University of Chicago Professional Education

MSCA 37016

Advanced Linear Algebra for Machine Learning

Session 3

Shaddy Abado Ph.D.

Agenda: Session #3

- ➤ Projections
- ➤ Least Squares Approximation
- $\triangleright QR$ Decomposition
- >Linear transformations
- ➤ Visualization of linear transformations

BASIC CONCEPTS NEEDED FOR THIS SESSION

Definition: Column Space - C(A)

Given a matrix A with columns in \mathbb{R}^m , these columns and all their linear combinations form a subspace of \mathbb{R}^m .

$$C(A) = span \{v_1, \dots, v_n\}$$

For example,

For
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 3 \\ 0 & 4 \end{bmatrix}$$

The **column space** of A is the plane through the origin in \mathcal{R}^3 [1] [2]

containing
$$\begin{bmatrix} 1\\3\\0 \end{bmatrix}$$
 and $\begin{bmatrix} 2\\3\\4 \end{bmatrix}$

Column Space - C(A)

Question:

Given a matrix A, for what vectors b does Ax = b have a solution x?

Answer:

The system $\mathbf{A}x = \mathbf{b}$ is solvable <u>if and only if</u> \mathbf{b} is in the column space of A (i.e., $C(\mathbf{A})$)

Core Idea:

The Column Space $\mathcal{C}(A)$ describes all the attainable \dot{b}' s

Definition: Nullspace

The nullspace N(A) of a matrix A is the

collection of all solutions : to the equation

 $Ax = \overrightarrow{0}$

Definition - Special solutions:

The nullspace of A consists of all the combinations of the special solutions to $Ax = \vec{0}$.

Again:

Only singular matrices have a nullspace that contains more than just the zero vector.

Definition: Basis

Motivation:

Find <u>enough</u> Independent vectors to span the space (and not more).

A basis for a vector space is a sequence of vectors that are

- (1) linearly independent and
- (2) span the space.

The basis of a space tells us everything we need to know about that space.

Definition: Orthogonal Vectors

Recall:

v and u are said to be orthogonal to each other if $v \cdot u = 0$ or $v^T u = 0$

Vector Notation

$$v \cdot u = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = 4 \cdot -1 + 2 \cdot 2 = 0$$

Matrix Notation

$$v^T u = \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = Rig$$

$$4 \cdot -1 + 2 \cdot 2 = 0$$
Shaddy Abado, Ph. D

Definition: Orthogonal Matrix

The vectors v_1, \dots, v_n are orthonormal if

$$v_i^T v_j = \begin{cases} 0 & when i \neq j & Orthogonal vectors \\ 1 & when i = j & unit vectors : ||v_i|| = 1 \end{cases}$$

A matrix with orthonormal columns is assigned the special letter Q

Examples

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad Q = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{2} & 1/\sqrt{3} \end{bmatrix}$$

Shaddy Abado, Ph.D.

Orthonormal Matrix - Properties

- 1. Q is not required to be square
- $2. \quad Q^T Q = I$
- 3. When $m{Q}$ is square, $m{Q}^Tm{Q} = m{Q}m{Q}^T = m{I}$ means that $m{O}^T = m{O}^{-1}$

Example 1

$$\boldsymbol{Q} = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{bmatrix} \qquad \boldsymbol{Q}^T = \boldsymbol{Q}^{-1} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ 1 & 2 & -2 \end{bmatrix} \qquad \boldsymbol{Q}^T \boldsymbol{Q} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example 2
$$Q = \frac{1}{3}\begin{bmatrix} 1 & -2 \\ 2 & -1 \\ 2 & 2 \end{bmatrix}$$
 $Q^TQ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $QQ^T \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Check

Given vector b, what is the orthogonal projections onto x- and y-axes?

Scalar Projection - Cosine Formula

$$\frac{\boldsymbol{v} \cdot \boldsymbol{u}}{\|\boldsymbol{v}\| \|\boldsymbol{u}\|} = \cos \boldsymbol{\theta}$$

This relation can be used to provide a simple way of calculating the **Orthogonal** scalar projection of one vector in the direction of another

"How much" of a vector v is in a given direction (i.e., components)?

Vector Projection – Problem Statement

Given vectors \vec{a} and \vec{b} , how to decompose it into a:

- 1. "projection" piece \vec{p} which is multiple of \vec{a}
- 2. And an error/residual piece \vec{e} which is orthogonal to \vec{a}

$$\vec{b} = \vec{e} + \vec{p}$$

$$\vec{b} = \vec{e} + \hat{x}\vec{a}$$

Scalar

$$\vec{b} = \vec{e} + \hat{x}\vec{a}$$

$$\hat{x} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{a} \cdot \overrightarrow{a}}$$

or

$$\hat{x} = \frac{a^T b}{a^T a}$$

See Extra Slides for derivation

An Orthogonal Line Projection - Check

$$\overrightarrow{m{b}} = \overrightarrow{m{e}} + \overrightarrow{m{p}}$$

$$= \overrightarrow{m{e}} + \frac{m{a}^T m{b}}{m{a}^T m{a}} \overrightarrow{m{a}}$$

If
$$\overrightarrow{m{b}}=\overrightarrow{m{a}}$$
, then $\frac{a^T b}{a^T a}=\mathbf{1}$ $\overrightarrow{m{p}}=\overrightarrow{m{a}}$ and $\overrightarrow{m{e}}=\mathbf{0}$

If $\overrightarrow{m{b}}$ and $\overrightarrow{m{a}}$ are orthogonal then $rac{a^T b}{a^T a} = {m{0}}$ $\overrightarrow{m{p}} = {m{0}}$ and $\overrightarrow{m{e}} = \overrightarrow{m{b}}$

