Arithmetic with Free Algebras and Hereditarily Finite Sets: a Natural Bridge between Numeric and Symbolic Computations

Paul Tarau

University of North Texas

Friday 09/28/2012,13:30-14:20

Motivation

- we answer positively two questions that one might be curious about:
 - can we do arithmetic directly with some "symbolic" mathematical objects e.g. binary trees, balanced parenthesis languages, hereditarily finite sets?
 - is this alternative arithmetic efficient enough to be practical?
- to this end, we will use some isomorphisms of free algebras
 - free algebras are widely used in programming languages: they correspond to recursive data types like lists or trees
 - bijections from free algebras provide compact representations for non-free data types like sets, multisets, graphs
 - also, code representations for Turing-equivalent computational mechanisms (e.g. combinators)
- we believe in easily replicable research (by contrast: "cold fusion" :-))
- ◆ "literate programming": the code extracted from these slides runs!
- ⇒ a guided tour to an executable specification of an alternative way to perform and explain some of our most basic computations

A Freedom Quote

No one is more of a slave than he who thinks himself free without being so.

JOHANN WOLFGANG VON GOETHE, The Maxims and Reflections of Goethe

Outline

- Free algebras and data types
- 2 The Peano algebra Algu
- Successor and predecessor in the two-successor algebra AlgB
- 4 Binary Arithmetic in AlgB
- Successor and predecessor in the algebra of binary trees AlgT
- Arithmetic computations in AlgT
- Representing lists, sets, multisets
- 8 Arithmetic with Hereditarily Finite Sets
- Arithmetic with balanced parenthesis languages
- Computing with the Calkin-Wilf bijection
- Conclusion

Free algebras

Definition

Let σ be a signature consisting of an alphabet of constants (called generators) and an alphabet of function symbols (called constructors) with various arities. The free algebra A_{σ} of signature σ is defined inductively as the smallest set such that:

- **①** *if* c *is* a constant of σ then $c \in A_{\sigma}$
- ② if f is an n-argument function symbol of σ , then $\forall i, 0 \leq i < n, t_i \in A_{\sigma} \Rightarrow f(t_0, \dots, t_i, \dots, t_{n-1}) \in A_{\sigma}$.
 - alternatively, free algebras can be seen as initial objects in the category of algebraic structures
 - free algebras can be axiomatized in predicate logic by defining constructors, deconstructors and recognizers
 - conversely, the language of predicate logic itself is built from:
 - function constructors (generating the Herbrand Universe)
 - predicate constructors (generating the Herbrand Base)

Free algebras as data types

the Haskell declarations

```
data AlgU = U \mid S AlgU deriving (Eq,Read,Show) data AlgB = B \mid O AlgB \mid I AlgB deriving (Eq,Read,Show) data AlgT = T \mid C AlgT AlgT deriving (Eq,Read,Show)
```

correspond, respectively to

- the free algebra AlgU with a single generator U and unary constructor S
 (that can be seen as part of the language of Peano arithmetic, or the
 decidable (W)S1S system)
- the free algebra AlgB with single generator B and two unary constructors O and I (corresponding to the language of the decidable system (W)S2S as well as "bijective base-2" number notation)
- the free algebra AlgT with single generator T and one binary constructor C (essentially the same thing as the *free magma* generated by T).

Magmas: a "classic" set-theoretical view

Definition

A set M with a (total) binary operation * is called a magma.

Definition

A morphism between two magmas M and M' is a function $f: M \to M'$ such that f(x * y) = f(x) * f(y).

Definition

The set M(X) with the composition operation $(w, w') \rightarrow w * w'$ is called the free magma generated by X.

Morphisms of magmas

Proposition

Let M be a magma. Then every mapping $u: X \to Y$ can be extended in a unique way to a morphism of M(X) into Y, denoted M(u).

If $v: Y \to Z$ then the morphism $M(v) \circ M(u)$ extends $v \circ u: X \to Z$ and therefore $M(v) \circ M(u) = M(v \circ u)$.

