Lecture 14 Introduction to Machine Learning: Part II

Rob Gaizauskas

Lecture Outline

- Review of Key Concepts
- A More Abstract View of Supervised Learning
- A Second Simple Supervised Learning Algorithm: Linear Regression

- Reading: (Readings that begin with * are mandatory)
 - *Russell and Norvig (2010), Chapter 18 "Learning from Examples", sections 18.1-18.3, 18.6.1
 - T. Mitchell. Machine Learning. McGraw Hill, 1997.
 - I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, 2nd edition, Morgan Kaufmann, San Francisco, 2005.

Review of Key Concepts: What is Machine Learning?

A possible definition:

The study of how to design computer programs whose performance at some task improves through experience.

Or, more precisely, (Mitchell, 1997):

Definition: A computer program is said to **learn**

- from experience E
- with respect to some class of tasks T and
- performance measure P

if its performance at tasks in T as measured by P improves with experience E

- Important question:
 - Are we only interested in *performance* of learning program?
 - Or are we also interested in discovering human-comprehensible descriptions of patterns in data? (knowledge discovery)

Review of Key Concepts: 3 Main Types of Learning

Supervised learning

 Agent observes some input-output pairs and learns a function that maps from input to output

Unsupervised learning

- Agent learns patterns in the input even though no explicit feedback is given
 - Common example is clustering detecting potentially useful clusters in input examples

Reinforcement learning

- Agent learns from series of reinforcements rewards or punishments – received after it has performed a sequence of actions
 - Challenge is to decide which actions prior to the reinforcement were responsible for it

Supervised Learning: Learning Input-Output Functions

- In supervised learning we are typically trying to learn a function f from examples
- f is referred to as the target function
- f takes a vector-valued input, an n-tuple $\mathbf{x} = (x_1, x_2, ... x_n)$
- f yields a vector-valued k-tuple as output, though often
 k = 1, i.e. f produces a single output value

Learning Input-Output Functions (2)

- Job of the learner is to output a hypothesis h which is its guess or approximation of the target function f
- h is assumed to be drawn from a class of functions H,
 called the hypothesis space
- Thus, learning may be viewed as search in a hypothesis space
- Note that f may or may not be in H and this may or may not be known

Learning Input-Output Functions (3)

- The learner selects a hypothesis h based on a set \(\mathcal{E} \) of training examples.
- Each training example is an input-output pair consisting of
 - an n-tuple x drawn from the set of input vectors over which
 f is defined
 - the value of f at \mathbf{x} , i.e. $f(\mathbf{x})$

Learning Input-Output Functions (4)

- The goal of the learner is to find an h that matches f as closely as possible
 - i.e. h should correctly predict the value of f for inputs not previously seen (not in the training set)
- If a hypothesis succeeds in correctly predicting the output value for unseen examples it is said to generalize well
- To evaluate a hypothesis the standard approach is to test it on a set of pairs of inputs and associated output values not used in training, referred to as the *test set*
 - The result of the evaluation is a measure of accuracy or, conversely, error associated with h

Supervised Learning

General Setting

Training Examples

Input Vectors

- Input vectors go by a variety of names in the ML literature: input vector, pattern vector, feature vector, sample, example, instance
- Components x_i of input vectors are variously called: features, attributes, input variables, components.
- Values of components generally of two major sorts:
 - numeric
 - also called ordinal and dividing into real-valued and discrete-valued numbers
 - nominal
 - also called categorical, enumerated or (confusingly) discrete

Input Vectors: Example

 A loan applicant Fred might be an instance to a learner represented by the 6-tuple:

(m, 27, 1, 3, u, 24376)

where the attributes are gender, age, in-work, years-at-current-job, education-code, salary

- gender is nominal (values m or f)
- age is ordinal (discrete-valued number)
- in-work is nominal a special case of a boolean-valued attribute
- years-at-current-job is ordinal (discrete-valued number)
- education-code is nominal (some fixed set of code values,
 e.g. u = undergraduate degree
- salary is ordinal (discrete-valued number)

Outputs

- If a learner produces a hypothesis h that outputs a realnumber
 - The learning problem is called regression
 - The hypothesis is called a function estimator
 - Its output is called an output value or estimate
- If a learner produces a hypothesis h that outputs a categorical value
 - The learning problem is called classification
 - The hypothesis is called a *classifier*, *recognizer* or *categorizer*
 - Its output is called a label, class, category or decision
- Outputs may also be vector-valued with the components being numeric or nominal (or both)

Outputs: Example

- In the loans applicant example, the learned hypothesis could be
 - a function estimator if the output is a real-number approximating the probability of Fred defaulting
 - a classifier if the output is a boolean 1 or 0 indicating whether Fred should be given a loan or not

More Examples: Fitting a Function to Data

- Suppose hypothesis space H is the set of polynomials, such as $x^5 + 3x^2 + 2$
- (a) and (b) show two polynomials consistent with (agree with all data points) the data
 - (a) is a linear hypothesis (0.4x + 3)
 - (b) is a degree 7 polynomial
 - How do we choose? Ockham's razor prefer the simplest

More Examples: Fitting a Function to Data

- (c) shows a degree-6 polynomial that exactly fits the data (NB: different data set from (a) and (b))
 - Also shows a straight line inexact fit might generalize better to new examples
 - In general tradeoff between complex hypotheses that fit well vs simpler hypotheses that may generalize better

