```
### Importing the dataset - in the form of batches - using dataloader
package - mini batch descent - size =64
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,),(0.5,))])
train_dataset = datasets.MNIST(root='./data', train=True,
transform=transform, download=True)
test dataset = datasets.MNIST(root='./data', train=False,
transform=transform, download=True)
train loader = DataLoader(dataset=train dataset, batch size=64,
shuffle=True)
test loader = DataLoader(dataset=test dataset, batch size=64,
shuffle=False)
import numpy as np
class MLP:
    def init (self, input layer size=784,
first_hidden_layer_size=500,
                 second hidden layer size=250,
third hidden layer size=100,
                 output layer size=10, learning rate=0.01,
batch size=64):
        self.input_layer_size = input_layer_size
        self.first hidden layer size = first hidden layer size
        self.second_hidden_layer_size = second hidden layer size
        self.third hidden layer size = third hidden layer size
        self.output layer size = output layer size
        self.learning rate = learning rate
        self.batch size = batch size
        self.W1 = np.random.uniform(-
np.sqrt(6/(self.input_layer_size+self.first_hidden_layer_size)),
np.sqrt(6/(self.input layer size+self.first hidden layer size)),
(self.input_layer_size, self.first_hidden_layer_size))
        self.b1 = np.zeros((1, self.first hidden layer size))
        self.W2 = np.random.uniform(-
np.sqrt(6/(self.first hidden layer size+self.second hidden layer size)
np.sqrt(6/(self.first hidden layer size+self.second hidden layer size)
),
                                    (self.first hidden layer_size,
self.second hidden layer size))
```

```
self.b2 = np.zeros((1, self.second hidden layer size))
        self.W3 = np.random.uniform(-
np.sqrt(6/(self.second hidden layer size+self.third hidden layer size)
),
np.sqrt(6/(self.second_hidden_layer_size+self.third_hidden_layer_size)
),
                                    (self.second hidden layer size,
self.third hidden layer size))
        self.b3 = np.zeros((1, self.third hidden layer size))
        self.W4 = np.random.uniform(-
np.sqrt(6/(self.third hidden layer size+self.output layer size)),
np.sqrt(6/(self.third hidden layer size+self.output layer size)),
                                    (self.third hidden layer size,
self.output layer size))
        self.b4 = np.zeros((1, self.output layer size))
    def sigmoid(self, z):
        return 1 / (1 + np.exp(-z))
    def softmax(self, z):
        exp_z = np.exp(z - np.max(z, axis=1, keepdims=True))
        return exp z / np.sum(exp z, axis=1, keepdims=True)
    def forward(self, X):
        self.z1 = np.dot(X, self.W1) + self.b1
        self.Activation_1 = self.sigmoid(self.z1)
        self.z2 = np.dot(self.Activation 1, self.W2) + self.b2
        self.Activation 2 = self.sigmoid(self.z2)
        self.z3 = np.dot(self.Activation 2, self.W3) + self.b3
        self.Activation 3 = self.sigmoid(self.z3)
        self.z4 = np.dot(self.Activation 3, self.W4) + self.b4
        self.Activation 4 = self.softmax(self.z4)
        return self.Activation 4
    def backward(self, X, Y):
        errorz4 = self.Activation 4 - Y
        partial_derivative_w_4 = np.dot(self.Activation 3.T, errorz4)
/ self.batch size
        partial derivative b 4 = np.sum(errorz4, axis=0,
keepdims=True) / self.batch size
        errorz3 = np.dot(errorz4, self.W4.T) * self.Activation 3 * (1
self.Activation 3)
        partial derivative w 3 = np.dot(self.Activation 2.T, errorz3)
```

```
/ self.batch size
        partial derivative b 3 = np.sum(errorz3, axis=0,
keepdims=True) / self.batch size
        errorz2 = np.dot(errorz3, self.W3.T) * self.Activation 2 * (1
- self.Activation 2)
        partial derivative w 2 = np.dot(self.Activation 1.T, errorz2)
/ self.batch size
        partial derivative b 2 = np.sum(errorz2, axis=0,
keepdims=True) / self.batch size
        errorz1 = np.dot(errorz2, self.W2.T) * self.Activation 1 * (1
- self.Activation 1)
        partial derivative w 1 = np.dot(X.T, errorz1) /
