Chapitre 8 : Couples de variables aléatoires discrètes

Toutes les variables aléatoires considérées dans ce chapitre seront des variables aléatoires réelles discrètes.

1 Lois associées à un couple de variables aléatoires

1.1 Loi du couple

Définition 1 (Couple de variables aléatoires)

Soient X et Y des variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) . Le **couple de variables aléatoires discrètes** (X, Y) est l'application définie par

$$(X,Y):\Omega \longrightarrow \mathbb{R}^2$$

$$\omega \longmapsto (X(\omega),Y(\omega)).$$

Définition 2 (Loi d'un couple)

Soit (X, Y) un couple de variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) . On appelle **loi du couple** (X, Y) ou **loi conjointe de** X **et** Y la donnée de

$$P(X = x) \cap [Y = y]$$
 pour tout $x \in X(\Omega)$ et $y \in Y(\Omega)$.

On notera souvent P(X = x, Y = y) pour désigner $P(X = x) \cap [Y = y]$.

Exemple 1

On lance deux dés équilibrés (l'un bleu, l'autre blanc) dont les six faces sont numérotées de 1 à 6. On s'intéresse aux résultats possibles. On a donc :

$$(\Omega,\mathcal{A},\mathrm{P}) =$$

оù

 On note X la variable aléatoire donnant la valeur du dé bleu et Y celle donnant la valeur du dé blanc. Comme X et Y sont deux variable aléatoires discrètes définies sur (Ω, A, P), (X, Y) est un couple de variables aléatoires discrètes. Déterminons sa loi :

(a) On a

$$X(\Omega) = et Y(\Omega) =$$

(b) Pour tout $(i, j) \in X(\Omega) \times Y(\Omega)$ on a

$$P(X = i, Y = j) =$$

2. Maintenant, X désigne le plus petit des deux nombres obtenus et Y le plus grand. Comme X et Y sont deux variables aléatoires discrètes définies sur (Ω, \mathcal{A}, P) , (X, Y) est un couple de variables aléatoires discrètes. Déterminons sa loi :

(a) On a

$$X(\Omega) = et Y(\Omega) =$$

$0 \in X(\Omega) \times Y(\Omega) \ o$			

$y \in Y(\Omega)$	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Test 1 (Voir solution.)

Une urne contient 3 boules blanches, 4 boules vertes et 5 boules bleues indiscernables au touché. On tire simultanément 3 boules dans l'urne au hasard.

- 1. Déterminer l'espace probabilisé associé à cette expérience (Ω, \mathcal{A}, P) .
- 2. $Sur(\Omega, \mathcal{A}, P)$, on considère les variables aléatoires X égale au nombre de boules blanches obtenues et Y égale au nombre de boules vertes obtenues. Déterminer la loi de (X,Y).

Exemple 2

On lance en parallèle deux pièces équilibrées une infinité de fois et on s'intéresse aux résultats obtenus (on suppose tous les lancers indépendants). On note X le rang où la première pièce tombe sur « Face » pour la première fois et Y le rang où la deuxième pièce tombe sur « Face » pour la première fois. Déterminons la loi du couple (X, Y).

1. On a $X(\Omega) =$ et $Y(\Omega) =$ 2. Pour tout $(i, j) \in X(\Omega) \times Y(\Omega)$ déterminons P(X = i, Y = j).

Test 2 (Voir solution.)

Soit $p \in]0,1[$. On reprend l'énoncer de l'exemple 2 sauf qu'on ne suppose plus les pièces équilibrées : chacune d'elle donne « Face » avec probabilité p et « Pile » avec probabilité 1-p. Déterminer la loi du couple (X,Y) dans ce cas.

Proposition 1

Soit (X,Y) un couple de variables aléatoires discrètes définies sur un espace probabilisé (Ω,\mathcal{A},P) . Alors, la famille

$$([X = x] \cap [Y = y])_{x \in X(\Omega), y \in Y(\Omega)}$$

est un système complet d'événements. En particulier,

$$\sum_{x \in \mathcal{X}(\Omega) \text{ , } y \in \mathcal{Y}(\Omega)} \mathbf{P}\left(\left[\mathcal{X} = x\right] \cap \left[\mathcal{Y} = y\right]\right) = \sum_{x \in \mathcal{X}(\Omega)} \left(\sum_{y \in \mathcal{Y}(\Omega)} \mathbf{P}\left(\left[\mathcal{X} = x\right] \cap \left[\mathcal{Y} = y\right]\right)\right) = \sum_{y \in \mathcal{Y}(\Omega)} \left(\sum_{x \in \mathcal{X}(\Omega)} \mathbf{P}\left(\left[\mathcal{X} = x\right] \cap \left[\mathcal{Y} = y\right]\right)\right) = 1.$$

Remarque 1 (Somme double)

Soient I, J deux sous ensembles de \mathbb{N} et $(a_{i,j})_{(i,j)\in I\times J}$.

1. Cas où I et J sont finis. On a toujours $\sum_{i \in I} \left(\sum_{j \in J} a_{i,j} \right) = \sum_{j \in J} \left(\sum_{i \in I} a_{i,j} \right)$ et ce nombre est noté $\sum_{(i,j) \in I \times J} a_{i,j}$.

