20

25

What is claimed is:

Claims

1. A method for treating allergic rhinitis in a patient, said method comprising administering to the patient a pharmaceutically effective amount of a composition comprising a compound of formula (I):

$$R_{5}$$
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{4}
 X_{5}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{4}
 X_{5}
 X_{4}

Wherein R₁ is R_a, R_aR_b-, R_a-O-R_b-, or (R_c)(R_d)N-R_b-, where R_a is H, cyano, -(C=O)N(R_c)(R_d), -C(=NH)(NH₂), C ₁₋₁₀ alkyl, C ₃₋₈ alkenyl, C ₃₋₈ cycloalkyl, C ₂₋₅ heterocyclic radical, or phenyl; where R_b is C ₁₋₈ alkylene, C ₂₋₈ alkenylene, C ₃₋₈ cycloalkylene, bivalent C ₃₋₈ heterocyclic radical, or phenylene; and R_c and R_d are each independently H, C ₁₋₈ alkyl, C ₂₋₈ alkenyl, C ₃₋₈ cycloalkyl, or phenyl;

 R_2 is H, methyl, ethyl, NR_pR_q , -(CO) NR_pR_q , -(CO) OR_r , -CH₂ NR_pR_q , or CH_2OR_r ; where R_p , R_q , and R_r are independently selected from C_{1-6} alkyl, C_{3-6} cycloalkyl, phenyl; (C $_{3-6}$ cycloalkyl)(C $_{1-2}$ alkylene), benzyl or phenethyl; or R_p and R_q taken together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring with 0 or 1 additional heteroatoms selected from O, S, and N;

 $R_{3'}$ is H, methyl, ethyl, NR_sR_t , -(CO) NR_sR_t , -(CO) OR_u , -CH₂ NR_sR_t , or CH₂ OR_u ; where R_s , R_t , and R_u are independently selected from C ₁₋₆ alkyl, C ₃₋₆ cycloalkyl, phenyl; (C ₃₋₆ cycloalkyl)(C ₁₋₂ alkylene), benzyl or phenethyl; or R_s and R_t taken together with the nitrogen to which they are attached, form a 4-7

membered heterocyclic ring with 0 or 1 additional heteroatoms selected from O, S, and N;

R_{5'} is methyl, ethyl, or H;

R₆ is methyl, ethyl, or H;

5 R_{7'} is methyl, ethyl, or H;

X₄ is NR₁ or S;

X₁ is CR₃;

 R_3 is F, Cl, Br, CHO, R_f , $R_fR_{g^-}$, R_f -O- R_{g^-} , or $(R_h)(R_i)N$ - R_{g^-} , where R_f is H, C $_{1\text{-}6}$ alkyl, C $_{2\text{-}6}$ alkenyl, C $_{3\text{-}6}$ cycloalkyl, C $_{2\text{-}5}$ heterocyclic radical, or phenyl; where R_g is C $_{1\text{-}6}$ alkylene, C $_{2\text{-}6}$ alkenylene, C $_{3\text{-}6}$ cycloalkylene, bivalent C $_{3\text{-}6}$ heterocyclic radical, or phenylene; and R_h and R_i are each independently H, C

 $_{1-6}$ alkyl, C $_{2-6}$ alkenyl, C $_{3-6}$ cycloalkyl, or phenyl; X_2 is NR $_e$ or O; R $_e$ is H or C $_{1-6}$ alkyl;

 X_3 is N;

Z = O = S

10

25

each of R_4 and R_6 is independently H, F, Cl, Br, I, COOH, OH, nitro, amino, cyano, C $_{1-4}$ alkoxy, or C $_{1-4}$ alkyl;

 R_5 is H, F, Cl, Br, I, (C=O)R_j, OH, nitro, NR_jR_k, cyano, phenyl, -OCH₂-Ph, C ₁₋₄ alkoxy, or C ₁₋₄ alkyl;

