

July 2005

Single-Channel: 6N138, 6N139

Dual-Channel: HCPL-2730, HCPL-2731

Low Input Current High Gain Split Darlington Optocouplers

Features

- Low current - 0.5 mA
- Superior CTR-2000%
- Superior CMR-10 kV/ μ s
- CTR guaranteed 0-70°C
- U.L. recognized (File # E90700)
- VDE recognized (File # 120915) Ordering option V, e.g., 6N138V
- Dual Channel - HCPL-2730
- HCPL-2731

Applications

- Digital logic ground isolation
- Telephone ring detector
- EIA-RS-232C line receiver
- High common mode noise line receiver
- μ P bus isolation
- Current loop receiver

Package

Description

The 6N138/9 and HCPL-2730/HCPL-2731 optocouplers consist of an AlGaAs LED optically coupled to a high gain split darlington photodetector.

The split darlington configuration separating the input photodiode and the first stage gain from the output transistor permits lower output saturation voltage and higher speed operation than possible with conventional darlington phototransistor optocoupler. In the dual channel devices, HCPL-2730/HCPL2731, an integrated emitter - base resistor provides superior stability over temperature.

The combination of a very low input current of 0.5 mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements. An internal noise shield provides exceptional common mode rejection of 10 kV/ μ s.

Schematic

Absolute Maximum Ratings ($T_A = 25^\circ\text{C}$ unless otherwise specified)

Parameter		Symbol	Value	Units
Storage Temperature		T_{STG}	-55 to +125	°C
Operating Temperature		T_{OPR}	-40 to +85	°C
Lead Solder Temperature (Wave solder only. See recommended reflow profile graph for SMD mounting)		T_{SOL}	260 for 10 sec	°C
EMITTER				
DC/Average Forward Input Current	Each Channel	I_F (avg)	20	mA
Peak Forward Input Current (50% duty cycle, 1 ms P.W.)	Each Channel	I_F (pk)	40	mA
Peak Transient Input Current - ($\leq 1 \mu\text{s}$ P.W., 300 pps)		I_F (trans)	1.0	A
Reverse Input Voltage	Each Channel	V_R	5	V
Input Power Dissipation	Each Channel	P_D	35	mW
DETECTOR				
Average Output Current	Each Channel	I_O (avg)	60	mA
Emitter-Base Reverse Voltage	(6N138 and 6N139)	V_{ER}	0.5	V
Supply Voltage, Output Voltage	(6N138, HCPL-2730)	V_{CC}, V_O	-0.5 to 7	V
	(6N139, HCPL-2731)		-0.5 to 18	
Output Power Dissipation	Each Channel	P_O	100	mW

Electrical Characteristics ($T_A = 0$ to 70°C Unless otherwise specified)**Individual Component Characteristics**

Parameter	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
EMITTER	$T_A = 25^\circ\text{C}$						
Input Forward Voltage	Each channel ($I_F = 1.6 \text{ mA}$)	V_F	All		1.30	1.7	V
						1.75	
Input Reverse Breakdown Voltage	($T_A = 25^\circ\text{C}$, $I_R = 10 \mu\text{A}$)	BV_R	All	5.0	20		V
	Each Channel						
Temperature coefficient of forward voltage ($I_F = 1.6 \text{ mA}$)		$(\Delta V_F / \Delta T_A)$	All		-1.8		$\text{mV}/^\circ\text{C}$
DETECTOR							
Logic high output current	($I_F = 0 \text{ mA}$, $V_O = V_{CC} = 18 \text{ V}$)	I_{OH}	6N139		0.01	100	μA
	Each Channel		HCPL-2731				
	($I_F = 0 \text{ mA}$, $V_O = V_{CC} = 7 \text{ V}$)		6N138		0.01	250	
	Each Channel		HCPL-2730				
Logic low supply	($I_F = 1.6 \text{ mA}$, $V_O = \text{Open}$, $V_{CC} = 18 \text{ V}$)	I_{CCL}	6N138 6N139		0.4	1.5	mA
	($I_{F1} = I_{F2} = 1.6 \text{ mA}$, $V_{CC} = 18 \text{ V}$)		HCPL-2731		1.3	3	
	($V_{O1} - V_{O2} = \text{Open}$, $V_{CC} = 7 \text{ V}$)		HCPL-2730				
Logic high supply	($I_F = 0 \text{ mA}$, $V_O = \text{Open}$, $V_{CC} = 18 \text{ V}$)	I_{CCH}	6N135 6N136		0.05	10	μA
	($I_{F1} = I_{F2} = 0 \text{ mA}$, $V_{CC} = 18 \text{ V}$)		HCPL-2731		0.10	20	
	($V_{O1} - V_{O2} = \text{Open}$, $V_{CC} = 7 \text{ V}$)		HCPL-2730				

