$12a_{0311} \ (K12a_{0311})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 4.08905 \times 10^{49} u^{39} - 1.01301 \times 10^{50} u^{38} + \dots + 2.88391 \times 10^{51} b - 2.25929 \times 10^{51}, \\ &- 4.64639 \times 10^{50} u^{39} + 1.25973 \times 10^{51} u^{38} + \dots + 2.30713 \times 10^{52} a + 9.26479 \times 10^{51}, \\ &u^{40} - 3u^{39} + \dots - 192u^2 - 32 \rangle \\ I_2^u &= \langle 3u^{30} a - 3u^{30} + \dots + 5a + 11, \ -112u^{30} a - 102u^{30} + \dots - 77a - 491, \ u^{31} + u^{30} + \dots + 2u + 1 \rangle \\ I_3^u &= \langle b + 1, \ 8a^2 - 2au + 8a - u + 3, \ u^2 - 2 \rangle \\ I_4^u &= \langle b + u, \ 3a - 5u + 1, \ u^2 + 1 \rangle \end{split}$$

$$I_1^v = \langle a, b-1, 4v^2 + 2v + 1 \rangle$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 110 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 4.09 \times 10^{49} u^{39} - 1.01 \times 10^{50} u^{38} + \dots + 2.88 \times 10^{51} b - 2.26 \times 10^{51}, \ -4.65 \times 10^{50} u^{39} + 1.26 \times 10^{51} u^{38} + \dots + 2.31 \times 10^{52} a + 9.26 \times 10^{51}, \ u^{40} - 3u^{39} + \dots - 192 u^2 - 32 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0201393u^{39} - 0.0546018u^{38} + \cdots - 3.01826u - 0.401572 \\ -0.0141788u^{39} + 0.0351264u^{38} + \cdots + 1.72761u + 0.783414 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.000995231u^{39} + 0.00708915u^{38} + \cdots + 0.246219u + 1.21626 \\ 0.0112644u^{39} - 0.0355065u^{38} + \cdots - 1.56872u - 0.703111 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00214826u^{39} - 0.00643004u^{38} + \cdots + 1.27576u - 0.435663 \\ -0.00982399u^{39} + 0.0113860u^{38} + \cdots - 0.302904u + 0.425293 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.00280373u^{39} - 0.0167005u^{38} + \cdots - 1.93511u + 0.195727 \\ -0.00183607u^{39} - 0.0121602u^{38} + \cdots - 0.993431u - 0.862558 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.00596044u^{39} - 0.0194753u^{38} + \cdots - 1.29065u + 0.381841 \\ -0.0141788u^{39} + 0.0351264u^{38} + \cdots + 1.72761u + 0.783414 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.00328746u^{39} + 0.00123723u^{38} + \cdots - 0.904111u + 0.0108409 \\ 0.00995923u^{39} - 0.0198393u^{38} + \cdots - 0.266449u + 0.780010 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.00639471u^{39} - 0.0181709u^{38} + \cdots - 0.259320u + 0.0460362 \\ -0.00105452u^{39} + 0.0113351u^{38} + \cdots + 0.871003u + 0.956721 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.102467u^{39} 0.211834u^{38} + \cdots 12.5141u + 4.58841$

Crossings	u-Polynomials at each crossing
c_1	$u^{40} + 12u^{39} + \dots - 6305u + 64$
c_2, c_6	$u^{40} - 2u^{39} + \dots + 57u - 8$
c_3, c_5	$64(64u^{40} - 32u^{39} + \dots + 40u - 8)$
c_4, c_9, c_{10}	$u^{40} + 3u^{39} + \dots - 192u^2 - 32$
c_7, c_8, c_{11} c_{12}	$u^{40} - 2u^{39} + \dots + 19u - 7$

Crossings	Riley Polynomials at each crossing
c_1	$y^{40} + 20y^{39} + \dots - 35596225y + 4096$
c_2, c_6	$y^{40} + 12y^{39} + \dots - 6305y + 64$
c_3, c_5	$4096(4096y^{40} + 3072y^{39} + \dots - 1312y + 64)$
c_4, c_9, c_{10}	$y^{40} - 35y^{39} + \dots + 12288y + 1024$
c_7, c_8, c_{11} c_{12}	$y^{40} + 14y^{39} + \dots + 115y + 49$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.440137 + 0.904158I		
a = -0.46183 - 1.85321I	6.8384 + 13.5929I	-4.21050 - 9.23121I
b = -0.513797 + 1.310640I		
u = -0.440137 - 0.904158I		
a = -0.46183 + 1.85321I	6.8384 - 13.5929I	-4.21050 + 9.23121I
b = -0.513797 - 1.310640I		
u = 0.429948 + 0.950952I		
a = -0.40500 + 1.76947I	8.33666 - 7.25783I	-2.07869 + 5.28616I
b = -0.420528 - 1.284740I		
u = 0.429948 - 0.950952I		
a = -0.40500 - 1.76947I	8.33666 + 7.25783I	-2.07869 - 5.28616I
b = -0.420528 + 1.284740I		
u = -0.187511 + 0.912417I		
a = 0.02873 - 1.86648I	-0.05063 + 5.82607I	-8.03423 - 8.68283I
b = -0.409629 + 0.962631I		
u = -0.187511 - 0.912417I		
a = 0.02873 + 1.86648I	-0.05063 - 5.82607I	-8.03423 + 8.68283I
b = -0.409629 - 0.962631I		
u = -0.808683 + 0.827619I		
a = -0.582063 - 1.047810I	5.82044 - 7.81253I	-4.24739 + 6.17178I
b = 0.378612 + 1.207320I		
u = -0.808683 - 0.827619I		
a = -0.582063 + 1.047810I	5.82044 + 7.81253I	-4.24739 - 6.17178I
b = 0.378612 - 1.207320I		
u = 1.199590 + 0.427748I		
a = 0.411698 - 1.287580I	-3.26360 - 1.49706I	-11.41293 + 5.34755I
b = 0.387145 + 0.855456I		
u = 1.199590 - 0.427748I		
a = 0.411698 + 1.287580I	-3.26360 + 1.49706I	-11.41293 - 5.34755I
b = 0.387145 - 0.855456I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.907718 + 0.908783I		
a = -0.490822 + 1.072100I	7.10406 + 1.09362I	-1.87527 - 4.00746I
b = 0.255927 - 1.148880I		
u = 0.907718 - 0.908783I		
a = -0.490822 - 1.072100I	7.10406 - 1.09362I	-1.87527 + 4.00746I
b = 0.255927 + 1.148880I		
u = -0.227717 + 1.277080I		
a = 0.170112 + 1.366760I	4.51263 - 0.64388I	-12.6147 + 10.6040I
b = -0.110689 - 0.909064I		
u = -0.227717 - 1.277080I		
a = 0.170112 - 1.366760I	4.51263 + 0.64388I	-12.6147 - 10.6040I
b = -0.110689 + 0.909064I		
u = -1.337180 + 0.093481I		
a = -0.568363 - 0.175872I	-5.44648 - 0.82010I	-6.94084 - 0.88214I
b = -1.40862 - 0.31480I		
u = -1.337180 - 0.093481I		
a = -0.568363 + 0.175872I	-5.44648 + 0.82010I	-6.94084 + 0.88214I
b = -1.40862 + 0.31480I		
u = 1.363060 + 0.137405I		
a = -0.477079 + 0.243693I	-6.07938 - 4.11851I	-9.52490 + 6.62129I
