1. Basic Notions

Definition 1.1. A binary operation on a set S is a function $f: S \times S \to S$.

Definition 1.2. A *field* is a set \mathbb{F} together with two binary operations +, and \cdot called addition and multiplication (respectively) such that

1. For all $a, b, c \in \mathbb{F}$ we have

$$a + (b+c) = (a+b) + c$$

and

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$

2. For all $a, b \in \mathbb{F}$ we have

$$a+b=b+a$$

and

$$a \cdot b = b \cdot a$$
.

- 3. There exists an element $0 \in \mathbb{F}$, called an additive identity, such that for all $a \in \mathbb{F}$ we have a + 0 = a.
- 4. There exists an element $1 \in \mathbb{F}$, called a multiplicative identity, such that for all $a \in \mathbb{F}$ we have $a \cdot 1 = a$.
- 5. For all $a \in \mathbb{F}$ there exists an element $b \in \mathbb{F}$, called an additive inverse, such that a+b=0.
- 6. For all $a \in \mathbb{F}$ such that $a \neq 0$ there exists an element $c \in \mathbb{F}$, called a multiplicative inverse, such that $a \cdot c = 1$.
- 7. For all $a, b, c \in \mathbb{F}$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Note: Fields have a unique additive and multiplicative identity denoted 0 and 1 respectively. Moreover, when the additive and multiplicative inverses exist they are unique.

Some examples: All of the following examples are with their standard operations.

- 1. Q (rational numbers)
- 2. \mathbb{R} (real numbers)
- 3. \mathbb{C} (complex numbers)
- 4. $\mathbb{Z}/p\mathbb{Z}$ for p prime (Integers modulo p)

Non example: \mathbb{Z} is not a field, it lacks multiplicative inverses.

Definition 1.3. A vector space V over a field \mathbb{F} is a set V with two operations called vector addition and scalar multiplication where vector addition is a function $+: V \times V \to V$ and scalar multiplication is a function $\cdot: \mathbb{F} \times V \to V$ such that

1. For all $u, v \in V$ we have

$$u + v = v + u$$

2. For all $u, v, w \in V$ and for all $a, b \in \mathbb{F}$ we have

$$(u+v) + w = u + (v+w)$$

and

$$(ab) \cdot v = a \cdot (b \cdot v)$$

3. There exists a vector $0 \in V$, called an additive identity, such that for all $v \in V$ we have

$$v + 0 = v$$

4. For all $v \in V$ we have a vector $w \in V$, called an additive inverse, such that

$$v + w = 0$$

5. For all $v \in V$ we have

$$1 \cdot v = v$$

6. For all $a, b \in \mathbb{F}$ and for all $u, v \in V$ we have

$$a \cdot (u+v) = a \cdot u + a \cdot v$$

Some examples: All of the following examples are with their standard operations.

1.
$$\mathbb{F}^n = \left\{ \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} : a_i \in \mathbb{F} \right\}$$
 where \mathbb{F} is a field.

- 2. Polynomials with coefficients in a field \mathbb{F} .
- 3. Polynomials (with coefficients in a field \mathbb{F}) of degree $\leq n$
- 4. Continuous functions $f: X \to Y$, C(X,Y), where X and Y are fields.
- 5. Functions from a field X into a field Y.
- 6. $\mathbb{F}^{\infty} = \{(a_1, a_2, a_3, \ldots) : a_i \in \mathbb{F}\}.$

Proposition 1.1. Every vector space V has a unique additive identity. The unique additive identity is denoted 0.

Proposition 1.2. Every element $v \in V$ has a unique additive inverse. For all $v \in V$ its unique additive inverse is denoted -v.

Proposition 1.3. For all $v \in V$ we have $0 \cdot v = 0$.

Proposition 1.4. For all $a \in \mathbb{F}$ and $0 \in V$ we have $a \cdot 0 = 0$.

Proposition 1.5. For every $v \in V$ we have $(-1) \cdot v = -v$

2. Basis for a Vector Space

Definition 2.1. A linear combination of a list of vectors v_1, \ldots, v_m in V is a vector of the form

$$a_1v_1 + \ldots + a_mv_m$$

where $a_1, \ldots, a_m \in \mathbb{F}$.

Definition 2.2. The set of all linear combinations of a list of vectors v_1, \ldots, v_m in V is called the span of v_1, \ldots, v_m denoted by span $\{v_1, \ldots, v_m\}$.

$$span\{v_1, ..., v_m\} = \{a_1v_1 + ... + a_mv_m \mid a_i \in \mathbb{F}\}\$$

Definition 2.3. If V is a vector space and $V = \text{span}\{v_1, \dots, v_m\}$ then we say that v_1, \dots, v_m span V.

Definition 2.4. We say that a vectors space is *finite dimensional* if there exists a finite list of vectors v_1, \ldots, v_m such that

$$\mathrm{span}\{v_1,\ldots v_m\}=V$$

Otherwise we say that V is *infinite dimensional*.

Definition 2.5. A list of vectors v_1, \ldots, v_m in V is called *linearly independent* if the only choice of $a_1, \ldots, a_m \in \mathbb{F}$ such that

$$a_1v_1 + \ldots + a_mv_m = 0$$

is $a_1 = a_2 = \ldots = a_m$. A list is called *linearly dependent* if it is not linearly independent.

Lemma 2.6. Suppose that v_1, \ldots, v_m is a linearly dependent list in V. There exists a $j \in \{1, \dots, m\}$ such that

- 1) $v_j \in span\{v_1, \dots v_{j-1}\}$ 2) $span\{v_1, \dots, v_{j-1}, v_j, v_{j+1}, \dots v_m\} = span\{v_1, \dots, v_{j-1}, v_{j+1}, \dots v_m\}$