Metodi Numerici per il Calcolo

Esercitazione 8: $A\mathbf{x} = \mathbf{b}$ e Fattorizzazione LU

A.A.2023/24

Scaricare dalla pagina web del corso l'archivio matlab_mnc2324_8.zip e scompattarlo nella propria home directory. Verrà creata una cartella con lo stesso nome contenente alcuni semplici script e function Matlab/Octave. Si svolga la seguente esercitazione che ha come obiettivo sperimentare la fattorizzazione LU di una matrice e la soluzione di sistemi lineari.

A. Soluzione di Sistemi Lineari

Nella cartella sono presenti alcune function che se richiamate restituiscono una matrice $n \times n$ non singolare che può essere utilizzata come matrice test per un sistema lineare $A\mathbf{x} = \mathbf{b}$. Come metodologia di lavoro si proceda definendo il vettore $\mathbf{x} \in \mathbb{R}^n$ (per esempio $\mathbf{x} = (1, 1, \dots, 1)^T$) e si determini \mathbf{b} affinché la soluzione del sistema sia il vettore \mathbf{x} , così da conoscerne la soluzione esatta.

1. Function lu di Matlab/Octave

Completare lo script $main_linsys.m$ che definito un sistema lineare Ax = b, lo risolve nei due seguenti modi:

- utilizzando l'operatore "left-division" di Matlab/Octave;
- utilizzando la function di Matlab/Octave lu che implementa la fattorizzazione di Gauss con scambio delle righe e perno massimo. Più precisamente siamo interessati alla chiamata:

$$[L,U,P]=lu(A)$$

(vedere help lu); quindi si usino le function lsolve.m e usolve.m presenti nella cartella per risolvere i sistemi

$$L\mathbf{y} = P\mathbf{b}$$
$$U\mathbf{x} = \mathbf{y}.$$

2. Sulla stabilità della fattorizzazione LU

Si completi lo script $main_lufact.m$ in modo che richiami la function lu di Matlab come nell'esercizio A.1 (fattorizzazione LU di una matrice con scambio delle righe e perno massimo) e verifichi che:

$$\max |\ell_{i,j}| \le 1, \qquad \max |u_{i,j}| \le 2^{n-1} \max |a_{i,j}|$$

dove $\ell_{i,j}$ e $u_{i,j}$ sono gli elementi delle matrici L e U determinate. Si stampi una tabella con i seguenti valori per le matrici di esempio mat_k, k=2,3,4,5 di dimensioni n=5,10,50

	$\max u_{i,j} $	$2^{n-1} \max a_{i,j} $
--	------------------	--------------------------

Si realizzi uno script $main_qrfact.m$ che richiami la built-in function Matlab qr, del tutto simile allo script $main_lufact.m$, per confrontare i valori degli elementi delle matrici Q ed R ottenuti nella fattorizzazione QR; si verifichi inoltre che

$$\max |q_{i,j}| \le 1, \qquad \max |r_{i,j}| \le \sqrt{n} \max |a_{i,j}|.$$

3. Esempio sulla Stabilità della fattorizzazione LU

Le function LUsimple.m e LUsimple_solve.m implementano la fattorizzazione LU senza scambio di righe e soluzione dei due sistemi triangolare inferiore e superiore. Si completi lo script main_stab_lufact.m per risolve il seguente sistema lineare $A\mathbf{x} = \mathbf{b}$ con

$$A = \begin{pmatrix} 10^{-20} & 1\\ 1 & 1 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

utilizzando sia la fattorizzazione con scambio delle righe e perno massimo (function lu di Matlab) che la fattorizzazione senza scambio di righe (function LUsimple). Si confrontino le soluzioni ottenute nei due casi.

4. Esempio sul condizionamento di un sistema lineare

Si consideri la matrice H di Hilbert $n \times n$ (function Matlab hilb, vedi l'help) Si calcoli \mathbf{b} in modo che $H\mathbf{x} = \mathbf{b}$, dove $\mathbf{x} = (1, 1, ..., 1)^T$. Si aggiunga a \mathbf{b} una perturbazione

$$\delta \mathbf{b}_p = 10^{-p} \mathrm{rand}(n, 1).$$

Si risolva il sistema $H\tilde{\mathbf{x}}_p = \mathbf{b} + \delta \mathbf{b}_p$, per $p = 1, \dots, 5$ e si stampi per ogni valore di p la seguente quantità:

$$K_p = \frac{\|\mathbf{x} - \tilde{\mathbf{x}}_p\|}{\|\mathbf{x}\|} \frac{\|\mathbf{b}\|}{\|\delta \mathbf{b}_p\|}.$$

I valori K_p così ottenuti sono il valore effettivo sperimentale del numero di condizione della matrice H. Verificare che per ogni p sia

$$K_p \leq \operatorname{cond}(H)$$
.

Lo script $main_hilb.m$ implementa già quanto detto; eseguire per differenti dimensioni $n \times n$ e analizzare i risultati.

B. Ricostruzione di curve per interpolazione

- 1. Lo script sbezcurv2d_de.m carica una curva di Bézier ed usa la function gc_pol_de2d della libreria anmglib_4.0 per elevarne il grado. Vengono disegnati i punti di controllo della curva iniziale e di quella con grado elevato di 1. Si elevi ulteriormente il grado della curva e si osservi la relazione fra la vecchia poligonale di controllo e la nuova.
- 2. Il file sppbez_draw.p è uno script Matlab in 'proprietary mode', ossia si può eseguire in ambiente Matlab, ma non si può accedere al sorgente. Eseguendolo verrà presentato un semplice disegno/immagine che si vuole replicare con una curva di Bézier a tratti, ottenuta come join di curve di Bézier di interpolazione. Si colori quindi la curva ricostruita per replicare, come richiesto, il disegno/immagine. Lo script si chiami sppbez_interp2d.m.

(Sugg. Per campionare punti del bordo dell'immagine ci si avvicini ad un punto con il mouse; Matlab mostrerà le cordinate di quel punto. Dopo avere acquisito alcuni punti del bordo si proceda alla loro interpolazione con curve di Bézier; si proceda poi al join di tali curve di Bézier per ottenere un'unica curva di Bézier a tratti che definisca il bordo).