Applied Probabilistic Machine Learning

LINEAR, KERNEL, AND LOGISTIC REGRESSION

HUGUES RICHARD RichardH@rki.de
IVAN TUNOV Ivan.Tunov@student.hpi.uni-potsdam.de

MF1 - GENOME COMPETENCE CENTER ROBERT KOCH INSTITUTE (RKI)
DACS HASSO PLATTNER INSTITUTE (HPI)

DECEMBER 19, 2024 (SLIDES COURTESY OF P. BENNER - BAM)

Reminder - Supervised Learning

Training data
$$\mathcal{D} = (\mathbf{x}_i, y_i)_{i=1,\dots,n}$$

Find a function
$$\hat{f}: \mathbf{x} \to \hat{f}(\mathbf{x}) = \mathbf{y}$$

Classification

Regression

$$\mathbf{y} \in \mathcal{C} = \{0,1\}$$
 (binary)
$$= \{1,\dots,\mathit{C}\} \text{ (multiclass)}$$

 $\mathbf{y} \in \mathbb{R}$

Min. misclassification error:

Minimize a loss function ℓ

$$\arg\min_{\hat{f}} \sum_{i=1}^{n} |\hat{f}(x_i) - y_i|$$

$$\sum_{i=1}^{n} \ell(\hat{f}(x_i) - y_i)$$

$$\left(\sum_{i=1}^{n} |\hat{f}(x_i) - y_i| = \sum_{i} \mathbb{I}_{\{\hat{f}(x_i) \neq y_i\}}\right)$$

(e.g.
$$\ell(x) = x^2, \ell(x) = |x|, \dots$$
)

LEARNING GOALS

- Understand linear regression and the probabilistic foundation between regression models
- Understand kernel regression when the relationship between features and outcome is not linear
- Understand logistic regression for classification.

Linear Regression

LINEAR REGRESSION

Let \mathbf{Y} be the dependent variable (response variable) and \mathbf{X} the independent variable (covariate, or predictor):

We assume the following model

$$\mathbf{Y} = f(\mathbf{X}) + \epsilon$$

where f is a linear function that models the expectation $\mathbb{E}[Y|X]$, and ϵ is a noise term (e.g. $\epsilon \sim \text{Normal}(0, \sigma^2)$)

LINEAR REGRESSION

Let \mathbf{Y} be the dependent variable (response variable) and \mathbf{X} the independent variable (covariate, or predictor):

We assume the following model

$$\mathbf{Y} = f(\mathbf{X}) + \epsilon$$

where f is a linear function that models the expectation $\mathbb{E}[Y|X]$, and ϵ is a noise term (e.g. $\epsilon \sim \text{Normal}(0, \sigma^2)$)

LINEAR REGRESSION

- We can also write $\mathbf{Y} \sim \operatorname{Normal}(f(\mathbf{X}), \sigma^2)$
- lacktriangle We assume no distribution for X
- \blacksquare We assume f is a linear function, i.e.

$$f(x) = ax + b$$

- How can we generate data $(x_i, y_i)_i$ with this model?
 - ▶ For i = 1, ..., n:
 - Select some value for x_i
 - Draw ϵ_i from Normal $(0, \sigma^2)$
 - Compute $y_i = f(x_i) + \epsilon_i$

LINEAR REGRESSION - PARAMETER ESTIMATION

- In the Bayesian framework, parameters are estimated using the posterior distribution
- We want to know the probability of our hypothesis or parameters $\theta = (a, b)$ given a set of n observations $x = (x_i)_{i=1}^n$ and $y = (x_i)_{i=1}^n$
- An estimate $\hat{\theta}$ of our parameters θ can be computed as the maximum a posterior (MAP) estimate

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \ \mathbb{P}(\theta \mid x, y)$$

- There are other choices, for instance the *posterior expectation*, which all have their justifications
- We use the MAP for linear regression, because it leads to a computationally simple solution

LINEAR REGRESSION - PARAMETER ESTIMATION

■ For a flat prior, the MAP is equivalent to the *maximum likelihood* estimate (MLE), i.e.

