Project

Trinath Sai Subhash Reddy Pittala, Uma Maheswara R Meleti, Hemanth Vasireddy

2023-04-25

Abstract

Airbnb has disrupted the hospitality industry by providing a platform for short-term rentals. Understanding the factors that determine Airbnb prices is essential for both hosts and guests. This report explores the determinants of Airbnb prices in Europe using data from the publicly available dataset 'Airbnb Price Determinants' from Kaggle. In this study, we have explored linear and polynomial regression and random forest models to determine the price of a room and found the main determinants based on the coefficient values.

Introduction

Airbnb has grown rapidly in Europe, providing a popular alternative to traditional hotels and accommodations. The platform enables hosts to rent out their homes or rooms to guests, often at lower prices than hotels. Airbnb offers guests the opportunity to experience local neighborhoods and culture more authentically. For hosts, Airbnb provides a source of income and an opportunity to meet people worldwide. However, Airbnb prices can vary widely, and understanding the factors determining these prices is important for hosts and guests.

How can this information be used: Data can help travelers find accommodation that meets their needs without exceeding budget. Can help hosts set competitive pricing and optimize listings to get more bookings. Help investors evaluate the value of investing in real estate in different European cities based on pricing trends.

Methods

To explore the determinants of Airbnb prices in Europe, we used data on Airbnb listings in ten major European cities (Amsterdam, Athens, Barcelona, Berlin, Budapest, Lisbon, London, Paris, Rome, Vienna). The data consists of various attributes about the hotel. We used regression analysis and random forest to determine the factors that are strongly associated with Airbnb prices in Europe.

Exploratory Data Analysis

We did EDA for the following variables

Figure 1

The highest prices in Europe are found in Amsterdam.

Figure 2

The prices of entire home are high comparatively

Figure 3

In general the rooms that are closer to metro have comparatively higher prices. But, in Rome city the distance to metro is almost same for both categories of price.

Figure 4

The attractive index of cities is varying across different cities it is higher for some cities like Paris.

Figure 5

There are differences in room prices between both share and non-shared rooms.

Pre Processing

The room_shared and room_private information is already embedded in room_type. The variables are multi-collinear, so we have removed room_shared and room_private.

Multivariate linear regression

Multivariate linear regression is a statistical method that models the relationship between multiple input variables and a continuous output variable. A linear equation is fitted to the input variables, with coefficients representing each input variable's contribution to the output variable. The model assumes that the relationship between the input and output variables is linear and that errors are normally distributed and independent.

Polynomial regression

In polynomial regression, the input variables are raised to various powers. The degree of the polynomial determines the complexity of the model and the number of input variables used in the model. Polynomial

regression is useful when the relationship between the input variables and the output variable is not linear and can provide a better fit to the data than linear regression.

Interaction Variables

Interaction variables, also known as interaction effects, refer to the impact that the combination of two or more input variables has on the output variable in a regression model. They capture the non-additive relationship between input variables and can help to explain better the relationship between the input variables and the output variable. The interaction variables are created by multiplying the values of two or more input variables and including them as additional terms in the model. The coefficient of an interaction variable represents the change in the response variable for a one-unit change in one input variable while holding the other input variables constant.

Random forest regression

Random forest regression is a machine learning technique that combines the power of decision trees with the concept of ensemble learning.

Decision trees work by recursively partitioning the input data into subsets based on the values of the input features to minimize the variance of the target variable within each subgroup. The result is a tree-like structure representing a set of rules for predicting the target variable. Each internal node in the tree corresponds to a test on one of the input features, and each leaf node corresponds to a predicted target variable value. During the prediction phase, the input data is traversed down the tree according to the rules represented by the internal nodes until a leaf node is reached, which provides the predicted value for the target variable. Decision trees handle non-linear relationships between features and the target variable. However, it is prone to overfitting, especially when the tree is deep, and can be sensitive to small changes in the input data.

In Random Forest, multiple decision trees are trained on different subsets of the input data, and the results are combined to make predictions. Each tree in the forest is trained on a random subset of the available features, which helps to reduce overfitting and increase the model's generalization performance. During the prediction phase, the output of each tree is aggregated to produce a final prediction.

Data

Each major city has its own dataset for weekend and weekdays Variables included in data set:

- Host ID (Id)
- Total price of listing (realSum)
- Room type: private, shared, entire home, apt (room type)
- Whether or not room is shared (room shared)
- Max number of people allowed in property (person capacity)
- Whether or not host is superbost (host is superhost)
- Whether or not it is multiple rooms (multi)
- Whether for business or family use (biz)
- Distance from city center (dist)
- Distance from nearest metro (metro dist)
- Latitude and longitude (lat lng)
- Guest satisfaction (guest satisfaction overall)
- Cleanliness (cleanliness_rating)
- Total quantity of bedrooms available among all properties for single host (bedrooms)
- Index of Attractions near the hotel (attr_index)

- Normalized Index of Attractions near the hotel (attr_index_norm)
- Index Restaurants near the hotel (rest_index)
- Normalized Index of Restaurants near the hotel (rest_index_norm)

The dataset consists of

- Continuous variables : realSum, dist, metro_dist, lat, lng, attr_index, attr_index_norm, rest_index, rest_index_norm
- Ordinal: person_capacity, guest_satisfaction_overall, cleanliness_rating, bedrooms
- Nominal : room_type, room_shared, host_is_superhost, multi, biz

Results

We have modeled multivariate regression for each city, and below are the coefficients of each model arranged in descending order. The coefficient with a larger value is the essential determinant of the hotel room price.

According to the table, all the models have the same descending order of coefficients. The order is as follows:

1 - room_type 2 - person_capacity 3 - host_is_superhost 4 - multi 5 - biz 6 - cleanliness_rating 7 - guest_satisfaction_overall 8 - bedrooms 9 - dist 10 - metro_dist 11 - attr_index_norm 12 - rest index norm, 13 - lng 14 - lat

Modelling

MVLR Seperated by City and Day

Model	var_names	var_coefs												
M_0	(Intercept)	453.805963	M_1	(Intercept)	677.7774655	M_2	(Intercept)	81087.31478	M_3	(Intercept)	3313.326331	M_4	(Intercept)	14214.11864
M_0	room_typePrivate room	384.5953101	M_1	room_typePrivate room	95.38419868	M_2	room_typePrivate room	148.9417279	M_3	room_typePrivate room	83.28285599	M_4	room_typePrivate room	25.47757592
M_0	room_typeShared room	136.0046307	M_1	room_typeShared room	42.51664607	M_2	room_typeShared room	78.35566832	M_3	room_typeShared room	32.55688542	M_4	room_typeShared room	12.36521125
M_0	person_capacity	119.9608563	M_1	person_capacity	31.890407	M_2	person_capacity	38.86525794	M_3	person_capacity	32.36241001	M_4	person_capacity	6.824991537
M_0	host_is_superhostTrue	42.08786555	M_1	host_is_superhostTrue	16.91133475	M_2	host_is_superhostTrue	18.18910642	M_3	host_is_superhostTrue	20.77860946	M_4	host_is_superhostTrue	5.296527081
M_0	multi	20.6527087	M_1	multi	4.421357529	M_2	multi	12.07097956	M_3	multi	12.77790391	M_4	multi	1.652498502
M_0	biz	16.61275571	M_1	biz	2.725004443	M_2	biz	6.985320078	M_3	biz	6.194671034	M_4	biz	0.462524562
M_0	cleanliness_rating	3.757397212	M_1	cleanliness_rating	2.640302855	M_2	cleanliness_rating	2.492178554	M_3	cleanliness_rating	4.446168901	M_4	cleanliness_rating	-0.492631965
M_0	guest_satisfaction_overall	2.738196195	M_1	guest_satisfaction_overall	2.335020293	M_2	guest_satisfaction_overall	1.774791262	M_3	guest_satisfaction_overall	1.658915477	M_4	guest_satisfaction_overall	-2.915525964
M_0	bedrooms	2.025200616	M_1	bedrooms	1.221665363	M_2	bedrooms	0.215433391	M_3	bedrooms	0.831750876	M_4	bedrooms	-13.33265099
M_0	dist	-2.83720865	M_1	dist	1.053387666	M_2	dist	0.055349136	M_3	dist	0.423821302	M_4	dist	-13.38768559
M_0	metro_dist	-7.074399447	M_1	metro_dist	-23.4210691	M_2	metro_dist	-9.749578513	M_3	metro_dist	0.346180902	M_4	metro_dist	-17.02253017
M_0	attr_index_norm	-21.61855664	M_1	attr_index_norm	-24.66793817	M_2	attr_index_norm	-302.2199647	M_3	attr_index_norm	-39.28949375	M_4	attr_index_norm	-47.92355904
M_0	rest_index_norm	-60.95450514	M_1	rest_index_norm	-29.95296764	M_2	rest_index_norm	-311.0956042	M_3	rest_index_norm	-102.8898274	M_4	rest_index_norm	-48.61561818
M_0	Ing	-175.0198029	M_1	Ing	-65.86473148	M_2	Ing	-384.8001582	M_3	Ing	-120.4611811	M_4	Ing	-114.5660309
M_0	lat	-340.2468974	M_1	lat	-28023.54948	M_2	lat	-1939.911175	M_3	lat	-221.3241991	M_4	lat	-251.7212566
M 5	(Intercept)	24.49430744	М 6	(Intercept)	6546.714298	M 7	(Intercept)	41416.99566	M 8	(Intercept)	428.4623235	мо	(Intercept)	408.940146
M 5	room typePrivate room	20.76733214		room typePrivate room	163.4989324		room typePrivate room	130.3445018		room typePrivate room	44.47609905		room typePrivate room	88.51887853
M 5	room_typeShared room	8.685270433		room_typeShared room	36.38305957		room_typeFhvate room	81.79791623		room_typeShared room	12.32210245		room_typeShared room	36.04103653
M 5	person capacity	5.728057336		person capacity	25.54307154		person capacity	56.22439359		person capacity	3.882518636		person capacity	20.32350711
M 5	host is superhostTrue	4.819142536		host is superhostTrue	12.82925563		host is superhostTrue	43.15533016		host is superhostTrue	3.699383339		host is superhostTrue	17.90834436
	multi	1.238674167		multi	9.982245594		multi	25.20968259		multi	3.695177412		multi	4.390508977
M_5	biz	0.374695799		biz	0.933858045		biz	12.5560253		biz	1.475050781		biz	1.60480035
M 5	cleanliness rating	0.177646654		cleanliness rating	0.207399315		cleanliness rating	8.107228556		cleanliness rating	0.716854353		cleanliness rating	1.352556262
M 5	guest satisfaction overall	0.130448297		guest satisfaction overall	0.113545147		guest satisfaction overall	7.409335312		guest satisfaction overall	0.513052541		guest satisfaction overall	1.242051249
M 5	bedrooms	-8.337627302		bedrooms	-19.2800813		bedrooms	1.641809145		bedrooms	-0.225693578		bedrooms	-12.84826556
M_5	dist	-12.56848529		dist	-21,77143781		dist	1.3085809		dist	-0.783530606		dist	-13.17443006
M 5	metro dist	-59.19710383		metro dist	-22.96385155		metro dist	-4.603578145		metro dist	-1.508888739		metro dist	-13.85744129
M_5	attr index norm	-82.58885424		attr index norm	-130.3824975		attr index norm	-97.88170929		attr index norm	-6.252414347		attr index norm	-16.13640861
M 5	rest index norm	-190.4190079		rest index norm	-181.4255816		rest index norm	-284.4850304		rest index norm	-39.8036185		rest index norm	-28.48935415
M 5	Ing	-474.7694686	M 6	Ing	-193.4634265		Ing	-715.552286		Ing	-94.72375311	M 9	Ing	-120.2455734

