Яндекс

Matrixnet

Андрей Гулин Конспиролог

Москва, 27.02.2010

Линейная регрессия

- Дано: К N-мерных самплов $\{x_i\}$ для каждого известно значение функции $\{f_i\}$
- Найти: вектор а, такой что $a^Tx_i = f_i$
- Решение: $a=(X^TX)^{-1}X^Tf$

Регуляризация

- Когда данных мало простое решение не работает
- Нужна какая-то дополнительная информация, например, мы можем сказать, что мы хотим "маленький" или "простой" вектор а
- Меры простоты:

```
—L0 = feature selection
```

—L1 = lasso

—L2 = ridge = по Тихонову [$a=(X^TX+\lambda I)^{-1}X^Tf$]

L1 регуляризация

- Итеративный алгоритм L1 регуляризации
- У нас есть текущий "остаток" r_i , который в начале равен f_i
- На каждой итерации мы
 - —Выбираем самый похожий на r_i фактор и считаем с каким множителем α нам нужно его брать
 - —Добавляем $\lambda \alpha$ к коэффициенту при этом факторе ($\lambda < 1$)
 - —Считаем новый остаток r_i
- http://www-stat.stanford.edu/~tibs/lasso.html

Нелинейные модели

- Если бы у нас были пропорциональные релевантности независимые факторы, нам бы хватило линейной регрессии
- Это не так и нам понадобятся нелинейные модели
 - —Полиномиальные
 - —"Нейронные сети"
 - —Decision Trees

Decision Tree

Я

Boosting

- Построение strong learner как комбинации "weak learners"
- Связь с L1 регуляризацией
 - —weak learner = единственный фактор с коэффициентом
 - —strong learner = линейная регрессия с L1 регуляризацией
- Для более сложного weak learner boosting дает сложно формализуемую sort of L1 регуляризацию

Bagging

- На каждой итерации будем брать не все самплы, а их случайное подмножество
- Магическим образом более устойчиво
- Defeats boosting impossibility argument
 helsinki/long
 rcn/icml08 long rcn 01.ppt)

Limit on decision tree leafs

- Дисперсия ошибки значения в листе пропорциональна 1/N, где N количество самплов в листе
- Введем ограничение в кошерном дереве должно быть не меньше 10 самплов обучающей выборки на лист
- Наш лимит ограничивает ошибку аппроксимации "выравнивая" ее по выборке

TreeNet

- TreeNet товарища Friedman-а это Boosted Decision Tree с Bagging и ограничением на минимальное количество самплов в листе
- <u>http://www.salford-systems.com/doc/GreedyFuncApproxSS.pdf</u>
- <u>http://www.salford-systems.com/doc/StochasticBoostingSS.pdf</u>

MatrixNet

http://seodemotivators.ru/

MatrixNet

- MatrixNet отличается в 3-х моментах
 - —Использование Oblivious Trees
 - —Регуляризация значений в листах вместо ограничения на количество самплов в листе
 - —Зависимость сложности модели от итерации (начинаем с простых моделей, заканчиваем сложными)

Oblivious Trees

Регуляризация в листьях

- Вместо ограничения на количество самплов в листьях будем "регуляризовать" значение в листе
- Например, если домножить значение в листе на sqrt(N/(N+100)), где N — число самплов в листе, то результаты улучшатся.
- Оптимальный способ регуляризации, видимо, зависит от выборки

Другие целевые функции

- А что, если вместо квадратичной ошибки мы хотим оптимизировать что-нибудь другое?
 Например, для задач классификации больше подходит средний log(p), где p вероятность, назначенная моделью правильному ответу
- Получаем обычную задачу максимизации функции, которую можно решать
 - —Градиентным спуском = gradient boosting = greedy function approximation
 - —Методом Ньютона = logit boost для классификации

Gradient boosting

- На каждом шаге boosting-а вместо невязки r_i мы аппроксимируем производную целевой функции в текущей точке
- Размер шага зависит от величины производной,
 т.е. от гладкости функции
- Вместо шага по производной в текущей точке мы можем посчитать куда приведет нас производная и шагать в направлении финальной точки траектории

Ranking

- А что же делать, если мы хотим научиться ранжировать?
- Целевая функция для ranking (NDCG/pFound/whatever) задана на порядках и разрывна (описание pFound http://romip.ru/romip2009/15 yandex.pdf
- Нужна какая-то непрерывная замена. Замены делятся на классы
 - —Pointwise (rmse, классификация, ...)
 - —Pairwise (RankNet, ...)
 - —Listwise (SoftRank, ...)

Luce-Plackett model

- Luce-Plackett model позволяет нам назначить вероятности всем перестановкам, если у нас есть веса документов {w_i}
- Вероятность перестановки вычисляется рекурсивно. Вероятность поставить документ k на первое место равна w_k / (w₁ + w₂ + ... + w_n), далее аналогично считаем вероятность выбрать второй документ из оставшихся и т.д. Произведение этих вероятностей равно вероятности перестановки.

Expected pFound

- Для каждой перестановки мы можем посчитать ee pFound(perm). Также мы знаем вероятность этой перестановки P_{IP}(perm)
- Просуммировав pFound(perm) * P_{LP}(perm) по всем перестановкам получим expected pFound
- Expected pFound непрерывен и мы можем максимизировать его с помощью gradient boosting
- Вместо pFound мы можем подставить любую нужную нам меру

Вопросы?

