Rodzaj studiów:	OKNO PW		Termin Zjazdu	19-23.06.2023	
Zjazd	3	Data i godzina:	22.06.2023	Nr zespołu:	BZ
Skład zespołu:	2.5	Citorall Adam Pistr Heinselr	na H		212 8

Na zajęciach mieliśmy zrobić tylko dwa zadania.

1. Wzmacniacz logarytmiczny (ang. Logarythmic Amplifier).

a) Charakterystyki układu

(miejsce na wklejenie charakterystyk, wszystkie warianty w jednym układzie współrzędnych)

Wnioski

Nie do końca jesteśmy przekonani czy to zadanie wyszło nam dobrze, gdyż przy zmianie rezystancji przebieg praktycznie wcale się nie zmieniał.

Tabele z arkusza kalkulacyjnego

N	R1(Ohm)	V1 DC(V)	V2 DC(V)
0	10000	0,040855	-0,314371
1	10000	0,765076	-0,467437
2	10000	1,127815	-0,485194
3	10000	1,641045	-0,502395
4	10000	2,015212	-0,511782
5	10000	2,285223	-0,517545
6	10000	2,538315	-0,522343
7	10000	2,683234	-0,524933
8	10000	3,070015	-0,530897
9	10000	3,75665	-0,540161
10	10000	4,404717	-0,547474
11	10000	5,419383	-0,557031
12	10000	6,814269	-0,56761
13	10000	7,601245	-0,572749
14	10000	8,949715	-0,580609
15	10000	10,13076	-0,586384
0	5100	0,040855	-0,314371
1	5100	0,765076	-0,467437
2	5100	1,127815	-0,485194
3	5100	1,641045	-0,502395
4	5100	2,015212	-0,511782
5	5100	2,285223	-0,517545
6	5100	2,538315	-0,522343
7	5100	2,683234	-0,524933
8	5100	3,070015	-0,530897
9	5100	3,75665	-0,540161
10	5100	4,404717	-0,547474
11	5100	5,419383	-0,557031
12	5100	6,814269	-0,56761
13	5100	7,601245	-0,572749
14	5100	8,949715	-0,580609
15	5100	10,13076	-0,586384
0	1000	0,040855	-0,314371
1	1000	0,765076	-0,467437
2	1000	1,127815	-0,485194
3	1000	1,641045	-0,502395
4	1000	2,015212	-0,511782
5	1000	2,285223	-0,517545
6	1000	2,538315	-0,522343
7	1000	2,683234	-0,524933

8	1000	3,070015	-0,530897
9	1000	3,75665	-0,540161
10	1000	4,404717	-0,547474
11	1000	5,419383	-0,557031
12	1000	6,814269	-0,56761
13	1000	7,601245	-0,572749
14	1000	8,949715	-0,580609
15	1000	10,13076	-0,586384

 $Vout = K \cdot ln (Vin)$

Obliczenia V out

-0,31977261
-0,02677801
0,012028213
0,049533323
0,07007244
0,082646361
0,093150048
0,098702278
0,112168245
0,13235276
0,148267601
0,168998197
0,19190188
0,202831205
0,219162169
0,231557634

2. Prostownik aktywny (ang. Active Rectifier).

a) Prostownik pasywny jednopołówkowy

(miejsce na wklejenie przebiegów napięcia)

Obliczenia amplitudy napięcia wyjściowego

Amplituda V_{out}: 2.4V Amplituda V_{in}:3V

b) Prostownik aktywny jednopołówkowy

(miejsce na wklejenie przebiegów napięcia)

Obliczenia amplitudy napięcia wyjściowego

Amplituda Vout: 2.5V

c) Prostownik aktywny dwupołówkowy

(miejsce na wklejenie przebiegów napięcia)

Obliczenia amplitudy napięcia wyjściowego

Amplituda Vout: 3.2V

d) Prostownik pasywny dwupołówkowy (miejsce na wklejenie przebiegów napięcia)

Obliczenia amplitudy napięcia wyjściowego

Amplituda V_{out}: 2.5V Amplituda V_{in}:2.5V

Wnioski

W układach pasywnych zaobserwowaliśmy spadek napięcia 0.6 V na każdej diodzie, oraz wszystkie przebiegi wypadły poprawnie.