Exercices de sécurité par les jeux (EUF-CMA, réductions)

(inspiré Katz & Lindell)

Conventions

On travaille dans le cadre standard des jeux de sécurité : pour un schéma Π , un adversaire PPT A et un jeu Game_{Π} , on note

$$\mathsf{Adv}_{A,\Pi} := \Pr[\mathsf{Game}_{\Pi}(A) = 1].$$

Un schéma de signature $\Pi = (\mathsf{KeyGen}, \mathsf{Sign}, \mathsf{Verify})$ est (t, ε) -EUF-CMA sûr si pour tout A probabiliste s'exécutant en temps $\leq t$ on a $\mathsf{Adv}_{A,\Pi} \leq \varepsilon$ dans le jeu Inforgo4 (l'adversaire dispose d'un oracle de signature et doit forger une signature valide nouvelle).

Exercice 1 (Concaténation de deux signatures). Soient deux schémas de signatures Π_1 et Π_2 respectivement (t_1, ε_1) - et (t_2, ε_2) -EUF-CMA sûrs. On définit Π_{concat} par :

```
\mathsf{KeyGen}: \ (sk_1,vk_1) \leftarrow \Pi_1.\mathsf{KeyGen}, \ (sk_2,vk_2) \leftarrow \Pi_2.\mathsf{KeyGen}, \ \mathit{retourner} \ ((sk_1,sk_2),(vk_1,sk_2),(vk_1,sk_2),m) : \ (\sigma_1,\sigma_2) \leftarrow (\Pi_1.\mathsf{Sign}(sk_1,m), \ \Pi_2.\mathsf{Sign}(sk_2,m)); \mathsf{Verify}((vk_1,vk_2),m,(\sigma_1,\sigma_2)) : \ \mathit{retourner} \ \Pi_1.\mathsf{Verify}(vk_1,m,\sigma_1) \wedge \Pi_2.\mathsf{Verify}(vk_2,m,\sigma_2).
```

Montrer qu'il existe une constante K telle que Π_{concat} est

$$(\max(\varepsilon_1, \varepsilon_2), \min(t_1, t_2) - K)$$
-EUF-CMA \hat{sur} .

Indications / preuve esquissée. Soit A^* un adversaire contre Π_{concat} . Construire B_1 qui attaque $\Pi_1: B_1$ reçoit vk_1 et un oracle $\mathsf{Sign}_1(\cdot): il$ génère localement $(sk_2, vk_2): four$ nit (vk_1, vk_2) à $A^*: lorsqu'on$ lui demande $\mathsf{Sign}(m)$ pour le système concaténé, B_1 renvoie $(\mathsf{Sign}_1(m), \ \Pi_2.\mathsf{Sign}(sk_2, m))$. Si A^* sort $(m^*, (\sigma_1^*, \sigma_2^*))$ valide avec m^* nouveau, alors B_1 rend (m^*, σ_1^*) et gagne contre Π_1 . Simulation parfaite $\Rightarrow \mathsf{Adv}_{B_1,\Pi_1} = \mathsf{Adv}_{A^*,\Pi_{concat}}$ et $\mathsf{Temps}(B_1) = \mathsf{Temps}(A^*) + K$. Par sécurité de Π_1 , $\mathsf{Adv}_{A^*,\Pi_{concat}} \leq \varepsilon_1$ pour tout A^* de temps $\leq t_1 - K$. De manière symétrique, on obtient $\mathsf{Adv}_{A^*,\Pi_{concat}} \leq \varepsilon_2$ si $\mathsf{Temps}(A^*) \leq t_2 - K$. En combinant, pour tout A^* de temps $\leq \min(t_1,t_2) - K$:

$$\mathsf{Adv}_{A^*,\Pi_{concat}} \leq \max(\varepsilon_1, \varepsilon_2).$$

Exercice 2 (Signer puis chiffrer). Soient un schéma de signature Π_S (EUF-CMA sûr) et un schéma de chiffrement à clé publique Π_E (IND-CPA sûr). Définir Π_{SE} :

```
\mathsf{KeyGen}: \ (sk_S, vk_S) \leftarrow \Pi_S. \mathsf{KeyGen}, \ (sk_E, vk_E) \leftarrow \Pi_E. \mathsf{KeyGen}; \\ \mathit{SignEnc}((sk_S, sk_E), m): \ \sigma \leftarrow \Pi_S. \mathsf{Sign}(sk_S, m); \ c \leftarrow \Pi_E. \mathsf{Enc}(vk_E, (m, \sigma)); \\ \mathit{VerifyDec}((vk_S, vk_E), c): \ (m, \sigma) \leftarrow \Pi_E. \mathsf{Dec}(sk_E, c); \ \mathit{return} \ \Pi_S. \mathsf{Verify}(vk_S, m, \sigma). \\ \end{cases}
```

Montrer que Π_{SE} est EUF-CMA sûr si Π_{S} est EUF-CMA et Π_{E} IND-CPA.

