

Aktiver Fahrradhelm Neuer Ansatz: LKW-Abbiege-Assistent mit Sekundärradar

Motivation

ca. 50 % schwerer Unfallverletzungen in Deutschland trifft Radfahrende

Großteil der Unfälle → Fahrräder kollidieren mit schweren LKW

Häufige Unfallsituation: Abbiegevorgänge

Juli 2024: Pflicht für Abbiege-Assistenten in allen neu zugelassenen LKW (gem. EU-Verordnung)

Stand der Technik

tuelle Abbiege-Assistenzsysteme:

- Kamerasystem / Radarsystem am LKW
- Objekterkennung durch Algorithmen

Neuer Ansatz

Aktiv kommunizierender Fahrradhe

- <u>Fahrradhelm</u> sendet Funksignale
- LKW ermittelt die Position
- ggf. werden beide Teilnehmer gewari
- basiert auf gängigen Funkstandards
- Verwendung von Massenprodukten (z.B. Bluetooth-Chips)

Entwickelter Prototyp, Aufbau

- 2 Antennen-Arrays (am LKV)
- Sendemodul (im Fahrradhel
- Auswerteeinheit
- Funkstandard: Bluetooth

Entwickelter Prototyp, Funktion

- Sender im Fahrradhelm sendet
 - Empfänger 1 ermittelt Einfallswir $arphi_1$ des Empfangssignals
- Empfänger 2 ermittelt Einfallswin $arphi_2$ des Empfangssignals
- ϵ Distanz d der Empfänger ist bek

Auswerteeinheit berechnet fortwährend Position des Senders (einfache Triangulation)

Zusammenfassung

- Untersuchung eines neuen, kostengünstigen Ansatzes für Abbiege-Assistenten im LKW
- einfaches Sekundärradar-System (aktiv kommunizierender Fahrradhelm und Empfänger am LKW)
- Basis: Gängige Kommunikations-Hardware, Massenprodukte (z.B. Bluetooth-Chips)
- übrigens: Nicht beschränkt auf Fahrradhelme... → Ihr Smartphone, kann das nicht auch Bluetooth?