

Dwight

SEQUENCE LISTING

<110> Lawn, Richard M.
Wade, David
Garvin, Michael

<120> Compositions and Methods for Increasing Cholesterol Efflux and Raising HDL using ATP Binding Cassette Transporter Protein ABC1

<130> 99,395-B

<140>
<141>

<150> US 60/140,264

<151> 1999-06-18

<150> US 60/153,872

<151> 1999-08-14

<150> US 60/166,573

<151> 1999-11-19

<160> 57

<170> PatentIn Ver. 2.0

<210> 1
<211> 10442
<212> DNA
<213> Homo sapiens

<400> 1

ggccgggacc cgccagagccg agccgaccct tctctcccg gctgcggcag ggcaggcg 60
ggagctccgc gcaccaacag agccggttct cagggcgctt tgctccttgt ttttccccg 120
gttctgtttt ctcccccttct ccggaaggct tgtcaagggg taggagaag agacgcaaac 180
acaaaagtgg aaaacagtta atgaccagcc acgggatgtcc ctgctgtgag ctctggccgc 240
tgccctccag ggctcccgag ccacacgctg ggcgtgtgg ctgagggAAC atggcttgtt 300
ggcctcagct gaggttctg ctgtggaaaga acctcacatt cagaagaaga caaacatgtc 360
agctgttact ggaagtggcc tggcctctat ttatcttct gatcctgtatc tctgttcggc 420
tgagctaccc accctatgaa caacatgaat gccatTTTC aaataaAGCC atgcCTCTG 480
cagaacact tccttgggtt caggggatta tctgtatgt caacaACCC TGTTCCGTT 540
acccgactcc tggggaggct cccggagttt ttggaaacctt taacaaatcc attgtggctc 600
gcctgttctc agatgctcgg aggcttctt tatacagcca gaaagacacc agcatgaagg 660
acatgcgcaa agttctgaga acattacagc agatcaagaa atccagctca aacttgaagc 720
ttcaagattt cctgggtggac aatgaaacct tctctgggtt cctatatcac aacctctctc 780
tcccaaagtc tactgtggac aagatgctga gggctgatgt cattctccac aaggatttt 840

tgcaaggcta ccagttacat ttgacaagtgc tgtgcaatgg atcaaaaatca gaagagatga 900
ttcaacttgg tgaccaagaa gtttctgagc tttgtggcct accaaaggag aaactggctg 960
cagcagagcg agtacttcgt tccaaacatgg acatcctgaa gccaaatcctg agaacactaa 1020
actctacatc tccctcccg agcaaggagc tggctgaagc cacaaaaaca ttgctgcata 1080
gtcttggac tctggcccag gagctgttca gcatgagaag ctggagtgc atgcgacagg 1140
aggtgatgtt tctgaccaat gtgaacagct ccagtcctc cacccaaatc taccaggctg 1200
tgtctcgat tgcgtcgaaa catcccgagg gaggggggct gaagatcaag tctctcaact 1260
ggtatgagga caacaactac aaagccctt ttggaggcaa tggactgag gaagatgctg 1320
aaaccttcta tgacaactct acaactcctt actgcaatga tttgatgaag aatttggagt 1380
ctagtcctct ttcccgtatt atctggaaag ctctgaagcc gctgctcggt gggaaatcc 1440
tgtatacacc tgacactoca gccacaaggc aggtcatggc tgaggtgaac aagacattcc 1500
aggaactggc tgtgtccat gatctggaa gcatgtggga ggaactcagc cccaaatct 1560
ggacccatcat ggagaacago caagaaatgg accttgcctg gatgctgtt gacagcagg 1620
acaatgacca cttttggaa cagcgttgg atggcttaga ttggacagcc caagacatcg 1680
tggcgaaaa gccaagcac cagaggatg tccagtcctg taatggttt gtgtacaccc 1740
ggagagaagc ttcaacggc aataaccagg caatccggac catactcgcc ttcatggagt 1800
gtgtcaacct gaacaagcta gaacccatag caacagaatg ctggctcata aacaagtcca 1860
tgagactgct ggtgagagg aagtctggg ctggattgtt gttcaactgga attactccag 1920
gcagcattga gctgccccat catgtcaagt acaagatccg aatggacatt gacaatgtgg 1980
agaggacaaa taaaatcaag gatgggtact gggaccctgg tcctcgagct gaccctttg 2040
aggacatcgcg gtacgtctgg gggggcttcg cctacttgca ggatgtgggt gggcaggcaa 2100
tcatcagggt gctgacgggc accgagaaga aaactgggtt ctatatgcaaa cagatgccct 2160
atccctgtta cggtgatgac atcttctgc gggtgatgag cgggtcaatg cccctttca 2220
tgacgctggc ctggatttac tcaagtggctg tgatcatcaa gggcatcgtg tatgagaagg 2280
aggcacggc gaaagagacc atgcggatca tgggcctggaa caacagcata ctctggttt 2340
gctggttcat tagtagcctc attcctcttc ttgtgagcgc tggcctgcta gtggcatcc 2400
tgaagttagg aaacctgctg ccctacagtg atccacgct ggtgtttgtc ttccgtccg 2460
tggggctgt ggtgacaatc ctgcgtgtc tcgtgatttag cacactcttc tccagagcca 2520
acctggcagc agcctgtggg ggcattcatct acttcacgct gtacctggcc tacgtctgt 2580
gtgtggcatg gcaggactac gtgggcttca cactaaagat ctgcgttagc ctgcgtctc 2640
ctgtggctt tgggtttggc tgggtgtact ttgcctttt tgaggagcag ggcattggag 2700
tgcagtggaa caacctgttt gagagtccctg tggaggaaga tggctcaat ctcaccactt 2760
cgatctccat gatgtgttt gacaccttcc tctatgggtt gatgacctgg tacattgagg 2820
ctgtcttcc aggccagttac ggaattccca ggcctggta tttcccttgc accaagtccct 2880
actgggttgg cgagggaaatg gatgagaaga gccaccctgg ttccaaaccag aagagaatgt 2940
cagaaatctg catggaggag gaacccaccc acttgaagct gggcgtgtcc attcagaacc 3000
tggtaaaatg ctaccgagat gggatgaagg tggctgtca tggcctggca ctgaattttt 3060
atgaggggcca gatcacctcc ttccctggcc acaatggagc ggggaagacg accaccatgt 3120
caatcctgac cgggtgttc ccccccacctt cgggcaccgc ctacatcctg ggaaaagaca 3180
ttcgctctga gatgagcacc atccggcaga acctgggggt ctgtccccag cataacgtgc 3240
tggggatcat gctgactgtc gaagaacaca tctgggttca tggcctggaa aaagggtctt 3300
ctgagaagca cgtgaaggcg gagatggagc agatggccct ggatgtgggt ttggccatcaa 3360
gcaagctgaa aagcaaaaaca agccagctgt caggtggaaat gcagagaaatg ctatctgtgg 3420
ccttggcctt tgggggggaa tctaagggtt tcattctggaa tggacccaca gtcgggtgtgg 3480
acccttactc ccgcaggggaa atatgggagc tgcgtgtgaa ataccgacaa ggcgcacca 3540
ttattctctc tacacaccac atggatgaag cggacgtctt gggggacagg attgcccata 3600
tctcccatgg gaagctgtgc tgggtggctt ctcctgtt tctgaagaac cagctggaa 3660
caggctacta ctcgtacccatgt gtcacaaatc atgtggaaatc ctccttcactt tcctggagaa 3720

acagtagtag cactgtgtca tacctgaaaa aggaggacag tggcgttcag agcagttctg 3780
atgcgtggcct gggcagcgac catgagagt acacgctgac catcgatgtc tctgttatct 3840
ccaaacccat caggaagcat gtgtctgaag cccggctggt ggaagacata gggcatgagc 3900
tgacctatgt gctgccatat gaagctgcta aggagggagc ctttgtgaa ctcttcatg 3960
agattgatga ccggctctca gacctggca tttctagtt tggcatctca gagacgaccc 4020
tgaagaat atccctcaag gtggccgaag agagtgggt ggatgcttag acctcagatg 4080
gtaccttgcg agcaagacga aacaggcggg ctttcgggaa caagcagagc tgtcttcggc 4140
cgttcactga agatgatgct gctgatccaa atgattctga catagaccca gaatccagag 4200
agacagactt gctcagtggg atggatggca aagggtccta ccaggtgaaa ggctggaaac 4260
ttacacagca acagttgtg gccctttgt ggaagagact gctaattgccc agacggagtc 4320
ggaaaggatt ttttgcgtg attgtcttgc cagctgtgtt tgtctgcatt gcccttgcgt 4380
tcagcctgat cgtccaccc ttggcaagt accccagcct ggaacttcag ccctggatgt 4440
acaacgaaca gtacacattt gtcagcaatg atgcctcgtg ggacacgggaa accctggaaac 4500
tcttaaacgc cctcacccaa gaccctggct tcgggaccccg ctgtatggaa ggaaacccaa 4560
tcccagacac gccctggcag gcaggggagg aagagtggac cactgccccca gttccccaga 4620
ccatcatgga cctctccag aatgggaaact ggacaatgca gaacccttca cctgcatgcc 4680
agttagcag cgacaaaatc aagaagatgc tgccgtgtg tccccccagg gcaggggggc 4740
tgccctcc acaaagaaaa caaaacactg cagatatcct tcaggaccc acaggaagaa 4800
acatttcgga ttatctggtg aagacgtatg tgcaaatcatg agccaaaacgc ttaaagaaca 4860
agatctgggt gaatgagttt aggtatggcg gctttccct ggggtgtcaatg aataactcaag 4920
cacttcctcc gagtcaagaa gttaatgtg ccatcaaaaca aatgaagaaa cacctaaacgc 4980
tgcccaagga cagttctgca gatcgatcc tcaacagctt gggaaagattt atgacaggac 5040
tggacaccag aaataatgtc aagggtgtgt tcaataacaa gggctggcat gcaatcagct 5100
cttccctgaa tgtcatcaac aatgccatcc tccggccaa cctgcaaaag ggagagaacc 5160
ctagccattt tggaaattact gcttcataatc atccctgaa tctcaccaag cagcagctct 5220
cagaggtggc tctgatgacc acatcagtgg atgtccttgcgtt gtcacatcttgc 5280
caatgtcattt cgtcccaagcc agctttgtcg tattcctgat ccaggagccg gtcacaaag 5340
caaaacaccc gcagttcatc agtggagtgaa agcctgtcat ctactggctc tctaattttg 5400
tctggatat gtgcaattac gttgtccctg ccacactggcattatcatc ttcatctgct 5460
tccagcagaa gtcctatgtg tcctccacca atctgcctgt gctagccctt ctactttgc 5520
tgtatgggtg gtcaatcaca cctctcatgt accccagccctc ctttgtgttc aagatcccc 5580
gcacagccata tgtgggctc accagcgtga acctcttcat tggcattaat ggcagcgtgg 5640
ccaccttgcgtt gctggagctg ttcaccgaca ataagctgaa taatatcaat gatatcctga 5700
agtccgtgtt cttgatcttc ccacatccc gcctggatcg agggctcatc gacatggtgaa 5760
aaaaccaggc aatggctgat gcccggaaa gttttgggaa gaatcgctt gtgtcaccat 5820
tatcttggga cttggggaa cggaaacctct tcgccatggc cgtggaaagggtt gttgtgttct 5880
tcctcattac ttttgcgtatc cagtagatgt tcttcattccat gcccagacct gtaaatgca 5940
agctatctcc tctgaatgtat gaagatgaaat atgtgaggcg gyaagacag agaattcttgc 6000
atgggtggagg ccagaatgac atcttagaaaa tcaaggagtt gacgaagata tatagaagga 6060
agcggaaagcc tgctgttgac aggatttgcg tggcattcc tcctgggtgag tgctttgggc 6120
tcctgggatgtaatggggct gggaaatcat caacttcaa gatgttaaca ggagatacca 6180
ctgttaccag aggagatgtt ttccttaaca aaaatagtat ttatcaaaccatcatgaa 6240
tacatcagaa catggctac tgccctcagt ttgatccat cacagagctg ttgactggga 6300
gagaacacgt ggagttctt gccccttgc gaggagccccc agagaaagaa gttggcaagg 6360
ttgggtggatg ggcgattccgg aaactggggcc tcgtgaagta tggagaaaa tatgtggta 6420
actatagtgg aggcaacaaa cgcaagctct ctacagccat ggcttgcgtt ggcggccctc 6480
ctgtggatgtt tctggatgaa cccaccacag gcatggatcc caaagccccgg cggttcttgcgtt 6540
ggaatttgcgtt cctaagtgtt gtcaaggagg ggagatcagt agtgcttaca tctcatagta 6600

