Bayesian Optimization with Finite Budget

Presenter: Shibo Li

Motivations

- BO: objective function is expensive to evaluate.
- Most BO algorithms are greedy(myopic): ignores the how the current design selected will affect the future steps: one-step optimal.
- Lookahead:
 - Aware of remaining evaluations and maximize long-term reward over several steps
- Difficulty: DP-essential
 - Uncountable states and uncountable controls.
 - Maximize nested maximization and expectations

Roadmap

Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach

BINOCULARS for Efficient, Nonmyopic Sequential Experimental Design

Shali Jiang * 1 Henry Chai * 1 Javier González 2 Roman Garnett 1

ICML 2020

Remi R. Lam

Massachusetts Institute of Technology Cambridge, MA rlam@mit.edu Karen E. Willcox

Massachusetts Institute of Technology Cambridge, MA kwillcox@mit.edu

NeurlPS 2016

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang*Washington University

Washington University jiang.s@wustl.edu

Jacob R. Gardner
University of Pennsylvania
gardner.jake@gmail.com

Daniel R. Jiang*

Facebook

drjiang@fb.com

Maximilian Balandat*

Facebook balandat@fb.com

Brian Karrer Facebook Ur

briankarrer@fb.com

Roman Garnett
Washington University
garnett@wustl.edu

NeurlPS 2020

Bayesian Optimization (BO)

- Probabilistic Surrogate Modeling
 - GP, ABLR, BNN, Random Forest
- Acquisition Function
 - Explicitly/implicitly trade-off between exploration-exploitation
 - PI, EI, ES, UCB, MES

Practically, t is set to the optimums in the querying history

BO Formulation

$$\text{(OP)} \quad \boldsymbol{x}^* = \operatorname{argmin}_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x})$$

Expensive

$$f \sim \mathcal{G}(m,\kappa)$$

$$\overline{\mu}_k(\boldsymbol{x}) = K(X_k,\boldsymbol{x})^\top [K(X_k,X_k) + \lambda I]^{-1}Y_k,$$

$$\overline{\sigma}_k^2(\boldsymbol{x}) = \kappa(\boldsymbol{x},\boldsymbol{x}) - K(X_k,\boldsymbol{x})^\top [K(X_k,X_k) + \lambda I]^{-1}K(X_k,\boldsymbol{x})$$

$$\mathcal{S}_{k+1} = \mathcal{S}_k \cup \{(\boldsymbol{x}_{k+1},y_{k+1})\}$$

$$\text{(AP)} \quad \boldsymbol{x}_{k+1} = \operatorname{argmax}_{\boldsymbol{x} \in \mathcal{X}} U_k(\boldsymbol{x};\mathcal{S}_k)$$

$$\text{Utility/Acquisition}$$

Cheap

BO with Finite Budget as DP

Goal:

- Statistical model to represent the objective function
- System dynamics that describes how this statistical model is updated as new information is collected
- A goal that can be quantified with long-term reward

Dynamic Programming

- A discrete-stage dynamic (discrete time) DP
 - State space: $z_k \in \mathcal{Z}_k$
 - Action/Control space: $u_k \in \mathcal{U}_k(z_k)$
 - Noise control consequence $w_k \in \mathcal{W}_k(z_k, u_k)$ $\mathbb{P}(\cdot|z_k, u_k)$
 - Evolves to a new state $z_{k+1} \in \mathcal{Z}_{k+1}$

$$\forall k \in \{1, \dots, N\}, \forall (z_k, u_k, w_k) \in \mathcal{Z}_k \times \mathcal{U}_k \times \mathcal{W}_k, \quad z_{k+1} = \mathcal{F}_k(z_k, u_k, w_k)$$

- Policy: $\boldsymbol{\pi} = \{\pi_1, \cdots, \pi_N\}$ $\pi_k : \mathcal{Z}_k \mapsto \mathcal{U}_k$, for $k = 1, \cdots, N$
- Stage reward: $r_k : \mathcal{Z}_k \times \mathcal{U}_k \times \mathcal{W}_k \mapsto \mathbb{R}$

Dynamic Programming(Continue)