** All Typicals at $T_A = 25^\circ\text{C}$

Transfer Characteristics ($T_A = 0$ to 70°C Unless otherwise specified)

Parameter	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
COUPLED Current transfer ratio (Note 1, 2)	($I_F = 0.5 \text{ mA}$, $V_O = 0.4 \text{ V}$, $V_{CC} = 4.5 \text{ V}$)	CTR	6N139	400	1100		%
	Each Channel		HCPL-2731		3500		
	($I_F = 1.6 \text{ mA}$, $V_O = 0.4 \text{ V}$, $V_{CC} = 4.5 \text{ V}$)		6N139	500	1300		%
	Each Channel		HCPL-2731		2500		
	($I_F = 1.6 \text{ mA}$, $V_O = 0.4 \text{ V}$, $V_{CC} = 4.5 \text{ V}$)		6N138	300	1300		%
	Each Channel		HCPL-2730		2500		
	($I_F = 0.5 \text{ mA}$, $I_O = 2 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$)	V_{OL}	6N139		0.08	0.4	V
	($I_F = 1.6 \text{ mA}$, $I_O = 8 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$)		6N139		0.01	0.4	
	Each Channel		HCPL-2731				
	($I_F = 0.5 \text{ mA}$, $I_O = 15 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$)		6N139		0.13	0.4	
	Each Channel		HCPL-2731				
	($I_F = 12 \text{ mA}$, $I_O = 24 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$)		6N139		0.20	0.4	
	Each Channel		HCPL-2731				
	($I_F = 1.6 \text{ mA}$, $I_O = 4.8 \text{ mA}$, $V_{CC} = 4.5 \text{ V}$)		6N138		0.10	0.4	
	Each Channel		HCPL-2730				

** All Typicals at $T_A = 25^\circ\text{C}$

Switching Characteristics ($T_A = 0$ to 70°C unless otherwise specified., $V_{CC} = 5$ V)

Parameter	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
Propagation delay time to logic low (Note 2) (Fig. 22)	($R_L = 4.7 \text{ k}\Omega$, $I_F = 0.5 \text{ mA}$) $T_A = 25^\circ\text{C}$	T_{PHL}	6N139			30	μs
	Each Channel				4	25	
	($R_L = 4.7 \text{ k}\Omega$, $I_F = 0.5 \text{ mA}$) $T_A = 25^\circ\text{C}$		HCPL-2731			120	
	Each Channel				3	100	
	($R_L = 270 \Omega$, $I_F = 12 \text{ mA}$) $T_A = 25^\circ\text{C}$		6N139			2	
	Each Channel				0.2	1	
	($R_L = 270 \Omega$, $I_F = 12 \text{ mA}$) $T_A = 25^\circ\text{C}$		HCPL-2730			3	
	Each Channel				0.3	2	
	($R_L = 2.2 \text{ k}\Omega$, $I_F = 1.6 \text{ mA}$) $T_A = 25^\circ\text{C}$		6N138			15	
	Each Channel				1.5	10	
Propagation delay time to logic high (Note 2) (Fig. 22)	($R_L = 4.7 \text{ k}\Omega$, $I_F = 0.5 \text{ mA}$) Each Channel	T_{PLH}	6N139			90	μs
	($R_L = 4.7 \text{ k}\Omega$, $I_F = 0.5 \text{ mA}$) $T_A = 25^\circ\text{C}$				12	60	
	Each Channel		HCPL-2731			22	
	($R_L = 270 \Omega$, $I_F = 12 \text{ mA}$) $T_A = 25^\circ\text{C}$			6N139		10	
	Each Channel				1.3	7	
	($R_L = 270 \Omega$, $I_F = 12 \text{ mA}$) Each Channel		HCPL-2730 HCPL-2731			15	
	$T_A = 25^\circ\text{C}$			5	10		
	($R_L = 2.2 \text{ k}\Omega$, $I_F = 1.6 \text{ mA}$) Each Channel		6N138			50	
	($R_L = 2.2 \text{ k}\Omega$, $I_F = 1.6 \text{ mA}$) $T_A = 25^\circ\text{C}$			6N138	7	35	
	Each Channel				16		
Common mode transient immunity at logic high	($I_F = 0 \text{ mA}$, $ V_{CM} = 10 \text{ V}_{P-P}$) $T_A = 25^\circ\text{C}$, ($R_L = 2.2 \text{ k}\Omega$) (Note 3) (Fig. 23) Each Channel	ICM_H	6N138 6N139	1,000	10,000		$\text{V}/\mu\text{s}$
Common mode transient immunity at logic low	($I_F = 1.6 \text{ mA}$, $ V_{CM} = 10 \text{ V}_{P-P}$, $R_L = 2.2 \text{ k}\Omega$) $T_A = 25^\circ\text{C}$, (Note 3) (Fig. 23) Each Channel						
		ICM_L	6N138 6N139	1,000	10,000		$\text{V}/\mu\text{s}$

