3 - What is Decision-Making?

Dr. Marija Popović

Motivation

http://www.cs.columbia.edu/~allen/F17/NOTES/Lecture 2.pdf http://asl.stanford.edu/aa274a/pdfs/lecture/lecture 1.pdf How do I respond to visitors?

Motivation

Robotic exploration

What is Decision-Making?

Find goal location(s) (point B) to fulfill a particular task – where?

Planning vs. Decision-Making

Decision-making: Where to go?

Planning vs. Decision-Making

- Decision-making: Where to go?
- Planning: How to get there?

Planning vs. Decision-Making

- Decision-making: Where to go?
- Planning: How to get there?
- Motion planning is sequential decision-making

- Decision-making aspects:
 - Different objective functions (rewards)
 - Uncertainty (actuation and sensing)
 - Discrete problems

Agent and Environment

- Agent: Learner and decision-maker
- Environment: Everything outside the agent

- Action A: Choice made by the agent
- Observation O: Information the agent gets about the environment
- Reward R: Scalar feedback signal defining the agent's goal

Reward

- ullet Reward R_t : Scalar feedback signal defining the agent's goal
- How well the agent is doing at step t
- Goal: Maximise expected cumulative reward
- Examples:
 - UAV exploring an unknown environment
 - + reward for finding unobserved areas
 - Quadrotor control
 - + reward for stability (position and derivatives)
 - Autonomous surface vehicle monitoring lake
 - + reward for measurements with high bacteria concentration

Single-Stage Decision-Making

- Goal: Choose one action to maximise the expected reward
- Optimal action:

Sequential Decision-Making

Goal: Choose actions to maximise the total expected future reward

Challenges:

Subsequent actions depend on what is observed

Agent and Environment

- Agent and environment interact continually
- At each time step t, the agent:
 - Performs action A_t
 - Receives observation O_t

Agent and Environment

Agent and environment interact continually

 O_{t+1}

- At each time step t, the agent:
 - Performs action A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}

Sources of Uncertainty

1. Uncertainty in actions

2. Uncertainty in observations/states

- **State** *S*: Determine outcomes and provide all the information for choosing the next decision
- Transition model $T(s_{t+1}, a_t, s'_t) = p(s'_{t+1} | s_t, a_t)$: Probability that action a in state s leads to next state s'

- **State** *S*: Determine outcomes and provide all the information for choosing the next decision
- Transition model $T(s_{t+1}, a_t, s'_t) = p(s'_{t+1} | s_t, a_t)$: Probability that action a in state s leads to next state s'
- Markov property: Transition probabilities only depend on the current state and action:

$$p(s_{t+1} | a_0, a_1, \dots, a_t, s_0, s_1, \dots, s_t) = p(s_{t+1} | a_t, s_t)$$

Deterministic

$$p(s'|s,a) = \delta_{s_{\text{next}}}(s') = \begin{cases} 1 & \text{for } s' = s_{\text{next}} \\ 0 & \text{otherwise} \end{cases}$$

Stochastic

Stochastic

Transition function at s_1 :

$s_{\ t}'$	T(s,a,s')
s_2	0.1
s_{g}	0.8
s_{4}	0.1

 General sequential decision-making framework

- Assumptions:
 - Fully observable environment
 - Markov dynamics
 - Stochastic transitions
 - Stationary

MDP Definition

- Defined by a tuple: $\langle S, A, P, R \rangle$
 - \mathcal{S} : finite set of states
 - ullet \mathcal{A} : finite set of actions
 - $ullet \mathcal{P}$: state transition probabilities

$$T(s_{t+1}, a_t, s'_t) = p(s'_{t+1} | s_t, a_t)$$

• \mathcal{R} : reward function

$$\mathbb{E}(R_{t+1} \mid S_t = s, A_t = a)$$

Returns

- Goal: Maximise expected cumulative reward (return G_t)
 - Episodic vs. continuous tasks

Episodic task

Finite horizon, Tsteps

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \ldots + R_T$$

Returns

Continuing task

Infinite horizon, never-ending

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

• γ is the **discount factor**

$$\gamma = 0$$
 myopic agent

$$\gamma \to 1$$
 farsighted agent

Why?

