Vektorok koordinátamentesen

- 1. Legyenek **a** és **b** térvektorok! Mennyi a λ és μ skalárok értéke, ha 2μ **a** + λ **a** + $(\lambda 4)$ **b** = 2**b** és a) **a** \parallel **b** (nem párhuzamos), vagy b) **b** = 2**a**?
 - **hf.** Mennyi λ és μ , ha $-\mu \mathbf{a} + \lambda \mathbf{a} + (\lambda 3)\mathbf{b} = \mathbf{a} + \mathbf{b}$ és $\mathbf{a} \not \mid \mathbf{b}$?
- 2. Az ABCD téglalap AB oldala 5, az AD oldala 4 egység. Az $\mathbf{a} = \overrightarrow{AE}$ egységvektor az AB oldalon a B irányába mutat, a $\mathbf{b} = \overrightarrow{AF}$ egységvektor az AD oldalon a D irányába mutat. Legyen H az AD felezőpontja, K az AB szakaszon az A-tól 3, D az D szakaszon az D-tól 4 egységre van. Igazoljuk, hogy D és D0 merőleges egymásra!

- **gy.** Az $\mathbf{a} = \overrightarrow{OA}$, $\mathbf{b} = \overrightarrow{OB}$, $\mathbf{c} = \overrightarrow{OC}$ vektorok páronként merőlegesek egymásra és egységvektorok. Az ABC súlypontja S. Igazoljuk, hogy OS merőleges az ABC síkjára!
 - hf. Igazoljuk, hogy a rombusz átlói merőlegesek egymásra!
- 3. Legyen \mathbf{a} és \mathbf{b} két olyan egységvektor, amelyek merőlegesen egymásra! Mennyi legyen a λ skalár, hogy a $\lambda \mathbf{a} 4\mathbf{b}$ és a $2\mathbf{a} + \mathbf{b}$ vektorok merőlegesek legyenek egymásra?
 - gy. Igaz-e, hogy ha ab = 0, akkor a és b közül legalább az egyik nulla.
 - **hf.** Igaz-e, hogy
 - 1. ha $\mathbf{a} \perp \mathbf{b}$, akkor $(\lambda \mathbf{a} \mathbf{b}) \perp (\mathbf{a} + \lambda \mathbf{b})$
 - 2. ha ab = ac, és $a \neq 0$, akkor b = c
 - 3. ha ab = ac, akkor vagy $b c \parallel a$, vagy $b c \perp a$.

A vektoriális szorzás algebrai tulajdonságai:

$$(\lambda \mathbf{a} + \mu \mathbf{b}) \times \mathbf{c} = \lambda \mathbf{a} \times \mathbf{c} + \mu \mathbf{b} \times \mathbf{c}$$

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

- 4. Legyen az **a** és **b** vektorok által kifeszített paralelogramma területe $T = |\mathbf{a} \times \mathbf{b}| = 4$. Mennyi az $\mathbf{a} 3\mathbf{b}$ és $2\mathbf{a} \mathbf{b}$ vektorok által kifeszített paralelogramma területe?
- gy. Tudjuk, hogy ${\bf a}$ és ${\bf b}$ nem párhuzamosak egymással. Mennyi a λ skalár, hogy $\lambda {\bf a} + 2 {\bf b}$ és ${\bf a} {\bf b}$ párhuzamosak legyenek egymással?
- iMSc. a) Igazoljuk, hogy a $b a(ab)/a^2$ merőleges a-ra, feltéve, hogy ez utóbbi nem nulla.
- b) Igazoljuk, hogy $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$, akkor $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$.
- c) $|a + b| \le |a| + |b|$
- d) Ha $\mathbf{a}, \mathbf{b}, \mathbf{c}$ kezdőpontja közös, akkor $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} = 0$

1. MO. A fenti egyenletet átrendezve:

$$(2\mu + \lambda)\mathbf{a} + (\lambda - 6)\mathbf{b} = \mathbf{0}$$

Mivel a ∥ b, mindkét együtthatónak zérónak kell lennie, az egyértelműségi lemma miatt.

