

LEARNING OBJECTIVES

- Explain the purpose of the rank-sum test by describing its role as an alternative to the two-sample t-test.
- Perform the rank-sum test by ranking combined sample data and computing the test statistic.
- Evaluate the assumptions of the rank-sum test by determining whether the data meet the necessary conditions for its application.
- Interpret the results of the rank-sum test by comparing the test statistic to critical values or p-values.

PARAMETRIC VS. NON-PARAMETRIC METHODS

Parametric

- Assume a specific probability distribution (e.g., Normal, Exponential).
- Require estimation of fixed parameters (mean, variance, etc.).
- More powerful when assumptions hold but less robust if violated.

Non-parametrics

- Do not assume a specific probability distribution.
- Often rank-based or resampling methods.
- More flexible but sometimes less powerful.

Parametric & Non-Parametric Test

WHAT IS THE RANK-SUM TEST?

- Also known as the Mann-Whitney-Wilcoxon (MWW) test
- A nonparametric alternative to comparing two population medians
- Suitable for both small and large samples
- Does not require normality assumption

FORMULATING THE HYPOTHESES

- Alternative Hypothesis (H_A): The populations have different medians. Depending on the test type, we have:
 - · Two-tailed test:

$$H_A: \tilde{\mu}_1 \neq \tilde{\mu}_2$$

· Left-tailed test:

$$H_A: \tilde{\mu}_1 < \tilde{\mu}_2$$

· Right-tailed test:

$$H_A: \tilde{\mu}_1 > \tilde{\mu}_2$$

· This test is nonparametric, meaning it does not assume normality but instead relies on ranks.

WHY USE RANKS INSTEAD OF RAW DATA?

- The test is based on ranking all observations from both samples together
- The sum of ranks in each sample provides a test statistic
- Works well even when population distributions are non-normal or skewed

Notation in Ranking

Implementation of the rank-sum test procedure begins by ranking the data, a process that consists of the following steps:

- Combine the observations, X_{11}, \ldots, X_{1n_1} and X_{21}, \ldots, X_{2n_2} , from the two samples into an overall set of $N = n_1 + n_2$ observations.
- · Arrange the combined set of observations from smallest to largest.
- For each observation X_{ij}, define its rank R_{ij} to be the position that X_{ij} occupies in this ordered arrangement.

EXAMPLE OF RANKING PROCESS

Tabl		Illustra proces		the ran	nking	
		Ori	ginal Da	ıta		
X ₁₁	X ₁₂	X ₁₃	X ₂₁	X22	X23	X24
0.03	-1.42	-0.25	-0.77	-2.93	0.48	-2.38
		Ordered	Obser	vations		
X22	X ₂₄	X ₁₂	X ₂₁	X ₁₃	X ₁₁	X23
-2.93	-2.38	-1.42	-0.77	-0.25	0.03	0.48
		Ranks	s of the	Data		
R ₁₁	R ₁₂	R ₁₃	R ₂₁	R ₂₂	R ₂₃	R ₂₄
6	3	5	4	1	7	2

from scipy.stats import rankdata

Compute ranks ranks = rankdata(data)