Interactive Computing and Running Jupyter Notebooks

Presented at the Using Python and Jupyter Notebooks on TSCC Workshop

September 2, 2021

Mary Thomas (SDSC)

Outline

- Defining Interactive High-Performance Computing
- Running Interactive Jobs
- Application Examples

Resources

- TSCC User Guide
 - https://www.sdsc.edu/support/user_guides/tscc.html
- GitHub Repo for this workshop:
 - https://github.com/sdsc-hpc-training-org/Using-Python-and-Jupyter-Notebooks-on-TSCC/
- GitHub Repo for Example Notebooks:
 - https://github.com/sdsc-hpc-training-org/notebook-examples
- SDSC Training Resources
 - https://www.sdsc.edu/education and training/training

What is Interactive HPC-Computing

- In computer science, interactive computing refers to software which accepts input from the user as it runs.
 - commonly used programs, such as word processors or spreadsheet applications.
- Interactive HPC computing involves real-time user inputs to perform tasks on a set of compute node(s) including:
 - Code development, real-time data exploration, and visualizations.
 - Used when applications have large data sets or are too large to download to local device, software is difficult install, etc.
 - User inputs come via command line interface or application GUI (Jupyter Notebooks, Matlab, R-studio).
 - Actions performed on remote compute nodes as a result of user input or program out.

Interactive HPC Scenarios

Parallel Matlab (AWS)

https://azuremarketplace.microsoft.com/en-us/marketplace/apps/mathworks-inc.matlab-parallel-server-listing?tab=Overview

https://drive.google.com/file/d/1-OFjrk1q3L1d3uakr2xkozrPn2c2VZpZ/view

TSCC Interactive Jobs

- Must be run on compute nodes (CPU, GPU)
 - Depends on which partition you choose
- Submit a request to the queuing system
- Choose which queue you want to use
- Use the qsub command:

qsub -I -l nodes=2:ppn=10 -l walltime=0:50:00

Partition Name	Max Walltime	Max Processors/User	Max Running + Queued Jobs	Accessible by	Comments
hotel	168 hrs	128	1500	all	Regular compute nodes for all users
gpu-hotel	168 hrs			all	GPU nodes for all users
pdafm	168 hrs	96	50	all	pdafm (large memory) nodes for all users
home	unlimited	unlimited	1500	condo	Home node(s) for condo participants
condo	8 hrs	512	1500	condo	Compute nodes for condo participants
gpu-condo	8 hrs	84		condo	gpu nodes for condo participants
glean	1 hr	1024	500	condo	pre-emptible nodes for condo participant, free of charge

HPC Basics - Running jobs on TSCC

- All jobs submitted via TORQUE resource manager (pbs) with Maui scheduler.
- Batch jobs: submit batch scripts from login nodes.
 - qsub test.sh
 - Submit script to include PBS directives such as
 - number of nodes, cores, estimated time
 - right queue
 - job name, email address
 - account
- Interactive jobs:
 - qsub —I -l nodes=1:ppn=1 –t 00:30:00 –q condo –A account

Some useful commands...

#PBS –k oe => writes directly to destination dir

 qalter – change parameters of a queued job (e.g. email, account)

qdel <jobnumber> – delete job

Monitoring Job Submission

- qstat current status of jobs and queues
 - qstat –u username
 - qstat –f jobnumber
- yqd prints out why the job hasn't started

\$ yqd 13977625 13977625 (xxxxxx home-YXX 1x24 ['haswell'] 0:12:23): 0 nodes free

Isjobs - useful to see the node availability

\$ Isjobs --property=condo-node tscc-4-69: FREEx28 tscc-4-70: FREEx28

Job Monitoring contd...

checkjob

```
$ checkjob 13976617
.....
Reservation '13976617' (9:19:34:24 -> 12:19:34:24 Duration:
3:00:00:00)
PE: 3.00 StartPriority: 203174
job cannot run in partition DEFAULT (idle procs do not meet requirements
: 0 of 3 procs found)
idle procs: 3995 feasible procs: 0
....
```

- showq –i (position in queue)
- showstart <jobid> (estimated start time)

Account Monitoring

Users can belong to multiple groups

Accounts are used to keep track of allocation usage

```
gbalance –u <username>
```

- Specified by #PBS –A
- Check usage with

```
gstatement –u <username>
```

TSCC Interactive Jobs: Application Examples

- MPI "Hello World"
- Matlab
- R console
- Jupyter Notebooks → Covered in next two talks

