Math 132H Homework 8

Tom Slavonia

June 7, 2024

10.

Proof. If we consider $G: \mathbb{H} \to \mathbb{D}$ where

$$z\mapsto \frac{z-i}{z+i}.$$

We then have that $|G(z)| \le 1$ always, and any function that maps from $\mathbb{H} \to \mathbb{C}$ such that $|F(z)| \le 1$ it must be that F maps to some subset of the closed unit disc. Also, with G we have that G(i) = 0. We have that G and G^{-1} are conformal maps, and the composition of two holomorphic maps is holomorphic. Therefore, $F \circ G^{-1} : \mathbb{H} \to \mathbb{C}$ is a holomorphic map such that F(i) = 0 and by Schwarz lemma we have

$$|F(G^{-1}(z))| \le z \le 1 \text{ as } z \in \mathbb{D}.$$

Thus, we have that

$$|F(G^{-1}(G(z)))| = |F(z)| \le |G(z)| = \left|\frac{z-i}{z+i}\right|.$$

11.

Proof. Consider the maps $\varphi: D(0,R) \to \mathbb{D}$ and $\phi: D(0,M) \to \mathbb{D}$ where $z \mapsto \frac{z}{R}$ and $z \mapsto \frac{z}{M}$. We then have that $\varphi^{-1}: \mathbb{D} \to D(0,R)$ maps $z \mapsto Rz$ and thus we define $F = \phi \circ f \circ \varphi^{-1}$. Therefore, we have

$$F(z) = \phi(f(zR)) = \frac{f(zR)}{M}.$$

Note that with $z \in \mathbb{D}$ we have $zR \in D(0,R)$. Then,

$$\left| \frac{F(z) - F(0)}{1 - \overline{F(0)}F(z)} \right| = \left| \frac{\frac{f(zR)}{M} - \frac{f(0)}{M}}{1 - \frac{\overline{f(0)}}{M} \frac{f(zR)}{M}} \right|$$

$$= \left| \frac{\frac{f(zR) - f(0)}{M}}{\frac{M^2 - \overline{f(0)}f(zR)}{M^2}} \right|$$

$$= \left| \frac{Mf(zR) - Mf(0)}{M^2 - \overline{f(0)}f(zR)} \right| \le z$$

with the last step being justified by the Schwartz lemma. Rearranging we get

$$\left| \frac{f(zR) - f(0)}{M^2 - \overline{f(0)}f(zR)} \right| \le \frac{z}{M}.$$

Then if we set $w = zR \in D(0,R)$ we obtain

$$\left| \frac{f(w) - f(0)}{M^2 - \overline{f(0)}f(w)} \right| \le \frac{w}{MR}$$

and the result is proven.

12.

a.

Proof. Suppose $f: \mathbb{D} \to \mathbb{D}$ is analytic with two fixed points. Suppose α, α' are the two fixed points. Consider the map $\varphi_{\alpha}: \mathbb{D} \to \mathbb{D}$ such that for $|\alpha| < 1$

$$\varphi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$$

and since $|\alpha| < 1$ the map will never have a pole but is equal to 0 when $z = \alpha$. The book proves that φ_{α} is indeed an automorphism of \mathbb{D} . With the choice of φ_{α} as proven in the book we also have $\varphi_{\alpha}^{-1} = \varphi_{\alpha}$. Define

$$\tilde{f} = \varphi_{\alpha} \circ f \circ \varphi_{\alpha}$$

and we clearly have

$$\tilde{f}(0) = \varphi_{\alpha}(f(\varphi_{\alpha}(0))) = \varphi_{\alpha}(f(\alpha)) = \varphi_{\alpha}(\alpha) = 0$$

using that $\varphi_{\alpha}(0) = \alpha$, $\tilde{f}(\alpha) = \alpha$ as it is a fixed point of f, and $\varphi_{\alpha}(\alpha) = 0$. But, we also obtain a second fixed point for \tilde{f} , namely $\varphi_{\alpha}(\alpha')$:

$$\varphi_{\alpha}(f(\varphi_{\alpha}(\varphi_{\alpha}(\alpha')))) = \varphi_{\alpha}(f(\alpha')) = \varphi_{\alpha}(\alpha')$$

