Модель сущность-связь

Наумов Д.А., доц. каф. КТ

Базы данных и базы знаний, 2020

Содержание лекции

- 🚺 Проектирование баз данных
 - Терминология уровней
 - Концептуальный уровень
 - Логический уровень
 - Физический уровень
- ② Модель Сущность-Связь
 - Тип сущности
 - Тип связи
 - Атрибуты
 - Ключи
 - Степень связи
 - Класс принадлежности

Определения

- Модель данных это инструмент описания.
- Схема базы данных это результат использования инструмента.

Уровни абстракции данных

- Концептуальный уровень соответствует описаниям сущностей (объектов) предметной области, связям между ними.
 Характерная особенность полученных описаний — независимость от используемых моделей данных.
- Логический уровень описывает схему базы данных в терминах выбранной модели данных. Скорее всего это будет реляционная модель.
- Физический уровень соответствует описанию схемы данных в конкретной СУБД. Одной логической схеме БД может соответствовать несколько физических схем для разных СУБД.

Уровни абстракции данных

Концептуальный уровень

- представляет собой наибольший интерес для функционального специалиста-проектировщика.
- результат моделирования на концептуальном уровне, который будет использован в логическом проектировании.
- если концептуальные модели отсутствуют, проектировщику придётся работать «стандартным» методом прочтения линейных текстов многостраничных функциональных спецификаций.

Логический уровень

- "засилье"реляционных моделй данных.
- описывая структуры в терминах отношений, ключей, связей, проектировщик может быть уверен, что его результат будет однозначно понят.
- пдерейдя на сетевую терминологию наборов, записей и агрегатов данных, можно встретить не только непонимание изложенной сути, но и неумение программистов приложений оптимальным образом работать с данными в выбранной парадигме.

Физический уровень

• специфика СУБД становится основным фактором эффективности реализации схемы базы данных вышестоящих уровней.

Соответствие терминов

Термин реляционной модели	Соответствующие термины РСУБД
Отношение	Таблица-кластер
	Таблица-куча
	Секционированная таблица
	Табличная функция
	Вид (view, виртуальная таблица)
Проекция	Вид (view)
	Материализованный вид
	Табличная функция
Кортеж	Строка (запись)
	Строка (с построчным сжатием)
Атрибут	Колонка (столбец)
	Вычислимая колонка
	Вычислимая хранимая колонка
Ключ	Первичный ключ
	Ограничение уникальности (unique)
	Уникальный индекс

Тип сущности

группа объектов в конкретной предметной област с одинаковыми свойствами, имеющая независимое существование.

Тип сущности характеризуется независимым существованием и может быть объектом с физическим (или реальным) существованием или объектом с концептуальным (или абстрактным) существованием.

Физическое существование

- Сотрудник
- Деталь
- Изделие
- Организация

Концептуальное существование

- Статья затрат
- Заказ на производство

Экземпляр сущности

однозначно идентифицируемый объект, который относится к сущности определенного типа.

Каждый тип сущности обозначается именем и характеризуется списком свойств.

Тип связи

набор осмысленных ассоциаций между сущностями разных типов.

Тип связи (relationship type) является набором ассоциаций между одним (или несколькими) типами сущностей, участвующими в этой связи. Каждому типу связи присваивается имя, которое должно описывать его назначение.

Экземпляр связи

однозначно идентифицируемая ассоциация, которая включает по одному экземпляру сущности из каждого участвующего в связи типа сущности.

Экземпляр связи обозначает все конкретные экземпляры сущности, участвующие в этой связи.

Степень типа связи

количество типов сущностей, которые охвачены данной связью.

Пример бинарной связи

Пример тетрарной связи

Рекурсивная связь

связь, в которой одни и те же сущности участвуют нескольрко раз в разных ролях.

Пример рекурсивной связи

Ролевые имена

Связям могут присваиваться ролевые имена для указания назначения каждой сущности, участвующей в данной связи. Ролевые имена имеют большое значение в рекурсивных связях, поскольку позволяют определить функции каждого участника.

Пример нескольких связей

свойство типа сущности или типа связи.

Домен атрибута

набор допустимых значений одного или нескольких атрибутов.

- Простой атрибут атрибут, состоящий из одного компонента с независимым существованием.
- Составной атрибут атрибут, состоящий из нескольких компонентов, каждый из которых характеризуется независимым существованием.

Однозначный атрибут

атрибут, который содержит одно значение для каждого экземпляра сущности определенного типа.

Многозначный атрибут

атрибут, который содержит несколько значений для каждого экземпляра сущности определенного типа.

Производные (вычисляемые) атрибуты

атрибут, который представляет значение, производное от значения связанного с ним атрибута или некоторого множества атрибутов, принадлежащих некоторому (не обязательно данному) типу сущности.

Производные атрибуты могут быть связаны:

- с экземпляром сущности
- с типом сущности
- со типом или экземпляром связи

Потенциальный ключ

атрибут или минимальныйнаборатрибутов, который однозначно идентифицирует каждый экземпляр типа сущности.

Составной ключ

потенциальный ключ, который состоит из двух или нескольких атрибутов.

Первичный ключ

Потенциальный ключ, который выбран для однозначной идентификации каждого экземпляра сущности определенного типа.

Сущность сильного типа

тип сущности, существование которого не зависит от какого-то иного типа сущности.

Сущность слабого типа

тип сущности, существование которого зависит от какого-то другого типа сущности.

Атрибут связи

атрибут, который присваивается связи.

Степень связи

условное обозначение количества, возможных экземпляров сущности некоторого типа, которые могут быть связаны с одним экземпляром сущности другого типа с помощью определенной связи.

Виды степеней связей:

- один-к-одному: 1:1;
- один-ко-многим: 1:m;
- многие-ко-многим: m:m;

Для определения кратности связи обычно требуется тщательное изучение зависимостей между данными, на которые распространяются ограничения предметной области.

Связь 1:1

Связь 1:т

Связь т:т

Класс принадлежности

определяет, участвуют ли в связи все или только некоторые экземпляры сущности.

Виды класса принадлежности:

- обязательный;
- необязательный;