Proposition

If $u: X \to Y$ is respectively injective, surjective, bijective then so is M(u).

It follows that

Proposition

If $X = \{x\}$ and $Y = \{y\}$ and $u : X \to Y$ is the bijection such that f(x) = y, then $M(u) : M(X) \to M(Y)$ is a bijective morphism (i.e. an isomorphism) of free magmas.

The AlgT datatype as a free magma

data
$$AlgT = T \mid C AlgT AlgT$$

We will identify the data type AlgT with the free magma generated by the set $\{T\}$ and denote its binary operation x*y as $C \times y$. It corresponds to the free algebra defined by the signature $\{T/0, C/2\}$.

Proposition

Let X be an algebra defined by a constant t and a binary operation c. Then there's a unique morphism $f: AlgT \to X$ that verifies

$$f(T) = t \tag{1}$$

$$f(C(x,y)) = c(f(x),f(y))$$
 (2)

Moreover, if X is a free algebra then f is an isomorphism.

Peano algebra

- it also occurs under a few alternate names:
 - the one successor free algebra
 - unary natural numbers
 - the language of the monoid {0}*
 - the language of the decidable systems WS1S and S1S
- it is defined by the signature $\{U/0, S/1\}$, where U is a constant (seen as zero) and S is the unary successor function symbol
- we denote it AlgU and identify it with its corresponding Haskell data type

$$data AlgU = U \mid S AlgU$$

The data type AlgU as a free algebra

Proposition

Let X be an algebra defined by a constant u and a unary operation s. Then there's a unique morphism $f: AlgU \to X$ that verifies

$$f(U) = u \tag{3}$$

$$f(S(x)) = s(f(x)) \tag{4}$$

Moreover, if X is a free algebra then f is an isomorphism.

Note that following the usual identification of data types and initial algebras, AlgU corresponds to the initial algebra "1 + " through the operation g = <U,S> seen as a bijection $g : 1 + \mathbb{N} \to \mathbb{N}$.

The two successor free algebra

- it also occurs under a few alternate names:
 - bijective base-2 natural numbers
 - the language of the monoid {0,1}*
 - the language of the decidable systems WS2S and S2S
- it is defined by the signature {B/0, 0/1, I/1} where
 - B is a constant (seen as denoting the empty sequence)
 - \bullet O, I are two unary successor function symbols
- we denote AlgB this algebra and identify it with its corresponding Haskell data type

The data type AlgB as a free algebra

Proposition

Let X be an algebra defined by a constant b and a two unary operations o, i. Then there's a unique morphism $f: AlgB \to X$ that verifies

$$f(B) = b (5)$$

$$f(O(x)) = o(f(x)) \tag{6}$$

$$f(I(x)) = i(f(x)) \tag{7}$$

Moreover, if X is a free algebra then f is an isomorphism.

Borrowing Arithmetic from the Peano Algebra

- we know how to do (unary) arithmetic in Peano algebra AlgU
- defining isomorphisms between AlgU, AlgB and AlgT will enable such arithmetic operations on AlgB and AlgT
- we need to define bijections that commute with
 - the successor operation
 - the predecessor operation
 - the predicate recognizing the zero element U
- one can think about these functions as bijective Gödel numberings connecting objects of AlgB and AlgT to natural numbers, seen as objects of AlgU
- one can also think about emulating constructor operations in one algebra with equivalent (possibly more complex) computations in another algebra

A Freedom Quote

Freedom's just another word for nothing left to lose.

KRIS KRISTOFFERSON. "Me and Bobby McGee"

 ⇒ no information will be lost by "commuting" between algebras - we will ensure that our morphisms are bijections

Successor and predecessor in AlgB

The intuition for designing these operations is their conventional arithmetic interpretation, as 0 for B, $\lambda x.2x + 1$ for 0 and $\lambda x.2x + 2$ for I.

$$sB'$$
 (O B) = B -- 1' -- sB' (O x) = I (sB' x) -- 3' -- sB' (I x) = O x -- 2' --

Correctness of our successor and predecessor emulation

Proposition

Let $\mathbb B$ be the set of terms of the initial algebra AlgB and $\mathbb B^+=\mathbb B-\{B\}$. Then $sB\colon \mathbb B\to \mathbb B^+$ is a bijection and $sB'\colon \mathbb B^+\to \mathbb B$ is its inverse.

