Problem 1. (Cholesky Decomposition)

Let $\mathbf{u} \in \mathbb{R}^n$, $\tau > 0$, and $\mathbf{A} = \mathbf{I}_n + \tau \mathbf{u} \mathbf{u}^T = \mathbf{G} \mathbf{G}^T$ be the Cholesky decomposition of \mathbf{A} . Also let \mathbf{d} be an n-dimensional column vector with $\mathbf{d} = \operatorname{diag}(\mathbf{G})$, i.e., $d(i) = \mathbf{G}(i,i)$ for $i = 1, 2, \dots n$.

Algorithm 1 Diagonalize of the Cholesky factor

- 1: Input: $\mathbf{u} \in \mathbb{R}^n, \tau > 0$.
- 2: Complete the algorithm here...
- 3: **Output:** An *n*-dimensional column vector \mathbf{d} such that $\mathbf{d} = \operatorname{diag}(\mathbf{G})$.
- 1) Determine the vector d and complete Algorithm 1 while satisfying the following two conditions, respectively.
 - (a) Obtain the Cholesky decomposition of \mathbf{A} with $\mathcal{O}(\frac{n^3}{3})$ computational complexity. (**Hint**: you may use the LDL decomposition to obtain the Cholesky decomposition of \mathbf{A})
 - (b) Determine the vector \mathbf{d} with $\mathcal{O}(n)$ computational complexity. (**Hint**: develop recipes for $d_1 \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^{n-1}$, and the lower triangular $\mathbf{G}_1^{(n-1)\times(n-1)}$ in

$$\mathbf{G}\mathbf{G}^T = egin{bmatrix} d_1 & \mathbf{0} \\ \mathbf{v} & \mathbf{G}_1 \end{bmatrix} egin{bmatrix} d_1 & \mathbf{v}^T \\ \mathbf{0} & \mathbf{G}_1^T \end{bmatrix} = \mathbf{I}_n + au\mathbf{u}\mathbf{u}^T.)$$

2) Let $\tau = 2024$ and $\mathbf{u} = [1, 2, 3, 4]^T$. Calculate the *n*-dimensional column vector \mathbf{d} in Matlab.