

Quiz #6

Monday, November 6 2017

Duration: 20 min	
NAME:	
Please write clearly and properly. Justify your a	nswers carefully.

Problem	Grade
1	
2	
Total	

Problem 1 (\sim 7 points).

Consider the following element of the group S_5 (the symmetric group on 5 letters):

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{array}\right)$$

(1) Compute $\sigma^2, \sigma^3, \dots, \sigma^6$.

(2)	What is the order of σ in S_5 ?
	We recall that the order of an element x in a group is the smallest positive integer n such that x^n is the identity element.
	such that x is the taentity element.
(3)	Is σ a generator of S_5 ?
(4)	What are the orbits of σ ?
(5)	Write σ as a product of disjoint cycles.

(6) Write σ as a product of transpositions. <i>Hint: check that</i> $(i, j, k) = (i, k)(i, j)$.
(7) What is the signature of σ ?

Problem 2 (~ 2 points).
Show that the map:
$sign \colon S_n \to \{-1,1\}$ $\sigma \mapsto sign(\sigma)$ is a group homomorphism from the symmetric group S_n to the group $(\{-1,1\},\times)$.