TCP rétegekhez példák:

Kapcsolati: Ethernet, X.25, Frame Relay, ATM

Hálózati: IP, ARP, ICMP, IGMP

Szállítási: TCP, UDP

Alkalmazási: HTTP, FTP, SMTP, Telnet, DNS, RIP, SNMP, Socket, NetBIOS

OSI rétegekhez példák:

Fizikai: Ethernet, FDDI, B8ZS, V.35, V.24, RJ45,

Adatkapcsolati: PPP, FDDI, ATM, IEEE 802.5/802.2, IEEE 802.3/802.2, HDLC, Frame

Relay

Hálózati: IP, IPX, AppleTalk DDP

Szállítási: SPX, TCP, UDP

Munkamenet: NFS, NetBIOS, RPC, SQL

Megjelenítési: titkosítás, ASCII, TIFF, GIF, JPEG, MPEG, MIDI Alkalmazási: böngészők, NFS, SNMP, Telnet, HTTP, FTP, e-mail

Hány réteget különböztet meg az ISO/OSI referencia modell?

Hetet: Alkalmazási-, megjelenítési-, munkamenet-, szállítási-, hálózati-, adatkapcsolati-, fizikai rétegek

Hány réteget különböztet meg az Tannenbaum-féle hibrid rétegmodell?

Ötöt: Alkalmazási-, szállítási-, hálózati-, adatkapcsolati-, fizikai rétegek

Hány réteget különböztet meg a TCP/IP modell?

Négyet: Alkalmazási-, szállítási-, hálózati-, kapcsolati rétegek.

Sorolja fel az ARPANET alapjául szolgáló három hálózatot.

RAND, NPL, CYCLADES

Mi az Open System Interconnection Reference Mode?

Referencia modell, ami egy hétrétegű standard, koncepcionális modellt definiál kommunikációs hálózatok belső funkcionalitásaihoz

Mik a főbb funkcionalitásai az ISO/OSI modell fizikai rétegének?

Definiálja az eszköz és a fizikai átviteli közeg kapcsolatát Protokollt határoz meg két közvetlenül fizikai kapcsolatban álló csomópont (node) közötti kapcsolat felépítéséhez

Mik a főbb funkcionalitásai az ISO/OSI modell megjelenítési rétegének rétegének?

Kontextus kezelése az alkalmazási rétegen futó folyamatok között Kódolások egyeztetése / illesztése

Mit jelent a hálózatok esetén az adatok burkolása?

Az átviteli adat (payload)-ra a referenciamodelltől függően rétegenként újabb és újabb fejléceket/lábléceket aggatunk, így burkolva az eredeti adatot

Mit jelent a Black-box megközelítés a kapcsolatokra?

(Black box később gateway és router) Csomaginformációk nem kerülnek megőrzésre Nincs folyam-felügyelet

Mi az a PAN?

Területi kiterjedési osztályozás alapján 1 m processzortávolságú hálózat (magánhálózat, Personal area network)

Mi az a WAN?

Területi kiterjedési osztályozás alapján 100 – 1000 km processzortávolságú hálózat (Nagy kiterjedésű hálózat, Wide area network)

Mi az a MAN?

Területi kiterjedési osztályozás alapján 10 km processzortávolságú hálózat (Városi hálózat, Metropolitan area network)

Definiálja a hálózati sávszélességet?

Az adat átviteléhez elérhető vagy felhasznált kommunikációs erőforrás mérésére szolgáló mennyiség (mértékegysége bps)

Definiálja a jel sávszélességet?

Jelfeldolgozás esetén az egymást követő frekvenciák legnagyobb és legkisebb eleme közti különbséget nevezzük a jel sávszélességének (Hertzben mérjük)

Definiálja a átviteli késleltetést?

Az az időtartam, amely egy csomag összes bitjének átviteli csatornára helyezéséhez szükséges (jel: dT)

Definiálja a propagációs késést?

Az az időtartam, amely a jelnek szükséges ahhoz, hogy a küldőtől megérkezzen a címzetthez (jel: d)

Mi a hálózati hoszt?

