Pokyny pre riešenie domácich úloh

Riešenia odovzdávajte cez webové rozhranie http://foja.dcs.fmph.uniba.sk/eval. Na tejto webovej stránke sa registrujte a v sekcii Predmety si zaškrtnite Tvorbu efektívnych algoritmov.

V sekcii úlohy môžete odovzdávať svoje riešenia domácich úloh. Pre každú úlohu je potrebné odovzdať funkčný program, ktorý správne vyrieši **všetky vstupy** v časovom limite. Riešenie môžete odovzdávať aj viackrát, hodnotí sa len **posledné** riešenie odovzdané do stanoveného termínu. Navyše si dajte pozor, či v systéme máte správne vyplnené meno a priezvisko (sekcia Môj účet). Podrobnosti o tom, ako má váš program vyzerať (vrátane povolených programovacích jazykov), nájdete v sekcii Návod.

Pre úspešné absolvovanie predmetu je potrebné vyriešiť aspoň 5 zo 7 domácich úloh, každú do stanoveného termínu.

Pri riešení úloh je povolené (nie povinné) konzultovať ich s kýmkoľvek, vrátane prednášajúceho a spolužiakov. Samotné programovanie riešenia je však nutné robiť úplne samostatne so zavretými poznámkami. Pri programovaní riešenia neprepisujte kód z cudzích zdrojov a internet používajte len na dokumentáciu ku programovaciemu jazyku.

V prípade nejasností sa obrářte na cvičiaceho (osobne alebo e-mailom).

Domáca úloha číslo 4

Termín odovzdania je 21.4.2022 do 23:55

V rade máme postavených n prázdnych pohárikov očíslovaných od 1 po n. Občas niekto príde a do každého pohárika v zadanom intervale a až b (vrátane týchto dvoch pohárikov) vloží jeden kamienok. A raz za čas potrebujeme vedieť koľko kamienkov je v poháriku číslo x. Naprogramujte algoritmus, ktorý bude spracovávať obe tieto operácie.

Formát vstupu

Na prvom riadku sú dve čísla n a q $(1 \le n, q \le 100\,000)$ – počet pohárikov a počet operácií, ktoré treba spracovať.

Nasleduje q riadkov. Každý z nich má jeden z nasledovných dvoch tvarov. 1 x – otázka na počet kamienkov v pohári s číslom x ($1 \le x \le n$). 2 a b – do všetkých pohárikov medzi a a b (vrátane) vložíme jeden kamienok ($1 \le a \le b \le n$).

Formát výstupu

Pri každej operácii typu 1 x vypíšte jedno číslo – počet kamienkov v poháriku s číslom x.

Príklad

vstup					
5	7				
2	3	5			
1	2				
2	1	4			
2	4	4			
1	4				
1	2				
2	1	1			

vystup					
0					
3					
1					

výctun

Pri prvej otázke v poháriku číslo dva ešte nie je žiaden kamienok, lebo sú iba v pohároch 3 až 5. Keď sa pýtame na pohár číslo 4, tak sú v ňom už 3 kamienky. A v pohári dva je už jeden kamienok, ktorý bol pridaný v intervale 1 až 4.

Rada:

Táto úloha sa síce dá vyriešiť intervalovým stromom s lazy-loading operáciami (a kľudne si ho vyskúšajte naprogramovať), no ak sa trochu zamyslíte, viete prísť aj na riešenie, ktorému stačia klasické operácie intervalového stromu.

Rada 2 a upozornenie:

Úloha sa dá vyriešiť aj v Pythone bez akýchkoľvek optimalizácií, v iných jazykoch to však bude asi trochu menej tesné. Zároveň si vyhradzujem právo spätne **neakceptovať** riešenia, ktorých asymptotická časová zložitosť by bola $O(n^2)$.

(V preklade, časový limit je trochu štedrejší, aby prešiel aj Python, nesnažte sa to využiť v iných jazykoch na implementáciu riešenia bez intervalového stromu.)