ΟΠΤΙΚΑ ΔΙΚΤΥΑ 1

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΕΥΡΕΙΑΣ ΖΩΝΗΣ

Πανεπιστήμιο Πατρών
Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τομέας Τηλεπικοινωνιών και Τεχνολογίας Πληροφορίας
Εργαστήριο Ενσύρματης Τηλεπικοινωνίας

ΠΕΡΙΓΡΑΜΜΑ ΠΑΡΟΥΣΙΑΣΗΣ

- **ΙΣΤΟΡΙΚΑ ΣΤΟΙΧΕΙΑ**
- Ο ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΟΠΤΙΚΩΝ ΙΝΩΝ
- Ο ΟΠΤΙΚΟ ΣΥΣΤΗΜΑ ΕΠΙΚΟΙΝΩΝΙΩΝ
- Ο ΟΠΤΙΚΗ ΠΟΛΥΠΛΕΞΙΑ
- ΟΠΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΔΙΚΤΥΩΝ
- Ο ΟΠΤΙΚΑ ΔΙΚΤΥΑ
- ☐ TRAFFIC GROOMING

ΠΕΡΙΓΡΑΜΜΑ ΠΑΡΟΥΣΙΑΣΗΣ

ΙΣΤΟΡΙΚΑ ΣΤΟΙΧΕΙΑ

- LOXAPAKTHPIZTIKA OFITIKON INON
 - OUTITIKO ZYZTHMA EUIKOINONION

 - OUTILIKEZ VIALVEEIZ VIKLYÖN

 - DIRAFFIC GROOMING

ΙΣΤΟΡΙΚΑ ΣΤΟΙΧΕΙΑ (1/2)

- **1880** Εφεύρεση του φωτοφώνου (A.G. Bell)
- 1930 Πρώτος οπτικός κυματοδηγός (Η. Lamm)
- 1956 Ανακάλυψη οπτικής ινάς (N.S. Kapany)
- 1958 Ανακάλυψη του laser (A.L. Schalow C.H. Townes)
- 1966 Χρήση της οπτικής ίνας στις οπτικές τηλεπικοινωνίες (C. K. Kao)
- 1977 Πρώτο δίκτυο οπτικών ινών (Chicago USA)

IΣΤΟΡΙΚΑ ΣΤΟΙΧΕΙΑ (2/2)

- 1988 Εγκατάσταση πρώτου υπερατλαντικού καλωδίου οπτικών ινών
- 1992: Εφαρμογή της τεχνολογίας WDM (Wavelength Division Multiplexing)
- 2001 Οπτικά συστήματα λειτουργούν με ταχύτητα 10 Tb/s
- Σήμερα Οπτικά δίκτυα πρόσβασης Παθητικά Οπτικά Δίκτυα
- **Κοντινό μέλλον** Υπηρεσία FTTH. Προσφορά 100 Mb/s σε κάθε χρήστη

ΠΕΡΙΓΡΑΜΜΑ ΠΑΡΟΥΣΙΑΣΗΣ

CLIZIOPIKA ZIOIXEIA

Ο ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΟΠΤΙΚΩΝ ΙΝΩΝ

- DOLLIKO ZAZIHMY ELIKOINUNIUN
- OUTILIKEZ VIALVEEIZ VIKLYÖN
- DIRAFFIC GROOMING

ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΟΠΤΙΚΩΝ ΙΝΩΝ

- Μεγάλο εύρος ζώνης
- Πολύ μικρό μέγεθος
- Χαμηλό κόστος
- Χαμηλή εξασθένηση
- Αναισθησία σε παρεμβολές
- Πολύ μικρός ρυθμός λαθών: 10⁻¹⁵ (χαλκός 10⁻⁴ 10⁻⁸)
- Δεν υπάρχει διαφωνία και παρεμβολές μεταξύ οπτικών ινών στο ίδιο καλώδιο

ΟΠΤΙΚΟΣ ΚΥΜΑΤΟΔΗΓΟΣ (1/2)

