c) Read the proof of Theorem 12.4.12, and explain

- i) Why does the expression z_0 have to satisfy $(z_0^6 + z_0^5 + \dots z_0 + 1) = 0$, and why must the expression $\frac{1}{z_0}$ be defined? Since by calculation. z=1. Its a solution to z^7z_1 and $z^7=1 \Rightarrow z^7-1=0$. By long division $z^7-1=(z_0^6+z_0^5+\dots+z_0+1)=0$, which $(z_0^6+z_0^5+\dots+z_0+1)=0$. Since z=c+b: $\overline{z}=a-b$: gives |z|=z: $\overline{z}=(a+bi)(a-bi)=a^2+b^2=1$. which $\overline{z}=\frac{1}{z}$, as \overline{z} is defined, \overline{z} need to be obtinal and will be used to express. $z=z+\overline{z}=(a+bi)+(a-bi)=z=z=z+\overline{z}=z$
- ii) Why could we make the assumption $\frac{1}{z_0} = \overline{z_0}$? Since 3 = a + bi. $\overline{z} = a - bi$. gives $|z| = 3 \cdot \overline{z} = (a + bi)(a - bi) = a^2 + b^2 = 1$. which $\overline{z} = \frac{1}{2}$
- iii) How did we conclude that $z_0+\frac{1}{z_0}=2\mathrm{Re}(z_0)$? Since $z_0=a+b$ i. $\overline{z}_0=a-b$ i. gives $|z_0|=3$. $\overline{z}_0=(a+bi)(a-bi)=a^2+b^2=1$. which $\overline{z}_0=\frac{1}{2}$, as \overline{z}_0 is defined. \overline{z}_0 need to be obtained and will be used to express. $\overline{z}_0=\frac{1}{2}$, $\overline{z}_0=(a+bi)+(a-bi)=2a=2\,\mathrm{Re}(z_0)$.

Since. No = 2+ \overline{z} = 2.+ $\frac{1}{z}$, glus $z_0 + \frac{1}{z_0} = 2 \text{Re}(z_0)$ d) For n=3, use the method of 12.4.12 to calculate $\text{Re}(z_0)$ where z_0 the second cube-root of unity. Use this information to draw/construct cube roots of unity. (Please use proper steps of Greek Construction)

I used the steps, I described in (b).