

BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 April 2000 (27.04.2000)

PCT

(10) International Publication Number
WO 00/23573 A3

(51) International Patent Classification⁷: **C12N 5/10**,
15/62, 15/85, A61K 48/00, A61P 35/00 // C07K 16/28,
14/705, 16/00

DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,
UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US99/24484

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:
60/105,014 20 October 1998 (20.10.1998) US

Published:
— with international search report

(71) Applicant: CITY OF HOPE [US/US]; 1500 East Duarte
Road, Duarte, CA 91010-0269 (US).

(88) Date of publication of the international search report:
8 September 2000

(72) Inventors: RAUBITSCHEK, Andrew; 1691 El Molino,
San Marino, CA 91108 (US). JENSEN, Michael, C.; 2305
Woodlyn Road, Pasadena, CA 91104 (US). WU, Anna,
M.; 14919 Sutton Street, Sherman Oaks, CA 91403 (US).

(48) Date of publication of this corrected version:
19 July 2001

(74) Agents: KERR, Don, M. et al.; Rothwell, Figg, Ernst
& Kurz, Suite 701 East, 555 13th Street N.W., Columbia
Square, Washington, DC 20004 (US).

(15) Information about Correction:
see PCT Gazette No. 29/2001 of 19 July 2001, Section II

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A3

(54) Title: CD20-SPECIFIC REDIRECTED T CELLS AND THEIR USE IN CELLULAR IMMUNOTHERAPY OF CD20⁺ MA-LIGNANCIES

(57) Abstract: Genetically engineered, CD20-specific redirected T cells expressing a cell surface protein having an extracellular domain comprising a receptor which is specific for CD20, an intracellular signaling domain, and a transmembrane domain. Use of such cells for cellular immunotherapy of CD20⁺ malignancies and for abrogating any untoward B cell function. In one embodiment, the cell surface protein is a single chain FvFc ζ receptor where Fv designates the V_H and V_L chains of a single chain monoclonal antibody to CD20 linked by peptide, Fc represents a hinge-C_H2-C_H3 region of a human IgG₁, and ζ represents the intracellular signaling domain of the zeta chain of human CD3. A method of making a redirected T cell expressing a chimeric T cell receptor by

WO 00/23573

CD20-SPECIFIC REDIRECTED T CELLS AND THEIR USE IN
CELLULAR IMMUNOTHERAPY OF CD20⁺ MALIGNANCIES

Statement Regarding Federally
Sponsored Research

5 This invention was made during research funded in part by United States National Cancer Institute Grant No. 30206. The U.S. Government may have certain rights in the invention,

Background of the Invention

10 Technical Field

This invention relates to the field of genetically engineered, redirected T cells and to the field of cellular immunotherapy of malignancies such as Non-Hodgkin's lymphoma and lymphocytic leukemia.

15 Description of Related Art

Over 30,000 new cases of Non-Hodgkin's lymphoma are diagnosed each year in the United States alone. (Shipp et al., *Cancer: Principles and Practice of Oncology*, Lippincott-Raven Publishers, Philadelphia, 1997, p2165). While current therapies have produced significant complete response rates, a large percentage of patients remain at significant risk for disease relapse (Glass et al., *Cancer* 80:2311, 1997). Immune-based strategies for targeting minimal residual disease are under development and may provide additional modalities for consolidating standard chemotherapy and

lymphoma with adoptive T cell therapy is predicated on the assumptions that tumor-reactive T cells can be isolated from individuals with lymphoma and expanded *in vitro*, and that infusion of the expanded effector population into the patient will mediate an antitumor effect without significant toxicity. Adoptively transferred donor-derived Epstein-Barr virus (EBV)-specific T cells can eliminate transformed B cells as demonstrated in the setting of post-transplant EBV-associated lymphoproliferative disease (Heslop et al., *Immunol. Rev.* 157:217, 1997). The clinical application of cellular immunotherapy for lymphoma using autologous T cells is currently limited by the paucity of molecularly-defined lymphoma target antigens for T cell recognition and the challenges of reliably isolating and expanding tumor-antigen specific T cell responses from cancer patients.

In order to overcome these obstacles, we and others are evaluating chimeric antigen receptor constructs consisting of a monoclonal antibody single chain Fv (scFv) linked to the intracellular signaling domain of CD3 zeta or Fc γ RIII for the purpose of redirecting T cell specificity. This strategy allows for the targeting of tumor cells based on the binding of the scFv portion of the receptor to monoclonal antibody-defined cell-surface epitopes. The capacity of these receptors when expressed in T cells to trigger cytokine production and cytolysis *in vitro* is now well established in both murine and human T cells. See Gross et al., *FASEB J.* 6:3370, 1992; Eshhar et al., *PNAS USA*, 90:720, 1993; Stancovski et al., *J. Immunol.*, 151:6577, 1993; Moritz et al., *PNAS USA* 91:4318, 1994; Hwu et al., *Cancer Res.*, 55:3369, 1995; Weitjens et al., *J. Immunol.* 157:836, 1996. Animal model systems

demonstrate the capacity of murine T cell transfectants to eradicate tumor *in vivo*, suggesting that these gene-modified cells retain appropriate homing and recycling mechanisms (Hekele et al., *Int. J. Cancer* 68:232, 5 1996). This system is not dependent on pre-existing antitumor immunity since the generation of tumor-reactive T cells for therapy can be accomplished by the genetic modification of polyclonal T cells present in peripheral blood. Moreover, target epitope recognition 10 by scFv is not HLA-restricted, thereby permitting the use of receptor constructs in populations of lymphoma patients irrespective of HLA differences.

A critical aspect of this chimeric receptor strategy is the selection of target epitopes that are 15 specifically or selectively expressed on tumor, are present on all tumor cells, and are membrane epitopes not prone to shed or modulate from the cell surface. Nearly 80% of Non-Hodgkin's lymphoma are B cell in origin and are defined in part by the cell surface 20 expression of the CD20 molecule. This 33-37 KD protein is uniformly expressed on normal B cells and malignant B cells at a density greater than 12,000 molecules per cell (Vervoordeldonk et al., *Cancer* 73:1006, 1994). CD20 does not modulate or shed from the cell surface 25 and has structural features consistent with that of an ion channel (Press et al., *Blood* 83:1390, 1994; Bubien et al., *J. Cell Biol.* 121:1121, 1993). The United States Food and Drug Administration (FDA) has approved a chimeric CD20-specific monoclonal antibody 30 (rituximab) for lymphoma therapy. Initial clinical experience with CD20-targeted immunotherapy suggests that malignant B cells may have a limited capacity to down regulate CD20 expression. These attributes make CD20 an attractive target for genetically engineered, 35 redirected T cells.

CD8⁺ cytolytic T cells (CTL) are immunologic effector cells that have the capacity to specifically recognize and directly lyse target cells (Henckart, *Semin. Immunol.* 9:85, 1997). Re-infusion of ex vivo expanded tumor-specific CD8⁺ CTL clones can mediate tumor eradication as demonstrated in animal model systems (Greenberg, *Adv. Immunol.* 49:281, 1991). A growing number of genes encoding proteins expressed by human tumors that elicit T cell responses have been identified by expression cloning technologies.

(Robbins et al., *Current Opin. Immunol.* 8:628, 1996; De Plaen et al., *Methods* 12:125, 1997). The feasibility of isolating T cells from cancer patients with specificity for these molecularly defined tumor antigens is currently being evaluated but remains a significant challenge to the clinical application of adoptive T cell therapy for malignant disease (Yee et al., *J. Immunol.* 157:4079, 1996).

Endowing T cells with tumor specificity by gene transfer of cDNA constructs encoding engineered antigen receptors is an alternate strategy for generating tumor-reactive CTL for therapy. (Weiss et al., *Semin. Immunol.* 3:313, 1991; Gross et al., *supra*; Hedrick et al., *Int. Rev. Immunol.* 10:279, 1993). These cell-surface chimeric molecules are distinguished by their ability to both bind antigen and transduce activation signals via immunoreceptor tyrosine-based activation motifs (ITAM's) present in their cytoplasmic tails. Receptor constructs utilizing an antigen-binding moiety generated from single chain antibodies (scFv) afford the additional advantage of being "universal" in that they bind native antigen on the target cell surface in an HLA class I independent fashion. Several laboratories have reported on scFv constructs fused to

sequences coding for the intracellular portion of the CD3 complex's zeta chain (ζ), the Fc receptor gamma chain, and sky tyrosine kinase (Eshhar et al., *supra*; Fitzer-Attas et al., *J. Immunol.* 160:145, 1998). Redirected T cell effector mechanisms including tumor recognition and lysis by CTL have been documented in several murine and human antigen-scFv: ζ systems (Eshhar, *Cancer Immunol. Immunother.* 45:131, 1997; Altenschmidt et al., *J. Mol. Med.* 75:259, 1997; Brocker et al., *Adv. Immunol.* 68:257, 1998).

Clinical cellular immunotherapy trials have utilized gene-modified T cells for gene marking purposes, the expression of suicide genes permitting *in vivo* ablation of transfected cells, the expression of genes designed to protect T cells from HIV infection, and the expression of chimeric antigen receptors

(*Immunotherapy* 8:2301, 1997). A

T cell gene therapy trafficking, and development for clinical vectors remain the barrier into primary culture for relatively stable chromosomal insertion. On the sequence and structure and are difficult, to produce as clinical system that provides a specific aspect to the constructs, that can be used in non-infectious and recombinant reagent, may be used in retroviral systems. This is a very versatile platform

PUBLICATION

No Number
00-23573

Nombre de pages.....57

BD/AB.....1.....

BD/AB.....1.....

DE.....3.....

CL.....43.....

DR.....48.....

SR.....

SR.....

Controlé par.....

Scanné par.....

for constructing expression cassettes that are active in mammalian cells. When combined with electroporation, a procedure by which DNA is introduced into cells through transient pores formed in the plasma membrane following exposure to brief electrical current, a simple and easily applied gene transfer system is created. Although transformed human lymphoid cell lines are amenable to stable transfection by electroporation of plasmid vectors, primary human T cells have been regarded to be resistant to this methodology for stable modification (Ebert et al., *Gene Ther.* 4: 296, 1997; Gallot et al., *Blood* 88:1098, 1996).

Summary of the Invention

In one aspect, this invention provides genetically engineered T cells which express and bear on the cell surface membrane a CD20-specific chimeric T cell receptor having an intracellular signaling domain, a transmembrane domain and an extracellular domain. The extracellular domain comprises a CD20-specific receptor. Individual T cells of the invention may be CD4⁺/CD8⁻, CD4⁻/CD8⁺, CD4⁻/CD8⁻ or CD4⁺/CD8⁺. The T cells may be a mixed population of CD4⁺/CD8⁻ and CD4⁻/CD8⁺ cells or a population of a single clone. CD4⁺ T cells of the invention produce IL-2 when co-cultured *in vitro* with CD20⁺ lymphoma cells. CD8⁺ T cells of the invention lyse CD20⁺ human lymphoma target cells when co-cultured *in vitro* with the target cells. The invention includes the CD20-specific chimeric T cell receptors, DNA constructs encoding the receptors, and plasmid expression vectors containing the constructs in proper orientation for expression.

