Matrices - Parte 1

A lo largo de la asignatura se trabajará con conjuntos numéricos con los cuales se realizarán operaciones que satisfacen ciertas propiedades. Tales conjuntos deben tener estructura de campo y se denotan con \mathbb{K} . Para una mejor comprensión ver el archivo Teoría de campo subido al aula virtual. Los elementos del campo se dicen *escalares* y se denotan habitualmente con letras griegas: $\alpha, \beta, \gamma, \delta, \cdots$. En ésta asignatura se utilizará $\mathbb{K} = \mathbb{R}$ ó $\mathbb{K} = \mathbb{C}$.

Definición (Matriz)

Sea \mathbb{K} un campo y sean $m, n \in \mathbb{N}$. Una **matriz** A de orden $m \times n$ es un arreglo rectangular de $m \cdot n$ números $a_{ij} \in \mathbb{K}$, con $i = 1, \dots, m$ y $j = 1, \dots, n$, dispuestos en m filas y n columnas de la siguiente manera:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{pmatrix} fila i$$

$$columna j$$

y simbólicamente se escribe: $A_{m \times n} = (a_{ij}).$

A los números a_{ij} se los llama **elementos** de la matriz A. Esto es, a_{ij} representa el elemento que se encuentra en la fila i y en la columna j de la matriz A.

Observación

- Las matrices se denotan con letras mayúsculas, por ejemplo A, y se utilizan las correspondientes letras en minúsculas con un doble subíndice para sus elementos, en este caso a_{ij} , donde el primer indice, i, indica la fila y el segundo, j, la columna en la que se encuentra el elemento. Los elementos en el arreglo se encierran entre paréntesis.
- El conjunto de las matrices de orden $m \times n$ con elementos en \mathbb{K} se denota:

$$\mathbb{K}^{m \times n} = \{ A = (a_{ij}) / \forall i = 1, \dots, m, \forall j = 1, \dots, n \ a_{ij} \in \mathbb{K} \}$$

Así, si una matriz A tiene orden $m \times n$, se dice que $A \in \mathbb{K}^{m \times n}$.

En particular, el conjunto de las matrices de orden $m \times n$ con elementos reales se denota $\mathbb{R}^{m \times n}$. Si los elementos son números complejos, el conjunto se denota $\mathbb{C}^{m \times n}$.

Por otro lado, si $m=n=1, \mathbb{K}^{1\times 1}$ se considera equivalente al conjunto \mathbb{K} de los escalares y, en este caso, toda matriz $(a_{11}) \in \mathbb{K}^{1\times 1}$ se identifica con $a_{11} \in \mathbb{K}$.

Ejemplo

Los siguientes objetos son matrices de órdenes 3×2 , 2×2 y 4×1 , respectivamente:

$$A = \begin{pmatrix} -2 & 0 \\ 1 & 5 \\ 6 & -3 \end{pmatrix} \in \mathbb{R}^{3 \times 2}, \ B = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 2}, \ C = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \in \mathbb{R}^{4 \times 1}$$

Notación

Otra notación que se utiliza frecuentemente para una matriz de orden $m \times n$ es la siguiente:

$$A = \begin{pmatrix} \langle A \rangle_{11} & \langle A \rangle_{12} & \dots & \langle A \rangle_{1j} & \dots & \langle A \rangle_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ \langle A \rangle_{i1} & \langle A \rangle_{i2} & \dots & \langle A \rangle_{ij} & \dots & \langle A \rangle_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ \langle A \rangle_{m1} & \langle A \rangle_{m2} & \dots & \langle A \rangle_{mj} & \dots & \langle A \rangle_{mn} \end{pmatrix} \in \mathbb{K}^{m \times n}$$