Olyan eszköz, ami egy számítógépes hálózattal áll összeköttetéseben.

Mi az átviteli csatorna?

Az a közeg, amelyen a kommunikáció folyik a résztvevő hosztok között

Mik azok a TLDs-ek?

Top Level Domains, 22+ általános TLD (.com, .mil, .edu, stb.), valamint ~250 országos TLD (.hu, .au, stb.), 2010-től nemzetközi karakterek is (pl. Kínai).

A névfeloldásnál mit neveznek iteratív lekérdezésnek?

A névszerver adja vissza a vláaszt, vagy legalább azt, hogy kitől kapható meg a következő válasz

A névfeloldásnál mit neveznek rekurzív lekérdezésnek?

A névszerver végzi a névfeloldást, és tér vissza a válasszal

Mit nevezünk munkamenetnek az ISO/OSI referencia modellben?

Egy munkamenet az egymással összefüggő hálózati interakciók sorozata egy alkalmazási feladat elvégzése során

Mit nevezünk DNS átverésnek?

Rászedhet egy névszervert egy hibás hozzárendelés cachelése által a DNS protokoll használatán keresztül. Ezt nevezik DNS átverésnek.

Mit nevezünk statikus weboldalnak?

Tartalma nem változik csak manuális átszerkesztéssel

Mit nevezünk dinamikus weboldalnak?

Valamilyen kód végrehajtása által keletkezik, pl. Javascript, vagy PHP

Mi az a PLT? Mire használják?

Page load time, a HTTP protokoll teljesítmény mérésének egy fő mérőszáma, azon időtartam, ami a kattintás és az oldal betöltése között eltelik

Mik azok a DNS erőforrás rekordok? Mit tárolnak?

DNS erőforrás rekordokba tárolják a zónákra vonatkozó információkat

SOA: Hatáskör kezdete, zóna kulcsparamétereivel kezdődik

A: hoszt IPv4 címe AAAA: hoszt IPv6 címe

CNAME: egy alias kanonikus neve

MX: A levelező kiszolgáló a doménre nézve NS: A domén névszervere vagy delegált domén

Mi a Trust Anchor? Mire használják?

A publikus kulcsok gyökere. (A DNS kliens konfigurációjának része)

Mi az Certificate Revocation List? Hol használják?

A publikus kulcsok kikerülhetnek, ezért visszavonhatónak kell lenniük. A

visszavont kulcsok szerepelnek a CRL-ben

Mi a Content Delivery Network? Mire nyújt megoldást?

A tartalmakat közelebb helyezik a klienshez, ezáltal csökken a PLT (nagy adattároló szerverek)

Mik a p2p hálózatok legfontosabb jellemzői?

Nincs szerver, a kommunikáció peer-ek között folyik, és önszerveződő, skálázási problémák merülnek fel

Mi a szerepe egy peer-nek egy p2p hálózatban?

Feltöltés a többiek segítségére és letöltés saját maguknak

Mit nevezünk choke peer-nek?

Olyan peer, ami korlátozza a letöltést a többiek számára

Mi az a seed peer?

Olyan peer, ami rendelkezik a letölteni kívánt fájl összes darabjával

Mire szolgál az állapot nélküli tűzfal?

Statikus szűrő szabályokat valósítanak meg Engedélyezhető/tiltható vele sokféle szolgáltatás és hálózati cél is (ált. UDP/TCP)

Mire szolgál az állapot alapú tűzfal?

Állapot alapú csomagszűrést valósít meg, ami a csomagváltást nyomon követi

Mire szolgál az alkalmazás réteg tűzfal?

Alkalmazásokra és tartalmakra alapuló szabályokat valósít meg (pl. Víruskeresés) AA csomagok vizsgálata megesebb rétegek emulálásával, például az alakalmazás üzenetek újra összegyűjtésével)

Mi az a DeMilitarized Zone? Mire szolgál?

A klasszikus felépítésben szerepel a jobb szétválaszthatóság miatt Webszerverek, chat szerverek, e-mail szerverek elhelyezése A fertőzések továbbterjedésének meggátolására

Mire szolgál a TCP protokoll? Mik a főbb jellemzői?

Megbízható adatfolyam létrehozása két végpont között Az alkalmazási réteg adatáramát osztja csomagokra A másik oldal a csomagok fogadásáról nyugtát küld

Mire szolgál az UDP protokoll? Mik a főbb jellemzői?

Egyszerű nem megbízható szolgáltatás csomagok küldésére Az alkalmazási réteg határozza meg a csomag méretét Az inputot egy datagrammá alakítja

Mit neveznek adási ablaknak?

Az adó folyamatosan karbantart egy sorszámhalmazt, amely az elküldhető kereteknek felelnek meg.

Mit neveznek vételi ablaknak?

A vevő folyamatosan karbantart egy sorszámhalmazt, amely az elfogadható kereteknek felelnek meg.

Mi a CRC? Mire használható?

---->

Polinom-kód, vagy Ciklikus Redundancia Kód. Hibakereső kód, üzenetekben fellelhető sérüléseket tudunk vele detektálni

Hogyan történik egy TCP kapcsolat felépítése? Mik a lépései?

Rendszerint kliens-szerver kapcsolat van, ez esetben a felépítés 3 db TCP csomaggal történik. Az MSS is átvitelre kerül az első SYN szegmensben SYN:seq.nr.:j

SYN:seq.nr.:k
<----ACK:seq.nr.:j+1
ACK:seq.nr.:k+1
-----</pre>

Mit jelent az RTO, és hol használják?

Retransmission Timeout: ez szabályozza az időközt a küldés és egy duplikátum újraküldése között, ha egy nyugta kimarad, TCP protokollban használatos

Mi a TCP Nagle algoritmus működési alapelve?

Kis csomagok nem kerülnek addig küldésre, amíg nyugták hiányoznak. Egy csomag kicsi, ha adathossz < MSS.

Ha a korábban küldött csomag nyugtája megérkezik, küldi a következőt

Mi az a "slow start" TCP esetén?

A kapcsolódáskor LASSAN kezdünk:

- 1. Kapcsolódáskor a küldő beállítja a torlódási ablakát (cwnd) egy csomagnyi méretűre (MSS)
- 2. A küldő a fogadó által felajánlott ablakának minimumával megegyező méretű ablakot küld
- 3. A felajánlott ablak méretét eléréséig minden egyes nyugta megérkezésekor egy csomagnyival növeli a küldő a torlódási ablakát. Következmény: exponenciális növekedés

Mi az a torlódási ablak? Mire szolgál?

Egy TCP változó, ami arra jó, hogy a TCP által küldhető adatmennyiséget korlátozza le egy bizonyos érték alá

Mi az gyors újraadás TCP Tahoe esetén?

Ha csak egy csomag veszik el, akkor nem várjuk meg a timeout-ot, hanem újraküldjük a csomagot és folytatjuk a küldést. Az egy csomag elvesztését háromszoros nyugtaduplikátum jelzi, ilyenkor a TCP Tahoe slow start fázisba lép.

Mit jelenthet az ha három azonos nyugta érkezik egymás után? Egy csomag elvesztését

Mi az AIMD torlódás kerülési stratégia lényege?

MD - Multiplikatív decrease: ssthreshold := cwnd/2; cwnd:= MSS
(felezi a saját rátáját)

AI - Additive increase: cwnd += (MSS^2)/cwnd

Mit nevezünk torlódásnak TCP esetén?

A torlódás az, amikor a terhelés tovább nő, túlcsordulnak a pufferek, csomagok vesznek el, újra kell küldeni, a válaszidő pedig drasztikusan növekedik.

Mikor nevezünk egy torlódás kerülési algoritmust hatékonynak?

Torlódáskerülési stratégia hatékony, ha a hálózat terhelését a könyök közelében tartja

Mikor nevezünk egy torlódás kerülési algoritmust fairnek?

Amikor minden résztvevőt egyenlő rátával szolgálunk ki

Mi a forgalomirányító algoritmusok definíciója?