T cells of the invention are referred to in this specification as CD20-specific redirected T cells.

In another aspect, the invention is a method of treating a CD20⁺ malignancy in a mammal which comprises 5 administering CD8⁺ CD20-specific redirected T cells to the mammal in a therapeutically effective amount. The CD8⁺ T cells are preferably administered with CD4⁺ CD20-specific redirected T cells. In another aspect, the invention is a method of treating a CD20⁺ malignancy in 10 a mammal which comprises administering CD4⁺ CD20-specific redirected T cells and CD8⁺ cytotoxic lymphocytes which do not express the CD20-specific chimeric receptor of the invention, optionally in combination with CD8⁺ CD20-specific redirected T cells.

15 The invention includes a method of purging CD20⁺ leukemic stem cells following autologous transplantation for leukemia by administering CD20-specific redirected T cells.

In another aspect, the invention is a method of 20 abrogating any untoward B cell function in a mammal which comprises administering to the mammal CD20-specific redirected T cells in a therapeutically effective amount. These can include antibody mediated 25 autoimmune disease (e.g., lupus or rheumatoid arthritis) as well as any unwanted specific immune response to a given antigen. For example, CD20-specific redirected T cells can be administered in a method of immunosuppression prior to administering a foreign substance such as a monoclonal antibody or DNA 30 or virus or cell in the situation where any immune response would decrease the effectiveness of the foreign substance.

In a preferred embodiment, the CD20-specific redirected T cells express CD20-specific chimeric receptor scFvFc:ζ, where scFv designates the V_H and V_L

chains of a single chain monoclonal antibody to CD20, Fc represents at least part of a constant region of an IgG₁, and ζ represents the intracellular signaling domain of the zeta chain of human CD3. The extracellular domain scFvFc and the intracellular domain ζ are linked by a transmembrane domain such as the transmembrane domain of CD4. In a specific preferred embodiment, the scFvFc:ζ is amino acids 21-633 of Seq. ID No. 2 encoded by DNA construct Seq. ID No. 1.

The invention includes a method of making and expanding the CD20-specific redirected T cells which comprises transfecting T cells with an expression vector containing a DNA construct encoding the CD20-specific chimeric receptor, then stimulating the cells with CD20⁺ cells, recombinant CD20, or an antibody to the receptor to cause the cells to proliferate.

In another aspect, this invention is a method of stably transfecting and re-directing T cells by electroporation using naked DNA. Most investigators have used viral vectors to carry heterologous genes into T cells. By using naked DNA, we can reduce significantly the time required to produce redirected T cells. "Naked DNA" means DNA encoding a chimeric T cell receptor (TCR) contained in a plasmid expression vector in proper orientation for expression. The electroporation method of this invention produces stable transfectants which express and carry on their surfaces the chimeric TCR (cTCR). "Chimeric TCR" means a receptor which is expressed by T cells and which comprises intracellular signaling, transmembrane and extracellular domains, where the extracellular domain is capable of specifically binding in an MHC unrestricted manner an antigen which is not normally bound by a T cell receptor in that manner. Stimulation

of the T cells by the antigen under proper conditions results in proliferation (expansion) of the cells and/or production of IL-2. The CD20-specific chimeric receptor of this invention is an example of a chimeric TCR. However, the method is applicable to transfection with chimeric TCRs which are specific for other target antigens, such as chimeric TCRs that are specific for HER2/Neu (Stancovski et al., *supra*) ERBB2 (Moritz et al., *supra*), folate binding protein (Hwu et al., *supra*), renal cell carcinoma (Weitjens et al., *supra*), and HIV-1 envelope glycoproteins gp120 and gp41 (Roberts et al., *Blood* 84:2878, 1994).

In a preferred embodiment of transfection method of the invention, the T cells are primary human T cells, such as human peripheral blood mononuclear cells (PBMC), which have previously been considered resistant to stable transfection by electroporation of plasmid vectors. Preferred conditions include the use of DNA depleted of endotoxin and electroporation within about 3 days following mitogenic stimulation of T cells. Following transfection, the transfectants are cloned and a clone demonstrating presence of a single integrated unarranged plasmid and expression of the chimeric receptor is expanded *ex vivo*. The clone selected for expansion preferably is CD8⁺ and demonstrates the capacity to specifically recognize and lyse lymphoma target cells which express the target antigen. The clone is expanded by stimulation with IL-2 and preferably another stimulant which is specific for the cTCR such as, where the receptor includes the zeta chain of CD3, the monoclonal antibody OKT3.

Figure 1 is a schematic representation of CD20-specific scFvFc:ζ chimeric receptor.

Figure 2 shows cytolytic activity of CD8⁺ T cells against a panel of CD 20- and CD20⁺ human lymphoma targets. The left graphs show activity of CD8⁺ T cells expressing the CD20-specific scFvFc:ζ chimeric receptor. The right graphs show activity of CD8⁺ T cells not expressing the CD20-specific scFvFc:ζ chimeric receptor.

10 Detailed Description of the Invention

Example I: Re-Direction of T-cell lines Jurkat and 2c

15 Methods and Materials

15 Assembly of a CD20-Specific scFvFc:ζ Construct.
The nucleotide sequence of the construct and corresponding amino acid sequence of the CD20-Specific scFv:Fc:ζ chimeric receptor are listed in the Sequence Listing as Seq. ID No. 1 and Seq. ID No. 2. The construct was assembled by splice overlap PCR based on the design of Roberts et al., *supra*. The construct is composed of the following segments, in which the nucleotide and amino acid numbers refer to Seq. ID No. 1 and Seq. ID No. 2.

20 Ribosome binding sequence, nucleotides 18-26. The consensus ribosome binding sequence , GCCACCACC, was designed in accordance with Kozak, *Nucl. Acids Res.* 15:8125, 1987, and was encoded in a synthetic oligonucleotide.

25 Signal peptide, nucleotides 27-86, amino acids 1-20. In order to direct the construct to the plasma membrane, the mammalian signal peptide from the murine

T84.66 antibody kappa light chain was used (Neumaier, *Cancer Res.* 50:2128, 1990).

Anti-CD20 variable regions: V_L--nucleotides 87-404, amino acids 21-126; V_H--nucleotides 459-824, amino acids 145-266. Heavy and light chain variable regions were cloned by RT-PCR (reverse transcription-polymerase chain reaction). Total RNA was prepared from 5x10⁷ anti-CD20 Leu-16 hybridoma cells (Becton Dickinson Immunocytometry Systems, Becton Dickinson, San Jose, California) and 5 µg were used in the reaction. Kappa light chain upstream primers VKBi7 (Seq. ID No. 3) and VKBi8 (Seq. ID No. 4) were used. These primers are from Dubel et al., *J.Immunol. Meth.* 175:89, 1994. Heavy chain upstream primers VHBi3 (Seq. ID No. 5), VHBi3c (Seq. ID No. 6) and VHBi3d (Seq. ID No. 7) were used. Downstream primers were: murine heavy chain constant region position 119 to 134 from Honjo, *Cell* 18:559, 1979 (Seq. ID No. 8) and murine kappa constant region position 134-148 from Heiter, *Cell* 22:197, 1980 (Seq. ID No. 9). PCR products were purified, cloned into T-tailed Bluescript (Stratagene) and subjected to DNA sequence analysis. The identity of clones was confirmed by comparison of the predicted amino acid sequences to the sequences of tryptic peptides from the purified CD20 antibody.

GS18 linker, nucleotides 405-458, amino acids 145-266. The heavy and light chain variable regions were fused via an 18 amino acid linker peptide of Seq. ID No. 10. Synthetic oligonucleotide primers encoding this linker sequence were produced and incorporated into the construct by splice overlap PCR.

Hinge--nucleotides 825-872, amino acids 267-282; C_H2--nucleotides 873-1202, amino acids 283-392; C_H3--nucleotides 1202-1523, amino acids 393-499. The human IgG₁ hinge and Fc regions were derived from a cDNA clone

encoding a chimeric antibody provided by Dr. Jeffrey Schlom, NCI. The uppermost cys residue in the hinge (normally utilized in the disulfide bridge with the C-terminus of the kappa light chain, and not necessary in this construct) was mutated to ser by PCR mutagenesis.

5 CD4 Transmembrane region, nucleotides 1524-1590, amino acids 500-521. The transmembrane region was derived from the pT4B plasmid containing human CD4 cDNA, provided by the AIDS Research and Reference Reagent Program (Catalog #157), NIAID.

10 Zeta chain, nucleotides 1591-1925, amino acids 522-633. The cDNA clone for the human T cell receptor zeta chain was obtained by RT-PCR of total RNA isolated by the guanidinium isothiocyanate method from the Jurkat T-cell line. Primers were designed based on the published nucleotide sequence of the zeta chain (Weissman, Proc. Nat. Acad. Sci. 85:9709 (1988) and Moingeon, Eur. J. Immunol. 20:1741(1990). The primer sequences were CD3 ζ FOR (Seq. ID No. 11) (nucleotides 31-52 of CD3 zeta chain) and CD3 ζ BAC (Seq. ID No. 12) (nucleotides 593-616 of CD3 zeta chain) and included Eco R1 restriction sites for subcloning:

15 Briefly, 1 μ g of total RNA was allowed to react at 37°C for 15 minutes in a tube containing AMV reverse transcriptase, dNTPs, PCR buffer, forward and backward primers, 3 units of Taq polymerase was then added to the tube and subjected to 30 rounds of PCR amplification, each round consisting of 1 min. at 94°C, 2 min. at 78°C, and 2 min. at 72°C. PCR products were purified and cloned into T-tailed Bluescript and subjected to DNA sequence analysis.

20 Following confirmation of the correct clone by DNA sequencing, the zeta cytoplasmic domain was incorporated into the final genetic construct by splice overlap PCR. The final construct was flanked by Xba I

and Not I restriction sites for directional subcloning into expression vectors. Using these sites the scFvFc: ζ DNA was cloned into the mammalian expression vector pcDNAneo under the control of the CMV immediate-
5 early promoter (Invitrogen, San Diego, CA). Correct assembly was confirmed by DNA sequence analysis of the final product. The expressed receptor is schematically represented in Figure 1. V_H chains 1, V_L chains 2 and linker peptide 3 make up the Fv portion of the receptor. Hinge region 4, C_H2 regions 5, and C_H3
10 regions 6 make up the Fc portion of the receptor. Fv and Fc together make up the extracellular domain of the receptor. Numeral 7 denotes the T cell membrane, 8 denotes the CD4 transmembrane domain of the receptor,
15 and 9 denotes the zeta chain intracellular domain of the receptor.

in vitro Propagation of Cell Lines. The Jurkat, Daudi, P815, and K562 cell lines were obtained from ATCC (Rockville, MD), the murine allo-specific CTL clone 2c was originated by Dr David Kranz, Univ. of Chicago, and the human lymphoma line DHL-6 was the kind gift of Dr. Michael Cleary, Stanford University. EBV-transformed lymphoblastoid cell lines (LCL) were generated from human EBV infected PBL in the presence of cyclosporin (Pelloquin et al., *in vitro Cell Dev. Biol.* 22:689, 1986). Cells were grown in RPMI 1640 (GIBCO, Grand Island, NY) supplemented with 2 mmol L-glutamine (Irvine Scientific, Santa Ana, CA), 25 mmol HEPES (Irvine Scientific), penicillin 100 U/ml and streptomycin 0.1 mg/ml (Irvine Scientific), and 10% heat inactivated fetal calf serum (Hyclone, Logan, UT). 2c clones were maintained in culture by restimulating cells every 14 days with irradiated P815 cells.
Supplemental human IL-2 (Cetus, Emeryville, CA) at

50U/ml was added to 2c cells every 48 hours.

Electroporation and Selection Procedure. pcDNAneo containing the anti-CD20 scFvFc: ζ construct was linearized at a unique Pvull site in the plasmid's ampicillin resistance gene. Linearized plasmid was introduced into Jurkat and 2c clones by electroporation utilizing the BTX Electro Cell Manipulator 600 (Genetronics, San Diego, CA) set at 250V, 975 μ F, 196 ohms. 2×10^7 log phase Jurkat or 2c cells used 4 days following antigen stimulation were aliquoted into .4 cm electroporation cuvettes in .8 ml PBS with 10 mmol MgCl₂. 50 μ g of plasmid in sterile water was added and incubated for 10 minutes prior to being resuspended in culture media. Forty-eight hours following electroporation, cells were plated in media containing 1 mg/ml active of G418 antibiotic (Mediatech Inc., Herndon, VA). Drug resistant transfected Jurkat cells were cloned in limiting dilution then expanded for further analysis.

Western Blot Procedure Whole cell lysates of parental Jurkat and 2c cells or their scFvFc: ζ transfectants were generated by lysis of 2×10^7 washed cells in 1 ml of RIPA buffer (PBS, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS) containing 1 tablet/10ml Complete Protease Inhibitor Cocktail (Boehringer Mannheim, Indianapolis, IN) and incubated on ice for 80 minutes. Samples of centrifuged lysate supernatant was harvested and boiled in an equal volume of loading buffer under reducing and non-reducing conditions then subjected to SDS-PAGE electrophoresis on a precast 12% acrylamide gel (BioRad, Richmond, CA). Following transfer to nitrocellulose, membranes were blocked in blotto solution containing .07 gm/ml non-fat dried milk for 2 hours. Membranes were then incubated with primary mouse anti-human CD3 ζ monoclonal antibody 8D3

(Pharmingen, San Diego, CA) at a concentration of 1 µg/ml for 2 hours, washed then incubated with a 1:500 dilution of goat anti-mouse alkaline phosphatase conjugated secondary antibody for 1 hour. Prior to 5 developing, membranes were washed 4 additional times in T-TBS (.05% Tween 20 in Tris buffered saline pH 8.0). Membranes were then developed with 30 ml of the manufacturer' "AKP" solution (Promega, Madison, WI).

FACS Analysis. Jurkat cells and 2c cells were 10 stained with a fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse Fab-specific polyclonal antibody (Sigma, St. Louis, MO) and a FITC-conjugated monoclonal mouse anti-human IgG, Fc(gamma) fragment-specific F(ab')₂ (Jackson ImmunoResearch, West Grove, PA) for analysis of cell surface chimeric receptor expression. 10⁶ cells were washed and resuspended in 100µl of PBS containing 2% FCS, 0.2 mg/ml NaN₃, and 2µl of antibody. Following a 60 minute incubation on ice 15 cells were washed three times and resuspended in PBS containing 1% paraformaldehyde and analyzed on a MoFlo cytometer (Cytomations, Fort Collins, CO).

***in vitro* Stimulation of Cytokine Production.** 20 Jurkat cells expressing the chimeric CD20-specific scFvFc:ζ receptor were evaluated for receptor-mediated triggering of IL-2 production *in vitro*. 5x10⁵ Jurkat responder cells were co-cultured in 48-well tissue culture plates (Costar, Cambridge, MA) with an equal number of irradiated stimulator cells in a 1 ml volume. Blocking anti-CD20 Leu-16 monoclonal antibody was added 25 to indicated wells containing stimulator cells at a concentration of 20µg/ml 30 min prior to the addition of responder cells. Plates were incubated for 48 hours 30 at which time culture supernatants were harvested and evaluated for IL-2 protein concentration. An ELISA assay for IL-2 was carried out using the R&D Systems 35

(Minneapolis, MN) kit per manufacturer instructions. Each sample was tested in duplicate wells undiluted and diluted 1:5. The developed ELISA plate was evaluated on a microplate reader and IL-2 concentrations determined by extrapolation from a standard curve. Results are reported as picograms/ml.

5 *Chromium Release Assay.* The cytolytic activity of 2c and 2c transfectants was assayed by employing ^{51}Cr -labeled P815, K562, Daudi, DHL-6, and LCL cell lines. 10 Briefly, 2c effectors were assayed 8-12 days following stimulation with irradiated P815 cells. Effectors were harvested, washed, and resuspended in assay media; 15 2.5×10^5 , 1×10^5 , 0.5×10^5 , and 0.1×10^5 effectors were cultured in triplicate at 37°C for 4 hours with 10^4 target cells in V-bottom microtiter plates (Costar, Cambridge, MA). After centrifugation and incubation, 100 μ aliquots of cell-free supernatant were harvested and counted. Per cent specific cytolysis was calculated as follows:

20

$$\frac{(\text{Experimental } ^{51}\text{Cr release}) - (\text{control } ^{51}\text{Cr release})}{(\text{Maximum } ^{51}\text{Cr release}) - (\text{control } ^{51}\text{Cr release})} \times 100$$

25 Control wells contained target cells incubated in the presence of target cells alone. Maximum ^{51}Cr released was determined by measuring the ^{51}Cr content of labeled cells in the presence of 2% SDS.

Results

30 The CD20-specific scFvFc: ζ receptor protein is expressed in Jurkat and 2c cells. To determine whether the CD20-specific scFvFc: ζ construct could be expressed as an intact chimeric protein, Jurkat and 2c cells were transfected with the receptor cDNA cloned into pcDNAneo under the transcriptional control of the CMV

immediate-early promoter. Linearized plasmid was electroporated under optimized conditions and stable transfectants selected by addition of G418 to cultures. Jurkat clones were isolated by limiting dilution while 5 2c transfectants were maintained as a bulk line. A Western blot of reduced and non-reduced transfectant whole cell lysates separated on a 12% SDS-PAGE gel demonstrated the presence of endogenous zeta having a molecular weight of approximately 16kD as well as a band corresponding to the expected molecular weight (66 10 kDa) of the CD20-specific scFvFc: ζ receptor. When lysates were generated under non-reducing conditions, the endogenous zeta band migrated at approximately 32kD as expected for a homodimer while the chimeric receptor 15 band migrated at a molecular weight of approximately 132kD.

The CD20-specific scFvFc: ζ receptor protein is present on the cell surface of Jurkat and 2c cells. Export of the CD20-specific receptor to the plasma 20 membrane of Jurkat and 2c cells was assessed by flow cytometric analysis of transfectants with a FITC-conjugated goat anti-mouse Fab-specific antibody and a goat anti-human Fc (gamma) antibody. The murine Fab epitope is expected to be reconstituted in the scFv 25 portion of the chimeric receptor while the human Fc γ epitope is the membrane proximal portion of the receptor's extracellular domain. Analysis of surface expression, as detected with FITC-conjugated anti-Fab antibody, of chimeric receptor expression on a 30 representative Jurkat clone transfectant three weeks following electroporation showed a log shift in fluorescence compared to parental Jurkat. Similar analysis of a bulk population of 2c transfectants stained with anti-human Fc (gamma) revealed a similar 35 pattern of binding of FITC-conjugated antibody.

Receptor expression remained stable over a three month period of continuous culture of cells in G418.

CD20 expressed on lymphoma cells triggers IL-2 production by Jurkat cells expressing the CD20-specific scFvFc:ζ receptor. The capacity of the CD20-specific scFvFc:ζ receptor to transduce an activation signal in Jurkat cells sufficient for triggering IL-2 production was determined by culturing Jurkat transfecant clones with CD20-expressing lymphoma cells *in vitro* and quantitating IL-2 concentrations in supernatants by ELISA. In a representative experiment, parental Jurkat cells produced IL-2 in response to mitogenic doses of OKT3 (anti-CD3 monoclonal antibody, Ortho) in combination with PMA, but did not produce IL-2 when co-cultured with CD20⁻ K562 cells, or CD20⁺ DHL-6 or LCL. In contrast, Jurkat transfectants expressing the CD20-specific scFvFc:ζ receptor produced IL-2 when co-cultured with a panel of CD20⁺ lymphoma cells. Addition of CD20-specific monoclonal antibody to co-cultured Jurkat transfectants and LCL decreased IL-2 concentrations measured in supernatants by 60%.

CD20 expressed on lymphoma cells triggers cytolytic activity of 2c cells expressing the CD20-specific scFvFc:ζ receptor. 2c is an extensively characterized murine cytolytic T cell clone specific for H-2^{d39}. This clone requires both antigen stimulation and IL-2 for *in vitro* propagation. Electroporated 2c cells were selected in bulk with G418. Following confirmation of scFvFc:ζ expression by Western blot and FACS, this line was evaluated for redirected CD20-specific cytolytic activity in a 4-hour chromium release assay. Lysis of CD20⁺ human lymphoma targets Daudi, DHL-6, and LCL was observed by 2c transfectants while the parental and transfected lines

displayed equivalent lysis of P815, a murine H-2^d mastocytoma line recognized by 2c via its endogenous TCR. Neither parental 2c nor scFvFc:ζ 2c transfectants lysed the CD20⁻ target K562. The transfected cell line 5 was retested for CD20-specific cytolytic activity over a three month period and was found to have stable lytic activity.

Example II: Redirection of normal, non-malignant human T cells

10 Methods and Materials

Plasmid DNA. The CD20-specific scFvFc:ζ construct was prepared as described in Example I. This cDNA was ligated into the multiple cloning site of the mammalian expression vector pcDNAneo (Invitrogen, San Diego, CA). 15 The plasmid was propagated in E. coli and purified with Qiagen's Endo-Free Maxi prep kit per the manufacturer's instructions (Qiagen Inc., Valencia, CA). The plasmid was linearized at a unique *Pvu*I site in the ampicillin resistance gene. Following digestion, plasmid DNA was 20 precipitated with a 1:10 volume of 3M sodium acetate and two volumes of EtOH, washed in 70% EtOH, and resuspended in sterile pyrogen-free distilled water. Vector DNA was stored in aliquots at -20°C until used for electroporation.

