

SENSITIVITY ANALYSIS BASED ON HSIC DEPENDENCE MEASURES

*Hilbert Schmidt Independence Criterion

DE LA RECHERCHE À L'INDUSTRIE

Amandine MARREL

CEA DES/IRESNE/DER, IMT Toulouse

In collaboration with M. Albert, V. Chabridon, M. De Lozzo, R. El Amri, , B. Laurent-Bonneau, A. Meynaoui, J. Pelamatti, H. Raguet.

June 11th, 2021 - OpenTURNS UserDay #14

IRESNE | DER | SESI | LEMS

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Sensitivity Analysis in Uncertainty framework

- Numerical simulators: fundamental tools to model & predict physical phenomena.
- Large number of input parameters, characterizing the studied phenomenon or related to its physical and numerical modelling.
- Uncertainty on some input parameters → impacts the uncertainty on the output
- Black-box and time-expensive simulators → limited number of simulations

⇒ Quantify how the variability of the input parameters influences the output

→ Aim of Sensitivity Analysis (SA)

Sensitivity Analysis in Uncertainty framework

- Quantitative SA and Ranking purpose:
 - Quantify the impact of each uncertain input and interaction → Ranking
 - → Reduce the uncertainty of model output
 - → Identify the variables to be fixed or further characterized in order to obtain the largest reduction of the output uncertainty
- Screening purpose: Separate the inputs into two groups influential and non-influential
 - Non-influential variables fixed without consequences on the output uncertainty
 - Reduction of the model
 - Build a simplified model, a metamodel

Global SA within a probabilistic framework

ightarrow Valuable information to understand ${\mathcal M}$ and underlying phenomenon

Global Sensitivity Analysis

HSIC Review

IRESNE | DER | SESI | LEMS

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Some notations

$$Y = \mathcal{M}(X_1, ..., X_d)$$

where $X_1, ..., X_d$ are the d input parameters and Y the output

- $X_1,...,X_d$ are independent and evolve in domain $\mathcal{X}_1,...,\mathcal{X}_d$
- ullet Y evolves in domain ${\mathcal Y}$
- ullet Function ${\mathcal M}$ is unknown analytically
- Only a sample of n draws of inputs and associated outputs $(X^{(i)}, Y^{(i)})_{1 \le i \le n}$, where $Y^{(i)} = \mathcal{M}(X^{(i)})$ for i = 1, ..., n is available
- P_X denotes the probability measure of a variable X and p_X its density if X is a continuous variable
- \bullet $P_{Y|X}$ conditional probability distribution of Y given X
- $P_{X,Y}$ joint probability measure and $P_X \otimes P_Y$ product of marginal distributions

GSA in a probabilistic framework

► How to evaluate the sensitivity in a probabilistic way? ⇔ independence

Solution 1: Quantify the impact of X on the probability distribution of the output Y

 \rightarrow By comparing P_Y with $P_{Y/X}$

Solution 2: Measure and test the dependence between Y and X

 \rightarrow By comparing $P_{X,Y}$ with $P_X \otimes P_Y$

- ► In both cases, comparison can be based on:
 - Cumulative distribution functions
 - Probability density functions
 - Characteristic functions

GSA in a probabilistic framework

► How to evaluate the sensitivity in a probabilistic way? ⇔ independence

Solution 1: Quantify the impact of X on the probability distribution of the output Y

 \rightarrow By comparing P_Y with $P_{Y/X}$ with:

$$oldsymbol{\mathcal{S}_i} = \mathbb{E}_{X_i} ig[dig(P_Y, P_{Y|X_i} ig) ig]$$
 Baucells & Borgonovo [2013]

where *d* a **dissimilarity measure** between two probablity distributions based on:

• d comparing the mean: $d(P_Y, P_{Y|X_i}) = (E[Y] - E[Y|X_i])^2 \rightarrow S_i = 1^{st}$ Sobol indices

► Sobol:

- + Interesting invariance properties & interpretation in terms of variance decomposition
- Nullity non equivalent with independence ⇒ Only for total Sobol indices
- Only focusing on conditional mean
- Estimation cost for high-order indices ⇒ not directly computable from expensive model

Most of the dependence measures based on comparing P_Y with $P_{Y/X}$ suffer from a high estimation cost and curse of dimensionality

GSA in a probabilistic framework

▶ Ok... But HSIC??

