1. X を距離空間とする. U_{λ} ($\lambda \in \Lambda$) を開集合とする (Λ は添字集合). このとき

$$\bigcup_{\lambda \in \Lambda} U_{\lambda}$$

が X の開集合であることを示せ.

(解答例)

 $\bigcup_{\lambda \in \Lambda} U_{\lambda} \neq \emptyset$ の場合を考えればよい. 示したいことは,

任意の $x \in \bigcup_{\lambda \in \Lambda} U_{\lambda}$ に対して、ある $\varepsilon > 0$ が存在して、 $U(x, \varepsilon) \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$

である.

任意に $x \in \bigcup_{\lambda \in \Lambda} U_{\lambda}$ を取る. このとき, ある $\lambda \in \Lambda$ が存在して $x \in U_{\lambda}$ である. 今, 仮定より U_{λ} は開集合であるから, ある $\varepsilon > 0$ が存在して $U(x,\varepsilon) \subset U_{\lambda}$ が成り立つ. このとき

$$U(x,\varepsilon)(\subset U_{\lambda})\subset \bigcup_{\lambda\in\Lambda}U_{\lambda}$$

である. 以上より示された.

2. X を距離空間とする. 任意の点 $x \in X$ と任意の $\varepsilon > 0$ に対して, $U(x,\varepsilon)$ は X の開集合であることを示せ. (解答例)

示したいことは

任意の $y \in U(x,\varepsilon)$ に対して、ある $\delta > 0$ が存在して、 $U(y,\delta) \subset U(x,\varepsilon)$

である.

任意に $y \in U(x,\varepsilon)$ を取る. このとき近傍の定義から、X の距離関数 d_X に対して $d_X(x,y) < \varepsilon$ が成り立つ. ここで、 $\delta \coloneqq \varepsilon - d_X(x,y) > 0$ とおく. このとき

$$U(y,\delta) \subset U(x,\varepsilon)$$

が成り立つ. 実際, 任意の $z \in U(y, \delta)$ に対して

$$d_X(x,z) \le d_X(x,y) + d_X(y,z) < d_X(x,y) + (\varepsilon - d_X(x,y)) = \varepsilon$$

が成り立つので $z \in U(x,\varepsilon)$ である. 以上より示された.

 $3. \ X$ を距離空間とする. 部分集合 $A(\subset X)$ が閉集合であることと

任意の $x \in A^c$ に対して、ある $\varepsilon > 0$ が存在して、 $U(x,\varepsilon) \cap A = \emptyset$

が同値であることを示せ、ただし, $A^c \coloneqq X \setminus A$ は X における A の補集合である.

(解答例)

 $A\subset X$ を閉集合とする. 任意に $x\in A^c$ を取る. このとき x は A の境界点または外点である. x が A の境界点だったならば, 閉集合の定義より $x\in A$ となるので矛盾. よって x は A の外点である (ある $\varepsilon>0$ が存在して $U(x,\varepsilon)\cap A=\varnothing$).

逆を示す. $x \in X$ を A の境界点とする. このとき $x \notin A$ だったと仮定する (すなわち $x \in A^c$). すると仮定より, x は A の外点である. しかし x は A の境界点, 特に A の外点ではないので矛盾. よって $x \in A$. 以上より A は閉集合である.

4. X を距離空間とする. 任意の点 $x \in X$ に対して一点集合 $\{x\}$ は X の閉集合であることを示せ.

(解答例)

問3より

任意の $y \in \{x\}^c$ に対して、ある $\varepsilon > 0$ が存在して、 $U(y,\varepsilon) \cap \{x\} = \emptyset$

を示せばよい. すなわち

任意の $y(\neq x)$ に対して、ある $\varepsilon > 0$ が存在して、 $U(y,\varepsilon) \cap \{x\} = \emptyset$

を示せばよい.

X の距離関数を d_X と書く、任意に X の元 $y(\neq x)$ を取ると、 $d_X(x,y)>0$ である。このとき $\varepsilon\coloneqq d_X(x,y)>0$ とおくと $U(y,\varepsilon)\cap\{x\}=\varnothing$ が成り立つ。実際、 $z\in U(y,\varepsilon)\cap\{x\}$ が取れたとすると $d_X(z,y)<\varepsilon=d_X(x,y)$ かつ z=x でなければならないが、このとき $d_X(z,y)=d_X(z,y)$ となって矛盾.よって示された.