

"Isotermas Pv-P y curva de Boyle para gas metano (CH₄)"

Termodinámica y teoría cinética 2º Grado en Física

1 Coeficientes del virial del gas metano según T en función de T, a y b.

T (K)	B(T) I/mol	C(T) l/mol ²	D(T) l/mol ²	B'(T) l/atm	C`(T) 1/ l/atm ²	D'(T) l/matm ⁴
278,15	-0,0565	0,00252	0,0096	-0,002475	-0,00000128	0,0000008170
283,15	-0,0547	0,00232	0,0093	-0,002355	-0,00000128	0,0000003170
288,15	-0,0530	0,00243	0,0090	-0,002243	-0,000000105	0,0000007480
293,15	-0,0514	0,00235	0,0087	-0,002136	-0,00000068	0,0000000033
298,15	-0,0314	0,00223	0,0087	-0,002130	-0,00000052	0,0000005792
303,15	-0,0498	0,00217	0,0084	-0,002036	-0,00000032	0,0000005334
308,15	-0,0468	0,00203	0,0081	-0,001940	-0,00000038	0,0000003334
313,15	-0,0468	0,00202	0,0079	-0,001830	-0,00000026	0,0000004918
318,15	-0,0434	0,00190	0,0076	-0,001763	-0,00000013	0,0000004341
-	-0,0440	0,00190	0,0074	-0,001684	0,00000003	0,0000004197
323,15 328,15	-0,0426	0,00184	0,0072	-0,001607	0,00000003	0,0000003883
333,15	-0,0413	0,00178	0,0069	-0,001334	0,00000010	0,0000003339
				· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , ,
338,15	-0,0388	0,00168	0,0065	-0,001399	0,00000023	0,0000003101
343,15	-0,0376	0,00164	0,0064	-0,001336	0,00000028	0,0000002883
348,15	-0,0365 -0,0353	0,00159	0,0062	-0,001276	0,00000032	0,0000002683
353,15		0,00155	0,0060	-0,001219	0,00000036	0,0000002499
358,15	-0,0342	0,00151	0,0058	-0,001165	0,00000040	0,0000002331
363,15	-0,0332	0,00148	0,0057	-0,001113	0,00000043	0,0000002175
368,15	-0,0321	0,00145	0,0055	-0,001064	0,00000045	0,0000002032
373,15	-0,0311	0,00141	0,0054	-0,001017	0,00000047	0,0000001900
378,15	-0,0301	0,00138	0,0052	-0,000972	0,00000049	0,0000001779
383,15	-0,0292	0,00135	0,0051	-0,000929	0,00000051	0,0000001666
388,15	-0,0283	0,00133	0,0050	-0,000887	0,00000052	0,0000001562
393,15	-0,0274	0,00130	0,0049	-0,000848	0,00000053	0,0000001466
398,15	-0,0265	0,00128	0,0047	-0,000810	0,00000054	0,0000001376
403,15	-0,0256	0,00126	0,0046	-0,000774	0,00000055	0,0000001293
408,15	-0,0248	0,00124	0,0045	-0,000739	0,00000055	0,0000001216
413,15	-0,0239	0,00122	0,0044	-0,000706	0,00000056	0,0000001145
418,15	-0,0231	0,00120	0,0043	-0,000674	0,00000056	0,000001078
423,15	-0,0224	0,00118	0,0042	-0,000644	0,00000056	0,0000001016
428,15	-0,0216	0,00116	0,0041	-0,000615	0,00000056	0,0000000958
433,15	-0,0208	0,00115	0,0040	-0,000587	0,00000056	0,0000000904
438,15	-0,0201	0,00113	0,0039	-0,000560	0,00000056	0,0000000854
443,15	-0,0194	0,00112	0,0038	-0,000534	0,00000056	0,0000000807
448,15	-0,0187	0,00110	0,0037	-0,000509	0,00000056	0,0000000763
453,15	-0,0180	0,00109	0,0037	-0,000485	0,00000055	0,0000000722
458,15	-0,0174	0,00108	0,0036	-0,000462	0,00000055	0,0000000684
463,15	-0,0167	0,00107	0,0035	-0,000440	0,00000055	0,0000000647
468,15	-0,0161	0,00106	0,0034	-0,000418	0,00000054	0,0000000614
473,15	-0,0154	0,00105	0,0034	-0,000398	0,00000054	0,0000000582
478,15	-0,0148	0,00104	0,0033	-0,000378	0,00000053	0,0000000552
483,15	-0,0142	0,00103	0,0032	-0,000359	0,00000053	0,0000000524
488,15	-0,0136	0,00102	0,0032	-0,000341	0,00000052	0,0000000498
493,15	-0,0131	0,00101	0,0031	-0,000323	0,00000052	0,0000000473
498,15	-0,0125	0,00101	0,0030	-0,000306	0,00000051	0,0000000450
503,15	-0,0120	0,00100	0,0030	-0,000289	0,00000050	0,0000000428
508,15	-0,0114	0,00099	0,0029	-0,000274	0,00000050	0,0000000407
513,15	-0,0109	0,00099	0,0029	-0,000258	0,00000049	0,0000000388
518,15	-0,0104	0,00098	0,0028	-0,000244	0,00000048	0,0000000370
523,15	-0,0098	0,00098	0,0028	-0,000229	0,00000048	0,0000000352
528,15	-0,0093	0,00097	0,0027	-0,000216	0,00000047	0,0000000336
533,15	-0,0089	0,00097	0,0027	-0,000202	0,00000046	0,0000000321
538,15	-0,0084	0,00096	0,0026	-0,000190	0,00000046	0,0000000306
543,15	-0,0079	0,00096	0,0026	-0,000177	0,00000045	0,0000000292
548,15	-0,0074	0,00096	0,0025	-0,000165	0,00000045	0,0000000279

