PHASE SHIFT IN LCR CIRCUITS

<u>AIM</u>: To study the phase shift between voltage and current in a given series LCR circuit using a CRO and to draw a phasor diagram.

APPARATUS:

Capacitors (0.01 μF), Resistors (330 Ω , 1K Ω), Signal Generator, Bread board, CRO with probe

CIRCUIT DIAGRAM:

FORMULA:

The phase shift $\Phi = \frac{\Delta T}{T} \times 360^{\circ}$ in degree

Where ΔT is the time phase shift between the current (actually the voltage across the resistor) and the voltage across the function generator and T is the period of the sine wave generated (1/f).

WAVEFORM:

TABULAR COLUMN:

Frequency (Hz)	ΔT (s) Δt x Time Constant	$\Phi = \Delta \mathbf{T} \times \mathbf{f} \times 360^{\circ}$ (degree)
3000		
8000		

 $C=0.01 \mu F$

PHASOR DIAGRAM for series LCR circuit:

f=.....Hz

		·			
V_{L}	$V_{\rm C}$	V_R	$X_L=2 \pi fL$	$X_{\rm C} = 1/(2 \ \pi \ {\rm fC})$	$-1(X_I - X_C)$
(V)	(V)	(V)	(Ω)	(Ω)	$\theta = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$

 $R=330\Omega$

L=0.1H

(V) (V) (V) (Z2) (Z2) (R) (deg)

Procedure:

- 1. Measure the voltages across inductor (V_L) , capacitor (V_C) and resistor (V_R) using AC voltmeter.
- 2. Since the current flowing through the circuit is common to all three circuit elements, mark this as the reference vector.
- 3. Draw the three voltage vectors relative to this at their corresponding phase angles.
- 4. The resulting vector V_S is obtained by adding together two of the vectors, V_L and V_C and adding this sum to the remaining vector V_R .

- 5. The angle made by the resultant vector V_S with V_R gives the phase difference between voltage and current in series LCR circuit. As shown in the Fig 2, the resultant voltage leads the current by an angle θ .
- 6. If $X_L > X_C$, $\tan\theta$ is positive, and applied voltage leads the current by phase angle θ . If $X_L < X_C$, $\tan\theta$ is negative and applied voltage lags behind the current by phase angle θ . The phase angle θ can also be calculated from R, L and C values, using X_L and X_C as:

$$\tan \theta = \frac{X_L - X_C}{R}$$

$$\theta = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$$

where, Inductive reactance $X_L = 2\pi f L$ and Capacitive reactance $X_C = X_C = \frac{1}{2\pi f C}$.

Result: For a given series LCR circuit phase angle is measured using DSO,

- i. For Hz is deg
- ii. For..... Hz is deg

And from phasor diagram for For...... Hz is deg.