TSCC Interactive Job: Hello-MPI

qsub -I -I nodes=2:ppn=10 -I walltime=0:50:00

Interactive nodes can be used for running parallel jobs (MPI, OpenMP, CUDA code if GPU), compiling large codes, etc.

```
[mthomas@tscc-gpu-9-4 hello-mpi]$
[mthomas@tscc-gpu-9-4 hello-mpi] = -I - l nodes=1:ppn=16 -l walltime=0:30:00 -q glean
qsub: waiting for job 26842841.tscc-mgr7.local to start
qsub: job 26842841.tscc-mgr7.local ready
                                                                                 Request interactive node
                                                                                 using glean queue node
[mthomas@tscc-qpu-9-4 ~]$ pwd
[mthomas@tscc-gpu-9-4 hello-mpi]$ mpirun -np 8 ./hello-mpi
node
          0: Hello and Welcome to TSCC!
node
          6: Hello and Welcome to TSCC!
node
          1: Hello and Welcome to TSCC!
node
          3: Hello and Welcome to TSCC!
node
          4: Hello and Welcome to TSCC!
node
          5: Hello and Welcome to TSCC!
node
          7: Hello and Welcome to TSCC!
          2: Hello and Welcome to TSCC!
node
```


TSCC Interactive Jobs: Applications Running Matlab without GUI

qsub -I -I nodes=1:ppn=16 walltime=0:30:00 -q glean

```
>> A = [1 3 0; 2 4 -1; 4 9 -1]
A =

1 3 0
2 4 -1
4 9 -1

>> B=A'
B =

1 2 4
3 4 9
0 -1 -1

>> A*B
ans =
10 14 31
14 21 45
31 45 98

>> exit
[mthomas@tscc-13-12~]$
```

TSCC Interactive Jobs: Running Matlab with GUI

To use a Graphical User Interface (GUI) as part of your interactive job, you will need to set up Xforwarding. Example below is for using XQuartz on a MAC. For examples for MacOS and Windows, see: http://systems.eecs.tufts.edu/x11-forwarding/

Step 1: Set X11 forwarding on the computer that you are connecting from: Update or install Xquartz and **restart** your system

[mthomas@home]\$ brew install --cask xquartz
Updating Homebrew...
Updated 2 taps (homebrew/core and homebrew/cask).
==> New Formulae
[SNIP]
installer: The upgrade was successful.

xquartz was successfully installed!
quantum:~ mthomas\$ which xquartz
/opt/X11/bin/xquartz

Step 2: Log on to TSCC, using **-Y** option (trusted)

[mthomas@home]\$ ssh -Y tscc-login.sdsc.edu -lmthomas

Step 3: Request an interactive node, usfige X: Paguest an interactive node, using -X option

```
[mthomas@tscc-login1 hello-mpi]$ qsub -I -X -l
nodes=1:ppn=1 -q glean
qsub: waiting for job 26843028.tscc-mgr7.local to start
qsub: job 26843028.tscc-mgr7.local ready
[mthomas@tscc-4-46 ~]$
```

Step 4: Setup your module environment and run Matlab

[mthomas@tscc-4-46 ~]\$ module load matlab [mthomas@tscc-4-46 ~]\$ matlab MATLAB is selecting SOFTWARE OPENGL rendering.

TSCC Interactive Jobs: Running Matlab with GUI

TSCC Interactive Jobs: Running R console (no GUI)

Step 3: Request an interactive node, using **–X** option

[mthomas@tscc-login2 ~]\$ qsub -I -q glean -I nodes=1:ppn=1 qsub: waiting for job 26844488.tscc-mgr7.local to start qsub: job 26844488.tscc-mgr7.local ready [mthomas@tscc-4-46 ~]\$

Step 4: Setup your module environment and run Matlab

[mthomas@tscc-4-46 ~]\$ module load R
Unloading compiler-dependent module openmpi_ib/3.1.4
[mthomas@tscc-4-46 ~]\$ R
R version 4.0.2 (2020-06-22) -- "Taking Off Again"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
[SNIP]
R is a collaborative project with many contributors.
[SNIP]
> myString <- "Hello, World!"
> print (myString)
[1] "Hello, World!"

TSCC Interactive Jobs: Juptyer Notebooks

- What is Jupyter?
 - Free, open-source, interactive web tool known as a computational notebook
- Jupyter Services:
 - Notebooks (single user)
 - JupyterLab: advanced version of notebook
 - JupyterHub: multiuser.
- Jupyter Has a Key Vulnerability:
 - Jupyter Servers Provide Access to HPC File Systems
 - By default serve up as HTTP
- SDSC has created a solution:
 - Satellite Reverse Proxy Service
 - See presentation by Marty Kandes in this workshop

Resources

- TSCC User Guide
 - https://www.sdsc.edu/support/user_guides/tscc.html
- GitHub Repo for this workshop:
 - https://github.com/sdsc-hpc-training-org/Using-Python-and-Jupyter-Notebooks-on-TSCC/
- GitHub Repo for Example Notebooks:
 - https://github.com/sdsc-hpc-training-org/notebook-examples
- TSCC Support email: tscc-support@ucsd.edu
- TSCC Forum
 - https://mailman.ucsd.edu/mailman/listinfo/tscc-l
 - Email: tscc-l@mailman.ucsd.edu
- SDSC Training Resources
 - https://www.sdsc.edu/education and training/training

Thank You

