Numérisation d'une tension

Exercice 1. (échantillonnage d'une tension analogique)

On réalise l'échantillonnage de la tension sinusoïdale analogique $u_a(t)$. L'allure du signal échantillonné obtenu u_{ech} est donnée ci-dessous.

- 1) Déterminer la fréquence f_a du signal analogique $u_a(t)$.
- 2) Déterminer également la fréquence d'échantillonnage f_e .
- 3) La condition de Shannon est-elle respectée?

On modifie la fréquence d'échantillonnage f_e à 20 kHz.

- **4**) Tracer le nouveau signal échantillonné $u_{ech}(t)$.
- 5) La restitution de ce signal échantillonné se fera-t-elle sans altération du signal analogique original?

Exercice 2. (échantillonnage d'un signal sinusoïdal)

On échantillonne un signal sinusoïdal $u_a(t)$ avec une période d'échantillonnage $T_e = 10 \mu s$.

- 1) Quelle est la fréquence f du signal analogique?
- 2) Quelle est la fréquence f_e d'échantillonné?
- 3) La condition de Shannon est-elle respectée?
- 4) Tracer l'allure du signal échantillonné.
- 5) Tracer le spectre d'amplitude du signal analogique.
- 6) Tracer le spectre d'amplitude du signal échantillonné.

Exercice 3. (Échantillonneur-bloqueur)

On utilise un échantillonneur-bloqueur de durée de blocage 33 µs.

On donne les 3 premières raies du spectre de la tension échantillonnée-bloquée $u_{eb}(t)$:

- 1) Quelle est la fréquence et la période d'échantillonnage?
- 2) La condition de Shannon est-elle vérifiée?
- 3) Tracer l'allure du signal analogique $u_a(t)$.

On souhaite reconstituer le signal analogique à partir du signal échantillonné.

4) Quel type de filtre doit-on utiliser et quelle doit être la limite de sa fréquence de coupure?

Exercice 4. (Filtre anti-repliement)

Le spectre d'un signal analogique est représenté ci-dessous :

On réalise un échantillonnage (sans blocage) à la fréquence $f_e = 8$ kHz.

- 1) Représenté le spectre du signal échantillonné sur la figure ci-dessus.
- 2) Justifier que ce signal échantillonné subit un repliement du spectre.
- 3) Précisez la fréquence des raies qui se replient.

Pour contrer le problème précédent, on souhaite utiliser un filtre anti-repliement. On dispose de 3 filtres différents dont les caractéristiques sont données dans le tableau ci-desssous.

	Filtre 1	Filtre 2	Filtre 3
Type	Passe-bas	Passe-bas	Passe-haut
Odre	3	5	4
Fréquence de coupure	3,5 kHz	5,0 kHz	4,0 kHz

- 4) Ce filtre doit-être placer avant ou après le montage échantillonneur?
- 5) Parmi ces trois filtres, lequel est le plus adapté?
- 6) Tracer ci dessous le spectre du signal échantillonné après filtrage.

7) Le résultat est-il conforme?

Exercice 5. (blocage d'un signal échantillonné)

La figure suivante représente l'échantillonnage d'un signal analogique non-périodique.

1) Quelle est la fréquence d'échantillonne?

On réalise un blocage de ce signal échantillonné.

2) Tracer sur la figure ci-dessous, l'allure du signal échantillonné bloqué en supposant le blocage comme parfait.

D. THERINCOURT 5/8 Lycée Roland Garros

BTS CIEL

Exercice 6. Caractéristiques d'un CAN

L'entrée d'une carte d'acquisition analogique suit le fonctionnement donné par la chaîne suivante :

Chaque échantillon du signal numérisé est converti en un nombre entier par le convertisseur analogique numérique. Au fûr et à mesure de la numérisation, les valeurs des échantillons sont enregistrées dans une mémoire de stockage interne (mémoire tampon).

Le tableau ci-dessous donne les caractéristiques techniques de la carte d'acquisition.

Niveaux de tension	0 – 5 V
Résolution numérique	12 bit
Fréquence d'échantillonnage maximale	2 MHz
Mémoire de stockage	64 Mo

Un échantillon de tension occupe 2 octets en mémoire.

