V407

Fresnelsche Formeln

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 2. Mai 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2
2	Theorie	2
3	Durchführung	5
4	Auswertung4.1Methoden und Messparameter4.2Senkrechte Polarisation4.3Parallele Polarisation	8
5	Diskussion	17
Lit	teratur	17
Ar	nhang	19

1 Zielsetzung

Ziel des Versuches ist es, die Intensität von einfallender Strahlung und an der SI-Oberfläche reflektierter Strahlung in Abhängigkeit des Einfallswinkels zu messen. Anschließend werden die experimentel bestimmten Werte mit den theorethischen Werten verglichen.

2 Theorie

Als Grundlage des Versuches dient die elektromagnetische Wellentheorie, wobei die Ausbreitung von Licht mit Hilfe der Maxwellschen Gleichungen

$$\nabla \times \vec{H} = \vec{j} + \varepsilon \varepsilon_0 \partial_t \vec{E} \quad \text{und} \tag{1}$$

$$\nabla \times \vec{E} = -\mu \mu_0 \partial_t \vec{H} \tag{2}$$

beschrieben wird. Im folgenden werden nicht-ferromagnetische und nicht elektrisch leitende Materialien betrachtet, somit gilt $\mu \approx 1$ und $\vec{j} = 0$. Die elektrische und magnetische Arbeit

$$\begin{split} W_{\text{elektrisch}} &\coloneqq \frac{1}{2} \varepsilon \varepsilon_0 \vec{E}^2 \quad \text{und} \\ W_{\text{magnetisch}} &\coloneqq \frac{1}{2} \mu_0 \vec{H}^2 \end{split}$$

stellen den Zusammenhang zwischen Energie pro Volumeneinheit eines elektrischen beziehungsweise magnetischen Feldes dar. Der Poynting Vektor

$$\vec{S} = \vec{E} \times \vec{H} \quad \text{und} \tag{3}$$

$$|\vec{S}| = v\varepsilon\varepsilon_0 \vec{E}^2 \tag{4}$$

besitzt die Dimension Leistung/Fläche und stellt die Strahlungsleistung pro Flächeneinheit eines elektromagnetischen Feldes dar. Beim Einfallen einer Welle aus dem Vakuum auf eine Grenzfläche unter einem Winkel α , wird ein Bruchteil dieser refelktiert und der andere dringt in das Medium ein. Der Lichtstrahl, welcher in das Medium eindringt erfährt eine Richtungsänderung und wird so gebrochen, dass der Beugungswinkel $\beta < \alpha$ ist. Es werden nur nicht absorbierende Medien verwendet und es gilt somit

$$\begin{aligned} \mathbf{S}_e \mathbf{F}_e &= \mathbf{S}_r \mathbf{F}_e + \mathbf{S}_d \mathbf{F}_d & \text{oder} \\ \mathbf{S}_e \cos \alpha &= \mathbf{S}_r \cos \alpha + \mathbf{S}_d \cos \beta. \end{aligned}$$

Diese Gleichung kann umgeschrieben werden zu

$$c\varepsilon_0 \vec{E}_e^2 \cos \alpha = c\varepsilon_0 \vec{E}_r^2 \cos \alpha + v\varepsilon\varepsilon_0 \vec{E}_d^2 \cos \beta. \tag{5}$$

Für den Brechnungsindex ergibt sich das Verhältnis

$$n = -\frac{c}{v}. (6)$$

Aus den Maxwellschen Gelichungen (2) ergibt sich die Maxwellsche Relation

$$n = \varepsilon^2. (7)$$

Aus der Mexwellschen Relation (7) und der Gleichung 5 ergibt sich

$$\left(\vec{E}_e^2 - \vec{E}_r^2\right) \cos \alpha = n\vec{E}_d^2 \cos \beta. \tag{8}$$

Die Polarisationsrichtung der einfallenden Welle \vec{E}_e relativ zur Einfallsebene ist entweder senkrecht polarisiert oder parallel polarisiert, sodass

$$\vec{E}_e = \vec{E}_{\perp} + \vec{E}_{\parallel} \tag{9}$$

gegeben ist. Zunächst wird die Polarisation senkrecht zur Einfallsebene betrachtet. Für den parallel polarisierten Teil \vec{E}_{\parallel} geht hervor, dass dieser tangential zur Grenzfläche schwingt. In der Abbildung 1 wird die Reflexion eines Lichtstrathls an einer Grenzfläche dargestellt.

Abbildung 1: Reflexion und Brechung des senkrecht polarisierten Lichtstrahls. [1]

Da die Beträge der \vec{E}_{\perp} gleich ihren Tangentialkomponenten sind und keine Normalkomponente vorhanden ist kann aus den Stetigkeitsbedingungen die Beziehung

$$\vec{E}_{e\perp} + \vec{E}_{r\perp} = \vec{E}_{d\perp}$$

aufgestellt werden. Zusammen mit dem Snellius Brechungsgesetz

$$n = \frac{\sin \alpha}{\sin \beta} \tag{10}$$

ergeben sich die Fresnel Formeln

$$\begin{split} \vec{E}_{\mathbf{r}_{\perp}} &= -\vec{E}_{\mathbf{e}_{\perp}} \frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)} \quad \text{und} \\ \vec{E}_{\mathbf{r}_{\perp}} &= -\vec{E}_{\mathbf{e}_{\perp}} \frac{\left(\sqrt{\mathbf{n}^2 - \sin^2 \alpha} - \cos \alpha\right)^2}{\mathbf{n}^2 - 1}. \end{split} \tag{11}$$

Für den streifenden Einfall $\alpha = \frac{\pi}{2}$ gilt

$$\vec{E}_{r\perp}(\frac{\pi}{2}) = -\vec{E}_{r\perp}.$$

Wenn der Lichtstrahl senkrecht einfäält, also bei $\alpha = 0$ gilt

$$\vec{E}_{r\perp}(0) = -\vec{E}_{r\perp}\frac{n-1}{n+1}.$$

Die Reflexion und Brechung des parallel zur Einfallsebene einfallende Strahl ist in Abbildung 2 dargestellt.

Abbildung 2: Reflexion und Brechung des parallel polarisierten Lichtstrahls. [1]

Die parallel polarisierte Komponente \vec{E}_{\parallel} setzt sich zusammen aus einer tangentialen Komponente $\vec{E}_{\parallel tg}$ und eine Komponente, welche normal zu Grenzfläche ist.

Aus den Stetigkeitsbedingungen und den Tangentialkomponenten der Vektoren $\vec{E}_{e\parallel},\,\vec{E}_{r\parallel}$ und $\vec{E}_{d\parallel}$ ergibt sich die Gleichung

$$\vec{E}_{r\parallel} = \vec{E}_{e\parallel} \frac{n\cos\alpha - \cos\beta}{n\cos\alpha + \cos\beta}.$$
 (12)

Für das parallel polarisierte Licht lassen sich ebenfalls die Fresnelschen Gleichungen aufstellen

$$\vec{E}_{r\parallel} = \vec{E}_e \| \frac{\tan(\alpha - \beta)}{\tan(\alpha + \beta)} \quad \text{und}$$

$$\vec{E}_{r\parallel}(\alpha) = \vec{E}_e \| \frac{n^2 \cos \alpha - \sqrt{n^2 - \sin^2 \alpha}}{n^2 \cos \alpha + \sqrt{n^2 - \sin^2 \alpha}}.$$
(13)

Für den senkrechten Einfall $\alpha = 0$ gilt

$$\vec{E}_{r\parallel}(0) = \vec{E}_{e\parallel} \frac{n-1}{n+1}$$

und für den streifenden Fall $\alpha = \frac{\pi}{2}$ gilt

$$\vec{E}_{r\parallel}(\frac{\pi}{2}) = -\vec{E}_{e\parallel}.$$

Fällt Licht unter einem Winkel α_p , dem sogenannten Brwesterschen Winkel, auf die GHrenzfläche auf, so wird dieser nicht mehr reflektiert sondern dringt ganz ind das brechende Medium ein.

3 Durchführung

Zur Versuchsdurchführung wurde der Aufabu aus Abbildung 3 verwendet.

Abbildung 3: Schematische Darstellung der verwendeten Messapperatur. [1]

Der lasertstrah des He-Ne-Lasers wird mithilfe des Polarisationsfilter polarisiert. Mit Hilfe des Goniometers lässt sich der Spiegel einstellen. Gemmessen wird mit einem schwenkbaren Photoelement.

In der Abbildung 4 ist das Goniometer mit aufgesetztem Probenhalter dargestellt.

Abbildung 4: Schematische Darstellung des Goniometers mit aufgesetztem Probenhalter. [1]

Der Spiegel ist mit einer Stellschraube befsetigt. Unterhalb des Probehalters ist die Haltung des Detektors befestigt

Bevor die Messung beginnt, werden der Dunkelstrom und den Photostrom des diskreten Lasers aufgenommen. Daraufhin muss die Apperatur zunächst justiert werden. Der Probehalter wird aus den Strahlengang entfernt und der Detektor wird so eingestellt, dass der Laserstrahl direkt auf diesen trifft. Es wird der Polarisationsfilter in den Strahlengang des Lasers eingebaut. Als erstes wird die Messung für s-polarisiertes Licht durchgeführt, dementsprechend wird der Winkel des Polarisationsfilters auf 0 gestellt. Der Drehteller mit der Winkelskala wird auf 0° eingestellt. Die Skala des Drehtellers wird variiert. Die Messung startet bei 6°, in 2°-Schritten wird der Winkel größer, dabei werden die Messwerte für die Stromstärke der Intensität aufgenommen. Der Vorgang endet bei 86°. Analog verläuft der Mess-Vorgang für den Polarisationswinkel $\frac{\pi}{2}$.

4 Auswertung

4.1 Methoden und Messparameter

Für alle folgenden Messungen wird der verwendete Laser in einem Wellenlängegnbereich von $\lambda_0=(681\pm3)\,\mathrm{nm}$ betrieben. Allgemein ist der Brechungsindex n von Dispersion betroffen und daher nur für λ_0 gültig. Der Dunkelstrom am Detektor beträgt dabei $I_D=(4,7\pm0,2)\,\mathrm{nA}$ und erlaubt den Messwert \check{I} mit der Korrektur

$$I=\check{I}-I_D$$

um mögliche Streulichteinflüsse zu bereinigen. Damit gibt $I_0 = (490 \pm 20) \,\mu\text{A}$ die totale Intensität des direkten Laserlichts an, indem die Proportionalität zwischen Photostrom und Flächenleistungsdichte ausgenutzt wird. Die Intensität erreicht für einen Winkel $\alpha = 49^{\circ}$ am Polarisationsfilter bei $I = (38 \pm 2) \,\text{nA}$ ihr Minimum.

Der gewichtete Mittelwert einer Messreihe x_k mit Gewichten w_k ist über

$$x = \frac{\sum_{k} w_k x_k}{\sum_{k} w_k}$$

gegeben, wobei hier die reziproken Varianzen $w_k = \sigma_{x_k}^{-2}$ gesetzt werden. Der Ablesefehler lässt sich auf 2% der eingestellten Skala schätzen, abrupte Sprünge in der angegebenen Abweichung sind also darauf zurückzuführen. Um ein Maß für die Sicherheit der mittels scipy.optimize.curve_fit [7] bestimmten Optimierungsparameter zu erhalten, wird die Quadratwurzel der Diagonalelemente der Kovarianzmatrix gebildet. Die Bibliothek uncertainties.unumpy [5] dient weiter zur automatisierten Fehlerfortpflanzung, welche nach Gauß für unabhängige Messgrößen als Ausdruck der Form

$$\sigma_f^2 = \sum_k \left(\frac{\partial f}{\partial x_k}\right)^2 \sigma_{x_k}^2$$

formuliert ist. Grafische Darstellungen der Ergebnisse erzeugt matplotlib.pyplot [4] indem die Datenstrukturen numpy.array und numpy.meshgrid [3] verwendet werden.

Auf diese Weise werden für beide Polarisationsfälle die analytischen Lösungen von n evaluiert. Die verschiedenen Lösungszweige werden bei einem festen Amplitudenverhältnis $E/E_0=\pm\,0.15$ über die entsprechenden Niveaus eines Konturplots gelegt, anhand der Grafik lässt sich dann deren Gültigkeit prüfen.

4.2 Senkrechte Polarisation

Aus den Fresnelschen Formeln (11) ergibt sich bei senkrechter Polarisationsrichtung

$$-E/E_0 = \frac{1}{n^2 - 1} \left(\sqrt{n^2 - \sin^2 \alpha} - \cos \alpha\right)^2 \tag{LS}$$

für das Amplitudenverhältnis. Umstellen und Anwenden der Wurzel liefert den Ausdruck

$$\sqrt{(1-n^2)E/E_0} + \cos\alpha = \sqrt{n^2 - \sin^2\alpha}$$

sowie durch erneutes beideseitiges Quadrieren

$$(1-n^2)E/E_0 + 2\cos\alpha\sqrt{(1-n^2)E/E_0} + \cos^2\alpha = n^2 - \sin^2\alpha$$

als weiterführenden Term. Wegen $\sin^2 \alpha + \cos^2 \alpha = 1$ kann

$$(1-n^2)E/E_0 + 2\cos\alpha\sqrt{(1-n^2)E/E_0} = n^2 - 1$$

geschrieben werden. Division durch sowie anschließendes Auflösen nach n^2-1 produziert

$$\frac{1}{1 - n^2} = E_0 / E \left(\frac{1 + E/E_0}{2\cos\alpha} \right)^2$$

und stellt so eine separierte Beziehung zu n auf. Schließlich ist mit

$$n = \sqrt{1 - E/E_0 \left(\frac{2\cos\alpha}{1 + E/E_0}\right)^2}$$

der Brechungsindex aufgestellt. Einsetzen des Zusammenhangs

$$E/E_0 = \pm \sqrt{I/I_0}$$

führt dann über die Fallunterscheidung

$$n = \sqrt{1 - \sqrt{I/I_0} \left(\frac{2\cos\alpha}{1 + \sqrt{I/I_0}}\right)^2} \tag{L1}$$

$$n = \sqrt{1 + \sqrt{I/I_0} \left(\frac{2\cos\alpha}{1 - \sqrt{I/I_0}}\right)^2}$$
 (L2)

zwei Lösungszweige ein, welche in Abbildung 5 dargestellt sind.

Abbildung 5: Fälle (L1) und (L2) mit hinterlegtem Konturplot der impliziten Lösung (LS).

Tabelle 1

$\alpha / ^{\circ}$	Ι / μΑ	I/I_0	n	α / $^{\circ}$	$I/\mu A$	I/I_0	n
6	70 ± 2	0.143 ± 0.007	$2,206 \pm 0,048$	44	100 ± 20	$0,204 \pm 0,042$	$2,027 \pm 0,207$
8	70 ± 2	0.143 ± 0.007	$2,198 \pm 0,048$	46	100 ± 20	$0,204 \pm 0,042$	$1,975 \pm 0,198$
10	71 ± 2	0.145 ± 0.007	$2,202 \pm 0,048$	48	100 ± 20	$0,204 \pm 0,042$	$1,921 \pm 0,189$
12	72 ± 2	0.147 ± 0.007	$2,\!204 \pm 0,\!048$	50	110 ± 20	$0,\!224 \pm 0,\!042$	$1,957 \pm 0,189$
14	72 ± 2	0.147 ± 0.007	$2,190 \pm 0,048$	52	110 ± 20	$0,224 \pm 0,042$	$1,\!896 \pm 0,\!179$
16	76 ± 2	$0{,}155 \pm 0{,}008$	$2,227 \pm 0,050$	54	110 ± 20	$0,224 \pm 0,042$	$1,\!834 \pm 0,\!168$
18	77 ± 2	0.157 ± 0.008	$2,222 \pm 0,050$	56	120 ± 20	$0,245 \pm 0,042$	$1,851 \pm 0,166$
20	78 ± 2	$0,159 \pm 0,008$	$2,214 \pm 0,049$	58	110 ± 20	$0,224 \pm 0,042$	$1,709 \pm 0,147$
22	80 ± 2	$0,163 \pm 0,008$	$2,\!216 \pm 0,\!050$	60	120 ± 20	$0,245 \pm 0,042$	$1,714 \pm 0,144$
24	81 ± 2	$0,165 \pm 0,008$	$2,203 \pm 0,049$	62	120 ± 20	$0,245 \pm 0,042$	$1,\!646 \pm 0,\!132$
26	83 ± 2	$0,169 \pm 0,008$	$2,200 \pm 0,050$	64	140 ± 20	$0,\!286 \pm 0,\!042$	$1,702 \pm 0,136$
28	84 ± 2	$0,171 \pm 0,008$	$2,\!182 \pm 0,\!049$	66	130 ± 20	$0,265 \pm 0,042$	$1,\!565 \pm 0,\!115$
30	85 ± 2	$0,173 \pm 0,008$	$2,161 \pm 0,049$	68	140 ± 20	$0,\!286 \pm 0,\!042$	$1,544 \pm 0,110$
32	89 ± 2	0.182 ± 0.008	$2,173 \pm 0,050$	70	150 ± 20	$0,\!306 \pm 0,\!043$	$1,\!516 \pm 0,\!104$
34	90 ± 2	$0,\!184 \pm 0,\!009$	$2,147 \pm 0,049$	72	160 ± 20	$0,327 \pm 0,043$	$1,479 \pm 0,097$
36	92 ± 2	$0,\!188 \pm 0,\!009$	$2,129 \pm 0,049$	74	160 ± 20	$0,327 \pm 0,043$	$1,\!395 \pm 0,\!082$
38	96 ± 2	$0,\!196 \pm 0,\!009$	$2,130 \pm 0,049$	76	170 ± 20	0.347 ± 0.043	$1,348 \pm 0,073$
40	96 ± 2	$0,\!196 \pm 0,\!009$	$2,084 \pm 0,048$	78	180 ± 20	$0,367 \pm 0,043$	$1,\!294 \pm 0,\!063$
42	98 ± 2	$0,200 \pm 0,009$	$2,\!057 \pm 0,\!047$	80	180 ± 20	$0,\!367 \pm 0,\!043$	$1,\!213 \pm 0,\!047$
				82	190 ± 20	$0,\!388 \pm 0,\!044$	$1{,}157 \pm 0{,}036$
				84	190 ± 20	$0,\!388 \pm 0,\!044$	$1{,}091 \pm 0{,}021$
				86	200 ± 20	$0,\!408 \pm 0,\!044$	$1,\!047 \pm 0,\!011$

 $n = 1{,}523 \pm 0{,}022$

Abbildung 6

$$n = 3,642 \pm 0,071 \ s = 0,457 \pm 0,009$$

Abbildung 7

$$n = 2{,}134 \pm 0{,}041$$

4.3 Parallele Polarisation

Aus den Fresnelschen Formeln (13) ergibt sich bei paralleler Polarisationsrichtung

$$E/E_0 = \frac{n^2 \cos \alpha - \sqrt{n^2 - \sin^2 \alpha}}{n^2 \cos \alpha + \sqrt{n^2 - \sin^2 \alpha}}$$
 (LP)

für das Amplitudenverhältnis. Umstellen liefert die Gleichung

$$(E/E_0 - 1) n^2 \cos \alpha = -(E/E_0 + 1) \sqrt{n^2 - \sin^2 \alpha}$$

sowie durch Division und anschließendes Quadrieren

$$\Big(\frac{E/E_0-1}{E/E_0+1}\Big)^{\!2}n^4\cos^2\alpha=n^2-\sin^2\alpha$$

als weiterführenden Term. Daraus folgt

$$n^4 - \left(\frac{E/E_0 + 1}{E/E_0 - 1}\right)^2 \frac{n^2}{\cos^2 \alpha} + \left(\frac{E/E_0 + 1}{E/E_0 - 1}\right)^2 \tan^2 \alpha = 0$$

und unter Anwendung quadratischer Ergänzung

$$n = \sqrt{\frac{1}{2\cos^2\alpha} \left(\frac{E/E_0 + 1}{E/E_0 - 1}\right)^2 \pm \sqrt{\frac{1}{4\cos^4\alpha} \left(\frac{E/E_0 + 1}{E/E_0 - 1}\right)^4 - \left(\frac{E/E_0 + 1}{E/E_0 - 1}\right)^2 \tan^2\alpha}}$$

als Ausdruck des Brechungsindex. Einsetzen des Zusammenhangs

$$E/E_0 = \pm \sqrt{I/I_0}$$

produziert nun vier verschiedene Fälle

$$n = \sqrt{\frac{1}{2\cos^{2}\alpha} \left(\frac{\sqrt{I/I_{0}} + 1}{\sqrt{I/I_{0}} - 1}\right)^{2} - \sqrt{\frac{1}{4\cos^{4}\alpha} \left(\frac{\sqrt{I/I_{0}} + 1}{\sqrt{I/I_{0}} - 1}\right)^{4} - \left(\frac{\sqrt{I/I_{0}} + 1}{\sqrt{I/I_{0}} - 1}\right)^{2} \tan^{2}\alpha}}$$
(L3a)

$$n = \sqrt{\frac{1}{2\cos^{2}\alpha} \left(\frac{\sqrt{I/I_{0}} - 1}{\sqrt{I/I_{0}} + 1}\right)^{2} - \sqrt{\frac{1}{4\cos^{4}\alpha} \left(\frac{\sqrt{I/I_{0}} - 1}{\sqrt{I/I_{0}} + 1}\right)^{4} - \left(\frac{\sqrt{I/I_{0}} - 1}{\sqrt{I/I_{0}} + 1}\right)^{2}\tan^{2}\alpha}}$$
 (L3b)

$$n = \sqrt{\frac{1}{2\cos^{2}\alpha} \left(\frac{\sqrt{I/I_{0}} + 1}{\sqrt{I/I_{0}} - 1}\right)^{2} + \sqrt{\frac{1}{4\cos^{4}\alpha} \left(\frac{\sqrt{I/I_{0}} + 1}{\sqrt{I/I_{0}} - 1}\right)^{4} - \left(\frac{\sqrt{I/I_{0}} + 1}{\sqrt{I/I_{0}} - 1}\right)^{2} \tan^{2}\alpha}}$$
(L4a)

$$n = \sqrt{\frac{1}{2\cos^{2}\alpha} \left(\frac{\sqrt{I/I_{0}} - 1}{\sqrt{I/I_{0}} + 1}\right)^{2} + \sqrt{\frac{1}{4\cos^{4}\alpha} \left(\frac{\sqrt{I/I_{0}} - 1}{\sqrt{I/I_{0}} + 1}\right)^{4} - \left(\frac{\sqrt{I/I_{0}} - 1}{\sqrt{I/I_{0}} + 1}\right)^{2} \tan^{2}\alpha}}$$
 (L4b)

für die Lösung, welche in Abbildung 8 dargestellt sind.

 $\textbf{Abbildung 8:} \ L\"{o}sungsf\"{a}lle \ (L3a), \ (L3b), \ (L4a) \ und \ (L4b) \ mit \ hinterlegtem \ Konturplot \ der \ zugeh\"{o}rigen \ impliziten \ L\"{o}sung \ (LP).$

Tabelle 2

$\alpha / ^{\circ}$	Ι / μΑ	I/I_0	n	α / $^{\circ}$	Ι / μΑ	I/I_0	n
6	$54{,}0\pm2{,}0$	$0,\!1102 \pm 0,\!0061$	$2,\!002 \pm 0,\!041$	48	$32,0 \pm 2,0$	$0,0653 \pm 0,0049$	$2,\!396 \pm 0,\!055$
8	$54{,}0\pm2{,}0$	$0,1102 \pm 0,0061$	$2,009 \pm 0,042$	50	30.0 ± 2.0	$0,0612 \pm 0,0048$	$2,\!449 \pm 0,\!057$
10	$52{,}0\pm2{,}0$	$0,\!1061 \pm 0,\!0060$	$1,989 \pm 0,041$	52	$28{,}0\pm2{,}0$	$0,\!0571 \pm 0,\!0047$	$2,\!511 \pm 0,\!059$
12	$60,0 \pm 2,0$	$0,\!1224 \pm 0,\!0065$	$2{,}113 \pm 0{,}045$	54	$24{,}0\pm2{,}0$	$0,0490 \pm 0,0045$	$2,\!528 \pm 0,\!062$
14	$60,0 \pm 2,0$	$0,1224 \pm 0,0065$	$2,\!126 \pm 0,\!045$	56	$22{,}0\pm2{,}0$	$0,0449 \pm 0,0045$	$2,\!607 \pm 0,\!065$
16	$60,0 \pm 2,0$	$0,\!1224 \pm 0,\!0065$	$2,142 \pm 0,046$	58	$18{,}0\pm2{,}0$	$0,0367 \pm 0,0043$	$2,634 \pm 0,070$
18	$58,0\pm2,0$	$0,\!1184 \pm 0,\!0063$	$2{,}132 \pm 0{,}045$	60	$16{,}0\pm2{,}0$	$0,0326 \pm 0,0043$	$2,734 \pm 0,076$
20	$59,0 \pm 2,0$	$0,1204 \pm 0,0064$	$2,\!168 \pm 0,\!047$	62	$14,0 \pm 2,0$	$0,\!0286 \pm 0,\!0042$	$2,\!849 \pm 0,\!082$
22	$50,0 \pm 2,0$	$0,1020 \pm 0,0058$	$2,056 \pm 0,043$	64	$8,0 \pm 2,0$	$0,0163 \pm 0,0041$	$2,792 \pm 0,104$
24	$51{,}0\pm2{,}0$	$0,\!1041 \pm 0,\!0059$	$2,097 \pm 0,044$	66	$7{,}0\pm2{,}0$	$0,0143 \pm 0,0041$	$2,975 \pm 0,116$
26	$50,0 \pm 2,0$	$0,\!1020 \pm 0,\!0058$	$2,\!110 \pm 0,\!045$	68	$6{,}3\pm0{,}2$	$0,0128 \pm 0,0007$	$3,\!209 \pm 0,\!021$
28	$50,0 \pm 2,0$	$0,1020 \pm 0,0058$	$2,142 \pm 0,046$	70	4.0 ± 0.2	$0,0082 \pm 0,0005$	$3,365 \pm 0,022$
30	$50,0 \pm 2,0$	$0,1020 \pm 0,0058$	$2,\!179 \pm 0,\!047$	72	$2,0 \pm 0,2$	$0,0041 \pm 0,0004$	$3,\!542 \pm 0,\!027$
32	$48,0 \pm 2,0$	$0,0979 \pm 0,0057$	$2,\!186 \pm 0,\!047$	74	0.8 ± 0.2	$0,0016 \pm 0,0004$	$3,\!805 \pm 0,\!042$
34	$46,0 \pm 2,0$	$0,0939 \pm 0,0056$	$2,197 \pm 0,048$	76	0.5 ± 0.02	$0,0010 \pm 0,0001$	$4,\!291 \pm 0,\!008$
36	44.0 ± 2.0	$0,0898 \pm 0,0055$	$2,211 \pm 0,048$	78	$1,2 \pm 0,2$	$0,0024 \pm 0,0004$	$5,215 \pm 0,046$
38	44.0 ± 2.0	$0,0898 \pm 0,0055$	$2,\!266 \pm 0,\!050$	80	3.8 ± 0.2	$0,0077 \pm 0,0005$	$6,798 \pm 0,041$
40	44.0 ± 2.0	$0,0898 \pm 0,0055$	$2,\!328 \pm 0,\!051$	82	$8,0 \pm 0,2$	$0,0163 \pm 0,0008$	$9,\!236 \pm 0,\!058$
42	$38,0 \pm 2,0$	$0,\!0775 \pm 0,\!0052$	$2,\!279 \pm 0,\!051$	84	$18{,}0\pm0{,}2$	$0,0367 \pm 0,0016$	$14,\!067 \pm 0,\!119$
44	$38,5 \pm 2,0$	$0,\!0786 \pm 0,\!0052$	$2,\!364 \pm 0,\!052$	86	$38{,}0\pm0{,}2$	$0,\!0775 \pm 0,\!0032$	$25{,}381 \pm 0{,}316$
46	$34,0 \pm 2,0$	$0,0694 \pm 0,0050$	$2,351 \pm 0,053$				

