PVMOS manual

B.E. Pieters*

Institut für Energie und Klimaforschung - IEK5 Photovoltaik,
Forschungszentrum Jülich, 52425 Jülich, Germany
(Dated: November 11, 2014)

I. INTRODUCTION

This is (or rather will be as the current state of this document is far from finished) the manual for the Photo-Voltaic MOdule Simulator (PVMOS). PVMOS is an ordinary differential equation solver using finite-differences specifically designed to electrically model solar modules. For more information on how that works I refer the reader to [1]. The purpose of this document is to document how PVMOS is operated and installed. In the following sections I discuss in order, the installation, basic usage and operating principles and finally a detailed discussion of all available functions. Before we continue, here are some legalities:

DISCLAMER:

PVMOS Copyright (C) 2014 B. E. Pieters

This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute under certain conditions. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/>.

In order to stress the ABSOLUTELY NO WARRANTY bit, here a quote from R. Freund:

For all intent and purpose, any description of what the codes are doing should be construed as being a note of what we thought the codes did on our machine on a particular Tuesday of last year. If you're really lucky, they might do the same for you someday. Then again, do you really feel *that* lucky?

II. INSTALLATION INSTRUCTIONS

PVMOS is a command-line application written entirely in C. For the operation PVMOS depends on several libraries, most notably cholmod, for the solving of sparse linear systems. PVMOS has been tested on Linux and Windows systems. To install PVMOS you need to compile the source, for which a Makefile is provided. To install PVMOS you thus need to

- 1. Install PVMOS's dependencies (cholmod, BLAS)
- 2. Edit the Makefile
- 3. Compile the code (type make)
- 4. test the executable

The performance of PVMOS is typically strongly dependent on the performance of the sparse linear solver (i.e. cholmod). For an optimal performance an optimized BLAS library must be used (the reference BLAS is comparatively slow). For an optimized BLAS there are several options. One option is to use ATLAS which is available for all common CPU architectures and gives a very decent performance. On some architectures you can use OpenBLAS, which gives a very good performance (OpenBLAS is an actively developed fork of the now unmaintained GoTo BLAS). Some CPU manufacturers also publish their own optimized BLAS libraries for their CPU's (e.g. Intel and AMD). Per default the makefiles are set up to use OpenBLAS as it provides a good performance and is freely available.

^{*}Electronic address: b.pieters@fz-juelich.de

III. BASIC USAGE AND OPERATING PRINCIPLES

The input for PVMOS is a plain text file with commands. To solve a problem PVMOS is typically called from the command line with as an argument the filename describing the problem. With these input files you can specify the geometry of your solar cell/module including the local properties such as electrode sheet resistances and solar cell properties. You can also specify which calculations you want PVMOS should perform and what data to save. A call to PVMOS from the command line looks like this[3]:

pvmos [verbose-option] <input-file>

where [verbose-option] is an option which how much information PVMOS outputs to stdout, and <input-file> is the plain text input file. We first describe the mesh data structure in more detail in the next section.

In its essence PVMOS is a Poisson solver. The Poisson equation is solved for several stacked, 2D "electrodes", where each electrode is coupled to the electrodes above and below (note that a stack of 2D electrodes makes a 3D structure). The electrodes itself simply conductors and behave linearly (Ohmic). However, the connection between the electrodes can be non-linear (e.g. a diode). Now ther are several limitations of the structures that PVMOS handles. The main limitation is that the meshes are 2D as in PVMOS all electrodes share the same 2D mesh. This means that PVMOS is specifically designed for flat layered structures, a less than optimal performance is to be expected for different that flat layered geometries. PVMOS uses straight forward finite-differences to solve the coupled Poisson equations. As such the 2D meshes in PVMOS divide the 2D surface in rectangular elements. Now every element in the mesh must be associated with certain properties. Storing properties on a per element basis woul put a heavy burdon on the memory resources. For that reason elements are grouped into "area's" where each ares constitures a certain combination of properties. A mesh therfore also contains a list of all area's and every element is a member of one of the area's in the mesh (note that an element is always assigned to one area, i.e. you need at least one area for every unique combination of local properties).

