Index

Any inaccuracies in this index may be explained by the fact that it has been prepared with the help of a computer.

Donald E. Knuth, Fundamental Algorithms (Volume 1 of The Art of Computer Programming)

Page numbers for code definitions are in italics. Page numbers followed by n indicate footnotes.

Abelson, Harold, 3 n * (primitive multiplication procedure), 5 abs, 17, 18 + (primitive addition procedure), 5 absolute value, 17 - (primitive subtraction procedure), 6 abstract data, 83. See also data as negation, 18 n abstraction / (primitive division procedure), 6 18 abstraction. See also means of = (primitive numeric equality abstraction; data abstraction; predicate), 18 higher-order procedures =number?, 150 common pattern and, 58 metalinguistic, 360 =zero? (generic), 193 (ex. 2.80) for polynomials, 209 (ex. 2.87) procedural, 26 < (primitive numeric comparison in register-machine design, 499-502 predicate), of search in nondeterministic > (primitive numeric comparison predicate), 18 programming, 418 >=, 20 abstraction barriers, 81, 87-90, 169 :. See semicolon in complex-number system, 170 in generic arithmetic system, 188 ! in names, 220 n ?, in predicate names, 24 nabstract models for data, 91 n " (double quote), 143 nabstract syntax ' (single quote), 143 in metacircular evaluator, 364 read and, $383 \, n$, $485 \, n$ in query interpreter, 469 ' (backquote), 575 n accelerated-sequence, 337 , (comma, used with backquote), accumulate, 61 (ex. 1.32), 116 575 n same as fold-right, 121 (ex. #f, 18n 2.38)#t. 18 n accumulate-n, 120 (ex. 2.36) accumulator, 114, 224 (ex. 3.1) → notation for mathematical function, 69 n Áchárya, Bháscara, 42 n λ calculus. See lambda calculus Ackermann's function, 36 (ex. 1.10) π . See pi acquire a mutex, 311 \sum (sigma) notation, 58 actions, in register machine, 498-499 θ . See theta actual-value, 402

	· ·
Ada, 453 (ex. 4.63)	Algol
recursive procedures, 35	block structure, 31
Adams, Norman I., IV, 394 n	call-by-name argument passing,
add (generic), 189	324 n, 402 n
used for polynomial coefficients,	thunks, 324 n, 401 n
206	weakness in handling compound
add-action!, 276, 280	objects, 296 n
add-binding-to-frame!, 378	algorithm
add-complex, 173	optimal, 119 n
add-complex-to-schemenum, 194	probabilistic, 52-53, 216 n
add-interval, 94	aliasing, 234 n
add-lists, 410	all-regs (compiler), 587 n
add-poly, 204	Allen, John, 541 n
add-rat, 84	alternative of if, 19
add-rule-or-assertion!, 481	always-true, 473
add-streams, 329	amb, 414
add-terms, 206	amb evaluator. See nondeterministic
add-to-agenda!, 280, 284	evaluator
add-vect, 136 (ex. 2.46)	ambeval, 429
addend, 148	an-element-of, 414
adder	an-integer-starting-from, 414
full, 275	analog computer, 347 (fig. 3.34)
half, 274	analyze
ripple-carry, 278 (ex. 3.30)	metacircular, 395
adder (primitive constraint), 290	nondeterministic, 428
additivity, 82, 170, 179-186, 191	analyze
address, 534	metacircular, 395-397, 398 (ex.
address arithmetic, 534	4.23)
Adelman, Leonard, 53 n	nondeterministic, 429-433
adjoin-arg, 551 n	analyze-amb, 434
adjoin-set, 152	analyzing evaluator, 393–398
binary-tree representation, 157	as basis for nondeterministic
ordered-list representation, 155 (ex.	evaluator, 426
2.61)	let, 398 (ex. 4.22)
unordered-list representation, 152	and (query language), 446
for weighted sets, 167	evaluation of, 456, 471, 488 (ex.
adjoin-term, 205, 209	4.76)
advance-pc, 525	and (special form), 19
after-delay, 277, 281	evaluation of, 19
agenda. See digital-circuit simulation	why a special form, 19
A'h-mose, 47 <i>n</i>	with no subexpressions, 374 (ex.
algebra, symbolic. See symbolic	4.4)
algebra	and-gate, 273
algebraic expression, 202	and-gate, 277
differentiating, 145–151	angle
representing, 147-151	data-directed, 184
simplifying, 149-150	polar representation, 175
algebraic specification for data, 91 n	rectangular representation, 174
	with tagged data, 178

angle-polar, 177	argument passing. See call-by-name
angle-rectangular, 176	argument passing; call-by-need
announce-output, 383	argument passing
APL, 118 n	Aristotle's De caelo (Buridan's
Appel, Andrew W., 586 n	commentary on), 313 n
append, 102, 103, 255 (ex. 3.12)	arithmetic
as accumulation, 119 (ex. 2.33)	address arithmetic, 534
append! vs., 255 (ex. 3.12)	generic, 187 (see also generic
with arbitrary number of	arithmetic operations)
arguments, 590 n	on complex numbers, 170
as register machine, 539 (ex. 5.22)	on intervals, 93–97
"what is" (rules) vs. "how to"	on polynomials (see polynomial
(procedure), 439–440	arithmetic)
append!, 255 (ex. 3.12)	on power series, 333 (ex. 3.60), 334
as register machine, 539 (ex. 5.22)	(ex. 3.62)
append-instruction-sequences,	on rational numbers, 83–87
572, 589	primitive procedures for, 5
append-to-form (rules), 451	articles, 421
application?, 372	ASCII code, 161
applicative-order evaluation, 16	assemble, 520, 521 n
in Lisp, 17	assembler, 515, 520-523
normal order vs., 21 (ex. 1.5), 49	assert! (query interpreter), 462
(ex. 1.20), 399–401	assertion, 441
apply (lazy), 403	implicit, 449
apply (metacircular), 366	assign (in register machine), 497
primitive apply vs., 387 n	simulating, 524
apply (primitive procedure), 183 n	storing label in register, 506
apply-dispatch, 553	assign-reg-name, 524
modified for compiled code, 604	assign-value-exp, 524
apply-generic, 184	assignment, 218–236. See also set!
with coercion, 196, 200 (ex. 2.81)	benefits of, 225–229
with coercion by raising, 201 (ex.	bugs associated with, 234 n, 235
2.84)	costs of, 229–236
with coercion of multiple	assignment?, 369
arguments, 201 (ex. 2.82)	assignment-value, 369
with coercion to simplify, 201 (ex.	assignment-variable, 369
2.85)	assignment operator, 219. See also
with message passing, 187	set!
with tower of types, 198	assoc, 268
apply-primitive-procedure,	atan (primitive procedure), 174 n
366, 377, 382	atomic operations supported in
apply-rules, 476	hardware, 313 n
arbiter, 313 n	atomic requirement for
arctangent, 174 n	test-and-set!, 312
argl register, 548	attach-tag, 176
argument(s), 6	using Scheme data types, 193 (ex.
arbitrary number of, 6, 104 (ex.	2.78)
2.20)	augend, <i>148</i>
delayed, 347	

automagically, 416	binary tree, 155
automatic search, 412. See also	balanced, 157
search	converting a list to a, 159 (ex. 2.64)
history of, 416 n	converting to a list, 158 (ex. 2.63)
automatic storage allocation, 534	for Huffman encoding, 162
average, 23	represented with lists, 156
average-damp, 72	sets represented as, 155-160
average damping, 70	table structured as, 272 (ex. 3.26)
averager (constraint), 295 (ex.	bind, 28
3.33)	binding, 237
	deep, 380 n
backquote, 575 n	binomial coefficients, 42 n
backtracking, 416. See also	black box, 26
nondeterministic computing	blocked process, 312 n
Backus, John, 356 n	block structure, 30-31, 388-390
Baker, Henry G., Jr., 541 n	in environment model, 249-251
balanced binary tree, 157. See also	in query language, 490 (ex. 4.79)
binary tree	body of a procedure, 12
balanced mobile, 111 (ex. 2.29)	Bolt Beranek and Newman Inc., 3 n
bank account, 219, 251 (ex. 3.11)	Borning, Alan, 286 n
exchanging balances, 308	Borodin, Alan, 119 n
joint, 233, 236 (ex. 3.7)	bound variable, 28
joint, modeled with streams, 356	box-and-pointer notation, 97
(fig. 3.38)	end-of-list marker, 99
joint, with concurrent access, 298	branch of a tree, 9
password-protected, 225 (ex. 3.3)	branch (in register machine), 496
serialized, 305	simulating, 525
stream model, 354	branch-dest, 526
transferring money, 310 (ex. 3.44)	breakpoint, 532 (ex. 5.19)
barrier synchronization, 315 n	broken heart, 542
Barth, John, 359	B-tree, 158 n
Basic	bug, 1
restrictions on compound data, 99 n	capturing a free variable, 29
weakness in handling compound	order of assignments, 235
objects, 296 n	side effect with aliasing, 234 n
Batali, John Dean, 547 n	bureaucracy, 463
begin (special form), 220	Buridan, Jean, 313 n
implicit in consequent of cond and	busy-waiting, 312 n
in procedure body, 221 n	,
begin?, 371	C
begin-actions, 371	compiling Scheme into, 610 (ex.
below, 128, 140 (ex. 2.51)	5.52)
Bertrand's Hypothesis, 330 n	error handling, 565 n, 607 n
beside, 128, <i>139</i>	recursive procedures, 35
bignum, 536	restrictions on compound data, 99 n
binary numbers, addition of. See	Scheme interpreter written in, 610
adder	(ex. 5.51), 610 (ex. 5.52)
binary search, 155	\mathtt{car} , $100 n$

cache-coherence protocols, 299 n	changing money. See counting
cadr, 100 n	change
calculator, fixed points with, 69 n	chaos in the Solar System, 3 n
call-by-name argument passing,	Chapman, David, 416 n
324 n, 402 n	character, ASCII encoding, 161
call-by-need argument passing,	character strings
324 n, 402 n	primitive procedures for, $485 n$,
memoization and, 332 n	578 n
call-each, 279	quotation of, 143 n
cancer of the semicolon, 11 n	Charniak, Eugene, 416 n
canonical form, for polynomials, 211	Chebyshev, Pafnutii L'vovich, 330 n
capturing a free variable, 29	chess, eight-queens puzzle, 124 (ex.
car (primitive procedure), 85	2.42), 420 (ex. 4.44)
axiom for, 91	chip implementation of Scheme, 547
implemented with vectors, 537	548 (fig. 5.16)
as list operation, 100	chronological backtracking, 416
origin of the name, 85 n	Church, Alonzo, 63 n, 93 (ex. 2.6)
procedural implementation of, 91,	Church numerals, 93 (ex. 2.6)
92 (ex. 2.4), 260, 409	Church-Turing thesis, 386 n
Carmichael numbers, 53 n, 55 (ex.	Chu Shih-chieh, 42 n
1.27)	circuit
case analysis	digital (see digital-circuit
data-directed programming vs., 366	simulation)
general, 17 (see also cond)	modeled with streams, 344 (ex.
with two cases (if), 19	3.73), 349 (ex. 3.80)
cdr, 100 n	Clark, Keith L., 466 n
cdr (primitive procedure), 85	clause, of a cond, 18
axiom for, 91	additional syntax, 375 (ex. 4.5)
implemented with vectors, 537	Clinger, William, 374 n, 402 n
as list operation, 100	closed world assumption, 466
origin of the name, 85 n	closure, 82
procedural implementation of, 91,	in abstract algebra, 98 n
92 (ex. 2.4), 260, 409	closure property of cons, 98
cdr down a list, 101	closure property of
cell, in serializer implementation,	picture-language operations, 126,
311	129
celsius-fahrenheit-converter,	lack of in many languages, 99 n
287	coal, bituminous, 128 n
expression-oriented, 296 (ex. 3.37)	code
center, 95	ASCII, 161
Cesàro, Ernesto, 226 n	fixed-length, 161
cesaro-stream, 353	Huffman (see Huffman code)
cesaro-test, 227	Morse, 161
Chaitin, Gregory, 226 n	prefix, 162
Chandah-sutra, 46 n	variable-length, 161
change and sameness	code generator, 570
meaning of, 232–234	arguments of, 571
shared data and, 257	value of, 571

