

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

I2

Analisis Funcional - MAT2555 Fecha de Entrega: 2019-10-21 Solución problema 1: Dado $\varepsilon > 0$ y $\zeta \in \overline{B_1^*}$, sea $\varepsilon' = \frac{1}{2} \min \left(\left\| \zeta - \frac{\zeta}{\|\zeta\|} \right\|, \varepsilon \right)$, se nota que $\overline{B_{\varepsilon'}^*(\zeta - \varepsilon' \cdot \zeta)} \subseteq \overline{B_1^*}$, luego por enunciado existe ϕ_n tal que $\|(\zeta - \varepsilon' \cdot \zeta) - \phi_n\| < \varepsilon'$, ahora $\phi_n \in \overline{B_{\varepsilon'}^*(\zeta)}$, por lo que $\|\phi_n\| \le 1$ y además $\|\zeta - \phi_n\| < 2\varepsilon' \le \varepsilon$. Con esto se tiene que $\forall \zeta \in \overline{B_1^*} \forall \varepsilon > 0$ existe $k \in \mathbb{N}$ tal que $\|\zeta - \phi_k\| < \varepsilon$ y $\varphi_n \in \overline{B_1^*}$. Con eso se define a φ_n como ϕ_n si $\|\phi_n\| \le 1$ y $\frac{\phi_n}{\|\phi_n\|}$ en otro caso. Se nota que φ_n cumple lo pedido.

Solución problema 2: Hay que demostrar que $d: E \to [0, \infty)$ es métrica, se nota que está bien definida ya que $d(x,y) \le ||x-y||$ y si se cumplen las siguientes propiedades se tiene el resto, dado $x,y \in E$ si d(x,y) = 0 entonces x = y, además dado $x,y,z \in E$ se tiene que $d(x,y) \le d(x,z) + d(z,y)$, y por último dado $x,y \in E$ se tiene que d(x,y) = d(y,x). Para la primera, sean $x,y \in E$ tal que d(x,y) = 0, entonces se tiene lo siguiente:

$$\sum_{n=1}^{\infty} \frac{|\varphi_n(x-y)|}{2^n} = 0$$

Como cada término de la serie es positivo, se tiene que todos los términos tienen que ser 0, por lo que $\forall n \geq 1$ se tiene que $\varphi_n(x-y)=0$. Sea $\zeta \in \overline{B_1^*}$, y sea φ_{n_k} una sucesión tal que $\varphi_{n_k} \to \zeta$, luego para todo $\varepsilon > 0$ existe un $k_0 \in \mathbb{N}$ tal que $k \geq k_0 \Longrightarrow \|\zeta - \varphi_{n_k}\| < \varepsilon$, luego $\zeta(x-y) - \varphi_{n_k}(x-y) = (\zeta - \varphi_{n_k})(x-y)$, por lo que $|\zeta(x-y)| = |\zeta(x-y) - \varphi_{n_k}(x-y)| \leq \|x-y\| \cdot \varepsilon$, como esto se cumple para todo ε , se tiene que $\zeta(x-y)=0$, y como ζ era arbitraria se tiene para todo $\zeta \in E^*$. Se sabe que todo e.v. tiene una base por el lema de Zorn, luego sea \mathcal{B} esa base, se tiene que $x=\sum_{v\in\mathcal{B}} a_v \cdot v, y=\sum_{v\in\mathcal{B}} b_v \cdot v$, se toman los funcionales definidos de la siguiente forma:

$$\zeta_v(v) = 1, \forall u \in \mathcal{B} \setminus \{v\} \quad \zeta_v(u) = 0$$

Se nota que $\|\zeta_v\| = 1$, luego $\zeta_v(x - y) = 0 \ \forall v \in \mathcal{B}$, por lo que se tiene que x - y = 0. Para la segunda propiedad, se nota que $|\varphi_n(x - y)| \le |\varphi_n(x - z)| + |\varphi_n(z - y)|$, por lo que para cada término se tiene la propiedad, y por ende para su suma ponderada también. Para la última propiedad, es claro que $|\varphi_n(x - y)| = |\varphi_n x - \varphi_n y| = |\varphi_n y - \varphi_n x| = |\varphi_n(y - x)|$, por lo que se tiene lo pedido.