In PVMOS we can define more than one mesh at the same time (this is useful as you can build meshes from several meshes, e.g. join two meshes for single cells to one mesh with two series connected cells). In order to reference one particular mesh, each mesh has a name. To reference an area within a mesh you can refer to <mesh-name>.<area-name>, i.e. the name of the mesh followed by a dot and the name of the area within that particular mesh. Sometimes we need to select elements in a mesh (for example when we want to assign a set of elements to a certain area). To this end each mesh has a list of selected elements. If you select elements in a mesh the list is occupied by the element ID's, after which you can do operations on the selected elements. Note that elements are selected on a per mesh basis.

The input file is parsed by PVMOS, which sequentially processes the file. PVMOS provides functions to generate and manipulate meshes such that you can generate meshes describing the problem by a sequence of commands. To this end each mesh you define has a name to reference it by. The following section provides a command-reference.

IV. PVMOS COMMAND REFERENCE

Creating Meshes	
Keyword	Description
newmesh	Create a new, rectangular mesh. The command takes seven arguments:
	1. x1, x-coordinate of the lower left corner
	2. y1, y-coordinate of the lower left corner
	3. x2, x-coordinate of the upper right corner
	4. y2, y-coordinate of the upper right corner
	5. Nx, Number of elements in x direction
	6. Ny, Number of elements in y direction
	7. mesh-name, Name of the new mesh

joinmesh

Create new mesh by joining two meshes. Make sure the meshes touch but do not overlap. The function takes offset values as input which allow you to "shift" the second mesh to align it to the first. The command takes 5 arguments:

- 1. x_off, x-offset in coordinate system of the second mesh
- 2. y_off, y-offset in coordinate system of the second mesh
- 3. mesh1-name, Name of the first mesh
- 4. mesh2-name, Name of the second mesh
- 5. mesh3-name, Name of the resulting mesh

joinmesh_h

Create new mesh by joining two meshes. Make sure the meshes touch but do not overlap. The function takes a y-offset value as input which allow you to "shift" the second mesh in the y-direction to align it to the first. The x-offset value is the maximal x-value found in the first mesh. The command takes 4 arguments:

- 1. y_off, y-offset in coordinate system of the second mesh
- 2. mesh1-name, Name of the first mesh
- 3. mesh2-name, Name of the second mesh
- 4. mesh3-name, Name of the resulting mesh

joinmesh_v

Create new mesh by joining two meshes. Make sure the meshes touch but do not overlap. The function takes an x-offset value as input which allow you to "shift" the second mesh in the x-direction to align it to the first. The y-offset value is the maximal y-value found in the first mesh. The command takes 4 arguments:

- 1. x_off, x-offset in coordinate system of the second mesh
- 2. mesh1-name, Name of the first mesh
- 3. mesh2-name, Name of the second mesh
- 4. mesh3-name, Name of the resulting mesh

dupmesh

Duplicate a mesh. The command takes 2 arguments:

- 1. mesh1-name, Name of the mesh to be duplicated
- 2. mesh2-name, Name of the resulting copy

 $add_electrode$

Adds an electrode to a certain mesh. The command takes one argument:

1. mesh-name, Name of the mesh

SELECTING ELEMENTS

Keyword select_rect

Description

Select a rectangular area in a mesh. If currently nodes are already selected in the mesh, the command selects the subset of selected nodes within the rectangle. If the latter is not desired use deselect first. The command takes five arguments:

- 1. x1, x-coordinate of the lower left corner of the selected rectangle
- 2. y1, y-coordinate of the lower left corner of the selected rectangle
- 3. x2, x-coordinate of the upper right corner of the selected rectangle
- 4. y2, y-coordinate of the upper right corner of the selected rectangle
- 5. mesh-name, Name of the mesh

select_rect_contour

Select the contour of a rectangle in a mesh. If currently nodes are already selected in the mesh, the command selects the subset of selected nodes within the rectangle. If the latter is not desired use deselect first. The command takes six arguments:

- 1. x1, x-coordinate of the lower left corner of the selected rectangle
- 2. y1, y-coordinate of the lower left corner of the selected rectangle
- 3. x2, x-coordinate of the upper right corner of the selected rectangle
- 4. y2, y-coordinate of the upper right corner of the selected rectangle
- 5. d, distance from the contour within which elements are selected
- 6. mesh-name, Name of the mesh

select_circ

Select a circular area in a mesh. If currently nodes are already selected in the mesh, the command selects the subset of selected nodes within the circle. If the latter is not desired use deselect first. The command takes four arguments:

- 1. x_c , center x-coordinate of the selected circle
- 2. y_c, center y-coordinate of the selected circle
- 3. r, radius of the selected circle
- 4. mesh-name, Name of the mesh

select_circ_contour

Select the contour of a circle in a mesh. If currently nodes are already selected in the mesh, the command selects the subset of selected nodes within the circle. If the latter is not desired use deselect first. The command takes five arguments:

- 1. x_c, center x-coordinate of the selected circle
- 2. y_c, center y-coordinate of the selected circle
- 3. r, radius of the selected circle
- 4. d, distance from the contour within which elements are selected
- 5. mesh-name, Name of the mesh

select_poly

Select an area within a polygon-contour. In order to use this command you must first load a polygon from file with the load_poly command. If currently elements are already selected in the mesh, the command selects the subset of selected elements within the polygon. If the latter is not desired use deselect first. The command takes one argument.

1. mesh-name, Name of the mesh

 ${\tt select_poly_contour}$

Select an area around a polygon-contour. In order to use this command you must first load a polygon from file with the load_poly command. If currently elements are already selected in the mesh, the command selects the subset of selected elements near to the polygon. If the latter is not desired use deselect first. This command is often useful to refine the mesh along the polygon before using select_poly to assign elements to a new area. It may also be useful to define things such as cracks. The command takes three arguments.

- 1. distance, Distance from the polygon
- 2. loop, Argument takes either 0 (not looped) or 1 (looped). In looped modus the last point in the polygon is connected to the first point.
- 3. mesh-name, Name of the mesh

load_poly

Load a polygon from file. This command is used in conjunction with the select_poly and the select_poly_contour commands. Once a polygon is loaded you can use it to select until a new load_poly command is given. The command takes one argument.

1. file-name, Name of the file describing the polygon (one 2D coordinate per line, i.e., two columns, 1: x-coordinate, 2: y-coordinate)

select_area

Select all nodes assigned to a given area. If currently nodes are already selected in the mesh, the command selects the subset of selected nodes which are assigned to the given area. If the latter is not desired use deselect first. The command takes one argument.

1. area-name, Name of the mesh and area (<mesh-name>.<area-name>)

deselect

deselects a selection within a mesh. The command takes one argument.

1. mesh-name, Name of the mesh

Manually Changin	NG THE MESH TOPOLOGY
Keyword	Description
${\tt split}_{\tt _X}$	Split selected elements in x-direction. If no elements are selected, all elements are split. As the topology of the mesh changed all selected nodes in the mesh are un-selected after this command. The command takes one argument
	1. mesh-name, Name of the mesh
$split_y$	Split selected elements in y-direction. If no elements are selected, all elements are split. As the topology of the mesh changed all selected nodes in the mesh are un-selected after this command. The command takes one argument
	1. mesh-name, Name of the mesh
$split_xy$	Split selected elements in both x- and y-direction. If no elements are selected, all elements are split. As the topology of the mesh changed all selected nodes in the mesh are un-selected after this command. The command takes one argument
	1. mesh-name, Name of the mesh
${\tt split_long}$	Split selected elements in thier longest direction. If no elements are selected, all elements are split. As the topology of the mesh changed all selected nodes in the mesh are un-selected after this command. The command takes one argument
	1. mesh-name, Name of the mesh
$split_coarse$	Split selected elements until the node-edges are all smaller than a given length. If no elements are selected, all elements are split. As the topology of the mesh changed all selected nodes in the mesh are un-selected after this command. The command takes two arguments
	1. mesh-name, Name of the mesh
	2. 1, Maximum edge length
simplify	Attempt to simplify a mesh. If elements are selected they are un-selected as the topology of the mesh changed. The command takes one argument
	1. mesh-name, Name of the mesh

