

Dimensionality Reduction

Ms. Sandhya Harikumar,

Department of Computer Science & Engineering,

Amrita Vishwa Vidyapeetham, Amritapuri

Dimensionality of Dataset

dimensions.

Original versus Observed Dimensionality

- ➤ Predict the performance of students
- ►2-d data (mark1,mark2)
- >Correlated
- ➤ Do we really require 2-dimensional?

REAL – 1-d data OBSERVED – 2-d data

Dimensionality Reduction

➤ Dimensionality Reduction : A Technique to reduce the size of data

Why Dimensionality Reduction

High Dimensional Data difficult to handle

Image , Text Documents,
 Biological databases

Data Compression

Better visualization

A smaller subspace to keep most of the information about the original data

Preprocessing Step before applying supervised learning algorithm

High Dimensional Data

- Number of dimensions are staggeringly high
- ➤ Image Data : 10^6 pixels
- ➤ Text Data : 10^10 words
- ➤ Biological databases: 10^20
- ➤ Difficult to handle data

High Dimensional Data: Sparsity

Both images seem similar overall

High Dimensional Data: Sparsity

Curse of Dimensionality

- As the dimensions increase the volume of the space increase.
- Requirement of the number of samples increase exponentially to really understand the data.

Preprocessing

Visualization: Dimensionality Reduction

Dimensionality Reduction

Dimensionality Reduction

\mathbf{day}	We	\mathbf{Th}	\mathbf{Fr}	\mathbf{Sa}	Su
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
Smith	0	0	0	2	2
Johnson	0	0	0	3	3
Thompson	0	0	0	1	1

The above matrix is really "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

 $[5\ 5\ 5\ 0\ 0] = 5*[1\ 1\ 1\ 0\ 0] + 0*[0\ 0\ 0\ 1\ 1]$

Data compression

Why Reduce Dimensions

- Discover hidden correlations/topics
 - Example: Words that occur commonly together
- Remove redundant and noisy features
 - Example : Not all words are useful
- Interpretation and visualization
- Less storage space and efficient processing of the data

Applications

- Data Visualization
- Data Compression
- Data Classification
- Trend Analysis
- •Factor Analysis
- Noise Reduction

- How many unique "sub-sets" are in the sample?
- How are they similar / different?
- What are the underlying factors that influence the samples?
- Which time / temporal trends are (anti)correlated?
- Which measurements are needed to differentiate?
- How to best present what is "interesting"?
- Which "sub-set" does this new sample rightfully belong?

Types of Dimensionality Reduction

- Principal Component Analysis
- Singular Value Decomposition
- •Linear Discriminant Analysis

- Correlation
- Wrapper
- •Filter

Takeaways

- ➤ Dimensionality reduction refers to reducing the size of data
- ➤ Curse of Dimensionality
- ➤ Motivation for Dimensionality Reduction
- **>** Applications
- > Types of Dimensionality Reduction

How to find the 'best' low dimension space that conveys maximum useful information.

Principal Component Analysis

Given dataset $X = \mathbb{R}^{n \times d}$, reduce from d-dimension to p-dimension.

$$X' = \mathbb{R}^{n \times p},$$

without much loss of information.

- > Feature extraction
- >d-dim -> p-dim data

High Variance is More information

- ➤ High spread in f2
- >f1 can be dropped

High spread in f1 f2 can be dropped

Axis with maximum variance retains the information the most

f1' perpendicular f2'

- >f1' retained
- ➤f2' dropped
- ➤ Project xi's onto f1'

Descrive: Find an axis f1' such that the variance of xi projected onto f1' is maximized.

Objective of PCA

➤ Project data onto a lower dimensional Linear Space such that the variance of the projected data is maximized.

$$Max_{u_1} \frac{1}{N} \sum_{i=1}^{N} (u_1^T x_i)^2$$

 $> u_1^T x_i$ is the projection of x_i onto u_1

Projection onto 2d-space

original data space

Original space

Direction of maximum variance First Principal Component

Second maximum variance Second Principal Component

New space: Transformed Space

Linear combination of original features

Takeaways

- PCA identifies axes/features in decreasing order of variance.
- Orthogonal axes
- The first PC is the best axis with maximum variance
- Projection onto a subset of axes leads to reduction in the dimensionality of original feature space
- Data transformed in different directions.
- The directions are obtained by some linear combination of the original features.