Solución problema 3: Sea $\zeta \in \overline{B_1^*}, \varepsilon > 0$, ahora sea $k \in \mathbb{N}$ tq $\|\zeta - \varphi_k\| < \frac{\varepsilon}{4}$, luego se ve

lo siguiente:

$$|\zeta x - \zeta y| = |\zeta(x - y)|$$

$$= |\zeta(x - y) + \varphi_k(x - y) - \varphi_k(x - y)|$$

$$\leq |\varphi_k(x - y)| + |(\zeta - \varphi_k)(x - y)|$$

Para el primer término, notemos que

$$2^{k}d(x,y) = |\varphi_{k}(x-y)| + \sum_{n=1, n \neq k}^{\infty} \frac{|\varphi_{n}(x-y)|}{2^{n-k}}$$

Por lo que se tiene que $|\varphi_k(x-y)| \leq 2^k d(x,y)$. Para el segundo término, notemos que $||x-y|| \le 2$ y que $|(\zeta-\varphi_k)(x-y)| \le ||x-y|| \cdot \frac{\varepsilon}{4} \le \frac{\varepsilon}{2}$. Ahora tomando $\delta = \frac{\varepsilon}{2^{k+1}}$, se tiene que $2^k d(x,y) < \frac{\varepsilon}{2}$, juntando todo se tiene que $|\zeta x - \zeta y| < \varepsilon$. Para el caso donde $||\zeta|| > 1$, se toma $\zeta' = \frac{\zeta}{\|\zeta\|} \in \overline{B_1^*}$, y se toma $\varepsilon' = \frac{\varepsilon}{\|\zeta\|}$, luego $|\zeta'(x-y)| < \varepsilon'$, por lo que $|\zeta(x-y)| < \varepsilon$.

Solución problema 4: Sea $x \in X$, luego se nota que $V_x = \overline{B_1} \cap \bigcap_{i=1}^m \zeta_i^{-1}((x - \delta_j, x + \delta_j)),$ como cada ζ_j es uniformemente continuo en $\overline{B_1}$, se tiene que V_x es la intersección finita de abiertos, por lo que es un abierto en el espacio métrico (X,d). Para la segunda parte, se recuerda que los abiertos en E bajo la topología $\sigma(E, E^*)$ son unión de conjuntos de la siguiente forma:

$$\{y \in E : |\zeta_j(x-y)| < \delta_j \text{ para } j = 1, \dots, m\}$$
(1)

Donde $x \in E, \zeta_j \in E^* \setminus \{0\}, \delta_j > 0$, como cada V_x es la intersección de estos abiertos con X y como V_x es abierto en (X,d), se tiene que dado un abierto V en $\sigma(E,E^*)$ entonces $V\cap X$ es un abierto en (X, d), ya que es la unión de los abiertos $V_x \cap X$.

Solución problema 5: Dado $x \in X, y \in B_r^d(x)$, se define $\mu = r - d(x, y) > 0^1$, sea n_0 tq $\sum_{n=n_0}^{\infty} 2^{-k} < \frac{\mu}{2}^2$, además sea $V_y = \{z \in E : |\varphi_k(y-z)| < \frac{\mu}{2} \forall k=1,\ldots,n_0\}$. Luego se ven

 $^{^{1}}$ d(x,y) < r por definición 2 Se puede ya que $\sum_{n=1}^{\infty} 2^{-k} = 1$

las siguientes desigualdades:

$$\begin{split} d(x,z) &\leq d(x,y) + d(y,z) \\ &\leq d(x,y) + \sum_{k=1}^{n_0} \frac{|\varphi_k(y-z)|}{2^k} + \sum_{k=n_0+1}^{\infty} \frac{|\varphi_k(y-z)|}{2^k} \\ &< d(x,y) + \sum_{k=1}^{n_0} \frac{\mu}{2} \cdot \frac{1}{2^k} + \sum_{k=n_0+1}^{\infty} \frac{\|\varphi_k\| \, \|y-z\|}{2^k} \\ &< d(x,y) + \frac{\mu}{2} \sum_{k=1}^{n_0} 2^{-k} + \sum_{k=n_0+1}^{\infty} \frac{\|y-z\|}{2^k} ^3 \\ &< d(x,y) + \frac{\mu}{2} \sum_{k=1}^{\infty} 2^{-k} + 2 \sum_{k=n_0+1}^{\infty} 2^{-k4} \\ &< d(x,y) + \frac{\mu}{2} + 2 \cdot \frac{\mu}{4} \\ &< d(x,y) + \mu \\ &< r^5 \end{split}$$

Con lo anterior se tiene que si $z \in V_y \cap X$ entonces d(x,z) < r, o sea, $z \in B_r^d(x)$. Ahora, sea $V = \bigcap_{y \in B_r^d(x)} V_y$, por el resultado anterior es claro que $V \cap X \subseteq B_r^d(x)$, más aún por definición de V se tiene que $B_r^d(x) \subseteq V$, juntando eso con que $B_r^d(x) \subseteq X$, se tiene que $B_r^d(x) = V \cap X$, donde V es la unión de abiertos en $\sigma(E, E^*)$. Con todo lo anterior se tiene ahora que τ_d^6 es subconjunto de $\sigma(E, E^*)_X^7$, eso es todo abierto en (X, d) es abierto en $(X, \sigma(E, E^*)_X)$. Ahora, por la pregunta 4, se tiene que $\sigma(E, E^*)_X \subseteq \tau_d$, por lo que se tiene que la familia de conjuntos $\{V \cap X : V \in \sigma(E, E^*)\}$ es exactamente la familia de abiertos de (X, d).

Solución problema 6: Se sabe que por la compacidad de $\overline{B_1}$ entonces cada $\varphi_k(\overline{B_1})$ es compacto, por lo que dado una sucesión x_n de elementos de $\overline{B_1}$, se sabe que cada sucesión $\varphi_k(x_n)$ tiene una subsucesión convergente. Lo anterior se puede usar inductivamente para que para construir una subsucesión convergente para cada k, dado una subsucesión x_n^k de x_n tq $\varphi_k(x_n^k)$ es convergente, se toma una subsucesión x_n^{k+1} de x_n^k tq $\varphi_{k+1}(x_n^{k+1})$ sea convergente. Sea $\{y_n\}_{n\in\mathbb{N}} = \bigcap_{k=1}^{\infty} \{x_n^k\}_{n\in\mathbb{N}}$, sí esta es una sucesión se tiene lo pedido. Se nota que toda

⁵Se nota que $\varphi_k \in \overline{B_1^*}$

 $^{||}y-z|| \le ||y|| + ||z|| \le 1 + 1 = 2$

⁵Se recuerda que $\mu = r - d(x, y)$

⁶Los abiertos en X bajo la métrica d

⁷Los abiertos de la topología inducida por $\sigma(E, E^*)$ en X

sucesión es un conjunto compacto⁸, y ya que $\bigcap_{m=1}^k \{x_n^m\}_{n\in\mathbb{N}} = \{x_n^k\}_{n\in\mathbb{N}}$, entonces es una familia decreciente de conjuntos compactos, por lo que por teorema es no vacío. Ahora, asumiendo que $\{y_n\}_{n\in\mathbb{N}}$ es tiene finitos elementos,

