Algèbre linéaire avancée

CORRECTION TD HORS SÉRIE

Exercice 1.

1. Naïvement, on veut définir \overline{u} par $\overline{u}(x+F)=u(x)+F$, "l'image de la classe à gauche est la classe à gauche de l'image". On peut vérifier à la main que cette définition est correcte et donne bien une application linéaire, mais on peut aussi appliquer la propriété universelle des quotients.

$$E \xrightarrow{u} E \xrightarrow{\pi} E/F$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Considérons $\pi \circ u : E \to E \to E/F$, il s'agit d'une application linéaire (par composition), de plus, pour $f \in F$, on a $u(f) \in F$ (par hypothèse) et $\pi(u(f)) = 0$, donc $F \subset \operatorname{Ker} \pi \circ u$. Par propriété universelle des quotients, il existe alors une unique application linéaire $\overline{u} : E/F \to E/F$ telle que $\overline{u} \circ \pi = \pi \circ u$. Autrement dit, pour $x + F = \pi(x) \in E/F$, on a

$$\overline{u}(x+F) = \overline{u}(\pi(x)) = \pi(u(x)) = u(x) + F,$$

ce qui était bien la définition que l'on voulait au départ.

- 2. L'application $\pi: E \to E/F$ induit un morphisme de k[X]-modules $\pi: (E, u) \to (E/F, \overline{u})$ car $\overline{u} \circ \pi = \pi \circ u$ par définition de \overline{u} . Le noyau de π est $(F, u_{|F})$ et π et surjectif. Le résultat est alors une application du théorème d'isomorphisme.
- 3. Premièrement, la famille $\overline{\mathcal{B}}$ est génératrice dans E/F. Soit $y \in E/F$, comme π est surjectif, il existe $x \in E$ tel que $x + F = \pi(x) = y$. Comme \mathcal{B} est une base de E, on peut écrire

$$x = \sum_{i=1}^{r} \lambda_i a_i + \sum_{i=r+1}^{n} \mu_i b_i$$

On a alors

$$y = \pi(x) = \sum_{i=1}^{r} \lambda_i \pi(a_i) + \sum_{i=r+1}^{n} \mu_i \pi(b_i) = \sum_{i=r+1}^{n} \mu_i \pi(b_i)$$

Tout élément $y \in E/F$ s'écrit donc comme une combinaison linéaire de $\overline{\mathcal{B}}$. Ensuite, par le théorème du rang appliqué à π , on a

$$\dim E = \dim \operatorname{Ker} \pi + \dim \operatorname{Im} \pi = \dim F + \dim E/F$$

Donc $\overline{\mathcal{B}}$ a pour cardinal $n-r=\dim E/F$, comme il s'agit d'une famille génératrice, il s'agit aussi d'une base.

4. Pour $i \in [1, r]$, on a $u(a_i) \in F$ car $a_i \in F$. Donc $u(a_i)$ est une combinaison linéaire des seuls a_i (les coefficients en b_j sont tous nuls). Les r premières colonnes de $Mat_{\mathcal{B}}(u)$ (qui expriment les $u(a_i)$) sont $\binom{A}{0}$, où $A = Mat_{\mathcal{F}}(u_{|F})$. Ensuite, pour $i \in [r+1, n]$, on a

$$u(b_i) = \sum_{k=1}^r \lambda_{i,k} a_k + \sum_{k=r+1}^n \mu_{i,k} b_k \Rightarrow \overline{u}(\pi(b_i)) = \pi(u(b_i)) = \sum_{k=r+1}^n \mu_{i,k} \pi(b_k)$$

Les $\mu_{i,k}$ sont donc les coefficients de la matrice $Q = Mat_{\overline{B}}(\overline{u})$, on trouve donc que les n-r dernières colonnes de $Mat_{\overline{B}}(u)$ sont $\binom{*}{Q}$, et on a bien le résultat voulu.

