UNIVERSIDADE FEDERAL DO ABC

BC1419 Cálculo Numérico (1° 2021) - LISTA 2 Entrega: 05/05/2021Prof. André Pierro de Camargo

1 Orientações gerais

Para os exercícios práticos:

- A linguagem de programação utilizada na implementação dos métodos é de livre escolha.
- Peça ajuda ao professor sempre que necessário.
- Realize testes preliminares com cada método para identificar possíveis erros de implementação. Por exemplo: teste o método de eliminação de Gauss em sistemas de equações cuja solução seja previamente conhecida e veja se o resultado obtido é coerente.
- Discuta com os outros grupos e também com o professor caso encontre resultados aparentemente sem sentido. Isso pode (ou não) ser um erro de implementação, ou mesmo um indicativo de que o método utilizado possui as suas limitações.

Cada grupo deverá entregar

- Um relatório contendo a resolução dos exercícios teóricos e TUDO o que foi solicitado nos exercícios práticos (leiam a descrição com bastante atenção).
- O arquivo contendo o código fonte utilizado nos exercícios práticos.

Enviar o material por e-mail para andre.camargo@ufabc.edu.br, especificando o número do grupo.

2 Exercícios práticos

Os objetos de estudo desse exercício são as integrais de Newton-Cotes para aproximar uma integral definida $\int\limits_{a}^{b}f(x)\,dx$.

Suponha dada uma função contínua $f:[a,b] \to \mathbb{R}$ cujos valores são conhecidos em uma partição $\mathbf{X}: a=x_0 < x_1 < \cdots < x_n=b$ de [a,b] com pontos igualmente espaçados:

$$x_i = a + ih, \quad h = \frac{b-a}{n}, i = 0, 1, 2, \dots, n.$$
 (1)

Uma opção para aproximar a integral $\int_a^b f(x) dx$ é aproximar f usando o

polinômio interpolador de Lagrange $(p_n(\mathbf{X}, f, x))$, que satisfaz

$$p_n(\mathbf{X}, f, x_i) = f(x_i), i = 1, \dots, n,$$

e aproximar a integral $\int_{a}^{b} f(x)dx$ por

$$NC[f, a, b, n] = \int_{a}^{b} p_n(\mathbf{X}, f, x) dx.$$
 (2)

É possível provar que a integral (2) pode ser escrita como

$$\int_{a}^{b} p_{n}(\mathbf{X}, f, x) dx = h \sum_{i=0}^{n} w_{n,i} f(x_{i}),$$
(3)

sendo $w_{n,0}, w_{n,1}, w_{n,2}, \ldots, w_{n,n}$ números racionais que dependem apenas do valor de n, ou seja, não dependem dos valores de a e b e nem de f. A definição precisa dos coeficientes $w_{n,0}, w_{n,1}, w_{n,2}, \ldots, w_{n,n}$ que aparecem em (3) é

$$w_{n,i} = \frac{1}{h} \int_{a}^{b} \ell_{i}(x) dx, \quad \ell_{i}(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}, \qquad i = 0, 1, \dots, n$$
 (4)

(os polinômios $\ell_0, \ell_1, \dots, \ell_n$ são chamados de os polinômios de Lagrange associados ao conjunto de nós X).

2.1 Tarefas

$2.1.1 \quad (0.5)$

Para n=6, [a,b]=[0,1] e para X definido em (1), calcule os polinômios de Lagrange $\ell_0,\ell_1,\ldots,\ell_n$ no pontos x=2 e $x=\pi/6$ (exiba os valores com todas as casas decimais disponíveis). Para fins de conferência, exibimos abaixo os mesmos valores para n=3

2.1.2 (1.0)

Calcule os coeficientes $w_{3,0}, w_{3,1}, w_{3,2}$ e $w_{3,3}$ (n=3). Use [a,b] = [0,1]. Para isso, utilize a regra dos Trapézios abaixo para calcular as integrais em (4):

$$\int_{a}^{b} f(t) dt \approx T_{m} := \frac{b-a}{2m} \left[f(t_{0}) + \left(\sum_{i=1}^{m-1} 2f(t_{i}) \right) + f(t_{m}) \right],$$

com

$$t_i = a + i \left(\frac{b - a}{m} \right), \quad i = 0, 1, 2, \dots, m.$$

Utilize $m=10^5$.