25 Cell Lines. Daudi, K562, DHL-6 and LCL lines were obtained and grown as described in Example I.

Human PBMC Isolation and Activation. Heparinized peripheral blood from normal donors was diluted 1:1 with PBS containing 0.526 mmol EDTA. PBMC were 30 isolated by density gradient centrifugation over Ficoll-Paque (Pharmacia Biotech Inc., Piscataway, NJ), washed twice in PBS-EDTA, once in PBS then resuspended

in culture media at 10^6 cells per ml. PBMC were cultured in 6-well tissue culture plates containing 10ml/well of PBMC cell suspension and PHA-P 0.5 μ g/ml. (Murex, UK). Twenty-four hours after initiation of culture recombinant IL-2 was added at 25U/ml.

PBMC Electroporation. PvuII linearized plasmid pcDNAneo containing the CD20-Specific scFcFv: ζ , described above, was introduced into PHA-activated human PBMC by electroporation utilizing the BTX Electro Cell Manipulator 600 (Genetronics, San Diego, CA) set at 250V, 950 μ F, 129 Ω . 5 x 10⁶ PBMC were aliquoted into 0.4cm electroporation cuvettes (Biorad, Richmond, CA) in 0.25 ml of culture media containing 25 U/ml recombinant human IL-2 (rhIL-2). 25 μ g of linear plasmid in 12.5 μ L sterile water was added to the cells and incubated for 10 minutes on ice. Following a single electrical pulse, cells were again incubated on ice for 10 minutes prior to being resuspended in culture media. Typically, the contents of four cuvettes were pooled and resuspended in 10ml of culture media containing 25 U/ml rhIL-2, then placed in a single well of a 6-well tissue culture plate.

25 Selection of T Cell Transfectants. Forty-eight
hours following electroporation, G418 antibiotic
(Calbiochem, La Jolla, CA) was added to wells
containing elecporated PBMC at an active drug
concentration of 0.9 mg/ml. Cells were periodically
30 split to maintain their concentration at approximately
 10^6 viable cells/ml. IL-2 at a concentration of 25 U/ml
was added every other day to culture. Twelve days
following the initiation of culture, viable cells were
harvested by density gradient centrifugation on Ficoll-
35 Pague. Washed viable cells were subjected to rapid

expansion by co-culture in T25 flasks containing 25 x 10⁵ allogeneic irradiated PBMC, 5 x 10⁶ allogeneic irradiated LCL, and 30 ng/ml OKT3. Beginning 24 hours following seeding, flasks received 25 U/ml rhIL-2 on alternate days. On day five of culture, 0.9 mg/ml G418 was added to flasks. Fourteen days after seeding flasks, no viable mock transfected PBMC were detected by trypan exclusion, while plasmid transfected PBMC demonstrate outgrowth of T cells. This procedure has yielded neo-resistant T cell lines in each of over fifteen separate electroporations.

T cell cloning and expansion. G418-resistant PBMC were cloned at 0.3 cells/well in 96-well U-bottom plates containing 5 x 10⁶ allogeneic irradiated PBMC feeder cells and 1 x 10³ irradiated allogeneic LCL per well in 200 μ l of culture media containing 30 ng/ml OKT3 and 50 U/ml rhIL-2. Five days after cloning, G 418 at a final concentration of 0.9 mg/ml was added to wells. Cloning plates were screened visually for wells with cellular outgrowth between 12-16 days after plating. Positive wells were harvested and restimulated every 14 days with OKT3 and IL-2 on a double feeder layer of irradiated PBMC and LCL, as described above. G418 was added to culture 5 days after each restimulation at 0.9 mg/ml.

FACS Analysis. Cloned human T cell transfectants were stained with a panel of monoclonal antibodies to establish their cell-surface phenotype. This panel included fluorescein isothiocyanate (FITC)-conjugated anti-TCR α/β , anti-CD4, and anti-CD8, as well as a FITC-conjugated murine isotype control (Becton Dickinson, San Jose, CA). 10⁶ cells were washed and resuspended in 100 μ L PBS containing 2% FCS, 0.2 mg/ml NaN₃, and 2 μ L of the manufacturer's stock antibody preparation. Following a 60-minute incubation on ice,

cells were washed three times and resuspended in PBS containing 1% paraformaldehyde and analyzed on a MoFlo cytometer (Cytomations, Fort Collins, CO).

Detection of Plasmid Integration by Fluorescence in Situ Hybridization (FISH). The plasmid pcDNAneo was labeled with digoxigenin-dUTP using a nick translation kit (Vysis, Inc., Downers Grove, IL). Briefly, 100 ng of labeled DNA was precipitated and dissolved in 10 µL of Hybrisol VII (Oncor, Gaithersburg, MD). The probe was denatured at 72°C for 5 min before use. Cells were harvested per standard cytogenetic technique by treatment with 0.05 µg/ml colcemid (Irvine Scientific, Irvine, CA) for 40 min, and subsequently exposed to a hypotonic solution of 0.4% KCl at 37°C for 20 min. The cells were then fixed with Carnoy's fixative (1 acetic acid: 3 methanol). For sequential FISH analysis, slides were G-banded using trypsin-Giemsa, photographed, and destained; otherwise, slides were digested with 12 µg/ml pepsin (Sigma) in 0.01 N HCL at 37°C for 3 min. Chromosomal DNA was denatured by submerging slides in 70% formamide/2xSSC, pH 7.0 at 72°C for 2 min. Denatured probe (10 µL) was applied to each slide and incubated at 37°C overnight.

Nonspecific probe binding was purged by sequential washes of 50% formamide/2xSSC, pH 7.0 at 39°C for 10 min, and 2xSSC at 37°C for 8 min. Signals were detected using a rhodamine detection kit for digoxigenin (Oncor). Chromosomes were counterstained with DAPI (Oncor). Signals were observed and captured with a NIKON Labophot-2 fluorescence microscope equipped with a PSI Imaging System (Perceptive Scientific Instruments Inc., League City, TX).

Southern Blot Analysis for Vector Copy Number and Rearrangement. Southern blot analysis was carried out using zeta- and neomycin DNA probes. The DNA fragment

used as a zeta-specific probe was generated by PCR using the CD20-specific scFvFc: ζ -pcDNAneo plasmid as template. The forward primer zeta_{forward} (5'-TTCAGCAGGAGCGCAGCAGC-3') (Seq. ID No. 13) and the 5 reverse primer zeta_{reverse} (5'-TAGCGAGGGGGCAGGGCCTG-3') (Seq. ID No. 14) were used at a concentration of 50 picomolar. PCR conditions were as follows; 94°C, 1 min; 60°C, 1 min; 72°C, 2 min; 24 cycles. This PCR reaction generated a 329 basepair fragment comprising 10 the zeta gene's exons III through VIII that encode the intracellular portion of this molecule. The Neo-specific DNA probe was the 420 basepair *MscI/NaeI* restriction fragment isolated from pcDNAneo. Probe DNA was ³²P labeled using a random primer labeling kit 15 (Boehringer Mannheim, Indianapolis, IN).

Genomic DNA was isolated per standard technique (Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2d Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989, p9.16). Ten micrograms of 20 genomic DNA from T cell lines and clones were digested overnight at 37°C with 40 units of *XbaI* and *HindIII* and then electrophoretically separated on a 0.85% agarose gel. DNA was then transferred to nylon filters 25 (BioRad, Hercules, CA) using an alkaline capillary transfer method. Filters were hybridized overnight with either zeta- or neomycin-specific ³²P-labeled probes in 0.5 M Na₂PO₄, pH 7.2, 7% SDS, containing 10 µg/ml salmon sperm DNA (Sigma) at 65°C. Filters were then washed four times in 40 mM Na₂PO₄, pH 7.2, 1% SDA, 30 at 65°C and then visualized using a phosphoimager (Molecular Dynamics, Sunnyvale, CA).

Western Blot Procedure. Whole cell lysates of bulk untransfected and transfected T cell lines and each of nine cloned transfectants were generated by 35 lysis of 2 x 10⁷ washed cells in 1 ml of RIPA buffer

(PBS, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS) containing 1 tablet/10ml Complete Protease Inhibitor Cocktail (Boehringer Mannheim). After an eighty minute incubation on ice, aliquots of centrifuged whole cell lysate supernatant were harvested and boiled in an equal volume of loading buffer under reducing conditions then subjected to SDS-PAGE electrophoresis on a precast 12% acrylamide gel (BioRad). Following transfer to nitrocellulose, membranes were blocked in blotto solution containing .07 gm/ml non-fat dried milk for 2 hours. Membranes were washed in T-TBS (.05% Tween 20 in Tris buffered saline pH 8.0) then incubated with primary mouse anti-human CD3ζ monoclonal antibody 8D3 (PharMingen, San Diego, CA) at a concentration of 1 μg/ml for 2 hours. Following an additional four washes in T-TBS, membranes were incubated with a 1:500 dilution of goat anti-mouse IgG alkaline phosphatase-conjugated secondary antibody for 1 hour. Prior to developing, membranes were rinsed in T-TBS then developed with 30 ml of "AKP" solution (Promega, Madison, WI) per the manufacturer's instructions.

Chromium Release Assay. The cytolytic activity of bulk CD20-specific scFvFc:ζ PBMC transfectants and cloned CD8⁺ CTL transfectants was quantitated in standard 4-hr. chromium release assays by employing ⁵¹Cr-labeled K562, Daudi, DHL-6, and LCL cell lines. Briefly, T cell effectors were assayed 12-14 days following stimulation with OKT3. Effectors were harvested, washed, and resuspended in assay media; 2.5x10⁵, 1x10⁵, and 0.1x10⁵ effectors were plated in triplicate at 37°C for 4 hours with 10⁴ target cells in V-bottom microtiter plates (Costar, Cambridge, MA). After centrifugation and incubation, 100 μL aliquots of cell-free supernatant were harvested and counted. Percent specific cytolysis was calculated by the

formula given in Example I.

Control wells contained target cells incubated in assay media. Maximum ^{51}Cr release was determined by measuring the ^{51}Cr content of target cells lysed with 2% SDS.

5

Results

Electroporated linear plasmid DNA is chromosomally integrated into primary human T cells present in PHA-activated PBMC. PBMC activated with the T cell mitogen PHA were evaluated for their capacity to chromosomally integrate naked linear plasmid DNA following electroporation. After optimizing electroporation parameters for transient plasmid transfection by expression of green fluorescent protein (data not shown), culture systems were developed to retrieve stable T cell transfectants, as illustrated in Table 1:

Table 1

Day 0	Isolate PBMC/PHA-P Activate
20	Electroporate
Day 5	Add G418
Day 12	Ficoll and Restimulate OKT3/IL-2
Day 26	Clone with OKT3
Day 38	Restimulate Clones with OKT3/IL-2
25	Day 50 Expand Clones which Express Chimeric Receptor

Typically, two weeks following electroporation with linear plasmid DNA, the outgrowth of cells in the presence of G418 was observed. This procedure has yielded G418-resistant T cell lines in each of over

fifteen separate electroporations.

