Deep Learning with Tensorflow Keras

1강 인공지능, 기계학습, 그리고 딥러닝

신유주

강사 소개

- 신유주
- KAIST 산업및시스템공학과 지식서비스공학대학원 박사과정
- yooju24@kaist.ac.kr

강의 일정

강의날짜	1/20	1/21	1/22	1/23	1/28	1/29	1/30	1/31
	월	화	수	목	화	수	목	금
시작시간	2PM	2PM	2PM	2PM	2PM	2PM	3PM	2PM
	~	~	~	~	~	~	~	~
	5PM	5PM	6PM	5PM	5PM	5PM	5PM	5PM

강의 방향

- 코딩실습 위주의 수업
- 이론 + 코딩으로 수업 구성
 - 이론으로 배운 내용을 코딩으로 다시 확인해보는 수업
- 50분 강의, 10분 휴식

강의 내용

- 머신러닝 기본부터 시작
- 이후에 대표적인 딥러닝 알고리즘 학습
 - Fully Connected Network
 - Convolutional Neural Network
 - Simple CNN, ResNet, DenseNet, ...
 - Recurrent Neural Network
 - Simple RNN, GRU, LSTM, ...
- 카카오 오픈카톡방 개설
 - 제목: [KAIST ITA] 텐서플로우 케라스를 이용한 딥러닝
 - 긴급한 일정 변경 공지 및 학습에 필요한 링크 배포/ 익명질문 가능

예정된 강의 일정

날짜	수업내용			
1/20	딥러닝 개요와 파이썬 기초			
1/21	머신러닝 기초			
1/22	인공신경망 기초			
1/23	Optimizer와 regularizer			
1/28	CNN 기초			
1/29	CNN 심화/RNN 기초			
1/30	RNN 심화			
1/31	오토인코더			

개발 플랫폼

Google Colaboratory

https://colab.research.google.com/

수강자 배경지식 확인 및 강의자료 링크

- 파이썬?
- 데이터마이닝?
- 딥러닝?

https://bit.ly/2sEn5kh

인공지능,기계학습,심층학습

- 인공지능(Artificial Intelligence)
 인간의 지능을 기계 등에 인공적으로 구현한 것
- 기계학습(Machine Learning) 인공지능의 한 분야로, 컴퓨터가 학습할 수 있도록 하는 알고리즘과 기술을 일컬음
- 심층학습(Deep Learning) 여러층의 인공신경망을 이용한 기계학습모델

인공지능

- 학습
- 계획
- 문제 해결
- 자연어처리
- 자기 인식
- ..

기계학습

- 명시적인 프로그래밍 없이
 데이터로부터 스스로 배움
- 왼쪽 예시는 다항함수 회귀
 - 다항함수라는 모델을 이용함
 - 데이터를 이용해 다항함수의 각 항에 대한 계수를 최적화함
 - 실제로 일어나지 않은 데이터에 대해 예측할 수 있음
 - 현재 존재하는 데이터로부터 일반화할수 있음

기계학습 예시

지도학습과 비지도학습

지도학습과 비지도학습

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

지도학습과 비지도학습

- 지도학습(Supervised Learning): Classification(분류), Regression(회귀), ...
 - 데이터가 (input, label) 쌍으로 존재함
 - , 호랑이),....
 - 기계학습 모델이 입력을 받아 label을 정확히 만드는 함수를 찾아냄
 - 입력된 이미지가 호랑이인지 아닌지 맞추는 기계학습 모델 학습 가능
- 비지도학습(Unsupervised Learning): Clustering(군집화), 차원 축소, ...
 - 데이터에 라벨이 없음
 - 호랑이 그림만 있음
 - 데이터의 구조 학습 가능
 - 오토인코더를 이용한 데이터 재생성 및 데이터 차원 축소(압축)

분류(Classification)

회귀(Regression)

군집화(Clustering)

차원 축소(Dimensionality Reduction)

강화 학습(Reinforcement Learning)

기계학습 구현 과정

데이터 전처리

- 데이터를 잘 떠먹여줘야한다: 인공지능은 생각보다 똑똑하지 않다
- 전체 개발 시간의 70~80% 차지
- 표준화, 정규화, 변형, 무효값 처리

