IE613: Online Machine Learning

Jan-Apr 2016

Lecture 15: Online Gradient Descent

Lecturer: Palaniappan Balamurugan Scribes: Aakash Banik

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

15.1 Recapitulation

Earlier we were introduced to the perceptron algorithm which is given as:

```
Algorithm 1: Perceptron algorithm

Input : Linear Hypothesis Set \{w: w \in \mathbb{R}^d\}
Output: Predictions for the labels initialize w=w_0; for t in range 1, \ldots, T do

Player receive x_t; predict p_t=sign(< w_t, x_t >) environment reveals the loss: l_t(y_t, p_t) if a mistake is made then

Perceptron Update happens end else

No Update end end
```

We want this sort of an algorithm on a general setting.

15.2 General Setting

The Online Gradient Descent Algorithm is given as:

```
Algorithm 2: Online Gradient Descent
```

```
Input: Linear Hypothesis Set \{w: w \in \mathbb{R}^d\}
Output: Predictions for the labels initialize w_1 \in K (The structure of K is specified); for t in range 1, \ldots, T do

Player receive x_t; predict p_t = \text{sign}(< w_t, x_t >) environment reveals a convex loss function: c_t(y_t, p_t) Player Updates: w_{t+1} \leftarrow Proj_k(w_t - y_t \nabla c_t) end
```

It is to be noted that in our Online Gradient Descent algorithm, the update happens in all rounds. We assume that K is compact (i.e. closed and bounded) and c_t is differentiable. Also, the gradient of the convex function in the updation step is computed with respect to w_t .

Now, In a convex optimization setting, we have an objective function which we want to optimise over a given set.

$$\underset{u \in K}{minimize} \quad F(u)$$

Here, K is a convex set, i.e. if $x \in K$ and $y \in K, \Rightarrow \lambda x + (1 - \lambda)y \in K \ \forall \lambda \in [0, 1]$.

In a general convex optimization setting we do the general **Gradient Descent**, in which the updation is given as:

Start with u_0 For t=0,1,2,..., do $\tilde{u}_{t+1} \leftarrow u_t - y_t \nabla F(u_t)$ $u_{t+1} \leftarrow Proj_K(\tilde{u}_{t+1})$

where the projection function is defined as: $Proj_K(z) = \underset{z \in K}{argmin} \quad ||u - z||_2$

15.3 Regret of Online Gradient Descent Algorithm

Now, we look into the Regret Function of our Online Gradient Descent Algorithm.

$$Regret_{OGD}(u,T) = \sum_{t=1}^{T} c_t(w_t) - \sum_{t=1}^{T} c_t(u)$$

where, $u \in K$

The Realizability assumption vacuously holds in this case, since F(.) is continuous and K is compact, which implies that minima exists [Weierstrass Theorem].

i.e.
$$\min_{u \in K} \sum_{t=1}^{T} c_t(u) =: u^* \text{ exists.}$$

Proof:

We had assumed that c_t is convex and differentiable. So, $c_t(u^*) \ge c_t(w_t) - \langle \nabla c_t(w_t), w_t - u^* \rangle$ $\Rightarrow c_t(w_t) - c_t(u^*) \le \langle \nabla c_t(w_t), w_t - u^* \rangle$

We claim:
$$||w_{t+1} - u^*||^2 \le ||\tilde{w}_{t+1} - u^*||^2$$

The claim can be backed since $w_{t+1} = Proj_K(\tilde{w}_{t+1})$
which implies, $||z - w_{t+1}||^2 \le ||z - \tilde{w}_{t+1}||^2 \quad \forall z \in K$

Then,

$$||w_{t+1} - u *||^{2} \leq ||\tilde{w}_{t+1} - u^{*}||^{2}$$

$$= ||w_{t} - \eta_{t} \nabla c_{t}(w_{t}) - u^{*}||^{2}$$

$$= ||w_{t} - u^{*}||^{2} + \eta_{t}^{2}||\nabla c_{t}(w_{t})||^{2} - 2\eta_{t} < \nabla c_{t}(w_{t}), w_{t} - u^{*} > 0$$

Lets also assume, $||\nabla c_t(w_t)|| \le G \quad \forall \ t$ and, $distance(x, y) \le D \quad \forall \ x, y \in K$

