Chapter 2

hw2 12235005 谭焱

3.3 Solution. By substituting the data point (1, 2), (2, 3), (3, 5) have

$$Ax = \begin{bmatrix} 1 & e \\ 2 & e^2 \\ 3 & e^3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cong \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} = b$$

3.7 Solution.

- (a) The function $\phi(y) = \|\mathbf{b} \mathbf{y}\|_2$ is continuous and coercive on \mathbb{R}^m , so ϕ has a minimum on the closed, unbounded set span (\mathbf{A}) , i.e., there is an m-vector $\mathbf{y} \in \text{span}(\mathbf{A})$ closest to \mathbf{b} in the Euclidean norm.
- (b) Suppose x_1 and x_2 are such solutions, and let $z = x_2 x_1$. Then since $Ax_1 = y = Ax_2$, we have Az = 0. Now if $z \neq 0 \Leftrightarrow x_1 \neq x_2$, then the columns of A must be linearly dependent. We conclude that teh solution to an $m \times n$ least squares problem $Ax \cong b$ is unique if, and only if, A has full column rank, i.e., $\operatorname{rank}(A) = n$.
- **3.17 Solution.** From definition, we have

$$\alpha = -\operatorname{sign}(a_1) \|\boldsymbol{a}\|_2 = -2$$
$$\boldsymbol{v} = \boldsymbol{a} - \alpha \boldsymbol{e}_1 = \begin{bmatrix} 3 \ 1 \ 1 \ 1 \end{bmatrix}^T$$

3.20 Solution.

(a) It's possible to annihilate a_2 with Givens rotation

$$G = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

i

(b) It's not possible, since in elimination matrix calculating, $a_2/a_1 = a_2/0$ is meaningless.

3.28 Solution.

(a) Since \mathbf{q}_k is orthogonal, imply $\mathbf{q}_i^T \mathbf{q}_j = 0, i \neq j$

$$(I-P_k)(I-P_{k-1})\dots(I-P_1)=I-\sum P_m+\sum q_i(q_i^Tq_j)q_j^T(\dots) \ =I-\sum P_m+0*\sum q_iq_j^T(\dots)=I-\sum P_m$$

(b) In the classical Gram-Schmidt procedure

$$q_k = a_k - \sum_j (q_j^T a_k) q_j = a_k - \sum_j q_j (q_j^T a_k) = (I - \sum_j P_j) a_k$$

(c) In the modified Gram-Schmidt procedure, assume $M_j(a_k) = a_k - (q_j^T a_k)q_j = (\mathbf{I} - \mathbf{P_j})a_k$

$$q_k = M_{k-1}(M_{k-1}(\dots M_1(a_k)\dots)) = (I-P_{k-1})(M_{k-1}(\dots M_1(a_k)\dots)) = (I-P_{k-1})\dots (I-P_1)a_k$$

(d) It's obvious that is same as (a) like

$$(I-\sum P_i)(I-\sum P_j) = I-2*\sum P_m + \sum P_m^2 + \sum q_i(q_i^Tq_j)q_j^T(\ldots) \ = I-2*\sum P_m + \sum P_m + \sum q_iq_j^T(\ldots) = I-\sum P_m$$

4.2 Solution. Since the matrix is upper triangular matrix, the eigenvalues and corresponding eigenvectors are

$$A \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1v_1 \\ 2v_2 \\ 3v_3 \end{bmatrix} = [1 \ 2 \ 3]^T [v_1 \ v_2 \ v_3] = e^T [v_1 \ v_2 \ v_3]$$

4.14 Solution.

- (a) Let $\alpha = 0$ the matrix is lower triangular matrix and eigenvalues is diagonal [1 2 3] which is all real values.
- (b) It's impossible that since real matrix eigenvalues has nonzero imaginary part exist as pair. Which is coming from when a + bi and v is eigenvalue and eigenvector, It's easy get a bi and \bar{v} is another eigenvalue and eigenvector by substituting. However, the matrix have odd eigenvalue that conflicted with all nonzero imaginary part complex eigenvalue.
- **4.17 Solution.** Assuming v is eigenvector of eigenvalue λ . It's easy verify that $A^2v = A\lambda v = \lambda(Av) = \lambda^2 v$, so λ^2 is A^2 's eigenvalue.

4.22 Solution.

(a)

$$A\begin{bmatrix} u \\ 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \end{bmatrix} \begin{bmatrix} u \\ 0 \end{bmatrix} = \begin{bmatrix} A_{11}u \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} u \\ 0 \end{bmatrix}$$

(b)

$$A \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ \boldsymbol{O} & A_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} A_{11}\boldsymbol{u} + A_{12}\boldsymbol{v} \\ A_{22}\boldsymbol{v} \end{bmatrix} = \lambda \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{bmatrix}$$

, we need satisfy $A_{11}\boldsymbol{u} + A_{12}\boldsymbol{v} = \lambda u$, which is equal to $\boldsymbol{u} = (A_{11} - \lambda I)^{-1}A_{12}\boldsymbol{v}$. Since λ is not A_{11} 's eigenvalue, $(A_{11} - \lambda I)^{-1}$ is exist, so λ and $[(A_{11} - \lambda I)^{-1}A_{12}\boldsymbol{v} \ \boldsymbol{v}]^T$ is eigenvalue and eigenvector for A.

(c) By result in (b),

$$A_{11}\boldsymbol{u} + A_{12}\boldsymbol{v} = \lambda u$$
$$A_{22}\boldsymbol{v} = \lambda \boldsymbol{v}.$$

When $v \neq 0$ we have $A_{22}v = \lambda v$, When b = 0, we have $A_{11}u = \lambda u$. So λ is eigenvalue of A_{11} , u or A_{22} , v.

(d) The sufficiency follows from (a) and (b) while the necessity follows from (c).

4.32 Solution.

(a) Assume a orthogonal basis contain v is $U = [v, u_0, \dots, u_k]$, so $v^T u_i = 0$ means

$$Hv = Iv - 2\frac{vv^Tv}{v^Tv} = v - 2v = -v$$

$$Hu_i = Iu_i - 2\frac{vv^Tu_i}{v^Tv} = u_i.$$

And U is a basis, so eigenvalues is -1 with v and 1 with u_i .

(b) The characteristic polynomial of H is

$$p(\lambda) = \begin{vmatrix} c - \lambda & s \\ -s & c - \lambda \end{vmatrix} = \lambda^2 - 2\lambda c + c^2 + s^2.$$

The eigenvalues is solution of characteristic polynomial zero points $c \pm is$.