UNIVERSITATEA NATIONALĂ DE ȘTIINȚĂ ȘI TEHNOLOGIE POLITEHNICA BUCUREȘTI

Facultatea

Simulare 15 martie 2025

CHESTIONAR DE CONCURS

Numărul legitimației de bancă	
Numele	
Prenumele tatălui	
Prenumele	

DISCIPLINA: Algebră și Elemente de Analiză Matematică AAM

VARIANTA B

- 1. Fie matricea $A = \begin{pmatrix} 1 & 2025 & 2 \\ 2024 & 2 & 2024 \\ 2 & 2025 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Valoarea raportului $\frac{\det(A^{2025})}{\det(A^{2024})}$ este egală cu: (9 pct.)
 - a) 2025*2024; b) 2025; c) $\frac{2025}{2024}$; d) 1; e) -2; f) 0.
- 2. Să se determine coeficientul lui x^6 din dezvoltarea $(1+x+x^3)^6$. (9 pct.)
 - a) 70; b) 75; c) 78; d) 79; e) 76; f) 80.
- 3. Să se rezolve inecuația $\sqrt{-x-2} \sqrt[3]{x+5} < 3$. (9 pct.)
 - a) $x \in (-2,2]$; b) $x \in (6,\infty)$; c) $x \in (-6,-2]$; d) $x \in (-\infty,-6]$; e) $x \in (2,6]$; f) $x \in (2,\infty)$.
- 4. Aflați valorile lui $m \in \mathbb{R}$ pentru care ecuația $xe^x me^x + 1 = 0$ admite două soluții reale distincte. (9 pct.)

a)
$$m \in (1, \infty)$$
; b) $m \in (-\frac{1}{2}, 0)$; c) $m \in (\frac{1}{2}, 1)$; d) $m \in (-\infty, -1)$; e) $m \in (0, \frac{1}{2})$; f) $m \in (-1, -\frac{1}{2})$.

- 5. Numărul de elemente ale mulțimii $M = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | |x| + |y| < 100 \}$ este egal cu: (9 pct.)
 - a) 19801; b) 19803; c) 19798; d) 19800; e) 19802; f) 19799.
- 6. Media aritmetică a numerelor reale a₁, a₂,..., a_n este x. Media aritmetică a numerelor reale a₁, a₂,..., a_n, 1 este x-2, iar media aritmetică a numerelor reale a₁, a₂,..., a_n, 99 este x+5. Să se determine x. (9 pet.)
 a) 17; b) 28; c) 22; d) 18; e) 21; f) 29.
- 7. Valoarea limitei $\lim_{x\to 0} \frac{1}{x^4} \int_{x^2}^{2x^2} \frac{t}{\sqrt{t^2+9}} dt$ este: (9 pct.)
 - a) 2; b) 1; c) 0; d) ∞ ; e) $\frac{1}{2}$; f) -1.
- 8. Dacă $x_1 \le x_2$ sunt rădăcinile ecuației $x^2 6x + 5 = 0$, atunci valoarea sumei $x_1 + x_2$ este egală cu: (9 pct.)

 a) 3; b) -5; c) 0; d) 5; e) -3; f) 6.

- 9. Fie funcția f: $\mathbb{R} \{0\} \to \mathbb{R}$ astfel încât $f(x \cdot y) = \frac{f(x)}{y}$, oricare ar fi x și y dir $\mathbb{R} \{0\}$. Dacă f(10)=45, să se calculeze f(25). (9 pct.)
 - a) 19; b) 21; c) 18; d) 20; e) 17; f) 16.
- 10. Să se rezolve inecuația 2^x ≤2 ^{2-x} . (9 pct.)
- a) $x \in (1,2]$; b) $x \in (-\infty,1]$; c) $x \in (2,4]$; d) $x \in [4,\infty)$; e) $x \in (2,\infty)$; f) $x \in (1,2)$.