Prof. F. Bottacin, M. Candilera, N. Rodinò, R. Sánchez

 $4^{\rm o}$ Appello — 5 febbraio 2016

Esercizio 1. Indichiamo con $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2. Date le matrici $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & 2 \\ 1 & 3 \end{pmatrix}$, sia V il sottospazio di $M_2(\mathbb{R})$ generato dalle matrici A, B e AB.

- (a) Si determini la dimensione di V.
- (b) Si dica per quale valore di $t \in \mathbb{R}$ esiste una base di V che contiene la matrice $C = \begin{pmatrix} -1 & 4 \\ 2 & t \end{pmatrix}$.
- (c) Sia $S \subset M_2(\mathbb{R})$ il sottospazio vettoriale formato dalle matrici simmetriche. Si determini una base di $V \cap S$ e una base di V + S.
- (d) Si determini, se possibile, un sottospazio vettoriale $W \subset M_2(\mathbb{R})$ tale che si abbia $V \oplus W = M_2(\mathbb{R})$ e anche $S \oplus W = M_2(\mathbb{R})$.

Esercizio 2. Siano dati i vettori $v_1 = (0, 2, 1), v_2 = (1, 1, -1), v_3 = (-1, 1, 0)$ e sia $f : \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $f(v_1) = -3v_1, f(v_2) = v_2, f(v_3) = v_3 - 2v_2$.

- (a) Si scriva la matrice di f rispetto alla base $\{v_1, v_2, v_3\}$.
- (b) Si scriva la matrice di f rispetto alla base canonica.
- (c) Si determinino gli autovalori e gli autospazi di f e si dica se f diagonalizzabile.
- (d) Si verifichi che gli autospazi di f sono in somma diretta.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (2, 2, 0, 1), u_2 = (0, 1, 1, 0), u_3 = (1, 0, -4, -1).$

- (a) Dato il vettore v = (3, -2, 1, 2) si determini la sua proiezione ortogonale su U.
- (b) Si determini una base ortogonale di U.
- (c) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che ad ogni vettore $v \in \mathbb{R}^4$ associa la sua proiezione ortogonale f(v) sul sottospazio U. Si determini una base del nucleo di f.

Esercizio 4. Nello spazio affine \mathbb{A}^3 sono dati i punti A = (1, -1, 0), B = (2, 1, 1), C = (0, 2, 2).

- (a) Si determini l'equazione cartesiana del piano π passante per A, B e C.
- (b) Dato il punto D=(5,-3,12), si determini la sua proiezione ortogonale H sul piano π .
- (c) Si verifichi che il punto H appartiene alla retta passante per $A \in B$.

Prof. F. Bottacin, M. Candilera, N. Rodinò, R. Sánchez

4º Appello — 5 febbraio 2016

Esercizio 1. Indichiamo con $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2. Date le matrici $A = \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} -2 & 2 \\ -1 & 0 \end{pmatrix}$, sia V il sottospazio di $M_2(\mathbb{R})$ generato dalle matrici A, B e AB.

- (a) Si determini la dimensione di V.
- (b) Si dica per quale valore di $t \in \mathbb{R}$ esiste una base di V che contiene la matrice $C = \begin{pmatrix} 2 & -7 \\ t & -3 \end{pmatrix}$.
- (c) Sia $S \subset M_2(\mathbb{R})$ il sottospazio vettoriale formato dalle matrici simmetriche. Si determini una base di $V \cap S$ e una base di V + S.
- (d) Si determini, se possibile, un sottospazio vettoriale $W \subset M_2(\mathbb{R})$ tale che si abbia $V \oplus W = M_2(\mathbb{R})$ e anche $S \oplus W = M_2(\mathbb{R})$.

Esercizio 2. Siano dati i vettori $v_1 = (1, 0, -1), v_2 = (-2, 1, 1), v_3 = (0, 1, 2)$ e sia $f : \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $f(v_1) = v_1, f(v_2) = 3v_2, f(v_3) = 3v_3 + v_2$.

- (a) Si scriva la matrice di f rispetto alla base $\{v_1, v_2, v_3\}$.
- (b) Si scriva la matrice di f rispetto alla base canonica.
- (c) Si determinino gli autovalori e gli autospazi di f e si dica se f diagonalizzabile.
- (d) Si verifichi che gli autospazi di f sono in somma diretta.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (1, -2, 0, 2), u_2 = (0, 0, 1, 1), u_3 = (1, 1, 4, 0).$

- (a) Dato il vettore v = (2, -3, 1, -2) si determini la sua proiezione ortogonale su U.
- (b) Si determini una base ortogonale di U.
- (c) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che ad ogni vettore $v \in \mathbb{R}^4$ associa la sua proiezione ortogonale f(v) sul sottospazio U. Si determini una base del nucleo di f.

Esercizio 4. Nello spazio affine \mathbb{A}^3 sono dati i punti A = (0, 1, -1), B = (2, 2, 1), C = (1, 3, 0).

- (a) Si determini l'equazione cartesiana del piano π passante per A, B e C.
- (b) Dato il punto D=(6,3,1), si determini la sua proiezione ortogonale H sul piano π .
- (c) Si verifichi che il punto H appartiene alla retta passante per $A \in B$.

