

Departamento de Informática

Disciplina: Banco de Dados I - 6892/01

Profa. Dra. Maria Madalena Dias

Lista de Exercícios – Álgebra Relacional e SQL

1. Tendo como base de dados o esquema de banco de dados abaixo, especifique as consultas solicitadas usando operadores da álgebra relacional e comandos SQL.

EMPREGADO

PNOME	UNAME	SSN	DNASC	ENDER	SEXO	SALARIO	SUPERSSN	DNO

DEPARTMENTO

DNOME <u>DNUMERO</u> GERSSN GERDATAINICIO

DEPTO_LOCALIZACOES

DNUMERO DLOCALIZACAO

PROJETO

PJNOME PNUMERO PLOCALIZACAO DNUM

TRABALHA_EM

ESSN PNO HORAS

DEPENDENTE

ESSN NOME_DEPENDENTE SEXO DATANASC PARENTESCO

a) Recupere os nomes e endereços de todos os empregados do departamento 5 que trabalham mais de dez horas por semana no projeto 'Produto X'.

 $\Pi_{\text{PNOME, UNOME, ENDER}}$ ($\sigma_{\text{PJNOME = `PRODUTO X` ^ HORAS > 10 ^ DNO = 5}}$ ((EMPREGADO $\bowtie_{\text{SSN=ESSN}}$ TRABALHA_EM) $\bowtie_{\text{PNO=PNUMERO}}$ PROJETO))

SELECT PNOME, UNOME, ENDER
FROM ((EMPREGADO JOIN TRABALHA_EM ON SSN=ESSN)
JOIN PROJETO ON PNO=PNUMERO)
WHERE PJNOME = `PRODUTO X` ^ HORAS > 10 ^ DNO = 5

b) Encontre os nomes de todos os empregados que são diretamente supervisionados por 'João da Silva' (SUPERSSN = 123456).

 $\Pi_{PNOME, UNOME} (\sigma_{SUPERSSN = 123456} (EMPREGADO))$

SELECT PNOME, UNOME **FROM** EMPREGAD **WHERE** SUPERSSN = 123456

Departamento de Informática

Disciplina: Banco de Dados I - 6892/01

Profa. Dra. Maria Madalena Dias

c) Para cada empregado, recupere o primeiro e o último nome do empregado e o primeiro e o último nome de seu supervisor imediato.

E1 ← EMPREGADO E2 ← EMPREGADO

 $\Pi_{\text{E1.PNOME, E1.UNOME, E2.PNOME, E2.UNOME}}$ (E1 $\bowtie_{\text{E1.SUPERSSN=E2.SSN}}$ E2))

SELECT E1.PNOME, E1.UNOME, E2.PNOME, E2.UNOME **FROM** EMPREGADO **AS** E1, EMPREGRADO **AS** E2 **WHERE** E1.SUPERSSN = E2.SSN

d) Para cada projeto, recupere o número do projeto, o nome do projeto e o número de empregados do departamento 5 que trabalha no projeto.

 $R1 \leftarrow \sigma_{DNO=5}$ (EMPREGADO)

R2 $\leftarrow \Pi_{\text{PNUMERO, PJNOME, ESSN}}$ ((R1 $\bowtie_{\text{SSN=ESSN}}$ TRABALHA_EM) $\bowtie_{\text{PNO=PNUMERO}}$ PROJETO))

PNUMERO, PJNOME G COUNT(ESSN) (R2)

SELECT PNO, PJNOME, COUNT(ESSN)

FROM TRABALHA_EM JOIN PROJETO ON PNO = PNUMERO
GROUP BY PNO

e) Para cada projeto, liste o nome do projeto e o total de horas por semana (de todos os empregados) gastas no projeto.

 $_{\text{PJNOME}}G_{\text{SUM(HORAS)}}$ (TRABALHA_EM $\bowtie_{\text{PNO=PNUMERO}}$ PROJETO)

SELECT PJNOME, SUM(HORAS) **FROM** TRABALHA_EM **JOIN** PROJETO **ON** PNO = PNUMERO **GROUP BY** PJNOME

f) Recupere os nomes de todos os empregados que trabalhem em todos os projetos.