Proof.

(Sketch). We proceed by structural induction. Clearly the proposition holds for the base case as sB' (sB B) = sB' (O B) = B and sB (sB' (O B)) = sB B = O B. The result follows from the inductive hypothesis by observing that exactly one rule matches each expression and an application of rule "- 2 -" is undone by "- 2' -" and an application of rule "- 3 -" is undone by rule "- 3' -" and viceversa.

The isomorphism between AlgU and AlgB

The functor u2b defined as

```
u2b :: AlgU \rightarrow AlgB
u2b U = B
u2b (S x) = sB (u2b x)
```

and its inverse

b2u :: AlgB
$$\rightarrow$$
 AlgU
b2u B = U
b2u x = S (b2u (sB' x))

define an isomorphism between the two algebras which allows us to see ${\tt AlgB}$ as a model for an axiomatization of arithmetic on $\mathbb N.$

We can thus generate the stream enumerating the terms of algB as follows:

```
binNats = iterate sB B
```

> take 8 binNats

[B, O B, I B, O (O B), I (O B), O (I B), I (I B), O (O (O B))]

A Freedom Quote

Freedom is something that dies unless it's used.

HUNTER S. THOMPSON, Ancient Gonzo Wisdom

 \Rightarrow we will use the free algebra AlgB to define binary arithmetic

Binary arithmetic in AlgB

Other arithmetic operations, can be defined in terms of \mathtt{sB} , $\mathtt{sB'}$ and structural recursion. For instance, the addition \mathtt{addB} operation looks as follows:

```
addB B y = y

addB x B = x

addB(O x) (O y) = I (addB x y)

addB(O x) (I y) = O (sB (addB x y))

addB(I x) (O y) = O (sB (addB x y))

addB(I x) (I y) = I (sB (addB x y))
```

- performance moves from O(n) in the Peano algebra to $O(\log(n))$
- effort is now proportional to the size of the binary representation!

Conversion between ordinary and binary tree naturals

```
data AlgT = T \mid C AlgT AlgT
type N = Integer
n2t :: N \rightarrow AlgT
n2t. 0 = T
n2t \times | x>0 = C (n2t (nC' \times)) (n2t (nC' \times)) where
  nC' \times x \times 0 = if odd \times then 0 else 1+(nC' (x 'div' 2))
  nC'' x | x>0 =
    if odd x then (x-1) 'div' 2 else nC'' (x 'div' 2)
t2n :: AlqT \rightarrow N
t2n T = 0
t2n (C \times y) = nC (t2n \times) (t2n y) where
  nC \times y = 2^*x*(2*y+1)
```

The intuitions behind the arithmetic operations on AlgT

The intuitions we have used for designing the successor (s) and predecessor operations (s') in AlgT and their helper functions d and d': their "conventional" arithmetic interpretations!

- $\lambda x.x + 1$ for s
- $\lambda x.x 1$ for s' assuming x > 0
- 0 for T
- $\lambda x.\lambda y.2^x(2y+1)$ for C
- $\lambda x.2x$ for d (assuming x > 0)
- $\lambda x.x/2$ (assuming x even and x > 0) for d'

(somewhat) related:

- hereditary base-k notation in the proof of Goodstein's theorem
- good old floating point + recursion on the representation of the exponent
- run-length compression of 0's in a binary string

Defining the Successor and Predecessor on AlgT

This time, the definitions of successor s and predecessor s', together with the helper functions d and d' are mutually recursive:

Correctness of the successor and predecessor definitions

Proposition

Let $\mathbb T$ be the set of terms of the initial algebra AlgT and $\mathbb T^+=\mathbb T-\{T\}$. Then $s\colon \mathbb T\to\mathbb T^+$ is a bijection and $s'\colon \mathbb T^+\to\mathbb T$ is its inverse.

