AOS 2 - Deep learning

Lecture 03: Convolutional networks

Sylvain Rousseau

Introduction

Introduction

How can we apply neural models to computer vision?

- Flatten image as a vector and feed a MLP?
 - Spatial structure is lost
 - Color band is lost
 - Quadratic number of parameters wrt to number of neurons
- Special features of images:
 - Translation equivariance: translate an object should translate extracted features as well
 - Locality: Does it make sense to mix for example upper left and lower right pixels?

Which linear transform are translation equivariant and local?

Translation equivariance for 1-D signal

- What are the translation equivariant 1-D linear transforms?
 - Let $\mathbf{x} = (\dots, x_{-n}, \dots x_0, \dots, x_n, \dots)$ a (infinite) 1-D signal
 - \circ L a linear transform of 1-D signals
 - o *S* is the (right) shifting operator: $(S(x))_i = x_{j-1}$
 - $\circ S^k = S \circ \cdots \circ S, k \in \mathbb{Z}$
- ullet Translation equivariance reads: $L\circ S^k=S^k\circ L$. Linear transform of shifted signal is the shifted linear transform
 - $\circ \ \, \mathsf{Vector} \, \, \boldsymbol{x} \, \, \mathsf{can} \, \, \mathsf{be} \, \, \mathsf{written} \, \, \boldsymbol{x} = \sum_{i \in \mathbb{Z}} \mathsf{x}_i \boldsymbol{S}^i(\boldsymbol{e}_0)$
 - \circ Then L is a convolution:

$$L_j(\mathbf{x}) = \sum_{i \in \mathbb{Z}} x_i y_{j-i}$$
 with $\mathbf{y} = L(\mathbf{e}_0)$

• A translation-equivariant linear transform is a convolution!

Proof Locality

$$L_{j}(\boldsymbol{x}) = \langle \boldsymbol{e}_{j}, L(\boldsymbol{x}) \rangle \qquad = \sum_{i \in \mathbb{Z}} x_{i} \langle \boldsymbol{e}_{j}, S^{i} \boldsymbol{y} \rangle \quad \text{(linearity of dot-product)}$$

$$= \langle \boldsymbol{e}_{j}, L\left(\sum_{i \in \mathbb{Z}} x_{i} S^{i}(\boldsymbol{e}_{0})\right) \rangle \qquad = \sum_{i \in \mathbb{Z}} x_{i} \langle S^{-i} \boldsymbol{e}_{j}, \boldsymbol{y} \rangle \qquad \text{(isometry of } S)$$

$$= \langle \boldsymbol{e}_{j}, \sum_{i \in \mathbb{Z}} x_{i} L S^{i}(\boldsymbol{e}_{0}) \rangle \qquad \text{(linearity of } L)$$

$$= \langle \boldsymbol{e}_{j}, \sum_{i \in \mathbb{Z}} x_{i} S^{i} L(\boldsymbol{e}_{0}) \rangle \qquad = \sum_{i \in \mathbb{Z}} x_{i} y_{j-i}$$

$$= \langle \boldsymbol{e}_{j}, \sum_{i \in \mathbb{Z}} x_{i} S^{i} L(\boldsymbol{e}_{0}) \rangle \qquad \text{(equivariance of } L)$$

• A translation-equivariant linear transform reads

$$L_j(\mathbf{x}) = \sum_i x_i y_{j-i}$$

- Locality implies that $L_i(\mathbf{x})$ must only depend on x_{i+k} for $k \in [-a, a]$, $a \in \mathbb{N}^*$
- Translates to $y_k = 0$ except for when $k \in [-a, a]$. Then we have

$$L_j(\mathbf{x}) = \sum_{k \in [-a,a]} x_{j-k} y_k$$

• y must be a vector with a tiny contiguous support

Notations and properties

• The convolution operator is *:

$$(\mathbf{u} * \mathbf{v})_i = \sum_{k \in \mathbb{Z}} \mathbf{u}_k \mathbf{v}_{i-k}$$

