1. Open quantum systems

Due date: 07.05.2025 10:00

Throughout this exercise sheet, we adopt the convention $\hbar = 1$.

Exercise 1 Expectation value and variance

2 P.

Calculate the expectation value of the spin $\langle \vec{S} \rangle$ and its variance $\langle (\vec{S} - \langle \vec{S} \rangle)^2 \rangle$ for the following states of a spin-1/2 particle:

- Pure state: $|\chi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle + |\downarrow\rangle)$
- Mixed state: $\hat{\rho} = \frac{1}{2}(|\uparrow\rangle \langle\uparrow| + |\downarrow\rangle \langle\downarrow|)$

Note: The first quantity is a vector, while the second is a scalar.

Exercise 2 Bloch representation of a two-level system

3 P.

a) Show that the density matrix of an arbitrary two-level system in the most general 1 P. form can be decomposed in terms of Pauli matrices as follows:

$$\hat{\rho} = \frac{1}{2} \left(\hat{\mathbb{1}} + \vec{\sigma} \cdot \vec{v} \right),$$

where \vec{v} is some vector. Under which condition on \vec{v} is this a valid density matrix?

b) Under which condition on \vec{v} does this density matrix describe a pure state?

1 P.

c) Calculate the expectation values $\langle \hat{\sigma}_x \rangle$, $\langle \hat{\sigma}_y \rangle$, and $\langle \hat{\sigma}_z \rangle$ for the state described by 1 P. this density matrix.

Exercise 3 Quantum Zeno paradox

6 P.

Consider a two-level system described by the following Hamiltonian

$$\hat{H} = \begin{pmatrix} E_0 & -\Delta \\ -\Delta & -E_0 \end{pmatrix}$$
, where $\Delta \in \mathbb{R}, \Delta > 0$.

At the initial time, the system is prepared in the state $|\psi(0)\rangle = |\uparrow\rangle$.

a) If we allow the system to evolve, it undergoes Rabi oscillations. You are asked to 3 P. derive these Rabi oscillations and demonstrate that, at the time

$$T = \frac{\pi}{2\sqrt{E_0^2 + \Delta_2}},$$

the system will be found in the state $|\downarrow\rangle$ with probability $P_{\downarrow}(T) = \frac{\Delta^2}{E_0^2 + \Delta_2}$.

Note:

Calculate the time-evolved state $|\psi(t)\rangle$ and project this state on $|\downarrow\rangle$.

Hint:

If \vec{v} is a real unit vector and θ is a real number, then

$$\exp(i\theta \, \vec{v} \cdot \vec{\sigma}) = \cos(\theta) \, \hat{\mathbb{1}} + i \sin(\theta) \, \vec{v} \cdot \vec{\sigma}, \quad \text{where} \quad \vec{v} \cdot \vec{\sigma} = \sum_{k=1}^{3} v_k \hat{\sigma}_k.$$

b) Now, instead of allowing the system to evolve freely, we perform measurements 3 P. of the observable $\hat{s}_z = \frac{1}{2} \hat{\sigma}_z$ at intervals of time τ , where $\tau \ll T$. Determine the probability $P_{\downarrow}(T)$ in this case.

Note:

Use $\hat{M}_k = \hat{s}_z$ as a measurement operator (introduced in the lecture). Choose $\tau = \frac{T}{N}$ and send $N \to \infty$ in the final step. Calculate the state at a time τ after the measurement of \hat{s}_z . Project this state on $|\downarrow\rangle$. Interpret your result.

Hint:

Measurement operators $\{\hat{M}_k\}$ satisfy

$$\sum_{k} \hat{M}_{k}^{\dagger} \hat{M}_{k} = \hat{\mathbb{1}}.$$

After measuring $|\psi\rangle$, the state becomes

$$|\psi_k\rangle = \frac{\hat{M}_k|\psi\rangle}{\sqrt{p_k}}, \text{ where } p_k = \langle\psi|\hat{M}_k^{\dagger}\hat{M}_k|\psi\rangle.$$