Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome,	nome	P	matrico	la
Cognomic,	HOHIC	·	matrico.	ıa

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a)	Siano $\varphi(z)$ e $\psi(z,w)$ formule del prim'ordine e σ un enunciato.	2 punti
	$\square \ \forall z \neg \varphi(z) \models \neg \exists z \varphi(z)$	
	\square Se \mathcal{C} è una struttura tale che $\mathcal{C} \models \neg \exists z \varphi(z)$, allora $\mathcal{C} \models \forall z (\varphi(z) \to \sigma)$.	
	\square Se \mathcal{D} è una struttura tale che $\mathcal{D} \models \exists w \varphi(w)$, allora $\mathcal{D} \models \exists w (\neg \sigma \lor \varphi(w))$.	
(b)	Consideriamo le funzioni $h: \mathbb{Z}^2 \to \mathbb{Z}, (z, w) \mapsto 4z^2 + w$	2 punti
	e $k: \mathbb{Z} \to \mathbb{Z}^2$, $z \mapsto (z, 4z)$. Allora	
	\square k è iniettiva e h è l'inversa di k .	
	Esiste $z \in \mathbb{Z}$ tale che $k(z) = (1, 4)$.	
	\square la funzione h è iniettiva.	
	$h \circ k(z) = 4z(z+1)$ per ogni $z \in \mathbb{Z}$.	
(c)	Sia R la proposizione $\neg A \rightarrow \neg C \vee \neg D$. Allora	2 punti
	\square R è conseguenza logica di C \rightarrow A.	
	□ R non è soddisfacibile.	
	\square Se i è un'interpretazone tale che $i(\mathbf{A})=0$ allora necessariamente $i(\mathbf{C})=i(\mathbf{D})=$	
	0.	
	\square R è una tautologia.	
(d)	Quali delle seguenti sono formule che formalizzano correttamente	2 punti
	" x è un numero primo" utilizzando il linguaggio $\cdot, 1$ e relativamente alla struttura	
	$\langle \mathbb{N}, \cdot, 1 angle$	
	$ (x=1) \lor \forall y \forall z (y \cdot z = x \to y = 1 \lor z = 1) $	

 $\Box \neg (x=1) \land \forall y (\exists z (y \cdot z = x) \to y = 1 \lor y = x)$

(e)	Sia T una relazione binaria su un insieme non vuoto C .	2 punti
	\square Se T è un preordine e Q è un'altra relazione binaria su C tale che $T\subseteq Q$, allora	
	Q è riflessiva.	
	\square Se T è antisimmetrica, allora non può essere anche simmetrica.	
	\square Se T è riflessiva, allora non può essere anche irriflessiva.	
	\square Se T è una relazione di equivalenza, allora è anche un preordine.	
(f)) Sia $L = \{R, h, k, c\}$ un linguaggio del prim'ordine con R simbolo di relazione	2 punti
	binario, h simbolo di funzione unario, k simbolo di funzione binario e c	
	simbolo di costante. Quali dei seguenti sono L-termini?	
	$\Box \ h(k(k(c,h(c)),k(h(c),c)))$	
	$\square \ k(k(h(c), h(c)), k(h(c), h(c)))$	
	$\Box k(h(h(k(c,c),c)),c)$	
	\square $R(c,h(c))$	
(g)) Siano D e A insiemi tali che $A \subseteq D$. Allora possiamo concludere con certezza che	2 punti
	$\square (D \cup A) \setminus (D \setminus A) = A.$	
	\square se $ D = A $ allora $D \setminus A$ è finito.	
	$\hfill\Box$ D e A non possono essere disgiunti.	
	\square se $ D \le A $ allora $ D = A $.	

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{R, T, c\}$ con R ed T simboli di relazione binaria e c simbolo di costante. Consideriamo la L-struttura $\mathcal{C} = \langle \mathbb{Z}, >, |, 3 \rangle$, dove | è l'usuale relazione di divisibilità.

Sia φ la formula

$$(R(z, w) \wedge T(c, w))$$

 $e \psi$ la formula

$$(R(z,w) \to T(c,w))$$

- 1. Determinare se:
 - $C \models \varphi[z/-1000, w/-2000],$
 - $C \models \varphi[z/-1000, w/-3000],$
 - $C \models \exists w \, \varphi[z/-1000, w/-999].$
- 2. Determinare se $\mathcal{C} \models \forall z \exists w \varphi[z/0, w/0]$.
- 3. Determinare se:
 - $C \models \psi[z/-1000, w/-2000],$
 - $C \models \psi[z/-1000, w/-3000],$
 - $C \models \forall w \psi[z/-1000, w/-998].$
- 4. Determinare se $\mathcal{C} \models \exists z \forall w \, \psi[z/-1, w/3]$.
- 5. Determinare se $\forall z \exists w \varphi \models \exists z \forall w \psi$.

Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia C un insieme non vuoto e $h\colon C\to C$ una funzione. Formalizzare relativamente alla struttura $\langle C,h\rangle$ mediante il linguaggio $L=\{h\}$ con un simbolo di funzione unario le seguenti affermazioni:

- 1. h è biettiva
- 2. se h è biettiva, allora h è una funzione costante (ovvero il suo range contiene un solo punto)
- 3. $h \circ h$ è suriettiva
- 4. ogni elemento ha almeno due preimmagini distinte.