IEEE S&P 2020

BIAS: Bluetooth Impersonation AttackS

Daniele Antonioli (EPFL), Nils Tippenhauer (CISPA), Kasper Rasmussen (Oxford Univ.)

Bluetooth standard

- Bluetooth standard
 - Specifies Bluetooth Classic (BT) and Bluetooth Low Energy (BLE)
 - ▶ 1 vulnerability in the standard = billions of exploitable devices

Contribution: Bluetooth Impersonation AttackS (BIAS)

- **Bluetooth Impersonation AttackS (BIAS)**
 - Exploiting standard-compliant vulnerabilities in Bluetooth authentication
 - To impersonate any Bluetooth device without having to authenticate

Contribution: Bluetooth Impersonation AttackS (BIAS)

- **Bluetooth Impersonation AttackS (BIAS)**
 - Exploiting standard-compliant vulnerabilities in Bluetooth authentication
 - To impersonate any Bluetooth device without having to authenticate

NO secure session

NO secure session

BIAS Attacks on Bluetooth Session Establishment

BIAS Attacks	Master Impersonation	Slave Impersonation
Legacy Secure Connections		
Secure Connections		

BIAS Attacks on Bluetooth Session Establishment

BIAS Attacks	Master Impersonation			Slave Impersonation		
Legacy Secure Connections	Alice slave	BIAS	Charlie as Bob	Charlie as Alice	BIAS (**)	Bob master
Secure Connections						

BIAS Attacks on Bluetooth Session Establishment

BIAS Attacks	Master Impersonation			Slave Impersonation		
Legacy Secure Connections	Alice slave	BIAS	Charlie as Bob	Charlie as Alice	BIAS	Bob master
Secure Connections	Alice slave	BIAS	Charlie as Bob	Charlie as Alice	BIAS	Bob master

Legacy Secure Connection (LSC) Authentication

Standard-Compliant Vulnerabilities in LSC Authentication

- LSC authentication is **not used mutually** for session establishment
- A device can switch authentication role

BIAS Attack on LSC: Master Impersonation

BIAS Attack on LSC: Slave Impersonation

Secure Connections (SC) Authentication

Standard-Compliant Issues with SC Authentication

- SC negotiation is not integrity-protected
- SC support is **not enforced** for pairing and session establishment

BIAS Attack on SC: Master Impersonation

BIAS Attack on SC: Slave Impersonation

Very Secure Connections (VSC) ?!

- Let's define Very Secure Connections (fictional security mode)
 - Use SC authentication (mutual)
 - Not vulnerable to SC downgrade

- Are we safe against impersonation attacks on VSC?
 - No, VSC is vulnerable to master and slave reflection attacks
 - See the paper for the details

Implementation of the BIAS Attacks

https://github.com/francozappa/bias

Evaluation: BIAS Attacks on 31 Devices (28 BT Chips)

		LSC		SC	
Chip	Device(s)	MI	SI	MI	SI
Bluetooth v5.0					
Apple 339S00397	iPhone 8				
CYW20819	CYW920819EVB-02				
Intel 9560	ThinkPad L390				
Snapdragon 630	Nokia 7				
Snapdragon 636	Nokia X6		Ŏ		
Snapdragon 835	Pixel 2				
Snapdragon 845	Pixel 3, OnePlus 6				
Bluetooth v4.2					
Apple 339S00056	MacBookPro 2017				
Apple 339S00199	iPhone 7plus				
Apple 339S00448	iPad 2018				
CSR 11393	Sennheiser PXC 550			-	-
Exynos 7570	Galaxy J3 2017			-	-
Intel 7265	ThinkPad X1 3rd	Ŏ	Ó	-	-
Intel 8260	HP ProBook 430 G3			-	-

Evaluation: BIAS Attacks on 31 Devices (28 BT Chips)

		LSC		SC	
Chip	Device(s)	MI	SI	MI	SI
Bluetooth v4.1					
CYW4334	iPhone 5s			-	-
CYW4339	Nexus 5, iPhone 6			-	-
CYW43438	RPi 3B+				
Snapdragon 210	LG K4				
Snapdragon 410	Motorola G3, Galaxy J5				
Bluetooth $v \le 4.0$					
BCM20730	ThinkPad 41U5008		0	-	-
BCM4329B1	iPad MC349LL			-	-
CSR 6530	PLT BB903+			-	-
CSR 8648	Philips SHB7250			-	-
Exynos 3470	Galaxy S5 mini			-	-
Exynos 3475	Galaxy J3 2016			-	-
Intel 1280	Lenovo U430			-	-
Intel 6205	ThinkPad X230			-	-
Snapdragon 200	Lumia 530			-	-

BIAS Attacks Countermeasures and Disclosure

- We propose a set of countermeasures
 - Use LSC authentication mutually during session establishment
 - Integrity-protect session establishment with the pairing key
 - ► Enforce SC support across pairing and session establishment

- We disclosed the BIAS attacks, and the Bluetooth standard has been updated
 - ▶ However, most of the devices are still vulnerable
 - ► E.g., no user or device updates, no device recalls

Conclusion: Bluetooth Impersonation AttackS (BIAS)

- Bluetooth Impersonation AttackS (BIAS)
 - Exploiting standard-compliant vulnerabilities in Bluetooth authentication
 - ▶ To impersonate any Bluetooth device without having to authenticate
 - ▶ Website: https://francozappa.github.io/about-bias/
 - ► Code: https://github.com/francozappa/bias