Simbólicamente se escribe

$$A = \left(\langle A \rangle_{ij} \right) \in \mathbb{K}^{m \times n}$$

Ejemplo

Determina explícitamente la matriz $A \in \mathbb{R}^{2 \times 3}$ tal que $\langle A \rangle_{ij} = i + j$

$$\begin{split} \langle A \rangle_{11} &= 1+1=2, \ \, \langle A \rangle_{12} = 1+2=3, \ \, \langle A \rangle_{13} = 1+3=4 \\ \langle A \rangle_{21} &= 2+1=3, \ \, \langle A \rangle_{22} = 2+2=4, \ \, \langle A \rangle_{23} = 2+3=5 \end{split}$$
 Luego, $A = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} \in \mathbb{R}^{2\times 3}.$

Matrices particulares

A continuación se definen algunos tipos especiales de matrices que se emplearán a lo largo de la asignatura y que presentan ciertas particularidades en cuanto a la forma de la matriz y/o por los valores que tienen sus elementos:

Definición (Matriz fila)

Se llama **matriz** fila a toda matriz de orden $1 \times n$

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & \cdots & a_{1n} \end{array}\right) \in \mathbb{K}^{1 \times n}$$

Simbólicamente: $A = (a_{1j}) \in \mathbb{K}^{1 \times n}$

Dado que la matriz tiene una única fila, por simplicidad se escribe:

$$A = \left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_n \end{array} \right) \in \mathbb{K}^{1 \times n}$$

es decir, $A = (a_j) \in \mathbb{K}^{1 \times n}$ y se denomina "vector fila de n elementos".

Ejemplo

Las siguientes son matrices filas:

$$A = \begin{pmatrix} -1 & 0 & 2 & 7 \end{pmatrix} \in \mathbb{R}^{1 \times 4}, \ B = \begin{pmatrix} 1 & 3 & 5 & 7 & 9 \end{pmatrix} \in \mathbb{R}^{1 \times 5}$$

Definición (Matriz columna)

Se llama matriz columna a toda matriz de orden $m \times 1$

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} \in \mathbb{K}^{m \times 1}$$

Simbólicamente: $A = (a_{i1}) \in \mathbb{K}^{m \times 1}$

Dado que la matriz tiene una única columna, por simplicidad se escribe:

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} \in \mathbb{K}^{m \times 1}$$

es decir, $A = (a_i) \in \mathbb{K}^{m \times 1}$ y se denomina "vector columna de m elementos".

Ejemplo

Las siguientes son matrices columnas:

$$A = \begin{pmatrix} -2 \\ 0 \\ 5 \end{pmatrix} \in \mathbb{R}^{3 \times 1}, \ B = \begin{pmatrix} 1 \\ -1 \\ 3 \\ 6 \end{pmatrix} \in \mathbb{R}^{4 \times 1}.$$

Definición (Matriz nula)

Se llama matriz nula de orden $m \times n$ a la matriz que tiene sus $m \cdot n$ elementos iguales a 0 (cero) y se denota $\Theta_{m \times n}$ (ó simplemente Θ)

$$\Theta = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \in \mathbb{K}^{m \times n}$$

En símbolos

$$\Theta \in \mathbb{K}^{m \times n} \ tal \ que \ \forall i : 1 \leq i \leq m, \forall j : 1 \leq j \leq n, \ \langle \Theta \rangle_{ij} = 0$$

Ejemplo

Las siguentes matrices son nulas:

$$\Theta_{2\times3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \Theta_{3\times1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \ \Theta_{3\times3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Definición (Matriz cuadrada)

Se llama matriz cuadrada de orden n a toda matriz que tiene n filas y n columnas:

$$A = \begin{pmatrix} \langle A \rangle_{11} & \langle A \rangle_{12} & \cdots & \langle A \rangle_{1n} \\ \langle A \rangle_{21} & \langle A \rangle_{22} & \cdots & \langle A \rangle_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \langle A \rangle_{n1} & \langle A \rangle_{n2} & \cdots & \langle A \rangle_{nn} \end{pmatrix} \in \mathbb{K}^{n \times n}$$

Los elementos $\langle A \rangle_{11}$, $\langle A \rangle_{22}$, ..., $\langle A \rangle_{nn}$ (o sea: $\langle A \rangle_{ij}$, con i = j) forman la **diagonal principal** de A o simplemente la **diagonal** de A.

