Случайные процессы

2 сентября 2014 г.

Глава 1

Азы

1.1 Определение случайного процесса

Определение 1.1.1: Случайный процесс

Случайные процесс с параметрическим множеством T — совокупность случайных величин ξ_t , зафиксированных элементами t множества T

То есть, случайный процесс является отображением из декартового произведения множества элементарных исходов и параметрического множества на множество действительных чисел

$$\xi: \Omega \times T \to \mathbb{R}$$

Также можно представить случайный процесс как случайную величину в вероятностном пространстве

$$(\Omega \times T, \mathfrak{F} \otimes \mathfrak{B}(\mathbb{R}), \mathbb{P}),$$

где множество случайных событий построено интуитивно понятным образом

$$\forall t \in T, \omega \in \Omega : \{(t, \omega) \mid \xi_t(\omega) \in \Delta\} \in \mathfrak{F} \otimes \mathfrak{B}(\mathbb{R})$$

Замечание 1.1.2: Случайный процесс с дискретным временем

Если $T=\mathbb{N}$ или $T=\mathbb{Z},$ то ξ — случайный процесс с дискретным временем.

Замечание 1.1.3: Случайный процесс с непрерывным временем

Если же $T=[0;+\infty],$ T=[a;b] или $T=\mathbb{R},$ то ξ — случайный процесс с непрерывным временем.

Определение 1.1.4: Траектория случайного процесса

Для фиксированного $\omega_0\in\Omega$ функция $\xi\left(\omega_0\right)$ назыввается реализацией или траекторией случайного процесса, соответствующей исходу ω_0

Определение 1.1.5: Сечение случайного процесса

Если $t_0 \in T$ фиксировано, то случайная величина ξ_{t_0} называется сечением случайного процесса в точке t_0

Предметный указатель

Оглавление

1	Азы 1.1 Определение случайного процесса		3	
Предметный указатель				5
Оглавление				7