Method and apparatus for improving the computational efficiency of a rosar-system

Patent Number:

EP1004895

Publication date:

2000-05-31

Inventor(s):

KALTSCHMIDT HORST PROF DR (DE); KLAUSING HELMUT DR-ING (DE)

Applicant(s):

KALTSCHMIDT HORST (DE); KLAUSING HELMUT DR ING (DE)

Requested Patent:

□ EP1004895

Application Number: EP19990122251 19991108

Priority Number(s): DE19981051910 19981111

IPC Classification: G01S13/90; H01Q1/28

EC Classification:

H01Q1/28, G01S13/90S

Equivalents:

DE19851910

Cited Documents:

DE4306920; DE4323511; DE3922086; US3611376

Abstract

The method involves using an optimising technique to determine a reference function and to achieve selffocusing using four angle-dependent ROSAR parameters, i.e. the length of the rotor blade, the circular frequency of the rotor blade, the distance from the rotor rotation point to the object and the height of the rotor blade above the ground. An Independent claim is also included for an arrangement for implementing the method.

Data supplied from the esp@cenet database - 12

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 004 895 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

31.05.2000 Patentblatt 2000/22

(51) Int. Cl.⁷: **G01S 13/90**, H01Q 1/28

(21) Anmeldenummer: 99122251.4

(22) Anmeldetag: 08.11.1999

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 11.11.1998 DE 19851910

(71) Anmelder:

Kaltschmidt, Horst, Prof.Dr.
 D-85579 Neubiberg (DE)

Klausing, Helmut, Dr.-Ing.
 82234 Wessling-Hochstadt (DE)

(72) Erfinder:

 Kaltschmidt, Horst, Prof. Dr. 85579 Neubiberg (DE)

Klausing, Helmut, Dr.-Ing.
 82234 Wessling-Hochstadt (DE)

(74) Vertreter:

Schwan, Gerhard, Dipl.-Ing. et al Schwan Möbus Wiese, Elfenstrasse 32 81739 München (DE)

(54) Verfahren zur Verringerung des Rechenaufwandes und Einrichtung zur Durchführung desselben in einem ROSAR-System

(57) Die Erfindung bezieht sich auf ein Verfahren für ein ROSAR-SYSTEM, das pulsfrequent oder kontinuierlich betrieben wird, dessen Rechenaufwand wesentlich minimiert wird und eine Selbstfokussierung bewirkt.

Ausführungsbeispiele sind gebracht und die Figuren der Zeichnung ergänzen die Erläuterungen.

Flg.1

Beschreibung

[0001] Die Erfindung bezieht sich auf ein Verfahren für ein Radarsystem mit synthetischer Apertur durch rotierende Antennen gemäß dem Oberbegriff des 5 Anspruchs 1 und einer Einrichtung zur Durchführung desselben nach Anspruch 4.

1

[0002] Das unter anderem durch die DE CJ 22 086 C1 bekanntgewordene ROSAR-Prinzip erfordert eine ideale Kreisbewegung der rotierenden Antennen, die durch ein zusätzlich zu den Hubschrauberrotoren angebrachtes Antennen tragendes Drehkreuz erreichbar ist, oder im Falle der rotormontierten Antennen einen Kinematiksensor, der die Abweichungen von den idealen Kreisbewegungen feststellt und dem ROSAR-Prozessor diese als Korrekturmeßsignale zuführt.

[0003] Das dem Stand der Technik zugrunde gelegte System ist in der Dissertation Klausing, Kapitel 3 "ROSAR-Theorie", S. 27 bis S. 64 und in den Druckschriften DE 39 22 086 C1, DE 43 23 511 C1 sowie DE 20 43 06 920 C2 eingehend beschrieben. Gemäß Fig. 6 errechnet Klausing die Referenzfunktion für den störungsfreien Fall - d.h. für die vier zeitlich konstanten die Referenzfunktion bestimmenden ROSAR-Kenngrößen die maximale Lateralauflösung. Diese ROSAR-Kenn- 25 größen sind:

- 1. Länge des Rotorblatts bzw. die Entfernung der Antenne zum Drehpunkt (L),
- 2. die Kreisfrequenz des Rotorblatts ω_0 ,
- 3. die Entfernung zwischen Objekt und Drehpunkt (R_{GO}) und
- 4. der Höhe der Antenne über dem Boden H₀.