as $\varphi_{\alpha} \circ \varphi_{\alpha}(z) = z$ and α' is a fixed point of f by assumption. Hence \tilde{f} has two fixed points, but since $\tilde{f}(0) = 0$ and clearly $\tilde{f} : \mathbb{D} \to \mathbb{D}$ is holomorphic as φ_{α} and f are holomorphic, we may apply the Schwartz lemma. Since we have a nonzero $z_0 = \varphi_{\alpha}(\alpha')$ such that

$$|\tilde{f}(\varphi_{\alpha}(\alpha'))| = |\varphi_{\alpha}(\alpha')|$$

by Schwartz's lemma it must be that \tilde{f} is a rotation. But it can't be a rotation that isn't the identity; otherwise, every point will be rotated by the same amount, meaning we can't have two fixed points. Thus, $\tilde{f} = id$ and it must be that f = id.

b.

Proof. We have already looked at the maps $G: \mathbb{D} \to \mathbb{H}$ where $G(z) = i\frac{1-z}{1+z}$ and $F: \mathbb{H} \to \mathbb{D}$ with $F(w) = \frac{i-w}{i+w}$. Therefore, composing these conformal maps with the conformal map $f: \mathbb{H} \to \mathbb{H}$ with f(z) = z+1 we have $F \circ f \circ G: \mathbb{D} \to \mathbb{D}$ a conformal map from the unit disc to itself, but with no fixed points as in the upper half plane every point is shifted by 1 and then remapped into the disc. \square

13.

a.

Proof. We can begin by defining $\psi_{\alpha}: \mathbb{D} \to \mathbb{D}$ by $\psi_{\alpha}(z) = \frac{z-\alpha}{1-\overline{\alpha}z}$. Note that the book has already discussed that this is an automorphism of the unit disc. The inverse that arises from the definition of ψ_{α} is $\psi_{\alpha}^{-1}(z) = \frac{z+\alpha}{1+z\overline{\alpha}}$ which is once again an automorphism of the unit disc. Therefore, $\psi_{f(w)} \circ f \circ \psi_{w}^{-1}$ is a holomorphic function from the unit disc to itself as it is the composition of holomorphic functions from the unit disc to itself. Note that we then have

$$\psi_{f(w)}(f(\psi_w^{-1}(0))) = \psi_{f(w)}(f(w)) = \frac{f(w) - f(w)}{1 - |f(w)|^2} = 0$$

as |f(w)| < 1. Thus, we meet the necessary conditions to apply Schartz's lemma and attain the result

$$|\psi_{f(w)}(f(\psi_w^{-1}(z)))| \le |z|$$

and setting $z = \psi_w(z)$ we have that

$$|\psi_{f(w)}(f(\psi_w^{-1}(\psi_w(z))))| = |\psi_{f(w)}(f(z))| \le |\psi_w(z)|$$

thus giving us the result

$$\rho(f(z), f(w)) \le \rho(z, w).$$

If f is an automorphism of \mathbb{D} , then f^{-1} exists as a conformal map from $\mathbb{D} \to \mathbb{D}$. Now consider

$$\psi_{f^{-1}(w)} \circ f^{-1} \circ \psi_w^{-1}(0) = \psi_{f^{-1}(w)}(f^{-1}(w)) = \frac{f^{-1}(w) - f^{-1}(w)}{1 - |f^{-1}(w)|^2} = 0$$

as $f^{-1}(w) \in \mathbb{D}$. Clearly the composition of automorphisms of the disc above is holomorphic and therefore the conditions of Schwarz lemma are satisfied and we have

$$|\psi_{f^{-1}(w)}(f^{-1}(\psi_w^{-1}(z)))| \le |z|.$$

Set $z = \psi_w(z)$ and we ahve

$$|\psi_{f^{-1}(w)}(f^{-1}(z))| \le |\psi_w(z)|$$

and once again we can set z = f(z) which implies w = f(w) and see

$$|\psi_w(z)| \le |\psi_{f(w)}(f(z))|$$

and thus

$$\rho(z, w) \le \rho(f(z), f(w)).$$

Given that f is an automorphism we have

$$\rho(z,w) \le \rho(f(z),f(w))$$
 and $\rho(f(z),f(w)) \le \rho(z,w)$

implying by squeeze lemma

$$\rho(z,w) = \rho(f(z), f(w)).$$

b.

