ROB 501 HW2

Yulun Zhuang yulunz@umich.edu

September 14, 2022

1

\overline{P}	Q	$P \wedge Q$	$P \lor Q$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	F

1.1

$$\neg(P \land Q) = \neg P \lor \neg Q$$

$\neg P$	$\neg Q$	$\neg P \vee \neg Q$
F	F	F
F	T	T
T	F	T
T	T	T

1.2

$$\neg(P \lor Q) = \neg P \land \neg Q$$

$\neg Q$	$\neg P \vee \neg Q$
F	\overline{F}
T	F
F	F
T	T
	F T F

2

- (a) There exist an interger n, 2n + 1 is even.
- (b) For every interger $n, 2^n + 1$ is composite.
- (c) $\forall v \in \mathbb{R}^n, v \neq 0$ s.t. $Av \neq \lambda v$
- (d) $\exists \eta > 0, \forall \delta > 0$ s.t. $|x| \le \delta \Rightarrow |f(x)| > \eta |x|$

3

Prove that $\sqrt{7}$ is irrational.

Proof. Assum $\sqrt{7}$ is rational. Then there exist natural numbers m and n such that m and n have no common factor, $n \neq 0$ and

$$\sqrt{7} = \frac{m}{n} \tag{1}$$

Square both sides of (1)

$$(7n^2 = m^2) (2)$$

This implies 7 divides m^2 , so 7 also divides m.

Let $m = 7k, k \in \mathbb{N}$,

$$7n^2 = (7k)^2$$
$$n^2 = 7k^2$$

This implies 7 divides n^2 , so 7 also divides n.

Therefore, m and n both have a common factor 7, which leads to a contradiction.

Hence, $\sqrt{7}$ is irrational.

4

Let A be a square matrix. Prove that if det(A) = 0, then A is not invertible.

Definition 4.1. A square matrix A has an inverse A^{-1} iff $AA^{-1} = A^{-1}A = I$.

Proof. p: det(A) = 0, q: A is not invertible

Now we prove its contrapositive, $\neg q \implies \neg p$.

We have A is invertible,

$$det(AA^{-1}) = det(A)det(A^{-1}) = det(I) = 1$$

$$\Rightarrow det(A) \neq 0$$

5

Prove that for all integers $n \ge 1$, $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$.

Proof.
$$P(n) = \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

When
$$n = 1$$
, $P(1) = \frac{1}{1+1} = \frac{1}{2}$

When n=m, assum $P(m)=\sum_{k=1}^m \frac{1}{k(k+1)}=\frac{m}{m+1}$ is true.

When n = m + 1,

$$P(m+1) = P(m) + \frac{1}{(m+1)(m+2)}$$

$$= \frac{m}{m+1} + \frac{1}{(m+1)(m+2)}$$

$$= \frac{(m+1)^2}{(m+1)(m+2)}$$

$$= \frac{m+1}{(m+1)+1}$$

6

 $P(n): \forall n \in \mathbb{Z}, n \ge 12, \exists k_1, k_2 \in \mathbb{Z}, k_1, k_2 \ge 0, s.t. \ n = 4k_1 + 5k_2$

Proof. If n = 12, $k_1 = 3$ and $k_2 = 0$. If n = 13, $k_1 = 2$ and $k_2 = 1$. If n = 14, $k_1 = 1$ and $k_2 = 2$. If n = 15, $k_1 = 0$ and $k_2 = 3$.

Induction: Assume P(n) is true for $12 \le n \le k$, show that P(k+1) is true.

Start with $k+1 \ge 16$,

$$(k+1) - 4 \ge 12$$

By inductive hypothesis,

$$(k+1) - 4 = 4u + 5v$$

where u and v are non-negtive integers.

Therefore,

$$k + 1 = 4(u + 1) + 5v$$

P(n) is not true for $n \geq 8$, since no combinations of '4' and '5' can add up to 11.

6.1

 $P(n): \forall n=2m, m \in \mathbb{Z}, n \geq 6, \exists k_1, k_2 \in \mathbb{Z}, k_1, k_2 \geq 0, s.t. \ n=3k_1+5k_2$

Proof. If n = 6, $k_1 = 2$ and $k_2 = 0$. If n = 8, $k_1 = 1$ and $k_2 = 1$. If n = 10, $k_1 = 0$ and $k_2 = 2$. If n = 12, $k_1 = 4$ and $k_2 = 0$.

Induction: Assume P(n) is true for $6 \le n \le k$, show that P(k+1) is true.

Start with $k+1 \ge 12$,

$$(k+1)-6 \ge 6$$

By inductive hypothesis,

$$(k+1) - 6 = 3u + 5v$$

where u and v are non-negtive integers.

Therefore,

$$k + 1 = 3(u + 2) + 5v$$

7

Given M is an $n \times n$ real symmetric matrix. $f(x) = x^T M x$, subject to the constraint $x^T x = 1$. Let $L(x, \lambda) = f(x) - \lambda(x^T x - 1) = x^T M x - \lambda x^T x - \lambda$, and $\lambda > 0$.

$$\nabla L = \frac{dL}{dx} = 2Mx - 2\lambda x$$

Solve $\nabla L = 0$, we have $Mx = \lambda x$.

Therefore, λ is the eigenvalue of M and x is the corresponding eigenvector.

$$f(x) = x^T M x = x^T (\lambda x) = \lambda x^T x = \lambda$$

Solve $det(M - \lambda I) = 0$. Since the eigenvalues are real and finite in number, there exists a largest eigenvalue, denoted λ_{max} , and a smallest eigenvalue, denoted λ_{min} , i.e. $\lambda = [\lambda_{max}, \dots, \lambda_{min}]^T$

7.1

 $max(f(x)) = \lambda_{max}$ and x_{max} is its corresponding eigenvector given by $(M - \lambda_{max}I)x = 0$.

7.2

 $min(f(x)) = \lambda_{min}$ and x_{min} is its corresponding eigenvector given by $(M - \lambda_{min}I)x = 0$.