Para fins de conferência, exibimos abaixo os valores calculados de $w_{2,0}, w_{2,1}$ e $w_{2,2}(n=2)$:

0.33333333399437 1.333333333202438 0.3333333333398131

$2.1.3 \quad (0.5)$

Sabendo que $w_{2,0}, w_{2,1}$ e $w_{2,2}$ são números racionais, os valores calculados acima indicam que $w_{2,0} = \frac{1}{3}, \ w_{2,1} = \frac{4}{3}$ e $w_{2,2} = \frac{1}{3}$. Isso é feito com base na expansão de $\frac{1}{3}$ e $\frac{4}{3}$ em dízimas periódicas. Com base nos valores calculados no item anterior, exiba os valores $w_{3,0}, w_{3,1}, w_{3,2}$ e $w_{3,3}$ na forma de fração.

2.1.4 (1.5)

Repetindo os cálculos da Tarefa 2.1.2, porém agora para n = 6, obtemos os coeficientes $w_{6,0}, w_{6,1}, w_{6,3}, w_{6,4}, w_{6,5}$ e $w_{6,6}$ abaixo:

 $0.292857143642088 \ 1.542857140697085 \ 0.192857146229380 \ 1.942857138861225 \ 0.192857146234491$

1.542857140703739 0.292857143632036

Nesse caso, porém, não é tão fácil identificar os números $w_{6,0}$, $w_{6,1}$, $w_{6,2}$, $w_{6,3}$, $w_{6,4}$, $w_{6,5}$ e $w_{6,6}$ como dízimas periódicas para expressá-los em forma de fração. Esse problema tem duas possíveis fontes:

- Acumulação de erros de arredondamento.
- Talvez o valor $m=10^5$ seja pequeno para calcular as integrais em (4) com boa precisão.

Para problemas computacionais em geral, é difícil balancear esses dois pontos. Por exemplo: se aumentamos o valor de m para obter uma precisão maior, faremos mais contas e teremos possívelmente um maior acumulo de erros de arredondamento. Por exemplo, recalculando os coeficientes com $m=10^6$, obtemos

0.292857142865135 1.542857142832189 0.192857142928087 1.942857142801931 0.192857142874702

1.542857142794164 0.292857142903687

e a dificuldade de identificar as dízimas periódicas permanece. Uma alternativa para solucionar esse problema é utilizar fórmulas de integração mais precisas do que a fórmula dos Trapézios.

Calcule os coeficientes $w_{6,0}, w_{6,1}, w_{6,2}, w_{6,3}, w_{6,4}, w_{6,5}$ e $w_{6,6}$, porém utilizando a regra de integração de Simpson com $m = 10^5$:

$$\int_{a}^{b} f(t) dt \approx S_{m} := \frac{(b-a)}{3m} \left[f(t_{0}) + 4f(t_{1}) + 2f(t_{2}) + 4f(t_{3}) + 2f(t_{4}) + \dots + 4f(t_{m-1}) + f(t_{m}) \right].$$

OBS: A regra de Simpson só pode ser calculada para valores pares de m.

2.1.5 (1.0)

O primeiro coeficiente $(w_{6,0})$ calculado por meio da regra de Simpson no exercício anterior é: $w_{6,0}\approx 0.292857142857145$. Isso sugere que a expansão de $w_{6,0}$ em dízima periódica é

$$\begin{array}{lll} w_{6,0} & = & 0.29 + 0.00285714285714285714.... \\ & = & 0.29 + 10^{-8} \times 285714.285714285714.... \\ & = & 0.29 + 10^{-8} \times 285714 \times (1.000001000001000001....) \\ & = & 0.29 + 10^{-8} \times 285714 \times (1 + 10^{-6} + 10^{-12} + 10^{-18} + ...) \\ & = & 0.29 + 10^{-8} \times 285714 \times \left(1 + 10^{-6} + (10^{-6})^2 + (10^{-6})^3 + ...\right) \\ & \stackrel{(**)}{=} & 0.29 + 10^{-8} \times 285714 \times \frac{1}{1-10^{-6}} \\ & = & \frac{29}{100} + \frac{285714}{10^8} \times \frac{10^6}{10^6 - 1}. \end{array}$$

(**) aqui utilizamos a fórmula para somar infinitos termos de uma progressão geométrica.

