## Simplified alphabets in protein analysis

Michał Burdukiewicz

Department of Genomics, University of Wrocław

#### Outline

Simplified alphabets

## Signal peptides



Signal peptides possess three distinct domains with variable length and characteristic amino acid composition (Hegde and Bernstein, 2006):

- n-region: mostly basic residues (Nielsen and Krogh, 1998),
- h-region: strongly hydrophobic residues (Nielsen and Krogh, 1998),
- c-region: a few polar, uncharged residues.

#### Signal peptides

Amino acid composition of signal peptides differ between Plasmodium sp. and other eukaryotes. Therefore, predictors of signal peptides do not detect malarial signal peptides accurately.



# Simplified alphabets

#### Simplified alphabets:

- are based on grouping amino acids with similar physicochemical properties,
- ease computational analysis of a sequence (Murphy et al., 2000),
- create more explicite models.

Two sequences that are drastically different considering their amino acids composition can have the same physicochemical properties.

Sequence I: FKVWPDHGSG

Sequence II: YCMIYRAQTN





| Subgroup | Amino acid                   |
|----------|------------------------------|
| 1        | C, I, L, K, M, F, P, W, Y, V |
| 2        | A, D, E, G, H, N, Q, R, S, T |

Sequence I: FKVWPDHGSG
Sequence II: YCMIYRAQTN

| Subgroup | Amino acid                   |
|----------|------------------------------|
| 1        | C, I, L, K, M, F, P, W, Y, V |
| 2        | A, D, E, G, H, N, Q, R, S, T |

Sequence I: FKVWPDHGSG
Sequence II: YCMIYRAQTN

## The best-performing simplified alphabet

| Amino acids      |
|------------------|
| G                |
| K, P, R          |
| I, L, V          |
| F, W, Y          |
| A, C, H, M       |
| D, E, N, Q, S, T |
|                  |

Group 2 - charged breakers of  $\beta$ -structures.

## Signal peptide prediction



PCA of amino acid frequency in signal peptides.

## Signal peptide prediction



SignalP 4.1 (Petersen et al., 2011) combines output of two separate predictors:

- cleavage site,
- signal peptide.

#### Signal peptide prediction



#### References I

#### References

- Hegde, R. S. and Bernstein, H. D. (2006). The surprising complexity of signal sequences. *Trends in Biochemical Sciences*, 31(10):563–571.
- Murphy, L. R., Wallqvist, A., and Levy, R. M. (2000). Simplified amino acid alphabets for protein fold recognition and implications for folding. *Protein Engineering*, 13(3):149–152.

#### References II

Nielsen, H. and Krogh, A. (1998). Prediction of signal peptides and signal anchors by a hidden Markov model. *Proceedings / ... International Conference on Intelligent Systems for Molecular Biology ; ISMB. International Conference on Intelligent Systems for Molecular Biology,* 6:122–130.

Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. *Nature Methods*, 8(10):785–786.