Cap14Python

May 14, 2018

0.1 Ejercicio 7

i) Se esperaría que el número de ejecuciones tenga un efecto negativo en la tasa de asesinatos y que la tasa de desempleo tenga un efecto positivo por que un aumento en la tasa de desempleo puede generar más violencia en general.

===========			=========
Dep. Variable:	mrdrte	R-squared:	0.1016
Estimator:	PooledOLS	R-squared (Between):	0.1167
No. Observations:	102	R-squared (Within):	-5.0117
Date:	Mon, May 14 2018	R-squared (Overall):	0.1016
Time:	05:17:32	Log-likelihood	-379.81
Cov. Estimator:	${\tt Unadjusted}$		
		F-statistic:	3.6947
Entities:	51	P-value	0.0144
Avg Obs:	2.0000	Distribution:	F(3,98)
Min Obs:	2.0000		
Max Obs:	2.0000	F-statistic (robust):	3.6947
		P-value	0.0144

Time periods: 2 Distribution: F(3,98)
Avg Obs: 51.000
Min Obs: 51.000

Max Obs: 51.000

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept	-5.2780	4.4278	-1.1920	0.2361	-14.065	3.5088
d93	-2.0674	2.1446	-0.9640	0.3374	-6.3234	2.1885
exec	0.1277	0.2632	0.4852	0.6286	-0.3947	0.6501
unem	2.5289	0.7817	3.2350	0.0017	0.9776	4.0802
========	========	========	-======	=======	========	=======
11 11 11						

ii) El efecto de *exec* es positivo pero estadísticamente insignificante.

Out[2]: <class 'linearmodels.compat.statsmodels.Summary'>

${\tt FirstDifferenceOLS} \ {\tt Estimation} \ {\tt Summary}$

===========	=======================================		=========
Dep. Variable:	mrdrte	R-squared:	0.1653
Estimator:	${\tt FirstDifferenceOLS}$	R-squared (Between):	-0.0370
No. Observations:	51	R-squared (Within):	0.1653
Date:	Mon, May 14 2018	R-squared (Overall):	-0.0366
Time:	04:53:12	Log-likelihood	-74.693
Cov. Estimator:	${\tt Unadjusted}$		
		F-statistic:	3.1694
Entities:	51	P-value	0.0326
Avg Obs:	2.0000	Distribution:	F(3,48)
Min Obs:	2.0000		
Max Obs:	2.0000	F-statistic (robust):	3.1694
		P-value	0.0326
Time periods:	2	Distribution:	F(3,48)
Avg Obs:	51.000		
Min Obs:	51.000		
Max Obs:	51.000		

Parameter Estimates

======	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
d93	0.4133	0.2094	1.9737	0.0542	-0.0077	0.8343
exec	-0.1038	0.0434	-2.3918	0.0207	-0.1911	-0.0165
unem	-0.0666	0.1587	-0.4196	0.6766	-0.3857	0.2525
	=========	========	========	=======	========	=======

iii) el número de ejecuciones ahora es significativo, y cada que se incrementan las ejecuciones, la tasa de homicidios se reduce en 0.104.

```
In [3]: model14.fit(cov_type='robust').summary
```

Out[3]: <class 'linearmodels.compat.statsmodels.Summary'>

PooledOLS Estimation Summary

==============		==========
mrdrte	R-squared:	0.1016
PooledOLS	R-squared (Between):	0.1167
102	R-squared (Within):	-5.0117
Mon, May 14 2018	R-squared (Overall):	0.1016
04:53:12	Log-likelihood	-379.81
Robust		
	F-statistic:	3.6947
51	P-value	0.0144
2.0000	Distribution:	F(3,98)
2.0000		
2.0000	F-statistic (robust):	10.744
	P-value	0.0000
2	Distribution:	F(3,98)
51.000		
51.000		
51.000		
	PooledOLS 102 Mon, May 14 2018 04:53:12 Robust 51 2.0000 2.0000 2.0000 2.0000 2.0000 51.000	PooledOLS R-squared (Between): 102 R-squared (Within): Mon, May 14 2018 R-squared (Overall): 04:53:12 Log-likelihood Robust F-statistic: 51 P-value 2.0000 Distribution: 2.0000 2.0000 F-statistic (robust): P-value Distribution: 51.000 51.000

