

Introduction to AI for postgraduate students

Lecture Note 2-2 Probability Theory

Hyun Jong Yang (hyun Jong Yang (hyunyang@postech.ac.kr)

Probability in Al

Probability theory: mathematical framework for representing uncertain statements

- The laws of probability tell us how AI systems should reason
 - > We design our algorithms to compute or approximate various expressions derived using probability theory
- We can use probability and statistics to theoretically analyze the behavior of proposed Al systems

This lecture will deal with **only a brief review** of probability theory. You are strongly suggested to read other materials related to probability theory for in-depth understanding.

Why Probability?

Possible sources of uncertainty

- Inherent stochasticity in the system being modeled
 - ➤ E.g., quantum mechanics
- Incomplete observability
 - ➤ Even deterministic systems can appear stochastic when we cannot observe all the variables that drive the behavior of the system
- Incomplete modeling
 - ➤ When we use a model that must discard some of the information we have observed, the discarded information results in uncertainty in the models' prediction

Random Variables

- Variable that can take on different values randomly
- There can be a vector-valued variable, typically denoted as a boldface letter, e.g., x
- May be discrete or continuous

Discrete Random Variables

Number of girls in a classroom Number of blue marbles in a bag Number of heads when flipping a coin Number of typos on a page Continuous Random Variables
Height of boys in a class
Weight of students in a class
Amount of lemonade in a jug
Time it takes to run a race

Discrete Variables & PMF

Probability mass function (PMF)

- Probability distribution over discrete variables
- Satisfies the following properties
 - \bullet The domain of P must be the set of all possible states of x.
 - $\forall x \in x, 0 \le P(x) \le 1$. An impossible event has probability 0, and no state can be less probable than that. Likewise, an event that is guaranteed to happen has probability 1, and no state can have a greater chance of occurring.
 - $\sum_{x \in \mathbf{x}} P(x) = 1$. We refer to this property as being **normalized**. Without this property, we could obtain probabilities greater than one by computing the probability of one of many events occurring.
- Example: Uniform distribution

Continuous Variables & PDF

Probability density function (PDF)

- Probability distribution of a continuous random variable
- Satisfies the following properties
 - The domain of p must be the set of all possible states of x.
 - $\forall x \in x, p(x) \ge 0$. Note that we do not require $p(x) \le 1$.
 - $\int p(x)dx = 1$.
- Probability that x lies in the interval [a,b]: $\int_{[a,b]} p(x) dx$

Joint & Marginal Probability

Joint probability distribution

Joint PMF: P(X = x, Y = y)

Joint PDF: p(X = x, Y = y)Probability that $X \in [a_1, a_2], Y \in [b_1, b_2]$: $\int_{a_1}^{a_2} \int_{b_1}^{b_2} p(x, y) dx dy$

Marginal probability

Marginal PMF:
$$\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y)$$

Marginal PDF:
$$p(x) = \int p(x, y) dy$$

Conditional Probability

Conditional probability that Y = y given that X = x as

$$P(y = y \mid x = x) = \frac{P(y = y, x = x)}{P(x = x)}$$

Conditional probability is defined only when P(X = x) > 0.

Chain rule of conditional probabilities

$$P(A \cap B) = P(B \mid A) \cdot P(A) \quad \Longrightarrow \quad P(A_1 \cap A_2 \cap A_3 \cap A_4) = P(A_4 \mid A_3 \cap A_2 \cap A_1) \cdot P(A_3 \cap A_2 \cap A_1)$$

$$= P(A_4 \mid A_3 \cap A_2 \cap A_1) \cdot P(A_3 \mid A_2 \cap A_1) \cdot P(A_2 \cap A_1)$$

$$= P(A_4 \mid A_3 \cap A_2 \cap A_1) \cdot P(A_3 \mid A_2 \cap A_1) \cdot P(A_2 \mid A_1) \cdot P(A_1)$$

$$P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) = P(\mathbf{x}^{(1)}) \prod_{i=2}^{n} P(\mathbf{x}^{(i)} \mid \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i-1)})$$