coeff, 205, 209 compiler for Scheme, 568–610. See coercion, 195-202 also code generator; compile-time in algebraic manipulation, 211 environment; instruction in polynomial arithmetic, 207 sequence; linkage descriptor; procedure, 195 target register table, 195 analyzing evaluator vs., 568, 569 Colmerauer, Alain, 439 n assignments, 576 combination, 5–7 code generators (see combination as operator of, 72 n compile-...) compound expression as operator combinations, 581-587 of, 21 (ex. 1.4) conditionals, 577 evaluation of, 9-11 definitions, 576 efficiency, 568–569 lambda expression as operator of, example compilation, 591–594 as operator of combination, 72 n explicit-control evaluator vs., as a tree, 9 568–569, 574 (ex. 5.32), 606 combination, means of, 4. See also expression-syntax procedures, 570 interfacing to evaluator, 603–610 comma, used with backquote, 575 n label generation, 578 n comments in programs, 124 n lambda expressions, 579 Common Lisp, 3 n lexical addressing, 600–602 linkage code, 575 treatment of nil, 101 n compacting garbage collector, 541 n machine-operation use, 567 n compilation. See compiler monitoring performance (stack use) compile, 570of compiled code, 606, 608 (ex. 5.45), 609 (ex. 5.46) compile-and-go, 604, 606compile-and-run, 609 (ex. 5.48) open coding of primitives, 595 (ex. compile-application, 582 5.38), 603 (ex. 5.44) compile-assignment, 576 order of operand evaluation, 595 compile-definition, 577 (ex. 5.36)compile-if, 578 procedure applications, 581–587 compile-lambda, 580 quotations, 575 register use, 567 n, 568, 587 n compile-linkage, 575 compile-proc-appl, 587 running compiled code, 603–610 compile-procedure-call, 584 scanning out internal definitions, compile-quoted, 576 602 n, 603 (ex. 5.43) compile-self-evaluating, 575 self-evaluating expressions, 575 compile-sequence, 579 sequences of expressions, 579 compile-variable, 576 stack usage, 572, 574 (ex. 5.31), compiled-apply, 604595 (ex. 5.37) compiled-procedure?, 580 n structure of, 569-574 compiled-procedure-entry, tail-recursive code generated by, 586 compiled-procedure-env, 580 n variables, 575 compiler, 566-568 compile-time environment, 601, 602 interpreter vs., 567-568, 607 (ex. 5.40), 602 (ex. 5.41) tail recursion, stack allocation, and open coding and, 603 (ex. 5.44) garbage-collection, 586 n

complex package, 191	cond?, 373
complex->complex, 200 (ex. 2.81)	cond-actions, 373
complex-number arithmetic, 170	cond-clauses, 373
interfaced to generic arithmetic	cond-else-clause?, 373
system, 191	cond->if, 373
structure of system, 179 (fig. 2.21)	cond-predicate, 373
complex numbers	conditional expression
polar representation, 174	cond, 17
rectangular representation, 174	if, 19
rectangular vs. polar form, 171–172	congruent modulo n, 51
represented as tagged data,	conjoin, 471
175–179	connect, 289, 294
composition of functions, 77 (ex.	connector(s), in constraint system,
1.42)	286
compound-apply, 554	operations on, 289
compound data, need for, 79-81	representing, 292
compound expression, 5. See also	Conniver, 416 n
combination; special form	cons (primitive procedure), 85
as operator of combination, 21 (ex.	axiom for, 91
1.4)	closure property of, 98
compound procedure, 12. See also	implemented with mutators, 255
procedure	implemented with vectors, 538
used like primitive procedure, 13	as list operation, 100
compound-procedure?, 377	meaning of the name, $85 n$
compound query, 446–448	procedural implementation of, 91,
processing, 456-458, 471-473, 488	92 (ex. 2.4), 255, 260, 409
(ex. 4.75), 488 (ex. 4.76), 489 (ex.	cons up a list, 102
4.77)	cons-stream (special form), 319,
computability, 386 n, 387 n	321
computational process, 1. See also	lazy evaluation and, 409
process	why a special form, 321 n
computer science, 361, 386 n	consciousness, expansion of, 367 n
mathematics vs., 22, 438	consequent
concrete data representation, 83	of cond clause, 18
concurrency, 297–316	of if, 19
correctness of concurrent programs,	const (in register machine), 497
300–303	simulating, 527
deadlock, 314–315	syntax of, 513
functional programming and, 356	constant, specifying in register
mechanisms for controlling,	machine, 513
303–316	constant (primitive constraint), 292
cond (special form), 17	constant-exp, 528
additional clause syntax, 375 (ex.	constant-exp-value, 528
4.5)	constraint(s)
clause, 18	primitive, 286
evaluation of, 18	propagation of, 285–296
if vs., 19 n	constraint network, 286
implicit begin in consequent, 221 n	construct-arglist. 583

constructor, 83	current-time, 280, 283
as abstraction barrier, 88	current time, for simulation agenda,
contents, 176	283
using Scheme data types, 193 (ex.	cycle in list, 256 (ex. 3.13)
2.78)	detecting, 260 (ex. 3.18)
continuation	
in nondeterministic evaluator,	Darlington, John, 356 n
427–428, 429 (see also failure	data, 1, 4
continuation; success	abstract, 83 (see also data
continuation)	abstraction)
in register-machine simulator, 521 n	abstract models for, 91 n
continue register, 504	algebraic specification for, 91 n
in explicit-control evaluator, 548	compound, 79–81
recursion and, 508	concrete representation of, 83
continued fraction, 71 (ex. 1.37)	hierarchical, 98, 107-111
e as, 71 (ex. 1.38)	list-structured, 85
golden ratio as, 71 (ex. 1.37)	meaning of, 90–93
tangent as, 72 (ex. 1.39)	mutable (see mutable data objects)
controller for register machine,	numerical, 5
492–494	procedural representation of, 91–93
controller diagram, 494	as program, 384–387
control structure, 462	shared, 257–260
conventional interface, 82	symbolic, 142
sequence as, 113–126	tagged, 175–179, 535 n
Cormen, Thomas H., 158 n	data abstraction, 80, 83, 169, 173,
corner-split, 132	368. See also metacircular
correctness of a program, 22 n	evaluator
cos (primitive procedure), 69	for queue, 262
cosine	data base
fixed point of, 69	data-directed programming and,
power series for, 332 (ex. 3.59)	185 (ex. 2.74)
cosmic radiation, 53 n	indexing, 455 n, 479
count-change, 40	Insatiable Enterprises personnel,
count-leaves, 108, 109	185 (ex. 2.74)
as accumulation, 120 (ex. 2.35)	logic programming and, 441
as register machine, 539 (ex. 5.21)	Microshaft personnel, 441–443
count-pairs, 259 (ex. 3.16)	as set of records, 160
counting change, 40–41, 103 (ex.	data-directed programming, 170,
2.19)	179–186
credit-card accounts, international,	case analysis vs., 366
316 n	in metacircular evaluator, 374 (ex.
Cressey, David, 542 n	4.3)
cross-type operations, 194	in query interpreter, 470
cryptography, 53 n	data-directed recursion, 207
cube, 44 (ex. 1.15), 56, 74	data paths for register machine,
cube-root, 73	492–494
cube root	data-path diagram, 493
as fixed point, 73	
by Newton's method, 26 (ex. 1.8)	

data types	delay-it, <i>405</i>
in Lisp, 193 (ex. 2.78)	delayed argument, 347
in strongly typed languages, 351 n	delayed evaluation, 218, 317
deadlock, 314–315	assignment and, 325 (ex. 3.52)
avoidance, 314	explicit vs. automatic, 411
recovery, 314 n	in lazy evaluator, 398-411
debug, 2	normal-order evaluation and,
decimal point in numbers, 24 n	350–352
declarative vs. imperative	printing and, 325 (ex. 3.51)
knowledge, 22, 438	streams and, 346–350
logic programming and, 439–440,	delayed object, 320
463	delete-queue!, 262, 265
nondeterministic computing and,	denom, 83, 86
412 n	axiom for, 90
decode, 166	reducing to lowest terms, 89
decomposition of program into parts,	dense polynomial, 208
26	dependency-directed backtracking,
deep binding, 380 n	416 n
deep-reverse, 110 (ex. 2.27)	deposit message for bank account,
deferred operations, 34	223
define (special form), 7	deposit, with external serializer,
with dotted-tail notation, 104 (ex.	309
2.20)	depth-first search, 416
environment model of, 240	deque, 266 (ex. 3.23)
internal (see internal definition)	deriv (numerical), 74
lambda vs., 62-63	deriv (symbolic), 147
for procedures, 12, 62	data-directed, 185 (ex. 2.73)
syntactic sugar, 370	derivative of a function, 74
value of, 8 n	derived expressions in evaluator,
why a special form, 11	372–373
define-variable!, 378, 380	adding to explicit-control evaluator
definite integral, 59–60	560 (ex. 5.23)
estimated with Monte Carlo	design, stratified, 140
simulation, 228 (ex. 3.5), 354 (ex.	differential equation, 346. See also
3.82)	solve
definition. See define; internal	second-order, 348 (ex. 3.78), 349
definition	(ex. 3.79)
definition?, 370	differentiation
definition-value, 370	numerical, 74
definition-variable, 370	rules for, 146, 150 (ex. 2.56)
deKleer, Johan, 416 n, 465 n	symbolic, 145–151, 184 (ex. 2.73)
delay, in digital circuit, 273	diffusion, simulation of, 302
delay (special form), 320	digital-circuit simulation, 273–285
explicit, 347	agenda, 280–281
explicit vs. automatic, 411	agenda implementation, 283–285
implementation using lambda, 323	primitive function boxes, 276–278
lazy evaluation and, 409	representing wires, 278–280
memoized, 324, 332 (ex. 3.57)	sample simulation, 281–282
why a special form, 321 n	digital signal, 273

