Functional Connectivity using iRSFC toolbox

Sunghyon Kyeong, PhD.

Clinical Scientist @ Philips Korea

IRSFC

intuitive resting-state functional connectivity (iRSFC) toolbox

Step 1 - Dataset and Directory

DATA path

데이터의 위치를 지정한다. 데이터는 다음과 같이 구조로 저장되어 있어야 함.

(DATA path)/NOR001/rest (DATA path)/NOR002/rest

OUT path

분석결과 및 ROI mask가 저장될 위치를 지정.

Subject List

피험자 리스트가 기록되어 있는 엑셀 데이터를 선택.

헤더가 subject 인 컬럼에 폴더명에 해당되는 피험자 이름을 기록.

subjname	Dx	Age	Sex
NOR001	1	20	1
NOR002	1	24	2
NOR003	1	28	1
NOR004	1	22	1
SPR001	2	27	2
SPR002	2	26	2
SPR003	2	20	1
SPR004	2	21	2

<Subject List 엑셀 파일 예시>

Step 2 - Filter & Regressors

Step 3 - Select ROIs

: Both atlas based and user defined ROIs can be used for the seed-based FC analysis.

Create ROIs

go to slide 19 page

Step 4 - Run Analysis

Temporal preprocessing

Functional connectivity

Now, we have z-maps

for each seed ROI and each subject

Two-sample t-test

with covariates

Specify 2nd-level

Delete: Covariate (2)

Estimation of Parameters

Specify 2nd-level 을 통해서 구성한 General Linear Model의 parameter를 추정(계산)함.

Select SPM.mat

Slide의 8페이지에서 지정했던 Directory에 생성된 SPM.mat 파일을 선택함.

Run Batch를 클릭하여 프로그램을 실행.

Contrast manager

Group1>Group2 contrast는 Group1에서 증가된 FC or Group2에서 감소된 FC를 의미함.

Correlation analysis between FC and clinical scales

in Results

Save Results as MASK

To extract connectivity value in each cluster, regional clusters should be saved as mask image.

Extract FC using iRSFC

page 14에서 저장했던 mask image 를 선택함. 또는 Maks ROI mask를 통해서 직접 그린 ROI를 선택할 수도 있음.

추출하고 싶은 데이터가 위치한 경로를 입력함. 데이터 구조는 다음과 같이 이루어져 있어야 함.

(Data path)\Lt_Amygdala\subj001.img (Data path)\Lt_Amygdala\subj002.img (Data path)\Lt_Amygdala\subj003.img (Data path)\Lt_Amygdala\subj004.img

결과 파일이 저장될 폴더를 선택함.

Example of extracted FC

open tables.csv file which was saved in (Output path)

filename	cl01	cl02	cl03	cl04
zscore_Talairach12_88_sphere_3mm_CON1	-0.8	-1.3	-0.61	-0.84
zscore_Talairach12_88_sphere_3mm_CON2	-2.48	-3.64	-1.13	-0.79
zscore_Talairach12_88_sphere_3mm_CON3	-1.1	-1.6	0.36	-0.34
zscore_Talairach12_88_sphere_3mm_CON4	-0.66	-2.83	-2.14	-1.6
zscore_Talairach12_88_sphere_3mm_CON5	-1.05	-2.2	-1.24	-1.81
zscore_Talairach12_88_sphere_3mm_PAT1	1.36	0.82	0.93	2.09
zscore_Talairach12_88_sphere_3mm_PAT2	3.53	2.07	1.37	1.01
zscore_Talairach12_88_sphere_3mm_PAT3	-0.79	0.23	1.55	1.4
zscore_Talairach12_88_sphere_3mm_PAT4	1.51	0.25	2.2	2.45
zscore_Talairach12_88_sphere_3mm_PAT5	1.85	0.28	5.19	2.75

ROI connectivity Analysis

Create ROIs

Make ROI mask

sphere or box 모양의 ROI를 생성할 수 있음. (MNI or Talairach coordinate 좌표 모두 사용 가능함.)

Region of Interest	X	у	Z
Left TPJ	-50	-31	23
Left ACC	-7	21	36
Left Broca's Area	-41	12	14
Left Amygdala	-24	-5	-18
Left Insula	-36	8	4
Right TPJ	50	-31	23
Right ACC	7	21	36
Right Homotopy of Broca's Area	41	12	14
Right Amygdala	24	-5	-18
Right Insula	36	8	4

Reference for ROIs, A. Vercammen et al. BIOL PSYCHIATRY 2010 67:912-918, http://neuro.imm.dtu.dk/services/jerne/ninf/voi.html

Step 4 - Run Analysis

Check OUTPUT

node number	ROI file name		
1	Lt_ACC		
2	Lt_Amyg		
3	Lt_Broca		
4	Lt_Insula		
5	Lt_TPJ		
6	Rt_ACC		
7	Rt_Amyg		
8	Rt_Broca		
9	Rt_Insula		
10	Rt_TPJ		

subjname	ROI_1-2	ROI_1-3	ROI_1-4	ROI_1-5	ROI_1-6	ROI_1-7
CON1-20130825-KSK	0.068	0.408	0.818	0.123	0.957	-0.048
CON2-20130825-KKM	-0.164	0.577	0.62	0.051	0.753	-0.05
CON3-20130901-KMY	-0.28	0.081	0.202	-0.006	0.684	-0.392
CON4-20130929-KSB	0.02	0.146	0.739	0.095	0.371	-0.131
CON5-20131006-HTH	-0.245	0.039	0.1	0.154	0.203	-0.156
SPR1-20130901-CCS	0.058	0.229	0.514	0.301	0.577	-0.006
SPR2-20130901-OKS	0.218	-0.236	-0.262	0.128	0.264	-0.187
SPR3-20130901-BY	-0.017	0.033	0.021	-0.215	0.342	-0.081
SPR4-20131013-SSH	0.069	0.115	0.372	0.207	0.625	0.131
SPR5-20130929-YMJ	0.225	0.275	0.663	0.046	0.624	0.01

References for Atlas

• **AAL Atlas** (*n*=116)

N. Tzourio-Mazoyer *et al.* (2002), Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain, NeuroImage 15, 273-289 (2002)

• Dosenbach Atlas (n=160)

Nico U. F. Dosenbach *et al.* (2010), Prediction of Individual Brain Maturity Using fMRI, *Science* 329:5997 pp.1358-1361.

n=160, sphere shape, radius =5 mm, minimum distances between ROI center = 10 mm, no overlap among ROIs