 M_0 - Amsterdam, M_1 - Athens, M_2 - Barcelona, M_3 - Berlin, M_4 - Budapest, M_5 - Lisbon, M_6 - London, M - 7 - Paris, M - 8 - Rome, M - 9 - Vienna

MVLR Combined of all Cities

term	estimate	std.error	statistic	p.value
city_dayathens_weekdays	6315.09061077375	1388.53511239174	4.54802370816251	5.43276632399387E-06
city_dayathens_weekends	6303.53106566887	1388.65271393214	4.53931425937278	5.66191686814906E-06
city_daybudapest_weekends	3929.67339172125	706.843976888775	5.55946364432218	2.72512019627685E-08
city_daybudapest_weekdays	3902.35110769949	706.88057311247	5.52052391327863	3.40308057888361E-08
city_dayvienna_weekdays	3231.8185121282	582.709191916445	5.54619449454577	2.93992522226129E-08
city_dayvienna_weekends	3230.26798535313	582.79716507451	5.54269680591213	2.9992285987412E-08
city_dayrome_weekends	2952.53521434873	881.429677236262	3.34971159991624	0.000809784171597337
city_dayrome_weekdays	2947.68523500212	881.398370960292	3.34432798167143	0.00082565958973142
city_dayberlin_weekends	1958.88440687424	342.040071097647	5.72706116154153	1.02993861536248E-08
city_dayberlin_weekdays	1949.04242701527	342.124495503847	5.69688067539542	1.22965025210763E-08
city_daybarcelona_weekends	429.652941610428	837.810922281234	0.512828050081453	0.608074739358428
city_daybarcelona_weekdays	411.771664434536	837.79087513094	0.491496955454641	0.623077988219532
lat	123.211714028539	76.5227515358753	1.61013177853093	0.107377819824515
bedrooms	86.0154191816913	3.18878180193731	26.9743822325609	1.10487900248437E-158
city_dayamsterdam_weekends	67.9410312574828	16.0017245274658	4.24585682254852	2.18302692822801E-05
biz	33.2805902980968	4.18846537329009	7.94577185962373	1.98543351601859E-15
person_capacity	23.962639711116	1.76448699475381	13.580513646381	6.6229089695509E-42
multi	9.60044781984104	4.13239391830793	2.32321700438764	0.0201730153901032
attr_index_norm	6.37045498927847	0.294558501285674	21.6271299639054	4.50013019203766E-103
cleanliness_rating	5.03832622544896	2.41532715274561	2.08598086587221	0.0369873477630624
host_is_superhostTrue	1.07487304905057	3.93436342704325	0.273201260885642	0.784700071060939
guest_satisfaction_overall	0.776010513381954	0.261452270487271	2.96807716351323	0.00299865383859512
rest_index_norm	-0.183747213632232	0.177364361505566	-1.03598723031214	0.300215028045804
dist	-1.53304759323782	1.26282244844453	-1.21398506585478	0.224761355845419
metro_dist	-3.99666546744126	2.50252382009665	-1.59705391626878	0.110262427719338
room_typePrivate room	-114.36546946963	4.28228402903422	-26.7066520329393	1.28065674381786E-155
room_typeShared room	-204.184154195175	18.9348057155667	-10.7835357416586	4.52732676348359E-27
Ing	-262.890929428664	40.1930553101859	-6.54070528850891	6.20447859714726E-11
city_dayparis_weekdays	-403.028852808039	278.481924100759	-1.44723523478032	0.147839720417429
city_dayparis_weekends	-422.138907209481	278.643708051156	-1.51497735284222	0.129786880370265
city_daylondon_weekdays	-1409.29965386078	206.104550214087	-6.83779010408502	8.17001208243907E-12
city_daylondon_weekends	-1410.93275121758	206.122303369817	-6.84512412364295	7.76270471372057E-12
city_daylisbon_weekends	-2304.00669656451	1143.81264744771	-2.0143217525227	0.0439831538834079
city_daylisbon_weekdays	-2312.9309439741	1143.89771522079	-2.02197356738986	0.0431864319357264
(Intercept)	-4954.90756116218	3996.18236913533	-1.2399102702198	0.215016631100909

Apart from Cityday, below are the ranking of coefficients of the model

1. Lat, 2. bedrooms, 3. biz, 4. person_capacity, 5. Multi, 6. Attr_index_norm, 7. Cleanliness_rating,

8. host_is_superhost, 9. guest_satisfaction_overall, 10. rest_index_norm 11. dist, 12. metro_dist, 13. room_type, 14. lng

The city day coefficients are almost ranked at the top.

Other Models

	Train Adj	Train			
Train \mathbb{R}^2	R^2	RMSE	Test \mathbb{R}^2	Test Adj \mathbb{R}^2	Test $RMSE$
0.2150414	0.2146725	304.9175	0.33744	0.3371287	233.2618
0.2149964	0.2146275	304.9262	0.3373441	0.3370327	233.2787
0.2159815	0.215613	304.7348	0.3379444	0.3376333	233.173
0.2159435	0.215575	304.7422	0.3380392	0.3377281	233.1563
0.2154699	0.2151012	304.8342	0.3373538	0.3370424	233.277
0.2154289	0.2150602	304.8422	0.3373204	0.337009	233.2829
0.22214	0.2217744	303.5356	0.334993	0.3346805	233.6922
0.2221344	0.2217689	303.5367	0.3350694	0.3347569	233.6788
0.2160624	0.215694	304.7191	0.3375855	0.3372742	233.2362
0.2160337	0.2156653	304.7247	0.3376519	0.3373407	233.2245
0.2330663	0.2327059	301.3962	0.1901115	0.189731	257.8955
0.2285384	0.2281759	302.2846	0.3281442	0.3281442	234.8925
0.215693	0.2147166	325.7776	0.3372306	0.3353023	233.2987
0.2201963	0.217819	326.6683	0.1830879	0.1772535	259.0113
0.2228371	0.2166688	326.2303	0.02854527	0.01036279	282.4505
0.8747755	0.8724317	121.7878	0.7588743	0.7543612	140.719
	0.2150414 0.2149964 0.2159815 0.2159435 0.2154699 0.2154289 0.22214 0.2221344 0.2160624 0.2160337 0.2330663 0.2285384 0.215693 0.2201963 0.2228371	Train R^2 R^2 0.2150414 0.2146725 0.2149964 0.2146275 0.2159815 0.215613 0.2159435 0.215575 0.2154699 0.2151012 0.2154289 0.2150602 0.22214 0.2217744 0.2221344 0.2217689 0.2160624 0.215694 0.2160337 0.2156653 0.2330663 0.2327059 0.2285384 0.2281759 0.215693 0.2147166 0.2201963 0.217819 0.2228371 0.2166688	Train R^2 R^2 $RMSE$ 0.2150414 0.2146725 304.9175 0.2149964 0.2146275 304.9262 0.2159815 0.215613 304.7348 0.2159435 0.215575 304.7422 0.2154699 0.2151012 304.8342 0.2154289 0.2150602 304.8422 0.22214 0.2217744 303.5356 0.2221344 0.2217689 303.5367 0.2160624 0.215694 304.7191 0.2160337 0.2156653 304.7247 0.2330663 0.2327059 301.3962 0.2285384 0.2281759 302.2846 0.215693 0.2147166 325.7776 0.2201963 0.217819 326.6683 0.2228371 0.2166688 326.2303	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^{*} IVs here is Interaction variables

Random Forest

We have trained Random Forest on all cities' combined data, and below are the important variables.

