What is claimed is:

A proces for preparing compounds of the formulae (I) and (II) 1.

Het
$$\mathbb{F}$$
 \mathbb{F} $\mathbb{F$

where

5

15

 R^1 is hydrogen or fluorine, and

10 Het is a heterocycle from the following group of heterocycles

$$R^2$$
 R^3
 S
 (A)
 R^3
 O
 (B)
 R^2
 N
 R^3
 N
 (C)

(E)

$$S$$
 (D) R^3 X (E) R^2 (F)

(J)

$$(G)$$
 (H)

where

10

15

20

5 R² is hydrogen, halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl,

is hydrogen, halogen, and also optionally halogen-, methyl-, ethyl-, nor i-propyl- or n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or i-propoxy- or n-, i-, s- or t-butoxy-substituted C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, carboxyl, C₁-C₄-alkylaminocarbonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyl, C₂-C₄-alkenylthio, C₂-C₄-alkenylsulfinyl or C₂-C₄-alkenylsulfonyl,

is C₁-C₈-alkyl, C₂-C₆-alkenyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkyl, C₃-C₈-cycloalkyl or optionally halogen-, C₁-C₄-alkyl-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio- or C₁-C₄-haloalkyl-substituted phenyl or benzyl,

p is 1, 2 or 3,

X is oxygen or sulfur, and

25 Y is optionally singly or doubly, identically or differently substituted methylene, and examples of substituents include: in each case optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-haloalkoxy- or C₁-C₄-haloalkylthio-substituted C₁-C₄-alkyl,

 C_2 - C_4 -alkenyl or C_2 - C_4 -alkynyl, and also optionally singly to triply, identically or differently substituted phenyl, and examples of substituents include: halogen, cyano, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio,

by allowing a compound of the formula (III)

10 where

R¹ and Het

are each as defined above

to react with a salt of peroxomonosulfuric acid, H₂SO₅,

15

20

25

5

optionally in the presence of a reaction assistant and optionally in the presence of a diluent.

- 2. The process for preparing compounds of the formula (I) as per claim 1, characterized in that compounds of the formula (II) as per claim 1 are allowed to react with a salt of peroxomonosulfuric acid, H₂SO₅, optionally in the presence of a reaction assistant and optionally in the presence of a diluent.
 - 3. The process as per claim 2, characterized in that the process is carried out at a pH of from 6 to 10.
 - 4. The process for preparing compounds of the formula (II) as per claim 1, characterized in that compounds of the formula (III) as per claim 1 are

allowed to react with a salt of peroxomonosulfuric acid, H₂SO₅, optionally in the presence of a reaction assistant and optionally in the presence of a diluent.

- 5. The process as per claim 4, characterized in that the process is carried out at a pH of from 1 to 3.
 - 6. The process as per one of claims 1 to 5, characterized in that the salt of peroxomonosulfuric acid is potassium hydrogenperoxomonosulfate (2 KHSO₅ · KHSO₄ · K₂SO₄ (5:3:2:2)), preferably Oxone® or Caroat®.
- 7. The process as per one of claims 1 to 6, characterized in that the reaction is carried out at a temperature of from -20°C to 150°C.
 - 8. The process as per one of claims 1 to 7, characterized in that

R¹ is fluorine,

5

10

15

Het is a heterocycle from the following group of heterocycles

R² is hydrogen, fluorine or chlorine,

 R^3 is hydrogen, fluorine, chlorine, and also optionally fluorine-, chlorine-, 5 methyl-, ethyl-, n- or i-propyl- or n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or i-propoxy- or n-, i-, s- or t-butoxy-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or ipropoxy, n-, i-, s- or t-butoxy, methylthio, ethylthio, n- or i-propylthio, n-, i-, s- or t-butylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, 10 ethylsulfonyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, n-, i-, s- or t-butoxycarbonyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, methylthiomethyl, methylthioethyl, ethylthiomethyl, ethylthioethyl, carboxyl, methylaminocarbonyl, ethylaminocarbonyl, or propylaminocarbonyl, cyclopropylaminocarbonyl, cyclobutylamino-15 carbonyl, cyclopentylaminocarbonyl, cyclohexylaminocarbonyl. dimethylaminocarbonyl, diethylaminocarbonyl, ethenyl, propenyl or butenyl,

R⁴ is preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tertbutyl, n-pentyl, cyclopropyl, cyclopentyl, cyclohexyl, 2-chloroethyl, 2,2,3,3,3-pentafluoropropyl, 2,2,2-trifluoroethyl, 3-bromopropyl, 2-methoxyethyl, 2-ethoxyethyl, 2-methylthioethyl, allyl, 2-butenyl or in each case optionally singly or doubly, identically or differently fluorine-, chlorine-, bromine-, methyl-, ethyl-, isopropyl-, trifluoromethyl-, methoxy- or methylthio-substituted phenyl or benzyl,

p is 1 or 2,

30 X is oxygen, and

20

25

- Y is optionally singly or doubly, identically or differently substituted methylene, and examples of substituents include: methyl, ethyl, or optionally singly or doubly, identically or differently substituted phenyl, and examples of substituents include: fluorine, chlorine, methyl, methoxy, trifluoromethyl, cyano or nitro.
- 9. The process as per one of claims 1 to 8, characterized in that

Het is a heterocycle from the following group of heterocycles

R² N

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3

- R² is hydrogen, and
- 15 R³ is hydrogen, fluorine or chlorine.
 - 10. The process as per one of claims 1 to 9, characterized in that

Het is the following heterocycle

20

5

10

$$R^{3}$$
 S
 (A)

- R² is hydrogen, and
- R^3 is chlorine.