

SOAL OLIMPIADE SAINS NASIONAL TAHUN 2015

SOLUSI ANALISIS DATA

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN
DIREKTORAT JENDERAL PENDIDIKAN MENENGAH
DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS
TAHUN 2015

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

DIREKTORAT JENDERAL PENDIDIKAN MENENGAH DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS

Soal 1: Relief Benda Langit di Candi Borobudur

1. [30] Untuk mendapatkan koordinat di masa lampau, amplitudo pergeseran dihitung dengan persamaan:

$$\begin{split} M &= 1^{\circ}, 2812323 \ T + 0^{\circ}, 003879 \ T^{2} + 0^{\circ}, 0000101 \ T^{3} \\ N &= 0^{\circ}, 5567530 \ T - 0^{\circ}, 0001185 \ T^{2} - 0^{\circ}, 0000116 \ T^{3} \\ T &= \frac{t - 2000, 0}{100}, \end{split}$$

Dengan memasukkan t=830, diperoleh $M=15.5376^{\circ}~{\rm dan}~N=6.54881^{\circ}$.

Kemudian, perubahan asensiorekta dan deklinasi dengan persamaan:

$$\Delta \alpha = M + N \sin(\alpha) \tan(\delta)$$
$$\Delta \delta = N \cos(\alpha)$$

sehingga diperoleh koordinat ekuatorial pada t=830M seperti terangkum pada Tabel 1.

Tabel 1: Koordinat objek pada t = 830 M.

Objek	Asensiorekta	Deklinasi	Objek	Asensiorekta	Deklinasi
Dubhe	9 ^j 49 ^m 44 ^d	68° 6′ 12″	Dubhe	147.4317°	68.1034°
Merak	$9^{j}\ 49^{m}\ 48^{d}$	$62^{\circ}\ 43'\ 19''$	Merak	147.4494°	62.7221°
Pecda	$10^{j} \ 50^{m} \ 43^{d}$	$60^{\circ}~14'~29''$	Pecda	162.6805°	60.2414°
Megrez	$11^{\rm j} \ 16^{\rm m} \ 0^{\rm d}$	$63^{\circ}~34'~1''$	Megrez	168.9986°	63.5670°
Alioth	$12^{\rm j}~0^{\rm m}~56^{\rm d}$	$62^{\circ}~19'~40''$	Alioth	180.2337°	62.3277°
Mizar	$12^{j}\ 35^{m}\ 8^{d}$	$61^{\circ}~2'~23''$	Mizar	188.7829°	61.0396°
Alkaid	$12^{\rm j} \ 59^{\rm m} \ 10^{\rm d}$	55° 9′ 14″	Alkaid	194.7919°	55.1540°
UMa	11 ^j 21 ^m 14 ^d	62° 6′ 14″	UMa	170.3082°	62.1038°
Polaris	$4^{\rm j}~35^{\rm m}~34^{\rm d}$	84° 6′ 1″	Polaris	68.8920°	84.1002°
Pleiades	$2^{j}\ 35^{m}\ 31^{d}$	$20^{\circ} \ 31' \ 33''$	Pleiades	38.8796°	20.5259°

Poin penilaian:

• Jika dia merata-ratakan koordinat bintang komponen UMa, maka nilai ditambah 10 poin.

2. [18] Jarak zenith objek

$$z = \delta - \phi$$

dengan $\phi = -7,608^{\circ}$.

Berikut adalah hasil perhitungan untuk objek yang ditanyakan:

 Ursa Major
 69.7118°

 Polaris
 91.7082°

 Pleiades
 28.1339°

Poin penilaian:

- Perhitungan jarak zenit 10 poin.
- Polaris bisa dilihat 3 poin.
- Menghitung angle of dip 5 poin.
- 3. **[20]** Kondisi yang diinginkan adalah Matahari tenggelam pada $HA_{\odot}=6^{\rm j}~30^{\rm m}=97,5^{\circ}$ dan objek berada di meridian ($LST=RA_x=170,3082^{\circ}$).

$$LST = HA_x$$

$$HA_{\odot} + RA_{\odot} = RA_x$$

$$RA_{\odot} = RA_x - HA_{\odot}$$

$$= 72.8082^{\circ}$$

Waktu yang memenuhi kondisi tersebut dihitung dengan persamaan:

$$(\tau-\tau_0)=RA_\odot\frac{360,2425~\mathrm{hari}}{360^\circ}$$

dengan τ_0 mengacu pada vernal equinox (21 Maret).

