

Patin Docket Preview

P1618P2C3.txt

Sequence Listing

<110> Chen, Jian Goddard, Audrey Gurney, Austin L. Hillan, Kenneth Pennica, Diane Wood, William I. Yuan, Jean

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P1618P2C3

<140> us 09/903,806 <141> 2001-07-11

<150> US 09/665,350

<151> 2000-09-18

<150> PCT/US00/04414

<151> 2000-02-22

<150> PCT/US98/18824

<151> 1998-09-10

<150> US 60/062,287

<151> 1997-10-17

<160> 424

<210> 1 <211> 1825

<212> DNA

<213> Homo Sapien

<400> 1

actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc 50

cctcgacctc gacccacgcg tccgggccgg agcagcacgg ccgcaggacc 100

tggagctccg gctgcgtctt cccgcagcgc tacccgccat gcgcctgccg 150

gccggaggcc gccaagaagc cgacgccctg ccaccggtgc cgggggctgg 250

tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300

ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag 350

cgagattcgc ctgctggaga tcctggaggg gctgtgcgag agcagcgact 400

tcgaatgcaa tcagatgcta gaggcgcagg aggagcacct ggaggcctgg 450

tggctgcagc tgaagagcga atatcctgac ttattcgagt ggttttgtgt 500

gaagacactg aaagtgtgct gctctccagg aacctacggt cccgactgtc 550 Page 1

RECEIVED

TECH CENTER 1600/2900

```
tcgcatgcca gggcggatcc cagaggccct gcagcgggaa tggccactgc 600
agcggagatg ggagcagaca gggcgacggg tcctgccggt gccacatggg 650
gtaccagggc ccgctgtgca ctgactgcat ggacggctac ttcagctcgc 700
tccggaacga gacccacagc atctgcacag cctgtgacga gtcctgcaag 750
acgtgctcgg gcctgaccaa cagagactgc ggcgagtgtg aagtgggctg 800
ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt gcggccgagc 850
cgcctccctg cagcgctgcg cagttctgta agaacgccaa cggctcctac 900
acgtgcgaag agtgtgactc cagctgtgtg ggctgcacag gggaaggccc 950
aggaaactgt aaagagtgta tctctggcta cgcgagggag cacggacagt 1000
gtgcagatgt ggacgagtgc tcactagcag aaaaaacctg tgtgaggaaa 1050
aacgaaaact gctacaatac tccagggagc tacgtctgtg tgtgtcctga 1100
CggCttcgaa gaaacggaag atgcctgtgt gccgccggca gaggctgaag 1150
ccacagaagg agaaagcccg acacagctgc cctcccgcga agacctgtaa 1200
tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat 1250
gtggccctga ggatgccgtc tcctgcagtg gacagcggcg gggagaggct 1300
gcctgctctc taacggttga ttctcatttg tcccttaaac agctgcattt 1350
cttggttgtt cttaaacaga cttgtatatt ttgatacagt tctttgtaat 1400
aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1500
gcccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca 1550
tcacaaattt cacaaataaa gcattttttt cactgcattc tagttgtggt 1600
ttgtccaaac tcatcaatgt atcttatcat gtctggatcg ggaattaatt 1650
cggcgcagca ccatggcctg aaataacctc tgaaagagga acttggttag 1700
gtaccttctg aggcggaaag aaccagctgt ggaatgtgtg tcagttaggg 1750
tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aagcatgcat 1800
ctcaattagt cagcaaccca gtttt 1825
```

<210> 2 <211> 353 <212> PRT

<213> Homo Sapien

30

Cys His Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met

Val Asp Thr Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp 50 55 60

20

Glu Glu Lys Thr Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu
65 70 75

Leu Glu Ile Leu Glu Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys 80 85 90

Asn Gln Met Leu Glu Ala Gln Glu Glu His Leu Glu Ala Trp Trp 95 100 105

Leu Gln Leu Lys Ser Glu Tyr Pro Asp Leu Phe Glu Trp Phe Cys 110 115 120

Val Lys Thr Leu Lys Val Cys Cys Ser Pro Gly Thr Tyr Gly Pro 125 130 135

Asp Cys Leu Ala Cys Gln Gly Gly Ser Gln Arg Pro Cys Ser Gly 140 145

Asn Gly His Cys Ser Gly Asp Gly Ser Arg Gln Gly Asp Gly Ser 155 160 165

Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu Cys Thr Asp Cys 170 175 180

Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr His Ser Ile 185 190 195

Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly Leu Thr 200 205

Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp Glu 215 220 225

Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro 230 235 240

Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr 245 250 255

Cys Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly 260 265 270

Pro Gly Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His 275 280 285

Gly Gln Cys Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr 290 295 300

Cys Val Arg Lys Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr 305 310

Val Cys Val Cys Pro Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys 320 325

Val Pro Pro Ala Glu Ala Glu Ala Thr Glu Gly Glu Ser Pro Thr
Page 3

Gln Leu Pro Ser Arg Glu Asp Leu 350

<210> 3 <211> 2206 <212> DNA <213> Homo Sapien

<400> 3 caggtccaac tgcacctcgg ttctatcgat tgaattcccc ggggatcctc 50 tagagatccc tcgacctcga cccacgcgtc cgccaggccg ggaggcgacg 100 cgcccagccg tctaaacggg aacagccctg gctgagggag ctgcagcgca 150 gcagagtatc tgacggcgcc aggttgcgta ggtgcggcac gaggagtttt 200 cccggcagcg aggaggtcct gagcagcatg gcccggagga gcgccttccc 250 tgccgccgcg ctctggctct ggagcatcct cctgtgcctg ctggcactgc 300 gggcggaggc cgggccgccg caggaggaga gcctgtacct atggatcgat 350 gctcaccagg caagagtact cataggattt gaagaagata tcctgattgt 400 ttcagagggg aaaatggcac cttttacaca tgatttcaga aaagcgcaac 450 agagaatgcc agctattcct gtcaatatcc attccatgaa ttttacctgg 500 caagctgcag ggcaggcaga atacttctat gaattcctgt ccttgcgctc 550 cctggataaa ggcatcatgg cagatccaac cgtcaatgtc cctctgctgg 600 gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt 650 ggaaaacagg atggggtggc agcatttgaa gtggatgtga ttgttatgaa 700 ttctgaaggc aacaccattc tccaaacacc tcaaaatgct atcttcttta 750 aaacatgtca acaagctgag tgcccaggcg ggtgccgaaa tggaggcttt 800 tgtaatgaaa gacgcatctg cgagtgtcct gatgggttcc acggacctca 850 ctgtgagaaa gccctttgta ccccacgatg tatgaatggt ggactttgtg 900 tgactcctgg tttctgcatc tgcccacctg gattctatgg agtgaactgt 950 gacaaagcaa actgctcaac cacctgcttt aatggaggga cctgtttcta 1000 ccctggaaaa tgtatttgcc ctccaggact agagggagag cagtgtgaaa 1050 tcagcaaatg cccacaaccc tgtcgaaatg gaggtaaatg cattggtaaa 1100 agcaaatgta agtgttccaa aggttaccag ggagacctct gttcaaagcc 1150 tgtctgcgag cctggctgtg gtgcacatgg aacctgccat gaacccaaca 1200 aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac 1250 gaagccagcc tcatacatgc cctgaggcca gcaggcgccc agctcaggca 1300

P1618P2C3.txt gcacacgcct tcacttaaaa aggccgagga gcggcgggat ccacctgaat 1350 ccaattacat ctggtgaact ccgacatctg aaacgtttta agttacacca 1400 agttcatagc ctttgttaac ctttcatgtg ttgaatgttc aaataatgtt 1450 cattacactt aagaatactg gcctgaattt tattagcttc attataaatc 1500 actgagctga tatttactct tccttttaag ttttctaagt acgtctgtag 1550 catgatggta tagattttct tgtttcagtg ctttgggaca gattttatat 1600 tatgtcaatt gatcaggtta aaattttcag tgtgtagttg gcagatattt 1650 tcaaaattac aatgcattta tggtgtctgg gggcagggga acatcagaaa 1700 ggttaaattg ggcaaaaatg Cgtaagtcac aagaatttgg atggtgcagt 1750 taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800 ttacactgtg gtagtggcat ttaaacaata taatatattc taaacacaat 1950 gaaataggga atataatgta tgaacttttt gcattggctt gaagcaatat 2000 aatatattgt aaacaaaaca cagctcttac ctaataaaca ttttatactg 2050 aaaaaaaaa aaaaaaaaa aaaaaaaaa gggcggccgc gactctagag 2150 tcgacctgca gaagcttggc cgccatggcc caacttgttt attgcagctt 2200 ataatg 2206

<210> 4 <211> 379 <212> PRT

<213> Homo Sapien

<400> 4
Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp
15
Ser Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro
20
Pro Gln Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala
45
Arg Val Leu Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu
50
Gly Lys Met Ala Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln
75
Arg Met Pro Ala Ile Pro Val Asn Ile His Ser Met Asn Phe Thr
80
Trp Gln Ala Ala Gly Gln Ala Glu Tyr Phe Tyr Glu Phe Leu Ser

				95				P	1618 100	P2C3	.txt	:		105
Leu	Arg	ser	Leu	Asp 110	Lys	Gly	Ile	Met	Ala 115	Asp	Pro	Thr	val	Asn 120
٧a٦	Pro	Leu	Leu	Gly 125	⊤hr	٧al	Pro	His	Lys 130	Ala	ser	٧a٦	٧a٦	Gln 135
٧a٦	Gly	Phe	Pro	Cys 140	Leu	Gly `	Lys	Gln	Asp 145	GТу	٧a٦	Аla	Ala	Phe 150
Glu	Val	Asp	۷al	11e 155	Val	Met	Asn	Ser	G]u 160	Glу	Asn	Thr	Ile	Leu 165
Gln	Thr	Pro	Gln	Asn 170	Ala	Ile	Phe	Phe	Lys 175	Thr	Cys	Gln	Gln	Ala 180
Glu	Cys	Pro	Glу	Gly 185	Cys	Arg	Asn	Gly	Gly 190	Phe	Cys	Asn	Glu	Arg 195
Arg	Ile	Cys	Glu	Cys 200	Pro	Asp	Glу	Phe	His 205	Glу	Pro	His	Cys	Glu 210
Lys	Ala	Leu	Cys	Thr 215	Pro	Arg	Cys	Met	Asn 220	Gly	Glу	Leu	Cys	Va1 225
Thr	Pro	Gly	Phe	Cys 230	Ile	Cys	Pro	Pro	Gly 235	Phe	Tyr	Gly	Val	Asn 240
Cys	Asp	Lys	Ala	Asn 245	Cys	Ser	Thr	Thr	Cys 250	Phe	Asn	Gly	Gly	Thr 255
Cys	Phe	туг	Pro	G]y 260	Lys	Cys	Ile	Cys	Pro 265	Pro	Gly	Leu	Glu	Gly 270
Glu	Gln	Cys	Glu	Ile 275	Ser	Lys	Cys	Pro	G]n 280	Pro	Cys	Arg	Asn	G]y 285
Gly	Lys	Cys	Ile	G]y 290	Lys	Ser	Lys	Cys	Lys 295	Cys	Ser	Lys	Glу	Tyr 300
Gln	ĠIJ	Asp	Leu	Cys 305	ser	Lys	Pro	val	Cys 310	Glu	Pro	Glу	Cys	Gly 315
Ala	His	Gly	Thr	Cys 320	His	Glu	Pro	Asn	Lys 325	Cys	Gln	Cys	Gln	Glu 330
Gly	Тгр	His	Gly	Arg 335	His	Cys	Asn	Lys	Arg 340	Tyr	Glu	Ala	ser	Leu 345
Ile	His	Ala	Leu	Arg 350	Pro	Ala	Gly	ΑΊα	G]n 355	Leu	Arg	Gln	His	Thr 360
Pro	Ser	Leu	Lys	Lys 365	Ala	Glu	Glu	Arg	Arg 370	Asp	Pro	Pro	Glu	Ser 375
Asn	туг	Ile	Trp											

<210> 5 <211> 45 <212> DNA <213> Artificial Sequence

```
<223> Synthetic Oligonucleotide Probe
<400> 5
 agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca 45
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 6
 agagtgtatc tctggctacg c 21
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 7
 taagtccggc acattacagg tc 22
<210> 8
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
 cccacgatgt atgaatggtg gactttgtgt gactcctggt ttctgcatc 49
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 9
aaagacgcat ctgcgagtgt cc 22
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 10
tgctgatttc acactgctct ccc 23
<210> 11
```

<212> DNA <213> Homo Sapien <400> 11 cggacgcgtg ggcgtccggc ggtcgcagag ccaggaggcg gaggcgcgcg 50 ggccagcctg ggccccagcc cacaccttca ccagggccca ggagccacca 100 tgtggcgatg tccactgggg ctactgctgt tgctgccgct ggctggccac 150 ttggctctgg gtgcccagca gggtcgtggg cgccgggagc tagcaccggg 200 tctgcacctg cggggcatcc gggacgcggg aggccggtac tgccaggagc 250 aggacctgtg ctgccgcggc cgtgccgacg actgtgccct gccctacctg 300 ggcgccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg 350 ctgccctgac ttctgggact tctgcctcgg cgtgccaccc ccttttcccc 400 cgatccaagg atgtatgcat ggaggtcgta tctatccagt cttgggaacg 450 tactgggaca actgtaaccg ttgcacctgc caggagaaca ggcagtggca 500 tggtggatcc agacatgatc aaagccatca accagggcaa ctatggctgg 550 caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600 tcgctaccgc ctgggcacca tccgcccatc ttcctcggtc atgaacatgc 650 atgaaattta tacagtgctg aacccagggg aggtgcttcc cacagccttc 700 gaggcctctg agaagtggcc caacctgatt catgagcctc ttgaccaagg 750 caactgtgca ggctcctggg ccttctccac agcagctgtg gcatccgatc 800 gtgtctcaat ccattctctg ggacacatga cgcctgtcct gtcgccccag 850 aacctgctgt cttgtgacac ccaccagcag cagggctgcc gcggtgggcg 900 tctcgatggt gcctggtggt tcctgcgtcg ccgaggggtg gtgtctgacc 950 actgctaccc cttctcgggc cgtgaacgag acgaggctgg ccctgcgccc 1000 ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 1050 tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca 1100 ctcctgtcta ccgcctcggc tccaacgaca aggagatcat gaaggagctg 1150 atggagaatg gccctgtcca agccctcatg gaggtgcatg aggacttctt 1200 cctatacaag ggaggcatct acagccacac gccagtgagc cttgggaggc 1250 cagagagata ccgccggcat gggacccact cagtcaagat cacaggatgg 1300 ggagaggaga cgctgccaga tggaaggacg ctcaaatact ggactgcggc 1350 caactcctgg ggcccagcct ggggcgagag gggccacttc cgcatcgtgc 1400 gcggcgtcaa tgagtgcgac atcgagagct tcgtgctggg cgtctggggc 1450

<211> 2197

P1618P2C3.txt cgcgtgggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500 ggggtccggc ctgggatcca ggctaagggc cggcggaaga ggccccaatg 1550 gggcggtgac cccagcctcg cccgacagag cccggggcgc aggcgggcgc 1600 cagggcgcta atcccggcgc gggttccgct gacgcagcgc cccgcctggg 1650 agccgcgggc aggcgagact ggcggagccc ccagacctcc cagtggggac 1700 ggggcagggc ctggcctggg aagagcacag ctgcagatcc caggcctctg 1750 gcgccccac tcaagactac caaagccagg acacctcaag tctccagccc 1800 caatacccca ccccaatccc gtattctttt ttttttttt ttagacaggg 1850 tcttgctccg ttgcccaggt tggagtgcag tggcccatca gggctcactg 1900 taacctccga ctcctgggtt caagtgaccc tcccacctca gcctctcaag 1950 tagctgggac tacaggtgca ccaccacac tggctaattt ttgtattttt 2000 tgtaaagagg ggggtctcac tgtgttgccc aggctggttt cgaactcctg 2050 ggctcaagcg gtccacctgc ctccgcctcc caaagtgctg ggattgcagg 2100 catgagccac tgcacccagc cctgtattct tattcttcag atatttattt 2150

ttcttttcac tgttttaaaa taaaaccaaa gtattgataa aaaaaaa 2197

<400> 12

Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Leu Pro Leu Ala 1 5 10 Gly His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu 20 25 30 Leu Ala Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly
35 . 40 45 Arg Tyr Cys Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp 50 55 Asp Cys Ala Leu Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu 65 70 75 Phe Cys Asn Arg Thr Val Ser Asp Cys Cys Pro Asp Phe Trp Asp 80 85 90 Phe Cys Leu Gly Val Pro Pro Pro Phe Pro Pro Ile Gln Gly Cys 95 100 105 Met His Gly Gly Arg Ile Tyr Pro Val Leu Gly Thr Tyr Trp Asp 110 120 Asn Cys Asn Arg Cys Thr Cys Gln Glu Asn Arg Gln Trp His Gly 125 130

<211> 164 <212> PRT <213> Homo Sapien

```
P1618P2C3.txt
 Gly Ser Arg His Asp Gln Ser His Gln Pro Gly Gln Leu Trp Leu
                                      145
 Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly His Asp Pro Gly
<210> 13
<211> 533
<212> DNA
<213> Homo Sapien
<220>
<221> unsure
<222> 33, 37, 80, 94, 144, 188
<223> unknown base
<400> 13
 aggeteettg gecettitte caeageaage tintgenate eegattegtt 50
 gtctcaaatc caattctctt gggacacatn acgcctgtcc tttngcccca 100
 gaacctgctg tcttgtacac ccaccagcag cagggctgcc gcgntgggcg 150
 tctcgatggt gcctggtggt tcctgcgtcg ccgagggntg gtgtctgacc 200
 actgctaccc cttctcgggc cgtgaacgag acgaggctgg ccctgcgccc 250
 ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
 tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca 350
 ctcctgtcta ccgcctcggc tccaacgaca aggagatcat gaaggagctg 400
 atggagaatg gccctgtcca agccctcatg gaggtgcatg aggacttctt 450
 cctatacaag ggaggcatct acagccacac gccagtgagc cttgggaggc 500
 cagagagata ccgccggcat gggacccact cag 533
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 14
ttcgaggcct ctgagaagtg gccc 24
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 15
ggcggtatct ctctggcctc cc 22
<210> 16
<211> 50
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 16
 ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg 50
<210> 17
<211> 960
<212> DNA
<213> Homo Sapien
<400> 17
 gctgcttgcc ctgttgatgg caggcttggc cctgcagcca ggcactgccc 50
 tgctgtgcta ctcctgcaaa gcccaggtga gcaacgagga ctgcctgcag 100
 gtggagaact gcacccagct gggggagcag tgctggaccg cgcgcatccg 150
 cgcagttggc ctcctgaccg tcatcagcaa aggctgcagc ttgaactgcg 200
 tggatgactc acaggactac tacgtgggca agaagaacat cacgtgctgt 250
 gacaccgact tgtgcaacgc cagcggggcc catgccctgc agccggctgc 300
 cgccatcctt gcgctgctcc ctgcactcgg cctgctgctc tgggggacccg 350
 gccagctata ggctctgggg ggccccgctg cagcccacac tgggtgtggt 400
 gccccaggcc tctgtgccac tcctcacaga cctggcccag tgggagcctg 450
 tcctggttcc tgaggcacat cctaacgcaa gtctgaccat gtatgtctgc 500
 acccctgtcc cccaccctga ccctcccatg gccctctcca ggactcccac 550
 ccggcagatc agctctagtg acacagatcc gcctgcagat ggcccctcca 600
 accetetetg etgetgttte catggeecag cattetecae cettaaceet 650
 gtgctcaggc acctcttccc ccaggaagcc ttccctgccc accccatcta 700
 tgacttgagc caggtctggt ccgtggtgtc ccccgcaccc agcaggggac 750
 aggcactcag gagggcccag taaaggctga gatgaagtgg actgagtaga 800
actggaggac aagagtcgac gtgagttcct gggagtctcc agagatgggg 850
cctggaggcc tggaggaagg ggccaggcct cacattcgtg gggctccctg 900
aatggcagcc tgagcacagc gtaggccctt aataaacacc tgttggataa 950
gccaaaaaaa 960
<210> 18
<211> 189
<212> PRT
<213> Homo Sapien
<400> 18
Met Thr His Arg Thr Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala
                                      Page 11
```

FIOLOFZCS: CAC									
val Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser 20 25 30									
Arg Leu Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys 35 40 45									
Ser Gly Asp Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln 50 55 60									
Pro Thr Leu Gly Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr 65 70 75									
Asp Leu Ala Gln Trp Glu Pro Val Leu Val Pro Glu Ala His Pro 80 85 90									
Asn Ala Ser Leu Thr Met Tyr Val Cys Thr Pro Val Pro His Pro 95 100 105									
Asp Pro Pro Met Ala Leu Ser Arg Thr Pro Thr Arg Gln Ile Ser 110 115 120									
Ser Ser Asp Thr Asp Pro Pro Ala Asp Gly Pro Ser Asn Pro Leu 125 130 135									
Cys Cys Cys Phe His Gly Pro Ala Phe Ser Thr Leu Asn Pro Val 140 145 150									
Leu Arg His Leu Phe Pro Gln Glu Ala Phe Pro Ala His Pro Ile 155 160 165									
Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser Pro Ala Pro Ser 170 175 180									
Arg Gly Gln Ala Leu Arg Arg Ala Gln 185									
<210> 19 <211> 24 <212> DNA <213> Artificial Sequence									
<220> <223> Synthetic Oligonucleotide Probe									
<400> 19 tgctgtgcta ctcctgcaaa gccc 24									
<210> 20 <211> 24 <212> DNA <213> Artificial Sequence									
<220> <223> Synthetic Oligonucleotide Probe									
<400> 20 tgcacaagtc ggtgtcacag cacg 24									
<210> 21 <211> 44 <212> DNA									
<213> Artificial Sequence Page 12									

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 21
agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg 44
<210> 22
<211> 1200
<212> DNA
<213> Homo Sapien
<400> 22
 cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca 50
 acctcactct gtgcttacag ctgctgattc tctgctgtca aactcagtac 100
 gtgagggacc agggcgccat gaccgaccag ctgagcaggc ggcagatccg 150
 cgagtaccaa ctctacagca ggaccagtgg caagcacgtg caggtcaccg 200
 ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt tgccaagctc 250
 atagtggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300
 gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc 350
 ccagcgggaa gagcaaagac tgcgtgttca cggagatcgt gctggagaac 400
 aactatacgg ccttccagaa cgcccggcac gagggctggt tcatggcctt 450
 cacgcggcag gggcggcccc gccaggcttc ccgcagccgc cagaaccagc 500
 gcgaggcca cttcatcaag cgcctctacc aaggccagct gcccttcccc 550
 aaccacgccg agaagcagaa gcagttcgag tttgtgggct ccgccccac 600
 ccgccggacc aagcgcacac ggcggcccca gcccctcacg tagtctggga 650
 ggcagggggc agcagcccct gggccgcctc cccacccctt tcccttctta 700
 atccaaggac tgggctgggg tggcgggagg ggagccagat ccccgaggga 750
 ggaccctgag ggccgcgaag catccgagcc cccagctggg aaggggcagg 800
 ccggtgcccc aggggcggct ggcacagtgc ccccttcccg gacgggtggc 850
 aggccctgga gaggaactga gtgtcaccct gatctcaggc caccagcctc 900
 tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg 950
 aaggccttgc agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc 1000
 tcggatctcc ctcagtctgc ccccagcccc caaactcctc ctggctagac 1050
 tgtaggaagg gacttttgtt tgtttgtttg tttcaggaaa aaagaaaggg 1100
 agagagagga aaatagaggg ttgtccactc ctcacattcc acgacccagg 1150
 cctgcacccc acccccaact cccagccccg gaataaaacc attttcctgc 1200
```

```
<212> PRT
<213> Homo Sapien
<400> 23
 Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln
1 10 15
 Leu Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly
20 25 30
 Ala Met Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln
45
 Leu Tyr Ser Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg
50 55 60
 Arg Ile Ser Ala Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu
65 70 75
 Ile Val Glu Thr Asp Thr Phe Gly Ser Arg Val Arg Ile Lys Gly
80 85 90
 Ala Glu Ser Glu Lys Tyr Ile Cys Met Asn Lys Arg Gly Lys Leu
95 100 105
 Ile Gly Lys Pro Ser Gly Lys Ser Lys Asp Cys Val Phe Thr Glu
110 115 120
 Ile Val Leu Glu Asn Asn Tyr Thr Ala Phe Gln Asn Ala Arg His
125 130 135
 Glu Gly Trp Phe Met Ala Phe Thr Arg Gln Gly Arg Pro Arg Gln
140 145 150
 Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu Ala His Phe Ile Lys
165 160
 Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn His Ala Glu Lys
170 175 180
 Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr Arg Arg Thr
185 190 195
 Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr
200 205
<210> 24
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 24
 cagtacgtga gggaccaggg cgccatga 28
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
```

<220>

P1618P2C3.txt <223> Synthetic Oligonucleotide Probe <400> 25 ccggtgacct gcacgtgctt gcca 24 <210> 26 <211> 41 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <220> <221> unsure <222> 21 <223> unknown base <400> 26 gcggatctgc cgcctgctca nctggtcggt catggcgccc t 41 <210> 27 <211> 2479 <212> DNA <213> Homo Sapien <400> 27 acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt 50 ttgcacatgg aggacagcag caaagagggc aacacaggct gataagacca 100 gagacagcag ggagattatt ttaccatacg ccctcaggac gttccctcta 150 gctggagttc tggacttcaa cagaacccca tccagtcatt ttgattttgc 200

cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900

			P1618P2C3	.txt	
ggaacctcct	gaccaacaag	ggtatcgccg	agggcacctt	cagccatctc	950
accaagctca	aggaattttc	aattgtacgt	aattcgctgt	cccaccctcc	1000
tcccgatctc	ccaggtacgc	atctgatcag	gctctatttg	caggacaacc	1050
agataaacca	cattcctttg	acagccttct	caaatctgcg	taagctggaa	1100
cggctggata	tatccaacaa	ccaactgcgg	atgctgactc	aaggggtttt	1150
tgataatctc	tccaacctga	agcagctcac	tgctcggaat	aacccttggt	1200
tttgtgactg	cagtattaaa	tgggtcacag	aatggctcaa	atatatccct	1250
tcatctctca	acgtgcgggg	tttcatgtgc	caaggtcctg	aacaagtccg	1300
ggggatggcc	gtcagggaat	taaatatgaa	tcttttgtcc	tgtcccacca	1350
cgacccccgg	cctgcctctc	ttcaccccag	ccccaagtac	agcttctccg	1400
accactcagc	ctcccaccct	ctctattcca	aaccctagca	gaagctacac	1450
gcctccaact	cctaccacat	cgaaacttcc	cacgattcct	gactgggatg	1500
gcagagaaag	agtgacccca	cctatttctg	aacggatcca	gctctctatc	1550
cattttgtga	atgatacttc	cattcaagtc	agctggctct	ctctcttcac	1600
cgtgatggca	tacaaactca	catgggtgaa	aatgggccac	agtttagtag	1650
ggggcatcgt	tcaggagcgc	atagtcagcg	gtgagaagca	acacctgagc	1700
ctggttaact	tagagccccg	atccacctat	cggatttgtt	tagtgccact	1750
ggatgctttt	aactaccgcg	cggtagaaga	caccatttgt	tcagaggcca	1800
ccacccatgc	ctcctatctg	aacaacggca	gcaacacagc	gtccagccat	1850
gagcagacga	cgtcccacag	catgggctcc	ccctttctgc	tggcgggctt	1900
gatcgggggc	gcggtgatat	ttgtgctggt	ggtcttgctc	agcgtctttt	1950
gctggcatat	gcacaaaaag	gggcgctaca	cctcccagaa	gtggaaatac	2000
aaccggggcc	ggcggaaaga	tgattattgc	gaggcaggca	ccaagaagga	2050
caactccatc	ctggagatga	cagaaaccag	ttttcagatc	gtctccttaa	2100
ataacgatca	actccttaaa	ggagatttca	gactgcagcc	catttacacc	2150
ccaaatgggg	gcattaatta	cacagactgc	catatcccca	acaacatgcg	2200
atactgcaac	agcagcgtgc	cagacctgga	gcactgccat	acgtgacagc	2250
cagaggccca	gcgttatcaa	ggcggacaat	tagactcttg	agaacacact	2300
cgtgtgtgca	cataaagaca	cgcagattac	atttgataaa	tgttacacag	2350
atgcatttgt	gcatttgaat	actctgtaat	ttatacggtg	tactatataa	2400
tgggatttaa	aaaaagtgct	atcttttcta	tttcaagtta	attacaaaca	2450
gttttgtaac	tctttgcttt	ttaaatctt 2		c	
			Page 1	U	

<210> 28 <211> 660 <212> PRT <213> Homo Sapien													
<400> Met G 1	28 Sly Leu	Gln	Thr 5	Thr	Lys	Trp	Pro	ser 10	нis	Gly	Ala	Phe	Phe 15
Leu L	ys Ser	Trp	Leu 20	Ile	Ile	Ser	Leu	G]y 25	Leu	Tyr	Ser	Gln	va1 30
Ser L	ys Leu	Leu	A]a 35	Cys	Pro	Ser	val	Cys 40	Arg	Cys	Asp	Arg	Asn 45
Phe V	al Tyr	Cys	Asn 50	Glu	Arg	Ser	Leu	Thr 55	Ser	val	Pro	Leu	Gly 60
Ile P	ro Glu	Glу	va 1 65	Thr	∨al	Leu	Tyr	Leu 70	ніѕ	Asn	Asn	Gln	11e 75
Asn A	sn Ala	Gly	Phe 80	Pro	Ala	Glu	Leu	His 85	Asn	٧al	Gln	Ser	Val 90
His T	hr Val	Tyr	Leu 95	Tyr	Gly	Asn	Gln	Leu 100	Asp	Glu	Phe	Pro	Met 105
Asn L	eu Pro	Lys	Asn 110	٧a٦	Arg	val	Leu	ніs 115	Leu	Gln	Glu	Asn	Asn 120
Ile G	iln Thr	Ile	Ser 125	Arg	Ala	Ala	Leu	Ala 130	Gln	Leu	Leu	Lys	Leu 135
Glu G	ilu Leu	His	Leu 140	Asp	Asp	Asn	Ser	Ile 145	Ser	Thr	۷al	Gly	Val 150
Glu A	sp Gly	Ala	Phe 155	Arg	Glu	Ala	Ile	Ser 160	Leu	Lys	Leu	Leu	Phe 165
Leu S	er Lys	Asn	ніs 170	Leu	Ser	Ser	val	Pro 175	۷al	Gly	Leu	Pro	Val 180
Asp L	eu Gln	Glu	Leu 185	Arg	val	Asp	Glu	Asn 190	Arg	Ile	Ala	val	Ile 195
Ser A	sp Met	Ala	Phe 200	Gln	Asn	Leu	Thr	Ser 205	Leu	Glu	Arg	Leu	Ile 210
Val A	sp Gly	Asn	Leu 215	Leu	Thr	Asn	Lys	G]y 220	Ile	Ala	Glu	Gly	Thr 225
Phe S	er His	Leu	Thr 230	Lys	Leu	Lys	Glu	Phe 235	Ser	Ile	۷a٦	Arg	Asn 240
Ser L	eu Ser	His	Pro 245	Pro	Pro	Asp	Leu	Pro 250	Gly	Thr	His	Leu	Ile 255
Arg L	eu Tyr	Leu	G]n 260	Asp	Asn	Gln	Ile	Asn 265	нis	Ile	Pro	Leu	Thr 270
Ala P	he Ser	Asn	Leu 275	Arg	Lys	Leu	Glu	28Ō	Leu ge 1		Ile	Ser	Asn 285

Asn	Gln	Leu	Arg	Met 290	Leu	Thr	Gln	Gly	va1 295	Phe	Asp	Asn	Leu	Ser 300
Asn	Leu	Lys	Gln	Leu 305	Thr	Ala	Arg	Asn	Asn 310	Pro	Trp	Phe	Cys	Asp 315
Cys	Ser	Ile	Lys	Trp 320	٧a٦	Thr	Glu	Trp	Leu 325	Lys	Tyr	Ile	Pro	Ser 330
Ser	Leu	Asn	Val	Arg 335	Gly	Phe	Met	Cys	G]n 340	Gly	Pro	Glu	Gln	Va1 345
Arg	Gly	Met	Ala	va1 350	Arg	Glu	Leu	Asn	Met 355	Asn	Leu	Leu	Ser	Cys 360
Pro	Thr	Thr	Thr	Pro 365	Gly	Leu	Pro	Leu	Phe 370	Thr	Pro	Аla	Pro	Ser 375
Thr	Ala	Ser	Pro	Thr 380	Thr	Gln	Pro	Pro	Thr 385	Leu	Ser	Ile	Pro	Asn 390
Pro	Ser	Arg	Ser	Tyr 395	Thr	Pro	Pro	Thr	Pro 400	Thr	Thr	Ser	Lys	Leu 405
Pro	Ťhr	Ile	Pro	Asp 410	Trp	Asp	Gly	Arg	Glu 415	Arg	val	Thr	Pro	Pro 420
Ile	Ser	Glu	Arg	11e 425	Gln	Leu	Ser	Ile	His 430	Phe	۷al	Asn	Asp	Thr 435
Ser	Ile	Gln	Val	Ser 440	Trp	Leu	Ser	Leu	Phe 445	Thr	val	Met	Ala	Tyr 450
Lys	Leu	Thr	Trp	va1 455	Lys	Met	Gly	His	ser 460	Leu	val	Gly	Gly	11e 465
Val	G] n	Glu	Arg	11e 470	٧a٦	Ser	Gly	Glu	Lys 475	Gln	His	Leu	Ser	Leu 480
Val	Asn	Leu	Glu	Pro 485	Arg	Ser	Thr	Tyr	Arg 490	Ile	Cys	Leu	Val	Pro 495
Leu	Asp	Ala	Phe	Asn 500	Tyr	Arg	Ala	۷al	G1u 505	Asp	Thr	Ile	Cys	Ser 510
Glu	Ala	Thr	Thr	His 515	Ala	Ser	Tyr	Leu	Asn 520	Asn	Gly	Ser	Asn	Thr 525
Ala	Ser	Ser	His	G] u 530	Gln	Thr	Thr	Ser	His 535	Ser	Met	Gly	Ser	Pro 540
Phe	Leu	Leu	Ala	Gly 545	Leu	Ile	Gly	Gly	Ala 550	val	Ile	Phe	val	Leu 555
Val	val	Leu	Leu	Ser 560	val	Phe	Cys	Trp	His 565	Met	His	Lys	Lys	Gly 570
Arg	Tyr	Thr	Ser	G]n 575	Lys	Trp	Lys	Tyr	Asn 580	Arg	Gly	Arg	Arg	Lys 585
Asp	Asp	Tyr	Cys	Glu 590	Ala	Gly	Thr	Lys	595	Asp ge 18	_	Ser	Ile	Leu 600

```
Glu Met Thr Glu Thr Ser Phe Gln Ile Val Ser Leu Asn Asn Asp
 Gln Leu Leu Lys Gly Asp Phe Arg Leu Gln Pro Ile Tyr Thr Pro 620 625 630
 Asn Gly Gly Ile Asn Tyr Thr Asp Cys His Ile Pro Asn Asn Met
 Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu His Cys His Thr
<210> 29
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 29
 cggtctacct gtatggcaac c 21
<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 30
 gcaggacaac cagataaacc ac 22
<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 31
acgcagattt gagaaggctg tc 22
<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac 46
<210> 33
<211> 3449
<212> DNA
<213> Homo Sapien
<400> 33
```

P1618P2C3.txt acttggagca agcggcggcg gcggagacag aggcagaggc agaagctggg 50 gctccgtcct cgcctcccac gagcgatccc cgaggagagc cgcggccctc 100 ggcgaggcga agaggccgac gaggaagacc cgggtggctg cgcccctgcc 150 tcgcttccca ggcgccggcg gctgcagcct tgcccctctt gctcgccttg 200 aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc tcggacagat 250 cgtcctcctc cctgccgagg ccagggagcg gtcacgtggg aggtccatct 300 ctaggggcag acacgctcgg acccacccgc agacggccct tctggagagt 350 tcctgtgaga acaagcgggc agacctggtt ttcatcattg acagctctcg 400 cagtgtcaac acccatgact atgcaaaggt caaggagttc atcgtggaca 450 tcttgcaatt cttggacatt ggtcctgatg tcacccgagt gggcctgctc 500 caatatggca gcactgtcaa gaatgagttc tccctcaaga ccttcaagag 550 gaagtccgag gtggagcgtg ctgtcaagag gatgcggcat ctgtccacgg 600 gcaccatgac tgggctggcc atccagtatg ccctgaacat cgcattctca 650 gaagcagagg gggcccggcc cctgagggag aatgtgccac gggtcataat 700 gatcgtgaca gatgggagac ctcaggactc cgtggccgag gtggctgcta 750 aggcacggga cacgggcatc ctaatctttg ccattggtgt gggccaggta 800 gacttcaaca ccttgaagtc cattgggagt gagccccatg aggaccatgt 850 cttccttgtg gccaatttca gccagattga gacgctgacc tccgtgttcc 900 agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt 950 gcccacttct gcatcaacat ccctggctca tacgtctgca ggtgcaaaca 1000 aggctacatt ctcaactcgg atcagacgac ttgcagaatc caggatctgt 1050 gtgccatgga ggaccacaac tgtgagcagc tctgtgtgaa tgtgccgggc 1100 tccttcgtct gccagtgcta cagtggctac gccctggctg aggatgggaa 1150 gaggtgtgtg gctgtggact actgtgcctc agaaaaccac ggatgtgaac 1200 atgagtgtgt aaatgctgat ggctcctacc tttgccagtg ccatgaagga 1250 tttgctctta acccagatga aaaaacgtgc acaaggatca actactgtgc 1300 actgaacaaa ccgggctgtg agcatgagtg cgtcaacatg gaggagagct 1350 actactgccg ctgccaccgt ggctacactc tggaccccaa tggcaaaacc 1400 tgcagccgag tggaccactg tgcacagcag gaccatggct gtgagcagct 1450 gtgtctgaac acggaggatt ccttcgtctg ccagtgctca gaaggcttcc 1500 tcatcaacga ggacctcaag acctgctccc gggtggatta ctgcctgctg 1550 agtgaccatg gttgtgaata ctcctgtgtc aacatggaca gatcctttgc 1600

Page 20

ctgtcagtgt	cctgagggac	acgtgctccg	cagcgatggg	aagacgtgtg	1650
caaaattgga	ctcttgtgct	ctgggggacc	acggttgtga	acattcgtgt	1700
gtaagcagtg	aagattcgtt	tgtgtgccag	tgctttgaag	gttatatact	1750
ccgtgaagat	ggaaaaacct	gcagaaggaa	agatgtctgc	caagctatag	1800
accatggctg	tgaacacatt	tgtgtgaaca	gtgacgactc	atacacgtgc	1850
gagtgcttgg	agggattccg	gctcgctgag	gatgggaaac	gctgccgaag	1900
gaaggatgtc	tgcaaatcaa	cccaccatgg	ctgcgaacac	atttgtgtta	1950
ataatgggaa	ttcctacatc	tgcaaatgct	cagagggatt	tgttctagct	2000
gaggacggaa	gacggtgcaa	gaaatgcact	gaaggcccaa	ttgacctggt	2050
ctttgtgatc	gatggatcca	agagtcttgg	agaagagaat	tttgaggtcg	2100
tgaagcagtt	tgtcactgga	attatagatt	ccttgacaat	ttcccccaaa	2150
gccgctcgag	tggggctgct	ccagtattcc	acacaggtcc	acacagagtt	2200
cactctgaga	aacttcaact	cagccaaaga	catgaaaaaa	gccgtggccc	2250
acatgaaata	catgggaaag	ggctctatga	ctgggctggc	cctgaaacac	2300
atgtttgaga	gaagttttac	ccaaggagaa	ggggccaggc	ccctttccac	2350
aagggtgccc	agagcagcca	ttgtgttcac	cgacggacgg	gctcaggatg	2400
acgtctccga	gtgggccagt	aaagccaagg	ccaatggtat	cactatgtat	2450
gctgttgggg	taggaaaagc	cattgaggag	gaactacaag	agattgcctc	2500
tgagcccaca	aacaagcatc	tcttctatgc	cgaagacttc	agcacaatgg	2550
atgagataag	tgaaaaactc	aagaaaggca	tctgtgaagc	tctagaagac	2600
tccgatggaa	gacaggactc	tccagcaggg	gaactgccaa	aaacggtcca	2650
acagccaaca	gaatctgagc	cagtcaccat	aaatatccaa	gacctacttt	2700
cctgttctaa	ttttgcagtg	caacacagat	atctgtttga	agaagacaat	2750
cttttacggt	ctacacaaaa	gctttcccat	tcaacaaaac	cttcaggaag	2800
ccctttggaa	gaaaaacacg	atcaatgcaa	atgtgaaaac	cttataatgt	2850
tccagaacct	tgcaaacgaa	gaagtaagaa	aattaacaca	gcgcttagaa	2900
gaaatgacac	agagaatgga	agccctggaa	aatcgcctga	gatacagatg	2950
aagattagaa	atcgcgacac	atttgtagtc	attgtatcac	ggattacaat	3000
gaacgcagtg	cagagcccca	aagctcaggc	tattgttaaa	tcaataatgt	3050
tgtgaagtaa	aacaatcagt	actgagaaac	ctggtttgcc	acagaacaaa	3100
gacaagaagt	atacactaac	ttgtataaat	ttatctagga	aaaaaatcct	3150

tcagaattct aagatgaatt taccaggtga gaatgaataa gctatgcaag 3200 gtattttgta atatactgtg gacacaactt gcttctgcct catcctgcct 3250 tagtgtgcaa tctcatttga ctatacgata aagtttgcac agtcttactt 3300 ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac 3350 cttgatatat gtatatggat gtatgcataa aatcatagga catatgtact 3400

tgtggaacaa gttggatttt ttatacaata ttaaaattca ccacttcag 3449

<210> 34 <211> 915 <212> PRT <213> Homo Sapien

<400> 34 Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln
1 10 15 Ile Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala 35 40 45 Leu Leu Glu Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys
65 70 75 Val Lys Glu Phe Ile Val Asp Ile Leu Gln Phe Leu Asp Ile Gly 80 85 90 Pro Asp Val Thr Arg Val Gly Leu Leu Gln Tyr Gly Ser Thr Val 95 100 Lys Asn Glu Phe Ser Leu Lys Thr Phe Lys Arg Lys Ser Glu Val $110 \,$ $115 \,$ $120 \,$ Glu Arg Ala Val Lys Arg Met Arg His Leu Ser Thr Gly Thr Met 125 130 135 Thr Gly Leu Ala Ile Gln Tyr Ala Leu Asn Ile Ala Phe Ser Glu 140 145 150 Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn Val Pro Arg Val Ile 155 160 165 Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser Val Ala Glu Val 170 175 Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe Ala Ile Gly
185 190 195 Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly Ser Glu 200 205 210 Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln Ile

P1618P2C3.txt Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His 230 235 240 Met Cys Ser Thr Leu Glu His Asn Cys Ala His Phe Cys Ile Asn 245 250 255 Ile Pro Gly Ser Tyr Val Cys Arg Cys Lys Gln Gly Tyr Ile Leu 260 265 270 Asn Ser Asp Gln Thr Thr Cys Arg Ile Gln Asp Leu Cys Ala Met 275 280 285 Glu Asp His Asn Cys Glu Gln Leu Cys Val Asn Val Pro Gly Ser 290 295 300 Phe Val Cys Gln Cys Tyr Ser Gly Tyr Ala Leu Ala Glu Asp Gly 305 310 315 Lys Arg Cys Val Ala Val Asp Tyr Cys Ala Ser Glu Asn His Gly 320 325 330 Cys Glu His Glu Cys Val Asn Ala Asp Gly Ser Tyr Leu Cys Gln 335 340 345 Cys His Glu Gly Phe Ala Leu Asn Pro Asp Glu Lys Thr Cys Thr 350 355 360Arg Ile Asn Tyr Cys Ala Leu Asn Lys Pro Gly Cys Glu His Glu 365 370 375 Cys Val Asn Met Glu Glu Ser Tyr Tyr Cys Arg Cys His Arg Gly 380 385 Tyr Thr Leu Asp Pro Asn Gly Lys Thr Cys Ser Arg Val Asp His 395 400 405Cys Ala Gln Gln Asp His Gly Cys Glu Gln Leu Cys Leu Asn Thr 410 415 420 Glu Asp Ser Phe Val Cys Gln Cys Ser Glu Gly Phe Leu Ile Asn 425 430 435 Glu Asp Leu Lys Thr Cys Ser Arg Val Asp Tyr Cys Leu Leu Ser 440 445 Asp His Gly Cys Glu Tyr Ser Cys Val Asn Met Asp Arg Ser Phe 455 460 465 Ala Cys Gln Cys Pro Glu Gly His Val Leu Arg Ser Asp Gly Lys 470 480 Thr Cys Ala Lys Leu Asp Ser Cys Ala Leu Gly Asp His Gly Cys 485 490 495 Glu His Ser Cys Val Ser Ser Glu Asp Ser Phe Val Cys Gln Cys 500 510 Phe Glu Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg 525 Lys Asp Val Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys 530 535

P1618P2C3.txt Val Asn Ser Asp Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe 545 555 Arg Leu Ala Glu Asp Gly Lys Arg Cys Arg Arg Lys Asp Val Cys 565 570 Lys Ser Thr His His Gly Cys Glu His Ile Cys Val Asn Asn Gly 575 580 585 Asn Ser Tyr Ile Cys Lys Cys Ser Glu Gly Phe Val Leu Ala Glu 590 595 600 Asp Gly Arg Arg Cys Lys Lys Cys Thr Glu Gly Pro Ile Asp Leu 605 610 615 Val Phe Val Ile Asp Gly Ser Lys Ser Leu Gly Glu Glu Asn Phe $620 \hspace{1.5cm} 625 \hspace{1.5cm} 630$ Glu Val Val Lys Gln Phe Val Thr Gly Ile Ile Asp Ser Leu Thr 635 640 645 Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu Gln Tyr Ser Thr 650 660 Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn Ser Ala Lys 665 670 675 Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly Lys Gly 680 685 690 Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser Phe 695 700 705 Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg 710 720 Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser 725 730 735 Glu Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala 740 745 750 Val Gly Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala 755 760 765 Ser Glu Pro Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser 770 775 780 Thr Met Asp Glu Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu 785 790 795 Ala Leu Glu Asp Ser Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu 800 805 810 Leu Pro Lys Thr Val Gln Gln Pro Thr Glu Ser Glu Pro Val Thr 815 820 825 Ile Asn Ile Gln Asp Leu Leu Ser Cys Ser Asn Phe Ala Val Gln 830 835 His Arg Tyr Leu Phe Glu Glu Asp Asn Leu Leu Arg Ser Thr Gln 845 850

```
P1618P2C3.txt
 Lys Leu Ser His Ser Thr Lys Pro Ser Gly Ser Pro Leu Glu Glu
                  860
                                       865
 Lys His Asp Gln Cys Lys Cys Glu Asn Leu Ile Met Phe Gln Asn
875 880 885
                                      880
 Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln Arg Leu Glu Glu
                                       895
 Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu Arg Tyr Arg
<210> 35
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 35
 gtgaccctgg ttgtgaatac tcc 23
<210> 36
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 36
acagccatgg tctatagctt gg 22
<210> 37
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 37
gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag 45
<210> 38
<211> 1813
<212> DNA
<213> Homo Sapien
<400> 38
ggagccgccc tgggtgtcag cggctcggct cccgcgcacg ctccggccgt 50
cgcgcagcct cggcacctgc aggtccgtgc gtcccgcggc tggcgcccct 100
gactccgtcc cggccaggga gggccatgat ttccctcccg gggcccctgg 150
tgaccaactt gctgcggttt ttgttcctgg ggctgagtgc cctcgcgccc 200
ccctcgcggg cccagctgca actgcacttg cccgccaacc ggttgcaggc 250
ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300
```

			D1C10D2c		
aggtgtcttc	atcccagcca	tgggaggtgc	P1618P2C3 cctttgtgat		350
aaacagaaag	aaaaggagga	tcaggtgttg	tcctacatca	atggggtcac	400
aacaagcaaa	cctggagtat	ccttggtcta	ctccatgccc	tcccggaacc	450
tgtccctgcg	gctggagggt	ctccaggaga	aagactctgg	cccctacagc	500
tgctccgtga	atgtgcaaga	caaacaaggc	aaatctaggg	gccacagcat	550
caaaacctta	gaactcaatg	tactggttcc	tccagctcct	ccatcctgcc	600
gtctccaggg	tgtgccccat	gtgggggcaa	acgtgaccct	gagctgccag	650
tctccaagga	gtaagcccgc	tgtccaatac	cagtgggatc	ggcagcttcc	700
atccttccag	actttctttg	caccagcatt	agatgtcatc	cgtgggtctt	750
taagcctcac	caacctttcg	tcttccatgg	ctggagtcta	tgtctgcaag	800
gcccacaatg	aggtgggcac	tgcccaatgt	aatgtgacgc	tggaagtgag	850
cacagggcct	ggagctgcag	tggttgctgg	agctgttgtg	ggtaccctgg	900
ttggactggg	gttgctggct	gggctggtcc	tcttgtacca	ccgccggggc	950
aaggccctgg	aggagccagc	caatgatatc	aaggaggatg	ccattgctcc	1000
ccggaccctg	ccctggccca	agagctcaga	cacaatctcc	aagaatggga	1050
ccctttcctc	tgtcacctcc	gcacgagccc	tccggccacc	ccatggccct	1100
cccaggcctg	gtgcattgac	ccccacgccc	agtctctcca	gccaggccct	1150
gccctcacca	agactgccca	cgacagatgg	ggcccaccct	caaccaatat	1200
ccccatccc	tggtggggtt	tcttcctctg	gcttgagccg	catgggtgct	1250
gtgcctgtga	tggtgcctgc	ccagagtcaa	gctggctctc	tggtatgatg	1300
accccaccac	tcattggcta	aaggatttgg	ggtctctcct	tcctataagg	1350
gtcacctcta	gcacagaggc	ctgagtcatg	ggaaagagtc	acactcctga	1400
cccttagtac	tctgccccca	cctctctta	ctgtgggaaa	accatctcag	1450
taagacctaa	gtgtccagga	gacagaagga	gaagaggaag	tggatctgga	1500
attgggagga	gcctccaccc	acccctgact	cctccttatg	aagccagctg	1550
ctgaaattag	ctactcacca	agagtgaggg	gcagagactt	ccagtcactg	1600
agtctcccag	gcccccttga	tctgtacccc	acccctatct	aacaccaccc	1650
ttggctccca	ctccagctcc	ctgtattgat	ataacctgtc	aggctggctt	1700
ggttaggttt	tactggggca	gaggataggg	aatctcttat	taaaactaac	1750
atgaaatatg	tgttgttttc	atttgcaaat	ttaaataaag	atacataatg	1800
tttgtatgaa	aaa 1813				
310 30					

<211> 390 <212> PRT <213> Homo Sapien <400> 39 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln 20 25 30 Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly
35 40 45 Gly Glu Val Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val 50 55 60 Ser Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe 65 70 75 Lys Gln Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly 80 85 90 Val Thr Thr Ser Lys Pro Gly Val Ser Leu Val Tyr Ser Met Pro 95 100 105 Ser Gly Pro Tyr Ser Cys Ser Val Asn Val Gln Asp Lys Gln Gly 125 130 Lys Ser Arg Gly His Ser Ile Lys Thr Leu Glu Leu Asn Val Leu 140 145 150 Val Pro Pro Ala Pro Pro Ser Cys Arg Leu Gln Gly Val Pro His 155 160 165 Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser Pro Arg Ser Lys 170 175 180 Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro Ser Phe Gln 185 190 195 Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys Lys 215 220 225 Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu 230 235 240 Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Gly Ala Val Val 245 250 255 Gly Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu 260 265 270 Tyr His Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile 275 280 285

Lys Glu Asp Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser

				200				Р		Р2С3	.txt			300
Sar	۸sn	Thr	Tle	290 Ser	LVS	Λsn	Gly	Thr	295	Ser	Ser	Val	Thr	
361	дэр		116	305	Lys	ASII	diy		310	301	301	vai		315
Ala	Arg	Ala	Leu	Arg 320	Pro	Pro	His	Gly	Pro 325	Pro	Arg	Pro	Gly	Ala 330
Leu	Thr	Pro	Thr	Pro 335	Ser	Leu	Ser	Ser	G]n 340	Ala	Leu	Pro	Ser	Pro 345
Arg	Leu	Pro	Thr	Thr 350	Asp	Gly	Ala	His	Pro 355	Gln	Pro	Ile	Ser	Pro 360
Ile	Pro	Gly	Gly	Va 1 365	Ser	Ser	ser	Gly	Leu 370	Ser	Arg	Met	Gly	Ala 375
۷a٦	Pro	۷al	Met	Va1 380	Pro	Ala	Gln	Ser	Gln 385	Аla	Gly	ser	Leu	Va1 390
<210><211><211><212><213>	· 22 · DN/		cial	Sequ	uence	2								
<220> <223> Synthetic Oligonucleotide Probe														
<400> 40 agggtctcca ggagaaagac tc 22														
<210><211><212><212><213>	24 DN/		cial	Sequ	uence	e								
<220> <223>		nthei	tic (Oligo	onuc]	leot ⁻	ide 1	Probe	2					
<400> attg		gcc 1	ttgca	agaca	at ag	gac 2	24							
<210><211><211><212><213>	50 DN/		cial	Sequ	uence	2	-							
<220> <223>		nthe	tic (Oligo	onuc]	leot ⁻	ide 1	Probe	2					
<400> ggcc		gca 1	tcaaa	acct	t ag	gaacı	tcaat	t gta	actg	gttc	ctc	cagci	tcc !	50
<210><211><211><212><213>	18 DN/	A tific	cial	Sequ	ience	e								
<220> <223>		nthei	tic (Oligo	onuc]	leot ⁻	ide 1	Probe	2					
<400> gtgt		aca g	gcgtg	gggc	18				Pa	ae 2	8			

Page 28

```
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 44
gaccggcagg cttctgcg 18
<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 45
 cagcagcttc agccaccagg agtgg 25
<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 46
 ctgagccgtg ggctgcagtc tcgc 24
<210> 47
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 47
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc 45
<210> 48
<211> 2822
<212> DNA
<213> Homo Sapien
<400> 48
cgccaccact gcggccaccg ccaatgaaac gcctcccgct cctagtggtt 50
ttttccactt tgttgaattg ttcctatact caaaattgca ccaagacacc 100
ttgtctccca aatgcaaaat gtgaaatacg caatggaatt gaagcctgct 150
attgcaacat gggattttca ggaaatggtg tcacaatttg tgaagatgat 200
aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg ctaattgcac 250
taacacagaa ggaagttatt attgtatgtg tgtacctggc ttcagatcca 300
```

<210> 44

gcagtaacca	agacaggttt	atcactaatg	P1618P2C3 atggaaccgt		350
aatgtgaatg	caaactgcca	tttagataat	gtctgtatag	ctgcaaatat	400
taataaaact	ttaacaaaaa	tcagatccat	aaaagaacct	gtggctttgc	450
tacaagaagt	ctatagaaat	tctgtgacag	atctttcacc	aacagatata	500
attacatata	tagaaatatt	agctgaatca	tcttcattac	taggttacaa	550
gaacaacact	atctcagcca	aggacaccct	ttctaactca	actcttactg	600
aatttgtaaa	aaccgtgaat	aattttgttc	aaagggatac	atttgtagtt	650
tgggacaagt	tatctgtgaa	tcataggaga	acacatctta	caaaactcat	700
gcacactgtt	gaacaagcta	ctttaaggat	atcccagagc	ttccaaaaga	750
ccacagagtt	tgatacaaat	tcaacggata	tagctctcaa	agttttcttt	800
tttgattcat	ataacatgaa	acatattcat	cctcatatga	atatggatgg	850
agactacata	aatatatttc	caaagagaaa	agctgcatat	gattcaaatg	900
gcaatgttgc	agttgcattt	ttatattata	agagtattgg	tcctttgctt	950
tcatcatctg	acaacttctt	attgaaacct	caaaattatg	ataattctga	1000
agaggaggaa	agagtcatat	cttcagtaat	ttcagtctca	atgagctcaa	1050
acccacccac	attatatgaa	cttgaaaaaa	taacatttac	attaagtcat	1100
cgaaaggtca	cagataggta	taggagtcta	tgtgcatttt	ggaattactc	1150
acctgatacc	atgaatggca	gctggtcttc	agagggctgt	gagctgacat	1200
actcaaatga	gacccacacc	tcatgccgct	gtaatcacct	gacacatttt	1250
gcaattttga	tgtcctctgg	tccttccatt	ggtattaaag	attataatat	1300
tcttacaagg	atcactcaac	taggaataat	tatttcactg	atttgtcttg	1350
ccatatgcat	ttttaccttc	tggttcttca	gtgaaattca	aagcaccagg	1400
acaacaattc	acaaaaatct	ttgctgtagc	ctatttcttg	ctgaacttgt	1450
ttttcttgtt	gggatcaata	caaatactaa	taagctcttc	tgttcaatca	1500
ttgccggact	gctacactac	ttctttttag	ctgcttttgc	atggatgtgc	1550
attgaaggca	tacatctcta	tctcattgtt	gtgggtgtca	tctacaacaa	1600
gggattttg	cacaagaatt	tttatatctt	tggctatcta	agcccagccg	1650
tggtagttgg	attttcggca	gcactaggat	acagatatta	tggcacaacc	1700
aaagtatgtt	ggcttagcac	cgaaaacaac	tttatttgga	gttttatagg	1750
accagcatgc	ctaatcattc	ttgttaatct	cttggctttt	ggagtcatca	1800
tatacaaagt	ttttcgtcac	actgcagggt	tgaaaccaga	agttagttgc	1850
tttgagaaca	taaggtcttg	tgcaagagga	gccctcgctc Page 30		1900

teteggeace acctggatet ttggggttet ceatgttgtg caegeateag 1950 tggttacagc ttacctcttc acagtcagca atgctttcca ggggatgttc 2000 atttttttat tcctqtqtqt tttatctaqa aagattcaaq aagaatatta 2050 cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100 agagaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt 2150 ggatgaccaa tgtataaaaa tgactcatca aattatccaa ttattaacta 2200 ctagacaaaa agtattttaa atcagttttt ctgtttatgc tataggaact 2250 gtagataata aggtaaaatt atgtatcata tagatatact atgtttttct 2300 atgtgaaata gttctgtcaa aaatagtatt gcagatattt ggaaagtaat 2350 tggtttctca ggagtgatat cactgcaccc aaggaaagat tttctttcta 2400 acacgagaag tatatgaatg tcctgaagga aaccactggc ttgatatttc 2450 tgtgactcgt gttgcctttg aaactagtcc cctaccacct cggtaatgag 2500 ctccattaca gaaagtggaa cataagagaa tgaaggggca gaatatcaaa 2550 cagtgaaaag ggaatgataa gatgtatttt gaatgaactg ttttttctgt 2600 agactagctg agaaattgtt gacataaaat aaagaattga agaaacacat 2650 tttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaactt 2700 agacttctgt ttgctaaatc tgtttctttt tctaatattc taaaaaaaaa 2750 aaaaaaaaa aa 2822

