Nicht-destabilisierbare Heegaard-Zerlegungen

Hausarbeit zur Vorlesung Kirby-Kalkül

Franziska Frede

19. Juli 2018

Mathematisches Institut

Mathematisch-Naturwissenschaftliche Fakultät

Universität zu Köln

Betreuer: Dr. Marc Kegel

Zusammenfassung

Wir diskutieren und beweisen am Beispiel der verbundenen Summe des Linsenraums L(7,3) mit sich selbst die Existenz von nicht-destabilisierbaren Heegaard-Zerlegungen desselben Geschlechts, die homöomorphe Mannigfaltigkeiten beschreiben, jedoch nicht isotop sind.

Inhaltsverzeichnis

1	1 Einleitung			
2	Gru	ındlegende Definitionen und Sätze	2	
	2.1	Henkelkörper und Heegaard-Zerlegungen	2	
	2.2	Algebraische Grundlagen	5	
3	Lins	senräume	6	
	3.1	Definition und Eigenschaften	6	
	3.2	Die verbundene Summe des Linsenraums L(7.3) mit sich selbst	8	

1 Einleitung

Der Satz von Reidemeister-Singer besagt, dass je zwei Heegaard-Zerlegungen derselben 3-Mannigfaltigkeit eine gemeinsame Stabilisierung besitzen. Waldhausen hat bewiesen, dass für die 3-Sphäre S^3 oder die verbundene Summe $\#_nS^1\times S^2$ von n Kopien von $S^1\times S^2$ zwei Heegaard-Zerlegungen des gleichen Geschlechts stets isotop sind. Dies gilt nicht für alle 3-Mannigfaltigkeiten. Wir möchten in dieser Arbeit zwei Heegaard-Zerlegungen vom selben Geschlecht einer 3-Mannigfaltigkeit konstruieren, die wir nicht durch Henkelbewegungen ineinander überführen können, was bedeutet, dass die Heegaard-Zerlegungen nicht isotop sind. Diese Heegaard-Zerlegungen sollen minimales Geschlecht haben und damit nicht-destabilisierbar sein. Dazu werden wir die verbundene Summe des Linsenraums L(7,3) mit sich selbst betrachten. Nach dem Satz von Reidemeister-Singer können diese Heegaard-Zerlegungen nach endlich vielen Stabiliserungen und Destabilisierungen ineinander überführt werden.

Zunächst werden wir uns mit den notwendigen Grundlagen vertraut machen. Wir definieren Henkelkörper und Heegaard-Zerlegungen und werden ein paar algebraische Überlegungen treffen, die uns später helfen werden zu beweisen, dass die Heegaard-Zerlegungen nicht isotop sind. Anschließend diskutieren wir die Struktur von Linsenräumen und konstruieren zwei nicht isotope Heegaard-Zerlegungen der verbundenen Summe des Linsenraums L(7,3) mit sich selbst.

Zuerst bewies Engmann [7], dass die verbundene Summe zweier Linsenräume nicht isotope Heegaard-Zerlegungen besitzen kann. Die Vorgehensweise in dieser Arbeit basiert auf dem Dokument *Notes on Heegaard-Splittings* von J. Johnson [9]. Dieser wiederum orientiert sich an der Beweistechnik von Birman [2].

Die in dieser Arbeit betrachteten Abbildungen sind stetig und die Mannigfaltigkeiten orientierbar.

2 Grundlegende Definitionen und Sätze

2.1 Henkelkörper und Heegaard-Zerlegungen

Ein Henkelkörper vom Geschlecht g ist die zusammenhängende 3-Mannigfaltigkeit, die entsteht indem man an einen 3-Ball D^3 g disjunkte 1-Henkel $D_i^2 \times [0,1]$ jeweils mittels einer Einbettung $f_i: D_i^2 \times \{0,1\} \hookrightarrow \partial D^3$ anheftet.

Sei K ein Graph eingebettet in einen Henkelkörper H, sodass $H \setminus K \cong \partial H \times (0,1]$ ist. Dann nennen wir K die Seele von H. Im Folgenden wollen wir die Seele stets als Einpunktvereinigung von g Kreisen lesen. Den Schnittpunkt der Kreise bezeichnen wir mit v.

Abbildung 1: Henkelkörper vom Geschlecht 3 mit Seele K

Sei M eine 3-Mannigfaltigkeit. Seien H_1 und H_2 Henkelkörper desselben Geschlechts g und sei $f: \partial H_1 \to \partial H_2$ ein Homöomorphismus, sodass gilt $H_1 \cup_f H_2 = (H_1 \cup H_2)/_{x \sim f(x)} = M$. Dann heißt das geordnete Tripel (Σ, H_1, H_2) , mit $\Sigma = \partial H_1 = \partial H_2$, Heegaard-Zerlegung von M. Die Fläche Σ heißt Heegaard-Fläche von M und g das Geschlecht der Heegaard-Zerlegung. Das Heegaard-Geschlecht einer 3-Mannigfaltigkeit ist das minimale Geschlecht einer Heegaard-Zerlegung von M.

Satz 2.1. Jede orientierte, kompakte, geschlossene, zusammenhängende 3-Mannigfaltigkeit besitzt eine Heegaard-Zerlegung.

