Computer Vision Camera Models and Projective Geometry

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

Camera Models and Projective Geometry

Perspective and 3D Geometry

Camera models and Projective geometry

 What's the mapping between image and world coordinates?

Projection Matrix and Camera calibration

- What's the projection matrix between scene and image coordinates?
- How to calibrate the projection matrix?

Single view metrology and Camera properties

- How can we measure the size of 3D objects in an image?
- What are the important camera properties?

Photo stitching

 What's the mapping from two images taken without camera translation?

Epipolar Geometry and Stereo Vision

 What's the mapping from two images taken with camera translation?

Structure from motion

How can we recover 3D points from multiple images?

Next few classes: Single-view Geometry

Next few classes: Single-view Geometry

Next few classes: Single-view Geometry

Next few classes: Single-view

Next few classes: Single-view

Next few classes: Single-view

Today's class

Mapping between image and world coordinates

Pinhole camera model

- Projective geometry
 - Vanishing points and lines

What is an Image?

- Up until now: a function —a 2D pattern of intensity values
- Today: a 2D projection of 3D points

Let's design a camera

-Idea 1: put a piece of film in front of an object

Let's design a camera

-Idea 1: put a piece of film in front of an object

Let's design a camera

-Idea 1: put a piece of film in front of an object

Let's design a camera

-Idea 1: put a piece of film in front of an object

Do we get a reasonable image?

Let's design a camera

-Idea 1: put a piece of film in front of an object

Idea 2: add a barrier to block off most of the rays

Idea 2: add a barrier to block off most of the rays

Idea 2: add a barrier to block off most of the rays

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

f = focal length

c = center of the camera

Camera obscura: the pre-camera

- First idea: Mo-Ti, China (470BC to 390BC)
- First built: Alhazen, Iraq/Egypt (965 to 1039AD)

Freestanding camera obscura at UNC Chapel Hill

Dimensionality Reduction Machine (3D to 2D)

http://www.michaelbach.de/ot/sze_muelue/index.html

http://www.michaelbach.de/ot/sze_muelue/index.html

Projective Geometry

What is lost?

Length

Length is not preserved

Projective Geometry

What is lost?

Length

Angles Parallel? Perpendicular?

Projective Geometry

What is preserved?

Straight lines are still straight

Projection properties

 Many-to-one: Any points along same ray map to same point in image

- Points → points
- Lines → lines (collinearity is preserved)
 - But line through focal point projects to a point
- Planes → planes (or half-planes)
 - But plane through focal point projects to line

Vanishing points and lines

Parallel lines in the world intersect in the image at a

"vanishing point"

Vanishing points and lines

Parallel lines in the world intersect in the image at

a "vanishing point"

 Each direction in space has its own vanishing point

 But parallel lines to the image plane remain parallel

Vanishing points

Vanishing points and lines

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line
- If a set of parallel 3D lines are also parallel to a particular plane, their vanishing point will lie on the vanishing line of the plane

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line
- If a set of parallel 3D lines are also parallel to a particular plane,
 their vanishing point will lie on the vanishing line of the plane
- Not all lines that intersect are parallel

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line
- If a set of parallel 3D lines are also parallel to a particular plane, their vanishing point will lie on the vanishing line of the plane
- Not all lines that intersect are parallel
- Vanishing point <-> 3D direction of a line

Projection: world coordinates → image coordinates

Converting to homogeneous coordinates

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x,y,z) \Rightarrow \left| egin{array}{c} x \ y \ z \ 1 \end{array} \right|$$

homogeneous scene coordinates

Converting to homogeneous coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous image coordinates

$$(x, y, z) \Rightarrow \left| egin{array}{c} x \\ y \\ z \\ 1 \end{array} \right|$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Invariant to scaling

$$k \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ ky \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{kx}{kw} \\ \frac{ky}{kw} \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$

Homogeneous Coordinates

Cartesian Coordinates

Invariant to scaling

$$k \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ w \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{kx}{kw} \\ \frac{ky}{kw} \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$
Homogeneous Cartesian

Coordinates

Point in Cartesian is ray in Homogeneous

Coordinates

• Append 1 to pixel coordinate to get homogeneous $p = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$

- Append 1 to pixel coordinate to get homogeneous coordinate
- Line equation: au + bv + c = 0 $line = \begin{bmatrix} a & b & c \end{bmatrix}^{\top}$

$$P = \begin{vmatrix} v \\ 1 \end{vmatrix}$$

$$line^{\mathsf{T}}p = 0$$

Append 1 to pixel coordinate to get homogeneous coordinate

• Line equation:
$$au + bv + c = 0$$

 $line = [a \ b \ c]^{\top}$

Line given by cross product of two points

$$line^{\top}p = 0$$

$$line_{ij} = p_i \times p_j$$

- Append 1 to pixel coordinate to get homogeneous coordinate
- Line equation: au + bv + c = 0 $line = [a \ b \ c]^{\top}$

$$\lfloor 1 \rfloor$$

$$line^{\mathsf{T}}p = 0$$

Line given by cross product of two points

$$line_{ij} = p_i \times p_j$$

•Intersection of two lines given by cross product of the lines $q_{ij} = line_i \times line_i$

- Append 1 to pixel coordinate to get homogeneous $p = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$
- Line equation: au + bv + c = 0 $line = [a\ b\ c]^{\top} \qquad \qquad line^{\top}p = 0$
- Line given by cross product of two points

$$line_{ij} = p_i \times p_j$$

- •Intersection of two lines given by cross product of the lines $q_{ij} = line_i \times line_i$
- Three points lies on the same line

$$p_k^{\mathsf{T}} \big(p_i \times p_j \big) = 0$$

- Append 1 to pixel coordinate to get homogeneous coordinate to get homogeneous $p=\begin{bmatrix} u \\ v \end{bmatrix}$ Line equation: au+bv+c=0
- Line equation: au + bv + c = 0 $line = [a\ b\ c]^{\top} \qquad \qquad line^{\top}p = 0$
- Line given by cross product of two points

$$line_{ij} = p_i \times p_j$$

- •Intersection of two lines given by cross product of the lines $q_{ij} = line_i \times line_i$
- Three points lies on the same line

$$p_k^{\mathsf{T}}\big(p_i \times p_i\big) = 0$$

Three lines intersect at the same point

$$line_k^{\top}(line_i \times line_j) = 0$$

Another problem solved by homogeneous coordinates

Intersection of parallel lines

Object Recognition (CVPR 2006)

Getting spatial layout in indoor scenes (ICCV 2009)

Inserting synthetic objects into images: http://vimeo.com/28962540

Inserting synthetic objects into images: http://vimeo.com/28962540

Creating detailed and complete 3D scene models from a single view

Things to remember

 Pinhole camera model

- Homogeneous coordinates
- Vanishing points and vanishing lines

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Acknowledgements

- Thanks to the following researchers for making their teaching/research material online
 - Forsyth
 - Steve Seitz
 - Noah Snavely
 - J.B. Huang
 - Derek Hoiem
 - J. Hays
 - J. Johnson
 - R. Girshick
 - S. Lazebnik
 - K. Grauman
 - Antonio Torralba
 - Rob Fergus
 - Leibe
 - And many more

Next class Projection Matrix and Camera Calibration