8 μm πυρήνας, 125 μm μανδύας

α) Μονοτροπική ίνα βηματικού δείκτη

β) Πολυτροπική ίνα βηματικού δείκτη

50, 62.5, 100 μm πυρἡνας, 125 μm μανδύας

γ) Πολυτροπική ίνα διαβαθμισμένου δείκτη

ΟΠΤΙΚΟΣ ΚΥΜΑΤΟΔΗΓΟΣ (2/2)

Η ελάχιστη γωνία φ που υποστηρίζει ολική εσωτερική ανάκλαση μέσα στην ίνα δίνεται από τη σχέση:

$$\sin \phi_{\min} = \frac{n_2}{n_1}$$

ΕΞΑΣΘΕΝΗΣΗ

- Απορρόφηση υλικού
- Σκέδαση Rayleigh
- Ατέλειες του κυματοδηγού
- Εξαρτάται από το μήκος κύματος

ΠΕΡΙΓΡΑΜΜΑ ΠΑΡΟΥΣΙΑΣΗΣ

- U IZTOPIKA ZTOTXETA
- DXAPAKTHPIZTIKA OFITIKON INON
- Ο ΟΠΤΙΚΟ ΣΥΣΤΗΜΑ ΕΠΙΚΟΙΝΩΝΙΩΝ

- DIRAFFIC GROOMING

ΟΠΤΙΚΌ ΣΥΣΤΗΜΑ ΕΠΙΚΟΙΝΩΝΙΩΝ

- Οπτικός Πομπός: μία παλμοσειρά εισόδου διαμορφώνει ένα οπτικό σήμα που παράγεται από laser
- Τηλεπικοινωνιακό κανάλι: Οπτική ίνα
- Οπτικός δέκτης: φωτοανιχνετής που μετατρέπει το οπτικό σήμα σε ηλεκτρικό

16/9/2008 12

ΟΠΤΙΚΟΣ ΠΟΜΠΟΣ

- Πηγή οπτικού σήματος: laser ή LED
- Διαμορφωτής: Διαμορφώνει το οπτικό φέρον
- Οπτικός συζεύκτης: Συνδέει τον οπτικό πομπό με την iva

ΟΠΤΙΚΟΙ ΔΕΚΤΕΣ

- Οπτικός συζεύκτης: συνδέει την οπτική ίνα με το δέκτη
- **Φωτοανιχνευτής**: χρήση φωτοδιόδων ημιαγωγού
- Αποδιαμορφωτής:
 - > FSK PSK: ομόδυνες ή ετερόδυνες τεχνικές
 - IM-DD: κύκλωμα απόφασης ανιχνεύει 1 ή 0

ΜΟΡΦΕΣ ΔΙΑΜΟΡΦΩΣΗΣ

Δύο μορφές διαμόρφωσης της οπτικής παλμοροής

Return to Zero (RZ)

Non-Return to Zero (NRZ)

16/9/2008

15

ΠΕΡΙΓΡΑΜΜΑ ΠΑΡΟΥΣΙΑΣΗΣ

- CLIZIOPIKA ZIOIXEIA
- LIXAPAKTHPIZTIKA OFITIKON INON
 - DOLLIKO ZYZIHMY ELIKOINUNIUN
 - Ο ΟΠΤΙΚΗ ΠΟΛΥΠΛΕΞΙΑ
 - OULLIKEZ VIALVEEIZ VIKLAUN

 - DIRAFFIC GROOMING

ΜΟΡΦΕΣ ΟΠΤΙΚΗΣ ΠΟΛΥΠΛΕΞΙΑΣ

Η αποτελεσματική αξιοποίηση του εύρους ζώνης των οπτικών καναλιών απαιτεί την ύπαρξη πολυπλεξίας των σηματών που μεταδίδονται

Time Division

Multiplexing (TDM)

Πολύπλεξη με διαίρεση μήκους κύματος

Wavelength Division Multiplexing (WDM)

Wavelength Division Multiplexing (1/2)

- Δεν υπάρχει παρεμβολή μεταξύ οπτικών σημάτων διαφορετικού μήκους κύματος
- Συνδυάζονται ροές δεδομένων στον ίδιο φυσικό φορέα
- Αποτελεσματική χρήση του εύρους ζώνης