We can say,

$$\begin{aligned} &2\eta_{t} < \nabla c_{t}(w_{t}), w_{t} - u^{*} > &\leq ||w_{t} - u^{*}||^{2} - ||w_{t+1} - u^{*}||^{2} + \eta_{t}^{2}||\nabla c_{t}(w_{t})||^{2} \\ &\Rightarrow < \nabla c_{t}(w_{t}), w_{t} - u^{*} > &\leq \frac{1}{2\eta_{t}} \left[||w_{t} - u^{*}||^{2} - ||w_{t+1} - u^{*}||^{2} + \eta_{t}^{2}||\nabla c_{t}(w_{t})||^{2} \right] \\ &\Rightarrow c_{t}(w_{t}) - c_{t}(u^{*}) &\leq \frac{1}{2\eta_{t}} \left[||w_{t} - u^{*}||^{2} - ||w_{t+1} - u^{*}||^{2} \right] + \frac{\eta_{t}}{2} G^{2} \end{aligned}$$

Summing over t=1,2,...,T:

$$\begin{split} \sum_{t=1}^{T} \left[c_{t}(w_{t}) - c_{t}(u^{*}) \right] &\leq \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \frac{1}{2} \sum_{t=1}^{T} \frac{1}{\eta_{t}} \left[||w_{t} - u^{*}||^{2} - ||w_{t+1} - u^{*}||^{2} \right] \\ &= \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \frac{1}{2\eta_{1}} ||w_{1} - u^{*}||^{2} - \frac{1}{2\eta_{T+1}} ||w_{T+1} - u^{*}||^{2} + \frac{1}{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t-1}} - \frac{1}{\eta_{t}} \right) ||w_{t} - u^{*}||^{2} \\ &\leq \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \frac{1}{2\eta_{1}} ||w_{1} - u^{*}||^{2} + \frac{1}{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} \right) ||w_{t} - u^{*}||^{2} \\ &\leq \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \frac{1}{2\eta_{1}} D^{2} + \frac{1}{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} \right) D^{2} \\ &= \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + D^{2} \left[\frac{1}{2\eta_{1}} - \frac{1}{2\eta_{1}} + \dots + \frac{1}{2\eta_{T}} \right] \\ &= \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + D^{2} \frac{1}{2\eta_{T}} \end{split}$$

Now, we would be imposing the assumption that $\eta_t = \frac{1}{t}$

$$\Rightarrow Regret_{OGD}(u^*, T) \le \frac{G^2}{2} \sum_{t=1}^{T} \frac{1}{t} + \frac{D^2}{2} T$$

$$\le \frac{G^2}{2} \left[1 + \log T \right] + \frac{D^2}{2} T$$

The above step follows from the approximation that: $\sum_{t=1}^{T} \frac{1}{t} \leq 1 + \int_{0}^{T} \frac{1}{t} dt \leq 1 + \log T$

Now, in order to get a better bound, we make the assumption of strong convexity. Strong convexity of a function implies that its curvature is strong and the Hessian matrix H > 0. The idea behind assuming a function to be strongly convex is that we want its growth to be quadratic.

First Order characterization of a strongly convex function:

$$f(y) \ \geq \ f(x) + < \nabla f(x), y - x > + \frac{\alpha}{2} ||y - x||^2$$

where, α (> 0) is the modulus of strong convexity.

If, f is twice differentiable, then:

$$\nabla^2 f \ge \alpha I$$

If a function f(x) is strongly convex, then the function defined by the quantity $g(x) = f(x) - \frac{\alpha}{2}||x||^2$ is also convex.

So, we assumed that c_t is strongly convex with modulus α . Also, earlier we assumed Realizability with u^* , but we did not assume anything about the uniqueness of u^* . Here, with strong convexity, the minimizer is unique.

Now again,
$$c_t(u^*) - c_t(w_t) \ge \langle \nabla c_t(w_t), u^* - w_t \rangle + \frac{\alpha}{2} ||u^* - w_t||^2$$

Again, we claim:

$$||w_{t+1} - u^*||^2 \le ||\tilde{w}_{t+1} - u^*||^2$$

$$= ||w_t - u^*||^2 + \eta_t^2 ||\nabla c_t(w_t)||^2 - 2\eta_t < \nabla c_t(w_t), w_t - u^* >$$

Therefore, we get:

$$c_t(w_t) - c_t(u^*) \le \frac{1}{2\eta_t} [||w_t - u^*||^2 - ||w_{t+1} - u^*||^2] + \frac{\eta_t}{2} G^2 - \frac{\alpha}{2} ||u^* - w_t||^2$$