Indications / preuve esquissée. Adversaire A^* contre EUF de Π_{SE} . Construire B contre EUF de Π_S : B reçoit vk_S et un oracle Sign_S . Il gère localement (sk_E, vk_E) et publie (vk_S, vk_E) à A^* . Pour simuler $\mathsf{SignEnc}(m)$, B obtient $\sigma \leftarrow \mathsf{Sign}_S(m)$ puis chiffre localement $c \leftarrow \mathsf{Enc}(vk_E, (m, \sigma))$ et rend c. Quand A^* rend une forge c^* menant à (m^*, σ^*) tel que $\mathsf{Verify}_S(vk_S, m^*, \sigma^*) = 1$ et m^* nouveau, B rend (m^*, σ^*) . La vue d' A^* est identique (chiffrement public). Donc $\mathsf{Adv}_{B,\Pi_S} = \mathsf{Adv}_{A^*,\Pi_{SE}}$ et la sécurité EUF de Π_S conclut. L'hypothèse IND-CPA assure que le chiffrement n'aide pas à détecter d'enseignements supplémentaires (mais ici B chiffre lui-même, donc simulation parfaite).

Exercice 3 (Hash-then-Sign). Soit Π un schéma de signature EUF-CMA sûr et H une fonction de hachage résistante aux collisions. On définit

$$\Pi_H: \quad \mathsf{Sign}_H(sk,m) = \Pi. \mathsf{Sign}(sk,H(m)), \qquad \mathsf{Verify}_H(vk,m,\sigma) = \Pi. \mathsf{Verify}(vk,H(m),\sigma).$$

Montrer que Π_H est EUF-CMA sûr si Π est EUF-CMA et H collision-résistante.

Indications / preuve esquissée. Soit A^* un adversaire qui gagne contre Π_H . Deux cas mutuellement exclusifs selon le message forgé m^* :

- (i) $H(m^*)$ a déjà été signé pour un autre message $m \neq m^*$ demandé à l'oracle. Alors $H(m) = H(m^*)$ avec $m \neq m^*$ est une collision : on construit un réducteur B_{coll} qui relaie les requêtes de A^* , collecte (m, m^*) et sort la collision. On obtient $\Pr[\text{collision}] \geq \Pr[\text{cas }(i)]$.
- (ii) $H(m^*)$ est nouveau. Alors $(H(m^*), \sigma^*)$ est une forge pour Π . Construire B_{Π} qui utilise A^* et remplace l'oracle $\mathsf{Sign}_H(m)$ par $\mathsf{Sign}(H(m))$ de Π . Simulation parfaite $\Rightarrow \mathsf{Pr}[forge \ \Pi] \geq \mathsf{Pr}[cas \ (ii)]$.

Par lemme de partition, $\Pr[A^* \text{ gagne } \Pi_H] \leq \Pr[\text{collision}] + \Pr[\text{forge } \Pi] \leq \varepsilon_H + \varepsilon_\Pi$.

Exercice 4 (Répétition r fois (majoration par union bound)). Soit Π un schéma (t, ε) -EUF-CMA sûr. On définit Π_{rep} qui signe r fois le même message avec des clés indépendantes :

$$\mathsf{KeyGen}:\ (sk_i,vk_i) \leftarrow \Pi.\mathsf{KeyGen}\ pour\ i=1..r; \qquad \mathsf{Sign}:\ \sigma_i \leftarrow \Pi.\mathsf{Sign}(sk_i,m); \mathsf{Verify}:\ \bigwedge_{i=1}^r \Pi.\mathsf{Verify}(vk_i,m,\sigma_i)$$

Montrer que Π_{rep} est $(t - K, r\varepsilon)$ -EUF-CMA sûr.

Indications / preuve esquissée. Si A^* forge sur Π_{rep} alors il existe un i pour lequel (m^*, σ_i^*) est une forge contre la i-ème instance de Π . Construire B_i qui fixe l'instance i comme challenge et génère localement les autres clés. Par union bound,

$$\Pr[A^* \ gagne \ \Pi_{rep}] \leq \sum_{i=1}^r \Pr[B_i \ gagne \ \Pi] \leq r\varepsilon,$$

et le surcoût de simulation est une constante K (générations et signatures locales).

Remarque pratique. Dans toutes les preuves ci-dessus, la constante K regroupe les coûts fixes de simulation (une ou plusieurs KeyGen locales, quelques appels à Sign locaux, tenue d'ensembles Q). Les jeux utilisés sont des simulations parfaites (pas de perte sauf K en temps), d'où des réductions serrées.