데이터 구성

- Train Data: 기계학습 모델의 학습자료, 전체의 약 70~80%
- Validation Data: 기계학습 모델 학습 환경 최적화를 위한 데이터
- Test Data: 학습 진척도를 확인하기 위한 데이터, 약 10~20%

모델 학습

- 문제 정의: 인공지능 모델을 통해서 학습할 문제 정의
 - 예시: 공부시간에 따른 성적 예측
- 문제에 걸맞는 솔루션 정의
- 데이터 전처리
- 모델 학습
- 모델 결과 확인
 - 정확도, 정밀도, Mean squared error

경사하강법(Gradient Descent)

- 좋은 모델: 데이터를 가장 잘 설명하는 모델
 - 실제 데이터와의 오차가 적음
- 모델의 파라미터를 θ라고 했을 때, Loss function L(θ)의 최소화를 위해 L(θ) 기울기(Gradient)를 이용하는 방법

Linear Regression에서의 경사하강법

Underfitting과 Overfitting

코딩 실습

- 파이썬 기초 복습 (numpy, pandas)
- Tensorflow Keras 기초 (single perceptron)
 - https://www.pyimagesearch.com/2019/10/21/keras-vs-tf-keras-whats-the-difference-in-tensorflow-2-0/

인공신경망 역사 1/3

인공신경망 역사 2/3

- ImageNet은 1000개의 class가
 있는 이미지 데이터셋
- 해마다 이 데이터를 누가 제일 정확히 맞추는지 경쟁함
- 2012년 AlexNet이라는 CNN이 나오면서 비약적으로 오차를 줄임
- 이때부터 인공신경망에 대한 관심이 높아짐

인공신경망 역사 3/3

- CNN이 승리할 수 있었던 이유
 - 라벨이 달린 수많은 이미지 데이터셋
 - 강력해진 컴퓨터
 - GPU를 사용해 인공신경망에서 필요한 계산을 빠르게 수행
 - 텐서곱, 행렬곱 등 병렬계산을 이용한 계산이 더욱 빨라짐
 - o CNN 개발
 - Overfitting을 막기 위해 Relu와 같은 activation function 개발
 - Dropout: 확률적으로 가중치 일부만 학습시키는 기법

인공신경망 개요

- 인공신경망 (Artificial Neural Network)은 딥러닝에 쓰이는 주된 기계학습모델
- 왼쪽 그림은 하나의 뉴런만 나타낸것
- x_1,...,x_n 은 데이터를 나타냄
- w는 각 데이터에 곱해지는 가중치 벡터임
- b는 bias로, 가중치x데이터값의 전체적인 경향을 결정함

인공신경망 수학적 표현

- 이를 식으로 나타내면 아래와 같은 식이 됨
 - 이진 분류 기준

$$y = f(\mathbf{w} \cdot \mathbf{x} + b)$$

$$f(u) = \begin{cases} 1 & \text{if } u > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\theta = (\mathbf{w}, b)$$

인공신경망 기호 설명

$$y = f(\mathbf{w} \cdot \mathbf{x} + b)$$

$$f(u) = \begin{cases} 1 & \text{if } u > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\theta = (\mathbf{w}, b)$$

- f: activation function
 - 비선형 함수가 많이 쓰임
- x: input
- y: output
- w: weight
- b: bias
- $\mathbf{w} \cdot \mathbf{x} = \mathbf{w}_1 \cdot \mathbf{x}_1 + \mathbf{w}_2 \cdot \mathbf{x}_2 + \dots$

심층학습(Deep Learning)

- 이러한 신경망을 여러 층으로
 쌓으면 임의의 연속적인 함수를
 모두 오차는 있지만 비슷하게
 표현할 수 있음
- Universal Approximation Theorem
- 위에서 설명한 선형계산이 일반화에 큰 도움이 된다고 함

딥러닝 훈련

컴퓨터 비전

번역

번역

음성인식

https://www.youtube.com/watch?v=mpw_FB2QrjQ

의료 진단

시계열 데이터 분석