self.batch size
        partial derivative b 1 = np.sum(errorz1, axis=0,
keepdims=True) / self.batch size
        self.W4 -= self.learning_rate * partial_derivative_w_4
        self.b4 -= self.learning_rate * partial_derivative_b_4
        self.W3 -= self.learning_rate * partial_derivative_w_3
        self.b3 -= self.learning_rate * partial_derivative_b_3
        self.W2 -= self.learning_rate * partial_derivative_w_2
        self.b2 -= self.learning_rate * partial_derivative_b_2
        self.W1 -= self.learning rate * partial derivative w 1
        self.b1 -= self.learning rate * partial derivative b 1
    def entropy class loss(self, Y, Y hat):
        loss = -np.sum(Y * np.log(Y_hat)) / self.batch_size
        return loss
def entropy class loss(self, Y, Y hat):
        loss = -np.sum(Y * np.log(Y hat)) / self.batch size
        return loss
def train(model, train loader, test loader, epochs,
plot interval=200):
    training loss list = []
    test loss list = []
    iteration counts = []
    current iteration = 0
    for epoch in range(epochs):
        for batch idx, (images, labels) in enumerate(train loader):
```

```
X = images.view(-1, 28*28).numpy()
            Y = np.eye(10)[labels]
            Y hat = model.forward(X)
            loss = model.entropy class loss(Y, Y hat)
            model.backward(X, Y)
            current iteration += 1
            if current iteration % plot interval == 0:
                iteration counts.append(current iteration)
                total train loss = 0
                total train samples = 0
                for train images, train labels in train loader:
                    X train = train images.view(-1, 28*28).numpy()
                    Y train = np.eye(10)[train labels]
                    Y train hat = model.forward(X_train)
                    total train loss +=
model.entropy class loss(Y train, Y train hat) * X train.shape[0]
                    total train samples += X train.shape[0]
                avg_train_loss = total_train loss /
total train samples
                training loss list.append(avg train loss)
                total test loss = 0
                total_test_samples = 0
                for test images, test labels in test loader:
                    X test = test images.view(-1, 28*28).numpy()
                    Y \text{ test} = np.eye(10)[\text{test labels}]
                    Y test hat = model.forward(X test)
                    total test loss +=
model.entropy class loss(Y test, Y test hat) * X test.shape[0]
                    total_test_samples += X_test.shape[0]
                avg test \overline{loss} = total test \overline{loss} / total test samples
                test loss list.append(avg test loss)
                print(f' Current Iteration {current iteration},
Training Loss: {avg train loss: .4f}, Test Loss: {avg test loss: .4f}')
        print(f'Epoch {epoch+1}/{epochs} ')
    plt.figure(figsize=(20, 5))
    plt.plot(iteration counts, training loss list, label='Training
Losses')
    plt.plot(iteration counts, test loss list, label='Test Losses')
    plt.xlabel('Iterations')
    plt.ylabel('Loss')
    plt.legend()
    plt.grid(True)
    plt.show()
```

```
model = MLP()
train(model, train loader, test loader, epochs=15)
 Current Iteration 200, Training Loss: 2.2930, Test Loss: 2.2907
Current Iteration 400, Training Loss: 2.2854, Test Loss: 2.2829
 Current Iteration 600, Training Loss: 2.2774, Test Loss: 2.2749
 Current Iteration 800, Training Loss: 2.2687, Test Loss: 2.2662
Epoch 1/15
 Current Iteration 1000, Training Loss: 2.2585, Test Loss: 2.2553
Current Iteration 1200, Training Loss: 2.2476, Test Loss: 2.2440
Current Iteration 1400, Training Loss: 2.2349, Test Loss: 2.2313
Current Iteration 1600, Training Loss: 2.2204, Test Loss: 2.2164
 Current Iteration 1800, Training Loss: 2.2029, Test Loss: 2.1987
Epoch 2/15
 Current Iteration 2000, Training Loss: 2.1814, Test Loss: 2.1768
Current Iteration 2200, Training Loss: 2.1540, Test Loss: 2.1490
Current Iteration 2400, Training Loss: 2.1200, Test Loss: 2.1140
 Current Iteration 2600, Training Loss: 2.0781, Test Loss: 2.0710
 Current Iteration 2800, Training Loss: 2.0251, Test Loss: 2.0179
Epoch 3/15
Current Iteration 3000, Training Loss: 1.9617, Test Loss: 1.9541
Current Iteration 3200, Training Loss: 1.8840, Test Loss: 1.8742
Current Iteration 3400, Training Loss: 1.7938, Test Loss: 1.7832
 Current Iteration 3600, Training Loss: 1.6974, Test Loss: 1.6864
Epoch 4/15
 Current Iteration 3800, Training Loss: 1.5990, Test Loss: 1.5874
 Current Iteration 4000, Training Loss: 1.5058, Test Loss: 1.4948
Current Iteration 4200, Training Loss: 1.4181, Test Loss: 1.4065
Current Iteration 4400, Training Loss: 1.3410, Test Loss: 1.3297
 Current Iteration 4600, Training Loss: 1.2690, Test Loss: 1.2584
Epoch 5/15
 Current Iteration 4800, Training Loss: 1.2075, Test Loss: 1.1976
 Current Iteration 5000, Training Loss: 1.1504, Test Loss: 1.1410
Current Iteration 5200, Training Loss: 1.0982, Test Loss: 1.0892
Current Iteration 5400, Training Loss: 1.0522, Test Loss: 1.0436
 Current Iteration 5600, Training Loss: 1.0092, Test Loss: 1.0001
Epoch 6/15
 Current Iteration 5800, Training Loss: 0.9711, Test Loss: 0.9616
 Current Iteration 6000, Training Loss: 0.9349, Test Loss: 0.9257
Current Iteration 6200, Training Loss: 0.9011, Test Loss: 0.8911
 Current Iteration 6400, Training Loss: 0.8707, Test Loss: 0.8612
Epoch 7/15
 Current Iteration 6600, Training Loss: 0.8406, Test Loss: 0.8312
 Current Iteration 6800, Training Loss: 0.8132, Test Loss: 0.8028
Current Iteration 7000, Training Loss: 0.7880, Test Loss: 0.7772
 Current Iteration 7200, Training Loss: 0.7633, Test Loss: 0.7527
 Current Iteration 7400, Training Loss: 0.7406, Test Loss: 0.7297
Epoch 8/15
 Current Iteration 7600, Training Loss: 0.7181, Test Loss: 0.7080
 Current Iteration 7800, Training Loss: 0.6978, Test Loss: 0.6865
```

```
Current Iteration 8000, Training Loss: 0.6790, Test Loss: 0.6681
 Current Iteration 8200, Training Loss: 0.6615, Test Loss: 0.6502
 Current Iteration 8400, Training Loss: 0.6430, Test Loss: 0.6321
Epoch 9/15
 Current Iteration 8600, Training Loss: 0.6269, Test Loss: 0.6155
 Current Iteration 8800, Training Loss: 0.6108, Test Loss: 0.5993
 Current Iteration 9000, Training Loss: 0.5965, Test Loss: 0.5846
 Current Iteration 9200, Training Loss: 0.5827, Test Loss: 0.5705
Epoch 10/15
 Current Iteration 9400, Training Loss: 0.5695, Test Loss: 0.5574
 Current Iteration 9600, Training Loss: 0.5580, Test Loss: 0.5460
 Current Iteration 9800, Training Loss: 0.5458, Test Loss: 0.5336
 Current Iteration 10000, Training Loss: 0.5347, Test Loss: 0.5228
 Current Iteration 10200, Training Loss: 0.5252, Test Loss: 0.5125
Epoch 11/15
 Current Iteration 10400, Training Loss: 0.5158, Test Loss: 0.5033
 Current Iteration 10600, Training Loss: 0.5064, Test Loss: 0.4946
Current Iteration 10800, Training Loss: 0.4979, Test Loss: 0.4857
Current Iteration 11000, Training Loss: 0.4912, Test Loss: 0.4783
 Current Iteration 11200, Training Loss: 0.4823, Test Loss: 0.4694
Epoch 12/15
 Current Iteration 11400, Training Loss: 0.4745, Test Loss: 0.4619
Current Iteration 11600, Training Loss: 0.4685, Test Loss: 0.4559
 Current Iteration 11800, Training Loss: 0.4614, Test Loss: 0.4486
 Current Iteration 12000, Training Loss: 0.4570, Test Loss: 0.4441
Epoch 13/15
 Current Iteration 12200, Training Loss: 0.4512, Test Loss: 0.4388
 Current Iteration 12400, Training Loss: 0.4444, Test Loss: 0.4318
Current Iteration 12600, Training Loss: 0.4396, Test Loss: 0.4266
 Current Iteration 12800, Training Loss: 0.4354, Test Loss: 0.4234
 Current Iteration 13000, Training Loss: 0.4315, Test Loss: 0.4179
Epoch 14/15
 Current Iteration 13200, Training Loss: 0.4256, Test Loss: 0.4132
Current Iteration 13400, Training Loss: 0.4216, Test Loss: 0.4088
Current Iteration 13600, Training Loss: 0.4176, Test Loss: 0.4051
Current Iteration 13800, Training Loss: 0.4142, Test Loss: 0.4020
 Current Iteration 14000, Training Loss: 0.4102, Test Loss: 0.3987
Epoch 15/15
```



```
from sklearn.metrics import confusion matrix, accuracy score
import seaborn as sns
def final_test(model, test_loader):
