

Результаты запусков программ jac и mgrid

Аят Оспанов 617 группа, ММП, ВМК МГУ, Москва

11 декабря 2017 г.

Содержание

1	Ускорение	1
2	Профилировка	3

1 Ускорение

Таблица 1: Ускорение программы јас

Размер сетки	Время работы, сек			Ускорение		
$N \times 400 \times 50$	CPU	1 GPU	2 GPU	1 GPU	2 GPU	
500	26.25	1.88	1.02	13.96	25.74	
700	36.68	2.61	1.43	14.05	25.65	
900	47.49	3.35	1.81	14.17	26.24	
1100	57.65	4.09	2.21	14.10	26.09	
1300	68.90	4.83	2.61	14.27	26.40	
1500	79.61	5.57	3.00	14.29	26.54	
1700	89.64	6.30	3.38	14.23	26.52	

Таблица 1 была построена для размера блока 32×32 . Но в данном случае, оссиралсу будет не 100%. Т.к. на тестируемой машине установлена видеокарта GTX 550 Ti, то ее характеристики следующие:

- Максимальное количество нитей на мультипроцессор 1536
- Максимальное количество нитей на блок 1024
- Максимальное количество блоков на мультипроцессор 8

Таким образом, если размер блока 32×32 , то нитей в блоке 32 * 32 = 1024, а блоков 1 и оссиралсу = 1024 * 1/1536 = 66%. Чтобы ускорить программу, было решено взять два разных размера блоков, таким образом, что оссиралсу = 100%: 32×16 и 16×16 (32 * 16 * 3/1536 = 16 * 16 * 6/1536 = 100%)

Таблица 2: Ускорение программы јас в зависимости от размера блока

Размер сетки	Время работы на 2 GPU, сек		Ускорение		
$N \times 400 \times 50$	32x32	32x16	16x16	32x16	16x16
500	1.02	0.88	0.83	1.16	1.23
700	1.43	1.21	1.12	1.18	1.28
900	1.81	1.54	1.43	1.18	1.27
1100	2.21	1.87	1.73	1.18	1.28
1300	2.61	2.21	2.01	1.18	1.30
1500	3.00	2.54	2.31	1.18	1.30
1700	3.38	2.87	2.68	1.18	1.26

Из таблицы явно видно, что в обоих случаях есть ускорение, но для сетки 16×16 ускорение на 10% больше. В итоге правильным подбором размера сетки мы ускорили программу на $\approx30\%$

Рис. 1: Программа јас

Для программы mgrid ситуация примерно такая же.

Таблица 3: Ускорение программы mgrid

Размер сетки	Время работы, сек			Ускорение	
$N \times 400 \times 50$	CPU	1 GPU	2 GPU	1 GPU	2 GPU
500	34.84	3.03	1.98	11.50	17.60
700	48.77	4.06	2.52	12.01	19.35
900	62.73	5.07	3.09	12.37	20.30
1100	76.71	6.09	3.65	12.60	21.02
1300	90.66	7.29	4.20	12.44	21.59
1500	104.70	8.56	4.78	12.23	21.90
1700	118.66	9.88	5.56	12.01	21.34

Таблица 4: Ускорение программы mgrid в зависимости от размера блока

Размер сетки	Время работы на 2 GPU, сек		Ускорение		
$N \times 400 \times 50$	32x32	32x16	16x16	32x16	16x16
500	1.98	1.79	1.65	1.11	1.20
700	2.52	2.26	2.07	1.12	1.22
900	3.09	2.76	2.49	1.12	1.24
1100	3.65	3.24	2.94	1.13	1.24
1300	4.20	3.73	3.38	1.13	1.24
1500	4.78	4.23	3.81	1.13	1.25
1700	5.56	4.94	4.47	1.13	1.24

Рис. 2: Программа mgrid

2 Профилировка

Профилировки для программ для наглядности были сделаны на 10 итерациях.

По скриншоту профилировки программы јас (Рис. 3) видно, что основное время (93%) работы программы (не считая работу с данными) занимает работа основного ядра (jac_kernel). Также видно (Рис. 4), что две карты работают одновременно, что подтверждает правильность реализации на двух GPU. Таким образом, программа распараллелена макимально.

Рис. 3: Профилировка программы јас (мелкий план)

Рис. 4: Профилировка программы јас (крупный план)

В случае mgrid можно видеть много мелких вызовов. Это вызовы ядер на измельченных данных вызываемые в рекурсии. Поэтому рассмотрим основной цикл (Рис. 6). В таком увеличении видно, что программа работает аналогично јас. Таким образом можно сделать вывод, что программа полностью распараллелена.

Рис. 5: Профилировка программы mgrid (мелкий план)

Рис. 6: Профилировка программы mgrid (крупный план)

