Math 1700 Summer 2013 Quiz 4 Wednesday June 12 2013 No Work = No Credit

_ Student Number:

1. (5 points) Evaluate the integral $\int \frac{t^2}{\sqrt{1-t^6}} dt$.

Solution:

Try the substitution $u=t^3$. Then $\frac{du}{dt}=3t^2$, and $dt=\frac{du}{3t^2}$.

$$= \int \frac{t^2}{\sqrt{1-t^6}} dt$$

$$= \int \frac{t^2}{\sqrt{1-u^2}} \frac{1}{3t^2} du$$

$$= \int \frac{1}{\sqrt{1-u^2}} \frac{1}{3} du$$

$$= \frac{1}{3} \int \frac{1}{\sqrt{1 - u^2}} du$$

$$= \frac{1}{3}\sin^{-1}(u) + C$$

$$= \frac{1}{3}\sin^{-1}(u) + C$$
$$= \frac{1}{3}\sin^{-1}(t^3) + C$$

2. (5 points) Find the limit: $\lim_{x\to\infty} x^{1/x}$.

Solution:

 $\lim_{x\to\infty} x^{\frac{1}{x}}$

$$= \lim_{x \to \infty} \left(e^{\ln(x)} \right)^{\frac{1}{x}}$$

$$= \lim_{x \to \infty} e^{\frac{\ln(x)}{x}}$$

Since e^z is continuous for all z, the exponential function commutes with the limit:

$$=e^{\lim_{x\to\infty}\frac{\ln(x)}{x}}$$

The exponent is an indeterminate form of type ∞/∞ . We use l'Hopital's rule:

$$= e^{\lim_{x \to \infty} \frac{\frac{d}{dx}[\ln(x)]}{\frac{d}{dx}[x]}}$$

$$=e^{\lim_{x\to\infty}\frac{\frac{1}{x}}{1}}$$

...show all work...show all work...show all work...show all work...show all work...show all work...

Math 1700 Summer 2013 Quiz 4 Wednesday June 12 2013 No Work = No Credit

Name:		Student Number:
	$=e^{\lim_{x\to\infty}\frac{1}{x}}$	
	$=e^0$	
	= 1	