Leandro Vendramin

Galois theory

Notes

Wednesday 10th November, 2021

Contents

1		 	 	 • • • •]
Refer	rences	 	 	 	 	 	 4

List of topics

§1	Fields	1

Lecture 1

§1. Fields

Recall that a **field** is a commutative ring such that $1 \neq 0$ and that every non-zero element is invertible. Examples of (infinite) fields are \mathbb{Q} , \mathbb{R} and \mathbb{C} . If p is a prime number, then \mathbb{Z}/p is a field.

Example 1.1. The abelian group $\mathbb{Z}/2 \times \mathbb{Z}/2$ is a field with multiplication

$$(a,b)(c,d) = (ac+bd,ad+bc+bd).$$

Example 1.2. $\mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\}$ and $\mathbb{Q}(\sqrt{2})$ are fields.

xca:Q(i)

Exercise 1.3. Prove that $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{2})$ are not isomorphic as fields.

If R is a ring, there exists a unique ring homomorphism $\mathbb{Z} \to R$, $m \mapsto m1$. The image $\{m1 : m \in \mathbb{Z}\}$ of this homomorphism is a subring of R and it is known as the **ring of integers** of R. The kernel is a subgroup of \mathbb{Z} and hence it is generated by some $t \in \mathbb{Z}$. The integer t is the **characteristic** of the ring R.

Exercise 1.4. The characteristic of a field is either zero or a prime number.

Recall that a commutative ring R is an **integral domain** if $xy = 0 \implies x = 0$ or y = 0. Fields are integral domains.

Exercise 1.5. Let *K* be a field. Prove that the following statements are equivalent:

- 1) *K* is of characteristic zero.
- **2**) The additive order of 1 is infinite.
- 3) The additive order of each $x \neq 0$ is infinite.
- **4)** The ring of integers of K is isomorphic to \mathbb{Z} .

Exercise 1.6. Let K be a field. Prove that the following statements are equivalent:

1) K is of characteristic p.

- **2)** The additive order of 1 is p.
- **3**) The additive order of each $x \neq 0$ is p.
- **4)** The ring of integers of *K* is isomorphic to \mathbb{Z}/p .

Note that if K is a subfield of E, then the characteristic of K coincides with the chacteristic of E. Moreover, if $K \to L$ is a field homomorphis, then K and L have the same characteristic.

Exercise 1.7. Let K be a field of characteristic p. Prove that $K \to K$, $x \mapsto x^{p^n}$, is a field homomorphism for all $n \in \mathbb{Z}_{\geq 0}$.

Note that finite fields are of characteristic p.

Let *K* be a subfield of a field *E*. Then *E* is a *K*-vector space with the usual scalar multiplication $K \times E \to E$, $(\lambda, x) \mapsto \lambda x$.

Definition 1.8. A field *K* is **prime** if there are no proper subfields of *K*.

Examples of prime fields are \mathbb{Q} and \mathbb{Z}/p for p a prime number.

Proposition 1.9. *Let K be a field. The following statements hold:*

- 1) K contains a unique prime field, it is known as the **prime subfield** K_0 of K.
- 2) Either $K_0 \simeq \mathbb{Q}$ or $K_0 \simeq \mathbb{Z}/p$ for some prime number p.

Proof. To prove the first claim let L be the intersection of all the subfields of K. Then L is a subfield of K. If F is a subfield of L, then F is a subfield of K. Thus $L \subseteq F$ and hence F = L, which proves that L is prime. If L_1 is a subfield of K and L_1 is prime, then $L \subseteq L_1$ and hence $L = L_1$.

Suppose that K is of characteristic p > 0...

Definition 1.10. Let E be a field and K be a subfield of E. Then E is an **extension** of K. We will use the notation E/K.

If E is an extension of K, then E is a K-vector space.

Definition 1.11. The degree of an extension E of K is the integer $\dim_K E$. It will be denoted by [E:K].

We say that E is a finite extension of K if [E:K] is finite.

Example 1.12. Let K be a field. Then [K : K] = 1. Conversely, if E is an extension of K and [E : K] = 1, then K = E. If not, let $x \in E \setminus K$. We claim that $\{1, x\}$ is linearly independent over K. Indeed, if a1 + bx = 0 for some $a, b \in K$, then bx = -a. If $b \ne 0$, then $x = -a/b \in K$, a contradiction. If b = 0, then a = 0.

We know that $[\mathbb{C} : \mathbb{R}] = 2$.

Example 1.13. A basis of $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} is given by $\{1, \sqrt{2}\}$. Then $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$.

Example 1.14. Since \mathbb{Q} is numerable and \mathbb{R} is not, $[\mathbb{R} : \mathbb{Q}] > \aleph_0$. If $\{x_i : i \in \mathbb{Z}_{>0}\}$ is a numerable basis of \mathbb{R} over \mathbb{Q} , for each n consider the \mathbb{Q} -vector space V_n generated by $\{x_1, \ldots, x_n\}$. Then

$$\mathbb{R} = \bigcup_{n \ge 1} V_n,$$

is numerable, as each V_n is numerable, a contradiction.

