

SOFTWARE DATA SHEET

MCHD XX.X.X

READER COMMUNICATION PROTOCOL SETUP COMMAND LIST

- Description of our reader communication protocol:
 - Message syntax between reader and connected equipment
 - Tag ID
 - Value of tag RSSi (Receive signal strength)
 - Reader ID
 - DATA from the sensor integrated into the tag
 - Operating mode
 - "ON LINE" mode (PUSH)
 - "CONTEXTUAL" mode (PULL)
 - How to add characters to message syntax
- Description of our reader setting commands:
 - Change PUSH or PULL Mode
 - Change Output type
 - Change RSSI threshold (distance detection)
 - Change Output Baud rates
 - Change reader ID
 - Tag Id filter
 - Activate automatic relay output
 - How to add characters to message syntax
 - ..
- Reader types:

Reference	Reader descriptionn
SCIEL_CARD	OEM Reader
SCIEL_READER_R	RS 232/ RS 485 / USB /
	D&C/ Wiegand reader
SCIEL_READER_USB	USB Reader
SCIEL_READER_IP	TCP/IP Reader
SCIEL_READER_WF	Wi-Fi Reader

1.	S	SUBJECT	4
1	l .1.	Readers covered by this document	4
1	.2.	Special cases of USB / TCP/IP / Wi-Fi readers	4
1	I.3.	Default serial output parameters	4
1	l .4 .	Supported commands and related firmware versions	
1	1.5.	Compatibility Matrix MCHD firmware versus SCIEL READER devices.	6
2.		COMMUNICATION PROTOCOL	
	2.1	Message Syntax	
	2.2	DATA from sensor integrated in the Active RFID tag.	
	2.3	Tag RSSI level	
	2.4	"Online" or "Contextual" Mode	11
3.	E	Description of instructions	
	3.1.	Instruction syntax and "on line" help menu	13
	3.2.	Operating mode (01/02)	13
	3.3.	Output type (03/04)	14
	3.4.	"TIMEOUT" or Out of Range Timing (05/06)	14
	3.5.	Stack sending cycle (07/08)	14
	3.6.	Reader ID (09/19)	15
	3.7.	Contextual stack query (0A)	15
	3.8.	Reading threshold (0B/0C)	17
	3.9.	Tag Id length (10/11)	17
	3.10). RS232 speed (12/13)	17
	3.11	. ASCII or Binary transmission format (14/15)	18
	3.12	2. Delay before acknowledgment (16/17)	18
	3.13	3. Activation of Alarm Information on DATA/CLOCK output (1A/1B)	18
	3.14	Redundancy Activation (1C/1D)Err	eur ! Signet non défini.
	3.15	i. Radio Reception Method (1E/1F)	20
	3.16	6. Activation of tag filtering with the strongest radio level (20/21)	21
	3.17	7. Tag programmer speed (22/23)	22
	3.18	B. Tag checksum length	22
	3.19). Direct relay control mode	23
	3.20). Activation of sensor filtering	23
	3.21	. Activation of automatic contextual stack erasing after reading mode	24
	3.22	P. Full Contextual stack option	24

3.23.	Programmer IR pulse length (24/25)	24
3.24.	Sending request for Radiofrequency Noise Measurement (97)	25
3.25.	Sending request for firmware version (98)	25
3.26.	Sending request for reader parameters (99)	25
3.27.	Erase Contextual Stack (9A)	26
3.28.	Tag Id Filter (Ar/Aw)	27
3.29.	Filtering Mask (A4/A5)	29
3.30.	Reader's CRC / TAGS Delta CHECKSUM (C0/C1)	29
3.31.	Contextual stack size for relay activation mode (26/27)	29
3.32.	Reader RSSI calibration (C8/C9)	30
3.33.	Contextual stack length modification (2A/2B)	30
3.34.	Hardware threshold for reader's RSSI (B0/B1)	30
3.35.	Adding a prefix to frames (70/71)	31
3.36.	Adding a suffix to frames (72/73)	31
3.37.	Definition of frame's format in Periodic Contextual mode (2E/2F)	32
3.38.	Redundancy Time-In (28/29)	33
3.39.	Half-duplex mode (CA/CB)	33
3.40.	Radio statistics (2C/2D)	34
Dog	cument version	35
	3.24. 3.25. 3.26. 3.27. 3.28. 3.29. 3.30. 3.31. 3.32. 3.33. 3.34. 3.35. 3.36. 3.37. 3.38. 3.39. 3.40.	3.24. Sending request for Radiofrequency Noise Measurement (97) 3.25. Sending request for firmware version (98) 3.26. Sending request for reader parameters (99) 3.27. Erase Contextual Stack (9A) 3.28. Tag Id Filter (Ar/Aw) 3.29. Filtering Mask (A4/A5) 3.30. Reader's CRC / TAGS Delta CHECKSUM (C0/C1) 3.31. Contextual stack size for relay activation mode (26/27) 3.32. Reader RSSI calibration (C8/C9) 3.33. Contextual stack length modification (2A/2B) 3.34. Hardware threshold for reader's RSSI (B0/B1) 3.35. Adding a prefix to frames (70/71) 3.36. Adding a suffix to frames (72/73) 3.37. Definition of frame's format in Periodic Contextual mode (2E/2F) 3.38. Redundancy Time-In (28/29) 3.39. Half-duplex mode (CA/CB)

1. SUBJECT

This document describes the syntax of messages and commands used by ELA Innovation RFID readers (MCHDxx.xx versions).

1.1. Readers covered by this document

All ELA INNOVATION Active RFID reader series (MCHDxx.x.x versions).

1.2. Special cases of USB / TCP/IP / Wi-Fi readers

These readers don't have a direct RS-232 output. However, the concept of these readers is as follows:

- RFID hardware with a TTL 232 output common to all ELA Innovation readers.
- Connected to RS-232 converter hardware linked to another type of reader output (USB / TCP/IP / Wi-Fi).

The instructions described in this document can be used with all these readers. Some of the readers require a driver, which you will find on our website: http://www.rfid-ela.eu/

1.3. Default serial output parameters

Speed	Dat	Stop	Parity	Hardware
9600	8	1	none	none

Table 1: default serial output parameters.

Baud rates (9600bds by default) can be changed.