Example I_{y-axis}

 $\vec{e} = \vec{b} - \vec{p} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$

$$\begin{bmatrix} \vec{b} = \vec{e} + \vec{p} \\ = \vec{e} + \frac{a^T b}{a^T a} \vec{a} \end{bmatrix}$$

$$||b||^2 = ||p||^2 + ||e||^2$$

$$\vec{a} = e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\hat{x} = \frac{a^T b}{a^T a} = \frac{4}{1} = 4 \text{ Weight}$$
Projection $\vec{p} = \frac{a^T b}{a^T a} \vec{a} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$

$$\vec{e} = \vec{b} - \vec{p} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

Again: What are we trying to do?

$$ec{m{b}} = ec{m{e}} + ec{m{p}} \ = ec{m{e}} + rac{m{a}^T m{b}}{m{a}^T m{a}} ec{m{a}}$$

If \vec{b} is **not** Linearly dependent on \vec{a} (i.e., **not** in the <u>subspace</u> of \vec{a}) then we find the best approximation (\vec{p}) to \vec{b} in \vec{a} .

-6♥ \$haddy Abado, Ph.D.

Recall:

Knowing that there is no unique solution, we are trying to find the best approximate solution for

$$A_{mxn}x_{nx1} = b_{mx1}$$

Goal:

Given vector \vec{b} and assuming that matrix A is full ranks (i.e., all column vectors are linearly independent); then find the closest \vec{p} in A (where \vec{p} will be linear combination of matrix A columns)

Recall: The Column Space C(A) describes all the attainable \acute{b} 's

$$ec{m{b}} = ec{m{e}} + ec{m{p}}$$
 (weights' Vector

Projection of b onto subspace A

$$\overrightarrow{p} = A\widehat{x} = A(A^TA)^{-1}A^Tb$$

Residual

$$\vec{e} = \vec{b} - A\hat{x}$$

The projection vector \overrightarrow{p} is the best approximation of \overrightarrow{b} in C(A)

The error vector \overrightarrow{e} is perpendicular to the subspace A

$$(n=1)$$

Orthogonal Line Projection

 $A_{mxn}x_{nx1} = b_{mx1}$

Projection Matrix

Vector

Matrix

n = 1

$$\mathbf{P} = \frac{aa^T}{a^Ta}$$

 \widehat{x} - Scalar

Projection of *b* onto vector *a*

$$\vec{p} = \mathbf{P}b = \vec{a}\hat{x} = \frac{a^Tb}{a^Ta}\vec{a}$$

Orthogonal Projection onto a subspace

Projection Matrix

 $n > 1 \qquad P = A(A^TA)^{-1}A^T$

$$\widehat{x}$$
 - Vector

Projection of b onto subspace A

$$\vec{p} = Pb = A\hat{x} = A(A^TA)^{-1}A^Tb$$

The linear independence of matrix A Columns guarantee that the inverse matrix exist

Example: Orthogonal Projection onto

Subspace

Projection matrix: $P = A(A^TA)^{-1}A^T$

Projection vector: $\vec{p} = Pb = A\hat{x} = A(A^TA)^{-1}A^Tb$

Find the Orthogonal Projection of $\vec{b} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$ onto $\vec{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

$$\mathbf{A}^{T}\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \qquad \mathbf{A}^{T}\mathbf{b} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

$$\mathbf{A}^T \mathbf{b} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

Weights vector
$$\hat{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$

Projection matrix

$$P = A(A^{T}A)^{-1}A^{T} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$
 Symmetric

Projection vector

Projection vector
$$\vec{p} = A(A^TA)^{-1}A^Tb = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ \text{Shaddy Abado, Ph.D.} \end{bmatrix} \vec{e} = \vec{b} - \vec{p} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$\vec{e} = \vec{b} - \vec{p} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$P = A(A^TA)^{-1}A^T$$

A few more notes ...

 A^TA is invertible <u>if and only if</u> A has linearly independent columns (Full column ranked)

Recall:

Matrix A_{mxn} is rectangular \rightarrow There is no inverse matrix $A^TA \rightarrow$ A square nxn matrix

However, when A has independent columns then matrix A^TA is

- \triangleright A square nxn matrix
- **≻**Symmetric
- **≻**Invertible

Shaddy Abado, Ph.D.

Definition:

Normal Equation

Knowing that there is no unique solution, we are trying to find the <u>best approximate solution</u> \hat{x} for

$$Ax = b \rightarrow A\hat{x} = p$$

$$\hat{\chi} = (A^T A)^{-1} A^T b$$
 Normal Equation

 \widehat{x} - Vector

LEAST SQUARES APPROXIMATION

Motivation:

Least Squares Estimate

For real life applications, data is contaminated with many error samples, and thus is not useful as a predictive tool.

- In such cases, we needed to separate the most important information from the less important information (noise).
- ➤ It may be more useful to choose a lower order curve which does not exactly pass through all available points, but which does minimize the residual.

Over-Determined System of Equations

Over-determined System of Equations m > n(# of Equations > # of Unknowns)

Goal:

Is there a line which fits the data in some optimal sense?