Falls nun die vier ROSAR-Kenngrößen stochastisch schwanken - und das tun sie in der Praxis weitgehend - wird die Auflösung erheblich unter der störungsfreien Maximalauflösung liegen, so daß eine Defokussierung eintritt. Die bisher bekannten Vorschläge zur Messung der vier angegebenen Kenngrößen erfordern einen viel zu hohen technischen und rechenmäßigen Aufwand.

[0004] Der vorliegenden Erfindung liegt die Aufgabe zugrunde, das bisherige ROSAR-System in seinem Aufwand, insbesondere was den Rechenaufand betrifft, wesentlich zu minimieren und ein selbstfokussierendes Verfahren vorzuschlagen.

[0005] Diese Aufgabe wird durch die im Anspruch 1 aufgezeigten Maßnahmen gelöst. In den Unteransprüchen sind Weiterbildungen und Ausgestaltungen angegeben. In der nachfolgenden Beschreibung werden 50 Ausführungsbeispiele erläutert. Die Figuren der Zeichnung ergänzen diese Erläuterungen. Es zeigen:

- Fig. 1: ein Ausführungsbeispiel eines selbstfokussierenden ROSAR-Systems (SFR) in schematischer Darstellung,
- Fig. 2: ein Ausführungsbeispiel für eine Empfangssignalabtastung und Verteilung auf die Ent-

fernungs-Ringspeicher und ihre Speicherplätze,

- Fig. 3: ein Schemabild bezüglich einer Korrelatoranordnung mit dem 1. Schritt des SFR.
- Fig. 4: eine Darstellung des Vorgehens zum Auffinden des Prüfkriteriums.
 - Fig. 5: ein Schemabild bezüglich einer typischen Ortskurve der Abweichung einer Blattspitzenbewegung von einer idealen Kreisbahn.
- Fig. 6: eine geometrische Darstellung zur Berechnung der ROSAR-Referenzfunktion dem Stand der Technik gemäß Dr. Klausing.

[0006]Der allgemeine Erfindungsgedanke sieht vor, daß bei dem vorgeschlagenen selbstfokussierenden Verfahren nur die Empfangsantenne auf dem Rotorblatt angeordnet ist, das Sendesignal jedoch von einer fest am Rumpf des Hubschraubers befestigten Antenne abgestrahlt wird. Es wird also nur das Empfangssignal von einer in der Nähe der Rotorblattspitze montierten Antenne empfangen. Dies erbringt den Vorteil, daß die Sendeleistung nicht über eine Drehkupplung geführt werden muß. Wie die Fig. 1 veranschaulicht, wird nunmehr die in der Nähe der Blattspitze angebrachte Antenne mit einer Transpondereinheit verbunden, die das Empfangssignal in ein geeignetes Frequenzband umsetzt und dieses umgesetzte Signal drahtlos an den rumpffesten Empfänger sendet.

[0007] Das in den Fig. 1 und 2 skizzierte Ausführungsbeispiel einer Radaranordnung für die Realisierung des selbstfokussierenden Verfahrens (SFR) wird pulsfrequent betrieben. Hier ist anzuführen, daß selbstverständlich auch Radarverfahren - die beispielsweise mit frequenz- oder pseudorauschmodulierten Sendesginalen arbeiten - z.B. FM/CW verwendbar sind. Bei der Rotorposition α = -90° wird vom am Rumpf befestigten Sender (Öffnungswinkel γ der Sendeantenne = beispielsweise 180°) ein kurzer Sendeimpuls (Sinussignal der Wellenlänge λ , Impulsdauer T_s) abgestrahlt und danach erfolgt eine Sendepause der Dauer T_{SP} Während dieser Sendepause wird der Empfänger eingeschaltet.

