Qualifying Exam Preparation IV Computational Statistics

Xi Tan (tan19@purdue.edu)

July 24, 2013

Contents

Ι	ST	CAT598G Topics		
1	Basic Computer Knowledge			
	1.1	Computer Organization, File Systems, Process Management, I/O		
		Devices, Basic Linux Commands		
	1.2	Programming Languages, Interpreters and Compilers		
2	C & R Programming Languages 2.1 Basic Variable Types and Scope			
	2.1	Basic Variable Types and Scope		
	2.2	Control Flows: if-else, for/while Loops		
	2.3	Functions		
	2.4	I/O Access		
	2.5	Pointers and Dynamic Memory allocation in C		
	2.6	Underflow and Overflow		
	2.7	Vector, Matrix and Distributions in R		
	2.8	Graphics in R; Calling C from R		
3	Algorithm and Data Structures			
	3.1	Big-O, Small-o, Theta Notations; Time Complexity Analysis		
	3.2	Recursion and Divide & Conquer		
	3.3	Dynamic Programming		
	3.4	Searching (Linear, Binary) and Sorting (Insertion Sort, Bubble		
		Sort, Merge Sort)		
	3.5	Arrays, Linked Lists, Trees, Hash Tables and Related Operations		
4	Statistical applications			
	4.1	Nonlinear Optimization: Gradient Descent, Coordinate Descent,		
		Newton's Method, Line Search		
	4.2	Sampling: Generating Uniform Random Numbers, Transforma-		
		tion Method, Importance Sampling, Acceptance Sampling		
	4.3	Hidden Markov Models: Basic Definitions, Viterby Algorithm		
		and Computing Forward and Backward Probabilities		
	4.4	Markov Random Fields, the Hammersley-Clifford Theorem, the		
		Elimination Algorithm		
	4.5	Rootstran		

II	S'	TAT598D Topics	9	
5	Optimization			
	5.1	Unconstrained Optimization	10	
		5.1.1 Univariate Problems (Bisection, Newton)	10	
	5.2	Quasi-Newton Methods	11	
	5.3	Simulated annealing	11	
6	The	e EM-type Algorithms	12	
	6.1	The EM algorithm	12	
	6.2	The ECM and ECME algorithms	12	
	6.3	The PX-EM algorithm	12	
	6.4	Computing observed Fisher information matrix	12	
7	Integration			
	7.1	Numerical integration	13	
	7.2	Random number generation	13	
	7.3	Simulation	13	
	7.4	Monte Carlo integration	13	
8	Markov chain Monte Carlo (MCMC) methods			
	8.1	The Data Augmentation algorithm	14	
	8.2	The Gibbs sampler	14	
	8.3	The Metropolis-Hastings algorithm	14	
	8.4	Data Fusion and Particle Filter (Sequential MCMC)	14	
	8.5	Reversible jump MCMC	14	
	8.6	Convergence Diagnostics	14	

Preface

Textbook: Computational Statistics by G. H. Givens and J. A. Hoeting (GH) TBD

Part I STAT598G Topics

Basic Computer Knowledge

- 1.2 Programming Languages, Interpreters and Compilers

C & R Programming Languages

- 2.1 Basic Variable Types and Scope
- 2.2 Control Flows: if-else, for/while Loops
- 2.3 Functions
- 2.4 I/O Access
- 2.5 Pointers and Dynamic Memory allocation in C
- 2.6 Underflow and Overflow
- 2.7 Vector, Matrix and Distributions in R
- 2.8 Graphics in R; Calling C from R

Algorithm and Data Structures

- 3.1 Big-O, Small-o, Theta Notations; Time Complexity Analysis
- 3.2 Recursion and Divide & Conquer
- 3.3 Dynamic Programming
- 3.4 Searching (Linear, Binary) and Sorting (Insertion Sort, Bubble Sort, Merge Sort)
- 3.5 Arrays, Linked Lists, Trees, Hash Tables and Related Operations

Statistical applications

- 4.1 Nonlinear Optimization : Gradient Descent, Coordinate Descent, Newton's Method, Line Search
- 4.2 Sampling: Generating Uniform Random Numbers, Transformation Method, Importance Sampling, Acceptance Sampling
- 4.3 Hidden Markov Models: Basic Definitions, Viterby Algorithm and Computing Forward and Backward Probabilities
- 4.4 Markov Random Fields, the Hammersley-Clifford Theorem, the Elimination Algorithm
- 4.5 Bootstrap

Part II STAT598D Topics

Optimization

5.1 Unconstrained Optimization

5.1.1 Univariate Problems (Bisection, Newton)

Bisection Method

Suppose g' is continuous on $[a_0, b_0]$ and $g'(a_0)g'(b_0) \leq 0$, then the Intermediate Value Theorem implies that there exists at least one x^* for which $g'(x^*) = 0$ and hence x^* is a local optimum of g. To find this local optimum, the Bisection Method systematically halves the interval at each iteration, by checking the product of g'.

The updating equations are

$$[a_{t+1}, b_{t+1}] = \begin{cases} [a_t, x^{(t)}], & \text{if } g'(a_t)g'(x^t) \le 0\\ [x^{(t)}, b_t], & \text{if } g'(a_t)g'(x^t) > 0 \end{cases}$$

$$(5.1)$$

and $x^{t+1} = \frac{a_{t+1} + b_{t+1}}{2}$.

Newton's Method

Suppose g twice differentiable. At iteration t, Newton's method approximates $g'(x^*)$ by the linear Taylor series expansion:

$$g'(x^*) = g'(x^{(t)}) + (x^* - x^{(t)})(g''(x^{(t)}))$$
(5.2)

which gives us

$$x^* = x - \frac{g'(x^{(t)})}{g''(x^{(t)})} \tag{5.3}$$

- 5.2 Quasi-Newton Methods
- 5.3 Simulated annealing

The EM-type Algorithms

- 6.1 The EM algorithm
- 6.2 The ECM and ECME algorithms
- 6.3 The PX-EM algorithm
- 6.4 Computing observed Fisher information matrix

Integration

- 7.1 Numerical integration
- 7.2 Random number generation
- 7.3 Simulation
- 7.4 Monte Carlo integration

Markov chain Monte Carlo (MCMC) methods

- 8.1 The Data Augmentation algorithm
- 8.2 The Gibbs sampler
- 8.3 The Metropolis-Hastings algorithm
- 8.4 Data Fusion and Particle Filter (Sequential MCMC)
- 8.5 Reversible jump MCMC
- 8.6 Convergence Diagnostics