Distributed Systems

Mobile & IoT Computing

Rik Sarkar

University of Edinburgh Fall 2016

Mobile and Ubiquitous computing

- Devices (computers) are carried by people (mobile)
 - Laptops, phones, watches ...
- They are everywhere
 - Carried by people (mobile)
 - Embedded in the environment
 - Coffee machines, cameras, sensors for light control, elevators...
 - Produce large amounts of data
 - Usage, sensing...

Ubiquitous

Advantages:

- There are computers everywhere
- Everything is "smart"
- Potentially use computations on these to make them even smarter

Challenges:

- There are more things to go wrong
- Not easy to make things work well coherently
- Consistent platforms for managing ubiquitous devices do not exist (yet)
- Devices do not interoperate easily

Advantages:

- The same device is carried by the person easy to give consistent service
- Information whenever, wherever they need
- Devices have sensors potential for sensing the environment and adapting

Disadvantages:

- Connectivity is challenge: data is costly; network does not work the same way; mobility interferes with comunication
- Limited battery: can't do too much communication
- How to make use of sensors, not so well understood

Context aware computing

- Adapt computations to the circumstances
 - Time of day
 - Is the user present?
 - Is the phone in hand or in pocket
 - Scan for wifi only when indoors
 - Turn off ring when in cinema, meeting...
 - Recognize activity and bring up relevant information

— ...

Context aware computing

- Adapt computations to the circumstances
- Basic contexts are easy to identify, but it is not always clear how to adapt
 - Turn down volume at night... but what if it is an important call?
- Many contexts are very hard to detect reliably

Example: Indoor vs Outdoor

- Use sensors on a phone, turn off wifi scanning outdoors
- Light levels are much higher outdoors
 - In daytime and if phone is not in pocket
- City streets are noisier
- Cellular signal strengths drop indoors
 - Depends on place
- Temperature, magnetic field...

Other context detection examples

- Use sound to detect user in a meeting
- Detect transport mode (walking, car, bus, tram..)
 - Using accelerometer
- Detect presence of other users nearby from wifi activity

Context detection

- Generally hard
- Concerns about privacy: you do not want to send context information to a server
- Perhaps distributed computation can help
 - Use data from many phones to detect context
 - But again, do not want to send all data to server
 - Do as much of it as possible on device filter/ process data at source

Networking in mobile systems

• Difficulty:

- \bigcirc
- The network graph changes
- A node is not always connected to the same router

- Example system: Mobile ad-hoc networks
 - Ad-hoc: Unplanned
 - Devices simply connect to nearby devices and route packets
 - Also applies to sensor networks

Routing in ad hoc wireless networks

- Find route between pairs of nodes wishing to communicate.
- Proactive protocols: maintain routing tables at each node that is updated as changes in the network topology are detected.
 - Heavy overhead with high network dynamics (caused by link/node failures or node movement).
 - Not practical for networks that change frequently

Routing in ad hoc wireless networks

- Reactive protocols: routes are constructed on demand. No global routing table is maintained.
- More appropriate for networks with high rate of changes
 - Ad hoc on demand distance vector routing (AODV)
 - Dynamic source routing (DSR)

Dynamic Source Routing (DSR)

- Node S wants to send a message to node D
- S initiates a a route discovery
- S floods the network with route request (RREQ) message
- Each node appends its own id to the message

Route Discovery in DSR

- Destination D on receiving the first RREQ sends a route reply (RREP)
- RREP is sent on a route obtained by reversing the route in received RREQ

When node S sends a data packet to D, the entire route is included in the packet header, hence the name source routing

- When a link fails, an error message with the link name is sent back to S.
- S deletes any route using that link and starts discovery.

 Distributed Systems, Edinburgh, 2016

Route caching

 When a node receives or forwards a message, it learns routes to all nodes on the path

Advantage:

- S may not need to send RREQ
- Intermediate node on receiving RREQ, can respond with complete route

Disadvantage:

 Caches may be stale: S tries many cached routes before starting a discovery. Or, intermediate nodes return outdated information.