- A discrete-stage dynamic (discrete time) DP
 - Final reward: $r_{N+1}: \mathcal{Z}_{N+1} \mapsto \mathbb{R}$
 - Expected reward (Value) starting the initial state with given policy

$$J_{m{\pi}}(z_1) = \mathbb{E}\left[r_{N+1}(z_{N+1}) + \sum_{k=1}^{N} r_k(z_k, \pi_k(z_k), w_k)\right]$$

- Optimal Policy: $J^*(z_1) = J_{\boldsymbol{\pi}^*}(z_1) = \max_{\boldsymbol{\pi} \in \Pi} J_{\boldsymbol{\pi}}(z_1)$
- Bellman's principle of optimality: DP recursive backward from N to 1

$$J_{N+1}(z_{N+1}) = r_{N+1}(z_{N+1}),$$

 $J_k(z_k) = \max_{u_k \in \mathcal{U}_k} \mathbb{E}[r_k(z_k, u_k, w_k) + J_{k+1}(\mathcal{F}_k(z_k, u_k, w_k))]$

Formulate BO with Finite Budget as DP

- BO as DP instance:
 - State space: z_k is S_k
 - Action/control space: u_k is x_{k+1}
 - Noisy Consequences: possible simulated values f_{k+1} of the objective function at \boldsymbol{x}_{k+1}

$$W_k \sim \mathcal{N}\left(\overline{\mu}_k(\boldsymbol{x}_{k+1}), \overline{\sigma}_k^2(\boldsymbol{x}_{k+1})\right)$$

New state

$$S_{k+1} = S_k \cup \{(\boldsymbol{x}_{k+1}, f_{k+1})\} = F_k(S_k, \boldsymbol{x}_{k+1}, f_{k+1})$$

Reward

$$r_k(\mathcal{S}_k, oldsymbol{x}_{k+1}, f_{k+1}) = \max\left\{0, f_{min}^{\mathcal{S}_k} - f_{k+1}
ight\}$$

Formulate BO with Finite Budget as DP

- BO as DP instance:
 - Expected reward

$$\forall oldsymbol{x}_{k+1} \in \mathcal{X}, \ U_k(oldsymbol{x}_{k+1}; \mathcal{S}_k) = \boxed{\mathbb{E}[r_k(\mathcal{S}_k, oldsymbol{x}_{k+1}, f_{k+1})] + J_{k+1}(\mathcal{F}_k(\mathcal{S}_k, oldsymbol{x}_{k+1}, f_{k+1}))]}$$

$$EI(\boldsymbol{x}; \mathcal{S}_{k}) = \left(f_{min}^{\mathcal{S}_{k}} - \overline{\mu}_{k}\left(\boldsymbol{x}\right)\right) \Phi\left(\frac{f_{min}^{\mathcal{S}_{k}} - \overline{\mu}_{k}\left(\boldsymbol{x}\right)}{\overline{\sigma}_{k}\left(\boldsymbol{x}\right)}\right) + \overline{\sigma}_{k}(\boldsymbol{x}) \phi\left(\frac{f_{min}^{\mathcal{S}_{k}} - \overline{\mu}_{k}\left(\boldsymbol{x}\right)}{\overline{\sigma}_{k}\left(\boldsymbol{x}\right)}\right)$$

• Key idea(ADP): Approximate the J_{k+1} by simulation

- Rollout relace the requirement to optimally select a design
- Use a suboptimal heuristic to decide which control to apply
- Approximate J_{k+1} by H_{k+1}
- Base policy as heuristic $\pi = (\pi_1, \dots, \pi_N)$

$$H_N(\mathcal{S}_N) = EI(\pi_N(\mathcal{S}_N); \mathcal{S}_N),$$

$$H_n(\mathcal{S}_n) = \mathbb{E}\left[r_n(\mathcal{S}_n, \pi_n(\mathcal{S}_n), f_{n+1}) + \gamma H_{n+1}(\mathcal{F}(\mathcal{S}_n, \pi_n(\mathcal{S}_n), f_{n+1}))\right]$$

Nested expectations are replaced by base policy(Forward manner)

Nested expectations are replaced by base policy(Forward manner)

