Statistical Analysis System: Class 17

Dated: 28 Apr, 2018

Global & Local Options in SAS

- If defined once, works for all the datasets in the sas editor until the session is closed
- If global option is overwritten, then updated global option will be functional for the rest of the code in the editor.
- If a datastep has local option, the same will be functional only and not the global option.
- By default global option has MAX range.
- Practical application is the SRP (sample run of production).

SAS Program	Explanation
ZIZZ ZIVSI WIII	ZAPANIAWAYA
<pre>Prog 1 options obs=2; data a; set sasuser.admit; run;</pre>	Explained For 1 Global option defined is OBS = 2 Output dataset "a" will have only 2 Observations. NOTE: There were 2 observations read from the data set SASUSER.ADMIT. NOTE: The data set WORK.A has 2 observations and 9 variables. NOTE: DATA statement used (Total process time): real time 1.56 seconds cpu time 1.40 seconds
<pre>Prog 2 options obs=5; data b; set sasuser.admit; run;</pre>	Explained For 2 Global option overwritten, is OBS = 5 Output dataset "b" will have only 5 Observations. NOTE: There were 5 observations read from the data set SASUSER.ADMIT. NOTE: The data set WORK.B has 5 observations and 9 variables. NOTE: DATA statement used (Total process time): real time 0.07 seconds cpu time 0.04 seconds
<pre>Prog 3 data c; set sasuser.admit(obs=10) ; run;</pre>	Explained For 3 Global option overwritten, is set to OBS = 5 (from Prog 2). But Local option sets, OBS=10 and nullifies Global option, OBS=5, but only for this particular datastep. Output dataset "c" will have 10 Observations. NOTE: There were 10 observations read from the data set SASUSER.ADMIT. NOTE: The data set WORK.C has 10 observations and 9 variables. NOTE: DATA statement used (Total process time): real time 0.04 seconds cpu time 0.04 seconds
<pre>Prog 4 data k; set sasuser.admit; run;</pre>	Explained For 4 Global option, OBS=5 (continues from Prog 2) Output "K" has 5 observations. NOTE: There were 5 observations read from the data set SASUSER.ADMIT. NOTE: The data set WORK.K has 5 observations and 9 variables. NOTE: DATA statement used (Total process time): real time 0.04 seconds cpu time 0.04 seconds

Explained For 5 Global option, OBS=max (Obs=max, is the default range for global Prog 5 options obs=max; Output "d" has 21 observations. data d; set sasuser.admit; NOTE: There were 21 observations read from the data set SASUSER.ADMIT. run; NOTE: The data set WORK.D has 21 observations and 9 variables. NOTE: DATA statement used (Total process time): 0.03 seconds real time cpu time 0.03 seconds **Explained For 6** Global option, OBS=max (Obs=max, continued from Prog 5) Output "e" has 21 observations. Prog 6 data e; NOTE: There were 21 observations read from the data set SASUSER.ADMIT. set sasuser.admit; NOTE: The data set WORK.E has 21 observations and 9 variables. run; NOTE: DATA statement used (Total process time): real time 0.03 seconds cpu time 0.03 seconds

PROC SQL:

- SQL stands for Structured Query Language.
- Query is a code written with SQL
- Proc sql goes with following 6 keywords:
 - 1. Select (select *, denotes selection of every variable from the specified table)
 - 2. From
 - 3. Where
 - 4. Group By
 - 5. Having
 - 6. Order By

/* Prog 7: Simple sql query for creating a table */

Sql Query	Base SAS equivalent (datastep / Procstep)
<pre>proc sql; create table a as select * from sasuser.admit; quit;</pre>	<pre>data a; set sasuser.admit; run;</pre>

Explained: This Sql Query will create a table "a" with all the variables and all observations from S.A.

NOTE: Table WORK.A1 created, with 21 rows and 9 columns.

