

AD-A268 192 TATION PAGE

Form Approved
OMB No. 0704-0188

I DO HEREBY I HEREBY CERTIFY, INCLUDING THE TIME FOR REVIEWING INFORMATION, INCLUDING REVIEWING DATA SOURCE, DURING THE COLLECTION OF INFORMATION. SOME COMMENTS REGARDING THE WORKS OF OTHERS OR OF THIS
DRAFT. 22 WASHINGTON INTELLIGENCE SERVICES, DIRECTORATE FOR INTELLIGENCE OPERATIONS AND ANALYSIS, 1219 LEFTHAND
STREET, WASHINGTON, DC 20330-1000, WASHINGTON, DC 20502.

1. USE ONLY (Leave Blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED
	26 July 1993	First Annual Technical/1 Jun 92-31 May 93

4. TITLE AND SUBTITLE	5. FUNDING NUMBERS
In-Situ Electron and Optical Spectroscopies of Translational and Vibrational Activated Bond Breaking and Formation on Semiconductors	F49620-92-J-0309 TA: 2303/BS 2305/ES

6. AUTHOR(S)	AE000700030005
Professor Wilson Ho	

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
Cornell University Office of Sponsored Programs 123 Day Hall Ithaca, NY 14853-2801	Cornell University

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
AFOSR/NE Building 410 Bolling AFB Washington, DC 20332-6448	2303/BS 2305/ES

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT	DISTRIBUTION STATEMENT A
Unclassified/Unlimited	Approved for public release; Distribution Unlimited

93-18779

13. ABSTRACT (Maximum 200 words)

This experimental research program seeks a basic understanding of the growth and processing of materials on semiconductor surfaces. Interactions of molecules with surfaces are investigated by varying the translational and vibrational energies of the impinging molecules from a molecular beam and probing the resulting species on the surface by in-situ time resolved electron energy loss spectroscopy, second harmonic generation, and two-photon photoemission. The reactions of H₂, CO, CO₂, CH_xF_{4-x} (x=0-4), and CH₃Cl on Si(100)2×1 were studied in order to understand the chemistry of group IV elements: C, Si, and Ge. These studies will be extended to Ge₂H₆ and Si(111)7×7. The nature of bond breaking and formation of Ge and C on Si to form Ge/Si, SiC, and diamond will be investigated.

93 8 11 04 4

14. SUBJECT TERMS	15. NUMBER OF PAGES		
molecular beam; semiconductor; silicon; germanium; silicon carbide; diamond; materials growth; materials processing; in-situ probes	6		
16. PRICE CODE			
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	Unlimited

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.

State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract	PR - Project
G - Grant	TA - Task
PE - Program Element	WU - Work Unit
	Accession No.

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number. (If known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement.

Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Blocks 17. - 19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

Report #1

IN-SITU ELECTRON AND OPTICAL SPECTROSCOPIES OF TRANSLATIONAL
AND VIBRATIONAL ACTIVATED BOND BREAKING AND FORMATION ON
SEMICONDUCTORS

Grant No. F49620-92-J-0309
Project-Task 2303/BS, 2305/ES

Wilson Ho
Laboratory of Atomic and Solid State Physics
Cornell University
Ithaca, NY 14853-2501

APR 1993 0595

26 July 1993

First Annual Technical Report for Period 1 June 1992 - 31 May 1993

Unclassified/Unlimited Distribution

Prepared for
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NE, NC
Building 410
Bolling AFB
Washington, DC 20332-6448

**IN-SITU ELECTRON AND OPTICAL SPECTROSCOPIES
OF TRANSLATIONAL AND VIBRATIONAL ACTIVATED
BOND BREAKING AND FORMATION ON SEMICONDUCTORS**

Objective:

The main objective of this project is to understand the nature of bond breaking and formation on semiconductors relevant to materials growth and processing of group IV elements: C, Si, and Ge.

Approach:

The interactions of molecules with clean and modified Si surfaces are investigated by seeding the molecules in a supersonic jet and employing in-situ probes of the surface. Potential precursors for chemical vapor deposition of Ge and C on Si are screened.

