

Agenda

- 1. Key Takeaways
- 2. Overview of Healthcare in the Cloud
- 3. Demonstration
 - De-identifying patient FHIR data
 - Predicting probability of death due to medical reasons with BigQuery ML and AutoML

Key Takeaways

Data is transforming the healthcare industry and Google Cloud Platform has tools to help keep up

Unique healthcare data types, and patient privacy concerns make adoption a challenge

Google Cloud Platform presents a user-friendly and adoptable solution, benefitting both patients and healthcare providers

Healthcare is undergoing a transformation

Mayo Clinic selects Google as strategic partner for health care innovation, cloud computing

September 10, 2019

Cleveland Clinic, IBM partner; accelerating discovery in healthcare, life sciences

April 5, 2021

Microsoft and Providence St. Joseph Health Innounce strategic alliance to accelerate the future of care delivery

July 8, 2019 | Microsoft News Center

Research Highlight | Published: 21 January 2020

BREAST CANCER

Al outperforms radiologists in mammographic screening

OUTLOOK • 18 NOVEMBER 2020

Artificial intelligence is improving the detection of lung cancer

Machine learning systems for early detection could save lives.

Nature Reviews Clinical Oncology 17, 134(2020) | Cite this article

Patients and providers benefit from cloud computing

Providers

- Lower operational costs and more personalized care
- Increased data access and data dimensions for analytics

Patients

- Access to personal data and increased interactive patient experience
- Increased participation and telemedicine capabilities

Healthcare industry uses unique data types

Fast Healthcare Interoperability Resources (FHIR)

- Data standard and API
- Share and understand data across applications or organizations

Digital Imaging and Communications in Medicine (DICOM)

- Standardized medical images
- Store and share medical images across hospitals, and image manufacturers

Technologies must meet specific requirements

HIPAA: Health Insurance Portability and Accountability Act

Patient de-identification with FHIR and DICOM data

Patient ID	First Name	Last Name	Weight
123	Ryan	Burger	3000 lbs
234	Laura	Cattaneo	1000 lbs
345	Jane	Jian	1000 lbs
567	Allen	Hu	2000 lbs

De-identifying FHIR data De-identifying FHIK data and using it in BigQuery

Predicting probability of death due to medical reasons with BigQuery ML (BQML) and AutoML

Flexibility to train various models in BQML

Better performing Neural Network with AutoML

Multiple ML tools available on Google Cloud Platform:

BQML

- Can train many kinds of models
- Hands on model tuning with moderate performance
- Low cost

AutoML

- Uses Neural architecture for specific problem
- Hands off ML with high performance
- Higher cost in GCP (\$20/hour)

Better performing Neural Network with AutoML

Multiple ML tools available on Google Cloud Platform:

Neural network & overall performance improved

Binary classification model Apr 12, 2021, 4:12:05 PM Training cost: 1.811 node hours

Log loss **?**

Feel free to contact us with any questions

Ryan Burger burge218@umn.edu

Laura Cattaneo cattaoo8@umn.edu

Allen Hu hu000345@umn.edu

Jane Jian jian0450@umn.edu

For more technical details, check out our GitHub

Works Cited

Sources:

- O https://github.com/synthetichealth/synthea/wiki
- O https://towardsdatascience.com/choosing-between-tensorflow-keras-bigguery-ml-and-automl-natural-language-for-text-classification-6b1c9fc21013
- O https://www.todaysmedicaldevelopments.com/video/cleveland-clinic-ibm-medical-healthcare-ai/
- O https://news.microsoft.com/2019/07/08/microsoft-and-providence-st-joseph-health-announce-strategic-alliance-to-accelerate-the-future-of-care-delivery/
- O https://newsnetwork.mayoclinic.org/discussion/mayo-clinic-selects-google-as-strategic-partner-for-health-care-innovation-cloud-computing/
- O https://www.nature.com/articles/d41586-020-00847-2
- O https://www.nature.com/articles/s41571-020-0329-7
- https://www.healthitoutcomes.com/doc/ways-cloud-computing-is-impacting-healthcare-0001

• Photos:

- O https://innovaccer.com/blogs/the-abc-of-fhir-reinventing-interoperability/
- https://venturebeat.com/2019/05/20/googles-lung-cancer-detection-ai-outperforms-6-human-radiologists/