Two random variables X and Y are independent if

$$\forall x \in \mathbf{x}, y \in \mathbf{y}, \ p(\mathbf{x} = x, \mathbf{y} = y) = p(\mathbf{x} = x)p(\mathbf{y} = y)$$

Two random variables X and Y are conditionally independent given a random variable Z if

$$\forall x \in x, y \in y, z \in z, \ p(x = x, y = y \mid z = z) = p(x = x \mid z = z)p(y = y \mid z = z)$$

$$x \perp y \mid z$$

Expectation:

$$\mathbb{E}_{\mathbf{x} \sim P}[f(x)] = \sum_{x} P(x)f(x)$$

$$\mathbb{E}_{\mathbf{x} \sim p}[f(x)] = \int p(x)f(x)dx$$

Variance:

$$\operatorname{Var}(f(x)) = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^{2}\right]$$

Covariance:

$$Cov(f(x), g(y)) = \mathbb{E}\left[\left(f(x) - \mathbb{E}\left[f(x)\right]\right)\left(g(y) - \mathbb{E}\left[g(y)\right]\right)\right]$$

Covariance matrix of a random vector $x \in \mathbb{R}^n$

$$Cov(\mathbf{x})_{i,j} = Cov(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{E} \begin{bmatrix} (X_1 - \mathbf{E}[X_1])(X_1 - \mathbf{E}[X_1]) & \dots & (X_1 - \mathbf{E}[X_1])(X_K - \mathbf{E}[X_K]) \\ \vdots & \ddots & \vdots \\ (X_K - \mathbf{E}[X_K])(X_1 - \mathbf{E}[X_1]) & \dots & (X_K - \mathbf{E}[X_K])(X_K - \mathbf{E}[X_K]) \end{bmatrix}$$

Bernoulli Distribution

■ A distribution over a single binary random variable

$$P(\mathbf{x} = 1) = \phi$$

$$P(\mathbf{x} = 0) = 1 - \phi$$

$$P(\mathbf{x} = x) = \phi^{x} (1 - \phi)^{1 - x}$$

$$\mathbb{E}_{\mathbf{x}}[\mathbf{x}] = \phi$$

$$\operatorname{Var}_{\mathbf{x}}(\mathbf{x}) = \phi(1 - \phi)$$

Binomial Distribution

PMF

$$f(k,n,p) = \Pr(k;n,p) = \Pr(X=k) = inom{n}{k} p^k (1-p)^{n-k}$$
 $oxed{\binom{n}{k}} = rac{n!}{k!(n-k)!}$

Gaussian Distribution

Gaussian (normal) distribution

$$\mathcal{N}(x; \mu, \sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$

•
$$E[x] = \mu$$
, $Var(x) = \sigma^2$

Multivariate normal distribution

mean

$$\mathcal{N}(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^n \mathrm{det}(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$$
 covariance

Exponential and Laplace Distributions

Exponential distribution

$$p(x; \lambda) = \lambda \mathbf{1}_{x \ge 0} \exp(-\lambda x)$$

• $\mathbf{1}_{x\geq 0}$: assign probability zero to all negative values of x

Laplace distribution

Laplace
$$(x; \mu, \gamma) = \frac{1}{2\gamma} \exp\left(-\frac{|x - \mu|}{\gamma}\right)$$

Useful Functions

Logistic sigmoid:

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Softplus:

$$\zeta(x) = \log\left(1 + \exp(x)\right)$$

Useful Functions

Useful properties

$$\sigma(x) = \frac{\exp(x)}{\exp(x) + \exp(0)}$$

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

$$1 - \sigma(x) = \sigma(-x)$$

$$\log \sigma(x) = -\zeta(-x)$$

$$\frac{d}{dx}\zeta(x) = \sigma(x)$$

$$\log it$$

$$\forall x \in (0,1), \ \sigma^{-1}(x) = \log\left(\frac{x}{1-x}\right)$$

$$\forall x > 0, \ \zeta^{-1}(x) = \log\left(\exp(x) - 1\right)$$

$$\zeta(x) = \int_{-\infty}^{x} \sigma(y) dy$$

$$\zeta(x) - \zeta(-x) = x$$

Bayes' Rule

■ Bayes' rule

$$P(\mathbf{x} \mid \mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y} \mid \mathbf{x})}{P(\mathbf{y})}$$

