## Sistemas Operativos: Introdução

February 23, 2012

#### Sumário

#### Introdução aos Sistemas Operativos

Organização de Computadores

Sistema Operativo

Abstracções Oferecidas por um SO

Serviços dum SO

Interfaces dum SO

Critérios de Qualidade

Classes de SO

# Componentes dum Computador Pessoal



 Desenvolver código directamente sobre o HW dum computador é uma tarefa hercúlea

#### Teclado do PC



- Quando uma tecla é premida o microcontrolador do teclado gera um scancode que é colocado num buffer
  - Quando uma tecla deixa de ser premida o microcontrolador gera outro scancode
- Este scancode é posteriormente transferido para o registo OUT\_BUF controlador do teclado (KBC)
- O KBC pode gerar uma interrupção
  - Alternativamente pode usar-se polling
- ► A identificação do carácter premido depende dos scancodes previamente recebidos, e do mapa de teclado

# Modelo em camadas dum sistema computacional

 O sistema operativo é uma "camada" de SW que assenta sobre o HW

| Banking<br>system | Airline reservation | Web<br>browser      | Application programs |
|-------------------|---------------------|---------------------|----------------------|
| Compilers         | Editors             | Command interpreter | System               |
| Operating system  |                     |                     | programs             |
| Machine language  |                     |                     |                      |
| Microarchitecture |                     |                     | > Hardware           |
| Physical devices  |                     |                     |                      |

 Cada nível define uma máquina virtual, excepto o nível mais baixo.

#### Parentesis: Modelo em camadas

- Estratégia típica na resolução de problemas complexos (outro exemplo são as redes de computadores)
  - Suporta abstracção
- Vantagens deste modelo

Decomposição Um problema "intratável" é decomposto em problemas mais pequenos e solúveis

Modularidade É relativamente fácil acrescentar funcionalidades ou alterar a implementação, desde que se **preservem as interfaces** 

## Instruction Set Architecture (ISA) Level

- Define o o HW e o conjunto de instruções visiveis para um programador de assembly
- Compreende um conjunto de 50 a algumas centenas de instruções para:
  - Transferir dados entre os diferentes componentes;
  - Realizar operações aritméticas e lógicas;
  - Controlar o fluxo de instruções
- A este nível operações de entrada e saída são realizadas escrevendo e lendo registos dos controladores dos dispositivos de E/S

### Nível do Sistema Operativo

Define a interface tipicamente acessível a um programador.



- Oferece um conjunto de operações chamadas ao sistema (system calls) – que fornecem um nível de abstracção muito mais conveniente.
  - A maioria das operações do nível ISA continua acessível.
  - Algumas contudo são escondidas, essencialmente por razões de segurança.

#### O SO como um Gestor de Recursos

#### Uma descrição alternativa do papel do SO

- Durante a sua execução, os programas fazem uso de recursos (CPU, memória, disco, ...).
- A maioria dos "computadores" executa várias aplicações (possivelmente) de diferentes utilizadores em simultâneo:
  - O SO gere os recursos dum computador, facilitando a sua partilha entre diferentes aplicações.
  - As aplicações não podem aceder directamente aos recursos (todo o acesso é mediado pelo SO):
    - Evita-se que as aplicações interfiram na gestão dos recursos
    - Protege-se os recursos afectados a cada utilizador de acessos não autorizados por outros utilizadores

# Abstracções Oferecidas por um SO

- Utilizador (em especial em sistemas interactivos);
- Processo;
- Ficheiro.

#### Utilizador

- Essencial em sistemas interactivos.
- Inclui entre outros os seguintes atributos:
  - nome (username);
  - ▶ identidade (userid);
  - grupos (groupname e groupid).
- ► Em sistemas multiutilizador, o conceito de utilizador é central para protecção de recursos (p.ex. ficheiros).
- O utilizador pode estar associado não só a uma pessoa como a uma função, p. ex. correio electrónico.

#### **Processo**

- Representa um programa em execução.
  - Um programa é um objeto passivo, tipicamente guardado em disco ou outros dispositivos de armazenamento de dados
  - Um processo é um objeto activo, cujo estado varia à medida que é executado
- Actualmente, quase todos os sistemas operativos são multi-processo (Linux, Windows XP, Windows Vista): Um computador pode executar vários programas ao "mesmo tempo".
- Um processo está associado a um utilizador, o seu dono: aquele que invoca o programa correspondente.
  - A identidade do utilizador dono do processo determina os recursos a que um processo pode aceder, bem como o tipo de operações que pode realizar sobre esses recursos.

#### **Ficheiros**

- Representam uma fonte/poço de informação
  - Para o utilizador não técnico são uma abstração do disco (e outros dispositivos de armazenamento de dados)
  - Podem contudo abstrair outros dispositivos de E/S
- Suportam três operações: leitura, escrita e execução
- Tipicamente organizados duma forma hierárquica, usando directórios:

Ficheiros que contêm outros ficheiros.

