Optimization algorithms

```
测验, 10 个问题
第 1 个问题
1
point
```

1。第1个问题

Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?

```
a[3]{7}(8)
a[8]{7}(3)
a[8]{3}(7)
a[3]{8}(7)
第 2 个问题
1
point
```

2。第2个问题

Which of these statements about mini-batch gradient descent do you agree with?

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.

Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.

You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).

```
第 3 个问题
1
point
```

3。第3个问题

Why is the best mini-batch size usually not 1 and not m, but instead something in-between?

If the mini-batch size is 1, you end up having to process the entire training set before making any progress.

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

第 4 个问题 1 point

4。第4个问题

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

第 5 个问题 1 point

5。第5个问题

Suppose the temperature in Casabianca over the first three days of January are the same:

Jan 1st: θ1=10oC

Jan 2nd: θ210oC

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with β =0.5 to track the temperature: v0=0 , vt= βvt -1+(1- $\beta)\theta t$. If v2 is the value computed after day 2 without bias correction, and v2corrected the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

v2=7.5, v2corrected=10

v2=10 , v2corrected=10

v2=7.5 , v2corrected=7.5

v2=10 , v2corrected=7.5

第6个问题

1

point

6。第6个问题

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

 $\alpha = 1t\alpha 0$

 α =0.95t α 0

 $\alpha=11+2*t\alpha0$

 α =et α 0

第7个问题

1

point

7。第7个问题

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $vt=\beta vt-1+(1-\beta)\theta t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Increasing β will shift the red line slightly to the right.

Decreasing β will create more oscillation within the red line.

Increasing β will create more oscillations within the red line.

第 8 个问题 1 point

8。第8个问题

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

```
第9个问题
```

point

9。第9个问题

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function J(W[1],b[1],...,W[L],b[L]). Which of the following techniques could help find parameter values that attain a small value for J? (Check all that apply)

Try initializing all the weights to zero

Try better random initialization for the weights

Try using Adam

Try mini-batch gradient descent

Try tuning the learning rate α

第 10 个问题

1

point

10。第 10 个问题

Which of the following statements about Adam is False?

The learning rate hyperparameter α in Adam usually needs to be tuned.

Adam combines the advantages of RMSProp and momentum

Adam should be used with batch gradient computations, not with mini-batches.

We usually use "default" values for the hyperparameters $\beta 1, \beta 2$ and ϵ in Adam ($\beta 1=0.9$, $\beta 2=0.999$, $\epsilon=10-8$)

我了解不是我自己完成的作业将永远不会通过该课程且我的 Coursera 帐号会被取消激活。