We want the "best" possible solution

Least Squares Approximation

Over-determined System of Equations with no solution

$$Ax = b$$

In linear algebra terms, b is not in the column space C(A) of A. But we can "project" b onto C(A) and get the vector $\vec{p} = A\hat{x}$ in C(A) that most closely resembles b.

$$\hat{x} = (A^T A)^{-1} A^T b$$

Normal Equation

Recall

$$\vec{p} = Pb = A\hat{x} = A(A^TA)^{-1}A^Tb$$

Example I - LSE

\boldsymbol{x}_i	${\mathcal Y}_i$
0.20	57.87
1.26	40.35
2.31	51.78
3.37	42.16
4.43	40.96
5.49	28.78
6.54	28.95
7.60	26.59
8.66	25.52
9.71	15.23
10.77	18.92
11.83	9.98
12.89	10.81
13.94	9.37
15.00	4.91

Step 1) Examines the data

We can notice a strong linear relationship between x and y.

Shaddy Abado, Ph.D.

Example I - LSE

Step 2) Makes a non-unique judgment of what the functional form might be

Example I – LSE (Linear equations in two variables)

$$f(x) = a * x + b - - Fixed$$

Example I – LSE

(Linear equations in two variables)

Example I – LSE

(Linear equations in two variables)

Target Function

$$f(x_i) = y_i = a * x_i + b$$

Vertical distance (Error) to the line:

$$[(a * x_i + b) - y_i]$$

Goal:

Minimize the vertical distance to the target function

How?

Minimize the "projected" distance of each measured point to the target function (line).

Shaddy Abado, Ph.D.

How to measure the "best" approximation?

Minimizing the sum of the squares of the vertical distances (errors) from the points to the subspace

Sum of Squared Errors

$$SSE = \frac{1}{2} \sum_{i=1}^{N} Error^{2} = \frac{1}{2} \sum_{i=1}^{N} [f(x_{i}) - y_{i}]^{2}$$
$$= \frac{1}{2} \sum_{i=1}^{N} [(a * x_{i} + b) - y_{i}]^{2} \rightarrow Small$$

This is the least squares approximation to the points. The error (i.e., SSE) is as small as possible.

$\vec{e} = \vec{b} - A\hat{x}$

Normal Equation

Goal:

Minimizing the squared length of the vector

$$A\hat{x}-b$$

Normal Equation

$$A^{T}A\hat{x} = A^{T}b$$

$$\hat{x} = (A^{T}A)^{-1}A^{T}b$$

(Over-determined System of Equations)

Step 3) Substitutes each data point into the assumed form to form an over-determined system of linear equations

$\mathbf{X_i}$	$\mathbf{Y_i}$
0.20	57.87
1.26	40.35
2.31	51.78
3.37	42.16
4.43	40.96
5.49	28.78
6.54	28.95
7.60	26.59
•••	•••
15.00	4.91

$$y_i = a_0 + a_1 * x_i$$

$$57.87 = a_0 + a_1 * 0.2$$

$$40.35 = a_0 + a_1 * 1.26$$

$$\vdots$$

$$4.91 = a_0 + a_1 * 15$$

- \triangleright Solve for a_0 and a_1
- ➤ This is an overdetermined system of equations (exact solution does not exist)

Siladdy Abado, Pil.D

Example I - LSE (Matrix Notation)

$$57.87 = a_0 + a_1 * 0.2$$

 $40.35 = a_0 + a_1 * 1.26$
 \vdots
 $4.91 = a_0 + a_1 * 15$

- The x-values of the data points become the entries in the matrix A (Coefficient matrix)
- \triangleright The y-values of the data points become vector b
- > The coefficients a_0 and a_1 become the approximation \hat{x} (Unknowns)

$$\begin{bmatrix} 1 & 0.2 \\ 1 & 1.26 \\ \vdots & \vdots \\ 1 & 15 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 57.87 \\ 40.35 \\ \vdots \\ 4.91 \end{bmatrix}$$

$$A^{\text{Shaddy Ab}} \stackrel{\text{Ph.D.}}{\cancel{\lambda}} \stackrel{\text{Ph.D.}}{\cancel{\lambda}} b$$

(Over-determined System of Equations)

X _i	$\mathbf{Y_i}$
0.20	57.87
1.26	40.35
2.31	51.78
3.37	42.16
4.43	40.96
5.49	28.78
•••	•••
15.00	4.91

$$y_{i} = a_{0} + a_{1} * x_{i}$$

$$\begin{bmatrix} 1 & 0.2 \\ 1 & 1.26 \\ \vdots & \vdots \\ 1 & 15 \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \end{bmatrix} = \begin{bmatrix} 57.87 \\ 40.35 \\ \vdots \\ 4.91 \end{bmatrix}$$

$$A \qquad x = b$$

Step 4) Uses the normal equation to solve for the coefficients which best represent the given data.

$$A^{T}A\hat{x} = A^{T}b$$

$$\hat{x} = (A^{T}A)^{-1}A^{T}b$$

$A^{T}A\hat{x} = A^{T}b$ $\hat{x} = (A^{T}A)^{-1}A^{T}b$

Example I - LSE

R² (Coefficient of Determination)

$$R^{2} = \frac{\sum_{i=1}^{N} (f(x_{i}) - \bar{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}} = \frac{3478.1}{3730.3} = 0.932$$

Sum of Squared Errors

$$SSE = \sum_{i=1}^{15} [f(x_i) - y_i]^2 = 252.1$$

Step 1) Examines the data
Step 2) Makes a non-unique judgment of what the functional form might be

Find the 1st, 2nd and 3rd order polynomial fit

$\boldsymbol{x_i}$	y_i
0.20	33.86
0.98	51.84
1.76	10.53
2.54	65.16
3.32	65.35
4.09	61.12
4.87	99.39
5.65	67.46
6.43	75.49
7.21	111.41
7.99	125.07
8.77	125.66
9.55	112.28
10.33	158.37
11.11	99.59
11.88	124.40
12.66	115.21
13.44	60.08
14.22	17.62
15.00	-49.74

$$A^{T}A\hat{x} = A^{T}b$$

$$\hat{x} = (A^{T}A)^{-1}A^{T}b$$

$$f(x_i) = a_1 * x_i + a_0$$

$$\mathbf{A} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix} = \begin{pmatrix} 1 & 0.2 \\ 1 & 0.98 \\ \vdots & \vdots \\ 1 & 15 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 33.86 \\ 51.84 \\ \vdots \\ -49.74 \end{pmatrix} \quad \hat{\mathbf{x}} = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 69.0 \\ 0.98 \end{pmatrix}$$

$$f(x_i) = a_2 * x_i^2 + a_1 * x_i + a_0$$

$$A = \begin{pmatrix} 1 & x_1 & (x_1)^2 \\ 1 & x_2 & (x_2)^2 \\ \vdots & \vdots & \vdots \\ 1 & x_N & (x_N)^2 \end{pmatrix} = \begin{pmatrix} 1 & 0.2 & (0.2)^2 \\ 1 & 0.98 & (0.98)^2 \\ \vdots & \vdots & \vdots \\ 1 & 15 & (15)^2 \end{pmatrix} \quad \boldsymbol{b} = \begin{pmatrix} 33.86 \\ 51.84 \\ \vdots \\ -49.74 \end{pmatrix}$$

$$\hat{x} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} -8.3 \\ 32.2 \\ -2.1 \end{pmatrix}$$

$$A^{T}A\hat{x} = A^{T}b$$

$$\hat{x} = (A^{T}A)^{-1}A^{T}b$$

$$f(x_i) = a_3 * x_i^3 + a_2 * x_i^2 + a_1 * x_i + a_0$$

$$A = \begin{pmatrix} 1 & x_1 & (x_1)^2 & (x_1)^3 \\ 1 & x_2 & (x_2)^2 & (x_2)^3 \\ 1 & \vdots & \vdots & \vdots \\ 1 & x_N & (x_N)^2 & (x_N)^3 \end{pmatrix} = \begin{pmatrix} 1 & 0.2 & (0.2)^2 & (0.2)^3 \\ 1 & 0.98 & (0.98)^2 & (0.98)^3 \\ 1 & \vdots & \vdots & \vdots \\ 1 & 15 & (15)^2 & (15)^3 \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} 33.86 \\ 51.84 \\ \vdots \\ -49.74 \end{pmatrix}$$

$$\hat{x} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 48.1 \\ -14.9 \\ 5.7 \\ -0.3 \end{pmatrix}$$

Order	SSE
1 st	~45000
$2^{\rm nd}$	~18000
3 rd	~6400

Weighted Least Squares

Motivation:

Suppose the measurements that produced the entries in b are not equally reliable.

Idea:

More importance is given to more reliable

measurements:

$$A\vec{x}=b$$

$$WA\overrightarrow{x} = Wb$$

Weighted Least Squares

Sum of Squared Errors

$$SSE = \frac{1}{2} \sum_{i=1}^{N} Error_i^2 = \frac{1}{2} \sum_{i=1}^{N} [f(x_i) - y_i]^2 \rightarrow Small$$
$$- \boldsymbol{b} \parallel^2 \rightarrow \boldsymbol{0} \qquad \hat{x} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b}$$

$$||A\hat{x}-b||^2\to 0$$

$$\hat{x} = \left(A^T A\right)^{-1} A^T b$$

Normal equation for ordinary least squares

Weighted Sum of Squared Errors

$$WSSE = \frac{1}{2} \sum_{i=1}^{N} w_i * Error_i^2 = \frac{1}{2} \sum_{i=1}^{N} w_i [f(x_i) - y_i]^2 \rightarrow Small$$

$$\| \mathbf{W} (\mathbf{A} \hat{x} - \mathbf{b}) \|^2 \rightarrow \mathbf{0}$$

$$\hat{x} = (\mathbf{A}^T \mathbf{W} \mathbf{A})^{-1} \mathbf{A}^T \mathbf{W} \mathbf{b}$$

$$\|\dot{W}(A\hat{x}-b)\|^2 \to 0$$

W – Diagonal matrix (when errors are independent) with positive values

Normal equation for weighted least squares

Shaddy Abado, Ph.D.

Weighted Least Squares $w = \begin{pmatrix} w_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & w_n \end{pmatrix}$

$$\boldsymbol{W} = \begin{pmatrix} w_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & w_n \end{pmatrix}$$

OLSE

$$\hat{x} = \left(A^T A\right)^{-1} A^T b$$

WLSE

$$\hat{x} = \left(A^T W A\right)^{-1} A^T W b$$

Note I

Ordinary least squares is a special case where all the weights $w_i = 1$.

If
$$W = I$$
 then $\hat{x} = (A^T A)^{-1} A^T b$

Note II

To apply weighted least squares, we need to know the weights $w_1 \dots w_n$. In many real-life situations, the weights are not known apriori.

Python

$$\boldsymbol{b} = \begin{pmatrix} 33.86 \\ 51.84 \\ \vdots \\ -49.74 \end{pmatrix} \quad \boldsymbol{A} = \begin{pmatrix} 1 & 0.2 & (0.2)^2 & (0.2)^3 \\ 1 & 0.98 & (0.98)^2 & (0.98)^3 \\ 1 & \vdots & \vdots & \vdots \\ 1 & 15 & (15)^2 & (15)^3 \end{pmatrix}$$

scipy.linalg.lstsq

```
In [9]: # scipy.linalq.lstsq
        # https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.linalg.lstsq.html#scipy.linalg.lstsq
        order=3
        b=Y
        A = CreateA(X, order)
        w, Res, rank, sv = LA.lstsq(A,b)
        print('3rd Order fit (using 1stsq)')
        print("Weights = ",w)
        print("Residuals = ",Res)
        print("Rank = ",rank,'\n')
        3rd Order fit (using 1stsq)
        Weights = [ 48.09748761 -14.91235192
                                                5.78729892 -0.344050831
        Residuals = 6440.54203236
        Rank = 4
```

Normal Equation

$$\hat{x} = \left(A^T A\right)^{-1} A^T b$$

```
order=3
b=y
A = CreateA(X, order)
w=LA.inv(np.dot(A.T,A)).dot(A.T).dot(b)
print('3rd Order fit (using matrix multiplication)')
print("Weights = ",w)
3rd Order fit (using matrix multiplication)
Weights = [ 48.09748761 -14.91235192
                                        5.78729892 -0.344050831
```

QR Decomposition

A real square matrix A may be decomposed as

Notes:

- ightharpoonup Any mxn matrix A with independent columns can be decomposed into A = QR
- \triangleright If A is invertible, then the factorization is unique if we require the diagonal elements of R to be positive

QR Decomposition - Example

QR Decomposition & LSE

Recall
$$A^{T}A\hat{x} = A^{T}b$$

$$A = QR$$

$$A^{T}A = (QR)^{T}QR \Rightarrow$$

$$= R^{T}Q^{T}QR \Rightarrow$$

$$= R^{T}R \Rightarrow$$

Q Orthogonal matrixR Upper triangular Matrix

$$R^T R \hat{x} = R^T Q^T b \Rightarrow$$

$$LSE: R\hat{x} = Q^T b$$

(Solved using back substitution)

LINEAR FUNCTIONS AND LINEAR TRANSFORMATIONS

What is Linear Algebra?

Linear algebra is the study of vectors and linear functions

- ➤ What are vectors?
- ➤ What are linear functions?

In broad terms, <u>vectors</u> are things you can (1) add and (2) scalar multiply

<u>Linear functions</u> are functions of vectors that respect these properties $T(c\mathbf{v} + d\mathbf{w}) = cT(\mathbf{v}) + dT(\mathbf{w})$

Linear and Nonlinear Relationships

Linear relationships are the main objective of study in this course.

Linear

$$f(x, y, z) = w_0 + xw_1 + yw_1 + zw_3 + \cdots$$

$$f(x, y, z) = w_0 + w_1 Sin(x) + Sin(y)w_2 + cos(y)w_3 + \cdots$$

$$f(x, y, z) = w_0 + w_1 log(x) + exp(z)w_2 + yw_3 + \cdots$$

Linear in the unknown parameters

Nonlinear

$$f(x,y,z...) = w_0 + x^{w_1} + exp(w_2z) + \cdots$$

$$f(x,y,z...) = w_0 + \frac{w_3z}{w_1 + w_2y} + \cdots$$

Motivation:

Linear Transformation

We can also refer to linear transformation as

- Linear functions
- > Linear map
- > Linear operator

Motivation:

Linear Transformation

Linear transformations is a way of moving from one vector space to another

Definition: Linear Transformation

From a linear algebra point of view, the most important transformations are those which preserve linear combinations.

Definition (Two axioms of linear transformations)

A transformation T is *linear* if:

$$T(\boldsymbol{v} + \boldsymbol{w}) = T(\boldsymbol{v}) + T(\boldsymbol{w})$$

and

$$T(cv) = cT(v)$$

Homogeneity

Additivity

for all vectors \boldsymbol{v} and \boldsymbol{w} and for all scalars c.

Equivalently, we can combine the previous two rules into one:

$$T(c\mathbf{v} + d\mathbf{w}) = cT(\mathbf{v}) + dT(\mathbf{w})$$

for all vectors \boldsymbol{v} and \boldsymbol{w} and scalars c and d.

Linearity:

Additivity

+

Homogeneity

Definition: Linear Transformation

$$T(c\mathbf{v} + d\mathbf{w}) = cT(\mathbf{v}) + dT(\mathbf{w})$$

Note I – Null vector: Linear transformation maps $\mathbf{0}$ to $\mathbf{0}$: $T(\mathbf{0}) = \mathbf{0}$

If the input is v = 0

It is impossible to move the origin

Then the output must be $T(v) = T(\mathbf{0}) = \mathbf{0}$

Additivity

because if not, it couldn't be true that $T(c\mathbf{0}) = cT(\mathbf{0})$.

Homogeneity

Note II - Linearity:

In Engineering and physics: Superposition principle

lf

$$u = v_1 * c_1 + \dots + v_n c_n$$

Then

$$T(u) = c_1 * T(v_1) + c_2 * T(v_2) + \dots + c_n * T(v_n)$$

The Superposition Principle – The most important idea in linear algebra

$$T(\boldsymbol{v} + \boldsymbol{w}) = T(\boldsymbol{v}) + T(\boldsymbol{w})$$

Linear transformations map any linear combination of inputs to the same linear combination of outputs.

If you know the outputs of T for the inputs v and w, you can deduce the output T for any linear combination of the vectors v and w by computing the appropriate linear combination of the outputs T(v) and T(w).

Definitions:

Range and Kernel of T Transformation

Range of *T*:

Set of all outputs T(v)

Kernel of *T*:

Set of all inputs for which T(v) = 0

More about this later

Shaddy Abado, Ph.D.

Example I - Linear Transformation

Identity transformation

Input:

v

Transformation:

$$T(v) = v$$

Linear

Why?

Note that: $T(c\mathbf{u}) = c\mathbf{u} = cT(\mathbf{u})$; $T(d\mathbf{w}) = d\mathbf{w} = dT(\mathbf{w})$

Then:

$$T(c\mathbf{u} + d\mathbf{w}) = c\mathbf{u} + d\mathbf{w} = c\mathbf{T}(\mathbf{u}) + dT(\mathbf{w})$$

$$T(c\mathbf{u} + d\mathbf{w}) = cT(\mathbf{u}) + dT(\mathbf{w})$$

$$T(\mathbf{0}) = \mathbf{0}$$

Example II - Linear Transformation

Dot Product: $a \cdot v$

Input:

v

Transformation:

$$T(v) = \mathbf{a} \cdot v$$

Linear

Why?

Note that:

$$T(c\mathbf{u}) = \mathbf{a} \cdot c\mathbf{u} = c(\mathbf{a} \cdot \mathbf{u}) = cT(\mathbf{u}); \quad T(d\mathbf{w}) = dT(\mathbf{w});$$

Then:

$$T(c\mathbf{u} + d\mathbf{w}) = \mathbf{a} \cdot (c\mathbf{u} + d\mathbf{w}) = c(\mathbf{a} \cdot \mathbf{u}) + d(\mathbf{a} \cdot \mathbf{w}) = cT(\mathbf{u}) + dT(\mathbf{w})$$

$$T(c\mathbf{u} + d\mathbf{w}) = cT(\mathbf{u}) + dT(\mathbf{w})$$

$$T(\mathbf{0}) \wedge \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{0}$$

Example III - Linear Transformation

Find the Kernel and Range of the Linear transformation $T: R^3 \to R^2$ defined by

$$T(x, y, z) = (z, x)$$

Kernel of T:

Set of all inputs for which T(v) = 0

Range of *T*:

Set of all outputs T(v)

Kernel of *T*:

Any vector that has only a y —component will be sent to the zero vector $Ker(T) = span \{(0,1,0)\}$

Range of *T*:

$$Range(T) = R^2$$

Shaddy Abado, Ph.D

Example I - Nonlinear Transformation

Project every 3-dimentional vector onto horizontal plan z=1

Input:

$$\boldsymbol{v} = (x, y, z)$$

Transformation:

$$T(\mathbf{v}) = (x, y, 1)$$

Not Linear

Why?

Doesn't transform v = 0 into T(v) = 0

If:

$$v = 0 = (0,0,0)$$

then:

$$T(\mathbf{0}) = (0,0,1) \neq \mathbf{0}$$

$$T(c\mathbf{v} + d\mathbf{w}) = cT(\mathbf{v}) + dT(\mathbf{w})$$
$$T(\mathbf{0}) = \mathbf{0}$$

MATRICES AS LINEAR MAPPINGS

Motivation:

Matrices as Linear Transformations

The purpose of this section is to make the connection between <u>matrix theory</u> and linear transformation.

Frequently, the best way to understand a linear transformation is to find the matrix that lies behind the transformation.

Goal:

We want to show that every linear transformation leads to a matrix.

$$T(\vec{v}) = A\vec{v}$$

Observation:

Matrix multiplication satisfies the rules of linearity

"Proof":

Given a matrix A,

$$T(c\vec{v} + d\vec{u}) = A(c\vec{v} + d\vec{u}) = c(A\vec{v}) + d(A\vec{u})$$
$$= cT(\vec{v}) + dT(\vec{u})$$

Therefore, we can define the linear transformation

$$T(\vec{v}) = A\vec{v}$$

Conclusion:

Any matrix leads immediately to a linear transformation.

Mapping Vector Spaces

$$u_{mx1} = A_{mxn} \cdot v_{nx1}$$

We can think of A as a linear transformation taking a vector v into \underline{m} -dimensional column vector.

$$u_{1xn} = v_{1xm} \cdot A_{mxn}$$

We can think of A as a linear transformation taking a vector v into n-dimensional row vector.

Conclusion:

We can view any m by n matrix \boldsymbol{A} as a function that maps one vector space onto another.

The Consequence of Linearity and Basis

Suppose that basis consists of the n vectors v_1, \dots, v_n . Then every other vector v is a combination of those particular vectors (i.e., they span the space). Therefore, linearity determines Av

$$T(v) = Av$$

lf

$$v = v_1 * c_1 + \ldots + v_n c_n$$

Then

$$Av = c_1(Av_1) + \dots + c_n(Av_n)$$

If we know Av_i for every vector in a basis, then we know Av for each vector in the entire space.

Shaddy Abado, Ph.D

Example I:

Transformations Represented by Matrices

Find the matrix representation of the Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T(x, y, z) = (x - 2y, 2x + y)$$

Example I:

Transformations Represented by Matrices

$$A = \begin{bmatrix} T(e_1) \mid T(e_2) \mid T(e_3) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$
Standard Matrix

Check

$$\begin{array}{c|c}
T: R^{3} \to R^{2} & A & y \\
T(x, y, z) = (x - 2y, 2x + y) & z
\end{array} = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - 2y \\ 2x + y \end{bmatrix}$$

Note $A = \begin{vmatrix} 1 & -2 & 0 \\ 2 & 1_{\text{haddy A}} Q_{\text{dg, Ph.}} \leftarrow 1x - 2y + 0z \\ 2 & 1_{\text{haddy A}} Q_{\text{dg, Ph.}} \leftarrow 2x + 1y + 0z \end{vmatrix}$

Composition of Linear Transformations

Let $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^m \to \mathbb{R}^p$ be L.T.

