杭州电子科技大学信息工程学院期末考试卷(A)卷 2. 函数 z = f(x,y) 在点 (x_0,y_0) 处具有偏导数是它在该点存在全微分的(

- 一、填空题(每小题3分,本题共30分):
- 1. 微分方程 $y^3y''+x(y')^4-y=0$ 的阶数是 .
- 3. 交换积分次序 $\int_{1}^{2} dx \int_{0}^{x-1} f(x, y) dy =$ ______
- 4. 无穷级数 $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{3^n}$ 的和是______.
- 5. 微分方程 $y'+y-e^x=0$ 的通解是_____.
- 6. 二元函数的极限 $\lim_{(x,y)\to(0,0)} (x+\sqrt[3]{xy}) \sin\frac{1}{x} =$ ______
- 8. 计算累次积分 $\int_0^1 dx \int_x^1 \cos y^2 dy =$ ______
- 9. $f(x) = e^x$ 展开成 x 的幂级数是______.
- 二、选择题(每题3分,共30分)
- 1. 若 y_1, y_2 是二阶齐次线性方程 y'' + P(x)y' + Q(x)y = 0 的两个特解,那么 $y = C_1y_1 + C_2y_2$ (其中
 - *C*₁, *C*₂ 是任意常数) ().
 - (A)是该方程的通解 (B)是该方程的解 (C)是该方程的特解(D)不一定是该方程的解

- (A) 必要条件而非充分条件
- (B) 充分条件而非必要条件

(C) 充分条件

- (D) 既非充分条件也非必要条件
- 3. 计算积分 $\iint_{D} \sqrt{9-x^2-y^2} d\sigma$ (其中 $D: x^2+y^2 \le 9, x \ge 0, y \ge 0$) (
- (A) $\frac{9\pi}{2}$ (B) 9π (C) 18π (D) $\frac{9\pi}{4}$

- **4.** 已知级数 $\sum_{n=0}^{\infty} a_n$ 收敛,那么下面几个级数中发散的是().
- (A) $\sum_{n=100}^{\infty} a_n$ (B) $\sum_{n=1}^{\infty} a_{n+100}$ (C) $\sum_{n=1}^{\infty} (a_n + 100)$ (D) $100 + \sum_{n=1}^{\infty} a_n$

- 5. 方程 $y''-4y'+4y=2e^{3x}$ 具有特解 ().
 - (A) $y = (ax^2 + bx)e^{3x}$ (B) $y = (ax + b)e^{3x}$
 - (C) $y = axe^{3x}$ (D) $y = ae^{3x}$
- **6.** 求解微分方程 $y'' + y' = e^y$ 时,应作变换 ().
- (A) $y' = e^y$ (B) y' = p(y) (C) y' = p(x) (D) $y' = e^x$
- 7. 已知 z = f(u,v) 有二阶连续偏导数,且 z = f(x+y,xy),那么下面式子中正确的是

().

- (A) $\frac{\partial^2 z}{\partial x^2} = f " + y f "$
- (B) $\frac{\partial^2 z}{\partial y^2} = f'' + 2y f''_{12}$;
- (C) $\frac{\partial^2 z}{\partial r^2} = f + 2yf + yf$ (D) $\frac{\partial^2 z}{\partial r^2} = f + 2yf + y^2 f$

- **8.** 对于函数 $f(x, y) = x^2 2xy + 2y^2 + 2$,下面哪一项是正确的(
 - (A) 有极大值 0
- (B) 有极大值 2
- (C) 有极小值 2
- (D) 无极值

9. 设D是由x轴,y轴及x=1,y=1围成的区域,则

$$I_1 = \iint_D xy d\sigma, I_2 = \iint_D (x+y) d\sigma, I_3 = \iint_D (x^2 + y^2) d\sigma,$$

的大小顺序是().

- (A) $I_1 \ge I_2 \ge I_3$ (B) $I_2 \ge I_3 \ge I_1$ (C) $I_2 \ge I_1 \ge I_3$ (D) $I_1 \ge I_3 \ge I_2$ 4. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域及和函数。 10. 下面的几个幂级数中,哪一项不是 $\frac{1}{2-x}$ (1 < x < 2) 的展开式() .
 - $(A) \sum_{n=1}^{\infty} \frac{x^{n-1}}{2^n}$

(B) $\sum_{n=1}^{\infty} (x-1)^{n-1}$

(C) $\sum_{n=1}^{\infty} \left(\frac{x}{2}\right)^n$

- (D) $\sum_{i=1}^{\infty} \frac{(x+1)^{n-1}}{3^n}$
- 三、判断题(每小题2分,本题共10分)
- 1. 两个级数 $\sum_{i=1}^{\infty} a_n$, $\sum_{i=1}^{\infty} b_n$ 满足 $a_n \leq b_n$, 若 $\sum_{i=1}^{\infty} b_n$ 收敛,则 $\sum_{i=1}^{\infty} a_n$ 也收敛().
- 2. 已知 $y_1 = x^2$, $y_2 = 3$ 是方程 y'' + f(x)y' + g(x)y = 0的两个特解,那么该方程的通解是

$$y = C_1 x^2 + C_2 \tag{}$$

- 3. 一个二元函数如果在定义域上处处存在偏导数,那么该函数处处连续(
- **4.** 幂级数 $\sum_{n=0}^{\infty} a_n (x-3)^n$ 在 x=1 处绝对收敛,那么在 x=4 处也收敛......

四、计算下列各题(每小题6分,本题共24分)

- 1. 求微分方程 y'' 2y' = 4 满足 y(0) = y'(0) = 0 的特解.
- 2. 函数 $f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$ 在(0,0)点处的偏导数 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ 及 $\lim_{(x,y)\to(0,0)} f(x,y)$.
- 3. 计算二重积分 $\iint_{\Sigma} e^{\sqrt{x^2+y^2}} d\sigma$, 其中 $D:1 \le x^2 + y^2 \le 4$.
- 五、 证明题(6分)

证明:
$$\int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(\sqrt{x^2+y^2}) dy = \pi \int_{0}^{1} x f(x) dx.$$

专业

2.解:

一、选择题

学号(8位)

题号	1	2	3	4	5	6	7	8	9	10
答案										

班级

3解:

4解:

二、填空题

4		2		2	
Ι.	•	۷.	•	ა.	 •

4. ______. 5. _____. 6. _____.

7. . 8. . 9. .

10.

三、判断题

五、证明题

题号	1	2	3	4	5
答案					

四、计算题

1. 解: