CM4 Solutions: The Atwood Machine (again)

- 1. (1 mark total) With the quantities as defined in the question, the constraint is $y_1 + y_2 + x = 0$. [1 mark]
- 2. **(2 marks total)** The kinetic energy is given by $T = \frac{1}{2}(m_1\dot{y}_1^2 + m_2\dot{y}_2^2)$. Using the constraint from part (i), the potential energy is $V = m_1gy_1 + m_2gy_2 + \frac{k}{2}(y_1 + y_2)^2$. With L = T V, the required result follows. **[2 marks]**
- 3. **(1 mark total)** For y_1 , the E-L equation implies $\ddot{y}_1 = -\frac{k}{m_1}(y_1 + y_2) g$. For y_2 , the E-L equation implies $\ddot{y}_2 = -\frac{k}{m_2}(y_1 + y_2) g$. **[1 mark]**
- 4. **(2 marks total)** In equilibrium, $\ddot{y}_1 = \ddot{y}_2 = 0$. Hence, with $m_1 = m_2 = m$, the EoM imply that in equilibrium, $y_1 + y_2 = -mg/k$. **[1 mark]** The constraint equation then gives the equilibrium extension as $x = -(y_1 + y_2) = mg/k$. **[1 mark]**
- 5. (3 marks total) The matrices, when evaluated, are

$$\hat{\tau} = \frac{m}{2} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right),$$

and

$$\hat{v} = \frac{k}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right),$$

which can then be substituted into the equations of motion.

[1 marks]

This leads to a generalised eigenvalue problem, the solutions to which are found from the following determinant:

$$\left|\begin{array}{cc} k-\omega^2 m & k \\ k & k-\omega^2 m \end{array}\right|=0.$$

These are $\omega_1 = 0$ and $\omega_2 = \sqrt{2k/m}$, with corresponding normalised eigenvectors

$$\underline{b}_1 = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ -1 \end{array} \right)$$

and

$$\underline{b}_2 = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ 1 \end{array} \right),$$

which are found by substituting the mode frequencies back into the matrix form of the EoM. [2 marks]

6. **(1 mark total)** Solution 1 represents a translation of the system with one mass rising at the same rate that the other drops. Solution 2 represents in-phase oscillations, when both masses rise and fall together at the frequency of oscillation associated with the reduced mass of the system. **[1 mark]**