

Dokumentation Parkassist

Graphische Programmierung und Simulation

an der Dualen Hochschule Baden-Württemberg Stuttgart

von

Nahku Saidy und Hanna Siegfried

07.04.2020

Bearbeitungszeitraum Matrikelnummer, Kurs Ausbildungsfirma Dozent

24.03.2020 - 07.04.2020 8540946; XXX, STG-TINF17-ITA Daimler AG, Stuttgart Dr. Kai Pinnow

Inhaltsverzeichnis

ΑŁ	okürzungsverzeichnis	ı
ΑŁ	obildungsverzeichnis	П
Ta	bellenverzeichnis	Ш
Lis	stings	IV
1	Aufgabenstellung	1
2	D1: Aufwandsabschätzung nach der Dreipunktmethode	2
3	D2: Machbarkeitsdemonstration	3
4	D3: Analyse des menschlichen Geschwindigkeitsprofils	5
5	D4*: Betrachtung von Unebenheiten des Parkplatzes	6
6	D5: Betrachtung von Unsicherheiten in der Geschwindigkeitsmessung	7
7	D6: Implementierung des Pulssignals in Simulink	8
8	D7: Übernahme des Simulinkmodells nach ASCET	9
9	D8: Implementierung des Pulssignals in ASCET	10
10	D9: Unit-Tests für das Pulssignal in ASCET	11
11	D10: Entwicklung und Druchführung von Systemtests für die ASCET Simulation	12
12	D11*: Plausibilitätsprüfung gemessener Geschwindigkeiten und Strecken gegeneinander	13
13	D13*: Einfluss von Ungenauigkeiten	14
14	D14*: Reflexion	15

Abkürzungsverzeichnis

AABB Axis-Aligned Bounding Box

Abbildungsverzeichnis

3.1	UML diagram of the architecture of the software tool	3
3.2	Simulink Modell der Differenzialgleichungen	4

Tabellenverzeichnis

2.1	Dreipunktabschätzung	des	Aufwands	der	Anforderungen						2

Listings

1 Aufgabenstellung

??

2 D1: Aufwandsabschätzung nach der Dreipunktmethode

Tabelle 2.1: Dreipunktabschätzung des Aufwands der Anforderungen

					=
Anforderung Optimistisch	Wahrscheinlich	Pessimistisch	<T $>$	${ m sigmahoch 2}$	wirklich
D1					

3 D2: Machbarkeitsdemonstration

Das Ziel der Machbarkeitsdemonstration ist es, zu zeigen, dass mit dem Modell, bestehend aus den Formeln

$$\frac{\partial v}{\partial t} = -c - b * p \tag{3.1}$$

$$\frac{\partial x}{\partial t} = v \tag{3.2}$$

die gegebene Aufgabenstellung erfüllt werden kann.

- Minimale Geschwindigkeit 0,29km/h beachten -> in m/s umrechnen
- Switch -> wenn Geschwindigkeit kleiner 0,29 folgt daraus Geschwindigkeit = 0
- Screenshot Simulink Modell und Ergebnis
- R5 auch beachtet

Abbildung 3.1: UML diagram of the architecture of the software tool

Abbildung 3.2: Simulink Modell der Differenzialgleichungen

4 D3: Analyse des menschlichen Geschwindigkeitsprofils

- 1. Import in Matlab
- 2. entschieden Durchschnitt der vier Radgeschwindigkeiten zu nehmen (vllt. vor nachteile) und so auf die Geschwindigkeit des Autos näherungsweise zu bestimmen

todo hier plot von gesamtgeschwindigkeit

idee: verzögerungsphasen extrahieren um so auf "menschliche"negative beschleunigung zu schließen problem: verrauschte messdaten -> dadurch ständiger wehcsel positive negative beschleunigung

lösung: moving average filter zum glätten der messwerte dann extrahieren der negativen beschleunigungen

5 D4*: Betrachtung von Unebenheiten des Parkplatzes

6 D5: Betrachtung von Unsicherheiten in der Geschwindigkeitsmessung

validate findings by numbers from simulation

7 D6: Implementierung des Pulssignals in Simulink

8 D7: Übernahme des Simulinkmodells nach ASCET

9 D8: Implementierung des Pulssignals in ASCET

10 D9: Unit-Tests für das Pulssignal in ASCET

11 D10: Entwicklung und Druchführung von Systemtests für die ASCET Simulation

12 D11*: Plausibilitätsprüfung gemessener Geschwindigkeiten und Strecken gegeneinander

13 D13*: Einfluss von Ungenauigkeiten

14 D14*: Reflexion