Information Theory

Motivation

- Likely events should have low information content, and in the extreme case, events that are guaranteed to happen should have no information content whatsoever
- Less likely events should have higher information content
- Independent events should have additive information. For example, finding out that a tossed coin has come up as heads twice should convey twice as much information as finding out that a tossed coin has come up as heads once

Self-information

- Satisfies all these three properties
- And is defined by

$$I(x) = -\log P(x)$$

Shannon Entropy

We can quantify the amount of uncertainty in an entire probability distribution using the **Shannon entropy**

$$H(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim P}[I(x)] = -\mathbb{E}_{\mathbf{x} \sim P}[\log P(x)]$$

■ When x is continuous, the Shannon entropy is known as the differential entropy

Example of the binary case:

$$H(x) = P \cdot \log \frac{1}{P} + (1 - P) \cdot \log \frac{1}{1 - P}$$

If we have two separate probability distributions P(x) and Q(x) over the same random variable x, we can measure how different these two distributions are using the **Kullback-Leibler (KL)** divergence

$$D_{\mathrm{KL}}(P||Q) = \mathbb{E}_{\mathbf{x} \sim P} \left[\log \frac{P(x)}{Q(x)} \right] = \mathbb{E}_{\mathbf{x} \sim P} \left[\log P(x) - \log Q(x) \right]$$

Cross-entropy:

$$H(P,Q) = H(P) + D_{KL}(P||Q)$$
$$= -\mathbb{E}_{\mathbf{x} \sim P} \log Q(x)$$

- similar to the KL divergence but lacking the term on the left
- Minimizing the cross-entropy with respect to Q is equivalent to minimizing the KL divergence, because Q does not participate in the omitted term.

KL Divergence

- We wish to approximate p(x) with q(x)
- p(x): mixture of two Gaussians, q(x): a single Gaussian

$$q^* = \operatorname{argmin}_q D_{\mathrm{KL}}(p||q)$$

Low probability where p has high probability $\rightarrow q$ chooses a single mode to avoid putting probability mass in the low-probability areas between modes of p

$$q^* = \operatorname{argmin}_q D_{\mathrm{KL}}(q||p)$$

Structured Probabilistic Models

Probability distribution factorization

$$p(\mathbf{a}, \mathbf{b}, \mathbf{c}) = p(\mathbf{a})p(\mathbf{b} \mid \mathbf{a})p(\mathbf{c} \mid \mathbf{b})$$

 Greatly reduce the number of parameters needed to describe the distribution, thereby reducing computational cost

Structured probabilistic model (graphical model)

We can describe these kinds of factorizations using graph theory

Structured Probabilistic Models

Directed graphical models

$$p(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) = p(\mathbf{a})p(\mathbf{b} \mid \mathbf{a})p(\mathbf{c} \mid \mathbf{a}, \mathbf{b})p(\mathbf{d} \mid \mathbf{b})p(\mathbf{e} \mid \mathbf{c})$$

- We can quickly see some properties of the distribution
 - $\triangleright a$ and c interact directly
 - ightharpoonup a and e interact only indirectly via c

Structured Probabilistic Models

Undirected graphical models

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{i} \phi^{(i)} \left(\mathcal{C}^{(i)} \right)$$
 Clique: Set of nodes that are connected to each other

$$p(a, b, c, d, e) = \frac{1}{Z} \phi^{(1)}(a, b, c) \phi^{(2)}(b, d) \phi^{(3)}(c, e)$$

- We can quickly see some properties of the distribution
 - $\triangleright a$ and c interact directly
 - $\triangleright a$ and e interact only indirectly via c

Any probability distribution may be described in **both** ways, directed and undirected.