CS6301: R For Data Scientists

LECTURE 6: PRINCIPAL COMPONENT ANALYSIS — PART 1

Background

PCA is a *dimension reduction* method – it is a way of viewing information with many dimensions

Also referred to as *feature extraction* – this considered a basic form

Main idea: We can see clusters most easily in a plane. Find the plane that "best represents" the high dimensional data, and look for patterns

We will do this by projecting the higher dimensional data onto axes, or *principal* components, in a way that spreads the data out as much as possible

We look at lower dimensional problems first, to try to understand how the method works

PCA – Simple Example

Finding Principal Components - Example

Problem: Find $(\phi_{1,1}, \phi_{2,1})$ such that

$$\max_{\phi_{1,1},\phi_{2,1}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (\phi_{1,1} x_{i,1} + \phi_{2,1} x_{i,2})^{2} \right\}$$

subject to $\phi_{1,1}^{2} + \phi_{2,1}^{2} = 1$

First Principal Component

Suppose we have a set of data points in p-dimensional space:

$$\{(x_{i,1}, x_{i,2}, \dots, x_{i,p})\}\ i = 1, \dots, n$$

So each data point is a p-tuple.

The first principal component is defined to be

$$Z_1 = \varphi_{1,1}X_1 + \varphi_{2,1}X_2 + \dots + \varphi_{p,1}X_p$$

where the coefficients $\varphi_{i,1}$ are found in a way that maximizes the variance of the projections of the data points onto this coordinate, and are also normalized:

$$\sum_{i=1}^p \varphi_{i,1}^2 = 1$$

First Principal Component

The loadings make up the First Principal Component Vector,

$$\boldsymbol{\varphi}_1 = (\varphi_{1,1}, \varphi_{2,1}, \dots, \varphi_{p,1})^t$$

This is a vector in p-dimensional space that represents the direction of the first principal component

The *scores* are the scalars obtained by taking the dot product of each data point with this vector. For example, the score of the ith data point is:

$$z_{i,1} = \varphi_{1,1}x_{i,1} + \varphi_{2,1}x_{i,2} + \dots + \varphi_{p,1}x_{i,p}$$

First Principal Component

Putting it all together: The loading vector is found by maximizing the scores over all normalized possible loading vectors:

$$\max \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \varphi_{j,1} x_{i,j} \right)^{2} \right\} = \max \left\{ \frac{1}{n} \sum_{i=1}^{n} (z_{i1})^{2} \right\}$$

subject to $\sum_{j=1}^{p} \varphi_{j,1}^2 = 1$.

This is the vector that spreads the data out the most in this one direction.

Principal Components

How do we find the remaining components?

To find the next component, we find a vector *orthogonal* to the first vector which explains most of the remaining variance ... and continue until we have *p* vectors

This is a rotation of the original coordinate system to a new coordinate system, one in which the data is as spread out as possible along the axis (PCs)

Note we will always have p PCs, and in the end all of the variance is completely explained

This is usually done by finding eigenvectors of the correlation matrix

Scaling In PCA

