RECONHECIMENTO FACIAL 2D PARA SISTEMAS DE AUTENTICAÇÃO EM DISPOSITIVOS MÓVEIS

Luciano Pamplona Sobrinho

Orientador: Paulo César Rodacki Gomes

ROTEIRO

- Introdução
 - Objetivos
- Fundamentação Teórica
 - Conceitos Básicos
 - Contexto Atual
- Desenvolvimento
 - Principais Requisitos
 - Especificação
 - Implementação
 - Resultados
- o Conclusão
 - Extensões
- o Demonstração

INTRODUÇÃO

- Reconhecimento facial.
- o Crescimento da telefonia móvel.
- o Dispositivos móveis.
- o Medidas de segurança.

Introdução

- O objetivo deste trabalho é desenvolver um protótipo capaz de autenticar indivíduos através da face utilizando o iPhone e técnicas de processamento de imagens e visão computacional.
- o Os objetivos específicos são:
 - Melhorar a qualidade das imagens obtidas com técnicas de processamento de imagens;
 - Localizar a face nas imagens obtidas;
 - Normalizar a pose das faces detectadas
 - Extrair as características das faces utilizando a Análise de Componentes Principais (PCA);
 - Utilizar métricas de similaridade para comparar as faces de entrada com as faces conhecidas.

Fundamentação Teórica

- Conceitos Básicos
 - Reconhecimento Biométrico
 - Processamento de Imagens
 - Visão Computacional
 - Reconhecimento Facial 2D
 - iPhone

o Reconhecimento Biométrico

- O reconhecimento biométrico corresponde ao uso de características físicas ou comportamentais para a identificação de indivíduos.
- Algumas das classificações das características são face, impressão digital, geometria da mão, íris, retina, voz, DNA, entre outras.
- As características que podem ser coletadas pelo iPhone são face e voz.

- o Processamento de Imagens
 - Processar uma imagem consiste em transformá-la sucessivamente com o objetivo de extrair mais facilmente a informação desejada.
 - Para o reconhecimento facial, duas técnicas são necessárias: filtragem de ruído e normalização da iluminação.

Visão Computacional

- Tem como objetivo analisar uma imagem de entrada visando extrair informações relevantes a um determinado problema.
- Em um sistema de reconhecimento facial, várias etapas requerem este tipo de processamento, entre elas a localização, normalização e extração de características da face.

- Reconhecimento Facial 2D
 - Por padrão, um sistema de reconhecimento biométrico possui os seguintes estágios:
 - Aquisição de imagens em formato digital;
 - Pré-processamento para melhoramento e padronização da imagem obtida;
 - Correspondência para comparar a imagem adquirida com uma ou mais imagens da base de dados;
 - Avaliação dos resultados da correspondência para realizar o reconhecimento.

o iPhone

- Combina em um aparelho três dispositivos: celular, iPod *widescreen*, e dispositivo para internet.
- Possui diversas funcionalidades: controle por voz, até 32Gb para armazenamento, câmera 3 megapixels.
- Possui processador de 600 megahertz e 256 megabytes de memória RAM.
- Disponibiliza aos desenvolvedores uma série de ferramentas para criação de aplicativos.

Fundamentação Teórica

- Atualmente, poucos sistemas disponíveis no mercado propõem-se a mesma tarefa exposta e a maior parte do material encontrado não é aplicada a dispositivos móveis.
- Os projetos "Face Match", "iFace" e "Moris" são os que mais se enquadram nos objetivos deste trabalho, sendo o último, hoje, utilizado em testes pela polícia dos EUA.

• Requisitos:

- disponibilizar uma interface para permitir o cadastro da face do usuário como usuário do sistema na base de faces (Requisito Funcional - RF);
- disponibilizar uma interface para permitir a autenticação do usuário no sistema (RF);
- efetuar tratamento de luminosidade, foco e pose nas imagens, tanto para a base de faces, quanto para a autenticação (RF);
- gerar alerta caso a imagem para cadastro na base de faces não seja adequada (RF);
- informar se a autenticação teve, ou não, sucesso (RF);
- utilizar linguagem de programação Objective-C (Requisito Não-Funcional - RNF);
- utilizar ambiente xCode (RNF).

- Especificação
 - A especificação do sistema utiliza alguns dos diagramas UML em conjunto com a ferramenta Enterprise Architect 8.0.856.
 - o Diagrama de Casos de Uso;
 - o Diagrama de Classes;
 - o Diagrama de Seqüência.