Find $T: \mathbb{R}^n \to \mathbb{R}^p$

Composition of Transformations

Composition of Linear Transformations

Let $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^m \to \mathbb{R}^p$ be L.T. with A_1 and A_2 , then

- 1) The composition $T: \mathbb{R}^n \to \mathbb{R}^p$, defined by $T(v) = T_2(T_1(v))$ is Linear Transformation
- 2) Matrix \boldsymbol{A} for \boldsymbol{T} is given by the matrix product $\boldsymbol{A} = \boldsymbol{A}_2 \boldsymbol{A}_1$

Matrix multiplication is just the operation of composing two linear transformations.

Recall $A_2A_1 \neq A_1A_2$

Composition of Linear Transformations

Let $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^m \to \mathbb{R}^p$ be L.T. with A_1 and A_2 , then

Looking at matrix as a linear transformation gives us a natural explanation for the definition of matrix multiplication.

Inverse of Linear Transformations

If $T_1: \mathbb{R}^n \to \mathbb{R}^n$ and $T_2: \mathbb{R}^n \to \mathbb{R}^n$ are L.T. such that for every \mathbf{v} in \mathbb{R}^n

$$T_2(T_1(\mathbf{v})) = \mathbf{v}$$
 and $T_1(T_2(\mathbf{v})) = \mathbf{v}$

Then T_2 is called the inverse of T_1 and T_2 is said to be invertible

Note I - Uniqueness

If the transformation T is invertible, then the inverse is unique and denoted by T^{-1} .

Note II - Matrix inverse

If T is invertible with standard matrix A, then the standard matrix for T^{-1} is A^{-1} .

Recall:

Range and Kernel of T Transformation

Range of *T*:

Set of all outputs T(v)

Range corresponds to the column space C(A)

Kernel of *T*:

Set of all inputs for which T(v) = 0

Kernel corresponds to the nullspace N(A)

Example: Linear Transformation from

R^2 into R^2

$$M = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$$

Linear transformation from R² into R²

Codomain

$$Ker(T) = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Nullspace: points on the line y = x

$$Range(T) = t \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 Range: points on the line $y = -2x$

Each of these lines is mapped to a single point in the range.

Ker(T)

Domain

Shaddy Abado, Ph.D.

Summary

- The central idea of linear algebra is to exploit the hidden simplicity of linear functions.
- Every matrix transformation is linear transformation.

There is always a matrix A hiding behind transformation T.

Summary

- A Matrix carries all the essential information on linear transformation. If the basis is known, and the matrix is known, then the transformation of every vector is known.
- For any linear transformation T we can find a matrix A so that T(v) = Av. If the transformation is invertible, the inverse transformation has the matrix A^{-1} .
- The product of two transformations $T_1: v \to A_1v$ and $T_2: w \to A_2w$ corresponds to the product A_2A_1 of their matrices. This is where matrix multiplication came from!

VISUALIZATION OF LINEAR TRANSFORMATIONS

Analytical Geometry

Analytical Geometry is concerned with defining and representing geometrical shapes in a numerical way and extracting numerical information from shapes' numerical definitions and representations.

Linear transformations includes most of the useful transformations of analytical geometry: stretchings, projections, reflections, rotations, and combinations of these.

Linear Function on Euclidean Space

$$T(\boldsymbol{v} + \boldsymbol{w}) = T(\boldsymbol{v}) + T(\boldsymbol{w})$$

Computer Graphics

Computer graphic deals with manipulating images digitally. For example, images can:

- Change scale
- Rotate
- Projected into lower dimension
- Etc.

Linear transformations can be used to change an image's:

- Size (scaling): by m in all or directions or by different factors m_1 , m_2 in different directions.
- Orientation (rotation): e.g., Around an axis through the origin.
- Projection: onto a plane through the origin.

Shaddy Abado, Ph.D

Computer Graphics

Resize and Skew		
Resize		
By:	Percentage	O Pixels
	Horizontal:	100
	Vertical:	100
✓ Maintain aspect ratio		
Skew (Degrees)		
<i>Ż</i>	Horizontal:	0
I	Vertical:	0
	OK	Cancel

Scaling Matrix

Scaling Matrix -

Leaves the direction of the vector unchanged, but changes its length

> 1 → Stretch < 1 → Shrink

Scaling Matrix

Nonuniform scale (Dilation)

Rotation Matrix

Rotation Matrix –

Changes the direction of vector, but leaves its norm unchanged

Rotation Matrix

 $egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$

 $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$

The rotation matrix is:

- 1. orthogonal matrix
- 2. Determinant = +1

Shaddy Abado, Ph.D.

Rotation Matrix

$$T: R^2 \to R^2$$

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Matrix A rotates every vector in R^2 counterclockwise about the origin through the angle θ .

Rotation Matrix - Three Dimensional

XY rotation matrix:

$$egin{bmatrix} cos heta & -sin heta & 0 \ sin heta & cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

XZ rotation matrix:

The rotation matrix is:

- 1. orthogonal matrix
- 2. Determinant = +1

$$egin{bmatrix} cos heta & 0 & sin heta \ 0 & 1 & 0 \ -sin heta & 0 & cos heta \end{bmatrix}$$

YZ rotation matrix:

$$egin{bmatrix} 1 & 0 & 0 \ 0 & cos heta & -sin heta \ 0 & sin heta & cos heta \end{bmatrix}$$

Shaddy Abado, Ph.D.