3

2. Cas où I ou J est infini. Si pour tout $i \in I$, la série $\sum_{j \in I} a_{i,j}$ est absolument convergente et si de plus la série

$$\sum_{i \in \mathcal{I}} \left(\sum_{j \in \mathcal{J}} |a_{i,j}| \right)$$

est (absolument) convergente, alors pour tout $j \in J$ la série $\sum_{i \in I} a_{i,j}$ converge absolument et la série

$$\sum_{j\in J} \left(\sum_{i\in I} |a_{i,j}| \right)$$

aussi. Dans ce cas, on dit que la série double $\sum_{(i,j)\in \mathbb{I} imes \mathbb{J}} a_{i,j}$ est **absolument convergente** et on a

$$\sum_{i \in I} \left(\sum_{j \in J} a_{i,j} \right) = \sum_{j \in J} \left(\sum_{i \in I} a_{i,j} \right)$$

Ce nombre est noté $\sum_{(i,j)\in \mathcal{I} imes \mathcal{J}} a_{i,j}$ et est appelé somme double de la série double.

Exemple 3

1. Cas fini: calculer $\sum_{i=1}^{n} \sum_{j=1}^{p} ij$

2.	Cas infini : montrer que	$\sum_{(i,j)\in(\mathbb{N}^*)^2}$	$\frac{1}{2^{i+j}}$ converge absolument et déterminer sa somme.
	(1,1)∈(№↑)'	

1.2 Lois conditionnelles

Définition 3 (Lois conditionnelles)

Soit (X,Y) un couple de variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

Pour tout y ∈ Y(Ω) tel que P([Y = y]) ≠ 0, on appelle loi conditionnelle de X sachant (que l'événement) [Y = y] (est réalisé) la donnée de

$$P_{[Y=y]}([X=x]) = \frac{P([X=x] \cap [Y=y])}{P([Y=y])} \quad \text{pour tout } x \in X(\Omega).$$

• Pour tout $x \in X(\Omega)$ tel que $P([X = x]) \neq 0$, on appelle **loi conditionnelle de** Y **sachant (que l'événement)** [X = x] **(est réalisé)** la donnée de

$$P_{[X=x]}([Y=y]) = \frac{P([Y=y] \cap [X=x])}{P([X=x])} \quad \text{pour tout } y \in Y(\Omega).$$

Exemple 4

On reprend les deux cas de l'exemple 1.

1. Soit $j \in [1,6]$ et déterminons la loi conditionnelle de X sachant [Y = j].

2. On rappelle que dans le deuxième cas, la loi de (X, Y) est donnée par le tableau suivant.

$y \in Y(\Omega)$ $x \in X(\Omega)$	1	2	3	4	5	6
1	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
2	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
3	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
4	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$
5	0	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$
6	0	0	0	0	0	$\frac{1}{36}$

Déterminons la loi conditionnelle de X sachant [Y = 3].

Méthode 1

Pour déterminer la loi conditionnelle de X sachant [Y = y] à partir de la loi du couple (X, Y):

1. on commence par déterminer P(Y = y) à l'aide de la formule des probabilités totales :

$$P(Y = y) = \sum_{x \in X(\Omega)} P(X = x, Y = y)$$

2. on calcule ensuite $P_{[Y=y]}([X=x])$ pour tout $x \in X(\Omega)$.

Remarquons que, dans le cas où X et Y sont finies et la loi de (X, Y) donnée par un tableau :

1. P(Y = y) est la somme des probabilités de la colonne correspondant à [Y = y],

2. la loi conditionnelle de X sachant [Y = y] s'obtient en renormalisant la colonne correspond à [Y = y] par P(Y = y)

(c'est le même principe pour la loi conditionnelle de Y sachant [X = x] mais avec les lignes).

Exemple 5

Soit (X,Y) un couple de variables aléatoires dont la loi conjointe est donnée par $X(\Omega) = \mathbb{N}^*$, $Y(\Omega) = \mathbb{N}$ et pour tout $(i,j) \in \mathbb{N}^* \times \mathbb{N}$

 $P([X = i, Y = j]) = \frac{e^{-i}i^{j}}{2^{i}j!}.$

Soit $i \in \mathbb{N}^*$ et déterminons la loi conditionnelle de Y sachant [X = i].

1. On commence par déterminer P([X = i]):

2. On en déduit la loi conditionnelle de Y sachant [X = i]:

Test 3 (Voir solution.)

On reprend le cas 2 de l'exemple 1. Déterminer la loi conditionnelle de Y sachant [X = 4].

Remarque 2

1. Une loi conditionnelle est une loi de probabilité. En particulier, pour tout $y \in Y(\Omega)$ tel que $P(Y = y) \neq 0$,

$$\sum_{x \in X(\Omega)} P_{[Y=y]} ([X=x]) = 1$$

et de même, pour tout $x \in X(\Omega)$ tel que $P(X = x) \neq 0$,

$$\sum_{y \in Y(\Omega)} P_{[X=x]} ([Y=y]) = 1.$$

2. La connaissance des lois conditionnelles ne permet pas de retrouver la loi du couple.

1.3 Lois marginales

Définition 4 (Lois marginales)

Soit (X, Y) un couple de variables aléatoires discrètes définies sur un espace probabilisé (Ω , \mathcal{A} , P). On appelle

- 1. **première loi marginale** du couple (X, Y) la loi de X,
- 2. **deuxième loi marginale** du couple (X,Y) la loi de Y.