Geometric Rationale of PCA

3-d data

Step 1: Centroid of data

$$\begin{pmatrix}
x11 & x12 & x13 \\
\vdots & \ddots & \vdots \\
xn1 & xn2 & xn3
\end{pmatrix}$$
Mean vector = $(\bar{x}_1, \ \bar{x}_2, \ \bar{x}_3)$

Variance

The variance of each variable is the average squared deviation of its n values around the mean of that variable.

$$V_{i} = \frac{1}{n-1} \sum_{m=1}^{n} (X_{im} - \overline{X}_{i})^{2}$$
 $SD_{i} = \sqrt{V_{i}}$

- Features with high variances will dominate the principal components
- These problems are generally avoided by standardizing each variable to unit variance and zero mean.

Step 2: Mean-centered data/Standardization

Mean-centered data/Standardization

- Move data to center of coordinate system
- Removes arbitrary bias
- Also scale the data to unit-variance

Step 3 : Find Covariance

$$> \operatorname{cov}(X_i, X_j) = \frac{1}{n-1} \sum_{k=1}^{n} (X_{ik} - \overline{X}_i) (X_{jk} - \overline{X}_j)$$

For d-dimensional data: dxd matrix

$$\begin{pmatrix} cov(X_1, X_1) & cov(X_1, X_2) & \dots & cov(X_1, X_d) \\ \vdots & & \ddots & & \vdots \\ cov(X_d, X_1) & cov(X_d, X_2) & cov(X_d, X_d) \end{pmatrix}$$

- ➤ Sign of the covariance is important.
- If positive then: the two variables increase or decrease together (correlated)
- if negative then: One increases when the other decreases (Inversely correlated)

Covariance vs Correlation

- Covariances between the standardized variables are correlations
- After standardization, each variable has a mean of 0 and a variance of 1.000
- Correlations can be also calculated from the variances and covariances:

Covariance

➤In matrix notation, Covariance is computed as

$$S = X'X$$

- where X is the n x d data matrix, with each feature mean-centered (also standardized by SD if using correlations).
- >Square, symmetric matrix
- Diagonals are the variances, off-diagonals are the covariances. x_1

ovariai	$nces. X_1$	X_2		X_1	X_2
X ₁	6.6707	3.4170	X_1	1.0000	0.5297
X_2	3.4170	6.2384	X_2	0.5297	1.0000

Variance-covariance Matrix

Correlation Matrix

2D Example of PCA

• Variables X_1 and X_2 have positive covariance & each has a similar variance.

 $V_1 = 6.67$ $V_2 = 6.24$ $C_{1,2} = 3.42$

Configuration is Centered

• Each variable is adjusted to a mean of zero (by subtracting the mean from each value).

Trace

- Sum of the diagonals of the variance-covariance matrix is called the trace
- > Trace represents the total variance in the data
- \triangleright It is the mean squared Euclidean distance between each object and the centroid in d-dimensional space.

	X_1	X_2		X_1	X_2
X_1	6.6707	3.4170	X_1	1.0000	0.5297
X_2	3.4170	6.2384	X_2	0.5297	1.0000
Trace = 12.9091				Trace = 2.0000	

Step 4 : Compute Eigen vectors and Eigen values of Covariance Matrix S

- Finding the principal axes involves eigen analysis of the covariance matrix (S)
- The eigenvalues (latent roots) of S are solutions (λ) to the characteristic equation

$$|\mathbf{S} - \lambda \mathbf{I}| = 0$$

Eigen Vectors and Eigen Values

➤ The eigen vector : Direction of axis

The eigenvalues, λ_1 , λ_2 , ... λ_d are the variances of the coordinates on each axis

 \triangleright PC1 : The eigen vector corresponding to highest λ value

	f ₁	f_2			u ₁	u_2
f_1	6.6707	3.4170	$\lambda_1 = 9.8783$	f_1	0.7291	-0.6844
f_2	3.4170	6.2384	$\lambda_2 = 3.0308$	f_2	0.6844	0.7291

Trace = 12.9091

Note: $\lambda_1 + \lambda_2 = 12.9091$

Principal Components are Computed >PC 1 has the highest possible variance (9.88)

- >PC 2 has a variance of 3.03
- >PC 1 and PC 2 have zero covariance.

