דפי נוסחאות עבור המבחן ב-מבני נתונים

מרצה : דייר ראובן חוטובלי נספח: ממשקים לטיפוסי נתונים בפרקים השונים

הממשק לטיפוס הנתונים מחסנית:

פעולה המחזירה מחסנית ריקה.	אתחל-מחסנית
פעולה המקבלת כפרמטר מחסנית S, מחזירה 'אמת' אם המחסנית	מחסנית-ריקה! (S)
ריקה, ו'שקר' אחרת. הנחה: המחסנית S מאותחלת.	
.S הפעולה מכניסה את האיבר x לראש המחסנית	דחוף-למחסנית(S, x)
הנחה: המחסנית S מאותחלת.	
פעולה המוציאה את האיבר שבראש המחסנית S ומחזירה את ערכו.	שלוף-ממחסנית (S)
הנחות: המחסנית S מאותחלת ואינה ריקה.	
פעולה המחזירה את ערכו של האיבר שבראש S מבלי להוציאו.	הצץ-למחסנית (S)
הנחות: המחסנית S מאותחלת ואינה ריקה.	

הממשק לטיפוס נתונים **רשימה**:

פעולה המחזירה רשימה ריקה.	אתחל-רשימה
פעולה המחזירה את המקום עוגן-רשימה ברשימה L. הנח	(L) עוגן-רשימה
מאותחלת. ${ m L}$	
פעולה המחזירה את המקום סוף-רשימה ברשימה L. הנח	סוף-רשימה (L)
מאותחלת. ${ m L}$	
ברשימה L ברשימה p בעולה המחזירה את המקום העוקב למקום	עוקב-ברשימה (L, p)
הרשימה ${ m L}$ מאותחלת. ${ m p}$ הוא מקום ב- ${ m L}$ שאינו סוף-רשימה.	
ברשימה $ m L$. הנחור פעולה המחזירה את המקום הקודם למקום	קודם-ברשימה (L, p)
. הרשימה L מאותחלת. p הוא מקום ב- L שאינו עוגן-רשימה L	,
את האיבר ${f x}$ מקום אחד אחרי המק (L	ב, p, x)הכנס-לרשימה
ב-L אאינו סו p מאותחלת. p אאינו סו L אינו סו p הנחות: הרשימה	_
רשימה.	
פעולה המוציאה מן הרשימה ${ m L}$ את האיבר הנמצא בה במקום	(L, p) הוצא-מרשימה
לאחר ההוצאה נמצא במקום p האיבר שהיה עוקב לזה שהוז	
מהרשימה.	
הנחות: הרשימה L מאותחלת. p הוא מקום ב- L שאינו סוף-רשים	
או עוגן-רשימה.	
÷ '	עדכן-רשימה (L, p, x)
הנחות : הרשימה L מאותחלת. p הוא מקום ב- L שאינו סוף-רשימ	
או עוגן-רשימה.	
÷ '	אחזר-מרשימה (L, p)
הרשימה L מאותחלת. p הוא מקום ב- L שאינו סוף-רשימה	
עוגן-רשימה.	
פעולה המחזירה `אמת` אם הרשימה ${ m L}$ היא רשימה ריקה, ו`שק	רשימה-ריקה? (L)
אחרת. הנחה : הרשימה ${ m L}$ מאותחלת.	

הממשק לטיפוס נתונים **תור**:

אתחל-תור	פעולה המחזירה התור הריק.
הכנס-לתור (Q, x)	\mathbb{R} בסוף X ומכניסה את האיבר X בסוף X
	הנחה : התור Q מאותחל.
הוצא-מתור (Q)	פעולה המקבלת תור Q, מוציאה את האיבר שנמצא בראש התור ומחזירה אותו.
	הנחות : התור ${ m Q}$ מאותחל ואינו ריק.
(Q) ראש-התור	פעולה המקבלת תור Q ומחזירה את ערכו של האיבר שבראשו בלי להוציאו משם.
	הנחות : התור ${ m Q}$ מאותחל ואינו ריק.
תור-ריק! (Q)	'פעולה המחזירה 'אמת' אם התור Q הוא תור ריק, ו
	אחרת.הנחה: התור Q מאותחל.

הממשק לטיפוס נתונים עץ בינארי:

אתחל-עץ	פעולה המחזירה עץ בינרי ריק.
(L, R, x) בנה-עץ	פעולה המחזירה עץ בינרי שבשורשו האיבר x, התת-עץ
	: הנחות $ m R$ והתת-עץ הימני שלו $ m L$ הנחות
	ו-R מאותחלים. $ m L$ מאותחלים.
תת-עץ-שמאלי (T)	eעולה המחזירה את התת-עץ השמאלי של T.
	הנחות $: T$ מאותחל ואינו ריק.
תת-עץ-ימני (T)	פעולה המחזירה את התת-עץ הימני של T.
	הנחות $: T$ מאותחל ואינו ריק.
(T, new_tree) החלף-תת-עץ-שמאלי	בעץ T פעולה המחליפה את התת-עץ השמאלי של
	new_tree - הבינרי new_tree. הנחות: העצים
	מאותחלים, T אינו ריק.
(T, new_tree) החלף-תת-עץ-ימני	פעולה המחליפה את התת-עץ הימני של T בעץ הבינרי
	מאותחלים, new_tree הנחות: העצים T הנחות: הנחות: new_tree
	T אינו ריק.
אחזר-שורש (T)	eעולה המחזירה את האיבר שבשורשו של T.
	הנחות : T מאותחל ואינו ריק.
עדכן-שורש (T, x)	\cdot הנחות: \cdot הנחות: \cdot הנחות: \cdot
· ·	T מאותחל ואינו ריק.
(T) איריק? (T)	אמת` אם העץ הבינרי T הוא עץ ריק,
	ו'שקר' אחרת. הנחה: T מאותחל.

1 , 2 , 2^2 , 2^3 , n/2 , n : בסדרה הבאה בסדרה $\log_2 n+1$ ישנם $\log_2 n+1$ איברים וסכום כל אברי

 $\log_2\log_2n+1$ ישנם 2,4,16,256,...n : בסדרה הבאה: איברים.

 $n! \ge 2^{n-1}$: מתקיים $n \ge 1$ לכל ו

טענות: עבור n גדול מספיק ועבור קבוע : עבור n

 $\alpha \ge 2$ עבור

תכונות פונקציית לוגריתם:

$$a^{\log_a n} = n$$

$$\log_c a \cdot b = \log_c a + \log_c b$$

$$\log_c \frac{a}{b} = \log_c a - \log_c b$$

$$\log_a n^b = b \log_a n$$

$$\log_a b = \frac{\log_c b}{\log_c a}$$

$$a^{\log_b n} = n^{\log_b a}$$

פונקצית לוגריתם היא פונקציה מונוטונית עולה.

<u>סידרה חשבונית</u>

, i לכל a_{i+1} - a_i =d שבה $a_1,a_2,a_3,...$ סידרה חשבונית – הינה סידרת מספרים לשבו. בסדרה חשבונית מתקיים:

: איבר ה- n -י בסדרה חשבונית הוא

$$a_n = a_1 + (n-1) \cdot d$$

ב. סכום של n האיברים הראשונים של אברי הסדרה החשבונית הוא:

$$S_n = \sum_{i=1}^n a_i = \frac{n}{2}(a_1 + a_n)$$

שבה a_1, a_2, a_3, \ldots סידרה הנדסית הינה סידרה הנדסית:

$$\frac{a_{i+1}}{a_i} = q$$

לכל קבוע מתקיים: בסדרה הנדסית מתקיים: לכל קבוע כלשהו לכל י

: אוא הנדסית הנדח -n-י בסדרה הנדסית א.

$$a_n = a_1 \cdot q^{n-1}$$

ב. סכום של n האיברים הראשונים של אברי הסדרה

$$S_n = \sum_{i=1}^n a_i = a_1 \cdot \frac{q^n - 1}{q - 1}$$
ההנדסית הוא:

בסידרה הנדסית אינסופית יורדת

$$S_{\infty} = \sum_{i=1}^{\infty} a_i = \frac{a_1}{1 - q}$$

$$1 \ , \ \frac{1}{2} \ , \ \frac{1}{4} \ , \ \frac{1}{8} \ , \dots$$
 $\frac{1}{n} \ _{ : בסדרה הנדסית הבאה : בסדרה הבאה : בסדרה הנדסית הבאח : בסדרה הבסדרה : בסדרה : ב$

.(2-1/n) איברים וסכום כל אברי הסדרה שווה ל- $\log_2 n + 1$ יש

משפט עיקרי

נתונים a ו - b קבועים כך ש – a ו - a פתונים b ו - b . נתונה פונקציה f(n) ופונקציה f(n) אשר מוגדרת על השלמים האי שליליים באופן הבא:

$$T(n) = aT(^{n}/_{b}) + f(n)$$

: כך T (n) ניתן לחסום בצורה אסימפטוטית את

$$f(n) = O(n^{\log_b a - \epsilon})$$
 - כך ש > 0 כך מ

אזי (
$$f(n) < n^{\log_b a}$$
) אזי (כלומר $T(n) = \Theta(n^{\log_b a})$

.
$$T(n) = \Theta(n^{\log_b a} \cdot \log n)$$
 אזי $f(n) = \Theta(n^{\log_b a})$.2

$$f(n) = \Omega \left(\left. n^{\log_b^{a+\epsilon}} \right) \right)$$
 - כך ש > 0 כך פוע 3.3

$$\frac{1}{af("/b)} < = cf(n) > n^{\log_b a}$$
 כלומר (c < 1) אזי $c < 1$ ואם קיים קבוע