- Linear wrt each argument: $\mathbf{u} * (\mathbf{v} + \mathbf{w}) = \mathbf{u} * \mathbf{v} + \mathbf{u} * \mathbf{w}$
- Symmetric: $\mathbf{u} * \mathbf{v} = \mathbf{v} * \mathbf{u}$
- Associativity: $(\mathbf{u} * \mathbf{v}) * \mathbf{w} = \mathbf{u} * (\mathbf{v} * \mathbf{w})$
- Equivalent to polynomial multiplication

$$(1,2)*(2,-1,2) = (2,3,0,4) \iff (1+2X)(2-X+2X^2) = 2+3X+4X^3$$

• Easily generalisable to *n*-D signals:

$$(C * K)_{kl} = \sum_{(i,j) \in \mathbb{Z}^2} K_{ij} C_{k-i,l-j}$$

2-D convolution

• For a matrix C of size $H_{\rm in} \times W_{\rm in}$ and a kernel K of size $k_h \times k_w$, 2-D convolution is defined

$$(C * K)_{kl} = \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1}} K_{ij} C_{k-i,l-j}$$

• In fact we use the **correlation** limited to a given window defined as:

$$C \circledast K = C * K^{\dagger}$$
 where $K_{ij}^{\dagger} = K_{-i,-j}$

limited to the indexes $k = 0, \dots, H_{\text{out}} - 1$ and $l = 0, \dots, W_{\text{out}} - 1$.

• This can be written

$$(C \circledast K)_{kl} = \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1}} K_{ij} C_{i+k,j+l}$$

where $k = 0, \dots, H_{\text{out}} - 1$ and $l = 0, \dots, W_{\text{out}} - 1$.

- We use * instead of ⊛ even if it is a correlation
- We use the term "convolution" even if it is a correlation
- Final formulation is

$$(C * K)_{kl} = \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1}} K_{ij} C_{i+k,j+l}$$

	1	n	lηl	1								
	1	U	U	1				.	2	Λ	2	
	2	2	lηl	1		n	1					
					*		-	=	3	ln	2	
	1	1	0	1		n	1					
		1	U			L			1	1	3	
	1	lΛ	1	2		L	(,	
	1	U	т.			- 1	١.		-	- a. I	V	
\mathcal{C}									C * K			

Examples

$$K = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \qquad K = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \qquad K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$K = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Padding

- Convolution operator decreases size
- Input of size: $H_{\rm in} \times W_{\rm in}$
- Kernel of size: $k_h \times k_w$
- Output of size:

$$H_{\text{out}} = H_{\text{in}} - k_h + 1$$
 $W_{\text{out}} = W_{\text{in}} - k_w + 1$

Padding

Padding

- Enlarge size of input by adding $p_h = p_h^{\text{top}} + p_h^{\text{bottom}}$ rows and $p_w = p_w^{\text{left}} + p_w^{\text{right}}$ columns at borders.
- For example $p_h = 2$ and $p_w = 3$.

- Size of input: $H_{\rm in} \times W_{\rm in}$
- Size after padding: $(H_{in} + p_h) \times (W_{in} + p_w)$
- Size of output: $H_{\text{out}} = H_{\text{in}} + p_h k_h + 1$, $W_{\text{out}} = W_{\text{in}} + p_w k_w + 1$
- Preserve input size when: $p_h = k_h 1$ and $p_w = k_w 1$

11

Zero padding

Reflection padding

Pad with zero

Pad using reflections

Symmetric padding

Stride

Pad using symmetry

	0	0	1	0	1	1	1										
•	0	0	1	0	1	1	1	•					3	1	5	6	7
	0	0	0	1	2	2	2		1	0	1		1	3	8	8	8
	0	0	1	1	1	0	0	*	0	1	2	=	3	5	5	5	6
	1	1	1	0	1	2	2		0	1	0		4	3	4	6	9
	0	0	1	0	0	2	2						4	3	2	6	11
	0	0	1	0	0	2	2										

Input size is either slowly decreasing or constant. How can we reduce input size?

- Strided convolution: increasing step
- Pooling: summarize locally

Strided convolution

Examples

• Shifting by more than one step

• Strided convolution is equivalent to classic convolution + subsampling

Stride 1

Stride formula, no padding

Padding and stride formula

• Kernel k_h , k_w and stride s_h , s_w

$$H_{ ext{out}} = \left\lfloor rac{H_{ ext{in}} - k_h + s_h}{s_h}
ight
floor$$
 $W_{ ext{out}} = \left\lfloor rac{W_{ ext{in}} - k_w + s_w}{s_w}
ight
floor$

- No stride $(s_h = s_w = 1)$ yields previous formula
- ullet Input size is divided by stride: $H_{
 m out}\sim rac{1}{s_{
 m h}}H_{
 m in}$ and $W_{
 m out}\sim rac{1}{s_{
 m w}}W_{
 m in}$

• Kernel k_h , k_w , padding p_h , p_w and stride s_h , s_w

$$H_{\text{out}} = \left\lfloor rac{H_{\text{in}} - k_h + p_h + s_h}{s_h}
ight
floor$$
 $W_{\text{out}} = \left\lceil rac{W_{\text{in}} - k_w + p_w + s_w}{s_w}
ight
ceil$

19

Pooling

Max-pooling

Locally summarizing data:

- Same mechanism as for convolution
- No kernel, just a parameterless function operating on a window

Two functions are used:

- Max-pooling
- Average-pooling

• Take maximum value in window:

• Usually the stride is equal to the kernel size

Average pooling

• Take average value in window:

1	(0	1	0	1	1 0			١		
	0	1	2	2	0	1	window_size = $(3,3)$	_		
ArreDool	1	1	0	1	1	0			0.67	0.78
AvgPool	1	2	0	1	$0 0$, window_size = ($\frac{1}{2}$, willdow_size = $(3,3)$	_	1.0	0.56	
	2	1	0	1	0	1				0.00
1	$\sqrt{2}$	0	1	0	1	1	,	1		

• Usually the stride is equal to the kernel size

3-D convolution

23

From 2-D convolution to 3-D convolution

Both C and K are now 3-D tensors with same number of channels:

• 3-D convolution is the sum of 2-D convolutions channel-wise

• Whatever the number of channels there is only one channel after 3-D convolution!

From 2-D convolution to 3-D convolution

Mathematical formulation

• As a sum of simple 2-D convolutions channel-wise

$$C * K = \sum_{k=0,...,c_{in}-1} K.._k * C.._k$$

Expanded version

$$(C * K)_{ab} = \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1\\k=0,\dots,c_{in}-1}} K_{ijk} C_{i+a,j+b,k}$$

• Result is a 2-D tensor because C and K have the same number of channels

3-*D* input representation

Represention of 3- ${\it D}$ convolution

Input tensor is represented as a block of size: $height \times width \times n_channels$

- Input is a color image
 - $\circ \ \, \mathsf{n_channels} = 3$
- Input is a grayscale image
 - \circ n_channels = 1

- Input tensor is represented as a 3-D block of size $height \times width \times in \ channels$
- Output is 1 channel wide

26

Convolutional layer

A **convolutional layer** consists in several 3-*D* convolutions + bias stacked as channels:

- C' gathers 3-D convolution with filters $K^1, \ldots, K^{c_{out}}$
- Channels of C' are called **feature** maps
- Kernel + bias is called a **filter**
- Number of out channels is number of filters

Convolutional layer

__

Mathematical formulation

• Per output channel

$$C'_{\cdot\cdot\cdot c}=b^c+K^c*C$$

• Expanded version

$$C'_{abc} = b^c + \sum_{\substack{i=0,\dots,k_h-1\\j=0,\dots,k_w-1\\k=0,\dots,c_{in}-1}} K^c_{ijk} C_{i+a,j+b,k}$$

- Convolutional layers are often represented as consecutive blocks of size height × width × channels
- Only one kernel is represented
- Number of learnable parameters is

$$(k_h \times k_w \times c_{in} + 1) \times c_{out}$$

• Biases are not represented

29

LeNet-5 from LeCun et al. 1998

Figure 1: From LeCun et al. 1998

- Consists in two parts:
 - Features: 2 convolutional layers
 - o Classification: 3 fully connected layers

