GRAMMATICHE LL(1)

Lunedi 11 Novembre

GRAMMATICA LL(1)

Una grammatica è LL(1) se e solo se per ogni produzione del tipo $A-\lambda \alpha/\beta$ si ha:

- o α e β non derivano stringhe che cominciano con lo stesso simbolo a.
- o Al più uno tra i due può derivare la stringa vuota.
- Se β ->*ε allora α non deriva stringhe che cominciano con terminali che stanno in FOLLOW(A). Analogamente per α

Equivalentemente affinché una grammatica sia LL(1) deve avvenire che per ogni coppia di produzioni $A\rightarrow\alpha|\beta$

- 1. $FIRST(\alpha)$ e $FIRST(\beta)$ devono essere disgiunti
- 2. Se ϵ è in FIRST(β) allora FIRST(α) e FOLLOW (A) devono essere disgiunti.

COME COSTRUIRE LA TABELLA?

- 1. Per ogni regola X -> α di G, si inserisce nella casella (X, t) la regola X -> α , per ogni t tale che t \in FIRST(α)
- 2. Per ogni regola $X \rightarrow \alpha$ di G, per cui $\alpha \Rightarrow^* \epsilon$ $(\epsilon \in FIRST(\alpha))$, si inserisce nella casella (X, t) la regola $X \rightarrow \alpha$, per ogni t tale che $t \in FOLLOW(X)$. Se $\epsilon \in FIRST(\alpha)$ and $\xi \in FOLLOW(X)$, si inserisce la regola $X \rightarrow \alpha$ in (X, ξ) .
- 3. Le caselle non definite definiscono un errore.

NOTA: Se G è ricorsiva sinistra o ambigua, la tabella avrà caselle con valori multipli.

ALTRA DEFINIZIONE DI GRAMMATICA LL(1)

Una grammatica la cui tabella LL(1) non contiene più di un elemento nelle caselle è detta LL(1)

Osservazione: per costruzione una grammatica LL(1) non è ambigua, né ricorsiva sinistra

ESERCIZIO: ESEMPI DI GRAMMATICHE LL(1) E NON

- \circ G: S->aSb| ϵ
- o G: S->+SS | *SS | id
- o G: S->aSb|aSc| ϵ
- o G: S->aSa | bSb | a | b
- ∘ G: S->iEtS|iEtSeS|a E->b

G: S->aSb| ϵ

FIRST(S)= $\{a, \epsilon\}$, FIRST(a)= $\{a\}$, FIRST(b)= $\{b\}$ FOLLOW(S)= $\{b,\$\}$

	α	Ь	\$
S	S->aSb	5->ε	5->ε

Per semplicità consideriamo solo i simboli non terminali

	+	*	id	\$
5	S->+SS	S->*SS	S->id	

G: S->aSb|aSc| ε

Metodo della fattorizzazione sinistra:

G': S->aSA|
$$\epsilon$$

A->b| c

Per semplicità consideriamo solo i simboli non terminali

FIRST(S)=
$$\{a, \epsilon\}$$
 FIRST(A)= $\{b,c\}$
FOLLOW(S)= $\{\$,b,c\}$ =FOLLOW(A)

	a	Ь	С	\$
5	S->aSA	S->ε	S- > ε	5->ε
A		A->b	A->c	

G: S->aSa | bSb | a | b

Metodo della fattorizzazione sinistra:

Per semplicità consideriamo solo i simboli non terminali

FIRST(S)=
$$\{a,b\}$$
 FIRST(A)= $\{a,b,\epsilon\}$ =FIRST(B)
FOLLOW(S)= $\{a,b,\$\}$ =FOLLOW(A)=FOLLOW(B)

	a	Ь	\$
5	5->aA	S->bB	
A	A->Sα A->ε	A->Sα A->ε	A->ε
В	B->Sb B->ε	B->Sb B->ε	Β->ε

Non è un linguaggio LL(1)

Fattorizzazione sinistra:

	a	Ь	e	i	t	\$
5	S->a			S- >iEtSS'		
5'			S'->ε S'->eS			5'->ε
Ε		E->b				

COME OTTENERE GRAMMATICHE LL(1)

- Verificare, se è possibile, che non sia ambigua. In caso contrario, se si può si rimuova l'ambiguità;
- Controllare che non presenti ricorsioni sinistre. In caso contrario trasformarle in ricorsioni destre.
- Se un simbolo non terminale ammette più derivazioni con lo stesso prefisso applicare il metodo della fattorizzazione sinistra.
- In alternativa, può essere necessario allungare la lunghezza della prospezioni. (Equivale a considerare parser LL(k), k>1)

LIMITI DELLA FAMIGLIA LL(K)

• Non tutti i linguaggi verificabili da parser deterministici sono generabili da grammatiche LL(k).

Per esempio:

L={a*anbn |n>=0} Linguaggio deterministico ma non LL(k)

È generato dalla grammatica

 $S \rightarrow A \mid aS$

A-> aAb $|\epsilon|$

Altro esempio:

S -> R | (S)

 $R \rightarrow E = E$

E -> a | (E + E)

Definisce relazioni di uguaglianza tra espressioni aritmetiche additive. Una stringa che inizia con "(" può essere una relazione R parentesizzata oppure un'espressione.

Il linguaggio non è LL(k) ma è deterministico.

RELAZIONE TRA GRAMMATICHE LL(K)

E' possibile generalizzare la nozione di **FIRST** nel parsing predittivo in modo da restituire i primi **k** token in input, e costruire una tabella predittiva in cui le righe sono i simboli nonterminali e *le colonne sono sequenze di k terminali*.

Le grammatiche non ambigue corrispondenti sono le *LL(K)*

