실험계획과 분석

심송용(한림대학교 데이터과학스쿨)

http://jupiter.hallym.ac.kr

SAS를 사용한 분석

```
data a; /* oneway1.sas */
input program sales @@;
cards;
1 74 1 67 1 83 1 77 1 71
2 94 2 82 2 69 2 78 2 68
3 62 3 75 3 59 3 79 3 68
4 80 4 82 4 75 4 90 4 72
proc anova data = a;
class program;
model sales = program;
run;
```

• PROC ANOVA: 분산분석에서 사용하는 SAS 프로시저 중의 하나. 주로 균형설계(일반적

으로 모든 수준에서의 반복수가 동일)인 경우에 사용

- CLASS: 처리(그룹)을 표현하는데 사용된 변수를 설정
- MODEL: 반응변수 = 처리변수(들) 형태로 반응변수와 설명변수를 설정

Dependent	Variable:	sales
Dependent	vandoic.	Suics

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	371,750000	123,916667	1,84	0,1807
Error	16	1078,000000	67,375000		
Corrected Total	19	1449,750000			

R-Square	Coeff Var	Root MSE	sales Mean
0,256424	10,90794	8,208228	75,25000

Source	DF	Anova SS	Mean Square	F Value	Pr > F
program	3	371,7500000	123,9166667	1.84	0,1807


```
proc anova data = a;
class program;
model sales = program;
means program;
```

run;

• MEANS: 에 주어진 설명변수의 값에 따른 처리수준별 평균, 표준편차 계산 및 다중비교

Level of program		sales				
	N	Mean	Std Dev			
1	5	74,4000000	6,0663004			
2	5	78,2000000	10,6395489			
3	5	68,6000000	8,4439327			
4	5	79,8000000	6,9426220			

GLM 프로시저: ANOVA보다 범용으로 사용

DATA 정의는 oneway1.sas와 같으며 CLASS 문, MODEL, MEANS문의 기본사용법은 같음
/* oneway2.sas */
proc glm data = a;
class program;
model sales = program / solution clparm;
means program;
run;

MODEL 문의 옵션

- solution: τ_i 들의 추정치 계산
- clparm: 신뢰구간 계산(기준범주와 차이에 대한 신뢰구간임에 유의)

출력에서 분산분석표, 평균/표준편차 계산, 상자그림 등은 PROC ANOVA와 같은 값이므로 생략함.

Parameter Estimate		Estimate		t Value	Pr > t	95% Confide	ence Limits
Intercept	79,80000000	В	3,67083097	21,74	<,0001	72,01818598	87,58181402
program 1	-5.40000000	В	5,19133894	-1.04	0,3137	-16,40514693	5,60514693
program 2	-1,60000000	В	5,19133894	-0,31	0,7619	-12,60514693	9,40514693
program 3	-11,20000000	В	5,19133894	-2.16	0,0465	-22,20514693	-0.19485307
program 4	0,00000000	В	()•	,	:96		

빨간 박스: solution 옵션에 의한 결과 파란 박스: clparm 옵션에 의한 결과

- B(회귀계수)의 값은 intercept에 각 program에서의 추정치를 더해주면 됨. 즉, $\overline{y}_1 = 79.8 5.4 = 74.4$, $\overline{y}_4 = 79.8 + 0 = 79.8$ 등임.
- 표준오차는 intercept를 제외하면 모두 5.191인데 이 값은 기준범주(이 경우 program 4)와 차이에 대한 표준오차를 계산한 것으로 이 값은

$$SE(\overline{y}_{i\cdot} - \overline{y}_{4\cdot}) = \sqrt{MSE} \, \sqrt{\frac{1}{n_i} + \frac{1}{n_4}} = \sqrt{67.375} \, \sqrt{\frac{1}{5} + \frac{1}{5}} = 5.191339 \ \ \ \boxdot.$$

따라서 차이에 대한 신뢰구간은

$$\begin{split} \mu_i - \mu_4 &= \overline{y}_{i\cdot} - \overline{y}_{4\cdot} \pm t_{N-a;\alpha} \sqrt{MSE} \sqrt{\frac{1}{n_i} + \frac{1}{n_4}} = (74.4 - 79.8) \pm 2.12 \times 5.191339 \\ &= (-16.403, 5.603) \ (i = 1 일 \ \text{때}, 반올림 오차 포함) \end{split}$$

• intercept에 대한 표준오차는 기준범주 program 4의 평균 μ_i 에 대한 것으로 $SE(\overline{y}_{4.}) = \sqrt{MSE}/\sqrt{n_4} = \sqrt{67.375/5} = 3.670831 \text{ 이며}$ 신뢰구간은 $\mu_4 = \overline{y}_{4.} \pm t_{N-\alpha;\alpha/2}SE(\overline{y}_{4.}) = 79.8 \pm 2.12 \times 3.670831 = (72.01784,87.58216)임.$

보기: 독립 이표본 t-검정 재검토

```
data score; /* oneway3.sas */
input gender$ score;
cards;
데이터 생략. ttest1.sas 와 같음;
proc glm data=score;
class gender;
model score = gender;
run;
```

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1960,000000	1960,000000	5.75	0,0433
Error	8	2726,000000	340,750000		
Corrected Total	9	4686,000000			

R-Square	Coeff Var	Root MSE	score Mean
0,418267	5,768567	18,45941	320,0000

t-검정의 출력(ttest1.sas)

gender	Method	hod Mean 95% CL Mean		Method Mean	Std Dev	95% CL	Std Dev
F		334,0	311,7	356,3	17,9304	10,7427	51,5241
М		306,0	282,4	329,6	18,9737	11,3678	54,5219
Diff (1-2)	Pooled	28,0000	1,0780	54,9220	18,4594	12,4685	35,3640
Diff (1-2)	Satterthwaite	28,0000	1,0630	54,9370			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	2.40	0,0433
Satterthwaite	Unequal	7,9745	2.40	0,0434

유의확률이 같음(0.0433)

$$t^2 = F \ (2.40^2 = 5.75)$$

 $S_p^2 = MSE$ (출력에서는 제곱근 값을 비교: $S_p = \sqrt{MSE} = 18.4594$)