线性系统校正方法 复合校正

邢超

Outline

1 复合校正特点

② 按扰动补偿的复合校正

③ 按输入补偿的复合校正

Topic

1 复合校正特点

2 按扰动补偿的复合校正

3 按输入补偿的复合校正

复合校正特点

- 应用场合:系统中存在可测量的扰动,或者对系统的稳态精度和响应速度要求很高
- 校正方式:
 - 按扰动补偿
 - 按输入补偿

Topic

1 复合校正特点

② 按扰动补偿的复合校正

3 按输入补偿的复合校正

按扰动补偿的复合校正

- 目的: 使扰动不对系统的输出产生任何影响: $\Phi_N(s)=0$
- 条件: 扰动可测

按扰动补偿的复合校正: 设计 Gn(s)

• 对扰动的误差全补偿条件:

$$\Phi_{N}(s) = 0
\frac{G_{2} + G_{n}G_{1}G_{2}}{1 + G_{1}G_{2}} = 0
G_{2} + G_{n}G_{1}G_{2} = 0
G_{n} = \frac{-1}{G_{1}}$$

- 全补偿时, Gn(s) 的分子阶次大于分母阶次, 物理上不可实现
- 部分补偿
 - 在系统性能起主要影响的频段内近似补偿 $(n \geq m)$,
 - 稳态补偿 (lim_{s→0} G_n(s))

按扰动补偿的复合校正: 设计 Gn(s)

• 对扰动的误差全补偿条件:

$$\Phi_{N}(s) = 0
\frac{G_{2} + G_{n}G_{1}G_{2}}{1 + G_{1}G_{2}} = 0
G_{2} + G_{n}G_{1}G_{2} = 0
G_{n} = \frac{-1}{G_{1}}$$

- 全补偿时, Gn(s) 的分子阶次大于分母阶次, 物理上不可实现.
- 部分补偿
 - \bullet 在系统性能起主要影响的频段内近似补偿 $(n \geq m)$,
 - 稳态补偿 $(\lim_{s\to 0} G_n(s))$

按扰动补偿的复合校正: 设计 Gn(s)

• 对扰动的误差全补偿条件:

$$\Phi_{N}(s) = 0
\frac{G_{2} + G_{n}G_{1}G_{2}}{1 + G_{1}G_{2}} = 0
G_{2} + G_{n}G_{1}G_{2} = 0
G_{n} = \frac{-1}{G_{1}}$$

- 全补偿时, G_n(s) 的分子阶次大于分母阶次, 物理上不可实现.
- 部分补偿
 - 在系统性能起主要影响的频段内近似补偿 $(n \geq m)$,
 - 稳态补偿 (lim_{s→0} G_n(s))

按扰动补偿的复合校正示例 1

某伺服控制系统结构图如下:

- 设计对 N(s) 的全补偿校正网络 G_n(s),
- 近似全补偿校正网絡 G_{n1}(s),
- 稳态全补偿网络 G_{n2}(s)

按扰动补偿的复合校正示例 1: 解:

• 全补偿:

$$\Phi_{N}(s) = 0$$

$$\frac{C(s)}{N(s)} = 0$$

$$\frac{K_{n}}{K_{m}} + G_{n}(s) \cdot \frac{K_{1}}{T_{1}s + 1} = 0$$

$$G_{n}(s) = -\frac{K_{n}(T_{1}s + 1)}{K_{1}K_{m}}$$

• 近似全补偿: $G_{n1}(s) = -\frac{K_n}{K_1 K_m} \cdot \frac{T_1 s + 1}{T_2 s + 1}$. 其中 $T_1 \gg T_2$

• 稳态全补偿:
$$G_{n1}(s) = -\frac{K_n}{K_1 K_m}$$

按扰动补偿的复合校正示例 1: 解:

● 全补偿:

$$\Phi_{N}(s) = 0$$

$$\frac{C(s)}{N(s)} = 0$$

$$\frac{K_{n}}{K_{m}} + G_{n}(s) \cdot \frac{K_{1}}{T_{1}s + 1} = 0$$

$$G_{n}(s) = -\frac{K_{n}(T_{1}s + 1)}{K_{1}K_{m}}$$

- 近似全补偿: $G_{n1}(s) = -\frac{K_n}{K_1 K_m} \cdot \frac{T_1 s + 1}{T_2 s + 1}$. 其中 $T_1 \gg T_2$.
- 稳态全补偿: $G_{n1}(s) = -\frac{K_n}{K_1 K_m}$