Untuk Biduk Besar, diperoleh $\tau - \tau_0 = 74$ hari sehingga kondisi terjadi pada tanggal 3 Juni 830.

- 4. **[20]** Dengan cara yang sama, Pleiades mencapai kondisi yang diinginkan pada $\tau-\tau_0=-59$ hari atau pada tanggal 23 Januari 830.
- 5. **[12]** Karena Pleiades tampak lebih tinggi, maka lebih mudah diamati dan lebih logis sebagai representasi 7 bulatan pada relief candi.

Soal 2: Supernova 1987A

Nilai total untuk soal ini adalah 130.

1. **[20]** Sumbu panjang dan sumbu pendek elips berturut-turut adalah 1,66" dan 1,21". Geometri dari cincin SN 1987A diilustrasikan oleh gambar berikut:

Dari ilustrasi di atas, diperoleh:

$$2x = \sqrt{(2a)^2 - (2b)^2}$$
$$= \sqrt{(1,66)^2 - (1,21)^2}$$
$$= 1,1364$$

Jarak x juga dapat dihitung berdasarkan waktu tunda kedatangan sinyal dari titik B:

$$\begin{split} 2x &= c \cdot \Delta t \\ &= (3 \times 10^{10} \text{ cm/s})(335 \cdot 24 \cdot 3600) \\ &= 8,6832 \times 10^{17} \text{ cm} \end{split}$$

Dengan demikian, jarak SN 1987A adalah:

$$\begin{split} d &= \frac{x_{\text{linier}}}{x_{\text{sudut}}} \\ &= \frac{8,6832 \times 10^{17}}{1,1364} 206265 \\ &= 1,0789 \times 10^{23} \text{ cm} = 50,94 \text{ kpc} \end{split}$$

Poin penilaian:

- Nilai sumbu pendek elips dengan toleransi 0,1" (10%). [5]
- Proses perhitungan. [10]
- Hasil perhitungan dengan toleransi 5 kpc (10%). [5]
- 2. **[20]** Plot $\log L$ terhadap $t t_0$ dapat dilihat pada Gambar 1.

- Skala horizontal dan vertikal harus ditulis. [5]
- Rentang plot benar, yakni $t t_0 = [0, 400]$ dan $\log(F) = [3.0, 5.0]$. **[5]**
- Jumlah titik yang ditampilkan dalam grafik dengan tepat. Setiap titik bernilai 0,5 poin, tapi nilai maksimal 10 poin. [10]

Gambar 1:

3. **[15]** Sebagaimana tampak pada Gambar 1, persamaan garis yang merepresentasikan penurunan tersebut adalah:

$$\log(F) = -5,451 - 0,004254(t - t_0)$$

Poin penilaian:

- Siswa menjelaskan bagaimana ia memperoleh koefisien regresi. Misalnya dengan menggambarkan garis regresinya. [5]
- Koefisien a = -5.451 dengan toleransi 0,5 (10%). **[5]**
- Koefisien b = -0.004254 dengan toleransi 5×10^{-4} (10%). [5]
- 4. **[15]** Konstanta peluruhan dapat dihitung dengan memasukkan waktu paruh dari setiap isotop. Pada saat itu, setengah isotop telah meluruh.

$$N = N_0 \exp(-\lambda t)$$

$$\exp(-\lambda t) = \frac{N}{N_0}$$

$$\exp(-\lambda t_{1/2}) = \frac{1}{2}$$

$$\lambda t_{1/2} = -\ln \frac{1}{2}$$

$$\lambda = \frac{0.693}{t_{1/2}}$$

Sehingga akan diperoleh:

- $\lambda = 2.551 \times 10^{-3} \text{ hari}^{-1} \text{ untuk isotop } ^{57}_{27}\text{Co.}$
- $\lambda = 8.975 \times 10^{-3} \ \mathrm{hari}^{-1} \ \mathrm{untuk} \ \mathrm{isotop} \ ^{56}_{27} \mathrm{Co}.$

