Time Variation of Regression Coefficients related to Macroeconomic News affecting Currency Prices

Victor J. Mitchell Geneva School of Economics and Management, University of Geneva

August 13th, 2020

Project Motivation and Context

Linear Regression

Testing Stability

Estimating Parameter Paths

Plotting the Paths

Questions / Comments

Project Motivation and Context

Figure 1: Minute-by-minute candlechart of the USD/CAD asset on the 19th of June between 15h00 and 16h00 GMT+2. An example of of the sudden price change that can occur during one of the news releases. Green/Red candles represent an increase/decrease in price. The gray indicator is amount of trading activity taking place (a rough guideline as it only includes transactions from that particular brokerage).

Table 1: Summary of the news figures considered in the study

Country	News.Event	Pair.used	GMT.Time	Frequency	Observations	Dates
Single News						
Canada	Consumer Price Index	USD/CAD	13:30	Monthly	103	Jan 2008 to Dec 2019
Canada	Core Retail Sales	USD/CAD	12:30	Monthly	94	Oct 2008 to Dec 2019
United States	Consumer Price Index	USD/CHF	13:30	Monthly	135	Oct 2008 to Dec 2019
New Zealand	Consumer Price Index	NZD/USD	21:45	Quarterly	43	Jan 2009 to Oct 2019
Australia	Consumer Price Index	AUD/USD	00:30	Quarterly	48	Jan 2008 to Oct 2019
Australia	Retail Sales	AUD/USD	00:30	Monthly	135	Oct 2008 to Dec 2019
United Kingdom	Consumer Price Index	GBP/USD	09:30	Monthly	135	Oct 2008 to Dec 2019
United Kingdom	Retail Sales	GBP/USD	09:30	Monthly	135	Oct 2008 to Dec 2019
Grouped News						
United States	Average Hourly Earnings Change	USD/CHF	13:30	Monthly	135	Oct 2008 to Dec 2019
United States	NonFarm Employment Change	USD/CHF	13:30	Monthly	135	Oct 2008 to Dec 2019
United States	Unemployment Rate	USD/CHF	13:30	Monthly	135	Oct 2008 to Dec 2019
Canada	Employment Change	USD/CAD	13:30	Monthly	135	Oct 2008 to Dec 2019
Canada	Unemployment Rate	USD/CAD	13:30	Monthly	135	Oct 2008 to Dec 2019
Australia	Employment Change	AUD/USD	00:30	Monthly	135	Oct 2008 to Dec 2019
Australia	Unemployment Rate	AUD/USD	00:30	Monthly	135	Oct 2008 to Dec 2019

Note: The Canadian Consumer Price Index and Core Retail Sales coincided in Date and Time 41 times and these observations were removed.

Data

Left: News figure data. Right: Currency pair price

Figure 2: Data observations of our study

Linear Regression

Variables

5 Minute Price Change

$$R_t = \beta_0 + \beta_1 S_t + \varepsilon_t \tag{1}$$

"Suprise" Component of macroeconomic news

$$S_t = \frac{A_t - E_t}{\sigma_d} \tag{2}$$

Results - OLS

News.Event	M5.Coefficient	std.error	HAC.std.error
Single News			
UK CPI	12.681***	1.729	2.601
CA CPI	-8.6286***	1.958	2.502
CA CRS	-10.756***	1.624	2.249
US CPI	3.968**	1.207	1.23
NZ CPI	24.109***	2.910	4.727
AU CPI	22.293***	4.145	4.226
AU RET	9.647***	1.215	2.656
UK RET	16.574***	1.968	2.572
Grouped News			•
US AHE	10.295***	2.577	2.665
US NFP	17.938***	2.572	4.143
US UR°	1.975	2.579	2.198
CA EMC	-25.588***	3.940	4.211
CA UR	1.053	3.940	4.262
AU EMC	01 50571***	1 040	2.780
	21.59571***	1.842	
AU UR	-11.93102***	1.842	1.828

Note: The result of OLS estimation, referred to as the 'time invariant' or 'stable' case is presented in this table. The standard errors of the estimator as well as the Newey-West corrected standard errors are also included. The *,**,*** are for 10%, 5% and 1% significance levels respectively.

