An Accuracy Argument for Self-Trust

Giacomo Molinari giacomo.molinari@bristol.ac.uk

December 11, 2024

University of Bristol

Seld-Doubt and Self-Trust

Self-Doubt

Two kinds of self-doubt

- 1. **Alethic self-doubt**: doubting that my beliefs are accurate.
- 2. **Normative**: doubting that my beliefs are rational.

I will focus on alethic self-doubt here.

Rational Self-Doubt

It seems rational to doubt the accuracy of my own beliefs.

- Plenty of evidence that I have been wrong, and that my peers are wrong.
- Preface-like cases: I'm confident that some of my beliefs about biology are *false* (e.g. "Mammals don't lay eggs").
- Cartesian Circle: No non-circular way to rule out the possibility that our beliefs are thoroughly inaccurate.

Irrational Self-Doubt

Some cases of extreme self-doubt seem irrational.

E.g. believing a Moorean sentence:

"It's raining, but it's not the case that I believe that it's raining".

 $Bel(A \land \neg Bel(A))$

Questions

- Why are certain kinds of self-doubt irrational? Equivalently: why is some amount of self-trust rationally required?
- How much may we rationally doubt ourselves? Equivalently: what is the minimum amount of self-trust that is rationally required?
- What about graded doxastic states? E.g. being very confident in "It's raining, and I'm very confident that it's not raining" seems nearly as bad as believing a Moorean sentence.

Goal: Use accuracy to answer these questions.

Notation

- $W = \{w_1, ..., w_n\}$ finite set of *possible worlds*.
- Greek letters π, γ denote *rigidly designated credence functions*, i.e. vectors in \mathbb{R}^n .
- Latin letters p, q denote definite descriptions of credence functions.
 - p is a function from possible worlds to credence functions. So $p(w_i)$ is a credence function for every $w_i \in \mathcal{W}$.
 - Can think of them as vector-valued random variables.
 - Abuse notation: p_i instead of $p(w_i)$.
- If ϕ is a property of credence functions, $[\phi(p)]$ is the proposition $\{w_i : \phi(p_i)\}$

Example

- p = My radiologist's credence function.
- B = I have a broken bone.

$$p_1 = p_2 = (.97, .01, .01, .01)$$
 $p_3 = p_4 = (.01, .01, .01, .97)$

A self-trust requirement

- Let *p* be a definite description of your credence function.
- Let π be your actual credence function (i.e. $\pi = p_i$ where w_i is the actual world)

Total Trust

You Totally Trust yourself iff:

$$\mathbb{E}_{\pi}(X|[\mathbb{E}_{p}(X) \ge r]) \ge r \tag{1}$$

whenever $X: \mathcal{W} \to \mathbb{R}$, $r \in \mathbb{R}$, and the above conditional expectation is defined.

I want to argue that rational agents Totally Trust themselves.

Consequences of Total Trust

Coherence + Total Trust \implies you cannot be maximally confident in A as well as in $[p(A) \le low]$. Because:

$$\pi(A \land [p(A) \le \mathsf{low}]) = 1 \tag{2}$$

$$\iff \frac{\pi(A \land [p(A) \le \text{low}])}{\pi([p(A) \le \text{low}])} = 1$$
(3)

$$\iff \pi(A|[p(R) \le \text{low}]) = 1 > \text{low}$$
 (4)

which violates Total Trust.

More generally: Coherence + Total Trust \implies you cannot be very highly confident of both A and $[p(A) \le low]$.

Total Trust rules out high confidence in Moore-like sentences.

An Accuracy Argument for Total

Trust

Generalised Strictly Proper Scores

How inaccurate is expectation $\mathbb{E}_{\pi}(X)$ when X has value $X(w_i) = x_i$?

- Interpret $\mathbb{E}_{\pi}(X)$ as a unique fair price for gamble X.
- (X-t) is desirable whenever $t<\mathbb{E}_{\pi}(X)$
- "Add up" the losses resulting from these desirability judgements when w_1 is the case.

Example

- $W = \{w_1, w_2\}.$
- X = (-3, 6).
- $\pi = (1/2, 1/2)$, so $\mathbb{E}_{\pi}(X) = 1.5$.
- Say w_1 is the case, so X = -3

Example

$$S(\pi(X), x_i) = \int_{x_i}^{\pi(X)} -(x_i - t)\lambda(dt)$$

Different λ yield different GSP measures of inaccuracy.

An Accuracy Argument for Total Trust

Theorem (Dorst et al. 2012, Th.3.2)

 π Totally Trusts p iff for every GSP measure of inaccuracy, π expects p to be at least as accurate as π .

- Suppose I don't Totally Trust myself, i.e. π does not Totally Trust p.
- Then there is a rigidly designated credence function π (e.g. (1/3, 1/3, 1/3)) that I think is more accurate than p under GSP measure S.
- I expect that I would be more accurate, as measured by S, by having credence function π at all possible worlds!

Problem

- The theorem shows that, if I don't Totally Trust myself, then I expect some rigidly designated credence function to be more accurate than myself under some GSP measure of accuracy.
- But why should we care about that measure?

