Report on

Deep Learning and Applications (CS671)

Assignment 6

Submitted by:

GROUP - 9

Shashank Kapoor (S22022)

Shubham Patwar (T22108)

Syed Rizwan Ali Quadri (T22113)

Table of Content

Topic Page No.

1. Introduction to Assignment 6

1.1. Handwritten Task

1.1.1 Recurrent Neural Network:

- 1.1.1.1 RNN Architecture (32) Configuration
- 1.1.1.2. RNN Architecture (64) Configuration
- 1.1.1.3. RNN Architecture (128) Configuration
- 1.1.1.4. RNN Architecture (256) Configuration
- 1.1.1.5. RNN Architecture (32,64) Configuration
- 1.1.1.6. RNN Architecture (64,128) Configuration
- 1.1.1.7. RNN Architecture (128,256) Configuration
- 1.1.1.8. RNN Architecture (32,64,128) Configuration
- 1.1.1.9. RNN Architecture (64,128,256) Configuration
- 1.1.1.10. RNN Architecture (32,64,128,256) Configuration

1.1.2 LSTM Neural Network:

- 1.1.2.1. LSTM Architecture (32) Configuration
- 1.1.2.2. LSTM Architecture (64) Configuration
- 1.1.2.3. LSTM Architecture (128) Configuration
- 1.1.2.4. LSTM Architecture (256) Configuration
- 1.1.2.5. LSTM Architecture (32,64) Configuration
- 1.1.2.6. LSTM Architecture (64,128) Configuration
- 1.1.2.7. LSTM Architecture (128,256) Configuration
- 1.1.2.8. LSTM Architecture (32,64,128) Configuration
- 1.1.2.9. LSTM Architecture (64,128,256) Configuration
- 1.1.2.10. LSTM Architecture (32,64,128,256) Configuration

1.2. Consonant Vowel

1.2.1 Recurrent Neural Network:

- 1.2.1.1. RNN Architecture (32) Configuration
- 1.2.1.2. RNN Architecture (64) Configuration

- 1.2.1.3. RNN Architecture (128) Configuration
- 1.2.1.4. RNN Architecture (256) Configuration
- 1.2.1.5. RNN Architecture (32,64) Configuration
- 1.2.1.6. RNN Architecture (64,128) Configuration
- 1.2.1.7. RNN Architecture (128,256) Configuration
- 1.2.1.8. RNN Architecture (32,64,128) Configuration
- 1.2.1.9. RNN Architecture (64,128,256) Configuration
- 1.2.1.10. RNN Architecture (32,64,128,256) Configuration

1.2.2 LSTM Neural Network:

- 1.2.2.1. LSTM Architecture (32) Configuration
- 1.2.2.2. LSTM Architecture (64) Configuration
- 1.2.2.3. LSTM Architecture (128) Configuration
- 1.2.2.4. LSTM Architecture (256) Configuration
- 1.2.2.5. LSTM Architecture (32,64) Configuration
- 1.2.2.6. LSTM Architecture (64,128) Configuration
- 1.2.2.7. LSTM Architecture (128,256) Configuration
- 1.2.2.8. LSTM Architecture (32,64,128) Configuration
- 1.2.2.9. LSTM Architecture (64,128,256) Configuration
- 1.2.2.10. LSTM Architecture (32,64,128,256) Configuration

Assignment Problem Statement

In this assignment , the key objective is to get inference from each Handwritten and ConsonantVowel architecture based on RNN on various neural architecture.

We are using a Handwritten Sequence dataset for RNN and labels for classification of the written sequence And in case of consonant vowels we are using Mel Energy frequency feature vector to classify the vowel said by the individual, that is based on RNN architecture.

