# GEOMETRIA ANALITICA E CONICHE

Cerioni Valentino, Koka Alex, Riccardo Sabbatini Peverieri, Traino Sabrina







### Definizione

La **geometria analitica** è il ramo della geometria in cui le figure vengono espresse mediante espressioni algebriche e per mezzo di un sistemi di assi cartesiani -> piano cartesiano







# Il punto

Ogni punto sul piano cartesiano è definito da una coppia di coordinate:

- l'ascissa (coordinata X)
- l'ordinata (coordinata Y)









# Distanza tra due punti

#### Se il segmento AB è ORIZZONTALE

#### Se il segmento AB è VERTICALE

#### Se il segmento AB è OBLIQUO

$$d(A,B) = |X_A - X_B|$$

$$d(A,B) = |Y_A - Y_B|$$

$$d(A,B) = \sqrt{(X_A - X_B)^2 + (Y_A - Y_B)^2}$$















### Definizione

La **retta** sul piano cartesiano è il luogo dei punti del piano che sono soluzione dell'equazione

ax + by + c = 0 con  $a, b, c \in \mathbb{R}$  a, b non entrambi nulli.







# Equazione esplicita

$$Y = \underbrace{mx}_{\text{Coefficiente}} + \underbrace{q}_{\text{Intercetta}}$$
Angolare









## Coefficiente angolare e Intercetta

**Coefficiente angolare**: quel valore che stabilisce l'inclinazione della retta rispetto all'asse X.

**Intercetta**: quel valore che stabilisce in che punto la retta interseca l'asse Y.









# Rette particolari

#### RETTE VERTICALI

#### RETTE ORIZZONTALI

$$X = N$$

$$con N \in \mathbb{R}$$

$$Y = N$$

$$con N \in \mathbb{R}$$











| Equazion | speciali |
|----------|----------|
|          |          |

**ASSE X** 

**ASSE Y** 

**BISETTRICE I e III QUADRANTE** 

**BISETTRICE II e IV QUADRANTE** 

Y = 0

X = 0

Y = X

X = Y













#### Punto di una retta

Un punto **appartiene** alla retta se le sue coordinate sono soluzioni dell'equazione della retta.

Altrimenti se non è soluzione dell'equazione allora **non appartiene** alla retta.









# Rette parallele o perpendicolari

Due rette sono **parallele** se hanno lo stesso coefficiente angolare.

$$r \parallel s \Leftrightarrow m_r = m_s$$

Due rette si dicono **perpendicolari** se hanno coefficienti angolari antireciproci.

$$r \perp s \iff m_r = -\frac{1}{m_s}$$













#### Date due rette trovare il loro punto di intersezione

Mettiamo a sistema le loro equazioni:

Dati: 
$$r: y = -2x - 1$$

$$\begin{cases} y = -2x - 1 \\ y = -x - 1 \end{cases}$$

$$\rightarrow$$

Dati: 
$$\begin{cases} y = -2x - 1 \\ y = -x - 1 \end{cases} \rightarrow \begin{cases} y = -2x - 1 \\ -2x - 1 = -x - 1 \end{cases} \rightarrow \begin{cases} y = -2x - 1 \\ x = 0 \end{cases}$$

$$\rightarrow$$

$$\begin{cases} y = -2x \\ x = 0 \end{cases}$$

$$\begin{cases}
y = -x - 1 \\
y = -2(0) - 1 \\
x = 0
\end{cases}$$

$$\begin{cases}
y = -1 \\
x = 0
\end{cases}$$



Il sistema è determinato perciò le due rette sono incidenti, si incontrano nel punto P(0,-1).





Data una retta passante per un punto e con coefficiente angolare assegnato trovare la sua equazione

Dati:

$$P(-1,2)$$

$$s: y = 5x - 2$$

La formula da utilizzare è:

$$y - y_p = m_r(x - x_p)$$

$$y - (2) = 5 (x - (-1))$$
  
 $y - 2 = 5 (x + 1)$   
 $y = 5x + 7$ 













### Le coniche

#### Le coniche sono:

- Circonferenza
- Parabola
- Ellisse
- Iperbole



Sono chiamate così perché si ottengono intersecando la superficie di un cono retto indefinito con un piano non passante per il vertice.









### Definizione

La **parabola** è il luogo geometrico dei punti del piano che sono equidistanti da un punto fisso **F**(fuoco) e da una retta fissa **d**(direttrice).







# Equazione

Equazione in forma esplicita:

$$y = ax^2 + bx + c$$

Il coefficiente a indica la concavità della parabola e la sua apertura.

Il coefficiente  $\mathbf{b}$  indica la posizione dell'asse di simmetria rispetto all'asse y.

Il termine noto **c** indica il punto in cui la parabola interseca l'asse *y*.







