Module 7: Generalized Linear Models

ISE-529

Material largely drawn from ISLR Chapter 4.6

Overview

- Thus far, we have considered two types of response variables:
 - Quantitative (measures)
 - Qualitative (categories)
- Not all types of models fit neatly into these two categories

Overview

We will look at the Bikeshare data set

- Response variable: "bikers" number of hourly users of a bike sharing program in Washington, DC
- Predictors:
 - month (month of the year)
 - hr (hour of the day from 0-23)
 - temp (normalized temperature in Celsius)
 - weathersit (qualitative variable with one of four possible values "clear", "misty or cloudy", "light rain or light snow", "heavy rain or heavy snow"

Bikeshare Dataset

Predictor variables

Response variable

	season (mnth) day (hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	bikers	>
0	1	Jan	1	0	0	6	0	clear	0.24	0.2879	0.81	0.0000	3	13	16	
1	1	Jan	1	1	0	6	0	clear	0.22	0.2727	0.80	0.0000	8	32	40	
2	1	Jan	1	2	0	6	0	clear	0.22	0.2727	0.80	0.0000	5	27	32	
3	1	Jan	1	3	0	6	0	clear	0.24	0.2879	0.75	0.0000	3	10	13	
4	1	Jan	1	4	0	6	0	clear	0.24	0.2879	0.75	0.0000	0	1	1	
8640	1	Dec	365	19	0	6	0	clear	0.42	0.4242	0.54	0.2239	19	73	92	
8641	1	Dec	365	20	0	6	0	clear	0.42	0.4242	0.54	0.2239	8	63	71	
8642	1	Dec	365	21	0	6	0	clear	0.40	0.4091	0.58	0.1940	2	50	52	
8643	1	Dec	365	22	0	6	0	clear	0.38	0.3939	0.62	0.1343	2	36	38	
8644	1	Dec	365	23	0	6	0	clear	0.36	0.3788	0.66	0.0000	4	27	31	
8645 rc	8645 rows × 15 columns															

Set Up Linear Regression Model

Would you treat "hour" as a category or a measure?

Linear Regression Model

```
lrmodel1 = LinearRegression(fit_intercept = True)
2 lrmodel1.fit(X,y)
   lrmodel1_coefs = pd.DataFrame(lrmodel1.coef_, columns = ['Coefficients'], index = X.columns)
   lrmodel1_coefs.loc[['workingday', 'temp', 'weathersit_cloudy/misty', 'weathersit_heavy rain/snow',
                         'weathersit_light rain/snow']]
                       Coefficients
             workingday
                         1.269601
                        157.209366
                                       Does this look
   weathersit cloudy/misty
                        -12.890266
                                       reasonable?
weathersit_heavy rain/snow -109.744577
 weathersit_light rain/snow
                        -66.494365
```

Linear Regression Model – Month Coefficients

Linear Regression Model – Hour Coefficients

Linear Regression Model - Predictions Histogram

What issue do you see?

Linear Regression Model - Residuals

What issue do you see?

Try Transforming the Response Variable

Looking at the response variable, we find that it is significantly skewed:

Try Transforming the Response Variable

A log transform significantly improves the skew:

Linear Regression Model With Transformed Response

Linear Regression Model With Transformed Response

A Better Approach

Reminders: Poisson distribution

 A discrete, non-negative distribution that is often used to model counts

$$P(Y = k) = \frac{e^{-\lambda} \lambda^{k}}{k!}$$
 for $k = 0,1,2,...$

Reminders, for Poisson distributions:

•
$$E(Y) = \lambda$$

If we model bikers with a Poisson distribution with $E(Y) = \lambda = 5$, then for a particular hour:

•
$$P(Y = 0) = \frac{e^{-5}5^0}{0!} = e^{-5} = 0.0067$$

• $P(Y = 1) = \frac{e^{-5}1}{1!} = 5e^{-5} = 0.034$
• $P(Y = 2) = \frac{e^{-5}2}{2!} = 0.084$

•
$$P(Y = 1) = \frac{e^{-5}1}{1!} = 5e^{-5} = 0.034$$

•
$$P(Y=2) = \frac{e^{-3}2}{2!} = 0.084$$

However, we expect the mean number of users in an hour to vary as a function of the hour of the day, month of the year, weather conditions, etc.