Pour le calcul pratique des lois marginales, on utilise la formules des probabitlités totales :

Proposition 2 (Calcul des lois marginales)

Soit (X, Y) un couple de variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

1. On a, pour tout $x \in X(\Omega)$

$$\mathrm{P}\left(\left[X=x\right]\right) = \sum_{y \in \mathrm{Y}(\Omega)} \mathrm{P}\left(\left[X=x, \mathrm{Y}=y\right]\right) = \sum_{y \in \mathrm{Y}(\Omega) \; | \; \mathrm{P}\left(\left[Y=y\right]\right) \neq 0} \mathrm{P}_{\left[Y=y\right]}\left(\left[X=x\right]\right) \, \mathrm{P}\left(\left[Y=y\right]\right).$$

2. On a, pour tout $y \in Y(\Omega)$

$$\mathrm{P}\left(\left[\mathrm{Y}=y\right]\right) = \sum_{x \in \mathrm{X}(\Omega)} \mathrm{P}\left(\left[\mathrm{X}=x,\mathrm{Y}=y\right]\right) = \sum_{x \in \mathrm{X}(\Omega) \; | \; \mathrm{P}\left(\left[\mathrm{X}=x\right]\right) \neq 0} \mathrm{P}_{\left[\mathrm{X}=x\right]}\left(\left[\mathrm{Y}=y\right]\right) \mathrm{P}\left(\left[\mathrm{X}=x\right]\right).$$

Remarque 3

- Les égalités du point 1 résultent de la formule des probabilités totales avec le système complet d'événements
 ([Y = y])_{y∈Y(Ω)} et les égalités point 2 résultent de la formule des probabilités totales avec le système complet
 d'événements ([X = x])_{x∈X(Ω)}.
- 2. La proposition ci-dessus entraîne en particulier la convergence des séries considérées.
- 3. La connaissance de la loi du couple (X,Y) permet de déterminer les lois de X et de Y.
- 4. La connaissance des lois de X et Y prises séparément n'apporte aucune information sur leur interaction et donc sur la loi du couple (X, Y).
- 5. En revanche, la connaissance de la loi de X et des lois conditionnelles de Y sachant [X = x] pour tout $x \in X(\Omega)$ permet de trouver la loi du couple.

Méthode 2

1. Pour trouver les lois marginales à partir de la loi du couple, on utilise les égalités

$$P\left([X=x]\right) = \sum_{y \in Y(\Omega)} P\left(\left[X=x, Y=y\right]\right) \quad ou \quad P\left(\left[Y=y\right]\right) = \sum_{x \in X(\Omega)} P\left(\left[X=x, Y=y\right]\right)$$

de la proposition 2. Il faut savoir les retrouver avec la formule des probabilités totales.

2. Pour trouver la loi de X connaissant les lois conditionnelles de X sachant [Y = y] pour tout $y \in Y(\Omega)$ et la loi de Y on utilise l'égalité

$$\mathrm{P}\left([\mathrm{X}=x]\right) = \sum_{y \in \mathrm{Y}(\Omega) \;|\; \mathrm{P}\left(\left[\mathrm{Y}=y\right]\right) \neq 0} \mathrm{P}_{\left[\mathrm{Y}=y\right]}\left([\mathrm{X}=x]\right) \mathrm{P}\left(\left[\mathrm{Y}=y\right]\right)$$

de la proposition 2. Il faut savoir les retrouver avec la formule des probabilités totales.

3. Pour trouver la loi du couple (X,Y) connaissant la loi de X et les lois conditionnelles de Y sachant [X=x] pour tout $x \in X(\Omega)$ tel que $P(X=x) \neq 0$, on utilise l'égalité :

$$P([X = x, Y = y]) = P([X = x]) P_{[X = x]}([Y = y])$$

qui provient de la définition d'une probabilité conditionnelle.

Exemple 6

On reprend le cas 2 l'exemple 1. Déterminons la loi marginale de X.	

Soient X, Y deux variables aléatoires définies sur un même espace probabilisé. On suppose que $X \hookrightarrow \mathscr{P}(\lambda)$ avec $\lambda > 0$ et que pour tout $k \in \mathbb{N}$, la loi de Y sachant [X = k] est la loi $\mathscr{B}(k, p)$ avec 0 .

1. Déterminons la loi de Y.

(a) On sait que pour tout $k \in \mathbb{N}$, pour tout $i \in \mathbb{N}$

$$P([X=k]) = et P_{[X=k]}([Y=i]) = .$$

(b) De plus,

:) Do	onc Y suit la lo	i			

2. Déterminons la loi du couple (X,Y). Pour tout $(k,i) \in \mathbb{N}^2$ on a

$$\mathrm{P}\left([\mathrm{X}=k,\mathrm{Y}=i]\right) =$$

Test 4 (Voir solution.)

1. On reprend l'exemple 4 (cas 2).

- (a) Avec la loi du couple (X,Y), déterminer la loi de X.
- (b) Trouver la loi de Y de deux façons :
 - i. à partir de la loi de Y sachant [X = i] pour tout $i \in X(\Omega)$ (voir exemple 4) et de la loi de X;
 - ii. à partir de la loi de (X,Y).

2. Soit (X,Y) un couple de variables aléatoires dont la loi conjointe est donnée par $X(\Omega) = \mathbb{N}^*$, $Y(\Omega) = \mathbb{N}$ et pour tout $(i, j) \in \mathbb{N}^* \times \mathbb{N}$

$$P(X = i, Y = j) = \frac{e^{-2}2^{j-i}}{j!}.$$

Déterminer les lois marginales.

2 Indépendance

2.1 Indépendance de deux variables aléatoires discrètes

Définition 5 (Indépendance de deux variables aléatoires discrètes)

Soient X et Y des variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) . On dit que X et Y sont **indépendantes** (pour la probabilité P) si

$$\forall x \in \mathbf{X}(\Omega) \ \forall y \in \mathbf{Y}(\Omega) \ , \mathbf{P}\left([\mathbf{X} = x] \cap \left[\mathbf{Y} = y\right]\right) = \mathbf{P}\left([\mathbf{X} = x]\right) \mathbf{P}\left(\left[\mathbf{Y} = y\right]\right).$$

Remarque 4

- 1. Autrement dit les variables X et Y sont indépendantes si pour tout $x \in X(\Omega)$ et tout $y \in Y(\Omega)$, les événements [X = x] et [Y = y] sont indépendants.
- 2. En cas d'indépendance de X et Y, les lois marginales permettent donc de retrouver la loi du couples.
- 3. Si X et Y sont indépendantes alors pour tout $y \in Y(\Omega)$ tel que $P([Y = y]) \neq 0$ on a :

La loi de X sachant [Y = y] est donc la loi de X.

