Computer-Linguistische Anwendungen

CLA | B.Sc. | LMU

Eigenschaften der SVD die wir Nutzen:

- Wichtig:
 - Jeder Singulärwert ist eine Angabe wie wichtig jede Dimension ist
- Wenn wir die weniger wichtigen Dimensionen auf 0 setzen, erhalten wir wichtige Informationen, aber werden überflüssige Details los
- Diese Details sind oft:
 - Noise Reduzierte SVD Vektoren sind oft bessere Repräsentationen, weil sie weniger noise enthalten
 - Jene, welche Dinge unähnlicher machen, auch wenn sie ähnlicher sind Reduzierte SVD Vektoren sind auch hier besser da sie Ähnlichkeiten besser abbilden.
- Analogie für "Weniger Details sind Besser"
 - o Bild einer blauen Blume
 - Bild einer gelben Blume
 - Das Weglassen der Farb-Dimension erleichtert die Ähnlichkeit zu sehen

U			1	2	3	4	5	
ship		-0.4	44 –	-0.30	0.00	0.00	0.00	
boat		-0.3	13 –	-0.33	0.00	0.00	0.00	
ocea	n	-0.4	48 –	-0.51	0.00	0.00	0.00	
wood	b	-0.7	70	0.35	0.00	0.00	0.00	
tree		-0.2	26	0.65	0.00	0.00	0.00	
Σ_2		1	2	3	4	5		
1	1	2.16	0.00	0.00	0.00	0.00		
2	(0.00	1.59	0.00	0.00	0.00		
3	(0.00	0.00	0.00	0.00	0.00		
4	(0.00	0.00	0.00	0.00	0.00		
5	(0.00	0.00	0.00	0.00	0.00		
V^T		d_1		d_2	d_3	d_4	d_5	d_6
1	_	0.75	-0.3	28 –	0.20	-0.45	-0.33	-0.12
2	_	-0.29	-0.9	53 –	0.19	0.63	0.22	0.41
3		0.00	0.0	00	0.00	0.00	0.00	0.00
4		0.00	0.0	00	0.00	0.00	0.00	0.00
5		0.00	0.0	00	0.00	0.00	0.00	0.00

Wir setzen nur Singulärwerte in Σ auf 0. Dies sorgt dafür, dass die entsprechenden Dimensionen in U und V^T auch auf 0 gesetzt sind, wenn wir das Produkt von $C = U \Sigma V^T$ bilden.

U		1	1		2	3	4	5		
_			077750		100-02		830			
ship		-0.	44	-0	0.30	0.00	0.00	0.00		
boat		-0.	13	-0	0.33	0.00	0.00	0.00		
ocea	n	-0.	48	-0).51	0.00	0.00	0.00		
wood	ł	-0.	70	C	.35	0.00	0.00	0.00		
tree		−0 .	26	0	0.65	0.00	0.00	0.00		
Σ_2		1	2		3	4	5		•	
1		2.16	0.0	00	0.00	0.00	0.00			
2		0.00	1.!	59	0.00	0.00	0.00			
3		0.00	0.0	00	0.00	0.00	0.00			
4		0.00	0.0	00	0.00	0.30	0.00			
5		0.00	0.0	00	0.00	0.00	0.00			
V^T		d_1		d ₂	2	d_3	d_4	10	d_5	d_6
1	_	-0.75	_	0.28	3 —	0.20	-0.45	-0.3	33	-0.12
2	_	-0.29	-	0.53	3 –	0.19	0.63	0.2	22	0.41
3		0.00		0.00)	0.00	0.00	0.0	00	0.00
4		0.00		0.00)	0.00	0.00	0.0	00	0.00
5		0.00		0.00)	0.00	0.00	0.0	00	0.00

Wir setzen nur Singulärwerte in Σ auf 0. Dies sorgt dafür, dass die entsprechenden Dimensionen in U und V^T auch auf 0 gesetzt sind, wenn wir das Produkt von $C = U \Sigma V^T$ bilden.

