# Implementing Simple Regression Models in Excel



Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

#### Overview

Build regression models in Excel

Understand and test the regression assumptions

Use simple regression models in Excel

- to explain variance
- to make forecasts

Avoid some common regression pitfalls

# Applying Simple Regression



Cause

Changes in Dow Jones equity index



**Effect** 

Changes in price of Exxon Stock



Find the equation of the regression line, measure goodness-of-fit



Represent all n points as  $(x_i,y_i)$ , where i = 1 to n

#### Regression Equation:

$$y = A + Bx$$

$$y_1 = A + Bx_1$$
 $y_2 = A + Bx_2$ 
 $y_3 = A + Bx_3$ 
...
 $y_n = A + Bx_n$ 

#### Regression Equation:

$$y = A + Bx$$

$$y_1 = A + Bx_1 + e_1$$
  
 $y_2 = A + Bx_2 + e_2$   
 $y_3 = A + Bx_3 + e_3$   
...
$$y_n = A + Bx_n + e_n$$

#### **Regression Equation:**

$$y = A + Bx$$



# Regression Line: y = A + BxX

#### Ideally, residuals should

- have zero mean
- common variance
- be independent of each other
- be independent of x
- be normally distributed

# Regression Line: y = A + BxX

#### Ideally, residuals should

- have zero mean
- common variance
- be independent of each other
- be independent of x
- be normally distributed



### Zero-mean, Common Variance, Normal

Three assumptions relate to probability distribution of residuals

```
e = y - y'
=> y = y' + e
=> Mean(y) = Mean(y') + Mean (e)
=> Mean(y) = Mean(y')
```

#### Zero-mean: Always Satisfied

The procedure of least-squares ensures this - no need to check

Mean(y) = Mean(y')

Sample Mean = Regression Mean

The procedure of least-squares ensures this - no need to check



#### Common Variance, Normal: Harder to Check

Hard to check directly - usually indirectly checked

# Regression Line: y = A + BxX

#### Ideally, residuals should

- have zero mean
- common variance
- be independent of each other
- be independent of x
- be normally distributed

```
e = [e_1, e_2, e_3...e_n]

e^1 = [e_1, e_2, e_3...e_{n-1}]

e^2 = [e_2, e_3, e_4...e_n]

correl(e^2, e^1) = 0
```

# Self-Independence => Zero Auto-correlation

Shift residuals by 1,2... and measure correlation with self

# Regression Line: y = A + BxX

#### Ideally, residuals should

- have zero mean
- common variance
- be independent of each other
- be independent of x
- be normally distributed

# Regression Line: y = A + BxX

#### Ideally, residuals should

- have zero mean
- common variance
- be independent of each other
- be independent of x
- be normally distributed

# Independence from X



Residuals are independent of X

# Violations of Regression Assumptions

#### Risks in Simple Regression

No cause-effect relationship

Regression on completely unrelated data series

Mis-specified relationship

Non-linear (exponential or polynomial) fit

**Incomplete** relationship

Multiple causes exist, we have captured just one

#### Risks in Simple Regression

No cause-effect relationship

Regression on completely unrelated data series

Mis-specified relationship

Non-linear (exponential or polynomial) fit

Incomplete relationship

Multiple causes exist, we have captured just one

# Strong Cause-Effect Relationship



Scatter plot of X and Y

#### Weak Cause-Effect Relationship



Abandon this model, go back to the data

#### Risks in Simple Regression

No cause-effect relationship

Regression on completely unrelated data series

Mis-specified relationship

Non-linear (exponential or polynomial) fit

Incomplete relationship

Multiple causes exist, we have captured just one

#### Transform Non-linear Data



Transform using logarithms



**Polynomial** 

$$y = A + Cx^2$$

Transform using logarithms or simply regress on x<sup>2</sup>

#### Transform Non-linear Data





log y = C + D log xor simply regress y on  $x^2$ 

#### Never Regress Non-Stationary Data



Smoothly trending data will lead to poor quality regression models

#### First Differences

$$y'_{12} = \log y_2 - \log y_1$$

$$x'_{12} = \log x_2 - \log x_1$$

Regress y' and x'

