On the φ -family of probability distributions

Rui F. Vigelis*, Charles C. Cavalcante

Wireless Telecommunication Research Group, Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza-CE, Brazil

Abstract

We generalize the exponential family of probability distributions \mathcal{E}_p . In our approach, the exponential function is replaced by the φ -function, resulting in the φ -family of probability distributions \mathcal{F}_c^{φ} . We provide how φ -families are constructed. In the φ -family, the analogous of the cumulant-generating functional is a normalizing function. We define the φ -divergence as the Bregman divergence associated to the normalizing function, providing a generalization of the Kullback–Leibler divergence. We found that the Kaniadakis' κ -exponential function satisfies the definition of φ -functions. A formula for the φ -divergence where the φ -function is the κ -exponential function is derived.

Keywords: Exponential family of probability distributions, Musielak–Orlicz spaces, Bregman divergence

1. Introduction

Let (T, Σ, μ) be a σ -finite, non-atomic measure space. We denote by $\mathcal{P}_{\mu} = \mathcal{P}(T, \Sigma, \mu)$ the family of all probability measures on T that are equivalent to the measure μ . The probability family \mathcal{P}_{μ} can be represented as (we adopt the same symbol \mathcal{P}_{μ} for this representation)

$$\mathcal{P}_{\mu} = \{ p \in L^0 : p > 0 \text{ and } \mathbb{E}[p] = 1 \},$$

where L^0 is the linear space of all real-valued, measurable functions on T, with equality μ -a.e., and $\mathbb{E}[\cdot]$ denotes the expectation with respect to the measure μ .

The family \mathcal{P}_{μ} can be equipped with a structure of C^{∞} -Banach manifold, using the Orlicz space $L^{\Phi_1}(p) = L^{\Phi_1}(T, \Sigma, p \cdot \mu)$ associated to the Orlicz function $\Phi_1(u) = \exp(u) - 1$, for $u \geq 0$. With this structure, \mathcal{P}_{μ} is called the *exponential*

 $^{^{\}scriptsize \text{th}}$ This work received financial support from CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

^{*}Corresponding author

Email addresses: rfvigelis@gtel.ufc.br (Rui F. Vigelis), charles@gtel.ufc.br (Charles C. Cavalcante)

statistical manifold., whose construction was proposed in [1] and developed in [2, 3, 4]. Each connected component of the exponential statistical manifold gives rise to an exponential family of probability distributions \mathcal{E}_p (for each $p \in \mathcal{P}_{\mu}$). Each element of \mathcal{E}_p can be expressed as

$$e_p(u) = e^{u - K_p(u)} p, \quad \text{for } u \in \mathcal{B}_p,$$
 (1)

for a subset \mathcal{B}_p of the Orlicz space $L^{\Phi_1}(p)$. K_p is the cumulant-generating functional $K_p(u) = \log \mathbb{E}_p[e^u]$, where $\mathbb{E}_p[\cdot]$ is the expectation with respect to $p \cdot \mu$. If c is a measurable function such that $p = e^c$, then (1) can be rewritten as

$$e_p(u) = e^{c+u-K_p(u)\cdot \mathbf{1}_T}, \quad \text{for } u \in \mathcal{B}_p,$$
 (2)

where $\mathbf{1}_A$ is the indicator function of a subset $A \subseteq T$.

In the φ -family of probability distributions \mathcal{F}_c^{φ} , which we propose, the exponential function is replaced by the so called φ -function $\varphi \colon T \times \overline{\mathbb{R}} \to [0, \infty]$. The function $\varphi(t, \cdot)$ has a "shape" which is similar to that of an exponential function, with an arbitrary rate of increasing. For example, we found that the κ -exponential function satisfies the definition of φ -functions. As in the exponential family, the φ -families are the connected component of \mathcal{P}_{μ} , which is endowed with a structure of C^{∞} -Banach manifold, using φ in the place of an exponential function. Let c be any measurable function such that $\varphi(t, c(t))$ belongs to \mathcal{P}_{μ} . The elements of the φ -family of probability distributions \mathcal{F}_c^{φ} are given by

$$\varphi_c(u)(t) = \varphi(t, c(t) + u(t) - \psi(u)u_0(t)), \quad \text{for } u \in \mathcal{B}_c^{\varphi},$$
 (3)

for a subset \mathcal{B}_c^{φ} of a Musielak–Orlicz space L_c^{φ} . The normalizing function $\psi \colon \mathcal{B}_c^{\varphi} \to [0, \infty)$ and the measurable function $u_0 \colon T \to [0, \infty)$ in (3) replaces K_p and $\mathbf{1}_T$ in (2), receptively. The function u_0 is not arbitrary. In the text, we will show how u_0 can be chosen.

We define the φ -divergence as the a Bregman divergence associated to the normalizing function ψ , providing a generalization of the Kullback–Leibler divergence. Then geometrical aspects related to the φ -family can be developed, since the Fisher information (from which the Information Geometry [5, 6] is based) is derived from the divergence. A formula for the φ -divergence where the φ -function is the κ -exponential function is derived, which we called the κ -divergence.

We expect that an extension of our work will provide advances in other areas, like in Information Geometry or in the non-parametric, non-commutative setting [7, 8]. The rest of this paper is organized as follows. Section 2 deals with the topics of Musielak–Orlicz spaces we will use in the the construction of the φ -family of probability distributions. In Section 3, the exponential statistical manifold is reviewed. The construction of the φ -family of probability distributions is given in Section 4. Finally, the φ -divergence is derived in Section 5.

2. Musielak-Orlicz spaces

In this section we provide a brief introduction to Musielak–Orlicz (function) spaces, which are used in the construction of the exponential and φ -families. A more detailed exposition about these spaces can be found in [9, 10, 11].

We say that $\Phi: T \times [0, \infty] \to [0, \infty]$ is a Musielak-Orlicz function when, for μ -a.e. $t \in T$,

- (i) $\Phi(t,\cdot)$ is convex and lower semi-continuous,
- (ii) $\Phi(t,0) = \lim_{u \downarrow 0} \Phi(t,u) = 0$ and $\Phi(t,\infty) = \infty$,
- (iii) $\Phi(\cdot, u)$ is measurable for all $u \ge 0$.

Items (i)–(ii) guarantee that $\Phi(t,\cdot)$ is not equal to 0 or ∞ on the interval $(0,\infty)$. A Musielak–Orlicz function Φ is said to be an *Orlicz function* if the functions $\Phi(t,\cdot)$ are identical for μ -a.e. $t \in T$.

Define the functional $I_{\Phi}(u) = \int_{T} \Phi(t, |u(t)|) d\mu$, for any $u \in L^{0}$. The Musielak-Orlicz space, Musielak-Orlicz class, and Morse-Transue space, are given by

$$L^{\Phi} = \{ u \in L^0 : I_{\Phi}(\lambda u) < \infty \text{ for some } \lambda > 0 \},$$

$$\tilde{L}^{\Phi} = \{ u \in L^0 : I_{\Phi}(u) < \infty \},$$

and

$$E^{\Phi} = \{ u \in L^0 : I_{\Phi}(\lambda u) < \infty \text{ for all } \lambda > 0 \},$$

respectively. If the underlying measure space (T, Σ, μ) have to be specified, we write $L^{\Phi}(T, \Sigma, \mu)$, $\tilde{L}^{\Phi}(T, \Sigma, \mu)$ and $E^{\Phi}(T, \Sigma, \mu)$ in the place of L^{Φ} , \tilde{L}^{Φ} and E^{Φ} , respectively. Clearly, $E^{\Phi} \subseteq \tilde{L}^{\Phi} \subseteq L^{\Phi}$. The Musielak–Orlicz space L^{Φ} can be interpreted as the smallest vector subspace of L^0 that contains \tilde{L}^{Φ} , and E^{Φ} is the largest vector subspace of L^0 that is contained in \tilde{L}^{Φ} .

