

ME 471/571

Non-blocking communication

TOWARD SOLVING PDE'S

SOME EFFICIENCY CONSIDERATIONS

$$T_1 = \gamma a N$$

$$T_p = \gamma \frac{aN}{p} + 2\alpha + 2\beta$$

$$S_p = \frac{T_1}{T_p} = \frac{\gamma aN}{\gamma a \frac{N}{p} + 2\alpha + 2\beta}$$

$$E_p = \frac{1}{1 + 2\frac{\alpha + \beta}{\gamma} \frac{p}{aN}}$$

bad for efficiency:

$$\rightarrow$$
 large $\frac{\alpha + \beta}{\gamma}$

➤ large p/N

good for efficiency:

- \rightarrow small p/N
- > large a

THE POISSON PROBLEM

Consider the following equation

$$\nabla^2 u = f(x, y)$$

defined on a unit square

$$(x, y) \in [0, 1] \times [0, 1]$$

with Dirichlet boundary conditions

$$u(x, y) = g(x, y)$$

at the boundary.

We can approximate the solution on a square grid of points

and use a finite difference method to approximate the diffusion operator:

$$\nabla^2 u \approx \frac{u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j}}{h^2}$$

We get the approximation to Poisson equation:

$$\frac{u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j}}{h^2} = f_{i,j}$$

$$\frac{u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j}}{h^2} = f_{i,j}$$

We can solve this using Jacobi iteration:

$$u_{i,j}^{k+1} = \frac{1}{4} \left(u_{i-1,j}^k + u_{i+1,j}^k + u_{i,j-1}^k + u_{i,j+1}^k - h^2 f_{i,j} \right)$$

We will repeat this iteration until the solution does not change much:

$$||u^{k+1} - u^k||_2 < \epsilon$$

$$u_{i,j}^{k+1} = \frac{1}{4} \left(u_{i-1,j}^k + u_{i+1,j}^k + u_{i,j-1}^k + u_{i,j+1}^k - h^2 f_{i,j} \right)$$

Because we prescribe Dirichlet conditions, we know the values at the boundaries.

This means we need to solve only in the interior of the domain:

$$i = 1, 2, ..., N-2$$

Serial code could look like:

```
j=N-1
for(i=1; i<N-2; i++){
 for(j=1; j<N-2; j++){
    unew[i][j] = 0.25*(
       u[i-1][j]+u[i+1][j]+u[i][j-1]+u[i][j+1]
       -h*h*f[i][j]);
   and we repeat that iteration until convergence.
```

i=0 i=1 i=2 ... i=N-2 i=N-1

$rank_row = 2$	rank 6	rank 7	rank 8
$rank_row = 1$	rank 3	rank 4	rank 5
$rank_row = 0$			$rank_{col} = 2$

rank 6	rank 7	rank 8
rank 3	rank 4	rank 5
rank 0	rank 1	rank 2

Compute interior points

		ı
rank	6	
rank	3	
rank	0	

	rank	7		
	rank	4		
	rank	1		

$$q = \sqrt{p}$$

$$T_1 = \gamma a N^2$$

$$T_p = \gamma a \left(\frac{N}{q}\right)^2 + 4\alpha + 4\beta \frac{N}{q}$$

$$E_p = \frac{1}{1 + 4\frac{\alpha}{\gamma} \frac{p}{aN^2} + 4\frac{\beta}{\gamma} \frac{1}{a} \sqrt{\frac{p}{N^2}}}$$

compare to 1D efficiency:

$$E_p = \frac{1}{1 + 2\frac{\alpha + \beta}{\gamma} \frac{p}{aN}}$$

$$T_1 = p(T_{comp} + T_{edge})$$

$$T_p = max(T_{comp}, T_{comm}) + T_{edge}$$

$$E_{p} = \frac{T_{1}}{pT_{p}} = \frac{p(T_{comp} + T_{edge})}{p\left(\max(T_{comp}, T_{comm}) + T_{edge}\right)}$$

 $T_{comm} = 4\alpha + 4\beta \frac{N}{\alpha}$

if
$$T_{comp} > T_{comm}$$
 then $E_p = 1$

$$\gamma a \frac{N^2}{p} > 4\beta \frac{N}{\sqrt{p}} \qquad ignoring \ \alpha$$

$$p < \left(\frac{\gamma}{4\beta}\right)^2 a^2 N^2$$


```
Initialize:
int MPI_Irecv(void *buf, int count, MPI Datatype datatype, int source, int tag,
                                                                                              Recv from left.
               MPI Comm comm, MPI_Request *request)
                                                                                              right, up, down
                                                                                                Initialize:
int MPI_Isend(void *buf, int count, MPI Datatype datatype, int dest, int tag,
                                                                                             Send to right, left,
               MPI Comm comm, MPI Request *request)
                                                                                                down, up
                                                                                             Compute interior
                                                                                                 points
                                                                                             Check whether
int MPI_Wait(MPI_Request *request, MPI Status *status)
                                                                                             Recv completed
int MPI_Test(MPI_Request *request, int *ready, MPI Status *status)
                                                                                              Compute edge
                                                                                                 points
```