20 R₇ is H, F, Cl, Br, I, (C=O)R_m, OH, nitro, NR_IR_m, cyano, phenyl, -OCH₂-Ph C ₁₋₄ alkoxy, or C ₁₋₄ alkyl;

wherein each of R_j , R_k , R_l , and R_m is independently selected from H, C_{1-6} alkyl, hydroxy, phenyl, benzyl, phenethyl, and C_{1-6} alkoxy;

each of the above hydrocarbyl (including alkyl, alkoxy, phenyl, benzyl, cycloalkyl, and so on) or heterocyclic groups being independently and optionally substituted with between 1 and 3 substituents selected from C ₁₋₃ alkyl, halo, hydroxy, amino, and C ₁₋₃ alkoxy;

wherein n is 0, 1, or 2; where n is 2, the moiety –(CHR_{5'})_{n =2}- is –(CHR_{5'}-CHR_{7'})- where CHR_{5'} is between CHR_{6'} and CHR_{7'};

provided at least one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , and R_7 is other than H when Z is O;

and provided, where Z is O, n = 1, and each of R₄, R₅, R₆, R₇, R₂, R₃, R₅, and R₆ is H, then (a) where X₂ is NH, then R₁ is (i) not methyl, pyridyl, phenyl, or benzyl, and (b) where X₂ is O, then R₁ is not methyl;

and provided, where Z is O, X_2 is NH, n = 1, R_1 is methyl, each of R_4 , R_6 , R_7 , $R_{2'}$, $R_{3'}$, $R_{5'}$, and $R_{6'}$ is H, then R_5 is not methoxy; or a pharmaceutically acceptable salt, ester, or amide thereof.

2. The method of claim 1 wherein said composition comprises a compound of the formula:

$$R_5$$
 X_1
 X_2
 X_3
 X_2
 X_3
 X_4
 X_2
 X_3
 X_4
 X_4
 X_4
 X_5
 X_4
 X_5
 X_5
 X_6
 X_7

10

15

Wherein R_1 is R_a , R_aR_b -, R_a -O- R_b -, or $(R_c)(R_d)N$ - R_b -, where R_a is H, C ₁₋₁₀ alkyl, C ₃₋₈ alkenyl, C ₃₋₈ cycloalkyl, C ₂₋₅ heterocyclic radical, or phenyl; where R_b is C ₁₋₈ alkylene, C ₃₋₈ alkenylene, C ₃₋₈ cycloalkylene, bivalent C ₃₋₈ heterocyclic radical, or phenylene; and R_c and R_d are each independently H, C ₁₋₈ alkyl, C ₂₋₈ alkenyl, C ₃₋₈ cycloalkyl, or phenyl;

R₂ is ortho or meta, and is methyl or H;

X₁ is CR₃:

R₃ is F, Cl, Br, R_f, R_fR_g-, R_f-O-R_g-, or (R_h)(R_i)N-R_g-, where R_f is H, C ₁₋₆ alkyl, C ₂₋₆ alkenyl, C ₃₋₆ cycloalkyl, C ₂₋₅ heterocyclic radical, or phenyl; where R_g is C ₁₋₆ alkylene, C ₂₋₆ alkenylene, C ₃₋₆ cycloalkylene, bivalent C ₃₋₆ heterocyclic radical, or phenylene; and R_h and R_i are each independently H, C ₁₋₆ alkyl, C ₂₋₆ alkenyl, C ₃₋₆ cycloalkyl, or phenyl;

 X_2 is NR_e or O; R_e is H or C ₁₋₆ alkyl;

