

PROBABILITY & STATISTICS

Continuous R.V
Pdf
Cdf

Chapter 4: Continuous Random Variables and Probability Distributions

Mean & Variance

LEARNING OBJECTIVES

Common Distri.
Uniform
Normal

- 1. Continuous random variable:
- (a) Probability density function
- (b) Cumulative distribution function
- (c) Mean and Variance
- 2. Common distribution: uniform and normal
- 3. Normal approximation to the Binomial and Poisson.

Normal approxi.

Summary

CONTINUOUS RANDOM VARIABLE

Continuous R.V

Pdf Cdf

Mean & Variance

Common Distri.
Uniform
Normal

Normal approxi.

Summary

Definition

A continuous random variable is a random variable whose possible values includes in an interval of real numbers.

Hours spent studying in a day

The time spent studying can be any number between 0 and 24.

Continuous R.V

Pdf

Cdf

Mean & Variance

Common Distri.
Uniform
Normal

Normal approxi.

Summary

Definition

The probability density function (pdf) of a continuous random variable X is a function such that

$$(1) \quad f(x) \ge 0 \qquad \forall \ x$$

$$(2) \int_{-\infty}^{+\infty} f(x) dx = 1$$

(3)
$$P(a \le X \le b) = \int_a^b f(x) dx$$
 for a

for any a and b.

Continuous R.V
Pdf

Cdf

Mean & Variance

Common Distri.
Uniform
Normal

Normal approxi.

Summary

Figure 4-2 Probability determined from the area under f(x).

Property

If X is a continuous random variable then for any x_1 and x_2 we have P(x < X < x) - P(x < X < x)

$$P(x_1 \le X \le x_2) = P(x_1 \le X < x_2)$$

$$= P(x_1 < X \le x_2)$$

$$= P(x_1 < X < x_2)$$

Continuous R.V

Pdf

Cdf

Mean & Variance

Common Distri. Uniform Normal

Normal approxi.

Summary

Example

Let the continuous random variable X denote the diameter of a hole drilled in a sheet metal component. The target diameter is 12.5 millimeters. Most random disturbances to the process result in larger diameters. Historical data show that the distribution of X can be modeled by a probability density function

$$f(x) = 20e^{-20(x-12,5)}, x \ge 12.5$$

- (a) If a part with a diameter larger than 12.60 millimeters is scrapped, what proportion of parts is scrapped?
- (b) What proportion of parts is between 12.5 and 12.6 millimeters?

Continuous R.V

Pdf

Cdf

Mean & Variance

Common Distri. Uniform Normal

Normal approxi.

Summary

Solution

(a)
$$P(X > 12.60) = \int_{12.6}^{+\infty} f(x) dx = 20 \int_{12.6}^{+\infty} e^{-20(x-12.5)} dx$$

= $-e^{-20(x-12.5)} \Big|_{12.6}^{+\infty} = 0.135$

(b)
$$P(12.5 < X < 12.6) = \int_{12.5}^{12.6} 20e^{-20(x-12.5)} dx$$

= $-e^{-20(x-12.5)} \Big|_{12.5}^{12.6} = 0.865$

CUMULATIVE DISTRIBUTION FUNCTION

Continuous R.V Pdf

Cdf

Mean & Variance

Common Distri. Uniform Normal

Normal approxi.

Summary

Definition

The cumulative distribution function (cdf) of a continuous random variable X is

$$F(x) := \int_{-\infty}^{x} f(t)dt$$

for $-\infty < x < +\infty$.

Let us return to the above example

$$f(x) = \begin{cases} 20e^{-20(x-12,5)} & x \ge 12.5\\ 0 & x < 12.5 \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-20(x - 12, 5)} & x \ge 12.5 \\ 0 & x < 12.5 \end{cases}$$

MEAN AND VARIANCE

Continuous R.V
Pdf
Cdf

Mean & Variance

Common Distri. Uniform Normal

Normal approxi.

Summary

Definition

Suppose X is a continuous random variable with probability density function f(x).

The **mean** or **expected value** of X is defined by

$$\mu = E(X) := \int_{-\infty}^{+\infty} x f(x) dx$$

The **variance** of *X* is defined by

$$\sigma^2 = V(X) := \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2$$

The standard deviation of X is $\sigma = \sqrt{\sigma^2}$.

