

MPRI - Graph Mining

Mauro Sozio

sozio@telecom-paristech.fr

About the course

- Questions/Discussions are encouraged
- More fun if it is interactive!
- Proofs on the board, rest on slides

Evaluation:

- 80% based on a written exam
- 20% based on a project
- participation to discussions/questions

Logistic info

- Schedule:
 - Start: 19.12.18 End: 20.02.19 Exam on 27.02.19
 - Next class on 09.01.20

 Mauro Sozio, first 4 lectures, Pierluigi Crescenzi, remaining 4 lectures.

 Possibly some well known researchers in the field as guests

Exam

- Written Exam:
 - Exercises will be given throughout the course
 - The same or similar exercises will be asked at the exam (e.g. develop an algorithm, proof of correcteness/guarantees).
 - Closed-book exam (no notes/books)

Project

- Project:
 - deadline: middle February 2019.
 - It will be announced on 09.01.2020, typically implement an algorithm we saw during the class or a related work.
 - Propose your own project and discuss it with the instructor! E.g. community detection, streaming algorithms, large scale algorithms, data analysis, approximation algorithms. Deadline 09.01.2020

Internships

- Posted on the MPRI website:
 - Finding quasi-cliques (graphs that contain a constant fraction of the edges in a clique)
 - dynamic trajectory clustering
 - dynamic approximation algorithms for clustering

 They can be made more theoretical or practical depending on the interest of the students.

Topics

- The course gives an overview on some of the most prominent topics in graph mining:
 - PageRank
 - Community detection
 - Algorithms for finding dense subgraphs and cliques
 - Influence maximization in social networks
 - Streaming and dynamic algorithms
 - Scalable algorithms (e.g. adaptation to MapReduce/Spark)
 - Generative models for social networks
 - Distance distribution computation and centrality measures
 - Temporal graphs

Theory vs. Practice

- We will consider both:
 - simple heuristics with no guarantees that work well in practice
 - theoretical results using techniques such as LP rounding, greedy, amortized analysis, sampling

Interplay between theory and practice: new algorithms -> more accurate studies -> interesting theoretical problems.

Types of networks

- Social networks
- Knowledge and information networks
- technology networks
- biological networks

Social Networks

- links denote social interactions
 - friendships
 - collaboration networks (actor and co-authorship networks)
 - phone call networks
 - email networks

Télécom Paristech MPRI - Graph Mining

Knowledge and Information Networks

- nodes store information, links associate information
 - citation network
 - the Web
 - peer-to-peer networks
 - knowledge graph
 - blog networks

Technological networks

- Networks built for distribution of a commodity
 - the internet
 - power grids
 - telephone networks
 - transportation networks

Biological Networks

- Biological systems represented as networks:
 - protein-protein interaction systems
 - gene regulation networks
 - gene co-expression networks
 - neural networks

Network Science / Graph Mining

- Understand the topology of the networks and measure their properties.
- Study evolution and dynamics
- propose generative models
- devise algorithms to make sense of network data

Graph Mining in the Past

 Graph datasets have been studied in the past, e.g. networks of highways, social networks.

Graphs were small and static.

Visual inspection can reveal useful information.

Graph mining now

- More and larger networks are collected
- Contain thousands, millions, billions of nodes.
- Often difficult to visualize.
- More opportunities but more challenges (scalability issues, data evolve over time).
- More data might lead to different results...

Small-world experiment and six degree of separation

Study conducted by Stanley Milgram in 1969.

• Questions:

- What is the probability that two random people in the world know each other?
- How many hops between them? (e.g. friend of friend of friend = 3 hops.)

Small-world experiment and six degree of separation

Experiment:

- Random people from Nebraska, Kansas,..., were sent a letter with the goal of forwarding it to a random person in Boston.
- If the person knew that person then he/she could send him/her the letter directly.
- Otherwise she could forward the letter to a relative or a friend who might know the person.
- Some basic information about the target person were included.

Small-world experiment and six degree of separation

Results:

- only 64 out of 296
 letters reach the
 destination (some people
 refused to participate)
- among those reaching the destination, the average number of hops was ~5-6.

-> six degree of separation

Six degree of separation in the BigData era

- Similar study on Facebook with more than 1 billion users!
- Sophisticated algorithms estimated the average path length between users: ~4!

References:

Travers, Jeffrey & Stanley Milgram. 1969. "An Experimental Study of the Small World Problem." *Sociometry*, Vol. 32, No. 4, pp. 425-443.

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, Sebastiano Vigna: Four degrees of separation. WebSci 2012:33-42

Acknowledgements

- Oana Balalau (INRIA)
- Hubert Chan (Hong Kong University)
- Maximilien Danisch (Sorbonne University)
- Aris Gionis (Aalto University, Finland)
- Ravi Kumar (Google Mountain View)
- Silvio Lattanzi (Google Zurich)
- Alessandro Panconesi (Sapienza Uni. Rome)
- Sebastiano Vigna (University of Milan)