Preference Trees over Combinatorial Domains

Xudong Liu

Advisor: Dr. Miroslaw Truszczynski

Department of Computer Science College of Engineering University of Kentucky Lexington, KY, USA Sunday, 4/17/2016

Preferences Are Ubiquitous

Figure: Preferences of different forms

Describing Preferences

<mvan, 7m, gray, big, honda, med, med>

<sedan, 5, blue, med, vw, med, med>

Figure: How to express preferences?

- How will I rate cars?
 - For BodyType, I will assign 7 points to minivans, 5 to sedans, ...
 - For Color, I will assign 8 points to blue, 4 to gray, ...
- What are the desired properties I see in cars?
 - I prefer minivans to sedans, ...
 - If minivan, I prefer gray to blue; if sedan, I prefer blue to gray; ...

Describing Preferences

<mvan, 7m, gray, big, honda, med, med>

<sedan, 5, blue, med, vw, med, med>

Figure: How to express preferences?

- How will I rate cars? (Quantitative)
 - For BodyType, I will assign 7 points to minivans, 5 to sedans, ...
 - For Color, I will assign 8 points to blue, 4 to gray, ...
- What are the desired properties I see in cars? (Qualitative)
 - I prefer minivans to sedans, ...
 - If minivan, I prefer gray to blue; if sedan, I prefer blue to gray; ...

Combinatorial Domains

Combinatorial Domains

Let \mathcal{I} be a finite set of attributes $\{X_1,\ldots,X_p\}$, associated with a set of finite domains $\{Dom(X_1),\ldots,Dom(X_p)\}$ for each attribute X_i . A combinatorial domain $CD(\mathcal{I})$ is a set of objects described by combinations of values from $Dom(X_i)$:

$$CD(\mathcal{I}) = \prod_{X_i \in \mathcal{I}} Dom(X_i).$$

Combinatorial Domains: Example

Domain of cars over set \mathcal{I} of p binary attributes:

```
• BodyType: {mvan, sedan}.
```

3 Color: {blue, gray}.

į

$$CD(\mathcal{I}) = \underbrace{\{\langle \text{sedan, 5, blue, } \ldots \rangle, \langle \text{mvan, 7m, gray, } \ldots \rangle, \ldots\}}_{2^p \text{ objects, too many!}}.$$

Combinatorial Domains: Example

Domain of cars:

- **1 BodyType**: {mvan, sedan, sport, suv}.
- **2** Capacity: {2, 5, 7m}.
- Ocolor: {black, blue, gray, red, white}.
- 4 LuggageSize: {big, med, small}.
- Make: {bmw, ford, honda, vw}.
- Price: {low, med, high, vhigh}.
- **Safety**: {low, med, high}.

Single Agent

Figure : Dominance and Optimization

Multi-Agent

Figure : Social Choice and Welfare

Research Problems of Interest

- Preference representation formalisms to compactly model qualitative preferences over combinatorial domains.
- Preference elicitation and learning methods to cast preferences of agents as a theory in a preference formalism.
- Preference reasoning tasks:
 - Dominance and optimization
 - Manipulation: better off by misreporting preferences.

Preference Modeling

Q: How do we compactly represent qualitative preferences over combinatorial domains?

- Preference Trees (P-trees)^{1,13}
- Partial Lexicographic Preference Trees (PLP-trees)⁸
- Lexicographic Preference Trees (LP-trees)^{4,12}

¹Niall M Fraser. "Ordinal preference representations". In: <u>Theory and Decision</u> (1994)

²Xudong Liu and Miroslaw Truszczynski. "Preference Trees: A Language for Representing and Reasoning about Qualitative Preferences". In: Proceedings of the 8th Multidisciplinary Workshop on Advances in Preference Handling (MPREF). 2014

³Xudong Liu and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference Trees over Combinatorial Domains". In: <u>Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI)</u>. 2015

⁴Richard Booth et al. "Learning conditionally lexicographic preference relations". In: <u>ECAI</u>. 2010

⁵Xudong Liu and Miroslaw Truszczynski. "Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming Solvers". In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT). 2013

Preference Learning

Q: How do we learn predictive qualitative preference models over combinatorial domains?