Overall Result:

Task	Neural Architect ure	Neural Architecture	No. of Epochs	Training Accuracy	Testing Accuracy
Handwritten	RNN	Architecture_32	174	0.45	0.47
		Architecture_64	268	0.51	0.58
		Architecture_128	141	0.40	0.43
		Architecture_256	141	0.42	0.44
		Architecture_32_64	214	0.77	0.74
		Architecture_64_128	67	0.45	0.50
		Architecture_128_256	85	0.45	0.46
		Architecture_32_64_128	79	0.42	0.42
		Architecture_64_128_256	91	0.47	0.46
		Architecture_32_64_128_256	129	0.4	0.46
Handwritten	LSTM	Architecture_32	93	0.83	0.93
		Architecture_64	83	0.90	0.97
		Architecture_128	113	0.94	0.9
		Architecture_256	41	0.41	0.48
		Architecture_32_64	110	0.99	0.99
		Architecture_64_128	81	0.91	0.91
		Architecture_128_256	57	0.89	0.96
		Architecture_32_64_128	149	1	0.99

Task	Neural Architect ure	Neural Architecture	No. of Epochs	Training Accuracy	Testing Accuracy
		Architecture_64_128_256	85	0.9883	0.99
		Architecture_32_64_128_256	117	0.97	0.98
Consonant	RNN	Architecture_32	151	0.9377	0.5864
Vowel		Architecture_64	107	0.99	0.597
		Architecture_128	68	0.9972	0.7135
		Architecture_256	46	0.9634	0.7054
		Architecture_32_64	102	0.9905	0.7000
		Architecture_64_128	67	0.9722	0.7675
		Architecture_128_256	61	0.9993	0.7783
		Architecture_32_64_128	53	0.9479	0.7432
		Architecture_64_128_256	59	0.9580	0.8135
		Architecture_32_64_128_256	33	0.8193	0.7621
Consonant	LSTM	Architecture_32	74	0.99	0.78
Vowel		Architecture_64	67	1.0	0.86
		Architecture_128	58	1.0	0.86
		Architecture_256	45	1.0	0.87
		Architecture_32_64	88	1.0	0.84
		Architecture_64_128	52	1.0	0.86
		Architecture_128_256	27	1.0	0.9
		Architecture_32_64_128	65	1.0	0.85
		Architecture_64_128_256	50	0.98	0.86
		Architecture_32_64_128_256	65	1.0	0.85

^{*} Mark in bold is Best architecture according to the Training accuracy

1.1. Handwritten Task

Normalized training of the handwritten is used to get the randomly 5 images from each class.

Fig. Handwritten representation of the training data of each class 5 image

1.1.1 RNN Architecture:

Hyperparameters:

• Convergence Criteria: Difference of 10⁻³ loss between successive epoch

Learning Rate: 0.0001Optimiser: Adam

• Activation function: Softmax Activation

• Loss function: Cross entropy loss

1.1.1.1. RNN Architecture (32) Configuration

1.1.1.2 RNN Architecture (64) Configuration

Architecture 1			
Layer	Hidden Unit	Activation Function	
RNN	32	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Architecture 2			
Layer	Hidden Unit	Activation Function	
RNN	64	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. RNN Architecture 1 with hidden parameter representation

Fig. RNN Architecture 2 with hidden parameter representation

Results:

Training Accuracy: 0.45 Test Accuracy: 0.47

Fig.: Loss and Accuracy graph of RNN Arch. 1st

Results:

Training Accuracy: **0.51**Test Accuracy: **0.58**

50

100

RNN Architecture

No. of Epochs.

Fig.: Loss and Accuracy graph of RNN Arch. 2nd

150

200

250

1.1.1.3. RNN Architecture (128) Configuration

Architecture 3			
Layer	Hidden Unit	Activation Function	
RNN	128	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. RNN Architecture 3 with hidden parameter representation

Results:

Training Accuracy: **0.4**Test Accuracy: **0.43**

Fig.: Loss and Accuracy graph of RNN Arch. 3rd

1.1.1.4 RNN Architecture (256) Configuration

Architecture 4				
Layer	Hidden Unit	Activation Function		
RNN	256	Hyperbolic tangent		
Dense	128	Rectified linear unit		
Dense	64	SoftMax		

Fig. RNN Architecture 4 with hidden parameter representation

Results:

Fig.: Loss and Accuracy graph of RNN Arch. 4th

1.1.1.5. RNN Architecture (32,64) Configuration

	Architecture 5			
Layer	Hidden Unit	Activation Function		
RNN	32	Hyperbolic tangent		
RNN	64	Hyperbolic tangent		
Dense	128	Rectified linear unit		
Dense	64	SoftMax		