C_2		d_1		d_2	a	3	d_4		d_5		d_6						
ship		0.85		0.52	0.2	8	0.13		0.21	-	0.08						
boat		0.36		0.36	0.1	6	-0.20		-0.02	_	0.18						
ocea	n	1.01		0.72	0.3	6	-0.04		0.16	_	0.21						
wood	d	0.97		0.12	0.2	0	1.03		0.62		0.41						
tree		0.12		-0.39	-0.0	8	0.90		0.41		0.49						
U			1		2	3		4		5	Σ_2	1	2	3	4	5	
ship		-0.4	4	-0.3	0 0	.57	0.5	8	0.2	5	1	2.16	0.00	0.00	0.00	0.00	-
boat		-0.1	3	-0.3	3 - 0	.59	0.0	00	0.7	3	2	0.00	1.59	0.00	0.00	0.00	
ocea	n	-0.4	8	-0.5	1 - 0	.37	0.0	00	-0.6	1 ×	3	0.00	0.00	0.00	0.00	0.00	×
wood	d	-0.7	0	0.3	5 0	.15	-0.5	8	0.1	6	4	0.00	0.00	0.00	0.00	0.00	
tree		-0.2	6	0.6	5 - 0	.41	0.5	8	-0.0	9	5	0.00	0.00	0.00	0.00	0.00	
V^T		d_1		d_2	d_3		d_4		d_5		d_6	`					
1	_	0.75	1	-0.28	-0.20		-0.45	_	-0.33	<u></u> -().12						
2	_	-0.29	-	-0.53	-0.19		0.63		0.22	().41						
3		0.28	_	-0.75	0.45		-0.20		0.12	-().33			C	_		
4		0.00		0.00	0.58		0.00	_	-0.58	(0.58			$C_2 \sim$	· (
5	_	-0.53		0.29	0.63		0.19		0.41	-().22						

Original Matrix C vs. reduzierte Matrix $C_2 = U \Sigma_2 V^T$

C	d_1	d_2	d_3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

C_2	d_1	d_2	d_3	d_4	d_5	d_6
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

Wir können C₂ als zweidimensionale Repräsentation der Matrix C betrachten. Hier haben wir eine Dimensionsreduktion auf 2D vorgenommen.

Aufgabe

C	d_1	d_2	d_3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

Berechnen Sie die Ähnlichkeit zwischen d₂ und d₃ der Ursprungs-Matrix C und der reduzierten Matrix C₂

C_2	d_1	d_2	d_3	d_4	d_5	d_6
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

Warum ist die reduzierte Matrix C₂ besser als C?

C	d_1	d_2	d_3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

C_2	d_1	d_2	d_3	d_4	d_5	d_6
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
		0.72				
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

Ähnlichkeit von d₂ und d₃ in C: Ähnlichkeit von d₂ und d₃ in C₂:

0 0.52 * 0.28 + 0.36 * 0.16 + 0.72 * 0.36 + 0.12 * 0.20 + -0.39 * -0.08 ≈ 0.52 (dot product, cosine)

Word2vec: Lernen via Matrix Faktorisierung

- Sammeln und gewichten der Cooccurrence Matrix
- Berechnen der SVD der Cooccurence Matrix
- Reduzieren des Raumes (Dimensionalitätreduktion)
- Embeddings = Links-Singuläre Vektoren (Linke Matrix)

U		1	1		2	3	4	5		
_			077750		100-02		830			
ship		-0.	44	-0	0.30	0.00	0.00	0.00		
boat		-0.	13	-0	0.33	0.00	0.00	0.00		
ocea	n	-0.	48	-0).51	0.00	0.00	0.00		
wood	ł	-0.	70	C	.35	0.00	0.00	0.00		
tree		−0 .	26	0	0.65	0.00	0.00	0.00		
Σ_2		1	2		3	4	5		•	
1		2.16	0.0	00	0.00	0.00	0.00			
2		0.00	1.!	59	0.00	0.00	0.00			
3		0.00	0.0	00	0.00	0.00	0.00			
4		0.00	0.0	00	0.00	0.30	0.00			
5		0.00	0.0	00	0.00	0.00	0.00			
V^T		d_1		d ₂	2	d_3	d_4	10	d_5	d_6
1	_	-0.75	_	0.28	3 —	0.20	-0.45	-0.3	33	-0.12
2	_	-0.29	-	0.53	3 –	0.19	0.63	0.2	22	0.41
3		0.00		0.00)	0.00	0.00	0.0	00	0.00
4		0.00		0.00)	0.00	0.00	0.0	00	0.00
5		0.00		0.00)	0.00	0.00	0.0	00	0.00

Wir setzen nur Singulärwerte in Σ auf 0. Dies sorgt dafür, dass die entsprechenden Dimensionen in U und V^T auch auf 0 gesetzt sind, wenn wir das Produkt von $C = U \Sigma V^T$ bilden.

