Updates of HTS Large Scale Application Projects in Japan

H. Ohsaki
University of Tokyo, Japan
Y. Yurugi, S. Kinoshita
NEDO, Japan

HTS Large Scale Application Projects in Japan

NEDO

- √ NEDO Feasibility Study Program
- ✓ NEDO Program for Advanced Aircraft Systems for Practical Application

Railway Application

- ✓ Superconducting Cable
- √ Flywheel Energy Storage System

JST

√ JST-Mirai Program

NEDO: New Energy and Industrial Technology Development Organization JST: Japan Science and Technology Agency

NEDO Feasibility Study Program

Purpose

Development of superconductivity-related technology using hydrogen cold heat for the construction of a <u>hydrogen society</u> to realize carbon neutrality in 2050.

Projects (R&D)

Title (provisional)	Period	Members
Liquid hydrogen-cooled high-temperature superconducting generator	2022FY -2023FY	Mitsubishi Electric Corp. Kansei Gakuin Univ. Univ. of Tokyo Kyoto Univ. Japan Aerospace Exploration Agency (JAXA)
Ultra-fine MgB2 superconducting wire	2022FY	National Institute for Material Science Meiko Futaba Corp.

In charge of Energy Conservation Technology Dept.

NEDO Program for Advanced Aircraft Systems for Practical Application

https://www.nedo.go.jp/english/activities/activities_ZZJP_100104.html

Practical application project for aircraft advanced system

R&D for next-generation electrical propulsion system

High efficiency and high power electric propulsion system

To evaluate propulsion systems using superconducting technology with high efficiency and high power density for electric aircraft to achieve TRL6.

(FY2019 – FY2023)

R&D Team:

Kyushu Univ.,
AIST,
Taiyo Nippon Sanso Corp.,
SuperOX Japan,
SWCC SHOWA CABLE
SYSTEMS CO.,LTD.

Superconductor rotating machine – magnetic field analysis

NEDO Practical application project for aircraft advanced system/ R&D for next-generation electrical propulsion system/ High efficiency and high power electric propulsion system

Kyushu Univ., AIST, Taiyo Nippon Sanso Corp., SuperOX Japan, SWCC SHOWA CABLE SYSTEMS CO.,LTD. (FY2019 – FY2023)

Development of elemental technologies for superconducting propulsion systems for aircraft

Fundamental Technology Development Items	R&D Targets
Superconducting rotating machines	Clarification of challenges and solutions for superconducting rotating machines for development of 20 MW systems
Superconducting cables	Clarification of challenges and solutions for superconducting cables and their related technologies for development of 20 MW systems
Cooling systems	Clarification of challenges and solutions in cooling system for development of 20 MW systems
Superconducting wires	 10 filaments, 100 m, 300 A/cm@70K, 1.2T. Yield > 60% >500 A/cm @70 K, 2.5 T, 100 m Establish magnetic shielding technology for 20 MW systems
Semiconductor devices operating at cryogenic temperatures	Development of semiconductor devices operating at 65 K

- Verification of equipment functionality of superconducting propulsion systems for aircraft
 - ➤ Verification of 500 kW-class superconducting motor
 - ✓ Evaluate the feasibility of installing a 250-500 kW motor on an actual aircraft by conducting ground tests corresponding to flight conditions.
 - ➤ Verification of 1 MW-class superconducting propulsion system
 - ✓ Verify the feasibility of the superconducting propulsion system by fabricating a 0.5-1 MW superconducting propulsion system and performing basic evaluations.

Railway Application

NEDO supported the R&D projects of the following equipment for railway application.

- √ Flywheel Energy Storage
- **✓** Superconducting DC Cable

Railway Technical Research Institute

Recent progress

- JR East: Development of superconducting flywheel energy storage https://www.jreast.co.jp/e/development/theme/energy/energy02.html
 https://www.jreast.co.jp/E/development/tech/pdf 38/tec-38-55-58eng.pdf
- JR East Press Release: Demonstration test of superconducting flywheel energy storage system for railway begins (June 7, 2022) (in Japanese) https://www.jreast.co.jp/press/2022/20220607_ho01.pdf
- A superconducting cable and a superconducting flywheel energy storage system are mentioned in JR East Group Report "INTEGRATED REPORT 2020" and in JR East's long-term environmental goal "Zero Carbon Challenge 2050."

https://www.jreast.co.jp/e/environment/pdf_2020/all.pdf https://www.jreast.co.jp/press/2020/20200512_ho02.pdf

JR East: East Japan Railway Company

Railway Technical Research Institute: https://www.rtri.or.jp/eng/

Large-scale Type

https://www.jst.go.jp/mirai/en/program/large-scale-type/theme02.html

High-temperature superconducting wire joint technologies leading to innovative reduction of energy loss

Social implementation of super-high field NMRs and DC superconducting cables for railway systems, through advancement of joint-technology between high temperature superconducting wires

Program Manager:

Dr. MAEDA Hideaki

R&D Period:

from Nov. 2017

R&D Team:

RIKEN, Aoyama-Gakuin University,
National Institute for Materials Science,
TEP, Sumitomo Electric, Japan Fine
Ceramics Center, Kyushu University,
Japan Superconductor Technology,
Okayama University, Tokyo Institute of
Technology, JEOL RESONANCE,
Railway Technical Research Institute,
Kyushu Institute of Technology, Tohoku
University, Muroran Institute of
Technology

https://www.jst-mirai-sc.riken.jp

Elongation of DCsuperconducting feeder cables for railway systems

Joints between DC feeder cables

- Shortest path to the HTS power cable systems
- Energy efficiency and improving the convenience of urban railways
- Application to power transmission cable, Cables for nuclear fusion reactors, particle accelerators, etc.

Development of joiningtechnology between HTS conductors

Superconducting joint

The world's highest field NMR magnet, operated in the persistent current mode

1.3 GHz (30.5 T) NMR

- Shortest path to the uniform and stable magnetic field
- Contributions to drug discovery and medicine by elucidating the structures of Alzheimer's disease-related protein using small sample amounts
- Application to MRI, Particle accelerators, etc.

Construction of new technologies, providing a basis for future society

JST-Mirai Program

Area: "Low Carbon Society" mission area

Projects related to superconducting technology

https://www.jst.go.jp/mirai/en/program/lowcarbon/theme01.html

- Superconducting Computing for Low Carbon Al (2018)
 Project leader: INOUE Koji (Professor, Department of I&E Visionaries, Kyushu University)
 https://www.jst.go.jp/mirai/en/uploads/saitaku2018/JPMJMI18E1_inoue_en.pdf
- Low-AC-Loss and Robust High-Temperature-Superconductor Technology (2019)

Project leader: AMEMIYA Naoyuki (Professor, Department of Electrical Engineering, Kyoto University) https://www.jst.go.jp/mirai/en/uploads/saitaku2019/JPMJMI19E1 amemiya en.pdf

SCSC cable (Spiral Copper-plated Striated Coated-conductor cable)
Press release: AC loss of high-temperature superconducting wires reduced to 1/20 (Nov. 16, 2021)