 $n = 3{,}527 \pm 0{,}018$

Abbildung 9

$$n = 4,\!265 \pm 0,\!053\ s = 0,\!282 \pm 0,\!010$$

Abbildung 10

$$n = 3,798 \pm 0,156$$
$$n = 2,794 \pm 0,016$$

5 Diskussion

Si
$$n = 3,805 \ \lambda = 681,20 \,\mathrm{nm}$$
 [2]

$$SiO_2 \ n = 1,456 \ \lambda = 680,00 \, nm \ [6]$$

Literatur

- [1] Anleitung zu Versuch 407, Fresnelsche Formeln. TU Dortmund, Fakultät Physik. 2023.
- [2] D. E. Aspnes und J. B. Theeten. "Spectroscopic Analysis of the Interface Between Silicon and Its Thermally Grown Oxide". In: *Journal of The Electrochemical Society* 127.6 (Juni 1980), S. 1359. DOI: 10.1149/1.2129899. URL: https://dx.doi.org/10.1149/1.2129899.

- [3] Charles R. Harris u. a. "Array programming with NumPy". In: *Nature* 585.7825 (Sep. 2020), S. 357–362. DOI: 10.1038/s41586-020-2649-2. URL: https://doi.org/10.1038/s41586-020-2649-2.
- [4] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. DOI: 10.1109/MCSE.2007. 55. URL: http://matplotlib.org/. Current version 3.6.2, DOI: 10.5281/zenodo.7275322.
- [5] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [6] I. H. Malitson. "Interspecimen Comparison of the Refractive Index of Fused Silica". In: J. Opt. Soc. Am. 55.10 (Okt. 1965), S. 1205–1209. DOI: 10.1364/JOSA.55.001205. URL: https://opg.optica.org/abstract.cfm?URI=josa-55-10-1205.
- [7] Pauli Virtanen u. a. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". Version 1.9.3. In: *Nature Methods* 17 (2020), S. 261–272. DOI: 10.1038/s41592-019-0686-2.

Anhang