TEN2 2021-11-05

MAA140 Vektoralgebra grundkurs

Skrivtid: 3 timmar

Avdelningen för tillämpad matematik Lars Hellström

Mälardalens högskola

Hjälpmedel: Inga behövs,

men förutom penna, sudd och linjal är gradskiva och passare godkända.

Godkäntgräns: 15 p

Lösningarna ska presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Avsluta varje lösning med ett tydligt angivet svar!

Låt $\mathbf{v}_1 = 2\mathbf{e}_1 - 2\mathbf{e}_2 + \mathbf{e}_3$, $\mathbf{v}_2 = 3\mathbf{e}_1 + \mathbf{e}_2 - 4\mathbf{e}_3$ och $\mathbf{v}_3 = 4\mathbf{e}_1 + 4\mathbf{e}_2 - 9\mathbf{e}_3$, där $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ betecknar 1 vektorerna i standardbasen.

Uttryck $\mathbf{u} = \mathbf{e}_2 + 2\mathbf{e}_3$ som en linjärkombination av \mathbf{v}_1 , \mathbf{v}_2 och \mathbf{v}_3 , eller påvisa att detta inte är möjligt. $(5\,p)$

- Beräkna determinanten $\begin{vmatrix} 0 & 0 & -1 \\ 3 & 1 & -3 & 0 & 0 \\ 1 & 0 & 0 & -2 & 3 \\ 0 & -4 & 0 & 0 & 5 \\ 0 & 2 & 1 & 1 & 0 \end{vmatrix}.$ $\mathbf{2}$ (6p)
- 3 Punkten A = (x, y, z) har alla koordinater > 0 (dvs. den ligger i första oktanten av rummet) och dess projektion B=(x,0,z) på xz-planet ligger i första kvadranten. O=(0,0,0) är koordinatsystemets origo. Vad har A för koordinater (x, y, z), om $\|\overrightarrow{OA}\| = 8$, vinkeln mellan \overrightarrow{OA} och \overrightarrow{OB} är $\frac{\pi}{6} = 30^{\circ}$, och vinkeln mellan \overrightarrow{OB} och x-axeln är $\frac{\pi}{3} = 60^{\circ}$? (5p)
- Låt A = (2,0,2), B = (1,1,1), C = (0,5,1) och D = (4,3,0) vara fyra punkter. 4
 - Ange på parameterform en ekvation för planet som innehåller punkterna A, B och C. (1 p)
- Ange på parameterfri form en ekvation för planet som innehåller punkterna A, B och C. (2p)
- Beräkna avstådet till punkten D från planet som innehåller A, B och C. (2p)
- Låt $A = \begin{pmatrix} -3 & -2 & 2 \\ 11 & 10 & -11 \\ 10 & 10 & -11 \end{pmatrix}$. Avgör vilka av följande vektorer som är egenvektorer till A, och vad de egenvektorerna har för egenvärden.

$$\mathbf{u}_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \qquad \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \qquad \mathbf{u}_3 = \begin{pmatrix} -1 \\ 7 \\ 6 \end{pmatrix} \qquad \mathbf{u}_4 = \begin{pmatrix} -2 \\ 11 \\ 10 \end{pmatrix} \qquad \mathbf{u}_5 = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix} \qquad \mathbf{u}_6 = \begin{pmatrix} 1 \\ -8 \\ -7 \end{pmatrix} \qquad (6 \text{ p})$$

- Låt $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ vara vektorer med tre element. Vilka av de nedanstående likheterna är 6 allmänt giltiga identiteter (räknelagar)?
 - (\mathbf{a}) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$
 - (\mathbf{b})
 - $$\begin{split} \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) &= \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} & (\mathbf{e}) & \mathbf{u} \times (\mathbf{v} + \mathbf{w}) &= \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{v} \\ \mathbf{u} \cdot \mathbf{v} &= -\mathbf{v} \cdot \mathbf{u} & (\mathbf{f}) & \mathbf{u} \times \mathbf{v} &= -\mathbf{v} \times \mathbf{u} \\ (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} &= \mathbf{u} (\mathbf{v} \cdot \mathbf{w}) & (\mathbf{g}) & (\mathbf{u} \times \mathbf{v}) \times \mathbf{w} &= \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \end{split}$$
 (\mathbf{c})
 - $\|\mathbf{u}\|^2 = \mathbf{u} \cdot \mathbf{u}$

Svara "sant", "falskt", eller "vet inte" för var och en av dem. (Vid poängsättning förtar ett felaktigt svar sant/falskt ett annat korrekt svar sant/falskt, så den som inte har minst två rätt mer än hen har fel får noll poäng på denna fråga.) (3p) Värden som kan vara bra att ha:

n	2^n	3^n	$(10+n)^2$	$\sqrt{n} \approx$	$\sqrt{10+n} \approx$	0	0	
0	1	1	100	0,00	3,16	θ	$\cos \theta$	$\sin \theta$
1	2	3	121	1,00	3,32		-	
2	4	9	144	1,41	3,46	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\sqrt{3}}{2}$	1_
3	8	27	169	1,73	3,61	6	2	$\overline{2}$
4	16	81	196	2,00	3,74	π	1	1
5	32	243	225	$2,\!24$	3,87	$\frac{\pi}{4} = 45^{\circ}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
6	64	729	256	$2,\!45$	4,00	4	$\sqrt{2}$	$\sqrt{2}$
7	128	2187	289	2,65	$4,\!12$	_	1	$\sqrt{2}$
8	256	6561	324	2,83	$4,\!24$	$\frac{\pi}{3} = 60^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
9	512	19683	361	3,00	4,36	3	2	2

Lycka till!