Machine Learning Foundations

Week-1 Revision

Arun Prakash A

Applications

Weather prediction

Automobiles and Robotics: Autonomous car

Chat bots, voice assistants: Alexa

Gaming: Alpha go

Recommendation: Amazon

ML or Not to ML:

Rules well defined, known or not

Data

Data	
x1 = [3,5,4]	
x2 = [3,4,5]	
x3 = [4,2,1]	
x4 = [6,7,8]	
x5 = [1,2,3]	
x6 = [1,1,1]	
x7 = [1,2,0]	

Data	label
x1 = [3,5,4]	0
x2 = [3,4,5]	1
x3 = [4,2,1]	0
x4 = [6,7,8]	1
x5 = [1,2,3]	1
x6 = [1,1,1]	1
x7 = [1,2,0]	0

Terminology: Features (x_j^i) , number of samples (n), Labels (Ground truth) (y^i)

Features (x_j^i) , Index starts from 1 number of samples (n=7), Labels (Ground truth) $(y^i), y^2 = 1$

Train, Validation and Test Data

Total samples: 659

Train Set:

80% of total: 455

Validation Set:

20% of training:91

Test Set:

20% of total: 204

Types

Supervised (Data with labels)

Classification

Output:

Discrete and Finite

Loss: 0-1 loss

$$rac{1}{n}\sum_{i=1}^n \mathbf{1}(f(x^i)
eq y^i)$$

Regression

Output:

Continuous and infinite in general

Loss: MSE

$$rac{1}{n}\sum_{i=1}^n (f(x^i)-y^i)^2$$

Unsupervised (Data without labels)

Dimensionality Reduction

Encoder, decoder (compressor or decompressor),

Loss (Reconstruction error)

$$rac{1}{n} \sum_{i=1}^n ||g(f(x^i)) - x^i||^2$$

$$x \in \mathbb{R}^d$$

$$f: \mathbb{R}^d o \mathbb{R}^{d'} \ \overline{d' \ll d}$$

$$q:\mathbb{R}^{d'} o\mathbb{R}^d$$

Density Estimation

Estimate PDF (Mean, variance),

Loss: Log-likelhood

$$rac{1}{n}\sum_{i=1}^n -\log(P(x^i))$$

Training

Prediction:

Given a new sample, x = [1, -1, 1], predict the output.

$$f(x) = 1x_1 + 0.5x_2 - 1x_3$$

Any Questions?