Systems Investigated:

The dissociative sticking of CO₂, CH_xF_{4-x} (x=0-4), and CH₃Cl on Si(100)2x1 is observed. In contrast, H₂ and CO do not dissociate. For the CH_xF_{4-x} (x=0-4) series, dramatic differences in the reactivity are observed on Si(111)7x7.

Summary of Research:

The experiments on translational and vibrational activated dissociative and nondissociative sticking of molecules on semiconductor surfaces were performed in a custom ultra-high vacuum chamber equipped with time resolved electron energy loss spectroscopy (TREELS), Auger electron spectroscopy (AES), temperature programmed desorption (TPD) and a three-stage molecular beam doser. With differential pumping of the spectrometer, sticking measurements were made with TREELS which could be carried out while dosing the sample at normal incidence.

We have used absolute sticking coefficient measurements to determine the reactivity of the fluoromethane series $\text{CH}_x\text{F}_{4-x}$, $x=0-4$. We observe near unity probability dissociative adsorption on Si(100)2x1 at 90 K with only one of the five molecules while the remaining had undetectable reactivity (maximum sticking coefficient $< 10^{-4}$) even with very high translation and vibrational energies obtained from a supersonic molecular beam doser with heated alumina and ruby nozzle. Seeding 5% of each of these molecules in hydrogen enabled us to achieve translational energies ranging from 1.6 eV for CH_4 to 4.2 eV for CF_4 . The reactive species, CH_3F , reacts even at room temperature energies. We suspect that it is more prone to sticking due to the fact that the highly electronegative fluorine atom is more charged than when there are additional fluorine atoms in the molecule. While it is not surprising that the more spherical molecules, CH_4 and

CF_4 , were unreactive it is compelling that two intermediate gases, CH_2F_2 and CHF_3 , resisted adsorption since a previous experiment done with our apparatus found that CHF_3 reacted readily with the $\text{Si}(111)7\times7$ surface.

Similar studies established taht CH_3Cl is as reactive as CH_3F . This makes it an interesting candidate for chemical vapor deposition (CVD) growth of diamond films. Typically the hydrogen content is high in CVD chambers. In an attempt to elucidate the role of hydrogen we repeated our reactivity study of CH_3Cl on a di-hydride saturated, monohydride saturated, and partially hydrogen covered $\text{Si}(100)$ surface. H coverages were prepared by heating a filament in a hydrogen ambient. Both H saturated surfaces were inert to CH_3Cl with nozzle temperatures up to 1000 K and translational energies up to 1.25 eV. Dosing the partially hydrogenated surface resulted in coadsorption of preadsorbed H and the dissociated products: CH_3 and Cl.

The adsorption of molecular CO_2 was found to be activated so the CO_2 incident translational energy is increased from 0.1 eV (neat gas) to 1 eV (5% seeding in He) for nozzle temperatures of 300 K and 1000 K, respectively. Desorption of CO_2 occurs at 110 K. A new state of CO with desorption temperature of about 400 K was observed in addition to the 160 K peak for CO adsorbed alone on the surface. This new state is populated by increasing the incident translational energy of the CO_2 .

On the Si(100)2x1 surface at 70 K, the adsorption of CO was found to be nonactivated. The adsorbed CO gives rise to a desorption peak at around 160 K. With increasing coverage, a second peak appears at around 100 K. However, no dissociation of CO was observed for kinetic energies less than 1 eV.

Molecular hydrogen did not dissociate upon acceleration from the supersonic expansion. This implies that in order to obtain atomic hydrogen either a hot filament or a plasma discharge can be used.

Publications:

We are currently preparing two manuscripts: one on the reactivity of fluoromethane series and the other on the CO₂ sticking.

Conference Presentation:

1. K.A. Brown, R.A. Machonkin, and W.Ho, "Reactivity of CH_xF_{4-x} and CH₃Cl with Si(100)2x1", 53rd Annual Conference on Physical Electronics, June 21-23, 1993, Rensselaer Polytechnic Institute, Troy, NY.

DLIC QUALITY INSPECTION

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A-1	