按扰动补偿的复合校正示例 1: 解:

● 全补偿:

$$\Phi_{N}(s) = 0$$

$$\frac{C(s)}{N(s)} = 0$$

$$\frac{K_{n}}{K_{m}} + G_{n}(s) \cdot \frac{K_{1}}{T_{1}s + 1} = 0$$

$$G_{n}(s) = -\frac{K_{n}(T_{1}s + 1)}{K_{1}K_{m}}$$

• 近似全补偿: $G_{n1}(s) = -\frac{K_n}{K_1 K_m} \cdot \frac{T_1 s + 1}{T_2 s + 1}$. 其中 $T_1 \gg T_2$.

• 稳态全补偿: $G_{n1}(s) = -\frac{K_n}{K_1 K_m}$

Topic

1 复合校正特点

2 按扰动补偿的复合校正

③ 按输入补偿的复合校正

按输入补偿的复合校正

目的: 使输出完全跟踪输入信号, 即 C(s) = R(s)

$$C(s) = (E(s) + G_r(s)R(s))G(s)$$

$$E(s) = R(s) - C(s)$$

$$E(s) = \frac{1 - G_r(s)G(s)}{1 + G(s)}R(s)$$

G_r(s) 为按输入补偿的复合校正装置 (前馈装置) 传递函数.

按输入补偿的复合校正分析

对输入信号的误差全补偿条件:

$$E(s) = R(s) - C(s)$$

$$= \frac{1 - G_r(s)G(s)}{1 + G(s)}R(s)$$

$$= 0$$

$$G_r(s) = \frac{1}{G(s)}$$

按输入补偿的复合校正: 部分补偿:

- 采用满足跟踪精度要求的部分补偿条件,在对系统性能起主要影响的频段内实现补偿,使 G_r(s) 可物理实现.
- 设反馈系统开环传递函数: G(s), 取 $G_r(s) = \lambda_1 s$ 得:

$$G(s) = \frac{K_{V}}{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{1})}$$

$$\Phi_{e}(s) = \frac{1 - G(s)G_{r}(s)}{1 + G(s)}$$

$$= \frac{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{1}) - K_{V}\lambda_{1}s}{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{1}) + K_{V}}$$

按输入补偿的复合校正: 部分补偿:

- 采用满足跟踪精度要求的部分补偿条件,在对系统性能起主要影响的频段内实现补偿,使 G_r(s) 可物理实现.
- 设反馈系统开环传递函数: G(s), 取 $G_r(s) = \lambda_1 s$ 得:

$$G(s) = \frac{K_{V}}{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{1})}$$

$$\Phi_{e}(s) = \frac{1 - G(s)G_{r}(s)}{1 + G(s)}$$

$$= \frac{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{1}) - K_{V}\lambda_{1}s}{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{1}) + K_{V}}$$

按输入补偿的复合校正: 部分补偿 (续):

若取 λ₁ = ²/_{Kν} 则有:

$$\Phi_{e}(s) = \frac{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{2}s)}{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{1}) + K_{v}}$$

系统为 || 型系统.

• 同理, 取
$$G_r(s) = \lambda_1 s + \lambda_2 s^2, \lambda_1 = \frac{a_1}{K_v}, \lambda_2 = \frac{a_2}{K_v}$$
, 则

$$\Phi_e(s) = \frac{s(a_n s^{n-1} + a_{n-1} s^{n-2} + \dots + a_3 s^2)}{s(a_n s^{n-1} + a_{n-1} s^{n-2} + \dots + a_1) + K_v}$$

系统为 ||| 型系统

按输入补偿的复合校正: 部分补偿 (续):

若取 λ₁ = ²¹/_{Kν} 则有:

$$\Phi_{e}(s) = \frac{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{2}s)}{s(a_{n}s^{n-1} + a_{n-1}s^{n-2} + \dots + a_{1}) + K_{v}}$$

系统为 || 型系统.

• 同理, 取
$$G_r(s) = \lambda_1 s + \lambda_2 s^2, \lambda_1 = \frac{a_1}{K_v}, \lambda_2 = \frac{a_2}{K_v}$$
,则

$$\Phi_e(s) = \frac{s(a_n s^{n-1} + a_{n-1} s^{n-2} + \dots + a_3 s^2)}{s(a_n s^{n-1} + a_{n-1} s^{n-2} + \dots + a_1) + K_v}$$

系统为 ||| 型系统.