Wavelength Division Multiplexing (2/2)

- Coarse WDM: 8 16 κανάλια με απόσταση 20 nm
- Dense WDM: >32 κανάλια με απόσταση 0.4 2 nm
- 10, 20 ή 40 Gbps avà κανάλι
- Μη γραμμικά φαινόμενα περιορίζουν την αύξηση του αριθμού των καναλιών
- Η απόσταση πομπού δέκτη εξαρτάται από τον αριθμό των καναλιών και τον ρυθμό μετάδοσης

• Σε μεγάλες αποστάσεις χρησιμοποιούνται αναγεννητές ή

οπτικοί ενισχυτές

Κανάλια Ν	Ρυθμός Δυφίου Β (Gbps)	Χωρητικότητα NB (Tbps)	Απόσταση L (km)
120	20	2.40	6200
132	20	2.64	120
160	20	3.20	1500
82	40	3.28	300
256	40	10.24	100
273	40	10.92	117

Optical Time Division Multiplexing

- Ν οπτικά σήματα με Β ρυθμό μετάδοσης χρησιμοποιούν την ίδια φέρουσα συχνότητα για να σχηματίσουν σήμα με ρυθμό μετάδοσης ΝΒ
- Μειώνονται τα προβλήματα λόγω μη γραμμικότητας

ΠΕΡΙΓΡΑΜΜΑ ΠΑΡΟΥΣΙΑΣΗΣ

- DIZTOPIKA ZTOIXEIA
- LIXAPAKTHPIZTIKA OFITIKON INON
 - DOLLIKO ZYZIHMY ELIKOINUNIUN

 - Ο ΟΠΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΔΙΚΤΥΩΝ

 - DIRAFFIC GROOMING

METAΓ Ω ΓH (1/2)

- Optical-Electrical- Optical διακόπτης
- All-optical διακόπτης

METAΓ Ω ΓH (2/2)

Οι Ο-Ε-Ο διακόπτες προσφέρουν:

- Μετατροπή μήκους κύματος
- Εὐκολη προσθαφαίρεση δεδομένων σε ένα μήκος κύματος →Add-Drop Multiplexers
- Οικονομικοί
- Προσωρινή αποθήκευση δεδομένων
- Μελετάται ο συνδυασμός τους με τους αμιγώς οπτικούς διακόπτες, για βέλτιστη λειτουργία μεταγωγής στους κόμβους

ΜΕΙΟΝΕΚΤΗΜΑ: Περιορισμός της ταχύτητας μετάδοσης, η οποία καθορίζεται από την ταχύτητα επεξεργασίας των ηλεκτρονικών διατάξεων

ΠΟΛΥΠΛΕΚΤΕΣ ΠΡΟΣΘΑΦΑΙΡΕΣΗΣ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ

Wavelength Add-Drop Multiplexers-WADMs ἡ Optical Add-Drop Multiplexers-OADM

ΠΑΘΗΤΙΚΟΣ ΑΣΤΕΡΑΣ (1/2)

- Ο παθητικός αστέρας είναι μία διάταξη ευρύεκπομπής (broadcast)
- Ένα σήμα που εισάγεται στη διάταξη υφίσταται διαίρεση ισχύος και εμφανίζεται σε όλες τις εξόδους
- Χρησιμοποιείται στα παθητικά οπτικά δίκτυα

ΠΑΘΗΤΙΚΟΣ ΑΣΤΕΡΑΣ (2/2)

ΠΑΘΗΤΙΚΟΣ ΔΡΟΜΟΛΟΓΗΤΗΣ (1/2)

- Passive Router: πραγματοποιεί τη μεταγωγή όλων των μηκών κύματος μίας οπτικής ίνας στην είσοδο, στα ίδια μήκη κύματος σε μία οπτική ίνα εξόδου
- Μπορεί να επιτρέψει την επαναχρησιμοποίηση μήκους κύματος (wavelength reuse)
- Η διαδικασία επιλογής των μηκών κύματος εξόδου πραγματοποιείται με βάση ένα πίνακα δρομολόγησης (routing matrix)

