Week 2 Unit 1: Data Preparation Phase — Overview

Introduction to data preparation

The chart below shows that 3 out of every 5 data scientists spend the most time during their working day cleaning and organizing data.

New York Times article reported that data scientists spend from **50% to 80%** of their time mired in the more mundane task of collecting and preparing unruly digital data before it can be explored for useful nuggets.

For Big-Data Scientists, 'Janitor Work' Is Key Hurdle to Insights. New York Times. STEVE LOHR. AUG. 17, 2014

What data scientists spend the most time doing

CRISP-DM - Phase 3: Data Preparation

Phase 3: Outputs

Dataset

 This is the dataset (or datasets) produced by the *Data Preparation* phase, which will be used for modeling or the major analysis work of the project.

Dataset description

 Describe the dataset (or datasets) that will be used for the modeling or the major analysis work of the project.

Phase 3.1: Select Data

Task

- Decide on the data to be used for analysis.
- Criteria include relevance to the data mining goals and quality and technical constraints such as limits on data volume or data types.
- Note that data selection covers selection of attributes (columns) as well as selection of records (rows) in a table.

Output – Rationale for inclusion/exclusion

 List the data to be included/excluded and the reasons for these decisions.

Phase 3.2: Clean Data

Task

- Raise the data quality to the level required by the selected analysis techniques.
- This may involve selection of clean subsets of the data, the insertion of suitable defaults, or more ambitious techniques such as the estimation of missing data by modeling.

Output – Data cleaning report

 Describe what decisions and actions were taken to address the data quality problems reported during the Verify Data Quality task of the Data Understanding phase.

Phase 3.3: Construct Data

Task

 This task includes constructive data preparation operations such as the production of derived attributes, entire new records, or transformed values for existing attributes.

Output – Derived attributes

 Derived attributes are new attributes that are constructed from one or more existing attributes in the same record. Examples: area = length * width

Output – Generated records

Describe the creation of completely new records.

Phase 3.4: Integrate Data

Task

 These are methods whereby information is combined from multiple tables or records to create new records or values.

Output – Merged data

- Merging tables refers to joining together two or more tables that have different information about the same objects.
- Merged data also covers aggregations.

Phase 3.5: Format Data

Task

 Formatting transformations refer to primarily syntactic modifications made to the data that do not change its meaning, but might be required by the modeling tool.

Output – Reformatted data

 Some tools have requirements on the order of the attributes, such as the first field being a unique identifier for each record or the last field being the outcome field the model is to predict.

Thank you

Contact information:

open@sap.com

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.

Week 2 Unit 2: Predictive Modeling Methodology – Overview

Predictive Modeling Methodology – Overview Introduction

The key is unlocking data to move decision making from sense & respond to predict & act

Use predictive analytics to solve a variety of business challenges

- Churn Reduction
- Customer Acquisition
- Lead Scoring
- Product Recommendation
- Campaign Optimization
- Customer
 Segmentation
- Next Best Offer/Action

- Predictive Maintenance
- Load Forecasting
- Inventory/Demand Optimization
- Product Recommendation
- Price Optimization
- Manufacturing Process Optimization
- Quality Management
- Yield Management

- Fraud and Abuse Detection
- Claims Analysis
- Collection and Delinquency
- Credit Scoring
- Operational Risk Modeling
- Crime Threat
- Revenue and Loss Analysis

- Cash Flow and Forecasting
- Budgeting Simulation
- Profitability and Margin Analysis
- Financial Risk Modeling
- Employee Retention Modeling
- Succession Planning

- Life Sciences
- Healthcare
- Media
- Higher Education
- Public Sector / Social Sciences
- Construction and Mining
- Travel and Hospitality
- Big Data and IoT

Build and Apply

Model Build

(the Learning Phase)

Predictive models are built or "trained" on historic data with a known outcome.

Model Apply

(the Applying Phase)

Once the model has been built, it is applied onto new, more recent data, which has an unknown outcome (because the outcome is in the future).

Building the model – Learning phase

Using the model – Applying phase

Name	City	Age	Churner
Marine	Miami	45	?
Julien	Miami	52	?
Fred	Orlando	20	?
Michelle	Boston	34	?
Nicolas	Phoenix	90	?

Recent data, with customers who have not yet made a decision to churn or remain.

IF city= 'Miami' \rightarrow Score = +0.7

IF city= 'Orlando' \rightarrow Score = +0.2

IF age $> 42 \rightarrow Score = +age*0.05 + 0.06$

IF age $<= 42 \rightarrow Score = +age*0.01 + 0.02$

Name	City	Age	Score		
Marine	Miami	45	0.8		
Julien	Miami	52	0.9		
Fred	Orlando	20	0.6		
Michelle	Boston	34	0.5		
Nicolas	Phoenix	90	0.4		

"Apply" the model onto new data to calculate the overall "score" or "probability" for each customer.

