

CEPC MDI

Sha Bai
On behalf of CEPC MDI group

65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e⁺e⁻ Colliders (eeFACT2022) 2022-09-13

Outline

- Introduction
- IR beam pipe structure
- **Background estimation**
- Mitigation design efforts
 - Masks
 - Collimators
 - > Shielding
- > Thermal Analysis
 - > HOM heating
 - > Synchrotron radiation
 - ➤ Beam loss backgrounds
 - > Beam pipe thermal analysis
- > Mechanical Design and Optimization
 - > Remote vacuum connector
 - > SC magnet supports
- **Detector simulation**
- > Summary

MDI layout and IR design

- The Machine Detector Interface (MDI) of CEPC double ring scheme is about ±7m long from the IP.
- The CEPC detector superconducting solenoid with 3T magnetic field (2T in Z) and the length of 7.3m.
- The accelerator components inside the detector without shielding are within a conical space with an opening angle of cosθ=0.993. Detective angle: acos0.99
- The e+e- beams collide at the IP with a horizontal angle of 33mrad and the final focusing length is to 1.9m.

MDI parameters

	range	Peak filed in coil	Central filed gradien t	Bending angle	length	Beam stay clear region	Minimal distance between two aperture	Inner diamete r	Outer diamet er	Critical energy (Horizont al)	Critical energy (Vertica l)	SR power (Horizont al)	SR power (Vertic al)
L*	0~1.9m				1.9m								
Crossing angle	33mrad												
MDI length	±7m												
Detector requirement of accelerator components in opening angle	8.11°												
QDa/QDb		3.2/2. 8T	141/84. 7T/m		1.21m	15.2/17.9mm	62.71/105 .28mm	48mm	59mm	724.7/663. 1keV	396.3/26 3keV	212.2/239 .23W	99.9/42 .8W
QF1		3.3T	94.8T/m		1.5m	24.14mm	155.11m m	56mm	69mm	675.2keV	499.4ke V	472.9W	135.1W
Lumical	0.95~1.11m				0.16m			57mm	200mm				
Anti-solenoid before QD0		8.2T			1.1m			120mm	390mm				
Anti-solenoid QD0		3T			2.5m			120mm	390mm				
Anti-solenoid QF1		3T			1.5m			120mm	390mm				
Beryllium pipe					±120mm			28mm					
Last B upstream	64.97~153.5m			0.77mrad	88.5m					33.3keV			
First B downstream	44.4~102m			1.17mrad	57.6m					77.9keV			
Beampipe within QDa/QDb					1.21m							1.19/1.31 W	
Beampipe within QF1					1.5m							2.39W	
Beampipe between QD0/QF1					0.3m							26.5W	

The new central beampipe design

From IP(mm)	Shape	Inner diameter(m m)	Material	Marker
0-85	Circular	20	Ве	
85~180	Circular	20	Al	
180~655	Cone	20~35	Al	Taper: 1:70
655~700	Circular	35	Al	
700~780	Circular	35	Cu	
780~805	Cone	35~39	Cu	
805~855	Race-track	39~20 double pipe	Cu	

> Crotch point at 805mm, with slope, breeches pipe starting point at 855mm, cone, interface point at 700mm

Background estimation

- Background sources
 - Photon backgrounds: SR, Pair production
 - Beam loss backgrounds
 - Radiative Bhabha scattering
 - Beam Gas scattering
 - Beam Thermal photon scattering
 - Injection background
- Real beam
 - Errors
 - Beam-beam effect
 - Beam tail
 - Solenoid
- Multi-turn tracking
 - Using built-in LOSSMAP with one step ahead output
 - SR emitting on
 - RF on
 - Radtapper on

A. Natochii

Beam loss BG

Photon BG

A. Natochii

Injection BG

- No SR photons hitting the central beam pipe directly in normal conditions, which is generated from the last bending magnet in the upstream of IP
- However, some secondaries generated within the beam pipe of QD would hit the detector beampipe, even the beryllium part. Therefore, the mitigation methods must be studied.
- > SR photons generated from the FD magnets will hit downstream of the IR beam pipe, and the once-scattering photons will not go into the detector beam pipe but goes to even far away from the IP region.

