Theorem 1 (Dominated convergence of Lebesgue) Assume that g is an integrable function defined on the measurable set E and that $(f_n)_{n\in\mathbb{N}}$ is a sequence of measurable functions so that $|f_n| \leq g$. If f is a function so that $|f_n| \to f$ almost everywhere then

$$\lim_{n \to \infty} \int f_n = \int f.$$

PROOF: The function $g-f_n$ is non-negative and thus from Fatou lemma we have that $\int (g-f) \le \liminf \int (g-f_n)$. Since $|f| \le g$ and $|f_n| \le g$ the functions f and f_n are integrable and we have

$$\int g - \int f \le \int g - \limsup \int f_n,$$

so

$$\int f \ge \limsup \int f_n.$$

Θεώρημα 2 (Κυριαρχημένης σύγκλισης του Lebesgue) Έστω ότι η g είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο E και η $(f_n)_{n\in\mathbb{N}}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε $|f_n|\leq g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση f ώστε η $(f_n)_{n\in\mathbb{N}}$ να τείνει στην f σχεδόν παντού. Τότε

$$\lim \int f_n = \int f.$$

ΑΠΟΔΕΙΞΗ: Η συνάρτηση $g-f_n$ είναι μη αρνητική και άρα από το Λήμμα του Fatou ισχύει $\int (f-g) \leq \liminf \int (g-f_n)$. Επειδή $|f| \leq g$ και $|f_n| \leq g$ οι f και f_n είναι ολοκληρώσιμες, έχουμε

$$\int g - \int f \le \int g - \limsup \int f_n,$$

άρα

$$\int f \ge \limsup \int f_n.$$

Thanks to Сергей Мартынов for the translation to Russian:

теорема 3 Предположим, что g является интегрируемой функцией, определенной на измеримом множестве E, и $(f_n)_{n\in\mathbb{N}}$ представляет собой последовательность измеримой функции, так что $|f_n|\leq g$. Если f является функцией, так что $f_n\to f$ почти везде, тогда

$$\lim \int f_n = \int f.$$

Theorem 4 (Dominated convergence of Lebesgue) Assume that g is an integrable function defined on the measurable set E and that $(f_n)_{n\in\mathbb{N}}$ is a sequence of measurable functions so that $|f_n|\leq g$. If f is a function so that $f_n\to f$ almost everywhere then

 $\lim_{n\to\infty}\int f_n=\int f.$

PROOF: The function $g-f_n$ is non-negative and thus from Fatou lemma we have that $\int (g-f) \leq \liminf \int (g-f_n)$. Since $|f| \leq g$ and $|f_n| \leq g$ the functions f and f_n are integrable and we have

 $\int g - \int f \le \int g - \limsup \int f_n,$

so

$$\int f \geq \limsup \int f_n.$$

Θεώρημα 5 (Κυριαρχημένης σύγκλισης του Lebesgue) Έστω ότι η g είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο E και η $(f_n)_{n\in\mathbb{N}}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε $|f_n|\leq g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση f ώστε η $(f_n)_{n\in\mathbb{N}}$ να τείνει στην f σχεδόν παντού. Τότε

$$\lim \int f_n = \int f.$$

Αποδείξη: Η συνάρτηση $g-f_n$ είναι μη αρνητική και άρα από το Λήμμα του Fatou ισχύει $\int (f-g) \leq \liminf \int (g-f_n)$. Επειδή $|f| \leq g$ και $|f_n| \leq g$ οι f και f_n είναι ολοκληρώσιμες, έχουμε

 $\int g - \int f \le \int g - \limsup \int f_n,$

άρα

$$\int f \ge \limsup \int f_n.$$

Thanks to Сергей Мартынов for the translation to Russian:

теорема 6 Предположим, что g является интегрируемой функцией, определенной на измеримом множестве E, и $(f_n)_{n\in\mathbb{N}}$ представляет собой последовательность измеримой функции, так что $|f_n|\leq g$. Если f является функцией, так что $f_n\to f$ почти везде, тогда

$$\lim \int f_n = \int f.$$

Theorem 7 (Dominated convergence of Lebesgue) Assume that g is an integrable function defined on the measurable set E and that $(f_n)_{n\in\mathbb{N}}$ is a sequence of measurable functions so that $|f_n|\leq g$. If f is a function so that $f_n\to f$ almost everywhere then

$$\lim_{n\to\infty}\int f_n=\int f.$$

PROOF: The function $g-f_n$ is non-negative and thus from Fatou lemma we have that $\int (g-f) \leq \liminf \int (g-f_n)$. Since $|f| \leq g$ and $|f_n| \leq g$ the functions f and f_n are integrable and we have

$$\int g - \int f \le \int g - \limsup \int f_n,$$

so

$$\int f \ge \limsup \int f_n.$$

Θεώρημα 8 (Κυριαρχημένης σύγκλισης του Lebesgue) Έστω ότι η g είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο E και η $(f_n)_{n\in\mathbb{N}}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε $|f_n|\leq g$. Τποθέτουμε ότι υπάρχει μια συνάρτηση f ώστε η $(f_n)_{n\in\mathbb{N}}$ να τείνει στην f σχεδόν παντού. Τότε

$$\lim \int f_n = \int f.$$

Apoleieh: H sunárthsh $g-f_n$ eínal mh arnhtikh kal ára apó to Lhmha tou Fatou iszúel $\int (f-g) \le \liminf \int (g-f_n)$. Epeidh $|f| \le g$ kal $|f_n| \le g$ oi f kal f_n eínal odokdhráshles, ézoume

$$\int g - \int f \leq \int g - \limsup \int f_n,$$

άρα

$$\int f \geq \limsup \int f_n.$$

Thanks to Сергей Мартынов for the translation to Russian:

творема 9 Предположим, что g является интегрируемой функцией, определенной на измеримом множестве E, и $(f_n)_{n\in\mathbb{N}}$ представляет собой последовательность измеримой функции, так что $|f_n|\leq g$. Если f является функцией, так что $f_n\to f$ почти везде, тогда

$$\lim \int f_n = \int f.$$