- Cada ficheiro/directório tem um utilizador que é o seu dono
  - Usado para controlo de acesso

### Serviços dum SO

- Suportam as abstracções oferecidas pelo SO.
- Gerem os recursos do sistema.
- Por exemplo:
  - gestão de processos;
  - gestão de memória;
  - gestão de ficheiros e directórios;
  - gestão de dispositivos de entrada/saída;
  - comunicação através de rede;
  - detecção e notificação de eventos;
  - autenticação e controlo de acesso.

### Serviços de Gestão de Processos

- Criação e destruição de processos.
- Suspensão e retoma (continuação) dum processo.
- Mecanismos para:
  - sincronização de processos;
  - comunicação entre processos.
- Alteração do dono dum processo.

Um processo é essencialmente um programa em execução, assim estes serviços são de suporte à execução de programas.

# Serviços de Gestão de Memória Principal

- Programas em execução exigem memória:
  - para o código;
  - para os dados.
- O SO tem que gerir a memória:
  - Alocação e libertação de memória.
  - Mapeamento de ficheiros na memória principal.
  - Outras funções usadas internamente pelo SO: partilha da memória física entre diferentes processos e o próprio SO.

# Serviços de Gestão de Ficheiros/Directórios

- Criação e destruição de ficheiros/directórios.
- Leitura do conteúdo dum ficheiro (listagem dos ficheiros/directórios num directório).
- Alteração do conteúdo dum ficheiro/directório.
- Alteração do nome dum ficheiro/directório.
- Alteração de atributos (e.g. dono, permissões) dum ficheiro/directório.
- Vizualização de atributos dum ficheiro/directório.

## Serviços de Comunicação em Rede

- Suportam a comunicação entre processos em diferentes computadores:
  - estabelecimento e terminação de canais de comunicação;
  - configuração e inspecção do estado do canal de comunicação;
  - transmissão e recepção de mensagens.
- De facto, estes mesmos serviços podem ser usados na comunicação entre processos no mesmo computador (sem carta de rede).

## Serviços de Detecção/Notificação de Eventos

- Usados para comunicação entre:
  - processos;
  - o SO e um processo.
- Tipo de eventos detectados pelo SO:
  - expiração de temporização;
  - erros internos na execução de processos.

### Serviços "internos"

- Tipicamente, não são directamente acessíveis às aplicações.
  - O SO é frequentemente organizado em camadas

#### Entrada/Saída: permitem aceder a dispositivos de E/S:

- portas série;
- cartas gráficas;
- discos;
- cartas de rede.

duma forma uniforme

#### Gestão de discos incluindo:

- alocação e libertação de blocos;
- escalonamento dos pedidos.

# Serviços de Autenticação e Controlo de Acesso

autenticação: validar a identidade dum utilizador. É essencial para proteger o acesso a recursos.

controlo de acesso: limitar o acesso a recursos apenas às entidades autorizadas a fazê-lo:

- pressupõe autenticação;
- é um serviço transversal: abrange todos os outros serviços.

# Quais os Serviços dum SO?

- Será que um web browser faz parte do SO?
- ► E um *media player*?
- ► E um *anti-virus*?

#### Interfaces dum SO

Problema: Como se acede aos serviços do sistema operativo?

Solução: Através das suas interfaces:

Programática Consiste num conjunto de operações designadas por chamadas ao sistema

Para cada tipo de serviço, o SO oferece um conjunto de chamadas ao sistema.

Operacional Pode ser:

- Textual
- Gráfica

Faz uso da interface programática.

#### Critérios de Qualidade

### Desempenho

### Segurança

- Garantir que os acessos autorizados são realizados
- Impedir os acessos não autorizados sejam realizados

#### Robustez

Fiabilidade probabilidade de não falhar Disponibilidade probabilidade de prestar serviço

#### Qualidade das Interfaces

- Completude
- Simplicidade

# Critérios de Classificação de SO

Tempo-Real vs. Não Tempo-Real Sistemas de tempo-real podem adicionalmente ser classificados em:

Hard Real-Time Soft Real-Time

De acordo com o computador Nomeadamente sistemas embebidos

- ► Frequentemente têm requisitos de tempo real
- Uma área bastante activa, especialmente SO para smart-phones

Código aberto

#### Leitura Adicional

- Secções 1.1, 1.2 e 1.4 de José Alves Marques e outros, Sistemas Operativos, FCA - Editora Informática, 2009
- Secções 1.1, 1.5 de Andrew Tanenbaum, Modern Operating Systems, 2nd Ed.
- ► Secções 1.1, 1.2, 1.6, 1.7, 1.8, 1.9, 2.1 e 2.2 de Silberschatz e outros, *Operating System Concepts*, 7th Ed.
- Outra documentação (transparências e enunciados dos TPs) na página da disciplina