HW 2 - 131BH

ASHER CHRISTIAN 006-150-286

1. Exercise 2.1

Show that a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has the same radius of convergence as $\sum_{n=0}^{\infty} c_{n+m}(x-a)^n$, for any positive integer m. let r be the radius of convergence of the original series, then

$$\limsup_{n \to \infty} |c_n|^{\frac{1}{n}} = \frac{1}{r}.$$

2. Exercise 2.2

Let $(c_n)_{n=0}^{\infty} \subset \mathbb{R}$ with at least one non null term, let $a \in \mathbb{R}$ and let $\sum_{n=0}^{\infty} c_n(x-a)^n$ have radius of convergence r > 0. Show that there exists $\delta \in (0,r)$ such that the sum of the series is nonzero for every real number x such that $0 < |x-a| < \delta$ Pick m such that c_m is the first non-zero term of the power series. Then

$$\sum_{n=0}^{\infty} c_n (x-a)^n = (x-a)^m \sum_{n=m}^{\infty} c_n (x-a)^{n-m}.$$

The

Date: 29.01.25.