

TINY GECKO DATASHEET

EFM32TG200F32/EFM32TG200F16/EFM32TG200F8

Preliminary

- ARM Cortex-M3 CPU platform
 - High Performance 32-bit processor @ up to 32 MHz
 - Wake-up Interrupt Controller
- Flexible Energy Management System
 - 20 nA @ 3 V Shutoff Mode
 - 0.6 μA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 0.9 μ A @ 3 V Deep Sleep Mode, including Real Time Clock with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 45 µA/MHz @ 3 V Sleep Mode
 - 180 µA/MHz @ 3 V Run Mode, with code executed from flash
- 32/16/8 KB Flash
- 4/4/2 KB RAM
- 24 General Purpose I/O pins
 - Configurable Push-pull, Open-drain, pull-up/down, input filter, drive strength
 - Configurable peripheral I/O locations
 - 16 asynchronous external interrupts
- 8 Channel DMA Controller
- 8 Channel Peripheral Reflex System for autonomous inter-peripheral signaling
- Hardware AES with 128/256-bit keys in 54/75 cycles
- Timers/Counters
 - 2x 16-bit Timer/Counter
 - 2x3 Compare/Capture/PWM channels
 - Dead-Time Insertion on TIMER0
 - 16-bit Low Energy Timer
 - 24-bit Real-Time Counter
 - 8-bit Pulse Counter
 - Asynchronous pulse counting/quadrature decoding
 - Watchdog Timer with dedicated RC oscillator @ 50 nA

- · Communication interfaces
 - Universal Synchronous/Asynchronous Receiver/Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA
 - Triple buffered full/half-duplex operation
 - 4-16 data bits
 - Universal Asynchronous Receiver/Transmitter
 - Triple buffered full/half-duplex operation
 - 8-9 data bits
 - Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - I²C Interface with SMBus support
 - Address recognition in Stop Mode
- Ultra low power precision analog peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter
 - 4 single ended channels/2 differential channels
 - On-chip temperature sensor
 - Conversion tailgating for predictable latency
 - 12-bit 500 ksamples/s Digital to Analog Converter
 - 2x Analog Comparator
 - Programmable speed/current
 - Capacitive sensing with up to 8 inputs
 - 2x Operational Amplifier
 - 2.2MHz GBW, Rail-to-rail, Programmable Gain
 - Supply Voltage Comparator
- Ultra efficient Power-on Reset and Brown-Out Detector
- 2-pin Serial Wire Debug interface
 - 1-pin Serial Wire Viewer
- Temperature range -40 to 85 °C
- Single power supply 1.8 to 3.8 V
- QFN32 package

EFM32TG200 microcontrollers are suited for all battery operated applications

Energy Metering

Industrial/Home Automation

Wireless Alarm/ Security

Medical Systems

1 Ordering Information

Table 1.1 (p. 2) shows the available EFM32TG200 devices.

Table 1.1. Ordering Information

Ordering Code	Flash (KB)	RAM (KB)	Max Speed (MHz)	Supply Voltage	Temperature	Package
EFM32TG200F8-QFN32	8	2	32	1.8 to 3.8V	-40 to 85 °C	QFN32
EFM32TG200F16-QFN32	16	4	32	1.8 to 3.8V	-40 to 85 °C	QFN32
EFM32TG200F32-QFN32	32	4	32	1.8 to 3.8V	-40 to 85 °C	QFN32

Visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information.

1.1 Block Diagram

A block diagram of the EFM32TG200 is shown in Figure 1.1 (p. 2) .

Figure 1.1. Block Diagram

2 System Summary

2.1 System Introduction

The EFM32G family of MCUs is the world's most energy friendly microcontroller. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also and shows a summary of the configuration for the EFM32TG200 devices. For a complete feature set and in-depth information on the modules, the reader is referred to the *EFM32G Reference Manual*.

2.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in *EFM32G Cortex-M3 Reference Manual*.

2.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to the DAC. The DMA controller uses the PL230 µDMA controller licensed from ARM.

2.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32G.

2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32G microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

2.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree

of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

2.1.10 Inter-Integrated Circuit Interface (I2C)

The I²C module provides an interface between the MCU and a serial I²C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I²C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

2.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (US-ART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, and IrDA devices.

2.1.12 Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication.

2.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

2.1.14 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.

2.1.15 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available

in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

2.1.16 Low Energy Timer (LETIMER)

The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC.

2.1.17 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 – EM3.

2.1.18 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.19 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.20 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from >4 external pins and 6 internal signals.

2.1.21 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has one single ended output buffer connected to channel 0. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

2.1.22 Operational Amplifier (OPAMP)

The EFM32TG200 features 2 Operational Amplifiers. The operational amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain with internal resistors etc.

2.1.23 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data

and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

2.1.24 General Purpose Input/Output (GPIO)

In the EFM32TG200, there are 24 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advances configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

2.2 Configuration Summary

The features of the EFM32TG200 is a subset of the feature set described in the EFM32G Reference Manual. Table 2.1 (p. 6) describes device specific implementation of the features.

Table 2.1. Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration	US0_TX, US0_RX. US0_CLK, US0_CS
UART0	Full configuration	U0_TX, U0_RX
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	No DTI	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[1:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:5], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[0]

Module	Configuration	Pin Connections
OPAMP	x2	TBD
AES	Full configuration	NA
GPIO	24 pins	Available pins are shown in Table 4.3 (p. 40)

2.3 Memory Map

The *EFM32TG200* memory map is shown in Figure 2.1 (p. 7), with RAM and Flash sizes for the largest memory configuration.

Figure 2.1. EFM32TG200 Memory Map with largest RAM and Flash sizes

3 Electrical Characteristics

3.1 Test Conditions

3.1.1 Typical Values

The typical data are based on $T_{AMB}=25^{\circ}C$ and $V_{DD}=3.0$ V, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisation unless otherwise specified.

3.1.2 Minimum and Maximum Values

The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisation unless otherwise specified.

3.2 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 8) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 8).

