Eletricidade e Circuitos para Computação I

9ª. Lista de Exercícios

Resposta Natural de Circuitos RL

- 1. Para o circuito abaixo, a chave foi aberta em t=0 depois de permanecer aberta por um longo tempo. Determine:
 - a. $i_0(0^-)$;
 - b. $i_0(0)$;
 - c. A constante de tempo do circuito;
 - d. A expressão de $i_0(t)$ para $t \ge 0^+$.
 - e. A expressão de $v_0(t)$ para $t \ge 0^+$.

- 2. Para o circuito abaixo, as duas chaves são abertas simultaneamente em t=0 depois de permanecerem fechadas por um longo tempo.
 - a. Determine $i_0(t)$ para $t \ge 0^+$;
 - b. Determine $v_0(t)$ para $t \ge 0^+$;
 - c. Desenhe o gráfico da resposta de $i_0(t)$ e $v_0(t)$.

3. Em um circuito contendo apenas um resistor e um indutor, as expressões para a tensão e para a corrente são:

$$v(t) = 100e^{-80t}(V)$$
, para $t \ge 0^+$; $i(t) = 4e^{-80t}(A)$, para $t \ge 0$;

- a. Determine R;
- b. Determine L;
- c. Determine a constante de tempo do circuito;
- d. Quanto tempo (em *ms*) é necessário para que 80% da energia armazenada no indutor seja dissipada?

- 4. Para o circuito abaixo, a chave foi fechada em t = 0 depois de permanecer aberta por um longo tempo.
 - a. Determine $i_0(0)$ e $i_1(0)$;
 - b. Determine $i_0(0^+)$ e $i_1(0^+)$;
 - c. Explique por que $i_1(0^-) = i_1(0^+)$;
 - d. Explique por que $i_0(0^-) \neq i_0(0^+)$;
 - e. Determine $i_1(t)$ para $t \ge 0$;
 - f. Desenhe o gráfico da resposta de $i_1(t)$.

- 5. A chave foi colocada na posição b em t=0 depois de permanecer por um longo tempo na posição a.
 - a. Determine $v_0(t)$ para $t \ge 0^+$;
 - b. Determine a energia total dissipada pelo resistor de $1k\Omega$;
 - c. Quantas constantes de tempo são necessárias para que o resistor $1k\Omega$ dissipe 95% do valor calculado no item (b).

- 6. A chave foi colocada na posição 2 em t=0 depois de permanecer por um longo tempo na posição 1.
 - a. Determine $v_0(t)$ para $t \ge 0^+$.

7. Para o circuito abaixo, a chave foi colocada na posição 2 em t=0 depois de permanecer por um longo tempo na posição 1. Determine o valor de R para que 20% da energia inicialmente armazenada no indutor seja dissipadano resistor R em 12,5 μ s.

- 8. Para o circuito abaixo, a chave foi aberta em t = 0 depois de permanecer fechada por um longo tempo.
 - a. Determine a corrente que circula no indutor para $t = 0^{-1}$;
 - b. Determine a constante de tempo do circuito;
 - c. Determine $v_0(t)$ para $t \ge 0^+$.

- 9. Depois que o circuito abaixo permaneceu em operação por um longo tempo, os terminais *a* e *b* foram inadvertidamente colocados em curto-circuito. Suponha que a resistência do fio do curto-circuito é desprezível.
 - a. Determine a corrente na chave de fenda em $t = 0^+$ e em $t = \infty$;
 - b. Determine a expressão para a corrente na chave de fenda para $t \ge 0^+$.

- 10. Para o circuito abaixo, a chave foi fechada em t = 0 depois de permanecer aberta por um longo tempo.
 - a. Determine $i_0(0)$ e $i_L(0)$;
 - b. Determine $i_0(0^+)$ e $i_L(0^+)$;
 - c. Explique por que $i_L(0^-) = i_L(0^+)$;
 - d. Explique por que $i_0(0^-) \neq i_0(0^+)$;
 - e. Determine $i_L(t)$ para $t \ge 0$;
 - f. Desenhe o gráfico da resposta de $i_0(t)$.

