Geometry of curved Yang-Mills-Higgs gauge theories

Simon-Raphael Fischer

30 June 2021

Integration (WIP)

Table of contents

Curved Yang-Mills-Higgs gauge theory

- Curved Yang-Mills-Higgs gauge theory
 - Motivation
 - Mathematical basics
 - Curved Yang-Mills-Higgs gauge theory
- Pield Redefinition
 - General definition
 - Lie algebra bundles
- Integration (WIP)
- Conclusion

Infinitesimal gauge theory

Curved Yang-Mills-Higgs gauge theory

Motivation

Guide: Curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M imes \mathfrak{g}$	

Integration (WIP)

Curved Yang-Mills-Higgs gauge theory

Guide: Curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M \times \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of <i>E</i> & <i>E</i> -connections
Canonical flat connection $ abla^0$ on $M imes \mathfrak{g}$	General connection ∇ on E

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \rightsquigarrow We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Definition (Lie algebroids)

Let $E \to N$ be a vector bundle. Then E is a Lie algebroid, if there is a bundle map $\rho: E \to \mathrm{T} N$, called the **anchor**, and a Lie algebra structure on $\Gamma(E)$ with Lie bracket $[\cdot,\cdot]_E$ satisfying

$$[\mu, f\nu]_{\mathcal{E}} = f[\mu, \nu]_{\mathcal{E}} + \mathcal{L}_{\rho(\mu)}(f) \nu \tag{1}$$

for all $f \in C^{\infty}(N)$ and $\mu, \nu \in \Gamma(E)$.

Example

• E = TN, $\rho = 1_{TN}$

Definition (Lie algebroids)

Let $E \to N$ be a vector bundle. Then E is a Lie algebroid, if there is a bundle map $\rho: E \to \mathrm{T} N$, called the **anchor**, and a Lie algebra structure on $\Gamma(E)$ with Lie bracket $[\cdot,\cdot]_E$ satisfying

$$[\mu, f\nu]_{\mathcal{E}} = f[\mu, \nu]_{\mathcal{E}} + \mathcal{L}_{\rho(\mu)}(f) \nu \tag{1}$$

for all $f \in C^{\infty}(N)$ and $\mu, \nu \in \Gamma(E)$.

Example

- E = TN, $\rho = 1_{TN}$
- E a bundle of Lie algebras, $\rho = 0$

Definition (Lie algebroids)

Let $E \to N$ be a vector bundle. Then E is a Lie algebroid, if there is a bundle map $\rho: E \to \mathrm{T} N$, called the **anchor**, and a Lie algebra structure on $\Gamma(E)$ with Lie bracket $[\cdot,\cdot]_E$ satisfying

$$[\mu, f\nu]_{\mathcal{E}} = f[\mu, \nu]_{\mathcal{E}} + \mathcal{L}_{\rho(\mu)}(f) \nu \tag{1}$$

for all $f \in C^{\infty}(N)$ and $\mu, \nu \in \Gamma(E)$.

Example

- E = TN, $\rho = 1_{TN}$
- E a bundle of Lie algebras, $\rho = 0$

Mathematical basics

As for an action $\gamma: \mathfrak{g} \to \mathfrak{X}(N)$ we have:

Proposition (Anchor as homomorphism)

 $\rho: \Gamma(E) \to \mathfrak{X}(N)$ is a homomorphism of Lie algebras.

The classical formalism will correspond to:

Proposition (Action Lie algebroids)

Let $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}})$ be a Lie algebra with a \mathfrak{g} -action γ on N. Then there is a **unique** Lie algebroid structure on $E := N \times \mathfrak{g}$ as a vector bundle over N such that

$$\rho(\nu) = \gamma(\nu),\tag{2}$$

$$[\mu,\nu]_{\mathcal{E}} = [\mu,\nu]_{\mathfrak{g}} \tag{3}$$

for all constant sections $\mu, \nu \in \Gamma(E)$.

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections as lift of ρ
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M imes \mathfrak{g}$	

 \leadsto E-connections similar to vector bundle connections but Leibniz rule along $\rho,$ i.e. only lifting vector fields in the image of ρ

Mathematical basics

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M \times \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections as lift of ρ
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M imes \mathfrak{g}$	

 \leadsto E-connections similar to vector bundle connections but Leibniz rule along $\rho,$ i.e. only lifting vector fields in the image of ρ

Mathematical basics

Example (*E*-connection ${}^{E}\nabla$ on V)

 ∇' a vector bundle connection on $V \to N$, then

$${}^{E}\nabla_{\nu}v := \nabla'_{\rho(\nu)}v \tag{4}$$

for all $\nu \in \Gamma(E)$ and $\nu \in \Gamma(V)$. In short denoted by ∇'_{ρ} .

