LTAT.02.004 MACHINE LEARNING II

Sequence models

Sven Laur University of Tartu

How to write a good touchscreen keyboard?

Possibilities

exobiology exocarp exodus exogamous exogamy exogenous exonerate exoneration exorbitant exorbitance exorcism exorcist exorcize exordium exoteric exotic

Likelihoods

exobiology exocarp 23 exodus exogamous exogamy 15 exogenous 30 exonerate 12 exoneration exorbitant 43 5 exorbitance 16 exorcism 13 exorcist 12 exorcize exordium exoteric 130 exotic

Discrete random variables

- \triangleright A random variable X with possible outcomes $x \in \text{supp}(X)$
- Compact notation for probabilities

$$\Pr[x_1] := \Pr[\xi \leftarrow X_1 : \xi = x_1]$$

$$\Pr[x_1 \land x_2] := \Pr[\xi_1 \leftarrow X_1, \xi_2 \leftarrow X_2 : \xi_1 = x_1 \land \xi_2 = x_2]$$

▶ Bayes formula

$$\Pr[a|b] = \frac{\Pr[a \land b]}{\Pr[b]} = \frac{\Pr[b|a]\Pr[a]}{\Pr[b]}$$

 \triangleright Independence of random variables $X_1 \dots X_m \perp Y_1, \dots Y_n$:

$$\Pr\left[x_1 \wedge \ldots \wedge x_m \wedge y_1 \wedge \ldots \wedge y_n\right] = \Pr\left[x_1 \wedge \ldots \wedge x_m\right] \cdot \Pr\left[y_1 \wedge \ldots \wedge y_n\right]$$

 \triangleright Marginalisation over variables Y_1, \ldots, Y_n :

$$\Pr\left[x_1 \wedge \ldots \wedge x_m\right] = \sum_{y_1, \ldots, y_n} \Pr\left[x_1 \wedge \ldots \wedge x_m \wedge y_1 \wedge \ldots \wedge y_n\right]$$

Markov chain

Definition. Let X_1, X_2, \ldots be correlated random variables such that the probability of the observation x_{i+1} depends only on the observation x_i . Then the entire process is known as Markov chain.

Parametrisation. Markov chain is determined by specifying

- \triangleright state spaces $\mathcal{S}_1 \dots, \mathcal{S}_n$
- \triangleright initial probabilities $\Pr[x_1]$ given as vectors
- \triangleright state transition probabilities $\Pr[x_{i+1}|x_i]$ given as matrices

What questions can we ask?

Sampling: What are typical outcomes of the chain? ▷ Synthesis of time-series, textures, sounds, games movements.

Stationary distribution: What happens if we run the chain infinitely long?
▷ Getting samples from an unnormalised posterior, optimisation tasks.

Likelihood estimation: What is a probability of an observation x_1, \ldots, x_n ? \triangleright Reasoning about probabilities and clustering sequences.

Decoding: What is the most probable outcome x_1, \ldots, x_n ? \triangleright Imputing missing values. Rudimentary logical reasoning.

Parameter estimation: What is are the model parameters?

▷ Machine learning – finding parameters based on observations.

Posterior maximisation in a chain

Inference goal. Given evidence at the ends of the chain find the sequence of states x that maximise the posterior probability $\Pr[x|\text{evidence}]$.

- \triangleright The log-posterior $\log \Pr[x| \text{evidence}]$ decomposes into a sum.
- ▶ We must find a sequence with maximal weight.
- ▶ The task can be split into subtask as all subpaths of the path with maximal weight must have maximal weight.
- > The corresponding iterative algorithm is known as Viterbi algorithm.

Belief propagation in a chain

Inference goal. Given evidence at the ends of the chain find marginal posterior probabilities for each node in the chain.

- \triangleright Evidence ε_V is an observational data associated with the node V.
- ▶ Upstream evidence⁺ is the evidence at the beginning of chain.
- Downstream evidence is the evidence at the end of chain.
- \triangleright Attributes π_V, λ_V, p_V are needed to compute marginal distributions.

