1 Probabilidade

A probabilidade é o estudo das experiências aleatórias.

Espaço amostral: denotado por Ω , é o conjunto de todos os resultados possíveis em uma experiência.

Evento: é um subconjunto de Ω ao qual é associado uma probabilidade em uma amostragem aleatória.

1.1 Famílias de Eventos

Uma família de eventos é um conjunto de eventos.

A maior família de eventos é o conjunto potência de Ω , denotado $\mathcal{P}(\Omega)$.

Propriedades das famílias de eventos:

- $\Omega \in \mathcal{F}$
- $A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- $A, B \in \mathcal{F} \implies (A \cup B) \in \mathcal{F}$

1.2 Função Probabilidade

Uma função probabilidade é uma função do tipo $P: \mathcal{F} \to [0,1]$.

Propriedades de uma função probabilidade:

- $0 \le P(A) \le 1$
- $P(\Omega) = 1, P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A^c) = 1 P(A)$
- $A \subseteq B \implies P(A) < P(B)$

1.3 Espaço de Probabilidade

Um espaço de probabilidade é uma tripla da forma (Ω, \mathcal{F}, P) . O espaço é associado à uma experiência aleatória.

1.3.1 Espaços Equiprováveis

Um espaço de probabilidade (Ω, \mathcal{F}, P) é equiprovável quando

$$\forall a, b \in \Omega : P(a) = P(b) = \frac{1}{|\Omega|}$$

1.4 Probabilidade Clássica

A função de probabilidade clássica para espaços equiprováveis é

$$P(A) = \frac{\mid A \mid}{\mid \Omega \mid}$$

1.5 Probabilidade Condicional

A probabilidade de um evento B acontecer dado um evento A é

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Teorema de Bayes:

$$P(B|A) = \frac{P(B)}{P(A)} \cdot P(A|B)$$

1.6 Probabilidade Total

1.6.1 Partição

Sejam os eventos A_1, \ldots, A_n . O conjunto $\{A_1, A_n\}$ forma uma partição de Ω se e somente se

- Os eventos são disjuntos entre si: $\forall i \neq j : A_i \cap A_j = \emptyset$
- $A_1 \cup \cdots \cup A_n = \Omega$

Teorema:

$$P(B) = \sum_{k=1}^{n} P(A_k) \cdot P(B|A_k)$$

1.6.2 Independência

Dois eventos A e B são independentes se e somente se

$$P(A \cap B) = P(A) \cdot P(B)$$

Portanto, elementos disjuntos não são independentes, pois não podem ocorrer simultaneamente.

Corolário: Se A e B são independentes, então P(A|B) = P(A).

Propriedade: Se A e B são independentes, então os seguintes conjuntos são independentes entre si:

- $A \in B^c$
- $\bullet \ A^c \in B$
- $A^c \in B^c$

1.7 Variáveis Aleatórias

Uma variável aleatória é uma função do tipo

$$X:\Omega \to \mathbb{R}$$

que associa alguma propriedade de dado resultado à um número real.

A probabilidade de uma variável aleatória assumir um valor $k \in \mathbb{R}$ é

$$P(X = k)$$

A distribuição de uma variável aleatória é o gráfico de P(X = k) por todos k possíveis.