DSR: Summary

Advantages:

- Routes computed only when needed good for changing networks
- Caching can make things efficient
- Does not create loops

Disadvantages

- Entire route must be contained in message: can be long for large networks
- Flooding causes communication to many nodes
- Stale caches can be a problem
- Not suitable for networks where changes are too frequent

Ad hoc On-Demand Distance Vector Routing (AODV)

- Maintains routing tables at nodes so that the route need not be stored in the message
- No Caches: Only one route per destination

Source floods the network

- Other nodes create parent pointer
- A node forwards a RREQ only once

- Other nodes create parent pointer
- A node forwards a RREQ only once

RREP is forwarded via reverse path

- RREP is forwarded via reverse path
- Creates a forward path, Edinburgh, 2016

Route expiry

- A path expires if not used for a certain time.
- If a node sees that a routing table entry has not been used by this time, it removes this entry
- Even if the path itself is valid
- Good for networks with frequent changes
- Bad for static and stable networks

Can create loops

- Assume C->D link has failed, but A does not know because the ERR message was lost
- C is now trying to find path to D
- A responds since A thinks it has a path
- Creates loop: C-E-A-B-C

Sequence numbers in AODV

- If A has a route to D, A keeps a sequence number.
- A increments this number periodically: tells how old the information is

Using sequence numbers

Rule: sequence number must increase along any route

Sequence number rule avoids loop

 A does not reply, since its sequence no. is less than that of C

AODV

- Routing tables, message does not contain route
- Fresh routes preferred
- Old unused routes expire
- Stale routes less problematic
- Needs sequence numbers to prevent loops
- Better for more dynamic, changing environments

Routing in ad hoc networks

- Reactive protocols: routes are constructed on demand. No global routing table is maintained.
- More appropriate for networks with high rate of changes
 - Ad hoc on demand distance vector routing (AODV)
 - Dynamic source routing (DSR)
- Need flooding
 - Inefficient in large networks

Geographical routing: Using location

 Geographical routing uses a node's location to discover path to that node.

Geographical routing

Assumptions:

- Nodes know their own geographical location
- Nodes know their 1-hop neighbors
- Routing destinations are specified geographically (a location, or a geographical region)
- Each packet can hold a small amount of routing information.

Sensor network

- Sensors enabled with wireless
 - Can communicate with nearby sensors
 - Communication to server relatively costly
- Low power, but lots of data
 - Not worth sending everything to server

- Try use the data directly inside the network
 - In-network distributed computing

Problem: How to find the relevant data?

A tourist in a park asks

"Where is the elephant?"

Out of all the sensors/cameras which one is close

to an elephant?

Data centric routing

- Traditional networks try to route to an IP address
- Find path to the node with a particular ID
- But what if we try to find data, not specific nodes?
- After all, delivering data is the ultimate goal of routing and networks
- Data centric storage
 - Storage depends on the data (elephant, giraffe, song...)
- Data centric routing (search)
 - Route to the data

Distributed Database

- Information Producer
 - Can be anywhere in the network
 - May be mobile
 - Many producers may generate data of the same type
- User or Information Consumer
 - Can be anywhere
 - May be many

Distributed Database: Challenges

- Consumer does not know where the producer is, and vice versa
- Need to search : Must be fast, efficient

Basic methods:

- Push: Producer disseminates data
- Pull: Consumer looks for the data
- Push-pull: Both producer, consumer search for each-other

Distributed hash tables

- Use a hash on the data: h(song1.mp3) = node#26
- Anyone that has song1.mp3 informs node#26
- Anyone that needs Song1.mp3 checks with node#26
- Used in peer to peer systems like Chord, pastry etc

Geographic Hash Tables

Content based hash gives coordinates:

$$- h(lion) = (12, 07)$$

 Producer sends msg to (12, 07) by geographic routing and stores data

 Consumer sends msg to (12, 07) by geographic routing and gets data

GHT

What if there is no sensor at (12, 07)?

Use the sensor nearest to it

Fault handling

- What if home node a dies?
- Replicas have a timer that triggers a new check
- A new node becomes home

GHT

- Advantages
 - Simple
 - Handles load balancing and faults
- Disadvantages
 - Not distance sensitive: everyone has to go to hash node even if producer and consumer are close
 - If a data is queried or updated often, that node has a lot of traffic – bottleneck

Rumor Routing

 Producer: Send data along a curve or random walk, leave data or pointers on nodes

 Consumer: Route along another curve or random walk, hope to meet data or pointer

Rumor routing

- Each node maintains a list of events
- Adds events as they happen

- Agents: Packets that carry events in the network
 - Aggregate events of each node they pass through
- Agents move in random walk. From 1-hop neighbors select one that has not been visited recently

Mobile, Ad-hoc and Sensor network

- A difficult model least infrastructure, low power nodes, communication/computation expensive
- Not entirely realistic
- However, it makes least number of assumptons
 - useful as a basis for developing distributed protocols/ algorithms
 - Which can then be enhanced using available infrastructure in specific cases