CS174A Lecture 13

Announcements & Reminders

- Projects due: Dec 1
- Project presentations: Dec 3 and 5, in class
- Final exam: Dec 12, 11:30 AM 2:30 PM, Place TBD

TA Session This Friday

- Return Midterms
- Project #4
- Collision Detection

Last Lecture Recap

- Barycentric Coordinates, Trilinear Interpolations
- Flat and Smooth Shading

Next Up

- Non-Photorealistic Rendering
- Global Illumination
- · Mappings: Texture, Bump, Displacement, Environment
- Shadows
 - 2-pass z-buffer algorithm
 - Shadow volumes:
- Hidden Surface Removal
 - Ray casting

Shading Recap

Flat Shading

- Illuminate a poly only once
- No interpolation

Gouraud Shading

- Illuminate vertices of poly
- Interpolate colors at vertices.

Phong Shading

- Illuminate each point inside poly
- Interpolate normals at vertices

Non-Photorealistic Shading

- Cartoon like effects
- Color = (L·N > 0.5) ? Color1 : Color2
- Color changes with object's shape and light's position
- Silhouette: (V·N < 0.01) ? Black: Color

Global Illumination

- · Ray Tracing: shadows, reflections, refractions
- Radiosity
 - Based upon light energy conservation.
 - Requires solution of a large set of equations involving all surfaces.

Mappings

- Texture Mapping
- Bump Mapping
- Displacement Mapping
- Environment Mapping
- Procedural Mapping

Texture Mapping

- AKA Pattern mapping
- Map a digitized image onto a poly face
- Individual elements are called Texels
- u,v and s,t coordinates
- Use texel color as diffuse color

Texture Mapping - Aliasing

Due to high-frequency patterns

Multi-Texturing

Apply multiple textures on the same object – blend

Bump Mapping

- Displace point on surface of object
- P' = P + B * N
- $N' = \frac{B_u(NxP_t) Bv(NxPs)}{|N|}$
- Bu,Bv = partial derivatives of B wrt u,v
- Ps,Pt = partial derivatives of P wrt s,t

Displacement Mapping

- Points actually move
- Requires hidden surface removal

Environmental Mapping

- AKA Reflection Mapping
- Use polar (or spherical) coordinates of reflected ray to map
- Map defined usually on 6 faces of a box (cube map) or a sphere

Shadow Algorithms

Types

- Image precision: 2-pass z-buffer method
- Object precision: shadow volume method

Main Idea

P is not visible from light source

P is in shadow.

Strategy

- Identify areas on polys which are not directly visible from light source.
- Mark these areas
- Do HSR from eye position.
- Areas marked for shadow are rendered only with ambient light

Shadow Volume Method

- 1. Create a shadow volume for each front facing poly
- 2. Put shadow volume in poly database
- 3. Do parity test to determine if a visible point is in shadow
 - a. Initial value = # of shadow volumes containing eye position
 - **b.** Increment for front-facing shadow poly
 - C. Decrement for back-facing shadow poly
 - d. If parity $> 0 \Rightarrow$ point is in shadow

Shadow Volume Method

2-Pass Z-Buffer Method

Aka Shadow Map method

- 1. Do z-buffer (full) from light position
 - a. store results in shadow buffer
- 2. Do z-buffer (scanline or full) from eye position
 - a. For each (visible) pixel in scanline
 - *i.* Do inverse map point to WS
 - ii. Map to SS of shadow buffer
 - iii. Compare z with that of shadow buffer at x,y
 - iv. If shadow_buf[x][y] < z, then point is in shadow</pre>

2-Pass Z-Buffer Method

First Pass: from light's position

2-Pass Z-Buffer Method

Second Pass: from eye's position

2-Pass Z-Buffer Method (Contd.)

Advantages

Simple to implement

Disadvantages

- Shadow distant from light source may appear blocky
- A large size of shadow-buffer is required
- Depth buffer bit resolution usually 8-bit
- Umbra vs. penumbra
- Light source in the view volume is problematic

