Lecture: Convex Sets

http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghe's lecture notes

Introduction

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbb{R})$$

affine set: contains the line through any two distinct points in the set **example**: solution set of linear equations $\{x | Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of $x_1, ..., x_k$: any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + ... + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull convS: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\{x|a^Tx=b\}(a\neq 0)$

halfspace: set of the form $\{x|a^Tx \leq b\}(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(**Euclidean**) ball with center x_c and radius r:

$$B(x_c, r) = \{x | \|x - x_c\|_2 \le r\} = \{x_c + ru | \|u\|_2 \le 1\}$$

ellipsoid: set of the form

$$\{x|(x-x_c)^T P^{-1}(x-x_c) \le 1\}$$

with $P \in \mathbb{S}^n_{++}$ (i.e., P symmetric positive definite)

other representation: $\{x_c + Au | \|u\|_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbb{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{symb}$ is particular norm

norm ball with center x_c and radius r: $\{x | ||x - x_c|| \le r\}$

norm cone: $\{(x,t)| ||x|| \le t\}$ Euclidean norm cone is called second-order cone

norm balls and cones are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \le b$$
, $Cx = d$

 $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \leq \text{is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- \mathbb{S}^n is set of symmetric $n \times n$ matrices
- $\mathbb{S}^n_+ = \{X \in \mathbb{S}^n | X \succeq 0\}$: positive semidefinite $n \times n$ matrices $X \in \mathbb{S}^n_+ \iff z^T X z \geq 0$ for all z

 \mathbb{S}^n_+ is a convex cone

• $\mathbb{S}^n_{++} = \{X \in \mathbb{S}^n | X \succ 0\}$: positive definite $n \times n$ matrices

example:
$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbb{S}^2_+$$

Operations that preserve convexity

practical methods for establishing convexity of a set C

apply definition

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$

- ${f 2}$ show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

example:

$$S = \{x \in \mathbb{R}^m | |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + ... + x_m \cos mt$

for m=2:

Affine function

suppose
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{f(x) | x \in S\} \text{ convex}$$

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbb{R}^m$$
 convex $\implies f^{-1}(C) = \{x \in \mathbb{R}^n | f(x) \in C\}$ convex

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x|x_1A_1 + ... + x_mA_m \leq B\}$ (with $A_i, B \in \mathbb{S}^p$)
- hyperbolic cone $\{x|x^TPx \leq (c^Tx)^2, c^Tx \geq 0\}$ (with $P \in \mathbb{S}^n_+$)

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t$$
, dom $P = \{(x,t)|t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}$$
, dom $f = \{x | c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

$$a^T x \le b \text{ for } x \in C, \quad a^T x \ge b \text{ for } x \in D$$

the hyperplane $\{x|a^Tx=b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x|a^Tx = a^Tx_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Generalized inequalities

a convex cone $K \subseteq \mathbb{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n | x_i \ge 0, i = 1, ..., n\}$
- positive semidefinite cone $K = \mathbb{S}^n_+$
- nonnegative polynomials on [0, 1]:

$$K = \{x \in \mathbb{R}^n | x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \quad x \prec_K y \iff y - x \in \text{int } K$$

examples

• componentwise inequality $(K = \mathbb{R}^n_+)$

$$x \leq_{\mathbb{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, ..., n$$

• matrix inequality $(K = \mathbb{S}^n_+)$

$$X \leq_{\mathbb{S}^n_{\perp}} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \preceq_{K}

properties: many properties of \leq_K are similar to \leq on \mathbb{R} , e.g.,

$$x \prec_K y$$
, $u \prec_K v \implies x + u \prec_K y + v$

Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{y | y^T x \ge 0 \text{ for all } x \in K\}$$

examples

- $\bullet K = \mathbb{R}^n_+ : K^* = \mathbb{R}^n_+$
- $\bullet K = \mathbb{S}^n_+ : K^* = \mathbb{S}^n_+$
- $K = \{(x,t) | ||x||_2 \le t\} : K^* = \{(x,t) | ||x||_2 \le t\}$
- $\bullet \ K = \{(x,t)| \ \|x\|_1 \le t\} : K^* = \{(x,t)| \ \|x\|_{\infty} \le t\}$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Minimum and minimal elements

 \preceq_K is not in general a linear ordering : we can have $x \npreceq_K y$ and $y \npreceq_K x$ $x \in S$ is **the minimum element** of S with respect to \preceq_K if

$$y \in S \implies x \leq_K y$$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies y = x$

example
$$(K = \mathbb{R}^2_+)$$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

Minimum and minimal elements via dual inequalities

minimum element w.r.t. \leq_K

x is minimum element of S iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S

minimal element w.r.t. \prec_K

- if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal
- if x is a minimal element of a convex set S, then there exists a nonzero $\lambda \succ_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

optimal production frontier

- different production methods use different amounts of resources $x \in \mathbb{R}^n$
- production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbb{R}^n_+

example (n = 2) x_1, x_2, x_3 are efficient; x_4, x_5 are not