A non-examinable sketch proof of the Cook-Levin theorem COMS20010 2020, Video 10-2

John Lapinskas, University of Bristol

Lies, damned lies and sketch proofs

Cook-Levin Theorem: Any problem in NP is Cook-reducible to SAT.

Let X be any problem in NP, and let \vec{x} be an instance of X.

Then we will construct a CNF formula $F_{\vec{x}}$, of size polynomial in $|\vec{x}|$, which is satisfiable if and only if \vec{x} is a Yes instance. Our Cook reduction then just applies the SAT oracle to $F_{\vec{x}}$ and outputs the result.

By definition of NP, there is a polynomial-time algorithm Verify such that \vec{x} is a Yes instance if and only if $\text{Verify}(\vec{x}, \vec{w}) = \text{Yes}$ for some \vec{w} . So we would like to express the statement " $\text{Verify}(\vec{x}, \vec{w}) = \text{Yes}$ " as a CNF formula in \vec{w} .

Problem: We know **nothing** about how Verify works. So to do this, we need to be able to express "A computer running program P on input I for t steps outputs Yes" as a CNF formula of polynomial size...!

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.

We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t) .

We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A **Turing machine** is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.

We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t) .

We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A **Turing machine** is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.

We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t) .

We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A **Turing machine** is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Machine in state 3, head reads $0 \longrightarrow Write 1$, move left, enter state 7.

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.

We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t) .

We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A **Turing machine** is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.

We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t) .

We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A **Turing machine** is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.

We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t) .

We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Machine in state 10. head

Expressing computation with logic

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.

We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t) .

Recall from COMS11700: A **Turing machine** is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts.

The **Church-Turing Thesis** says: Any computable function is computable using a Turing machine.

The **Strong Church-Turing Thesis** says: Any function computable **in polynomial time** is computable **in polynomial time** using a Turing machine. (Ignoring quantum computers, anyway...)

So we can take our program in the form of a Turing machine, which is much easier to simulate!

Expressing computation with logic

Our new goal: Given a Turing machine M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.

We would like to construct $f(M, \vec{l}, t)$ in time poly (\vec{l}, t) .

Idea: Model the entire computation from start to finish, step by step.

We will have variables:

- $C_{p,\tau}$ to model the cell contents. We want $C_{p,\tau}=1$ if and only if cell p contains a 1 at time τ .
- $S_{s,\tau}$ to model which state the machine is in. We want $S_{s,\tau}=1$ if and only if the machine is in state s at time τ .
- $P_{p,\tau}$ to model the position of the tape head. We want $P_{p,\tau}=1$ if and only if the tape head is at cell p at time τ .

Problem: The tape is infinite, so we need infinitely many variables!

Expressing computation with logic

Our new goal: Given a Turing machine M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.

We would like to construct $f(M, \vec{l}, t)$ in time poly (\vec{l}, t) .

Idea: Model the entire computation from start to finish, step by step.

We will have variables:

- $C_{p,\tau}$ to model the cell contents. We want $C_{p,\tau}=1$ if and only if cell p contains a 1 at time τ .
- $S_{s,\tau}$ to model which state the machine is in. We want $S_{s,\tau}=1$ if and only if the machine is in state s at time τ .
- $P_{p,\tau}$ to model the position of the tape head. We want $P_{p,\tau}=1$ if and only if the tape head is at cell p at time τ .

Solution: In time t the tape head can only move t spaces, so the state of the Turing machine is determined entirely by cells $-t, -t+1, \ldots, t$. So actually we only need $O(t^2)$ variables.

Our new goal: Given a **Turing machine** M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.

We would like to construct $f(M, \vec{l}, t)$ in time poly (\vec{l}, t) .

Our variables: We want: $C_{p, au}=$ contents of cell p at time au; $S_{s, au}=1$ iff machine is in state s at time au; $P_{p, au}=1$ iff head is at cell p at time au.

Write \mathcal{M}_{τ} for the collection of variables corresponding to the machine's state at time τ , i.e. $\{C_{-t,\tau},\ldots,C_{t,\tau},\ S_{1,\tau},\ldots,S_{q,\tau},\ P_{-t,\tau},\ldots,P_{t,\tau}\}$.