	IncNodePurity
room_type	122087850
host_is_superhost	26594131
multi	21575815
biz	24190212
city_day	114299029
person_capacity	183757090
cleanliness_rating	79985960
guest_satisfaction_overall	162106050
bedrooms	342017315
dist	423128244
metro_dist	248206656
attr_index_norm	662153431
rest_index_norm	435838043
lng	482308349
lat	588248566

rf_model

The random forest model has chosen the attraction index as the most important variable, which makes more sense from a general point of view because the places with more attractions would attribute to pricing differences. The other variables ranking also seems consistent with common sense, such as latitude and longitude, which indicates location and distance from the city center, etc.

Overall the random forest has performed better than the other models with a Adjusted. R^2 value of 0.7543 and RMSE of 140.719 compared to the best regression model, which has Adjusted R^2 value of 0.3377 and RMSE of 233.1563 on the test set.

Discussion

When we applied separate models for each city data, on linear regression, latitude was least ranked, but when we combined all the data latitude is on top rank next to city day, it indicates the information about location is being captured by the latitude when all data is combined, in separate models all the data about city represents it location so latitude is least ranked.

The attraction index is ranked higher in all cities combined model than separated models. (From Figure 4)

The host_is_super host is ranked high in individual models than combined model, but its significance value is very low.

Room Type is ranked at the top in separate models, but in the combined model is at quite a low rank. It is due to the information of Room Type capturing the information about the location; it can be inferred from the graph Figure 5

Summary

This report investigates the factors that determine Airbnb room prices in Europe using data from the publicly available dataset 'Airbnb Price Determinants.' To identify the main determinants of Airbnb room prices in Europe, the report employed a regression analysis and random forest model. The dataset was collected from ten major European cities, including Amsterdam, Athens, Barcelona, Berlin, Budapest, Lisbon, London, Paris, Rome, and Vienna. Exploratory data analysis was conducted on various attributes of the data. The report discovered that Amsterdam has the highest Airbnb room prices in Europe. In general, entire homes have higher prices compared to shared rooms. The proximity of a room to a metro station was found to be correlated with higher prices. However, in Rome, the distance to the metro station has a negligible impact on room prices. The study also discovered that there are differences in room prices between shared and non-shared rooms. Furthermore, the study used multivariate linear regression, polynomial regression, interaction variables, and random forest regression to identify the factors that are strongly associated with Airbnb prices in Europe. The report demonstrates that the main determinants of Airbnb room prices in Europe include the number of people allowed in a room, the room type, and the host's superhost status. The report provides valuable insights for Airbnb guests, hosts, and investors in evaluating the value of investing in real estate in different European cities based on pricing trends.

Appendix for Code and Detailed Analysis

Pre Processing and Cleaning the Data

Data loading

```
# Set the relative directory path
my_dir <- "./archive"

# List all the files in the directory
files <- list.files(path = my_dir, full.names = TRUE)</pre>
```

Combining the Data from all Files

```
# Get a list of all the csv files in the directory
file_list <- list.files(path = my_dir, pattern = "*.csv", full.names = TRUE)</pre>
# Initialize an empty list to store the data frames
df list <- list()</pre>
# Loop through each file and read it into a data frame
for (i in seq along(file list)) {
    df <- read.csv(file_list[i])</pre>
    # Add a new column with the city_day
    df$city_day <- basename(file_list[i])</pre>
    # Append the data frame to the list
    df_list[[i]] <- df</pre>
}
# Combine all the data frames into a single dataset
my_data <- bind_rows(df_list)</pre>
# Removing the .csv ext
my_data$city_day <- gsub("\\.csv", "", my_data$city_day)</pre>
# Print the first few rows of the data
head(my_data)
print(unique(my_data[my_data$room_shared == my_data$room_private,
    []$room_type)) # if the room is shared
## [1] "Entire home/apt"
print(unique(my_data[my_data$room_private == "False", ]$room_type))
## [1] "Entire home/apt" "Shared room"
print(unique(my_data[my_data$room_shared == "True", ]$room_type))
## [1] "Shared room"
print(unique(my_data[my_data$room_shared == "False", ]$room_type))
## [1] "Private room"
                          "Entire home/apt"
```

The room_shared and room_private information is already embedded in room_type. The variables are multi-collinear, so we can remove room_shared and room_private.

Dropping columns of room_shared and room_private

```
my_data = select(my_data, -c(room_shared, room_private))
head(my_data)
##
     X realSum
                   room_type person_capacity host_is_superhost multi biz
## 1 0 194.0337 Private room
                                           2
                                                          False
## 2 1 344.2458 Private room
                                           4
                                                          False
                                                                        0
## 3 2 264.1014 Private room
                                           2
                                                          False
                                                                        1
## 4 3 433.5294 Private room
                                           4
                                                          False
                                                                        1
## 5 4 485.5529 Private room
                                           2
                                                           True
                                                                    0
                                                                        0
## 6 5 552.8086 Private room
                                           3
                                                          False
                                                                    0
                                                                        0
     cleanliness_rating guest_satisfaction_overall bedrooms
                                                                  dist metro dist
                                                           1 5.0229638 2.5393800
## 1
                     10
                                                93
## 2
                      8
                                                 85
                                                           1 0.4883893 0.2394039
## 3
                      9
                                                87
                                                           1 5.7483119
                                                                        3.6516213
## 4
                      9
                                                90
                                                           2 0.3848620
                                                                       0.4398761
## 5
                     10
                                                98
                                                           1 0.5447382 0.3186926
## 6
                      8
                                                100
                                                           2 2.1314201 1.9046682
##
     attr_index attr_index_norm rest_index rest_index_norm
                                                                lng
                                                                         lat
## 1
       78.69038
                      4.166708
                                  98.25390
                                                  6.846473 4.90569 52.41772
## 2
    631.17638
                      33.421209
                                 837.28076
                                                 58.342928 4.90005 52.37432
## 3
      75.27588
                      3.985908
                                  95.38695
                                                  6.646700 4.97512 52.36103
                                                 60.973565 4.89417 52.37663
## 4 493.27253
                      26.119108
                                 875.03310
## 5 552.83032
                      29.272733
                                 815.30574
                                                 56.811677 4.90051 52.37508
## 6 174.78896
                       9.255191 225.20166
                                                 15.692376 4.87699 52.38966
##
               city_day
## 1 amsterdam_weekdays
```

```
ggplot() + geom_point(data = my_data, aes(x = attr_index, y = attr_index_norm),
    alpha = 0.4)
```

2 amsterdam_weekdays
3 amsterdam_weekdays
4 amsterdam_weekdays
5 amsterdam_weekdays
6 amsterdam_weekdays


```
ggplot() + geom_point(data = my_data, aes(x = attr_index, y = attr_index_norm),
    alpha = 0.4) + facet_wrap(~city_day)
```


attr_index and attr_index_norm are same, attr_index_norm is just normalized attr_index

```
ggplot() + geom_point(data = my_data, aes(x = rest_index, y = rest_index_norm),
    alpha = 0.4)
```



```
ggplot() + geom_point(data = my_data, aes(x = rest_index, y = rest_index_norm),
    alpha = 0.4) + facet_wrap(~city_day)
```


rest_index and rest_index_norm are same, rest_index_norm is just normalized rest_index. removing attr_index and rest_index

```
my_data = select(my_data, -c(attr_index, rest_index))
head(my_data)
```

Outliers using IQR Range

Filtering out the Outliers from Data Out of IQR Ranges

```
# Initialize an empty list to store the outliers
outliers_list <- list()

# Initialize an empty list to store the filtered data
# frames
df_list_filtered <- list()

# Loop through each file and read it into a data frame
# after removing outliers
for (i in seq_along(file_list)) {
    df_filtered <- read.csv(file_list[i])

# Add a new column with the city_day
    df_filtered$city_day <- gsub("\\.csv", "", basename(file_list[i]))</pre>
```

```
iqr_var1 <- IQR(df_filtered$realSum)</pre>
    # Calculate the upper and lower bounds for each
    # variable
   upper_var1 <- quantile(df_filtered$realSum, 0.75) + 1.5 *</pre>
        igr var1
   lower_var1 <- quantile(df_filtered$realSum, 0.25) - 1.5 *</pre>
        igr var1
    # Filter the data based on the upper and lower bounds
    # for each variable
    filtered_data <- filter(df_filtered, realSum > lower_var1 &
        realSum < upper_var1)</pre>
    # Append the filtered data frame to the list
   df_list_filtered[[i]] <- filtered_data</pre>
    # Get the rows that were removed while filtering
    outliers <- anti_join(df_filtered, filtered_data)</pre>
    # Append the outliers to the list
   outliers_list[[i]] <- outliers</pre>
}
# Combine all the filtered data frames into a single
my_data_filtered <- bind_rows(df_list_filtered)</pre>
# Removing the .csv ext
my_data_filtered$city_day <- gsub("\\.csv", "", my_data_filtered$city_day)</pre>
summary(my_data_filtered)
##
                      realSum
                                      room_type
                                                        room shared
                 Min. : 34.78
## Min. : 0
                                     Length: 48970
                                                        Length: 48970
## 1st Qu.: 645
                 1st Qu.: 145.23
                                     Class :character
                                                        Class : character
## Median :1340 Median : 204.27
                                     Mode :character
                                                        Mode :character
## Mean :1621 Mean : 244.35
## 3rd Qu.:2385 3rd Qu.: 295.27
## Max.
          :5378 Max. :1229.11
## room_private
                       person_capacity host_is_superhost
                                                              multi
                                                          Min.
## Length:48970
                       Min.
                            :2.00
                                       Length: 48970
                                                                  :0.0000
## Class:character 1st Qu.:2.00
                                       Class :character
                                                           1st Qu.:0.0000
## Mode :character
                      Median :3.00
                                       Mode :character
                                                          Median :0.0000
##
                       Mean :3.08
                                                           Mean
                                                                  :0.2953
##
                       3rd Qu.:4.00
                                                           3rd Qu.:1.0000
```

cleanliness_rating guest_satisfaction_overall

Min. : 20.00

1st Qu.: 90.00

Median : 95.00

Mean : 92.57

:1.0000

bedrooms

Min. : 0.000

1st Qu.: 1.000

Median : 1.000

Mean : 1.118

Max.