Méthode 3

- 1. Pour montrer que deux variables aléatoires discrètes X et Y sont indépendantes il faut montrer que $P([X = x] \cap [Y = y]) = P([X = x]) P([Y = y])$ **pour tout** $x \in X(\Omega)$ **et** $y \in Y(\Omega)$.
- 2. Pour montrer que deux variables aléatoires discrètes X et Y ne sont pas indépendantes il suffit de montrer que $P([X = x] \cap [Y = y]) \neq P([X = x]) P([Y = y])$ pour (au moins) un $x \in X(\Omega)$ et un $y \in Y(\Omega)$.

Exemple 8

On reprend l'exemple 1 : on lance deux dés équilibrés (l'un bleu, l'autre blanc) dont les six faces sont numérotées de 1 à 6. On a

$$(\Omega, \mathcal{A}, P) = ([1, 6]^2, \mathcal{P}([1, 6]^2), P_{\text{unif.}})$$

où $P_{unif.}$ est la probabilité uniforme sur Ω .

1. On note X la variable aléatoire donnant la valeur du dé bleu et Y celle donnant la valeur du dé blanc. D'après l'exemple 1, pour tout $(i, j) \in [1, 6]^2$ on a :

$$P([X=i]) =$$
; $P([Y=j]) =$; $P([X=i,Y=j]) =$.

2. X désigne le plus petit des deux nombres obtenus et Y le plus grand. On a

$$P([X = 2, Y = 1]) =$$

Or

Test 5 (Voir solution.)

On tire successivement deux jetons dans une urne contenant n jetons numérotés de 1 à n. On note X la variable aléatoire égale au premier numéro tiré et Y au deuxième. Dans les deux cas suivants dire si les variables X et Y sont indépendantes.

- 1. Tirage avec remise.
- 2. Tirage sans remise.

Test 6 (Voir solution.)

Soient X et Y des variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) . On suppose que pour tout $y \in Y(\Omega)$ tel que $P([Y = y]) \neq 0$ on a :

$$\mathrm{P}_{[\mathrm{Y}=\gamma]}([\mathrm{X}=x]) = \mathrm{P}\left([\mathrm{X}=x]\right).$$

Montrer que X et Y sont indépendantes.

2.2 Indépendance mutuelle de variables aléatoires discrètes

Définition 6 (Indépendance mutuelle de variables aléatoires discrètes)

Soit n un entier naturel supérieur ou égale à 2.

Soient $X_1, ..., X_n$ des variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

• On dit que $X_1,...,X_n$ sont **mutuellement indépendantes** si

$$\forall (x_1,\ldots,x_n) \in X_1(\Omega) \times \cdots \times X_n(\Omega), \ P\left(\bigcap_{k=1}^n [X_k = x_k]\right) = \prod_{k=1}^n P\left([X_k = x_k]\right).$$

• Plus généralement, si $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires discrètes définies (Ω, \mathcal{A}, P) . On dit que les variables $(X_n)_{n\in\mathbb{N}}$ sont **mutuellement indépendantes** si pour tout $n \ge 2, X_1, \dots, X_n$ sont mutuellement indépendantes.

Exemple 9

On lance deux fois successives une pièce équilibrée. On note X (resp. Y) la variable aléatoire valant 1 si le premier lancer (resp. deuxième lancer) donne Pile et 0 sinon; et Z la variable aléatoire valant 1 si on a obtenu exactement un Pile et 0 sinon.

1. D'une part

$$P(X = 1, Y = 1, Z = 1) =$$

2. D'autre part

3. Conclusion:

Remarque 5

 $\underline{\wedge}$ La notion d'indépendance mutuellement est plus contraignante que l'indépendance deux à deux. Dans l'exemple précédent, X, Y sont indépendantes; Y, Z aussi et X, Z aussi. Mais X,Y,Z ne sont pas mutuellement indépendantes!

Proposition 3 (Lemme des coalitions)

Soit *n* un entier naturel supérieur ou égale à 2.

Soient $X_1, ..., X_n$ des variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

Si $X_1,...,X_n$ sont mutuellement indépendantes alors toute variable aléatoire fonction de $X_1,...,X_k$ est indépendante de toute variable aléatoire fonction de $X_{k+1},...,X_n$.

Exemple 10

 $Si\,X_1,\ldots,X_5$ sont des variables aléatoires discrètes mutuellement indépendantes alors $X_1+2X_3^2$ est indépendante $de\,X_2+e^{X_4+X_5}$.

Compléments sur l'indépendance

Soit n un entier naturel supérieur ou égale à 2.

Soient $X_1, ..., X_n$ des variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) et **mutuellement indépendantes**. Pour tout $i \in [1, n]$ soit $A_i \subset X_i(\Omega)$. Alors

$$P(X_1 \in A_1, \dots, X_n \in A_n) = P(X_1 \in A_1) \times \dots \times P(X_n \in A_n).$$

Exemple 11

Si X et Y sont deux variables aléatoires discrètes indépendantes alors pour tout $x \in X(\Omega)$ et pour tout $y \in Y(\Omega)$ on a :

- $P([X \geqslant x] \cap [Y \geqslant y]) = P([X \geqslant x]) P([Y \geqslant y]),$
- $P([X < x] \cap [Y \geqslant y]) = P([X < x]) P([Y \geqslant y]),$
- ...