- Partial Lexicographic Preference Trees (PLP-trees)^{6,7,8}
 - Active and passive learning
 - Compute a (possibly small) PLP-tree consistent with all the data
 - Compute a PLP-tree that agrees with the data as much as possible
- Empirical Learning of PLP-trees and PLP-forests⁹
- Preference Approximation¹⁰

 $^{^6}$ Michael Schmitt and Laura Martignon. "On the complexity of learning lexicographic strategies". In: <u>The Journal of Machine Learning Research</u> (2006)

 $^{^7}$ József Dombi, Csanád Imreh, and Nándor Vincze. "Learning lexicographic orders". In: <u>European Journal of Operational Research</u> (2007)

⁸Xudong Liu and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference Trees over Combinatorial Domains". In: <u>Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI)</u>. 2015

 $^{^9}$ Xudong Liu and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference Trees and Forests over Multi-Valued Attributes". In: Review by ECAI-16 Program Committee

¹⁰Xudong Liu and Miroslaw Truszczynski. "Approximating Conditional Preference Networks Using Lexicographic Preference Trees". In: Preparation

Preference Reasoning

Q: How do we reason about preferences over combinatorial domains?

- Preference Optimization 11,12,13,14:
 - Dominance testing: $o_1 \succeq_P o_2$?
 - Optimality testing: $o_1 \succeq_P o_2$ for all $o_2 \neq o_1$?
 - Optimality computing: what is the optimal object wrt P?
 - Preference aggregation: which candidate wins the election?
- Preference Misrepresentation^{15,16}:
 - Manipulation

 $^{^{11}}$ Jérôme Lang, Jérôme Mengin, and Lirong Xia. "Aggregating Conditionally Lexicographic Preferences on Multi-issue Domains". In: $\underline{\mathsf{CP}}.\ 2012$

¹²Xudong Liu and Miroslaw Truszczynski. "Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming Solvers". In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT). 2013

¹³Xudong Liu and Miroslaw Truszczynski. "Preference Trees: A Language for Representing and Reasoning about Qualitative Preferences". In: Proceedings of the 8th Multidisciplinary Workshop on Advances in Preference Handling (MPREF). 2014

 $^{^{14}\}mbox{Xudong Liu}$ and Miroslaw Truszczynski. "Reasoning with Preference Trees over Combinatorial Domains". In: Proceedings of the 4th International Conference on Algorithmic Decision Theory (ADT). 2015

¹⁵Felix Brandt, Vincent Conitzer, and Ulle Endriss. "Computational social choice". In: Multiagent systems (2012)

¹⁶Xudong Liu and Miroslaw Truszczynski. "Complexity of Manipulation in Elections Where Votes Are Lexicographic Preference Trees". In: Preparation

Preference Applications

Q: What fields can we apply preferences to?

- Role-playing Games:
 - Hedonic games¹⁷
- Automated Planning and Scheduling:
 - Trip planning¹⁸
- Oata-Driven Decision Making:
 - Predictive models¹⁹

 $^{^{17}}$ Matthew Spradling et al. "Roles and Teams Hedonic Game". In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT). 2013

¹⁸Xudong Liu et al. "On Personalizability and Extensibility of Multi-Modal Trip Planning". In: PARC Symposium. 2015

 $^{^{19}}$ Xudong Liu and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference Trees and Forests over Multi-Valued Attributes". In: Review by ECAI-16 Program Committee

Outline

- The languages of PLP-trees and LP-trees
- 2 Learning preference models in case of PLP-trees
- Reasoning with preferences:
 - Computing winners and "strong" candidates when votes are LP-trees
 - Application in trip planning
- Future research directions

Outline

- The languages of PLP-trees and LP-trees
- Learning preference models in case of PLP-trees
- Reasoning with preferences:
 - Computing winners and "strong" candidates when votes are LP-trees
 - Application in trip planning
- Future research directions

The Cars Domain

- BodyType(B): {mvan, sedan, sport, suv}.
- **2** Capacity(C): {2, 5, 7m}.
- **Olor**(O): {black, blue, gray, red, white}.
- LuggageSize(L): {big, med, small}.
- Make(M): {bmw, ford, honda, vw}.
- Price(P): {low, med, high, vhigh}.
- Safety(S): {low, med, high}.

Partial Lexicographic Preference Trees (PLP-Trees)

A *PLP-tree* over $CD(\mathcal{I})$ is a tree, where

- lacktriangle every non-leaf node t is labeled with an attribute Attr(t) in \mathcal{I} ,
- every non-leaf node t has |Dom(Attr(t))| outgoing edges labeled with a value of Attr(t), and
- every attribute appears at most once on every branch.