NOTE: PROCEDURE SQL used (Total process time):

real time 1.23 seconds cpu time 1.14 seconds

OUTPUT:

	ID	Name	Sex	Age	Date	Height	Weight	ActLevel	Fee
1	2458	Murray, W	М	27	1	72	168	HIGH	85.20
2	2462	Almers, C	F	34	3	66	152	HIGH	124.80
3	2501	Bonaventure, T	F	31	17	61	123	LOW	149.75
4	2523	Johnson, R	F	43	31	63	137	MOD	149.75
5	2539	LaMance, K	М	51	4	71	158	LOW	124.80
6	2544	Jones, M	М	29	6	76	193	HIGH	124.80
7	2552	Reberson, P	F	32	9	67	151	MOD	149.75
8	2555	King, E	М	35	13	70	173	MOD	149.75
9	2563	Pitts, D	М	34	22	73	154	LOW	124.80
10	2568	Eberhardt, S	F	49	27	64	172	LOW	124.80
11	2571	Nunnelly, A	F	44	19	66	140	HIGH	149.75
12	2572	Oberon, M	F	28	17	62	118	LOW	85.20
13	2574	Peterson, V	М	30	6	69	147	LOW	149.75
14	2575	Quigley, M	F	40	8	69	163	HIGH	124.80
15	2578	Cameron, L	М	47	5	72	173	NA	124.80
16	2579	Underwood, K	М	60	22	71	191	LOW	149.75
17	2584	Takahashi, Y	F	43	29	65	123	MODY	124.80
18	2586	Derber, B	М	25	23	75	188	HIGH	85.20
19	2588	Ivan, H	F	22	20	63	139	LOW	85.20
20	2589	Wilcox, E	F	41	16	67	141	HIGH	149.75
21	2595	Warren, C	М	54	7	71	183	MOD	149.75

/* Prog 8: Subsetting through sql */

Sql Query	Base SAS equivalent (datastep / Procstep)
<pre>proc sql; create table b as select id, name from sasuser.admit; quit;</pre>	<pre>data b (keep=id name); set sasuser.admit; run;</pre>

Explained: This SQL query will create a table "b" but selecting only 2 variables (id, name) given after SELECT keyword from S.A.

NOTE: Table WORK.B created, with 21 rows and 2 columns. NOTE: PROCEDURE SQL used (Total process time):

real time 0.01 seconds cpu time

OUTPUT:

	ID	Name			
1	2458	Murray, W			
2	2462	Almers, C			
3	2501	Bonaventure, T			
4	2523	Johnson, R			
5	2539	LaMance, K			
6	2544	Jones, M			
7	2552	Reberson, P			
8	2555	King, E			
9	2563	Pitts, D			
10	2568	Eberhardt, S			
11	2571	Nunnelly, A			
12	2572	Oberon, M			
13	2574	Peterson, V			
14	2575	Quigley, M			
15	2578	Cameron, L			
16	2579	Underwood, K			
17	2584	Takahashi, Y			
18	2586	Derber, B			
19	2588	Ivan, H			
20	2589	Wilcox, E			
21	2595	Warren, C			

/* Prog 9: Print through sql */

Sql Query	Base SAS equivalent (datastep / Procstep)			
<pre>proc sql; select * from sasuser.admit; quit;</pre>	<pre>proc print data=sasuser.admit; run;</pre>			

Explained: This SQL query will print a table of the contents of S.A

NOTE: PROCEDURE SQL used (Total process time):

real time 0.37 seconds cpu time 0.35 seconds

OUTPUT:

			The SA	S System		18:43 Fri	day, Mag	y 1, 2009
ID	Name	Sex	Age	Date	Height	Weight	Act Level	Fee
2458	Murray, W	М	27	1	72	168	HIGH	85.20
2462	Almers, C	F	34	3	66	152	HIGH	124.80
2501	Bonaventure, T	F	31	17	61	123	LOM	149.75
2523	Johnson, R ´	F	43	31	63	137	MOD	149.75
2539	LaMance, K	M	51	4	71	158	LOM	124.80
2544	Jones, M	M	29	6	76	193	HIGH	124.80
2552	Reberson, P	F	32	9	67	151	MOD	149.75
2555	King, E	М	35	13	70	173	MOD	149.75
2563	Pitts, D	М	34	22	73	154	LOM	124.80
2568	Eberhardt, S	F	49	27	64	172	LOM	124.80
2571	Nunnelly, A	F	44	19	66	140	HIGH	149.75
2572	Oberon, M	F	28	17	62	118	LOM	85.20
2574	Peterson, V	М	30	6	69	147	LOM	149.75
2575	Quigley, M	F	40	8	69	163	HIGH	124.80
2578	Cameron, L	M	47	5	72	173	NA	124.80
2579	Underwood, K	M	60	22	71	191	LOM	149.75
2584	Takahashi, Y	F	43	29	65	123	MODY	124.80
2586	Derber, B	M	25	23	75	188	HIGH	85.20
2588	Ivan, H	F	22	20	63	139	LOM	85.20
2589	Wilcox, E	F	41	16	67	141	HIGH	149.75
2595	Warren, C	M	54	7	71	183	MOD	149.75