Poin penilaian:

- Proses penurunan persamaan. [9]
- Nilai λ yang diperoleh untuk kedua isotop dengan toleransi 10%. **[6]**
- 5. [15] Energi yang dihasilkan untuk setiap reaksi sebanding dengan selisih massa parent dan daughter:

$$\epsilon = \Delta mc^2$$

• Untuk peluruhan isotop ⁵⁷₂₇Co, diperoleh:

$$\begin{split} \epsilon &= (56, 936 - 56, 935)(1, 6605 \times 10^{-27})(3 \times 10^8)^2 \\ &= 1, 494 \times 10^{-13} \text{ Joule} \\ &= 1, 494 \times 10^{-6} \text{ erg} \end{split}$$

• Untuk peluruhan isotop ⁵⁶₂₇Co, diperoleh:

$$\begin{split} \epsilon &= (55,940-55,935)(1,6605\times 10^{-27})(3\times 10^8)^2\\ &= 7,472\times 10^{-13} \text{ Joule}\\ &= 7,472\times 10^{-6} \text{ erg} \end{split}$$

Poin penilaian:

- Proses penurunan persamaan. [9]
- ullet Nilai ϵ yang diperoleh untuk peluruhan kedua isotop dengan toleransi 10%. **[6]**
- Satuan tidak tepat. [-3]
- 6. [15] Mengacu pada Persamaan ??, dapat diperoleh hubungan:

$$\log L = \epsilon \lambda N_0 - 0.434 \lambda t$$

atau

$$\log F = \epsilon \lambda N_0 - 0.434\lambda t + C$$

sehingga gradien kurva cahaya (b) berkaitan dengan konstanta peluruhan:

$$b = -0,434\lambda,$$

di mana λ harus dinyatakan dalam hari $^{-1}$ supaya sesuai dengan grafik yang dibuat.

- Untuk peluruhan isotop $^{57}_{27}$ Co, $b=1,108\times 10^{-3}$
- Untuk peluruhan isotop $^{56}_{27}\mathrm{Co}$, $b=3,898\times10^{-3}$

Dengan demikian, peluruhan isotop $^{56}_{27}$ Co lebih dominan dalam pembangkitan energi SN 1987A pada 400 hari pertama.

- Menyadari hubungan $b = -0.434\lambda$. [9]
- Nilai b dari model dengan toleransi 10%. [6]

7. **[10]** Pada t = 120 hari, fluks SN 1987A adalah:

$$F(120) = 10^{-5.962} = 1,0914 \times 10^{-6} \ \mathrm{erg/s/cm^2}$$

Maka, luminositasnya adalah:

$$\begin{split} L &= 4\pi d^2 F \\ &= 4\pi (1,0789\times 10^{23})^2 (1,0914\times 10^{-6}) \\ &= 1,5964\times 10^{41} \text{ erg/s} \end{split}$$

Poin penilaian:

- Proses perhitungan. [5]
- Hasil perhitungan. [5]
- Satuan tidak tepat. [-2]
- 8. [20] Luminositas L dan jumlah isotop N memenuhi hubungan:

$$L = \epsilon \lambda N$$
$$N = \frac{L}{\epsilon \lambda},$$

dengan $\epsilon=7,472\times10^{-6}$ erg/reaksi dan $\lambda=8,975\times10^{-3}$ reaksi/hari untuk isotop $^{56}_{27}$ Co. Dengan demikian, jumlah isotop tersebut adalah

$$N = \frac{1,5964 \times 10^{41}}{(7,472 \times 10^{-6})(8,975 \times 10^{-3})} \times 86400$$
$$= 2,0568 \times 10^{53}$$

Massa total isotop yang ada saat itu adalah

$$\begin{split} M &= Nm \\ &= (2,0568 \times 10^{53})(55,940)(1,6605 \times 10^{-27}) \\ &= 1,9105 \times 10^{28} \text{ kg} \\ &= 9,6053 \times 10^{-3} \text{ M}_\odot \end{split}$$

- Proses penurunan persamaan. [10]
- Konsistensi satuan (λ dinyatakan dalam detik⁻¹). **[5]**
- Nilai M dinyatakan dalam M_{\odot} . [5]

Soal 3: Lengan Spiral Galaksi

1. **[25]**

Poin penilaian:

- Menggambar axis masing-masing 2 poin.
- Menggambar pola spiral masing-masing 3 poin.