A hálózati réteg szoftverének azon része, ami azért a döntésért felelős, hogy a bejövő csomag melyik kimeneti vonalon kerüljön továbbadásra

Mi a statikus forgalomirányító algoritmusok fő jellemzője?

A használandó útvonalat előre, offline módon számolják ki, és a hálózat indulásakor letöltik a routerekbe

Mi az adaptív forgalomirányító algoritmusok fő jellemzője?

Helyileg, a szomszédos routerekből, vagy minden routertől kapják az információkat. Optimalizáláshoz távolságot, ugrások számát vagy a becsült áthaladási időt használják

Mi a hierarchikus forgalomirányítás lényege?

A forgalomirányító csomópontokat tartományokra osztjuk fel. Minden forgalomirányító tudja, hogy milyen módon irányítsa a saját tartományában közlekedő csomagokat, de a többi tartomány szerkezetfelépítéséről mit sem tud.

Mit nevezünk adatszórásnak vagy broadcasting-nak?

Egy csomag mindenhová történő egyidejű küldése

Mit nevezünk többesküldésnek vagy multicasting-nak?

Egy csomag meghatározott csoporthoz való egyidejű küldése

Mi a többcélú forgalomirányítás lényege?

A csomagban van egy lista a rendeltetési helyekről, amely alapján a routerek eldöntik a vonalak használatát, mindegyik vonalhoz készít egy másolatot és belerakja a megfelelő célcím listát

Mire szolgál a DF bit az IPv4 fejlécében?

"Ne darabold" flag a routernek

Mire szolgál a MF bit az IPv4 fejlécében?

"Több darab" flag, minden darabban be kell állítani az utolsót kivéve

Mire szolgál a szolgálat típusa mező az IPv4 fejlécében?

Szolgálati osztályt jelöl (3 bites precedencia, 4 jelzőbit [D, T, R])

Mire szolgál az élettartam (TTL) mező az IPv4 fejlécében?

Másodpercenként kell csökkenteni a mező értékét, minden ugrásnál csökkentik egyel az értékét

Mi az IPv4 cím és hogyan ábrázoljuk?

Minden hoszt és minden router az interneten rendelkezik egy IP címmel, amely a hálózat számát és a hoszt számát kódolja (egyedi kombináció). 4 bájton ábrázoljuk. 5 osztályos címzés: A, B, C, D, E

Mi az IPv6 cím és hogyan ábrázoljuk?

Minden hoszt és minden router az interneten rendelkezik egy IP címmel, amely a hálózat számát és a hoszt számát kódolja (egyedi kombináció).16 biten ábrázolt IP cím, egyszerűsített IP fejléc, opciók jobb támogatása, jobb biztonság

Milyen speciális IPv4 címek vannak?

Pl. 127.0.0.x – Loopback: a helyi TCP/IP stack pszeudocíme a hoszton belül. Hálózaton nem fordul elő

224.0.0.2 - Multicast, az összes router ezen a hálózaton van

Mi az alhálózati maszk és mire szolgál?

Egy hálózat belső felhasználás szempontjából több alhálózatra osztódhat, de a külvilág felé egyetlen hálózatként jelenik meg (subnet). Egy alhálózat azonosításához az alhálózati maszk ismeretére van szüksége a routernek. A forgalomirányító táblázatban a routereknél (hálózat, 0) és (saját hoszt, hálózat) alakú bejegyzések. Ha nincs találat, akkor az alapértelmezett routerhez továbbít

Mire szolgál az ICMP protokoll?

Feladata váratlan események kezelése. (pl. Elérhetetlen cél, timeout, paraméterprobléma, forrásjelölés, visszhangok, stb.)

Mire szolgál az ARP protokoll?

Feladata az IP cím megfeleltetése egy fizikai címnek

Mi az RARP? Mire használják?

Feladata a fizikai cím megfeleltetése egy IP címnek

Mi az BOOTP? Mire használják?

Egy olyan protokoll, amit egy hoszt arra használhat, hogy kapjon egy IP címet a konfigurációs szervertől

Mi az DHCP? Mire használják?