The Musielak–Orlicz space L^{Φ} is a Banach space when it is endowed with the $Luxemburg\ norm$

$$||u||_{\Phi} = \inf \left\{ \lambda > 0 : I_{\Phi} \left(\frac{u}{\lambda} \right) \le 1 \right\},$$

or the Orlicz norm

$$||u||_{\Phi,0} = \sup \left\{ \left| \int_T uv d\mu \right| : v \in \tilde{L}^{\Phi^*} \text{ and } I_{\Phi^*}(v) \le 1 \right\},$$

where $\Phi^*(t,v) = \sup_{u \geq 0} (uv - \Phi(t,u))$ is the *Fenchel conjugate* of $\Phi(t,\cdot)$. These norms are equivalent and the inequalities $||u||_{\Phi} \leq ||u||_{\Phi,0} \leq 2||u||_{\Phi}$ hold for all $u \in L^{\Phi}$.

If we can find a non-negative function $f \in \tilde{L}^\Phi$ and a constant K>0 such that

$$\Phi(t, 2u) \le K\Phi(t, u)$$
, for all $u \ge f(t)$,

then we say that Φ satisfies the Δ_2 -condition, or belong to the Δ_2 -class (denoted by $\Phi \in \Delta_2$). When the Musielak–Orlicz function Φ satisfies the Δ_2 -condition, E^{Φ} coincides with L^{Φ} . On the other hand, if Φ is finite-valued and does not satisfy the Δ_2 -condition, then the Musielak–Orlicz class \tilde{L}^{Φ} is not open and its interior coincides with

$$B_0(E^{\Phi}, 1) = \{ u \in L^{\Phi} : \inf_{v \in E^{\Phi}} ||u - v||_{\Phi, 0} < 1 \},$$

or, equivalently, $B_0(E^{\Phi}, 1) \subsetneq \tilde{L}^{\Phi} \subsetneq \overline{B}_0(E^{\Phi}, 1)$.

3. The exponential statistical manifold

This section starts with the definition of a C^k -Banach manifold. A C^k -Banach manifold is a set M and a collection of pairs $(U_\alpha, \boldsymbol{x}_\alpha)$ (α belonging to some indexing set), composed by open subsets U_α of some Banach space X_α , and injective mappings $\boldsymbol{x}_\alpha \colon U_\alpha \to M$, satisfying the following conditions:

- (bm1) the sets $\boldsymbol{x}_{\alpha}(U_{\alpha})$ cover M, i.e., $\bigcup_{\alpha} \boldsymbol{x}_{\alpha}(U_{\alpha}) = M$;
- (bm2) for any pair of indices α, β such that $\boldsymbol{x}_{\alpha}(U_{\alpha}) \cap \boldsymbol{x}_{\beta}(U_{\beta}) = W \neq \emptyset$, the sets $\boldsymbol{x}_{\alpha}^{-1}(W)$ and $\boldsymbol{x}_{\beta}^{-1}(W)$ are open in X_{α} and X_{β} , respectively; and
- (bm3) the transition map $\boldsymbol{x}_{\beta}^{-1} \circ \boldsymbol{x}_{\alpha} \colon \boldsymbol{x}_{\alpha}^{-1}(W) \to \boldsymbol{x}_{\beta}^{-1}(W)$ is a C^k -isomorphism.

The pair $(U_{\alpha}, \mathbf{x}_{\alpha})$ with $p \in \mathbf{x}_{\alpha}(U_{\alpha})$ is called a parametrization (or system of coordinates) of M at p; and $\mathbf{x}_{\alpha}(U_{\alpha})$ is said to be a coordinate neighborhood at p.

The set M can be endowed with a topology in a unique way such that each $\boldsymbol{x}_{\alpha}(U_{\alpha})$ is open, and the \boldsymbol{x}_{α} 's are topological isomorphisms. We note that if $k \geq 1$ and two parametrizations $(U_{\alpha}, \boldsymbol{x}_{\alpha})$ and $(U_{\beta}, \boldsymbol{x}_{\beta})$ are such that $\boldsymbol{x}_{\alpha}(U_{\alpha})$ and $\boldsymbol{x}_{\beta}(U_{\beta})$ have a non-empty intersection, then from the derivative of $\boldsymbol{x}_{\beta}^{-1} \circ \boldsymbol{x}_{\alpha}$ we have that X_{α} and X_{β} are isomorphic.

Two collections $\{(U_{\alpha}, \boldsymbol{x}_{\alpha})\}$ and $\{(V_{\beta}, \boldsymbol{x}_{\beta})\}$ satisfying (bm1)–(bm3) are said to be C^k -compatible if their union also satisfies (bm1)–(bm3). It can be verified that the relation of C^k -compatibility is an equivalence relation. An equivalence class of C^k -compatible collections $\{(U_{\alpha}, \boldsymbol{x}_{\alpha})\}$ on M is said to define a C^k -differentiable structure on X.

Now we review the construction of the exponential statistical manifold. We consider the Musielak–Orlicz space $L^{\Phi_1}(p) = L^{\Phi_1}(T, \Sigma, p \cdot \mu)$, where the Orlicz function $\Phi_1 \colon [0, \infty) \to [0, \infty)$ is given by $\Phi_1(u) = e^u - 1$, and p is a probability density in \mathcal{P}_{μ} . The space $L^{\Phi_1}(p)$ corresponds to the set of all functions $u \in L^0$ whose moment-generating function $\widehat{u}_p(t) = \mathbb{E}_p[e^{tu}]$ is finite in a neighborhood of 0.

For every function $u \in L^0$ we define the moment-generating functional

$$M_n(u) = \mathbb{E}_n[e^u],$$

and the *cumulant-generating functional*

$$K_p(u) = \log M_p(u).$$

Clearly, these functionals are not expected to be finite for every $u \in L^0$. Denote by \mathcal{K}_p the interior of the set of all functions $u \in L^{\Phi_1}(p)$ whose moment-generating functional $M_p(u)$ is finite. Equivalently, a function $u \in L^{\Phi_1}(p)$ belongs to \mathcal{K}_p if and only if $M_p(\lambda u)$ is finite for every λ in some neighborhood of [0,1]. The closed subspace of p-centered random variables

$$B_p = \{ u \in L^{\Phi_1}(p) : \mathbb{E}_p[u] = 0 \}$$

is taken to be the coordinate Banach space. The exponential parametrization $e_p \colon \mathcal{B}_p \to \mathcal{E}_p$ maps $\mathcal{B}_p = B_p \cap \mathcal{K}_p$ to the exponential family $\mathcal{E}_p = e_p(\mathcal{B}_p) \subseteq \mathcal{P}_{\mu}$, according to

$$e_p(u) = e^{u - K_p(u)} p$$
, for all $u \in \mathcal{B}_p$.

 e_p is a bijection from \mathcal{B}_p to its image $\mathcal{E}_p = e_p(\mathcal{B}_p)$, whose inverse $e_p^{-1} \colon \mathcal{E}_p \to \mathcal{B}_p$ can be expressed as

$$e_p^{-1}(q) = \log\left(\frac{q}{p}\right) - \mathbb{E}_p\left[\log\left(\frac{q}{p}\right)\right], \text{ for } q \in \mathcal{E}_p.$$

Since $K_p(u) < \infty$ for every $u \in \mathcal{K}_p$, we have that e_p can be extended to \mathcal{K}_p . The restriction of e_p to \mathcal{B}_p guarantees that e_p is bijective.

