Optimizavimo metodai

Laboratorinis darbas nr. 1 Vienmatis optimizavimas

Algoritmų trumpiniai:

IDP – Intervalo dalijimo pusiau AP – Auksinio pjūvio NM – Niutono metodas

Algoritmų palyginimas

Algoritmas	k (iteracijų kiekis)	Funkcijos iškvietimai	Funkcijos iškvietimų kiekis	Tikslus minimumas	Minimumas (gautas sprendinys), y_m	Vidurinio taško (gauto sprendinio – minimumo atstumas nuo tikslaus minimumo)	Argumento reikšmė (minimumo taškas, minimumo artinys) x_m
IDP	17	2k + 1	35	-1	-0.999999997871295	0.000000002128705	1.9999694824
AP	24	k+2	26	-1	-0.999999998700534	0.000000001299466	2.0000238434
NM	7	2 <i>k</i>	14	-1	-1.0	0.0	2.0

tikslo funkcija

$$f = \frac{\left(x^2 - a\right)^2}{b} - 1$$

$$a = 4$$

$$b = 7$$

tikslumas = 0.0001intervalas = [0,10]

Bandymų išvados:

Kaip matome, IDP metodas artėja greičiau prie minimumo nei AP metodas (mažesnis iteracijų skaičius), tačiau daugiau kartų iškviečia funkciją. Tuo tarpu Niutono metodas pareikalavo daug mažiau iteracijų bei funkcijos kvietimų. Taip pat verta pažymėti, kad AP metode iteracijų skaičius tik nežymiai skiriasi nuo funkcijų kvietimo skaičiaus, priešingai nei kituose metoduose.

Programų išvestis (iteracijų rezultatai)

IDP:

xm	ym	k	fun	kc. kv	/iet. sk				
5				62				1	3
2.5000	000000	00000e	+00	-2.767	785714	128571	43e-01	2	5
2.5000	000000	00000e	+00	-2.767	785714	128571	43e-01	3	7
1.8750	000000	00000e-	+00	-9.664	182979	91071	43e-01	4	9
1.8750	000000	00000e	+00	-9.664	182979	91071	43e-01	5	11
2.0312	2500000	00000e	+00	-9.977	732843	367152	63e-01	6	13
2.0312	2500000	00000e-	+00	-9.977	732843	367152	63e-01	7	15
1.9921	875000	00000e-	+00	-9.998	361035	549599	65e-01	8	17
1.9921	875000	00000e	+00	-9.998	361035	549599	65e-01	9	19
2.0019	531250	00000e-	+00	-9.999	991272	217493	62e-01	10	21
2.0019	531250	00000e-	+00	-9.999	991272	217493	62e-01	11	23
1.9995	3117187	50000e-	+00	-9.999	99455	17628	57e-01	12	25
1.9995	3117187	50000e-	+00	-9.999	99455	17628	57e-01	13	27
2.0001	220703	12500e-	+00	-9.999	99965	593812	41e-01	14	29
2.0001	220703	12500e-	+00	-9.999	99965	593812	41e-01	15	31
1.9999	694824	21875e-	+00	-9.999	99997	787129	51e-01	16	33
1.9999	694824	21875e-	+00	-9.999	99997	787129	51e-01	17	35

AP:

```
x1
                   funkc. kviet. sk
             k
      y1
3.819660112501051e+00 1.502056221740420e+01
2.360679774997897e+00 -6.466102641791984e-01
1.458980337503154e+00 -4.997072091311895e-01
                                                 5
                                              3
2.360679774997897e+00 -6.466102641791984e-01
                                              4 6
2.016261237511566e+00 -9.993906693084861e-01
                                              5 7
1.803398874989484e+00 -9.201237431719084e-01
                                              6 8
2.016261237511566e+00 -9.993906693084861e-01
                                               7
                                                 9
1.934955049953733e+00 -9.906414475155996e-01
                                              8 10
2.016261237511566e+00 -9.993906693084861e-01
                                              9 11
1.985205037360148e+00 -9.995033721769061e-01
                                               10 12
1.966011250105151e+00 -9.974041462145048e-01
                                               11 13
1.985205037360148e+00 -9.995033721769061e-01
                                               12 14
1.997067450256570e+00 -9.999803720162765e-01
                                               13 15
1.992536411718722e+00 -9.998731486541225e-01
                                               14 16
1.997067450256570e+00 -9.999803720162765e-01
                                               15 17
1.999867786077296e+00 -9.999999600471638e-01
                                               16 18
1.998798152973692e+00 -9.999967004150644e-01
                                                  19
1.999867786077296e+00 -9.999999600471638e-01
                                               18 20
1.999459222587211e+00 -9.999993317459589e-01
                                               19
                                                  21
1.999867786077296e+00 -9.999999600471638e-01
                                               20
                                                  22
2.000120292200730e+00 -9.999999669232368e-01
                                                  23
2.000023843443946e+00 -9.999999987005335e-01
                                              22
                                                  24
1.999964234834080e+00 -9.999999970762875e-01
                                              23
                                                  25
2.000023843443946e+00 -9.999999987005335e-01
                                              24 26
```

