Inner products, lengths, and orthogonality

For any \vec{u} , $\vec{v} \in \mathbb{R}^n$, we define $\vec{u} \cdot \vec{v} = \sum_{i=1}^n u_i v_i \in \mathbb{R}$. We note that this can be expressed using conventional vector multiplication: the **dot product** is equal to $\vec{u}^T \vec{v}$ and $\vec{v}^T \vec{u}$.

Properties

Given $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, we know that:

- 1. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- 2. $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$
- 3. $(c\vec{u}) \cdot \vec{w} = c(\vec{u} \cdot \vec{w})$
- 4. $\vec{u} \cdot \vec{u} \ge 0$

Thus it is clear that the dot product forms a linear map from \mathbb{R}^n to \mathbb{R} . This is also evident from the fact that, as mentioned, the dot product is equivalent to matrix multiplication by a transpose.

Define the *norm* or *length* of \vec{u} as $||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}}$. We can see that scaling is linear, but the length must remain positive: $||c\vec{u}|| = |c|||\vec{u}||$. We can define a **unit vector** as a vector with length 1. We can see that for any $\vec{v} \in \mathbb{R}^n$, a unit vector is $\frac{1}{||\vec{v}||}\vec{v}$. We can also define the **distance** $dist(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||$.

Orthogonality

Two vectors in \mathbb{R}^2 are *orthogonal* if the angle between them is $\frac{\pi}{2}$. We can extend this definition to \mathbb{R}^n by generalising it algebraically. It is clear that, if \overrightarrow{u} and \overrightarrow{v} are orthogonal, then:

$$\begin{aligned} dist(\overrightarrow{u},\overrightarrow{v}) &= dist(\overrightarrow{u},-\overrightarrow{v}) \\ \iff ||\overrightarrow{u}-\overrightarrow{v}|| &= ||\overrightarrow{u}+\overrightarrow{v}|| \iff ||\overrightarrow{u}-\overrightarrow{v}||^2 = ||\overrightarrow{u}+\overrightarrow{v}||^2 \\ \iff (\overrightarrow{u}-\overrightarrow{v}) \cdot (\overrightarrow{u}-\overrightarrow{v}) &= (\overrightarrow{u}+\overrightarrow{v}) \cdot (\overrightarrow{u}+\overrightarrow{v}) \\ \iff ||\overrightarrow{u}||^2 - 2(\overrightarrow{u} \cdot \overrightarrow{v}) + ||\overrightarrow{v}||^2 &= ||\overrightarrow{u}||^2 + 2(\overrightarrow{u} \cdot \overrightarrow{v}) + ||\overrightarrow{v}||^2 \\ \iff \overrightarrow{u} \cdot \overrightarrow{v} &= 0 \end{aligned}$$

Thus, we have the formal definition of orthogonality: two vectors in \mathbb{R}^n are orthogonal iff their dot product is 0.

Theorem:
$$\vec{u} \cdot \vec{v} = 0 \iff ||\vec{u} \pm \vec{v}|| = ||\vec{u}|| + ||\vec{v}||$$

Proof. By definition, $||\vec{u} \pm \vec{v}|| = ||\vec{u}|| + ||\vec{v}|| \pm 2(\vec{u} \cdot \vec{v})$. Iff $\vec{u} \cdot \vec{v} = 0$, we are left with the original statement.

We can also define orthogonality between vectors and vector spaces. Given $W \subset \mathbb{R}^n$, $\vec{z} \in \mathbb{R}^n$ is orthogonal to W ($\vec{z} \perp W$) iff $\vec{z} \perp \vec{v} \forall \vec{v} \in W$. We define the **orthogonal complement** to W as $W^{\perp} = \{\vec{z} \in \mathbb{R}^n : \vec{z} \perp W\}$. It can be shown that W^{\perp} is a vector subspace.

A remark: given $\vec{A}_{m \times n}$, $\vec{u} \in \mathbb{R}^n$, $\vec{v} \in \mathbb{R}^m$, $(\vec{A}\vec{u}) \cdot \vec{v} = \vec{u} \cdot \vec{A}^T \vec{v}$, even though the dot products are happening in different dimensions!

