1 Errors

1 [examen 081113] Es vol pintar la façana d'una casa. La forma de la façana és la unió d'un rectangle i d'un triangle isòscel·les. A més, no s'han de pintar les obertures: una porta rectangular, tres finestres quadrades iguals i una finestra circular.

S'han mesurat, aproximadament, les quantitats (mireu el dibuix):

•
$$h = 5.5 \pm 0.01 \text{ m}$$
,

•
$$H = 7.5 \pm 0.01 \text{ m}$$
,

•
$$p = 1.1 \pm 0.01 \text{ m}$$
,

•
$$q = 2 \pm 0.01 \text{ m}$$
,

•
$$s = 1.2 \pm 0.01 \text{ m}$$
,

•
$$d = 1 \pm 0.01$$
 m.

- (a) Quant medeix, aproximadament, la superfície que cal de pintar? (cal donar un valor real únic; useu $\pi=3.14$)
- (b) Quin dels 7 errors en les mesures, suposant-los tots iguals, afecta més al resultat? Podeu limitar-vos a aproximacions de primer ordre.

2 [examen 081113] Se suposa que la funció exponencial i la funció logaritme neperià s'avaluen només aproximadament, amb un error relatiu fitat per $\epsilon << 1$. Sigui $x \in (0,1)$. Trobeu fites (aproximades a primer ordre en ϵ) dels errors relatius en els dos càlculs:

- (a) exp(log(x)),
- (b) log(exp(x)).

Les fites han de dependre de ϵ i de x, i hi poden aparèixer les funcions exponencial, logaritme neperià i valor absolut.

- (c) Quina de les dues fites és més gran (per a cada valor de x)?
- **3** [examen 090114]
- (a) Demostra que les 4 expressions

$$(\sqrt{3}-1)^4$$
, $(4-2\sqrt{3})^2$, $\left(\frac{2}{\sqrt{3}+1}\right)^4$, $\left(\frac{2}{2+\sqrt{3}}\right)^2$

són matemàticament equivalents. Troba dues expressions més que siguin matemàticament equivalents a les anteriors.

(b) Suposant que el valor $\sqrt{3}$ és conegut només aproximadament, quina de les 6 expressions és la millor, en el sentit que minimitza l'efecte de la propagació de l'error en $\sqrt{3}$?

- 4 [examen 090114] Siguin a, b, c i d valors reals positius.
- (a) Es calcula l'expressió E = ab + cd. Suposant que cada operació elemental es fa amb un error relatiu fitat per u, amb 0 < u << 1, demostra que, suposant $E \neq 0$, l'error relatiu en el valor obtingut està fitat per $2u + O(u^2)$.
- (b) Pots trobar una fita similar (independent dels valors a, b, c i d) en el cas que l'expressió a calcular sigui E = ab cd?
- 5 [examen 300114] Sigui $A = \begin{pmatrix} a & e \\ e & d \end{pmatrix}$ una matriu 2×2 , real i simètrica. Per a trobar els seus valors propis (reals) s'usa l'algorisme:
 - (1) Es calculen els coeficients b i c del polinomi característic $p(x) = x^2 + bx + c$.
 - (2) Es resol p(x) = 0 usant la fórmula habitual.

Contesteu les dues preguntes següents:

- (a) Se suposa que les dades a, d i e es coneixen només aproximadament, amb **errors absoluts** fitats per ϵ . Treballant a primer ordre en ϵ , trobeu una fita de l'error absolut en els valors propis, que sigui de la forma $K\epsilon$, amb K independent dels elements de A.
- (b) Se suposa ara que els elements de A no tenen error i que ad < 0. Però se suposa també que cada operació elemental es fa amb un **error relatiu** fitat per u << 1. Treballant a primer ordre en u, trobeu fites dels errors relatius en b i en c de la forma Lu, amb L independent dels elements de A.

Notes: Canviar el signe d'un valor no introdueix cap error nou. Elevar un valor al quadrat sí que introdueix error.

