Spis treści

1.	Cel	projektu	. 3
		przenie modelu	
		Patelnia	
		Płyta grzewcza	
		Złożenie	
3.	Prz	ygotowanie analizy termicznej	. 5
4.	Wyı	niki	. 8
5.	Wn	ioski	. 9

1. Cel projektu

Celem projektu było stworzenie modelu wybranego przedmiotu w programie Solidworks i przeprowadzenie analizy termicznej w stanie nieustalonym. Do zamodelowania wybrano patelnię na płycie grzewczej.

2. Tworzenie modelu

2.1. Patelnia

Pierwszym krokiem było wykonanie modelu patelni. Ma ona średnicę podstawy 25 cm, grubość podstawy 1 cm i grubość ścianek 0,5 cm. Uchwyt ma długość 20 cm, przekrój 3 cm x 1 cm. Nadano jej materiał stopu aluminium "3.0517 (EN-AW 3003)".

Rysunek 1. Model patelni

Rysunek 2. Wybieranie materiału

2.2. Płyta grzewcza

Następnym krokiem było wykonanie modelu płyty grzewczej. Ma ona średnicę 28 cm i grubość 2 cm. Nadano jej materiał "żeliwo szare".

Rysunek 3. Model płyty grzewczej

2.3. Złożenie

Aby móc wykonać analizę, należało złożyć te dwa modele razem. Zostały połączone koncentrycznie i wspólnie podstawą patelni oraz powierzchnią płyty.

Rysunek 4. Złożenie obu modeli

3. Przygotowanie analizy termicznej

Aby przeprowadzić analizę termiczną, należy posiadać dodatek Solidworks Simulation. Po przejściu do zakładki *Simulation*, wybrano opcję *Nowe badanie*. Wybrano opcję *Termiczne*.

Rysunek 5. Wybranie odpowiedniego rodzaju badania

W celu ustawienia temperatury początkowej należało wprowadzić stan nieustalony. W drzewku badania wybrano zmianę jego właściwości. Całkowity czas miał wartość 300s, a przyrost 10s. W efekcie zostanie otrzymane 10 kroków badania.

Rysunek 6. Ustawianie stanu nieustalonego

Temperaturę początkową ustawiono za pomocą opcji *Obciążenia termiczne -> Temperatura*. Wartość ustalono na 20°C dla całego modelu.

Rysunek 7. Ustawianie temperatury początkowej

Następnym krokiem było ustawienie konwekcji na wszystkich ścianach oprócz tych, które są ze sobą w kontakcie stykowym. Wybrano opcję *Obciążenia termiczne -> Konwekcja*. Współczynnik konwekcji miał wartość 15 W/(m²K), a średnia temperatura otoczenia 293,15 K (20°C).

Rysunek 8. Ustawianie konwekcji

Następnie trzeba było ustawić obciążenie cieplne na wszystkich ścianach, które są ze sobą w kontakcie stykowym. Wybrano opcję *Obciążenia termiczne -> Obciążenie cieplne*. Założono moc płyty grzewczej 1000W, pole powierzchni płyty grzewczej wyniosło około 0,0616 m². Z obliczeń obciążenie cieplne miało wartość 16240 W/m².

Rysunek 9. Ustawianie obciążenia cieplnego

Dla przeprowadzenia badania niezbędne było utworzenie siatki o wymiarze 5 mm. W drzewku badania wybrano zmianę właściwości *Siatka*. Wybrano siatkę standardową.

Rysunek 10. Tworzenie siatki

Po wykonaniu wszystkich powyższych kroków otrzymano model gotowy do rozpoczęcia badania.

Rysunek 11. Model przed uruchomieniem badania.

4. Wyniki

Aby włączyć wykonanie analizy, wybrano opcję *Uruchom to badanie*. Poniżej znajdują się wyniki badania. Zmodyfikowano legendę tak, aby temperatura wyświetlana była w stopniach Celsjusza oraz jest wyświetlany ostatni krok obliczeń, czyli po upłynięciu 300s.

Rysunek 12. Wynik analizy – widok 1

Rysunek 13. Wynik analizy – widok 1 (góra)

Rysunek 14. Wynik analizy – widok 3 (spód)

5. Wnioski

Podsumowując, cel ćwiczenia, jakim było stworzenie modelu wybranego przedmiotu w programie Solidworks i przeprowadzenie analizy termicznej w stanie nieustalonym, został osiągnięty. Obliczenia programu przebiegły pomyślnie, zakres temperatur jest realny. Maksymalną osiągniętą temperaturą była wartość 109°C na środku powierzchni górnej patelni. Widoczne jest, że temperatura rozkłada się równomiernie po powierzchni, z wyjątkiem obszaru, gdzie znajduje się uchwyt. Minimalną osiągniętą temperaturą była wartość 43,3°C na końcu uchwytu. Tam, gdzie człowiek trzymałby uchwyt była temperatura 47,4°C. Oznacza to, że byłoby odczuwalne ciepło, lecz chwilowe (np. w celu zdjęcia potrawy z patelni) trzymanie nie wyrządziłoby krzywdy (oparzeń). Od około połowy

długości w kierunku płyty, nie należałoby dotykać tego uchwytu. Można spekulować, że po dłuższym czasie, uchwyt byłby już tak nagrzany, że bez odpowiedniej ochrony, trzymanie go w każdym miejscu, byłoby niebezpieczne. Widoczne jest też, że patelnia jest na tyle rozgrzana, że bez problemu można by na niej usmażyć szybko np. jajka, i inne potrawy. Jednak dotknięcie powierzchni górnej patelni byłoby niebezpieczne i mogło prowadzić do poparzeń skóry. Analizując spód płyty, widoczne jest, że na brzegach nie rozgrzała się ona tak samo mocno jak na środku.