Betweenness

Definition 1 (Betweenness). Let \mathcal{P} be an incidence geometry. We say that a ternary relation $[\cdot \cdot \cdot]$ on the set of points of \mathcal{P} is a betweenness relation if the following properties hold.

- B1. If [xyx], then x = y, for all points x and y.
- B2. If x and y are distinct points and [xzy], then [yzx] and $z \in \overrightarrow{xy}$.
- B3. If x, y, and z are distinct points, then at most one of [xyz], [yzx], and [zxy] is true.

Definition 2 (Segment, Ray). Let x and y be distinct points in an incidence geometry $\mathcal{P} = (P, L)$.

• The set

$$\overline{xy} = \{z \in P \mid z = x \text{ or } z = y \text{ or } [xzy]\}$$

is called the segment with endpoints x and y. If $z \in \overline{xy}$ and $z \neq x$ and $z \neq y$, we say that z is interior to \overline{xy} .

• The set

$$\overrightarrow{xy} = \{z \in P \mid z = x \text{ or } z = y \text{ or } [xzy] \text{ or } [xyz]\}$$

is called the ray with vertex x toward y.

Proposition 1. If \mathcal{P} is an incidence geometry and $[\cdot \cdot \cdot]$ a betweenness relation on \mathcal{P} , then the following hold.

- 1. $\overline{xy} = \overline{yx}$ for all distinct points x and y.
- 2. $\overline{xy} \subseteq \overrightarrow{xy} \subseteq \overrightarrow{xy}$ for all distinct points x and y.
- 3. If ℓ is a line and x and y distinct points, then $\overline{xy} \cap \ell$ is either \overline{xy} , \varnothing , or $\{p\}$ for some point p.
- 4. $\overrightarrow{xy} \cap \overrightarrow{yx} = \overline{xy}$ for all distinct points x and y.

Examples

- \mathbb{R}^2 Given points A, B, and C in \mathbb{R}^2 , we say [ACB] if the equation C = A + t(B A) has a solution $t \in [0, 1]$. This is a betweenness relation.
 - B1. Suppose [ABA]. Now B = A + t(A A) = A as needed.
 - B2. Suppose A, B, and C are distinct points such that [ACB]. By definition, we have C = A + t(B A) for some real number $t \in [0, 1]$. Certainly $C \in \overrightarrow{AB}$. Moreover, note that

$$B + (1 - t)(A - B) = B + A - B - t(A - B)$$

= $A + t(B - A)$
= C .

so that [BCA].

B3. Suppose we have distinct points A, B, and C such that [ABC] and [BCA]. Now B = A + t(C - A) and C = B + u(A - B) for some real numbers $u, t \in [0, 1]$ by definition. Substituting the second equation into the first, we see that B = A + t(1 - u)(B - A), so that 0 = (t(1 - u) - 1)(B - A). Since A and B are distinct, we must have t(1-u) = 1. Similarly, substituting the first equation into the second, we have u(1-t) = 1. Then t must be a root of the quadratic $t^2 - t + 1$, which has no real solutions.

We can say something a little stronger about the intersection of a segment and a line in \mathbb{R}^2 ; this next fact will become useful later, so we state and prove it now.

Proposition 2. Let $A, B \in \mathbb{R}^2$ be distinct points and let $X = (x_1, x_2), Y = (y_1, y_2) \in \mathbb{R}^2$ be distinct points not in $\ell_{A,B}$. Then $\overline{XY} \cap \overrightarrow{AB}$ consists of a single point if and only if

$$\det\begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ x_1 & x_2 & 1 \end{bmatrix} \quad \text{and} \quad \det\begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ y_1 & y_2 & 1 \end{bmatrix}$$

have opposite signs.

Proof. Note that $\overrightarrow{XY} \cap \overrightarrow{AB}$ contains exactly one point if and only if the equation X + t(Y - X) = A + u(B - A) has a unique solution (t, u). In fact we have

$$\begin{bmatrix} t \\ -u \end{bmatrix} = \begin{bmatrix} y_1 - x_1 & b_1 - a_1 \\ y_2 - x_2 & b_2 - a_2 \end{bmatrix}^{-1} \begin{bmatrix} a_1 - x_1 \\ a_2 - x_2 \end{bmatrix}.$$

Comparing entries of this matrix, we see that

$$t = \frac{(b_2 - a_2)(a_1 - x_1) + (a_1 - b_1)(a_2 - x_2)}{(y_1 - x_1)(b_2 - a_2) - (y_2 - x_2)(b_1 - a_1)}.$$

Note that the unique point in $\overrightarrow{XY} \cap \overrightarrow{AB}$ is in fact in the segment \overline{XY} if and only if $t \in [0,1]$.