Solution 2: Measure and test the dependence between Y and X

- ightarrow By directly comparing $P_{X,Y}$ with $P_X \otimes P_Y$
- → Nonparametric dependence measure based on a dissimilarity **measure** between **joint** probability distribution of (X_i, Y) , i.e. $\mathbb{P}_{X_i, Y}$ and **product of marginals** $\mathbb{P}_{X_i} \otimes \mathbb{P}_{Y_i}$ (joint distribution under independence)

For this, association of Reproducing kernel Hilbert spaces F_i and G to X_i and Y: with Φ_i and Ψ mapping functions to F_i and G (with characteristic kernel k_{X_i} and k_Y).

Picture modified from Arlot's slides [2014]

Hilbert-Schmidt independence criterion (HSIC):

(Gretton et al. [2005])

• One definition: "generalized covariance between two transformations of X; and Y", Based on cross-covariance operator $C_{X_i,Y}$: covariance between the feature maps,

applied respectively to X_i **and** Y (tensorised product of covariance between features)

$$\mathbb{COV}(\Phi_i(X_i), \psi(Y)) = \mathbb{E}_{X_iY}[\Phi_i(X_i) \otimes \psi(Y)] - \mathbb{E}_{X_i}[\Phi_i(X_i)] \otimes \mathbb{E}_Y[\psi(Y)]$$

With Φ_i and Ψ mapping functions to particular functional spaces (F_i and G) associated to X_i and Y(RKHS with characteristic kernel k_{X_i} and k_Y).

⇒ HSIC is defined as the squared Hilbert-Schmidt norm of the cross-covariance operator

$$HSIC(X_i, Y)_{F_i, G} = \|C_{X_i, Y}\|_{HS}^2 = \sum_{l, m} |\langle u_l, C_{X_i, Y}[v_m] \rangle_{F_i}|^2$$

with
$$\langle u_l, C_{X_i,Y}[v_m] \rangle_{\mathcal{F}_i} = \text{COV}(u_l(X_i), v_m(Y))$$

and where $(u_l)_{l\geq 0}$ and $(v_m)_{m\geq 0}$ are orthonormal bases of F_i and G.

⇒ A larger panel of input-output dependency can be captured by this operator,

HSIC somehow "summarizes" the set of cross-cov between features applied to X_i and Y

Hilbert-Schmidt independence criterion (HSIC):

(Gretton et al. [2005])

Kernel trick ⇒ Feature map linked to the positive definite kernel function

$$k_i(x,x') = \langle \Phi_i(x), \Phi_i(x') \rangle_{\mathscr{F}_i}$$
 and $k(y,y') = \langle \psi(y), \psi(y') \rangle_{\mathscr{G}}$

$$\Rightarrow \quad \operatorname{HSIC}(X_{i}, Y)_{\mathscr{F}_{i}, \mathscr{G}} = \mathbb{E}\left[\kappa_{i}(X_{i}, X_{i}^{'})\kappa(Y, Y^{'})\right] + \mathbb{E}\left[\kappa_{i}(X_{i}, X_{i}^{'})\right] \mathbb{E}\left[\kappa(Y, Y^{'})\right] \\ - 2\mathbb{E}\left[\mathbb{E}\left[\kappa_{i}(X_{i}, X_{i}^{'})|X_{i}\right] \mathbb{E}\left[\kappa(Y, Y^{'})|Y\right]\right]$$

where (X_i, Y') is an independent and identically distributed copy of (X_i, Y) .

Expression with only expectations of kernels ⇒ Monte-Carlo estimator

Characteristic kernels ⇒ Injective feature map ⇒ Equivalence to independence:

$$HSIC(X_i, Y) = 0 \Leftrightarrow X_i \perp Y$$

Gaussian Kernel

$$k(x_i, x_i') = exp\left(-\frac{(x_i - x_i')^2}{2\lambda^2}\right)$$

> Hilbert-Schmidt independence criterion (HSIC):

(Gretton et al. [2005])

- Case of continuous shift-invariant kernels k(x,x') = k(x-x')
- \Rightarrow k is the Fourier transform of a probability measure
- ⇒ HSIC somehow consists of comparing characteristic functions (Fourier transform of the probability density function), weighted by this probability measure on frequency space
- Interpretation of features in particular cases:
 - $k(x,x')=(< x,x'>+1)^p \rightarrow \text{involves up to the pth moments of } P_X \text{ (k not characteristic)}$
 - $k(x, x') = e^{\langle x, x' \rangle} \rightarrow$ moment generating function of P_X (k characteristic)
 - $k(x, x') = e^{ix^Tx'} \rightarrow \text{characteristic function of } P_X \text{ (k characteristic)}$

