



# The LDBC Social Network Benchmark: Business Intelligence Workload

**Gábor Szárnyas**, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler, Mingxi Wu, Yuchen Zhang, Peter Boncz

VLDB | 2023-08-30 | Vancouver

#### LDBC: Linked Data Benchmark Council

Non-profit company founded in 2012

The TPC for graph data management

Designs graph benchmarks

Governs the use of benchmarks

ldbcouncil.org



#### LDBC members

#### 3 sponsor companies







#### 18 member companies including









Total membership: 24 organizations and 65+ individuals





# Graph processing components in a modern data processing system

aggregator

aggregator

database

dump

transaction

log

transactional

system

**SNB** Interactive



static

trickle

# LDBC SNB Business Intelligence workload

# LDBC SNB Business Intelligence workload

An analytical data system benchmark that focuses on "graphy" features





# Example social network graph



#### Data set features

14 nodes types,20 edges types

scale factor (SF): CSV size in GiB largest data set: SF30,000

realistic degree distributions

realistic attribute names

correlations along interests and studies



# **Updates**



#### **Update 1: Insert knows edge**



#### **Update 2: Insert Message node**



#### **Update 3: Delete Person node**



#### **Update 3: Delete Person node**





# **Query 1: Message categorization**

#### **Query 1: Message categorization**





#### **Query 1: Message categorization**



# **Query 11: Person triangles**

#### **Query 11: Person triangles**





#### **Query 11: Person triangles**























Query 19: Cheapest paths (weighted shortest)

# Query 19: Cheapest paths (weighted shortest)





# Query 19: Cheapest paths (weighted shortest)





#### Parameter selection

• *Uniform random parameters* → unstable distributions





### numFriendsOfFriends

| name | #1-hop | #2-hop |  |
|------|--------|--------|--|
| Bob  | 2      | 4      |  |
| Ada  | 3      | 3      |  |
| Carl | 5      | 1      |  |
|      | •••    |        |  |

numMessages-PerDay

author

M2

Tue

**M**4

Tue

M5

Fri

M1

Mon

reply

M3

Finn

Eve

Gia

Ada

Carl

Dan

knows

Bob

| day | # |  |
|-----|---|--|
| Mon | 1 |  |
| Tue | 2 |  |
|     |   |  |

### numPersons-PerCity

| city | # |  |  |
|------|---|--|--|
| Spa  | 2 |  |  |
| Mol  | 2 |  |  |
| •••  |   |  |  |

## Parameter selection

- *Uniform random parameters* → unstable distributions
- Curated parameters

→ tighter distributions, closer to bell curves











































# **Benchmark driver**

- 1) Executes the benchmark
- 2) Cross-validates systems
- 3) Calculates final scores
  - Power score: Geometric mean of individual query runtimes
  - **Throughput score:** Extrapolated daily throughput performance

## Workload execution

Execution happens in daily batches:



- Writes: 1 day of inserts and deletes
- **Reads:** 20 instances per query variant





# **Implementations**

| system         | data model | language | LOC |
|----------------|------------|----------|-----|
| neo4j          | graph      | Cypher   | 495 |
| <b>S</b> UMBRA | relational | SQL      | 755 |
| TigerGraph     | graph      | GSQL     | 832 |



# **Benchmark results**

|                                      |                     | Umbra               |                     | TigerGraph           |                         |
|--------------------------------------|---------------------|---------------------|---------------------|----------------------|-------------------------|
| 2                                    | SF30                | SF100               | SF300               | SF1,000              | SF10,000                |
| power@SF                             | 75,761.75           | 103,308.45          | 110,473.72          | 17,821.02            | 61,319.43               |
| throughput@SF                        | n/a                 | 28,996.42           | 26,251.13           | 7,655.88             | 23,132.08               |
| load time                            | 68.70               | 211.92              | 668.81              | 4,786.00             | 6,321.00                |
|                                      |                     | • • •               |                     |                      |                         |
| total execution time experiment cost | 3,333.71<br>\$18.79 | 4,122.39<br>\$21.26 | 4,910.60<br>\$24.34 | 20,908.95<br>\$66.75 | 63,314.11<br>\$1,849.97 |

### **Audited results**



### **Results for**

- SF100
- SF1,000
- SF10,000



# Full Disclosure Report of the LDBC Social Network Benchmark

Audit of the LDBC Social Network Benchmark's Business Intelligence Workload over TigerGraph

# Related work on graph query processing

# Algorithms and implementations

path finding

relational operators

pattern matching

direction-optimizing (push/pull) BFS (2012)

landmark labeling (2013)

factorized joins (2012)

worst-case optimal (multi-way) joins (2013)

MSBFS (2014)

systems papers (Umbra, Graphflow, DuckPGQ)

# **Future outlook**

# New ISO standard query languages

- **SQL/PGQ** (Property Graph Queries), part of SQL:2023
- **GQL** (Graph Query Language), to be released in 2024



- LDBC has a liaison with ISO which allows access to the standard drafts
- Preparing audits of implementations using these languages















The graph & RDF benchmark reference