16/9/2⁰⁰⁸ 27

ΠΑΘΗΤΙΚΟΣ ΔΡΟΜΟΛΟΓΗΤΗΣ (2/2)

ENEPΓΟΣ ΔΙΑΚΟΠΤΗΣ (1/2)

- Ένας ΝχΝ ενεργός διακόπτης επιτρέπει την επαναχρησιμοποίηση μηκών κύματος και υποστηρίζει Ν² ταυτόχρονες συνδέσεις
- Ο πίνακας δρομολόγησης μπορεί να επαναπροσδιοριστεί κατ' αίτηση (on demand)
- Απαιτεί την παροχή ισχύος και δεν είναι ανεκτικός έναντι βλαβών σε σχέση με τον παθητικό αστέρα και τον παθητικό δρομολογητή

ENEPΓΟΣ ΔΙΑΚΟΠΤΗΣ (2/2)

ΠΕΡΙΓΡΑΜΜΑ ΠΑΡΟΥΣΙΑΣΗΣ

- CHIZTOPIKA ZTOIXEIA
- LIXAPAKTHPIZTIKA OFITIKON INON
 - DOLLIKO ZYZIHMY ELIKOINUNIUN

 - OUNTED VIATABEIZ VIKTYNN
 - **ΟΠΤΙΚΑ ΔΙΚΤΥΑ**
 - DIRAFFIC GROOMING

ΟΠΤΙΚΑ Δ IKTYA (1/2)

ΟΠΤΙΚΑ Δ IKTYA (2/2)

Optical Burst Switched Network

33

Optical Packet Switched Network

Dynamic Routed WDM Network

Static Routed WDM Network

Wavelength Add-Drop Multiplexer WDM Network

Point-to-Point WDM Network

16/9/2008 Χρόνος

Point-to-Point WDM Networks (1/3)

- Πρώτη γενιά οπτικών δικτύων
- Το οπτικό δίκτυο περιορίζεται μόνο στη φυσική ζεύξη κόμβων με χρήση οπτικής ίνας
- Οπτοηλεκτρονική μετατροπή στους κόμβους
- Υψηλό overhead

Point-to-Point WDM Networks (2/3)

Η σύνδεση δύο κόμβων με οπτικές ίνες μπορεί να επιτευχθεί είτε με τη χρήση μίας ίνας και την υιοθέτηση της WDM τεχνολογίας

Μήκος ζέυξης < 50 Km: χρήση πολλών ινών

Μήκος ζέυξης > 50 Km: χρήση τεχνολογίας WDM

Συστήματα μετάδοσης WDM που χρησιμοποιούνται για ζεύξεις σημείου-προς-σημείο είναι εμπορικά διαθέσιμες εδώ και μία δεκαετία

Ο αριθμός των καναλιών ποικίλει, με μέγιστο αριθμό σήμερα τα 160 και με την προοπτική να αυξηθούν σε 320 πολύ σύντομα.

Point-to-Point WDM Networks (3/3)

Wavelength Add-Drop Multiplexer WDM Networks

- Η δεύτερη γενιά οπτικών δικτύων χρησιμοποιεί πολυπλέκτες προσθαφαίρεσης μήκους κύματος
- Οπτοηλεκτρονική μετατροπή μόνο σε δεδομένα που ξεκινούν ή τερματίζουν στον κόμβο
- Προσφέρεται η δυνατότητα μετατροπής μήκους κύματος
- Μείωση του overhead, κυρίως στις περιπτώσεις δικτύων δακτυλίου

ΔΙΚΤΎΑ ΔΡΟΜΟΛΟΓΉΣΗΣ ΜΗΚΟΎΣ ΚΎΜΑΤΟΣ (1/2)

- Μεταγωγή οπτικού κυκλώματος
- Εγκαθίδρυση lightpaths
- Ένα lightpath μπορεί να επεκτείνεται σε πολλές οπτικές ζεύξεις και οι ενδιάμεσοι κόμβοι παρέχουν μία οπτική παράκαμψη για την υποστήριξη του lightpath
- Ανακύπτει το πρόβλημα της δρομολόγησης και της ανάθεσης μηκών κύματος

ΔΙΚΤΎΑ ΔΡΟΜΟΛΟΓΉΣΗΣ ΜΗΚΟΎΣ ΚΎΜΑΤΟΣ (2/2)

- Σταθμός πρόσβασης: Περιέχει ρυθμιζόμενους πομποδέκτες
- Διακόπτης: Περιέχει οπτικούς διακόπτες και ίσως ενισχυτές, μετατροπείς μήκους κύματος κ.τ.λ.