Ein Beweis dieses Satzes ist zu finden in [8].

Seien D_1, \ldots, D_g disjunkte Scheiben in H_1 , deren Ränder $\mu_i = \partial D_i$ auf $\Sigma = \partial H_1$ einfach geschlossene, nicht zusammenziehbare Kurven beschreiben. Der Homöomorphismus f bildet diese Kurven wieder auf einfach geschossene, nicht zusammenziehbare Kurven auf $\Sigma = \partial H_2$ ab. Das System der Kurven μ_1, \ldots, μ_g sowie deren Bilder $f(\mu_1), \ldots, f(\mu_g)$ heißt Heegaard-Diagramm von M.

Der Homöomorphietyp einer 3-Mannigfaltigkeit M wird eindeutig durch ihr Heegaard-Diagramm beschrieben. Daher ist es ausreichend den Henkelkörper H_2 mit den Anklebesphären $f(\mu_i)$ zu kennen.

Abbildung 2: Heegaard-Diagramm

Wir können das Heegaard-Diagramm auch als 2-dimensionales Diagramm, als so genanntes planares Heegaard-Diagramm betrachten. Dazu beobachten wir, dass der Rand des 3-Balls ∂D^3 , an den die Henkel angeheftet werden, eine 2-Sphäre S^2 ist. Diese können wir auffassen als Einpunktvereinigung $S^2 = \mathbb{R}^2 \cup \{\infty\}$. Die Ankleberegionen $D^2 \sqcup D^2$ der Henkel $D^2 \times [0,1]$ werden dann im \mathbb{R}^2 gelesen.

Abbildung 3 beschreibt das Heegaard-Diagramm aus Abbildung 2 einmal als 3-dimensionales Diagramm (links) und einmal als planares Heegaard-Diagramm (rechts).

Abbildung 3: planares Heegaard-Diagramm

Seien (Σ, H_1, H_2) und (Σ', H_1', H_2') zwei Heegaard-Zerlegungen derselben 3-Mannigfaltigkeit M. Die Heegaard-Zerlegungen heißen isotop, falls eine Abbildung $i: M \times [0, 1] \to M$ existiert, sodass gilt

- (i) $i_{M\times\{0\}} = id$,
- (ii) $i_{M \times \{t\}}$ ist für alle $t \in [0,1]$ eine Homö
omorphismus und
- (iii) $i_{M \times \{1\}}$ bildet Σ auf Σ', H_1 auf H_1' und H_2 auf H_2' ab.

Da Isotopien auf der Heegaard-Fläche zu Isotopien auf M erweitern, ist (Σ, H_1, H_2) (ambient) isotop zu (Σ', H'_1, H'_2) oder (Σ', H'_2, H'_1) genau dann, wenn Σ isotop zu Σ' ist.

Seien M und M' zwei zusammenhängende 3-Mannigfaltigkeiten. Die verbundene Summe M#M' bezeichnet die 3-Mannigfaltigkeit, die entsteht indem man aus M und M' jeweils einen 3-Ball herausschneidet und die beiden Mannigfaltigkeiten entlang der entstehenden Ränder mit einem orientierungsumkehrenden Homöomorphismus verklebt. Man kann zeigen, dass die entstehende Mannigfaltigkeit unabhängig von der Wahl der 3-Bälle und die verbundene Summe daher wohldefiniert ist (siehe Bröcker, Jänich [4], Kapitel 10). Wir können bei der Betrachtung von Heegaard-Zerlegungen von M und M' die zu entfernenden 3-Bälle stets so wählen, dass sie die meridionalen Kurven μ_1, \ldots, μ_g sowie deren Anklebesphären $f(\mu_1), \ldots, f(\mu_g)$ nicht schneiden. Ein planares Heegaard-Diagramm von M#M' entsteht daher durch hintereinander schreiben der beiden planaren Heegaard-Diagramme von M und M'.

Durch Stabilisierung können wir eine Heegaard-Zerlegung derselben Mannigfaltigkeit mit höherem Geschlecht konstruieren. Dabei wird an jeden Henkelkörper ein weiterer 1-Henkel angeheftet. Die Kurve $\mu_{g+1} \subset \partial H_1$ wird von dem Homöomorphismus f auf eine Longitude des neu angehefteten 1-Henkels in H_2 abgebildet. In Abbildung 3 entspricht der 1-Henkel mit Index 3 einer Stabilisierung.

Ein Satz von Reidemeister [12] und Singer [13] besagt, dass wir zwei Heegaard-Zerlegungen derselben 3-Mannigfaltigkeit nach endlich vielen Stabilisierungen durch Henkelbewegungen ineinander überführen können.

Satz 2.2 (Reidemeister-Singer). Je zwei Heegaard-Zerlegungen derselben 3-Mannigfaltigkeit besitzen eine gemeinsame Stabilisierung.

Waldhausen [14] hat bewiesen, dass bei Heegaard-Zerlegungen desselben Geschlechts von S^3 bzw. $S^1 \times S^2$ keine Stabilisierungen notwendig sind, um sie durch Henkelbewegungen ineinander überführen zu können.