$$\begin{split} \hat{\theta} &= \underset{\theta}{\operatorname{arg \, max}} & \, \mathbb{P}(\theta \,|\, x, y) \\ &= \underset{\theta}{\operatorname{arg \, max}} & \, \frac{\mathbb{P}(x, y \,|\, \theta) \mathbb{P}(\theta)}{\mathbb{P}(x, y)} \\ &= \underset{\theta}{\operatorname{arg \, max}} & \, \mathbb{P}(x, y \,|\, \theta) \mathbb{P}(\theta) \\ &= \underset{\theta}{\operatorname{arg \, max}} & \, \mathbb{P}(x, y \,|\, \theta) \end{split}$$

assuming $\mathbb{P}(\theta)$ is constant¹

■ This result is not specific to linear regression models

 $^{^1} A$ uniform prior $\mathbb{P}(\theta)$ is called *improper prior* when θ is a continuous variable, because $\mathbb{P}(\theta)$ does not integrate to one

LINEAR REGRESSION - PARAMETER ESTIMATION

■ Furthermore, we have

$$\begin{split} \hat{\theta} &= \underset{\theta}{\operatorname{arg \, max}} \ \mathbb{P}(x, y \,|\, \theta) \\ &= \underset{\theta}{\operatorname{arg \, max}} \ \mathbb{P}(y \,|\, x, \theta) \mathbb{P}(x \,|\, \theta) \\ &= \underset{\theta}{\operatorname{arg \, max}} \ \mathbb{P}(y \,|\, x, \theta) \end{split}$$

- In the last step we took advantage of the fact that the distribution of our covariates x does not depend on the parameters θ , which are the slope and intercept of the linear function
- In fact, we do not have do assume a particular distribution for our covariates!

LINEAR REGRESSION - OLS

■ Plugging in our normal distribution we arrive at

$$\hat{\theta} = \arg\max_{\theta} \mathbb{P}(y_1 \dots y_n \mid x_1, \dots, x_n, \theta)$$

$$= \arg\max_{\theta} \prod_{i=1}^n \mathbb{P}(y_i \mid x_i, \theta)$$

$$= \arg\max_{\theta} \sum_{i=1}^n \log \mathbb{P}(y_i \mid x_i, \theta)$$

$$= \arg\max_{\theta} \sum_{i=1}^n \log \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(y_i - f(x_i))^2}{2\sigma^2}\right\}$$

$$= \arg\max_{\theta} \sum_{i=1}^n -(y_i - f(x_i))^2$$

LINEAR REGRESSION - OLS

The estimate

$$\hat{\theta} = \underset{\theta}{\operatorname{arg min}} \sum_{i=1}^{n} (y_i - f(x_i))^2$$
$$= \underset{\theta}{\operatorname{arg min}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

is called the ordinary least squares (OLS) estimate

- \blacksquare It minimizes the squared error between our prediction \hat{y}_i and our observations y_i
- lacktriangle In other words, it minimizes the squared residuals $\epsilon_i = y_i f(x_i)$

Linear Regression - Generalization

■ For generalizing linear regression to multiple predictors, we first define

$$x = \begin{bmatrix} 1 \\ \tilde{x} \end{bmatrix}, \qquad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

i.e. x is a vector where the first component is always 1

■ This definition allows to write

$$f(x) = b + a\tilde{x}$$

$$= \theta_1 + \theta_2 \tilde{x}$$

$$= \begin{bmatrix} 1 \\ \tilde{x} \end{bmatrix}^{\top} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$= x^{\top} \theta$$

Linear Regression - Generalization

Adding additional predictors is now very simple

$$x = \begin{bmatrix} 1 \\ x^{(2)} \\ \vdots \\ x^{(p)} \end{bmatrix}, \qquad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix}$$

- The number of predictors / features is given by p, where the first predictor is $(1, 1, ..., 1)^{\top}$
- It follows that

$$f(x) = x^{\top} \theta$$

= $\theta_1 + x^{(2)} \theta_2 + \dots + x^{(p)} \theta_p$

LINEAR REGRESSION - NOTATION

- In general, we have n observations and p predictors
- For the *i*th observation (x_i, y_i) , y_i is a scalar and x_i a vector

$$x_i = (1, x_i^{(2)}, \dots, x_i^{(p)})^{\top}$$

■ We define the matrix

$$X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(p)} \\ x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(p)} \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(2)} & \dots & x_1^{(p)} \\ 1 & x_2^{(2)} & \dots & x_2^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^{(2)} & \dots & x_n^{(p)} \end{bmatrix}$$

