

SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient

²University of British Columbia, Vancouver, Canada, ³École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Aaron Mishkin^{1,2}, Frederik Kunstner^{1,3}, Didrik Nielsen¹, Mark Schmidt², Mohammad Emtiyaz Khan¹ ¹Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

Introduction

Motivation:

- Uncertainty estimation is essential to make reliable decisions based on the predictions of deep models, but is computationally challenging.
- It is difficult to form even a Gaussian approximation to the posterior for large deep models.
- Mean-field methods reduce the computational complexity, but yield poor estimates of the uncertainty.

Contributions:

- We propose a new stochastic, low-rank, approximate natural-gradient (SLANG) method for Gaussian variational inference.
- Our method estimates a "low-rank plus diagonal" covariance matrix based solely on back-propagated gradients.
- ▶ SLANG is faster and more accurate than mean-field methods, and performs comparably to state-of-the-art methods.

Natural Gradient Variational Inference

Given a deep model $p(\mathcal{D}|\theta)$ with weights θ , Gaussian Variational **Inference** computes a Gaussian approximation $q(\theta) := \mathcal{N}(\theta; \mu, \Sigma)$ to the posterior by maximizing the ELBO:

$$\mathcal{L}(oldsymbol{\mu}, oldsymbol{\Sigma}) = \mathbb{E}_q egin{array}{c} oldsymbol{\log p(\mathcal{D}|oldsymbol{ heta})} + oldsymbol{\log \mathcal{N}(oldsymbol{ heta} \mid oldsymbol{0}, oldsymbol{I}/\lambda)} - oldsymbol{\log q(oldsymbol{ heta})}_{ ext{Approximation}}$$

Gradient-based methods optimize the ELBO using the stochastic gradient updates (t is the iteration, γ_t is the learning rate)

$$\mu_{t+1} = \mu_t - \gamma_t \hat{\nabla}_{\mu} \mathcal{L}_t,$$
 $\Sigma_{t+1} = \Sigma_t - \gamma_t \hat{\nabla}_{\Sigma} \mathcal{L}_t.$

$$\mathbf{\Sigma}_{t+1} = \mathbf{\Sigma}_t - \gamma_t \hat{\nabla}_{\mathbf{\Sigma}} \mathcal{L}_t$$

Gradient descent uses Euclidean geometry and may converge slowly.

Natural Gradient methods do steepest descent in the space of realizable approximations $q(\theta)$ by optimizing on the Riemannian manifold. This is expected to converge faster and gives the update [3]

$$\mu_{t+1} = \mu_t - \beta_t \mathbf{\Sigma}_{t+1} \hat{\nabla}_{\mu} \mathcal{L}_t$$
 $\mathbf{\Sigma}_{t+1}^{-1} = (1 - \beta_t) \mathbf{\Sigma}_t^{-1} + \beta_t \hat{\nabla}_{\mathbf{\Sigma}} \mathcal{L}_t.$

Both methods require storing the covariance Σ_t , which is infeasible for large models. We build upon Variational Online Gauss-Newton [4], which can be modified to learn a low-rank approximation.

Variational Online Gauss-Newton approximates the Hessian with the empirical Fisher Information matrix $\mathbf{G}(\theta_t)$. This gives

$$oldsymbol{\mu}_{t+1} = oldsymbol{\mu}_t - eta_t oldsymbol{\Sigma}_{t+1} \left[\hat{oldsymbol{g}}(oldsymbol{ heta}_t) + \lambda oldsymbol{\mu}_t
ight]
onumber \ oldsymbol{\Sigma}_{t+1}^{-1} = (\mathbf{1} - eta_t) oldsymbol{\Sigma}_t^{-1} + eta_t \left[\hat{oldsymbol{G}}(oldsymbol{ heta}_t) + \lambda oldsymbol{I}
ight],$$

where $\hat{g}(\theta_t)$ is the gradient and

$$\hat{\mathbf{G}}(oldsymbol{ heta}_t) = rac{1}{M} \sum_{i=1}^M g_i(oldsymbol{ heta}_t) g_i(oldsymbol{ heta}_t)^ op$$

is the empirical Fisher Information matrix for $p(\mathcal{D} \mid \theta_t)$ computed with a minibatch of size M and individual gradients $g_i(\theta_t)$.

SLANG

We approximate the covariance with a "low-rank plus diagonal" matrix

$$\mathbf{\Sigma}_t^{-1} pprox \hat{\mathbf{\Sigma}}_t^{-1} := \mathbf{U}_t \mathbf{U}_t^{\top} + \mathbf{D}_t,$$

where \mathbf{U}_t is a $D \times L$ matrix and \mathbf{D}_t is diagonal. The cost of storing and inverting this matrix is linear in D which is reasonable when $L \ll D$. The approximate natural gradient update for $\hat{\Sigma}_t^{-1}$ is

$$\hat{\boldsymbol{\Sigma}}_{t+1}^{-1} := \boldsymbol{\mathsf{U}}_{t+1} \boldsymbol{\mathsf{U}}_{t+1}^{\top} + \boldsymbol{\mathsf{D}}_{t+1} \approx (1-\beta_t) \hat{\boldsymbol{\Sigma}}_{t}^{-1} + \beta_t \left[\hat{\boldsymbol{\mathsf{G}}}(\boldsymbol{\theta}_t) + \lambda \boldsymbol{\mathsf{I}} \right]$$