Max.

:6.00

##

##

biz

Min. :0.000 Min. : 2.000

1st Qu.:0.000 1st Qu.: 9.000

Median :0.000 Median :10.000

Mean :0.342 Mean : 9.384

```
3rd Qu.:1.000
                   3rd Qu.:10.000
                                      3rd Qu.: 98.00
                                                                 3rd Qu.: 1.000
##
         :1.000 Max. :10.000
                                      Max. :100.00
   Max.
                                                                 Max. :10.000
##
        dist
                        metro dist
                                            attr index
                                                            attr index norm
                                                            Min. : 0.9263
##
          : 0.01506
                      Min. : 0.002301
                                          Min. : 15.15
  \mathtt{Min}.
                                          1st Qu.: 133.75
##
   1st Qu.: 1.48598
                      1st Qu.: 0.250718
                                                            1st Qu.: 6.2341
##
   Median : 2.66962
                      Median : 0.416955
                                          Median : 228.54
                                                            Median: 11.1929
   Mean : 3.24072
                                          Mean : 285.15
                                                            Mean : 13.0064
                      Mean : 0.691774
   3rd Qu.: 4.31533
                      3rd Qu.: 0.749700
                                          3rd Qu.: 374.37
                                                            3rd Qu.: 16.9444
##
##
   Max.
         :25.28456
                      Max.
                             :14.273577
                                          Max.
                                                :4513.56
                                                            Max.
                                                                 :100.0000
##
     rest_index
                     rest_index_norm
                                             lng
                                                                lat
  Min. : 19.58
                     Min. : 0.5928
                                               :-9.22634
                                                           Min.
                                                                  :37.95
                                        Min.
   1st Qu.: 245.42
                     1st Qu.: 8.5601
                                        1st Qu.:-0.07277
                                                           1st Qu.:41.40
##
                     Median: 17.1799
  Median : 512.42
                                        Median : 4.87234
                                                           Median :47.51
  Mean
         : 611.32
                     Mean : 22.2861
                                        Mean
                                             : 7.40027
                                                           Mean
                                                                :45.66
                                        3rd Qu.:13.52350
   3rd Qu.: 818.44
                     3rd Qu.: 32.0321
                                                           3rd Qu.:51.47
##
   Max.
         :6696.16
                     Max. :100.0000
                                        Max.
                                               :23.78602
                                                           Max.
                                                                  :52.64
##
     city_day
##
  Length: 48970
  Class : character
##
  Mode :character
##
##
##
# Combine all the outliers into a single dataset
my_outliers <- bind_rows(outliers_list)</pre>
# Removing the .csv ext
my_outliers$city_day <- gsub("\\.csv", "", my_outliers$city_day)</pre>
summary(my_outliers)
##
         X
                     realSum
                                     room_type
                                                       room_shared
##
                  Min. : 279.4
                                    Length: 2737
                                                       Length: 2737
   1st Qu.: 666
                                                       Class :character
                  1st Qu.: 469.2
                                    Class :character
   Median:1237
                  Median :
                            691.9
                                    Mode :character
                                                       Mode :character
## Mean :1614
                  Mean : 915.5
   3rd Qu.:2310
                  3rd Qu.: 996.3
## Max. :5374
                         :18545.5
                  Max.
##
  room_private
                      person_capacity host_is_superhost
                                                             multi
## Length:2737
                      Min. :2.000
                                      Length: 2737
                                                         Min. :0.000
## Class :character
                      1st Qu.:4.000
                                      Class : character
                                                         1st Qu.:0.000
## Mode :character
                      Median :5.000
                                      Mode :character
                                                         Median : 0.000
##
                      Mean :4.628
                                                         Mean
                                                              :0.221
##
                      3rd Qu.:6.000
                                                         3rd Qu.:0.000
##
                             :6.000
                                                               :1.000
                      Max.
                                                         Max.
##
        biz
                    cleanliness_rating guest_satisfaction_overall
                                                                     bedrooms
                    Min. : 2.000
##
          :0.0000
                                       Min. : 20.00
                                                                        :0.000
   Min.
                                                                  Min.
   1st Qu.:0.0000
                    1st Qu.: 9.000
                                       1st Qu.: 91.00
                                                                  1st Qu.:1.000
  Median :0.0000
                    Median :10.000
                                       Median : 97.00
##
                                                                  Median :2.000
```

Mean : 93.65

3rd Qu.:100.00

Max. :100.00

attr_index

Mean :1.886

3rd Qu.:2.000

Max. :6.000

attr_index_norm

Mean :0.4965

3rd Qu.:1.0000

Max. :1.0000

dist

##

##

Mean : 9.509

3rd Qu.:10.000

Max. :10.000

metro_dist

```
## Min. : 0.01504 Min.
                         :0.006171 Min. : 20.5 Min. : 1.468
## 1st Qu.: 1.04119 1st Qu.:0.218081 1st Qu.: 225.1 1st Qu.: 11.719
## Median: 1.89579 Median: 0.352339 Median: 385.0 Median: 17.958
## Mean : 2.30674 Mean :0.498426 Mean : 456.2 Mean : 20.892
## 3rd Qu.: 3.00820 3rd Qu.:0.576430
                                   3rd Qu.: 610.6 3rd Qu.: 25.953
## Max.
        :21.29515 Max. :8.918036 Max.
                                         :2040.4 Max. :100.000
   rest index rest index norm
##
                                     lng
                                                      lat
## Min. : 27.9 Min. : 0.667 Min. :-9.22476
                                                 Min.
                                                        :37.96
## 1st Qu.: 408.5 1st Qu.: 14.187
                                 1st Qu.:-0.06677
                                                  1st Qu.:41.41
                                                  Median :47.51
## Median : 739.9
                 Median: 30.001 Median: 4.88384
## Mean : 904.9
                 Mean : 31.734 Mean : 7.88764
                                                  Mean
                                                       :45.93
                 3rd Qu.: 45.426
## 3rd Qu.:1269.7
                                 3rd Qu.:13.44666
                                                  3rd Qu.:51.50
                 Max. :100.000
## Max.
        :4183.1
                                 Max. :23.75400
                                                  Max. :52.58
##
    city_day
## Length: 2737
## Class :character
## Mode :character
##
##
##
```

Percentage of Outliers outside of IQR range.

```
# Create empty table
outliers_table <- data.frame(City_day = character(), Data_Length = numeric(),</pre>
    Percent_Outliers = numeric(), stringsAsFactors = FALSE)
# Loop through city_data and fill in table
for (city_day in unique(my_data$city_day)) {
    x = my_data[my_data$city_day == city_day, ]$realSum
    q1 \leftarrow quantile(x, 0.25)
    q3 \leftarrow quantile(x, 0.75)
    iqr <- IQR(x)</pre>
    upper_bound \leftarrow q3 + 1.5 * iqr
    lower_bound \leftarrow q1 - 1.5 * iqr
    x_no_outliers <- x[x >= lower_bound & x <= upper_bound]</pre>
    percent_outliers <- ((length(x) - length(x_no_outliers))/length(x)) *</pre>
        100
    # Add row to table
    outliers_table <- rbind(outliers_table, data.frame(City_day = city_day,
        Data_Length = length(x), Percent_Outliers = percent_outliers))
}
# Format table using kable
kable(outliers_table, format = "markdown")
```

City_day	Data_Length	Percent_Outliers
amsterdam_weekdays	1103	5.077063
$amsterdam_weekends$	977	5.629478
athens_weekdays	2653	5.767056

City_day	Data Length	Percent Outliers
	Data_EciiStii	
athens_weekends	2627	5.405405
barcelona_weekdays	1555	7.524116
barcelona_weekends	1278	8.059468
berlin_weekdays	1284	6.308411
berlin_weekends	1200	6.166667
budapest_weekdays	2074	5.930569
budapest_weekends	1948	5.544148
lisbon_weekdays	2857	3.360168
lisbon_weekends	2906	3.475568
london_weekdays	4614	5.353273
london_weekends	5379	5.521472
paris_weekdays	3130	6.134185
paris_weekends	3558	5.368184
rome_weekdays	4492	5.031167
rome_weekends	4535	5.005513
vienna_weekdays	1738	4.257767
vienna_weekends	1799	4.113396

Spilt Training and Testing Data

Exploratory Data Analysis

Outlier Analysis

Metro Dist vs Real Sum

We have planned to analyse the filtered data along with outlier data. Here outlier data represents the hotel rooms with high prices.

