Find a Gene Project (BGGN 213)

Akshara Balachandra, A11933675

May 15, 2019

Question 1: Name of the protein

Name: Sonic Hedgehog protein isoform 1 preprotein (SHH)

Accession: NP_000184.1 Species: Homo sapiens

Question 2: BLAST search

Method: TBLASTN search against Xenopus ESTs

Database: Expressed sequence tags (est)

Organism: Xenopus (Taxid: 8353)

Alignment details

Chosen match: Accession BX704643.1, a 874bp clone from Xenopus tropicalis.

>BX704643.1 BX704643 XGC-tadpole Xenopus tropicalis cDNA clone TTpA011g13 5', mRNA sequence

cDNA clone TTpA011g13, mRNA sequence.

Length: 874

Score Expect Method Identities 387 bits(994) 3e-132 Compositional matrix adjust. 197/285(69%)

Positives Gaps Frame 220/285(77%) 23/285(8%) +2

Query Sbjct	68 41	RNSERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG RNS+RFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG RNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG	127 220
bbjet	71	TOTAL NEED TO THE PETER TO A PETE	220
Query	128	${\tt WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYYESKAHIHCSVKA}$	187
		WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVY+ESKAHIHCSVKA	
Sbjct	221	WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYFESKAHIHCSVKA	400
Query	188	${\tt ENSVAAKSGGCFPGSATVHLEQGGTKLVKDLSPGDRVLAADDQGRLLYSDFLTFLDRDDG}$	247
		ENSVAAKSGGCFPGSA V +E GGTK V++L PGDRVL++D QG L+YSDFL F+D++	
Sbjct	401	${\tt ENSVAAKSGGCFPGSARVMVEPGGTKAVRELRPGDRVLSSDPQGNLIYSDFLLFIDKEHD}$	580

Figure 1: BLAST parameters

Figure 2: BLAST search results

BX704643 XGC-tadpole Xenopus tropicalis cDNA clone TTpA011g13 5', mRNA sequence

Sequence ID: BX704643.1 Length: 874 Number of Matches: 2

Range	1: 41	to 826 GenBank Graphics		▼ N	lext Match A P	revious I
Score		Expect Method Identities	Positives		Gaps	Frame
387 b	its(99	4) 3e-132 Compositional matrix adjust. 197/28	5(69%) 220/285	(77%)	23/285(8%)	+2
uery	68	RNSERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALA RNS+RFKELTPNYNPDIIFKDEENTGADRLMTORCKDKLNALA			7	
ojct	41				9	
uery	128	WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGF WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGF			7	
bjct	221	WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGF	DWVYFESKAHIHCSV	KA 400	9	
uery	188	ENSVAAKSGGCFPGSATVHLEQGGTKLVKDLSPGDRVLAADDQ ENSVAAKSGGCFPGSA V +E GGTK V++L PGDRVL++D O			7	
bjct	401	ENSVAAKSGGCFPGSARVMVEPGGTKAVRELRPGDRVLSSDPQ			9	
uery	248	AKKVFYVIETREPRERLLLTAAHLLFVAPHNDSATXXXXXXXX KK++YVI+T + R R +TAAHLLFVA N + +	XXXXXXXXXXXRALF		7	
bjct	581	VKKLYYVIQTSQTRIRMTAAHLLFVAQSNGTGS	FKSVF	AS 70	9	
uery	308	RVRPGQRVYVVAERDGDRRLLPAAVHSVTLSEEAAGAYAPLTA VRPG +Y R D L A V V L EE G + P				
bjct	701					

Figure 3: Alignment details

Question 3: Novel Protein Information

Chosen Sequence:

>Xenopus tropicalis protein (from BLAST result)
RNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG
WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYFESKAHIHCSVKA
ENSVAAKSGGCFPGSARVMVEPGGTKAVRELRPGDRVLSSDPQGNLIYSDFLLFIDKEHD
VKKLYYVIQTSQTRIRMTAAHLLFVAQSNGTGSFKSVFASNVRPGDVIYSADRRDMTLRE
AMVEKVDLEEDIGGFCPRNCPG

Name: Xenopus sonic hedgehog

Species: Xenopus (Silurana) tropicalis (Common name: western clawed frog, Taxid: 8364)

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Amphibia; Batrachia; Anura; Pipoidea;

Pipidae; Xenopodinae; Xenopus; Silurana

Question 4: Proof that gene/protein are novel

A BLASTP search against the NR database yielded a top hit to a protein from *Xenopus tropicalis* with 100% coverage and 97.71% identity. The alignment details are given in the screenshots below.