Se llama **traza** de una matriz cuadrada A a la suma de los elementos de su diagonal principal y se denota:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \langle A \rangle_{ii} = \langle A \rangle_{11} + \langle A \rangle_{22} + \dots + \langle A \rangle_{nn}$$

Se dice que el elemento $\langle A \rangle_{ij}$ está por debajo de la diagonal de A si i>j y que está por encima de la diagonal de A si i< j.

Ejemplo

Las siguientes matrices son cuadradas de órdenes 3, 2 y 4 respectivamente:

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 4 \\ 1 & 0 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 0 & -4 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & -5 & 1 & 0 \\ 1 & 4 & 0 & 3 \\ 0 & 0 & 0 & 4 \end{pmatrix},$$

con
$$tr(A) = 3$$
, $tr(B) = -2$, $tr(C) = 0$.

Definición (Matriz diagonal)

Se llama matriz diagonal a aquella matriz cuadrada de orden n que tiene los elementos fuera de la diagonal iquales a 0 (cero).

$$A = \begin{pmatrix} \langle A \rangle_{11} & 0 & \cdots & 0 \\ 0 & \langle A \rangle_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \langle A \rangle_{nn} \end{pmatrix} \in \mathbb{K}^{n \times n}$$

En símbolos

$$A \in \mathbb{K}^{n \times n}$$
 es **diagonal** $\Leftrightarrow \forall i, \forall j : i \neq j, \langle A \rangle_{ij} = 0$

Ejemplo

Las siguientes matrices son diagonales:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}, \Theta_{3\times3}$$

Definición (Matriz escalar)

Se llama **matriz escalar** a toda matriz diagonal cuyos elementos de la diagonal son iguales entre sí.

$$A = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix} \in \mathbb{K}^{n \times n}$$

En símbolos

$$A \in \mathbb{K}^{n \times n} \ es \ escalar \Leftrightarrow \forall i, \forall j : 1 \leq i, j \leq n, \quad \langle A \rangle_{ij} = \lambda \ \delta_{ij}, \ con \ \lambda \in \mathbb{K}$$

donde δ_{ij} , llamada **Delta de Kronecker**, se define como

$$\delta_{ij} = \begin{cases} 1 & si \ i = j \\ 0 & si \ i \neq j \end{cases}$$

Ejemplo

Las siguientes matrices son escalares:

$$\left(\begin{array}{ccc} -2 & 0 \\ 0 & -2 \end{array}\right), \ \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right), \ \left(\begin{array}{ccccc} \sqrt{5} & 0 & 0 & 0 \\ 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 \\ 0 & 0 & 0 & \sqrt{5} \end{array}\right), \ \Theta_{4\times4}$$

Definición (Matriz identidad)

Se llama matriz identidad de orden n a toda matriz escalar cuyos elementos de la diagonal son iguales a 1 (uno), se denota $\mathbb{I}_{n\times n}$ (o simplemente \mathbb{I}):

$$\mathbb{I} \doteq \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \in \mathbb{K}^{n \times n}$$

En símbolos

$$\mathbb{I} \in \mathbb{K}^{n \times n} : \forall i, \forall j, 1 \le i, j \le n \quad \langle \mathbb{I} \rangle_{ij} = \delta_{ij}$$

Ejemplo

Las siguientes son matrices identidad de órdenes 3, 2 y 4 respectivamente:

$$\mathbb{I}_{3\times3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \mathbb{I}_{2\times2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbb{I}_{4\times4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Definición (Matriz triangular superior)

Se llama matriz triangular superior a toda matriz cuadrada cuyos elementos situados por debajo de la diagonal son nulos.