** All Typicals at $T_A = 25^\circ\text{C}$

Isolation Characteristics ($T_A = 0$ to 70°C Unless otherwise specified)

Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit
Input-output insulation leakage current	(Relative humidity = 45%) ($T_A = 25^\circ\text{C}$, $t = 5$ s) ($V_{I-O} = 3000$ VDC) (Note 8)	I_{I-O}			1.0	μA
Withstand insulation test voltage	(RH $\leq 50\%$, $T_A = 25^\circ\text{C}$) (Note 4) ($t = 1$ min.)	V_{ISO}	2500			V_{RMS}
Resistance (input to output)	(Note 4) ($V_{I-O} = 500$ VDC)	R_{I-O}		10^{12}		Ω
Capacitance (input to output)	(Note 4, 5) ($f = 1$ MHz)	C_{I-O}		0.6		pF
Input-Input Insulation leakage current	(RH $\leq 45\%$, $V_{I-I} = 500$ VDC) (Note 6) $t = 5$ s, (HCPL-2730/2731 only)	I_{I-I}		0.005		μA
Input-Input Resistance	($V_{I-I} = 500$ VDC) (Note 6) (HCPL-2730/2731 only)	R_{I-I}		10^{11}		Ω
Input-Input Capacitance	($f = 1$ MHz) (Note 6) (HCPL-2730/2731 only)	C_{I-I}		0.03		pF

** All Typicals at $T_A = 25^\circ\text{C}$ **Notes**

1. Current Transfer Ratio is defined as a ratio of output collector current, I_O , to the forward LED input current, I_F , times 100%.
2. Pin 7 open. (6N138 and 6N139 only)
3. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{CM}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0$ V). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{CM}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8$ V).
4. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
5. For dual channel devices, C_{I-O} is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
6. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

Electrical Characteristics ($T_A = 25^\circ\text{C}$ unless otherwise specified)

Current Limiting Resistor Calculations

$$R_1 \text{ (Non-Invert)} = \frac{V_{DD1} - V_{DF} - V_{OL1}}{I_F}$$

$$R_1 \text{ (Invert)} = \frac{V_{DD1} - V_{OH1} - V_{DF}}{I_F}$$

$$R_2 = \frac{V_{DD2} - V_{OLX} (@ I_L - I_2)}{I_L}$$

Where:

V_{DD1} - Input Supply Voltage

V_{DD2} - Output Supply Voltage

V_{DF} - Diode Forward Voltage

V_{OL1} - Logic "0" Voltage of Driver

V_{OH1} - Logic "1" Voltage of Driver

I_F - Diode Forward Current

V_{OLX} - Saturation Voltage of Output Transistor

I_L - Load Current Through Resistor R_2

I_2 - Input Current of Output Gate

INPUT		R1 (V)	OUTPUT						
			CMOS @ 5 V	CMOS @ 10 V	74XX	74LXX	74SXX	74LSXX	74HXX
R2 (V)	R2 (V)	R2 (V)	R2 (V)	R2 (V)	R2 (V)	R2 (V)	R2 (V)	R2 (V)	R2 (V)
CMOS @ 5 V	NON-INV.	2000	1000	2200	750	1000	1000	1000	560
	INV.	510							
CMOS @ 10 V	NON-INV.	5100							
	INV.	4700							
74XX	NON-INV.	2200							
	INV.	180							
74LXX	NON-INV.	1800							
	INV.	100							
74SXX	NON-INV.	2000							
	INV.	360							
74LSXX	NON-INV.	2000							
	INV.	180							
74HXX	NON-INV.	2000							
	INV.	180							

Fig. 1 Resistor Values for Logic Interface

Fig. 2 Non-Inverting Logic Interface

Fig. 3 Inverting Logic Interface

Single-Channel: 6N138, 6N139 Dual-Channel: HCPL-2730, HCPL-2731 Low Input Current High Gain Split Darlington Optocouplers

Fig. 5 LED Forward Voltage vs. Temperature

Fig. 7 Non-saturated Rise and Fall Times vs. Load Resistance (HCPL-2730 / HCPL-2731 Only)

Fig. 9 Current Transfer Ratio vs. Forward Current (6N138 / 6N139 Only)

Single-Channel: 6N138, 6N139 Dual-Channel: HCPL-2730, HCPL-2731 Low Input Current High Gain Split Darlington Optocouplers

**Fig. 10 Current Transfer Ratio vs. Base-Emitter Resistance
(6N138 / 6N139 Only)**

**Fig. 12 Output Current vs Output Voltage
(6N138 / 6N139 Only)**

**Fig. 14 Output Current vs. Input Diode Forward Current
(6N138 / 6N139 Only)**

Fig. 11 Current Transfer Ratio vs. Forward Current (HCPL-2730 / HCPL-2731 Only)