- Convergence
- Uncertainty of future reward
- Humans prefer immediate reward

 ∞

Policy

- Policy π : Determines agent's behaviour
- Maps states to actions
- Goal of MDP is to find a good policy maximise returns
- Deterministic policy $a = \pi(s)$
- Stochastic policy $\pi(a|s) = p(A = a \mid S = s)$

Policies vs. Plans

Policies are more general than plans

Plan:

- Sequence of actions
- Cannot react to unexpected outcomes

Policy:

Tells which action to take from any state

Value Functions

• State-value functions: expected return starting from state s and following policy π :

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right]$$

• Action-value functions: expected return starting from state s and following policy:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$
$$= \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a\right]$$

Bellman Equation

 State-value function = immediate reward + discounted state-value of successor state

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$$

immediate reward

discounted value of next state

Bellman Equation

 Action-value function = immediate reward + discounted action-value of successor state

State-value

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

Action-value

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s]$$

Optimality

Optimal value of a state

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Optimal value of a state-action pair

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

Optimal policy

 π_* is an optimal policy if and only if:

$$\pi_*(a|s) > 0$$
 only where $q_*(s,a) = \max_b q_*(s,b)$ $\forall s \in \mathcal{S}$

Solving MDPs – Dynamic Programming

Solving MDPs – Dynamic Programming

Solving MDPs – Dynamic Programming

Preliminaries

- Dynamic programming: Method for solving sequential problems
- To solve a complex problem:
 - Break down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Requirements

- Principle of optimality
 - Optimal substructure
- Overlapping subproblems
 - Subproblems recur many times
- MDPs satisfy both requirements
 - Principle of optimality → Bellman equation
 - Overlapping subproblems → value functions

Solving for the Optimal Policy

Bellman's equation is non-linear

$$v_{*}(s) = \max_{\pi} v_{\pi}(s)$$

$$v_{*}(s) = \max_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s]$$

$$v_{*}(s) = \max_{\alpha \in \mathcal{A}} \mathcal{R}_{s}^{\alpha} + \mathbb{E}_{p(s'|s,a)} \gamma v_{*}(s')$$

- Solution cannot be found in closed form
 - > need iterative methods
 - Value iteration
 - Policy iteration

Value Iteration

 Value iteration applies the optimal value function operator iteratively

$$v_*(s) = \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \mathbb{E}_{p(s'|s,a)} \gamma v_*(s')$$

• Start with initial function value guess v_{θ} and $k=\theta$ and repeat until convergence

$$v_{k+1} = \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \ \mathbb{E}_{p(s'|s,a)} v_k(s')$$

It can be shown that value iteration converges

Policy Iteration

- The agent only cares about finding the optimal policy (not all the state-values)
- Policy iteration alternates the following steps, starting with an initial policy π_0 :
 - Policy evaluation: given policy π_k , calculate $v_k(s) = v_{\pi_k}$, $s \in \mathcal{S}$
 - Policy improvement: calculate maximum expected utility policy π_{k+1} :

$$\pi_{k+1} = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} q_{\pi}(s, a)$$

Example

Grid world: value iteration

Gridworld: Value Function

Iteration: 01 Median value: -1.0 0 2 **Grid Row** 10 10 12 2 6 8 14 16 18 Grid Col

Example

Grid world: policy iteration

Gridworld: Value Function and Policy

Summary

- Decision-making problem
 - Aim: Maximise expected cumulative reward
- Markov Decision Processes (MDPs)
 - Bellman's equation
- Dynamic Programming
 - Value iteration
 - Policy iteration

Further Reading

- Markov Decision Process (fabioconcina.github.io)
- Navigating in Gridworld using Policy and Value Iteration - Data Science Blog: Understand. Implement. Succed.
- Reinforcement Learning: Markov-Decision Process
 (Part 1) | by blackburn | Towards Data Science
- Introduction to Reinforcement Learning with David Silver | DeepMind
- Dynamic Programming and Optimal Control Dimitri Bertsekas (1976)
 - <u>Textbook: Dynamic Programming and Optimal Control</u> (athenasc.com)

Thank you for your attention