Satz 2.3 (Waldhausen). Je zwei Heegaard-Zerlegungen von S^3 bzw. $\#_k S^1 \times S^2$ desselben Geschlechts sind isotop.

Diese Aussage wurde von Bonahon und Otal [3] ebenfalls für Linsenräume bewiesen. Ebenfalls ist bekannt auf welchen Seifert-gefasterten 3-Mannigfaltigkeiten die Heegaard-Zerlegungen desselben Geschlechts isotop sind und auf welchen dies nicht gilt (siehe Moriah und Schultens [11] sowie Bachman und Derby-Talbot [1]). Weiterhin haben Cooper und Scharlemann [6] herausgefunden, dass Torusbündel über S^1 eine eindeutige Heegaard-Zerlegung minimalen Geschlechts besitzen.

Über die Klassifikation von Heegaard-Zerlegungen hyperbolischer 3-Mannigfaltigkeiten ist bisher wenig bekannt (siehe [15]).

Waldhausen vermutete bereits, dass es für die verbundene Summe zweier Linsenräume nicht isotope Heegaard-Zerlegungen gibt. Dies werden wir in Kapitel 3 anhand eines Beispiels beweisen.

2.2 Algebraische Grundlagen

Sei G eine endlich präsentierte Gruppe und $\langle x_1, \ldots, x_k : r_1 \ldots, r_l \rangle$ eine Präsentation dieser. Folgende vier Tietze-Transformationen ermöglichen es, diese Präsentation der Gruppe in eine andere zu transformieren, ohne die Gruppe selbst zu ändern:

- 1. Ersetze eine Relation r_i durch sr_is^{-1} , wobei s ein beliebiges Wort darstellt.
- 2. Für $i \neq j \in \{1, \ldots, l\}$ ersetze r_i durch $r_i r_j$.
- 3. Ersetze den Erzeuger x_i durch einen neuen Repräsentaten x_i' und ersetze x_i in den Relationen durch $x_i'x_j$ für $i \neq j$ oder $x_i'^{-1}$.
- 4. Füge einen weiteren Erzeuger x_{k+1} sowie die Relation $r_{l+1} = sx_{k+1}$ hinzu, wobei s wieder ein beliebiges Wort repräsentiert. Alternativ, falls es einen Erzeuger x_j gibt, der nur in einer Relation der Form $r_j = sx_j$ auftaucht, entferne x_j und r_j .

Seien x_1, \ldots, x_k und y_1, \ldots, y_k Teilmengen einer Gruppe G, die jeweils G erzeugen. Die beiden Teilmengen heißen *Nielsen-äquivalent*, falls sie durch eine endliche Folge von Tietze-Transformationen vom Typ 3 ineinander überführt werden können.

Lemma 2.4. Seien (Σ, H_1, H_2) und (Σ', H'_1, H'_2) zwei Heegaard-Zerlegungen derselben 3-Mannigfaltigkeit M vom gleichen Geschlecht. Seien K und K' die Seelen von H_2 und H'_2 . Falls Σ isotop zu Σ' ist, mittels einer Isotopie, die H_2 auf H'_2 abbildet, so sind die Systeme der Erzeuger von $\pi_1(M)$, definiert durch K und K', Nielsen-äquivalent.

Um dieses Lemma zu beweisen, ist zu zeigen, dass Henkelbewegungen Tietze-Transformationen vom Typ 3 entsprechen. Seien x_1 und x_2 Erzeuger der Fundamentalgruppe, die jeweils einen Henkel h_1 bzw. h_2 repräsentieren. Für eine Henkelbewegung von h_1 über h_2 ersetzen wir x_1 in der Menge der Erzeuger durch $x_1' = x_1 x_2$ und in den Relationen durch $x_1' x_2^{-1}$. Um die Orientierung des Henkels h_1 zu ändern, ersetzen wir x_1 durch x_1^{-1} . Das entspricht Tietze-Transformationen vom Typ 3 in der Fundamentalgruppe. Für die Details des Beweises wird auf [9] verwiesen. Umgekehrt besagt das Lemma, dass die Heegaard-Zerlegungen nicht isotop sind, falls die erzeugenden Mengen der Fundamentalgruppe nicht Nielsen-äquivalent sind.

3 Linsenräume

3.1 Definition und Eigenschaften

Ein Linsenraum ist eine 3-Mannigfaltigkeit mit einer Heegaard-Zerlegung vom Geschlecht 1. In einem Henkelkörper H_1 vom Geschlecht 1 gibt es (bis auf Isotopie) genau eine einfach geschlossene, nicht zusammenziehbare Kurve μ_1 auf ∂H_1 , die in H_1 eine Scheibe berandet.