Parameter Estimates

========		========		=======	========	=======
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
${\tt Intercept}$	-5.2780	5.3868	-0.9798	0.3296	-15.968	5.4119
d93	-2.0674	1.9981	-1.0347	0.3034	-6.0326	1.8978
exec	0.1277	0.1342	0.9515	0.3437	-0.1387	0.3941
unem	2.5289	1.1076	2.2833	0.0246	0.3310	4.7268
========		========		=======	========	=======
нин						

iv) Los errores estándar robustos a heterocedasticidad para son 2 para d93, 0.13 para exec y 1.11 para unem. usando estos errores se pierde la significancia de los estimadores.

```
In [25]: # 7.5
        murder[(murder.exec == murder.exec.max())]
        murder.sort_values(by = ['exec'], ascending = False).head(2)
Out[25]:
                state mrdrte exec unem d90 d93
                                                    cmrdrte cexec cunem cexec_1 \
        id year
        44 93
                                                1 -2.200001
                  ΤX
                        11.9
                                    7.0
                                                               23
                                                                     0.8
                                                                             -11
        47 93
                         8.3
                               11 5.0 0 1 -0.500000
                                                                     0.7
                  VA
                                                                              -1
                 cunem_1
```

id year

```
44 93 -2.2
47 93 0.1
```

v) El estado que más veces aplicó la pena de muerte fue Texas con un total de 34 y le sigue Virginia con 11.

vi) sin el estado de Texas, se obtiene que la tasa de ejecuciones no es significativa cuando se usan estimaciones robustas. Al tener menos datos puede que no se hagan bien los cálculos y exista más varianza.

Uut[28]: <class 'linearmodels.compat.statsmodels.Summary'>

PanelOLS Estimation Summary

Dep. Variable:	mrdrte	R-squared:	0.0109
Estimator:	PanelOLS	R-squared (Between):	0.1249
No. Observations:	153	R-squared (Within):	0.0026
Date:	Mon, May 14 2018	R-squared (Overall):	0.1178
Time:	05:27:40	Log-likelihood	-375.63
Cov. Estimator:	${\tt Unadjusted}$		
		F-statistic:	0.5391
Entities:	51	P-value	0.5850
Avg Obs:	3.0000	Distribution:	F(2,98)
Min Obs:	3.0000		
Max Obs:	3.0000	F-statistic (robust):	0.5391
		P-value	0.5850

Time periods: 3 Distribution: F(2,98)
Avg Obs: 51.000
Min Obs: 51.000
Max Obs: 51.000

Parameter Estimates

=======	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
exec unem	-0.1383 0.2213	0.1770 0.2964	-0.7815 0.7467	0.4364 0.4570	-0.4896 -0.3668	0.2129 0.8095
========	=========	=========	========	========	=========	========

F-test for Poolability: 16.796

P-value: 0.0000

Distribution: F(52,98)

Included effects: Entity, Time

11 11 11

vii) Los resultados siguen sin tener significancia estadística, ahora el valor de exex es de -0.14 con un T de -0.78 por lo que no se puede aceptar que el número de ejecuciones tenga algún efecto en la tasa de homicidios

0.2 Ejercicio 8

```
In [36]: import pandas as pd
        import numpy as np
        from statsmodels.api import OLS
        from rpy2.robjects import r, pandas2ri
        from linearmodels import PooledOLS, PanelOLS
        from math import log
        pandas2ri.activate()
        r.load('data/mathpnl.RData')
        params =['year','lrexpp', 'lrexpp_1', 'lenrol', 'lunch', 'math4']
        math = r['data'].set_index(["distid", "year"])
        math['year'] = pd.Categorical(r['data'].year)
        math = math.dropna(0, how = "any", subset=params)
        params.remove('math4')
        model8_1 = PooledOLS(math.math4, math[params])
        model8_1.fit().summary
Out[36]: <class 'linearmodels.compat.statsmodels.Summary'>
                               PooledOLS Estimation Summary
        ______
        Dep. Variable:
                                                                            0.5053
                                     math4
                                            R-squared:
```

