Granice ciągów

Witold Obłoza

18 lipca 2019

Ciągi monotoniczne, arytmetyczne i geometryczne

Definicja 1 Ciąg $\{a_n\}_{n\in\mathbb{N}^\star}$ nazywamy rosnącym (odpowiednio malejącym, nierosnącym, niemalejącym) wtedy i tylko wtedy, gdy $\forall k\in\mathbb{N}^\star$ $a_{k+1}>a_k$ (odpowiednio $a_{k+1}< a_k,\, a_{k+1}\leq a_k,\, a_{k+1}\geq a_k$).

Definicja 2 Ciąg liczbowy nazywamy arytmetycznym (geometrycznym) wtedy i tylko wtedy, gdy $\exists r \in \mathbb{R} \quad \forall n \in \mathbb{N}^{\star} \quad a_{n+1} - a_n = r \text{ (odpowiednio } \exists q \in \mathbb{R} \setminus \{0\} \\ \forall n \in \mathbb{N}^{\star} \quad \frac{a_{n+1}}{a_n} = q \text{)}.$

Ciągi arytmetyczne i geometryczne

Uwaga 3 Jeżeli ciąg
$$\{a_n\}_{n\in\mathbb{N}^\star}$$
 jest arytmetyczny (geometryczny), to $a_n=a_1+(n-1)r$ (odpowiednio $a_n=a_1\cdot q^{n-1}$).
 Jeżeli $S_n=\sum\limits_{k=1}^n a_k$, to dla ciągu arytmetycznego $S_n=n\frac{a_1+a_n}{2}=n\frac{2a_1+(n-1)r}{2}$, zaś dla ciągu geometrycznego $S_n=a_1\frac{1-q^n}{1-q}$.

Ciągi ograniczone

Definicja 4 Ciąg liczbowy nazywamy ograniczonym z dołu (z góry) jeżeli istnieje takie m (odpowiednio M), że dla każdego $n \in \mathbb{N}^*$ zachodzi nierówność $a_n \geq m$ (odpowiednio $a_n \leq M$).

Jeżeli ciąg jest ograniczony z góry i z dołu, to mówimy, że jest ograniczony.

Uwaga 5 Ciąg jest ograniczony wtedy i tylko wtedy, gdy istnieje takie M, że dla każdego $n\in\mathbb{N}^*$ zachodzi nierówność $|a_n|\leq M$.

Definicja 6 Mówimy, że ciąg $\{a_n\}_{n=1}^\infty$ ma granicę właściwą $g\in\mathbb{R}$ przy n zmierzającym do nieskończoności i zapisujemy $\lim_{n\to\infty}a_n=g$ wtedy i tylko wtedy, gdy $\forall \varepsilon>0\; \exists n_0:\; \forall n>n_0\;\;|a_n-g|<\varepsilon.$

Przykład 7 Pokazać, że $\lim \frac{n-1}{2n+1} = \frac{1}{2}$.

Uwaga 8 Warunki poniższe są warunkami koniecznymi i wystarczającymi na to, aby liczba g była granicą ciągu $\{a_n\}_{n=1}^\infty$ przy n zmierzającym do nieskończoności:

- a) $\forall \varepsilon > 0 \quad \exists n_0 \quad \forall n \ge n_0 \quad |a_n g| < \varepsilon$,
- b) $\forall \varepsilon > 0 \quad \exists n_0 \quad \forall n \ge n_0 \quad |a_n g| \le \varepsilon,$
- c) $\forall \varepsilon > 0 \quad \exists n_0 \quad \forall n > n_0 \quad |a_n g| \le \varepsilon$.

Definicja 9 Mówimy, że ciąg $\{a_n\}_{n=1}^\infty$ ma granicę niewłaściwą $+\infty$ ($-\infty$) przy n zmierzającym do nieskończoności i zapisujemy $\lim_{n\to\infty}a_n=\infty$ (odpowiednio $\lim_{n\to\infty}a_n=-\infty$) wtedy i tylko wtedy, gdy $\forall M\; \exists n_0:\; \forall n>n_0\quad a_n>M$ (odpowiednio $a_n< M$).

Przykład 10 Pokazać, że $\lim \frac{n^2-1}{3n+1} = \infty$.

