Zadanie: CZW

Drzewo czwórkowe

XXVII OI, etap II, dzień pierwszy. Plik źródłowy czw.* Dostępna pamięć: 256 MB. 12.02.20

Dana jest kwadratowa bitmapa o rozmiarach $2^m \times 2^m$. Każdy piksel bitmapy jest albo biały, albo czarny. Taką bitmapę można reprezentować w formie skompresowanej za pomocą drzewa czwórkowego. Jeżeli wszystkie piksele bitmapy są białe, drzewo składa się z jednego wierzchołka z etykietą 0. Jeżeli wszystkie piksele są czarne, drzewo ma jeden wierzchołek z etykietą 1. W przeciwnym wypadku korzeń drzewa ma etykietę 4 i posiada on cztery poddrzewa, które odpowiadają czterem ćwiartkom bitmapy o rozmiarach $2^{m-1} \times 2^{m-1}$ (w kolejności lewa górna, prawa górna, lewa dolna i prawa dolna). Drzewo można opisać za pomocą słowa złożonego ze znaków 0, 1 i 4: opis drzewa zaczyna się etykietą jego korzenia, po której następują kolejno opisy jego poddrzew. Na poniższym rysunku przedstawiono przykładową bitmapę dla m=3 oraz odpowiadające jej drzewo czwórkowe, którego opisem jest słowo 404004111014001410011:

Obszarem nazwiemy maksymalny zbiór sąsiadujących ze sobą pikseli koloru czarnego (przy czym piksele sąsiadują ze sobą, jeśli stykają się bokiem)*. Dla danego słowa opisującego bitmapę, wyznacz liczbę obszarów oraz wielkość największego z nich. W powyższym przykładzie mamy dwa obszary o rozmiarach 24 i 5.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita $m \ (m \ge 0)$, reprezentująca wielkość bitmapy. W drugim wierszu znajduje się niepuste słowo kodujące bitmapę złożone ze znaków 0, 1 i 4. Możesz założyć, że wejście jest poprawne, w szczególności wysokość drzewa czwórkowego (czyli liczba krawędzi na ścieżce od korzenia do najgłębszego wierzchołka) jest nie większa niż m. Bitmapa zawiera co najmniej jeden czarny piksel.

Wyjście

Twój program powinien wypisać na wyjście dwa wiersze. W pierwszym z nich powinna się znaleźć liczba oznaczająca liczbę obszarów na bitmapie. W drugim wierszu powinna się znaleźć liczba oznaczająca wielkość największego obszaru. Druga z tych liczb może być bardzo duża, więc należy wypisać jej resztę z dzielenia przez $10^9 + 7$.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

3 2 404004111014001410011 24

Testy "ocen":

1
ocen: m=3, bitmapa ma w rogach czarne kwadraty
 2×2 – zawiera więc cztery obszary wielkości 4;

20cen: m=9, bitmapa jest pomalowana w szachownicę – zawiera $(2^9)^2/2=2^{17}$ obszarów wielkości 1;

3ocen: m=16, bitmapa jest cała czarna – zawiera jeden obszar wielkości $(2^{16})^2=2^{32}$.

^{*}Formalnie, obszarem nazwiemy zbiór pikseli koloru czarnego, taki że z każdego z nich da się dojść do każdego innego, przechodząc przez pewną liczbę pikseli koloru czarnego, z których każde kolejne dwa stykają się bokiem. Obszar nazwiemy maksymalnym, jeśli nie można go powiększyć o żaden inny piksel koloru czarnego, tak aby nadal był obszarem. W tym zadaniu rozważamy tylko obszary maksymalne.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów. Liczba n oznacza długość słowa opisującego bitmapę.

Jeśli Twój program poprawnie wypisze tylko jedną z liczb na wyjściu, uzyska 50% punktów przewidzianych za test. Nadal musi jednak wtedy wypisać dwa wiersze, każdy zawierający liczbę całkowitą od 0 do 10^9+6 .

Podzadanie	Warunki	Liczba punktów
1	$m \le 10$	24
2	$m, n \le 1000$	36
3	$m, n \le 10^6$	32
4	$m \le 10^9, n \le 10^6$	8