Практика 8. Несобственные интегралы

Несобственные интегралы. Интегралы с бесконечными пределами. Интегралы от неограниченных функций.

Несобственные интегралы*:

Интегралы с бесконечными пределами	Интегралы от неограниченных функций
$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$	$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx \ (\varepsilon > 0)$
$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$	$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx \ (\varepsilon > 0)$
$\int_{-\infty}^{+\infty} f(x)dx = \lim_{\substack{b \to +\infty \\ a \to -\infty}} \int_{a}^{b} f(x)dx.$	$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\varepsilon \to 0} \int_{c+\varepsilon}^{b} f(x)dx \ (\varepsilon > 0)$

Если существует конечный предел, то интеграл называется сходящимся, если предел не существует или равен бесконечности, интеграл называется расходящимся.

Признак сравнения

- Пусть $0 \le f(x) \le g(x)$ при $x \ge a$. Тогда:

 1) Из сходимости $\int_{a}^{\infty} g(x) dx$ следует сходимость $\int_{a}^{\infty} f(x) dx$.

 2) Из расходимости $\int_{a}^{\infty} f(x) dx$ следует расходимость $\int_{a}^{\infty} g(x) dx$.

Предельный признак сравнения

- Пусть $\lim_{x\to\infty}\frac{f(x)}{g(x)}=K$ где $0\leqslant K\leqslant\infty.$ Тогда: 1. При $0\le K<\infty$ из сходимости $\int\limits_a^\infty g(x)dx$ вытекает сходимость $\int_{0}^{\infty} f(x) \, dx.$
- **2.** Если $0 < K \leq \infty$ из расходимости $\int\limits_a^\infty g(x) dx$ следует расходимость $\int_{0}^{\infty} f(x) dx.$
- ${f 3.}$ При $0 < K < \infty$ интегралы либо оба сходятся либо оба расходятся, то есть ведут себя одинаково.

^{*}Нужно дополнить условия

Признак сравнения

Пусть $0 \leqslant f(x) \leqslant g(x)$ при $x \in [a, b]$. Тогда:

- 1) Из сходимости $\int_a^b g(x)dx$ следует сходимость $\int_a^b f(x)dx$.
- **2)** Из расходимости $\int_a^b f(x)dx$ следует расходимость $\int_a^b g(x)dx$.

Предельный признак сравнения

Пусть $\lim_{x \to \infty} \frac{f(x)}{g(x)} = K$ где $0 \leqslant K \leqslant \infty$. Тогда:

- 1. При $0 \le K < \infty$ из сходимости $\int\limits_a^b g(x)dx$ вытекает сходимость $\int\limits_a^b f(x)\,dx$.
- 2. При $0 < K \le \infty$ из расходимости $\int\limits_a^b g(x) dx$ следует расходимость $\int\limits_a^b f(x) \, dx$.
- ${f 3.}$ При $0 < K < \infty$ интегралы либо оба сходятся либо оба расходятся, то есть ведут себя одинаково.

Теорема о сравнении с интегралом от эквивалентной бесконечно малой

Пусть при $x \to \infty$ функция f(x) есть бесконечно малая, такая, что: $f(x) \sim \frac{C}{x^{\lambda}}$, где $\lambda > 0$, C > 0. Тогда $\int_{a}^{\infty} f(x) \, dx$ сходится, если $\lambda > 1$ и расходится, если $\lambda \leqslant 1$.

Теорема о сравнении с интегралом от эквивалентной бесконечно большой

Пусть при $x \to b-0$ функция f(x) есть бесконечно большая, такая, что: $f(x) \sim \frac{C}{(b-x)^{\lambda}}$, где C>0. Тогда $\int\limits_a^b f(x)\,dx$ сходится при $\lambda<1$ и расходится при $\lambda\geq 1$.

Задания

исходя из определения несобственных интегралов, установить их сходимость или расходимость.

1.
$$\int_{e^2}^{+\infty} \frac{dx}{x \ln^3 x}$$
 2. $\int_{-\infty}^{+\infty} \frac{arctg^2 x}{1+x^2} dx$ **3.** $\int_{0}^{2} \frac{dx}{\sqrt{|1-x^2|}}$ **4.** $\int_{1}^{3} \frac{dx}{\sqrt{4x-x^2-3}}$ **.**

- **5.** Исследовать сходимость интеграла: a) $\int_{a}^{+\infty} \frac{dx}{x^{p}}$; б) $\int_{1}^{+\infty} \frac{dx}{1+x^{10}}$; в) $\int_{2}^{+\infty} \frac{3+\arcsin\frac{1}{x}}{1+x\sqrt{x}} dx$.
- **6.** Исследовать сходимость интеграла: a) $\int_{a}^{b} \frac{dx}{(b-x)^{p}} (a < b)$; **6)** $\int_{0}^{1} \frac{\cos^{2} x dx}{\sqrt[3]{1-x^{2}}}$.