



#### Scalable Data Science

**Lecture 16c: Feature Hashing** 

**Anirban Dasgupta** 

Computer Science and Engineering
IIT GANDHINAGAR



## RandNLA in ML

- Studied applications of sampling + random projection techniques on linear algebraic problems
  - random projection to approximate PCA
  - QB decomposition
  - random projection for efficient L2 regression
- This lecture we explore the effects of random projection in supervised ML



## Outline

- Explore uses of hashing / random projection when the feature space is large
- Two use cases
  - 1. Text classification: large feature space to capture correlations
  - 2. Mail classification: feature space is large due to personalization



#### **Text Classification**

- Nonlinear/non-convex classifiers
  - excellent results in speech in speech and vision
  - reasonably fast at test time
  - slow training, require wizardry to ensure not stuck in bad local minima
  - not so effective for sparse, high dimensional, datasets of text
    - Although techniques e.g. Word2Vec are changing this



## In practice: count based features

- In practice, lot of features are based on "normalized counts" of tokens
  - easy to train, at least on single machine
  - fast at test time: calculate some statistics and then predict
- Works great for settings e.g. text classification
- A common practice, in order to capture higher level correlations is to take various combinations of n-grams and skip-grams
  - Captures high level correlations, still efficient to calculate



## Example

"the rain in Spain falls mainly on the plain"

#### 2-grams:

the rain, rain in, in Spain, Spain falls, falls mainly, mainly on, on the, the plain.

#### 1-skip-2-grams:

the in, rain Spain, in falls, Spain mainly, falls on, mainly the, on plain.

- → Can also look at this as a kernel representation
- → Feature space become very high dimensional, how to deal with it?



## Second example: Mail Classification



#### Personalization



Users have different spam preferences

Need to assign different classifiers



#### Personalization



Users have different spam preferences

Need to assign different classifiers

Also should ensure new users get good classifier

Should be updated frequently using new feedback





#### Multi-task learning via feature address space



Combination of local and global classifiers:  $w_{\mathrm{global}}^T x_{\mathrm{global}} + w_{\mathrm{user}}^T x_{\mathrm{user}}$ 





#### Multi-task learning via feature address space



Combination of local and global classifiers:  $w_{\mathrm{global}}^T x_{\mathrm{global}} + w_{\mathrm{user}}^T x_{\mathrm{user}}$ 



#### Multi-task learning via feature address space



Combination of local and global classifiers:  $w_{
m global}^T x_{
m global} + w_{
m user}^T x_{
m user}$ 





# Hashing

Create a hash-table that hashes features into buckets

Are there principled ways of thinking about this?





## Hashing

Create a hash-table that hashes features into buckets

Are there principled ways of thinking about this?

- This is essentially SparseJL, with only one hash being used!
- We should take guidance from principles of designing it, as well as draw from theoretical guarantees
- In particular, should use a sign hash to make this unbiased





## Using in practice

- Theoretical guarantees assume a k-wise independent hash function
- Feature hashing now a standard api in many machine learning packages
- Use a standard, fast, hash function
  - Vowpal Wabbit uses MurmurHash3
- Standard procedure:
  - Hash input data, learning classifier over hashed space
  - When testing, hash test point first and then apply classifier
  - Collision is fine, that's the point
  - Beyond this, use domain knowledge if we want to ensure specific "super important" features or groups of features



## Experimental results on spam



- 3.2 million emails, 433K users → ~70 TB if standard hash-map + user personalization
- $\sim 40 \times 10^6$  unique tokens
- Used linear classifier in hashed space
- $2^{26}$  floats = 256 MB





## Summary

- Hashing has proven to be an important practical component of scaling supervised
   ML to large feature spaces
  - some amount of background theory provided by the random projection literatures
  - More open questions, e.g. how does the margin play a role, generalizability, etc...



#### References:

- Primary reference
  - Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009). Feature Hashing for Large Scale Multitask Learning (PDF). Proc. ICML.
  - Shi, Q.; Petterson J.; Dror G.; Langford J.; Smola A.; Strehl A.; Vishwanathan V. (2009). Hash Kernels. AISTATS.



# Thank You!!