Dijkstra, Edsger Wybe, 311 n	e
Dinesman, Howard P., 418	as continued fraction, 71 (ex. 1.38)
Diophantus's Arithmetic, Fermat's	as solution to differential equation,
copy of, 51 <i>n</i>	348
disjoin, 471	e^x , power series for, 332 (ex. 3.59)
dispatching	Earth, measuring circumference of,
comparing different styles, 187 (ex.	327 n
2.76)	edge1-frame, 134
on type, 179 (see also data-directed	edge2-frame, 134
programming)	efficiency. See also order of growth
display (primitive procedure), 54	of compilation, 568
(ex. 1.22), 86 n	of data-base access, 455 n
display-line, 320	of evaluation, 393
display-stream, 320	of Lisp, 3
distinct?, 418 n	of query processing, 457
div (generic), 189	of tree-recursive process, 41
div-complex, 173	EIEIO, 315 n
div-interval, 94	eight-queens puzzle, 124 (ex. 2.42),
division by zero, 95 (ex. 2.10)	420 (ex. 4.44)
div-poly, 210 (ex. 2.91)	electrical circuits, modeled with
div-rat, 84	streams, 344 (ex. 3.73), 349 (ex.
div-series, 334 (ex. 3.62)	3.80)
div-terms, 210 (ex. 2.91)	element-of-set?, 152
divides?, 50	binary-tree representation, 157
divisible?, 326	ordered-list representation, 154
division of integers, 24 n	unordered-list representation, 152
dog, perfectly rational, behavior of,	else (special symbol in cond), 18
313 n	embedded language, language design
DOS/Windows, 565 n	using, 398
dot-product, 121 (ex. 2.37)	empty-agenda?, 280, 284
dotted-tail notation	empty-arglist, 551 n
for procedure parameters, 104 (ex.	empty-instruction-sequence,
2.20), $183 n$	574
in query-language rule, 451	empty-queue?, 262, 264
in query pattern, 445, 475	empty-termlist?, 205, 209
read and, 475	empty list, 101
Doyle, Jon, 416 n	denoted as '(), 144
draw-line, 136	recognizing with null?, 102
driver-loop	empty stream, 319
for lazy evaluator, 404	encapsulated name, 221 n
for metacircular evaluator, 383	enclosing-environment, 378
for nondeterministic evaluator, 435	enclosing environment, 237
driver loop	encode, 167 (ex. 2.68)
in explicit-control evaluator, 560	end-of-list marker, 99
in lazy evaluator, 404	end-segment, 89 (ex. 2.2), 137 (ex.
in metacircular evaluator, 383	2.48)
in nondeterministic evaluator, 416,	end-with-linkage, 575
434	engineering vs. mathematics, 53 n
in query interpreter, 462, 468	entry, 156

enumerate-interval, 116	Escher, Maurits Cornelis, 126 n
enumerate-tree, 116	estimate-integral, 229 (ex. 3.5)
enumerator, 114	estimate-pi, 227
env register, 548	Euclid's Algorithm, 48–49, 492. See
environment, 8, 236	also greatest common divisor
compile-time (see compile-time	order of growth, 49
environment)	for polynomials, 212 n
as context for evaluation, 10	Euclid's Elements, 48 n
enclosing, 237	Euclid's proof of infinite number of
global (see global environment)	primes, 330 n
lexical scoping and, 30 n	Euclidean ring, 212 n
in query interpreter, 490 (ex. 4.79)	Euler, Leonhard, 71 (ex. 1.38)
renaming vs., 489 (ex. 4.79)	proof of Fermat's Little Theorem,
environment model of evaluation,	51 n
218, 236–251	series accelerator, 336
environment structure, 237 (fig.	euler-transform, 336
3.1)	ev-application, 551
internal definitions, 249–251	ev-assignment, 559
local state, 244–248	ev-begin, 555
message passing, 251 (ex. 3.11)	ev-definition, 559
metacircular evaluator and, 362	ev-if, 558
procedure-application example,	ev-lambda, 550
241–244	ev-quoted, 550
rules for evaluation, 238-241	ev-self-eval, 550
tail recursion and, 244 n	ev-sequence
eq? (primitive procedure), 144	without tail recursion, 557
for arbitrary objects, 258	with tail recursion, 556
as equality of pointers, 258, 535	ev-variable, 550
implementation for symbols, 536	eval (lazy), 402
numerical equality and, 536 n	eval (metacircular), 364, 365
equ? (generic predicate), 193 (ex.	analyzing version, 394
2.79)	data-directed, 374 (ex. 4.3)
equal?, 145 (ex. 2.54)	primitive eval vs., 387 n
equal-rat?, 84	eval (primitive procedure), 387
equality	MIT Scheme, 387 n
in generic arithmetic system, 193	used in query interpreter, 473
(ex. 2.79)	eval-assignment, 368
of lists, 145 (ex. 2.54)	eval-definition, 368
of numbers, 18, 145 n, 536 n	eval-dispatch, 549
referential transparency and, 233	eval-if (lazy), <i>403</i>
of symbols, 144	eval-if (metacircular), 367
equation, solving. See half-interval	eval-sequence, 367
method; Newton's method; solve	evaluation
Eratosthenes, 327 n	applicative-order (see
error (primitive procedure), 68 n	applicative-order evaluation)
error handling	delayed (see delayed evaluation)
in compiled code, 607 n	environment model of (see
in explicit-control evaluator, 561,	environment model of evaluation)
565 (ex. 5.30)	models of, 560

evaluation (continued)	compound procedures, 554
normal-order (see normal-order	conditionals, 558
evaluation)	controller, 549-562
of a combination, 9–11	data paths, 547-548
of and, 19	definitions, 559
of cond, 18	derived expressions, 560 (ex. 5.23)
of if, 19	driver loop, 560
of or, 19	error handling, 561, 565 (ex. 5.30)
of primitive expressions, 10	expressions with no subexpressions
of special forms, 11	to evaluate, 549–550
order of subexpression evaluation	as machine-language program, 566
(see order of evaluation)	machine model, 562
substitution model of (see	modified for compiled code,
substitution model of procedure	603–605
application)	monitoring performance (stack
evaluator, 360. See also interpreter	use), 563–565
as abstract machine, 385	normal-order evaluation, 560 (ex.
metacircular, 362	5.25)
as universal machine, 386	operand evaluation, 551-553
evaluators. See metacircular	operations, 547
evaluator; analyzing evaluator;	optimizations (additional), 574 (ex.
lazy evaluator; nondeterministic	5.32)
evaluator; query interpreter;	primitive procedures, 554
explicit-control evaluator	procedure application, 550–554
even?, 45	registers, 548
even-fibs, 114, 117	running, 560-563
evening star. See Venus	sequences of expressions, 555-558
event-driven simulation, 273	special forms (additional), 560 (ex.
evlis tail recursion, 552 n	5.23), 560 (ex. 5.24)
exact integer, 24 n	stack usage, 550
exchange, 308	tail recursion, 556-558, 564 (ex.
exclamation point in names, 220 n	5.26), 565 (ex. 5.28)
execute, 518	as universal machine, 566
execute-application	expmod, 51, 55 (ex. 1.25), 55 (ex.
metacircular, 397	1.26)
nondeterministic, 434	exponential growth, 43
execution procedure	of tree-recursive Fibonacci-number
in analyzing evaluator, 394	computation, 38
in nondeterministic evaluator, 426,	exponentiation, 44–46
427, 429	modulo n, 51
in register-machine simulator, 517,	expression. See also compound
523-530	expression; primitive expression
exp register, 548	algebraic (see algebraic
expand-clauses, 373	expressions)
explicit-control evaluator for	self-evaluating, 364
Scheme, 547–566	symbolic, 82 (see also symbol(s))
assignments, 559	expression-oriented vs. imperative
combinations, 550–554	programming style, 296 n

expt	false, 18 <i>n</i>
linear iterative version, 45	false, $18n$
linear recursive version, 44	false?, 377
register machine for, 510 (ex. 5.4)	fast-expt, 45
extend-environment, 378, 379	fast-prime?, 52
extend-if-consistent, 474	feedback loop, modeled with
extend-if-possible, 479	streams, 346
external-entry, 605	Feeley, Marc, 394 n
extract-labels, 521, 521 n	Feigenbaum, Edward, 440 n
, ,	Fenichel, Robert, 541 n
#f, 18 n	Fermat, Pierre de, 51 n
factorial, 32. See also factorial	Fermat's Little Theorem, 51
infinite stream, 331 (ex. 3.54)	alternate form, 56 (ex. 1.28)
without letrec or define, 393	proof, 51 n
(ex. 4.21)	fermat-test, 52
with letrec, 392 (ex. 4.20)	Fermat test for primality, 51–53
factorial	variant of, 56 (ex. 1.28)
as an abstract machine, 384	fetch-assertions, 480
compilation of, 591-594, 596 (fig.	fetch-rules, 480
5.17)	fib
environment structure in evaluating,	linear iterative version, 39
243 (ex. 3.9)	logarithmic version, 47 (ex. 1.19)
linear iterative version, 34	register machine for
linear recursive version, 32	(tree-recursive), 510, 512 (fig.
register machine for (iterative), 494	5.12)
(ex. 5.1), 498 (ex. 5.2)	stack usage, compiled, 609 (ex.
register machine for (recursive),	5.46)
506–509, 511 (fig. 5.11)	stack usage, interpreted, 565 (ex.
stack usage, compiled, 608 (ex.	5.29)
5.45)	tree-recursive version, 37, 565 (ex.
stack usage, interpreted, 564 (ex.	5.29)
5.26), 564 (ex. 5.27)	with memoization, 272 (ex. 3.27)
stack usage, register machine, 532	with named let, 376 (ex. 4.8)
(ex. 5.14)	Fibonacci numbers, 37. See also fib
with assignment, 235	Euclid's GCD algorithm and, 49
with higher-order procedures, 61	infinite stream of (see fibs)
(ex. 1.31)	fibs (infinite stream), 327
failure, in nondeterministic	implicit definition, 329
computation, 414	FIFO buffer, 261
bug vs., 430	filter, 61 (ex. 1.33), 114
searching and, 415	filter, 115
failure continuation	filtered-accumulate, 61 (ex.
(nondeterministic evaluator), 427,	1.33)
429	find-assertions, 473
constructed by amb, 434	find-divisor, 50
constructed by assignment, 432	first-agenda-item, 280, 285
constructed by driver loop, 434	first-exp, <i>371</i>
	first-frame, 378

first-operand, 372	forwarding address, 542
first-segment, 283	fourth root, as fixed point, 78 (ex.
first-term, 205, 209	1.45)
first-class elements in language, 76	fraction. See rational number(s)
fixed-length code, 161	frame (environment model), 237
fixed point, 68–70	as repository of local state,
computing with calculator, 69 n	244–248
of cosine, 69	global, 237
cube root as, 73	frame (picture language), 127, 134
fourth root as, 78 (ex. 1.45)	coordinate map, 134
golden ratio as, 70 (ex. 1.43)	frame (query interpreter), 454. See
as iterative improvement, 78 (ex. 1.46)	also pattern matching; unification
	representation, 486
in Newton's method, 73	frame-coord-map, 135
nth root as, 78 (ex. 1.45)	frame-values, 378
square root as, 69, 73, 75	frame-variables, 378
of transformed function, 75	framed-stack discipline, 550 n
unification and, 478 n	Franz Lisp, $3n$
fixed-point, 69	free register, 538, 542
as iterative improvement, 78 (ex.	free list, $538 n$
1.46)	free variable, 28
fixed-point-of-transform, 75	capturing, 29
flag register, 517	in internal definition, 30
flatmap, 123	Friedman, Daniel P., 324 n, 361 n
flatten-stream, 483	fringe, 111 (ex. 2.28)
flip-horiz, 128, 140 (ex. 2.50)	as a tree enumeration, 116 n
flip-vert, 128, 138	front-ptr, 263
flipped-pairs, $130, 133 n, 134$	front-queue, 262, 264
Floyd, Robert, 416 n	full-adder, 275
fold-left, 121 (ex. 2.38)	full-adder, 276
fold-right, 121 (ex. 2.38)	function (mathematical)
for-each, 107 (ex. 2.23), 407 (ex.	\mapsto notation for, 69 n
4.30)	Ackermann's, 36 (ex. 1.10)
for-each-except, 294	composition of, 77 (ex. 1.42)
Forbus, Kenneth D., 416 n	derivative of, 74
force, 320, 323	fixed point of, 68-70
forcing a thunk vs., 401 n	procedure vs., 21–22
force a thunk, 401	rational, 211–216
force-it, 405	repeated application of, 77 (ex.
memoized version, 406	1.43)
forget-value!, 289, 294	smoothing of, 78 (ex. 1.44)
formal parameters, 12	functional programming, 230,
names of, 28	352–357
scope of, 29	concurrency and, 356
formatting input expressions, $7n$	functional programming languages
Fortran, 3, 118 n	356
inventor of, $356 n$	time and, 354–357
restrictions on compound data 99 n	