```
<210> 49
<211> 690
<212> PRT
<213> Homo Sapien
```

1400- 40

<400> 49
Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn
15
Cys Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn
20
Ala Lys Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn
45
Met Gly Phe Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn
60
Glu Cys Gly Asn Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys
75
Thr Asn Thr Glu Gly Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe
80

P1618P2C3.txt Arg Ser Ser Ser Asn Gln Asp Arg Phe Ile Thr Asn Asp Gly Thr 95 100 105 Val Cys Ile Glu Asn Val Asn Ala Asn Cys His Leu Asp Asn Val 110 115 120 Cys Ile Ala Asn Ile Asn Lys Thr Leu Thr Lys Ile Arg Ser 125 130 135 Ile Lys Glu Pro Val Ala Leu Leu Gln Glu Val Tyr Arg Asn Ser 140 145 150 Val Thr Asp Leu Ser Pro Thr Asp Ile Ile Thr Tyr Ile Glu Ile 155 160 165 Leu Ala Glu Ser Ser Ser Leu Leu Gly Tyr Lys Asn Asn Thr Ile 170 175 180 Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr Glu Phe Val 185 190 195 Lys Thr Val Asn Asn Phe Val Gln Arg Asp Thr Phe Val Val Trp
200 205 210 Asp Lys Leu Ser Val Asn His Arg Arg Thr His Leu Thr Lys Leu 215 220 225 Met His Thr Val Glu Gln Ala Thr Leu Arg Ile Ser Gln Ser Phe 230 235 Gln Lys Thr Thr Glu Phe Asp Thr Asn Ser Thr Asp Ile Ala Leu 245 250 255 Lys Val Phe Phe Asp Ser Tyr Asn Met Lys His Ile His Pro 260 265 270 His Met Asn Met Asp Gly Asp Tyr Ile Asn Ile Phe Pro Lys Arg 275 280 285 Lys Ala Ala Tyr Asp Ser Asn Gly Asn Val Ala Val Ala Phe Leu 290 295 300 Tyr Tyr Lys Ser Ile Gly Pro Leu Leu Ser Ser Ser Asp Asn Phe 305 310Leu Leu Lys Pro Gln Asn Tyr Asp Asn Ser Glu Glu Glu Glu Arg 320 325 330 Val Ile Ser Ser Val Ile Ser Val Ser Met Ser Ser Asn Pro Pro 335 340 345 Thr Leu Tyr Glu Leu Glu Lys Ile Thr Phe Thr Leu Ser His Arg 350 355 360 Lys Val Thr Asp Arg Tyr Arg Ser Leu Cys Ala Phe Trp Asn Tyr 375 370 Ser Pro Asp Thr Met Asn Gly Ser Trp Ser Ser Glu Gly Cys Glu 380 385 390 Leu Thr Tyr Ser Asn Glu Thr His Thr Ser Cys Arg Cys Asn His 400 405

P1618P2C3.txt Leu Thr His Phe Ala Ile Leu Met Ser Ser Gly Pro Ser Ile Gly 410 415 Ile Lys Asp Tyr Asn Ile Leu Thr Arg Ile Thr Gln Leu Gly Ile 425 430 435 Ile Ile Ser Leu Ile Cys Leu Ala Ile Cys Ile Phe Thr Phe Trp
440 445 450 Phe Phe Ser Glu Ile Gln Ser Thr Arg Thr Thr Ile His Lys Asn 455 460 465 Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly 470 475 480 Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly 485 490 495 Leu Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile 500 505 Glu Gly Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn 515 520 525 Lys Gly Phe Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser 530 535 540 Pro Ala Val Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr 545 550 Tyr Gly Thr Thr Lys Val Cys Trp Leu Ser Thr Glu Asn Asn Phe 560 565 570 Ile Trp Ser Phe Ile Gly Pro Ala Cys Leu Ile Ile Leu Val Asn 575 580 585 Leu Leu Ala Phe Gly Val Ile Ile Tyr Lys Val Phe Arg His Thr 590 595 Ala Gly Leu Lys Pro Glu Val Ser Cys Phe Glu Asn Ile Arg Ser 610 615 Cys Ala Arg Gly Ala Leu Ala Leu Leu Phe Leu Leu Gly Thr Thr 620 625 630 Trp Ile Phe Gly Val Leu His Val Val His Ala Ser Val Val Thr 635 640 645 Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln Gly Met Phe Ile 650 655 Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln Glu Glu Tyr 665 670 675 Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys Leu Arg 680 685 690 <210> 50 <211> 589 <212> DNA <213> Homo Sapien

<220>

```
<221> unsure
<222> 61
<223> unknown base
<400> 50
tggaaacata tcctcctca tatgaatatg gatggagact acataaatat 50
atttccaaag ngaaaagccg gcatatggat tcaaatggca atgttgcagt 100
tgcattttta tattataaga gtattggtcc ctttgctttc atcatctgac 150
aacttcttat tgaaacctca aaattatgat aattctgaag aggaggaaag 200
agtcatatct tcagtaattt cagtctcaat gagctcaaac ccacccacat 250
tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300
gataggtata ggagtctatg tggcattttg gaatactcac ctgataccat 350
gaatggcagc tggtcttcag agggctgtga gctgacatac tcaaatgaga 400
 cccacacctc atgccgctgt aatcacctga cacattttgc aattttgatg 450
 tcctctggtc cttccattgg tattaaagat tataatattc ttacaaggat 500
 cactcaacta ggaataatta tttcactgat ttgtcttgcc atatgcattt 550
 ttaccttctg gttcttcagt gaaattcaaa gcaccagga 589
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 51
ggtaatgagc tccattacag 20
<210> 52
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 52
 ggagtagaaa gcgcatgg 18
<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 53
 cacctgatac catgaatggc ag 22
<210> 54
```

```
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 54
cgagctcgaa ttaattcg 18
<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 55°
ggatctcctg agctcagg 18
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 56
cctagttgag tgatccttgt aag 23
<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcaatt 50
<210> 58
<211> 2137
<212> DNA
<213> Homo Sapien
<400> 58
gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc 50
gaaacccggc cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc 100
tgggcggggt caccccggct gggacaagaa gccgccgcct gcctgcccgg 150
gcccggggag ggggctgggg ctggggccgg aggcggggtg tgagtgggtg 200
tgtgcggggg gcggaggctt gatgcaatcc cgataagaaa tgctcgggtg 250
tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
 cggcccggag ccgccgcgcc gtcagagcag gagcgctgcg tccaggatct 350
```

agggccacga	ccatcccaac	ccggcactca	P1618P2C3 cagccccgca		400
gtcgccgccc	agcctcccgc	acccccatcg	ccggagctgc	gccgagagcc	450
ccagggaggt	gccatgcgga	gcgggtgtgt	ggtggtccac	gtatggatcc	500
tggccggcct	ctggctggcc	gtggccgggc	gccccctcgc	cttctcggac	550
gcggggcccc	acgtgcacta	cggctggggc	gaccccatcc	gcctgcggca	600
cctgtacacc	tccggccccc	acgggctctc	cagctgcttc	ctgcgcatcc	650
gtgccgacgg	cgtcgtggac	tgcgcgcggg	gccagagcgc	gcacagtttg	700
ctggagatca	aggcagtcgc	tctgcggacc	gtggccatca	agggcgtgca	. 750
cagcgtgcgg	tacctctgca	tgggcgccga	cggcaagatg	caggggctgc	800
ttcagtactc	ggaggaagac	tgtgctttcg	aggaggagat	ccgcccagat	850
ggctacaatg	tgtaccgatc	cgagaagcac	cgcctcccgg	tctccctgag	900
cagtgccaaa	cagcggcagc	tgtacaagaa	cagaggcttt	cttccactct	950
ctcatttcct	gcccatgctg	cccatggtcc	cagaggagcc	tgaggacctc	1000
aggggccact	tggaatctga	catgttctct	tcgcccctgg	agaccgacag	1050
catggaccca	tttgggcttg	tcaccggact	ggaggccgtg	aggagtccca	1100
gctttgagaa	gtaactgaga	ccatgcccgg	gcctcttcac	tgctgccagg	1150
ggctgtggta	cctgcagcgt	gggggacgtg	cttctacaag	aacagtcctg	1200
agtccacgtt	ctgtttagct	ttaggaagaa	acatctagaa	gttgtacata	1250
ttcagagttt	tccattggca	gtgccagttt	ctagccaata	gacttgtctg	1300
atcataacat	tgtaagcctg	tagcttgccc	agctgctgcc	tgggccccca	1350
ttctgctccc	tcgaggttgc	tggacaagct	gctgcactgt	ctcagttctg	1400
cttgaatacc	tccatcgatg	gggaactcac	ttcctttgga	aaaattctta	1450
tgtcaagctg	aaattctcta	attttttctc	atcacttccc	caggagcagc	1500
cagaagacag	gcagtagttt	taatttcagg	aacaggtgat	ccactctgta	1550
aaacagcagg	taaatttçac	tcaaccccat	gtgggaattg	atctatatct	1600
ctacttccag	ggaccatttg	cccttcccaa	atccctccag	gccagaactg	1650
actggagcag	gcatggccca	ccaggcttca	ggagtagggg	aagcctggag	1700
ccccactcca	gccctgggac	aacttgagaa	ttccccctga	ggccagttct	1750
gtcatggatg	ctgtcctgag	aataacttgc	tgtcccggtg	tcacctgctt	1800
ccatctccca	gcccaccagc	cctctgccca	cctcacatgc	ctccccatgg	1850
attggggcct	cccaggcccc	ccaccttatg	tcaacctgca	cttcttgttc	1900
aaaaatcagg	aaaagaaaag	atttgaagac	cccaagtctt Page 3	gtcaataact 6	1950

tgctgtgtgg aagcagcggg ggaagaccta gaaccctttc cccagcactt 2000 ggttttccaa catgatattt atgagtaatt tattttgata tgtacatctc 2050 ttattttctt acattatta tgcccccaaa ttatatttat gtatgtaagt 2100 gaggtttgtt ttgtatatta aaatggagtt tgtttgt 2137

```
<212> PRT
<213> Homo Sapien

<400> 59
    Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly
15
Leu Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala
20
    Gly Pro His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg
45
His Leu Tyr Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu
60
Arg Ile Arg Ala Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser
75
Ala His Ser Leu Leu Glu Ile Lys Ala Val Asp Cys Ala Leu Arg Thr Val
80
Ala Ile Lys Gly Val His Ser Val Arg Tyr Leu Cys Met Gly Ala
105
Asp Gly Lys Met Gln Gly Leu Leu Gln Tyr Ser Glu Glu Asp Cys
110
Ala Phe Glu Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Arg
135
Ser Glu Lys His Arg Leu Pro Val Ser Leu Ser Ser Ser Ala Lys Gln
150
```

Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu Pro Leu Ser His Phe 155 160 165

Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro Glu Asp Leu Arg 170 175 180

Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu Glu Thr Asp 185 190 195

Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala Val Arg 200 205 210

Ser Pro Ser Phe Glu Lys 215

<210> 59 <211> 216

<210> 60 <211> 26 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 60
 atccgcccag atggctacaa tgtgta 26
<210> 61
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta 42
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 62
ccagtccggt gacaagccca aa 22
<210> 63
<211> 1295
<212> DNA
<213> Homo Sapien
<400> 63
 cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc 50
tcgacctcct cagagcagcc ggctgccgcc ccgggaagat ggcgaggagg 100
agccgccacc gcctcctcct gctgctgctg cgctacctgg tggtcgccct 150
gggctatcat aaggcctatg ggttttctgc cccaaaagac caacaagtag 200
tcacagcagt agagtaccaa gaggctattt tagcctgcaa aaccccaaag 250
aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg 350
agatgataga tttcaatatc cggatcaaaa atgtgacaag aagtgatgcg 400
gggaaatatc gttgtgaagt tagtgcccca tctgagcaag gccaaaacct 450
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttccat 500
catgtgaagt accetettet getetgagtg gaactgtggt agagetacga 550
tgtcaagaca aagaagggaa tccagctcct gaatacacat ggtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca 650
gctcatacac aatqaataca aaaactqqaa ctctqcaatt taatactqtt 700
                                       Page 38
```

tccaaactgg	acactggaga	atattcctgt	gaagcccgca	attctgttgg	750
atatcgcagg	tgtcctggga	aacgaatgca	agtagatgat	ctcaacataa	800
gtggcatcat	agcagccgta	gtagttgtgg	ccttagtgat	ttccgtttgt	850
ggccttggtg	tatgctatgc	tcagaggaaa	ggctactttt	caaaagaaac	900
ctccttccag	aagagtaatt	cttcatctaa	agccacgaca	atgagtgaaa	950
atgtgcagtg	gctcacgcct	gtaatcccag	cactttggaa	ggccgcggcg	1000
ggcggatcac	gaggtcagga	gttctagacc	agtctggcca	atatggtgaa	1050
accccatctc	tactaaaata	caaaaattag	ctgggcatgg	tggcatgtgc	1100
ctgcagttcc	agctgcttgg	gagacaggag	aatcacttga	acccgggagg	1150
cggaggttgc	agtgagctga	gatcacgcca	ctgcagtcca	gcctgggtaa	1200
cagagcaaga	ttccatctca	aaaaataaaa	taaataaata	aataaatact	1250
ggtttttacc	tgtagaattc	ttacaataaa	tatagcttga	tattc 1295	
<210> 64					

<210> 64 <211> 312 <212> PRT

<213> Homo Sapien

Page 39

								•				•		
Tyr	Thr	Trp	Phe	Lys 170	Asp	Gly	Ile	Arg	Leu 175	Leu	Glu	Asn	Pro	Arg 180
Leu	Gly	Ser	Gln	Ser 185	Thr	Asn	Ser	Ser	Tyr 190	Thr	Met	Asn	Thr	Lys 195
Thr	Glу	Thr	Leu	G1n 200	Phe	Asn	Thr	val	Ser 205	Lys	Leu	Asp	Thr	Gly 2 1 0
Glu	Tyr	Ser	Cys	Glu 215	Ala	Arg	Asn	Ser	va1 220	Gly	Tyr	Arg	Arg	Cys 225
Pro	Gly	Lys	Arg	Met 230	Gln	٧al	Asp	Asp	Leu 235	Asn	Ile	Ser	Gly	Ile 240
Ile	Ala	Ala	٧al	Va1 245	۷a٦	Val	Ala	Leu	Va1 250	Ile	ser	val	Cys	G]y 255
Leu	Gly	۷a٦	Cys	Tyr 260	Ala	Gln	Arg	Lys	G]y 265	Tyr	Phe	Ser	Lys	G]u 270
Thr	Ser	Phe	Gln	Lys 275	ser	Asn	Ser	Ser	Ser 280	Lys	Ala	Thr	Thr	Met 285
Ser	Glu	Asn	۷a٦	G]n 290	Trp	Leu	Thr	Pro	va1 295	Ile	Pro	Ala	Leu	Trp 300
Lys	Ala	Ala	Ala	G]y 305	Gly	Ser	Arg	Gly	G]n 310	Glu	Phe			
<210><211><212><213>	22 DNA		ial	Sequ	ence	<u>!</u>								
<220> <223>		thet	ic C	ligo	nucl	eoti	de P	robe	<u>:</u>					
<400> atcg		ga a	ıgtta	gtgc	c cc	22								
<210><211><212><213>	23 DNA		:ial	Sequ	ence									
<220> <223>		thet	ic O	ligo	nucl	eoti	de P	robe						
<400> acct		ta t	ccaa	caga	a tt	g 23								
<210> <211> <212> <213>	48 DNA		ial	Sequ	ence									
<220> <223>	Syn	thet	ic O	ligo	nucl	eoti	de P	robe						
<400> ggaa		at a	cagt	cact	c tg	gaag	tatt	agt	ggct Pag	cca je 40	gcag)	ttcc	48	

<211> 2639 <212> DNA <213> Homo Sapien <400> 68 gacatcggag gtgggctagc actgaaactg cttttcaaga cgaggaagag 50 gaggagaaag agaaagaaga ggaagatgtt gggcaacatt tatttaacat 100 gctccacagc ccggaccctg gcatcatgct gctattcctg caaatactga 150 agaagcatgg gatttaaata ttttacttct aaataaatga attactcaat 200 ctcctatgac catctataca tactccacct tcaaaaagta catcaatatt 250 atatcattaa ggaaatagta accttctctt ctccaatatg catgacattt 300 ttggacaatg caattgtggc actggcactt atttcagtga agaaaaactt 350 tgtggttcta tggcattcat catttgacaa atgcaagcat cttccttatc 400 aatcagctcc tattgaactt actagcactg actgtggaat ccttaagggc 450 ccattacatt tctgaagaag aaagctaaga tgaaggacat gccactccga 500 attcatgtgc tacttggcct agctatcact acactagtac aagctgtaga 550 taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttggt 600 ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat 650 ttaggtcttt taactttccc agccagattg ccagctaaca cacagattct 700 tctcctacag actaacaata ttgcaaaaat tgaatactcc acagactttc 750 cagtaaacct tactggcctg gatttatctc aaaacaattt atcttcagtc 800 accaatatta atgtaaaaaa gatgcctcag ctcctttctg tgtacctaga 850 ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc qaactgagca 900 acttacaaga actctatatt aatcacaact tgctttctac aatttcacct 950 ggagccttta ttggcctaca taatcttctt cgacttcatc tcaattcaaa 1000 tagattgcag atgatcaaca gtaagtggtt tgatgctctt ccaaatctag 1050 agattctgat gattggggaa aatccaatta tcagaatcaa agacatgaac 1100 tttaagcctc ttatcaatct tcgcagcctg gttatagctg gtataaacct 1150 cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200 tctcttttta cgataacagg cttattaaag taccccatgt tgctcttcaa 1250 aaagttgtaa atctcaaatt tttggatcta aataaaaatc ctattaatag 1300 aatacgaagg ggtgatttta gcaatatgct acacttaaaa gagttgggga 1350 taaataatat gcctgagctg atttccatcg atagtcttgc tgtggataac 1400

<210> 68

P1618P2C3.txt ctgccagatt taagaaaaat agaagctact aacaacccta gattgtctta 1450 cattcacccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500 tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg 1550 ccaaacctca aggaaatcag catacacagt aaccccatca ggtgtgactg 1600 tgtcatccgt tggatgaaca tgaacaaaac caacattcga ttcatggagc 1650 cagattcact gttttgcgtg gacccacctg aattccaagg tcagaatgtt 1700 cggcaagtgc atttcaggga catgatggaa atttgtctcc ctcttatagc 1750 tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800 cctttcactg tagagctact gcagaaccac agcctgaaat ctactggata 1850 acaccttctg gtcaaaaact cttgcctaat accctgacag acaagttcta 1900 tgtccattct gagggaacac tagatataaa tggcgtaact cccaaagaag 1950 ggggtttata tacttgtata gcaactaacc tagttggcgc tgacttgaag 2000 tctgttatga tcaaagtgga tggatctttt ccacaagata acaatggctc 2050 tttgaatatt aaaataagag atattcaggc caattcagtt ttggtgtcct 2100 ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg gacagccttt 2150 gtcaagactg aaaattctca tgctgcgcaa agtgctcgaa taccatctga 2200 tgtcaaggta tataatctta ctcatctgaa tccatcaact gagtataaaa 2250 tttgtattga tattcccacc atctatcaga aaaacagaaa aaaatgtgta 2300 aatgtcacca ccaaaggttt gcaccctgat caaaaagagt atgaaaagaa 2350 taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400 gtgtgatatg tcttatcagc tgcctctctc cagaaatgaa ctgtgatggt 2450 ggacacagct atgtgaggaa ttacttacag aaaccaacct ttgcattagg 2500 tgagctttat cctcctctga taaatctctg ggaagcagga aaagaaaaaa 2550 gtacatcact gaaagtaaaa gcaactgtta taggtttacc aacaaatatg 2600

tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639

<210> 69

<211> 708 <212> PRT

<213> Homo Sapien

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala 1 5 10 15

Ile Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro 20 25 30

Arg Leu Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Page 42

				35				ı	21618 40	3P2C	3.tx	t		45 .
Ile	Tyr	Met	: Glu	Ala 50	Ser	Thr	Val	Asp	Cys 55	Asn	Asp	Leu	Gly	Leu 60
Leu	Thr	Phe	Pro	Ala 65	Arg	Leu	Pro	Αla	Asn 70		Gln	Ile	Leu	Leu 75
Leu	Gln	Thr	' Asn	Asn 80	Ile	Ala	Lys	Ile	Glu 85	Tyr	ser	Thr	Asp	Phe 90
Pro	۷a٦	Asn	Leu	Thr 95	Gly	Leu	Asp	Leu	Ser 100	Gln	Asn	Asn	Leu	Ser 105
Ser	۷a٦	Thr	Asn	Ile 110	Asn	Val	Lys	Lys	Met 115	Pro	Gln	Leu	Leu	Ser 120
۷al	Tyr	Leu	Glu	Glu 125	Asn	Lys	Leu	Thr	Glu 130	Leu	Pro	Glu	Lys	Cys 135
Leu	Ser	Glu	Leu	Ser 140	Asn	Leu	Gln	Glu	Leu 145	Tyr	Ile	Asn	His	Asn 150
Leu	Leu	Ser	Thr	Ile 155	Ser	Pro	Glу	Ala	Phe 160	Ile	Gly	Leu	His	Asn 165
Leu	Leu	Arg	Leu	His 170	Leu	Asn	Ser	Asn	Arg 175	Leu	Gln	Met	Ile	Asn 180
Ser	Lys	Trp	Phe	Asp 185	Ala	Leu	Pro	Asn	Leu 190	Glu	Ile	Leu	Met	Ile 195
Gly	Glu	Asn	Pro	Ile 200	Ile	Arg	Ile	Lys	Asp 205	Met	Asn	Phe	Lys	Pro 210
Leu	Ile	Asn	Leu	Arg 215	Ser	Leu	۷a٦	Ile	Ala 220	Gly	Ile	Asn	Leu	Thr 225
Glu	Ile	Pro	Asp	Asn 230	Ala	Leu	۷al	Gly	Leu 235	Glu	Asn	Leu	Glu	Ser 240
Ile	Ser	Phe	Tyr	Asp 245	Asn	Arg	Leu	Ile	Lys 250	۷a٦	Pro	His	Val	Ala 255
Leu	Gln	Lys	Val	Val 260	Asn	Leu	Lys	Phe	Leu 265	Asp	Leu	Asn	Lys	Asn 270
Pro	Ile	Asn	Arg	11e 275	Arg	Arg	Gly	Asp	Phe 280	Ser	Asn	Met	Leu	His 285
Leu	Lys	Glu	Leu	G]y 290	Ile	Asn	Asn	Met	Pro 295	Glu	Leu	Ile	Ser	Ile 300
Asp	Ser	Leu	Ala	Va 1 305	Asp	Asn	Leu	Pro	Asp 310	Leu	Arg	Lys	Ile	Glu 315
Ala	Thr	Asn	Asn	Pro 320	Arg	Leu	Ser	Tyr	Ile 325	His	Pro	Asn	Ala	Phe 330
Phe	Arg	Leu	Pro	Lys 335	Leu	Glu	Ser		Met 340	Leu	Asn	ser	Asn	Ala 345
Leu	Ser	Ala	Leu	Tyr	His	Glу	Thr	Ile		Ser ge 43		Pro	Asn	Leu

				350				Р	1618 355	P2C3	.txt			360
Lys	Glu	Ile	Ser	11e 365	нis	Ser	Asn	Pro	Ile 370	Arg	Cys	Asp	Cys	val 375
Ile	Arg	Trp	Met	Asn 380	Met	Asn	Lys	Thr	Asn 385	Ile	Arg	Phe	Met	G1u 390
Pro	Asp	Ser	Leu	Phe 395	Cys	٧al	Asp	Pro	Pro 400	Glu	Phe	Gln	Gly	Gln 405
Asn	٧a٦	Arg	Gln	∨a1 410	His	Phe	Arg	Asp	меt 415	Met	Glu	Ile	Cys	Leu 420
Pro	Leu	Ile	Аlа	Pro .425	Glu	Ser	Phe	Pro	Ser 430	Asn	Leu	Asn	Val	Glu 435
Ala	Gly	Ser	Tyr	∨a1 440	Ser	Phe	His	Cys	Arg 445	Ala	Thr	Ala	Glu	Pro 450
Gln	Pro	Glu	Ile	Tyr 455	Trp	Ile	Thr	Pro	Ser 460	Gly	Gln	Lys	Leu	Leu 465
Pro	Asn	Thr	Leu	Thr 470	Asp	Lys	Phe	Tyr	val 475	His	Ser	Glu	Gly	Thr 480
Leu	Asp	Ile	Asn	Gly 485	∨al	Thr	Pro	Lys	Glu 490	Gly	Gly	Leu	Tyr	Thr 495
Cys	Ile	Ala	Thr	Asn 500	Leu	val	Gly	Ala	Asp 505	Leu	Lys	Ser	val	Met 510
Ile	Lys	val	Asp	Gly 515	Ser	Phe	Pro	Gln	Asp 520	Asn _.	Asn	Gly	Ser	Leu 525
Asn	Ile	Lys	Ile	Arg 530	Asp	Ile	Gln	Ala	Asn 535	Ser	val	Leu	Val	Ser 540
Тгр	Lys	Ala	Ser	Ser 545	Lys	Ile	Leu	Lys	Ser 550	Ser	Val	Lys	Тгр	Thr 555
Ala	Phe	Val	Lys	Thr 560	Glu	Asn	Ser	His	Ala 565	Ala	Gln	Ser	Ala	Arg 570
Ile	Pro	Ser	Asp	Va1 575	Lys	val	Tyr	Asn	Leu 580	Thr	His	Leu	Asn	Pro 585
Ser	Thr	Glu	Tyr	Lys 590	Ile	Cys	Ile	Asp	Ile 595	Pro	Thr	Ile	Tyr	Gln 600
Lys	Asn	Arg	Lys	Lys 605	Cys	val	Asn	val	Thr 610	Thr	Lys	Gly	Leu	His 615
Pro	Asp	Gln	Lys	G]u 620	Tyr	Glu	Lys	Asn	Asn 625	Thr	Thr	Thr	Leu	Met 630
Ala	Cys	Leu	Gly	Gly 635	Leu	Leu	Gly	Ile	11e 640	Gly	٧al	Ile	Cys	Leu 645
Ile	Ser	Cys	Leu	Ser 650	Pro	Glu	Met	Asn	Cys 655	Asp	Gly	Gly	His	Ser 660
Tyr	val	Arg	Asn	Tyr	Leu	Gln	Lys	Pro		Phe ge 4		Leu	Gly	Glu

665

675

Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys Glu Lys 680 685 690

Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro Thr 695 700 705

Asn Met Ser

<210> 70 <211> 1305

<212> DNA <213> Homo Sapien

<400> 70

gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga 50 cacatgtgtt agctgcagcc ttttgaaaca cgcaagaagg aaatcaatag 100 tgtggacagg gctggaacct ttaccacgct tgttggagta gatgaggaat 150 gggctcgtga ttatgctgac attccagcat gaatctggta gacctgtggt 200 taacccgttc cctctccatg tgtctcctcc tacaaagttt tgttcttatg 250 atactgtgct ttcattctgc cagtatgtgt cccaagggct gtctttgttc 300 ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa 350 tacctagaga tcttcctcct gaaacagtct tactgtatct ggactccaat 400 cagatcacat ctattcccaa tgaaattttt aaggacctcc atcaactgag 450 agttctcaac ctgtccaaaa atggcattga gtttatcgat gagcatgcct 500 tcaaaggagt agctgaaacc ttgcagactc tggacttgtc cgacaatcgg 550 attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600 aattgccaac aacccctggc actgcgactg tactctacag caagttctga 650 ggagcatggc gtccaatcat gagacagccc acaacgtgat ctgtaaaacg 700 tccgtgttgg atgaacatgc tggcagacca ttcctcaatg ctgccaacga 750 cgctgacctt tgtaacctcc ctaaaaaaac taccgattat gccatgctgg 800 tcaccatgtt tggctggttc actatggtga tctcatatgt ggtatattat 850 gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900 cctgccaagc aggcagaaga aagcagatga acctgatgat attagcactg 950 tggtatagtg tccaaactga ctgtcattga gaaagaaaga aagtagtttg 1000 cgattgcagt agaaataagt ggtttacttc tcccatccat tgtaaacatt 1050 tgaaactttg tatttcagtt ttttttgaat tatgccactg ctgaactttt 1100 aacaaacact acaacataaa taatttgagt ttaggtgatc caccccttaa 1150

P1618P2C3.txt ttgtaccccc gatggtatat ttctgagtaa gctactatct gaacattagt 1200 tagatccatc tcactattta ataatgaaat ttattttttt aatttaaaag 1250 aaaca 1305

<210> 71 <211> 259 <212> PRT

<213> Homo Sapien <400> 71 Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys 10 15 Leu Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser 20 25 30 Ala Ser Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly
40
45 Leu Asn Val Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg 50 55 60 Asp Leu Pro Pro Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln
65 70 75 Ile Thr Ser Ile Pro Asn Glu Ile Phe Lys Asp Leu His Gln Leu 80 85 90 Arg Val Leu Asn Leu Ser Lys Asn Gly Ile Glu Phe Ile Asp Glu 95 100 105 His Ala Phe Lys Gly Val Ala Glu Thr Leu Gln Thr Leu Asp Leu 110 115 120 Ser Asp Asn Arg Ile Gln Ser Val His Lys Asn Ala Phe Asn Asn 125 130 135 Leu Lys Ala Arg Ala Arg Ile Ala Asn Asn Pro Trp His Cys Asp 140 145 150 Cys Thr Leu Gln Gln Val Leu Arg Ser Met Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val Leu Asp Glu His 170 175 180 Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val Thr Met 200 205 210 Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr Val 215 220 225

Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys 230 235 240 Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Page 46

Ser Thr Val Val

<210> 72 <211> 2290 <212> DNA <213> Homo Sapien <400> 72 accgagccga gcggaccgaa ggcgcgcccg agatgcaggt gagcaagagg 50 atgctggcgg ggggcgtgag gagcatgccc agcccctcc tggcctgctg 100 gcagcccatc ctcctgctgg tgctgggctc agtgctgtca ggctcggcca 150 cgggctgccc gccccgctgc gagtgctccg cccaggaccg cgctgtgctg 200 tgccaccgca agtgctttgt ggcagtcccc gagggcatcc ccaccgagac 250 gcgcctgctg gacctaggca agaaccgcat caaaacgctc aaccaggacg 300 agttcgccag cttcccgcac ctggaggagc tggagctcaa cgagaacatc 350 gtgagcgccg tggagcccgg cgccttcaac aacctcttca acctccggac 400 gctgggtctc cgcagcaacc gcctgaagct catcccgcta ggcgtcttca 450 ctggcctcag caacctgacc aagcaggaca tcagcgagaa caagatcgtt 500 atcctactgg actacatgtt tcaggacctg tacaacctca agtcactgga 550 ggttggcgac aatgacctcg tctacatctc tcaccgcgcc ttcagcggcc 600 tcaacagcct ggagcagctg acgctggaga aatgcaacct gacctccatc 650 cccaccgagg cgctgtccca cctgcacggc ctcatcgtcc tgaggctccg 700 gcacctcaac atcaatgcca tccgggacta ctccttcaag aggctgtacc 750 gactcaaggt cttggagatc tcccactggc cctacttgga caccatgaca 800 cccaactgcc tctacggcct caacctgacg tccctgtcca tcacacactg 850 caatctgacc gctgtgccct acctggccgt ccgccaccta gtctatctcc 900 gcttcctcaa cctctcctac aaccccatca gcaccattga gggctccatg 950 ttgcatgagc tgctccggct gcaggagatc cagctggtgg gcgggcagct 1000 ggccgtggtg gagccctatg ccttccgcgg cctcaactac ctgcgcgtgc 1050 tcaatgtctc tggcaaccag ctgaccacac tggaggaatc agtcttccac 1100 tcggtgggca acctggagac actcatcctg gactccaacc cgctggcctg 1150 cgactgtcgg ctcctgtggg tgttccggcg ccgctggcgg ctcaacttca 1200 accggcagca gcccacgtgc gccacgcccg agtttgtcca gggcaaggag 1250 ttcaaggact tccctgatgt gctactgccc aactacttca cctgccgccg 1300

P1618P2C3.txt cgcccgcatc cgggaccgca aggcccagca ggtgtttgtg gacgagggcc 1350 acacggtgca gtttgtgtgc cgggccgatg gcgacccgcc gcccgccatc 1400 ctctggctct caccccgaaa gcacctggtc tcagccaaga gcaatgggcg 1450 gctcacagtc ttccctgatg gcacgctgga ggtgcgctac gcccaggtac 1500 aggacaacgg cacgtacctg tgcatcgcgg ccaacgcggg cggcaacgac 1550 tccatgcccg cccacctgca tgtgcgcagc tactcgcccg actggcccca 1600 tcagcccaac aagaccttcg ctttcatctc caaccagccg ggcgagggag 1650 aggccaacag cacccgcgcc actgtgcctt tccccttcga catcaagacc 1700 ctcatcatcg ccaccaccat gggcttcatc tctttcctgg gcgtcgtcct 1750 cttctgcctg gtgctgctgt ttctctggag ccggggcaag ggcaacacaa 1800 agcacaacat cgagatcgag tatgtgcccc gaaagtcgga cgcaggcatc 1850 agctccgccg acgcgccccg caagttcaac atgaagatga tatgaggccg 1900 gggcgggggg cagggacccc cgggcggccg ggcaggggaa ggggcctggt 1950 cgccacctgc tcactctcca gtccttccca cctcctccct acccttctac 2000 acacgttctc tttctccctc ccgcctccgt cccctgctgc cccccgccag 2050 ccctcaccac ctgccctcct tctaccagga cctcagaagc ccagacctgg 2100 ggaccccacc tacacagggg cattgacaga ctggagttga aagccgacga 2150 accgacacgc ggcagagtca ataattcaat aaaaaagtta cgaactttct 2200 ctgtaacttg ggtttcaata attatggatt tttatgaaaa cttgaaataa 2250 taaaaagaga aaaaaactaa aaaaaaaaaa aaaaaaaaa 2290

<210> 73 <211> 620 <212> PRT <213> Homo Sapien

<400> 73

Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met
1 5 10 15

Pro Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Leu Val 20 25 30

Leu Gly Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg
45

Cys Glu Cys Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys
50 55 60

Cys Phe Val Ala Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu
65 70 75

Leu Asp Leu Gly Lys Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu 80 85 90 Page 48

Phe	Ala	Ser	Phe	Pro 95	His	Leu	Glu	Glu	Leu 100	Glu	Leu	Asn	Glu	Asn 105
Ile	٧a٦	Ser	Ala	∨a1 110	Glu	Pro	Gly	Ala	Phe 115	Asn	Asn	Leu	Phe	Asn 120
Leu	Arg	Thr	Leu	Gly 125	Leu	Arg	Ser	Asn	Arg 130	Leu	Lys	Leu	Ile	Pro 135
Leu	Gly	∨al	Phe	Thr 140	Gly	Leu	Ser	Asn	Leu 145	Thr	Lys	Gln	Asp	11e 150
Ser	Glu	Asn	Lys	Ile 155	٧a٦	Ile	Leu	Leu	Asp 160	Tyr	Met	Phe	Gln	Asp 165
Leu	Tyr	Asn	Leu	Lys 170	ser	Leu	Glu	val	Gly 175	Asp	Asn	Asp	Leu	Val 180
Tyr	Ile	Ser	His	Arg 185	Ala	Phe	ser	Glу	Leu 190	Asn	Ser	Leu	Glu	Gln 195
Leu	Thr	Leu	Glu	Lys 200	Cys	Asn	Leu	Thr	Ser 205	Ile	Pro	Thr	Glu	Ala 210
Leu	ser	His	Leu	His 215	Gly	Leu	Ile	۷al	Leu 220	Arg	Leu	Arg	His	Leu 225
Asn	Ile	Asn	Ala	Ile 230	Arg	Asp	Tyr	ser	Phe 235	Lys	Arg	Leu	Tyr	Arg 240
Leu	Lys	Val	Leu	Glu 245	Ile	ser	His	Trp	Pro 250	Tyr	Leu	Asp	Thr	Met 255
Thr	Pro	Asn	Cys	Leu 260	Tyr	Gly	Leu	Asn	Leu 265	Thr	ser	Leu	Ser	Ile 270
Thr	His	Cys	Asn	Leu 275	Thr	Ala	Val	Pro	Tyr 280	Leu	Ala	val	Arg	His 285
Leu	val	Tyr	Leu	Arg 290	Phe	Leu	Asn	Leu	ser 295	Tyr	Asn	Pro	Ile	ser 300
Thr	Ile	Glu	Gly	ser 305	Met	Leu	His	Glu	Leu 310	Leu	Arg	Leu	Gln	Glu 315
Ile	Gln	Leu	٧a٦	G]y 320	Gly	Gln	Leu	Ala	va1 325	٧a٦	Glu	Pro	Ţyr	Ala 330
Phe	Arg	Gly	Leu	Asn 335	Tyr	Leu	Arg	Val	Leu 340	Asn	val	Ser	GТу	Asn 345
Gln	Leu	Thr	Thr	Leu 350	Glu	Glu	Ser	val	Phe 355	His	Ser	val	Gly	Asn 360
Leu	Glu	Thr	Leu	11e 365	Leu	Asp	Ser	Asn	Pro 370	Leu	Ala	Cys	Asp	Cys 375
Arg	Leu	Leu	Trp	val 380	Phe	Arg	Arg	Arg	Trp 385	Arg	Leu	Asn	Phe	Asn 390
Arg	Gln	G∏n	Pro	Thr 395	Cys	Ala	Thr	Pro	400	Phe ge 49		Gln	Gly	Lys 405

Glu	Phe	Lys	Asp	Phe 410	Pro	Asp	٧a٦	Leu	Leu 415	Pro	Asn	Tyr	Phe	Thr 420
Cys	Arg	Arg	Ala	Arg 425	Ile	Arg	Asp	Arg	Lys 430	Ala	Gln	Gln	val	Phe 435
val	Asp	Glu	GТу	Нis 440	Thr	۷a٦	Gln	Phe	Va1 445	Cys	Arg	Ala	Asp	Gly 450
Asp	Pro	Pro	Pro	Ala 455	Ile	Leu	Trp	Leu	Ser 460	Pro	Arg	Lys	His	Leu 465
٧al	Ser	Ala	Lys	Ser 470	Asn	Gly	Arg	Leu	Thr 475	۷a٦	Phe	Pro	Asp	Gly 480
Thr	Leu	Glu	٧a٦	Arg 485	Tyr	Ala	Gln	Val	G1n 490	Asp	Asn	Gly	Thr	Tyr 495
Leu	Cys	Ile	Ala	Ala 500	Asn	Ala	Gly	Gly	Asn 505	Asp	Ser	Met	Pro	Ala 510
ніѕ	Leu	His	۷a٦	Arg 515	Ser	Tyr	Ser	Pro	Asp 520	Trp	Pro	His	Gln	Pro 525
Asn	Lys	Thr	Phe	Ala 530	Phe	Ile	Ser	Asn	G]n 535	Pro	Glу	Glu	GТу	G]u 540
Ala	Asn	Ser	Thr	Arg 545	ΑΊа	Thr	va1	Pro	Phe 550	Pro	Phe	Asp	Ile	Lys 555
Thr	Leu	Ile	Ile	Ala 560	Thr	Thr	Met	Gly	Phe 565	Ile	Ser	Phe	Leu	Gly 570
٧a٦	٧a٦	Leu	Phe	Cys 575	Leu	٧a٦	Leu	Leu	Phe 580	Leu	тгр	Ser	Arg	Gly 585
Lys	G]Jy	Asn	Thr	Lys 590	His	Asn	Ile	Glu	11e 595	Glu	Tyr	val	Pro	Arg 600
Lys	Ser	Asp	Ala	G]y 605	Ile	Ser	Ser	ΑΊа	Asp 610	Ala	Pro	Arg	Lys	Phe 615
Asn	Met	Lys	Met	11e 620										
<210><211><211><212><213>	22 DNA		:ial	Sequ	ence	!								
<220> <223>		thet	ic o	ligo	nucl	eoti	de F	robe	!					
<400> tcac	74 ctgg	ag c	cttt	attg	g cc	22								

<210> 75 <211> 23 <212> DNA <213> Artificial Sequence

<220>

```
P1618P2C3.txt
<223> Synthetic Oligonucleotide Probe
<400> 75
ataccagcta taaccaggct gcg 23
<210> 76
<211> 52
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 76
caacagtaag tggtttgatg ctcttccaaa tctagagatt ctgatgattg 50
<210> 77
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 77
ccatgtgtct cctcctacaa ag 22
<210> 78
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 78
gggaatagat gtgatctgat tgg 23
<210> 79
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
cacctgtagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg 50
<210> 80
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 80
agcaaccgcc tgaagctcat cc 22
<210> 81
```

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 81
 aaggcgcggt gaaagatgta gacg 24
<210> 82
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 82
gactacatgt ttcaggacct gtacaacctc aagtcactgg aggttggcga 50
<210> 83
<211> 1685
<212> DNA
<213> Homo Sapien
<400> 83
cccacgcgtc cgcacctcgg ccccgggctc cgaagcggct cgggggcgcc 50
ctttcggtca acatcgtagt ccacccctc cccatcccca gcccccgggg 100
attcaggctc gccagcgccc agccagggag ccggccggga agcgcgatgg 150
gggccccagc cgcctcgctc ctgctcctgc tcctgctgtt cgcctgctgc 200
tgggcgcccg gcggggccaa cctctcccag gacgacagcc agccctggac 250
atctgatgaa acagtggtgg ctggtggcac cgtggtgctc aagtgccaag 300
tgaaagatca cgaggactca tccctgcaat ggtctaaccc tgctcagcag 350
actctctact ttggggagaa gagagccctt cgagataatc gaattcagct 400
ggttacctct acgccccacg agctcagcat cagcatcagc aatgtggccc 450
tggcagacga gggcgagtac acctgctcaa tcttcactat gcctgtgcga 500
actgccaagt ccctcgtcac tgtgctagga attccacaga agcccatcat 550
cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt 650
gaccaagaac tccacggaga accaacccgc atacaggaag atcccaatgg 700
taaaaccttc actgtcagca gctcggtgac attccaggtt acccgggagg 750
atgatggggc gagcatcgtg tgctctgtga accatgaatc tctaaaggga 800
gctgacagat ccacctctca acgcattgaa gttttataca caccaactgc 850
gatgattagg ccagaccctc cccatcctcg tgagggccag aagctgttgc 900
```

P1618P2C3.txt tacactgtga gggtcgcggc aatccagtcc cccagcagta cctatgggag 950 aaggagggca gtgtgccacc cctgaagatg acccaggaga gtgccctgat 1000 cttccctttc ctcaacaaga gtgacagtgg cacctacggc tgcacagcca 1050 ccagcaacat gggcagctac aaggcctact acaccctcaa tgttaatgac 1100 cccagtccgg tgccctcctc ctccagcacc taccacgcca tcatcggtgg 1150 gatcgtggct ttcattgtct tcctgctgct catcatgctc atcttccttq 1200 gccactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa 1250 ggctccgacg atgctccaga cgcggacacg gccatcatca atgcagaagg 1300 cgggcagtca ggaggggacg acaagaagga atatttcatc tagaggcgcc 1350 tgcccacttc ctgcgccccc caggggccct gtggggactg ctggggccgt 1400 caccaacccg gacttgtaca gagcaaccgc agggccgccc ctcccgcttg 1450 ctccccagcc cacccacccc cctgtacaga atgtctgctt tgggtgcggt 1500 ttgccctcag ccctttccgt ggcttctctg catttgggtt attattattt 1600 ttgtaacaat cccaaatcaa atctgtctcc aggctggaga ggcaggagcc 1650 ctggggtgag aaaagcaaaa aacaacaaa aaaca 1685

<210> 84 <211> 398 <212> PRT <213> Homo Sapien

Page 53

				125				F	21618 130	BP2C3	3.txt	:		135
Thr	Gly	Tyr	Lys	ser 140	ser	Leu	Arg	Glu	Lys 145	Asp	Thr	Αla	Thr	Leu 150
Asn	Cys	Gln	ser	ser 155	Gly	Ser	Lys	Pŗo	Ala 160	Аla	Arg	Leu	Thr	Trp 165
Arg	Lys	Gly	Asp	Gln 170	Glu	Leu	His	Glу	Glu 175	Pro	Thr	Arg	Ile	Gln 180
Glu	Asp	Pro	Asn	Gly 185	Lys	Thr	Phe	Thr	Val 190	Ser	Ser	ser	۷a٦	Thr 195
Phe	Gln	val	Thr	Arg 200	Glu	Asp	Asp	Gly	Ala 205	Ser	Ile	٧al	Cys	Ser 210
٧a٦	Asn	His	Glu	Ser 215	Leu	Lys	GТу	Аlа	Asp 220	Arg	Ser	Thr	Ser	Gln 225
Arg	Ile	Glu	val	Leu 230	Tyr	Thr	Pro	Thr	Ala 235	Met	Ile	Arg	Pro	Asp 240
Pro	Pro	His	Pro	Arg 245	Glu	Gly	Gln	Lys	Leu 250	Leu	Leu	His	Cys	G]u 255
Gly	Arg	Gly	Asn	Pro 260	val	Pro	Gln	Gln	Tyr 265	Leu	Trp	Glu	Lys	G1u 270
Gly	Ser	۷a٦	Pro	Pro 275	Leu	Lys	Met	Thr	G]n 280	Glu	ser	Ala	Leu	11e 285
Phe	Pro	Phe	Leu	Asn 290	Lys	ser	Asp	Ser	G]y 295	Thr	Tyr	Gly	Cys	Thr 300
Ala	Thr	Ser	Asn	Met 305	Glу	Ser	Tyr	Lys	Ala 310	Tyŗ	Tyr	Thr	Leu	Asn 315
۷al	Asn	Asp	Pro	ser 320	Pro	val	Pro	Ser	Ser 325	Ser	Ser	Thr	Tyr	His 330
Ala	Ile	Ile	Gly	G]y 335	Ile	Val	Ala	Phe	Ile 340	۷al	Phe	Leu	Leu	Leu 345
Ile	Met	Leu	Ile	Phe 350	Leu	Gly 、	His	Tyr	Leu 355	Ile	Arg	His	Lys	Gly 360
Thr	Tyr	Leu	Thr	His 365	Glu	Ala	Lys	Glу	ser 370	Asp	Asp	Ala	Pro	Asp 375
Ala	Asp	Thr	Ala	11e 380	Ile	Asn	Ala	Glu	Gly 385	Gly	Gln	ser	Gly	G]y 390
Asp	Asp	Lys	Lys	G]u 395	Tyr	Phe	Ile							
<210> <211> <212> <213>	22 DNA		ial	sequ	ence	!								
<220> <223>		thet	ic 0	oligo	nucl	eoti	de P	robe		ge 54	1			

Page 54

```
<400> 85
 gctaggaatt ccacagaagc cc 22
<210> 86
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 86
aacctggaat gtcaccgagc tg 22
<210> 87
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
cctagcacag tgacgaggga cttggc 26
<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 88
aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc 50
<210> 89
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Sequence
<400> 89
gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt 50
<210> 90
<211> 2755
<212> DNA
<213> Homo Sapien
<400> 90
gggggttagg gaggaaggaa tccaccccca ccccccaaa cccttttctt 50
ctcctttcct ggcttcggac attggagcac taaatgaact tgaattgtgt 100
ctgtggcgag caggatggtc gctgttactt tgtgatgaga tcggggatga 150
attgctcgct ttaaaaatgc tgctttggat tctgttgctg gagacgtctc 200
tttgttttgc cgctggaaac gttacagggg acgtttgcaa agagaagatc 250
                                       Page 55
```

tgttcctgca	atgagataga	aggggaccta	cacgtagact	gtgaaaaaaa	300
gggcttcaca	agtctgcagc	gtttcactgc	cccgacttcc	cagttttacc	350
atttatttct	gcatggcaat	tccctcactc	gacttttccc	taatgagttc	400
gctaacttt	ataatgcggt	tagtttgcac	atggaaaaca	atggcttgca	450
tgaaatcgtt	ccgggggctt	ttctggggct	gcagctggtg	aaaaggctgc	500
acatcaacaa	caacaagatc	aagtcttttc	gaaagcagac	ttttctgggg	550
ctggacgatc	tggaatatct	ccaggctgat	tttaatttat	tacgagatat	600
agacccgggg	gccttccagg	acttgaacaa	gctggaggtg	ctcattttaa	650
atgacaatct	catcagcacc	ctacctgcca	acgtgttcca	gtatgtgccc	700
atcacccacc	tcgacctccg	gggtaacagg	ctgaaaacgc	tgccctatga	750
ggaggtcttg	gagcaaatcc	ctggtattgc	ggagatcctg	ctagaggata	800
acccttggga	ctgcacctgt	gatctgctct	ccctgaaaga	atggctggaa	850
aacattccca	agaatgccct	gatcggccga	gtggtctgcg	aagcccccac	900
cagactgcag	ggtaaagacc	tcaatgaaac	caccgaacag	gacttgtgtc	950
ctttgaaaaa	ccgagtggat	tctagtctcc	cggcgccccc	tgcccaagaa	1000
gagacctttg	ctcctggacc	cctgccaact	cctttcaaga	caaatgggca	1050
agaggatcat	gccacaccag	ggtctgctcc	aaacggaggt	acaaagatcc	1100
caggcaactg	gcagatcaaa	atcagaccca	cagcagcgat	agcgacgggt	1150
agctccagga	acaaaccctt	agctaacagt	ttaccctgcc	ctgggggctg	1200
cagctgcgac	cacatcccag	ggtcgggttt	aaagatgaac	tgcaacaaca	1250
ggaacgtgag	cagcttggct	gatttgaagc	ccaagctctc	taacgtgcag	1300
gagcttttcc	tacgagataa	caagatccac	agcatccgaa	aatcgcactt	1350
tgtggattac	aagaacctca	ttctgttgga	tctgggcaac	aataacatcg	1400
ctactgtaga	gaacaacact	ttcaagaacc	ttttggacct	caggtggcta	1450
tacatggata	gcaattacct	ggacacgctg	tcccgggaga	aattcgcggg	1500
gctgcaaaac	ctagagtacc	tgaacgtgga	gtacaacgct	atccagctca	1550
tcctcccggg	cactttcaat	gccatgccca	aactgaggat	cctcattctc	1600
aacaacaacc	tgctgaggtc	cctgcctgtg	gacgtgttcg	ctggggtctc	1650
gctctctaaa	ctcagcctgc	acaacaatta	cttcatgtac	ctcccggtgg	1700
caggggtgct	ggaccagtta	acctccatca	tccagataga	cctccacgga	1750
aacccctggg	agtgctcctg	cacaattgtg	cctttcaagc	agtgggcaga	1800

P1618P2C3.txt acgcttgggt tccgaagtgc tgatgagcga cctcaagtgt gagacgccgg 1850 tgaacttctt tagaaaggat ttcatgctcc tctccaatga cgagatctgc 1900 cctcagctgt acgctaggat ctcgcccacg ttaacttcgc acagtaaaaa 1950 cagcactggg ttggcggaga ccgggacgca ctccaactcc tacctagaca 2000 ccagcagggt gtccatctcg gtgttggtcc cgggactgct gctqqtqttt 2050 gtcacctccg ccttcaccgt ggtgggcatg ctcgtgttta tcctgaggaa 2100 ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta 2150 attccctaca gacagtctgt gactcttcct actggcacaa tgggccttac 2200 aacgcagatg gggcccacag agtgtatgac tgtggctctc actcgctctc 2250 agactaagac cccaacccca ataggggagg gcagagggaa ggcgatacat 2300 ccttccccac cgcaggcacc ccgggggctg gaggggcgtg tacccaaatc 2350 cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400 gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa 2450 gagcagactg tggagagctg ggagagcgca gccagctcgc tctttgctga 2500 gagccccttt tgacagaaag cccagcacga ccctgctgga agaactgaca 2550 gtgccctcgc cctcggcccc ggggcctgtg gggttggatg ccgcggttct 2600 atacatatat acatatatcc acatctatat agagagatag atatctattt 2650 ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat 2700 gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt 2750 ctgac 2755 <210> 91 <211> 696 <212> PRT <213> Homo Sapien <400> 91 Met Leu Leu Trp Ile Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser 20 25 30 Cys Asn Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys 45 Gly Phe Thr Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe 50 55 60 Tyr His Leu Phe Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn Phe Tyr Asn Ala Val Ser Leu His Met Glu

Page 57

Asn	Asn	Gly	Leu	Нis 95	Glu	Ile	۷al	Pro	Gly 100	ΑΊа	Phe	Leu	Gly	Leu 105
Gln	Leu	٧a٦	Lys	Arg 110	Leu	His	Ile	Asn	Asn 115	Asn	Lys	Ile	Lys	Ser 120
Phe	Arg	Lys	Gln	Thr 125	Phe	Leu	Gly	Leu	Asp 130	Asp	Leu	Glu	туr	Leu 135
Gln	Ala	Asp	Phe	Asn 140	Leu	Leu	Arg	Asp	Ile 145	Asp	Pro	Glу	Аla	Phe 150
Gln	Asp	Leu	Asn	Lys 155	Leu	Glu	٧a٦	Leu	11e 160	Leu	Asn	Asp	Asn	Leu 165
Ile	Ser	Thr	Leu	Pro 170	Аla	Asn	٧a٦	Phe	Gln 175	туr	٧a٦	Pro	Ile	Thr 180
His	Leu	Asp	Leu	Arg 185	Gly	Asn	Arg	Leu	Lys 190	Thr	Leu	Pro	Tyr	Glu 195
Glu	۷ą٦	Leu	Glu	G1n 200	Ile	Pro	Gly	Ile	Ala 205	Glu	Ile	Leu	Leu	G]u 210
Asp	Asn	Pro	Trp	Asp 215	Cys	Thr	Cys	Asp	Leu 220	Leu	Ser	Leu	Lys	G]u 225
Trp	Leu	Glu	Asn	Ile 230	Pro	Lys	Asn	Ala	Leu 235	Ile	Gjy	Arg	Val	Val 240
Cys	Glu	Ala	Pro	Thr 245	Arg	Leu	Gln	Gly	Lys 250	Asp	Leu	Asn	Glu	Thr 255
⊤hr	Glu	Gln	Asp	Leu 260	Cys	Pro	Leu	Lys	Asn 2 6 5	Arg	۷a٦	Asp	Ser	ser 270
Leu	Pro	Ala	Pro	Pro 275	Ala	Gln	Glu	Glu	Thr 280	Phe	Ala	Pro	Gly	Pro 285
Leu	Pro	Thr	Pro	Phe 290	Lys	Thr	Asn	Gly	G]n 295	Glu	Asp	ніѕ	Ala	Thr 300
Pro	Glу	Ser	Ala	Pro 305	Asn	Glу	Gly	Thr	Lys 310	Ile	Pro	Gly	Asn	Trp 315
Gln	Ile	Lys	Ile	Arg 320	Pro	Thr	Ala	Ala	11e 325	Ala	Thr	Gly	Ser	Ser 330
Arg	Asn	Lys	Pro	Leu 335	Ala	Asn	Ser	Leu	Pro 340	Cys	Pro	Glу	Gly	Cys 345
Ser	Cys	Asp	His	11e 350	Pro	Gly	Ser	Gly	Leu 355	Lys	Met	Asn	Cys	Asn 360
Asn	Arg	Asn	٧a٦	ser 365	ser	Leu	Ala	Asp	Leu 370	Lys	Pro	Lys	Leu	Ser 375
Asn	∨al	G∏n	Glu	Leu 380	Phe	Leu	Arg	Asp	Asn 385	Lys	Ile	His	Ser	Ile 390
Arg	Lys	Ser	His	Phe 395	Val	Asp	Tyr	Lys	400	Leu ge 5		Leu	Leu	Asp 405

Leu	Gly	Asn	Asn	Asn 410	Ile	. Ala	Thr	va1	G]u 415		Asn	Thr	Phe	Lys 420
Asn	Leu	Leu	Asp	Leu 425	Arg	Trp	Leu	Tyr	Met 430		Ser	Asn	Tyr	Leu 435
Asp	Thr	Leu	Ser	Arg 440	Glu	Lys	Phe	ΑΊа	G]y 445	Leu	Gln	Asn	Leu	G1u 450
Tyr	Leu	Asn	۷al	G]u 455	Tyr	Asn	Ala	Ile	Gln 460	Leu	Ile	Leu	Pro	G]y 465
Thr	Phe	Asn	Ala	Меt 470	Pro	Lys	Leu	Arg	11e 475	Leu	Ile	Leu	Asn	Asn 480
Asn	Leu	Leu	Arg	Ser 485	Leu	Pro	Val	Asp	Va1 490	Phe	Ala	Gly	٧al	Ser 495
Leu	Ser	Lys	Leu	ser 500	Leu	His	Asn	Asn	Tyr 505	Phe	Met	Tyr	Leu	Pro 510
٧a٦	Ala	Gly	۷a٦	Leu 515	Asp	Gln	Leu	Thr	Ser 520	Ile	Ile	Gln	Ile	Asp 525
Leu	His	Gly	Asn	Pro 530	Trp	Glu	Cys	Ser	Cys 535	Thr	Ile	٧al	Pro	Phe 540
Lys	Gln	Trp	Ala	Glu 545	Arg	Leu	GТу	Ser	G1u 550	٧a٦	Leu	Met	Ser	Asp 555
Leu	Lys	Cys	Glu	Thr 560	Pro	Val	Asn	Phe	Phe 565	Arg	Lys	Asp	Phe	Met 570
Leu	Leu	Ser	Asn	Asp 575	Glu	Ile	Cys	Pro	G]n 580	Leu	туr	Ala	Arg	Ile 585
Ser	Pro	Thr	Leu	Thr 590	Ser	His	Ser	Lys	Asn 595	Ser	Thr	Gly	Leu	Ala 600
Glu	Thr	Gly	Thr	Ніs 605	Ser	Asn	Ser	Tyr	Leu 610	Asp	Thr	Ser	Arg	val 615
Ser	Ile	Ser	۷a٦	Leu 620	٧a٦	Pro	Gly	Leu	Leu 625	Leu	۷a٦	Phe	۷a٦	Thr 630
Ser	Ala	Phe	Thr	Val 635	val	Gly	Met	Leu	Va1 640	Phe	Ile	Leu	Arg	Asn 645
Arg	Lys ·	Arg	Ser	Lys 650	Arg	Arg	Asp	Ala	Asn 655	Ser	Ser	Ala	Ser	G]u 660
Ile	Asn	Ser	Leu	G]n 665	Thr	val	Cys	Asp	Ser 670	Ser	Tyr	Тгр	His	Asn 675
Gly	Pro	Tyr	Asn	Ala 680	Asp	Gly	Ala	His	Arg 685	Val	Tyr	Asp	Cys	G]y 690
Ser	His	Ser	Leu	Ser 695	Asp									

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 92
 gttggatctg ggcaacaata ac 22
<210> 93
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 93
attgttgtgc aggctgagtt taag 24
<210> 94
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 94
ggtggctata catggatagc aattacctgg acacgctgtc ccggg 45
<210> 95
<211> 2226
<212> DNA
<213> Homo Sapien
<400> 95
agtcgactgc gtcccctgta cccggcgcca gctgtgttcc tgaccccaga 50
ataactcagg gctgcaccgg gcctggcagc gctccgcaca catttcctgt 100
cgcggcctaa gggaaactgt tggccgctgg gcccgcgggg ggattcttgg 150
cagttggggg gtccgtcggg agcgagggcg gaggggaaagg gagggggaac 200
cgggttgggg aagccagctg tagagggcgg tgaccgcgct ccagacacag 250
ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
ggggcctcag agaatgaggc cggcgttcgc cctgtgcctc ctctggcagg 350
cgctctggcc cgggccggc ggcggcgaac accccactgc cgaccgtgct 400
ggctgctcgg cctcgggggc ctgctacagc ctgcaccacg ctaccatgaa 450
gcggcaggcg gccgaggagg cctgcatcct gcgaggtggg gcgctcagca 500
ccgtgcgtgc gggcgccgag ctgcgcgctg tgctcgcgct cctgcgggca 550
ggcccagggc ccggaggggg ctccaaagac ctgctgttct gggtcgcact 600
ggagcgcagg cgttcccact gcaccctgga gaacgagcct ttgcggggtt 650
```