**Fig. 13 Output Current vs Output Voltage
(HCPL-2730 / HCPL-2731 Only)**

**Fig. 15 Output Current vs
Input Diode Forward Current
(HCPL-2730 / HCPL-2731 Only)**

Single-Channel: 6N138, 6N139 Dual-Channel: HCPL-2730, HCPL-2731 Low Input Current High Gain Split Darlington Optocouplers

Fig. 16 Logic Low Supply Current vs. Input Diode Forward Current (6N138 / 6N139 Only)

Fig. 17 Logic Low Supply Current vs. Input Diode Forward Current (HCPL-2730 / HCPL-2731 Only)

Fig. 18 Propagation Delay vs. Input Diode Forward Current (6N138 / 6N139 Only)

Fig. 19 Propagation Delay vs. Input Diode Forward Current (HCPL-2730 / HCPL-2731 Only)

Fig. 20 Propagation Delay to Logic Low vs. Pulse Period (6N138 / 6N139 Only)

Fig. 21 Propagation Delay to Logic Low vs. Pulse Period (HCPL-2730 / HCPL-2731 Only)

Single-Channel: 6N138, 6N139 Dual-Channel: HCPL-2730, HCPL-2731 Low Input Current High Gain Split Darlington Optocouplers

**Fig. 22 Propagation Delay vs. Temperature
(6N138 / 6N139 Only)**

**Fig. 23 Propagation Delay vs. Temperature
(HCPL-2730 / HCPL-2731 Only)**

Single-Channel: 6N138, 6N139 Dual-Channel: HCPL-2730, HCPL-2731 Low Input Current High Gain Split Darlington Optocouplers

Test Circuit for 6N138, 6N139

Test Circuit for HCPL-2730 and HCPL-2731

Fig. 22 Switching Time Test Circuit

Test Circuit for 6N138 and 6N139

Test Circuit for HCPL-2730 and HCPL-2731

V_O 5 V
Switch at A : I_F = 0 mA

V_O V_{OL}
Switch at B : I_F = 1.6 mA

Fig. 23 Common Mode Immunity Test Circuit

Package Dimensions (Through Hole)

Package Dimensions (Surface Mount)

Package Dimensions (0.4"Lead Spacing)

Recommended Pad Layout for Surface Mount Leadform

NOTE

All dimensions are in inches (millimeters)

Ordering Information

Option	Example Part Number	Description
S	6N138S	Surface Mount Lead Bend
SD	6N138SD	Surface Mount; Tape and reel
W	6N138W	0.4" Lead Spacing
V	6N138V	VDE0884
TV	6N138TV	VDE0884; 0.4" lead spacing
SV	6N138SV	VDE0884; surface mount
SDV	6N138SDV	VDE0884; surface mount; tape and reel

Marking Information

Definitions

1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)
4	Two digit year code, e.g., '03'
5	Two digit work week ranging from '01' to '53'
6	Assembly package code

Tape Specifications

Reflow Profile

- Peak reflow temperature: 225C (package surface temperature)
 - Time of temperature higher than 183C for 60–150 seconds
 - One time soldering reflow is recommended

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACE TM	FAST [®]	ISOPLANAR [™]	PowerSaver [™]	SuperSOT [™] -8
ActiveArray [™]	FASTR [™]	LittleFET [™]	PowerTrench [®]	SyncFET [™]
Bottomless [™]	FPS [™]	MICROCOUPLER [™]	QFET [®]	TinyLogic [®]
Build it Now [™]	FRFET [™]	MicroFET [™]	QS [™]	TINYOPTO [™]
CoolFET [™]	GlobalOptoisolator [™]	MicroPak [™]	QT Optoelectronics [™]	TruTranslation [™]
CROSSVOLT [™]	GTO [™]	MICROWIRE [™]	Quiet Series [™]	UHC [™]
DOME [™]	HiSeC [™]	MSX [™]	RapidConfigure [™]	UltraFET [®]
EcoSPARK [™]	I ² C [™]	MSXPro [™]	RapidConnect [™]	UniFET [™]
E ² CMOS [™]	i-Lo [™]	OCX [™]	μSerDes [™]	VCX [™]
EnSigna [™]	ImpliedDisconnect [™]	OCXPro [™]	SILENT SWITCHER [®]	Wire [™]
FACT [™]	IntelliMAX [™]	OPTOLOGIC [®]	SMART START [™]	
FACT Quiet Series [™]		OPTOPLANAR [™]	SPM [™]	
Across the board. Around the world. [™]		PACMAN [™]	Stealth [™]	
The Power Franchise [®]		POP [™]	SuperFET [™]	
Programmable Active Droop [™]		Power247 [™]	SuperSOT [™] -3	
		PowerEdge [™]	SuperSOT [™] -6	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I16

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com