

Informationsvisualisierung

Sommersemester 2025

Dirk Zeckzer

Institut für Informatik

Teil VII

Darstellung von Graphen

Übersicht

- 7. Darstellung von Graphen
 - 7.1 Einleitung
 - 7.2 Definitionen
 - 7.3 Literatur
 - 7.4 InfoVis Techniken

Visuelle Abbildung

Einleitung

- Zu visualisierende Objekte besitzen häufig inhärente Relationen
 - Beziehungen
 - ► Abhängigkeiten

- Graphen eignen sich als Repräsentation
 - Knoten stellen Objekte dar
 - ► Kanten stellen Relationen dar

Einleitung

Anwendungen

- Szenengraphen in der virtuellen Realität
- Strukturen objektorientierter Systeme
 - Klassenhierarchie
 - Datenfluss
- ► Echtzeitsystem (Zustandsdiagramme)
- Schaltkreisentwurf (Very Large System Integration VLSI)

- ► Taxonomie biologischer Arten
 - Bei Abstammung: phylogenetische Bäume
- Biochemische Reaktionen
 - Stoffwechselsysteme
 - Signalwege
- Organigramm einer Firma
- Soziale Netzwerke
- Semantische Netzwerke und Wissensrepräsentationsdiagramme
- ▶ Webseiten und ihre Links

- ▶ Ein **Graph** G = (V, E) besteht aus
 - ► *V*: endliche Menge von **Knoten**
 - ightharpoonup E: endliche Menge von **Kanten** $E \subseteq V \times V$

- Ungerichtete Graphen
 - $ightharpoonup \{u, v\} = \{v, u\}$
 - ▶ 2 Knoten $u, v \in V$ heißen adjazent gdw. $\exists e \in E : e = \{u, v\}$
 - ► Adjazent: benachbart
 - Nachbarn von $u \in V$ $N(u) = \{v | \{u, v\} \in E\}$

- Gerichtete Graphen
 - \blacktriangleright $(u,v) \neq (v,u)$
 - ▶ Die gerichtete Kante $(u, v) \in E$ ist
 - ausgehende Kante für u
 - eingehende Kante für v

Ungerichtete Graphen

Nachbarn von $u \in V$ $N(u) = \{v | \{u, v\} \in E\}$

▶ **Grad** von v: |N(u)|

Gerichtete Graphen

- ▶ Die gerichtete Kante $(u, v) \in E$ ist
 - ausgehende Kante für u
 - ▶ eingehende Kante für *v*
- ▶ Grad
 - **Eingangsgrad** von *v*:

$$|\{(u,v)|(u,v)\in E\}|$$

- Ausgangsgrad von v: $|\{(v,u)|(v,u) \in E\}|$
- ► Ein Knoten v heißt
 - ► Quelle gdw. Eingangsgrad ist 0
 - ► Senke gdw. Ausgangsgrad ist 0

Ungerichtete Graphen

- ▶ Ein **Weg** im Graph G ist die Folge $(v_1, v_2, ..., v_{h-1}, v_h)$ paarweise verschiedener Knoten $v_i \in G, 1 \le i \le h$ mit $\forall 1 < i < h-1 : \{v_i, v_{i+1}\} \in E$.
- ► Ein Weg heißt **Zyklus**, falls $v_b = v_1$.
- Ein Graph ohne Zyklus heißt azyklischer Graph.

Gerichtete Graphen

- ► Ein **gerichteter Weg** im Graph G ist die Folge $(v_1, v_2, ..., v_{h-1}, v_h)$ paarweise verschiedener Knoten $v_i \in G, 1 \le i \le h$ mit $\forall 1 < i < h-1 : (v_i, v_{i+1}) \in E$.
- ► Ein gerichteter Weg heißt **Zyklus**, falls $v_h = v_1$.
- Ein gerichteter Graph ohne Zyklus heißt gerichteter azyklischer Graph (directed acyclic graph, DAG).

- ► Ein Graph (V', E') mit $V' \subseteq V, E' \subseteq E \cap (V' \times V')$ heißt **Teilgraph von G**.
- ► Im Falle $E' = E \cap (V' \times V')$ heißt G' der durch V'induzierte Teilgraph von G.

➤ Zu einem gerichteten Graphen *G* gibt es immer einen Graphen *G'*, der durch "Vergessen der Orientierung der Kanten" entsteht.