 $P \leftarrow \Pi_{PNUMERO} (PROJETO)$

 $\mathbf{T} \leftarrow \Pi_{\text{ESSN, PNO}} \left(\text{TRABALHA_EM} \right)$

 $\Pi_{\text{PNOME, UNOME}}$ (EMPREGADO \bowtie SSN=ESSN (T \div P))

Ou

Departamento de Informática

Disciplina: Banco de Dados I - 6892/01

Profa. Dra. Maria Madalena Dias

 $\Pi_{\mathsf{PNOME,\,UNOME}}$ (EMPREGADO \bowtie SSN=ESSN

 $(\Pi_{\text{ESSN, PNO}} (\text{TRABALHA_EM}) \div \Pi_{\text{PNUMERO}} (\text{PROJETO})))$

SELECT PNOME, UNOME FROM EMPREGADO WHERE NOT EXISTS

((SELECT PNUMERO FROM PROJETO)

EXCEPT

(SELECT PNO FROM TRABALHA_EM WHERE SSN=ESSN));

Observação:

A primeira subconsulta (que não está correlacionada) seleciona todos os projetos e a segunda (que está correlacionada) seleciona todos os projetos nos quais o empregado em particular, que está sendo considerado, trabalhe. Se a diferença dos conjuntos, o da primeira subconsulta MINUS (EXCEPT) e o da segunda, for vazio, isso significa que o empregado trabalha em todos os projetos e então é selecionado. Lembre-se de que EXCEPT é o operador da diferença entre os conjuntos.

g) Recupere os nomes de todos os empregados que não trabalham em nenhum projeto.

 $E \leftarrow \Pi_{SSN}$ (EMPREGADO)

 $T \leftarrow \Pi_{\text{ESSN}} (TRABALHA_EM)$

 $R \leftarrow E - T$

 $\Pi_{\text{PNOME, UNOME}}$ (EMPREGADO \bowtie EMPREGADO.SSN=R.SSN (R))

Ou

 $\Pi_{\text{PNOME, UNOME}}$ (EMPREGADO \bowtie EMPREGADO.SSN=E.SSN (E - T))

SELECT PNOME, UNOME FROM EMPREGADO WHERE SSN NOT IN (SELECT ESSN FROM TRABALHA_EM);

h) Faça uma lista de todos os números de projetos para aqueles projetos que envolvem um empregado cujo último nome é 'Smith'.

 Π_{PNUMERO} ($\sigma_{\text{UNOME = 'SMITH'}}$ ((EMPREGADO $\bowtie_{\text{SSN=ESSN}}$ TRABALHA_EM) $\bowtie_{\text{PNO=PNUMERO}}$ PROJETO))

SELECT PNUMERO
FROM EMPREGADO JOIN TRABALHA_EM ON SSN=ESSN
WHERE UNOME = `Smith`

Departamento de Informática

Disciplina: Banco de Dados I - 6892/01

Profa. Dra. Maria Madalena Dias

i) Para cada departamento, recupere o nome do departamento e a média salarial de todos os empregados que trabalham nesse departamento.

 $\begin{array}{c} \text{dnome } G \text{ }_{\text{AVG(SALARIO)}} \text{ (EMPREGADO } \bowtie_{\text{DNO=DNUMERO}} \\ \text{DEPARTAMENTO)} \end{array}$

SELECT DNOME, AVG(SALARIO)

FROM EMPREGADO JOIN DEPARTAMENTO ON DNO = DNUMERO
GROUP BY DNOME

j) Recupere a média salarial de todos os empregados do sexo feminino.

 $\Pi_{\text{AVG(SALARIO)}}$ ($\sigma_{\text{SEXO} = 'F'}$ (EMPREGADO))

SELECT AVG(SALARIO) **FROM** EMPREGADO **WHERE** SEXO = 'F'

k) Encontre os nomes e os endereços de todos os empregados que trabalhem em pelo menos um projeto localizado em Maringá, mas cujo departamento não se localiza em Maringá.

Π_{PNOME}, UNOME, ENDER (**O**PLOCALIZACAO = `MARINGÁ` ^ DLOCALIZACAO ≠ `MARINGÁ' (((EMPREGADO ⋈_{DNO=DNUM} DEPARTAMENTO) ⋈_{SSN=ESSN} TRABALHA_EM) ⋈_{PNO=PNUMERO} PROJETO))
Ou

 $\Pi_{\text{PNOME, UNOME, ENDER}}$ (((EMPREGADO $\bowtie_{\text{DNO=DNUM}}$

 $\left(\sigma_{\text{DLOCALIZACAO} \neq \text{`MARING\'A'}}\left(\text{DEPARTAMENTO}\right)\right)\right)$

SSN=ESSN TRABALHA_EM)

PNO=PNUMERO (OPLOCALIZACAO = `MARINGÁ` (PROJETO)))

SELECT PNOME, UNOME FROM EMPREGADO WHERE SSN IN

(SELECT ESSN FROM TRABALHA_EM, DEPARTAMENTO, PROJETO WHERE SSN = ESSN AND PNO = PNUMERO AND DLOCALIZACAO NOT = 'Maringá' AND PLOCALIZACAO = 'Maringá');

Departamento de Informática

Disciplina: Banco de Dados I - 6892/01

Profa. Dra. Maria Madalena Dias

l) Liste os últimos nomes de todos os gerentes de departamento que não tenham dependentes.