- Approximations
 - Fix rollout horizon to h then the searching interval to $\tilde{N} = \min\{k + h, N\}$
 - Gauss-Hermite quadrature

$$\widetilde{H}_{\tilde{N}}(\mathcal{S}_{\tilde{N}}) = EI(\pi_{\tilde{N}}(\mathcal{S}_{\tilde{N}}); \mathcal{S}_{\tilde{N}}),
\widetilde{H}_{n}(\mathcal{S}_{n}) = \sum_{q=1}^{N_{q}} \alpha^{(q)} \left[r_{n} \left(\mathcal{S}_{n}, \pi_{n}(\mathcal{S}_{n}), f_{n+1}^{(q)} \right) + \gamma \widetilde{H}_{n+1} \left(\mathcal{F} \left(\mathcal{S}_{n}, \pi_{n}(\mathcal{S}_{n}), f_{n+1}^{(q)} \right) \right) \right]$$

Utility

$$U_k(\boldsymbol{x}_{k+1}; \mathcal{S}_k) = \sum_{q=1}^{N_q} \alpha^{(q)} \left[r_k \left(\mathcal{S}_k, \boldsymbol{x}_{k+1}, f_{k+1}^{(q)} \right) + \gamma \widetilde{H}_{k+1} \left(\mathcal{F} \left(\mathcal{S}_k, \boldsymbol{x}_{k+1}, f_{k+1}^{(q)} \right) \right) \right]$$

$$U_N(\boldsymbol{x}_{N+1}; \mathcal{S}_N) = EI(\boldsymbol{x}_{N+1}; \mathcal{S}_N)$$

- Design of the Base policy:
 - With limited horizon $\pi = \{\pi_{k+1}, \dots, \pi_{\tilde{N}}\}$
 - At each $n \in \{k+1, \tilde{N}-1\}$ $\pi_n: \mathcal{Z}_n \mapsto \mathcal{X}$, maps a state $z_n = \mathcal{S}_n$ $x_{n+1} = \operatorname*{argmax}_{\boldsymbol{x} \in \mathcal{X}} EI(\boldsymbol{x}; \mathcal{S}_n)$ $x_{\tilde{N}+1} = \operatorname*{argmin}_{\boldsymbol{x} \in \mathcal{X}} \overline{\mu}_{\tilde{N}}(\boldsymbol{x})$
- Complexity:
 - Each evaluation of the utility involves $\mathcal{O}(N_q^h)$ of a heuristic
 - At each heuristic involves optimizing $\mathcal{O}(|\mathcal{S}_k|^2)$ of work

Experiment

$$G = rac{f_{min}^{\mathcal{S}_1} - f_{min}^{\mathcal{S}_{N+1}}}{f_{min}^{\mathcal{S}_1} - f(oldsymbol{x}^*)}$$

Table 2: Mean and median gap G over 40 initial guesses.

					<u> </u>					
Function name		PI	EI	UCB	PES	GLASSES	R-4-9	R-4-10	R-5-9	R-5-10
Branin-Hoo	Mean	0.847	0.818	0.848	0.861	0.846	0.904	0.898	0.887	0.903
	Median	0.922	0.909	0.910	0.983	0.909	0.959	0.943	0.921	0.950
Goldstein-Price	Mean	0.873	0.866	0.733	0.819	0.782	0.895	0.784	0.861	0.743
	Median	0.983	0.981	0.899	0.987	0.919	0.991	0.985	0.989	0.928
Griewank	Mean	0.827	0.884	0.913	0.972	12	0.882	0.885	0.930	0.867
	Median	0.904	0.953	0.970	0.987	12	0.967	0.962	0.960	0.954
Six-hump Camel	Mean	0.850	0.887	0.817	0.664	0.776	0.860	0.825	0.793	0.803
	Median	0.893	0.970	0.915	0.801	0.941	0.926	0.900	0.941	0.907

 BINOCULARS(Batch-Informed NOnmyopic Choices Using Long-horizons for Adaptive, Rapid SED)

- Contribution
 - Formulate the adaptive policy from the batch optimization
 - Optimizing any single element of the batch is equivalent to optimize the lower bound of the adaptive policy
- Cons:
 - Eliminate the procedures how to conduct the batch optimization

