

FASHION BRAND EXPERIMENT

Yesol Lee, Yongxian Lun, Chris Chang, Linh To

TABLE OF CONTENTS

Project Overview

Goal of the Experiment

Average Treatment Effect
Overall ATE
Conditional ATE

2. Methodology Survey Design Procedure **5.** Randomization Check Pre experimental variables prop.test

3 Exploratory Data Analysis
Number of treat/control
Distributions of
Score/Duration

Conclusion

Conclusion and Limitations

Our Team

Chris Chang

Yongxian (Caroline) Lun

Linh To

Yesol (Sally) Lee

OUR EXPERIMENT

The goal of our experiment is to find out how brand name affects the preference of clothing products, especially amongst young consumers.

Thus we conducted a survey to measure how people's preferences change among very similar designed clothing of **high-end brands** and **fast fashion brands**.

Branded Clothing

METHODOLOGY

One long survey with a lot of logics

Control/Treatment randomization Randomization in

individual level qualtrics.

Question choices randomization Randomly assigning all 3 choices in each question

Scoring
Match each high-brand
choices to the scores

Question randomization Randomly assigning 10 questions to participants

Survey display logic

Match gender question to displaying right question to the right gender (blocking method)

QUALTRICS Survey

Here is 2 samples of our control and treatment surveys for female groups

Procedure

who contact =	F/M	Ŧ	Done	Ŧ
Sally	F		1	
Caroline	M		✓	
Chris	M		√	
Linh	F		✓	

Conducted surveys on graduate students in BU and other institutes

Google spreadsheet to track progress to avoid duplicates

Result

Number of Treatment and Control Samples

any_treatment <int></int>	gender <dbl></dbl>	num_observation <int></int>
0	0	18
0	1	20
1	0	18
1	1	21

any_treatment gender0 = Control 0 = Male1 = Treatment 1 = Female

Distributions of Score and Duration

Median = 137

Median = 4

Estimate Average Treatment Effect

simple_reg <- feols(score ~ any_treatment, data=data, se='white')

Conditional Average Treatment Effect

m_ate <- male[any_treatment == 1, mean(score)] - male[any_treatment == 0, mean(score)]

t.test(male[any_treatment==1, score], male[any_treatment==0, score])

```
[1] 1.17

Welch Two Sample t-test

data: male[any_treatment == 1, score] and male[any_treatment == 0, score] t = 2, df = 31, p-value = 0.06 alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval: -0.0704 2.4037 sample estimates: mean of x mean of y 4.61 3.44
```

Conditional Average Treatment Effect

f_ate <- female[any_treatment == 1, mean(score)] - female[any_treatment == 0, mean(score)]

t.test(female[any_treatment==1, score], female[any_treatment==0, score])

```
Welch Two Sample t-test

data: female[any_treatment == 1, score] and female[any_treatment == 0, score]
t = -0.3, df = 33, p-value = 0.8
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -1.33    1.01
sample estimates:
mean of x mean of y
    3.24    3.40
```

Control Covariate in Regression

cov_reg <- feols(score ~ any_treatment + gender, data=data, se='white')

```
> summary(cov_reg)
OLS estimation, Dep. Var.: score
Observations: 77
Standard-errors: Heteroskedasticity-robust
             Estimate Std. Error t value Pr(>|t|)
                          0.339
                                 11.22 < 2.2e-16 ***
(Intercept)
                3.798
any_treatment
              0.459
                        0.421 1.09 0.27904
                          0.424 -1.69 0.09511 .
               -0.716
gender
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 1.82261 Adj. R2: 0.025344
```

Estimate: 0.451 → 0.459 Standard Error: 0.427 → 0.421

Randomization Check Part 1

regression_pre_effects_gender <- feols(gender ~ any_treatment, data = data)

	Estimate <dbl></dbl>	Std. Error <dbl></dbl>	t value	Pr(> t) <chr></chr>	<fctr></fctr>
(Intercept)	0.5263	0.082	6.418	1.1199e-08	ale ale ale
any_treatment	0.0121	0.115	0.105	9.1633e-01	

- Gender is a control variable that is not affected by treatment
- The estimate of any_treatment is not significant
- It proves that no substantial differences in before experiment variables

Randomization Check Part 2

- P-value =1 >0.05 ---> can't reject the null
- The randomization proportion was done properly

Prop.test (num_obs_treat, num_obs_all, p = proportion_treatment)

```
1-sample proportions test with continuity correction

data: num_obs_treat out of num obs_all, null probability proportion_treatment
X-squared = 0, df = 1, p-value = 1
alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:
0.391 0.621

sample estimates:
    p
0.506
```


STATISTICAL POWER

Statistical Power

- The Cohen's D of 0.239 -> small effect
- The power of 0.179 -> less likely to detect the effect

t test power calculation

```
n1 = 39

n2 = 38

d = 0.239

sig.level = 0.05

power = 0.179

alternative = two.sided
```

pwr.t2n.test(n1 = num_obs_treat, n2 = num_control, d = cohens_d, sig.level = .05, power = NULL)

Statistical Power

need 275 observations in total

higher power of 0.8

Two-sample t test power calculation

```
n = 275
d = 0.239
sig.level = 0.05
power = 0.8
alternative = two.sided
```

NOTE: n is number in *each* group

Pwr.t.test (n = NULL, d = cohens_d, sig.level = .05, power = 0.8)

Conclusion

- Analyzed effect of brand names on clothing preferences
- Positive effect overall but not significant
- Men had higher ATE than women - more likely to choose high-end products.
- Experiment was done properly based on randomization check
- Need 275 observations to reach power of 0.8

Limitations

- Adding more product variety in the same product category
- Expanding age range of respondents
- Adding more brands include mid-luxury brands

Thank you!