Cloned G418-resistant PBMC transfectants were evaluated for their cell surface phenotype by FACS: each clone was TCR α/β^+ , CD4 $^-$ and CD3 $^+$. Nine clones 5 were expanded for further analysis. The integration status of the scFvFc: ζ -pcDNAneo vector was first assessed by FISH using a digoxigenin-labeled probe synthesized from the 5.4kb pcDNAneo plasmid without the scFvFc: ζ insert. In a representative FISH result, an 10 untransfected CD8 $^+$ T cell clone demonstrated lack of chromosomal signal while G418 resistant CD8 $^+$ T cell clone transfectants demonstrated a chromosomal signal doublet on metaphase spreads consistent with plasmid integration. A single clone had a uniform FISH signal 15 chromosomal location amongst individual cells while different clones demonstrated distinct sites of integration on different chromosomes. Detailed evaluation of G-banded chromosomes containing FISH signals revealed the following locations of plasmid DNA 20 integration: clone 3B10 at 2q33, clone 1B4 at 3p25.1, and clone 3G6 at 13q22. All of the nine clones evaluated demonstrated a single FISH signal consistent 25 with one site of chromosomal integration.

Human CD8 $^+$ T cell clones can be isolated from 30 electroporated PBMC that have a single copy of unrearranged plasmid vector integrated at a single chromosomal site. Southern blot analysis was performed on bulk transfected lines and the panel of nine CD8 $^+$ T cell clones in order to validate and extend the results obtained by FISH. The copy number of integrated 35 plasmid and frequency of plasmid rearrangement was also assessed. Genomic T cell DNA from stably transfected bulk PBMC and the panel of CD8 $^+$ CTL clones was isolated, digested with the restriction endonucleases *Xba*I and *Hind*III that flank the scFvFc: ζ construct, separated by

electrophoresis, and blotted onto nylon filters. Probing the Southern blot with a ³²P-labeled cDNA fragment of the neomycin resistance gene revealed a single band in each of the nine clones while the bulk T cell line had multiple bands. Untransfected T cells fail to hybridize this probe. These results are consistent with the FISH data with respect to a single plasmid integration event per T cell clone. The heterogeneity of Neo probe band size observed among different cloned T cell transfectants is indicative of multiple integration events occurring within the population of T cells being electroporated rather than the isolation of multiple daughter cells arising from an exceedingly rare stable integration event. After stripping the nylon filter of the Neo probe, a second probe consisting of the cDNA sequence of the intracellular portion of the TCR zeta chain was annealed. *XbaI/HindIII* digested genomic DNA from untransfected T cells revealed two bands consistent with the genomic zeta gene having one of these restriction sites within one of its seven introns (Jensen et al., *J. Immunol.* 148:2563, 1992). Seven of nine clones demonstrated the expected 1.9-kb band liberated by endonuclease digestion of the *XbaI* and *HindIII* sites present in the integrated plasmid sequence in addition to the two genomic zeta bands. Two clones (1B4 and 1H8) had a 7.2-kb band suggestive of rearrangement of the plasmid or loss of one or both restriction sites around the scFvFc: ζ insert in pCDNAneo. Utilizing a phosphoimager the band intensities were quantitated to determine the copy number of plasmid DNA. A single plasmid copy number would be expected to have half the arbitrary intensity of the summed genomic zeta bands intensities. This analysis revealed normalized values of plasmid copy

number between 1.0 and 1.3 consistent with a single plasmid copy number in each of the seven clones with unarranged 1.9-kb zeta signals. Values slightly larger than 1.0 are expected since DNA transfer onto nitrocellulose is more efficient for smaller sized DNA fragments (Sambrook et al., *supra*).
5

A subset of transfected CD8⁺ CTL clones expanded to large numbers *in vitro* express the CD20-specific scFvFc:ζ immunoreceptor. Neo-resistant CD8⁺ T cell clones transfected with the CD20-specific scFvFc:ζ-pcDNAneo plasmid vector were expanded over six weeks to cell numbers in excess of 10⁹. This was accomplished utilizing a T cell rapid expansion protocol developed by Riddell et al. (Riddell et al., *Science* 257:238, 10 1992). Briefly, flasks containing soluble OKT3 and a double feeder cell layer of irradiated PBMC and LCL were seeded with 10⁵ T cells harvested from cloning wells and expanded over two weeks with alternate day addition to culture of rhIL-2 at 50 U/ml. Clones were 15 recursively expanded every two weeks in this format resulting in the generation of over 10⁹ cells after three re-stimulation cycles. Following expansion, bulk T cell transfectants, CTL clones, and control non-transfected T cells, were harvested and evaluated by 20 Western blot for expression of the chimeric scFvFc:ζ protein. In a representative Western blot result from reduced whole cell lysates probed with an anti-zeta monoclonal antibody, each T cell line and clone 25 displayed a 21-kDa band consistent with wild-type zeta chain. Four of the nine clones demonstrated a second band of approximately 66-kDa consistent with the chimeric zeta chain. Of note, neither clone with disrupted plasmid vector sequence as detected by 30 Southern blot expressed chimeric receptor.
35

Ex vivo expanded CD20-specific scFvFc:ζ-expressing

primary human CD8⁺ CTL clones lyse human CD20⁺ lymphoblastoid cells and the human lymphoma cell lines Daudi and DHL-6. The CD20-specific cytolytic activity of scFvFc: ζ -transfected CD8⁺ CTL clones was determined following ex vivo expansion of cells. 4-hr chromium release assays were performed on bulk transfected T cell lines and clones 12-14 following their last stimulation with OKT3. Distinct patterns of cytolytic activity by clones were observed which correlated precisely with expression of the CD20-specific scFvFc: ζ receptor as determined by Western blot. Each of the four clones with chimeric receptor expression lysed HLA-mismatched CD20⁺ LCL and the human CD20⁺ lymphoma cell lines Daudi and DHL-6. These clones did not lyse the CD20⁻ human K562 cell line. Clones which failed to demonstrate chimeric receptor expression by Western also failed to lyse each of the CD20⁺ target cell lines. Three of these clones demonstrated NK-like reactivity in that they lysed K562 targets. Clones expanded for over three months in culture retained their CD20-specific cytolytic activity.

Other CD20-specific chimeric T cell receptors

The invention has been described primarily with reference to the specific scFcFv: ζ construct and receptor of Seq. ID No. 1 and 2, but the invention is not limited to that specific construct and receptor. The scFv portion can be replaced by any number of different CD20 binding domains, ranging from a minimal peptide binding domain, to a structured CD20 binding domain from a phage library, to antibody like domains using different methods to hold the heavy and light chain together. The arrangement could be multimeric

such as a diabody. The secreted form of the antibody forms multimers. It is possible that the T cell receptor variant is also a multimer. The multimers are most likely caused by cross pairing of the variable portion of the light and heavy chains into what has been referred to by Winters as a diabody.

The hinge portion of the construct can have multiple alternatives from being totally deleted, to having the first cysteine maintained, to a proline rather than a serine substitution, to being truncated up to the first cysteine. The Fc portion can be deleted, although there is data to suggest that the receptor preferably extends from the membrane. Any protein which is stable and dimerizes can serve this purpose. One could use just one of the Fc domains, e.g., either the C_H2 or C_H3 domain.

Alternatives to the CD4 transmembrane domain include the transmembrane CD3 zeta domain, or a cysteine mutated CD 3 zeta domain, or other transmembrane domains from other transmembrane signaling proteins such as CD16 and CD8. The CD3 zeta intracellular domain was taken for activation. Intracellular signaling portions of other members of the families of activating proteins can be used, such as Fc γ RIII and Fc ϵ RI. See Gross et al., Stancovski et al., Moritz et al., Hwu et al., Weijtens et al., and Hekele et al., *supra*, for disclosures of cTCR's using these alternative transmembrane and intracellular domains.

30 Cellular Immunotherapy Using Redirected T cells

Background

The strategy of isolating and expanding antigen-specific T cells as a therapeutic intervention for human disease has been validated in clinical trials. Riddell et al., *Science* 257:238, 1992; Walter et al., *N. Engl. J. Med.* 333:1038, 1995; Heslop et al., *Nat. Med.* 2:551, 1996. Initial studies have evaluated the utility of adoptive T cell therapy with CD8⁺ cytolytic T cell (CTL) clones specific for cytomegalovirus-encoded antigens as a means of reconstituting deficient viral immunity in the setting of allogeneic bone marrow transplantation and have defined the principles and methodologies for T cell isolation, cloning, expansion and re-infusion (Riddell et al., *supra*). A similar approach has been taken for controlling post-transplant EBV-associated lymphoproliferative disease. EBV-specific donor-derived T cells have the capacity to protect patients at high risk for this complication as well as eradicate clinically evident disease which mimics immunoblastic B cell lymphoma (Heslop et al., *supra*). These studies clearly demonstrate that adoptively transferred ex vivo expanded T cells can mediate antigen-specific effector functions with minimal toxicities and have been facilitated by targeting defined virally-encoded antigens to which T cell donors have established immunity..

The application of adoptive T cell therapy as a treatment modality for human malignancy has been limited by the paucity of molecularly-defined tumor antigens capable of eliciting a T cell response and the difficulty of isolating these T cells from the tumor-bearing host. Consequently, initial cellular immunotherapy trials utilizing autologous antitumor effector cells relied on antigen nonspecific effector cells such as lymphokine activated killer (LAK) cells

which had limited efficacy and pronounced toxicities (Rosenberg et al., *J. Natl. Cancer Inst.* 85:622 and 1091, 1993). In an attempt to enhance the tumor-specificity of infused effector cells, IL-2 expanded tumor-infiltrating lymphocytes (TIL) were evaluated (Rosenberg et. al., *N. Engl. J. Med.* 319:1676, 1988). Responses to TIL infusions were sporadic due in part to the heterogeneous population of cells expanded with unpredictable antitumor specificities. Patients with melanoma and renal cell carcinoma however occasionally manifested striking tumor regressions following TIL infusions and tumor-specific MHC-restricted T cell clones have been isolated from these patients.

Recently, expression cloning technologies have been developed to identify the genes encoding tumor antigens thereby facilitating the development of recombinant DNA-based vaccine strategies to initiate or augment host antitumor immunity, as well as *in vitro* culture systems for generating tumor-specific T cells from cancer patients (Van Pel et al., *Immunol. Rev.* 145:229, 1995). Clinical trials utilizing autologous tyrosinase-specific CTL for the treatment of melanoma are currently underway and will likely provide major insights into the efficacy of targeting tumors with antigen-specific MHC-restricted T cell clones [S. Riddell, personal communication].

