

Faculty of Engineering & Technology Electrical & Computer Engineering Department

Communication Lab - ENEE4113

Experiment 5: Phase Modulation Prelab #4

Student Name: Maha Maher Mali

Student ID: 1200746

Instructor: Dr. Ashraf Al_Rimawi

Teacher Assistant: Eng. Mohammed Battat

Section: 4

Date: 10-8-2023

Contents

So	ftware Prelab (Simulink MATLAB)	5
]	Extract the message signal m(t) from s(t)	5
]	Plot 5 cycle from Message signal m(t) and s(t)	6
	Block Diagram	6
	Message Signal	6
	Modulated signal s(t)	7
]	Differentiate s(t) with respect to t and plot ds(t)/dt	9
	By Hand Solution	9
	Using Simulink	9
Apply ds(t)/dt to an ideal envelope detector		. 12
	By Hand Solution	. 12
Extract message signal by using phase-locked loop (PLL)		. 13
	Block Diagram	. 13
	In time Domine	. 13
	In frequency Domine	. 14
Extract the message signal by using the envelop detector		. 15
	Block Diagram	. 15
	In Time Domine	. 15
	In frequency Domine	. 16

Table of Figures

Figure 1: Steps to Extract the message signal m(t) from s(t)	5
Figure 2: PM Modulation Block Diagram	6
Figure 3: Message Signal in Time domine	6
Figure 4: Frequency Domine	7
Figure 5: Modulated signal In Time Domine	
Figure 6: Modulated signal in frequency Domine	8
Figure 7: Differentiate s(t)	9
Figure 8: Block Diagram to Differentiate s(t)	9
Figure 9: Differentiate s(t) in time domine	
Figure 10: Differentiate s(t) in frequency domine	10
Figure 11: Apply ds(t)/dt to an ideal envelope detector	12
Figure 12: PM Demodulation by PLL Block Diagram	
Figure 13: Demodulated signal in time domine	
Figure 14: Demodulated signal in frequency domine	14
Figure 15: PM Demodulation by using the envelop detector Block Diagram	15
Figure 16: Demodulated signal in time domine	
Figure 17: Demodulated signal in time domine	

Software Prelab (Simulink MATLAB)

Extract the message signal m(t) from s(t)

Figure 1: Steps to Extract the message signal m(t) from s(t)

Plot 5 cycle from Message signal m(t) and s(t) Block Diagram

Figure 2: PM Modulation Block Diagram

Message Signal Time Domine

Figure 3: Message Signal in Time domine

From this graph we notice that we got the m(t) that we calculate it by hand with amplitude 1.

Frequency Domine

Figure 4: Frequency Domine

$$M(t) = 1coos(1000\pi t)$$

$$M(f) = \frac{1}{2}\delta(f - 500) + \frac{1}{2}\delta(f + 500)$$

The figure 5 show that we have two delta one at 500~Hz, and another on -500~Hz, according the equation for m(f).

 $Modulated \ signal \ s(t)$

Time Domine

Figure 5: Modulated signal In Time Domine

Frequency Domine

Figure 6: Modulated signal in frequency Domine

Differentiate s(t) with respect to t and plot ds(t)/dt By Hand Solution

Figure 7: Differentiate s(t)

Using Simulink

Block Diagram

Figure 8: Block Diagram to Differentiate s(t)

Time domine

Figure 9: $Differentiate\ s(t)$ in time domine

Frequency domine

Figure 10: Differentiate s(t) in frequency domine

Differentiating the phase-modulated waveform $s(t) = \cos{(2*pi*20000t+pi*\cos(1000*pi*t))}$ with respect to time yields a signal with amplitude variations linked to the frequency of the message signal. This transformation resembles amplitude modulation (AM), where the message signal modulates the carrier's amplitude. The resulting signal takes on AM-like characteristics due to the changing amplitudes associated with the message frequency, demonstrating the interconnected nature of different modulation techniques within the context of signal processing.

Apply ds(t)/dt to an ideal envelope detector

By Hand Solution

Figure 11: Apply ds(t)/dt to an ideal envelope detector

Extract message signal by using phase-locked loop (PLL) Block Diagram

Figure 12: PM Demodulation by PLL Block Diagram

In time Domine

Figure 13: Demodulated signal in time domine

The figure 13 shows the amplitude of the demodulated signal has the same amplitude of message signal which is 1.

In frequency Domine

Figure 14: Demodulated signal in frequency domine

The figure show that the demodulated signal has the same frequency of message signal which is 500 Hz.

Extract the message signal by using the envelop detector Block Diagram

Figure 15: PM Demodulation by using the envelop detector Block Diagram

In Time Domine

Figure 16: Demodulated signal in time domine

In frequency Domine

Figure 17: Demodulated signal in time domine

The figure show that the demodulated signal has the same frequency of message signal which is 500 Hz.