Example

Curved Yang-Mills-Higgs gauge theory

For ∇ a connection on E we have the **basic connection** given as a pair of E-connections on E and on TN by

$$\nabla_{\nu}^{\text{bas}} \mu := [\nu, \mu]_{\mathcal{E}} + \nabla_{\rho(\mu)} \nu, \tag{5}$$

Integration (WIP)

$$\nabla_{\nu}^{\text{bas}} X := [\rho(\nu), X] + \rho(\nabla_{X} \nu) \tag{6}$$

for all $X \in \mathfrak{X}(N)$ and $\nu, \mu \in \Gamma(E)$.

Test this with trivial bundles and canonical flat connection ∇^0 . i.e. $E = N \times \mathfrak{q}$ and $\nabla^0 \nu = 0$ for constant sections ν .

Example

Curved Yang-Mills-Higgs gauge theory

For ∇ a connection on E we have the **basic connection** given as a pair of E-connections on E and on TN by

$$\nabla_{\nu}^{\text{bas}} \mu := [\nu, \mu]_{\mathcal{E}} + \nabla_{\rho(\mu)} \nu, \tag{5}$$

$$\nabla_{\nu}^{\text{bas}} X := [\rho(\nu), X] + \rho(\nabla_{X} \nu) \tag{6}$$

for all $X \in \mathfrak{X}(N)$ and $\nu, \mu \in \Gamma(E)$.

Remarks (Encoding of Lie algebra representations)

Test this with trivial bundles and canonical flat connection ∇^0 . i.e. $E = N \times \mathfrak{q}$ and $\nabla^0 \nu = 0$ for constant sections ν .

Definition (Basic curvature)

Let ∇ be a connection on E. The **basic curvature** $R^{\mathrm{bas}}_{\nabla}$ is defined as an element of $\Gamma\left(\bigwedge^2 E^* \otimes \mathrm{T}^* \mathcal{N} \otimes E\right)$ by

$$R_{\nabla}^{\text{bas}}(\mu,\nu)X := \nabla_X([\mu,\nu]_E) - [\nabla_X\mu,\nu]_E - [\mu,\nabla_X\nu]_E - \nabla_{\nabla_{\nu}^{\text{bas}}X}\mu + \nabla_{\nabla_{\mu}^{\text{bas}}X}\nu, \tag{7}$$

where $\mu, \nu \in \Gamma(E)$ and $X \in \mathfrak{X}(N)$.

Proposition

We recover the curvature of the basic connection

$$R_{\nabla^{\text{bas}}} = \begin{cases} -R_{\nabla}^{\text{bas}}(\cdot, \cdot) \circ \rho, & \text{on } E, \\ -\rho \circ R_{\nabla}^{\text{bas}}, & \text{on } TN. \end{cases}$$
(8)

Definition (Basic curvature)

Let ∇ be a connection on E. The **basic curvature** $R^{\mathrm{bas}}_{\nabla}$ is defined as an element of $\Gamma\left(\bigwedge^2 E^* \otimes \mathrm{T}^* \mathcal{N} \otimes E\right)$ by

$$R_{\nabla}^{\text{bas}}(\mu,\nu)X := \nabla_X([\mu,\nu]_E) - [\nabla_X\mu,\nu]_E - [\mu,\nabla_X\nu]_E - \nabla_{\nabla_{\nu}^{\text{bas}}X}\mu + \nabla_{\nabla_{\mu}^{\text{bas}}X}\nu, \tag{7}$$

where $\mu, \nu \in \Gamma(E)$ and $X \in \mathfrak{X}(N)$.

Proposition

We recover the curvature of the basic connection:

$$R_{\nabla^{\text{bas}}} = \begin{cases} -R_{\nabla}^{\text{bas}}(\cdot, \cdot) \circ \rho, & \text{on } E, \\ -\rho \circ R_{\nabla}^{\text{bas}}, & \text{on } TN. \end{cases}$$
(8)

Integration (WIP)

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Curved Yang-Mills-Higgs gauge theory

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Minimal coupling \mathfrak{D} , $(\Phi, A) \mapsto \mathfrak{D}(\Phi, A) \in \Omega^1(M; \Phi^*TN)$, by

$$\mathfrak{D}(\Phi, A) := \mathfrak{D}^A \Phi := D\Phi - (\Phi^* \rho)(A), \tag{9}$$

where $D\Phi : TM \to TN$ is the tangent map.

