

تمرین سری اول دکتر محبتی

الناز رضایی، حوریه سبزواری، عرشیا آرین نژاد

اسفند ۱۴۰۰

در آزمایش اول ابتدا گیت or را پیاده سازی کردیم که کد آن به شکل زیر می باشد.

```
19 -
20 library IEEE;
21 use IEEE.STD LOGIC 1164.ALL;
23 -- Uncomment the following library declaration if using
24 -- arithmetic functions with Signed or Unsigned values
25 -- use IEEE.NUMERIC STD.ALL;
27 -- Uncomment the following library declaration if instantiating
28 -- any Xilinx primitives in this code.
29 --library UNISIM;
30 --use UNISIM.VComponents.all;
31
32 entity Or Gate is
      Port ( a : in STD_LOGIC;
33
              b : in STD LOGIC;
34
              c : out STD_LOGIC);
35
36 end Or Gate;
37
38 architecture Behavioral of Or_Gate is
39
   signal z : STD_LOGIC;
40 begin
41 z <= a or b;
42 c <= z;
43
45 end Behavioral;
```

در ادامه گیت and را به شرح زیر پیاده سازی کردیم.

```
20 library IEEE;
 21 use IEEE.STD LOGIC 1164.ALL;
 23 -- Uncomment the following library declaration if using
 24 -- arithmetic functions with Signed or Unsigned values
 25 -- use IEEE.NUMERIC STD.ALL;
 26
 27 -- Uncomment the following library declaration if instantiating
 28 -- any Xilinx primitives in this code.
 29 -- library UNISIM;
 30 --use UNISIM.VComponents.all;
 31
 32 entity And_Gate is
 33
       Port ( a : in STD_LOGIC;
               b : in STD_LOGIC;
 34
                c : out STD LOGIC);
 35
 36 end And Gate;
 37
 38 architecture Behavioral of And_Gate is
 39 signal z : STD_LOGIC;
 40 begin
 41 z <= a and b;
 42 c <= z;
 43
 45 end Behavioral;
46
```

به همبن ترتیب گیت xor هم مطابق شکل زیر به دست می آوریم.

```
19
20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
23 -- Uncomment the following library declaration if using
24 -- arithmetic functions with Signed or Unsigned values
25 -- use IEEE.NUMERIC STD.ALL;
26
27 -- Uncomment the following library declaration if instantiating
28 -- any Xilinx primitives in this code.
29 --library UNISIM;
30 --use UNISIM.VComponents.all;
31
32 entity Xor_Gate is
33
      Port ( a : in STD_LOGIC;
34
              b : in STD_LOGIC;
              c : out STD_LOGIC);
35
36 end Xor Gate;
37
38 architecture Behavioral of Xor Gate is
39 signal z : STD_LOGIC;
40 begin
41 z <= a xor b;</pre>
42 c <= z;
43
44 end Behavioral;
45
```

سپس با استفاده از گیت and و xor، گیت HA را مطابق شکل قطعه کد زیر پیاده سازی می کنیم.

```
32 entity Half Adder is
        Port ( ah : in STD_LOGIC;
33
              bh : in STD LOGIC;
34
              S : out STD LOGIC;
35
              Cout : out STD_LOGIC);
36
37 end Half Adder;
38
39 architecture Behavioral of Half_Adder is
40
   Component Xor Gate is
41
42
      port (
43
      a,b : in STD LOGIC;
      c : out STD LOGIC);
44
45 End Component Xor Gate;
46
   Component And_Gate is
47
48
      port(
49
      a,b : in STD LOGIC;
      c : out STD LOGIC);
50
51 End Component And_Gate;
53 Xor_Gates : Xor_Gate port map (a => ah, b=> bh, c => S);
54 And_Gates : And_Gate port map (a => ah, b=> bh, c => Cout);
55 end Behavioral;
```

سپس با استفاده از دو گیت HA و یک گیت ،or گیت FA را با استفاده از کد زیر پیاده سازی می کنیم.

```
32 entity Full_Adder is
         Port (af : in STD_LOGIC;
bf : in STD_LOGIC;
Cin : in STD_LOGIC;
Sf : out STD_LOGIC;
Coutf : out STD_LOGIC);
33
34
35
36
38 end Full_Adder;
39
40 architecture Behavioral of Full_Adder is
     Component Half_Adder is
41
         Port(ah : in STD_LOGIC;
bh : in STD_LOGIC;
S : out STD_LOGIC;
Cout : out STD_LOGIC);
42
44
45
46 End Component Half_Adder;
52 End Component Or_Gate;
54 signal X, Y, Z : STD_LOGIC;
55 begin
56 Half_Adders : Half_Adder port map(ah => af, bh => bf, S => X, Cout => Y);
57 Half Adders2: Half Adder port map(ah => X, bh => Cin, S => Sf, Cout => Z);
58 Or Gates: Or Gate port map(a => Y, b => Z, c => Coutf);
59
60 end Behavioral;
```

نمای داخلی :FA

نمای داخلی HA درون :FA

تصاویر خروجی تستها :