The inclusion of hematogenous malignancies as targets for T cell therapy is warranted based on the observed graft versus leukemia (GVL) effect observed in the setting of allogeneic BMT and the capacity of donor buffy coat infusions to have anti-leukemic activity (Porter et al., *Cancer Treat Res.* 77:57, 1997). At present, it is clear that T cells present in the marrow graft mount a response to host minor histocompatibility antigens (mHA's) contributing to graft versus host

disease and there is increasing evidence that there may be T cell specificities for GVL that are distinct from those of GVHD on the basis of restricted tissue expression of a subset of mHA's (van Lochem et al., 5 *Bone Marrow Transplant.* 10:181, 1992). Nevertheless, the susceptibility of malignant B cells to CTL recognition and lysis is well documented (Cardoso et al., *Blood* 90:549, 1997; Dolstra et al., *J. Immunol.* 158:560, 1997). Efforts to target B cell lymphoma with 10 MHC-restricted CTL have focused on the lymphoma clone's idioype as a tumor-specific antigen. Murine models have demonstrated that CTL responses can be generated to immunoglobulin variable regions and that lymphoma cells process and present these determinants for T cell 15 recognition (Dohi et al., *J. Immunol.* 135:47, 1985; Chakrabarti et al., *Cell Immunol.* 144:455, 1992). Although these strategies are potentially tumor-specific, they are also patient specific thus making large scale application difficult.

20 Endowing T cells with a desired antigen specificity based on genetic modification with engineered receptor constructs is an attractive strategy since it bypasses the requirement for retrieving antigen-specific T cells from cancer 25 patients and, depending on the type of antigen recognition moiety, allows for targeting tumor cell-surface epitopes not available to endogenous T cell receptors. Studies to define the signaling function of individual components of the TCR-CD3 complex revealed 30 that chimeric molecules with intracellular domains of the CD3 complex's zeta chain coupled to extracellular domains which could be crosslinked by antibodies were capable of triggering biochemical as well as functional activation events in T cell hybridomas (Irving et al., 35 *Cell* 64:891, 1991). Recent advances in protein

engineering have provided methodologies to assemble single chain molecules consisting of antibody variable regions connected by a flexible peptide linker which recapitulate the specificity of the parental antibody
5 (Bird et al., *Science* 242:423, 1988 and 244(4903):409, 19989. Several groups have now reported on the capacity of chimeric single chain receptors consisting of an extracellular scFv and intracellular zeta domain to re-direct T cell specificity to tumor cells
10 expressing the antibody's target epitope; receptor specificities have included HER2/Neu, and less well characterized epitopes on renal cell and ovarian carcinoma (Gross et al., Eshhar et al., Stancovski et al., Moritz et al., Huw et al., Weitjens et al, *supra*).
15 An idiotype-specific scFv chimeric TCR has been described which recognizes the idiotype-expressing lymphoma cell's surface immunoglobulin as its ligand (Gross et al., *Biochem. Soc. Trans.* 23:1079, 1995). Although this approach swaps a low affinity MHC-
20 restricted TRC complex for a high affinity MHC-unrestricted molecular linked to an isolated member of the CD3 complex, these receptors do activate T cell effector functions in primary human T cells without apparent induction of subsequent anergy or apoptosis
25 (Weitjens et al., *supra*). Murine model systems utilizing scFv: ζ transfected CTL demonstrate that tumor elimination only occurs *in vivo* if both cells and IL-2 are administered, suggesting that in addition to activation of effector function, signaling through the
30 chimeric receptor is sufficient for T cell recycling (Hekele et al., *supra*).

Although chimeric receptor re-directed T cell effector function has been documented in the literature for over a decade, the clinical application of this
35 technology for cancer therapy is only now beginning to

be applied. *ex vivo* expansion of genetically modified T cells to numbers sufficient for re-infusion represents a major impediment for conducting clinical trials. Not only have sufficient cell numbers been 5 difficult to achieve, the retention of effector function following *ex vivo* expansion has not been routinely documented in the literature.

Treatment of CD20⁺ Malignancies with CD20-specific Redirected T cells

10 This invention represents the first attempt to target a universal B cell lymphoma cell-surface epitope with CD20-specific redirected T cells. Malignant B cells appear to be an excellent target for redirected T cells, as B cells can serve as immunostimulatory 15 antigen-presenting cells for T cells (Glimcher et al., 20, how. 155:445, 1982). IL-2 production by the CD20-specific scFvFc:ζ expressing Jurkat clones when co-cultured with CD20⁺ lymphoma did not require the addition of professional antigen presenting cells to 20 culture or pharmacologic delivery of a co-stimulatory signal by the phorbol ester PMA. The capacity of B cell lymphoma cells to deliver co-stimulatory signals in our model system is supported by our observation that Jurkat cells express the CD28 receptor and B cell 25 lymphoma lines used in this study are CD80-positive by flow cytometry (unpublished data). Immunohistochemical evaluation of lymphoma-containing lymph node specimens have detected CD80 expression by malignant B cells (Dorfman et al., *Blood* 90:4297, 1977). These 30 observations support the rationale for using adoptive transfer of CD20-specific scFvFc:ζ-expressing CD4⁺ T_{H1} cells in combination with CD8⁺ CTL based on their ability to produce IL-2 at sites of tumor where they

can support the expansion of transferred CTL. CD28 signaling has recently been reported to inhibit activation-induced cell death of CTL when delivering a lytic event to tumor target cells and may contribute to 5 the ease by which CTL are expanded *in vitro* and potentially *in vivo* when stimulated with transformed B cells such as LCL (Daniel et al., *J. Immunol.* 159:3808, 1997).

Lymphoma, by virtue of its lymph node tropism, is 10 anatomically ideally situated for T cell-mediated recognition and elimination. The localization of infused T cells to lymph node in large numbers has been documented in HIV patients receiving infusions of HIV-specific CD8⁺ CTL clones. In these patients, evaluation 15 of lymph node biopsy material revealed that infused clones constituted approximately 2-8% of CD8⁺ cells of lymph nodes [S. Riddell, personal communication]. Lymph node homing might be further improved by co-transfected T cells with a cDNA construct encoding the 20 L-selection molecule under a constitutive promoter since this adhesion molecule directs circulating T cells back to lymph nodes and is down-regulated by *in vitro* expansion (Chao et al., *J. Immunol.* 159:1686, 1997).

CD20 is an ideal target epitope for recognition by 25 CD20-specific redirected T cells due to the prevalence of CD20⁺ disease, the uniformity of expression by tumor cells, and the stability of the CD20 molecule on the cell surface. This 33 kDa protein which is expressed 30 on over 90% of B cell non-Hodgkins lymphoma, as well as normal mature B cells, but not hematopoietic stem cells or plasma cells, does not modulate or shed from the cell surface (Tedder et al., *Immunol. Today* 15:450, 1994. In addition to antitumor effector mechanisms 35 intrinsic to T cells, it has been recently reported

that CD20 crosslinking by soluble antibody can trigger apoptosis in selected B cell lymphoma lines (Shan et al., *Blood* 91:1664, 1998); such a killing mechanism may contribute to the biologic activity of CD20-specific scFvFc:ζ expressing T cells *in vivo* (Ghetie et al., *PNAS USA* 94:7509, 1997). Clinical trials evaluating the antitumor activity of chimeric anti-CD20 antibody IDEC-C2B8 (rituximab) in patients with relapsed low-grade non-Hodgkin's lymphoma have documented tumor responses in nearly half the patients treated and may reflect direct induction of apoptosis *in vivo* and/or the recruitment of antibody effector mechanisms via the human IgG₁ portion of the chimeric molecule (Maloney et al., *Blood* 90:2188, 1997). Radioimmunotherapy with ¹³¹I-conjugated and ⁹⁰Y-conjugated anti-CD20 antibodies have demonstrated marked clinical efficacy in patients with relapsed/refractory non-Hodgkin's lymphoma, but toxicities have been significant (Eary et al., *Recent Result Cancer Res.* 141:177, 1996). The adoptive transfer of CD20-specific cytolytic T cells focuses an antigen-specific cellular immune response against lymphoma cells. The capacity of T cells to traffic to lymph nodes, lyse multiple targets, proliferate in response to antigenic stimulation, and persist in the tumor-bearing host for prolonged periods of time will overcome some of the limitations of soluble antibody therapy. CD20, however, is a self antigen and therefore subject to immune tolerance mechanisms precluding the generation of endogenous CD20-specific T cell responses. Engineering a CD20-specific cTCR is therefore an approach to re-direct T cell specificity to the CD20 molecule.

We have found that expansion of CD20 specific re-directed CD8⁺ CTL clones with OKT3 and IL-2 routinely

results in the generation of greater than 10^9 cells over a period of approximately six weeks, and that the clones retain their effector function following expansion, as shown by functional chromium release assay data. Our observation that the plasmid/scFvFc: ζ system can generate transfectants with disrupted plasmid sequence underscores the desirability of cloning transfectants and expanding those clones demonstrating the presence of a single unarranged integrated plasmid, expression of the chimeric receptor, and the capacity to specifically recognize and lyse CD20 $^+$ lymphoma target cells.

CD20 is not tumor-specific and adoptive transfer of cells with this specificity is expected to kill the subset of non-transformed B cells which express CD20. Although CD20 is not expressed by hematopoietic stem cells or mature plasma cells, this cross-reactivity may exacerbate the humoral immunodeficiency of patients receiving chemotherapy and/or radiotherapy. Equipping T cells with a suicide gene such as the herpes virus thymidine kinase gene allows for *in vivo* ablation of transferred cells following adoptive transfer with pharmacologic doses of gancyclovir and is a strategy for limiting the duration or *in vivo* persistence of transferred cells (Bonini et al., Science 276:1719, 1997).

CD20-specific chimeric receptor-expressing T cells of this invention can be used to treat patients with CD20 $^+$ Non-Hodgkin's lymphoma and CD20 $^+$ acute and chronic leukemias. High relapse rates observed following autologous transplantation for leukemia can be reduced with post-transplant *in vivo* treatment with adoptively transferred CD20-specific redirected T cells to purge CD20 $^+$ leukemic stem cells. CD20-specific redirected T cells can be used to treat lymphoma patients with

refractory or recurrent disease. The CD20⁺ redirected T cells can be administered following myeloablative chemotherapy and stem cell rescue, when tumor burden and normal CD20⁺ cell burden are at a nadir and when the potential of an immunologic response directed against the scFvFc: ζ protein is minimized.

The anti-CD20 antibody IDEC-C2B8 (rituximab) is being used to treat a variety of autoimmune diseases as well as a method of immunosuppression prior to administering a foreign substance such as a monoclonal antibody or DNA or virus or cell in the situation where any immune response would decrease the effectiveness of the foreign agent. The CD20-specific chimeric receptor-expressing T cells of this invention can also be used for these purposes. Stated more generally, the CD20-specific chimeric receptor-expressing T cells of this invention can be used as a method to abrogate any untoward B cell function. These include antibody mediated autoimmune disease such as lupus and rheumatoid arthritis as well as any unwanted specific immune responses to a given antigen.

