■ Grado en Ingeniería de Computadores

Práctica 9

1. Objetivo

En esta novena sesión de prácticas se pretende que el alumno se familiarice con dos módulos secuenciales básicos en cualquier circuito digital. En concreto se trabajará diseñando registros y un contador estándar.

Una vez terminada la práctica el alumno será capaz de:

- Entender el funcionamiento y utilidad de los registros y contadores
- Crear en VHDL un registro paralelo-paralelo y serie-paralelo
- Diseñar un contador estándar en VHDL a partir de una máquina de estados
- Implementar circuitos secuenciales básicos en una FPGA

2. Desarrollo de la práctica

Registro paralelo-paralelo

Como se ha visto en las clases teóricas, los registros son elementos secuenciales presentes en muchos circuitos digitales. Existen diversas configuraciones en función de cómo entran y salen los datos del registro. Una configuración muy utilizada es la paralelo-paralelo como la mostrada en la siguiente figura:

Como puede observar, este registro está formado por cuatro flip-flops tipo D. Como primer ejercicio, escriba el código VHDL del **registro paralelo-paralelo** de 4 bits mostrado en la figura anterior. Simule primero el circuito utilizando el testbench "tb_paralelo.vhd" y analice su funcionamiento. ¿Cuál es la utilidad de un registro paralelo-paralelo?

Añada el fichero de constraints "paralelo_constraints.xdc" proporcionado e implemente el circuito en la FPGA para validar su funcionamiento. Mida el número de recursos (LUTs, FFs e IOBs) utilizados por el circuito. ¿Qué ocurre al accionar cada uno de los interruptores de entrada?

Como segundo ejercicio, se va a diseñar ahora un **registro serie-paralelo** de 4 bits como el mostrado en la figura de la siguiente página. Cree un nuevo código VHDL para diseñar el registro serie-paralelo y simúlelo con el testbench "tb_serie.vhd". ¿Cuál es la utilidad de un registro serie-paralelo?

Añada el fichero de constraints "serie_constraints.xdc" proporcionado e implemente el circuito en la FPGA para validar su funcionamiento. Mida el número de recursos (LUTs, FFs e IOBs) utilizados por el circuito. ¿Qué ocurre al accionar el interruptor de entrada? Según la simulación que realizó, ¿qué debería ocurrir? ¿qué podría modificar para que se enciendan los LEDs?

Contador estándar

En esta segunda parte de la práctica se diseñará en VHDL un contador estándar ascendente y descendente como el mostrado en la siguiente figura. La entrada M controla si la cuenta es ascendente (M = '0') o descendente (M = '1').

Escriba el código VHDL del contador a partir del diagrama de estados anterior. ¿Qué tipo de máquina de estados está diseñando? ¿De qué valor a qué valor cuenta? ¿Qué ocurre cuando el contador desborda?

3. Ejercicio propuesto

Para terminar la práctica, se propone al alumno que modifique la máquina de estados diseñada previamente conectando la salida del contador a un display de 7 segmentos de modo que se muestren los segundos transcurridos. Cree el fichero de constraints necesario para poder implementar este sistema en la FPGA.