Proof.
$$(\overrightarrow{A}\overrightarrow{u}) \cdot \overrightarrow{v} = \overrightarrow{u}^T((\overrightarrow{A}^T\overrightarrow{v})) = \overrightarrow{u} \cdot \overrightarrow{A}^T\overrightarrow{v}$$

We can use this result to show that

Theorem: If the matrix \overrightarrow{U} defines a map from orthogonal columns, that is, $\overrightarrow{U}\overrightarrow{U}^T = \overrightarrow{I}$, then $||\overrightarrow{U}\overrightarrow{x}|| = ||\overrightarrow{x}||$, and $\overrightarrow{U}\overrightarrow{x}\cdot\overrightarrow{U}\overrightarrow{y} = \overrightarrow{x}\cdot\overrightarrow{y}$. Also, $\overrightarrow{x}\perp\overrightarrow{y}\iff \overrightarrow{U}\overrightarrow{x}\perp\overrightarrow{U}\overrightarrow{y}$.

Proof. The third and first properties follow directly from the second and their proofs are trivial. To prove the second property, we can use the definition of the dot product: $\overrightarrow{U}\overrightarrow{x}\cdot\overrightarrow{U}\overrightarrow{y}=(\overrightarrow{U}\overrightarrow{x})^T\overrightarrow{U}\overrightarrow{y}=\overrightarrow{x}^T\overrightarrow{U}^T\overrightarrow{U}\overrightarrow{y}=\overrightarrow{x}^T\overrightarrow{y}=\overrightarrow{x}\cdot\overrightarrow{y}$.

Orthogonal projections

Given $W \subset \mathbb{R}^n$, $\vec{y} \in \mathbb{R}^n$, we define an orthogonal projection of \vec{y} in W as a vector $\hat{y} \in W$ such that $\vec{y} - \hat{y} \perp W$. We will see that $proj_W(\vec{y})$ is the "closest" point of W to \vec{y} .

Theorem: Any $\vec{y} \in \mathbb{R}^n$ can be written uniquely as $\vec{y} = \hat{y} + \vec{z}$ where $\hat{y} \in W$, $\vec{z} = \vec{y} - \hat{y} \perp W$.

Proof. Let $\{\overrightarrow{u}_1, \overrightarrow{u}_2, \cdots \overrightarrow{u}_p\}$ be an orthonormal basis for W. Define $\operatorname{proj}_W(\overrightarrow{y}) = \widehat{y} = \sum_{i=1}^p \frac{\overrightarrow{y} \cdot \overrightarrow{u}_i}{\overrightarrow{u}_i \cdot \overrightarrow{u}_i} \overrightarrow{u}_i$. It is obvious that $\widehat{y} \in W$. Now, $\overrightarrow{y} - \widehat{y} \perp W \iff \overrightarrow{y} - \widehat{y} \perp \overrightarrow{u}_j \ \forall \ 1 \leq j \leq p$. We can apply the dot product: $(\overrightarrow{y} - \widehat{y}) \cdot \overrightarrow{u}_j = \overrightarrow{y} \cdot \overrightarrow{u}_j - \left(\sum_{i=1}^p \frac{\overrightarrow{y} \cdot \overrightarrow{u}_i}{\overrightarrow{u}_i \cdot \overrightarrow{u}_i} \overrightarrow{u}_i\right) \cdot \overrightarrow{u}_j = \overrightarrow{y} \cdot \overrightarrow{u}_j - \overrightarrow{y} \cdot \overrightarrow{u}_j = 0$.

Proof of uniqueness: assume that there is another representation of \vec{y} in this form, that is, $\vec{y} = \hat{y'} + \vec{z'}, \hat{y'} \in W, \vec{z'} = \vec{y} - \hat{y'} \in W^{\perp}$. Then, $\hat{y} + \vec{z} = \hat{y'} + \vec{z'}$. Define, in two ways, $\vec{v} = \hat{y} - \hat{y'} = \vec{z'} - \vec{z}$. We can see that the first definition

of \vec{v} is in W, and the second definition is in W^{\perp} . Therefore, $\vec{v} \cdot \vec{v} = 0$, and so $\vec{v} = 0$. Therefore, \hat{y} and \vec{z} are both unique.

We can note that if $\vec{y} \in W$, then $proj_W(\vec{y}) = \vec{y}$, and so $\vec{y} = proj_W(\vec{y}) = \sum_{i=1}^p \frac{\vec{y} \cdot \vec{u}_i}{\vec{u}_i \cdot \vec{u}_i} \vec{u}_i$. This goes back to the definition of \vec{y} as a linear combination of orthonormal vectors.

Theorem: $||\vec{y} - \hat{y}|| \le ||\vec{y} - \vec{v}|| \ \forall \ \vec{v} \in W$. Equality holds iff $\hat{y} = \vec{v}$.