- Notations
 - Design space \mathcal{X} response space \mathcal{Y} dataset $\mathcal{D} \subseteq \mathcal{X} \times \mathcal{Y}$ probabilistic model $p(y \mid x, \mathcal{D})$
 - Marginal gain utility $u(y \mid x, \mathcal{D}) = u(\mathcal{D} \cup (x, y)) u(\mathcal{D})$
 - Expected utility after observing dataset and k steps remaining $Q_k(x \mid \mathcal{D})$

$$egin{aligned} Q_k(x \mid \mathcal{D}) &= \mathbb{E}_y[u(y \mid x, \mathcal{D})] + \\ &\mathbb{E}_y\Big[\max_{x'} \, Q_{k-1}ig(x' \mid \mathcal{D} \cup \{(x,y)\}ig)\Big] \end{aligned}$$

Optimal policy at i-th step with horizon T

$$x^* = \operatorname*{argmax}_{x} Q_{T-i}(x \mid \mathcal{D}_i)$$

- A batch view of adaptive policy design
 - Suppose **simultaneously** design T experiments $X = \{x_1, \dots, x_T\}$ given \mathcal{D}
 - The expected marginal utility over the joint of $Y = \{y_1, \dots, y_T\}, p(Y \mid X, \mathcal{D})$

$$Q(X \mid \mathcal{D}) = \mathbb{E}_Y[u(Y \mid X, \mathcal{D})]$$

• Decomposing $X_{-j} = X \setminus \{x_j\}$

$$Q(X \mid \mathcal{D}) = \mathbb{E}_{y_j}[u(y_j \mid x_j, \mathcal{D})] +$$

$$\mathbb{E}_{y_j}\Big[Q(X_{-j} \mid \mathcal{D} \cup \{(x_j, y_j)\})\Big]$$

- Batch View
 - Let $X^* \in \operatorname{arg\,max}_X Q(X \mid \mathcal{D})$
 - For any $x_j^* \in X^*$

$$egin{aligned} \mathbb{E}_{y_j^*} \Big[Qig(X_{-j}^* \mid \mathcal{D} \cup \{(x_j^*, y_j^*)\}ig) \Big] = \ &\max_{X_{-j}} \mathbb{E}_{y_j^*} \Big[Qig(X_{-j} \mid \mathcal{D} \cup \{(x_j^*, y_j^*)\}ig) \Big] \end{aligned}$$

• Choosing any $x^* \in X^*$ is equivalent to solve $x^* \in \arg \max_x B(x \mid \mathcal{D})$

$$B(x \mid \mathcal{D}) = \mathbb{E}_y[u(y \mid x, \mathcal{D})] + \max_{X':|X'|=T-1} \mathbb{E}_y[Q(X' \mid \mathcal{D} \cup \{(x, y)\})]$$

$$egin{aligned} Q_k(x\mid \mathcal{D}) &= \mathbb{E}_y[u(y\mid x, \mathcal{D})] + \\ &\mathbb{E}_y\Big[\max_{x'} \, Q_{k-1}ig(x'\mid \mathcal{D} \cup \{(x,y)\}ig)\Big] \end{aligned}$$

- Batch View
 - Lower bound of the true expected utility

$$\max_{X':|X'|=T-1} \mathbb{E}_y \left[Q(X' \mid \mathcal{D} \cup \{(x,y)\}) \right] \\
\leq \mathbb{E}_y \left[\max_{X':|X'|=T-1} Q(X' \mid \mathcal{D} \cup \{(x,y)\}) \right] \\
\leq \mathbb{E}_y \left[\max_{x'} Q_{T-1} (x' \mid \mathcal{D} \cup \{(x,y)\}) \right].$$

Algorithm 1 BINOCULARS

Input: design space \mathcal{X} , response space \mathcal{Y} , model $p(y \mid x, \mathcal{D})$, utility function $u(y \mid x, \mathcal{D})$, budget T

Output: \mathcal{D} , a sequence of experiments and observations for $i \leftarrow 0$ to T-1 do

Compute the optimal batch X^* of size T-iPick an experiment $x^* \in X^*$ and observe response y^* Augment $\mathcal{D} = \mathcal{D} \cup \{(x^*, y^*)\}$

