"Sono state effettuate 74 misure della stella variabile cefeide RT AUR interessante per i grandi O-C osservati in precedenza da altri osservatori usando l'effemeride P = 2442361.155 + 3.728115 * E . Le misure vanno dal 28/12/89 al 17/05/90 : esse sono state suddivise in 20 gruppi , le medie dei quali sono illustrate nelle nelle due colonne presentate sui grafici . Ciascuna colonna e' a sua volta composta di tre colonne in cui compaiono la fase , la magnitudine media e il numero di misure usate per elaborare la media in quell'intervallo di fase . La prima curva e' stata ottenuta con un polinomio di Fourier del tipo

$$S_2(z) = a_0/2 + a_2 * COS(2*z) + (a_1 * COS(1*z) + a_{2+1} * SIN(1*z))$$

dove
$$a_k=1/m * \sum_{j=0}^{2m-4} y_j * \cos(k*z_j) \cos k=0,1,2$$

 $2m-4$
 $a_{2k+1}=1/m * \sum_{j=0}^{2m-4} y_j * \sin(k*z_j) \cos k=1$

con la trasformazione $z_j = \hat{1}(*(t_{i-1}))$

in modo che $t_j=0,1/m,\ldots,(2*m-1)/m$ e z_j varia fra $-\Re$ e \Re Le ascisse reali,che variano fra 0 e 2*m-1 subiscono quindi una trasformazione lineare e 2*m sono il numero dei gruppi in cui si sono suddivise le misure con uguale fase , y_j sono le medie delle magnitudini di ogni gruppo . L'altro sistema di elaborazione usato e' lo smoothing-spline di Schoenberg e Reinsch in base al quale si cerca di costruire una funzione tale che i dati siano espressi da $g(t_i)+\xi_i=y_i$ nei punti t_0,\ldots,t_{2m-1} e si abbia una stima della deviazione standard δy_i dei dati y_i costruendo la funzione $f=f_p$ che per un dato parametro $p\in[0,1]$,

minimizza
$$\underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ (y_i - f(t_i))/\delta y_i}^2 + (1-p)* \int (f^{(n)}(z))^2 dz} }_{t} }$$
 l'espressione p* $\underbrace{ \underbrace{ ((y_i - f(t_i))/\delta y_i)^2 + (1-p)* \int (f^{(n)}(z))^2 dz} }_{t}$

su tutte le funzioni f con n derivate . Viene pertanto stabilito un compromesso fra l'esigenza di generare una curva il piu' possibile aderente ai dati sperimentali e di possedere un andamento lineare . La scelta di P puo' sembrare arbitraria ma viene resa oggettiva dal metodo del runs-test : in pratica viene variato P a piccoli step fino a che si ottiene una curva interpolante rispetto alla quale i dati si dispongono al di sopra o al di sotto con una percentuale prossima al 50% . Nella elaborazione in figura si e' posto δ y_i=1 mentre una scelta piu' opportuna potrebbe essere un numero pari all'inverso degli elementi utilizzati nell'elaborazione delle medie per ogni intervallo di fase scelto .

Come si puo' vedere dal confronto fra la curva ottenuta col polinomio di Fourier e quella ottenuta con lo smoothing-spline , la seconda non presenta le ondulazioni tipiche dei polinomi di Fourier . Si e' tentata inoltre una interpolazione con un polinomio di Fourier con soli tre termini S(t) = a0 + a1 * COS(wt) + b₁ * SIN(wt) ma non offre la possibilita' di osservare l'asimmetria tipica delle variabili cefeidi fra la salita al massimo e la discesa . Come si puo' osservare dal grafico ottenuto con lo smoothing-spline il massimo della curva di luce ha fase = 0.25 quindi , dato che l'istante arbitrario di fase = O e' in tempo giuliano 2447889.33 , si ha come tempo giuliano del primo massimo osservato 2447890.262 + 3.728115 * E con E =1,2,...,N periodi . Il massimo calcolato per E = 1483 ha tempo qiuliano 2447889.95 percio' O-C = 0.312 corrispondente a circa 7 ore e mezza . Il programma dello smoothing-spline e' reperibile sul testo di DE BOOR , A PRACTICAL GUIDE TO SPLINES casa editrice SPRINGER-VERLAG.

T. COLOMBO

2^e ELABORAZIONE

MAG		Fase	M	NB	FASE	M	MB
5 5.2 5.4 5.6 5.8		0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45	5.99 5.75 5.58 5.26 4.83 5.13 5.20 5.43 5.38 5.39	5	0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90	5.51 5.58 5.57 5.92 5.80 5.69 5.88 6.00 5.84	8 2 2 6 2 2 4 3
	.0 .2 .4 .6 .8		F	'ASE			

MAG	Fase	M	NB	FASE	М	NB
5	0.05 0.18 0.15 0.20 0.25 0.30 0.35 0.40 0.45	5.99 5.75 5.58 5.26 4.83 5.13 5.20 5.43 5.38 5.39	4 5 3 1 4 5 4 4 2	0.55 0.68 0.65 0.70 0.75 0.80 0.85 0.90	5.51 5.58 5.57 5.92 5.78 5.80 5.69 5.88 6.00 5.84	4 8 2 6 2 4 3 5
.2 .4 .6 .8 1 1.2 1.4	1.6					