Figure: A PLP-tree over cars

Partial Lexicographic Preference Trees (PLP-Trees)

A *PLP-tree* over $CD(\mathcal{I})$ is a tree, where

- **①** every non-leaf node t is labeled with an attribute Attr(t) in \mathcal{I} ,
- every non-leaf node t has |Dom(Attr(t))| outgoing edges labeled with a value of Attr(t), and
- every attribute appears at most once on every branch.

Figure : A PLP-tree over cars

Total preorder

Partial Lexicographic Preference Trees (PLP-Trees)

<sedan, 5, blue, med, vw, med, med>

Figure : A PLP-tree over cars

Car2 ≻ Car1

Figure: Unconditional Importance & Unconditional Preference (UIUP)

Figure: Unconditional Importance & Conditional Preference (UICP)

Figure : Conditional Importance & Unconditional Preference (CIUP)

Figure: Conditional Importance & Conditional Preference (CICP)

Lexicographic Preference Trees (LP-Trees)

- **1** An LP-tree \mathcal{L} over $CD(\mathcal{I})$ is a PLP-tree, where
 - each attribute appears exactly once on every path from the root to a leaf.
 - Unlike PLP-trees, an LP-tree induces a total order.

Outline

- The languages of PLP-trees and LP-trees
- Learning preference models in case of PLP-trees
- Reasoning with preferences:
 - Computing winners and "strong" candidates when votes are LP-trees
 - Application in trip planning
- Future research directions

Consistent Learning (CONSLEARN)

Given an example set \mathcal{E} , decide whether there exists a PLP-tree T (of a particular type) such that T is consistent with \mathcal{E} .

```
(<sdn,5,blk,m,h,m,m>,<suv,7m,wht,b,f,m,m>)
(<spt,2,wht,s,bmw,h,h>,<spt,2,wht,s,bmw,vh,h>)
(<mvn,7m,gry,b,f,m,m>,<sdn,5,bl,m,f,m,m>)
```


Small Learning (SMALLLEARN)

Given an example set $\mathcal E$ and a positive integer I ($I \leq |\mathcal E|$), decide whether there exists a PLP-tree T (of a particular type) such that T is consistent with $\mathcal E$ and $|T| \leq I$.

```
(<sdn,5,blk,m,h,m,m>,<suv,7m,wht,b,f,m,m>)
(<spt,2,wht,s,bmw,h,h>,<spt,2,wht,s,bmw,vh,h>)
(<mvn,7m,gry,b,f,m,m>,<sdn,5,bl,m,f,m,m>)
```


Maixmal Learning (MAXLEARN)

Given an example set \mathcal{E} and a positive integer k ($k \leq m$), decide whether there exists a PLP-tree T (of a particular type) such that T satisfies at least k examples in \mathcal{E} .

```
(<sdn,5,blk,m,h,m,m>,<suv,7m,wht,b,f,m,m>)
(<spt,2,wht,s,bmw,h,h>,<spt,2,wht,s,bmw,vh,h>)
  (<mvn,7m,gry,b,f,m,m>,<sdn,5,bl,m,f,m,m>)
(<suv,7m,gry,b,vw,vh,m>,<suv,7m,gry,b,vw,h,m>)
```


Consistent Learning (CONSLEARN)

Given an example set \mathcal{E} , decide whether there exists a PLP-tree T (of a particular type) such that T is consistent with \mathcal{E} .

```
(<sdn,5,blk,m,h,m,m>,<suv,7m,wht,b,f,m,m>)
(<spt,2,wht,s,bmw,h,h>,<spt,2,wht,s,bmw,vh,h>)
  (<mvn,7m,gry,b,f,m,m>,<sdn,5,bl,m,f,m,m>)
(<suv,7m,gry,b,vw,vh,m>,<suv,7m,gry,b,vw,h,m>)
```


UICP tree

Computational Complexity

- **1** P, NP, coNP: We typically believe that $P \subset NP$ and $P \subset coNP$.
- ② Δ_2^P : P^{NP} , Σ_2^P : NP^{NP} , and Π_2^P : $coNP^{NP}$.
- 3 C-complete: hardest decision problems in class C.

Figure: Computational complexity diagram

Complexity Results on PLP-trees

	UP	CP
UI	Р	Р
CI	NPC ²⁰	Р

	UP	СР
UI	NPC	NPC
CI	NPC	NPC

(a) Conslearn

(b) SMALLLEARN

	UP	CP
UI	NPC ²¹	NPC
CI	NPC	NPC

(c) MaxLearn

Figure: Complexity results for learning PLP-trees

²⁰Booth et al., Learning Conditionally Lexicographic Preference Relations, 2010.