    all preds = []
    all labels = []
    for images, labels in test loader:
        X = images.view(-1, 28*28).numpy()
        Y hat = model.forward(X)
        preds = np.argmax(Y hat, axis=1)
        all preds.append(preds)
        all labels.append(labels.numpy())
    all preds = np.concatenate(all preds)
    all labels = np.concatenate(all labels)
    accuracy = accuracy score(all labels, all preds)
    print(f'Final Test Accuracy: {accuracy * 100:.2f}%')
    conf matrix = confusion matrix(all labels, all preds)
    print('Confusion Matrix:\n', conf_matrix)
    plt.figure(figsize=(20, 17))
    sns.heatmap(conf matrix, annot=True, fmt='d', cmap='Reds')
    plt.xlabel('Predicted ')
    plt.ylabel('True ')
    plt.title('Confusion Matrix')
    plt.show()
final test(model,train loader)
Final Test Accuracy: 88.48%
Confusion Matrix:
 [[5690
                              71
                                    36
           0
               39
                    19
                          12
                                        15
                                               40
                                                     1]
     0 6523
              39
                   21
                          3
                              35
                                    4
                                        20
                                              88
                                                    91
        111 5062
                        114
                              18
                                  204
                                        81
                                             147
    75
                  130
                                                   16]
    22
         53
             175 5227
                          2
                                       135
                                             175
                             285
                                   19
                                                   381
         39
              38
                    1 5144
                                  101
     9
                               7
                                         8
                                             32
                                                  4631
  103
         80
              63
                  318
                         50 4328
                                  176
                                        62
                                             161
                                                   801
                              98 5521
    58
         35
              98
                    1
                         82
                                         0
                                              25
                                                    01
    28
         77
              76
                   17
                         41
                              17
                                    0 5681
                                              16
                                                  3121
                         27
    25
        182
              94
                 224
                             201
                                   77
                                        18 4858
                                                  145]
    50
         33
              31
                  79
                      250
                              38
                                    7
                                       364
                                              46 505111
```


1	fina	al_t	est(m	odel,	test_	_loade	er)							
		nal Test Accuracy: 88.81% nfusion Matrix:												
	[[955	0	4	1	0	9	9	1	1	0]			
	[0	1102	1	6	0	2	3	1	20	0]			
	[15	15	890	17	17	3	22	11	33	9]			
	[4	1	26	894	1	36	1	23	19	5]			
	[1	5	6	0	877	2	17	0	4	70]			
	[20	5	10	65	12	702	27	12	29	10]			
	[21	4	12	0	19	18	883	0	1	0]			
	[6	16	27	3	5	1	0	918	6	46]			
	[5	12	13	41	14	41	19	6	800	23]			
	[14	8	5	9	51	11	0	44	7	860]]			