Initialisation

- \triangleright Direct evidence ε_V determines the value of V.
- \triangleright Indirect evidence ε_V determines the value distribution for V.
- > We can assign the prior for the first and likelihood for the last node

$$\pi_A(a) = \Pr\left[A = a | \text{evidence}^+\right] = \Pr\left[A = a | \varepsilon_A\right]$$

$$\lambda_E(e) = \Pr\left[\text{evidence}^-|E=e\right] = \Pr\left[\varepsilon_E|E=e\right]$$

Belief propagation

Inference goal

$$\pi_B(b) = \Pr\left[b|\text{evidence}^+\right]$$

$$\lambda_D(d) = \Pr\left[\text{evidence}^-|d\right]$$

Iterative propagation rules

- \triangleright Marginalisation gives an update rule $\lambda_D = M_{D \to E} \lambda_E$.
- \triangleright Marginalisation gives an update rule $\pi_B \propto \pi_A M_{A \to B}$.

Belief propagation

Inference goal

$$p_C(c) = \Pr\left[c|\text{evidence}^+, \text{evidence}^-\right]$$

Iterative update rule

 \triangleright Bayes formula gives $p_C \propto \pi_C \otimes \lambda_C$.

Parameter inference for homogenous case

For a sequence of observations $\boldsymbol{x}=(x_1,\ldots,x_n)$ the log-likelihood is

$$\ell[\mathbf{x}] = \log \Pr[x_1] + \sum_{i=1}^{n-1} \log \Pr[x_{i+1}|x_i]$$

$$= \log \beta[x_1] + \sum_{u_1, u_2} k(u_1, u_2) \log \alpha[u_1, u_2]$$

where $k(u_1, u_2)$ is the count of bigrams u_1, u_2 in the sequence \boldsymbol{x} .

Posterior decomposition

As a result the log-likelihood of unnormalised posterior decomposes into the sum of independent terms

$$\log p[\boldsymbol{\alpha}, \boldsymbol{\beta} | \boldsymbol{x}] = \sum_{u_1} k(u_1) \log \beta[u_1] + \log p(\boldsymbol{\beta})$$
$$+ \sum_{u_1, u_2} k(u_1, u_2) \log \alpha[u_1, u_2] + \sum_{u_1} \log p(\boldsymbol{\alpha}[u_1, \cdot])$$

where

- $\triangleright k(u_1)$ is the count u_1 at the beginning of the observed sequences
- $\triangleright k(u_1, u_2)$ is the count of bigrams u_1, u_2 in the observed sequences.
- $\triangleright p(\beta)$ is the prior for an entire vector of initial probabilities
- $\triangleright p(\alpha[u_1,\cdot])$ is the prior for the transition probabilities from u_1

Reduction to the dice throwing experiment

Posterior decomposition leads to many independent optimisation tasks

$$\sum_{u_1} k(u_1) \log \beta[u_1] + \log p(\boldsymbol{\beta}) \to \max$$

$$\sum_{u_2} k(u_1, u_2) \log \alpha[u_1, u_2] + \log p(\boldsymbol{\alpha}[u_1, \cdot]) \to \max$$

where each of these is equivalent to optimisation of dice throwing posterior. Thus Maximum Aposteriori estimates for parameters are

$$\beta[u_1] = \frac{k(u_1) + c}{k(*) + mc} \qquad \alpha[u_1, u_2] = \frac{k(u_1, u_2) + c}{k(u_1, *) + mc}$$

where

- > * is a wildcard symbol in the count queries
- $\triangleright m$ is the number of states and c is a constant for Laplacian smoothing.

Why discrete Markov chains fail in practice?

The number of possible observation is to big already for 8×8 patch:

$$256^{8\times8} \times 256^8 \times 2^{10} = 2^{8\times8\times8+8\times8+10} = 2^{586}$$

 8×9 pathces are needed to estimate probabilities within ± 3 percent points.