Patients can be treated by infusing therapeutically effective doses of CD8⁺ CD20-specific redirected T cells in the range of about 10⁶ to 10¹² or more cells per square meter of body surface (cells/m²). The infusion will be repeated as often and as many times as the patient can tolerate until the desired response is achieved. The appropriate infusion dose and schedule will vary from patient to patient, but can be determined by the treating physician for a particular patient. Typically, initial doses of approximately 10⁹ cells/m² will be infused, escalating to 10¹⁰ or more cells/m². IL-2 can be co-administered to expand infused cells post-infusion. The amount of IL-2 can be about 10³ to 10⁶ units per kilogram body

weight. Alternatively or additionally, an scFvFc: ζ -expressing CD4 $^{+}$ T_{H1} clone can be co-transferred to optimize the survival and *in vivo* expansion of transferred scFvFc: ζ -expressing CD8 $^{+}$ T cells.

5 The dosing schedule may be based on Dr. Rosenberg's published work (Rosenberg et al., 1988 and 1993, *supra*) or an alternate continuous infusion strategy may be employed. CD20-specific redirected T cells can be administered as a strategy to support CD8 $^{+}$ cells as well
10 as initiate/augment a Delayed Type Hypersensitivity response against CD20 $^{+}$ target cells.

CLAIMS:

1. Genetically engineered CD20-specific redirected T cells which express and bear on the cell surface membrane a CD20-specific chimeric receptor comprising an intracellular signaling domain, a transmembrane domain and an extracellular domain, the extracellular domain comprising a CD20-specific receptor.
- 5 2. CD20-specific redirected T cells of claim 1 which are non-malignant human cells.
- 10 3. CD20-specific redirected T cells of claim 2 which are CD4⁺ and which produce IL-2 when co-cultured *in vitro* with CD20⁺ lymphoma cells.
- 15 4. CD20-specific redirected T cells of claim 2 which are CD8⁺ and which lyse CD20⁺ lymphoma target cells when co-cultured *in vitro* with the target cells.
- 5 5. CD20-specific redirected T cells of claim 2 which comprise a mixed population of CD4⁺ and CD8⁺ cells.
- 20 6. CD20-specific redirected T cells of claim 2 wherein the CD20-specific receptor comprises the Fv region of a single chain monoclonal antibody to CD20.
7. CD20-specific redirected T cells of claim 6 wherein the intracellular signaling domain comprises the intracellular signaling domain of the zeta chain of human CD3.

8. CD20-specific redirected T cells of claim 7
wherein the CD20-specific chimeric receptor is
scFvFc:ζ, where scFv designates the V_H and V_L
chains of a single chain monoclonal antibody to
CD20, Fc represents at least part of a constant
region of an IgG₁, and ζ represents the
intracellular signaling domain of the zeta chain
of human CD3.

5
9. CD20-specific redirected T cells of claim 8
wherein the extracellular domain scFvFc and the
intracellular signaling domain ζ are linked by the
transmembrane domain of human CD4.

10
10. CD20-specific redirected T cells of claim 9
wherein the chimeric receptor is amino acids 21-
15 633 of Seq. ID No. 2.

11. A CD20-specific chimeric T cell receptor
comprising an intracellular signaling domain, a
transmembrane domain and an extracellular domain,
the extracellular domain comprising a CD20-
20 specific receptor.

12. CD20-specific chimeric T cell receptor of claim 11
which is scFvFc:ζ, where scFvFc represents the
extracellular domain, scFv designates the V_H and V_L
chains of a single chain monoclonal antibody to
CD20, Fc represents at least part of a constant
region of an IgG₁, and ζ represents the
intracellular signaling domain of the zeta chain
of human CD3.

13. CD20-specific chimeric T cell receptor of claim 12
30 wherein the scFvFc extracellular domain and the ζ

intracellular domain are linked by the transmembrane domain of human CD4.

14. CD20-specific chimeric T cell receptor of claim 13 which is amino acids 21-633 of Seq. ID. No. 2.

5 15. A DNA construct encoding a CD20-specific chimeric T cell receptor of any one of claims 11-14.

16. A plasmid expression vector containing a DNA construct of claim 15 in proper orientation for expression.

10 17. A method of treating a CD20⁺ malignancy in a mammal which comprises infusing into the animal CD20-specific redirected T cells of claim 1 in a therapeutically effective amount.

15 18. A method of treating a CD20⁺ malignancy in a human patient which comprises infusing into the patient human CD20-specific redirected T cells of any of claims 2 through 10 in a therapeutically effective amount and optionally contemporaneously administering to the patient IL-2 in an amount effective to augment the effect of the T cells.

20 19. Method of claim 18 where the patient has CD20⁺ non-Hodgkin's lymphoma or CD20⁺ acute or chronic leukemia.

25 20. Method of claim 19 wherein the patient has previously undergone myeloablative chemotherapy and stem cell rescue.

21. A method of making and expanding the CD20-

specific redirected T cells of claim 1 which comprises transfecting T cells with an expression vector containing a DNA construct encoding the CD20-specific chimeric receptor, then stimulating the cells with CD20⁺ cells, recombinant CD20, or an antibody to the receptor to cause the cells to proliferate.

- 5 22. A method of stably transfecting and redirecting T cells by electroporating T cells in presence of naked DNA comprising a plasmid expression vector containing a DNA construct encoding a chimeric T cell receptor.
- 10 23. Method of claim 22 wherein the DNA has been depleted of endotoxin and electroporation occurs after the cells have been stimulated with a mitogen.
- 15 24. Method of claim 22 wherein the T cells are non-malignant human cells.
- 20 25. Method of claim 23 wherein the T cells are peripheral blood mononuclear cells.
26. Method of claim 25 wherein the receptor is a scFvFc:ζ receptor.
27. Method of any of claims 22-26 wherein the transfectants are cloned and a clone demonstrating presence of a single integrated unarranged plasmid and expression of the chimeric receptor is expanded ex vivo.
28. Method of claim 27 wherein the clone selected for

expansion is CD8⁺ and demonstrates the capacity to specifically recognize and lyse CD20⁺ lymphoma target cells.

29. Method of claim 28 wherein the receptor is a scFvFc:ζ receptor and the clone is expanded by stimulation with IL-2 and OKT3 antibody.
5
30. A method of abrogating an untoward B cell function in a patient which comprises administering to the patient CD20-specific redirected T cells of claim 1 in a therapeutically effective amount.
10
31. Method of claim 30 wherein the CD20-specific redirected T cells are administered to treat an autoimmune disease in the patient.
32. Method of claim 31 wherein the autoimmune disease is lupus or rheumatoid arthritis.
15
33. Method of claim 30 wherein the CD20-specific redirected T cells are administered to produce immunosuppression in the patient prior to administering a foreign substance to the patient.
- 20 34. Method of claim 33 wherein the foreign substance is a monoclonal antibody, DNA, a virus or a cell.

1/3

FIG. 1

2/3

FIG. 2A**FIG. 2B****FIG. 2C****FIG. 2D**

3/3

FIG. 2E

FIG. 2F

FIG. 2G

FIG. 2H

SEQUENCE LISTING

<110> Raubitschek, Andrew
Jensen, Michael C.
Wu, Anna M.
City of Hope

<120> CD20-Specific Redirected T Cells and Their Use in
Cellular Immunotherapy of CD20+ Malignancies

<130> CD20-Specific T Cells

<140>
<141>

<150> 60/105,014
<151> 1998-10-20

<160> 14

<170> PatentIn Ver. 2.0

<210> 1
<211> 1947
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (27)..(1925)

<220>
<223> Description of Artificial Sequence: Chimeric

<400> 1
ccagtgaatt ctcaggagcc gccacc atg gag aca gac aca ctc ctg cta tgg 53
Met Glu Thr Asp Thr Leu Leu Leu Trp
1 5

gtg ctg ctg ctc tgg gtt cca ggt tcc aca ggt gac att gtg ctg acc 101
Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Ile Val Leu Thr
10 15 20 25

caa tct cca gct atc ctg tct gca tct cca ggg gag aag gtc aca atg 149
Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met
30 35 40

act tgc agg gcc agc tca agt gta aat tac atg gac tgg tac cag aag 197
Thr Cys Arg Ala Ser Ser Val Asn Tyr Met Asp Trp Tyr Gln Lys
45 50 55

aag cca gga tcc tcc ccc aaa ccc tgg att tat gcc aca tcc aac ctg 245
Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu
60 65 70

gct tct gga gtc cct gct cgc ttc agt ggc agt ggg tct ggg acc tct		293
Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Thr Ser		
75	80	85
tac tct ctc aca atc agc aga gtg gag gct gaa gat gct gcc act tat		341
Tyr Ser Leu Thr Ile Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr		
90	95	100
105		
tac tgc cag cag tgg agt ttt aat cca ccc acg ttc gga ggg ggg acc		389
Tyr Cys Gln Gln Trp Ser Phe Asn Pro Pro Thr Phe Gly Gly Gly Thr		
110	115	120
aag ctg gaa ata aaa ggc agt act agc ggt ggt ggc tcc ggg ggc ggt		437
Lys Leu Glu Ile Lys Gly Ser Thr Ser Gly Gly Ser Gly Gly Gly		
125	130	135
tcc ggt ggg ggc ggc agc agc gag gtg cag ctg cag cag tct ggg gct		485
Ser Gly Gly Gly Ser Ser Glu Val Gln Leu Gln Gln Ser Gly Ala		
140	145	150
gag ctg gtg aag cct ggg gcc tca gtg aag atg tcc tgc aag gct tct		533
Glu Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser		
155	160	165
ggc tac aca ttt acc agt tac aat atg cac tgg gta aag cag aca cct		581
Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro		
170	175	180
185		
gga cag ggc ctg gaa tgg att gga gct att tat cca gga aat ggt gat		629
Gly Gln Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp		
190	195	200
act tcc tac aat cag aag ttc aaa ggc aag gcc aca ttg act gca gac		677
Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp		
205	210	215
aaa tcc tcc agc aca gcc tac atg cag ctc agc agc ctg aca tct gag		725
Lys Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu		
220	225	230
gac tct gcg gac tat tac tgt gca aga tct aat tat tac ggt agt agc		773
Asp Ser Ala Asp Tyr Tyr Cys Ala Arg Ser Asn Tyr Tyr Gly Ser Ser		
235	240	245
tac tgg ttc ttc gat gtc tgg ggc gca ggg acc acg gtc acc gtc tcc		821
Tyr Trp Phe Phe Asp Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser		
250	255	260
265		
tca ctc gac ccc aaa tct tct gac aaa act cac aca tgc cca ccg tgc		869
Ser Leu Asp Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys		
270	275	280
cca gca cct gaa ctc ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca		917
Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro		
285	290	295

aaa ccc aag gac acc ctc atg atc tcc cg_g acc cct gag gtc aca tgc 965
 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
 300 305 310

gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc aag ttc aac tgg 1013
 Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
 315 320 325

tac gtg gac ggc gtg gag gtg cat aat gcc aag aca aag ccg cg_g gag 1061
 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
 330 335 340 345

gag cag tac aac agc acg tac cgt gtg gtc agc gtc ctc acc gtc ctg 1109
 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
 350 355 360

cac cag gac tgg ctg aat ggc aag gag tac aag tgc aag gtc tcc aac 1157
 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
 365 370 375

aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aaa gcc aaa ggg 1205
 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
 380 385 390

cag ccc cga gaa cca cag gtg tac acc ctg cca cca tca cga gat gag 1253
 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu
 395 400 405

ctg acc aag aac cag gtc agc ctg acc tgc ctg gtc aaa ggc ttc tat 1301
 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
 410 415 420 425

ccc agc gac atc gcc gtg gag tgg gag agc aat ggg cag ccg gag aac 1349
 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
 430 435 440

aac tac aag acc acg cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc 1397
 Asn Tyr Lys Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
 445 450 455

ctc tac agc aag ctc acc gtg gac aag agc agg tgg cag cag ggg aac 1445
 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
 460 465 470

gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac aac cac tac acg 1493
 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
 475 480 485

cag aag agc ctc tcc ctg tct ccc ggg aaa atg gcc ctg att gtg ctg 1541
 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Met Ala Leu Ile Val Leu
 490 495 500 505

ggg ggc gtc gcc ggc ctc ctg ctt ttc att ggg cta ggc atc ttc ttc 1589
 Gly Gly Val Ala Gly Leu Leu Leu Phe Ile Gly Leu Gly Ile Phe Phe
 510 515 520

aga gtg aag ttc agc agg agc gca gac gcc ccc gcg tac cag cag ggc 1637
 Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
 525 530 535

cag aac cag ctc tat aac gag ctc aat cta gga cga aga gag gag tac 1685
 Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr
 540 545 550

gat gtt ttg gac aag aga cgt ggc cgg gac cct gag atg ggg gga aag 1733
 Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
 555 560 565

ccg aga agg aag aac cct cag gaa ggc ctg tac aat gaa ctg cag aaa 1781
 Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
 570 575 580 585

gat aag atg gcg gag gcc tac agt gag att ggg atg aaa ggc gag cgc 1829
 Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
 590 595 600

cgg agg ggc aag ggg cac gat ggc ctt tac cag ggt ctc agt aca gcc 1877
 Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
 605 610 615

acc aag gac acc tac gac gcc ctt cac atg cag gcc ctg ccc cct cgc 1925
 Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
 620 625 630

taagcggccg cgaagcttcc gc 1947

<210> 2

<211> 633

<212> PRT

<213> Artificial Sequence

<400> 2

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 1 5 10 15

Gly Ser Thr Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ile Leu Ser
 20 25 30

Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser
 35 40 45

Val Asn Tyr Met Asp Trp Tyr Gln Lys Lys Pro Gly Ser Ser Pro Lys
 50 55 60

Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg
 65 70 75 80

Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg
 85 90 95

Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Phe
100 105 110

Asn Pro Pro Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Gly Ser
115 120 125

Thr Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Ser Ser
130 135 140

Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala
145 150 155 160

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
165 170 175

Asn Met His Trp Val Lys Gln Thr Pro Gly Gln Gly Leu Glu Trp Ile
180 185 190

Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe
195 200 205

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
210 215 220

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Asp Tyr Tyr Cys
225 230 235 240

Ala Arg Ser Asn Tyr Tyr Gly Ser Ser Tyr Trp Phe Phe Asp Val Trp
245 250 255

Gly Ala Gly Thr Thr Val Thr Val Ser Ser Leu Asp Pro Lys Ser Ser
260 265 270

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
275 280 285

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
290 295 300

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
305 310 315 320

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
325 330 335

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
340 345 350

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
355 360 365

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
370 375 380

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
385 390 395 400

Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser
 405 410 415

 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
 420 425 430

 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
 435 440 445

 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
 450 455 460

 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
 465 470 475 480

 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
 485 490 495

 Pro Gly Lys Met Ala Leu Ile Val Leu Gly Gly Val Ala Gly Leu Leu
 500 505 510

 Leu Phe Ile Gly Leu Gly Ile Phe Phe Arg Val Lys Phe Ser Arg Ser
 515 520 525

 Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu
 530 535 540

 Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg
 545 550 555 560

 Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln
 565 570 575

 Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr
 580 585 590

 Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp
 595 600 605

 Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala
 610 615 620

 Leu His Met Gln Ala Leu Pro Pro Arg
 625 630

<210> 3
 <211> 32
 <212> DNA
 <213> Murine

<400> 3
 ggtgatatcw tgmtgaccca awgtccactc tc

<210> 4
<211> 32
<212> DNA
<213> Murine

<400> 4
ggtgatatcg tkctcacyca rtctccagca at 32

<210> 5
<211> 36
<212> DNA
<213> Murine

<400> 5
gaggtgaagc tgcaggagtc aggacctagc ctggtg 36

<210> 6
<211> 22
<212> DNA
<213> Murine

<400> 6
aggtsmagct gcagsagtcw gg 22

<210> 7
<211> 22
<212> DNA
<213> Murine

<400> 7
aggtsmagct gcagsagtcw gg 22

<210> 8
<211> 26
<212> DNA
<213> Murine

<400> 8
cggaattcag gggccagtgg atagac 26

<210> 9
<211> 26
<212> DNA
<213> Murine

<400> 9
cggaattcgg atggtggaa gatgga 26

<210> 10
<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: J_segment

<400> 10

Gly Ser Thr Ser Gly Gly Ser Gly Gly Ser Gly Gly Gly
1 5 10 15

Ser Ser

<210> 11

<211> 33

<212> DNA

<213> Homo sapiens

<400> 11

ggggaattcc ctcagcctct gcctcccagc ctc 33

<210> 12

<211> 33

<212> DNA

<213> Homo sapiens

<400> 12

ggggaattca tctgggcgtc tgcaggtctg gcc 33

<210> 13

<211> 20

<212> DNA

<213> Homo sapiens

<400> 13

ttcagcagga gcgcagcagc 20

<210> 14

<211> 20

<212> DNA

<213> Homo sapiens

<400> 14

tagcgagggg gcagggcctg 20

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/24484

A. CLASSIFICATION OF SUBJECT MATTER		
IPC 7 C12N5/10 C12N15/62 C12N15/85 A61K48/00 A61P35/00 //C07K16/28, C07K14/705, C07K16/00		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>M. JENSEN ET AL.: "CD20 is a molecular target for scFvFc:zeta receptor redirected T cells: implications for cellular immunotherapy of CD20+ malignancy." BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, vol. 4, no. 2, 1998, pages 75-83, XP000910525 Charlotteville, VA, USA the whole document</p> <p>----</p> <p>-/-</p>	1-34
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family		
Date of the actual completion of the international search		Date of mailing of the international search report
17 May 2000		30/05/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk		Authorized officer

INTERNATIONAL SEARCH REPORT

International Application No
 PCT/US 99/24484

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	H. ABKEN ET AL.: "Can combined T-cell- and antibody-based immunotherapy outsmart tumor cells?" IMMUNOLOGY TODAY, vol. 19, no. 1, January 1998 (1998-01), pages 1-5, XP004101455 Amsterdam, The Netherlands the whole document ---	1-34
Y	H. HAISMA ET AL.: "Construction and characterization of a fusion protein of single-chain anti-CD20 antibody and human beta-glucuronidase for antibody-directed enzyme prodrug therapy." BLOOD, vol. 92, no. 1, 1 July 1998 (1998-07-01), pages 184-190, XP002076505 New York, NY, USA abstract ---	1-34
Y	WO 97 23613 A (CELLTECH THERAPEUTICS LTD.) 3 July 1997 (1997-07-03) figures 1,2A,14,15 claims page 18, line 14 - line 29 page 19, line 26 -page 20, line 5 ---	1-34
Y	WO 94 11026 A (IDEC PHARMACEUTICALS CORPORATION) 26 May 1994 (1994-05-26) examples claims ---	1-34
Y	WO 98 41613 A (G. OTTEN ET AL.) 24 September 1998 (1998-09-24) examples claims ---	1-34
A	D. ANDERSON ET AL.: "Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin's B-cell lymphoma." BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 25, 1997, pages 705-708, XP002078838 the whole document ---	1-34
-/--		

INTERNATIONAL SEARCH REPORT

Int. tional Application No
 PCT/US 99/24484

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>G. GROSS ET AL.: "Endowing T cells with antibody specificity using chimeric T cell receptors." THE FASEB JOURNAL, vol. 6, no. 15, December 1992 (1992-12), pages 3370-3378, XP002137900 Bethesda, MD, USA cited in the application page 3376, left-hand column, line 17 - line 51 figure 1</p> <p>---</p>	1-34
A	<p>US 5 359 046 A (CAPON ET AL.) 25 October 1994 (1994-10-25) example 3 claims</p> <p>---</p>	1-34
P, X	<p>M. JENSEN ET AL.: "Specific recognition and lysis of CD20+ lymphoma cells by primary human CD8+ CTL clones genetically modified to express a CD20-specific chimeric immunoreceptor." BLOOD, vol. 92, no. 10, suppl. 1 (part 1 of 2), 15 November 1998 (1998-11-15), page 245a XP000906991 New York, NY, USA abstract # 998</p> <p>-----</p>	1-34

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 99/24484

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Remark: Although claims 17-20 and 30-34 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte	onal Application No
PCT/US 99/24484	

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9723613	A	03-07-1997		AU 1201997 A CA 2238873 A EP 0870019 A JP 2000502562 T		17-07-1997 03-07-1997 14-10-1998 07-03-2000
WO 9411026	A	26-05-1994		US 5736137 A AT 139900 T AU 688743 B BG 62386 B BG 99701 A CA 2149329 A DE 69303494 D DE 69303494 T DK 669836 T EP 0669836 A EP 0752248 A ES 2091684 T FI 952327 A GR 3020731 T JP 8503468 T LV 11732 A LV 11732 B MD 1367 B NO 951903 A NZ 258392 A PL 309002 A PL 174721 B US 5776456 A US 5843439 A AU 5603294 A CN 1094965 A HU 72914 A PL 175557 B SG 45294 A ZA 9308466 A		07-04-1998 15-07-1996 19-03-1998 29-10-1999 29-02-1996 26-05-1994 08-08-1996 16-01-1997 14-10-1996 06-09-1995 08-01-1997 01-11-1996 10-07-1995 30-11-1996 16-04-1996 20-04-1997 20-10-1997 31-12-1999 13-07-1995 22-09-1997 18-09-1995 30-09-1998 07-07-1998 01-12-1998 08-06-1994 16-11-1994 28-06-1996 29-01-1999 16-01-1998 20-06-1994
WO 9841613	A	24-09-1998		AU 6537798 A		12-10-1998
US 5359046	A	25-10-1994		AT 145428 T AU 643109 B AU 9172291 A CA 2074825 A DE 69123241 D DE 69123241 T DK 517895 T EP 0517895 A EP 0732402 A ES 2096749 T GR 3022538 T NO 923171 A WO 9210591 A		15-12-1996 04-11-1993 08-07-1992 15-06-1992 02-01-1997 17-04-1997 07-04-1997 16-12-1992 18-09-1996 16-03-1997 31-05-1997 28-09-1992 25-06-1992

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.