Course Name: Bachelor of Computer Applications

Subject Name: Mathematical Foundation of Computer Science **Subject Code:** TBC-103

1 Contact Hours: 42 L 3 T 0 P 0

2 Examination Duration(Hrs): Theory 0 3 Practical 0 0

3 Relative Weightage: CWE: 25 MTE: 25 ETE: 50

4 Credits: 0 3

5 Semester:
Autumn Spring Both

6 Pre-Requisite: Basic knowledge of mathematics

7 Subject Area: Mathematics and Computer Science

8 **Objective:** To familiarize students with the logics used in the field of computer science

along with the relations and functions.

9 Course Outcome: A student who successfully fulfills the course requirements will be able to-

a. Understand the concept of relations, Posets and Hasse Diagram.

b. Understand the concept of Functions and their types.

c. Understand the concept of mathematical induction and generating functions.

d. Understand the concept of linear recurrence relation with coefficients.

e. Understand the concept of algebraic structure.

f. Understand the basics of prepositional logic.

10 Details of the Course:

Unit	CONTENT	CONTACT
No.	CONTENT	HOURS
1	Relation: Type and compositions of relations, Pictorial representation of relations, Equivalence relations, Partial ordering relation, Posets, Hasse Diagram.	8
2	Function: Types, Composition of functions, Recursively defined functions.	8
3	Mathematical Induction: Mathematical Induction, Discrete Numeric Functions, Asymptotic Behavior of functions and Generating functions, Linear recurrence relation with constant coefficients (homogeneous and non-homogeneous forms)	9
4	Algebraic Structures: Semi group, monoid, Group, Abelian group, properties of group, subgroup and their properties, Cyclic group, Cosets, lagrange's theorem, Permutation groups. Homomorphism, Isomorphism and Automorphism of groups (Definition and examples)	9
5	Prepositional Logic: Preposition, Basic logical operations, Tautologies, Contradictions, Algebra of Proposition, Logical implication, Logical equivalence, Normal forms, Inference Theory, Predicates and quantifiers.	8
	TOTAL	42

11 Suggested Books:

Sl. NO.		YEAR OF
	NAME OF AUTHERS/BOOKS/PUBLISHERS	PUBLICATION
1	J. K. Sharma, "Discrete Mathematics", Macmillan	2005
2	S.A.Sarkar, "Discrete Mathematics", S.Chand Publication	2003
3	Discrete Mathematical Structure with Application to Computer Science", TMH	2007
4	Kenneth H. Rosen, "Discrete Mathematics and its applications", TMH	2008
5	Doerr Alan & Levasseur Kenneth, "Applied Discrete Structures for Computer Science",	2009
	Galgotia Pub. Pvt. Ltd	
6	Gersting, "Mathematical Structure for Computer Science", WH Freeman & Macmillan	2008
7	Kumar Rajendra, "Theory of Automata: Languages and Computation", PPM	2007
8	Hopcroft J.E, Ullman J.D., "Introduction to Automata theory, Languages and	2003
	Computation", Narosa Publishing House, New Delhi	