Datenstrukturen für Graphen

Adjazenzmatrix A

► Graph:

$$A_{uv} = \begin{cases} 1 & \{u, v\} \in E \\ 0 & \{u, v\} \notin E \end{cases}$$

Gerichteter Graph:

$$A_{uv} = \begin{cases} x & (u, v) \in E \\ & (u, v) \notin E \end{cases}$$

	1	2	3	4	5	6
1		×			×	
2			\times			
1 2 3 4 5				\times		
4					\times	\times
		×				
6			×			

Datenstrukturen für Graphen

Adjazenzliste L

► Graph:

$$\begin{array}{c|cccc}
L_1 & 2 \\
L_2 & 1, 3 \\
L_3 & 2
\end{array}$$

 $\forall v \in V : L = \{u | \{v, u\} \in E\}$

► Gerichteter Graph:

$$\forall v \in V : L = \{(v, u) | (v, u) \in E\}$$

$$\begin{array}{c|c}
L_1 & (1, 2), (1, 5) \\
L_2 & (2, 3) \\
L_3 & (3, 4) \\
L_4 & (4, 5), (4, 6) \\
L_5 & (5, 2) \\
L_6 & (6, 3)
\end{array}$$

Datenstrukturen für Graphen

- ► Sei G = (V, E), |V| = n, |E| = e.
- Anzahl Einträge
 - ► Adjazenzmatrix A: n·n
 - Adjazenzlisten L: $e \le n \cdot n$

Eine Knoten-Kanten-Zeichnung (Node-Link-Diagram) eines Graphen oder Digraphen G ist eine Abbildung

$$\begin{array}{cccc} \Gamma: & G & \to & E \\ & v \in V & \mapsto & P_v \\ & e \in E & \mapsto & J_e \end{array}$$

- ► F: Ebene
- $\triangleright P_{v}$: Punkt in der Ebene
- ► J_e : offene Jordankurve mit den Endpunkten P_u und P_v , $e = \{u, v\}$

Gerichtete Kanten eines Digraphen werden in der Regel als Pfeile gezeichnet.

	1	2	3
1	0	1	0
2	1	0	1
3	0	1	0

$$\begin{array}{c|c}
L_1 & 2 \\
L_2 & 1, 3 \\
L_3 & 2
\end{array}$$

	1	2	3	4	5	6
1		×			×	
1 2 3 4 5			×			
3				\times		
4					\times	\times
5		\times				
6			\times			

$$L_1 \mid (1, 2), (1, 5)$$

 $L_2 \mid (2, 3)$
 $L_3 \mid (3, 4)$
 $L_4 \mid (4, 5), (4, 6)$
 $L_5 \mid (5, 2)$
 $L_6 \mid (6, 3)$

Graph

- Seien $u, v \in V : u \neq v$ zwei Knoten. Ein Graph heißt **zusammenhängend**, wenn es einen Weg zwischen u und v gibt.
- Ein maximaler zusammenhängender Teilgraph eines Graphen heißt
 Zusammenhangskomponente (connected component).

Gerichteter Graph

- Seien u, v ∈ V : u ≠ v zwei Knoten. Ein gerichteter Graph heißt stark zusammenhängend, wenn es einen Weg zwischen u und v gibt.
- ➤ Ein maximaler stark zusammenhängender Teilgraph eines gerichteten Graphen heißt starke Zusammenhangskomponente (strongly connected component).

Graph

- Seien $u, v \in V : u \neq v$ zwei Knoten. Ein Graph heißt **zusammenhängend**, wenn es einen Weg zwischen u und v gibt.
- Ein maximaler zusammenhängender Teilgraph eines Graphen heißt
 Zusammenhangskomponente (connected component).

Gerichteter Graph

- Ein gerichteter Graph heißt schwach zusammenhängend, wenn der zugehörige ungerichtete Graph zusammenhängend ist.
- ➤ Ein maximaler schwach zusammenhängender Teilgraph eines gerichteten Graphen heißt schwache Zusammenhangskomponente (weakly connected component).