LINEAR REGRESSION - NOTATION

■ This notation allows us to write linear regression as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(2)} & \dots & x_1^{(p)} \\ 1 & x_2^{(2)} & \dots & x_2^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^{(2)} & \dots & x_n^{(p)} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

■ Or in matrix notation simply as

$$y = X\theta + \epsilon$$

Data matrix X

For a data matrix $X \in \mathbb{R}^{n \times p}$, rows will always correspond to observations and columns correspond to features. The first column is the vector $(1,1,\ldots,1)^{\top}$. We always assume that X has full rank, i.e. $\operatorname{rank}(X) = \min(n,p)$

LINEAR REGRESSION - OLS

If n > p and $X^{\top}X$ has full rank we can use ordinary least squared (OLS) to estimate θ :

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \|\epsilon\|_{2}^{2} = \operatorname*{arg\,min}_{\theta} \|y - X\theta\|_{2}^{2}$$

Differentiation with respect to θ and solving for the roots leads to:

$$\Rightarrow \qquad \hat{\theta} = (X^{\top} X)^{-1} X^{\top} y$$
$$= X^{\top} y \qquad \text{if } X^{\top} X = I$$

 $X(X^{\top}X)^{-1}X^{\top}$ is called a projection matrix...

see exercise sheet for the derivation of the solution

LINEAR REGRESSION - OLS PROJECTION

Let $X\theta = v_1\theta_1 + v_2\theta_2 + \dots v_p\theta_p$, where v_i denotes the *i*th column of X

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \|y - X\theta\|_{2}^{2}$$

 $X(X^{\top}X)^{-1}X^{\top}y$ projects y onto the plane defined by the columns of X

¹[Hastie et al., 2009, Bishop, 2006]

LINEAR REGRESSION - OLS PROJECTION

Let $X\theta = v_1\theta_1 + v_2\theta_2 + \dots v_p\theta_p$, where v_i denotes the *i*th column of X

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \|y - X\theta\|_2^2$$

$$\mathbb{R}^n \ (n=3, p=2)$$

If y is already inside the plane, we obtain $\epsilon = 0$

¹[Hastie et al., 2009, Bishop, 2006]

LINEAR REGRESSION - OLS PROJECTION

Let $X\theta = v_1\theta_1 + v_2\theta_2 + \dots v_p\theta_p$, where v_i denotes the *i*th column of X

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \|y - X\theta\|_{2}^{2}$$

If $p \ge n$ then $\epsilon = 0$ and for p > n we have infinitely many solutions (assuming v_i are pairwise independent)

¹[Hastie et al., 2009, Bishop, 2006]

■ For p > n the OLS estimate

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \|y - X\theta\|_{2}^{2}$$

has infinitely many solution $\hat{\theta}$ such that $\left\|y - X\hat{\theta}\right\|_2^2 = 0!$

 \blacksquare For p > n the OLS estimate

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \|y - X\theta\|_{2}^{2}$$

has infinitely many solution $\hat{\theta}$ such that $\left\|y - X\hat{\theta}\right\|_2^2 = 0!$

■ Which one should we choose?

■ For p > n the OLS estimate

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \|y - X\theta\|_{2}^{2}$$

has infinitely many solution $\hat{\theta}$ such that $\left\|y - X\hat{\theta}\right\|_{2}^{2} = 0!$

- Which one should we choose?
- Remember our initial model

$$y = X\theta + \epsilon$$

and yet the estimate $\hat{\theta}$ satisfies $y = X \hat{\theta}$

lacksquare For p>n the OLS estimate

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \|y - X\theta\|_{2}^{2}$$

has infinitely many solution $\hat{\theta}$ such that $\left\|y - X\hat{\theta}\right\|_2^2 = 0!$

- Which one should we choose?
- Remember our initial model

$$y = X\theta + \epsilon$$

and yet the estimate $\hat{\theta}$ satisfies $y = X \hat{\theta}$

■ Either $\epsilon = 0$ or $\hat{\theta}$ contains all the noise

For instance, we could take that θ with minimal length, i.e. the minimum ℓ_2 -norm solution²

$$\underset{\theta}{\operatorname{arg\,min}} \|\theta\|_2^2$$
 subject to $X\theta = y$

The solution is almost equivalent to the standard OLS solution, i.e.

$$\hat{\theta} = (X^{\top} X)^{+} X^{\top} y$$

where $(X^{\top}X)^+$ Moore-Penrose pseudoinverse³ of $X^{\top}X$.