Given two probability densities p and q in the same connected component of \mathcal{P}_{μ} , the exponential probability families \mathcal{E}_{p} and \mathcal{E}_{q} coincide, and the exponential spaces $L^{\Phi_{1}}(p)$ and $L^{\Phi_{1}}(q)$ are isomorphic (see [2, Proposition 5]). Hence, $\mathcal{B}_{p} = e_{p}^{-1}(\mathcal{E}_{p} \cap \mathcal{E}_{q})$ and $\mathcal{B}_{q} = e_{q}^{-1}(\mathcal{E}_{p} \cap \mathcal{E}_{q})$. The transition map $e_{q}^{-1} \circ e_{p} : \mathcal{B}_{p} \to \mathcal{B}_{q}$, which can be written as

$$e_q^{-1} \circ e_p(u) = u + \log\left(\frac{p}{q}\right) - \mathbb{E}_q\left[u + \log\left(\frac{p}{q}\right)\right], \text{ for all } u \in \mathcal{B}_p,$$

is a C^{∞} -function. Clearly, $\bigcup_{p\in\mathcal{P}_{\mu}}e_p(\mathcal{B}_p)=\mathcal{P}_{\mu}$. Thus the collection $\{(\mathcal{B}_p,\boldsymbol{e}_p)\}_{p\in\mathcal{P}_{\mu}}$ satisfies (bm1)–(bm2). Hence \mathcal{P}_{μ} is a C^{∞} -Banach manifold, which is called the exponential statistical manifold.

4. Construction of the φ -family of probability distributions

The generalization of the exponential family is based on the replacement of the exponential function by a φ -function $\varphi \colon T \times \overline{\mathbb{R}} \to [0, \infty]$ that satisfies the following properties, for μ -a.e. $t \in T$:

- (a1) $\varphi(t,\cdot)$ is convex and injective,
- (a2) $\varphi(t, -\infty) = 0$ and $\varphi(t, \infty) = \infty$,
- (a3) $\varphi(\cdot, u)$ is measurable for all $u \in \mathbb{R}$.

In addition, we assume a positive, measurable function $u_0: T \to (0, \infty)$ can be found such that, for every measurable function $c: T \to \mathbb{R}$ for which $\varphi(t, c(t))$ is in \mathcal{P}_{μ} , we have that

(a4) $\varphi(t, c(t) + \lambda u_0(t))$ is μ -integrable for all $\lambda > 0$.

The choice for $\varphi(t,\cdot)$ injective with image $[0,\infty]$ is justified by the fact that a parametrization of \mathcal{P}_{μ} maps real-valued functions to positive functions. Moreover, by (a1), $\varphi(t,\cdot)$ is continuous and strictly increasing. From (a3), the function $\varphi(t,u(t))$ is measurable if and only if $u\colon T\to\mathbb{R}$ is measurable. Replacing $\varphi(t,u)$ by $\varphi(t,u_0(t)u)$, a "new" function $u_0=1$ is obtained satisfying (a4).

Example 1 ([12], [13], [14]). The Kaniadakis' κ -exponential $\exp_{\kappa} : \mathbb{R} \to (0, \infty)$ for $\kappa \in [-1, 1]$ is defined as

$$\exp_{\kappa}(u) = \begin{cases} (\kappa u + \sqrt{1 + \kappa^2 u^2})^{1/\kappa}, & \text{if } \kappa \neq 0, \\ \exp(u), & \text{if } \kappa = 0. \end{cases}$$

The inverse of \exp_{κ} is the Kaniadakis' κ -logarithm

$$\ln_{\kappa}(u) = \begin{cases} \frac{u^{\kappa} - u^{-\kappa}}{2\kappa}, & \text{if } \kappa \neq 0, \\ \ln(u), & \text{if } \kappa = 0. \end{cases}$$

Some algebraic properties of the ordinary exponential and logarithm functions are preserved:

$$\exp_{\kappa}(u)\exp_{\kappa}(-u) = 1, \qquad \ln_{\kappa}(u) + \ln_{\kappa}(u^{-1}) = 0.$$

For a measurable function $\kappa \colon T \to [-1,1]$, we define the variable κ -exponential $\exp_{\kappa} \colon T \times \mathbb{R} \to (0,\infty)$ as

$$\exp_{\kappa}(t, u) = \exp_{\kappa(t)}(u),$$

whose inverse is called the variable κ -logarithm:

$$\ln_{\kappa}(t, u) = \ln_{\kappa(t)}(u).$$

Assuming that $\kappa_- = \mathrm{ess\,inf} |\kappa(t)| > 0$, the variable κ -exponential \exp_{κ} satisfies (a1)–(a4). The verification of (a1)–(a3) is easy. Moreover, we notice that $\exp_{\kappa}(t,\cdot)$ is strictly convex. We can write for $\alpha \geq 1$

$$\begin{split} \exp_{\kappa}(t,\alpha u) &= (\kappa(t)\alpha u + \alpha\sqrt{1/\alpha^2 + \kappa(t)^2 u^2})^{1/\kappa} \\ &\leq \alpha^{1/|\kappa|} (\kappa(t)u + \sqrt{1 + \kappa(t)^2 u^2})^{1/\kappa} \\ &\leq \alpha^{1/\kappa_-} \exp_{\kappa}(t,u). \end{split}$$

By the convexity of $\exp_{\kappa}(t,\cdot)$, we obtain for any $\lambda \in (0,1)$

$$\exp_{\kappa}(t, c + u) \le \lambda \exp_{\kappa}(t, \lambda^{-1}c) + (1 - \lambda) \exp_{\kappa}(t, (1 - \lambda)^{-1}u)$$
$$< \lambda^{1 - 1/\kappa} \exp_{\kappa}(t, c) + (1 - \lambda)^{1 - 1/\kappa} \exp_{\kappa}(t, u).$$

Thus any positive function u_0 such that $\mathbb{E}[\exp_{\kappa}(u_0)] < \infty$ satisfies (a4).

Let $c: T \to \mathbb{R}$ be a measurable function such that $\varphi(t, c(t))$ is μ -integrable. We define the Musielak–Orlicz function

$$\Phi(t, u) = \varphi(t, c(t) + u) - \varphi(t, c(t)).$$

and denote L^{Φ} , \tilde{L}^{Φ} and E^{Φ} by L_c^{φ} , \tilde{L}_c^{φ} and E_c^{φ} , respectively. Since $\varphi(t, c(t))$ is μ -integrable, the Musielak–Orlicz space L_c^{φ} corresponds to the set of all functions $u \in L^0$ for which $\varphi(t, c(t) + \lambda u(t))$ is μ -integrable for every λ contained in some neighborhood of 0. By the convexity of $\varphi(t, \cdot)$, we have

$$u\varphi'(t,c(t)) \le \varphi(t,c(t)+u) - \varphi(t,c(t)), \text{ for all } u \in \mathbb{R}.$$
 (4)

Hence every function u in L_c^{φ} belongs to the weighted Lebesgue space $L_w^1(\mu)$ where $w(t) = \varphi'(t, c(t))$.

Let \mathcal{K}_c^{φ} be the set of all functions $u \in L_c^{\varphi}$ such that $\varphi(t, c(t) + \lambda u(t))$ is μ -integrable for every λ in a neighborhood of [0,1]. Denote by φ the operator acting on the set of real-valued functions $u \colon T \to \mathbb{R}$ given by $\varphi(u)(t) = \varphi(t, u(t))$. For each probability density $p \in \mathcal{P}_{\mu}$, we can take a measurable function $c \colon T \to \mathbb{R}$ such that $p = \varphi(c)$. The first import result in the construction of the φ -family is given below.

Lemma 2. The set \mathcal{K}_c^{φ} is open in L_c^{φ} .

Proof. Take any $u \in \mathcal{K}_c^{\varphi}$. We can find $\varepsilon \in (0,1)$ such that $\mathbb{E}[\varphi(c+\alpha u)] < \infty$ for every $\alpha \in [-\varepsilon, 1+\varepsilon]$. Let $\delta = [\frac{2}{\varepsilon}(1+\varepsilon)(1+\frac{\varepsilon}{2})]^{-1}$. For any function $v \in L_c^{\varphi}$ in the open ball $B_{\delta} = \{w \in L_c^{\varphi} : \|w\|_{\Phi} < \delta\}$, we have $I_{\Phi}(\frac{v}{\delta}) \leq 1$. Thus $\mathbb{E}[\varphi(c+\frac{1}{\delta}|v|)] \leq 2$. Taking any $\alpha \in (0,1+\frac{\varepsilon}{2})$, we denote $\lambda = \frac{\alpha}{1+\varepsilon}$. In virtue of

$$\frac{\alpha}{1-\lambda} = \frac{\alpha}{1-\frac{\alpha}{1+\varepsilon}} \le \frac{1+\frac{\varepsilon}{2}}{1-\frac{1+\frac{\varepsilon}{2}}{1+\varepsilon}} = \frac{2}{\varepsilon}(1+\varepsilon)(1+\frac{\varepsilon}{2}) = \frac{1}{\delta},$$

it follows that

$$\varphi(c + \alpha(u + v)) = \varphi(\lambda(c + \frac{\alpha}{\lambda}u) + (1 - \lambda)(c + \frac{\alpha}{1 - \lambda}v))$$

$$\leq \lambda \varphi(c + \frac{\alpha}{\lambda}u) + (1 - \lambda)\varphi(c + \frac{\alpha}{1 - \lambda}v)$$

$$\leq \lambda \varphi(c + (1 + \varepsilon)u) + (1 - \lambda)\varphi(c + \frac{1}{\delta}|v|). \tag{5}$$

For $\alpha \in (-\frac{\varepsilon}{2}, 0)$, we can write

$$\varphi(c + \alpha(u + v)) \le \frac{1}{2}\varphi(c + 2\alpha u) + \frac{1}{2}\varphi(c + 2\alpha v)$$

$$\le \frac{1}{2}\varphi(c + 2\alpha u) + \frac{1}{2}\varphi(c + |v|).$$
 (6)

By (5) and (6), we get $\mathbb{E}[\varphi(c+\alpha(u+v))] < \infty$, for any $\alpha \in (-\frac{\varepsilon}{2}, 1+\frac{\varepsilon}{2})$. Hence the ball of radius δ centered at u is contained in \mathcal{K}_c^{φ} . Therefore, the set \mathcal{K}_c^{φ} is open.

Clearly, for $u \in \mathcal{K}_c^{\varphi}$ the function $\varphi(c+u)$ is not necessarily in \mathcal{P}_{μ} . The normalizing function $\psi \colon \mathcal{K}_c^{\varphi} \to \mathbb{R}$ is introduced in order to make the density

$$\varphi(c+u-\psi(u)u_0)$$

contained in \mathcal{P}_{μ} , for any $u \in \mathcal{K}_{c}^{\varphi}$. We have to find the functions for which the normalizing function there exists. For a function $u \in L_{c}^{\varphi}$, suppose that $\varphi(c+u-\alpha u_{0})$ is μ -integrable for some $\alpha \in \mathbb{R}$. Then u is in the closure of the set $\mathcal{K}_{c}^{\varphi}$. Indeed, for any $\lambda \in (0,1)$,

$$\varphi(c + \lambda u) = \varphi(\lambda(c + u - \alpha u_0) + (1 - \lambda)(c + \frac{\lambda}{1 - \lambda}\alpha u_0))$$

$$\leq \lambda \varphi(c + u - \alpha u_0) + (1 - \lambda)\varphi(c + \frac{\lambda}{1 - \lambda}\alpha u_0).$$

Since the function u_0 satisfies (a4), we obtain that $\varphi(c + \lambda u)$ is μ -integrable. Hence the maximal, open domain of ψ is contained in \mathcal{K}_c^{φ} .

Proposition 3. If the function u is in \mathcal{K}_c^{φ} , then there exists a unique $\psi(u) \in \mathbb{R}$ for which $\varphi(c+u-\psi(u)u_0)$ is a probability density in \mathcal{P}_{μ} .

Proof. We will show that if the function u is in \mathcal{K}_c^{φ} , then $\varphi(c+u+\alpha u_0)$ is μ -integrable for every $\alpha \in \mathbb{R}$. Since u is in \mathcal{K}_c^{φ} , we can find $\varepsilon > 0$ such that $\varphi(c+(1+\varepsilon)u)$ is μ -integrable. Taking $\lambda = \frac{1}{1+\varepsilon}$, we can write

$$\varphi(c+u+\alpha u_0) = \varphi(\lambda(c+\frac{1}{\lambda}u) + (1-\lambda)(c+\frac{1}{1-\lambda}\alpha u_0))$$

$$\leq \lambda \varphi(c+\frac{1}{\lambda}u) + (1-\lambda)\varphi(c+\frac{1}{1-\lambda}\alpha u_0).$$

Thus $\varphi(c+u+\alpha u_0)$ is μ -integrable. By the Dominated Convergence Theorem, the map $\alpha \mapsto J(\alpha) = \mathbb{E}[\varphi(c+u+\alpha u_0)]$ is continuous, tends to 0 as $\alpha \to -\infty$, and goes to infinity as $\alpha \to \infty$. Since $\varphi(t,\cdot)$ is strictly increasing, it follows that $J(\alpha)$ is also strictly increasing. Therefore, there exists a unique $\psi(u) \in \mathbb{R}$ for which $\varphi(c+u-\psi(u)u_0)$ is a probability density in \mathcal{P}_{μ} .

The function $\psi \colon \mathcal{K}_c^{\varphi} \to \mathbb{R}$ can take both positive and negative values. However, if the domain of ψ is restricted to a subspace of L_c^{φ} , its image will be contained in $[0,\infty)$. Denote the closed subspace

$$B_c^{\varphi} = \{ u \in L_c^{\varphi} : \mathbb{E}[u\varphi'(c)] = 0 \},$$

and let $\mathcal{B}_c^{\varphi} = B_c^{\varphi} \cap \mathcal{K}_c^{\varphi}$. Supposing that $u \in \mathcal{B}_c^{\varphi}$, it follows that $\mathbb{E}[u\varphi'(c)] = 0$ and $\mathbb{E}[\varphi(c+u)] < \infty$; and, according to inequality (4), we have

$$1 = \mathbb{E}[u\varphi'(c)] + \mathbb{E}[\varphi(c)] \le \mathbb{E}[\varphi(c+u)] < \infty.$$

If $u \in \mathcal{K}_c^{\varphi}$ belongs to the subspace B_c^{φ} , the integral of $\varphi(c+u)$ is greater than or equal to 1. Subtracting $\psi(u)u_0$, the integral decreases to 1, and we obtain that $\varphi(c+u-\psi(u)u_0)$ is in \mathcal{P}_{μ} .

For each measurable function $c: T \to \mathbb{R}$ such that the probability density $p = \varphi(c)$ belongs to \mathcal{P}_{μ} , we associate a parametrization $\varphi_c: \mathcal{B}_c^{\varphi} \to \mathcal{F}_c^{\varphi}$ that

maps each function u in \mathcal{B}_c^{φ} to a probability density in $\mathcal{F}_c^{\varphi} = \varphi_c(\mathcal{B}_c^{\varphi}) \subseteq \mathcal{P}_{\mu}$ according to

$$\varphi_c(u) = \varphi(c + u - \psi(u)u_0).$$

Clearly, we have $\mathcal{P}_{\mu} = \bigcup \{\mathcal{F}_{c}^{\varphi} : \varphi(c) \in \mathcal{P}_{\mu}\}$. Moreover, the map φ_{c} is a bijection from $\mathcal{B}_{c}^{\varphi}$ to $\mathcal{F}_{c}^{\varphi}$. If the functions $u, v \in \mathcal{B}_{c}^{\varphi}$ are such that $\varphi_{c}(u) = \varphi_{c}(v)$, then the difference $u - v = (\psi(u) - \psi(v))u_{0}$ is in $\mathcal{B}_{c}^{\varphi}$. Consequently, $\psi(u) = \psi(v)$ and then u = v.