Experiment

	EI	2.EI.s	3.EI.s	4.EI.s	6.EI.s	8.EI.s	2.G	3.G	2.R.10	3.R.3
SVM	0.738	0.913	0.940	0.911	0.937	0.834	0.881	0.898	0.930	0.928
LDA	0.956	1.000	0.996	0.993	0.982	0.995	1.000	0.999	0.999	1.000
LogReg	0.963	0.998	1.000	0.999	0.999	1.000	0.989	0.911	0.965	0.948
NN Boston	0.470	0.467	0.478	0.460	0.502	0.467	0.455	0.512	0.503	0.482
NN Cancer	0.665	0.627	0.654	0.686	0.700	0.686	0.806	0.755	0.708	0.698
Robot pushing 3d	0.928	0.960	0.962	0.957	0.962	0.961	0.955	0.951	0.955	0.954
Robot pushing 4d	0.730	0.726	0.695	0.695	0.736	0.697	0.765	0.786	0.770	0.745
Average	0.779	0.813	0.818	0.815	0.831	0.806	0.836	0.830	0.833	0.822

Efficient Nonmyopic Bayesian Optimization

Contribution

- One-shot multiple-step trees: jointly optimize all decision variables in one-shot fashion
- Fast-fantasies and parallelism: LOVE cache with GPytorch
- Improved performance over myopic EI and BINOCULARS

Efficient Nonmyopic Bayesian Optimization

- Bayesian Optimal Policy
 - OP: $x^* \in \arg\max_{x \in \mathcal{X}} f(x)$
 - Utility of decision horizon k $u(\mathcal{D}_k) = \max_{(x,y) \in \mathcal{D}_k} y$
 - Define: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_k$ recursively $\mathcal{D}_i = \mathcal{D}_{i-1} \cup \{(x_i, y_i)\}$
 - Policy: a collection of decision functions $\boldsymbol{\pi} = (\pi_1, \pi_2, \dots, \pi_k)$
 - Objective: $\sup_{\pi} \mathbb{E}[u(\mathcal{D}_k^{\pi})]$
 - One step marginal:

$$v_1(x \mid \mathcal{D}) = \mathbb{E}_y \big[u(\mathcal{D} \cup \{(x, y)\}) - u(\mathcal{D}) \mid x, \mathcal{D} \big]$$

ENO

- Bayesian Optimal Policy
 - k-steps marginal by Bellman's recursion:

$$v_t(x | \mathcal{D}) = v_1(x | \mathcal{D}) + \mathbb{E}_y[\max_{x'} v_{t-1}(x' | \mathcal{D} \cup \{(x, y)\})]$$

Batch marginal per iteration(q-EI)

$$V_1^q(X \mid \mathcal{D}) = \mathbb{E}_{y^{(1)}, \dots, y^{(q)}} \left[u(\mathcal{D} \cup \{(x^{(1)}, y^{(1)}), \dots, (x^{(q)}, y^{(q)})\}) - u(\mathcal{D}) \mid X, \mathcal{D} \right]$$

Relaxation

Nested Expectation-Maximization Problem

Expand the k-steps problem

$$v_k(x \mid \mathcal{D}) = v_1(x \mid \mathcal{D}) + \mathbb{E}_y \Big[\max_{x_2} \Big\{ v_1(x_2 \mid \mathcal{D}_1) + \mathbb{E}_{y_2} \big[\max_{x_3} \big\{ v_1(x_3 \mid \mathcal{D}_2) + \cdots \big] \Big\} \Big]$$

Replace the expectation by fantasy samples from model's posterior

$$\bar{v}_k(x \mid \mathcal{D}) = v_1(x \mid \mathcal{D}) + \frac{1}{m_1} \sum_{j_1=1}^{m_1} \left[\max_{x_2} \left\{ v_1(x_2 \mid \mathcal{D}_1^{j_1}) + \frac{1}{m_2} \sum_{j_2=1}^{m_2} \left[\max_{x_3} \left\{ v_1(x_3 \mid \mathcal{D}_2^{j_1 j_2}) + \cdots \right] \right. \right. \\ \left. \mathcal{D}_1^{j_1} = \mathcal{D} \cup \left\{ (x, y^{j_1}) \right\} \right. \\ \left. \mathcal{D}_t^{j_1 \dots j_t} = \mathcal{D}_{t-1}^{j_1 \dots j_{t-1}} \cup \left\{ (x_t^{j_1 \dots j_{t-1}}, y_t^{j_1 \dots j_t}) \right\} \right. \\ \left. y_t^{j_1 \dots j_t} \sim p(y_t \mid x_t^{j_1 \dots j_t}, \mathcal{D}_{t-1}^{j_1 \dots j_{t-1}}) \right.$$