Azt oldja meg, hogy a TCP/IP hálózatra csatlakozó hosztok automatikusan megkapják a hálózat használatához szükséges beállításokat

Mi az a gerinchálózat? Hol használják és mire?

Minden AS 0. területe. Minden terület csatlakozik a gerinchálózathoz.

Mely 3 féle összeköttetést és hálózatot támogatja az OSPF?

- 1. Kétpontos vonalak két router között
- 2. Többszörös hozzáférésű hálózatok adatszórási lehetőséggel
- 3. Többszörös hozzáférésű hálózatok adatszórási lehetőség nélkül

Milyen úttípusok léteznek az OSPF logikája szerint?

- 1. Területen belüli
- 2. Területen kívüli
- 3. AS-ek közötti

Mit nevez a BGP csonka hálózatnak?

Olyan hálózat, aminek csak egyetlen összeköttetésük van a BGP gráffal.

Mit nevez a BGP többszörösen bekötött hálózatnak?

Olyan hálózatok, amiket használhatna az átmenő forgalom, de ezek ezt megtagadják

Mit nevez a BGP tranzit hálózatnak?

Olyan hálózatok, amik némi megkötéssel, illetve általában fizetség ellenében, készek kezelni harmadik fél csomagjait

Soroljon fel 4 vezetékes átviteli közeget. (8!)

Mágneses, sodort érpár, koaxiális kábel, fényvezető szálak, fénykábelek

Mit nevezünk frekvenciának? Mi a mértékegysége és hogyan jelölik?

Ismétlődés gyakoriságát jelenti, Jele f, mértékegysége Hz.

Soroljon fel 3 elektromágneses tartományt.

Rádió, mikrohullám, Infravörös, látható, ultraibolya, röntgensugarak, gammasugarak

Soroljon fel 4 vezeték nélküli átviteli közeget. (13!)

Rádiófrekvenciás, mikrohullámú, infravörös és milliméteres, látható fényhullámú

Mi a szimbólumráta és az adatráta? Mi a mértékegységük?

Szimbólumráta: az egy másodperc alatt küldhető elemi jelek mennyisége.

Mértékegysége: Baud – szimbólumok száma másodpercenként

Adatráta: bitek száma másodpercenként. Mértékegysége: bps

Soroljon fel 3 óraszinkronizációs módszert.

- 1. Explicit órajel
- 2. Kritikus időpontokban való szinkronizáció
- 3. Szimbólum kódok önütemező jelek

Mi az önütemező jel? Mire használható?

Külön órajel szinkronizáció nélkül dekódolható jel, a szignál tartalmazza a szinkronizáláshoz szükséges információt.

Mi a digitális kódok leírásának 3 fő jellemzője?

Mi történik egy szignál intervallum elején, közepén és végén

Mi az alapsáv?

A digitális jel direkt árammá vagy feszültséggé alakul, a jel minden frekvencián átvitelre kerül. Átviteli korlátok!

Mi a szélessáv?

Széles frekvenciatartományban történik az átvitel, a jel modulálására különböző technikákat használhatunk (amplitúdó moduláció, frekvencia moduláció, különböző vivőhullámok felhasználása egyidejűleg)

Mi az amplitúdó moduláció?

Adatok vivőhullámra "ültetése"

Mi a frekvencia moduláció?

Vivőhullám megváltoztatása

Mi a fázis moduláció?

Vivőhullám megváltoztatása

Mit nevezünk BER-nek? Mire használják?

Bit Error Rate – A hibásan fogadott bitek részaránya

Milyen tényezőktől függ a BER?

A jel erősségétől, a zajtól, az átviteli sebességtől és a felhasznált módszertől

Mi a CDMA2

A harmadik generációs mobiltelefon hálózatok alapját képezi, minden állomás egyfolytában sugározhat a rendelkezésre álló teljes frekvenciasávon. Feltételezi, hogy a többszörös jelek lineárisan összeadódnak.

Mi az a Walsh mátrix? Mire használható?

