Матан

Сергей Григорян

23 октября 2024 г.

Содержание

1	Лекция 13	3
	1.0.1 Долг прошлой жизни	3
	1.1 Равномерная непр-ть	
	1.2 Показательная и логарифмическая ф-ции	5
2	Лекция 14	8
	2.0.1 Ликбез по тригономе	10
	2.0.2 Сравнение ф-ций	12
3	Лекция 15	16
	3.1 Дифференцируемые ф-ции	16

1 Лекция 13

1.0.1 Долг прошлой жизни

Теорема 1.1 (О разрывах монот. ф-ции). Пусть $a, b \in \overline{\mathbb{R}}, a < b$. Если f монотонна на (a,b), то f на (a,b) может иметь разрывы только I рода, причём их не более чем счётно.

Доказательство. Пусть f нестрого возр. на (a,b). Тогда по следствию из т. о пределах монотонной ф-ции, для всякой т. $c \in (a,b)$ \exists конечные f(c-0), f(c+0), причём:

$$f(c-0) \le f(c) \le f(c+0)$$

Таким образом иметь на (a, b) разрывы только I рода.

Пусть $c, d \in (a, b), c < d$. Тогда для $\alpha \in (c, d)$. Рассм.:

$$f(c+0) = \inf_{x \in (c,b)} f(x) \le f(\alpha) \le \sup_{x \in (a,d)} f(x) = f(d-0)$$

Поэтому если c,d - точки разрыва ф-ции f, то интервалы (f(c-0),f(c+0)) и (f(d-0),f(d+0)) - невырожд. и не пересекаются. Поставим в соотв. каждому такому интервалу точку $\in \mathbb{Q}$, содержащееся в нём. Тем самым установим биекцию между мн-вом таких интервалов и подмножеством \mathbb{Q} . Сл-но таких интервалов не более чем счётно.

1.1 Равномерная непр-ть

Пусть $E \subset \mathbb{R}$ и $f: E \to \mathbb{R}$ Напомним, что f непр-на на E, если:

$$\forall x' \in E, \forall \varepsilon > 0, \exists \delta > 0, \forall x' \in E(|x - x'| < \delta \Rightarrow |f(x) - f(x')| < \varepsilon)$$

Определение 1.1. Ф-ция f наз-ся равномерно непрерывной (на E), если:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x, x' \in E(|x - x'| < \delta \Rightarrow |f(x) - f(x')| < \varepsilon)$$

<u>Замечание</u>. Если f р. н. (равномерно непр-на) на E, то f непр-на на E

 ${\bf 3aдaчa}$ 1.1. Если f и g р. н. на E и огр-ны, то fg - р. н. на E

Определение 1.2. Ф-ция $f: E \to \mathbb{R}$ наз-ся липшицевой, если:

$$\exists C > 0, \forall x, x' \in E(|f(x) - f(x')| \le C|x - x'|)$$

 $\underline{\mathbf{3амечаниe}}.$ Всякая липшицева ф-ция явл-ся р. н. (Дост-но положить $\delta = \frac{\varepsilon}{C}$)

Пример.

$$f: \mathbb{R} \to \mathbb{R}, f(x) = |x|$$
 - липшицева

Доказательство.

$$||x| - |x'|| \le |x - x'|, \forall x \in x' \in \mathbb{R}$$

Пример.

 $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$ - непр-на, **но не р. н.**

Замечание. f не p. н. \iff

$$\exists \varepsilon > 0, \forall \delta > 0, \exists x, x' \in E(|x - x'| < \delta \land |f(x) - f(x')| \ge \varepsilon)$$

Доказательство. Для произвольного $\delta>0$ положим, $x'=\frac{1}{\delta}, x=\frac{1}{d}+\frac{\delta}{2}.$ Тогда:

$$|x - x'| = \frac{\delta}{2} < \delta \land |f(x) - f(x')| = \left(\frac{1}{d} + \frac{\delta}{2}\right)^2 - \frac{1}{\delta^2} = 1 + \frac{\delta^2}{4} > 1$$

Сл-но, f не р. н.

Теорема 1.2 (Кантора). Если f непр-на на [a,b], то f - p. н. на [a,b]

Доказательство. І) Предположим, что f не явл-ся р. н. Тогда полагая $\delta = \frac{1}{n}, n \in \mathbb{N}$, получаем $x_n, x_n' \in [a, b]$, т. ч.

$$|x_n - x_n'| < \frac{1}{n} \wedge |f(x_n) - f(x_n')| \ge \varepsilon$$

По т. Б-В $\{x_n\}$ имеет сх-ся подп-ть $\{x_{n_k}\}$, $x_{n_k} \to x_0 \in [a,b]$. Имеем

$$x_{n_k}-rac{1}{n_k} < x'_{n_k} < x_{n_k}+rac{1}{n_k} \Rightarrow x'_{n_k} o x_0$$
 По т. о зажатой п-ти

Поэтому, в силу непр-ти, f в x_0 :

$$\lim_{k \to \infty} f(x_{n_k}) = \lim_{k \to \infty} f(x'_{n_k}) = f(x_0)$$

Что противоречит $\left| f(x_{n_k}) - f(x'_{n_k}) \right| \ge \varepsilon > 0$

 ${\bf \underline{3 aдачa}}$ 1.2. Пусть $f:E \to \mathbb{R}$ р. н. на E. Покажите, что

 $\exists ! F: closure(E) \rightarrow \mathbb{R}$ - непр-на на замыкании и $F|_E = f$

1.2 Показательная и логарифмическая ф-ции

<u>Определение</u> **1.3.** Ф-ция $\exp \colon \mathbb{R} \to \mathbb{R}, \exp = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$ наз-ся экспонентой.

Замечание. Сх-ть $\left(1+\frac{x}{n}\right)^n$ устанавливалась ранее для всях $x\in\mathbb{R}$

Теорема 1.3. Для любых $x, y \in \mathbb{R}$ справедливо:

$$\exp(x+y) = \exp(x)\exp(y)$$

Доказательство. Введём об-е $a_n(x) = (1 + \frac{x}{n})^n$. Оценим:

$$a_n(x)a_n(y) - a_n(x+y)$$

Тогда, в силу тождества:

$$b^{n} - a^{n} = (b - a)(b^{n-1} + b^{n-2}a + b^{n-3}a^{2} + \dots + ba^{n-2} + a^{n-1})$$

$$a_{n}(x)a_{n}(y) - a_{n}(x + y) = \left(1 + \frac{x + y}{n} + \frac{xy}{n^{2}}\right)^{n} - \left(1 + \frac{x + y}{n}\right)^{n} = \frac{xy}{n^{2}}Q(x, y), Q(x, y) = \sum_{k=0}^{n-1} b^{n-1-k}a^{k}$$

Где:

$$b = \left(1 + \frac{x}{n}\right)\left(1 + \frac{y}{n}\right), a = \left(1 + \frac{x+y}{n}\right)$$

П-ть $\{a_n(|x|)\}$, нестрого возрастает, начиная с некот. n_0 (см. док-во схти):

$$\left| \left(1 + \frac{x}{n} \right)^p \right| \le \left(1 + \frac{|x|}{n} \right)^p \le \left(1 + \frac{|x|}{n} \right)^n \le \exp(|x|), p = 1, \dots, n$$

Сл-но, каждое слагаемое в Q(x,y) оценивается по модулю $C=\exp|x+y|\exp|x|\exp|y|$. Тогда получаем:

$$|a_n(x)a_n(y) - a_n(x+y)| \le \frac{|x||y||C}{n}$$

Переходя к пределу, получаем, что:

$$|\exp(x)\exp(y) - \exp(x+y)| \le 0$$

Ч. Т. Д. □

Следствие.

$$\exp x > 0 \ u \ \exp(-x) = \frac{1}{\exp(x)}, \forall x \in \mathbb{R}$$

Доказательство.

$$\exp(x) = \exp(\frac{x}{2} + \frac{x}{2}) = \exp^2(\frac{x}{2})$$
$$\exp(x) \exp(-x) = 1$$

Пемма 1.4. a)

$$\exp(x) \ge 1 + x, \forall x \in \mathbb{R}$$

$$\exp(x) \le \frac{1}{1-x}, \forall x < 1$$

 \mathcal{A} оказательство. Зафикс. $N\in\mathbb{N},$ т. ч. $\frac{x}{N}\geq -1.$ Тогда по нер-ву Бернулли:

 $\forall n \ge N \colon \left(1 + \frac{x}{n}\right)^n \ge 1 + x$

Пред. переходом получаем:

$$\exp(x) \ge 1 + x$$
 - пункт а)

По нер-ву п. а):

$$\exp(-x) \ge 1 - x > 0$$
, при $x < 1$
 $\exp(x) = \frac{1}{\exp(-x)} \le \frac{1}{1 - x}$

Теорема 1.5. Ф-ция exp непр-на, строго возр. и отображает \mathbb{R} на $(0,+\infty)$

Доказательство. По нер-ву из предыдущей леммы, при x < 1 имеем:

$$1 + x \le \exp(x) \le \frac{1}{1 - x}$$

Откуда при $x \to 0$, $\exp(x) \to 1$. Тогда для $\forall a \in \mathbb{R}$:

$$\lim_{x \to a} \exp(x) = \begin{bmatrix} t + a = x \\ t = x - a \\ t \to 0 \end{bmatrix} = \lim_{t \to 0} \exp(t + a) = \lim_{t \to 0} \exp(a) \exp(t) = \exp(a)$$

 \Rightarrow ф-ция непр-на на $\mathbb R$

Пусть $x, y \in \mathbb{R}, x < y$. Тогда:

$$\exp(y) - \exp(x) = \exp(x)(\exp(y - x) - 1) \ge (y - x)\exp(x) > 0$$

Т. к.

$$\lim_{x \to +\infty} \exp(x) = +\infty \Rightarrow \sup_{\mathbb{R}} \exp = +\infty$$

$$\lim_{x \to -\infty} \exp(x) = \lim_{x \to +\infty} \frac{1}{\exp(x)} = 0 \Rightarrow \inf_{\mathbb{R}} \exp(x) = 0$$

Сл-но,
$$\exp(\mathbb{R}) = (0, +\infty)$$

2 Лекция 14

Определение 2.1. Натуральным логарифмом наз-ся ф-ция $\ln: (0, +\infty)$, обратная к \exp

<u>Замечание</u>. По т. об обратной ф-ции и св-в экспоненты, можно получить св-ва нат. логарифма:

- Іп непр-на на обл-ти определения.
- ln *строго возр.*
- In omoбражет $(0,+\infty)$ на \mathbb{R} , при этом, если $x_1,x_2>0 \Rightarrow$

$$\ln(x_1 \cdot x_2) = \ln(x_1) + \ln(x_2)$$

Определение 2.2. Пусть $a > 0, a \neq 1$. Показательной ф-цией с основанием a наз-ся ф-ция: $x \mapsto a^x = \exp(x \ln a), x \in \mathbb{R}$

<u>Замечание</u>. Показательная ф-ция непр-на, строго монотонна (при a > 1 строго возрастает, иначе - строго убывает), а также отображает \mathbb{R} на $(0, +\infty)$

Замечание. Пусть $n \in \mathbb{N}, n > 1$. Тогда:

$$\left(a^{\frac{1}{n}}\right)^n = \exp(\frac{1}{n}\ln a) \cdot \exp(\frac{1}{n}\ln a) = \exp(\ln a) = a$$

Cл-но, $a^{\frac{1}{n}} = \sqrt[n]{a}$

Определение 2.3. Пусть $a>0, a\neq 1$. Логарифмической ф-цией с основанием a наз-ся ф-ция $\log_a\colon (0;+\infty)\to \mathbb{R}$. Обратная к показательной ф-ции $x\mapsto a^x, x\in \mathbb{R}$

<u>Замечание</u>. Логарифмическая ф-ция непр-на, строго монотонна и отображает $(0, +\infty)$ на \mathbb{R} . Кроме того:

$$x = a^y \iff x = \exp(y \ln a) \iff \ln(x) = y \ln a \Rightarrow \log_a(x) = \frac{\ln x}{\ln a}$$

Определение 2.4. Пусть $a \in \mathbb{R}$. Степенной ф-цией с показателем α назся ф-ция $x \mapsto x^{\alpha}, x \in E$, где:

1)
$$\alpha \in \mathbb{N} \cup \{0\} \Rightarrow E = \mathbb{R}$$
, при этом $x^0 = 1, x^\alpha = x \cdot \ldots \cdot x$

2)
$$\alpha \in -\mathbb{N} \Rightarrow E = \mathbb{R} \setminus \{0\}$$
, при этом $x^{\alpha} = \frac{1}{x^{-\alpha}}$

3)
$$\alpha \in \mathbb{R} \setminus \mathbb{Z} \Rightarrow E = (0, +\infty)$$
, при этом $x^{\alpha} = \exp(\alpha \ln x)$

<u>Замечание</u>. Если в последнем случае $\alpha > 0$, то полагаем $0^{\alpha} = 0$ (т. е. 0 включаем в E), это согласуется с тем, что:

$$\lim_{x \to +0} \exp(\alpha \ln x) = 0$$

<u>Замечание</u>. Из св-в \exp u \ln nолучаем, что степенная ϕ -uия непр-на на E, на $(0,+\infty)$ строго возрастает на nри $\alpha>0$ u строго убывает nри $\alpha<0$

<u>Лемма</u> 2.1 (Замечательные пределы).

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Кроме того:

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

Доказательство. По пред. лемме при x < 1:

$$1 + x \le e^x \le \frac{1}{1 - x} \iff x \le e^x - 1 \le \frac{x}{1 - x} \iff$$

$$\begin{cases} 1 \le \frac{e^x - 1}{x} \le \frac{1}{1 - x}, x > 0 \\ \frac{1}{1 - x} \le \frac{e^x - 1}{x} \le 1, x < 0 \end{cases} \Rightarrow \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Ф-ция $g(y) = \begin{cases} \frac{y}{e^y-1}, y \neq 0 \\ 1, y = 0 \end{cases}$ - непр. в 0. Также $f(x) = \ln(x+1)$ непр-на

в 0. Тогда композиция $g \circ f$ непр-на в 0

$$h(x) = g \circ f(x) \Rightarrow h(x) = \begin{cases} \frac{\ln(x+1)}{x}, & x > 0\\ 1, & x = 0 \end{cases}$$

$$\Rightarrow \lim_{x \to 0} h(x) = \lim_{x \to 0} \frac{\ln(x+1)}{x} = g(0) = 1$$

Тогда и $\exp \circ h(x) = (1+x)^{\frac{1}{x}}$ непр-на в $0 \Rightarrow \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e^1 = e$

Задача 2.1. Док-те, что $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha$ Пример.

$$e^{\pi} \vee \pi^{e}$$

Доказательство.

$$\begin{aligned} e^x > 1 + x \\ x = \frac{\pi}{e} + 1 \\ e^{\frac{\pi}{e} - 1} > \frac{\pi}{e} \iff e^{\frac{\pi}{e}} > \pi \Rightarrow e^{\pi} > \pi^e \end{aligned}$$

2.0.1 Ликбез по тригономе

<u>Лемма</u> **2.2.** Для всех $x \in (0, \frac{\pi}{2})$ верно:

$$\sin x < x < \operatorname{tg} x$$

Доказательство. Picture:

$$S_{\triangle AOB} < S_{\text{cek. }AOB} < S_{\triangle AOC}$$

 $\Rightarrow \frac{1}{2} \sin x < \frac{1}{2} x < \frac{1}{2} \operatorname{tg} x$

Следствие. Для всех $x \in \mathbb{R}$. Верно $|\sin x| < |x|$, причём рав-во имеет место только при x=0

Доказательство. Если $x \in (0, \frac{\pi}{2})$, то нер-во следует по лемме.

Если
$$x \ge \frac{\pi}{2}$$
, то $|\sin x| \le 1 < \frac{\pi}{2} \le x$
Если $x < 0$, то $|\sin x| = |\sin(-x)| < |(-x)| = |x|$

<u>Следствие</u>. Φ - $uuu \sin u \cos непр$ -ны на \mathbb{R} .