1.4. Supported commands and related firmware versions

Read Param	Write Param	Description	Supported Firmware version	Default Value
01	02	Operating Mode (On-line (PUSH), Contextual PUSH or PULL)	01	On line
03	04	Output type (RS232, DATA/CLOCK, WIEGAND)	01	RS232
05	06	Timing after Out-of-range detection	01	6s
07	08	Tag list sending frequency in contextual PUSH mode	01	60s
09	19	Reader ID	06	01
0A	-	Sending Request of Contextual tag list	01	
0B	0C	RSSI threshold (Software Threshold)	01	254
10	11	Tag Frame Format (must be included in tag parameter)	01	24 bits
12	13	RS232 speed	06	9600 bds
14	15	RS232 message format (ASCII, binary)	06	ASCII
16	17	Acknowledgment delay	06	0 ms
1A	1B	DATA/CLOCK output with or with alarm bits	07	OFF
1C	1D	Redundancy activation in "contextual" mode	08	OFF
1E	1F	Wireless protocol (must be included in tag parameter)	08	HD
20	21	Activation of tag filtering with the strongest radio level	13.0.5	OFF
22	23	NA	13.2.2	IR
		Checksum length (must be included in the tag parameter)	13.2.2	16 bits
		"Direct Control of Relay" mode	13.4.0	OFF
		Activation for sensor based tag filtering	13.5.0	OFF
		Activation for automatic clearing of contextual stack after	13.5.0	OFF
		Activation for replacement of the weakest or the oldest tag	13.5.0	ON
24	25	RW Protocol Bit length	13.2.4	165
97	_	Sending request of AD converter value – Radio noise level	05	
98	_	Sending request of firmware version	04	
99	_	Sending request of reader's configuration - On line Help	04	
-	9A	Erase all tags in stack	13.5.0	
A0A	A8A	Tag ID filtering	12c	OFF
C0	C1	Proprietary CKS or CRC key (must be included in the tag	02	00
26	27	Number of tag in stack for relay activation	13.6.0	01
C8	С9	NA (Calibration parameter of RSSI signal)	13.6.2	00
2A	2B	Modification of "Contextual" stack size	30.0.0	20
в0	В1	Activation and settings for a hardware analog RSSI	30.0.3	OFF
70	71	Add user characters before ELA messages	30.0.4	OFF
72	73	Add user characters after ELA messages	30.0.4	OFF
2E	2F	Tag stack format in contextual mode	30.0.5	00
28	28	Redundancy Timing	30.0.5	00
CA	СВ	Half-duplex mode	30.1.7	00
2C	CD	Radio statistics	30.1.7	

1.5. Compatibility Matrix MCHD firmware versus SCIEL READER devices

Reader type	Current Delivered Firmware version
SCIEL READER R	30.1.
SCIEL READER RU	30.1.
SCIEL READER RM	30.1.
SCIEL READER R24	30.1.
SCIEL READER Lite	30.1.
SCIEL READER SU	30.1.
SCIEL READER IP	13.6.
SCIEL READER IP2	30.1.
SCIEL READER WF	13.6.
SCIEL READER WF2	30.1.
SCIEL CARD	30.1.
SCIEL REPEATER	13.6.

2. COMMUNICATION PROTOCOL

2.1Message Syntax

The tag's identification is automatic and periodic: each tag is identified by the reader at each tag's transmission period: RFID tag identification is based upon the following data frame: [AAxxxxxxLL] with:

- "[" and "]" are used to delimit the frame
- AA encoded on 2 ASCII characters (or 1 binary byte in binary mode) defines a byte which corresponds to RFID tag wireless signal strength level (RSSI). This value varies between 110 (decimal), for a very close tag, and 200 (decimal), for a more remote tag (with respect to the reader).
- xxxxxx encoded on 6 (4,8) ASCII characters (or 3 binary bytes in binary mode) defines 3 bytes that correspond to RFID tag ID. The ID length is variable depending on the radio reception method (16, 24 or 32 bits).
- LL encoded on 2 ASCII characters (or 1 binary byte in binary mode) defines a byte that corresponds to reader ID.

Example: reception of the following frames: [7801234501][948831A501]correspond successively to tag ID 012345 with a level of 78(hex) and tag 8831A5 with a level of 94(hex).

Transmission mode (PUSH or PULL) for these ID frames can be set in "Operating mode":

Exception: In "contextual" mode, when a tag disappears from stack memory, the message sent is:]AAxxxxxxLL[

Starting with firmware version MCHD 30.0.1, a specific mode for sending compact frames is available. See "0A" order command.

Starting with firmware version MCHD 30.0.5, the user could add prefix and suffix which will be added to all the frames sent by the readers. See "70" to "73" order message.

Below, compatibility table for 24/32 bits:

Model	Reference	24 bits	32 bits	Remarks
THINLINE IR	IDP0231	YES	YES	
THINLINE MOV	IDP0251	YES	NO	
SLIM ID	IDF0348	YES	NO	
COIN ID	IDF1034	YES	YES	
COIN ID OEM	IDFOM34	YES	YES	
COIN T	IDF1044	YES	YES	
COIN T MiniLog	IDF1073	YES	YES *	*24 bits: 8 bits ID - 16 bits DATA 32 bits: 16 bits ID - 16 bits DATA
COIN RH	IDF1050	YES	NO	
COIN MOV	IDF1062	YES	YES	
COIN MAG	IDF1064	YES	YES	
ITEMS IR	IDF0431	YES	YES	
ITEMS MOV	IDF0455	YES	NO	
ITEMS EMOV	IDF0951	YES	NO	
ITEMS TD	IDF0943	YES	YES	
ITEMS AD	IDF0942	YES	NO	
ITEMS DG	IDF0941	YES	NO	
PUCK ID	IDF2573	YES	YES	
PUCK ID OEM	IDFOM73	YES	YES	
PUCK T	IDF2574	YES	YES	
PUCK RHT	IDF2572	YES	YES	
WATCH ID WHITE	IDF2735	YES	YES	
WATCH ID BLUE	IDF2734	YES	YES	
COIN ID Ex	IDF1036	YES	YES	
COIN T Ex	IDF1037	YES	YES	
COIN MOV Ex	IDF1061	YES	YES	
COIN MAG Ex	IDF1040	YES	YES	
TAG DOT	IDP2470	YES	YES	
PUCK DOT	IDP2570	YES	YES	

2.2 DATA from sensor integrated in the Active RFID tag.

Some RFID tag contain an integrated sensor. In this case, the frame format is the same as that used by a tag that provides only identification information. Only 12-bit LSBs are reserved for the reading value.

Example: ID 801tag is a COIN_T type (with a Temp. sensor). Reception of the following frame: [7880112301] corresponds successively to tag ID 801 with an RSSI level of 78(hex)

and Temp. value of 123 (hex.). See product sheet COIN_T in order to calculate real values. (123(hex) = 291(dec.) = 18°C (291 * 0.0625°C).

2.2.1 Temperature sensor

The value 7FF is reserved for alarm information about low battery level. The Hex data is "2's complement signed data". The data must be converted into decimal format, signed and multiplied by the sensor resolution of 0.0625° in order to calculate the real value.

