Esercitazione 08/03/2012

Esercizio 1

Risolvere con MEG il sistema lineare:

$$\begin{cases} x_1 + 2x_2 + x_3 = 3\\ 2x_1 + 2x_2 + x_3 = 1\\ 2x_1 + 3x_2 + \frac{5}{2}x_3 = \frac{7}{2} \end{cases}$$

Esercizio 2

Risolvere con MEG il sistema lineare:

$$\begin{cases} x_2 + 2x_3 + 3x_4 + 4x_5 = 0\\ 2x_1 + 2x_2 + 4x_3 + 6x_4 + 7x_5 = 2\\ x_1 + x_2 + 2x_3 + 3x_4 + 3x_5 = 1\\ -2x_1 - x_2 - 2x_3 - 3x_4 - 2x_5 = -2 \end{cases}$$

Esercizio 3

Risolvere con MEG il sistema lineare:

$$\begin{cases} 2x_1 - 2x_2 + x_3 - 2x_4 = 5\\ 6x_1 + 3x_3 - 2x_4 = 15\\ 2x_2 + x_4 = -3\\ -2x_1 - x_3 - 2x_4 = -10 \end{cases}$$

Esercitazione 15/03/2012

Esercizio 1

Risolvere i sistemi lineari:

$$\begin{cases} x_1 + x_2 + x_3 - 3x_4 + 2x_5 = 0 \\ 3x_1 + 4x_2 + 3x_3 - 7x_4 + 7x_5 = 0 \\ x_1 - 4x_4 - x_5 = 0 \\ x_2 + 3x_3 + x_4 + 7x_5 = 0 \end{cases} \begin{cases} x_1 + x_2 + x_3 - 3x_4 + 2x_5 = 1 \\ 3x_1 + 4x_2 + 3x_3 - 7x_4 + 7x_5 = 3 \\ x_1 - 4x_4 - x_5 = 1 \\ x_2 + 3x_3 + x_4 + 7x_5 = 2 \end{cases}$$

e studiare la relazione tra le due soluzioni generali.

Esercizio 2

Risolvere il sistema lineare $A \cdot \mathbf{x} = \mathbf{b}$ con

$$(A|\mathbf{b}) = \begin{pmatrix} 1 + \cos \alpha & 1 - \cos \alpha & \sin \alpha & 1 - \cos \alpha \\ 1 + \cos \alpha & \sin \alpha & \sin \alpha & 0 \\ -\cos \alpha & 1 - \cos \alpha - 2\sin \alpha & -\sin \alpha & 0 \end{pmatrix},$$

dipendente dal parametro $\alpha \in [0, 2\pi]$, nei casi $\alpha = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$. Dare l'interpretazione geometrica dei risultati in termini di intersezione di piani nello spazio.

Esercizio 3

Risolvere il sistema lineare:

$$\begin{cases} x_1 + kx_2 + kx_3 = k \\ x_2 + x_3 = k \\ kx_1 + x_2 + x_3 = 1 \end{cases}$$

al variare del parametro $k \in \mathbb{R}$.

Esercizio 4

Sia $A \cdot \mathbf{x} = \mathbf{b}$ il sistema lineare definito da

$$(A|\mathbf{b}) = \begin{pmatrix} 1 & 1 & 1 & k_2 \\ k_1 & 1 & 1 & 1 \\ 1 & k_1 & 1 & 1 \end{pmatrix},$$

dipendente dai parametri $k_1, k_2 \in \mathbb{R}$.

- 1. Calcolare il numero di soluzioni del sistema al variare dei parametri.
- 2. Trovare, se esistono, k_1, k_2 per i quali il vettore $\mathbf{x} = (-4 4 \ 5)^t$ é soluzione del sistema.

Siano:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix}, E = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Calcolare, ove possibile:

1.
$$A + B$$
, $B + A$, $A + C$, $(A + B) + D$, $A + (B + D)$;

2.
$$C \cdot D$$
, $D \cdot C$, $(C \cdot D) \cdot E$, $C \cdot (D \cdot E)$;

3. $A \cdot B, \ A^t \cdot B, \ B \cdot A^t, \ B^t \cdot A, \ A \cdot B^t,$ e trovare le relazioni tra questi prodotti.

Esercitazione 22/03/2012

Esercizio 1

Invertire la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{array}\right)$$

utilizzando l'algoritmo di Gauss-Jordan.

Esercizio 2

Sia

$$A = \left(\begin{array}{ccc} 5 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 3 & 0 \end{array}\right).$$

- 1. Calcolare il determinante di A utilizzando la regola di Sarrus, lo sviluppo di Laplace ed il metodo di eliminazione di Gauss.
- 2. Calcolare l'inversa di A con il metodo dei complementi algebrici.

Esercizio 3

Sia

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ k & 1 & 1 \\ 1 & k & 1 \end{array}\right)$$

dipendente dal parametro reale k. Dire per quali valori di k la matrice é invertibile, in questi casi calcolare A^{-1} e risolvere il sistema lineare $A \cdot \mathbf{x} = \mathbf{b}$ con \mathbf{b} generico.

Esercizio 4

Sia

$$A = \left(\begin{array}{ccccc} 0 & 1 & 2 & 3 & 4 \\ 2 & 2 & 4 & 6 & 7 \\ 1 & 1 & 2 & 3 & 3 \\ -2 & -1 & -2 & -3 & -2 \end{array}\right).$$

Calcolare il rango di A con il metodo dei minori.

Esercitazione 29/03/2012

Esercizio 1

Verificare quale tra i seguenti insiemi è uno spazio vettoriale:

- $U_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 2z = 0\};$
- $U_2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y = 1\};$
- $U_3 = \{ M \in \text{Mat}(2,2;\mathbb{R}) \,|\, M^T = -M \}.$

Interpretare geometricamente i casi U_1 ed U_2 .

Esercizio 2

- 1. Calcolare la dimensione e determinare una base per gli spazi U_1 ed U_3 dell'esercizio precedente.
- 2. Dimostrare che

$$\mathbf{w} = (12, -8 - 10)$$
 e $A = \begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix}$

sono rispettivamente vettori di U_1 ed U_3 .

3. Calcolare le coordinate di \mathbf{w} e A rispetto alle basi scelte nel primo punto.

Esercizio 3

Sia $U = \{P(x) \in \mathbb{R}_2[x] \mid P(1) = 0\}$ l'insieme dei polinomi a coefficienti reali di grado massimo due con una radice in x = 1.

- 1. Dimostrare che U è un sottospazio di $R_2[x]$.
- 2. Calcolare la dimensione e determinare una base di U.
- 3. Dimostrare che $\{x^2-x,x-1\}$ è una base di U.

Esercitazione 12/04/2012

Esercizio 1

Siano $U, V \subset Mat(2, 2; \mathbb{R})$ definiti come:

 $\bullet \ U$ l'insieme delle matrici $\left(\begin{array}{cc} x & y \\ z & t \end{array} \right)$ che soddisfano

$$\begin{cases} x - y - t = 0 \\ x + z + t = 0 \\ 2x - y + z = 0 \end{cases}$$
;

• V lo spazio delle combinazioni lineari

$$V = L\left(\left(\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 2 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right)\right).$$

- 1. Calcolare la dimensione di U e di V e trovare due loro basi.
- 2. Calcolare la dimensione di U+V e di $U\cap V$ e trovare due loro basi.

Esercizio 2

Sia V lo spazio delle combinazioni lineari

$$V = L\left(\begin{pmatrix} 1\\ -1\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ 1\\ -1 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ 0\\ 1 \end{pmatrix}\right).$$

- 1. Dire se $V = \mathbb{R}^4$.
- 2. Se $V \neq \mathbb{R}^4$ trovare una sua base ed ampliarla ad una base di \mathbb{R}^4 .
- 3. Calcolare le coordinate dei seguenti vettori rispetto alla base scelta nel punto precedente:

$$\mathbf{w_1} = \begin{pmatrix} 2 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \quad \mathbf{w_2} = \begin{pmatrix} -3 \\ 0 \\ 0 \\ -3 \end{pmatrix}, \quad \mathbf{w_3} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}.$$

Dire quali di questi vettori appartengono a V.

