Aplicaciones de electrónica digital

Josué Meneses Díaz

2021 - 07 - 21

Contents

1	Introducción	9		
2	Lógica combinacional			
	2.1 Medio Sumador	. 11		
	2.2 Sumador completo	. 12		
3	Methods	15		
4	Applications	17		
	4.1 Example one	. 17		
	4.2 Example two	. 17		
5	Final Words	19		

4 CONTENTS

List of Tables

2.1 Tabla de verdad para el circuito de medio sumador binario. . . . 12

List of Figures

Introducción

Los siguientes apuntes muestran diversas aplicaciones de circuitos digitales como complemento al curso "electrónica digital y microcontroladores" para la carrera de Ingeniería en Física.

- Propósito del circuito.
- Método de resolución ha utilizar.
- Esquema del circuito

Lógica combinacional

En esta sección se presenta una colección de circuitos lógicos combinacionales aplicando diferentes métodos de análisis.

Para cada uno de las aplicaciones mostradas se presenta:

- Propósito del circuito.
- Método de resolución ha utilizar.
- Esquema del circuito

Los programas utilizados para el desarrollo de los circuitos han sido:

- Losigim-evolution para las pruebas y diseño de los circuitos combinacionales.
- xcircuit para la creación de los diagramas finales.

2.1 Medio Sumador

Se conoce como medio sumador al circuito combinacional que permite realizar la operación se suma aritmética entre dos números binarios enteros *considerando* solamente un acarreo de salida.

2.1.1 Entradas y salidas

El circuito posee dos posibles entradas:

A

B

Recordando que el número máximo de bit en la salida de un sumador es igual a

$$\max\{nbit(A),nbit(B)\}+1$$

Para este caso, el máximo número de bits entre A y B será 1 por lo que en la salida tendremos, a lo más, dos bits:

- Y
- Ac_{out}

2.1.2 Tabla de verdad

Table 2.1: Tabla de verdad para el circuito de medio sumador binario.

Ā	В	Y	Ac_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

```
require(knitr)
```

Loading required package: knitr

```
require(kableExtra)
```

Loading required package: kableExtra

```
dt <- data.frame(
    var1 = c(1, 2, 3, 3, 4),
    var2 = c('a', 'b', 'c', 'c', 'e'),
    var3 = c('f', 'b', 'g', 'h', 'i')
)

kable(dt, align = "c") %>%
    kable_styling(full_width = FALSE) %>%
    collapse_rows(columns = 1:3, valign = "middle")
```

2.2 Sumador completo

var1	var2	var3
1	a	f
2	b	b
3	c	g h
4	e	i

Methods

We describe our methods in this chapter.

Applications

Some significant applications are demonstrated in this chapter.

- 4.1 Example one
- 4.2 Example two

Final Words

We have finished a nice book.