Testing Stability

Three Different Test

- ▶ qLL (Elliott and Müller 2006)
- Cusum (Brown, Durbin, and Evans 1975)
- Cusum-Squared (Brown, Durbin, and Evans 1975)

qLL Test

Likelihood Function under the Null Hypothesis: Stable Assumption with OLS.

$$L_{H0} = -\frac{1}{2\sigma^2} \sum_{t=1}^{I} (\Delta R_t)^2$$
 (3)

Likelihood Function under the Alternative Hypothesis: Unstable Assumption Moving Average order 1 $\Delta R_t \sim \eta_t + \psi_\eta \eta_{t-1}$

$$L_{HA} = -\frac{1}{2\sigma^2} \sum_{t=1}^{I} \eta^2 \tag{4}$$

Obtain the Test Statistic

$$\frac{\sigma_{\epsilon}^2}{\sigma_n^2} \sum_{t=1}^T \eta^2 - \sum_{t=1}^T (\Delta R_t)^2 \tag{5}$$

Steps to obtain qLL statistic (Elliott and Müller 2006)

- 1. Compute the OLS residuals $\hat{\varepsilon}_t$ by regressing R_t on S_t, Z_t ;
- 2. Construct a consistent estimator \hat{V}_X of the k*k long-run covariance matrix of $S_t \varepsilon_t$. When ε_t can be assumed uncorrelated, a natural choice is the heteroscedasticity robust estimator $\hat{V}_X = T^{-1} \sum_{t=1}^T X_t X_t' \varepsilon_t^2$
- 3. Compute $\hat{U}_t = \hat{V}_X^{-1/2} X_t \hat{\varepsilon}_t$ and denote the k elements of \hat{U}_t by $\hat{U}_{t,i}$, i=1,...,k.
- 4. For each series $\hat{U}_{t,i}$, compute a new series, $\hat{w}_{t,i}$ via $w_{t,i} = \bar{r}\hat{w}_{t-1,i} + \Delta \hat{U}_{t,i}$, and $\hat{w}_{1,i} = \hat{U}_{1,i}$, where $\bar{r} = 1 10/T$.
- 5. Compute the squared residuals from OLS regressions of $\hat{w}_{t,i}$ on \bar{r}^t individually, and sum all of those over i = 1, ..., k.
- 6. Multiply this sum of sum of squared residuals by \bar{r} , and subtract $\sum_{i=1}^{k} \sum_{t=1}^{T} (\hat{U}_{t,i})^2$

qLL Statistic

- Monotone transformation of the LRT test.
- $\triangleright \beta_t \beta_0$ following a Gaussian Random Walk assumption
- ► Leads to: First Differences follow Gaussain Moving Average

Table 2: Asymptotic Critical Values of the qLL Statistic

k	1	2	3	4	5
1%	-11.05	-17.57	-23.42	-29.18	-35.09
5%	-8.36	-14.32	-19.84	-25.28	-30.60
10%	-7.14	-12.80	-18.07	-23.37	-28.55

Note:

Extract of the critical values of the qLL Statistic. k represents the number of potential unstable coefficients (number of parameters in the model) whereas 1%, 5% and 10% are the significance levels where a lower value is stronger evidence that instability is present.

Cusum Test

- Use of the Recursive Least Squares Algorithm (to obtain the errors!)
- OLS but adding additional observations sequentially.

Figure 4: RLS applied to the UK CPI

RLS Algorithm

1.
$$\hat{\beta}_t = \hat{\beta}_{t-1} + g_t(R_t - S_t^T \hat{\beta}_{t-1})$$

2. $g_t = P_{t-1}^* S_t(\hat{\sigma}^2 + S_t^T P_{t-1}^* S_t)^{-1}$

3.
$$P_t^* = P_{t-1}^* - g_t S_t^T P_{t-1}^*$$

(Young 2011)

$$u_t = R_t - E(\hat{R}_t | R_{t-1})$$

Normalized:

$$u_{n,t} = \frac{u_t}{(1 + S_t^T P_t S_t)^{0.5}}$$

Compounded:

$$W_t = \frac{1}{\hat{\sigma}_{cs}} \sum_{i=k+1}^t u_{n,i}$$

(8)

(6)

(7)

Cusum Plot

Use the confidence bands suggested by Brown, Durbin, and Evans (1975) starting at time k: $\pm a(T-k)^{0.5}$ and ending at time T: $\pm 3a(T-k)^{0.5}$.

