Национальный Исследовательский Университет «Московский Энергетический Институт»

Кафедра теоретических основ теплотехники Лаборатория тепломассообмена

Лабораторная работа №19

ОПРЕДЕЛЕНИЕ УГЛОВОГО КОЭФФИЦИЕНТА ИЗЛУЧЕНИЯ МЕТОДОМ СВЕТОВОГО МОДЕЛИРОВАНИЯ

студент:
Группа:
Преподаватель:
К работе допущен:
Работу выполнил:
Работу сдал:

Ступент:

1. Методическое назначение работы

- Изучение метода экспериментального определения угловых коэффициентов излучения методом светового моделирования и получение навыков в проведении экспериментального исследования.
- Практика применения расчетного соотношения для среднего коэффициента излучения для системы черных поверхностей с однородными потоками излучения.
- Освоение методики компьютерной обработки экспериментальных данных.

2. Цель эксперимента

Целью работы является экспериментальное определение «локального» углового коэффициента излучения (с излучающей поверхности на поверхность светодиода) и вычисление средних коэффициентов излучения в замкнутой системе тел. Для проведения инженерных расчетов потоков излучения требуются точные и надежные данные по угловым коэффициентам излучения в системах с черными и серыми поверхностями. Одним из способов определения угловых коэффициентов излучения является метод светового моделирования, который применяется в данной лабораторной работе

3. Методика эксперимента и опытная установка

Рис. 1. Принципиальная схема опытной установки

Опытная установка представляет собой прямоугольную камеру 9, разделенную матовым светорассеивающим стеклом 3 на две части. Стекло марки МС-20 моделирует диффузно излучающую поверхность. В одной части камеры находятся электрические лампы 2, в другой - ряд параллельных труб 4, наружный диаметр которых d, а шаг между ними s. В лаборатории имеется два стенда с диаметрами труб 20 и 280мм, шагом 450мм (рис. 2). Поверхность труб покрыта материалом, полностью поглощающим световое излучение. Питание электрических ламп 2 осуществляется от сети переменного тока через автотрансформатор 1. Для регистрации светового потока служит светодиод 5, соединенный с микроамперметром 8. Светодиод закреплен на конце стержня квадратного сечения 6. Стержень имеет возможность перемещаться по направлению к излучающей поверхности и от нее, а также в плоскости, находящейся за трубами. Координатное устройство 7 служит для определения положения светодиода 5.

4. Измерительная схема

Показания микроамперметра 8 (рис.1) (I, мA) пропорциональны световому потоку Q. Светочувствительная часть светодиода имеет небольшие размеры, поэтому можно приближенно полагать, что фотодиодом измеряется локальная плотность светового потока $dQ_{1\rightarrow dF}$ (осредненная величина по поверхности светодиода).

№ опыта	I0(x)				I13(x)																								
1	24.74	23.3	24.06	0.46	3.05	17.04	22.92	23.36	23.18	18.73	3.78	0.37	0.15	1.31	13.06	20.23	21.28	21.2	20.15	14.11	3.55	0.79	0.67	3.09	14.22	20.58	21.81	21.07	7.17
2	27.5	26.02	26.72	0.52	3.95	19.03	25	25.74	25.25	19.68	3.11	0.22	0.13	1.54	14.59	22.78	23.92	23.89	22.47	14.27	2.82	0.85	0.84	5.48	18.09	24.3	24.91	23.15	8.04
3	23.67	22.09	22.99	0.42	2.7	17.47	22.1	22.58	22.12	17.67	3.16	0.15	0.16	1.84	13.64	20.01	20.88	20.78	19.55	11.56	2.22	0.86	0.92	6.08	17.13	21.12	21.69	20.97	7.44
xi	ri			0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125

Обработка результатов измерений лабораторной работы №19 "ОПРЕДЕЛЕНИЕ УГЛОВОГО КОЭФФИЦИЕНТА ИЗЛУЧЕНИЯ МЕТОДОМ СВЕТОВОГО МОДЕЛИРОВАНИЯ"

Режим 1:

Входные данные: I13(mA), I0(mA), x(mm)

Среднеарифметическое значение тока фотодиода: (mA)

24.033333

Out[14]=

Средние угловые коэффициенты излучения:

x1- координата старта измерений(mm)

x2- координата конца измерений(mm)

arphiMean1to2-средний угловой коэффициент (от 1 к 2)

 φ Mean1to3-средний угловой коэффициент (от 1 к 3)

$$\overline{\varphi}_{13} = \int_{F_3} d\varphi_{1 \to dF} = \frac{\int_{F_3} dQ_{1 \to dF}}{Q_1} \cong \frac{\int_{F_3} \overline{I}_{13}(x) dx}{\overline{I}_0(x_2 - x_1)}, \qquad \overline{\varphi}_{12} = \left(1 - \overline{\varphi}_{13}\right)$$

Интеграл в числителе находим численно:

```
In[41]:= FunctionInNumeratorIntegralAtModeOne = Interpolation[Transpose[{x, I13atModeOne}]];

_интерполировать _транспозиция
```

NumeratorAtModeOne = NIntegrate[FunctionInNumeratorIntegralAtModeOne[x], {x, 0, 125}]