前馈系统分析

• 前馈

• 误差全补偿

$$C(s) = R(s)$$

 $C(s) = R(s)G_r(s)G(s) + E(s)G_c(s)G(s)$
 $E(s) = R(s) - C(s) = 0$
 $G(s) = 1$

前馈系统分析

• 前馈

误差全补偿

$$C(s) = R(s)$$

$$C(s) = R(s)G_r(s)G(s) + E(s)G_c(s)G(s)$$

$$E(s) = R(s) - C(s) = 0$$

$$G_r(s)G(s) = 1$$

前馈系统部分补偿:

$$\Phi_{\rm e}^{(0)}(s) = \frac{1}{1 + G_c(s)G(s)} \qquad \Phi_{\rm e}(s) = \frac{1 - G(s)G_r(s)}{1 + G_c(s)G(s)}$$

• 设

$$G(s)G_r(s) = \frac{\lambda_0 + \lambda_1 s + \lambda_2 s^2 + \dots + \lambda_n s^n}{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}$$

。得

$$\Phi_e(s) = \frac{a_0 + a_1 s + \dots + a_n s^n - (\lambda_0 + \lambda_1 s + \dots + \lambda_n s^n)}{(a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n)(1 + G_e(s)G(s))}$$

将 Φ_o(s) 与 Φ⁽⁰⁾(s) 比较可知。

$$\begin{cases} \lambda_i = a_i & i = 1, 2, \dots, k \\ \lambda_i = 0 & i = k + 1, \dots, n \end{cases}$$

d,系统类型可提高 k

前馈系统部分补偿:

$$\Phi_{\rm e}^{(0)}(s) = \frac{1}{1 + G_{\rm c}(s)G(s)} \qquad \Phi_{\rm e}(s) = \frac{1 - G(s)G_{\rm r}(s)}{1 + G_{\rm c}(s)G(s)}$$

• 设:

$$G(s)G_r(s) = \frac{\lambda_0 + \lambda_1 s + \lambda_2 s^2 + \dots + \lambda_n s^n}{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}$$

。得

$$\Phi_{e}(s) = \frac{a_0 + a_1 s + \dots + a_n s^n - (\lambda_0 + \lambda_1 s + \dots + \lambda_n s^n)}{(a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n)(1 + G_{e}(s)G(s))}$$

• 将 $\Phi_a(s)$ 与 $\Phi_a^{(0)}(s)$ 比较可知, 当

$$\begin{cases} \lambda_i = a_i & i = 1, 2, \dots, k \\ \lambda_i = 0 & i = k + 1, \dots, n \end{cases}$$

时, 系统类型可提高 k

前馈系统部分补偿:

$$\Phi_{e}^{(0)}(s) = \frac{1}{1 + G_{c}(s)G(s)}$$

$$\Phi_{e}(s) = \frac{1 - G(s)G_{r}(s)}{1 + G_{c}(s)G(s)}$$

• 设:

$$G(s)G_r(s) = \frac{\lambda_0 + \lambda_1 s + \lambda_2 s^2 + \dots + \lambda_n s^n}{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}$$

• 得:

$$\Phi_{e}(s) = \frac{a_0 + a_1 s + \dots + a_n s^n - (\lambda_0 + \lambda_1 s + \dots + \lambda_n s^n)}{(a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n)(1 + G_{c}(s)G(s))}$$

• 将 $\Phi_e(s)$ 与 $\Phi_e^{(0)}(s)$ 比较可知, 当

$$\begin{cases} \lambda_i = a_i & i = 1, 2, \dots, k \\ \lambda_i = 0 & i = k + 1, \dots, n \end{cases}$$

时,系统类型可提高k

按输入补偿的复合校正

前馈系统部分补偿:

$$\Phi_{\rm e}^{(0)}(s) = \frac{1}{1 + G_c(s)G(s)}$$

$$\Phi_{\rm e}(s) = \frac{1 - G(s)G_r(s)}{1 + G_c(s)G(s)}$$

• 设:

$$G(s)G_r(s) = \frac{\lambda_0 + \lambda_1 s + \lambda_2 s^2 + \dots + \lambda_n s^n}{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}$$

• 得:

$$\Phi_{e}(s) = \frac{a_0 + a_1 s + \dots + a_n s^n - (\lambda_0 + \lambda_1 s + \dots + \lambda_n s^n)}{(a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n)(1 + G_{c}(s)G(s))}$$

