Cartesian closed categories and the price of eggs

Jane Doe

Hello world!

We present breakdown time data for various research activities in Table 1.

Table 1: Example of breakdown of time spent.

Task	Time Spent (minutes)	Time We Wish We Spent (minutes)
Fiddling with equations	120	5
Correcting reference order	60	0
Looking for "that one" reference	90	1
Copy-pasting figures	20	0
Rerunning all data	180	20
Fixing reference meta-data	60	0
Actually doing research	900	1500

An example of an equation is Fick's second law (Eq. (1)).

$$\frac{\partial \varphi}{\partial t} = D \frac{\partial^2 \varphi}{\partial x^2} \tag{1}$$

Once we've defined abbreviations in abbrev.tex, we can call those abbreviations using the gls command. In the case of "machine learning", the first usage of gls will give the full form as in machine learning (ML). The next usage of gls will give the abbreviated version as in ML.

After we've included the bibliography file in the bibliography command, we can start citing articles using the natbib cite and citet commands, as in the following example:

Wang et al. [1] emphasized the need for reproducible methods and benchmarking. Another work further emphasized the importance of these topics [2].

Typesetting equations in Mathematica can be very effective. Here is an example of a teaching figure:

Figures and captions can be generated programmatically. See for example.

Figure 1: Parity plots with root mean square errors (RMSEs) of (a) 0.098456, (b) 0.050737, (c) 0.099079, and (d) 0.14963 J m^{-2} .

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(h+x) - f(x)}{h} \tag{3}$$

Acronyms

ML machine learning 1

RMSE root mean square error 2

References

- [1] A. Y.-T. Wang, R. J. Murdock, S. K. Kauwe, A. O. Oliynyk, A. Gurlo, J. Brgoch, K. A. Persson, T. D. Sparks, Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices, Chemistry of Materials 32 (2020) 4954–4965. doi:10.1021/acs.chemmater.0c01907.
- [2] A. S. Barnard, Best Practice Leads to the Best Materials Informatics, Matter 3 (2020) 22–23. doi:10.1016/j.matt.2020.06.003.