Normalization for sensitivity analysis:

(Da Veiga [2015])

$$R^2_{HSIC,i} = \frac{HSIC(X_i,Y)}{\sqrt{HSIC(X_i,X_i)HSIC(Y,Y)}}$$
 $\Rightarrow R^2_{HSIC} \in [0,1]$ for easier interpretation

- **Estimation in practice:**
- \Rightarrow Monte Carlo estimator from a *n*-sample of simulations $\left(X_i^{(j)}, Y^{(j)}\right)_{1 \le j \le n}$

$$\widehat{\mathsf{HSIC}}(X_i, Y) = \frac{1}{n^2} Tr(K_i H L H)$$

where
$$H = I_n - \frac{1}{n}$$
, $K_i = \left(k_i\left(X_i^{(j)}, X_i^{(j')}\right)\right)_{1 \le i, j' \le n}$ and $L = \left(k\left(Y^{(j)}, Y^{(j')}\right)\right)_{1 \le j, j' \le n}$

- Statistical properties of HSIC:
 - Asymptotically unbiased (unbiased estimator also exist, less practical)
 - Variance of order O(1/n)
 - Under independence, $nHSIC(X_i, Y)$ converges asymptotically to a Gamma distribution, whose parameters can be estimated by simple M-C estimators.

HSIC-Based Independence test

- ▶ Use HSIC for screening → with Independence test $HSIC(X_i, Y) = 0 \Leftrightarrow X_i \perp Y$
 - Null hypothesis: $\mathcal{H}_{0,i}: X_i \perp Y_i$ against $\mathcal{H}_{1,i}: X_i \not \mid Y_i$
 - Test statistics: $n \stackrel{\frown}{HSIC}(X_i, Y)$
 - Decision rule to obtain a test of level $\alpha = \mathbb{P}_{\mathcal{H}_0}$ [reject \mathcal{H}_0] (α fixed at 5% or 10%)

 $\mathcal{H}_{0,i}$ rejected iff $n\widehat{\mathrm{HSIC}}(X_i,Y)>q_{1-\alpha}$ where $q_{1-\alpha}$ is the $(1-\alpha)$ quantile under $\mathcal{H}_{0,i}$

In practice, computation of p-value:

$$p$$
-value = $\mathbb{P}[\widehat{HSIC}(X_i, Y) > \widehat{hsic}_{obs}(X_i, Y)]$

Interpretation of *p-value* for a level α ($\alpha = 5\%$ or 10%) for screening:

 \triangleright pval $< \alpha \Rightarrow H_0$ (Independence) rejected $\Rightarrow X_i$ is significantly influential

HSIC-Based Independence test

- ► How to compute $q_{1-\alpha}$? or *p-value*? p-value = $\mathbb{P}[\widehat{HSIC}(X_i, Y) > \widehat{hsic}_{obs}(X_i, Y)]$
 - Asymptotic computation with Gamma approximation of $nHSIC(X_i, Y)$ under $X_i \perp Y_i$ for large size sample (Gretton et al. (2008])
 - Permutation-based approximation for smaller size sample (De Lozzo & Marrel (2016a), *Meynaoui et al. [2019])*

Algorithm 1 – Permutation-based independence test (for each X_i)

Require: The learning sample (X_i, Y) of n inputs/outputs $\{(X_i^{(1)}, Y^{(1)}), \dots, (X_i^{(n)}, Y^{(n)})\}$, B and α

- 1: Compute $\widehat{HSIC}_{obs}(X_i, Y)$ from Eq. (2)
- 2: Generate B permutation-based samples $(\mathbf{X}_i, \mathbf{Y}_{[b]})_{1 < b < B}$
- 3: Compute the B permutation-based estimators $\Big(\widehat{\mathrm{HSIC}}_b(X_i,Y)\Big)_{1 \le b \le B}$ by replacing \mathbf{Y} by $\mathbf{Y}_{[b]}$ in Eq. (2)
- 4: Estimate the p-value by Monte-Carlo estimator $\hat{p}_{val,i}^B = \frac{1}{B} \sum_{i=1}^B \mathbb{1}_{\widehat{\mathrm{HSIC}}_b(X_i,Y) > \widehat{\mathrm{HSIC}}_{obs}(X_i,Y)}$
- 5: **if** $\hat{p}_{val,i}^{B} < \alpha$ **then**
- **return** reject (\mathcal{H}_0^i)
- 7: else
- return accept (\mathcal{H}_0^i)
- 9: end if