Twierdzenie
$$11$$
 $\lim_{n \to \infty} a_n = 0$ wtedy i tylko wtedy, gdy $\lim_{n \to \infty} |a_n| = 0.$

$$\lim_{n \to \infty} a_n = 0$$
 wtedy i tylko wtedy, gdy $\lim_{n \to \infty} \frac{1}{|a_n|} = \infty$.

(Przy założeniu, że $\forall n \in \mathbb{N}^{\star} \ a_n \neq 0$.)

Cwiczenie. Udowodnić twierdzenie.

Twierdzenie 12 Jeśli ciąg ma granicę, to jest ona wyznaczona jednoznacznie.

Ćwiczenie. Udowodnić twierdzenie

Twierdzenie 13 Jeżeli
$$\lim_{n\to\infty}a_n=0$$
 zaś ciąg $\{b_n\}_{n=1}^\infty$ jest ograniczony, to $\lim_{n\to\infty}(a_n\cdot b_n)=0$.

Ćwiczenie. Udowodnić twierdzenie.

```
Twierdzenie 14
                                             Jeżeli istnieją granice \lim a_n = a oraz
                                                                                   n \rightarrow \infty
 \lim b_n = b, to istnieją granice
n \rightarrow \infty
\lim_{n\to\infty} (a_n + b_n),
\lim_{n\to\infty}(a_n-b_n),
\lim_{n\to\infty}(a_n\cdot b_n).
Ponadto \lim_{n\to\infty} (a_n + b_n) = a + b,
\lim_{n \to \infty} (a_n - b_n) = a - b,
\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b.
Jeżeli b \neq 0 i \forall n \in \mathbb{N} \ b_n \neq 0 istnieje też
\lim_{n\to\infty}\frac{a_n}{b_n} \text{ oraz } \lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}.
```

```
Twierdzenie 15 ( o trzech ciagach )
Jeżeli \exists n_0 \quad \forall n > n_0 \ a_n \geq b_n \geq c_n oraz istnieją granice
 \lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = a, to istnieje \lim_{n\to\infty} b_n oraz \lim_{n\to\infty} b_n = a.
DOWÓD. Z definicji granicy \forall \varepsilon > 0 \ \exists n_1 \ \forall n > n_1 \ a + \varepsilon > a_n
oraz
\forall \varepsilon > 0 \ \exists n_2 \ \forall n > n_2 \ a - \varepsilon < c_n
Wówczas dla n > n_3 = max\{n_0, n_1, n_2\}
a - \varepsilon < c_n < b_n < a_n < a + \varepsilon.
Stąd istnieje \lim_{n\to\infty} b_n oraz \lim_{n\to\infty} b_n = a.
```

Twierdzenie 16 (o monotoni)

Jeżeli $\exists n_0 \quad \forall n>n_0 \ a_n\geq b_n$ oraz istnieją granice $\lim_{n\to\infty}a_n=a$ oraz $\lim_{n\to\infty}b_n=b$, to $a\geq b$.

Jeżeli $b=\infty$, to $a=\infty$.

Jeżeli $a=-\infty$, to $b=-\infty$.

Dowód: Przypuśćmy, że a < b wówczas dla $\varepsilon = \frac{b-a}{2}$ z definicji granicy mamy $\exists n_1 \ \forall n > n_1 \ |a_n - a| < \varepsilon$ oraz $\exists n_2 \ \forall n > n_2 \ |b_n - b| < \varepsilon$.

Dla $n>\max\{n_0,n_1,n_2\}$ zachodzą nierówności $a_n>b_n$ oraz $a_n< a+\varepsilon=b-\varepsilon< b_n.$

Otrzymana sprzeczność dowodzi, że $a \ge b$.

GRANICE SPECJALNE

Twierdzenie 17 Zachodzą następujące równości:

0) Granica ciągu stałego $\{a_n\}$ takiego, że $\forall n\in\mathbb{N}^\star\ a_n=c$ jest równa c.

