

Overview

- Spacecraft charging
- Charging as a current collection phenomenon
- Why do we care about charging
- Secondary electron currents
- Impact generated secondary electrons
- **Photoelectrons**
- **Examples of charging**
- Geostationary orbit and critical electron temperature/energies for charging onset (LANL)
- Auroral charging (DMSP)
- Bootstrap charging......potential barriers (DSCS)
- Photoelectron dominated charging (Geotail, Cluster)
- Charging and lunar exploration
- Spacecraft potentials in lunar orbit
- Lunar surface charging environments
- Charged dust
- Summary

The Charging Current Balance Process

• Current balance phenomenon $dQ/dT = I_i(V) - I_e(V) + I_{ph,e}(V) \\ + I_{s,e}(V) - I_{s,i}(V) + I_{bs,e}(V) \\ + \sigma E(V)$

- Surface charging
- Current balance to spacecraft surface
- Bulk charging
- Penetrating (MeV) electrons generate charge density within materials

Spacecraft Charging Impacts Space Systems

ace %	1 72	19.7	7.6	28.4	5.4	3.3	0.3	0.3	8.0	299 100.0%
ts on Spa 2000) Number	47	59	29	85	16	10	1	-	24	299
Space Environment Impacts on Space Systems (Koons et al., 2000) Anomaly Diagnosis Number	ging	ESD-Surface Charging	ESD-Uncategorized	SEU (GCR, SPE, SAA, etc.)	Radiation Dose	MMOD	Atomic oxygen	Atmospheric drag	Other	Total

71	4 65	1
	1	
-		161
انه	1	f
efor		Imm
ăl I	1	1

Risks to Spacecraft

- Phantom commands
- Discharge currents damage materials, electronics systems
- Damage to thermal control coatings, solar cells, power cables
- Trigger arcs on power systems lead to sustained arcing

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Kawakita et al., 2005

Spacecraft Charging Impacts Space Systems

	Number %	74 24.7	59 19.7	29 9.7	85 28.4	16 5.4	10 3.3	1 0.3	1 0.3	24 8.0	299 100.0%
Impac s et al.,	Anomaly Diagnosis N	ESD-Internal Charging	ESD-Surface Charging	ESD-Uncategorized	SEU (GCR, SPE, SAA, etc.)	Radiation Dose	MMOD	Atomic oxygen	Atmospheric drag	Other	Total

V			Į.
- 4			1
			ra.
ore		1	ÎE
Sefe			III.
	Ship .		LARGE I

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Kawakita et al., 2005

Risks to Spacecraft

- Phantom commands
- Discharge currents damage materials, electronics systems
- Damage to thermal control coatings, solar cells, power cables
- Trigger arcs on power systems lead to sustained arcing

170

Spacecraft Charging Impacts Space Systems

cecraft	terials, electronics systems ings, solar cells, power	lead to sustained arcing					SK Daug 15KV 28um					250 teo 110 or 10 200 d.u. 220 cm at
Risks to Spacecraft Phantom commands	Spacecraft Lost/Missions Terminated Due to Charging	Cause	Surface ESD	Surface ESD	ESD	Surface ESD	ESD?	ESD?	Surface ESD	ESD		
	t/Missions Termina	Date	Jun 1973	Nov 1982	Jun 1988	Mar 1991	Jan 1994	Jan 1997	Oct 1997	Oct 2003	(00)	
Space Environment Impacts on Space Systems (Koons of al. 2000)		Spacecraft	DSCS II	GOES 4	Feng Yun 1	MARECS A	Anik E2	Telstar 401	INSAT 2D	ADEOS-II	(from Koons et al., 2000)	
Space Environm Systems (Ko	Anomaly Diagno	ESD-Internal Ch ESD-Surface Ch	ESD-Uncategori SEU (GCR. SPE	Radiation Dose	MMOD	Atomic oxygen	Atmospheric dra	Other	Total	Intal	<u>Before</u>	

Kawakita et al., 2005

Kawakita et al., 2005

GEO Surface Charging

SNOI

ELECTRONS

Anomalies typically occur in midnight to dawn sector where hot plasma is injected during geomagnetic substorms