Suppose that the measurable functions $c_1, c_2 \colon T \to \mathbb{R}$ are such that $p_1 = \varphi(c_1)$ and $p_2 = \varphi(c_2)$ belong to \mathcal{P}_{μ} . The parametrizations $\varphi_{c_1} \colon \mathcal{B}_{c_1}^{\varphi} \to \mathcal{F}_{c_1}^{\varphi}$ and $\varphi_{c_2} \colon \mathcal{B}_{c_2}^{\varphi} \to \mathcal{F}_{c_2}^{\varphi}$ related to these functions have transition map

$$\varphi_{c_2}^{-1}\circ\varphi_{c_1}\colon\varphi_{c_1}^{-1}(\mathcal{F}_{c_1}^\varphi\cap\mathcal{F}_{c_2}^\varphi)\to\varphi_{c_2}^{-1}(\mathcal{F}_{c_1}^\varphi\cap\mathcal{F}_{c_2}^\varphi).$$

Let $\psi_1 \colon \mathcal{B}_{c_1}^{\varphi} \to \mathbb{R}$ and $\psi_2 \colon \mathcal{B}_{c_2}^{\varphi} \to \mathbb{R}$ be the normalizing functions associated to c_1 and c_2 , respectively. Assume that the functions $u \in \mathcal{B}_{c_1}^{\varphi}$ and $v \in \mathcal{B}_{c_2}^{\varphi}$ are such that $\varphi_{c_1}(u) = \varphi_{c_2}(v) \in \mathcal{F}_{c_1}^{\varphi} \cap \mathcal{F}_{c_2}^{\varphi}$. Then we can write

$$v = c_1 - c_2 + u - (\psi_1(u) - \psi_2(v))u_0.$$

Since the function v is in $B_{c_2}^{\varphi}$, if we multiply this equation by $\varphi'(c_2)$ and integrate with respect to the measure μ , we obtain

$$0 = \mathbb{E}[(c_1 - c_2 + u)\varphi'(c_2)] - (\psi_1(u) - \psi_2(v)) \mathbb{E}[u_0\varphi'(c_2)].$$

Thus the transition map $\varphi_{c_2}^{-1} \circ \varphi_{c_1}$ can be expressed as

$$\varphi_{c_2}^{-1} \circ \varphi_{c_1}(w) = c_1 - c_2 + w - \frac{\mathbb{E}[(c_1 - c_2 + w)\varphi'(c_2)]}{\mathbb{E}[u_0\varphi'(c_2)]}u_0, \tag{7}$$

for every $w \in \varphi_{c_1}^{-1}(\mathcal{F}_{c_1}^{\varphi} \cap \mathcal{F}_{c_2}^{\varphi})$. Clearly, this transition map will be of class C^{∞} if we show that the functions w and $c_1 - c_2$ are in $L_{c_2}^{\varphi}$, and the spaces $L_{c_1}^{\varphi}$ and $L_{c_2}^{\varphi}$ have equivalent norms. It is not hard to verify that if two Musielak–Orlicz spaces are equal as sets, then their norms are equivalent (see [9, Theorem 8.5]). We make use of the following:

Proposition 4. Assume that the measurable functions $\widetilde{c}, c: T \to \mathbb{R}$ satisfy $\mathbb{E}[\varphi(t, \widetilde{c}(t))] < \infty$ and $\mathbb{E}[\varphi(t, c(t))] < \infty$. Then $L_{\widetilde{c}}^{\varphi} \subseteq L_{c}^{\varphi}$ if and only if $\widetilde{c} - c \in L_{c}^{\varphi}$.

Proof. Suppose that $\widetilde{c} - c$ is not in L_c^{φ} . Let $A = \{t \in T : \widetilde{c}(t) < c(t)\}$. For $\lambda \in [0,1]$, we have

$$\mathbb{E}[\boldsymbol{\varphi}(c+\lambda(\widetilde{c}-c))] = \mathbb{E}[\boldsymbol{\varphi}(c+\lambda(\widetilde{c}-c))\mathbf{1}_{T\setminus A}] + \mathbb{E}[\boldsymbol{\varphi}(c+\lambda(\widetilde{c}-c))\mathbf{1}_{A}]$$

$$\leq \mathbb{E}[\boldsymbol{\varphi}(c+(\widetilde{c}-c))\mathbf{1}_{T\setminus A}] + \mathbb{E}[\boldsymbol{\varphi}(c)\mathbf{1}_{A}]$$

$$\leq \mathbb{E}[\boldsymbol{\varphi}(\widetilde{c})] + \mathbb{E}[\boldsymbol{\varphi}(c)] < \infty.$$

Since $\widetilde{c} - c \notin L_c^{\varphi}$, for any $\lambda > 0$, there holds $\mathbb{E}[\varphi(c - \lambda(\widetilde{c} - c))] = \infty$. From

$$\mathbb{E}[\boldsymbol{\varphi}(c-\lambda(\widetilde{c}-c))] = \mathbb{E}[\boldsymbol{\varphi}(c-\lambda(\widetilde{c}-c))\mathbf{1}_{T\backslash A}] + \mathbb{E}[\boldsymbol{\varphi}(c-\lambda(\widetilde{c}-c))\mathbf{1}_{A}]$$

$$< \mathbb{E}[\boldsymbol{\varphi}(c+\lambda(c-\widetilde{c}))\mathbf{1}_{A}],$$

we obtain that $(c - \tilde{c})\mathbf{1}_A$ does not belong to L_c^{φ} . Clearly, $(c - \tilde{c})\mathbf{1}_A \in L_{\tilde{c}}^{\varphi}$. Consequently, $L_{\tilde{c}}^{\varphi}$ is not contained in L_c^{φ} .

Conversely, assume $\widetilde{c} - c \in L_c^{\varphi}$. Let w be any function in $L_{\widetilde{c}}^{\varphi}$. We can find $\varepsilon > 0$ such that $\mathbb{E}[\varphi(\widetilde{c} + \lambda w)] < \infty$, for every $\lambda \in (-\varepsilon, \varepsilon)$. Consider the convex function

$$g(\alpha, \lambda) = \mathbb{E}[\varphi(c + \alpha(\widetilde{c} - c) + \lambda w)].$$

This function is finite for $\lambda=0$ and α in the interval $(-\eta,1]$, for some $\eta>0$. Moreover, $g(1,\lambda)$ is finite for every $\lambda\in(-\varepsilon,\varepsilon)$. By the convexity of g, we have that g is finite in the convex hull of the set $1\times(-\varepsilon,\varepsilon)\cup(-\eta,1]\times 0$. We obtain that $g(0,\lambda)$ is finite for every λ in some neighborhood of 0. Consequently, $w\in L_c^{\varphi}$. Since $w\in L_c^{\varphi}$ is arbitrary, the inclusion $L_c^{\varphi}\subseteq L_c^{\varphi}$ follows.

Lemma 5. If the function u is in \mathcal{K}_c^{φ} and we denote $\widetilde{c} = c + u - \psi(u)u_0$, then the spaces L_c^{φ} and $L_{\widetilde{c}}^{\varphi}$ are equal as sets.

Proof. The inclusion $L_{\widetilde{c}}^{\varphi} \subseteq L_{c}^{\varphi}$ follows from Proposition 4. Since $u \in \mathcal{K}_{c}^{\varphi}$, we have

$$\mathbb{E}[\varphi(\widetilde{c} + \lambda u)] \le \mathbb{E}[\varphi(c + (1 + \lambda)u)] < \infty,$$

for every λ in a neighborhood of 0. Thus $c - \tilde{c} = -u + \psi(u)u_0$ belongs to $L_{\tilde{c}}^{\varphi}$. From Proposition 4, we obtain $L_{\tilde{c}}^{\varphi} \subseteq L_{c}^{\varphi}$.

By Lemma 5, if we denote $c_1 + u - \psi_1(u)u_0 = \tilde{c} = c_2 + v - \psi_2(v)u_0$, we have that the spaces $L_{c_1}^{\varphi}$, $L_{\tilde{c}}^{\varphi}$ and $L_{c_2}^{\varphi}$ are equal as sets. In (7), the function w is in $L_{c_2}^{\varphi}$ and consequently $c_1 - c_2$ is in $L_{c_2}^{\varphi}$. Therefore, the transition map $\varphi_{c_2}^{-1} \circ \varphi_{c_1}$ is of class C^{∞} .