25 X₃ is N;

15

20

25

30

Z is =0 or =S: each of R₄ and R₆ is independently H, F, CI, Br, I, COOH, OH, nitro, amino, cyano, C 1-4 alkoxy, or C 1-4 alkyl; R₅ is H, F, Cl, Br, I, (C=O)R_i, OH, nitro, NR_iR_k, cyano, -OCH₂-Ph, 5 C ₁₋₄ alkoxy, or C ₁₋₄ alkyl; R₇ is H, F, Cl, Br, I, (C=O)R_m, OH, nitro, NR_IR_m, cyano, C ₁₋₄ alkoxy, or C 1-4 alkyl; wherein each of R_i, R_k, R_l, and R_m is independently selected from H, C_{1-6} alkyl, hydroxy, phenyl, benzyl, phenethyl, and C_{1-6} alkoxy; each of the above hydrocarbyl or heterocyclic groups being independently and optionally substituted with between 1 and 3 substituents selected from C₁₋₃ alkyl, halo, hydroxy, amino, and C₁₋₃ alkoxy, provided at least one of R₁, R₂, R₃, R₄, R₅, R₆, and R₇ is other than H when Z is O; or a pharmaceutically acceptable salt, ester, or amide thereof. 3. The method of claim 1 wherein said composition comprises a compound wherein R_1 is R_a , R_aR_b -, R_a -O- R_b -, or $(R_c)(R_d)N$ - R_b -, where R_a is H, C ₁₋₁₀ alkyl, C ₂₋₅ alkenyl, C ₃₋₈ cycloalkyl, C ₂₋₅ heterocyclic radical, or phenyl; where R_b is C ₁₋₆ alkylene, or C ₂₋₈ alkenylene; and R_c and R_d are each independently H, C ₁₋₈ alkyl, C ₂₋₈ alkenyl, C ₃₋₈ cycloalkyl, or phenyl; $R_{2'}$ is methyl or H; R_{3'} is methyl or H; $R_{5'}$ is methyl or H; R_{6'} is methyl or H; R_{7'} is methyl or H; X₁ is CR₃; R₃ is F, Cl, Br, methyl, ethyl, or propyl;

 X_2 is NR_e or O; R_e is H or C ₁₋₆ alkyl;

X₃ is N;

Z is =0 or =S;

15

each of R_4 and R_6 is independently H, F, Cl, Br, I, COOH, OH, nitro, amino, cyano, C $_{1-3}$ alkoxy, or C $_{1-3}$ alkyl;

 $R_5 \ is \ H, \ F, \ Cl, \ Br, \ I, \ (C=O)R_j, \ OH, \ nitro, \ NR_jR_k, \ cyano, \ -OCH_2-Ph,$ $C_{1\!-\!4} \ alkoxy; \ or \ C_{1\!-\!4} \ alkyl;$

5 R₇ is H, F, Cl, Br, I, (C=O)R_m, OH, nitro, NR_IR_m, cyano, C ₁₋₄ alkoxy, or C ₁₋₄ alkyl;

wherein each of R_j , R_k , R_l , and R_m is independently selected from H, C_{1-6} alkyl, hydroxy, phenyl, benzyl, phenethyl, and C_{1-6} alkoxy;

each of the above hydrocarbyl or heterocyclic groups being independently and optionally substituted with between 1 and 3 substituents selected from C ₁₋₃ alkyl, halo, hydroxy, amino, and C ₁₋₃ alkoxy;

n is 1;

provided at least one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , and R_7 is other than H when Z is O;

or a pharmaceutically acceptable salt, ester, or amide thereof.

4. The method of claim 1 wherein said composition comprises a compound wherein

R₁ is H, methyl, or ethyl;

One of $R_{2'}$ and $R_{3'}$ is methyl, and the other is H, where R_1 is H; R_2 is otherwise H;

X₁ is CR₃; R₃ is H, F, Cl, or Br;

X₂ is NR_e or O;

Re is H or C 1-3 alkyl;

Z = O = S;

each of R_4 and R_6 is independently H, OH, C $_{1-4}$ alkyl, C $_{1-4}$ alkoxy, cyano, or amino;

 R_5 is H, F, CI, Br, COOH, OH, amino, cyano, C $_{1\!-\!4}$ alkoxy, or C $_{1\!-\!4}$ alkyl; and

R₇ is H, F, Cl, Br, C ₁₋₄ alkyl, C ₁₋₄ alkoxy, cyano, or amino; provided at least one of R_5 and R_7 is not H.