First convolutional networks

LeNet-5 number of parameters

• Parameters: 60k

• Activation function: sigmoid

• 5 weight layers

Input 32×32	L
$(5 \times 5 \text{ conv}, p = 0) \times 6$	⊋ ⊋sigmoid
$2 \times 2 \text{ maxpool } s = 2$	Signioid
$(5 \times 5 \text{ conv}, p = 0) \times 16$	→ sigmoid
$2 \times 2 \text{ maxpool } s = 2$	⊋ flatten
Fc 120	>
Fc 84	` >
Fc 10	·

- $\bullet \ \ \text{First layer:} \ 32\times32\times1\rightarrow28\times28\times6$
 - $\circ~$ 6 filters of size $5\times5\times1$
 - \circ # of parameters is $(5 \times 5 \times 1 + 1) \times 6 = 156$
- Second layer: $14 \times 14 \times 6 \rightarrow 10 \times 10 \times 16$
 - \circ 16 filters of size $5 \times 5 \times 6$
 - \circ # of parameters is $(5 \times 5 \times 6 + 1) \times 16 = 2416$

Input 32×32
$(5 \times 5 \text{ conv}, p = 0) \times 6$
$2 \times 2 \text{ maxpool } s = 2$ sigmoid
$(5 \times 5 \text{ conv}, p = 0) \times 16$
$2 \times 2 \text{ maxpool } s = 2$ sigmoid
Fc 120
Fc 84
Fc 10

32

LeNet-5 number of parameters

- Third layer: flattened $5 \times 5 \times 16 \rightarrow 120$ $(5 \times 5 \times 16 + 1) \times 120 = 48120$
- Fourth layer: $120 \to 84 \ (120 + 1) \times 84 = 10164$
- Fifth layer: $84 \to 10$ $(84 + 1) \times 10 = 850$
- Total # of parameters: $61706 \approx 60 k$

Modern convolutional networks

The ImageNet challenge from Russakovsky et al. 2015

Classification error on ImageNet

- Since 2010 the Imagenet dataset is used in a the ILSVRC challenge (Large Scale Visual Recognition Challenge)
- Object classification/detection
- Classification task:
 - $\circ~>1.2{\rm M}$ annotated images of various size
 - o 1000 classes

AlexNet from Krizhevsky, Sutskever, and Hinton 2012

AlexNet from Krizhevsky, Sutskever, and Hinton 2012

Figure 2: From Krizhevsky, Sutskever, and Hinton 2012

• Won ILSVRC 2012 by a large margin!

- Number of parameters: 60MDeeper than LeNet
- ReLU activation instead of sigmoid
- 8 learnable layers

AlexNet: first layer filters

Receptive field

- Learned filters are Gabor-like
- 64 filters of size 11×11

• Given a feature the receptive field is the window in the input that created that feature.

AlexNet: receptive fields

Some $11 \times 11 \times 3$ filters and 9 receptive fields corresponding to best activation across all training set:

(a) filter #7

(b) filter #17

(d) filter #28 (c) filter #22

(e) filter #32

AlexNet: receptive fields

Receptive fields of best activations in feature maps

ullet Second convolutional layer: 51 imes 51receptive field

(a) filter #25

(b) filter #41

(c) filter #107

• Third convolutional layer: 99×99 receptive field

(a) filter #90

(b) filter #165

(c) filter #377

Evolution from AlexNet:

- Replace 11×11 by sequence of 3×3
- Use a block that is repeated
- Same fully connected layers

VGG block with N filters:

Sequence of VGG blocks:

- Example of VGG-16:
 - 16 weight layers
 - \circ 133–144 M parameters
- Drawbacks:
 - Too many parameters
 - o Stage-wise training

