第一章 矩阵

1.1 求高次幂

Remark. 基本方法

- (1) 若 r(A) = 1, 则 $A^n = tr(A)^{n-1}A$, 关键点在于 $r(A) = 1 \implies A = \alpha\beta^T$
- (2) 若 A 可以分解为 E + B, 且 B 是类似于如下形式 (非零元素仅在对角线的上方或下方) 的矩阵则有如下结论.

$$B = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$
,则 $B^2 = \begin{pmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $B^3 = \mathbf{0}$

$$A^n = C_n^n E + C_n^1 B + C_n^2 B^2$$

(3) 分块矩阵

$$A = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{C} \end{pmatrix}, A^n = \begin{pmatrix} \mathbf{B}^n & \mathbf{0} \\ \mathbf{0} & \mathbf{C}^n \end{pmatrix}$$

(4) 相似对角化

 $P^{-1}AP = \Lambda \text{ III } A = P\Lambda P^{-1},$

$$A^{n} = P\Lambda^{n}P^{-1} = Pdiag(\lambda_{1}^{n}, \dots, \lambda_{n}^{n})P^{-1}$$

1. 设
$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix}$$
, $B 为 3 阶矩阵, 满足 $BA = O$, 且 $r(B) > 1$, 则 $A^n = \underline{\hspace{1cm}}$.$

Solution. 由 BA = 0 知 $r(A) + r(B) \le n$, 又 r(B) > 1, $r(A) \ge 1$ 所以 $1 \le r(A) \le n$

1.2 逆的判定与计算

2

$$1, \implies r(A) = 1,$$

$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 1, & -1, & 2 \end{pmatrix}$$

$$A^{n} = tr(A)^{n-1}\alpha\beta^{T} = 9^{n-1} \begin{pmatrix} 2 & -1 & 3 \\ -2 & 1 & -3 \\ 4 & -2 & 6 \end{pmatrix}$$

2. 设
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}$$
 则 $A^n =$ ______.

Solution.
$$A = 2E + B, B = \begin{pmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}, B^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -3 & 0 & 0 \end{pmatrix}, B^3 = \mathbf{0}, \text{ M}$$

$$A^n = 2^n E + 2^{n-1} nB + 2^{n-3} n(n-1)B^2$$

,

3. 设
$$A = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -3 & 6 & -3 \end{pmatrix}$$
 P 为 3 阶可逆矩阵, $B = P^{-1}AP$, 则 $(B + E)^{100} =$ _____

Solution.
$$r(A) = 1, A^2 = tr(A) \cdot A = -2A$$
 即 $A^2 + 2A = \mathbf{0}, (A+E)^2 = E$, 由题
$$(B+E)^{100} = (P^{-1}AP + E)^{100} = (P^{-1}AP + P^{-1}EP)^{100} = (P^{-1}(A+E)P)^{100} = E$$

1.2 逆的判定与计算

4. 设 n 阶矩阵 A 满足 $A^2 = 2A$, 则下列结论不正确的是:

(A)
$$A$$
 可逆 (B) $A - E$ 可逆 (C) $A + E$ 可逆 (D) $A - 3E$ 可逆

- 5. 设 A, B 为 n 阶矩阵, a, b 为非零常数. 证明:
 - (a) 若 AB = aA + bB, 则 AB = BA;
 - (b) 若 $A^2 + aAB = E$, 则 AB = BA.

总结

总结
$$(1)A_{n\times n}B_{n\times n} = E \implies \begin{cases} \overline{\text{可逆}} \\ \bar{\text{求逆}}, B = A^{-1}, A = B^{-1} \\ \overline{\text{满足交换律}}, AB = BA \end{cases}$$

$$(2)AB \overline{\text{可交换的充分条件}} \begin{cases} B = f(A), A^{-1}, A^* \\ AB = aA + bB(a, b \neq 0) \\ A^2 + aAB = E, (a \neq 0) \end{cases}$$

(2)
$$AB$$
 可交换的充分条件
$$\begin{cases} B = f(A), A^{-1}, A^* \\ AB = aA + bB(a, b \neq 0) \\ A^2 + aAB = E, (a \neq 0) \end{cases}$$

6. 设
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$
 满足 $A^3 = O$.

- (a) 求 a 的值;
- (b) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = E$, 求 X.