3 Variable aléatoire fonction d'un couple de variables aléatoires discrètes : Z = g(X,Y)

3.1 Cas général

Définition 7 (Loi de g(X,Y))

Soient (X, Y) un couple de variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) . Soit $g: X(\Omega) \times Y(\Omega) \longrightarrow \mathbb{R}$. On note Z = g(X, Y) l'application

$$\Omega \longrightarrow \mathbb{R}$$

$$\omega \mapsto g(X(\omega), Y(\omega)).$$

Alors

- 1. Z est une variable aléatoire discrète.
- 2. L'ensemble des valeurs prises par Z est donné par

$$Z(\Omega) = \left\{ g(X(\omega), Y(\omega)) \mid \omega \in \Omega \right\} \subset \left\{ g(x, y) \mid x \in X(\Omega), y \in Y(\Omega) \right\}.$$

3. La loi de Z est donnée par

$$\forall z \in \mathrm{Z}(\Omega), \; \mathrm{P}\left([\mathrm{Z}=z]\right) = \sum_{(x,y) \in \mathrm{X}(\Omega) \; \times \; \mathrm{Y}(\Omega) \; | \; z = g(x,y)} \mathrm{P}\left([\mathrm{X}=x] \cap \left[\mathrm{Y}=y\right]\right).$$

11

Théorème 1 (Théorème de transfert)

Soient (X, Y) un couple de variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

Soit $g: X(\Omega) \times Y(\Omega) \longrightarrow \mathbb{R}$. On note Z = g(X, Y).

 $\sum_{x \in X(\Omega) , y \in Y(\Omega)}$ $g(x, y)P(X = x] \cap Y = y$ est absolument convergente alors Z possède Si la somme double

une espérance. Dans ce cas,

$$\mathrm{E}(\mathrm{Z}) = \sum_{x \in \mathrm{X}(\Omega) \ , \ y \in \mathrm{Y}(\Omega)} g(x,y) \mathrm{P}\left([\mathrm{X} = x] \cap \left[\mathrm{Y} = y\right]\right).$$

Remarque 6

- 1. Dans le cas où X et Y sont à support fini, la somme double est finie donc converge absolument; dans ce cas Z admet toujours une espérance.
- 2. Dans le cas où X ou Y est infinie, voir la remarque 1 concernant la convergence absolue des sommes doubles.

Exemple 12

Un joueur lance successivement deux dés équilibrés dont les trois faces sont numérotées de 1 à 3; il gagne 2 fois la valeur du premier dé et perd 2 fois la valeur du second dé. On note X la variable aléatoire donnant la valeur du

	ier dé, Y celle donnant la valeur du second dé et Z celle donnant les gains (algébriques) du joueur. La variable aléatoire Z est fonction de X et Y :
2.	Les valeurs prises par Z sont :
3.	La loi de Z est donnée par :
4.	Comme les variables X et Y sont finies, Z possède une espérance et

Soit (X,Y) un couple de variables aléatoires à valeurs dans $\mathbb N$ dont la loi conjointe est définie par

$$\forall (i,j) \in \mathbb{N}^2, \ \mathbf{P}\left(\left[\mathbf{X}=i,\mathbf{Y}=j\right]\right) = \frac{i+j}{e2^{i+j}i!j!}.$$

Montrons que $Z = 2^{X+Y}$ possède une espérance et calculons la.

1.	. Montrons que pour tout $i \in \mathbb{N}$ la série $\sum 2^{i+j} P([X=i,Y=j])$ est absolument convergente.
	; <u>`</u> 0

2.	Montrons que la série $\sum_{i>0}$	_	est absolument convergente.

3.2 Loi de la somme

Loi de la somme de variables aléatoires discrètes

Soient (X, Y) un couple de variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathcal{A}, P) . La variable aléatoire X + Y est une variable aléatoire discrète dont la loi est donnée par

$$\forall z \in (\mathsf{X} + \mathsf{Y}) \, (\Omega), \, \mathrm{P} \, ([\mathsf{X} + \mathsf{Y} = z]) = \sum_{x \in \mathsf{X}(\Omega) \mid z - x \in \mathsf{Y}(\Omega)} \mathrm{P} \, ([\mathsf{X} = x, \mathsf{Y} = z - x]) \, .$$

Démonstration: A savoir refaire dans les exercices!

Méthode 4

On retiendra que pour déterminer la loi de la somme à partir de la loi conjointe, on utilise la formule des probabilités totales avec le système complet d'événements $([X=x])_{x\in X(\Omega)}$. Il est important de remarquer que

$$[X = x, X + Y = z] = [X = x, x + Y = z] = [X = x, Y = z - x].$$

Remarque 7

On peut très bien utiliser la formule des probabilités totales avec le système complet d'événements $([Y = y])_{y \in Y(\Omega)}$. On obtient alors

$$\mathrm{P}\left([\mathrm{X}+\mathrm{Y}=z]\right) = \sum_{y \in \mathrm{Y}(\Omega)} \sum_{|z-y \in \mathrm{X}(\Omega)} \mathrm{P}\left(\left[\mathrm{X}=z-y, \mathrm{Y}=y\right]\right).$$

Test 7 (Voir solution.)