квадратурное интегрирование

1573.0792

Out[42]=

Out[32]=

$$_{n[32]:=} \varphi$$
13AtModeOne =
$$\frac{\text{NumeratorAtModeOne}}{\text{I0meanAtModeOne} * (x2 - x1)}$$

0.52363245

In[33]:= φ 12AtModeOne = 1 - φ 13AtModeOne

0.47636755

Режим 2:

```
In[34]:= I13atModeTwo = {0.52, 3.95, 19.03, 25.0, 25.74, 25.25, 19.68, 3.11, 0.22, 0.13, 1.54, 14.59, 22.78, 23.92, 23.89, 22.47, 14.27, 2.82, 0.85, 0.84, 5.48, 18.09, 24.3, 24.91, 23.15, 8.04}; I01istAtModeTwo = {27.5, 26.02, 26.72};
```

```
Out[36]=
       26.746667
 In[39]:= FunctionInNumeratorIntegralAtModeTwo = Interpolation[Transpose[{x, I13atModeTwo}]];
                                              интерполировать транспозиция
      NumeratorAtModeTwo = NIntegrate [FunctionInNumeratorIntegralAtModeTwo[x], {x, 0, 125}]
                           квадратурное интегрирование
Out[40]=
      1757.4917
                         NumeratorAtModeTwo
      \varphi13AtModeTwo =
                      I0meanAtModeTwo * (x2 - x1)
Out[43]=
      0.52567049
ln[44]:= \varphi 12AtModeTwo = 1 - \varphi 13AtModeTwo
Out[44]=
      0.47432951
      Режим 3:
 In[49]:= I13atModeThree = {0.42, 2.70, 17.47, 22.10, 22.58, 22.12, 17.67, 3.16, 0.15, 0.16, 1.84, 13.64,
          20.01, 20.88, 20.78, 19.55, 11.56, 2.22, 0.86, 0.92, 6.08, 17.13, 21.12, 21.69, 20.97, 7.44};
      IOlistAtModeThree = {23.67, 22.09, 22.99};
       IOmeanAtModeThree = Mean[IOlistAtModeThree]
                           среднее значение
Out[51]=
       22.916667
 интерполировать  транспозиция
      NumeratorAtModeThree = NIntegrate[FunctionInNumeratorIntegralAtModeThree[x], {x, 0, 125}]
                             квадратурное интегрирование
       1560.7896
                            NumeratorAtModeThree
In[54]:= \varphi 13AtModeThree =
                        I0meanAtModeThree * (x2 - x1)
Out[54]=
      0.54485745
In[55]:= \varphi 12AtModeThree = 1 - \varphi 13AtModeThree
Out[55]=
```

0.45514255

среднее значение

Изобразим графики подынтегральных функций из числителя формулы φ 13:

In[61]:= Plot[{FunctionInNumeratorIntegralAtModeOne[x],

график функции

FunctionInNumeratorIntegralAtModeTwo[x], FunctionInNumeratorIntegralAtModeThree[x]}, {x, x1, x2}, PlotLabel \rightarrow "Подынтегральная функция I13(x) для трех режимов", PlotTheme \rightarrow "Scientific", пометка графика тематический стиль графика

PlotLegends → {"Mode 1 (max brightness)", "Mode 2", "Mode 3 (least brightness)"}, легенды графика

ImageSize → Large, GridLines → Automatic]

размер изоб… круп… _ линии коорд… _ автоматический

Теоретическое значение средних угловых коэффициентов излучения:

$$\overline{\varphi}_{13} = \frac{d}{s} \cdot \left[\sqrt{\left(\frac{s}{d}\right)^2 - 1} - \arccos \frac{d}{s} \right]$$
,где d-наружный диаметр труб(mm), а s-шаг между трубами(mm) $\overline{\varphi}_{12} = (1 - \overline{\varphi}_{13})$

In[63]:=
$$d = 20$$
.; $s = 45$.; φ 13Theoretical = $\frac{d}{s} * \left(\sqrt{\left(\frac{s}{d}\right)^2 - 1} - \text{ArcCos}\left[\frac{d}{-}\right] \right)$

0.40236538

Out[63]=

In[64]:= Out[64]=

Out[65]=

Out[66]=

 φ 12Theoretical = 1 - φ 13Theoretical

0.59763462

Погрешности $(\delta \varphi 13, \delta \varphi 12)$

 $ln[65]:= \varphi 13$ ExperimentalMean = Mean[$\{\varphi 13$ AtModeOne, $\varphi 13$ AtModeTwo, $\varphi 13$ AtModeThree}] среднее значение

0.5313868

Abs [φ 13Theoretical - φ 13ExperimentalMean] In[66]:= φ 13Theoretical

0.32065736

 $4 \mid TMO \mid lab19.nb \mid ln[67] = \varphi$ 12ExperimentalMean = Mean[$\{\varphi$ 12AtModeOne, φ 12AtModeTwo, φ 12AtModeThree}] | Среднее значение

Out[67] = 0.4686132

In[68] = $\delta \varphi$ 12 = $\frac{Abs \left[\varphi$ 12Theoretical - φ 12ExperimentalMean}{\varphi12Theoretical}

Out[68] = 0.21588679