

Subset Algebra

1 Why

We speak of a subset space with standard set-algebraic properties.

2 Definition

A subset algebra a subset space for which (1) the base set is distinguished (2) the complement of a distinguished set is distinguished (3) the union of two distinguished sets is distinguished.

2.1 Notation

Let A be a set and $A \subset 2^A$. We denote the subset algebra of A and A by (A, A), read aloud as "A, script A."

3 Properties

Proposition 1 For any subset algebra the empty set is distinguished.

Proposition 2 For any subset algebra (A, A), if $B, C \in A$, then (a) $B \cap C \in A$ and (b) $B\Delta C \in A$.

Proposition 3 For any subset algebra (A, \mathcal{A}) . If $A_1, \ldots, A_n \in \mathcal{A}$, then $(a) \cup_{i=1}^n A_i \in \mathcal{A}$ and $(b) \cap_{i=1}^n A_i \in \mathcal{A}$.

4 Examples

Example 4 For any set A, $(A, 2^A)$ is a subset algebra.

Example 5 For any set A, $(A, \{A, \emptyset\})$ is a subset algebra.

Example 6 For any infinite set A, let A be the set

$$\{B \subset A \mid |B| < \aleph_0 \lor |C_A(B)| < \aleph_0\}.$$

(A, A) is an algebra; the finite/co-finite algebra.

Example 7 For any infinite set A, let A be the set

$$\{B \subset A \mid |B| \le \aleph_0 \lor |C_A(B)| \le \aleph_0\}.$$

(A, A) is an algebra; the **countable/co-countable algebra**.

Example 8 For any infinite set A, let A be the set

$$\{B \subset A \mid |B| \le \aleph_0\}.$$

(A, A) is not an algebra.