Estimator:	PooledOLS	R-squared (Between):	0.3884
No. Observations:	3300	R-squared (Within):	0.5903
Date:	Mon, May 14 2018	R-squared (Overall):	0.5053
Time:	05:52:23	Log-likelihood	-1.289e+04
Cov. Estimator:	Unadjusted		
		F-statistic:	373.34
Entities:	550	P-value	0.0000
Avg Obs:	6.0000	Distribution:	F(9,3290)
Min Obs:	6.0000		
Max Obs:	6.0000	F-statistic (robust):	7993.7
		P-value	0.0000
Time periods:	7	Distribution:	F(9,3290)
Avg Obs:	471.43		
Min Obs:	0.0000		
Max Obs:	550.00		

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
year.1993	-31.662	10.301	-3.0736	0.0021	-51.859	-11.464
year.1994	-25.284	10.358	-2.4409	0.0147	-45.594	-4.9746
year.1995	-13.011	10.486	-1.2408	0.2148	-33.571	7.5483
year.1996	-13.628	10.545	-1.2924	0.1963	-34.304	7.0475
year.1997	-16.321	10.573	-1.5437	0.1228	-37.052	4.4086
year.1998	-1.2637	10.590	-0.1193	0.9050	-22.027	19.500
lrexpp	0.5339	2.4281	0.2199	0.8260	-4.2268	5.2947
lrexpp_1	9.0492	2.3053	3.9253	0.0001	4.5292	13.569
lenrol	0.5927	0.2050	2.8905	0.0039	0.1906	0.9947
lunch	-0.4067	0.0138	-29.396	0.0000	-0.4338	-0.3796
	:=======	========	=======	=======		=======

- i) Estimando por Sección Cruzada, Cuando el gasto real por alumno incrementa en 100%, la tasa de aprobados aumenta en 100*[exp(0.5339)-1]=70.56% pero no es significativo.
- ii) La variable lunch es el porcentaje de elegibles para almuerzo gratis, lo que se analiza aquí es que para un aumento del 1% en lunch, el número de aprobados en matemáticas se reduce en 0.41%, Se puede explicar por que a mayor porcentaje de inscritos en el programa para almuerzos gratis más pobre es el estado en observación.

```
resids = model8_1.fit()._resids
years = ['y94', 'y95', 'y96', 'y97', 'y98']
params = math[years]
params['lresid'] = lag(resids)
params['resid'] = resids
formula = 'resid ~ lresid + 1 + y94 + y95 + y96 + y97 + y98'
ARtest = PooledOLS.from_formula(formula, params ).fit()
ARtest.summary
```

/home/hudson94/.local/lib/python3.5/site-packages/ipykernel_launcher.py:11: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html## This is added back by InteractiveShellApp.init_path()

/home/hudson94/.local/lib/python3.5/site-packages/ipykernel_launcher.py:12: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html# if sys.path[0] == '':

/home/hudson94/.local/lib/python3.5/site-packages/linearmodels/utility.py:492: MissingValueWarni Inputs contain missing values. Dropping rows with missing observations.

warnings.warn(missing_value_warning_msg, MissingValueWarning)

