PHYSICS 20 DATA SHEET

Salisbury Composite High School (Revised June 2020)

Constants

Description	Value
Acceleration Due to Gravity (Earth's Surface)	$g = 9.81 \text{ m/s}^2$
Speed of Sound in Air (20.0° C, 1.00 atm)	v = 343 m/s
Astronomical Unit	au = 1.496 × 10 ¹¹ m
Radius of Earth	$R_{\rm E} = 6.37 \times 10^6 {\rm m}$
Earth-Moon Separation	$r = 3.84 \times 10^8 \text{ m}$
Universal Gravitational Constant	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Mass of Earth	$M_{\rm E} = 5.97 \times 10^{24} \rm kg$
Mass of Sun	$M_{\rm S} = 1.99 \times 10^{30} \text{ kg}$
Mass of Moon	$M_{\rm M} = 7.35 \times 10^{22} \rm kg$

SI Prefixes

Prefix	Symbol	Value
peta	Р	10 ¹⁵
tera	T	10 ¹²
giga	G	10 ⁹
mega	M	10 ⁶
kilo	k	10 ³
hecto	h	10 ²
deka	da	10 ¹
deci	d	10 ⁻¹
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	р	10 ⁻¹²
femto	f	10 ⁻¹⁵

Physics Principles

1	Conservation of Energy	
2	Work-Energy Theorem	
3	Uniform Motion ($ec{\mathbf{F}}_{net}=0$)	
Uniformly Accelerated Motion (Constant $\vec{\mathbf{F}}_{net} \neq 0$)		
5	→	
6	Uniform Circular Motion (Constant F_{net} in centripetal direction)	

Linear Relations

1	$k = \frac{y_2 - y_1}{x_2 - x_1}$	2	y = kx + b
---	-----------------------------------	---	------------

Trigonometry

3	$\sin\theta = \frac{\text{Opp}}{\text{Hyp}}$	4	$\cos\theta = \frac{Adj}{Hyp}$
5	$\tan \theta = \frac{\text{Opp}}{\text{Adj}}$	6	$c^2 = a^2 + b^2$
7	$c^2 = a^2 + 1$	b^2 –	$2ab\cos\theta_C$
8	$\frac{a}{\sin \theta_A} = \frac{1}{\sin \theta_A}$	$\frac{b}{\sin \theta_I}$	$\frac{c}{\sin \theta_C}$

Energy & Work

9	$\Sigma E_i = \Sigma E_f$	10	$E_k = \frac{1}{2}mv^2$
11	$E_g = mgh$	12	$E_{elas} = \frac{1}{2}k(\Delta L)^2$
13	$W = \vec{\mathbf{F}} \cdot \Delta \vec{\mathbf{d}} =$	= F	$\cdot \Delta \vec{\mathbf{d}} \cos \Delta \theta$
14	$\Delta E_k = \Sigma W$	15	$P = \frac{\Delta E}{\Delta t}$
16	$\epsilon = \left \frac{\Delta E_{useful}}{\Delta E_{input}} \right $		

Kinematics

17	$\Delta \vec{\mathbf{d}} = \vec{\mathbf{d}}_f - \vec{\mathbf{d}}_i$	18	$\vec{\mathbf{v}}_{avg} = rac{\Delta \vec{\mathbf{d}}}{\Delta t}$
19	$\vec{\mathbf{a}}_{avg} = \frac{\Delta \vec{\mathbf{v}}}{\Delta t}$		

Uniform Accelerated Motion / Projectile Motion

20	$\vec{\mathbf{a}} = \frac{\vec{\mathbf{v}}_f - \vec{\mathbf{v}}_i}{\Delta t}$	21	$\Delta \vec{\mathbf{d}} = \frac{\vec{\mathbf{v}}_i + \vec{\mathbf{v}}_f}{2} \Delta t$
22	$v_f^2 = v_i^2 + 2\vec{\mathbf{a}} \cdot \Delta \vec{\mathbf{d}}$	23	$\Delta \vec{\mathbf{d}} = \vec{\mathbf{v}}_i \Delta t + \frac{1}{2} \vec{\mathbf{a}} (\Delta t)^2$
24	$\Delta \vec{\mathbf{d}} = \vec{\mathbf{v}}_f \Delta t - \frac{1}{2} \vec{\mathbf{a}} (\Delta t)^2$		

Dynamics

25	$\vec{\mathbf{F}}_{net} = m\vec{\mathbf{a}}$	26	$ec{\mathbf{f}}_{AB} = -ec{\mathbf{f}}_{BA}$
27	$ec{\mathbf{F}}_g = m \overrightarrow{\mathbf{g}}$	28	$\mu = \frac{F_f}{F_n}$

Uniform Circular Motion

29	$v = \frac{2\pi r}{T}$	30	$f = \frac{1}{T}$
31	$a_c = \frac{2\pi v}{T}$	$\frac{v}{r} = \frac{v}{r}$	$\frac{r^2}{r} = \frac{4\pi^2 r}{T^2}$

Planetary Motion

$T^2 = kr^3$	33	$\left(\frac{T_2}{T_1}\right)^2 = \left(\frac{r_2}{r_1}\right)^3$
--------------	----	---

Universal Gravitation

34	$F_g = \frac{Gm_1m_2}{r^2}$	35	$g = \frac{GM}{r^2}$
27	$ec{\mathbf{f}}_g = m ec{\mathbf{g}}$	36	$E_g = -\frac{Gm_1m_2}{r}$

Simple Harmonic Motion

Equation 40 applies over a <u>limited range</u> of motion that depends on the specific elastic object.

37	$v_{max} = \frac{2\pi A}{T}$	30	$f = \frac{1}{T}$	
38	$a_{max} = \frac{2\pi v_{max}}{T} = \frac{v_{max}^2}{A} = \frac{4\pi^2 A}{T^2}$			
39	$\vec{\mathbf{F}}_{net} = -k\vec{\mathbf{x}}$	40	$\vec{\mathbf{f}}_{elas} = -k\Delta L$	
41	$T = 2\pi \sqrt{\frac{m}{k}}$	42	$T = 2\pi \sqrt{\frac{L}{g}}$	
43	$E_p = \frac{1}{2}kx^2$			

Mechanical Waves

Equation 45 applies for colinear (1D), non-relativistic motion.

44	$v = \frac{\lambda}{T} = f\lambda$	45	$f_o = \frac{v - v_o}{v - v_s} f_s$
46	$f_n = \frac{nv}{2L}$	47	$f_n = \frac{nv}{4L}$
48	$f_{beat} = f_1 - f_2 $		

2D Vectors

These equations apply to <u>any</u> 2D vector, not just velocity.

49	$\vec{\mathbf{v}}_{x} = \vec{\mathbf{v}} \cos \theta$	50	$\vec{\mathbf{v}}_y = \vec{\mathbf{v}} \sin \theta$
51	$ \vec{\mathbf{v}} = \sqrt{v_x^2 + v_y^2}$	52	$\tan \theta = \frac{\vec{\mathbf{v}}_y}{\vec{\mathbf{v}}_x}$