/* **Prog 10**: Selective print through sql */

Sql Query	Base SAS equivalent (datastep / Procstep)
<pre>proc sql; select id,name from sasuser.admit; quit;</pre>	<pre>proc print data=sasuser.admit; var id name; run;</pre>

Explained: This SQL query will print a table from S.A but only with variables id, name as stated after select keyword.

NOTE: PROCEDURE SQL used (Total process time):

real time 0.00 seconds cpu time 0.00 seconds

OUPTUT:

```
The SAS System 18:43 Friday, May 1, 2009

ID Name

2458 Murray, W
2462 Almers, C
2501 Bonaventure, T
2523 Johnson, R
2539 LaMance, K
2544 Jones, M
2552 Reberson, P
2555 King, E
2563 Pitts, D
2568 Eberhardt, S
2571 Nunnelly, A
2572 Oberon, M
2574 Peterson, V
2575 Quigley, M
2578 Cameron, L
2579 Underwood, K
2584 Takahashi, Y
2586 Derber, B
2588 Ivan, H
2589 Wilcox, E
2595 Warren, C
```

/* Prog 11: Selective print through sql */

Sql Query	Base SAS equivalent (datastep / Procstep)
<pre>proc sql; select id, name, age from sasuser.admit; quit;</pre>	<pre>proc print data=sasuser.admit; var id name age; run;</pre>

Explained: Just like Prog 10, this will give variables: id, name, age as stated after select keyword.

NOTE: PROCEDURE SQL used (Total process time):

real time 0.00 seconds cpu time 0.00 seconds

OUTPUT:

	The SAS System		18:43	Friday,	May	1,	2009
ID	Name	Age					
2458	Murray, W	27					
2462	Almers, C	34					
2501	Bonaventure, T	31					
2523	Johnson, R	43					
2539	LaMance, K	51					
2544	Jones, M	29					
2552	Reberson, P	32					
2555	King, E	35					
2563	Pitts, D	34					
2568	Eberhardt, S	49					
2571	Nunnelly, A	44					
2572	Oberon, M	28					
2574	Peterson, V	30					
2575	Quigley, M	40					
2578	Cameron, L	47					
2579	Underwood, K	60					
2584	Takahashi, Y	43					
2586	Derber, B	25					
2588	Ivan, Ĥ	22					
2589	Wilcox, E	41					
2595	Warren, C	54					

/* Prog 12: Drop in SQL*/

Sql Query	Base SAS equivalent (datastep / Procstep)
<pre>proc sql; create table a as select * from sasuser.admit(drop=id name); quit;</pre>	<pre>data a(drop=id name); set sasuser.admit; run;</pre>

Explained: Drop, can be used as dataset option in Proc SQL to filter unwanted variables from any table, here id, name are dropped.

NOTE: Table WORK.A created, with 21 rows and 7 columns.

NOTE: PROCEDURE SQL used (Total process time):

real time 0.01 seconds cpu time 0.01 seconds

OUTPUT:

	I o I		5.	11 . 1 .			
	Sex	Age	Date	Height	Weight	ActLevel	
1	М	27	1	72	168	HIGH	85.20
2	F	34	3	66	152	HIGH	124.80
3	F	31	17	61	123	LOW	149.75
4	F	43	31	63	137	MOD	149.75
5	М	51	4	71	158	LOW	124.80
6	М	29	6	76	193	HIGH	124.80
7	F	32	9	67	151	MOD	149.75
8	М	35	13	70	173	MOD	149.75
9	М	34	22	73	154	LOW	124.80
10	F	49	27	64	172	LOW	124.80
11	F	44	19	66	140	HIGH	149.75
12	F	28	17	62	118	LOW	85.20
13	М	30	6	69	147	LOW	149.75
14	F	40	8	69	163	HIGH	124.80
15	М	47	5	72	173	NA	124.80
16	М	60	22	71	191	LOW	149.75
17	F	43	29	65	123	MODY	124.80
18	М	25	23	75	188	HIGH	85.20
19	F	22	20	63	139	LOW	85.20
20	F	41	16	67	141	HIGH	149.75
21	м	54	7	71	183	MOD	149.75