This update may increase the rank of \mathbf{U}_{t+1} , so we project the matrix onto a L-dimensional subspace using an eigenvalue decomposition:

$$(1 - \beta_t)\hat{\boldsymbol{\Sigma}}_t^{-1} + \beta_t \left[\hat{\boldsymbol{\mathsf{G}}}(\boldsymbol{\theta}_t) + \lambda \boldsymbol{\mathsf{I}}\right] = \underbrace{(1 - \beta_t)\boldsymbol{\mathsf{U}}_t\boldsymbol{\mathsf{U}}_t^\top + \beta_t\hat{\boldsymbol{\mathsf{G}}}(\boldsymbol{\theta}_t)}_{\text{Rank at most }L + M} + \underbrace{(1 - \beta_t)\boldsymbol{\mathsf{D}}_t + \beta_t\lambda\boldsymbol{\mathsf{I}}}_{\text{Diagonal component}},$$

$$\approx \underbrace{\boldsymbol{\mathsf{Q}}_{1:L}\boldsymbol{\mathsf{\Lambda}}_{1:L}\boldsymbol{\mathsf{Q}}_{1:L}^\top}_{\text{Rank }L \text{ eigendecomposition}} + \underbrace{(1 - \beta_t)\boldsymbol{\mathsf{D}}_t + \beta_t\lambda\boldsymbol{\mathsf{I}}}_{\text{Diagonal component}}.$$

The diagonal information lost in this projection is equal to

$$\Delta_D = \operatorname{diag}\left[(1 - \beta) \mathbf{U}_t \mathbf{U}_t^\top + \beta_t \hat{\mathbf{G}}(\boldsymbol{\theta}_t) - \mathbf{U}_{t+1} \mathbf{U}_{t+1}^\top \right].$$

We add this to \mathbf{D}_t as a diagonal correction. The final SLANG update is

SLANG:
$$\mathbf{U}_{t+1} = \mathbf{Q}_{1:L} \mathbf{\Lambda}_{1:L}^{1/2}$$

$$\mathbf{D}_{t+1} = (1 - \beta) \mathbf{D}_t + \beta_t \lambda \mathbf{I} + \Delta_D.$$

$$\boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t - \alpha_t \left[\mathbf{U}_{t+1} \mathbf{U}_{t+1}^\top + \mathbf{D}_{t+1} \right]^{-1} \left[\hat{\mathbf{g}}(\boldsymbol{\theta}_t) + \lambda \boldsymbol{\mu}_t \right].$$

The Algorithm

Pseudo-code for SLANG is shown in Algorithm 1. α, β are learning rates, D is denoted with a vector **d** and \mathbf{u}_i and \mathbf{v}_i are the columns of **U** and **V**, respectively.

Algorithm 1: SLANG Algorithm 2: fast_inverse(g, U, d) **Require:** Data \mathcal{D} , hyperparameters $M, L, \lambda, \alpha, \beta$ 1: $\mathbf{A} \leftarrow (\mathbf{I}_L + \mathbf{U}^{\top} \mathbf{d}^{-1} \mathbf{U})^{-1}$ 1: Initialize μ , \mathbf{U} , \mathbf{d} 2: $\mathbf{y} \leftarrow \mathbf{d}^{-1}\mathbf{g} - \mathbf{d}^{-1}\mathbf{U}\mathbf{A}\mathbf{U}^{\mathsf{T}}\mathbf{d}^{-1}\mathbf{g}$ 2: $\delta \leftarrow (1 - \beta)$ 3: **return y** 3: **while** not converged **do** $heta \leftarrow \mathtt{fast_sample}(\mu, \mathsf{U}, \mathsf{d})$ Algorithm 3: fast_sample(μ , U, d) $\mathcal{M} \leftarrow$ sample a minibatch 1: $\epsilon \sim \mathcal{N}(0, \mathbf{I}_D)$ $[\mathbf{g}_1,..,\mathbf{g}_M] \leftarrow \mathtt{backprop}(\mathcal{D}_{\mathcal{M}}, \boldsymbol{\theta})$ 2: $\mathbf{V} \leftarrow \mathbf{d}^{-1/2} \odot \mathbf{U}$ $V \leftarrow fast_eig(\delta u_1, ..., \delta u_L, \beta g_1, ..., \beta g_M, L)$ $\Delta_d \leftarrow \sum_{i=1}^L \delta \mathbf{u}_i^2 + \sum_{i=1}^M \beta \mathbf{g}_i^2 - \sum_{i=1}^L \mathbf{v}_i^2$ 3: $\mathbf{A} \leftarrow \text{Cholesky}(\mathbf{V}^{\top}\mathbf{V})$ 4: $\mathbf{B} \leftarrow \text{Cholesky}(\mathbf{I}_L + \mathbf{V}^{\top}\mathbf{V})$ 5: $\mathbf{C} \leftarrow \mathbf{A}^{-\top} (\mathbf{B} - \mathbf{I}_L) \mathbf{A}^{-\top}$ $\mathbf{d} \leftarrow \delta \mathbf{d} + \Delta_d + \lambda \mathbf{1}$ 6: $\mathbf{K} \leftarrow (\mathbf{C} + \mathbf{V}^{\mathsf{T}} \mathbf{V})^{-1}$ $\hat{\mathbf{g}} \leftarrow \sum_i \mathbf{g}_i + \lambda \boldsymbol{\mu}$ 7: $\mathbf{y} \leftarrow \mathbf{d}^{-1/2} \boldsymbol{\epsilon} - \mathbf{V} \mathbf{K} \mathbf{V}^{\top} \boldsymbol{\epsilon}$ $\Delta_{u} \leftarrow \texttt{fast_inverse}(\hat{\texttt{g}}, \mathsf{U}, \mathsf{d})$ 8: return μ + y $\mu \leftarrow \mu - \alpha \Delta_{\mu}$ 14: end while 15: **return** μ , **U**, **d**