Table 3.1. Absolute Maximum Ratings

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{STG}	Storage temperature range		-40		85	°C
T _J	Maximum junction temperature	JEDEC J-STD-020D			260	°C
V _{DDMAX}	External main supply voltage		0		3.8	V
V _{IOPIN}	Voltage on any I/O pin		-0.3		V _{DD} +0.3	V

3.3 General Operating Conditions

3.3.1 General Operating Conditions

Table 3.2. General Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
T _{AMB}	Ambient temperature range	-40	25	85	°C
V _{DDOP}	Operating supply voltage	1.8	3.0	3.8	V
f _{APB}	Internal APB clock frequency			32	MHz
f _{AHB}	Internal AHB clock frequency			32	MHz

3.3.2 Environmental

Table 3.3. Environmental

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ESDHBM}	ESD (Human Body Model HBM)	T _{AMB} =25°C			2	kV
V _{ESDCDM}	ESD (Charged Device Model, CDM)	T _{AMB} =25°C			500	V
MSL	Moisture sensitivity level	JEDEC J-STD-20D. Level 3			168	hrs
LU	Latchup sensitivity	JESD78 Latchup test procedure. Class II level A.			85	°C

3.4 Current Consumption

Table 3.4. Current Consumption

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		32 MHz HFXO, all peripheral clocks disabled, V _{DD} = 3.0 V		180		μΑ/ MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V		181	235	μΑ/ MHz
	EM0 current. No prescal-	21 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V		183	237	μΑ/ MHz
I _{EMO}	ing. Running prime number calculation code from	14 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V		185	243	μΑ/ MHz
	Flash.	11 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V		186	246	μΑ/ MHz
I _{EM0}		7 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V		191	257	μΑ/ MHz
		1 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V		220	235 237 243 246	μΑ/ MHz
		32 MHz HFXO, all peripheral clocks disabled, V _{DD} = 3.0 V		45		μΑ/ MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V		47	62	μΑ/ MHz
		21 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V		48	64	μΑ/ MHz
I _{EM1}	EM1 current	14 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V		50	69	μΑ/ MHz
		11 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V		51	72	μΑ/ MHz
		7 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V		56	83	μΑ/ MHz
		1 MHz HFRCO. all peripheral clocks disabled, V _{DD} = 3.0 V		103		μΑ/ MHz
L	EM2 current	EM2 current with RTC at 1 Hz, RTC prescaled to 1kHz, 32 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =25°C		0.9		μΑ
IEM2	LIVIZ CUITOTIL	EM2 current with RTC at 1 Hz, RTC prescaled to 1kHz, 32 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =85°C		3.0	6.0	μА
lews.	EM3 current	V _{DD} = 3.0 V, T _{AMB} =25°C		0.59		μΑ
'EM3	Livio dullont	V _{DD} = 3.0 V, T _{AMB} =85°C		2.75	5.8	μΑ
lena.	EM4 current	V _{DD} = 3.0 V, T _{AMB} =25°C		0.02		μΑ
I _{EM2}		V _{DD} = 3.0 V, T _{AMB} =85°C		0.25	0.7	μΑ

running at 28MHz

Figure 3.1. EM0 Current consumption vs Figure 3.2. EM0 Current consumption supply voltage, executing prime number vs temperature, executing prime number calculation code from flash with HFRCO calculation code from flash with HFRCO running at 28MHz

running at 21MHz

Figure 3.3. EMO Current consumption vs Figure 3.4. EMO Current consumption supply voltage, executing prime number vs temperature, executing prime number calculation code from flash with HFRCO calculation code from flash with HFRCO running at 21MHz

running at 14MHz

Figure 3.5. EMO Current consumption vs Figure 3.6. EMO Current consumption supply voltage, executing prime number vs temperature, executing prime number calculation code from flash with HFRCO calculation code from flash with HFRCO running at 14MHz

running at 11MHz

Figure 3.7. EMO Current consumption vs Figure 3.8. EMO Current consumption supply voltage, executing prime number vs temperature, executing prime number calculation code from flash with HFRCO calculation code from flash with HFRCO running at 11MHz

running at 7MHz

Figure 3.9. EMO Current consumption vs Figure 3.10. EMO Current consumption supply voltage, executing prime number vs temperature, executing prime number calculation code from flash with HFRCO calculation code from flash with HFRCO running at 7MHz

Figure 3.11. EM1 Current consumption vs Figure 3.12. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, temperature, all peripheral clocks disabled, HFRCO running at 28MHz

HFRCO running at 28MHz

HFRCO running at 21MHz

Figure 3.13. EM1 Current consumption vs Figure 3.14. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, temperature, all peripheral clocks disabled, **HFRCO** running at 21MHz

HFRCO running at 14MHz

Figure 3.15. EM1 Current consumption vs Figure 3.16. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, temperature, all peripheral clocks disabled, HFRCO running at 14MHz

HFRCO running at 11MHz

Figure 3.17. EM1 Current consumption vs Figure 3.18. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, temperature, all peripheral clocks disabled, HFRCO running at 11MHz

HFRCO running at 7MHz

Figure 3.19. EM1 Current consumption vs Figure 3.20. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, temperature, all peripheral clocks disabled, HFRCO running at 7MHz

Figure 3.21. EM2 Current consumption vs Figure 3.22. EM2 Current consumption vs supply voltage. RTC incremented each temperature. RTC incremented each second, second, RTC prescaled to 1kHz, 32 kHz RTC prescaled to 1kHz, 32 kHz LFRCO. LFRCO.

Figure 3.23. EM3 Current consumption vs Figure 3.24. EM3 Current consumption vs supply voltage temperature

Figure 3.25. EM4 Current consumption vs Figure 3.26. EM4 Current consumption vs supply voltage temperature

3.5 Transition between Energy Modes

Table 3.5. Energy Modes Transitions

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{EM10}	Transition time from EM1 to EM0			01		HF core CLK cycles
t _{EM20}	Transition time from EM2 to EM0			2		μs
t _{EM30}	Transition time from EM3 to EM0			2		μs
t _{EM40}	Transition time from EM4 to EM0			163		μs

¹Core wakeup time only.