SAVING AND LOADING MESHES

Keyword	Description
savemesh	Save a mesh to file in the PVMOS binary format, so it can be loaded again at a later time (see the loadmesh command). The command takes two arguments.
	1. mesh-name, Name of themesh to be saved.
	2. file-name, filename to save the mesh to.
loadmesh	Load a mesh saved to file in the PVMOS binary format (see the savemesh command). The command takes two arguments.
	1. file-name, filename of the file containing the mesh data.
	2. mesh-name, Name to assign to the loaded mesh
	2. mesh-name, Name to assign to the loaded mesh

ELEMENT-WISE EXPORT OF DATA
Keyword Descrip Description printmesh

Export the mesh in a manner that is plottable with the gnuplot program (www.gnuplot.info/). The resulting plot draws the contour of each element in the mesh. If a selection of elements is made for the mesh, only the selected nodes are plotted. The command takes two arguments:

- 1. mesh-name, Name of the mesh
- 2. file-name, filename to save the data in.

The output file will contain coordinates in columns. For each element the file contains the coordinates of the lower left- and the upper right corners empty line:

```
x1 y1
x2 y1
x2 y2
x1 y2
<empty line>
```

printconn

Print lateral connections in the electrodes in a format plottable with gnuplot (www.gnuplot.info/). When plotting the file (with vectors) a vector is drawn between the center of each element to the center of the adjacent elements to which it is connected. If a selection of elements is made for the mesh, only the selected nodes are plotted. This routine may be useful when inspecting generated meshes. The command takes two arguments:

- 1. mesh-name, Name of the mesh
- 2. file-name, filename to save the data in.

The output is coordinates in columns. For each element the file contains the following data where xc, yc is the center of the current element and xca_i, yca_i is the center coordinate of the i-th adjacent

```
xc yc xca_1 yca_1 element: xc yc xca_2 yca_2
```

printarea

Print the geometry of the mesh which identifies each element and the area it belongs to. The fileformat is laid out such that it is plottable with a surface plot in gnuplot (www.gnuplot.info/). If a selection of elements is made for the mesh, only the selected nodes are plotted. The command takes two arguments:

- 1. mesh-name, Name of the mesh
- 2. file-name, filename to save the data in.

The output file will contain data in columns. The file contains coordinates, the element ID and the corresponding area ID. Note that the parameters for each area can be exported with the printpars command. For each element it plots 2 times 2 data lines with an empty line inbetween. Between the data of two elements are two empty lines. This file is formatted such that when plotted with "splot" in gnuplot you can plot a surface for each element in the mesh, which allows you to see the areas in the defined geometry. For each element the following data is printed to the file:

```
x1    y1    element-ID area-ID
x1    y2    element-ID area-ID
<empty line>
x2    y2    element-ID area-ID
x2    y1    element-ID area-ID
<empty line>
<empty line>
```

printV

Print the electrode potentials per element for each stored solution. The output is formatted for gnuplot's splot command, such that a surface plot plots each element individually. If a selection of elements is made for the mesh, only the selected nodes are plotted. The command takes two arguments:

- 1. mesh-name, Name of the mesh
- 2. file-name, filename to save the data in.

The output file will contain data in columns. The file contains coordinates followed by the potential in each electrode for each solution. For each element it plots 2 times 2 data lines with an empty line inbetween. Between the data of two elements are two empty lines. This file is formatted such that when plotted with "splot" in gnuplot you can plot a surface for each electrode in each element in the mesh. For each element the following data is printed to the file, where the subscripts indicate the electrode index and the superscript the solution index:

```
electrode index and the superscript the solution index:  
x1    y1    V_0^1 \ V_1^1 \ V_{...}^1 \ V_N^1 \ V_0^2 \ V_1^2 \ V_{...}^2 \ V_N^2 \ ...  
x1    y2    V_0^1 \ V_1^1 \ V_{...}^1 \ V_N^1 \ V_0^2 \ V_1^2 \ V_{...}^2 \ V_N^2 \ ...  
<a href="#">
<empty line></a>
<a href="#">
<a hr
```

printpar

Print a summary of the parameters per area, including both area-name and area-ID. The command takes two arguments:

- 1. mesh-name, Name of the mesh
- 2. file-name, filename to save the data in.

