§ 6. Jordan 標準形(べき零行列の場合)

輪講#3

2025-02-23

Jordan 細胞,Jordan 標準形

定義 6.1: $\lambda \in \mathbb{C}$ に対して,次の $J(\lambda; n)$ を Jordan 細胞という:

$$J(\lambda;n) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix} \in M_n(\mathbb{C}).$$

Jordan 細胞を用いて,次のように表される正方行列を Jordan 標準形 という:

$$\begin{pmatrix} J(\lambda_1;m_1) & & & \\ & J(\lambda_2;m_2) & & \\ & & \ddots & \\ & & J(\lambda_r;m_r) \end{pmatrix} \in M_{m_1+\dots+m_r}(\mathbb{C}).$$

べき零行列

• 正方行列 N がべき零であるというのは, $N^k = O$ となるような k が存在すること.

例:
$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$ はべき零.

定理 6.1: $N \in M_n(\mathbb{C})$ がべき零 $\Leftrightarrow N$ のすべての固有値が 0.

Proof:

- (⇒) 固有値 λ の固有ベクトル v に N を左から然るべき回数掛けると, $\mathbf{0} = N^k v = \lambda^k v$ より $\lambda = 0$.
- (⇐) 固有多項式は $\phi_N(x) = x^n$. Cayley-Hamilton の定理より $N^n = O$.

Remark 対角化可能なべき零行列は零行列に限る.

べき零行列のべきの特徴付け

定理 6.2: $N \in M_n(\mathbb{C})$ をべき零行列とする. k を $N^k = O$ となる最小の自然数とすると, $k \leq n$.

Proof: $N^{k-1} \neq O$ より $N^{k-1}x \neq 0$ なる $x \in \mathbb{C}^n$ がとれる.

Claim $x, Nx, \dots, N^{k-1}x$ は一次独立.

- ・ 線型関係式 $\sum_{0 \leq i \leq k} c_i N^i x = 0$ を考える.
- 両辺に N^{k-1} を左から掛けることで $c_0 = 0$ を得る.
- 同様に $N^{k-2}, ..., N, I$ を左から掛けることで線型関係式が自明であることがいえる.

したがって,特に $k \leq n$ がいえる.

べき零行列の Jordan 標準形

定理 6.3: $N \in M_n(\mathbb{C})$ がべき零行列ならば,ある正則な $P \in M_n(\mathbb{C})$ が存在し,

$$P^{-1}NP = \begin{pmatrix} J(0;m_1) & & & \\ & J(0;m_2) & & \\ & & \ddots & \\ & & J(0;m_r) \end{pmatrix}.$$