Egy olyan négyzetes mátrix, aminek a mérete egy kettő hatvány, elemai +1, vagy -1 lehetnek, és rendelkezik azzal a tulajdonsággal, hogy bármely két különböző sor (vagy oszlop) skalárszorzata nulla. CDMA-ban szinkron esetén a Walsh mátrix oszlopai vagy sorai egyszerű módon meghatároznak egy kölcsönösen ortogonális töredék sorozat halmazt.

Az adatkapcsolati réteg milyen jól definiált interfészeket biztosít a hálózati réteg felé?

- 1. Nyugtázatlan összeköttetés alapú hálózat
- 2. Nyugtázott összeköttetés nélküli hálózat
- 3. Nyugtázott összeköttetés alapú hálózat

Milyen módszereket ismer a keretezésre az adatkapcsolati rétegben?

- 1. Karakterszámlálás
- 2. Kezdő- és végkarakterek karakterbeszúrással
- 3. Kezdő- és végjelek bitbeszúrása
- 4. Fizikai rétegbeli kódolás-sértés

Hogyan működik a karakterszámlálás?

A keretben lévő karakterek számának megadása a keret fejlécében lévő mezőben, a vevő adatkapcsolati rétege tudni fogja a keret végét

Hogyan működik a karakterbeszúrás?

Különleges bájtok beszúrása a keret elejének és végének jelzésére

Hogyan működik a bitbeszúrás?

Minden keret egy speciális bitmintával kezdődik. Minden egymást követő 5 hosszú folytonos 1-es bit sorozat után beszúr egy 0-t

Mi az egyszerű bithiba definíciója?

Az adategység 1 bitje nulláról egyre, avagy egyről nullára változik.

Definiálja a csoportos bithibát!

Az m hosszú csoportos bithiba egy olyan folytonos szimbólum sorozat, amelynek az

első és az utolsó szimbóluma hibás, és nem létezik ezen két szimbólummal határolt részsorozatban olyan m hosszú részsorozat, amelyet helyesen fogadtunk.

Definiálja egy tetszőleges S kódkönyv Hamming távolságát?

min(d(x,y)) (x,y E S && x != y)

Mi az a Hamming korlát?

Minden {0, 1} feletti n hosszú C kódra, ahol C távolsága k pozitív természetes szám, teljesül az alábbi összefüggés:

 $|C| SUM[from:i=0][to[(k-1)/2]](n i) \le 2^n$

Milyen összefüggés ismeretes egy tetszőleges kódkönyv a Hamming távolsága és hibafelismerő képessége között?

d bit hiba felismeréséhez a megengedett keretek halmazában legalább d+1 Hammingtávolság szükséges

Milyen összefüggés ismeretes egy tetszőleges kódkönyv a Hamming távolsága és hibajavítási képessége között?

D bit hiba javításához a megengedett keretek halmazában legalább 2d+1 Hammingtávolság szükséges

Mi a kódráta és a kód távolság? Milyen a rátája és távolsága egy jó kódkönyvnek?

Egy S $\{0, 1\}$ feletti n hosszú kód rátája $(\log 2|S|)/n$.

Egy S $\{0, 1\}$ feletti n hosszú kód távolsága d(S)/n.

A jó kódok rátája és távolsága is nagy.

CRC esetén mit lehet mondani hibajelző képességéről, ha a generátor polinom x+1 többszöröse?

Ha G(x) az x+1 többszöröse, akkor minden páratlan számú hiba felismerhető

Mutassa be röviden a korlátozás nélküli szimplex protokollt!

Két résztvevő: küldő és vevő. Nincs se sorszámozás, se nyugta. A küldő végtelen ciklusban küldi kifele a kereteket folyamatosan. A vevő kezdetben várakozik az első keret megérkezésére, keret érkezésekor a hardver puffer tartalmát változóba teszi és az adatrészt továbbküldi a hálózati rétegnek.

Mutassa be röviden a szimplex megáll-és-vár protokollt!