3.6 Power Management

Table 3.6. Power Management

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{BODextthr} -	BOD threshold on falling external supply voltage		1.77		1.80	V
V _{BODintthr} -	BOD threshold on falling internally regulated supply voltage		1.62		1.65	V
V _{BODextthr+}	BOD threshold on rising external supply voltage	Uncalibrated		1.82		V
V _{BODexthyst}	BOD hysteresis on external supply voltage			150		mV
TC _{BGR}	Temperature coefficient of band-gap reference (BGR)	Relative voltage variation in EM0 based on the difference in V _{ref} between -40°C and 85°C.			0.55	%
t _{RESET}	Delay from reset is re- leased until program execu- tion starts	Applies to Power-on Reset, Brown-out Reset and pin reset.		163		μs
C _{DECOUPLE}	Voltage regulator decoupling capacitor.	X5R capacitor recommended. Apply between DECOUPLE pin and GROUND		1		μF

3.7 Flash

Table 3.7. Flash

Symbol	Parameter	Condition	Min	Тур	Max	Unit
EC _{FLASH}	Flash erase cycles before failure		20000			cycles
RET _{FLASH}	Flash data retention	T _{AMB} <85°C	10			years
t _{W_PROG}	Word (32-bit) programming time		20			μs
t _{P_ERASE}	Page erase time		20	20.4	20.8	ms
t _{D_ERASE}	Device erase time		40	40.8	41.6	ms

3.8 General Purpose Input Output

Table 3.8. GPIO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IOIL}	Input low voltage				0.3V _{DD}	V
V _{IOIH}	Input high voltage		0.7V _{DD}			V
VIOIL VIOOH VIOOH VIOOL RPU RPD RIOESD		Sourcing 6 mA, V _{DD} =1.8V	75			%
V	Output high voltage relative	Sourcing 6 mA, V _{DD} =3.0V	95			%
V_{IOOH} Output high voltage relative to V_{DD} V_{IOOL} Output low voltage relative to V_{DD} R_{PU} I/O pin pull-up resistor R_{PD} I/O pin pull-down resistor R_{IOESD} Internal ESD series resistor	to V _{DD}	Sourcing 20 mA, V _{DD} =1.8V	70			%
	Sourcing 20 mA, V _{DD} =3.0V	90			%	
		Sinking 6 mA, V _{DD} =1.8V			25 S 30 S 40 H 200 S 250 r	%
\/	Output low voltage relative	Sinking 6 mA, V _{DD} =3.0V			5	%
VIOOL	to V _{DD}	Sinking 20 mA, V _{DD} =1.8V			25 5 30 10 40 40 200 50 250	%
		Sinking 20 mA, V _{DD} =3.0V				%
R _{PU}	I/O pin pull-up resistor			40		kOhm
R _{PD}	I/O pin pull-down resistor			40		kOhm
R _{IOESD}	Internal ESD series resistor			200		Ohm
tiogLiTCH	removed by the glitch sup-		10		50	ns
t _{IOOF}	Output fall time	0.5 mA drive strength and load capacitance C _L =12.5-25pF.	20+0.1C _L		250	ns
-		2mA drive strength and load capacitance C _L =350-600pF	20+0.1C _L		250	ns
V _{IOHYST}	I/O pin hysteresis (V _{IOTHR+} - V _{IOTHR-})	V _{DD} = 1.8 - 3.8 V	0.1V _{DD}			V

3.8.1 Typical Low-Level Output Current, 2V supply voltage

Figure 3.27. Port output current, 0.5 mA Drive Figure 3.28. Port output current, 2 mA Drive Strength

Figure 3.29. Port output current, 6 mA Drive Figure 3.30. Port output current, 20 mA Drive Strength

3.8.2 Typical High-Level Output Current, 2V supply voltage

Figure 3.31. Port output current, 0.5 mA Drive Figure 3.32. Port output current, 2 mA Drive Strength

Figure 3.33. Port output current, 6 mA Drive Figure 3.34. Port output current, 20 mA Drive Strength

3.8.3 Typical Low-Level Output Current, 3V supply voltage

Figure 3.35. Port output current, 0.5 mA Drive Figure 3.36. Port output current, 2 mA Drive Strength

Figure 3.37. Port output current, 6 mA Drive Strength Figure 3.38. Port output current, 20 mA Drive Strength

3.8.4 Typical High-Level Output Current, 3V supply voltage

Figure 3.39. Port output current, 0.5 mA Drive Figure 3.40. Port output current, 2 mA Drive Strength

Figure 3.41. Port output current, 6 mA Drive Figure 3.42. Port output current, 20 mA Drive Strength

3.8.5 Typical Low-Level Output Current, 3.8V supply voltage

Figure 3.43. Port output current, 0.5 mA Drive Figure 3.44. Port output current, 2 mA Drive Strength Strength

Strength

Figure 3.45. Port output current, 6 mA Drive Figure 3.46. Port output current, 20 mA Drive Strength

3.8.6 Typical High-Level Output Current, 3.8V supply voltage

Figure 3.47. Port output current, 0.5 mA Drive Figure 3.48. Port output current, 2 mA Drive Strength

Figure 3.49. Port output current, 6 mA Drive Figure 3.50. Port output current, 20 mA Drive Strength

3.9 Oscillators

3.9.1 LFXO

Table 3.9. LFXO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFXO}	Crystal frequency			32.768		kHz
ESR _{LFXO}	Supported crystal equivalent series resistance (ESR)			30	120	kOhm
C _{LFXOL}	Supported crystal external load range		5		25	pF
DC _{LFXO}	Duty cycle		48	50	53.5	%
I _{LFXO}	Current consumption for core and buffer after start-up.	ESR=30 kOhm, C _L =10 pF, LFXOBOOST in CMU_CTRL is 1		190		nA
t _{LFXO}	Start- up time.	ESR=30 kOhm, C _L =10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1		400		ms

3.9.2 HFXO

Table 3.10. HFXO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{HFXO}	Crystal Frequency		4		32	MHz
ECD	Supported crystal equiv-	Crystal frequency 32 MHz		30	60	Ohm
ESR _{HFXO} gmHFXO CHFXOL DCHFXO	alent series resistance (ESR)	Crystal frequency 4 MHz		400	1500	Ohm
g _{mHFXO}	The transconductance of the HFXO input transistor at crystal startup	HFXOBOOST in CMU_CTRL equals 0b11	20			mS
C _{HFXOL}	Supported crystal external load range		5		25	pF
DC _{HFXO}	Duty cycle		46	50	54	%
1	Current consumption for HFXO after startup	4 MHz: ESR=400 Ohm, C _L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11		85		μА
IHFXO		32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		165		μА
t _{HFXO}	Startup time	32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400		μs