To prove this we will use the structural induction principle on AlgT:

Proposition

Let P(x) be a predicate about the terms of AlgT. If P holds for the generator $T \in AlgT$ and from P(x) and P(y) one can conclude $P(C \times y)$, then P holds for all terms of AlgT.

The Proof

Proof.

By induction on the structure of the terms of AlgT. Observe that f is the inverse of f' if and only if $\forall u \in \mathbb{T}, \ \forall v \in \mathbb{T}^+, \ f \ u = v \Longleftrightarrow f' \ v = u$. We will show this for the base case and the inductive steps for both s and s' as well as d and d'.

Observe that if s and s' are inverses, then d and d' are also inverses. This reduces to: $d \ y = z \Longleftrightarrow d' \ z = y$, or equivalently, that $d \ (C \ a \ b) = C \ c \ d \Longleftrightarrow d' \ (C \ c \ d) = C \ a \ b$, which further reduces to $C \ (s \ a) \ b = C \ c \ d \Longleftrightarrow C \ (s' \ c) \ d = C \ a \ b$ and $s \ a = c \Longleftrightarrow s' \ c = a$, which holds based on the inductive hypothesis for s and s'.

Our main induction proof, by case analysis: rules k and k' are such that rule "- k -" is the unique match for function f if and only if rule "- k' -" is the unique match for function f'.

The Proof - continued

We will show that $s \ u = v \Longleftrightarrow s' \ v = u$, assuming it holds inductively forall a,b such that $v = C \ a \ b$. Note that case k = 1, 2, 3, 4 corresponds to the application of rules "- k-" and "- k'-" in the definitions of s, s' and d, d'.

- ② $s u = s (C T y) = d (s y) = v \iff s y = d' v$ s' v = C T y where $y = s' (d' v) \iff s y = d' v$, given that d and d' are inverses under the inductive hypothesis covering their calls to s and s'.
- $v = s \ u \Longleftrightarrow v = C \ T \ y$ where $y = d' \ u$ $u = s' \ v \Longleftrightarrow v = C \ T \ y$ where $u = d \ y$, which holds, given that
- **4** and d' are inverses under the inductive hypothesis covering their calls to s and s'.

The isomorphism between AlgU and AlgT

The functor u2b defined as

```
u2t :: AlgU \rightarrow AlgT
u2t U = T
u2t (S x) = s (u2t x)
```

and its inverse

```
t2u :: AlgT \rightarrow AlgU
t2u T = U
t2u x = S (t2u (s' x))
```

define an isomorphism which allows us to see AlgT as a model for an axiomatization of arithmetic on \mathbb{N} . The infinite stream treeNats of binary trees, corresponding to successive natural numbers is defined as:

```
treeNats = iterate s T
```

> take 5 treeNats

 $[\mathtt{T,\ C\ T\ T,\ C\ (C\ T\ T)\ T,\ C\ T\ (C\ T\ T),\ C\ (C\ (C\ T\ T)\ T)}$

Can we do arithmetic computations in AlgT?

- as we have emulated the successor operations we can do easily (slow) unary arithmetic
- defining a AlgB "view" over the free algebra AlgT enables fast arithmetic computations with binary trees
- complexity will be comparable to operations acting on conventional bitstring representations

projection functions (c' , $\,$ c") and a recognizer of non-empty trees c_:

$$c',c''::AlgT \rightarrow AlgT$$

$$C' (C x _) = x$$

 $C'' (C _ y) = y$

c_:: AlgT
$$\rightarrow$$
 Bool
c_ (C _ _) = True
c_ T = False

Emulating AlgB in AlgT

```
data AlgB = B | O AlgB | I AlgB
data AlgT = T \mid C AlgT AlgT
constructors (0, i), destructors (0', i') and recognizers (0_{-}, i_{-}):
o, o', i, i' :: AlgT \rightarrow AlgT
o, i :: AlgT \rightarrow Bool
0 = C T
o' (C T y) = y
\circ (C x ) = x == T
i = s \cdot o
i' = o' \cdot s'
i_{C} (C \times _{D}) = \times / = T
```

