

Phân tích cú pháp xác suất

Lê Thanh Hương Bộ môn Hệ thống Thông tin Viện CNTT &TT – Trường ĐHBKHN

Email: huonglt@soict.hust.edu.vn

Làm cách nào chọn cây đúng?

• Ví dụ:

I saw a man with a telescope.

- Khi số luật tăng, khả năng nhập nhằng tăng
- Tập luật NYU: bộ PTCP Apple pie : 20,000-30,000 luật cho tiếng Anh
- Lựa chọn luật AD: V DT NN PP
 - (1) $VP \rightarrow V NP PP$ $NP \rightarrow DT NN$
 - (2) $VP \rightarrow V NP$ $NP \rightarrow DT NN PP$

Kết hợp từ (bigrams pr)

Ví dụ:

Eat ice-cream (high freq)
Eat John (low, except on Survivor)

Nhược điểm:

- P(John decided to bake a) có xác suất cao
- Xét:

$$P(w_3) = P(w_3|w_2w_1) = P(w_3|w_2)P(w_2|w_1)P(w_1)$$

Giả thiết này quá mạnh: chủ ngữ có thể quyết định bổ ngữ trong câu Clinton admires honesty

- sử dụng cấu trúc ngữ pháp để dừng việc lan truyền
- Xét Fred watered his mother*s small garden. Từ *garden* có ảnh hưởng như thế nào?
 - Pr(garden|mother*s small) thấp \Rightarrow mô hình trigram không tốt
 - Pr(garden | X là thành phần chính của bổ ngữ cho động từ to water) cao hơn

Kết hợp từ (bigrams pr)

- V có một số loại bổ ngữ nhất định
 - ⇒ Verb-with-obj, verb-without-obj
- Sự tương thích giữa chủ ngữ và bố ngữ:

John admires honesty Honesty admires John ???

Nhược điểm:

- Kích thước tập ngữ pháp tăng
- Các bài báo của tạp chí Wall Street Journal trong 1 năm: 47,219 câu, độ dài trung bình 23 từ, gán nhãn bằng tay: chỉ có 4.7% hay 2,232 câu có cùng cấu trúc ngữ pháp
- Không thể dựa trên việc tìm các cấu trúc cú pháp đúng cho cả câu. Phải xây dựng tập các mẫu ngữ pháp nhỏ

Ví dụ

Luật 3

This apple pie looks good and is a real treat

Luật

- NP→DT NN NN
- 2. NP→DT JJ NN
- 3. $S \rightarrow NP VBX JJ CC VBX NP$
- Nhóm (NNS, NN) thành NX; (NNP, NNPs)=NPX;
 (VBP, VBZ, VBD)=VBX;
- Chọn các luật theo tần suất của nó

Tính xác suất

$$Pr(X \to Y) \xrightarrow{X} \Rightarrow A$$

$$Y \xrightarrow{DT JJ NN} = 1470$$

$$NP$$

$$NP$$

$$9711$$

Tính Pr

 $S \rightarrow NP VP; 0.35$

 $NP \rightarrow DT JJ NN; 0.1532$

 $VP \rightarrow VBX NP; 0.302$

Luật áp dung

Chuỗi Pr

 $1 S \rightarrow NP VP$

0.35

 $2 \text{ NP} \rightarrow \text{DT JJ NN}$

 $0.1532 \times 0.35 = 0.0536$

 $3 \text{ VP} \rightarrow \text{VBX NP}$

 $0.302 \times 0.0536 = 0.0162$

 $4 \text{ NP} \rightarrow \text{DT JJ NN}$

 $0.1532 \times 0.0162 = 0.0025$

Pr = 0.0025

Văn phạm phi ngữ cảnh xác suất

- 1 văn phạm phi ngữ cảnh xác suất (Probabilistic Context Free Grammar) gồm các phần thông thường của CFG
- Tập ký hiệu kết thúc $\{w^k\}$, k = 1, ..., V
- Tập ký hiệu không kết thúc $\{N^i\}$, $i=1,\ldots,n$
- Ký hiệu khởi đầu N¹
- Tập luật $\{N^i \to \zeta^j\}$, ζ^j là chuỗi các ký hiệu kết thúc và không kết thúc
- Tập các xác suất của 1 luật là:

$$\forall i \sum_{j} P(N^i \to \zeta^j) = 1$$

• Xác suất của 1 cây cú pháp:

$$P(T) = \prod_{i=1..n} p(r(i))$$

Các giả thiết

• Độc lập vị trí: Xác suất 1 cây con không phụ thuộc vào vị trí của các từ của cây con đó ở trong câu

$$\forall k, P(N_{jk}(k+c) \rightarrow \zeta)$$
 là giống nhau

• Độc lập ngữ cảnh: Xác suất 1 cây con không phụ thuộc vào các từ ngoài cây con đó

$$P(N_{jkl} \rightarrow \zeta | \text{ các từ ngoài khoảng k đến l}) = P(N_{jkl} \rightarrow \zeta)$$

• Độc lập tổ tiên: Xác suất 1 cây con không phụ thuộc vào các nút ngoài cay con đó

$$P(N_{jkl} \rightarrow \zeta | \text{ các nút ngoài cây con } N_{jkl}) = P(N_{jkl} \rightarrow \zeta)$$

Các thuật toán

- CKY
- Beam search
- Agenda/chart-based search

•

CKY kết hợp xác suất

- Cấu trúc dữ liệu:
 - Mảng lập trình động $\pi[i,j,a]$ lưu xác suất lớn nhất của ký hiệu không kết thúc a triển khai thành chuỗi i...j.
 - Backptrs lưu liên kết đến các thành phần trên cây
- Ra: Xác suất lớn nhất của cây

Tính Pr dựa trên suy diễn

- Trường hợp cơ bản: chỉ có 1 từ đầu vào $Pr(tree) = pr(A \rightarrow w_i)$
- Trường hợp đệ qui: Đầu vào là xâu các từ $A \stackrel{*}{\Rightarrow} w_{ij}$ if $\exists k: A \rightarrow BC$, $B \stackrel{*}{\Rightarrow} w_{ik}$, $C \stackrel{*}{\Rightarrow} w_{kj}$, $i \le k \le j$. $p[i,j] = \max(p(A \rightarrow BC) \times p[i,k] \times p[k,j])$.

function CYK(words,grammar) **returns** best_parse

Create and clear *p*[*num_words,num_words,num_nonterminals*]

```
# base case
for i = 1 to num\_words
  for A = 1 to num nonterminals
     if A \rightarrow w_i is in grammar then
        \pi[i, i, A] = P(A \rightarrow w_i)
# recursive case
for j = 2 to num\_words
  for i = 1 to num\_words-j+1
     for k = 1 to j-1
        for A = 1 to num_nonterminals
        for B = 1 to num\_nonterminals
        for C = 1 to num\_nonterminals
           prob = \pi[i, k, B] \times p[i+k, j-k, C] \times P(A \rightarrow BC)
           if (prob > \pi[i, j, A]) then
              \pi[i,j,A] = \text{prob}
              B[i, j, A] = \{k, A, B\}
```


TÍnh xác suất Viterbi (thuật toán CKY)

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP\rightarrowVNP$	0.7	NP → ears	0.18
$VP \rightarrow VP PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

	1	2	3	4	5
1	$\delta_{NP} = 0.1$		$\delta_{S} = 0.0126$		$-\delta_{S} = 0.0009072$
2		$\delta_{NP} = 0.04$	$\delta_{VP} = 0.126$		$-\delta_{VP} = 0.009072$
		$\delta_{V} = 1.0 $	*	(← ↑
3			$\delta_{NP} = 0.18$,	$\delta_{NP} = 0.01296$
4				$\delta p = 1.0$	$\delta_{pp} = 0.18$
5					$\delta_{NP} = 0.18$
	astronomers	saw	stars	with	ears

Ví dụ

•
$$S \rightarrow NP VP0.80$$

• Det \rightarrow the

0.50

• NP
$$\rightarrow$$
 Det N

0.30

• Det \rightarrow a

0.40

•
$$VP \rightarrow VNP$$

0.20

• N \rightarrow meal

0.01

•
$$V \rightarrow$$
 includes

0.05

• $N \rightarrow flight$

0.02

Dùng thuật toán CYK phân tích câu vào:

"The flight includes a meal"

Tính Pr

- 1. $S \rightarrow NP VP$ 1.0
- 2. $VP \rightarrow V NP PP 0.4$
- 3. $VP \rightarrow V NP$ 0.6
- 4. $NP \rightarrow N$ 0.7
- 5. $NP \rightarrow NPP$ 0.3
- 6. $PP \rightarrow PREP N$ 1.0
- 7. $N \rightarrow a_{dog}$ 0.3
- 8. $N \rightarrow a_cat$ 0.5
- 9. $N \rightarrow a_{\text{telescop}} 0.2$
- 10. $V \rightarrow saw$ 1.0
- 11. $PREP \rightarrow with$ 1.0

a_dog saw a_cat with a_telescope

$$P_1 = 1 \times .7 \times .4 \times .3 \times .7 \times 1 \times .5 \times 1 \times 1 \times .2 = .00588$$

$$P_r = 1 \times .7 \times .6 \times .3 \times .3 \times 1 \times .5 \times 1 \times 1 \times .2 = .00378$$

Tính Pr

- 1. $S \rightarrow NP VP$ 1.0
- 2. $VP \rightarrow V NP PP 0.4$
- 3. $VP \rightarrow V NP$ 0.6
- 4. $NP \rightarrow N$ 0.7
- 5. $NP \rightarrow NPP$ 0.3
- 6. $PP \rightarrow PREP N$ 1.0
- 7. $N \rightarrow a_{dog}$ 0.3
- 8. $N \rightarrow a_cat$ 0.5
- 9. $N \rightarrow a_{\text{telescop}} 0.2$
- 10. $V \rightarrow saw$ 1.0
- 11. $PREP \rightarrow with$ 1.0

a_dog saw a_cat with a_telescope

1*.7*.4*.3*.7*1*.5*1*1*.2 + ... *.6... *.3... = .00588 + .00378 = .00966

Tìm kiểm kiểu chùm

- Tìm kiếm trong không gian trạng thái
- Mỗi trạng thái là một cây cú pháp con với 1 xác suất nhất định
 - Tại mỗi thời điểm, chỉ giữ các thành phần có điểm cao nhất

Xác suất trong và ngoài

- $N_{pq} = ký$ hiệu không kết thúc N^j trải từ vị trí p đến q trong xâu
- $\alpha_j = xác suất ngoài (outside)$
- $\beta_j = xác suất trong (inside)$
- N^{j} <u>phủ</u> các từ w_{p} ... w_{q} , $n\acute{e}u$ $N^{j} \Rightarrow * w_{p}$... w_{q}

Xác suất trong và ngoài

$$\alpha_{j}(p,q)=P(w_{1(p-1)}, N_{pq}^{j}, w_{(q+1)m}|G)$$

 $\beta_{j}(p,q)=P(w_{pq}|N_{pq}^{j}, G)$

$$\alpha_{j}(p,q) \beta_{j}(p,q) = P(N^{1} \Rightarrow * w_{1m}, N^{j} \Rightarrow * w_{pq} \mid G)$$

$$= P(N^{1} \Rightarrow * w_{1m} \mid G) \bullet P(N^{j} \Rightarrow * w_{pq} \mid N^{1} \Rightarrow * w_{1m}, G)$$

Tính xác suất của xâu

• Sử dụng thuật toán *Inside*, 1 thuật toán lập trình động dựa trên xác suất inside

$$P(w_{1m}|G) = P(N^1 \Rightarrow^* w_{1m}|G) = P(w_{1m}|N_{1m}^{-1}, G) = \beta_1(1,m)$$

• Trường hợp cơ bản:

$$\beta_i(k,k) = P(w_k|N_{kk}^j, G) = P(N^j \rightarrow w_k|G)$$

• Suy diễn:

$$\beta_i(p,q) = \Sigma_{r,s} \Sigma_{d \in (p,q-1)} \ P(N^j \longrightarrow N^r N^s) \ \beta_r(p,d) \ \beta_s(d+1,q)$$

Suy diễn

Tính $\beta_j(p,q)$ với p < q - tính trên tất cả các điểm <math>j - thực hiện từ dưới lên

-nhân 3 thành phần, tính tổng theo *j*, *r*,*s*.