MEAN AND VARIANCE

Continuous R.V Pdf Cdf

Mean & Variance

Common Distri. Uniform Normal

Normal approxi.

Summary

Example

Assume that X is a continuous random variable with the following probability density function

$$f(x) = \begin{cases} 20e^{-20(x-12.5)} & x \ge 12.5\\ 0 & x < 12.5 \end{cases}$$

Mean:
$$EX = \int_{12.5}^{+\infty} x f(x) dx = \int_{12.5}^{+\infty} x 20 e^{-20(x-12.5)} dx$$

Integration by parts can be used to show that

$$EX = \left(-xe^{-20(x-12.5)} - \frac{e^{-20(x-12.5)}}{20}\right)_{12.5}^{+\infty} = 12.55$$

MEAN AND VARIANCE

Continuous R.V Pdf Cdf Variance:

$$V(X) = \int_{12.5}^{+\infty} x^2 f(x) dx - (EX)^2 = 0.0025$$

Mean & Variance

Common Distri. Uniform Normal

Expected Value of a Function of a Continuous Random Variable

Normal approxi.

Summary

$$E h(X) = \int_{-\infty}^{+\infty} h(x) f(x) dx$$

CONTINUOUS UNIFORM RANDOM VARIABLE

Continuous R.V Pdf Cdf

Continuous uniform random variable over interval [a, b]

pdf:
$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0 & otherwise \end{cases}$$

Mean & Variance

Common Distri.

Uniform

Normal

Normal approxi.

Summary

Mean and Variance:

$$\mu = EX = \frac{a+b}{2}$$
 , $\sigma^2 = V(X) = \frac{(b-a)^2}{12}$

cdf:

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x - a}{b - a} & a \le x < b \\ 1 & b \ge b \end{cases}$$

Continuous R.V Pdf Cdf

Mean & Variance

Common Distri. Uniform

Normal

Normal approxi.

Summary

Normal random variable $X \sim N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}, -\infty < x < +\infty$$

Mean and Variance:

$$E(X) = \mu$$

$$E(X) = \mu$$
 $V(X) = \sigma^2$

Continuous R.V Pdf Cdf

Mean & Variance

Common Distri.
Uniform

Normal

Normal approxi.

Summary

3σ-rule

Continuous R.V Pdf Cdf

Mean & Variance

Common Distri. Uniform

Normal

Normal approxi.

Summary

Standard Normal Random Variable $Z \sim N(0,1)$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$
, $-\infty < x < +\infty$

$$\Phi(z) = \int_{-\infty}^{z} \frac{e^{\frac{-x^2}{2}}}{\sqrt{2\pi}} dx.$$

Standardizing

If X is a normal random variable $X \sim N(\mu, \sigma^2)$ then

$$Z = \frac{X - \mu}{\sigma}$$

is a standard normal random variable N(0, 1).

Continuous R.V
Pdf
Cdf

Mean & Variance

Common Distri.
Uniform

Normal

Normal approxi.

Summary

Standardizing

Continuous R.V Pdf Cdf

Mean & Variance

Common Distri.
Uniform

Normal

Normal approxi.

Summary

Finding Probabilities

Problem 1: x is given known, find P(X < x).

Problem 2: P(X < x) = p is given known, find x.

Using Excel

1. $Z \sim N(0,1)$

To find $P(Z \le z)$ when given z: =NORMSDIST(z)

To find z when $P(Z \le z) = p$: =NORMSINV(p)

2. $X \sim N(\mu, \sigma^2)$

To find $P(X \le x)$ when given $x := NORMDIST(x, \mu, \sigma, 1)$

To find x when P(X < x) = p: =NORMINV(p, μ , σ).

Continuous R.V Pdf Cdf

Example

(a) Let $X \sim N(34, 144)$. Find P(X < 43) and P(24 < X < 43)37).

Mean & Variance

(b) Let $Z \sim N(0,1)$. Find the value of z to P(Z > z) = 0.95

Common Distri. Uniform

Normal

Summary

(a) P(X < 43) = NORMDIST(43, 34, 12,1) = 0.7734

P(24 < X < 37) = P(X < 37) - P(X < 24)

= 0.5987 - 0.2023 = 0.3964

(b) P(Z < z) = 1 - P(Z > z) = 1 - 0.95 = 0.05

z = NORMSINV(0.05) = -1.65

Normal approxi.

04/01/2022

Continuous R.V
Pdf
Cdf

Mean & Variance

Common Distri.
Uniform

Normal

Normal approxi.

Summary

Finding Probabilities: Using Table II

Table II Cumulative Standard Normal Distribution (continued)

Z	0.00	0.01	0.02	0.03	0.04	0.05
0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939
0.1	0.539828	0.54 <mark>3</mark> 795	0.547758	0.551717	0.555760	0.559618
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706
0.3 -	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338
0.9	0.815940	0.818589	0.821214	-0.823815	0.826391	0.828944
1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928
1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350

Continuous R.V
Pdf
Cdf

Mean & Variance

Common Distri.
Uniform
Normal

Normal approxi.

Summary

Under certain conditions, the normal distribution can be used to approximate the binomial distribution and the Poisson distribution.

Continuous R.V Pdf Cdf

Example

Let $X \sim B(16 \times 10^6, 10^{-5})$. Find the probability P(X > 150).

Mean & Variance

Solution

Common Distri. Uniform Normal

$$P(X > 150) = 1 - P(X \le 150)$$

$$=1-\sum_{x=0}^{150}C_{16\times10^6}^x(10^{-5})^x(1-10^{-5})^{16\times10^6-x}$$

Normal approxi.

Summary

Clearly, this probability is difficult to compute.

Continuous R.V Pdf Cdf

Mean & Variance

Common Distri.
Uniform
Normal

Normal approxi.

Summary

Normal Approximation to the Binomial Distribution

If $X \sim B(n, p)$ then random variable

$$Z = \frac{X - np}{\sqrt{np(1-p)}}$$

is approximately a standard random variable N(0,1).

$$P(X \le x) \approx P(Z \le \frac{x + 0.5 - np}{\sqrt{np(1-p)}})$$

$$P(X \ge x) \approx P(Z \ge \frac{x - 0.5 - np}{\sqrt{np(1 - p)}})$$

Remark: The approximation is good for np > 5 and n(1-p) > 5.

Continuous R.V
Pdf
Cdf

Mean & Variance

Common Distri.
Uniform
Normal

Normal approxi.

Summary

Let us return to the above example

$$P(X > 150) = P(X \ge 151) = P(Z > \frac{150.5 - 160}{\sqrt{160(1 - 10^{-5})}})$$
$$= P(Z > -0.75) = 1 - P(Z < -0.75) = 0.773$$

Here, we use the result $np = 16 \times 10^{6} \times 10^{-5} = 160$.

Continuous R.V
Pdf
Cdf

Mean & Variance

Common Distri. Uniform Normal

Normal approxi.

Summary

Normal Approximation to the Poisson Distribution

If X is a Poisson random variable $P(\lambda)$ then

$$Z = \frac{X - \lambda}{\sqrt{\lambda}}$$

is approximately a standard random variable N(0,1).

$$P(X \le x) = P(Z \le \frac{x - \lambda}{\sqrt{\lambda}}) = \Phi(\frac{x - \lambda}{\sqrt{\lambda}}).$$

The approximation is good for $\lambda > 5$.

Continuous R.V Pdf Cdf

Mean & Variance

Common Distri. Uniform Normal

Normal approxi.

Summary

Example

Assume that the number of asbestos particles in a squared meter of dust on a surface follows a Poisson distribution with a mean of 1000. If a squared meter of dust is analyzed, what is the probability that less than 950 particles are found?

Let X = the number of asbestos particles in a squared meter of dust on a surface, then $X \sim P(1000)$

$$P(X \le 950) \cong P(Z \le \frac{950 - 1000}{\sqrt{1000}}) = P(Z \le -1.58) = 0.057$$

Continuous R.V Pdf Cdf

Mean & Variance

Common Distri. Uniform Normal

Normal approxi.

Summary

We have studied:

- 1. Continuous random variable:
- (a) Probability density function
- (b) Cumulative distribution function
- (c) Mean and Variance
- 2. Common distribution: uniform and normal
- 3. Normal approximation to the Binomial and Poisson.

Homework: Read slides of the next lecture.