Typen von Graphen

- Multigraphen
 - Schleifen: Kanten der Form $\{v, v\}, v \in G$
 - Mehrfachkanten: mehrere Kanten zwischen zwei Knoten

- Hypergraphen
 - ▶ Hyperkanten $E \subseteq Pot(V)$
 - ► Eine Hyperkante verbindet mehr als zwei Knoten
 - ► Jede Hyperkante verbindet eine Eingangsmenge von Knoten mit einer Ausgangsmenge von Knoten.
 - ► Hypergraphen können gerichtet und ungerichtet sein.

Planarität

- ► Eine Zeichnung eines Graphen heißt planar, wenn die Kurven zweier verschiedener Kanten außer den Endpunkten keine gemeinsamen Punkte haben.
- Ein Graph heißt planar, wenn es mindestens eine planare Zeichnung gibt.
- Nach der Eulerformel kann ein planarer Graph mit $n \ge 3$ Knoten höchstens $3 \cdot n 6$ Kanten haben.

Maximale Anzahl von Kanten für n Knoten:

$$\sum_{i=1}^{n-1} = \frac{(n-1) \cdot n}{2} = \frac{n^2 - n}{2}$$

n	e _{max}	$3 \cdot n - 6$
1	0	
2	1	
3	3	3
4	6	6
5	10	9

Abbildung: Vier verschiedene Darstellungen desselben planaren Graphen.

Eigenschaften

- Graph
 - Gerichtet, ungerichtet
 - ► Zyklisch, azyklisch
 - Multigraph
 - Hypergraph
 - Planar
 - ► Baum (nächstes Kapitel)

- Knoten
 - ► Typ
 - Zusätzliche Informationen
- Kanten
 - ► Typ
 - ► Gerichtet (Richtung), ungerichtet
 - Gewichte
 - Zusätzliche Informationen

Graphenzeichnen (Graph Drawing)

- ► Eigene Forschungsgemeinschaft
- Sehr großes Gebiet
- Literatur
- ► Graph drawing conference
- ▶ Visualization conferences and journals
- ► Web:
 - http://graphdrawing.org
- ► Graph Visualization Software:
 - http://www.graphviz.org

Graphenzeichnen (Graph Drawing)

- Giuseppe Di Battista, Peter Eades, Roberto Tamassia, Ioannis G. Tollis. Graph Drawing - Algorithms for the Visualization of Graphs.
 Prentice Hall Engineering, Science & Math. 1999.
 ISBN 0-13-301615-3
- Herman, Melancon, Marshall. Graph Visualization and Navigation in Information Visualization: A Survey. IEEE TVCG 6(1): 24-43, 2000

Graphenzeichnen (Graph Drawing)

 Handbook of Graph Drawing and Visualization.
 Roberto Tamassia, ed.
 CRC Press 2011.

Graphenzeichnen (Graph Drawing): Forschungsgebiete

- ► Graph Layout und Position der Knoten
- Skalierbarkeit
- Navigation (besonders in großen Graphen)
- ► Fokus & Kontext Methoden
- Dynamische Graphen

- Heterogene Knoten- und Kanten-Typen
- Knoten mit großem Grad
- ► Einbettung zusätzlicher Information
- Visualisierung von isomorphen Teilgraphen
- Vergleich von Graphen
- **.** . . .

Abbildung: Netzwerkvisualisierung mit Semantic Substrates [SA2006]

Abbildung: Hybride Darstellung [HFM2007]

Abbildung: Hybride Darstellung [HFM2007]

Abbildung: Hybride Darstellung [HFM2007]

Abbildung: Hybride Visualisierung und Clustering [BDL*2010]

Abbildung: Hybride Visualisierung und Clustering [BDL*2010]

Abbildung: Hybride Visualisierung und Clustering [BDL*2010]

[SA2006] Ben Shneiderman and A. Aris.

Network Visualization by Semantic Substrates.

(Proceedings of IEEE Information Visualization),

IEEE Transactions on Visualization and Computer Graphics 12(5),

733-740, 2006.

[HFM2007] N. Henry, J. D. Fekete and M. J. McGuffin. NodeTrix: A Hybrid Visualization of Social Networks. (Proceedings of IEEE Information Visualization), IEEE Transactions on Visualization and Computer Graphics 13(6), 1302–9, 2007.

[BDL*2010] V. Batagelj, Walter Didimo, Giuseppe Liotta, Pietro Palladino, Maurizio Patrignani. Visual Analysis of Large Graphs Using (X,Y)-clustering and Hybrid Visualizations. PacificVis 2010.