Find Critical and Pseudo-Critical Edges in Minimum Spanning Tree

Given a weighted undirected connected graph with n vertices numbered from 0 to n - 1, and an array edges where edges[i] = $[a_i, b_i, weight_i]$ represents a bidirectional and weighted edge between nodes a_i and b_i . A minimum spanning tree (MST) is a subset of the graph's edges that connects all vertices without cycles and with the minimum possible total edge weight.

Find all the critical and pseudo-critical edges in the given graph's minimum spanning tree (MST). An MST edge whose deletion from the graph would cause the MST weight to increase is called a *critical edge*. On the other hand, a pseudo-critical edge is that which can appear in some MSTs but not all.

Note that you can return the indices of the edges in any order.

Example 1:

Input: n = 5, edges = [[0,1,1],[1,2,1],[2,3,2],[0,3,2],[0,4,3],[3,4,3],[1,4,6]]

Output: [[0,1],[2,3,4,5]]

Explanation: The figure above describes the graph.

The following figure shows all the possible MSTs:

Notice that the two edges 0 and 1 appear in all MSTs, therefore they are critical edges, so we return them in the first list of the output.

The edges 2, 3, 4, and 5 are only part of some MSTs, therefore they are considered pseudo-critical edges. We add them to the second list of the output.

Example 2:

Input: n = 4, edges = [[0,1,1],[1,2,1],[2,3,1],[0,3,1]]

Output: [[],[0,1,2,3]]

Explanation: We can observe that since all 4 edges have equal weight, choosing any 3 edges from the given 4 will yield an MST. Therefore all 4 edges are pseudo-critical.

Constraints:

- 2 <= n <= 100
- 1 <= edges.length <= min(200, n * (n 1) / 2)
- edges[i].length == 3
- $0 \le a_i \le b_i \le n$
- 1 <= weight_i <= 1000
- All pairs (a_i, b_i) are **distinct**.