Principio de Conservación

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2013) Buenos Aires, Argentina atorassa@gmail.com

Resumen

En mecánica clásica, este trabajo presenta un nuevo principio de conservación para choques elásticos frontales, que puede ser aplicado en cualquier sistema de referencia inercial.

Principio de Conservación

En un sistema aislado de *N* partículas, el nuevo principio de conservación para choques elásticos frontales, está dado por:

$$\sum_{i=1}^{N} \frac{1}{2} m_i (\mathbf{r}_i \times \mathbf{v}_i)^2 = constante$$

donde m_i es la masa de la *i*-ésima partícula, \mathbf{r}_i es la posición de la *i*-ésima partícula y \mathbf{v}_i es la velocidad de la *i*-ésima partícula.

Apéndice

Trabajo Angular

El trabajo angular W_a realizado por un momento constante \mathbf{M}_a que actúa sobre una partícula A, está dado por:

$$W_a = \mathbf{M}_a \cdot (\mathbf{r}_a \times \mathbf{d}_a)$$

donde \mathbf{r}_a es la posición de la partícula A, \mathbf{d}_a es el vector desplazamiento de la partícula A y \mathbf{F}_a es la fuerza constante que actúa sobre la partícula A $[\mathbf{M}_a = (\mathbf{r}_a \times \mathbf{F}_a)]$

Energía Cinética Angular

El trabajo angular realizado por el momento resultante que actúa sobre una partícula A es igual a la variación de la energía cinética angular de la partícula A.

$$W_a = \Delta 1/2 m_a (\mathbf{r}_a \times \mathbf{v}_a)^2$$

Por lo tanto, si el momento resultante que actúa sobre la partícula A no realiza trabajo angular entonces la energía cinética angular de la partícula A permanece constante.