3. vertex: 
$$(1,-1)$$
  
 $j(x) = (x-1)^2 -1$ 

7. The point (1, 0) is on the graph and 
$$g(1) = 0$$
.  $g(x) = x^2 - 2x + 1$ 

15. 
$$f(x) = -x^2 - 2x + 8$$
  
 $x = \frac{-b}{2a} = \frac{2}{-2} = -1$   
 $f(-1) = -(-1)^2 - 2(-1) + 8$   
 $= -1 + 2 + 8 = 9$   
The vertex is at  $(-1, 9)$ .

23. 
$$f(x) = 2(x+2)^2 - 1$$
  
vertex:  $(-2, -1)$   
x-intercepts:  
 $0 = 2(x+2)^2 - 1$   
 $2(x+2)^2 = 1$   
 $(x+2)^2 = \frac{1}{2}$   
 $x+2 = \pm \frac{1}{\sqrt{2}}$   
 $x = -2 \pm \frac{1}{\sqrt{2}} = -2 \pm \frac{\sqrt{2}}{2}$   
y-intercept:  
 $f(0) = 2(0+2)^2 - 1 = 7$ 

The axis of symmetry is x = -2.



37. 
$$f(x) = 2x - x^2 - 2$$
  
 $f(x) = -x^2 + 2x - 2$   
 $f(x) = -(x^2 - 2x + 1) - 2 + 1$   
 $f(x) = -(x - 1)^2 - 1$   
vertex:  $(1, -1)$   
 $x$ -intercepts:  
 $0 = -(x - 1)^2 - 1$   
 $(x - 1)^2 = -1$   
 $x - 1 = \pm i$   
 $x = 1 \pm i$   
No  $x$ -intercepts.  
 $y$ -intercept:  
 $f(0) = 2(0) - (0)^2 - 2 = -2$ 

The axis of symmetry is x = 1.



$$f(x) = 2x - x^2 - 2$$

domain: (-∞,∞)

range: (-∞,-1]

57.

**a.**  $y = -0.01x^2 + 0.7x + 6.1$ a = -0.01, b = 0.7, c = 6.1

x-coordinate of vertex

$$=\frac{-b}{2a}=\frac{-0.7}{2(-0.01)}=35$$

y-coordinate of vertex

$$y = -0.01x^2 + 0.7x + 6.1$$
  
 $y = -0.01(35)^2 + 0.7(35) + 6.1 = 18.35$ 

The maximum height of the shot is about 18.35 feet. This occurs 35 feet from its point of release.

**b.** The ball will reach the maximum horizontal distance when its height returns to 0.

$$y = -0.01x^{2} + 0.7x + 6.1$$
  

$$0 = -0.01x^{2} + 0.7x + 6.1$$
  

$$a = -0.01, b = 0.7, c = 6.1$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-0.7 \pm \sqrt{0.7^2 - 4(-0.01)(6.1)}}{2(-0.01)}$$

$$x \approx 77.8 \text{ or } x \approx -7.8$$

The maximum horizontal distance is 77.8 feet.

c. The initial height can be found at x = 0.

$$y = -0.01x^{2} + 0.7x + 6.1$$
  
$$y = -0.01(0)^{2} + 0.7(0) + 6.1 = 6.1$$

The shot was released at a height of 6.1 feet.