Proof. Let
$$\overrightarrow{v} \in W$$
, $\overrightarrow{v} \neq \hat{y}$. Then, since $\overrightarrow{y} - \hat{y} \perp W$, we know that $(\overrightarrow{y} - haty) \perp (\hat{y} - \overrightarrow{v})$ as $(\hat{y} - \overrightarrow{v}) \in W$. Therefore, $||\overrightarrow{y} - \overrightarrow{v}||^2 = ||\overrightarrow{y} - \hat{y} + \hat{y} - \overrightarrow{v}||^2 = ||\overrightarrow{y} - \hat{y}||^2 + ||\hat{y} - \overrightarrow{v}||^2$. So $||\overrightarrow{y} - \hat{y}|| \leq ||\overrightarrow{y} - \overrightarrow{v}||$.

Theorem: Any $W \in \mathbb{R}^n$ has an orthonormal basis.

Proof. This is not a complete proof, but the presentation of the Gram-Schmidt algorithm for generating an orthonormal basis for any subspace of $mathbbR^n$.

Let $\{\vec{x}_1, \vec{x}_2, \cdot \vec{x}_p\}$ be a basis for W. We can create another set of vectors $\{\vec{v}_1, \vec{v}_2, \cdot \vec{v}_p\}$ that spans W and is orthonormal. We set $\vec{v}_1 = \vec{x}_1$ and $\vec{v}_2 = \vec{x}_2 - proj_{\vec{v}_1}(\vec{x}_2)$. These vectors are by definition orthogonal. Now, we can set $\vec{v}_3 = \vec{x}_3 - proj_{span\vec{v}_1, \vec{v}_2}(\vec{x}_3)$, which is clearly orthogonal to both \vec{v}_1 and \vec{v}_2 . We continue this pattern up to \vec{v}_p .

In other words:

$$\overrightarrow{v}_1 = \overrightarrow{x}_1$$

$$\overrightarrow{v}_2 = \overrightarrow{x}_2 - \frac{\overrightarrow{x}_2 \cdot \overrightarrow{v}_1}{\overrightarrow{v}_1 \cdot \overrightarrow{v}_1} \overrightarrow{v}_1$$

$$\overrightarrow{v}_3 = \overrightarrow{x}_3 - \left(\frac{\overrightarrow{x}_3 \cdot \overrightarrow{v}_1}{\overrightarrow{v}_1 \cdot \overrightarrow{v}_1} \overrightarrow{v}_1 + \frac{\overrightarrow{x}_3 \cdot \overrightarrow{v}_2}{\overrightarrow{v}_2 \cdot \overrightarrow{v}_2} \overrightarrow{v}_2 \right)$$

$$\overrightarrow{v}_p = \sum_{i=1}^{p-1} \frac{\overrightarrow{x}_p \cdot \overrightarrow{v}_i}{\overrightarrow{v}_i \cdot \overrightarrow{v}_i} \overrightarrow{v}_i$$

The Gram-Schmidt theorem proves that this new set also forms a basis for W.

Important ideas in the proof:

- 1. $\{\vec{v}_1, \vec{v}_2, \cdot \vec{v}_i\} 1 \le i \le p$ is orthogonal
- 2. $span \vec{v}_1, \vec{v}_2, \vec{v}_i = span \vec{x}_1, \vec{x}_2, \vec{x}_i 1 \le i \le p$

QR factorisation

Theorem: Let $\overrightarrow{A}_{m \times p}$ be a matrix with linearly independent columns. Then, there exist two matrices $\overrightarrow{Q}_{m \times p}$ and $\overrightarrow{R}_{p \times p}$ such that $\overrightarrow{Q}\overrightarrow{Q}^T = \overrightarrow{I}_m$ (that is, the columns of \overrightarrow{Q} are orthonormal), $\operatorname{col} \overrightarrow{A} = \operatorname{col} \overrightarrow{Q}$, \overrightarrow{R} is upper triangular with positive diagonal entries and invertible, and $\overrightarrow{A} = \overrightarrow{Q}\overrightarrow{R}$.

Since the columns of \overrightarrow{A} are linearly independent, we know that they form a basis for col \overrightarrow{A} . We can form \overrightarrow{Q} from the orthonormal basis for col \overrightarrow{A} using Gram-Schmidt, where each column of $\overrightarrow{Q}\overrightarrow{q}_i = \frac{\overrightarrow{v}_i}{||\overrightarrow{v}_i||}$ where \overrightarrow{v}_i are the columns of the orthonormal basis. Since the columns of \overrightarrow{Q} are orthonormal, we can compute $\overrightarrow{R} = \overrightarrow{Q}^T \overrightarrow{A}$.