Ví dụ

- 1. $S \rightarrow NP VP$ 1.0
- 2. $VP \rightarrow V NP PP = 0.4$
- 3. $VP \rightarrow V NP$ 0.6
- 4. $NP \rightarrow N$ 0.7
- 5. $NP \rightarrow NPP$ 0.3
- 6. $PP \rightarrow PREP N$ 1.0
- 7. $N \rightarrow a_{dog}$ 0.3
- 8. $N \rightarrow a_cat$ 0.5
- 9. $N \rightarrow a_{\text{telescope } 0.2}$
- 10. $V \rightarrow saw$ 1.0
- 11. $PREP \rightarrow with$ 1.0

P(a_dog saw a_cat with a_telescope) =

 $1^*.7^*.4^*.3^*.7^*1^*.5^*1^*1^*.2 + \dots *.6 \dots *.3 \dots = .00588 + .00378 = .00966$

- 2 loại nhập nhằng cú pháp:
 - Câu có thể hiểu theo nhiều nghĩa khác nhau dẫn đến các cây cú pháp khác nhau.
 - Ví dụ, câu "Tôi nhìn thấy anh Hải ở tầng hai"
 - Câu chỉ có một nghĩa nhưng bộ PTCP vẫn tạo ra nhiều cây cú pháp, trong đó chỉ có một cây đúng.
 - Ví dụ, câu "Hôm nay trời mưa"

Hướng giải quyết:

Cách 1: Phân loại chi tiết hơn các nhãn từ loại/ngữ loại:

Thay vì luật

<Danh ngữ> → <Danh từ><Danh từ>

ta đưa ra luật

<Danh ngữ> → <Danh từ loại A><Danh từ loại B>.

Nhược điểm:

- Chưa thống nhất trong việc đặt tên các nhãn từ loại/ngữ loại
- Kích thước tập luật cú pháp tăng lên đáng kể.
- Phải xây dựng một cách thủ công tập luật cú pháp ứng với tập nhãn từ loại mới → khó thực hiện

Hướng giải quyết:

Cách 2: đưa xác suất vào tập luật cú pháp CFG

- Xử lý được câu "Tôi nhìn thấy anh Hải ở tầng hai"
- Chưa giải quyết nhập nhằng liên quan đến tính chất của các từ cụ thể.
- Ví dụ, danh ngữ "vấn đề trong phần trước và phần này"

Các từ cụ thể đôi khi ảnh hưởng đến việc PTCP

- 1. Để giải quyết nhập nhằng trong PTCP, đôi khi cần thông tin về từ cụ thể. Ví dụ
 - "Tôi ăn" ít khi được chấp nhận là một câu hoàn chỉnh do mang lượng thông tin nhỏ.
 - "Tôi đang ăn" dễ được chấp nhận là câu hoàn chỉnh hơn.
- Phải dựa trên tính chất cụ thể của từ giữ vai trò chính trong câu
- 2. Nhập nhằng do lược bỏ quan hệ từ. Ví dụ
 - có thể nói *bạn tôi, con tôi;*
 - không nói con chó tôi, con mèo tôi.
- Từ cũng có vai trò quan trọng trong việc PTCP
- đưa thông tin từ vựng vào văn phạm (làm giàu PCFG)

Làm giàu PCFG

- PCFG từ vựng hóa : PLCFG (Probabilistic Lexicalized CFG, Collins 1997; Charniak 1997)
- Gán từ vựng với các nút của luật
- Cấu trúc Head
 - Mỗi phần tử của parsed tree được gắn liền với một lexical head
 - Để xác định *head* của một nút trong ta phải xác định trong các nút con, nút nào là *head* (xác định *head* trong vế phải của một luật).

Làm giàu PLCFG

 $VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into) 3*10^{-10}$

 $VP(dumped) \rightarrow VBD(dumped) NP(cats) PP(into) 8*10^{-11}$

Figure 12.12 A lexicalized tree from Collins (1999).

Hạn chế của PLCFG

```
VP -> VBD NP PP
VP(dumped) -> VBD(dumped) NP(sacks)
        PP(into)
```

- Không có một corpus đủ lớn!
 - Thể hiện hết các trường hợp cú pháp, hết các trường hợp đối với từng từ.