Доказательство. Пусть $a \in \mathbb{R}$, тогда:

$$\left|\sin x - \sin a\right| = 2\left|\sin \frac{x - a}{2}\right| \left|\cos \frac{x + a}{2}\right| \le 2\frac{|x - a|}{2} = |x - a| \to 0$$

Сл-но, $\sin x$ в точке a равен $\sin a \Rightarrow \sin x$ - непр-на. Аналогично доказывается непр-ть $\cos x$ или из ф-л тригонометрии:

$$\cos x = \sin(\frac{\pi}{2} - x) \Rightarrow$$

 $\cos x$ непр-н как композиция непр. ф-ций.

Следствие.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

 \mathcal{A} оказательство. $x\in(0,\frac{\pi}{2})\Rightarrow\frac{\sin x}{x}<1$ и $\cos x<\frac{\sin x}{x}<1$ (из леммы) В силу чётности, $\lim_{x\to -0}\frac{\sin x}{x}=1\Rightarrow$ предел = 1.

Определение 2.5. Обратные тригонометрические ф-ции:

1) arcsin:

$$\arcsin = \left(\sin\left|_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}\right)^{-1}$$

2) $\arccos: [-1,1] \to [0,\pi]$

$$\arccos = (\cos|_{[0,\pi]})^{-1}$$

3) $\operatorname{arctg}: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$

$$arctg = (tg \mid_{(-\frac{\pi}{2}, \frac{\pi}{2})})^{-1}$$

4) $\operatorname{arcctg}: \mathbb{R} \to (0, \pi)$

$$\operatorname{arcctg} = (\operatorname{ctg}|_{(0,\pi)})^{-1}$$

Определение 2.6. Основными элементарными ф-циями наз-ся:

- $x \mapsto c, c \in \mathbb{R}$
- $\bullet \ x \mapsto a^x, a > 0, a \neq 1$
- $x \mapsto \log_a x, a > 0, a \neq 1$
- $x \mapsto x^{\alpha}$
- \sin, \cos, tg, ctg
- arcsin, arccos, arctg, arcctg

Определение 2.7. Элементарной ф-цией наз-ся любая ф-ция, полученная конечным числом арифметических операций или взятием их композиции.

Пример.

$$\operatorname{sh} \colon \mathbb{R} \to \mathbb{R}, \operatorname{sh} x = \frac{e^x - e^{-x}}{2}$$

$$\operatorname{ch} \colon \mathbb{R} \to \mathbb{R}, \operatorname{ch} x = \frac{e^x + e^{-x}}{2}$$

$$\operatorname{th} \colon \mathbb{R} \to \mathbb{R}, \operatorname{th} = \frac{\operatorname{sh} x}{\operatorname{ch} x}$$

$$\operatorname{cth} \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}, \operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}$$

Теорема 2.3. Всякая элементарная ф-ция непр-на на своей области определения.

2.0.2 Сравнение ф-ций

Определение 2.8. Пусть $f,g\colon E\to\mathbb{R},\,a$ - предельная точка E и сущ-ет $\alpha\colon E\to\mathbb{R}$ и $\delta>0$, такие, что

$$f(x) = \alpha(x)g(x), \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E$$

Тогда:

- 1) Если $\alpha(x)\to 1$ при $x\to a$, то говорят, что ф-ции f и g <u>эквивалентны</u> (асимптотически равны) при $x\to a$. Пишут $f(x)\sim g(x)$ при $x\to a$
- 2) Если $\alpha(x) \to 0$ при $x \to a$, то говорят, что ф-ция f беск. мала по сравн. с ф-цией g при $x \to a$, пишут f(x) = o(g(x)), при $x \to a$
- 3) Если α огр-на, то говорят, что ф-ция f ограничена по сравнению с g при $x \to a$. Пишут, что $f(x) = O(g(x)), x \to a$

<u>Замечание</u>. Если $g(x) \neq 0$ в некот. проколот. окр-ти a, c учётом обл. опр-я, то:

1)
$$f(x) \sim g(x), x \to a \iff \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \alpha(x) = 1$$

2)
$$f(x) = o(g(x)), x \to a \iff \lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

$$f(x) = O(g(x)), x \to a \iff \exists M > 0, \exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E\left(\left|\frac{f(x)}{g(x)}\right| \le M\right)$$

Доказательство. ⇒) Следует из опр-я.