Soient X et Y deux variables aléatoires indépendantes définies sur un même espace probabilisé suivant une loi géométrique de paramètre $p \in]0,1[$. Montrer que pour tout $n \ge 2$,

$$P([X + Y = n]) = (n-1)p^{2}(1-p)^{n-2}.$$

Proposition 4 (Stabilité des lois binomiales)

Soient $p \in]0,1[$, $n \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$. Soient $X \hookrightarrow \mathcal{B}(n,p)$ et $Y \hookrightarrow \mathcal{B}(m,p)$ deux variables aléatoires **indépendantes** définies sur un même espace probabilisé. Alors

$$X + Y \hookrightarrow \mathcal{B}(n + m, p).$$

Démonstration : On admet la formule de Vandermonde : pour tout $(n, m, z) \in \mathbb{N}^3$

$$\sum_{i=\max(0,z-m)}^{\min(n,z)} \binom{n}{i} \binom{m}{z-i} = \binom{m+n}{z}.$$

Proposition 5 (Stabilité des lois de Poisson)

Soient $\lambda \in \mathbb{R}_+^*$ et $\mu \in \mathbb{R}_+^*$. Soient $X \hookrightarrow \mathscr{P}(\lambda)$ et $Y \hookrightarrow \mathscr{P}(\mu)$ deux variables aléatoires **indépendantes** définies sur un même espace probabilisé. Alors

$$X + Y \hookrightarrow \mathscr{P}(\lambda + \mu)$$
.

Test 8 (Voir solution.)

Prouver la proposition 5.

Remarque 8 (Voir TD)

Plus généralement, si $X_1,...,X_r$ sont mutuellement indépendantes alors

1.
$$\operatorname{si} X_1 \hookrightarrow \mathcal{B}(n_1, p), \ldots, X_r \hookrightarrow \mathcal{B}(n_r, p) \operatorname{alors} X_1 + \cdots + X_r \hookrightarrow \mathcal{B}(n_1 + \cdots + n_r, p);$$

2.
$$si X_1 \hookrightarrow \mathcal{P}(\lambda_1), ..., X_r \hookrightarrow \mathcal{P}(\lambda_r)$$
 alors $X_1 + \cdots + X_r \hookrightarrow \mathcal{P}(\lambda_1 + \cdots + \lambda_r)$.

Proposition 6 (Linéarité de l'espérance)

Soient $(\lambda_1,...,\lambda_n) \in \mathbb{R}^n$. Soient $X_1,...,X_n$ des variables aléatoires discrètes définies sur un même espace probabilisé et possédant une espérance. Alors

1.
$$\lambda_1 X_1 + \cdots + \lambda_n X_n$$
 possède une espérance,

2.
$$E(\lambda_1 X_1 + \cdots + \lambda_n X_n) = \lambda_1 E(X_1) + \cdots + \lambda_n E(X_n)$$
.

Exemple 15

Soient X_1, \ldots, X_n des variables aléatoires mutuellement indépendantes suivant une loi de Bernoulli de paramètre

p.

- D'après la remarque 8, $X_1 + \cdots + X_n \hookrightarrow \mathcal{B}(n, p)$.
- D'après la proposition ci-dessus

$$E(X_1 + \cdots + X_n) = E(X_1) + \cdots + E(X_n) = np.$$

On retrouve la formule de l'espérance d'une loi binomiale.

Méthode 5

Sous réserve d'existence, il y a trois façons de calculer E(X + Y).

- 1. Si on connaît la loi de X et de Y, on utilise la linéarité : E(X + Y) = E(X) + E(Y).
- 2. Si on connaît la loi de X + Y, on utilise la définition de l'espérance.
- 3. Si on connaît la loi du couple (X,Y) on utilise le théorème de transfert : $E(X+Y) = \sum_{x \in X(\Omega), y \in Y(\Omega)} (x+y) P([X=x] \cap [Y=y]).$

3.3 Loi du produit

Loi du produit de variables aléatoires discrètes

Soient (X, Y) un couple de variables aléatoires discrètes définies sur un espace probabilisé (Ω , \mathcal{A} , P). La variable aléatoire XY est une variable aléatoire discrète dont la loi est donnée par

$$\forall z \in (\mathsf{X}\mathsf{Y})\,(\Omega),\; \mathsf{P}\left([\mathsf{X}\mathsf{Y}=z]\right) = \sum_{x \in \mathsf{X}(\Omega)} \mathsf{P}\left([\mathsf{X}=x,x\mathsf{Y}=z]\right).$$

Démonstration: A savoir refaire dans les exercices!

Méthode 6

On retiendra que pour déterminer la loi du produit à partir de la loi conjointe, on utilise la formule des probabilités totales avec le système complet d'événements $([X=x])_{x\in X(\Omega)}$. Il est important de remarquer que

$$[X = x, XY = z] = [X = x, xY = z].$$

Remarque 9

On peut très bien utiliser la formule des probabilités totales avec le système complet d'événements $([Y = y])_{y \in Y(\Omega)}$. On obtient alors

$$\mathrm{P}\left([\mathrm{X}\mathrm{Y}=z]\right) = \sum_{y \in \mathrm{Y}(\Omega)} \mathrm{P}\left(\left[y\mathrm{X}=z,\mathrm{Y}=y\right]\right).$$

Un joueur lance successivement deux dés équilibrés dont les trois faces sont numérotées de 1 à 3; il gagne alors un montant égal au produit des deux nombres obtenus. On note X la variable aléatoire donnant la valeur du premier dé, Y celle donnant la valeur du second dé et Z celle donnant les gains du joueur.

1.	La variable aleatoire Z est fonction de X et Y :

2. Calculons P([Z=6]).

Proposition 7

Soient X et Y des variables aléatoires discrètes **indépendantes** définies sur un même espace probabilisé et possédant une espérance. Alors XY a une espérance et

$$E(XY) = E(X)E(Y)$$
.

Méthode 7

Sous réserve d'existence, il y a trois façons de calculer E(XY).

