

Gereksinim Analizi ve Yönetimi

Gereksinim analizi

Analiz aşaması, yazılıma dair üretim sürecinin başlangıcıdır.

Amaç: Mevcut sistemin nasıl çalıştığının anlaşılmasıdır.

Sistemin amaçlarını yerine getirme yeteneği olan bir özellik ya da gereksinimlerin belirlenmesi olarak tanımlanmaktadır.

Gereksinim; sistemin yada işlevlerinin nasıl yerine getirildiğiyle ile ilgili değildir.

Sistem yada bileşenlerin ne olduğu ile ilgilidir.

Hangi veri tabanı, Hangi tablolar, Ne kadar bellek kullanılıyor,

. . .

lazılın Mühendisli

İşlevsel Gereksinim Analizi

- Sistem ile çevresi arasındaki iletişimi belirleyen gereksinimlerdir.
- Sistemin herhangi bir durum karşısındaki davranışını belirler.
 - Uyarıların ne zaman yapılacağı
 - Raporların ne zaman alınacağı
 - Hangi verilerin alınacağı
 - Çıktı formatı
- İşlevsel olmayan gereksinimler, kullanıcının sorunundan bağımsız olarak çözülmesi gereken işlemlerdir.
- Sistem Kısıtları olarak ta adlandırılabilir
 - Kullanılacak bilgisayarın türü
 - Yazılım geliştirme ortamı
 - kullanılacak veri tabanı yönetim sistemi

Gereksinim Türleri

- Fiziksel Çevre
- Arayüzler
- Kullanıcı ve İnsan etmeni
- İşlevsellik
- Belgeleme
- Veri
- Kaynaklar
- Güvenlik
- Kalite Güvencesi

Fiziksel Çevre

- Donanım altyapısı
- Dağıtık yapıda mı !
- Sıcaklık nem oranı veya manyetik etkileşim gibi çevresel kısıtlamalar var mı?

- Veri akışı bir yerden mi yoksa birden çok sistemden mi geliyor?
- Çıktılar bir mi yoksa birden çok sisteme mi gidiyor?
- Verilerin nasıl biçimlendirileceğine ilişkin bir yol var mı?
- Verilerin kullanılacağı önerilen bir ortam var mı?

- Sistemi kim kullanacak?
- Farklı kullanıcı profili olacak mı?
- Her bir kullanıcının yetenek düzeyi nedir?
- Kullanıcılar için ne tür eğitimler gerekli?
- Bir kullanıcının sistemi kötü amaçlı kullanması ne ölçüde zordur?

İşlevsellik

- Sistem ne yapacak?
- Sistem bunu ne zaman gerçekleştirecek?
- Sistem nasıl ve ne zaman değiştirilebilir ve/veya güçlendirilebilir?
- Çalışma hızı, yanıt süresi ya da çıktı üzerinde kısıtlayıcı etmenler var mı?

Belgeleme

- Ne kadar belgeleme gereklidir?
- Belgeleme hangi kullanıcı kitlesini hedeflemektedir?

Veri

- Hem giriş hem çıkış için verinin biçimi ne olmalıdır?
- Bu veri ne sıklıkla alınacak veya gönderilecektir?
- Bu verinin doğruluk (kesinlik) ölçüsü ne olmalıdır?
- Hesaplamalar hangi duyarlık derecesine kadar yapılandırılacaktır?
- Sistemde ne kadar veri akışı olacaktır?
- Veri belirli bir zaman süresince kaynağında saklanacak mı?

Kaynaklar

- Sistemi kurmak, kullanmak ve bakımını yapmak için ne kadar malzeme, personel ve diğer kaynaklara ihtiyaç var?
- Geliştiriciler hangi yeteneklere sahip olmalı?
- Sistem ne kadar fiziksel yer kaplayacak?
- Güç, ısıtma ve soğutma için kısıtlar nelerdir?
- Geliştirim için tavsiye edilen bir zaman çizelgesi var mı?

Güvenlik

- Sisteme ya da bilgiye erişim denetlenmeli midir?
- Bir kullanıcının verisi diğerinden nasıl ayrılacaktır?
- Kullanıcı programları, diğer program ve işletim sisteminden nasıl ayrı tutulacaktır?
- Sistem hangi sıklıkla yedeklenecektir?
- Yedek kopyaları başka yerde saklanacak mıdır?
- Yangın ve hırsızlığa karşı ne tür önlemler alınacaktır?
- Internet erişimi var mı? Güvenlik kullanılıyor mu?

Kalite Güvencesi

- Güvenirlilik için gereksinimler nelerdir?
- Sistemin özellikleri insanlara nasıl aktarılmalıdır?
- Sistem çökmeleri arasında öngörülen zaman aralığı nedir?
- Kaynak kullanımı ve yanıt süresine ilişkin verimlilik ölçütleri nelerdir?