b = -1.40170 + 0.49884I		
u = 1.363060 - 0.137405I		
a = -0.477079 - 0.243693I	-6.07938 + 4.11851I	-9.52490 - 6.62129I
b = -1.40170 - 0.49884I		
u = -0.527569 + 0.240579I		
a = -0.374770 - 0.519466I	-2.68524 - 2.28522I	-15.8983 + 1.9193I
b = 0.732459 + 0.494483I		
u = -0.527569 - 0.240579I		
a = -0.374770 + 0.519466I	-2.68524 + 2.28522I	-15.8983 - 1.9193I
b = 0.732459 - 0.494483I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.43224		
a = -0.492239	-6.54259	-14.4120
b = -0.887681		
u = 1.47203 + 0.11321I		
a = -0.308809 + 0.057755I	-9.12443 + 0.78989I	-16.6960 - 1.5011I
b = -0.961493 + 0.650737I		
u = 1.47203 - 0.11321I		
a = -0.308809 - 0.057755I	-9.12443 - 0.78989I	-16.6960 + 1.5011I
b = -0.961493 - 0.650737I		
u = 1.44029 + 0.35968I		
a = 0.89871 - 1.21509I	-5.34996 - 10.39560I	-11.35294 + 7.92882I
b = 0.577709 + 1.136010I		
u = 1.44029 - 0.35968I		
a = 0.89871 + 1.21509I	-5.34996 + 10.39560I	-11.35294 - 7.92882I
b = 0.577709 - 1.136010I		
u = -1.42057 + 0.48007I		
a = 0.631676 + 1.097510I	0.17053 + 6.80496I	-8.00000 - 8.25092I
b = 0.374302 - 1.088160I		
u = -1.42057 - 0.48007I		
a = 0.631676 - 1.097510I	0.17053 - 6.80496I	-8.00000 + 8.25092I
b = 0.374302 + 1.088160I		
u = -1.51413 + 0.15368I		
a = -0.505558 - 0.545335I	-4.25095 - 1.64346I	-8.00000 + 0.I
b = -0.073480 + 0.597284I		
u = -1.51413 - 0.15368I		
a = -0.505558 + 0.545335I	-4.25095 + 1.64346I	-8.00000 + 0.I
b = -0.073480 - 0.597284I		
u = 1.50913 + 0.33966I		
a = 1.10053 - 1.00347I	0.5699 - 18.1001I	0. + 9.77509I
b = 0.63668 + 1.33597I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.50913 - 0.33966I		
a = 1.10053 + 1.00347I	0.5699 + 18.1001I	0 9.77509I
b = 0.63668 - 1.33597I		
u = -1.50745 + 0.35840I		
a = 1.01596 + 0.98674I	2.12914 + 11.97580I	0
b = 0.57197 - 1.32042I		
u = -1.50745 - 0.35840I		
a = 1.01596 - 0.98674I	2.12914 - 11.97580I	0
b = 0.57197 + 1.32042I		
u = 0.398385		
a = 0.194086	-0.650198	-15.0380
b = 0.411087		
u = 0.060206 + 0.390625I		
a = 1.81385 - 0.89243I	-0.52443 - 1.67679I	-4.14197 + 2.11677I
b = -0.311880 + 0.206339I		
u = 0.060206 - 0.390625I		
a = 1.81385 + 0.89243I	-0.52443 + 1.67679I	-4.14197 - 2.11677I
b = -0.311880 - 0.206339I		
u = -0.085016 + 0.355683I		
a = -0.687889 - 0.084642I	-1.36201 + 2.26426I	3.25236 - 9.63689I
b = 1.230980 + 0.116031I		
u = -0.085016 - 0.355683I		
a = -0.687889 + 0.084642I	-1.36201 - 2.26426I	3.25236 + 9.63689I
b = 1.230980 - 0.116031I		
u = 1.69092 + 0.00044I		
a = -0.185011 + 0.410776I	-3.61784 - 4.35903I	0
b = -0.295674 - 0.847006I		
u = 1.69092 - 0.00044I		
a = -0.185011 - 0.410776I	-3.61784 + 4.35903I	0
b = -0.295674 + 0.847006I		

II.
$$I_2^u = \langle 3u^{30}a - 3u^{30} + \dots + 5a + 11, \ -112u^{30}a - 102u^{30} + \dots - 77a - 491, \ u^{31} + u^{30} + \dots + 2u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.187500au^{30} + 0.187500u^{30} + \cdots - 0.312500a - 0.687500 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.187500au^{30} + 1.52679u^{30} + \cdots - 0.687500a + 2.11607 \\ 0.187500au^{30} - 0.187500u^{30} + \cdots + 0.312500a + 0.687500 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.830357au^{30} - 1.21811u^{30} + \cdots + 2.09821a + 0.554847 \\ -0.625000au^{30} - 0.232143u^{30} + \cdots - 0.375000a - 1.33929 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.187500au^{30} + 1.52679u^{30} + \cdots - 0.687500a + 1.11607 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.187500au^{30} + 0.187500u^{30} + \cdots + 0.687500a - 0.687500 \\ -0.187500au^{30} + 0.187500u^{30} + \cdots + 0.312500a - 0.687500 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.232143au^{30} - 2.41582u^{30} + \cdots + 1.33929a - 1.13520 \\ -0.312500au^{30} - 0.830357u^{30} + \cdots + 0.187500a - 2.09821 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.758929au^{30} - 0.547194u^{30} + \cdots + 1.54464a - 1.87117 \\ -0.562500au^{30} - 0.00892857u^{30} + \cdots - 0.937500a - 1.20536 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$4u^{28} - 52u^{26} + 4u^{25} + 292u^{24} - 48u^{23} - 916u^{22} + 244u^{21} + 1732u^{20} - 672u^{19} - 1988u^{18} + 1056u^{17} + 1360u^{16} - 896u^{15} - 644u^{14} + 332u^{13} + 420u^{12} - 60u^{11} - 288u^{10} + 84u^{9} + 88u^{8} - 16u^{6} - 44u^{5} + 4u^{2} - 16u - 10$$

Crossings	u-Polynomials at each crossing
c_1	$(u^{31} + 11u^{30} + \dots - 4u - 1)^2$
c_2, c_6	$(u^{31} - u^{30} + \dots + 2u^2 + 1)^2$
c_3,c_5	$49(49u^{62} - 259u^{61} + \dots - 1.07072 \times 10^7 u + 1308800)$
c_4, c_9, c_{10}	$(u^{31} - u^{30} + \dots + 2u - 1)^2$
c_7, c_8, c_{11} c_{12}	$u^{62} + 5u^{61} + \dots + 101u + 10$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{31} + 19y^{30} + \dots - 8y - 1)^2$
c_2, c_6	$(y^{31} + 11y^{30} + \dots - 4y - 1)^2$
c_3, c_5	$2401 \cdot (2401y^{62} + 64827y^{61} + \dots - 13911596441600y + 1712957440000)$
c_4, c_9, c_{10}	$(y^{31} - 29y^{30} + \dots - 4y - 1)^2$
$c_7, c_8, c_{11} \\ c_{12}$	$y^{62} + 39y^{61} + \dots + 1299y + 100$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.196790 + 0.189244I		
a = 1.281310 + 0.314655I	3.79282 + 0.40298I	-4.92930 - 0.52831I
b = 0.736083 - 1.151530I		
u = -1.196790 + 0.189244I		
a = 0.029998 - 0.447048I	3.79282 + 0.40298I	-4.92930 - 0.52831I
b = 0.31189 + 1.51073I		
u = -1.196790 - 0.189244I		
a = 1.281310 - 0.314655I	3.79282 - 0.40298I	-4.92930 + 0.52831I
b = 0.736083 + 1.151530I		
u = -1.196790 - 0.189244I		
a = 0.029998 + 0.447048I	3.79282 - 0.40298I	-4.92930 + 0.52831I
b = 0.31189 - 1.51073I		
u = 0.371332 + 0.681959I		
a = 0.437240 + 0.099266I	2.81425 - 8.17190I	-6.44268 + 8.00325I
b = -1.025610 + 0.013746I		
u = 0.371332 + 0.681959I		
a = 0.40027 - 1.90954I	2.81425 - 8.17190I	-6.44268 + 8.00325I
b = 0.52071 + 1.33060I		
u = 0.371332 - 0.681959I		
a = 0.437240 - 0.099266I	2.81425 + 8.17190I	-6.44268 - 8.00325I
b = -1.025610 - 0.013746I		
u = 0.371332 - 0.681959I		
a = 0.40027 + 1.90954I	2.81425 + 8.17190I	-6.44268 - 8.00325I
b = 0.52071 - 1.33060I		
