Lab 3 – interpolacja

Barbara Doncer

1. Polecenie

Wyznacz wielomian interpolujący w postaci Hermite'a. Interpolację przeprowadź dla różnej liczby węzłów (np. n = 3, 4, 5, 7, 10, 15, 20). Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów: równoodległe oraz Czebyszewa. Oceń dokładność, z jaką wielomian przybliża zadaną funkcję. Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję. Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Runge'go (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa.

2. Zadana funkcja i jej wykres

$$f(x) = 20 + \frac{x^2}{2} - 20 \cdot \cos(2x)$$
$$x \in [-3\pi, 3\pi]$$

Wykres 2.1 Funkcja f(x) na zadanym przedziale

3. Wyniki interpolacji

Poniżej przedstawione są wykresy funkcji (niebieski) oraz wyniku interpolacji metodą oraz Hermite'a (zielony). Zastosowano oznaczenie:

n – liczba węzłów

Tabela 3.1 Wykresy interpolacji dla różnych typów i liczby węzłów

4. Błędy interpolacji

Sprawdzenie dokładności wielomianu odbyło się na dwa sposoby. Kolorem niebieskim zostały oznaczone najlepsze wyniki. Zastosowano oznaczenia:

$$f(x)-funkcja\ podana\ w\ zadaniu$$
 $W(x)-wyznaczony\ wielomian$ $N-ilość\ punktów, w\ których\ zostały\ obliczone\ błędy$ $N=1000$

a. Błąd kwadratowy

$$\sum_{i=1}^{N} (f(x_i) - W(x_i))^2$$

Tabela 4.1 Błąd kwadratowy dla poszczególnych przypadków

n	węzły rozmieszczone równolegle	węzły Czebyszewa	
5	4,10E+05	1,41E+06	
7	5,99E+05	7,83E+05	
8	2,78E+07	6,44E+05	
10	3,30E+07	4,72E+04	
12	1,77E+06	2,45E+02	
14	1,53E+04	1,94E-01	
16	3,41E+01	3,63E-05	
20	2,03E-06	1,64E-08	
25	2,28E+00	2,10E-05	
30	9,50E+06	2,46E-02	
40	1,49E+21	1,96E+18	
50	1,96E+40	8,82E+38	

b. Maksymalna różnica

$$\max_{i=1,\dots,N} |f(x_i) - w(x_i)|$$

Tabela 4.2 Maksymalna różnica dla poszczególnych przypadków

n	węzły rozmieszczone	węzły Czebyszewa	
	równolegle		
5	3,32E+01	8,09E+01	
7	4,00E+01	6,30E+01	
8	5,23E+02	7,75E+01	
10	6,73E+02	1,56E+01	
12	1,76E+02	9,72E-01	
14	1,81E+01	2,87E-02	
16	9,28E-01	4,34E-04	
20	3,51E-04	4,18E-05	
25	4,40E-01	9,13E-04	
30	1,01E+03	7,87E-02	
40	2,03E+10	6,84E+08	
50	9,48E+19	9,33E+18	

5. Najlepsze przybliżenie funkcji

Zarówno w przypadku błędu kwadratowego jak i maksymalnej różnicy najlepszym wielomianem interpolującym okazał się ten otrzymany na 20 węzłach Czebyszewa.

Wykres 5.1 Wynik interpolacji metodą Hermite'a z użyciem 20 węzłów Czebyszewa

6. Efekt Runge'go

Efekt ten polega na pogorszeniu się jakości interpolacji wielomianowej i następuje od pewnej liczby węzłów n i z jej wzrostem się pogłębia. Jest to szczególnie zauważalne na końcach przedziałów.

S

Zgodnie z oczekiwaniami w przypadku interpolacji używającej węzłów równoodległych można go coraz wyraźniej dostrzec od n = 8 aż do n = 14. Można zaobserwować to na wykresach oraz przy porównaniu błędów, które w przypadku użycia węzłów Czebyszewa są znacznie mniejsze. Na przedstawionych poniżej wykresach widać znaczącą różnicę w zależności od typu użytych węzłów.

Tabela 6.1 Porównanie wykresów otrzymanych przy użyciu węzłów równoodległych i Czebyszewa

7. Porównanie wyników przy różnych sposobach przybliżania pochodnych

Wszystkie powyższe wyniki zostały otrzymane przy następującym przybliżeniu pochodnej:

```
def calculate_derivative(x):
h = 1e-5
return (function(x + h) - function(x - h)) / (2 * h)
```

Po zmianie h na h = 1e-10 nie zauważono poprawę wyników dla małych n, a pogorszenie dla dużych n.

Tabela 7.2 Porównanie błędu kwadratowego dla węzłów równoodlegle rozmieszczonych

n	wynik, gdy h = 1e - 5	wynik, gdy h = 1e - 10	różnica w wynikach
5	4,10E+05	4,10E+05	0,00E+00
7	5,99E+05	5,99E+05	0,00E+00
8	2,78E+07	2,70E+07	8,00E+05
10	3,30E+07	3,30E+07	0,00E+00
12	1,77E+06	1,70E+06	7,00E+04
14	1,53E+04	1,50E+04	3,00E+02
16	3,41E+01	7,11E+01	-3,70E+01
20	2,03E-06	3,20E+04	-3,20E+04
25	2,28E+00	7,30E+07	-7,30E+07
30	9,50E+06	9,00E+16	-9,00E+16
40	1,49E+21	1,07E+29	-1,07E+29
50	1,96E+40	1,35E+47	-1,35E+47

8. Wnioski końcowe

- najlepszą dokładność daje użycie metody Hermite'a na 20 węzłach Czebyszewa
- efekt Runge'go rozpoczyna się po użyciu około 8 równoodległych węzłów i pogłębia się ze wzrostem ich ilości
- od użycia około 30 równoodległych węzłów rozpoczynają się błędy arytmetyki