Network Core: Circuit Switching

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed)performance
- call setup required

Analogy: When president travels, a CS path set up.

Packet Switching: Statistical Multiplexing

Sequence of A & B packets does not have fixed pattern, shared on demand **⇒** *statistical multiplexing*.

TDM: each host gets same slot in revolving TDM frame.

Compare

Thoughts on tradeoffs between packet switching and circuit switching?

Which one would you take?

Under what circumstances?

Why?

Packet switching versus circuit switching

Packet switching allows more users to use network!

- □ 1 Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time
- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, probability> 10 active less than .0004

Q: how did we get value 0.0004?

Packet switching versus circuit switching

Is packet switching a "slam dunk winner?"

- Great for bursty data
 - resource sharing
 - simpler, no call setup

Why?

- Excessive congestion: packet delay and loss
 - protocols needed for reliability, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still unsolved (chapter 7)

Packet-switching: store-and-forward

- Takes L/R seconds to transmit (push out) packet of L bits on to link or R bps
- Entire packet must arrive at router before it can be transmitted on next link: store and forward
- delay = 3L/R (assuming zero propagation delay)

Example:

- □ L = 7.5 Mbits
- □ R = 1.5 Mbps
- □ delay = 15 sec

more on delay shortly ...

Packet-switched networks: forwarding

- Goal: move packets through routers from source to destination
 - we'll study several path selection (routing) algorithms (chap 4)
- datagram network:
 - destination address in packet determines next hop
 - routes may change during session
 - analogy: driving, asking directions

virtual circuit network:

- packet carries tag (virtual circuit ID), tag determines next hop
- fixed path determined at call setup time, remains fixed thru call
- routers maintain per-call state