• 将 $\Phi_e(s)$ 与 $\Phi_e^{(0)}(s)$ 比较可知, 当

$$\begin{cases} \lambda_i = a_i & i = 1, 2, \dots, k \\ \lambda_i = 0 & i = k + 1, \dots, n \end{cases}$$

时,系统类型可提高 k

前馈系统分析 (续) 稳定性分析

$$\Phi_0(s) = \frac{G_c(s) G(s)}{1 + G_c(s) G(s)}$$

$$\Phi(s) = \frac{(G_c(s) + G_r(s)) G(s)}{1 + G_c(s) G(s)}$$

• 当 G_r(s) 极点实部小于 0 时,校正后系统稳定性不变。

前馈系统分析 (续) 稳定性分析

$$\Phi_0(s) = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)}$$

$$\Phi(s) = \frac{(G_c(s) + G_r(s))G(s)}{1 + G_c(s)G(s)}$$

• 当 G_r(s) 极点实部小于 0 时,校正后系统稳定性不变。

按输入补偿的复合校正示例 1:

设计 G_r(s)

- 实现完全补偿
- 使系统等效为 || 型系统
- 使系统等效为 ||| 型系统

按输入补偿的复合校正示例 1(续):

• 取
$$G_r(s) = \lambda_1 s + \lambda_2 s^2$$
, 得:

$$\begin{split} \Phi_e &= \frac{1 - G_r(s) \frac{K_2}{s(T_2 s + 1)}}{1 + \frac{K_1}{T_1 s + 1} \frac{K_2}{s(T_2 s + 1)}} \\ &= \frac{s(T_2 s + 1) - G_r(s) K_2}{s(T_2 s + 1) (1 + \frac{K_1}{T_1 s + 1} \frac{K_2}{s(T_2 s + 1)})} \\ &= \frac{s(T_2 s + 1) - (\lambda_1 s + \lambda_2 s^2) K_2}{s(T_2 s + 1) (1 + \frac{K_1}{T_1 s + 1} \frac{K_2}{s(T_2 s + 1)})} \end{split}$$

•
$$\mathbb{R}$$
 $\lambda_1 = \frac{1}{K_2}, \lambda_2 = 0$ 则系统为 || 型系统,

• 取
$$\lambda_1 = \frac{1}{K_2}, \lambda_2 = \frac{T_2}{K_2}$$
 则能实现完全补偿.

按输入补偿的复合校正示例 1(续):

• 取 $G_r(s) = \frac{\lambda_1 s + \lambda_2 s^2}{T_{s+1}}$, 得:

$$\begin{split} \Phi_e &= \frac{1 - G_r(s) \frac{K_2}{s(T_2s+1)}}{1 + \frac{K_1}{T_1s+1} \frac{K_2}{s(T_2s+1)}} \\ &= \frac{s(T_2s+1)(Ts+1) - (\lambda_1s+\lambda_2s^2)K_2}{s(Ts+1)(T_2s+1)(1 + \frac{K_1}{T_1s+1} \frac{K_2}{s(T_2s+1)})} \\ &= \frac{TT_2s^3 + (T+T_2)s^2 + s - (\lambda_1s+\lambda_2s^2)K_2}{s(Ts+1)(T_2s+1)(1 + \frac{K_1}{T_1s+1} \frac{K_2}{s(T_2s+1)})} \\ \bullet ~~ \mathbb{R} ~~ \lambda_1 &= \frac{1}{K_2}, \lambda_2 = \frac{T_2+T}{K_2} ~~ \textrm{则 系统为 III} ~~ \textrm{型系统}. \end{split}$$

按输入补偿的复合校正示例 1(续):

• 取
$$G_r(s) = \frac{\lambda_1 s + \lambda_2 s^2}{(T_3 s + 1)(T_4 s + 1)}$$
, 得:
$$\Phi_e = \frac{1 - G_r(s) \frac{K_2}{s(T_2 s + 1)}}{1 + \frac{K_1}{T_1 s + 1} \frac{K_2}{s(T_2 s + 1)}}$$

$$= \frac{s(T_2 s + 1)(T_3 s + 1)(T_4 s + 1) - (\lambda_1 s + \lambda_2 s^2) K_2}{s(T_3 s + 1)(T_4 s + 1)(T_2 s + 1)(1 + \frac{K_1}{T_1 s + 1} \frac{K_2}{s(T_2 s + 1)})}$$
• 取 $\lambda_1 = \frac{1}{K_2}, \lambda_2 = \frac{T_2 + T_3 + T_4}{K_2}$ 则系统为 III 型系统.