6. Tìm tất cả các số nguyên dương n sao cho với mọi $a_1,a_2,...,a_n$ thỏa mãn n ko chia hết $a_1+a_2+...+a_n$ thì tồn tại 1 hoán vị $b_1,b_2,...,b_n$ của $a_1,a_2,...,a_n$ sao cho n | $a_1+2a_2+3a_3+...+na_n$.

Ta quy nap theo n:

Step 1) Nếu n có ít nhất 2 ước nguyên tố và n lẻ:

Xét số nguyên tố q thỏa mãn $a_1+a_2+...+a_n$ ko chia hết cho $q^{vq(n)}$

n=mp với p khác q, khi đó m ko chia hết $a_1+a_2+...+a_{mp}$

Nếu các a_i đều = $c \pmod{p}$ với c nào đó thì xét a_i = pb_i +c thì ta quy nạp theo m và dãy b_i . Vậy ta xét có 2 phần tử ko bằng nhau (mod p)

Vậy ta phân hoạch $a_1,a_2,...,a_{mp}$ thành m tập, mỗi tập p phần tử, đặt là $S_1,S_2,...,S_m$. Đặt Sum(S) là tổng các phần tử của S.

Nếu có 1 số i thỏa $Sum(S_i)$ ko chia hết cho p thì thôi, ko làm gì. Nếu ko thì xét 1 phần tử a S_i và 1 phần tử b của S_j thỏa mãn a-b không chia hết cho p thì hoán a vào S_j và b vào S_i . WLOG là ta đc $Sum(S_1)$ ko chia hết cho p.

Bây giờ vì $Sum(S_1)+Sum(S_2)+...+Sum(S_m)$ ko chia hết cho m nên ta chọn đc $x_1,x_2,...,x_m$ là hoán vị của 1,2,...,m thỏa $x_1Sum(S_1)+x_2Sum(S_2)+...+x_mSum(S_m)$ chia hết cho m.

Bây giờ ta các số = x_i (mod m) mà <= mp ta ghép đại chúng với các phần tử của S_i với i>=2, rồi tổng chúng lại, đặt tổng này là S_i , để ý theo cách chọn $S+x_1Sum(S_1)=0$ (mod m). Còn các phần tử = x_1 (mod m), ta xét là mc_1+x_1 , mc_2+x_1 ,..., mc_p+x_1 , với c_1 , c_2 ,..., c_p là hoán vị của $\{1,2,...,p\}$ theo (mod p) ,ta cần là $m(c_1a_1+c_2a_2+...+c_pa_p)+x_1Sum(S_1)+S=0$ (mod mp), hay là $(c_1a_1+c_2a_2+...+c_pa_p)+(x_1Sum(S_1)+S)/m=0$ (mod p). Để ý là vì $a_1+a_2+...+a_p$ ko chia hết cho p nên ta chọn đc c_1 , c_2 ,..., c_p để $(c_1a_1+c_2a_2+...+c_pa_p)=j$ (mod p) với j tùy ý, xong.

Step 2) Nếu n là lũy thừa số nguyên tố, xét n=p^k, và xét số i thỏa p^{k-i} | $a_1+a_2+...+a_{p^k}$ và p^{k-i+1} ko chia hết $a_1+a_2+...+a_{p^k}$ với i>=1.

Bây giờ ta cm bổ đề: Với p^k số $a_1,a_2,...,a_{p^k}$ ta có thể chọn hoán vị $x_1,x_2,...,x_{p^k}$ của $1,2,...,p^k$ thỏa mãn $x_1a_1+x_2a_2+...+x_{p^k}a_{p^k}$ chia hết cho p^{k-1} .

CM bổ đề: Thật vậy, nếu các số a_i đều = $c \pmod{p}$ với c nào đó thì xét $a_i = pb_i + c$ và quy nạp. (Ở đây ta sẽ thấy p^{k-1} là chặt trong trường hợp p=2 để quy nạp được)

Còn nếu ko, ta phân hoạch được các a_i thành p tập hợp, mỗi tập p^{k-1} phần tử là $T_1, T_2, ..., T_p$ thỏa mãn $Sum(T_1)$ ko chia hết cho p.

