Electromagnetc Theory: PHYS330

Jordan Hanson

November 2, 2020

Whittier College Department of Physics and Astronomy

Summary

Week 2 Summary

- 1. Homework discussions
 - Proofs! Glorious proofs.
 - Exercises with checking fundamental theorems
- 2. Electrostatics and Coulomb forces
 - Charge distributions, superposition, and the Coulomb force
 - A note about the far-field
 - Setting up integrals, taking limits, checking units
 - The divergence of electric fields
 - The curl of electric fields
- 3. Electric Potential
 - Definitions, fundamental theorem for gradients
 - Reference points
 - Laplace equation ...
- 4. Work, energy, and conductors

Homework

Homework, Week 2

Unlike last week, these exercises come from *within* the chapter. Ideally, you should look at all of the problems within the chapter as you study.

- Exercise 2.5
- Exercise 2.6
- Exercise 2.9
- Exercise 2.12
- Exercsie 2.16
- Exercise 2.18
- Exercise 2.25
- Exercise 2.29

Charge distributions, Superposition,

and the Coulomb Force

Figure 1: The basic problem of electrostatics. Note the definition of the separation vector, and the vectors to the field point and to all the source charges.

Figure 2: Begin with a dipole, and then a *physical* dipole.

Figure 3: Field of a *physical* dipole.

Figure 4: The continuous limit implies a variety of symmetries and geometries over which we integrate, rather than sum.

Figure 5: A coninuous line density of charge. Integration yields the electric field.

Useful calculations:

- 1. Continuous line charge, length L.
- 2. Continuous plane of charge, radius R.
- 3. Loop of charge, radius R, a distance z above the center.

Why are these interesting? One example is that these shapes are used as *antennas*. Give some alternating current at the right voltage and impedance to a shape of metal, then you've got your antenna that radiates a certain way.

Professor do these examples.¹

¹Remember from PHYS180? Remember? Yeah...good times.

A Note about the Far-Field

The Far-Field

One way to express the **far-field** approximation (compare to Fraunhofer and Fresnel limits in diffraction):

$$\vec{r} = \vec{r'} + \vec{\imath} \tag{1}$$

$$\vec{\nu} = \vec{r} - \vec{r'} \tag{2}$$

$$2 = r\sqrt{1 - 2\vec{r} \cdot \vec{r'}r^{-2} + r'^{2}r^{-2}}$$
 (4)

$$2 \approx r\sqrt{1 - 2\vec{r} \cdot \vec{r'}r^{-2}} \tag{5}$$

$$\lambda \approx r \left(1 - \vec{r} \cdot \vec{r'} r^{-2} \right) \tag{6}$$

$$\tau \approx r - \hat{r} \cdot \vec{r'}$$
(8)

The Divergence of \vec{E} -fields