²Common practice for training neural networks

 $^{^3 \}text{The Moore-Penrose}$ pseudoinverse of a matrix X is computed as follows: Let $X = S \Sigma \, V^\top$ be the singular value decomposition of X, where Σ is a diagonal matrix containing the singular values. $X^+ = S \Sigma^+ \, V^\top$ where Σ^+ contains the reciprocal of all non-zero singular values.

Linear Regression - Ridge Regression

Ridge Regression

The ridge regression estimate is defined as

$$\hat{\theta}(\lambda) = \underset{\theta}{\operatorname{arg\,min}} \|X\theta - y\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

where λ is called the *regularization strength* or *penalty*. Note that $\|\theta\|_2^2 = \sum_{i=2}^n \theta_i^2$, i.e. θ_1 is not constrained

■ There exists an analytical solution to the ridge estimate:

$$\hat{\theta}(\lambda) = (X^{\top}X + \lambda I)^{-1}X^{\top}y$$

■ In the overparameterized case, for $\lambda > 0$ we obtain $\|\epsilon\|_2^2 > 0$

³Convex optimization: [Boyd and Vandenberghe, 2004]

Linear Regression - Ridge Regression

- For $\lambda \to \infty$ the estimate $\lambda \hat{\theta}(\lambda)$ converges to the componentwise regression estimator
- For $\lambda \to 0$ the estimate $\hat{\theta}(\lambda)$ converges to the minimum ℓ_2 -norm OLS solution⁴
- The penalty $\lambda \|\theta\|_2^2$ can be interpreted as a Gaussian prior
- Ridge regression is useful when n < p and $n \ge p$

19

 $^{^4}A+\lambda I$ is invertible even for very small λ . In numerics, $A+\lambda I$ is also used as a trick to ensure that a matrix is positive-definite.

Kernel Regression

POLYNOMIAL REGRESSION

■ How can we change linear regression to model non-linear relations between X and Y?

REGRESSION IN FEATURE SPACE

Polynomial regression

$$\mathbf{Y} = \theta_1 + \theta_2 \mathbf{X} + \theta_3 \mathbf{X}^2 + \theta_4 \mathbf{X}^3 + \dots + \epsilon,$$

More generally, we write

$$\mathbf{Y} = \phi(\mathbf{X})\theta + \epsilon \,,$$

where $\phi: \mathbb{R}^p \to \mathbb{R}^{p'}$ is a feature map that maps points in p-dimensional input space into a p'-dimensional feature space, e.g.

$$\phi(\mathbf{X}) = (1, \mathbf{X}, \mathbf{X}^2, \mathbf{X}^3, \dots)$$

Basically linear (or ridge) regression in $p^\prime\text{-dimensional}$ feature space, but non-linear in input space

KERNEL REGRESSION

- What if we do not know the exact set of features for our data?
- Can we simply test a large amount of possible features?
- Can we have more features than observations, i.e. $n \le p$?

Ridge regression in feature space:

$$\hat{\theta}(\lambda) = \underset{\theta}{\operatorname{arg\,min}} \|\phi(X)\theta - y\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

where ϕ is applied to each row of X, i.e. $\phi(X) \in \mathbb{R}^{n \times p'}$.

Computationally expensive if $p'\gg p$ and $n\gg 1$, assuming X is not sparse.