Higher-order Markov chains

Time-series models

- \triangleright We assume that x_{i+1} depends only on the values of $x_i, \ldots, x_{i-\ell}$
- \triangleright A linear model assumes $x_{i+1} = w_0 + w_1 x_i + \cdots + w_{\ell+1} x_{i-\ell} + \varepsilon_i$.
- \triangleright All error terms ε_i are assumed to be independent.
- \triangleright All error terms ε_i are drawn from a normal distribution $\mathcal{N}(0,\sigma)$.

Linear time-series model

- \triangleright Fix a set of initial inputs $x_{-\ell}, \ldots, x_0 \in \mathbb{R}$. Denote them by \boldsymbol{x}_{\circ} .
- \triangleright Think of x_1, x_2, \ldots, x_n as observations. Denote them by \boldsymbol{x} .
- > A probabilistic model for state transitions is defined as follows

$$x_{i+1} = \underbrace{w_0 + w_1 x_i + \dots w_{\ell+1} x_{i-\ell}}_{\hat{x}_{i+1}} + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, \sigma)$$

$$p[\boldsymbol{x}|\boldsymbol{x}_{\circ},\boldsymbol{w},\sigma] = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x_{i} - \hat{x}_{i})^{2}}{2\sigma^{2}}\right)$$

Maximum likelihood estimate

As usual we can find $m{w} \in \mathbb{R}^{\ell+2}$ and $\sigma \in \mathbb{R}$ that maximise the log-likelihood

$$\log p[\boldsymbol{x}|\boldsymbol{x}_{\circ},\boldsymbol{\beta},\sigma] = const - n\log\sigma - \sum_{i=1}^{n} \frac{(x_{i} - \hat{x}_{i})^{2}}{2\sigma^{2}}$$

and thus we can find $oldsymbol{w}$ by minimising

$$MSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - w_0 - w_1 x_{i-1} - \dots - w_{\ell+1} x_{i-1-\ell})^2.$$

The latter is the standard multivariate linear regression setup. The variance of the model σ^2 can be found by the same formula as for linear regression.

Two ways to build continious Markov chains

- ▶ Replace a list of discrete states with continous variable.
 - \diamond We get 8×8 input features and 8 output features.
 - \diamond We need 8 functions of type $f_i:\mathbb{R}^{64}\to\mathbb{R}$ to fix expectation.
 - \diamond We need 8 functions of type $g_i: \mathbb{R}^{64} \to \mathbb{R}$ to fix variance.
 - \diamond If we use linear functions then we need $8 \times 65 \times 2$ parameters.
- - Ideally, these features are have semantical meaning.
 - In practice, features are fixed up to affine transformations.
 - Thus, features do not have clear interpretation.

Hidden Markov Model

Definition. Let X_1, X_2, \ldots be hidden states that form a Markov chain and let Y_1, Y_2, \ldots be observations that the probability of y_i depends only on the state x_i . Then the entire process is known as Hidden Markov Model.

Common tasks

- > parameter estimation

Applications

Modelling and prediction

- ▷ linear control algorithms

Sequence annotation

- ▷ fraud detection

Decoding

- > speech recognition
- ▷ communication over a nosy channels
- ▷ object tracking and data fusion

Posterior maximisation in a tree

Inference goal. Given evidence at the ends of the chain find the sequence of states x that maximise the posterior probability $\Pr[x|\text{evidence}]$.

- \triangleright The log-posterior $\log \Pr[x|\text{evidence}]$ decomposes into a sum.
- ▶ We must find a tree with maximal weight.

Decomposition into subtasks

All subtrees of the tree with maximal weight must have maximal weight.

- > We can merge subtrees with maximum weight to maximise the weight.
- > The algorithm works from leafs to the root node.
- > The corresponding iterative algorithm is known as Viterbi algorithm.

Belief propagation in a tree

Inference goal. Given evidence at the ends of the leafs and the root of tree find marginal posterior probabilities for each node in the tree.

- \triangleright Evidence ε_V is an observational data associated with the node V.
- \triangleright Attributes π_V, λ_V, p_V are needed to compute marginal distributions.

