Matemática Discreta

Elementos de Teoria dos Grafos

Universidade de Aveiro 2016/2017

http://moodle.ua.pt

Matemática Discreta

Isomorfismos, grafos etiquetados e não etiquetados

Conceitos Métricos

Subgrafos, subgrafos induzidos e subgrafos abrangentes

Conexidade

Isomorfismos, grafos etiquetados e não etiquetados

Isomorfismos

• Se excluirmos a etiquetação dos vértices e arestas, verifica-se que existem grafos distintos que admitem representações idênticas.

Definição

Dois grafos $G = (V(G), E(G), \psi_G)$ e $H = (V(H), E(H), \psi_H)$ dizem-se isomorfos, denotando-se esta relação de isomorfismo por $G \cong H$, se existirem duas bijecções $\phi : V(G) \to V(H)$ e $\theta : E(G) \to E(H)$ tais que

$$\psi_G(e) = uv$$
 se e só se $\psi_H(\theta(e)) = \phi(u)\phi(v)$.

 Observação: dois grafos dizem-se isomorfos se existe uma bijecção entre os respectivos conjuntos de vértices e uma bijecção entre os respectivos conjuntos de arestas que preservam as relações de adjacência e de incidência. Isomorfismos, grafos etiquetados e não etiquetados

Exemplo

 A relação de isomorfismo entre grafos é uma relação de equivalência (verificar!)

Definição

Designa-se por isomorfismo entre dois grafos simples G e H uma bijecção $\phi: V(G) \to V(H)$ tal que

$$uv \in E(G)$$
 se e só se $\phi(u)\phi(v) \in E(H)$.

Exercício 1. Mostrar que os dois grafos seguintes são isomorfos.

Isomorfismos, grafos etiquetados e não etiquetados

Automorfismos de grafos

Exercício 2. Mostrar que os isomorfismos entre grafos preservam os graus dos vértices.

Definição (de automorfismo de um grafo)

Designa-se por automorfismo de um grafo G toda a bijecção $\phi: V(G) \to V(G)$ que preserva o número de arestas entre pares de vértices.

- Se *G* é um grafo simples, um automorfismo é um isomorfismo entre *G* e *G*.
- Se G é um multigrafo, para um dado automorfismo podem existir vários isomorfismos entre G e G.
- Qualquer grafo admite pelo menos um automorfismo que é a função identidade.

LIsomorfismos, grafos etiquetados e não etiquetados

Representação gráfica de todos os grafos simples não isomorfos, com 5 vértices e 5 arestas.

Passeios em grafos

Definição (de passeio)

Dado um grafo G designa-se por passeio em G toda a sequência não vazia

$$P = v_0 e_1 v_1 e_2 \dots e_k v_k$$

tal que $v_0, v_1, \ldots, v_k \in V(G), e_1, e_2, \ldots, e_k \in E(G)$ e os vértices v_{i-1} e v_i são vértices extremos da aresta e_i , para $i = 1, \ldots, k$.

• O vértice v_0 designa-se por vértice inicial do passeio P e v_k designa-se por vértice final do passeio P. Por sua vez, os vértices v_1, \ldots, v_{k-1} designam-se por vértices intermédios do passeio P. Neste caso diz-se que P é um passeio entre os vértices v_0 e v_k ou um passeio- (v_0, v_k) .

Trajectos, caminhos, circuitos e ciclos

• Num grafo simples um passeio é determinado pela sequência dos sucessivos vértices, isto é, $P = v_0 v_1 \dots v_k$.

Definição (de trajecto e caminho)

Um trajecto é um passeio sem arestas repetidas.

Um caminho é um passeio que não repete vértices, com eventual excepção do vértice inicial e do vértice final, isto é,

$$v_i \neq v_i \ i, j \in \{1, ..., k-1\}, i \neq j;$$

▶
$$v_i \neq v_i$$
 $i \in \{0, k\}, j \in \{1, ..., k-1\}.$

Um caminho diz-se fechado quando o vértice inicial coincide com o vértice final.