Out[37]: <class 'linearmodels.compat.statsmodels.Summary'>

PooledOLS Estimation Summary

=======================================	:===========		=========
Dep. Variable:	resid	R-squared:	0.1931
Estimator:	PooledOLS	R-squared (Between):	0.6108
No. Observations:	3299	R-squared (Within):	-0.2603
Date:	Mon, May 14 2018	R-squared (Overall):	0.1931
Time:	05:52:37	Log-likelihood	-1.253e+04
Cov. Estimator:	Unadjusted		
		F-statistic:	131.34
Entities:	550	P-value	0.0000
Avg Obs:	5.9982	Distribution:	F(6,3292)
Min Obs:	5.0000		
Max Obs:	6.0000	F-statistic (robust):	131.34
		P-value	0.0000
Time periods:	6	Distribution:	F(6,3292)
Avg Obs:	549.83		
Min Obs:	549.00		
Max Obs:	550.00		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept	0.0188	0.4615	0.0408	0.9674	-0.8860	0.9237
lresid	0.4395	0.0157	28.072	0.0000	0.4088	0.4702
y94	-0.0188	0.6524	-0.0289	0.9770	-1.2979	1.2602
y95	-0.0188	0.6524	-0.0289	0.9770	-1.2979	1.2602
у96	-0.0188	0.6524	-0.0289	0.9770	-1.2979	1.2602
y97	-0.0188	0.6524	-0.0289	0.9770	-1.2979	1.2602
y98	-0.0188	0.6524	-0.0289	0.9770	-1.2979	1.2602
		=======		=======	=======	=======

model8_4 = PanelOLS.from_formula(formula, math)

model8_4.fit().summary

Out[38]: <class 'linearmodels.compat.statsmodels.Summary'>

PanelOLS Estimation Summary

============	:===========		=========
Dep. Variable:	$\mathtt{math4}$	R-squared:	0.0042
Estimator:	PanelOLS	R-squared (Between):	0.9622
No. Observations:	3300	R-squared (Within):	0.0694
Date:	Mon, May 14 2018	R-squared (Overall):	0.9215
Time:	05:52:46	Log-likelihood	-1.163e+04
Cov. Estimator:	${\tt Unadjusted}$		
		F-statistic:	2.9056
Entities:	550	P-value	0.0206
Avg Obs:	6.0000	Distribution:	F(4,2741)
Min Obs:	6.0000		
Max Obs:	6.0000	F-statistic (robust):	2.9056
		P-value	0.0206
Time periods:	7	Distribution:	F(4,2741)
Avg Obs:	471.43		
Min Obs:	0.0000		
Max Obs:	550.00		

========	========	========	========	========	========	========
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
lrexpp	-0.4112	2.4577	-0.1673	0.8671	-5.2302	4.4079
$lrexpp_1$	7.0030	2.3692	2.9559	0.0031	2.3574	11.649
lenrol	0.2451	1.1004	0.2227	0.8238	-1.9126	2.4027

lunch 0.0615 0.0515 1.1955 0.2320 -0.0394 0.1624

F-test for Poolability: 11.346

P-value: 0.0000

Distribution: F(554,2741)

Included effects: Entity, Time

 $\mathbf{H} \ \mathbf{H} \ \mathbf{H}$

- iv) El gasto rezagado sigue siendo altamente significativo.
- v) Se pierde total significación en *lenrol* y *lunch* por que estas variables no presentan cambios notables en los periodos de la muestra, y su efecto se va al error idiosincrático.

Out[39]: <class 'linearmodels.compat.statsmodels.Summary'>

PanelOLS Estimation Summary

=======================================	=======================================		
Dep. Variable:	$\mathtt{math4}$	R-squared:	0.0037
Estimator:	PanelOLS	R-squared (Between):	0.9640
No. Observations:	3300	R-squared (Within):	0.0629
Date:	Mon, May 14 2018	R-squared (Overall):	0.9229
Time:	05:52:54	Log-likelihood	-1.163e+04
Cov. Estimator:	Unadjusted		
		F-statistic:	5.0817
Entities:	550	P-value	0.0063
Avg Obs:	6.0000	Distribution:	F(2,2743)
Min Obs:	6.0000		
Max Obs:	6.0000	F-statistic (robust):	5.0817
		P-value	0.0063
Time periods:	7	Distribution:	F(2,2743)
Avg Obs:	471.43		
Min Obs:	0.0000		
Max Obs:	550.00		