In general the rooms that are closer to metro have comparatively higher prices. But, in Rome city the distance to metro is almost same for both categories of price.

Real Sum vs Distance

```
ggplot() + geom_point(data = my_data_filtered, aes(x = realSum,
    y = dist, color = "Filtered Data"), alpha = 0.4) + geom_point(data = my_outliers,
    aes(x = realSum, y = dist, color = "Outliers"), alpha = 0.4) +
    scale_color_manual(values = c(`Filtered Data` = "blue", Outliers = "red"))
```



```
ggplot() + geom_point(data = my_data_filtered, aes(x = realSum,
    y = dist, color = "Filtered Data"), alpha = 0.4) + geom_point(data = my_outliers,
    aes(x = realSum, y = dist, color = "Outliers"), alpha = 0.4) +
    scale_color_manual(values = c(`Filtered Data` = "blue", Outliers = "red")) +
    facet_wrap(~city_day)
```


In general the pricey rooms are near to the centre of the city.

Real Sum vs Attraction Index Normal


```
ggplot() + geom_point(data = my_data_filtered, aes(x = realSum,
    y = attr_index_norm), alpha = 0.4) + geom_point(data = my_outliers,
    aes(x = realSum, y = attr_index_norm), alpha = 0.4)
```


The range of values falling b/w outliers and normal data is almost same . So there isn't a relationship b/w attr_index and realSum.

Real Sum vs Restaurant Index Normal

There is no relationship between outliers and rest_index

Room Type Vs Real Sum

```
ggplot(my_data, aes(x = realSum, fill = room_type, group = room_type)) +
   geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = room_type, group = room_type)) +
    geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
    axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = room_type, group = room_type)) +
   geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14)),
   axis.title.y = element_text(size = 14)) + facet_wrap(~city_day)
```


The price of entire home/apt tend to be higher compared to other two categories. And the count of entire home /apt is also more.

Room Type Vs Person Capacity

```
ggplot(my_data, aes(x = realSum, fill = person_capacity, group = person_capacity)) +
    geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
    axis.title.y = element_text(size = 14))

ggplot(my_data_filtered, aes(x = realSum, fill = person_capacity,
    group = person_capacity)) + geom_histogram(alpha = 0.5, nbins = 20) +
```

theme(axis.title.x = element_text(size = 14), axis.title.y = element_text(size = 14))


```
ggplot(my_data_filtered, aes(x = realSum, fill = person_capacity,
    group = person_capacity)) + geom_histogram(alpha = 0.5, nbins = 20) +
    theme(axis.title.x = element_text(size = 14), axis.title.y = element_text(size = 14)) +
    facet_wrap(~city_day)
```


The overall price is distributed similarly across the spectrum irrespective of person_capacity. But for some cities like london, london_weekdays, lisbon the price is higher with person capacity. So, person capacity along with city will be an important variable for determining price.

Real Sum Vs host_is_superhost

```
ggplot(my_data, aes(x = realSum, fill = host_is_superhost, group = host_is_superhost)) +
   geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = host_is_superhost,
    group = host_is_superhost)) + geom_histogram(alpha = 0.5,
    nbins = 20) + theme(axis.title.x = element_text(size = 14),
    axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = host_is_superhost,
    group = host_is_superhost)) + geom_histogram(alpha = 0.5,
    nbins = 20) + theme(axis.title.x = element_text(size = 14),
    axis.title.y = element_text(size = 14)) + facet_wrap(~city_day)
```


The prices are spread across all the spectrum irrespective of super_host or not.

Real Sum Vs multi

```
ggplot(my_data, aes(x = realSum, fill = multi, group = multi)) +
   geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = multi, group = multi)) +
   geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = multi, group = multi)) +
   geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14)) + facet_wrap(~city_day)
```


The prices are similar irrespective of multi or not.

Real Sum Vs biz

```
ggplot(my_data, aes(x = realSum, fill = biz, group = biz)) +
   geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = biz, group = biz)) +
   geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = biz, group = biz)) +
    geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14)),
    axis.title.y = element_text(size = 14)) + facet_wrap(~city_day)
```


The prices are similar irrespective of biz or not. $\,$

Real Sum vs Cleanliness

```
ggplot(my_data, aes(x = realSum, fill = cleanliness_rating, group = cleanliness_rating)) +
   geom_histogram(alpha = 0.5, nbins = 20) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = cleanliness_rating,
    group = cleanliness_rating)) + geom_histogram(alpha = 0.5,
    nbins = 20) + theme(axis.title.x = element_text(size = 14),
    axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = cleanliness_rating,
    group = cleanliness_rating)) + geom_histogram(alpha = 0.5,
    nbins = 20) + theme(axis.title.x = element_text(size = 14),
    axis.title.y = element_text(size = 14)) + facet_wrap(~city_day)
```


The cleanliness rating doesn't really have an effect on price

Scatterplot of Price vs Guest Satisfaction filtered by city

The plot depicts that there is no correlation of price with guest satisfaction, good satisfaction rate is found across all the prices. In some cities like london, we can see a group of reviews with low guest satisfaction.

Real Sum Vs Bedroom Count

```
ggplot(my_data, aes(x = realSum, fill = bedrooms, group = bedrooms)) +
geom_histogram(alpha = 0.6) + theme(axis.title.x = element_text(size = 14),
    axis.title.y = element_text(size = 14))
```

```
ggplot(my_data_filtered, aes(x = realSum, fill = bedrooms, group = bedrooms)) +
   geom_histogram(alpha = 0.6) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14))
```



```
ggplot(my_data_filtered, aes(x = realSum, fill = bedrooms, group = bedrooms)) +
   geom_histogram(alpha = 0.6) + theme(axis.title.x = element_text(size = 14),
   axis.title.y = element_text(size = 14)) + facet_wrap(~city_day)
```



```
ggplot(my_data_filtered, aes(x = reorder(city_day, bedrooms,
    FUN = median), y = bedrooms, fill = city_day)) + geom_boxplot() +
    coord_flip() + theme(legend.key.height = unit(0.5, "cm"),
    legend.key.size = unit(1, "lines"))
```


cor(as.numeric(factor(my_data\$multi)), as.numeric(factor(my_data\$biz)))

[1] -0.4707248

Non Outlier Analysis

Boxplot of Price Vs City

The highest prices in Europe are found in Amsterdam.

Density plot of Price vs Room type

The prices of entire home are high comparatively

Scatterplot of Prices in Rome w.r.t Latitude and Longitude during weekdays

```
tema <- theme(plot.title = element_text(size = 23, hjust = 0.5),
    axis.text.x = element_text(size = 19, face = "bold"), axis.text.y = element_text(size = 19,
        face = "bold"), axis.title.x = element_text(size = 19),
    axis.title.y = element_text(size = 19), legend.text = element_text(colour = "black",
        size = 19, face = "bold"), legend.background = element_rect(fill = "#F5FFFA",
        size = 0.5, linetype = "dashed", colour = "black"))

rome_data <- my_data_filtered %>%
        subset(city_day == "rome_weekdays")

ggplot(data = rome_data, mapping = aes(x = lat, y = lng)) + theme_minimal() +
        scale_fill_identity() + geom_point(mapping = aes(color = realSum),
        size = 3) + ggtitle("") + tema
```


This plot is within expectations of general trends, which suggests similar types of establishments (price and hospitality) tend be in clusters.

Attraction Index in all Cities

```
# create a new column that groups the cities
my_data_filtered$city_group <- ifelse(my_data_filtered$city_day %in%</pre>
    c("amsterdam_weekdays", "amsterdam_weekends"), "amsterdam",
    ifelse(my_data_filtered$city_day %in% c("athens_weekdays",
        "athens_weekends"), "athens", ifelse(my_data_filtered$city_day %in%
        c("barcelona_weekdays", "barcelona_weekends"), "barcelona",
        ifelse(my data filtered$city day %in% c("berlin weekdays",
            "berlin_weekends"), "berlin", ifelse(my_data_filtered$city_day %in%
            c("budapest_weekdays", "budapest_weekends"), "budapest",
            ifelse(my_data_filtered$city_day %in% c("lisbon_weekdays",
                "lisbon_weekends"), "lisbon", ifelse(my_data_filtered$city_day %in%
                c("london_weekdays", "london_weekends"), "london",
                ifelse(my_data_filtered$city_day %in% c("paris_weekdays",
                  "paris_weekends"), "paris", ifelse(my_data_filtered$city_day %in%
                  c("rome_weekdays", "rome_weekends"), "rome",
                  "vienna")))))))))
# plot the density plot with the new groupings
ggplot(my_data_filtered, aes(x = attr_index_norm, fill = city_group,
    alpha = 0.2)) + geom_density() + scale_fill_manual(values = c(amsterdam = "red",
    athens = "blue", barcelona = "green", berlin = "orange",
   budapest = "purple", lisbon = "black", london = "brown",
   paris = "grey", rome = "pink", vienna = "yellow")) + labs(fill = "City Group")
```


Real Sum vs Room Shared for all Cities

```
ggplot(my_data_filtered, aes(x = room_shared, y = realSum, color = city_group),
    alpha = 0.001) + geom_point() + scale_fill_manual(values = c(amsterdam = "red",
    athens = "blue", barcelona = "green", berlin = "orange",
    budapest = "purple", lisbon = "black", london = "brown",
    paris = "grey", rome = "pink", vienna = "yellow")) + labs(fill = "City Group")
```