6 [examen101108] Volem calcular el volum d'un con, on el radi de la base és r=0.250m i l'alçada és h=0.500m,

$$V = \frac{\pi r^2 h}{3}.$$

- a) Suposem que la precisió de les mides correspon als dígits donats (amb arrodoniment), i que usem l'aproximació $\pi \approx 3.1416$. Usant la fórmula de propagació d'errors, digues a quin interval es troba el volum del con (suposem que no es comet cap error en les operacions).
- b) Suposant que l'error en les mesures de r i h és el mateix, amb quina exactitud cal conèixer les dades (i π) per tal de garantir un error absolut menor que 10^{-5} en el càlcul del volum del con?
- c) Si es comet un error relatiu de 10^{-10} en les operacions aritmètiques, com afecta això a l'error final comès a l'apartat a)?

7 [examen110202] Sigui $0 < \alpha < \frac{\pi}{2}$ un angle desconegut, del qual es coneixen valors aproximats del sinus $(s \approx \sin(\alpha))$ i del cosinus $(c \approx \cos(\alpha))$, amb un error absolut fitat per ε_a en els dos casos.

(a) Quina de les següents fórmules permet calcular α amb menys error?

$$\alpha = \arcsin s$$
, $\alpha = \arccos c$.

Si la resposta depèn del valor d' α , especifica tots els casos possibles.

(b) Dóna una fita de l'error amb què obtenim α si usem l'expressió següent:

$$\alpha = \arctan \frac{s}{c}$$
.

- (c) Si $\alpha < \frac{\pi}{6}$, quina de les tres fórmules anteriors permet calcular α amb més precisió?
- 8 [examen121102] Es considera el càlcul recurrent

$$\begin{cases} x_0, x_1 \text{ dades conegudes }, \\ x_n = 3x_{n-1} - 2x_{n-2} \quad \forall n \ge 2. \end{cases}$$

- (a) Demostreu que $x_5 = 31x_1 30x_0$
- (b) Trobeu una fórmula explícita de x_n en funció de x_1 i x_0 . O sigui, trobeu f(n) i g(n) tals que $x_n = f(n)x_1 + g(n)x_0$, $\forall n \geq 0$.
- (c) Suposem que els càlculs es fan exactament (sense errors d'arrodoniment), i suposem que x_0 i x_1 es coneixen només aproximadament, amb uns errors absoluts fitats per ϵ . Demostreu que l'error absolut en el valor x_n obtingut, està fitat per $(2^{n+1}-3)\epsilon$.
- **9** [examen 130108] En un dònut, es mesuren el radi interior $a = 50 \pm 1$ mm i el radi exterior $b = 90 \pm 1$ mm. Si es calcula el volum aproximat del dònut, s'obté:

$$V = V(a,b) = \frac{\pi^2(a+b)(b-a)^2}{4} = \frac{\pi^2 \cdot 140 \cdot 40^2}{4}.$$

Doneu una fita (aproximada a primer ordre) de l'error relatiu que té aquest resultat.

10 [examen 130129] Es vol avaluar el polinomi $p(x) = ax^2 + bx + c$ en diversos valors de x. Els coeficients només es coneixen aproximadament:

$$a = +2.1(1 + e_a)$$
, $b = -5.8(1 + e_b)$, $c = +3.4(1 + e_c)$,

on els errors relatius $|e_a|$, $|e_b|$ i $|e_c|$ estan fitats per $e = 10^{-2}$.

- (a) Doneu un valor aproximat de p(4), així com una fita de l'error relatiu en aquest resultat, degut a la imprecisió en els coeficients.
- (b) Raoneu per quins valors de x, l'avaluació de p(x) pot tenir un error relatiu més gran.
- 11 [examen 130129] Per a cada $x \neq 0$, es considera la seva representació en punt flotant normalitzat, usant base 10 i 5 dígits de mantissa, arrodonint:

$$fl(x) = \pm d_0.d_1d_2d_3d_4 \cdot 10^e$$
,

on $e \in Z$, $d_i \in Z$, $0 \le d_i \le 9$ (i = 0, 1, 2, 3, 4), i $d_0 \ne 0$ (condició de normalització). Per exemple, $fl(\pi) = +3.1416 \cdot 10^0$ i $fl(-0.012345678) = -1.2346 \cdot 10^{-2}$.