Gereksinim Özellikleri

Gereksinimler üç amaca hizmet eder

- Geliştiricilerin, müşterilerin sistemin nasıl çalışmasını istediklerini anlamalarını sağlar.
- Gereksinimler, sonuç sistemin ne özellikte ve işlevsellikte olacağını söyler.
- Gereksinimler sınama ekibine, kullanıcıyı, sunulan sistemin istenen sistem olduğuna ikna etmek için neler göstermeleri gerektiğini söyler.

Doğrulama Süreci

- I. Gereksinimler doğru oluşturulmuş mu?
- 2. Gereksinimler tutarlı mı?
- 3. Gereksinimler tam mı? (Dışsal tamlık / İçsel tamlık)
- 4. Gereksinimler gerçekçi mi?
- 5. Her gereksinim kullanıcı tarafından istenen bir şeyi mi tanımlamaktadır?
- 6. Gereksinimler doğrulanabilir mi?
- 7. Gereksinimler izlenebilir mi?

Sistem Çözümleme Çalışması

- Geliştirilecek bilgi sistemi yada yazılımla ilgili olarak;
 - tüm gereksinimlerin araştırılması,
 - tanımlanması,
 - ortaya çıkarılması ve
 - bir gösterim biçimi ile açıklanması

çalışmasıdır.

Mevcut sistemin incelenmesi

- Amaç: Yazılım geliştirilecek sistemin tanınmasıdır.
- Girdi, İşlev ve çıktı analizi yapılır.
- Kanun, yönerge ve yönetmenlikler incelenir.
- Elde yürütülen işlerde kullanılan form, defter ve yazışma örnekleri incelenir.

Önerilen Sistemin Modellenmesi

- Önerilen sistemin işlevsel yapısını, veri yapısını ve kullanıcı arayüzünü oluşturur.
- Bu model daha çok bilgi sistemini geliştirecek teknik personele yöneliktir.
- Mantiksal model olarak ta tanımlanır.

Yöntemler

- Gereksinim Verisi Toplama Yöntemleri
 - Soru yöneltme
 - Karşılıklı görüşme (Anket)
 - Psikolojik türetme
 - İstatistiksel teknikler

- Nesne İlişki şemaları (I-I,I-N, M-N)
- Veri Sözlüğü
- Süreç/İşlem Modelleme yöntemleri

Anket Yöntemi

- Kullanıcı sayısının fazla olduğu durumlarda eğilimleri ve davranış biçimlerini saptamak için kullanılır.
- Anket değerlendirilirken gerçekçi olmayan değerlendirmeler çıkarılmalıdır.

Psikolojik Türetme Teknikleri

 Özellikle belirsizliğin fazla olduğu ve zayıf yapılı ortamlarda, bilgi edinebilmek amacıyla insan psikolojisine dayalı teknikler kullanılır.

İstatistiksel Teknikler

 Veri yoğun ve veri hacmi yüksek ortamlarda verinin özelliklerini belirlemek amacıyla kullanılır.

Örnekleme yöntemi ve PIRA yöntemi.

Kullanıcı Arayüz Prototipleme (KAP)

- Ekran tasarımı için kullanıcıdan onay alınması esastır.
- Geleneksel yaklaşımlarda bilgi sistemi girdi ve çıktılarının tanımları el ile kağıt üzerinde yapılır ve kullanıcılardan bu biçimiyle onay alınmaya çalışılır.
- Gereksinimlerin kesinleştirilmesini kolaylaştırır.

KAP Özellikleri

- Ayrılan zaman sistem analizi için ayrılan zamanın %5'ini aşmamalıdır.
- Her özellik bir kez gösterilmelidir.
- Hiç bir içsel işlem içermemelidir.

KAP Raporları

- Raporların bir kod numarası olmalıdır.
- Her rapor için örnek çıktı yapısı ayarlanır. Word dokümanında örnek yapı hazırlanır. İlgili çıktı gönderilirken bu çıktı gönderilir.

Sonuç;

Sistem Analiz Raporu

- Sistem analiz çalışması sonucunda alınan rapordur (şartname). Söz
 Konusu rapor çalışmanın tüm ayrıntılarını içerir.
- 5 ana bölümde incelenebilir.
 - Giriş
 - Mevcut sistemin incelenmesi
 - İstenen sistem mantıksal modeli
 - Arayüz gerekleri
 - Belgeleme gerekleri

Kaynak

- •BT HABER dergisi, Sayı 259, 2000.
- •DELPHI UNLEASHED, SAMS PUBLISHING, Charles Calvert, 1997.
- •www.mehmetduran.com
- •Cengiz GÖK Y.Müh.Ders notu
- •www.veripark.com
- •www.btgrubu.com