553,15	-0,0070	0,00095	0,0025	-0,000154	0,00000044	0,0000000267
558,15	-0,0070	0,00095	0,0023	-0,000134	0,00000044	0,0000000257
563,15	-0,0061	0,00095	0,0024	-0,000142	0,00000043	0,0000000233
568,15	-0,0057	0,00094 0,00094	0,0023	-0,000121	0,00000042 0,00000041	0,0000000233
573,15	-0,0052	,	0,0023	-0,000111		0,0000000223
578,15	-0,0048	0,00094	0,0023	-0,000101	0,00000041	0,0000000214
583,15	-0,0044	0,00094	0,0022	-0,000092	0,00000040	0,0000000205
588,15	-0,0040	0,00094	0,0022	-0,000083	0,00000040	0,000000196
593,15	-0,0036	0,00094	0,0022	-0,000074	0,00000039	0,000000188
598,15	-0,0032	0,00093	0,0021	-0,000065	0,00000038	0,000000180
603,15	-0,0028	0,00093	0,0021	-0,000057	0,00000038	0,000000173
608,15	-0,0024	0,00093	0,0021	-0,000049	0,00000037	0,0000000166
613,15	-0,0021	0,00093	0,0020	-0,000041	0,00000037	0,000000159
618,15	-0,0017	0,00093	0,0020	-0,000034	0,00000036	0,000000153
623,15	-0,0013	0,00093	0,0020	-0,000026	0,00000035	0,000000147
628,15	-0,0010	0,00093	0,0019	-0,000019	0,00000035	0,000000141
633,15	-0,0006	0,00093	0,0019	-0,000012	0,00000034	0,000000136
638,15	-0,0003	0,00093	0,0019	-0,000006	0,00000034	0,000000130
643,15	0,0000	0,00093	0,0018	0,000001	0,00000033	0,0000000125
648,15	0,0004	0,00093	0,0018	0,000007	0,00000033	0,0000000121
653,15	0,0007	0,00093	0,0018	0,000013	0,00000032	0,000000116
658,15	0,0010	0,00093	0,0018	0,000019	0,00000032	0,000000112
663,15	0,0013	0,00093	0,0017	0,000024	0,00000031	0,000000107
668,15	0,0016	0,00093	0,0017	0,000030	0,00000031	0,000000103
673,15	0,0020	0,00093	0,0017	0,000035	0,00000030	0,000000100
678,15	0,0023	0,00093	0,0017	0,000041	0,00000030	0,0000000096
683,15	0,0026	0,00093	0,0016	0,000046	0,00000029	0,0000000093
688,15	0,0028	0,00093	0,0016	0,000050	0,00000029	0,0000000089
693,15	0,0031	0,00093	0,0016	0,000055	0,00000029	0,0000000086
698,15	0,0034	0,00093	0,0016	0,000060	0,00000028	0,0000000083
703,15	0,0037	0,00094	0,0015	0,000064	0,00000028	0,0000000080
708,15	0,0040	0,00094	0,0015	0,000069	0,00000027	0,0000000077
713,15	0,0043	0,00094	0,0015	0,000073	0,00000027	0,0000000075
273,15	-0,0583	0,00263	0,0100	-0,002601	-0,00000153	0,0000008938
278,15	-0,0565	0,00252	0,0096	-0,002475	-0,00000128	0,0000008170
283,15	-0,0547	0,00243	0,0093	-0,002355	-0,00000105	0,0000007480
288,15	-0,0530	0,00233	0,0090	-0,002243	-0,00000085	0,0000006859
293,15	-0,0514	0,00225	0,0087	-0,002136	-0,00000068	0,0000006299
298,15	-0,0498	0,00217	0,0084	-0,002036	-0,00000052	0,0000005792
303,15	-0,0483	0,00209	0,0081	-0,001940	-0,00000038	0,0000005334
308,15	-0,0468	0,00202	0,0079	-0,001850	-0,00000026	0,0000004918
313,15	-0,0454	0,00196	0,0076	-0,001765	-0,00000015	0,0000004541
318,15	-0,0440	0,00190	0,0074	-0,001684	-0,00000006	0,0000004197
323,15	-0,0426	0,00184	0,0072	-0,001607	0,00000003	0,0000003885
3_3,13	0,0 120			,	oc dal virial (dasa	

