

CRIME & COMMUNITIES: PREDICT THE TOTAL NUMBER OF VIOLENT CRIMES PER 100K POPULATION

Md Jahid HASSAN

CRIME DATASET

The Crime Dataset contains **128 socio-economic features** from the US 1990 Census. Describing U.S. communities in terms of demographics, income, employment, housing, law enforcement and more.

Dataset Characteristics:

- •Instances: 1,994 US communities
- •Variables: 128 (122 predictive, 5 non-predictive, 1 target)
- •Predictable Variables: medIncome, agePct16t24, PctUnemployed, PolicPerPop, and so on
- •Non Predictable Attributes: 5 (state, county, communityname, ...)
- •Target Variable: ViolentCrimesPerPop (number of violent crimes per 100K population)

Project Goal:

- •**Prediction**: Estimate violent crimes per 100K population
- •Optimization: meaning to understand what social and law enforcement conditions lead to lower crime rates.

DATA CHALLENGES AND LIMITATIONS

- •Missing data: from certain communities (especially LEMAS data).
- •Variable normalization: all feature values were scaled between 0 and 1 using an equal-interval binning method.
- •Inconsistent relationships between Variables due to normalization.
- •In some Midwestern U.S. states, rape reporting was inconsistent, which led to missing or unreliable violent crime totals.

Additional Considerations:

•Communities not found in both census and crime datasets were omitted.

DATASET PRE-PROCESSING:

- From 122 predictive features 23
 contain missing values. There are 22
 variables missing 84% of data.
 Dropped
- Most of these variables came from the 1990 Law Enforcement Management and Admin Stats survey (LEMAS).
- OtherPerCap has only one missing value. filled by mean value using Imputer from sklearn.preprocessing.
- No presence of any degenerate Columns.

TARGET DISTRIBUTION

- Distribution of the ViolentCrimesPerPop variable shows, how violent crime rates (per 100,000 people) are spread across all 1,994 communities.
- Majority of communities having lower crime rates and a smaller number of communities with significantly higher rates.

Co-relation:

Correlation Group with ViolentCrimesPerPop

Data Splitting:

Linear Regression Family:

Input shape : 1495 X 100

Cross validation: 5

Lasso alpha: 0.0001 Ridge alpha: .0001

0.6

Actual Values

1.0

Model	Train R ²	Test R ²	MAE	RMSE
Linear Regression	0.698	0.652	0.0937	0.1301
Ridge	0.693	0.655	0.0927	0.1296
Lasso	0.689	0.653	0.0924	0.1299

Dimensionality Reduction:

- **Objective**: Perform PCA to reduce dimensionality.
- Identifies orthogonal components capturing maximum variance

Condition:

•Standardization: Z-score scaling (StandardScaler) to zero mean, unit variance.

Pseudocode:

- Compute covariance matrix. (100 x 100)
- Perform eigenvalue decomposition (extract most variances)
- Project data onto principal components
- Use projected data as a training data.

Pseudocode: PCA

```
Compute Covariance Matrix:

Input: Standardized data matrix X (n x p)

Center X: X_centered = X - mean(X, axis=0)

Compute C = (1/(n-1)) * X_centered^T * X_centered

Return C
```

```
Eigenvalue Decomposition: Input: Covariance matrix C Compute eigenvalues \lambda_i and eigenvectors w_i of C Sort eigenvalues in descending order: \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p Sort eigenvectors accordingly: W = [w_1, w_2, \ldots, w_p] Return W, \lambda_i
```

Pseudocode: PCA

```
Compute Explained Variance Ratio: Input: Eigenvalues, number of components k Compute sum of top k eigenvalues: sum_top_k = sum(\lambda_i for i=1 to k) Compute total sum of eigenvalues: sum_total = sum(\lambda_i for i=1 to p) Compute ratio = sum_top_k / sum_total Return ratio
```

```
Project Data:
Input: Centered data X, eigenvectors W (p x k)
Compute scores: T = X * W
Return T (n x k reduced data)
```

Input shape: 1495 X 100

- $X = n \times p : n=1495, P=100$
- **w=p x k** : n=100 , K= components.
- New Representation = $\mathbf{n} \times \mathbf{K}$
- For pca5 $X = 1495 \times 5$
- For pca10 $X = 1495 \times 10^{-1}$
- For pca34 $X = 1495 \times 34$

Dimensionality Reduction with PCA:

PCA Results and comparison:

Results with 14 PCA Components

Model	MAE	RMSE	R ²
Linear Regression	0.016377	0.028228	0.5759
Ridge	0.016212	0.028301	0.5737
Lasso	0.016124	0.028414	0.5703

Results with 22 PCA Components

Model	MAE	RMSE	R ²
Linear Regression	0.011505	0.022706	0.7256
Ridge	0.011627	0.023136	0.7151
Lasso	0.012158	0.023802	0.6985

Results with 34 PCA Components

Model	MAE	RMSE	R ²
Linear Regression	0.010427	0.022100	0.7400
Ridge	0.010731	0.022612	0.7279
Lasso	0.011801	0.023611	0.7033

PCA Results and comparison:

Linear Regression

0.010427

0.022100

0.7400

Optimal conditions minimizing the crime rate.

Conclusion

- A data-driven approach was used to predict violent crime rates using socio-economic and law enforcement data from 1,994 U.S. communities.
- Tree-based models (Random Forest) identified family structure, education, and housing conditions as key predictors of violent crime.
- The percentage of children born to unmarried parents (PctIlleg) consistently ranked as the most important factor influencing crime.
- While some racial features appeared important, they likely reflect underlying economic inequalities rather than race itself.

Thank you for your attention

Any questions?