3.9.3 LFRCO

Table 3.11. LFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFRCO}	Oscillation frequency			32		kHz
t _{LFRCO}	Startup time not including software calibration			150		μs
I _{LFRCO}	Current consumption			190		nA
TUNESTEP _L .	Frequency step for LSB change in TUNING value			1.5		%

3.9.4 HFRCO

Table 3.12. HFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		28 MHz frequency band		28		MHz
		21 MHz frequency band		21		MHz
ſ		14 MHz frequency band		14		MHz
f _{HFRCO}	Oscillation frequency	11 MHz frequency band		11		MHz
		7 MHz frequency band		7		MHz
		1 MHz frequency band		1		MHz
t _{HFRCO}	Start-up time not including software calibration	f _{HFRCO} = 14 MHz		0.6		μs
t _{HFRCO}		f _{HFRCO} = 28 MHz		106		μΑ
		f _{HFRCO} = 21 MHz		93		μΑ
I _{HFRCO}	Current consumption	f _{HFRCO} = 14 MHz		77		μΑ
		f _{HFRCO} = 11 MHz		72		μΑ
		f _{HFRCO} = 7 MHz		63		μΑ
DC _{HFRCO}	Duty cycle	f _{HFRCO} = 14 MHz	48.5	50	51	%
TUNESTEP _H -	Frequency step for LSB change in TUNING value			0.3		%

3.9.5 ULFRCO

Table 3.13. ULFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{ULFRCO}	Oscillation frequency	25°C, 3V	0.8		1.5	kHz
TC _{ULFRCO}	Temperature coefficient			0.05		%/°C
VC _{ULFRCO}	Supply voltage coefficient			-18.2		%/V

3.10 Analog Digital Converter (ADC)

Table 3.14. ADC

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ADCCM}	Analog input common mode voltage range		0		V _{DD}	V
V _{ADCIN}	Input voltage range of ex- ternal reference voltage, single ended and differen- tial		1.25		V _{DD}	V
		1 MSamples/s, 12 bit, external reference		220		μΑ
		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b00		9		μА
		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b01		6		μА
I _{ADC}	Average active current	10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b10		74		μА
		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b11		290		μА
		6 bit 10 kSamples/s, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b01		4		μА
I _{ADCREF}	Current consumption of internal voltage reference	Internal voltage reference		70		μΑ
C _{ADCIN}	Input capacitance			2		pF
R _{ADCIN}	Input ON resistance		1			MOhm
V _{ADCCMOUT}	Common mode output voltage range			1.65		V
f _{ADCCLK}	Frequency of ADC clock, max and min			13		MHz
t _{ADCCONV}	Conversion time			1		μs
t _{ADCACQ}	Acquisition time	Programmable		0.5		μs
t _{ADCACQVDD3}	Required sample time for VDD/3 reference			2		μs
	Startup time of reference generator in NORMAL mode and startup time ADC			5		μs
^t ADCSTART	Startup time of reference generator in KEEPAD- CWARM mode and startup time ADC			1		μs

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		69		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V refer- ence		72		dB
		1 MSamples/s, 12 bit, differential, internal 1.25V reference		70		dB
		1 MSamples/s, 12 bit, differential, internal 2.5V reference		73		dB
		1 MSamples/s, 12 bit, differential, 5V reference		73		dB
SNR _{ADC}	Signal to Noise Ratio (SNR)	100 kSamples/s, 12 bit, single ended, internal 1.25V reference		69		dB
		100 kSamples/s, 12 bit, single ended, internal 2.5V reference		72		dB
		100 kSamples/s, 12 bit, dif- ferential, internal 1.25V refer- ence		70		dB
		100 kSamples/s, 12 bit, differential, internal 2.5V reference		73		dB
		100 kSamples/s, 12 bit, differential, 5V reference		73		dB
		1.86 MSamples/s, 6 bit, single ended, internal 1.25V reference		37		dB
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		68		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V refer- ence		71		dB
		1 MSamples/s, 12 bit, differential, internal 1.25V reference		69		dB
	Signal to Noise-puls-Distor-	1 MSamples/s, 12 bit, differential, internal 2.5V reference		72		dB
SNDR _{ADC}	tion Ratio (SNDR)	1 MSamples/s, 12 bit, differential, 5V reference		72		dB
		100 kSamples/s, 12 bit, single ended, internal 1.25V reference		68		dB
		100 kSamples/s, 12 bit, single ended, internal 2.5V reference		71		dB
		100 kSamples/s, 12 bit, dif- ferential, internal 1.25V refer- ence		69		dB

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		100 kSamples/s, 12 bit, differential, internal 2.5V reference		72		dB
		100 kSamples/s, 12 bit, differential, 5V reference		72		dB
		1.86 MSamples/s, 6 bit, single ended, internal 1.25V reference		37		dB
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		75		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V refer- ence		75		dB
		1 MSamples/s, 12 bit, differential, internal 1.25V reference		75		dB
		1 MSamples/s, 12 bit, differential, internal 2.5V reference		75		dB
		1 MSamples/s, 12 bit, differential, 5V reference		75		dB
SFDR _{ADC}	Spurious-Free Dynamic Range (SFDR)	100 kSamples/s, 12 bit, single ended, internal 1.25V reference		75		dB
		100 kSamples/s, 12 bit, single ended, internal 2.5V reference		75		dB
		100 kSamples/s, 12 bit, dif- ferential, internal 1.25V refer- ence		75		dB
		100 kSamples/s, 12 bit, differential, internal 2.5V reference		75		dB
		100 kSamples/s, 12 bit, differential, 5V reference		75		dB
		1.86 MSamples/s, 6 bit, single ended, internal 1.25V reference		57		dB
		Before calibration, single ended		10		mV
V _{ADCOFFSET}	Offset voltage	After calibration, single ended		0.3		mV
		Before calibration, differential		10		mV
		After calibration, differential		0.3		mV
				-1.85		mV/°C
TGRAD _{ADCTH}	Thermometer output gradient			-6.1		ADC Codes/ °C
		Internal 1.25V reference		1		LSB
DNL_{ADC}	Differential non-linearity (DNL)	Internal 2.5V reference		1		LSB
		Internal 5V reference		1		LSB

