Corso di Laurea: Ingegneria Informatica

Testo n.27 - Esame di Fisica Generale sessione del 24/07/2020

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 - Meccanica

Un blocco assimilabile ad punto materiale di massa $m=19.4~{\rm kg}$ può muoversi senza attrito su un piano orizzontale. Al blocco sono collegate due molle ideali di costanti elastiche $k_1=65~{\rm Nm}^{-1}$ e $k_2=569~{\rm Nm}^{-1}$, rispettivamente, come mostrato in figura. Nella posizione $x_0=0$ m il blocco è in equilibrio e le molle sono a riposo. All'istante t=0 s il blocco m viene lasciato, da fermo, dalla posizione $x=38~{\rm cm}$. Determinare:

1) il periodo T delle oscillazioni intorno alla posizione di equilibrio:

 $T = \dots$

2) la legge oraria del punto per $t \ge 0$ s e il modulo della massima velocità $|v_{max}|$ raggiunta dal punto durante il suo moto:

 $|v_{max}| = \dots ; \quad x(t) = \dots$

3) l'energia cinetica E_k del punto al tempo t=T/ 11 (con T periodo del moto oscillatorio):

 $E_k = \dots$

(Figura qualitativa a solo scopo illustrativo)

ESERCIZIO.2 - Elettromagnetismo

I due solenoidi in figura sono rettilinei, di lunghezza infinita, coassiali con l'asse in comune lungo l'asse Z e hanno raggi $r_1 = 32$ mm e $r_2 = 144$ mm . I solenoidi hanno entrambi $n = 2.54 \cdot 10^5$ spire m⁻¹ e sono percorsi da una medesima corrente $i_0 = 27$ A ma in versi opposti, come rappresentato in figura. Si determinino:

1) Il grafico di B(r) in funzione della distanza r dall'asse Z e l'espressione del campo magnetico $\vec{B}(r, \varphi, z) \ \forall r \geq 0 \ ; \ \forall \varphi \in [0, 2\pi] \ ; \ \forall z \in \mathbb{R}$

$$\vec{B}(r,\varphi,z) = \dots$$

2) Calcolare l'intensità del campo magnetico $|\vec{B}\Big(0,\varphi,z\Big)| \ \forall \varphi \in [0,2\pi] \ ; \ \forall z \in \mathbb{R}$

$$|\vec{B}(0,\varphi,z)| = \dots$$

Intorno ai due solenoidi, e coassialmente ad essi, viene collocata una spira circolare, di raggio r_3 = 81 cm e resistenza ohmica R= 250 Ω , mentre la corrente che scorre nei solenoidi viene fatta variare con legge i(t) = 4.2 t . Determinare:

3) Indicare in che verso circola la corrente nella spira (orario o antiorario) motivando la risposta. Determinare la potenza P dissipata in (mW) sulla spira per effetto Joule

$$P =$$

Costanti Utili: $\mu_0 = 1.257 \ 10^{-6} \ \mathrm{TmA^{-1}}$

(Figura qualitativa a solo scopo illustrativo)