IN THE CLAIMS:

Please amend claim 1, 6 and 17 as set forth in the complete claim listing below. This listing of

claims will replace all prior versions and listings of claims in the application:

1. (Currently Amended) A method for communicating with seven or more terminals in a

Bluetooth system having a master and a plurality of slaves, the method comprising the steps of:

checking that an active member address remains available to be allocated to a new slave such

that the master establishes a communication connection with the slave;

in case the an active member address remains available, allocating the remaining active

member address to the slave, and in case the no active member address does not remains

available, calculating a service delay time to and compare comparing the calculated delay time

with a predetermined reference value;

in case the service delay time is larger than the predetermined reference value, permitting

refusing a call acceptance, and in case the service delay time is smaller than the predetermined

reference value, converting a slave that has requested the call to sniff mode and determining a

service sequence with respect to a predetermined reference according to the number of the slave

calculated at a pre-scheduling duration;

allocating and transmitting a sniff interval time and the an active member address to each of

the slaves according to the service sequence, and converting the slave allocated and given the

sniff interval time and the active member address to be in a sniff mode; and

self waking-up of a the slave of the from sniff mode at the sniff interval time and using the

active member address to complete the communication with the active master and to return a use

right of the active member address such that the active member address is used to complete the

Application of: Jae Sung Lim

Appln. No. 10/822,325

Filed: 04/12/2004

communication with the master and return the active member address.

2. (Original) The method of claim 1, wherein the service sequence is determined in a

sequence of receiving an access request message.

3. (Original) The method of claim 1, wherein data transmission between the master and the

slave is such that until the slave given the active member address completes the data

transmission, it is activated after the sniff interval time so as to repetitively transmit data.

4. (Original) The method of claim 1, wherein the sniff interval time is determined by an

equation of SIT = $N * F + N_{th}$, (Here, "N" is the number of slaves intending to communicate with

the master at present, "F" is a frame unit as a service sequence of a frame, and "N_{th}" is a slave

position in one frame).

5. (Original) The method of claim 1, wherein the slave having the service sequence

determined is established in the frame unit for data transmission.

6. (Currently Amended) A method for communicating with seven or more terminals in a

Bluetooth system having a master and a plurality of slaves, the method comprising the steps of:

transmitting an access request message from a parked slave to the master so as to establish a

communication connection therebetween;

receiving the access request message so as to calculate the number of the parked slave and

determine a service sequence with respect to a predetermined reference;

allocating and transmitting a sniff interval time and an active member address according to

the service sequence so as to establish the communication connection, and maintaining a non-

connection slave to be in a sleep state in a sniff mode a sleep state, by a non-connected slave,

while a sniff mode is maintained; and

self waking-up the slave of the sniff mode at the sniff interval time such that the active

member address is used to complete data transmission with the master and return to the sniff

mode a parking mode.

7. (Original) The method of claim 6, wherein the step of transmitting the access request

message from the parked slave is performed by a slotted collision sense multiple access (CSMA)

way.

8. (Original) The method of claim 6, wherein the step of transmitting the access request

message from the parked slave is performed by a time division multiple access (TDMA) way.

9. (Original) The method of claim 6, wherein data transmission between the master and the

slave is such that un-parked slaves are all established in a frame and data is transmitted in a

frame unit.

10. (Original) The method of claim 6, wherein the service sequence is determined prioritizing

the slave not completing the communication for a beacon interval duration earlier.

11. (Original) The method of claim 6, wherein the non-connection slave is given a sniff

Filed: 04/12/2004

interval time and an active member address at a pre-scheduling duration.

12. (Original) The method of claim 6, wherein data transmission between the master and the

slave is such that after all of the slaves transmitting the access request message are un-parked,

the un-parked slaves are established in the frame and all of the slaves transmit data by one time.

13. (Original) The method of claim 6, wherein the service sequence is determined in a

sequence of receiving the access request message.

14. (Original) The method of claim 6, wherein data transmission between the master and the

slave is such that until the slave given the active member address completes the data

transmission, it is activated after the sniff interval time so as to repetitively transmit data.

15. (Original) The method of claim 6, wherein the sniff interval time is determined by an

equation of SITN*FNth, (Here, "N" is the number of slaves intending to communicate with the

master at present, "F" is a frame unit as a service sequence of a frame, and "Nth" is a slave

position in one frame).

16. (Original) The method of claim 6, wherein the slave having the service sequence

determined is established in the frame unit for data transmission.

17. (Currently Amended) An apparatus for communicating with seven or more terminals in a

Bluetooth system having a master and a plurality of slaves, the apparatus comprising:

Filed: 04/12/2004

a transceiver for transmitting and receiving a signal between the master and the slave;

a parking mode controller for analyzing the signal received from the transceiver so as to

control the a number of a parked slave, a data type and the a number of packets to be transmitted

by each slave, and a parameter necessary for a sniff parking mode;

a pre-scheduling unit for analyzing the signal received from the transceiver so as to and

determining[[e]] a service sequence, a sniff interval time and an active member address to be

used by a slave for communication with the master after the wake-up during the sniff interval

time; and

a controller for controlling the parking mode controller, the transceiver and the pre-

scheduling unit to provide such that the each slave with the sniff interval time and an active

member address to be utilized by the slave that has woken up during the sniff interval time is

activated according to the service sequence so as to perform the communication according to the

service sequence.

18. (Original) The apparatus of claim 17, wherein the pre-scheduling unit automatically

varies a packet depending on a data throughput communicating with the slave.

19. (Original) The apparatus of claim 17, wherein the parking mode controller controls

parameters of the number of a beacon slot, the number of an access window, and the number of a

slot per a window.