \$1 (less than) on A., A= 21,2,3,4,5
arbiffq <b< td=""></b<>
then R = { (1,2)(1,3)(1,4)(1,5)
(2,3)(2,4)(2,5)(3,4)
(3,5)(4,5)}
Representation of Relation:
2 methods of reprentation
1) Graphical of
2) tabular form.

PARSHVANATH CHARITABLE PROSES

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Semester: Subject: Subject: Subject: Subject: Academic Year: 2022-2023
* Representation of relation.
Let $A = \S1, 2, 3\S$ and $B = \S7, S\S$ Let R is a relation from set A to set B $R = \S(1, 8)(2, 5)(3, 8)\S$
Then the matrix of R is MR = 2 0 1 3 1 0
ex. let A = \$1,2,3,4,83
a R b it and only is a + b < 9) find
$\frac{R = \{(1,1)(1,2)(1,3)(1,4)(1,8)(2,1)}{(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)}$
(3,4)(4,1)(4,2)(4,3)(4,4)(8,1)
MR = 2 1 1 1 1 0 0
84100000

Page No._

Subject Incharge :_

Department of CSE-Data Science | APSIT

PARTIFICATION CHARGESTAND VICTORY

A.P. SHAH INSTITUTE OF TECHNOLOGY

Semester: TIL	A = 2 a b c		Academic Year: 20 2 2- 20 2 3
M _R = 1	0 0	0 0 0	Pind R.
R= {Co		(b,c)(b,	d) (e,c) (c,d)
Let A = §	1,2,3,47 to A. R.	= {(1,1)	is a relation (1,2)(2,1) Then the
7			indeggee -
- 4	Q.	(3)	$\frac{1=3^{0}}{2=2}$ $\frac{3=2}{4=8}$
	10	1 2	= 2, 3 = 2 = 4, 4 = 2
Subject Incharge :	Page No	_ Departme	nt of CSE-Data Science APS

PARTICIPATION CONSTRUCT PROTES

A.P. SHAH INSTITUTE OF TECHNOLOGY

Semester:
* Digraph-
and R Ps a relation on A, then we
- Draw a emall circle for each element
corresponding of A. These circle with the vertices.
- Draw an arrow, called an edge, from vertex a; to a; iff a; R aj.
from A to A.
R={(1,1)(1,2)(2,1)(2,2) (2,3)(2,4)(3,4)
CIK 13
9

CONTRACTOR CONTRACTOR OF PROPERTY

TO SHAH INSTITUTE OF TECHNOLOGY

Department of Compoter Science and Engineering

Semester: TT Subject DNGT Academic from 10 \$ 2 10 \$ 3
ex (2) Find the relation
00- 01 300 m
=> a; Ra; ith there is an edge from
- 9; to aj we have - 9; to aj we have R = {(1,1)(1,3)(2,3)(3,2)(3,3) (4,3) }
3) Let A = {q,b,c,d} and
MR = b 0 1 1 0 Draw the digraph C 0 0 1 1 of R
$\frac{1}{R = \{(a,b)(a,a)(q,d)(b,b)(b,c)(c,c)\}}$ $= \frac{(c,d)(d,a)^{2}}{(c,d)(d,a)^{2}}$
(A) (B)
(C)
a)

Page No._

Subject Incharge :_

Department of CSE-Data Science | APSIT

PARSON/ANATH CHARLEAGE PROFES

A.P. SHAH INSTITUTE OF TECHNOLOGY

Semester :	111	Subject: DSGT	Academic Year 20 2	1.2073
* Dig	raph-			
- Or - Or - Or - con	R Ps represe aw a A an respond	ion- If A is a relation on ut R as fol small circle d label the ing of A. The arrow, called to a; iff	for each ele circle with	the are
		,2,3,4 y, let		
R = 2(A- 10		(2,3) (2,4) 23,4X4
OK.	73	3		
	9"			

PARSITVANATH CHARGARIE TRUSTS

A.P. SHAH INSTITUTE OF TECHNOLOGY

Semester	TI	Subject :	DSGT	Acade	emic Year, 2071_201/3
ex.(4) let R= {(A = { q	16, c, d 2) (b, 1)	3 B= (b,3)(\$1,2,33 C,2)(d,1)3
	0	ADX G			
		2)4	3) (9	
ex. B		\$1,2,3, and only		is mu-	tiple of b.
-> R =	1 2	3 4	6	2) (6,	(4,1) 3)(6,6)?
1 R = 3	1 0	0 1	0 >	A. S.	20 K
6		1 0	4 6	5	(g)
Subject Incharge		Page No.	Danast	ment of CSF De	of Science APSIT

PARSHVARATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Dec-Segrester: TII	Subject: DSGT	Academic Year: 2022-20-23
relation is 9< h	= &1,2,3,4,53 and defined by a R b compute R, R2 igraph of R, R2.	if and only
$\frac{7}{R} = \frac{1}{2} \frac{C^2}{C^2}$	1,2)(1,3)(1,4)(1,5)	15)4
$R = 1 R^{2} 3$ $1 R^{2} 4$ $1 R 5$ $2 R^{2} 4$ $2 R^{2} 5$ $3 R^{2} 5$	= R2 & 2 R3 $= R2 & 2 R4$ $= R2 & 2 R5$ $= R2 & 2 R5$ $= R2 & 2 R5$ $= 2 R2 & 2 R5$ $= 3 R2 & 2 R5$	= 1 R S = 1 R S = 1 R S = 12 R S = 2 R S 3 R S
	2 3	
Subject Incharge :	Page No Depar	tment of CSE-Data Science APSIT

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Semester:
* Examples on types of relations -
1) write relations R on A= {1,2,33 having
the stated property.
III P 16 Periocitive Dut 4101 Synthesis
in & P is aummetric but not transition
IV) K 15 both symmetric & dell)
vy R is meither symmetric nor anti-
$A = \{1,2,3\}$ $A = \{(1,1)(2,2)(3,3)\}$
i} R= {(1,1)(2,2)(3,3) }
ii6 R = {(1,2)(2,3)(1,3)}
118 K = {(1,0)(2,0)(1,0)
iii & R = {(1,2)(2,1)}
$ V\rangle$ $R = \{(1,1)(2,2)\}$ antisymmetric (a,b)(b,a) $\in R$, $q=b$
(a,b) (b,a) ER, 9=b
VY R = { (1,2)(2,3)(3,2)}
V(K - [CI] /(2) 3) -)
THE THE RESIDENCE OF THE PARTY
The second that the second

Page No._

ubject Incharge :

Subject Incharge : Page No. ____

PARSHVANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

Semester:
ex 2 Define a relation on the set A = 29, b, 1, d)
it reflexive transitive and symmetric
=> it reflexive transitive & symmetric
$ \begin{array}{r} A = \{a, b, c, d\} \\ R = \{(a, a)(b, b)(c, c)(d, d)(a, b) \\ (b, a)(a, c)(c, q)(a, d)(d, a) \end{array} $
(b,c)(c,b)(b,d)(d,b).
11/2 symmetric and transitive. A = {a,b,c,d}
$R = \{(a,b)(b,a)(q,a)(c,d)(d,c)(c,c)\}$
2) A = 11,2,3,43 cheek whether given
3) A={11,2,3,43 check whether given relation is reflexive, symmetric, transitive or
anti-symmetric i) \$(1,1)(1,2)(2,1)(2,2)(3,3)(4,4)?
117 2 (1,1) (2,2) (3,3) (4,4) }

Department of CSE-Data Science | APSIT

PARSIVANATH CHARITARLE TRUSTS

A.P. SHAH INSTITUTE OF TECHNOLOGY

Semester:	2023
$\Rightarrow A = 21,2,3,43$	
R= (C(1)(2,2)(3,3)(4,4)(1,2)(2,	1)
it is reflexive as	
R: = (11) (2,2) (3,3)	Clausia C
R; = (1,1)(2,2)(3,3)(4,4) } it is re	HEXIVE -
R = (1,2) eR and (2,1) ER	
- it is symmetric	
R = (1R2) and (2R1), it is t	ransitive.
11 > A = \{1,2,3,4\}	1
R= {(1,1)(2,2)(3,3)(4,4)} it is ?	reflexive
1112 A = {1,2,3,43	
R = & (1,3)(1,4)(2,3)(2,4)(3,1)(3,1	4) 4
R is not reflexive	77.1
R= +(1,3)(3,1) but (1 R1)	
(213) (3,1) but (2 81)	
(213) (3,1) but (2 K1) (3,1) (1,3) but (3 K3)	
R is not symmetric, not tran	2011
V	
Let A= {1,2,3,4,5} Determine wheth	rer the
relation R whose digraph is given ic	reflexing
irreflexive sympetric deummetric colis	1 -1 (01) = 6
Let A={1,2,3,4,5} Determine whetherelation R whose digraph is given is irreflexive, symmetric, asymmetric, antisor transitive.	y monetor c
Subject Incharge : Page No Department of CSE-Data	