

Ingeniería Informática, 1–09–2005 EXAMEN DE SEPTIEMBRE

Cálculo para la Computación

DNI:	Grupo:
Apellidos y Nombre:	

- 1. (1,5 p.) Utilice los números complejos para expresar $\cos^4\theta$ en términos de cosenos de múltiplos de θ y aplique el resultado obtenido para calcular $\int_0^{\pi/4} \cos^4\theta \ d\theta$
- 2. (1.5 p.) Estudie la convergencia y sume, si es posible, las siguientes series:

$$\sum_{n=0}^{\infty} \frac{(n+1)x^n}{3^{n+2}} , \qquad \sum_{n=1}^{\infty} \frac{1}{n^n (1 - \cos \frac{1}{n!})}$$

3. (1.5 p.) Considere la función

$$f(x) = \left\{ egin{array}{ll} -1 & ext{si} & x \in [-\pi,0) \ 1 & ext{si} & x \in [0,\pi) \end{array}
ight.$$

definida en $[-\pi, \pi]$ y extendida con periodicidad a \mathbb{R} . Se pide:

- a) Calcular su desarrollo en serie de Fourier.
- b) Usar el desarrollo obtenido en el apartado anterior para calcular la serie de Fourier de la función de periodo 2π definida por f(x) = |x| en $[-\pi, \pi]$.
- 4. (1.5 p.) Calcule el máximo absoluto de la superficie $f(x,y)=2x^3-y^3$ sobre la región $x^2+y^2\leq 1$ con $y\geq -x$.
- 5. (1 p.) Utilice el cambio de variable $(u,v)=(y-x^2,x)$ para calcular la integral doble

$$\int_1^2 \int_{x^2}^4 xy \ dy dx$$

6. (1.5 p.) Calcule el volumen encerrado por las superficies:

$$x^2 + y^2 + z^2 = 1$$
 , $x^2 + y^2 + z^2 = 4$ y $x^2 + y^2 = 3z^2$

con $z \geq 0$.

7. (1.5 p.) Resuelva la ecuación $(-2y^3+1)+(3xy^2+x^3)y'=0$