Prof. F. Bottacin, M. Candilera, N. Rodinò, R. Sánchez

4º Appello — 5 febbraio 2016

Esercizio 1. Indichiamo con $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2. Date le matrici $A = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 0 \\ 1 & -2 \end{pmatrix}$, sia V il sottospazio di $M_2(\mathbb{R})$ generato dalle matrici A, B e AB.

- (a) Si determini la dimensione di V.
- (b) Si dica per quale valore di $t \in \mathbb{R}$ esiste una base di V che contiene la matrice $C = \begin{pmatrix} 4 & 1 \\ t & 1 \end{pmatrix}$.
- (c) Sia $S \subset M_2(\mathbb{R})$ il sottospazio vettoriale formato dalle matrici simmetriche. Si determini una base di $V \cap S$ e una base di V + S.
- (d) Si determini, se possibile, un sottospazio vettoriale $W \subset M_2(\mathbb{R})$ tale che si abbia $V \oplus W = M_2(\mathbb{R})$ e anche $S \oplus W = M_2(\mathbb{R})$.

Esercizio 2. Siano dati i vettori $v_1 = (2,0,1), \ v_2 = (1,1,1), \ v_3 = (0,-1,1)$ e sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $f(v_1) = -2v_1, \ f(v_2) = 2v_2, \ f(v_3) = 2v_3 - v_2$.

- (a) Si scriva la matrice di f rispetto alla base $\{v_1, v_2, v_3\}$.
- (b) Si scriva la matrice di f rispetto alla base canonica.
- (c) Si determinino gli autovalori e gli autospazi di f e si dica se f diagonalizzabile.
- (d) Si verifichi che gli autospazi di f sono in somma diretta.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (2, -2, 0, 1), u_2 = (1, 0, -1, 0), u_3 = (0, 1, -4, 1).$

- (a) Dato il vettore v = (3, 1, 2, -1) si determini la sua proiezione ortogonale su U.
- (b) Si determini una base ortogonale di U.
- (c) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che ad ogni vettore $v \in \mathbb{R}^4$ associa la sua proiezione ortogonale f(v) sul sottospazio U. Si determini una base del nucleo di f.

Esercizio 4. Nello spazio affine \mathbb{A}^3 sono dati i punti A = (2,0,1), B = (1,1,-1), C = (3,-2,0).

- (a) Si determini l'equazione cartesiana del piano π passante per $A, B \in C$.
- (b) Dato il punto D=(-2,-4,4), si determini la sua proiezione ortogonale H sul piano π .
- (c) Si verifichi che il punto H appartiene alla retta passante per $A \in B$.

Prof. F. Bottacin, M. Candilera, N. Rodinò, R. Sánchez

4º Appello — 5 febbraio 2016

Esercizio 1. Indichiamo con $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2. Date le matrici $A = \begin{pmatrix} 2 & -3 \\ 3 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$, sia V il sottospazio di $M_2(\mathbb{R})$ generato dalle matrici A, B e AB.

- (a) Si determini la dimensione di V.
- (b) Si dica per quale valore di $t \in \mathbb{R}$ esiste una base di V che contiene la matrice $C = \begin{pmatrix} -5 & 6 \\ -6 & t \end{pmatrix}$.
- (c) Sia $S \subset M_2(\mathbb{R})$ il sottospazio vettoriale formato dalle matrici simmetriche. Si determini una base di $V \cap S$ e una base di V + S.
- (d) Si determini, se possibile, un sottospazio vettoriale $W \subset M_2(\mathbb{R})$ tale che si abbia $V \oplus W = M_2(\mathbb{R})$ e anche $S \oplus W = M_2(\mathbb{R})$.

Esercizio 2. Siano dati i vettori $v_1 = (-1, 1, 2), v_2 = (1, 0, -1), v_3 = (1, 3, 0)$ e sia $f : \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $f(v_1) = v_1, f(v_2) = 2v_2, f(v_3) = 2v_3 - 2v_2$.

- (a) Si scriva la matrice di f rispetto alla base $\{v_1, v_2, v_3\}$.
- (b) Si scriva la matrice di f rispetto alla base canonica.
- (c) Si determinino gli autovalori e gli autospazi di f e si dica se f diagonalizzabile.
- (d) Si verifichi che gli autospazi di f sono in somma diretta.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (-2, 2, 1, 0), u_2 = (1, 0, 0, 1), u_3 = (0, 1, -1, 4).$

- (a) Dato il vettore v = (1, -3, 1, -2) si determini la sua proiezione ortogonale su U.
- (b) Si determini una base ortogonale di U.
- (c) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che ad ogni vettore $v \in \mathbb{R}^4$ associa la sua proiezione ortogonale f(v) sul sottospazio U. Si determini una base del nucleo di f.

Esercizio 4. Nello spazio affine \mathbb{A}^3 sono dati i punti A = (3, 1, 0), B = (4, 3, 1), C = (2, 2, 1).

- (a) Si determini l'equazione cartesiana del piano π passante per A, B e C.
- (b) Dato il punto D=(2,-5,1), si determini la sua proiezione ortogonale H sul piano π .
- (c) Si verifichi che il punto H appartiene alla retta passante per $A \in B$.