Reparameterization Trick

• Reparametrize $\bar{v}_{\underline{k}}(\underline{x}|\underline{\mathcal{D}})$

$$y = h_{\mathcal{D}}(x, z)$$

z is a random variable independent of both x and \mathcal{D} $z \sim \mathcal{N}(0, I)$

$$h_{\mathcal{D}}(x,z) = \mu_{\mathcal{D}}(x) + L_{\mathcal{D}}(x)z$$

$$L_{\mathcal{D}}(x)L_{\mathcal{D}}^{T}(x) = \Sigma_{\mathcal{D}}(x)$$

Base samples

Scenario Tree

$$\bar{v}_k(x \mid \mathcal{D}) = v_1(x \mid \mathcal{D}) + \frac{1}{m_1} \sum_{j_1=1}^{m_1} \left[\max_{x_2} \left\{ v_1(x_2 \mid \mathcal{D}_1^{j_1}) + \frac{1}{m_2} \sum_{j_2=1}^{m_2} \left[\max_{x_3} \left\{ v_1(x_3 \mid \mathcal{D}_2^{j_1 j_2}) + \cdots \right] \right] \right]$$

Differentiable Scenario Tree

 Jointly optimize all decision variables is equivalent to optimize the decision variable of the k-steps problem

Proposition 1. Fix a set of base samples and consider $\bar{v}_k(x \mid \mathcal{D})$. Let $x_t^{j_1...j_{t-1}}$ be an instance of x_t for each realization of $\mathcal{D}_{t-1}^{j_1...j_{t-1}}$ and let

$$x^{*}, \mathbf{x}_{2}^{*}, \mathbf{x}_{3}^{*}, \dots, \mathbf{x}_{k}^{*} = \underset{x, \mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}_{k}}{\arg \max} \left\{ v_{1}(x \mid \mathcal{D}) + \frac{1}{m_{1}} \sum_{j_{1}=1}^{m_{1}} v_{1}(x_{2}^{j_{1}} \mid \mathcal{D}_{1}^{j_{1}}) + \dots + \frac{1}{m_{1}} \sum_{j_{1}=1}^{m_{1}} v_{1}(x_{2}^{j_{1}} \mid \mathcal{D}_{1}^{j_{1}}) + \dots + \frac{1}{m_{1}} \sum_{j_{1}=1}^{m_{1}} v_{1}(x_{2}^{j_{1}} \mid \mathcal{D}_{1}^{j_{1}} \mid \mathcal{D}_{1$$

where we compactly represent $\mathbf{x}_2 = \{x_2^{j_1}\}_{j_1=1...m_1}$, $\mathbf{x}_3 = \{x_3^{j_1j_2}\}_{j_1=1...m_1, j_2=1...m_2}$, and so on. Then, $x^* = \arg\max_x \bar{v}_k(x \mid \mathcal{D})$.

Fast-Fantasies

Lanczos Variance Estimates

Constant-Time Predictive Distributions for Gaussian Processes

Geoff Pleiss ¹ Jacob R. Gardner ¹ Kilian Q. Weinberger ¹ Andrew Gordon Wilson ¹

Table 1. Asymptotic complexities of predictive (co)variances (n training points, m inducing points, k Lanczos/CG iterations) and sampling from the predictive distribution (s samples, t test points).

Method	Pre-computat	tion	Computing variances	Drawing s samples		
Method	(time)	(storage)	(time)	(time)		
Standard GP	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$	$\mathcal{O}(tn^2 + t^2(n+s) + t^3)$		
SGPR	$\mathcal{O}(nm^2)$	$\mathcal{O}(m^2)$	$\mathcal{O}(m^2)$	$\mathcal{O}(tm^2 + t^2(m+s) + t^3)$		
KISS-GP	_	_	$\mathcal{O}(k(n + m \log m))$	$\mathcal{O}(kt(n+m\log m)+t^2(m+s)+t^3)$		
KISS-GP (w/ LOVE)	$\mathcal{O}(k(n\!+\!m\log m))$	$\mathcal{O}(km)$	$\mathcal{O}(k)$	$\mathcal{O}(ks(t+m))$		