The isomorphism between AlgB and AlgT

```
b2t :: AlgB \rightarrow AlgT

b2t B = T

b2t (O x) = o (b2t x)

b2t (I x) = i (b2t x)

t2b :: AlgT \rightarrow AlgB

t2b T = B

t2b x | o_ x = O (t2b (o' x))

t2b x | i_ x = I (t2b (i' x))
```

Efficient arithmetic in AlgT: addition

We are now ready for the magic: arithmetic operations working directly on binary trees.

```
add T y = y

add x T = x

add x y | o_ x && o_ y = i (add (o' x) (o' y))

add x y | o_ x && i_ y = o (s (add (o' x) (i' y)))

add x y | i_ x && o_ y = o (s (add (i' x) (o' y)))

add x y | i x && i y = i (s (add (i' x) (i' y)))
```

Efficient arithmetic in AlgT: subtraction

```
sub x T = x

sub y x | o_y && o_x = s' (o (sub (o' y) (o' x)))

sub y x | o_y && i_x = s' (s' (o (sub (o' y) (i' x))))

sub y x | i_y && o_x = o (sub (i' y) (o' x))

sub y x | i_y && i_x = s' (o (sub (i' y) (i' x)))
```

Efficient arithmetic in AlgT: comparison

```
cmp T T = EQ cmp T _ = LT cmp _ T = GT cmp x y | o_ x && o_ y = cmp (o' x) (o' y) cmp x y | i_ x && i_ y = cmp (i' x) (i' y) cmp x y | o_ x && i_ y = strengthen (cmp (o' x) (i' y)) LT cmp x y | i_ x && o_ y = strengthen (cmp (i' x) (o' y)) GT strengthen EQ stronger = stronger strengthen rel _ = rel
```

Efficient arithmetic in AlgT: multiplication

we optimize a bit, using the arithmetic interpretation of our binary trees

```
multiply T = T

multiply T = T

multiply x y = C (add (c' x) (c' y)) (add a m) where

(x', y') = (c'' x, c'' y)

a = add x' y'

m = s' (o (multiply x' y'))
```

A Freedom Quote

Liberty, when it begins to take root, is a plant of rapid growth.

GEORGE WASHINGTON

 \Rightarrow a O(1) complexity power of 2 operation exp2 is simply:

$$exp2 x = C x T$$

this leads to a compact representation of towers of exponents of 2 (tetration):

$$2^{2^{2^{-2}}} \Rightarrow C(C(C(\dots(C T T))),T)$$

An emergent property: operations with towers of exponents

- our tree representation supports operations with gigantic, tower of exponent numbers
- with conventional bitstring representations, such numbers would overflow even if each atom in the known universe were used as bit ...

```
iterating exp2 7 times):
```

note: "it" represents in Haskell the result of the previous query

A Freedom Quote

Every general increase of freedom is accompanied by some degeneracy, attributable to the same causes as the freedom.

CHARLES HORTON COOLEY, Human Nature and the Social Order

- ullet this can indeed happen, the worse case is $2^{2^{2^{\dots 2^n}}}-1$
- it means that we can (sometime) fall back to the same thing as with the usual binary string computations
- good news from a result proven by Legendre on the number of occurrences of a prime p in n!:
 - the average number of iterations for successor and predecessor in AlgB for k between 0 and 2^n-1 is $1+\frac{2^n-1}{2^n}<2$
 - the analysis for AlgT is more convoluted but (empirically) the complexity
 of s and s' is close to a constant factor