Gabriel, Richard P., 393 n	greatest common divisor, 48-49. See
garbage collection, 540-546	also gcd
memoization and, 405 n	generic, 213 (ex. 2.94)
mutation and, 253 n	of polynomials, 212
tail recursion and, 586 n	used to estimate π , 226
garbage collector	used in rational-number arithmetic,
compacting, 541 n	87
mark-sweep, 541 n	Green, Cordell, 439 n
stop-and-copy, 540-546	Griss, Martin Lewis, 3 n
GCD. See greatest common divisor	Guttag, John Vogel, 91 n
gcd, 49	
register machine for, 492–494, 514	half-adder, 274
gcd-terms, 213	half-adder, 275
general-purpose computer, as	simulation of, 281–282
universal machine, 566	half-interval method, 67-68
generate-huffman-tree, 168 (ex.	half-interval-method, 68
2.69)	Newton's method vs., 74 n
generating sentences, 426 (ex. 4.49)	halting problem, 387 (ex. 4.15)
generic arithmetic operations,	Halting Theorem, 387 n
189–193	Hamming, Richard Wesley, 164 n,
structure of system, 188 (fig. 2.23)	331 (ex. 3.56)
generic operation, 82	Hanson, Christopher P., 374 n, 586 n
generic procedure, 166, 170	Hardy, Godfrey Harold, 330 n, 342 n
generic selector, 177, 179	has-value?, 289, 294
Genesis, 453 (ex. 4.63)	Hassle, 400 n
get, 181, 271	Havender, J., 314 n
get-contents, 516	Haynes, Christopher T., 361 n
get-global-environment, 561 n	headed list, 267, 283 n
get-register, 518	Hearn, Anthony C., 3 n
get-register-contents, 514, 518	Henderson, Peter, 126 n, 328 n, 356 n
get-signal, 276, 280	Henderson diagram, 328
get-value, 289, 294	Heraclitus, 217
glitch, 1	Heron of Alexandria, 23 n
global environment, 8, 238	Hewitt, Carl Eddie, 36 n, 416 n,
in metacircular evaluator, 381	439 n, 541 n
global frame, 237	hiding principle, 221 n
Goguen, Joseph, 91 n	hierarchical data structures, 98,
golden ratio, 38	107–111
as continued fraction, 71 (ex. 1.37)	hierarchy of types, 197-202
as fixed point, 70 (ex. 1.35)	inadequacy of, 198
Gordon, Michael, 351 n	in symbolic algebra, 210–211
goto (in register machine), 496	higher-order procedures, 57
label as destination, 506	in metacircular evaluator, 366 n
simulating, 526	procedure as argument, 57–61
goto-dest, 526	procedure as general method,
grammar, 421	66–72
graphics. See picture language	procedure as returned value, 72-78
Grav Iim 314 n	strong typing and, 351 n

high-level language, machine	imperative vs. expression-oriented
language vs., 360	programming style, 296 n
Hilfinger, Paul, 160 n	implementation dependencies. See
Hoare, Charles Antony Richard, 91 n	also unspecified values
Hodges, Andrew, 386 n	numbers, 24 n
Hofstadter, Douglas R., 386 n	order of subexpression evaluation,
Horner, W. G., 119 n	238 n
Horner's rule, 119 (ex. 2.34)	inc, 58
"how to" vs. "what is" description.	incremental development of
See imperative vs. declarative	programs, 8
knowledge	indeterminate of a polynomial, 202
Huffman, David, 162	indexing a data base, 455 n, 479
Huffman code, 161–169	inference, method of, 462
optimality of, 164	infinite series, 478 n
order of growth of encoding, 169	infinite stream(s), 326–334
(ex. 2.72)	merging, 331 (ex. 3.56), 340, 342
Hughes, R. J. M., 410 n	(ex. 3.70), 356
8	merging as a relation, 357 n
IBM 704, 85 n	of factorials, 331 (ex. 3.54)
identity, 59	of Fibonacci numbers (see fibs)
if (special form), 19	of integers (see integers)
cond vs., $19n$	of pairs, 338–343
evaluation of, 19	of prime numbers (see primes)
normal-order evaluation of, 21 (ex.	of random numbers, 352
1.5)	representing power series, 332 (ex.
one-armed (without alternative),	3.59)
284 n	to model signals, 343-346
predicate, consequent, and	to sum a series, 335
alternative of, 19	infix notation, prefix notation vs.,
why a special form, 25 (ex. 1.6)	151 (ex. 2.58)
if?, 371	inform-about-no-value, 290
if-alternative, 371	inform-about-value, 290
if-consequent, 371	information retrieval. See data base
if-predicate, 371	Ingerman, Peter, 401 n
imag-part	initialize-stack operation in
data-directed, 184	register machine, 517, 530
polar representation, 175	insert!
rectangular representation, 174	in one-dimensional table, 268
with tagged data, 177	in two-dimensional table, 270
imag-part-polar, 177	insert-queue!, 262, 264
imag-part-rectangular, 176	install-complex-package, 191
imperative programming, 234	install-polar-package, 183
imperative vs. declarative	install-polynomial-package,
knowledge, 22, 438	204
logic programming and, 439-440,	install-rational-package, 190
463	install-rectangular-package,
nondeterministic computing and,	182
412 m	·=

install-scheme-number- package, 189 instantiate, 470 instantiate a pattern, 445 instruction-execution-proc, 522 instruction-text, 522 instruction counting, 532 (ex. 5.15) instruction execution procedure, 517 instruction sequence, 571-574, 587-591 instruction tracing, 532 (ex. 5.16) integer(s), 5 n dividing, 24 n	intersection-set, 152 binary-tree representation, 160 (ex 2.65) ordered-list representation, 155 unordered-list representation, 153 interval arithmetic, 93–97 invariant quantity of an iterative process, 46 (ex. 1.16) inverter, 273 inverter, 277 iteration contructs. See looping constructs iterative improvement, 78 (ex. 1.46) iterative process, 34
exact, 24 n	as a stream process, 334–338
integerizing factor, 214 integers (infinite stream), 326 implicit definition, 329 lazy-list version, 410	design of algorithm, 46 (ex. 1.16) implemented by procedure call, 24–25, 36, 558 (see also tail recursion)
integers-starting-from, 326	linear, 34, 43
integral. See also definite integral;	recursive process vs., 32–36, 243
Monte Carlo integration	(ex. 3.9), 506, 594 (ex. 5.34)
of a power series, 332 (ex. 3.59) integral, 60, 343, 348 (ex. 3.77)	register machine for, 506
with delayed argument, 347 with lambda, 62	Jayaraman, Sundaresan, 286 n
lazy-list version, 411	Kaldewaij, Anne, 47 n
need for delayed evaluation, 346	Karr, Alphonse, 217
integrate-series, 332 (ex. 3.59)	Kepler, Johannes, 491
integrated-circuit implementation of	key, 160
Scheme, 547, 548 (fig. 5.16)	key of a record
integrator, for signals, 343	in a data base, 160 in a table, 266
interleave, 341	testing equality of, 272 (ex. 3.24)
interleave-delayed, 483	Khayyam, Omar, 42 n
Interlisp, 3 <i>n</i>	Knuth, Donald E., $42 n$, $46 n$, $48 n$,
internal definition, 30–31	119 n, 226 n, 621
in environment model, 249–251 free variable in, 30	Kohlbecker, Eugene Edmund, Jr.,
let vs., 66	374 n
in nondeterministic evaluator, 432 n	Kolmogorov, A. N., 226 n
position of, 31 n	Konopasek, Milos, 286 n
restrictions on, 388	Kowalski, Robert, 439 n
scanning out, 389	KRC, 122 n, 340 n
scope of name, 388-390	label (in register machine), 496
Internet "Worm", 607 n	simulating, 527
interning symbols, 537	label-exp, 528
interpreter, 2. <i>See also</i> evaluator compiler vs., 567–568, 607 read-eval-print loop, 7	label-exp-label, 528
reau-evar-print 100p, 1	

Lagrange interpolation formula, 203 n	named, 376 (ex. 4.8) scope of variables, 65
λ calculus (lambda calculus), 63 n	as syntactic sugar, 65, 248 (ex.
lambda expression	3.10)
as operator of combination, 63	let* (special form), <i>375</i> (ex. 4.7)
value of, 240	letrec (special form), 391 (ex. 4.20)
lambda (special form), 62	lexical-address-lookup, 601,
define vs., 62-63	602 (ex. 5.39)
with dotted-tail notation, 104 n	lexical-address-set!, 601, 602
lambda?, 370	(ex. 5.39)
lambda-body, 370	lexical addressing, 600–602
lambda-parameters, 370	lexical address, 600
Lambert, J.H., 72 (ex. 1.39)	lexical scoping, 30
Lamé, Gabriel, 49 n	environment structure and, 600
Lamé's Theorem, 49	Lieberman, Henry, 541 n
Lamport, Leslie, 316 n	LIFO buffer. See stack
Lampson, Butler, 234 n	linear growth, 34, 43
Landin, Peter, 11 n, 324 n	linear iterative process, 34
language. See natural language;	order of growth, 43
programming language	linear recursive process, 34
Lapalme, Guy, 394 n	order of growth, 43
last-exp?, 371	line segment
last-operand?, 551 n	represented as pair of points, 89
last-pair, 103 (ex. 2.17), 255 (ex.	(ex. 2.2)
3.12)	represented as pair of vectors, 137
rules, 453 (ex. 4.62)	(ex. 2.48)
lazy evaluation, 399	linkage descriptor, 571
lazy evaluator, 398–409	Liskov, Barbara Huberman, 91 n
lazy list, 409–411	Lisp
lazy pair, 409–411	acronym for LISt Processing, 2
lazy tree, 410 n	applicative-order evaluation in, 17
leaf?, 165	on DEC PDP-1, 541 n
least commitment, principle of, 175	efficiency of, 3, 7 n
lecture, something to do during, 69 n	first-class procedures in, 77
left-branch, 156, 165	Fortran vs., 3
Leibniz, Baron Gottfried Wilhelm	history of, 2–4
von	internal type system, 193 (ex. 2.78)
proof of Fermat's Little Theorem,	original implementation on
51 n	IBM 704, 85 n
series for π , 57 n , 335	Pascal vs., 11 n
Leiserson, Charles E., 158 n, 342 n	suitability for writing evaluators,
length, 102	361
as accumulation, 119 (ex. 2.33)	unique features of, 4
iterative version, 102	lisp-value (query interpreter), 472
recursive version, 102	lisp-value (query language), 447,
let (special form), 64	466
evaluation model, 248 (ex. 3.10)	evaluation of, 458, 472, 489 (ex.
internal definition vs. 66	4.77)