[8000] Der Empfänger nimmt nun aus den verschiedenen Entfernungsringen zeitlich nacheinander Empfangssignale auf, die über einen Multiplexer (Fig. 2) auf die zugehörigen Entfernungsringspeicherplätze verteilt werden. Nachdem die Empfangssignale in I- und Q-Signale umgewandelt worden sind, sind diese nur noch eine Funktion des Rotordrehwinkels a. Für jede Winkelposition v. $\Delta\alpha$ des Rotors werden dabei die Speicheranordnungen (Fig. 2) spaltenweise gefüllt. Für einen bestimmten Entfernungsring im Abstand R_{GO} muß also jeweils nach der Laufzeit $\tau = 2R_{GO} / c$ der Echoimpuls empfangen und abgespeichert werden. Zwischen 2 Echoimpulsen hat sich dann der Rotor um $\Delta \alpha = \omega_0 \cdot \tau$ weitergedreht, d.h. es steht am Ende einer vollen Rotordrehung ein Empfangs-Entfernungssi20

4

gnal der Form

$$S_{E}(v \cdot \Delta \alpha)$$

zur Verfügung. Wie in Fig. 3 veranschaulicht wird dann 5 dieses Empfangssignal mit der Referenzfünktion

$$S_{R}(v \cdot \Delta \alpha)$$

kreuzkorreliert und somit die Ergebnisfunktion S_0 (α) erhalten (siehe Dissertation Klausing, DE 39 22 086 C1, DE 43 23 511 C1). Bei dem hier vorgeschlagenen selbstfokussierenden Verfahren (SFR) dient das bekannte Rechenberg'sche Optimierungsverfahren als Grundlage, bei dem das biologische Darwin'sche Prinzip der "Mutation und Selektion" auf ein technisches Optimierungsverfahren übertragen wird:

In einem ersten Verfahrensschritt (Fig. 3) wird das aus einem Kreisring stammende Empfangssignal

$$S_{E}(v \cdot \Delta \alpha)$$

mit der Referenzfunktion des ungestörten Falles, also mit festen winkelunabhängigen Werten für L_1 , ω_{01} , R_{G01} und H_{01} , kreuzkorreliert. Die so erhaltene - als 25 Ergebnisfunktion S_0 (v . α) bezeichnete - Kreuzkorrelationsfunktion wird auf Maxima abgesucht und deren Breite bestimmt, wie beispielsweise die 3 dB - Breite. Dasjenige Maximum mit der geringsten Breite ist das Prüfkriterium in der Ergebnisfunktion an der Stelle 30 $\alpha_P = v_P \cdot \Delta \alpha$ zur Bewertung der nachfolgenden Schritte (Fig. 4). Eine weitere Ausgestaltung sieht die Benutzung des HöhenBreitenverhältnisses als weitere Prüfgröße vor.

Wie aus der Fig. 4 ersichtlich, ist der 2. [0009] Schritt gegenüber dem 1. Schritt dadurch verändert, daß nun die Referenzfunktion nicht mehr aus dem ungestörten Fall berechnet wird, sondern daß für jeden Abtastwert an der Stelle ν • Δα die vier Kenngrößen gemäß dem "Rechenberg-Verfahren" neu berechnet werden. Dabei wird ein Zufallswert aus einer Wahrscheinlichkeitsverteilung mit vorgegebenem Mittelwert μ und der Streuung σ gezogen. Beispielsweise wird der Zufallswert für die Rotorlänge L aus einer Gleich- oder einer Gaußverteilung mit dem Mittelwert $\mu_{l} = L$ (ungestörter Fall) und einer festzulegenden Streuung σ_L (z.B. $\sigma_1 = 0.1L$) festgelegt. Die Referenzfunktion des 2. Schrittes ist dann eine Abtastfunktion S_B (v. $\Delta\alpha_A$) mit winkelabhängigen zufälligen Werten für $L = L(v \cdot \Delta \alpha)$. Mit der so ermittelten Referenzfunktion wird das im Schritt 1 empfangene Signalgemisch kreuzkorreliert und die so erhaltene Ergebnisfunktion an der Stelle $v_p = v_p \cdot \Delta \alpha$ mit dem aus Schritt 1 ermittelten Maximum verglichen. Beispielsweise wird das Höhen-Breitenverhältnis (HBV2) aus Schritt 2 mit demjenigen aus Schritt 1 (HBV1) verglichen. Es können nun zwei Fälle auftreten:

- 1.) HBV2 ≤ HBV1
- 2.) HBV2 ≥ HBV1

[0010] Tritt Fall 1 auf, so wird Schritt 2 so oft wiederholt bis sich Fall 2 einstellt. Sobald aber nun Fall 2 auftritt, erfolgt ein 3. Schritt (gemäß dem Rechenberg-Verfahren). Hierbei verfährt man wie im Schritt 2, zieht also wieder Zufallswerte für alle Abtastzeitpunkte für die vier ROSAR-Kenngrößen, jedoch mit dem Unterschied, daß für den Mittelwert, der für eine Ziehung zugrunde gelegt wird, der im Schritt 2 gezogene Zufallswert eingesetzt wird. Dann wird wieder gemäß Schritt 2 kreuzkorreliert und wieder an der Prüfstelle α_p das Höhen-Breitenverhältnis (HBV3) ermittelt.

