Feuille d'exercices 3 : séries de fonctions (encore)

Exercice 1.— Soit $f_n : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f_n(x) = \frac{1}{n} \Big(\cos(x) \Big)^n \sin(nx)$, pour $n \ge 1$. On étudie la série de fonctions de terme général f_n .

- 1. Montrer qu'il suffit d'étudier cette série de fonctions sur $\left[0, \frac{\pi}{2}\right]$.
- 2. Montrer que la série $\sum_{n\geq 1} f_n$ converge simplement sur \mathbb{R} . On note désormais S sa somme.
- 3. Montrer que l'on a $f'_n(x) = \left(\cos(x)\right)^{n-1}\cos((n+1)x)$ et que la série de fonctions $\sum_{n\geq 1} f'_n$ converge normalement sur $\left[a,\frac{\pi}{2}\right]$ quel que soit a dans $\left]0,\frac{\pi}{2}\right[$. Qu'en déduit-on pour S?
- 4. Calculer Re $\left(e^{2ix}\sum_{n=1}^{+\infty}\left(\cos(x)e^{ix}\right)^{n-1}\right)$. En déduire des expressions simples pour S'(x) puis S(x) sur $\left[0,\frac{\pi}{2}\right]$. Représenter S.

Exercice 1.— Fonction zêta

Pour tout entier $n \ge 1$, on note f_n la fonction définie sur $]1, +\infty[$ par $f_n(x) = \frac{1}{n^x}$ et pour $x \in]1, +\infty[$, on note $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

- 1. Pourquoi la fonction ζ (zêta) est-elle bien définie sur $]1, +\infty[$?
- 2. a) Pour tout entier $r \geq 0$, calculer la dérivée r-ième de la fonction f_n . Montrer ensuite que la série de fonctions $\sum_{n\geq 1} f_n^{(r)}$ est normalement convergente sur tout intervalle de la forme $[\alpha_0, +\infty[$ avec $\alpha_0 > 1$.
 - b) On fixe $\alpha_0 > 1$. Montrer par récurrence sur l'entier r que, pour tout entier r la fonction zêta est de classe C^r sur l'intervalle $[\alpha_0, +\infty[$ et que $\forall x \in [\alpha_0, +\infty[, \zeta^{(r)}(x) = \sum_{n=1}^{+\infty} f_n^{(r)}(x)]$.
- 3. En déduire que ζ est de classe \mathcal{C}^{∞} sur $]1, +\infty[$. Montrer également qu'elle est décroissante et convexe sur $]1, +\infty[$.
- 4. a) Montrer que l'on a pour tout x > 1

$$\int_{1}^{+\infty} \frac{1}{t^x} dt \le \zeta(x) \le 1 + \int_{1}^{+\infty} \frac{1}{t^x} dt.$$

- b) En déduire que $\lim_{x \to +\infty} \zeta(x) = 1$.
- c) En déduire également un équivalent de $\zeta(x)$ lorsque $x \longrightarrow 1^+$.

- 5. (**) (Complément à chercher en autonomie) On veut calculer $\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2}$.
 - a) Montrer que pour tout $x \in]0, \pi[$, on a :

$$\frac{1}{\sin^2(x)} = \frac{1}{2^2} \left(\frac{1}{\sin^2(\frac{x}{2})} + \frac{1}{\sin^2(\frac{\pi}{2} - \frac{x}{2})} \right).$$

b) En déduire par récurrence sur p que la relation

(R)
$$2 = \frac{1}{2^{2p}} \sum_{k=0}^{2^{p}-1} \frac{1}{\sin^2\left(\frac{2k+1}{2^{p+2}}\pi\right)}$$

est vraie pour tout entier $p \geq 0$.

c) On introduit la fonction h définie sur \mathbb{R} par h(x) = 1 si $x \leq 0$, $h(x) = \left(\frac{x}{\sin(x)}\right)^2$ si $x \in]0, \frac{\pi}{2}]$ et h(x) = 0 si $x > \frac{\pi}{2}$.

Vérifier que (R) s'écrit

(R')
$$1 = \frac{8}{\pi^2} \sum_{k=0}^{+\infty} h\left(\frac{2k+1}{2^{p+2}}\pi\right) \frac{1}{(2k+1)^2}$$

pour tout entier $p \geq 0$.

- d) Vérifiez que h est bornée sur \mathbb{R} et continue en 0. En déduire que $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$.
- e) En déduire finalement que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. (Indic : décomposer la somme en considérant la somme sur les n pairs et celle sur les n impairs.)

Exercice 3.— (**) (A chercher en autonomie)

Construction d'une fonction continue partout mais dérivable nulle part

Pour chaque n entier ≥ 0 , on définit sur \mathbb{R} la fonction f_n en posant $f_n(x) = 2^{-n} \sin\left(2^{n^2}x\right)$.

- 1. Montrer que la série de fonctions $\sum_{n\geq 0} f_n$ converge normalement sur \mathbb{R} . On appelle f la somme de cette série de fonctions. Vérifier que f est continue sur \mathbb{R} et 2π périodique. On va montrer que f n'est dérivable en aucun point de \mathbb{R} .
- 2. Montrer que pour tout $y \in \mathbb{R}$, on a :

$$\left(\sin\left(y + \frac{\pi}{2}\right) - \sin(y)\right)^2 + \left(\sin\left(y - \frac{\pi}{2}\right) - \sin(y)\right)^2 = 2.$$

En déduire que pour chaque y dans \mathbb{R} , on peut trouver un $\epsilon(y) = \pm 1$ tel que

$$\left| \sin \left(y + \epsilon(y) \frac{\pi}{2} \right) - \sin(y) \right| \ge 1.$$

3. Soit x un réel fixé. A chaque entier $N \geq 1$, on associe l'accroissement réel h_N définie par :

$$h_N = \epsilon \left(2^{N^2} x\right) \, \frac{\pi}{2^{N^2 + 1}}.$$

Vérifier qu'on a :

a)
$$f(x+h_N) - f(x) = \sum_{n=0}^{N} (f_n(x+h_N) - f_n(x))$$
;

b)
$$\left| \frac{f_N(x+h_N) - f_N(x)}{h_N} \right| \ge \frac{1}{\pi} 2^{N^2 - N + 1}$$
;

c)
$$\left| \sum_{n=0}^{N-1} \frac{f_n(x+h_N) - f_n(x)}{h_N} \right| \le \sum_{n=0}^{N-1} \frac{2^{n^2}}{2^n} \le 2^{(N-1)^2 + 1}.$$

4. Déduire de ce qui précède que f n'est pas dérivable en x.