Problem Sheet 5 - CT5102

Data Transformation with dplyr

1. Based on the mpg dataset from ggplot2, generate the following tibble which filters all the cars with a cty value greater than the median. Ensure that your tibble contains the same columns, and with set.seed(100) sample 5 records using sample_n(), and store the result in the tibble ans.

ans

```
## # A tibble: 5 x 7
```

##		manufacturer	model	displ	year	cty	hwy	class
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<int></int>	<chr></chr>
##	1	audi	a4	2	2008	20	31	compact
##	2	volkswagen	jetta	2.5	2008	21	29	compact
##	3	hyundai	sonata	2.4	2008	21	31	midsize
##	4	hyundai	sonata	2.4	1999	18	26	midsize
##	5	toyota	camry solara	3.3	2008	18	27	compact

2. Based on the aimsir17 tibble observations, generate the tibble jan which contains observations for two weather stations ("DUBLIN AIRPORT" and "MACE HEAD") during the month of January. Add a new column named WeatherStatus that contains three possible values: "Warning - Freezing" if the temperature is less than or equal to 0, "Warning - Very Cold" if the temperature is greater than zero and less than or equal to four, and "No Warning" if the temperature is above four. Make use of the case_when() function, and replicate the plot.

jan

A tibble: 1,488 x 7

3. Generate the following tibble (diam) based on the diamonds tibble from ggplot2. Note that the column PriceMaxColour is the colour of the diamond with the maximum price

for a given cut.

diam

```
## # A tibble: 5 x 5
               NumberDiamonds CaratMean PriceMax PriceMaxColour
##
     cut
##
                                    <dbl>
                                             <int> <ord>
     <ord>
                         <int>
## 1 Ideal
                                    0.703
                                             18806 G
                         21551
## 2 Premium
                                    0.892
                                             18823 I
                         13791
## 3 Very Good
                                    0.806
                                             18818 G
                         12082
## 4 Good
                          4906
                                    0.849
                                             18788 G
## 5 Fair
                          1610
                                    1.05
                                             18574 G
```

4. For each class of car, create the tibble mpg1 that contains a new column that stores the rank of city miles per gallon (cty), from lowest to highest. Make use of the rank() function in R, and in this function call, set the argument ties.method = "first".

mpg1

##	# 1	A tibble: 234	x 7					
##		manufacturer	model	displ	year	cty	class	RankCty
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	<int></int>
##	1	chevrolet	corvette	5.7	1999	15	2seater	1
##	2	chevrolet	corvette	6.2	2008	15	2seater	2
##	3	chevrolet	corvette	7	2008	15	2seater	3
##	4	chevrolet	corvette	5.7	1999	16	2seater	4
##	5	chevrolet	corvette	6.2	2008	16	2seater	5
##	6	audi	a4 quattro	2.8	1999	15	compact	1
##	7	audi	a4 quattro	3.1	2008	15	compact	2
##	8	audi	a4	2.8	1999	16	compact	3
##	9	audi	a4 quattro	1.8	1999	16	compact	4
##	10	volkswagen	jetta	2.8	1999	16	compact	5
##	# -	i 994 mara ra	7.0					

i 224 more rows

5. Find the stations with the highest (temp_high) and lowest (temp_low) annual average temperature values. Use these variables to calculate the average monthly temperature values for the two stations (m_temps), and display the data in a plot.

temp_low

[1] "KNOCK AIRPORT"

temp_high

[1] "VALENTIA OBSERVATORY"

arrange(m_temps,month,station)

A tibble: 24 x 3

##		station	month	AvrTemp
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	KNOCK AIRPORT	1	5.18
##	2	VALENTIA OBSERVATORY	1	8.03
##	3	KNOCK AIRPORT	2	5.03
##	4	VALENTIA OBSERVATORY	2	8.26
##	5	KNOCK AIRPORT	3	6.78
##	6	VALENTIA OBSERVATORY	3	9.36
##	7	KNOCK AIRPORT	4	7.85
##	8	VALENTIA OBSERVATORY	4	9.60
##	9	KNOCK AIRPORT	5	11.6
##	10	VALENTIA OBSERVATORY	5	12.6

Monthly rainfall summarise calculated using dplyr