**Log Differences** 

$$y'_{12} = (y_2 - y_1)/y_1$$

$$x'_{12} = (x_2 - x_1)/x_1$$

Regress y' and x'

**Returns** 

Take first differences of smooth data converting either to log differences or returns

#### Beware of Perfect Fits



Scrutinize residuals for independence

# Independence is hard to quantify, so we measure correlation instead

# Zero Correlation Usually Implies Independence



#### **Correlation = +1**

As X increases, Y increases linearly



#### **Correlation = -1**

As X increases, Y decreases linearly



#### **Correlation = 0**

Changes in X independent of changes in Y

### Lag-1 Autocorrelation



### Lag-1 Autocorrelation



Correlation of any series with itself is always +1, so measure lag-1 autocorrelation instead

### Lag-1 Autocorrelation of Residuals



 $e^{2,n}$  = Exclude value 1, include values 2 to n

# Lag-1 Autocorrelation of Residuals



 $e^{1,n-1}$  = Include values 1 to n-1, exclude value n

# Lag-1 Autocorrelation of Residuals



Correlation of these two vectors should be zero

## Risks in Simple Regression

No cause-effect relationship

Regression on completely unrelated data series

Mis-specified relationship

Non-linear (exponential or polynomial) fit Incomplete relationship

Multiple causes exist, we have captured just one

## "Good" Residuals



Residuals are independent of X

## "Bad" Residuals



Clear relationship between residuals and X



"Bad" Residuals ~ Heteroskedasiticity

Possible causes vary, but missing x-variables is an important one

# Residuals drawn from a distribution with non-constant variance are said to be heteroskedastic

# Diagnosing Risks in Simple Regression

No cause-effect relationship

low R<sup>2</sup>, plot of X ~ Y has no pattern

Mis-specified relationship

high R<sup>2</sup>, residuals are not independent of each other

Incomplete relationship

low R<sup>2,</sup> residuals are not independent of x

## Mitigating Risks in Simple Regression

No cause-effect relationship

Wrong choice of X and Y - back to drawing board

Mis-specified relationship

Transform X and Y - convert to logs or returns

**Incomplete** relationship

Add X variables (move to multiple regression)

# Excel for Simple Regression

## Ease of Prototyping



Excel is the fastest prototyping tool out there

## Robustness and Re-use



No free lunches

# Applying Simple Regression

#### **Sanity Check**

Scatter of X and Y

Eyeball for linear fit

#### **Residuals In Isolation**

Check independence with self

Autocorrelation not present

#### **Explain Variation**

Interpret slope, intercept, R<sup>2</sup>

Safe to use regression results

#### **Perform Regression**

Find slope, intercept, R<sup>2</sup>

Excel functions available

#### Residuals and X

Scatter of X and residuals

No pattern, no linear fit

#### **Forecast**

Predict Y for new X

Excel function available

### Demo

Download data from Yahoo Finance Regression plots in one step

- Slope
- Intercept

Sanity checking residuals

Regression coefficients

Forecasting

Misuse of regression

## Explaining Variation



GOOG has an in-sample alpha of 0.5% per month over the NASDAQ



GOOG has an in-sample beta of 1.06 with the NASDAQ

## Prediction Using Regression



Find the regression line - the line with the "best fit"

## Prediction Using Regression



Find the regression line - the line with the "best fit"

# Poorly Specified Regression Models

## Overview

**Build regression models in Excel** 

Understand and test the regression assumptions

Use simple regression models in Excel

- to explain variance
- to make forecasts

Avoid some common regression pitfalls

## Summary

Built regression models in Excel

Avoided some common regression pitfalls

Use simple regression models in Excel

- to explain variance
- to make forecasts