	3.	compound wherein
	,	R ₁ is H, methyl, or ethyl;
		R _{2'} and R _{3'} are independently methyl or H;
5		X_1 is CR_3 or N; R_3 is H, F, or CI;
		X ₂ is NR _e or O; R _e is H or C ₁₋₆ alkyl;
		Z is =O or =S;
		each of R₄ and R ₆ is H;
		R₅ is H, F, Cl, Br, methyl, ethyl, or propyl; and
10		R_7 is H, F, Cl, Br, or C $_{1 extsf{-4}}$ alkyl; provided at least one of R_5 and l
	is not H.	
	6.	The method of claim 1 wherein said composition comprises a
		compound wherein X ₂ is N.
15	7.	The method of claim 1 wherein said composition comprises a
		compound wherein X₂ is O.
	8.	The method of claim 1 wherein said composition comprises a
20		compound wherein R ₁ is H, methyl or ethyl.
	9.	The method of claim 1 wherein said composition comprises a
		compound wherein R ₁ is methyl.
25	10.	The method of claim 1 wherein said composition comprises a
		compound wherein $R_{2'}$ is H.
	11.	The method of claim 1 wherein said composition comprises a
	• • •	compound wherein $R_{2'}$ is methyl.
30	40	
	12.	The method of claim 1 wherein said composition comprises a

13.	The method of claim 12 wherein said composition comprises a compound wherein R ₃ is Cl.
14.	The method of claim 1 wherein said composition comprises a compound wherein R_5 is F, Cl, Br, or methyl and R_7 is F, Cl, or Br.
15.	The method of claim 1 wherein said composition comprises a compound wherein each of R_5 and R_7 is independently selected from H, F, Cl, Br, and methyl, provided at least one of R_5 and R_7 is not H.
16.	The method of claim 1 wherein said composition comprises a compound wherein each of R_4 and R_6 is independently H, methyl, or Cl.
17.	The method of claim 1 wherein said composition comprises a compound wherein R_3 is H or CI; R_5 is F, CI, Br, or methyl; and R_7 is H, F, CI, or Br.
18.	The method of claim 17 wherein said composition comprises a compound wherein each of R_4 and R_6 is independently H, methyl, or Cl.
19.	The method of claim 1 wherein said composition comprises a compound wherein Z is =S.
20.	The method of claim 1 wherein said composition comprises a compound selected from: (5-Chloro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Fluoro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Bromo-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Bromo-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone;

piperazin-1-yl)-methanone; (5-Methyl-1H-indol-2-yl)-(4-methyl-

piperazin-1-yl)-methanone; (7-Chloro-1H-indol-2-yl)-(4-methyl-

piperazin-1-yl)-methanone; (5,7-Difluoro-1H-indol-2-yl)-(4-methyl-

piperazin-1-yl)-methanone; (5,7-Dichloro-1H-indol-2-yl)-(4-methylpiperazin-1-yl)-methanone; (5-Chloro-7-methyl-1H-indol-2-yl)-(4methyl-piperazin-1-yl)-methanone; and (3,5-Dichloro-1H-indol-2yl)-(4-methyl-piperazin-1-yl)-methanone.

5

The method of claim 1 wherein said composition comprises a 21. compound selected from: (6-Chloro-1H-indol-2-yl)-(4-methylpiperazin-1-yl)-methanone; (1H-Indol-2-yl)-(3-methyl-piperazin-1yl)-methanone; (7-Bromo-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)methanone; (5-Bromo-benzofuran-2-yl)-(4-methyl-piperazin-1-yl)methanone; and (1H-Indol-2-yl)-(4-methyl-piperazin-1-yl)methanethione.

15

10

The method of claim 1 wherein said composition comprises a 22. compound selected from: (5-Chloro-1H-indol-2-yl)-(4-methylpiperazin-1-yl)-methanone; (5-Bromo-1H-indol-2-yl)-(4-methylpiperazin-1-yl)-methanone; (5-Methyl-1H-indol-2-yl)-(4-methylpiperazin-1-yl)-methanone; (5,7-Difluoro-1H-indol-2-yl)-(4-methylpiperazin-1-yl)-methanone; and (5,7- Dichloro-1H-indol-2-yl)-(4methyl-piperazin-1-yl)-methanone.