Different Model Selection and Training

Checking for correlations between different attributes

cor(my_data\$attr_index, my_data\$rest_index)

[1] 0.4721427


```
ggplot() + geom_point(data = my_data, aes(x = attr_index_norm,
    y = rest_index_norm, color = "Filtered Data"), alpha = 0.4) +
    scale_color_manual(values = c(`Filtered Data` = "blue"))
```



```
ggplot() + geom_point(data = my_data, aes(x = attr_index_norm,
    y = rest_index_norm, color = "Filtered Data"), alpha = 0.4) +
    scale_color_manual(values = c(`Filtered Data` = "blue")) +
    facet_wrap(~city_day)
```


cor(my_data\$attr_index_norm, my_data\$rest_index_norm)

[1] 0.4721427

Linear, Polynomial and Step Regression

MLR Seperated by City Day

```
temp_data <- subset(my_data_train, city_day == "amsterdam_weekends" |
    city_day == "amsterdam_weekdays")

M_0 <- lm(realSum ~ . - realSum - X, data = temp_data)
temp_data <- subset(my_data_train, city_day == "athens_weekdays" |
    city_day == "athens_weekends", )

M_1 <- lm(realSum ~ . - realSum - X - city_day, data = temp_data)
temp_data <- subset(my_data_train, city_day == "barcelona_weekdays" |
    city_day == "barcelona_weekends", )

M_2 <- lm(realSum ~ . - realSum - X - city_day, data = temp_data)
temp_data <- subset(my_data_train, city_day == "berlin_weekdays" |
    city_day == "berlin_weekends", )

M_3 <- lm(realSum ~ . - realSum - X - city_day, data = temp_data)</pre>
```

```
temp_data <- subset(my_data_train, city_day == "budapest_weekdays" |</pre>
    city_day == "budapest_weekends", )
M_4 <- lm(realSum ~ . - realSum - X - city_day, data = temp_data)
temp_data <- subset(my_data_train, city_day == "lisbon_weekdays" |</pre>
    city_day == "lisbon_weekends", )
M 5 <- lm(realSum ~ . - realSum - X - city day, data = temp data)
temp_data <- subset(my_data_train, city_day == "london_weekdays" |</pre>
    city_day == "london_weekends", )
M_6 <- lm(realSum ~ . - realSum - X - city_day, data = temp_data)</pre>
temp_data <- subset(my_data_train, city_day == "paris_weekdays" |</pre>
    city_day == "paris_weekends", )
M_7 <- lm(realSum ~ . - realSum - X - city_day, data = temp_data)</pre>
temp_data <- subset(my_data_train, city_day == "rome_weekdays" |</pre>
    city_day == "rome_weekends", )
M_8 <- lm(realSum ~ . - realSum - X - city_day, data = temp_data)
temp_data <- subset(my_data_train, city_day == "vienna_weekdays" |</pre>
    city_day == "vienna_weekends", )
M_9 <- lm(realSum ~ . - realSum - X - city_day, data = temp_data)</pre>
coefs <- tidy(M 0)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
coefs <- tidy(M 1)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
coefs <- tidy(M_2)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
coefs <- tidy(M_3)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
coefs <- tidy(M_4)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
coefs <- tidy(M_5)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
coefs <- tidy(M 6)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
coefs <- tidy(M 7)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
coefs <- tidy(M_8)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
coefs <- tidy(M_9)</pre>
coefs[order(coefs$estimate, decreasing = TRUE), ]
```

MLR

```
M1 <- lm(realSum ~ . - realSum - X, data = my_data_train)
```

```
##
## Call:
## lm(formula = realSum ~ . - realSum - X, data = my_data_train)
##
## Residuals:
##
                                3Q
       Min
                1Q
                    Median
                                       Max
   -758.3
             -84.0
                     -21.0
                              42.9 18422.4
##
## Coefficients:
##
                                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              -4954.9076 3996.1824 -1.240 0.215017
                                             4.2823 -26.707 < 2e-16 ***
## room_typePrivate room
                               -114.3655
## room_typeShared room
                               -204.1842
                                            18.9348 -10.784
                                                             < 2e-16 ***
## person capacity
                                 23.9626
                                             1.7645 13.581 < 2e-16 ***
                                             3.9344
                                                      0.273 0.784700
## host_is_superhostTrue
                                  1.0749
## multi
                                  9.6004
                                             4.1324
                                                       2.323 0.020173 *
## biz
                                 33.2806
                                             4.1885
                                                      7.946 1.99e-15 ***
## cleanliness_rating
                                  5.0383
                                             2.4153
                                                      2.086 0.036987 *
## guest_satisfaction_overall
                                  0.7760
                                             0.2615
                                                      2.968 0.002999 **
## bedrooms
                                             3.1888
                                                      26.974 < 2e-16 ***
                                 86.0154
## dist
                                 -1.5330
                                             1.2628 -1.214 0.224761
## metro_dist
                                 -3.9967
                                             2.5025 -1.597 0.110262
                                  6.3705
                                             0.2946 21.627 < 2e-16 ***
## attr_index_norm
## rest_index_norm
                                 -0.1837
                                             0.1774
                                                     -1.036 0.300215
## lng
                                            40.1931 -6.541 6.20e-11 ***
                               -262.8909
## lat
                                123.2117
                                            76.5228
                                                      1.610 0.107378
## city_dayamsterdam_weekends
                                 67.9410
                                            16.0017
                                                      4.246 2.18e-05 ***
## city_dayathens_weekdays
                               6315.0906
                                         1388.5351
                                                       4.548 5.43e-06 ***
## city_dayathens_weekends
                               6303.5311
                                          1388.6527
                                                       4.539 5.66e-06 ***
## city_daybarcelona_weekdays
                                           837.7909
                                                      0.491 0.623078
                                411.7717
## city daybarcelona weekends
                                429.6529
                                           837.8109
                                                      0.513 0.608075
## city_dayberlin_weekdays
                               1949.0424
                                           342.1245
                                                      5.697 1.23e-08 ***
## city_dayberlin_weekends
                               1958.8844
                                           342.0401
                                                      5.727 1.03e-08 ***
                               3902.3511
                                           706.8806
                                                      5.521 3.40e-08 ***
## city_daybudapest_weekdays
## city_daybudapest_weekends
                               3929.6734
                                           706.8440
                                                      5.559 2.73e-08 ***
## city_daylisbon_weekdays
                              -2312.9309
                                          1143.8977 -2.022 0.043186 *
## city_daylisbon_weekends
                              -2304.0067
                                           1143.8126 -2.014 0.043983 *
## city_daylondon_weekdays
                                                    -6.838 8.17e-12 ***
                              -1409.2997
                                           206.1046
## city_daylondon_weekends
                              -1410.9328
                                           206.1223
                                                     -6.845 7.76e-12 ***
## city_dayparis_weekdays
                               -403.0289
                                           278.4819 -1.447 0.147840
## city_dayparis_weekends
                               -422.1389
                                           278.6437 -1.515 0.129787
## city_dayrome_weekdays
                               2947.6852
                                           881.3984
                                                      3.344 0.000826 ***
## city_dayrome_weekends
                               2952.5352
                                           881.4297
                                                       3.350 0.000810 ***
## city_dayvienna_weekdays
                                                       5.546 2.94e-08 ***
                               3231.8185
                                           582.7092
## city_dayvienna_weekends
                               3230.2680
                                           582.7972
                                                      5.543 3.00e-08 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 305.1 on 36159 degrees of freedom
## Multiple R-squared: 0.215, Adjusted R-squared: 0.2143
## F-statistic: 291.3 on 34 and 36159 DF, p-value: < 2.2e-16
```

```
# Create summary table with coefficients and p-values
table <- summary(M1)$coefficients[, c(1, 4)]</pre>
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(M1, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_train$realSum)</pre>
p <- ncol(my data train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R squared, "\n")
## R-squared: 0.2150414
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2146725
cat("RMSE:", RMSE, "\n")
## RMSE: 304.9175
```

The r^2 and adjusted r^2 values are too low for the Linear regression model to be considered a competent one in this case.

```
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(M1, my_data_test)
y_train_mean <- mean(my_data_test$realSum)
SST <- sum((my_data_test$realSum - y_train_mean)^2)
SSR <- sum((my_data_test$realSum - y_train_pred)^2)
R_squared <- 1 - SSR/SST
n <- length(my_data_test$realSum)
p <- ncol(my_data_test)
adj_R_squared <- 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))

# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")</pre>
```

R-squared: 0.33744

```
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.3367131
cat("RMSE:", RMSE, "\n")
## RMSE: 233.2618
M1_step = step(M1, direction = "backward")
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(M1_step, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST
n <- length(my_data_train$realSum)</pre>
p <- ncol(my_data_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R squared, "\n")
## R-squared: 0.2149964
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2146275
cat("RMSE:", RMSE, "\n")
## RMSE: 304.9262
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(M1_step, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)</pre>
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
```

```
## R-squared: 0.3373441
```

```
cat("Adjusted R-squared:", adj_R_squared, "\n")
```