5. On pose $A=(a_{i,j})_{i,j\in \llbracket 1,r\rrbracket}$ et $Q=(q_{i,j})_{i,j\in \llbracket r+1,n\rrbracket}$. Par définition, pour $j\in \llbracket 1,r\rrbracket$, on a

$$u(e_j) = \sum_{i=1}^r a_{i,j} e_j \in F = \text{Vect}(e_1, \dots, e_r)$$

Comme (e_1, \ldots, e_r) est une base de F, on a bien $u(f) \in F$ pour tout $f \in F$. Ensuite, pour $j \in [r+1, n]$, on a $u(b_j) = f_j + \sum_{i=r+1}^n q_{i,j}b_i$ pour un certain $f \in F$, on a alors

$$\overline{u}(\pi(b_j)) = \sum_{i=r+1}^{n} q_{i,j}\pi(b_i)$$

c'est à dire $Q = Mat_{\overline{\mathcal{E}}}(\overline{u})$.

Exercice 2.

1. Le résultat est évident pour n=1 par définition, ensuite, on a

$$T^{n+1} = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n+1 \\ 0 & 1 \end{pmatrix}$$

comme annoncé. 2. La matrice T est triangulaire supérieure, son déterminant est le produit de ses éléments diagonaux, ici 1. 3. La seule valeur propre de T est 1 (de multiplicité 2), si T était diagonalisable, elle serait donc semblable à I_2 , or la seule matrice semblable à I_2 est I_2 , et $T \neq I_2$, donc T n'est pas diagonalisable. 4. Par définition, on a

$$T - I_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

et $(T - I_2)^2 = 0$, autrement dit, $\operatorname{Im}(T - I_2) \subset \operatorname{Ker}(T - I_2)$.

Exercice 3.

1. Soit $x \in E$, on a

$$x \in \text{Ker}(u - \text{Id}) \Leftrightarrow u(x) = x \Leftrightarrow \alpha(x)c = 0 \Leftrightarrow \alpha(x) = 0$$

Ensuite, pour $x \in E$, on a $u(x) - x = \alpha(x)c \in \text{Vect}(c)$, et comme α est non nulle, on peut prendre x_0 tel que $\alpha(x_0) = 1$, et $u(x_0) - x_0 = c$, donc Im(u - Id) = Vect(c) (et pas seulement inclus dedans).

2. Soit $x \in E$, on a

$$\tau(\alpha, c)(\tau(\alpha, -c)(x)) = \tau(\alpha, c)(x - \alpha(x)c)$$

$$= x - \alpha(x)c + \alpha(x - \alpha(x)c)c$$

$$= x - \alpha(x)c + \alpha(x)c - \alpha(x)\alpha(c)c$$

$$= x$$

Donc $\tau(\alpha, c) \circ \tau(\alpha, -c) = \mathrm{Id}_E$. En remplaçant c par -c, on trouve

$$\tau(\alpha, -c) \circ \tau(\alpha, -(-c)) = \mathrm{Id}_E$$

Et donc $\tau(\alpha, c)$ et $\tau(\alpha, -c)$ sont inverses l'un de l'autre.

- 3. Soit $h \in H$, par hypothèse, on a $\alpha(h) = 0$ et $u(h) = h + \alpha(h)c = h$, donc $u_{|H} = \operatorname{Id}_H$ et H est en particulier u-invariant. De la même manière, soit $\lambda c \in D$. Comme $c \in H$, on a $u(\lambda c) = \lambda u(c) = \lambda c$, donc $u_{|D} = \operatorname{Id}_D$ et D est en particulier u-invariante.
- 4. Soit $x + H \in E/H$, on a

$$\overline{u}(x+H) = u(x) + H = x + \alpha(x)c + H = x + H$$

car $\alpha(x)c \in D \subset H$. De même, pour $x+D \in E/D$, on a

$$\overline{u}(x+D) = u(x) + D = x + \alpha(x)c + D = x + D$$

Exercice 4.

