Sceu X, X2,... Xn una muestra aleatoria con dist. F. Tuoriema: Para R=1,2,3,...,n, tuniemos $F_{X(R)}(\chi) = \prod_{k=1}^{\infty} (m+1) \qquad \qquad (m+1) \qquad$ $F_{X(x)}(x) = F_{\overline{z}}(F(x))$ com $\overline{z} \sim \beta(\underline{x}, m+1-\underline{x})$

2em. Para 1=01,2,3,...,n, sue A; (x) = { uxactamiente i de las X,..., xn son memories } { axactamiente à de las m observaisones son ≤ x} } X(R) EX } = { al manos R observacionas de les m} sceam < x como X (1) \(\int X (2) \(\int X (3) \(\int \cdots \(\int X (R)\), \(\int \) (es clavia. Supongermos que para un a $\xi \Omega$ al mærros K de les números $\chi_1(\omega)$, $\chi_2(\omega)$, ..., $\chi_n(\omega)$ son $\xi \chi_*$

- (Reducción al absurdo) -Si X(R)(W) 7x => X(R) > al manas Q, observaciones : X (a) no puede sur la R-résima mas prequeña 6. X (x) Ex esto du muestra [2] (*) se comple. Ost, $f_{X(R)}(x) = P(X(R) \leq x) = P(UA;)$ $=\sum_{i=R} P(A_i(x)) = \sum_{i=R} \binom{m}{i} (F(x))^i (1-F(x))^{m-i}$ Louis indepointancia + $P(x; \leq x) = F(x)$ => # obscervaciones < x ~ Binom (F(x), n)

Difterien ciando demostramos que $\frac{d}{dz} = \frac{m!}{1-2} = \frac{m!}{2} = \frac{m-1}{2} = \frac{m-1$ Como R=1, integrando de o a F(x) obteniemos $\sum_{i=R}^{m} {m \choose i} T(x) (1-F(x))^{i} = \frac{m!}{(R-1)!(m-R)!}$ $= \frac{1}{2} (1-3)^{i} ($ $=\frac{\Gamma(m+1)}{\Gamma(R)\Gamma(m-R+1)}\begin{cases} \mp (x) \\ 3 \\ (1-3) \end{cases}$ Usamos $\Gamma(m+1)=m$

Mulicipie de combio de variable. Scean $X_1, X_2, ..., X_n$ v.a. com demondad conjuntar $f_{x} = (x_1, x_2, ..., x_n)$. Scean $g: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ ma transformación clase C^1 invertible. Scen Y = g(x) al vedor aleatorio dado por $Y_1 = g(X_1, X_2, \dots, X_n)$ 12 = 92 (X1, X2, ..., Xm) $g = (g_1, g_2, \dots, g_m)$ $g:\mathbb{R}^{n}\longrightarrow\mathbb{R}.$ $Y_{m} = g_{m}(X_{1}, X_{2}, ..., X_{m})$

Treenrema: de demsidad de Y es

$$\int_{Y} (y) = \int_{X} (h(u)) \cdot |del(dyh)|$$
para $h = g^{-1}$

$$\int_{X} h_{1} \cdot R^{m} \rightarrow R^{m}$$

$$\int_{Y} h_{2} \cdot R^{m} \cdot R^{m} \rightarrow R^{m}$$

$$\int_{Y} h_{3} \cdot R^{m} \rightarrow R^{m}$$

$$\int_{Y} h_{4} \cdot R^{m}$$

- 3 transforma coordenadas $x = (x_1, ..., x_m)$ a coordenadas $y = (y_1, ..., y_m)$
- h transforma coordinadas $y=(y_1,...,y_n)$ a $x=(x_1,...,x_n)$

 $\frac{\partial x_m}{\partial y_1} \frac{\partial x_m}{\partial y_2} \frac{\partial x_m}{\partial y_3} \dots \frac{\partial x_m}{\partial y_m}$

Quample.
$$X,Y$$
 "id $N(0,T) = X+Y, X-Y$ ind $N(0,Z)$
See $g(x,u) = (x+y, x-y)$. Si $g(x,u) = (u,v) = Y$
 $h(u,v) = (u+v, u-v)$
 $Q_{SI}, d_{(u,v)}h = \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$ $q_{SI}d_{(u,v)}h = -\frac{1}{2}$
 $Com(U,V) = g(X,Y)$ functions
 $f(v,v)(u,v) = f(x,y)(\frac{u+v}{2}, \frac{u-v}{2}) \cdot |d_{(u,v)}h|$
 $= f_{X}(\frac{u+v}{2}) f_{Y}(\frac{u-v}{2}) \cdot \frac{1}{2}$

$$\frac{1}{\sqrt{2\pi}} Q = \frac{1}{\sqrt{2\pi}} Q = \frac{1}{\sqrt{2\pi}}$$