$$A = \begin{pmatrix} \langle A \rangle_{11} & \langle A \rangle_{12} & \cdots & \langle A \rangle_{1n} \\ 0 & \langle A \rangle_{22} & \cdots & \langle A \rangle_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \langle A \rangle_{nn} \end{pmatrix} \in \mathbb{K}^{n \times n}$$

En símbolos

$$A \in \mathbb{K}^{n \times n}$$
 es triangular superior $\Leftrightarrow \forall i, \forall j : i > j, \ \langle A \rangle_{ij} = 0$

Ejemplo

Las siguientes matrices son del tipo triangular superior:

$$\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & -4 & 3 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 3 & -5 & 8 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix}, \mathbb{I}_{3\times 3}, \Theta_{2\times 2}$$

Definición (Matriz triangular Inferior)

Se llama matriz triangular inferior a toda matriz cuadrada cuyos elementos situados por encima de la diagonal son nulos.

$$A = \begin{pmatrix} \langle A \rangle_{11} & 0 & \cdots & 0 \\ \langle A \rangle_{21} & \langle A \rangle_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \langle A \rangle_{n1} & \langle A \rangle_{n2} & \cdots & \langle A \rangle_{nn} \end{pmatrix} \in \mathbb{K}^{n \times n}$$

En símbolos

$$A \in \mathbb{K}^{n \times n}$$
 es triangular inferior $\Leftrightarrow \forall i, \forall j : i < j, \ \langle A \rangle_{ij} = 0$

Ejemplo

Las siguientes matrices son del tipo triangular inferior:

$$\begin{pmatrix} 2 & 0 \\ 1 & -4 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & -2 & -3 \end{pmatrix}, \begin{pmatrix} 3 & 0 & 0 & 0 \\ 9 & -5 & 0 & 0 \\ 2 & 11 & 0 & 0 \\ 1 & -4 & 2 & 1 \end{pmatrix}, \mathbb{I}_{2\times 2}, \Theta_{4\times 4}.$$

En matemática cada vez que se define un nuevo objeto surgen las siguientes preguntas: ¿cuando dos de tales objetos son iguales? ¿de qué manera se puede operar con el fin de generar nuevos objetos? Estos interrogantes nos llevan a dar las siguientes definiciones.

Definición (Igualdad de matrices)

Sean $A, B \in \mathbb{K}^{m \times n}$. Se dice que:

$$A = B \Leftrightarrow \forall i : 1 \le i \le m, \ \forall j : 1 \le j \le n, \ \langle A \rangle_{ij} = \langle B \rangle_{ij}$$

Es decir, dos matrices del mismo orden son iguales si sus correspondientes elementos son iguales.

(o sea los elementos en la misma posición son iguales)

Observación

De la definición de igualdad de matrices surge que:

- Una igualdad de matrices en $\mathbb{K}^{m\times n}$ es equivalente a $m\cdot n$ igualdades de escalares en \mathbb{K}
- Dadas $A, B \in \mathbb{K}^{m \times n}$

$$A \neq B \Leftrightarrow \exists i, 1 \leq i \leq m; \ \exists j, 1 \leq j \leq n : \langle A \rangle_{ij} \neq \langle B \rangle_{ij}$$

 Dos matrices se pueden comparar sólo si tienen el mismo orden. Es decir, si no tienen los mismos órdenes, la igualdad no está definida.

Ejemplo

Determina si las siguientes matrices son iguales

1.
$$A = \begin{pmatrix} 2 & 0 & -1 \\ \ln e & 1 & \sqrt{8} \end{pmatrix}, B = \begin{pmatrix} \sqrt{4} & 0 & \cos \pi \\ 1 & 1 & 2\sqrt{2} \end{pmatrix} \in \mathbb{R}^{2\times 3}$$

Notar que como ambas matrices tienen el mismo orden, 2×3 , la igualdad entre ellas está definida, es decir, se pueden comparar. Resta ver que los correspondientes elementos son iguales.

