Byzantine Vector Consensus in Complete Graphs

Nitin Vaidya

University of Illinois at Urbana-Champaign

Vijay Garg University of Texas at Austin

Vector Consensus

In a lot of linear optimization problems, the feasible solutions lies inside a convex region.

Byzantine General Consensus

Works for one dimension

Agreement: non-faulty processes agree on the same value

Non-triviality

Termination

 $n \ge 3f+1$

Naive Solution: BGA on each dimension

Tverberg's Theorem

We have n points, each has d-dimensions

How to divide the points so that each partition intersects with other partitions on at least one point.

In particular, n ≥(d+1)f+1, there's a set of f+1 partitions such that all the convex hulls intersects.

$$n \ge (d+1)f+1$$
 for $n = 7$, $d = 2$, $f = 2$

Tverberg's partition exists for any |n - f| subset:

n = 5, t = 1, d = 2

All non-faulty processes can use a predetermined algorithm to find a location in this region. For example, use linear programming to locate an optimal point inside this region

Summary

The problem of Byzantine vector consensus(BVC) requires agreement on a d-dimensional vector that is in the convex hull of the d-dimensional input vectors of the non-faulty processes. This paper states the following:

- In synchronous systems, n ≥ max(3f +1, (d+1)f +1) is necessary and sufficient for achieving exact Byzantine vector consensus.
- In asynchronous systems, exact consensus is impossible in presence of faulty processes. n ≥ (d+2)f+1 is necessary and sufficient to achieve approximate Byzantine vector consensus.

Exact Vector Consensus

- Agreement: The decision vector at all the non-faulty processes must be identical.
- Validity: The decision vector at each non-faulty process must be in the convex hull of the input vectors of all non-faulty processes.

■ Termination: Each non-faulty process must terminate after a finite amount of time.

Inputs $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Traditional Consensus Problem

Special case of vector consensus: d = 1

Necessary & sufficient condition for complete graphs:

$$n \geq 3f + 1$$

in synchronous [Lamport,Shostak,Pease] & asynchronous systems [Abraham,Amit,Dolev]

Synchronous Systems: $n \ge max(3,d+1) f + 1 necessary$

 $n \ge 3f + 1$ necessary due to Lamport, Shostak, Pease

Synchronous Systems: n ≥ max(3,d+1) f +1 necessary

n ≥ 3f +1 necessary due to Lamport, Shostak, Pease

■ Proof of $n \ge (d+1) f + 1$ by contradiction ...

suppose that
$$f = 1$$
$$n \le (d+1)$$

$$n \le d+1 = 3$$
 when $d = 2$

Three processes, with inputs are shown below

Process A's Viewpoint

If B faulty: output on green segment (for validity)

Process A's Viewpoint

- If B faulty: output on green segment (for validity)
- If C faulty: output on red segment

Process A's Viewpoint

- If B faulty: output on green segment (for validity)
- If C faulty: output on red segment
- → Output must be on both segments = initial state

$$d = 2$$

- Validity forces each process to choose output = own input
- → No agreement
- \rightarrow n = (d+1) insufficient when f = 1
- → By simulation, (d+1)f insufficient

Synchronous System $n \ge max(3,d+1) f + 1$

1. Reliably broadcast input vector to all processes [Lamport,Shostak,Pease]

2. Receive multiset Y containing n vectors

3. Output = a deterministically chosen point in

$$\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \operatorname{Hull}(T)$$

$$d = 2$$
, $f = 1$, $n = 4$

Y contains 4 points, one from faulty process

$$n-f=3$$

- Y contains 4 points, one from faulty process
- Output in intersection of hulls of (n-f)-sets in Y

Proof of Validity

Output in
$$\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \operatorname{Hull}(T)$$

- Claim 1 : Intersection is non-empty
- Claim 2 : All points in intersection are in convex hull of fault-free inputs

Approximate Vector Consensus

- **ε-Agreement**: Decision vectors at any two non-faulty processes must be within e of each other, where e > 0 is a pre-defined constant
- Validity: The decision vector at each non-faulty process must be in the convex hull of the input vectors of all non-faulty processes.

■ Termination: Each non-faulty process must terminate after a finite amount of time.

ε = 0.04

Asynchronous BVC

Abraham, Amit and Dolev (AAD) proposed that the consensus can be approximated.

Each process i performs:

 $V_{i}[t - 1],$

state of at least n-f other processes,

Compute V_i[t]

V_i converges for all non-faulty processes.

approximate BVC work when $n-f \ge (d+1)f + 1$, or $n \ge (d+2)f + 1$