Moving data through time

Apply the model on current data where we do not know the outcome. The model predicts the outcome probability for each client ID.

Dataset timeframes

For the training, the target must be known. It has occurred before today (and after the reference date).

For the application, the target is in the future and is therefore unknown.

Model fitting

Over-Fit Model/Low Robustness

(No Training Error, High Test Error)

Under-Fit Model/High Robustness

(High Training Error = High Test Error)

(Low Training Error ≈ Low Test Error)

Thank you

Contact information:

open@sap.com

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.

Week 2 Unit 3: Data Manipulation

Introduction

- Most data mining activities will require the data to be "prepared" before the analysis is undertaken.
- Data manipulation is often driven by domain knowledge.
- This is a process where database tables are merged and aggregated, new variables and transformations created in order to try and improve model quality, IF/THEN conditions created, and filters applied, etc.

Entity

- The first step is to identify the "entity" for the analysis.
 - An entity is the object targeted by the planned analytical task.
 - It may be a customer, a product, or a store, etc., and is usually identified by a unique identifier.
 - The entity defines the granularity of the analysis.

Items of significance to an enterprise are data entities

Analytical record

			1	I			Graph	I		Ι .	1
	customer_id	age	workclass	education	education	marital_sta	occupation	relationship	race	gender	capital_gain (
1	1001001	39	State-gov	Bachelors	13	Never-marri	Adm-clerical	Not-in-family	White	Male	2174
2	1001002	50	Self-emp-no	Bachelors	13	Married-civ	Exec-mana	Husband	White	Male	0
3	1001003	38	Private	HS-grad	9	Divorced	Handlers-cl	Not-in-family	White	Male	0
4	1001004	53	Private	11th	7	Married-civ	Handlers-cl	Husband	Black	Male	0
5	1001005	28	Private	Bachelors	13	Married-civ	Prof-specialty	Wife	Black	Female	0
6	1001006	37	Private	Masters	14	Married-civ	Exec-mana	Wife	White	Female	0
7	1001007	49	Private	9th	5	Married-spo	Other-service	Not-in-family	Black	Female	0
8	1001008	52	Self-emp-no	. HS-grad	9	Married-civ	Exec-mana	Husband	White	Male	0
9	1001009	31	Private	Masters	14	Never-marri	Prof-specialty	Not-in-family	White	Female	14084
10	1001010	42	Private	Bachelors	13	Married-civ	Exec-mana	Husband	White	Male	5178
11	1001011	37	Private	Some-college	10	Married-civ	Exec-mana	Husband	Black	Male	0
12	1001012	30	State-gov	Bachelors	13	Married-civ	Prof-specialty	Husband	Asian-Pac-I	Male	0
13	1001013	23	Private	Bachelors	13	Never-marri	Adm-clerical	Own-child	White	Female	0
14	1001014	32	Private	Assoc-acdm	12	Never-marri	Sales	Not-in-family	Black	Male	0
15	1001015	40	Private	Assoc-voc	11	Married-civ	Craft-repair	Husband	Asian-Pac-I	Male	0
16	1001016	34	Private	7th-8th	4	Married-civ	Transport-m	Husband	Amer-Indian	Male	0
17	1001017	25	Self-emp-no	HS-grad	9	Never-marri	Farming-fis	Own-child	White	Male	0
18	1001018	32	Private	HS-grad	9	Never-marri	Machine-op	Unmarried	White	Male	0
19	1001019	38	Private	11th	7	Married-civ	Sales	Husband	White	Male	0
20	1001020	43	Self-emp-no	Masters	14	Divorced	Exec-mana	Unmarried	White	Female	0
21	1001021	40	Private	Doctorate	16	Married-civ	Prof-specialty	Husband	White	Male	0

The analytical record is a 360° view of each entity, collecting all of the static and dynamic data together that can be used to define the entity.

Creating new data transformations in SAP Predictive Analytics Data Manager

Creating data aggregations

Functions	Descript	ion	Returned Values		
Count	computes	the number of occurrences	number of occurrences		
Sum	compute	the sum	sum		
Average	compute	the mean	mean		
Min	identifies	the minimum value	minimum value		
Max	identifies	the maximum value	maximum value		
Exists	checks if	at least one event exists for the current reference	0 if no event has been found 1 if at least one event has been found		
NotExists	checks if	no event exists for the current reference	0 if at least one event has been found 1 if no event has been found		
First	identifies 1	Note needs a date column	value of the first chronological occurrence for the current reference		
Last	identifies	Note needs a date column	value of the last chronological occurrence for the current reference		

Converting data types

Forming new variables

Transforming variables

ABC Store	123 Turnover			
New York	0.22			
Los Angeles	0.17			
Chicago	0.11			
Houston	0.08			
Philadelphia	0.19			
Phoenix	0.31			
San Antonio	0.08			
San Diego	0.19			
Dallas	0.03			
San Jose	0.17			
Jacksonville	0.31			

Transforming variables

Sampling data

Conditions

Documentation

Thank you

Contact information:

open@sap.com

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.