- 1) Quelle la fréquence maximale f_{max} du signal analogique que peut acquérir cette carte?
- 2) Calculer la valeur maximale N_{max} du nombre à la sortie du CNA.
- 3) En déduire la valeur de la résolution analogique q du CNA?
- 4) Quelle est la profondeur de mémoire de cette carte d'acquisition?
- 5) Calculer la durée maximale du signal acquis pour une fréquence d'échantillonnage maximale.
- 6) Quelle devrait-être la fréquence d'échantillonnage pour acquérir un signal analogique de durée 120 s?

Exercice 7. (Choix d'un convertisseur analogique-numérique)

On souhaite numériser une tension variant de 0 à 5 V qui a été échantillonnée à 50 kHz. Pour cela, on dispose des convertisseurs analogique-numériques suivants :

Référence	Résolution (bits)	$T_c(\mu s)$	Linéarité
ADC088321M	8	4	$\pm 0,2q$
AD5240	12	5	$\pm 0,5q$
ADC0809	8	100	$\pm 0,5q$

- 1) Quelle doit être la valeur maximale du temps de conversion?
- 2) En déduire le CAN à utiliser afin d'avoir la plus faible erreur de linéarité.
- 3) Quel est sa résolution et le nombre de niveaux de tensions dont on disposera.
- 4) Calculer le pas de quantification du CAN.
- 5) Calculer l'erreur de linéarité.
- **6)** Déterminer la valeur décimale puis la valeur binaire codée en sortie lorsque la tension d'entrée est de 1,96 V.
- 7) Calculer la puissance du bruit de quantification $P_{bruit} = \frac{q^2}{12R}$ dans une résistance de 1 Ω .
- 8) En déduire le rapport signal sur bruit sachant que la tension numérisée possède une puissance de 0,5 W.

Exercice 8. (données CSV d'un oscilloscope)

Une tension est acquise par un oscilloscope numérique sur une de ses voies. On donne ci-dessous un extrait du fichier CSV obtenu par exportation sur clé USB.

```
Record Length, Analog: 10000
      Sample Interval, CH1:2.000000E-07
      Vertical Units, CH1: V,
      Vertical Scale, CH1:+2.000000E+00
      Vertical Offset, CH1:+0.000000E+00
      Horizontal Units,s
      Horizontal Scale, +2.000000E-04
      Model, SDS2104X Plus
      Serial Number, SDS2PEED6R4679
      Software Version, 5.4.1.5.2R3
      Source, CH1
      Second, Value
12
      -1.000000000E-03,-6.666667E-02
13
      -9.9980000000E-04,-3.333334E-02
14
      -9.996000000E-04,-5.000000E-02
15
      -9.994000000E-04,-6.666667E-02
16
      -9.992000000E-04,-5.000000E-02
17
      -9.990000000E-04,-3.333334E-02
      -9.988000000E-04,-3.333334E-02
      -9.986000000E-04,-5.000000E-02
      -9.984000000E-04,-3.333334E-02
21
      -9.9820000000E-04,-1.666667E-02
22
      -9.980000000E-04,-3.333334E-02
23
      -9.978000000E-04,-3.333334E-02
24
      -9.976000000E-04,+0.000000E+00
25
      -9.974000000E-04,-3.333334E-02
26
      -9.9720000000E-04,-1.666667E-02
27
      -9.970000000E-04,+0.00000E+00
28
      -9.9680000000E-04,-1.666667E-02
29
30
```

- 1) A partir quel numéro de ligne, les données relatives aux valeurs des échantillons de la tension acquise sont affichées?
- 2) Quelles données sont affichées pour chaque échantillon?
- 3) Quelle est la fréquence d'échantillonnage de l'oscilloscope?
- 4) Quelle est la profondeur de mémoire de l'oscilloscope?
- 5) Combien de lignes compte ce fichier?
- 6) A quel instant est pris le premier échantillonnage?
- 7) A quel instant est pris le dernier échantillonnage qui n'apparaît pas dans l'extrait?