			•		
tctcctggct	gtcctccgac	cccggcggtc	P1618P2C3 tcgaaagcga	txt cacgctgcag	700
tgggtggagg	agccccaacg	ctcctgcacc	gcgcggagat	gcgcggtact	750
ccaggccacc	ggtggggtcg	agcccgcagg	ctggaaggag	atgcgatgcc	800
acctgcgcgc	caacggctac	ctgtgcaagt	accagtttga	ggtcttgtgt	850
cctgcgccgc	gccccggggc	cgcctctaac	ttgagctatc	gcgcgccctt	900
ccagctgcac	agcgccgctc	tggacttcag	tccacctggg	accgaggtga	950
gtgcgctctg	ccggggacag	ctcccgatct	cagttacttg	catcgcggac	1000
gaaatcggcg	ctcgctggga	caaactctcg	ggcgatgtgt	tgtgtccctg	1050
ccccgggagg	tacctccgtg	ctggcaaatg	cgcagagctc	cctaactgcc	1100
tagacgactt	gggaggcttt	gcctgcgaat	gtgctacggg	cttcgagctg	1150
gggaaggacg	gccgctcttg	tgtgaccagt	ggggaaggac	agccgaccct	1200
tggggggacc	ggggtgccca	ccaggcgccc	gccggccact	gcaaccagcc	1250
ccgtgccgca	gagaacatgg	ccaatcaggg	tcgacgagaa	gctgggagag	1300
acaccacttg	tccctgaaca	agacaattca	gtaacatcta	ttcctgagat	1350
tcctcgatgg	ggatcacaga	gcacgatgtc	tacccttcaa	atgtcccttc	1400
aagccgagtc	aaaggccact	atcaccccat	cagggagcgt	gatttccaag	1450
tttaattcta	cgacttcctc	tgccactcct	caggctttcg	actcctcctc	1500
tgccgtggtc	ttcatatttg	tgagcacagc	agtagtagtg	ttggtgatct	1550
tgaccatgac	agtactgggg	cttgtcaagc	tctgctttca	cgaaagcccc	1600
tcttcccagc	caaggaagga	gtctatgggc	ccgccgggcc	tggagagtga	1650
tcctgagccc	gctgctttgg	gctccagttc	tgcacattgc	acaaacaatg	1700
gggtgaaagt	cggggactgt	gatctgcggg	acagagcaga	gggtgccttg	1750
ctggcggagt	cccctcttgg	ctctagtgat	gcatagggaa	acaggggaca	1800
tgggcactcc	tgtgaacagt	ttttcacttt	tgatgaaacg	gggaaccaag	1850
aggaacttac	ttgtgtaact	gacaatttct	gcagaaatcc	cccttcctct	1900
aaattccctt	tactccactg	aggagctaaa	tcagaactgc	acactccttc	1950
cctgatgata	gaggaagtgg	aagtgccttt	aggatggtga	tactggggga	2000
ccgggtagtg	ctggggagag	atattttctt	atgtttattc	ggagaatttg	2050
gagaagtgat	tgaacttttc	aagacattgg	aaacaaatag	aacacaatat	2100
aatttacatt	aaaaaataat	ttctaccaaa	atggaaagga	aatgttctat	2150
gttgttcagg	ctaggagtat	attggttcga	aatcccaggg	aaaaaaataa	2200
aaataaaaaa	ttaaaggatt	gttgat 2226	; Page 6	1	

Page 61

<211: <212:	<210> 96 <211> 490 <212> PRT <213> Homo Sapien														
<400 Met 1		Pro	Ala	Phe 5	Ala	Leu	Cys	Leu	Leu 10	Trp	Gln	Ala	Leu	Trp 15	
Pro	Glу	Pro	Gly	G]y 20	Gly	Glu	ніѕ	Pro	Thr 25	Ala	Asp	Arg	Ala	G]y 30	
Cys	Ser	Аlа	Ser	Gly 35	Ala	Cys	Tyr	Ser	Leu 40	His	ніѕ	Ala	Thr	Met 45	
Lys	Arg	Gln	Ala	A1a 50	Glu	Glu	Аla	Cys	11e 55	Leu	Arg	Gly	Gly	Ala 60	
Leu	Ser	Thr	۷al	Arg 65	Аla	Gly	Аla	Glu	Leu 70	Arg	Аla	٧a٦	Leu	Ala 75	
Leu	Leu	Arg	Ala	Gly 80	Pro	GТу	Pro	Gly	G]y 85	Gly	Ser	Lys	Asp	Leu 90	
Leu	Phe	Тгр	۷al	A1a 95	Leu	Glu	Arg	Arg	Arg 100	Ser	His	Cys	Thr	Leu 105	
Glu	Asn	Glu	Pro	Leu 110	Arg	Gly	Phe	Ser	Trp 115	Leu	Ser	Ser	Asp	Pro 120	
Gly	Gly	Leu	Glu	Ser 125	Asp	Thr	Leu	Gln	Trp 130	val	Glu	Glu	Pro	Gln 135	
Arg	Ser	Cys	Thr	Ala 140	Arg	Arg	Cys	Ala	Val 145	Leu	G∏n	Ala	Thr	Gly 150	
Gly	۷al	Glu	Pro	Ala 155	Glу	Тгр	Lys	Glu	Met 160	Arg	Cys	His	Leu	Arg 165	
Ala	Asn	Gly	Tyr	Leu 170	Cys	Lys	Tyr	Gln	Phe 175	Glu	val	Leu	Cys	Pro 180	
Ala	Pro	Arg	Pro	Gly 185	Ala	Ala	Ser	Asn	Leu 190	ser	Tyr	Arg	Ala	Pro 195	
Phe	Gln	Leu	His	Ser 200	Ala	Ala	Leu	Asp	Phe 205	Ser	Pro	Pro	Glу	Thr 210	
Glu	Val	Ser	Ala	Leu 215	Cys	Arg	Gly	G∏n	Leu 220	Pro	Ile	Ser	٧a٦	Thr 225	
Cys	Ile	Ala	Asp	G1u 230	Ile	GТу	Ala	Arg	Trp 235	Asp	Lys	Leu	Ser	G]y 240	
Asp	val	Leu	Cys	Pro 245	Cys	Pro	Glу	Arg	Tyr 250	Leu	Arg	Ala	Glу	Lys 255	
Cys	Ala	Glu	Leu	Pro 260	Asn	Cys	Leu	Asp	Asp 265	Leu	GТу	GТу	Phe	Ala 270	
Cys	Glu	Cys	Αla	Thr 275	Gly	Phe	Glu	Leu	280	Lys ge 6		Gly	Arg	Ser 285	

Cys	val	Thr	ser	G]y 290	Glu	Glу	Gln	Pro	Thr 295	Leu	Gly	Gly	Thr	G]y 300
val	Pro	Thr	Arg	Arg 305	Pro	Pro	Ala	Thr	аlа 310	Thr	Ser	Pro	val	Pro 315
Gln	Arg	Thr	Trp	Pro 320	Ile	Arg	٧al	Asp	Glu 325	Lys	Leu	Gly	Glu	Thr 330
Pro	Leu	val	Pro	Glu 335	Gln	Asp	Asn	Ser	Va1 340	Thr	Ser	Ile	Pro	Glu 345
Ile	Pro	Arg	Trp	Gly 350	Ser	Gln	Ser	Thr	Met 355	Ser	Thr	Leu	Gln	Met 360
Ser	Leu	Gln	Ala	Glu 365	Ser	Lys	Ala	Thr	Ile 370	Thr	Pro	ser	Gly	Ser 375
val	Ile	Ser	Lys	Phe 380	Asn	Ser	Thr	Thr	Ser 385	ser	Аlа	Thr	Pro	G]n 390
Ala	Phe	Asp	Ser	Ser 395	Ser	Ala	val	٧a٦	Phe 400	Ile	Phe	val	Ser	Thr 405
Ala	val	٧a٦	val	Leu 410	۷a٦	Ile	Leu	Thr	меt 415	Thr	Val	Leu	Gly	Leu 420
val	Lys	Leu	Cys	Phe 425	His	Glu	Ser	Pro	Ser 430	Ser	Gln	Pro	Arg	Lys 435
Glu	Ser	Met	Gly	Pro 440	Pro	Gly	Leu	Glu	Ser 445	Asp	Pro	Glu	Pro	Ala 450
Ala	Leu	Gly	Ser	Ser 455	Ser	Άla	His	Cys	Thr 460	Asn	Asn	Glу	٧a٦	Lys 465
Val	Gly	Asp	Cys	Asp 470	Leu	Arg	Asp	Arg	Ala 475	Glu	Gly	Ala	Leu	Leu 480
Ala	Glu	Ser	Pro	Leu 485	Gly	Ser	Ser	Asp	Ala 490					
<210> 97 <211> 24 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic Oligonucleotide Probe														
<400> 97 tggaaggaga tgcgatgcca cctg 24														
<211> <212>	<210> 98 <211> 20 <212> DNA <213> Artificial Sequence													
<220> <22 3 >	220> 223> Synthetic oligonucleotide probe													

<400> 98

```
tgaccagtgg ggaaggacag 20
<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 99
 acagagcaga gggtgccttg 20
<210> 100
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 100
tcagggacaa gtggtgtctc tccc 24
<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 101
tcagggaagg agtgtgcagt tctg 24
<210> 102
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 102
acagctcccg atctcagtta cttgcatcgc ggacgaaatc ggcgctcgct 50
<210> 103
<211> 2026
<212> DNA
<213> Homo Sapien
<400> 103
cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca 50
ggggaaacta agcgtcgagt cagacggcac cataatcgcc tttaaaagtg 100
 cctccgccct gccggccgcg tatccccgg ctacctgggc cgccccgcgg 150
 cggtgcgcgc gtgagaggga gcgcgcgggc agccgagcgc cggtgtgagc 200
 cagcgctgct gccagtgtga gcggcggtgt gagcgcggtg ggtgcggagg 250
ggcgtgtgtg ccggcgcgc cgccgtgggg tgcaaacccc gagcgtctac 300
                                       Page 64
```

gctgccatga	ggggcgcgaa	cgcctgggcg	ccactctgcc	tgctgctggc	350
tgccgccacc	cagctctcgc	ggcagcagtc	cccagagaga	cctgttttca	400
catgtggtgg	cattcttact	ggagagtctg	gatttattgg	cagtgaaggt	450
tttcctggag	tgtaccctcc	aaatagcaaa	tgtacttgga	aaatcacagt	500
tcccgaagga	aaagtagtcg	ttctcaattt	ccgattcata	gacctcgaga	550
gtgacaacct	gtgccgctat	gactttgtgg	atgtgtacaa	tggccatgcc	600
aatggccagc	gcattggccg	cttctgtggc	actttccggc	ctggagccct	650
tgtgtccagt	ggcaacaaga	tgatggtgca	gatgatttct	gatgccaaca	700
cagctggcaa	tggcttcatg	gccatgttct	ccgctgctga	accaaacgaa	750
agaggggatc	agtattgtgg	aggactcctt	gacagacctt	ccggctcttt	800
taaaaccccc	aactggccag	accgggatta	ccctgcagga	gtcacttgtg	850
tgtggcacat	tgtagcccca	aagaatcagc	ttatagaatt	aaagtttgag	900
aagtttgatg	tggagcgaga	taactactgc	cgatatgatt	atgtggctgt	950
gtttaatggc	ggggaagtca	acgatgctag	aagaattgga	aagtattgtg	1000
gtgatagtcc	acctgcgcca	attgtgtctg	agagaaatga	acttcttatt	1050
cagtttttat	cagacttaag	tttaactgca	gatgggttta	ttggtcacta	1100
catattcagg	ccaaaaaaac	tgcctacaac	tacagaacag	cctgtcacca	1150
ccacattccc	tgtaaccacg	ggtttaaaac	ccaccgtggc	cttgtgtcaa	1200
caaaagtgta	gacggacggg	gactctggag	ggcaattatt	gttcaagtga	1250
ctttgtatta	gccggcactg	ttatcacaac	catcactcgc	gatgggagtt	1300
tgcacgccac	agtctcgatc	atcaacatct	acaaagaggg	aaatttggcg	1350
attcagcagg	cgggcaagaa	catgagtgcc	aggctgactg	tcgtctgcaa	1400
gcagtgccct	ctcctcagaa	gaggtctaaa	ttacattatt	atgggccaag	1450
taggtgaaga	tgggcgaggc	aaaatcatgc	caaacagctt	tatcatgatg	1500
ttcaagacca	agaatcagaa	gctcctggat	gccttaaaaa	ataagcaatg	1550
ttaacagtga	actgtgtcca	tttaagctgt	attctgccat	tgcctttgaa	1600
agatctatgt	tctctcagta	gaaaaaaaaa	tacttataaa	attacatatt	1650
ctgaaagagg	attccgaaag	atgggactgg	ttgactcttc	acatgatgga	1700
ggtatgaggc	ctccgagata	gctgagggaa	gttctttgcc	tgctgtcaga	1750
ggagcagcta	tctgattgga	aacctgccga	cttagtgcgg	tgataggaag	1800
ctaaaagtgt	caagcgttga	cagcttggaa	gcgtttattt	atacatctct	1850

gtaaaaggat atttagaat tgagttgtg gaagatgtca aaaaaagatt 1900 ttagaagtgc aatattata gtgttatttg tttcaccttc aagcctttgc 1950 cctgaggtgt tacaatcttg tcttgcgttt tctaaatcaa tgcttaataa 2000 aatatttta aaggaaaaaa aaaaaa 2026

<210> 104 <211> 415

<212> PRT

<213> Homo Sapien

<400> 104

Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala 1 5 10 15

Ala Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val 20 25 30

Phe Thr Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly 45

Ser Glu Gly Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr 50 55 60

Trp Lys Ile Thr Val Pro Glu Gly Lys Val Val Leu Asn Phe 65 70 75

Arg Phe Ile Asp Leu Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe 80 85 90

Val Asp Val Tyr Asn Gly His Ala Asn Gly Gln Arg Ile Gly Arg 95 100 105

Phe Cys Gly Thr Phe Arg Pro Gly Ala Leu Val Ser Ser Gly Asn 110 115 120

Lys Met Met Val Gln Met Ile Ser Asp Ala Asn Thr Ala Gly Asn 125 130 135

Gly Phe Met Ala Met Phe Ser Ala Ala Glu Pro Asn Glu Arg Gly 140 145 150

Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg Pro Ser Gly Ser Phe 155 160 165

Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro Ala Gly Val Thr

Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu Ile Glu Leu 185 190 195

Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys Arg Tyr 200 205 210

Asp Tyr Val Ala Val Phe Asn Gly Gly Glu Val Asn Asp Ala Arg 215 220 225

Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val 230 235 240

Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Page 66

P1618P2C3.txt 245 250	255											
Leu Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro 260 265	270											
Lys Leu Pro Thr Thr Glu Gln Pro Val Thr Thr Pho 275 280	e Pro 285											
Val Thr Thr Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Glı 290 295	Lys 300											
Cys Arg Arg Thr Gly Thr Leu Glu Gly Asn Tyr Cys Ser Sei 305 310	Asp 315											
Phe Val Leu Ala Gly Thr Val Ile Thr Thr Ile Thr Arg Asp 320 325	330											
Ser Leu His Ala Thr Val Ser Ile Ile Asn Ile Tyr Lys Glt 335 340	345											
Asn Leu Ala Ile Gln Gln Ala Gly Lys Asn Met Ser Ala Arg 350 355	360											
Thr Val Val Cys Lys Gln Cys Pro Leu Leu Arg Arg Gly Leu 365 370	Asn 375											
Tyr Ile Ile Met Gly Gln Val Gly Glu Asp Gly Arg Gly Lys 380 385	390											
Met Pro Asn Ser Phe Ile Met Met Phe Lys Thr Lys Asn Glr 395 400	1 Lys 405											
Leu Leu Asp Ala Leu Lys Asn Lys Gln Cys 410 415												
<210> 105 <211> 22 <212> DNA <213> Artificial Sequence												
<220> <223> Synthetic Oligonucleotide Probe												
<400> 105 ccgattcata gacctcgaga gt 22												
<210> 106 <211> 22 <212> DNA <213> Artificial Sequence												
<220> <223> Synthetic Oligonucleotide Probe												
<400> 106 gtcaaggagt cctccacaat ac 22												
<210> 107 <211> 45 <212> DNA <213> Artificial Sequence												
<220>												

<223> Synthetic Oligonucleotide Probe

<400> 107

gtgtacaatg gccatgccaa tggccagcgc attggccgct tctgt 45

<210> 108

<211> 1838

<212> DNA

<213> Homo Sapien

<400> 108

cggacgcgtg ggcggacgcg tgggcggccc acggcgcccg cgggctgggg 50 cggtcgcttc ttccttctcc gtggcctacg agggtcccca gcctgggtaa 100 agatggcccc atggcccccg aagggcctag tcccagctgt gctctggggc 150 ctcagcctct tcctcaacct cccaggacct atctggctcc agccctctcc 200 acctccccag tetteteccc egecteagee ceateegtgt catacetgee 250 ggggactggt tgacagcttt aacaagggcc tggagagaac catccgggac 300 aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata 350 caaagacagt gagacccgcc tggtagaggt gctggagggt gtgtgcagca 400 agtcagactt cgagtgccac cgcctgctgg agctgagtga ggagctggtg 450 gagagctggt ggtttcacaa gcagcaggag gccccggacc tcttccagtg 500 gctgtgctca gattccctga agctctgctg ccccgcaggc accttcgggc 550 cctcctgcct tccctgtcct gggggaacag agaggccctg cggtggctac 600 gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg 650 ccaagccggc tacgggggtg aggcctgtgg ccagtgtggc cttggctact 700 ttgaggcaga acgcaacgcc agccatctgg tatgttcggc ttgttttggc 750 gaagggctgg gccctgcatc acctcaagtg tgtagacatt gatgagtgtg 850 gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900 ggctcctatg agtgccgaga ctgtgccaag gcctgcctag gctgcatggg 950 ggcagggcca ggtcgctgta agaagtgtag ccctggctat cagcaggtgg 1000 gctccaagtg tctcgatgtg gatgagtgtg agacagaggt gtgtccggga 1050 gagaacaagc agtgtgaaaa caccgagggc ggttatcgct gcatctgtgc 1100 cgagggctac aagcagatgg aaggcatctg tgtgaaggag cagatcccag 1150 agtcagcagg cttcttctca gagatgacag aagacgagtt ggtggtgctg 1200 cagcagatgt tctttggcat catcatctgt gcactggcca cgctggctgc 1250 taagggcgac ttggtgttca ccgccatctt cattggggct gtggcggcca 1300

tgactggcta ctggttgtca gagcgcagtg accgtgtgct ggagggcttc 1350 atcaagggca gataatcgcg gccaccacct gtaggacctc ctcccaccca 1400 cgctgccccc agagcttggg ctgccctcct gctggacact caggacagct 1450 tggtttattt ttgagagtgg ggtaagcacc cctacctgcc ttacagagca 1500 gcccaggtac ccaggcccgg gcagacaagg cccctggggt aaaaagtagc 1550 cctgaaggtg gataccatga gctcttcacc tggcggggac tggcaggctt 1600 cacaatgtgt gaatttcaaa agtttttcct taatggtggc tgctagagct 1650 ttggcccctg cttaggatta ggtggtcctc acaggggtgg ggccatcaca 1700 gctccctcct gccagctgca tgctgccagt tcctgttctg tgttcaccac 1750 atccccacac cccattgcca cttatttatt catctcagga aataaagaaa 1800 ggtcttggaa agttaaaaaa aaaaaaaaa aaaaaaaaa 1838

 <400> 109

 Met Ala Pro Trp
 Pro Sor Pro Pro Pro Lys Gly Leu Val 10
 Pro Ala Val Leu Trp 15

 Gly Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln 30

 Pro Ser Pro Pro Pro Pro 35
 Gln Ser Ser Pro Pro Pro Pro Gln Pro His Pro 45

 Cys His Thr Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu 60

 Glu Arg Thr Ile Arg Asp Asn Phe Gly Gly Gly Asn Thr Ala Trp 75

 Glu Glu Glu Asn Leu Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu 80

 Val Glu Val Leu Glu Leu Ser Glu Glu Leu Ser Glu Glu Leu Val Glu Ser Trp Trp 120

 Phe His Lys Gln Gln Gln Glu Ala Pro Asp Leu Phe Gln Trp Leu Cys 135

 Ser Asp Ser Leu Lys Leu Cys Cys Pro Ala Gly Thr Phe Gly Pro 150

 Ser Cys Leu Pro Cys Pro Gly Gly Thr Glo Arg Pro Cys Gly Gly 165

 Tyr Gly Gln Cys Glu Gly Gly Gly Gly Thr Arg Gly Gly Ser Gly His 170

<210> 109 <211> 420 <212> PRT

<213> Homo Sapien

C	_ys	Asp	Cys	Gln	Ala 185	Gly	Tyr	Gly	Gly	Glu 190	Ala	Cys	Gly	Gln	Cys 195
G	Пy	Leu	Gly	Tyr	Phe 200	Glu	Ala	Glu	Arg	Asn 205	Аlа	ser	His	Leu	Val 210
C	:ys	Ser	Αla	Cys	Phe 215	Gly	Pro	Cys	Αla	Arg 220	Cys	ser	Gly	Pro	G]u 225
G	ilu	Ser	Asn	Cys	Leu 230	Gln	Cys	Lys	Lys	G]y 235	Trp	Аlа	Leu	His	His 240
L	.eu	Lys	Cys	٧a٦	Asp 245	Ile	Asp	Glu	Cys	G]y 250	Thr	Glu	Gly	Ala	Asn 255
C	:ys	Gly	Аlа	Asp	G1n 260	Phe	Cys	٧a٦	Asn	Thr 265	Glu	GТу	ser	Tyr	Glu 270
C	ys	Arg	Asp	Cys	Ala 275	Lys	Αla	Cys	Leu	G]y 280	Cys	Met	Gly	Ala	Gly 285
Р	ro	Gly	Arg	Cys	Lys 290	Lys	Cys	Ser	Pro	G]y 295	Tyr	Gln	Gln	Val	Gly 300
S	er	Lys	Cys	Leu	Asp 305	۷al	Asp	Glu	Cys	Glu 310	Thr	Glu	Val	Cys	Pro 315
G	1y	Glu	Asn	Lys	G1n 320	Cys	Glu	Asn	Thr	Glu 325	Glу	Gly	Tyr	Arg	Cys 330
ı	1e	Cys	Ala	Glu	Gly 335	Tyr	Lys	Gln	Met	G1u 340	GТу	Ile	Cys	۷a٦	Lys 345
G	٦u	Gln	Ile	Pro	G1u 350	Ser	Αla	Gly	Phe	Phe 355	ser	Glu	Met	Thr	G]u 360
Α	sp	Glu	Leu	Val	Va1 365	Leu	Gln	Gln	Met	Phe 370	Phe	GТу	Ile	Ile	11e 375
C	ys	Ala	Leu	Ala	Thr 380	Leu	Ala	Ala	Lys	Gly 385	Asp	Leu	val	Phe	Thr 390
A	1a	Ile	Phe	Ile	Gly 395	Ala	۷a٦	Ala	Ala	меt 400	Thr	Gly	Tyr	Trp	Leu 405
S	er	Glu	Arg	ser	Asp 410	Arg	Val	Leu	Glu	Gly 415	Phe	Ile	Lys	Gly	Arg 420
<210> 110 <211> 50 <212> DNA <213> Artificial Sequence															
<220> <223> Synthetic Oligonucleotide Probe															
<400> 110 cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga 50															
<210> 111 <211> 22 <212> DNA Page 70															

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 111
attctgcgtg aacactgagg gc 22
<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 112
atctgcttgt agccctcggc ac 22
<210> 113
<211> 1616
<212> DNA
<213> Homo Sapien
<220>
<221> unsure
<222> 1461
<223> unknown base
<400> 113
tgagaccctc ctgcagcctt ctcaagggac agccccactc tgcctcttqc 50
tcctccaggg cagcaccatg cagcccctgt ggctctgctg ggcactctgg 100
gtgttgcccc tggccagccc cggggccgcc ctgaccgggg agcagctcct 150
gggcagcctg ctgcggcagc tgcagctcaa agaggtgccc accctggaca 200
gggccgacat ggaggagctg gtcatcccca cccacgtgag ggcccagtac 250
gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagaggtt 300
cagccagagc ttccgagagg tggccggcag gttcctggcg ttggaggcca 350
gcacacacct gctggtgttc ggcatggagc agcggctgcc gcccaacagc 400
gagctggtgc aggccgtgct gcggctcttc caggagccgg tccccaaggc 450
cgcgctgcac aggcacgggc ggctgtcccc gcgcagcgcc cgggcccggg 500
tgaccgtcga gtggctgcgc gtccgcgacg acggctccaa ccgcacctcc 550
ctcatcgact ccaggctggt gtccgtccac gagagcggct ggaaggcctt 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc 650
agccgctgct gctacaggtg tcggtgcaga gggagcatct gggcccgctg 700
gcgtccggcg cccacaagct ggtccgcttt gcctcgcagg gggcgccagc 750
cgggcttggg gagccccagc tggagctgca caccctggac cttggggact 800
atggagetea gggegaetgt gaeeetgaag caecaatgae egagggeaee 850
                                      Page 71
```

cgctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900 cgagaactgg gtgctggagc ccccgggctt cctggcttat gagtgtgtgg 950 gcacctgccg gcagcccccg gaggccctgg ccttcaagtg gccgtttctg 1000 gggcctcgac agtgcatcgc ctcggagact gactcgctgc ccatgatcgt 1050 cagcatcaag gagggaggca ggaccaggcc ccaggtggtc agcctgccca 1100 acatgagggt gcagaagtgc agctgtgcct cggatggtgc gctcgtgcca 1150 aggaggetee agecatagge geetagtgta geeategagg gaettgaett 1200 gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gcgatgactg 1250 aactgctgat ggacaaatgc tctgtgctct ctagtgagcc ctgaatttgc 1300 ttcctctgac aagttacctc acctaatttt tgcttctcag gaatgagaat 1350 ctttggccac tggagagccc ttgctcagtt ttctctattc ttattattca 1400 ctgcactata ttctaagcac ttacatgtgg agatactgta acctgagggc 1450 agaaagccca ntgtgtcatt gtttacttgt cctgtcactg gatctgggct 1500 aaagtcctcc accaccactc tggacctaag acctggggtt aagtgtgggt 1550 tgtgcatccc caatccagat aataaagact ttgtaaaaca tgaataaaac 1600 acattttatt ctaaaa 1616

- <210> 114
- <211> 366
- <212> PRT
- <213> Homo Sapien

<400> 114

Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu 1 10 15

Ala Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser

Leu Leu Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg 35 40 45

Ala Asp Met Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln
50 55 60

Tyr Val Ala Leu Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly
65 70 75

Lys Arg Phe Ser Gln Ser Phe Arg Glu Val Ala Gly Arg Phe Leu 80 85 90

Ala Leu Glu Ala Ser Thr His Leu Leu Val Phe Gly Met Glu Gln 95 100 105

Arg Leu Pro Pro Asn Ser Glu Leu Val Gln Ala Val Leu Arg Leu 110 115 120

```
P1618P2C3.txt
 Phe Gln Glu Pro Val Pro Lys Ala Ala Leu His Arg His Gly Arg
 Leu Ser Pro Arg Ser Ala Arg Ala Arg Val Thr Val Glu Trp Leu
140 145 150
 Arg Val Arg Asp Asp Gly Ser Asn Arg Thr Ser Leu Ile Asp Ser
155 160 165
 Arg Leu Val Ser Val His Glu Ser Gly Trp Lys Ala Phe Asp Val
170 175 180
 Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg Pro Arg Gln
185 190 195
 Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu Gly Pro
200 205 210
 Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln Gly 215 220 225
 Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu
230 235 240
 Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala
245 250 255
 Pro Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile
260 265 270
 Asp Leu Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro
275 280 285
 Pro Gly Phe Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro
290 295 300
 Pro Glu Ala Leu Ala Phe Lys Trp Pro Phe Leu Gly Pro Arg Gln 305 310 315
 Cys Ile Ala Ser Glu Thr Asp Ser Leu Pro Met Ile Val Ser Ile
320 325 330
 Lys Glu Gly Gly Arg Thr Arg Pro Gln Val Val Ser Leu Pro Asn 345
 Met Arg Val Gln Lys Cys Ser Cys Ala Ser Asp Gly Ala Leu Val
350 355 360
 Pro Arg Arg Leu Gln Pro
365
<210> 115
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 115
aggactgcca taacttgcct g 21
<210> 116
```

```
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 116
ataggagttg aagcagcgct gc 22
<210> 117
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 117
tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc 45
<210> 118
<211> 1857
<212> DNA
<213> Homo Sapien
<400> 118
gtctgttccc aggagtcctt cggcggctgt tgtgtcagtg gcctgatcgc 50
gatggggaca aaggcgcaag tcgagaggaa actgttgtgc ctcttcatat 100
tggcgatcct gttgtgctcc ctggcattgg gcagtgttac agtgcactct 150
tctgaacctg aagtcagaat tcctgagaat aatcctgtga agttgtcctg 200
tgcctactcg ggcttttctt ctccccgtgt ggagtggaag tttgaccaag 250
gagacaccac cagactcgtt tgctataata acaagatcac agcttcctat 300
gaggaccggg tgaccttctt gccaactggt atcaccttca agtccgtgac 350
acgggaagac actgggacat acacttgtat ggtctctgag gaaggcggca 400
acagctatgg ggaggtcaag gtcaagctca tcgtgcttgt gcctccatcc 450
aagcctacag ttaacatccc ctcctctgcc accattggga accgggcagt 500
gctgacatgc tcagaacaag atggttcccc accttctgaa tacacctggt 550
tcaaagatgg gatagtgatg cctacgaatc ccaaaagcac ccgtgccttc 600
agcaactctt cctatgtcct gaatcccaca acaggagagc tggtctttga 650
tcccctgtca gcctctgata ctggagaata cagctgtgag gcacggaatg 700
ggtatgggac acccatgact tcaaatgctg tgcgcatgga agctgtggag 750
cggaatgtgg gggtcatcgt ggcagccgtc cttgtaaccc tgattctcct 800
gggaatcttg gtttttggca tctggtttgc ctatagccga ggccactttg 850
acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900
```

P1618P2C3.txt agtgcccgaa gtgaaggaga attcaaacag acctcgtcat tcctggtgtg 950 agcctggtcg gctcaccgcc tatcatctgc atttgcctta ctcaggtgct 1000 accggactct ggcccctgat gtctgtagtt tcacaggatg ccttatttgt 1050 cttctacacc ccacagggcc ccctacttct tcggatgtgt ttttaataat 1100 gtcagctatg tgccccatcc tccttcatgc cctccctccc tttcctacca 1150 ctgctgagtg gcctggaact tgtttaaagt gtttattccc catttctttg 1200 agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagtag 1250 acagcaaaaa tggcgggggt cgcaggaatc tgcactcaac tgcccacctg 1300 gctggcaggg atctttgaat aggtatcttg agcttggttc tgggctcttt 1350 ccttgtgtac tgacgaccag ggccagctgt tctagagcgg gaattagagg 1400 ctagagcggc tgaaatggtt gtttggtgat gacactgggg tccttccatc 1450 tctggggccc actctcttct gtcttcccat gggaagtgcc actgggatcc 1500 ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt 1550 ggaaaatggg agctcttgtt gtggagagca tagtaaattt tcagagaact 1600 tgaagccaaa aggatttaaa accgctgctc taaagaaaag aaaactggag 1650 gctgggcgca gtggctcacg cctgtaatcc cagaggctga ggcaggcgga 1700 tcacctgagg tcgggagttc gggatcagcc tgaccaacat ggagaaaccc 1750 tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800 agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaa 1850 aaaaaaa 1857

<210> 119

Val Lys Leu Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val
50

60

Glu Trn Lys Phe Asp Glo Gly Asp Thr Thr Arg Leu Val Cys Tyr

Glu Trp Lys Phe Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr
65 70 75

Asn Asn Lys Ile Thr Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu 80 85 90 Page 75

Pro	Thr	Gly	Ile	Thr 95	Phe	Lys	Ser	٧a٦	Thr 100	Arg	Glu	Asp	Thr	Gly 105
Thr	Tyr	Thr	Cys	Met 110	٧a٦	Ser	Glu	Glu	Gly 115	Gly	Asn	ser	Tyr	Gly 120
Glu	٧a٦	Lys	۷al	Lys 125	Leu	Ile	val	Leu	val 130	Pro	Pro	Ser	Lys	Pro 135
Thr	∨al	Asn	Ile	Pro 140	Ser	Ser	Аla	Thr	Ile 145	Gly	Asn	Arg	Ala	val 150
Leu	Thr	Cys	ser	Glu 155	Gln	Asp	Gly	ser	Pro 160	Pro	Ser	Glu	Tyr	Thr 165
Trp	Phe	Lys	Asp	Gly 170	Ile	۷al	Met	Pro	Thr 175	Asn	Pro	Lys	ser	Thr 180
Arg	Ala	Phe	Ser	Asn 185	ser	Ser	Tyr	۷a٦	Leu 190	Asn	Pro	Thr	Thr	Gly 195
Glu	Leu	۷al	Phe	Asp 200	Pro	Leu	Ser	Ala	Ser 205	Asp	Thr	Glу	Glu	Tyr 210
Ser	Cys	Glu	Ala	Arg 215	Asn	Gly	Tyr	Glу	Thr 220	Pro	Met	Thr	ser	Asn 225
Ala	۷a٦	Arg	Met	G1u 230	Ala	٧a٦	Glu	Arg	Asn 235	۷al	Gly	۷a٦	Ile	Va1 240
Ala	Ala	۷a٦	Leu	va1 245	Thr	Leu	Ile	Leu	Leu 250	Gly	Ile	Leu	٧a٦	Phe 255
Gly	Ile	тгр	Phe	Ala 260	Tyr	ser	Arg	Gly	His 265	Phe	Asp	Arg	Thr	Lys 270
Lys	Gly	Thr	Ser	Ser 275	Lys	Lys	Val	Ile	Tyr 280	Ser	Gln	Pro	ser	Ala 285
Arg	ser	Glu	Gly	G]u 290	Phe	Lys	Gln	Thr	Ser 295	ser	Phe	Leu	٧al	
<210> <211> <212> <213>	24 DNA		:ial	Sequ	ence									
<220> <223>	Syn	thet	ic 0	ligo	nucl	eoti	de P	robe	!					
<400> tcgc			tgtt	ctgt	t tc	cc 2	4							
<210> <211> <212> <213>	50 DNA		ial	Sequ	ence									
<220> <223>	Syn	thet	ic O	ligo	nucl	eoti	de P	robe						
<400>	121													

```
P1618P2C3.txt
 tgatcgcgat ggggacaaag gcgcaagctc gagaggaaac tgttgtgcct 50
<210> 122
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 122
 acacctggtt caaagatggg 20
<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 123
taggaagagt tgctgaaggc acgg 24
<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 124
ttgccttact caggtgctac 20
<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 125
actcagcagt ggtaggaaag 20
<210> 126
<211> 1210
<212> DNA
<213> Homo Sapien
<400> 126
cagcgcgtgg ccggcgccgc tgtggggaca gcatgagcgg cggttggatg 50
gcgcaggttg gagcgtggcg aacaggggct ctgggcctgg cgctgctgct 100
gctgctcggc ctcggactag gcctggaggc cgccgcgagc ccgctttcca 150
ccccgacctc tgcccaggcc gcaggcccca gctcaggctc gtgcccaccc 200
accaagttcc agtgccgcac cagtggctta tgcgtgcccc tcacctggcg 250
ctgcgacagg gacttggact gcagcgatgg cagcgatgag gaggagtgca 300
                                        Page 77
```

```
ggattgagcc atgtacccag aaagggcaat gcccaccgcc ccctggcctc 350
ccctgcccct gcaccggcgt cagtgactgc tctgggggaa ctgacaagaa 400
actgcgcaac tgcagccgcc tggcctgcct agcaggcgag ctccgttgca 450
cgctgagcga tgactgcatt ccactcacgt ggcgctgcga cggccaccca 500
gactgtcccg actccagcga cgagctcggc tgtggaacca atgagatcct 550
cccggaaggg gatgccacaa ccatggggcc ccctgtgacc ctggagagtg 600
tcacctctct caggaatgcc acaaccatgg ggccccctgt gaccctggag 650
agtgtcccct ctgtcgggaa tgccacatcc tcctctgccg gagaccagtc 700
tggaagccca actgcctatg gggttattgc agctgctgcg gtgctcagtg 750
caagectggt cacegecace etecteettt tgteetgget eegageecag 800
gagcgcctcc gcccactggg gttactggtg gccatgaagg agtccctgct 850
gctgtcagaa cagaagacct cgctgccctg aggacaagca cttgccacca 900
ccgtcactca gccctgggcg tagccggaca ggaggagagc agtgatgcgg 950
atgggtaccc gggcacacca gccctcagag acctgagttc ttctggccac 1000
gtggaacctc gaacccgagc tcctgcagaa gtggccctgg agattgaggg 1050
tccctggaca ctccctatgg agatccgggg agctaggatg gggaacctgc 1100
cacagccaga actgaggggc tggccccagg cagctcccag ggggtagaac 1150
ggccctgtgc ttaagacact ccctgctgcc ccgtctgagg gtggcgatta 1200
aagttgcttc 1210
```

<400> 127

Ala Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly 20 25 30

Leu Glu Ala Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln
45

Ala Ala Gly Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln 50 55 60

Cys Arg Thr Ser Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp 65 70 75

Arg Asp Leu Asp Cys Ser Asp Gly Ser Asp Glu Glu Cys Arg

<210> 127

<211> 282

<212> PRT

<213> Homo Sapien

Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly 1 10 15

```
P1618P2C3.txt
 Ile Glu Pro Cys Thr Gln Lys Gly Gln Cys Pro Pro Pro Gly 95 100 105
 Leu Pro Cys Pro Cys Thr Gly Val Ser Asp Cys Ser Gly Gly Thr 110 115 120
 Asp Lys Lys Leu Arg Asn Cys Ser Arg Leu Ala Cys Leu Ala Gly
125
130
 Glu Leu Arg Cys Thr Leu Ser Asp Asp Cys Ile Pro Leu Thr Trp
140 145
 Arg Cys Asp Gly His Pro Asp Cys Pro Asp Ser Ser Asp Glu Leu
155 160 165
 Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly Asp Ala Thr Thr
170 175
 Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser Leu Arg Asn
 Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Pro Ser
 Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly Ser
215 220 225
 Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Ala Val Leu Ser Ala
230 235 240
 Ser Leu Val Thr Ala Thr Leu Leu Leu Leu Ser Trp Leu Arg Ala
 Gln Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu
260 265 270
 Ser Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro
275 280
<210> 128
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 128
 aagttccagt gccgcaccag tggc 24
<210> 129
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 129
ttggttccac agccgagctc gtcg 24
<210> 130
<211> 50
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 130
gaggaggagt gcaggattga gccatgtacc cagaaagggc aatgcccacc 50
<210> 131
<211> 1843
<212> DNA
<213> Homo Sapien
<220>
<221> unsure
<222> 1837
<223> unknown base
<400> 131
cccacgcgtc cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc 50
gcacagatgc gggttagact ggcgggggga ggaggcggag gagggaagga 100
agctgcatgc atgagaccca cagactcttg caagctggat gccctctgtg 150
gatgaaagat gtatcatgga atgaacccga gcaatggaga tggatttcta 200
gagcagcagc agcagcagca gcaacctcag tcccccaga gactcttggc 250
cgtgatcctg tggtttcagc tggcgctgtg cttcggccct gcacagctca 300
cgggcgggtt cgatgacctt caagtgtgtg ctgaccccgg cattcccgag 350
aatggcttca ggacccccag cggaggggtt ttctttgaag gctctgtagc 400
ccgatttcac tgccaagacg gattcaagct gaagggcgct acaaagagac 450
tgtgtttgaa gcattttaat ggaaccctag gctggatccc aagtgataat 500
tccatctgtg tgcaagaaga ttgccgtatc cctcaaatcg aagatgctga 550
gattcataac aagacatata gacatggaga gaagctaatc atcacttgtc 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta 650
tgtcgcgatg atggaacgtg gaataatctg cccatctgtc aaggctgcct 700
gagacctcta gcctcttcta atggctatgt aaacatctct gagctccaga 750
cctccttccc ggtggggact gtgatctcct atcgctgctt tcccggattt 800
aaacttgatg ggtctgcgta tcttgagtgc ttacaaaacc ttatctggtc 850
gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900
ctccaatggt gagtcacgga gatttcgtct gccacccgcg gccttgtgag 950
cgctacaacc acggaactgt ggtggagttt tactgcgatc ctggctacag 1000
cctcaccagc gactacaagt acatcacctg ccagtatgga gagtggtttc 1050
cttcttatca agtctactgc atcaaatcag agcaaacgtg gcccagcacc 1100
                                      Page 80
```

catgagaccc tcctgaccac gtggaagatt gtggcgttca cggcaaccag 1150
tgtgctgctg gtgctgctgc tcgtcatcct ggccaggatg ttccagacca 1200
agttcaaggc ccactttccc cccagggggc ctccccggag ttccagcagt 1250
gaccctgact ttgtggtggt agacggcgtg cccgtcatgc tcccgtccta 1300
tgacgaagct gtgagtggcg gcttgagtgc cttaggcccc gggtacatgg 1350
cctctgtggg ccagggctgc cccttacccg tggacgacca gagccccca 1400
gcataccccg gctcagggga cacggacaca ggcccagggg agtcagaaca 1450
ctgtgacagc gtctcaggct cttctgagct gctcaaagt ctgtattcac 1500
ctcccaggtg ccaagagga acccacctg cttcggacaa ccctgacata 1550
attgccactg gtgttgtcc taagaaactg attgattaaa aaattccca 1600
tgcccactgg gtgttgttc tcaaatacat gttgatcag ggagttgatt 1700
cctttccttc tcttggttt agacaaatgt aaacaaagct ctgatcctta 1750
aaattgctat gctgatagag tggtgaggc tggaagcttg atcaagtcct 1800
gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa 1843

<213> Homo Sapien

Met Tyr His Gly Met San Pro Ser Asn Gly Asp Gly Phe Leu Glu 15

Gln Gln Gln Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu 25

Ala Val Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala 45

Gln Leu Thr Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro 60

Gly Ile Pro Glu Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe 75

Phe Glu Gly Ser Val Ala Arg Phe His Cys Gln Asp Gly Phe Lys 85

Leu Lys Gly Ala Thr Lys Arg Leu Cys Leu Lys His Phe Asn Gly 105

Thr Leu Gly Trp Ile Pro Ser Asp Asn Ser Ile Cys Val Gln Glu 120

Asp Cys Arg Ile Pro Gln Ile Glu Asp Ala Glu Ile His Asn Lys 135

Page 81

<210> 132 <211> 490

<212> PRT

Thr	Tyr	Arg	His	Gly 140	Glu	Lys	Leu	Ile	Ile 145	Thr	Cys	His	Glu	Gly 150
Phe	Lys	Ile	Arg	Tyr 155	Pro	Asp	Leu	His	Asn 160	Met	val	Ser	Leu	Cys 165
Arg	Asp	Asp	Gly	Thr 170	Trp	Asn	Asn	Leu	Pro 175	Ile	Cys	Gln	Gly	Cys 180
Leu	Arg	Pro	Leu	Ala 185	ser	ser	Asn	Gly	Туг 190	val	Asn	Ile	Ser	Glu 195
Leu	Gln	Thr	Ser	Phe 200	Pro	val	Gly	Thr	va1 205	Ile	ser	Tyr	Arg	Cys 210
Phe	Pro	Gly	Phe	Lys 215	Leu	Asp	Gly	Ser	Ala 220	туг	Leu	Glu	Cys	Leu 225
Gln	Asn	Leu	Ile	Trp 230	Ser	Ser	Ser	Pro	Pro 235	Arg	Cys	Leu	Ala	Leu 240
Glu	Ala	Gln	val	Cys 245	Pro	Leu	Pro	Pro	Met 250	val	Ser	His	Gly	Asp 255
Phe	Val	Cys	His	Pro 260	Arg	Pro	Cys	Glu	Arg 265	туг	Asn	His	Gly	Thr 270
Val	۷al	Glu	Phe	Tyr 275	Cys	Asp	Pro	Gly	Tyr 280	Ser	Leu	Thr	Ser	Asp 285
туг	Lys	Tyr	Ile	Thr 290	Cys	Gln	Tyr	Gly	Glu 295	Trp	Phe	Pro	Ser	Tyr 300
Gln	val	туг	Cys	Ile 305	Lys	Ser	Glu	Gln	Thr 310	Тгр	Pro	Ser	Thr	His 315
Glu	Thr	Leu	Leu	Thr 320	Thr	Trp	Lys	Ile	va1 325	Ala	Phe	Thr	Ala	Thr 330
Ser	val	Leu	Leu	va1 335	Leu	Leu	Leu	Val	Ile 340	Leu	Ala	Arg	Met	Phe 345
Gln	Thr	Lys	Phe	Lys 350	Ala	His	Phe	Pro	Pro 355	Arg	Gly	Pro	Pro	Arg 360
Ser	ser	ser	Ser	Asp 365	Pro	Asp	Phe	val	va1 370	val	Asp	Gly	val	Pro 375
val	Met	Leu	Pro	ser 380	Tyr	Asp	Glu	Ala	va1 385	Ser	Gly	Gly	Leu	Ser 390
Ala	Leu	Gly	Pro	G]y 395	Tyr	Met	Ala	ser	va1 400	Gly	Gln	Gly	Cys	Pro 405
Leu	Pro	val	Asp	Asp 410	Gln	ser	Pro	Pro	Ala 415	Tyr	Pro	Gly	Ser	Gly 420
Asp	Thr	Asp	Thr	Gly 425	Pro	Gly	Glu	ser	Glu 430	Thr	Cys	Asp	Ser	∨a1 435
Ser	Glу	Ser	Ser	Glu 440	Leu	Leu	Gln	Ser	445	Tyr ge 8	_	Pro	Pro	Arg 450

```
Cys Gln Glu Ser Thr His Pro Ala Ser Asp Asn Pro Asp Ile Ile
                 455
 Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His
 His Ala His Trp Val Leu Phe Leu Arg Asn
                                      490
<210> 133
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 133
 atctcctatc gctgctttcc cgg 23
<210> 134
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 134
agccaggatc gcagtaaaac tcc 23
<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 135
atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct 50
<210> 136
<211> 1815
<212> DNA
<213> Homo Sapien
<400> 136
cccacgcgtc cgctccgcgc cctcccccc gcctcccgtg cggtccgtcg 50
gtggcctaga gatgctgctg ccgcggttgc agttgtcgcg cacgcctctg 100
cccgccagcc cgctccaccg ccgtagcgcc cgagtgtcgg ggggcgcacc 150
cgagtcgggc catgaggccg ggaaccgcgc tacaggccgt gctgctggcc 200
gtgctgctgg tggggctgcg ggccgcgacg ggtcgcctgc tgagtgcctc 250
ggatttggac ctcagaggag ggcagccagt ctgccgggga gggacacaga 300
ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac 350
```

			-1610-2-3		
tttgaggaag	ccaaagaagc	ctgcaggagg	P1618P2C3 gatggaggcc		400
catcgagtct	gaagatgaac	agaaactgat	agaaaagttc	attgaaaacc	450
tcttgccatc	tgatggtgac	ttctggattg	ggctcaggag	gcgtgaggag	500
aaacaaagca	atagcacagc	ctgccaggac	ctttatgctt	ggactgatgg	550
cagcatatca	caatttagga	actggtatgt	ggatgagccg	tcctgcggca	600
gcgaggtctg	cgtggtcatg	taccatcagc	catcggcacc	cgctggcatc	650
ggaggcccct	acatgttcca	gtggaatgat	gaccggtgca	acatgaagaa	700
caatttcatt	tgcaaatatt	ctgatgagaa	accagcagtt	ccttctagag	750
aagctgaagg	tgaggaaaca	gagctgacaa	cacctgtact	tccagaagaa	800
acacaggaag	aagatgccaa	aaaaacattt	aaagaaagta	gagaagctgc	850
cttgaatctg	gcctacatcc	taatccccag	cattcccctt	ctcctcc	900
ttgtggtcac	cacagttgta	tgttgggttt	ggatctgtag	aaaaagaaaa	950
cgggagcagc	cagaccctag	cacaaagaag	caacacacca	tctggccctc	1000
tcctcaccag	ggaaacagcc	cggacctaga	ggtctacaat	gtcataagaa	1050
aacaaagcga	agctgactta	gctgagaccc	ggccagacct	gaagaatatt	1100
tcattccgag	tgtgttcggg	agaagccact	cccgatgaca	tgtcttgtga	1150
ctatgacaac	atggctgtga	acccatcaga	aagtgggttt	gtgactctgg	1200
tgagcgtgga	gagtggattt	gtgaccaatg	acatttatga	gttctcccca	1250
gaccaaatgg	ggaggagtaa	ggagtctgga	tgggtggaaa	atgaaatata	1300
tggttattag	gacatataaa	aaactgaaac	tgacaacaat	ggaaaagaaa	1350
tgataagcaa	aatcctctta	ttttctataa	ggaaaataca	cagaaggtct	1400
atgaacaagc	ttagatcagg	tcctgtggat	gagcatgtgg	tcccacgac	1450
ctcctgttgg	acccccacgt	tttggctgta	tcctttatcc	cagccagtca	1500
tccagctcga	ccttatgaga	aggtaccttg	cccaggtctg	gcacatagta	1550
gagtctcaat	aaatgtcact	tggttggttg	tatctaactt	ttaagggaca	1600
gagctttacc	tggcagtgat	aaagatgggc	tgtggagctt	ggaaaaccac	1650
ctctgttttc	cttgctctat	acagcagcac	atattatcat	acagacagaa	1700
aatccagaat	cttttcaaag	cccacatatg	gtagcacagg	ttggcctgtg	1750
catcggcaat	tctcatatct	gttttttca	aagaataaaa	tcaaataaag	1800
agcaggaaaa	aaaaa 1815				
J210s 127					

<210> 137 <211> 382 <212> PRT

<213> Homo Sapien

<400> 137 Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu 1 5 10 Leu Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser 20 25 30 Asp Leu Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg
50 55 60 Arg Leu Asn Phe Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly
65 70 75 Gly Gln Leu Val Ser Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile 80 85 90 Glu Lys Phe Ile Glu Asn Leu Leu Pro Ser Asp Gly Asp Phe Trp 95 100 Ile Gly Leu Arg Arg Glu Glu Lys Gln Ser Asn Ser Thr Ala 110 115 120 Cys Gln Asp Leu Tyr Ala Trp Thr Asp Gly Ser Ile Ser Gln Phe 125 130 135Arg Asn Trp Tyr Val Asp Glu Pro Ser Cys Gly Ser Glu Val Cys 140 145 Val Val Met Tyr His Gln Pro Ser Ala Pro Ala Gly Ile Gly Gly
155 160 165 Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys Asn Met Lys Asn 170 175 180 Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala Val Pro Ser 185 190 Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro Val Leu 200 205 210 Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys Glu 215 220 225 Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser 230 235 240 Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp 245 250 255 Val Trp Ile Cys Arg Lys Arg Glu Gln Pro Asp Pro Ser 260 265 270 Thr Lys Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn 275 280 285 Ser Pro Asp Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu 290 295 300

```
P1618P2C3.txt
 Ala Asp Leu Ala Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe
                                                            315
 Arg Val Cys Ser Gly Glu Ala Thr Pro Asp Asp Met Ser Cys Asp 320 325
 Tyr Asp Asn Met Ala Val Asn Pro Ser Glu Ser Gly Phe Val Thr
 Leu Val Ser Val Glu Ser Gly Phe Val Thr Asn Asp Ile Tyr Glu
 Phe Ser Pro Asp Gln Met Gly Arg Ser Lys Glu Ser Gly Trp val
365 370 375
 Glu Asn Glu Ile Tyr Gly Tyr
380
<210> 138
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 138
 gttcattgaa aacctcttgc catctgatgg tgacttctgg attgggctca 50
<210> 139
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 139
 aagccaaaga agcctgcagg aggg 24
<210> 140
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 140
cagtccaagc ataaaggtcc tggc 24
<210> 141
<211> 1514
<212> DNA
<213> Homo Sapien
<400> 141
ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg 50
ctggatgtac gcatccgcag gttcccgcgg acttgggggc gcccgctgag 100
ccccggcgcc cgcagaagac ttgtgtttgc ctcctgcagc ctcaacccgg 150
```