Cusum-Squared

$$V_t = \frac{\sum_{i=k+1}^t u_{n,i}^2}{\sum_{i=k+1}^T u_{n,i}^2} \tag{9}$$

Under the null, the cumulative sum of squares follow a beta distribution and the mean is (k - h)/(N - h). As significance levels: ^{18/45}

Test Results

Table 3: Instability Test Results

News.Event	qLL	CUSUM	CUSUM.sq
Single News			
UK CPI	-12.964***	n.s	**
CA CPI	-13.015***	n.s	***
CA CRS	-9.713**	n.s	**
US CPI	-21.582***	n.s	***
NZ CPI	-7.267*	n.s	***
AU CPI	-9.022**	n.s	***
AU RET	-17.623***	**	***
UK RET	-4.503	n.s	***
Grouped News			
US Batch			
Test 1 All News	-28.14***	*	***
Test 2 AHE&NFP	-24.015***		
Test 3 NFP&UR	-20.326***		
Test 4 AHE&UR	-7.078		
Test 5 NFP	-17.643***		
CA Batch			
Test 1 All News	-9.30	n.s	***
AUD Batch			
Test 1 All News	-22.912***	n.s	***
Test 2 EMC	-6.85		
Test 3 UR	-5.66		

Note: Results of the three instability tests performed for each piece of macroeconomic news.

Estimating Parameter Paths

Two Different Methods

- ► WAR Minimizing (Elliott and Müller 2006)
- ► Stochastic Time Varying Parameter (Young 2011)

WAR Minimizing

- ▶ Start from a likelihood function in its general form.
- From a "stable" case to unknown "unstable" model where:

Likelihood: $\sum_{t=1}^{T} \ell_t(\beta)$ to: $\sum_{t=1}^{T} \ell_t(\beta + \delta_t)$

▶ 2nd order Taylor Approximation in its classical form:

$$f(x) = f(a) + f'(x - a) + \frac{f''}{2}(x - a)^2$$
 (10)

▶ Taylor Expansion of ℓ_t around $\hat{\beta}_{OLS}$ the unstable model (Univariate):

$$\ell_t(\beta + \delta_t) = \ell_t(\hat{\beta}) + s_t(\hat{\beta})(\beta + \delta_t - \hat{\beta}) - \frac{1}{2}(h_t(\hat{\beta})(\beta + \delta_t - \hat{\beta})^2$$
(11)

lt is possible to find $s_t(\hat{\beta})$ and $h_t(\hat{\beta})$!

WAR Minimizing (continued) (1)

An average \hat{H} is used instead of individual hessians at each observation.

$$\ell_t(\beta + \delta_t) = \ell_t(\hat{\beta}) + s_t(\hat{\beta})(\beta + \delta_t - \hat{\beta}) - \frac{1}{2}(\hat{H}(\hat{\beta})(\beta + \delta_t - \hat{\beta})$$
(12)

▶ Rearranging and subtracting $\frac{1}{2}s_t(\hat{\beta})\hat{H}^{-1}$ from each side.

$$\ell_t(\beta + \delta_t) - \ell_t(\hat{\beta}) - \frac{1}{2} s_t(\beta) \hat{H}^{-1} \approx -\frac{1}{2} (s_t(\hat{\beta}) - \hat{H}(\beta + \delta_t - \hat{\beta}) \hat{H}^{-1}$$
(13)

Comparing to the log-likelihood of an arbitrary Gaussian Random Variable X_n (standard nomenclature)

$$-\frac{N}{2}\log(2\pi) - N\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{n=0}^{N}(X_n - \mu)^2$$
 (14)

