SC627 Assignment 3 report

180100049 - Hemanth Dontamsetti

After implementing **Maximum Velocity strategy(MV**) of velocity obstacles algorithm, I encountered following problems and observations.

1) Collision with obstacles

Not able to do maneuver in time to avoid collision

Solution: Increased delay_time t_d so that enough time is available to avoid collision. By the condition $V_{rel} \geq \frac{\vec{PO}}{t_d}$ this increased feasible velocity space. Increased Radius of collision(R) to 0.3m .

Note: Modified Velocity_convert function to account for angles from -pi to pi.

2) Due to high velocity change bot Slips at goal and it is drifted a little

Due to high velocity change from 0.15 to 0 when bot is very close to goal. It drifts/slips by which error of final position is large.

Solution : Decreased the search space of velocities (v = 0: 0.05) when the bot is 0.25m or less from goal

3) To avoid run-time errors

Included conditions so that algorithm starts after data from all topics (/bot_1/odom, /odom_data) are received. One more warning of invalid arcsin argument is not debugged, although algorithm is working fine with this warning.

* Few Improvements in algorithm

Searched |v| from 0.15 to 0 (at steps of 0.01) and $|th(orientation_change)|$ from -10deg to 10deg (in steps of 1 deg), if (v^*,th^*) produced velocity which is avoids all obstacles and also in MV feasible space (i.e. within 45deg heading to goal) then algorithm doesn't search for $v < v^*$, as it wouldn't be MV and out of other feasible (v^*,th_i) , velocity with

Flow chart of collision_avoidance.py:

→ Simulation time of the algorithm was 40 to 60 secs. Varies according to the time you start the node

Fig 1: Test 1, Trace of robot

Fig 2: Test 1, x and y v/s time of robot

Fig 3: Test 2, Trace of robot

Fig 4: Test 2, x and y v/s time of robot

Fig 5: Test 3, Trace of robot

Fig 6: Test 3, x and y v/s time of robot