### Formule

Vertice: 
$$V = (-\frac{b}{2a}, -\frac{\Delta}{4a})$$

Asse (x): 
$$x = \frac{-b}{2a}$$

Fuoco: 
$$\mathbf{F} = \left(-\frac{b}{2a}, \frac{1-\Delta}{4a}\right)$$

#### Direttrice:

- Verticale: 
$$X = (-\frac{1+\Delta}{4a})$$

- Verticale: 
$$\mathbf{X} = (-\frac{1+\Delta}{4a})$$
  
- Orizzontale:  $\mathbf{Y} = (-\frac{1+\Delta}{4a})$ 

In tutti i casi:

$$\Delta = b^2 - 4ac$$







### Posizioni della retta

Le possibili posizioni di una retta rispetto a una parabola sono quattro:

- Retta esterna(r<sub>1</sub>);
- Retta secante in due punti(r<sub>2</sub>);
- Retta **secante in un punto**(r<sub>3</sub>);
- Retta tangente alla parabola(r<sub>4</sub>).









### Posizioni della retta

#### Definizioni rette:

- Esterna: nessun punto di intersezione.
- Secante in due punti: due punti di intersezione.
- Secante in un punto: un unico punto di intersezione.
- Tangente: un unico punto di intersezione (due punti di intersezione coincidenti).













#### Data una retta e una parabola trovare i loro punti di intersezione

Dati:  

$$r: y = -2x + 6$$
  
 $p: y = -2x^2 + 2x + 4$ 

Eguaglio le due espressioni:

$$-2x + 6 = -2x^{2} + 2x + 4$$
$$2x^{2} - 2x - 2x - 4 + 6 = 0$$
$$2x^{2} - 4x + 2 = 0$$

Calcolo del Δ:

$$(-4)^2 - 4(-2)(2) = 16 - 16 = 0$$

 $\Delta$ = 0 quindi la retta è tangente alla parabola.



Si trova il punto:

$$\frac{-(-4)}{2(2)} = \frac{4}{4} = 1$$

1 è la coordinata della x.

Per trovare quella della y si usa o l'equazione della retta o della parabola:

$$y = -2x + 6$$

$$y = -2(1) + 6$$

$$y = 4$$

Il punto di tangenza è P(1; 4).







#### Dato un punto e il vertice di una parabola, trova la sua equazione

La parabola passante per V è:  $-2 = a(1)^2 + b(1) + c$ Che diventa -2 = a + b + c

Dati:

$$V(1; -2)$$

P(0; 3)

Quella per P è:  $3 = a(0)^2 + b(0) + c$ 

Che diventa 3 = c

Per la terza equazione utilizziamo la formula  $\frac{-b}{2a}$  e la eguagliamo alla coordinata x del vertice.





Li mettiamo a sistema e risolviamo:

$$\begin{cases}
-2 = a + b + c \\
3 = c \\
-\frac{b}{2a} = 1
\end{cases} \rightarrow \begin{cases}
-2 = a + b + 3 \\
3 = c \\
-\frac{b}{2a} = 1
\end{cases} \rightarrow \begin{cases}
a = -5 - b \\
3 = c \\
-\frac{b}{2(-5 - b)} = 1
\end{cases}$$

$$\begin{cases} a = -5 - b \\ 3 = c \\ -b = -10 - 2b \end{cases} \rightarrow \begin{cases} a = -5 - (-10) \\ 3 = c \\ b = -10 \end{cases} \rightarrow \begin{cases} a = 5 \\ 3 = c \\ b = -10 \end{cases}$$

Troviamo i valori delle incognite e le sostituiamo:

$$y = 5x^2 - 10x + 3$$







#### Dati tre punti trovare la parabola passante per essi

Dati:

A(0; -2)

B(1;2)

C(-2; -4)

Si creano tre equazioni sostituendo le coordinate all'equazione base:

Equazione per A:-2 = c

Equazione per B: 2 = a + b + c

Equazione per C:-4 = 4a - 2b + c







Si forma il sistema e lo si risolve:

$$\begin{cases}
-2 = c \\
2 = a + b + c \\
-4 = -4a - 2b + c
\end{cases} \rightarrow \begin{cases}
-2 = c \\
-a = b - 2 - 2 \\
-4 = 4a - 2b - 2
\end{cases} \rightarrow \begin{cases}
-2 = c \\
a = -b + 4 \\
-4 = 4(-b + 4) - 2b - 2
\end{cases}$$

$$\begin{cases}
-2 = c \\
a = -b + 4 \\
-4 = -6b + 14
\end{cases} \rightarrow \begin{cases}
-2 = c \\
a = -b + 4 \\
6b = 18
\end{cases} \rightarrow \begin{cases}
-2 = c \\
a = 1 \\
b = 3
\end{cases}$$

Troviamo i valori di a,b e c e si crea l'equazione della parabola:

$$y = x^2 + 3x - 2$$













#### Definizione

La **circonferenza** è il luogo geometrico dei punti del piano equidistanti da un punto fisso, detto centro.

La distanza costante è detta raggio.







# Equazione esplicita

Conoscendo le coordinate del centro della circonferenza  $(\alpha, \beta)$  e la misura r del raggio, è possibile esprimere l'equazione della circonferenza nella forma esplicita:

$$(x-\alpha)^2 + (y-\beta)^2 = r^2$$

Si tratta di un'equazione quadratica con due incognite (x, y).









# Equazione implicita

Sviluppando il calcolo e riordinando i termini arriviamo all'equazione:

$$x^{2} + y^{2} - 2\alpha x - 2\beta y + \alpha^{2} + \beta^{2} - r^{2} = 0$$

Se adesso poniamo:

$$-2\alpha = a$$
  $-2\beta = b$   $\alpha^{2} + \beta^{2} - r^{2} = c$ 

Otteniamo la forma implicita dell'equazione di una circonferenza:

$$x^2 + y^2 + ax + by + c = 0$$





## Formula raggio e coordinate

Dalle precedenti relazioni ricaviamo che:

$$-2\alpha = a \rightarrow \alpha = -\frac{a}{2}$$

$$-2\beta = b \rightarrow \beta = -\frac{b}{2}$$

Le coordinate del centro e la misura del raggio, in funzione dei coefficienti a, b, c sono date da:

$$C\left(-\frac{a}{2},-\frac{b}{2}\right)$$

$$r=\frac{1}{2}\sqrt{a^2+b^2-4c}$$







### Condizione di realtà

Affinché l'equazione descriva effettivamente un insieme di punti nel piano cartesiano è necessaria la richiesta della **condizione di realtà**:

$$a^2+b^2-4c\geq 0$$

Nel caso in cui la richiesta eguaglia a 0, la circonferenza si riduce a un solo punto.

Se invece è minore di 0 la circonferenza non esiste del tutto.







La lunghezza di una circonferenza e quella del suo diametro sono grandezze direttamente proporzionali e il rapporto tra le loro misure è costante:

$$\frac{C}{d}$$
 = costante

Il valore di questo rapporto si indica con la lettera  $\pi$  (pi greco) e corrisponde approssimativamente a 3,14





### Calcolo circonferenza

Possiamo quindi scrivere la formula  $\frac{c}{d} = \pi$  da cui si ottiene:

$$C = \pi \cdot d$$
  $\circ$   $C = \pi \cdot 2r$ 

La lunghezza di una circonferenza è uguale al prodotto della lunghezza del suo diametro per  $\pi$  oppure la lunghezza del suo raggio per  $2\pi$ .





### Calcolo area

L'area di un cerchio si ottiene moltiplicando il quadrato della misura del raggio per  $\pi$ .

Formula:

$$A = r^2 \cdot \pi$$









### Retta secante

Una retta si dice secante quando ha due punti in comune con la circonferenza.







### Retta tangente

Una retta si dice tangente quando ha un solo punto in comune con la circonferenza.

$$d = r$$







### Retta esterna

Una retta si dice esterna quando non ha punti in comune con la circonferenza.









Esercizi

Punto d'intersezione rettacirconferenza

Equazione parabola conoscendo misura assi-centro

### Punti di intersezione

Dal punto di vista algebrico, le intersezioni di una circonferenza con una retta si determinano risolvendo il sistema delle loro equazioni:

$$\begin{cases} x^2 + y^2 + ax + by + c = 0 \\ y = mx + q \end{cases}$$



#### Data una retta e una circonferenza, trovare i loro punti di intersezione

c: 
$$y = x^2 + y^2 - 4x - 2y = 0$$

r: 
$$y = x - 2$$

Le mettiamo a sistema e risolviamo:

$$\begin{cases} x^2 + y^2 - 4x - 2y = 0\\ y = x - 2 \end{cases}$$

$$\rightarrow$$

$$\begin{cases} x^2 + y^2 - 4x - 2y = 0 \\ y = x - 2 \end{cases} \rightarrow \begin{cases} x^2 + (x - 2)^2 - 4x - 2(x - 2) = 0 \\ y = x - 2 \end{cases}$$







$$\begin{cases} x^2 + x^2 + 4 - 4x - 4x - 2x + 4 = 0 \\ y = x - 2 \end{cases} \rightarrow \begin{cases} 2x^2 - 10x + 8 = 0 \\ y = x - 2 \end{cases} \rightarrow \begin{cases} x^2 - 5x + 4 = 0 \\ y = x - 2 \end{cases}$$

