Esercizio 1

Minimizzare il seguente automa e disegnare l'automa minimo.

Stato	x=0	x=1
A	G/0	A/0
В	E/0	A/0
C	D/1	E/0
D	C/0	G/0
Е	B/0	F/0
F	C/0	B/0
G	A/0	F/0

Esercizio 1

Minimizzare il seguente automa e disegnare l'automa minimo.

Stato	x=0	x=1
A	G/0	A/0
В	E/0	A/0
С	D/1	E/0
D	C/0	G/0
Е	B/0	F/0
F	C/0	B/0
G	A/0	F/0

Soluzione:

В	(E,G)					
С	X	X				
D	(C,G)	(C,E)	X			
	(G,A)	(G,A)				
Е	(B,G)	(E,B)	X	(B,C)		
	(F,A)	(F,A)		(F,G)		
F	(C,G)	(C,E)	X	(B,G)	(C,B)	
	(B,A)	(B,A)			(B,F)	
G	(A,G)	(A,E)	X	(A,C)	(A,B)	(A,C)
	(F,A)	(F,A)		(F,G)		(F,B)
	A	В	C	D	Е	F
			·			
В	(E,G)					
С	X	X				
D	X	X	X			
Е	(B,G)	(E,B)	X	X		
	(F,A)	(F,A)				
F	X	X	X X	(B,G)	X	
G	(A,G)	(A,E)	X	X	(A,B)	X
	(F,A)	(F,A)				
	A	В	C	D	Е	F
В	(E,G)					
С	X	X				
D	X	X	X			
E	X	X	X	X		
F	X	X	X	X	X	
G	X	X	X	X	(A,B)	X

D

Stato	x=0	x=1
A/B	G/0	A/0
C	D/1	E/0
D	C/0	E/0
E/G	A/0	F/0
F	C/0	A/0

Esercizio 3 (4 punti):

Un circuito riceve in ingresso 4 bit x3x2x1x0 e produce in uscita la rappresentazione di Y=A+B in Ca2 con 4 bit, dove A e il numero naturale dato da x3x2x1 e B è il valore in Ca2 dato da x2x1x0.

Stendere la tavola di verità

Realizzare Y con PLA

Realizzare y1 con un MUX 4-a-1

Realizzare y2 con sole NAND

Esercizio 3 (4 punti):

Un circuito riceve in ingresso 4 bit x3x2x1x0 e produce in uscita la rappresentazione di Y=A+B in Ca2 con 4 bit, dove A e il numero naturale dato da x3x2x1 e B è il valore in Ca2 dato da x2x1x0.

Stendere la tavola di verità

Realizzare Y con PLA

Realizzare y1 con un MUX 4-a-1

Realizzare y2 con sole NAND

x3	x2	x 1	x 0	A	В	A+B	у3	y2	y1	y0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	1	0	0	0	1
0	0	1	0	1	2	3	0	0	1	1
0	0	1	1	1	3	4	0	1	0	0
0	1	0	0	2	-4	-2	1	1	1	0
0	1	0	1	2	-3	-1	1	1	1	1
0	1	1	0	3	-2	1	0	0	0	1
0	1	1	1	3	-1	2	0	0	1	0
1	0	0	0	4	0	4	0	1	0	0
1	0	0	1	4	1	5	0	1	0	1
1	0	1	0	5	2	7	0	1	1	1
1	0	1	1	5	3	8	X	X	X	X
1	1	0	0	6	-4	2	0	0	1	0
1	1	0	1	6	-3	3	0	0	1	1
1	1	1	0	7	-2	5	0	1	0	1
1	1	1	1	7	-1	6	0	1	1	0

Esercizio 6 (4 punti)

Si consideri il numero esadecimale X=51BB e gli si sottragga in base 16 il numero esadecimale Y=A3B. Si converta poi il risultato Z in una sequenza binaria di 16 bit, da interpretarsi come un numero razionale in formato IEEE 754 half-precision. Si prenda poi la sequenza binaria di 16 bit W=1100'0110'0000'00002, la si interpreti come un numero razionale in formato IEEE 754 half-precision, e si effettui il prodotto tra questi 2 numeri e si scriva il risultato in formato IEEE 754 half-precision.

Esercizio 6 (4 punti)

Si consideri il numero esadecimale X=51BB e gli si sottragga in base 16 il numero esadecimale Y=A3B. Si converta poi il risultato Z in una sequenza binaria di 16 bit, da interpretarsi come un numero razionale in formato IEEE 754 half-precision. Si prenda poi la sequenza binaria di 16 bit W=1100'0110'0000'00002, la si interpreti come un numero razionale in formato IEEE 754 half-precision, e si effettui il prodotto tra questi 2 numeri e si scriva il risultato in formato IEEE 754 half-precision.

Differenza tra X ed Y.

Esercizio 6 (4 punti)

Si consideri il numero esadecimale X=51BB e gli si sottragga in base 16 il numero esadecimale Y=A3B. Si converta poi il risultato Z in una sequenza binaria di 16 bit, da interpretarsi come un numero razionale in formato IEEE 754 half-precision. Si prenda poi la sequenza binaria di 16 bit W=1100'0110'0000'00002, la si interpreti come un numero razionale in formato IEEE 754 half-precision, e si effettui il prodotto tra questi 2

Differenza tra X ed Y.

```
Moltiplicazione tra Z ed W.
```

```
Z = 4780 \rightarrow 0100\_0111\_1000\_0000 \rightarrow s=0, e=100012=(17-15)_{10}=2_{10}, m=1.111

W = 1100\_0110\_0000\_0000 \rightarrow s=1, e=100012=(17-15)_{10}=2_{10}, m=1.1
```

10.1101

```
R=W*Z →
s=1 → s è il prodotto dei segni
e= 4 → e è la somma degli esponenti.
m= è il prodotto delle mantisse:
1.1110 +
0.1111 =
```

numeri e si scriva il risultato in formato IEEE 754 half-precision.

Quindi m=10.1101 Rinormalizzo m=1.01101 ponendo e=5 (20 considerando il bias) Il risultato in codifica IEEE half-precision è.

R=1101_0001_1010_0000