Lisp dialects	lives-near (rule), 448, 451 (ex.
Common Lisp, 3 n	4.60)
Franz Lisp, 3 n	local evolution of a process, 31
Interlisp, 3 n	local name, 27–29, 63–66
MacLisp, 3 n	local state, 218-236
MDL, 542 n	maintained in frames, 244-248
Portable Standard Lisp, 3 n	local state variable, 219-225
Scheme, 3	local variable, 63–66
Zetalisp, 3 n	location, 534
list(s), 100	Locke, John, 1
backquote with, 575 n	log (primitive procedure), 70 (ex.
cdring down, 101	1.36)
combining with append, 102	logarithm, approximating ln 2, 338
consing up, 102	(ex. 3.65)
converting a binary tree to a, 158	logarithmic growth, 43, 45, 156 n
(ex. 2.63)	logical and, 273
converting to a binary tree, 159 (ex.	logical-not, 277
2.64)	logical or, 274
empty (see empty list)	logic programming, 438–441. See
equality of, 145 (ex. 2.54)	also query language; query
headed, 267, 283 n	interpreter
last pair of, 103 (ex. 2.17)	computers for, 440 n
lazy, 409–411	history of, 438 n, 440 n
length of, 102	in Japan, 440 <i>n</i>
list structure vs., 100 n	logic programming languages, 440
manipulation with car, cdr, and	mathematical logic vs., 462-468
cons, 100	logic puzzles, 418–420
mapping over, 105-107	lookup
nth element of, 101	in one-dimensional table, 268
operations on, 101–104	in set of records, 160
printed representation of, 100	in two-dimensional table, 270
quotation of, 143	lookup-label, 522
reversing, 103 (ex. 2.18)	lookup-prim, 529
techniques for manipulating,	lookup-variable-value, 377, 379
101–104	for scanned-out definitions, 390
list (primitive procedure), 100	(ex. 4.16)
list-difference, 589	looping constructs, 25, 35
list-of-arg-values, 403	implementing in metacircular
list-of-delayed-args, 403	evaluator, 376 (ex. 4.9)
list-of-values, 367	lower-bound, 94 (ex. 2.7)
list-ref, <i>101</i> , <i>410</i>	
list->tree, <i>159</i> (ex. 2.64)	machine language, 566
list-union, 589	high-level language vs., 360
list structure, 85	Macintosh, 565 n
list vs., 100 n	MacLisp, 3 n
mutable, 252-256	macro, 373 n. See also reader macro
represented using vectors, 535-539	character
list-structured memory, 533–546	magician. See numerical analyst

magnitude	make-goto, 526
data-directed, 184	make-if, 371
polar representation, 175	make-instruction, 522
rectangular representation, 174	make-instruction-sequence, 573
with tagged data, 178	make-interval, 94, 94 (ex. 2.7)
magnitude-polar, 177	make-joint, 236 (ex. 3.7)
magnitude-rectangular, 176	make-label, 578n
make-account, 223	make-label-entry, 522
in environment model, 251 (ex.	make-lambda, 370
3.11)	make-leaf, 165
with serialization, 305, 306 (ex.	make-leaf-set, 167
3.41), <i>307</i> (ex. 3.42)	make-machine, 514, 516
make-account-and-serializer,	make-monitored, 224 (ex. 3.2)
309	make-mutex, 312
make-accumulator, 224 (ex. 3.1)	make-new-machine, 519 (fig. 5.12)
make-agenda, 280, 283	$\mathtt{make-operation-exp}, 528$
make-assign, 524	make-perform, 527
make-begin, 372	make-point, 89 (ex. 2.2)
make-branch, 526	make-poly, 204
make-center-percent, 96 (ex.	${\tt make-polynomial}, 209$
2.12)	$\mathtt{make-primitive-exp}, 527$
make-center-width, 95	make-procedure, 377
make-code-tree, 165	make-product, 148, 150
make-compiled-procedure, 580 n	make-queue, 262, 264
make-complex-from-mag-ang, 192	make-rat, 83, 86, 89
make-complex-from-real-imag,	axiom for, 90
192	reducing to lowest terms, 87
make-connector, 293	make-rational, 190
make-cycle, 256 (ex. 3.13)	make-register, 516
make-decrementer, 230	make-restore, 527
make-execution-procedure, 523	make-save, 526
make-frame, 134, 136 (ex. 2.47),	make-scheme-number, 189
378	make-segment, 89 (ex. 2.2), 137
$\mathtt{make-from-mag-ang}, 178, 184$	(ex. 2.48)
message-passing, 187 (ex. 2.75)	make-serializer, 311
polar representation, 175	make-simplified-withdraw, 230,
rectangular representation, 174	354
make-from-mag-ang-polar, 177	make-stack, 517
make-from-mag-ang-	with monitored stack, 531
rectangular, 177	make-sum, 148, 149
make-from-real-imag, 178, 184	make-table
message-passing, 186	message-passing implementation,
polar representation, 175	271
rectangular representation, 174	one-dimensional table, 268
make-from-real-imag-polar,	make-tableau, 337
177	make-term, 205, 209
make-from-real-imag-	make-test, 525
rectangular, 177	make-time-segment, 283

make-tree, 157	memory
make-vect, 136 (ex. 2.46)	in 1964, 415 n
make-wire, 274, 279, 282 (ex. 3.31)	list-structured, 533-546
make-withdraw, 222	memq, 144
in environment model, 244-248	merge, 331 (ex. 3.56)
using let, 248 (ex. 3.10)	merge-weighted, 342 (ex. 3.70)
making change. See counting change	merging infinite streams. See infinite
map, 105, 410	stream(s)
as accumulation, 119 (ex. 2.33)	message passing, 92, 186-188
with multiple arguments, 105 n	environment model and, 251 (ex.
map-over-symbols, 485	3.11)
map-successive-pairs, 353	in bank account, 223
mapping	in digital-circuit simulation, 278
over lists, 105–107	tail recursion and, 36 n
nested, 122-126, 338-343	metacircular evaluator, 362
as a transducer, 114	metacircular evaluator for Scheme,
over trees, 112–113	362–387
mark-sweep garbage collector, 541 n	analyzing version, 393–398
mathematical function. See function	combinations (procedure
(mathematical)	applications), 374 (ex. 4.2)
mathematics	compilation of, 610 (ex. 5.50), 610
computer science vs., 22, 438	(ex. 5.52)
engineering vs., 53 n	data abstraction in, 363, 364, 376
matrix, represented as sequence, 120	(ex. 4.10), 380
(ex. 2.37)	data-directed eval, 374 (ex. 4.3)
matrix-*-matrix, 121 (ex. 2.37)	derived expressions, 372-373
matrix-*-vector, 121 (ex. 2.37)	driver loop, 383
max (primitive procedure), 94	efficiency of, 393
McAllester, David Allen, 416 n	environment model of evaluation
McCarthy, John, 2, 2 n, 414 n	in, 362
McDermott, Drew, 416 n	environment operations, 377
MDL, 542 n	eval and apply, 364-368
means of abstraction, 4	eval-apply cycle, 363, 364 (fig.
define, 8	4.1)
means of combination, 4. See also	expression representation, 364,
closure	368–373
measure in a Euclidean ring, 212 n	global environment, 381
member, $418n$	higher-order procedures in, 366 n
memo-fib, 272 (ex. 3.27)	implemented language vs.
memo-proc, 324	implementation language, 367
memoization, 41 n, 272 (ex. 3.27)	job of, 363 <i>n</i>
call-by-need and, 332 n	order of operand evaluation, 368
by delay, 324	(ex. 4.1)
garbage collection and, 405 n	primitive procedures, 381–383
of thunks, 401	representation of environments,
memoize, 273 (ex. 3.27)	378–380

metacircular evaluator for Scheme	modeling
(continued)	as a design strategy, 217
representation of procedures, 377	in science and engineering, 15
representation of true and false, 376	models of evaluation, 560
running, 381–384	modified registers. See instruction
special forms (additional), 374 (ex.	sequence
4.4), 375 (ex. 4.5), 375 (ex. 4.6),	modifies-register?, 588
375 (ex. 4.7), 376 (ex. 4.8), 376	modularity, 117, 217
(ex. 4.9)	along object boundaries, 357 n
special forms as derived	functional programs vs. objects,
expressions, 372–373	352–357
symbolic differentiation and, 368	hiding principle, 221 n
syntax of evaluated language,	streams and, 334
368-373, 374 (ex. 4.2), 376 (ex.	through dispatching on type, 179
4.10)	through infinite streams, 353
tail recursiveness unspecified in,	through modeling with objects, 225
556	modulo <i>n</i> , 51
true and false, 381	modus ponens, 462 n
metalinguistic abstraction, 360	money, changing. See counting
MicroPlanner, 416 n	change
Microshaft, 441	monitored procedure, 224 (ex. 3.2)
midpoint-segment, 90 (ex. 2.2)	monte-carlo, 227
Miller, Gary L., 56 (ex. 1.28)	infinite stream, 353
Miller, James S., 586 n	Monte Carlo integration, 228 (ex.
Miller-Rabin test for primality, 56	3.5)
(ex. 1.28)	stream formulation, 354 (ex. 3.82)
Milner, Robin, 351 n	Monte Carlo simulation, 226
min (primitive procedure), 94	stream formulation, 352
Minsky, Marvin Lee, xvii, 541 n	Moon, David A., 3 n, 541 n
Miranda, 122 <i>n</i>	morning star. See evening star
MIT, 439 <i>n</i>	Morris, J. H., 234 n
Artificial Intelligence Laboratory,	Morse code, 161
3 n	Mouse, Minnie and Mickey, 464
early history of, 127 n	mul (generic), 189
Project MAC, 3 n	used for polynomial coefficients,
Research Laboratory of	206
Electronics, 2, 541 n	mul-complex, 173
MIT Scheme	mul-interval, 94
the empty stream, $319 n$	more efficient version, 95 (ex. 2.11)
eval, 387 n	mul-poly, 204
internal definitions, 390 n	mul-rat, 84
numbers, 24 n	mul-series, 333 (ex. 3.60)
random, 229 n	mul-streams, 331 (ex. 3.54)
user-initial-environment,	mul-terms, 206
387 n	Multics time-sharing system, 541 n
without-interrupts, 313 n	multiple-dwelling, 419
ML, 351 <i>n</i>	multiplicand, 149
mobile, 111 (ex. 2.29)	