Két résztvevő: küldő és vevő. Küldő egyesével küldi a kereteket, és addig nem küld újat, amíg nem kap nyugtát a vevőtől. A vevő kezdetben várakozik az első keret megérkezésére, keret érkezésekor a hardver puffer tartalmát változóba teszi és az adatrészt továbbküldi a hálózati rétegnek, végül nyugtázza a keretet.

Mutassa be röviden a csúszóablak protokollt!

A küldő nyilvántartja a küldhető sorozatszámok halmazát (adási ablak). A fogadó nyilvántartja a fogadható sorozatszámok halmazát (vételi ablak). A sorozatszámok halmaza minden esetben véges (k bites mező esetén 0...2^k-1). Az adási ablak minden küldéssel szűkül, illetve nő egy nyugta érkezésével.

Mi az N-visszalépéses stratégia lényege?

Az összes hibás keretet eldobja és nyugtát sem küld róluk. Amikor az adónak lejár az időzítője, akkor újraküldi az össze nyugtázatlan keretet, kezdve a sérült, vagy elveszett kerettel.

Mi a szelektív ismétléses stratégia lényege?

A hibás kereteket eldobja, de a jó kereteket a hibás után puffereli. Mikor az adónak lejár az időzítője, akkor a legrégebbi nyugtázatlan keretet küldi el újra.

Hogyan épül fel egy HDLC keret?

Cím mező, vezérlés mező, adat mező, ellenőrző összeg mező, FLAG bájt a keret határok jelzésére

Milyen keret típusokat használnak a HDLC-ben?

Információs, felügyelő, számozatlan

A felügyelő kereteknek milyen altípusai vannak?

Nyugtakeret, negatív nyugtakeret, vételre nem kész, szelektív elutasítás

A csatorna kiosztásra mik a legelterjedtebb módszerek?

Statikusan (FDM, TDM)

Dinamikusan:

- 1. Verseny, vagy ütköztetésalapú protokollok (ALOHA, CSMA)
- 2. Versenymentes protokollok (bittérkép, binary countdown)
- 3. korlátozott verseny protokollok (adaptív fa)

Röviden mutassa be a frekvenciaosztásos nyalábolás módszerét.

N db felhasználót feltételezünk, a sávszélet N egyenlő méretű sávra osztják, és minden egyes sávhoz hozzárendelnek egy felhasználót, következésképpen az állomások nem fogják egymást zavarni. Előnyös a használata, ha fix számú felhasználó van és a felhasználók nagy forgalmi igényt támasztanak. Löketszerű forgalom eseték használata problémás.

Röviden mutassa be az időosztásos nyalábolás módszerét.

N db felhasználót feltételezünk, az időegységet N egyenlő méretű időrésre osztják, és minden egyes réshez hozzárendelnek egy felhasználót. Löketszeű forgalom esetén nem hatékony.

A csatorna modellben mit nevezünk ütközésnek?

Ha két keret egy időben kerül átvitelre, akkor átlapolódnak, és az eredményül kapott jel értelmezhetetlenné válik. Az ütközésben érintett kereteket újra kell küldeni.

Hogyan működik az egyszerű ALOHA protokoll?

A felhasználó akkor vihet át adatot, amikor csak szeretne. Ütközés esetén végtelen ideig várakozik az állomás, majd újra próbálkozik.

Hogyan működik a réselt ALOHA protokoll?

Az idő diszkrét, keretidőhöz igazodó időszeletekre osztásával az ALOHA rendszer kapacitása megduplázható

Hogyan működik az 1-perzisztens CSMA protokoll?

Vivőjel érzékelés van, azaz minden állomás belehallgat a csatornába. Folytonos időmodellt használó protokoll.

Hogyan működik a nem-perzisztens CSMA protokoll?

Vivőjel érzékelés van, azaz minden állomás belehallgat a csatornába. Folytonos időmodellt használó protokoll. Mohóság kerülése.

Hogyan működik a p-perzisztens CSMA protokoll?

Vivőjel érzékelés van, azaz minden állomás belehallgat a csatornába. Diszkrét időmodellt használ a protokoll.

Hogyan működik az alapvető bittérkép eljárás?