Symbol	Parameter	Condition	Min	Тур	Max	Unit
INL _{ADC}		Internal 1.25V reference		2		LSB
	Integral non-linearity (INL), End point method	Internal 2.5V reference		2		LSB
		Internal 5V reference		2		LSB
	No missing codes	12 bit, internal 1.25V reference, single ended		0		
		12 bit, internal 1.25V reference, differential		0		
MC _{ADC}		12 bit, internal 2.5V reference, single ended		0		
		12 bit, internal 2.5V reference, differential		0		
		12 bit, internal 5V reference, differential		0		

The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.51 (p. 31) and Figure 3.52 (p. 32), respectively.

Figure 3.51. Integral Non-Linearity (INL)

Figure 3.52. Differential Non-Linearity (DNL)

3.11 Digital Analog Converter (DAC)

Table 3.15. DAC

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{DACOUT}	Output voltage range	External voltage reference, single ended	0		V _{DD}	V
V _{DACCM}	Output common mode voltage range		0		V _{DD}	V
	Active current including references for 2 channels	500 kSamples/s, 12bit		400		μA
I _{DAC}		100 kSamples/s, 12 bit		200		μA
		1 kSamples/s 12 bit NORMAL		38		μA
SR _{DAC}	DAC sample rate			500		ksam- ples/s
f _{DAC}	DAC clock frequency			1		MHz
CYC _{DACCONV}	Clock cyckles per conversion			2		
t _{DACCONV}	DAC conversion time			2		μs
t _{DACSETTLE}	DAC settling time			5		μs
		500 kSamples/s, 12 bit, single ended, internal 1.25V reference		71		dB
SNR _{DAC}	DAC Signal to Noise Ratio (SNR)	500 kSamples/s, 12 bit, single ended, internal 2.5V reference		70		dB
		100 kSamples/s, 12 bit, single ended, internal 1.25V reference		72		dB

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		100 kSamples/s, 12 bit, single ended, internal 2.5V reference		71		dB
SNDR _{DAC}		500 kSamples/s, 12 bit, single ended, internal 1.25V reference		70		dB
	DAC Signal to Noise-pulse	500 kSamples/s, 12 bit, single ended, internal 2.5V reference		69		dB
	Distortion Ratio (SNDR)	100 kSamples/s, 12 bit, single ended, internal 1.25V reference		71		dB
		100 kSamples/s, 12 bit, single ended, internal 2.5V reference		70		dB
	DAC Spurious-Free Dy- namic Range(SFDR)	500 kSamples/s, 12 bit, single ended, internal 1.25V reference		75		dB
SFDR _{DAC}		500 kSamples/s, 12 bit, single ended, internal 2.5V reference		75		dB
SEDINDAC		100 kSamples/s, 12 bit, single ended, internal 1.25V reference		75		dB
		100 kSamples/s, 12 bit, single ended, internal 2.5V reference		75		dB
V _{DACOFFSET}	Offset voltage	Before calibration, single ended		10		mV
		After calibration, single ended		0.5		mV
DNII	Differential pen linearity	Internal 1.25V reference		1		LSB
DNL _{DAC}	Differential non-linearity	Internal 2.5V reference		1		LSB
INI	Integral non-linearity	Internal 1.25V reference		2		LSB
INL _{DAC}	integral non-illeanty	Internal 2.5V reference		2		LSB
MCnac	No missing codes	12 bit, internal 1.25V reference, single ended		0		
MC_{DAC}	No missing codes	12 bit, internal 2.5V reference, single ended		0		

3.12 Operational Amplifier (OPAMP)

Table 3.16. OPAMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{OPAMP}	Active Current	Lowest Bias Setting		20		μΑ
	Active Current	Highest Bias Setting		500		μΑ
G _{OL}	Open Loop Gain			100		dB
GBW _{OPAMP}	Gain Bandwidth Product			2.2		MHz
R _{LOAD}	Load Resistance			200		Ohm
CMRR _{OPAMP}	Common Mode Rejection Ratio			TBD		dB
PSRR _{OPAMP}	Power Supply Rejection Ratio			TBD		dB

3.13 Analog Comparator (ACMP)

Table 3.17. ACMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ACMPIN}	Input voltage range		0		V _{DD}	V
V _{ACMPCM}	ACMP Common Mode voltage range		0		V _{DD}	V
		BIASPROG=0b0000, FULL- BIAS=0 and HALFBIAS=1 in ACMPn_CTRL register		0.1		μΑ
I _{ACMP}	Active current	BIASPROG=0b1111, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register		2.87		μΑ
		BIASPROG=0b1111, FULL- BIAS=1 and HALFBIAS=0 in ACMPn_CTRL register		195		μA
I _{ACMPREF}	Current consumption of internal voltage reference	Internal voltage reference off. Using external voltage reference		0		μA
		Internal voltage reference		5		μΑ
V	Offset voltage	Single ended		10		mV
V _{ACMPOFFSET}	Oliset voltage	Differential		10		mV
V _{ACMPHYST}	ACMP hysteresis	Programmable		17		mV
		CSRESSEL=0b00 in ACMPn_INPUTSEL		39		kOhm
R _{CSRES}	Capacitive Sense Internal	CSRESSEL=0b01 in ACMPn_INPUTSEL		71		kOhm
NUSRES	Resistance	CSRESSEL=0b10 in ACMPn_INPUTSEL		104		kOhm
		CSRESSEL=0b11 in ACMPn_INPUTSEL		136		kOhm

The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 35). $I_{ACMPREF}$ is zero if an external voltage reference is used.

Total ACMP Active Current

$$I_{ACMPTOTAL} = I_{ACMP} + I_{ACMPREF}$$

(3.1)

3.14 Voltage Comparator (VCMP)

Table 3.18. VCMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{VCMPIN}	Input voltage range			V_{DD}		V
V _{VCMPCM}	VCMP Common Mode voltage range			V _{DD}		V
I _{VCMP}	Active current	BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register		0.1		μΑ
		BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register		2.7		μА
t _{VCMPREF}	Startup time reference generator	NORMAL		10		μs
V _{VCMPOFFSET}	Offset voltage	Single ended		10		mV
		Differential		10		mV
V _{VCMPHYST}	VCMP hysteresis			17		mV

The V_{DD} trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:

VCMP Trigger Level as a Function of Level Setting

$$V_{DD Trigger Level} = 1.667V + 0.034 \times TRIGLEVEL$$
 (3.2)

3.15 Digital Peripherals

Table 3.19. Digital Peripherals

Symbol	Parameter	Condition	Min	Тур	Max	Unit
lusart	USART current	USART idle current, clock enabled		7.5		μΑ/ MHz
I _{UART}	UART current	UART idle current, clock enabled		5.63		μΑ/ MHz
I _{LEUART}	LEUART current	LEUART idle current, clock enabled		150		nA
I _{I2C}	I2C current	I2C idle current, clock enabled		6.25		μΑ/ MHz
I _{TIMER}	TIMER current	TIMER_0 idle current, clock enabled		8.75		μΑ/ MHz
I _{LETIMER}	LETIMER current	LETIMER idle current, clock enabled		150		nA
I _{PCNT}	PCNT current	PCNT idle current, clock enabled		100		nA
I _{RTC}	RTC current	RTC idle current, clock enabled		100		nA

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{AES}	AES current	AES idle current, clock enabled		2.5		μΑ/ MHz
I _{GPIO}	GPIO current	GPIO idle current, clock enabled		5.31		μΑ/ MHz
I _{PRS}	PRS current	PRS idle current		2,81		μΑ/ MHz
I _{DMA}	DMA current	Clock enable		8.12		μΑ/ MHz

4 Pinout and Package

Note

Please refer to the application note "AN0002 EFM32G Hardware Design Considerations" for guidelines on designing Printed Ciruit Boards (PCBs) for the EFM32TG200.

4.1 Pinout

The *EFM32TG200* pinout is shown in Figure 4.1 (p. 37) and Table 4.1 (p. 37). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

The OPAMP0 pins will be included in a later revision of this datasheet.

Figure 4.1. EFM32TG200 Pinout (top view, not to scale)

Table 4.1. Device Pinout

	FN32 Pin# nd Name		Pin Alternate Functionality / Description										
Pin #	Pin Name	Analog	Debug	EBI	Timers			Commu	Other				
0	VSS	Ground											
1	PA0	-	-	-	TIM0_CC0 #0/1	-	-	I2C0_SDA #0	-	-			

	FN32 Pin# nd Name			Piı	n Alternate F	unctional	ity / Descrip	tion		
Pin #	Pin Name	Analog	Debug	EBI		Timers		Commu	inication	Other
2	PA1	-	-	-	TIM0_CC1 #0/1	-	-	I2C0_SCL #0	-	CMU_OUT1 #0
3	PA2	-	-	-	TIM0_CC2 #0/1	-	-	-	-	CMU_OUT0 #0
4	IOVDD_1	Digital IO pov	ver supply 1.	<u> </u>	<u> </u>	<u> </u>	<u>I</u>			
5	PC0	ACMP0_CH0	-	-	PCNT0_S0IN #2	-	-	-	-	-
6	PC1	ACMP0_CH1	-	-	PCNT0_S1IN #2	-	-	-	-	-
7	PB7	LFXTAL_P	-	-	-	-	-	-	-	-
8	PB8	LFXTAL_N	-	-	-	-	-	-	-	-
9	RESETn	Reset input. Active low, w	ith internal pull-u	ıp.						
10	PB11	DAC0_OUT0	-	-	LETIM0_OUT0 #1	-	-	-	-	-
11	AVDD_2	Analog powe	r supply 2 .							
12	PB13	HFXTAL_P	-	-	-	-	-	LEU0_TX #1	-	-
13	PB14	HFXTAL_N	-	-	-	-	-	LEU0_RX #1	-	-
14	IOVDD_3	Digital IO pov	ver supply 3.							
15	AVDD_0	Analog powe	r supply 0.							_
16	PD4	ADC0_CH4	-	-	-	-	-	LEU0_TX #0	-	-
17	PD5	ADC0_CH5	-	-	-	-	-	LEU0_RX #0	-	-
18	PD6	ADC0_CH6	-	-	LETIMO_OUTO #0	-	-	I2C0_SDA #1	-	-
19	PD7	ADC0_CH7	-	-	LETIM0_OUT1 #0	-	-	I2C0_SCL #1	-	-
20	VDD_DREG	Power supply	for on-chip volt	age regulator.						
21	DECOUPLE	Decouple out An external c	put for on-chip vapacitance of size	oltage regulat ze C _{DECOUPLE}	or, nominally at 1 is required at this	1.8 V. s pin.				
22	PC13	ACMP1_CH5	-	-	TIM0_CDTI0 #1/3	TIM1_CC0 #0	PCNT0_S0IN #0	-	-	-
23	PC14	ACMP1_CH6	-	-	TIM0_CDTI1 #1/3	TIM1_CC1 #0	PCNT0_S1IN #0	U0_TX #3	-	-
24	PC15	ACMP1_CH7	DBG_SWO #1	-	TIM0_CDTI2 #1/3	TIM1_CC2 #0	-	U0_RX #3	-	-
25	PF0	-	DBG_SWCLK #0/1	-	LETIM0_OUT0 #2	-	-	-	-	-
26	PF1	-	DBG_SWDIO #0/1	-	LETIM0_OUT1 #2	-	-	-	-	-
27	PF2	-	DBG_SWO #0	-	-	-	-	-	-	ACMP1_O #0
28	IOVDD_5	Digital IO pov	ver supply 5.	•						-1
29	PE10	-	-	-	TIM1_CC0 #1	-	-	US0_TX #0	-	-
30	PE11	-	-	-	TIM1_CC1 #1	-	-	US0_RX #0	-	-

QFN32 Pin# and Name			Pin Alternate Functionality / Description										
Pin #	Pin Name	Analog	Debug	EBI	Timers			Commu	Other				
31	PE12	-	-	-	TIM1_CC2 #1	-	-	US0_CLK #0	-	-			
32	PE13	-	-	-	-	-	-	US0_CS #0	-	ACMP0_O #0			

4.2 Alternate functionality pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 39). The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note

Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-TION 0.

