ABE 201 Biological Thermodynamics 1

Lab 4:

Linear Programming and Optimization Tools

Outline

Linear Programming vs Linear Algebra

Optimization Approaches

Optimization Tools

Linear Programming

- AKA Linear Optimization
- Used to find "best" or "optimal" solutions to a linear function subject to constraints
- The linear function (called objective function) usually describes an overall property of a complex system.
- Has wide applications in engineering, economics, and business

Linear Programming in Econ

minimize:
$$\begin{bmatrix} L & M & C \end{bmatrix} \begin{bmatrix} y_L \\ y_M \\ y_C \end{bmatrix}$$

subject to:
$$\begin{vmatrix} y_L \\ y_M \end{vmatrix} \ge 0$$

Where L = labor, M = materials, C = capital, and y is cost for each

Linear Programming in Engineering

- Approach is similar to economics, but more often used to <u>estimate values of parameters for a</u> <u>model</u>.
- Use statistics to estimate "goodness of fit" between the model and actual measurements
- Objective function is then to <u>minimize</u> error between prediction (model) and data

Statistical Measures of Error

- SSE = sum of squares for error
- Basis for finding linear regressions.
- Can be used with the right tools to estimate more complex models

SSE Example

t	Data	Model Output	Error ²
0	4.1	1	9.61
1	12.6	3	92.8525
2	19.9	7	167.0039
3	41.3	13	801.0032
4	45.3	21	589.3242
5	64.3	31	1108.557
		SSE	2768.351

$$y = x_0 + x_1 * t + x_2 * t^2$$
 where $x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