Como se cumple que
$$\begin{cases} 2=\sqrt{4}\\ 0=0\\ -1=\cos\pi\\ \ln e=1\\ 1=1\\ \sqrt{8}=2\sqrt{2} \end{cases} \Rightarrow A=B \text{ (por la definición de igualdad de matrices)}.$$

2.
$$A = \begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 \\ 0 & 3 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

A pesar que las matrices tienen el mismo orden, $A \neq B$ pues $\langle A \rangle_{12} = 0 \neq 2 = \langle B \rangle_{12}$. Notar que las matrices tienen los mismos números pero los correspondientes elementos no son iguales.

3.
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 3 & 0 \end{pmatrix} \in \mathbb{R}^{2\times 3}, \ B = \begin{pmatrix} -1 & 2 \\ 0 & 3 \end{pmatrix} \in \mathbb{R}^{2\times 2}$$

Las matrices no tienen el mismo orden por lo tanto A y B no se pueden comparar.

$$\begin{aligned} \mathbf{Ejemplo} \\ \mathrm{Dadas} \ A &= \begin{pmatrix} -5 & 2 \\ x^3 & -1 \end{pmatrix}, \ B &= \begin{pmatrix} 2y+1 & 2 \\ 8 & -1 \end{pmatrix} \in \mathbb{K}^{2\times 2}. \ \mathrm{Determine} \ x,y \in \mathbb{K} : A = B \\ A &= B \Leftrightarrow \begin{pmatrix} -5 & 2 \\ x^3 & -1 \end{pmatrix} = \begin{pmatrix} 2y+1 & 2 \\ 8 & -1 \end{pmatrix} \Leftrightarrow \begin{cases} -5 &= 2y+1 \Leftrightarrow y = -3 \\ 2 &= 2 \\ x^3 &= 8 \Leftrightarrow x = \sqrt[3]{8} \\ -1 &= -1 \end{aligned}$$

- Si $\mathbb{K} = \mathbb{R}$ la solución es x = 2, y = -3
- Si $\mathbb{K} = \mathbb{C}$: $x = \sqrt[3]{8}$, x es la raiz cúbica del número complejo real puro 8 (parte imaginaria 0), entonces

$$x = \sqrt[3]{8} e^{i\left(\frac{2k\pi}{3}\right)}$$
, con $k = 0, 1, 2$

Asi para k=0,1,2 se tiene respectivamente $x_1=2,x_2=2e^{i\frac{2\pi}{3}},x_3=2e^{i\frac{4\pi}{3}}$. Entonces las soluciones son:

- $x_1 = 2$, y = -3
- $x_2 = 2e^{i\frac{2\pi}{3}}, \ y = -3$
- $x_3 = 2e^{i\frac{4\pi}{3}}, \ y = -3$

Operaciones con matrices

Definición (Suma de matrices)

Sean $A, B \in \mathbb{K}^{m \times n}$. La **suma** de A y B es la matriz $A + B \in \mathbb{K}^{m \times n}$:

$$\forall i: 1 \leq i \leq m, \ \forall j: 1 \leq j \leq n, \ \langle A+B \rangle_{ij} = \langle A \rangle_{ij} + \langle B \rangle_{ij}$$

Observación

Dos matrices se pueden sumar sólo si tienen el mismo orden (se dicen **sumables**) y la matriz suma se obtiene sumando los correspondientes elementos. Es decir, si los órdenes no son iguales la suma de matrices no está definida.

Ejemplo
Dadas
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 3 & -2 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 3}, \ B = \begin{pmatrix} 1 & -3 & -4 \\ 1 & 2 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 3}, C = \begin{pmatrix} 1 & -1 \\ 2 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$
Determine a given posible les metrioss $A + B + A + C$

lacktriangle Como A y B tienen el mismo orden la matriz suma A+B esta definida y se tiene que

$$A + B = \begin{pmatrix} 2+1 & -1+(-3) & 4+(-4) \\ 3+1 & -2+2 & 1+0 \end{pmatrix} = \begin{pmatrix} 3 & -4 & 0 \\ 4 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{2\times 3}$$

ullet Como A y C no tienen el mismo orden la matriz suma A+C no esta definida.