Since $\varphi_{c_2}^{-1} \circ \varphi_{c_1}$ is of class C^{∞} , the set $\varphi_{c_1}^{-1}(\mathcal{F}_{c_1}^{\varphi} \cap \mathcal{F}_{c_2}^{\varphi})$ is open $B_{c_1}^{\varphi}$. The φ -families \mathcal{F}_c^{φ} are maximal in the sense that if two φ -families $\mathcal{F}_{c_1}^{\varphi}$ and $\mathcal{F}_{c_2}^{\varphi}$ have non-empty intersection, then they coincide.

Lemma 6. For a function u in \mathcal{B}_c^{φ} , denote $\widetilde{c} = c + u - \psi(u)u_0$. Then $\mathcal{F}_c^{\varphi} = \mathcal{F}_{\widetilde{c}}^{\varphi}$.

Proof. Let v be a function in \mathcal{B}_c^{φ} . Then there exists $\varepsilon > 0$ such that, for every $\lambda \in (-\varepsilon, 1+\varepsilon)$, the function $\varphi(c+\lambda v + (1-\lambda)u)$ is μ -integrable. Consequently, $\varphi(\widetilde{c} + \lambda(v-u))$ is μ -integrable for all $\lambda \in (-\varepsilon, 1+\varepsilon)$. Thus the difference v-u is in $\mathcal{K}_{\widetilde{c}}^{\varphi}$ and

$$w = v - u - \frac{\mathbb{E}[(v - u)\varphi'(\widetilde{c})]}{\mathbb{E}[u_0\varphi'(\widetilde{c})]}u_0$$
(8)

belongs to $\mathcal{B}_{\widetilde{c}}^{\varphi}$. Let $\widetilde{\psi} \colon \mathcal{B}_{\widetilde{c}}^{\varphi} \to [0, \infty)$ be the normalizing function associated to \widetilde{c} . Then the probability density $\varphi(\widetilde{c} + w - \widetilde{\psi}(w)u_0)$ is in $\mathcal{F}_{\widetilde{c}}^{\varphi}$. This probability density can be expressed as $\varphi(c + v - ku_0)$ for a constant k. According to Proposition 3, there exists a unique $\psi(u) \in \mathbb{R}$ such that the probability density $\varphi(c + v - \psi(v)u_0)$ is in $\mathcal{F}_{c}^{\varphi}$. Therefore, $\mathcal{F}_{c}^{\varphi} \subseteq \mathcal{F}_{\widetilde{c}}^{\varphi}$.

Using the same arguments as in the previous paragraph, we obtain that $c = \tilde{c} + w - \tilde{\psi}(w)u_0$, where the function $w \in \mathcal{B}_{\tilde{c}}^{\varphi}$ is given in (8) with v = 0. Thus $\mathcal{F}_{\tilde{c}}^{\varphi} \subseteq \mathcal{F}_{c}^{\varphi}$.

By Lemma 6, if we denote $c_1 + u - \psi_1(u)u_0 = \tilde{c} = c_2 + v - \psi_2(v)u_0$, then we have the equality $\mathcal{F}_{c_1}^{\varphi} = \mathcal{F}_{\tilde{c}}^{\varphi} = \mathcal{F}_{c_2}^{\varphi}$.

The results obtained in these lemmas are summarized in the next Proposition.

Proposition 7. Let $c_1, c_2 \colon T \to \mathbb{R}$ be measurable functions such that the probability densities $p_1 = \varphi(c_1)$ and $p_2 = \varphi(c_2)$ are in \mathcal{P}_{μ} . Suppose $\mathcal{F}_{c_1}^{\varphi} \cap \mathcal{F}_{c_2}^{\varphi} \neq \emptyset$. Then the Musielak-Orlicz spaces $L_{c_1}^{\varphi}$ and $L_{c_2}^{\varphi}$ are equal as sets, and have equivalent norms. Moreover, $\mathcal{F}_{c_1}^{\varphi} = \mathcal{F}_{c_2}^{\varphi}$.

The collection $\{(\mathcal{B}_c^{\varphi}, \varphi_c)\}_{\varphi(c) \in \mathcal{P}_{\mu}}$ satisfies (bm1)–(bm2), equipping \mathcal{P}_{μ} with a C^{∞} -differentiable structure.

5. Divergence

In this section we define the divergence between two probability distributions. The entities found in Information Geometry [5, 6], like the Fisher information, connections, geodesics, etc., are all derived from the divergence taken in the considered family. The divergence we will found is the Bregman divergence [15] associated to the normalizing function $\psi \colon \mathcal{K}_c^{\varphi} \to [0, \infty)$. We show that our divergence does not depend on the parametrization of the φ -family \mathcal{F}_c^{φ} .

Let S be a convex subset of a Banach space X. Given a convex function $f: S \to \mathbb{R}$, the Bregman divergence $B_f: S \times S \to [0, \infty)$ is defined as

$$B_f(y,x) = f(y) - f(x) - \partial_+ f(x)(y-x),$$

for all $x, y \in S$, where $\partial_+ f(x)(h) = \lim_{t\downarrow 0} (f(x+th) - f(x))/t$ denotes the right-directional derivative of f at x in the direction of h. The right-directional derivative $\partial_+ f(x)(h)$ exists and defines a sublinear functional. If the function f is strictly convex, the divergence satisfies $B_f(y,x) = 0$ if and only if x = y.

Let X and Y be Banach spaces, and $U \subseteq X$ be an open set. A function $f \colon U \to Y$ is said to be $G\hat{a}teaux$ -differentiable at $x_0 \in U$ if there exists a bounded linear map $A \colon X \to Y$ such that

$$\lim_{t \to 0} \frac{1}{t} \|f(x_0 + th) - f(x_0) - Ah\| = 0,$$

for every $h \in X$. The Gâteaux derivative of f at x_0 is denoted by $A = \partial f(x_0)$. If the limit above can be taken uniformly for every $h \in X$ such that $||h|| \le 1$, then the function f is said to be Fréchet-differentiable at x_0 . The Fréchet derivative of f at x_0 is denoted by $A = Df(x_0)$.

Now we verify that $\psi \colon \mathcal{K}_c^{\varphi} \to \mathbb{R}$ is a convex function. Take any $u, v \in \mathcal{K}_c^{\varphi}$ such that $u \neq v$. Clearly, the function $\lambda u + (1 - \lambda)v$ is in \mathcal{K}_c^{φ} , for any $\lambda \in (0, 1)$. By the convexity of $\varphi(t, \cdot)$, we can write

$$\mathbb{E}[\boldsymbol{\varphi}(c+\lambda u+(1-\lambda)v-\lambda\psi(u)u_0-(1-\lambda)\psi(v)u_0)]$$

$$\leq \lambda \,\mathbb{E}[\boldsymbol{\varphi}(c+u-\psi(u)u_0)]+(1-\lambda)\,\mathbb{E}[\boldsymbol{\varphi}(c+v-\psi(v)u_0)]=1.$$

Since $\varphi(c + \lambda u + (1 - \lambda)v - \psi(\lambda u + (1 - \lambda)v)u_0)$ has μ -integral equal to 1, we can conclude that the following inequality holds:

$$\psi(\lambda u + (1 - \lambda)v) < \lambda \psi(u) + (1 - \lambda)\psi(v).$$

So we can define the Bregman divergence B_{ψ} from to the normalizing function ψ .