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

GEO Surface Charging

Eclipse charging events typically reach kilovolt potentials

AS THE PERSON NAMED IN COLUMN TO PERSON NAME

Solar Array Arc Damage

Sustained arc initiated by trigger arcs on charged solar array panels

(Ferguson, 2001)

Secondary Electron Yields

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Secondary Yields are Material Dependent

Model secondary yield curves are used to parameterize electron yields as function of incident electron energy (Sternglass, 1954)

$$\delta_e(E,\theta) = \delta_{e,\text{max}} \frac{E}{E_{\text{max}}} \exp(2 - 2\sqrt{\frac{E}{E_{\text{max}}}}) \exp[2(1 - \cos\theta)]$$

Time Dependent SEY

Direct launch trajectories

early in spacecraft life

(from Pimpec et al., LCC-0128, SLAC-TN-03-052, 2003)

SEY Dose Dependence

- c) After 1.8x10¹⁸ e-/cm² b) After 0.8×10^{18} e/cm²
- SEY of TiN coated Al alloy before and after electron beam exposures
- 5 nA/cm² beam current for 1 hour $\sim 1.125 \times 10^{14}$ e-/cm²
- Decrease in secondary yield with dose predicts greater charging (consistent with ED31 laboratory results).
- Yield depends on angle:
- SEY values greater at larger incidence angle, predicts reduction in charging

Dose Dependent SEY

What fluence gives SEY<1?

•At this point no primary electron impacts will yield seconfaries and spacecraft charges for

b) 1100 eV e- dose x 10¹⁸ e-/cm²

+,O TiN-coated Al alloy extrusions ▲ TiN-coated Al sheet

1100 eV e dose x 1016 e/cm²

a)

HER copper extrusion

Demonstrates dose dependent changes in peak secondary electron yield

Time Dependent SEY

Oxidized aluminum and PTFE coated wire samples irradiated with 1-3 keV electrons for 30 hours

δ reduced 30% due to removal of oxide layer and deposition of contaminant layer

Reduced SEY increases charging threat

(Davies and Dennison, 2000)

Threshold Temperature for Charging Onset

onset of charging is due to Temperature threshold for second crossover point of secondary electron yield curves (Olsen, 1983)

SECONDARY EMISSION YIELD (5)

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

(Lai, 2003) 8th SCTC

charging at a critical

temperature

Examples of T_{crit} Onset

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Te Threshold

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Trapped Photoelectrons and Sunlight Charging

- Sunlight charging in GEO
- Dielectrics in sunlight can also charge to negative potentials

ELECTRON TEMPERATURE (keV)

Bootstrap Charging

Bootstrap charging results from secondary electrons trapped in potential barriers

Auroral. Solar Wind Charging

- Secondary electron currents can be larger than primary plasma currents
 - Yields >1
- Auroral charging case
- Show one with ~1 keV accelerated auroral electrons (Y>1) so there is no charging (or charged +)
- Shown example with ~10 to 30 keV electrons where Y<1
- Solar wind charging...photoelectron currents dominate the current balance process and spacecraft charge positive
- Ions $\sim 1 \text{ keV}$ Y>1
- Electrons low energy
- Compute incident currents as well as secondary currents
- Nascap-2k example
- Example from Geotail

Near Earth Plasma Regimes

Photoelectrons

- Photoelectron currents charging process in can dominate the environments low density
- Geotail spacecraft is in interplanetary space where $J_{ph} > J_{plasma}$

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Magnetosheath, Solar Wind

- Cluster spacecraft outbound from magnetosheath into solar wind
- Szita et al. 2001

CAARI 2006, Ft. Worth, TX J. Minow [256] 544-2850

Cluster Example

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Photoelectron Charging

- Cluster S/C 1 and 2 demonstration of spacecraft potential control:
- Reduction of positive spacecraft potential to allow measurements of low energy ions that would be reflected by hig

(from Torkar et al., 2001)

Magnetotail environmen
 ~1000 km (~0.16 Re) an

spacecraft dominated by

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Geotail Spacecraft Potential