Fig. RNN Architecture 5 with hidden parameter representation

Results:

Training Accuracy: **0.77**Test Accuracy: **0.74**

Fig.: Loss and Accuracy graph of RNN Arch. 5th

1.1.1.6 RNN Architecture (64,128) Configurat

Architecture 6				
Layer	Activation Function			
RNN	64	Hyperbolic tangent		
RNN	128	Hyperbolic tangent		
Dense	128	Rectified linear unit		
Dense	64	SoftMax		

Fig. RNN Architecture 6 with hidden parameter representation

Results:

Fig.: Loss and Accuracy graph of RNN Arch. 6th

	Architecture 7				
Layer	Hidden Unit	Activation Function			
RNN	128	Hyperbolic tangent			
RNN	256	Hyperbolic tangent			
Dense	128	Rectified linear unit			
Dense	64	SoftMax			

Fig. RNN Architecture 7 with hidden parameter representation

Fig. RNN Architecture 8 with hidden parameter representation

Training Accuracy: **0.45**Test Accuracy: **0.46**

Fig.: Loss and Accuracy graph of RNN Arch. 7th

Results:

Fig.: Loss and Accuracy graph of RNN Arch. 8th

Architecture 9			
Layer	Hidden Unit	Activation Function	
RNN	64	Hyperbolic tangent	
RNN	128	Hyperbolic tangent	
RNN	256	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

	Architecture 10				
Layer	Layer Hidden Unit Activation Function				
RNN	32	Hyperbolic tangent			
RNN	64	Hyperbolic tangent			
RNN	128	Hyperbolic tangent			
RNN	256	Hyperbolic tangent			
Dense	128	Rectified linear unit			
Dense	64	SoftMax			

Fig. RNN Architecture 9 with hidden parameter representation

Fig. RNN Architecture 10 with hidden parameter representation

Results:

Fig.: Loss and Accuracy graph of RNN Arch. 9th

Fig.: Loss and Accuracy graph of RNN Arch. 10th

Best Model Confusion Matrix:

Model Architecture: Architecture (32,64)

Training Accuracy: **0.77**Test Accuracy: **0.74**

<u> </u>			Actual	Label		
labe		а	bA	dA	IA	tA
<u> </u>	а	20	0	0	0	0
Predicte	bA	0	12	0	2	6
	dA	0	0	19	0	1
	ΙA	0	5	0	15	0
ш.	tA	0	1	11	0	8

1.1.2 LSTM Architecture:

Hyperparameters:

• Convergence Criteria: Difference of 10⁻³ loss between successive epoch

Learning Rate: 0.0001Optimiser: Adam

• Activation function: Softmax Activation

• Loss function: Cross entropy loss

1.1.2.1. LSTM Architecture (32) Configuration

Architecture 1 Layer Layer Layer LSTM 32 Hyperbolic tangent Dense 128 Rectified linear unit Dense 64 SoftMax

Fig. LSTM Architecture 1 with hidden parameter

1.1.2.2 LSTM Architecture (64) Configuration

Architecture 2			
Layer Layer Layer			
LSTM	64	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 2 with hidden parameter

Training Accuracy: **0.83**Test Accuracy: **0.93**

Fig.: Loss and Accuracy graph of LSTM Arch. 1st

1.1.2.3. LSTM Architecture (128) Configuration

Architecture 3			
Layer	Layer Layer Layer		
LSTM	128	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 3 with hidden parameter

Results:

Training Accuracy: **0.9**Test Accuracy: **0.97**

Fig.: Loss and Accuracy graph of RNN Arch. 2nd

1.1.2.4 LSTM Architecture (256) Configuration

Architecture 4			
Layer Layer Layer			
LSTM	256	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 4 with hidden parameter

Training Accuracy: **0.94**Test Accuracy: **0.9**

Fig.: Loss and Accuracy graph of LSTM Arch. 3rd

1.1.2.5. LSTM Architecture (32,64) Configuration

Architecture 5			
Layer	Layer Layer Layer		
LSTM	32	Hyperbolic tangent	
LSTM	64	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 5 with hidden parameter