Input $224 \times 224 \times 3$	Ļ
$(3 \times 3 \text{ conv}, p = 2) \times 64$	$\times 2$
$2 \times 2 \text{ maxpool } s = 2$	~
$(3 \times 3 \text{ conv}, p = 2) \times 128$	$\times 2$
$2 \times 2 \text{ maxpool } s = 2$	~
$(3 \times 3 \text{ conv}, p = 2) \times 256$	$\times 3$
$2 \times 2 \text{ maxpool } s = 2$	~
$(3 \times 3 \text{ conv}, p = 2) \times 512$	$\times 3$
$2 \times 2 \text{ maxpool } s = 2$	_
$(3 \times 3 \text{ conv}, p = 2) \times 512$	$\times 3$
Fc 4096	_
Fc 4096	_
Fc 1000	*

43

GoogLeNet (Inception-v1) from Szegedy et al. 2015

 1×1 convolution from Lin, Chen, and Yan 2014

GoogleNet won ILSVRC 2015, main ingredients are:

- Use 1×1 convolution
- Use *global average pooling* instead of fully connected layers
- Propose an *inception module* implementing a *split-transform-merge* strategy:
 - o Mix filters of different sizes
 - Height and width unchanged
 - Concatenated along channel dimension
- Parametrized by 6 hyperparameters

Convolution with a kernel of size 1×1

- Properties:
 - No spatial transformation
 - o Height and width are unchanged
 - o Change de number of channels
 - Each output channel is a linear combination of input channels
- Can be used to:
 - Reduce the number of channels
 - o Reduce number of parameters
 - o Apply an MLP pixel-wise

Global average pooling from Lin, Chen, and Yan 2014

GoogLeNet (Inception-v1)

Average pooling with maximum window

- Properties
 - Same as averaging each channel
 - o $H_{\text{in}} \times W_{\text{in}} \times c_{\text{in}}$ becomes $1 \times 1 \times c_{\text{in}}$
- Is used to
 - \circ Replace flatten + fully connected layer

Inception-v1:

- Parameters $\simeq 6.8 \text{ M}$
- ReLU activation

Improvements (Inception-v2, Inception-v3)

- ullet Replace 5×5 by two 3×3 convolution layers
- Spatially separable convolutions
- Batch normalization

47

Residual Networks (ResNets) from He et al. 2016

Resnet-18

- Use batch normalization
- Use **skip connections** around VGG-like block
- Learn residual mapping instead of full mapping

- 18 learnable layers
- 11M parameters
- Deeper models by changing multipliers

Depthwise Separable Convolution

Make convolution separable to reduce parameters:

$$K_{ijk} \rightarrow K'_{ij} * K''_{k}$$

- o K'_{ij} is applied to each channel o K''_{ij} is a 1×1 convolution
- Number of parameters:

$$k_h k_w c_{in} \rightarrow k_h k_w + c_{in}$$

References ii

[7] Kaiming He et al. "Deep Residual Learning for Image Recognition." In: *Proceedings of the IEEE conference on computer vision and pattern recognition.* 2016, pp. 770–778. arXiv: 1512.03385.

References i

- [1] Yann LeCun et al. "Gradient-Based Learning Applied to Document Recognition." In: *PROC.* OF THE IEEE (1998), p. 1.
- [2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In: *Advances in neural information processing systems* 25 (2012), pp. 1097–1105.
- [3] Min Lin, Qiang Chen, and Shuicheng Yan. "Network In Network." Mar. 4, 2014. arXiv: 1312.4400 [cs]. URL: http://arxiv.org/abs/1312.4400 (visited on 08/24/2021).
- [4] Olga Russakovsky et al. "ImageNet Large Scale Visual Recognition Challenge." Jan. 29, 2015. arXiv: 1409.0575 [cs]. URL: http://arxiv.org/abs/1409.0575 (visited on 11/23/2021).
- [5] Karen Simonyan and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition." Apr. 10, 2015. arXiv: 1409.1556 [cs]. URL: http://arxiv.org/abs/1409.1556 (visited on 08/30/2021).
- [6] Christian Szegedy et al. "Going deeper with convolutions." In: *Proceedings of the IEEE* conference on computer vision and pattern recognition. 2015, pp. 1–9.

52