Simplificando as frações, obtemos $w_{6,0}$ na na forma irredutível:

$$w_{6,0} = \frac{41}{140}.$$

Seguindo o mesmo procedimento, coloque os coeficientes $w_{6,1}, w_{6,2}, w_{6,3}, w_{6,4}, w_{6,5}$ e $w_{6,6}$ encontrados no item anterior na forma de fração irredutível.

2.1.6 (1.5)

Uma outra forma de calcular os coeficientes $w_{n,0}, w_{n,1}, w_{n,2}, \ldots, w_{n,n}$ definidos na fórmula (4) é utilizar a fórmula (3). Por exemplo, considere [a, b] = [0, 1]. Se a função f é um polinômio da forma

$$f(x) = x^k,$$

com $k \leq n$, devemos ter

$$p_n(\mathbf{X}, f, x) = f(x) = x^k. (5)$$

Isso é verdade, pois ambas f(x) e $p_n(\mathbf{X}, f, x)$ são polinômios de grau menor ou igual a n e só existe um polinômio desse tipo cujos valores nos pontos x_0, x_1, \ldots, x_n coincidem com os valores de f(x). Dessa forma, podemos reescrever (3) como

$$\sum_{i=0}^{n} w_{n,i} f(x_i) = \sum_{i=0}^{n} w_{n,i}(x_i)^k = \frac{1}{h} \int_{a}^{b} f(x) dx = n \int_{0}^{1} x^k dx = \frac{n}{k+1}.$$
 (6)

Aplicando (6) para $k = 0, 1, \dots, n$, obtemos o seguinte sistema de equações

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ x_0 & x_1 & x_2 & \dots & x_n \\ x_0^2 & x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_0^n & x_1^n & x_2^n & \dots & x_n^n \end{bmatrix} \times \begin{bmatrix} w_{n,0} \\ w_{n,1} \\ w_{n,2} \\ \vdots \\ w_{n,n} \end{bmatrix} = \begin{bmatrix} n \\ n/2 \\ n/3 \\ \vdots \\ n/(n+1) \end{bmatrix}. \tag{7}$$

Resolva o sistema (7) para n=6 usando eliminação de Gauss e exiba os valores encontrados de $w_{6,0}, w_{6,1}, w_{6,2}, w_{6,3}, w_{6,4}, w_{6,5}$ e $w_{6,6}$.

OBS: Os valores não podem ser muito distantes dos valores encontrados na Tarefa 2.1.5.

$2.1.7 \quad (2.0)$

O objetivo desse exercício é analisar a taxa de convergência das integrais fornecidas pelas regras compostas do Trapézio

$$T_m := \frac{h}{2} \left[f(t_0) + \left(\sum_{i=1}^{m-1} 2f(t_i) \right) + f(t_m) \right].$$

e de Simpson $S_m :=$

$$\frac{(b-a)}{3m} \left[f(t_0) + 4f(t_1) + 2f(t_2) + 4f(t_3) + 2f(t_4) + \ldots + 4f(t_{m-1}) + f(t_m) \right].$$

sendo $f:[a,b] \to \mathbb{R}$ uma função contínua e $a=t_0 < t_1 < \ldots < t_m = b$ pontos igualmente espaçados em [a,b]:

$$t_i = a + i \left(\frac{b-a}{m} \right), i = 0, 1, \dots, m.$$

(lembrando que m deve ser par para utilizar a regra de Simpson). Veremos no curso que, se f é suficientemente diferenciável, existem constantes positivas c_1 e c_2 (independentes m) tais que

$$ET_m := \left| \int\limits_a^b f(x)dx - T_m \right| \le \frac{c_1}{m^2} \quad \text{e} \quad ES_m := \left| \int\limits_a^b f(x)dx - S_m \right| \le \frac{c_2}{m^4}.$$