Table of Active RFID max temperature coding

	Temperature code										
	т	emperature in ° C	Binary								Conversion method
			b11 b10 b9 b						Hexadecimal	Decimal	
			S 6 5	4	3 2 1	0	-1 -2	-3 -4			
	Max +	125.0000	0 1 1 1	1	1 1 0 1		0 0	0 0	7D0h	2000	Positive temperatures
Max. reading range for integrated sensor beyond COIN T specifications											[decimal value] /16
od C		29.8750	0 0 0 1	1	1 1 0 1		1 1	1 0	1DEh	478	Example: 478/16 = +29.8750
beyo		5.0000	0 0 0 0) (0 1 0 1		0 0	0 0	050h	80	
ensor	1	0.0625	0 0 0 0) (0 0 0)	0 0	0 1	001h	1	
ted se	1	0.0000	0 0 0 0) (0 0 0)	0 0	0 0	000h	0	
tegra		-0.5000	1 1 1 1	1	1 1 1 1		1 0	0 0	FF8h	4088	Negative temperatures
for in		-10.1250	1 1 1 1	C	0 1 0 1		1 1	1 0	F5Eh	3934	[2's complement 2] / 16
ange											Example:
ding r		-25.0625	1 1 1 0) (110)	1 1	1 1	E6Fh	3695	E6Fh \Rightarrow 190h (1's complement 1) 190h+1 \Rightarrow 191h (2's complement)
. reac											191h ⇒ 401 decimal
Max	Max -	-55.0000	1 1 0 0) 1	1 0 0 1		0 0	0 0	C90h	3216	401/16 = -25.0625
	_	Alarm code for low battery (equivalent value: +127.9375°C) in alternated emission with ID code	0 1 1 1	1	1 1 1 1		1 1	1 1	7FFh	2047	

2.2.2 Relative humidity sensor

The value FFF is reserved for alarm information about low battery level. The hexadecimal data is non-signed data. This data must be converted into a decimal value (V) and used in the following formula in order to get the value in humidity %. $\%RH = -2.0468 + 0.0367 \text{ V} - 1.5955E-6 \text{ V}^2$

Example:

Value provided by the tag: V = 4DE (hexadecimal) meaning V = 1246 (decimal) %RH = $-2.0468 + 0.0367 \text{ V} - 1.5955^{E-6} \text{ V}^2$ meaning %RH = 41.19 %

2.2.3 Movement sensor

The value FFF value is reserved for alarm information about the low level of battery. The hexadecimal data is a non signed data. This data is a relative value and is not linear to the movement: FFE for significant movement; 000 for no movement or less than the sensor's sensitivity.

2.2.4 Analog input

The value FFF is reserved for alarm information about low battery level. The hexadecimal data is non-signed data. This data must be converted into a decimal value (V) and used in the following formula in order to get the value in Volts. Van = 3*V/4096

2.3Tag RSSI level

The tag's Received Signal Strength Indication is always returned and associated with the tag's ID. The next table shows the variation between the information (in decimal) returned by the receiver to the connected equipment in function of the RSSI level expressed in dBm.

2.4"Online" or "Contextual" Mode

- "ON LINE" mode: this is a PUSH mode between reader and the connected equipment. As soon as a tag's identification frame is received, the reader transmits this information on the RS232 port. This emission is always repeated as long as the tag remains in the reader's detection area, with the RFID's tag emission cycle.
- "CONTEXTUAL" mode: this is a PUSH mode between reader and the connected equipment. Each tag's ID is memorized in a stack call "Contextual Stack". ID information is transmitted by the reader only 2 times: when the tag is identified for the first time (the tag enters in the reader's detection area) and when the tag leaves this detection area. The tag will be identified one more time, only after being gone out of the detection area during a time greater than the user-defined "TIME OUT" or "Exit Timing" (see paragraph on these points) AND after new detection in the area. Note that string delimiters are inverted in order to indicate output from the stack: <code>]AAxxxxxxxLL[</code>
- "PERIODIC CONTEXTUAL" mode: this mode is similar to the "CONTEXTUAL" mode, but the list of tags in the "Contextual stack" is pushed with periodic cycle. This parameter can be defined by user. Each transmission of stack is finished by the next string [NNLL] with NN = Number of tags in the stack and LL = Reader ID.
- "ON DEMAND CONTEXTUAL" mode: the reader is in PULL mode. The reader doesn't transmit any ID information by default. Reader sends the list of tags only when it receives a specific command: [0A00LL]. Each stack transmission is finished by the next string [NNLL] with NN = Number of tags in the stack and

LL = Reader ID. Please see paragraph 3.7 "Contextual Stack Query".

Stack length is limited.

The stack's limit is 20 simultaneous tags before the MCHD 30.0.0 version. The stack's limit is 250 simultaneous tags starting with the MCHD 30.0.0 version and can be changed by user.

3. Description of instructions

The command list enables you to change the reader's operating settings.

3.1. Instruction syntax and "on line" help menu

Command format:

You can use the value CC= 00. In this case, all readers will accept this instruction (Broadcast Mode). Some instructions accept values based on 2 bytes or more. ([AA BB BB CC])

"On Line" HELP menu:

This menu is only available starting with the MCHD 30.0.5 version (in English). If you need help with an instruction, send the command:

[AA BB CC?

Example:

Send normal instruction to the reader: [120001] -> normal answer of the reader could be: [120401] Need help on this instruction? Send: [120001? -> Answer from the reader will be:

-----RS232 Serial Speed-----

get: [12xx01] set: [13xx01] -00h 9600 Bauds -01h 19200 Bauds -02h 38400 Bauds -03h 57600 Bauds -04h 115200 Bauds

3.2. Operating mode (01/02)

Instruction	Syntax	Acknowledgme	Comme
Read value	[01xxLL]	[01VVLL]	LL: Reader ID VV: operating mode
Write value	[02VVLL]	[OK02VVLL]	xx: Ignored

Coding of operating mode (VV):

Valu	Operating mode
01	On-line
02	Contextual
03	Periodic Contextual
04	On-demand Contextual

Example:

If a reader has an ID 01, sending the instruction [010000] (only one reader should be present) will enable to know which operating mode is being used. An answer of [010101]

means that the reader is using "ONLINE" mode and its ID is 01. Sending instruction [020401] makes the reader work in "ON DEMAND CONTEXTUAL" mode.

3.3. Output type (03/04)

Instruction	Syntax	Acknowledgme	Comme
Read value	[03xxLL]	[03VVLL]	LL: Reader ID VV:
Write value	[04VVLL]	[OK04VVLL]	Output type

Coding of output type (VV):

Valu	Output type
01	RS232
02	WIEGAND
03	DATACLOCK 10 bit
04	DATACLOCK 13 bit

Example:

If we have a reader that is identified as 01, sending the instruction [030001] will enable to know which output type is currently being used. An incoming frame [030101] means that output type is 232 only. Sending the instruction [040201] will select the output type RS232 + Wiegand from the reader.