Solución problema 7: Dado una sucesión $\{x_n\}_{n\in\mathbb{N}}\subset X$, se sabe por el problema 6, que existe una subsucesión y_m tq para cada $k\in\mathbb{N}$ la sucesión $\varphi_k(y_m)$ es de Cauchy en \mathbb{C} . Ahora, sea $\zeta\in\overline{B_1^*}$, y sea $\varepsilon>0$, existe un $k\in\mathbb{N}$ tq $\|\zeta-\varphi_k\|<\frac{\varepsilon}{4}$, luego $\varphi_k(y_m)$ es de Cauchy, por lo que existe $m_0\in\mathbb{N}$ tq $p,q\geq m_0\implies |\varphi_k(y_p-y_q)|<\frac{\varepsilon}{2}$. Además, $|(\zeta-\varphi_k)(y_p-y_q)|\leq \|\zeta-\varphi_k\|\cdot\|y_p-y_q\|\leq \frac{\varepsilon}{2}$, juntando esto con lo anterior se tiene la siguiente designaldad:

$$|\zeta(y_p - y_q)| \le |\varphi_k(y_p - y_q)| + |(\zeta - \varphi_k)(y_p - y_q)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Por lo que tomando el m_0 se tiene que $p,q\geq m_0 \Longrightarrow |\zeta(y_p-y_q)|<\varepsilon$, por lo que la sucesión es Cauchy. Ahora, para ζ tq $\|\zeta\|>1$, sea $\zeta'=\frac{\zeta}{\|\zeta\|}$, entonces existe una subsucesión $\{y_n\}_{n\in\mathbb{N}}$ de $\{x_n\}_{n\in\mathbb{N}}$ tq $\zeta'(y_m)$ sea de Cauchy, luego existe $m_0\in\mathbb{N}$ tq $p,q\geq m_0 \Longrightarrow |\zeta'(y_p-y_q)|<\frac{\varepsilon}{\|\zeta\|}$, por lo que se tiene que $\zeta(y_m)$ también es de Cauchy.

Solución problema 8: Sea $L: E^* \to \mathbb{C}$, donde $L(\zeta) = \lim_{m \to \infty} \zeta(y_m)$ y y_m es la sucesión de la pregunta 7, por la misma pregunta la sucesión es de Cauchy y como \mathbb{C} es completo, esta converge, con lo que $L(\zeta)$ está bien definida. Para la linealidad, se nota que como cada $L(\zeta)$ existe, por álgebra de límites se tiene $L(\zeta_1 + a\zeta_2) = L(\zeta_1) + aL(\zeta_2)$. Ahora, sean los $L_m(\zeta) = \zeta(y_m)$ una familia de funcionales lineales, es claro que $||L_m|| \le 1$, por lo que todos son continuos. Ahora se nota que dado $\zeta \in E^*$ sup $_{m \in \mathbb{N}} ||L_m(\zeta)|| < \infty$ porque $L_m(\zeta) \to L(\zeta)$, ya que esto funciona para un ζ arbitrario, se tiene para todo $\zeta \in E$. Con lo anterior y con Banach-Steinhaus se tiene que L es continuo, por lo que $L \in E^{**}$, ahora, ya que J es sobre, existe $x_L \in E$ tq $J(x_L) = L$. Con esto, se tiene $\zeta(x_L) = J(x_L)(\zeta) = L(\zeta) = \lim_{m \to \infty} \zeta(y_m)$. Ahora, se sabe que existe $\zeta_L \in \overline{B_1^*}$ tq $\zeta_L(x_L) = ||x_L||$, como ... Dado que $\lim_{m \to \infty} \zeta(y_m) = \zeta(x_L)$, se tiene que $y_m \to x_L$ en $\sigma(E, E^*)$. Ahora como se vio en la pregunta Σ , $\tau_d = \sigma(E, E^*)_X$ y como Σ se tiene que Σ 0.

⁸Es acotada y cerrada (i.e. tiene solo un punto de acumulación)

 $[|]y_p, y_q \in X \implies ||y_p - y_q|| \le ||y_p|| + ||y_q|| \le 2$

Solución problema 9:	Se toma la transformación lineal $T_r: E \to E$ donde $T_r(X) = rx$,
es claro que continua con	inversa continua $^{10}.$ Ahora si \boldsymbol{X} es compacto bajo la topología
$\sigma(E, E^*)$, se nota que $T_r(Z)$	$X(r) = \overline{B_r}$ es compacta.

Solución problema 10:

Solución problema 11:

 $^{^{10}}$ Su inversa es $T_{r^{-1}}$