Sia $T:\mathbb{R}^4\to\mathbb{R}^2$ l'applicazione definita da:

$$T\left(\left(\begin{array}{c} x\\y\\z\\w\end{array}\right)\right) = \left(\begin{array}{c} x+2y-z+w\\z+w\end{array}\right).$$

- 1. Dimostrare che T è un'applicazione lineare.
- 2. Calcolare la dimensione di Im(T) e trovare una sua base.
- 3. Calcolare la dimensione di Ker(T) e trovare una sua base.

Esercitazione 19/04/2012

Esercizio 1

Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione definita da:

$$f\left(\left(\begin{array}{c}x\\y\end{array}\right)\right) = \left(\begin{array}{c}t(x+ty)\\t(x-y)\end{array}\right),$$

dipendente dal parametro $t \in \{-1, 0, 1\}$.

- 1. Scrivere la matrice rappresentativa dell'applicazione rispetto alla base canonica.
- 2. Per ogni valore del parametro calcolare la dimensione e trovare una base di Im(f) e Ker(f).
- 3. Interpretare geometricamente i risultati.

Esercizio 2

Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione definita da:

$$T((x, y, z)) = ((-x - y - 2z, x + y + 2z, 2x + 2y + 2z)).$$

- 1. Scrivere la matrice rappresentativa dell'applicazione rispetto alla base canonica.
- 2. Calcolare la dimensione di $Ker(T^2)$ e trovare una sua base $(T^2 = T \circ T)$.

Esercizio 3

Provare l'esistenza ed unicità dell'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che:

$$f(2\mathbf{e_1} + \mathbf{e_2}) = \mathbf{0},$$
 $f(\mathbf{e_1} + 2\mathbf{e_4}) = \mathbf{e_1} + \mathbf{e_2} + \mathbf{e_3} + \mathbf{e_4},$
 $f(\mathbf{e_3} + \mathbf{e_4}) = \mathbf{0},$ $f(\mathbf{e_4}) = 4\mathbf{e_3} + 8\mathbf{e_4}.$

- 1. Scrivere la matrice rappresentativa dell'applicazione rispetto alla base canonica.
- 2. Calcolare la dimensione e trovare una base di Im(f) e Ker(f).

Sia $f: \mathbb{R}_3[x] \to \mathbb{R}_2[x]$ l'applicazione definita da:

$$f(P(x)) = \frac{d^2}{dx^2}P(x).$$

- 1. Dimostrare la linearità dell'applicazione.
- 2. Scrivere la matrice rappresentativa dell'applicazione rispetto alle basi canoniche.
- 3. Calcolare la dimensione e trovare una base di Im(f) e Ker(f).

Esercizio 5

Sia $f: \mathbb{R}_2[x] \to \mathbb{R}^3$ l'applicazione definita da:

$$f(P(x)) = \begin{pmatrix} P(0) \\ P(1) \\ P(-1) \end{pmatrix}.$$

- 1. Dimostrare la linearità dell'applicazione.
- 2. Scrivere la matrice rappresentativa dell'applicazione rispetto alle basi canoniche.
- 3. Calcolare la dimensione e trovare una base di Im(f) e Ker(f).

Esercizio 6

Sia $f: \operatorname{Mat}(2,2;\mathbb{R}) \to \mathbb{R}^2$ l'applicazione definita da:

$$f(M) = \begin{pmatrix} \operatorname{Tr}(M) \\ (1\ 1) \cdot M \cdot (1\ 1)^T \end{pmatrix}.$$

- 1. Dimostrare la linearità dell'applicazione.
- 2. Scrivere la matrice rappresentativa dell'applicazione rispetto alle basi canoniche.
- 3. Calcolare la dimensione e trovare una base di Im(f) e Ker(f).