Results:

Training Accuracy: **0.41**Test Accuracy: **0.48**

Fig.: Loss and Accuracy graph of RNN Arch. 4th

1.1.2.6 LSTM Architecture (64,128) Configuration

Architecture 6			
Layer	Layer Layer Layer		
LSTM	64	Hyperbolic tangent	
LSTM	128	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 6 with hidden parameter

Training Accuracy: **0.99**Test Accuracy: **0.99**

Fig.: Loss and Accuracy graph of LSTM Arch. 5th

1.1.2.7. LSTM Architecture (128,256) Config

Architecture 7			
Layer	Layer	Layer	
LSTM	128	Hyperbolic tangent	
LSTM	256	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 7 with hidden parameter

Results:

Training Accuracy: **0.91**Test Accuracy: **0.91**

Fig.: Loss and Accuracy graph of RNN Arch. 6th

1.1.2.8 LSTM Architecture (32,64,128) Config

	Architecture 8			
Layer	ayer Layer Layer			
LSTM	32	Hyperbolic tangent		
LSTM	64	Hyperbolic tangent		
LSTM	128	Hyperbolic tangent		
Dense	128	Rectified linear unit		
Dense	64	SoftMax		

Fig. LSTM Architecture 8 with hidden parameter

Training Accuracy: **0.89**Test Accuracy: **0.96**

Fig.: Loss and Accuracy graph of LSTM Arch. 7th

1.1.2.9. LSTM Architecture (64,128,256) Config Config

Architecture 9 Layer Layer Layer Hyperbolic tangent LSTM 64 Hyperbolic tangent **LSTM** 128 Hyperbolic tangent LSTM 256 128 Rectified linear unit Dense SoftMax 64 Dense

Fig. LSTM Architecture 9 with hidden parameter

Results:

Training Accuracy: **1.0**Test Accuracy: **0.99**

Fig.: Loss and Accuracy graph of RNN Arch. 8th

1.1.2.10 LSTM Architecture (32,64,128,256)

	Architecture 10			
Layer Layer Layer		Layer		
LSTM	32	Hyperbolic tangent		
LSTM	64	Hyperbolic tangent		
LSTM	128	Hyperbolic tangent		
LSTM	256	Hyperbolic tangent		
Dense	128	Rectified linear unit		
Dense	64	SoftMax		

Fig. LSTM Architecture 10 with hidden parameter

Training Accuracy: **0.98**Test Accuracy: **0.99**

Fig.: Loss and Accuracy graph of LSTM Arch. 9th

Results:

Training Accuracy: **0.97**Test Accuracy: **0.98**

Fig.: Loss and Accuracy graph of RNN Arch. 10th

Best Model Confusion Matrix:

Model architecture: Architecture (32,64,128)

<u></u>			Actual	Label		
labe		а	bA	dA	IA	tA
О	а	20	0	0	0	0
dicte	bA	0	20	0	0	0
ij	dA	0	0	20	0	0
² re	IA	0	5	0	19	1
	tA	0	0	0	0	20

1.2. ConsonantVowel Task

1.2.1 RNN Architecture:

Hyperparameters:

• Convergence Criteria: Difference of 10⁻³ loss between successive epoch

Learning Rate: 0.0001Optimiser: Adam

• Activation function: Softmax Activation

• Loss function: Cross entropy loss

1.2.1.1. RNN Architecture (32) Configuration

1.2.1.2 RNN Architecture (64) Configuration

	Architecture 1			
Layer	Hidden Unit	Activation Function		
RNN	32	Hyperbolic tangent		
Dense	128	Rectified linear unit		
Dense	64	SoftMax		

Architecture 2			
Layer	Hidden Unit	Activation Function	
RNN	64	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. RNN Architecture 1 with hidden parameter representation

Fig. RNN Architecture 2 with hidden parameter representation

Results:

Training Accuracy: **0.9377**Test Accuracy: **0.5864**

Results:

Fig.: Loss and Accuracy graph of RNN Arch. 1st

Fig.: Loss and Accuracy graph of RNN Arch. 2nd

1.2.1.3. RNN Architecture (128) Configuration

1.2.1.4 RNN Architecture (256) Configuration

Architecture 3			
Layer	Hidden Unit	Activation Function	
RNN	128	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Architecture 4			
Layer Hidden Unit Activat		Activation Function	
RNN	256	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. RNN Architecture 3 with hidden parameter representation

Fig. RNN Architecture 4 with hidden parameter representation

Results:

Training Accuracy: **0.9972**Test Accuracy: **0.7135**

Results:

Fig.: Loss and Accuracy graph of RNN Arch. 3rd

Fig.: Loss and Accuracy graph of RNN Arch. 4th

1.2.1.5. RNN Architecture (32,64) Configuration

Architecture 5			
Layer Hidden Unit Activation Function			
RNN	32 Hyperbolic tanger		
RNN	64 Hyperbolic tanger		
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. RNN Architecture 5 with hidden parameter representation

Results:

Training Accuracy: **0.990**5 Test Accuracy: **0.7000**

Fig.: Loss and Accuracy graph of RNN Arch. 5th

1.2.1.7. RNN Architecture (128,256) Config

1.2.1.6 RNN Architecture (64,128) Configurat

Architecture 6			
Layer Hidden Unit Activation Functio			
RNN	64	Hyperbolic tangent	
RNN	128	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. RNN Architecture 6 with hidden parameter representation

Results:

Training Accuracy: **0.9722**Test Accuracy: **0.7675**

Fig.: Loss and Accuracy graph of RNN Arch. 6th

1.2.1.8 RNN Architecture (32,64,128) Config

Architecture 7			
Layer Hidden Unit Activation Fund			
RNN	128	Hyperbolic tangent	
RNN	256	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Architecture 8			
Layer Hidden Unit Activation H		Activation Function	
RNN	32 Hyperbolic tangent		
RNN	64	Hyperbolic tangent	
RNN	128	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. RNN Architecture 7 with hidden parameter representation

Results:

Training Accuracy: 0.9993
Test Accuracy: 0.7783

Fig.: Loss and Accuracy graph of RNN Arch. 7th

Fig. RNN Architecture 8 with hidden parameter representation

Results:

Fig.: Loss and Accuracy graph of RNN Arch. 8th

1.2.1.9. RNN Architecture (64,128,256) Config

Architecture 9				
Layer Hidden Unit Activation Functi				
RNN	64	Hyperbolic tangent		
RNN	128	Hyperbolic tangent		
RNN	256	Hyperbolic tangent		
Dense	128	Rectified linear unit		
Dense	64	SoftMax		

Fig. RNN Architecture 9 with hidden parameter representation

Results:

Training Accuracy: **0.9580** Test Accuracy: **0.8135**

Fig.: Loss and Accuracy graph of RNN Arch. 9th

1.2.1.10. RNN Architecture (32,64,128,256) Config

Architecture 10			
Layer Hidden Unit Activation Fur		Activation Function	
RNN	32	Hyperbolic tangent	
RNN	64	Hyperbolic tangent	
RNN	128	Hyperbolic tangent	
RNN	256	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. RNN Architecture 10 with hidden parameter representation

Results:

Fig.: Loss and Accuracy graph of RNN Arch. 10th

Best Model Confusion Matrix:

Model Architecture: **Architecture (128,256)**Training Accuracy: **0.99**Test Accuracy: **0.79**

<u> </u>	Actual Label					
labe		ра	paa	re	sa	tA
2	pa	34	2	1	7	9
Predicte	paa	2	66	1	1	7
	re	0	0	50	0	2
	sa	5	0	4	64	13
ш.	tA	3	12	1	12	74

1.2.2 LSTM Architecture:

Hyperparameters:

• Convergence Criteria: Difference of 10⁻³ loss between successive epoch

Learning Rate: 0.0001Optimiser: Adam

• Activation function: Softmax Activation

• Loss function: Cross entropy loss

1.2.2.1. LSTM Architecture (32) Configuration

Architecture 1			
Layer Layer Layer		Layer	
LSTM	32	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 1 with hidden parameter

