Data Mining

Ensemble Techniques

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Ensemble Methods

Construct a set of classifiers from the training data

 Predict class label of test records by combining the predictions made by multiple classifiers

Why Ensemble Methods work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, ε = 0.35
 - Assume errors made by classifiers are uncorrelated
 - Probability that the ensemble classifier makes a wrong prediction:

$$P(X \ge 13) = \sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1 - \varepsilon)^{25 - i} = 0.06$$

General Approach

Types of Ensemble Methods

- Manipulate data distribution
 - Example: bagging, boosting
- Manipulate input features
 - Example: random forests
- Manipulate class labels
 - Example: error-correcting output coding

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each sample has probability (1 1/n)ⁿ of being selected

Bagging Algorithm

Algorithm 5.6 Bagging Algorithm

- Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- Create a bootstrap sample of size n, D_i.
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: $C^*(x) = \arg \max_y \sum_i \delta(C_i(x) = y)$, $\{\delta(\cdot) = 1 \text{ if its argument is true, and } 0 \text{ otherwise.}\}$

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: x ≤ k versus x > k
 - Split point k is chosen based on entropy

Baggin	g Roun	ıd 1:								
Х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
у	1	1	1	1	-1	-1	-1	-1	1	1

$$x <= 0.35 \Rightarrow y = 1$$

 $x > 0.35 \Rightarrow y = -1$

Baggir	ng Rour	nd 1:											
Х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x \le 0.35 \Rightarrow y = 1$		
у	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \Rightarrow y = -1$		
Baggir	ng Rour	nd 2:											
Х	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1	$x <= 0.7 \rightarrow y = 1$		
У	1	1	1	-1	-1	-1	1	1	1	1	$x > 0.7 \rightarrow y = 1$		
	Bagging Round 3:												
Х	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	0.8	0.9	$x \le 0.35 \Rightarrow y = 1$ $x > 0.35 \Rightarrow y = -1$		
У	1	1	1	-1	-1	-1	-1	-1	1	1	X > 0.33		
Baggir	ng Rour	nd 4:											
X	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x <= 0.3 \implies y = 1$		
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.3 \implies y = -1$		
Baggir	ng Rour	nd 5:											
Х	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	$x \le 0.35 \Rightarrow y = 1$		
У	1	1	1	-1	-1	-1	-1	1	1	1	$x > 0.35 \implies y = -1$		

Baggir	ng Rour	nd 6:									
Х	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	$x <= 0.75 \rightarrow y = -1$
У	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Rour	nd 7:									
Х	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	$x \le 0.75 \Rightarrow y = -1$
у	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \Rightarrow y = 1$
	ng Rour				0.5			0.0			w 0.75 -> v 1
Х	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	$x <= 0.75 \Rightarrow y = -1$ $x > 0.75 \Rightarrow y = 1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	X > 0.73 2 y = 1
Baggir	ng Rour	nd 9:									
Х	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	1	1	$x <= 0.75 \implies y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Rour	nd 10:									
Х	0.1	0.1	0.1	0.1	0.3	0.3	8.0	0.8	0.9	0.9	$x <= 0.05 \implies y = 1$
у	1	1	1	1	1	1	1	1	1	1	$x > 0.05 \implies y = 1$

Summary of Training sets:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

- Assume test set is the same as the original data
- Use majority vote to determine class of ensemble classifier

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds