1 Summary

Let us assume θ is the parameter of interest and $\mathbf{y} = (y_1, \dots, y_n)$ is the set of data points.

- 1. The posterior density of θ is $P(\theta \mid \mathbf{y}) = \frac{P(\mathbf{y} \mid \theta)P(\theta)}{P(\mathbf{y})}$, where $P(\mathbf{y}) = \int P(\mathbf{y} \mid \theta)P(\theta)d\theta$.
- 2. Since $P(\mathbf{y})$ does not depend on θ (effect of θ is integrated out), we tend to write $P(\theta|\mathbf{y}) \propto P(\mathbf{y}|\theta)P(\theta)$. Note that $P(\mathbf{y}|\theta)P(\theta) = P(\mathbf{y},\theta)$, the joint distribution of the data (\mathbf{y}) and parameter (θ) . Technically it is NOT the posterior probability.
- 3. Another term for $P(\mathbf{y}|\theta)$ is likelihood which is denoted as $L(\theta|\mathbf{y})$. Thus $L(\theta|\mathbf{y}) = P(\mathbf{y}|\theta) = P(y_1, \dots, y_n|\theta)$. If the data points are independent, then $P(y_1, \dots, y_n|\theta) = P(y_1|\theta) = P(y_1|\theta) = P(y_2|\theta) \dots P(y_n|\theta) = \prod_{i=1}^n P(y_i|\theta)$. Hence, for independent data points $L(\theta|\mathbf{y}) = \prod_{i=1}^n P(y_i|\theta)$. The formula for $P(y_i|\theta)$ depends on distributional assumptions on the data whether they are normal or Poisson or binomial etc.
- 4. Here $P(\mathbf{y}) = \int P(\mathbf{y}|\theta)P(\theta)d\theta$ is called *prior predictive distribution* and $\int P(\tilde{\mathbf{y}}|\theta)P(\theta | \mathbf{y})d\theta$ is called posterior predictive distribution (PPD) of $\tilde{\mathbf{y}}$. In PPD, the prior probability $P(\theta)$ of *prior predictive distribution* is replaced by posterior probability (parameter given observed data \mathbf{y}) $P(\theta | \mathbf{y})$.
- 5. Bayesian inference is about drawing inferences of θ from $P(\theta \mid \mathbf{y})$. Now if the conditional distribution $P(\theta \mid \mathbf{y})$ belongs to any known class of probability distributions, you can directly use the summary statistics such as mean, median, mode, variance, etc. of that distribution. Some popular cases are: a) if $L(\theta \mid \mathbf{y}) = P(\mathbf{y} \mid \theta)$ is normal and $P(\theta)$ is also normal, we showed $P(\theta \mid \mathbf{y})$ is also normal, b) if $L(\theta \mid \mathbf{y}) = P(\mathbf{y} \mid \theta)$ is binomial and $P(\theta)$ is beta, we showed $P(\theta \mid \mathbf{y})$ is a beta distribution, c) if $L(\theta \mid \mathbf{y}) = P(\mathbf{y} \mid \theta)$ is Poisson and $P(\theta)$ is gamma, we showed $P(\theta \mid \mathbf{y})$ is a gamma distribution, etc.
- 6. Now, if $P(\theta \mid \mathbf{y})$ does not follow any known parametric distribution family. We then approximately learn the distribution $P(\theta \mid \mathbf{y})$ using samples $\theta_1, \ldots, \theta_K$ such that $\theta_i \sim P(\theta \mid \mathbf{y})$. To see that this is indeed valid.

```
theta <- rbeta(10000, 19, 133)
```

points(log(thetagrid), densijacobian, col=2, type = '1') #Jacobian computed densities

#Some standard distributions:

plot(density(theta), col=1, type = '1') #ploting density using Monte Carlo method

Above examples show numerically computed densities from samples are matching with exact densities.

- 7. Then we need to learn sampling techniques for "non-standard" probability distributions. By non-standard, I mean the ones for which there does not exist any R program to sample θ directly. For example if $L(\theta \mid \mathbf{y}) = P(\mathbf{y} | \theta)$ is Poisson and $P(\theta)$ is gamma, we showed $P(\theta \mid \mathbf{y})$ is a gamma distribution. So in this case, we can sample θ directly using rgamma in R. However, the prior $P(\theta)$ is changed to log-normal, we cannot use any standard functions.
- 8. To sample from non-standard densities, there are methods such as accept-reject which may be implemented using R package AR

```
#Example from HW 2
library("AR")
n <- 10 #number of trials
y <- 8 #number of success
thetagivenY <- function(theta){</pre>
  likelihood <- dbinom(y, n, theta)</pre>
            \leftarrow dnorm(theta, 0.5, sd = 0.05)
  out <- likelihood * prior</pre>
  return(out)
#thetagivenY(theta) is upper bounded by theta^{y}(1-theta)^{n-y} ignoring
#constant. A good choice for instrument is Beta(y+1, n-y+1)
samples <- AR.Sim(n=300, thetagivenY, Y.dist = "beta", Y.dist.par = c(y+1,n-y+1))</pre>
plot(density(samples))
#####Importance sample####
J <- 100000
K <- 300 #Need to be K << J, K is the number of posterior samples you finally want
#Sample from the instrument distribution
betasamples <- rbeta(J, y+1, n+y-1)
#Importance weights
             <- thetagivenY(betasamples)/dbeta(betasamples, y+1,n+y-1)</pre>
weights
```

#Generate K posterior samples using Importance sampling
postsamplesIS <- betasamples[sample(1:J, 300, prob = weights)]</pre>

points(density(postsamplesIS), col=2, type = '1')

Samples from Accept/Reject and Importance sampling show the same numeric density. (I will provide one example on ARS using R package Runuran. There were some issues. ARS is very difficult to handle in general)

- 9. If there are more than one parameter, you need to draw joint samples. Say θ_1 and θ_2 are two parameters. Examples include normal distribution with mean and sigma both unknown, generalized linear models with at least 2 predictors. There are two ways. First is method of composition write $P(\theta_1, \theta_2 \mid \mathbf{y}) = P(\theta_1 \mid \theta_2, \mathbf{y})P(\theta_2 \mid \mathbf{y})$ or $P(\theta_1, \theta_2 \mid \mathbf{y}) = P(\theta_2 \mid \theta_1, \mathbf{y})P(\theta_1 \mid \mathbf{y})$. If you choose the first decomposition,
 - 1) Draw a sample of θ_2 from $P(\theta_2 \mid \mathbf{y})$ (in this case, this conditional distribution cannot involve θ_1 and need to be a valid distribution). If $P(\theta_2 \mid \mathbf{y})$ is "standard", use standard R packages to samples. Otherwise, use Accept/Reject, Importance sampling etc. Say the drawn sample be θ'_2
 - 2) Draw a sample of θ_1 form $P(\theta_1 \mid, \theta'_2, \mathbf{y})$

Repeat the above two steps for say 1000 times to draw 1000 "independent" samples of (θ_1, θ_2) .

- 10. Method of composition requires you compute the "marginal" posterior for one of the two parameters. When there are more than 1 parameter, then $P(\theta_2 \mid \mathbf{y})$, $P(\theta_1 \mid \mathbf{y})$ are called marginal posteriors. It may or may not be easy. It may or may not take a "standard" form. The marginal posterior may be "non-standard" which force you to use Accept/reject sampler etc. which are in general less efficient.
- 11. Jeffrey's prior: the Jeffrey's prior for θ is $P(\theta) \propto |J(\theta)|^{1/2}$, where $J(\theta) = -\mathbb{E}\left(\frac{d^2 \log P(\mathbf{y}|\theta)}{d\theta^2}\right)$.
- 12. Flat prior element corresponding to Jeffrey: Due to transformation of variable the prior for ψ , where $\psi = h(\theta)$ is $P(\psi) = P(\theta) \frac{d\theta}{d\psi}$. We will find the ψ for which $P(\psi)$ is flat. To ensure that we need $P(\psi) = P(\theta) \frac{d\theta}{d\psi} = C$, we thus need $d\psi \propto P(\theta) d\theta \implies \psi \propto \int P(\theta) d\theta$. Thus, for this transformation $\psi \propto \int P(\theta) d\theta$, the prior $P(\psi)$ is flat.
- 13. In a Gibbs sample, we sample from full conditionals. Let $P(\theta_1, \theta_2 \mid \mathbf{y})$ be the joint posterior. Here samples of θ_1 and θ_2 are generated from corresponding full conditional distributions $P(\theta_1 \mid \theta_2, \mathbf{y})$ and $P(\theta_2 \mid \theta_1, \mathbf{y})$, respectively.
- 14. Note that $P(\theta_1, \theta_2 \mid \mathbf{y}) \neq P(\theta_1 \mid \theta_2, \mathbf{y}) P(\theta_2 \mid \theta_1, \mathbf{y})$. Thus, the pairs of draws (θ_1, θ_2) from each iteration are not independent draws.

- 15. Bayes factor for null to alternative is defined as $BF_{01} = \frac{P(\mathbf{y}|H_0)}{P(\mathbf{y}|H_1)}$. Let us assume null is indeed true. Then your Bayes factor computation method is consistent if BF_{01} with increasing sample size i.e. the data vector \mathbf{y} has more number of observations.
- 16. We can write $P(\mathbf{y}|H_0) = \int P(\mathbf{y}|\theta, H_0)P(\theta|H_0)d\theta$. Here $P(\mathbf{y}|\theta, H_0)$ is the likelihood under null hypothesis and $P(\theta|H_0)$ is the prior probability. Given H_0 part essentially put constraints on θ . For example, if $H_0: \theta \leq 0$, then $P(\theta|H_0)$ ensures that the prior is only supported in the range $(-\infty, 0]$. Similarly, $P(\mathbf{y}|H_1) = \int P(\mathbf{y}|\theta, H_1)P(\theta|H_1)d\theta$.
- 17. Bayes factor requires us to compute $P(\mathbf{y}|H_0)$ and $P(\mathbf{y}|H_1)$ which are difficult for complex Bayesian model. Approximate methods are available.
- 18. First one is the Monte Carlo method where you draw sample $\{\theta_{1,0},\ldots,\theta_{K,0}\}$ from the prior $P(\theta|H_0)$ and draw $\{\theta_{1,1},\ldots,\theta_{K,1}\}$ from $P(\theta|H_1)$. Then compute the likelihood for each sampled θ and take the average $\frac{1}{K}\sum_{i=1}^K P(\mathbf{y}|\theta_{i,j})$ as your estimate of $P(\mathbf{y}|H_j)$ for j=0,1. This estimate is not very good.
- 19. Another option is using the Harmonic Mean Identity which is more efficient than above Monte Carlo method. The identity essentially comes from importance sampling estimates of $P(\mathbf{y}|H_0)$ and $P(\mathbf{y}|H_1)$ based on the posterior samples of the underlying parameters. In this method $P(\mathbf{y}|H_j) = \left(\sum_{i=1}^K \frac{P(\mathbf{y}|\theta_{i,j})^{-1}}{K}\right)^{-1}$ where $\theta_{1,j},\ldots,\theta_{K,j}$ are sampled from the posterior distribution $P(\theta|\mathbf{y},H_j)$. The only difference lies in how samples of θ are generated. When sampled from posterior, it is more efficient as it used information from the data. [1]

References

[1] Robert E Kass and Adrian E Raftery. Bayes factors. *Journal of the american statistical association*, 90(430):773–795, 1995.