Figure 4: BLASTP parameters

Figure 5: BLASTP results page

▲ Download **∨** GenPept Graphics

PREDICTED: sonic hedgehog protein [Xenopus tropicalis]

Sequence ID: XP 017950257.1 Length: 416 Number of Matches: 1

Range	1: 68	to 329 <u>G</u>	enPept Graphics	3			▼ <u>Ne</u>	ext Match 🔺
Score		Expect	Method		Identities	Positives		Gaps
533 b	its(13	73) 0.0	Compositional	matrix adjust.	256/262(98%)	256/262(97	7%)	0/262(0%)
Query	1				KDKLNÁLAISVMNQW KDKLNÁLAISVMNOW		60	
Sbjct	68				KDKLNALAISVMNQW		127	
)uery	61				RLAVEAGFDWVYFES		120	
Sbjct	128	WDEDGHHS	EESLHYEGRAVDIT	TSDRDRSKYGMLA	RLAVEAGFDWVYFES	KAHIHCSVKA	187	
uery	121				RVLSSDPQGNLIYSD RVLSSDPOGNLIYSD		180	
bjct	188				RVLSSDPQGNLIYSD		247	
uery	181			•	SVFASNVRPGDVIYS SVFASNVRPGDVIYS		240	
Sbjct	248				SVFASNVRPGDVIYS		307	
Query	241		EEDIGGFCPRNCPG	262				

Figure 6: Alignment for top result

Question 5: Multiple sequence alignment

Relabeled sequences for alignment

Sbjct 308 AMVEKVDLEEDIGAFAPVTAQG 329

>Xenopus_sonic_hedgehog (from BLAST result)
RNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG
WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYFESKAHIHCSVKA
ENSVAAKSGGCFPGSARVMVEPGGTKAVRELRPGDRVLSSDPQGNLIYSDFLLFIDKEHD
VKKLYYVIQTSQTRIRMTAAHLLFVAQSNGTGSFKSVFASNVRPGDVIYSADRRDMTLRE
AMVEKVDLEEDIGGFCPRNCPG

>Human |Sonic hedgehog protein (NP_000184.1) [Homo sapiens]
MLLLARCLLLVLVSSLLVCSGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKTLGASGRYEGKISRNS
ERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSEESLH
YEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYYESKAHIHCSVKAENSVAAKSGGCFPGSATVHLEQG
GTKLVKDLSPGDRVLAADDQGRLLYSDFLTFLDRDDGAKKVFYVIETREPRERLLLTAAHLLFVAPHNDS
ATGEPEASSGSGPPSGGALGPRALFASRVRPGQRVYVVAERDGDRRLLPAAVHSVTLSEEAAGAYAPLTA
QGTILINRVLASCYAVIEEHSWAHRAFAPFRLAHALLAALAPARTDRGGDSGGGDRGGGGGRVALTAPGA
ADAPGAGATAGIHWYSQLLYQIGTWLLDSEALHPLGMAVKSS

>Mexican_walking_fish |sonic hedgehog [Ambystoma mexicanum] ARX70249.1 MGEMRLLLRRLLLGTLVWALLVPSGLTCGPGRGIGKRRQPKKLTPLAYKQFIPNVAEKTLGASGRYEGKI TRNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSE ESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYFESKAHIHCSVKAENSVAAKSGGCFPASAKVT LEHGVTRPVKDLRPGDRVLAADGQGRLVYS DFLMFLDKEEAVTKVFYVIETERPRQRLRLTAAHLLFAA RHPANSSSSTGFQSIFASRVRPGHRVLTVDQEGRGLQEATVTRVYLEEGAGAYAPVTSHGTVVIDKVLAS CYAVIEEHSWAHWAFAPLRLGYGILSIFSPQDYSPHSPPAPSQKEGVHWYSEILYHIGTWVLHSDTIHPW GMAAKSS

>Iberian_newt |sonic hedgehog-related protein [Pleurodeles walt1]
MGEMILLRRDLLGGFISTLLVPLGLGCGPGRGIGQRRRPQKLTPLAYKQFIPNVSEKTLGASGRYEVKITRNSERFQELT
PNYNPDIIFKVEENTGADRLMTQRCKDKLNSLAISVMNQWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSK
YGMLARLAVEAGFDWVYFESKAHIHCSVKAENSVAVKSGGCFPGSATVTLEQGVRIPVKGLKPGNRVLAVDVEGRLIYSD
FLLFMDEEETARKVFYVIETSLPRERLRLTAAHLLFVAQEHPGNASAGNFRSKFGHRRFRSMFASSVRPGHRVLTEDREG
RGLREATVDRVYLEEATGAYAPVTAHGTVVIDRVLASCYAVIEEHSWAHWAFAPLRVGFGILSFFSPQDYSSHSPPAPSQ
AEGVHWYSEILYRIGTWVLQADTIHPLGMAAKSS

>African_clawed_frog |sonic hedgehog protein-like|XP_018124514.1 [Xenopus laevis]
MSVATGILLLGFTCSLLIPPGLSCGPGRGIGKRRHPKKLTPLVYKQFIPNVAEKTLGASGRYEGKIASNSDRFKELTPNY
NPDIVFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHLEESLHYEGRAVDITTSDRDRSKYGM
LARLAVEAGFDWVYYESKAHIHCSVKAENSVAAKSGGCFPAGAEVMVELGGTKAVKDLRPGDRVLSSDAQGNLLYSDFLL
FIDQQHDVKKLFYVIETSHPRRRIRLTAAHLLFVAQVNGSRSFKSVFASSIQPGDIIYSADPRAMALNEVKVEKVGLEED
TGAYAPLTAHGTLVIDQVLSSCYALIEEHTWAHLAFAPLRFGLSLSPYLFPKDSSPSPQSHHQLDSSPSPQSHHQPEGIH
WYSQLLYQLGTWLLDSNSLHPLGMATKSS