Proof. From the previous result we know

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)}f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right|$$

with $z, w \in \mathbb{D}$. Rearranging we gather

$$\left| \frac{f(z) - f(w)}{(z - w)(1 - \overline{f(w)}f(z))} \right| \le \left| \frac{1}{1 - \overline{w}z} \right|.$$

Taking the limit as $z \to w$:

$$\left| \lim_{z \to w} \frac{f(z) - f(w)}{z - w} \cdot \frac{1}{1 - \overline{f(w)}f(z)} \right| \le \frac{1}{|1 - |w|^2|},$$

as f is holomorphic we may more the limit inside f, therefore

$$\left| \frac{f'(w)}{1 - |f(w)|^2} \right| \le \frac{1}{|1 - |w|^2|}$$

and

$$\frac{|f'(w)|}{1 - |f(w)|^2} \le \frac{1}{1 - |w|^2}$$

with

$$|1 - |f(w)|^2 = 1 - |f(w)|^2$$
 and $|1 - |w|^2 = 1 - |w|^2$

because $w, f(w) \in \mathbb{D}$.

14.

Proof. Suppose $f: \mathbb{H} \to \mathbb{D}$ is a conformal map. Recall we have the conformal map $g: \mathbb{D} \to \mathbb{H}$ by

$$g(z) = i\frac{1-z}{1+z}.$$

Hence, $f \circ g$ is a conformal map and thus an automorphism of \mathbb{D} . Then we have for $z \in \mathbb{D}$

$$f(g(z)) = f\left(i\frac{1-z}{1+z}\right).$$

By a theorem from the book it must be that any automorphism of the disc is of the form

$$e^{i\theta} \frac{\alpha - z}{1 - \overline{\alpha}z}$$

for $\alpha \in \mathbb{D}$ and $\theta \in \mathbb{R}$, so

$$f(g(z)) = f\left(i\frac{1-z}{1+z}\right) = e^{i\theta}\frac{\alpha-z}{1-\overline{\alpha}z}.$$

The motivation of the next step comes from noting that as previously mentioned in the book

$$g^{-1}(z) = \frac{i-z}{i+z}.$$

Take $z = \frac{i-z}{i+z}$ and we have

$$\begin{split} f(z) &= e^{i\theta} \frac{\alpha - \frac{i-z}{i+z}}{1 - \overline{\alpha} \frac{i-z}{i+z}} \\ &= e^{i\theta} \frac{\alpha i + \alpha z - i + z}{i + z - \overline{\alpha} i + \overline{\alpha} z} \\ &= e^{i\theta} \frac{z(1 + \alpha) + \alpha i - i}{z(1 + \overline{\alpha}) + i - \overline{\alpha} i} \\ &= e^{i\theta} \frac{z + \frac{\alpha i - i}{1 + \alpha}}{z + \frac{i - \overline{\alpha} i}{1 + \overline{\alpha}}} \\ &= e^{i\theta} \frac{z + \frac{\alpha i - i}{1 + \alpha}}{z + \frac{i - \alpha i}{1 + \overline{\alpha}}} \\ &= e^{i\theta} \frac{z - \frac{i - \alpha i}{1 + \alpha}}{z - \overline{\alpha} \frac{i - i}{1 + \overline{\alpha}}}. \end{split}$$

Notice

$$\overline{i\frac{1-\alpha}{1+\alpha}} = i\frac{\overline{\alpha}-1}{1+\overline{\alpha}}$$

and that by the known mapping $g(z)=i\frac{1-z}{1+z}\in\mathbb{H}$ and with $\alpha\in\mathbb{D}$ we have

$$i\frac{1-\alpha}{1+\alpha}\in\mathbb{H}.$$

Taking

$$\beta=i\frac{1-\alpha}{1+\alpha} \text{ and then } \overline{\beta}=i\frac{\overline{\alpha}-1}{1+\overline{\alpha}}$$

we get the result

$$f(z) = e^{i\theta} \frac{z - i\frac{1-\alpha}{1+\alpha}}{z - i\frac{\overline{\alpha}-1}{1+\overline{\alpha}}} = e^{i\theta} \frac{z - \beta}{z - \overline{\beta}}.$$

15.

a.