Tabla 1.1: valores de T y 6 coeficientes del virial (desarrollo en V y en P)

2 Representación isotermas

NOTA IMPORTANTE: se eligen combinaciones de presiones altas para que las ecuaciones sigan las suposiciones seguidas durante su obtención y sean así más exactas.

Unidades:

 $T \rightarrow K$

V → I/mol

 $P \rightarrow atm$

<u>Isotermas 873,15 + 100*i* K (hacia abajo) para presiones muy altas</u>

Figura 2.1: Isotermas 873,15 K (arriba del todo) + 100 K (hacia abajo) para presiones muy altas

Isotermas 873,15 + 100*i* K (hacia abajo) para presiones muy altas

Figura 2.2: Isotermas 873,15 K (arriba) + 100 K (hacia abajo) para presiones relativamente altas

<u>Isotermas de 243,15 + 5100*i* K (hacia abajo) y presiones muy altas</u>

Figura 2.3: Isotermas de 243,15 K (arriba del todo) + 100 K (hacia abajo) y presiones muy altas

<u>Isotermas de 243,15 + 100*i* K (hacia abajo) y presiones relativamente altas</u>

Figura 2.4: Isotermas de 243,15 K (arriba) + 100 K (hacia abajo) y presiones relativamente altas

<u>Isotermas de 273,15 + 100*i* K (hacia abajo) y presiones relativamente bajas</u>

Figura 2.5: Isotermas de 273,15 K (arriba) + 100 K (hacia abajo) y presiones relativamente bajas

Isotermas de 5,15 + 5*i* K (hacia abajo) y presiones muy altas

Figura 2.6: Isotermas de 5,15 K (arriba del todo) + 5 K (hacia abajo) y presiones muy altas

Isotermas de 40,15 + 5*i* K (hacia abajo) y presiones muy altas

Figura 2.7: Isotermas de 40,15 K (arriba del todo) + 5 K (hacia abajo) y presiones muy altas

3 Curva de Boyle

T = 303,15

Figura 3.1: Curva de Boyle para T = 303,15

T = 1473,15 K

Figura 3.1: Curva de Boyle para T = 1473,15 K

4 Código fuente del programa en lenguaje Python.

```
#!/usr/bin/python
1
2
     # -*- coding: utf-8 -*-
3
4
     from math import *
5
     import matplotlib.pyplot as plt
6
     import csv
7
     import numpy
8
     #declaración variable simbolica R
9
10
     a= 2.272883669
     b= 0.043100000
11
12
13
14
0.0 = x
16
        \Rightarrowx = Bp+ Cp*2*p + Dp*3*(p**2)
17
18
        ⇒return x
19
20 □def conviertePav(R, p , T, Bp,Cp,Dp):
21
22
        x = (1 + Bp*p + Cp*(p**2) + Dp*(p**3) )/(R*T*p)
23
        >return x
24
25 □def conv_float(f):
26
        n = 0.0
27
        try:
28
        n=float(f)
29
        →except ValueError:
30
            pass
31
        ∍return n
32
33
```

```
34 □def hallaBoyle(Bp,Cp,Dp,pv):
35
36
           x = [0.0] * len(pv)
37
           for i in range (0,len(pv)):
38
              x[i] = calculaxBoyle( Bp, Cp, Dp, pv[i] )
               print('Para la presion P %5.7f. se obtiene un x de Boyle de %5.7f.'%(pv[i],x[i]))
39
40
           return x
41
42
43
      n_f = 18
44
      n_c = 18
45
      #Valor de R en atml por litro
46
      R = 0.082057
47
48
      multiplicador_p = 50
49
50
51
      ps= [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0,
52
     vs = [0.0] * len(ps)
53
54
    □for i in range(len(ps)):
55
          ps[i]=ps[i]+(i+1)*multiplicador_p
56
57
    □try:
58
59
60
           #descomentar una urotra linea segun se quieran leer diferentes temperaturas y coeficiente:
           #with open('isotermasmetano2.csv', 'rU') as data:
#with open('isotermasgrandes.csv', 'rU') as data:
with open('isotermasgrandes.csv', 'rU') as data:
61
62
63
               reader = csv.reader(data,csv.QUOTE_NONNUMERIC)
64
65
               datos = list(reader)
               #longitud del array según la entrada por eficiencia
66
```

```
67
              n_f = len(datos)
              contador_f = 0
68
69
              print('Num Fil leidas %d'%(len(datos)))
              val = [0.0] * len(datos)
70
71
              for x in datos:
72
                 print('Num col leidas %d'%(len(x)))
73
74
                  #resultados leidos por csv
75
                  val[contador_f] = [0.0] * len(x)
                  contador c = 0
76
                  for vin x:
77
78
                      val[contador_f][contador_c] = conv_float(y)
79
                     contador c+=1
80
                  contador_f+=1
         print('\nValores leídos: ')
81
82
          print(val)
83
84
    □except ValueError:
85
86
         print 'Error leyendo'
87
    □finally:
88
         data.close()
89
90
91
     plt.figure()
92
     ax = plt.subplot(111)
93
94
     #resultados ejes y e x de ajuste de isotermas, dimensiones inicializadas
95
96
     pvRT = [0.0] * n_f
97
     x_virial = [0.0] * n_f
98
   □for i in range(n_f):
```

```
100
            pvRT[i] = [0.0] * len(ps)
           x_virial[i] = [0.0] * len(ps)
101
102
            ecboyle = [0.0] * len(ps)
103
104
       #i número de y que se evalúan
105
       #j numero presiones
     □for i in range (0, n_f):
106
107
                for j in range (0,len(ps)):
108
                    #calculo los volumenes correspondientes a las presiones
109
                    v_cal = conviertePav( R, ps[j], val[i][0], val[i][4], val[i][5],val[i][6] )
110
111
                    #calculo x e y del ajuste
112
                    pvRT[i][j] = (ps[j]*v_cal)/(R*val[i][0])
                    x_virial[i][j] = 1 + val[i][4]*ps[j] + val[i][5]*(ps[j]**2) + val[i][6]*(ps[j]**3)
113
114
115
       #llamadas funciones v representación
116
       #Se puede llamar a cualquiera, todo está calculado y cargado previamente
117
118
       #llamadas para T boyle
119
       bs = hallaBoyle(val[5][4], val[0][5],val[0][6],ps) \rightarrow
       plt.plot(bs,x_virial[0],'r*')
120
121
       print('T boyle para T = %f'%val[13][0])
122
       plt.title('Curva de Boyle del gas Metano CH4')
111
                   #calculo x e y del ajuste
112
                   pvRT[i][j] = (ps[j]*v_cal)/(R*val[i][0])
113
                   x_virial[i][j] = 1 + val[i][4]*ps[j] + val[i][5]*(ps[j]**2) + val[i][6]*(ps[j]**3)
114
115
       #llamadas funciones y representacion
116
       #Se puede llamar a cualquiera, todo está calculado y cargado previamente
117
       #llamadas para T boyle
118
119
       bs = hallaBoyle(val[5][4], val[0][5],val[0][6],ps) \rightarrow
       plt.plot(bs,x_virial[0],'r*')
print('T boyle para T = %f'%val[13][0])
120
121
122
       plt.title('Curva de Boyle del gas Metano CH4')
123
124
       #llamadas para isotermas
       #plt.plot(ps, x_virial[7] , 'b*',ps, x_virial[8] , 'g-', ps, x_virial[9] , 'ro',ps, x_virial[10] , '
125
126
       #print('Temperaturas T = %f %f %f %f %f %f %f %f %(val[7][0],val[8][0],val[9][0],val[4][0],val[5][0],va
127
       plt.grid(True)
       #plt.title('Isotermas del gas Metano CH4')
128
129
       plt.legend()
130
       plt.show()
131
132
       a = numpy.asarray(val)
133
       #escribo los resultados en un archivo csv
134
       numpy.savetxt("salidaisotermas1.csv", a, delimiter=",")
135
       b = numpy.asarray(x_virial)
136
       c = numpy.asarray(pvRT)
       #escribo los resultados en un archivo csv
137
       numpy.savetxt("salidaisotermas2.csv", b, delimiter=",")
numpy.savetxt("salidaisotermas3.csv", c, delimiter=",")
138
139
```

5 Código fuente en texto del programa en lenguaje Python.

```
#!/usr/bin/python
# -*- coding: utf-8 -*-
from math import *
import matplotlib.pyplot as plt
import csv
import numpy
#declaración variable simbolica R
a= 2.272883669
b= 0.043100000
def calculaxBoyle(Bp,Cp,Dp,p):
x = 0.0
x = Bp + Cp*2*p + Dp*3*(p**2)
return x
def conviertePav(R, p , T, Bp,Cp,Dp):
x = 0.0
x = (1 + Bp*p + Cp*(p**2) + Dp*(p**3))/(R*T*p)
return x
def conv_float(f):
n = 0.0
try:
n=float(f)
except ValueError:
```

```
pass
return n
def hallaBoyle(Bp,Cp,Dp,pv):
x = [0.0] * len(pv)
for i in range (0,len(pv)):
x[i] = calculaxBoyle(Bp, Cp, Dp, pv[i])
print('Para la presion P %5.7f. se obtiene un x de Boyle de %5.7f.'%(pv[i],x[i]))
return x
n_f = 18
n_c = 18
#Valor de R en atml por litro
R = 0.082057
multiplicador_p = 10
ps= [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11,
11.5, 12, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5,
20.0]
vs = [0.0] * len(ps)
for i in range(len(ps)):
ps[i]=ps[i]+(i+1)*multiplicador_p
try:
```

```
del viliar cargas una sisoterma su otras
#with open('isotermasmetano2.csv', 'rU') as data:
#with open('isotermasgrandes.csv', 'rU') as data:
with open('isotermasbajisimas.csv', 'rU') as data:
reader = csv.reader(data,csv.QUOTE NONNUMERIC)
datos = list(reader)
#longitud del array según la entrada por eficiencia
n_f = len(datos)
contador_f = 0
print('Num Fil leidas %d'%(len(datos)))
val = [0.0] * len(datos)
for x in datos:
print('Num col leidas %d'%(len(x)))
#resultados leidos por csv
val[contador_f] = [0.0] * len(x)
contador_c = 0
for y in x:
val[contador_f][contador_c] = conv_float(y)
#print ('\n\nFila = %s, col = %s, T = %5.3f, B prima = %5.7f., C = %5.7f.'%(contador_f,
contador_c,val[contador_f][0],val[contador_f][4], val[contador_f][3]))
contador c+=1
contador_f+=1
print('\nValores leídos: ')
print(val)
except ValueError:
print 'Error leyendo'
finally:
data.close()
```

