Conductometric titration to determine the strength of strong acid by strong base

Conductometric titration

 Titration in which conductance measurement are made use of in determining the end-point

 Method used to determine end point in acidbase reactions, precipitation reactions or complexation reactions

Theory

Ohm's Law:

Resistivity, p:

a material property that is independent of sample size and

geometry

Conductivity, σ

$$\sigma = \frac{1}{\rho}$$

Depends on no. of free ions, charge & size of the ions, mobility of the ions

Titration curve of a strong acid (HCI) with a strong base (NaOH)

- Before NaOH is added, the conductance is high due to the presence of highly mobile H⁺
- When the NaOH is added, the conductance falls due to the replacement of H⁺ by the added Na⁺ as H⁺ ions react with OH⁻ ions to form un-dissociated water

$$H^{+} + Cl^{-} + Na^{+} + OH^{-} = Na^{+} + Cl^{-} + H_{2}O$$

- This decrease in the conductance continues till the equivalence point
- At the equivalence point, the solution contains only NaCl
- After the equivalence point, the conductance increases due to the large conductivity of OH⁻ ions
- You will get a titration curve point of intersection of the two lines gives the point of neutralization i.e. equivalence point

<u>AIM:</u> Conductometric titration to determine the strength of strong acid (HCl) by strong base (NaOH)

Procedure:

- Rinse the conductivity cell with double distilled water
- Pipette out 20 mL HCl (unknown conc.) in a beaker and dip the conductivity cell in it
- Add small amount of NaOH (0.1N) from burette, stir and measure the conductance
- Measure conductance after each addition
- Take at least five readings after the end point

Observation Table

Vol. of NaOH added (V ₂ , mL)	Conductance (S)

Plot Graph

Let, V_2 be the volume of 0.1N (N_2) NaOH required to complete the neutralization (end point volume from the graph) 20 mL (V_1) of xN (N_1) HCl

Calculations:

$$N_1 V_1 = N_2 V_2$$
 , $N_1 = N_2 V_2 / V_1$

Strength(g/L) = Normality × Eq.wt.
=
$$N_1 \times 36.5$$

For example:

OBSERVATION TABLE:

No.	Volume of NaOH added (V₂) (ml)	Conductance (S)
1	0	3.34×16 ³
2		3-12×10-3
3	2	269X10 ⁻³
4	3	2.43×10-3
5	4	2.07×10-3
6	5	1.81x 10-3
7	6	1.57×163
8	7	1.29×10-3
9	8	1.08× 10-3
10	9	0.84 × 15-3
11	10	0.91×10-3
12	15	1.05 X10-3
13	12	1.15×10-3
14	13	1.28×153
15	14	1.37×10-3

PLOT GRAPHS:-

(i) Conductance → Volume of NaOH added (mL)

Results:

Normality of HCl = $_$ N Strength of HCl = $_$ g/L