Evidence decomposition

- ▷ Evidence decomposes into up- and downstream evidence
- \triangleright Downstream evidence (V) is reachable through child nodes.
- \triangleright Upstream evidence⁺(V) is reachable through the predessesor node.
- ▷ Different nodes have totally different decompositions.

Initialisation

Goal. Assign prior to the root node and likelihood to the leaf nodes.

$$\pi_A(a) = \Pr\left[A = a | \text{evidence}^+(A)\right] = \Pr\left[A = a | \varepsilon_A\right]$$

$$\lambda_B(b) = \Pr\left[\text{evidence}^-(B)|F = f\right] = \Pr\left[\varepsilon_B|B = b\right]$$

. . .

$$\lambda_F(f) = \Pr\left[\text{evidence}^-(F)|F = f\right] = \Pr\left[\varepsilon_F|F = f\right]$$

Likelihood propagation

Inference goal

$$\lambda_D(d) = \Pr\left[\text{evidence}^-(D)|D = d\right]$$

Iterative propagation rules

- \triangleright Independence gives a pooling rule $\lambda_D = \lambda_1 \otimes \lambda_2$
- \triangleright Marginalisation gives rules $\lambda_1 = M_{D \to E} \lambda_E$ and $\lambda_2 = M_{D \to F} \lambda_F$.

Posterior propagation

Inference goal

$$p_A(a) = \Pr \left[A = a | \text{evidence}^+(A), \text{evidence}^-(A) \right]$$

Iterative propagation rule

hd Marginal conditional probability $p_A \propto \pi_A \otimes \lambda_A$

Prior propagation

Inference goal

$$\pi_D(d) = \Pr\left[D = d | \text{evidence}^+(D) \right]$$

$$= \Pr\left[D = d | \text{evidence}^+(A), \text{evidence}^-(B), \text{evidence}^-(C) \right]$$

Iterative propagation rule

 \triangleright Prior can be computed as $\pi_D \propto \pi_A M_{A \to D} \otimes M_{A \to B} \lambda_B \otimes M_{A \to C} \lambda_C$.

Application on rainfall data

There are two monsoon seasons in Singapore: dry and wet phase.

Modelling with Hidden Markov Model

Markov chain with states $S = \{0, 1\}$ and parameters

$$\beta = (0.5, 0.5)$$

$$\alpha = \begin{pmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{pmatrix}$$

Emission distributions

$$Y_i|X_i=0 \sim \mathcal{N}(\mu_0,\sigma_0)$$

$$Y_i|X_i=1\sim\mathcal{N}(\mu_1,\sigma_1)$$

Belief propagation. Initialisation

- \triangleright We have a direct evidence $Y_i = y_i$ for each node Y_i .
- \triangleright The likelihood vector is infinite and captured by $\lambda_{Y_i} = \delta_{y_i}$.
- \triangleright The local likelihood $\lambda_i^*(x_i) = \Pr[Y_i = y_i | x_i]$ is a finite vector.

Prior propagation. Filtering

Prior propagation rule yields

$$\pi_{X_i}(x_i) \propto \sum_{x_{i-1} \in \mathcal{S}} \alpha[x_{i-1}, x_i] \cdot \lambda_{i-1}^*(x_{i-1}) \cdot \pi_{X_{i-1}}(x_{i-1})$$

Now we can do filtering

$$\Pr[x_i|y_1,\ldots,y_i] \propto \pi_{X_i}(x_i) \cdot \lambda_i^*(x_i)$$

Likelihood propagation. Smoothing

Likelihood propagation rule yields

$$\lambda_{X_i}(x_i) \propto \sum_{x_{i+1} \in \mathcal{S}} \alpha[x_i, x_{i+1}] \cdot \lambda_{X_{i+1}}(x_{i+1}) \cdot \lambda_i^*(x_i)$$

Now we can do smoothing

$$\Pr[x_i|y_1,\ldots,y_n] \propto \pi_{X_i}(x_i) \cdot \lambda_{X_i}(x_i)$$

Annotated rainfall data