More Examples: Fitting a Function to Data

- (d) shows an exact fit where the function is a polynomial over sin(x), rather than just x, i.e. hypothesis is from a different hypothesis space
 - Shows importance of choice of hypothesis space
 - A learning problem is said to be realizable if the hypothesis space contains the true function
 - Cannot always tell if a learning problem is realizable as true function may not be known

COM1005/2007 2015-16

Expressiveness vs Complexity of H

- Why not always choose the set of all computable functions (equivalently, the set of all Java programs or Turing machines) as the hypothesis space H?
 - Would ensure that H contains the true function if f is computable –
 this is the best we can do
- Ignores the fact that in general

There is a tradeoff between the expressiveness of a hypothesis space and the complexity of finding a good hypothesis in that space

- For example:
 - Fitting a straight line to data is an easy computation
 - Fitting a high-degree polynomial is harder
 - Fitting Turing machines is, in general, undecidable
- Also, difficulty of using h after learning needs to be considered:
 - When h is linear, computing h(x) is fast
 - If h is an arbitrary Turing machine, it is not even guaranteed to terminate

A Second Simple Supervised Learning Algorithm: Linear Regression

- Decision tree learners operate in a hypothesis space of decision trees
 - Typically used to learn classifiers which classify new instances into one amongst a finite set of discrete classes
- Linear regression learners operate over the hypothesis space of linear functions of continuousvalued inputs
- Here we consider just the case of regression with a univariate linear function, aka "fitting a straight line"

Univariate Linear Regression

 Univariate linear functions have the form

$$y = w_1x + w_0$$

where w_0 and w_1 are real-

valued co-efficients to be learned (also called weights)

• Let **w** be the vector $[w_{0_{j}}w_{1}]$ and define

$$h_{\mathbf{w}}(x) = w_1 x + w_0$$

- Figure shows example of training set of *n* points in *x,y* plane, each point representing the [size,price] of a house
- The task of finding the best $h_{\mathbf{w}}$ that fits such data is called linear regression $_{\text{COM1005/2007 2015-16}}$

Squared Loss

- Standard approach to fit a line to data is to find the values of the weights $[w_{0,}w_{1}]$ that minimise the loss over all training examples
- Loss is usually interpreted to mean the squared loss function, L₂, summed over all examples:

$$Loss(h_{\mathbf{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\mathbf{w}}(x_j)) = \sum_{j=1}^{N} (y_j - h_{\mathbf{w}}(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

 Think of this as minimising the sum of the squares of the distances of each point (training example) from the "hypothesis" line – a better line will have a smaller squared error

Squared Loss (2)

- Loss is minimised when the partial derivatives wrt w₀ and w₁ are zero
- For univariate linear regression can plot loss function in 3D plot
 - Function is convex and there is a global minimum

• In this case can compute the minimum via a closed form solution (see Russell and Norvig p. 719, eqn. 18.3)

Gradient Descent

- To go beyond linear models, equations defining minimum loss often have no closed-form for solution
- Standard approach is these cases is to use hill-climbing search that follows gradient of function to be optimized until a local minimum is found – called gradient descent
 - Can be used for linear regression as well
- Choose any point in weight space in the case of univariate linear regression, a point in the (w_{0}, w_{1}) plane
- Then move to a neighbouring point that is downhill and repeat until the process converges on a minimum possible loss:

$$\mathbf{w} \leftarrow \text{any point in parameter space}$$
 \mathbf{loop} until convergence \mathbf{do}
 $\mathbf{for\ each\ } \mathbf{w_i} \ \mathbf{in\ } \mathbf{w\ do}$
 $w_i \leftarrow w_i - \alpha \ \frac{\delta}{\delta w_i} Loss(\mathbf{w})$

Here α is a parameter called the learning rate

Gradient Descent (2)

 Taking the partial derivatives of the loss function in the univariate linear regression case leads to the following update rules for the weights:

$$w_0 \leftarrow w_o - \alpha \sum_{j}^{N} (y_j - h_{\mathbf{w}}(x_j))$$

$$w_1 \leftarrow w_1 - \alpha \sum_{j}^{N} (y_j - h_{\mathbf{w}}(x_j)) \times x_j$$

(see Russell and Norvig for full derivation)

- These update rules make sense: if $h_{\mathbf{w}}(x) > y$, i.e. output of hypothesis is too large
 - Reduce w₀ a bit
 - Reduce w_1 if x was a positive input but increase w_1 if x was a negative input COM1005/2007 2015-16

Summary

- Machine learning is the study of how to design computer programs whose performance at some task improves through experience
- Any component of an agent can be improved by learning from data
- Three main types of learning are: unsupervised learning, reinforcement learning and supervised learning
- Supervised learning has been the most extensively studied and applied form of learning
- Supervised learning may be viewed as the learning of a target function from training examples
- Supervised learning algorithms can be divided into
 - Classification
 - Regression

algorithms depending on whether their output is a categorical value or a real number

- Decision tree learning is an example of a classification algorithm
- Univariate linear regression is an example of a regression algorithm

References

Mitchell, Tom (1997) *Machine Learning*. WCB/McGraw-Hill, Boston. See: http://www.cs.cmu.edu/~tom/mlbook.html.

Russell, Stuart and Norvig, Peter (2010) *Artificial Intelligence: A Modern Introduction* (3rd ed). Pearson. Chapter 18.

Learning Input-Output Functions: Performance Evaluation

- Important to know how well our learner is doing, i.e. how good the hypothesis it produces is
- Standard approach is to test hypothesis on a set of inputs and function values not used in training, referred to as the test set
- Common evaluation measures used are meansquared error and accuracy (= proportion of instances misclassified)