tggaaaat tgaagctctt tgcacttagga tggcaatcat ggtcaatgga aggttcagg 6660
gccttggcag tgtccagcat ctaaaaaata ggtttgaga tggtatatac atagttgtac 6720
gaatagcagg gtccaaaccgg gacctaagc ctgtccagga tttcttggg cttgcatttc 6780
ctggaaagtgt tcctaaaagag aaacaccggg acatgctaca ataccagctt ccattttcat 6840
tatcttctt ggcaggata ttccagcatcc tctcccagag caaaaagcga ctccacatag 6900
aagactactc tgtttctcag acaacactt accaagtatt tgtgaacttt gccaaggacc 6960
aaagtgtatga tgaccactta aaagacctt cattacacaa aaaccagaca gtagtggacg 7020
ttgcagttct cacatctttt ctacaggatg agaaagtggaa agaaagctat gtagaagaa 7080
tcctgttcat acgggggtggc tgaaagtaaa gaggaacttag actttcctt gcaccatgt 7140
aagtgtgtg gagaagaaagag ccagaagttt atgtggaaag aagtaaactg gatactgtac 7200
tgataactatt caatgcaatg caattcaatg caatgaaaac aaaattccat tacagggca 7260
gtgccttgc agcctatgtc ttgtatggct ctcaagtggaa agacttgaat ttagttttt 7320
acctataacctt atgtgaaactt ctattatggg acccaatggg catatgggtt tgaactcaca 7380
ctttttttt ttttttgc ctgtgttattc tcattgggtt tgcaacaata attcatcaag 7440
taatcatggc cagcgattat tgatcaaaat caaaaggtaa tgcacatcctt cattcaactaa 7500
gccatgccat gcccaggaga ctggttcccc ggtgacacat ccattgctgg caatgagtgt 7560
gccagagttt ttagtgccaa gttttcaga aagtttgaag caccatgggtg tgcattgtc 7620
acttttgtga aagctgctct gctcagatgc tatcaacattt gaatatcagt tgacagaatg 7680
gtgccatgctg tgcttaacat cctgttttga ttccctctga taagctgttc tgggtggcagt 7740
aacatgcaac aaaaatgtgg gtttgcatttgc gacggggaaa cttggttcca ttgttatatt 7800
gtcctatgct tcgagccatg ggtcttacagg gtcatttcata tgagactctt aaataactt 7860
agatccgtt aagaggcaaa gaatcaacatg ccaaactgtt ggggtgtcaa gtcgtgtt 7920
ccaggccatg ggattaaaga gattgtgcgt tcaaaacccatg ggaagccgtt gcccatttgt 7980
cctgactgtc tgcttaacatg gtacactgtc tctcaagatg tttatctgac acaagtgtat 8040
tatttctggc tttttgaattt aatctagaaa atgaaaagat ggagttgtat ttgtacaaaa 8100
atgtttgtac tttttatgt tatttggat tttttttttt atcagtgtact tctgaatcct 8160
tagaatggcc tctttgtaga accctgtggt atagaggatg atggccactg ccccactatt 8220
tttattttct tatgttaagtt tgcatatcag tcatgacttag tgccatagaaa gcaatgtat 8280
ggtcaggatc tcatgacattt atatttgcgtt ttctttcaga tcatttagga tactcttaat 8340
ctcacttcat caatcaaaata ttttttgcgtt gtatgtgtt gctgaaagag tatgtacgt 8400
cgtataagac tagagagata ttaagtctca gtacacttcc tggccatgt tattcagctc 8460
actggtttac aaatataatgtt tgcgttgcgtt ttgttagggcc ccactgttac aatattggc 8520
agcctttttt tttttttttt aatttgcacaa atgcaaaaacg caagaaagta taagggtcac 8580
aagttaaacc aatgaattct tcaacaggaa aacagactgtt cttggaaact tgctgaaaa 8640
cacaacttgt gtttatggca ttttagtaccc tcaaaataattt ggcttgcag atattggata 8700
ccccattttttt tctgacagtc tcaaaattttt catctttca atcactagtc aagaaaaata 8760
taaaaacaac aaataacttcc atatggagca tttttcagag ttttcttacc cagtcttatt 8820
tttcttagtca gttaacatctt gtaaaaatac tgtttcaactt atacttactg ttaactgtct 8880
tgagagaaaa gaaaaatatgtt agagaactat tttttgggaa agttcaagtg atctttcaat 8940
atcattacta acttcttcca tttttccaa aatttgcata ttaacgttac aggtgtt 9000
cttcagattt caaattaatc tttctatatt tttttttt acagaatattt atataaccca 9060
ctgctgaaaa agaaaaat gattgttttgcgtt gaagttaaag tcaatattgtt tttttttt 9120
aagtaatgaa ggcatttttcc caataacttag tgatatggca tgcgttgcattt ttacagtatc 9180
ttcaaaaaata cagaattttt atgatattt ctccttcatc aatatttttcc aaaaatcaag 9240
ttatgggtttc ctcatttttac taaaatcgta ttcttatttctt tcattatagt aatctatgt 9300
gcaactccctt acttcgggttc ctctgatttcc aaggccatattttttttt caaaaggcac 9360
tgtgaactat ttttttttttgcgtt gaagttaaag tcaatattgtt tttttttt 9420
gcttagaaaca atctatgtt atacatcttcc attaataactg tgttacctt taaaatagta 9480

attttttaca ttttcctgtg taaaccta at tttttacca actctatact 9540
caatcaagca aaatttctgt atattccctg tggaatgtac ctatgtgagt ttcagaaatt 9600
ctcaaaaatac gtgttcaaaa atttctgctt ttgcacatctt gggacaccc agaaaactta 9660
ttaacaactg tgaatatgag aaatacagaa gaaaataata agccctctat acataaatgc 9720
ccagcacaat tcattgttaa aaaacaacca aacccacac tactgtatcc cattatctgt 9780
actgaaagca aatgcttgc gactattaaa tggcacat cattcatca ctgtatagta 9840
atcattgact aaagccattt gctgtgttt cttcttgcgg ntgnatatat caggtaaaat 9900
attttccaaa gagccatgtg tcatgtataa ctgaaccctt tgatattgag acattaattt 9960
ggacccttgg tattatctac tagaataatg taatactgna gaaatattgc tctaattctt 10020
tcaaaatgggt gcacccccct taaaangttc tattccata aggatattgc ttgcattatcc 10080
cttcttatac cctaagatga agctgtttt gtgcctttt ttcatttcattt gccctcattc 10140
caagcactt acgtgtctg taatggatc tattttgcattt ctggaaatatac tgagaattgc 10200
aaaactagac aaaacttca caacagattt ctaagttaaa tcattttcat taaaaggaaa 10260
aaagaaaaaaa aatttgtat gtcaataact ttatatgaag tattaaaatg catatttcta 10320
tggtgtataa taatgatca caaaataaag ctgtgacagt tctgttaaaa aaaaaaaaaa 10380
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 10440
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 10442
aa

<210> 2
<211> 2261
<212> PRT
<213> Homo sapiens

<400> 2
Met Ala Cys Trp Pro Gln Leu Arg Leu Leu Leu Trp Lys Asn Leu Thr
1 5 10 15

Phe Arg Arg Arg Gln Thr Cys Gln Leu Leu Leu Glu Val Ala Trp Pro
20 25 30

Leu Phe Ile Phe Leu Ile Leu Ile Ser Val Arg Leu Ser Tyr Pro Pro
35 40 45

Tyr Glu Gln His Glu Cys His Phe Pro Asn Lys Ala Met Pro Ser Ala
50 55 60

Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn Ala Asn Asn Pro
65 70 75 80

Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly Val Val Gly Asn
85 90 95

Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp Ala Arg Arg Leu
100 105 110

Leu Leu Tyr Ser Gln Lys Asp Thr Ser Met Lys Asp Met Arg Lys Val
115 120 125

Leu Arg Thr Leu Gln Gln Ile Lys Lys Ser Ser Ser Asn Leu Lys Leu
130 135 140

Gln Asp Phe Leu Val Asp Asn Glu Thr Phe Ser Gly Phe Leu Tyr His
145 150 155 160

Asn Leu Ser Leu Pro Lys Ser Thr Val Asp Lys Met Leu Arg Ala Asp
165 170 175

Val Ile Leu His Lys Val Phe Leu Gln Gly Tyr Gln Leu His Leu Thr
180 185 190

Ser Leu Cys Asn Gly Ser Lys Ser Glu Glu Met Ile Gln Leu Gly Asp
195 200 205

Gln Glu Val Ser Glu Leu Cys Gly Leu Pro Lys Glu Lys Leu Ala Ala
210 215 220

Ala Glu Arg Val Leu Arg Ser Asn Met Asp Ile Leu Lys Pro Ile Leu
225 230 235 240

Arg Thr Leu Asn Ser Thr Ser Pro Phe Pro Ser Lys Glu Leu Ala Glu
245 250 255

Ala Thr Lys Thr Leu Leu His Ser Leu Gly Thr Leu Ala Gln Glu Leu
260 265 270

Phe Ser Met Arg Ser Trp Ser Asp Met Arg Gln Glu Val Met Phe Leu
275 280 285

Thr Asn Val Asn Ser Ser Ser Ser Thr Gln Ile Tyr Gln Ala Val
290 295 300

Ser Arg Ile Val Cys Gly His Pro Glu Gly Gly Leu Lys Ile Lys
305 310 315 320

Ser Leu Asn Trp Tyr Glu Asp Asn Asn Tyr Lys Ala Leu Phe Gly Gly
325 330 335

Asn Gly Thr Glu Glu Asp Ala Glu Thr Phe Tyr Asp Asn Ser Thr Thr
340 345 350

Pro Tyr Cys Asn Asp Leu Met Lys Asn Leu Glu Ser Ser Pro Leu Ser
355 360 365

Arg Ile Ile Trp Lys Ala Leu Lys Pro Leu Leu Val Gly Lys Ile Leu
370 375 380

Tyr Thr Pro Asp Thr Pro Ala Thr Arg Gln Val Met Ala Glu Val Asn
385 390 395 400

Lys Thr Phe Gln Glu Leu Ala Val Phe His Asp Leu Glu Gly Met Trp
405 410 415

Glu Glu Leu Ser Pro Lys Ile Trp Thr Phe Met Glu Asn Ser Gln Glu
420 425 430

Met Asp Leu Val Arg Met Leu Leu Asp Ser Arg Asp Asn Asp His Phe
435 440 445

Trp Glu Gln Gln Leu Asp Gly Leu Asp Trp Thr Ala Gln Asp Ile Val
450 455 460

Ala Phe Leu Ala Lys His Pro Glu Asp Val Gln Ser Ser Asn Gly Ser
465 470 475 480

Val Tyr Thr Trp Arg Glu Ala Phe Asn Glu Thr Asn Gln Ala Ile Arg
485 490 495

Thr Ile Ser Arg Phe Met Glu Cys Val Asn Leu Asn Lys Leu Glu Pro
500 505 510

Ile Ala Thr Glu Val Trp Leu Ile Asn Lys Ser Met Glu Leu Leu Asp
515 520 525

Glu Arg Lys Phe Trp Ala Gly Ile Val Phe Thr Gly Ile Thr Pro Gly
530 535 540

Ser Ile Glu Leu Pro His His Val Lys Tyr Lys Ile Arg Met Asp Ile
545 550 555 560

Asp Asn Val Glu Arg Thr Asn Lys Ile Lys Asp Gly Tyr Trp Asp Pro
565 570 575

Gly Pro Arg Ala Asp Pro Phe Glu Asp Met Arg Tyr Val Trp Gly Gly
580 585 590

Phe Ala Tyr Leu Gln Asp Val Val Glu Gln Ala Ile Ile Arg Val Leu
595 600 605

Thr Gly Thr Glu Lys Lys Thr Gly Val Tyr Met Gln Gln Met Pro Tyr
610 615 620

Pro Cys Tyr Val Asp Asp Ile Phe Leu Arg Val Met Ser Arg Ser Met
625 630 635 640

Pro Leu Phe Met Thr Leu Ala Trp Ile Tyr Ser Val Ala Val Ile Ile
645 650 655

Lys Gly Ile Val Tyr Glu Lys Glu Ala Arg Leu Lys Glu Thr Met Arg
660 665 670

Ile Met Gly Leu Asp Asn Ser Ile Leu Trp Phe Ser Trp Phe Ile Ser
675 680 685

Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu Val Val Ile Leu
690 695 700

Lys Leu Gly Asn Leu Leu Pro Tyr Ser Asp Pro Ser Val Val Phe Val
705 710 715 720

Phe Leu Ser Val Phe Ala Val Val Thr Ile Leu Gln Cys Phe Leu Ile
725 730 735

Ser Thr Leu Phe Ser Arg Ala Asn Leu Ala Ala Ala Cys Gly Gly Ile
740 745 750

Ile Tyr Phe Thr Leu Tyr Leu Pro Tyr Val Leu Cys Val Ala Trp Gln
755 760 765

Asp Tyr Val Gly Phe Thr Leu Lys Ile Phe Ala Ser Leu Leu Ser Pro
770 775 780

Val Ala Phe Gly Phe Gly Cys Glu Tyr Phe Ala Leu Phe Glu Glu Gln
785 790 795 800

Gly Ile Gly Val Gln Trp Asp Asn Leu Phe Glu Ser Pro Val Glu Glu
805 810 815

Asp Gly Phe Asn Leu Thr Thr Ser Ile Ser Met Met Leu Phe Asp Thr
820 825 830

Phe Leu Tyr Gly Val Met Thr Trp Tyr Ile Glu Ala Val Phe Pro Gly
835 840 845

Gln Tyr Gly Ile Pro Arg Pro Trp Tyr Phe Pro Cys Thr Lys Ser Tyr
850 855 860

Trp Phe Gly Glu Glu Ser Asp Glu Lys Ser His Pro Gly Ser Asn Gln
865 870 875 880

Lys Arg Met Ser Glu Ile Cys Met Glu Glu Glu Pro Thr His Leu Lys
885 890 895

DECODED SEQUENCE

Leu Gly Val Ser Ile Gln Asn Leu Val Lys Val Tyr Arg Asp Gly Met
900 905 910

Lys Val Ala Val Asp Gly Leu Ala Leu Asn Phe Tyr Glu Gly Gln Ile
915 920 925

Thr Ser Phe Leu Gly His Asn Gly Ala Gly Lys Thr Thr Thr Met Ser
930 935 940

Ile Leu Thr Gly Leu Phe Pro Pro Thr Ser Gly Thr Ala Tyr Ile Leu
945 950 955 960

Gly Lys Asp Ile Arg Ser Glu Met Ser Thr Ile Arg Gln Asn Leu Gly
965 970 975

Val Cys Pro Gln His Asn Val Leu Phe Asp Met Leu Thr Val Glu Glu
980 985 990

His Ile Trp Phe Tyr Ala Arg Leu Lys Gly Leu Ser Glu Lys His Val
995 1000 1005

Lys Ala Glu Met Glu Gln Met Ala Leu Asp Val Gly Leu Pro Ser Ser
1010 1015 1020

Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly Met Gln Arg Lys
1025 1030 1035 1040

Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys Val Val Ile Leu
1045 1050 1055

Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg Arg Gly Ile Trp
1060 1065 1070

Glu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile Ile Leu Ser Thr
1075 1080 1085

His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg Ile Ala Ile Ile
1090 1095 1100

Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu Phe Leu Lys Asn
1105 1110 1115 1120

Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys Lys Asp Val Glu
1125 1130 1135

Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr Val Ser Tyr Leu
1140 1145 1150

Lys Lys Glu Asp Ser Val Ser Gln Ser Ser Ser Asp Ala Gly Leu Gly
1155 1160 1165

Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val Ser Ala Ile Ser
1170 1175 1180

Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu Val Glu Asp Ile
1185 1190 1195 1200

Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Glu Ala Ala Lys Glu Gly
1205 1210 1215

Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg Leu Ser Asp Leu
1220 1225 1230

Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu Glu Glu Ile Phe
1235 1240 1245

Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu Thr Ser Asp Gly
1250 1255 1260

Thr Leu Pro Ala Arg Arg Asn Arg Arg Ala Phe Gly Asp Lys Gln Ser
1265 1270 1275 1280

Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp Pro Asn Asp Ser
1285 1290 1295

Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu Ser Gly Met Asp
1300 1305 1310

Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu Thr Gln Gln Gln
1315 1320 1325

Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala Arg Arg Ser Arg
1330 1335 1340

Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val Phe Val Cys Ile
1345 1350 1355 1360

Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly Lys Tyr Pro Ser
1365 1370 1375

Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr Thr Phe Val Ser
1380 1385 1390

Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu Leu Asn Ala Leu
1395 1400 1405

DEPARTMENT OF GENETICS

Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu Gly Asn Pro Ile
1410 1415 1420

Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Trp Thr Thr Ala Pro
1425 1430 1435 1440

Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly Asn Trp Thr Met
1445 1450 1455

Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp Lys Ile Lys Lys
1460 1465 1470

Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu Pro Pro Pro Gln
1475 1480 1485

Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu Thr Gly Arg Asn
1490 1495 1500

Ile Ser Asp Tyr Leu Val Lys Thr Tyr Val Gln Ile Ile Ala Lys Ser
1505 1510 1515 1520

Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr Gly Gly Phe Ser
1525 1530 1535

Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser Gln Glu Val Asn
1540 1545 1550

Asp Ala Ile Lys Gln Met Lys Lys His Leu Lys Leu Ala Lys Asp Ser
1555 1560 1565

Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe Met Thr Gly Leu
1570 1575 1580

Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His
1585 1590 1595 1600

Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala Ile Leu Arg Ala
1605 1610 1615

Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly Ile Thr Ala Phe
1620 1625 1630

Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu
1635 1640 1645

Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala
1650 1655 1660

Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg
1665 1670 1675 1680

Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val
1685 1690 1695

Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val
1700 1705 1710

Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser
1715 1720 1725

Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu
1730 1735 1740

Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe
1745 1750 1755 1760

Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe
1765 1770 1775

Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr
1780 1785 1790

Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu
1795 1800 1805

Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys
1810 1815 1820

Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe
1825 1830 1835 1840

Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Met
1845 1850 1855

Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr
1860 1865 1870

Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu
1875 1880 1885

Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp
1890 1895 1900

Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile
1905 1910 1915 1920

Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile
1925 1930 1935

Pro Pro Gly Glu Cys Phe Gly Leu Leu Gly Val Asn Gly Ala Gly Lys
1940 1945 1950

Ser Ser Thr Phe Lys Met Leu Thr Gly Asp Thr Thr Val Thr Arg Gly
1955 1960 1965

Asp Ala Phe Leu Asn Lys Asn Ser Ile Leu Ser Asn Ile His Glu Val
1970 1975 1980

His Gln Asn Met Gly Tyr Cys Pro Gln Phe Asp Ala Ile Thr Glu Leu
1985 1990 1995 2000

Leu Thr Gly Arg Glu His Val Glu Phe Phe Ala Leu Leu Arg Gly Val
2005 2010 2015

Pro Glu Lys Glu Val Gly Lys Val Gly Glu Trp Ala Ile Arg Lys Leu
2020 2025 2030

Gly Leu Val Lys Tyr Gly Glu Lys Tyr Ala Gly Asn Tyr Ser Gly Gly
2035 2040 2045

Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile Gly Gly Pro Pro
2050 2055 2060

Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp Pro Lys Ala Arg
2065 2070 2075 2080

Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys Glu Gly Arg Ser
2085 2090 2095

Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu Cys Thr
2100 2105 2110

Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly Ser Val
2115 2120 2125

Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr Ile Val Val Arg
2130 2135 2140

Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln Asp Phe Phe Gly
2145 2150 2155 2160

Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn Met Leu
2165 2170 2175

Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile Phe Ser
2180 2185 2190

Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr Ser Val
2195 2200 2205

Ser Gln Thr Thr Leu Asp Gln Val Phe Val Asn Phe Ala Lys Asp Gln
2210 2215 2220

Ser Asp Asp Asp His Leu Lys Asp Leu Ser Leu His Lys Asn Gln Thr
2225 2230 2235 2240

Val Val Asp Val Ala Val Leu Thr Ser Phe Leu Gln Asp Glu Lys Val
2245 2250 2255

Lys Glu Ser Tyr Val
2260

<210> 3
<211> 1643
<212> DNA
<213> Homo sapiens

<400> 3

gaattccttg ctggggctc cacatgcact tccagggct gcttggctct tctatgggtc 60
tgtcctgagt gttgatagaa ccactgatgt gagtacctgg gcttggcggt ggcctggaga 120
tcctgttgc tgtagcatgg agggggcttg tcagctgaat gtctgtatgc aggtgggtggg 180
agttctggaa tatgtatggag ctggagggtgg gaagagaagt aggcttgggg cagctctctc 240
atgccaccc attctggcca aaactcaggta caaactgtga agagtctaaa tgtgaatctg 300
cccttcaagg tggctacaaa ggttatcttg tcaaggtagg agaccttgtg gcctccacgt 360
gcacttccag ggcctgttgc gcctcttcta cgggtctgtc ctgagtcattc tatgaatctc 420
ccttcaggcc agattcatat ttagactctt cacagttga ccttagttt ggccagaata 480
aggtgacatt tagttgttg gcttggatgaa tgacttaat attttagacat atgggtgtta 540
ggcctgcatt cctactcttgc ctttttttt tgccccccca gtgttttggg tagtttgct 600
ccccctacag ccaaaggcaa acagataagt tggagggttg gagtggctac ataattttac 660
acgactgcaa ttctctggct gcacttcaca aatgtataca aactaaatac aagtccctgtg 720
tttttatcac agggaggctg atcaatataa tgaaattaaa agggggctgg tcccatttttg 780
ttctgtgttt ttgtttttt gtttctttt ttgtttttgt ggcctcatttc ctctcaattt 840
atgaagagaa gcagtaagat gttccctctcg ggtccctctga gggacctggg gagctcaggc 900
tggaaatctc caaggcagta ggtcgctat caaaaatcaa aatccaggtt tgtgggggaa 960
aaacaaaagc agccattac ccagaggact gtccgcattc ccctcaccaccc agcctaggcc 1020
tttggaaagga aacaaaagac aagacaaaat gattggcgtc ctgaggggaga ttcagcctag 1080
agctctctct ccccccaatcc ctccctccgg ctgaggaaac taacaaagga aaaaaaaaaatt 1140
gcggaaagca ggatttagag gaagcaaatt ccactgggtgc ccttggatgc cggaaacgtg 1200
gactagagag tctgcggcgc agccccgagc ccagcgcttc cccgcgcgtt tagggccggcg 1260
ggcccccggcg ggggaagggg acgcagacccg cggaccctaa gacacctgtc gtaccctcca 1320
ccccccaccc acccacctcc ccccaactcc ctagatgtgt cgtggccggc tggacgtcgc 1380

ccgttaagg ggcgggcccc ggctccacgt gcttctgct gagtgactga actacataaa 1440
cagaggccgg aaacggggcg gggaggaggg agagcacagg cttgaccga tagtaacctc 1500
tgcgctcggt gcagccaat ctataaaagg aactagtccc ggcaaaaacc ccgtaattgc 1560
gagcgagagt gagtggggcc gggacccgca gagccgagcc gacccttctc tcccggtcg 1620
cggcagggca gggcggggag ctc 1643

<210> 4
<211> 748
<212> DNA
<213> Homo sapiens

<400> 4
atccaanaa catttccng catctgttgt tgccaaactca caatgtctt catttctga 60
acttacccnc caaatgaagn tcggcacgca attatgttgt agcnactctt aggcccccg 120
cttacactta tgcttccggc thgttgttg ggaattggac ggataccatt tcacncagga 180
aacagatatg nccatgatta cgccaaagttt ttaggtgcn cgatagaata ctcaagcttg 240
gaattcgcgg ccgcagtcga cggacccccc ggaagattc ctctcattac aaaaaacca 300
gacagtagtg gacgtgcag ttctcacatc ttctctacag gatgagaaag tgaaagaaag 360
ctatgtatga agaatcctgt tcatacgggg tggctgaaag taaagaggaa ctagactttc 420
cttgcacca tgtgaagtgt tggagaaa agagccagaa gttgatgtgg gaagaagtaa 480
actggatact gtactgatac tattcaatgc aatgcaattc aatgcaatga aaacaaaatt 540
ccattacagg ggcagtcct ttgttagccctt tgtttgtat ggctctcaag tgaaagactt 600
gaatttagtt ttttacctat acctatgtga aactctatta tggaacccaa tggacatag 660
ggtttgaact cacactttt tttttttttt cctgtgtatt ctcattgggg ttgcaacaat 720
aattcatcaa gtaaaaaaaaaaaaaaa 748

<210> 5
<211> 2011
<212> DNA
<213> Homo sapiens

<400> 5
agaatcctgt tcatactggg gtggcttggaa agtaatggaa ggaactagac tttcctttgc 60
accatgtgaa gtgttgtgaa gaaaagagcc agaagtgtat gtggaaagaa gtaacttggaa 120
tactgtactg atactattca atgcaatgca attcaatgca atggaaacaa aattccatttta 180
caggggcaag tgccttggta gcccattgtct tggatggatc tcaagtggaaa gacttgaatt 240
tagttttta cctatacccta tggaaactc tattatggaa cccaatggac atatgggttt 300
gaactcacac tttttttttt ttttgttccctt gtgtattctt attgggggttggca 360
tcatacaatgtt atcatggcca gcgattatgg atcaaatca aaaggtatg cacatcctca 420
ttcaactaaggc catgccccatgc ccaggagact ggtttcccg gacacatcc attgctggca 480
ataggtgtgc cagagtttatt agtgccttgc ttttgcgttgc ttttgcgttgc 540
tcatactgtcac ttttgtggaa gctgtctgc tcagatgtca tcaatgttgc atatcgttgc 600
acagaatggt gccatgcgtg gctaaacatcc tggatggatt ccctgtata agctgttgc 660
gtggcgttgc catgcaacaa aatgtgggt gtctctggc acggaaact tgggtccatt 720
gttatattgt cctatgttgc gagccatggg tctacagggt catccttgc agactttaa 780
atataacttag atcctggtaa gaggcaaaaga atcaacagcc aaactgttgc ggctgcaagc 840
tgctgttgc agggcatggg attaaagaga ttgtgttgc aaaccttaggg aagcctgtgc 900
ccatttgcctt tgcgttgc tcaacatgtt acactgcattc tcaagatgtt ttttgcacac 960

aagtgtatta ttctggc tttgaattaa tctagaaaaat gaaaagatgg agttgtattt 1020
tgacaaaaat gtttgtactt ttaatgtta tttgaattt taagttctat cagtgacttc 1080
tgaatcctta gaatgcctc ttttagaaac cctgtggtat agaggagat ggccactgcc 1140
ccactattt tattttctta tgtaagttt catatcagtc atgacttagt cctagaaagc 1200
aatgtgatgg tcaggatctc atgacattat atttgagttt ctttcagatc atttagata 1260
ctcttaatct cacttcatca atcaaataatt tttttagtgt atgctgtac tgaaagagta 1320
tgtacgtacg tataagacta gagagatatt aagtctcagt acacttcctg tgccatgtta 1380
ttcagctcac tggtttacaa atataggtt tcttgggtt gtaggagccc actgtaaaca 1440
tattggcag cctttttttt tttttttt aattgcaaca atgcaaaagc caagaaagta 1500
taagggtcac aagtctaaac aatgaattct tcaacaggga aaacagctag cttagaaaaact 1560
tgctgaaaac acaacttgtg tttatggcat ttagtacctt caaataattt gcttgcaga 1620
tattggatac cccattaaat ctgacagtct caaattttt atctcttcaa tcactagtca 1680
agaaaaataat aaaaacaaca aatacttcca tatggagcat ttttcagagt tttctaacc 1740
agtcttattt ttcttagtcag taaacattt taaaaatact gtttcaactaa tacttactgt 1800
taactgtctt gagagaaaaag aaaaatatga gagaactatt gtttgggaa gttcaagtga 1860
tcttcaata tcattactaa ctttccac ttttccaaa atttgaatat taacgctaaa 1920
ggtctaaggaa cttcagattt caaattaatc tttctatatt ttttaaattt acagaatatt 1980
atataaccca ctgctaaaaa aaaaaaaaaa a 2011

<210> 6
<211> 3366
<212> DNA
<213> Homo sapiens

<400> 6
agaatcctgt tcatacgggg tggctgaaag taaagaggaa cttagacttcc ctttgcacca 60
tgtgaagtgt tgtggagaaa agagccagaa gttgatgtgg gaagaagtaa actggatact 120
gtactgatac tattcaatgc aatgcattt aatgcatttgc aaacaaaatt ccattacagg 180
ggcagtcctt ttttccat ttttccat gtttccat gtttccat gtttccat 240
ttttccat acctatgtt aactcttattt ttttccat ttttccat gtttccat gtttccat 300
cacactttt ttttccat ttttccat gtttccat gtttccat gtttccat gtttccat 360
caagtaatca tggccagcga ttattgtatca aaatdaaaag gtaatgcaca tcctcattca 420
ctaagccatg ccatgccccag gagactgggt tcccggtgac acatccatttgc ctggcaatga 480
gtgtgccaga gtttccat ttttccat gtttccat gtttccat gtttccat gtttccat 540
gctcactttt gtgaaagctg ctctgctcag agtctatcaa catttgcata catttgcata 600
aatgggtccca tgcgtggcta acatccgtt ttttccat ttttccat gtttccat gtttccat 660
cagtaacatg caacaaaaat gtgggtgtt ctttgcata ctttgcata ctttgcata 720
tatttgcata ttttccat ttttccat gtttccat gtttccat gtttccat gtttccat 780
acttagatcc tggtaagagg caaagaatca acagccaaac ttttccat ttttccat gtttccat 840
gaagccaggg catgggatca aagagattttt gtttccat ttttccat gtttccat gtttccat 900
ttgtcctgac ttttccat ttttccat gtttccat gtttccat gtttccat gtttccat 960
gtattatttc ttttccat ttttccat gtttccat gtttccat gtttccat gtttccat 1020
aaaaatgtttt gtacttttta atgatgtttt gtttccat ttttccat gtttccat gtttccat 1080
tcctttagaat ggccttttgc ttttccat ttttccat gtttccat gtttccat gtttccat 1140
tatttttattt ttctttagtta agtttgcata ttttccat ttttccat gtttccat gtttccat 1200
tggatgttgcag gatctcatca cattatattt gtttccat ttttccat gtttccat gtttccat 1260
taatctcaact ttttccat ttttccat gtttccat gtttccat gtttccat gtttccat 1320
cgtacgtata agactagaga gtttccat ttttccat gtttccat gtttccat gtttccat 1380

0
1
2
3
4
5
6
7
8
9

gctcaactgg ttaacaata aggttgtt gttggtag gagcccacg taacaatatt 1440
gggcagcctt tttttttttt tttaattgc aacaatgca aagccaagaa agtataaggg 1500
tcacaagttt aaacaatgaa ttcttcaaca gggaaaacag ctatgttcaa aacttgctga 1560
aaaacacaac ttgtgtttat ggcatttagt accttcaaat aattggctt gcagatattg 1620
gataccccat taaatctgac agtctcaaat ttttcatctc ttcaatcaact agtcaagaaa 1680
aatataaaaa caacaatac ttccatatgg agcattttc agagtttct aaccaggct 1740
tattttcta gtcagtaaac atttgtaaaa atactgtttc actaatactt actgttaact 1800
gtcttgagag aaaagaaaa tatgagagaa ctattgttg gggaaagtca agtcatctt 1860
caatatcatt actaacttct tccactttt cccaaatttg aatattaacg ctaaagggtgt 1920
aagacttcag atttcaaatt aatcttctt tatttttaa atttacagaa tattatataa 1980
cccactgctg aaaaagaaaa aatgattgt tttagaagtt aaagtcaata ttgattttaa 2040
atataagtaa tgaaggcata ttccatataa ctatgtat ggcatcggtt caatttacag 2100
tatcttcaaa aatacagaat ttatagaata atttctcctc atttaatatt tttcaaaatc 2160
aaagttatgg ttccctcatt ttactaaaat cgtattctaa ttcttcattt tagtaatct 2220
atgagcaact ctttacttcg gttccctctga ttcaaggcc atattttaaa aatcaaaaag 2280
gcactgtgaa ctatggaa gaaaacacgca catttaata cagattgaaa ggacctcttc 2340
tgaagctaga aacaatctat agttatacat cttcatttacttactgttac cttttaaaat 2400
agtaatttt tacattttcc tttgttaacc taattgtggt agaaattttt accaactcta 2460
tactcaatca agcaaaaattt ctgttatattt cctgtggaaat gtacctatgt gagttcaga 2520
aattctcaaa atacgtgttc aaaaatttct gctttgcattt ctttgggaca cctcagaaaa 2580
cttatttaca actgtgaata tgagaaatac agaagaaaaat aataagccct ctatacataa 2640
atgcccgca caattcattt ttaaaaaca accaaacctc acactactgt atttcattt 2700
ctgtactgaa agcaaatgct ttgtgactat taaatgtgc acatcatttca ttcactgtat 2760
agtaatttattt gactaaagcc atttgcgtt ttttcttctt gtggntgnat atatcaggta 2820
aaatattttc caaagagcca tttgttcatgt aatactgaac cttttgat ttagacat 2880
atttggaccc ttgttattat ctactagaat aatgttatac tgnagaaaata ttgtcttaat 2940
tctttcaaaa tggtgcattt ccctttaaaan gttcttattt cataaggatt tagcttgctt 3000
atcccttctt atacccttaag atgaagctgt ttttgcattt tttgttcatc attggccctc 3060
attccaagca cttaacgctg tctgtatgg gatcttattt tgcactggaa tatctgagaa 3120
ttgcaaaact agacaaaagt ttccacaacag atttcttaat taaatcattt tcatttttttt 3180
gaaaaaaaaaaaaaaaatttt gtatgtcaat aactttat taaatcattt taaatcattt 3240
tctatgttgc tttttttttt aatataatga gtcacaaaat aaagctgtga cagttctgtt aaaaaaaaaa 3300
aaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 3360
aa 3366

<210> 7
<211> 10474
<212> DNA
<213> Homo sapiens

<400> 7

tctagaactg ggtaccagct gctagcaagc ttccggcacga cccgcagagc cgagccgacc 60
cttctctccc gggctgcggc agggcaggcc gggggactcc gggcaccaac agagccgggtt 120
ctcaggggcgc tttgttccctt gttttttccc cgggttctgtt ttctccctt ctccggaaagg 180
cttgcataagg ggtaggagaa agagacgcaaa acacaaaagt gaaaaacagt taatgaccag 240
ccacgggcgtt ccctgttgc agctctggcc gctgccttcc aggggtcccg agccacacgc 300
tggcgtgtt ggcgtggaa acatggcttg ttggcctcag ctgaggttgc tgcgtggaa 360
gaacctcaact ttcagaagaa gacaaacatg tcagctgttta ctggaaaggc cctggccctt 420

atttatc~~ttc~~ ctgatcc~~t~~ tctctgttcg gctgagctac ccaccctaa aacaacatga 480
atgccat~~ttt~~ ccaaataaag ccatgc~~cc~~ tc~~ca~~ gagaaca cttc~~ctt~~ tggg ttcaggggat 540
tatctgtaat gccaacaacc cctgttccg ttacccgact cctggggagg ctcccggagt 600
tg~~tt~~ gaaac tt~~a~~ acaa~~at~~ ccattgtggc tcgc~~c~~ ttc~~ctt~~ tc~~ca~~ gtc ggaggcttct 660
tttatacagc caga~~aa~~ agaca ccagcatgaa ggacatgcgc aaagttctga gaacattaca 720
gc~~ag~~ atcaag aaatcc~~act~~ caaa~~act~~ t~~g~~aa gcttcaagat tt~~c~~ctgttgg acaatgaaac 780
cttctctggg ttc~~c~~tat~~at~~ acaac~~c~~ctc tctccaaag tctactgtgg acaagatgct 840
gagggct~~gt~~ gtcattctcc acaaggtatt tt~~g~~caaggc taccagttac atttgacaag 900
tctgtcaat ggat~~ca~~aaat cagaagagat gattcaactt ggtgaccaag aagttctga 960
gctttgtggc ctaccaaagg agaaaactggc tg~~c~~agc~~c~~agag cgag~~t~~acttc gttccaa~~ac~~at 1020
ggacatc~~ct~~g aagccaa~~tcc~~ tgagaacact aaactctaca tctcc~~c~~tcc cgagcaagga 1080
gctggctgaa gccacaaaaa tattgctgca tagtcttggg actctggccc aggagctgtt 1140
cagcatgaga agctggag~~t~~ acatgc~~g~~aca ggag~~gt~~gat~~t~~ tttctgacca atgtgaacag 1200
ctccagctcc tccacccaaa totaccaggc t~~g~~t~~g~~tctcg~~t~~ attgtctg~~c~~g ggc~~at~~ccc~~g~~a 1260
gggagggggg ctgaagatca ag~~t~~ctctcaa ctggat~~t~~gag gacaacaact acaaagccct 1320
ctt~~t~~ggag~~g~~ aatggcactg aggaagatgc tgaaac~~c~~ttc tatgacaact ctacaactcc 1380
ttactgcaat gattt~~g~~at~~g~~a agaattt~~g~~ga gtct~~g~~at~~c~~c~~t~~ ctttccc~~g~~ca ttatctgaa 1440
agctctgaag c~~cg~~ctgctcg tt~~g~~gg~~a~~ag~~at~~ cctgtata~~c~~ a~~c~~tgacactc cagccacaag 1500
gc~~ag~~gtcatg gctgagg~~t~~ga acaagac~~ctt~~ ccagg~~a~~act~~g~~ gctgt~~t~~tc~~c~~ at~~g~~atctg~~g~~a 1560
aggcatgtgg gaggaactca gccccaa~~g~~at ctggac~~c~~ttc atggagaaca gccaagaaat 1620
ggac~~ctt~~gtc cg~~g~~at~~g~~ct~~t~~ tggac~~ag~~cg~~g~~ ggacaat~~g~~ac cacttttggg aac~~ag~~c~~ag~~tt 1680
ggatggctt~~a~~ gattggac~~ag~~ cccaa~~g~~ad~~at~~ c~~gt~~g~~c~~g~~t~~tt tt~~g~~g~~c~~ca~~g~~c acccagagga 1740
tgtcc~~c~~gtcc agtaatgg~~t~~ ctgt~~g~~tac~~ac~~ ctggagagaa gctt~~c~~a~~ac~~g agactaa~~cc~~ 1800
ggcaatccgg accat~~at~~ctc g~~t~~tc~~at~~g~~g~~ga gt~~g~~t~~g~~ca~~ac~~ ctgaaca~~ag~~c taga~~a~~cc~~at~~ 1860
agcaac~~ag~~aa g~~t~~ctgg~~g~~ct~~a~~ tcaaca~~ag~~tc catggag~~ct~~g ctggat~~g~~aga gga~~ag~~tt~~c~~tg 1920
gg~~c~~t~~g~~gtatt~~t~~ gt~~t~~t~~c~~act~~g~~ gaattactcc agg~~c~~ag~~c~~att~~g~~ gag~~c~~t~~g~~cccc at~~c~~at~~g~~t~~ca~~ 1980
gtacaagatc cgaatggaca ttgacaat~~gt~~ ggagaggaca aataaaatca aggatgg~~gt~~a 2040
ct~~g~~gg~~ac~~ct~~c~~ g~~g~~t~~c~~ct~~g~~ag~~c~~ ctg~~ac~~cc~~tt~~ tgagg~~a~~cat~~g~~ c~~g~~gt~~a~~c~~g~~t~~t~~ ggggggg~~c~~tt 2100
cg~~c~~ct~~a~~ct~~t~~g~~c~~ cgg~~g~~at~~t~~gg~~c~~ tggagc~~ag~~gc aat~~c~~at~~c~~agg~~t~~ g~~t~~g~~c~~t~~g~~ac~~g~~g gc~~ac~~c~~g~~ag~~aa~~ 2160
gaaaact~~g~~gt~~t~~ gt~~t~~tat~~at~~gc aac~~ag~~at~~g~~cc ctat~~cc~~t~~g~~t tac~~g~~t~~g~~at~~g~~ acat~~t~~tt~~t~~ct 2220
gc~~gg~~gt~~g~~at~~t~~ agcc~~gg~~tc~~a~~ tg~~cc~~ct~~c~~t~~t~~ cat~~g~~ad~~g~~ct~~t~~ g~~c~~ct~~g~~g~~at~~tt~~t~~ act~~c~~ag~~t~~gg~~c~~ 2280
tgt~~g~~at~~c~~at~~c~~ aagg~~g~~cat~~g~~ tg~~t~~tat~~g~~g~~a~~aa ggagg~~g~~ac~~g~~ ctg~~aa~~ag~~g~~aga c~~ca~~t~~g~~c~~gg~~at~~t~~ 2340
cat~~g~~gg~~c~~ct~~t~~g~~c~~ gacaac~~ag~~ca tactct~~g~~tt tag~~c~~tt~~g~~tc~~t~~ att~~g~~at~~g~~ag~~cc~~ tcatt~~c~~ct~~t~~ 2400
tctt~~g~~tg~~ag~~g~~c~~ g~~c~~t~~g~~cc~~t~~g~~c~~ tag~~t~~g~~g~~t~~c~~at~~t~~ cct~~g~~aa~~g~~tt~~t~~ g~~g~~aa~~ac~~ct~~g~~c tg~~c~~c~~c~~t~~a~~ca~~g~~ 2460
tgat~~cc~~c~~ag~~c g~~t~~g~~g~~t~~tt~~tg~~t~~ t~~c~~t~~c~~t~~g~~tc~~t~~ c~~g~~t~~tt~~g~~t~~ct~~t~~ g~~t~~g~~g~~t~~g~~aca~~a~~ tc~~c~~t~~g~~c~~ag~~t~~g~~ 2520
ct~~c~~c~~c~~t~~g~~att~~t~~ agc~~ac~~act~~c~~t~~t~~ t~~c~~t~~c~~ca~~g~~ag~~c~~ caac~~c~~t~~g~~g~~c~~a c~~g~~ag~~c~~c~~t~~g~~t~~g~~g~~ ggg~~g~~at~~ca~~~~t~~ 2580
ct~~a~~ct~~t~~c~~ac~~g~~t~~ ct~~g~~t~~ac~~ct~~g~~cc~~t~~ c~~c~~t~~ac~~gt~~c~~c~~t~~ g~~t~~g~~g~~t~~g~~g~~c~~a t~~g~~g~~c~~agg~~a~~ct ac~~g~~tt~~g~~gg~~c~~tt 2640
cac~~ac~~t~~ca~~ag~~t~~ at~~c~~tt~~cg~~ct~~a~~ g~~c~~ct~~g~~ct~~g~~tc~~t~~ tc~~c~~t~~g~~tg~~g~~g~~c~~t~~t~~ t~~t~~g~~g~~ag~~at~~g~~t~~cc~~t~~ 2700
ct~~t~~tt~~g~~cc~~ct~~t~~t~~ t~~t~~t~~g~~agg~~g~~ac~~t~~ g~~g~~gg~~c~~att~~g~~gg~~c~~ ag~~c~~aac~~c~~ct~~g~~t~~t~~ tt~~g~~g~~g~~ag~~at~~g~~t~~cc~~t~~ 2760
tgt~~g~~gagg~~aa~~ gat~~g~~g~~c~~t~~ca~~ at~~c~~t~~c~~acc~~ac~~ t~~t~~cg~~a~~t~~c~~tc~~t~~ at~~g~~at~~g~~ct~~t~~g~~t~~ tt~~g~~ac~~a~~c~~c~~tt~~t~~ 2820
c~~c~~t~~c~~t~~at~~g~~gg~~ g~~t~~g~~at~~g~~ac~~ct~~t~~ g~~g~~t~~ac~~att~~g~~aa g~~g~~ct~~g~~gt~~c~~ttt~~t~~ ccagg~~g~~ct~~g~~agt~~t~~ ac~~g~~gaatt~~c~~c~~t~~ 2880
c~~agg~~cc~~c~~ct~~gg~~ t~~at~~tt~~c~~c~~tt~~ g~~c~~ac~~ca~~ag~~c~~t~~c~~ ct~~a~~ct~~g~~g~~t~~tt~~t~~ g~~g~~cg~~ag~~g~~aa~~ g~~t~~g~~at~~g~~ag~~aa 2940
gag~~cc~~acc~~c~~c~~t~~ g~~g~~t~~cc~~aa~~g~~cc~~t~~ agaagagaat g~~t~~c~~ag~~aa~~at~~c~~t~~ g~~t~~cat~~g~~g~~ag~~gg~~a~~ ag~~g~~gaac~~cc~~cc~~c~~ 3000
cc~~ac~~t~~g~~aa~~g~~ g~~t~~gg~~gg~~ct~~g~~gt~~t~~ ccatt~~c~~ag~~aa~~ c~~c~~t~~g~~t~~aa~~aa g~~t~~ct~~ac~~cc~~g~~ag~~t~~ at~~g~~gg~~at~~g~~aa~~ 3060
g~~g~~t~~gg~~ct~~g~~gt~~c~~ gat~~g~~g~~c~~ct~~gg~~ c~~a~~t~~g~~aa~~t~~t~~t~~ tt~~at~~g~~ag~~gg~~gc~~ c~~ag~~at~~c~~ac~~c~~t~~c~~ oct~~c~~c~~t~~gg~~gg~~ 3120
cc~~aca~~at~~g~~ga~~t~~ g~~c~~gg~~gg~~aa~~g~~ga~~t~~ c~~g~~acc~~ac~~cat~~t~~ g~~t~~ca~~at~~c~~c~~tc~~t~~ acc~~gg~~gt~~t~~gt~~t~~ t~~c~~cccc~~cc~~g~~a~~c~~t~~ 3180
ct~~c~~gg~~gg~~c~~ac~~c~~t~~ g~~c~~c~~t~~ac~~at~~cc~~t~~ t~~g~~gg~~aa~~aa~~g~~ga~~t~~ c~~a~~t~~c~~cg~~c~~t~~c~~ gag~~at~~g~~ag~~g~~c~~a cc~~at~~cc~~gg~~ca~~t~~ 3240
gaac~~c~~ct~~gg~~gg~~g~~ g~~t~~ct~~g~~cccc~~t~~ agcata~~ac~~gt~~t~~ g~~c~~t~~tt~~g~~ac~~ at~~g~~ct~~g~~act~~g~~ t~~c~~ga~~aa~~ac~~a~~ 3300