Results

Covariance Structure for Logististic Regression on USPS

SLANG doesn't underestimate variance like mean-field methods.

Logistic Regression Results

SLANG performs similarly to full-Gaussian methods at test time.

			Mean-Field Methods			SLANG			Full Gaussian		
	Dataset	Metrics	EF	Hess.	Exact	L = 1	L = 5	L = 10	EF	Hess.	Exact
	Australian	NLL	0.348	0.347	0.341	0.342	0.339	0.338	0.340	0.339	0.338
	Australian	$KL (\times 10^4)$	2.240	2.030	0.195	0.033	0.008	0.002	0.000	0.000	0.000
	212	NLL	0.339	0.339	0.339	0.339	0.339	0.339	0.339	0.339	0.339
		$KL (\times 10^2)$	2.590	2.208	1.295	0.305	0.173	0.118	0.014	0.000	0.000
	USPS	NLL	0.139	0.139	0.138	0.132	0.132	0.131	0.131	0.130	0.130
	3vs5	KL (×10 ¹)	7.684	7.188	7.083	1.492	0.755	0.448	0.180	0.001	0.000

Convergence Experiments

SLANG converges faster than mean-field methods for logistic regression and BNNs.

UCI Regression with Bayesian Neural Networks:

▶ Performance on BNNs is comparable to Bayesian Dropout [2] and Bayes-by-Backprop [1].

		lest RMSE		lest log-likelihood				
Dataset	BBB	Dropout	SLANG	BBB	Dropout	SLANG		
Boston	3.43 ± 0.20	$\textbf{2.97} \pm \textbf{0.19}$	3.21 ± 0.19	-2.66 ± 0.06	$\textbf{-2.46} \pm \textbf{0.06}$	$\textbf{-2.58} \pm \textbf{0.05}$		
Concrete	$\textbf{6.16} \pm \textbf{0.13}$	$\textbf{5.23} \pm \textbf{0.12}$	5.58 ± 0.19	$\textbf{-3.25} \pm \textbf{0.02}$	-3.04 \pm 0.02	$\textbf{-3.13} \pm \textbf{0.03}$		
Energy	$\textbf{0.97} \pm \textbf{0.09}$	$\textbf{1.66} \pm \textbf{0.04}$	$\textbf{0.64} \pm \textbf{0.03}$	-1.45 ± 0.10	$\textbf{-1.99} \pm \textbf{0.02}$	$\textbf{-1.12} \pm \textbf{0.01}$		
Kin8nm	$\textbf{0.08} \pm \textbf{0.00}$	$\textbf{0.10} \pm \textbf{0.00}$	$\textbf{0.08} \pm \textbf{0.00}$	$\textbf{1.07} \pm \textbf{0.00}$	0.95 ± 0.01	1.06 ± 0.00		
Naval	$\textbf{0.00} \pm \textbf{0.00}$	0.01 ± 0.00	$\textbf{0.00} \pm \textbf{0.00}$	4.61 ± 0.01	3.80 ± 0.01	$\textbf{4.76} \pm \textbf{0.00}$		
Power	4.21 ± 0.03	$\textbf{4.02} \pm \textbf{0.04}$	4.16 ± 0.04	$\textbf{-2.86} \pm \textbf{0.01}$	$\textbf{-2.80} \pm \textbf{0.01}$	$\textbf{-2.84} \pm \textbf{0.01}$		

MNIST Classification with Bayesian Neural Networks:

► Larger *L* leads to better test accuracy.

References

- [1] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks. CoRR, abs/1505.05424, 2015.
- [2] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of 33rd ICML, pages 1050-1059, 2016.
- [3] M. E. Khan and D. Nielsen. Fast yet simple natural-gradient descent for variational inference in complex models. *CoRR*, abs/1807.04489, 2018.
- [4] M. E. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava. Fast and scalable Bayesian deep learning by weight-perturbation in Adam. In *Proceedings of 35 ICML*, pages 2611–2620, 2018.