We would like to write:

$$f(M, \vec{l}, t) = [\mathcal{M}_0 \leftrightarrow \mathsf{Tape} \; \mathsf{reads} \; \vec{l}, \; \mathsf{state} \; \mathsf{is} \; 1, \; \mathsf{head} \; \mathsf{at} \; \mathsf{cell} \; 0]$$

$$\land [\mathcal{M}_1 \; \mathsf{is} \; \mathsf{derived} \; \mathsf{correctly} \; \mathsf{from} \; \mathcal{M}_0]$$

$$\land [\mathcal{M}_2 \; \mathsf{is} \; \mathsf{derived} \; \mathsf{correctly} \; \mathsf{from} \; \mathcal{M}_1]$$

$$\vdots$$

$$\land [\mathcal{M}_t \; \mathsf{is} \; \mathsf{derived} \; \mathsf{correctly} \; \mathsf{from} \; \mathcal{M}_{t-1}]$$

$$\land [\mathcal{M}_t \leftrightarrow \mathsf{Machine} \; \mathsf{has} \; \mathsf{halted} \; \mathsf{with} \; \mathsf{output} \; \mathsf{Yes}]$$

Our new goal: Given a Turing machine M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.

We would like to construct $f(M, \vec{l}, t)$ in time poly (\vec{l}, t) .

Our variables: We want: $C_{p,\tau}=$ contents of cell p at time τ ; $S_{s,\tau}=1$ iff machine is in state s at time τ ; $P_{p,\tau}=1$ iff head is at cell p at time τ .

Write \mathcal{M}_{τ} for the collection of variables corresponding to the machine's state at time τ , i.e. $\{C_{-t,\tau},\ldots,C_{t,\tau},\,S_{1,\tau},\ldots,S_{q,\tau},\,P_{-t,\tau},\ldots,P_{t,\tau}\}.$

We would like to write:

$$f(M, \vec{I}, t) = [\mathcal{M}_0 \leftrightarrow \mathsf{Tape} \ \mathsf{reads} \ \vec{I}, \ \mathsf{state} \ \mathsf{is} \ 1, \ \mathsf{head} \ \mathsf{at} \ \mathsf{cell} \ 0]$$

$$\wedge \bigwedge_{\tau=1}^t [\mathcal{M}_\tau \ \mathsf{is} \ \mathsf{derived} \ \mathsf{correctly} \ \mathsf{from} \ \mathcal{M}_{\tau-1}]$$

$$\wedge [\mathcal{M}_t \leftrightarrow \mathsf{Machine} \ \mathsf{has} \ \mathsf{halted} \ \mathsf{with} \ \mathsf{output} \ \mathsf{Yes}].$$

If we can express these as CNF statements of length polynomial in t, we're done since an AND of CNFs is in CNF.

This is painful but ultimately doable!

Our new goal: Given a Turing machine M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.

We would like to construct $f(M, \vec{l}, t)$ in time poly(\vec{l}, t).

Our variables: We want: $C_{p, au}=$ contents of cell p at time au; $S_{s, au}=1$ iff machine is in state s at time au; $P_{p, au}=1$ iff head is at cell p at time au.

Write \mathcal{M}_{τ} for the collection of variables corresponding to the machine's state at time τ , i.e. $\{C_{-t,\tau},\ldots,C_{t,\tau},\,S_{1,\tau},\ldots,S_{q,\tau},\,P_{-t,\tau},\ldots,P_{t,\tau}\}.$

The key point: Computer operations are local — the changes from \mathcal{M}_{τ} to $\mathcal{M}_{\tau+1}$ only depend on a few variables in \mathcal{M}_{τ} !

So we check consistency with an AND of many clauses that look like:

$$[P_{i,\tau} = 1 \land S_{3,\tau} = 1 \land C_{i,\tau} = 0 \Rightarrow C_{i,\tau+1} = 1]$$

Each such clause has only 4 variables, so it can be expressed as an O(1)-length CNF formula. We need $\Theta(t)$ such formulae for every variable in $\mathcal{M}_{\tau+1}$, one for each possible (position, state, cell contents) tuple, so in total our consistency check will have length $\Theta(t^2)$ and $|f(M,\vec{l},t)| \in \Theta(t^3)$.

John Lapinskas Video 10-2 7 / 7