There are now two possibilities, depending on whether the denominator of t is positive or negative. If the denominator of t is positive, we can see that $t \in (0,1)$ if and only if

$$\det\begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ x_1 & x_2 & 1 \end{bmatrix} > 0 > \begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ y_1 & y_2 & 1 \end{bmatrix}.$$

If the denominator of t is negative, then $t \in (0,1)$ if and only if

$$\det \begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ x_1 & x_2 & 1 \end{bmatrix} < 0 < \begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ y_1 & y_2 & 1 \end{bmatrix}.$$

The Trichotomy Property

Definition 3. We say that a betweenness relation $[\cdot \cdot \cdot]$ on an incidence geometry \mathcal{P} has the Trichotomy Property if, whenever x, y, and z are distinct, collinear points, at least one of [xyz], [yzx], and [zxy] is true. That is, given three collinear points, exactly one is between the other two.

Proposition 3. Suppose \mathcal{P} is an incidence geometry and $[\cdots]$ a betweenness relation with the Trichotomy Property. Then the following hold.

1. For all distinct points x and y,

$$\overrightarrow{xy} = \{z \mid z = x \text{ or } z = y \text{ or } [zxy] \text{ or } [xzy] \text{ or } [xyz]\}.$$

2. $\overrightarrow{xy} \cap \overrightarrow{yx} = \overline{xy}$ for all distinct points x and y.

Examples

 \mathbb{R}^2 The Cartesian Plane has the Trichotomy Property, as we show. Let A, B, and C be distinct collinear points. Now $C \in \overrightarrow{AB}$, so that C = A + t(B - A) for some real number t. If $t \in [0,1]$, then [ACB]. If t > 1, then $\frac{1}{t} \in (0,1)$, and we have $B = A + \frac{1}{t}(C - A)$ so that [ABC]. If t < 0, then $\frac{-t}{1-t} \in (0,1]$ and we have $A = C + \frac{-t}{1-t}(B - C)$, so that [CAB].

The 4-Point Property

First for some shorthand: if x, y, z, and w are distinct points, we will say [xyzw] precisely when [xyz], [xyw], [xzw], and [yzw]. More generally, if x_1, \ldots, x_n are distinct points, then $[x_1x_2 \ldots x_n]$ means that $[x_ix_jx_k]$ for all triples (i, j, k) with $1 \le i < j < k \le n$.

Definition 4 (The 4-Point Property). We say that a betweenness relation $[\cdot \cdot \cdot]$ on an incidence geometry \mathcal{P} has the 4-Point Property if the following hold for all distinct points x, y, z, and w.

- 1. If [xyz] and [xzw], then [xyw] and [yzw].
- 2. If [xyz] and [yzw], then [xyz] and [xzw].

Proposition 4. Suppose \mathcal{P} is an incidence geometry and $[\cdot \cdot \cdot]$ a betweenness relation on \mathcal{P} having the 4-Point Property. If x, y, and z are distinct points such that [xyz], then the following hold.

- 1. $\overline{xy} \cup \overline{yz} = \overline{xz}$
- 2. $\overline{xy} \cap \overline{yz} = \{y\}$
- 3. $\overrightarrow{yx} \cap \overrightarrow{yz} = \{y\}$
- 4. $\overrightarrow{xy} = \overrightarrow{xz}$

Proposition 5. If \mathcal{P} is an incidence geometry with a betweenness relation having both the Trichotomy Property and the 4-Point Property, then the following hold.

- 1. If [xzy] and [xwy], then either [xzw] or [xwz] or z=w.
- 2. If x, y, and z are distinct points such that [xyz], then $\overrightarrow{yx} \cup \overrightarrow{yz} = \overleftarrow{xz}$.

The Interpolation Property

Definition 5. We say that a betweenness relation $[\cdot \cdot \cdot]$ on an incidence geometry \mathcal{P} has the Interpolation Property if for all distinct points x and y in \mathcal{P} , there exist points z_1 , z_2 , and z_3 such that $[z_1xy]$, $[xz_2y]$, and $[xyz_3]$.

Proposition 6. If \mathcal{P} is an incidence geometry with a betweenness relation having both the Interpolation Property and the 4-Point Property, then every line in \mathcal{P} has infinitely many points.