- Including Radiative Bhabha scattering, Beam-Gas scattering, Beam Thermal Photon scattering.
- ➤ Beam loss background from Beamstrahlung almost no in upstream IP, but mainly from pair-production distribution.

name	Position	Distance to IP/m	Beta function/m	Horizontal Dispersion/ m	Phase	BSC/2/m	Range of half width allowed/m m
APTX1	D1I.785	44611	20.7	0.12	164.00	0.006	1~6
APTX2	D1I.788	44680	20.7	0.12	164.25	0.006	1~6
APTY1	D1I.791	44745	105.37	0.12	165.18	0.0036	0.156~3.6
APTY2	D1I.794	44817	113.83	0.12	165.43	0.0036	0.156~3.6
APTX3	D10.5	1729.66	20.7	0.06	6.85	0.00182	1~6
APTX4	D10.8	1798.24	20.7	0.12	7.10	0.00182	1~6
APTY3	D10.10	1832.52	20.7	0.25	7.22	0.00182	0.069~3.3
APTY4	D10.14	1901.1	20.7	0.25	7.47	0.00182	0.069~3.3
APTX5	DMBV01IRU0	56.3	196.59	0	362.86	0.01178	2.9~11.78

- ✓ Beam loss particle distribution with collimator design.
- ✓ Collimator design meet requirements of beam-stay-clear region, impedance, phase etc on.
- √ 4 sets of collimators were implemented per IP per Ring(16 in total)
 - ✓ 2 sets are horizontal(4mm radius), 2 sets are vertical(3mm radius).
- One more upstream horizontal collimator sets were implemented to mitigate the Beam-Gas background

- RBB is taken into account in all cases
- A simplified model of top-up injection beam
- Tails from imperfectly corrected X-Y coupling after the injection point
- some tolerances to imperfect beams from the booster (e.g. too large emittances)
- non-Gaussian distributions existing/building up in the booster and being injected into the main rings

Injection beam parameters

Mode	tt	Higgs	w	z
Bunch Number	37	240	1230	3840
Bunch Charge	0.96 nC	0.7 nC	0.73 nC	0.8 nC
Beam Current(mA)	0.11 mA	0.51 mA	2.69mA	9.2 mA
Beta_func (x/y)	200/55	200/55	200/55	200/55
Emittance (nm)	2.83	1.26	0.56	0.19
Bunch Length (mm)	2.0	2.0	1.7	0.96

- Almost no beam loss background in the upstream of the IP, while significantly increased downstream
- The existed collimation system can well cope
- No effect on the inner layer detector but may damage the outer layer or the endcap detector
- BG downstream may damage the SC magnet coils and cause quench.
- Tungsten shielding demanded in the IR.
- Since the very tight space in the IP region, a tungsten-alloy beam pipe is under design in the CEPC TDR stage.

SR mitigation – mask and Au shielding

- Masks design(two masks/IP/ring) :
 - > Tungsten
 - One locates at -1.21m with 4mm height and 10mm long
 - ➤ The other at -4.2m with 0.6mm height
- Lots of photons are secondaries, generated within QD0

Methods	Photon hitting number on Be/ BX	Deposition power on Be(W)		
No mask	39400.0	30.57*e-5		
1.21-mask-Cu	1736.0	1.45*e-5		
1.21-mask-W	1698.0	1.36*e-5		
2.2-mask-Cu	1147.0	0.94*e-5		
1.21-mask-Cu-5 <i>μ</i> mAu	216.0	0.273*e-5		

- Photons hitting number on Be/BX reduced by two orders of magnitude
- > ~216 photons/BX could hit Be
 - ➤ ~2.73x10⁻⁶ W deposition power on Be beampipe

Shielding

- Beam loss in the downstream IR with a large amount, due to the process of radiative bhabha scattering, beamstrahlung, beam-gas scattering, beam thermal photon scattering.
- Radiation dose may damage the SC magnet coil and the detector.

solution

- 1. Tungsten IR beam pipe,
- 2. Combined iron and tungsten yoke of SC magnet

White: Vacuum

Gray: Tungsten Pipe

Light Green: Helium

Key Issues on Calculation and Simplification of Beam pipe model

VOID

VaSpace

Heavy Green: Stainless Steel

- Pure tungsten IR beam pipe with 4mm thickness without cooling taken into account, simulate the Absorbed Dose on Coil (Region)
- Only Beam-Gas beam loss is taken into account until now
- > Take the loss rate calculated by SAD into account:
 - > ~0.00166 Gy/s(0.166rad/s)
 - > ~14.35 Gy/day
 - ~36662.49 Gy/lifetime(Higgs plans to run 7 years)
 - ➤ Limit is 100000 Gy/lifetime

Pink: Coil

Vassel

100

The distribution of lost particles under the RBB effect

1st turn upstream

Movable collimators

➤ Located in straight section between two dipoles, the length is 800 mm.

