

Universidad Centroccidental "Lisandro Alvarado" Decanato de Ciencias y Tecnología

INTERCONEXIÓN EN REDES TCP/IP

Prof. Euvis Piña Duin

CONTENIDO

- Arquitectura TCP/IP
- Direcciones IP
- Encaminamiento IP
 - Reenvío ("forward") y Tipos de Entrega
 - Tablas de Rutas: contenido, uso en el reenvío de mensajes, principios asociados, actualización
 - Configuración de la red
- Mecanismos de Transición
 - Doble Pila
 - Tunelización
 - Traducción.

ENCAMINAMIENTO IP

Reenvio (forward)

Las comunicación entre redes diferentes (con prefijos distintos) se logra usando *enrutadores*, los cuales reenvían (forward) los mensajes recibidos al siguiente nodo que está en el camino hacia su destino final. Para ello toma en cuenta la información de las *Tablas de Rutas*.

Forouzan – Sección: 22.1, 22.2, 22.3 (inicio)

ENCAMINAMIENTO IP

Reenvio (forward)

Tipos de Entrega

- Directa: Aquella que se hace al destinatario final de un mensaje.
- Indirecta: Aquella que se hace a un nodo intermediario en una comunicación.

b. Indirect and direct delivery

ENCAMINAMIENTO IP

Contenido de la Tabla de Rutas

$\mathbf{F}1$	ags:
T.1	ags.

- U El enrutador está activo
- G El destino está en otra red
- H Dirección de un nodo específico
- D Adicionado por redirección
- M Modificado por redirección

ENCAMINAMIENTO IP

Uso de la Tabla de Rutas en el reenvío de datagramas

- Algoritmo en de Encaminamiento

Para determinar a quien enviar el datagrama recibido, el enrutador debe:

- Extraer la dirección IP de destino, D, del datagrama
- Computar el prefijo de red, N, por cada entrada en la tabla de Ruteo hasta encontrar la red, subred o nodo destino:

N = Máscara (Tabla de Ruteo) & D

❖ Si N = DirecciónDestino,

Si G ∈ Flags, enviar el datagrama a NextHop sino enviar el datagrama a D

- N puede corresponder a:
 - Cualquier dirección de red directamente conectada
 - Anfitrión específico
 - Red no conectada directamente
 - Ninguna red conocida (utilizar la ruta asignada por omisión)

ENCAMINAMIENTO IP

Ejemplo: Uso de la Tabla de Rutas en el reenvío de datagramas

ENCAMINAMIENTO IP

Ejemplo: Uso de la Tabla de Rutas en el reenvío de datagramas

ENCAMINAMIENTO IP

192 16 7 52

194.17.21.68

ENCAMINAMIENTO IP

Ejemplo: Uso de la Tabla de Rutas en el reenvío de datagramas

R1 recibe un paquete con destino: 192.16.7.14

				.5
	Máscara	IP Destino	Prox. Salto	Interface
_				
	<u>255.255.255.255</u>	<u> 194.17.21.16</u>	111.20.18.14	m0
	255.255.255.224	193.14.5.160	-	
	255.255.255.224	193.14.5.192		m1
	255.255.255.0	192.16.7.0	111.15.17.32	m0
	255.255.255.0	194.17.21.0	111.20.18.14	m0
	255.0.0.0	111.0.0.0	-	m0
	0.0.0.0	0.0.0.0	111.30.31.18	m0

El algoritmo aplica cada máscara de la tabla de enrutamiento a la IP destino del mensaje recibido y el resultado lo compara con la IP correspondiente (segunda columna):

Host-specific

192.16.7.14 & 255.255.255.255 -> 192.16.7.14 no match

Direct delivery

192.16.7.14 & 255.255.255.224 -> 192.16.7.0 no match

192.16.7.14 & 255.255.255.224 -> 192.16.7.0 no match

Network-specific

192.16.7.14 & 255.255.255.0 -> 192.16.7.0 match

Prof. Euvis Piña Duin

ENCAMINAMIENTO IP

ENCAMINAMIENTO IP

Ejercicio 1: Uso de la Tabla de Rutas en el reenvío de datagramas

Dada la siguiente Tabla de Enrutamiento, indicar a cual "router siguiente" se enviarán los mensajes recibidos, si las IPs destino son:

- **193.14.5.191**
- 194.17.21.17
- 105.32.0.45

TABLA EN ROUTER I				
Mask	Dest	Next Hop	Interface	
255.255.255.252	194.17.21.16	111.20.18.14	m0	
255.255.255.224	193.14.5.160	Li d i.	m2	
255.255.255.224	193.14.5.192	(<u>=</u>)	m1	
255.255.255.0	192.16.7.0	111.15.17.32	m0	
255.0.0.0	111.0.0.0	=	m0	
0.0.0.0	0.0.0.0	111.30.31.18	m0	
0.0.0.0	0.0.0.0	111.50.51.16	1110	

ENCAMINAMIENTO IP

Ejercicio 1: Uso de la Tabla de Rutas en el reenvío de datagramas

- 193.14.5.191 & 255.255.255.252 = 193.14.5.188 X
- 193.14.5.191 & 255.255.255.224 = 193.14.5.160 $\sqrt{}$
- 194.17.21.17 & ...
- 105.32.0.45 & ...

	TABLA EN ROUTER I					
Mask	Dest	Next Hop	Interface			
255.255.255.252	194.17.21.16	111.20.18.14	l m0			
255.255.255.224	193.14.5.160	-	m2			
255.255.255.224	193.14.5.192	-	m1			
255.255.255.0	192.16.7.0	111.15.17.32	. m0			
255.0.0.0	111.0.0.0	-	m0			
0.0.0.0	0.0.0.0	111.30.31.18	m0			

ENCAMINAMIENTO IP

Uso de la Tabla de Rutas en el reenvío de datagramas

- Principio: Agregación de Rutas

Mask	Network address	Next-hop address	Interface
/26	140.24.7.0		m0
/26	140.24.7.64		m1
/26	140.24.7.128		m2
/26	140.24.7.192		m3
/0	0.0.0.0	default router	m4

Routing table for R1

Mask	Network address	Next-hop address	Interface
/24	140.24.7.0		m0
/0	0.0.0.0	default router	m1
Routing tal	le for R2	::-	*

Los bloques de direcciones de varias organizaciones son fusionadas en un bloque más grande.

ENCAMINAMIENTO IP

Uso de la Tabla de Rutas en el reenvío de datagramas

- Principio: Agregación de Rutas
 - Se calculan los valores binarios de las direcciones extremas:

	Notación decimal	Notación binaria				
más baja	a 234.170.168.0	11101010	10101010	10101	000	00000000
más alta	234.170.175.255	11101010	10101010	10101	111	11111111

Calcular la máscara colocando 1 en el prefijo que es común en las 2 direcciones y 0 en las demás posiciones:

```
11111111 11111111 11111 000 00000000 255. 255. 248. 0
```

❖ Se define la nueva dirección usando la notación CIDR: 234.170.168.0 / 21

ENCAMINAMIENTO IP

Uso de la Tabla de Rutas en el reenvío de datagramas

- Principio: "Matching" con la máscara más larga primero

Mask	Network address	Next-hop address	Interface
/26	140.24.7.192		m0
/??	???????	????????	m1
/0	0.0.0.0	default router	m2

Routing table for R3

Ordenar la tabla en base a la longitud de la máscara con el propósito de permitir la selección de rutas para un sub-bloque específico a pesar de nombrar el bloque por agregación.

ENCAMINAMIENTO IP

Actualización de las Tablas de Rutas

Pueden actualizarse en forma:

- Estática: la información se introduce manualmente.
- Dinámica: la información es actualizada periódicamente por algún Protocolo de Enrutamiento (RIP, OSPF, BGP, ...).

ENCAMINAMIENTO IP

Actualización de la Tabla de Rutas

- Dependiendo de la pertenencia de los enrutadores que intercambian la información de enrutamiento a un mismo o diferentes Sistemas Autonomos (SA), los Protocolos se clasifican en:
 - Protocolos de enrutamiento Intradominio → intercambio entre routers del mismo SA.
 - Protocolos de enrutamiento Interdominio → intercambio entre routers de diferentes SA.

