[2 points] Soit un modèle de Markov caché d'ordre 1 dont les variables cachées H_t et les variables observées S_t ont toutes comme domaine les symboles a,b,c. Soit les distributions de transition et d'émission suivantes :

	$H_t = a$	$H_t = b$	$H_t = c$
$P(S_t = a H_t)$	0.8	0.4	0.1
$P(S_t = b H_t)$	0.1	0.4	0.3
$P(S_t = c H_t)$	0.1	0.2	0.6

	$H_{t-1} = a$	$H_{t-1} = b$	$H_{t-1} = c$
$P(H_t = a H_{t-1})$	0.2	0.1	0.6
$P(H_t = b H_{t-1})$	0.7	0.1	0.2
$P(H_t = c H_{t-1})$	0.1	0.8	0.2

Soit également les probabilités initiales $P(H_1 = a) = 0.4$, $P(H_1 = b) = 0.4$ et $P(H_1 = c) = 0.2$ de la variable cachée au temps t = 1.

Supposez qu'on observe $S_1 = b, S_2 = b, S_3 = c$.

(a) Soit le tableau α incomplet suivant :

$\alpha(i,t)$	t=1	t=2	t=3
i = a	0.04	0.006	0.002936
i = b	0.16	?	0.003016
i = c	0.06	0.0432	0.016296

Calculez l'entrée du tableau manquante.