u = 0.434998 + 0.611250I		
a = 0.553711 - 0.502128I	-1.60703 - 1.99617I	-11.89924 + 3.62729I
b = -0.543967 + 0.395556I		
u = 0.434998 + 0.611250I		
a = 0.48079 - 1.60306I	-1.60703 - 1.99617I	-11.89924 + 3.62729I
b = 0.423951 + 0.864140I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.434998 - 0.611250I		
a = 0.553711 + 0.502128I	-1.60703 + 1.99617I	-11.89924 - 3.62729I
b = -0.543967 - 0.395556I		
u = 0.434998 - 0.611250I		
a = 0.48079 + 1.60306I	-1.60703 + 1.99617I	-11.89924 - 3.62729I
b = 0.423951 - 0.864140I		
u = 1.239060 + 0.217665I		
a = 1.244900 - 0.296015I	3.41810 - 5.89464I	-5.94513 + 6.44091I
b = 0.843023 + 1.049800I		
u = 1.239060 + 0.217665I		
a = -0.213070 + 0.516323I	3.41810 - 5.89464I	-5.94513 + 6.44091I
b = 0.20988 - 1.57615I		
u = 1.239060 - 0.217665I		
a = 1.244900 + 0.296015I	3.41810 + 5.89464I	-5.94513 - 6.44091I
b = 0.843023 - 1.049800I		
u = 1.239060 - 0.217665I		
a = -0.213070 - 0.516323I	3.41810 + 5.89464I	-5.94513 - 6.44091I
b = 0.20988 + 1.57615I		
u = 0.529247 + 0.517876I		
a = 0.053894 - 1.405920I	2.14842 + 4.14236I	-8.20039 - 2.04013I
b = 0.588857 - 0.075465I		
u = 0.529247 + 0.517876I		
a = 1.44126 - 0.83676I	2.14842 + 4.14236I	-8.20039 - 2.04013I
b = -0.264698 + 1.158750I		
u = 0.529247 - 0.517876I		
a = 0.053894 + 1.405920I	2.14842 - 4.14236I	-8.20039 + 2.04013I
b = 0.588857 + 0.075465I		
u = 0.529247 - 0.517876I		
a = 1.44126 + 0.83676I	2.14842 - 4.14236I	-8.20039 + 2.04013I
b = -0.264698 - 1.158750I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.343506 + 0.654959I		
a = 0.213125 - 0.091385I	4.01963 + 2.73446I	-4.23310 - 3.38925I
b = -0.878890 + 0.145845I		
u = -0.343506 + 0.654959I		
a = 0.47531 + 1.96420I	4.01963 + 2.73446I	-4.23310 - 3.38925I
b = 0.362702 - 1.325630I		
u = -0.343506 - 0.654959I		
a = 0.213125 + 0.091385I	4.01963 - 2.73446I	-4.23310 + 3.38925I
b = -0.878890 - 0.145845I		
u = -0.343506 - 0.654959I		
a = 0.47531 - 1.96420I	4.01963 - 2.73446I	-4.23310 + 3.38925I
b = 0.362702 + 1.325630I		
u = -1.26234		
a = 1.24705 + 1.05057I	0.537061	-5.58210
b = 0.323876 - 1.146600I		
u = -1.26234		
a = 1.24705 - 1.05057I	0.537061	-5.58210
b = 0.323876 + 1.146600I		
u = -0.028009 + 0.652167I		
a = -0.30680 - 1.72943I	7.28578 + 2.71284I	-0.10058 - 3.44665I
b = -0.573998 + 1.285130I		
u = -0.028009 + 0.652167I		
a = -0.19450 + 1.96096I	7.28578 + 2.71284I	-0.10058 - 3.44665I
b = -0.45397 - 1.38921I		
u = -0.028009 - 0.652167I		
a = -0.30680 + 1.72943I	7.28578 - 2.71284I	-0.10058 + 3.44665I
b = -0.573998 - 1.285130I		
u = -0.028009 - 0.652167I		
a = -0.19450 - 1.96096I	7.28578 - 2.71284I	-0.10058 + 3.44665I
b = -0.45397 + 1.38921I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.358560 + 0.080822I		
a = -0.49901 + 2.29998I	-1.93424 - 2.56488I	-13.16453 + 4.43258I
b = 0.076735 - 1.182270I		
u = 1.358560 + 0.080822I		
a = 2.36676 + 0.38002I	-1.93424 - 2.56488I	-13.16453 + 4.43258I
b = 0.267326 + 0.813715I		
u = 1.358560 - 0.080822I		
a = -0.49901 - 2.29998I	-1.93424 + 2.56488I	-13.16453 - 4.43258I
b = 0.076735 + 1.182270I		
u = 1.358560 - 0.080822I		
a = 2.36676 - 0.38002I	-1.93424 + 2.56488I	-13.16453 - 4.43258I
b = 0.267326 - 0.813715I		
u = -0.464772 + 0.428483I		
a = -0.21337 + 1.49668I	3.29780 + 0.92992I	-6.40372 - 3.68841I
b = 0.274726 + 0.400923I		
u = -0.464772 + 0.428483I		