Reflection Matrix

Reflection matrices:

orthogonal matrix

& Determinant = -1

Reflection Matrix –

Reflects a vector across one or more coordinate axis

Reflection Matrix

 $A = \begin{vmatrix} a & 0 \\ 0 & b \end{vmatrix}$

a = -1; b = 1

Horizontal reflection

a = 1; b = 1

Original

Vertical & Horizontal reflection

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

Vertical reflection

Shaddy Abado, Ph. [a=1;b=-1

Reflection Matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Reflection though the *x* axis

$$L\left(\begin{bmatrix} -1\\4 \end{bmatrix}\right) = \begin{bmatrix} -1\\-4 \end{bmatrix},$$

$$L\left(\begin{bmatrix} 3\\1 \end{bmatrix}\right) = \begin{bmatrix} 3\\-1 \end{bmatrix},$$

$$L\!\!\left[\!\begin{bmatrix} 2\\6 \end{bmatrix}\!\right] = \!\begin{bmatrix} 2\\-6 \end{bmatrix}$$

Projection Matrix

Projection Matrix –

Takes a vector into lower dimensional subspace (e.g., line, plane)

Shear Matrix

Horizontal shear (parallel to the x-axis) by a factor m y coordinates are unaffected, but x coordinates are translated linearly with y

$$A = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$$

$$x' = x + m * y$$

$$y' = y$$

Vertical shear (parallel to the y-axis) by a factor m x coordinates are unaffected, but y coordinates are translated linearly with x

$$A = \begin{bmatrix} 1 & 0 \\ m & 1 \end{bmatrix}$$

$$x' = x$$

$$y' = \text{Sivid} + \text{Amagical Parameters}$$

A few more notes ...

- ➤ Additional transformations are available. For example:
 - Image Downsampling and Upsampling
 - Image Cropping
 - > Translation (position shifting through the origin to another point)
 - Permutation
- Different matrix transformations can be combined by applying them one after another. (i.e., Composition of Linear Transformations)
 - For example: First rotate through an angle of 45° counterclockwise, then scale by a factor of 1/2 horizontally, and then rotates back through an angle of 45° clockwise.
 - \triangleright The combined effect of all three transformations is to scale by a factor of 1/2 along a line that is inclined at angle of 45° .
 - All three matrices can be combined into a single matrix that embodies this overall transformation.

An Orthogonal Line Projection

$$\vec{b} = \vec{e} + \hat{x}\vec{a}$$

 \vec{e} is orthogonal to \vec{a} if and only if:

$$0 = \overrightarrow{e} \cdot \overrightarrow{a}$$

$$0 = (\overrightarrow{b} - \hat{x}\overrightarrow{a}) \cdot \overrightarrow{a}$$

$$0 = \overrightarrow{a} \cdot \overrightarrow{b} - \hat{x}\overrightarrow{a} \cdot \overrightarrow{a}$$

$$\hat{x} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{a} \cdot \overrightarrow{a}}$$

$$\hat{x} = \frac{a^T b}{a^T a}$$

An Orthogonal Line Projection

$$\overrightarrow{m{b}} = \overrightarrow{m{e}} + \overrightarrow{m{p}}$$

$$= \overrightarrow{m{e}} + \frac{m{a}^T m{b}}{m{a}^T m{a}} \overrightarrow{m{a}}$$

Right Triangle (Pythagoras theorem)

$$||\boldsymbol{b}||^2 = ||\boldsymbol{p}||^2 + ||\boldsymbol{e}||^2$$

Projection Matrix

$$egin{aligned} \overrightarrow{m{b}} &= \overrightarrow{m{e}} + \overrightarrow{m{p}} \ &= \overrightarrow{m{e}} + rac{m{a}^Tm{b}}{m{a}^Tm{a}} \overrightarrow{m{a}} \end{aligned}$$

The projection matrix $m{P}_{mxm}$ multiply b_{mx1} to give \overrightarrow{p}_{mx1} (i.e., $\overrightarrow{p} = P\overrightarrow{b}$)

$$\boldsymbol{P_{mxm}} = \frac{aa^{T}}{a^{T}a}$$

Project
$$\vec{\boldsymbol{b}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 onto $\vec{\boldsymbol{a}} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$

$$\boldsymbol{P_{mxm}} = \frac{aa^T}{a^Ta} = \frac{1}{9} \begin{bmatrix} 1\\2\\2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2\\2 & 4 & 4\\2 & 4 & 4 \end{bmatrix}$$

$$\vec{p} = P\vec{b} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 5 \\ 10 \\ 1 \end{bmatrix}$$

Orthogonal Projection onto subspace

$$\vec{b} = \vec{e} + \vec{p}$$
 Vector $\vec{b} = \vec{e} + A\hat{x}$

is orthogonal to A if and only if:

$$0 = A^{T}e$$

$$0 = A^{T}(b - \widehat{x}A)$$

$$0 = A^{T}b - \widehat{x}A^{T}A$$

$$\widehat{x} = (A^{T}A)^{-1}A^{T}b$$

$$\overrightarrow{p} = A(A^TA)^{-1}A^Tb$$

$$P = A(A^TA)^{-1}A^T$$

Projection of b onto subspace A

Shaddy Abado, Ph.D.

Projection Matrix

 b_{mx1}

 e_{mx1}

 \hat{x}_{nx1}

 p_{mx1}

 A_{mxn}

 P_{mxm}

Normal Equation for a Straight line

$$y_i = a * x_i + b$$

$$A^{T}A\hat{x} = A^{T}b$$

$$\hat{x} = (A^{T}A)^{-1}A^{T}b$$

$$\begin{bmatrix} \sum x_i^2 & \sum x_i \\ \sum x_i & N \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum x_i y_i \\ \sum y_i \end{bmatrix}$$

 A^TA

 A^Tb