20

The method of claim 1 wherein said composition comprises a 23. compound selected from:

25

30

(4-Methyl-piperazin-1-yl)-(5-trifluoromethyl-1H-indol-2-yl)methanone; (7-Amino-5-methyl-1H-indol-2-yl)-(4-methylpiperazin-1-yl)-methanone; (5-Amino-7-methyl-1H-indol-2-yl)-(4methyl-piperazin-1-yl)-methanone; (7-Amino-5-bromo-1H-indol-2yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Amino-7-bromo-1Hindol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Fluoro-7methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (7-Fluoro-5-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)methanone; (6-Bromo-5-hydroxy-1H-indol-2-yl)-(4-methylpiperazin-1-yl)-methanone; (5-Bromo-6-hydroxy-1H-indol-2-yl)-(4methyl-piperazin-1-yl)-methanone; (6-Bromo-7-hydroxy-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (4-Bromo-7-hydroxy-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (6-Bromo-7methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; and (4-Bromo-7-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)methanone.

The method of claim 1 wherein said composition comprises a

1-yl-methanone; (5,7-Difluoro-1H-indol-2-yl)-piperazin-1-yl-

compound selected from: (5,7-Dichloro-1H-indol-2-yl)-piperazin-

methanone; (5,7-Difluoro-1H-indol-2-yl)-(3-methyl-piperazin-1-yl)methanone; (5,6-Difluoro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-

methanone; and (4,6-Difluoro-1H-indol-2-yl)-(4-methyl-piperazin-

5

10

15

25.

1-yl)-methanone.

24.

20

25

30

The method of claim 1 wherein said composition comprises a compound selected from: 1-(5-Chloro-1H-indole-2-carbonyl)-4-methyl-piperazine-2carboxylic acid methyl ester; 4-(5-Chloro-1H-indole-2-carbonyl)-1methyl-piperazine-2-carboxylic acid methyl ester; 4-(5-Chloro-1Hindole-2-carbonyl)-1-methyl-piperazine-2-carboxylic acid amide; 1-(5-Chloro-1H-indole-2-carbonyl)-4-methyl-piperazine-2carboxylic acid amide; 4-(5-Chloro-1H-indole-2-carbonyl)-1methyl-piperazine-2-carboxylic acid methylamide; 1-(5-Chloro-1Hindole-2-carbonyl)-4-methyl-piperazine-2-carboxylic acid methylamide; 4-(5-Chloro-1H-indole-2-carbonyl)-1-methylpiperazine-2-carboxylic acid dimethylamide; 1-(5-Chloro-1Hindole-2-carbonyl)-4-methyl-piperazine-2-carboxylic acid

dimethylamide; (5-Chloro-1H-indol-2-yl)-(3-hydroxymethyl-4-

methyl-piperazin-1-yl)-methanone; (5-Chloro-1H-indol-2-yl)-(3-

methoxymethyl-4-methyl-piperazin-1-yl)-methanone; (5-Chloro-

1H-indol-2-yl)-(2-methoxymethyl-4-methyl-piperazin-1-yl)-

methanone; (5-Chloro-1H-indol-2-yl)-(4-methyl-3-

methylaminomethyl-piperazin-1-yl)-methanone; (5-Chloro-1H-indol-2-yl)-(4-methyl-2-methylaminomethyl-piperazin-1-yl)-methanone; (5-Chloro-1H-indol-2-yl)-(3-dimethylaminomethyl-4-methyl-piperazin-1-yl)-methanone; and (5-Chloro-1H-indol-2-yl)-(2-dimethylaminomethyl-4-methyl-piperazin-1-yl)-methanone.

5

26. The compound (5-Chloro-7-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone.

10