IX Республиканская студенческая предметная олимпиада по направлению «Математика» 13 апреля 2017

1. Пусть $(T_n)_{n=1}^{\infty}$ — последовательность натуральных чисел, заданная рекуррентно: $T_1 = T_2 = T_3 = 1$ и $T_{n+3} = T_{n+2} + T_{n+1} + T_n$ при $n \geqslant 1$. Вычислите сумму ряда

$$\sum_{n=1}^{\infty} \frac{T_n}{2^n},$$

если известно, что данный ряд сходится.

- 2. Найдите все простые p, запись которых в k-ичной системе счисления при некотором натуральном k>1 содержит ровно k различных цифр (старшая цифра не может быть нулём).
- 3. Докажите, что в любой группе квадрат произведения двух элементов порядка два и куб произведения двух элементов порядка три всегда являются коммутаторами.
- 4. Точка P лежит внутри выпуклой области, ограниченной параболой $y=x^2$, но не лежит на оси OY. Обозначим через S(P) множество всех точек, полученных отражением P относительно всех касательных к параболе.
 - а) Докажите, что значение суммы

$$\max_{(x,y)\in S(P)} y + \min_{(x,y)\in S(P)} y$$

не зависит от выбора точки P.

- б) Найдите геометрическое место точек P таких, что $\max_{(x,y) \in S(P)} y = 0$.
- 5. Для каждой функции $f:[0,1]\to\mathbb{R}$ обозначим через $s_n(f)$ и $S_n(f)$ нижнюю и верхнюю суммы Дарбу для функции f, соответствующие равномерному разбиению [0,1] на n частей. Существует ли такая интегрируемая функция f, что $\sum_{n=1}^{\infty} s_n(f)$ сходится, а $\sum_{n=1}^{\infty} S_n(f)$ расходится?
- 6. Некоторые участники математической олимпиады списали решения некоторых задач у своих товарищей. Докажите, что можно с позором выгнать часть участников так, чтобы получилось, что более четверти от общего числа списанных решений было списано выгнанными участниками у не выгнанных.