Digital Design, A Datapath and Control Approach - The Solutions Manual

Chris Coulston

Contents

\mathbf{C}	ontents	ii
1	Numbering Systems	1
	1.1 Exercises	2

Chapter 1

Numbering Systems

1.1 Exercises

- 1. (1 pt. each) Syllabus:
 - a) What is the late penalty for homework? There is a 33% deduction per day.
 - b) True or False: Calculators can be used during exams. You cannot use calculators at my exams.
 - c) True of False: University ID is required during exams. I check ID at the exams. After I learn your names its not such a big deal, but bring it to be safe.
 - d) What is my thesis regarding grades?
 - e) Bob L. Student has the following grades. Determine his final overall course percentage and grade.

Component	Percentage
Homework	60%
Exam 1	90%
Exam 2	80%
Final	70%
~	

Component	Percentage	Weight
$\overline{Homework}$	60%	60*0.35 = 21
Exam 1	90%	90*0.20 = 18
Exam 2	80%	80*0.20 = 16
Final	70%	70*0.25 = 17.5
Total	72.5%	C

- f) How should you prepare for the 43^{rd} lecture? Look over homework problem 8.10, page 165
- 2. (1 pt. each) Convert the following numbers to decimal. Show work, or receive 1/2 credit.
 - a) $100_2 \ 100_2 = 2^2 = 4_{10}$
 - b) $1000_2 \ 1000_2 = 2^3 = 8_{10}$
 - c) $10000_2 \ 10000_2 = 2^4 = 16_{10}$
 - d) $100000_2 \ 100000_2 = 2^5 = 32_{10}$
 - e) $111111_2 \ 111111_2 = 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 63_{10}$
 - f) 1000100101000101_2 $1000100101000101_2 = 2^{15} + 2^{11} + 2^8 + 2^6 + 2^5 + 2^0 = 35141_{10}$
 - g) $3EA_{16}$ $3EA_{16} = 001111101010 = 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^3 + 2^1 = 1002_{10}$
- 3. (1 pt. each) Convert the following number to binary. Show work, or receive 1/2 credit.
 - a) $44_{16} 44_{16} = 01000100_2$
 - b) $44_{10} 44_{10} = 32 + 8 = 2^5 + 2^3 = 101100_2$
 - c) $1023_{10} 1023_{10} = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 1111111111_2$

1.1. EXERCISES 3

- 4. (1 pt. each) Convert the following number to hex. Show work, or receive 1/2 credit.
 - a) $1010111101_2 \ 1010111101_2 = 15D_{16}$
 - b) 77_{10} $77_{10} = 64 + 8 + 4 + 1 = 2^6 + 2^3 + 2^2 + 2^0 = 1001101_2 = 4D_{16}$
- 5. (2 pts. each) Toughies:
 - a) Convert 1235 to base-12 1235 = $1*5^2 + 2*5^1 + 3*5^0 = 25 + 10 + 3 = 38_{10} = 3*12^1 + 2*12^0 = 32_{12}$
 - b) Convert 789_{12} to base-5 $789_{12} = 7*12^2 + 8*12^1 + 9*12^0 = 1008 + 96 + 9 = 1113_{10} = 1*5^4 + 3*5^3 + 4*5^2 + 2*5^1 + 3*5^0 = 13423_5$
 - c) What is the largest base-10 quantity that can be represented using 5 digits in base 12?

$$BBBBB_{12} = 11 * 12^4 + 11 * 12^3 + 11 * 12^2 + 11 * 12^1 + 11 * 12^0 = 248831_{10}$$

- 6. (1 pt. each) Perform the following additions, assume a word size of four bits. Determine if overflow occurs.
 - a) $0110_2 + 0101_2 \ 0110 + 0101 = 1011$
 - b) $0010_2 + 0110_2 \ \theta\theta10 + \theta110 = 1000$
 - c) $0111_2 + 0011_2 \ 0111 + 0011 = 1010$
 - d) $0010_2 + 0101_2 \ \theta\theta10 + \theta101 = \theta111$
 - e) $0010_2 + 1010_2 \ 0010 + 1010 = 1100$
 - f) $0101_2 + 1011_2 \ 0101 + 1011 = 10000 \ overflow$
 - g) $0011_2 + 1001_2 \ 0011 + 1001 = 1100$