ENCAMINAMIENTO IP

Actualización de la Tabla de Rutas

- Sistema Autónomo: Conjunto de enrutadores y redes administrados por una única organización usando políticas de enrutamiento comunes en todos sus nodos y enlaces.
 - En Internet son identificados por números que asignan los RIRs.

ENCAMINAMIENTO IP

Actualización de la Tabla de Rutas

- Tipo de Protocolos de Enrutamiento dependiendo de la estrategia de actualización empleada por el algoritmo:
 - Vector distancia (ejemplo: RIP Routing Information Protocoll)
 - En las tablas de enrutamiento solo se reflejan las rutas más cortas hacia cada nodo destino.
 - Estado enlace (ejemplo: OSPF Open Shortest Path First Protocól)
 - Cada nodo conoce toda la topología de la red y el tipo, costo (métrica) y estado de los enlaces. De aquí que pueda calcular la Tabla de rutas para un requerimiento particular en un momento dado (usa el algoritmo de Dijkstra).
 - Vector camino (ejemplo: BGP Border Gateway Protocol)
 - Similar a Vector Distancia, pero un único nodo dentro de un SA (speaker) publica los caminos, no las métricas, a los speakers de otros SA.

Longitud del camino, confiabilidad, retardo, ...

ENCAMINAMIENTO IP

Configuración de la red

- En los enrutadores:
 - Definir por cada interfaz, una IP de host de la red a la que se está conectando.
 - Actualizar su Tabla de Rutas indicando como alcanzar las redes no adyacentes.
- En los nodos de cada red:
 - Definir por cada interfaz, una IP de host y quien es el enrutador de esa red ("gateway" o puerta de enlace).

ENCAMINAMIENTO IP

Ejercicio 1: Identificación de problemas de configuración

Verificar que:

- En cada red, los nodos tienen un prefijo común y las IPs son válidas.
- Cada nodo apunta claramente a su enrutador de red.
- Las redes tienen prefijos diferentes.
- Los enrutadores conocen como alcanzar a todas las redes (T. Rutas)

Dir IP: 31.107.100.27

Máscara: 255.255.252.0

Gateway: 31.107.20.20

Dir. IP: 31.107.20.27

Máscara: 255.255.224.0

Gateway: 31.107.100.1

Una mala configuración impediría la comunicación entre A y B ...

ENCAMINAMIENTO IP

Ejercicio 2: Identificación de problemas de configuración

Verificar que:

- En cada red, los nodos tienen un prefijo común y las IPs son válidas.
- Cada nodo apunta claramente a su enrutador de red.
- Las redes tienen prefijos diferentes.
- Los enrutadores conocen como alcanzar a todas las redes (T. Rutas).

Dir IP: 31.107.100.27

Máscara: 255.255.224.0

Gateway: 31.107.100.1

Dir. IP: 31.107.20.27

Máscara: 255.255.224.0

Gateway: 31.107.33.0

MECANISMOS DE TRANSICIÓN DE IPv4 a IPv6

Son necesarios para migrar progresivamente de IPv4 a IPv6.

Forouzan – Sección: 20.4

MECANISMOS DE TRANSICIÓN DE IPv4 a IPv6

Opciones:

Dual Stack (doble pila): se mantiene simultáneamente la pila de protocolos IPv4 e IPv6 en un dispositivo y se utilizará la IPv4 o IPv6 dependiendo de la pila que tenga implementada el nodo destino.

MECANISMOS DE TRANSICIÓN DE IPv4 a IPv6

Opciones:

Túneles: Se encapsula un paquete IPv6 dentro de un paquete IPv4 para que pueda viajar por redes IPv4.

 El paquete es "desencapsulado" al llegar al destino, que deberá ser un nodo IPv6 o dual stack.

Técnicas para establecer el túnel: GRE tunel (manual); tunel broker (semi-automática); 6to4, ISATAP, teredo (automática)

MECANISMOS DE TRANSICIÓN DE IPv4 a IPv6

Opciones:

Traducción: la cabecera IPv4 se "traduce" a una cabecera IPv6 antes de que el paquete pueda alcanzar un nodo IPv6. Puede perderse información de control ...

Para más información revisar los siguientes enlaces:

- http://www.6deploy.eu/e-learning/spanish/
- <u>http://www.ipv6.cl/curso/SWF/ipv6_mod9.htm</u>