

Introduction

Passage de la physique classique à la physique quantique

De collisions "classiques" aux ondes

La diffusion correspond à l'interaction entre une particule (comme un électron) et une cible (comme un atome ou un noyau)

La section efficace

La section efficace peut être apparentée à une "surface virtuelle" où la particule incidente peut être déviée.

L'effet Ramsauer-Townsend

$$\sigma \rightarrow 0$$

Objectif scientifique

Comprendre l'annulation de la diffusion des électrons

Modélisation par un puits de potentiel

Validation des modèles

Résolution analytique

Modèle physique retenu


```
On choose T - le coefficial de logsmission
            R = B le roefficient de reflosoio
    De (2) of a
a Coik on their Forkider
(2 Ce De in or to Fe
   => 2 Ce 16-92 = Fe 18-92 (4+ 12) => C = Fe 18-(14-12) (4+ 12)
   => 2De == Feikas (4-kg) => D = Feis (kuth) (4-kg)
   De (3) of (9):
  Ae Be - Ce + De - train
 3) = = = ik = (-1:k2 (1+k1) + e (1-k4)
      - Feitige (eitra (4+ ty) eitra (4- ty)
 ( K1(Ae: +1) - Be +1) - K2 Feiter (Eitra (1+1) - e +1)
```


avec 16 (05 (120) + (c)

Effet Ramsauer-Townsend

Le coefficient de transmission analytique et numérique sont légèrement différents.

Le cœfficient numérique est un paquet d'ondes tandis que le cœfficient analytique est un état stationnaire

Résolution par simulation

États stationnaires optimaux

Les différences entre les deux modèles

Effet Ramsauer-Townsend

Comparaison

Туре	Analytique	Numérique	Conséquenses
Continu/discret	Continu	Discret	Erreurs possibles pour le numérique
Onde utilisée	Onde stationnaire	Paquet d'ondes	Légères différences dans le résultat
Methode de calcul	Séparation en 3 parties puis résolution de l' équation de schrödinger indépendante du temps	Résolution de l'équation de Schrödinger dépendante du temps	La méthode analytique sera exacte mais si le potentiel n'est pas constant ne marchera pas
But	Identification des conditions de transmission maximale	Observation numérique directe de la diffusion et de l'effet Ramsauer-Townsend	

Approfondissement : paquet d'ondes vs onde stationnaire

Onde Stationnaire

- Solution théorique idéale
- Calculs analytiques précis : énergies quantifiées, transmission, réflexion
- Infinie dans l'espace, sans localisation
- Statique dans le temps, état figé
- Utile pour comprendre la structure du problème

Paquet d'Ondes

- Représente une particule réaliste
- Localisé dans l'espace, visualisation possible
- Évolution dans le temps, dynamique observable
- Permet de simuler
 - TransmissionInterférence
 - Effet tunnel

Application: Effet Ramsauer-Townsend

- Observation visuelle possible uniquement avec un paquet d'ondes
- Permet de voir à quelles énergies la particule traverse sans déviation
- L'onde stationnaire reste un outil théorique, mais la simulation par paquet d'ondes est nécessaire pour étudier cet effet en temps réel

Pourquoi choisir le modèle du puits?

- Modèle simple et intuitif pour comprendre comment un électron peut être piégé
- Il explique par les calculs la nécessité des différents niveaux d'énergie
- Il aide donc à comprendre l'effet Ramsauer

Mais...

- Il simplifie la réalité
- Est en une dimension

Bilan

Ce qu'on a vu

- Un résumé du problème physique
- Une démonstration analytique et numérique de l'effet Ramsauer
- La différence entre les deux types de résolution