NM:

x 1	y1	k	fun	kc. kvi	et. sk			
3.521	1267605	563380		9.076	00119	0161325	1	2
2.630	2818584	178884	e+00	2.167	08188	7509414e-01	2	4
2.172	1439196	541523	e+00	-9.263	10790	5810557e-01	3	6
2.018	5140849	916996	e+00	-9.992	209253	1830250e-01	4	8
2.000	2516442	239276	e+00	-9.999	99855	2393347e-01	5	10
2.000	0000474	179678	e+00	-9.999	99999	9999949e-01	6	12
2.000	0000000	000002		-1.000	00000	0000000	7	14

IDP kodas:

```
function DalijimasPusiau
% Dalijimo pusiau metodu randamas funkcijos f(x) minimumas intervale [1,r].
f=(a)(x)(((x.^2-4).^2)/7) - 1;
l=0; % apatinis intervalo rezis
r=10; % desinysis intervalo rezis
epsilon=10^(-4); %tikslumas
k=1; %iteraciju skaitliukas
kmax=100; % maksimalus iteraciju skaitliukas
%Funkcijos grafiko y=f(x) braizymas
x=1:0.01:r;
y=f(x);
plot(x,y,'b');
grid on;
xlabel('x asis');
ylabel('y asis');
title(['Funkcijos y=f(x) grafikas ir artiniai']);
%Metodo realizavimas
L=r-l;
         %intervalo ilgis
xm=(l+r)/2; %intervalo vidurio taskas
ym=f(xm);
disp(['
                                funkc. kviet. sk']);
                 vm
                         k
         xm
format long
while L>= epsilon
    format long
    disp([xm, ym]);
    format short
    disp([k, 2*k+1]);
   hold on;
   plot(xm, ym, 'ro');
   x1=l+L/4; y1=f(x1);
   x2=r-L/4; y2=f(x2);
   if y1 < ym
      r = xm;
      xm = x1;
      ym = y1;
```

```
% ciklas tesiasi
   elseif y2 < ym
     1 = xm;
     xm = x2;
   ym = y2; else
     1 = x1;
     r = x2;
   end
   if k==kmax
      format short
      disp(['Pasiektas maksimalus iteraciju skaicius k=', num2str(kmax)]);
      break
   end
   k=k+1;
   L=r-l;
end
end
```

AP kodas:

```
function AuksinisPjuvis
% Aksinio pjuvio metodu randamas funkcijos f(x) minimumas intervale [1,r].
f=(a)(x)(((x.^2-4).^2)/7) - 1;
l=0; % apatinis intervalo rezis
r=10; % desinysis intervalo rezis
epsilon=10^(-4); %tikslumas
k=1; %iteraciju skaitliukas
kmax=100; % maksimalus iteraciju skaitliukas
%Funkcijos grafiko y=f(x) braizymas
x=1:0.01:r;
y=f(x);
plot(x,y,b');
grid on;
xlabel('x asis');
ylabel('y asis');
title(['Funkcijos y=f(x) grafikas ir artiniai']);
%Metodo realizavimas
%L=r-l;
           %intervalo ilgis
%xm=(l+r)/2; %intervalo vidurio taskas
%ym=f(xm);
disp(['
                               funkc. kviet. sk']);
       x1
                y1
                        k
format long
gR = (sqrt(5) - 1) / 2;
L = r-1;
x1 = r-gR*L;
y1 = f(x1);
x2 = 1 + gR*L;
y2 = f(x2);
while L>= epsilon
    format long
    disp([x1, y1]);
    format short
   disp([k, k+2]);
   hold on;
   plot(x1, y1, 'ro');
   if y2 < y1
      1 = x1;
```

```
L = r - l;
     x1 = x2;
     y1=y2;
     x2 = 1 + gR*L;
     y2 = f(x2);
   else
     r = x2;
     L = r - 1;
     x2 = x1;
     y2=y1;
     x1 = r - gR*L;
     y1 = f(x1);
   end
   if k==kmax
     format short
     disp(['Pasiektas maksimalus iteraciju skaicius k=', num2str(kmax)]);
      break
   end
   k=k+1;
   L=r-l;
end
end
```

NM kodas: function NiutonoMetodas % Niutono metodu randamas funkcijos f(x) minimumas intervale [l,r]. $f=(a)(x)((x.^2-4).^2)/7-1;$ $f1 = (a)(x)4*x*(x.^2-4)/7;$ $f2 = @(x)4*(3*x.^2-4)/7;$ l=0; % apatinis intervalo rezis r=10; % desinysis intervalo rezis epsilon=10^(-4); %tikslumas k=1; %iteraciju skaitliukas kmax=100; % maksimalus iteraciju skaitliukas %Funkcijos grafiko y=f(x) braizymas x=1:0.01:r;y=f(x); plot(x,y,'b');grid on; xlabel('x asis'); ylabel('y asis'); title(['Funkcijos y=f(x) grafikas ir artiniai']); %Metodo realizavimas x0=5;delta=1; funkc. kviet. sk']); disp([' x1]y1 k format long while delta>=epsilon x1=x0-f1(x0)/f2(x0);y1=f(x1);delta=abs(x1-x0);x0=x1;format long disp([x1, y1]);format short disp([k, 2*k]);hold on plot(x1, y1, 'ro') if k==kmax format short disp(['Pasiektas maksimalus iteraciju skaicius k=', num2str(kmax)]); break

end k=k+1;

end end