Penn Treebank

- Penn Treebank: tập ngữ liệu có chú giải ngữ pháp,
 có 1 triệu từ, là nguồn ngữ liệu quan trọng
- Tính thưa:
 - có 965,000 mẫu, nhưng chỉ có 66 mẫu WHADJP, trong đó chỉ có 6 mẫu không là *how much* hoặc *how many*
- Phần lớn các phép xử lý thông minh phụ thuộc vào các thống kê mối quan hệ từ vựng giữa 2 từ liền nhau:

A Penn Treebank tree

```
( (S
    (NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (,,)
      (ADJP
        (NP (CD 61) (NNS years) )
       (JJ old) )
      (,,)
    (VP (MD will)
      (VP (VB join)
        (NP (DT the) (NN board) )
        (PP-CLR (IN as)
          (NP (DT a) (JJ nonexecutive) (NN director) ))
        (NP-TMP (NNP Nov.) (CD 29) )))
    (...)
```


Đánh giá độ chính xác của PTCP

- Độ chính xác của parser được đo qua việc tính xem có bao nhiêu thành phần ngữ pháp trong cây giống với cây chuẩn, gọi là gold-standard reference parses.
- Độ chính xác (Precision) =
 - trường hợp hệ gán đúngtổng số trường hợp hệ gán

(%THợp hệ tính đúng).

Độ phủ (Recall) =

% số trường hợp hệ gán đúng tổng số trường hợp đúng (%THợp hệ tính đúng so với con người).

Biểu diễn cây theo các thành phần ngữ pháp

Đánh giá

Precision and Recall

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

Label	Start Point	End Point
NP	1	2
NP	4	5
PP	6	8
NP	7	8
VP	3	8
S	1	8

- G = number of constituents in gold standard = 7
- P = number in parse output = 6
- C = number correct = 6

$$\text{Recall} = 100\% \times \frac{C}{G} = 100\% \times \frac{6}{7} \qquad \text{Precision} = 100\% \times \frac{C}{P} = 100\% \times \frac{6}{6}$$

Precision =
$$100\% imes rac{C}{P} = 100\% imes rac{6}{6}$$

Ví dụ 2

ROOT (a) NΡ VΡ NP NNS NNS VBDVP NN · 11 executives 2 were NP VBG PΡ yesterday 10 o Sales 1 NNS 3 examining ΙN DΤ 5 figures 6 with NN₄ the 7 great 8 care 9

- (b) Brackets in gold standard tree (a.): **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), *NP-(9:10)
- (c) Brackets in candidate parse: **S-(0:11)**, **NP-(0:2)**, VP-(2:10), VP-(3:10), NP-(4:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)
- (d) Precision: 3/8 = 37.5% Crossing Brackets: 0 Recall: 3/8 = 37.5% Crossing Accuracy: 100% Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9% Labeled Recall: 3/8 = 37.5%

Bài tập - tính P, R

Cho kết quả PTCP chuẩn:

- (S (NP (N Con)(N lũ)) (VP(V cuốn)(V qua) (NP (L những)(N phận)(N người))) (...))
- (S(NP(N Phận)(N người) (PP(E ở) (NP(Np Rình Sơn))))())

Kết quả của chương trình PTCP:

🖃 Phận người ở Bình Sơn .

Các hệ thống PTCP tốt nhất

- CFG (context free grammar):
 - Berkeley: http://nlp.cs.berkeley.edu/software.shtml
 - Charniak: http://bllip.cs.brown.edu/resources.shtml
- HPSG (Head-driven Phrase Structure Grammar)
 - Enju, deepNLP: https://mynlp.github.io/enju/
- Depedency grammar
 - ClearNLP: http://clearnlp.wikispaces.com/depParser
 - Google SyntaxNet: open-source, sử dụng NN, cho câu đúng ngữ pháp,
 - https://research.googleblog.com/2016/05/announcing-syntaxnetworlds-most.html
 - Netbase, cho cả câu twitter
 - https://www.codeproject.com/Articles/43372/NetBase-A-Minimal-NET-Database-with-a-Small-SQL
 - Stanford: https://nlp.stanford.edu/software/lex-parser.shtml

