Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2021-2022 Professeur : $Zakaria\ Haouzan$ Établissement : $Lyc\acute{e}e\ SKHOR\ qualifiant$

Devoir Surveillé N°3 Filière 1Bac Sciences Expérimentales Durée 2h00

_Chimie 10pts ______

Partie 1 : Les solutions électrolytiques(10pts)
rartie 1: Les solutions electrolytiques(10pts)
Le chlorure de baryum $BaCl_2$ est un composé ionique constitué des ions chlorure et des ions baryum. On fait dissoudre une masse $m=4,16g$ de chlorure de baryum dans un volume $V_1=200mL$ d'eau et on obtient une solution S_1 de concentration C_1 .
1. Quelle sont les étapes de dissolution du chlorure de baryum dans l'eau ?(1pt)
2. Ecrire l'équation de dissolution du chlorure de baryum dans l'eau(1pt)
3. Donner l'expression de C_1 en fonction de m , M et V_1 puis calculer sa valeur
4. Déterminer l'expression de la concentration molaire effective de chacun des ions chlorure et des ions baryum dans la solution S_1 en fonction de C_1 puis calculer leurs valeurs
5. Déterminer l'expression de la quantité de matière de chacun des ions chlorure et des ions baryum dans la solution S_1 en fonction de C_1 et V_1 puis calculer leurs valeurs(1pt)
6. On prépare une solution S_2 de volume $V_2=50mL$ de chlorure de calcium $CaCl_2$ de concentration $C_2=0,5mol/L$ en dissodissolvant une masse m' de chlorure de calcium dans l'eau.
(a) Ecrire l'équation de dissolution puis déterminer l'expression de la concentration molaire effective de chacun des ions chlorure et des ions calcium en fonction de C_2 et calculer leurs valeurs. (1pt)
(b) Déterminer l'expression de la quantité de matière de chacun des ions chlorure et des ions calcium dans la solution S_2 en fonction de C_2 et V_2 puis calculer leurs valeurs(1pt)
(c) Déterminer la valeur de la masse m' utilisée pour préparer la solution S_2 (1pt)
7. On mélange la solution S_1 avec la solution S_2
(a) Quels sont des ions présents dans le mélange obtenu(1pt)
(b) Déterminer l'expression de la concentration molaire effective de chacun des ions présents dans le mélange puis calculer leurs valeurs
On donne : $M(Cl) = 35.5g/mol$, $M(Ba) = 137g/mol$, $M(Ca) = 40g/mol$

_Physique 10pts _____

Les parties sont indépendantes

Partie 1 : Travail et énergie mécanique(8 pts)
Une pomme de masse $m=150g$, accrochée à un pommier, se trouve à 3,0 m audessus du sol. Le sol est choisi comme référence des énergies potentielles de pesanteur. On donne $g=10~N/Kg$
1. Lorsque cette pomme est accrochée au pommier, quelle est :
(a) son énergie cinétique ?(1pt)(b) son énergie potentielle de pesanteur ?(1pt)(c) son énergie mécanique ?(1pt)
2. la pomme se détache et arrive au sol avec une vitesse de valeur $V=7,75~\mathrm{m/s}$. Calculer :
(a) son énergie cinétique.(1pt)(b) son énergie potentielle de pesanteur.(1pt)(c) son énergie mécanique.(1pt)
3. Quelles transformations énergétiques ont eu lieu au cours de cette chute ?
4. Quelle serait la hauteur de chute de cette pomme si elle arrivait au sol avec une vitesse de valeur $V'=9,9~m/s$ (1pt)
Partie 2 :Mode de transfert d'énergie(2pts)
Si-Brahim a lancé une bille verticalement vers le haut à une altitude $h=1,5m$ par rapport au sol, avec une vitesse $V_A=10m/s$. On considère que le poids est la seule force appliquée à la bille (chute libre). On donne $g=10N/kg$. Calculer en utilisant le théorème de l'énergie cinétique :
1. La hauteur maximale atteinte par la bille(1pt)
2. La vitesse de la bille lorsqu'elle retombe sur le sol(1pt)