Proof. We know by previous results that all automorphisms of the upper half-plane are of the form

$$z \mapsto \frac{az+b}{cz+d}.$$

The identity map fixes all points so it certainly fixes three different points. Suppose z is a fixed point by an automorphism of \mathbb{H} , then

$$z = \frac{az + b}{cz + d}.$$

Rearranging the above implies

$$\frac{az+b-cz^2-dz}{cz+d}=0$$

and thus that

$$-z^2 + z(a-d) + b = 0.$$

According to the Fundamental theorem of Algebra, the polynomial above has two solutions, so three points can't be fixed unless the map is the identity. \Box

b.

Proof. The idea here is that we build a map that assigns x_1 , x_2 , and x_3 to three manageable points. Define

$$f(z) = \frac{(z - x_1)(x_2 - x_3)}{(z - x_3)(x_2 - x_1)}$$

here $f(x_1) = 0$, $f(x_2) = 1$, and $\lim_{z \to x_3} f(z) = \infty$. This is an automorphism of \mathbb{H} , as the determinant of the coefficients is greater than 0 which is sufficient as $z \in \mathbb{H}$. Also, define

$$g(z) = \frac{zy_2y_3 - zy_1y_3 - y_1y_2 + y_1y_3}{zy_2 - zy_1 - y_2 + y_3}$$

which is the inverse of

$$\frac{(z-y_1)(y_2-y_3)}{(z-y_3)(y_2-y_1)},$$

but I will spare the reader that long and tedious computation. We then have that

$$g \circ f(x_1) = \frac{-y_1 y_2 + y_1 y_3}{-y_2 + y_3} = y_1$$
$$g \circ f(x_2) = \frac{y_2 y_3 - y_1 y_2}{y_3 - y_1} = y_2$$
$$\lim_{z \to x_3} g \circ f(z) = \frac{\infty \cdot y_2 y_3 - \infty \cdot y_1 y_3}{\infty \cdot y_2 - \infty \cdot y_1} = y_3.$$

Suppose f and g are two conformal maps such that $f(x_1) = g(x_1) = y_1$, $f(x_2) = g(x_2) = y_2$ and $f(x_3) = g(x_3) = x_3$ with all variables as defined by the problem. By the first part of the problem, it must be that $f \circ g^{-1} = id$ as the map would fix three points, and thus f = g.

17.

Proof. We begin by using the hint provided for the first integral, since ψ_{α} is holomorphic and bijective, we may use that integrals of the form

$$\frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'|^2 dx dy = \frac{1}{\pi} \cdot \operatorname{Area}(\psi_{\alpha}(\mathbb{D}))$$

but ψ_{α} is a automorphism of \mathbb{D} , so

$$\psi_{\alpha}(\mathbb{D}) = \mathbb{D}$$

and since the radius of the unit disc is 1

$$\frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'|^2 dx dy = \frac{1}{\pi} \cdot \operatorname{Area}(\psi_{\alpha}(\mathbb{D})) = \frac{1}{\pi} \cdot \operatorname{Area}(\mathbb{D}) = \frac{1}{\pi} \cdot \pi = 1.$$

The second integral must be handled with more care. If we parametrize $z = e^{i\theta}$. Now, we can calculate the derivative of

$$\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}.$$

Using the quotient rule we calculate the derivative to be

$$\psi_{\alpha}'(z) = \frac{-1 + |\alpha|^2}{(1 - \overline{\alpha}z)^2}.$$

Plugging into the integral

$$\frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'| dx dy = \frac{1}{\pi} \iint_{\mathbb{D}} \left| \frac{-1 + |\alpha|^2}{(1 - \overline{\alpha}z)^2} \right| dx dy.$$

With our parametrization of z in hand, we will tackle this integral over contour of the unit disc. Note that since $\alpha \in \mathbb{D}$ we have

$$|1 - |\alpha|^2| = 1 - |\alpha|^2.$$

Therefore, with $d\theta = \frac{1}{iz}dz$ our integral becomes

$$\frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'| dx dy = \frac{1 - |\alpha|^2}{\pi} \int_0^1 \int_0^{2\pi} \frac{1}{|1 - \overline{\alpha} r e^{i\theta}|^2} r d\theta dr$$
$$= \frac{1 - |\alpha|^2}{\pi} \int_0^1 \int_{|z| = 1} \frac{r}{iz|1 - \overline{\alpha} r z|^2} dz dr.$$