Adjusted R-squared: 0.336617

```
cat("RMSE:", RMSE, "\n")
```

RMSE: 233.2787

M1_step Diagnostics

library(car)
autoplot(M1)

avPlots(M1)


```
my_data_train[34804, ]
##
            X realSum
                             room_type person_capacity host_is_superhost multi biz
## 49907 1736 637.6364 Entire home/apt
                                                                    False
         cleanliness_rating guest_satisfaction_overall bedrooms
                                                                      dist
                                                               1 0.9940386
                         10
## 49907
                                                     93
         metro_dist attr_index_norm rest_index_norm
##
                                                          lng
                           12.10842
## 49907 0.2025371
                                       6.748565 16.38568 48.2046
                city_day
## 49907 vienna_weekdays
my_data_train[3591, ]
          X realSum
                           room_type person_capacity host_is_superhost multi biz
## 4917 183 156.3049 Entire home/apt
                                                   6
                                                                  False
       cleanliness rating guest satisfaction overall bedrooms
                                                                    dist metro dist
                                                              2 2.841432 0.04608507
## 4917
                                                   94
       attr index norm rest index norm
                                             lng
                                                      lat
                                                                  city day
## 4917
               2.366625
                           1.39056 23.72258 37.99906 athens_weekends
my_data_train[24349, ]
                         room_type person_capacity host_is_superhost multi biz
            X realSum
## 21461 1904 108.818 Private room
                                                 2
                                                              False
         cleanliness_rating guest_satisfaction_overall bedrooms
## 21461
                                                               1 3.216239
        metro_dist attr_index_norm rest_index_norm
                                                          lng
## 21461 0.3290175
                           3.115481
                                       14.47335 -9.14292 38.74124
##
                city day
## 21461 lisbon_weekends
MLR with IVs
M1IV <- lm(realSum ~ room_type + host_is_superhost + multi +
   biz + city_day + person_capacity + cleanliness_rating + guest_satisfaction_overall +
   bedrooms + dist + metro_dist + attr_index_norm + rest_index_norm +
   lng + lat + metro_dist:dist + attr_index_norm:dist + attr_index_norm:metro_dist +
   rest_index_norm:dist + rest_index_norm:metro_dist + rest_index_norm:attr_index_norm,
   data = my_data_train)
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(M1IV, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST
n <- length(my_data_train$realSum)</pre>
p <- ncol(my data train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
```

```
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2159815
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.215613
cat("RMSE:", RMSE, "\n")
## RMSE: 304.7348
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(M1IV, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)</pre>
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.3379444
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.337218
cat("RMSE:", RMSE, "\n")
## RMSE: 233.173
M1stepIV = step(M1IV, direction = "backward")
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(M1stepIV, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my data train$realSum - y train mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
```

```
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_train$realSum)</pre>
p <- ncol(my_data_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2159435
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.215575
cat("RMSE:", RMSE, "\n")
## RMSE: 304.7422
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(M1stepIV, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)</pre>
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
\# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.3380392
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.3373129
cat("RMSE:", RMSE, "\n")
## RMSE: 233.1563
```

Second Order Polynomial

```
poly2 <- lm(realSum ~ room_type + host_is_superhost + multi +</pre>
    biz + city_day + person_capacity + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + poly(dist, 2) + poly(metro_dist, 2) + poly(attr_index_norm,
    2) + poly(rest_index_norm, 2) + lng + lat, data = my_data_train)
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly2, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_train$realSum)</pre>
p <- ncol(my_data_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
\# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2154699
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2151012
cat("RMSE:", RMSE, "\n")
## RMSE: 304.8342
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly2, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)</pre>
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.3373538
cat("Adjusted R-squared:", adj_R_squared, "\n")
```

Adjusted R-squared: 0.3366268

```
cat("RMSE:", RMSE, "\n")
## RMSE: 233.277
poly2step = step(poly2, direction = "backward")
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly2step, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_train$realSum)</pre>
p <- ncol(my_data_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my data train$realSum - y train pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2154289
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2150602
cat("RMSE:", RMSE, "\n")
## RMSE: 304.8422
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly2step, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)</pre>
SST <- sum((my data test$realSum - y train mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
```

R-squared: 0.3373204

```
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.3365933
cat("RMSE:", RMSE, "\n")
## RMSE: 233.2829
Second Order Polynomial with IVs
poly2IV <- lm(realSum ~ room_type + host_is_superhost + multi +</pre>
    biz + city_day + person_capacity + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + poly(dist, 2) * poly(metro_dist, 2) * poly(attr_index_norm,
    2) * poly(rest_index_norm, 2) + lng + lat, data = my_data_train)
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly2IV, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_train$realSum)</pre>
p <- ncol(my_data_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.22214
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2217744
cat("RMSE:", RMSE, "\n")
## RMSE: 303.5356
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly2IV, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)</pre>
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my data test$realSum)</pre>
p <- ncol(my_data_test)</pre>
```

```
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.334993
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.3342634
cat("RMSE:", RMSE, "\n")
## RMSE: 233.6922
poly2stepIV = step(poly2IV, direction = "backward")
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly2stepIV, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_train$realSum)</pre>
p <- ncol(my_data_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2221344
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2217689
cat("RMSE:", RMSE, "\n")
## RMSE: 303.5367
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly2stepIV, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)</pre>
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
```

```
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.3350694
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.3343399
cat("RMSE:", RMSE, "\n")
## RMSE: 233.6788
Third Order Polynomial
poly3 <- lm(realSum ~ room_type + host_is_superhost + multi +</pre>
    biz + city_day + person_capacity + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + poly(dist, 3) + poly(metro_dist, 3) + poly(attr_index_norm,
    3) + poly(rest_index_norm, 3) + lng + lat, data = my_data_train)
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly3, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R squared <- 1 - SSR/SST
n <- length(my_data_train$realSum)</pre>
p <- ncol(my_data_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2160624
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.215694
```

```
cat("RMSE:", RMSE, "\n")
## RMSE: 304.7191
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly3, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.3375855
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.3368588
cat("RMSE:", RMSE, "\n")
## RMSE: 233.2362
poly3step = step(poly3, direction = "backward")
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly3step, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my data train$realSum - y train mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_train$realSum)</pre>
p <- ncol(my_data_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
```

R-squared: 0.2160337

```
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2156653
cat("RMSE:", RMSE, "\n")
## RMSE: 304.7247
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly3step, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)</pre>
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R squared <- 1 - SSR/SST
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.3376519
cat("Adjusted R-squared:", adj R squared, "\n")
## Adjusted R-squared: 0.3369253
cat("RMSE:", RMSE, "\n")
## RMSE: 233.2245
Third Order Polynomial with IVs
poly3IV <- lm(realSum ~ room_type + host_is_superhost + multi +</pre>
    biz + city_day + person_capacity + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + poly(dist, 3) * poly(metro_dist, 3) * poly(attr_index_norm,
    3) * poly(rest_index_norm, 3) + lng + lat, data = my_data_train)
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly3IV, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my data train$realSum)</pre>
p <- ncol(my_data_train)</pre>
```

```
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2330663
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2327059
cat("RMSE:", RMSE, "\n")
## RMSE: 301.3962
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly3IV, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)</pre>
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
\label{eq:conditional_state} adj_R_squared <- 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.1901115
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.189223
cat("RMSE:", RMSE, "\n")
## RMSE: 257.8955
poly3stepIV = step(poly3IV, direction = "backward")
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly3stepIV, my_data_train)</pre>
y_train_mean <- mean(my_data_train$realSum)</pre>
SST <- sum((my_data_train$realSum - y_train_mean)^2)</pre>
```

```
SSR <- sum((my_data_train$realSum - y_train_pred)^2)</pre>
R squared <- 1 - SSR/SST
n <- length(my_data_train$realSum)</pre>
p <- ncol(my_data_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_train$realSum - y_train_pred)^2))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2285384
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2281759
cat("RMSE:", RMSE, "\n")
## RMSE: 302.2846
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(poly3stepIV, my_data_test)</pre>
y_train_mean <- mean(my_data_test$realSum)
SST <- sum((my_data_test$realSum - y_train_mean)^2)</pre>
SSR <- sum((my_data_test$realSum - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
n <- length(my_data_test$realSum)</pre>
p <- ncol(my_data_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
RMSE = sqrt(mean((my_data_test$realSum - y_train_pred)^2))
\# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.3281442
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.327407
cat("RMSE:", RMSE, "\n")
## RMSE: 234.8925
```

Lasso Regression

```
# Prepare the predictors and response variable
x_train <- model.matrix(realSum ~ room_type + person_capacity +
    host_is_superhost + multi + biz + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + dist * metro_dist * attr_index_norm * rest_index_norm +
    lng + lat + city_day, data = my_data_train)[, -1]
y_train <- my_data_train$realSum
y_test <- my_data_test$realSum

# Fit a Lasso regression model
lasso_model <- glmnet(x_train, y_train, alpha = 1)

# Select the best lambda value using cross-validation
cv_model <- cv.glmnet(x_train, y_train, alpha = 1, nfolds = 5)

# Plot the cross-validation results
plot(cv_model)</pre>
```