²¹Schmitt and Martignon, On the Complexity of Learning Lexicographic Strategies, 2006.

Experimentation

Figure: PLP-tree learning system

Datasets

Dataset	#Attributes	#Objects	#Examples
BreastCancerWisconsin	9	270	9,009
CarEvaluation	6	1,728	682,721
CreditApproval	10	520	66,079
GermanCredit	10	914	172,368
lonosphere	10	118	3,472
MammographicMass	5	62	792
Mushroom	10	184	8,448
Nursery	8	1,266	548,064
SPECTHeart	10	115	3,196
TicTacToe	9	958	207,832
Vehicle	10	455	76,713
Wine	10	177	10,322

Figure : Preference Learning Library²²

²² http://www.cs.uky.edu/~liu/preflearnlib.php

PLP-Trees To Learn

Figure : Unconditional Importance & Unconditional Preference (UIUP)

PLP-Trees To Learn

Figure : UICP with at most 1 parent (UICP-1)

PLP-Trees To Learn

Figure: CIUP with 1 split at the root (CIUP-1)

PLP-Trees To Learn

Figure: Simple CICP (SCICP)

Experimental Results: CarEvaluation²³

#attributes:6, #objects:1728, #examples:682721

Figure : Learning curves solving MAXLEARN

²³http://www.cs.uky.edu/~liu/preflearnlib.php

Experimental Results: Wine²⁴

#attributes:10, #objects:177, #examples:10322

Figure: Learning curves solving MAXLEARN

²⁴http://www.cs.uky.edu/~liu/preflearnlib.php

Outline

- The languages of PLP-trees and LP-trees
- Learning preference models in case of PLP-trees
- 3 Reasoning with preferences:
 - Computing winners and "strong" candidates when votes are LP-trees
 - Application in trip planning
- Future research directions

Positional Scoring Rules

- k-approval: $(1, \ldots, 1, 0, \ldots, 0)$ with k being the number of 1's.
- (k, l)-approval: $(c, \ldots, c, d, \ldots, d, 0, \ldots, 0)$, where c and d are constants (c > d), and the numbers of c's and d's equal to k and l.
- b-Borda: $(b, b-1, \ldots, b-m+1)$, where b is a constant and m is the number of candidates.

The Evaluation and Winner Problems

The Evaluation Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP-trees. Given a \mathcal{C} -profile P of n LP-trees over p attributes and a positive integer R, the *evaluation* problem is to decide whether there exists an alternative $o \in \mathcal{X}$ such that $s_w(o, P) \geq R$.

The Winner Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP-trees. Given a \mathcal{C} -profile P of n LP-trees over p attributes, the winner problem is to compute an alternative $o \in \mathcal{X}$ with the maximum score $s_w(o, P)$.

Complexity of the Evaluation Problem: k-Approval

	UP	CP
UI	Р	Р
CI	Р	Р

	UP	CP
UI	NPC	NPC
CI	NPC	NPC

(a)
$$k = 2^{p-1} \pm f(p)$$
, $f(p)$ is a poly

(b)
$$k = 2^{p-c}$$
, $c > 1$ is a const

Figure : k-Approval

Complexity of the Evaluation Problem: (k, l)-Approval

	UP	CP
UI	Р	Р
CI	Р	Р

(a)
$$k = l = 2^{p-1}$$

	UP	CP
UI	NPC	NPC
CI	NPC	NPC

(b)
$$k = l = 2^{p-c}$$
, $c > 1$ is a const

Figure : (k, l)-Approval

Complexity of the Evaluation Problem: b-Borda

	UP	CP
UI	Р	NPC
CI	NPC	NPC

(a)
$$b = 2^p - 1$$

	UP	СР
UI	NPC	NPC
CI	NPC	NPC

(b)
$$b = 2^{p-c} - 1$$
, $c \ge 1$ is a const

Figure : b-Borda

Modeling the Problems in ASP

Figure: The winner problem

• Solvers: clingo²⁵, clingcon²⁶

²⁵M. Gebser et al. "Potassco: The Potsdam Answer Set Solving Collection". In: Al Communications (2011)

²⁶Max Ostrowski and Torsten Schaub. "ASP modulo CSP: The clingcon system". In: TPLP (2012)