=======================================	Parameter	Std. Err.	T-stat	P-value	Lower CI	====== Upper C
<pre>lrexpp I(lrexpp_1 - lrexpp)</pre>	6.4927 6.5983	2.6362 2.1455	2.4629 3.0753	0.0138	1.3236 2.3912	11.66 10.80
======================================	.========		=======	========		=======

F-test for Poolability: 13.974

P-value: 0.0000

Distribution: F(554,2743)

Included effects: Entity, Time

11 11 11

v) El efecto de largo plazo $\hat{\theta} = 6.5983$ y su sd(2.15)

0.3 Ejercicio 9

Out[14]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	=======================================		==========
Dep. Variable:	pctstck	R-squared:	0.108
Model:	OLS	Adj. R-squared:	0.038
Method:	Least Squares	F-statistic:	1.542
Date:	Mon, 14 May 2018	Prob (F-statistic):	0.100
Time:	04:54:28	Log-Likelihood:	-978.02
No. Observations:	194	AIC:	1986.
Df Residuals:	179	BIC:	2035.
Df Model:	14		

Covariance Type: nonrobust

========	=========		:=======	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	128.5442	55.170	2.330	0.021	19.677	237.411
choice	11.7443	6.232	1.884	0.061	-0.553	24.042
prftshr	14.3361	7.231	1.982	0.049	0.066	28.606
female	1.4522	6.766	0.215	0.830	-11.898	14.803
age	-1.5006	0.777	-1.932	0.055	-3.033	0.032
educ	0.7036	1.197	0.588	0.557	-1.658	3.065
finc25	-15.2887	14.229	-1.074	0.284	-43.368	12.790
finc35	0.1880	14.693	0.013	0.990	-28.806	29.182
finc50	-3.8617	14.551	-0.265	0.791	-32.576	24.852

finc75	-13.7481	16.022	-0.858	0.392	-45.364	17.868
finc100	-2.6861	15.719	-0.171	0.865	-33.704	28.331
finc101	-25.0504	17.800	-1.407	0.161	-60.176	10.075
wealth89	-0.0026	0.013	-0.200	0.841	-0.028	0.023
stckin89	6.6742	6.683	0.999	0.319	-6.513	19.862
irain89	-7.4978	6.378	-1.176	0.241	-20.083	5.088
========	-=======	:======	-=======	========	=======	========
Omnibus:		52.	568 Durb	in-Watson:		1.856
Prob(Omnibu	ıs):	0.	.000 Jarqı	ıe-Bera (JB)):	9.876
Skew:		0.	055 Prob	(JB):		0.00717
Kurtosis:		1.	900 Cond	. No.		6.74e+03
========	.========	.=======				========

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specifically and the condition number is large, 6.74e+03. This might indicate that there are
- strong multicollinearity or other numerical problems.
- i) El stock de pensiones aumenta en 11.74 cuando se puede elegir como hacer la inversión, y es significativa al 96%.

ii) La prueba F de significancia conjunta tiene un p-valor de 0.42 por lo tanto no son conjuntamente significativas estas variables.

```
In [16]: len(pension.id.unique())
Out[16]: 171
```

iii) Hay 171 familias en la muestra

- iv) no son tan diferentes, en la tabla anterior se presentan los errores robustos. no sorprende este resultado porque con 171 familias en una muestra de 194 se espera que sean independientes.
- In [18]: from linearmodels import FirstDifferenceOLS
 couples = pd.concat(id for _, id in pension.groupby('id') if len(id)>1)
 i = (1,2)*(int(len(couples)/2))

