Real Estate Valuation

Kun Huang, Yizhou Jin, group 6

We aim to predict the house price house_preic in New Taipei City, Taiwan using a data set containing the following variables,

- trans_date: the transaction date (for example, 2013.250=2013 March, 2013.500=2013 June, etc.)
- house_age: the house age (unit: year)
- distance_mrt: the distance to the nearest MRT station (unit: meter)
- stores: the number of convenience stores in the living circle on foot (integer)
- latitude: the geographic coordinate, latitude. (unit: degree)
- longitude: the geographic coordinate, longitude. (unit: degree)

The response variable is house_preice, the house price of unit area (10000 New Taiwan Dollar/Ping, where Ping is a local unit, 1 Ping = 3.3 meter squared).

The original contest can be see <u>here</u>.

Preprocessing and Exploratory data analysis

Since directly using the geographic coordinates as predictor variables will lead some problems, we transform the longitude and latitude into a categorical variable, CENTROID_ID to indicate the location of each observation.

After looking at the map, we roughly observed that there are 4 clusters in the map, hence we decided to cluster longitude and latitude based on data features into 4 groups by using K-means clustering. This step is imposed on the whole data set, i.e., the training set and test set.

The Scatterplot of House Location

Besides, we decided to exclude predictor trans_date before building the model since based on the following figure, we can see the season of transaction dates had relatively small influence on the house price.

By using the K-means model, we successfully cluster the latitudes and longitudes into four groups as follows.

Davies-Bouldin index	1.0114
Mean squared distance	0.5062

Numeric features

This table shows the centriod value for each feature. Use the select menu to view more numeric features.

Centroid Id	Count	latitude		longitude	
1	79		24.9547		121.5068
2	188		24.9773		121.5404
3	34		24.9836		121.5243
4	113		24.9609		121.5429

Then we subset the result table by train group and test group and we used CENTROID_ID, house_age, distance_mrt, and stores as the predictors and house_price as the response variable to train the model and do the prediction.

Model

We build a linear regression model using the BigQuery ML. Then we run the regression model and we use trained model to predict house price based on test data. The result is showed as follows.

₽		predicted_house_price		
	0	39.871868		
	1	39.810054		
	2	40.970729		
	3	39.853762		
	4	40.077838		
	120	40.380154		
	121	41.192638		
	122	38.843652		
	123	38.795686		
	124	41.307743		

125 rows x 1 columns

By submitting the data to Scriptedin, the score(MSE) is 13.1672 which is relatively good for a small dataset with size of 414.

Submission	Description	Score
results.csv	result	13.1672