Modeling the Problems in W-MAXSAT

Figure: The winner problem

• Solver: toulbar²⁷

 $^{^{27}\}mbox{M}$ Sanchez et al. "Max-CSP competition 2008: toulbar2 solver description" . In: the Third International CSP Solver Competition (2008)

Varying p and n: 2^{p-2} -approval

Figure : Solving the winner problem

Varying p and n: $(2^{p-2}, 2^{p-2})$ -approval ²⁸

Figure: Solving the winner problem

²⁸ scoring vector: $(2, \ldots, 2, 1, \ldots, 1, 0, \ldots, 0)$ with the numbers of 2's and 1's equal to 2^{p-2}

Varying p and n: Borda

Figure : Solving the winner problem

Outline

- The languages of PLP-trees and LP-trees
- Learning preference models in case of PLP-trees
- Reasoning with preferences:
 - Computing winners and "strong" candidates when votes are LP-trees
 - Application in trip planning
- Future research directions

Personalization in Trip Planning

- Important to incorporate user constraints and preferences into trip planning systems.
- Ocliaboration with experts (in AI, planning, optimization, multi-agent systems) at PARC.
- Developed a hipergraph-based trip planner that accommodates constraints specified as *linear temporal logic* and preferences expressed as *preferential cost function* to compute optimal routes using A*29.
- Available later for trip planning in the Bay Area, LA, and Denver.

²⁹Xudong Liu et al. "On Personalizability and Extensibility of Multi-Modal Trip Planning". In: PARC Symposium. 2015

Personalization in Trip Planning

- From SJC, to Pier 39, Monday, 9am.
- 2 Constraints: never drive a car, and bike for 1 to 2 hours.
- **③** Preferences: bike = public (0.25) > wait(2) > walk(3), and 30\$/hr.

Outline

- The languages of PLP-trees and LP-trees
- Learning preference models in case of PLP-trees
- Reasoning with preferences:
 - Computing winners and "strong" candidates when votes are LP-trees
 - Application in trip planning
- Future research directions

Data-Driven Preference Engineering

Data-Driven Preference Learning:

- Recommender Systems³⁰:
 - Collaborative
 - Content-based
 - Hybrid
- Machine Learning (fitting function):
 - Supervised learning (e.g., decision trees, random forests)
 - Label ranking³¹
- Model-based Learning (learning interpretable decision models):
 - Preference Elicitation (Human-in-the-Loop)
 - Conditional Preference Networks, Preference Trees
 - Stochastic Models (e.g., Choquet integral³², TOPSIS-like models³³)

 $^{^{30}}$ Gediminas Adomavicius and Alexander Tuzhilin. "Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions". In: Knowledge and Data Engineering, IEEE Transactions on (2005)

³¹Eyke Hüllermeier et al. "Label ranking by learning pairwise preferences". In: <u>Artificial Intelligence</u> (2008)

 $^{^{32}}$ Ali Fallah Tehrani, Weiwei Cheng, and Eyke Hüllermeier. "Choquistic Regression: Generalizing Logistic Regression using the Choquet Integral." In: $\underline{\text{EUSFLAT}}$. 2011

³³Manish Agarwal, Ali Fallah Tehrani, and Eyke Hüllermeier. "Preference-based Learning of Ideal Solutions in TOPSIS-like Decision Models". In: <u>Journal of Multi-Criteria Decision Analysis</u> (2014)

Data-Driven Preference Engineering

Preference Reasoning and Applications:

- Social Choice and Welfare^{34,35}:
 - Voting
 - Fair division
 - Strategyproof Social Choice
- Automated Planning and Scheduling^{36,37,38}:
 - Travel scheduling
 - Manufacturing
 - Traffic control

³⁴Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. <u>Handbook of Social Choice and Welfare</u>. Vol. 1 & 2. 2010

³⁵Felix Brandt, Vincent Conitzer, and Ulle Endriss. "Computational social choice". In: Multiagent systems (2012)

 $^{^{36}\}mbox{Tran}$ Cao Son and Enrico Pontelli. "Planning with preferences using logic programming". In: Theory and Practice of Logic Programming (2006)

 $^{^{37}}$ Meghyn Bienvenu, Christian Fritz, and Sheila A McIlraith. "Specifying and computing preferred plans". In: Artificial Intelligence (2011)

³⁸Hannah Bast et al. "Route planning in transportation networks". In: arXiv preprint (2015)

Computational and Data-Driven Research on Preferences

- Submit proposals to NSF (esp. CISE/IIS), DUE, DARPA, ARPA-E, among other possibilities.
- 2 Data: binary vs. graded, absolute vs. relative, explicit vs. implicit, and single vs. multiple users.
 - Construct datasets using data mining and filtering techiques.
- Methods/Models: recommender systems, supervised learning, conditional preference networks, and preference trees.
 - Familiarize with related literature, and design new preference representations.
 - Collaboration within CS Department and with the Department of Mathematics & Statistics.

