CS 271 Lecture #3

Introduction to Intel IA-32 architecture

Preliminaries: Metrics (measurements)

- Speed (distance/time) is measured in electronic units:
 - $K = 10^3$, M = 10^6 , G = 10^9 , etc.
 - E.G., network speed of 8 Mbps means 8,000,000 bits per second
- <u>Size</u> in bits, Bytes is measured in <u>binary units</u>
 - Commonly used: $K = 2^{10}$, $M = 2^{20}$, $G = 2^{30}$, etc.
 - In this course, use: $Ki = 2^{10}$, $Mi = 2^{20}$, $Gi = 2^{30}$
 - E.G., disk size of 200 GiB means

$$200 \times 2^{30}$$
 Bytes = 214,748,364,800 Bytes = 1,717,986,918,400 bits

- Bytes and bits (abbreviations)
 - Use lower-case **b** for bits
 - Use upper-case **B** for Bytes
 - Example: 1 Mib = 128 KiB

- CISC
- Two modes of operation:
 - Protected
 - Real-address
- Two processors in one
 - integer unit
 - floating-point unit
 - Two processors can work in parallel (co-processors)
 - Separate instruction sets
 - Separate data registers
 - different configuration
 - Separate ALUs

For now, we focus on the integer unit.

- Specific hardware implementations
 - registers
 - memory addressing scheme
- Specific instruction set and microprograms
- Specific assembly languages
 - MASM, NASM, TASM, etc,
- Specific operating systems
 - Windows, Linux, DOS, etc.

- Memory
 - Up to 4GiB
 - Byte-addressable
 - Little-endian
- 32-bit machine
 - Registers
 - Buses
 - ALU

- Byte is the smallest unit of data that can be manipulated directly in the IA-32 architecture.
- Operating system and instruction decoder determine how byte codes are interpreted
 - integer
 - character
 - floating-point
 - instruction
 - address
 - status bits

More later on this ...

32-bit	general -purpose registers	32-bit multi -purpose	reaisters
		or sit illustration parpoot	

EAX	EBP
EBX	ESP
ECX	ESI
EDX	EDI

32-bit **special**-purpose registers

16-bit **segment** registers

EFL (status)	CS	ES
EIP (instruction pointer)	SS	FS
In protected mode, the Control Register, Instruction Register, MAR, and MDR are usually hidden.	DS	GS

- Most of the 32-bit registers are visible during MASM debugging
 - The 32-bit "general" and "multi" registers may be manipulated directly
 - The 32-bit "special" registers are manipulated by the micro-programs that implement the instructions

- Some "general-purpose" and "multi-purpose" registers are used for special purposes:
 - EAX and EDX are automatically used by integer multiplication and division instructions
 - ECX is automatically used as a counter for some looping instructions
 - ESP is used for referencing the system stack
 - etc.

- Some 32-bit registers have 8-bit and 16-bit "sub-registers"
 - EAX, EBX, ECX, EDX
 - Example: Sub-registers of EAX
 - AX refers to the <u>least-significant 16-bits</u> of EAX
 - AL refers to the <u>least-significant 8-bits</u> of AX
 - AH refers to the most-significant 8-bits of AX

- Note: If you change a sub-register, the value in the entire register is changed.
- Example:
 - Suppose that EAX contains the electrical representation of 67890.
 - We now give the instruction mov AL, 27
 - The new value in EAX is 67867

If this doesn't look right, don't worry ... yet.

- Some 32-bit registers have only 16-bit "sub-registers"
 - ESI, EDI, EBP, ESP
 - Example: Sub-registers of ESI
 - SI refers to the least-significant 16-bits of ESI

There's only one set of registers for the integer unit!

- Something like global variables
- Sometimes have to be saved and restored.

 Most register instructions (for now) reference EAX, EBX, ECX, and/or EDX