> SR power: 9.3kW @Higgs, 30MW

Particle deposition:

- Jaw material: Cu
- Total heat generation: 91.6
- Maximum temperature raise by particle-material reaction: 2°C

HOM power distribution

> results for MDI 20mm-20mm

> Transition region: Racetrack (including materials)

 \triangleright σ_z =5mm: Two beam in the IR

Loss factor Trap in IR @k_trap: 0.032v/pc

P_{trap}: H/W/Z/tt: 24.0w/117.1w/1160.8w/6.67w

Position	Position Start-end (mm)	material	Lengt h (mm)	Higgs(w) & (w/cm²)	W (w) & (w/cm²)	Z(w) & (w/cm²)	ttbar (w) & (w/cm²)
Be pipe (w)	0-85	Ве	85	1.13 & 0.021	5.587 & 0.105	55.295 & 1.35	0.31 & 0.005
Be pipe transition(w)	85-180	Al	95	0.61 & 0.01	2.950 & 0.049	29.280 & 0.491	0.172 & 0.007
Transition pipe (w)	180-655	Al	475	6.99 & 0.017	34.48 & 0.085	341.562 & 0.83	1.958 & 0.005
Transition (w)	655-700	Al	45	0.62 & 0.015	2.95 & 0.071	29.28 & 0.701	0.172 & 0.004
RVC bellow (w)	700-780	Cu	80	0.52 & 0.007	2.532 & 0.034	25.002 & 0.337	0.14 & 0.002
Transition on Y-crotch	780-805	Cu	25	0.16 & 0.007	0.785 & 0.032	7.822 & 0.316	0.05 & 0.002
Y- crotch (w)	805-855	Cu	50	0.33 & 0.005	1.572 & 0.024	15.626 & 0.241	0.091 & 0.002
Quadrupole pipe(w)	855-1100	Cu	245	1.58 & 0.005	7.735 & 0.024	75.594& 0.24	0.434 & 0.002
Total	0-1100	-	1100	12.0 &0.011	58.594 &0.056	580.46 & 0.56	3.331 & 0.003

Heat load from SR

- In normal conditions, there is no SR photons hitting the central beam pipe.
- Single layer beam pipe with water cooling, SR heat load is not a problem.

	-0.15			
Region	SR heat load	SR average power density		
0~780mm	0	0		
780mm~805mm	23.04W	256W/cm ²		
805mm~855mm	53.39W	296.6W/cm ²		
855mm~1.9m(QDa entrance)	4.32W	1.15W/cm ²		
QDa	3.28W	0.75W/cm ²		
QDa~QDb	22.92W	79.58W/cm ²		
QDb	3.96W	0.91W/cm ²		
QDb~QF1	71.04W	65.8W/cm ²		
QF1	7.26W	1.34W/cm ²		

➤ In abnormal conditions, SR photons hitting the bellows (no cooling) and berrylium pipe under the extreme beam conditions, since it is a transient effect, heat load is not a problem.

- ➤ In extreme cases ~ at least 10 times per day. The beam will be stopped within 0.5ms when abnormal.
- ➤ The background of the detector and radiation dose should be considered under abnormal conditions.

SR from solenoid combined field

- Horizontal trajectory will couple to the vertical
- Due to the sol+anti-sol field strength quite high, maximum~4.24T, transverse magnetic field component is quite high.
- SR from vertical trajectory in sol+anti-sol combined field should be taken into account.

- SR fan is focused in a very narrow angle from
 - -116urad to 131urad
- SR will not hit Berryllium pipe, and no background to detector.
- SR will hit the beam pipe ~213.5m downstream from IΡ
- Water cooling is needed.