KERNEL REGRESSION

Reformulate the ridge regression estimate

$$\hat{\theta}(\lambda) = \underset{\theta}{\operatorname{arg\,min}} \ \|\phi(X)\theta - y\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

using kernels. Let $\theta = \phi(X)^{\top}\eta$, where $\eta \in \mathbb{R}^n$ is a new parameter vector and $\theta \in \operatorname{span}(\phi(x_1), \dots, \phi(x_n)) \subset \mathbb{R}^p$. It follows that

$$\hat{\eta}(\lambda) = \underset{\eta}{\operatorname{arg\,min}} \left\| \phi(X)\phi(X)^{\top} \eta - y \right\|_{2}^{2} + \lambda \left\| \phi(X)^{\top} \eta \right\|_{2}^{2}$$
$$= \underset{\eta}{\operatorname{arg\,min}} \left\| K \eta - y \right\|_{2}^{2} + \lambda \eta^{\top} K \eta$$

where $K = \phi(X)\phi(X)^{\top} \in \mathbb{R}^{n \times n}$ is the kernel matrix.

KERNEL REGRESSION

Definition: Kernel function

A function $\kappa:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ is called a *kernel* if there exists a feature map $\phi:\mathcal{X}\to\mathcal{F}$ such that

$$\kappa(x_i, x_j) = \phi(x_i)^{\top} \phi(x_j)$$

 $K = (\kappa(x_i, x_j))_{x_i \in \mathcal{X}, x_j \in \mathcal{X}}$ is called the kernel matrix.

- lacktriangle $\mathcal X$ can be an arbitrary space, for instance DNA sequences
- lacktriangleright $\kappa(x_i,x_j)$ is interpreted as a similarity measure in feature space
- Evaluating $\kappa(x_i, x_j)$ does not always require to explicitly compute $\phi(x)$
- Not having to map data into feature space is called the kernel trick

Example Kernels

Linear kernel

$$\kappa(x_i, x_j) = x_i^{\top} x_j$$
, where $\phi(x) = x$

■ Polynomial kernel

$$\kappa(x_i, x_j) = (x_i^{\top} x_j + 1)^d$$

where d>0 is the degree. For $\mathcal{X}=\mathbb{R}^2$ and d=2

$$\phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)^{\top}$$

■ Radial basis function (RBF) kernel

$$\kappa(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|_2^2}{2\sigma^2}\right)$$

where the feature space has infinite dimensions

PREDICTIONS

Let x_{new} denote the position where we would like to compute a prediction \hat{y}

■ Linear Regression

$$\hat{y} = \phi(x_{\mathsf{new}})^{\top} \hat{\theta}$$

■ Kernel Regression

$$\hat{y} = \sum_{i=1}^{n} \kappa(x_i, x_{\text{new}}) \hat{\eta}_i = \phi(x_{\text{new}})^{\top} \phi(X)^{\top} \hat{\eta}_i$$

which requires the full training set $X = (x_i)_i \in \mathbb{R}^{n \times p}$, where we simply used the definition $\theta = \phi(X)^\top \eta$ to replace $\hat{\theta}$ in the prediction of the linear regression model

Parameters and Hyperparameters

- We call θ and η the parameters of a (kernel) regression model
- The parameters of a kernel function (e.g. σ^2 for the RBF kernel) or the regularization strength λ are also parameters of the model, but one step further up the hierarchy
- We call the parameters of a kernel function and the regularization strength hyperparameters
- In a Bayesian setting, the parameters control the likelihood function, whereas the hyperparameters parametrize the prior distribution

Kernel Regression - Pros and Cons

Pros:

- Computationally efficient regression for high-dimensional feature spaces for moderate data sets
- Implicit regularization, i.e. only as many parameters as data points (but equivalent to minimum ℓ_2 -norm solution of standard regression)

Cons:

- Kernel matrix grows quadratically with number of samples
- $m{\theta} \in \mathbb{R}^p \leadsto \eta \in \mathbb{R}^n$, which creates dependencies between features
- Interpretation of parameters in feature space requires computation of $\phi(X)^{\top}\eta$
- lacktriangle For infinite feature spaces ϕ cannot be computed
- No feature selection possible (ℓ_1 penalty)

Logistic Regression (Classification)