[0011] Folgende Ergebnisse treten hierbei auf:

Für den Fall 1: HBV3 ≤ HBV2,

in diesem Fall werden die im Schritt 3 gezogenen Zufallswerte für die vier Kenngrößen "vergessen" und man beginnt wieder mit Schritt 2. In der Biologie entspricht dies dem Phänomen, daß eine Spezies nicht lebensfähig war und deshalb untergeht.

Für den Fall 2: HBV3 ≥ HBV2,

in diesem Fall wird sinngemäß wie im Fall 2 des Schrittes 2 verfahren, d.h. für den nun folgenden Schritt 4 werden als Mittelwerte die im Schritt 3 gezogenen Abtastwerte eingesetzt. Das beschriebene Verfahren wird solange fortgesetzt, bis ein festgelegter Prozentsatz - beispielsweise 90% - der theoretisch erreichbaren Maximalauflösung erreicht ist.

[0012] Ein Ausführungsbeispiel des vorbeschriebenen Verfahrens sieht zur Erreichung einer schnelleren Konvergenz und damit einer weiteren Minimierung des Rechenaufwandes des selbstfokussierenden ROSAR-Verfahrens vor, die für die Zufallsziehung der Abtastwerte der Bewegungsgrößen maßgeblichen Streuungen am erreichten Erfolg (HBV) zu orientieren, beziehungsweise die Streuungen um so kleiner zu wählen, je größer das erreichte HBV ist. Dadurch werden unrealistische Abweichungen vermieden, was automatisch zur Einsparungen von Verfahrensschritten führt.

[0013] Ein weiteres Ausführungsbeispiel sieht ein modellgestütztes Vorgehen bei der Ermittlung der zeitveränderlichen Abtastwerte vor:

bei einem Hubschrauber läßt sich die Abweichung der Blattspitzenbewegungen von einer idealen Kreisbewegung, - d.h. die Kreisbahn liegt in einer Ebene und eine konstante Winkelgeschwindigkeit ist gegeben - durch eine sogenannte Ortskurve in einem Horizontal-Vertikal-Koordinatensystem darstellen, wie in Fig. 5 dargestellt ist. Hier ist eine typische Ortskurve für die von einer idealen Kreisbewegung abweichende Blattspitzenbewegung bei einem Hubschrauber veranschaulicht, wobei H_A die Abweichung von der

Horizontalen und VA die Vertikalabweichung ist. In die-

15

20

ser Darstellung wäre die Ortskurve für eine ideale Kreisbewegung ein Punkt im Koordinatenursprung. Abweichungen von der konstanten Kreisfrequenz der Rotorkreisbewegung haben auf der Horizontalachse und Abweichungen von der Höhe - gegeben durch den 5 Höhenschlag des Rotorblattes - Werte auf der Vertikalachse zur Folge.

[0014] Wenn man die Blattspitzenbewegungen eines Hubschraubers für bestimmte Flugzustände vermißt, so stellt man folgendes fest: 1.) Es existiert eine geschlossene Ortskurve, d.h. der Vorgang ist periodisch (mit der Ro

torumlaufperiode) und begrenzt, also gibt es abschätzbare Maximalabweichungen.

2.) Die Ortskurve verläuft verhältnismäßig glatt, verursacht durch den Tiefpaßcharakter des Bewegungssystems. (die mechanische Grenzfrequenz f weist nur einige Hz auf).

[0015] Dieses Modellwissen kann man nun sich auf mehrfache Weise zunutze machen: Wegen der Tiefpaß-charakteristik des Bewegungsvorganges muß nicht für jeden Abtastwinkel v. $\Delta\alpha$ ein neuer Zufallswert gezogen werden. Es reicht - gemäß dem Abtasttheorem - größere Winkelintervalle zuzulassen und für alle Winkelabtastpunkte dazwischen die 4 Kenngrößen konstant zu belassen.