catctggttc tatgcccgtt gaaaggct ctctgagaag cacgtgaag cggagatgga 3360
gcagatggcc ctggatgtt gttgccatc aagcaagctg aaaagcaaaa caagccagct 3420
gtcagggtgaa atgcagagaa agctatctgt ggccttggcc tttgtcgaaa gatctaaggt 3480
tgtcattctg gatgaapcca cagctgggtt ggacccttac tcccgcaggg gaatatggga 3540
gctgctgctg aaataccgac aaggccgcac cattattctc tctacacacc acatggatga 3600
acggacgac ctggggaca ggattgccc catctccat gggaaagctgt gctgtgtggg 3660
ctcctccctg tttctgaaga accagctggg aacaggctac tacctgaccc ttgtcaagaa 3720
agatgtggaa tcctccctca gttccctgcag aaacagtagt agcactgtgt catacctgaa 3780
aaaggaggac agtgtttctc agagcagtcc tgatgctggc ctggcagcg accatgagag 3840
tgacacgctg accatcgatg tctctgttat ctccaaacctc atcaggaagc atgtgtctga 3900
agccccggctg gtggaaagaca tagggcatga gctgacccat gtgctgccc atgaagctgc 3960
taaggaggga gcctttgtgg aactcttca tgagattgt gaccggctct cagacctggg 4020
catttctagt tatggcatct gagagacgac ccttggaaatattcctca aggtggccga 4080
agagagtggg gtggatgctg agacctcaga tggcacccat ccagcaagac gaaacaggcg 4140
ggccttcggg gacaaggcaga gtgtcttcg cccgttcaact gaagatgtg ctgctgatcc 4200
aaatgattct gacatagacc cagaatccag agagacagac ttgctcagt ggtatggatgg 4260
caaagggtcc taccaggtga aaggctggaa acttacacag caacagttt tggcccttt 4320
gtggaaagaga ctgctaattt ccagacggag tcggaaagga tttttgctc agattgtctt 4380
gccagctgtg tttgtctgca ttgccttgc gttcagccat atcgtgcccac ccttggcaa 4440
gtaccccccagc ctggaaacttc agccctggat gtacaacgaa cagttacat ttgtcagcaa 4500
tgatgctctt gaggacacgg gaacccttga actcttaaac gccctcacca aagaccctgg 4560
cttcgggacc cgctgtatgg aaggaaatccc aatcccagac acggccctgcc aggcaggggg 4620
ggaagagtgg accactgccc cagttccca gaccatcatg gaccccttcc agaatggaa 4680
ctggacaatg cagaaccctt cacctgcattt ccagtgttagc agcgacaaaa tcaagaagat 4740
gctgcctgtg tgtccccca gggcaggggg gctgccttcc ccacaaaagaa aacaaaacac 4800
tgcagatatac cttcaggacc tgacagggaa aacatccatg gattatctgg tgaagacgta 4860
tgtgcagatc atagccaaaa gcttaaagaa aagatctgg gtatggatgt ttaggtatgg 4920
cggttttcc ctgggtgtca gtaatactca agcacttccctt ccagtcaag aagttatga 4980
tgccatcaaa caaatgaaga aacacctaaa gctggccaag gacagttctg cagatcgatt 5040
tctcaacacg ttggaaagat ttatgacagg actggacacc agaaataatg tcaagggttg 5100
gtcaataaac aagggtggc atgcaatccatg ctcttccctt aatgtcatca acaatgccc 5160
tctccgggccc aacctgcaaa agggagagaa ccctagccat tatggaaat tgccttcaa 5220
tcatccctg aatctcacca agcagcagct ctcagagggtg gctctgtatca ccacatcagt 5280
ggatgtccctt gtgtccatctt gtgtcatcc ttgcattttcc ttcgtccctt ccagctttgt 5340
cgtattccctg atccaggagc gggtcagcaa agcaaaaacac ctgcagttca tcagtggagt 5400
gaagcctgtc atctactggc tctcttattt tgcattttccat atgtcaattt acgttgcattt 5460
tgccacactg gtcattatca tcttcatttcc tttccagccat aagtcctatg tgcctccac 5520
caatctgcctt gtgtccatccc ttctactttt gctgtatggg tggtaatca cacctctcat 5580
gtacccagcc tcctttgtgt tcaagatccc cagcacagcc tatgtggtc tcaccagcg 5640
gaaccttccattt attggcattt atggcagcgtt ggccacccat tgcattttccat tggtaaccga 5700
caataagctg aataatatca atgatatccatgaaatccatg ttcttgcattt tcccacattt 5760
ttgcctgggca cgagggtca tcgacatgtt gaaaaaccag gcaatggctg atgcctgg 5820
aagggtttggg gagaatcgctt ttgtgtcacc attatcttgg gacttgggg gacgaaacctt 5880
cttcggccatg gcccgtggaaag ggggtgggtt cttcccttccatcactgttgc tccagttacag 5940
attcttcatttccatc aggcccagac ctgtaaatgc aaagctatctt cctctgtatca atgaagatga 6000
agatgtgagg cgggaaagac agagaattctt tgatgggtt ggcggaaatg acatctttaga 6060
aatcaaggag ttgacgaaga tatataagaag gaagcgaaag cctgctgtt acaggattt 6120
cgtggcattt ctcctgggtt agtgctttgg gctcctgggaa gttatgggg ctggaaaatc 6180

atcaacttc aagatgtta caggagatac cactgttacc agaggagat ctttccttaa 6240
caaaaatagt atcttatcaa acatccatga agtacatcg aacatggct actgccctca 6300
gttgatgcc atcacagac tggtgactgg gagagaacac gtggagttct ttgcctttt 6360
gagaggagtc ccagagaaag aagttggcaa gggtggtag tggcgattc ggaaactggg 6420
cctcgtgaag tatggagaaa aatatgctgg taactatagt ggaggcaaca aacgcaagct 6480
ctctacagcc atggcttga tcggcgggccc tcctgtggtg tttctggatg aacccaccac 6540
aggcatggat cccaaagccc ggccgttctt gtggaaattgt gcccataatg ttgtcaagga 6600
ggggagatca gtagtgctta catctcatag tatggaaagaa tgtgaagctc ttgcactag 6660
gatggcaatc atggtaatcg gaagggtcag gtgccttggc agtgtccagc atctaaaaaa 6720
taggtttgga gatggttata caatagttgt acgaatagca gggtccaacc cggacctgaa 6780
gcctgtccag gatttcttgc gacttgcatt tcctggaagt gttctaaaag agaaacaccg 6840
gaacatgcta caataccagc ttccatcttc attatcttct ctggccagga tattcagcat 6900
cctctccag agcaaaaaggc gactccacat agaagactac tctgttctc agacaacact 6960
tgaccaagta tttgtgaact ttgccaagga ccaaagtgt gatgaccact taaaagacct 7020
ctcattacac aaaaaccaga cagtagtggc cgtagcagg ttcacatctt ttctacagga 7080
tgagaaaatg aaagaaaagct atgtatgaaat aatccgttc atacgggtg gctgaaagta 7140
aagaggaact agactttctt ttgcacccatg tgaagtgttggagaaaag agccagaagt 7200
tgcataatgaa acaaaaattcc attacaggggc cagtgccctt gtagcctatg tcttgcattgg 7260
ctctcaatgt aaagacttgc atttatgtt ttacctatac ctatgtaaa ctctattatg 7320
gaacccaaatg gacatatggg tttgaactca cactttttt tttttttgt tcctgttatg 7380
tctcatggg gttgcaacaa taattcatca agtaatcatg gccagcgatt attgatcaaa 7440
atcaaaaaggc aatgcacatc ctcatcact aagccatgcc atgcccagga gactggttc 7500
ccggtgacac atccattgct ggcaatgagt gttccagagt tattatgtcc aagttttca 7560
gaaagttga agcaccatgg tggcgtatgc tttttttgt gaaagctgt ctgctcagag 7620
tctatcaaca ttgaatatac gttgacagaa tgggtccatg cgtggctaac atccgttctt 7680
gattccctct gataagctgt tctggggca gtaacatgca acaaaaatgt ggggtctct 7740
aggcacggga aacttgggtc cattgttata ttgttctatg ctgcagcca tgggtctaca 7800
gggtcatcct tatgagactc ttaaatatac ttagatccctg gtaagaggca aagaatcaac 7860
agccaaactg ctggggctgc aagctgctga agccaggcata tgggattaaa gagattgtgc 7920
gttcaaacct aggaagccct gttccattt gtcctgactg tctgctaaacta tggtacactg 7980
catctcaaga tttttatctg acacaatgtt attatttctg gctttttgaa ttaatctaga 8040
aaatgaaaatg atggagttgtt attttgcataa aatgtttgtt actttttatg tttttttgaa 8100
attttaatgtt ctatcactg tttttatctg acacaatgtt attatttctg gctttttgaa ttaatctaga 8160
gtatagagga gtatggccac tggccacta tttttttttt tttatgttacta ttttgcattatc 8220
agtcatgact agtgcctaga aagcaatgtg atggcaggaa totcatgaca ttatatttga 8280
gtttcttca gatcatttag gatacttta atctcacttc atcaatcaaa ttttttttga 8340
gtgtatgtg tagctgaaag agtacatcg tacgtataag actagagaga tattaaatgtt 8400
cagtagactt cctgtgccccat gttattcactg tcaactgggtt acaaaatatac gttgtcttgc 8460
ggttgttagga gcccactgtt acaatattgg gcagcctttt tttttttt ttaattgca 8520
caatgcaaaa gccaagaaag tataagggtc acaagttaa acaatgaattt cttcaacagg 8580
gaaaacagct agtttgcataa cttgctgaaa aacacaactt gtgtttatgg catttagtac 8640
cttcaatataa ttggcttgc agatattggc taccatataa aatctgacatg tttttttt 8700
ttcatctctt caatcacttag tcaagaaaaa tataaaaaaca acaaaatactt ccatatggag 8760
catttttcag agtttctaa cccagttta tttttcttagt cagtaaacat tttttttt 8820
actgtttcac taatacttac tgtaactgtt cttgagagaa aagaaaaata tgagagaact 8880
attgtttggg gaagttcaag tgatcttca atatcattac taacttcttc cactttttcc 9000
aaaatttgcataa tattaaatgtt acaatgttactt cttttttt 9060

ttttttaaat ttacagaat tataataacc cactgctgaa aaagaaaa atgattgttt 9120
tagaagttaa agtcaatatt gatTTaaat ataagtaatg aaggcatatt tccaataact 9180
agtatgg catcgttgca attcacaga tcttcaaaaa tacagaatTT atagaataat 9240
tttcctcat ttaatattt tcaaatcaa agttatggtt tcctcattt actaaaatcg 9300
tattctaatt ctccattata gtAAATCTAT gagcaactcc ttacttcggt tcctctgatt 9360
tcaaggccat attttaaaaa atcaaaaggc actgtgaact atttgaaga aaacacgaca 9420
tttaataca gattgaaagg acctcttcg aagctagaaa caatctatag ttatacatct 9480
tcattaatac tgtgttacat ttAAAATAG taatTTTTA catttcctg tgtaaaccta 9540
attgtggtag aaattttac caactctata ctcaatcaag caaaatttct gtatattccc 9600
tgtggatgt acctatgtga gtttcgaaaa ttctcaaaat acgtgttcaa aaatttctgc 9660
tttgcattt ttggacacc tcagaaaact tattaacaac tgtgaatatg agaaatacag 9720
aagaaaataa taagccctct atacataaat gcccagcaca attcattgtt aaaaacaac 9780
caaacctcac actactgtat ttcattatct gtactgaaag caaatgcTTT gtgacttata 9840
aatgttgacac atcattcatt cactgtatag taatcattga ctaaagccat ttgctgtt 9900
ttcttcttgc ggntgnatat atcaggtaaa atatTTCCA aagagccatg tgtcatgtaa 9960
tactgaaccc ttgatattg agacattaat ttggaccctt ggtattatct actagaataa 10020
tgaataactg nagaatatt gctctaattc ttcaaaaatg gtgcattcccc cttaaaangt 10080
tctatTTCCA taaggattta gttgcttat cccttctt accctaagat gaagctgtt 10140
ttgtgcttgc tgttcatcat tggccctcat tccaagcact ttacgctgtc tgtaatggga 10200
tctatTTTG cactgaaata tctgagaatt gcaaaactag acaaaagttt cacaacagat 10260
ttctaagtta aatcatttca attaaaagga aaaaagaaaa aaaattttgt atgtcaataa 10320
cttataatga agtataaaaa tgcattttc tatgttgtaa tataatgagt cacaataaa 10380
agctgtgaca gttctgttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 10440
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 10474

<210> 8
<211> 2261
<212> PRT
<213> Homo sapiens

<400> 8
Met Ala Cys Trp Pro Gln Leu Arg Leu Leu Leu Trp Lys Asn Leu Thr
1 5 10 15

Phe Arg Arg Arg Gln Thr Cys Gln Leu Leu Leu Glu Val Ala Trp Pro
20 25 30

Leu Phe Ile Phe Leu Ile Leu Ile Ser Val Arg Leu Ser Tyr Pro Pro
35 40 45

Tyr Glu Gln His Glu Cys His Phe Pro Asn Lys Ala Met Pro Ser Ala
50 55 60

Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn Ala Asn Asn Pro
65 70 75 80

Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly Val Val Gly Asn
85 90 95

Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp Ala Arg Arg Leu
100 105 110

Leu Leu Tyr Ser Gln Lys Asp Thr Ser Met Lys Asp Met Arg Lys Val
115 120 125

Leu Arg Thr Leu Gln Gln Ile Lys Lys Ser Ser Asn Leu Lys Leu
130 135 140

Gln Asp Phe Leu Val Asp Asn Glu Thr Phe Ser Gly Phe Leu Tyr His
145 150 155 160

Asn Leu Ser Leu Pro Lys Ser Thr Val Asp Lys Met Leu Arg Ala Asp
165 170 175

Val Ile Leu His Lys Val Phe Leu Gln Gly Tyr Gln Leu His Leu Thr
180 185 190

Ser Leu Cys Asn Gly Ser Lys Ser Glu Glu Met Ile Gln Leu Gly Asp
195 200 205

Gln Glu Val Ser Glu Leu Cys Gly Leu Pro Lys Glu Lys Leu Ala Ala
210 215 220

Ala Glu Arg Val Leu Arg Ser Asn Met Asp Ile Leu Lys Pro Ile Leu
225 230 235 240

Arg Thr Leu Asn Ser Thr Ser Pro Phe Pro Ser Lys Glu Leu Ala Glu
245 250 255

Ala Thr Lys Thr Leu Leu His Ser Leu Gly Thr Leu Ala Gln Glu Leu
260 265 270

Phe Ser Met Arg Ser Trp Ser Asp Met Arg Gln Glu Val Met Phe Leu
275 280 285

Thr Asn Val Asn Ser Ser Ser Ser Thr Gln Ile Tyr Gln Ala Val
290 295 300 305

Ser Arg Ile Val Cys Gly His Pro Glu Gly Gly Leu Lys Ile Lys
310 315 320

Ser Leu Asn Trp Tyr Glu Asp Asn Asn Tyr Lys Ala Leu Phe Gly Gly
325 330 335

Asn Gly Thr Glu Glu Asp Ala Glu Thr Phe Tyr Asp Asn Ser Thr Thr
340 345 350

Pro Tyr Cys Asn Asp Leu Met Lys Asn Leu Glu Ser Ser Pro Leu Ser
355 360 365

Arg Ile Ile Trp Lys Ala Leu Lys Pro Leu Leu Val Gly Lys Ile Leu
370 375 380

Tyr Thr Pro Asp Thr Pro Ala Thr Arg Gln Val Met Ala Glu Val Asn
385 390 395 400

Lys Thr Phe Gln Glu Leu Ala Val Phe His Asp Leu Glu Gly Met Trp
405 410 415

Glu Glu Leu Ser Pro Lys Ile Trp Thr Phe Met Glu Asn Ser Gln Glu
420 425 430

Met Asp Leu Val Arg Met Leu Leu Asp Ser Arg Asp Asn Asp His Phe
435 440 445

Trp Glu Gln Gln Leu Asp Gly Leu Asp Trp Thr Ala Gln Asp Ile Val
450 455 460

Ala Phe Leu Ala Lys His Pro Glu Asp Val Gln Ser Ser Asn Gly Ser
465 470 475 480

Val Tyr Thr Trp Arg Glu Ala Phe Asn Glu Thr Asn Gln Ala Ile Arg
485 490 495

Thr Ile Ser Arg Phe Met Glu Cys Val Asn Leu Asn Lys Leu Glu Pro
500 505 510

Ile Ala Thr Glu Val Trp Leu Ile Asn Lys Ser Met Glu Leu Leu Asp
515 520 525

Glu Arg Lys Phe Trp Ala Gly Ile Val Phe Thr Gly Ile Thr Pro Gly
530 535 540

Ser Ile Glu Leu Pro His His Val Lys Tyr Lys Ile Arg Met Asp Ile
545 550 555 560

Asp Asn Val Glu Arg Thr Asn Lys Ile Lys Asp Gly Tyr Trp Asp Pro
565 570 575

Gly Pro Arg Ala Asp Pro Phe Glu Asp Met Arg Tyr Val Trp Gly Gly
580 585 590

Phe Ala Tyr Leu Arg Asp Val Val Glu Gln Ala Ile Ile Arg Val Leu
595 600 605

Thr Gly Thr Glu Lys Lys Thr Gly Val Tyr Met Gln Gln Met Pro Tyr
610 615 620

Pro Cys Tyr Val Asp Asp Ile Phe Leu Arg Val Met Ser Arg Ser Met
625 630 635 640

Pro Leu Phe Met Thr Leu Ala Trp Ile Tyr Ser Val Ala Val Ile Ile
645 650 655

Lys Gly Ile Val Tyr Glu Lys Glu Ala Arg Leu Lys Glu Thr Met Arg
660 665 670

Ile Met Gly Leu Asp Asn Ser Ile Leu Trp Phe Ser Trp Phe Ile Ser
675 680 685

Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu Val Val Ile Leu
690 695 700