- 1. Si on connaît la loi de X et de Y et que X et Y sont **indépendantes**, on utilise E(XY) = E(X)E(Y).
- 2. Si on connaît la loi de XY, on utilise la définition de l'espérance.
- $3. \ \ \textit{Si on connaît la loi du couple} \ (X,Y) \ on \ utilise \ le \ th\'eor\`eme \ de \ transfert : E(XY) = \sum_{x \in X(\Omega), y \in Y(\Omega)} xy P\left([X=x] \cap \left[Y=y\right]\right).$

Test 9 (Voir solution.)

Soit $p \in]0,1[$. On considère $X \hookrightarrow \mathcal{B}(p)$ et $Y \hookrightarrow \mathcal{B}(1-p)$ deux variables aléatoires indépendantes. Déterminer la loi de XY et son espérance.

3.4 Loi du min, max

Méthode 8

Soient X et Y deux variables aléatoires à **valeurs entières** définies sur un même espace probabilisé et **indépendantes** et soit $U = \max(X, Y)$.

Pour déterminer la loi de U:

- 1. on justifie que pour tout $k \in U(\Omega)$ on a $[U \le k] = [X \le k] \cap [Y \le k]$;
- 2. par indépendance, on en déduit la fonction de répartition F_U de U;
- 3. on utilise $P([U = k]) = F_U(k) F_U(k-1)$.

		re au hasard deux boules, avec remise, dans une urne contenant n boules numérotées de 1 à n . On note X la ble aléatoire égale au premier numéro tiré et Y celle égale au deuxième numéro tiré.
	On ne	ote $U = \max(X, Y)$. On a $U(\Omega) = [1, n]$.
		Justifions que pour tout $k \in [1, n]$, $[U \le k] = [X \le k] \cap [Y \le k]$.
	2.	Déterminons F _U .
	<i>3</i> .	Déterminons la loi de U.
Mé	dante	<u>9</u> It X et Y deux variables aléatoires à valeurs entières définies sur un même espace probabilisé et indépen- es et soit V = min(X,Y). déterminer la loi de V :
		on justifie que pour tout $k \in V(\Omega)$ on a $[V > k] = [X > k] \cap [Y > k]$;
		par indépendance, on en déduit $1-F_{\rm V}$;
	3.	on utilise $P([V = k]) = F_V(k) - F_V(k-1)$.
Re	marqu	ne 10
	Parfo	is on peut déterminer la loi du minimum et du maximum directement comme on l'a fait dans le cas 2 de nple 1.
Exc	emple	18
		re au hasard deux boules, avec remise, dans une urne contenant n boules numérotées de 1 à n . On note X la ble aléatoire égale au premier numéro tiré et Y celle égale au deuxième numéro tiré.
	On no	ote $V = \min(X, Y)$. On a $V(\Omega) = [1, n]$.
	1.	<i>Justifions que pour tout</i> $k \in [1, n]$, $[V > k] = [X > k] \cap [Y > k]$.

2. Déterminons $1 - F_V$.

	3	Déterminons la loi de V.
	0.	
Tes	t 10 (\	Voir solution.)
		at X et Y deux variables aléatoires indépendantes de même loi géométrique de paramètre $p \in]0,1[$.
	1.	Pour tout $k \in \mathbb{N}^*$, calculer $P([\min(X,Y) > k])$.
		En déduire la loi de min(X, Y).
	3.	Expliquer ce résultat à l'aide d'une expérience.
4	Var	riance et covariance
4.1	Co	variance
4.1		
	De	finition 8 (Covariance)
		t (X, Y) un couple de variables aléatoires discrètes. On suppose que X et Y possèdent un moment d'ordre
	2. A	lors l'espérance suivante existe : $E\left((X-E(X))\left(Y-E(Y)\right)\right).$
	On	l'appelle la covariance de X et Y et on note Cov(X, Y).
Rei	narqu	e 11
	En pa	rticulier, si X a un moment d'ordre deux alors le couple (X,X) possède une covariance et : $Cov(X,X) = V(X)$.
	Pro	pposition 8 (Formule de Koenig-Huygens)
		(X, Y) un couple de variables aléatoires discrètes. On suppose que X et Y possèdent un moment d'ordre lors
		Cov(X, Y) = E(XY) - E(X)E(Y).
	Enj	particulier, si X et Y sont indépendantes alors
		Cov(X, Y) = 0.
Rei	narqu	ne 12
	<u></u> ∧Le	fait que $Cov(X,Y) = 0$ n'implique pas que X et Y sont indépendantes (voir exemple ci-dessous).
Exe	emple	19
	Soit X	$\hookrightarrow \mathscr{U}(\llbracket -1,1 \rrbracket) \text{ et } Y = X^2.$
	•	Les variables X et Y ne sont pas indépendantes :

Test 11 (Voir solution.)

On reprend le cas 2 de l'exemple 1.Déterminer la covariance de X et Y.

Proposition 9

Soient X, Y, X₁, X₂, Y₁, Y₂ des variables aléatoires discrètes ayant un moment d'ordre deux. Alors

- 1. Cov(X, Y) = Cov(Y, X) (symétrie);
- 2. $\forall (\lambda_1, \lambda_2) \in \mathbb{R}^2$, $Cov(\lambda_1 X_1 + \lambda_2 X_2, Y) = \lambda_1 Cov(X_1, Y) + \lambda_2 Cov(X_2, Y)$ (linéarité à gauche);
- 3. $\forall (\lambda_1, \lambda_2) \in \mathbb{R}^2$, $Cov(X, \lambda_1 Y_1 + \lambda_2 Y_2) = \lambda_1 Cov(X, Y_1) + \lambda_2 Cov(X, Y_2)$ (linéarité à droite);
- 4. $\forall a \in \mathbb{R}$, Cov(X, a) = Cov(a, X) = 0.

