

CS240 Algorithm Design and Analysis

Lecture 27

Approximation Algorithms

Quan Li Fall 2023 2024.01.12

Generalized Load Balancing

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.

- Job j must run contiguously on an authorized machine in $M_j \subseteq M$.
- Job j has processing time t_j.
- Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is $L_i = \sum_{j \in J(i)} t_j$.

Def. The makespan is the maximum load on any machine = $\max_i L_i$.

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x_{ij} = time machine i spends processing job j.

$$(IP) \ \, \min \quad L$$
 s. t. $\sum_{i} x_{ij} = t_{j} \quad \text{for all } j \in J$ $\sum_{i} x_{ij} \leq L \quad \text{for all } i \in M$ $x_{ij} \in \{0, t_{j}\} \quad \text{for all } j \in J \text{ and } i \in M_{j} \in J$ $x_{ij} = 0 \quad \text{for all } j \in J \text{ and } i \notin M_{j} \in J$

LP relaxation.

(LP) min
$$L$$

s. t. $\sum_{i} x_{ij} = t_{j}$ for all $j \in J$
 $\sum_{i} x_{ij} \le L$ for all $i \in M$
 $x_{ij} \ge 0$ for all $j \in J$ and $i \in M_{j}$
 $x_{ij} = 0$ for all $j \in J$ and $i \notin M_{j}$

Generalized Load Balancing: Lower Bounds

Lemma 1. The optimal makespan $L^* \geq \max_j t_j$.

Pf. Some machine must process the most time-consuming job.

Lemma 2. Let L be the optimal value to the LP. Then, the optimal makespan $L^* \ge L$.

Pf. LP has fewer constraints than IP formulation. ■

Generalized Load Balancing: structure of LP solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. Then G(x) is acyclic.

Pf. (deferred)

can transform x into another LP solution where G(x) is acyclic if LP solver doesn't return such an x

o job

machine

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root forest G(x) at some arbitrary machine node r.

- If job j is a leaf node, assign j to its parent machine i.
- If job j is not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.

Pf. If job j is assigned to machine i, then $x_{ii} > 0$. LP solution can only assign positive value to authorized machines.

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then $x_{ij} = t_j$. Pf. Since j is a leaf, $x_{ij} = 0$ for all $i \neq parent(j)$. LP constraint guarantees $\Sigma_i \times_{ij} = t_j$.

Lemma 6. At most one non-leaf job is assigned to a machine.

Pf. The only possible non-leaf job assigned to machine i is parent(i).

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation. Pf.

- Let J(i) be the jobs assigned to machine i.
- By Lemma 6, the load L_i on machine i has two components:

-leaf nodes

- parent(i)

Lemma 5
$$\sum_{\substack{j \in J(i) \\ j \text{ is a leaf}}} t_j = \sum_{\substack{j \in J(i) \\ j \text{ is a leaf}}} \sum_{\substack{j \in J(i) \\ j \text{ is a leaf}}} \leq \sum_{\substack{j \in J}} x_{ij} \leq L \leq L *$$

$$\text{optimal value of LP}$$

$$t_{\text{parent}(i)} \leq L *$$

■ Thus, the overall load $L_i \le 2L^*$.

Generalized Load Balancing: Flow Formulation

Flow formulation of LP.

$$\sum_{i} x_{ij} = t_{j} \text{ for all } j \in J$$

$$\sum_{j} x_{ij} \leq L \text{ for all } i \in M$$

$$x_{ij} \geq 0 \text{ for all } j \in J \text{ and } i \in M_{j}$$

$$x_{ij} = 0 \text{ for all } j \in J \text{ and } i \notin M_{j}$$

Observation. Solution to feasible flow problem with value L are in one-to-one correspondence with LP solutions of value L.

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ii} > 0$. We can find another solution (x', L) such that G(x') is acyclic.

Pf. Let C be a cycle in G(x).

- Augment flow along the cycle C. ← flow conservation maintained
- At least one edge from C is removed (and none are added).
- Repeat until G(x') is acyclic.

K-Center Problem

K-Center Problem

- Given a city with n sites, we want to build k centers to serve them.
 - \square Let S be set of sites, C be set of centers.
- Each site uses the center closest to it.
 - □ Distance of site s from the nearest center is $d(s,C) = min_{c \in C}d(s,c)$.
- Goal is to make sure no site is too far from its center.
 - □ We want to minimize the max distance that any site is from its closest center.
 - Minimize $r(C) = max_{s \in S} min_{c \in C} d(s, c)$.
 - \square C is called a cover of S, and r is called C's radius.
 - □ Where should we put centers to minimize the radius?
- Assume distances satisfy triangle inequality.

Gonzalez's Algorithm

- k-Center is NP-complete.
- We'll give a simple 2-approximation for it.
- Idea Say there's one site that's farthest away from all centers. Then it makes the radius large. We'll put a center at that site, to reduce the radius.
 - □ Note we allow putting center at same location as site.

Gonzalez's Algorithm

- C is set of centers, initially empty.
- □ repeat k times
 - choose site s with maximum d(s,C)
 - □ add s to C
- □ return C
- Note The centers are located at the sites.

- Let C be the algorithm's output, and r be C's radius.
 - $\square r = max_{s \in S} min_{c \in C} d(s, c)$
- Lemma 1 For any $c, c' \in C$, $d(c, c') \ge r$.
- Proof Since r is the radius, there exists a point $s \in S$ at distance \geq r from all the centers.
 - □ If there's no such s, then C's radius < r.
 - \square So s is distance \geq r from c and c'.
 - □ Suppose WLOG c' is added to C after c.
 - \square If d(c,c')<r, then algorithm would add s to C instead of c', since s is farther.

- Cor There exist k+1 points mutually at distance $\geq r$ from each other.
 - \square By the lemma, the k centers are mutually \ge r distance apart.
 - \square Also, there's an s \in S at distance \ge r from all the centers.
 - Otherwise, C's covering radius is < r.
 - \square So, the k centers plus s are the k+1 points.
- Call these k+1 points D.

- Let C* be an optimal cover with radius r*.
- Lemma 2 Suppose $r > 2r^*$. Then for every $c \in D$, there exists a corresponding $c' \in C^*$. Furthermore, all these c' are unique.
- Proof Draw a circle of radius r/2 around each $c \in D$.
 - \square There must be a $c' \in C^*$ inside the circle, because
 - c is at most distance r* away from its nearest center, since r* is C*'s radius.
 - r/2>r*.
 - \square Given $c_1, c_2 \in D$, let $c'_1, c'_2 \in C^*$ be inside c_1 and c_2 's circle, resp.
 - \square c₁ and c₂'s circles don't touch, because $d(c_1,c_2) \ge r$.
 - \square So $c'_1 \neq c'_2$

- Thm Let C be the output of Gonzalez's algorithm and let C^* be an optimal k-center. Then $r(C) \leq 2r(C^*)$.
- Proof By Lemma 2, if $r(C)>2r(C^*)$, then for every $c\in D$, there is a unique $c'\in C^*$.
 - \square But there are k+1 points in D, by the corollary.
 - \square So, there are k+1 points in C*. This is a contradiction because C* is a k-center.