Esercitazione 10/05/2012

Esercizio 1

Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione definita da:

$$f(\mathbf{v}) = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \cdot \mathbf{v}.$$

- 1. Determinare autovalori e autovettori dell'applicazione.
- 2. Dimostrare che l'applicazione è diagonalizzabile e scrivere la matrice diagonale e la matrice del cambiamento di base.
- 3. Interpretare geometricamente i risultati.

Esercizio 2

Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione definita da:

$$f(\mathbf{v}) = \begin{pmatrix} 1 & 8 & -4 \\ 0 & 1 & 0 \\ 0 & 4 & -1 \end{pmatrix} \cdot \mathbf{v}.$$

- 1. Determinare autovalori e autovettori dell'applicazione.
- 2. Dimostrare che l'applicazione è diagonalizzabile e scrivere la matrice diagonale e la matrice del cambiamento di base.

Esercizio 3

Sia $f: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ l'applicazione definita da:

$$f(a_0 + a_1x + a_2x^2) = -a_1 + (a_0 - a_1)x.$$

- 1. Scrivere la matrice rappresentativa dell'applicazione rispetto alla base canonica.
- 2. Determinare autovalori e autovettori dell'applicazione.
- 3. Dimostrare che l'applicazione non è diagonalizzabile e discutere la diagonalizzabilità dell'estensione naturale di f su $\mathbb{C}_2[x]$.

Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da:

$$f(\mathbf{e_1}) = \mathbf{e_1} + \mathbf{e_2}, \quad f(\mathbf{e_2}) = \mathbf{e_2}, \quad f(\mathbf{e_3}) = -4\mathbf{e_1} - 2\mathbf{e_2} - \mathbf{e_3}.$$

- 1. Scrivere la matrice rappresentativa dell'applicazione rispetto alla base canonica.
- 2. Determinare autovalori e autovettori dell'applicazione.
- 3. Dimostrare che l'applicazione non è diagonalizzabile.

Esercitazione 17/05/2012

Esercizio 1

Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione definita da:

$$f(\mathbf{v}) = \begin{pmatrix} 1 & h \\ \frac{1}{2}h(h-1) & 1 \end{pmatrix} \cdot \mathbf{v},$$

dipendente dal parametro reale h.

- 1. Determinare per quali valori di h l'applicazione è diagonalizzabile.
- 2. Interpretare geometricamente i casi h = -1, 0, 1.

Esercizio 2

Siano:

$$A = \begin{pmatrix} 2 & -3 & 0 \\ -h & h - 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & h & -h \\ 0 & -1 & 0 \\ 0 & 0 & 2 + h \end{pmatrix},$$

dipendenti dal parametro reale h.

- 1. Posto h = -3 determinare autovalori e autovettori di A.
- 2. Determinare per quali valori di h la matrice A è diagonalizzabile.
- 3. Determinare per quali valori di h le matrici A e B sono simili.

Esercizio 3

Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione definita da:

$$f\left(\left(\begin{array}{c}x\\y\end{array}\right)\right) = \left(\begin{array}{c}-4x - 2hy\\hx + 5y\end{array}\right),$$

dipendente dal parametro reale h.

- 1. Determinare h tale per cui $\mathbf{v} = \mathbf{e_1} \mathbf{e_2}$ risulti un autovettore di f.
- 2. Per tale valore di h dire se f è semplice.
- 3. Per tale valore di h diagonalizzare l'applicazione $f^4 3f^3$.
- 4. Per tale valore di h dimostrare che $Ker(f^{n+2} f^{n+1} 2f^n) = \mathbb{R}^2$ per qualunque $n \in \mathbb{N}$.

