Mathematical Logic and Proofs

1. Mathematical Logic:

- It is a precise mathematical language used in much of mathematics.
- ➤ <u>PURPOSE</u>: to eliminate ambiguities (situation in which something has more than one possible meaning) that arise in communication in natural language.
- > Applicability in limited in scope but it brings greater precision.

1) Propositional Logic: Boolean Logic

2) Predicate Logic

2. <u>Propositional Logic:</u>

- A proposition is a statement that is either true or false. It cannot be **neither** nor **both**. A propositional logic formula consists of propositional variables and connectives. We denote the propositional Variables by capital letters (A, B, etc.) and the Connectives connects the variables.
 - o It helps to interpret complex statements.
 - Building block called "Atomic Value".
- > Truth Tables: A Tabular way to list standard (and non-standard) Boolean functions.
- **Syntax:** It is the structure by which formula are constructed.
- **Examples of Propositional Logic :**
 - a. May I drink water (True or False / Yes Or No)
 - b. Math is difficult or not (True of False)

Standard Connectives:

- AND (∧)
- OR (V)
- Negation/NOT (¬)
- Implication (→)
- Equivalence (⇔)

Semantics:

- ♦ In P => Q , the P is Premise , Q is Conclusion
 - If P is True then Q must be True
 - If P is False then there is no guarantee , Therefore it is True

А	В	$A \rightarrow B$
True	True	True
True	False	False
False	True	True

False	False	True

> Formula Tree

♦ ¬PVQ

Р	Q	¬P	¬PVQ
True	True	False	True
True	False	False	False
False	False	True	True
False	True	True	True

Formula Tree

- This both are syntactically distinct but semantically identical.
- Note: AND (Λ) is Associative but Implies (=>) is not.
- Another Example Of Formula tree :
 - ((P=>Q)=>R)

• (P=>(Q=>R))

• ((P1 V P2) => (\neg P3 => P1)) \land (P2 \Leftrightarrow \neg P1)

