Name: Student ID:

CSED261: Discrete Mathematics for Computer Science Homework 5: Number Theory and Cryptography

Question 1. Show that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, where a, b, c, d, and m are integers with $m \geq 2$, then $a - c \equiv b - d \pmod{m}$.

Question 2. Show that a positive integer is divisible by 11 if and only if the difference of the sum of its decimal digits in even-numbered positions and the sum of its decimal digits in odd-numbered positions is divisible by 11.

Question 3. Use the Euclidean algorithm to find

- (a) gcd(1, 5)
- (b) gcd(100, 101)
- (c) gcd(123, 277)
- (d) gcd(1529, 14039)
- (e) gcd(1529, 14038)
- (f) gcd(11111, 111111)

Question 4. Show that if a, b, and m are integers such that $m \ge 2$ and $a \equiv b \pmod m$, then $\gcd(a,m) = \gcd(b,m)$.

Question 5. Solve the system of congruence $x \equiv 3 \pmod{6}$ and $x \equiv 4 \pmod{7}$ using the method of back substitution.

Question 6.	Suppose that th	e ciphertext	DVE CFMV	KF NFEUVI	REU KYRK	ZJ KYV JVV	/U FW	${\rm JTZVETV}$
was produced	l by encrypting a	plaintext me	essage using	a shift cipher.	What is the o	original plaint	ext?	