Bây giờ vì Sum(T_1) ko chia hết cho p nên, đầu tiên, với $1 \text{ số} > p^{k-1}$ ta ghép đại với 1 phần tử ko thuộc T_1 rồi tổng chúng lại, thu đc số =j (mod p^{k-1}), mặt khác với mỗi j ta chọn được 1 hoán vị của $x_1, x_2, ..., x_{p^{\wedge}(k-1)}$ của $1, 2, ..., p^{k-1}$ thỏa mãn $x_1a_1+x_2a_2+...+x_{p^{\wedge}(k-1)}a_{p^{\wedge}(k-1)}$ chia hết cho p^{k-1} , từ đó chọn đc hoán vị thỏa mãn.

Trở lại bài toán khi n là lũy thừa số nguyên tố, theo định lí Erdos-Gizburg-Ziv, ta có thể phân hoạch các số $a_1,a_2,...,a_{p^{n_k}}$ vào p^i tập hợp, mỗi tập $p^{k\cdot i}$ phần tử là $S_1,S_2,...,S_{p^{n_i}}$ và tổng mỗi phần tử chia hết cho $p^{k\cdot i}$. Bây h ta sẽ xét các số $x_1,x_2,...,x_{p^{n_i}}$ là hoán vị của $1,2,...,p^i$, ta sẽ chon sau.

Xét S_1 có các phần tử là $a_1,a_2,...,a_{p^{\wedge}(k-i)}$, theo bổ đề ta chọn được các số $c_1,c_2,...,c_{p^{\wedge}(k-i)}$ là hoán vị của $1,2,...,p^{k-i}$ thỏa mãn $a_1c_1+a_2c_2+...+a_{p^{\wedge}(k-i)}c_{p^{\wedge}(k-i)}$ chia hết cho p^{k-i-1} . Khi này ta sẽ ghép $p^ic_1+x_1$ với $a_1, p^ic_2+x_1$ với $a_2,, p^ic_{p^{\wedge}(k-i)}+x_1$ với $a_{p^{\wedge}(k-i)}$ và để ý $p^ic_1+x_1$, $p^ic_2+x_1,...,p^ic_{p^{\wedge}(k-i)}+x_1$ là tất cả các số $=x_1$ (mod p^i) và $<=p^k$. Tương tự ta sẽ ghép với S_2 , $S_3,...,S_{p^{\wedge}i}$. Khi này ta sẽ thu đc tổng có dạng $p^{k-1}T+x_1Sum(S_1)+x_2Sum(S_2)+...+x_{p^{\wedge}i}Sum(S_{p^{\wedge}i})$. Cuối cùng ta cần là $p^{i-1}T+x_1Sum(S_1)/(p^{k-i})+x_2Sum(S_2)/(p^{k-i})+...+x_{p^{\wedge}i}Sum(S_{p^{\wedge}i})/(p^{k-i})$ chia hết cho p^i . Bây giờ theo cách chọn theo Erdos-Gizburg-Ziv, các số $Sum(S_1)/(p^{k-i})$, $Sum(S_2)/(p^{k-i})$,..., $Sum(S_{p^{\wedge}i})/(p^{k-i})$ đều là các số nguyên và tổng của chúng ko chia hết cho p, nên ta chọn đc hoán vị $x_1, x_2,...,x_{p^{\wedge}i}$ của $1,2,...,p^i$ thỏa mãn $x_1Sum(S_1)/(p^{k-i})+x_2Sum(S_2)/(p^{k-i})+...+x_pSum(S_{p^{\wedge}i})/(p^{k-i}) = -Tp^{i-1}$ (mod p^i) và từ đó ta đã chọn thành công.

Xong bài toán.