Out[18]: <class 'linearmodels.compat.statsmodels.Summary'>

FirstDifferenceOLS Estimation Summary

Dep. Variable:	pctstck	R-squared:	0.2060
Estimator:	${\sf FirstDifferenceOLS}$	R-squared (Between):	-16.307
No. Observations:	23	R-squared (Within):	0.2060
Date:	Mon, May 14 2018	R-squared (Overall):	-15.160
Time:	04:54:28	Log-likelihood	-110.38
Cov. Estimator:	Unadjusted		
		F-statistic:	0.7351
Entities:	23	P-value	0.6284
Avg Obs:	2.0000	Distribution:	F(6,17)
Min Obs:	2.0000		
Max Obs:	2.0000	F-statistic (robust):	0.7351
		P-value	0.6284
Time periods:	2	Distribution:	F(6,17)
Avg Obs:	23.000		
Min Obs:	23.000		
Max Obs:	23.000		

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
i	 15.927	10.938	1.4562	0.1636	-7.1495	39.003
choice	2.2757	15.000	0.1517	0.8812	-29.372	33.923
prftshr	-9.2671	16.924	-0.5476	0.5911	-44.973	26.439
female	21.551	21.485	1.0031	0.3299	-23.779	66.881
age	-3.5727	8.9992	-0.3970	0.6963	-22.559	15.414
educ	-1.2203	3.4290	-0.3559	0.7263	-8.4550	6.0143

- нин
- v) En la primera diferencia se borran todas las variables que eran iguales para el mismo hogar.
- vi) En este modelo ninguna variable es significativa. puede deberse a que solo se tienen 23 observaciones.

0.4 Ejercicio 11

i) Como es de esperarse, los estimadores robustos a heterocedasticidad y autocorrelación son más grandes, para el caso de educ el EE es 0.009, casi el doble del estimado por OLS clásico. para hisp el EE es 0.04 y antes era 0.024, y married ahora tiene EE 0.026 a diferencia de 0.016.

- ii) Estos Errores estándar son mas grandes que los normales pero la diferencia es muy pequeña, en el caso de *Exper*² el error es solo 0.0002 mas grande. esto puede deberse a que se han eliminado las variables constantes en el tiempo, al igual que parte del error *ai*
- iii) Es más importante hacer robustos los errores a autocorrelación en el modelo de sección agregada. puesto que es más probable que el error se correlacione serialmente.

0.5 Ejercicio 12

```
"\nMedia: ", round(sum(i.count())/len(i), 2))
       del i
Menor: 1
Mayor: 162
Media: 3.44
In [14]: from statsmodels.api import OLS
       formula = "lavgsal ~ bs + lenrol + lstaff + lunch"
       modii = OLS.from_formula(formula, elem)
       modii.fit().summary()
Out[14]: <class 'statsmodels.iolib.summary.Summary'>
                              OLS Regression Results
       ______
       Dep. Variable:
                                lavgsal R-squared:
                                                                    0.488
       Model:
                                   OLS Adj. R-squared:
                                                                    0.487
       Method:
                         Least Squares F-statistic:
                                                                   439.4
                    Mon, 14 May 2018 Prob (F-statistic): 4.22e-266
       Date:
       Time:
                              04:59:15 Log-Likelihood:
                                                                   689.98
       No. Observations:
                                  1848
                                       AIC:
                                                                   -1370.
       Df Residuals:
                                  1843 BIC:
                                                                   -1342.
       Df Model:
       Covariance Type:
                             {\tt nonrobust}
       ______
                     coef std err t P>|t|
                                                         [0.025 0.975]
       ______
       Intercept 13.8315 0.110 126.055 0.000 13.616 14.047 bs -0.5161 0.110 -4.702 0.000 -0.731 -0.301 lenrol -0.0284 0.008 -3.360 0.001 -0.045 -0.012

      -0.6906
      0.018
      -37.615
      0.000

      -0.0008
      0.000
      -4.695
      0.000

                 -0.6906
       lstaff
                                                        -0.727
                                                                  -0.655
                                                        -0.001
                                                                  -0.000
       _____
                                46.324 Durbin-Watson:
       Omnibus:
                                                                   0.921
       Prob(Omnibus):
                                 0.000 Jarque-Bera (JB):
                                                                 105.674
       Skew:
                                 0.009 Prob(JB):
                                                                1.13e-23
       Kurtosis:
                                 4.171 Cond. No.
                                                                1.46e+03
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifically and the condition number is large, 1.46e+03. This might indicate that there are strong multicollinearity or other numerical problems.

""

ii) El estimador para bs es -0.52 con un error estándar de 0.11