[0016] Es ist davon auszugehen, daß ein für einen Flugzustand ermittelter Abweichungsverlauf für längere Zeit konstant bleibt, wenn man einmal von heftigen Böen absieht absieht. Vor diesem Hintergrund schlägt nun die Erfindung weiterhin vor, daß für die wichtigsten Flugzustände "auf Vorrat" die Referenzfunktionen nach dem beschriebenen Evolutionsverfahren ermittelt wer- 35 den. Mit diesen "Vorrats-Referenzfunktionen" wird dann im akuten Fall sofort bei bekannten Flugzustandsbereichen automatisch die jeweils gespeicherte Referenzfunktion zur Kreuzkorrelation verwendet. Dies führt nicht nur zu einer erheblichen Reduzierung der Anzahl zuziehender Zufallswerte, sondern auch zu einer wesentlichen Einsparung des Rechenaufwandes. Die Mittelwerte der vier Kenngrößen werden anhand der Ortskurve orientiert (s. Fig. 5) und die Streuungen für die zu ziehenden Zufallswerte werden erheblich verkleinert. Dies führt auch zu einer schnelleren Konvergenz des vorbeschriebenen Evolutionsverfahrens und führt ebenfalls zu einer weiteren Einsparung des Rechenaufwandes.

[0017] Da das beschriebene Verfahren die winkelabhängigen Abweichungen der vier Kenngrößen
besonders empfindlich im Bereich größerer Drehwinkelablagen vom gewählten Prüfpunkt ermittelt, wird vorgeschlagen im gegebenen Fall das beschriebene
Verfahren in vier Sektoren, die etwa 90° voneinander

55
verschoben sind, zu wiederholen.

Patentansprüche

- 1. Verfahren für ein Radarsystem mit synthetischer Apertur durch rotierende Antennen ROSAR das pulsfrequent betrieben wird, dadurch gekennzeichnet, daß zur Erzielung einer Selbstfokussion und zur Ermittlung der Referenzfunktion mit den vier winkelabhängigen ROSAR-Kenngrößen Länge des Rotorblatts (L) Kreisfrequenz des Rotorblatts (ω₀), Entfernung R_{GO}) vom Drehpunkt des Rotors zum Objekt und Höhe des Rotorblatts über dem Boden H₀ aas an sich bekannte "Rechenberg'sche Optimierungsverfahren" auf das technische Optimierungsverfahren des ROSAR-Systems übertragen wird, wobei in einem
 - ersten. Verfahrensschritt das aus einem Kreisring stammende Empfangssignal mit der Referenzfunktion der idealen Kreisbewegung kreuzkorreliert wird, die daraus erhaltene Ergebnis
 - funktior uf ein Maximum abgesucht und deren Breite bestimmt wird, in einem zweiten Verfahrensschritt die Referenzfunktion für jeden Abtastwert die vier winkelabhängigen Kenngrößen nach dem "Rechenberg'schen Verfahren" neu berechnet werden, wobei für jeden Abtastwinkel und für jede Kenngröße Zufallswerte aus einer Wahrscheinlichkeitsverteilung mit vorgegebenem Mittelwerten (μ) und Streuungen (σ) verwendet werden,, in einem dritten Verfahrensschritt erneut die Zufallswerte für alle Abtastpunkte für die vier ROSAR-Kenngrößen ausgewählt werden, wobei für den jeweiligen Mittelwert der aus dem vorhergehenden Verfahrensschritt ermittelte Kenngrößenwert eingesetzt wird, und gegebenenfalls
 - in einem vierten Verfahrensschritt die im Verfahrensschritt 3 ermittelten Abtastwerte als Mittelwerte eingesetzt werden.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Prüfkriterium in der Ergebnisfunktion das Maximum mit der geringsten Breite verwendet wird, und daß die Streuung für die Zufallswerte am erreichten Erfolg - wie Vergrößerung des Höhen-Breitenverhältnisses des ausgewählten Maximums der Ergebnisfunktion orientiert werden.
 - 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Prüfgröße das Höhen-Breitenverhältnis herangezogen wird.
 - 4. Einrichtung zur Durchführung des Verfahrens für ein Radarsystem mit synthetischer Apertur durch rotierende Antennen für Hubschrauber - ROSAR-System genannt - das pulsfrequent oder kontinuierlich auf der Basis von Pseudorauschsignalen betrieben wird, dadurch gekennzeichnet, daß die Sendeantenne fest am Hubschrauberrumpf inte-

8

griert ist und nur die Empfangsantenne an der Spitze des Hubschrauber-Rotorblattes angeordnet und mit einer Transpondereinheit verbunden ist, die das Empfangssignal in ein geeignetes Frequenzband umsetzt und das Signal drahtlos an den sumpffesten Empfänger, der mit einer Korrelatoreinheit mit Ergebnisfunktionsspeicher versehen ist, sondet.

- 5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Transpondereinheit als Elektronikkarte ausgebildet ist und/oder mit einer autonomen Energieversorgungseinheit ausgerüstet ist, wobei deren Primärenergie aus der über die Elektronikkarte gleitenden Luftströmung entnommen wird.
- 6. Einrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß ein oder mehrere Mini-Turbinengeneratorsätze in die durch die Elektronikkarte 20 des Transponders führende Kanäle integriert sind.
- 7. Einrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Transpondereinheit als flache Elektronikkarte ausgebildet ist.

30

25

35

40

45

50

55

Fig.6 Geometrie zur Berechnung der Klausingschen ROSAR - Referenzfunktion, (A ist die Winkelposition des antennentragenden Rotorblatts)

Fig.1

Fig.2 Empfangssignalabtastung und Verteilung auf die Entfernungsringspeicher und ihre Speicherplätze.

Fig.3 Korrelatoranordnung und 1. Schritt des SFR

Fig.4 Veranschaulichung des Vorgehens zum Auffinden des Prüfkriteriums

Fig.5 Typische Ortskurve der Abweichung einer Blattspitzenbewegung von einer idealen Kreisbahn

Europäisches Patentamt EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 99 12 2251

· · · · · · · · · · · · · · · · · · ·	EINSCHLÄGIGE DO	DKUMENTE		
ategorie	Kennzeichnung des Dokuments der maßgeblichen Te	mit Angabe, soweit erforderlich, eile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
A,D	DE 43 06 920 A (DEUTSC 8. September 1994 (199 * das ganze Dokument *	4-09-08)	1-7	G01S13/90 H01Q1/28
A,D	DE 43 23 511 C (DEUTSC 26. Januar 1995 (1995- * das ganze Dokument *	01-26)	1-7	•
A,D	DE 39 22 086 C (MESSER BLOHM) 18. Oktober 19 * das ganze Dokument *	90 (1990-10-18)	1-7	
١	US 3 611 376 A (GUTLEB 5. Oktober 1971 (1971- * Abbildung 1 *		4	
				RECHERCHIERTE SACHGEBIETE (Int.CI.7)
				G01S H01Q
Der vo	rliegende Recherchenbericht wurde fü	ir alle Patentansprüche erstellt	-	
	Recherchenort	Abschlußdatum der Recherche	1	Prüfer
MÜNCHEN		16. Februar 2000		
X : von Y : von ande	ATEGORIE DER GENANNTEN DOKUMEN besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit e eren Veröffentlichung derselben Kategorie nologischer Hintergrund	E : âlteres Patentdo nach dem Anmel	grunde liegende ' kument, das jedo idedatum veröffer ig angeführtes Do	Theorien oder Grundsätze ch erst am oder ntlicht worden ist skument
O : nich	tschriftliche Offenbarung schenliteratur	& : Mitglied der gleic Dokument	chen Patentiamili	eebnemmitanieredü,e

9

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 99 12 2251

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Er. opäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

16-02-2000

lm Recherchenberi ingeführtes Patentdok		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 4306920	Α	08-09-1994	KEI	NE	
DE 4323511	C	26-01-1995	DE EP HK JP US	59404192 D 0634668 A 1001501 A 7146363 A 5451957 A	06-11-199 18-01-199 19-06-199 06-06-199 19-09-199
DE 3922086	С	18-10-1990	AU EP ES JP JP KR US	626220 B 5230990 A 0406522 A 2066892 T 2643007 B 3044590 A 142668 B 5017922 A	23-07-199 10-01-199 09-01-199 16-03-199 20-08-199 26-02-199 17-08-199 21-05-199
US 3611376	Α	05-10-1971	KEI	VE	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82