Week 2 Unit 4: Selecting Data – Variable and Feature Selection

Selecting Data – Variable and Feature Selection Introduction

- Feature or variable selection is the process of selecting a subset of relevant explanatory variables or predictors for use in data science model construction.
- It is also known as variable selection, attribute selection, or variable subset selection.
- Often, data contains many features that are either redundant or irrelevant, and can be removed without incurring much loss of information.
- Remember that domain knowledge can be the best selection criterion of all!!

Selecting Data – Variable and Feature Selection

Traditional approaches to variable selection

- Traditional approaches to selecting the variables to go into a model can be very time consuming, especially when there are 1000s of variables to analyze.
- The most popular form of feature selection is **stepwise** regression. This is an algorithm that adds the best feature (or deletes the worst feature) in a series of iterative steps. The main control issue is deciding when to stop the algorithm.
- Other automated selection processes are backward elimination and forward selection.

Selecting Data - Variable and Feature Selection

Backward elimination

- 1. Backward elimination starts with all candidate features.
- 2. Test the deletion of each feature using the chosen model comparison criterion, deleting the feature (if any) that improves the model the most by being deleted.
- 3. Repeat this process until no further improvement is possible.

Selecting Data - Variable and Feature Selection

Forward selection

- 1. Forward selection starts with no features in the model.
- 2. Test the addition of each feature using the chosen model comparison criterion.
- 3. Add the feature (if any) that improves the model the most.
- 4. Repeat this process until no other feature additions improve the model.

Selecting Data – Variable and Feature Selection

Stepwise regression

- This is a combination of backward elimination and forward selection.
- At each stage in the process, after a new variable is added, a test is made to check if some variables can be deleted without appreciably increasing the error.
- The procedure terminates when the measure is (locally) maximized, or when the available improvement falls below some critical value.
- One of the main issues with stepwise regression is that it is prone to overfitting the data. However, this problem can be mitigated if the criterion for adding (or deleting) a variable is stiff enough.

Selecting Data - Variable and Feature Selection

Modern approaches to variable selection

Thank you

Contact information:

open@sap.com

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.

Week 2 Unit 5: Data Encoding

Introduction

- Data encoding is an essential part of the data preparation process.
- The data encoding process prepares missing values in the data, deals with outliers, and creates data bins or bands to transform raw data into a "mineable" source of information.

Nominal variable

 A nominal variable is a discrete (categorical), qualitative variable that characterizes, describes, or names an element of a population.

Examples:

- Hair color (brown, blond, ginger...)
- Make of car (Mercedes, Ford....)
- Gender (male, female)
- Postal (ZIP) code
- Residence city (London, New York, Paris...)

Note: The order of the categories does not matter

Ordinal variable

 An ordinal variable is a discrete (categorical), qualitative variable that has order.

Examples:

- Gold, silver, bronze
- Satisfaction level (very dissatisfied, dissatisfied, neutral, satisfied, very satisfied)
- Pain level (mild, moderate, severe)

Note: The order of the categories does matter

Continuous variable

- A continuous variable is a quantitative variable.
- It is a real number that can take any value (with fractions/ decimal places) between two specific numbers.
- It accommodates all basic arithmetic operations (addition, subtraction, multiplication, and division).

Examples:

- Income
- Age (years)
- Running time (minutes)
- Bank account balance (\$)

- Distance (miles)
- Any ratio or calculated value
- This includes most business data

Temperature of Heated Water

Missing values

- A missing value is an empty cell in your dataset.
- Missing values in a dataset can be due to error or because they are simply not available.
- They can be removed from the dataset, estimated, or kept.
- The analysis could also be stopped so that further investigation of the reason for missing values can be undertaken.

Outliers

- For a continuous variable An outlier is a single or lowfrequency occurrence of the value of a variable that is far from the mean as well as the majority of other values for that variable.
- For a categorical variable (nominal or ordinal) An outlier is a single or very low-frequency occurrence of a category of a variable.

Binning

1. A decision tree before and after binning

2. Continuous variable binning – variable "AGE", no binning, manual binning, SAP Predictive Analytics

(Automated) binning

Thank you

Contact information:

open@sap.com

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.