ΔΙΚΤΎΑ ΔΡΟΜΟΛΟΓΉΣΗΣ ΜΗΚΟΎΣ ΚΥΜΑΤΌΣ – ΣΤΑΤΙΚΉ ΔΡΟΜΟΛΟΓΉΣΗ

- Στη Static Lightpath Establishment (SLA) το σύνολο των συνδέσεων είναι γνωστό εξαρχής
- Εφόσον ένα lightpath δεν είναι δυνατόν να εγκατασταθεί, θεωρείται φραγμένο
- Η ανάθεση των μηκών κύματος πραγματοποιείται είτε εξαρχής, είτε πραγματοποιείται κατά την αίτηση εγκαθίδρυσης του lightpath
- Βασικό ζήτημα η ανεύρεση ελευθέρων μηκών κύματος κατά μήκος του lightpath

MEONEKTHMATA

Μεγάλες πιθανότητες απώλειας σύνδεσης

Αδυναμία διαχείρησης του προβλήματος πτώσης ζεύξεων

ΔΙΚΤΎΑ ΔΡΟΜΟΛΟΓΉΣΗΣ ΜΗΚΟΎΣ ΚΥΜΑΤΌΣ – ΕΝΑΛΛΑΚΤΙΚΉ ΔΡΟΜΟΛΟΓΉΣΗ

- Στη Fixed-Alternate Routing (FAR) χρησιμοποιείται ένα προκαθορισμένο σύνολο διαδρομών για τη σύνδεση δύο κόμβων
- Οι εναλλακτικές διαδρομές δεν πρέπει να διαθέτουν κοινές ζεύξεις
- Η χρήση της FAR παρέχει μικρό διαχειριστικό κόστος και ένα μικρό βαθμό ανοχής στις αποτυχίες των ζεύξεων

ΠΛΕΟΝΕΚΤΗΜΑΤΑ

Μειώνει τις πιθανότητες απώλειας σύνδεσης Παρέχει λιγότερες απώλειες, σε σχέση με τη χρήση μετατροπέων μήκους κύματος

ΔΙΚΤΎΑ ΔΡΟΜΟΛΟΓΉΣΗΣ ΜΗΚΟΎΣ ΚΥΜΑΤΌΣ – ΔΥΝΑΜΙΚΉ ΔΡΟΜΟΛΟΓΉΣΗ

- Στη δυναμική ανάθεση (Dynamic Lightpath Establishment-DLA), η ανάθεση ενός lightpath πραγματοποιείται με την άφιξη μίας αίτησης σύνδεσης
- Σημαντική αύξηση του overhead, καθώς απαιτείται η συνεχής παρακολούθηση του δικτύου
- Η ελαχιστοποίηση της πιθανότητας απώλειας σύνδεσης και η μεγιστοποίηση του αριθμού του αριθμού των συνδέσεων καθορίζονται από τον τρόπο που έχει οριστεί το μέγεθος του δικτύου, αλλά και από τη μέθοδο ανάθεσης των lightpaths

ΠΕΡΙΓΡΑΜΜΑ ΠΑΡΟΥΣΙΑΣΗΣ

- DIZTOPIKA ZTOIXEIA
- LDXAPAKTHPIZTIKA OFITIKON INON
 - DOLLIKO ZYZIHMY ELIKOINUNIUN

 - OULLIKEZ VIVIVEEIZ VIKLAUN

□ TRAFFIC GROOMING

TRAFFIC GROOMING (1/4)