Maybe more abt why this is a problem...

Improving the Argument

From credences to desirability judgements

The desirability judgements induced by a coherent credence function π via its expectation \mathbb{E}_{π} , interpreted as unique fair price, are **extremely structured**.

From credences to desirability judgements

Represent opinions via sets of desirable gambles for more expressive power.

Subtle Point: We want to show that **rational** agents Totally Trust themselves.

- Rational agents have *coherent* and (for this talk) *precise* doxastic states.
- So we need to show that agents with coherent, precise doxastic states should trust themselves.
- Your beliefs are still representable by a coherent credence function π .
- Added expressive power lets us consider ways your beliefs could be that don't correspond to any coherent credence function.

From credences to desirability judgements

We can express Total Trust in desirability terms.

- Let p be a definite description of your credence function. $D_p = \{X : p(X) > 0\}$ is a definite description of a set of gambles.
- Let π be your actual credence function, rigidly designated. So $D_{\pi} = \{X : \pi(X) > 0\}$ is a rigidly designated set of gambles.

Total Trust

 π Totally Trusts p iff:

$$X \in D_{\pi(\cdot|[X \in D_p])} \tag{5}$$

whenever $X: \mathcal{W} \to \mathbb{R}$, $r \in \mathbb{R}$, and the above conditional expectation is defined.

From GSP to INSERT NAME HERE measures of inaccuracy

We can use [INSERT NAME HERE] to measure the inaccuracy of an arbitrary set of desirable gambles at a world.

- For every X which you find desirable, you get a penalty if X is not actually desirable.
- For every X which you don't find desirable, you get a penalty if X is actually desirable.

$$S(\pi, w_i) = \int_{D_{w_i} \sim D_{\pi}} x_i d\mu - \int_{D_{\pi} \sim D_{w_i}} x_i d\mu$$
 (6)

GSP vs INSERT NAME HERE

GSP:

- The single value $\mathbb{E}_{\pi}(X)$ determines the desirability of all gambles in form (X-t).
- These judgements jointly determine the inaccuracy of the expectation value $\mathbb{E}_{\pi}(X)$.
- Structural assumption: desirable gambles are a half-space through the origin.

INSERT NAME HERE

- Each desirability judgement contributes individually to your total score.
- No structural assumptions on desirability judgements.

A useful fact

Fact 1

If Total Trust fails on some gamble, then it fails on some open set of gambles.

Example

•
$$W = \{w_1, w_2\}$$

- w₂ is the actual world.
- $p_1 = (.2, .8)$
- $p_2 = \pi = (.8, .2)$
- X = (-4, 4)

Example

•
$$[X \in D_p] = \{w_1\}.$$

•
$$\pi(X|\{w_1\}) = -4$$
.

- So $X \notin D_{\pi(\cdot|\{w_1\})}$.
- Similarly for X + Z, where

$$-\epsilon < Z < \epsilon$$

New accuracy characterisation of Total Trust

- Suppose π does not Totally Trust p.
- Then there is some open set \mathcal{O} of gambles where Total Trust fails.
- Define:

$$\mathcal{O}^+ = \mathcal{O} \cap D_{\pi}, \quad \mathcal{O}^- = \mathcal{O} \cap D_{\pi}^c$$
 $D_p^* = (D_p \cup \mathcal{O}^+) \sim \mathcal{O}^-$

- You actually find the gambles in \mathcal{O}^+ desirable, and those in \mathcal{O}^- not desirable.
- D_p^* represents the opinions you would have if, at every possible world, you found the gambles in \mathcal{O}^+ desirable and those in \mathcal{O}^- not desirable.

Example

New accuracy characterisation of Total Trust

- **Note**: At some possible worlds, D_p^* denotes an **incoherent** set of desirable gambles!
- But with INSERT NAME HERE we can measure its inaccuracy at all possible worlds!

Theorem

- 1. If π does not Totally Trust p, then there are measurable sets of gambles $\mathcal{O}^+, \mathcal{O}^-$ such that π expects D_p^* to be strictly more accurate than D_p under every INSERT NAME HERE measure of inaccuracy.
- 2. If π Totally Trusts p, then for any measurable sets of gambles $\mathcal{O}^+, \mathcal{O}^-$ and credence function, π expects D_p to be at least as accurate as D_p^* under every INSERT NAME HERE measure of inaccuracy.

The New Argument

- Suppose π does not Totally Trust p.
- Then there is some (rigidly designated!) set of gambles $\mathcal O$ such that you think you would be more accurate, under **every** INSERT NAME HERE measure of inaccuracy, if you made the same desirability judgements as π over $\mathcal O$ at every possible world.
- So there is some set of gambles where you expect some rigidly designated credence function (e.g. $\pi = (1/3, 1/3, 1/3)$) to be more accurate than your own credence function p.
- Alternatively: you expect that, if you determinately made the same judgements as π over \mathcal{O} , you would become more accurate than you are.

Many open questions...