DEPTO $\leftarrow \Pi_{\text{GERSSN}}$ (DEPARTAMENTO)

 $\mathsf{DEPEN} \leftarrow \Pi_{\mathsf{ESSN}} \left(\mathsf{DEPENDENTE} \right)$

R ← DEPTO - DEPEN

 Π_{UNOME} (EMPREGADO \bowtie SSN=GERSSN (R))

Ou

 Π_{UNOME} (EMPREGADO \bowtie SSN=GERSSN (DEPTO - DEPEN))

SELECT UNOME FROM EMPREGADO WHERE SSN NOT IN

(SELECT GERSSN FROM DEPARTAMENTO JOIN DEPENDENTE ON GERSSN = ESSN);

2. Tendo como base de dados o esquema de banco de dados abaixo, especifique as consultas solicitadas usando operadores da álgebra relacional e comandos SQL.

AEROPORTO

CODIGO AEROPORTO	NOME	CIDADE	ESTADO

voo

<u>NUMERO</u>	COMPANHIA_AEREA	DIA_SEMANA	ID_AVIAO

TRECHO_VOO

NO_VOO	NUM_	CODIGO_AER	HORA_PARTIDA	CODIGO_AER	HORA_CHEGA_
	TRECHO	_PARTIDA	_PROGRAMADA	_CHEGADA	PROGRAMADA

PASSAGEM

NO_VOO	CODIGO_PASSAGEM	VALOR	RESTRICOES

TIPO_AVIAO

NOME_TIPO	MAX_POLTRONAS	EMPRESA

PODE_POUSAR

NOME TIPO AVIAO	CODIGO AEROPORTO

Departamento de Informática

Disciplina: Banco de Dados I - 6892/01

Profa. Dra. Maria Madalena Dias

AVIAO

<u>ID_AVIAO</u>	NUMERO_TOTAL_POLTRONAS	TIPO_AVIAO

RESERVA_POLTRONA

NO_VOO	NUM_TRECHO	DATA	NUM_POLTRONA	NOME_CLIENTE	FONE_CLIENTE

a) Para cada vôo, liste o número do vôo, o aeroporto de chegada para o primeiro trecho de vôo e o aeroporto de chegada para o último trecho de vôo.

 $\text{GV(N_V, QT_TR)} \leftarrow {_{\text{NO_VOO}}}\,G_{\text{COUNT NUM_TRECHO}}\,\text{(TRECHO_VOO)}$

A1 $\leftarrow \Pi_{NO_VOO, AER_CHEGADA} (\sigma_{NUM_TRECHO = 1} (TRECHO_VOO))$

A2 $\leftarrow \Pi_{\text{NO_VOO}, AER_CHEGADA}$ ($\sigma_{\text{NUM_TRECHO}} = \text{QT_TR}$

(TRECHO_VOO $\bowtie_{NO_VOO = N_V \land NUM_TRECHO = QT_TR} GV)$)

 $\Pi_{A1.NO.VOO, A1.AER. CHEGADA, A2.AER. CHEGADA}$ (A1 $\bowtie_{A1.NO.VOO = A2.NO.VOO}$ A2)

CREATE VIEW ULT TRECHO AS

SELECT NO_VOO, COUNT(NUM_TRECHO) AS ULT_TR FROM TRECHO_VOO GROUP BY NO_VOO;

SELECT A1.NO_VOO, A1.AER_CHEGADA, A2.AER_CHEGADA

FROM ((SELECT A1.NO_VOO, A1.AER_CHEGADA

FROM TRECHO_VOO AS A1 WHERE NUM_THECHO = 1)
JOIN

(SELECT A2.NO_VOO, A2.AER_CHEGADA

FROM TRECHO_VOO AS A2, ULT_TRECHO

WHERE A2.NO_VOO = ULT_TRECHO.NO_VOO

AND A2.NUM TRECHO = ULT TRECHO.ULT TR)

ON A1.NO VOO = A2.NO VOO);

b) Liste os números dos vôos e os dias da semana de todos os vôos ou trechos de vôo que partam do Aeroporto Internacional de São Paulo (código do aeroporto 'CGA') e cheguem ao Aeroporto Internacional de Recife (código do aeroporto 'GUA').