3.4. "TIMEOUT" or Out of Range Timing (05/06)

Instruction	Syntax	Acknowledgme	Comme
Read value	[05xxLL]	[05VVLL]	LL: Reader ID VV: Out of Range Timing
Write value	[06VVLL]	[OK06VVLL]	xx: Ignored

Coding of Out of Range Timing (VV): the value is the output timing of the reader's stack in second (hex value). When tags disappear from the reader's detection field, the tag's ID is memorized in the reader's stack for VV seconds.

A VV value = 01 is not recommended.

Only for Contextual mode, Periodic Contextual mode, and on-demand Contextual mode.

The "Time out" is the minimum lead-time to validate the output or the lack of a tag, which enables to limit the reading of this tag when this one is still present in the detection field. Parameter value by default is 6 seconds. If the tag goes out of the detection field and comes into this same field during the 6 seconds, this tag's output won't be considered as a valid output.

3.5. Stack sending cycle (07/08)

Coding of sending cycle of the reader stack (VV): sending cycle value in seconds (hex value). This value is only used in "PERIODIC CONTEXTUAL" mode.

3.6. Reader ID (09/19)

Instruction	Syntax	Acknowledgme	Comme
Read value	[09xxLL]	[09VVLL]	LL: Reader
Write value	[19VVLL]	[OK19VVLL]	Reader ID

Coding of reader ID (VV): the value is the reader's ID that user wants to allocate to the reader (hex value).

Example:

If we have a reader which is identified as 01 (default value), sending instruction [190201] allows selecting value 02 for reader ID. [OK190201] will be sent by the reader in acknowledgment.

Remarks:

- The reading instruction is useful to determinate an unknown reader ID. In this
 case, you must send the reading instruction in BROADCAST mode (LL=00).
 Example: [090000].
- In the writing case, reader ID must be specified, it mean that this instruction is not allowed in BROADCAST mode (LL=00).

3.7. Contextual stack query (OA)

Instruction	Syntax	Acknowledgme	Comme
Read value	[OAxxLL]	*	LL: Reader ID
Write value	-	-	xx: Ignored

Remarks:

The response to a contextual stack interrogation instruction is composed of several frames: one for each tag in the reader's stack, followed by the sent frame counter.

Example:

[0A0000] → response: [7801234501][948831A501][7821234501][0301]

MCHD 30.0.0 firmware version, a new syntax message is available:

Instruction	Syntax	Acknowledgme	Comme
Read value	[OAvvLL]	*	LL: Reader ID vv: Value
Write value	-	-	vv. varae

VV	Format	Syntax
00	Normal	[AA xxxxxx LL] [AA xxxxxx LL][yy LL] with: [and] are the message delimiters. AA is the tag's RSSI level. xxxxxx Id Tag (16, 24 or 32 bits). yy number of tags in the stack. LL Id reader
01	Compact without RSSI	[xxxxxx xxxxxx xxxxxx yy LL] xxxxxx ID tag (16, 24 or 32 bits). yy number of tags LL Id reader
02	Normal with tag select with increasing RSSI	
03	Normal with tag select with decreasing RSSI	
04	Normal with tag select with increasing ID	
05	Normal with tag select with decreasing ID	
FF	Only number of tags	[yy LL] with: [and] are the message delimiters. yy number of tags in the stack. LL Id reader

3.8. Reading threshold (0B/0C)

Instruction	Syntax	Acknowledge	Comme
Read value	[OBxxLL]	[OBVVLL]	LL: Reader ID VV: Reading threshold
Write value	[OCVVLL]	[OK0CVVLL]	xx: Ignored

Coding Reading threshold (VV): the value is the threshold of the RSSI level (hex value). This instruction allows programming a filtering threshold on tag reading. Only tags with a reception level lower than the threshold will be read.

Remarks: the shape of the detection area cannot be modified. To change this shape, it is necessary to choose the right type of antenna (directional or omni-directional).

This threshold is a software threshold after having received the tag ID. This filtering operation has no impact on anti-collision management, in case there are a lot of tags in the reader's detection area.

Example: Default reception level is FE (default value) and reader regularly transmits the next frames: [7801234501][948831A501] matching successively a tag whose ID is 012345 with a reception level 78 (hex) and a tag whose ID is8831A5 with a reception level 94(hex). Sending the instruction [0C9001] allows changing the reader threshold to 90(hex). [OK0C9001] will be sent by the reader in acknowledgment. The reader will filter 8831A5 and will transmit the frame [7801234501] regularly.

3.9. Tag Id length (10/11)

Instruction	Syntax	Acknowledgme	Comme
Read value	[10xxLL]	[10VVLL]	LL: Reader ID VV: Radio reception method
Write value	[11VVLL]	[OK11VVLL]	xx: Ignored

Coding of Tag ID length (VV):

Valu	Radio reception method
01	16 bits ID tag Reception
02	24 bits ID tag Reception
03	32 bits ID tag Reception

3.10. **RS232 speed (12/13)**

Instruction	Syntax	Acknowledge	Comme
Read value	[12xxLL]	[12VVLL]	LL: Reader ID VV: 232 communication speed
Write value	[13VVLL]	[OK13VVLL]	xx: Ignored

Coding of 232 communications speed (VV):

Valu	232 speed	Allowed version
00	9600 bauds	all
01	19200 bauds	all
02	38400 bauds	> MCHD 20.x.x
03	56700 bauds	> MCHD 20.x.x
04	115200 bauds	> MCHD 20.x.x

3.11. **ASCII or Binary transmission format (14/15)**

Instruction	Syntax	Acknowledge	Comme
Read value	[14xxLL]	[14VVLL]	LL: Reader ID VV: Transmission Format
Write value	[15VVLL]	[OK15VVLL]	xx: Ignored

Coding of 232 transmission format (VV):

Valu	Transmission Format
00	ASCII
01	Binary

Remarks: in binary mode, frames delimiting characters are the same: "[and]" matching in binary mode at 5B and 5D.

3.12. **Delay before acknowledgment (16/17)**

Instruction	Syntax	Acknowledgme	Comme
Read value	[16xxLL]	[16VVLL]	LL: Reader ID VV: Delay
Write value	[17VVLL]	[OK17VVLL]	xx: Ignored

Coding of Delay before Acknowledgment from an external instruction frame:

value shows delay in milliseconds (hex value). Default value is 0 (no delay). A delay in reader acknowledgment can be useful when you need to send a query command in Broadcast mode to several readers at the same time. In this case, we suggest applying 20ms between each reader at 9,600 bds or 2ms between each reader at 115,200 bds.

3.13. Activation of Alarm Information on DATA/CLOCK output (1A/1B)

Instruction	Syntax	Acknowledgme	Comme
Read value	[1AxxLL]	[1AVVLL]	LL: Reader ID VV: Sending alarm status
Write value	[1BVVLL]	[OK1BVVLL]	xx: Ignored

Coding of sending alarm status (VV):

٠	. Statas (t	- / -
	Valu	Sending alarm status
	00	Sending alarm OFF
	01	Sending alarm ON

Definition of tag's alarm in 24-bit mode:

Low battery: voltage < 2.1 V Breakout (µswitch): Tag unglued

Coding structure:

Tag ID is composed of 6 hex characters, on 24 bits

First (or last) ID's nibble changes in function of the activated alarms.

24	0
1st nibble	4 bits 8 bits 8 bits
b7 b6 b5 b	4 ID

Remarks: The bit b7 of the high byte is reserved to indicate a tag with data: ID + DATA (Temp., RH%,...)

Example ID no.: 050123				
	Low	uSwitch	ID Frame	Alarm type
(b6)	Bat	(b4)	hex	
0	0	0	0 50123	-
0	0	1	1 50123	Breakout
0	1	0	2 50123	Low Bat
0	1	1	3 50123	Breako
				ut Low

Table 2: management of tag's alarm in 232 mode

Coding of Data Clock mode:

10 font sizes: XX 0 ID

XX: alarm type code in 2 decimal digit 0: complementary digit

(always 0)

ID: complete identification code in 7decimal digits

Remarks: when reader's settings have no alarm management, the tag's ID takes different decimal values depending on the type of alarm sensors activated (please see the examples given in Table 3).

Example no. ID: 0105A0				Data Clock output	
·				10 decimal charact	ters
		Alarm management			
(b6)	Low Bat (b5)	uSwitch	Hex	Without	With
		(b4)	frame ID	(parameter	(parameter [1B01yy])
0	0	0	0 105A0	000 0066976	00 0 0066976
0	0	1	1 105A0	000 1115552	01 0 0066976
0	1	0	2 105A0	000 2164128	02 0 0066976
0	1	1	3 105A0	000 3212704	03 0 0066976

Table 3: TAG alarm management in D&C 10char mode

13 character format: 000 XX 0 ID

000: complementary header (always 000) XX: Alarm type code (decimal) on two-

digits

0: complementary digit (always 0) ID: decimal tag ID code on seven digits

Remarks: when reader's settings have no alarm management, the tag's ID takes different decimal values depending on the type of alarm sensors activated (please see the examples in Table 4).

Example no. ID: 0105A0			Data Clock output 13 decimal		
			Alarm management		
(b6)	Low Bat (b5)	uSwitc	Hex	Without	With
		h (b4)	ID	(parame	(parame
			frame	ter	ter
0	0	0	0105A0	000 000	000 00 0
0	0	1	1105A0	000 000	000 01 0
0	1	0	2105A0	000 000	000 02 0
0	1	1	3105A0	000 000	000 03 0

Table 4: TAG alarm management in D&C 13char mode

3.14. Redundancy Activation (1C/1D)

Before MCHD 30.0.5 firmware version:

Instruction	Syntax	Acknowledgme	Comme
Read value	[1CxxLL]	[1CVVLL]	LL: Reader ID VV: Redundancy status
Write value	[1DVVLL]	[OK1DVVLL]	xx: Ignored

Coding of redundancy status (VV):

valu	Redundancy effect
00	Redundancy off
01	Redundancy on (2 successive
	identifications required)

Redundancy activation allows waiting for an identification acknowledgment (two successive ID frames) during the timeout lead-time before being memorized in the reader.

Only for Contextual, Periodic Contextual, and Contextual on-demand mode.

Example: If the timeout delay is 3s and a tag has a 2s transmit period, if redundancy is activated, the tag will never be memorized by the reader.

Starting with the MCHD 30.0.5

Coding of redundancy status (VV):

Valu	Redundancy effect	Number of successive
е		identifications in order to
00	Redundancy Off	1 (first identification is accepted)
01	Redundancy On	2 (2 successive identifications are
02	Redundancy On	3 (3 successive identifications are
03	Redundancy On	4 (4 successive identifications are

If redundancy is activated, each successive identification has to be done in a "Time In" time (see instruction [28xxLL]). User can change this "Time In" time. We recommend programming "Time In" time equal to 3 * redundancy value * tag transmission period.

3.15. Radio Reception Method (1E/1F)

Instruction	Syntax	Acknowledge	Comme
Read value	[1ExxLL]	[1EVVLL]	LL: Reader ID VV: Radio reception method
Write value	[1FVVLL]	[OK1FVVLL]	xx: Ignored

Coding of radio reception method (VV):

Valu	Radio reception procedure
00	16 or 24 bits with CKS at 433 MHz
01	16 or 24 bits with CKS at 868 MHz
02	16 bit without CKS
03	24 bit without CKS (S)
10	X4 mode

Remarks: the communication speed of our RFID tags is optimized in order to get the best compromise between a tag's range and its lifecycle. All the information about the range and the autonomy is based upon this optimized protocol (called HD).

Nevertheless, in some conditions, you may use a quick communication protocol (X4 mode), in order to increase the tag's lifecycle to the detriment of a reduced range. Please contact our technical department in order to find out which products support this new protocol.

3.16. Activation of tag filtering with the strongest radio level (20/21)

Instruction	Syntax	Acknowledgme	Comme
Read value	[20xxLL]	[20VVLL]	LL: Reader ID VV: Value
Write value	[21VVLL]	[OK21VVLL]	xx: Ignored

Coding of the tag with the strongest radio level statue (VV):

Valu	Sorting the tag with the strongest
00	OFF
01	ON

The activation of sort of the tag with the strongest radio level allows to limit the contextual stack to a unique tag: the one which gets the highest RSSI level (the lowest value).

Only for on-demand Contextual mode.

Example: from those tags received by the reader: [7801234501][948831A501], only [7801234501] will be kept in the contextual stack.

3.17. Tag programmer speed (22/23)

Depending on the device used, two protocol speeds are available to program tags: The first one is a low speed protocol used for a magnetic setting tool (tag version 8, 9, 10, and 20) The second one is faster, used for an infrared setting tool (tag version 11, 15, 16, 21 and higher).

Instruction	Syntax	Acknowledgme	Comme
Read value	[22xxLL]	[22VVLL]	LL: Reader ID
Write value	[23VVLL]	[OK23VVLL]	xx: Ignored

These commands allow reading and writing many parameters. The coding of these parameter's value is the following:

The available values of the programming speed are:

B0 Bit value of byte flag (22 and	Programming speed
0	SLOW (ILS)
0	FAST (IR)

3.18. Tag checksum length

Two lengths can be used for the tag checksum: 8- and 16-bit. A reader set with a 16-bit rw protocol bit length will only see tag frames with a 16-bit rw protocol length. On the other hand, readers set with an 8-bit rw protocol bit length will see all tag frames (with 8- and 16-bit rw protocol lengths).

Format

See previous section for the format of commands 22 and 23.