HSIC-Based Independence test

- ► How to compute $q_{1-\alpha}$? or *p-value*?
- p-value = $\mathbb{P}[\widehat{HSIC}(X_i, Y) > \widehat{hsic}_{obs}(X_i, Y)]$
- **Asymptotic** computation with Gamma approximation of $n\widehat{\mathsf{HSIC}}(X_i, Y)$ under $X_i \perp Y_i$ for large size sample (*Gretton et al.* (2008])
- Permutation-based approximation for smaller size sample (De Lozzo and Marrel (2016a], Meynaoui et al. [2019])
- \rightarrow Theoretical demonstration: permuted-test is of level α
- → Empirically observed: power of asymptotic and permutation test equivalent for a sufficient number of permutations
- → Guidance and comparison of tests according to n in De Lozzo and Marrel (2016a)

HSIC-BASED INDEPENDENCE TESTS

► Estimation of p-value with **permutation**-based tests (El Amri & Marrel [2021])

In practice, which number B of permutations required?

500

600

700

Figure 11: IBLOCA test case – Sequential estimation of p-values by Algorithm 2 (screening), according to the number of permutations.

300

In practice reduction of B from B = 5000 to B = 300, e.g. \Rightarrow Convergence studies and sensitivity studies tractable

Number of permutations (B)

200

100

Practical use of HSIC for industrial applications

IRESNE | DER | SESI | LEMS

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

HSIC for Ranking

■ HSIC-based sensitivity analysis: (Da Veiga [2015])

$$R_{H,X_{[i]}}^{2} = \frac{HSIC(X_{i},Y)}{\sqrt{HSIC(X_{i},X_{i})HSIC(Y,Y)}}$$

 $\Rightarrow R^2_{H,X_{[i]}} \in [0,1]$ for easier interpretation

Use for ranking:

$$\mathsf{Influence}(X_{[1]}) > \mathsf{Influence}(X_{[2]}) > \cdots > \mathsf{Influence}(X_{[d]})$$
 where $[\cdot]: i \in \{1, \dots, d\} \mapsto [i] \in \{1, \dots, d\}$ is such that $\widehat{R_{H,X_{[1]}}^2} > \widehat{R_{H,X_{[2]}}^2} > \cdots > \widehat{R_{H,X_{[d]}}^2}$

- ► Several illustrations on analytical examples (Linear, Ishighami, G-Sobol, Morris...)
 - HSIC indices detect non-influential factors easily and robustly, even with small sample size
 - HSIC indices can capture a large spectrum of dependence
 - → Good ranking on usual GSA functions from sample size *n*~ 100
 - → Efficiency for screening → Even better: **HSIC independence test**

HSIC for Screening & Ranking

Use the HSIC independence tests

1/ Screening: Asymptotic or Non-asymptotic tests, depending on n

 H_0 : « X_i and Y are independent. »

 \Rightarrow In practice computation of **p-value**: P-value: Pr[$\widehat{HSIC}(X_i, Y) > hsic_{obs}$]

Interpretation of p-value for a level α ($\alpha = 5\%$ or 10%) for screening:

 \triangleright pval $< \alpha \Rightarrow H_0$ (Independence) rejected $\Rightarrow X_i$ is significantly influential

2/ Ranking of inputs:

<u>Interpretation of *p-value* for ranking:</u>

Lower <u>pval</u>, stronger H_0 rejected and higher the influence of X_i

Inputs are ordered by decreasing influence using p-values:

 $Influence(X_{[1]}) > Influence(X_{[2]}) > \cdots > Influence(X_{[d]})$

where $[\cdot]: i \in \{1, ..., d\} \mapsto [i] \in \{1, ..., d\}$ is such that $pval_{[1]} < pval_{[2]} < \cdots < pval_{[d]}$.

Playing with kernels...