Pede-se para calcular o valor exato de ET_m e ES_m para a função polinomial $f(x)=x^9$, com a=0 e b=1 para os seguintes valores de $m=6,12,18,24\ldots 60$. Se o erro E_m ($E_m=ET_m$ ou $E_m=ES_m$) segue (aproximadamente) uma equação da forma $E_m=\mu m^p$ (com μ e p fixos), então, tomando-se os logaritmos de ambos os lados, obtemos

$$\log(E_n) = \log(\mu) + p\log(m).$$

Assim, se a relação acima é aproximadamente verdadeira, então os valores $(\log(m_1), \log(E_{m_1})), (\log(m_2), \log(E_{m_2})), \ldots, (\log(m_\ell), \log(E_{m_\ell}))$ deverão estar mais ou menos alinhados e a reta que os representa deverá ter coeficiente angular próximo a p. Por exemplo, no gráfico da Figura 1, exibimos os valores transformados $(\log(m_j), \log(E_{m_j}))$ e o ajuste de mínimos quadrados correspondente para ET para a função $f(x) = \log(x+2)$. Note que o coeficiente angular da reta obtida (-1.99996) é próximo a -2.

Ajuste os valores calculados $(\log(m_1), \log(E_{m_1})), (\log(m_2), \log(E_{m_2})), \ldots, (\log(m_\ell), \log(E_{m_\ell}))$ para a função $f(x) = x^9$ (para $E_m = ET_m$ e para $E_m = ES_m$) por uma reta pelo Método dos Mínimos Quadrados discreto.

- Exiba os valores $(\log(m_1), \log(E_{m_1})), (\log(m_2), \log(E_{m_2})), \ldots, (\log(m_\ell), \log(E_{m_\ell}))$ para a função $f(x) = x^9$ (para $E_m = ET_m$ e para $E_m = ES_m$) em uma Tabela.
- Faça dois gráficos como o da Figura 1 (um para ET e outro para ES) utilizando os valores calculados e exiba os coeficientes de mínimos quadrados obtidos com, no mínimo, 6 casas decimais.

Figura 1: Erro na regra dos m trapézios para $f(x) = \log(x+2)$.

2.1.8 (2.0)

Seja m=6k um número múltiplo de 6. Vamos definir uma nova regra de integração para aproximar $\int\limits_a^b f(x)\,dx$ da seguinte forma: seja

$$t_i = a + i \left(\frac{b-a}{m} \right), i = 0, 1, \dots, m$$

um conjunto de pontos igualmente espaçados em [a, b]. Para cada valor de $j = 0, 1, 2, \ldots, k-1$, considere a integral de Newton-Cotes $NC[f, t_{6j}, t_{6[j+1]}, 6]$ dada por (2), para $a = t_{6j}, b = t_{6[j+1]}, n = 6$ e depois some os resultados:

$$NC_m^* := \sum_{j=0}^{k-1} NC[f, t_{6j}, t_{6[j+1]}, 6].$$

Em termos mais precisos, sendo $w_{6,0},w_{6,1},w_{6,2},w_{6,3},w_{6,4},w_{6,5}$ e $w_{6,6}$ os coeficientes calculados na Seção 2.1.5, temos $NC_m^*=$

$$\frac{b-a}{m} \sum_{j=0}^{k-1} \left(\begin{array}{c} w_{6,0}f(t_{6j}) + w_{6,1}f(t_{6j+1}) + w_{6,2}f(t_{6j+2}) + w_{6,3}f(t_{6j+3}) \\ + w_{6,4}f(t_{6j+4}) + w_{6,5}f(t_{6j+5}) + w_{6,6}f(t_{6j+6}) \end{array} \right).$$

Repita o exercício anterior (exibindo os valores de erro e o gráfico), agora para a regra NC^* . Qual dentre as regras T_m, S_m, NC_m^* fornece a melhor

aproximação para $\int_a^b f(x)dx$ para um mesmo valor de m?