Lys Leu Gly Asn Leu Leu Pro Tyr Ser Asp Pro Ser Val Val Phe Val
705 710 715 720

Phe Leu Ser Val Phe Ala Val Val Thr Ile Leu Gln Cys Phe Leu Ile
725 730 735

Ser Thr Leu Phe Ser Arg Ala Asn Leu Ala Ala Ala Cys Gly Gly Ile
740 745 750

Ile Tyr Phe Thr Leu Tyr Leu Pro Tyr Val Leu Cys Val Ala Trp Gln
755 760 765

Asp Tyr Val Gly Phe Thr Leu Lys Ile Phe Ala Ser Leu Leu Ser Pro
770 775 780

Val Ala Phe Gly Phe Gly Cys Glu Tyr Phe Ala Leu Phe Glu Glu Gln
785 790 795 800

Gly Ile Gly Val Gln Trp Asp Asn Leu Phe Glu Ser Pro Val Glu Glu
805 810 815

Asp Gly Phe Asn Leu Thr Thr Ser Ile Ser Met Met Leu Phe Asp Thr
820 825 830

Phe Leu Tyr Gly Val Met Thr Trp Tyr Ile Glu Ala Val Phe Pro Gly
835 840 845

Gln Tyr Gly Ile Pro Arg Pro Trp Tyr Phe Pro Cys Thr Lys Ser Tyr
850 855 860

Trp Phe Gly Glu Glu Ser Asp Glu Lys Ser His Pro Gly Ser Asn Gln
865 870 875 880

Lys Arg Met Ser Glu Ile Cys Met Glu Glu Glu Pro Thr His Leu Lys
885 890 895

Leu Gly Val Ser Ile Gln Asn Leu Val Lys Val Tyr Arg Asp Gly Met
900 905 910

Lys Val Ala Val Asp Gly Leu Ala Leu Asn Phe Tyr Glu Gly Gln Ile
915 920 925

Thr Ser Phe Leu Gly His Asn Gly Ala Gly Lys Thr Thr Thr Met Ser
930 935 940

Ile Leu Thr Gly Leu Phe Pro Pro Thr Ser Gly Thr Ala Tyr Ile Leu
945 950 955 960

Gly Lys Asp Ile Arg Ser Glu Met Ser Thr Ile Arg Gln Asn Leu Gly
965 970 975

Val Cys Pro Gln His Asn Val Leu Phe Asp Met Leu Thr Val Glu Glu
980 985 990

His Ile Trp Phe Tyr Ala Arg Leu Lys Gly Leu Ser Glu Lys His Val
995 1000 1005

Lys Ala Glu Met Glu Gln Met Ala Leu Asp Val Gly Leu Pro Ser Ser
1010 1015 1020

Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly Met Gln Arg Lys
1025 1030 1035 1040

Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys Val Val Ile Leu
1045 1050 1055

Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg Arg Gly Ile Trp
1060 1065 1070

Glu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile Ile Leu Ser Thr
1075 1080 1085

His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg Ile Ala Ile Ile
1090 1095 1100

Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu Phe Leu Lys Asn
1105 1110 1115 1120

Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys Lys Asp Val Glu
1125 1130 1135

Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr Val Ser Tyr Leu
1140 1145 1150

Lys Lys Glu Asp Ser Val Ser Gln Ser Ser Ser Asp Ala Gly Leu Gly
1155 1160 1165

Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val Ser Ala Ile Ser
1170 1175 1180

Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu Val Glu Asp Ile
1185 1190 1195 1200

Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Glu Ala Ala Lys Glu Gly
1205 1210 1215

Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg Leu Ser Asp Leu
1220 1225 1230

Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu Glu Glu Ile Phe
1235 1240 1245

Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu Thr Ser Asp Gly
1250 1255 1260

Thr Leu Pro Ala Arg Arg Asn Arg Ala Phe Gly Asp Lys Gln Ser
1265 1270 1275 1280

Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp Pro Asn Asp Ser
1285 1290 1295

Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu Ser Gly Met Asp
1300 1305 1310

Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu Thr Gln Gln
1315 1320 1325

Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala Arg Arg Ser Arg
1330 1335 1340

Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val Phe Val Cys Ile
1345 1350 1355 1360

Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly Lys Tyr Pro Ser
1365 1370 1375

Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr Thr Phe Val Ser
1380 1385 1390

Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu Leu Asn Ala Leu
1395 1400 1405

Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu Gly Asn Pro Ile
1410 1415 1420

Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Trp Thr Thr Ala Pro
1425 1430 1435 1440

Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly Asn Trp Thr Met
1445 1450 1455

Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp Lys Ile Lys Lys
1460 1465 1470

Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu Pro Pro Pro Gln
1475 1480 1485

Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu Thr Gly Arg Asn
1490 1495 1500

Ile Ser Asp Tyr Leu Val Lys Thr Tyr Val Gln Ile Ile Ala Lys Ser
1505 1510 1515 1520

Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr Gly Gly Phe Ser
1525 1530 1535

Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser Gln Glu Val Asn
1540 1545 1550

Asp Ala Ile Lys Gln Met Lys Lys His Leu Lys Leu Ala Lys Asp Ser
1555 1560 1565

Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe Met Thr Gly Leu
1570 1575 1580

Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His
1585 1590 1595 1600

Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala Ile Leu Arg Ala
1605 1610 1615

Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly Ile Thr Ala Phe
1620 1625 1630

Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu
1635 1640 1645

Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala
1650 1655 1660

Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg
1665 1670 1675 1680

Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val
1685 1690 1695

Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val
1700 1705 1710

Pro Ala Thr Leu Val Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser
1715 1720 1725

Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu
1730 1735 1740

Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe
1745 1750 1755 1760

Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe
1765 1770 1775

Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr
1780 1785 1790

Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu
1795 1800 1805

Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys
1810 1815 1820

Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe
1825 1830 1835 1840

Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Met
1845 1850 1855

Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr
1860 1865 1870

Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu
1875 1880 1885

O S S E R V A D O R E

Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp
1890 1895 1900

Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile
1905 1910 1915 1920

Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile
1925 1930 1935

Pro Pro Gly Glu Cys Phe Gly Leu Leu Gly Val Asn Gly Ala Gly Lys
1940 1945 1950

Ser Ser Thr Phe Lys Met Leu Thr Gly Asp Thr Thr Val Thr Arg Gly
1955 1960 1965

Asp Ala Phe Leu Asn Lys Asn Ser Ile Leu Ser Asn Ile His Glu Val
1970 1975 1980

His Gln Asn Met Gly Tyr Cys Pro Gln Phe Asp Ala Ile Thr Glu Leu
1985 1990 1995 2000

Leu Thr Gly Arg Glu His Val Glu Phe Phe Ala Leu Leu Arg Gly Val
2005 2010 2015

Pro Glu Lys Glu Val Gly Lys Val Gly Glu Trp Ala Ile Arg Lys Leu
2020 2025 2030

Gly Leu Val Lys Tyr Gly Glu Lys Tyr Ala Gly Asn Tyr Ser Gly Gly
2035 2040 2045

Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile Gly Gly Pro Pro
2050 2055 2060

Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp Pro Lys Ala Arg
2065 2070 2075 2080

Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys Glu Gly Arg Ser
2085 2090 2095

Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu Cys Thr
2100 2105 2110

Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly Ser Val
2115 2120 2125

Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr Ile Val Val Arg
2130 2135 2140

Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln Asp Phe Phe Gly
2145 2150 2155 2160

Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn Met Leu
2165 2170 2175

Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile Phe Ser
2180 2185 2190

Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr Ser Val
2195 2200 2205

Ser Gln Thr Thr Leu Asp Gln Val Phe Val Asn Phe Ala Lys Asp Gln
2210 2215 2220

Ser Asp Asp Asp His Leu Lys Asp Leu Ser Leu His Lys Asn Gln Thr
2225 2230 2235 2240

Val Val Asp Val Ala Val Leu Thr Ser Phe Leu Gln Asp Glu Lys Val
2245 2250 2255

Lys Glu Ser Tyr Val
2260

<210> 9
<211> 10474
<212> DNA
<213> Homo sapiens

<400> 9

tctagaactg ggtaccagct gcttagcaagc ttccggcacga gccgcagagc cgagccgacc 60
cttctctccc gggctgcggc agggcagggc gggggactcc gcgcaccaac agagccggtt 120
ctcaggcgcc tttgctcctt gttttttccc cggttctgtt ttctccctt ctccggaaagg 180
cttgtcaagg ggttaggagaa agagacgcaa acacaaaagt gaaaaacagt taatgaccag 240
ccacgggctt ccctgtgtg agctctggcc gtcgccttcc agggctcccc agccacacgc 300
tggcgctgct ggctgagggaa acatggcttg ttggcctcag ctgaggttgc tgctgtggaa 360
gaacctcaact ttcagaagaa gacaaacatg tcagctgtta ctgaaatgtt cctggcctct 420
atttatcttc ctgatcttga tctctgttcg gctgagctac ccaccctatg aacaacatga 480
atgccatttt ccaaataaaag ccatgccctc tgcaggaaca cttcccttggg ttcagggat 540
tatctgtaat gccaacaacc cctgtttccg ttaccgcact cctggggagg ctcccggagt 600
tggggaaac tttaacaaat ccattgtggc tgcgcctgttc tcagatgttc ggaggcttct 660
tttatacagc cagaaagaca ccagcatgaa ggacatgcgc aaagttctga gaacattaca 720
gcagatcaag aaatccagct ccaaactgaa gcttcaagat ttccctgggtt acaatgaaac 780
cttctctggg ttccatatatc acaacctctc tctcccaaag tctactgtgg acaagatgt 840
gagggctgtat gtcattctcc acaaggattt tttgcaaggc taccagttac atttgacaag 900
tctgtcaat ggtcaaaat cagaagagat gattcaactt ggtgaccaag aagtttctga 960

gctttgtggc ctaccaaagg aaaaaactggc tgcagcagag cgagtactt gttccaacat 1020
ggacatctg aagccaatcc tgagaacact aaactctaca tctcccttcc cgagcaagga 1080
gctggctgaa gccacaaaaa cattgctgca tagtcttggg actctggccc aggagctgtt 1140
cagcatgaga agctggagtg acatgcgaca ggaggtgatg tttctgacca atgtaacag 1200
ctccagctcc tccaccaaa tctaccaggc tgtgtctcg attgtctgcg ggcataccg 1260
gggagggggg ctgaagatca agtctctcaa ctggatgag gacaacaact acaaagccct 1320
cttggaggg aatggcactg aggaagatgc tgaaaccttc tatgacaact ctacaactcc 1380
ttactgcaat gatttgatga agaatttggg gtcttagtcct cttcccgca ttatctggaa 1440
agctctgaag ccgctgctcg ttggaaagat cctgtataca cctgacactc cagccacaag 1500
gcaggtcatg gctgaggtga acaagacattt ccaggaactg gctgtttcc atgatctgaa 1560
aggcatgtgg gaggaactca gccccaaagat ctggaccttc atggagaaca gccaagaaat 1620
ggaccttgcc cgatgtctgt tgacagcag ggacaatgac cacttttggg aacagcagtt 1680
ggatggctta gattggacag cccaaagacat cgtggcgtt ttggccaaagc acccagagga 1740
tgtccagtcc agtaatggtt ctgtgtacac ctggagagaa gcttcaacg agactaacca 1800
ggcaatccgg accatatctc gcttcatgga gtgttcaac ctgaacaagc tagaaccat 1860
agcaacagaa gtctggctca tcaadaagtc catggagctg ctggatgaga ggaagttctg 1920
ggctggattt gtgttcaactg gaatttactcc aggcacgtt gagctgcccc atcatgtcaa 1980
gtacaagatc cgaatggaca ttgacaatgtt ggagaggaca aataaaatca agatgggta 2040
ctgggaccct ggtcctcgag ctgaccctt tgaggacatg tggatgtct ggggggctt 2100
cgctacttg caggatgtgg tggagcaggc aatcatcagg gtgctgacgg gcaccgagaa 2160
gaaaactggt gtctatatgc aacagatgcc ctatccctgt tacgttcatg acatcttct 2220
gcgggtgatg agccgtcaa tgcccttccatgacgctg gcctggattt actcagtggc 2280
tgtgatcatc aagggcatcg tttatgagaa ggaggcacgg ctgaaagaga ccatgcggat 2340
catgggcctg gacaacagca tactctgggt tagctggttc attagtagcc tcattcctct 2400
tcttgtgagc gctggcctgc tagtggatcat cttgaagttt gggaaacctgc tggccctacag 2460
tgatcccagc gtgggttttgc tttccctgtc cttgttttgc gtggatgacaa tcctgcagtg 2520
cttcctgatt agcacactct tctccagagc caacctggca gcagcctgtg ggggcatcat 2580
ctacttcacg ctgtacactgc cttacgtctt gtgttggca tggcaggact acgtgggctt 2640
cacactcaag atcttcgcta gcctgctgtc tcctgtggct tttgggttttgc gctgtgagta 2700
ctttggccctt tttgaggagc agggcattgg agtgcagtgg gacaacctgtt ttgagagtcc 2760
tgtggagggaa gatggctca atctcaccac ttcatgttcc atgatgtgtt ttgacacctt 2820
cctctatggg gtgtatgaccc ttttttttttgc ttttttttttgc acggaaattcc 2880
caggccctgg tattttccctt gcaccaagtc ctactgggtt ggcgaggaaaa gtgtatgagaa 2940
gagccaccct ggttccaacc agaagagaat gtcagaaatc tgcatggagg aggaacccac 3000
ccacttgaag ctgggctgtt ccattcagaa cctggtaaaa gtctaccggat atggatgaa 3060
ggtggctgtc gatggcctgg cactgaattt ttatgagggc tagatcacctt cttccctggg 3120
ccacaatggg gggggaaaga cgaccacat gtcaatcttgc atccgggttgc tccccccgac 3180
ctcgggcacc gcctacatcc tggaaaaga cattcgctt gagatgagca ccattccggca 3240
gaacctgggg gtttgccttcc agcataacgt gctgttttgc atgttgcactg tcgaagaaca 3300
catctgggttccatc ttttttttttgc ttttttttttgc cacgtgaagg cggagatggaa 3360
gcagatggcc ctggatgttg gtttgccttcc aagcaagctg aaaagcaaaa caagccagct 3420
gttcaggtggaa atgcagagaa agctatctgtt ggccttgc ttttttttttgc gatcttgc 3480
tgtcattctg gatgaaccca cagctggatgtt ggccttgc ttttttttttgc gatcttgc 3540
gctgctgtgttccatc aaataccgac aaggccgac cattattctt ttttttttttgc acatggatgaa 3600
agcggacgtc ctgggggaca ggattggccat catctcccat gggaaagctgtt gctgtgtggg 3660
ctccctccctg ttttttttttgc ttttttttttgc gatcttgc ttttttttttgc gatcttgc 3720
agatgtggaa ttttttttttgc ttttttttttgc gatcttgc ttttttttttgc gatcttgc 3780
aaaggaggac agtgtttctc agagcagttc tgatgtggc ctgggcagcg accatgagag 3840