printIV

Export the IV characteristics of the device. Exports a file with two columns, the first contains all the simulated applied voltages and the second the corresponding total currents. The command takes two arguments:

- 1. mesh-name, Name of the mesh
- 2. file-name, filename to save the data in.

surfVplot

Export the front and back electrode voltages for a specific solution. Unlike the print-commands like printV the data is interpollated and mapped on a regular mesh. The command takes eight arguments:

- 1. mesh-name, Name of the mesh
- 2. x1, x-coordinate of the lower left corner of the selected rectangle
- 3. y1, y-coordinate of the lower left corner of the selected rectangle
- 4. x2, x-coordinate of the upper right corner of the selected rectangle
- 5. y2, y-coordinate of the upper right corner of the selected rectangle
- 6. Nx, Number of points in the regular mesh along the x-direction
- 7. Ny, Number of points in the regular mesh along the y-direction
- 8. Va, Applied voltage (if the sepcified voltage is not available the closest value will be taken
- 9. file-name, filename to save the data in.

surfPplot

Export the local power density for a specific solution. Just like in the surfVplot command the data is interpollated and mapped on a regular mesh. The command takes eight arguments:

- 1. mesh-name, Name of the mesh
- 2. x1, x-coordinate of the lower left corner of the selected rectangle
- 3. y1, y-coordinate of the lower left corner of the selected rectangle
- 4. x2, x-coordinate of the upper right corner of the selected rectangle
- 5. y2, y-coordinate of the upper right corner of the selected rectangle
- 6. Nx, Number of points in the regular mesh along the x-direction
- 7. Ny, Number of points in the regular mesh along the y-direction
- 8. Va, Applied voltage (if the sepcified voltage is not available the closest value will be taken
- 9. file-name, filename to save the data in.

Manipulating local properties

Keyword

Description

assign_properties

Assign nodes to a defined area. If no nodes are selected all nodes in the mesh are assigned to the specified area. The command takes one arguments:

1. area-name, Name of the area (<mesh-name>.<area-name>)

set_Rel

Set an electrode resistance. If the specified area does not exist it will be newly created. The command takes three arguments:

- 1. area-name, Name of the area (<mesh-name>.<area-name>)
- 2. electrode-index, Index of the electrode. The first electrode has index 0
- 3. value, Sheet resistance value (Ω)

set_Rvp

Set the contact resistance between the positive node and an electrode. Together with set_Rvn this command allows the application of an extranal voltage. The command takes three arguments:

- 1. area-name, Name of the area (<mesh-name>.<area-name>)
- 2. electrode-index, Index of the electrode. The first electrode has index 0
- 3. value, Contact resistance (Ωcm^2)

set Rvn

Set the contact resistance between the negative node and an electrode. Together with set_Rvp this command allows the application of an extranal voltage. The command takes three arguments:

- 1. area-name, Name of the area (<mesh-name>.<area-name>)
- 2. electrode-index, Index of the electrode. The first electrode has index 0
- 3. value, Contact resistance (Ωcm^2)

set_JV

Specify a tabular data set to use as a JV characteristics. The command takes three arguments:

- 1. area-name, Name of the area (<mesh-name>.<area-name>)
- 2. connection-index, Index of the connection. The first connection, between electrode 0 and 1, has index 0
- 3. file-name, Name of a file containing two columns, voltage and current density (V, Acm^{-2})

set_2DJV

Specify a two-diode model for the JV characteristics. The command takes eight arguments:

- 1. area-name, Name of the area (<mesh-name>.<area-name>)
- 2. connection-index, Index of the connection. The first connection, between electrode 0 and 1, has index 0
- 3. J01, Saturation current density for the first diode (ideality factor one) (Acm⁻²)
- 4. J02, Saturation current density for the second diode (ideality factor two) (Acm⁻²)
- 5. Jph, Photo current density (Acm⁻²)
- 6. Rs, Series resistance (Ωcm^2)
- 7. Rsh, Shunt resistance (Ωcm^2)
- 8. Eg, Band gap (eV)

set_1DJV

Specify a one-diode model for the JV characteristics. The command takes eight arguments:

- 1. area-name, Name of the area (<mesh-name>.<area-name>)
- 2. connection-index, Index of the connection. The first connection, between electrode 0 and 1, has index 0
- 3. J0, Saturation current density (Acm⁻²)
- 4. nid, Ideality factor
- 5. Jph, Photo current density (Acm⁻²)
- 6. Rs, Series resistance (Ωcm^2)
- 7. Rsh, Shunt resistance (Ωcm^2)
- 8. Eg, Band gap (eV)

set_R Specify a resistance for the JV characteristics. The command takes three arguments: 1. area-name. Name of the area (<mesh-name>.<area-name>) 2. connection-index, Index of the connection. The first connection, between electrode 0 and 1, has index 0 3. R, Resistance (Ωcm^2) set_T Specify a local temperature. The command takes two arguments: 1. area-name, Name of the area (<mesh-name>.<area-name>) 2. T, Temperature (K)Numerical Settings Keyword Description set_SplitX It is sometimes useful to prevent the adaptive meshing algorithms from splitting certain nodes in xor y-direction. This commands toggles the splitting of nodes in x-direction for a specified area (per default all nodes can be split in all directions). The command takes one argument: 1. area-name, Name of the area (<mesh-name>.<area-name>) set_SplitY It is sometimes useful to prevent the adaptive meshing algorithms from splitting certain nodes in xor y-direction. This commands toggles the splitting of nodes in y-direction for a specified area (per default all nodes can be split in all directions). The command takes one argument: 1. area-name, Name of the area (<mesh-name>.<area-name>) maxiter Set the maximum number of iterations for solving the non-linear system. The command takes one argument: 1. maxiter, Maximum number of iterations (default: 25) Absolute voltage tolerance for the break-off criterion. The command takes one argument: tol_V 1. tol_V, Absolute voltage tolerance V (default: 10^{-5} V) Relative voltage tolerance for the break-off criterion. The command takes one argument: rel_tol_V 1. tol_V. Relative voltage tolerance - (default: 10^{-5}) tol_kcl Absolute current tolerance for the break-off criterion (KCL stands for Kirchhoff's Current Law). The command takes one argument: 1. tol_kcl, KCL tolerance A (default: 10^{-5} A) Relative current tolerance for the break-off criterion (KCL stands for Kirchhoff's Current Law). The rel_tol_kcl command takes one argument: 1. tol_kcl, Relative KCL tolerance – (default: 10^{-5}) Solving Keyword Description solve Solve the system (do a voltage sweep). The command takes four arguments: 1. mesh-name, Name of the mesh 2. V_start, Start voltage 3. V_end, End voltage 4. N_step, Number of voltage steps Solve the system and adapt the mesh at one specified voltage. The command takes four arguments: adaptive_solve 1. mesh-name, Name of the mesh 2. V_a, Applied voltage

3. threshold, Ralative threshold for node splitting, a parameter between 0 and 1 that controls how agressive the mesh is adapted, where lower values lead to a more agressive mesh adaption

(typical values between 0.3 and 0.5).

4. N_step, Number adaptive meshing iterations

Verbosity levels	
Keyword	Description
out_quiet	Set verbosity to the minimum (only says something when it crashes). The command takes no arguments.
out_normal	Set verbosity to the normal level. The command takes no arguments.
${\tt out_verbose}$	Output additional data that may be interesting. The command takes no arguments.
out_debug	Output additional data that is only interesting for someone who is chasing bugs in the code. The
	command takes no arguments.

V. EXAMPLES

In this section I discuss several examples which can be found in the example directory.

A. Monolithically series connected mini-module and a defect

In the folder Examples/ThinFilm you can find a PVMOS input file thin_film8x8.mos. This file creates a thin-film a-Si:H mini-module of 8x8 cm² with 8 cells of 1 cm wide. In addition the third cell has a defect. This example demonstrates many basic PVMOS operations such as creating new meshes, joining meshes, selecting elements, locally refine the mesh, create new area's, setting parameters for area's, and assigning elements to an area.