1.2.2.2 LSTM Architecture (64) Configuration

Architecture 2			
Layer Layer Layer			
LSTM	64	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 2 with hidden parameter

Results:

Training Accuracy: **0.99**Test Accuracy: **0.78**

Fig.: Loss and Accuracy graph of LSTM Arch. 1st

Results:

Fig.: Loss and Accuracy graph of LSTM Arch. 2nd

1.1.2.3. LSTM Architecture (128) Configuration

Architecture 3			
Layer Layer Layer			
LSTM	128	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 3 with hidden parameter

Results:

Training Accuracy: **1.0**Test Accuracy: **0.86**

LSTM_Architecture

Fig.: Loss and Accuracy graph of LSTM Arch. 3rd

1.1.2.4 LSTM Architecture (256) Configuration

Architecture 4			
Layer Layer Layer		Layer	
LSTM	256	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 4 with hidden parameter

Results:

Fig.: Loss and Accuracy graph of LSTM Arch. 4th

1.1.2.5. LSTM Architecture (32,64) Configuration

Architecture 5			
Layer	Layer		
LSTM	32	Hyperbolic tangent	
LSTM	64	Hyperbolic tangent	
Dense	128	Rectified linear unit	
Dense	64	SoftMax	

Fig. LSTM Architecture 5 with hidden parameter

Results:

Training Accuracy: 1.0
Test Accuracy: 0.84

Fig.: Loss and Accuracy graph of LSTM Arch. 5th

1.1.2.6 LSTM Architecture (64,128) Configuration

Architecture 6						
Layer	ayer Layer Layer					
LSTM	64	Hyperbolic tangent				
LSTM	128	Hyperbolic tangent				
Dense	128	Rectified linear unit				
Dense	64	SoftMax				

Fig. LSTM Architecture 6 with hidden parameter

Results:

Fig.: Loss and Accuracy graph of LSTM Arch. 6th

1.1.2.7. LSTM Architecture (128,256) Config

Architecture 7				
Layer	Layer	Layer		
LSTM	128	Hyperbolic tangent		
LSTM	256	Hyperbolic tangent		
Dense	128	Rectified linear unit		
Dense	64	SoftMax		

Fig. LSTM Architecture 7 with hidden parameter

Results:

Training Accuracy: **1.0** Test Accuracy: **0.9**

Fig.: Loss and Accuracy graph of LSTM Arch. 7th

1.1.2.8 LSTM Architecture (32,64,128) Config

Architecture 8					
Layer	ver Layer Layer				
LSTM	32	Hyperbolic tangent			
LSTM	64	Hyperbolic tangent			
LSTM	128	Hyperbolic tangent			
Dense	128	Rectified linear unit			
Dense	64	SoftMax			

Fig. LSTM Architecture 8 with hidden parameter

Results:

Fig.: Loss and Accuracy graph of LSTM Arch. 8th

Config

Architecture 9					
Layer Layer Layer					
LSTM	64	Hyperbolic tangent			
LSTM	128	Hyperbolic tangent			
LSTM	256	Hyperbolic tangent			
Dense	128	Rectified linear unit			
Dense	64	SoftMax			

Fig. LSTM Architecture 9 with hidden parameter

Results:

Training Accuracy: 0.98 Test Accuracy: 0.86

Fig.: Loss and Accuracy graph of LSTM Arch. 9th

Architecture 10					
Layer	Layer	Layer			
LSTM	32	Hyperbolic tangent			
LSTM	64	Hyperbolic tangent			
LSTM	128	Hyperbolic tangent			
LSTM	256	Hyperbolic tangent			
Dense	128	Rectified linear unit			
Dense	64	SoftMax			

Fig. LSTM Architecture 10 with hidden parameter

Results:

Fig.: Loss and Accuracy graph of LSTM Arch.10th

Best Model Confusion Matrix:

Model Architecture: Architecture(128,256)

Test Accuracy: 1.0
Training Accuracy: 0.91

<u> </u>	Actual Label					
labe		pa	paa	re	sa	tA
Predicted la	pa	42	4	0	3	4
	paa	3	70	3	0	1
	re	0	0	51	1	0
	sa	2	0	2	78	4
	tA	2	2	1	2	95