Fast-Fantasies

LOVE Cache

Fast-Fantasies

LOVE Cache

Proposition 2. Suppose $(K_{XX} + \Sigma)^{-1}$ has been decomposed using LOVE into $R^{-\top}R^{-1}$, with $R^{-1} \in \mathbb{R}^{n \times r}$. Suppose we wish to augment X with q data points, thereby augmenting K_{XX} with q rows and columns, yielding $K_{\hat{X}\hat{X}}$. A rank r + q decomposition \hat{R}^{-1} of the inverse, $\hat{R}^{-\top}\hat{R}^{-1} \approx (K_{\hat{X}\hat{X}} + \Sigma)^{-1}$, can be computed from R in $\mathcal{O}(nrq)$ time.

Special Instances (linear to k)

- Multi-Step (deterministic) Path
 - Single path when $m_t = 1$ for $t \ge 2$
 - Equivalent to single point quadrature (mean of the Gaussian)
 - Certainty equivalent conol
 - Works surprisingly well in practice
- Non-Adaptive Approximation (ENO)
 - replace the adaptive value function v_{k-1} by V_1^{k-1}

$$\max_{x,X^{(1)},...,X^{(m_1)}} v_1(x \,|\, \mathcal{D}) + \frac{1}{m_1} \sum_{i=1}^{m_1} V_1^{k-1}(X^{(i)} \,|\, \mathcal{D}_1^{(i)})$$

Tightness of Lowerbound

Method	Acquisition Function					
multi-step (ours)	$v_1(x \mid \mathcal{D}) + \mathbb{E}_y[\max_{x'} v_{k-1}(x' \mid \mathcal{D}_1)]$					
ENO (ours)	$v_1(x \mid \mathcal{D}) + \mathbb{E}_y[\max_X V_1^{k-1}(X \mid \mathcal{D}_1)]$					
BINOCULARS [15]	$v_1(x \mid \mathcal{D}) + \max_X \mathbb{E}_y[V_1^{k-1}(X \mid \mathcal{D}_1)]$					
GLASSES [11]	$v_1(x \mathcal{D}) + \mathbb{E}_y[V_1^{k-1}(X_g \mathcal{D}_1)]$					
rollout [18]	$r_k(x \mathcal{D}) = r_1(x \mathcal{D}) + \mathbb{E}_y[r_{k-1}(\pi(\mathcal{D}_1) \mathcal{D}_1)]$					
two-step [32]	$v_1(x \mathcal{D}) + \mathbb{E}_y[\max_{x'} v_1(x' \mathcal{D}_1)]$					
one-step [21]	$v_1(x \mathcal{D}) + 0$					
relationships (when $k \geq 2$)	multi-step \geq ENO \geq BINOCULARS \geq GLASSES \geq one-step;					
relationships (when $k \geq 2$)	$multi\text{-step} \geq rollout \geq two\text{-step} \geq one\text{-step}; \ ENO \geq two\text{-step}.$					

Experiment

	EI	ETS	12.EI.s	2-step	3-step	4-step	4-path	12-ENO
eggholder	0.627	0.647	0.736	0.478	0.536	0.577	0.567	0.661
dropwave	0.429	0.585	0.606	0.545	0.600	0.635	0.731	0.673
shubert	0.376	0.487	0.515	0.476	0.507	0.562	0.560	0.494
rastrigin4	0.816	0.495	0.790	0.851	0.821	0.826	0.837	0.837
ackley2	0.808	0.856	0.902	0.870	0.895	0.888	0.931	0.847
ackley5	0.576	0.516	0.703	0.786	0.793	0.804	0.875	0.856
bukin	0.841	0.843	0.842	0.862	0.862	0.861	0.852	0.836
shekel5	0.349	0.132	0.496	0.827	0.856	0.847	0.718	0.799
shekel7	0.363	0.159	0.506	0.825	0.850	0.775	0.776	0.866
Average	0.576	0.524	0.677	0.725	0.747	0.753	0.761	0.763
Ave. time	1.157	1949.	25.74	7.163	39.53	197.7	17.50	15.61

Experiment