```
In [7]: modii.fit().get_robustcov_results(cov_type='cluster', \
                         groups = r.data.distid).summary().tables[1]
Out[7]: <class 'statsmodels.iolib.table.SimpleTable'>
      iii) El error estándar robusto a cluster por distrito es 0.25 y el valor de t es -2.04 el cual
         se redujo bastante y pierde significatividad pero aun es aceptable.
In [8]: modii = OLS.from_formula(formula, elem[(elem.bs < 0.5)])</pre>
        modii.fit().get_robustcov_results(cov_type='cluster', \
                         groups = elem.distid[(elem.bs < 0.5)]).summary().tables[1]</pre>
Out[8]: <class 'statsmodels.iolib.table.SimpleTable'>
     iV) Al omitir las observaciones donde bs es > a .5, el estimador ahora pierde signifi-
     cancia y toma el valor de -0.19 con un error de 0.273 por lo que el efecto que tiene es
     estadísticamente cero.
In [22]: from linearmodels import PanelOLS
         elem = elem[(elem.bs < 0.5)].set_index(["distid","schid"])</pre>
         modeliv = PanelOLS.from_formula("lavgsal ~ bs + lenrol + lstaff + lunch + \
                                            EntityEffects + TimeEffects", elem)
         modeliv.fit(cov_type = "clustered").summary.tables[1]
        MemoryError
                                                    Traceback (most recent call last)
        <ipython-input-22-b9db816f8182> in <module>()
          2 elem = elem[(elem.bs < 0.5)].set_index(["distid","schid"])</pre>
          3 modeliv = PanelOLS.from_formula("lavgsal ~ bs + lenrol + lstaff + lunch +
    ----> 4 modeliv.fit(cov_type = "clustered").summary.tables[1]
        ~/.local/lib/python3.5/site-packages/linearmodels/panel/model.py in fit(self, use_lsdv,
                         y, x, ybar, y_effects, x_effects = self._slow_path()
       1149
                     elif not weighted:
       1150
    -> 1151
                         y, x, ybar = self._fast_path()
       1152
                     else:
       1153
                         y, x, ybar, y_effects, x_effects = self._weighted_fast_path()
        ~/.local/lib/python3.5/site-packages/linearmodels/panel/model.py in _fast_path(self)
                         x = x.general_demean(groups)
        946
                     elif self.entity_effects and self.time_effects:
        947
    --> 948
                         y = y.demean('both')
        949
                         x = x.demean('both')
        950
                     elif self.entity_effects:
```

```
~/.local/lib/python3.5/site-packages/linearmodels/panel/data.py in demean(self, group, w
    456
                    raise ValueError
    457
                if group == 'both':
--> 458
                    return self._demean_both(weights)
    459
    460
                level = 0 if group == 'entity' else 1
    ~/.local/lib/python3.5/site-packages/linearmodels/panel/data.py in _demean_both(self, we
                d = self.dummies(dummy, drop_first=True)
    340
    341
                d.index = e.index
--> 342
                d = PanelData(d).demean(group, weights=weights)
    343
                d = d.values2d
    344
                e = e.values2d
    ~/.local/lib/python3.5/site-packages/linearmodels/panel/data.py in __init__(self, x, var
                    raise ValueError('The index on the time dimension must be either '
    205
                                      'numeric or date-like')
    206
--> 207
                self._k, self._t, self._n = self.panel.shape
                self._frame.index.levels[0].name = 'entity'
    208
                self._frame.index.levels[1].name = 'time'
    209
    ~/.local/lib/python3.5/site-packages/linearmodels/panel/data.py in panel(self)
                """pandas Panel view of data"""
    213
                if self._panel is None:
    214
--> 215
                    self._panel = _Panel(self._frame)
    216
                return self._panel
    217
    "/.local/lib/python3.5/site-packages/linearmodels/panel/data.py in __init__(self, df)
                self._full_index = pd.MultiIndex.from_product([self._minor_axis,
     38
     39
                                                                self._major_axis])
---> 40
                new_df = df.reindex(self._full_index)
                self._frame = new_df
     41
                i, j, k = len(self._items), len(self._major_axis), len(self.minor_axis)
     42
    ~/.local/lib/python3.5/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwar
                @wraps(func)
    125
                def wrapper(*args, **kwargs):
    126
--> 127
                    return func(*args, **kwargs)
    128
                if not PY2:
    129
```

