[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1068

Unique Paper Code : 2372013501

Name of the Paper : Theory of Estimation

Name of the Course : B. Sc. (Hons.), Statistics

under NEP-UGCF

Semester : V

Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll. No. on the top immediately on receipt of this question paper.
- Attempt six questions in all, selecting three questions from section I and three questions from section II.
- 3. Use of simple calculator is allowed.

SECTION I

- 1. (a) State and prove Invariance property of consistent estimators. Using this property, obtain consistent estimator of $\theta^2 + \theta \sqrt{\theta}$, when X follows Bernoulli distribution with parameter θ .
 - (b) Let $X_1, X_2,..., X_n$, be a random sample from population having p.d.f. $f(x, \theta) = (\theta + 1)x^{\theta}$,

$$0 < x < 1, \ \theta > -1.$$
 Show that $\left[\frac{-(n-1)}{\sum_{i=1}^{n} \log x_i} - 1\right]$ is an

unbiased estimator of
$$\theta$$
 (8, 7)

2. (a) Show that the estimator of the form a $a\overline{X}$ for in random sampling from $N(\theta, \sigma^2)$, has the minimum

mean-square error, when
$$a = \frac{\theta^2}{(\theta^2 + \frac{\sigma^2}{})}$$
, Which

$$\rightarrow$$
 1 as $n \rightarrow \infty$ but < 1 when n is finite.

(b) State Cramer-Rao Inequality. Let $X_1, X_2,...,X_n$, be a random sample from Population having p.d.f.

$$f(x, \theta) = \frac{1}{\pi[1+(x-\theta)^2]}, -\infty < x < \infty, -\infty < \theta < \infty$$

Find Cramer-Rao Lower bound for variance of an unbiased estimator of θ . Also, examine whether MVB estimator exists for θ . [7, 8]

3. (a) Let X and Y be two random variables having joint probability density function
$$f(x,y) = \frac{2}{\theta^2} \exp[-(x+y)/\theta], 0 < x < y < \infty$$
.

(i) Show that the mean and variance of Y are respectively $\frac{3\theta}{2}$ and $\frac{5\theta^2}{4}$.

- (ii) Show that $E[Y]X = x] = \phi(x) = x + \theta$ and expected value of $X + \theta$ is that of Y.
- (iii) Show that the variance of $\phi(X)$ is less than that of Y.
- (iv) Comment on the result.
- (b) Define Minimum Variance Unbiased (MVU) Estimator. Let T_0 be an MVU estimator, while T_1 is an unbiased estimator with efficiency e_{θ} . If ρ_{θ} , be the correlation coefficient between T_0 and T_1 , then prove that $\rho_{\theta} = \sqrt{e_{\theta}}$. (8, 7)
- (a) Let X₁, X₂,..., X_n, be a random sample from U(0,θ) population. Show that the largest order statistic X_(n) is a complete sufficient statistic for θ. Using Lehman Scheffe's theorem, find UMVUE of θ.

į

(b) Let $X_1, X_2,..., X_n$, be a random sample from the distribution having p.d.f. $f(x,\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$ $0 \le x$ $< \infty, \ \theta > 0$. Show that $\frac{n-1}{n\overline{X}}$ is the only unbiased estimator of $\frac{1}{\theta}$ based on \overline{X} . [8,7]

SECTION II

5. (a) Describe the Method of Moments. Let $X_1, X_2, ..., X_n$, be a random sample from the distribution with $\text{p.d.f.} \quad f(x; \alpha, \beta) = \frac{\beta^n}{\Gamma \alpha} x^{n-1} e^{-\beta x}, x \ge 0, \alpha > 0, \beta > 0.$

Estimate the parameters α and β by the Method of Moments.

(b) Let $X_1, X_2,...,X_n$, be a random sample from a distribution with p.d.f. $f(x;\theta) = \frac{1}{\theta} \cdot x^{\frac{1-\theta}{\theta}}, 0 < x < 1, 0$

 $<\theta<\infty$. Find the Maximum likelihood estimator of θ . Also, examine the estimator for unbiasedness property. (8,7)

6. (a) What is failure-censored sample in life testing experiment? Obtain the Maximum likelihood estimator of the expected life time and reliability function in case of failure censored sample from the life time distribution:

$$f(x;\sigma) = \frac{1}{\sigma}e^{-\frac{x}{\sigma}}, x > 0, \sigma > 0.$$

(b) Show by means of an example that

- (i) MLE may not be unbiased
- (ii) MLE may not be unique (8, 7)
- 7. (a) Let $X_1, X_2,...,X_n$, be a random sample from a distribution having p.d.f. $f(x, \theta) = e^{-(x-\theta)}, \theta \le x < \infty$, $-\infty > \theta < \infty$. Obtain 100 (1- α)% confidence interval for θ .
 - (b) Describe a method of constructing confidence intervals. Find 100 $(1-\alpha)$ % confidence interval for binomial proportion based on a random sample of size n for large samples. (7, 8)
- 8. Describe any three of the following:
 - (a) Minimum Chi-square method of estimation
 - (b) Rao-Blackwell theorem

8

- (c) Fisher-Neyman criterion
- (d) Sufficient conditions for consistency (15)

1