Semestrální projekt MI-PDP 2020/2021:

Paralelní algoritmus pro řesení problému prohledávání stavového prostoru

Martin Šafránek

magisterské studijum, FIT ČVUT, Thákurova 9, 160 00 Praha 6

zdrojové kódy:

https://github.com/TaIos/ni-pdp-semestralka

8. května 2021

1 Definice problému a popis sekvenčního algoritmu

Program řeší problém nalezení optimální posloupnosti tahů pro střelce a jezdce, která vede k sebrání všech pěšců rozmístěných na šachovnici. Jedná se o analogii problému obchodního cestujícího. Nalezení optimálního řešení je proto NP těžký úkol. Řešení v této práci používá bruteforce s heuristikami pro ořezávání stavového prostoru.

1.1 Popis vstupu

Příklad vstupu je uveden na obrázku 1. Obsahuje popořadě vždy

- 1. přirozené číslo k, reprezentující délku strany šachovnice S o velikosti $k \times k$,
- 2. horní mez délky optimální posloupnosti d_{max}^* ,
- 3. pole souřadnic rozmístěných figurek na šachovnici S.

11
22
-----P--P----P-----P-------P-------P-------P----

Obrázek 1: Příklad vstupních dat pro $k=11,\,d_{max}^*=22.$ Střelec je označen S, jezdec J, pěšák P a prázdné políčko –.

1.2 Heuristiky

Sekvenční algoritmus používá dvě heuristiky pro pohyb střelce a koně.

Heuristika střelec. Z množiny možných políček, kam je možné střelce přemístit jsou preferována ty, která obsahují pěšce. Pokud takové políčko neexistuje, jsou preferována políčka s alespoň jedním pěšákem na diagonále. Jinak se pohyb střelce rozhodne náhodně.

Heuristika kůň. Z množiny možných políček, kam je možné koně přemístit jsou preferována ty, která obsahují pěšce. Pokud takové políčko neexistuje, jsou preferována políčka, z kterých kůň ve svém následujícím tahu může vzít pěšáka. Pokud ani takové políčko neexistuje, jsou preferováno políčka, z kterých kůň v následujícíh dvou tazích může vzít pěšáka. Jinak se pohyb koně rozhodne náhodně.

1.3 Pseudokód

```
input: k \times k pole, mez d_{max}^*
   output: optimální posloupnost tahů
1 if abc or def then
3
4 end
5 while While condition do
      instructions:
      if condition then
 7
          instructions1:
 8
 9
          instructions2;
10
          instructions3;
11
      end
12
13 end
```

Algoritmus 1: sekvenční

2 Popis paralelního algoritmu a jeho implementace v OpenMP - taskový paralelismus

Taskový paralelní algoritmus je naimplementován pomocí OpenMP. Hlavní rozdíl oproti sekvenčnímu algoritmu popsaném v je rozdělení úlohy prohledávání stavového prostoru na tasky. Task je základní jednotka, kterou je OpenMP schopno přidělit vláknu a provést tak výpočet. Pro zadanou úlohu task znamená šachovnici s pozicí všech figurek a historií tahů. Takto vytvořené tasky OpenMP přidává do svého taskpoolu, z kterého si je vlákna vyzvedávají a řeší. Dále všechny vlákna řešící tasky z taskpoolu sdílejí nejlepší řešení d_{best} . Heuristiky jsou totožné jako v podsekci 1.1.

2.1 Konstanty a parametry pro škálování algoritmu

Taskový paralelní algoritmus implementovaný pomocí OpenMP umožňuje nastavení konstant, které ovlivní logiku funkce programu a tedy i výpočetní čas. Změněny byly pouze zde zmíněné konstanty. Jejich hodnota byla určena empiricky na vstupních datech. Nejedná se o optimální hodnoty, protože jejich nalezení je stejně těžký problém jako nalezení optimální cesty v původním problému.

Konstanta TASK_THRESHOLD. Pokud vlákno řeší instanci a délka její cesty je delší než TASK_THRESHOLD, nevytváří další OpenMP tasky a nepřidává je do taskpoolu. Zadanou instaci vyřeší použitím sekvenčního algoritmu popsaném v sekci .

název	hodnota
TASK_THRESHOLD	6

Tabulka 1: Konstanty použité v OpenMP taskovém paralelismu.

2.2 Pseudokód

```
input: k \times k pole, mez d_{max}^*
  output: optimální posloupnost tahů
1 if abc or def then
3
4 end
5 while While condition do
      instructions;
      if condition then
          instructions1:
8
          instructions2;
9
10
         instructions3;
11
      end
12
13 end
```

Algoritmus 2: OpenMP taskový paralelismus

3 Popis paralelniho algoritmu a jeho implementace v OpenMP - datový paralelismus

Datový paralelismus v OpenMP pracuje s datově nezávislými celky, které podle určené strategie přiděluje vláknům na zpracování. Nezávislý datový celek je pro zadanou úlohu šachovnice s pozicí všech figurek a historií tahů.

První krok je vygenerování datově nezávislých celků – to je provedeno před použitím OpenMP. Ty jsou následně najednou předány OpenMP. To je určenou strategií rozdělí mezi vlákna. Každé vlákno pak provádí sekvenční řešení problému popsané v sekci . Vlákna mezi sebou sdílejí pouze nejlepší řešení.

3.1 Konstanty a parametry pro škálování algoritmu

Prvním krokem před spuštěním OpenMP řešení je vytvoření datově nezávislých instancí. Ty se vytvoří použitím sekvečního algoritmu, viz sekce . Jejich počet je regulován konstantou EPOCH_CNT.

Parametrem OpenMP je konstanta schedule. Ta určuje politiku přidělování datově nezávislých instací vláknům. Zde je použitá hodnota dynamic() bez parametrů. To znamená, že pokud vlákno dokončí výpočet je mu přiřazena jedna další datově nezávislá instance k vyřešení.

Konstanta EPOCH_CNT. Určuje, kolik datově nezávislých instancí je vygenerováno. Pro každou epochu jsou provedeny všechny možné tahy buď koněm, nebo střelcem. Po vyčerpání všech epoch jsou stavy, do kterých se kůň a střelec dostali použity jako nezávislé instance.

Konstanta schedule. OpenMP konstanta, která nastavuje politiku přidělování datově nezávislých instací vláknům.

název	hodnota
EPOCH_CNT	3
schedule	dynamic()

Tabulka 2: Konstanty použité v OpenMP datovém paralelismu

3.2 Pseudokód paralelního algoritmu — datový paralelismus

Porchetta andouille flank kielbasa. Tail biltong turducken porchetta burgdoggen ground round shoulder ham, hamburger bacon shankle landjaeger fatback pork belly doner. Sirloin doner venison shankle cow, hamburger flank sausage pork belly. Tenderloin venison pancetta corned beef tongue cow pork belly capicola ball tip salami short ribs. Sirloin rump andouille tail shank fatback bresaola.

Leberkas ham bacon, pastrami turducken pork belly cupim salami kielbasa doner. Turkey cupim meatball capicola jowl cow shank chicken drumstick kevin salami swine pork belly. Drumstick leberkas corned beef beef short loin boudin. Turkey strip steak bacon, ball tip sirloin pork loin pork.

3.3 Pseudokód

```
input: k \times k pole, mez d_{max}^*
  output: optimální posloupnost tahů
1 if abc or def then
2 else
3 ;
4 end
5 while While condition do
      instructions;
      if condition then
7
         instructions1;
8
         instructions2:
9
10
         instructions3;
11
12
      end
13 end
```

Algoritmus 3: OpenMP datový paralelismus

4 Popis paralelního algoritmu a jeho implementace v MPI

Řešení s použitím MPI se skládá ze dvou částí. První je datový OpenMP paralelismus, viz sekce 13. Druhou část tvoří MPI. Ten má za úkol řídit a distribuovat výpočet na několika výpočetních uzlech.

MPI proces začíná tím, že si master vlákno identickým způsobem jako v sekci s datovým paralelismem13 vygeneruje datově nezávislé instance. Ty pak serializuje a společně s globálním nejlepším řešením je pošle přes MPI interface slavům. Každý z nich pomocí datového paralelismu popsaného v sekci 13 vyřeší přijmuté řešení a odešlě ho zpět master vláknu. Pak požádá master vlákno o další instanci k vyřešení. Pokud master vláknu dojdou instance k vyřešení, rozešlě slavům zprávu o ukončení výpočtu.