With |z|=1 we have $z\cdot \overline{z}=1$ and so $\overline{z}=\frac{1}{z}$ and the integral is now

$$\begin{split} \frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'| dx dy &= \frac{1-|\alpha|^2}{\pi} \int_0^1 \int_{|z|=1} \frac{r}{iz|1-\overline{\alpha}rz|^2} dz dr \\ &= \frac{1-|\alpha|^2}{\pi} \int_0^1 \int_{|z|=1} \frac{r}{iz(1-\overline{\alpha}rz)\left(1-\alpha r\frac{1}{z}\right)} dz dr \end{split}$$

$$= \frac{1 - |\alpha|^2}{i\pi} \int_0^1 \int_{|z|=1} \frac{r}{z(1 - \overline{\alpha}rz)\left(\frac{z - \alpha r}{z}\right)} dz dr$$

$$= \frac{1 - |\alpha|^2}{i\pi} \int_0^1 \int_{|z|=1} \frac{rz}{z(1 - \overline{\alpha}rz)(z - \alpha r)} dz dr$$

$$= \frac{1 - |\alpha|^2}{i\pi} \int_0^1 \int_{|z|=1} \frac{r}{(1 - \overline{\alpha}rz)(z - \alpha r)} dz dr$$

$$= \frac{1 - |\alpha|^2}{i\pi} \int_0^1 r \int_{|z|=1} \frac{1}{(1 - \overline{\alpha}rz)(z - \alpha r)} dz dr.$$

Now we must find the residues of the poles. The poles are $z=\frac{1}{\alpha r}$ and $z=\alpha r$. Note that since r<1 and $\alpha\in\mathbb{D}$ we have that the pole $\frac{1}{\alpha r}$ is not in the disc therefore we need only consider the pole $z_1=\alpha r$. Clearly, this pole only has an order of 1. Calculating the residue we get

$$res_{z_1}f = \lim_{z \to \alpha r} (z - \alpha r) \frac{1}{(1 - \overline{\alpha}rz)(z - \alpha r)} = \frac{1}{1 - |\alpha|^2 r^2}.$$

Thus, by the residue integration formula

$$\frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'| dx dy = \frac{1 - |\alpha|^2}{i\pi} \int_{0}^{1} r \int_{|z|=1} \frac{1}{(1 - \overline{\alpha}rz)(z - \alpha r)} dz dr
= \frac{1 - |\alpha|^2}{i\pi} \int_{0}^{1} r \frac{2\pi i}{1 - |\alpha|^2 r^2} dr
= (2 - 2|\alpha|^2) \int_{0}^{1} \frac{r}{1 - |\alpha|^2 r^2} dr.$$

Performing classical *u*-substitution with $u = 1 - |\alpha|^2 r^2$ we have

$$\frac{du}{dr} = -2r|\alpha|^2$$

and thus

$$-\frac{du}{2r|\alpha|^2} = dr.$$

We can then simplify the integral into

$$\frac{1}{\pi} \iint_{\mathbb{D}} |\psi_{\alpha}'| dx dy = (2 - 2|\alpha|^2) \int_{0}^{1} \frac{r}{1 - |\alpha|^2 r^2} dr$$

$$= (2 - 2|\alpha|^2) \int_{1}^{1 - |\alpha|^2} \frac{r}{u(-2r|\alpha|^2)} du$$

$$= -\frac{1 - |\alpha|^2}{|\alpha|^2} \int_{1}^{1 - |\alpha|^2} \frac{1}{u} du$$

$$= \frac{1 - |\alpha|^2}{|\alpha|^2} \int_{1 - |\alpha|^2}^{1} \frac{1}{u} du$$

$$= -\frac{1 - |\alpha|^2}{|\alpha|^2} \left[\ln(|u|) \right]_{1 - |\alpha|^2}^{1}$$

$$= \frac{1 - |\alpha|^2}{|\alpha|^2} \left(-\ln\left(|1 - |\alpha|^2|\right)\right)$$
$$= \frac{1 - |\alpha|^2}{|\alpha|^2} \ln\left((1 - |\alpha|^2)^{-1}\right)$$
$$= \frac{1 - |\alpha|^2}{|\alpha|^2} \ln\left(\frac{1}{1 - |\alpha|^2}\right)$$

with the last step true by basic logarithm rules. Hence, the last proof of my undergraduate career is complete.