データベース第7回

第7章 正規化理論
一更新時異状と情報無損失分解一

第1正規形

- どの属性の値も集合であることはない
- 複数の属性にまたがる値はない
- これだけでは、よい表にはならないことがある

内容

- ・ (次回第8章の)高次の正規化の準備
- 更新時異状
- 情報無損失分解
- 関数従属性と多値従属性
- 表をどうやって設計するか? の参考になる 考え方

更新時異状 (update anomaly, 更新不整合)

注文

顧客名	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	洗濯機	5	59,800	299,000
C社	餅つき機	1	29,800	29,800

- •タップル挿入時異状
- •(-, 電子レンジ, -, 74,800, -)を挿入←キー制約から, 無理!
- ・タップル削除時異状
 - •(C社, 餅つき機, 1, 29,800, 29,800) ←重要なデータの喪失!
- •タップル修正時異状
 - ・テレビの単価を198,000 から 148,000 に変更←修正大変!・C社からの注文を. 餅つき機から洗濯機に変更←重要なデータの喪失!

4

リレーションスキーマの分解

注文

エヘ				
顧客名	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	洗濯機	5	59,800	299,000
C社	餅つき機	1	29,800	29,800

注文(=注文[顧客名, 商品名, 数量, 金額])

 順客名
 商品名
 数量
 金額

 A商店
 テレビ
 3
 594,000

 Bマート
 テレビ
 10
 1,980,000

 Bマート
 洗濯機
 5
 299,000

 C社
 餅つき機
 1
 29,800

商品(=注文[商品名, 単価])

商品名	単価	
テレビ	198,000	
洗濯機	59,800	
餅つき機	29,800	

注文=注文[顧客名, 商品名, 数量, 金額]*注文[商品名, 単価]

リレーションスキーマの分解

- 分解して更新時異状を防ぐ
- one fact in one relation
- 分解前のリレーションが持っていた情報は失われてはならない
- リレーションを適当に(いい加減に)分解してしまうと、自然結合をとっても元のリレーションが復元できないことに!

更新時異状は解消される!

•タップル挿入時異状

•(-, 電子レンジ, -, 74,800, -)を挿入←キー制約から, 無理!

・タップル削除時異状

•(C社, 餅つき機, 1, 29,800, 29,800) ←重要なデータの喪失!

・タップル修正時異状

・テレビの単価を198,000 から 148,000 に変更←修正大変!・C社からの注文を、餅つき機から洗濯機に変更←重要なデータの喪失!

注文(=注文[顧客名, 商品名, 数量, 金額])

顧客名	商品名	数量	金額
A商店	テレビ	3	594,000
Bマート	テレビ	10	1,980,000
Bマート	洗濯機	5	299,000
C社	餅つき機	1	29,800

商品(=注文[商品名, 単価])

商品名	単価
テレビ	198,000
洗濯機	59,800
餅つき機	29,800

注文=注文[顧客名, 商品名, 数量, 金額]*注文[商品名, 単価]

リレーションスキーマの分解 悪い例

ὰΦ

注义					
	顧客名	商品名	数量	単価	金額
	A商店	テレビ	3	198,000	594,000
	Bマート	テレビ	10	198,000	1,980,000
	Bマート	洗濯機	5	59,800	299,000
	C社	餅つき機	1	29,800	29,800

注文[顧客名. 商品名]

顧客名	商品名
A商店	テレビ
Bマート	テレビ
Bマート	洗濯機
C社	餅つき機

注文[商品名, 数量, 単価, 金額]

商品名	数量	単価	金額
テレビ	3	198,000	594,000
テレビ	10	198,000	1,980,000
洗濯機	5	59,800	299,000
餅つき機	1	29,800	29,800

8

_

リレーションスキーマの分解 悪い例

注文[顧客名, 商品名]

注文[商品名,数量,単価,金額]

顧客名	商品名
A商店	テレビ
Bマート	テレビ
Bイート	洗濯機
C社	餅つき機

商品名	数量	単価	金額
テレビ	3	198,000	594,000
テレビ	10	198,000	1,980,000
洗濯機	5	59,800	299,000
餅つき機	1	29,800	29,800

注文[顧客名, 商品名]*注文[商品名, 数量, 単価, 金額]

顧客名	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
A商店	テレビ	10	198,000	1,980,000
Bマート	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	洗濯機	5	59,800	299,000
C社	餅つき機	1	29,800	29,800

情報無損失分解(定義)

リレーションスキーマR(X,Y,Z), ここに X, Y, Zは互いに素な属性集合とする, を2つの射影, R[X,Y]とR[X,Z]に分解したとき

R=R[X,Y] * R[X,Z]

が成立するならば、この分解は情報無損失(information lossless)であるという.

注:「互いに素」共通部分を持たない X∩Y=Y∩Z=X∩Z=Φ(空集合)

注2:この性質は、リレーションスキーマに対して成立する. インスタンス(あるデータ)に対してのみではない リレーションスキーマの分解 悪い例

注文

/ _ /				
顧客名	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	洗濯機	5	59,800	299,000
C社	餅つき機	1	29,800	29,800

注文[顧客名, 商品名]*注文[商品名, 数量, 単価, 金額]

顧客名	商品名	数量	単価	金額
A商店	テレビ	3	198,000	594,000
A商店	テレビ	10	198,000	1,980,000
Bマート	テレビ	3	198,000	594,000
Bマート	テレビ	10	198,000	1,980,000
Bマート	洗濯機	5	59,800	299,000
C社	餅つき機	1	29,800	29,800

10

情報無損失分解(定理)

リレーションスキーマR(X,Y,Z)を2つの射影, R[X,Y]とR[X,Z]に分解したとき,

R=R[X,Y] * R[X,Z]

が成立するための必要十分条件:

Rの任意のインスタンスRに対して、t[X]=t'[X]を満たすRの任意の2タップルtとt'につき、それらから構成される次の2タップルwとw'がまたRのタップルであること、ここに、

w=(t[X,Y], t'[Z]) w'=(t'[X,Y], t[Z])

証明は教科書参照

12

多值従属性

13

多値従属性の例

フライト

7711						
フライト番号	クル一名	乗客名				
55	Р	Α				
55	S	Α				
55	Р	В				
55	S	В				
55	Р	С				
55	S	С				
505	P'	A'				
505	S'	A'				

フライト

- ・パイロットや客室乗務員(クルー)
- フライト55便 クルー: P, S 乗客:A, B, C
- フライト505便 クルー: P', S' 乗客: A'
- 注:クルーと乗客は、たまたま 同じフライトに乗り合せただけ

フライト番号→クルー名|乗客名

14

多値従属性の例

フライト

			464
C	55	Р	Α
C	55	S	Α
Č	55	Р	В
C	55	S	В
	55	Р	С
	55	S	С
	505	P'	A'

フライト番号 クルー名 乗客名

多値従属性

(フライト番号→クルー名 | 乗客名) X→Y | Z

c t(x1,y1,z1), u(x1,y2,z2)という c タップルがあるなら, 必ず A' v(x1,y1,z2), w(x1,y2,z1)という A' タップルがある, ということ.

フライト番号→クルー名 |乗客名

15

問題

プロジェクトの表において、プロジェクト番号→社員番号 | ミーティング日の多値従属性があるとする。表中に不足しているタプルを正確にすべて列挙しなさい。

プロジェクト

プロジェクト番号	社員番号	ミーティング日
p1	e2	木曜日
p1	e5	木曜日
p2	e1	月曜日
p2	e3	金曜日

解答

・プロジェクト番号→社員番号 | ミーティング日

プロジェクト

プロジェクト番号	社員番号	ミーティング日
p1	e2	木曜日
p1	e5	木曜日
p2	e1	月曜日
p2	e3	金曜日

(p2, e1, 金曜日) (p2, e3, 月曜日)

関数従属性

- 多値従属性の特殊な場合
- リレーションの情報無損失分解をするときに 重要となるもの
- 第2正規形, 第3正規形, ボイス-コッド正規形 を規定するのにとても重要となるもの

情報無損失分解と多値従属性

リレーションスキーマR(X,Y,Z)がその二つの射影R[X,Y]とR[X,Z]に情報無損失分解されるための必要かつ十分条件はRに多値従属性 $X \rightarrow Y \mid Z$ が存在すること.