0
1
2
3
4
5
6
7
8
9

tgacacgctg accatcgat ctcgttat ctccaacctc atcaggaag atgtgtctga 3900
agccccggctg gtggaaagaca tagggcatga gctgacctat gtgctgccat atgaagctgc 3960
taaggaggga gccttgtgg aactcttca tgagattgat gaccggctct cagacctggg 4020
catttcttagt tatggcatct cagagacgac cctgaaagaa atattcctca aggtggccga 4080
agagagtggg gtggatgctg agacctcaga tggcacctt ccagcaagac gaaacaggcg 4140
ggccttcggg gacaagcaga gctgtcttcg cccgttcaact gaagatgatg ctgtgtatcc 4200
aaatgattct gacatagacc cagaatccag agagacagac ttgctcagtg ggatggatgg 4260
caaagggtcc taccaggta aaggctggaa acttacacag caacagttt tggccctttt 4320
gtggaaagaga ctgctaattt ccagacggag tcggaaagga tttttgttc agattgtctt 4380
gccagctgtg tttgtctgca ttgccttgtt gttcagccct atcgtgccac ccttggcaa 4440
gtaccccagc ctggaaacctt agccctggat gtacaacgaa cagtacacat ttgtcagcaa 4500
tgatgtccct gaggacacgg gaacccttga actcttaaac gccctcacca aagaccctgg 4560
cttcgggacc cgctgtatgg aaggaaaaccc aatcccagac acgcccgtcc aggcaagggg 4620
ggaagagtgg accactgccc cagttcccca gaccatcatg gacctcttcc agaatgggaa 4680
ctggacaatg cagaaccctt cacctgcatg ccagtgtacg acgcacaaaa tcaagaagat 4740
gctgcctgtg tgtccccag gggcaggggg gctgcctctt ccacaaagaa aacaaaacac 4800
tgcagatatc cttcaggacc tgacaggaag aaacatttgc gattatctgg tgaagacgta 4860
tgtcagatc atagccaaaa gcttaagaa caagatctgg gtgaatgagt ttaggtatgg 4920
cggttttcc ctgggtgtca gtaatactca agcacttcct ccgagtcaag aagttatga 4980
tgccatcaaa caaatgaaga aacacctaaa gctggccaag gacagtctt cagatcgatt 5040
tctcaacagc ttggaaagat ttatgacagg actggacacc agaaataatg tcaaggtgtg 5100
gttcaataac aagggtggc atgcaatcag ctcttcctt aatgtcatca acaatgccat 5160
tctccgggcc aacctgcaaa agggagagaa ccctagccat tatggaatta ctgctttcaa 5220
tcatccctg aatctcacca agcagcagct ctcagaggtg gctctgatga ccacatcagt 5280
ggatgtcctt gtgtccatct gtgtcatctt tgcaatgtcc ttctgtccag ccagctttgt 5340
cgtattcctg atccaggagc gggtcagcaa agcaaaacac ctgcagttca tcagtgagg 5400
gaagcctgtc atctactggc tctctaattt tgtctggat atgtgcaatt acgttgcctt 5460
tgccacactg gtcattatca tcttcatctg ttcccagcag aagtccatg tgcctccac 5520
caatctgcct gtgctagccc ttctactttt gctgtatggg tggtaatca caccctctcat 5580
gtacccagcc tccttggat tcaagatccc cagcacagcc tatgtgggtc tcaccagcgt 5640
gaacctcttc attggcatta atggcagcgt ggccaccttt gtgctggagc tggcaccga 5700
caataagctg aataatatca atgatatcct gaagtccgt ttcttgatct tcccacattt 5760
ttgcctggga cgagggtctc tcgacatggt gaaaaaccag gcaatggctg atgccccttga 5820
aaggtttggg gagaatcgct ttgtgtcacc attatctgg gacttggtgg gacgaaacct 5880
cttcggccatg gccgtggaaag ggggtgggtt ctgcctcatt actgttctga tccagtacag 5940
attcttcatc aggcccagac ctgtaaatgc aaactatct cctctgaatg atgaagatga 6000
agatgtgagg cggaaagac agagaattct tgatgtggaa ggccagaatg acatctttaga 6060
aatcaaggag ttgacgaaga tatatagaag gaagcggaaag cctgctgtt acaggatttg 6120
cgtggcatt ctcctgggtg agtgctttgg gctcctggga gttaatgggg ctgaaaatc 6180
atcaacttca aagatgttaa caggagatac cactgttacc agaggagatg ctggcattaa 6240
caaaaatagt atcttatcaa acatccatga agtacatcag aacatgggt actgcctca 6300
gtttgatgcc atcacagagc tggactgg gagagaacac gtggagttt tggccctttt 6360
gagaggagtc ccagagaaaag aagttggcaa ggttggtag tggcgttcc ggaaactggg 6420
cctcgtgaag tatggagaaa aatatgctgg taactatagt ggaggcaaca aacgcaagct 6480
ctctacagcc atggcttga tcggcggggcc tcctgtgggtt tttctggatg aaccaccac 6540
aggcatggat cccaaagccc ggcggtttt gtggaaattgt gcccataatg ttgtcaagga 6600
ggggagatca gtagtgctt catctcatag tatggaagaa tgtgaagctc tttgcactag 6660
gatggcaatc atggtaatg gaaggttcag gtgccttggc agtgcacagc atctaaaaaa 6720

taggtttgga gatggta caaatagttgt acgaatagca gggtccaa cggacctgaa 6780
gcctgtccag gatttctttg gacttgcatt tccttggaa gtctaaaag agaaacaccg 6840
gaacatgcta caataccagc ttccatcttc attatcttct ctggccagga tattcagcat 6900
cctctcccag agcaaaaagc gactccacat agaagactac tctgttttc agacaacact 6960
tgaccaagta tttgtgaact ttgccaagga ccaaagtgtat gatgaccact taaaagacct 7020
ctcattacac aaaaaccaga cagtagtgga cgttgcagtt ctcacatctt ttctacagga 7080
tgagaaagtg aaagaaagct atgtatgaag aatcctgttc atacgggtg gctgaaaagta 7140
aagaggaact agacttccct ttgcaccatg tgaagtgttg tggagaaaag agccagaagt 7200
tgatgtggga agaagtaaac tggatactgt actgatacta ttcaatgcaa tgcaattcaa 7260
tgcaatgaaa aaaaaattcc attacagggg cagtcctt gtagcctatg tcttgtatgg 7320
ctctcaagtg aaagacttga atttagttt ttacctatac ctatgtaaaa ctctattatg 7380
gaacccaatg gacatatggg tttgaactca cactttttt tttttttgt tcctgtgtat 7440
tctcattggg gttgcaacaa taattcatca agtaatcatg gccagcgatt attgatcaa 7500
atcaaaaaggt aatgcacatc ctcattcaact aagccatgcc atgcccagga gactggttc 7560
ccggtgacac atccattgct gcaatgagt gtgcagagt tattagtgcc aagttttca 7620
gaaagttga agcaccatgg tttgtcatgc tcactttgt gaaagctgct ctgctcagag 7680
tctatcaaca ttgaatatca gttgacagaa tgggccatg cgtggctaac atcctgttt 7740
gattccctct gataagctgt tctggggca gtaacatgca aaaaaatgt gggtgtctct 7800
aggcacggga aacttggttc cattttata ttgtcctatg cttcgagcca tgggtctaca 7860
gggtcatcct tatgagactc ttaaatatac ttagatcctg gtaagaggca aagaatcaac 7920
agccaaactg ctggggctgc aagctgctga agccaggca tgggattaaa gagattgtgc 7980
gttcaaacct agggaaagcct gtgccattt gtcctgactg tctgctaaca tggtacactg 8040
catctcaaga tggtttatctg acacaagtgt attatttctg gttttttgaa ttaatctaga 8100
aaatgaaaag atggagttgt attttgacaa aaatgtttgt acttttaat gttatttgaa 8160
attttaaattt ctatcagtga cttctgaatc cttagaatgg cttttttgtt gaaccctgtg 8220
gtatagagga gtatggccac tgccccacta tttttttttt cttatgtaaat tttgcatatc 8280
agtcatgact agtgcctaga aagcaatgtg atggtcagga tctcatgaca ttatattga 8340
gtttcttca gatcatttag gatactctt atctcacttc atcaatcaaa tttttttgaa 8400
gtgtatgctg tagtggaaag agtatgtacg tacgtataag actagagaga tattaagtct 8460
cagtagactt cctgtgccat gttattcagc tcactggttt acaaataatag gttgtctgt 8520
ggttgttagga gcccactgtt acaatattgg gttttttttt ttaatttgc 8580
caatgcaaaa gccaagaaaag tataagggtc acaagttaa acaatgaatt cttcaacagg 8640
aaaaacagct agcttggaaa cttgctgaaa aacacaactt gtgtttatgg catttagtac 8700
cttcaaataa ttggcttgc agatattgg tacccatta aatctgacag tctcaaattt 8760
ttcatcttta caatcacttag tcaagaaaaa tataaaaaca acaaataactt ccatatggag 8820
cattttttag agttttctaa cccagtcattt tttttctagt cagtaaacat ttgtaaaaat 8880
actgtttcac taatacttac tttttttttt tttttttttt tttttttttt tttttttttt 8940
attgtttggg gaagttcaag tgatcttca atatcattac taacttcttc cacttttcc 9000
aaaatttggaa tattaaacgct aaaggtgtaa gacttcagat ttcaattaa tctttctata 9060
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 9120
tagaagttaa agtcaatattt gattttttttt tttttttttt tttttttttt tttttttttt 9180
agtgtatgg catcgttgca atttacagta tttttttttt tttttttttt tttttttttt 9240
ttctcctcat ttaatatttt tttttttttt tttttttttt tttttttttt tttttttttt 9300
tattctattt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 9360
tcaaggccat attttttttt tttttttttt tttttttttt tttttttttt tttttttttt 9420
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 9480
tcattaaatac tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 9540
attgtggtag aaatttttac caactctata ctcaatcaag caaaattttctt gtatattccc 9600

tgtggaatgt acctatgtgtttcagaaa ttctcaaaat acgtgttcaaaaaattctgc 9660
tttgcacatct ttgggacacc tcagaaaact tattaacaac tgtgaatatg agaaatacag 9720
aagaaaataa taaggccctt atacataaaat gcccagcaca attcattgtt aaaaaacaac 9780
caaacctcac actactgtat ttcattatct gtactgaaag caaatgctt gtgactatta 9840
aatgttgac atcattcatt cactgtatag taatcattga ctaaagccat ttgctgttt 9900
ttcttcttgt ggntgnatat atcaggtaaa atatttcca aagagccatg tgtcatgtaa 9960
tactgaaccc tttgatattg agacattaat ttggaccctt ggtattatct actagaataa 10020
tgtaatactg nagaaatatt gctctaattc tttcaaaatg gtgcattcccc cttaaaangt 10080
tctatccca taaggattta gcttgcttat cccttcttat accctaagat gaagctgttt 10140
ttgtgctctt tggtcatcat tggccctcat tccaaagact ttacgctgtc tgtaatggg 10200
tctatccctt cactggaata tctgagaatt gcaaaactag acaaaagttt cacaacagat 10260
ttctaagtta aatcatttc ataaaaagga aaaaagaaaa aaaatttgt atgtcaataa 10320
ctttatatga agtattaaaa tgcatatttc tatgttgtaa tataatgagt cacaaaataa 10380
agctgtgaca gttctgttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 10440
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 10474

<210> 10

<211> 2261

<212> PRT

<213> Homo sapiens

<400> 10

Met Ala Cys Trp Pro Gln Leu Arg Ile Leu Leu Trp Lys Asn Leu Thr
1 5 10 15

Phe Arg Arg Arg Gln Thr Cys Gln Leu Leu Leu Glu Val Ala Trp Pro
20 25 30

Leu Phe Ile Phe Leu Ile Leu Ile Ser Val Arg Leu Ser Tyr Pro Pro
35 40 45

Tyr Glu Gln His Glu Cys His Phe Pro Asn Lys Ala Met Pro Ser Ala
50 55 60

Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn Ala Asn Asn Pro
65 70 75 80

Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly Val Val Gly Asn
85 90 95

Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp Ala Arg Arg Leu
100 105 110