Integration (WIP)

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Definition (Minimal coupling)

Minimal coupling \mathfrak{D} , $(\Phi, A) \mapsto \mathfrak{D}(\Phi, A) \in \Omega^1(M; \Phi^*TN)$, by

$$\mathfrak{D}(\Phi, A) := \mathfrak{D}^A \Phi := \mathrm{D}\Phi - (\Phi^* \rho)(A), \tag{9}$$

where $D\Phi : TM \to TN$ is the tangent map.

Definition (Field strength)

Let ∇ be a connection on E. We define the **field strength** F, $(\Phi, A) \mapsto F(\Phi, A) \in \Omega^2(M; \Phi^*E)$, by

$$F(\Phi, A) := \mathrm{d}^{\Phi^* \nabla} A + \frac{1}{2} (\Phi^* t_{\nabla^{\mathrm{bas}}}) (A \stackrel{\wedge}{,} A), \tag{10}$$

Integration (WIP)

where $t_{\nabla^{\text{bas}}}$ is the torsion of ∇^{bas} on E and $d^{\Phi^*\nabla}$ the exterior covariant derivative of $\Phi^*\nabla$.

Definition (Field strength)

Let ∇ be a connection on E. We define the **field strength** F, $(\Phi, A) \mapsto F(\Phi, A) \in \Omega^2(M; \Phi^*E)$, by

$$F(\Phi, A) := \mathrm{d}^{\Phi^* \nabla} A + \frac{1}{2} (\Phi^* t_{\nabla^{\mathrm{bas}}}) (A \stackrel{\wedge}{,} A), \tag{10}$$

where $t_{\nabla^{\text{bas}}}$ is the torsion of ∇^{bas} on E and $d^{\Phi^*\nabla}$ the exterior covariant derivative of $\Phi^*\nabla$.

Definition (Generalised field strength)

Let ζ be an element of $\Omega^2(N; E)$, then we define the **generalised field strength** G by

$$G(\Phi, A) := F(\Phi, A) + \frac{1}{2} (\Phi^* \zeta) \Big(\mathfrak{D}^A \Phi \, \hat{,} \, \mathfrak{D}^A \Phi \Big). \tag{11}$$

0000000000000000

Definition (Curved Yang-Mills-Higgs (CYMH) Lagrangian)

Let κ be a fibre metric on E, then the curved Yang-Mills-Higgs **Lagrangian** $\mathfrak{L}_{\mathrm{CYMH}}$, $(\Phi, A) \mapsto \mathfrak{L}_{\mathrm{CYMH}}(\Phi, A) \in \Omega^{\dim(M)}(M)$. is defined by

$$\mathfrak{L}_{ ext{CYMH}}(\Phi, A) := -\frac{1}{2} (\Phi^* \kappa) (G(\Phi, A) \stackrel{\wedge}{,} *G(\Phi, A)) + (\Phi^* g) (\mathfrak{D}^A \Phi \stackrel{\wedge}{,} *\mathfrak{D}^A \Phi) - *(\Phi^* \mathscr{V}), \quad (12)$$

where * is the Hodge star operator related to the spacetime metric η .

Definition (CYMH GT)

Assume we have additionally the **compatibility conditions**

$$R_{\nabla} + \mathrm{d}^{\nabla^{\mathrm{bas}}} \zeta = 0, \tag{13}$$

$$R_{\nabla}^{\text{bas}} = 0, \tag{14}$$

Integration (WIP)

$$\nabla^{\rm bas} \kappa = 0, \tag{15}$$

$$\nabla^{\rm bas} g = 0, \tag{16}$$

$$\mathscr{L}_{\rho}\mathscr{V}=0,\tag{17}$$

then we say that we have a curved Yang-Mills-Higgs gauge theory.

We say that we have a **pre-classical gauge theory**, if ∇ is flat.

