Cardiology boot camp for the general pediatric clinic

Andras Bratincsak, MD, PhD 4/26/2018

Timely Topics in Pediatrics Conference 2018 American Academy of Pediatrics – Hawaii Chapter

Disclosure

 I have no relevant financial relationships with the manufacturers(s) of any commercial products(s) and/or provider of commercial services discussed in this CME activity

 I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation.

Overview

Boot camp

Step 1: warm-up

Step 2: 7 drills

Step 3: burnout

Step 4: recovery at home

The warm-up

Most common cardiac "complaints" in pediatricians office:

Heart murmur

Chest pain

Syncope

Murmur

Cohort	Prevalence of innocent heart murmurs	Reference
2035, 1-15y	11.8%	Mainzer et al, Arch Dis Child, 1959
200, 2-12y	84%	Barlow and Pocock, Am Heart J, 1962
12050, 2-18y	72%	McLaren et al, Br Heart J, 1980
810, 5-14y	58% (41-9-4-4%)	Van Oort et al, Pediatr Cardiol, 1994

Prevalence of congenital heart disease is 0.8%

Innocent heart murmurs

- Still's murmur
- Venous hum
- Pulmonary flow murmur
- Peripheral pulmonary stenosis in infants
- Carotid bruit

Chest pain and syncope

Chest pain

Frequency of cardiac etiology for chest pain

Study	Location	Total patients	Patients with cardiac chest pain, n (%)
Driscoll et al (1976) ¹	Ped	43	0 (0)
Pantell and Goodman (1983) ¹³	PC	100	1 (1)
Selbst et al (1998) ¹⁰	Ped ED	407	16 (4)
Gastesi et al (2003) ³³	Ped ED	161	1 (0.5)
Massin et al (2004) ³⁴	PC/Ped ED	69/168	3 (4)/8 (5)
Danduran et al $(2008)^2$	PC	263	0 (0)
Friedman et al (2011) ³	PC	406	5 (1.2)
Saleeb et al (2011) ¹¹	PC	3700	37 (1)

Friedman and Alexander, J Pediatr, 2013

Causes of chest pain and syncope

- Non-cardiac chest pain ~99%
- Cardiac origin of chest pain 1%

- Neurocardiogenic syncope >99%
- Cardiogenic syncope <1%

Drills

- Newborn with arrhythmia
- Infant with murmur
- Young child with murmur
- Young teenager with chest pain
- Teenager with syncope
- Teenager with sports physical
- Teenager with murmur

 2 days old baby, Friday afternoon, nurse calls due to arrhythmia

- Frequent skipped beats
- ECG, rhythm strip

- PACs
- Conducted, aberrantly conducted, blocked
- atrial contractions are benign
- Tend to resolve without treatment

- PVCs
- Ventricular contractions can be dangerous
- Could be associated with structural heart problems, cardiomyopathies, or inherited arrhythmia syndromes

- Well child visit, persistent murmur at 2 and 4 weeks
- What goes through your mind? The entire list of congenital heart defects (VSD, ASD, PDA, TOF, AVSD, DORV, IAA, COA, AS, PS, TGA, TAPVR, HLHS, DILV, TriA, TA, APW, PA/IVS. PA/VSD/MAPCAs)

Step 1: CCHD screening

Critical congenital heart disease screening: cyanotic heart defects and critical aortic arch stenosis are out (TA, TGA, TriA, TOF, TAPVR, IAA, COA, HLHS, DILV, DORV, PA/IVS, PA/VSD/MAPCAs)

What's left: VSD, ASD, PDA, AVSD, AS, PS, TOF, COA and peripheral pulmonary stenosis

Step 2: symptoms and PE

Symptoms of respiratory distress: lack of tachypnea and retractions rule out significant VSD, PDA, AVSD Lack of hepatomegaly rules out significant PS, TOF Normal femoral pulse and perfusion rule out severe COA, and critical AS

What's left: restrictive VSD, PDA, not too severe AS, PS, ASD, TOF, COA and PPS

Most common causes of murmurs in early infancy:

PPS

PDA

VSD

Peripheral pulmonary stenosis

short systolic murmur

S1 S2

Patent ductus arteriosus

Ventricular septal defect

S1-coincident murmur

S1 S2

3. Young girl with "new" heart murmur

- Healthy 4 years old girl, first time murmur on WCC
- CCHD negative
- Normal development
- No respiratory distress
- Femoral pulses normal

3. Young girl with "new" heart murmur

- What is left: ASD, PAPVR, mild to moderate PS or AS, MR (MVP), HOCM
- Innocent murmurs: Still's, venous hum

Childhood murmurs

- Murmur in ASD, PAPVR, PS: systolic murmur at LUSB
- Murmur in MR: holosystolic murmur at apex and left axilla
- Murmur in AS, HOCM: systolic murmur at LMSB and RUSB
- Murmur in Still's: systolic murmur at LMSB and apex
- Venous hum: diastolic murmur at infraclavicular regions

Pulmonic stenosis

Aortic stenosis

Still's murmur

Venous hum

4. Young teenage girl with chest pain

- 11 years old girl with precordial chest pain
- Occurs at random times
- Lasts 5 minutes
- No other symptoms
- No PMH besides asthma
- Rapid growth in the past
 6 months

4. Young teenage girl with chest pain

What are we looking for besides musculoskeletal pain?