D'altra banda, es considera el següent algorisme per a fer la suma de dues representacions:

- 4
- Si els 2 exponents són diferents, aleshores es canvia la representació del valor que el té més petit, igualant l'exponent amb el més gran i canviant la mantissa adequadament (se suprimeix la condició de normalització i s'usen tants dígits decimals com calgui).
- Se sumen les mantisses exactament, amb tants dígits com calgui.
- S'adequa el resultat al sistema de representació, tornant a normalitzar i a arrodonir a 5 dígits (si cal).

Per exemple,

 $fl(9.8765 \cdot 10^2 + 4.3219 \cdot 10^1) \approx 9.8765 \cdot 10^2 + 0.43219 \cdot 10^2 \equiv 10.30869 \cdot 10^2 \approx 1.0309 \cdot 10^3$.

Siguin x = 123.44321, y = 0.0987 i z = 5.00511.

- (a) Escriviu les representacions fl(x), fl(y) i fl(z).
- (b) Calculeu fl(fl(x) + fl(y)) + fl(z)) i fl(fl(x) + fl(fl(y) + fl(z))). Comproveu que no dóna el mateix.
- 12 [examen101108] Siguin a i b dos nombres reals positius tals que a > b, i considerem les dues expressions equivalents

$$a^2 - b^2 = (a+b)(a-b).$$

Suposem que cada operació aritmètica es fa amb un error relatiu fitat per u.

- a) Trobeu fites dels errors relatius per a les dues expressions, en funció de u, a i b.
- b) Raoneu quina de les dues expressions és numèricament millor, en cadascun dels dos casos: a >> b i $a \approx b$. Indicació: Podeu fer proves numèriques. Per exemple, considereu a = 9.8765 i els dos casos b = 0.011111 i b = 9.8754. Feu els càlculs amb pocs dígits.
- 13 Demostreu que si u està arrodonit correctament a s dígit significatius, aleshores tenim

$$\frac{|\Delta u|}{|u|} \le \frac{1}{2}\beta^{-s+1},$$

on β és la base en el sistema posicional.

- 14 Quant acuradament necessitem conèixer una aproximació de π per poder calcular $\sqrt{\pi}$ amb 4 decimals correctes?
- 15 Calculeu la distància focal f d'una lent usant la fórmula

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b},$$

on $a = 32 \pm 1$ mm i $b = 46 \pm 1$ mm. Doneu una estimació de l'error.

16 Quan estic estirat a la platja, només puc veure la punta de la xemeneia d'una fàbrica sobre l'aigua. En el meu planol de carreteres veig que està a l'altre costat de la badia a una distància de 25 ± 1 km. Recordo que el radi de la terra és 6366 ± 10 km. Calculeu l'alçada de la xemeneia i estimeu l'error.

MÈTODES NUMÈRICS I

5

17 Useu el desenvolupament de Taylor per evitar cancel·lacions en la següent expressió: $e^x - e^{-x}$, i useu una reformulació en les següents expressions:

- a) $\sin x \cos x$, per $x \approx \pi/4$.
- b) $1 \cos x$ per $x \approx 0$.
- c) $(\sqrt{1+x^2}-\sqrt{1-x^2})^{-1}$, $x\approx 0$.
- 18 El polinomi de segon grau $p(x) = ax^2 + bx + c$ es avaluat en un sistema de punt flotant usant l'esquema de Horner. Demostreu que el valor calculat \tilde{p} satisfà

$$|\tilde{p}(x) - p(x)| \le (4|ax^2| + 3|bx| + |c)\mu,$$

on μ és l'unitat d'arrodoniment (menyspreem els termes que són $O(\mu^2)$).

19 [examen110627] Considerem el sistema lineal 2×2

$$\left(\begin{array}{cc} 1 & a \\ -a & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} b \\ c \end{array}\right) ,$$

del qual es coneixen valors aproximats de les dades:

$$a = 7 \pm 0.1$$
, $b = 3 \pm 0.2$, $c = 5 \pm 0.3$.

Trobeu valors aproximats de les incògnites x i y, així com fites (aproximades) dels errors absoluts d'aquests valors (usant la fórmula de propagació de l'error maximal).