Maximum: 670keV

Vertical SR power distribution

Maximum: 31W

Heat load in IR from beam loss background

Region	RBB	Beamstrahlung	Beam-Gas	втн
Berryllium pipe	6.7mW	0	0	0
Detector beam pipe	0.024W	0	4.8uW	1.2uW
Accelerator beam pipe before QDa	0.17W	0	4.2uW	1.2uW
QDa~QDb	2.13W	3.8uW	5.9uW	1.8uW
QDb~QF1	0.01W	3.8uW	0.5uW	0.6uW
QF1	0.26mW	0	3.7uW	0.66uW

- ➤ Beam loss particles from the process of radiative Bhabha scattering, Beamstrahlung, Beam-Gas scattering, and beam-thermal photon scattering hitting the IR beam pipe
- ➤ Heat load in IR from beam loss background is so small, compared to synchrotron radiation and HOM.
- ➤ The photons generated from the process of radiative Bhabha scattering, Beamstrahlung, and Beam-Gas scattering with small angle and large energy, still under analysis.

Beam pipe thermal analysis

Calculation model and condition

Extending pipe:

- •2 inlet pipe, 2 outlet pipe
- •Coolant: water
- •Inlet temperature: 20°C
- •Inlet velocity: 0.5m/s (1.7L/min)

Be pipe:

- •4 inlet pipe, 4 outlet pipe
- •Coolant: paraffin
- •Inlet temperature: 20°C
- •Inlet velocity: 0.5m/s (0.8L/min)

Extending pipe:

- •2 inlet pipe, 2 outlet pipe
- Coolant: water
- •Inlet temperature: 20°C
- •Inlet velocity: 0.5m/s (1.7L/min)

Heat source distribution

Position	Z(w) & (w/cm2)
Be pipe (w)	55.295 & 1.35
Be pipe transition(w)	29.280 & 0.491
Transition pipe (w)	341.562 & 0.83
Transition (w)	29.28 & 0.701

Calculation results:

- ✓ Temperature difference ~5.1°C between two sides of the first layer detector
- ✓ Temperature low, temperature difference small, meet the requirement

Remote vacuum connector

Replace the sealing membranes by two layers of edge sealing.

Dimensions:

Transversal: Max. φ174mm

Longitudinal: ~83mm

Gas tube of RVC

RVC distance to detective angle : 14.91mm (gas tube)

No interference for this design!

SC magnet supports

- MagnetSupportOptimized uneven deformation (um)QD0Skeleton2.1Solid3.2QF1skeleton0.8
- ➤ The cryostat was 5 meters long with18 mm thick stainless wall. The maximum deformation was 190 um.
- ➤ The uneven deformation reduced significantly with structure optimization within the cryostat

- Detecting Efficiency(Occupancy): The ratio of Data/Noise
- Detector Safety: Radiation Tolerance/Cooling Issues
- > Three quantities has been scored:
 - Charged Particle Fluence(Hit Density)
 - Total lonizing Dose(TID)
 - > 1 MeV Silicon Equivalent Fluence(NIEL)
 - A Safety of 10 is always applied to all results

- Could reach
 Ecal and
 outside
- Characterized by Hit Density, TID and NIEL

Higgs ~ 50MW

	Hit Density($cm^{-2}\cdot BX^{-1}$)	$TID(k rad \cdot yr^{-1})$	$NIEL(n_{eq} imes 10^{12} \cdot cm^{-2} \cdot yr^{-1})$
Vertex	2.3	5360	120.4
TPC	2.59e-2	387.09	42.503
Ecal Barrel	1.16e-3	31.56	8.002
Ecal EndCup	1.36e-3	14.175	6.128
Hcal Barrel	2.78e-5	1.450	0.9326
Hcal EndCup	1.32e-3	26.31	6.351

Summary

- > The MDI layout has been renewed. Compatible and no interference for the design.
- New Φ20mm IR beam pipe is designed and renewed.
- ➤ The estimation of the radiative background from photon background, beam loss background and injection background has been updated.
- The mitigation efforts of every kinds of background dedicated to the mask, collimator and shielding has been designed.
- The thermal analysis including HOM heating, synchrotron radiation, beam loss background and beam pipe thermal analysis meet the requirement.
- Some key devices such as remote vacuum connector and SC magnet supports are designed. The uneven deformation reduced significantly with structure optimization within the cryostat.
- The full detector simulation shows the impact on detector small enough.

Thanks