1)
$$\lim_{n \to \infty} n^{\alpha} = \begin{cases} \infty & \text{gdy } \alpha > 0, \\ 1 & \text{gdy } \alpha = 0, \\ 0 & \text{gdy } \alpha < 0 \end{cases}$$

- 2) $\lim_{n\to\infty} \sqrt[n]{A} = 1$, gdzie A > 0.
- 3) $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

$$\text{4)} \lim_{n \to \infty} q^n = \begin{cases} +\infty & \text{gdy } q > 1, \\ 1 & \text{gdy } q = 1, \\ 0 & \text{gdy } |q| < 1, \\ nie \ istnie je & \text{gdy } q \leq -1. \end{cases}$$

GRANICE SPECJALNE

5) Istnieje granica $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$.

Ponadto

6) jeżeli ciąg $\{a_n\}$ o wyrazach dodatnich jest ograniczony przez liczby dodatnie, to $\lim_{n\to\infty} \sqrt[n]{a_n}=1,$

w szczególności, jeżeli
$$\lim_{n\to\infty}a_n=g\in(0,\infty),$$
 to $\lim_{n\to\infty}\sqrt[n]{a_n}=1,$

7) jeżeli
$$\forall n\ a_n \neq 0$$
 i $\lim_{n \to \infty} |a_n| = \infty$, to
$$\lim_{n \to \infty} (1 + \frac{1}{a_n})^{a_n} = e.$$

GRANICE SPECIALNE - PRZYKŁADY

$$\begin{array}{ll} \mathsf{Przyk}\mathsf{fad} \ \ 18 & \mathsf{Obliczy\acute{c}} \ \mathsf{granice:} \\ \lim_{n \to \infty} \ \frac{4n^3 + 3n^2 + 2n + 1}{2n^3 + 3n^2 + n + 4} \,, \quad \lim_{n \to \infty} \ \frac{2n^3 + 3n^2 + 4n + 1}{3n^2 + 2n + 1} \,, \quad \lim_{n \to \infty} \ \frac{5n^2 + 3n + 1}{n^3 + n + 2} \,. \end{array}$$

Przykład 19 Uzasadnić twierdzenie: Jeżeli $a_m \neq 0$ i $b_k \neq 0$, to

$$\lim_{n \to \infty} \frac{\sum\limits_{p=0}^{m} a_p \cdot n^p}{\sum\limits_{k=0}^{k} b_p \cdot n^p} = \begin{cases} \frac{a_m}{b_k} & gdy \quad m = k\\ sign(\frac{a_m}{b_k}) \cdot \infty & gdy \quad m > k\\ 0 & gdy \quad m < k \end{cases}$$

GRANICE SPECJALNE - PRZYKŁADY

Przykład 20 Obliczyć granice:

$$\lim_{n \to \infty} (\sqrt{9n^2 + 2n + 1} - 3n), \quad \lim_{n \to \infty} (\sqrt[3]{8n^3 + 12n^2 + 4n + 1} - 2n),$$

$$\lim_{n \to \infty} \frac{(2n+6)!}{(3n^3 + 3)^3 \cdot (2n-3)!}, \quad \lim_{n \to \infty} \sqrt[n]{65 \cdot 4^{2n-3} + 31 \cdot 2^{3n+1}}$$

$$\lim_{n \to \infty} \left(\frac{4n^2 - 7n}{4n^2 - 1}\right)^{-7n-6} \lim_{n \to \infty} \frac{216^{n+1} + 61^{n-12}}{(2^{3n} + 3^{19}) \cdot (3^{3n+1} - 7)}$$

$$\lim_{n \to \infty} \frac{(4\sqrt{n+1} + 3)^8 \cdot (n^3 + 1)}{(4n+4)^7}.$$

Definicja 21 Ciąg $\{a_n\}_{n=1}^{\infty}$ nazywamy ciągiem Cauchy'ego wtedy i tylko wtedy, gdy $\forall \varepsilon > 0 \ \exists n_0 : \forall m,n > n_0 \quad |a_m - a_n| < \varepsilon.$

Twierdzenie 22 Każdy ciąg zbieżny do granicy właściwej jest ciągiem Cauchy'ego.

Ćwiczenie. Udowodnić twierdzenie.

Twierdzenie 23 W zbiorze liczb rzeczywistych każdy ciąg Cauchy'ego ma granicę właściwą bedącą liczbą rzeczywistą.

Twierdzenie 24 Ciąg niemalejący (nierosnący) i ograniczony z góry (odpowiednio z dołu) jest zbieżny do granicy właściwej.