```
P1618P2C3.txt
 agggcagcga gggcctacca ccatgatcac tggtgtgttc agcatgcgct 200
 tgtggacccc agtgggcgtc ctgacctcgc tggcgtactg cctgcaccag 250
 cggcgggtgg ccctggccga gctgcaggag gccgatggcc agtgtccggt 300
 cgaccgcagc ctgctgaagt tgaaaatggt gcaggtcgtg tttcgacacg 350
 gggctcggag tcctctcaag ccgctcccgc tggaggagca ggtagagtgg 400
 aacccccagc tattagaggt cccaccccaa actcagtttg attacacagt 450
 caccaatcta gctggtggtc cgaaaccata ttctccttac gactctcaat 500
 accatgagac caccctgaag gggggcatgt ttgctgggca gctgaccaag 550
 gtgggcatgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600
 tgtggaagac attccctttc tttcaccaac cttcaaccca caggaggtct 650
 ttattcgttc cactaacatt tttcggaatc tggagtccac ccgttgtttg 700
 ctggctgggc ttttccagtg tcagaaagaa ggacccatca tcatccacac 750
 tgatgaagca gattcagaag tcttgtatcc caactaccaa agctgctgga 800
 gcctgaggca gagaaccaga ggccggaggc agactgcctc tttacagcca 850
 ggaatctcag aggatttgaa aaaggtgaag gacaggatgg gcattgacag 900
 tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc 950
 aggcacacaa cctcccaagc tgccccatgc tgaagagatt tgcacggatg 1000
 atcgaacaga gagctgtgga cacatccttg tacatactgc ccaaggaaga 1050
 cagggaaagt cttcagatgg cagtaggccc attcctccac atcctagaga 1100
 gcaacctgct gaaagccatg gactctgcca ctgcccccga caagatcaga 1150
 aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200
 gaccctgggg atttttgacc acaaatggcc accgtttgct gttgacctga 1250
 ccatggaact ttaccagcac ctggaatcta aggagtggtt tgtgcagctc 1300
 tattaccacg ggaaggagca ggtgccgaga ggttgccctg atgggctctg 1350
 cccgctggac atgttcttga atgccatgtc agtttatacc ttaaqcccag 1400
 aaaaatacca tgcactctgc tctcaaactc aggtgatgga agttggaaat 1450
gaagagtaac tgatttataa aagcaggatg tgttgatttt aaaataaagt 1500
gcctttatac aatg 1514
<210> 142
<211> 428
<212> PRT
<213> Homo Sapien
<400> 142
```

Met Ile Thr Gly Val Phe Ser Met Arg Leu Trp Thr Pro Val Gly

Page 87

P1618P2C3.txt 1 15 Val Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala 20 25 30 Leu Ala Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg 35 40 45 Ser Leu Leu Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly
50 55 60 Ala Arg Ser Pro Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu 65 70 75 Trp Asn Pro Gln Leu Leu Glu Val Pro Pro Gln Thr Gln Phe Asp 80 85 90 Tyr Thr Val Thr Asn Leu Ala Gly Gly Pro Lys Pro Tyr Ser Pro 95 100 105 Tyr Asp Ser Gln Tyr His Glu Thr Thr Leu Lys Gly Gly Met Phe 110 115 120Ala Gly Gln Leu Thr Lys Val Gly Met Gln Met Phe Ala Leu 125 130 Gly Glu Arg Leu Arg Lys Asn Tyr Val Glu Asp Ile Pro Phe Leu 140 145 Ser Pro Thr Phe Asn Pro Gln Glu Val Phe Ile Arg Ser Thr Asn 155 160 165 Ile Phe Arg Asn Leu Glu Ser Thr Arg Cys Leu Leu Ala Gly Leu 170 175 180 Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile Ile His Thr Asp Glu 185 190 195 Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys Trp Ser 200 205 Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu Gln 215 220 225 Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly 230 235 Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn 245 250 255 Val Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu 260 265 270 Lys Arg Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser 275 280 280 Leu Tyr Ile Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala 290 295 300 Val Gly Pro Phe Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala 305 310 315 Met Asp Ser Ala Thr Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Page 88

				320				Р	1618 325	P2C3	.txt			330
Tyr ,	Ala	Ala	His	Asp 335	va1	Thr	Phe	Ile	Pro 340	Leu	Leu	Met	Thr	Leu 345
Gly	Ile	Phe	Asp	ніs 350	Lys	Trp	Pro	Pro	Phe 355	Ala	Val	Asp	Leu	Thr 360
Met	Glu	Leu	Tyr	G]n 365	His	Leu	Glu	Ser	Lys 370	Glu	Trp	Phe	۷a٦	Gln 375
Leu [·]	Tyr	туг	His	G]y 380	Lys	Glu	Gln	val	Pro 385	Arg	Glу	Cys	Pro	Asp 390
Gly	Leu	Cys	Pro	Leu 395	Asp	Met	Phe	Leu	As n 400	Аlа	Met	Ser	۷a٦	Tyr 405
Thr	Leu	Ser	Pro	Glu 410	Lys	Tyr	His	Ala	Leu 415	Cys	Ser	Gln	Thr	G]n 420
val I	Met	Glu	۷a٦	Gly 425	Asn	Glu	Glu							
<210> <211> <212> <213>	24 DNA		al	Sequ	ience	2								
<220> <223>	Syr	ithet	ic (Oligo	nuc]	leoti	ide F	robe	2					
<400> ccaa			ıagct	gctg	g ag	gcc 2	24							
<210> <211> <212> <213>	24 DNA		ial:	Sequ	ience	2								
<220> <223>	Syr	ıthet	ic C	Nigo	nucl	eoti	de F	robe	2					
<400> gcag			acca	ıcggg	ja ag	ga 2	24							
<210> <211> <212> <213>	24 DNA		ial	Sequ	ience	<u>.</u>								
<220> <223>	syn	thet	ic C	ligo	nucl	eoti	de F	robe	2					
<400> tcct1			ıgtaa	ıtaga	ıg ct	:gc 2	24							
<210> <211> <212> <213>	45 DNA	\	:ial	Sequ	ience	<u>.</u>								
<220> <223>	syn	thet	ic C	ligo	nucl	eoti	de F	robe		ge 8	9			

Page 90

<400> 146 ggcagagaac cagaggccgg aggagactgc ctctttacag ccagg 45 <210> 147 <211> 1686 <212> DNA <213> Homo Sapien <400> 147 ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc 50 tccttctagc cttaaatttc agctcatcac cttcacctgc cttggtcatg 100 gctctgctat tctccttgat ccttgccatt tgcaccagac ctggattcct 150 agcgtctcca tctggagtgc ggctggtggg gggcctccac cgctgtgaag 200 ggcgggtgga ggtggaacag aaaggccagt ggggcaccgt gtgtgatgac 250 ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300 agctgccagc ggaaccccta gtggtatttt gtatgagcca ccagcagaaa 350 aagagcaaaa ggtcctcatc caatcagtca gttgcacagg aacagaagat 400 acattggctc agtgtgagca agaagaagtt tatgattgtt cacatgatga 450 agatgctggg gcatcgtgtg agaacccaga gagctctttc tccccagtcc 500 cagagggtgt caggctggct gacggccctg ggcattgcaa gggacgcgtg 550 gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600 cctccgggcc gcaaaggtgg tgtgccggca gctgggatgt gggagggctg 650 tactgactca aaaacgctgc aacaagcatg cctatggccg aaaacccatc 700 tggctgagcc agatgtcatg ctcaggacga gaagcaaccc ttcaggattg 750 cccttctggg ccttggggga agaacacctg caaccatgat gaagacacgt 800 gggtcgaatg tgaagatccc tttgacttga gactagtagg aggagacaac 850 ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900 ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac 950 tgggctgtgg gaagtccctc tctccctcct tcagagaccg gaaatgctat 1000 ggccctgggg ttggccgcat ctggctggat aatgttcgtt gctcagggga 1050 ggagcagtcc ctggagcagt gccagcacag attttggggg tttcacgact 1100 gcacccacca ggaagatgtg gctgtcatct gctcagtgta ggtgggcatc 1150 atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200 atttactgtc tacatgactg catgggatga acactgatct tcttctgccc 1250 ttggactggg acttatactt ggtgcccctg attctcaggc cttcagagtt 1300 ggatcagaac ttacaacatc aggtctagtt ctcaggccat cagacatagt 1350

ttggaactac atcaccact ttcctatgtc tccacattgc acacagcaga 1400
ttcccagcct ccataattgt gtgtatcaac tacttaaata cattctcaca 1450
cacacacaca cacacacac cacacacac cacacataca ccatttgtcc 1500
tgtttctctg aagaactctg acaaaataca gattttggta ctgaaagaga 1550
ttctagagga acggaatttt aaggataaat tttctgaatt ggttatgggg 1600
tttctgaaat tggctctata atctaattag atataaaatt ctggtaactt 1650
tatttacaat aataaagata gcactatgtg ttcaaa 1686

<210> 148

<211> 347

<212> PRT

<213> Homo Sapien

<400> 148

Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro 1 5 10 15

Gly Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu 20 . 25 . 30

His Arg Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp 35 40 45

Gly Thr Val Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val
50 55 60

Leu Cys Arg Glu Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser 65 70 75

Gly Ile Leu Tyr Glu Pro Pro Ala Glu Lys Glu Gln Lys Val Leu 80 85 90

Ile Gln Ser Val Ser Cys Thr Gly Thr Glu Asp Thr Leu Ala Gln 95 100 105

Cys Glu Gln Glu Val Tyr Asp Cys Ser His Asp Glu Asp Ala 110 115 120

Gly Ala Ser Cys Glu Asn Pro Glu Ser Ser Phe Ser Pro Val Pro 125 130 135

Glu Gly Val Arg Leu Ala Asp Gly Pro Gly His Cys Lys Gly Arg 140 145 150

Val Glu Val Lys His Gln Asn Gln Trp Tyr Thr Val Cys Gln Thr 155 160 165

Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys Arg Gln Leu Gly
170 175 180

Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn Lys His Ala 185 190 195

Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys Ser Gly
200 205 210

Ara (c1	دا۸	Thr	Lau	cln	۸cn	CVS		1618	_			cly	LVC
Arg (JIU	на	1111	215	GIII	ASP	Cys	PIU	220	ч	PIO	пр	ч	225
Asn ⁻	Thr	Cys	Asn	His 230	Asp	Glu	Asp	Thr	Trp 235	Val	Glu	Cys	Glu	Asp 240
Pro I	Phe	Asp	Leu	Arg 245	Leu	val	Glу	Gly	Asp 250	Asn	Leu	Cys	ser	G]y 255
Arg I	Leu	Glu	۷al	Leu 260	His	Lys	Gly	∨a1	Trp 265	Glу	ser	۷al	Cys	Asp 270
Asp A	Asn	Trp	Gly	Glu 275	Lys	Glu	Asp	Gln	Val 280	٧al	Cys	Lys	Gln	Leu 285
Gly	Cys	Gly	Lys	Ser 290	Leu	ser	Pro	ser	Phe 295	Arg	Asp	Arg	Lys	Cys 300
Tyr (зlу	Pro	Glу	Va1 305	Glу	Arg	Ile	Trp	Leu 310	Asp _.	Asn	val	Arg	Cys 315
Ser (зlу	Glu	Glu		ser	Leu	Glu	Gln		Gln	His	Arg	Phe	
Gly I	Phe	His	Asp		Thr	His	Gln	G∏u		۷al	Ala	۷al	Ile	
Ser \	√al											•		
<210> <211> <212> <213>	24 DNA		ial	Sequ	uence									
<220> <223>	Syr	thet	ic (Oligo	onuc]	leot ⁻	ide F	robe	2					
<400> ttcag			acct	tcac	c to	gcc 2	24							
<210> <211> <212> <213>	24 DNA		ial	sequ	ience	2								
<220> <223>	Syn	thet	ic (Oligo	onuc l	leot	ide F	robe	2					
<400> ggcto			ıaata	accad	et ag	ggg 2	24							
<210> <211> <212> <213>	50 DNA		ial	Sequ	ience	2								
<220> <223>	syn	thet	ic (Oligo	nucl	leoti	ide F	robe	9					
<400> gggco			gcto	gtgaa	ag gg	gcggg	gtgga	ı ggt	ggaa	ıcag	aaag	gcca	agt 5	50
										ae 9				

<210> 152			P1618P2C	3.txt	
<211> 1427 <212> DNA					
<213> Homo	Sapien				
<400> 152	attetateaa	t+a2=++ ccc			50
	gttctatcga				
	acccacgcgt				
	agagtctgcc				
	ctgcccctgc				
tccggctgct	gcagtgggtg	cgcgggaagg	cctacctgcg	gaatgctgtg	250
gtggtgatca	caggcgccac	ctcagggctg	ggcaaagaat	gtgcaaaagt	300
cttctatgct	gcgggtgcta	aactggtgct	ctgtggccgg	aatggtgggg	350
ccctagaaga	gctcatcaga	gaacttaccg	cttctcatgc	caccaaggtg	400
cagacacaca	agccttactt	ggtgaccttc	gacctcacag	actctggggc	450
catagttgca	gcagcagctg	agatcctgca	gtgctttggc	tatgtcgaca	500
tacttgtcaa	caatgctggg	atcagctacc	gtggtaccat	catggacacc	550
acagtggatg	tggacaagag	ggtcatggag	acaaactact	ttggcccagt	600
tgctctaacg	aaagcactcc	tgccctccat	gatcaagagg	aggcaaggcc	650
acattgtcgc	catcagcagc	atccagggca	agatgagcat	tccttttcga	700
tcagcatatg	cagcctccaa	gcacgcaacc	caggctttct	ttgactgtct	750
gcgtgccgag	atggaacagt	atgaaattga	ggtgaccgtc	atcagccccg	800
gctacatcca	caccaacctc	tctgtaaatg	ccatcaccgc	ggatggatct	850
aggtatggag	ttatggacac	caccacagcc	cagggccgaa	gccctgtgga	900
ggtggcccag	gatgttcttg	ctgctgtggg	gaagaagaag	aaagatgtga	950
tcctggctga	cttactgcct	tccttggctg	tttatcttcg	aactctggct	1000
cctgggctct	tcttcagcct	catggcctcc	agggccagaa	aagagcggaa	1050
atccaagaac	tcctagtact	ctgaccagcc	agggccaggg	cagagaagca	1100
gcactcttag	gcttgcttac	tctacaaggg	acagttgcat	ttgttgagac	1150
tttaatggag	atttgtctca	caagtgggaa	agactgaaga	aacacatctc	1200
gtgcagatct	gctggcagag	gacaatcaaa	aacgacaaca	agcttcttcc	1250
cagggtgagg	ggaaacactt	aaggaataaa	tatggagctg	gggtttaaca	1300
ctaaaaacta	gaaataaaca	tctcaaacag	taaaaaaaaa	aaaaaagggc	1350
ggccgcgact	ctagagtcga	cctgcagaag	cttggccgcc	atggcccaac	1400
	cagcttataa				
_			Page 9	3	

<210> 153 <211> 310 <212> PRT <213> Homo Sapien														
<400 Met 1	Asp	3 Phe	Ile	Thr 5	Ser	Thr	Ala	Ile	Leu 10	Pro	Leu	Leu	Phe	Gly 15
Cys	Leu	Gly	Val	Phe 20	Gly	Leu	Phe	Arg	Leu 25	Leu	G٦n	Trp	۷al	Arg 30
Gly	Lys	Αla	Tyr	Leu 35	Arg	Asn	Ala	٧a٦	Va1 40	۷a٦	Ile	Thr	Gly	Ala 45
Thr	Ser	Gly	Leu	G]y 50	Lys	Glu	Cys	Ala	Lys 55	۷a٦	Phe	туг	Ala	Ala 60
Gly	Ala	Lys	Leu	Va 1 65	Leu	Cys	Gly	Arg	Asn 70	Gly	Gly	Ala	Leu	Glu 75
Glu	Leu	Ile	Arg	Glu 80	Leu	Thr	Ala	Ser	His 85	Ala	Thr	Lys	val	Gln 90
Thr	His	Lys	Pro	Tyr 95	Leu	val	Thr	Phe	Asp 100	Leu	Thr	Asp	Ser	Gly 105
Ala	Ile	۷a٦	Ala	Ala 110	Аlа	Αla	Glu	Ile	Leu 115	G∏n	Cys	Phe	Glу	Tyr 120
۷a٦	Asp	Ile	Leu	va1 125	Asn	Asn	Аla	Gly	Ile 130	Ser	Tyr	Arg	GТу	Thr 135
Ile	Met	Asp	Thr	Thr 140	٧a٦	Asp	Val	Asp	Lys 145	Arg	٧al	Met	Glu	Thr 150
Asn	Tyr	Phe	Gly	Pro 155	۷a٦	Аlа	Leu	Thr	Lys 160	Αla	Leu	Leu	Pro	Ser 165
Met _.	Ile	Lys	Arg	Arg 170	Gln	Gly	His	Ile	Val 175	Ala	Ile	Ser	Ser	Ile 180
Gln	Gly	Lys	Met	Ser 185	Ile	Pro	Phe	Arg	Ser 190	Ala	Tyr	Ala	Ala	ser 195
Lys	His	Ala	Thr	G]n 200	Ala	Phe	Phe	Asp	Cys . 205	Leu	Arg	Ala	G1u	Met 210
Glu	G∏n	Tyr	Glu	Ile 215	Glu	۷a٦	Thr	٧a٦	Ile 220	ser	Pro	Gly	Tyr	Ile 225
Нis	Thr	Asn	Leu	Ser 230	۷a٦	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240
Tyr	Glу	val	Met	Asp 245	Thr	Thr	Thr	Ala	G]n 250	Gly	Arg	Ser	Pro	Val 255
Glu	۷a٦	Αla	Gln	Asp 260	٧a٦	Leu	Ala	Ala	Va 1 265	GΊy	Lys	Lys	Lys	Lys 270
Asp	Val	Ile	Leu	A1a 275	Asp	Leu	Leu	Pro	280	Leu ge 9		Val	Tyr	Leu 285

```
Arg Thr Leu Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg
                                       295
 Ala Arg Lys Glu Arg Lys Ser Lys Asn Ser
305 310
<210> 154
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 154
 ggtgctaaac tggtgctctg tggc 24
<210> 155
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 155
 cagggcaaga tgagcattcc 20
<210> 156
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 156
tcatactgtt ccatctcggc acgc 24
<210> 157
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 157
aatggtgggg ccctagaaga gctcatcaga gaactcaccg cttctcatgc 50
<210> 158
<211> 1771
<212> DNA
<213> Homo Sapien
<400> 158
cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag 50
agtggtaaaa aaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg 100
atgaaatttc ttctggacat cctcctgctt ctcccgttac tgatcgtctg 150
```

P1618P2C3.txt ctccctagag tccttcgtga agctttttat tcctaagagg agaaaatcag 200 tcaccggcga aatcgtgctg attacaggag ctgggcatgg aattgggaga 250 ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300 tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg 350 gtgccaaggt tcataccttt gtggtagact gcagcaaccg agaagatatt 400 tacagctctg caaagaaggt gaaggcagaa attggagatg ttagtatttt 450 agtaaataat gctggtgtag tctatacatc agatttgttt gctacacaag 500 atcctcagat tgaaaagact tttgaagtta atgtacttgc acatttctgg 550 actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600 tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg 650 cttactgttc aagcaagttt gctgctgttg gatttcataa aactttgaca 700 gatgaactgg ctgccttaca aataactgga gtcaaaacaa catgtctgtg 750 tcctaatttc gtaaacactg gcttcatcaa aaatccaagt acaagtttgg 800 gacccactct ggaacctgag gaagtggtaa acaggctgat gcatgggatt 850 ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900 aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaacgaa 950 aaatcagtgt taagtttgat gcagttattg gatataaaat gaaagcgcaa 1000 taagcaccta gttttctgaa aactgattta ccaggtttag gttgatgtca 1050 tctaatagtg ccagaatttt aatgtttgaa cttctgtttt ttctaattat 1100 ccccatttct tcaatatcat ttttgaggct ttggcagtct tcatttacta 1150 ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200 tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac 1250 tttattaaaa taatttccaa gattatttgt ggctcacctg aaggctttgc 1300 aaaatttgta ccataaccgt ttatttaaca tatatttta tttttgattg 1350 cacttaaatt ttgtataatt tgtgtttctt tttctgttct acataaaatc 1400 agaaacttca agctctctaa ataaaatgaa ggactatatc tagtggtatt 1450 tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500 gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct 1550 gcacagggaa gctagaggtg gatacacgtg ttgcaagtat aaaagcatca 1600 ctgggattta aggagaattg agagaatgta cccacaaatg gcagcaataa 1650 Page 96

aaaaaaaaa a 1771

<211 <212	<210> 159 <211> 300 <212> PRT <213> Homo Sapien													
	> 15 Lys		Leu	Leu 5	Asp	Ile	Leu	Leu	Leu 10	Leu	Pro	Leu	Leu	Ile 15
۷a٦	Cys	Ser	Leu	Glu 20	Ser	Phe	۷al	Lys	Leu 25	Phe	Ile	Pro	Lys	Arg 30
Arg	Lys	Ser	Va1	Thr 35	Gly	Glu	Ile	۷al	Leu 40	Ile	Thr	Gly	Аlа	G]y 45
His	Gly	Ile	Gly	Arg 50	Leu	Thr	Аlа	Tyr	Glu 55	Phe	Ala	Lys	Leu	Lys 60
Ser	Lys	Leu	۷a٦	Leu 65	Trp	Asp	Ile	Asn	Lys 70	His	GТу	Leu	Glu	Glu 75
Thr	Ala	Ala	Lys	Cys 80	Lys	Gly	Leu	Gly	Ala 85	Lys	۷a٦	His	Thr	Phe 90
٧a٦	٧a٦	Asp	Cys	Ser 95	Asn	Arg	Glu	Asp	Ile 100	Tyr	Ser	Ser	Αla	Lys 105
Lys	٧a٦	Lys	Ala	G]u 110	Ile	GТу	Asp	۷a۱	Ser 115	Ile	Leu	۷a٦	Asn	Asn 120
Аlа	Gly	۷al	۷a٦	Tyr 125	Thr	Ser	Asp	Leu	Phe 130	Аlа	Thr	Gln	Asp	Pro 135
Gln	Ile	Glu	Lys	Thr 140	Phe	Glu	Val	Asn	Val 145	Leu	Ala	His	Phe	Trp 150
Thr	Thr	Lys	Аla	Phe 155	Leu	Pro	Ala	Met	Thr 160	Lys	Asn	Asn	His	Gly 165
His	Ile	۷a٦	Thr	Val 170	Аlа	Ser	Ala	Ala	Gly 175	His	۷al	Ser	val	Pro 180
Phe	Leu	Leu	Ala	Tyr 185	Cys	Ser	Ser	Lys	Phe 190	Ala	Ala	Val	Gly	Phe 195
His	Lys	Thr	Leu	Thr 200	Asp	Glu	Leu	Аlа	Ala 205	Leu	Gln	Ile	Thr	Gly 210
۷al	Lys	Thr	Thr	Cys 215	Leu	Cys	Pro	Asn	Phe 220	٧a٦	Asn	Thr	Gly	Phe 225
Ile	Lys	Asn	Pro	Ser 230	Thr	Ser	Leu	Gly	Pro 235	Thr	Leu	Glu	Pro	G1u 240
Glu	٧a٦	٧a٦	Asn	Arg 245	Leu	Met	His	Gly	11e 250	Leu	Thr	Glu	Gln	Lys 255
Met	Ile	Phe	Ile	Pro 260	Ser	Ser	Ile	Ala	Phe 265	Leu	Thr	Thr	Leu	G1u 270

```
P1618P2C3.txt
 Arg Ile Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile
 Ser Val Lys Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln
<210> 160
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 160
 ggtgaaggca gaaattggag atg 23
<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 161
 atcccatgca tcagcctgtt tacc 24
<210> 162
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 162
 gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag 48
<210> 163
<211> 2076
<212> DNA
<213> Homo Sapien
<400> 163
 cccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcggc 50
 cgcccgcggc tcagggagga gcaccgactg cgccgcaccc tgagagatgg 100
ttggtgccat gtggaaggtg attgtttcgc tggtcctgtt gatgcctggc 150
 ccctgtgatg ggctgtttcg ctccctatac agaagtgttt ccatgccacc 200
taagggagac tcaggacagc cattatttct caccccttac attgaagctg 250
ggaagatcca aaaaggaaga gaattgagtt tggtcggccc tttcccagga 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa 350
cagcaacctc ttcttctggt tcttcccagc tcagatacag ccagaagatg 400
ccccagtagt tctctggcta cagggtgggc cgggaggttc atccatgttt 450
```

ggactctttg tggaacatgg gccttatgtt gtcacaagta acatgacctt 500 gcgtgacaga gacttcccct ggaccacaac gctctccatg ctttacattg 550 acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600 gcagtcaatg aggacgatgt agcacgggat ttatacagtg cactaattca 650 gtttttccag atattccctg aatataaaaa taatgacttt tatgtcactg 700 gggagtctta tgcagggaaa tatgtgccag ccattgcaca cctcatccat 750 tccctcaacc ctgtgagaga ggtgaagatc aacctgaacg gaattgctat 800 tggagatgga tattctgatc ccgaatcaat tatagggggc tatgcagaat 850 tcctgtacca aattggcttg ttggatgaga agcaaaaaaa gtacttccag 900 aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggtttga 950 ggcctttgaa atactggata aactactaga tggcgactta acaagtgatc 1000 cttcttactt ccagaatgtt acaggatgta gtaattacta taactttttg 1050 cggtgcacgg aacctgagga tcagctttac tatgtgaaat ttttgtcact 1100 cccagaggtg agacaagcca tccacgtggg gaatcagact tttaatgatg 1150 gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200 ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg 1250 ccaactggac atcatcgtgg cagctgccct gacagagcgc tccttgatgg 1300 gcatggactg gaaaggatcc caggaataca agaaggcaga aaaaaaagtt 1350 tggaagatct ttaaatctga cagtgaagtg gctggttaca tccggcaagc 1400 gggtgacttc catcaggtaa ttattcgagg tggaggacat attttaccct 1450 atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500 aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat 1550 cagaggtttt cattgctgaa aagaaaatcg taaaaacaga aaatgtcata 1600 ggaataaaaa aattatcttt tcatatctgc aagatttttt tcatcaataa 1650 aaattatcct tgaaacaagt gagcttttgt ttttggggggg agatgtttac 1700 tacaaaatta acatgagtac atgagtaaga attacattat ttaacttaaa 1750 ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800 ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa 1850 agtgcagttg taacaaacaa agctgtaaca tctttttctg ccaataacag 1900 aagtttggca tgccgtgaag gtgtttggaa atattattgg ataagaatag 1950 ctcaattatc ccaaataaat ggatgaagct ataatagttt tggggaaaag 2000 attctcaaat gtataaagtc ttagaacaaa agaattcttt gaaataaaaa 2050

P1618P2C3.txt

Page 99

tattatata aaaagtaaaa aaaaaa 2076

<210> 164 <211> 476 <212> PRT <213> Hōmo Sapien <400> 164 Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu 1 5 10 15 Met Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser 20 25 Val Ser Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu 35 40 Thr Pro Tyr Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu 50 55 60 Ser Leu Val Gly Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala 65 70 75 Gly Phe Leu Thr Val Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe 80 85 90 Trp Phe Phe Pro Ala Gln Ile Gln Pro Glu Asp Ala Pro Val Val 95 100 105 Leu Trp Leu Gln Gly Gly Pro Gly Gly Ser Ser Met Phe Gly Leu 110 115 120 Phe Val Glu His Gly Pro Tyr Val Val Thr Ser Asn Met Thr Leu 125 130 135 Arg Asp Arg Asp Phe Pro Trp Thr Thr Leu Ser Met Leu Tyr
140 145 150 Ile Asp Asn Pro Val Gly Thr Gly Phe Ser Phe Thr Asp Asp Thr 155 160 165His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala Arg Asp Leu Tyr 170 175 180 Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu Tyr Lys Asn 185 190 Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys Tyr Val 200 205 210 Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arg Glu 215 220 225 Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser 230 235 240 ASP Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln 255 Ile Gly Leu Leu Asp Glu Lys Gln Lys Lys Tyr Phe Gln Lys Gln 260 265 270

P1618P2C3.txt Cys His Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu 275 280 285 Ala Phe Glu Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser Asp Pro Ser Tyr Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr 305 310 315 Asn Phe Leu Arg Cys Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val 320 325 330 Lys Phe Leu Ser Leu Pro Glu Val Arg Gln Ala Ile His Val Gly 335 340 345 Asn Gln Thr Phe Asn Asp Gly Thr Ile Val Glu Lys Tyr Leu Arg 350 355 360 Glu Asp Thr Val Gln Ser Val Lys Pro Trp Leu Thr Glu Ile Met 365 370 375 Asn Asn Tyr Lys Val Leu Ile Tyr Asn Gly Gln Leu Asp Ile Ile 380 385 Val Ala Ala Leu Thr Glu Arg Ser Leu Met Gly Met Asp Trp 395 400 405 Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys Lys Val Trp Lys 410 415 420 Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile Arg Gln Ala 425 430 435 Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His Ile Leu 440 445 450 Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg Phe 460 465 Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly 470 475 <210> 165 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 165 ttccatgcca cctaagggag actc 24 <210> 166 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 166 tggatgaggt gtgcaatggc tggc 24

Page 101

```
<210> 167
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 167
agctctcaga ggctggtcat aggg 24
<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 168
gtcggccctt tcccaggact gaacatgaag agttatgccg gcttcctcac 50
<210> 169
<211> 2477
<212> DNA
<213> Homo Sapien
<400> 169
cgagggcttt tccggctccg gaatggcaca tgtgggaatc ccagtcttgt 50
tggctacaac atttttccct ttcctaacaa gttctaacag ctgttctaac 100
agctagtgat caggggttct tcttgctgga gaagaaaggg ctgagggcag 150
agcagggcac tctcactcag ggtgaccagc tccttgcctc tctgtggata 200
acagagcatg agaaagtgaa gagatgcagc ggagtgaggt gatggaagtc 250
taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagctttca aaaaacagga 350
gcgacttcca ctgggctggg ataagacgtg ccggtaggat agggaagact 400
gggtttagtc ctaatatcaa attgactggc tgggtgaact tcaacagcct 450
tttaacctct ctgggagatg aaaacgatgg cttaaggggc cagaaataga 500
gatgctttgt aaaataaaat tttaaaaaaa gcaagtattt tatagcataa 550
aggctagaga ccaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc 650
acagagctaa accaggatgg ggaccctggg tcaggccagc ctctttgctc 700
ctcccggaaa ttattttgg tctgaccact ctgccttgtg ttttgcagaa 750
tcatgtgagg gccaaccggg gaaggtggag cagatgagca cacacaggag 800
ccgtctcctc accgccgccc ctctcagcat ggaacagagg cagccctggc 850
```

			-4.640-0-3		
cccgggccct	ggaggtggac	agccgctctg	P1618P2C3 tggtcctgct	ctcagtggtc	900
tgggtgctgc	tggcccccc	agcagccggc	atgcctcagt	tcagcacctt	950
ccactctgag	aatcgtgact	ggaccttcaa	ccacttgacc	gtccaccaag	1000
ggacgggggc	cgtctatgtg	ggggccatca	accgggtcta	taagctgaca	1050
ggcaacctga	ccatccaggt	ggctcataag	acagggccag	aagaggacaa	1100
caagtctcgt	tacccgcccc	tcatcgtgca	gccctgcagc	gaagtgctca	1150
ccctcaccaa	caatgtcaac	aagctgctca	tcattgacta	ctctgagaac	1200
cgcctgctgg	cctgtgggag	cctctaccag	ggggtctgca	agctgctgcg	1250
gctggatgac	ctcttcatcc	tggtggagcc	atcccacaag	aaggagcact	1300
acctgtccag	tgtcaacaag	acgggcacca	tgtacggggt	gattgtgcgc	1350
tctgagggtg	aggatggcaa	gctcttcatc	ggcacggctg	tggatgggaa	1400
gcaggattac	ttcccgaccc	tgtccagccg	gaagctgccc	cgagaccctg	1450
agtcctcagc	catgctcgac	tatgagctac	acagcgattt	tgtctcctct	1500
ctcatcaaga	tcccttcaga	caccctggcc	ctggtctccc	actttgacat	1550
cttctacatc	tacggctttg	ctagtggggg	ctttgtctac	tttctcactg	1600
tccagcccga	gacccctgag	ggtgtggcca	tcaactccgc	tggagacctc	1650
ttctacacct	cacgcatcgt	gcggctctgc	aaggatgacc	ccaagttcca	1700
ctcatacgtg	tccctgccct	tcggctgcac	ccgggccggg	gtggaatacc	1750
gcctcctgca	ggctgcttac	ctggccaagc	ctggggactc	actggcccag	1800
gccttcaata	tcaccagcca	ggacgatgta	ctctttgcca	tcttctccaa	1850
agggcagaag	cagtatcacc	acccgcccga	tgactctgcc	ctgtgtgcct	1900
tccctatccg	ggccatcaac	ttgcagatca	aggagcgcct	gcagtcctgc	1950
taccagggcg	agggcaacct	ggagctcaac	tggctgctgg	ggaaggacgt	2000
ccagtgcacg	aaggcgcctg	tccccatcga	tgataacttc	tgtggactgg	2050
acatcaacca	gcccctggga	ggctcaactc	cagtggaggg	cctgaccctg	2100
tacaccacca	gcagggaccg	catgacctct	gtggcctcct	acgtttacaa	2150
cggctacagc	gtggtttttg	tggggactaa	gagtggcaag	ctgaaaaagg	2200
taagagtcta	tgagttcaga	tgctccaatg	ccattcacct	cctcagcaaa	2250
gagtccctct	tggaaggtag	ctattggtgg	agatttaact	ataggcaact	2300
ttattttctt	ggggaacaaa	ggtgaaatgg	ggaggtaaga	aggggttaat	2350
tttgtgactt	agcttctagc	tacttcctcc	agccatcagt	cattgggtat	2400
gtaaggaatg	caagcgtatt	tcaatatttc	ccaaacttta Page 10	agaaaaaact 3	2450

ttaagaaggt acatctgcaa aagcaaa 2477

				_		_								
<212	<210> 170 <211> 552 <212> PRT <213> Homo Sapien													
)> 17 t Gly l		. Len	ı Gly 5	Gln	Ala	Ser	Leu	Phe 10		ı Pro) Pro	Gly	Asn 15
Tyr	Phe	? Trp) Ser	Asp 20		ser	Ala	Leu	Cys 25	Phe	ala	Glu	Ser	Cys 30
Glu	ı Gly	/ Gln	Pro	Gly 35	Lys	٧a٦	Glu	Gln	Met 40		Thr	His	Arg	Ser 45
Arg	, Leu	ı Leu	Thr	Ala 50	Ala	Pro	Leu	Ser	Met 55	Glu	Gln	Arg	Gln	Pro 60
Trp) Pro	Arg	Ala	Leu 65	Glu	٧a٦	Asp	Ser	Arg 70	Ser	۷a٦	۷a٦	Leu	Leu 75
Ser	' Val	۷a٦	Trp	va1 80	Leu	Leu	Ala	Pro	Pro 85	Ala	Ala	Gly	Met	Pro 90
Gln	Phe	Ser	Thr	Phe 95	His	Ser	Glu	Asn	Arg 100	Asp	Trp	Thr	Phe	Asn 105
His	Leu	Thr	۷al	ніs 110	Gln	Gly	Thr	Gly	Ala 115	۷a٦	Tyr	۷a٦	Gly	A7a 120
Ile	Asn	Arg	٧a٦	Tyr 125	Lys	Leu	Thr	Glу	Asn 130	Leu	Thr	Ile	Gln	Val 135
Ala	His	Lys	Thr	Gly 140	Pro	Glu	Glu	Asp	Asn 145	Lys	Ser	Arg	Tyr	Pro 150
Pro	Leu	Ile	۷a٦	Gln 155	Pro	Cys	Ser	Glu	va1 160	Leu	Thr	Leu	Thr	Asn 165
Asn	٧a٦	Asn	Lys	Leu 170	Leu	Ile	Ile	Asp	Tyr 175	Ser	Glu	Asn	Arg	Leu 180
Leu	Ala	Cys	Gly	Ser 185	Leu	Tyr	Gln	Gly	Val 190	Cys	Lys	Leu	Leu	Arg 195
Leu	Asp	Asp	Leu	Phe 200	Ile	Leu	va1	Glu	Pro 205	Ser	His	Lys	Lys	G]u 210
His	Tyr	Leu	Ser	Ser 215	va1	Asn	Lys	Thr	G]y 220	Thr	Met	Tyr	Gly	va1 225
Ile	٧a٦	Arg	Ser	G]u 230	Gly	Glu	Asp	Gly	Lys 235	Leu	Phe	Ile	Gly	Thr 240
Ala	va1	Asp	Gly	Lys 245	Gln	Asp	Tyr	Phe	Pro 250		Ľeu	Ser	Ser	Arg 255
Lys	Leu	Pro	Arg	Asp 260	Pro	G] u	Ser	Ser	Ala 265	Met	Leu	Asp	Tyr	G]u 270

Leu His Ser Asp Phe Val Ser Ser Leu Île Lys Île Pro Ser Asp 280 285 P1618P2C3.txt Thr Leu Ala Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly 290 295 300 Phe Ala Ser Gly Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu 305 310 315 Thr Pro Glu Gly Val Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr 320 325 330 Thr Ser Arg Ile Val Arg Leu Cys Lys Asp Asp Pro Lys Phe His 335 340 345 Ser Tyr Val Ser Leu Pro Phe Gly Cys Thr Arg Ala Gly Val Glu 350 355 360 Tyr Arg Leu Leu Gln Ala Ala Tyr Leu Ala Lys Pro Gly Asp Ser 365 370 375 Leu Ala Gln Ala Phe Asn Ile Thr Ser Gln Asp Asp Val Leu Phe 380 385 390 Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr His His Pro Pro Asp 395 400 405 Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala Ile Asn Leu Gln 410 415 420 Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu Gly Asn Leu 425 430 435 Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr Lys Ala 440 445 450 Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn Gln 455 460 465 Pro Leu Gly Gly Ser Thr Pro Val Glu Gly Leu Thr Leu Tyr Thr 470 475 480 Thr Ser Arg Asp Arg Met Thr Ser Val Ala Ser Tyr Val Tyr Asn 485 490 495 Gly Tyr Ser Val Val Phe Val Gly Thr Lys Ser Gly Lys Leu Lys 500 510 Lys Val Arg Val Tyr Glu Phe Arg Cys Ser Asn Ala Ile His Leu 515 520 525 Leu Ser Lys Glu Ser Leu Leu Glu Gly Ser Tyr Trp Trp Arg Phe 530 535 Asn Tyr Arg Gln Leu Tyr Phe Leu Gly Glu Gln Arg 545 550 <210> 171 <211> 20 <212> DNA <213> Artificial Sequence <220>

Page 105

P1618P2C3.txt <223> Synthetic Oligonucleotide Probe <400> 171 tggaataccg cctcctgcag 20 <210> 172 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 172 cttctgccct ttggagaaga tggc 24 <210> 173 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 173 ggactcactg gcccaggcct tcaatatcac cagccaggac gat 43 <210> 174 <211> 3106 <212> DNA <213> Homo Sapien <220> <221> unsure <222> 1683 <223> unknown base <400> 174 aggctcccgc gcgcggctga gtgcggactg gagtgggaac ccgggtcccc 50 gcgcttagag aacacgcgat gaccacgtgg agcctccggc ggaggccggc 100 ccgcacgctg ggactcctgc tgctggtcgt cttgggcttc ctggtgctcc 150 gcaggctgga ctggagcacc ctggtccctc tgcggctccg ccatcgacag 200 ctggggctgc aggccaaggg ctggaacttc atgctggagg attccacctt 250 ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300 ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc 350 acctatgttc cgtggaacct gcatgagcca gaaagaggca aatttgactt 400 ctctgggaac ctggacctgg aggccttcgt cctgatggcc gcagagatcg 450 ggctgtgggt gattctgcgt ccaggcccct acatctgcag tgagatggac 500 ctcgggggct tgcccagctg gctactccaa gaccctggca tgaggctgag 550 gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600 tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt 650 Page 106

gccgtgcagg	tggagaatga	atatggttcc	tataataaag	accccgcata	700
catgccctac	gtcaagaagg	cactggagga	ccgtggcatt	gtggaactgc	750
tcctgacttc	agacaacaag	gatgggctga	gcaaggggat	tgtccaggga	800
gtcttggcca	ccatcaactt	gcagtcaaca	cacgagctgc	agctactgac	850
cacctttctc	ttcaacgtcc	aggggactca	gcccaagatg	gtgatggagt	900
actggacggg	gtggtttgac	tcgtggggag	gccctcacaa	tatcttggat	950
tcttctgagg	ttttgaaaac	cgtgtctgcc	attgtggacg	ccggctcctc	1000
catcaacctc	tacatgttcc	acggaggcac	caactttggc	ttcatgaatg	1050
gagccatgca	cttccatgac	tacaagtcag	atgtcaccag	ctatgactat	1100
gatgctgtgc	tgacagaagc	cggcgattac	acggccaagt	acatgaagct	1150
tcgagacttc	ttcggctcca	tctcaggcat	ccctctccct	ccccacctg	1200
accttcttcc	caagatgccg	tatgagccct	taacgccagt	cttgtacctg	1250
tctctgtggg	acgccctcaa	gtacctgggg	gagccaatca	agtctgaaaa	1300
gcccatcaac	atggagaacc	tgccagtcaa	tgggggaaat	ggacagtcct	1350
tcgggtacat	tctctatgag	accagcatca	cctcgtctgg	catcctcagt	1400
ggccacgtgc	atgatcgggg	gcaggtgttt	gtgaacacag	tatccatagg	1450
attcttggac	tacaagacaa	cgaagattgc	tgtccccctg	atccagggtt	1500
acaccgtgct	gaggatcttg	gtggagaatc	gtgggcgagt	caactatggg	1550
gagaatattg	atgaccagcg	caaaggctta	attggaaatc	tctatctgaa	1600
tgattcaccc	ctgaaaaact	tcagaatcta	tagcctggat	atgaagaaga	1650
gcttctttca	gaggttcggc	ctggacaaat	ggngttccct	cccagaaaca	1700
cccacattac	ctgctttctt	cttgggtagc	ttgtccatca	gctccacgcc	1750
ttgtgacacc	tttctgaagc	tggagggctg	ggagaagggg	gttgtattca	1800
tcaatggcca	gaaccttgga	cgttactgga	acattggacc	ccagaagacg	1850
ctttacctcc	caggtccctg	gttgagcagc	ggaatcaacc	aggtcatcgt	1900
ttttgaggag	acgatggcgg	gccctgcatt	acagttcacg	gaaacccccc	1950
acctgggcag	gaaccagtac	attaagtgag	cggtggcacc	ccctcctgct	2000
ggtgccagtg	ggagactgcc	gcctcctctt	gacctgaagc	ctggtggctg	2050
ctgccccacc	cctcactgca	aaagcatctc	cttaagtagc	aacctcaggg	2100
actgggggct	acagtctgcc	cctgtctcag	ctcaaaaccc	taagcctgca	2150
gggaaaggtg	ggatggctct	gggcctggct	ttgttgatga	tggctttcct	2200

```
P1618P2C3.txt
 acagccctgc tcttgtgccg aggctgtcgg gctgtctcta gggtgggagc 2250
 agctaatcag atcgcccagc ctttggccct cagaaaaagt gctgaaacgt 2300
 gcccttgcac cggacgtcac agccctgcga gcatctgctg gactcaggcg 2350
 tgctctttgc tggttcctgg gaggcttggc cacatccctc atggccccat 2400
 tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg 2450
 gtgtctcacc tgagctgact ttgttcttcc ttcacaacct tctgagcctt 2500
 ctttgggatt ctggaaggaa ctcggcgtga gaaacatgtg acttcccctt 2550
 tcccttccca ctcgctgctt cccacagggt gacaggctgg gctggagaaa 2600
 cagaaatcct caccctgcgt cttcccaagt tagcaggtgt ctctggtgtt 2650
 cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700
 catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2750
 agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct 2800
 cacatgtgag tcctggcaga agccatggcc catgtctgca catccaggga 2850
 ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2900
 catgtctgca catccaggga ggaggacaga aggcccagct cagtggcccc 2950
 cgctccccac cccccacgcc cgaacagcag gggcagagca gccctccttc 3000
 gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac 3050
 acctggcttg ggctcactgt cctgagttgc agtaaagcta taaccttgaa 3100
 tcacaa 3106
<210> 175
<211> 636
<212> PRT
<213> Homo Sapien
<220>
<221> unsure
<222> 539
<223> unknown amino acid
<400> 175
Met Thr Thr Trp Ser Leu Arg Arg Arg Pro Ala Arg Thr Leu Gly
Leu Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu 20 25
Asp Trp Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu
Gly Leu Gln Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr
50 55 60
Phe Trp Ile Phe Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg
65 70 75
```

Page 108

Glu	Tyr	Trp	Arg	Asp 80	Arg	Leu	Leu	Lys	Met 85	Lys	Ala	Cys	Gly	Leu 90
Asn	Thr	Leu	Thr	Thr 95	Tyr	Val	Pro	Trp	Asn 100	Leu	His	Glu	Pro	Glu 105
Arg	Glу	Lys	Phe	Asp 110	Phe	Ser	Glу	Asn	Leu 115	Asp	Leu	Glu	Ala	Phe 120
val	Leu	Met	Ala	Ala 125	Glu	Ile	Gly	Leu	Trp 130	۷al	Ile	Leu	Arg	Pro 135
Gly	Pro	Tyr	Ile	Cys 140	Ser	Glu	Met	Asp	Leu 145	Gly	Gly	Leu	Pro	Ser 150
Trp	Leu	Leu	Gln	Asp 155	Pro	Gly	Met	Arg	Leu 160	Arg	Thr	Thr	Tyr	Lys 165
Gly	Phe	Thr	Glu	Ala 170	Val	Asp	Leu	Tyr	Phe 175	Asp	His	Leu	Met	ser 180
Arg	٧a٦	∨al	Pro	Leu 185	Gln	Tyr	Lys	Arg	Gly 190	Gly	Pro	Ile	Ile	Ala 195
∨al	Gln	٧a٦	Glu	Asn 200	Glu	Tyr	Gly	Ser	Tyr 205	Asn	Lys	Asp	Pro	Ala 210
Tyr	Met	Pro	Tyr	Val 215	Lys	Lys	Ala	Leu	G1u 220	Asp	Arg	Gly	Ile	Va1 225
Glu	Leu	Leu	Leu	Thr 230	Ser	Asp	Asn	Lys	Asp 235	Gly	Leu	ser	Lys	G]y 240
Ile	Va1	Gln	Gly	Va1 245	Leu	Ala	Thr	Ile	Asn 250	Leu	Gln	Ser	Thr	His 255
Glu	Leu	Gln	Leu	Leu 260	Thr	Thr	Phe	Leu	Phe 265	Asn	۷a٦	Gln	Gly	Thr 270
Gln	Pro	Lys	Met	va1 275	Met	Glu	Tyr	Тгр	Thr 280	Gly	Тгр	Phe	Asp	ser 285
Trp	Glу	Gly	Pro	His 290	Asn	Ile	Leu	Asp	ser 295	ser	Glu	۷a٦	Leu	Lys 300
Thr	٧a٦	Ser	Ala	11e 305	۷a٦	Asp	Ala	Gly	ser 310	Ser	Ile	Asn	Leu	Tyr 315
Met	Phe	His	Gly	G]y 320	Thr	Asn	Phe	Glу	Phe 325	Met	Asn	Gly	Ala	Met 330
His	Phe	His	Asp	Tyr 335	Lys	Ser	Asp	۷al	Thr 340	Ser	Tyr	Asp	Tyr	Asp 345
Ala	۷al	Leu	Thr	G]u 350	Ala	Gly	Asp	Tyr	Thr 355	Ala	Lys	Tyr	Met	Lys 360
Leu	Arg	Asp	Phe	Phe 365	Gly	ser	Ile	ser	G]y 370	Ile	Pro	Leu	Pro	Pro 375
Pro	Pro	Asp	Leu	Leu 380	Pro	Lys	Met	Pro	385	Glu je 10		Leu	Thr	Pro 390

٧a٦	Leu	Tyr	Leu	Ser 395	Leu	Trp	Asp	Ala	Leu 400	Lys	Tyr	Leu	Gly	G1u 405
Pro	Ile	Lys	Ser	Glu 410	Lys	Pro	Ile	Asn	меt 415	Glu	Asn	Leu	Pro	∨a1 420
Asn	Gly	Gly	Asn	Gly 425	Gln	ser	Phe	Gly	Tyr 430	Ile	Leu	Tyr	Glu	Thr 435
Ser	Ile	Thr	Ser	Ser 440	Gly	Ile	Leu	ser	Gly 445	His	٧al	His	Asp	Arg 450
Gly	Gln	val	Phe	Va1 455	Asn	Thr	٧al	Ser	11e 460	Gly	Phe	Leu	Asp	Tyr 465
Lys	Thr	Thr	Lys	11e 470	Ala	۷al	Pro	Leu	11e 475	Gln	Gly	Tyr	Thr	Va1 480
Leu	Arg	Ile	Leu	Va1 485	Glu	Asn	Arg	Gly	Arg 490	۷al	Asn	Tyr	Glу	Glu 495
Asn	Ile	Asp	Asp	G1n 500	Arg	Lys	Gly	Leu	11e 505	GТу	Asn	Leu	Tyr	Leu 510
Asn	Asp	ser	Pro	Leu 515	Lys	Asn	Phe	Arg	11e 520	Tyr	ser	Leu	Asp	Met 525
Lys	Lys	Ser	Phe	Phe 530	Gln	Arg	Phe	Gly	Leu 535	Asp	Lys	Trp	Xaa	ser 540
Leu	Pro	Glu	Thr	Pro 545	Thr	Leu	Pro	Ala	Phe 550	Phe	Leu	Gly	Ser	Leu 555
ser	Ile	ser	Ser	Thr 560	Pro	Cys	Asp	Thr	Phe 565	Leu	Lys	Leu	Glu	Gly 570
Trp	Glu	Lys	Gly	va1 575	٧a٦	Phe	Ile	Asn	Gly 580	Gln	Asn	Leu	Glу	Arg 585
Tyr	Trp	Asn	Ile	Gly 590	Pro	Gln	Lys	Thr	Leu 595	Tyr	Leu	Pro	Glу	Pro 600
Trp	Leu	Ser	ser	Gly 605	Ile	Asn	Gln	۷a٦	lle 610	۷a٦	Phe	Glu	Glu	Thr 615
мet	Ala	Gly	Pro	Ala 620	Leu	G∏n	Phe	Thr	G]u 625	Thr	Pro	His	Leu	Gly 630
Arg	Asn	Gln	Tyr	11e 635	Lys									

<400> 176

ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg 50 ggtcccagga ccctggtgag ggttctctac ttggccttcg gtgggggtca 100 agacgcaggc acctacgcca aaggggagca aagccgggct cggcccgagg 150 Page 110

<210> 176 <211> 2505 <212> DNA <213> Homo Sapien

ccccaggac	ctccatctcc	caatgttgga	ggaatccgac	acgtgacggt	200
ctgtccgccg	tctcagacta	gaggagcgct	gtaaacgcca	tggctcccaa	250
gaagctgtcc	tgccttcgtt	ccctgctgct	gccgctcagc	ctgacgctac	300
tgctgcccca	ggcagacact	cggtcgttcg	tagtggatag	gggtcatgac	350
cggtttctcc	tagacggggc	cccgttccgc	tatgtgtctg	gcagcctgca	400
ctactttcgg	gtaccgcggg	tgctttgggc	cgaccggctt	ttgaagatgc	450
gatggagcgg	cctcaacgcc	atacagtttt	atgtgccctg	gaactaccac	500
gagccacagc	ctggggtcta	taactttaat	ggcagccggg	acctcattgc	550
ctttctgaat	gaggcagctc	tagcgaacct	gttggtcata	ctgagaccag	600
gaccttacat	ctgtgcagag	tgggagatgg	ggggtctccc	atcctggttg	650
cttcgaaaac	ctgaaattca	tctaagaacc	tcagatccag	acttccttgc	700
cgcagtggac	tcctggttca	aggtcttgct	gcccaagata	tatccatggc	750
tttatcacaa	tgggggcaac	atcattagca	ttcaggtgga	gaatgaatat	800
ggtagctaca	gagcctgtga	cttcagctac	atgaggcact	tggctgggct	850
cttccgtgca	ctgctaggag	aaaagatctt	gctcttcacc	acagatgggc	900
ctgaaggact	caagtgtggc	tccctccggg	gactctatac	cactgtagat	950
tttggcccag	ctgacaacat	gaccaaaatc	tttaccctgc	ttcggaagta	1000
tgaaccccat	gggccattgg	taaactctga	gtactacaca	ggctggctgg	1050
attactgggg	ccagaatcac	tccacacggt	ctgtgtcagc	tgtaaccaaa	1100
ggactagaga	acatgctcaa	gttgggagcc	agtgtgaaca	tgtacatgtt	1150
ccatggaggt	accaactttg	gatattggaa	tggtgccgat	aagaagggac	1200
gcttccttcc	gattactacc	agctatgact	atgatgcacc	tatatctgaa	1250
gcaggggacc	ccacacctaa	gctttttgct	cttcgagatg	tcatcagcaa	1300
gttccaggaa	gttcctttgg	gacctttacc	tccccgagc	cccaagatga	1350
tgcttggacc	tgtgactctg	cacctggttg	ggcatttact	ggctttccta	1400
gacttgcttt	gcccccgtgg	gcccattcat	tcaatcttgc	caatgacctt	1450
tgaggctgtc	aagcaggacc	atggcttcat	gttgtaccga	acctatatga	1500
cccataccat	ttttgagcca	acaccattct	gggtgccaaa	taatggagtc	1550
catgaccgtg	cctatgtgat	ggtggatggg	gtgttccagg	gtgttgtgga	1600
gcgaaatatg	agagacaaac	tatttttgac	ggggaaactg	gggtccaaac	1650
tggatatctt	ggtggagaac	atggggaggc	tcagctttgg	gtctaacagc	1700

P1618P2C3.txt agtgacttca agggcctgtt gaagccacca attctggggc aaacaatcct 1750 tacccagtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtggt 1800 ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc 1850 cccacattct actccaaaac atttccaatt ttaggctcag ttggggacac 1900 atttctatat ctacctggat ggaccaaggg ccaagtctgg atcaatgggt 1950 ttaacttggg ccggtactgg acaaagcagg ggccacaaca gaccctctac 2000 gtgccaagat tcctgctgtt tcctagggga gccctcaaca aaattacatt 2050 gctggaacta gaagatgtac ctctccagcc ccaagtccaa tttttggata 2100 agcctatcct caatagcact agtactttgc acaggacaca tatcaattcc 2150 ctttcagctg atacactgag tgcctctgaa ccaatggagt taagtgggca 2200 ctgaaaggta ggccgggcat ggtggctcat gcctgtaatc ccagcacttt 2250 gggaggctga gacgggtgga ttacctgagg tcaggacttc aagaccagcc 2300 tggccaacat ggtgaaaccc cgtctccact aaaaatacaa aaattagccg 2350 ggcgtgatgg tgggcacctc taatcccagc tacttgggag gctgagggca 2400 ggagaattgc ttgaatccag gaggcagagg ttgcagtgag tggaggttgt 2450 accactgcac tccagcctgg ctgacagtga gacactccat ctcaaaaaaa 2500 aaaaa 2505 <210> 177 <211> 654 <212> PRT <213> Homo Sapien <400> 177 Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro 1 5 10 15 Leu Ser Leu Thr Leu Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe 20 25 30 Val Val Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro
40
40
45 Phe Arg Tyr Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg 50 55 Val Leu Trp Ala Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu
65 70 75 Asn Ala Ile Gln Phe Tyr Val Pro Trp Asn Tyr His Glu Pro Gln 80 85 90 Pro Gly Val Tyr Asn Phe Asn Gly Ser Arg Asp Leu Ile Ala Phe 95 100 105

Leu Asn Glu Ala Ala Leu Ala Asn Leu Leu Val Ile Leu Arg Pro

Page 112

Gly	Pro	Tyr	Ile	Cys 125	Аlа	Glu	Trp	Glu	Met 130	Gly	Gly	Leu	Pro	Ser 135
тгр	Leu	Leu	Arg	Lys 140	Pro	Glu	Ile	His	Leu 145	Arg	Thr	Ser	Asp	Pro 150
Asp	Phe	Leu	Ala	Ala 155	val	Asp	Ser	тгр	Phe 160	Lys	Val	Leu	Leu	Pro 165
Lys	Ile	Tyr	Pro	Trp 170	Leu	Tyr	His	Asn	Gly 175	Gly	Asn	Ile	Ile	Ser 180
Ile	Gln	۷al	Glu	Asn 185	Glu	Tyr	Glу	Ser	Туг 190	Arg	Ala	Cys	Asp	Phe 195
ser	Tyr	Met	Arg	His 200	Leu	Ala	Gly	Leu	Phe 205	Arg	Ala	Leu	Leu	G]y 210
Glu	Lys	Ile	Leu	Leu 215	Phe	Thr	Thr	Asp	G]y 220	Pro	Glu	Gly	Leu	Lys 225
Cys	Gly	Ser	Leu	Arg 230	Gly	Leu	туr	Thr	Thr 235	۷al	Asp	Phe	Gly	Pro 240
Ala	Asp	Asn	Met	Thr 245	Lys	Ile	Phe	Thr	Leu 250	Leu	Arg	Lys	Tyr	G]u 255
Pro	ніѕ	Gly	Pro	Leu 260	۷al	Asn	Ser	Glu	Tyr 265	Tyr	Thr	Gly	Trp	Leu 270
Asp	Tyr	Trp	Gly	G1n 275	Asn	His	Ser	Thr	Arg 280	ser	۷a٦	Ser	Ala	va1 285
Thr	Lys	Gly	Leu	G]u 290	Asn	Met	Leu	Lys	Leu 295	GТу	Ala	Ser	۷a٦	Asn 300
Met	Tyr	Met	Phe	ніs 305	Gly	Glу	Thr	Asn	Phe 310	Glу	Tyr	Trp	Asn	Gly 315
Аla	Asp	Lys	Lys	G]y 320	Arg	Phe	Leu	Pro	11e 325	Thr	Thr	Ser	Tyr	Asp 330
Tyr	Asp	Аlа	Pro	11e 335	Ser	Glu	Ala	Gly	Asp 340	Pro	Thr	Pro	Lys	Leu 345
Phe	ΑΊа	Leu	Arg	Asp 350	٧a٦	Ile	ser	Lys	Phe 355	G∏n	Glu	val	Pro	Leu 360
Gly	Pro	Leu	Pro	Pro 365	Pro	ser	Pro	Lys	Met 370	Met	Leu	Glу	Pro	va1 375
Thr	Leu	His	Leu	Va1 380	Gly	His	Leu	Leu	Ala 385	Phe	Leu	Asp	Leu	Leu 390
Cys	Pro	Arg	Gly	Pro 395	Ile	His	Ser	Ile	Leu 400	Pro	Met	Thr	Phe	G1u 405
Ala	val	Lys	Gln	Asp 410	His	Gly	Phe	Met	Leu 415	Tyr	Arg	Thr	туr	меt 420
Thr	His	Thr	Ile	Phe 425	Glu	Pro	Thr	Pro	430	Тгр је 11		Pro	Asn	Asn 435

	Gly	۷al	His	Asp	Arg 440	Ala	Tyr	٧al	Met	Val 445	Asp	Gly	۷al	Phe	Gln 450
	GТу	۷al	۷al	Glu	Arg 455	Asn	Met	Arg	Asp	Lys 460	Leu	Phe	Leu	Thr	Gly 465
	Lys	Leu	Glу	Ser	Lys 470	Leu	Asp	Ile	Leu	Val 475	Glu	Asn	Met	Gly	Arg 480
	Leu	Ser	Phe	Gly	Ser 485	Asn	ser	ser	Asp	Phe 490	Lys	Gly	Leu	Leu	Lys 495
	Pro	Pro	ıle	Leu	G]y 500	Gln	Thr	Ile	Leu	Thr 505	Gln	Trp	Met	Met	Phe 510
	Pro	Leu	Lys	Ile	Asp 515	Asn	Leu	٧a٦	Lys	Trp 520	Trp	Phe	Pro	Leu	G]n 525
	Leu	Pro	Lys	Trp	Pro 530	Tyr	Pro	Gln	Ala	Pro 535	Ser	Gly	Pro	Thr	Phe 540
	туг	Ser	Lys	Thr	Phe 545	Pro	Ile	Leu	Gly	Ser 550	Val	Glу	Asp	Thr	Phe 555
	Leu	Tyr	Leu	Pro	Gly 560	Trp	Thr	Lys	Gly	G]n 565	۷a٦	Trp	Ile	Asn	Gly 570
	Phe	Asn	Leu	Gly	Arg 575	Tyr	Trp	Thr	Lys	G1n 580	Glу	Pro	Gln	Gln	Thr 585
	Leu	Tyr	val	Pro	Arg 590	Phe	Leu	Leu	Phe	Pro 595	Arg	Gly	ΑΊа	Leu	Asn 600
	Lys	Ile	Thr	Leu	Leu 605	Glu	Leu	Glu	Asp	Val 610	Pro	Leu	Gln	Pro	G]n 615
	۷a٦	Gln	Phe	Leu	Asp 620	Lys	Pro	Ile	Leu	Asn 625	Ser	Thr	Ser	Thr	Leu 630
	His	Arg	Thr	His	11e 635	Asn	Ser	Leu	Ser	Ala 640	Asp	Thr	Leu	Ser	Ala 645
	Ser	Glu	Pro	Met	G]u 650	Leu	Ser	Gly	His						
<	<211><212>	DNA		rial	Sequ	ien <i>ce</i>	1								
					40		•								

<400> 178 tggctactcc aagaccctgg catg 24

<220>

<220> <223> Synthetic Oligonucleotide Probe

<210> 179 <211> 24 <212> DNA <213> Artificial Sequence

```
P1618P2C3.txt
<223> Synthetic Oligonucleotide Probe
<400> 179
 tggacaaatc cccttgctca gccc 24
<210> 180
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 180
 gggcttcacc gaagcagtgg acctttattt tgaccacctg atgtccaggg 50
<210> 181
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 181
 ccagctatga ctatgatgca cc 22
<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 182
tggcacccag aatggtgttg gctc 24
<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
cgagatgtca tcagcaagtt ccaggaagtt cctttgggac ctttacctcc 50
<210> 184
<211> 1947
<212> DNA
<213> Homo Sapien
<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag 50
gtatttgagt gcacccacaa tatggcttac atgttgaaaa agcttctcat 100
cagttacata tccattattt gtgtttatgg ctttatctgc ctctacactc 150
tcttctggtt attcaggata cctttgaagg aatattcttt cgaaaaagtc 200
```

P1618P2C3.txt agagaagaga gcagttttag tgacattcca gatgtcaaaa acgattttgc 250 gttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300 ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt 350 ttgaaccatg agtggacatt tgaaaaactc aggcagcaca tttcacgcaa 400 cgcccaggac aagcaggagt tgcatctgtt catgctgtcg ggggtgcccg 450 atgctgtctt tgacctcaca gacctggatg tgctaaagct tgaactaatt 500 ccagaagcta aaattcctgc taagatttct caaatgacta acctccaaga 550 gctccacctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600 ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct 650 gaaattcctg cctgggtgta tttgctcaaa aaccttcgag agttgtactt 700 aataggcaat ttgaactctg aaaacaataa gatgatagga cttgaatctc 750 tccgagagtt gcggcacctt aagattctcc acgtgaagag caatttgacc 800 aaagttccct ccaacattac agatgtggct ccacatctta caaagttagt 850 cattcataat gacggcacta aactcttggt actgaacagc cttaagaaaa 900 tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc 950 ccacatgcta ttttcagcct ctctaattta caggaactgg atttaaagtc 1000 caataacatt cgcacaattg aggaaatcat cagtttccag catttaaaac 1050 gactgacttg tttaaaatta tggcataaca aaattgttac tattcctccc 1100 tctattaccc atgtcaaaaa cttggagtca ctttatttct ctaacaacaa 1150 gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200 tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg 1250 cttcagaacc tgcagcattt gcatatcact gggaacaaag tggacattct 1300 gccaaaacaa ttgtttaaat gcataaagtt gaggactttg aatctgggac 1350 agaactgcat cacctcactc ccagagaaag ttggtcagct ctcccagctc 1400 actcagctgg agctgaaggg gaactgcttg gaccgcctgc cagcccagct 1450 gggccagtgt cggatgctca agaaaagcgg gcttgttgtg gaagatcacc 1500 tttttgatac cctgccactc gaagtcaaag aggcattgaa tcaagacata 1550 aatattccct ttgcaaatgg gatttaaact aagataatat atgcacagtg 1600 atgtgcagga acaacttcct agattgcaag tgctcacgta caagttatta 1650 caagataatg cattttagga gtagatacat cttttaaaat aaaacagaga 1700 ggatgcatag aaggctgata gaagacataa ctgaatgttc aatgtttgta 1750 gggttttaag tcattcattt ccaaatcatt ttttttttt ttttggggaa 1800

Page 116

agggaaggaa aaattataat cactaatctt ggttcttttt aaattgtttg 1850 taacttggat gctgccgcta ctgaatgttt acaaattgct tgcctgctaa 1900 agtaaatgat taaattgaca ttttcttact aaaaaaaaa aaaaaaa 1947

<210> 185 <211> 501 <212> PRT <213> Homo Sapie

<213> Homo Sapien <400> 185 Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile 1 10 15 Ile Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu 20 25 30 Phe Arg Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu
35 40 45 Glu Ser Ser Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala 50 55 60 Phe Leu Leu His Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys
65 70 75 Arg Phe Gly Val Phe Leu Ser Glu Val Ser Glu Asn Lys Leu Arg 80 85 90Glu Ile Ser Leu Asn His Glu Trp Thr Phe Glu Lys Leu Arg Gln 95 100 His Ile Ser Arg Asn Ala Gln Asp Lys Gln Glu Leu His Leu Phe 110 115 120 Met Leu Ser Gly Val Pro Asp Ala Val Phe Asp Leu Thr Asp Leu Asp Val Leu Lys Leu Glu Leu Ile Pro Glu Ala Lys Ile Pro Ala 140 145 Lys Ile Ser Gln Met Thr Asn Leu Gln Glu Leu His Leu Cys His 155 160 165 Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser Phe Leu Arg Asp 170 175 His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val Ala Glu Ile 185 190 195 Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu Tyr Leu 200 205 210 Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu Glu 225 220 Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser 230 235 240 Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His 245 250 255 Page 117

Leu	Thr	Lys	Leu	Va1 260	Ile	His	Asn	Asp	G1y 265	Thr	Lys	Leu	Leu	Va1 270
Leu	Asn	Ser	Leu	Lys 275	Lys	Met	Met	Asn	Va 280	Ala	Glu	Leu	Glu	Leu 285
Gln	Asn	Cys	Glu	Leu 290	Glu	Arg	Ile	Pro	His 295	Ala	Ile	Phe	Ser	Leu 300
Ser	Asn	Leu	Gln	G1u 305	Leu	Asp	Leu	Lys	ser 310	Asn	Asn	Ile	Arg	Thr 315
Ile	Glu	Glu	Ile	Ile 320	Ser	Phe	Gln	His	Leu 325	Lys	Arg	Leu	Thr	Cys 330
Leu	Lys	Leu	Тгр	His 335	Asn	Lys	Ile	٧al	Thr 340	Ile	Pro	Pro	Ser	Ile 345
Thr	His	val	Lys	Asn 350	Leu	Glu	Ser	Leu	Tyr 355	Phe	Ser	Asn	Asn	Lys 360
Leu	Glu	Ser	Leu	Pro 365	Val	Ala	Val	Phe	Ser 370	Leu	Gln	Lys	Leu	Arg 375
Cys	Leu	Asp	val	Ser 380	Tyr	Asn	Asn	Ile	Ser 385	Met	Ile	Pro	Ile	G] u 390
Ile	Gly	Leu	Leu	Gln 395	Asn	Leu	Gln	His	Leu 400	His	Ile	Thr	Gly	Asn 405
Lys	val	Asp	Ile	Leu 410	Pro	Lys	Gln	Leu	Phe 415	Lys	Cys	Ile	Lys	Leu 420
Arg	Thr	Leu	Asn	Leu 425	Gly	Gln	Asn	Cys	Ile 430	Thr	Ser	Leu	Pro	G]u 435
Lys	٧a٦	Gly	Gln	Leu 440	Ser	Gln	Leu	Thr	Gln 445	Leu	Glu	Leu	Lys	Gly 450
Asn	Cys	Leu	Asp	Arg 455	Leu	Pro	Ala	Gln	Leu 460	Gly	Gln	Cys	Arg	Met 465
Leu	Lys	Lys	ser	Gly 470	Leu	Val	val	Glu	Asp 475	His	Leu	Phe	Asp	Thr 480
Leu	Pro	Leu	Glu	Va1 485	Lys	Glu	Ala	Leu	Asn 490	Gln	Asp	Ile	Asn	Ile 495
Pro	Phe	Ala	Asn	Gly 500	Ile								•	

<400> 186 cctccctcta ttacccatgt c 21

<210> 186 <211> 21 <212> DNA <213> Artificial Sequence

<220> <223> Synthetic Oligonucleotide Probe