Representing lists

we encode lists by by repeated application of constructors and deconstructors

```
to_list :: AlgT → [AlgT]
to list T = []
to list x = (c' x) : (to list (c' x))
from_list :: [AlgT] \rightarrow AlgT
from list [] = T
from list (x:xs) = C \times (from list xs)
> n2t 888
C (C T (C T T)) (C T (C T (C T (C T T)))))
> to list it
[C T (C T T), T, T, T, C T T, T]
> from list it
C (C T (C T T)) (C T (C T (C T (C T T)))))
> t2n it
888
```

Representing multisets

to encode multisets we go through a bijection between list and multisets

```
list2mset, mset2list :: [AlgT] \rightarrow [AlgT]
list2mset ns = tail (scanl add T ns)
mset2list ms = zipWith sub ms (T:ms)
to mset :: AlgT \rightarrow [AlgT]
to mset = list2mset . to list
from mset :: [AlgT] \rightarrow AlgT
from mset = from list . mset2list
> (map t2n . list2mset . map n2t) [2,0,1,2]
[2, 2, 3, 5]
> (map t2n . mset2list . map n2t) it
[2, 0, 1, 2]
```

Representing sets

```
list2set, set2list :: [AlgT] \rightarrow [AlgT]
list2set = (map s') . list2mset . (map s)
set2list = (map s') . mset2list . (map s)
to set :: AlgT \rightarrow [AlgT]
to set = list2set . to list
from_set :: [AlgT] \rightarrow AlgT
from set = from list . set2list
> (map t2n . list2set . map n2t) [2,0,1,2]
[2, 3, 5, 8]
> (map t2n . set2list . map n2t) it
[2, 0, 1, 2]
```

Hereditarily Finite Sets

```
data HFS = H [HFS] deriving (Eq, Read, Show)
```

Ackermann's encoding of Hereditarily Finite Sets as natural numbers:

$$f(x) = \text{if } x = \{\} \text{ then 0 else } \sum_{a \in x} 2^{f(a)}$$

same in Haskell - quite easy to invert

```
hfs2nat t = rank set2nat t

rank g (H ts) = g (map (rank g) ts)

set2nat ns = sum (map (2^) ns)
```

- not a free algebra anymore sets are constrained to have distinct elements and assumed to be canonically represented using an ordering relation between elements
- \bullet but Ackermann's mapping allows us to exploit the bijection with $\mathbb N$ and define operations that are total on canonically represented sets

A Freedom Quote

For you who no longer posses it, freedom is everything, for us who do, it is merely an illusion.

EMIL CIORAN, History & Utopia

- ullet we can derive arithmetic operations on Hereditarily Finite Sets through a series of transformations to the free algebra ${\tt AlgT}$
- the derivation steps proceed along the lines of Ackermann's bijection

The acyclic digraph representing a Hereditarily Finite Set

Figure: 2012 as a Hereditarily Finite Set through Ackermann's bijection

Defining Successor sH and Predecessor sH' on a multiway tree representation of Hereditarily Finite Sets

```
sH (H xs) = H (lift (H []) xs)

sH' (H (x:xs)) = H (lower x xs)

lift k (x:xs) | k == x = lift (sH k) xs

lift k xs = k:xs

lower (H []) xs = xs

lower k xs = lower l (l:xs) where l = sH' k
```

Emulating the two successor algebra AlgB

```
-- "empty" and its recognizer
eH = H
eH_x = x = H
-- constructors
oH (H xs) = sH (H (map sH xs))
iH = sH \cdot oH
-- destructors
oH' \times oH \times = H \pmod{sH' \setminus s} where H \vee s = sH' \times s
iH' x = oH' (sH' x)
-- recognizers
oH (H (x: )) = eH \times
iH_x = not (eH_x | oH_x)
```

 \Rightarrow (fast) arithmetic computations are similar to those on AlgB, AlgT \Rightarrow 000