18

関数従属性

リレーションスキーマR(X,Y,Z)に関数従属性 (functional dependency) X→Yが存在するとは 次の条件が成立するときをいう.

RをRの任意のインスタンスとするとき、

 $(\forall t, t' \in R)(t[X] = t'[X] \Rightarrow t[Y] = t'[Y])$

20

_

関数従属性

リレーションスキーマR(X,Y,Z)に関数従属性 (functional dependency) X→Yが存在するとは 次の条件が成立するときをいう.

RをRの任意のインスタンスとするとき、 $(\forall t, t' \in R)(t[X] = t'[X] \Rightarrow t[Y] = t'[Y])$

- リレーションRにおいて, 2つのタプルの属性Xの 値が同じであれば, 属性Yの値も同じになる
 - ・属性Xが決まれば、属性Yも決まる

21

候補キー

リレーションスキーマR(A₁, A₂, ···, A_n)の属性集合Kが候補キーであるとは次の性質を満たすときをいう。

RをRの任意のインスタンスとして、

- 1. $(\forall t, t' \in R)(t[K]=t'[K] \Rightarrow t=t')$,
- 2. Kのどのような真部分集合Hに対しても1.の性質は成立しない.(Kは極小組)

1は, 関数従属性K→{A₁, A₂, ・・・, A_n} 候補キーを含む集合をスーパキー(super key)という. スーパキーでは1.しか成り立たない.

23

関数従属性の例

履修

学籍番号	科目	得点	評価	判定	担当教員	入学年
200100	データベース	70	A	合	福井	2020
200100	プログラミング言語	80	В	合	宮崎	2020
210123	データベース	80	A	合	福井	2021
210123	計算機システム	90	A	合	石川	2021
210124	データベース	20	D	不合格	福井	2021
210124	計算機システム	50	C	合	石川	2021
210124	プログラミング言語	70	В	合	宮崎	2021

f,:{学籍番号,科目}→得点

f,:{科目, 得点}→評価 (得点だけでは評価は決まらない, と仮定)

f₃: 評価→判定

f_a: 学籍番号→入学年

f₅: 科目→担当教員

22

候補キーと主キー(以前のスライドより)

社員番号	社員名	給 与	所属	健保番号
0650	山田太郎	50	K55	80596
1508	鈴木花子	40	K41	81403
0231	田中桃子	60	K41	80201
2034	佐藤一郎	40	K55	81998

キーはどれ? キーとなる属性の組が複数ある場合 それらを<mark>候補キー</mark>という

①社員番号

②健保番号 その中の一つを主キーという

壁体番写 どれを主キーにするかに決まりはない

完全関数従属性

関数従属性 $X \rightarrow Y$ で、Xの任意の真部分集合 $X'(X' \subset X)$ について $X' \rightarrow Y$ は成立しないとき、Yは X に完全関数従属(fully functionally dependent)しているという.

5

関数従属性と多値従属性

リレーションスキーマ**R**(X,Y,Z)に関数従属性 (FD) X→Yが存在すれば, 多値従属性 (MVD) X→Y|Zが存在する.

27

証明

関数従属性X→Yより、t[X]=t'[X]ならば t[Y]=t'[Y]なので、t[X,Y]=t'[X,Y]. 従って w=(t[X,Y],t'[Z])=(t'[X,Y],t'[Z])=t'となる. 同様に w'=tとなり、wもw'もRのタップルである.

t[X]=t'[X]なるタップルt, t'について, w=(t[X,Y],t'[Z])とw'=(t'[X,Y],t[Z])が両方ともR のタップルということがわかる.

情報無損失分解の十分条件

リレーションスキーマR(X,Y,Z)がその2つの射影 R[X,Y]とR[X,Z]に情報無損失分解されるため の十分条件はRに関数従属性 $X \rightarrow Y$ が存在すること.

- 注:必要条件ではない

29

アームストロングの公理系

- Xを属性集合, YをXの部分集合とするなら X→Yである. (反射律)
- X→Yかつ, Zを任意の属性集合とすると,
 X∪Z→Y∪Zである. (添加律)
- 3. X→YかつY→ZならX→Zである. (推移律)

関数従属性

- リレーションスキーマを定義するとき、関数従属性に注目することが重要
- スキーマ定義の時に関数従属性を把握しきれているか? は難しい
- 関数従属性を把握するにはどうすれば?

30

関数従属性の推移律

リレーションスキーマRに関数従属性 $X \rightarrow Y$ と $Y \rightarrow Z$ が存在したとする. このとき, $X \rightarrow Z$ が成立する.

関数従属性の推移律の証明

いま、 $X \rightarrow Y$ かつ $Y \rightarrow Z$ なのに $X \rightarrow Z$ が成立しないとする. すると、RのあるインスタンスRが存在して、Rに少なくとも2タップルtとt'が存在して、t[X]=t'[X]なのに $t[Z]\neq t'[Z]$ となる. しかし、 $X \rightarrow Y$ なのでt[X]=t'[X]ならばt[Y]=t'[Y]であり、さらに $Y \rightarrow Z$ なのでt[Y]=t'[Y]ならばt[Z]=t'[Z]である. しかし、これは仮定に矛盾する. よって $X \rightarrow Z$ が成立する.

33

関数従属性の例

履修						
学籍番号	科目	得点	評価	判定	担当教員	入学年
200100	データベース	70	A	合	福井	2020
200100	プログラミング言語	80	В	合	宮崎	2020
210123	データベース	80	A	合	福井	2021
210123	計算機システム	90	A	合	石川	2021
210124	データベース	20	D	不合格	福井	2021
210124	計算機システム	50	C	合	石川	2021
210124	プログラミング言語	70	В	合	宮崎	2021

- f₁: {学籍番号, 科目}→得点
- f₃: {科目, 得点}→評価 (得点だけでは評価は決まらない, と仮定)
- f₃: 評価→判定
- f₄: 学籍番号→入学年
- f_c: 科目→担当教員

アームストロングの公理系

- 関数従属性の集合Fが与えられたら、アームストロングの公理系により導出されるものは確かにリレーションスキーマR上での関数従属性である(健全性)
- Fが与えられたら、公理系により、リレーション スキーマR上で成立すべき関数従属性は全て 導出できる(完全性)

34

関数従属性の例

f₁:{学籍番号,科目}→得点

f₂: {科目, 得点}→評価 (得点だけでは評価は決まらない, と仮定)

f₃: 評価→判定

f_a: 学籍番号→入学年

f₅: 科目→担当教員

1. {学籍番号, 科目} → 得点 (所与)

2. {学籍番号, 科目} → {科目, 得点} (1. と添加律)

3. {科目, 得点} → 評価 (所与)

4. {学籍番号, 科目} → 評価 (2. と 3. と推移律)

5. 評価 → 判定 (所与)

6. {学籍番号, 科目} → 判定 (4. と 5. と推移律)

36

 \circ

X⁺を求めるアルゴリズム

 $(ステップ 1) X^{(0)} = X とおく.$

 $(\vec{X} \vec{\tau} \ \vec{y} \ \vec{J} \ 2) \quad X^{(i)} = X^{(i-1)} \cup \{A \mid A \in Z \land Y \to Z \in F \land Y \subseteq X^{(i-1)}\}$ (i > 1)

(ステップ 3) もし $X^{(i)} = X^{(i-1)}$ なら $X^+ = X^{(i-1)}$ とおく、そうでなければステップ 2 にいく、

37

候補キーを1つ見つけるアルゴリズム

(ステップ1) $K = \{A_1, A_2, ..., A_n\}$ とおく.

(ステップ 2) 属性 $A_i \in K$ を選び, $\{K - A_i\}^+$ を計算する. もし, $\{K - A_i\}^+$ = $\{A_1, A_2, \ldots, A_n\}$ ならば, $K = K - A_i$ とおいてステップ 2 に戻る. そうでなければ, K が求める候補キーである.