Computational and Data-Driven Research on Preferences

- Behavioral Research:
 - Design and implement experiments involving human participants through TCNJ IRB.
 - Collaboration with the School of Humanities and Social Sciences.
- Preference Reasoning and Applications:
 - Prove computational complexities.
 - Design and implement decision support systems.
 - Design and implement approximation algorithms.

Publications

- Xudong Liu. "Modeling, Learning and Reasoning with Qualitative Preferences". Algorithmic Decision Theory, 2015.
- 2 Xudong Liu and Miroslaw Truszczynski. "Reasoning with Preference Trees over Combinatorial Domains". <u>Algorithmic Decision Theory</u>, 2015.
- Xudong Liu and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference Trees over Combinatorial Domains". <u>AAAI</u> Conference on Artificial Intelligence, 2015.
- Yudong Liu and Miroslaw Truszczynski. "Preference Trees: A Language for Representing and Reasoning about Qualitative Preferences". <u>Multidisciplinary Workshop on Advances in Preference Handling</u>, 2014.

Publications

- Matthew Spradling, Judy Goldsmith, Xudong Liu, Chandrima Dadi, and Zhiyu Li. "Roles and Teams Hedonic Game". <u>Algorithmic</u> Decision Theory, 2013.
- Xudong Liu and Miroslaw Truszczynski. "Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming Solvers". Algorithmic Decision Theory, 2013.
- Xudong Liu. "Aggregating Lexicographic Preference Trees Using Answer Set Programming: Extended Abstract". <u>International Joint</u> Conference on Artificial Intelligence Doctoral Consortium, 2013.
- 3 Xudong Liu and Miroslaw Truszczynski. "Learning Preference Trees and Forests". (In Preparation).

Publications

- Yudong Liu and Miroslaw Truszczynski. "Approximating Conditional Preference Networks Using Lexicographic Preference Trees". (In Preparation).
- Xudong Liu and Miroslaw Truszczynski. "Complexity of Manipulation in Elections Where Votes Are Lexicographic Preference Trees". (In Preparation).
- Xudong Liu and Miroslaw Truszczynski. "Reasoning About Lexicographic Preferences Over Combinatorial Domains". (In Preparation).
- Xudong Liu and Christian Fritz. "On Personalizability and Extensibility of Multi-Modal Trip Planning". (In Preparation).

Related Work

- Quantitative:
 - Utility/Cost Functions³⁹
 - Possibilistic Logic⁴⁰
 - Fuzzy Preference Relations⁴¹
 - Penalty Logic⁴²
- Qualitative:
 - Answer-Set Optimization Theories⁴³
 - Ceteris Paribus Networks (e.g., CP-nets⁴⁴, TCP-nets⁴⁵, Cl-nets⁴⁶)
 - Conditional Preference Theories⁴⁷

³⁹Souhila Kaci. Working with Preferences: Less Is More: Less Is More. Springer Science & Business Media, 2011

⁴⁰Didier Dubois, Jérôme Lang, and Henri Prade. "A Brief Overview of Possibilistic Logic". In: ECSQARU. 1991

⁴¹SA Orlovsky. "Decision-making with a fuzzy preference relation". In: Fuzzy sets and systems (1978)

⁴²Gadi Pinkas. Propositional non-monotonic reasoning and inconsistency in symmetric neural networks. 1991

⁴³Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. "Answer Set Optimization". In: IJCAI. 2003

⁴⁴C. Boutilier et al. "CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements". In: Journal of Artificial Intelligence Research (2004)

⁴⁵Ronen I. Brafman and Carmel Domshlak. "Introducing Variable Importance Tradeoffs into CP-Nets". In: UAI. 2002

⁴⁶Sylvain Bouveret, Ulle Endriss, and Jérôme Lang, "Conditional importance networks: A graphical language for representing ordinal, monotonic preferences over sets of goods". In: (2009)

⁴⁷Nic Wilson. "Extending CP-Nets with Stronger Conditional Preference Statements". In: AAAI-04. 2004

Questions?

Thank you!