

Nonlinear physics, dynamical systems and chaos theory

jean-christophe. loiseau@ensam. eu DynFluid, Arts et Métiers ParisTech, France

Flows on the line

An apparently simple system

▶ Let us consider the following first-order dynamical system

$$\dot{x} = \sin(x).$$

Its analytical solution is given by

$$t = \ln \left| \frac{\csc(x_0) + \cot(x_0)}{\csc(x) + \cot(x)} \right|.$$

Phase line

Phase line of the first-order dynamical system considered.

Fixed points

ightharpoonup Fixed points x^* are equilibrium solutions characterized by

$$f(x^*) = 0.$$

▶ In the present case, these are given by

$$x^* = n\pi$$
 for $n \in \mathbb{N}$.

Linear stability

▶ The dynamics of a perturbation $\eta(t) = x(t) - x^*$ is given by

$$\dot{\eta} = f(x^* + \eta).$$

lacktriangleright If η is small enough, $f(x^* + \eta)$ can be approximated by its first-order Taylor expansion around x^*

$$f(x^* + \eta) = f(x^*) + f'(x^*)\eta + \mathcal{O}(\eta^2).$$

Linear stability

• Given that $f(x^*) = 0$, the dynamics of η are governed by

$$\dot{\eta} = f'(x^*)\eta.$$

▶ Its analytical solution is given by

$$\eta(t) = \exp\left(f'(x^*)t\right)\eta_0.$$

Linear stability

- ▶ The linear stability of a fixed point x^* is determined by the sign of $f'(x^*)$:
 - \hookrightarrow if $f'(x^*) > 0$, $\eta(t)$ growths exponentially fast. The fixed point is said to be linearly unstable.
 - \hookrightarrow if $f'(x^*) < 0$, $\eta(t)$ decays exponentially fast. The fixed point is said to be linearly stable.
 - \hookrightarrow if $f'(x^*) = 0$, one can not conclude and nonlinear analyses are required.
- Let us now re-analyze our original system and sketch the evolution of x(t).

Phase line

Phase line of the first-order dynamical system considered.

Evolution of x(t)

Evolution of x(t) for the initial condition $x_0 = 10^{-6}$.

Warning!

For a first-order system, the trajectories can only vary monotonically: either they end up on a stable fixed point, or they diverge to $\pm \infty$.

Second-order systems

Oscillators, but not only...

Second-order systems

Second-order systems are dynamical systems which can be described by

$$\dot{x} = f(x, y)$$

$$\dot{y} = g(x, y).$$

Having two degrees of freedom, they can exhibit a dynamics much richer than simple first-order systems.

Second-order system

Our working example

For the rest of this section, let us consider the following system

$$\dot{x} = x - y^2 + 1.28 + 1.4xy$$
$$\dot{y} = 0.2y - x + x^3.$$

▶ Note that this system is considered only for illustration purposes. To the best of my knowledge, it does not model any particular physics.

Interlude

How to compute fixed points?

How to compute fixed points?

Different techniques

- ► Fixed points are structuring the phase space of the dynamical system under scrutiny. Unfortunately, it may not be easy (nor possible) to compute them analytically.
- A number of different numerical techniques exist for that purpose. The following list is by no means exhaustive:
 - → Newton-Raphson method.
 - → Selective Frequency Damping,
 - → BoostConv.
 - \hookrightarrow ...

$$f: \mathbb{R} \to \mathbb{R}$$

Originally proposed by Isaac Newton (1645–1727) and Joseph Raphson (1648 – 1715) to solve

$$f(x) = 0.$$

Given an initial guess x_0 , the idea is to approximate f(x) by its first-order Taylor expansion around x_0 , i.e.

$$f(x) \simeq f(x_0) + f'(x_0)(x - x_0).$$

A better estimate x_1 of the root of f can then be obtained by solving

$$0 = f(x_0) + f'(x_0)(x_1 - x_0).$$

$$f: \mathbb{R} \to \mathbb{R}$$

▶ After *k* iterations, the basic iteration scheme can be written as

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

▶ The iterative procedure stops when a user-defined criterion is fulfilled, usually

$$||f(x_k)|| \le \epsilon \text{ or } ||x_{k+1} - x_k|| \le \epsilon,$$

with $\epsilon \simeq 10^{-10}$.

 $f: \mathbb{R} \to \mathbb{R}$

Illustration of the Newton-Raphson for $f(x) = x^3 - 2x - 5$ and $x_0 = 3.8$.

$$oldsymbol{f}: \mathbb{R}^n
ightarrow \mathbb{R}^n$$

- lackbox Generalization of the Newton-Raphson method to the case $f:\mathbb{R}^n o\mathbb{R}^n$ is quite straightforward.
- ightharpoonup Given an estimate x_k , the basic iteration reads

$$egin{aligned} oldsymbol{J}\deltaoldsymbol{x} &= -oldsymbol{f}(oldsymbol{x}_k) \ oldsymbol{x}_{k+1} &= oldsymbol{x}_k + \deltaoldsymbol{x}, \end{aligned}$$

where J is the Jacobian matrix of f evaluated at x_k .

Limitations

- ▶ Although efficient, Newton-Raphson method suffers from a number of limitations:
 - \hookrightarrow The fixed points computed may depend on the initial guess x_0 .
 - \hookrightarrow Evaluating f(x) might be computationally expensive.
 - \hookrightarrow At each iteration, the Jacobian matrix J needs to be evaluated and inverted ($\mathcal{O}(n^3)$ operations).
- ► A number of variants of the Newton-Raphson method exist as to address these different limitations. This however is algorithmic refinement beyond the scope of the present course.

Second-order systems

Back to our example

