Вводные примеры

- 1. Числа Фиббоначи
- 2. НОД

(в Jupyter)

Алгоритмы

Алгоритм - набор инструкций, описывающих порядок действий исполнителя для решения определённой задачи

Как правило, алгоритмы будут иметь вход и выход

 Интуитивно, эффективность алгоритма разумно определить тем как он расходует главные ресурсы компьютера - время и память

Алгоритмы

- Важно понимать что **время работы алгоритма** зависит не только от самого алгоритма. Следующие факторы играют существенную роль:
 - 1. Скорость работы компьютера (в частности процессора)
 - 2. Архитектуры компьютера
 - 3. Используемого компилятора
 - 4. Иерархии памяти
- Нужен бы инструмент, чтобы анализировать алгоритмы игнорируя все эти моменты...

RAM модель

RAM модель - гипотетическая, идеализированная **модель** компьютера. В данной модели допускаются следующие предположения:

- Каждая простая операция (+, *, -, =, if, call) занимает ровно 1 единицу времени
- 2. Циклы и функции композиции множества простых операций
- 3. Доступ к памяти занимает 1 единицу времени
- 4. Память безгранична

Как эти предположения противоречат реальным компьютерам?

RAM модель

• В рамках RAM модели **время работы алгоритма** мы мерим как количество единиц времени на его исполнение

 Несмотря на значительные упущения, модель весьма популярна для анализа временной сложности алгоритмов за счет своей простоты

• Вооружившись RAM моделью, мы можем анализировать время работы различных алгоритмов без использования реального компьютера

Лучший, худший и средний случаи

- Мы умеем вычислять время работы алгоритма на каком-то конкретном входе, но как нам оценить алгоритм в целом?
- Посмотреть как он работает на всех возможных входах

Лучший, худший и средний случаи

- Лучший случай: функция от размера входа n, определенная как минимальное число шагов алгоритма среди всевозможных входов размера n
- Худший случай: функция от размера входа n, определенная как максимальное число шагов алгоритма среди всевозможных входов размера n
- Средний случай: функция от размера входа n, определенная как
 среднее число шагов алгоритма среди всевозможных входов размера n

- Работа с функциями лучшего, худшего и среднего случая зачастую напрямую затруднительна
- Функция может иметь постоянные "скачки":

- Работа с функциями лучшего, худшего и среднего случая зачастую напрямую затруднительна
- Считать точное количество операций алгоритма в рамках RAM модели зачастую затруднительно и не нужно.

$$T(n) = 12754n^2 + 4353n + 834\lg_2 n + 13546$$

 Такая детализация сложна для работы, проще исследовать асимптотическое поведение с ростом п

Definition

f(n) = O(g(n)) (f is Big-O of g) or $f \leq g$ if there exist constants N and c so that for all $n \geq N$, $f(n) \leq c \cdot g(n)$.

Definition

For functions $f, g : \mathbb{N} \to \mathbb{R}^+$ we say that:

- $f(n) = \Omega(g(n))$ or $f \succeq g$ if for some c, $f(n) \ge c \cdot g(n)$ (f grows no slower than g).
- and $f(n) = \Theta(g(n))$ or $f \approx g$ if f = O(g) and $f = \Omega(g)$ (f grows at the same rate as g).

Definition

For functions $f, g : \mathbb{N} \to \mathbb{R}^+$ we say that:

• f(n) = o(g(n)) or $f \prec g$ if $f(n)/g(n) \rightarrow 0$ as $n \rightarrow \infty$ (f grows slower than g).

$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

	n	$n \log n$	n^2	2 ⁿ
n = 20	1 sec	1 sec	1 sec	1 sec
n = 50	1 sec	1 sec	1 sec	13 day
$n = 10^2$	1 sec	1 sec	1 sec	$4 \cdot 10^{13}$ year
$n = 10^6$	1 sec	1 sec	17 min	
$n = 10^9$	1 sec	30 sec	30 year	
max n	10 ⁹	$10^{7.5}$	10 ^{4.5}	30

(компьютер производит 10^9 операций в сек)

Примеры

Упорядочим следующие алгоритмы:

$$egin{aligned} f_1(n) &= n^3 \ f_2(n) &= n^{0.3} \ f_3(n) &= n \ f_4(n) &= \sqrt{n} \ f_5(n) &= rac{n^2}{\sqrt{n}} \ f_6(n) &= n^2 \end{aligned}$$

Свойства логарифмов

	Формула
Произведение	$\log_a(xy) = \log_a(x) + \log_a(y)$
Частное от деления	$\log_a\!\left(rac{x}{y} ight) = \log_a(x) - \log_a(y)$
Степень	$\log_a(x^p) = p \log_a(x)$
Степень в основании	$\log_{(a^p)}(x) = rac{1}{p}\log_a(x) = rac{\log_a(x)}{p}$
Корень	$\log_a \sqrt[p]{x} = rac{1}{p} \log_a(x) = rac{\log_a(x)}{p}$
Корень в основании	$\log_{\sqrt[p]{a}}(x) = p \log_a(x)$

$$\log_a b = rac{\log_c b}{\log_c a}$$

Примеры

Упорядочим следующие алгоритмы:

$$egin{aligned} f_1(n) &= 3^n \ f_2(n) &= n \log_2 n \ f_3(n) &= \log_4 n \ f_4(n) &= n \ f_5(n) &= 5^{\log_2 n} \ f_6(n) &= n^2 \ f_7(n) &= \sqrt{n} \ f_8(n) &= 2^{2n} \end{aligned}$$

Источники

- 1. The Algorithm Design Manual: Skiena, Steven S S., section 2.1
- 2. https://www.coursera.org/specializations/data-structures-algorithms
- 3. https://compscicenter.ru/courses/algorithms-1/2014-autumn/classes/1327/
- 4. Википедия