⇐) Положим:

$$lpha\colon E o\mathbb{R}, lpha(x)=egin{cases} rac{f(x)}{g(x)},x\in \overset{\circ}{B_{\delta}}(a)\cap E \$$
что угодно, иначе

Задача 2.2. Доказать, что \sim - отн. эквив-ти.

Пример. 1)

$$x^{n} = o(x^{m}), x \to 0 \iff n > m$$
$$x^{n} = x^{n-m}x^{m}$$

$$(2)$$

$$x^n = o(x^m), x \to \pm \infty \Rightarrow m > n$$

3)
$$x = O(\sin x), x \to 0$$
$$x + \cos x = O(x), x \to \pm \infty$$

$$(4)$$

$$x \sim \sin x \sim e^x - 1 \sim \ln(1+x), x \to 0$$

<u>Замечание</u>. Читаем f(x) = O(g(x)), f(x) = o(g(x)) - слева направо!

Лемма 2.4.

$$x \to a$$

Тогда справедливо:

1)
$$o(f) \pm o(f) = o(f), O(f) \pm O(f) = O(f)$$

$$o(f) = O(f)$$

$$o(O(f)) = o(f), O(o(f)) = o(f)$$

$$o(f)O(g) = o(fg)$$

Доказательство. 3)

$$\begin{cases} u = o(v), x \to a \\ v = O(f), x \to a \end{cases} \Rightarrow \begin{cases} u(x) = \alpha(x)v(x) \\ v(x) = \beta(x)f(x) \end{cases} \quad \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E$$
$$\Rightarrow u(x) = \alpha(x)\beta(x)f(x) = \gamma(x)f(x), \gamma \to 0, x \to a$$
$$\Rightarrow u(x) = o(f), x \to a$$

<u>Лемма</u> 2.5. 1)

$$f(x) \sim g(x), x \to a \iff f(x) = g(x) + o(g(x)), x \to a$$

2)

$$f_1(x) \sim f_2(x), g_1(x) \sim g_2(x), x \to a \Rightarrow f_1(x)g_1(x) \sim f_2(x)g_2(x)$$

Кроме того, если $g_{1,2}(x) \neq 0$ в некот. прок. окр-ти a, то:

$$\frac{f_1(x)}{g_1(x)} \sim \frac{f_2(x)}{g_2(x)}, x \to a$$

3)

$$f(x) \sim g(x), x \to a$$

То пределы f(x), g(x) при $x \to a$ сущ-ют одновременно (в $\overline{\mathbb{R}}$), и если сущ-ют, то равны.

Доказательство. 1)

$$f(x) \sim g(x), x \to a \iff f(x) = \alpha(x)g(x), x \in \mathring{B}_{\delta}(a), \alpha(x) \to 1$$
$$f(x) = \alpha(x)g(x) = g(x) + g(x)(\alpha(x) - 1) \iff f(x) = g(x) + o(g(x))$$

2) Пусть
$$g_1(x) \neq 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E$$

$$g_2(x)=\alpha(x)g_1(x), \forall x\in \overset{\circ}{B_{\delta}}(a)\cap E$$

$$\alpha(x)\to 1, x\to a$$
 T. к. $\alpha(x)$, то $\exists \delta_1>0, \forall\in \overset{\circ}{B_{\delta_1}}(a)\cap E(\alpha(x)\in(\frac{1}{2},\frac{3}{2}))$
$$\delta_0=\min(\delta,\delta_1).$$
 Тогда $g_2(x)\neq 0$ на $\overset{\circ}{B_{\delta_2}}(a)\cap E$ Рассм. $\frac{1}{g_1(x)},\frac{1}{g_2(x)},x\in \overset{\circ}{B_{\delta}}(a)\cap E\Rightarrow \forall x\in \overset{\circ}{B_{\delta}}(a)\cap E(\frac{1}{g_1(x)}=\frac{1}{\alpha(x)g_2(x)})\Rightarrow \frac{1}{g_1(x)}\sim \frac{1}{g_2(x)},x\to a$

Пример.

$$\lim_{x \to 0} \frac{\operatorname{tg} x - \sin x}{(\sqrt{x+4} - 2)(2^x - 1)^2}$$

Решение.