Table 4.2. Alternate functionality overview

Alternate		LOCA	TION		
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
CMU_OUT0	PA2				Clock Management Unit, clock output number 0.
CMU_OUT1	PA1				Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal (4 - 32 MHz) negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal (4 - 32 MHz) positive pin.
I2C0_SCL	PA1	PD7			I2C0 Serial Clock Line input / output.

Alternate		LOCA	TION		
Functionality	0	1	2	3	Description
I2C0_SDA	PA0	PD6			I2C0 Serial Data input / output.
LETIMO_OUTO	PD6	PB11	PF0		Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14			LEUART0 Receive input.
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
TIM0_CC0	PA0	PA0			Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0		PC13		PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1		PC14		PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2		PC15		PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
U0_RX				PC15	UART0 Receive input.
U0_TX				PC14	UART0 Transmit output. Also used as receive input in half duplex communication.
US0_CLK	PE12				USART0 clock input / output.
US0_CS	PE13				USART0 chip select input / output.
US0 RX	PE11				USART0 Asynchronous Receive.
030_NX	FLII				USART0 Synchronous mode Master Input / Slave Output (MISO).
US0_TX	PE10				USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
					USART0 Synchronous mode Master Output / Slave Input (MOSI).

4.3 GPIO pinout overview

The specific GPIO pins available in EFM32TG200 is shown in Table 4.3 (p. 40). Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated by a number from 15 down to 0.

Table 4.3. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	-	-	-	-	-	-	-	-	-	-	-	PC1	PC0
Port D	-	-	-	-	-	-	-	-	PD7	PD6	PD5	PD4	-	-	-	-
Port E	-	-	PE13	PE12	PE11	PE10	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	-	-	PF2	PF1	PF0

4.4 QFN32 Package

Figure 4.2. QFN32

Note:

- 1. 'e' represents the basic terminal pitch. Specifies the true geometric position of the terminal axis.
- 2. Datum 'C' is the mounting surface with which the package is in contact
- 3. Specifies the vertical shift of the flat part of each terminal form the mounting surface.
- 4. Dimension 'A' includes package warpage.
- 5. Dimension 'b' applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension 'b' should not be measured in the radius area.
- 6. Depending on the method of lead termination at the edge of the package, a maximum 0.15 mm pull back (L1) may be present. 'L' minus 'L1' is to be equal to or greater than 0.3 mm.
- 7. Package dimensions take reference from JEDEC MO-220 rev. K, variations VJJ-2, except D2 and E2.

Table 4.4. QFN32 (Dimensions in mm)

Symbol	A	A1	А3	D	D1	Е	E1	е	L1	ZD	ZE	b	L	D2	E2
Min	-	0.00							0.03			0.25	0.30	4.30	4.30
Nom	0.80	0.02	0.20	6.00	4.55	6.00	4.55	0.65	-	0.725	0.725	0.30	0.40	4.40	4.40
Max	0.90	0.05							0.15			0.35	0.50	4.50	4.50

5 Chip Marking, Revision and Errata

5.1 Chip Marking

In the illustration below package fields and position are shown.

Figure 5.1. QFN32 Chip Marking

5.2 Revision

The revision of a chip can be determined from the "Revision" field in Figure 5.1 (p. 42). If the revision says "ES" (Engineering Sample), the revision must be read out electronically as speficied in the reference manual.

5.3 Errata

No known errata currently exists for the EFM32TG200.

6 Revision History

6.1 Revision 0.50

May 25th, 2010

Block diagram update.

6.2 Revision 0.40

March 26th, 2010

Initial preliminary release.

A Disclaimer and Trademarks

A.1 Disclaimer

Energy Micro AS intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the EFM32G microcontrollers. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only, and Energy Micro accepts no liability for inclusion and/or use in such equipment or applications resulting in personal injury, death or severe property or environmental damage. Energy Micro reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Energy Micro shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits.

A.2 Trademark Information

Energy Micro, EFM32G, logo and combinations thereof, and others are the registered trademarks or trademarks of Energy Micro AS. ARM, CORTEX, THUMB are the registered trademarks of ARM Limited. Other terms and product names may be trademarks of others.

B Contact Information

B.1 Energy Micro Corporate Headquarters

Postal Address	Visitor Address	Technical Support
Energy Micro AS P.O. Box 4633 Nydalen N-0405 Oslo NORWAY	Energy Micro AS Sandakerveien 118 N-0405 Oslo NORWAY	support.energymicro.com Phone: +47 40 10 03 01

www.energymicro.com

Phone: +47 23 00 98 00 Fax: + 47 23 00 98 01

B.2 Global Contacts

Visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information.

Americas	Europe, Middle East and Africa	Asia and Pacific
www.energymicro.com/americas	www.energymicro.com/emea	www.energymicro.com/asia

Table of Contents

1.	Ordering Information	2
	1.1. Block Diagram	
2.	System Summary	
	2.1. System Introduction	
	2.2. Configuration Summary	
	2.3. Memory Map	
3.	Electrical Characteristics	
	3.1. Test Conditions	
	3.2. Absolute Maximum Ratings	
	3.3. General Operating Conditions	
	3.4. Current Consumption	
	3.5. Transition between Energy Modes	17
	3.6. Power Management	
	3.7. Flash	
	3.8. General Purpose Input Output	
	3.9. Oscillators	
	3.10. Analog Digital Converter (ADC)	28
	3.11. Digital Analog Converter (DAC)	
	3.12. Operational Amplifier (OPAMP)	
	3.13. Analog Comparator (ACMP)	
	3.14. Voltage Comparator (VCMP)	
	3.15. Digital Peripherals	
4	Pinout and Package	
٠.	4.1. Pinout	
	4.2. Alternate functionality pinout	
	4.3. GPIO pinout overview	40
	4.4. QFN32 Package	
5	Chip Marking, Revision and Errata	42
Ο.	5.1. Chip Marking	42
	5.2. Revision	
	5.3. Errata	
6	Revision History	
Ο.	6.1. Revision 0.50	
	6.2. Revision 0.40	
٨	Disclaimer and Trademarks	40
۸.	A.1. Disclaimer	
	A.1. Disclaimer A.2. Trademark Information	
D	Contact Information	
٥.	B.1. Energy Micro Corporate Headquarters	
	B.1. Energy Micro Corporate Headquarters	45