a = 1.87218 + 1.29697I	3.29780 + 0.92992I	-6.40372 - 3.68841I
b = -0.052308 - 1.171690I		
u = -0.464772 - 0.428483I		
a = -0.21337 - 1.49668I	3.29780 - 0.92992I	-6.40372 + 3.68841I
b = 0.274726 - 0.400923I		
u = -0.464772 - 0.428483I		
a = 1.87218 - 1.29697I	3.29780 - 0.92992I	-6.40372 + 3.68841I
b = -0.052308 + 1.171690I		
u = 1.43568 + 0.18978I		
a = -0.939070 + 0.829544I	-2.60250 - 3.33239I	-9.23670 + 3.21859I
b = -0.275288 - 1.076150I		
u = 1.43568 + 0.18978I		
a = 0.289833 + 0.332892I	-2.60250 - 3.33239I	-9.23670 + 3.21859I
b = 0.521278 - 0.041093I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.43568 - 0.18978I		
a = -0.939070 - 0.829544I	-2.60250 + 3.33239I	-9.23670 - 3.21859I
b = -0.275288 + 1.076150I		
u = 1.43568 - 0.18978I		
a = 0.289833 - 0.332892I	-2.60250 + 3.33239I	-9.23670 - 3.21859I
b = 0.521278 + 0.041093I		
u = 1.43808 + 0.24908I		
a = -0.968905 + 0.795580I	-1.70250 - 6.04082I	-8.35365 + 3.16093I
b = -0.61976 - 1.34317I		
u = 1.43808 + 0.24908I		
a = 0.393198 - 0.274074I	-1.70250 - 6.04082I	-8.35365 + 3.16093I
b = 1.120860 - 0.098271I		
u = 1.43808 - 0.24908I		
a = -0.968905 - 0.795580I	-1.70250 + 6.04082I	-8.35365 - 3.16093I
b = -0.61976 + 1.34317I		
u = 1.43808 - 0.24908I		
a = 0.393198 + 0.274074I	-1.70250 + 6.04082I	-8.35365 - 3.16093I
b = 1.120860 + 0.098271I		
u = -1.45066 + 0.25754I		
a = -1.008450 - 0.802446I	-3.04348 + 11.60290I	-10.34947 - 7.70694I
b = -0.73854 + 1.34705I		
u = -1.45066 + 0.25754I		
a = 0.334822 + 0.373412I	-3.04348 + 11.60290I	-10.34947 - 7.70694I
b = 1.219230 + 0.204321I		
u = -1.45066 - 0.25754I		
a = -1.008450 + 0.802446I	-3.04348 - 11.60290I	-10.34947 + 7.70694I
b = -0.73854 - 1.34705I		
u = -1.45066 - 0.25754I		
a = 0.334822 - 0.373412I	-3.04348 - 11.60290I	-10.34947 + 7.70694I
b = 1.219230 - 0.204321I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.46473 + 0.17711I		
a = -0.752786 - 0.694476I	-4.22211 - 1.64856I	-12.01509 + 2.12263I
b = -0.144612 + 0.731261I		
u = -1.46473 + 0.17711I		
a = -0.319336 - 0.515774I	-4.22211 - 1.64856I	-12.01509 + 2.12263I
b = 0.172653 + 0.424747I		
u = -1.46473 - 0.17711I		
a = -0.752786 + 0.694476I	-4.22211 + 1.64856I	-12.01509 - 2.12263I
b = -0.144612 - 0.731261I		
u = -1.46473 - 0.17711I		
a = -0.319336 + 0.515774I	-4.22211 + 1.64856I	-12.01509 - 2.12263I
b = 0.172653 - 0.424747I		
u = -1.46230 + 0.22292I		
a = -0.948019 - 0.877022I	-7.71400 + 5.04935I	-15.1253 - 3.4252I
b = -0.641859 + 1.045060I		
u = -1.46230 + 0.22292I		
a = 0.090986 + 0.159142I	-7.71400 + 5.04935I	-15.1253 - 3.4252I
b = 0.881829 + 0.374398I		
u = -1.46230 - 0.22292I		
a = -0.948019 + 0.877022I	-7.71400 - 5.04935I	-15.1253 + 3.4252I
b = -0.641859 - 1.045060I		
u = -1.46230 - 0.22292I		
a = 0.090986 - 0.159142I	-7.71400 - 5.04935I	-15.1253 + 3.4252I
b = 0.881829 - 0.374398I		
u = -0.265022 + 0.399657I		
a = -1.88467 + 0.97391I	3.18273 + 1.02630I	-5.81008 - 6.41690I
b = -0.124163 + 0.695584I		
u = -0.265022 + 0.399657I		
a = 1.75565 + 3.19567I	3.18273 + 1.02630I	-5.81008 - 6.41690I
b = -0.017948 - 1.157170I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.265022 - 0.399657I		
a = -1.88467 - 0.97391I	3.18273 - 1.02630I	-5.81008 + 6.41690I
b = -0.124163 - 0.695584I		
u = -0.265022 - 0.399657I		
a = 1.75565 - 3.19567I	3.18273 - 1.02630I	-5.81008 + 6.41690I
b = -0.017948 + 1.157170I		

III.