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = 1 \Rightarrow \operatorname{tg} x \sim x, x \to 0$$

$$\operatorname{tg} x - \sin x = \frac{\sin x}{\cos x} (1 - \cos x) = \frac{2 \sin x \sin^2 \frac{x}{2}}{\cos x} \sim 2 \cdot x \cdot (\frac{x}{2})^2 \sim \frac{x^3}{2}, x \to 0$$

$$\sqrt{x + 4} - 2 = \frac{x}{\sqrt{x + 4} + 2} \sim \frac{x}{4}, x \to 0$$

$$e^x - 1 \sim x, x \to 0$$

$$\lim_{x \to 0} \frac{\operatorname{tg} x - \sin x}{(\sqrt{x + 4} - 2)(2^x - 1)^2} = \lim_{x \to 0} \frac{\frac{1}{2}x^3}{\frac{x}{4} \cdot x^2} = 2$$

$$\operatorname{tg} x \sim x, x \to 0 \iff \operatorname{tg} x = x + o(x), x \to 0$$

$$\sin x \sim x, x \to 0 \iff \sin x = x + o(x), x \to 0$$

$$\operatorname{tg} x - \sin x = o(x), x \to 0$$

3 Лекция 15

Определение 3.1. Пусть f опр-на в некот. окр-ти $+\infty$. Пряая y = kx + b наз-ся наклонной асимптотой f при $x \to +\infty$, если:

$$f(x) = kx + b + o(1), x \to +\infty$$

Аналогично опр-ся накл. асимптота при $x \to -\infty$

Теорема 3.1. Пусть f опр-на g некот. окр-ти $+\infty, k, b \in \mathbb{R}$. Прямая y = kx + b - наклонная асимптота f при $x \to +\infty \iff$

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} \ u \ b = \lim_{x \to +\infty} (f(x) - kx)$$

Доказательство. \Rightarrow) Пусть y=kx+b, накл. асимпт. f при $x\to +\infty$, тогда $f(x)=kx+b+o(1), x\to +\infty$ \Rightarrow

$$\frac{f(x)}{x} = k + \frac{1}{x}(b + o(1)) \Rightarrow \lim_{x \to +\infty} \frac{f(x)}{x} = k$$

$$f(x) - kx = b + o(1) \Rightarrow \lim_{x \to +\infty} (f(x) - kx) = b$$

 \Leftarrow) Рассм. $\alpha(x)=f(x)-kx-b$, где k,b - пределы из усл-я:

$$\lim_{x \to +\infty} \alpha(x) = 0$$

Сл-но,
$$f(x) = kx + b + \alpha(x), \alpha(x) \to 0, x \to +\infty$$

Замечание. Справедливо аналогичное утв-е при $x \to -\infty$

Определение 3.2. Пусть $a \in \mathbb{R}$. Ф-ция f опр-на на (α, a) или (a, β) . Прямая x = a наз-ся вертикальной асимптотой ф-ции f, если хотя бы один из f(a+0) или f(a-0) равен $+\infty(-\infty)$

3.1 Дифференцируемые ф-ции

Пусть I - невырожд. пром-к в \mathbb{R} (содержит более 1 точки).

Определение 3.3. Пусть $f: I \to \mathbb{R}, a \in I$:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 - производная ф-ции f в точке a

Если предел конечен, то f наз-ся дифференцируемой в a.

Пример. 1) $f: \mathbb{R} \to \mathbb{R}, f(x) = kx + b$

$$f'(a) = \lim_{x \to a} \frac{k(x-a)}{x-a} = k$$

2) $f: \mathbb{R} \to \mathbb{R}, f(x) = sign(x)$

$$f'(0) = \lim_{x \to 0} \frac{sign(x) - 0}{x - 0} = \lim_{x \to 0} \frac{1}{|x|} = +\infty$$

Геометрический смысл производной: Пусть f дифф. в a:

$$l \colon y = \frac{f(t) - f(a)}{t - a}(x - a) + f(a)$$
 - прямая, проход. через $(a, f(a)), (t, f(t))$

Тогда:

$$K_{\text{cek.}} = \frac{f(t) - f(a)}{t - a} \rightarrow f'(a) = K_{\text{kac.}}, t \rightarrow a$$