Definition (CYMH GT)

Assume we have additionally the **compatibility conditions**

$$R_{\nabla} + \mathrm{d}^{\nabla^{\mathrm{bas}}} \zeta = 0, \tag{13}$$

$$R_{\nabla}^{\text{bas}} = 0, \tag{14}$$

Integration (WIP)

$$\nabla^{\rm bas} \kappa = 0, \tag{15}$$

$$\nabla^{\rm bas} g = 0, \tag{16}$$

$$\mathscr{L}_{\rho}\mathscr{V}=0,\tag{17}$$

then we say that we have a curved Yang-Mills-Higgs gauge theory.

We say that we have a **pre-classical gauge theory**, if ∇ is flat.

If we have additionally $\zeta \equiv 0$, then we say that we have a **classical** gauge theory.

00000000000000

Definition (CYMH GT)

Assume we have additionally the **compatibility conditions**

$$R_{\nabla} + \mathrm{d}^{\nabla^{\mathrm{bas}}} \zeta = 0, \tag{13}$$

$$R_{\nabla}^{\rm bas} = 0, \tag{14}$$

Integration (WIP)

$$\nabla^{\rm bas} \kappa = 0, \tag{15}$$

$$\nabla^{\rm bas} g = 0, \tag{16}$$

$$\mathscr{L}_{\rho}\mathscr{V}=0,\tag{17}$$

then we say that we have a curved Yang-Mills-Higgs gauge theory.

We say that we have a **pre-classical gauge theory**, if ∇ is flat. If we have additionally $\zeta \equiv 0$, then we say that we have a **classical** gauge theory.

Summary

→ Together with the compatibility conditions we will have gauge. invariance, that is,

$$\delta_{\varepsilon} \mathfrak{L}_{\text{CYMH}} = 0.$$
 (18)

Motivation

- Are there CYMH GTs which are neither pre-classical nor classical?
- Difficulty: There is an equivalence relation of CYMH GTs keeping the same Lagrangian and preserving the physics, possibly turning theories into (pre-)classical ones.

This was provided by Edward Witten in a private communication with Thomas Strobl about a specific example of a CYMH GT.

Motivation

Curved Yang-Mills-Higgs gauge theory

- Are there CYMH GTs which are neither pre-classical nor classical?
- Difficulty: There is an equivalence relation of CYMH GTs keeping the same Lagrangian and preserving the physics, possibly turning theories into (pre-)classical ones.

This was provided by Edward Witten in a private communication with Thomas Strobl about a specific example of a CYMH GT.

Curved Yang-Mills-Higgs gauge theory

Definition (Field redefinition, [S.-R. F.])

Let $\lambda \in \Omega^1(N; E)$ such that $\Lambda := \mathbb{1}_E - \lambda \circ \rho$ is an automorphism of E. We then define the **field redefinitions** by

$$\widetilde{A}^{\lambda} := (\Phi^* \Lambda)(A) + \Phi^! \lambda,$$
 (19)

$$\widetilde{\nabla}^{\lambda} := \nabla + \left(\Lambda \circ d^{\nabla^{\text{bas}}} \circ \Lambda^{-1} \right) \lambda, \tag{20}$$

$$\widetilde{\kappa}^{\lambda} := \kappa \circ \left(\Lambda^{-1}, \Lambda^{-1} \right),$$
(21)

$$\widetilde{g}^{\lambda} := g \circ \left(\widehat{\Lambda}^{-1}, \widehat{\Lambda}^{-1}\right),$$
(22)

where $\hat{\Lambda} := \mathbb{1}_{TN} - \rho \circ \lambda$, and for all $X, Y \in \mathfrak{X}(N)$ we also define

$$\widetilde{\zeta}^{\lambda}(\widehat{\Lambda}(X),\widehat{\Lambda}(Y))$$

$$:= \Lambda(\zeta(X,Y)) - \left(d^{\widetilde{\nabla}^{\lambda}}\lambda\right)(X,Y) + t_{\widetilde{\nabla}^{\lambda}_{\lambda}}(\lambda(X),\lambda(Y)). \tag{23}$$

Curved Yang-Mills-Higgs gauge theory

Proposition ([S.-R. F.])

- Field redefinitions define an equivalence relation of CYMH gauge theories
- $\bullet \ \widetilde{\mathfrak{L}}_{\mathrm{CYMH}}^{\lambda} = \mathfrak{L}_{\mathrm{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

General definition

Curved Yang-Mills-Higgs gauge theory

Proposition ([S.-R. F.])

