Exact Solutions > Functional Equations > Linear Difference and Functional Equations with One Independent Variable

1. Linear Difference and Functional Equations with One Independent Variable

1.1. Linear Difference and Functional Equations Containing Unknown Function with Two Different Arguments

First-order linear difference equations.

- 1. y(x+1) ay(x) = 0. First-order constant-coefficient linear homogeneous difference equation.
- 2. y(x+1) ay(x) = f(x). First-order constant-coefficient linear nonhomogeneous difference equation.
- 3. y(x+1) xy(x) = 0.
- 4. y(x+1) a(x-b)(x-c)y(x) = 0.
- 5. y(x+1) R(x)y(x) = 0, $R(x) = a \frac{(x-\lambda_1)(x-\lambda_2)\dots(x-\lambda_n)}{(x-\mu_1)(x-\mu_2)\dots(x-\mu_m)}$.
- 6. y(x+1) f(x)y(x) = 0.
- 7. y(x+a) by(x) = 0.
- 8. y(x+a) by(x) = f(x).
- 9. y(x+a) bxy(x) = 0, a, b > 0.
- 10. y(x+a) f(x)y(x) = 0.

Linear functional equations containing y(x) and y(ax).

- 11. y(ax) by(x) = 0, a, b > 0.
- 12. y(ax) by(x) = f(x).

Linear functional equations containing y(x) and y(a-x).

- 13. y(x) y(a x) = 0.
- 14. y(x) + y(a x) = 0.
- 15. y(x) + y(a x) = b.
- 16. y(x) + y(a x) = f(x).
- 17. y(x) y(a x) = f(x).
- 18. y(x) + g(x)y(a-x) = f(x).

Linear functional equations containing y(x) and y(z), where $z = \varphi(x)$.

19.
$$y(x^a) - by(x) = 0$$
, $a, b > 0$.

20.
$$y(x) - y(a/x) = 0$$
.

21.
$$y(x) + y(a/x) = 0$$
.

22.
$$y(x) + y(a/x) = b$$
.

23.
$$y(x) + y(a/x) = f(x)$$
.

24.
$$y(x) - y(a/x) = f(x)$$
.

25.
$$y(x) + g(x)y(a/x) = f(x)$$
.

26.
$$y(x) - y\left(\frac{a-x}{1+bx}\right) = 0.$$

27.
$$y(x) + y\left(\frac{a-x}{1+bx}\right) = 0$$
.

28.
$$y(x) + y\left(\frac{a-x}{1+bx}\right) = f(x).$$

29.
$$y(x)-y\left(\frac{a-x}{1+bx}\right)=f(x)$$
.

30.
$$y(x) - cy\left(\frac{a-x}{1+bx}\right) = f(x), \quad c \neq \pm 1.$$

31.
$$y(x) + g(x)y\left(\frac{a-x}{1+bx}\right) = f(x)$$
.

32.
$$y(x) + cy\left(\frac{ax-\beta}{x+b}\right) = f(x)$$
, $\beta = a^2 + ab + b^2$.

33.
$$y(x) + cy\left(\frac{bx+\beta}{a-x}\right) = f(x)$$
, $\beta = a^2 + ab + b^2$.

34.
$$y(x) + g(x)y\left(\frac{ax-\beta}{x+b}\right) = f(x)$$
, $\beta = a^2 + ab + b^2$.

35.
$$y(x) + g(x)y\left(\frac{bx+\beta}{a-x}\right) = f(x), \qquad \beta = a^2 + ab + b^2.$$

36.
$$y(x) - y(\sqrt{a^2 - x^2}) = 0, \quad 0 \le x \le a.$$

37.
$$y(x) + y(\sqrt{a^2 - x^2}) = 0$$
, $0 \le x \le a$.

38.
$$y(x) + y(\sqrt{a^2 - x^2}) = b$$
, $0 \le x \le a$.

39.
$$y(x) + y(\sqrt{a^2 - x^2}) = f(x), \quad 0 \le x \le a.$$

40.
$$y(x) - y(\sqrt{a^2 - x^2}) = f(x), \quad 0 \le x \le a.$$

41.
$$y(x) + g(x)y(\sqrt{a^2 - x^2}) = f(x), \quad 0 \le x \le a.$$

Linear functional equations containing $y(\sin x)$ and $y(\cos x)$.

42.
$$y(\sin x) - y(\cos x) = 0$$
.