/* Prog 13: Multiple Table creation in SQL */

Sql Query	Base SAS equivalent (datastep / Procstep)
<pre>proc sql; create table a as select * from sasuser.admit; create table b as select * from sasuser.admit;</pre>	<pre>data a b c; set sasuser.admit; run;</pre>
<pre>create table c as select * from sasuser.admit; quit;</pre>	Note : for Multiple table creation Base SAS is more efficient as can be seen by the no of lines in the codes to avoid writing repetitive queries in SQL.

Explained: All the 3 datasets (a,b,c) will have all variables and observations from S.A.

OUTPUT: ouptut will be same as Prog 7 above for all 3 datasets (a,b,c).

/* Prog 14: Multiple Table creation in SQL*/

Sql Query	Base SAS equivalent (datastep / Procstep)			
<pre>proc sql; create table a as select * from sasuser.admit; create table b as select id,name from sasuser.admit; create table c as select * from sasuser.admit(drop=age); quit;</pre>	<pre>data a b(keep=id name) c(drop=age); set sasuser.admit; run;</pre>			

Explained: Dataset a, will have 21 obs and 9 variables from S.A

Dataset b, will have id, name as the only 2 variables and 21 observations from S.A.

Dataset c, will have 8 variables (excluding "age") and 21 observations from S.A.

OUPTUT:

Ouput dataset a, is same as output for Prog 7 above.

Ouput dataset b, is same as output for Prog 10 above.

Ouput dataset c, is same as Prog 7 above, except the "age" variable since age is dropped in dataset "c".

Creating new variable in SQL query is done as:

If a logical equation to create a new variable is suppose,

age_m = age*12; Here, L.H.S = Age_m R.H.S = age*12

SQL query will use R.H.S first and then L.H.S, considering that this new variable does not exist already in the parent dataset, therfore the SQL query becomes:

Create table (table_name) as select (specific variable name or *, can use as per the need),(R.H.S of the logical equation) as (L.H.S / new variable name) from (parent dataset name).

/* Prog 15: Creating new variable in SQL*/

Sql Query	Base SAS equivalent (datastep / Procstep)
<pre>proc sql; create table a as select *,age*12 as age_m from sasuser.admit; quit;</pre>	<pre>data a; set sasuser.admit; age_m=age*12; run;</pre>

Explained: this query, creates a table with all the contents from S.A, adding a new variable, age m to it.

OUTPUT:

	ID	Name	Sex	Age	Date	Height	Weight	ActLevel	Fee	age_m
1	2458	Murray, W	М	27	1	72	168	HIGH	85.20	324
2	2462	Almers, C	F	34	3	66	152	HIGH	124.80	408
3	2501	Bonaventure, T	F	31	17	61	123	LOW	149.75	372
4	2523	Johnson, R	F	43	31	63	137	MOD	149.75	516
5	2539	LaMance, K	М	51	4	71	158	LOW	124.80	612
6	2544	Jones, M	М	29	6	76	193	HIGH	124.80	348
7	2552	Reberson, P	F	32	9	67	151	MOD	149.75	384
8	2555	King, E	М	35	13	70	173	MOD	149.75	420
9	2563	Pitts, D	М	34	22	73	154	LOW	124.80	408
10	2568	Eberhardt, S	F	49	27	64	172	LOW	124.80	588
11	2571	Nunnelly, A	F	44	19	66	140	HIGH	149.75	528
12	2572	Oberon, M	F	28	17	62	118	LOW	85.20	336
13	2574	Peterson, V	М	30	6	69	147	LOW	149.75	360
14	2575	Quigley, M	F	40	8	69	163	HIGH	124.80	480
15	2578	Cameron, L	М	47	5	72	173	NA	124.80	564
16	2579	Underwood, K	М	60	22	71	191	LOW	149.75	720
17	2584	Takahashi, Y	F	43	29	65	123	MODY	124.80	516
18	2586	Derber, B	М	25	23	75	188	HIGH	85.20	300
19	2588	Ivan, H	F	22	20	63	139	LOW	85.20	264
20	2589	Wilcox, E	F	41	16	67	141	HIGH	149.75	492
21	2595	Warren, C	М	54	7	71	183	MOD	149.75	648

