CS360 Fall 2013 -Assignment 4

Due Wednesday, Nov 6th, 11:59am

- 1. Let us call a language Reg-pumpable if it satisfies the conclusion of the pumping lemma for regular languages. Namely, L is Reg-pumpable if there exist some n such that for every $w \in L$, if |w| > n then the is a decomposition w = xyz so that for any $i \geq 0$, $xy^iz \in L$. Similarly, say that a language L is CF-pumpable if it satisfies the conclusion of the CFL pumping lemma.
 - (a) [5 points] Prove that every language that is Reg-pumpable is also CF-pumpable.
 - (b) [5 points] Prove that the converse of the above claim is false. Namely, find a language that is CF-pumpable but not Reg-pumpable. Prove your claims.
 - (c) [5 points] A language L over some alphabet, Σ , is a Length language if, for any word, $w \in L$, every w' of the same length is also in L (namely, $\forall w, w'$, |w| = |w'| implies $w \in L$ if and only if $w' \in L$). Prove that every CF-pumpable length language is also Reg-pumpable.
 - (d) [10 points] Prove that $L_{cube} = \{a^{n^2} : n \ge 0\}$ is not a context-free language.
- 2. For each of the following languages determine whether it is a regular language or not, and whether it is a CFL or not:
 - (a) **[5 points]** $L_{sq} = \{a^n b^m : n \equiv m \pmod{3}\}.$
 - (b) [10 points] $L_p = \{w \in \{a, b\}^* : |w| \text{ is a prime number } \}.$
 - (c) [5 points] $L_{odd_eq} = \{a^j b^k c^\ell : j \text{ is odd or } k = \ell\}.$
- 3. Define a grammar, G = (V, T, S, P), by setting $V = \{S\}$, $T = \{a, b\}$ and $P = \{S \mapsto ab|aSb|aSSb\}$.
 - (a) [10 points] Prove that $L(G) = I\left(\{ab\}, \{\frac{w}{awb}, \frac{w_1, w_2}{aw_1w_2b}\}\right)$. That is, L(G) equals the language that is defined by structural induction as the closure of the core set, $\{ab\}$, under the operations, $\frac{w}{awb}$ and $\frac{w_1, w_2}{aw_1w_2b}$.
 - (b) [5 points] Prove that, for every $w \in L(G)$, $n_a(w) = n_b(w)$.
 - (c) [5 points] Prove that for every $w \in L(G)$, if w' is a proper initial segment of w (that is, there exist some word $w'' \neq \epsilon$, such that w = w'w'') then $n_a(w') > n_b(w')$.
 - (d) [5 points] Is L(G) a regular language? Prove your claim.
- 4. For a language L over some finite alphabet, Σ define a new language $F_0(L) = \{0^{|w|} : w \in L\}$. That is, the set of all strings of 0's that have the same length as some word in L.
 - (a) [10 points] Prove that for every regular language L the language $F_0(L)$ is also regular.
 - (b) [10 points] Prove that for every context free language L the language $F_0(L)$ is also context free.
 - (c) [10 points] Find a language L such that L is not a context free language but $F_0(L)$ is regular. Prove your claims.