```
~/.local/lib/python3.5/site-packages/pandas/core/frame.py in reindex(self, *args, **kwar
   2933
                kwargs.pop('axis', None)
                kwargs.pop('labels', None)
   2934
-> 2935
                return super(DataFrame, self).reindex(**kwargs)
   2936
   2937
            @Appender(_shared_docs['reindex_axis'] % _shared_doc_kwargs)
   "/.local/lib/python3.5/site-packages/pandas/core/generic.py in reindex(self, *args, **kw
                # perform the reindex on the axes
  3021
  3022
                return self._reindex_axes(axes, level, limit, tolerance, method,
                                          fill_value, copy).__finalize__(self)
-> 3023
   3024
  3025
            def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value,
   ~/.local/lib/python3.5/site-packages/pandas/core/frame.py in _reindex_axes(self, axes, l
   2868
                if index is not None:
                    frame = frame._reindex_index(index, method, copy, level,
   2869
-> 2870
                                                  fill_value, limit, tolerance)
   2871
   2872
                return frame
   ~/.local/lib/python3.5/site-packages/pandas/core/frame.py in _reindex_index(self, new_ir
                return self._reindex_with_indexers({0: [new_index, indexer]},
   2879
   2880
                                                    copy=copy, fill_value=fill_value,
-> 2881
                                                    allow_dups=False)
   2882
   2883
            def _reindex_columns(self, new_columns, method, copy, level,
   ~/.local/lib/python3.5/site-packages/pandas/core/generic.py in _reindex_with_indexers(se
  3143
                                                         fill_value=fill_value,
  3144
                                                         allow_dups=allow_dups,
-> 3145
                                                         copy=copy)
  3146
  3147
                if copy and new_data is self._data:
   ~/.local/lib/python3.5/site-packages/pandas/core/internals.py in reindex_indexer(self, r
                    new_blocks = [blk.take_nd(indexer, axis=axis, fill_tuple=(
  4148
                        fill_value if fill_value is not None else blk.fill_value,))
  4149
-> 4150
                        for blk in self.blocks]
  4151
   4152
                new_axes = list(self.axes)
```

```
~/.local/lib/python3.5/site-packages/pandas/core/internals.py in tcomp>(.0)
  4148
                    new_blocks = [blk.take_nd(indexer, axis=axis, fill_tuple=(
                        fill_value if fill_value is not None else blk.fill_value,))
  4149
-> 4150
                        for blk in self.blocks]
  4151
  4152
                new_axes = list(self.axes)
    ~/.local/lib/python3.5/site-packages/pandas/core/internals.py in take_nd(self, indexer,
  1219
                    fill_value = fill_tuple[0]
  1220
                    new_values = algos.take_nd(values, indexer, axis=axis,
                                               allow_fill=True, fill_value=fill_value)
-> 1221
  1222
   1223
                if new_mgr_locs is None:
   ~/.local/lib/python3.5/site-packages/pandas/core/algorithms.py in take_nd(arr, indexer,
                    out = np.empty(out_shape, dtype=dtype, order='F')
   1377
   1378
                else:
-> 1379
                    out = np.empty(out_shape, dtype=dtype)
  1380
   1381
            func = _get_take_nd_function(arr.ndim, arr.dtype, out.dtype, axis=axis,
```

MemoryError:

MemoryError: el software no es capaz de hacer este cálculo con 3.5 gb de memoria :/