1. 假設 m < n 且 m, n 都是正整數,滿足 $(2-\sqrt[3]{m}-\sqrt[3]{n})^2 = 28-2\sqrt[3]{6}$ 。試求數對(m, n)。

2. 在 4×4 的方格中,每個方格中填入一數,使得對於其中任意一個方格,與其相鄰(有公共的邊)的所有方格中的數之和皆為 4,求這 16 個數的總和。

3. 以正十二邊形頂點作為頂點的所有三角形中,鈍角三角形共有幾個?

4. 求最小的自然數 n,使得 n^2 的末四位為 9876。

5. $\sqrt[3]{\left[\frac{1}{3}\right]} + \left[\frac{2}{3}\right] + \left[\frac{4}{3}\right] + \left[\frac{8}{3}\right] + \dots + \left[\frac{2^{2009}}{3}\right] = ? + \sqrt[3]{2009} =$

6. 設 a, b, c 為正實數 ,滿足 ${}^{200\sqrt[5]{a} \cdot {}^{200\sqrt[5]{b}} \cdot {}^{201\sqrt[5]{c}} = {}^{200\sqrt[5]{a} \cdot {}^{201\sqrt[5]{c}} = {}^{20$

國立台灣師範大學九十八學年度 高中科學實驗能力競賽【第二階段】數學科試題 附屬高級中學第一學期

2009/09/30

二、計算證明題 (每題 18 分,共計 108 分)

- 1. 在一條很長且筆直的路上,有甲乙丙丁四輛車子,各自以相同的速率行駛。已知在今天中午 12 點之前,甲乙丙三車往相同方向行駛,而且甲車在乙車後面;乙車在丙車後面,丁車自遠方向這三輛車駛來。中午 12 點時,甲車追上乙車;下午 2 點時,甲車追上丙車;下午 5 點時,甲車第一個遇到丁車;下午 6 點時,乙車遇到丁車;下午 6 點 30 分,丙車遇到丁車。問:乙車何時追上丙車?
- 2. 找出所有滿足下列條件的函數 f :對於不為 0 或 1 的任意實數,都有 $f(x)+f(1-\frac{1}{x})=x+1+\frac{1}{x-1}$ 。

3. 凸四邊形 ABCD 中, $\overline{AB}^2 + \overline{CD}^2 = \overline{AD}^2 + \overline{BC}^2$,證明:此四邊形 ABCD 對角線互相垂直。

4. 三角形 ABC 中, $\angle BAC = 60^{\circ}$, $\angle ABC = 80^{\circ}$, $\angle BAC$ 的平分線交 \overline{BC} 於 D; $\angle ABC$ 的平分線交 \overline{AC} 於 E。試證: $\overline{AB} + \overline{BD} = \overline{AE} + \overline{BE}$ 。

- 5. 兩圓 C_1 , C_2 之圓心分別為 O_1 , O_2 , 且交於相異兩點 A, B, 若射線 $\overline{O_1B}$, $\overline{O_2B}$ 分別交圓 C_2 , C_1 於 D, E。證明:A, O_1 , O_2 , E, D 五點共圓。
- 6. 設x, y, z為正實數,試證明: $\frac{x}{5x+3y+3z} + \frac{y}{3x+5y+3z} + \frac{z}{3x+3y+5z} \le \frac{3}{11}$ 。

國立台灣師範大學九十八學年度 附屬高級中學第一學期 同中科學實驗能力競賽【第二階段】數學科答案卷 | P.03 |

2009/09/30

		班級座號姓名
填充題(每題12分,共計72分)		
1.	2.	3.
4.	5.	6.
計算證明題(每題18分,共計108分)		
	1.	
	2.	
	۷.	
	2	
	3.	

或	立台	3 灣	師	範大	學	九	+	八擘	车	度	高中科學實驗能力競賽【第二階段】數學科答案卷	D 0 4
针	屬	高	級	中	學	第	-	- 4	學	期	向中科字真橛肥刀祝貵【另一陷权】数字杆合杀仓	1.04

2009/09/30

rlr 100	座號	1.1 12	
班級	从 515	姓名	
7)4 11/2	/ L ///	<u> </u>	

4.
5.
6.