Basic Approch

Rather than modeling the number of bikers as a Poisson distribution with a fixed mean value (such as $\lambda = 5$), we model the mean as a function of the predictor variables:

$$\log(\lambda(X_1, \dots, X_p)) = \beta_0 + \beta_1 X_1, \dots, \beta_p X_p$$

or, equivalently:

$$\lambda(X_1, \dots, X_p) = x^{\beta_0 + \beta_1 X_1, \dots, \beta_p X_p}$$

Modeling the Bikeshare Dataset

Poisson regression

workingday 0.011081 temp 0.919983 weathersit_cloudy/misty -0.063318 weathersit_heavy rain/snow -0.008810 weathersit_light rain/snow -0.491935

```
1 prmodel_1.intercept_
```

4.191501499376311

Modeling the Bikeshare Dataset

Modeling the Bikeshare Dataset

Inference

Reminder:
$$\lambda(X_1, \dots, X_p) = e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}$$

- Thus, an increase by 1 in any predictor value j causes an increase in the mean value of the response variable by a factor of e^j (holding all other predictors constant)
 - A change from clear to cloudy weather changes the mean bike usage by a factor of $e^{-.06}$ = 0.94. On average only 94% as many people use bikes on a cloudy day compared to when it is clear
 - A change from clear to light rain changes the mean by a factor of $e^{-0.5}$ = .607 (only 60% as many use bikes on a rainy day than a clear day)

Mean-Variance Relationship

- In a Poisson distribution, $Var(Y) = \lambda$
- By using this distribution, the assumption is that variance increases as the mean increases
 - Different from linear regression models where the assumption is that the variance is constant and independent of the mean
- Thus, the Poisson regression is able to handle the mean-variance relationship generally seen in count variables in a natural way

We have now looked at three types of linear models

- Linear regression
- Logistic regression
- Poisson regression

Commonality of the three approaches:

- Each uses predictors X_1, \dots, X_p to predict a response Y
- We assume that conditional on $X_1, ..., X_p, Y$ belongs to a certain family of distributions:

Model	Distribution Family for Y
Linear regression	
Logistic regression	
Poisson regression	

Commonality of the three approaches:

- ullet Each uses predictors X_1 , ... , X_p to predict a response Y
- We assume that conditional on $X_1, ..., X_p, Y$ belongs to a certain family of distributions:

Model	Distribution Family for Y
Linear regression	Gaussian (normal)
Logistic regression	Bernoulli
Poisson regression	Poisson

Commonality of the three approaches:

• Each models the mean of Y as a function of the predictors

Model	Distribution Family for Y
Linear regression	$\beta_0 + \beta_1 X_1 +, \dots, + \beta_p X_p$
Logistic regression	$\frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$
Poisson regression	$e^{\beta_0+\beta_1X_1+,\dots,+\beta_pX_p}$

Link Functions

Each of these three equations can be expressed using a "link function":

$$\eta(E(Y|X_1,...,X_p) = \beta_0 + \beta_1 X_1 +,..., + \beta_p X_p)$$

Thus, we have these link functions:

Model	Link function
Linear regression	$\eta(\mu) = \mu$
Logistic regression	$\eta(\mu) = \log(\frac{\mu}{1-\mu})$
Poisson regression	$\eta(\mu) = \log(\mu)$

Generalizes the linear regression model with two options:

- Link function
- Probability distribution of Y

Response Variable	Distribution	Link Function	Variance Function
Continuous	Normal	Identity	σ^2
Binary	Binomial	Logit	$\mu(1-\mu)$
Count	Poisson	Log	λ

Other Types of GLMs

- Gaussian, Bernoulli and Poisson distributions are all members of a class of distributions known as exponential distributions
- Other well-known exponential distributions are the exponential distribution, Gamma distribution, and negative binomial distribution
- ullet GLMs model the response Y as coming from a particular member of the exponential family and then transforming the mean of the response so that the transformed mean is a linear function of the predictors
- Other examples of GLMs are Gamma regression and negative binomial regressison

Supported Linear Distributions (SAS)

Distribution	Available Link Functions (default listed first)			
Beta	Logit, Probit, Log-log, C-log-log			
Binary	Logit, Probit, Log-log, C-log-log			
Exponential	Log, Identity			
Gamma	Log, Identity, Reciprocal			
Geometric	Log, Identity			
Inverse Gaussian	Power(-2), Log, Identity			
Negative Binomial	Log, Identity			
Normal (default)	Identity, Log			
Poisson	Log, Identity			
Tweedie	Identity, Log			