

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y C.C. Coordinación Cálculo I

usach

Guía de Ejercicios

03 - 06 de abril de 2023 Semana 04 Funciones

1. Para cada una de las siguientes funciones f, determine Dom(f) y Rec(f)

$$a) f(x) = \frac{2x+1}{x-1}$$

$$c) \ f(x) = \frac{x}{|x|}$$

$$b) \ f(x) = \sqrt{x^2 - 1}$$

$$d) \ f(x) = \sqrt{|x| - x}$$

2. Considerando el gráfico de la función f(x) que se muestra a continuación, determine:

- a) Dom(f), Rec(f)
- b) 3f(2) 2f(-2) + 5f(1) 4f(0)
- c) $f^{-1}(5)$, $f^{-1}(1)$, $f^{-1}(0)$
- 3. Sean

$$f(x) = -x^2 - 4x + 3$$
, $g(x) = x - 3$.

- a) Determine el conjunto $A = \{x \in \mathbb{R} : f(x) > g(x)\}$
- b) Grafique f y g en el mismo plano cartesiano.
- 4. Demostrar que si las funciones f y g son impares, entonces las funciones (f+g) y (f-g) también son impares. Mientras que las funciones $(f \cdot g)$ y (f/g) son pares.
- 5. Considere la función $f: A \subset \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \frac{x}{x^2 |x|}$. Determine Dom(f) y Rec(f)

Guía de ejercicios Funciones

- 6. Sea $f(x) = \frac{x}{1+|x|}$.
 - a) Determine Dom(f).
 - b) Determine si f es par, impar o ninguna de las dos.
 - c) Determine si f es creciente, decreciente o no es monótona.
 - d) Sea 0 < k < 1. Determine la preimagen de k.
 - e) Determine Rec(f)
 - f) Grafique
- 7. Considere la función $f:D\subset\mathbb{R}\to\mathbb{R}$ definida como

$$f(x) = \begin{cases} \frac{1}{x+2} & \text{si} & x < -3, \\ -(x+2)^2 & \text{si} & -3 \le x < -2, \\ \sqrt{x+2} & \text{si} & x \ge -2. \end{cases}$$

Determine el Dominio, Recorrido y esboce la gráfica de f.

- 8. Una empresa discográfica realiza una inversión inicial de 5.000 dólares para preparar las canciones de un álbum musical. El costo total de fabricación de cada disco es de 4 dólares. Además, la discográfica debe pagar al cantante, por derechos de autor, 1 dólar por cada disco. Según un estudio de mercado, se ha llegado a un precio de venta de 15 dólares por disco. Determine:
 - a) La función de Utilidad U(x) donde x representa la cantidad de discos fabricados.
 - b) El dominio de la función obtenida en a), en el contexto del problema, y especifique cuál es la vasriable dependiente e independiente.
 - c) El número de discos que deben venderse para que la empresea tenga una utilidad de 100.000 dólares
 - d) Construya un modelo que permita obtener el número de discos fabricados en función de la Utilidad obtenida (U^{-1})
- 9. Suponga que el coste total en dólares de la fabricación de q unidades de un determinado artículo viene dado por la función

$$C(q) = q^3 - 30q^2 + 400q + 500$$

- a) Calcule el coste de fabricación de 20 unidades.
- b) Calcule el coste de fabricación de la vigésima unidad.
- 10. Cada domingo, un kioskero vende x unidades de un periódico a \$1,000 cada uno. El costo de cada periódico es de \$500. Además, cada domingo el kioskero debe pagar una patente municipal correspondiente a \$25,000.
 - a) Escribir la ecuación que relaciona la ganancia U con el número de periódicos vendidos x. Graficar
 - b) ¿Cuál será la ganancia si se venden 300 unidades?
 - c) ¿Cuántos periódicos debe vender para que no haya pérdidas?

Guía de ejercicios Funciones

11. La temperatura u de un objeto calentado en un tiempo dado t se modela por la siguiente función

$$u(t) = T + (u_0 - T)e^{kt}, \ k < 0$$

Donde T es la temperatura constante del medio que lo rodea, u_0 es la temperatura inicial del objeto calentado y k es una constante negativa.

Suponga que se calienta un objeto a $100^{\circ}C$ y después se deja enfriar en una habitación cuya temperatura es de $30^{\circ}C$. A los 5 minutos, la temperatura del objeto es de $80^{\circ}C$. ¿En qué instante, la temperatura del objeto será de $50^{\circ}C$?

Soluciones

1. a)
$$Dom(f) = \mathbb{R} - \{1\}, \ Rec(f) = \mathbb{R} - \{2\}$$

b)
$$Dom(f) =]-\infty, -1] \cup [1, +\infty[, Rec(f) = [0, +\infty[$$

c)
$$Dom(f) = \mathbb{R} - \{0\}, Rec(f) = \{-1, 1\}$$

d)
$$Dom(f) = \mathbb{R}, Rec(f) = \mathbb{R}_0^+$$

2. a)
$$Dom(f) = [-3, +\infty[, Rec(f) =] -\infty, -6]$$

b)
$$3-2+0+4=5$$

$$c) \ f^{-1}(5) = \{3\}, \ f^{-1}(1) = \{-2, \ 1, 4, \ 2, \ 4, 2\} \ f^{-1}(0) = \{-2, 5, \ -1, \ 1, \ 4, 4\}$$

3.
$$a) A =]-6,1[$$

5.
$$Dom(f) = \mathbb{R} - \{-1, 0, 1\}, Rec(f) = \mathbb{R} - \{0\}$$

- 6. a) $Dom(f) = \mathbb{R}$
 - b) Impar
 - c) Creciente

$$(d) f^{-1}(k) = \frac{k}{1-k}$$

e)
$$Rec(f) =]-1,1[$$

7. $Dom(f) = \mathbb{R}, \ Rec(f) = [1, +\infty[$

- 8. a) U(x) = 10x 5000
 - b) $Dom(U) = [0, +\infty[$. Variable independiente es la cantidad de discos vendidos. Variable dependiente, la Utilidad obtenida.
 - c) 9500

$$d) \ U^{-1}(x) = \frac{x + 5000}{10}$$

- 9. a) C(20) = 4500
 - b) C(20) C(19) = 4500 4129 = 371
- 10. a) U(x) = 500x 25000
 - b) U(300) = 125,000
 - c) Se deben vender 50 periódicos.
- 11. A los 18,6 minutos