The values of checksum's length are:

B1 Bit value of byte flag (22 and	CKS length
0	8 bits
0	16 bits

3.19. Direct relay control mode

Relays are directly integrated in some readers. Two modes are available to control the relay:

- a) By sending the instruction: the relay is turned on for 4 seconds when the reader receives the instruction [OK0000LL].
- b) By contextual stack length (number of tags in the detection field): the relay is turned on until the number of tags in the detection field is higher or equal to the number of expected tags (see commands 26 and 27).

Format

See previous section for the format of commands 22 and 23. The available values to select the direct relay control mode are:

B2 Bit value of byte flag (22 and	Relay control mode
00	[OK0000LL]
01	On Contextual stack

3.20. Activation of sensor filtering

Some tags integrate sensors. A tag set in a data mode (12b ID + 12b DATA) sends its data by the 3 lowest nibbles of its ID frame; the issue is that the tag will be added in the reader's stack several times when the temperature varies. To avoid this, we introduce data filtering mode.

Data filtering mode enables you to hide sensor information during scanning and stack update operations. In this manner, only one record in the contextual stack is made for a sensor-based tag. Only the last value received by the reader is saved in the reader's contextual stack.

Remarks: this mode can be also used for DG, RH tags (mode: 12b ID + CNT, 12b ID + TOR,...) and every tag that get its high bit at 1.

Format

See previous section for the format of commands 22 and 23. The available values to select the sensor's data filtering mode are:

B3 Bit value of byte flag (22 and	Data filtering
0	Off (no filter)
0	Filter is activate

3.21. Activation of automatic contextual stack erasing after reading mode This operation mode enables you to activate automatic erasing of the contextual stack when sending the instruction [0A], after receiving the answer.

Stack erasing after reading is used when number of tags that can be received is higher than the contextual stack length. In this case, a regular erase of the stack makes it possible to add other tags in the contextual stack between two reading operations.

Format

See the chapter 3.17 Read/Write protocol speed for the format of commands 22 and 23. The available values to erase the contextual stack automatically are:

B4 Bit value of byte flag (22 and 23	Automatic stack erasing
0	Off
0	On

3.22. Full Contextual stack option

In normal mode, when the contextual stack is full, a new tag replaces the oldest identified tag. When you activate this bit, a new tag replaces the tag with the lowest RSSI when contextual stack is full.

B5 Bit value of byte flag (22 and	Full Stack option
0	Oldest Id tag is erased
0	Lowest Id tag is erased

3.23. Programmer IR pulse length (24/25)

Instruction	Syntax	Acknowledgme	Comme
Read Value	[24xxLL]	[24VVLL]	LL: Reader ID VV: Value
Write Value	[25VVLL]	[OK25VVLL]	xx: 00

This value is reserved for ELA INNOVATION programming options (value from 164 to 167).

3.24. Sending request for Radiofrequency Noise Measurement (97)

Instruction	Syntax	Acknowledgment	Commen
Read Value	[97xxLL]	[97VVLL]	LL: Reader ID
Write Value	-	-	vv: Value xx: 00

This instruction gets a measurement of the radiofrequency noise in the reader's frequency and checks whether or not this band is polluted.

Remarks: a value between 185 and 210 is correct (noise is low). The lower the value, the higher the external disturbances. A noise measurement below 185 is also very significant.

3.25. Sending request for firmware version (98)

Instruction	Syntax	Acknowledgme	Comme
Read Value	[98xxLL]	[VEvvvvvv]	LL: reader ID
Write Value	-	-	vvvvvv: Firmware version xx: 00

Coding of firmware version (vvv...vvv): the returned value is a character chain in ASCII format.

Example: [98xxLL] → Response: [VEMCHD v13.5.1]

3.26. Sending request for reader parameters (99)

Instruction	Syntax	Acknowledge	Comme
Read Value	[99xxLL]	*	LL: reader Id xx: 00: simple output
Write Value	-	-	01: Commented parameters

Encoding the response to the drive configuration request consists of multiple data. Each data corresponds to a parameter and is sent in the same format as that of the response to the corresponding command for reading the parameter. *Example:*

[990001] \rightarrow reader answer: [010101] [030101] [050601] [073C01] [0BFE01] [100201] [120001] [140001] [160001] [1A0001] [1C0001] [1E0001] [200001] [220301] [24A501] [260101] [280001] [2A1401] [2E0001] [B00001] [C00001] [C80001] [CA0001] [VEMCHD v30.1.7]

Example: [990101], then reader returns:

Parameter	Get/Set	Valu	e(Hexa) Comment
Operating Mode			On Line
Output Type	[03/04]		RS232 Only
Tag Stack Timeout	[05/06]	06	6 seconds
Tag Stack Send Period	[07/08]		60 seconds
Reader ID	[09/19]	01	
Contextual Stack	[OA/]		Send Tag List
Software Threshold	[0B/0C]		254 (no units)
Radio Frame Size	[10/11]	02	24 Bits
RS232 Serial Speed	[12/13]	00	9600 Bauds
Data Format	[14/15]	00	ASCII Format
Answer Delay	[16/17]	00	0 milliseconds
Data Clock Alarm	[1A/1B]	00	Disabled
Redundancy	[1C/1D]	00	Disabled
Radio Format	[1E/1F]	00	HD Format
Sort Strongest Tag	[20/21]	00	Disabled
Config Flags	[22/23]	03	see [22xx01? for detail
RW Bit Width	[24/25]	A5	165 (no units)
Min Tags In Stack	[26/27]	01	1 Tags
Tag Stack Timein	[28/29]	00	0 seconds
Stack Size	[2A/2B]	14	20 Tags
Radio Stats	[2C/2D]		see [2Cxx01? for detail
Contextual Stack Format	[2E/2F]	00	Normal Mode
Encapsulation (header)	[70/71]		see [70xx01? for detail
Encapsulation (trailer)	[72/73]		see [72xx01? for detail
Radio Noise Level	[97/]		
Software Version	[98/]		
Factory Settings	[/9C]		see [9Cxx01? for detail
Filter range (low)	[A0/A1]		see [A0xx01? for detail
Filter range (high)	[A2/A3]		see [A2xx01? for detail
Filter mask	[A4/A5]		see [A4xx01? for detail
Hardware Threshold	[B0/B1]	00	Disabled
Delta Checksum	[C0/C1]	00	0 (no units)
Attenuation	[C8/C9]	00	0 (no units)
Half Duplex Mode	[CA/CB]	00	Disabled

3.27. Erase Contextual Stack (9A)

Instruction	Syntax	Acknowledge	Comme
	-	-	LL: Reader ID
Write Value	[9AxxLL]	[OK9AxxLL]	xx: 00
Write Value	[JAXXIII]	[ULYAKEID]	

This command allows you to erase the Contextual Stack

Remarks: BROADCAST (with LL=00) message are not supported for this instruction

3.28. Tag Id Filter (Ar/Aw)

Instructions A0 to AF allow you to define a filtering interval for tag ID. All tags in this interval are accepted; all others are not taken into account for the reading process. This interval is defined as described below:

The lowest ID is composed 3 bytes ID1i, ID2i and ID3i. Example: IDi = 012345 (hex). The highest ID is composed of 3 bytes ID1f, ID2f and ID3f. Example: IDf = 6789AB (hex).

