

Images are Numbers

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	9	-1	-1	-1

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

Images are Numbers

What the computer sees

157	159	174	168	150	152	129	151	172	161	166	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	40	106	159	181
206	109	6	124	131	111	120	204	166	16	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	10	74	206
188	88	179	209	185	216	211	158	139	76	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	236	76	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	176	13	96	218

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

Tasks in Computer Vision

- Regression: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a particular class

Can we use ANN for Images?

Can we use ANN for Images?

Image size = $1920 \times 1080 \times 3$

First layer neurons = 1920 x 1080 X 3 ~ 6 million

6

Hidden layer neurons = Let's say you keep it ~ 4 million

Weights between input and hidden layer = 6 mil * 4 mil = 24 million

Fully Connected Neural Network

Input:

- 2D image
- Vector of pixel values

Fully Connected:

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

How can we use spatial structure in the input to inform the architecture of the network?

Features Detection

Features Detection

Loopy pattern filter

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

	*						
-1	1	1	1	-1			
-1	1	-1	1	-1			
-1	1	1	1	-1			
-1	-1	-1	1	-1			
-1	-1	-1	1	-1			
-1	-1	1	-1	-1			
-1	1	-1	-1	-1			

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

Verti©al line filter

Diagonal line filter

$$-1+1+1-1-1-1+1+1 = -1 \rightarrow -1/9 = -0.11$$

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

1	1	1
1	-1	1
1	1	1

-0.11	

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

1	1	1
1	-1	1
1	1	1

-0.11	1	

Di

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1,	-1
-1	1	-1	-1	-1

1	1	1
1	-1	1
1	1	1

-0.11	1	-0.11
-0.55	0.11	

-1	1	1	1	-1							
-1	1	-1	1	-1					-0.11	1	-0.1
-1	1	1	1	-1		1	1	1	-0.55	0.11	-0.3
-1	-1	-1	1	-1	*	1	-1	1	-0.33	0.33	-0.3
-1	-1	-1	1	-1		1	1	1	-0.22	-0.11	-0.2
-1	-1	1	-1	-1					-0.33	-0.33	-0.3
-1	1	-1	-1	-1			L ₈		Fe	ature M	lan

Location invariant: It can detect eyes in any location of the image

Feature Maps

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-0.11	1	-0.11
-0.55	0.11	-0.33
-0.33	0.33	-0.33
-0.22	-0.11	-0.22
-0.33	-0.33	-0.33

0	1	0
0	0.11	0
0	0.33	0
0	0	0
0	0	0

Feature Map and Classification

Reduction by Pooling

5	1	3	4
8	2	9	<u>2</u>
1	3	0	1
2	2	2	0

8	9
3	2

2 by 2 filter with stride = 2

Reduction by Max Pooling

*

-0.33

1	0			
0.11	0	Max pooling	1	1
1		poomig	0.33	0.33
0.33	0	\rightarrow	0.33	0.33
0	0		0.55	0.33
0	0		0	0

Reduction by Average Pooling

5	1	3	4
8	2	9	2
1	3	0	1
2	2	2	0

4	4.5
2	0.75

Convolutional layer

Learning Feature Representations

Can we learn a **hierarchy of features** directly from the data instead of hand engineering?

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

- Connections sparsity reduces overfitting
- Conv + Pooling gives location invariant feature detection
- Parameter sharing

- Introduces nonlinearity
- Speeds up training, faster to compute

- Reduces
 dimensions and
 computation
- Reduces overfitting
- Makes the model tolerant towards small distortion and variations

CNN Example

The CIFAR-10 dataset

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class.

Here are the classes in the dataset, as well as 10 random images from each:

airplane		·	
automobile			
bird		A P	S 🚵 💆
cat			
deer		S Y Y	1 - 2
dog	W. C. 10 11		
frog			
horse			TO THE N
ship		- J	
truck			

CNN pre-trained

CNN pre-trained