國立台灣師範大學九十八學年度 高中科學實驗能力競賽【第二階段】數學科解答卷 附屬高級中學第一學期

2009/09/30

一、填充題 (每題 12 分,共計 72 分)

XX5C (4/C						
1.	2.	3.				
(36, 48)	24	120				
4.	5.	6.				
374	$\frac{2^{2010}-1}{3}-1005$	6027				

- 1. 假設 m < n 且 m, n 都是正整數,滿足 $(2-\sqrt[3]{m}-\sqrt[3]{n})^2 = 28-2\sqrt[3]{6}$ 。試求數對(m, n)。
- 解:顯然 m 和 n 都不是立方數,而 $(2-\sqrt[3]{m}-\sqrt[3]{n})^2=4+\sqrt[3]{m^2}+\sqrt[3]{n^2}-4\sqrt[3]{m}-4\sqrt[3]{n}+2\sqrt[3]{mn}$,

唯一可能成為立方數的只有 mn,也就是 $mn = 12^3 = 1728$;而且被消去的根式可能為 $\sqrt[3]{m^2} = 4\sqrt[3]{n}$ 或 $\sqrt[3]{n^2} = 4\sqrt[3]{m}$,得 (m,n) = (48,36) 不合,以及 (m,n) = (36,48) 。

- 2. 在 4×4 的方格中,每個方格中填入一數,使得對於其中任意一個方格,與其相鄰(有公共的邊)的所有方格中的數之和皆為 4,求這 16 個數的總和。
- 解: 將這 16 個數給代號(如圖), 有 $A_1 + A_3 + A_6 = 4A_2 + A_4 + A_7 = 4A_5 + A_0 + A_1 = 4A_1 + A_2 + A_3 + A_4 = 2 A_4 + A_5 + A_6 = 4A_5 + A_0 + A_1 = 4A_1 + A_2 + A_3 + A_4 = 2 A_4 + A_5 + A_6 = 4A_5 + A_6$
- 3. 以正十二邊形頂點作為頂點的所有三角形中,鈍角三角形共有幾個?
- 解:如右下圖,以正十二邊形 $A_1A_2 \cdots A_{12}$ 頂點作為頂點的所有鈍角三角形中,

令 $A_{k+12} = A_k$, $k = 1, 2, \dots, 5$,考慮鈍角對邊為 $\overline{A_k A_{k+1}}$ 時,(其中 $r = 1, 2, \dots, 12$, t = 2, 3, 4, 5)

鈍角頂點可能為 $A_{r+1}, A_{r+2}, \dots, A_{r+t-1}$, 共t-1種。故總數為 $12 \times \sum_{t=2}^{5} (t-1) = 120$ 。

解:最末位為4或6,

若為 4, $(10X+4)^2 = 100X^2 + 80X + 16$, 也就是

 $8X + 1 = 7 \pmod{10}$ $\forall X = 2 \neq 7$; $(100X + 24)^2 = 10000X^2 + 4800X + 576$,

 $8X + 5 = 8 \pmod{10}$, X = M; $(100X + 74)^2 = 10000X^2 + 14800X + 5476$,

 $8X + 4 = 8 \pmod{10}$,X = 3 或 8 , $374^2 = 139876$ 符合;

若為 6, $(10X+6)^2 = 100X^2 + 120X + 36$,

 $2X + 3 = 7 \pmod{10}$, $X = 2 \neq 7$; $(100X + 26)^2 = 10000X^2 + 5200X + 676$,

 $2X + 6 = 8 \pmod{10}$, X = 1 & 6; $(1000X + 126)^2 = 1000000X^2 + 252000X + 15876$,

 $2X + 5 = 9 \pmod{10}$, X = 2 或 7, 都比 374 來的大。

 $(100X + 76)^2 = 1\ 0\ 0\ 0X0^2 + 1\ 5\ 2\ 0X0 + 5\ 7\ 7$, $2X + 7 = 8 \pmod{10}$, X 無解。 故最小為 374。

解:因為2=3-1,所以若 n 為奇數,
$$\left[\frac{2^n}{3}\right] = \frac{2^n}{3} - \frac{2}{3}$$
;若 n 為偶數, $\left[\frac{2^n}{3}\right] = \frac{2^n}{3} - \frac{1}{3}$,

$$\left[\frac{1}{3}\right] + \left[\frac{2}{3}\right] + \left[\frac{4}{3}\right] + \left[\frac{8}{3}\right] + \dots + \left[\frac{2^{2009}}{3}\right] = \frac{1 + 2 + 4 + \dots + 2^{2009}}{3} - \frac{2010}{2} = \frac{2^{2010} - 1}{3} - 1005$$