$$I_3^u = \langle b+1, \ 8a^2 - 2au + 8a - u + 3, \ u^2 - 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a+1 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} au + \frac{1}{2}a + \frac{5}{8}u + \frac{1}{4} \\ -au \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a - 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2au + \frac{1}{2}a - \frac{11}{8}u + \frac{1}{4} \\ -au - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} au + 2a + \frac{3}{8}u \\ -au + 2a - \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8au + 4u 16

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u^2 - u + 1)^2$
c_3	$16(16u^4 + 16u^3 - 4u^2 - 4u + 7)$
c_4, c_9, c_{10}	$(u^2-2)^2$
<i>C</i> ₅	$16(16u^4 - 16u^3 - 4u^2 + 4u + 7)$
<i>c</i> ₆	$(u^2 + u + 1)^2$
c_{7}, c_{8}	$(u+1)^4$
c_{11}, c_{12}	$(u-1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6	$(y^2+y+1)^2$
c_3, c_5	$256(256y^4 - 384y^3 + 368y^2 - 72y + 49)$
c_4, c_9, c_{10}	$(y-2)^4$
c_7, c_8, c_{11} c_{12}	$(y-1)^4$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.323223 + 0.306186I	-6.57974 - 2.02988I	-14.0000 + 3.4641I
b = -1.00000		
u = 1.41421		
a = -0.323223 - 0.306186I	-6.57974 + 2.02988I	-14.0000 - 3.4641I
b = -1.00000		
u = -1.41421		
a = -0.676777 + 0.306186I	-6.57974 + 2.02988I	-14.0000 - 3.4641I
b = -1.00000		
u = -1.41421		
a = -0.676777 - 0.306186I	-6.57974 - 2.02988I	-14.0000 + 3.4641I
b = -1.00000		

IV.
$$I_4^u = \langle b + u, \ 3a - 5u + 1, \ u^2 + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ 2u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{5}{3}u - \frac{1}{3} \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{3}u - \frac{2}{3} \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{3}u - \frac{4}{9} \\ \frac{1}{3}u + \frac{1}{3} \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 3^{2} + 3^{2} \\ -\frac{7}{3}u - \frac{2}{3} \\ 3u + 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -\frac{1}{3}u - \frac{2}{3} \\ 3u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{2}{3}u - \frac{1}{3} \\ -u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u - \frac{5}{9} \\ \frac{5}{3}u + \frac{2}{3} \end{pmatrix}$$

$$a_2 = \begin{pmatrix} \frac{4}{3}u + \frac{1}{9} \\ -\frac{4}{3}u - \frac{1}{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_{1}, c_{2}	$(u+1)^2$
c_3	$9(9u^2 + 6u + 5)$
$c_4, c_7, c_8 \\ c_9, c_{10}, c_{11} \\ c_{12}$	$u^2 + 1$
<i>C</i> ₅	$9(9u^2 - 6u + 5)$
	$(u-1)^2$

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_6	$(y-1)^2$	
c_3, c_5	$81(81y^2 + 54y + 25)$	
c_4, c_7, c_8 c_9, c_{10}, c_{11} c_{12}	$(y+1)^2$	

	Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a = -	0.33333 + 1.66667I	4.93480	0
b =	-1.000000I		
u =	-1.000000I		
a = -	0.33333 - 1.66667I	4.93480	0
b =	1.000000I		

V.