- ► Applications on several industrial test cases with different kind of data
 - Strategy for oil reservoir characterization test case (Da Veiga [2015])
 - Atmospheric dispersion model with spatio-temporal output (De Lozzo & Marrel [2016b])
 - Assess the impact of uncertain distribution of input X_i on GSA results, uncertain inputs = probability measures (Meynaoui et al. [2021])
- ► Technical point: choose the characteristic kernel according to the type of data
 - For real and scalar/vector data: Gaussian, Laplacian, Matérn kernel
 - → 1 or 2 parameters to be estimated

Gaussian Kernel
$$k_G(x_i, x_i') = exp\left(-\frac{(x_i - x_i')^2}{2\sigma^2}\right)$$

- For binomial or discrete data: Dirac kernel
- For categorical data: Discrete kernel
- For functional data: semi-metric based kernels (not characteristic)

 $k(x_i, x_i') = k_r(\Delta(x_i, x_i'))$ with semi-metric Δ (PCA e.g.) and k_r kernel defined on \mathcal{R} (Gaussian..)

(Current CEA work with El Amri)

HSIC for Goal-Oriented SA

- ► Applications on several industrial test cases with different kind of data
 - Goal-oriented SA for safety studies (Marrel & Chabridon [2021], looss & Marrel[2019])
 - \Rightarrow To measure the input influence in a <u>restricted output domain</u>: $Y \in \mathcal{C}$
 - \Rightarrow Numerous applications for safety and risk assessment (\mathcal{C} : critical safety domain, e.g. $\mathcal{C} = \{Y|Y>q_{0.9}\}$)
- ► Technical point: choose the characteristic kernel according to the type of data:
 - Uncertain inputs : real data → Usual Gaussian kernel
 - Output = is Y in a restricted output domain C? (C: critical safety domain)
 - Target SA: measures the influence of X over the occurrence of $Y \in \mathcal{C}$
 - \rightarrow Bernouilli output: $\mathbf{1}_{Y \in \mathcal{C}}(Y) \sim \mathcal{B}(p_{\mathcal{C}})$ with $p_{\mathcal{C}} = \mathbb{P}[Y \in \mathcal{C}] \Rightarrow$ Dirac Kernel
 - ullet Conditional SA: GSA performed within ${\mathcal C}$ only, ignoring what happens outside
 - ightharpoonup Real output: $Y|Y \in \mathcal{C}$ with $\mathbb{P}_{|Y \in \mathcal{C}}[\mathcal{A}] = \frac{\mathbb{P}[\mathcal{A} \cap Y \in \mathcal{C}]}{p_{\mathcal{C}}} \Rightarrow$ Gaussian kernel (if Y real)

HSIC for Goal-Oriented SA

- Use of HSIC for Target and conditional SA (Marrel & Chabridon [2021])
 - \Rightarrow Brute:
 - Target SA: $HSIC(X, 1_{Y \in C}(Y))$
 - Conditional SA: $HSIC(X, Y|Y \in \mathcal{C})$
 - ⇒ **Smoother versions** to cope with the loss of information and take into account some information outside $\mathcal{C} \to \mathsf{Use}$ of weight function $W_{\mathcal{C}}$ for relaxation

$$W_{\mathcal{C}}: \mathcal{Y} \to [0,1] \; ; \; y \to e^{-d_{\mathcal{C}}(y)/s}$$

 $\rightarrow HSIC(X, W_{\mathcal{C}}(Y))$ and $HSIC(X, W_{\mathcal{C}}(Y)Y|Y \in \mathcal{C})$

Similar use for optimization purpose in Spagnol et al. [2019]

Illustration within the ICSCREAM Methodology

IRESNE | DER | SESI | LEMS

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Key element in ICSCREAM* methodology

*Identification of penalizing Configurations using SCREening And Metamodel

Accidental scenario on pressurized water reactor: IB-LOCA

LOss of primary Coolant Accident due to a Intermediate Break in cold leg

d (~ 100) input random variables:

Critical flowrates, initial/boundary conditions, phys. eq. coef., ...

Modelled with **CATHARE2 code**:

- Models complex thermal-hydraulic phenomena
- Large CPU cost for one code run (> 1 hour)

Variable of Interest:

2nd peak of cladding temperature (PCT) = scalar output

⇒ ICSCREAM objective

Identify the most **penalizing configurations** of **scenario** inputs for PCT, regardless to the uncertainties of the other inputs.

Key element in ICSCREAM* methodology

*Identification of penalizing Configurations using SCREening And Metamodel

- ➤ Identify Primary Influential Inputs (PII) & reduce the dimension before Step 3
- Aggregation of HSIC and Target-HSIC independence tests, to capture both global influence and influence on penalizing configurations
- ► <u>Use for Screening</u> (P-value < 5%): expected reduction of explanatory input variables dim(PII) = d_{PII} << d
- ➤ <u>Use for Ranking</u>: inputs ordered by influence d°, using <u>P-values</u>

 ⇒Sequential and more robust
 - ⇒Sequential and more robust metamodel building process

0.8

0.6

0.2

Key element in ICSCREAM* methodology

*Identification of penalizing Configurations using SCREening And Metamodel

Illustration of Step 2: Screening and ranking with HSIC and Target-HSIC

Global-HSIC tests

P-values for T-HSIC-based independence test

---Significance level

T-HSIC \Rightarrow on exceeding the 90%-quantile $\hat{q}_{0.9}(Y)$

From aggregation, selection of around 20 inputs

100

Building of a GP metamodel, assessment of its predictive abilities before estimating conditional probabilities

Key element in ICSCREAM* methodology

*Identification of penalizing Configurations using SCREening And Metamodel

Illustration of Step 4: Capture critical configurations of inputs X_{pen}

Leading to the highest probability of PCT exceeding $\hat{q}_{0.9}(Y)$ (under randomness of the other inputs)

$$\hat{P}(\mathbf{X}_{\mathbf{pen}}) = P[Y_{Gp}(\mathbf{X}_{\mathbf{exp}}) > \hat{q}_{0.9} | \mathbf{X}_{\mathbf{pen}}]$$

With $X_{exp} = \{X_{PII} \cup X_{pen}\}, X_{PII}$ the inputs selected at Step2

1D- conditional probabilities $\widehat{P}(X_{pen})$

Key element in ICSCREAM* methodology

*Identification of penalizing Configurations using SCREening And Metamodel

Illustration of Step 4: Capture critical configurations of inputs X_{pen}

Identification of the worst configuration

Name	Input to be penalized	Lower bound	Upper bound	Value for the most penalizing configuration ★
X ₁	Hot rod peaking factor elevation [m]	2.4	3.2	2.4
X ₁₄	Burn-Up of the hot rod [MWj/t]	515	59 000	28 176.9
X ₃₄	K/A2 discharge line accumulator loop 1 [m ⁻⁴]	800	1 900	1 818.8
X ₃₅	K/A2 discharge line accumulator loop 3 [m ⁻⁴]	800	1 900	1 757.8
X ₃₆	Liquid accumulator enthalpy [J/kg]	33 544	213 105	34 827.9
X ₉₀	Temperature of safety injection [°C]	7	50	41.9
X ₉₁	Weight factor on flow rate safety injection 1	-1	+1	0.068
X ₉₂	Tube plugging of steam generator loop 1	0	0.09	0.09
X ₉₃	Weight factor on flow rate Emergency FeedWater System of steam generator	-1	+1	-0.33
X ₉₄	Temperature Emergency FeedWater System of steam generator [°C]	7	55	49.8

Implementation in OpenTURNS

IRESNE | DER | SESI | LEMS

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Implementation in OpenTURNS

Proposed features:

- Various estimators for different types of sensitivity analysis
 - Global (U-stat, V-stat)
 - Target (U-stat, V-stat) with various weight functions (smooth and hard, multiple critical regions)
 - Conditional (V-stat) with a user-defined weight function (multiple critical regions)
- Independence statistical tests
 - Permutation-based approach
 - Asymptotic approach
- Visualization tools
 - Indices and standardized indices (R2-HSIC and others)
 - P-values
- ▶ Will be available in the next OpenTURNS release (v. 1.18)0

Implementation in OpenTURNS

▶ Future developments:

- Implementation of dedicated simulation-based algorithms
- Computation of the sup-HSIC metric (robustness w.r.t. input kernel parametrization)
- Advanced statistical tests
 - Sequential permutation-based approach (work of [El Amri & Marrel, 2021])
 - Spectral approach (work of [Zhang, Filippi, Gretton & Sejdinovic, 2018])
 - P-values aggregation strategies
- Visualization tools for high-dimensional problems
 - Automated clustering tools
- ► Any other user-related suggestion (or need) can be of interest! Don't hesitate!
- ► Use-cases from the OT community are welcome in order to test and validate the use of HSIC indices for real-world industrial problems!

