internal discrete sym. Invession perticle en outiporticle. Beryon # - B Leptou # strenge us st. Strongen SS S SPIN. EM CY=- 1 M° ← TY = Cq° = +1. no eigenstete of a pointy. TO TYY? 70 -> Y

π^0 DECAY MODES

Particle

Dater

Chools

pdg.161.gov

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level						
Γ_1	2γ	$(98.823\pm0.03$	S=1.5						
Γ_2	$e^+e^-\gamma$	$(1.174\pm0.03$	S=1.5						
Γ_3	γ positronium	(1.82 ± 0.29	$\times 10^{-9}$						
Γ_4	$e^{+}e^{+}e^{-}e^{-}$	(3.34 ± 0.16	$() \times 10^{-5}$						
Γ_5	e^+e^-	(6.46 ± 0.33)	() × 10 ⁻⁸						
Γ_6	4 γ	< 2	$\times 10^{-8}$ CL=90%						
Γ_7	$ u \overline{ u}$	[a] < 2.7	$\times 10^{-7}$ CL=90%						
Γ_8	$ u_{\mathbf{e}}\overline{ u}_{\mathbf{e}}$	< 1.7	$\times 10^{-6}$ CL=90%						
Γ_9	$ u_{\mu}\overline{ u}_{\mu}$	< 1.6	$\times 10^{-6}$ CL=90%						
Γ_{10}	$ u_{\mathcal{T}} \overline{\overline{ u}}_{\mathcal{T}}$	< 2.1	$\times10^{-6}$ CL=90%						
Γ_{11}	$\gamma u \overline{ u}$	< 6	\times 10 ⁻⁴ CL=90%						
Charge conjugation (C) or Lepton Family number (LF) violating modes									
Γ_{12}	-3γ	< 3.1	$\times 10^{-8}$ CL=90%						
Γ12($(k + e^-)$	F < 3.8	$\times10^{-10}$ CL=90%						

LF

< 3.4

< 3.6

CL=90%

 $\times 10^{-10}$ CL=90%

Example:
$$e^{\dagger}e^{-}$$
 $S=\frac{1}{2}$
 $e^{\dagger}e^{-}$ e^{-} e^{-

$$C = \mathbb{P} + Spin excharge.$$

$$C = e^{-1} = (-1)^{1} (-1)^{1} (-1)^{1}$$

$$C = e^{-1} = (-1)^{1} (-1)^{1} (-1)^{1}$$

$$C = e^{-1} = (-1)^{1} (-1)^{1} (-1)^{1}$$

$$E = (-1)^{1} (-1)^{1} (-1)^{1}$$

Isospin

$$\Delta M = \frac{1}{1000}$$

ruleus of denterium.

PBU

friplet

< 0,01 = < ~9/ Hypothesis: 12>

11,1>

$$12(-1) -1 -\frac{1}{2} -\frac{1}{2} \quad 0 \quad -1$$

Neverts (PEP
$$\rightarrow$$
 d+ PT) \propto T (PEP \rightarrow od+ PT)

$$T \propto |M_{f}|^{2} (E_{f})$$

$$T (PPP) \rightarrow d+ PT) = \frac{|M_{f}(PP)|^{2}}{|M_{f}(PP)|^{2}} \frac{p(PP)}{p(PM)}$$

$$M_{f}(PP) = 2|II| |HII |II|>$$

$$M_{f}(PP) = \frac{1}{|T_{E}|} (2|I_{1}O|H_{I}|I_{1}O)) + \frac{1}{|T_{E}|} (2|I_{1}O|H_{I}|I_{1}O)$$

$$If I Galerred in Strong, inter.$$

$$H_{I}|I_{1}O> = \alpha(--) |I_{1}O>$$

$$20|I_{1}|I_{1}O> = \alpha(--) |I_{1}O>$$

$$20|I_{1}|I_{1}O> = \alpha(--) |I_{1}O>$$

$$= \frac{1}{|T_{E}|^{2}} \frac{|M|^{2}}{|M|^{2}} = 2$$

$$\Rightarrow \frac{1}{|T_{E}|^{2}} \frac{|M|^{2}}{|T_{1}(PPP)|^{2}} = \frac{1}{|T_{1}(PPP)|^{2}} = \frac{1}{|T_{1}(PPP)|^{2}}$$

$$\Rightarrow \frac{1}{|T_{1}(PPP)|^{2}} = \frac{1}{|T_{1}(PPP)|^{2}} = \frac{1}{|T_{1}(PPP)|^{2}} = \frac{1}{|T_{1}(PPP)|^{2}}$$

$$\Rightarrow \frac{1}{|T_{2}(PPP)|^{2}} = \frac{1}{|T_{1}(PPP)|^{2}} = \frac{1}{|$$

Figure 5.35: Total cross section as a function of pion kinetic energy for the scattering of positive and negative pions from protons. (1 mb = 1 millibarn = 10^{-27} cm².)

strong decay. The 10 sec.

straye particles.

produced with strong

interaction

P+12-2 K+

nucleus: A, 2

$$= 2 \quad T_3 = 2 \left(\frac{1}{2} + \frac{1}{2}\right) - \frac{1}{2} A = 2$$

$$\Im I_3 = Q - \frac{B}{2}$$

$$\square \qquad Q = \perp_{S} + \frac{R}{Z}$$

Gell-Mann.

Nishijma.

$$\pi^{+}: Q = +(+\frac{0}{2})$$

Strenje perticles: Kt,K, K, Ko

$$Q = I_3 + \frac{B+S}{Z}$$

Name	π^{\pm}	π^0	Κ [±]	K ⁰	η	р	n	Λ	Σ±,0	Δ
Mass (MeV)	140	135	494	498	548	938	940	1116	1190	1232
Charge	±1	0	±1	0	0	1	0	0	±1,0	2,±1,0
Parity	×	_	-	_	_	+	+	+	+	+
Baryon n.	0	0	0	0	0	1	1	1	1	1
Spin	0	0	0	0	0	1/2	1/2	1/2	1/2	3/2

Eightfold Way. 1961-1964.

Meson = 9, 92

育の草 S = 0, 1

Mesous.

Gell-Mann, Zweig 1964 Hypoth: 3 quals.

SU(3) Flavor

Mesous: 3 € 3 = 8 ⊕ 1

 $I3 = \left(\frac{0}{4} \right) - \frac{1}{2}$

S; \$3=0.

s = 11

SU = & =0.

What about uu, da, S5?