If E is an extension of K and E is finite, then [E:K] is finite.

Proposition 1.15. Let K be a finite field. Then $|K| = p^m$ for some prime number p and some $m \ge 1$.

Proof. We know that the prime subfield of K is isomorphic to \mathbb{Z}/p . In particular, $|K_0| = p$. Since K is finite, $[K:K_0] = m$ for some m. If $\{x_1, \ldots, x_m\}$ is a basis of K over K_0 , then each element of K can be written uniquely as $\sum_{i=1}^m a_i x_i$ for some $a_1, \ldots, a_m \in K_0$. Then $K \simeq K_0^m$ and hence $|K| = |K_0^m| = p^m$.

Definition 1.16. Let *E* be an extension of *K*. A **subextension** *F* of *K* is a subfield *F* of *E* that contains *K*, that is $K \subseteq F \subseteq E$.

Definition 1.17. Let E and E_1 be extensions over K. An extension **homomorphism** $E \to E_1$ is a field homomorphism $\sigma \colon E \to E_1$ such that $\sigma(x) = x$ for all $x \in K$.

To describe the homomorphism $\sigma: E \to E_1$ of the extensions over K one typically writes the commutative diagram

$$\begin{array}{ccc}
K & \longrightarrow & K \\
\downarrow & & \downarrow \\
E & \stackrel{\sigma}{\longrightarrow} & E_1
\end{array}$$

We write $\operatorname{Hom}(E/K, E_1/K)$ to denote the set of homomorphism $E \to E_1$ of extensions of K. Note that if $\sigma \in \operatorname{Hom}(E/K, E_1/K)$, then σ is a K-linear map, as

$$\sigma(\lambda x) = \sigma(\lambda)\sigma(x) = \lambda\sigma(x)$$

for all $\lambda \in K$ and $x \in E$.

Example 1.18. The conjugation map $\mathbb{C} \to \mathbb{C}$, $z \mapsto \overline{z}$, is an endomorphism of \mathbb{C} as an extension over \mathbb{R} . Let $\varphi \in \text{Hom}(\mathbb{C}/\mathbb{R}, \mathbb{C}/\mathbb{R})$. Then

$$\varphi(x+iy) = \varphi(x) + \varphi(i)\varphi(y) = x + \varphi(i)y$$

for all $x, y \in \mathbb{R}$. Since $\varphi(i)^2 = \varphi(i^2) = \varphi(-1) = -1$, it follows that $\varphi(i) \in \{-i, i\}$. Thus either $\varphi(x+iy) = x+iy$ or $\varphi(x+iy) = x-iy$.

Exercise 1.19. Prove that if K is a field and $\sigma: K \to K$ is a field homomorphism, then $\sigma \in \text{Hom}(K/K_0, K/K_0)$.

If E/K is an extension, then

$$\operatorname{Aut}(E/K) = \{ \sigma : \sigma : E \to E \text{ is a bijective extension homomorphism} \}$$

is a group with composition.

Definition 1.20. Let E/K be an extension. The **Galois group** of E/K is the group Aut(E/K) and it will be denoted by Gal(E/K).

A typicall example: $Gal(\mathbb{C}/\mathbb{R}) \simeq \mathbb{Z}/2$.

Example 1.21. Let $\theta = \sqrt[3]{2}$ and let $E = \{a + b\theta + c\theta^2 : a, b, c \in \mathbb{Q}\}$. Note that

$$a + b\theta + c\theta^2 = 0 \iff a = b = c = 0.$$

In fact, if $abc \neq 0$, then $aX^2 + bX + c \neq 0$ and thus $X^3 - 2 = q(X)(aX^2 + bX + c) + r(X)$ for some polynomials $q(X) \in \mathbb{Q}[X]$ and $r(X) = eX + f \in \mathbb{Q}[X]$. Evaluate in θ to obtain that $r(\theta) = 0$ and hence r(X) = 0 in $\mathbb{Q}[X]$. This implies that $aX^2 + bX + c$ divides $X^3 - 2$, a contradiction since $X^3 - 2$ is irreducible in $\mathbb{Q}[X]$.

Then E is an extension of \mathbb{Q} such that $[E:\mathbb{Q}]=3$. We claim that $Gal(E/\mathbb{Q})$ is trivial. If $\sigma \in Gal(E/\mathbb{Q})$ and $z=a+b\theta+c\theta^2$, then $\sigma(z)=a+b\sigma(\theta)+c\sigma^2(\theta)$. Since $\sigma(\theta)^3=\sigma(\theta^3)=\sigma(2)=2$, it follows that $\sigma(\theta)=\theta$ and therefore $\sigma=id$.

If E/K is an extension and S is a subset of E, then there exists a unique smallest subextension F/K of E/K such that $S \subseteq F$. In fact,

$$F = \bigcap \{T : T \text{ is a subfield of } E \text{ that contains } K \cup S\}$$

If L/K is a subextension of E/K such that $S \subseteq L$, then $F \subseteq L$ by definition. The extension F is known as the **subextension generated by** S and it will be denoted by K(S).

Definition 1.22. The extension F constructed

Proposition 1.23.

References