The Bregman divergence $B_{\psi} \colon \mathcal{B}_{c}^{\varphi} \times \mathcal{B}_{c}^{\varphi} \to [0, \infty)$ associated to the normalizing function $\psi \colon \mathcal{B}_{c}^{\varphi} \to [0, \infty)$ is given by

$$B_{\psi}(v,u) = \psi(v) - \psi(u) - \partial_{+}\psi(u)(v-u).$$

Then we define the divergence $D_{\psi} \colon \mathcal{B}_{c}^{\varphi} \times \mathcal{B}_{c}^{\varphi} \to [0, \infty)$ related to the φ -family $\mathcal{F}_{c}^{\varphi}$ as

$$D_{\psi}(u,v) = B_{\psi}(v,u).$$

The entries of B_{ψ} are inverted in order that D_{ψ} corresponds in some way to the Kullback-Leibler divergence $D_{\mathrm{KL}}(p,q) = \mathbb{E}[p\log(\frac{p}{q})]$. Assuming that $\varphi(t,\cdot)$ is continuously differentiable (or strictly convex), we will find an expression for $\partial \psi(u)$.

Lemma 8. Assume that $\varphi(t,\cdot)$ is continuously differentiable. For any $u \in \mathcal{K}_c^{\varphi}$, the linear functional $f_u \colon L_c^{\varphi} \to \mathbb{R}$ given by $f_u(v) = \mathbb{E}[v\varphi'(c+u)]$ is bounded.

Proof. Every function $v \in L_c^{\varphi}$ with norm $||v||_{\Phi,0} \le 1$ satisfies $I_{\Phi}(v) \le ||u||_{\Phi,0}$. Then we obtain

$$\mathbb{E}[\varphi(c+|v|)] = I_{\Phi}(v) + \mathbb{E}[\varphi(c)] \le 2.$$

Since $u \in \mathcal{K}_c^{\varphi}$, we can find $\lambda \in (0,1)$ such that $\mathbb{E}[\varphi(c+\frac{1}{\lambda}u)] < \infty$. We can write

$$(1 - \lambda) \mathbb{E}[|v|\varphi'(c+u)] \leq \mathbb{E}[\varphi(c+u+(1-\lambda)|v|)] - \mathbb{E}[\varphi(c+u)]$$

$$= \mathbb{E}[\varphi(\lambda(c+\frac{1}{\lambda}u)+(1-\lambda)(c+|v|))] - \mathbb{E}[\varphi(c+u)]$$

$$\leq \lambda \mathbb{E}[\varphi(c+\frac{1}{\lambda}u)] + (1-\lambda) \mathbb{E}[\varphi(c+|v|)] - \mathbb{E}[\varphi(c+u)].$$

Thus the absolute value of $f_u(v) = \mathbb{E}[v\varphi'(c+u)]$ is bounded by some constant for $||v||_{\Phi,0} \leq 1$.

Lemma 9. Assume that $\varphi(t,\cdot)$ is continuously differentiable. Then the normalizing function $\psi\colon \mathcal{K}_c^{\varphi} \to \mathbb{R}$ is Gâteaux-differentiable and

$$\partial \psi(u)v = \frac{\mathbb{E}[v\varphi'(c+u-\psi(u)u_0)]}{\mathbb{E}[u_0\varphi'(c+u-\psi(u)u_0)]}.$$
(9)

Proof. According to Lemma 8, the expression in (9) defines a bounded linear functional. Fix functions $u \in \mathcal{K}_c^{\varphi}$ and $v \in L_c^{\varphi}$. In virtue of Proposition 4, we can find $\varepsilon > 0$ such that $\mathbb{E}[\varphi(c+u+\lambda|v|)] < \infty$, for every $\lambda \in [-\varepsilon, \varepsilon]$. Define

$$g(\lambda, k) = \mathbb{E}[\varphi(c + u + \lambda v - ku_0)],$$

for any $\lambda \in (-\varepsilon, \varepsilon)$ and $k \geq 0$. Since \mathcal{K}_c^{φ} is open, there exist a sufficiently small $\alpha_0 > 0$ such that $u + \lambda v + \alpha |v|$ is in \mathcal{K}_c^{φ} for all $\alpha \in [-\alpha_0, \alpha_0]$. We can write

$$\frac{g(\lambda+\alpha,k)-g(\lambda,k)}{\alpha}=\mathbb{E}\Big[\frac{1}{\alpha}\{\varphi(c+u+(\lambda+\alpha)v-ku_0)-\varphi(c+u+\lambda v-ku_0)\}\Big].$$

The function in the expectation above is dominated by the μ -integrable function $\frac{1}{\alpha_0} \{ \varphi(c+u+\lambda v + \alpha_0|v|-ku_0) - \varphi(c+u+\lambda v - ku_0) \}$. By the Dominated Convergence Theorem,

$$\mathbb{E}\left[\frac{1}{\alpha}\{\varphi(c+u+(\lambda+\alpha)v-ku_0)-\varphi(c+u+\lambda v-ku_0)\}\right]$$

$$\to \mathbb{E}[v\varphi'(c+u+\lambda v-ku_0)], \quad \text{as } \alpha \to 0,$$

and, consequently,

$$\frac{\partial g}{\partial \lambda}(\lambda, k) = \mathbb{E}[v\varphi'(c + u + \lambda v - ku_0)].$$

Since $v\varphi'(c+u+\lambda v-ku_0)$ is dominated by the μ -integrable function $|v|\varphi'(c+u+\varepsilon|v|-ku_0)$, we obtain for any sequence $\lambda_n \to \lambda$,

$$\mathbb{E}[v\varphi'(c+u+\lambda_n v-ku_0)] \to \mathbb{E}[v\varphi'(c+u+\lambda v-ku_0)], \text{ as } n\to\infty.$$

Thus $\frac{\partial g}{\partial \lambda}(\lambda, k)$ is continuous with respect to λ . Analogously, it can be shown that

$$\frac{\partial g}{\partial k}(\lambda, k) = -\mathbb{E}[u_0 \varphi'(c + u + \lambda v - ku_0)],$$

and $\frac{\partial g}{\partial k}(\lambda, k)$ is continuous with respect to k. The equality $g(\lambda, k(\lambda)) = \mathbb{E}[\varphi(c + u + \lambda v - k(\lambda)u_0)] = 1$ defines $k(\lambda) = \psi(u + \lambda v)$ as an implicit function of λ . Notice that $\frac{\partial g(0,k)}{\partial k} < 0$. By the Implicit Function Theorem, the function $k(\lambda) = \psi(u + \lambda v)$ is continuously differentiable in a neighborhood of 0, and has derivative

$$\frac{\partial k}{\partial \lambda}(0) = -\frac{(\partial g/\partial \lambda)(0, k(0))}{(\partial g/\partial k)(0, k(0))}.$$

Consequently,

$$\partial \psi(u)(v) = \frac{\partial \psi(u + \lambda v)}{\partial \lambda}(0) = \frac{\mathbb{E}[v\varphi'(c + u - \psi(u)u_0)]}{\mathbb{E}[u_0\varphi'(c + u - \psi(u)u_0)]}.$$

Thus the expression in (9) is the Gâteaux-derivative of ψ .

Lemma 10. Assume that $\varphi(t,\cdot)$ is continuously differentiable. Then the divergence D_{ψ} does not depend on the parametrization of $\mathcal{F}_{c}^{\varphi}$.