```
<210> 187
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 187
gaccaacttt ctctgggagt gagg 24
<210> 188
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 188
gtcactttat ttctctaaca acaagctcga atccttacca gtggcag 47
<210> 189
<211> 2917
<212> DNA
<213> Homo Sapien
<400> 189
cccacgcgtc cggccttctc tctggacttt gcatttccat tccttttcat 50
tgacaaactg actttttta tttcttttt tccatctctg ggccagcttg 100
ggatcctagg ccgccctggg aagacatttg tgttttacac acataaggat 150
ctgtgtttgg ggtttcttct tcctcccctg acattggcat tgcttagtgg 200
ttgtgtgggg agggagacca cgtgggctca gtgcttgctt gcacttatct 250
gcctaggtac atcgaagtct tttgacctcc atacagtgat tatgcctgtc 300
atcgctggtg gtatcctggc ggccttgctc ctgctgatag ttgtcgtgct 350
ctgtctttac ttcaaaatac acaacgcgct aaaagctgca aaggaacctg 400
aagctgtggc tgtaaaaaat cacaacccag acaaggtgtg gtgggccaag 450
aacagccagg ccaaaaccat tgccacggag tcttgtcctg ccctgcagtg 500
ctgtgaagga tatagaatgt gtgccagttt tgattccctg ccaccttgct 550
gttgcgacat aaatgagggc ctctgagtta ggaaaggctc ccttctcaaa 600
gcagagccct gaagacttca atgatgtcaa tgaggccacc tgtttgtgat 650
gtgcaggcac agaagaaagg cacagctccc catcagtttc atggaaaata 700
actcagtgcc tgctgggaac cagctgctgg agatccctac agagagcttc 750
cactgggggc aacccttcca ggaaggagtt ggggagagag aaccctcact 800
gtggggaatg ctgataaacc agtcacacag ctgctctatt ctcacacaaa 850
tctacccctt gcgtggctgg aactgacgtt tccctggagg tgtccagaaa 900
                                      Page 119
```

gctgatgtaa	cacagagcct	ataaaagctg	tcggtcctta	aggctgccca	950
gcgccttgcc	aaaatggagc	ttgtaagaag	gctcatgcca	ttgaccctct	1000
taattctctc	ctgtttggcg	gagctgacaa	tggcggaggc	tgaaggcaat	1050
gcaagctgca	cagtcagtct	agggggtgcc	aatatggcag	agacccacaa	1100
agccatgatc	ctgcaactca	atcccagtga	gaactgcacc	tggacaatag	1150
aaagaccaga	aaacaaaagc	atcagaatta	tcttttccta	tgtccagctt	1200
gatccagatg	gaagctgtga	aagtgaaaac	attaaagtct	ttgacggaac	1250
ctccagcaat	gggcctctgc	tagggcaagt	ctgcagtaaa	aacgactatg	1300
ttcctgtatt	tgaatcatca	tccagtacat	tgacgtttca	aatagttact	1350
gactcagcaa	gaattcaaag	aactgtcttt	gtcttctact	acttcttctc	1400
tcctaacatc	tctattccaa	actgtggcgg	ttacctggat	accttggaag	1450
gatccttcac	cagccccaat	tacccaaagc	cgcatcctga	gctggcttat	1500
tgtgtgtggc	acatacaagt	ggagaaagat	tacaagataa	aactaaactt	1550
caaagagatt	ttcctagaaa	tagacaaaca	gtgcaaattt	gattttcttg	1600
ccatctatga	tggcccctcc	accaactctg	gcctgattgg	acaagtctgt	1650
ggccgtgtga	ctcccacctt	cgaatcgtca	tcaaactctc	tgactgtcgt	1700
gttgtctaca	gattatgcca	attcttaccg	gggattttct	gcttcctaca	1750
cctcaattta	tgcagaaaac	atcaacacta	catctttaac	ttgctcttct	1800
gacaggatga	gagttattat	aagcaaatcc	tacctagagg	cttttaactc	1850
taatgggaat	aacttgcaac	taaaagaccc	aacttgcaga	ccaaaattat	1900
caaatgttgt	ggaattttct	gtccctctta	atggatgtgg	tacaatcaga	1950
aaggtagaag	atcagtcaat	tacttacacc	aatataatca	ccttttctgc	2000
atcctcaact	tctgaagtga	tcacccgtca	gaaacaactc	cagattattg	2050
tgaagtgtga	aatgggacat	aattctacag	tggagataat	atacataaca	2100
gaagatgatg	taatacaaag	tcaaaatgca	ctgggcaaat	ataacaccag	2150
catggctctt	tttgaatcca	attcatttga	aaagactata	cttgaatcac	2200
catattatgt	ggatttgaac	caaactcttt	ttgttcaagt	tagtctgcac	2250
acctcagatc	caaatttggt	ggtgtttctt	gatacctgta	gagcctctcc	2300
cacctctgac	tttgcatctc	caacctacga	cctaatcaag	agtggatgta	2350
gtcgagatga	aacttgtaag	gtgtatccct	tatttggaca	ctatgggaga	2400
ttccagttta	atgcctttaa	attcttgaga	agtatgagct	ctgtgtatct	2450

P1618P2C3.txt gcagtgtaaa gttttgatat gtgatagcag tgaccaccag tctcgctgca 2500 atcaaggttg tgtctccaga agcaaacgag acatttcttc atataaatgg 2550 aaaacagatt ccatcatagg acccattcgt ctgaaaaggg atcgaagtgc 2600 aagtggcaat tcaggatttc agcatgaaac acatgcggaa gaaactccaa 2650 accagcettt caacagtgtg catctgtttt cetteatggt tetagetetg 2700 aatgtggtga ctgtagcgac aatcacagtg aggcattttg taaatcaacg 2750 ggcagactac aaataccaga agctgcagaa ctattaacta acaggtccaa 2800 ccctaagtga gacatgtttc tccaggatgc caaaggaaat gctacctcgt 2850 ggctacacat attatgaata aatgaggaag ggcctgaaag tgacacacag 2900 gcctgcatgt aaaaaaa 2917

<210> 190 <211> 607 <212> PRT

<213> Homo Sapien

<400> 190 Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu 1 10 15 Ser Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala 20 25 30 Ser Cys Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His 35 40 Lys Ala Met Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp 50 55 Thr Ile Glu Arg Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser 70 75 Tyr Val Gln Leu Asp Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile 80 85 90 Lys Val Phe Asp Gly Thr Ser Ser Asn Gly Pro Leu Leu Gly Gln 95 100 Val Cys Ser Lys Asn Asp Tyr Val Pro Val Phe Glu Ser Ser Ser 110 115 Ser Thr Leu Thr Phe Gln Ile Val Thr Asp Ser Ala Arg Ile Gln 125 130 135 Arg Thr Val Phe Val Phe Tyr Tyr Phe Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr Leu Glu Gly Ser Phe 155 160 165 Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu Leu Ala Tyr Cys 170 175 180 Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile Lys Leu Asn Page 121

				185				P	1618 190	P2C3	.txt	:		195
Phe	Lys	Glu	Ile	Phe 200	Leu	Glu	Ile	Asp	Lys 205	Gln	Cys	Lys	Phe	Asp 210
Phe	Leu	Ala	Ile	Tyr 2 1 5	Asp	Gly	Pro	ser	Thr 220	Asn	Ser	GТу	Leu	Ile 225
G]y	Gln	٧a٦	Cys	G]y 230	Arg	٧a٦	Thr	Pro	Thr 235	Phe	Glu	Ser	Ser	Ser 240
Asn	Ser	Leu	Thr	va1 245	val	Leu	ser	Thr	Asp 250	Tyr	Ala	Asn	Ser	Tyr 255
Arg	Gly	Phe	Ser	Ala 260	Ser	Tyr	Thr	Ser	Ile 265	Tyr	Ala	Glu	Asn	11e 270
Asn	Thr	Thr	ser	Leu 275	Thr	Cys	Ser	Ser	Asp 280	Arg	Met	Arg	۷al	Ile 285
Ile	ser	Lys	ser	Tyr 290	Leu	Glu	Ala	Phe	Asn 295	ser	Asn	Glу	Asn	Asn 300
Leu	Gln	Leu	Lys	Asp 305	Pro	Thr	Cys	Arg	Pro 310	Lys	Leu	Ser	Asn	val 315
Val	Glu	Phe	Ser	va1 320	Pro	Leu	Asn	Gly	Cys 325	Gly	Thr	Ile	Arg	Lys 330
∨al	Glu	Asp	Gln	Ser 335	Ile	Thr	Tyr	Thr	Asn 340	IJе	Ile	Thr	Phe	ser 345
Ala	ser	ser	Thr	ser 350	Glu	val	Ile	Thr	Arg 355	G∏n	Lys	Gln	Leu	Gln 360
Ile	Ile	∨al	Lys	Cys 365	Glu	Met	Gly	His	Asn 370	ser	Thr	Va1	Glu	Ile 375
Ile	Tyr	Ile	Thr	G]u 380	Asp	Asp	٧a٦	Ile	G]n 385	ser	Gln	Asn	Ala	Leu 390
Gly	Lys	Tyr	Asn	Thr 395	Ser	Met	Ala	Leu	Phe 400	Glu	Ser	Asn	Ser	Phe 405
Glu	Lys	Thr	Ile	Leu 410	Glu	Ser	Pro	Tyr	Tyr 415	۷a٦	Asp	Leu	Asn	G]n 420
Thr	Leu	Phe	Val	G1n 425	val	ser	Leu	His	Thr 430	ser	Asp	Pro	Asn	Leu 435
٧a٦	Val	Phe	Leu	Asp 440	Thr	Cys	Arg	Ala	Ser 445	Pro	Thr	ser	Asp	Phe 450
Ala	Ser	Pro	Thr	Tyr 455	Asp	Leu	Ile	Lys	ser 460	Gly	Cys	Ser	Arg	Asp 465
Glu	Thr	Cys	Lys	Val 470	Tyr	Pro	Leu	Phe	Gly 475	His	туr	Glу	Arg	Phe 480
Gln	Phe	Asn	Ala	Phe 485	Lys	Phe	Leu	Arg	ser 490	Met	ser	Ser	۷al	Tyr 495
Leu	Gln	Cys	Lys	Val	Leu	Ile	Cys	Asp		Ser e 12		His	G] n	ser

```
P1618P2C3.txt
                  500
                                       505
                                                            510
 Arg Cys Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser 525
 Ser Tyr Lys Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu
530
540
 Lys Arg Asp Arg Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu
 Thr His Ala Glu Glu Thr Pro Asn Gln Pro Phe Asn Ser Val His
 Leu Phe Ser Phe Met Val Leu Ala Leu Asn Val Val Thr Val Ala
 Thr Ile Thr Val Arg His Phe Val Asn Gln Arg Ala Asp Tyr Lys
 Tyr Gln Lys Leu Gln Asn Tyr
<210> 191
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 191
 tctctattcc aaactgtggc g 21
<210> 192
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 192
 tttgatgacg attcgaaggt gg 22
<210> 193
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 ggaaggatcc ttcaccagcc ccaattaccc aaagccgcat cctgagc 47
<210> 194
<211> 2362
<212> DNA
<213> Homo Sapien
<400> 194
 gacggaagaa cagcgctccc gaggccgcgg gagcctgcag_agaggacagc 50
                                       Page 123
```

cggcctgcgc	cgggacatgc	ggccccagga	gctccccagg	ctcgcgttcc	100
cgttgctgct	gttgctgttg	ctgctgctgc	cgccgccgcc	gtgccctgcc	150
cacagcgcca	cgcgcttcga	ccccacctgg	gagtccctgg	acgcccgcca	200
gctgcccgcg	tggtttgacc	aggccaagtt	cggcatcttc	atccactggg	250
gagtgtttc	cgtgcccagc	ttcggtagcg	agtggttctg	gtggtattgg	300
caaaaggaaa	agataccgaa	gtatgtggaa	tttatgaaag	ataattaccc	350
tcctagtttc	aaatatgaag	attttggacc	actatttaca	gcaaaatttt	400
ttaatgccaa	ccagtgggca	gatattttc	aggcctctgg	tgccaaatac	450
attgtcttaa	cttccaaaca	tcatgaaggc	tttaccttgt	gggggtcaga	500
atattcgtgg	aactggaatg	ccatagatga	ggggcccaag	agggacattg	550
tcaaggaact	tgaggtagcc	attaggaaca	gaactgacct	gcgttttgga	600
ctgtactatt	ccctttttga	atggtttcat	ccgctcttcc	ttgaggatga	650
atccagttca	ttccataagc	ggcaatttcc	agtttctaag	acattgccag	700
agctctatga	gttagtgaac	aactatcagc	ctgaggttct	gtggtcggat	750
ggtgacggag	gagcaccgga	tcaatactgg	aacagcacag	gcttcttggc	800
ctggttatat	aatgaaagcc	cagttcgggg	cacagtagtc	accaatgatc	850
gttggggagc	tggtagcatc	tgtaagcatg	gtggcttcta	tacctgcagt	900
gatcgttata	acccaggaca	tcttttgcca	cataaatggg	aaaactgcat	950
gacaatagac	aaactgtcct	ggggctatag	gagggaagct	ggaatctctg	1000
actatcttac	aattgaagaa	ttggtgaagc	aacttgtaga	gacagtttca	1050
tgtggaggaa	atcttttgat	gaatattggg	cccacactag	atggcaccat	1100
ttctgtagtt	tttgaggagc	gactgaggca	agtggggtcc	tggctaaaag	1150
tcaatggaga	agctatttat	gaaacctata	cctggcgatc	ccagaatgac	1200
actgtcaccc	cagatgtgtg	gtacacatcc	aagcctaaag	aaaaattagt	1250
ctatgccatt	tttcttaaat	ggcccacatc	aggacagctg	ttccttggcc	1300
atcccaaagc	tattctgggg	gcaacagagg	tgaaactact	gggccatgga	1350
cagccactta	actggatttc	tttggagcaa	aatggcatta	tggtagaact	1400
gccacagcta	accattcatc	agatgccgtg	taaatggggc	tgggctctag	1450
ccctaactaa	tgtgatctaa	agtgcagcag	agtggctgat	gctgcaagtt	1500
atgtctaagg	ctaggaacta	tcaggtgtct	ataattgtag	cacatggaga	1550
aagcaatgta	aactggataa	gaaaattatt	tggcagttca	gccctttccc	1600

P1618P2C3.txt tttttcccac taaattttc ttaaattacc catgtaacca ttttaactct 1650 ccagtgcact ttgccattaa agtctcttca cattgatttg tttccatgtg 1700 tgactcagag gtgagaattt tttcacatta tagtagcaag gaattggtgg 1750 tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800 tatatagtta tgcatcactt aatatgggga tattttctgg gaaatgcatt 1850 gctagtcaat tttttttgt gccaacatca tagagtgtat ttacaaaatc 1900 ctagatggca tagcctacta cacacctaat gtgtatggta tagactgttg 1950 ctcctaggct acagacatat acagcatgtt actgaatact gtaggcaata 2000 gtaacagtgg tatttgtata tcgaaacata tggaaacata gagaaggtac 2050 agtaaaaata ctgtaaaata aatggtgcac ctgtataggg cacttaccac 2100 gaatggagct tacaggactg gaagttgctc tgggtgagtc agtgagtgaa 2150 tgtgaaggcc taggacatta ttgaacactg ccagacgtta taaatactgt 2200 atgcttaggc tacactacat ttataaaaaa aagtttttct ttcttcaatt 2250 ataaattaac ataagtgtac tgtaacttta caaacgtttt aatttttaaa 2300 acctttttgg ctcttttgta ataacactta gcttaaaaca taaactcatt 2350 gtgcaaatgt aa 2362

<210> 195

<211> 467 <212> PRT

<213> Homo Sapien

<400> 195

Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu 1 5 10 15

Leu Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser 20 25 30

Ala Thr Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln 45

Leu Pro Ala Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His 50 55

Trp Gly Val Phe Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp 65 70 75

Trp Tyr Trp Gln Lys Glu Lys Ile Pro Lys Tyr Val Glu Phe Met 80 85 90

Lys Asp Asn Tyr Pro Pro Ser Phe Lys Tyr Glu Asp Phe Gly Pro 95 100 105

Leu Phe Thr Ala Lys Phe Phe Asn Ala Asn Gln Trp Ala Asp Ile 110 115 120

Phe Gln Ala Ser Gly Ala Lys Tyr Ile Val Leu Thr Ser Lys His Page 125

				125				F	1618 130	BP2C3	3.txt	:		135
His	Glu	Gly	Phe	Thr 140	Leu	Trp	Gly	Ser	Glu 145	Туг	Ser	Trp	Asn	Trp 150
Asn /	Ala	Ile	Asp	Glu 155	Gly	Pro	Lys	Arg	Asp 160	Ile	۷al	Lys	Glu	Leu 165
Glu	val	Аla	Ile	Arg 170	Asn	Arg	Thr	Asp	Leu 175	Arg	Phe	Gly	Leu	Tyr 180
Tyr :	Ser	Leu	Phe	G]u 185	Тгр	Phe	His	Pro	Leu 190	Phe	Leu	Glu	Asp	Glu 195
Ser s	Ser	Ser	Phe	His 200	Lys	Arg	Gln	Phe	Pro 205	Val	Ser	Lys	Thr	Leu 210
Pro (Glu	Leu	Tyr	Glu 215	Leu	∨al	Asn	Asn	Tyr 220	Gln	Pro	Glu	Val	Leu 225
Trp S	Ser	Asp	Gly	Asp 230	Gly	Gly	Ala	Pro	Asp 235	Gln	туr	Trp	Asn	Ser 240
Thr	Gly	Phe	Leu	Ala 245	Тгр	Leu	Tyr	Asn	G1u 250	Ser	Pro	۷al	Arg	Gly 255
Thr \	√al	٧a٦	Thr	Asn 260	Asp	Arg	Тгр	Gly	Ala 265	Gly	Ser	Ile	Cys	Lys 270
His (Sly	Gly	Phe	Tyr 275	Thr	Cys	Ser	Asp	Arg 280	туr	Asn	Pro	Gly	His 285
Leu l	_eu	Pro	His	Lys 290	Trp	Glu	Asn	Cys	Met 295	Thr	Ile	Asp	Lys	Leu 300
Ser 7	Ггр	Gly	Tyr	Arg 305	Arg	Glu	Ala	Gly	Ile 310	Ser	Asp	туг	Leu	Thr 315
Ile (Slu	Glu	Leu	Val 320	Lys	Gln	Leu	۷al	Glu 325	Thr	∨a1	Ser	Cys	G]y 330
Gly A	Asn	Leu	Leu	Met 335	Asn	Ile	Gly	Pro	Thr 340	Leu	Asp	Gly	Thr	Ile 345
Ser V	/al	Val	Phe	G]u 350	Glu	Arg	Leu	Arg	G]n 355	val	Gly	Ser	Trp	Leu 360
Lys \	/al	Asn	Gly	G]u 365	Ala	Ile	Tyr	Glu	Thr 370	Tyr	Thr	Trp	Arg	Ser 375
Gln A	۱sn	Asp	Thr	Val 380	Thr	Pro	Asp	∨al	Trp 385	Tyr	Thr	Ser	Lys	Pro 390
Lys G	31u	Lys	Leu	∨a1 395	Tyr	Ala	Ile	Phe	Leu 400	Lys	Тгр	Pro	Thr	Ser 405
Gly G	31n	Leu	Phe	Leu 410	Gly	His	Pro	Lys	Ala 415	Ile	Leu	Gly	Ala	Thr 420
Glu V	/al	Lys	Leu	Leu 425	Gly	His	Gly	Gln	Pro 430	Leu	Asn	Тгр	Ile	Ser 435
Leu G	ilu	Gln	Asn	Gly	Ile	Met	٧a٦	Glu		Pro Je 12		Leu	Thr	Ile

```
P1618P2C3.txt
                  440
                                       445
                                                            450
 His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr Asn
455 460 465
                                                            465
 Val Ile
<210> 196
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 196
 tggtttgacc aggccaagtt cgg 23
<210> 197
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 197
ggattcatcc tcaaggaaga gcgg 24
<210> 198
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 198
aacttgcagc atcagccact ctgc 24
<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca 45
<210> 200
<211> 2372
<212> DNA
<213> Homo Sapien
<400> 200
agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag 50
cctcaacata gttccagaac tctccatccg gactagttat tgagcatctg 100
cctctcatat caccagtggc catctgaggt gtttccctgg ctctgaaggg 150
```

Page 127

gtaggcacga	tggccaggtg	cttcagcctg	gtgttgcttc	tcacttccat	200
ctggaccacg	aggctcctgg	tccaaggctc	tttgcgtgca	gaagagcttt	250
ccatccaggt	gtcatgcaga	attatgggga	tcacccttgt	gagcaaaaag	300
gcgaaccagc	agctgaattt	cacagaagct	aaggaggcct	gtaggctgct	350
gggactaagt	ttggccggca	aggaccaagt	tgaaacagcc	ttgaaagcta	400
gctttgaaac	ttgcagctat	ggctgggttg	gagatggatt	cgtggtcatc	450
tctaggatta	gcccaaaccc	caagtgtggg	aaaaatgggg	tgggtgtcct	500
gatttggaag	gttccagtga	gccgacagtt	tgcagcctat	tgttacaact	550
catctgatac	ttggactaac	tcgtgcattc	cagaaattat	caccaccaaa	600
gatcccatat	tcaacactca	aactgcaaca	caaacaacag	aatttattgt	650
cagtgacagt	acctactcgg	tggcatcccc	ttactctaca	atacctgccc	700
ctactactac	tcctcctgct	ccagcttcca	cttctattcc	acggagaaaa	750
aaattgattt	gtgtcacaga	agtttttatg	gaaactagca	ccatgtctac	800
agaaactgaa	ccatttgttg	aaaataaagc	agcattcaag	aatgaagctg	850
ctgggtttgg	aggtgtcccc	acggctctgc	tagtgcttgc	tctcctcttc	900
tttggtgctg	cagctggtct	tggattttgc	tatgtcaaaa	ggtatgtgaa	950
ggccttccct	tttacaaaca	agaàtcagca	gaaggaaatg	atcgaaacca	1000
aagtagtaaa	ggaggagaag	gccaatgata	gcaaccctaa	tgaggaatca	1050
aagaaaactg	ataaaaaccc	agaagagtcc	aagagtccaa	gcaaaactac	1100
cgtgcgatgc	ctggaagctg	aagtttagat	gagacagaaa	tgaggagaca	1150
cacctgaggc	tggtttcttt	catgctcctt	accctgcccc	agctggggaa	1200
atcaaaaggg	ccaaagaacc	aaagaagaaa	gtccaccctt	ggttcctaac	1250
tggaatcagc	tcaggactgc	cattggacta	tggagtgcac	caaagagaat	1300
gcccttctcc	ttattgtaac	cctgtctgga	tcctatcctc	ctacctccaa	1350
agcttcccac	ggcctttcta	gcctggctat	gtcctaataa	tatcccactg	1400
ggagaaagga	gttttgcaaa	gtgcaaggac	ctaaaacatc	tcatcagtat	1450
ccagtggtaa	aaaggcctcc	tggctgtctg	aggctaggtg	ggttgaaagc	1500
caaggagtca	ctgagaccaa	ggctttctct	actgattccg	cagctcagac	1550
cctttcttca	gctctgaaag	agaaacacgt	atcccacctg	acatgtcctt	1600
ctgagcccgg	taagagcaaa	agaatggcag	aaaagtttag	cccctgaaag	1650
ccatggagat	tctcataact	tgagacctaa	tctctgtaaa	gctaaaataa	1700

agaaatagaa caaggctgag gatacgacag tacactgtca gcagggactg 1750 taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800 cactgtttag aacacacaca cttacttttt ctggtctcta ccactgctga 1850 tattttctct aggaaatata cttttacaag taacaaaaat aaaaactctt 1900 ataaatttct atttttatct gagttacaga aatgattact aaggaagatt 1950 actcagtaat ttgtttaaaa agtaataaaa ttcaacaaac atttgctgaa 2000 tagctactat atgtcaagtg ctgtgcaagg tattacactc tgtaattgaa 2050 tattattcct caaaaaattg cacatagtag aacgctatct gggaagctat 2100 ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta 2150 tttttgctga gactaatctt attcattttc tctaatatgg caaccattat 2200 aaccttaatt tattattaac atacctaaga agtacattgt tacctctata 2250 taccaaagca cattttaaaa gtgccattaa caaatgtatc actagccctc 2300 ctttttccaa caagaaggga ctgagagatg cagaaatatt tgtgacaaaa 2350 aattaaagca tttagaaaac tt 2372

<210> 201 <211> 322 <212> PRT

<213> Homo Sapien

<400> 201

Met Ala Arg Cys Phe Ser Leu Val Leu Leu Thr Ser Ile Trp
10
15 Thr Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu 20 25 30 Ser Ile Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser 40 45 Lys Lys Ala Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala 50 55 Cys Arg Leu Leu Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu
65 70 75 Thr Ala Leu Lys Ala Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val 80 85 90 Gly Asp Gly Phe Val Val Ile Ser Arg Ile Ser Pro Asn Pro Lys 95 100 105 Cys Gly Lys Asn Gly Val Gly Val Leu Ile Trp Lys Val Pro Val 110 115 Ser Arg Gln Phe Ala Ala Tyr Cys Tyr Asn Ser Ser Asp Thr Trp 125 130 135 Thr Asn Ser Cys Ile Pro Glu Ile Ile Thr Thr Lys Asp Pro Ile 140 145 150 Page 129

							•						
Phe As	n Thr	Gln	Thr 155	Ala	Thr	Gln	Thr	Thr 160	Glu	Phe	Ile	va1	Ser 165
Asp Se	er Thr	Tyr	Ser 170	val	Ala	Ser	Pro	Tyr 175	ser	Thr	Ile	Pro	Ala 180
Pro Th	ır Thr	Thr	Pro 185	Pro	Ala	Pro	Ala	Ser 190	Thr	Ser	Ile	Pro	Arg 195
Arg Ly	/s Lys	Leu	Ile 200	Cys	۷al	Thr	Glu	Va1 205	Phe	Met	Glu	Thr	Ser 210
Thr Me	et Ser	Thr	Glu 215	Thr	Glu	Pro	Phe	Va1 220	Glu	Asn	Lys	Ala	Ala 225
Phe Ly	/s Asn	Glu	Ala 230	Ala	GТу	Phe	Gly	G]y 235	٧a٦	Pro	Thr	Ala	Leu 240
Leu Va	ıl Leu	Аlа	Leu 245	Leu	Phe	Phe	Glу	Ala 250	Ala	Αla	Gly	Leu	G]y 255
Phe Cy	⁄s Tyr	۷a٦	Lys 260	Arg	Tyr	va1	Lys	A1a 265	Phe	Pro	Phe	Thr	Asn 270
Lys As	n Gln	Gln	Lys 275	Glu	Met	Ile	Glu	Thr 280	Lys	Va1	۷a٦	Lys	G1u 285
Glu Ly	/s Ala	Asn	Asp 290	Ser	Asn	Pro	Asn	G]u 295	Glu	Ser	Lys	Lys	Thr 300
Asp Ly	⁄s As n	Pro	G1u 305	Glu	Ser	Lys	Ser	Pro 310	Ser	Lys	Thr	Thr	Val 315
Arg C	⁄s Leu	Glu	A1a 320	Glu	۷ a ٦								
<210> 2 <211> 2 <212> 1 <213> 4	14 DNA	cial	Sequ	ience									
<220> <223> 9	Synthe [.]	tic (Oligo	onuc]	leoti	ide F	robe	<u>.</u>					
<400> 2 gagctt		tccag	gtgt	c at	:gc 2	24							
<210> 2 <211> 2 <212> 0 <213> A	22 DNA	cial	Sequ	ience	2								
<220> <223> s	ynthe	tic (Oligo	nucl	leoti	ide F	robe	<u>:</u>					
<400> 2 gtcagt		gtaco	tact	c gg	j 22								
<210> 2 <211> 2 <212> 0 <213> A	4 NA	cial	Sequ	ience	2			Pac	ıe 13	:O			

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 204
tggagcagga ggagtagtag tagg 24
<210> 205
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 205
aggaggcctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt 50
<210> 206
<211> 1620
<212> DNA
<213> Homo Sapien
<220>
<221> unsure
<222> 973, 977, 996, 1003
<223> unknown base
<400> 206
agatggcggt cttggcacct ctaattgctc tcgtgtattc ggtgccgcga 50
ctttcacgat ggctcgccca accttactac cttctgtcgg ccctgctctc 100
tgctgccttc ctactcgtga ggaaactgcc gccgctctgc cacggtctgc 150
ccacccaacg cgaagacggt aacccgtgtg actttgactg gagagaagtg 200
gagatcctga tgtttctcag tgccattgtg atgatgaaga accgcagatc 250
catcactgtg gagcaacata taggcaacat tttcatgttt agtaaagtgg 300
ccaacacaat tcttttcttc cgcttggata ttcgcatggg cctactttac 350
atcacactct gcatagtgtt cctgatgacg tgcaaacccc ccctatatat 400
gggccctgag tatatcaagt acttcaatga taaaaccatt gatgaggaac 450
tagaacggga caagagggtc acttggattg tggagttctt tgccaattgg 500
tctaatgact gccaatcatt tgcccctatc tatgctgacc tctcccttaa 550
atacaactgt acagggctaa attttgggaa ggtggatgtt ggacgctata 600
ctgatgttag tacgcggtac aaagtgagca catcacccct caccaagcaa 650
ctccctaccc tgatcctgtt ccaaggtggc aaggaggcaa tgcggcggcc 700
acagattgac aagaaaggac gggctgtctc atggaccttc tctgaggaga 750
atgtgatccg agaatttaac ttaaatgagc tataccagcg ggccaagaaa 800
ctatcaaagg ctggagacaa tatccctgag gagcagcctg tggcttcaac 850
```

P1618P2C3.txt ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900 actttggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca 950 caagcctgag gctgcagcct ttnattnatg ttttcccttt ggctgngact 1000 ggntggggca gcatgcagct tctgatttta aagaggcatc tagggaattg 1050 tcaggcaccc tacaggaagg cctgccatgc tgtggccaac tgtttcactg 1100 gagcaagaaa gagatctcat aggacggagg gggaaatggt ttccctccaa 1150 gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200 tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca 1250 cagcttggtt agacctagat ttaaccctaa ggtaagatgc tggggtatag 1300 aacgctaaga attttccccc aaggactctt gcttccttaa gcccttctgg 1350 cttcgtttat ggtcttcatt aaaagtataa gcctaacttt gtcgctagtc 1400 ctaaggagaa acctttaacc acaaagtttt tatcattgaa gacaatattg 1450 aacaaccccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500 actttccttt gtgtggtagg acttggagga gaaatcccct ggactttcac 1550 taaccctctg acatactccc cacacccagt tgatggcttt ccgtaataaa 1600 aagattggga tttccttttg 1620

```
<210> 207
<211> 296
<212> PRT
<213> Homo Sapien
```

<400> 207 Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro

Arg Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala 20 25 30

Leu Leu Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu 35 40 45

Cys His Gly Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp 50 55 60

Phe Asp Trp Arg Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile

Val Met Met Lys Asn Arg Arg Ser Ile Thr Val Glu Gln His Ile 80 85 90

Gly Asn Ile Phe Met Phe Ser Lys Val Ala Asn Thr Ile Leu Phe 95 100 105

Phe Arg Leu Asp Ile Arg Met Gly Leu Leu Tyr Ile Thr Leu Cys 110 115 120

Ile Val Phe Leu Met Thr Cys Lys Pro Pro Leu Tyr Met Gly Pro Page 132

```
P1618P2C3.txt
                   125
                                          130
                                                                 135
 Glu Tyr Ile Lys Tyr Phe Asn Asp Lys Thr Ile Asp Glu Glu Leu
 Glu Arg Asp Lys Arg Val Thr Trp Ile Val Glu Phe Phe Ala Asn
160 165
 Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile Tyr Ala Asp Leu
170 175 180
 Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly Lys Val Asp 185 190 195
 Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val Ser Thr 200 205 210
 Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln Gly 215 220
 Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg
230 235 240
 Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe 245 250 255
 Asn Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala
260 265 270
 Gly Asp Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr
275 280 285
 Thr Val Ser Asp Gly Glu Asn Lys Lys Asp Lys
290 295
<210> 208
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 208
 gcttggatat tcgcatgggc ctac 24
<210> 209
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 209
tggagacaat atccctgagg 20
<210> 210
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
```

P1618P2C3.txt <223> Synthetic Oligonucleotide Probe <400> 210 aacagttggc cacagcatgg cagg 24 <210> 211 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 211 ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag 50 <210> 212 <211> 1985 <212> DNA <213> Homo Sapien

<400> 212 ggacagctcg cggcccccga gagctctagc cgtcgaggag ctgcctgggg 50 acgtttgccc tggggcccca gcctggcccg ggtcaccctg gcatgaggag 100 atgggcctgt tgctcctggt cccattgctc ctgctgcccg gctcctacgg 150 actgcccttc tacaacggct tctactactc caacagcgcc aacgaccaga 200 acctaggcaa cggtcatggc aaagacctcc ttaatggagt gaagctggtg 250 gtggagacac ccgaggagac cctgttcacc taccaagggg ccagtgtgat 300 cctgccctgc cgctaccgct acgagccggc cctggtctcc ccgcggcgtg 350 tgcgtgtcaa atggtggaag ctgtcggaga acggggcccc agagaaggac 400 gtgctggtgg ccatcgggct gaggcaccgc tcctttgggg actaccaagg 450 ccgcgtgcac ctgcggcagg acaaagagca tgacgtctcg ctggagatcc 500 aggatctgcg gctggaggac tatgggcgtt accgctgtga ggtcattgac 550 gggctggagg atgaaagcgg tctggtggag ctggagctgc ggggtgtggt 600 ctttccttac cagtccccca acgggcgcta ccagttcaac ttccacgagg 650 gccagcaggt ctgtgcagag caggctgcgg tggtggcctc ctttgagcag 700 ctcttccggg cctgggagga gggcctggac tggtgcaacg cgggctggct 750 gcaggatgct acggtgcagt accccatcat gttgccccgg cagccctgcg 800 gtggcccagg cctggcacct ggcgtgcgaa gctacggccc ccgccaccgc 850 cgcctgcacc gctatgatgt attctgcttc gctactgccc tcaaggggcg 900 ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg 950 aggcctgcca ggaagatgat gccacgatcg ccaaggtggg acagctcttt 1000 gccgcctgga agttccatgg cctggaccgc tgcgacgctg gctggctggc 1050 Page 134

```
agatggcagc gtccgctacc ctgtggttca cccgcatcct aactgtgggc 1100
ccccagagcc tggggtccga agctttggct tccccgaccc gcagagccgc 1150
ttgtacggtg tttactgcta ccgccagcac taggacctgg ggccctcccc 1200
tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct 1250
tgtgggttgg agccatttta actgttttta tacttctcaa tttaaatttt 1300
ctttaaacat ttttttacta ttttttgtaa agcaaacaga acccaatgcc 1350
tccctttgct cctggatgcc ccactccagg aatcatgctt gctcccttgg 1400
gccatttgcg gttttgtggg cttctggagg gttccccgcc atccaggctg 1450
gtctccctcc cttaaggagg ttggtgccca gagtgggcgg tggcctgtct 1500
agaatgccgc cgggagtccg ggcatggtgg gcacagttct ccctgcccct 1550
cagcctgggg gaagaagagg gcctcggggg cctccggagc tgggctttgg 1600
gcctctcctg cccacctcta cttctctgtg aagccgctga ccccagtctg 1650
cccactgagg ggctagggct ggaagccagt tctaggcttc caggcgaaat 1700
ctgagggaag gaagaaactc ccctcccqt tccccttccc ctctcqqttc 1750
caaagaatct gttttgttgt catttgtttc tcctqtttcc ctqtqqqqq 1800
aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc 1850
aaaaaaaaaa aaaaaaaaaa aaaaa 1985
```

<400> 213

<210> 213

<211> 360

<212> PRT

<213> Homo Sapien

Met Gly Leu Leu Leu Leu Val Pro Leu Leu Leu Leu Pro Gly Ser 1 10 15

Tyr Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala 20 25 30

Gly Val Lys Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr

Tyr Gln Gly Ala Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu
65 70 75

Pro Ala Leu Val Ser Pro Arg Arg Val Arg Val Lys Trp Trp Lys

Gly Leu Arg His Arg Ser Phe Gly Asp Tyr Gln Gly Arg Val Filo Leu Arg Gln Asp Lys Glu His Asp Val Ser Leu Glu Ile Gln Asp Lys Glu His Asp Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr Arg Cys Glu Val Ile Asp 140 Leu Glu Asp Gly Ser Gly Leu Val Glu Leu Glu Leu Arg Gly Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg Tyr Gln Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala Ala Val Val Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly Leu Arg Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Glu Tyr Pagno Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Arg Leu His Arg Tyr Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Arg Leu His Arg Tyr Cys Glu His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Asp Ala Thr Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly Trp Leu Glu Asp Arg Cys Asp Ala Gly Tyr Tyr Cys Glu Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Pagno Arg Leu His Arg Tyr Cys Glu Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Ala Arg Glu Asp Asp Ala Thr Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly Tyr Arg Glu Asp Pro Gly Ser Val Arg Tyr Pro Val Val His Pro His Pagno Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Glu Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Glu Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Glu Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Glu Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Glu Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Glu Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Tyr Pro Val Tyr Tyr Cys Tyr Arg Gln Hasp Pro Glu Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Tyr Lys 18															
Leu Arg Gln Asp Lys Glu His Asp Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr Arg Cys Glu Val Ile And Ile An	Leu	. Ser	Glu	Asn	Gly 95	Ala	Pro	Glu		Asp				Ala	11e 105
Leu Arg Leu Glu Asp Tyr Gly Arg Tyr Arg Cys Glu Val Ile Asp Tyr Gly Leu Val Glu Leu Glu Leu Arg Glu Val Ile Asp Gly Leu Glu Asp Glu Ser Gly Leu Val Glu Leu Glu Leu Arg Gly Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg Tyr Gln Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala Ala Val Val Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly Leu Arg Tyr Gln Tyr Gln Asp Ala Thr Val Gln Tyr Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Gly Asp Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tyr Cys Glu Glu Asp Ala Thr Ile Ala Lys Val Gly Gly Gly Gly Gly Gly Gly Arg Val Tyr Tyr Gys Gln Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Ala Arg Glu Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly Tyr Tyr Gys Gly Gly Arg Val Tyr Tyr Gys Gly Arg Val Gly Gly Gly Gly Gly Gly Gly Gly Gly Gl	Gly	Leu	Arg	His		Ser	Phe	Gly	Asp		Gln	Gly	Arg	val	ніs 120
Gly Leu Glu Asp Glu Ser Gly Leu Val Glu Leu Glu Leu Arg Glu Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg Tyr Gln Phe Arg Ala Glu Glu Glu Glu Glu Ceu Arg Glu Ser Phe His Glu Glu Gln Ceu Phe Arg Ala Glu Gln Ala Ala Val Val Phe For Glu Gln Leu Phe Arg Ala Trp Glu Glu Glu Gly Leu Arg 200 Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr Glu Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Pro Asp Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tor Cys Glu His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Arg Cys Gln Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Pro Arg Ala Thr Ile Ala Lys Val Gly Gln Leu Pro Arg Ala Thr Ile Ala Lys Val Gly Gln Leu Pro Arg Ala Thr Ile Ala Lys Val Gly Gln Leu Pro Arg Ala Thr Ile Ala Lys Val Gly Gln Leu Pro Arg Arg Cys Asp Ala Gly Trg Trg Cys Gln Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Pro Arg Arg Cys Asp Ala Gly Trg Trg Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe Pro Arg Leu Ala Asp Gly Ser Val Arg Tyr Pro Val Val His Pro His Pro Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Glo 2114 4211> 18	Leu	Arg	Gln	Asp	Lys 125	Glu	His	Asp	val		Leu	Glu	Ile	Gln	Asp 135
Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg Tyr Gln Phe Arg Ala Ser Phe Glu Gln Gln Val Cys Ala Glu Gln Ala Ala Val Val Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly Leu Arg 205 Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Trp Glu Glu Gly Leu Arg 215 Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Page 230 Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tage 250 Asp Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tage 265 Leu Glu His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Arg 295 Cys Gln Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Page 290 Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly Tage 295 Asn Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe Page 330 Asn Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe Page 350 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hala 211> **210> 214* **2210> 214*	Leu	Arg	Leu	Glu		Tyr	Gly	Arg	Tyr		Cys	Glu	val	Ile	Asp 150
Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala Ala Val Val Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly Leu Ala Pro Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr Pro Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr Pro Cys Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tro Cys Gly Arg Val Tyr Tro Cys Glu His Pro Glu Lys Leu Thr Leu Thrope Glu Ala Arg Glu Ala Arg Glu Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly Trp Cys Gly Gly Gly Fro His Arg Tro Cys Glu Ala Arg Glu Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly Tro Cys Glu Ala Asp Gly Ser Val Arg Tyr Pro Val Val His Pro His Pro Cys Gly Pro Glu Pro Gly Val Arg Ser Phe Gly Phe Pro Cys Glu Ser Arg Leu Tyr Gly Val Arg Ser Phe Gly Phe Pro Cys Glu Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Pro Cys Cys Cys Cys Tyr Arg Gln Hasp Pro Cys Cys Cys Cys Tyr Arg Gln Hasp Pro Cys Cys Cys Cys Cys Tyr Arg Gln Hasp Pro Cys	Gly	Leu	Glu	Asp	Glu 155	Ser	Gly	Leu	∨al		Leu	Glu	Leu	Arg	Gly 165
Ala Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly Leu Az 205 Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr P 220 Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala P 235 Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Z 250 Asp Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr T 260 Leu Glu His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Az 275 Cys Gln Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu P 290 Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly T 305 Leu Ala Asp Gly Ser Val Arg Tyr Pro Val Arg Ser Phe Gly Phe P 335 Asp Pro Gln Ser Arg Leu Tyr Gly Val Arg Ser Phe Gly Phe P 355	∨al	٧a٦	Phe	Pro	Tyr 170	Gln	Ser	Pro	Asn	Gly 175	Arg	Tyr	Gln	Phe	Asn 180
Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr P 2215 Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala P 230 Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg T 250 Asp Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr T 265 Leu Glu His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Sen Gln Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu P 295 Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly T 305 Leu Ala Asp Gly Ser Val Arg Tyr Pro Val Val His Pro His P 325 Asn Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe P 335 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln H 305	Phe	His	Glu	Gly		Gln	val	Cys	Ala		Gln	Ala	Аlа	val	val 195
Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Pro Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg To Ser Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr To Seu Glu His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Arg Glu Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly To Seu Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly To Seu Ala Asp Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe Pro Glo Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln His Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln How Ser Ser Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln How Ser Ser Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln How Ser Ser Ser Ser Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln How Ser Ser Ser Ser Ser Ser Pro Gln How Ser	Аlа	Ser	Phe	Glu		Leu	Phe	Arg	Ala		Glu	Glu	Glу	Leu	Asp 210
Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Z245 Asp Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tyr Z260 Leu Glu His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly Tyr Tyr Z290 Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly Tyr Tyr Arg Glu Ala Asp Cys Gly Pro Pro Glu Pro Gly Val Arg Tyr Pro Val Syr Arg Cys Tyr Arg Gln His Cys Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln His Cys Cys Cys Cys Tyr Arg Gln His Cys Cys Cys Cys Cys Tyr Arg Gln His Cys Cys Cys Cys Cys Cys Tyr Arg Gln His Cys Cys Cys Cys Cys Cys Cys Cys Cys Cy	Trp	Cys	Asn	Ala		Тгр	Leu	Gln	Asp		Thr	val	Gln	Tyr	Pro 225
Asp Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr T Zeb Glu His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Azer Cys Gln Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu P Zeb Val Gly Gln Leu P Zeb Val Ala Arg Tyr Pro Val Val His Pro His P 305 Asp Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe P 335 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln H 305 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln H 305 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln H 310 Asp Cys 214 4211> 18	Ile	Met	Leu	Pro		Gln	Pro	Cys	Gly		Pro	Gly	Leu	Ala	Pro 240
Leu Glu His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Cys Gln Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Page Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly Tage Ala Asp Gly Ser Val Arg Tyr Pro Val Val His Pro His Page Asp Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe Page Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln Hasp Cys Cys Cys Tyr Arg Gln Hasp Cys Cys Cys Cys Tyr Arg Gln Hasp Cys Cys Cys Cys Cys Tyr Arg Gln Hasp Cys	Gly	٧a٦	Arg	Ser		Gly	Pro	Arg	His		Arg	Leu	His	Arg	Tyr 255
Cys Gln Glu Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu P 290 Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly T 310 Leu Ala Asp Gly Ser Val Arg Tyr Pro Val Val His Pro His P 320 Asn Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe P 335 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln H 350 <210> 214 <210> 214 <211> 18	Asp	٧a٦	Phe	Cys		Ala	Thr	Ala	Leu		Gly	Arg	val	Tyr	Tyr 270
Ala Ala Trp Lys Phe His Gly Leu Asp Arg Cys Asp Ala Gly T 305 Leu Ala Asp Gly Ser Val Arg Tyr Pro Val Val His Pro His P 320 Asn Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe P 335 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln H 350 <210> 214 <211> 18	Leu	Glu	His	Pro		Lys	Leu	Thr	Leu		Glu	Ala	Arg	Glu	Ala 285
Leu Ala Asp Gly Ser Val Arg Tyr Pro Val Val His Pro His P 320 Asn Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe P 335 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln H 350 <210> 214 <211> 18	Cys	Gln	Glu	Asp		Ala	Thr	Ile	Ala		val	GТу	Gln	Leu	Phe 300
Asn Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe P 335 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln H 350 <210> 214 <211> 18	Ala	Ala	Тгр	Lys	Phe 305	His	Gly	Leu	Asp	Arg 310	Cys	Asp	Ala	Gly	Trp 315
335 340 3 Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln H 350 355 3 <210> 214 <211> 18	Leu	Аla	Asp	Glу		val	Arg	Tyr	Pro		٧a٦	His	Pro	His	Pro 330
350 355 3 <210> 214 <211> 18	Asn	Cys	Gly	Pro	Pro 335	Glu	Pro	Gly	٧a٦		ser	Phe	Gly	Phe	Pro 345
<211> 18	Asp	Pro	Gln	Ser	Arg 350	Leu	Tyr	Gly	٧a٦	Tyr 355	Cys	Tyr	Arg	Gln	His 360
<212> DNA <213> Artificial Sequence	<211 <212	> 18 > DN/	Ą	:ial	Sequ	ience	<u>.</u>								
<220> <223> Synthetic Oligonucleotide Probe	<220 <223	> > Syr	nthet	ic C	oligo	nucl	eoti	de F	robe	<u>:</u>					
<400> 214	<400	> 214	1							Pan	ıe 13	16			

```
tgcttcgcta ctgccctc 18
<210> 215
<211> 18
 <212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 215
 ttcccttgtg ggttggag 18
<210> 216
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 216
 agggctggaa gccagttc 18
<210> 217
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 217
 agccagtgag gaaatgcg 18
<210> 218
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 218
 tgtccaaagt acacacacct gagg 24
<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
 gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag 45
<210> 220
<211> 1503
<212> DNA
<213> Homo Sapien
<400> 220
```

				P1618P2C3	.txt	
	ggagagcgga	gcgaagctgg	ataacagggg			50
	cagttctgct	gcttctgttg	ctactgaggc	acggggccca	ggggaagcca	100
	tccccagacg	caggccctca	tggccagggg	agggtgcacc	aggcggcccc	150
	cctgagcgac	gctccccatg	atgacgccca	cgggaacttc	cagtacgacc	200
	atgaggcttt	cctgggacgg	gaagtggcca	aggaattcga	ccaactcacc	250
	ccagaggaaa	gccaggcccg	tctggggcgg	atcgtggacc	gcatggaccg	300
	cgcgggggac	ggcgacggct	gggtgtcgct	ggccgagctt	cgcgcgtgga	350
	tcgcgcacac	gcagcagcgg	cacatacggg	actcggtgag	cgcggcctgg	400
	gacacgtacg	acacggaccg	cgacgggcgt	gtgggttggg	aggagctgcg	450
	caacgccacc	tatggccact	acgcgcccgg	tgaagaattt	catgacgtgg	500
	aggatgcaga	gacctacaaa	aagatgctgg	ctcgggacga	gcggcgtttc	550
	cgggtggccg	accaggatgg	ggactcgatg	gccactcgag	aggagctgac	600
	agccttcctg	caccccgagg	agttccctca	catgcgggac	atcgtgattg	650
	ctgaaaccct	ggaggacctg	gacagaaaca	aagatggcta	tgtccaggtg	700
	gaggagtaca	tcgcggatct	gtactcagcc	gagcctgggg	aggaggagcc	750
	ggcgtgggtg	cagacggaga	ggcagcagtt	ccgggacttc	cgggatctga	800
	acaaggatgg	gcacctggat	gggagtgagg	tgggccactg	ggtgctgccc	850
	cctgcccagg	accagcccct	ggtggaagcc	aaccacctgc	tgcacgagag	900
	cgacacggac	aaggatgggc	ggctgagcaa	agcggaaatc	ctgggtaatt	950
	ggaacatgtt	tgtgggcagt	caggccacca	actatggcga	ggacctgacc	1000
	cggcaccacg	atgagctgtg	agcaccgcgc	acctgccaca	gcctcagagg	1050
	cccgcacaat	gaccggagga	ggggccgctg	tggtctggcc	ccctccctgt	1100
	ccaggccccg	caggaggcag	atgcagtccc	aggcatcctc	ctgcccctgg	1150
	gctctcaggg	accccctggg	tcggcttctg	tccctgtcac	acccccaacc	1200
	ccagggaggg	gctgtcatag	tcccagagga	taagcaatac	ctatttctga	1250
	ctgagtctcc	cagcccagac	ccagggaccc	ttggccccaa	gctcagctct	1300
	aagaaccgcc	ccaacccctc	cagctccaaa	tctgagcctc	caccacatag	1350
	actgaaactc	ccctggcccc	agccctctcc	tgcctggcct	ggcctgggac	1400
	acctcctctc	tgccaggagg	caataaaagc	cagcgccggg	accttgaaaa	1450
	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1500
	aaa 1503					
<	210> 221			Page 13	o	
				PANE 13	^	

	<211; <212; <213;	> PR		apie	n				·	1010		, i ex	-		
	<400						7								
	Met 1	мет	Trp	Arg	Pro 5	Ser	Val	Leu	Leu	Leu 10	Leu	Leu	Leu	Leu	Arg 15
	His	Gly	Ala	Gln	Gly 20	Lys	Pro	Ser	Pro	Asp 25	Ala	Gly	Pro	His	G]y 30
	Gln	Gly	Arg	٧al	His 35	Gln	Ala	Αla	Pro	Leu 40	Ser	Asp	Ala	Pro	His 45
	Asp	Asp	Аla	His	G]y 50	Asn	Phe	Gln	Tyr	Asp 55	His	Glu	Аla	Phe	Leu 60
^	Gly	Arg	Glu	٧a٦	A]a 65	Lys	Glu	Phe	Asp	G1n 70	Leu	Thr	Pro	Glu	Glu 75
	Ser	Gln	Аla	Arg	Leu 80	Gly	Arg	Ile	٧a٦	Asp 85	Arg	Met	Asp	Arg	Ala 90
	Gly	Asp	Gly	Asp	G]y 95	Тгр	val	Ser	Leu	Ala 100	Glu	Leu	Arg	Аlа	Trp 105
	Ile	Ala	His	Thr	G]n 110	Gln	Arg	His	Ile	Arg 115	Asp	Ser	٧a٦	Ser	Ala 120
	Аla	Trp	Asp	Thr	Tyr 125	Asp	Thr	Asp	Arg	Asp 130	GТу	Arg	val	Gly	Trp 135
	Glu	Glu	Leu	Arg	Asn 140	Ala	Thr	туг	Gly	His 145	Tyr	Аlа	Pro	Gly	Glu 150
	Glu	Phe	His	Asp	Val 155	Glu	Asp	Ala	Glu	Thr 160	туг	Lys	Lys	Met	Leu 165
	Аlа	Arg	Asp	Glu	Arg 170	Arg	Phe	Arg	va1	Ala 175	Asp	Gln	Asp	Gly	Asp 180
	Ser	Met	Ala	Thr	Arg 185	Glu	Glu	Leu	Thr	Ala 190	Phe	Leu	His	Pro	Glu 195
	Glu	Phe	Pro	His	Met 200	Arg	Asp	Ile	val	Ile 205	Аla	G] u	Thr	Leu	G]u 210
	Asp	Leu	Asp	Arg	Asn 215	Lys	Asp	Gly	Tyr	va1 220	Gln	val	Glu	Glu	Tyr 225
	Ile	Αla	Asp	Leu	Tyr 230	Ser	Ala	Glu	Pro	G]y 235	Glu	Glu	Glu	Pro	Ala 240
	Trp	٧a٦	Gln	Thr	G]u 245	Arg	Gln	Gln	Phe	Arg 250	Asp	Phe	Arg	Asp	Leu 255
	Asn	Lys	Asp	Glу	ніs 260	Leu	Asp	Gly	Ser	G] u 265	val	Glу	His	Trp	Val 270
	Leu	Pro	Pro	Аlа	Gln 275	Asp	Gln	Pro	Leu	va1 280	Glu	Аlа	Asn	His	Leu 285
	Leu	His	Glu	Ser	Asp	Thr	Asp	Lys	Asp	Gly Pag	Arg je 13	Leu 9	Ser	Lys	Ala

290 300 295 Glu Ile Leu Gly Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr 310 Asn Tyr Gly Glu Asp Leu Thr Arg His His Asp Glu Leu 320 <210> 222 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 222 cgcaggccct catggccagg 20 <210> 223 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 223 gaaatcctgg gtaattgg 18 <210> 224 <211> 23 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 224 gtgcgcggtg ctcacagctc atc 23 <210> 225 <211> 44 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 225 ccccctgag cgacgctccc ccatgatgac gcccacggga actt 44 <210> 226 <211> 2403 <212> DNA <213> Homo Sapien <400> 226 ggggccttgc cttccgcact cgggcgcagc cgggtggatc tcgagcaggt 50 gcggagcccc gggcggcggg cgcgggtgcg agggatccct gacgcctctg 100 tccctgtttc tttgtcgctc ccagcctgtc tgtcgtcgtt ttggcgcccc 150 Page 140

cgcctccccg	g cggtgcgggg	ttgcacaccg	atcctgggct	tcgctcgatt	200
tgccgccgag	gcgcctccca	gacctagagg	ggcgctggcc	tggagcagcg	250
ggtcgtctgt	gtcctctctc	ctctgcgccg	cgcccgggga	tccgaagggt	300
gcggggctct	gaggaggtga	cgcgcggggc	ctcccgcacc	ctggccttgc	350
ccgcattctc	cctctctccc	aggtgtgagc	agcctatcag	tcaccatgtc	400
cgcagcctgg	atcccggctc	tcggcctcgg	tgtgtgtctg	ctgctgctgc	450
cggggcccgc	gggcagcgag	ggagccgctc	ccattgctat	cacatgtttt	500
accagaggct	tggacatcag	gaaagagaaa	gcagatgtcc	tctgcccagg	550
gggctgccct	cttgaggaat	tctctgtgta	tgggaacata	gtatatgctt	600
ctgtatcgag	catatgtggg	gctgctgtcc	acaggggagt	aatcagcaac	650
tcagggggac	ctgtacgagt	ctatagccta	cctggtcgag	aaaactattc	700
ctcagtagat	gccaatggca	tccagtctca	aatgctttct	agatggtctg	750
cttctttcac	agtaactaaa	ggcaaaagta	gtacacagga	ggccacagga	800
caagcagtgt	ccacagcaca	tccaccaaca	ggtaaacgac	taaagaaaac	850
acccgagaag	aaaactggca	ataaagattg	taaagcagac	attgcatttc	900
tgattgatgg	aagctttaat	attgggcagc	gccgatttaa	tttacagaag	950
aattttgttg	gaaaagtggc	tctaatgttg	ggaattggaa	cagaaggacc	1000
acatgtgggc	cttgttcaag	ccagtgaaca	tcccaaaata	gaattttact	1050
tgaaaaactt	tacatcagcc	aaagatgttt	tgtttgccat	aaaggaagta	1100
ggtttcagag	ggggtaattc	caatacagga	aaagccttga	agcatactgc	1150
tcagaaattc	ttcacggtag	atgctggagt	aagaaaaggg	atccccaaag	1200
tggtggtggt	atttattgat	ggttggcctt	ctgatgacat	cgaggaagca	1250
ggcattgtgg	ccagagagtt	tggtgtcaat	gtatttatag	tttctgtggc	1300
caagcctatc	cctgaagaac	tggggatggt	tcaggatgtc	acatttgttg	1350
acaaggctgt	ctgtcggaat	aatggcttct	tctcttacca	catgcccaac	1400
tggtttggca	ccacaaaata	cgtaaagcct	ctggtacaga	agctgtgcac	1450
tcatgaacaa	atgatgtgca	gcaagacctg	ttataactca	gtgaacattg	1500
cctttctaat	tgatggctcc	agcagtgttg	gagatagcaa	tttccgcctc	1550
atgcttgaat	ttgtttccaa	catagccaag	acttttgaaa	tctcggacat	1600
tggtgccaag	atagctgctg	tacagtttac	ttatgatcag	cgcacggagt	1650
tcagtttcac	tgactatagc	accaaagaga	atgtcctagc	tgtcatcaga	1700