Definicja 25 Dla danego $\{a_n\}_{n=1}^{\infty}$ ciągu liczbowego i ciągu rosnącego $\{n_k\}_{k=1}^{\infty}$ o wyrazach naturalnych różnych od zera ciąg $\{a_{n_k}\}_{k=1}^{\infty}$ nazywamy podciągiem ciągu $\{a_n\}_{n=1}^{\infty}$.

Definicja 26 Jeżeli $\{a_{n_k}\}_{k=1}^{\infty}$ podciąg ciągu $\{a_n\}_{n=1}^{\infty}$ ma granicę właściwą g przy k zmierzającym do nieskończoności, to liczbę g nazywamy punktem skupienia ciągu $\{a_n\}$.

Jeżeli $\lim_{n \to \infty} a_{n_k} = \infty$ $(\lim_{n \to \infty} a_{n_k} = -\infty)$, to mówimy, że ∞ (odpowiednio $-\infty$) jest niewłaściwym punktem skupienia ciągu $\{a_n\}_{n=1}^\infty$.

Twierdzenie 27 Każdy ciąg ograniczony posiada właściwy punkt skupienia należący do $[\inf\{a_n\}, \sup\{a_n\}].$

Twierdzenie 28 Ciąg $\{a_n\}_{n=1}^{\infty}$ ma granicę g wtedy i tylko wtedy, gdy g jest jedynym punktem skupienia tego ciągu.

Twierdzenie 29 Każdy ciąg mający granicę właściwą jest ograniczony.

SYMBOLE OZNACZONE

Definicja 30 Mówimy, że ciąg $\{a_n\}_{n=1}^\infty$ zmierza do 0 po wartościach dodatnich (ujemnych) wtedy i tylko wtedy, gdy $\exists n_0 \forall n > n_0 \quad a_n > 0$ (odpowiednio $\exists n_0 \forall n > n_0 \quad a_n < 0$) oraz $\lim_{n \to \infty} a_n = 0$. Zapisujemy $\lim_{n \to \infty} a_n = 0^+$ (odpowiednio $\lim_{n \to \infty} a_n = 0^-$).

$$\begin{array}{llll} \text{Twierdzenie } & 31 & \text{Jeżeli} & \lim_{n \to \infty} a_n = 0^+, & \lim_{n \to \infty} b_n = 0^-, \\ & \lim_{n \to \infty} c_n = c > 0, & \lim_{n \to \infty} d_n = d < 0 & \lim_{n \to \infty} p_n = +\infty, & \lim_{n \to \infty} q_n = -\infty, \text{ to} \\ & \lim_{n \to \infty} \frac{c_n}{a_n} = \infty, & \lim_{n \to \infty} \frac{c_n}{b_n} = -\infty, & \lim_{n \to \infty} \frac{d_n}{a_n} = -\infty, & \lim_{n \to \infty} \frac{d_n}{b_n} = \infty, \\ & \lim_{n \to \infty} \frac{p_n}{a_n} = \infty, & \lim_{n \to \infty} \frac{p_n}{b_n} = -\infty, & \lim_{n \to \infty} \frac{q_n}{a_n} = -\infty, & \lim_{n \to \infty} \frac{q_n}{b_n} = \infty, \\ & \lim_{n \to \infty} p_n \cdot c_n = -\infty, & \lim_{n \to \infty} p_n \cdot d_n = -\infty, & \lim_{n \to \infty} q_n \cdot c_n = -\infty, \\ & \lim_{n \to \infty} q_n \cdot d_n = \infty. \end{array}$$

SYMBOLE OZNACZONE

DOWÓD.
$$\lim_{n \to \infty} a_n = 0^+ \Leftrightarrow \forall M > 0 \ \exists n_1: \ \forall n \geq n_1 \ 0 < a_n < \frac{c}{2M}$$

$$\lim_{n \to \infty} c_n = c > 0 \Rightarrow \exists n_2 : \ \forall n \ge n_2 \ c_n > \frac{c}{2}.$$

Dla
$$n > n_0 = \max\{n_1, n_2\} \frac{c_n}{a_n} > \frac{c}{2} \cdot \frac{2M}{c} = M.$$

