Geography 4203 / 5203

GIS Modeling

Class 10: Dasymetric Mapping

Some Updates

- Grading:
- Lab1 Hydro: model-paper-total
- Readings summaries[pencil lines] I-III
- Reading summaries some comments
- ...

Last Lecture

- We are done with **Geostatistics**... (almost)
- Not yet with spatial estimation and prediction issues but Kriging lies behind you, congrats!
- You had a quite deep insight into the mechanics how kriging works, what the basic assumptions are and why the variogram is so important
- You perfectly can describe spatial autocorrelation and its use for spatial prediction in kriging algorithms
- But you have also seen why statistics is important

Today's Outline

- Today we will talk about Areal Interpolation and Dasymetric Mapping - related to the lab exercises you are currently doing
- We will look at some methods of dasymetric mapping to better understand the use of limiting and related variables
- You will see what stands behind these terms
- You will once again see why map algebra and its fundamental concepts are so important

Learning Objectives

- You will understand what areal interpolation is
- You will also understand how areal interpolation and dasymetric mapping are related to each other
- You will see how dasymetric maping can improve estimations of variables of interest by addressing the underlying statistical surface
- You will learn how to implement the different ideas of dasymetric mapping into map algebra commands and syntax (rather during your current lab)
- You will get (hopefully) some ideas how you can use these techniques for your own project and research ideas

Background I

- Traditional choropleth map designs give the impression of homogeneous distributions of the variable of interest (e.g. population density, cropland density) throughout the areal unit
- In fact, these density measures often vary within the "enumeration unit"
- Thus the boundaries often have nothing to do with changes in the underlying statistical surface but pretend abrupt shifts

Background II

- Need to create surface-based representations from these areal units: areal interpolation (AI)
- To address heterogeneity within units
- To refine the estimates by using additional ancillary data and relationship between these data and our orig. estimations
- Dasymetric mapping as a kind of AI is a relatively unknown method
- Few publications on dasymetric mapping (some you can find at the end)

The Beginning

- John K. Wright (1936) produced a population distribution map of Cape Cod using the census data
- Population counts assigned to towns in a standard choropleth map
- Wright saw that the choropleth map masked important details
- Population density seemed to depend more on amount of marsh & wasteland than on the density in the inhabitable area

Wright's Improved Map Versions

- First he cut out "uninhabited" areas and recalculated the density for the town based on the reduced area
- Then divided each town into regions of land use and settlement
- Assigned densities to all but one land use classes, the density of the last class could be calculated from the **residual population** of that town

Puzzle of densities from many assumptions and relationships within

the region

Aggregated Data in Maps (Volumetric Surfaces)

Choropleth Maps:

- Individual spatial units
 (polygons) are filled with uniform colors or patterns
- Enumeration unit is the same as the mapping unit (administrative, municipal boundaries,...)

Aggregated Data in Maps (Volumetric Surfaces)

Dasymetric Maps:

- Individual spatial units
 (polygons or grid cells) are filled with uniform colors or patterns
- Mapping unit is based on sharp changes in the statistical surface of data
- Spatially disaggregate
 aggregated data

from http://www.gis.unbc.ca/courses/geog205/lectures/ theme_map_la/index.php

Aggregated Data in Maps (Volumetric Surfaces)

- Isopleth/isarithmic Maps:
 - No pre-defined mapping unit
 - Data associated with point locations
 - Can be represented by **lines** of **equal attribute value** (we have a name for that!!!)

... a way of Cartographic Thinking & Modeling?

• ... it's even more...

Areal Interpolation

- Transformation of an attribute attached to one kind of choropleth map to another set of choropleth zones
- Or -- Estimating the value of a mapping unit based on the values of associated enumeration units
- Volume preserving methods (areal weighting (pycnophylactic), overlay (binary method))
- Non-volume preserving methods (e.g. interpolating population counts from census tracts to school districts) -- critiques volume loss

from http://www.geog.cam.ac.uk/research/projects/geographicalepidemiology/

Areal Interpolation

Areal Interpolation Example: Population Density in California

Original dataset Population density by county After areal interpolation Population density for California watersheds