- Field redefinitions define an equivalence relation of CYMH gauge theories
- $\widetilde{\mathfrak{L}}_{\mathrm{CYMH}}^{\lambda} = \mathfrak{L}_{\mathrm{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

Lie algebra bundles

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = g an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_g \in \Gamma(\bigwedge^2 g^* \otimes g)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Lie algebra bundles

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = g an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_g \in \Gamma(\bigwedge^2 g^* \otimes g)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities

 \bullet κ needs to be ad-invariant

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = g an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_g \in \Gamma(\bigwedge^2 g^* \otimes g)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_Y \left(\left[\mu, \nu \right]_{\mathcal{Q}} \right) = \left[\nabla_Y \mu, \nu \right]_{\mathcal{Q}} + \left[\mu, \nabla_Y \nu \right]_{\mathcal{Q}}, \tag{24}$$

$$R_{\nabla}(Y,Z)\mu = \left[\zeta(Y,Z),\mu\right]_{\mathcal{Q}} \tag{25}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(g)$.

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = g an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_g \in \Gamma(\bigwedge^2 g^* \otimes g)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_{Y}([\mu,\nu]_{\mathcal{Q}}) = [\nabla_{Y}\mu,\nu]_{\mathcal{Q}} + [\mu,\nabla_{Y}\nu]_{\mathcal{Q}}, \tag{24}$$

$$R_{\nabla}(Y, Z)\mu = \left[\zeta(Y, Z), \mu\right]_{\mathcal{Q}} \tag{25}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(\mathfrak{Q})$.

Theorem (Invariant for LABs, [S.-R. F.])

We have

$$d^{\widetilde{\nabla}^{\lambda}}\widetilde{\zeta}^{\lambda} = d^{\nabla}\zeta, \tag{26}$$

and $d^{\nabla}\zeta$ has values in the centre of g.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra g has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $d^{\nabla} \zeta \neq 0$.

Curved Yang-Mills-Higgs gauge theory

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\tilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra \mathfrak{g} has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $d^{\nabla}\zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{\sigma} \circ \zeta$ it may still be that ∇ becomes flat.

Curved Yang-Mills-Higgs gauge theory

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\tilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra \mathfrak{g} has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $d^{\nabla}\zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{\varphi} \circ \zeta$ it may still be that ∇ becomes flat.

Turning to the field redefinition of ∇ :

Theorem (Differential on centre-valued forms, [S.-R. F.])

 ∇ restricts to the centre of g and induces a differential d^{Ξ} on centre-valued forms. Moreover, d^{Ξ} is independent of the field redefinitions.

Sketch of proof

Recal

$$\nabla_{Y} ([\mu, \nu]_{g}) = [\nabla_{Y} \mu, \nu]_{g} + [\mu, \nabla_{Y} \nu]_{g},$$

$$R_{\nabla} (Y, Z) \mu = [\zeta(Y, Z), \mu]_{g},$$

$$\widetilde{\nabla}_{Y}^{\lambda} \mu = \nabla_{Y} \mu - [\lambda(Y), \mu]_{g},$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(g)$. Then insert μ with values in the centre.

Curved Yang-Mills-Higgs gauge theory

Turning to the field redefinition of ∇ :

Theorem (Differential on centre-valued forms, [S.-R. F.])

abla restricts to the centre of g and induces a differential d^Ξ on centre-valued forms. Moreover, d^{Ξ} is independent of the field redefinitions.

Sketch of proof.

Recall

$$\nabla_{Y} ([\mu, \nu]_{g}) = [\nabla_{Y} \mu, \nu]_{g} + [\mu, \nabla_{Y} \nu]_{g},$$

$$R_{\nabla} (Y, Z) \mu = [\zeta(Y, Z), \mu]_{g},$$

$$\tilde{\nabla}_{Y}^{\lambda} \mu = \nabla_{Y} \mu - [\lambda(Y), \mu]_{g},$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(\mathfrak{Q})$. Then insert μ with values in the centre.

Theorem (Closedness of $d^{\nabla}\zeta$, [S.-R. F.])

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. \tag{27}$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (28)

Theorem (Closedness of $d^{\nabla}\zeta$, [S.-R. F.])

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. \tag{27}$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (28)

Proposition ([S.-R. F.])

An invariant of the field redefinitions

Theorem (Closedness of $d^{\nabla}\zeta$, [S.-R. F.])

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. \tag{27}$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (28)

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $\mathrm{Obs}(\Xi) = 0$.

Theorem (Closedness of $d^{\nabla}\zeta$, [S.-R. F.])

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. \tag{27}$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (28)

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $Obs(\Xi) = 0$.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\tilde{\nabla}^{\lambda}$ is flat.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Remarks

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. *London Mathematical Society Lecture Note Series*, 213, 2005). Mackenzie derived $\mathrm{Obs}(\Xi)$ in the context of extending Lie algebroids by LABs.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Remarks

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. *London Mathematical Society Lecture Note Series*, 213, 2005). Mackenzie derived $\mathrm{Obs}(\Xi)$ in the context of extending Lie algebroids by LABs.

Curved Yang-Mills-Higgs gauge theory

Example (Zero obstruction class not necessarily pre-classical)

Let P be the Hopf fibration

$$SU(2) \rightarrow \mathbb{S}^7$$

$$\downarrow$$

$$\mathbb{S}^4$$

Then for the adjoint bundle

$$g := P \times_{\mathrm{SU}(2)} \mathfrak{su}(2) := \left(\mathbb{S}^7 \times \mathfrak{su}(2)\right) / \mathrm{SU}(2)$$

we have a non-flat ∇ satisfying the compatibility conditions such that all of its field redefinitions are not flat either, but $Obs(\Xi) = 0$.

Summary

Remarks

Locally, LABs are always pre-classical but not necessarily classical. In general, $\mathrm{Obs}(\Xi)=0$ does not imply a flat connection.

So, what actually happens in the adjoint bundle of $\mathbb{S}^7 \to \mathbb{S}^4?$ \leadsto Integration

Summary

Remarks

Locally, LABs are always pre-classical but not necessarily classical. In general, $Obs(\Xi) = 0$ does not imply a flat connection.

So, what actually happens in the adjoint bundle of $\mathbb{S}^7 \to \mathbb{S}^4$? → Integration

Remarks

Curved Yang-Mills-Higgs gauge theory

Observe that the Higgs field Φ doesn't really matter at all in the case of LABs

 \rightsquigarrow Think in terms of bundles over M directly

	Classical	Curved
Infinitesimal	Lie algebra g	LAB g
Integrated	Lie group <i>G</i>	$LGB^1 \mathcal{G}$?

$$\begin{array}{c} G \longrightarrow \mathscr{G} \\ \downarrow^{\pi} \\ M \end{array}$$

¹LGB = Lie group bundle

Idea

Remarks

Curved Yang-Mills-Higgs gauge theory

Observe that the Higgs field Φ doesn't really matter at all in the case of LABs

 \rightsquigarrow Think in terms of bundles over M directly

	Classical	Curved
Infinitesimal	Lie algebra ${\mathfrak g}$	LAB g
Integrated	Lie group <i>G</i>	LGB¹ 𝒯?

G	_	\rightarrow	${\mathscr G}$
			\downarrow^{π}
			Μ

¹LGB = Lie group bundle

Definition (LGB actions)

Curved Yang-Mills-Higgs gauge theory

$$\begin{array}{c}
\mathscr{G} \\
\downarrow^{\pi} \\
N \xrightarrow{f} M
\end{array}$$

A **right-action of** $\mathscr G$ **on** N is a smooth map $N * \mathscr G := f^* \mathscr G \to N$, $(p,g) \mapsto p \cdot g$, satisfying the following properties:

$$f(p \cdot g) = \pi(g), \tag{29}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{30}$$

$$p \cdot e_{f(p)} = p \tag{31}$$

for all $p \in N$ and $g, h \in \mathcal{G}_{f(p)}$, where $e_{f(p)}$ is the neutral element of $\mathcal{G}_{f(p)}$.

Example

Curved Yang-Mills-Higgs gauge theory

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

- Either by $M = \{*\}.$
- Or by $\mathscr{G} \cong M \times G$, then also $N * \mathscr{G} \cong N \times G$, and we can define

$$N \times G \to N$$
,
 $(p,g) \mapsto p \cdot g := p \cdot (f(p),g)$,

which is equivalent to $N * \mathcal{G} \to N$.

Example

Curved Yang-Mills-Higgs gauge theory

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

Example (Recovering Lie group action)

- Either by $M = \{*\}$.
- Or by $\mathscr{G} \cong M \times G$, then also $N * \mathscr{G} \cong N \times G$, and we can define

$$N \times G \to N,$$

 $(p,g) \mapsto p \cdot g := p \cdot (f(p),g),$

which is equivalent to $N * \mathcal{G} \to N$.