Propiedades (de la suma de matrices)

La suma de matrices satisface las siguientes propiedades:

- 1. $\forall A, B \in \mathbb{K}^{m \times n}, A + B = B + A$ (Conmutativa)
- 2. $\forall A, B, C \in \mathbb{K}^{m \times n}$, (A+B)+C=A+(B+C) (Asociativa)
- 3. $\exists \Theta \in \mathbb{K}^{m \times n} : \forall A \in \mathbb{K}^{m \times n}, \ A + \Theta = \Theta + A = A \ \text{(Existencia del Neutro)}$

 $\Theta_{m \times n}$ es el **elemento neutro** de la suma en $\mathbb{K}^{m \times n}$

4.
$$\forall A \in \mathbb{K}^{m \times n}, \ \exists A' \in \mathbb{K}^{m \times n} : A + A' = A' + A = \Theta$$
 (Existencia del Opuesto)
$$A' = -A \text{ es la matriz } \mathbf{opuesta} \text{ de } A$$

Demostración

1. Sean $A, B \in \mathbb{K}^{m \times n}$. Observemos en primer lugar que A + B, $B + A \in \mathbb{K}^{m \times n}$ con lo cual ambas matrices son comparables. Probemos que son iguales, es decir, debemos probar que:

$$\forall i: 1 \leq i \leq m, \forall j: 1 \leq j \leq n, \langle A+B \rangle_{ij} = \langle B+A \rangle_{ij}$$

Efectivamente:

$$\forall i: 1 \leq i \leq m, \forall j: 1 \leq j \leq n,$$

$$\langle A+B \rangle_{ij} = \langle A \rangle_{ij} + \langle B \rangle_{ij} \quad \text{por definición de suma de matrices}$$

$$= \langle B \rangle_{ij} + \langle A \rangle_{ij} \quad \text{por propiedad conmutativa de la suma en } \mathbb{K}$$

$$= \langle B+A \rangle_{ij} \quad \text{por definición de suma de matrices}$$

Por lo tanto, $\forall i : 1 \leq i \leq m, \ \forall j : 1 \leq j \leq n, \ \langle A + B \rangle_{ij} = \langle B + A \rangle_{ij}$

Luego, por definición de igualdad de matrices, se tiene que:

$$\forall A, B \in \mathbb{K}^{m \times n}, \ A + B = B + A$$

- 2. Queda para el alumno
- 3. Sabemos que existe $\Theta \in \mathbb{K}^{m \times n}$ matriz nula.

Queremos probar que $\forall A \in \mathbb{K}^{m \times n}, A + \Theta = \Theta + A = A$

Sea $A \in \mathbb{K}^{m \times n}$, entonces $A + \Theta$, $\Theta + A \in \mathbb{K}^{m \times n}$, por lo que las matrices son comparables.

Como:

$$A + \Theta = \Theta + A$$
 por propiedad conmutativa de la suma de matrices

Resta probar $A + \Theta = A$. Es decir, debemos probar que:

$$\forall i: 1 \leq i \leq m, \ \forall j: 1 \leq j \leq n, \ \langle A + \Theta \rangle_{ii} = \langle A \rangle_{ii}$$

 $\forall i: 1 \leq i \leq m, \ \forall j: 1 \leq j \leq n$

Por lo tanto $\forall i: 1 \leq i \leq m, \ \forall j: 1 \leq j \leq n, \ \langle A + \Theta \rangle_{ij} = \langle A \rangle_{ij}$

Entonces, por definición de igualdad de matrices, se tiene que: $A + \Theta = A$

Luego, hemos probado que:

$$\exists \Theta \in \mathbb{K}^{m \times n} : \forall A \in \mathbb{K}^{m \times n}, \ A + \Theta = \Theta + A = A$$

4. Queda para el alumno.

Definición (Producto de un escalar por una matriz)

