Example 1 (Austrian Junior Regional Competition 2022). Determine all prime numbers p, q and r with $p + q^2 = r^4$.

Summary — Write down p in terms of q, r and factorize p, which is a prime!

Walkthrough —

(a) Note that

$$p = r^4 - q^2$$

= $(r^2 - q)(r^2 + q)$.

(b) This gives $r^2 - q = 1$, and hence

$$q = r^2 - 1$$

= $(r - 1)(r + 1)$.

- (c) This implies that r-1=1.
- (d) Conclude that r = 2, q = 3, p = 7.

Solution 1. Note that

$$p = r^4 - q^2$$

= $(r^2 - q)(r^2 + q)$.

Since p is a prime and $r^2 - q < r^2 + q$ holds, it follows that $r^2 - q = 1$, and hence

$$q = r^2 - 1$$

= $(r - 1)(r + 1)$.

Since p is a prime and r - 1 < r + 1, this implies that r - 1 = 1. This gives r = 2, q = 3, p = 7. Since 2, 3, 7 are primes, it follows that the only solution of the given equation in primes is

$$p = 7, q = 3, r = 2.$$