Announcements
HW3 posted (due Sanday 11:59 pm)
Quiz 1 today!

§3.2: The growth of functions

Def (big-0 notation): Let f,g be functions from 72 or 12 to 13. We say that f(x) is O(g(x)) if there are constants C and R such that $|f(x)| \le C|g(x)|$

whenever x>k.

 Examples:

$$\alpha) \times_{s} is O(x_3)^{-1} e^{-x_3} is U(x_5)$$

b)
$$3x^2+17x+6$$
 is $O(x^{2.1})$

()
$$3x^2 + 17x + 6$$
 is $O(x^2)$ and x^2 is $O(3x^2 + 17x + 6)$
so $3x^2 + 17x + 6$ is $\Theta(x^2)$

e) n! is
$$\mathcal{L}(e^n)$$

t) xa	is	12(1) if	α≥0
۲ª	is	0(1) if	a s D

2)	109	x	is	O(x)
•				

n	6 _n	h!
1	و	1
٦	e _s	1.5
3	e3	2.1.3
Y	و٢	1.5.3.4
5	e ^s	1.2.3.4.5

Simple tricks:

- 1) Larger powers grow faster
- 2) Ignore constant factors
- 3) Only worry about the fastest-growing term

Now for some proofs:

Ex 1: Show that $f(x)=x^2+2x+1$ is $O(x^2)$ Pf: We need to find $C, k \in \mathbb{R}$ s.t. $|f(x)| \le C|x^2|$ whenever x > kLet k=10, C=5. Then if x > k, $f(x) = x^2 + 2x + 1$

 $< \chi^{2} + 2\chi^{2} + \chi^{2}$ (Since $\chi \ge k \ge 1$) $= 4\chi^{2}$ $< 5\chi^{2}$

 $=C|x^2|$.

Therefore, f(x) is O(x2).

Note: we chose C and k much bigger than needed. k=1, C=Y or k=3, C=2 would have worked.

 \prod

Ex 9: Show that $f(x) = (x+1)\log(x^2+1)$ is $\Theta(x\log x)$. Pf: We show that a) f(x) is O(xlogx) and b) xlogx is O(f(x)). b) Notice that log x is an increasing function. Let k=1, C=1. Then if x>k, $x \log x \leq x \log (x^2)$ (since $x^2 \ge x$) (since x2+1 > x2) < x log (x2+1) \leq (x+1) log (x2+1) (since x+1 > x)

 $\leq (x+1) \log (x^2+1) \qquad (since x+1 > x)$ = C | f(x) |

a) Let k = 1, C = 1. Then if x > k, $(x+1)\log(x^2+1) \le (x+1)\log(2x^2)$ (since $1 \le x^2$) $= (x+1)(\log 2 + \log x + \log x)$ (by log rules) $\le (x+1) 3 \log x$ (since x > 2, so $\log x > \log 2$) $< 2x \cdot 3 \log x$ (since x > 1) $= 6 \times \log x$

Ex 11: Let f(n) = 1+2+ --- +n. Show that f is
$$\Theta(\kappa^2)$$
.

Pf: We show that a) f is
$$O(n^2)$$
 and b) f is $\Omega(n^2)$ a) Let $k=C=1$. Then if $n>k$,

$$= C|V_2|$$
= V_2
= V_3
= V_4
=

$$= (n/2)(n/2)$$
 (since there are = $n/2$ integers)
= $n^2/4 = C[n^2]$ (since there are = $n/2$ integers)

Scratch work:

$$\frac{2}{2} \left[\frac{1}{\sqrt{2}} + \left[\frac{1}{\sqrt{2}} + 1 + \cdots + n \right] \right]$$

$$= \frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$

is > 1/2

$$= \frac{n^2}{\sqrt{2}}$$