Advanced Topics in Algebra

Summer 2019

Eigenvalues and eigenvectors — 27.03, 2019

dr Krzysztof Majcher

 $Scribe:\ Krzysztof\ Agie\'nczuk$

1 Overview

In the last lecture we talked about transition matrices

In this lecture we covered eigenvalues, eigenvectors and eigendecomposition

2 Determinant

We will define determinant using the Laplace formula.

```
Definition 2.1. Determinant of square matrix

For n \in \mathcal{N}, let: K^{nxn} \to K; where K is a field

For n = 1 \to det[a] = a

For n > 1: A \in K^{n \times n}; fix j \in \{1, ..., n\}

det[a] = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} * det[A_{ij}]
```

For n=2 we can compute te determinant directly using

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc \tag{1}$$

Now, let us see that the determinant tells us how much the space is "stretched" or "squished" by a given transformation. If you take field created by basis vectors in \mathbb{R}^2 , apply a linear map to them and count the determinant, you will get a factor by which this field increased or decreased (in \mathbb{R}^3 it will be volume, and accordingly in higher dimensions). Determinant equal to 0 will mean, that (in \mathbb{R}^2) the field is now equal to 0, which means we collapsed the space ("lost" one dimension). Given that, below facts are obvious.

Fact For $A, B \in K^{n \times n}$

1.
$$det(A * B) = det(A) * det(B)$$

2.
$$det(A^n) = (det(A))^n$$

3.
$$det(A^{-1}) = \frac{1}{det(A)}$$

4.
$$rank(A) = n \iff det(A) \neq 0$$

Reminder Let $A \in K^{n \times n}$, $f_A(v) = A * v^T$. Then, $dim(im(f_A)) = rank(A)$

Reminder If M_B is a matrix of a linear map $f: K^n \to K^n$ in base $B = \{b_1, ..., b_n\}$, then

$$M_B = P * M_B * P^- 1 (2)$$

where P is matrix of basis vectors.

3 Eigenvalue

Definition 3.1. Let K be a field and $M \in K^{n \times n}$ then a number $\lambda \in K$ is an eigenvalue for eigenvector $v \in K^n$ of a matrix M if

$$Mv^T = \lambda v^T \tag{3}$$

This may come as a surprise as we have multiplication Matrix times vector = scalar times vector. However you may write λ as matrix transforming each basis vector of the space by λ . This will result in matrix with lambdas on diagonal and zeros everywhere else. This we can write as $\lambda \times identity$ matrix, which we will use in 3.1.

Note Eigenvalues must be non-zero. However they can be negative. This means our space gets "flipped".

Example For $K \in \mathbb{R}$ and n = 2, matrix $M = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ has eigenvalue $\lambda = 3$ for eigenvector v = (1,0) and eigenvalue $\lambda = 2$ for v = (0,1).

Definition 3.2. Let K be a field. $f: K^n \to K^n$, then number $\lambda \in K$ is an eigenvalue for eigenvector v of $f \iff$

$$f(v) = \lambda * v \tag{4}$$

Fact

- 1. Let $M \in K^{n \times n}$, λ eigenvalue of M. Then $E_{\lambda} = \{v \in K : Mv^T = \lambda v^T\} \leq K^n$
- 2. Let $\{\lambda_1, ..., \lambda_n\}$ be a set of eigenvalues and $\{v_1, ..., v_n\}$ set of eigenvectors such that λ_i is eigenvalue for v_i , then $\{v_1, ..., v_n\}$ is linearly independent.

3.1 Polynomials of eigenvalues

If $M \in K^{n \times n}$, then $det[M - \lambda * Id]$ is a polynomial. (Id is unit matrix).

Definition 3.3. Let $M \in K^{n \times n}$. Then a polynomial $det[M\lambda * Id]$ is a characteristic polynomial of M.

Theorem Let $M \in K^{n \times n}$, λ is eigenvalue of M, then $det[M - \lambda * Id] = 0$

This means eigenvalues are square roots of characteristic polynomial.