| Applications: - networks (computers, rensus, electrical,)  - machine learning (clustering)  - computer vision (object detection)  - data mining  - subrontine in other (approximation) elg. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How many spanning trees can a graph have?                                                                                                                                                   |
| complete graph: has all the (n) possible edges                                                                                                                                              |
| a complete graph has $n^{n-2}$ different spanning trees exponential                                                                                                                         |
| However, 175T can be solved in near-linear time!<br>Not only: greedy algorithms => simple for implement in protice                                                                          |
| Prim Kruskel                                                                                                                                                                                |
| they both apply (in + ways) a generic greedy algorithm                                                                                                                                      |

Invariant maintefined: - at each iteration, A is a subset of edges of some MST At each ituation the algorithm adds on edge that does not violate the invariant "sofe" edge for A GENERIC-MST (G)  $A = \phi$  $A = A \cup \{(v,v)\}$ 

while A does not form a spanning tree find an edge (U,V) that is safe for A \\ Crucial step return A \\ A is an MST

How to find a safe edge? Luckily, MSTs enjoy the following structural property. First, some definitions:

- A cut of a graph G = (V, E) is a postition of V 4 (S, VIS)

- An edge (U,V) EE crosses a cut (S,VIS) if

ues and veVis (or vio Vense)

- A cut respects a set of edges A if no edge of A crosses the cut

- Given a cut, an edge that crosses the cut and is of minimum weight is called light edge

example;

2 1 b A Right Edge (forthat out)

Theorem: Let G = (V, E) be an undirected, consider and weighted graph. Let A be a subset of E included in some  $\Gamma(S, V)$  be a cut that respects A, and let (V, V) be a light edge for (S, V). Then (V, V) is safe for A.

Example of GENERIC-17ST:



Proof of Theorem: technique: "art & poste"
(standard in greedy olganithms)

Let T be an MST that includes A. Assume that  $(v,v) \notin T$  (otherwise, we'd be done). We'll build a new MST T' that includes A U  $\{(v,v)\}$ .



By hypothesis (u,v) crosses (S,VS)=)  $\exists$  another edge of T that crosses that cut (X,Y)By hypothesis (S, VIS) respects A => (x,y) & A =) removing (x,y) from T and adding (v,v) we obtain a new spanning tree  $T = T \setminus \{(x,y)\}$   $\cup \{(v,v)\}$  that includes  $A \cup \{(v,v)\}$ . Now we need to show that I not only is a ST, but also a  $\Pi ST$ . (X,Y) and (Y,V) both cases (S,V) but by hypothesis (Y,V) is light =  $(Y,V) \leq W(X,Y)$  $\leq W(T)$ but Tio & MST => W(T)=W(T).

We'll now see two nst algorithms that organize the choice of those "respectful" cuts.

Prim's algorithm (1957)
How does Prim's alg. apply GENERIC-NST(G):

- A: a single tree - safe edge: a light edge that connects the tree with a vutex that does not belong to the tree Prim (G,S) 1 S = soma ventex

 $X = \{s\}$ 

O(m)

processed Ventices

Candidates for (u\*, v\*)

this objection "grows" a spanning tree from a source vertex S (doesn't matter who s is) by adding one edge of a time.

Example:



Correctnes: follows from the Theorem

Complexity: (assume the G is represented with an adjacency list)

 $\mathcal{O}(\mathcal{M} \cdot \mathcal{H})$ 

polynomial time =) efficient