Conclusion and prospects

IRESNE | DER | SESI | LEMS

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Conclusions

HSIC as GSA indices

- Focus the SA analysis on the difference between $P_{X,Y}$ with $P_X \otimes P_Y$
- Power of RKHS → HSIC=one of the most successful non-parametric dependence measure
- Capture a large spectrum of relationships
- Able to deal with many factors and purposes (goal-oriented SA, metamodel, optimization)
- Characterize independence → efficient for screening!

HSIC-tests of independence for screening

- Rigorous statistical framework, control of 1st and 2nd kind error
- P-value of test → Really efficient for screening and use for quantitative SA

Efficiency demonstrated in numerous industrial applications, especially with small sample size and large dimension

Prospects

Limitations remain in HSIC SA indices

- Decomposition into main effects & interactions must be investigated
 - ⇒ Assess the use of HSIC with ANOVA-like kernels and Shapley-HSIC for dependent inputs (Da Veiga [2021])
- Multidimensional extension → impact of kernel?
- Invariance properties → Preliminary isoprobabilistic transformation? (Poczos et al. (2018))
- Sensitivity to the choice of kernel and of its parameter (bandwidth parameter):
 - \Rightarrow Aggregated tests with a collection of bandwidths (Albert et al. [2021])
 - ⇒ HSIC-test with optimal bandwidth
- Extend HSIC-tests to non i.i.d. samples → Quasi Monte-Carlo or space-filling design
 - ⇒ A first corrected test proposed for scrambled Sobol' sequences (CEA technical report CEA/DES/IRESNE/DER/SESI/LEMS/NT DO 07 of 30/03/2021)
- Increasing selection rate of HSIC tests with $n \Rightarrow$ correction to control family-wise error rate and alternative with ANOVA-like kernels

Some References

- Albert, M, Laurent, B., Marrel, A. and Meynaoui, A. Aggregated test of independence based on hsic measures. https://arxiv.org/abs/1902.06441. 2019.
- S. Da Veiga, Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, 85:1283-1305, 2015.
- S. Da Veiga, Kernel-based anova decomposition and shapley effects—application to global sensitivity
- analysis. arXiv preprint arXiv:2101.05487. 2021.
- M. De Lozzo and A. Marrel, New improvements in the use of dependence measures for sensitivity analysis and screening, Journal of Statistical Computation and Simulation, 86:3038-3058, 2016
- R. El Amri and A. Marrel. HSIC-based independence tests with optimal sequential permutations: application for sensitivity analysis of numerical simulators, To appear in Quality and Reliability Engineering International, 2021.
- B. looss and A. Marrel, Advanced methodology for uncertainty propagation in computer experiments with large number of inputs, Accepted in Journal of Nuclear Technology, 2019.
- Gretton, Bousquet, Smola and Schölkopf. Measuring statistical dependence with Hilbert-Schmidt norms. In: Proceedings Algorithmic Learning Theory, 2015.
- looss B., and Lemaître P. A review on global sensitivity analysis methods. In Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications, Springer, 2015.
- Marrel, A. ICSCREAM methodology for the Identification of penalizing Configurations using SCREening And Metamodel Application to IB-LOCA on PWR (CATHSBI). CEA/DES/IRESNE/DER/SESI/LEMS/NT DR 17 of 15/10/2020.
- A. Marrel and V. Chabridon. Statistical developments for target and conditional sensitivity analysis: application on safety studies for nuclear reactor, Reliability Engineering and System Safety 214, 2021.
- Meynaoui, A. New developments around dependence measures for sensitivity analysis: application to severe accident studies for generation IV reactors. PhD thesis, University of Toulouse, 2019.
- Spagnol A., Le Riche R. and Da Veiga S. Global Sensitivity Analysis for Optimization with Variable Selection, SIAM/ASA Journal on Uncertainty Quantification, Vol. 7, No. 2: pp. 417-443, 2019.
- Poczos, Z. Ghahramani and J. Schneider. Copula-based Kernel Dependency Measures. https://arxiv.org/abs/1206.4682, 2018.
- Zhang, Q., Filippi, S., Gretton, A. et al. Large-scale kernel methods for independence testing. Stat Comput 28, 113–130 (2018).