分子生物计算 (Perl 语言编程)

天津医科大学 生物医学工程与技术学院

> 2016-2017 学年上学期(秋) 2014 级生信班

条条大路通罗马

伊现富(Yi Xianfu)

天津医科大学(TIJMU) 生物医学工程与技术学院

2017年1月


```
# The Perl 5 language interpreter
  man perl
3 # Look up Perl documentation in Pod format
4 man perldoc
  perldoc perldoc
6
  # Perl built-in function
  perldoc -f BuiltinFunction
  perldoc -f substr
10 # FAO
11 peridoc -q FAQKeyword
12 perldoc - g random
13 # Perl predefined variable
14 peridoc -v Perivariable
15 perldoc -v '$ '
```


3 / 12

启用警告

```
Method1
  # 使用命令行选项-w
  perl -w script.pl
4
5
  # Method2
  # 在命令解释行使用-w
  #!/usr/bin/perl -w
8
  # Method3
  # 使用use
10
  use warnings;
```


4 / 12

```
# Method1
  $DNA3 = "$DNA1$DNA2"; print "$DNA3\n";
3
4 # Method2
  print "$DNA1$DNA2\n";
6
  # Method3
  print $DNA1, $DNA2, "\n";
9
10 # Method4
11|$DNA3 = $DNA1 . $DNA2; print "$DNA3\n";
12
13 # Method5
14 | $DNA3 = join "", $DNA1, $DNA2; print "$DNA3\n
    ";
```



```
# Method1 (只读取一行)
  $protein = <PROTEINFILE>;
3
  # Method2 (读取所有行,一次性保存进数组)
  @proteins = <PROTEINFILE>;
6
  # Method3 (依次读取每一行)
  while (<PROTEINFILE>) {
9
    ...actions...
10
11
12 # Method4 (读取所有行, 一次性保存进标量)
13 | $protein = do { local $/; <PROTEINFILE>; };
```

获取数组元素个数

```
1 # Methods1
2 $num = scalar @bases;
3
4 # Methods2
5 $num = @bases;
6
7 #Methods3
8 $num = $#bases + 1;
```


获取数组的第一个元素

```
# Method1
  $first gene = $genes[0];
  #($first gene) = $genes[0];
4
  # Method2
  ($first gene) = @genes;
  # Method3
  $first gene = shift @genes;
10 # 注意: shift会影响原始的@genes数组
```


获取数组的最后一个元素

```
1 # Method1

2 $last_gene = $genes[-1];

3 

4 # Method2

5 $last_gene = $genes[$#genes];

6 

7 # Method3

8 $last_gene = pop @genes;

9 # 注意: pop会影响原始的@genes数组
```



```
# Methods1
  $count++;
3
  # Methods2
  ++$count;
6
  # Methods3
  $count += 1;
9
10
  # Methods4
11 | $count = $count + 1;
```


10 / 12

```
1 # Methods1 (使用数组)
2 @DNA = split( '', $DNA );
3 foreach $base (@DNA) { ...count... }
4 # Methods2 (操作字符串)
5 \mid \text{for ( $pos=0 ; $pos < length $DNA ; ++$pos )}
6
    $base = substr( $DNA, $pos, 1 ); ..count..
8 # Methods3 (模式匹配)
9|while ( $DNA = ~ /a/ig ) { $a++ }
10 while ( DNA = /[^acgt]/ig ) { e++ }
11 # Methods4 (使用tr函数)
12 a = (SDNA = tr/Aa/Aa/);
13 | $basecount = ($DNA =~ tr/ACGTacgt/ACGTacgt/);
14 | $nonbase = (length $DNA) - $basecount;
```


Powered by