6. 設 a, b, c 為正實數 ,滿足 ${}^{200\sqrt[5]{a} \cdot {}^{201\sqrt[5]{c}}} = {}^{200\sqrt[5]{a} \cdot {}^{201\sqrt[5]{c}}} = {}^{200\sqrt[5]{a} \cdot {}^{201\sqrt[5]{c}}} = {}^{200\sqrt[5]{a} \cdot {}^{201\sqrt[5]{c}}} = 98$,試求 $\log_{98}(abc)$ 之值。解: ${}^{200\sqrt[5]{a} \cdot {}^{201\sqrt[5]{c}}} = {}^{200\sqrt[5]{a} \cdot {}^{201\sqrt[5]{c}}} = {}^{200\sqrt[5]{a} \cdot {}^{201\sqrt[5]{c}}} = 98$,試求 $\log_{98}(abc)$

原式同取以 98 為底之對數得 $\frac{\log_{98} a}{2005} + \frac{\log_{98} b}{2008} + \frac{\log_{98} c}{2011} = \frac{\log_{98} a}{2006} + \frac{\log_{98} b}{2009} + \frac{\log_{98} c}{2012} = \frac{\log_{98} a}{2007} + \frac{\log_{98} b}{2010} + \frac{\log_{98} c}{2013} = 1$,

這表示 x 的方程式 $\frac{\log_{98} a}{x-3} + \frac{\log_{98} b}{x} + \frac{\log_{98} c}{x+3} = 1$ ·····① 有根 2008, 2009, 2010。

①式乘以x(x-3)(x+3)再移項化簡得

 $x^3 - (\log_{98} a + \log_{98} b + \log_{98} c)x^2 + (x$ 的一次項及常數項) = 0 有根 2008, 2009, 2010,

由根與係數關係得 $2008 + 2009 + 2010 = \log_{98} a + \log_{98} b + \log_{98} c = \log_{98} (abc)$, 即 $\log_{98} (abc) = 6027$ 。

 A_3

 $A_7 \mid A_8$

 $A_{10} | A_{11} | A_{12}$

A₁₅ A₁₆

 A_4

 A_2

 A_6

 A_1

 A_5

二、計算證明題 (每題 18 分,共計 108 分)

1

在一條很長且筆直的路上,有甲乙丙丁四輛車子,各自以相同的速率行駛。已知在今天中午12點之前,甲乙丙三車往相同方向行駛,而且甲車在乙車後面;乙車在丙車後面,丁車自遠方向這三輛車駛來。中午12點時,甲車追上乙車;下午2點時,甲車追上丙車;下午5點時,甲車第一個遇到丁車;下午6點時,乙車遇到丁車;下午6點30分,丙車遇到丁車。問:乙車何時追上丙車?

解:作位置對時間圖,如圖,有

$$\frac{AB}{BC} = \frac{2}{3}$$
, $\frac{CD}{DE} = \frac{1}{0.5} = \frac{2}{1}$

對ΔACE 以 BFE 為截線用孟氏定理得

$$\frac{AB}{BC} \times \frac{CE}{ED} \times \frac{DF}{FA} = \frac{2}{3} \times \frac{3}{1} \times \frac{DF}{FA} = 1$$

$$DF = 1$$

得到 $\frac{DF}{FA} = \frac{1}{2}$

又A與D差距6小時,故F點為下午4時。

2.

找出所有滿足下列條件的函數f :對於不為0或1的任意實數,都有 $f(x)+f(1-rac{1}{x})=x+1+rac{1}{x-1}$ 。

解:已知 $f(x)+f(1-\frac{1}{r})=x+1+\frac{1}{r-1}$①

在①式中,將
$$x$$
以 $(1-\frac{1}{r})$ 代入得

$$f(1-\frac{1}{x})+f(-\frac{1}{x-1})=(1-\frac{1}{x})+1-x$$

在①式中,將
$$x$$
以 $\left(-\frac{1}{x-1}\right)$ 代入得

$$f(-\frac{1}{x-1}) + f(x) = -\frac{1}{x-1} + 1 - \frac{x-1}{x}$$
3

$$f(x) = x + \frac{1}{x} - \frac{1}{2} \quad \circ$$

3.

