2.1 Introduction to Functions

Notebook: Discrete Mathematics [CM1020]

Created: 2019-10-07 2:31 PM **Updated:** 2019-10-21 7:08 PM

Author: SUKHJIT MANN

Tags: Domain, Exponential, Injective, Linear, Quadratic, Range, Surjective

Cornell Notes

Topic:

2.1 Introduction to

functions

Course: BSc Computer Science

Class: Discrete Mathematics-

Lecture

Date: October 21, 2019

Essential Question:

What is a function and what are its properties and how do we graph it?

Questions/Cues:

- What is a function?
- What is the formal definition of a function?
- What is the domain, co-domain and range of a function?
- What is a linear function?
- What is a Quadratic function?
- What is an Exponential function?
- What is an Injective function?
- What is an Surjective function?

Notes

- Function = A rule that relates how one quantity depends on other quantities, a relation between set of inputs and set of outputs, in which each input maps to exactly one output
 - o function maps an element of set to an element in another set
- Formal Def of Function = function f from set A to set B is an assignment of exactly 1 element of B to each element of A
 - o $f: A \rightarrow B$
 - $\circ x \in A: x \to f(x) = y (y \in B)$
- $x \in A \to f(x) = y \in B$; f: A \to B
 - 1. A is set of inputs called domain of f, $D_f = A$
 - 2. B is set of containing outputs called co-domain of f, co-Df=B
 - 3. set of all outputs called range of f, R_f
 - 4. Y called image of x, x called pre-image of y, f(x) = y

Domain, co-domain and range

Visualization

- Linear function = of the form f(x) = ax + b
 - straight line function
 - o passes through point (0, b)
 - o a is gradient or slope
 - If a is positive, increasing function, $x_1 \le x_2$ then $f(x_1) \le f(x_2)$
 - if a is negative, then decreasing function, $x_1 \le x_2 then f(x_1) \ge f(x_2)$
- Quadratic function = of the form $f(x) = ax^2 + bx + c$
 - where a, b, c are number with $a \neq 0$
- Exponential function = of the form $f(x) = b^x$ where b > 0 and $b \ne 1$
 - o variable b called the base of function
 - o if b > 1, then exponential growth
 - o if 0 < b < 1, then exponential decay
 - (0,1) is common point for both graphs and x-axis is the horizontal asymptote for both graphs
 - Domain is set of all real numbers and range is > 0

$$\frac{b^{2}b^{2}}{b^{3}} = b^{2}b^{2}$$
 $\frac{b^{2}}{b^{3}} = b^{2}b^{2}$
 $\frac{b^{2}}{b^{3}} = b^{2}b^{2}$
 $\frac{b^{2}}{b^{3}} = b^{2}b^{2}$
 $\frac{b^{2}}{b^{3}} = a^{2}b^{2}$
 $\frac{a^{2}b^{2}}{b^{2}}$
 $\frac{a^{2}b^{2}}{b^{2}} = a^{2}b^{2}$

- Injective function (one to one) = any two different inputs lead to two different outputs
 - for all $a, b \in A$, if $a \neq b$ then $f(a) \neq f(b)$
 - Equivalently, $for\ all\ a,b\in A, if\ f(a)=f(b)\ then\ a=b$
- Surjective function (onto) = every element of the co-domain of f, B has at least one pre-image in domain of f, A
 - for all $y \in B$ there exists $x \in A$ such that y = f(x)
 - \circ Equivalently, $D_f=R_f$

Summary

In this week, we learned what is function is, with what the domain, co-domain, and range of a function represent. Also we explored the equations and graphs of three common function, Linear, Quadratic and Exponential. Lastly, we looked at the injective and surjective functions.