Differential Equations (MATH 2051)

EXERCISE 7

1. Solve the given initial value problem.

(a)
$$9y'' - 12y' + 4y = 0$$
, $y(0) = 2$, $y(0) = 2$, $y'(0) = -1$

(b)
$$9y'' + 6y' + 82y = 0$$
, $y(0) = -1$, $y(0) = 2$, $y'(0) = 2$

Solution:

2. Consider the initial value problem:

$$9y'' + 12y' + 4y = 0, y(0) = a > 0, y'(0) = -1.$$

- (a) Solve the initial value problem.
- (b) Find the critical value of *a* that separates solutions that become negative from those that are always positive.

Solution:

- 3. (a) Consider the equation $y'' + 2ay' + a^2y = 0$. Show that the roots of the characteristic equation are $r_1 = r_2 = -a$, so that one solution of the equation is e^{-at} .
 - (b) Use Abel's formula to show that the Wronskian of any two solutions of the given equation is $W(t) = y_1(t)y_2'(t) y_1'(t)y_2(t) = c_1e^{-2at}$ at, where c_1 is a constant.
 - (c) Let $y_1(t) = e^{-at}$ and use the result of part (b) to obtain a differential equation satisfied by a second solution $y_2(t)$. By solving this equation, show that $y_2(t) = te^{-at}$