

Problem E2- Solution

A.1						
number	m	θ_m (degrees)	$\sqrt{n^2 - \sin^2 \theta_m} - \cos \theta_m$			
1	1	9.00	0.5142			
2	2	13.00	0.5188			
3	3	15.75	0.5229			
4	4	18.00	0.5270			
5	5	20.50	0.5322			
6	6	22.25	0.5362			
7	7	24.00	0.5406			
8	9	27.00	0.5491			
9	11	29.75	0.5579			
10	13	32.25	0.5668			
11	16	35.50	0.5798			
12	19	38.50	0.5931			
13	21	40.25	0.6015			
14	23	42.00	0.6105			
15	26	44.25	0.6228			
16	29	46.75	0.6375			
17	31	48.00	0.6453			
18	36	51.25	0.6671			
19	41	54.25	0.6891			
20	46	57.00	0.7110			
21	51	59.50	0.7325			
22	56	62.00	0.7555			
23	61	64.00	0.7750			
24	66	66.25	0.7982			
25	71	68.25	0.8200			
26	75	69.75	0.8371			

S2-2

A.3
B = 229.1
A = -116.8

B.1						
number m		θ_m (degrees)	θ_m^2 (rad 2)			
1	1	2.50	0.00190			
2	2	4.25	0.00550			
3	3	5.50	0.00921			
4	4	6.50	0.01287			
5	5	7.25	0.01601			
6	6	8.25	0.02073			
7	8	9.50	0.02749			
8	10	10.75	0.03520			
9	12	11.75	0.04206			
10	15	13.25	0.05348			
11	18	14.50	0.06405			
12	20	15.25	0.07084			
13	22	16.00	0.07798			
14	25	17.00	0.08803			
15	29	18.50	0.10426			
16	31	19.00	0.10997			
17	33	19.75	0.11882			

$$B.2$$

$$m = \frac{H}{2\lambda} \left(1 - \frac{1}{n} \right) \theta_m^2$$

B.4
B = 275.7
A = 0.43

 $\frac{\text{B.5}}{\text{H} = (1.061 \pm 0.004)mm}$

C.1						
number	m	$ heta_m$ (degree)	θ_m^2 (rad ²)			
1	1	5.75	0.01007			
2	2	7.75	0.01830			
3	3	9.50	0.02749			
4	4	10.75	0.03520			
5	5	12.00	0.04386			
6	6	13.00	0.05148			
7	7	14.00	0.05971			
8	8	14.75	0.06627			
9	9	15.75	0.07556			
10	10	16.50	0.08293			
11	11	17.25	0.09064			
12	12	18.00	0.09870			
13	13	18.50	0.10426			
14	14	19.25	0.11288			
15	15	19.75	0.11882			

$$m = \frac{H}{2\lambda} \left(N - \frac{N^2}{n} \right) \theta_m^2$$

C.2

D.1			D.3		
number	m	θ_m (degree)	u	w	
1	1	13.25	0.00436	0.24795	
2	2	19.00	0.00873	0.24265	
3	3	23.00	0.01309	0.24981	
4	4	26.00	0.01746	0.26200	
5	5	29.00	0.02182	0.26474	
6	6	31.50	0.02619	0.27069	
7	7	33.75	0.03055	0.27653	
8	8	35.75	0.03492	0.28307	
9	10	39.25	0.04365	0.29637	
10	12	42.25	0.05238	0.30973	
11	15	46.25	0.06547	0.32743	
12	18	50.00	0.07857	0.34076	
13	20	52.00	0.08730	0.35289	
14	22	53.75	0.09603	0.36608	
15	25	56.25	0.10912	0.38415	
16	28	58.50	0.12222	0.40213	
17	30	60.00	0.13095	0.41261	
18	32	61.25	0.13968	0.42517	
19	35	63.25	0.15277	0.44072	
20	38	65.00	0.16587	0.45761	
21	40	66.00	0.17460	0.47008	
22	42	67.00	0.18333	0.48193	
23	44	68.00	0.19205	0.49320	
24	46	68.75	0.20078	0.50715	
25	48	69.75	0.20951	0.51739	

$$u = \frac{m\lambda}{h} \qquad w = \frac{\frac{m\lambda}{h} \left(n + \frac{m\lambda}{2h} \right)}{1 - \cos\theta_m}$$

By removing the first 3 points

Theoretical calculations:

B.2 & C.2:

$$m = \frac{H}{\lambda} \left(\sqrt{n^2 - N^2 \sin^2 \theta_m} - N \cos \theta_m \right) - \frac{H}{\lambda} (n - N)$$

$$\theta_m \ll 1: \quad \sin \theta_m \approx \theta_m \quad ; \quad \cos \theta_m \approx 1 - \frac{\theta_m^2}{2}$$

$$m = \frac{H}{\lambda} \left(n \sqrt{1 - \frac{N^2 \theta_m^2}{n^2}} - N \left(1 - \frac{\theta_m^2}{2} \right) \right) - \frac{H}{\lambda} (n - N)$$

$$m = \frac{H}{\lambda} \left(n \left(1 - \frac{N^2 \theta_m^2}{2n^2} \right) - N \left(1 - \frac{\theta_m^2}{2} \right) \right) - \frac{H}{\lambda} (n - N)$$

$$m = \frac{H}{2\lambda} N \left(1 - \frac{N}{n} \right) \theta_m^2$$

$$N = 1: m = \frac{H}{2\lambda} \left(1 - \frac{1}{n} \right) \theta_m^2$$

D.2:

$$m = \frac{h}{\lambda} \left(\sqrt{n^2 - N^2 sin^2 \theta_m} - N cos \theta_m \right) - \frac{h}{\lambda} (n - N)$$

$$\frac{m\lambda}{h} + n - N(1 - cos \theta_m) = \sqrt{n^2 - N^2 sin^2 \theta_m}$$

$$\left(\frac{m\lambda}{h}\right)^2 + 2n(\frac{m\lambda}{h}) + n^2 + N^2 (1 - cos \theta_m)^2 - 2N(1 - cos \theta_m)(\frac{m\lambda}{h} + n) = n^2 - N^2 sin^2 \theta_m$$

$$\left(\frac{m\lambda}{h}\right)^2 + 2n\left(\frac{m\lambda}{h}\right) + N^2 (2 - 2cos \theta_m) - 2Nn(1 - cos \theta_m) - 2N(1 - cos \theta_m)(\frac{m\lambda}{h}) = 0$$

$$\frac{m\lambda}{h} \left(n + \frac{m\lambda}{2h}\right) - Nn - N\left(\frac{m\lambda}{h}\right) = 0$$

$$\frac{m\lambda}{h} \left(n + \frac{m\lambda}{2h}\right) - Nn - N\left(\frac{m\lambda}{h}\right) = 0$$

$$\frac{m\lambda}{h} \left(n + \frac{m\lambda}{2h}\right) - Nn - N\left(\frac{m\lambda}{h}\right) = 0$$

$$\frac{m\lambda}{h} \left(n + \frac{m\lambda}{2h}\right) - Nn - N\left(\frac{m\lambda}{h}\right) = 0$$

$$\frac{m\lambda}{h} \left(n + \frac{m\lambda}{2h}\right) - Nn - N\left(\frac{m\lambda}{h}\right) = 0$$

$$\frac{m\lambda}{h} \left(n + \frac{m\lambda}{2h}\right) - Nn - N\left(\frac{m\lambda}{h}\right) = 0$$

Error calculations:

Linear equation slope and intercept uncertainties:

$$\Delta B = B \sqrt{\frac{1}{n-2}(\frac{1}{r^2} - 1)} \qquad ; \qquad \Delta A = \Delta B \sqrt{\bar{x}^2 + \sigma_x^2}$$

C.5:

$$B = \frac{H}{2\lambda} \left(N - \frac{N^2}{n} \right) \Rightarrow \left(N - \frac{N^2}{n} \right) = \frac{2\lambda}{H} B \equiv c$$

$$\Rightarrow \frac{\Delta c}{c} = \sqrt{\left(\frac{\Delta B}{B} \right)^2 + \left(\frac{\Delta H}{H} \right)^2}$$

$$\left(N - \frac{N^2}{n} \right) = c \Rightarrow N = \frac{n}{2} \pm \sqrt{\left(\frac{n}{2} \right)^2 - c n}$$

A negative sign is unacceptable in this equation.

$$N = \frac{n}{2} + \sqrt{\left(\frac{n}{2}\right)^2 - c \, n} \Rightarrow \Delta N = \frac{n}{2\sqrt{\left(\frac{n}{2}\right)^2 - c \, n}} \Delta c$$

D.6:

$$N_A(n - N_A) = A \Rightarrow N_A = \frac{n}{2} \pm \sqrt{\left(\frac{n}{2}\right)^2 - A}$$

A negative sign is unacceptable in this equation.

$$N_A = \frac{n}{2} + \sqrt{\left(\frac{n}{2}\right)^2 - A} \Rightarrow \Delta N_A = \frac{\Delta A}{2\sqrt{\left(\frac{n}{2}\right)^2 - A}}$$

Of course, this is calculated by ignoring the error of u and w. Since there is an h value in u and w, the h error causes an error in this quantity that is not included.