Da die Heegaard-Zerlegung eindeutig durch das Heegaard-Diagramm beschrieben wird, kennen wir die Mannigfaltigkeit bereits bis auf Homöomorphie, wenn wir $f(\mu_1) \subset H_2$ kennen. Der Henkelkörper H_2 , ebenfalls vom Geschlecht 1, ist homöomorph zu einem Volltorus $S^1 \times D^2$. Auch hier gibt es bis auf Isotopie genau eine einfach geschlossene, nicht zusammenziehbare Kurve μ_2 auf ∂H_2 , die in H_2 eine Scheibe berandet. Diese nennen wir Meridian. Sei $\lambda_2 = S^1 \times \{*\} \subset S^1 \times D^2$, wobei $* \in \partial D^2$ gilt. Dann schneidet die Kurve λ_2 den Meridian μ_2 genau einmal. Wir nennen λ_2 die Longitude von H_2 . Die Kurven μ_2 und λ_2 werden derart orientiert, dass sie der Orientierung des Randes von H_2 entsprechen. Die Randorientierung wird von der Orientierung des Henkelkörpers induziert, mit der Konvention "äußere Normale zuerst".

Die Fundamentalgruppe von ∂H_2 wird erzeugt vom Meridian μ_2 und der Longitude λ_2 . Jede einfach geschlossene Kurve auf ∂H_2 kann somit durch μ_2 und λ_2 ausgedrückt werden. Der Linsenraum L(p,q) ist die orientierte 3-Mannigfaltigkeit, die durch den orientierungsumkehrenden Anklebehomöomorphismus mit $\mu_1 \mapsto p\lambda_2 - q\mu_2$ beschrieben wird.

Abbildung 4: Heegaard-Diagramm des Linsenraums L(4,3)

Die Kurve μ_1 wird von dem Homöomorphismus f wieder auf eine einfach zusammenhängende, nicht zusammenziehbare Kurve auf ∂H_2 abgebildet. Dabei ist $f(\mu_1) = p\lambda_2 - q\mu_2$ nur dann eine einfach geschlossene Kurve (und der Linsenraum somit wohldefiniert), wenn der größte gemeinsame Teiler von p und q gleich 1 ist.

Die Longitude λ_1 von H_1 wird von dem orientierungsumkehrenden Verklebehomö
omorphismus

auf eine Kurve $a\lambda_2 + b\mu_2$ abgebildet, wobei -bp - aq = -1 gilt. Dann gilt außerdem $aq \equiv 1 \mod p$.

Da die Verklebeabbildung ein Homöomorphismus ist, können wir auch die inverse Abbildung $f^{-1}: \partial H_2 \to \partial H_1$ betrachten, die uns das Heegaard-Diagramm von der anderen Seite, auf dem Rand von H_1 liefert. Für diese Abbildung gilt $\mu_2 \mapsto p\lambda_1 - a\mu_1$ und $\lambda_2 \mapsto q\lambda_1 + b\mu_1$.

Die Abbildungen 5 und 6 zeigen die planaren Heegaard-Diagramme des Linsenraums L(7,3) erzeugt von den Verklebeabbildungen $f: \partial H_1 \to \partial H_2$ (Abb. 5) und $f^{-1}: \partial H_2 \to \partial H_1$ (Abb. 6). Hier wurde a=5 und b=-2 gewählt.

Abbildung 5: L(7,3) - Planares Heegaard-Diagramm

Abbildung 6: L(7,3) - Planares Heegaard-Diagramm von der anderen Seite

Satz 3.1. Die Fundamentalgruppe von L(p,q) ist isomorph zu \mathbb{Z}_p .

Beweis. Wir werden die Fundamentalgruppe mittels des Satzes von Seifert und van-Kampen berechnen. Dazu betrachten wir die Heegaard-Zerlegung $L(p,q) = H_1 \cup H_2$ mit $H_i \cong S^1 \times D^2$. Dann gilt $H_1 \cap H_2 \cong T^2$, wobei T^2 einen Torus beschreibt. Seien μ_1 und μ_2 die Meridiane von H_1 und H_2 sowie λ_1 und λ_2 die jeweiligen Longituden.

Die Fundamentalgruppe von H_i wird erzeugt von λ_i und ist isomorph zu \mathbb{Z} . Weiter wird die Fundamentalgruppe von $H_1 \cap H_2$ erzeugt von μ_1 und λ_1 und ist isomorph zu \mathbb{Z}^2 . Wir betrachten jetzt die Inklusionsabbildungen $i: H_1 \cap H_2 \hookrightarrow H_1$ und $j: H_1 \cap H_2 \hookrightarrow H_2$. Dann ist i die identische Abbildung. Die Abbildung j bildet μ_1 und λ_1 , durch den Verklebehomöomorphismus f der Heegaard-Zerlegung, ab auf $j(\mu_1) = p\lambda_2 - q\mu_2$ und $j(\lambda_1) = a\lambda_2 + b\mu_2$ mit bp + aq = 1. Der Satz von Seifert und van-Kampen besagt, dass für die Fundamentalgruppe von L(p,q) gilt

$$\pi_1(L(p,q)) \cong \pi_1(H_1) * \pi_1(H_2) /_{i_*(\mu_1) = j_*(\mu_1), i_*(\lambda_1) = j_*(\lambda_1)}$$

$$= < \lambda_1, \lambda_2 \mid \mu_1 = p\lambda_2 - q\mu_2, \ \lambda_1 = a\lambda_2 + b\mu_2 > .$$

Die Äquivalenzklasse von μ_1 in H_1 ist 0, da μ_1 in H_1 einfach zusammenziehbar ist. Ebenso ist $\mu_2 = 0$ in H_2 . Hieraus folgen die Relationen $0 = p\lambda_2$ und $\lambda_1 = a\lambda_2$. Daraus folgt wiederum $\pi_1(L(p,q)) = \langle \lambda_2 | p\lambda_2 \rangle \cong \mathbb{Z}_p$. Da die Fundamentalgruppe mit nur einem Erzeuger abelsch ist, haben wir die additive Schreibweise verwendet.