43.
$$y(\sin x) + y(\cos x) = 0$$
.

44.
$$y(\sin x) + y(\cos x) = a$$
.

45.
$$y(\sin x) + y(\cos x) = f(x)$$
.

46.
$$y(\sin x) - y(\cos x) = f(x)$$
.

47.
$$y(\sin x) + g(x)y(\cos x) = f(x)$$
.

Linear functional equations containing y(x) and $y(\omega(x))$, where $\omega(\omega(x)) = x$.

48.
$$y(x) - y(\omega(x)) = 0$$
, where $\omega(\omega(x)) = x$.

49.
$$y(x) + y(\omega(x)) = 0$$
, where $\omega(\omega(x)) = x$.

50.
$$y(x) + y(\omega(x)) = b$$
, where $\omega(\omega(x)) = x$.

51.
$$y(x) + y(\omega(x)) = f(x)$$
, where $\omega(\omega(x)) = x$.

52.
$$y(x) - y(\omega(x)) = f(x)$$
, where $\omega(\omega(x)) = x$.

53.
$$y(x) + g(x)y(\omega(x)) = f(x)$$
, where $\omega(\omega(x)) = x$.

1.2. Other Linear Difference and Functional Equations

Second-order linear difference equations, $y_n = y(n)$.

- 1. $y_{n+2} + ay_{n+1} + by_n = 0$. Second-order constant-coefficient linear homogeneous difference equation.
- 2. $y_{n+2} + ay_{n+1} + by_n = f_n$. Second-order constant-coefficient linear nonhomogeneous difference equation.
- 3. y(x+2) + ay(x+1) + by(x) = 0. Second-order constant-coefficient linear homogeneous difference equation.
- **4.** y(x+2) + ay(x+1) + by(x) = f(x). Second-order constant-coefficient linear nonhomogeneous difference equation.

5.
$$y(x+2) + a(x+1)y(x+1) + bx(x+1)y(x) = 0$$
.

Other functional equations.

6.
$$Ay(ax) + By(bx) + y(x) = 0$$
.

7.
$$Ay(x^a) + By(x^b) + y(x) = 0$$
.

8.
$$y(y(x)) - x = 0$$
.

9.
$$y(y(x)) + ay(x) + bx = 0$$
.

10.
$$y(y(y(x))) - x = 0$$
.

11.
$$Ay(x) + By\left(\frac{ax-\beta}{x+b}\right) + Cy\left(\frac{bx+\beta}{a-x}\right) = f(x), \qquad \beta = a^2 + ab + b^2.$$

12.
$$f_1(x)y(x) + f_2(x)y\left(\frac{ax-\beta}{x+b}\right) + f_3(x)y\left(\frac{bx+\beta}{a-x}\right) = g(x), \quad \beta = a^2 + ab + b^2.$$

- 13. $y_{n+m} + a_{m-1}y_{n+m-1} + \ldots + a_1y_{n+1} + a_0y_n = 0$. mth-order constant-coefficient linear nonhomogeneous difference equation.
- 14. $y_{n+m} + a_{m-1}y_{n+m-1} + \ldots + a_1y_{n+1} + a_0y_n = f_n$. mth-order constant-coefficient linear nonhomogeneous difference equation.
- 15. $y(x+n) + a_{n-1}y(x+n-1) + \ldots + a_1y(x+1) + a_0y(x) = 0$.

 nth-order constant-coefficient linear homogeneous difference equation.
- **16.** $y(x+n) + a_{n-1}y(x+n-1) + \ldots + a_1y(x+1) + a_0y(x) = f(x)$. nth-order constant-coefficient linear nonhomogeneous difference equation.

17.
$$y(x+b_n) + a_{n-1}y(x+b_{n-1}) + \ldots + a_1y(x+b_1) + a_0y(x) = 0$$
.

18.
$$y(x^{a_n}) + b_{n-1}y(x^{a_{n-1}}) + \ldots + b_1y(x^{a_1}) + b_0y(x) = 0$$
.

19.
$$y(a_nx) + b_{n-1}y(a_{n-1}x) + \ldots + b_1y(a_1x) + b_0y(x) = 0$$
.

20.
$$y^{[n]}(x) + a_{n-1}y^{[n-1]}(x) + \ldots + a_1y(x) + a_0x = 0, y^{[n]}(x) = y(y^{[n-1]}(x)).$$

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2004-2005 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/fe/fe-toc1.pdf