

Week 5, March 14th: Power series

Instructor: Cécile Huneau (cecile.huneau@polytechnique.edu) Tutorial Assistants:

- Allen Fang (groups?, allen.fang@sorbonne-universite.fr)

- Yuan Xu (groups?, xu.yuan@polytechnique.edu)

1 Important exercises

Exercise 1. Recall the proof of d'Alembert rule : let $\sum a_n$ be a numerical series

- 1. If $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, show that the series $\sum a_n$ is convergent.
- 2. If $\liminf_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| > 1$, show that the series $\sum a_n$ is divergent.
- 3. Find a convergent series and a divergent series with $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$.

Exercise 2. Determine the radius of convergence of the following power series

- 1. $\sum n^3 z^n$
- 2. $\sum \frac{2^n}{n!} z^n$
- 3. $\sum \frac{2^n}{n^2} z^n$
- $4 \cdot \sum \frac{n^3}{3^n} z^n$

Exercise 3.

- 1. Show that the series $\sum \frac{x^n}{n!}$ converges for all $x \in \mathbb{R}$. We note $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.
- 2. Calculate $\exp'(x)$.
- 3. We note $\cosh(x) = \frac{\exp(x) + \exp(-x)}{2}$ and $\sinh(x) = \frac{\exp(x) \exp(-x)}{2}$. Show that for all $x \in \mathbb{R}$

$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \quad \sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}.$$

Exercise 4. Abel theorem

Let a_n be a numerical sequence such that $\sum a_n$ is convergente.

- 1. Show that the power series $\sum a_n z^n$ has a radius of convergence greater or equal to 1.
- 2. Let $f:]-1,1[\to \mathbb{C},\ f(x)=\sum_{n=0}^\infty a_nx^n.$ Let $S_n=\sum_{k=0}^n a_k.$ Show that for all |x|<1

$$f(x) = (1 - x) \sum_{n=0}^{\infty} S_n x^n.$$

3. Show that f(x) tend to $\sum_{n=0}^{\infty} a_n$ as x tend to 1 with x < 1.

Exercise 5. Let $\sum a_n z^n$ be a power series with $a_n \in \mathbb{Z}$. Assume that there is an infinite numbers of $a_n \neq 0$. Show that the radius of convergence is less than 1.

Exercise 6.

- 1. What is the radius of convergence of the power series $\sum \frac{2^{4n-2}}{2n-1}$?
- 2. Let f:]-1, $1[\to \mathbb{R}$ be defined by $f(x)=\sum \frac{x^{4^{n-2}}}{2^{n-1}}$. Calculate f'(x) and then f(x).

2 More involved exercises

 $\operatorname{\it Exercise}$ 7. Determine the radius of convergence of the following power series

- 1. $\sum \log(n)z^{2n}$,
- 2. $\sum (1+a^n)z^n$ where $a \in \mathbb{C}$ is such that $|a| \neq 1$,
- 3. $\sum a^{\sqrt{n}} z^n$ where a > 0,
- 4. $\sum z^{n!}$.

Exercise 8. Let $\sum a_n z^n$ and $\sum b_n z^n$ be two power series with radius of convergence R and R'. What can you say about the radius of convergence of the power series $\sum a_n b_n z^n$?