Bemerkung 3.2. Die Kurve λ_1 , die auf $a\lambda_2 + b\mu_2$ abgebildet wird, wird in $\pi_1(L(p,q))$ von dem Element $a\lambda_2$ repräsentiert, wobei a die eindeutige Zahl in \mathbb{Z}_p ist, für die gilt $aq \equiv 1 \mod p$.

3.2 Die verbundene Summe des Linsenraums L(7,3) mit sich selbst

Seien M und M' zwei Kopien von L(7,3). Wir betrachten die nach Bonahon und Otal [3] eindeutigen Heegaard-Zerlegungen vom Geschlecht 1 (Σ, H_1, H_2) von M und (Σ', H_1', H_2') von M'. Sei B ein 3-Ball in M, sodass $B \cap \Sigma$ eine 2-Scheibe in B ist (siehe Abb. 7). Sei B' ein analoger 3-Ball in M'.

Abbildung 7: Der 3-Ball B in M

Wir möchten nun die verbundene Summe von M und M' auf zwei verschiedene Arten bilden. Dazu nehmen wir die Heegaard-Zerlegungen zur Hilfe und verkleben einmal "horizontal", indem wir H_1 an H'_1 kleben, und einmal "verkreuzt", indem wir H_1 mit H'_2 verkleben. Unser Ziel ist es zu zeigen, dass die beiden entstehenden 3-Mannigfaltigkeiten homöomorph, die Heegaard-Zerlegungen jedoch nicht isotop sind.

Zunächst konstuieren wir die zugehörigen Verklebeabbildungen. Sei $\phi_1:\partial B\to\partial B'$ ein orientierungsumkehrender Homöomorphismus, der

- (i) $\partial B \cap \Sigma$ auf $\partial B' \cap \Sigma'$,
- (ii) $\partial B \cap H_1$ auf $\partial B' \cap H'_1$ und
- (iii) $\partial B \cap H_2$ auf $\partial B' \cap H_2'$ abbildet.

Sei $\phi_2:\partial B\to\partial B'$ ebenfalls ein orientierungsumkehrender Homö
omorphismus, der

- (i) $\partial B \cap \Sigma$ auf $\partial B' \cap \Sigma'$,
- (ii) $\partial B \cap H_1$ auf $\partial B' \cap H_2'$ und
- (iii) $\partial B \cap H_2$ auf $\partial B' \cap H'_1$ abbildet.

Sei $M^i = (M \setminus B) \cup_{\phi_i} (M' \setminus B')$ die verbundene Summe M # M' der beiden 3-Mannigfaltigkeiten M und M', jeweils verklebt entlang ϕ_i . Die Abbildungen 8 und 9 zeigen, aufbauend auf unseren Überlegungen aus den Abschnitten 2.1 und 3.1, die planaren Heegaard-Diagramme der Mannigfaltigkeiten M^1 und M^2 von Geschlecht 2. Nach Hakens Lemma (siehe [5] Proposition 3.25) hat die Mannigfaltigkeit M # M' bereits minimales Geschlecht.

Nach Konstruktion ist (Σ^1, H_1^1, H_2^1) , mit $\Sigma^1 = \Sigma \cup_{\phi_1} \Sigma'$, $H_1^1 = H_1 \cup_{\phi_1} H_1'$ und $H_2^1 = H_2 \cup_{\phi_1} H_2'$, eine Heegaard-Zerlegung von M^1 . Analog ist (Σ^2, H_1^2, H_2^2) , mit $\Sigma^2 = \Sigma \cup_{\phi_2} \Sigma'$, $H_1^2 = H_1 \cup_{\phi_2} H_2'$ und $H_2^2 = H_2 \cup_{\phi_2} H_1'$, eine Heegaard-Zerlegung von M^2 .

Abbildung 8: Heegaard-Diagramm von ${\cal M}^1$

Abbildung 9: Heegaard-Diagramm von M^2

Lemma 3.3. Es gibt einen Homöomorphismus $h: M^1 \to M^2$, der außerhalb einer Umgebung von $\partial B = \partial B'$ die Identität ist, d.h. M^1 und M^2 repräsentieren beide L(7,3) # L(7,3).

Beweis. ϕ_1 und ϕ_2 sind nach Definition orientierungsumkehrende Homöomorphismen zwischen 2-Sphären ($\partial B = S^2$). Die Komposition der beiden Abbildungen $\phi = \phi_1^{-1} \circ \phi_2 : S^2 \to S^2$ ist daher ein orientierungserhaltender Homöomorphismus. Ein orientierungserhaltender Homöomorphismus von S^2 auf sich ist isotop zur Identität, womit es eine Isotopie $\Phi : S^2 \times [0,1] \to S^2$ gibt, sodass $\Phi_0 = \Phi(\cdot,0)$ die Identität auf S^2 ist und $\Phi_1 = \Phi(\cdot,1) = \phi$ gilt.

