Assignment 2 Output Plots Sampled Signals, Discrete Fourier Transform and Matched Filter

0.1 Julia Exercise 2.5.1 - Visualising Sampled Sinusoid

0.1.1 Simulate a sinusoidal signal over enough time to see several cycles.

Out[2]:

0.5

-1.0

-0.10

-0.05

0.00

0.05

0.10

0.1.3 Plot the sampled waveforms in order to show the visual effect of sampling at:

0.1.4 100x the Nyquist rate

Out[5]:

Out[6]:

0.1.5 10x the Nyquist rate

Out[7]:

Out[8]:

0.1.6 2x the Nyquist rate

Out[9]:

Out[10]:

0.1.7 1.1x the Nyquist rate

Out[11]:

Out[12]:

On the Nyquist rate 0.1.8

Out[14]:

0.1.9 0.7x the Nyquist rate out[15]:

Out[16]:

0.1.10 0.55x the Nyquist rate

Out[18]:

Out[19]:

0.2 Julia Exercise 2.5.2 – DFT / FFT Introduction

0.2.3 Plot the magnitude and phase Out[26]:

Out[27]:

0.3 Julia Exercise 2.5.3 - FFT of a sine wave

0.3.1 Time domain: $v(t) = 4 \cos (20 t) + 2 \cos (30 t)$

Out[38]:

Out[39]:

0.3.2 Applying zero padding in the time domain $\frac{\text{Out}\left[40\right]:}{}$

Out[41]:

0.4 Julia Exercise 2.5.4 - Effect of ADC quantization

0.4.1 Simulate a sinusoid voltage

v = cos.(2pif0*t) that lies in the range: Amin = -0.5 to Amax = 0.5

0.4.2 Quantize the signal into a power-of-2 levels

0.4.3 Number of Bits = 2

0.4.4 Number of Bits = 3 out[48]:

Out[49]:

Out[50]:

0.4.5 Number of Bits = 4

Out[52]:

Out[53]:

0.5 Julia Exercise 2.5.5 - Simulating bandlimited noise

0.5.1 Noise Simulation

0.5.2 Time and Frequency Domains Out[56]:

Out[57]:

0.5.3 Applying frequency-domain zero padding Out[58]:

0.5.4 Bandlimiting Noise using an Ideal LPF

0.5.5 Create and display an ideal LPF $_{\text{Out} \mbox{\tt [61]:}}$

first 300 samples

0.5.6 Apply Filter to Noise

0.6 Julia Exercise 2.5.6 - Discrete fast convolution

0.7 Julia Exercise 3.6.1 a) – Discrete fast correlation

0.7.1 Produce an auto-correlation function: Rxx(t') = conj(X())*X()

time [s]

0.8 Julia Exercise 3.7.1 - Matched Filter

0.8.1 Define a chirp function.

0.8.2 Setting: centre frequency of 10 kHz; bandwidth of 2 kHz; pulse length of 5 ms

time

0.8.3 Define a physically realizable - delayed - chirp function. Out[70]:

0.008

0.8.4 Sampled Time Axis

0.8.5 Simulated Echo from Target

0.8.6 Plot time domain waveforms, showing what goes into and out of the matched filter

0.8.7 Echo from Target with Additive Noise

0.8.8 Apply a matched filter which is created from the reference chirp

0.8.10 Plot of output as a function of time $\frac{\text{Out}[79]}{\text{out}}$:

0.8.11 Plot the magnitude of the FFT of the pulse, and also of the matched filter. $\frac{\text{Out}[80]}{\text{out}[80]}$:

