CONGRUENCES-BAC S LIBAN 2009

PARTIE A

- 1) En remarquant que $2000 = 16 \times 125$ on peut écrire : 2009 = 9 [16] $\Rightarrow 2009^2 = 81$ [16]. Et puisque $80 = 16 \times 5$, on a $2009^2 = 1$ [16], ce qui montre que le reste de la division euclidienne de 2009^2 par 16 est égal à 1.
- 2) On en déduit que toute puissance paire de 2009 est congrue à 1 modulo 16 et que toute puissance impaire est congrue à 2009 modulo 16. D'où : $2009^{8001} \equiv 2009 \, [16]$

PARTIE B

- 1) 1.a) $u_0 = 2009^2 - 1 = (2009 + 1)(2009 - 1) = 2010 \times 2008 = 5 \times 402 \times 2008$, ce qui montre que u_0 est divisible par 5.
 - **1.b)** La formule du binôme de Newton appliquée à $(u_n + 1)^5$ donne : $(u_n + 1)^5 = u_n^5 + 5u_n^4 + 10u_n^3 + 10u_n^2 + 5u_n + 1$. D'où : $(u_n + 1)^5 1 = u_n[u_n^4 + 5(u_n^3 + 2u_n^2 + 2u_n + 1)]$.
 - **1.c)** La proposition est vraie pour u_0 (cf. 1.a). Montrons que si elle vraie pour u_n elle l'est aussi pour u_{n+1} . Posons $u_n = N \times 5^{n+1}$. D'après ce qui précède, on peut écrire : $(u_n + 1)^5 1 = u_n [u_n^4 + 5(u_n^3 + 2u_n^2 + 2u_n + 1)] = N \times 5^{n+1} [N^4 \times 5^{4n+4} + 5(u_n^3 + 2u_n^2 + 2u_n + 1)]$, soit : $u_{n+1} = (u_n + 1)^5 1 = N \times 5^{n+2} [N^4 \times 5^{4n+3} + (u_n^3 + 2u_n^2 + 2u_n + 1)]$, ce qui démontre que u_{n+1} est divisible par 5^{n+2} . La proposition est donc vraie pour tous les termes de la suite (u_n) .
- 2.a) Démontrons par récurrence que $u_n = 2009^{2 \times 5^n} 1$. Ceci est vrai pour $u_0 = 2009^{2 \times 5^0} 1$. Si la proposition est vraie pour u_n , montrons qu'elle est vraie pour u_{n+1} : $u_{n+1} = (u_n + 1)^5 1 = (2009^{2 \times 5^n} 1 + 1)^5 1 = 2009^{2 \times 5^{n+1}} 1$. Ainsi la proposition est vraie pour tous les termes de la suite (u_n) . Alors $u_3 = 2009^{2 \times 5^3} 1 = 2009^{250} 1$. D'après ce qui précède u_3 est divisible par $5^4 = 625$. Donc : $2009^{250} 1 \equiv 0$ $[625] \Rightarrow 2009^{250} \equiv 1$ [625].
 - **2.b)** On remarque que $8000 = 250 \times 32$. Donc : $2009^{8000} \equiv (2009^{250})^{32} \equiv 1 [625] \Rightarrow 2009^{8001} \equiv 2009 [625]$.

PARTIE C

- 1) Un corollaire du théorème de Gauss énonce que si un nombre entier a est divisible par deux nombres entiers b et c premiers entre eux, alors a est divisible par le produit bc. Dans ce qui précède, nous avons démontré que $2009^{8001} 2009$ est divisible par 16 et 625 qui sont premiers entre eux. Il s'ensuit que $2009^{8001} 2009$ est divisible par $16 \times 625 = 10000$.
- 2) En remarquant que $8001 = 3 \times 2667$, on peut conclure que le nombre $\left(2009^{2667}\right)^3$ est un cube dont l'écriture décimale se termine par 2009, c'est à dire tel que $\left(2009^{2667}\right)^3 \equiv 2009 \, [10000]$