Sei N_1 eine Umgebung von ∂B in M^1 . Sei N_2 analog eine Umgebung von ∂B in M^2 . Dann sind N_1 und N_2 homöomorph zu $S^2 \times [0,1]$ und das Komplement $M^i \setminus N_i$ jeweils homöomorph zu $(M \setminus B) \cup (M' \setminus B')$.

Es existiert ein Homöomorphismus $\tilde{h}: M^1 \setminus N_1 \to M^2 \setminus N_2$, der jede Komponente auf sich selbst abbildet. Wir erweitern diesen Homöomorphismus mittels zuvor konstruierter Isotopie Φ nun auf N_1 und N_2 . Dafür definieren wir $h|_{M^1\setminus N_1}=\tilde{h}$ und $h|_{N_1}=h|_{S^2\times[0,1]}=\phi_1\circ\Phi$. Auf $S^2\times\{0\}$ entspricht Φ_0 der Identität und somit gilt $h|_{S^2\times\{0\}}=\phi_1$. Auf $S^2\times\{1\}$ entspricht $h=\phi_1\circ\phi_1^{-1}\circ\phi_2=\phi_2$. Damit ist die Abbildung h stetig.

Das Bild von h^{-1} von (Σ^2, H_1^2, H_2^2) beschreibt also ebenfalls eine Heegaard-Zerlegung von M^1 . Im Folgenden bezeichnen wir mit M^2 die Mannigfaltigkeit M^1 mit der Heegaard-Zerlegung vom Bild von $h^{-1}(\Sigma^2, H_1^2, H_2^2)$. Die Heegaard-Zerlegung bezeichnen wir wieder mit (Σ^2, H_1^2, H_2^2) .

Nun können wir die wesentliche Aussage dieser Arbeit formulieren. Diese wurde zuerst von Engmann [7] bewiesen. Der folgende Beweis basiert auf Johnson [9].

Satz 3.4. Es gibt keine Isotopie in M^1 , die Σ^1 auf Σ^2 abbildet.

Beweis. Sei K_1 die Seele von H_1 derart, dass sich K_1 und ∂B in genau einem Punkt schneiden. Diesen Schnittpunkt nennen wir v. Sei analog K_1' die Seele von H_1' , sodass der einzige Schnittpunkt v' von K_1' und $\partial B'$ definiert ist durch $v' = \phi_1(v)$. Dann definiert $K_1^1 = K_1 \vee K_1' \subset M^1$ die Seele von H_1^1 wobei \vee die Einpunktvereinigung bezeichne (siehe Abb. 10).

Abbildung 10: Der Henkelkörper H_1^1 von M^1

Analog können wir die Seelen K_2^1 , K_1^2 und K_2^2 von H_2^1 , H_1^2 und H_2^2 in M^1 konstruieren. Zur Übersicht sind in Tabelle 1 die Heegaard-Zerlegungen von M^1 und M^2 sowie die Seelen der entsprechenden Henkelkörper aufgelistet.

	$M^1 = M \setminus B \cup_{\phi_1} M' \setminus B'$	$M^2 = M \setminus B \cup_{\phi_2} M' \setminus B'$
Heegaard-Zerlegung	$H_1^1 = H_1 \cup H_1'$	$H_1^2 = H_1 \cup H_2'$
	$H_2^1 = H_2 \cup H_2'$	$H_2^2=H_2\cup H_1'$
	$\Sigma^1 = \Sigma \cup \Sigma'$	$\Sigma^2 = \Sigma \cup \Sigma'$
Seele	$K_1^1 = K_1 \vee K_1' \subset H_1^1$	$K_1^2 = K_1 \vee K_2' \subset H_1^2$
	$K_2^1 = K_2 \vee K_2' \subset H_2^1$	$K_2^2 = K_2 \vee K_1' \subset H_2^2$

Tabelle 1: Die Heegaard-Zerlegungen der Mannigfaltigkeit M^1

Die Fundamentalgruppe von M^1 wird, als verbundene Summe zweier Mannigfaltigkeiten mit einer Heegaard-Zerlegung vom Geschlecht 1, beschrieben als das freie Produkt der Fundamentalgruppe der einzelnen Summanden. Das bedeutet $\pi_1(M^1) = \pi_1(M) * \pi_1(M') = \mathbb{Z}_7 * \mathbb{Z}_7$. Nach Konstruktion wird diese erzeugt von den Longituden der Henkelkörper H_2 und H'_2 bzw. H_2 und H'_1 . Da die Seelen der Henkelkörper isotop zu den Longituden sind, können wir auch diese als Erzeuger der Fundamentalgruppe interpretieren.

Damit gilt
$$\pi_1(M^1) = \langle K_2, K_2' | K_2^7 = 1, K_2'^7 = 1 \rangle$$
 und $\pi_1(M^2) = \langle K_2, K_1' | K_2^7 = 1, K_1'^7 = 1 \rangle$.