P1618P2C3.txt aacatccgct atatgagtgg tggaacagct actggtgatg ccatttcctt 1750 cactgttaga aatgtgtttg gccctataag ggagagcccc aacaagaact 1800 tcctagtaat tgtcacagat gggcagtcct atgatgatgt ccaaggccct 1850 gcagctgctg cacatgatgc aggaatcact atcttctctg ttggtgtggc 1900 ttgggcacct ctggatgacc tgaaagatat ggcttctaaa ccgaaggagt 1950 ctcacgcttt cttcacaaga gagttcacag gattagaacc aattgtttct 2000 gatgtcatca gaggcatttg tagagatttc ttagaatccc agcaataatg 2050 gtaacatttt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100 attgtattct cataatactg aaatgcttta gcatactaga atcagataca 2150 aaactattaa gtatgtcaac agccatttag gcaaataagc actcctttaa 2200 agccgctgcc ttctggttac aatttacagt gtactttgtt aaaaacactg 2250 ctgaggcttc ataatcatgg ctcttagaaa ctcaggaaag aggagataat 2300 gtggattaaa accttaagag ttctaaccat gcctactaaa tgtacagata 2350 tgcaaattcc atagctcaat aaaagaatct gatacttaga ccaaaaaaaa 2400 aaa 2403 <210> 227 <211> 550 <212> PRT <213> Homo Sapien <400> 227 Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu 1 5 10 15 Leu Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile 20 25 30 Ala Ile Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys 35 40 45Ala Asp Val Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser 50 55 Val Tyr Gly Asn Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly
65 70 75 Ala Ala Val His Arg Gly Val Ile Ser Asn Ser Gly Gly Pro Val 80 85 90 Arg Val Tyr Ser Leu Pro Gly Arg Glu Asn Tyr Ser Ser Val Asp 95 100 105 Ala Asn Gly Ile Gln Ser Gln Met Leu Ser Arg Trp Ser Ala Ser 110 115 120

Phe Thr Val Thr Lys Gly Lys Ser Ser Thr Gln Glu Ala Thr Gly 135

P1618P2C3.txt Gln Ala Val Ser Thr Ala His Pro Pro Thr Gly Lys Arg Leu Lys 140 145 Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys Asp Cys Lys Ala Asp 155 160 165 Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile Gly Gln Arg Arg 170 175 180 Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala Leu Met Leu 185 190 195 Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln Ala Ser 200 205 210 Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser Ala 215 220 225 Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly 230 235 240 Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe 245 250 255 Phe Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val 260 265 270 Val Val Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala 275 280 285 Gly Ile Val Ala Arg Glu Phe Gly Val Asn Val Phe Ile Val Ser 290 295 300 Val Ala Lys Pro Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val 305 310 315 Thr Phe Val Asp Lys Ala Val Cys Arg Asn Asn Gly Phe Phe Ser 320 325 330 Tyr His Met Pro Asn Trp Phe Gly Thr Thr Lys Tyr Val Lys Pro 335 340 345 Leu Val Gln Lys Leu Cys Thr His Glu Gln Met Met Cys Ser Lys 350 360 Thr Cys Tyr Asn Ser Val Asn Ile Ala Phe Leu Ile Asp Gly Ser 375 Ser Ser Val Gly Asp Ser Asn Phe Arg Leu Met Leu Glu Phe Val 380 385 390Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser Asp Ile Gly Ala Lys 395 400 405 Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg Thr Glu Phe Ser 410 415 420 Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala Val Ile Arg 425 430 435 Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp Ala Ile 440 445 450

P1618P2C3.txt Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser Pro 460 465 Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp 480 Asp Val Gln Gly Pro Ala Ala Ala Ala His Asp Ala Gly Ile Thr Ile Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg 515 520 525 Glu Phe Thr Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp Phe Leu Glu Ser Gln Gln <210> 228 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 228 tggtctcgca caccgatc 18 <210> 229 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 229 ctgctgtcca caggggag 18 <210> 230 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 230 ccttgaagca tactgctc 18 <210> 231 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 231

```
gagatagcaa tttccgcc 18
<210> 232
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 232
 ttcctcaaga gggcagcc 18
<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 233
cttggcacca atgtccgaga tttc 24
<210> 234
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 234
gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg 45
<210> 235
<211> 2586
<212> DNA
<213> Homo Sapien
<400> 235
cgccgcgctc ccgcacccgc ggcccgccca ccgcgccgct cccgcatctg 50
cacccgcagc ccggcggcct cccggcggga gcgagcagat ccagtccggc 100
ccgcagcgca actcggtcca gtcggggcgg cggctgcggg cgcagagcgg 150
agatgcagcg gcttggggcc accctgctgt gcctgctgct ggcggcggcg 200
gtccccacgg cccccgcgcc cgctccgacg gcgacctcgg ctccagtcaa 250
gcccggcccg gctctcagct acccgcagga ggaggccacc ctcaatgaga 300
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc 350
agcgcggtgg aagagatgga ggcagaagaa gctgctgcta aagcatcatc 400
agaagtgaac ctggcaaact tacctcccag ctatcacaat gagaccaaca 450
Cagacacgaa ggttggaaat aataccatcc atgtgcaccg agaaattcac 500
aagataacca acaaccagac tggacaaatg gtcttttcag agacagttat 550
```

			D1 C1 0 D 3 C	2 44	
cacatctgtg	ggagacgaag	aaggcagaag	P1618P2C gagccacgag		600
acgaggactg	tgggcccagc	atgtactgcc	agtttgccag	cttccagtac	650
acctgccagc	catgccgggg	ccagaggatg	ctctgcaccc	gggacagtga	700
gtgctgtgga	gaccagctgt	gtgtctgggg	tcactgcacc	aaaatggcca	750
ccaggggcag	caatgggacc	atctgtgaca	accagaggga	ctgccagccg	800
gggctgtgct	gtgccttcca	gagaggcctg	ctgttccctg	tgtgcacacc	850
cctgcccgtg	gagggcgagc	tttgccatga	ccccgccagc	cggcttctgg	900
acctcatcac	ctgggagcta	gagcctgatg	gagccttgga	ccgatgccct	950
tgtgccagtg	gcctcctctg	ccagccccac	agccacagcc	tggtgtatgt	1000
gtgcaagccg	accttcgtgg	ggagccgtga	ccaagatggg	gagatcctgc	1050
tgcccagaga	ggtccccgat	gagtatgaag	ttggcagctt	catggaggag	1100
gtgcgccagg	agctggagga	cctggagagg	agcctgactg	aagagatggc	1150
gctgggggag	cctgcggctg	ccgccgctgc	actgctggga	ggggaagaga	1200
tttagatctg	gaccaggctg	tgggtagatg	tgcaatagaa	atagctaatt	1250
tatttcccca	ggtgtgtgct	ttaggcgtgg	gctgaccagg	cttcttccta	1300
catcttcttc	ccagtaagtt	tcccctctgg	cttgacagca	tgaggtgttg	1350
tgcatttgtt	cagctccccc	aggctgttct	ccaggcttca	cagtctggtg	1400
cttgggagag	tcaggcaggg	ttaaactgca	ggagcagttt	gccacccctg	1450
tccagattat	tggctgcttt	gcctctacca	gttggcagac	agccgtttgt	1500
tctacatggc	tttgataatt	gtttgagggg	aggagatgga	aacaatgtgg	1550
agtctccctc	tgattggttt	tggggaaatg	tggagaagag	tgccctgctt	1600
tgcaaacatc	aacctggcaa	aaatgcaaca	aatgaatttt	ccacgcagtt	1650
ctttccatgg	gcataggtaa	gctgtgcctt	cagctgttgc	agatgaaatg	1700
ttctgttcac	cctgcattac	atgtgtttat	tcatccagca	gtgttgctca	1750
gctcctacct	ctgtgccagg	gcagcatttt	catatccaag	atcaattccc	1800
tctctcagca	cagcctgggg	agggggtcat	tgttctcctc	gtccatcagg	1850
gatctcagag	gctcagagac	tgcaagctgc	ttgcccaagt	cacacagcta	1900
gtgaagacca	gagcagtttc	atctggttgt	gactctaagc	tcagtgctct	1950
ctccactacc	ccacaccagc	cttggtgcca	ccaaaagtgc	tccccaaaag	2000
gaaggagaat	gggattttc	ttgaggcatg	cacatctgga	attaaggtca	2050
aactaattct	cacatccctc	taaaagtaaa	ctactgttag	gaacagcagt	2100
gttctcacag	tgtggggcag	ccgtccttct	aatgaagaca Page 14		2150

cactgtccct ctttggcagt tgcattagta actttgaaag gtatatgact 2200 gagcgtagca tacaggttaa cctgcagaaa cagtacttag gtaattgtag 2250 ggcgaggatt ataaatgaaa tttgcaaaat cacttagcag caactgaaga 2300 caattatcaa ccacgtggag aaaatcaaac cgagcagggc tgtgtgaaac 2350 atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400 tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt 2450 tcttaaagtt taaagttgca catgattgta taagcatgct ttctttgagt 2500 tttaaattat gtataaacat aagttgcatt tagaaatcaa gcataaatca 2550 cttcaactgc aaaaaaaaaa aaaaaaaa aaaaaa 2586

<210> 236 <211> 350 <212> PRT

<213> Homo Sapien <400> 236 Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala 1 5 10 Ala Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala 20 25 30 Pro Val Lys Pro Gly Pro Ala Leu Ser Týr Pro Gln Glu Glu Ala 35 40 45 Thr Leu Asn Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp 50 55 60 Thr Gln His Lys Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu
65 70 75 Glu Ala Ala Lys Ala Ser Ser Glu Val Asn Leu Ala Asn Leu 80 85 90 Pro Pro Ser Tyr His Asn Glu Thr Asn Thr Asp Thr Lys Val Gly 95 100 105 Asn Asn Thr Ile His Val His Arg Glu Ile His Lys Ile Thr Asn 110 115 120 Asn Gln Thr Gly Gln Met Val Phe Ser Glu Thr Val Ile Thr Ser 125 130 135 Val Gly Asp Glu Glu Gly Arg Arg Ser His Glu Cys Ile Ile Asp 140 145 Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln Phe Ala Ser Phe Gln
160
165 Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met Leu Cys Thr Arg 170 175 180 Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp Gly His Cys 185 190 195 Page 147

Thr	Lys	Met	Αla	Thr 200	Arg	Gly	ser	Asn	Gly 205	Thr	Ile	Cys	Asp	Asn 210
Gln	Arg	Asp	Cys	Gln 215	Pro	Gly	Leu	Cys	Cys 220	Ala	Phe	Gln	Arg	Gly 225
Leu	Leu	Phe	Pro	Va1 230	Cys	Thr	Pro	Leu	Pro 235	۷al	Glu	Gly	Glu	Leu 240
Cys	His	Asp	Pro	Ala 245	Ser	Arg	Leu	Leu	Asp 250	Leu	Ile	Thr	Тгр	G1u 255
Leu	Glu	Pro	Asp	Gly 260	Ala	Leu	Asp	Arg	Cys 265	Pro	Cys	Ala	ser	Gly 270
Leu	Leu	Cys	Gln	Pro 275	His	ser	His	Ser	Leu 280	۷al	Tyr	val	Cys	Lys 285
Pro	Thr	Phe	Val	G]y 290	ser	Arg	Asp	Gln	Asp 295	Gly	Glu	Ile	Leu	Leu 300
Pro .	Arg	Glu	۷a٦	Pro 305	Asp	Glu	Tyr	Glu	Val 310	Gly	ser	Phe	Met	Glu 315
Glu	val	Arg	Gln	G]u 320	Leu	Glu	Asp	Leu	G1u 325	Arg	ser	Leu	Thr	G]u 330
Glu	Met	Ala	Leu	Gly 335	Glu	Pro	Ala	Ala	Ala 340	Ala	Ala	Αla	Leu	Leu 345
Gly	Gly	Glu	Glu	Ile 350										
<210> <211> <212> <213>	17 DNA	.	:ial	Sequ	ience	<u>:</u>								
<220> <223>	Syr	thet	ic o	ligo	nucl	eoti	de p	robe	:					
<400> ggag			cctt	gc 1	.7									
<210> <211> <212> <213>	49 DNA	.	:ial	Sequ	ience	!								
<220> <223>	Syn	thet	ic C	ligo	nucl	eoti	de P	robe	!		٠			
<400> ggag			ccac	catg	ja ga	gact	cttc	aaa	ıccca	agg	caaa	attg	jg 49)
<210> <211> <212> <213>	24 DNA		ial	sequ	ence	!								
<220> <223>	Syn	thet	ic O	ligo	nucl	eoti	de P	robe	! Bo ~	0 14	0			

Page 148

```
<400> 239
 gcagagcgga gatgcagcgg cttg 24
<210> 240
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 240
 ttggcagctt catggagg 18
<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 241
 cctgggcaaa aatgcaac 18
<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 242
ctccagctcc tggcgcacct cctc 24
<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 243
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg 45
<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien
aaggaggctg ggaggaaaga ggtaagaaag gttagagaac ctacctcaca 50
tctctctggg ctcagaagga ctctgaagat aacaataatt tcagcccatc 100
cactctcctt ccctcccaaa cacacatgtg catgtacaca cacacataca 150
cacacataca ccttcctctc cttcactgaa gactcacagt cactcactct 200
gtgagcaggt catagaaaag gacactaaag ccttaaggac aggcctggcc 250
                                       Page 149
```

attacctctg	cagctccttt	ggcttgttga	gtcaaaaaac	atgggagggg	300
ccaggcacgg	tgactcacac	ctgtaatccc	agcattttgg	gagaccgagg	350
tgagcagatc	acttgaggtc	aggagttcga	gaccagcctg	gccaacatgg	400
agaaaccccc	atctctacta	aaaatacaaa	aattagccag	gagtggtggc	450
aggtgcctgt	aatcccagct	actcaggtgg	ctgagccagg	agaatcgctt	500
gaatccagga	ggcggaggat	gcagtcagct	gagtgcaccg	ctgcactcca	550
gcctgggtga	cagaatgaga	ctctgtctca	aacaaacaaa	cacgggagga	600
ggggtagata	ctgcttctct	gcaacctcct	taactctgca	tcctcttctt	650
ccagggctgc	ccctgatggg	gcctggcaat	gactgagcag	gcccagcccc	700
agaggacaag	gaagagaagg	catattgagg	agggcaagaa	gtgacgcccg	750
gtgtagaatg	actgccctgg	gagggtggtt	ccttgggccc	tggcagggtt	800
gctgaccctt	accctgcaaa	acacaaagag	caggactcca	gactctcctt	850
gtgaatggtc	ccctgccctg	cagctccacc	atgaggcttc	tcgtggcccc	900
actcttgcta	gcttgggtgg	ctggtgccac	tgccactgtg	cccgtggtac	950
cctggcatgt	tccctgcccc	cctcagtgtg	cctgccagat	ccggccctgg	1000
tatacgcccc	gctcgtccta	ccgcgaggct	accactgtgg	actgcaatga	1050
cctattcctg	acggcagtcc	ccccggcact	cccgcaggc	acacagaccc	1100
tgctcctgca	gagcaacagc	attgtccgtg	tggaccagag	tgagctgggc	1150
tacctggcca	atctcacaga	gctggacctg	tcccagaaca	gcttttcgga	1200
tgcccgagac	tgtgatttcc	atgccctgcc	ccagctgctg	agcctgcacc	1250
tagaggagaa	ccagctgacc	cggctggagg	accacagctt	tgcagggctg	1300
gccagcctac	aggaactcta	tctcaaccac	aaccagctct	accgcatcgc	1350
ccccagggcc	ttttctggcc	tcagcaactt	gctgcggctg	cacctcaact	1400
ccaacctcct	gagggccatt	gacagccgct	ggtttgaaat	gctgcccaac	1450
ttggagatac	tcatgattgg	cggcaacaag	gtagatgcca	tcctggacat	1500
gaacttccgg	cccctggcca	acctgcgtag	cctggtgcta	gcaggcatga	1550
acctgcggga	gatctccgac	tatgccctgg	aggggctgca	aagcctggag	1600
agcctctcct	tctatgacaa	ccagctggcc	cgggtgccca	ggcgggcact	1650
ggaacaggtg	cccgggctca	agttcctaga	cctcaacaag	aacccgctcc	1700
agcgggtagg	gccgggggac	tttgccaaca	tgctgcacct	taaggagctg	1750
ggactgaaca	acatggagga	gctggtctcc	atcgacaagt	ttgccctggt	1800

gaacctcccc	gagctgacca	agctggacat	P1618P2C caccaataac		1850
ccttcatcca	ccccgcgcc	ttccaccacc	tgccccagat	ggagaccctc	1900
atgctcaaca	acaacgctct	cagtgccttg	caccagcaga	cggtggagtc	1950
cctgcccaac	ctgcaggagg	taggtctcca	cggcaacccc	atccgctgtg	2000
actgtgtcat	ccgctgggcc	aatgccacgg	gcacccgtgt	ccgcttcatc	2050
gagccgcaat	ccaccctgtg	tgcggagcct	ccggacctcc	agcgcctccc	2100
ggtccgtgag	gtgcccttcc	gggagatgac	ggaccactgt	ttgcccctca	2150
tctccccacg	aagcttcccc	ccaagcctcc	aggtagccag	tggagagagc	2200
atggtgctgc	attgccgggc	actggccgaa	cccgaacccg	agatctactg	2250
ggtcactcca	gctgggcttc	gactgacacc	tgcccatgca	ggcaggaggt	2300
accgggtgta	ccccgagggg	accctggagc	tgcggagggt	gacagcagaa	2350
gaggcagggc	tatacacctg	tgtggcccag	aacctggtgg	gggctgacac	2400
taagacggtt	agtgtggttg	tgggccgtgc	tctcctccag	ccaggcaggg	2450
acgaaggaca	ggggctggag	ctccgggtgc	aggagaccca	cccctatcac	2500
atcctgctat	cttgggtcac	cccacccaac	acagtgtcca	ccaacctcac	2550
ctggtccagt	gcctcctccc	tccggggcca	gggggccaca	gctctggccc	2600
gcctgcctcg	gggaacccac	agctacaaca	ttacccgcct	ccttcaggcc	2650
acggagtact	gggcctgcct	gcaagtggcc	tttgctgatg	cccacaccca	2700
gttggcttgt	gtatgggcca	ggaccaaaga	ggccacttct	tgccacagag	2750
ccttagggga	tcgtcctggg	ctcattgcca	tcctggctct	cgctgtcctt	2800
ctcctggcag	ctgggctagc	ggcccacctt	ggcacaggcc	aacccaggaa	2850
gggtgtgggt	gggaggcggc	ctctccctcc	agcctgggct	ttctggggct	2900
ggagtgcccc	ttctgtccgg	gttgtgtctg	ctccctcgt	cctgccctgg	2950
aatccaggga	ggaagctgcc	cagatcctca	gaaggggaga	cactgttgcc	3000
accattgtct	caaaattctt	gaagctcagc	ctgttctcag	cagtagagaa	3050
atcactagga	ctacttttta	ccaaaagaga	agcagtctgg	gccagatgcc	3100
ctgccaggaa	agggacatgg	acccacgtgc	ttgaggcctg	gcagctgggc	3150
caagaçagat	ggggctttgt	ggccctgggg	gtgcttctgc	agccttgaaa	3200
aagttgccct	tacctcctag	ggtcacctct	gctgccattc	tgaggaacat	3250
ctccaaggaa	caggagggac	tttggctaga	gcctcctgcc	tccccatctt	3300
ctctctgccc	agaggctcct	gggcctggct	tggctgtccc	ctacctgtgt	3350
ccccgggctg	caccccttcc	tcttctcttt	ctctgtacag Page 15	tctcagttgc 1	3400

ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450 ctcgggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500 catttgggag agggatgccc aggaacgcct catctcagca gcctgggctc 3550 ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600 atgtgtcacc tcccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650 aataaaaata aataataaca ataaaaaaa 3679

<210> 245 <211> 713 <212> PRT <213> Homo Sapien <400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly 1 5 10 15 Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro 20 25 30 Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser 35 40Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu
50 55 60 Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu
65 70 75 Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly 80 85 90 Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu 110 115 120Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His 125 130 135 Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His 140 145 150 Asn Gln Leu Tyr Arg Ile Ala Pro Arg Ala Phe Ser Gly Leu Ser 160 165 Asn Leu Leu Arg Leu His Leu Asn Ser Asn Leu Leu Arg Ala Ile 170 175 180 Asp Ser Arg Trp Phe Glu Met Leu Pro Asn Leu Glu Ile Leu Met 185 190 195 Ile Gly Gly Asn Lys Val Asp Ala Ile Leu Asp Met Asn Phe Arg 200 205 210 Pro Leu Ala Asn Leu Arg Ser Leu Val Leu Ala Gly Met Asn Leu 215 220 225 Page 152

Arg	Glu	Ile	Ser	Asp 230	Tyr	Аla	Leu	Glu	G]y 235	Leu	Gln	Ser	Leu	G1u 240
Ser	Leu	ser	Phe	Tyr 245	Asp	Asn	Gln	Leu	A]a 250	Arg	Val	Pro	Arg	Arg 255
Ala	Leu	Glu	Gln	va1 260	Pro	GТу	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn	Pro	Leu	Gln	Arg 275	٧a٦	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
нis	Leu	Lys	Glu	Leu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	∨al	Ser 300
Ile	Asp	Lys	Phe	Ala 305	Leu	val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 315
Asp	Ile	Thr	Asn	Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe	His	His	Leu	Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	Asn 345
Ala	Leu	Ser	Ala	Leu 350	His	Gln	Gln	Thr	Va1 355	Glu	Ser	Leu	Pro	Asn 360
Leu	Gln	Glu	٧a٦	Gly 365	Leu	His	Gly	Asn	Pro 370	Ile	Arg	Cys	Asp	Cys 375
٧a٦	Ile	Arg	Trp	Ala 380	Asn	Ala	Thr	Gly	Thr 385	Arg	٧a٦	Arg	Phe	Ile 390
Glu	Pro	G]n	Ser	Thr 395	Leu	Cys	Ala	Glu	Pro 400	Pro	Asp	Leu	Gln	Arg 405
Leu	Pro	va1	Arg	Glu 410	val	Pro	Phe	Arg	Glu 415	Met	Thr	Asp	His	Cys 420
Leu	Pro	Leu	Ile	Ser 425	Pro	Arg	Ser	Phe	Pro 430	Pro	Ser	Leu	Gln	Va1 435
Ala	Ser	Gly	Glu	Ser 440	Met	٧a٦	Leu	His	Cys 445	Arg	Аla	Leu	Ala	Glu 450
Pro	Glu	Pro	Glu	11e 455	Tyr	Тгр	۷a٦	Thr	Pro 460	Ala	Gly	Leu	Arg	Leu 465
Thr	Pro	Ala	His	Ala 470	ĠÌу	Arg	Arg	туr	Arg 475	٧a٦	Tyr	Pro	Glu	Gly 480
Thr	Leu	Glu	Leu	Arg 485	Arg	٧a٦	Thr	Ala	G]u 490	Glu	Ala	Gly	Leu	Tyr 495
Thr	Cys	٧a٦	Ala	G]n 500	Asn	Leu	٧a٦	Glу	А]а 505	Asp	Thr	Lys	Thr	Val 510
Ser	٧a٦	val	٧a٦	Gly 515	Arg	Ala	Leu	Leu	G]n 520	Pro	Gly	Arg	Asp	G]u 525
Gly	Gln	Gly	Leu	G1u 530	Leu	Arg	val	Gln	Glu 535 Pag	Thr je 15	_	Pro	Tyr	His 540

								•						
Ile	Leu	Leu	ser	Trp 545	Val	Thr	Pro	Pro	Asn 550	Thr	۷al	Ser	Thr	Asn 555
Leu	Thr	Trp	Ser	ser 560	Ala	ser	Ser	Leu	Arg 565	Gly	Gln	Gly	Ala	Thr 570
Ala	Leu	Ala	Arg	Leu 575	Pro	Arg	Gly	Thr	His 580	Ser	Tyr	Asn	Ile	Thr 585
Arg	Leu	Leu	Gln	Ala 590	Thr	Glu	Tyr	Тгр	Ala 595	Cys	Leu	Gln	Val	Ala 600
Phe	Ala	Asp	Ala	ніs 605	Thr	Gln	Leu	Ala	Cys 610	٧al	Тгр	Ala	Arg	Thr 615
Lys	Glu	Ala	Thr	Ser 620	Cys	His	Arg	Ala	Leu 625	GТу	Asp	Arg	Pro	G]y 630
Leu	Ile	Ala	Ile	Leu 635	Ala	Leu	Ala	Val	Leu 640	Leu	Leu	Ala	Ala	Gly 645
Leu	Ala	Ala	His	Leu 650	Gly	Thr	Glу	Gln	Pro 655	Arg	Lys	Gly	٧a٦	Gly 660
Gly	Arg	Arg	Pro	Leu 665	Pro	Pro	Ala	Тгр	Ala 670	Phe	Trp	Glу	Trp	ser 675
Ala	Pro	Ser	۷a٦	Arg 680	Val	Val	Ser	Ala	Pro 685	Leu	۷al	Leu	Pro	Trp 690
Asn	Pro	Gly	Arg	Lys 695	Leu	Pro	Arg	ser	ser 700	Glu	GТу	Glu	Thr	Leu 705
Leu	Pro	Pro	Leu	ser 710	Gln	Asn	ser							
<210><211><211><212><213>	> 22 > DNA	١	ial	Sequ	ience	<u>:</u>								
<220> <223>		ıthet	ic C	ligo	nucl	eoti	de F	robe	<u>;</u>					
<400> aaca	246 aaggt		atgo	cato	c tg	22								
<210><211><211><212><213>	24 DNA		:ial	Sequ	ience	<u>:</u>								
<220> <223>		thet	ic C	ligo	nucl	eoti	de P	robe	!					
<400> aaac	247 ttgt		tgga	gacc	a gc	tc 2	4							
<210><211><212>	• 45 • DNA													
<213>	Art	ific	ial	sequ	ence	!			Pag	e 15	4			

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 248
aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45
<210> 249
<211> 3401
<212> DNA
<213> Homo Sapien
<400> 249
gcaagccaag gcgctgtttg agaaggtgaa gaagttccgg acccatgtgg 50
aggaggggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100
gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150
catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200
accgcaccta ccgctgtgcc cacccctgg ccacactctt caagatcctg 250
gcgtccttct acatcagcct agtcatcttc tacggcctca tctgcatgta 300
cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350
cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400
ttcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450
gcgcttcgcc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500
tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550
aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600
ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650
tgatccccga cgtgaccatc ccgcccagca ttgcccagct cacgggcctc 700
aaggagctgt ggctctacca cacagcggcc aagattgaag cgcctgcgct 750
ggccttcctg cgcgagaacc tgcgggcgct gcacatcaag ttcaccgaca 800
tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850
cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900
cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950
taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000
ctgtccatca acaatgaggg caccaagctc atcgtcctca acagcctcaa 1050
gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100
gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150
aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200
gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250
```

ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350 ctacctggac ctcagccaca acaacctgac cttcctccct gccgacatcg 1400 gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450 acgctccctc cggagctctt ccagtgccgg aagctgcggg ccctgcacct 1500 gggcaacaac gtgctgcagt cactgccctc cagggtgggc gagctgacca 1550 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600 gagctgggcg agtgcccact gctcaagcgc agcggcttgg tggtggagga 1650 ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750 gaccgctgcc cagtcctcag gcccggaggg gcaggcctag cttctcccag 1800 aactcccgga cagccaggac agcctcgcgg ctgggcagga gcctggggcc 1850 gcttgtgagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900 ttttctccct ctgagactca cgtcccccag ggcaagtgct tgtggaggag 1950 agcaagtctc aagagcgcag tatttggata atcagggtct cctccctgga 2000 ggccagctct gccccagggg ctgagctgcc accagaggtc ctgggaccct 2050 cactttagtt cttggtattt atttttctcc atctcccacc tccttcatcc 2100 agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150 gggaaaggtg ggctgccttt tccccttgtc cttatttagc gatgccgccg 2200 ggcatttaac acccacctgg acttcagcag agtggtccgg ggcgaaccag 2250 ccatgggacg gtcacccagc agtgccgggc tgggctctgc ggtgcggtcc 2300 acgggagagc aggcctccag ctggaaaggc caggcctgga gcttgcctct 2350 tcagtttttg tggcagtttt agttttttgt ttttttttt tttaatcaaa 2400 aaacaatttt ttttaaaaaa aagctttgaa aatggatggt ttgggtatta 2450 aaaagaaaaa aaaaacttaa aaaaaaaaag acactaacgg ccagtgagtt 2500 ggagtctcag ggcagggtgg cagtttccct tgagcaaagc agccagacgt 2550 tgaactgtgt ttcctttccc tgggcgcagg gtgcagggtg tcttccggat 2600 ctggtgtgac cttggtccag gagttctatt tgttcctggg gagggaggtt 2650 tttttgtttg ttttttgggt ttttttggtg tcttgttttc tttctcctcc 2700 atgtgtcttg gcaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750 tctggagctg ccaaggaggg aggagactcg ggttggctaa tccccggatg 2800 aacggtgctc cattcgcacc tcccctcctc gtgcctgccc tgcctctcca 2850

P1618P2C3.txt

Page 156

									. 101	01 20.	J. CA			
cgc	acag	tgt	taag	gago	ca a	agagg	gagco	a ct	tcg	ccag	act	ttgt	ttc	2900
ccc	acct	cct	gcgg	catg	igg t	gtgt	ccag	jt go	caco	gctg	gcc	tccg	ctg	2950
ctt	ccat	cag	ccct	gtcg	CC a	acctg	gtcc	t to	atga	agag	cag	acac	tta	3000
gag	gctg	gtc	ggga	atgg	gg a	iggto	gccc	c to	ggag	ıggca	ggc	gttg	gtt	3050
cca	agcc	ggt	tccc	gtcc	ct g	gcgc	ctgg	a gt	gcac	acag	ccc	agto	ggc	3100
acc	tggt	ggc	tgga	agcc	aa c	ctgc	ttta	g at	cact	cggg	tcc	ccac	ctt	3150
aga	aggg	tcc	ccgc	ctta	ga t	caat	cacg	it gg	acac	taag	gca	cgtt	tta	3200
gag	tctc	ttg	tctt	aatg	at t	atgt	ccat	c cg	tctg	tccg	tcc	attt	gtg	3250
ttt	tctg	cgt	cgtg	tcat	tg g	atat	aatc	c to	agaa	ataa	tgc	acac	tag	3300
cct	ctga	caa	ccat	gaag	ca a	aaat	ccgt	t ac	atgt	gggt	ctg	aact	tgt	3350
		gtc	acag	tatc	aa a	taaa	atct	a ta	acag	aaaa	aaa	aaaa	aaa	3400
a 3	401													
<210: <211: <212: <213:	> 54 > PR	6 T	apie	n										
<400		~	- 1	-7.	7						_		_	_
мет 1	arg	Gin	ınr	11e 5	тіе	Lys	vaı	Ile	Lys 10	Phe	Ile	Leu	Ile	11e 15
-	-	Thr		20		val			25	_		•		30
Cys	Thr	۷al	Asp	Ile 35	Glu	Ser	Leu	Thr	G]y 40	Tyr	Arg	Thr	Tyr	Arg 45
Cys	Ala	His	Pro	Leu 50	Ala	Thr	Leu	Phe	Lys 55	Ile	Leu	Ala	ser	Phe 60
Tyr	Ile	ser	Leu	Va 1 65	Ile	Phe	Tyr	Glу	Leu 70	Ile	Cys	Met	Tyr	Thr 75
Leu	тгр	Trp	Met	Leu 80	Arg	Arg	ser	Leu	Lys 85	Lys	Tyr	ser	Phe	Glu 90
Ser	Ile	Arg	Glu	GTu 95	Ser	Ser	Tyr	Ser	Asp 100	Ile	Pro	Asp	۷al	Lys 105
Asn	Asp	Phe	Ala	Phe 110	Met	Leu	His	Leu	11e 115	Asp	Gln	Tyr	Asp	Pro 120
Leu	Tyr	Ser	Lys	Arg 125	Phe	Ala	Val	Phe	Leu 130	Ser	Glu	۷al	Ser	Glu 135
Asn	Lys	Leu	Arg	Gln 140	Leu	Asn	Leu	Asn	Asn 145	Glu	тгр	Thr	Leu	Asp 150
Lys	Leu	Arg	Gln	Arg 155	Leu	Thr	Lys	Asn	160	Gln je 15		Lys	Leu	Glu 165

Leu	His	Leu	Phe		Leu	Ser	Gly	ıle		Asp	Thr	val	Phe	
Lou	Va1	6 1	Lou	170	Val.	Lou	Lvc	Lou	175	Lou	T]_0	Dno	A.c.n	180
Leu	vai	Giu	Leu	185	vai	Leu	Lys.	Leu	190	Leu	Tie	PIO	ASP	Va I 195
Thr	Ile	Pro	Pro	Ser 200	Ile	Ala	Gln	Leu	Thr 205	Gly	Leu	Lys	Glu	Leu 210
Тгр	Leu	Tyr	His	Thr 215	Ala	Ala	Lys	Ile	G1u 220	Ala	Pro	Ala	Leu	Ala 225
Phe	Leu	Arg	Glu	Asn 230	Leu	Arg	Ala	Leu	His 235	Ile	Lys	Phe	Thr	Asp 240
Ile	Lys	Glu	Ile	Pro 245	Leu	Trp	Ile	Tyr	Ser 250	Leu	Lys	Thr	Leu	Glu 255
Glu	Leu	His	Leu	Thr 260	Gly	Asn	Leu	Ser	Ala 265	Glu	Asn	Asn	Arg	Tyr 270
Ile	۷a٦	Ile	Asp	Gly 275	Leu	Arg	Glu	Leu	Lys 280	Arg	Leu	Lys	val	Leu 285
Arg	Leu	Lys	Ser	Asn 290	Leu	Ser	Lys	Leu	Pro 295	Gln	val	val	Thr	Asp 300
val	Gly	Val	His	Leu 305	Gln	Lys	Leu	Ser	Ile 310	Asn	Asn	Glu	Gly	Thr 315
Lys	Leu	Ile	Val	Leu 320	Asn	Ser	Leu	Lys	Lys 325	Met	Ala	Asn	Leu	Thr 330
Glu	Leu	Glu	Leu	11e 335	Arg	Cys	Asp	Leu	G1u 340	Arg	Ile	Pro	нis	Ser 345
Ile	Phe	Ser	Leu	His 350	Asn	Leu	Gln	Glu	11e 355	Asp	Leu	Lys	Asp	Asn 360
Asn	Leu	Lys	Thr	11e 365	Glu	Glu	Ile	Ile	ser 370	Phe	Gln	His	Leu	His 375
Arg	Leu	Thr	Cys	Leu 380	Lys	Leu	Trp		Asn 385	His	Ile	Ala	Tyr	Ile 390
Pro	Ile	Gln	Ile	G]y 395	Asn	Leu	Thr	Asn	Leu 400	Glu	Arg	Leu	Tyr	Leu 405
Asn	Arg	Asn	Lys	Ile 410	Glu	Lys	Ile	Pro	Thr 415	Gln	Leu	Phe	Tyr	Cys 420
Arg	Lys	Leu	Arg	Tyr 425	Leu	Asp	Leu	Ser	His 430	Asn	Asn	Leu	Thr	Phe 435
Leu	Pro	Ala	Asp	Ile 440	Gly	Leu	Leu	Gln	Asn 445	Leu	Gln	Asn	Leu	Ala 450
Ile	Thr	Ala	Asn	Arg 455	Ile	Glu	Thr	Leu	Pro 460	Pro	Glu	Leu	Phe	G1n 465
Cys	Arg	Lys	Leu	Arg 470	Ala	Leu	His	Leu	475	Asn je 15		Val	Leu	Gln 480

S	er	Leu	Pro	ser	Arg 485	val	Gly	Glu	Leu	Thr 490	Asn	Leu	Thr	Gln	11e 495
G	lu	Leu	Arg	Gly	Asn 500	Arg	Leu	Glu	Cys	Leu 505	Pro	٧a٦	Glu	Leu	Gly 510
G	lu	Cys	Pro	Leu	Leu 515	Lys	Arg	Ser	GТу	Leu 520	va1	۷a٦	Glu	Glu	Asp 525
L	eu	Phe	Asn	Thr	Leu 530	Pro	Pro	Glu	۷a٦	Lys 535	Glu	Arg	Leu	Тгр	Arg 540
A	la	Asp	Lys	Glu	G1n 545	Ala									
<2: <2:	11> 12>	251 20 DNA Art	4	cial	Sequ	ience	<u> </u>								
<22 <22			nthe	tic (Oligo	nuc	leoti	ide P	robe	<u> </u>					
		252 aatg		ggcad	ccaag	jc 20)								
<2: <2:	L1> L2>	252 24 DNA	4	cial	Sequ	ience	2								
<22 <22			nthe [.]	tic (Oligo	nucl	leoti	de P	robe	<u>:</u>					
		252 gcta		ttctg	gagg	ıt to	tg 2	24							
<2: <2:	L1> L2>	253 47 DNA Art	\	cial	Sequ	ence	· •								
<22 <22			ithei	tic C	ligo	nucl	eoti	de P	robe	<u></u>					
		253 ctgc		gagat	tgac	c to	aagg	acaa	caa	cctc	aag	acca	itcg	47	
<21 <21	L1> L2>	254 165 DNA Hom	50 \	apien	1										
		254 gttg		gatgo	tgcc	g tg	cggt	actt	gto	atgg	agc	tggc	actg	cg !	50
go	gc	tctc	cc g	gtccc	gcgg	t gg	ttgc	tgct	gct	gccg	ctg	ctgc	tggg	cc i	100
tg	aa	cgca	igg a	agctg	ıtcat	t ga	ctgg	ccca	cag	agga	ggg	caag	gaag	ta 3	L50
tg	ıgg	atta	ıtg t	gacg	gtcc	g ca	agga	tgcc	tac	atgt	tct	ggtg	gctc	ta 2	200

			P1618P2C3	2 +v+	
ttatgccacc	aactcctgca	agaacttctc			250
ggcttcaggg	cggtccaggc	ggttctagca	ctggatttgg	aaactttgag	300
gaaattgggc	cccttgacag	tgatctcaaa	ccacggaaaa	ccacctggct	350
ccaggctgcc	agtctcctat	ttgtggataa	tcccgtgggc	actgggttca	400
gttatgtgaa	tggtagtggt	gcctatgcca	aggacctggc	tatggtggct	450
tcagacatga	tggttctcct	gaagaccttc	ttcagttgcc	acaaagaatt	500
ccagacagtt	ccattctaca	ttttctcaga	gtcctatgga	ggaaaaatgg	550
cagctggcat	tggtctagag	ctttataagg	ccattcagcg	agggaccatc	600
aagtgcaact	ttgcgggggt	tgccttgggt	gattcctgga	tctcccctgt	650
tgattcggtg	ctctcctggg	gaccttacct	gtacagcatg	tctcttctcg	700
aagacaaagg	tctggcagag	gtgtctaagg	ttgcagagca	agtactgaat	750
gccgtaaata	aggggctcta	cagagaggcc	acagagctgt	gggggaaagc	800
agaaatgatc	attgaacaga	acacagatgg	ggtgaacttc	tataacatct	850
taactaaaag	cactcccacg	tctacaatgg	agtcgagtct	agaattcaca	900
cagagccacc	tagtttgtct	ttgtcagcgc	cacgtgagac	acctacaacg	950
agatgcctta	agccagctca	tgaatggccc	catcagaaag	aagctcaaaa	1000
ttattcctga	ggatcaatcc	tggggaggcc	aggctaccaa	cgtctttgtg	1050
aacatggagg	aggacttcat	gaagccagtc	attagcattg	tggacgagtt	1100
gctggaggca	gggatcaacg	tgacggtgta	taatggacag	ctggatctca	1150
tcgtagatac	catgggtcag	gaggcctggg	tgcggaaact	gaagtggcca	1200
gaactgccta	aattcagtca	gctgaagtgg	aaggccctgt	acagtgaccc	1250
taaatctttg	gaaacatctg	cttttgtcaa	gtcctacaag	aaccttgctt	1300
tctactggat	tctgaaagct	ggtcatatgg	ttccttctga	ccaaggggac	1350
atggctctga	agatgatgag	actggtgact	cagcaagaat	aggatggatg	1400
gggctggaga	tgagctggtt	tggccttggg	gcacagagct	gagctgaggc	1450
cgctgaagct	gtaggaagcg	ccattcttcc	ctgtatctaa	ctggggctgt	1500
gatcaagaag	gttctgacca	gcttctgcag	aggataaaat	cattgtctct	1550
ggaggcaatt	tggaaattat	ttctgcttct	taaaaaaacc	taagatttt	1600
taaaaaattg	atttgttttg	atcaaaataa	aggatgataa	tagatattaa	1650
<210> 255 <211> 452 <212> PRT <213> Homo S	apien				
			Dago 16	0	

.400	. 25	_						F	1618	P2C	3.tx1	t		
<400 Met 1			Ala	Leu 5	Arg	Arg	Ser	Pro	۷al 10	Pro	Arg	Trp	Leu	Leu 15
Leu	Leu	Pro	Leu	Leu 20	Leu	Gly	Leu	Asn	A1a 25	Gly	Ala	∨al	Ile	Asp 30
Trp	Pro	Thr	Glu	Glu 35	Gly	Lys	Glu	۷al	Trp 40	Asp	Tyr	∨al	Thr	∨a1 45
Arg	Lys	Asp	Ala	Tyr 50	Met	Phe	Trp	Тгр	Leu 55	Туr	Tyr	Аlа	Thr	Asn 60
Ser	Cys	Lys	Asn	Phe 65	Ser	Glu	Leu	Pro	Leu 70	٧a٦	Met	Trp	Leu	Gln 75
Gly	Gly	Pro	Gly	Gly 80	ser	Ser	Thr	Gly	Phe 85	Glу	Asn	Phe	Glu	Glu 90
Ile	Gly	Pro	Leu	Asp 95	Ser	Asp	Leu	Lys	Pro 100	Arg	Lys	Thr	Thr	Trp 105
Leu	Gln	Ala	Ala	Ser 110	Leu	Leu	Phe	val	Asp 115	Asn	Pro	۷al	Gly	Thr 120
Gly	Phe	Ser	Tyr	Val 125	Asn	Gly	Ser	Gly	Ala 130	Tyr	Ala	Lys	Asp	Leu 135
Ala	Met	∨al	Ala	Ser 140	Asp	Met	Met	Val	Leu 145	Leu	Lys	Thr	Phe	Phe 150
Ser	Cys	His	Lys	Glu 155	Phe	Gln	Thr	∨al	Pro 160	Phe	Tyr	Ile	Phe	Ser 165
Glu	Ser	Tyr	Gly	Gly 170	Lys	Met	Ala	Ala	Gly 175	Ile	Gly	Leu	Glu	Leu 180
Tyr	Lys	Ala	Ile	Gln 185	Arg	GТу	Thr	Ile	Lys 190	Cys	Asn	Phe	Ala	Gly 195
۷al	Ala	Leu	Gly	Asp 200	Ser	Trp	Ile	Ser	Pro 205	val	Asp	ser	val	Leu 210
Ser	Trp	Gly	Pro	Tyr 215	Leu	Tyr	Ser	Met	Ser 220	Leu	Leu	Glu	Asp	Lys 225
Gly	Leu	Ala	Glu	va1 230	Ser	Lys	۷al	Ala	G1u 235	Gln	۷a٦	Leu	Asn	Ala 240
Val	Asn	Lys	Gly	Leu 245	Tyr	Arg	Glu	Ala	Thr 250	Glu	Leu	Trp	Glу	Lys 255
Ala	Glu	Met	Ile	11e 260	Glu	Gln	Asn	Thr	Asp 265	Glу	٧a٦	Asn	Phe	Tyr 270
Asn	Ile	Leu	Thr	Lys 275	Ser	Thr	Pro	Thr	Ser 280	Thr	Met	Glu	Ser	Ser 285
Leu	Glu	Phe	Thr	G]n 290	Ser	His	Leu	∨al	Cys 295	Leu	Cys	Gln	Arg	ніs 300
∨al	Arg	His	Leu	G1n 305	Arg	Asp	Ala	Leu	310	Gln e 16		Met	Asn	Gly 315

Pro Ile Ar	J Lys	Lys 320	Leu	Lys	Ile	Ile	Pro 325	Glu	Asp	Gln	Ser	Trp 330
Gly Gly Gli	ı Ala	Thr 335	Asn	val	Phe	val	Asn 340	Met	Glu	Glu	Asp	Phe 345
Met Lys Pro	val	Ile 350	Ser	Ile	٧a٦	Asp	Glu 355	Leu	Leu	Glu	Ala	G]y 360
Ile Asn Va	Thr	va 1 365	туг	Asn	Gly	Gln	Leu 370	Asp	Leu	Ile	va1	Asp 375
Thr Met Gly	Gln	Glu 380	Ala	Trp	۷al	Arg	Lys 385	Leu	Lys	тгр	Pro	G]u 390
Leu Pro Lys	Phe	Ser 395	Gln	Leu	Lys	Trp	Lys 400	Ala	Leu	Tyr	Ser	Asp 405
Pro Lys Sei	Leu	Glu 410	Thr	Ser	Ala	Phe	val 415	Lys	Ser	Tyr	Lys	Asn 420
Leu Ala Phe	туг	Trp 425	Ile	Leu	Lys	Ala	G]y 430	His	Met	۷a٦	Pro	Ser 435
Asp Gln Gly	Asp	Met 440	Ala	Leu	Lys	Met	Met 445	Arg	Leu	۷a٦	Thr	Gln 450
Gln Glu												

<210> 256

<400> 256

tgctgctgga tcgggctgga ctcaggaagc cggggcgctg ctgctggcgc 50
tgctgctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100
ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcatcgtggg 150
tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200
tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctgggca 250
ctcacggcgg cgcactgctt tgaaacctat agtgacctta gtgatccctc 300
cggggtggatg gtccagtttg gccagctgac ttccatgcca tccttctgga 350
gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400
cctcgctacc tggggaattc accctatgac attgccttgg tgaagctgtc 450
tgcacctgtc acctacacta aacacatcca gcccatctgt ctccaggcct 500
ccacatttga gtttgagaac cggacagact gctgggtgac tggctggggg 550
tacatcaaag aggatgaggc actgccatct ccccacaccc tccaggaagt 600
tcaggtcgcc atcataaaca actctatggg caaccacctc ttcctcaagt 650

<211> 1100

<212> DNA

<213> Homo Sapien

acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700
caaggcggga aggatgcctg cttcggtgac tcaggtggac ccttggcctg 750
taacaagaat ggactgtggt atcagattgg agtcgtgagc tgggggagtgg 800
gctgtggtcg gcccaatcgg cccggtgtct acaccaatat cagccaccac 850
tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900
cccctcctgg ccactactct ttttccctct tctctgggct ctcccactcc 950
tggggccggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000
agtcaggccc tggttctctt ctgtcttgtt tggtaataaa cacattccag 1050
ttgatgcctt gcagggcatt cttcaaaaaa aaaaaaaaa aaaaaaaaa 1100
<210> 257

<210> 257 <211> 314 <212> PRT

<213> Homo Sapien

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser 30 Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly 45 Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg 60 Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg 75 Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu 90 Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gly Gln Leu Thr Ser Asp Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe 120 Val Ser Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr 150 Lys His Ile Gln Pro Ile Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys Glu Asp Glu Ala Leu Pro Ser Pro His Trp Gly Tyr Ile Lys Glu Asp Glu Ala Leu Pro Ser Pro His Trp Gly Val Gln Glu Val Gln Glu Asp Glu Ala Leu Pro Ser Pro His Trp Gly Tyr Ile Lys Glu Asp Glu Ala Leu Pro Ser Pro His Trp Leu Gln Glu Val Gln Info

ValAlaIleIleAsn 200Asn SerMetCys Asn His Leu Phe 205Ltxt Phe Leu Lys 210TyrSerPhe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly 225Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly 230Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly 255Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly 270Tyr Thr Asn Ile Ser His His Phe Glu Trp 285Ala Gln Ser Gly Met 275Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu 300Phe Phe Pro Leu Leu Leu Trp Ala Leu Pro Leu Gly Pro Val

<400> 258 cccacgcgtc cgcggacgcg tgggaagggc agaatgggac tccaagcctg 50 cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactctcgg agctggtgca ggctgtgtcg gatcccagct 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggccatccc cactgaccct ccacacggtg caaaaatggc tcttggcagc 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagctt ccacaggcct tggcccccca tgtggacttt gtggggggac 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagccaagc ctgtgcccag ttcctggagc agtatttcca tgactcagac 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 Page 164

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

	ccagtctaga	tgtgcagtac	ctgatgagtg	ctggtgccaa	catctccacc	900
	tgggtctaca	gtagccctgg	ccggcatgag	ggacaggagc	ccttcctgca	950
	gtggctcatg	ctgctcagta	atgagtcagc	cctgccacat	gtgcatactg	1000
	tgagctatgg	agatgatgag	gactccctca	gcagcgccta	catccagcgg	1050
	gtcaacactg	agctcatgaa	ggctgccgct	cggggtctca	ccctgctctt	1100
	cgcctcaggt	gacagtgggg	ccgggtgttg	gtctgtctct	ggaagacacc	1150
	agttccgccc	taccttccct	gcctccagcc	cctatgtcac	cacagtggga	1200
	ggcacatcct	tccaggaacc	tttcctcatc	acaaatgaaa	ttgttgacta	1250
	tatcagtggt	ggtggcttca	gcaatgtgtt	cccacggcct	tcataccagg	1300
	aggaagctgt	aacgaagttc	ctgagctcta	gccccacct	gccaccatcc	1350
	agttacttca	atgccagtgg	ccgtgcctac	ccagatgtgg	ctgcactttc	1400
	tgatggctac	tgggtggtca	gcaacagagt	gcccattcca	tgggtgtccg	1450
	gaacctcggc	ctctactcca	gtgtttgggg	ggatcctatc	cttgatcaat	1500
	gagcacagga	tccttagtgg	ccgccccct	cttggctttc	tcaacccaag	1550
	gctctaccag	cagcatgggg	caggtctctt	tgatgtaacc	cgtggctgcc	1600
	atgagtcctg	tctggatgaa	gaggtagagg	gccagggttt	ctgctctggt	1650
	cctggctggg	atcctgtaac	aggctgggga	acaccaactt	cccagctttg	1700
	ctgaagactc	tactcaaccc	ctgacccttt	cctatcagga	gagatggctt	1750
	gtcccctgcc	ctgaagctgg	cagttcagtc	ccttattctg	ccctgttgga	1800
	agccctgctg	aaccctcaac	tattgactgc	tgcagacagc	ttatctccct	1850
	aaccctgaaa	tgctgtgagc	ttgacttgac	tcccaaccct	accatgctcc	1900
	atcatactca	ggtctcccta	ctcctgcctt	agattcctca	ataagatgct	1950
•	gtaactagca	ttttttgaat	gcctctccct	ccgcatctca	tctttctctt	2000
	ttcaatcagg	cttttccaaa	gggttgtata	cagactctgt	gcactatttc	2050
•	acttgatatt	cattccccaa	ttcactgcaa	ggagacctct	actgtcaccg	2100
	tttactcttt	cctaccctga	catccagaaa	caatggcctc	cagtgcatac	2150
•	ttctcaatct	ttgctttatg	gcctttccat	catagttgcc	cactccctct	2200
•	ccttacttag	cttccaggtc	ttaacttctc	tgactactct	tgtcttcctc	2250
1	tctcatcaat	ttctgcttct	tcatggaatg	ctgaccttca	ttgctccatt	2300
1	tgtagatttt	tgctcttctc	agtttactca	ttgtcccctg	gaacaaatca	2350
(tgacatcta	caaccattac	catctcacta	aataagactt	tctatccaat	2400

aatgattgat acctcaaatg taaaaaa 2427

<210> 259 <211> 556 <212> PRT <213> Homo Sapien <400> 259 Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu 1 10 15 Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr 20 25 30Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu 35 40 45 Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg 50 55 60 Leu Ser Glu Leu Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln
65 70 75 Tyr Gly Lys Tyr Leu Thr Leu Glu Asn Val Ala Asp Leu Val Arg 80 85 90 Pro Ser Pro Leu Thr Leu His Thr Val Gln Lys Trp Leu Leu Ala 95 100 105 Ala Gly Ala Gln Lys Cys His Ser Val Ile Thr Gln Asp Phe Leu 110 115 120 Thr Cys Trp Leu Ser Ile Arg Gln Ala Glu Leu Leu Pro Gly 125 130 Ala Glu Phe His His Tyr Val Gly Gly Pro Thr Glu Thr His Val 140 145 150 Val Arg Ser Pro His Pro Tyr Gln Leu Pro Gln Ala Leu Ala Pro 165 - 160 - 165 His Val Asp Phe Val Gly Gly Leu His Arg Phe Pro Pro Thr Ser 170 175 180 Ser Leu Arg Gln Arg Pro Glu Pro Gln Val Thr Gly Thr Val Gly 185 190 195 Leu His Leu Gly Val Thr Pro Ser Val Ile Arg Lys Arg Tyr Asn 200 205 210 Leu Thr Ser Gln Asp Val Gly Ser Gly Thr Ser Asn Asn Ser Gln 215 220 225 Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu 230 235 240 Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala 245 250 255 Ser Val Ala Arg Val Val Gly Gln Gln Gly Arg Gly Arg Ala Gly 260 265 270

Ile Glu Ala Ser Leu Asp Val Gln Tyr Leu Met Ser Ala Gly Ala

Page 166

				275				P	1618 280	BP2C3	.txt			285
Asn	Ile	ser	Thr	Trp	٧al	Tyr	ser	Ser	Pro	Gly	Arg	His	Glu	G]y
c]n	c]	Dro	Dho	290	cln	Trn	Lou	Mot	295	Lou	Son	A.c.n	61	300
GIII	Giu	PIO	PITE	Leu 305	GIII	пр	Leu	мес	310	Leu	ser	ASII	Giu	Ser 315
Ala	Ļeu	Pro	His	va1 320	His	Thr	٧al	Ser	Tyr 325	Gly	Asp	Asp	Glu	Asp 330
Ser	Leu	Ser	Ser	Ala 335	Tyr	Ile	Gln	Arg	Va1 340	Asn	Thr	Glu	Leu	Met 345
Lys	Ala	Ala	Ala	Arg 350	Gly	Leu	Thr	Leu	Leu 355	Phe	Ala	Ser	Gly	Asp 360
Ser	Gly	Ala	Gly	Cys 365	Trp	Ser	٧al	Ser	Gly 370	Arg	His	Gln	Phe	Arg 375
Pro	Thr	Phe	Pro	Ala 380	Ser	Ser	Pro	Tyr	va1 385	Thr	Thr	val	Gly	Gly 390
Thr	Ser	Phe	Gln	G1u 395	Pro	Phe	Leu	Ile	Thr 400	Asn	Glu	Ile	Val	Asp 405
Tyr	Ile	ser	Gly	Gly 410	Gly	Phe	Ser	Asn	Val 415	Phe	Pro	Arg	Pro	Ser 420
Tyr	Gln	Glu	Glu	Ala 425	val	Thr	Lys	Phe	Leu 430	Ser	Ser	Ser	Pro	His 435
Leu	Pro	Pro	Ser	Ser 440	Tyr	Phe	Asn	Ala	Ser 445	Gly	Arg	Ala	туг	Pro 450
Asp	٧a٦	Ala	Ala	Leu 455	Ser	Asp	Gly	Tyr	Trp 460	val	٧al	Ser	Asn	Arg 465
٧al	Pro	Ile	Pro	Trp 470	۷a٦	Ser	Gly	Thr	Ser 475	Ala	Ser	Thr	Pro	va1 480
Phe	Gly	Gly	Ile	Leu 485	Ser	Leu	Ile	Asn	G1u 490	нis	Arg	Ile	Leu	Ser 495
Gly	Arg	Pro	Pro	Leu 500	Gly	Phe	Leu	Asn	Pro 505	Arg	Leu	Tyr	Gln	Gln 510
His	Gly	Аlа	Gly	Leu 515	Phe	Asp	val	Thr	Arg 520	Gly	Cys	His	Glu	Ser 525
Cys	Leu	Asp	Glu	G]u 530	۷al	Glu	Gly	Gln	G]y 535	Phe	Cys	Ser	Gly	Pro 540
Gly	Trp	Asp	Pro	∨a1 545	Thr	Gly	Trp	Gly	Thr 550	Pro	Thr	Ser	Gln	Leu 555
Cys														

<210> 260 <211> 1638 <212> DNA <213> Homo Sapien

<400> 260 gccgcgct	ctctcccggc	gcccacacct	gtctgagcgg	cgcagcgagc	50
cgcggcccgg	gcgggctgct	cggcgcggaa	cagtgctcgg	catggcaggg	100
attccagggc	tcctcttcct	tctcttcttt	ctgctctgtg	ctgttgggca	150
agtgagccct	tacagtgccc	cctggaaacc	cacttggcct	gcataccgcc	200
tccctgtcgt	cttgccccag	tctaccctca	atttagccaa	gccagacttt	250
ggagccgaag	ccaaattaga	agtatcttct	tcatgtggac	cccagtgtca	300
taagggaact	ccactgccca	cttacgaaga	ggccaagcaa	tatctgtctt	350
atgaaacgct	ctatgccaat	ggcagccgca	cagagacgca	ggtgggcatc	400
tacatcctca	gcagtagtgg	agatggggcc	caacaccgag	actcagggtc	450
ttcaggaaag	tctcgaagga	agcggcagat	ttatggctat	gacagcaggt	500
tcagcatttt	tgggaaggac	ttcctgctca	actacccttt	ctcaacatca	550
gtgaagttat	ccacgggctg	caccggcacc	ctggtggcag	agaagcatgt	600
ccteacagct	gcccactgca	tacacgatgg	aaaaacctat	gtgaaaggaa	650
cccagaagct	tcgagtgggc	ttcctaaagc	ccaagtttaa	agatggtggt	700
cgaggggcca	acgactccac	ttcagccatg	cccgagcaga	tgaaatttca	750
gtggatccgg	gtgaaacgca	cccatgtgcc	caagggttgg	atcaagggca	800
atgccaatga	catcggcatg	gattatgatt	atgccctcct	ggaactcaaa	850
aagccccaca	agagaaaatt	tatgaagatt	ggggtgagcc	ctcctgctaa	900
gcagctgcca	gggggcagaa	ttcacttctc	tggttatgac	aatgaccgac	950
caggcaattt	ggtgtatcgc	ttctgtgacg	tcaaagacga	gacctatgac	1000
ttgctctacc	agcaatgcga	tgcccagcca	ggggccagcg	ggtctggggt	1050
ctatgtgagg	atgtggaaga	gacagcagca	gaagtgggag	cgaaaaatta	1100
ttggcatttt	ttcagggcac	cagtg gg tgg	acatgaatgg	ttccccacag	1150
gatttcaacg	tggctgtcag	aatcactcct	ctcaaatatg	cccagatttg	1200
ctattggatt	aaaggaaact	acctggattg	taggga gggg	tgacacagtg	1250
ttccctcctg	gcagcaatta	agggtcttca	tgttcttatt	ttaggagagg	1300
ccaaattgtt	ttttgtcatt	ggcgtgcaca	cgtgtgtgtg	tgtgtgtgtg	1350
tgtgtgtaag	gtgtcttata	atcttttacc	tatttcttac	aattgcaaga	1400
tgactggctt	tactatttga	aaactggttt	gtgtatcata	tcatatatca	1450
tttaagcagt	ttgaaggcat	acttttgcat	agaaataaaa	aaaatactga	1500
tttg gg gcaa	tgaggaatat	ttgacaatta	agttaatctt Page 16		1550

caaactttga tttttatttc atctgaactt gtttcaaaga tttatattaa 1600 atatttggca tacaagagat atgaaaaaaa aaaaaaaa 1638

<210> 261 <211> 383 <212> PRT <213> Homo Sapien <400> 261 Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu
1 5 10 15 Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro 20 25 30 Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr 35 40 45 Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu
50 55 60 Val Ser Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu 65 70 75 Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu 80 85 90 Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile 95 100 105 Leu Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser 110 115 120 Ser Gly Lys Ser Arg Arg Lys Arg Gln Ile Tyr Gly Tyr Asp Ser 125 130 135 Arg Phe Ser Ile Phe Gly Lys Asp Phe Leu Leu Asn Tyr Pro Phe 140 145 150 Ser Thr Ser Val Lys Leu Ser Thr Gly Cys Thr Gly Thr Leu Val 155 160 165 Ala Glu Lys His Val Leu Thr Ala Ala His Cys Ile His Asp Gly 170 175 180 Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val Gly Phe Leu 185 190 195 Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp Ser Thr 200 205 210 Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val Lys 215 220 225 Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp 230 235 Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro 245 250 255 His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys Page 169

				260				P	1618 265	P2C3	.txt			270
				200					203					270
Gln	Leu	Pro	Gly	Gly 275	Arg	Ile	His	Phe	Ser 280	Gly	Tyr	Asp	Asn	Asp 285
Arg	Pro	Gly	Asn	Leu 290	Val	Tyr	Arg	Phe	Cys 295	Asp	Val	Lys	Asp	Glu 300
Thr	Tyr	Asp	Leu	Leu 305	Tyr	Gln	Gln	Cys	Asp 310	Ala	Gln	Pro	Gly	Ala 315
Ser	Gly	Ser	Gly	va1 320	Tyr	∨al	Arg	Met	Trp 325	Lys	Arg	Gln	Gln	G]n 330
Lys	Trp	Glu	Arg	Lys 335	Ile	Ile	Gly	Ile	Phe 340	Ser	Gly	His	Gln	Trp 345
۷a٦	Asp	Met	Asn	G]y 350	Ser	Pro	Gln	Asp	Phe 355	Asn	Val	Ala	Val	Arg 360
Ile	Thr	Pro	Leu	Lys 365	Tyr	Ala	G]n	Ile	Cys 370	Tyr	Trp	Ile	Lys	Gly 375
Asn	Tyr	Leu	Asp	Cys 380	Arg	Glu	Gly							

<210> 262

<211> 1378

<212> DNA

<213> Homo Sapien

<400> 262 gcatcgccct gggtctctcg agcctgctgc ctgctccccc gccccaccag 50 ccatggtggt ttctggagcg cccccagccc tgggtggggg ctgtctcggc 100 accttcacct ccctgctgct gctggcgtcg acagccatcc tcaatgcggc 150 caggatacct gttcccccag cctgtgggaa gccccagcag ctgaaccggg 200 ttgtgggcgg cgaggacagc actgacagcg agtggccctg gatcgtgagc 250 atccagaaga atgggaccca ccactgcgca ggttctctgc tcaccagccg 300 ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350 acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400 cggtcccaga aggtgggtgt tgcctgggtg gagccccacc ctgtgtattc 450 ctggaaggaa ggtgcctgtg cagacattgc cctggtgcgt ctcgagcgct 500 ccatacagtt ctcagagcgg gtcctgccca tctgcctacc tgatgcctct 550 atccacctcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600 ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650 ttcctatcat cgactcggaa gtctgcagcc atctgtactg gcggggagca 700 ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800 Page 170

tggacggcg ctggctgtg gccggcatca tcagctggg cgagggctgt 850 gccgaggcgca acaggcccgg ggtctacatc agcctcttg cgcaccgctc 900 ctgggtggag aagatcgtgc aaggggtgca gctccgggg cgcgctcagg 950 ggggtggggc cctcagggca ccgagccagg gctctggggc cgccgcgcgc 1000 tcctagggcg cagcgggacg cggggctcgg atctgaaagg cggccagatc 1050 cacatctgga tctggatctg cggcggctc ggggggtttc ccccgccgta 1100 aataggctca tctacctcta cctctggggg cccggacggc tgctgggaa 1150 aggaaacccc ctccccgacc cgcccgacgg cctcaggcc cccccac gacttccggc 1250 cccgccccc ggccccagcg cttttgtgta tataaatgtt aatgatttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaattatt tattctccaa aaaaaaaa 1378

<400> 263

Page 171

<210> 263

<211> 317

<211> 317 <212> PRT

<213> Homo Sapien

Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Gly Cys Leu 1 5 10 15

Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu 20 25 30

Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln
35 40 45

Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu 50 55 60

Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys
65 70 75

Ala Gly Ser Leu Leu Thr Ser Arg Trp Val Ile Thr Ala Ala His 80 85 90

Leu Gly Ala Trp Gln Leu Gly Asn Pro Gly Ser Arg Ser Gln Lys 110 115

Val Gly Val Ala Trp Val Glu Pro His Pro Val Tyr Ser Trp Lys 125 130 135

Ile Gln Phe Ser Glu Arg Val Leu Pro Ile Cys Leu Pro Asp Ala 155 160 165

	P1618P2C3.txt													
Ser	Ile	His	Leu	Pro 170	Pro	Asn	Thr	His	Cys 175	Trp	Ile	Ser	Gly	Trp 180
Gly	Ser	Ile	Gln	Asp 185	Gly	۷a٦	Pro	Leu	Pro 190	His	Pro	Gln	Thr	Leu 195
Gln	Lys	Leu	Lys	va1 200	Pro	Ile	Ile	Asp	Ser 205	Glu	۷a٦	Cys	Ser	His 210
Leu	Tyr	Trp	Arg	Gly 215	Ala	Gly	Gln	Gly	Pro 220	Ile	Thr	Glu	Asp	Met 225
Leu	Cys	Ala	Gly	Tyr 230	Leu	Glu	Gly	Glu	Arg 235	Asp	Ala	Cys	Leu	Gly 240
Asp	Ser	Gly	Gly	Pro 245	Leu	Met	Cys	Gln	va1 250	Asp	Glу	Ala	тгр	Leu 255
Leu	Ala	Gly	Ile	Ile 260	Ser	тгр	Gly	Glu	G]y 265	Cys	Ala	Glu	Arg	Asn 270
Arg	Pro	Gly	۷a٦	Tyr 275	Ile	Ser	Leu	Ser	А1а 280	His	Arg	Ser	тгр	Va1 285
Glu	Lys	Ile	۷a٦	G]n 290	Gly	۷a٦	Gln	Leu	Arg 295	Gly	Arg	Ala	Gln	Gly 300
Gly	Gly	Ala	Leu	Arg 305	Ala	Pro	Ser	Gln	Gly 310	Ser	Gly	Ala	Ala	Ala 315
Arg	Ser													
<210: <211: <212: <213:	> 24 > DN/	A	:ial	Sequ	ence	<u>.</u>								
<220: <223:		nthet	ic C	ligo	nucl	eoti	de P	robe	!					
<223> Synthetic Oligonucleotide Probe <400> 264 gtccgcaagg atgcctacat gttc 24														
<210> 265 <211> 19 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic Oligonucleotide Probe														
<400> gcag			taag	gttg	19									
<211><212>	gcagaggtgt ctaaggttg 19 <210> 266 <211> 24 <212> DNA <213> Artificial Sequence													

<220> <223> Synthetic Oligonucleotide Probe Page 172