Esercitazione 24/05/2012

Esercizio 1

Siano:

- $\langle , \rangle_I : \mathbb{R}^3 \to \mathbb{R}$ il prodotto scalare standard;
- \bullet < , >_{II}: $\mathbb{R}^3 \to \mathbb{R}$ il prodotto scalare definito dalla matrice di Gram

$$G_{II,S} = \left(\begin{array}{ccc} 1 & 2 & 9 \\ 2 & 9 & 2 \\ 0 & 2 & 1 \end{array}\right).$$

Siano inoltre:

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

Per entrambi i prodotti scalari:

- 1. calcolare il modulo dei due vettori;
- 2. calcolare l'angolo compreso tra i due vettori.

Esercizio 2

Sia < , >: $\mathbb{R}_2[x] \to \mathbb{R}$ la funzione definita da:

$$\langle p, q \rangle = \int_{-1}^{1} p(x) \cdot q(x) \, dx.$$
 (1)

Siano inoltre S la base canonica di $\mathbb{R}_2[x]$ e $B = \{1 + x, x + x^2, x^2 + 1\}.$

- 1. Dimostrare che < , > è un prodotto scalare.
- 2. Calcolare le matrici di Gram G_S e G_B .
- 3. Costruire una base ortonormale di $\mathbb{R}_2[x]$.
- 4. Dato $U = \{ p \in \mathbb{R}_2[x] \mid p(1) = 0 \}$ trovare una base di U e di U^{\perp} .

Esercitazione 31/05/2012

Esercizio 1

Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ definita da:

$$T(e_1) = -2e_1 + e_3, \quad T(e_2) = e_2, \quad T(e_3) = e_1 - 2e_3.$$

- 1. Scrivere la matrice rappresentativa dell'applicazione rispetto alla base canonica.
- 2. Dire se l'applicazione è diagonalizzabile.
- 3. Calcolare gli autovalori dell'applicazione e trovare una base ortonormale di autovettori.
- 4. Trovare la matrice che diagonalizza T e la sua inversa.
- 5. Dimostrare che T^4 ammette una base ortonormale di autovettori e diagonalizzare l'applicazione.
- 6. Scrivere la forma quadratica associata all'applicazione e determinarne il segno.

Esercizio 2

Siano nel piano le rette r: x+y=1 ed s: 2x-y=-4 e la circonferenza $\gamma: x^2+y^2-2x-4y+1=0$.

- 1. Determinare il punto di intersezione $P = r \cap s$.
- 2. Trovare le rette passanti per P e tangenti a γ .

Esercizio 3

- Trovare la circonferenza concentrica a $\gamma: x^2+y^2+2x-2y=0$ e passante per A=(1,1).
- Trovare la circonferenza passante per $A=(-1,0),\ B=(1,0)$ e di raggio $R=\sqrt{5}$.
- Trovare la circonferenza passante per A=(-1,0), B=(1,0) e $C=(0,1+\sqrt{2}).$
- Trovare la circonferenza di centro C=(1,1) e che taglia una corda di lunghezza $4\sqrt{2}$ sull'asse delle ascisse.

Esercitazione 07/06/2012

Esercizio 1

Classificare e ridurre in forma canonica le seguenti coniche:

- $x^2 y^2 + 2x = 0$;
- $2x^2 + 4x 2y + 1 = 0$;
- $x^2 + 2y^2 + 12y + 10 = 0$;
- $x^2 + 2y^2 + 12y + 20 = 0$;
- $x^2 y^2 + 2x 2y = 0$.

Esercizio 2

Sia il fascio di coniche dipendente dal parametro $t \in \mathbb{R}$:

$$\gamma_t$$
: $x^2 + (1-t)y^2 + 2tx - 2(1-t)y + 2 - t = 0$.

Classificare tutte le coniche del fascio.

Esercizio 3

Sia il fascio di coniche dipendente dal parametro $t \in \mathbb{R}$:

$$\gamma_t$$
: $tx^2 + 2(2-t)xy + ty^2 - x - y + 1 - t = 0$.

- 1. Classificare γ_3 , trovarne la forma canonica ed il cambio del sistema di coordinate tra quello iniziale e quello canonico.
- 2. Determinare i punti base del fascio γ_t .
- 3. Trovare per quali valori di t la conica γ_t è rispettivamente una iperbole equilatera ed una circonferenza.