Sean $\lambda \in \mathbb{K}$, $A \in \mathbb{K}^{m \times n}$. El **producto** de λ por A es la matriz $\lambda A \in \mathbb{K}^{m \times n}$:

$$\forall i: 1 \leq i \leq m , \ \forall j: 1 \leq j \leq n, \ \langle \lambda A \rangle_{ij} = \lambda \langle A \rangle_{ij}$$

Ejemplo
Sean
$$\lambda = 2i \in \mathbb{C}$$
, $A = \begin{pmatrix} 0 & i \\ 3i & 0 \\ -1 & 1+i \end{pmatrix} \in \mathbb{C}^{3\times 2}$ entonces

$$\lambda A = (2i) \begin{pmatrix} 0 & i \\ 3i & 0 \\ -1 & 1+i \end{pmatrix} = \begin{pmatrix} 2i \cdot 0 & 2i \cdot i \\ 2i \cdot 3i & 2i \cdot 0 \\ 2i \cdot (-1) & 2i \cdot (1+i) \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ -6 & 0 \\ -2i & -2+2i \end{pmatrix} \in \mathbb{C}^{3 \times 2}$$

Observación

De la definición de un escalar por una matriz se tienen las siguienetes consecuencias:

- 1. $\forall A \in \mathbb{K}^{m \times n}, 1A = A$
- 2. $\forall A \in \mathbb{K}^{m \times n}, \ (-1)A = -A$
- 3. $\forall A \in \mathbb{K}^{m \times n}, \ 0A = \Theta_{m \times n}$
- 4. $\forall \lambda \in \mathbb{K}, \ \lambda \Theta_{m \times n} = \Theta_{m \times n}$
- 5. Dados $\lambda \in \mathbb{K}$, $A \in \mathbb{K}^{m \times n}$

$$\lambda A = \Theta_{m \times n} \Rightarrow \lambda = 0 \lor A = \Theta_{m \times n}$$

De 3), 4) y 5) se sigue que:

Dados $\lambda \in \mathbb{K}$, $A \in \mathbb{K}^{m \times n}$

$$\lambda A = \Theta_{m \times n} \Leftrightarrow \lambda = 0 \lor A = \Theta_{m \times n}$$

Propiedades (del producto de un escalar por una matriz)

El producto de un escalar por una matriz satisface las siguientes propiedades:

1. $\forall \lambda \in \mathbb{K}, \forall A, B \in \mathbb{K}^{m \times n}, \ \lambda (A + B) = \lambda A + \lambda B$

(Distributiva del producto por escalar respecto de la suma en $\mathbb{K}^{m \times n}$)

2. $\forall \lambda, \mu \in \mathbb{K}, \forall A \in \mathbb{K}^{m \times n}, (\lambda + \mu) A = \lambda A + \mu A$

(Distributiva del producto por escalar respecto de la suma en \mathbb{K})

3. $\forall \lambda, \mu \in \mathbb{K}, \forall A \in \mathbb{K}^{m \times n}, (\lambda \mu) A = \lambda (\mu A) = \mu (\lambda A)$

(Asociativa Mixta)

Demostración

1. Sean $\lambda \in \mathbb{K}$, $A, B \in \mathbb{K}^{m \times n}$. Observemos en primer lugar que $\lambda (A + B)$, $\lambda A + \lambda B \in \mathbb{K}^{m \times n}$, con lo cual ambas matrices son comparables. Probemos que son iguales, es decir, debemos probar que:

$$\forall i: 1 \leq i \leq m, \ \forall j: 1 \leq j \leq n: \langle \lambda(A+B) \rangle_{ij} = \langle \lambda A + \lambda B \rangle_{ij}$$