Angenommen, die Henkelzerlegungen von M^1 und M^2 sind isotop. Dann können wir die eine

Henkelzerlegung durch Henkelbewegungen in die andere überführen. In der Fundamentalgruppe entspricht dies Tietze-Transformationen vom Typ 3. Das System der Erzeuger $\{K_2, K_2'\}$ ist dann nach Definition Nielsen-äquivalent zu dem System $\{K_2, K_1'\}$. Wir werden beweisen, dass diese Systeme nicht Nielsen-äquivalent sind.

Die erste Homologiegruppe ist die Abelisierung der ersten Fundamentalgruppe und daher gilt $H_1(M^1) = \mathbb{Z} \times \mathbb{Z}$. Zu einer gegebenen Wahl von Erzeugern der Fundamentalgruppe, existiert eine induzierte Abbildung, die jedem Element $x \in \pi_1(M^1)$ ein geordnetes Paar $(a,b) \in H_1(M^1)$ zuordnet. Sei $x = y \vee z \in \pi_1(M^1)$ ein Element in der ersten Fundamentalgruppe, das wir als Einpunktvereinigung zweier Elementen $y, z \in \pi_1(M^1)$ darstellen können. Dann können wir y das geordnete Paar (a,b) und z das geordnete Paar (c,d) zuordnen. Insgesamt können wir dem Element x daher eine Matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ zuordnen.

Wir betrachten nun, welche Elemente wir den Seelen der jeweiligen Henkelkörper zuordnen. Für die gegebene Fundamentalgruppe $\pi_1(M^1) = \langle K_2, K_2' | K_2^7 = 1, K_2'^7 = 1 \rangle$ sind K_2 und K_2' die Erzeuger. Dann wird K_2 auf das Element (1,0) abgebildet. K_1 wird wie in Bemerkung 3.2 beschrieben in $\pi_1(M^1)$ durch K_2^5 repräsentiert, da 5 die eindeutige Zahl in \mathbb{Z}_7 ist, sodass gilt $5*3\equiv 1\mod 7$. Daher wird K_1 auf (5,0) geschickt.

Analog werden K'_2 das Element (0,1) und K'_1 das Element (0,5) zugeordnet. Insgesamt erhalten wir die folgenden Matrizen für jeweiligen Seelen der Henkelkörper von M^1

$$K_1^1 = K_1 \lor K_1' \mapsto \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}, K_2^1 = K_2 \lor K_2' \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$K_1^2 = K_1 \vee K_2' \mapsto \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}, K_2^2 = K_2 \vee K_1' \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}.$$

Wir beobachten, dass die Determinanten 4, 1, 5 und 5 (modulo 7) entsprechen. Wir werden sehen, dass die Determinante modulo 7 eine Invariante der Heegaard-Zerlegung ist.

Lemma 3.5. Seien $\{y_1, y_2\}$ und $\{y_1', y_2'\}$ Nielsen-äquivalente Erzeugendensysteme der Fundamentalgruppe von $\pi_1(M^1) = \mathbb{Z}_7 \times \mathbb{Z}_7$. Sei $x = y \vee z \in \pi_1(M^1)$ eine Schleife im Henkelkörper. Sei A die Matrix, die x durch $\{y_1, y_2\}$ zugeordnet wird und A' die durch $\{y_1', y_2'\}$ zugeordnete Matrix. Dann sind die Beträge der Determinanten von A und A' (modulo 7) gleich.

Als Schleife im Henkelkörper H_1^2 entspricht K_1^2 der Schleife K_2^2 in H_2^2 . Falls die Systeme $\{K_2, K_2'\}$ und $\{K_2, K_1'\}$ Nielsen-äquivalent sind, müssen nach dem Lemma 3.5 die Beträge der jeweiligen Determinanten modulo 7 gleich sein. Da der Betrag der Determinante (modulo 7) von K_1^2 nicht mit dem Betrag der Determinante von K_2^2 übereinstimmt, können die Erzeugendensysteme nicht Nielsen-äquivalent sein.

Analog kann das System $\{K_2, K_2'\}$ auch nicht Nielsen-äquivalent zu dem Erzeugendensystem der Fundamentalgruppe erzeugt von H_2^1 sein, da die Determinante von K_2^1 (modulo 7) im Betrag

ebenfalls nicht mit der Determinante von K_1^2 übereinstimmt. Die Henkelzerlegungen sind somit nicht isotop. \Box

Es bleibt Lemma 3.5 zu beweisen:

Beweis von Lemma 3.5. Nach Definition sind die Erzeugendensysteme Nielsen-äquivalent, wenn sie sich durch Tietze-Transformationen vom Typ 3 ineinander überführen lassen. Wir betrachten die Fundamentalgruppe $\pi_1(M) = \langle y_1, y_2 | r_1, r_2 \rangle = \mathbb{Z}_7 * \mathbb{Z}_7$. Die induzierte Abbildung von der Fundamentalgruppe in die erste Homologiegruppe bilde y_1 auf das Element (a,b) und y_2 auf das Element (c,d) in $\mathbb{Z}_7 \times \mathbb{Z}_7$ ab. Die erste Tietze-Transformation vom Typ 3 ist das Ersetzen von y_1 durch $y_1' = y_1 y_2$. In den Relationen ersetzen wir $y_1 = y_1' y_2^{-1}$. Damit wird dem Element y_1' das geordnete Paar (a+c,b+d) mod 7 zugeordnet. Einem Element $x \in \pi_1$, dem zuvor die Matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ mit Determinante ad - bc zugeordnet wurde, wird jetzt die Matrix $A' = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix}$ mod 7 zugeordnet. Dann gilt det(A) mod det(A