Geotail/EFD

100

Potential (Volts)

X,Y_{GSE} (Re)

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Auroral Charging

Auroral charging is strongly controlled by secondary electron yields

Primary auroral electrons typically few keV to 10's keV

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

electrons ions 121995/206 SNOI က 01:52:00 -685:5 260:9 -58:3 20:24 01:48:02 -79:5 295:8 -66:2 21:49 01;36;08 -52.7 49.8 -59.8 03:33 100 JE 13 ELECTRONS ω 3 DVA SNOI ELECTRONS LOG ENERGY (EV)

Auroral Charging

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Auroral Charging

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Lunar Dust Charging

Evidence for charged lunar dust

- Apollo 17 astronaut observations (scattered light)
- Surveyor 5,6,7 images of transient horizon glows (scattered light)
- Clementine images (scattered light)
- Apollo 17 Lunar Ejecta and (temperature anomaly) Meteorite Experiment

Large secondary yield may reduce charged dust in lunar night

5026156

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Lunar Secondary Electron Environments

Lunar photoelectron sheath

- Vysklov (1976) reported lunar "ionosphere" using radio occultation technique from Luna 22 with peak electron densities of 500-1000 #/cm³ at altitudes of 5-10 km above sunlit lunar surface
- In-situ measurements from Apollo 12, 15, 15 Suprathermal Ion Detector Experiment (SIDE) and Apollo 14 Charged Particle Lunar Environment Experiment (CPLEE) show 104 #/cm3 up to altitudes of 100 m (Reasoner and Burke, 1972)
- For comparison....
- Solar wind ~6 e-/cm3, large values of 50 to 100 in shocks
- Magnetosheath at lunar distances
- Magnetotail at lunar distances

Lunar Debye length ~1 meter

- ~130 electrons/cm3 density at surface (Feuerbacher et al., 1972)
- Photoelectrons dominate daytime charging environments within a few meters of surface

Lunar Dust Charging Models

- Stubbs et al. [2005]
- Dynamic fountain model
- Current collection dominated by sunlight and plasma currents in photoelectron currents in darkness
- But secondary electron currents are neglected in the current model

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

SEY Properties of Lunar Dust, Simulants

• Sternglass (1954) for normal incidence:

$$\delta_e(E,\theta) = 7.4\delta_{e,\text{max}} \frac{E}{E_{\text{max}}} \exp(-2\sqrt{E/E_{\text{max}}})$$

Em	0.30-0.70 keV 0.4 keV 0.4 keV 0.4 keV
$\delta_{\rm e,m}$	1.5±0.1 3.2 3.4 3.1
Material	lunar fines 1.5= Apollo 17 soil 3. JSC-1 3. MLS-1 3.
Reference	-Willis et al., 1973 Horanyi et al. 1998

Sickafoose et al. [1998] argues yields are too small to be significant in the charging process for solar wind plasma electrons incident with Te~22.5 eV

near ER instrument

trapped

emitted by boom

photoelectrons

 $\Phi s/c > 0$ and

Lunar Prospector

Halekas et al. 2005

J. Minow [256] 544-2850 CAARI 2006, Ft. Worth, TX

Lunar South Pole

- Lunar south pole interesting destination for lunar exploration
- Permanent shadowed regions:
- May collect volatiles (including water ice)
- T ~ 40K (Watson et al., 1961; Arnold, 1979;, Ingersoll et al., 1992]
- Challenging spacecraft charging issues due to lack of sunlight (no photoelectron currents to discharge cold dielectric materials integrating charge for long periods....)

Permanent illuminated regions

- Photoelectron currents charge materials, structures positive
- Minimize charging concerns for lunar habitats, operations

Summary

- Spacecraft charging is an important phenomenon to spacecraft operating in plasma environments
- Numerous failures attributed to charging
- Secondary electron currents are a significant contribution (sometimes primary contribution) to current balance condition
- measurements of secondary electron yields as a function of energy for all Analysis of spacecraft potentials in charging environments require good materials used on spacecraft surfaces