# Solving a Linear Programming Problem Using the Simplex Method

# **Problem Statement**

Solve the following problem:

Maximize: 
$$Z = 3x_1 + 5x_2$$

Subject to: 
$$x_1 + 2x_2 \le 6,$$
$$3x_1 + 2x_2 \le 12,$$
$$x_1 \ge 0,$$
$$x_2 \ge 0.$$

Graphical Representation of Constraints and Feasible Region



# **Direction of Maximization**

The objective function is  $Z = 3x_1 + 5x_2$ . The direction of maximization is determined as follows:

1. \*\*Define the Line of Constant  $Z^{**}$ : - For any constant Z=k, the function can be written as:

$$3x_1 + 5x_2 = k$$

- This represents a straight line with slope  $-\frac{3}{5}$ .
- 2. \*\*Determine the Gradient Vector\*\*: The gradient vector of Z,  $\nabla Z = (3,5)$ , points in the direction of increasing Z. This vector is orthogonal to the lines of constant Z.
- 3. \*\*Move Parallel Lines\*\*: To maximize Z, move the line  $3x_1+5x_2=k$  in the direction of the gradient vector  $\nabla Z$  until it touches the last point in the feasible region.

**Graphical Representation** 



# Simplex Method Solution

# Canonical Form

Introducing slack variables  $x_3$  and  $x_4$ , the constraints become:

$$x_1 + 2x_2 + x_3 = 6,$$
  

$$3x_1 + 2x_2 + x_4 = 12,$$
  

$$x_1, x_2, x_3, x_4 \ge 0.$$

The objective function is rewritten as:

$$Z = 3x_1 + 5x_2$$
.

#### Initial Simplex Tableau

| Basis          | $x_1$ | $x_2$ | $x_3$ | $x_4$ | b  |
|----------------|-------|-------|-------|-------|----|
| $x_3$          | 1     | 2     | 1     | 0     | 6  |
| $x_4$          | 3     | 2     | 0     | 1     | 12 |
| $\overline{Z}$ | -3    | -5    | 0     | 0     | 0  |

# Step 1: Selecting the Pivot Element

- 1. \*\*Pivot Column\*\*: The most negative coefficient in the Z-row is -5  $(x_2)$ .
- 2. \*\*Pivot Row\*\*: Perform the ratio test  $b_i/a_{i2}$ :

$$\frac{6}{2} = 3, \quad \frac{12}{2} = 6.$$

The smallest ratio is 3, so  $x_3$  leaves the basis.

\*\*Pivot Element\*\*: 2.

#### Step 2: Update the Tableau

1. Divide the pivot row by the pivot element 2:

New Row 1: 
$$\frac{[1,2,1,0,6]}{2} = [0.5,1,0.5,0,3].$$

2. Update the other rows:

Row 2: 
$$[3, 2, 0, 1, 12] - 2 \cdot [0.5, 1, 0.5, 0, 3] = [2, 0, -1, 1, 6].$$

Z-row: 
$$[-3, -5, 0, 0, 0] + 5 \cdot [0.5, 1, 0.5, 0, 3] = [-0.5, 0, 2.5, 0, 15].$$

Updated Tableau:

| Basis            | $  x_1  $ | $x_2$ | $x_3$ | $x_4$ | b  |
|------------------|-----------|-------|-------|-------|----|
| $\overline{x_2}$ | 0.5       | 1     | 0.5   | 0     | 3  |
| $x_4$            | 2         | 0     | -1    | 1     | 6  |
| $\overline{Z}$   | -0.5      | 0     | 2.5   | 0     | 15 |

Step 3: Second Iteration

1. \*\*Pivot Column\*\*: The most negative coefficient in the Z-row is -0.5  $(x_1)$ . 2. \*\*Pivot Row\*\*: Perform the ratio test  $b_i/a_{i1}$ :

$$\frac{3}{0.5} = 6, \quad \frac{6}{2} = 3.$$

The smallest ratio is 3, so  $x_4$  leaves the basis.

\*\*Pivot Element\*\*: 2.

## Step 4: Final Tableau

1. Divide the pivot row by the pivot element 2:

New Row 2: 
$$\frac{[2,0,-1,1,6]}{2} = [1,0,-0.5,0.5,3].$$

2. Update the other rows:

Row 1: 
$$[0.5, 1, 0.5, 0, 3] - 0.5 \cdot [1, 0, -0.5, 0.5, 3] = [0, 1, 0.75, -0.25, 1.5].$$

Z-row: 
$$[-0.5, 0, 2.5, 0, 15] + 0.5 \cdot [1, 0, -0.5, 0.5, 3] = [0, 0, 2.25, 0.25, 16.5].$$

Final Tableau:

## Answer

From the final tableau: - The optimal solution is:

$$x_1 = 3$$
,  $x_2 = 1.5$ ,  $x_3 = 0$ ,  $x_4 = 0$ .

- The maximum value of the objective function is:

$$Z = 3(3) + 5(1.5) = 16.5.$$

\*\*Interpretation\*\*: -  $x_1 = 3$ : This means that in the optimal solution, the first decision variable has a value of 3. -  $x_2 = 1.5$ : This means that the second decision variable has a value of 1.5. -  $x_3 = 0$ ,  $x_4 = 0$ : The slack variables are zero, indicating that the constraints  $x_1 + 2x_2 \le 6$  and  $3x_1 + 2x_2 \le 12$  are binding.

Thus, the optimal solution satisfies all constraints, and Z reaches its maximum value of 16.5.

Additional Problem for Practice

Solve the following linear programming problem:

Maximize: 
$$Z = 4x_1 + 6x_2$$

Subject to: 
$$2x_1 + 3x_2 \le 12,$$
$$x_1 + x_2 \le 5,$$
$$x_1 \ge 0,$$
$$x_2 \ge 0.$$

5