Definition (Principal bundle)

Still a fibre bundle

Curved Yang-Mills-Higgs gauge theory

$$G \longrightarrow \mathscr{P}$$

$$\downarrow^{\pi_{\mathscr{P}}} M$$

but with \mathscr{G} -action

$$\mathscr{P} * \mathscr{G} \to \mathscr{P}$$
 $\mathscr{P} * \mathscr{G}$

simply transitive on fibres of \mathcal{P} , and "suitable" atlas.

Connection on \mathcal{P} : Idea

Curved Yang-Mills-Higgs gauge theory

But:

$$r_g: \mathscr{P}_X o \mathscr{P}_X$$
 $D_{\scriptscriptstyle D} r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

Curved Yang-Mills-Higgs gauge theory

But:

$$r_{m{g}}:\mathscr{P}_{m{\chi}} o\mathscr{P}_{m{\chi}}$$
 $\mathrm{D}_{m{p}}r_{m{g}}$ only defined on vertical structure

Connection on \mathcal{P} : Idea

Curved Yang-Mills-Higgs gauge theory

Use
$$\sigma \in \Gamma(\mathscr{G})$$
 : $r_{\sigma}(p) \coloneqq p \cdot \sigma_{\pi_{\mathscr{P}}(p)}$

Connection on \mathcal{P} : Idea

H a horizontal bundle of \mathcal{P} :

Horizontal distribution, definition

Curved Yang-Mills-Higgs gauge theory

Definition (Connection, [S.-R. F.])

Let H be a horizontal bundle of \mathcal{P} . Then H is called a **connection** on \mathscr{P} if

$$\left(D_{p} r_{\sigma} - \left(\pi_{\mathscr{P}}^{!} \widetilde{\Delta \sigma} \right) \Big|_{p \cdot \sigma_{\pi_{\mathscr{P}}(p)}} \right) (H_{p}) = H_{p \cdot \sigma_{\pi_{\mathscr{P}}(p)}}$$
(32)

for all $\sigma \in \Gamma(\mathcal{G})$, where $\Delta \sigma$ is the fundamental vector field of $\Delta \sigma$ which is the **Darboux derivative of** σ given by

$$\Delta\sigma := \sigma^! \mu_{\mathscr{E}}.\tag{33}$$

Example

Let P be a G-principal bundle, equipped with a "classical" connection.

⇒ Horizontal distribution on associated fibre bundles.

Example

Curved Yang-Mills-Higgs gauge theory

Let P be a G-principal bundle, equipped with a "classical" connection.

- ⇒ Horizontal distribution on associated fibre bundles.
- \Rightarrow Horizontal distribution on the inner LGB c(P) of P given by

$$c(P) := (P \times G) / G, \tag{34}$$

where G acts on itself by conjugation.

Example

Let P be a G-principal bundle, equipped with a "classical" connection.

- ⇒ Horizontal distribution on associated fibre bundles.
- \Rightarrow Horizontal distribution on the inner LGB c(P) of P given by

$$c(P) := (P \times G) / G, \tag{34}$$

where G acts on itself by conjugation.

 \Rightarrow Connection on $\mathcal{P} = c(P)$.

Example

Let P be a G-principal bundle, equipped with a "classical" connection.

- ⇒ Horizontal distribution on associated fibre bundles.
- \Rightarrow Horizontal distribution on the inner LGB c(P) of P given by

$$c(P) := (P \times G) / G, \tag{34}$$

where G acts on itself by conjugation.

 \Rightarrow Connection on $\mathscr{P} = c(P)$.

Summary

Curved Yang-Mills-Higgs gauge theory

	Locally	Globally
Curved Yang-Mills	Pre-classical	$\operatorname{ad}(\mathbb{S}^7 o \mathbb{S}^4)$ curved

Remarks (Integrated point of view)

This is probably linked to that an LGB is locally trivial → LGB action locally equivalent to a Lie group action

Hope: Structural Lie groupoids

Curved Yang-Mills-Higgs gauge theory

Gauge theory	Structure
Yang-Mills	Lie group G
Curved Yang-Mills	Lie group bundle ${\mathscr G}$
Curved Yang-Mills-Higgs	Lie groupoid &?

Remarks

- Richer set of principal bundles, containing LGBs.
- May result into obstruction statements for curved Yang-Mills-Higgs.

Thank you!