- 1. Le déterminant $GL(E) \to k^*$ est un morphisme de groupes (car $\det(AB) = \det(A) \det(B)$), et par définition, SL(E) est le noyau de ce morphisme. Il s'agit donc d'un sous-groupe distingué de GL(E).
- 2. Comme α est non nulle, on peut considérer x tel que $\alpha(x) \neq 0$, on pose alors $x_0 = \frac{1}{\alpha(x)}x$ qui est tel que $\alpha(x_0) = 1$. Pour $i \in [1, n-2]$, on a $u(v_i) = v_i$ car $v_i \in H$. De même, on a u(c) = c, et enfin $u(x_0) = x_0 + c$. La matrice de u dans la base considérée est donc une matrice par blocs

$$\begin{pmatrix} I_{n-2} & 0 \\ 0 & T \end{pmatrix}$$

où T est la matrice de l'exercice 2.

- 3. La matrice donnée à la question précédente est triangulaire supérieure avec uniquement des 1 sur la diagonale, d'où $\det(u) = 1$ et $u \in SL(E)$.
- 4. D'après l'exercice 1, dans une base adaptée (b_1, \ldots, b_n) , la matrice de u est de la forme

$$\begin{pmatrix} I_{n-1} & * \\ 0 & I_1 \end{pmatrix} = \begin{pmatrix} 1 & & a_1 \\ & \ddots & & \vdots \\ & & 1 & a_{n-1} \\ & & & 1 \end{pmatrix}$$

On pose $c = a_1b_1 + \cdots + a_{n-1}b_{n-1}$. Soit α une forme linéaire de noyau H et telle que $\alpha(b_n) = 1$. On a $u = \tau(\alpha, c)$, en effet, pour $i \leq n-1$, on a $u(b_i) = b_i = \tau(\alpha, c)(b_i)$ et $u(b_n) = b_n + c = \tau(\alpha, c)(b_n)$.

5. D'après l'exercice 1, dans une base adaptée (b_1,\ldots,b_n) , la matrice de u est de la forme

$$\begin{pmatrix} I_1 & * \\ 0 & I_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & a_2 & \cdots & a_n \\ & \ddots & & \\ & & 1 & \\ & & & 1 \end{pmatrix}$$

Soit α une forme linéaire telle que $\alpha(b_1) = 0$, $\alpha(b_i) = a_i$. On a $u = \tau(\alpha, b_1)$, en effet, on a $u(b_1) = b_1 = \tau(\alpha, b_1)$ et, pour $i \ge 2$, on a $u(b_i) = b_i + a_i c = \tau(\alpha, c)(b_i)$.

Exercice 5.

- 1. a) On pose c = y x, qui est non nul car x et y sont non colinéaires. Soit ensuite α une forme linéaire telle que $\alpha(x) = 1$, on a alors $\tau(\alpha, c)(x) = x + c = y$.
- b) Comme E est de dimension ≥ 2 , on peut considérer un vecteur $z \notin \operatorname{Vect}(x) = \operatorname{Vect}(y)$. Par la question précédente, on peut considérer deux transvections τ_1 et τ_2 telles que $\tau_1(x) = z$ et $\tau_2(z) = y$. On a alors $\tau_2 \circ \tau_1(x) = y$ comme annoncé.
- 2. Soit y = u(c), par la question précédente, il existe v un produit de transvections telle que v(y) = c, on a alors $v \circ u(c) = c$, on remplace u par $v \circ u$.
- 3. C'est une conséquence de l'exercice 1, comme la matrice de u peut s'écrire comme une matrice triangulaire par blocs, on trouve que $1 = \det(u) = \det(u_{|D}) \det(\overline{u}) = \det(\overline{u})$.
- 4. C'est l'hypothèse de récurrence.
- 5. Par définition, on a $\overline{\alpha_i}(c) = \overline{\alpha_i} \circ \pi(c) = \overline{\alpha_i}(0) = 0$, donc c est un point fixe de toutes les transvections $\tau(\alpha_i, c_i)$ et donc de v. Ensuite, on a évidemment $\overline{\tau(\alpha_i, c_i)} = \tau(\overline{\alpha_i}, \overline{c_i})$ et donc $\overline{u} = \overline{v}$.
- 6. On a $\overline{v^{-1}u} = \overline{u}^{-1}\overline{u} = \mathrm{Id}_{E/D}$, et $v^{-1}u(c) = c$, donc on applique la question 5 de l'exercice 4, il existe une transvection τ telle que $v\tau = u$, d'où le résultat : u est un produit de transvections.