>Burmese_python |sonic hedgehog protein|XP_007433256.1 [Python bivittatus]
MLLRRRSGLLPLCLGALFLSAGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKTLGASGRYEGKISRNSERFKELTPN
YNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSKYG
MLARLAVEAGFDWVYYESKAHIHCSVKAENSVAAKSGGCFPGSAWVNLEEGGTKLVKDLRPGDRVLAADVHGQLFYSEFL
AFLDREDPPVHKLFYVIETQRPQTRLLLTAAHLLFVAPPQNHSHSQPQPIFASRVQPGQQVYVLGQGGQTLLQAAVHSVS
LQEEASGAYAPLTAQGTILINQVLASCYAVIEEHSWAHWAFAPFRMAHAVLAMLDPEGLSSPLLFPAAAPEESSSLAGVH
WYSRLLYHIGRWILDSETMHPLGMAS

>Tiger_snake |sonic hedgehog protein |XP_026536709.1 [Notechis scutatus]
MLLLRRTGLLPLCLGALFLSAGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKTLGASGRYEGKITRNSERFKELTPN
YNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSKYG
MLARLAVEAGFDWVYYESKAHIHCSVKAENSVAAKSGGCFPGSAWVNLEGGGTKLVKDLHPGDRVLAADVHGQLFYSEFL
AFLDREEPPVHKLFYVIETQTPQARLLLTAAHLLFVAPPHNHSHSQPQPIFASRVQPGQHVYVLAQGGQTLLPAAVHSVS
LKEEASGAYAPLTAQGTILINQVLASCYAVIEEHSWAHWAFAPFRIAHAALAVLNLEGLSSPLLFPAAVPEEGASLAGVH
WYSRLLYYIGRWILGSEMMHPLGMAS

Alignment

Using MUSCLE at EBI:

CLUSTAL multiple sequence alignment by MUSCLE (3.8)

Iberian_newt
Mexican_walking_fish
Xenopus_sonic_hedgehog
African_clawed_frog
Burmese_python
Tiger_snake
Human

Iberian_newt
Mexican_walking_fish
Xenopus_sonic_hedgehog
African_clawed_frog
Burmese_python
Tiger_snake

-MGEMILLRRDLLGGF-ISTLLVPLGLGCGPGRGIGQRRRPQKLTPLAYKQFIPNVSEKT
MGEMRLLLRRLLLGTL-VWALLVPSGLTCGPGRGIGKRRQPKKLTPLAYKQFIPNVAEKT
----MSVATGILLLGF-TCSLLIPPGLSCGPGRGIGKRRHPKKLTPLVYKQFIPNVAEKT
----MLLRRRSGLLPLCLGALFLSAGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKT
----MLLRRTGLLPLCLGALFLSAGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKT
----MLLLRRTGLLPLCLGALFLSAGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKT

LGASGRYEVKITRNSERFQELTPNYNPDIIFKVEENTGADRLMTQRCKDKLNSLAISVMN LGASGRYEGKITRNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMN ------RNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMN LGASGRYEGKIASNSDRFKELTPNYNPDIVFKDEENTGADRLMTQRCKDKLNALAISVMN LGASGRYEGKISRNSERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMN LGASGRYEGKITRNSERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMN LGASGRYEGKITRNSERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMN

Human

Iberian_newt
Mexican_walking_fish
Xenopus_sonic_hedgehog
African_clawed_frog
Burmese_python
Tiger_snake

-----RFRSMFASSVRPGHRVLTEDR--EGRGLREATVDRVYL-EEATGAYAPVTAHG
------GFQSIFASRVRPGHRVLTVDQ--EGRGLQEATVTRVYL-EEGAGAYAPVTSHG
------FKSVFASNVRPGDVIYSADR--RDMTLREAMVEKVDL-EEDIGGFCPRNCPG
-----FKSVFASSIQPGDIIYSADP--RAMALNEVKVEKVGL-EEDTGAYAPLTAHG
------PQPIFASRVQPGQQVYVLGQ--GGQTLLQAAVHSVSLQEEASGAYAPLTAQG
------PQPIFASRVQPGQHVYVLAQ--GGQTLLPAAVHSVSLKEEASGAYAPL

Question 6: Phylogenetic tree

I used the simple phylogeny tool from EBI with the following parameters:

- Tree format: nj
- Distance correction: FalseExcludes Gaps: False
- Clustering Methods: Neighbor-joining
- Percent identity matrix: False

The resulting tree is this.

Figure 7: Phylogenetic tree derived from the sequence alignments in the previous section