

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

TECNOLOGÍA INDUSTRIAL II

CURSO 2011-2012

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) El alumno elegirá una única opción de las dos propuestas, indicando la opción elegida.
- c) Puede alterarse el orden de los ejercicios y no es necesario copiar los enunciados.
- d) No se permite el uso de calculadoras programables, gráficas o con capacidad para transmitir datos.
- e) Las respuestas deberán estar suficientemente justificadas y los resultados se expresarán en unidades del S.I., salvo que se pida en otras unidades.
- f) Cada uno de los cuatro ejercicios se puntuará con un máximo de 2,5 puntos.
- g) Dentro de un mismo ejercicio, cada apartado podrá tener el valor máximo que se especifica.

OPCION A

Ejercicio 1.- Considere los siguientes datos del diagrama Fe-C: Solubilidad del C en la ferrita a temperatura eutectoide: 0,025%. Solubilidad del C en la ferrita a temperatura ambiente: despreciable. Composición eutectoide: 0,8 % C. Composición de la cementita: 6,67 % C. Se pide:

- a) Determinar el porcentaje de carbono a temperatura ambiente, de un acero hipoeutectoide constituido por un 40 % de ferrita y 60 % de perlita. (1 punto)
- b) Calcular las cantidades relativas de ferrita y cementita presentes en la perlita a temperatura ambiente. (1 punto)
- c) Establecer al menos dos diferencias entre aceros y fundiciones. (0,5 puntos)

Ejercicio 2.- Un motor 4T consume 8,47 litros a la hora, de un combustible de 0,85 kg/dm³ de densidad y 41000 kJ/kg de poder calorífico. Entrega un par de 78,3 Nm a 3000 rpm. Se pide:

- a) Calcular la masa de combustible consumida en cada ciclo. (1 punto)
- b) Calcular el rendimiento del motor. (1 punto)
- c) ¿Qué consecuencias tendría en el consumo/ciclo si el motor fuera de 2T? Razonar la respuesta.

(0,5 puntos)

Ejercicio 3.- Diseñar un circuito digital que tenga como entrada un número binario (X) de 4 bits (A,B,C,D), para realizar las siguientes operaciones según el valor del número de entrada:

- Si $X \le 5$, se activa S1, que enciende una luz verde. Si X > 10, se activa S2, que enciende una luz roja.
- Si $5 < X \le 10$, se activa S3, que enciende una luz ámbar. Se pide:
- a) La tabla de verdad para las tres salidas: S1, S2 y S3. (1 punto)
- b) Las funciones lógicas simplificadas de cada salida y el circuito con puertas lógicas. (1 punto)
- c) En un sistema en bucle cerrado, explicar brevemente en qué consiste la realimentación. (0,5 puntos)

Ejercicio 4.- En relación con el esquema de la figura, se pide:

- a) El nombre y la función de cada elemento. (1 punto)
- b) Si la sección del émbolo es 10 cm² y la presión del aire comprimido 600 kPa, calcular la fuerza ejercida en el movimiento de avance.

(1 punto)

c) Definir la viscosidad de un fluido. (0,5 puntos)

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

TECNOLOGÍA INDUSTRIAL II

CURSO 2011-2012

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) El alumno elegirá una única opción de las dos propuestas, indicando la opción elegida.
- c) Puede alterarse el orden de los ejercicios y no es necesario copiar los enunciados.
- d) No se permite el uso de calculadoras programables, gráficas o con capacidad para transmitir datos.
- e) Las respuestas deberán estar suficientemente justificadas y los resultados se expresarán en unidades del S.I., salvo que se pida en otras unidades.
- f) Cada uno de los cuatro ejercicios se puntuará con un máximo de 2,5 puntos.
- g) Dentro de un mismo ejercicio, cada apartado podrá tener el valor máximo que se especifica.

OPCION B

Ejercicio 1.- Para determinar la dureza de un material se realiza un ensayo Rockwell B. La profundidad de la huella cuando se aplica la precarga de 10 kp es de 0,010 mm, y la que permanece tras aplicar la sobrecarga de penetración de 90 kp y restituir el valor de precarga (10 kp) es de 0,150 mm. Se pide:

- a) Esquema y descripción del ensayo. (1 punto).
- b) Calcular la dureza. (1 punto)
- c) Diferencias entre los ensayos Brinell y Vickers. (0.5 puntos)

Ejercicio 2.- Para mantener una habitación a 22 °C con una bomba de calor, es necesario suministrarle 2x10⁵ kJ al día, cuando la temperatura exterior es de 10 °C. Si el coeficiente de amplificación calorífica de la bomba de calor es el 90 % de la ideal, se pide:

- a) Calcular la potencia que necesita la máquina. (1 punto)
- b) Calcular la potencia necesaria si la temperatura exterior baja a -5 °C, manteniendo el mismo aporte calorífico. (1 punto)
- c) Explicar el funcionamiento de una bomba de calor reversible. (0,5 puntos)

Ejercicio 3.- Una línea de datos digitales D puede ser enviada a tres equipos diferentes E1, E2 y E3, mediante un circuito C y dos señales de control S1 y S2 La selección se realiza de forma que el número binario introducido en S1 y S2 se corresponde con el número del equipo conectado a D. Las señales de entrada de los equipos no conectados se ponen a "1". Se pide:

- a) Tabla de verdad para las variables de salidas E1, E2 y E3. (1 punto)
- b) Simplificar por Karnaugh e implementar el circuito con puertas lógicas. (1 punto)
- c) Indicar en qué se basa el efecto piezoeléctrico y algunas aplicaciones del mismo. (0,5 puntos)

Ejercicio 4.- Se desea diseñar un cilindro de doble efecto cuyo émbolo soporte en el avance una fuerza de 3000 N, con una carrera de 9 cm. Se pide:

- a) Calcular el diámetro del émbolo, sabiendo que el diámetro del vástago es 20 mm y el consumo de aire medido a la presión de trabajo es 0,8 litros por ciclo. (1 punto)
- b) Calcular la presión de trabajo, despreciando la fuerza de rozamiento. (1 punto)
- c) Indicar cómo se puede calcular la potencia hidráulica en función del caudal. Unidades en el S.I. de las magnitudes que intervienen en el cálculo. (0,5 puntos)