Efectivamente

 $\forall i: 1 \le i \le m, \ \forall j: 1 \le j \le n,$

$$\begin{split} \langle \lambda \left(A + B \right) \rangle_{ij} &= \lambda \left\langle A + B \right\rangle_{ij} \quad \text{por definición de producto de escalar por matriz} \\ &= \lambda \left(\left\langle A \right\rangle_{ij} + \left\langle B \right\rangle_{ij} \right) \quad \text{por definición de suma de matrices} \\ &= \lambda \left\langle A \right\rangle_{ij} + \lambda \left\langle B \right\rangle_{ij} \quad \text{por propiedad distributiva en } \mathbb{K} \\ &= \left\langle \lambda A \right\rangle_{ij} + \left\langle \lambda B \right\rangle_{ij} \quad \text{por definición de producto de escalar por matriz} \\ &= \left\langle \lambda A + \lambda B \right\rangle_{ij} \quad \text{por definición de suma de matrices} \end{split}$$

Por lo tanto, $\forall i: 1 \leq i \leq m, \ \forall j: 1 \leq j \leq n, \ \langle \lambda \left(A+B\right) \rangle_{ij} = \langle \lambda A + \lambda B \rangle_{ij}$

Luego, por definición de igualdad de matrices, se tiene que:

$$\forall \lambda \in \mathbb{K}, \ \forall A, B \in \mathbb{K}^{m \times n}, \ \lambda (A + B) = \lambda A + \lambda B$$

- 2. Queda para el alumno
- 3. Queda para el alumno

Definición (Diferencia de matrices)

Sean $A, B \in \mathbb{K}^{m \times n}$. La **diferencia** de A y B (en ese orden) es la matriz $A - B \in \mathbb{K}^{m \times n}$:

$$A - B = A + (-B)$$

En términos de los elementos de $A, B \in \mathbb{K}^{m \times n}$:

$$\forall i: 1 \le i \le m, \ \forall j: 1 \le j \le n,$$

$$\begin{split} \langle A-B\rangle_{ij} &= \langle A\rangle_{ij} + \langle -B\rangle_{ij} \\ &= \langle A\rangle_{ij} + \left(-\langle B\rangle_{ij}\right) \quad \text{por definición de matriz opuesta} \\ &= \langle A\rangle_{ij} - \langle B\rangle_{ij} \end{split}$$

Observación

Dos matrices se pueden restar sólo si tienen el mismo orden y la matriz diferencia se obiene restando los correspondientes elementos. Es decir, si los órdenes no son iguales la diferencia de matrices no está definida.

Ejemplo Dadas
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 3 & -2 & 1 \end{pmatrix} \in \mathbb{R}^{2\times 3}, \ B = \begin{pmatrix} 1 & -3 & -4 \\ 1 & 2 & 0 \end{pmatrix} \in \mathbb{R}^{2\times 3}, \ C = \begin{pmatrix} 1 & -1 \\ 2 & 6 \end{pmatrix} \in \mathbb{R}^{2\times 2}.$$

Determina, si es posible, las matrices A - B y A - C.

lacktriangle Como A y B tienen el mismo orden, la matriz A-B está definida y se tiene que

$$A - B = \begin{pmatrix} 2 & -1 & 4 \\ 3 & -2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & -3 & -4 \\ 1 & 2 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 2 - 1 & -1 - (-3) & 4 - (-4) \\ 3 - 1 & -2 - 2 & 1 - 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 8 \\ 2 & -4 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

• Como A y C no tienen el mismo orden, la matriz A - C no esta definida.

Los siguientes teoremas se aceptan sin demostración:

Teorema

Sean $A, B \in \mathbb{K}^{m \times n}$. Entonces

1.
$$A = B \Leftrightarrow \forall C \in \mathbb{K}^{m \times n}, \ A + C = B + C$$

2.
$$A = B \Rightarrow \forall \lambda \in \mathbb{K}, \ \lambda A = \lambda B$$

3.
$$\forall \lambda \in \mathbb{K} - \{0\} : \lambda A = \lambda B \Rightarrow A = B$$

Teorema

Sean $\lambda, \mu \in \mathbb{K}$. Entonces

$$\lambda = \mu \Rightarrow \forall A \in \mathbb{K}^{m \times n}, \ \lambda A = \mu A$$