o Especificação – Diagrama de Casos de Uso

o Especificação – Diagrama de Casos de Uso

Inicia cadastro usuário: possibilita ao usuário iniciar o processo de cadastramento de um usuário.		
Pré-condição	O menu inicial deve ser exibido pelo sistema.	
Cenário principal	1) O usuário seleciona o botão CADASTRAR USUÁRIO. 2) O sistema exibe uma nova tela com opções para captura. 3) O usuário seleciona o meio de captura clicando no botão BUSCAR ou CAPTURAR. 4) O usuário captura a imagem. 5) O sistema exibe o resultado junto na imagem capturada pelo meio de captura selecionado.	
Fluxo Alternativo 01	No passo 3, caso o meio de captura seleciona esteja indisponível, o outro meio é selecionado automaticamente.	
Pós-condição	O sistema exibe os resultados com sucesso	

o Especificação – Diagrama de Casos de Uso

Inicia reconhecimento usuário: possibilita ao usuário iniciar o processo de reconhecimento facial de um usuário.			
Pré-condição	O menu inicial deve ser exibido pelo sistema.		
Cenário principal	1) O usuário seleciona o botão RECONHECER USUÁRIO. 2) O sistema exibe uma nova tela com opções para captura. 3) O usuário seleciona o meio de captura clicando no botão BUSCAR ou CAPTURAR. 4) O usuário captura a imagem. 5) O sistema exibe o resultado junto na imagem capturada pelo meio de captura selecionado.		
Fluxo Alternativo 01	No passo 3, caso o meio de captura seleciona esteja indisponível, o outro meio é selecionado automaticamente.		
Pós-condição	O sistema exibe os resultados com sucesso		

o Especificação – Diagrama de Classes

o Especificação – Diagrama de Seqüência

- o Implementação
 - As ferramentas seguintes foram utilizadas:
 - o Linguagem de Programação Objective-C
 - iPhone SDK 3.1
 - Ambiente Xcode
 - iPhone Simulator
 - Interface Builder
 - Biblioteca OpenCV V2.0.0
 - As principais técnicas implementadas foram:
 - Detecção da face baseada em características de Haar;
 - Normalização da pose através do ângulo entre os olhos;
 - Normalização da iluminação
 - Luz direcional através do encaixe de plano,
 - Luz ambiente através da redistribuição de tons de cinza;
 - Autofaces para correspondência e avaliação.

- o Implementação
 - Detecção face cvHaarDetectObjects
 - Classificadores
 - Conjunto de características de Haar: máscaras retangulares de tamanho variável que podem ser aplicadas em qualquer posição da imagem em tons de cinza.
 - o O valor de uma característica de Haar é calculado como a diferença entre a som:

Figura 3. (a) Modelos de características de Haar utilizadas e (b) exemplo de característica aplicada.

- o Implementação
 - Normalização da pose
 - Alinha as imagens utilizando os olhos, tornando o ângulo entre os dois igual a 0.

- Implementação
 - Normalização da iluminação
 - o Normalização de luz ambiente
 - Padroniza imagens claras e escuras, que variam uniformemente.
 - A imagem deve ocupar toda a escala de variação do pixel, de 0 a 255.
 - Normalização de luz direcional
 - Corrige a imagem quando a variação de iluminação não é uniforme.
 - Considera a face como um plano, sendo o eixo Z representando a luminosidade. Se um lado está mais iluminado, o plano fica inclinado.

- o Implementação
 - Normalização da iluminação

- Implementação
 - Análise de Componentes Principais (PCA)
 - É um método estatístico multivariado simples, que pode ser usado para compressão de dados, extração de características e projeção de dados multivariados.
 - Responsável por gerar as Autofaces, utilizadas para calcular o erro entre a base e a imagem capturada para reconhecimento.

Operacionalidade

Operacionalidade

- Resultados
 - Base de dados
 - Base de dados criada com imagens adquiridas com iPhone, contendo 73 imagens de 8 indivíduos.

- Resultados
 - Detecção Facial
 - O estágio de detecção facial localizou corretamente a face em todas as 73 imagens da base.

• Resultados

- Normalização Facial
 - A etapa de normalização foi bem sucedida em 97% das imagens contidas na base (71 de 73).

Resultados

Reconhecimento Facial

Indivíduo	E1	E2
01	35.510231	40.199074
02	31.284386	34.785160
03	15.387489	37.137314
04	32.508778	34.202297
05	22.002182	32.547684
06	23.343987	34.602760
07	19.305302	31.361706
08	13.701664	32.415688

- E entre E1 e E2, resulta em 100% de reconhecimento.
- E com o máximo para E1, resulta em 5% das tentativas de fraude bem sucedidas (27 de 511)
- E com o mínimo para E2, resulta em 82% de autenticações (14 de 17)

Conclusão

- Benefícios
- Dificuldades
- Comparação com trabalhos correlatos
- Extensões

CONCLUSÃO

o Possibilidades de extensão:

- Chances de burlar o sistema utilizando fotos do usuário cadastrado;
- Quantidade de fotos cadastradas na base e/ou captadas, melhorando a taxa de reconhecimento;
- Testes com pequenas alterações na face, acessórios, expressões e desvio de orientação;
- Utilização de seqüências de imagens com o movimento de rotação da cabeça, substituindo o uso de apenas a face frontal.
- Aplicação de técnicas de realidade aumentada após o reconhecimento facial.

DEMONSTRAÇÃO