Scientific Calculations - Exploration of Arithmetic

Mateusz Pełechaty

23 October 2022

1 Exercise - Basic Exploration

1.1 Machine Epsilon

Machine epsilon (macheps) is the smallest number x such that 1+x>1 and rd(1+x)=1+x.

Find machine epsilon with Julia and compare results with the function eps and with values from float.h

Solution can be found in

- ./zad1/find_macheps.jl
- ./zad1/epsilons.c

Method and results

It was calculated by setting macheps := 1 and then if 1 + macheps > 1, then macheps is divided by 2.

Exercise 1.1	Macheps	Eps	Float.h
Float16	0.000977	0.000977	
Float32	1.1920e-7	1.1920e-7	1.1920e-07
Float64	2.2204e-16	2.2204e-16	2.2204e-16

Conclusion

Calculating macheps by me, eps(type) function and Float.h constants provide the same values

1.2 Eta

Eta (η) is the smallest number such that $\eta > 0$. Find η and compare it with nextfloat (0.0) and MIN_{sub} Tests should be made for **Float16**, **Float32**, **Float64**

Solution can be found in

./zad1/find_eta.jl

Method and results

It was calculated by setting $\eta := 1$ and then dividing by 2 until $\frac{\eta}{2} > 0$ MIN_{sub} values are taken from W. Kahan's book

Exercise 1.2	η	nextfloat	MIN_{sub}
Float16	6.0e-8	6.0e-8	
Float32	1.0e-45	1.0e-45	1.3e-45
Float64	5.0e-324	5.0e-324	4.9e-324

Conclusion

nextfloat(0.0) and my method of calculating η provide the same values. Values are almost the same as MIN_{sub}

1.3 Questions

Q: What is difference between macheps and arithmetic precision (ϵ) ? **A:** Macheps is the smallest number that meets condition: 1 + macheps > 1 and rd(1 + macheps) = 1 + macheps. We can also say that $macheps = \beta^{1-t}$. ϵ on the other hand is biggest relative error that can happen due to rounding in arithmetic. So it is the smallest number ϵ , that meets condition $\epsilon \geq \delta = \frac{|rd(x) - x|}{x}$ for some number x. It was calculated in the lecture that

$$\epsilon = \frac{1}{2}\beta^{1-t}$$

It follows from here that $\epsilon = \frac{macheps}{2}$ **Q:** What is difference between η and (MIN_{sub}) ?

A: MIN_{sub} is minimal subnormal number. η is defined by minimal number bigger than 0. They should be the same, but there are little differences between them

Q: What is the returned by floatmin and what is it's connection with MIN_{nor} **A:** They are the same value as seen in table below.

Values of MIN_{nor} are taken from W. Kahan's book

Values of floatmin are calculated in ./zad1/floatmin.jl

Q3	floatmin	MIN_{nor}
Float16	6.104e-5	
Float32	1.1755e-38	1.2E-38
Float64	2.2251e-308	2.2E-308

1.4 **FloatMax**

Calculate maximum possible number for Float16, Float32, Float64. Compare values with the ones returned by function *floatmax* and with data

Solution can be found in

./zad1/floatmax.jl

Method and results

It was calculated by max1 := 4, max2 := 2 and max3 := 1. Variables are doubled until max1 == max2. It means that they are infinity. Then I am returning max3

Exercise 1.4	my max	floatmax	W. Kahan's MAX
Float16	3.277e4	6.55e4	
Float32	1.701e38	3.403e38	3.4 E38
Float64	8.988e307	1.798e308	1.8 E308

Conclusion

We can see that floatmax is the same as W. Kahan's Max My method of calculating maximum gets me wrong because doubling number reaches infinity. So $mymax = \frac{1}{2} \cdot floatmax$

2 Exercise - Trick Macheps

Check in *Julia* if $3 \cdot (4/3 - 1) - 1$ is Machine Epsilon. Conduct experiments for Float16, Float32 and Float64

Solution can be found in

./zad2/calculate_macheps.jl

Method and results

Macheps was calculated by nextfloat(1.0) and W Kahan's Macheps is calculated by specified above.

Exercise 2	Macheps	Kahan Macheps
Float16	0.000977	-0.000977
Float32	1.1920e-7	1.1920e-7
Float64	2.2204e-16	-2.2204e-16

Conclusion

We can see that $macheps = 3 \cdot (4/3 - 1) - 1$ with an accuracy of up to setting

3 Exercise - Number Distribution

Check experimentally that every number $x \in [1,2)$ is distributed evenly with step $\delta = 2^{-52}$ It also means it can be represented by $x = 1 + k\delta$ for $\delta = 2^{-52}$ and $k = 1, 2, ..., 2^{52} - 1$

Solution can be found in

./zad3/experiment.jl

Method and results

Experiment description:

- 1. Pick random number $x \in [1, 2)$.
- 2. Make next := next float(x)
- 3. Print their bitstrings

Example results below:

num : 1.3881779261232619
next(num): 1.388177926123262

Conclusion

We can see that mantissa of next(num) is β^{1-t} bigger than mantissa of num and exponent stays the same. Here t=53 and c=0 so difference is $\beta^{1-t}=\beta^{-52}$

We can say that $num = 2^c \cdot M$. Then $next(num) = 2^c \cdot (M + \beta^{1-t})$

Then difference is $next(num) - num = 2^c \cdot B^{1-t}$

Q: What is the distribution of floats in range $\left[\frac{1}{2},1\right)$?

Q: What is it in range [2,4)?

Q: How can they be represented in these ranges?

A: They are the same value as seen in table below.