multiplication by Russian peasant	nested mappings. See mapping
method, $47 n$	new register, 544
multiplier	new-cars register, 542
primitive constraint, 291	new-cdrs register, 542
selector, 148	new-withdraw, 221
Munro, Ian, 119 n	newline (primitive procedure), 54
mutable data objects, 251–261. See	(ex. 1.22), 86 n
also queue; table	Newton's method
implemented with assignment,	for cube roots, 26 (ex. 1.8)
260–261	for differentiable functions, 73–75
list structure, 252–256	half-interval method vs., 74 n
pairs, 252–256	for square roots, 22–24, 75, 76
procedural representation of,	newton-transform, 74
260–261	newtons-method, 75
shared data, 258	next (linkage descriptor), 571
mutator, 252	next-to (rules), 452 (ex. 4.61)
mutex, 311	nil
mutual exclusion, 311 n	dispensing with, 144
mystery, 256 (ex. 3.14)	as empty list, 101
g / 1 1 '11	as end-of-list marker, 99
name. See also local name; variable;	as ordinary variable in Scheme,
local variable	101 n
encapsulated, 221 n	no-more-exps?, 557 n
of a formal parameter, 28	no-operands?, 372
of a procedure, 12	node of a tree, 9
named let (special form), 376 (ex.	non-computable, 387 n
4.8)	nondeterminism, in behavior of
naming	concurrent programs, 302 n, 357 n
of computational objects, 7 of procedures, 12	nondeterministic choice point, 415
-	nondeterministic computing,
naming conventions ! for assignment and mutation,	412–426
220 n	nondeterministic evaluator, 426–437
? for predicates, 24 n	order of operand evaluation, 425
native language of machine, 566	(ex. 4.46)
natural language	nondeterministic programming vs.
parsing (see parsing natural	Scheme programming, 412, 420
language)	(ex. 4.41), 420 (ex. 4.44), 489 (ex.
quotation in, 142	4.78)
needed registers. See instruction	nondeterministic programs
sequence	logic puzzles, 418–419
needs-register?, 588	pairs with prime sums, 412 parsing natural language, 420–425
negate, 472	Pythagorean triples, 417 (ex. 4.35),
nested applications of car and cdr,	417 (ex. 4.36), 418 (ex. 4.37)
100 n	non-strict, 400
nested combinations, 6–7	normal-order evaluation, 16
nested definitions. See internal	applicative order vs., 21 (ex. 1.5),
definition	49 (ex. 1.20), 399–401
	17 (OA. 1.20), 377 TOI

normal-order evaluation (continued)	object program, 567
delayed evaluation and, 350–352	old register, 544
in explicit-control evaluator, 560	older register, 545
(ex. 5.25)	ones (infinite stream), 328
of if, 21 (ex. 1.5)	lazy-list version, 410
normal-order evaluator. See lazy	op (in register machine), 497
evaluator	simulating, 528
not (primitive procedure), 19	open coding of primitives, 595 (ex.
not (query language), 447, 465	5.38), 603 (ex. 5.44)
evaluation of, 457, 472, 489 (ex.	operands, 372
4.77)	operands of a combination, 6
notation in this book	operation
italic symbols in expression syntax,	cross-type, 194
12 n	generic, 82
slanted characters for interpreter	in register machine, 492–494
response, 5 n	operation-and-type table, 181
nouns, 421	assignment needed for, 220 n
nth root, as fixed point, 78 (ex. 1.45)	implementing, 271
null? (primitive procedure), 102	operation-exp, 528
implemented with typed pointers,	operation-exp-op, 528
538	operation-exp-operands, 528
number(s)	operator, 372
comparison of, 18	operator of a combination, 6
decimal point in, 24 n	combination as, 72 n
equality of, 18, 145 n, 536 n	compound expression as, 21 (ex.
in generic arithmetic system, 189	1.4)
implementation dependencies, 24 n	lambda expression as, 63
integer, exact, 24 n	optimality
integer vs. real number, 5 n	of Horner's rule, 119 n
in Lisp, 5	of Huffman code, 164
rational number, 24 n	or (query language), 446
number? (primitive procedure), 147	evaluation of, 456, 471
data types and, 193 (ex. 2.78)	or (special form), 19
implemented with typed pointers,	evaluation of, 19
538	why a special form, 19
number theory, 51 n	with no subexpressions, 374 (ex.
numer, 83, 86	4.4)
axiom for, 90	order, 205, 209
reducing to lowest terms, 89	ordered-list representation of sets,
numerical analysis, 5 n	153–155
numerical analyst, 67 n	order notation, 43
numerical data, 5	order of evaluation
. 505	assignment and, 236 (ex. 3.8)
obarray, 537	implementation-dependent, 238 n
object(s), 218	in compiler, 595 (ex. 5.36)
benefits of modeling with, 225	in explicit-control evaluator, 553
with time-varying state, 219	in metacircular evaluator, 368 (ex
object-oriented programming	4.1)
languages, 200 n	in Scheme, 236 (ex. 3.8)

order of events	pairs, <i>341</i>
decoupling apparent from actual,	Pan, V. Y., 119 n
323	parallel-execute, 304
indeterminacy in concurrent	parallel-instruction-
systems, 298	sequences, 591
order of growth, 42–43	parallelism. See concurrency
linear iterative process, 43	parameter. See formal parameters
linear recursive process, 43	parameter passing. See call-by-name
logarithmic, 45	argument passing; call-by-need
tree-recursive process, 43	argument passing
order of subexpression evaluation.	parentheses
See order of evaluation	delimiting combination, 6
ordinary numbers (in generic	delimiting cond clauses, 18
arithmetic system), 189	in procedure definition, 13
or-gate, 274	parse, 422
or-gate, 277 (ex. 3.28), 278 (ex.	parse, 421-423
3.29)	parsing natural language, 420–426
origin-frame, 134	real language understanding vs. toy
Ostrowski, A. M., 119 n	parser, 426 n
outranked-by (rule), 449, 466 (ex.	partial-sums, 331 (ex. 3.55)
4.64)	Pascal, 11 n
D 1 211	lack of higher-order procedures,
P operation on semaphore, 311 n	351 n
package, 182	recursive procedures, 35
complex-number, 191	restrictions on compound data, 99 n
polar representation, 183	weakness in handling compound
polynomial, 204	objects, 296 n
rational-number, 190	Pascal, Blaise, 42 n
rectangular representation, 182	Pascal's triangle, 42 (ex. 1.12)
Scheme-number, 189	password-protected bank account,
painter(s), 127	225 (ex. 3.3)
higher-order operations, 132	pattern, 444–445
operations, 128	pattern-match, 474
represented as procedures, 136 transforming and combining, 138	pattern matching, 454
pair(s), 85	implementation, 473–475
axiomatic definition of, 91	unification vs., 459, 461 n
box-and-pointer notation for, 97	pattern variable, 444
infinite stream of, 338–343	representation of, 469, 484–486
lazy, 409–411	pc register, 517
mutable, 252–256	perform (in register machine), 499
procedural representation of,	simulating, 527
91–92, 260–261, 409	perform-action, 527
represented using vectors, 535–539	Perlis, Alan J., xv, 99 n
used to represent sequence, 99	quips, $7n$, $11n$
used to represent tree, 107–111	permutations of a set, 123 permutations, 124
pair? (primitive procedure), 109	Phillips, Hubert, 420 (ex. 4.42)
implemented with typed pointers,	1 mmps, 11uocit, 720 (cx. 7.72)
538	

π (pi)	rational functions, 211-216
approximation with half-interval	subtraction, 209 (ex. 2.88)
method, 68	pop, <i>517</i>
approximation with Monte Carlo	Portable Standard Lisp, 3 n
integration, 228 (ex. 3.5), 354 (ex.	porting a language, 607
3.82)	PowerPC, 315 n
Cesàro estimate for, 226, 352	power series, as stream, 332 (ex.
Leibniz's series for, 57 n, 335	3.59)
stream of approximations, 335–337	adding, 333 (ex. 3.60)
Wallis's formula for, 61 (ex. 1.31)	dividing, 334 (ex. 3.62)
pi-stream, 335	integrating, 332 (ex. 3.59)
pi-sum, 57	multiplying, 333 (ex. 3.60)
with higher-order procedures, 59	predicate, 18
with lambda, 62	of cond clause, 18
picture language, 126–141	of if, 19
Pingala, Áchárya, 46 n	naming convention for, 24 n
pipelining, 298 n	prefix code, 162
Pitman, Kent M., 3 n	prefix notation, 6
Planner, 416 n	infix notation vs., 151 (ex. 2.58)
point, represented as a pair, 89 (ex.	prepositions, 422
2.2)	preserving, 572, 574 (ex. 5.31),
pointer	590, 595 (ex. 5.37)
in box-and-pointer notation, 97	pretty-printing, 7
typed, 535	prime?, 50, 330
polar package, 183	prime-sum-pair,412
polar?, 176	prime-sum-pairs, 123
poly, 204	infinite stream, 338
polynomial package, 204	prime number(s), 50–53
polynomial(s), 202–216	cryptography and, 53 n
canonical form, 211	Eratosthenes's sieve for, 327
dense, 208	Fermat test for, 51–53
evaluating with Horner's rule, 119	infinite stream of (see primes)
(ex. 2.34)	Miller-Rabin test for, 56 (ex. 1.28)
hierarchy of types, 210–211	testing for, 50–56
indeterminate of, 202	primes (infinite stream), 327
sparse, 208	implicit definition, 330
univariate, 203	primitive-apply, 554
polynomial arithmetic, 202–216	primitive-implementation, 382
addition, 204–207	primitive-procedure?, 377, 382
division, 210 (ex. 2.91)	primitive-procedure-names, 382
Euclid's Algorithm, 212 n	<pre>primitive-procedure-objects,</pre>
greatest common divisor, 212-214,	382
216 n	primitive constraints, 286
interfaced to generic arithmetic	primitive expression, 4
system, 204	evaluation of, 10
multiplication, 204–207	name of primitive procedure, 5
probabilistic algorithm for GCD,	name of variable, 7
216 n	number, 5

