10. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН

10.1. Понятие системы случайных величин

Системой случайных величин (случайным вектором, многомерной случайной величиной) называется любая упорядоченная совокупность случайных величин $X = \{X_1, ..., X_n\}$.

Случайные величины $\{X_I, ..., X_N\}$, входящие в систему могут быть как непрерывными, так и дискретными. Для наглядности рассмотрения пользуются геометрической интерпретацией; так систему двух случайных величин $\{X,Y\}$ можно представить случайной точкой на плоскости с координатами X и Y, или случайным вектором, направленным из начала координат в точку (X,Y).

Свойства случайных величин не исчерпываются свойствами отдельных величин, входящих в систему и необходимы средства для описания характеристик систем случайных величин. Рассмотрим свойства систем СВ на примере двумерной случайной величины.

10.2. Функция распределения системы случайных величин

Функцией распределения (или **совместной функцией распределения**) системы случайных величин называется вероятность совместного выполнения неравенств $X_1 < x_1, ..., X_n < x_n$:

$$F(x_1, ..., x_n) = P\{(X_1 < x_1) \cap ... \cap (X_n < x_n)\}.$$
(10.1)

Для случая двумерной случайной величины:

$$F(x,y) = P\{(X < x) \cap (Y < y)\}. \tag{10.2}$$

Геометрически функция распределения F(x,y) это вероятность попадания случайной точки (X,Y) в бесконечный квадрант с вершиной в точке (x,y), лежащей левее и ниже ее (рис. 10.1).

Свойства функции распределения.

1. Значения функции распределения удовлетворяют двойному неравенству:

Рис. 10.1

$$0 \le F(x,y) \le 1$$
.

Доказательство этого свойства вытекает из определения функции распределения как вероятности: вероятность есть неотрицательное число, не превышающее 1.

2. Функция распределения F(x,y) есть *неубывающая функция* по каждому из аргументов т.е

$$x_1 < x_2 = > F(x_1, y) \le F(x_2, y)$$

 $y_1 < y_2 = > F(x_1, y_1) \le F(x_2, y_2)$

Доказательство этого свойства вытекает из того, что при увеличении какого-нибудь из аргументов (x,y) квадрант, заштрихованный на рис. 10.1, увеличивается; следовательно, вероятность попадания в него случайной точки (X,Y) уменьшаться не может.

3. Если хотя бы один из аргументов функции распределения обращается в -∞, то функция распределения равна 0:

$$F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0. \tag{10.3}$$

Доказательство. По определению

$$F(-\infty, y) = P\{(X < -\infty) \cap (Y < y)\}.$$

Событие $\{(X < -\infty) \cap (Y < y)\}$ невозможное событие, т.к. невозможным является событие $(X < -\infty)$ событие; тогда

$$F(-\infty, y) = 0.$$

4. Если оба аргумента функции распределения F(x,y) равны $+\infty$, то функция распределения равны.

Доказательство следует из определения функции распределения системы случайных величин:

$$\lim_{x \to \infty, y \to \infty} F(x, y) = P(x < \infty, y < \infty) = 1.$$
 (10.4)

5. Если один из аргументов обращается в $+\infty$, то функция распределения F(x,y) становится равной функции распределения случайной величины, соответствующей другому аргументу:

$$F(x, +\infty) = F_1(x); \quad F(+\infty, y) = F_1(y).$$
 (10.5)

Доказательство. По определению функции распределения:

$$F(x, +\infty) = P\{(X < x) \cap (Y < +\infty)\}.$$

Событие ($Y < +\infty$) является достоверным событием. Тогда

$$P\{(X < x) \cap \Omega\} = P\{X < x\} = F_1(x).$$

Точно так же доказывается, что

$$F(+\infty, y) = P\{Y < y\} = F(y).$$

Рис. 10.2.

6. Вероятность попадания в прямоугольную область (рис. 10.2)

$$P(\alpha \leq X \leq \beta; \delta \leq Y \leq \gamma) = F(\beta, \delta) - F(\alpha, \delta) - F(\beta, \gamma) + F(\alpha, \gamma).$$

$$(10.6)$$

Вероятность попадания в прямоугольник R равна вероятности попадания в квадрант с вершиной в точке (β,δ) , минус вероятность попадания в квадрант с вершиной в точке (α,δ) , минус

вероятность попадания в квадрант с вершиной в точке (β, γ) , плюс вероятность попадания в квадрант с вершиной в точке (α, γ) , которую мы вычли дважды.

10.3. Система двух дискретных случайных величин. Матрица вероятности.

Двумерная случайная величина (X,Y) является дискретной, если множества значений ее компонент $X=\{x_1,...,x_n\}$ и $Y=\{y_1,...,y_m\}$ представляют собой счетные множества.

Для описания вероятностных характеристик таких величин используется двумерная функция распределения и матрица вероятности, которая содержит значения компоненты $X = \{x_1, x_2, ... x_n\}, Y = \{y_1, y_2, ... y_m\}$ и вероятности всех возможных пар значений

$$p_{ij} = P(X = x_i, Y = y_j), i=1..n, j=1..m.$$

Матрица распределения системы двух случайных величин записывается в виде:

	<i>y</i> ₁	<i>y</i> ₂		y_j	•••	y_m
x_I	p_{11}	p_{12}	•••	p_{Ij}	•••	p_{1m}
x_2	p_{21}	p_{22}	•••	p_{2j}	•••	p_{2m}
•••	•••	•••				
x_i	p_{il}	p_{i2}		p_{ij}		p_{im}
•••	•••	•••				
\mathcal{X}_n	p_{nI}	p_{n2}	•••	p_{nj}	•••	p_{nm}

Сумма всех вероятностей p_{ij} , стоящих в матрице распределения вероятностей равна единице как сумма вероятностей полной группы событий:

$$\sum_{i=1}^{N} \sum_{j=1}^{M} p_{ij} = 1. {(10.7)}$$

Зная матрицу распределения системы двух дискретных случайных величин (X,Y), можно найти закон распределения отдельных случайных величин, входящих в систему:

$$p_{xi} = P\{X = x_i\}; \quad p_{yj} = P\{Y = y_j\}.$$

Представим событие ($X=x_i$) как сумму несовместных событий:

$$(X = x_i) = \{(X = x_i) \cap (Y = y_1)\} \cup ... \cup \{(X = x_i) \cap (Y = y_m)\},\$$

По правилу сложения вероятностей

$$p_{xi} = P\{X = x_i\} = \sum_{j=1}^{m} p_{ij}, \tag{10.8}$$

аналогично

$$p_{yj} = P\{Y = y_j\} = \sum_{i=1}^{n} p_{ij}.$$
(10.9)

Если известна матрица распределения системы двух случайных величин (X,Y), то ее функция распределения находится суммированием всех вероятностей p_{ij} , для которых $x_i < x$, $y_j < y$:

$$F(x,y) = \sum_{x_i < x} \sum_{y_i < y} p_{ij}. \tag{10.10}$$

10.4. Система двух непрерывные случайные величины. Совместная плотность вероятности.

Двумерная величина (X,Y) является **непрерывной**, если ее функция распределения F(x,y) представляет собой непрерывную, дифференцируемою функцию по каждому из аргументов и существует вторая смешанная производная $\frac{\partial^2 F(x,y)}{\partial x \, \partial y}$.

Рассмотрим на плоскости x0y прямоугольник ΔR_{xy} , примыкающий к точке (x,y), с размерами Δx , Δy и найдем вероятность попадания в него случайной точки (X,Y). Согласно (10.6)

$$P\{(x \le X < x + \Delta x) \cap (y \le Y < y + \Delta y)\} = F(x + \Delta x, y + \Delta y) - F(x + \Delta x, y) - F(x + \Delta x, y) + F(x, y).$$

Будем неограниченно уменьшать оба размера прямоугольника $\Delta x \rightarrow \infty$, $\Delta y \rightarrow \infty$ и вычисляем предел:

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{F(x + \Delta x, y + \Delta y) - F(x, y + \Delta y) - F(x + \Delta x, y) + F(x, y)}{\Delta x \Delta y} = \frac{\partial^2 F(x, y)}{\partial x \partial y}.$$

Совместной плотностью вероятности или плотностью совместного распределения называется функция

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \, \partial y}.$$
 (10.11)

Плотность f(x,y) обладает следующими свойствами:

1. $f(x,y) \ge 0$;

2.
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$$

Геометрически совместная плотность f(x,y) системы двух случайных величин представляет собой некоторую *поверхность распределения*.

Аналогично вводится понятие элемента вероятности: f(x,y)dxdy.

Элемент вероятности f(x,y)dxdy с точностью до бесконечно малых величин равен вероятности попадания случайной точки (X,Y) в элементарный прямоугольник ΔR_{xy} , примыкающий к точке (x,y), с размерами Δx , Δy .

Аналогично тому, как было рассмотрено в случае одномерной случайной величины, определим вероятность попадания случайной точки (X,Y) в область D:

$$P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy. \tag{10.12}$$

Функция распределения системы (X,Y) через совместную плотность определяется так:

$$F(x,y) = \int_{-\infty-\infty}^{x} \int_{-\infty}^{y} f(x,y) dx dy.$$
 (10.13)

Совместная плотность распределения системы случайных величин (X,Y) позволяет вычислить одномерные законы распределения случайных величин X и Y:

$$f_{x}(x) = \int_{-\infty}^{+\infty} f(x, y) dy; \ f_{y}(x) = \int_{-\infty}^{+\infty} f(x, y) dx.$$
 (10.14)

Одномерные плотности распределения составляющих системы случайных величин называют *маргинальными плотностями распределения*.

10.5. Зависимые и независимые случайные величины.

Величина X не зависит от величины Y, если ее закон распределения не зависит от того, какое значение приняла величины Y.

Для независимых величин выполняется следующие соотношения:

- 1. $F(x,y)=p(X<x,Y<y)=p(X<x)p(Y<y)=F_X(x)F_Y(y);$
- 2. для непрерывных случайных величин $f(x, y) = f_1(x)f_2(y)$;
- 3. для дискретных случайных величин $p_{ij} = p_i p_j$, для $\forall i, j$.

Для независимых величин двумерные формы закона распределения не содержат никакой дополнительной информации кроме той, которая содержится в двух одномерных законах.

В случае зависимости величин X и Y, переход от двух одномерных законов к совместному осуществить невозможно. Для этого необходимо знать условные законы распределения.

Условным законом распределения называется распределение одной случайной величины, найденное при условии, что другая случайная величина приняла определенное значение.

Условные ряды вероятностей для дискретных составляющих X и Y определяются по формулам

$$p_{i/j} = P(X = x_i/Y = y_j) = p_{ij}/P(Y = y_j) = \frac{p_{ij}}{P(Y = y_j)} = \frac{p_{ij}}{P(Y = y_j)} = \frac{p_{ij}}{\sum_{i=1}^{n} p_{ij}}, i = 1, ..., N;$$

$$p_{j/i} = P(Y = y_j/X = x_i) = p_{ij}/P(X = x_i) = 0$$
(10.15)

$$\frac{P(Y = y_j \cap X = x_i)}{P(X = x_i)} = \frac{p_{ij}}{\sum_{j=1}^{m} p_{ij}}, j = 1, ..., M.$$
 (10.16)

Условное распределение может быть представлено в виде таблицы:

Y	y_1		y_j	•••	y_m
$p(y/x_i)$	$p(y_1/x_i)$	•••	$p(y_i/x_i)$		$p(y_m/x_i)$

Заметим, что

$$\left| \sum_{j=1}^{m} p(y_{j} / x_{i}) = \left(\sum_{j=1}^{m} p_{ij} \right) / P_{i*} = P_{i*} / P_{i*} = 1 \right|$$

Vсловные плотности для непрерывных составляющих X и Y определяются так

$$f(x/y) = f(x, y)/f_{\mathbf{y}}(y), f_{\mathbf{y}}(y) \neq 0; \ f(y/x) = f(x, y)/f_{\mathbf{x}}(x), f_{\mathbf{x}}(x) \neq 0.$$

$$f_{\mathbf{x}}(x/y) = (F_{\mathbf{x}}(x/y))'_{\mathbf{x}} = \frac{f(x, y)}{f_{\mathbf{y}}(y)};$$

$$f_{\mathbf{y}}(y/x) = (F_{\mathbf{y}}(y/x))'_{\mathbf{y}} = \frac{f(x, y)}{f_{\mathbf{x}}(x)}.$$
(10.17)

Условные плотности обладают всеми свойствами обычных плотностей:

1. Двумерная плотность вероятности неотрицательна $f(x,y) \ge 0$

2. Условие нормировки
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$$
 $\iint_{(D)} f(x,y) dx dy = 1$

Пример 10.1. Двумерная случайная величина (X, Y) распределена по закону, приведенному в таблице:

Уј		x_i	
	$x_1 = 0$	$x_2 = 1$	
$y_1 = -1$	0,1	0,2	
$y_2 = 0$	0,2	0,3	
$y_3 = 1$	0	0,2	

Определить одномерные ряды вероятностей величин X и Y, условный ряд вероятностей величины X при условии, что Y = 0. Исследовать зависимость случайных величин X и Y.

Решение. Определим ряды вероятностей X и Y по формулам (10.8) и (10.9), т.е. выполним суммирование по столбцам и по строкам:

x_i	0	1
$p_{i}*$	0,3	0,7

y_j	-1	0	1
$p*_j$	0,3	0,5	0,2

Условный ряд X при Y = 0 получаем по формуле (10.15):

x_i	0	1
<i>p</i> _{<i>i</i>/<i>Y</i>=0}	0,4	0,6

Величины Х и У зависимы, так как

$$P(X = 0, Y = 0) \neq P(X = 0)P(Y = 0),$$

 $0.2 \neq 0.3 \cdot 0.5$.

 Π ример 1.2. Иглу длиной b бросают на плоскость, на которой на расстоянии L друг от друга проведены параллельные линии. Определить вероятность пересечения иглой одной из линий, если b < L (задача Бюффона).

Решение. Рассмотрим двумерную случайную величину (X, α) , где X -расстояние от середины иглы до ближайшей линии, α - острый угол между иглой и линией.

Составляющая X распределена равномерно в интервале [0; L/2], а α распределена равномерно в интервале $[0; \pi/2]$. Тогда плотность распределения составляющей X:

$$f_1(x) = 2/L$$
.

А составляющей α:

$$f_2(\alpha) = 2/\pi$$
.

Согласно теореме умножения законов распределений двумерная плотность равна

$$f(x, \alpha) = (2/L) \cdot (2/\pi).$$

Пересечение иглой одной из линий для заданного угла будет, когда

$$0 < X < (b/2)\sin(\alpha).$$

Тогда

$$P\{(X,Y) \in D\} = \int_0^{\pi/2} \int_0^{(l \sin \alpha)/2} f(x,y) dx d\alpha = \frac{4}{\pi L} \int_0^{\pi/2} d\alpha \int_0^{(b \sin \alpha)/2} dx = \frac{2b}{\pi L}.$$