凸四邊形 ABCD 中, $\overline{AB}^2 + \overline{CD}^2 = \overline{AD}^2 + \overline{BC}^2$,證明:此四邊形 ABCD 對角線互相垂直。解:依題意,有

$$|\overrightarrow{AB}|^2 - |\overrightarrow{BC}|^2 = |\overrightarrow{AD}|^2 - |\overrightarrow{DC}|^2$$

$$\Rightarrow (\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{AB} - \overrightarrow{BC}) = (\overrightarrow{AD} + \overrightarrow{DC}) \cdot (\overrightarrow{AD} - \overrightarrow{DC})$$

$$\Rightarrow \overrightarrow{AC} \cdot (\overrightarrow{AB} - \overrightarrow{BC}) = \overrightarrow{AC} \cdot (\overrightarrow{AD} - \overrightarrow{DC})$$

$$\Rightarrow \overrightarrow{AC} \cdot (\overrightarrow{AB} - \overrightarrow{AD} + \overrightarrow{DC} - \overrightarrow{BC}) = 0$$

$$\Rightarrow \overrightarrow{AC} \cdot (2\overrightarrow{DB}) = 0$$

故此四邊形 ABCD 對角線 AC 與 BD 互相垂直。

三角形 ABC 中, $\angle BAC = 60^{\circ}$, $\angle ABC = 80^{\circ}$, $\angle BAC$ 的平分線交 BC 於 D; $\angle ABC$ 的平分線交 AC 於 E。試證: $\overline{AB} + \overline{BD} = \overline{AE} + \overline{BE} \circ$

解:如圖,延長 \overrightarrow{AB} 到F,使得 $\overrightarrow{BF} = \overrightarrow{BD}$ 且 $\angle BFD = 40^{\circ}$,故 $\overline{AB} + \overline{BD} = \overline{AB} + \overline{BF} = \overline{AF}$ (1)

又
$$\angle C = \angle CBE = 40^{\circ}$$
, $\therefore \overline{EC} = \overline{BE}$, 得

而
$$\angle DAF = \angle DAC$$
, $\angle AFD = 40^{\circ} = \angle ACD$, $\overline{AD} = \overline{AD}$, 得

 $\triangle ADF \cong \triangle ADC \text{ (AAS)} \Rightarrow \overline{AF} = \overline{AC} \cdots 3$

由①,②,③知

$$\overline{AB} + \overline{BD} = \overline{AF} = \overline{AC} = \overline{AE} + \overline{BE}$$
 , 得證。

兩圓 C_1 , C_2 之圓心分別為 O_1 , O_2 , 且交於相異兩點 A, B, 若射線 $\overline{O_1B}$, $\overline{O_2B}$ 分別交圓 C_2 , C_1 於 D, E。證明:A, O_1 , O_2 , E, D 五點共圓。

解:如圖,因為 $\overline{O_1A} = \overline{O_1B}$, $\overline{O_2A} = \overline{O_2B}$, $\overline{O_1O_2} = \overline{O_1O_2}$,

故
$$\Delta O_1 A O_2 \cong \Delta O_1 B O_2$$
,得 $\angle O_1 A O_2 = \angle O_1 B O_2$ ·······①

又
$$\overline{O_2B} = \overline{O_2D}$$
,所以 $\angle O_2BD = \angle O_2DB$ ……②

由①,②得

$$\angle O_1AO_2 + \angle O_2DB = \angle O_1BO_2 + \angle O_2BD = 180^{\circ}$$
,

所以 A, O_1, D, O_2 四點共圓,

同理 A, O_1 , E, O_2 四點共圓,

得證 A, O_1, E, D, O_2 五點共圓。

設
$$x, y, z$$
 為正實數 ,試證明 : $\frac{x}{5x+3y+3z} + \frac{y}{3x+5y+3z} + \frac{z}{3x+3y+5z} \le \frac{3}{11}$

解:因為 $\frac{x}{5x+3y+3z} + \frac{y}{3x+5y+3z} + \frac{z}{3x+3y+5z} \le \frac{3}{11}$

$$\Leftrightarrow (1 - \frac{2x}{5x + 3y + 3z}) + (1 - \frac{2y}{3x + 5y + 3z}) + (1 - \frac{2z}{3x + 3y + 5z}) \ge 3 - 2 \times \frac{3}{11}$$

$$\Leftrightarrow (3x+3y+3z)(\frac{1}{5x+3y+3z}+\frac{1}{3x+5y+3z}+\frac{1}{3x+3y+5z}) \geq \frac{27}{11}$$

$$\Leftrightarrow (11x + 11y + 11z)(\frac{1}{5x + 3y + 3z} + \frac{1}{3x + 5y + 3z} + \frac{1}{3x + 3y + 5z}) \ge 9$$

$$\Leftrightarrow (\sqrt{5x+3y+3z}^2 + \sqrt{3x+5y+3z}^2 + \sqrt{3x+3y+5z}^2)(\sqrt{\frac{1}{5x+3y+3z}}^2 + \sqrt{\frac{1}{3x+5y+3z}}^2 + \sqrt{\frac{1}{3x+3y+5z}}^2) \ge (1+1+1)^2$$

而最後一式由柯西不等式知成立,故得證原式成立。