ΚΛΕΙΣΤΟΤΗΤΕΣ ΠΡΑΞΕΩΝ στις ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Ορισμός: Λέμε ότι ένα σύνολο είναι κλειστό σε μία πράξη, αν το αποτέλεσμα της πράξης επί δύο στοιχείων του συνόλου δίνει στοιχείο που παραμένει στο σύνολο:

- Οι φυσικοί είναι κλειστοί στην πράξη της πρόσθεσης.
- Οι φυσικοί δεν είναι κλειστοί στην πράξη του πολλαπλασιασμού.

Θεώρημα: Οι **κανονικές γλώσσες είναι κλειστές** και στις 5 πράξεις: Ένωση, Τομή, Συμπλήρωμα, Παράθεση, Αστέρι Kleene.

Κλειστότητα των Κανονικών Γλωσσών στην Ένωση

- Η L_1 είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω $\mathbf{r_1}$. Η $\mathbf{L_2}$ είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω \mathbf{r}_2
- Η L_1 U L_2 περιγράφεται από την κανονική έκφραση $\mathbf{r}_1 + \mathbf{r}_2$, άρα είναι κανονική γλώσσα.

Κλειστότητα των Κανονικών Γλωσσών στην Παράθεση

- Η L₁ είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω \mathbf{r}_1 . Η \mathbf{L}_2 είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω \mathbf{r}_2
- H L_1L_2 περιγράφεται από την κανονική έκφραση $\mathbf{r}_1\mathbf{r}_2$, άρα είναι κανονική γλώσσα.

Κλειστότητα των Κανονικών Γλωσσών στο Αστέρι Kleene

- Η L είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω r.
- Η L^* περιγράφεται από την κανονική έκφραση \boldsymbol{r}^* , άρα είναι κανονική γλώσσα.

Κλειστότητα των Κανονικών Γλωσσών στο Συμπλήρωμα

- Η L είναι κανονική άρα υπάρχει ένα ντετερμινιστικό πεπερασμένο αυτόματο Μ που αποφασίζει την γλώσσα.
- Κατασκευάζουμε ΝΠΑ για την \overline{L} ως εξής: Είναι το Μ, κάνοντας κάθε τελική: μη τελική και κάθε μη τελική: τελική.

Παράδειγμα:

Κλειστότητα των Κανονικών Γλωσσών στην Τομή

- Οι L_1, L_2 είναι κανονικές άρα υπάρχουν ντετερμινιστικά πεπερασμένα αυτόματα Μ₁, Μ₂ που τις αποφασίζουν
- Κατασκευάζουμε ΝΠΑ για την $L_1 \cap L_2$ ως εξής: Καταστάσεις: Καρτεσιανό Γινόμενο. Μεταβάσεις: Προσομοιώνουν τα αρχικά αυτόματα. Τελική: Συνδυασμός Τελικών.

ΝΠΑ για Ενωση: Τελικές: κάθε κατάσταση που περιέχει τελική **ΝΠΑ για Διαφορά:** Τελική της L_1 και μη τελική της L_2

Παράδειγμα:

ΚΑΝΟΝΕΣ ΑΠΛΟΠΟΙΗΣΗΣ ΝΠΑ

ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Παράδειγμα:

Απλοποιούμε το ΝΠΑ του σχήματος:

Κανόνας Απλοποίησης 1: Διαγράφονται οι καταστάσεις που δεν υπάρχει μονοπάτι από την αρχική κατάσταση σε αυτές.

Απλοποιείται η κατάσταση Δ (δεν υπάρχει μονοπάτι που να οδηγεί σε αυτήν από την αρχική κατάσταση)

Σημείωση:

Οι κανόνες απλοποίησης είναι επαναληπτικοί. Τους εφαρμόζουμε εωσότου να μην εφαρμόζονται άλλο.

Κανόνας Απλοποίησης 2: Ενοποιούνται καταστάσεις που είναι και οι δύο τελικές ή μη τελικές και έχουν την ίδια συμπεριφορά: Με το ίδιο σύμβολο πηγαίνουν στην ίδια κατάσταση.

Κατασκευάζουμε τον πίνακα μετάβασης του ΝΠΑ

		О	1
>	A	Γ	В
	В	Γ	В
	Γ	E	В
	Е	Е	Z
f	Z	Е	Z

Οι Α,Β ενοποιούνται διότι έχουν την ίδια συμπεριφορά. Μετονομάζω σε Κ

Προκύπτει ο πίνακας μετάβασης

		0	1
>	K	Γ	K
	Γ	E	K
	Е	Е	Z
f	Z	Е	Z

Δεν ενοποιούνται. Η μία είναι τελική και η άλλη μη τελική.

Και σχηματικά είναι:

