In Exercises 1–14, to establish a big-O relationship, find witnesses C and k such that $|f(x)| \le C|g(x)|$ whenever x > k.

1. Determine whether each of these functions is O(x).

a)
$$f(x) = 10$$

b)
$$f(x) = 3x + 7$$

a)
$$f(x) = 10$$

b) $f(x) = 3x + 7$
c) $f(x) = x^2 + x + 1$
d) $f(x) = 5 \log x$
e) $f(x) = \lfloor x \rfloor$
f) $f(x) = \lceil x/2 \rceil$

$$\mathbf{d}) \ f(x) = 5 \log x$$

e)
$$f(x) = |x|$$

$$\mathbf{f}(\mathbf{x}) = [\mathbf{x}/2]$$

- 3. Use the definition of "f(x) is O(g(x))" to show that x^4 + $9x^3 + 4x + 7$ is $O(x^4)$.
- 5. Show that $(x^2 + 1)/(x + 1)$ is O(x).
- 7. Find the least integer n such that f(x) is $O(x^n)$ for each of these functions.

a)
$$f(x) = 2x^3 + x^2 \log x$$

b)
$$f(x) = 3x^3 + (\log x)^4$$

c)
$$f(x) = (x^4 + x^2 + 1)/(x^3 + 1)$$

d)
$$f(x) = (x^4 + 5 \log x)/(x^4 + 1)$$

- **9.** Show that $x^2 + 4x + 17$ is $O(x^3)$ but that x^3 is not $O(x^2 + 1)$ 4x + 17).
- **11.** Show that $3x^4 + 1$ is $O(x^4/2)$ and $x^4/2$ is $O(3x^4 + 1)$.
- **13.** Show that 2^n is $O(3^n)$ but that 3^n is not $O(2^n)$.
- **15.** Explain what it means for a function to be O(1).
- 17. Suppose that f(x), g(x), and h(x) are functions such that f(x) is O(g(x)) and g(x) is O(h(x)). Show that f(x) is O(h(x)).
- **19.** Determine whether each of the functions 2^{n+1} and 2^{2n} is $O(2^n)$.

- **21.** Arrange the functions \sqrt{n} , $1000 \log n$, $n \log n$, 2n!, 2^n , 3^n , and $n^2/1,000,000$ in a list so that each function is big-O of the next function.
- 23. Suppose that you have two different algorithms for solving a problem. To solve a problem of size n, the first algorithm uses exactly $n(\log n)$ operations and the second algorithm uses exactly $n^{3/2}$ operations. As n grows, which algorithm uses fewer operations?
- **25.** Give as good a big-O estimate as possible for each of these functions.
- **a)** $(n^2 + 8)(n + 1)$ **b)** $(n \log n + n^2)(n^3 + 2)$ **c)** $(n! + 2^n)(n^3 + \log(n^2 + 1))$
- **27.** Give a big-O estimate for each of these functions. For the function g in your estimate that f(x) is O(g(x)), use a simple function g of the smallest order.
 - a) $n \log(n^2 + 1) + n^2 \log n$
 - **b)** $(n \log n + 1)^2 + (\log n + 1)(n^2 + 1)$ **c)** $n^{2^n} + n^{n^2}$
- 29. For each function in Exercise 2, determine whether that function is $\Omega(x^2)$ and whether it is $\Theta(x^2)$.
 - **2.** Determine whether each of these functions is $O(x^2)$.
 - **a**) f(x) = 17x + 11
- **b**) $f(x) = x^2 + 1000$
- c) $f(x) = x \log x$
- **d**) $f(x) = x^4/2$

e) $f(x) = 2^x$

- **f**) $f(x) = |x| \cdot [x]$
- **35.** Express the relationship f(x) is $\Theta(g(x))$ using a picture. Show the graphs of the functions f(x), $C_1|g(x)|$, and $C_2|g(x)|$, as well as the constant k on the x-axis.
- **37.** Explain what it means for a function to be $\Theta(1)$.
- **41.** Suppose that f(x) is O(g(x)), where f and g are increasing and unbounded functions. Show that $\log |f(x)|$ is $O(\log |g(x)|).$