Summing over $t=1,2,\ldots,T$:

$$\sum_{t=1}^{T} \left[c_{t}(w_{t}) - c_{t}(u^{*}) \right] \leq \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \sum_{t=1}^{T} \left(\frac{1}{2\eta_{t}} - \frac{\alpha}{2} \right) \left[||w_{t} - u^{*}||^{2} - \frac{1}{2\eta_{t}} ||w_{t+1} - u^{*}||^{2} \right] \\
= \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \sum_{t=1}^{T} \left[\frac{1}{2\eta_{t}} ||w_{t} - u^{*}||^{2} - \frac{1}{2\eta_{t}} ||w_{t+1} - u^{*}||^{2} - \frac{\alpha}{2} ||w_{t} - u^{*}||^{2} \right] \\
= \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \frac{1}{2\eta_{1}} ||w_{1} - u^{*}||^{2} - \frac{1}{2\eta_{T}} ||w_{T+1} - u^{*}||^{2} - \frac{\alpha}{2} ||w_{1} - u^{*}||^{2} \\
+ \frac{1}{2} \sum_{t=2}^{T} \left[\left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} \right) ||w_{t} - u^{*}||^{2} - \alpha ||w_{t} - u^{*}||^{2} \right] \\
\leq \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \left(\frac{1}{2\eta_{1}} - \frac{\alpha}{2} \right) D^{2} + \frac{1}{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} - \alpha \right) D^{2}$$

Now, if we assume $\eta_t = \frac{1}{\alpha_t}$, then:

$$\sum_{t=1}^{T} \left[c_t(w_t) - c_t(u^*) \right] = \frac{G^2}{2\alpha^2} \sum_{t=1}^{T} \frac{1}{t} + \left(\frac{\alpha}{2} - \frac{\alpha}{2} \right) D^2 + \frac{1}{2} \sum_{t=2}^{T} \left(\alpha t - \alpha (t-1) - \alpha \right) D^2$$

$$\leq \frac{G^2}{2\alpha} \left(\log T + 1 \right)$$

which is a better regret as compared to the previous case.

Lower Bound for Perceptron-type Algorithms 15.4

Theorem 15.1 Let, $\mathbb{X} = \{x \in \mathbb{R}^d \mid ||x|| \leq 1\}$. Also let, $\frac{1}{\gamma^2} \leq d$. Then for any deterministic algorithm A, there exists a dataset which is separable by margin γ on which A makes atleast $\left\lceil \frac{1}{2} \right\rceil$ mistakes.

Proof

Construction of the Dataset

Assume,
$$n = \left[\frac{1}{\gamma^2}\right]$$
 $\Rightarrow n \leq d$ $since$, $\frac{1}{\gamma^2} \leq d$ Also, $\gamma^2 n \leq 1$ Let e_i be the i^{th} standard basis vector. Also, let b denote the vector of labels for n data points. Then, $\forall \ b \in \{-1,1\}^n, \ \exists \ a \ w \in X \ni ||w|| \leq 1$ $and \ b_i(w_i e_i(i)) = \gamma \ \forall \ i = 1(1)n$ $\Rightarrow b_i w_i 1 = \gamma$ $\Rightarrow w_i = \frac{\gamma}{b_i}$ $\Rightarrow w_i = \gamma b_i$ $since$, $b_i \in \{-1,1\}$

So, we can come up with such a w by taking $w_i = \gamma b_i$, when i=1(1)n; and 0, otherwise. Now,

$$\begin{aligned} ||w||^2 &= w_1^2 + \dots + w_d^2 \\ &= w_1^2 + \dots + w_n^2 \quad since, w_{n+1} = \dots = w_d = 0 \\ &= \gamma^2 b_1^2 + \dots + \gamma^2 b_n^2 \\ &= \gamma^2 \left[b_1^2 + \dots + b_n^2 \right] \\ &= \gamma^2 n \\ &\leq 1 \end{aligned}$$

Therefore, $w \in X$.

For any algorithm
$$A$$
, let $x_i = e_i \quad \forall \quad i = 1(1)n$
Set, $y_1 = -A(x_1)$
 $y_2 = -\left[A((x_1, y_1), x_2)\right]$
 $y_3 = -\left[A((x_1, y_1), (x_2, y_2), x_3\right]$
:

Remark: For these n data points, we force the algorithm to make mistakes on all sample points. We see that n mistakes are made even when the data is separable by a margin γ .