CSCI 4350/5350

Homework 10

Due: Tue. Dec. 4, 11:00 PM

- 1. Use policy iteration to determine the answers to the following questions. Note that the reward for reaching the goal state, G, is 1, and a reward of 0 is given for all other states [r(G) = 1 and r(s) = 0 for all s != G] and the value of a state, V(s), is the sum of all future rewards obtained starting from that state [V(s) = r(s) + r(s+1) + r(s+2) + ... + r(s+n)].
 - a. (5 points) Determine the value of all states, V(s), below and write their values in the grid provided, then calculate the new policy, $\pi_{\text{new}}(s)$, and indicate the **new** actions in the grid provided:

- b. (2 points) Will recalculating V(s) and $\Pi(s)$ (performing another iteration of the algorithm) result in additional changes to the policy? Why or why not?
- c. (2 points) Would this also be true if we defined V(s) using discounted future rewards [i.e. $V(s) = V^0 r(s) + V^1 r(s+1) + V^2 r(s+2) + ... + V^n r(s+n)$]? Why or why not?

- 2. (2 points) An _____ function is used to transform a neural units' net input into a corresponding rate code output.
- 3. (2 points) What is the most commonly used *learning* algorithm for updating weights in a feed-forward neural network?
- 4. Given the neural network architecture on X₀ the right which uses a threshold activation function (f(net_i) = 0 if net_i<=0 and f(net_i) = 1 if net_i>0), answer the X₁ following questions:

- a. (1 point each) What is the output of the network for each of the four input patterns:
 - i. [0 0]
 - ii. [0 1]
 - iii. [1 0]
 - iv. [1 1]
- b. (1 point) What would be the output of the network for an input pattern of [1, 0.4]?
- c. (2 points) Does the input/output from question (b)
 make sense? Why or why not?