WAR Minimizing (continued) (2)

Arbitrary Gaussian Random Variable X_i: (standard nomenclature)

$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$

$$X_i = \mu + \epsilon_i \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$
(15)

Scenario at hand:

$$s_t(\hat{\beta}) + \hat{H}\hat{\beta} \sim \mathcal{N}(\hat{H}(\beta + \delta_t), \hat{H})$$

$$s_t(\hat{\beta}) + \hat{H}\hat{\beta} = \hat{H}(\beta + \delta_t) + v_t \quad v_t \sim \mathcal{N}(0, \hat{H})$$
(16)

WAR Minimizing (continued) (3)

$$\beta_{OLS} = \beta_t + T^{-1/2} \hat{H}^{-1} v_0 \tag{17}$$

$$s_t(\beta) = \hat{H}\delta_t + v_t, t = 1, ..., T$$
 (18)

- ▶ Obtain 11 Different Random Walk weighting functions (paths).
- They all use the model above but have a different variance.
- $ightharpoonup s_t(\hat{\beta})$ and \hat{H} as:

$$s_t = \frac{\partial I}{\partial \beta_1} = \sigma^{-2} (R_t - \hat{\beta}_0 - \hat{\beta}_1 S_t) S_t$$
 (19)

$$\hat{H} = \frac{1}{T} \sum_{t=1}^{I} h_t(\hat{\beta}) = -\frac{\partial I^2}{\partial^2 \beta_1^T} = \sigma^{-2} \sum_{t=1}^{I} S_t^2$$
 (20)

WAR Plot

Steps to obtain WAR minimization path

- 1. For $t=1,\ldots,T$, let a_t and b_t be the first p elements of $\hat{H}^{-1}s_t(\hat{\theta})$ and $\hat{H}\hat{V}^{-1}s_t(\hat{\theta})$ respectively.
- 2. For $c_i \in C = 0, 5, 10, ..., 50, i = 1, ..., 11$ compute (a) $r_i = 1 c_i/T$,
- $z_{i,1} = x_1$ and $z_{i,t} = r_i z_{i,t-1} + x_t x_{t-1}, t = 2, ..., T$;
- (b) the residuals $\{\tilde{z}_{i,t}\}_{t=1}^T$ of a linear regression of $\{z_{i,t}\}_{t=1}^T$ on $\{r_i^{t-1}I_p\}_{t=1}^T$
- (c) $\bar{z}_{i,T} = \tilde{z}_{i,T}$, and $\bar{z}_{i,t} = r_i \bar{z}_{i,t+1} + \tilde{z}_{i,t} \tilde{z}_{i,t+1}$, t = 1, ..., T 1;
- (d) $\{\hat{\beta}_{i,t}\}_{t=1}^T = \{\hat{\theta}_{T} + a_t r_i \bar{z}_{i,t}\}_{t=1}^T;$
- (e) $qLL(c_i) = \sum_{t=1}^{T} (r_i) \bar{z}_{i,t} a_t)' \tilde{b}_t$ and

$$\tilde{w}_i = \sqrt{T(1 - r_i^2)r_i^{T-1}/(1 - r_i^{2T})}e^{-\frac{1}{2}qLL(c_i)}$$
 (set $\tilde{w}_0 = 1$) 3. Compute $w_i = \tilde{w}_i/\sum_{i=1}^{11} \tilde{w}_i$.

- 4. The parameter path estimator is given by $\{\hat{\beta}_t\}_{t=1}^T = \{\sum_{i=1}^{11} w_i \hat{\beta}_{i,t}\}_{t=1}^T$.
- 5. The statistic qLL(10) tests the null hypothesis of stability of β and rejects for small values.