#descomentar una u otra linea segun se quieran leer diferentes temperaturas y coeficientes

```
plt.figure()
ax = plt.subplot(111)
#resultados ejes y e x de ajuste de isotermas, dimensiones inicializadas
pvRT = [0.0] * n_f
x_{virial} = [0.0] * n_f
for i in range(n_f):
pvRT[i] = [0.0] * len(ps)
x_{virial[i]} = [0.0] * len(ps)
ecboyle = [0.0] * len(ps)
#i número de y que se evalúan
#j numero presiones
for i in range (0, n_f):
for j in range (0,len(ps)):
#calculo los volumenes correspondientes a las presiones
v_cal = conviertePav( R, ps[j], val[i][0], val[i][4], val[i][5],val[i][6] )
#calculo x e y del ajuste
pvRT[i][j] = (ps[j]*v_cal)/(R*val[i][0])
x_{i} = 1 + val[i][4]*ps[j] + val[i][5]*(ps[j]**2) + val[i][6]*(ps[j]**3)
```

```
#Se puede llamar a cualquiera, todo está calculado y cargado previamente
#llamadas para T boyle
#bs = hallaBoyle(val[5][4], val[0][5],val[0][6],ps)
#plt.plot(bs,x_virial[0],'r*')
\#print(T boyle para T = \%f\%val[13][0])
#plt.title('Curva de Boyle Metano CH4')
#llamadas para isotermas
plt.plot(ps, x_virial[7], 'b*',ps, x_virial[8], 'g-', ps, x_virial[9], 'ro',ps, x_virial[10], 'b.',
ps,x_virial[11], 'go', ps, x_virial[12], 'r.', ps,x_virial[13], 'bo')
print('Temperaturas T = %f %f %f %f %f %f
%f'%(val[7][0],val[8][0],val[9][0],val[4][0],val[5][0],val[6][0],val[7][0]))
plt.grid(True)
plt.title('Isotermas del gas Metano CH4')
a = numpy.asarray(val)
#escribo los resultados en un archivo csv
numpy.savetxt("salidaisotermas1.csv", a, delimiter=",")
b = numpy.asarray(x_virial)
c = numpy.asarray(pvRT)
#escribo los resultados en un archivo csv
numpy.savetxt("salidaisotermas2.csv", b, delimiter=",")
numpy.savetxt("salidaisotermas3.csv", c, delimiter=",")
```

#llamadas funciones y representacion

plt.legend()

plt.show()

Bibliografía

http://webbook.nist.gov/ NIST. Methane. Secretary of Commerce on behalf of the United States of Americac: NIST, fecha de edición. [Consulta: 1/03/2016]. Disponible en: http://webbook.nist.gov/cgi/cbook.cgi?ID=C74828&Units=SI