A Catalan isomorphism: modeling AlgT with a balanced parenthesis language

```
data Par = L \mid R deriving (Eq. Show, Read)
-- deconstructs a list of balanced parentheses into (head, tail)
decons (L:ps) = (reverse hs, ts) where
  (hs, ts) = count\_pars 0 ps []
  count_pars 1 (R:ps) hs = (R:hs, L:ps)
  count_pars k (L:ps) hs = count_pars (k+1) ps (L:hs)
  count_pars k (R:ps) hs = count_pars (k-1) ps (R:hs)
-- constructs a list of balanced parentheses from (head, tail)
cons (xs, L:ys) = L:xs ++ ys
-- constructor + recognizer for empty
eP = [L,R]
eP \quad x = (x = eP)
```

Successor (sP) and Predecessor (sP')

-- predecessor

$$sP'$$
 $z \mid eP_x \&\& eP_y = eP$ where $(x,y) = decons z -- 1' -- sP'$ $z \mid eP_x = dP$ y where $(x,y) = decons z -- 3' -- sP'$ $z = cons (eP, sP' (dP' z)) -- 2' --$

$$dP z = cons (sP a, b) where (a, b) = decons z -- 4 --$$

$$dP'$$
 $z = cons (sP'$ a,b) where (a,b) = decons z $--$ 4' --

Enumerating Positive Rationals with the Calkin-Wilf tree

Figure: The Calkin-Wilf Tree

The Calkin-Wilf bijection: encoding paths as AlgB elements

Positive rationals in \mathbb{Q}^+ are represented as pairs of positive co-prime natural numbers. We first show the bijection using ordinary integers.

 $\mathbb{N} \to \mathbb{Q}^+$ using the path in the Calkin-Wilf tree starting with the root

```
n2q 0 = (1,1)

n2q x | odd x = (f0,f0+f1) where

(f0,f1) = n2q (div (x-1) 2)

n2q x | even x = (f0+f1,f1) where

(f0,f1) = n2q ((div x 2)-1)
```

 $\mathbb{Q}^+ o \mathbb{N}$ using the path in the Calkin-Wilf tree ending with the root

```
q2n (1,1) = 0
q2n (a,b) = f ordrel where
ordrel = compare a b
f GT = 2*(q2n (a-b,b))+2
f LT = 2*(q2n (a,b-a))+1
```

Rationals with binary trees in AlgT

both natural numbers and rationals are represented as binary trees in ${\tt AlgT}$

 $\mathbb{N} \to \mathbb{Q}^+$ using the path in the Calkin-Wilf tree starting with the root

```
t2q T = (o T, o T)
t2q n | o_ n = (f0, add f0 f1) where (f0, f1) \pm2q (o' n)
t2q n | i_ n = (add f0 f1, f1) where (f0, f1) \pm2q (i' n)
```

 $\mathbb{Q}^+ o \mathbb{N}$ using the path in the Calkin-Wilf tree ending with the root

```
q2t q | q == (o T,o T) = T
q2t (a,b) = f ordrel where
  ordrel = cmp a b
  f GT = i (q2t (sub a b,b))
  f LT = o (q2t (a,sub b a))
> (t2n . q2t . t2q . n2t) 1234567890
```

1234567890

Computing with Rationals

a few more steps are needed:

- extending the bijection to signed rationals
- implementing various operations
- the code, as a Scala package is at:

```
http://logic.cse.unt.edu/tarau/research/2012/
AlgT.scala
```

Conclusion

- it is possible to implement interesting (and efficient) arithmetic computations on top of free algebras corresponding to data types like binary trees
- isomorphisms between free algebras provide bridges connecting "numeric" and "symbolic" objects
- interesting properties emerge: ability to work with huge numbers represented as towers of exponents of 2
- such computations can be extended also to non-free data-types like hereditarily finite sets
- computations can be extended to rationals resulting in a practical arithmetic package

the (self-contained) Haskell code shown in these slides is at:
http://logic.cse.unt.edu/tarau/research/2012/slides_
SYNASC_freealg.hs

52 / 52