(Müller and Petalas 2010)

STVP Algorithm

► RLS (used for the tests earlier)

Figure 5: SRLS applied to the UK CPI

STVP Algorithm (continued)

Figure 6: STVP applied to the UK CPI

Standard Recursive Time Variable Parameter Algorithm (STVP)

- Additional assumption: β_t is following a Gaussian Random Walk $\mathcal{N}(0, q_a)$ so that: $\beta_t = \beta_{t-1} + \eta_{t-1}$
- Diagonals of Qa are 25% of the OLS Coefficient
- A = D = I. (with I as the identity matrix)

Prediction (Prior)

$$1. \hat{\beta}_t | \hat{\beta}_{t-1} = A\beta_{t-1}$$

2.
$$P_t^*|P_{t-1}^* = AP_{t-1}^*A^T + DQ_aD^T$$

Correction (Posterior, same as the RLS seen earlier)

3.
$$\hat{\beta}_t = \hat{\beta}_t | \hat{\beta}_{t-1} + g_t (R_t - S_t^T (\hat{\beta}_t | \hat{\beta}_{t-1}))$$

4.
$$g_t = (P_t^*|P_{t-1}^*)S_t(\hat{\sigma}^2 + S_t^T(P_t^*|P_{t-1}^*)S_t)^{-1}$$

5.
$$P_t^* = P_t^* | P_{t-1}^* - g_t S_t^T (P_t^* | P_{t-1}^*)$$

(Young 2011)

Plotting the Paths

Figure 7: Note: 1 Std Dev is +0.605% greater than expected. Currency pair: USD/CAD.

Figure 8: Note: 1 Std Dev is +0.229% greater than expected. Currency pair: USD/CAD.

Figure 9: Note: 1 Std Dev is +0.569% greater than expected. Currency pair: AUD/USD.

Figure 10: Note: 1 Std Dev is +0.229% greater than expected. Currency pair: AUD/USD.

Figure 11: Note: 1 Std Dev is +0.117% greater than expected. Currency pair: USD/CHF.

Figure 12: Note: 1 Std Dev is +0.173% greater than expected. Currency pair: GBP/USD.

Figure 13: Note: 1 Std Dev is +0.206% greater than expected. Currency pair: NZD/USD.

Figure 14: Note: 1 Std Dev is +66.5 thousand more people than expected. Currency pair: USDCHF.

Prediction

Calculating the Prediction Intervals

$$E(\hat{R}_{t+1}|\mathcal{F}_t, S_{t+1}) = \hat{\beta}_t S_{t+1}$$
 (21)

$$Var(\hat{R}_{t+1}|\mathcal{F}_t, S_{t+1}) = S_{t+1}^2 \sigma_{\beta}^2 + \sigma_{\epsilon}^2$$
(22)

Figure 15: GBP/USD on the 15th of January between 14h00 and 15h00 GMT+2. UK CPI released with a figure of 1.3% versus the expected 1.5% (equivalently a -1.1579697 Std. Dev shock). Point-Estimates and 95% prediction bounds are colored in blue and green for the WAR and STVP estimations respectively. The time-invariant OLS case is also added in black for reference.

Figure 16: AUD/USD on the 10th of January between 02h00 and 03h00 GMT+2. Retail Sales announced at 0.9% versus the expected 0.4% that was expected (equivalently a +0.8801813 Std. Dev shock).

Point-Estimates and 95% prediction bounds are colored in blue and green for the WAR and STVP estimations respectively. The time-invariant OLS estimate is also added in black for reference.

Questions / Comments

References

Brown, R. L., J. Durbin, and J. M. Evans. 1975. "Techniques for Testing the Constancy of Regression Relationships over Time." *Journal of the Royal Statistical Society: Series B (Methodological)* 37 (2): 149–63. doi:10.1111/j.2517-6161.1975.tb01532.x.

Elliott, Graham, and Ulrich K. Müller. 2006. "Efficient Tests for General Persistent Time Variation in Regression Coefficients." *Review of Economic Studies* 73 (4): 907–40. doi:10.1111/j.1467-937X.2006.00402.x.

Müller, Ulrich K., and Philippe-Emmanuel Petalas. 2010. "Efficient Estimation of the Parameter Path in Unstable Time Series Models." *Review of Economic Studies* 77 (4): 1508–39. doi:10.1111/j.1467-937X.2010.00603.x.

Young, Peter C. 2011. *Recursive Estimation and Time-Series Analysis*. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-21981-8.