

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

تشكيل تصوير

Image Formation

طراحی دوربین

- فرض کنید یک فیلم را مقابل یک شیئ قرار دهیم
- باید مانعی (دریچهای) در مقابل حسگرها قرار دهیم تا هر کدام نسبت به بخشی از فضا حساس باشند

مدل دوربین Pinhole

• ساده ترین دستگاهی است که یک تصویر از صحنه سه بعدی روی یک صفحه دو بعدی تشکیل میدهد

perspective projection:

$$x = f \frac{X}{Z} \qquad y = f \frac{Y}{Z}$$

ا: فاصله کانونیf

اثر اندازه دریچه

- دریچه بزرگ
- نور منعکس شده در بخش بیشتری از تصویر اثر می گذارد
 - تصویر تار خواهد بود
 - دریچه کوچک
- تار شدن را کاهش میدهد اما مقدار نور وارد شده به دوربین را کم میکند
 - همچنین باعث پراکندگی نور میشود

اثر اندازه دریچه

0.6mm

0.35 mm

0.15 mm

0.07 mm

شكست نور

• خم شدن یا شکست موج هنگامی که وارد مادهای با سرعت متفاوت میشود

لنز

خواص لنز نازک (ایدهآل)

- اشعههای نوری که از مرکز لنز عبور میکنند منحرف نمیشوند
 - میزان انحراف با دور شدن از مرکز لنز بیشتر میشود
 - تمام خطوط موازی به یک نقطه همگرا میشوند

معادلات لنز نازک

از لنز قرار دارد u فرض کنید یک شیئ در فاصله u

$$\frac{y}{Y} = \frac{u}{v}$$

$$\frac{y}{Y} = \frac{v - f}{f}$$

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

معادلات لنز نازک

- تنها اشعههای نوری نقاطی که در فاصله u از لنز باشند در صفحهای به فاصله v از لنز همگرا (متمرکز) می شوند
 - نقاط با فاصلههای دیگر دچار تاری خواهند شد

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

عمق میدان (DOF)

• محدودهای از عمق (فاصله تا دوربین) که اشیاء تقریبا با وضوح مناسب دیده میشوند

عمق میدان (DOF)

• در دوربینها معمولا هم از لنز استفاده میشود و هم از دریچه استفاده میشود و میتوان عمق میدان را کنترل کرد

	Aperture Size	Exposure	Depth of Field
f/1.4	Very large	Lets in a lot of light	Very thin
f/2.0	Large	Half as much light as f/1.4	Thin
f/2.8	Large	Half as much light as f/2	Thin
f/4.0	Moderate	Half as much light as f/2.8	Moderately thin
f/5.6	Moderate	Half as much light as f/4	Moderate
f/8.0	Moderate	Half as much light as f/5.6	Moderately large
f/11.0	Small	Half as much light as f/8	Large
f/16.0	Small	Half as much light as f/11	Large
f/22.0	Very small	Half as much light as f/16	Very large

میدان دید (FOV)

• میدان دید برابر با زاویه میدان قابل مشاهده بدون حرکت دوربین است

میدان دید (FOV)

• میدان دید برابر با زاویه میدان قابل مشاهده بدون حرکت دوربین است

500 mm 135 mm 50 mm 24 mm 830 7,5 mm 180°

میدان دید (FOV)

24 mm 50 mm 135 mm

اعوجاج چشمانداز

shutterstock.com · 245172952

لنز Fisheye

(Lens Distortion) اعوجاج لنز

- در عمل، هیچ لنز ساخته شدهای ایدهآل نیست
 - دو نوع اعوجاج اصلی وجود دارد:
- اعوجاج شعاعی (Radial) که حاصل از شکل لنز است
- اعوجاج مماسی (Tangential) که حاصل از فرآیند سوار کردن دوربین است

اعوجاج شعاعي

- به خصوص در لنزهای ارزانقیمت این اعوجاج به سادگی قابل تشخیص است
- اعوجاج در مرکز نوری ٠ است و با حرکت به سمت مرز تصویر افزایش می یابد
- این اعوجاج نسبت به مرکز متقارن فرض می شود و با استفاده از چند عبارت از سری تیلور می توان آن را مدل کرد

$$x_{corrected} = x \cdot (1 + k_1 r^2 + k_2 r^3 + k_3 r^6)$$

$$y_{corrected} = y \cdot (1 + k_1 r^2 + k_2 r^3 + k_3 r^6)$$

اعوجاج شعاعي

$$x_{corrected} = x \cdot (1 + k_1 r^2 + k_2 r^3 + k_3 r^6)$$

$$y_{corrected} = y \cdot (1 + k_1 r^2 + k_2 r^3 + k_3 r^6)$$

• که (x,y) مختصات اولیه برای نقطه دچار اعوجاج شده است و $x_{corrected}$ است $x_{corrected}$

اعوجاج مماسي

• این اعوجاج در فرآیند ساخت دوربین ایجاد میشود و به دلیل موازی نبودن دقیق صفحه تصویربرداری با لنز است

• معمولاً به صورت زیر مدل میشود

$$x_{corrected} = x + [2p_1xy + p_2(r^2 + 2x^2)]$$

$$y_{corrected} = y + [p_1(r^2 + 2y^2) + 2p_2xy]$$

اعوجاج شعاعی و مماسی

$$x_{corrected} = x \cdot (1 + k_1 r^2 + k_2 r^3 + k_3 r^6)$$

$$x_{corrected} = x + [2p_1xy + p_2(r^2 + 2x^2)]$$

$$y_{corrected} = y \cdot (1 + k_1 r^2 + k_2 r^3 + k_3 r^6)$$

در مجموع ۵ پارامتر دارند: $k_3 p_2 p_1 k_2 k_1$ -

Calibration

- میخواهیم پارامترهای مربوط به اعوجاجهای دوربین را تخمین بزنیم
- برای این کار، یک الگوی دارای ساختار مشخص که تعداد زیادی نقطه متمایز و قابل تشخیص داشته باشد را روبروی دوربین قرار میدهیم

• با مشاهده این ساختار از زوایای مختلف، میتوانیم موقعیت نسبی دوربین در بین فریمها و همچنین پارامترهای داخلی (intrinsic) دوربین را محاسبه کنیم

Calibration

طيف الكترومغناطيسي