Before MCHD 30.0.5 firmware version, the reading and writing commands are:

Instruction	Syntax	Acknowledgme	Comme
Read Value	[ARxxZZ]	[ARYYZZ]	R/W: Read or write byte limits number. See Example
Write Value	[AWYYZZ]	[OKAWYYZZ]	YY: Value ZZ: Reader ID xx: 00

Exception for 16 bits tag format:

In this case only the two first byte limits are used: ID1_i ID2_i and ID1_f ID2_f. Alarms are not available in this specific format.

Alarm management:

In the case of 24-bit format for tag ID, the first nibble contains the alarm coding. For these tags, the filtering process has to be done by ignoring the alarm status (mask of first nibble containing the alarm status).

Activation / deactivation commands for alarm filtering process:

Activation: [AE01ZZ] Deactivation: [AE00ZZ]

Example: Read value $\rightarrow ID_i = 0x0000000$ and $ID_f = 0xfffffff$.

```
Instruction → Reader answer:

[A00001] → [A00001]
[A10001] → [A10001]
[A20001] → [A20001]
[A30001] → [A3FF01]
[A40001] → [A4FF01]
[A50001] → [A5FF01]
```

Example: Change Tag Id filter limits: from $ID_i = 0 \times 123456$ to $ID_f = 0 \times 789 \text{ABC}$.

Instruction	→ Reader answer:
[A81201] → [A93401] → [AA5601] → [AB7801] → [AC9A01] →	[OKA93401] [OKAA5601] [OKAB7801] [OKAC9A01]

Instructions changed starting with the MCHD 30.0.5 firmware version:

Reading & writing command for the lowest tag's ID:

Instructi	Syntax	Acknowledgme	Comments
Read	[A0xxxxxzZ]	[A0yyyyyyZZ]	R/W: read/write. See example YY: value for reading or writing
Write Value	[A1yyyyyyZZ]	[OKA1yyyyyyZZ]	zz: Reader ID xx: 00

yy is defined on 16, 24, or 32 bits.

Reading & writing command for the highest Tag's ID:

Instruction	Syntax	Acknowledgme	Comments
Read Value	[A2xxxxxZZ]	[A2yyyyyzz]	R/W: read/write. See example YY: value for reading or writing
Write Value	[A3yyyyyyZZ]	[OKA3yyyyyyZZ]	zz: Reader ID xx: 00

Example: write a Tag Id interval from $ID_i = 0x123456$ to $ID_f = 0x789ABC$.

```
Instruction → Reader answer:

[A112345601] → [OKA112345601]

[A3789ABC01] → [OKA3789ABC01]
```


3.29. Filtering Mask (A4/A5)

This command is only available starting with the version 30.1.5. The masking is a logical operation that preserves or forces a group of bit to 0.

Instruction	Syntax	Acknowledgme	Comme
Read Value	[A4xxxxxZZ]	[A4yyyyyyZZ]	YY: Filtering
Write Value	[A5yyyyyyZZ]	[OKA5yyyyyyZZ]	Mask zz: Reader ID

Example: masking write:

Instruction → Reader answer:

[A5FF00FF01] → [OKA5FF00FF01]

[A400000001] → [A4FF00FF01]

If an "ABCDEF" tag is received by the reader after application of the masking, as seen in the example, the tag' value shorten by the mask becomes "AB00EF".

Tags are stored in the stack and / or transmissions in RS-232, depending on the operating mode.

Note: The masking operation can be used only after setting a filter range, control A1 and A3 (cf. 3.28).

3.30. Reader's CRC / TAGS Delta CHECKSUM (C0/C1)

Instruction	Syntax	Acknowledgme	Comme
Read Value	[C0xxLL]	[COVVLL]	LL: Reader ID VV: Checksum value
Write Value	[C1VVLL]	[OKC1VVLL]	xx: 00

VV is hex value of delta checksum.

This parameter is a private communication key between readers and tags. They must have the same key value to identify each other.

3.31. Contextual stack size for relay activation mode (26/27)

Instruction	Syntax	Acknowledgme	Comme
Read Value	[26xxLL]	[26VVLL]	LL: Reader ID VV: Stack length for relay
Write Value	[27VVLL]	[OK27VVLL]	activation mode

If the option for direct relay commands is activated (commands 22 and 23), and if the reader has an internal relay, it is activated as long as the number of tags detected is greater or equal to the contextual stack's size for relay activation mode.

3.32. Reader RSSI calibration (C8/C9)

Instruction	Syntax	Acknowledgment	Comments
Read Value	[C8xxLL]	[C8VVLL]	LL: Reader ID
Write Value	[C9VVLL]	[OKC9VVLL]	vv: Calibration value xx: 00

VV is the calibration value for the reader's RSSI. This factory-calibrated parameter is used to get the same RSSI variation for all the readers.

Remarks: attenuation can be positive or negative, from -32 to +32.

The format of negative values is in 2's complement!

These instructions are only available starting with the MCHD version 13.6.2!

This command is strictly reserved for ELA INNOVATION use.

3.33. Contextual stack length modification (2A/2B)

Instruction	Syntax	Acknowledgment	Comments
Read Value	[2AxxLL]	[2AVVLL]	LL: Reader ID VV: Contextual stack length
Write Value	[2BVVLL]	[OK2BVVLL]	xx: 00

VV is hex value for contextual stack length. By default this value is 0x14 (20 tags). **Important remarks:** all the firmware versions before 30.0.0 version DO NOT have this feature. For these, contextual stack length cannot be longer than 20 tags.

3.34. Hardware threshold for reader's RSSI (B0/B1)

Instruction	Syntax	Acknowledgment	Comments
Read Value	[B0xxLL]	[BOVVLL]	LL: Reader ID
Write Value	[B1VVLL]	[OKB1VVLL]	vv: Analog value for hardware RSSI threshold xx: 00

This command enables you to program a hardware threshold (analog value) on tag detection. Only tags that have an RSSI level lower than this threshold will be read.

Coding of RSSI Threshold (VV): the value represents the threshold of reception level (hex value).

The filtering process can be disabled (automatic mode) by using the value VV=00. Automatic mode is optimizing the performance of reader's max range. This mode must be used when a max detection range is expected. By default, the readers are configured in AUTO mode.

The filtering process is based upon a hardware analogical filter applied before the RFID tag's identification. This filtering improves the performances of tags' anti-collision management in a lot of tags are present in the detection field.

Analog filtering is not an adaptive filter. The filtering threshold must be significantly lower than the noise level (RSSI SCAN) measured locally. We recommend programming a threshold 20 points lower than the noise level, or staying in AUTO mode.

