Name: Josh Stafford Assignment: Lab 7 Part 1 Section: ENGR 102 - 206

An aggie does not lie, cheat, or steal, nor tolerate those who do.

The model will consist of 4 line segments:

- 1. 0 to A/B
- 2. A/B to C
- 3. C to D
- 4. D to E.

Coordinates (approximations):

```
0 - (0, 0)

A/B - (0.0125, 44)

C - (0.06, 44)

D - (0.18, 60)

E - (0.2625, 52)
```

Young's Modulus (approximately): 3520

Variables:

- 1. slopeOne = 3520
- 2. slopeThree = 16 / 0.12
- 3. slopeFour = -8 / 0.0825
- 4. inputStrain = float(input("Please enter a strain point (0 0.2625):"))
- 5. outputStress = <some computation to be planned>

Steps:

- 1. Establish starting slope values as variables
- 2. Ask the user to input a value of strain for which they would like to find stress.
- 3. Evaluate conditionals:
 - a. If the strain is past or below the boundaries, print an error statement and ends program
 - b. If the strain is on the 4th segment, use the 4th slope to interpolate
 - c. If the strain is on the 3rd segment, use the 3rd slope to interpolate
 - d. If the strain is on the 2nd segment, use the 2nd slope to interpolate
 - e. If the strain is on the 1st segment, use the 1st slope to interpolate

(note): if the conditionals are in this order, you can just use > operator because if it does not meet the earlier conditions, you don't have to worry about upper bounds of comparison

- 4. Compute stress based off the conditionals:
 - a. If inputStrain > 0.2625 or inputStrain < 0:
 - Print("That is not a valid strain value")
 - b. elif inputStrain > 0.18:
 - i. outputStress = slopeFour * (inputStrain 0.18) + 60
 - c. elif inputStrain > 0.06:

Name: Josh Stafford Assignment: Lab 7 Part 1 Section: ENGR 102 - 206

An aggie does not lie, cheat, or steal, nor tolerate those who do.

- i. outputStress = slopeThree * (inputStrain 0.06) + 44
- d. elif inputStrain > 0.0125:
 - i. outputStress = 44
- e. else:
 - i. outputStress = slopeOne * inputStrain
- 5. Print the value of stress
 - a. Print("The stress at a strain of", inputStrain, "is", outputStress)

Test Cases:

Strain	Stress	Case	Region
0	0	Edge	1
0.0075	26.4	Typical	1
0.0125	44	Edge	1
0.042	44	Typical	2
0.06	44	Edge	2
0.126	52.8	Typical	3
0.18	60	Edge	3
0.235	54.6667	Typical	4
0.2625	52	Edge	4