Eigen vectors as principal components

- Each eigenvector consists of d values which represent the "contribution" of each variable to the principal component axis
- Eigenvectors are uncorrelated (orthogonal)

Transformed space using PCs

$$F1' = 0.7291*x11 + 0.6844*x12$$

$$F2' = -0.6844*x11 + 0.7291*x12$$

Step 5: Dimensionality Reduction using PCs

$$\begin{pmatrix} x11 & x12 \\ x21 & x22 \end{pmatrix} \begin{pmatrix} 0.7291 & -0.7844 \\ 0.6844 & 0.7291 \end{pmatrix}$$

$$\begin{pmatrix} x11 & x12 \\ x21 & x22 \end{pmatrix} \begin{pmatrix} 0.7291 \\ 0.6844 \end{pmatrix} = Z^*$$

$$nxd \qquad dxp \qquad nxp$$

Transformed Feature Space

 \triangleright Coordinates of each object i on the k^{th} principal axis, known as the scores on PC k, are computed as

$$z_{ik} = u_{1k} x_{i1} + u_{2k} x_{i2} + \dots + u_{dk} x_{id}$$

- \triangleright where Z is the *n* x *k* matrix of PC scores,
- \triangleright X is the *n* x *d* centered data matrix and
- \triangleright U is the d x k matrix of eigenvectors.

PCA steps

Input: X matrix of size n x d; n samples, d features

Step 1: Mean of each feature value

Step 2 : Mean centering of X

 $X'_{im} = \frac{\left(X_{im} - \overline{X}_{i}\right)}{\mathrm{SD}_{i}}$ variable iStandard deviation of variable i

Step 3 : Compute Covariance S = X'X

Step 4 : Find eigen vectors, eigen values from S

Arrange eigen vectors in descending order of eigen values

$$\lambda_1 < \lambda_2 < \dots < \lambda_d$$

Step 5: Retain the first p eigen vectors: **U** matrix with n x p size X.U gives the p-dimensional data

Advantages

- > Removes correlation amongst the features in original data space
- ➤ Principal Components are independent of one another. There is no correlation among them.
- ➤ Most effective transformation of existing attributes through a linear transformation technique
- **➤**Dimensionality Reduction
- ➤ Preprocessing data
- ➤ Reduces Overfitting

Limitations

- ➤ Independent variables become less interpretable
- ➤ Data standardization is must before PCA

References

- https://www.statisticshowto.com/dimensionality/
- https://builtin.com/data-science/step-step-explanation-principal-component-analysis
- http://docs.netapp.com/ontap-9/index.jsp?topic=%2Fcom.netapp.doc.onc-sm-help-930%2FGUID-B0C5894F-6D20-4210-A031-D5CD39C7A029.html
- https://medium.com/@bishikh90/geometrical-and-mathematical-interpretation-principal-component-analysis-52f39a924b40
- https://learnche.org/pid/latent-variable-modelling/principal-component-analysis/geometric-explanation-of-pca

- · Step 1 Get some data
- Step2 Subtract the mean produces a data set whose mean is zero

	X	y		\mathcal{X}	y
!	2.5	2.4		.69	.49
	0.5	0.7		-1.31	-1.21
	2.2	2.9		.39	.99
	1.9	2.2		.09	.29
Data =	3.1	3.0	DataAdjust =	1.29	1.09
	2.3	2.7		.49	.79
	2	1.6		.19	31
	1	1.1		81	81
	1.5	1.6		31	31
	1.1	0.9		71	-1.01

Mean adjusted data

- Step3: Calculate the covariance matrix
- non-diagonal elements in this covariance matrix are both the variable increase together

$$ccv = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

Step4:Calculate the eigen vectors and eigen values of the covariance matrix

$$eigenvalues = \begin{pmatrix} 0.04908333989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

line of best fit

- Step5:Choosing components and forming a feature vector
- Eigen vector with the highest eigen value is the principle compone
- Order by eigen value, highest to lowest gives the components in order of significance

$$FeatureVector = (eig_1 eig_2 eig_3 eig_n)$$

Step6:Deriving the new dataset

 $Final Data = RowFeatureVector \times RowDataAejust,$

	x	y
	827970186	175115307
	1.77758033	.142857227
	992197494	.384374989
	274210416	.130417207
Transformed Data=	-1.67580142	209498461
	912949103	.175282444
	.0991094375	349824698
	1.14457216	.0464172582
	.438046137	.0177646297
	1.22382056	162675287

Reconstruction of original Data

- -.827970186
- 1.77758033
- -.992197494
- -.274210416
- -1.67580142
- -.912949103
- .0991094375
- 1.14457216
- .438046137
- 1.22382056

Figure 3.5: The reconstruction from the data that was derived using only a single eigenvector