Example: Reception level is initially set to 00 (default value) and the reader periodically transmits these frames: [7801234501][948831A501] corresponding successively to tag ID 012345 with an RSSI level of 78(hex) and the tag 8831A5 with an RSSI level of 94 (hex). Sending the instruction [B19001] changes the analog reader reception threshold value to 90 (hex). Otherwise the reader will acknowledge reception with the following frame [OKB19001]. The reader will not read the tag identified 8831A5 and will send the frame [7801234501] periodically.

3.35. Adding a prefix to frames (70/71)

Instruction	Syntax	Acknowledgme	Comme
Read Value	[70ppxxLL]	[70ppccLL]	LL: Reader ID pp: Position of character in
Write Value	[71ppccLL]	[OK71ppccLL]	the string cc: ASCII value of character string xx: 00

This instruction adds a customized prefix to all messages sent by readers.

The 00 character is reserved: it indicates the end of the prefix

Example: to set frame encoding for a GPRS X1 receiver, you must send the following frames:

For the header: \$ST+MMSG=

[71002401] sending \$ [71015301] sending S sending T [71025401] [71032B01] sending + [71044D01] sending M [71054D01] sending M [71065301] sending S [71074701] sending G [71083D01] sending = [71090001] prefix END STRING

3.36. Adding a suffix to frames (72/73)

Instruction	Syntax	Acknowledgme	Comme
Read Value	[72ppxxLL]	[72ppccLL]	LL: Reader ID pp: Position of character in
Write Value	[73ppccLL]	[OK73ppccLL]	the string cc: ASCII value of character string xx: 00

This instruction adds a customizable suffix to all messages that the reader returns.

The 00 character is reserved: it indicates the end of the suffix

Example: to set frame encoding for the GPRS X1 receiver, you must send the following frames:

Ending encoding frames: carriage return CR + LF

[73000D01] sending carriage return (CR)

[73010A01] sending line feed (LF) [73020001] suffix END STRING

3.37. Definition of frame's format in Periodic Contextual mode (2E/2F)

Note: format coding is only available starting with the 30.0.5 version.

Instruction	Syntax	Acknowledgme	Comme
Read Value	[2EvvLL]	*	LL: Reader ID
Write Value	[2FvvLL]	-	vv: Response syntax

value	Format	Syntax
00	Normal Format	[AA xxxxxx LL] [AA xxxxxx LL][yy LL] with: [and] are characters that delimit each tag frame. AA coded on 2 ASCII characters that define 1 byte corresponding to RFID tag reception level. xxxxxx coded on 6 ASCII characters that define 3 bytes corresponding to RFID tag ID. ID length is variable, and depends on the length that we expect (16, 24, or 32 bits). LL coded on 2 ASCII characters that defines 1 byte corresponding to reader ID. Several tags can be sent.
01	Compacted format without RSSI level	[xxxxxx xxxxxx xxxxxx yy LL] xxxxxx coded on 6 ASCII character that define 3 bytes corresponding to RFID tag ID. ID length is variable, depending on the length that we expect (16, 24, or 32 bits). LL coded on 2 ASCII characters that define 1 byte corresponding to reader ID. Several tags can be sent. yy coded on 2 ASCII characters that define 1 byte corresponding to the number of tags sent.
02	Normal format, Tag RSSIs in ascending order	
03	Normal format, Tag RSSIs in descending order	
04	Normal format, Tag IDs in ascending order	
05	Normal format, Tag IDs in descending order	
FF	Sending frame with number of tags	[yy LL]: [et]] are characters that delimit each tag frame. yy coded on 2 ASCII characters that define 1 byte corresponding to the number of tags sent in contextual stack.

3.38. **Redundancy Time-In (28/29)**

Remark: this command is only available starting with the version 30.0.5.

Instruction	Syntax	Acknowledge	Comme
Read Value	[28xxLL]	[28ssLL]	LL: Reader ID
Write Value	[29ssLL]	[OK29ssLL]	ss: Time value in seconds to validate the frame needed to return a tag in the contextual stack.

This instruction defines the reading acknowledgement frame delay when a tag is received. **This value is limited to 128 seconds.**

This command is taken into account only when the redundancy option is activated, and only for Contextual, Periodic Contextual, and On-demand Contextual modes.

Redundancy activation ([1CxxLL] command) allows you to wait for confirmation of a tag's identification (2, 3 or 4 successive identifications) in a time period shorter than the **Time**In before this tag's ID is memorized in the contextual stack.

For a tag with an emission cycle of 1.3s, and in the case that the Redundancy option is activated with 4 successive transmissions (03 mode), the tag will be memorized in the contextual stack after 3.9 seconds in the best case. We recommend a **Time In value** equal to 3*3.9s or 12s.

3.39. Half-duplex mode (CA/CB)

This parameter is used to select the communication mode of the drives. Two possibilities: half-duplex or full-duplex

Instruction	Syntax	Acknowledge	Comment
Read Value	[CAxxLL]	[CAssLL]	LL: Reader ID ss: if 0 = full-duplex
Write Value	[CBssLL]	[OKCBssLL]	if 01 = half-duplex xx: 00

Remark: half duplex communication mode is useful in some configuration for instance with the two-wire RS485.

3.40. Radio statistics (2C/2D)

This parameter measures the radio success rate and thus obtain an image of the environment where system is installed.

Instruction	Syntax	Acknowledge	Comment
Read Value	[2CxxLL]	[2Cxxxx/yyyyLL]	LL: Reader ID xxxx: Number of frames
Write Value	[2DxxLL]	[OK2D00LL]	received with a CRC identical to the reader. yyyy: Total number of frames received by the reader (CRC

Example: response [2CA1F3/A54101]

2 choices:

- number of frames received with a CRC identical to the reader = A1F3h = 41459d
- total number of frames received by the reader (CRC ignored) = A541h = 42305d

In this example, the reception of the frames with an identical CRC is: 98%.

In order to reset values, it is necessary to apply the command [2DxxLL] with xx = any value. The reader response "[OK2D00LL]" confirms and validates the reset.

4. Document version

Version	Date	Author	Changes
H_UK	29/05/13	РВ	First UK document version
I_UK	27/06/14	PB	Compatibility Matrix between firmwares and readers
			Clarification on alert message about the possibility to add prefix and suffix to the radio frames
J_UK	25/04/16	LA	Add instruction information: communication mode
K_UK	02/11/16	MG	Add 3.39 Radio Statistic, 3.29 Filtering Mask
L_UK	24/11/16	DR	Function table updated
M_UK	31/03/17	DR LA	Add compatibility table for 24/32 bits

	DRAFT	CORRECTION	FINAL
STATUS			0
DISTRIBUTION	CONFIDENTIAL	LIMITED	GENERAL
LEVEL			•