Bank Marketing Prediction

Goal

Our main goal is to predict the probability of customer in subscribing to Term Deposit

Approach

Built Logistic Regression Model

Correlation & Chi Squared Test for Independent Variables in Relation to The Dependent variables(y)

x_var [‡]	Chisquared [‡]	df [‡]	pvalue [‡]
job	836.110	11	< 2.2e-16
marital	196.500	2	< 2.2e-16
education	238.920	3	< 2.2e-16
default	22.724	1	1.871e-06
housing	875.690	1	< 2.2e-16
contact	1035.700	2	< 2.2e-16
loan	210.190	1	< 2.2e-16

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

MODEL 1

Significant Variables:

- housing_yes
- loan_yes
- campaign
- balance
- duration

Accuracy = 89.99%

	y_actual = No	y_actual = Yes
y_pred = No		684
y_pred = Yes	221	374

Histogram of predicted values

Histogram of pred

MODEL 2: Generate Synthetic Samples to Handle Imbalance Data

Significant Variables:

- job_student
- marital_married
- job_admin
- job_retired
- balance
- duration

Accuracy = 82.27%

	y_actual = No	y_actual = Yes
y_pred = No	7043	1557
y_pred = Yes	1457	1557 6943

Histogram of predicted values

Histogram of pred

MODEL 3: New Customers

Significant Variables:

- Age
- Balance
- Duration
- jobs retired, student, blue_collar
- marital_married

ROC

Accuracy = 86.63%

	y_actual = No	y_actual = Yes
y_pred = No		1468
y_pred = Yes	1429	9364

Histogram of predicted values

MODEL 4: Old Customer

Significant Variables:

- housing_yes
- loan_yes
- campaign
- balance
- duration

• Accuracy = 83.69%

	y_actual = No	y_actual = Yes
y_pred = No	4703	705
y_pred = Yes	372	825

ROC

Histogram of predicted values

Key Takeaways

- Accuracy is not the only measure of how good the model is
- Should assess the quality of the model and improvise
- Ensure that the data is not imbalanced
- Create segments of similar customers using affinity clustering or k-means
- Create separate model for each segment to capture different customer behaviour
 - there is no such thing as an average customer and personalisation is the key!