

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

AGH

LHC: Bozon Higgsa

Filip J. Baran

AGH WFiIS

14 czerwca 2023

Plan prezentacji

- Nutka historii
 - SSB
 - PRL 1964

- 2 Bozon Higgsa
 - Pole Higgsa
 - Poszukiwania

Specjalna Służba Bezpieczeństwa (praw fizyki)

Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. [1][2][3] In particular, it can describe systems where the equations of motion or the

Tak jak SB było dziurawe, tak fizyka wyłamuje się spod naszych oczekiwań i dla odpowiednich energii możemy zauważyć *spontaniczne złamanie symetrii*, czyli jak rzecze powyższa definicja: spontaniczny proces złamania symetrii:).

Przykład:
$$E = (x^2 - E_p)^2$$

O sześciu takich, co napisali listy

Od lewej: Kibble, Guralnik, Hagan, Englert, Brout i Higgs.

Listy nie byle jakie

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout

Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium (Received 26 June 1964)

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik, † C. R. Hagen, ‡ and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964)

Listy — kamienie milowe

spinie zosta dopie zaado

Mechanizm nadawania masy bozonom wektorowym (o spinie równym 1) przez spontaniczne łamanie symetrii, został zaproponowany już przez Andersona w 1962 roku, ale dopiero wymienione zespoły naukowców zdołały zaadoptować taki model w ujęciu relatywistycznym. Późniejsze prace nad *mechanizmem Higgsa* i pokazanie, że dzięki niemu można złamać symetrię elektrosłabą doprowadziło do zalążków *modelu standardowego* skonstruowanego przez Weinberga.

Przy próbie unifikacji oddziaływania elektro-magnetycznego ze słabym, cechowanie pola doprowadziło do opisu oddziaływania za pomocą 4 bezmasowych bozonów $W_{1,2,3}$ i B. W rzeczywistości znamy bozony W^{\pm} , Z^0 oraz γ , z czego dwa ostatnie są kombinacją W_3 i B:

$$Z^{0} = W_{3}\cos\theta - B\sin\theta \quad \gamma = W_{3}\sin\theta + B\cos\theta \quad \sin\theta = \frac{1}{2}$$

Problem jednak w tym, że prócz γ wszystkie mają masę i to całkiem spora.

Cóżże z tą masą?

Zaproponowano wprowadzenie skalarnego pola Φ, z którym oddziaływanie byłoby widoczne jako masa cząstki.

$$\Phi = \left(\begin{array}{c} \varphi_1^+ + i\varphi_2^+ \\ \varphi_3^0 + i\varphi_4^0 \end{array}\right)$$

$$V(\Phi) = \frac{1}{2}\mu^2 + \frac{1}{4}\lambda\Phi^4$$

Okazuje się, że dla urojonego μ potencjał ten ma dwa minima — zachodzi łamanie symetrii. Pole Φ jest w istocie polem Higgsa.

Po dodaniu do lagranzjanu masowego członu $V(\Phi)$ i zbadaniu stanu o najniższej możliwej energii okazuje się, że pole to ma wartość różną od zera. Mówimy wtedy o degeneracji próżni $V(\Phi_{\min}) = -\mu^4/4\lambda$. Niezerowe pole w próżni oznacza obecność czastki!

Produkcja

Produkcja

Obserwacja

AGH

Higgs boson decay channels

а

b

C

Odkrycie

Odkrycie

Odkrycie

Bibliografia

F. Englert, R. Brout.

Broken symmetry and the mass of gauge vector mesons.

Phys. Rev. Lett., 13:321-323, Aug 1964.

G. S. Guralnik, C. R. Hagen, T. W. B. Kibble.

Global conservation laws and massless particles.

Phys. Rev. Lett., 13:585-587, Nov 1964.

P. W. Higgs.

Broken symmetries and the masses of gauge bosons.

Phys. Rev. Lett., 13:508-509, Oct 1964.