4.1 Konstanty a parametry pro škálování algoritmu

Protože MPI využívá pro řešení tasků datový OpenMP paralelismus popsaný v sekci 13, jsou zde uvedeny pouze MPI konstanty.

TODO nastaveni poctu vypocetnich jader

instance	sekvenční	OpenMP task	OpenMP data	MPI
saj7	272			
saj10	103			
saj12	489			

Tabulka 3: Naměřené výsledky. Jednotky jsou uvedené v sekundách. Konstanta p je počet použitých výpočetních jader.

4.2 Pseudokód

```
input : k \times k pole, mez d_{max}^*
   output: optimální posloupnost tahů
 1 if abc or def then
2 else
4 end
5 while While condition do
      instructions;
      if condition then
 7
          instructions1;
 8
 9
          instructions2;
10
11
          instructions3;
12
      end
13 end
```

Algoritmus 4: MPI paralelismus

5 Naměřené výsledky a vyhodnocení

- 1. Zvolte tri instance problemu s takovou velikosti vstupnich dat, pro ktere ma sekvencni algoritmus casovou slozitost mezi 1 a 10 minutami. Pro mereni cas potrebny na cteni dat z disku a ulozeni na disk neuvazujte a zakomentujte ladici tisky, logy, zpravy a vystupy.
- 2. Merte paralelni cas pri pouziti $i=2,\cdot,60$ vypocetnich jader.
- 3. Tabulkova a pripadne graficky zpracovane namerene hodnoty casove slozitosti měernych instanci behu programu s popisem instanci dat. Z namerenych dat sestavte grafy zrychleni S(n, p).
- 4. Analyza a hodnoceni vlastnosti paralelniho programu, zvlaste jeho efektivnosti a skalovatelnosti, pripadne popis zjisteneho superlinearniho zrychleni.

6 Závěr

Cílem předmětu bylo si na jednoduchém úkolu prohledávání stavového prostoru v šachovnici vyzkoušet metody pro nalezení optimálního řešení. Nejdříve jsem implementoval jednoduché sekveční řešení. To jsem dále paralelizoval s použitím OpenMP. Přitom jsem se naučil jak s OpenMP zacházet a dva způsoby paralelizace – datová a tasková. Použití OpenMP mi nedělalo větší problémy, protože se stačí pouze zamyslet a chytře do sekvenčného kódu doplnit pár direktiv případně dopsat jednu/dvě funkce. Navíc se pod OpenMP dá kód rozumně debugovat. Větší problém jsem měl s MPI. Pro jeho použití jsem musel doplnit a přepsat značnou část fungujícího OpenMP kódu. Nejvíce práce na MPI mi zabrala serializace/deserializace instancí a řešení deadlocků při posílání.

7 Spuštění a překlad

Bash skript v 2 spustí program, kterému v argumentu předá vstupní data jako textový soubor. Formát vstupních dat viz podsekce 1. Pro sekvenční řešení skript spouští všechny řešení najednou. Pro paralelní čeká vždy na dokončení běhu aktuálního vstupu.

řešení	příkaz
sekvenční	g++std=c++11 -03 -funroll-loops
OpenMP	g++std=c++11 -03 -funroll-loops -fopenmp
MPI	mpicxxstd=c++11 -lm -03 -funroll-loops

Tabulka 4: Kompilační příkazy.

```
#!/usr/bin/bash
PROGRAM='./run.out'
OUT="out/parallel/data_epoch3_guided"
mkdir "$OUT"
for filename in ../data/*.txt; do
base=$(basename -- "$filename")
echo "$base"
# sekvencni
# $PROGRAM "$filename" > "$OUT/$base" &
# paralelni
$PROGRAM "$filename" > "$OUT/$base"
done
```

Obrázek 2: Bash skript pro spuštění sekvenčního a OpenMP programu.

8 Literatura

Tenderloin pork belly ham leberkas doner rump. Filet mignon beef pastrami pork belly drumstick. Beef ribs filet mignon porchetta pork turducken spare ribs tri-tip corned beef strip steak turkey capicola. Venison hamburger ball tip, buffalo fatback pork alcatra doner pork belly.