/* **Prog 16**: Creating new variable in SQL*/

Sql Query	Base SAS equivalent (datastep / Procstep)
<pre>proc sql; create table a as select id,name,age*12 as age_m,height/weight as bmi from sasuser.admit where age gt 40; quit;</pre>	<pre>data a(keep=id name age_m bmi); set sasuser.admit; age_m=age*12; bmi=height/weight; where age gt 40; run;</pre>

Explained: This query, creates a table with variables id, name, age_m, bmi from S.A while also checking for the condition of age > 40.

OUTPUT:

	ID	Name	age_m	bmi
1	2523	Johnson, R	516	0.4598540146
2	2539	LaMance, K	612	0.4493670886
3	2568	Eberhardt, S	588	0.3720930233
4	2571	Nunnelly, A	528	0.4714285714
5	2578	Cameron, L	564	0.4161849711
6	2579	Underwood, K	720	0.3717277487
7	2584	Takahashi, Y	516	0.5284552846
8	2589	Wilcox, E	492	0.475177305
9	2595	Warren, C	648	0.3879781421

/* Prog 17: Sql equivalent for below 3 codes in Base Sas */

Sql Query	Base SAS equivalent (datastep /		
	Procstep)		
proc sql;	data a(keep=id name age_m		
	bmi);		
create table all as select id, name, age*12	set sasuser.admit;		
as age_m,height/weight as bmi from	age_m=age*12;		
sasuser.admit	<pre>bmi=height/weight;</pre>		
where age gt 40;	where age gt 40;		
<pre>/* this statement Modifies dataset*/</pre>	run;		
create table b as select * from a;			
<pre>/* this statement creates new dataset*/</pre>	data b;		
	set a;		
select * from a;	run;		
/* this statement prints the dataset*/			
quit;	<pre>proc print data=a;</pre>		
	run;		

Explained: This query explains how sql query simplifies, modifying a dataset, creating new dataset from the existing and also printing the dataset.

OUTPUT:

OUTPU	J 1 :					
	The SAS System			18:43 Friday, May		
ID	Name	age_m	bm i			
2523	Johnson, R	516	0.459854			
2539	LaMance, K	612	0.449367			
2568	Eberhardt, S	588	0.372093			
2571	Nunnelly, A	528	0.471429			
2578	Cameron, L	564	0.416185			
2579	Underwood, K	720	0.371728			
2584	Takahashi, Y	516	0.528455			
2589	Wilcox, E	492	0.475177			
2595	Warren, C	648	0.387978			

/* Prog 18: for the below Base SAS code while applying conditional formatting on a newly created variable, methods to write sql queries*/

Note: Where does not work with a newly created variable within the datastep therefore If is used for any conditional formatting.

Base SAS Code:

```
data a;
set sasuser.admit;
age_m=age*12;
if age_m gt 400;
run;
```

SQL Queries:

Method 1: Applying conditional formatting (where) with the R.H.S of the logical equation.

```
proc sql;
create table a1 as select *,age*12 as age_m from sasuser.admit where
age*12 gt 400;
quit;
```

Method 2: Creating the new variable in 1^{st} query in a table and then applying conditional formatting in the 2^{nd} query..

```
proc sql;
create table a as select *,age*12 as age_m from sasuser.admit;
create table b as select * from a where age_m gt 400;
quit;
```

Method 3: Using **Calculated** Keyword with (where) for formatting.

```
proc sql;
create table a as select *,age*12 as age_m from sasuser.admit
where calculated age_m gt 400;
quit;
```

Method 4: Inline view: where view is a table but not physically present. This method first creates a table with the new variable in it (but this table has no physical presence) and then the where condition is applied on the new table created from the view table

```
proc sql;
create table a as select * from
(
select *,age*12 as age_m from sasuser.admit
) where age_m gt 400;
quit;
```