# Hash Functions

## Data Integrity and Source Authentication



- Encryption does not protect data from modification by another party.
- Need a way to ensure that data arrives at destination in its original form as sent by the sender and it is coming from an authenticated source.

### Hash Function



## Chewing functions

▶ Hashing function as "chewing" or "digest" function





Hashing V.S. Encryption





**Password Verification** 







## Hash Function Properties

- Arbitrary-length message to fixed-length digest
- Preimage resistant (One-way property)
- Second preimage resistant (Weak collision resistant)
- Collision resistant (Strong collision resistance)

## Properties: Fixed length



Arbitrary-length message to fixed-length digest

Demo: <a href="https://www.fileformat.info/tool/hash.htm">https://www.fileformat.info/tool/hash.htm</a>

#### **Collision resistance**

You have only the cryptographic hash function at hand. It's hard to find two *different* inputs that *result in the same hash*.



Collision resistance

#### **Pre-image resistance**

You have the hash function and a hash. It's hard to find a pre-image of that hash.



334d016f755cd6dc 58c53a86e183882f 8ec14f52fb053458 87c8a5edd42c87b7

Pre-image resistance

#### **Second-pre-image resistance**

You have the hash function and a pre-image (and thus the hash of that pre-image). It's hard to find *another pre-image with the same hash*.



Second-pre-image resistance

#### SHA-512 Overview



## Padding and length field in SHA-512



- What is the number of padding bits if the length of the original message is 2590 bits?
- We can calculate the number of padding bits as follows:

$$|P| = (-2590 - 128) \mod 1024 = -2718 \mod 1024 = 354$$

The padding consists of one 1 followed by 353 0's.

## **SHA-512 Round Function**



## Some well-known hash functions

| Name      | Bits | Secure so far?                                                                                                     | Used in Bitcoin?     |
|-----------|------|--------------------------------------------------------------------------------------------------------------------|----------------------|
| SHA256    | 256  | Yes                                                                                                                | Yes                  |
| SHA512    | 512  | Yes                                                                                                                | Yes, in some wallets |
| RIPEMD160 | 160  | Yes                                                                                                                | Yes                  |
| SHA-1     | 160  | No. A collision has been found.                                                                                    | No                   |
| MD5       | 128  | No. Collisions can be trivially created. The algorithm is also vulnerable to pre-image attacks, but not trivially. | No                   |

## Patterns of Hashing Data

- Independent hashing
- Repeated hashing
- Combined hashing
- Sequential hashing
- Hierarchical hashing

## Types of Hashing

Independent hashing



Repeated hashing



## Types of Hashing

Combined hashing

Sequential hashing



## Types of Hashing

Hierarchical hashing



#### Hash Pointer

- A Cryptographic Hash Pointer (Often called Hash Reference) is a pointer to a location where
  - Some information is stored
  - Hash of the information is stored
- With the hash pointer, we can
  - Retrieve the information
  - Check that the information has not been modified (by computing the message digest and then matching the digest with the stored hash value)

## Hash Pointer



## Tamper Detection using Hash Pointer



## Puzzle Friendly

• Say M is chosen from a widely spread distribution; it is computationally difficult to compute k, such that Z = H(M||k), where M and Z are known a priori.

- A Search Puzzle (Used in Bitcoin Mining)
  - M and Z are given, k is the search solution
  - Note: It might be not exactly a particular value Z, but some properties that Z satisfies, i.e., Z could be a set of possible values
- Puzzle friendly property implies that random searching is the best strategy to solve the above puzzle

# Making Tampering a Hash Chain Computationally Challenging



Nonces for Solving a Hash Puzzle

| Nonce | Text to Be Hashed | Output   |
|-------|-------------------|----------|
| 0     | Hello World! 0    | 4EE4B774 |
| 1     | Hello World! I    | 3345B9A3 |
| 2     | Hello World! 2    | 72040842 |
| 3     | Hello World! 3    | 02307D5F |
|       |                   |          |
| 613   | Hello World! 613  | E861901E |
| 614   | Hello World! 614  | 00068A3C |
| 615   | Hello World! 615  | 5EB7483F |

http://www.blockchain-basics.com/HashFunctions.html

## Detect Tampering from Hash Pointers - Hashchain









- A digital signature needs a public-key system. The signer signs with her private key; the verifier verifies with the signer's public key.
- A cryptosystem uses the public and private keys of the receiver; a digital signature uses the private and public keys of the sender.







Signing function

needs a message and a private key.

A2k8BKzoFRHBXm8AJeQwnr oNb7qagg9OMj7Vp2wcl+c=



## Demo

https://learn.pkiindia.in/index.html

# Merkle Tree – Organization of Hash Pointers in a Tree



#### Blockchain as a Hashchain



#### Demo

http://www.blockchain-basics.com/HashFunctions.html

• <a href="https://andersbrownworth.com/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/blockchain/bloc

• <a href="https://andersbrownworth.com/blockchain/public-private-keys/keys">https://andersbrownworth.com/blockchain/public-private-keys/keys</a>