Viral Social Media Movements

Claire Huang and Heejung Chung

Introduction

Introduction: Importance of studying social media

- Social media has broad reach across demographics, locations
 - Facebook = 1.65 billion users
 - Twitter = 310 million users
 - Youtube = 4.95 billion videos viewed per day
- Quickly becoming medium of choice for information spread
- Nonprofit organizations don't have many marketing resources
 - maximize effectiveness by studying previous movements

Introduction: Movements analyzed

- #BlackLivesMatter (BLM)
 - Started July 2013, after George Zimmerman's acquittal
 - Multiple successive, domestic "spark" events
 - Relatively **successful** (controversial)
- #BringBackOurGirls (**BBOG**)
 - Started April 2014, after Chibok schoolgirl kidnapping
 - One foreign spark event
 - Very unsuccessful (girls are still missing, hashtag out of use)

Introduction: Areas of focus & Defining virality

- Individual tweet engagement
 - Virality = # favorites and # retweets
 - What factors make an individual tweet go viral?
- Popularity over time
 - Virality = volume, ie. # times #BlackLivesMatter or #BringBackOurGirls is tweeted per day
 - What trends are in a movement's virality over time?

Background

Background

- Emotional response
 - Terms: valence-arousal-dominance, narrow/broadcasting
 - high valence (positive) ⇒ ↑ sharing
 - high arousal (action) ⇒ ↑ narrowcasting
 - high dominance (in control) ⇒ ↑ broadcasting

Images: Guerini and Saiano, http://www.hlntv.com/shows/the-daily-share/article s/2016/02/24/facebook-rolls-out-reaction-buttons

- Author and audience background
 - o <u>audience</u>: medium vs. high education level
 - <u>author</u>: "high popularity [# followers] does not imply high influence" (Romero, et al)

Background

- Multiple networks over time
 - predictable content migration patterns
 - ex. Reddit ⇒ Twitter ⇒ Facebook
- Concurrent news coverage
 - many movements are either <u>sparked</u> or <u>spread</u> by news coverage
 - "It Gets Better" or "ALS Ice Bucket Challenge" videos featured
 - #BringBackOurGirls: delayed news coverage, negative stories
 - #BlackLivesMatter: multiple news events

Methodology

Methodology: Original Plan

- 8 movements with different:
 - media types (video, image, text)
 - durations and times
 - success levels
- For each movement, we planned to analyze...
 - view frequency
 - response frequency
 - sharing frequency
 - duration of popularity

	Movement	Social Media Platform		
1	Dove Beauty Campaign			Youtube
2	Ice Bucket/ALS	Facebook		
3	Red Equals Sign			
4	Movember		Twitter	
5	Kony 2012			
6	It Gets Better			
7	Black Lives Matter			
8	Bring Back Our Girls			

Our eight movements during the planning phase

Methodology: Obstacles

Facebook

- Privacy controls would introduce bias
- Instagram had similar controls

Youtube

Data API limits (eg. max # of retrievable video objects)

Twitter

- Search API limits (eg. couldn't retrieve tweets more than a week old)
- Jefferson Henrique script was inconsistent => time limitation

Google News Search API

- Ceased operations in 2014
- o no alternative news search with the same breadth

Methodology: Actual Plan

- Found tweet-collecting script (by Jefferson Henrique)
 - bypasses API limitations by querying Twitter website directly
- Narrowed focus...
 - Twitter only
 - Two movements only
 - Opposite success-levels

```
or tweetHTML in tweets:
  tweetPQ = PyQuery(tweetHTML)
  tweet = models.Tweet()
  usernameTweet = tweetPQ("span.username.js-action-profile-name b").text();
  retweets = int(tweetPQ("span.ProfileTweet-action--retweet span.ProfileTweet-actionCount"
  favorites = int(tweetPO("span.ProfileTweet-action--favorite span.ProfileTweet-actionCour
  if retweets <= 0 and favorites <= 0:
  dateSec = int(tweetPQ("small.time span.js-short-timestamp").attr("data-time"));
  id = tweetP0.attr("data-tweet-id");
  permalink = tweetPQ.attr("data-permalink-path");
  geo = ''
  geoSpan = tweetPQ('span.Tweet-geo')
  if len(geoSpan) > 0:
      geo = geoSpan.attr('title')
  tweet.id = id
  tweet.permalink = 'https://twitter.com' + permalink
  tweet.username = usernameTweet
  tweet.text = txt
```

	Movement	Media Platform
1	Black Lives Matter	Twitter
2	Bring Back Our Girls	

Results

Results: Engagement with Individual Tweets

both slopes are significantly greater than 1

unexplained downward **pattern** in residuals

Results: Engagement with Individual Tweets

significantly **greater engagement** with picture

not significantly different engagement with or without external link

Bivariate analysis of picture or link presence in #BBOG tweets versus engagement

Results: Engagement with Individual Tweets

no clear patterns for any author traits

Bivariate analyses of author traits and engagement for the top 0.5% #BBOG tweets

Results: Popularity Over Time

Time Series of #BlackLivesMatter Usage, July 2013 to September 2015

Results: Popularity Over Time

Time Series of #BlackLivesMatter Usage During Ferguson, July 2014 to January 2015

Results: Popularity Over Time (mostly reciprocal)

Wilson Acquittal volume = 399.6 + 16634.7 * Recip(days_after_peak)

Pantaleo Acquittal volume = 4332 + 17952 * Recip(days_after_peak)

"Justice For All"
volume = 2098.9 + 15994.2 *
Recip(days_after_peak)

BBOG 1st Anniversary

volume = -19.9 + 674* *Recip*(days_after_peak)

Reciprocal Regressions on Time Series Data After Spark Events

Results: Popularity Over Time (mostly **reciprocal**)

Reciprocal Regressions on Time Series Data After Spark Events

Results: Popularity Over Time (some logarithmic)

BBOG Kidnapping

Log(days after peak)

volume = 18067.8 + 5525.8831 *

Discussion & Conclusions

Discussion: Interpreting Findings

- Individual tweet engagement
 - The more viral the tweet, the more retweets (broadcasting) per favorite (narrowcasting)
 - Tweets with **pictures** correlate with more engagement
 - For the most viral tweets, **author traits** do not correlate with engagement
- Trends in popularity over time
 - 9 sparks: reciprocal fit
 - 4 sparks: logarithmic fit
 - 1 spark was ambiguous (both fits were mediocre)
 - All cases: Huge coefficient (ie sharp decline) ⇒ unsustainable

Discussion: Recommendations

- For organizations looking to go viral
 - Short-term engagement: photos
 - Long-term engagement: engineer repeated "sparks" (aka. spice things up)
- Request to social media companies (esp. hosting public content)
 - o Run/store data on visual and textual *sentiment analysis as posts are being created*
 - Easier data collection and/or analysis

Discussion: Further Questions

- Engagement with individual content
 - Author
 - What traits about an author correlate with higher engagement?
 - **Retention**: how long and often does each author post on the same topic?
 - Emotional content
 - Sentiment analysis on text and photos
- Trends in popularity over time
 - Concurrent news coverage
 - Did news coverage **peak** before or after social media? Are these peaks longer or shorter?
 - Can we explain reciprocal and logarithmic models of decline?
 - Potential factors: familiarity of spark? domestic vs foreign spark?

Thank You!