 Π_{NO_VOO, DIA_SEMANA} ($\sigma_{AER_PARTIDA=`CGA` \land AER_CHEGADA=`GUA`}$ (TRECHO_VOO $\bowtie_{NO_VOO=NUMERO}$ VOO))

Departamento de Informática

Disciplina: Banco de Dados I - 6892/01

Profa. Dra. Maria Madalena Dias

SELECT NO_VOO, DIA_SEMANA
FROM TRECHO_VOO JOIN VOO ON NO_VOO = NUMERO
WHERE AER_PARTIDA = 'CGA' AND AER_CHEGADA = 'GUA'

c) Liste o número do vôo, o código do aeroporto de partida, o horário programado para a partida, o código do aeroporto de chegada, o horário programado para a chegada e os dias da semana de todos os vôos ou trechos de vôo que partam de algum dos aeroportos da cidade de São Paulo e cheguem em algum dos aeroportos da cidade de Recife.

 $\mathsf{AP} \leftarrow \Pi_{\mathsf{NO_VOO}, \, \mathsf{AER_PARTIDA}, \, \mathsf{HORA_PARTIDA_PROGRAMADA}}$

(OCIDADE=`Sao Paulo` (TRECHO_VOO ⋈AER_PARTIDA=CODIGO_AEROPORTO AEROPORTO)

 $\mathsf{AC} \leftarrow \Pi_{\mathsf{NO}_\mathsf{VOO},\ \mathsf{AER_CHEGADA},\ \mathsf{HORA_CHEGA_PROGRAMADA}}$

(OCIDADE=`Recife` (TRECHO_VOO ☐ AER_CHEGADA=CODIGO_AEROPORTO AEROPORTO))

∏AP.NO_VOO, AER_PARTIDA, HORA_PARTIDA_PROGRAMADA, AER_CHEGADA,
HORA_CHEGA_PROGRAMADA, DIA_SEMANA ((AP ⋈AP.NO_VOO=AC.NO_VOO AC)

⋈AP.NO_VOO=VOO.NO_VOO VOO)

SELECT AP.NO_VOO, AP.AER_PARTIDA, AP.HORA_PARTIDA, AC.AER_CHEGADA, AC.HORA_CHEGA_PROGRAMADA, VOO DIA SEMANA

FROM (((SELECT AP.NO_VOO, AP.AER_PARTIDA, AP.HORA_PARTIDA_PROGRAMADA

FROM TRECHO_VOO AS AP JOIN AEROPORTO

ON AP.AER_PARTIDA = CODIGO_AEROPORTO

WHERE CIDADE = 'Sao Paulo')

JOIN

(SELECT AC.NO_VOO, AC.AER_CHEGADA,

AC.HORA_CHEGA_PROGRAMADA

FROM TRECHO_VOO AS AC JOIN AEROPORTO

ON AER_CHEGADA = CODIGO_AEROPORTO

WHERE CIDADE = 'Recife')

ON AP.NO_VOO = AC_NO_VOO))

JOIN VOO ON AP.NO_VOO = VOO.NO_VOO)

Departamento de Informática

Disciplina: Banco de Dados I – 6892/01

Profa. Dra. Maria Madalena Dias

d) Liste todas as informações dos passageiros do vôo de número 'VO197'.

 $\Pi_{\text{NUM_POLTRONA, NOME_CLIENTE, FONE_CLEINTE}}(\sigma_{\text{NO_VOO=`VO197'}})$ (RESERVA_POLTRONA))

e) Recupere o número de poltronas disponíveis para o vôo de número 'VO197' em '2010-10-09'.

 $T1 \leftarrow \prod_{\text{NUMERO, NUMERO_TOTAL_POLTRONAS}} ((\sigma_{\text{NUMERO=`V0197`}} (\text{VOO}))$ $\bowtie_{\text{VOO.ID_AVIAO=AVIAO.ID_AVIAO}} \text{AVIAO})$

T2 (NO_VOO, T_RES) $\leftarrow \Pi_{\text{NO_VOO, COUNT(*)}} (\sigma_{\text{NO_VOO=`V0197`}^{\bullet}})$ DATA = '2010-10-09' (RESERVA_POLTRONA))

 $\Pi_{NO_VOO, (NUMERO_TOTAL_POLTRONAS-T_RES)}$ (T1 $\bowtie_{T1.NUMERO=T2.NO_VOO}$ T2)

SELECT VOO.NO_VOO, (NUMERO_TOTAL_POLTRONAS - T_RES) **FROM ((SELECT** NO_VOO, NUMERO_TOTAL_POLTRONAS,

FROM VOO JOIN AVIAO ON VOO.ID_AVIAO = AVIAO_ID_AVIAO WHERE NO_VOO = 'V0197')

JOIN

(SELECT RES.NO_VOO AS RES_VOO, COUNT(*) AS RES_TOTAL FROM RESERVA_POLTRONAS AS RES

WHERE RES.NO_VOO = 'V0197' **AND** RES.DATA = '2010-10-09') **ON** NO_VOO = RES_VOO)