B. Monolithically series connected mini-module and many defects

This example consists of the files thin_film40x40.mos and Shunts40x40.m, both located in Examples/ThinFilm. This example depends on GNU Octave. In this example I use the file thin_film40x40.mos to create a 40x40 cm² module with 40 cells of 1 cm wide. The module that is created is defect-free. In the file thin_film40x40.mos no simulation is run, the script only creates a defect free mesh which is saved to a binary file. The GNU Octave script Shunts40x40.m creates a random distribution of defects and generates PVMOS scripts where these defects are built in. The PVMOS scripts generated by the GNU Octave script start by loading the defect-free mesh and subsequently locally refine the mesh and add shunts. This script demonstrates the simulation of larger systems (and for that reason is best used on a 64 bit operating system and a 64bit PVMOS executable and several GB of memory) and the saving and loading of meshes.

C. Metal wrap-through module

This example is located in Examples/Pinup. The example entails the files several files:

- mkpvmosmesh.oct Dynamic library for GNU Octave to write PVMOS meshes. This needs to be compiled from the PVMOS source tree ("make mkpvmosmesh") and placed in the example directory.
- ullet generate_mesh.m Generates the mesh from the images listed below using GNU octave
- pinup_frontmetal.png Image used by generate_mesh.m to define the areas where there is metal at the front
- pinup_vias.png Image used by generate_mesh.m to define the areas where the front contact is connected to the contact foil through vias
- pinup_backisolation.png Image used by generate_mesh.m to define the areas where the back contact is isolating (around the vias)
- pinup_back2contactfoil.png Image used by generate_mesh.m to define the areas where the back contact is connected to the contact foil
- pinup_foilisolation.png Image used by generate_mesh.m to define the areas where the contact foil is isolating
- pinup_contactfoil_vn.png Image used by generate_mesh.m to define the areas the contact foil is connected to ground

- pinup_contactfoil_vp.png Image used by generate_mesh.m to define the areas where the contact foil is connected to the positive node.
- pinup.mos The PVMOS input file

This example demonstrates how a PVMOS mesh can be generated from images using GNU octave where the images are used as selection masks to select elements and change some parameters for these elements. The example simulateds a metal wrap-through solar cell with three electrose, the front electrode (emitter and front metal), the back electrode (metal contact to the base) and a contact foil at the back which contacts the front metal through vias and the back contact. After running the <code>generate_mesh.m</code> script in GNU Octave a mesh is written to <code>pinup.bin</code>. This meash is loaded in the PVMOS script <code>pinup.mos</code>. As the mesh is rather large the mesh is first simplified to reduce the number of elements in the mesh without losing resolution in he area definition. After this step the mesh is a tad coarse for simulating the potentials accurately so the mesh is refined again but this time only there where mesh refinement is needed for an accurate simulation of the potentials. After that the device IV characteristics are simulated.

D. Crystalline silicon module

The final example is perhaps the most elaborate. In Examples/CSiSTD we do a simulation of a crystalline solar cell with three busbars. The simulation extensively uses the definition of new meshes which are glued together to form bigger and more complicated meshes untill we have a complete cell with busbars and fingers and tabbing wires. It uses all the tricks PVMOS has to generate a complicated geometry from scratch without aid from GNU Octave. The result is a mesh that is comparatively small and therefore allows to do the simulation is a comparatively small memory footprint (less than 0.5 GB) which makes this example even suitable for 32bit machines. There is an optional section in the input file which you can uncomment to simulate the effect of Banksy spray-painting a rat on your solar cell leaving a permanent rat-shaped shadow pattern on the cell.

^[1] B. E. Pieters, "PVMOS: A Free and Open Source Simulation Tool for Solar Modules," submitted to: Journal of Photovoltaics, 2014.

^[2] T. A. Davis. (retrieved 22 May 2014) BLAS performance bug and its effect on sparse "bench" in MATLAB 7.4. [Online]. Available: http://www.cise.ufl.edu/research/sparse/cholmod/blasbug.html

^[3] Many BLAS versisons seem to suffer from a bug which makes that cholmod performance deteriorates when multi-threading is enabled [2]. If your BLAS library has multi-threading enabled, performance may improve if you set environment variables such that BLAS will use only one thread. In case of OpenBLAS with OpenMP you need to set OMP_NUM_THREADS=1, e.g. export OMP_NUM_THREADS=1 in bash or SET OMP_NUM_THREADS=1 in DOS