List of Figures

I.1. Block Diagram	2
2.1. <i>EFM32TG200</i> Memory Map with largest RAM and Flash sizes	. 7
3.1. EM0 Current consumption vs supply voltage, executing prime number calculation code from flash with HFRCO	
running at 28MHz	11
	•
3.2. EM0 Current consumption vs temperature, executing prime number calculation code from flash with HFRCO run-	
	11
3.3. EM0 Current consumption vs supply voltage, executing prime number calculation code from flash with HFRCO	
running at 21MHz	11
3.4. EM0 Current consumption vs temperature, executing prime number calculation code from flash with HFRCO run-	•
ning at 21MHz	11
3.5. EM0 Current consumption vs supply voltage, executing prime number calculation code from flash with HFRCO	
	12
3.6. EM0 Current consumption vs temperature, executing prime number calculation code from flash with HFRCO run-	
	40
ning at 14MHz	12
3.7. EM0 Current consumption vs supply voltage, executing prime number calculation code from flash with HFRCO	
running at 11MHz	12
3.8. EMO Current consumption vs temperature, executing prime number calculation code from flash with HFRCO run-	
	12
	12
3.9. EM0 Current consumption vs supply voltage, executing prime number calculation code from flash with HFRCO	
	13
3.10. EM0 Current consumption vs temperature, executing prime number calculation code from flash with HFRCO run-	
	13
3.11. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, HFRCO running at 28MHz	
3.12. EM1 Current consumption vs temperature, all peripheral clocks disabled, HFRCO running at 28MHz	
3.13. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, HFRCO running at 21MHz	14
3.14. EM1 Current consumption vs temperature, all peripheral clocks disabled, HFRCO running at 21MHz	
3.15. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, HFRCO running at 14MHz	
3.16. EM1 Current consumption vs temperature, all peripheral clocks disabled, HFRCO running at 14MHz	
3.17. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, HFRCO running at 11MHz	15
3.18. EM1 Current consumption vs temperature, all peripheral clocks disabled, HFRCO running at 11MHz	15
3.19. EM1 Current consumption vs supply voltage, all peripheral clocks disabled, HFRCO running at 7MHz	
3.20. EM1 Current consumption vs temperature, all peripheral clocks disabled, HFRCO running at 7MHz	
2.20. EM1 Current consumption to emperature, an profined clocks disabled, in NOO furning at 7 M1/2	1
3.21. EM2 Current consumption vs supply voltage. RTC incremented each second, RTC prescaled to 1kHz, 32 kHz	
_FRCO	16
3.22. EM2 Current consumption vs temperature. RTC incremented each second, RTC prescaled to 1kHz, 32 kHz LFR-	
00.	16
	16
3.24. EM3 Current consumption vs temperature	
3.25. EM4 Current consumption vs supply voltage	17
3.26. EM4 Current consumption vs temperature	17
3.27. Port output current, 0.5 mA Drive Strength	
3.28. Port output current, 2 mA Drive Strength	
	20
3.30. Port output current, 20 mA Drive Strength	20
3.31. Port output current, 0.5 mA Drive Strength	
3.32. Port output current, 2 mA Drive Strength	2
3.33. Port output current, 6 mA Drive Strength	
3.34. Port output current, 20 mA Drive Strength	21
3.35. Port output current, 0.5 mA Drive Strength	22
3.36. Port output current, 2 mA Drive Strength	
3.37. Port output current, 6 mA Drive Strength	
3.38. Port output current, 20 mA Drive Strength	
3.39. Port output current, 0.5 mA Drive Strength	
3.40. Port output current, 2 mA Drive Strength	
3.41. Port output current, 6 mA Drive Strength	
3.42. Port output current, 20 mA Drive Strength	
3.43. Port output current, 0.5 mA Drive Strength	24
3.44. Port output current, 2 mA Drive Strength	24
3.45. Port output current, 6 mA Drive Strength	
3.46. Port output current, 20 mA Drive Strength	
3.47. Port output current, 0.5 mA Drive Strength	
3.48. Port output current, 2 mA Drive Strength	25
3.49. Port output current, 6 mA Drive Strength	
3.50. Port output current, 20 mA Drive Strength	
3.51. Integral Non-Linearity (INL)	
3.52. Differential Non-Linearity (DNL)	32
4.1. EFM32TG200 Pinout (top view, not to scale)	
4.2. QFN32	
r.C. VI INUC	
5.1. QFN32 Chip Marking	10

List of Tables

1.1. Ordering Information	. 2
2.1. Configuration Summary	
3.1. Absolute Maximum Ratings	
3.2. General Operating Conditions	
3.3. Environmental	
3.4. Current Consumption	10
3.5. Energy Modes Transitions	17
3.6. Power Management	18
3.7. Flash	18
3.8. GPIO	19
3.9. LFXO	26
3.10. HFXO	26
3.11. LFRCO	27
3.12. HFRCO	27
3.13. ULFRCO	27
3.14. ADC	28
3.15. DAC	32
3.16. OPAMP	34
3.17. ACMP	34
3.18. VCMP	35
3.19. Digital Peripherals	35
4.1. Device Pinout	37
4.2. Alternate functionality overview	
4.3. GPIO Pinout	40
4.4. QFN32 (Dimensions in mm)	41

List of Equations

3.1.	Total ACMP Active Current	35
3.2.	VCMP Trigger Level as a Function of Level Setting	35

Energy Micro AS Sandakerveien 118 P.O. Box 4633 Nydalen N-0405 Oslo Norway

www.energymicro.com