Für die zweite Tietze-Transformation vom Typ 3 ersetzen wir y_1 durch y_1^{-1} und erhalten $\pi_1(M) = \langle y_1', y_2 | y_1 = y_1'^{-1}, r_1, r_2 \rangle$. Dem Element $x \in \pi_1(M)$ ordnen wir nun die Matrix $A' = \begin{pmatrix} -a & b \\ -c & d \end{pmatrix} \mod 7$ zu, da wir den alten Erzeuger y_1 genauso häufig aber andersherum durchlaufen. Es gilt $\det(A') \mod 7 = -(ad - bc) = -\det(A) \mod 7$.

Die Rechnungen gelten analog, falls wir den Erzeuger y_2 ersetzen.

Johnson behauptet in seiner Ausführung des Beweis, dass die Determinanten modulo 7 gleich sein müssen. Da die zweite Tietze-Transformation vom Typ 3, das Ersetzen des Erzeugers y_i durch y_i^{-1} , jedoch das Vorzeichen der Determinante ändert, gilt die Aussage nur für den Betrag.

Wir haben gezeigt, dass M^1 und M^2 homöomorphe Mannigfaltigkeiten beschreiben mit Heegaard-Zerlegungen, die nicht durch Henkelbewegungen ineinander überführbar sind. Nach dem Satz von Reidemeister-Singer ist dies nach Stabilisierungen möglich.

Die verbundene Summe des Linsenraums L(7,3) mit sich selbst ist lediglich ein Beispiel für eine 3-Mannigfaltigkeit mit nicht isotopen Heegaard-Zerlegungen vom gleichen Geschlecht. Es gibt auch Mannigfaltigkeiten, die keine verbundene Summe repräsentieren, deren Heegaard-Zerlegungen vom gleichen Geschlecht erst nach Stabilisierungen isotop sind. Dies gilt beispielsweise für bestimmte Klassen Seifert-gefaserter 3-Mannigfaltigkeiten (siehe [1]).

Literatur

- [1] D. Bachman, R. Derby-Talbot, Non-isotopic Heegaard splittings of Seifert fibered spaces, Algebr. Geom. Topol. 6 (2006), 351–372.
- [2] J.S. BIRMAN, On the equivalences of Heegaard Splittings of closed, orientable 3-manifolds, Knots, Groups, and 3-Manifolds, Ann. of Math. Studies 84, Princeton, New Jersey (1975), 137–164.
- [3] F. Bonahon, J.P. Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci, École Norm. Sup (4) 16 (1983), 451–466.
- [4] T. BRÖCKER, K. JÄNICH, Einführung in die Differentialtopologie, Heidelberger Taschenbücher, Band 143, Springer-Verlag, Berlin-New York (1973).
- [5] D. CALEGARI, *Notes on 3-manifolds*, Manuskript der Vorlesung Introduction to 3-Manifolds Winter 2014, online abgerufen am 18.07.2018: https://math.uchicago.edu/~dannyc/courses/3manifolds_2014/3manifolds_2014.html.
- [6] D. COOPER, M. SCHARLEMANN, The structure of a solvmanifold's Heegaard spittings, Proceedings of 6th Gökova Geometry-Topology Conference, Turkish J. Math. 23 (1999), 1–18.
- [7] R. Engmann, Nicht homöomorphe Heegaard-Zerlegungen vom Geschlecht 2 der zusammenhängenden Summe zweier Linsenräume, Abh. Math. Sem. Univ. Hamburg **35** (1970), 33–38.
- [8] H. Geiges, Geometrische Topologie, Manuskript zur Vorlesung im WS 2017/18.
- [9] J. JOHNSON, *Notes on Heegaard Splittings*, online abgerufen am 03.05.2018: http://www.jessejohnson.me/old_notes.pdf.
- [10] M. Kegel, Kirby-Kalkül, Mitschrift der Vorlesung im SS 2018.
- [11] Y. Moriah, J. Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal, Topology 37 (1998), 1089–1112.
- [12] K. Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9 (1933), 189–194.
- [13] J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. **35** (1933), 88–111.

- [14] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968), 195–203.
- [15] WIKIPEDIA, *Heegaard splitting*, online abgerufen am 18.07.2018: https://en.wikipedia.org/wiki/Heegaard_splitting.

Eigenständigkeitserklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne die Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröffentlichten Schriften entnommen wurden, sind als solche kenntlich gemacht. Die Arbeit ist in gleicher oder ähnlicher Form oder auszugsweise im Rahmen einer anderen Prüfung noch nicht vorgelegt worden. Ich versichere, dass die eingereichte elektronische Fassung der eingereichten Druckfassung vollständig entspricht.

Franziska Frede 19.07.2018