- Στα WDM δίκτυα η χωρητικότητα κάθε lightpath είναι ιδιαίτερα υψηλή (10 Gbps, - 40 Gbps)
- Ένα πολύ μικρό ποσοστό των χρηστών του δικτύου αναμένεται να αξιοποιήσει αυτές τις ταχύτητες

TRAFFIC GROOMING

τεχνική της ταυτόχρονης μετάδοσης ροών δεδομένων χαμηλής ταχύτητας στον κοινό φορέα του μήκους κύματος μίας οπτικής ίνας

TRAFFIC GROOMING (2/4)

- Βασική ιδέα του traffic grooming είναι η διαίρεση του διαθέσιμου εύρους ζώνης κάθε μήκους κύματος σε ένα αριθμό από time-slots
- Ένα ἡ περισσότερα από αυτά τα time-slots ανατίθενται στους χρήστες ανάλογα με τις απαιτήσεις τους σε εύρος ζώνης

Ο καταμερισμός του εύρους ζώνης στους χρήστες

Dedicated Wavelength Grooming - DWG Shared Wavelength
Grooming - SWG

Static traffic Dynamic traffic

TRAFFIC GROOMING (3/4)

To traffic grooming με στατική κίνηση είναι ένα πρόβλημα διπλής βελτιστοποίησης:

Όταν δεν υπάρχουν απώλειες συνδέσεων και το δίκτυο διαθέτει αρκετούς πόρους ώστε να εξυπηρετήσει όλες τις αιτήσεις σύνδεσης, ο κύριος στόχος είναι η ελαχιστοποίηση του κόστους του δικτύου

Όταν υπάρχουν απώλειες συνδέσεων, ο κύριος στόχος αποτελεί η μεγιστοποίηση της διεκπεραιωτικής ικανότητας (throughput) του δικτύου

16/9/2008 46

TRAFFIC GROOMING (4/4)

Το πρόβλημα του traffic grooming:

Καθορισμός των lightpaths ώστε να καλύπτονται όλες οι συνδέσεις, με δεδομένη τη διαμόρφωση του δικτύου και το σύνολο των αιτήσεων σύνδεσης

Το πρόβλημα του traffic grooming μπορεί να διαιρεθεί σε 4 κατηγορίες, οι οποίες δεν είναι απαραίτητα ανεξάρτητες

- Καθορισμός της (ιδεατής virtual) τοπολογίας των lightaths.
- Δρομολόγηση των lightpaths στη φυσική τοπολογία του δικτύου.
- Ανάθεση των μηκών κύματος στα lightpaths.
- Δρομολόγηση της κίνησης στην ιδεατή τοπολογία

ΑΝΑΦΟΡΕΣ

- 1. B. Mukherjee, "Optical WDM Networks", Springer, 2006.
- 2. B. Mukherjee, "Optical Communication Networks", McGraw-Hill, 1997.
- 3. G. P. Agrawal," Fiber-Optic Communications Systems, Third Edition", John Wiley, 2002.
- 4. A. K. Dutta, N. K. Dutta, and M. Fujiwara, "WDM Technologies: Active Optical Components", Elsevier Science, 2002.
- 5. I. Glesk, R.J Runser, and P.R Prucnal, "New Generation of Devices for All Optical Communications", *Acta Physica Slovaca*, Vol.51 No.2, pp. 151-162, January 2001.
- 6. J. P. Jue and V. M. Vokkarane, "Optical Burst Switched Networks", Springer Science, 2005.
- 7. N. Bouabdallah, "Sub-Wavelength Solutions for Next-Generation Optical Networks", *IEEE Communications Magazine*, pp. 36-43, August 2007.
- 8. K. M. Sivalingam, S. Subramaniam, "Emerging Optical Network Technologies", Springer Science, 2005.
- 9. K.E. Zoiros, J. Vardakas, C.S. Koukourlis and T. Houbavlis, "Analysis and design of ultrahigh-speed all-optical semiconductor-optical-amplifier-assisted Sagnac recirculating shift register with an inverter", *Optical Engineering*, Vol.44 (6), 065001, June 2005.