Chapter 14 Exercises Gallian's Book on Abstract Algebra

Spencer T. Parkin March 4, 2014

Understanding Example 7

Let R be the ring of all real-valued functions of a real variable. The subset S of all differentiable functions is a subgring of R but not an ideal of R.

Let f be any real-valued function of a real variable that is not differential and let g be such a function that is differentiable. Now notice that the function h(x) = f(x)g(x) is not differentiable.

Understanding Example 15

If it can be shown that A contains a non-zero real number c, then, by virtue of being an ideal, it absorbs all elements of R[x], so all f(x)c with $f(x) \in R[x]$ is all of R[x], showing that A = R[x].

Exercise 3

Verify that the set I in Example 5 is an ideal and that if J is any ideal of R that contains a_1, a_2, \ldots, a_n , then $I \subseteq J$. (Hence, $\langle a_1, a_2, \ldots, a_n \rangle$ is the smallest ideal of R that contains a_1, a_2, \ldots, a_n .)

For reference, note that

$$I = \langle a_1, a_2, \dots, a_n \rangle = \{ r_1 a_1 + r_2 a_2 + \dots + r_n a_n | r_i \in R \}.$$

Clearly $0 \in I$. If $x, y \in I$, then for elements $x_1, x_2, \ldots, x_n \in R$ and elements $y_1, y_2, \ldots, y_n \in R$, we have

$$x - y = x_1 a_1 + x_2 a_2 + \dots + x_n a_n - (y_1 a_1 + y_2 a_2 + \dots + y_n a_n)$$

= $(x_1 - y_1)a_1 + (x_2 - y_2)a_2 + \dots + (x_n - y_n)a_n \in I$,

since each $x_i - y_i \in R$. Letting $r \in R$, we have

$$rx = rx_1a_1 + rx_2a_2 + \dots + rx_na_n \in I,$$

since each $rx_i \in R$.

Now let J be an ideal of R containing a_1, a_2, \ldots, a_n , and let x be any element of I. As before, let $x = x_1a_1 + x_2a_2 + \cdots + x_na_n$. Now by the definition of what an ideal is, it is clear that each $x_ia_i \in J$, because $x_i \in R$ and $a_i \in J$. Furthermore, $x \in J$, because each $x_ia_i \in J$ and J is a group.

Exercise 7

Let a belong to a commutative ring R. Show that $aR = \{ar | r \in R\}$ is an ideal of R. If R is the ring of even integers, list the elements of 4R.

Clearly the additive identity is in aR, since $0 = a \cdot 0$. Let $x, y \in aR$. Then there exist elements $r_x, r_y \in R$ such that $x = ar_x$ and $y = ar_y$. We then have $x - y = ar_x - ar_y = a(r_x - r_y) \in aR$ since $r_x - r_y \in R$. Now let $r \in R$ and see that $rx = rar_x = arr_x \in aR$ since $rr_x \in R$. It follows that aR is an ideal of R.

In that case, $4R = \{0, \pm 8, \pm 16, \pm 24, \pm 32, \dots\}$, I think.

Exercise 9

If n is an integer greater than 1, show that $\langle n \rangle = nZ$ is a prime ideal of Z if and only if n is prime.

Notice that nZ is an ideal of Z by Exercise 7.

Suppose n is prime. Let $a, b \in Z$ such that $ab \in nZ$. Then there exists $z \in Z$ such that ab = nz. It follows that n|ab which implies that n|a or n|b by Euclid's Lemma. So there exists $z' \in Z$ such that $a = nz' \in nZ$ or $b = nz' \in nZ$, showing that nZ is a prime ideal of Z.

Now suppose nZ is a prime ideal of Z. Then if $a, b \in Z$ such that ab = nz for some $z \in Z$, we must have, for some $z' \in Z$, a = nz' or b = nz'. In other

words, if n|ab, we must have n|a or n|b in every case. There is no composite number that can do this, so n must be prime. (We can also conclude n is prime by continually factoring what n divides, and then know that n divides one of the factors. Repeating, we're eventually left with only one prime factor.)

Exercise 15

If A is an ideal of a ring R and 1 belongs to A, prove that A = R.

Since A is an ideal of R and $1 \in A$, we have, for all $r \in R$, $r = 1r \in A$, showing that A = R.

Exercise 21

Verify the claim made in Example 10 about the size of R/I.

For reference,

$$R = \left\{ \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \middle| a_i \in Z \right\}$$

and I is the subset of R consisting of matrices with even entries.

The example in the text helps make the verification easy. Let $M \in R$. Then the coset M+I=B+I, where B is a matrix consisting of just ones and zeros. Since the matrices have 4 possible entries, there are $2^4=16$ possible elements in R/I.

Exercise 23

Show that the set B in the latter half of the proof of Theorem 14.4 is an ideal of R.

For reference, $B = \{br + c | r \in R, a \in A\}$ with $b \in R - A$. The subset A is an ideal of R, and R is a commutative ring with unity.

Letting $x \in R$, we must show that for any $y \in B$, that $xy \in B$ and $yx \in B$. Let y = br + a for elements $r \in R$ and $a \in A$. Then $xy = bxr + xa \in B$ since $xr \in R$ and $xa \in A$. (Remember that A is an ideal of R.) And we have $yx = bry + ay \in B$ since $ry \in R$ and $ay \in A$.