- SVT arrhythmia may present as chest dyscomfort
- Ischemia coronary artery anomaly
- Inflammation pericarditis or myocarditis
- Vascular problems aortic dissection, pulmonary embolism

Prevalence of cardiac lesions

• 37 of the 3700 patients (1%) had a cardiac etiology

- SVT (n = 16)
- pericarditis (n = 10)
- myocarditis (n = 4)
- anomalous coronary origin from incorrect sinus (n = 3)

Cardiac origins of chest pain

- pericarditis (n = 62)
- myocarditis (n = 46)
- coronary anomalies (n = 21)
- pulmonary embolus (n = 13)
- HCM (n = 3)
- myocarditis (n = 1)
- pulmonary artery hypertension (n = 1)

4. Young teenage girl with chest pain

- Red flags: chest pain during exercise
- Red flags: chest pain lasting for more than a day

Role of ECG: ST segment elevation

5. Sophomore boy with syncope

- 15 years old boy, syncope associated with exercise
- During exertion
- No PMH
- Very active
- No symptoms
- No FH

Benign syncope

- Neuro-cardiogenic or benign syncope: after exercise in recovery, combing hair, hot shower, getting up from toilet, getting up from couch going to the kitchen
- Prodrome present, remembers event
- No CPR needed, regains consciousness in 1-2 minutes
- Convulsion possible, no post-ictal

Cardiogenic syncope

- During exercise
- Rarely remembers, no prodrome
- Induced by sudden noise, light

CPR was performed

SCD or IAS in family

5. Sophomore boy with syncope

5. Sophomore boy with syncope

6. Junior girl for sports physical

- 16 years old girl from Maunalani high soccer team
- Sports physical screening
- Asymptomatic teenager
- No FH of SCD or IAS
- Physical exam normal

AAP/AHA recs for sports clearance

Personal history

- 1. Chest pain related to exertion
- 2. Unexplained syncope/near-syncope
- 3. Excessive dyspnea with exercise
- 4. Prior recognition of a heart murmur
- 5. Elevated systemic blood pressure
- 6. Prior restriction from participation
- 7. Prior testing for the heart

Family history

- 8. Sudden death before 50 y of age
- 9. Disability from heart disease in <50 y
- 10. IAS in a relative (HCM, LQTS, MS)

Physical examination

- 11. Heart murmur
- 12. Femoral pulses
- 13. Physical stigmata of Marfan syndrome
- 14. Blood pressure

6. Junior girl for sports physical

6. Junior girl for sports physical

7. Senior boy with murmur

- 17 years old boy, tall, athletic, new murmur
- What's left: ASD, PAPVR, BAV
- Differentiate between
- Functional PS
- Innocent pulmonary flow murmur
- Echo is appropriate

Mitral regurgitation

Burnout

- Murmurs
- Chest pain
- Syncope
- ECGs

Burnout – murmurs

- Depends on age
- Red flags: FTT, cyanosis, respiratory distress, hepatomegaly, poor femoral pulses, poor perfusion
- Innocent heart murmurs are very common 75% of children: PPS, Still's, venous hum, pulmonary flow murmur

Auscultation

- Active, not passive
- Location
- Timing
- S1-S2
- Length, pitch

Burnout – chest pain

- History, history, history
- Red flags: exertional, KD, heart surgery, prolonged
- Most common is growing pain (musculoskeletal)
- Possible cardiac: pericarditis, myocarditis, coronaries

Burnout – syncope

- History, history, history
- Red flags: exertional, heart surgery, family history
- Most common is neurocardiogenic
- Possible cardiac: LQTS, HCM, DCM, coronaries

Burnout – ECGs

- Always look at QTc and T waves
- Let them be read by pediatric cardiology (not ER, not adult cardiology)
- Sports physical: questions and physical exam is more important than ECG

Working algorithm

- Echo \$2000
- Cardiology consult \$150 with echo \$750
- Echocardiogram did not add any value of syncope evaluation after history, physical exam, and ECG
- Ritter et al, Pediatrics, 2000
- Newburger et al., NEJM 2000