Calcolo delta:

$$\Delta = 25 - 4(1)(4) = 9$$

$$x_{1/2} = \frac{+5 \pm \sqrt{9}}{2} = \frac{+5 \pm 3}{2} =$$
  $x_1 = \frac{8}{2} = 4$   $x_2 = \frac{2}{2} = 1$ 







#### Risolviamo il sistema:

$$\begin{cases} x = 4 \\ y = 4 - 2 \end{cases} \begin{cases} x = 1 \\ y = 1 - 2 \end{cases}$$

$$\begin{cases} x = 4 \\ y = 2 \end{cases} \begin{cases} x = 1 \\ y = -1 \end{cases}$$

A(4,2)

B(1,-1)













## Dato il centro e il raggio di una circonferenza, trova la sua equazione

Dati:

$$r = 3$$

$$C(4,3) \rightarrow \alpha = 4 \quad \beta = 3$$

#### Calcolo:

$$(x-4)^2 + (y-3)^2 = 3^2$$
  
 $x^2 + 16 - 8x + y^2 + 9 - 6y = 9$   
 $x^2 + y^2 - 8x - 6y + 16 = 0$ 















### Definizione

L'**ellisse** è il luogo geometrico dei punti P del piano per i quali è costante la somma delle stanze da due punti fissi  $F_1$  e  $F_2$  detti **fuochi**:

$$\overline{PF_1} + \overline{PF_2} = costante$$





## Rette particolari

#### Fuochi sull'asse x

Fuochi sull'asse y

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad con \ a > b$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad con \ a < b$$

$$a^2 b^2$$

$$F_1(-c,0)$$
  $F_2(c,0)$   $con c = \sqrt{a^2 - b^2}$ 

$$F_1(0,-c)$$
  $F_2(0,c)$   $\cos c = \sqrt{b^2 - a^2}$ 

$$F_2(0,c)$$











### **Eccentricità**

L'eccentricità dell'ellisse è il valore della deformità dell'ellisse rispetto a una circonferenza.

Chiamiamo eccentricità il rapporto:

$$e = \frac{\text{semiasse focale}}{\text{semiasse maggiore}}$$

Se i fuochi appartengono all'asse x:  $e = \frac{c}{a}$ 



Se i fuochi appartengono all'asse y: 
$$e = \frac{c}{b}$$









# Posizioni reciproca

Le intersezioni di un'ellisse e una retta si determinano risolvendo il sistema delle loro equazioni.

A seconda del discriminante  $\Delta$  dell'equazione risolvente il sistema ellisse-retta, i casi che si posso presentare sono i seguenti:

- Retta secante
- Retta tangente
- Retta esterna











Esercizi

Equazione ellisse conoscendo i vertici

Equazione ellisse conoscendo misura assi-centro



# Esercizio 1/2

Date le coordinate dei vertici di un'ellisse, trova la sua equazione

Dati: 
$$A_1(-4;0), A_2(-4;0), B_1(0;-3), B_2(0;3)$$

Dalle coordinate dei vertici ricaviamo che a = 4 e b = 3.

Applicando questi dati all'equazione canonica dell'ellisse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \longrightarrow \qquad \frac{x^2}{16^2} + \frac{y^2}{9^2} = 1$$





# Esercizio 2/2

Data la misura degli assi e il centro di un'ellisse, trova la sua equazione

asse maggiore $B_1B_2=8$  asse minore $A_1A_2=4$  C(0;0)Dati:

Possiamo determinare le posizioni dei vertici dividendo per due i due assi: $A_1(-2;0)$ ,  $A_2(-2;0)$ ,  $B_1(0;-4)$ ,  $B_2(0;4)$ 

Applicando questi dati all'equazione canonica dell'ellisse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \longrightarrow \qquad \frac{x^2}{4^2} + \frac{y^2}{16^2} = 1$$













### Definizione

L'iperbole è il luogo geometrico dei punti P del piano per i quali è costante la differenza in modulo delle distanze da due punti fissi F1 e F2 detti fuochi:

$$|PF_1 - PF_2| = costante$$





## Rette particolari

### Fuochi sull'asse x

Fuochi sull'asse y

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

 $F_1(-c,0)$   $F_2(c,0)$   $con c = \sqrt{a^2 - b^2}$ 

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

$$F_1$$
  $O$   $F_2$   $X$ 

$$F_1(0,-c) F_2(0,c) \operatorname{con} c = \sqrt{b^2 - a^2}$$









# Iperbole particolare

Se ruotiamo la curva di 45° in senso orario oppure antiorario gli asintoti vanno a coincidere con gli assi cartesiani e si parla di iperbole riferita agli **asintoti.** 

$$xy = k$$







### **Fonti**

Dizionario

YouMath

Studenti

Altervista

Wikihow

MeeTheSkilled

LezioniDiMatematica

"Tecniche matematiche 3A"

Materiale fornito dal professore