Esercitazione 14/06/2012

Esercizio 1

Sia:

$$M_{h,k} = \begin{pmatrix} k & k & 2h \\ k & 1 & h+1 \\ 3h & h+1 & 2 \end{pmatrix}.$$

- 1. Determinare per quali valori di (h, k) la matrice $M_{h,k}$ è la matrice completa di una conica.
- 2. Classificare tutte le coniche del punto precedente.
- 3. Trovare per quale valore di (h, k) il punto P = (1, 1) appartiene ad una conica.

Esercizio 2

Sia il fascio di coniche dipendente dal parametro $t \in \mathbb{R}$:

$$\gamma_t$$
: $x^2 + (1-t)xy + y^2 - 3x + ty = 0$.

- 1. Classificare γ_{-1} , trovarne la forma canonica ed il cambio del sistema di coordinate tra quello iniziale e quello canonico.
- 2. Determinare i punti base del fascio γ_t .
- 3. Trovare la retta tangente a γ_t in (0,0) per ogni valore di t e stabilire se queste determinano un fascio di rette.

Esercizio 3

Sia la conica:

$$\gamma: \ x^2 - xy + 2x - y = 0.$$

- 1. Verificare che γ interseca ogni retta orizzontale.
- 2. Trovare la retta orizzontale che taglia su γ la corda di lunghezza minima.

Esercizio 4

Trovare e classificare il luogo dei punti distanti dalla retta x - y - 1 = 0 la metà della distanza dal punto F = (0, 2).

Trovare l'ellisse di centro C=(1,2) e semiassi rispettivamente di lunghezza $2\sqrt{2}$ ed 1 e paralleli a $\mathbf{e_1}+\mathbf{e_2}$ e $-\mathbf{e_1}+\mathbf{e_2}$.

Esercitazione 21/06/2012

Esercizio 1

Sia la quadrica:

$$Q: x^2 + y^2 + 4z^2 - 2x = 0.$$

- 1. Classificare Q e trovarne una forma canonica.
- 2. Costruire il cilindro avente:
 - direttrice la curva $C = Q \cap \Pi$ dove Π è il piano 2z 1 = 0;
 - generatrici le rette parallele all'asse z.
- 3. Dato il piano Π' : z=0 costruire la superfice di rotazione ottenuta ruotando la curva $C'=Q\cap\Pi'$ attorno all'asse x.

Esercizio 2

Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ definita da:

$$T(\mathbf{e_1}) = \mathbf{e_1} + 2\mathbf{e_2}, \quad T(-2\mathbf{e_2}) = -4\mathbf{e_1} - 2\mathbf{e_2}, \quad T(-\mathbf{e_3}) = \mathbf{e_3}.$$

- 1. Scrivere la matrice rappresentativa M dell'applicazione rispetto alla base canonica.
- 2. Dire se l'applicazione è simmetrica.
- 3. Classificare la quadrica $Q: \mathbf{x}^T \cdot M \cdot \mathbf{x} 1 = 0$ e trovarne una forma canonica.
- 4. Determinare se la quadrica è una superficie di rotazione.

Esercizio 3

Sia il fascio di coniche dipendente dal parametro $t \in \mathbb{R}$:

$$\gamma_t$$
: $x^2 - 2(t+1)xy - ty^2 - 2tx - 2ty = 0$.

- 1. Determinare t per cui γ_t è una conica degenere.
- 2. Determinare t per cui γ_t è una circonferenza e calcolarne il centro ed il raggio.
- 3. Costruire il cilindro C avente:

- direttrice la conica γ_1 nel piano z=0;
- generatrici le rette parallele a r : $\begin{cases} x y = 0 \\ y z + 1 = 0 \end{cases}$.
- 4. Classificare l'intersezione di ${\cal C}$ con un generico piano.
- 5. Costruire il cono C' avente:
 - direttrice la conica γ_2 nel piano z=0;
 - vertice il punto V = (0, 0, 1).
- 6. Determinare e classificare l'intersezione di C' con il piano x=0.