Az ütközési periódus N időrés. Ha az i-edik állomás küldeni szeretne, akkor az i-edik versengési időrésben egy 1-es bit elküldésével jelezheti. A versengési időszak végére minden állomás ismeri a küldőket. A küldés a sorszámok szerinti sorrendben történik meg.

Hogyan működik a bináris visszaszámlálás protokoll?

Minden állomás azonos hosszú bináris azonosítóval rendelkezik. A forgalmazni kívánó állomás elkezdi a bináris címét bitenként elküldeni a legnagyobb helyi értékű bittel kezdve. Az azonos pozíciójú bitek logikai VAGY kapcsolatba lépnek ütközés esetén. Ha az állomás nullát küld, de egyet hall vissza, akkor feladja a küldési szándékát, mert van nála nagyobb azonosítóval rendelkező küldő.

Milyen kábelezési topológiákat támogat az Ethernet szabvány?

Lineáris, gerincvezetékes, fa, szegmentált

Miért van szükség a maximális keretméretre?

A szabvány készítésének idején drága volt a memória. A magasabb felső határ több memóriát igényelt volna.

Miért van szükség a minimális keretméretre?

A maximális késleltetés és a CSMA/DC algoritmus közötti összefüggés miatt

Mutassa be a minimális keretméretre vonatkozó általános képletet.

Dmin = 2TauH

Tau = lmax/v

Mik a kettes exponenciális visszalépés algoritmus lépései?

Az első ütközés után minden állomás 0 vagy 1 időrésnyit várakozik. Az i-edik ütközés után minden állomás [0...min(2^i-1, 1023)] egész intervallumból véletlenszerűen kiválasztott időrésnyi ideig várakozik. A 16. próbálkozás után a vezérlő feladja, és hibajelzést küld a számítógépnek.

Mutassa be a rejtett állomás problémáját.

A forgalmaz B-nek. Ha C belehallgat a csatornába, akkor nem hallja A adását, ezért tévesen arra következtethet, hogy elkezdhet sugározni. C elkezdi a küldést, akkor B-nél interferencia lép fel, és az A által küldött keret tönkremegy.

Mutassa be a megvilágított állomás problémáját.

B forgalmaz A-nak. Ha C belehallgat a csatornába, akkor hallja b adását, ezért tévesen arra következtethet, hogy nem kezdhet sugározni D-nek, pedig ez csak a B és C közötti tartományban tenné lehetetlenné a keretek vételét.

Mik a MACA protokoll leglényegesebb lépései?

A küld B-nek egy felkérést: RTS keret. B küld A-nak egy választ: CTS keret. A küldi B-nek az adatot a CTS megérkezését követően.

Mit nevezünk ad hoc hálózatnak.

Központi vezérlés nélküli hálózat, ami ideiglenes jelleggel jön létre. Üzemeltetésükhöz nem kell router vagy hozzáférési pont.

Mi a Network Allocation Vector?

Jel, ami beleszámolja az ACK idejét is a foglaltságba

Mit neveznek Short Inter Frame Spacing-nek?

Lehetővé teszi, hogy a rövid párbeszédet folytatófelek lehessenek az elsők

Mit neveznek DCF Inter Frame Spacing-nek?

Ezen intervallum lejárta után, akkor bármely állomás próbálkozhat, azaz versengés lesz.

Mit neveznek PCF Inter Frame Spacing-nek?

Az SIFS intervallum után mindig pontosan egy állomás jogosult a válaszadásra, ha ezt nem tudja kihasználni, és eltelik ez a PIFS intervallum is, akkor a bázis állomás küldhet egy "beacon frame"-et vagy egy lekérdező keretet.

Mit neveznek Extended Inter Frame Spacing-nek?

Ezt az időközt csak olyan állomások használhatják, amelyek épp egy hibás vagy ismeretlen keretet vettek, és ezt kívánják jelenteni

Mi a bridge, és mire használják?

LAN-okat kapcsolunk össze velük (forgalomirányítás az adatkapcsolati rétegben)

Mi a repeater, és mire használják?

Analóg eszköz, amely két kábelszegmenshez csatlakozik.