. T (n) = Θ (f (n)) אזי מספיק גדול, מספיק מספיק מספיק מ

$$k>=0$$
 עבור $f(n)=\Theta(n^{\log_b a}\cdot \log^k n)$ 4.4

.
$$T(n) = \Theta(n^{\log_b a} \cdot \log^{k+1} n)$$
 אזי

משוואות הפרשים

אם למשוואת ההפרשים של נוסחת הנסיגה הבאה:

השונים כלשהם השונים d,c)
$$f(n) = cf(n-1) + df(n-2)$$

:r2 ו-r3 אז: r2 יש שני שורשים

$$r1 \neq r2$$
 as (i)

$$f(n) = A_1 r_1^n + A_2 r_2^n$$
 $r1 = r2$ ਸਮ (ii)
 $f(n) = A_1 r_1^n + A_2 \cdot n r_2^n$

:טענה

: נתונה נוסחת נסיגה ליניארית לא הומוגנית הבאה

(*)
$$a_0t(n) + a_1t(n-1) + ... + a_kt(n-k) = b^n \cdot p(n)$$

d קבוע כלשהו ו- p(n) פולינום שדרגתו b לפתרון נוסחת הנסיגה המשוואה האופיינית הינה:

$$(a_0 \cdot \alpha^k + a_1 \cdot \alpha^{k-1} + ... + a_k \cdot \alpha^0)(\alpha - b)^{d+1} = 0$$

טענה

נתונה נוסחת נסיגה ליניארית לא הומוגנית הבאה:

(**) a_0 t(n)+ a_1 t(n-1)+ a_2 t(n-2)+ ...+ a_k t(n-k)= b_1^n p₁(n)+ b_2^n p₂(n)+... כאשר b_i פולינום בעל דרגה a_i בים הם קבועים כלשהם השונים זה מזה, a_i פולינום בעל דרגה לפתרון נוסחת הנסיגה המשוואה ה אופיינית הינה:

$$(a_0a^k + a_1a^{k-1} + a_2a^{k-2} + ... + a_ka^0)(a - b_1)^{d_1+1}(a - b_2)^{d_2+1}... = 0$$

:טענות שונות

$$\sum_{i=1}^{n} i^{2} = \Theta(n^{3}) \qquad \sum_{i=1}^{n} i = \Theta(n^{2})$$
 .1

$$\underline{\log n! = \Theta(n \log n)} \qquad .3$$

$$n! = (\frac{n}{e})^n \sqrt{2\pi n} \left(1 + \Theta(\frac{1}{n})\right)$$
 נוסחת סטרלינג - נוסחת

$$\sum_{k=1}^{n} \ln k = (n+1) \ln(n+1) + n + O(\log n)$$
 .4

$$\sum_{k=1}^n \ln k \cong \Theta(n \log n)$$
 כלומר:

$$H_n = \sum_{k=1}^n \frac{1}{k} = \ln n + O(1)$$
 .5

$$H(n) \cong \Theta(\log n)$$
 כלומר:

$$\Theta([f(n)]^2) = [\Theta(f(n)]^2 = \Theta(f(n)) \cdot \Theta(f(n))$$
 .6

. b>0 עבור a קבועים כלשהם כאשר (a+a) $^b=\Theta$ (a) .7

$$T(n) = T(\alpha n) + T((1-\alpha)n) + n_{\text{max.8}}$$

$$T(n) = \Theta(n \cdot \log n)_{\text{max}}$$

קבוע כלשהו x > = 1 כאשר T(n) = T(n-x) + T(x) + n 9.

$$T(n) = \Theta(n^2)$$
 to

$$T(n) = 2 \cdot T(\frac{n}{2}) + \frac{n}{Logn}$$
 אם .10

$$T(n) = \Theta(n \cdot LogLogn)$$
 אזי

.11

הסימון 0 - או הקטן ●

 $g:N \rightarrow R^*:$ נגדיר: $g:N \rightarrow R^*:$ כלשהי כלשהי $g:N \rightarrow R^*:$ $g:N \rightarrow R^*|$ $(\forall c>0)(\exists n_0 \in N)(\forall n \geq n_0)[f(n) < cg(n)]\}$

או בצורה אחרת

עבור כל קבוע חיובי c>0 קיים קבוע כ
 $n_0>0$ כך ש: לכל מתקיים כc>0 מתקיים הכוע כל קבוע חיובי c>0 מתקיים ה $n\geq n$ מתקיים ולכל מתקיים $n\geq n$

.12

w הסימון 🏶

תהי פונקציה כלשהי : $R^*: N \rightarrow R^*$ נגדיר: $g: N \rightarrow R^*: \neg C + C \rightarrow R^* | (\forall c > 0)(\exists n_0 \in N)(\forall n \geq n_0)[f(n) > cg(n)] \}$

או בצורה אחרת

c>0 כך ש: עבור כל קבוע חיובי c>0 קיים קבוע

: מתקיים n≥n₀

$$w(g(n)) = \{ f(n) / 0 \le f(n) > cg(n) \}$$