Definição (de circuito e ciclo)

Um circuito ou trajecto fechado é um trajecto com pelo menos uma aresta e tal que $v_0 = v_k$. Um ciclo é um caminho fechado.

Comprimento de passeios, trajectos e caminhos

Definição (de comprimento de um passeio, trajecto e caminho)

Dado um passeio P de um grafo G designa-se por comprimento de P e denota-se por comp(P) o número de arestas (com eventual repetição) que o constitui. No caso dos caminhos (e também nos trajectos) o comprimento coincide exactamente com o respectivo número de arestas.

Exemplo: uma aresta é um caminho de comprimento 1 e um vértice é um caminho de comprimento 0.

Distância entre vértices

Definição (de distância entre vértices)

Dados dois vértices $x, y \in V(G)$, denotando por $\mathcal{P}_{x,y}$ o conjunto de todos os caminhos-(x, y) de G, designa-se por distância entre vértices de G a função

$$\begin{aligned} \textit{dist}_G: \ \textit{V}(G) \times \textit{V}(G) &\rightarrow \{0, \dots, \nu(G) - 1, \infty\} \\ \text{tal que } \textit{dist}_G(x,y) &= \left\{ \begin{array}{ll} \textit{min}_{P \in \mathcal{P}_{x,y}} \textit{comp}(P), & \text{se } \mathcal{P}_{x,y} \neq \emptyset, \\ \infty, & \text{se } \mathcal{P}_{x,y} = \emptyset. \end{array} \right. \end{aligned}$$

Teorema

Seja G um grafo simples. Se $\delta(G) \geq 2$, então G contém um caminho P e um ciclo C tais que $comp(P) \geq \delta(G)$ e $comp(C) \geq \delta(G) + 1$.

Cintura de um grafo e excentricidade de um vértice

Definição (de cintura)

Dado um grafo G designa-se por cintura de G e denota-se por g(G) o comprimento do circuito de menor comprimento em G, caso tal circuito exista. Caso contrário, diz-se que o grafo tem cintura infinita e escreve-se $g(G) = \infty$.

Definição (de excentricidade de um vértice)

Se G é um grafo e v um vértice, então a maior distância entre v e todos os outros vértices de G designa-se por excentricidade de v e denota-se por $e_G(v)$ ou e(v). Mais formalmente,

$$e(v) = \max_{u \in V(G)} dist_G(u, v).$$

Diâmetro e raio de um grafo

Definição (de diâmetro e raio)

Dado um grafo G, a maior excentricidade dos seus vértices designa-se por diâmetro e denota-se por diam(G). Por sua vez, a menor excentricidade dos vértices de G designa-se por raio e denota-se por r(G), ou seja,

- ▶ $diam(G) = \max_{u \in V(G)} e(u)$;
- $ightharpoonup r(G) = \min_{v \in V(G)} e(v).$

Exercício. Provar que dado um grafo arbitrário G se verificam as desigualdades $r(G) \le diam(G) \le 2r(G)$.

Vértice central e centro de um grafo

Definição (de vértice central e centro)

Um vértice $v \in V(G)$ diz-se central se a sua distância ao vértice mais distante é mínima, ou seja, e(v) = r(G). O conjunto dos vértices centrais designa-se por centro do grafo.

Exercício. Considere o seguinte grafo G.

- 1. Determine a cintura do grafo G.
- 2. Determine a excentricidade dos vértices de G.
- 3. Determine o centro de G.

Subgrafos, subgrafos induzidos e subgrafos abrangentes

Subgrafos

Definição (de subgrafo)

Dados dois grafos G e H diz-se que H é um subgrafo de G e denota-se por $H \subseteq G$ se $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$ e ψ_H é a restrição de ψ_G ao conjunto E(H).

- Se $H \subseteq G$ e $H \neq G$, então H designa-se por subgrafo próprio de G e denota-se por $H \subset G$.
- Se *H* é um subgrafo de *G*, diz-se que *G* é supergrafo de *H*.

Definição (de subgrafo abrangente)

Diz-se que um grafo H é um subgrafo abrangente (ou de suporte) do grafo G se $H \subseteq G$ e V(H) = V(G).

└ Subgrafos, subgrafos induzidos e subgrafos abrangentes

Exemplos

Considere o seguinte grafo G.

Alguns subgrafos de G:

└ Subgrafos, subgrafos induzidos e subgrafos abrangentes

Subgrafos induzidos

Definição (de subgrafo induzido)

Dado um grafo $G \in \emptyset \neq \widehat{V} \subseteq V(G)$ designa-se por subgrafo de G induzido por \widehat{V} e denota-se por $G[\widehat{V}]$, o subgrafo cujo conjunto de vértices é \widehat{V} e o conjunto de arestas coincide com as arestas de G com extremos em \widehat{V} .

- Denota-se por $G[V \widehat{V}]$ ou, simplesmente, $G \widehat{V}$ o subgrafo induzido após a eliminação dos vértices do subconjunto \widehat{V} e de todas as arestas incidentes em \widehat{V} .
- Se $\hat{V} = \{v\}$, escreve-se simplesmente G v.

Definição (de subgrafo induzido pelas arestas)

Dado um grafo $G \in \emptyset \neq \widehat{E} \subseteq E$, designa-se por subgrafo de G induzido pelo subconjunto de arestas \widehat{E} e denota-se por $G[\widehat{E}]$ o subgrafo cujo conjunto de arestas é \widehat{E} e o conjunto de vértices é constituído pelos vértices extremos das arestas de \widehat{E} .

└ Subgrafos, subgrafos induzidos e subgrafos abrangentes

Subgrafos abrangentes

- Denota-se por $G \widehat{E}$ o subgrafo abrangente cujo conjunto de arestas é $E \widehat{E}$. Se $\widehat{E} = \{e\}$ então usa-se a notação G e.
- Obs.1: Em geral $G[E \widehat{E}]$ e $G \widehat{E}$ são distintos.
- Obs.2: Se G = (V, E) então G = G[V], mas G = G[E] se e só se G não tem vértices isolados.

Relação de conexidade

Definição (de grafo conexo)

Um grafo diz-se conexo se entre cada par de vértices existe um caminho que os une. Caso contrário, o grafo diz-se não conexo (ou desconexo).

Definição (de vértices conexos)

Dado um grafo G, dois vértices $u, v \in V(G)$ dizem-se conexos se existe um caminho-(u, v) em G.

• Num grafo conexo todos os pares de vértices distintos são conexos. A relação de conexidade entre os vértices é uma relação de equivalência (\sim) sobre o conjunto de vértices V(G):

 $\forall x, y \in V(G), x \sim y$ sse x e y são vértices conexos

Componentes conexas

• Supondo que V(G) se parte nas classes de equivalência V_1, V_2, \ldots, V_k , designa-se por componente conexa (ou, simplesmente, componente) de G cada um dos subgrafos induzidos $G[V_1], G[V_2], \ldots, G[V_k]$.

Notação: cc(G) denota o número de componentes conexas de um grafo G.

Obs: Sendo G um grafo, cc(G) = 1 se e só se G é conexo.

- Podemos definir componente conexa como sendo um subgrafo conexo maximal.
- Se G é um grafo conexo de ordem n, então $|E(G)| \ge n 1$.

Pontes

Definição (de ponte)

Uma aresta e de um grafo G diz-se uma ponte ou uma aresta de corte se cc(G - e) > cc(G). Isto é, a aresta e é uma ponte de G se a eliminação de e aumenta o número de componentes de G.

Exemplo. A aresta *e*, a seguir representada, é uma ponte.

Propriedades das pontes

Teorema

Se G é um grafo e $uv \in E(G)$, então as seguintes afirmações são equivalentes:

- 1. a aresta uv é uma ponte de G,
- **2.** cc(G uv) = cc(G) + 1,
- 3. os vértices u e v não são conexos em G uv,
- 4. a aresta uv não está contida em nenhum circuito de G.