```
<400> 266
agctctagac caatgccagc ttcc 24
<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 268
ggggaattca ccctatgaca ttgcc 25
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 269
gaatgccctg caagcatcaa ctgg 24
<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 270
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 271
 gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 272
 cagccctgcc acatgtgc 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 273
 tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 274
 ggcgaagagc agggtgagac cccg 24
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 275
 gccctcatcc tctctggcaa atgcagttac agcccggagc ccgac 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 276
gggcagggat tccagggctc c 21
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 277
ggctatgaca gcaggttc 18
<210> 278
```

```
P1618P2C3.txt
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 278
 tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 279
 gcatcgcatt gctggtagag caag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 281
cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
tggaggggga gcgggatgct tgtctgggcg actccggggg ccccctcatg 50
tgccaggtgg a 61
<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence
```

<220>

<223> Synthetic Oligonucleotide Probe

Page 175

Page 176

<400> 283 ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50 gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100 atgctgtgtg ccggctact 119 <210> 284 <211> 1875 <212> DNA <213> Homo Sapien <400> 284 gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50 ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100 agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150 aggtatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250 caaggagcgc gggcgccgcg gcgagaatct gttcgccatc acagacgagg 300 gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350 tacaacctca gcgccgccac ctgcagccca ggccagatgt gcggccacta 400 cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550 ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600 tctgtgaacc catcggaagc ccggaagatg ctcaggattt gccttacctg 650 gtaactgagg ccccatcctt ccgggcgact gaagcatcag actctaggaa 700 aatgggtact ccttcttccc tagcaacggg gattccggct ttcttggtaa 750 cagaggtctc aggctccctg gcaaccaagg ctctgcctgc tgtggaaacc 800 caggccccaa cttccttagc aacgaaagac ccgccctcca tggcaacaga 850 ggctccacct tgcgtaacaa ctgaggtccc ttccattttg gcagctcaca 900 gcctgccctc cttggatgag gagccagtta ccttccccaa atcgacccat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgcctcctt ccagtgaggt cttggcctca gttttccag cccaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtccctgcc caatttcccc aatacctctg ccaccgctaa tgccacgggt 1250

gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caagcctagc gttgtgtcag ggctgaactc gggccctggt catgtgtggg 1350 gccctctcct gggactactg ctcctgctc ctctggtgtt ggctggaatc 1400 ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450 catcttcccc accctgtccc cagcccctaa acaagatact tcttggttaa 1500 ggccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550 atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600 ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650 ggggtgggag gatttgaggg agctcactgc ctacctggcc tggggctgt 1700 tgcccacaca gcatgtgcgc tctccctgag tgcctgtta gctggggatg 1750 gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800 tgagtggggg aggcagggac gagggaagga aagtaactcc tgactctcca 1850 ataaaaacct gtccaacctg tgaaa 1875

<400> 285

Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu
1 5 10 15

Leu Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp 20 25 30

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala 35 40 45

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp 50 55 60

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val 65 70 75

Trp Gly His Asn Lys Glu Arg Gly Arg Arg Gly Glu Asn Leu Phe 80 85 90

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu 95 100 105

Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys 110 115 120

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala 125 130 135

Lys Thr Glu Arg Ile Gly Cys Gly Ser His Phe Cys Glu Lys Leu 140 145 150

<210> 285

<211> 463 <212> PRT

<213> Homo Sapien

P1618P2C3.txt Gln Gly Val Glu Glu Thr Asn Ile Glu Leu Leu Val Cys Asn Tyr 155 160 165 Glu Pro Pro Gly Asn Val Lys Gly Lys Arg Pro Tyr Gln Glu Gly
170 175 180 Thr Pro Cys Ser Gln Cys Pro Ser Gly Tyr His Cys Lys Asn Ser 185 190 195 Leu Cys Glu Pro Ile Gly Ser Pro Glu Asp Ala Gln Asp Leu Pro 200 205 210 Tyr Leu Val Thr Glu Ala Pro Ser Phe Arg Ala Thr Glu Ala Ser 215 220 225 Asp Ser Arg Lys Met Gly Thr Pro Ser Ser Leu Ala Thr Gly Ile 230 235 240 Pro Ala Phe Leu Val Thr Glu Val Ser Gly Ser Leu Ala Thr Lys 245 250 255 Ala Leu Pro Ala Val Glu Thr Gln Ala Pro Thr Ser Leu Ala Thr 260 265 270 Lys Asp Pro Pro Ser Met Ala Thr Glu Ala Pro Pro Cys Val Thr 285 Thr Glu Val Pro Ser Ile Leu Ala Ala His Ser Leu Pro Ser Leu 290 295 300 Asp Glu Glu Pro Val Thr Phe Pro Lys Ser Thr His Val Pro Ile 305 310 315 Pro Lys Ser Ala Asp Lys Val Thr Asp Lys Thr Lys Val Pro Ser 320 325 330 Arg Ser Pro Glu Asn Ser Leu Asp Pro Lys Met Ser Leu Thr Gly 335 340 345 Ala Arg Glu Leu Leu Pro His Ala Gln Glu Glu Ala Glu Ala Glu 350 360 Ala Glu Leu Pro Pro Ser Ser Glu Val Leu Ala Ser Val Phe Pro 365 370 375 Ala Gln Asp Lys Pro Gly Glu Leu Gln Ala Thr Leu Asp His Thr . 380 385 390 Gly His Thr Ser Ser Lys Ser Leu Pro Asn Phe Pro Asn Thr Ser 395 400 405 Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser 410 415 Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser 425 430 435 Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly 440 445 450 Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe 455

```
<210> 286
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 286
tcctgcagtt tcctgatgc 19
<210> 287
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 287
ctcatattgc acaccagtaa ttcg 24
<210> 288
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 288
atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45
<210> 289
<211> 3662
<212> DNA
<213> Homo Sapien
<400> 289
gtaactgaag tcaggctttt catttgggaa gccccctcaa cagaattcgg 50
tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100
ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150
caaggcaagt tccatgagcc accttcaaag ccttcgagaa gtgaaactga 200
acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250
attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300
acatctgaaa gagtttcagt cccttgaaac tttggacctt agcagcaaca 350
atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400
tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450
tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500
ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550
aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600
```

tgctctgaag	tctctgaaaa	tgcaaagaaa	P1618P2C3 tggagtaacg		650
atggagcttt	ttgggggctg	agcaacatgg	aaattttgca	gctggaccat	700
aacaacctaa	cagagattac	caaaggctgg	ctttacggct	tgctgatgct	750
gcaggaactt	catctcagcc	aaaatgccat	caacaggatc	agccctgatg	800
cctgggagtt	ctgccagaag	ctcagtgagc	tggacctaac	tttcaatcac	850
ttatcaaggt	tagatgattc	aagcttcctt	ggcctaagct	tactaaatac	900
actgcacatt	gggaacaaca	gagtcagcta	cattgctgat	tgtgccttcc	950
gggggctttc	cagtttaaag	actttggatc	tgaagaacaa	tgaaatttcc	1000
tggactattg	aagacatgaa	tggtgctttc	tctgggcttg	acaaactgag	1050
gcgactgata	ctccaaggaa	atcggatccg	ttctattact	aaaaaagcct	1100
tcactggttt	ggatgcattg	gagcatctag	acctgagtga	caacgcaatc	1150
atgtctttac	aaggcaatgc	attttcacaa	atgaagaaac	tgcaacaatt	1200
gcatttaaat	acatcaagcc	ttttgtgcga	ttgccagcta	aaatggctcc	1250
cacagtgggt	ggcggaaaac	aactttcaga	gctttgtaaa	tgccagttgt	1300
gcccatcctc	agctgctaaa	aggaagaagc	atttttgctg	ttagcccaga	1350
tggctttgtg	tgtgatgatt	ttcccaaacc	ccagatcacg	gttcagccag	1400
aaacacagtc	ggcaataaaa	ggttccaatt	tgagtttcat	ctgctcagct	1450
gccagcagca	gtgattcccc	aatgactttt	gcttggaaaa	aagacaatga	1500
actactgcat	gatgctgaaa	tggaaaatta	tgcacacctc	cgggcccaag	1550
gtggcgaggt	gatggagtat	accaccatcc	ttcggctgcg	cgaggtggaa	1600
tttgccagtg	aggggaaata	tcagtgtgtc	atctccaatc	actttggttc	1650
atcctactct	gtcaaagcca	agcttacagt	aaatatgctt	ccctcattca	1700
ccaagacccc	catggatctc	accatccgag	ctggggccat	ggcacgcttg	1750
gagtgtgctg	ctgtggggca	cccagccccc	cagatagcct	ggcagaagga	1800
tgggggcaca	gacttcccag	ctgcacggga	gagacgcatg	catgtgatgc	1850
ccgaggatga	cgtgttcttt	atcgtggatg	tgaagataga	ggacattggg	1900
gtatacagct	gcacagctca	gaacagtgca	ggaagtattt	cagcaaatgc	1950
aactctgact	gtcctagaaa	caccatcatt	tttgcggcca	ctgttggacc	2000
gaactgtaac	caagggagaa	acagccgtcc	tacagtgcat	tgctggagga	2050
agccctcccc	ctaaactgaa	ctggaccaaa	gatgatagcc	cattggtggt	2100
aaccgagagg	cacttttttg	cagcaggcaa	tcagcttctg	attattgtgg	2150
actcagatgt	cagtgatgct	gggaaataca	catgtgagat Page 18	gtctaacacc 30	2200

cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaac 2250 ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300 ccactgtggg tgtcgtgatc atagccgtgg tttgctgtgt ggtgggcacg 2350 tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450 gttatttgtc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500 tcttcagaaa gtggaagcca ccaccagttt gtcacatctt caggtgctgg 2550 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600 gcagtgaagc tgatgtggaa gctgccacag atctgttcct ttgtccgttt 2650 ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700 tccttttgaa acatatcata caggttgcag tcctgaccca agaacagttt 2750 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 gtggccttca catgtgagga agctacttaa cactagttac tctcacaatg 2900 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc tttagatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050 ttggacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100 tcttccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150 agattttcag gaagaaaatc acatttgtac ctttaaacag actttagaaa 3200 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250 tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300 aaagagagag aatcttatgt tttttaaatg gagttatgaa ttttaaaagg 3350 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400 aaatttttat actgggaatg atgctcatat aagaatacct ttttaaacta 3450 ttttttaact ttgttttatg caaaaaagta tcttacgtaa attaatgata 3500 taaatcatga ttattttatg tatttttata atgccagatt tcttttatg 3550 gaaaatgagt tactaaagca ttttaaataa tacctgcctt gtaccatttt 3600 ttaaatagaa gttacttcat tatattttgc acattatatt taataaaatg 3650 tgtcaatttg aa 3662

<210> 290 <211> 1059

<212> PRT <213> Homo Sapien

<400> 290 Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His
1 5 10 15 Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys 20 25 30Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu 45 Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser 50 55 60Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
65 70 75 Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 95 100 105 Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 110 115 120120 Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 125 130 135 Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 140 145 150 Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn 160 165 Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala 170 175 180 Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met 185 190 195 Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu 200 205 210 Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly 215 220 225 Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn 230 235 240 Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu 255 250 Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser 260 265 Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn 275 280 285 Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser 290 295 300 Page 182

Leu	Lys	Thr	Leu	Asp 305	Leu	Lys	Asn	Asn	Glu 310		Ser	Trp	Thr	Ile 315
Glu	Asp	Met	Asn	G1y 320	Ala	Phe	Ser	Gly	Leu 325	Asp	Lys	Leu	Arg	Arg 330
Leu	Ile	Leu	Gln	Gly 335	Asn	Arg	Ile	Arg	Ser 340	Ile	Thr	Lys	Lys	Ala 345
Phe	Thr	Gly	Leu	Asp 350	Ala	Leu	Glu	His	Leu 355	Asp	Leu	Ser	Asp	Asn 360
Ala	Ile	Met	Ser	Leu 365	Gln	Gly	Asn	Ala	Phe 370	Ser	Gln	Met	Lys	Lys 375
Leu	Gln	Gln	Leu	His 380	Leu	Asn	Thr	Ser	Ser 385	Leu	Leu	Cys	Asp	Cys 390
Gln	Leu	Lys	Trp	Leu 395	Pro	Gln	Trp	va1	А1а 400	Glu	Asn	Asn	Phe	Gln 405
Ser	Phe	٧a٦	Asn	Ala 410	Ser	Cys	Ala	His	Pro 415	Gln	Leu	Leu	Lys	Gly 420
Arg	Ser	Ile	Phe	Ala 425	val	Ser	Pro	Asp	G1y 430	Phe	٧a٦	Cys	Asp	Asp 435
Phe	Pro	Lys	Pro	Gln 440	Ile	Thr	٧a٦	Gln	Pro 445	Glu	Thr	Gln	Ser	Ala 450
Ile	Lys	Gly	Ser	Asn 455	Leu	Ser	Phe	Ile	Cys 460	Ser	Ala	Ala	Ser	Ser 465
Ser	Asp	Ser	Pro	Met 470	Thr	Phe	Ala	Trp	Lys 475	Lys	Asp	Asn	Glu	Leu 480
Leu	His	Asp	Ala	Glu 485	Met	Glu	Asn	Tyr	Ala 490	His	Leu	Arg	Ala	Gln 495
Gly	Gly	Glu	٧a٦	Met 500	Glu	Tyr	Thr	Thr	11e 505	Leu	Arg	Leu	Arg	Glu 510
∨al	Glu	Phe	Ala	Ser 515	Glu	Gly	Lys	Tyr	G]n 520	Cys	۷a٦	Ile	Ser	Asn 525
His	Phe	Gly	Ser	Ser 530	Tyr	Ser	٧a٦	Lys	Ala 535	Lys	Leu	Thr	٧a٦	Asn 540
Met	Leu	Pro	Ser	Phe 545	Thr	Lys	Thr	Pro	Met 550	Asp	Leu	Thr	Ile	Arg 555
Ala	Gly	Ala	Met	Ala 560	Arg	Leu	Glu	Cys	Ala 565	Ala	val	Gly	His	Pro 570
Ala	Pro	Gln	Ile	Ala 575	Trp	Gln	Lys	Asp	Gly 580	Gly	Thr	Asp	Phe	Pro 585
Ala	Ala	Arg	Glu	Arg 590	Arg	Met	His	val	Met 595	Pro	Glu	Asp	Asp	val 600
Phe	Phe	Ile	Val	Asp 605	val	Lys	Ile	Glu	610	Ile e 18	_	Val	Tyr	Ser 615

Cys	Thr	Ala	Gln	Asn 620	Ser	Ala	Gly	Ser	11e 625	Ser	Ala	Asn	Ala	Thr 630
Leu	Thr	val	Leu	G] u 635	Thr	Pro	Ser	Phe	Leu 640	Arg	Pro	Leu	Leu	Asp 645
Arg	Thr	۷al	Thr	Lys 650	Gly	Glu	Thr	Ala	Va1 655	Leu	Gln	Cys	Ile	Ala 660
Gly	Gly	Ser	Pro	Pro 665	Pro	Lys	Leu	Asn	Trp 670	Thr	Lys	Asp	Asp	Ser 675
Pro	Leu	Val	۷al	Thr 680	Glu	Arg	His	Phe	Phe 685	Ala	Ala	Gly	Asn	G1n 690
Leu	Leu	Ile	Ile	va1 695	Asp	ser	Asp	٧a٦	Ser 700	Asp	Ala	G]y	Lys	Tyr 705
Thr	Cys	Glu	Met	Ser 710	Asn	Thr	Leu	Gly	Thr 715	Glu	Arg	Gly	Asn	va1 720
Arg	Leu	Ser	۷al	11e 725	Pro	Thr	Pro	Thr	Cys 730	Asp	Ser	Pro	Gln	Met 735
Thr	Ala	Pro	Ser	Leu 740	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	∨a1	Gly	va1 750
۷al	Ile	Ile	Ala	Va1 755	val	Cys	Cys	val	Va1 760	Gly	Thr	ser	Leu	Va1 765
Trp	Val	۷al	Ile	11e 770	туr	His	Thr	Arg	Arg 775	Arg	Asn	Glu	Asp	Cys 780
Ser	Ile	Thr	Asn	Thr 785	Asp	Glu	Thr	Asn	Leu 790	Pro	Ala	Asp	Ile	Pro 795
Ser	Tyr	Leu	Ser	Ser 800	Gln	Gly	Thr	Leu	Ala 805	Asp	Arg	Gln	Asp	Gly 810
Tyr	Val	Ser	Ser	Glu 815	Ser	Gly	Ser	His	His 820	Gln	Phe	۷al	Thr	Ser 825
Ser	Gly	Ala	Gly	Phe 830	Phe	Leu	Pro	Gln	His 835	Asp	Ser	Ser	G1y	Thr 840
Cys	His	Ile	Asp	Asn 845	ser	Ser	Glu	Ala	Asp 850	٧al	Glu	Ala	Ala	Thr 855
Asp	Leu	Phe	Leu	Cys 860	Pro	Phe	Leu	Gly	Ser 865	Thr	Gly	Pro	Met	Tyr 870
Leu	Lys	Gly	Asn	va1 875	Tyr	Gly	Ser	Asp	Pro 880	Phe	Glu	Thr	Tyr	His 885
Thr	Gly	Cys	Ser	Pro 890	Asp	Pro	Arg	Thr	Val 895	Leu	Met	Asp	His	туг 900
Glu	Pro	Ser	Tyr	11e 905	Lys	Lys	Lys	Glu	Cys 910	Tyr	Pro	Cys	Ser	ніs 915
Pro	Ser	Glu	Glu	Ser 920	Cys	Glu	Arg	Ser	925	Ser ge 1		Ile	Ser	Trp 930

Pro	Ser	His	Val	Arg 935	Lys	Leu	Leu	Asn	Thr 940	Ser	туr	ser	His	Asn 945
Glu	GТу	Pro	Gly	меt 950	Lys	Asn	Leu	Cys	Leu 955	Asn	Lys	ser	ser	Leu 960
Asp	Phe	Ser	Ala	Asn 965	Pro	Glu	Pro	Ala	Ser 970	val	Аlа	ser	ser	Asn 975
ser	Phe	Met	Gly	Thr 980	Phe	Gly	Lys	Αla	Leu 985	Arg	Arg	Pro	His	Leu 990
Asp	Аlа	Tyr	Ser	Ser 995	Phe	GТу	Gln		Ser 1000	Asp	Cys	Gln		Arg LOO5
Аlа	Phe	Tyr		Lys 1010	Ala	His	Ser		Pro 1015	Asp	Leu	Asp	Ser	G]y L020
Ser	Glu	Glu		G]y 1025	Lys	Glu	Arg		Asp 1030	Phe	Gln	Glu	G]u	Asn LO35
His	Ile	Cys		Phe 1040	Lys	Gln	Thr		G]u 1045	Asn	туг	Arg		Pro LO50
Asn	Phe	G]n		Tyr L055	Asp	Leu	Asp	Thr						

<210> 291

<400> 291 ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagettttt ettgtgagee etggatetta acacaaatgt gtatatgtge 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggattttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgogttttc tottgttott aaccacotgg atttccatct ggatgttgct 750 Page 185

<211> 2906

<212> DNA

<213> Homo Sapien

gtgatcagtc	tgaaatacaa	ctgtttgaat	tccagaagga	ccaacaccag	800
ataaattatg	aatgttgaac	aagatgacct	tacatccaca	gcagataatg	850
ataggtccta	ggtttaacag	ggccctattt	gaccccctgc	ttgtggtgct	900
gctggctctt	caacttcttg	tggtggctgg	tctggtgcgg	gctcagacct	950
gcccttctgt	gtgctcctgc	agcaaccagt	tcagcaaggt	gatttgtgtt	1000
cggaaaaacc	tgcgtgaggt	tccggatggc	atctccacca	acacacggct	1050
gctgaacctc	catgagaacc	aaatccagat	catcaaagtg	aacagcttca	1100
agcacttgag	gcacttggaa	atcctacagt	tgagtaggaa	ccatatcaga	1150
accattgaaa	ttggggcttt	caatggtctg	gcgaacctca	acactctgga	1200
actctttgac	aatcgtctta	ctaccatccc	gaatggagct	tttgtatact	1250
tgtctaaact	gaaggagctc	tggttgcgaa	acaaccccat	tgaaagcatc	1300
ccttcttatg	cttttaacag	aattccttct	ttgcgccgac	tagacttagg	1350
ggaattgaaa	agactttcat	acatctcaga	aggtgccttt	gaaggtctgt	1400
ccaacttgag	gtatttgaac	cttgccatgt	gcaaccttcg	ggaaatccct	1450
aacctcacac	cgctcataaa	actagatgag	ctggatcttt	ctgggaatca	1500
tttatctgcc	atcaggcctg	gctctttcca	gggtttgatg	caccttcaaa	1550
aactgtggat	gatacagtcc	cagattcaag	tgattgaacg	gaatgccttt	1600
gacaaccttc	agtcactagt	ggagatcaac	ctggcacaca	ataatctaac	1650
attactgcct	catgacctct	tcactccctt	gcatcatcta	gagcggatac	1700
atttacatca	caacccttgg	aactgtaact	gtgacatact	gtggctcagc	1750
tggtggataa	aagacatggc	ccctcgaac	acagcttgtt	gtgcccggtg	1800
taacactcct	cccaatctaa	aggggaggta	cattggagag	ctcgaccaga	1850
attacttcac	atgctatgct	ccggtgattg	tggagccccc	tgcagacctc	1900
aatgtcactg	aaggcatggc	agctgagctg	aaatgtcggg	cctccacatc	1950
cctgacatct	gtatcttgga	ttactccaaa	tggaacagtc	atgacacatg	2000
gggcgtacaa	agtgcggata	gctgtgctca	gtgatggtac	gttaaatttc	2050
acaaatgtaa	ctgtgcaaga	tacaggcatg	tacacatgta	tggtgagtaa	2100
ttccgttggg	aatactactg	cttcagccac	cctgaatgtt	actgcagcaa	2150
ccactactcc	tttctcttac	ttttcaaccg	tcacagtaga	gactatggaa	2200
ccgtctcagg	atgaggcacg	gaccacagat	aacaatgtgg	gtcccactcc	2250
agtggtcgac	tgggagacca	ccaatgtgac	cacctctctc	acaccacaga	2300

gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850 aaaagaaaag aaatttatt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

<210> 292 <211> 640 <212> PRT

<213> Homo Sapien

<400> 292

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 30

Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln 45

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser 75

Thr Asn Thr Arg Leu Leu Asn Leu His Gly Asn Gln Ile Gln Ile 88

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe 120

Asn Gly Leu Ala Asn Leu Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu 145

Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser Page 187

				155				Р	1618 160	P2C3	.txt			165
Tyr	Ala	Phe	Asn	Arg 170	Ile	Pro	Ser	Leu	Arg 175	Arg	Leu	Asp	Leu	Gly 180
Glu	Leu	Lys	Arg	Leu 185	ser	туг	Ile	Ser	Glu 190	Gly	Ala	Phe	Glu	Gly 195
Leu	ser	Asn	Leu	Arg 200	туг	Leu	Asn	Leu	Ala 205	Met	Cys	Asn	Leu	Arg 210
Glu	Ile	Pro	Asn	Leu 215	Thr	Pro	Leu	Ile	Lys 220	Leu	Asp	Glu	Leu	Asp 225
Leu	Ser	Gly	Asn	His 230	Leu	ser	Ala	Ile	Arg 235	Pro	Gly	ser	Phe	Gln 240
Gly	Leu	Met	His	Leu 245	Gln	Lys	Leu	тгр	Met 250	Ile	Gln	ser	Gln	Ile 255
Gln	۷a٦	Ile	Glu	Arg 260	Asn	Ala	Phe	Asp	Asn 265	Leu	Gln	Ser	Leu	Val 270
Glu	Ile	Asn	Leu	Ala 275	His	Asn	Asn	Leu	Thr 280	Leu	Leu	Pro	His	Asp 285
Leu	Phe	Thr	Pro	Leu 290	His	His	Leu	Glu	Arg 295	Ile	His	Leu	His	ніs 300
Asn	Pro	тгр	Asn	Cys 305	Asn	Cys	Asp	Ile	Leu 310	Trp	Leu	ser	Trp	Trp 315
Ile	Lys	Asp	Met	Ala 320	Pro	Ser	Asn	Thr	Ala 325	Cys	Cys	Ala	Arg	Cys 330
Asn	Thr	Pro	Pro	Asn 335	Leu	Lys	Gly	Arg	Tyr 340	Ile	Gly	Glu	Leu	Asp 345
Gln	Asn	Tyr	Phe	Thr 350	Cys	Tyr	Ala	Pro	Va 1 355	Ile	۷al	Glu	Pro	Pro 360
Ala	Asp	Leu	Asn	va 1 365	Thr	Glu	Gly	Met	А1а 370	Ala	Glu	Leu	Lys	Cys 375
Arg	Ala	Ser	Thr	Ser 380	Leu	Thr	Ser	val	Ser 385	Тгр	Ile	Thr	₽ro	Asn 390
Gly	Thr	∨al	Met	Thr 395	His	Gly	Ala	Tyr	Lys 400	Val	Arg	Ile	Аlа	Val 405
Leu	Ser	Asp	Gly	Thr 410	Leu	Asn	Phe	Thr	Asn 41 5	val	Thr	۷al	G]n	Asp 420
Thr	Glу	Met	Tyr	Thr 425	Cys	Met	Val	Ser	Asn 430	Ser	۷al	Gly	Asn	Thr 435
Thr	Ala	ser	Аlа	Thr 440	Leu	Asn	val	Thr	Ala 445	Ala	Thr	Thr	Thr	Pro 450
Phe	Ser	Tyr	Phe	Ser 455	Thr	۷a٦	Thr	۷al	G1u 460	Thr	Met	Glu	Pro	Ser 465
Gln	Asp	Glu	Аlа	Arg	Thr	Thr	Asp	Asn		val ge 18		Pro	Thr	Pro

				470				Р	1618 475	P2C3	.txt			480
Val	val	Asp	Тгр	Glu 485	Thr	Thr	Asn	۷al	Thr 490	Thr	Ser	Leu	Thr	Pro 495
Gln	ser	Thr	Arg	Ser 500	Thr	Glu	Lys	Thr	Phe 505	Thr	Ile	Pro	٧al	Thr 510
Asp	Ile	Asn	Ser	Gly 515	Ile	Pro	Gly	Ile	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr	Lys	Ile	Ile	Ile 530	Gly	Cys	Phe	Val	Ala 535	Ile	Thr	Leu	Met	Ala 540
Ala	Val	Met	Leu	Val 545	Ile	Phe	туг	Lys	Met 550	Arg	Lys	Gln	His	His 555
Arg	Gln	Asn	ніѕ	ніs 560	Ala	Pro	Thr	Arg	Thr 565	val	Glu	Ile	Ile	Asn 570
val	Asp	Asp	Glu	Ile 575	Thr	Gly	Asp	Thr	Pro 580	Met	Glu	Ser	His	Leu 585
Pro	Met	Pro	Ala	11e 590	Glu	ніѕ	Glu	ніѕ	Leu 595	Asn	ніѕ	Tyr	Asn	Ser 600
Tyr	Lys	Ser	Pro	Phe 605	Asn	His	Thr	Thr	Thr 610	Val	Asn	Thr	Ile	Asn 615
Ser	Ile	His	Ser	Ser 620	Val	ніѕ	Glu	Pro	Leu 625	Leu	Ile	Arg	Met	Asn 630
Ser	Lys	Asp	Asn	Val 635	Gln	Glu	Thr	Gln	11e 640					

<210> 293

<211> 4053

<212> DNA <213> Homo Sapien

<400> 293

agccgacgct gctcaagctg caactctgtt gcagttggca gttcttttcg 50 gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150 gagggcgggc gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200 gcgccggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250 gcgcgccgag cctccgtgcg cgcgccgcgg ggttggggct gctgctgtgc 300 gcggtgctgg ggcgcgctgg ccggtccgac agcggcggtc gcggggaact 350 cgggcagccc tctggggtag ccgccgagcg cccatgcccc actacctgcc 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatctttc atcaaggcaa gttccatgag ccaccttcaa agccttcgag 550

aagtgaaact	gaacaacaat	gaattggaga	P1618P2C3 ccattccaaa		600
gtctcggcaa	atattacact	tctctccttg	gctggaaaca	ggattgttga	650
aatactccct	gaacatctga	aagagtttça	gtcccttgaa	actttggacc	700
ttagcagcaa	caatatttca	gagctccaaa	ctgcatttcc	agccctacag	750
ctcaaatatc	tgtatctcaa	cagcaaccga	gtcacatcaa	tggaacctgg	800
gtattttgac	aatttggcca	acacactcct	tgtgttaaag	ctgaacagga	850
accgaatctc	agctatccca	cccaagatgt	ttaaactgcc	ccaactgcaa	900
catctcgaat	tgaaccgaaa	caagattaaa	aatgtagatg	gactgacatt	950
ccaaggcctt	ggtgctctga	agtctctgaa	aatgcaaaga	aatggagtaa	1000
cgaaacttat	ggatggagct	ttttgggggc	tgagcaacat	ggaaattttg	1050
cagctggacc	ataacaacct	aacagagatt	accaaaggct	ggctttacgg	1100
cttgctgatg	ctgcaggaac	ttcatctcag	ccaaaatgcc	atcaacagga	1150
tcagccctga	tgcctgggag	ttctgccaga	agctcagtga	gctggaccta	1200
actttcaatc	acttatcaag	gttagatgat	tcaagcttcc	ttggcctaag	1250
cttactaaat	acactgcaca	ttgggaacaa	cagagtcagc	tacattgctg	1300
attgtgcctt	ccgggggctt	tccagtttaa	agactttgga	tctgaagaac	1350
aatgaaattt	cctggactat	tgaagacatg	aatggtgctt	tctctgggct	1400
tgacaaactg	aggcgactga	tactccaagg	aaatcggatc	cgttctatta	1450
ctaaaaaagc	cttcactggt	ttggatgcat	tggagcatct	agacctgagt	1500
gacaacgcaa	tcatgtcttt	acaaggcaat	gcattttcac	aaatgaagaa	1550
actgcaacaa	ttgcatttaa	atacatcaag	ccttttgtgc	gattgccagc	1600
taaaatggct	cccacagtgg	gtggcggaaa	acaactttca	gagctttgta	1650
aatgccagtt	gtgcccatcc	tcagctgcta	aaaggaagaa	gcatttttgc	1700
tgttagccca	gatggctttg	tgtgtgatga	ttttcccaaa	ccccagatca	1750
cggttcagcc	agaaacacag	tcggcaataa	aaggttccaa	tttgagtttc	1800
atctgctcag	ctgccagcag	cagtgattcc	ccaatgactt	ttgcttggaa	1850
aaaagacaat	gaactactgc	atgatgctga	aatggaaaat	tatgcacacc	1900
tccgggccca	aggtggcgag	gtgatggagt	ataccaccat	ccttcggctg	1950
cgcgaggtgg	aatttgccag	tgaggggaaa	tatcagtgtg	tcatctccaa	2000
tcactttggt	tcatcctact	ctgtcaaagc	caagcttaca	gtaaatatgc	2050
ttccctcatt	caccaagacc	cccatggatc	tcaccatccg	agctggggcc	2100
atggcacgct	tggagtgtgc	tgctgtgggg	cacccagccc Page 19		2150

ctggcagaa	g gatgggggca	cagacttccc	agctgcacgg	gagagacgca	2200
tgcatgtgat	gcccgaggat	gacgtgttct	ttatcgtgga	tgtgaagata	2250
gaggacatt	g gggtatacag	ctgcacagct	cagaacagtg	caggaagtat	2300
ttcagcaaa1	gcaactctga	ctgtcctaga	aacaccatca	tttttgcggc	2350
cactgttgga	a ccgaactgta	accaagggag	aaacagccgt	cctacagtgc	2400
attgctggag	gaagccctcc	ccctaaactg	aactggacca	aagatgatag	2450
cccattggtg	g gtaaccgaga	ggcactttt	tgcagcaggc	aatcagcttc	2500
tgattattgt	ggactcagat	gtcagtgatg	ctgggaaata	cacatgtgag	2550
atgtctaaca	cccttggcac	tgagagagga	aacgtgcgcc	tcagtgtgat	2600
ccccactcca	acctgcgact	cccctcagat	gacagcccca	tcgttagacg	2650
atgacggatg	ggccactgtg	ggtgtcgtga	tcatagccgt	ggtttgctgt	2700
gtggtgggca	cgtcactcgt	gtgggtggtc	atcatatacc	acacaaggcg	2750
gaggaatgaa	gattgcagca	ttaccaacac	agatgagacc	aacttgccag	2800
cagatattcc	tagttatttg	tcatctcagg	gaacgttagc	tgacaggcag	2850
gatgggtacg	tgtcttcaga	aagtggaagc	caccaccagt	ttgtcacatc	2900
ttcaggtgct	ggattttct	taccacaaca	tgacagtagt	gggacctgcc	2950
atattgacaa	tagcagtgaa	gctgatgtgg	aagctgccac	agatctgttc	3000
ctttgtccgt	ttttgggatc	cacaggccct	atgtatttga	agggaaatgt	3050
gtatggctca	gatccttttg	aaacatatca	tacaggttgc	agtcctgacc	3100
caagaacagt	tttaatggac	cactatgagc	ccagttacat	aaagaaaaag	3150
gagtgctacc	catgttctca	tccttcagaa	gaatcctgcg	aacggagctt	3200
cagtaatata	tcgtggcctt	cacatgtgag	gaagctactt	aacactagtt	3250
actctcacaa	tgaaggacct	ggaatgaaaa	atctgtgtct	aaacaagtcc	3300
tctttagatt	ttagtgcaaa	tccagagcca	gcgtcggttg	cctcgagtaa	3350
ttctttcatg	ggtacctttg	gaaaagctct	caggagacct	cacctagatg	3400
cctattcaag	ctttggacag	ccatcagatt	gtcagccaag	agccttttat	3450
ttgaaagctc	attcttcccc	agacttggac	tctgggtcag	aggaagatgg	3500
gaaagaaagg	acagattttc	aggaagaaaa	tcacatttgt	acctttaaac	3550
agactttaga	aaactacagg	actccaaatt	ttcagtctta	tgacttggac	3600
acatagactg	aatgagacca	aaggaaaagc	ttaacatact	acctcaagtg	3650
aacttttatt	taaaagagag	agaatcttat	gttttttaaa	tggagttatg	3700

aatttaaaa ggataaaat gcttatta tacagatgaa ccaaaattac 3750 aaaaagttat gaaaatttt atactgggaa tgatgctcat ataagaatac 3800 cttttaaac tatttttaa ctttgttta tgcaaaaaag tatcttacgt 3850 aaattaatga tataaatcat gattattta tgtatttta taatgccaga 3900 tttctttta tggaaaatga gttactaaag catttaaat aatacctgcc 3950 ttgtaccatt ttttaaatag aagttacttc attatattt gcacattata 4000 tttaataaaa tgtgtcaatt tgaaaaaaaa aaaaaaaaa aaaaaaaaa 4050 aaa 4053

<210> 294 <211> 1119 <212> PRT

<213> Homo Sapien

<400> 294 Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu 1 5 10 Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly 20 25 30 Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg 35 40 45 Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys 50 55 Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp 65 70 75 Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys 80 85 90 Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
95 100 Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser 110 115 120 Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu 125 130 135 Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu 140 145 150 Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 155 160 165 Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 170 175 180 Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 185 190 195 Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 200 205 210 Page 192

Met	Phe	Lys	Leu	Pro 215	Gln	Leu	Gln	His	Leu 220	Glu	Leu	Asn	Arg	Asn 225
Lys	Ile	Lys	Asn	Va1 230	Asp	GТу	Leu	Thr	Phe 235	G∏n	Gly	Leu	Gly	Ala 240
Leu	Lys	Ser	Leu	Lys 245	Met	Gln	Arg	Asn	G]y 250	Val	Thr	Lys	Leu	Met 255
Asp	Glу	Ala	Phe	Trp 260	Gly	Leu	Ser	Asn	Met 265	Glu	Ile	Leu	Gln	Leu 270
Asp	His	Asn	Asn	Leu 275	Thr	Glu	Ile	Thr	Lys 280	Gly	Тгр	Leu	Tyr	Gly 285
Leu	Leu	Met	Leu	G1n 290	Glu	Leu	His	Leu	ser 295	Gln	Asn	Ala	Ile	Asn 300
Arg	Ile	ser	Pro	Asp 305	Ala	тгр	Glu	Phe	Cys 310	Gln	Lys	Leu	ser	Glu 315
Leu	Asp	Leu	Thr	Phe 320	Asn	His	Leu	Ser	Arg 325	Leu	Asp	Asp	Ser	ser 330
Phe	Leu	Gly	Leu	Ser 335	Leu	Leu	Asn	Thr	Leu 340	His	Ile	Gly,	Asn	Asn 345
Arg	Val	Ser	Tyr	11e 350	Ala	Asp	Cys	Ala	Phe 355	Arg	Gly	Leu	Ser	Ser 360
Leu	Lys	Thr	Leu	Asp 365	Leu	Lys	Asn	Asn	G1u 370	Ile	ser	Тгр	Thr	Ile 375
Glu	Asp	Met	Asn	G]y 380	Ala	Phe	Ser	Glу	Leu 385	Asp	Lys	Leu	Arg	Arg 390
Leu	Ile	Leu	Gln	G]y 395	Asn	Arg ·	Ile	Arg	ser 400	Ile	Thr	Lys	Lys	Ala 405
Phe	Thr	Gly	Leu	Asp 410	Ala	Leu	Glu	His	Leu 415	Asp	Leu	Ser	Asp	Asn 420
Ala	Ile	Met	ser	Leu 425	Gln	GТу	Asn	Ala	Phe 430	ser	Gln	Met	Lys	Lys 435
Leu	G∏n	Gln	Leu	ніs 440	Leu	Asn	Thr	Ser	ser 445	Leu	Leu	Cys	Asp	Cys 450
Gln	Leu	Lys	Trp	Leu 455	Pro	Gln	Тгр	۷a٦	А1а 460	Glu	Asn	Asn	Phe	G]n 465
Ser	Phe	٧a٦	Asn	А1а 470	Ser	Cys	Ala	His	Pro 475	Gln	Leu	Leu	Lys	Gly 480
Arg	ser	Ile	Phe	Ala 485	٧a٦	Ser	Pro	Asp	Gly 490	Phe	۷a٦	Cys	Asp	Asp 495
Phe	Pro	Lys	Pro	G]n 500	Ile	Thr	Val	Gln	Pro 505	Glu	Thr	Gln	ser	Ala 510
Ile	Lys	Glу	Ser	Asn 515	Leu	ser	Phe	Ile	520	ser je 19		Ala	ser	Ser 525

Ser	Asp	ser	Pro	Met 530	Thr	Phe	Ala	тгр	Lys 535	Lys	Asp	Asn	Glu	Leu 540
Leu	ніѕ	Asp	Ala	Glu 545	Met	Glu	Asn	туr	Ala 550	His	Leu	Arg	Ala	Gln 555
Gly	GТу	Glu	val	Met 560	Glu	Tyr	Thr	Thr	Ile 565	Leu	Arg	Leu	Arg	G]u 570
val	Glu	Phe	Ala	Ser 575	Glu	Glу	Lys	Tyr	Gln 580	Cys	val	Ile	Ser	Asn 585
His	Phe	Gly	Ser	Ser. 590	Tyr	Ser	val	Lys	Ala 595	Lys	Leu	Thr	۷al	Asn 600
Met	Leu	Pro	Ser	Phe 605	Thr	Lys	Thr	Pro	Met 610	Asp	Leu	Thr	Ile	Arg 615
Ala	Gly	Ala	Met	Ala 620	Arg	Leu	Glu	Cys	A1a 625	Ala	val	Gly	His	Pro 630
Ala	Pro	Gln	Ile	Ala 635	Тгр	Gln	Lys	Asp	G]y 640	Gly	Thr	Asp	Phe	Pro 645
Ala	Ala	Arg	Glu	Arg 650	Arg	Met	His	val	Met 655	Pro	Glu	Asp	Asp	va1 660
Phe	Phe	Ile	∨al	Asp 665	val	Lys	Ile	Glu	Asp 670	Ile	Gly	val	туг	Ser 675
Cys	Thr	Αla	Gln	Asn 680	Ser	Ala	Gly	Ser	Ile 685	Ser	Ala	Asn	Ala	Thr 690
Leu	Thr	val	Leu	G1u 695	Thr	Pro	Ser	Phe	Leu 700	Arg	Pro	Leu	Leu	Asp 705
Arg	Thr	Val	Thr	Lys 710	Gly	Glu	Thr	Ala	val 715	Leu	Gln	Cys	Ile	Ala 720
Gly	Gly	Ser	Pro	Pro 725	Pro	Lys	Leu	Asn	Trp 730	Thr	Lys	Asp	Asp	Ser 735
Pro	Leu	val	val	Thr 740	Glu	Arg	His	Phe	Phe 745	Ala	Ala	Gly	Asn	Gln 750
Leu	Leu	Ile	Ile	Va1 755	Asp	Ser	Asp	val	Ser 760	Asp	Ala	Gly	Lys	туг 765
Thr	Cys	Glu	Met	Ser 770	Asn	Thr	Leu	Gly	Thr 775	Glu	Arg	Gly	Asn	val 780
Arg	Leu	Ser	val	11e 785	Pro	Thr	Pro	Thr	Cys 790	Asp	Ser	Pro	Gln	Met 795
Thr	Ala	Pro	Ser	Leu 800	Asp	Asp	Asp	Gly	Trp 805	Ala	Thr	∨al	Glу	val 810
val	Ile	Ile	Ala	∨a1 815	val	Cys	Cys	∨al	va1 820	Gly	Thr	ser	Leu	va1 825
Trp	val	val	Ile	Ile 830	Tyr	His	Thr	Arg	835	Arg ge 19		Glu	Asp	Cys 840

ser	Ile	Thr	Asn	Thr 845	Asp	Glu	Thr	Asn	Leu 850	Pro	Ala	Asp	Ile	Pro 855
Ser	Tyr	Leu	Ser	ser 860	Gln	Gly	Thr	Leu	Ala 865	Asp	Arg	Gln	Asp	Gly 870
Tyr	val	ser	Ser	G1u 875	Ser	Gly	Ser	His	His 880	G∏n	Phe	val	Thr	Ser 885
ser	Gly	Ala	Gly	Phe 890	Phe	Leu	Pro	Gln	His 895	Asp	Ser	Ser	Gly	Thr 900
Cys	His	Ile	Asp	Asn 905	ser	Ser	Glu	ΑΊа	Asp 910	Val	Glu	Ala	Ala	Thr 915
Asp	Leu	Phe	Leu	Cys 920	Pro	Phe	Leu	Gly	Ser 925	Thr	Gly	Pro	Met	Tyr 930
Leu	Lys	Gly	Asn	Va1 935	Tyr	Gly	ser	Asp	Pro 940	Phe	Glu	Thr	Tyr	His 945
Thr	Gly	Cys	ser	Pro 950	Asp	Pro	Arg	Thr	va1 955	Leu	Met	Asp	His	Tyr 960
Glu	Pro	ser	Tyr	11e 965	Lys	Lys	Lys	Glu	Cys 970	Tyr	Pro	Cys	Ser	His 975
Pro	Ser	Glu	Glu	ser 980	Cys	Glu	Arg	ser	Phe 985	ser	Asn	Ile	Ser	Trp 990
Pro	Ser	His	va1	Arg 995	Lys	Leu	Leu		Thr .000	ser	Tyr	Ser	His 1	Asn .005
Glu	Gly	Pro	Gly 1	Met L010	Lys	Asn	Leu		Leu .015	Asn	Lys	Ser	Ser 1	Leu .020
Asp	Phe	Ser	Ala 1	Asn LO25	Pro	Glu	Pro		ser .030	۷al	Ala	Ser	Ser 1	Asn .035
Ser	Phe	Met	Gly 1	Thr L040	Phe	Gly	Lys	Ala 1	Leu .045	Arg	Arg	Pro	His 1	Leu .050
Asp	Ala	Tyr	ser 1	Ser .055	Phe	Gly	Gln	Pro 1	ser .060	Asp	Cys	Gln	Pro 1	Arg .065
Ala	Phe	Tyr	Leu 1	Lys .070	Аlа	His	Ser		Pro .075	Asp	Leu	Asp	Ser 1	G1y .080
Ser	Glu	Glu	Asp 1	Gly .085	Lys	Glu	Arg	Thr 1	Asp .090	Phe	Gln	Glu	Glu 1	Asn .095
His	Ile	Cys	Thr 1	Phe 100	Lys	Gln	Thr		Glu 105	Asn	Tyr	Arg	Thr 1	Pro 110
Asn	Phe	Gln	Ser 1	Tyr .115	Asp	Leu	Asp	Thr						

<210> 295 <211> 18 <212> DNA <213> Artificial Sequence

```
P1618P2C3.txt
<220>
<223> Synthetic Oligonucleotide Probe
<400> 295
 ggaaccgaat ctcagcta 18
<210> 296
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 296
 cctaaactga actggacca 19
<210> 297
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 297
ggctggagac actgaacct 19
```

<210> 298 <211> 24 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 298

acagctgcac agctcagaac agtg 24

<210> 299 <211> 22 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 299

cattcccagt ataaaaattt tc 22

<210> 300 <211> 18 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 300

gggtcttggt gaatgagg 18

<210> 301 <211> 24

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 301
 gtgcctctcg gttaccacca atgg 24
<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 302
 gcggccactg ttggaccgaa ctgtaaccaa gggagaaaca gccgtcctac 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 303
gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 305
tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45
<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 306
actccaagga aatcggatcc gttc 24
```

```
<210> 307
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
 ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 308
actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
gcgccgctcg gcgccggggc gcagcaggga aggggaagct gtggtctgcc 150
ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250
cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
gcgcacagca ttccgagttt acagattttt acagatacca aatggaaggc 350
gaggaggcag aacagcctgc ctggttccat cagccctggc gcccaggcgc 400
atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450
tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgcc 500
gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550
agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg 600
                                      Page 198
```

agcccgggcc	tggcccagco	gcggtcagct	gccccgaga	ctgtgcctgt	650
tcccaggagg	gcgtcgtgga	ctgtggcggt	attgacctgc	gtgagttccc	700
gggggacctg	cctgagcaca	ccaaccacct	atctctgcag	aacaaccagc	750
tggaaaagat	ctaccctgag	gagctctccc	ggctgcaccg	gctggagaca	800
ctgaacctgc	aaaacaaccg	cctgacttcc	cgagggctcc	cagagaaggc	850
gtttgagcat	ctgaccaacc	tcaattacct	gtacttggcc	aataacaagc	900
tgaccttggc	accccgcttc	ctgccaaacg	ccctgatcag	tgtggacttt	950
gctgccaact	atctcaccaa	gatctatggg	ctcacctttg	gccagaagcc	1000
aaacttgagg	tctgtgtacc	tgcacaacaa	caagctggca	gacgccgggc	1050
tgccggacaa	catgttcaac	ggctccagca	acgtcgaggt	cctcatcctg	1100
tccagcaact	tcctgcgcca	cgtgcccaag	cacctgccgc	ctgccctgta	1150
caagctgcac	ctcaagaaca	acaagctgga	gaagatcccc	ccgggggcct	1200
tcagcgagct	gagcagcctg	cgcgagctat	acctgcagaa	caactacctg	1250
actgacgagg	gcctggacaa	cgagaccttc	tggaagctct	ccagcctgga	1300
gtacctggat	ctgtccagca	acaacctgtc	tcgggtccca	gctgggctgc	1350
cgcgcagcct	ggtgctgctg	cacttggaga	agaacgccat	ccggagcgtg	1400
gacgcgaatg	tgctgacccc	catccgcagc	ctggagtacc	tgctgctgca	1450
cagcaaccag	ctgcgggagc	agggcatcca	cccactggcc	ttccagggcc	1500
tcaagcggtt	gcacacggtg	cacctgtaca	acaacgcgct	ggagcgcgtg	1550
cccagtggcc	tgcctcgccg	cgtgcgcacc	ctcatgatcc	tgcacaacca	1600
gatcacaggc	attggccgcg	aagactttgc	caccacctac	ttcctggagg	1650
agctcaacct	cagctacaac	cgcatcacca	gcccacaggt	gcaccgcgac	1700
gccttccgca	agctgcgcct	gctgcgctcg	ctggacctgt	cgggcaaccg	1750
gctgcacacg	ctgccacctg	ggctgcctcg	aaatgtccat	gtgctgaagg	1800
tcaagcgcaa	tgagctggct	gccttggcac	gaggggcgct	ggcgggcatg	1850
gctcagctgc	gtgagctgta	cctcaccagc	aaccgactgc	gcagccgagc	1900
cctgggcccc	cgtgcctggg	tggacctcgc	ccatctgcag	ctgctggaca	1950
tcgccgggaa	tcagctcaca	gagatccccg	aggggctccc	cgagtcactt	2000
gagtacctgt	acctgcagaa	caacaagatt	agtgcggtgc	ccgccaatgc	2050
cttcgactcc	acgcccaacc	tcaaggggat	ctttctcagg	tttaacaagc	2100
tggctgtggg	ctccgtggtg	gacagtgcct	tccggaggct	gaagcacctg	2150

```
P1618P2C3.txt
caggtcttgg acattgaagg caacttagag tttggtgaca tttccaagga 2200
aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300
gatggaccgc cggactcttt tctgcagcac acgcctgtgt gctgtgagcc 2350
ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400
tcccacatga cacgggctga cacagtctca tatccccacc ccttcccacg 2450
gcgtgtccca cggccagaca catgcacaca catcacaccc tcaaacaccc 2500
agctcagcca cacacaacta ccctccaaac caccacagtc tctgtcacac 2550
ccccactacc gctgccacgc cctctgaatc atgcagggaa gggtctgccc 2600
ctgccctggc acacacaggc acccattccc tcccctgct gacatgtgta 2650
tgcgtatgca tacacaccac acacacaca atgcacaagt catgtgcgaa 2700
cagccctcca aagcctatgc cacagacagc tcttgcccca gccagaatca 2750
gccatagcag ctcgccgtct gccctgtcca tctgtccgtc cgttccctgg 2800
agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850
ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900
agccttcagg actgctggcc tggcctggcc caccctgctc ctccaggtgc 2950
tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000
caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050
cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100
ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150
gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200
ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250
gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296
<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 311
gcattggccg cgagactttg cc 22
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
```

Page 201

<223> Synthetic Oligonucleotide Probe <400> 312 gcggccacgg tccttggaaa tg 22 <210> 313 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 313 tggaggagct caacctcagc tacaaccgca tcaccagccc acagg 45 <210> 314 <211> 3003 <212> DNA <213> Homo Sapien <400> 314 gggagggggc tccgggcgcc gcgcagcaga cctgctccgg ccgcgccct 50 cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100 gggttcctcg agactctcag aggggcgcct cccatcggcg cccaccaccc 150 caacctgttc ctcgcgcgcc actgcgctgc gccccaggac ccgctgccca 200 acatggattt tctcctggcg ctggtgctgg tatcctcgct ctacctgcag 250 gcggccgccg agttcgacgg gaggtggccc aggcaaatag tgtcatcgat 300 tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350 gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400 ggtgaatgta tcgggccaaa caagtgcaag tgtcatcctg gttatgctgg 450 aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500 gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550 aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600 ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650 ggtgccagtg cccatcccct ggcctgcacc tggctcctga tgggaggacc 700 tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850 qaatqctcac ttggtcagta tcagtgcagc agctttgctc gatgttataa 900 cgtacgtggg tcctacaagt gcaaatgtaa agaaggatac cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 attcatgtac caaagggaaa tggtaccatt ttaaagggtg acacaggaaa 1050

taataattgg	attcctgatg	ttggaagtac	ttggtggcct	ccgaagacac	1100
catatattcc	tcctatcatt	accaacaggo	ctacttctaa	gccaacaaca	1150
agacctacac	caaagccaac	accaattcct	actccaccac	caccaccacc	1200
cctgccaaca	gagctcagaa	cacctctacc	acctacaacc	ccagaaaggc	1250
caaccaccgg	actgacaact	atagcaccag	ctgccagtac	acctccagga	1300
gggattacag	ttgacaacag	ggtacagaca	gaccctcaga	aacccagagg	1350
agatgtgttc	agtgttctgg	tacacagttg	taattttgac	catggacttt	1400
gtggatggat	cagggagaaa	gacaatgact	tgcactggga	accaatcagg	1450
gacccagcag	gtggacaata	tctgacagtg	tcggcagcca	aagccccagg	1500
gggaaaagct	gcacgcttgg	tgctacctct	cggccgcctc	atgcattcag	1550
gggacctgtg	cctgtcattc	aggcacaagg	tgacggggct	gcactctggc	1600
acactccagg	tgtttgtgag	aaaacacggt	gcccacggag	cagccctgtg	1650
gggaagaaat	ggtggccatg	gctggaggca	aacacagatc	accttgcgag	1700
gggctgacat	caagagcgaa	tcacaaagat	gattaaaggg	ttggaaaaaa	1750
agatctatga	tggaaaatta	aaggaactgg	gattattgag	cctggagaag	1800
agaagactga	ggggcaaacc	attgatggtt	ttcaagtata	tgaagggttg	1850
gcacagagag	ggtggcgacc	agctgttctc	catatgcact	aagaatagaa	1900
caagaggaaa	ctggcttaga	ctagagtata	agggagcatt	tcttggcagg	1950
ggccattgtt	agaatacttc	ataaaaaaag	aagtgtgaaa	atctcagtat	2000
ctctctct	ttctaaaaaa	ttagataaaa	atttgtctat	ttaagatggt	2050
taaagatgtt	cttacccaag	gaaaagtaac	aaattataga	atttcccaaa	2100
agatgttttg	atcctactag	tagtatgcag	tgaaaatctt	tagaactaaa	2150
taatttggac	aaggcttaat	ttaggcattt	ccctcttgac	ctcctaatgg	2200
agagggattg	aaaggggaag	agcccaccaa	atgctgagct	cactgaaata	2250
tctctccctt	atggcaatcc	tagcagtatt	aaagaaaaaa	ggaaactatt	2300
tattccaaat	gagagtatga	tggacagata	ttttagtatc	tcagtaatgt	2350
cctagtgtgg	cggtggtttt	caatgtttct	tcatggtaaa	ggtataagcc	2400
tttcatttgt	tcaatggatg	atgtttcaga	tttttttt	tttaagagat	2450
ccttcaagga	acacagttca	gagagatttt	catcgggtgc	attctctctg	2500
cttcgtgtgt	gacaagttat	cttggctgct	gagaaagagt	gccctgcccc	2550
acaccggcag	acctttcctt	cacctcatca	gtatgattca	gtttctctta	2600

P1618P2C3.txt tcaattggac tctcccaggt tccacagaac agtaatattt tttgaacaat 2650 aggtacaata gaaggtcttc tgtcatttaa cctggtaaag gcagggctgg 2700 agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750 gtagatccat ttttaatggt tcatttcctt tatggtcata taactgcaca 2800 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900 catcttgttt attatttaat gttttctaaa ataaaaaatg ttagtggttt 2950 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000 aat 3003 <210> 315 <211> 509 <212> PRT <213> Homo Sapien <400> 315 Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu
1 5 10 15

P1618P2C3.txt Lys Cys His Lys Gly Phe Asp Leu Met Tyr Ile Gly Gly Lys Tyr 200 205 210 Gln Cys His Asp Ile Asp Glu Cys Ser Leu Gly Gln Tyr Gln Cys 215 220 225 Ser Ser Phe Ala Arg Cys Tyr Asn Val Arg Gly Ser Tyr Lys Cys 230 235 240 Lys Cys Lys Glu Gly Tyr Gln Gly Asp Gly Leu Thr Cys Val Tyr 245 250 255 Ile Pro Lys Val Met Ile Glu Pro Ser Gly Pro Ile His Val Pro 260 265 270 Lys Gly Asn Gly Thr Ile Leu Lys Gly Asp Thr Gly Asn Asn Asn 275 280 285 Trp Ile Pro Asp Val Gly Ser Thr Trp Trp Pro Pro Lys Thr Pro 290 295 300 Tyr Ile Pro Pro Ile Ile Thr Asn Arg Pro Thr Ser Lys Pro Thr 305 310 315Thr Arg Pro Thr Pro Lys Pro Thr Pro Ile Pro Thr Pro Pro 320 325 330 Pro Pro Pro Leu Pro Thr Glu Leu Arg Thr Pro Leu Pro Pro Thr 335 340 345 Thr Pro Glu Arg Pro Thr Thr Gly Leu Thr Thr Ile Ala Pro Ala 350 355 Ala Ser Thr Pro Pro Gly Gly Ile Thr Val Asp Asn Arg Val Gln 365 370 Thr Asp Pro Gln Lys Pro Arg Gly Asp Val Phe Ser Val Leu Val His Ser Cys Asn Phe Asp His Gly Leu Cys Gly Trp Ile Arg Glu 395 400 405 Lys Asp Asn Asp Leu His Trp Glu Pro Ile Arg Asp Pro Ala Gly 410 415 Gly Gln Tyr Leu Thr Val Ser Ala Ala Lys Ala Pro Gly Gly Lys 425 430 Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly 440 445 Asp Leu Cys Leu Ser Phe Arg His Lys Val Thr Gly Leu His Ser 465 460 465 Gly Thr Leu Gln Val Phe Val Arg Lys His Gly Ala His Gly Ala 470 475 480 Ala Leu Trp Gly Arg Asn Gly Gly His Gly Trp Arg Gln Thr Gln 485 490 495 Ile Thr Leu Arg Gly Ala Asp Ile Lys Ser Glu Ser Gln Arg 500

```
<210> 316
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 316
 gatggttcct gctcaagtgc cctg 24
<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 317
ttgcacttgt aggacccacg tacg 24
<210> 318
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 318
ctgatgggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50
<210> 319
<211> 2110
<212> DNA
<213> Homo Sapien
<400> 319
cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50
tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100
caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150
catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200
cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250
caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300
ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350
tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400
acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450
gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500
ggctgtggag tatgtgggga acatgaccct gacatgccat gtggaagggg 550
gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600
```

agctccacct	actccttttc	tccccaaaac	P1618P2C3 aatacccttc		650
agtaaccaag	gaagacattg	ggaattacag	ctgcctggtg	aggaaccctg	700
tcagtgaaat	ggaaagtgat	atcattatgc	ccatcatata	ttatggacct	750
tatggacttc	aagtgaattc	tgataaaggg	ctaaaagtag	gggaagtgtt	800
tactgttgac	cttggagagg	ccatcctatt	tgattgttct	gctgattctc	850
atcccccaa	cacctactcc	tggattagga	ggactgacaa	tactacatat	900
atcattaagc	atgggcctcg	cttagaagtt	gcatctgaga	aagtagccca	950
gaagacaatg	gactatgtgt	gctgtgctta	caacaacata	accggcaggc	1000
aagatgaaac	tcatttcaca	gttatcatca	cttccgtagg	actggagaag	1050
cttgcacaga	aaggaaaatc	attgtcacct	ttagcaagta	taactggaat	1100
atcactattt	ttgattatat	ccatgtgtct	tctcttccta	tggaaaaaat	1150
atcaacccta	caaagttata	aaacagaaac	tagaaggcag	gccagaaaca	1200
gaatacagga	aagctcaaac	attttcaggc	catgaagatg	ctctggatga	1250
cttcggaata	tatgaatttg	ttgcttttcc	agatgtttct	ggtgtttcca	1300
ggattccaag	caggtctgtt	ccagcctctg	attgtgtatc	ggggcaagat	1350
ttgcacagta	cagtgtatga	agttattcag	cacatccctg	cccagcagca	1400
agaccatcca	gagtgaactt	tcatgggcta	aacagtacat	tcgagtgaaa	1450
ttctgaagaa	acattttaag	gaaaaacagt	ggaaaagtat	attaatctgg	1500
aatcagtgaa	gaaaccagga	ccaacacctc	ttactcatta	ttcctttaca	1550
tgcagaatag	aggcatttat	gcaaattgaa	ctgcaggttt	ttcagcatat	1600
acacaatgtc	ttgtgcaaca	gaaaaacatg	ttggggaaat	attcctcagt	1650
ggagagtcgt	tctcatgctg	acggggagaa	cgaaagtgac	aggggtttcc	1700
tcataagttt	tgtatgaaat	atctctacaa	acctcaatta	gttctactct	1750
acactttcac	tatcatcaac	actgagacta	tcctgtctca	cctacaaatg	1800
tggaaacttt	acattgttcg	atttttcagc	agactttgtt	ttattaaatt	1850
tttattagtg	ttaagaatgc	taaatttatg	tttcaatttt	atttccaaat	1900
ttctatcttg	ttatttgtac	aacaaagtaa	taaggatggt	tgtcacaaaa	1950
acaaaactat	gccttctctt	ttttttcaat	caccagtagt	atttttgaga	2000
agacttgtga	acacttaagg	aaatgactat	taaagtctta	tttttatttt	2050
tttcaaggaa	agatggattc	aaataaatta	ttctgtttt	gcttttaaaa	2100
aaaaaaaaa	2110				

<211> 450 <212> PRT <213> Homo Sapien

<400> 320 Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His 20 25 30 Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe 35 40 45 His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
50 55 60 Pro His Thr Met Pro Lys Tyr Leu Leu Gly Ser Val Asn Lys Ser 65 70 75 Val Val Pro Asp Leu Glu Tyr Gln His Lys Phe Thr Met Met Pro Pro Asn Ala Ser Leu Leu Ile Asn Pro Leu Gln Phe Pro Asp Glu 95 100 105 Gly Asn Tyr Ile Val Lys Val Asn Ile Gln Gly Asn Gly Thr Leu Ser Ala Ser Gln Lys Ile Gln Val Thr Val Asp Asp Pro Val Thr 125 130 135 Lys Pro Val Val Gln Ile His Pro Pro Ser Gly Ala Val Glu Tyr 140 145 150 Val Gly Asn Met Thr Leu Thr Cys His Val Glu Gly Gly Thr Arg 155 160 165 Leu Ala Tyr Gln Trp Leu Lys Asn Gly Arg Pro Val His Thr Ser Ser Thr Tyr Ser Phe Ser Pro Gln Asn Asn Thr Leu His Ile Ala Pro Val Thr Lys Glu Asp Ile Gly Asn Tyr Ser Cys Leu Val Arg 200 205 210 Asn Pro Val Ser Glu Met Glu Ser Asp Ile Ile Met Pro Ile Ile 225 Tyr Tyr Gly Pro Tyr Gly Leu Gln Val Asn Ser Asp Lys Gly Leu 230 235 240 Lys Val Gly Glu Val Phe Thr Val Asp Leu Gly Glu Ala Ile Leu 245 250 255 Phe Asp Cys Ser Ala Asp Ser His Pro Pro Asn Thr Tyr Ser Trp 260 265 270 Ile Arg Arg Thr Asp Asn Thr Thr Tyr Ile Ile Lys His Gly Pro 275 280 285 Arg Leu Glu Val Ala Ser Glu Lys Val Ala Gln Lys Thr Met Asp Page 207

				290				Р	1618 295	P2C3	.txt			300
Tyr	۷al	Cys	Cys	Ala 305	Tyr	Asn	Asn	Ile	Thr 310	Gly	Arg	Gln	Asp	Glu 315
Thr I	His	Phe	Thr	Va1 320	Ile	Ile	Thr	Ser	Val 325	Glу	Leu	Glu	Lys	Leu 330
Ala (Gln	Lys	Glу	Lys 335	Ser	Leu	Ser	Pro	Leu 340	Ala	Ser	Ile	Thr	Gly 345
Ile :	Ser	Leu	Phe	Leu 350	IJе	IJе	Ser	Met	Cys 355	Leu	Leu	Phe	Leu	Trp 360
Lys	Lys	Tyr	Gln	Pro 365	Tyr	Lys	۷al	Ile	Lys 370	Gln	Lys	Leu	Glu	Gly 375
Arg	Pro	Glu	Thr	Glu 380	Tyr	Arg	Lys	Ala	Gln 385	Thr	Phe	Ser	Gly	His 390
Glu /	Asp	Ala	Leu	Asp 395	Asp	Phe	Gly	Ile	Tyr 400	Glu	Phe	val	Ala	Phe 405
Pro /	Asp	۷al	ser	Gly 410	۷al	Ser	Arg	Ile	Pro 415	Ser	Arg	Ser	۷al	Pro 420
Ala :	Ser	Asp	Cys	Val 425	ser	Gly	Gln	Asp	Leu 430	His	Ser	Thr	۷al	Tyr 435
Glu v	۷al	Ile	Gln	His 440	Ile	Pro	Ala	Gln	Gln 445	Gln	Asp	His	Pro	G]u 450
<210> <211> <212> <213>	25 DN/	4	ial	Sequ	ience	2								
<220> <223>	Syr	nthet	ic (Oligo	nucl	eoti	ide F	robe	2					
<400> gatco			aaag	gccag	jt gg	jtgc	25							
<210> <211> <212> <213>	24 DN/	١	ial	Sequ	ience	:								
<220> <223>	Syr	nthet	ic (Oligo	nucl	leoti	ide 1	robe	2					
<400> cacte			gttco	tcac	c ca	agg 2	24							
<210> <211> <212> <213>	45 DN/	\	ial	Sequ	ience	2								
<220> <223>	Syr	ithet	ic (oligo	nucl	eoti	ide F	robe	2					,
<400>	323	3												

P1618P2C3.txt ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45

<210> 324 <211> 2397 <212> DNA <213> Homo Sapien

<400> 324 gcaagcggcg aaatggcgcc ctccgggagt cttgcagttc ccctggcagt 50 cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100 acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150 tggatgatag aattttatgc cccgtggtgc cctgcttgtc aaaatcttca 200 accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250 ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300 ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350 ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400 aagagtggaa gagtattgag cccgtttcat catggtttgg tccaggttct 450 gttctgatga gtagtatgtc agcactcttt cagctatcta tgtggatcag 500 gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550 catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600 ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650 accacagcca tacccatacc cttcaaaaaa attattatca gaatctgcac 700 aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750 tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800 gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850 cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900 aagattgatc attttgtttg gtttgaagtg aactgtgact tttttgaata 950 ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000 acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttctct aatttttgaa aaatcgtgcc aagcaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt tcccaagtat tgcattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttctca tttgatataa tttttctctg tttcactgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 Page 209

attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttattttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaactteaac ttgaaattgt ttttttttt tttttggatg 1750 tgaaggtgaa cattcctgat ttttgtctga tgtgaaaaag ccttggtatt 1800 ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850 caggaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900 atacagaaag ttcttaattg attttacagt ctgtaatgct tgatgtttta 1950 aaataataac atttttatat tttttaaaag acaaacttca tattatcctg 2000 tgttctttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050 gtaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100 atagttttca ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150 ctgaccatta cgtagtagac aatttctgta atgtcccctt ctttctaggc 2200 tctgttgctg tgtgaatcca ttagatttac agtatcgtaa tatacaagtt 2250 ttctttaaag ccctctcctt tagaatttaa aatattgtac cattaaagag 2300 tttggatgtg taacttgtga tgccttagaa aaatatccta agcacaaaat 2350 aaacctttct aaccacttca ttaaagctga aaaaaaaaa aaaaaaa 2397

<210> 325

<211> 280

<212> PRT

<213> Homo Sapien

<400> 325

Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val 1 5 10 15

Leu Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn 20 25 30

Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly 35 40 45

Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln 50 55 60

Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
65 70 75

Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly Page 210

```
P1618P2C3.txt
                     80
                                                                  90
 Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His 95 100 105
 Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys
 Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile
125 130
 Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser
140 145 150
 Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys 165
 His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser
170 175 180
 Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu
 Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys
200 205 210
 Arg Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu 215 220 225
 Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu
230 235 240
 Ala Asp Glu Glu Asp Val Ser Glu Glu Glu Ala Glu Ser Lys Glu
245 250
 Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser
260 265 270
 Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser
275 280
<210> 326
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 326
 tgaggtgggc aagcggcgaa atg 23
<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 327
tatgtggatc aggacgtgcc 20
```

```
<210> 328
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 328
 tgcagggttc agtctagatt g 21
<210> 329
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
ttgaaggaca aaggcaatct gccac 25
<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 330
ggagtcttgc agttcccctg gcagtcctgg tgctgttgct ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
gcgagtgtcc agctgcggag acccgtgata attcgttaac taattcaaca 50
aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg attggaagag cgggaaggtc ctggcccaga gcagtgtgac 150
acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
ggtttggtgt cctgagctgt gtgcaggccg aattcttcac ctctattggg 250
cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
ccaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
tacctggctc accctgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
```

ggacccaggc	acaatttcca	gaggggaact	P1618P2C3 tccaggaacc		650
caatgctgag	tgtggatgac	tgctttggga	tgggccgctc	ggcctacaat	700
gaaggggact	attatcatac	ggtgttgtgg	atggagcagg	tgctaaagca	750
gcttgatgcc	ggggaggagg	ccaccacaac	caagtcacag	gtgctggact	800
acctcagcta	tgctgtcttc	cagttgggtg	atctgcaccg	tgccctggag	850
ctcacccgcc	gcctgctctc	ccttgaccca	agccacgaac	gagctggagg	900
gaatctgcgg	tactttgagc	agttattgga	ggaagagaga	gaaaaaacgt	950
taacaaatca	gacagaagct	gagctagcaa	ccccagaagg	catctatgag	1000
aggcctgtgg	actacctgcc	tgagagggat	gtttacgaga	gcctctgtcg	1050
tggggagggt	gtcaaactga	caccccgtag	acagaagagg	cttttctgta	1100
ggtaccacca	tggcaacagg	gccccacagc	tgctcattgc	ccccttcaaa	1150
gaggaggacg	agtgggacag	cccgcacatc	gtcaggtact	acgatgtcat	1200
gtctgatgag	gaaatcgaga	ggatcaagga	gatcgcaaaa	cctaaacttg	1250
cacgagccac	cgttcgtgat	cccaagacag	gagtcctcac	tgtcgccagc	1300
taccgggttt	ccaaaagctc	ctggctagag	gaagatgatg	accctgttgt	1350
ggcccgagta	aatcgtcgga	tgcagcatat	cacagggtta	acagtaaaga	1400
ctgcagaatt	gttacaggtt	gcaaattatg	gagtgggagg	acagtatgaa	1450
ccgcacttcg	acttctctag	gcgacctttt	gacagcggcc	.tcaaaacaga	1500
ggggaatagg	ttagcgacgt	ttcttaacta	catgagtgat	gtagaagctg	1550
gtggtgccac	cgtcttccct	gatctggggg	ctgcaatttg	gcctaagaag	1600
ggtacagctg	tgttctggta	caacctcttg	cggagcgggg	aaggtgacta	1650
ccgaacaaga	catgctgcct	gccctgtgct	tgtgggctgc	aagtgggtct	1700
ccaataagtg	gttccatgaa	cgaggacagg	agttcttgag	accttgtgga	1750
tcaacagaag	ttgactgaca	tccttttctg	tccttcccct	tcctggtcct	1800
tcagcccatg	tcaacgtgac	agacaccttt	gtatgttcct	ttgtatgttc	1850
ctatcaggct	gatttttgga	gaaatgaatg	tttgtctgga	gcagagggag	1900
accatactag	ggcgactcct	gtgtgactga	agtcccagcc	cttccattca	1950
gcctgtgcca	tccctggccc	caaggctagg	atcaaagtgg	ctgcagcaga	2000
gttagctgtc	tagcgcctag	caaggtgcct	ttgtacctca	ggtgttttag	2050
gtgtgagatg	tttcagtgaa	ccaaagttct	gataccttgt	ttacatgttt	2100
gtttttatgg	catttctatc	tattgtggct	ttaccaaaaa	ataaaatgtc	2150
cctaccagaa	aaaaaaaa 21	L68			

Page 213

<210> 332 <211> 533 <212> PRT <213> Homo Sapien											
<400> 332 Met Lys Leu 1	Trp Val	Ser	Ala	Leu	Leu	Met 10	Ala	Trp	Phe	Gly	∨a1 15
Leu Ser Cys	Val Gln 20	Ala	Glu	Phe	Phe	Thr 25	Ser	Ile	Gly	His	Met 30
Thr Asp Leu	Ile Tyr 35	Ala	Glu	Lys	Glu	Leu 40	٧a٦	Gln	Ser	Leu	Lys 45
Glu Tyr Ile	Leu Val	Glu	Glu	Ala	Lys	Leu 55	ser	Lys	Ile	Lys	ser 60
Trp Ala Asn	Lys Met 65	Glu	Аlа	Leu	Thr	ser 70	Lys	ser	Ala	Ala	Asp 75
Ala Glu Gly	Tyr Leu 80	Ala	His	Pro	٧a٦	Asn 85	Ala	туг	Lys	Leu	va1 90
Lys Arg Leu	Asn Thr 95	Asp	Тгр	Pro	Ala	Leu 100	Glu	Asp	Leu	∨al	Leu 105
Gln Asp Ser	Ala Ala 110	Gly	Phe	Ile	Ala	Asn 115	Leu	Ser	۷al	Gln	Arg 120
Gln Phe Phe	Pro Thr 125	Asp	Glu	Asp	G lu	Ile 130	GТу	Ala	Ala	Lys	Ala 135
Leu Met Arg	Leu Gln 140	Asp	Thr	Tyr	Arg	Leu 145	Asp	Pro	Gly	Thr	Ile 150
Ser Arg Gly	Glu Leu 155	Pro	Gly	Thr	Lys	Tyr 160	Gln	Ala	Met	Leu	ser 165
Val Asp Asp	Cys Phe 170	Gly	Met	Glу	Arg	Ser 175	Ala	Tyr	Asn	Glu	Gly 180
Asp Tyr Tyr	His Thr 185	val	Leu	Тгр	Met	Glu 190	Gln	٧a٦	Leu	Lys	Gln 195
Leu Asp Ala	Gly Glu 200	Glu	Ala	Thr	Thr	Thr 205	Lys	ser	Gln	∨a1	Leu 210
Asp Tyr Leu	Ser Tyr 215	Ala	∨al	Phe	Gln	Leu 220	Glу	Asp	Leu	His	Arg 225
Ala Leu Glu	Leu Thr 230	Arg	Arg	Leu	Leu	ser 235	Leu	Asp	Pro	ser	His 240
Glu Arg Ala	Gly Gly 245	Asn	Leu	Arg	Tyr	Phe 250	G∏u	Gln	Leu	Leu	G]u 255
Glu Glu Arg	Glu Lys 260	Thr	Leu	Thr	Asn	G]n 265	Thr	Glu	Ala	Glu	Leu 270
Ala Thr Pro	Glu Gly 275	Ile	Tyr	Glu	Arg	280	Val ge 21		Tyr	Leu	Pro 285

Gl	u Arg	Asp	۷al	Tyr 290	Glu	Ser	Leu	Cys	Arg 295	GТу	Glu	Gly	val	Lys 300
Le	ı Thr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
G٦	/ Asn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	G1u 330
Asj	G G T u	Trp	Asp	Ser 335	Pro	His	Ile	۷a٦	Arg 340	Tyr	Tyr	Asp	۷a٦	Met 345
Sei	Asp	Glu	Glu	11e 350	Glu	Arg	Ile	Lys	G]u 355	Ile	۸la	Lys	Pro	Lys 360
Lei	ı Ala	Arg	Аlа	Thr 365	٧a٦	Arg	Asp	Pro	Lys 370	Thr	Gly	٧a٦	Leu	Thr 375
٧a	Ala	Ser	Tyr	Arg 380	۷al	Ser	Lys	Ser	Ser 385	Trp	Leu	Glu	Glu	Asp 390
Asp) Asp	Pro	Val	Va 1 395	Ala	Arg	۷al	Asn	Arg 400	Arg	Met	Gln	His	Ile 405
Thr	· Gly	Leu	Thr	Val 410	Lys	Thr	Ala	Glu	Leu 415	Leu	G∏n	۷al	Ala	Asn 420
Туг	· Gly	۷al	Gly	Gly 425	Gln	Tyr	Glu	Pro	His 430	Phe	Asp	Phe	Ser	Arg 435
Arg	, Pro	Phe	Asp	ser 440	GТу	Leu	Lys	Thr	Glu 445	Glу	Asn	Arg	Leu	Ala 450
Thr	Phe	Leu	Asn	Tyr 455	Met	Ser	Asp	۷a٦	G]u 460	Ala	Gly	Gly	Ala	Thr 465
۷a٦	Phe	Pro	Asp	Leu 470	Glу	Ala	Ala	Ile	Trp 475	Pro	Lys	Lys	Gly	Thr 480
Ala	Val	Phe	Trp	Tyr 485	Asn	Leu	Leu	Arg	ser 490	GЛу	Glu	Gly	Asp	Tyr 495
Arg	Thr	Arg	His	Ala 500	Ala	Cys	Pro	٧a٦	Leu 505	٧a٦	Gly	Cys	Lys	Trp 510
۷a٦	Ser	Asn	Lys	Trp 515	Phe	His	Glu	Arg	Gly 520	Gln	Glu	Phe	Leu	Arg 525
Pro	Cys	Gly	Ser	Thr 530	Glu	val	Asp							
<210	> 333	3												

<210> 333 <211> 18 <212> DNA <213> Artificial Sequence

<220> <223> Synthetic Oligonucleotide Probe

<400> 333 ccaggcacaa tttccaga 18

```
<210> 334
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 334
 ggacccttct gtgtgccag 19
<210> 335
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 335
 ggtctcaaga actcctgtc 19
<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 336
 acactcagca ttgcctggta cttg 24
<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 337
 gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45
<210> 338
<211> 2789
<212> DNA
<213> Homo Sapien
<400> 338
 gcagtattga gttttacttc ctcctctttt tagtggaaga cagaccataa 50
 tcccagtgtg agtgaaattg attgtttcat ttattaccgt tttggctggg 100
 ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150
 agacaggaca atcttcttgg ggatgctggt cctggaagcc agcgggcctt 200
 gctctgtctt tggcctcatt gaccccaggt tctctggtta aaactgaaag 250
 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300
 cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350
                                       Page 216
```

++	+=========	acttecests	2+6++2000	+a+c+c+aaa	400
	tgcggccagc				
	agcctcctgc				
atccctgtgt	cgaggctgta	ggggagcgag	gagggccaca	gaatccagat	500
tcgagagctc	ggctagacca	aagtgatgaa	gacttcaaac	cccggattgt	550
cccctactac	agggacccca	acaagcccta	caagaaggtg	ctcaggactc	600
ggtacatcca	gacagagctg	ggctcccgtg	agcggttgct	ggtggctgtc	650
ctgacctccc	gagctacact	gtccactttg	gccgtggctg	tgaaccgtac	700
ggtggcccat	cacttccctc	ggttactcta	cttcactggg	cagcgggggg	750
cccgggctcc	agcagggatg	caggtggtgt	ctcatgggga	tgagcggccc	800
gcctggctca	tgtcagagac	cctgcgccac	cttcacacac	actttggggc	850
cgactacgac	tggttcttca	tcatgcagga	tgacacatat	gtgcaggccc	900
cccgcctggc	agcccttgct	ggccacctca	gcatcaacca	agacctgtac	950
ttaggccggg	cagaggagtt	cattggcgca	ggcgagcagg	cccggtactg	1000
tcatgggggc	tttggctacc	tgttgtcacg	gagtctcctg	cttcgtctgc	1050
ggccacatct	ggatggctgc	cgaggagaca	ttctcagtgc	ccgtcctgac	1100
gagtggcttg	gacgctgcct	cattgactct	ctgggcgtcg	gctgtgtctc	1150
acagcaccag	gggcagcagt	atcgctcatt	tgaactggcc	aaaaataggg	1200
accctgagaa	ggaagggagc	tcggctttcc	tgagtgcctt	cgccgtgcac	1250
cctgtctccg	aaggtaccct	catgtaccgg	ctccacaaac	gcttcagcgc	1300
tctggagttg	gagcgggctt	acagtgaaat	agaacaactg	caggctcaga	1350
tccggaacct	gaccgtgctg	accccgaag	gggaggcagg	gctgagctgg	1400
cccgttgggc	tccctgctcc	tttcacacca	cactctcgct	ttgaggtgct	1450
gggctgggac	tacttcacag	agcagcacac	cttctcctgt	gcagatgggg	1500
ctcccaagtg	cccactacag	ggggctagca	gggcggacgt	gggtgatgcg	1550
ttggagactg	ccctggagca	gctcaatcgg	cgctatcagc	cccgcctgcg	1600
cttccagaag	cagcgactgc	tcaacggcta	tcggcgcttc	gacccagcac	1650
ggggcatgga	gtacaccctg	gacctgctgt	tggaatgtgt	gacacagcgt	1700
gggcaccggc	gggccctggc	tcgcagggtc	agcctgctgc	ggccactgag	1750
ccgggtggaa	atcctaccta	tgccctatgt	cactgaggcc	acccgagtgc	1800
agctggtgct	gccactcctg	gtggctgaag	ctgctgcagc	cccggctttc	1850
ctcgaggcgt	ttgcagccaa	tgtcctggag	ccacgagaac	atgcattgct	1900

P1618P2C3.txt caccctgttg ctggtctacg ggccacgaga aggtggccgt ggagctccag 1950 acccatttct tggggtgaag gctgcagcag cggagttaga gcgacggtac 2000 cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050 ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100 tcttccttac caccgtgtgg acaaggcctg ggcccgaagt cctcaaccgc 2150 tgtcgcatga atgccatctc tggctggcag gccttctttc cagtccattt 2200 ccaggagttc aatcctgccc tgtcaccaca gagatcaccc ccagggcccc 2250 cgggggctgg ccctgacccc ccctccctc ctggtgctga cccctcccgg 2300 ggggctccta taggggggag atttgaccgg caggcttctg cggagggctg 2350 cttctacaac gctgactacc tggcggcccg agcccggctg gcaggtgaac 2400 tggcaggcca ggaagaggag gaagccctgg aggggctgga ggtgatggat 2450 gttttcctcc ggttctcagg gctccacctc tttcgggccg tagagccagg 2500 gctggtgcag aagttctccc tgcgagactg cagcccacgg ctcagtgaag 2550 aactctacca ccgctgccgc ctcagcaacc tggaggggct agggggccgt 2600 gcccagctgg ctatggctct ctttgagcag gagcaggcca atagcactta 2650 gcccgcctgg gggccctaac ctcattacct ttcctttgtc tgcctcagcc 2700 ccaggaaggg caaggcaaga tggtggacag atagagaatt gttgctgtat 2750 tttttaaata tgaaaatgtt attaaacatg tcttctgcc 2789

```
<210> 339
<211> 772
<212> PRT
```

<213> Homo Sapien

			•					. Р	1618	P2C3	txt			
val	Leu	Thr	ser	Arg 110	Ala	Thr	Leu						Ala	Val 120
Asn	Arg	Thr	val	Ala 125	His	ніѕ	Phe	Pro	Arg 130	Leu	Leu	Tyr	Phe	Thr 135
Gly	Gln	Arg	Gly	Ala 140	Arg	Ala	Pro	Ala	Gly 145	Met	Gln	٧a٦	۷al	Ser 150
His	Gly	Asp	Glu	Arg 155	Pro	Ala	Trp	Leu	меt 160	Ser	Glu	Thr	Leu	Arg 165
His	Leu	His	Thr	ніs 170	Phe	Gly	Ala	Asp	Tyr 175	Asp	Trp	Phe	Phe	Ile 180
Met	Gln	Asp	Asp	Thr 185	Tyr	٧a٦	Gln	Ala	Pro 190	Arg	Leu	Ala	Ala	Leu 195
Ala	Gly	His	Leu	ser 200	Ile	Asn	Gln	Asp	Leu 205	туr	Leu	Glу	Arg	Ala 210
Glu	Glu	Phe	Ile	Gly 215	Ala	Gly	Glu	Gln	Ala 220	Arg	Tyr	Cys	His	G]y 225
Gly	Phe	Gly	Tyr	Leu 230	Leu	ser	Arg	Ser	Leu 235	Leu	Leu	Arg	Leu	Arg 240
Pro	His	Leu	Asp	Gly 245	Cys	Arg	Gly	Asp	11e 250	Leu	ser	Ala	Arg	Pro 255
Asp	Glu	Trp	Leu	Gly 260	Arg	Cys	Leu	Ile	Asp 265	Ser	Leu	Gly	val	G]y 270
Cys	Val	ser	Gln	His 275	Gln	Gly	Gln	Gln	Tyr 280	Arg	ser	Phe	Glu	Leu 285
Ala	Lys	Asn	Arg	Asp 290	Pro	Glu	Lys	Glu	G]y 295	Ser	Ser	Ala	Phe	Leu 300
Ser	Ala	Phe	Ala	Va1 305	His	Pro	۷al	Ser	Glu 310	Gly	Thr	Leu	Met	Tyr 315
Arg	Leu	ніѕ	Lys	Arg 320	Phe	ser	Ala	Leu	G]u 325	Leu	Glu	Arg	Ala	Tyr 330
ser	G lu	Ile	Glu	G1n 335	Leu	Gln	Ala	G∏n	Ile 340	Arg	Asn	Leu	Thr	Val 345
Leu	Thr	Pro	Glu	Gly 350	Glu	Ala	Gly	Leu	Ser 355	Тгр	Pro	val	Gly	Leu 360
Pro	Ala	Pro	Phe	Thr 365	Pro	His	ser	Arg	Phe 370	Glu	Val	Leu	Gly	Trp 375
Asp	Tyr	Phe	Thr	Glu 380	Gln	ніѕ	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
Pro	Lys	Cys	Pro	Leu 395	Gln	Gly	Ala	ser	Arg 400	Ala	Asp	۷al	Gly	Asp 405
Ala	Leu	Glu	Thr	Ala 410	Leu	Glu	Gln	Leu	Asn 415	Arg	Arg	Tyr	Gln	Pro 420

Ara	Leu	Ara	Phe	Gln	Lys	Gln	Arg		1618 Leu				Arg	Arg
-		_		425	-				430					435
Phe	Asp	Pro	Ala	440	Gly	Met	Glu	Ţyr	Thr 445	Leu	Asp	Leu	Leu	450
Glu	Cys	۷al	Thr	G1n 455	Arg	Gly	His	Arg	Arg 460	Ala	Leu	Ala	Arg	Arg 465
٧a٦	Ser	Leu	Leu	Arg 470	Pro	Leu	Ser	Arg	∨a1 475	Glu	Ile	Leu	Pro	Met 480
Pro	Tyr	٧a٦	Thr	Glu 485	Ala	Thr	Arg	۷a٦	G1n 490	Leu	۷a٦	Leu	Pro	Leu 495
Leu	۷a٦	Ala	Glu	Ala 500	Ala	Ala	Ala	Pro	Ala 505	Phe	Leu	Glu	Ala	Phe 510
Ala	Ala	Asn	۷a٦	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu	Leu	۷a٦	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	GТу	Ala	Pro	Asp 540
Pro	Phe	Leu	Gly	Va1 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr	Pro	Gly	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	٧a٦	Arg	Ala	Glu	Ala 570
Pro	Ser	Gln	۷al	Arg 575	Leu	Met	Asp	∨al	Va1 580	Ser	Lys	Lys	His	Pro 585
٧a٦	Asp	Thr	Leu	Phe 590	Phe	Leu	Thr	Thr	Va1 595	Trp	Thr	Arg	Pro	G]y 600
Pro	Glu	٧a٦	Leu	Asn 605	Arg	Cys	Arg	Met	Asn 610	Ala	Ile	Ser	G] y	Trp 615
Gln	Ala	Phe	Phe	Pro 620	∨al	His	Phe	Gln	G1u 625	Phe	Asn	Pro	Ala	Leu 630
Ser	Pro	Gln	Arg	Ser 635	Pro	Pro	Gly	Pro	Pro 640	Gly	Ala	Gly	Pro	Asp 645
Pro	Pro	Ser	Pro	Pro 650	Gly	Ala	Asp	Pro	Ser 655	Arg	Gly	Ala	Pro	11e 660
Gly	Gly	Arg	Phe	Asp 665	Arg	Gln	Ala	Ser	Ala 670	Glu	GТу	Cys	Phe	Tyr 675
Asn	Ala	Asp	Tyr	Leu 680	Ala	Ala	Arg	Ala	Arg 685	Leu	Ala	Glу	Glu	Leu 690
Ala	Gly	Gln	Glu	G] u 695	Glu	Glu	Ala	Leu	G1u 700	Gly	Leu	Glu	۷al	Met 705
Asp	∨al	Phe	Leu	Arg 7 1 0	Phe	Ser	Gly	Leu	His 715	Leu	Phe	Arg	Ala	Val 720
Glu	Pro	Gly	Leu	Va1 725	Gln	Lys	Phe	Ser	Leu 730	Arg	Asp	Cys	Ser	Pro 735

P1618P2C3.txt Arg Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu 740 745 750 Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu 755 760 765 Gln Glu Gln Ala Asn Ser Thr

<210> 340 <211> 1572 <212> DNA

<213> Homo Sapien

<400> 340 cggagtggtg cgccaacgtg agaggaaacc cgtgcgcggc tgcgctttcc 50 tgtccccaag ccgttctaga cgcgggaaaa atgctttctg aaagcagctc 100 ctttttgaag ggtgtgatgc ttggaagcat tttctgtgct ttgatcacta 150 tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200 catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250 ggatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300 ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350 accaaacact gtgacaaagc agagttcttc agttctgaaa atgttaaagt 400 gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450 aagcttacaa atacgccttt gataagtata gagaccaata caactggttc 500 ttccttgcac gccccactac gtttgctatc attgaaaacc taaagtattt 550 tttgttaaaa aaggatccat cacagccttt ctatctaggc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggctgttac ttttaatgga ctgactccaa atcagatgca tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agcgtgaata tgatctttgt ataggacgtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200

P1618P2C3.txt gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tctctagttg tgaatttgtg attaaagtaa aacttttagc 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

<210> 341

<211> 318

<212> PRT

<213> Homo Sapien

<400> 341 Met Leu Ser Glu Ser Ser Ser Phe Leu Lys Gly Val Met Leu Gly
1 10 15 Ser Ile Phe Cys Ala Leu Ile Thr Met Leu Gly His Ile Arg Ile 20 25 30Gly His Gly Asn Arg Met His His His Glu His His Leu Gln 45 Ala Pro Asn Lys Glu Asp Ile Leu Lys Ile Ser Glu Asp Glu Arg
50 55 60 Met Glu Leu Ser Lys Ser Phe Arg Val Tyr Cys Ile Ile Leu Val
65 70 75 Lys Pro Lys Asp Val Ser Leu Trp Ala Ala Val Lys Glu Thr Trp 80 85 90 Thr Lys His Cys Asp Lys Ala Glu Phe Phe Ser Ser Glu Asn Val 95 100 105 Lys Val Phe Glu Ser Ile Asn Met Asp Thr Asn Asp Met Trp Leu 110 115 120Met Met Arg Lys Ala Tyr Lys Tyr Ala Phe Asp Lys Tyr Arg Asp 125 130 135 Gln Tyr Asn Trp Phe Phe Leu Ala Arg Pro Thr Thr Phe Ala Ile 140 145 150 Ile Glu Asn Leu Lys Tyr Phe Leu Leu Lys Lys Asp Pro Ser Gln 155 160 165 Pro Phe Tyr Leu Gly His Thr Ile Lys Ser Gly Asp Leu Glu Tyr 170 175 180 Val Gly Met Glu Gly Gly Ile Val Leu Ser Val Glu Ser Met Lys 185 190 Arg Leu Asn Ser Leu Leu Asn Ile Pro Glu Lys Cys Pro Glu Gln
200 205 210 Page 222

Gly	Gly	Met	Ile	Trp 215	Lys	Ile	Ser	Glu	Asp 220	Lys	Gln	Leu	Ala	va1 225
Cys	Leu	Lys	туг	Ala 230	Gly	va1	Phe	Ala	G]u 235	Asn	Ala	Glu	Asp	Ala 240
Asp	Gly	Lys	Asp	va1 245	Phe	Asn	Thr	Lys	ser 250	val	Gly	Leu	Ser	11e 255
Lys	Glu	Ala	Met	Thr 260	Tyr	His	Pro	Asn	G1n 265	۷al	Val	Glu	Gly	Cys 270
Cys	Ser	Asp	Met	Ala 275	۷al	Thr	Phe	Asn	Gly 280	Leu	Thr	Pro	Asn	G1n 285
Met	His	٧al	Met	Met 290	Tyr	Gly	Val	Tyr	Arg 295	Leu	Arg	Ala	Phe	G]y 300
His	Ile	Phe	Asn	Asp 305	Ala	Leu	val	Phe	Leu 310	Pro	Pro	Asn	Gly	Ser 315
Asp	Asn	Asp												
<210> 342 <211> 23 <212> DNA <213> Artificial Sequence														
<pre><220> <223> Synthetic Oligonucleotide Probe</pre>														
<400> 342 tccccaagcc gttctagacg cgg 23														
<210: <211: <212: <213:	> 18 > DN/	Δ	cial	Seq	uenc	e								
<220: <223:		nthe [.]	tic	Olig	onuc	leot [.]	ide 1	Prob	e					
<400 ctg		3 ttc	cttg	cacg	18									
<210: <211: <212: <213:	> 28 > DN	A	cial	Seq	uenc	e								
<220: <223:	> > Sy	nthe	tic	Olig	onuc	leot [.]	ide 1	Prob	e					
<400: gcc		4 tgc	ccta	aggc	gg t	atac	ccc :	28						
<210: <211: <212: <213:	> 50 > DN.	A	cial	seq	uenc	e								

```
P1618P2C3.txt
<220>
<223> Synthetic Oligonucleotide Probe
 gggtgtgatg cttggaagca ttttctgtgc tttgatcact atqctaggac 50
<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 346
 gggatgcagg tggtgtctca tgggg 25
<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 347
ccctcatgta ccggctcc 18
<210> 348
<211> 48
<212> DNA
```

<223> Synthetic Oligonucleotide Probe

ggattctaat acgactcact atagggctca gaaaagcgca acagagaa 48 <210> 349 <211> 47 <212> DNA

<400> 348

<213> Artificial Sequence

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 349
ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47

<210> 350 <211> 48 <212> DNA <213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe <400> 350 ggattctaat acgactcact atagggcggc gatgtccact ggggctac 48

<210> 351 <211> 48

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 351
 ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatggt 48
<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 352
 ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47
<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 353
 ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48
<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 354
 ggattctaat acgactcact atagggcttg ctgcggtttt tgttcctg 48
<210> 355
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggtatt 48
<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46
                                       Page 225
```

```
<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 357
 ctatgaaatt aaccctcact aaagggagcc cgggcatggt ctcagtta 48
<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 358
 ggattctaat acgactcact atagggcggg aagatggcga ggaggag 47
<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 359
 ctatgaaatt aaccctcact aaagggacca aggccacaaa cggaaatc 48
<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48
<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtggat 48
<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<400> 362
ggattctaat acgactcact atagggcccg cctcgctcct gctcctg 47
<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 363
ctatgaaatt aaccctcact aaagggagga ttgccgcgac cctcacag 48
<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 364
ggattctaat acgactcact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48
<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 366
ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48
<210> 367
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 367
ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47
<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 368
ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47
<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 369
ctatgaaatt aaccctcact aaagggaaag acatgtcatc gggagtgg 48
<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 370
ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48
<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 371
ctatgaaatt aaccctcact aaagggacac agacagagcc ccatacgc 48
<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 372
ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47
<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 373
 ctatgaaatt aaccctcact aaagggagta aggggatgcc accgagta 48
<210> 374
```

Page 228

```
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47
<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48
<210> 376
<211> 997
<212> DNA
<213> Homo Sapien
<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
aaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttctctt cccaaatgtt cttatggact gttgctggga tccccatcct 200
atttctcagt gcctgtttca tcaccagatg tgttqtqaca tttcgcatct 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactgggaa tattttcaat ccagctgcta cttcttttct actgacacca 400
tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
taaaatgaga gagtttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acacctttga caaagtctct gagcttctgg 600
gatgtagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
tcaattattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750
ggaaaatctc tttaagaaca gaaggcacaa ctcaaatgtg taaagaagga 800
agagcaagaa catggccaca cccaccgccc cacacgagaa atttgtgcgc 850
tgaacttcaa aggacttcat aagtatttgt tactctgata caaataaaaa 900
```

```
<211> 219
<212> PRT
<213> Homo Sapien
<400> 377
 Met Asn Ser Ser Lys Ser Ser Glu Thr Gln Cys Thr Glu Arg Gly 1 	 5 	 10 	 15
 Cys Phe Ser Ser Gln Met Phe Leu Trp Thr Val Ala Gly Ile Pro
 Ile Leu Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr
35 40 45
 Phe Arg Ile Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro 50 60
 Glu Asn Phe Thr Glu Leu Ser Cys Tyr Asn Tyr Gly Ser Gly Ser 65 70 75
 Val Lys Asn Cys Cys Pro Leu Asn Trp Glu Tyr Phe Gln Ser Ser 80 85 90
 Cys Tyr Phe Phe Ser Thr Asp Thr Ile Ser Trp Ala Leu Ser Leu
 Lys Asn Cys Ser Ala Met Gly Ala His Leu Val Val Ile Asn Ser
110 115 120
 Gln Glu Gln Glu Phe Leu Ser Tyr Lys Lys Pro Lys Met Arg
125 130 135
 Glu Phe Phe Ile Gly Leu Ser Asp Gln Val Val Glu Gly Gln Trp
140 145 150
 Gln Trp Val Asp Gly Thr Pro Leu Thr Lys Ser Leu Ser Phe Trp
155 160 165
Asp Val Gly Glu Pro Asn Asn Ile Ala Thr Leu Glu Asp Cys Ala
170 175 180
Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
185 190 190
Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
200 205 210
Asn Pro Leu Asn Lys Gly Lys Ser Leu
215
<210> 378
<211> 21
```

<210> 377

<212> DNA

<213> Artificial Sequence

<223> Synthetic Oligonucleotide Probe

```
<400> 378
 ttcagcttct gggatgtagg g 21
<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 379
 tattcctacc atttcacaaa tccg 24
<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 380
 ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49
<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 381
 gcagattttg aggacagcca cctcca 26
<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 382
 ggccttgcag acaaccgt 18
<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
 cagactgagg gagatccgag a 21
<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 384
 cagctgccct tccccaacca 20
<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 385
 catcaagcgc ctctacca 18
<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 386
 cacaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
 gggccatcac agctccct 18
<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 388
 gggatgtggt gaacacagaa ca 22
<210> 389
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 389
 tgccagctgc atgctgccag tt 22
<210> 390
<211> 20
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 390
cagaaggatg tcccgtggaa 20
<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 391
gccgctgtcc actgcag 17
<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 392
gacggcatcc tcagggccac a 21
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 393
atgtcctcca tgcccacgcg 20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 394
gagtgcgaca tcgagagctt 20
<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 395
ccgcagcctc agtgatga 18
```

```
<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 gaagagcaca gctgcagatc c 21
<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 397
 gaggtgtcct ggctttggta gt 22
<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 398
 cctctggcgc ccccactcaa 20
<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 399
ccaggagagc tggcgatg 18
<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
gcaaattcag ggctcactag aga 23
<210> 401
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 401
 cacagagcat ttgtccatca gcagttcag 29
<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 402
 ggcagagact tccagtcact ga 22
<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 403
 gccaagggtg gtgttagata gg 22
<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 404
 caggccccct tgatctgtac ccca 24
<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 405
 gggacgtgct tctacaagaa cag 23
<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 406
caggcttaca atgttatgat cagaca 26
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 407
tattcagagt tttccattgg cagtgccagt t 31
<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 408
tctacatcag cctctctgcg c 21
<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 409
 cgatcttctc cacccaggag cgg 23
<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 410
 gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
ctccctgaat ggcagcctga gca 23
<210> 412
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 412
 aggtgtttat taagggccta cgct 24
<210> 413
```

```
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 413
cagagcagag ggtgccttg 19
<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 414
tggcggagtc ccctcttggc t 21
<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 415
ccctgtttcc ctatgcatca ct 22
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 416
tcaacccctg accctttcct a 21
<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 417
ggcaggggac aagccatctc tcct 24
<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 418
```

```
gggactgaac tgccagcttc 20
<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
gggccctaac ctcattacct tt 22
<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 420
tgtctgcctc agccccagga agg 23
<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 421
tctgtccacc atcttgcctt g 21
<210> 422
<211> 3554
<212> DNA
<213> Homo Sapien
<400> 422
gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100
cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150
tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300
 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gccctttatc gctgtgaggt 400
 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450
 ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500
 ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
```

ccggcctcac	tacagctggt	atcgcaatga	P1618P2C3 tgtaccactg		600
ccagagccaa	tcccagattt	cgcaattctt	ctttccactt	aaactctgaa	650
acaggcactt	tggtgttcac	tgctgttcac	aaggacgact	ctgggcagta	700
ctactgcatt	gcttccaatg	acgcaggctc	agccaggtgt	gaggagcagg	750
agatggaagt	ctatgacctg	aacattggcg	gaattattgg	gggggttctg	800
gttgtccttg	ctgtactggc	cctgatcacg	ttgggcatct	gctgtgcata	850
cagacgtggc	tacttcatca	acaataaaca	ggatggagaa	agttacaaga	900
acccagggaa	accagatgga	gttaactaca	tccgcactga	cgaggagggc	950
gacttcagac	acaagtcatc	gtttgtgatc	tgagacccgc	ggtgtggctg	1000
agagcgcaca	gagcgcacgt	gcacatacct	ctgctagaaa	ctcctgtcaa	1050
ggcagcgaga	gctgatgcac	tcggacagag	ctagacactc	attcagaagc	1100
ttttcgtttt	ggccaaagtt	gaccactact	cttcttactc	taacaagcca	1150
catgaataga	agaattttcc	tcaagatgga	cccggtaaat	ataaccacaa	1200
ggaagcgaaa	ctgggtgcgt	tcactgagtt	gggttcctaa	tctgtttctg	1250
gcctgattcc	cgcatgagta	ttagggtgat	cttaaagagt	ttgctcacgt	1300
aaacgcccgt	gctgggccct	gtgaagccag	catgttcacc	actggtcgtt	1350
cagcagccac	gacagcacca	tgtgagatgg	cgaggtggct	ggacagcacc	1400
agcagcgcat	cccggcggga	acccagaaaa	ggcttcttac	acagcagcct	1450
tacttcatcg	gcccacagac	accaccgcag	tttcttctta	aaggctctgc	1500
tgatcggtgt	tgcagtgtcc	attgtggaga	agctttttgg	atcagcattt	1550
tgtaaaaaca	accaaaatca	ggaaggtaaa	ttggttgctg	gaagagggat	1600
cttgcctgag	gaaccctgct	tgtccaacag	ggtgtcagga	tttaaggaaa	1650
accttcgtct	taggctaagt	ctgaaatggt	actgaaatat	gcttttctat	1700
gggtcttgtt	tattttataa	aattttacat	ctaaatttt	gctaaggatg	1750
tattttgatt	attgaaaaga	aaatttctat	ttaaactgta	aatatattgt	1800
catacaatgt	taaataacct	attttttaa	aaaagttcaa	cttaaggtag	1850
aagttccaag	ctactagtgt	taaattggaa	aatatcaata	attaagagta	1900
ttttacccaa	ggaatcctct	catggaagtt	tactgtgatg	ttccttttct	1950
cacacaagtt	ttagcctttt	tcacaaggga	actcatactg	tctacacatc	2000
agaccatagt	tgcttaggaa	acctttaaaa	attccagtta	agcaatgttg	2050
aaatcagttt	gcatctcttc	aaaagaaacc	tctcaggtta	gctttgaact	2100
gcctcttcct	gagatgacta	ggacagtctg	tacccagagg Page 23		2150

gccctcagat	gtacatacac	agatgccagt	cagctcctgg	ggttgcgcca	2200
ggcgcccccg	ctctagctca	ctgttgcctc	gctgtctgcc	aggaggccct	2250
gccatccttg	ggccctggca	gtggctgtgt	cccagtgagc	tttactcacg	2300
tggcccttgc	ttcatccagc	acagctctca	ggtgggcact	gcagggacac	2350
tggtgtcttc	catgtagcgt	cccagctttg	ggctcctgta	acagacctct	2400
ttttggttat	ggatggctca	caaaataggg	cccccaatgc	tattttttt	2450
ttttaagttt	gtttaattat	ttgttaagat	tgtctaaggc	caaaggcaat	2500
tgcgaaatca	agtctgtcaa	gtacaataac	atttttaaaa	gaaaatggat	2550
cccactgttc	ctctttgcca	cagagaaagc	acccagacgc	cacaggctct	2600
gtcgcatttc	aaaacaaacc	atgatggagt	ggcggccagt	ccagcctttt	2650
aaagaacgtc	aggtggagca	gccaggtgaa	aggcctggcg	gggaggaaag	2700
tgaaacgcct	gaatcaaaag	cagttttcta	attttgactt	taaatttttc	2750
atccgccgga	gacactgctc	ccatttgtgg	ggggacatta	gcaacatcac	2800
tcagaagcct	gtgttcttca	agagcaggtg	ttctcagcct	cacatgccct	2850
gccgtgctgg	actcaggact	gaagtgctgt	aaagcaagga	gctgctgaga	2900
aggagcactc	cactgtgtgc	ctggagaatg	gctctcacta	ctcaccttgt	2950
ctttcagctt	ccagtgtctt	gggttttta	tactttgaca	gcttttttt	3000
aattgcatac	atgagactgt	gttgactttt	tttagttatg	tgaaacactt	3050
tgccgcaggc	cgcctggcag	aggcaggaaa	tgctccagca	gtggctcagt	3100
gctccctggt	gtctgctgca	tggcatcctg	gatgcttagc	atgcaagttc	3150
cctccatcat	tgccaccttg	gtagagaggg	atggctcccc	accctcagcg	3200
ttggggattc	acgctccagc	ctccttcttg	gttgtcatag	tgatagggta	3250
gccttattgc	cccctcttct	tataccctaa	aaccttctac	actagtgcca	3300
tgggaaccag	gtctgaaaaa	gtagagagaa	gtgaaagtag	agtctgggaa	3350
gtagctgcct	ataactgaga	ctagacggaa	aaggaatact	cgtgtatttt	3400
aagatatgaa	tgtgactcaa	gactcgaggc	cgatacgagg	ctgtgattct	3450
gcctttggat	ggatgttgct	gtacacagat	gctacagact	tgtactaaca	3500
caccgtaatt	tggcatttgt	ttaacctcat	ttataaaagc	ttcaaaaaaa	3550
ccca 3554					

<210> 423 <211> 310 <212> PRT <213> Homo Sapien

	<40															
		_					,				Τ(J				g Leu 15
	Pr	0 A	sp	Phe	e Ph	e Le 2	u Le O	u Le	u Lei	u Pho	e Arc	g Gly	/ Cy:	s Lei	ı Il	e Gly 30
	Αl	a V	a I	Asr	ı Le	u Ly 3	s Se 5	r se	r Ası	n Ar	g Thr 40	Pro	va [*]	l val	l Gli	ı Glu 45
	Ph	e G	lu	Ser	· Va	1 G1 5	u Lei 0	u Se	r Cys	il.	e Ile 55	Thr	Asp	Ser	· G]r	Thr 60
	Sei	r As	sp	Pro	Ar	g Il 6	e Glu 5	ı Tr) Lys	Lys	: Ile 70	G]r	ı Asp	Gl.	ı G1r	Thr 75
	Thi	- ту	/r	۷al	Pho	e Ph	e Asp) Asr	ı Lys	ïl€	Gln 85	Gly	Asp	Leu	ı Ala	Gly 90
	Arg) A]	a	Glu	Ile	e Lei 9!	u Gly	/ Lys	Thr	Ser	Leu 100	Lys	Ile	тгр	Asn	
	Thr	` Ar	·g	Arg	Asp	Sei 110	ala	Leu	Tyr	Arg	Cys 115	Glu	va1	۷a٦	Ala	Arg 120
	Asn	A S	р	Arg	Lys	G] 125	ılle	Asp	Glu	Ile	Val 130	Ile	Glu	Leu	Thr	Val 135
	Gln	Va	.1	Lys	Pro	Val 140	Thr	Pro	Val	Cys	Arg 145	۷al	Pro	Lys	Ala	Val 150
	Pro	Va	1 (Gly	Lys	Met 155	Ala	Thr	Leu	His	Cys 160	Gln	Glu	Ser	Glu	Gly 165
	His	Pr	0 /	Arg	Pro	His 170	Tyr	ser	тгр	Tyr	Arg 175	Asn	Asp	۷a٦	Pro	Leu 180
	Pro	Th	r A	Asp	ser	Arg 185	Ala	Asn	Pro	Arg	Phe 190	Arg	Asn	Ser	Ser	Phe 195
	His	Lei	u A	Asn	Ser	G]u 200	Thr	Gly	Thr	Leu	Va 1 205	Phe	Thr	Ala	۷a٦	His 210
	Lys	Asį	o A	Asp	Ser	Gly 215	Gln	Tyr	Tyr	Cys	Ile 220	Ala	Ser	Asn `	Asp	Ala 225
	Gly	Sei	- д	la	Arg	Cys 230	Glu	Glu	Gln	Glu	Met 235	Glu	val	Tyr	Asp	
	Asn	Ιle	e G	ily	Gly	Ile 245	Ile	Gly	Gly	Val	Leu 250	Val	Val	Leu	Ala	Val 255
	Leu	Ala	۱ L	eu	Ile	Thr 260	Leu	Gly	Ile	Cys	Cys 265	Ala	Tyr	Arg	Arg	Gly 270
	Tyr	Phe	· I	1e .	Asn	Asn 275	Lys	Gln	Asp	Gly	G1u 280	Ser	Tyr	Lys .	Asn	Pro 285
	Gly	Lys	Р	ro /	Asp	Gly 290	Val	Asn	Tyr	Ile.	Arg ⁻ 295	Thr ,	Asp	Glu	Glu	
,	Asp	Phe	Α	rg I	⊣is	Lys	Ser	ser	Phe '	val :	Ile Page	e 24:	1			

305

```
<210> 424
<211> 17
<212> PRT
<213> Artificial sequence
<220>
<223> Artificial polypeptide
<220>
<221> Artificial Sequence
<222> 1, 4, 6, 8, 10, 12, 14, 16
<223> Artificial Sequence
```

<220> <221> unsure <222> 9, 11, 13, 15, 17 <223> unknown amino acid

<400> 424 Xaa Asn Cys Xaa Cys Xaa . Cys Xaa Cys Xaa Cys Xaa Gly Xaa 1 5 10 15

Cys Xaa Asn