2. **[50]**

Poin penilaian:

- Nilai δ rata-rata ± 5 10 poin.
- ullet Nilai δ rata-rata ± 7 5 poin.

Nomor 1 dan 2 - NGC 3031.

$\theta - \theta_0$	r [cm]	$\ln(r/r_i)$	$\tan \delta$	$\delta [^{\circ}]$
0	0,90			
$\pi/4$	0,85	0,057	0,076	4,369
$\pi/2$	1,85	-0,720	-0,458	-24,625
$3\pi/4$	1,55	-0,544	-0,229	-12,908
π	1,35	-0,405	-0,127	-7,256
Nilai ra	-10,105°			

Nomor 1 dan 2 - NGC 628.

$\theta - \theta_0$	r [cm]	$\ln(r/r_i)$	$ an \delta$	$\delta [^{\circ}]$
0	0,20			
$\pi/4$	0,35	-0,560	-0,713	-35,489
$\pi/2$	0,40	-0,693	-0,439	-23,714
$3\pi/4$	0,40	-0,693	-0,293	-16,322
π	0,55	-1,012	-0,321	-17,822
Nilai ra	-23,337°			

Nomor 1 dan 2 - NGC 4535.

$\theta - \theta_0$	r [cm]	$\ln(r/r_i)$	$\tan \delta$	$\delta [^{\circ}]$
0	0,80			
$\pi/4$	1,00	-0,22	-0,280	-15,648
$\pi/2$	1,05	-0,27	-0,172	-9,753
$3\pi/4$	1,20	-0,40	-0,172	-9,635
π	1,80	-0,81	-0,255	-14,286
Nilai ra	-12,331°			

Nomor 1 dan 2 - NGC 1365.

$\theta - \theta_0$	r [cm]	$\ln(r/r_i)$	$\tan \delta$	$\delta [^{\circ}]$
0	0,25			
$\pi/4$	0,60	-0,88	-1,120	-48,251
$\pi/2$	0,70	-1,03	-0,656	-33,254
$3\pi/4$	1,30	-1,65	-0,700	-35,003
π	2,00	-2,08	-0,662	-33,508
Nilai ra	-37,504°			

Nomor 1 dan 2 – NGC 5247.

$\theta - \theta_0$	r [cm]	$\ln(r/r_i)$	$\tan \delta$	$\delta [^{\circ}]$
0	0,20			
$\pi/4$	0,40	-0,69	-0,878	-41,300
$\pi/2$	0,60	-1,10	-0,700	-35,003
$3\pi/4$	0,80	-1,39	-0,590	-30,538
π	1,15	-1,75	-0,557	-29,120
Nilai ra	-33,990°			

3. **[10]** Hasil pengukuran tonjolan galaksi dapat dilihat pada Tabel 2. Adapun diameter linier dihitung dengan persamaan:

$$\begin{split} D &= \delta \cdot d \\ &= \frac{\delta}{206,265} d \; \text{[Mpc]} \end{split}$$

Tabel 2: Jarak galaksi dari Bumi.

No.	Galaksi	Jarak [Mpc]	Diameter ["]	Diameter [kpc]
1.	NGC 3031	0,662	500	1,60473
2.	NGC 628	8,927	38	1,64461
3.	NGC 4535	16,95	19	1,56134
4.	NGC 1365	18,16	75	6,61406
5.	NGC 5247	22,20	24	2,58309

Poin penilaian:

- Nilai pengukuran diameter bulge dengan toleransi 0,5 kpc.
- 4. **[10]** Berikut adalah plot δ terhadap D.

Gambar 2:

- Kerapihan 2 poin
- Skala sumbu 5 poin
- Label sumbu 3 pon
- 5. [5] Sc memiliki diameter bulge lebih kecil dan sudut bukaan lebih besar.