1.3 秩的计算与证明

Remark. 秩

秩的定义:∃r 阶子式非零且 ∀r+1 阶子式均为零 秩的性质

- (1) 设 A 为 $m \times n$ 阶矩阵, 则 $r(A) < \min\{m, n\}$
- $(2) r(A+B) \le r(A) + r(B)$
- $(3) r(AB) \le \min\{r(A), r(B)\}$
- (4) $\max\{r(A), r(B)\} \le r(A \mid B) \le r(A) + r(B)$
- $(5) r(A) = r(kA)(k \neq 0)$
- (6) 设 A 为 $m \times n$ 阶矩阵,P 为 m 阶可逆矩阵,Q 为 n 阶可逆矩阵, 则 r(A) = r(PA) = r(AQ) = r(PAQ)
- (7) 设 A 为 $m \times n$ 阶矩阵, 若 r(A) = n 则 r(AB) = r(B), 若 r(A) = m 则 r(CA) = r(C) 左乘列满秩, 右乘行满秩, 秩不变
- (8) $r(A) = r(A^T) = r(A^T A) = r(AA^T)$
- (9) 设 A 为 $m \times n$ 阶矩阵, B 为 $n \times s$ 阶矩阵, AB = 0, 则 $r(A) + r(B) \le n$
 - 7. (2018, 数一、二、三) 设 A,B 为 n 阶矩阵,(XY) 表示分块矩阵, 则:
 - (a) r(A AB) = r(A)
 - (b) r(A BA) = r(A)
 - (c) $r(A B) = \max\{r(A), r(B)\}$
 - (d) $r(A B) = r(A^T B^T)$

- 8. 设 A 为 n 阶矩阵, 证明:

 - (II) 若 $A^2 = E$, 则 r(A + E) + r(A E) = n.

1.4 关于伴随矩阵

Remark. 伴随矩阵的性质

(1)
$$AA^* = A^*A = |A| \xrightarrow{|A| \neq 0} A^{-1} = \frac{1}{|A|}A^*, A^* = |A|A^{-1}$$

$$(2) (kA)^* = k^{n-1}A^*$$

$$(3) \ (AB)^* = B^*A^*$$

$$(4) |A^*| = |A|^{n-1}$$

$$(5) (A^T)^* = (A^*)^T$$

(6)
$$(A^{-1})^* = (A^*)^{-1} = \frac{A}{|A|}$$

$$(7) (A^*)^* = |A|^{n-2} A$$

(8)
$$r(A) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n - 1 \\ 0, & r(A) < n - 1 \end{cases}$$

9. 设 n 阶矩阵 A 的各列元素之和均为 2, 且 |A|=6, 则 A^* 的各列元素之和均为:

(B)
$$\frac{1}{3}$$
 (C) 3

$$(C)$$
 3

1.4 关于伴随矩阵 8

10. 设 $A = (a_{ij})$ 为 $n(n \ge 3)$ 阶非零矩阵, A_{ij} 为 a_{ij} 的代数余子式,证明:

(a)
$$a_{ij} = A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = A^T \Leftrightarrow AA^T = E \perp |A| = 1;$$

(b)
$$a_{ij} = -A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = -A^T \Leftrightarrow AA^T = E \perp |A| = -1.$$

1.5 初等变换与初等矩阵

Remark. 初等变换与初等矩阵的性质

- (1) |E(i,j)| = -1, |E(i(k))| = k, |E(ij(k))| = 1
- (2) $E(i,j)^T = E(i,j), E(i(k))^T = E(i(k)), E(ij(k))^T = E(ji(k))$
- (3) $E(i,j)^{-1} = E(i,j), E(i(k))^{-1} = E(i(\frac{1}{k})), E(ij(k)^{-1}) = E(ij(-k))$
- (4) 初等行(列)变换相当于左(乘)对应的初等矩阵
- (5) 可逆矩阵可以写成有限个初等矩阵的乘积
- 11. (2005, 数一、二) 设 A 为 $n(n \ge 2)$ 阶可逆矩阵, 交换 A 的第 1 行与第 2 行得到矩阵 B, 则:
 - (A) 交换 A^* 的第 1 列与第 2 列, 得 B^*
 - (B) 交换 A^* 的第 1 行与第 2 行, 的 B^*
 - (C) 交换 A^* 的第 1 列与第 2 列, 得 $-B^*$
 - (D) 交换 A 的第 1 行与第 2 行, 得 $-B^*$

Solution.

12. 设

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\text{III } (P^{-1})^{2023} A(Q^T)^{2022} = \underline{\hspace{1cm}}.$$