44 43 43 41 40 41 34 29 21 21 13 8 7 7 3 1


```
# Select the lambda value that minimizes the mean
# cross-validation error
best_lambda <- cv_model$lambda.min

# Fit a Lasso regression model with the selected lambda
# value
lasso_model_best <- glmnet(x_train, y_train, alpha = 1, lambda = best_lambda)

# Calculate R-squared and multiple R-squared
y_train_pred <- predict(lasso_model_best, newx = x_train)
y_train_mean <- mean(y_train)
SST <- sum((y_train - y_train_mean)^2)</pre>
```

```
SSR <- sum((y_train - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST</pre>
multiple_R_squared <- cor(y_train_pred, y_train)^2</pre>
n <- length(y_train)</pre>
p <- ncol(x_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2157005
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2147241
# Evaluate the model performance
rmse <- sqrt(mean((my_data_test$realSum - y_train_pred)^2))</pre>
cat("RMSE on train set:", rmse, "\n")
## RMSE on train set: 325.8081
x_test <- model.matrix(realSum ~ room_type + person_capacity +</pre>
    host_is_superhost + multi + biz + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + dist * metro_dist * attr_index_norm * rest_index_norm +
    lng + lat + city_day, data = my_data_test)[, -1]
# Calculate R-squared and multiple R-squared
y_test_pred <- predict(lasso_model_best, newx = x_test)</pre>
y_test_mean <- mean(y_test)</pre>
SST <- sum((y_test - y_test_mean)^2)</pre>
SSR <- sum((y_test - y_test_pred)^2)</pre>
R_squared <- 1 - SSR/SST
n <- length(y_test)</pre>
p <- ncol(x_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.3372477
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.3353195
```

```
# Evaluate the model performance
rmse <- sqrt(mean((my_data_test$realSum - y_test_pred)^2))</pre>
cat("RMSE on test set:", rmse, "\n")
## RMSE on test set: 233.2957
# Prepare the predictors and response variable
x_train <- model.matrix(realSum ~ room_type + person_capacity +</pre>
    host_is_superhost + multi + biz + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + poly(dist, 2) * poly(metro_dist, 2) * poly(attr_index_norm,
    2) * poly(rest_index_norm, 2) + lng + lat + city_day, data = my_data_train)[,
    -1]
y_train <- my_data_train$realSum</pre>
y_test <- my_data_test$realSum</pre>
# Fit a Lasso regression model
lasso_model <- glmnet(x_train, y_train, alpha = 1)</pre>
# Select the best lambda value using cross-validation
cv_model <- cv.glmnet(x_train, y_train, alpha = 1, nfolds = 5)</pre>
# Plot the cross-validation results
plot(cv_model)
```

108 101 93 83 67 61 58 44 39 28 16 10 7 6 2


```
# Select the lambda value that minimizes the mean
# cross-validation error
best_lambda <- cv_model$lambda.min
# Fit a Lasso regression model with the selected lambda</pre>
```

```
lasso_model_best <- glmnet(x_train, y_train, alpha = 1, lambda = best_lambda)</pre>
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(lasso_model_best, newx = x_train)</pre>
y_train_mean <- mean(y_train)</pre>
SST <- sum((y_train - y_train_mean)^2)</pre>
SSR <- sum((y_train - y_train_pred)^2)</pre>
R squared <- 1 - SSR/SST
multiple_R_squared <- cor(y_train_pred, y_train)^2</pre>
n <- length(y_train)</pre>
p <- ncol(x_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2176971
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2153122
# Evaluate the model performance
rmse <- sqrt(mean((my_data_test$realSum - y_train_pred)^2))</pre>
cat("RMSE on train set:", rmse, "\n")
## RMSE on train set: 324.7053
x_test <- model.matrix(realSum ~ room_type + person_capacity +</pre>
    host_is_superhost + multi + biz + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + poly(dist, 2) * poly(metro_dist, 2) * poly(attr_index_norm,
    2) * poly(rest_index_norm, 2) + lng + lat + city_day, data = my_data_test)[,
    -1]
# Calculate R-squared and multiple R-squared
y_test_pred <- predict(lasso_model_best, newx = x_test)</pre>
y_test_mean <- mean(y_test)</pre>
SST <- sum((y_test - y_test_mean)^2)</pre>
SSR <- sum((y_test - y_test_pred)^2)</pre>
R squared <- 1 - SSR/SST
n <- length(y_test)</pre>
p <- ncol(x test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
```

R-squared: 0.2821967

```
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2770702
# Evaluate the model performance
rmse <- sqrt(mean((my_data_test$realSum - y_test_pred)^2))</pre>
cat("RMSE on test set:", rmse, "\n")
## RMSE on test set: 242.7917
# Prepare the predictors and response variable
x_train <- model.matrix(realSum ~ room_type + person_capacity +</pre>
    host_is_superhost + multi + biz + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + poly(dist, 3) * poly(metro_dist, 3) * poly(attr_index_norm,
    3) * poly(rest_index_norm, 3) + lng + lat + city_day, data = my_data_train)[,
    -1]
y_train <- my_data_train$realSum</pre>
y_test <- my_data_test$realSum</pre>
# Fit a Lasso regression model
lasso_model <- glmnet(x_train, y_train, alpha = 1)</pre>
```

243 209 162 112 90 78 64 47 34 25 13 8 7 3 1

Select the best lambda value using cross-validation

Plot the cross-validation results

plot(cv_model)

cv_model <- cv.glmnet(x_train, y_train, alpha = 1, nfolds = 5)</pre>


```
# Select the lambda value that minimizes the mean
# cross-validation error
best lambda <- cv model$lambda.min
# Fit a Lasso regression model with the selected lambda
# value
lasso_model_best <- glmnet(x_train, y_train, alpha = 1, lambda = best_lambda)</pre>
# Calculate R-squared and multiple R-squared
y_train_pred <- predict(lasso_model_best, newx = x_train)</pre>
y_train_mean <- mean(y_train)</pre>
SST <- sum((y_train - y_train_mean)^2)</pre>
SSR <- sum((y_train - y_train_pred)^2)</pre>
R_squared <- 1 - SSR/SST
multiple_R_squared <- cor(y_train_pred, y_train)^2</pre>
n <- length(y_train)</pre>
p <- ncol(x_train)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
\# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2188426
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2126426
# Evaluate the model performance
rmse <- sqrt(mean((my_data_test$realSum - y_train_pred)^2))</pre>
cat("RMSE on train set:", rmse, "\n")
## RMSE on train set: 324.4427
x_test <- model.matrix(realSum ~ room_type + person_capacity +</pre>
    host_is_superhost + multi + biz + cleanliness_rating + guest_satisfaction_overall +
    bedrooms + poly(dist, 3) * poly(metro_dist, 3) * poly(attr_index_norm,
    3) * poly(rest index norm, 3) + lng + lat + city day, data = my data test)[,
    -17
# Calculate R-squared and multiple R-squared
y_test_pred <- predict(lasso_model_best, newx = x_test)</pre>
y_test_mean <- mean(y_test)</pre>
SST <- sum((y_test - y_test_mean)^2)</pre>
SSR <- sum((y_test - y_test_pred)^2)</pre>
R_squared <- 1 - SSR/SST
n <- length(y_test)</pre>
p <- ncol(x_test)</pre>
adj_R_squared \leftarrow 1 - (SSR/(n - p - 1))/(SST/(n - 1))
```

```
# Print the R-squared and multiple R-squared values
cat("R-squared:", R_squared, "\n")
## R-squared: 0.2587531
cat("Adjusted R-squared:", adj_R_squared, "\n")
## Adjusted R-squared: 0.2448794
# Evaluate the model performance
rmse <- sqrt(mean((my_data_test$realSum - y_test_pred)^2))</pre>
cat("RMSE on test set:", rmse, "\n")
## RMSE on test set: 246.7246
Even step regression is not good because of extremely low value of R<sup>2</sup> even in polynomial model of power
2 and 3.
Random Forest Regression
rf_model <- randomForest(realSum ~ room_type + host_is_superhost +</pre>
    multi + biz + city_day + person_capacity + cleanliness_rating +
    guest_satisfaction_overall + bedrooms + dist + metro_dist +
    attr_index_norm + rest_index_norm + lng + lat, data = my_data_train)
predictions <- predict(rf_model, my_data_train)</pre>
rmse <- sqrt(mean((my_data_train$realSum - predictions)^2))</pre>
rmse
## [1] 120.6731
r_squared <- 1 - (sum((my_data_train$realSum - predictions)^2)/sum((my_data_train$realSum -
    mean(my_data_train$realSum))^2))
r_squared
## [1] 0.8770571
adj_R_{squared} \leftarrow 1 - ((1 - r_{squared}) * (n - 1)/(n - p - 1))
adj_R_squared
## [1] 0.874756
predictions <- predict(rf_model, my_data_test)</pre>
```

```
rmse <- sqrt(mean((my_data_test$realSum - predictions)^2))</pre>
## [1] 140.1627
r_squared <- 1 - (sum((my_data_test$realSum - predictions)^2)/sum((my_data_test$realSum -
    mean(my_data_test$realSum))^2))
r_squared
## [1] 0.7607771
adj_R_squared \leftarrow 1 - ((1 - r_squared) * (n - 1)/(n - p - 1))
adj_R_squared
## [1] 0.7562996
importance(rf_model)
                               IncNodePurity
                                   128820124
                                    29206740
                                    23032640
                                    28483381
                                   119817452
```

room_type ## host_is_superhost ## multi ## biz ## city day ## person_capacity 181945316 ## cleanliness_rating 84896646 ## guest_satisfaction_overall 153697848 ## bedrooms 339811264 ## dist 403842463 ## metro_dist 260251950 ## attr_index_norm 668769759 ## rest_index_norm 397578038 ## lng 489702071 ## lat 605397008

varImpPlot(rf_model)

rf_model