$$2\mu + \lambda = 0 \quad (1)$$

$$\lambda - 6 = 0 \quad (2)$$

Megoldva a (2)-t:

$$\lambda = 6$$

Behelyettesítve a (1)-be:

$$2\mu + 6 = 0 \implies 2\mu = -6 \implies \mu = -3$$

Ha $\mathbf{b} = 2\mathbf{a}$, akkor:

$$2\mu\mathbf{a} + \lambda\mathbf{a} + (\lambda - 4)(2\mathbf{a}) = 2(2\mathbf{a})$$

Egyszerűsítve:

$$(2\mu + \lambda + 2\lambda - 8)\mathbf{a} = 4\mathbf{a}$$
$$2\mu + 3\lambda - 8 = 4$$

Ekkor:

$$\mu = 6 - \frac{3}{2}\lambda \quad (3)$$

azaz $\lambda \in \mathbf{R}$ tetszőleges, és $\mu\text{--}\mathrm{t}$ a fenti képlet adja.

2. MO.:
$$\overrightarrow{AH} = 2\mathbf{b}$$
, $\overrightarrow{AK} = 3\mathbf{a}$, $\overrightarrow{AJ} = 4\mathbf{a}$, $\overrightarrow{AC} = 5\mathbf{a} + 4\mathbf{b}$. A vektorok:

$$\overrightarrow{HJ} = 4\mathbf{a} - 2\mathbf{b}, \quad \overrightarrow{KC} = 5\mathbf{a} - 3\mathbf{a} + 4\mathbf{b}$$

A skaláris szorzat, amelyben $|\mathbf{a}| = |\mathbf{b}| = 1$, $\mathbf{ab} = 0$

$$\overrightarrow{HJ} \cdot \overrightarrow{KC} = (4\mathbf{a} - 2\mathbf{b})(2\mathbf{a} + 4\mathbf{b}) = 8\mathbf{a}^2 + 16\mathbf{a}\mathbf{b} - 4\mathbf{a}\mathbf{b} - 8\mathbf{b}^2 = 8 - 8 = 0$$

ahol felhasználtuk, hogy $\mathbf{v}^2 = |\mathbf{v}|^2$. Ezért HJ és KC merőlegesek egymásra.

3. MO.: A merőlegesség feltétele:

$$(\lambda \mathbf{a} - 4\mathbf{b}) \cdot (2\mathbf{a} + \mathbf{b}) = 0$$

Kifejtve:

$$\lambda \mathbf{a} \cdot (2\mathbf{a}) + \lambda \mathbf{a} \cdot \mathbf{b} - 8\mathbf{b} \cdot \mathbf{a} - 4\mathbf{b} \cdot \mathbf{b} = 0$$

Mivel **a** és **b** merőlegesek:

$$\lambda \cdot 2 + 0 - 8 \cdot 0 - 4 \cdot 1 = 0$$

$$2\lambda - 4 = 0 \implies \lambda = 2$$

4. MO.: A paralelogramma területe a következőképpen számítható:

$$|\mathbf{u} \times \mathbf{v}| = |(\mathbf{a} - 3\mathbf{b}) \times (2\mathbf{a} - \mathbf{b})|$$

Kifejtve a vektoriális szorzatot:

$$= |\mathbf{a} \times (2\mathbf{a} - \mathbf{b}) - 3\mathbf{b} \times (2\mathbf{a} - \mathbf{b})|$$

$$= |\mathbf{a} \times 2\mathbf{a} - \mathbf{a} \times \mathbf{b} - 6\mathbf{b} \times \mathbf{a} + 3\mathbf{b} \times \mathbf{b}|$$

Mivel $\mathbf{a} \times \mathbf{a} = \mathbf{0}$ és $\mathbf{b} \times \mathbf{b} = \mathbf{0}$, ez leegyszerűsödik:

$$= |-\mathbf{a} \times \mathbf{b} - 6(-\mathbf{a} \times \mathbf{b})| = |7(\mathbf{a} \times \mathbf{b})| = 7T = 7 \cdot 4 = 28$$

Tehát a terület 28 egység.