primitive procedures (those marked	print-result, 561
ns are not in the IEEE Scheme	monitored-stack version, 563
standard)	print-stack-statistics
*, 5	operation in register machine, 530
+, 5	printing, primitives for, 86 n
-, 6, 18n	probabilistic algorithm, 52-53,
1,6	216 n, 327 n
<, 18	probe
=, 18	in constraint system, 292
>, 18	in digital-circuit simulator, 281
apply, 183 n	proc register, 548
atan, 174 n	procedural abstraction, 26
car, 85	procedural representation of data,
cdr, 85	91–93
cons, 85	mutable data, 260-261
cos, 69	procedure, 4
display, 86n	anonymous, 62
eq?, 144	arbitrary number of arguments, 6,
error(ns), 68n	104 (ex. 2.20)
eval (ns), 387	as argument, 57-61
list, 100	as black box, 26–27
log, 70 (ex. 1.36)	body of, 12
max, 94	compound, 12
min, 94	creating with define, 12
newline, $86 n$	creating with lambda, 62, 238, 240
not, 19	as data, 4
null?, 102	definition of, 12–13
number?, 147	first-class in Lisp, 77
pair?, 109	formal parameters of, 12
quotient, 332 (ex. 3.58)	as general method, 66–72
random (ns), 52, 229 n	generic, 166, 170
read, 383 n	higher-order (see higher-order
remainder, 45	procedure)
round, 201 n	implicit begin in body of, 221 n
runtime (ns), 54 (ex. 1.22)	mathematical function vs., 21–22
set-car!, 252	memoized, 272 (ex. 3.27)
set-cdr!, 252	monitored, 224 (ex. 3.2)
sin, 69	name of, 12
symbol?, 148	naming (with define), 12
vector-ref, 534	as pattern for local evolution of a
vector-set!, 534	process, 31
primitive query. See simple query	as returned value, 72–78
principle of least commitment, 175	returning multiple values, 521 n
print operation in register machine,	scope of formal parameters, 29
499	special form vs., 401 (ex. 4.26), 409
print-point, 90 (ex. 2.2)	procedure-body, 377
print-queue, 266 (ex. 3.21)	procedure-environment, 377
print-rat, 86	procedure-parameters, 377

procedure application	prompts, 383
combination denoting, 6	explicit-control evaluator, 561
environment model of, 241–244	lazy evaluator, 404
substitution model of (see	metacircular evaluator, 383
substitution model of procedure	nondeterministic evaluator, 435
application)	query interpreter, 468
process, 1	propagate, 281
iterative, 34	propagation of constraints, 285–296
linear iterative, 34	proving programs correct, 22 n
linear recursive, 34	pseudodivision of polynomials, 214
local evolution of, 31	pseudo-random sequence, 226 n
order of growth of, 42	pseudoremainder of polynomials,
recursive, 34	214
resources required by, 42	push, <i>517</i>
shape of, 34	put, 181, <i>271</i>
tree-recursive, 37–41	puzzles
product, 60 (ex. 1.31)	eight-queens puzzle, 124 (ex. 2.42).
as accumulation, 61 (ex. 1.32)	420 (ex. 4.44)
product?, 148	logic puzzles, 418–420
program, 1	Pythagorean triples
as abstract machine, 384	with nondeterministic programs,
comments in, 124 n	417 (ex. 4.35), 417 (ex. 4.36), 418
as data, 384-387	(ex. 4.37)
incremental development of, 8	with streams, 342 (ex. 3.69)
structure of, 8, 26, 29–31 (see also	- 464 470
abstraction barriers)	qeval, 461, 470
structured with subroutines, 386 n	quantum mechanics, 357 n
program counter, 517	quasiquote, 575 n
programming	queens, 125 (ex. 2.42)
data-directed (see data-directed	query, 441. <i>See also</i> simple query;
programming)	compound query
demand-driven, 323	query-driver-loop, 469
elements of, 4–5	query interpreter, 441
functional (see functional	adding rule or assertion, 462
programming)	compound query (see compound
imperative, 234	query)
odious style, 325 n	data base, 479–482
programming language, 1	driver loop, 462, 468–470
design of, 398	environment structure in, 490 (ex.
functional, 356	4.79)
logic, 440	frame, 454, 486
object-oriented, 200 n	improvements to, 467 (ex. 4.67),
strongly typed, 351 n	488 (ex. 4.76), 489 (ex. 4.77)
very high-level, 22 n	infinite loops, 464–465, 467 (ex.
Prolog, 416 n, 439 n	4.67)
prompt-for-input, 383	instantiation, 469–470
	Lisp interpreter vs., 460, 461, 489 (ex. 4.79)

overview, 453–462	Rabin, Michael O., 56 (ex. 1.28)
pattern matching, 454, 473-475	radicand, 23
pattern-variable representation,	Ramanujan, Srinivasa, 342 n
469, 484–486	Ramanujan numbers, 342 (ex. 3.71)
problems with not and	rand, 226
lisp-value, 465-466, 489 (ex.	with reset, 229 (ex. 3.6)
4.77)	random (primitive procedure), 52
query evaluator, 461, 470-473	assignment needed for, 220 n
rule (see rule)	MIT Scheme, 229 n
simple query (see simple query)	random-in-range, 229 (ex. 3.5)
stream operations, 482–483	random-numbers (infinite stream),
streams of frames, 454, 462 n	352
syntax of query language, 483–486	random-number generator, 220 n,
unification, 458–459, 477–479	225
query language, 440, 441–453	in Monte Carlo simulation, 226
abstraction in, 448	in primality testing, 51
compound query (see compound	with reset, 229 (ex. 3.6)
query)	with reset, stream version, 353 (ex
data base, 441–443	3.81)
equality testing in, 448 n	Raphael, Bertram, 439 n
extensions to, 467 (ex. 4.66), 488	rational package, 190
(ex. 4.75)	rational function, 211-216
logical deductions, 451–453	reducing to lowest terms, 214-216
mathematical logic vs., 462-468	rational number(s)
rule (see rule)	arithmetic operations on, 83-87
simple query (see simple query)	in MIT Scheme, 24 n
question mark, in predicate names,	printing, 86
24 n	reducing to lowest terms, 87, 89
queue, 261–266	represented as pairs, 86
double-ended, 266 (ex. 3.23)	rational-number arithmetic, 83–87
front of, 261	interfaced to generic arithmetic
operations on, 262	system, 190
procedural implementation of, 266	need for compound data, 80
(ex. 3.22)	Raymond, Eric, 399 n, 416 n
rear of, 261	RC circuit, 344 (ex. 3.73)
in simulation agenda, 283	read operation in register machine,
quotation, 142–145	498
of character strings, 143 n	read (primitive procedure), 383 n
of Lisp data objects, 143	dotted-tail notation handling by,
in natural language, 142	475
quotation mark, single vs. double,	macro characters, 485 n
143 n	reader macro character, 485 n
quote (special form), 143 n	read-eval-print loop, 7. See also
read and, $383 n$, $485 n$	driver loop
quoted?, 369	${\tt read-eval-print-loop}, 561$
quotient (primitive procedure), 332 (ex. 3.58)	

real-part	controller diagram, 494
data-directed, 184	data-path diagram, 493
polar representation, 174	data paths, 492–494
rectangular representation, 174	design of, 492–513
with tagged data, 177	language for describing, 494-499
real-part-polar, 177	monitoring performance, 530-533
real-part-rectangular, 176	simulator, 513–533
real number, 5 n	stack, 506-512
rear-ptr, 263	subroutine, 502-506
receive procedure, 521 n	test operation, 493
record, in a data base, 160	register-machine language
rectangle, representing, 90 (ex. 2.3)	assign, 497, 513
rectangular package, 182	branch, 496, 513
rectangular?, 176	const, 497, 512, 513
recursion, 9	entry point, 496
data-directed, 207	goto, 496, 513
expressing complicated process, 9	instructions, 496, 512
in rules, 449	label, 496
in working with trees, 108	label, 496, 513
recursion equations, 2	op, 497, 513
recursion theory, 386 n	perform, 499, 513
recursive procedure	reg, 497, 512
recursive procedure definition, 26	restore, 508, 513
recursive process vs., 35	save, 508, 513
specifying without define, 392	test, 496, 513
(ex. 4.21)	register-machine simulator, 513-533
recursive process, 34	registers-modified, 588
iterative process vs., 32–36, 243	registers-needed, 588
(ex. 3.9), 506, 594 (ex. 5.34)	register table, in simulator, 517
linear, 34, 43	relations, computing in terms of,
recursive procedure vs., 35	286, 438
register machine for, 506–512	relatively prime, 61 (ex. 1.33)
tree, 37–41, 43	relativity, theory of, 316
red-black tree, 158 n	release a mutex, 311
reducing to lowest terms, 87, 89,	remainder (primitive procedure), 45
214–216	remainder-terms, 213 (ex. 2.94)
Rees, Jonathan A., 374 n, 394 n	remainder modulo n , 51
referential transparency, 233	remove, 124
reg (in register machine), 497	remove-first-agenda-item!,
simulating, 527	280, 285
register(s), 491	require, 414
representing, 516	as a special form, 437 (ex. 4.54)
tracing, 532 (ex. 5.18)	reserved words, 598 (ex. 5.38), 603
register-exp, 528	(ex. 5.44)
register-exp-reg, 528	resistance
register machine, 491	formula for parallel resistors, 93, 96
actions, 498–499	tolerance of resistors, 93
controller, 492-494	resolution, Horn-clause, 439 n

resolution principle, 439 n	satisfy a compound query, 446-448
rest-exps, 371	satisfy a pattern (simple query), 445
rest-operands, 372	save (in register machine), 508, 529
rest-segments, 283	(ex. 5.11)
rest-terms, 205, 209	implementing, 538
restore (in register machine), 508,	simulating, 526
529 (ex. 5.11)	scale-list, 105, 106, 410
implementing, 538	scale-stream, 329
simulating, 527	scale-tree, 112
return (linkage descriptor), 571	scale-vect, 136 (ex. 2.46)
returning multiple values, 521 n	scan register, 542
Reuter, Andreas, 314 n	scan-out-defines, 390 (ex. 4.16)
reverse, 103 (ex. 2.18)	scanning out internal definitions, 389
as folding, 122 (ex. 2.39)	in compiler, 602 n, 603 (ex. 5.43)
rules, 468 (ex. 4.68)	Scheme, 3
Rhind Papyrus, 47 n	history of, 3 n
right-branch, 157, 165	scheme-number package, 189
right-split, 131	scheme-number->complex, 195
ripple-carry adder, 278 (ex. 3.30)	scheme-number->scheme-number,
Rivest, Ronald L., 53 n, 158 n	200 (ex. 2.81)
RLC circuit, 349 (ex. 3.80)	Scheme chip, 547, 548 (fig. 5.16)
Robinson, J. A., 439 n	Schmidt, Eric, 234 n
robustness, 141	scope of a variable, 28. See also
rock songs, 1950s, 168 (ex. 2.70)	lexical scoping
Rogers, William Barton, 127 n	internal define, 388
root register, 541	in let, 65
roots of equation. See half-interval	procedure's formal parameters, 29
method; Newton's method	search
rotate90, 139	of binary tree, 155
round (primitive procedure), 201 n	depth-first, 416
roundoff error, 5 n, 171 n	systematic, 415
Rozas, Guillermo Juan, 586 n	search, 67
RSA algorithm, 53 n	secretary, importance of, 443
rule (query language), 448-453	segment-queue, 283
applying, 460–461, 475–477, 490	segment-time, 283
(ex. 4.79)	segments, 283
without body, 449 n, 451, 473	segments->painter, 137
Runkle, John Daniel, 128 n	selector, 83
runtime (primitive procedure), 54	as abstraction barrier, 88
(ex. 1.22)	generic, 177, 179
Russian peasant method of	self-evaluating?, 369
multiplication, 47 n	self-evaluating expression, 364
_	semaphore, 311 n
same (rule), 448	of size n, 313 (ex. 3.47)
same-variable?, 148, 204	semicolon, 11 n
sameness and change	comment introduced by, 124 n
meaning of, 232–234	separator code, 162
shared data and, 257	=