$$I_1^v = \langle a, \ b-1, \ 4v^2 + 2v + 1 \rangle$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 2v \\ -v \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 2v \\ v \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2v+1 \\ -v+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $7v \frac{25}{2}$

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^2 - u + 1$
c_2	$u^2 + u + 1$
c_3	$4(4u^2 - 2u + 1)$
c_4, c_9, c_{10}	u^2
<i>C</i> ₅	$4(4u^2 + 2u + 1)$
c_{7}, c_{8}	$(u-1)^2$
c_{11}, c_{12}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6	$y^2 + y + 1$
c_3, c_5	$16(16y^2 + 4y + 1)$
c_4, c_9, c_{10}	y^2
c_7, c_8, c_{11} c_{12}	$(y-1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.250000 + 0.433013I		
a = 0	-1.64493 + 2.02988I	-14.2500 + 3.0311I
b = 1.00000 $v = -0.250000 - 0.433013I$		
a = 0	-1.64493 - 2.02988I	-14.2500 - 3.0311I
b = 1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u+1)^2)(u^2-u+1)^3(u^{31}+11u^{30}+\cdots-4u-1)^2$ $\cdot (u^{40}+12u^{39}+\cdots-6305u+64)$
c_2	$((u+1)^2)(u^2-u+1)^2(u^2+u+1)(u^{31}-u^{30}+\cdots+2u^2+1)^2$ $\cdot (u^{40}-2u^{39}+\cdots+57u-8)$
c_3	$1806336(4u^{2} - 2u + 1)(9u^{2} + 6u + 5)(16u^{4} + 16u^{3} + \dots - 4u + 7)$ $\cdot (64u^{40} - 32u^{39} + \dots + 40u - 8)$ $\cdot (49u^{62} - 259u^{61} + \dots - 10707200u + 1308800)$
c_4, c_9, c_{10}	$u^{2}(u^{2}-2)^{2}(u^{2}+1)(u^{31}-u^{30}+\cdots+2u-1)^{2}$ $\cdot (u^{40}+3u^{39}+\cdots-192u^{2}-32)$
<i>C</i> ₅	$1806336(4u^{2} + 2u + 1)(9u^{2} - 6u + 5)(16u^{4} - 16u^{3} + \dots + 4u + 7)$ $\cdot (64u^{40} - 32u^{39} + \dots + 40u - 8)$ $\cdot (49u^{62} - 259u^{61} + \dots - 10707200u + 1308800)$
<i>c</i> ₆	$((u-1)^2)(u^2-u+1)(u^2+u+1)^2(u^{31}-u^{30}+\cdots+2u^2+1)^2$ $\cdot (u^{40}-2u^{39}+\cdots+57u-8)$
c_7, c_8	$((u-1)^2)(u+1)^4(u^2+1)(u^{40}-2u^{39}+\cdots+19u-7)$ $\cdot (u^{62}+5u^{61}+\cdots+101u+10)$
c_{11}, c_{12}	$((u-1)^4)(u+1)^2(u^2+1)(u^{40}-2u^{39}+\cdots+19u-7)$ $\cdot (u^{62}+5u^{61}+\cdots+101u+10)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^2)(y^2+y+1)^3(y^{31}+19y^{30}+\cdots-8y-1)^2$ $\cdot (y^{40}+20y^{39}+\cdots-35596225y+4096)$
c_2, c_6	$((y-1)^2)(y^2+y+1)^3(y^{31}+11y^{30}+\cdots-4y-1)^2$ $\cdot (y^{40}+12y^{39}+\cdots-6305y+64)$
c_3, c_5	$3262849744896(16y^{2} + 4y + 1)(81y^{2} + 54y + 25)$ $\cdot (256y^{4} - 384y^{3} + 368y^{2} - 72y + 49)$ $\cdot (4096y^{40} + 3072y^{39} + \dots - 1312y + 64)$ $\cdot (2401y^{62} + 64827y^{61} + \dots - 13911596441600y + 1712957440000)$
c_4, c_9, c_{10}	$y^{2}(y-2)^{4}(y+1)^{2}(y^{31}-29y^{30}+\cdots-4y-1)^{2}$ $\cdot (y^{40}-35y^{39}+\cdots+12288y+1024)$
c_7, c_8, c_{11} c_{12}	$((y-1)^{6})(y+1)^{2}(y^{40}+14y^{39}+\cdots+115y+49)$ $\cdot(y^{62}+39y^{61}+\cdots+1299y+100)$