

IN THE CLAIMS

1. (Cancelled)

2. (Currently Amended) A mixture of sulfuric esters according to Claim 1
wherein of formula (1)

wherein

R^1 is an aliphatic radical having 4 to 30 carbon atoms,

R^2 is a radical of formula (2)

wherein

n is an integer from 0 to 10,

m is an integer from 1 to 10,

X is an aliphatic radical having 12 to 24 carbon atoms, and

Y is H or $\text{SO}_2(\text{OM})$, where M independently represents hydrogen, alkali metal, ammonium, mono-, di-, tri-, or tetra($\text{C}_1\text{-C}_6$ -alkyl)ammonium, or mono-, di-, tri-, or tetra($\text{C}_2\text{-C}_6$ -alkanol)ammonium ions,

R^3 is a radical of formula (3)

wherein

p is an integer from 4 to 35,

R^4 is H or methyl, and

Z is H, methyl, ethyl, or $\text{SO}_2(\text{OM})$, where M independently represents hydrogen, alkali metal, ammonium, mono-, di-, tri-, or tetra($\text{C}_1\text{-C}_6$ -alkyl)-

ammonium, or mono-, di-, tri-, or tetra(C₂-C₆-alkanol)ammonium ions,
and

a, b, and c are identical or different and are 0, 1, or 2, with the proviso that a+b+c is
2, obtained by reacting sulfonyl chloride with a mixture of the alcohols R¹OH, R²OH,
and R³OH, wherein R¹, R², and R³ have the same meanings as for formula (1) except
that Y is exclusively hydrogen and Z is hydrogen, methyl, or ethyl.

3. (Currently Amended) A mixture of sulfuric esters according to Claim 1
A mixture of sulfuric esters of formula (1)

wherein

R¹ is an aliphatic radical having 8 to 20 carbon atoms,

R² is a radical of formula (2)

wherein

n is an integer from 0 to 5,

m is an integer from 1 to 5,

X is an aliphatic radical having 16 to 22 carbon atoms, and

Y is H

R³ is a radical of formula (3)

wherein

p is an integer from 9 to 22,

R⁴ is H, and

Z is H, and

a, b, and c are identical or different and are 0, 1, or 2, with the proviso that a+b+c is 2, obtained by reacting sulfonyl chloride with a mixture of the alcohols R¹OH, R²OH, and R³OH, wherein R¹, R², and R³ have the same meanings as for formula (1) except that Y is exclusively hydrogen and Z is hydrogen, methyl, or ethyl.

4.-9. (Cancelled)

10. (Currently Amended) An organic or aqueous-organic formulation comprising 25 to 70% by weight of a mixture of sulfuric esters according to Claim 1 of formula (1)

wherein

R¹ is an aliphatic radical having 1 to 30 carbon atoms,

R² is a radical of formula (2)

wherein

n is an integer from 0 to 30,

m is an integer from 1 to 29,

X is an aliphatic radical having 4 to 24 carbon atoms, and

Y is H or SO₂(OM), where M represents hydrogen, alkali metal, ammonium, mono-, di-, tri-, or tetra(C₁-C₆-alkyl)ammonium, or mono-, di-, tri-, or tetra(C₂-C₆-alkanol)ammonium ions.

R³ is a radical of formula (3)

wherein

p is an integer from 4 to 35.

R⁴ is H, methyl, ethyl, phenyl, or mixtures of H and methyl, and

Z is H, methyl, ethyl, or SO₂(OM), where M represents hydrogen, alkali metal, ammonium, mono-, di-, tri-, or tetra(C₁-C₆-alkyl)ammonium, or mono-, di-, tri-, or tetra(C₂-C₆-alkanol)ammonium ions, and

a, b, and c are identical or different and are 0, 1, or 2, with the proviso that a+b+c is 2, obtained by reacting sulfonyl chloride with a mixture of the alcohols R¹OH, R²OH, and R³OH, wherein R¹, R², and R³ have the same meanings as for formula (1) except that Y is exclusively hydrogen and Z is hydrogen, methyl, or ethyl.

wherein the organic component of the formulation comprises one or more organic solvents selected from the group consisting of mono-, di-, and oligoethylene glycols, oligopropylene glycols, and oligoethylene/ propylene glycols, and mono- and diethers thereof.

11.-21.(Cancelled)