Méthode 10

En pratique, pour déterminer la covariance de deux variables aléatoires, on a deux méthodes :

- 1. utiliser la formule de Koenig-Huygens;
- 2. utiliser les propriétés de linéarité de la covariance.

Exemple 20

Soit X et Y deux variables aléatoires discrètes possédant un moment d'ordre deux. On note $U = X - Y$ et $V = X + Y$.	
Alors:	

Proposition 10 (Lien avec la variance)

Soit (X, Y) un couple de variables aléatoires discrètes. On suppose que X et Y ont un moment d'ordre deux. Alors

1. X+Y possède une variance et

$$V(X+Y) = V(X) + V(Y) + 2Cov(X,Y);$$

2. si de plus X et Y sont indépendantes alors

$$V(X + Y) = V(X) + V(Y).$$

Plus généralement, si $X_1,...,X_n$ sont des variables aléatoires discrètes possédant un moment d'ordre 2 (donc une variance) et **mutuellement indépendantes** alors $X_1 + \cdots + X_n$ possède une variance donnée par

$$V(X_1 + \cdots + X_n) = V(X_1) + \cdots + V(X_n).$$

Méthode 11

- 1. Pour calculer la variance d'une somme on peut :
 - (a) utiliser la formule de Koenig-Huygens (voir chapitre précédent) si l'on connaît la loi de la somme;
 - (b) utiliser la formule V(X + Y) = V(X) + V(Y) + 2Cov(X, Y).
- 2. Parfois, on peut être amené à utiliser la formule V(X + Y) = V(X) + V(Y) + 2Cov(X, Y) pour déterminer la covariance.

4.2 Corrélation linéaire

Définition 9 (Coefficient de corrélation linéaire)

Soit (X, Y) un couple de variables aléatoires discrètes chacune ayant une variance **non nulle**. On appelle **coefficient de corrélation linéaire** de X et de Y le réel noté $\rho(X, Y)$ et défini par

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}.$$

Proposition 11

Soit (X, Y) un couple de variables aléatoires discrètes chacune ayant une variance non nulle. Alors

$$|\rho(X,Y)| \leq 1.$$

De plus,

- $\rho(X,Y) = 1$ si et seulement si il existe a > 0 et $b \in \mathbb{R}$ tels que P([Y = aX + b]) = 1;
- $\rho(X,Y) = -1$ si et seulement si il existe a < 0 et $b \in \mathbb{R}$ tels que P([Y = aX + b]) = 1.

Méthode 12

On peut calculer le coefficient de corrélation linéaire de X et Y de plusieurs façons selon le contexte :

- 1. à l'aide de la définition si l'on connaît la covariance et les variances;
- 2. si les variables aléatoires sont indépendantes alors Cov(X, Y) = 0 donc $\rho(X, Y) = 0$;
- 3. si Y = aX + b avec $a \neq 0$, alors le coefficient de corrélation linéaire vaut ± 1 .

Exemple 21

On lance n fois $(n \ge 2)$ une pièce qui donne Pile avec probabilité $p \in]0,1[$ et Face avec probabilité 1-p. On note X la variable comptant le nombre de Piles et Y celle comptant le nombre de Faces. Déterminons $\rho(X,Y)$.

5 Objectifs et erreurs à éviter

5.1 Objectifs

- 1. Savoir déterminer la loi d'un couple à partir de l'expérience aléatoire, à partir de la loi marginale de X et des lois conditionnelles de Y sachant [X = x] pour tout $x \in X(\Omega)$.
- 2. Savoir trouver les lois conditionnelles à partir de la loi du couple.
- 3. Savoir trouver les lois marginales grâce à la loi du couple.
- 4. Savoir trouver la loi marginale de X en connaissant la loi de Y et les lois conditionnelles de X sachant [Y = y] pour tout $y \in Y(\Omega)$.
- 5. Connaître la définition d'indépendance, d'indépendance mutuelle.

- 6. Savoir montrer que des variables aléatoires discrètes sont/ne sont pas (mutuellement) indépendantes.
- 7. Savoir trouver la loi de XY, X + Y, max(X, Y), min(X, Y).
- 8. Plus généralement ,savoir trouver la loi, justifier l'existence et déterminer l'espérance (si elle existe) d'une variable de la forme *g*(X, Y).
- 9. Connaître les résultats de stabilité par somme des variables indépendantes Binomiales et de Poisson.
- 10. Savoir justifier l'existence et déterminer Cov(X, Y), V(X + Y), $\rho(X, Y)$.

5.2 Erreurs à éviter

- 1. Il ne faut jamais écrire P([X = x, Y = y]) = P([X = x]) P([Y = y]) si les variables X et Y ne sont pas indépendantes ou si vous n'avez pas justifié qu'elles le sont!
- 2. Il ne faut pas confondre indépendance mutuelle et indépendance deux à deux (voir la remarque 5).
- 3. Ne pas oublier l'hypothèse d'indépendance dans la stabilité par somme des lois binomiales et de Poisson.
- 4. Ne pas oublier que le paramètre *p* doit être le même pour les deux variables aléatoires dans la stabilité par somme des lois binomiales.
- 5. Si X et Y sont indépendantes alors Cov(X, Y) = 0 mais la réciproque est fausse!
- 6. Ne pas croire que même loi signifie égale!

Exemple 22

Si on lance une pièce équilibrée et qu'on note X la variable valant 1 si on fait Pile et 0 sinon et Y la variable valant 1 si on fait Face et 0 sinon. Alors X et Y suivent toutes les deux une loi de Bernoulli de paramètre $\frac{1}{2}$ mais elles ne sont pas égales :quand l'une vaut 1 l'autre vaut 0!

7. N'oubliez pas la formule des probabilités totales!