LINEAR REGRESSION AND CLASSIFICATION

DEFINING HYPERPLANES

■ We use the properties of the dot product to define the separating hyperplane:

$$x^{\top}\theta = ||x|| \, ||\theta|| \cos \angle$$

■ For vectors x perpendicular to θ we have $\cos \angle = 0$

Defining Hyperplanes

■ For hyperplanes with bias b we use $x^{\mathsf{T}}\theta = b$

$$x^{\top}\theta = (x_b + \tilde{x})^{\top}\theta$$
$$= \underbrace{x_b^{\top}\theta}_{=b} + \underbrace{\tilde{x}^{\top}\theta}_{=0}$$

Defining hyperplanes

■ Remember our convention:

$$x = \begin{bmatrix} 1 \\ x^{(2)} \\ \vdots \\ x^{(p)} \end{bmatrix}, \qquad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix}$$

■ Hence, instead of $x^{\top}\theta = b$ we can write $x^{\top}\theta = 0$, because $\theta_1 = -b$

SEPARATING HYPERPLANE

- $lacksquare x^{\top} \theta > 0$: predicting positive class
- $\mathbf{x}^{\mathsf{T}} \boldsymbol{\theta} < 0$: predicting negative class

33

lacktriangle We convert $x^{\top}\theta$ to probabilities

$$\mathbb{P}(Y=1 \mid x) = \sigma(x^{\top}\theta)$$

lacktriangle The function σ denotes the sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Given a training set (X, y) how do we estimate θ ?
- Option 1: Minimizing squared error (similar to OLS)

$$\hat{\theta} = \underset{\theta}{\operatorname{arg min}} \sum_{i=1}^{n} \left[y_i - \sigma(x_i^{\top} \theta) \right]$$

Problem: Not convex!

- Remember how we justified OLS for linear models?
- Option 2: Maximum likelihood

$$\hat{\theta} = \arg\max_{\theta} \mathbb{P}(y \mid X, \theta)$$

- What is the probability of (X, y)?
- lacktriangle Remember a Bernoulli experiment (coin flip) with outcomes H (head) and T (tail)
- lacktriangle H is observed with probability p
- lacksquare T is observed with probability 1-p
- The sequence HHTHT has probability

$$\mathbb{P}(HHTHT) = pp(1-p)p(1-p)$$

■ Remember the following rule of thumb:

$$\times =$$
 "and" $+ =$ "or"

For logistic regression, assume y = (1, 1, 0, 1), hence

$$\mathbb{P}(1,1,0,1\,|\,X,\theta) = \sigma(x_1^\top\theta)\sigma(x_2^\top\theta)(1-\sigma(x_3^\top\theta))\sigma(x_4^\top\theta)$$

■ Write it nicely in general form:

$$\mathbb{P}(y \mid X, \theta) = \prod_{i=1}^{n} \sigma(x_i^{\mathsf{T}} \theta)^{y_i} (1 - \sigma(x_i^{\mathsf{T}} \theta))^{1 - y_i}$$

Maximum likelihood

$$\hat{\theta} = \arg\max_{\theta} \prod_{i=1}^{n} \sigma(x_i^{\top} \theta)^{y_i} (1 - \sigma(x_i^{\top} \theta))^{1 - y_i}$$

$$= \arg\max_{\theta} \sum_{i=1}^{n} y_i \log \sigma(x_i^{\top} \theta) + (1 - y_i) \log(1 - \sigma(x_i^{\top} \theta))$$

■ Convex optimization problem, but must be solved numerically

Learning goals

- Understand linear regression and the probabilistic foundation between regression models.
 - ► OLS is the Maximum a Posteriori / Maximum Likelihood of a linear relationship between input and target.
- Understand kernel regression when the relationship between features and outcome is not linear.
 - ► Kernel methods can account for non linear relationship with the kernel trick. It allows to understand many aspects of more complex models, such as neural networks
- Understand logistic regression for classification.
 - ► We can formulate binary classification as a regression problem on the separating hyperplane, with a probabilistic formulation. We will see many learning problem can be reformulated in a regression framework.

REFERENCES

Pattern Recognition and Machine Learning. Springer.

BOYD, S. AND VANDENBERGHE, L. (2004). *Convex optimization.*

Cambridge university press.

HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. (2009).

The elements of statistical learning: data mining, inference, and prediction.

Springer Science & Business Media.