Práctica Procesadores de Lenguajes

David Antuña Rodríguez Javier Carrión García

Contenidos

1	Fase 1		
	1.1	Clases léxicas	1
	1.2	Especificación formal	3
	1.3	Diagrama de transiciones	4

1 Fase 1

1.1 Clases léxicas

La descripción de las clases léxicas identificadas se hará de manera informal, en lenguaje natural.

• SPROG

Es el separador && que indica el fin de la sección de declaracionesy el comienzo de la de instrucciones.

• LREAL

Empiezan con un signo (+ o -) opcional, a continuación aparecen uno o más dígitos cualesquiera. Seguida de esta parte puede aparecer una decimal que consta de un punto seguido de uno o más dígitos cualesquiera. Por último, tiene una E o e seguida de un signo (+ o -), opcional, y de uno o más dígitos cualesquiera.

• ID

Comienza por una letra cualquiera y la sigue una secuencia de cero o más letras, dígitos o subrayado(_).

• BOOL

Es una palabra reservada que se conforma por las letras minúsculas: b, o, o, l. En ese orden.

• NUM

Palabra reservada formada por las letras minúsculas: n, u, m. En ese orden.

• TRUE

Es una palabra reservada compuesta por las letras minúsculas: t, r, u, e. En ese orden.

• FALSE

Palabra reservada que contiene las siguientes letras minúsculas: f, a, l, s, e. En ese orden.

• PLUS

Representa ua suma, \+.

• MINUS

Representa una resta, \setminus -.

• MUL

Representa la multiplicación, *.

• DIV

Representa la división, /.

IS

Representación de la asignación, =.

• EQ

Representa una comparación, ==.

• **GT**

Representa el mayor que, >.

• GEQ

Representa el mayor o igual que, >=.

• LT

Representa el menor que, <.

• LEQ

Representa el menor o igual que, <=.

• NEQ

Representa una desigualdad, !=.

• AND

Representa el operador lógico and.

• OR

Representa el operador lógico or.

• NOT

Representa el operador lógico not.

• POP

Representa un paréntesis de apertura, (.

• PCL

Representa un paréntesis de cierre,).

1.2 Especificación formal

Vamos a utilizar DR_s para dar una descrición formal del lenguaje que conforman las clases léxicas del apartado 1.1.

- (*) SPROG $\equiv \&\&$
- (*) LREAL $\equiv \underline{\text{LENT}} \ \underline{\text{PDEC}}$? $\underline{\text{PEXP}}$?

$$PDEC \equiv \setminus \underline{Dig} * \underline{Dig}$$

$$PEXP \equiv (E \mid e) LENT$$

$$LENT \equiv Sign? Dig* Dig$$

$$Sign \equiv [\backslash +, \backslash -]$$

$$Dig \equiv [0-9]$$

(*) ID $\equiv \underline{\text{Letter}} \ (\underline{\text{Letter}} \ | \ \text{Dig} \ | \ _)*$

Letter
$$\equiv$$
 [a-z, A-Z]

$$Dig \equiv [0-9]$$

- (*) BOOL \equiv b o o l
- (*) NUM \equiv n u m
- (*) TRUE \equiv t r u e
- (*) FALSE \equiv f a l s e
- (*) MINUS $\equiv \$
- (*) $MUL \equiv \$
- (*) DIV \equiv /
- (*) IS $\equiv =$
- (*) EQ $\equiv ==$
- $(*) \text{ GT} \equiv >$
- $(*) \text{ GEQ} \equiv >=$
- (*) LT \equiv <
- (*) LEQ $\equiv <=$
- (*) NEQ $\equiv !=$
- (*) AND \equiv a n d
- (*) OR \equiv o r
- (*) NOT \equiv n o t
- (*) $POP \equiv \setminus ($
- (*) $PCL \equiv \setminus$)

$$[I] \; \mathrm{SEP} \equiv [\textrm{'} \; \textrm{'}, \, \backslash \mathrm{t}, \, \backslash \mathrm{n}, \, \backslash \mathrm{r}, \, \backslash \mathrm{b}, \, \textrm{;}]$$

1.3 Diagrama de transiciones