Dasymetric Maps & Mapping

- To display statistical surface data by partitioning space into (homogeneous) zones where the zone boundaries reflect the underlying statistical surface variation (sharp changes)
- The process of dasymetric mapping is the transformation of data from a set of arbitrary source zones to a dasymetric map via the overlay of the source zones with an ancillary dataset
- Dasymetric mapping is considered a particular type of areal interpolation (where source zone data are excluded from or related to certain classes in a categorical ancillary dataset)

from http://geography.wr.usgs.gov/science/dasymetric/methods.htm

Ancillary Information

• Limiting Variable:

restrict possible occurrences in the original unit (its percentage limits the percentage of the variable of interest within the same unit)

Related Variable:

associated with the variable of interest in complex ways

you can define a **set of rules** which variable will **influence** our variable in what way... (economy, terrain)

In Context

McEachren (1994)
 placed dasymetric
 maps in the
 continuum between
 isopleth and
 choropleth maps
 (betw. smooth and
 stepped statistical
 surfaces)

Case Study Eicher & Brewer (2001)

- Refining population data and housing price data given at the county level (enumeration unit) by overlay with land use classes (to create dasymetric zones within the counties)
- Using land use from USGS as ancillary data
- Testing different methods of dasymetric mapping and evaluate their accuracy against census block groups (RMSE)

Enumeration and Mapping Units

Figure 1. Dasymetric map zones that result from overlay of county and landuse boundaries in the study area. State boundaries and example cities are included for reference.

Tested Variables

Dasymetric Mapping Methods

- Binary Method (P,G)
 inhabitable/ uninhabitable regions ("binary") and conclusions for corrected densities
- Three-Class Method (subjective) fractions defined to create a weighting

scheme for assigning population data to three different land use classes

(70-20-10 % for urban-agr./woodl.-forestl. [+ water = 0]) Problems: **Subjectivity** and imprecision since **area** of land use class **not considered** (small urbans still get 70%)

Implementation as vector and grid methods

Dasymetric Mapping Methods

Limiting Variable Method (P)
 areal weighting to assign data to inhabitable polygons in each county

three inhabitable classes with equal pop densities (water = 0)

max density thresholds for individual land use classes adjustments to the data within each county (if polygon exceeds threshold - max threshold assigned, remaining data distributed evenly over the other zones) search for max densities for forest and agr difficult...

375 to 3,424

c. count error in number of persons.

An Example - Population Data

- From Mennis (2003)
- Population data for Delaware County, PA, are dasymmetrically mapped using RS land cover data
- Census tracts data (2000): 148 tracts with different population densities given

Ancillary Data

- Land cover data (NLCD, 2001) converted to a smoothed vector data layer (polygons)
- Max population densities for each of the land cover classes defined...
- Three-class method of Eicher & Brewer 2001, but improved due to weaknesses
- (1) empirical sampling to determine appropriate %-assignment values of population for each land use class (subjectivity reduced)
- (2) area-based weighting to address area fractions of ancillary data (land useclasses) within each unit

The Dasymetric Map

 New vector data layer (polygons) showing population densities in relationship to varying proportions in developed regions and undeveloped regions (forest, agricultural) by implying sets of rules

Another Example

- (A) Land-Cover re-code from a collection of input sources (land-cover, slope, open space); (B) Block-group population density;
- (C) Dasymetric map output after interpolation

Summary I

- Dasymetric mapping as one interesting alternative to improve estimations of our mapped variable (often population or density measures)
- Refining the original spatial unit (enumeration unit)
 using ancillary data (mapping unit) and the
 relationships between these variables
- Using categorical data as ancillary data to improve ratio-scaled distributions of a variable
- Limiting and related variables
- Different **methods**...

Summary II

- Disaggregating of aggregated information by using additional information we have based on ancillary data
- If more detail is available about our area/variable of interest - how can we use this information to improve the spatial distribution of the variable of interest

References

- Eicher, C.L. and Brewer, C.A., 2001. Dasymetricmapping and areal interpolation: implementation and evaluation. Cartography and Geographic Information Science, 28(2): 125-138.
- Holloway, S. R., Schumacher, J., and Redmond, R. L. 1997.
 DasymetricMapping Using Arc/Info. Cartographic Design Using ArcViewand ARC/INFO. High Mountain Press, NM.
- Mennis, J. and Hultgren, T., 2006. Intelligent dasymetric mapping and its application to areal interpolation. Cartography and Geographic Information Science, 33(3): 179-194.
- Mennis, J., 2003. Generating surface models of population using dasymetric mapping. The Professional Geographer, 55(1): 31-42.
- Wright, J. K. 1936. A method of mapping densities of population. The Geographical Review 26: 103-110.