Proof. For any $w \in \mathcal{B}_c^{\varphi}$, we denote $\widetilde{c} = c + w - \psi(w)u_0$. Given $u, v \in \mathcal{B}_c^{\varphi}$, select $\widetilde{u}, \widetilde{v} \in \mathcal{B}_{\widetilde{c}}^{\varphi}$ such that $\varphi_{\widetilde{c}}(\widetilde{u}) = \varphi_c(u)$ and $\varphi_{\widetilde{c}}(\widetilde{v}) = \varphi_c(v)$. Let $\widetilde{\psi} \colon \mathcal{B}_{\widetilde{c}}^{\varphi} \to [0, \infty)$ be the normalizing function associated to \widetilde{c} . These definitions provide

$$\widetilde{c} + \widetilde{u} - \widetilde{\psi}(\widetilde{u})u_0 = c + u - \psi(u)u_0,$$

and

$$\widetilde{c} + \widetilde{v} - \widetilde{\psi}(\widetilde{v})u_0 = c + v - \psi(v)u_0.$$

Subtracting these equations, we obtain

$$[-\widetilde{\psi}(\widetilde{v}) + \widetilde{\psi}(\widetilde{u})]u_0 + (\widetilde{v} - \widetilde{u}) = [-\psi(v) + \psi(u)]u_0 + (v - u)$$

and, consequently,

$$\begin{split} \widetilde{\psi}(\widetilde{v}) - \widetilde{\psi}(\widetilde{u}) - \frac{\mathbb{E}[(\widetilde{v} - \widetilde{u})\varphi'(\widetilde{c} + \widetilde{u} - \widetilde{\psi}(\widetilde{u})u_0)]}{\mathbb{E}[u_0\varphi'(\widetilde{c} + \widetilde{u} - \widetilde{\psi}(\widetilde{u})u_0)]} \\ = \psi(v) - \psi(u) - \frac{\mathbb{E}[(v - u)\varphi'(c + u - \psi(u)u_0)]}{\mathbb{E}[u_0\varphi'(c + u - \psi(u)u_0)]}. \end{split}$$

Therefore, $D_{\widetilde{\psi}}(\widetilde{u},\widetilde{v}) = D_{\psi}(u,v)$.

Let $p = \varphi_c(u)$ and $q = \varphi_c(v)$, for $u, v \in \mathcal{B}_c^{\varphi}$. We denote the divergence between the probability densities p and q by

$$D(p \parallel q) = D_{\psi}(u, v).$$

According to Lemma 10, $D(p \parallel q)$ is well-defined if p and q are in the same φ -family. We will find an expression for $D(p \parallel q)$ where p and q are given explicitly. For u=0, we have $D(p \parallel q)=D_{\psi}(0,v)=\psi(v)$, and then

$$D(p \parallel q) = \frac{\mathbb{E}[(-v + \psi(v)u_0)\varphi'(c)]}{\mathbb{E}[u_0\varphi'(c)]}.$$

Therefore, the divergence between probability densities p and q in the same φ -family can be expressed as

$$D(p \parallel q) = \frac{\mathbb{E}\left[\frac{\varphi^{-1}(p) - \varphi^{-1}(q)}{(\varphi^{-1})'(p)}\right]}{\mathbb{E}\left[\frac{u_0}{(\varphi^{-1})'(p)}\right]}.$$
 (10)

Clearly, the expectation in (10) may not be defined if p and q are not in the same φ -family. We extend the divergence in (10) by setting $D(p \parallel q) = \infty$ if p and q are not in the same φ -family. With this extension, the divergence is denoted by D_{φ} and is called the φ -divergence. By the strict convexity of $\varphi(t,\cdot)$, we have the inequality $\varphi^{-1}(t,u) - \varphi^{-1}(t,v) \ge (\varphi^{-1})'(t,u)(u-v)$ for any u,v>0, with equality if and only if u=v. Hence D_{φ} is always non-negative, and $D_{\varphi}(p \parallel q)$ is equal to zero if and only if p=q.

Example 11. With the variable κ -exponential $\exp_{\kappa}(t, u) = \exp_{\kappa(t)}(u)$ in the place of $\varphi(t, u)$, whose inverse $\varphi^{-1}(t, u)$ is the variable κ -logarithm $\ln_{\kappa}(t, u) = \ln_{\kappa(t)}(u)$, we rewrite (10) as

$$D(p \parallel q) = \frac{\mathbb{E}\left[\frac{\ln_{\kappa}(p) - \ln_{\kappa}(q)}{\ln'_{\kappa}(p)}\right]}{\mathbb{E}\left[\frac{u_0}{\ln'_{\nu}(p)}\right]},$$
(11)

where $\ln_{\kappa}(p)$ denotes $\ln_{\kappa(t)}(p(t))$. Since the κ -logarithm $\ln_{\kappa}(u) = \frac{u^{\kappa} - u^{-\kappa}}{2\kappa}$ has derivative $\ln'_{\kappa}(u) = \frac{1}{u} \frac{u^{\kappa} + u^{-\kappa}}{2}$, the numerator and denominator in (11) result in

$$\mathbb{E}\left[\frac{\ln_{\kappa}(p) - \ln_{\kappa}(q)}{\ln_{\kappa}'(p)}\right] = \mathbb{E}\left[\frac{\frac{p^{\kappa} - p^{-\kappa}}{2\kappa} - \frac{q^{\kappa} - q^{-\kappa}}{2\kappa}}{\frac{1}{p}\frac{p^{\kappa} + p^{-\kappa}}{2}}\right] = \frac{1}{\kappa}\mathbb{E}_{p}\left[\frac{p^{\kappa} - p^{-\kappa}}{p^{\kappa} + p^{-\kappa}} - \frac{q^{\kappa} - q^{-\kappa}}{p^{\kappa} + p^{-\kappa}}\right]$$

and

$$\mathbb{E}\left[\frac{u_0}{\ln_{\kappa}'(p)}\right] = \mathbb{E}_p\left[\frac{2u_0}{p^{\kappa} + p^{-\kappa}}\right],$$

respectively. Thus (11) can be rewritten as

$$D_{\kappa}(p \parallel q) = \frac{1}{\kappa} \frac{\mathbb{E}_{p} \left[\frac{p^{\kappa} - p^{-\kappa}}{p^{\kappa} + p^{-\kappa}} - \frac{q^{\kappa} - q^{-\kappa}}{p^{\kappa} + p^{-\kappa}} \right]}{\mathbb{E}_{p} \left[\frac{2u_{0}}{p^{\kappa} + p^{-\kappa}} \right]},$$

which we called the κ -divergence.

References

- [1] G. Pistone, C. Sempi, An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one, Ann. Statist. 23 (5) (1995) 1543–1561. doi:10.1214/aos/1176324311.
- [2] G. Pistone, M. P. Rogantin, The exponential statistical manifold: mean parameters, orthogonality and space transformations, Bernoulli 5 (4) (1999) 721–760. doi:10.2307/3318699.
- [3] A. Cena, G. Pistone, Exponential statistical manifold, Ann. Inst. Statist. Math. 59 (1) (2007) 27–56. doi:10.1007/s10463-006-0096-y.
- [4] M. R. Grasselli, Dual connections in nonparametric classical information geometry, Ann. Inst. Statist. Math. 62 (5) (2010) 873–896. doi:10.1007/s10463-008-0191-3.
- [5] S.-i. Amari, H. Nagaoka, Methods of information geometry, Vol. 191 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 2000, translated from the 1993 Japanese original by Daishi Harada.
- [6] M. K. Murray, J. W. Rice, Differential geometry and statistics, Vol. 48 of Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1993.

- [7] P. Gibilisco, E. Riccomagno, M. P. Rogantin, H. P. Wynn (Eds.), Algebraic and geometric methods in statistics, Cambridge University Press, Cambridge, 2010.
- [8] D. Petz, Quantum information theory and quantum statistics, Theoretical and Mathematical Physics, Springer-Verlag, Berlin, 2008.
- [9] J. Musielak, Orlicz spaces and modular spaces, Vol. 1034 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983.
- [10] M. A. Krasnosel'skiĭ, J. B. Rutickiĭ, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.
- [11] M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Vol. 146 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1991.
- [12] G. Kaniadakis, M. Lissia, A. M. Scarfone, Deformed logarithms and entropies, Phys. A 340 (1-3) (2004) 41–49, news and expectations in thermostatistics. doi:10.1016/j.physa.2004.03.075.
- [13] J. Naudts, Estimators, escort probabilities, and ϕ -exponential families in statistical physics, JIPAM. J. Inequal. Pure Appl. Math. 5 (4) (2004) Article 102, 15 pp. (electronic).
- [14] J. Naudts, Generalised exponential families and associated entropy functions, Entropy 10 (3) (2008) 131-149. doi:10.3390/entropy-e10030131.
- [15] L. M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Computational Mathematics and Mathematical Physics 7 (3) (1967) 200–217. doi:10.1016/0041-5553(67)90040-7.