20 [examen111107] Volem calcular el valor R definit per

$$R = \left(\sqrt{5} - 2\right)^2 = \frac{1}{\left(\sqrt{5} + 2\right)^2} = \left(9 - 4\sqrt{5}\right) = \frac{1}{9 + 4\sqrt{5}}.$$

- (a) Demostreu que, efectivament, les quatre expressions anteriors donen el mateix resultat.
- (b) Si el valor $\sqrt{5}$ es coneix només aproximadament, digueu quina de les 4 expressions anteriors és la millor per a avaluar R (o sigui, en quina de les expressions serà menor l'error propagat).
- 21 [examen111107] Quan es fan eliminacions gaussianes, apareixen càlculs de la forma

$$m = b/a$$
 ,

$$c = d - me$$
.

- (a) Suposem que en cada operació aritmètica es fa un error relatiu fitat per u(<<1). Trobeu una fita (a primer ordre) de l'error relatiu en el resultat c, en funció de u, a, b, d, e.
- (b) Aplicació: Siguin

$$a = 0.123, b = 0.234, d = 0.345, e = 0.181$$
.

Calculeu c amb aquestes dades, suposant a més que, en cada operació, s'arrodoneix el resultat a 3 dígits significatius.

6

22 [examen120125]

(a) Considerem el càlcul

$$z \equiv f(x, y) = \ln(x - \sqrt{y})$$

al domini $D = \{(x,y)|y>0, x>+\sqrt{y}\}$. Suposem que les dades x i y són conegudes només aproximadament, amb un error absolut de la mateixa magnitud. Quin dels dos errors afecta més el resultat? (Atenció: això pot dependre de la part del domini on és (x,y)).

- (b) En el mateix càlcul anterior, suposem ara que les dades no tenen error, però que cada càlcul individual (arrel quadrada, resta i logaritme neperià) té un error **relatiu** fitat per la precisió de la màquina u << 1. Trobeu una fita de l'error **absolut** en el resultat, en funció de x, y i u. En quina part del domini D és molt gran aquesta fita? (Atenció: Podeu usar aproximacions de primer ordre $h(a+d) \approx h(a) + h'(a)d$, si |d| << 1. Per exemple $\ln(a+d) \approx \ln(a) + \frac{1}{a}d$).
- 23 [examen121102] Sigui $p_3(x) = a_0 + a_1x + a_2x^2 + x^3$ un polinomi de tercer grau amb $a_0 \neq 0$, del qual coneixem l'aproximació d'una arrel α amb error relatiu fitat per 0 < u << 1. Volem calcular els coeficients b_0 i b_1 del polinomi

$$p_2(x) = b_0 + b_1 x + x^2,$$

tal que

$$p_3(x) = (x - \alpha)p_2(x),$$

(a) Demostreu que

$$b_1 = \alpha + a_2, \qquad b_0 = a_1 + \alpha b_1.$$

- (b) Suposem que els coeficients a_i no tenen error, i que les operacions es fan amb un error relatiu fitat per u. Trobeu fites dels errors absoluts de b_0 , b_1 en funció de u, a_1 , a_2 , α .
- (c) Demostreu que també es verifica $b_0 = -a_0/\alpha$. Trobeu una fita de l'error absolut de b_0 si es calcula usant aquesta fórmula, novament en funció de u, a_1 , a_2 , α .
- 24 [examen 130108] Suposem que un ordinador fa les sumes amb un error relatiu fitat per u:

$$fl(x+y) = (x+y)(1+e) , |e| \le u .$$

En particular, això val si sumem dos valors iguals. De manera que obtenim la següent fita de l'error relatiu: $|\epsilon_{rel}(x+x)| \leq u$.

- a) Demostreu que $|\epsilon_{rel}(x+x+x)| \leq \frac{5}{3}u + \frac{2}{3}u^2$.
- b) Demostreu que $|\epsilon_{rel}(x+x+x+x)| \le \frac{9}{4}u + \frac{7}{4}u^2 + \frac{2}{4}u^3$.
- c) Trobeu una fita similar per a $|\epsilon_{rel}(x+x+x+x+x)|$.
- d) Si se sumen n valors iguals x ($n \ge 2$), quin és el coeficient (en funció de n) que acompanya el terme u^1 en una expressió similar a les anteriors?