X or What?

Problem

Steven has an array of **N** non-negative integers. The i-th integer (indexed starting from 0) in the array is A_i .

Steven really likes subintervals of **A** that are *xor-even*. Formally, a subinterval of **A** is a pair of indices (L, R), denoting the elements A_L , A_{L+1} , ..., A_{R-1} , A_R . The xor-sum of this subinterval is A_L xor A_{L+1} xor ... xor A_{R-1} xor A_R , where xor is the <u>bitwise exclusive or</u>.

A subinterval is *xor-even* if its xor-sum has an even number of set bits in its binary representation.

Steven would like to make \mathbf{Q} modifications to the array. The i-th modification changes the $\mathbf{P_i}$ -th (indexed from 0) element to $\mathbf{V_i}$. Steven would like to know, what is the size of the xor-even subinterval of \mathbf{A} with the most elements after each modification?

Input

The first line of the input gives the number of test cases, **T**. **T** test cases follow.

Each test case starts with a line containing two integers **N** and **Q**, denoting the number of elements in Steven's array and the number of modifications, respectively.

The second line contains N integers. The i-th of them gives A_i indicating the i-th integer in Steven's array.

Then, \mathbf{Q} lines follow, describing the modifications. The i-th line contains $\mathbf{P_i}$ and $\mathbf{V_i}$, The i-th modification changes the $\mathbf{P_i}$ -th element to $\mathbf{V_i}$. indicating that the i-th modification changes the $\mathbf{P_i}$ -th (indexed from 0) element to $\mathbf{V_i}$.

Output

For each test case, output one line containing Case #x: $y_1 y_2 \dots y_Q$, where x is the test case number (starting from 1) and y_i is the number of elements in the largest xor-even subinterval of **A** after the i-th modification. If there are no xor-even subintervals, then output 0.

Limits

Time limit: 40 seconds per test set. Memory limit: 1GB. $1 \le T \le 100$. $0 \le A_i < 1024$. $0 \le P_i < N$. $0 \le V_i < 1024$.

Test set 1 (Visible)

```
1 \le \mathbf{N} \le 100.
1 \le \mathbf{Q} \le 100.
```

Test set 2 (Hidden)

```
1 \le \mathbf{N} \le 10^5.
1 \le \mathbf{Q} \le 10^5.
```

Sample

Sample Input 2 4 3 10 21 3 7 1 13 0 32 2 22 5 1 14 1 15 20 26 4 26

```
Sample Output

Case #1: 4 3 4

Case #2: 4
```

In Sample Case 1, N = 4 and Q = 3.

- After the 1st modification, **A** is [10, 13, 3, 7]. The subinterval (0, 3) has xor-sum 10 xor 13 xor 3 xor 7 = 3. In binary, the xor-sum is 11₂, which has an even number of 1 bits, so the subinterval is xor-even. This is the largest subinterval possible, so the answer is 4.
- After the 2nd modification, **A** is [32, 13, 3, 7]. The largest xor-even subinterval is (0, 2), which has xor-sum 32 xor 13 xor 3 = 46. In binary, this is 101110₂.
- After the 3rd modification, **A** is [32, 13, 22, 7]. The largest xor-even subinterval is (0, 3) again, which has xor-sum 32 xor 13 xor 22 xor 7 = 60. In binary, this is 111100₂.

In Sample Case 2, $\bf N$ = 5 and $\bf Q$ = 1. After the 1st modification, $\bf A$ is [14, 1, 15, 20, 26]. The largest xor-even subinterval is (1, 4), which has xor sum 1 xor 15 xor 20 xor 26 = 0. In binary, this is $\bf 0_2$.