Czyli
$$\lim_{n\to\infty} \frac{c_n}{a_n} = \infty.$$

Jeżeli
$$\lim_{n \to \infty} c_n = c$$
, gdzie $c > 0$ i $\lim_{n \to \infty} h_n = h$,

to
$$\lim_{n\to\infty}c_n^{h_n}=c^h.$$

SYMBOLE OZNACZONE

Twierdzenie 33 Jeżeli
$$\lim_{n \to \infty} c_n = c \ge 0$$
, $\lim_{n \to \infty} p_n = +\infty$, $\lim_{n \to \infty} q_n = -\infty$ i $c < 1$, to $\lim_{n \to \infty} c_n^{p_n} = 0$, $\lim_{n \to \infty} c_n^{q_n} = \infty$, $\operatorname{gdy} c > 1$, to $\lim_{n \to \infty} c_n^{q_n} = 0$, $\lim_{n \to \infty} c_n^{p_n} = \infty$.

Twierdzenie 34 Jeżeli

$$\begin{split} &\lim_{n\to 0} a_n = a, \ \lim_{n\to 0} b_n = b, \\ &\operatorname{gdzie} \ \forall n\in \mathbb{N}^\star \ a_n, a\in (0,1)\cup (1,\infty) \ \mathrm{i} \ b_n, b\in (0,\infty), \ \mathrm{to} \ \mathrm{istnieje} \\ &\lim_{n\to \infty} \log_{a_n} b_n \ \mathrm{i} \ \mathrm{ponadto} \ \lim_{n\to \infty} \log_{a_n} b_n = \log_a b. \end{split}$$

Uwaga 35. Na mocy powyższych twierdzeń symbole $\frac{a}{0+}$, $\frac{a}{0-}$, $\frac{\pm\infty}{0+}$, $\frac{\pm\infty}{0-}$, $\pm\infty\cdot a$ oraz $c^{\pm\infty}$ dla $c\neq 1$ i $a\neq 0$ są symbolami oznaczonymi.

SYMBOLE NIEOZNACZONE

Twierdzenie 33 Symbolami nieoznaczonymi są
$$"0\cdot (\pm\infty)", "\frac{0}{0}", "\frac{\infty}{\infty}", "\infty-\infty", "0^0", "0^0", "1^{\pm\infty}".$$
 Uzasadnienie: $"0\cdot (\pm\infty)"$
$$\lim_{n\to\infty}a_n=0, \quad \lim_{n\to\infty}b_n=\infty.$$
 Dla $a_n=\frac{1}{n}, \quad b_n=n$
$$\lim_{n\to\infty}a_n\cdot b_n=\lim_{n\to\infty}\frac{1}{n}\cdot n=\lim_{n\to\infty}1=1$$
 Dla $a_n=\frac{1}{n}, \quad b_n=n^2$
$$\lim_{n\to\infty}a_n\cdot b_n=\lim_{n\to\infty}\frac{1}{n}\cdot n^2=\lim_{n\to\infty}n=\infty$$

Kryteria zbieżności ciągów liczbowych do zera

Twierdzenie 34 Załóżmy, że istnieje granica $\lim_{n \to \infty} \sqrt[n]{|a_n|} = g$.

Jeżeli
$$g < 1 \lim_{n \to \infty} a_n = 0.$$

Ćwiczenie. Udowodnić twierdzenie.

Twierdzenie 35

Załóżmy, że istnieje granica $\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|=g.$

Jeżeli
$$g < 1 \lim_{n \to \infty} a_n = 0.$$

Ćwiczenie. Udowodnić twierdzenie.

Wnioski z kryteriów zbieżności ciągów liczbowych do zera

Przykład 36 Pokazać, że dla $a>1, k\in\mathbb{R}$ ciągi $\frac{n^k}{a^n},\,\frac{a^n}{n!},\,\frac{n!}{n^n}$ mają granice równe zero.

Uwaga 37 Możemy napisać, że dla $a>1, k\in\mathbb{R}$ mamy $n^k<< a^n<< n!<< n^n$ rozumiejąc, że następny ciąg zmierza szybciej do nieskończoności niż poprzedni.

Przykład 38 Obliczyć granice:

$$\lim_{n \to \infty} \frac{6^{n+1} + 4^{n-7}}{(2^{n-3} + n^{20}) \cdot (3^{n-3} - 8)} \quad \lim_{n \to \infty} \sqrt[n]{4^{2n+5}n^7 - 10^{n-14}n^3}$$