Leu Leu Tyr Ser Gln Lys Asp Thr Ser Met Lys Asp Met Arg Lys Val
115 120 125

Leu Arg Thr Leu Gln Gln Ile Lys Lys Ser Ser Ser Asn Leu Lys Leu
130 135 140

Gln Asp Phe Leu Val Asp Asn Glu Thr Phe Ser Gly Phe Leu Tyr His
145 150 155 160

Asn Leu Ser Leu Pro Lys Ser Thr Val Asp Lys Met Leu Arg Ala Asp
165 170 175

Val Ile Leu His Lys Val Phe Leu Gln Gly Tyr Gln Leu His Leu Thr
180 185 190

Ser Leu Cys Asn Gly Ser Lys Ser Glu Glu Met Ile Gln Leu Gly Asp
195 200 205

Gln Glu Val Ser Glu Leu Cys Gly Leu Pro Lys Glu Lys Leu Ala Ala
210 215 220

Ala Glu Arg Val Leu Arg Ser Asn Met Asp Ile Leu Lys Pro Ile Leu
225 230 235 240

Arg Thr Leu Asn Ser Thr Ser Pro Phe Pro Ser Lys Glu Leu Ala Glu
245 250 255

Ala Thr Lys Thr Leu Leu His Ser Leu Gly Thr Leu Ala Gln Glu Leu
260 265 270

Phe Ser Met Arg Ser Trp Ser Asp Met Arg Gln Glu Val Met Phe Leu
275 280 285

Thr Asn Val Asn Ser Ser Ser Ser Thr Gln Ile Tyr Gln Ala Val
290 295 300

Ser Arg Ile Val Cys Gly His Pro Glu Gly Gly Leu Lys Ile Lys
305 310 315 320

Ser Leu Asn Trp Tyr Glu Asp Asn Asn Tyr Lys Ala Leu Phe Gly Gly
325 330 335

Asn Gly Thr Glu Glu Asp Ala Glu Thr Phe Tyr Asp Asn Ser Thr Thr
340 345 350

Pro Tyr Cys Asn Asp Leu Met Lys Asn Leu Glu Ser Ser Pro Leu Ser
355 360 365

Arg Ile Ile Trp Lys Ala Leu Lys Pro Leu Leu Val Gly Lys Ile Leu
370 375 380

Tyr Thr Pro Asp Thr Pro Ala Thr Arg Gln Val Met Ala Glu Val Asn
385 390 395 400

Lys Thr Phe Gln Glu Leu Ala Val Phe His Asp Leu Glu Gly Met Trp
405 410 415

Glu Glu Leu Ser Pro Lys Ile Trp Thr Phe Met Glu Asn Ser Gln Glu
420 425 430

Met Asp Leu Val Arg Met Leu Leu Asp Ser Arg Asp Asn Asp His Phe
435 440 445

Trp Glu Gln Gln Leu Asp Gly Leu Asp Trp Thr Ala Gln Asp Ile Val
450 455 460

Ala Phe Leu Ala Lys His Pro Glu Asp Val Gln Ser Ser Asn Gly Ser
465 470 475 480

Val Tyr Thr Trp Arg Glu Ala Phe Asn Glu Thr Asn Gln Ala Ile Arg
485 490 495

Thr Ile Ser Arg Phe Met Glu Cys Val Asn Leu Asn Lys Leu Glu Pro
500 505 510

Ile Ala Thr Glu Val Trp Leu Ile Asn Lys Ser Met Glu Leu Leu Asp
515 520 525

Glu Arg Lys Phe Trp Ala Gly Ile Val Phe Thr Gly Ile Thr Pro Gly
530 535 540

Ser Ile Glu Leu Pro His His Val Lys Tyr Lys Ile Arg Met Asp Ile
545 550 555 560

Asp Asn Val Glu Arg Thr Asn Lys Ile Lys Asp Gly Tyr Trp Asp Pro
565 570 575

Gly Pro Arg Ala Asp Pro Phe Glu Asp Met Trp Tyr Val Trp Gly Gly
580 585 590

Phe Ala Tyr Leu Gln Asp Val Val Glu Gln Ala Ile Ile Arg Val Leu
595 600 605

Thr Gly Thr Glu Lys Lys Thr Gly Val Tyr Met Gln Gln Met Pro Tyr
610 615 620

Pro Cys Tyr Val Asp Asp Ile Phe Leu Arg Val Met Ser Arg Ser Met
625 630 635 640

Pro Leu Phe Met Thr Leu Ala Trp Ile Tyr Ser Val Ala Val Ile Ile
645 650 655

DESIGNER: GENE

Lys Gly Ile Val Tyr Glu Lys Glu Ala Arg Leu Lys Glu Thr Met Arg
660 665 670

Ile Met Gly Leu Asp Asn Ser Ile Leu Trp Phe Ser Trp Phe Ile Ser
675 680 685

Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu Val Val Ile Leu
690 695 700

Lys Leu Gly Asn Leu Leu Pro Tyr Ser Asp Pro Ser Val Val Phe Val
705 710 715 720

Phe Leu Ser Val Phe Ala Val Val Thr Ile Leu Gln Cys Phe Leu Ile
725 730 735

Ser Thr Leu Phe Ser Arg Ala Asn Leu Ala Ala Ala Cys Gly Gly Ile
740 745 750

Ile Tyr Phe Thr Leu Tyr Leu Pro Tyr Val Leu Cys Val Ala Trp Gln
755 760 765

Asp Tyr Val Gly Phe Thr Leu Lys Ile Phe Ala Ser Leu Leu Ser Pro
770 775 780

Val Ala Phe Gly Phe Gly Cys Glu Tyr Phe Ala Leu Phe Glu Glu Gln
785 790 795 800

Gly Ile Gly Val Gln Trp Asp Asn Leu Phe Glu Ser Pro Val Glu Glu
805 810 815

Asp Gly Phe Asn Leu Thr Thr Ser Ile Ser Met Met Leu Phe Asp Thr
820 825 830

Phe Leu Tyr Gly Val Met Thr Trp Tyr Ile Glu Ala Val Phe Pro Gly
835 840 845

Gln Tyr Gly Ile Pro Arg Pro Trp Tyr Phe Pro Cys Thr Lys Ser Tyr
850 855 860

Trp Phe Gly Glu Glu Ser Asp Glu Lys Ser His Pro Gly Ser Asn Gln
865 870 875 880

Lys Arg Met Ser Glu Ile Cys Met Glu Glu Glu Pro Thr His Leu Lys
885 890 895

Leu Gly Val Ser Ile Gln Asn Leu Val Lys Val Tyr Arg Asp Gly Met
900 905 910

Lys Val Ala Val Asp Gly Leu Ala Leu Asn Phe Tyr Glu Gly Gln Ile
915 920 925

Thr Ser Phe Leu Gly His Asn Gly Ala Gly Lys Thr Thr Thr Met Ser
930 935 940

Ile Leu Thr Gly Leu Phe Pro Pro Thr Ser Gly Thr Ala Tyr Ile Leu
945 950 955 960

Gly Lys Asp Ile Arg Ser Glu Met Ser Thr Ile Arg Gln Asn Leu Gly
965 970 975

Val Cys Pro Gln His Asn Val Leu Phe Asp Met Leu Thr Val Glu Glu
980 985 990

His Ile Trp Phe Tyr Ala Arg Leu Lys Gly Leu Ser Glu Lys His Val
995 1000 1005

Lys Ala Glu Met Glu Gln Met Ala Leu Asp Val Gly Leu Pro Ser Ser
1010 1015 1020

Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly Met Gln Arg Lys
1025 1030 1035 1040

Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys Val Val Ile Leu
1045 1050 1055

Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg Arg Gly Ile Trp
1060 1065 1070

Glu Leu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile Ile Leu Ser Thr
1075 1080 1085

His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg Ile Ala Ile Ile
1090 1095 1100

Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu Phe Leu Lys Asn
1105 1110 1115 1120

Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys Lys Asp Val Glu
1125 1130 1135

Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr Val Ser Tyr Leu
1140 1145 1150

Lys Lys Glu Asp Ser Val Ser Gln Ser Ser Ser Asp Ala Gly Leu Gly
1155 1160 1165

Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val Ser Ala Ile Ser
1170 1175 1180

Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu Val Glu Asp Ile
1185 1190 1195 1200

Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Glu Ala Ala Lys Glu Gly
1205 1210 1215

Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg Leu Ser Asp Leu
1220 1225 1230

Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu Glu Glu Ile Phe
1235 1240 1245

Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu Thr Ser Asp Gly
1250 1255 1260

Thr Leu Pro Ala Arg Arg Asn Arg Arg Ala Phe Gly Asp Lys Gln Ser
1265 1270 1275 1280

Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp Pro Asn Asp Ser
1285 1290 1295

Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu Ser Gly Met Asp
1300 1305 1310

Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu Thr Gln Gln Gln
1315 1320 1325

Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala Arg Arg Ser Arg
1330 1335 1340

Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val Phe Val Cys Ile
1345 1350 1355 1360

Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly Lys Tyr Pro Ser
1365 1370 1375

Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr Thr Phe Val Ser
1380 1385 1390

Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu Leu Asn Ala Leu
1395 1400 1405

Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu Gly Asn Pro Ile
1410 1415 1420

Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Trp Thr Thr Ala Pro
1425 1430 1435 1440

Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly Asn Trp Thr Met
1445 1450 1455

Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp Lys Ile Lys Lys
1460 1465 1470

Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu Pro Pro Pro Gln
1475 1480 1485

Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu Thr Gly Arg Asn
1490 1495 1500

Ile Ser Asp Tyr Leu Val Lys Thr Tyr Val Gln Ile Ile Ala Lys Ser
1505 1510 1515 1520

Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr Gly Phe Ser
1525 1530 1535

Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser Gln Glu Val Asn
1540 1545 1550

Asp Ala Ile Lys Gln Met Lys Lys His Leu Lys Leu Ala Lys Asp Ser
1555 1560 1565

Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe Met Thr Gly Leu
1570 1575 1580

Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His
1585 1590 1595 1600

Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala Ile Leu Arg Ala
1605 1610 1615

Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly Ile Thr Ala Phe
1620 1625 1630

Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu
1635 1640 1645

Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala
1650 1655 1660

Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg
1665 1670 1675 1680

Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val
1685 1690 1695

Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val
1700 1705 1710

Pro Ala Thr Leu Val Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser
1715 1720 1725

Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu
1730 1735 1740

Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe
1745 1750 1755 1760

Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe
1765 1770 1775

Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr
1780 1785 1790

Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu
1795 1800 1805

Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys
1810 1815 1820

Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe
1825 1830 1835 1840

Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Met
1845 1850 1855

Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr
1860 1865 1870

Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu
1875 1880 1885

Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp
1890 1895 1900

Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile
1905 1910 1915 1920

Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile
1925 1930 1935

Pro Pro Gly Glu Cys Phe Gly Leu Leu Gly Val Asn Gly Ala Gly Lys
1940 1945 1950

Ser Ser Thr Phe Lys Met Leu Thr Gly Asp Thr Thr Val Thr Arg Gly
1955 1960 1965

Asp Ala Phe Leu Asn Lys Asn Ser Ile Leu Ser Asn Ile His Glu Val
1970 1975 1980

His Gln Asn Met Gly Tyr Cys Pro Gln Phe Asp Ala Ile Thr Glu Leu
1985 1990 1995 2000

Leu Thr Gly Arg Glu His Val Glu Phe Phe Ala Leu Leu Arg Gly Val
2005 2010 2015

Pro Glu Lys Glu Val Gly Lys Val Gly Glu Trp Ala Ile Arg Lys Leu
2020 2025 2030

Gly Leu Val Lys Tyr Gly Glu Lys Tyr Ala Gly Asn Tyr Ser Gly Gly
2035 2040 2045

Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile Gly Gly Pro Pro
2050 2055 2060

Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp Pro Lys Ala Arg
2065 2070 2075 2080

Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys Glu Gly Arg Ser
2085 2090 2095

Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu Cys Thr
2100 2105 2110

Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly Ser Val
2115 2120 2125

Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr Ile Val Val Arg
2130 2135 2140

Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln Asp Phe Phe Gly
2145 2150 2155 2160

Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn Met Leu
2165 2170 2175

Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile Phe Ser
2180 2185 2190

Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr Ser Val
2195 2200 2205

Ser Gln Thr Thr Leu Asp Gln Val Phe Val Asn Phe Ala Lys Asp Gln
2210 2215 2220

Ser Asp Asp Asp His Leu Lys Asp Leu Ser Leu His Lys Asn Gln Thr
2225 2230 2235 2240

Val Val Asp Val Ala Val Leu Thr Ser Phe Leu Gln Asp Glu Lys Val
2245 2250 2255

Lys Glu Ser Tyr Val
2260

<210> 11

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<220>

<220>

<220>

<223> Description of Artificial Sequence: ABC1
amplification primer

<400> 11

cctctcattt cacaaaaaacc agac

24

<210> 12

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<220>

<220>

<220>

<223> Description of Artificial Sequence: ABC1

DRAFT - NOT FOR CITATION

amplification primer

<400> 12
gctttcttc acttctcatc ctg 23

<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 RT-PCR primer

<400> 13
tccttggtt cagggatttc 22

<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 RT-PCR primer

<400> 14
caatgtttt gtggcttcgg c 21

<210> 15
<211> 40
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 RT-PCR primer

<400> 15
agtgcagatc caaacatgtc agctgttact ggaagtggcc 40

<210> 16

<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 RT-PCR
primer

<400> 16
tctctggatt ctgggtctat gtcag 25

<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 RT-PCR
primer

<400> 17
gggagccttt gtggaactct ttc 23

<210> 18
<211> 41
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 RT-PCR
primer

<400> 18
actgggtcgac cattgaattt cattgcattt aatagttatca g 41

<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

00000000000000000000000000000000

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 19
tttcctggtg gacaatgaa

19

<210> 20
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 20
agtgacatgc gacaggag

18

<210> 21
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 21
gatctggaag gcatgtgg

18

<210> 22
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 22
ccaggcagca ttgagctg

18

<210> 23
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 23

ggcctggaca acagcata

18

<210> 24

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 24

ggacaacctg tttgagagt

19

<210> 25

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 25

aagacgacca ccatgtca

18

<210> 26

<211> 18

<212> DNA

<213> Artificial Sequence

DRAFT GENOME

<220>

<220>

<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 26
atatggagc tgctgtg 18

<210> 27

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 27
gggcatgagc tgacctatgt gctg 24

<210> 28

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 28
aagagactgc taattgcc 18

<210> 29

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 29
agcgacaaaa tcaagaag 18

<210> 30
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 30
tggcatgcaa tcagctct 18

<210> 31
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 31
tcctccacca atctgcct 18

<210> 32
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 32
tttttcctca ttactgtt 18

<210> 33
<211> 18
<212> DNA

18

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 33

gatgccatca cagagctg

<210> 34

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 34

agtgtccagc atctaaa

17

<210> 35

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 35

caaagttcac aaatactt

18

<210> 36

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: ABC1

DNA Sequence Database

sequencing primer

<400> 36
cttagggcac aattccaca 19

<210> 37
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 37
tgaaagttga tgatttc 18

<210> 38
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 38
ttttcacca tgtcgatga 19

<210> 39
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 39
ctccactgat gaactgc 17

<210> 40

DRAFT - USE WITH CARE

<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 40
gtttcttcat ttgtttga 18

<210> 41
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 41
agggcgtgtc tgggattg 18

<210> 42
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 42
cagaatcatt tggatcag 18

<210> 43
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

SEQUENCE LISTING

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 43
catcagaact gctctgag

<210> 44
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 44
agctggcttg ttttgcttt

<210> 45
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 45
tggacacgccc cagcttca

<210> 46
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 46
cctgccatgc cacacaca

18

19

18

18

DNA SEQUENCING

<210> 47
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 47
ctcatcaccc gcagaaaag 18

<210> 48
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 48
cacactccat gaagcgag 18

<210> 49
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: ABC1
sequencing primer

<400> 49
tccagataat gcggggaaa 18

<210> 50
<211> 18
<212> DNA
<213> Artificial Sequence

0
1
2
3
4
5
6
7
8
9

<220>

<220>

<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 50 tcaggattgg cttcagga 18

<210> 51

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: ABC1 sequencing primer

<400> 51 aagtttgagc tggatttctt g 21

<210> 52

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: beta-globin antisense oligonucleotide

<400> 52 cctcttacct cagttacaat ttata 25

<210> 53

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: ABC1 antisense oligonucleotide

DRAFT GENOME

<400> 53
catgttgttc atagggtggg tagctc 26

<210> 54
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: beta-actin amplification primer

<400> 54
tcacccacac tgtgccatct acga 24

<210> 55
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: beta-actin amplification primer

<400> 55
cagcggaacc gtcattgcc aatgg 25

<210> 56
<211> 26
<212> DNA
<213> Artificial Sequence

<220>

<220>
<223> Description of Artificial Sequence: sterol response element oligonucleotide

<400> 56
tcgagtgacc gatagtaacc tctcga 26

<210> 57
<211> 26
<212> DNA

Artificial

<213> Artificial Sequence

<220>

<220>

<223> Description of Artificial Sequence: mutated sterol
response element oligonucleotide

<400> 57

tcgagctgca catagtaacc tctcga

26

O E S S E C H T " O C E A E G C