sequence(s), 99	set-register-contents!, 514,
as conventional interface, 113-126	518
as source of modularity, 117	set-segments!, 283
operations on, 115–122	set-signal!, 276, 280
represented by pairs, 99	set-value!, 289, 294
sequence->exp, 372	set-variable-value!, 378, 379
sequence accelerator, 336	setup-environment, 381
sequence of expressions	shadow a binding, 237
in consequent of cond, 19 n	Shamir, Adi, 53 n
in procedure body, 12 n	shape of a process, 34
serialized-exchange, 309	shared data, 257-260
with deadlock avoidance, 314 (ex.	shared resources, 307-311
3.48)	shared state, 300
serializer, 304-307	shrink-to-upper-right, 138
implementing, 311–314	Shrobe, Howard E., 440 n
with multiple shared resources,	side-effect bug, 234 n
307–311	sieve of Eratosthenes, 327
series, summation of, 58	sieve, <i>327</i>
accelerating sequence of	\sum (sigma) notation, 58
approximations, 336	signal, digital, 273
with streams, 335	signal-error, 561
set, 151	signal-flow diagram, 114, 344 (fig.
data base as, 160	3.33)
operations on, 151–152	signal processing
permutations of, 123	smoothing a function, 78 (ex. 1.44)
represented as binary tree, 155–160	smoothing a signal, 345 (ex. 3.75),
represented as ordered list, 153-155	346 (ex. 3.76)
represented as unordered list,	stream model of, 343-346
152–153	zero crossings of a signal, 344 (ex.
subsets of, 113 (ex. 2.32)	3.74), 345 (ex. 3.75), 346 (ex.
set! (special form), 220. See also	3.76)
assignment	signal-processing view of
environment model of, 241 n	computation, 114
value of, $220 n$	simple-query, 470
set-car! (primitive procedure), 252	simple query, 443–446
implemented with vectors, 537	processing, 454, 455, 461, 470-471
procedural implementation of, 261	simplification of algebraic
value of, $252 n$	expressions, 149
set-cdr! (primitive procedure), 252	Simpson's Rule for numerical
implemented with vectors, 537	integration, 60 (ex. 1.29)
procedural implementation of, 261	simulation
value of, $252 n$	of digital circuit (see digital-circuit
set-contents!, 516	simulation)
set-current-time!, 283	event-driven, 273
set-front-ptr!, 263	as machine-design tool, 563
set-instruction-execution-	for monitoring performance of
proc!, 522	register machine, 530
set-rear-ptr!, 263	

Monte Carlo (see Monte Carlo	named let, 376 (ex. 4.8)
simulation)	or, <i>19</i>
of register machine (see	quote, 143 n
register-machine simulator)	set!, 220
sin (primitive procedure), 69	split, 134 (ex. 2.45)
sine	sqrt, 24
approximation for small angle, 44	block structured, 30
(ex. 1.15)	in environment model, 249-250
power series for, 332 (ex. 3.59)	as fixed point, 70, 73, 75, 76
singleton-stream, 483	as iterative improvement, 78 (ex.
SKETCHPAD, 286 n	1.46)
smallest-divisor, 50	with Newton's method, 75, 76
more efficient version, 54 (ex. 1.23)	register machine for, 502 (ex. 5.3)
Smalltalk, 286 n	as stream limit, 338 (ex. 3.64)
smoothing a function, 78 (ex. 1.44)	sqrt-stream, 335
smoothing a signal, 345 (ex. 3.75),	square, 12
346 (ex. 3.76)	in environment model, 238-240
snarf, 399 n	square-limit, 132, 134
Solar System's chaotic dynamics, 3 n	square-of-four, 132
Solomonoff, Ray, 226 n	squarer (constraint), 295 (ex. 3.34),
solve differential equation, 347, 348	295 (ex. 3.35)
lazy-list version, 411	square root, 22–24. See also sqrt
with scanned-out definitions, 391	stream of approximations, 334
(ex. 4.18)	squash-inwards, 139
solving equation. See half-interval	stack, 35 n
method; Newton's method; solve	framed, 550 n
source language, 567	for recursion in register machine,
source program, 567	506–512
Spafford, Eugene H., 607 n	representing, 516, 538
sparse polynomial, 208	stack allocation and tail recursion,
special form, 11	586 n
as derived expression in evaluator,	stack-inst-reg-name, 527
372	Stallman, Richard M., 286 n, 416 n
need for, 25 (ex. 1.6)	start register machine, 514, 518
procedure vs., 401 (ex. 4.26), 409	start-eceval, 605 n
special forms (those marked ns are	start-segment, 89 (ex. 2.2), 137
not in the IEEE Scheme standard)	(ex. 2.48)
and, 19	state
begin, 220	local (see local state)
cond, <i>17</i>	shared, 300
cons-stream(ns), 321	vanishes in stream formulation, 355
define, 7, 12	statements. See instruction sequence
delay (<i>ns</i>), 320	statements, 588
if, 19	state variable, 34, 218
lambda, 62	local, 219–225
let, <i>64</i>	Steele, Guy Lewis Jr., $3n$, $36n$,
let*, 375 (ex. 4.7)	235 n, 286 n, 399 n, 416 n
letrec, 391 (ex. 4.20)	

stop-and-copy garbage collector, 540–546	success continuation (nondeterministic evaluator), 427,
Stoy, Joseph E., 15 n, 47 n, 393 n	429
Strachey, Christopher, 76 n	successive squaring, 45
stratified design, 140	sum, 58
stream(s), 218, 316-357	as accumulation, 61 (ex. 1.32)
delayed evaluation and, 346-350	iterative version, 60 (ex. 1.30)
empty, 319	sum?, 148
implemented as delayed lists,	sum-cubes, 57
317–321	with higher-order procedures, 59
implemented as lazy lists, 409-411	sum-integers, 57
implicit definition, 328–330	with higher-order procedures, 59
infinite (see infinite streams)	sum-odd-squares, 113, 117
used in query interpreter, 454, 462 n	sum-of-squares, 13
stream-append, 340	in environment model, 241-243
stream-append-delayed, 482	sum-primes, 318
stream-car, 319, 321	summation of a series, 58
stream-cdr, 319, 321	with streams, 335
stream-enumerate-interval, 321	supertype, 197
stream-filter, 322	multiple, 199
stream-flatmap, 483, 487 (ex.	Sussman, Gerald Jay, 3 n, 36 n,
4.74)	286 n, 416 n
stream-for-each, 320	Sussman, Julie Esther Mazel, nieces
stream-limit, 338 (ex. 3.64)	of, 142
stream-map, 320	Sutherland, Ivan, 286 n
with multiple arguments, 325 (ex.	symbol(s), 142
3.50)	equality of, 144
stream-null?, 319	interning, 537
in MIT Scheme, 319 n	quotation of, 143
stream-ref, 319	representation of, 536
stream-withdraw, 355	uniqueness of, 257 n
strict, 400	symbol? (primitive procedure), 148
string. See character string	data types and, 193 (ex. 2.78)
strongly typed language, 351 n	implemented with typed pointers,
sub (generic), 189	538
sub-complex, 173	symbol-leaf, 165
sub-interval, 95 (ex. 2.8)	symbolic algebra, 202–216
sub-rat, <i>84</i>	symbolic differentiation, 145–151,
sub-vect, 136 (ex. 2.46)	184 (ex. 2.73)
subroutine in register machine,	symbolic expression, 82. See also
502-506	symbol(s)
subsets of a set, 113 (ex. 2.32)	symbols, 165
substitution model of procedure	SYNC, 315 n
application, 13-17, 236	synchronization. See concurrency
inadequacy of, 230-231	syntactic analysis, separated from
shape of process, 33–35	execution
subtype, 197	in metacircular evaluator, 393-398
multiple, 199	in register-machine simulator, 520, 525

syntactic sugar, 11 n	tangent
define, 370	as continued fraction, 72 (ex. 1.39)
let as, 65	power series for, 334 (ex. 3.62)
looping constructs as, 36	target register, 571
procedure vs. data as, 279 n	Technological University of
syntax. See also special forms	Eindhoven, 311 n
abstract (see abstract syntax)	Teitelman, Warren, 3 n
of expressions, describing, 12 n	terminal node of a tree, 9
of a programming language, 11	term list of polynomial, 204
syntax interface, 279 n	representing, 207–209
systematic search, 415	term-list, 204
,	test (in register machine), 496
#t, 18 n	simulating, 525
table, 266-273	test-and-set!, 312, 313 n
backbone of, 267	test-condition, 525
for coercion, 195	test operation in register machine,
for data-directed programming, 181	493
local, 270–271	text-of-quotation, 369
<i>n</i> -dimensional, 272 (ex. 3.25)	Thatcher, James W., 91 n
one-dimensional, 267–268	the-cars
operation-and-type (see	register, 537, 542
operation-and-type table)	vector, 535
represented as binary tree vs.	the-cdrs
unordered list, 272 (ex. 3.26)	register, 537, 542
testing equality of keys, 272 (ex.	vector, 535
3.24)	the-empty-stream, 319
two-dimensional, 268-270	in MIT Scheme, 319 n
used in simulation agenda, 283	the-empty-termlist, 205, 209
used to store computed values, 272	the-global-environment, 381,
(ex. 3.27)	561 n
tableau, 337	THE Multiprogramming System,
tabulation, 41 n, 272 (ex. 3.27)	311 n
tack-on-instruction-sequence,	theorem proving (automatic), $438 n$
590	$\theta(f(n))$ (theta of $f(n)$), 43
tagged-list?, 369	thunk, $401-402$
tagged architecture, 535 n	
tagged data, 175–179, 535 n	call-by-name, 324 n
tail recursion, 35	call-by-need, 324 n forcing, 401
compiler and, 586	
environment model of evaluation	implementation of, 404–406
and, 244 n	origin of name, 401 n
explicit-control evaluator and,	time
556–558, 564 (ex. 5.26), 565 (ex.	assignment and, 297 communication and, 316
5.28)	
garbage collection and, 586 n	in concurrent systems, 298–303
metacircular evaluator and, 556	functional programming and, 354–357
in Scheme, 36 n	
tail-recursive evaluator, 556	in nondeterministic computing,
mir roombiro oranamon, 550	413, 415
	purpose of, 298 n

timed-prime-test, 54 (ex. 1.22)	lowering, 198, 201 (ex. 2.85)
time segment, in agenda, 283	multiple subtype and supertype,
time slicing, 313	199
timing diagram, 301 (fig. 3.29)	raising, 198, 201 (ex. 2.83)
TK!Solver, 286 n	subtype, 197
tower of types, 197 (fig. 2.25)	supertype, 197
tracing	tower of, 197 (fig. 2.25)
instruction execution, 532 (ex.	typed pointer, 535
5.16)	type field, 535 n
register assignment, 532 (ex. 5.18)	type-inferencing mechanism, 351 n
transform-painter, 138	type tag, 170, 175
transparency, referential, 233	two-level, 192
transpose a matrix, 121 (ex. 2.37)	type-tag, <i>176</i>
tree	using Scheme data types, 193 (ex.
binary, 155 (see also binary tree)	2.78)
B-tree, 158 n	typing input expressions, 7 n
combination viewed as, 9	
counting leaves of, 108	unbound variable, 237
enumerating leaves of, 116	unev register, 548
fringe of, 111 (ex. 2.28)	unification, 458–459
Huffman, 162	discovery of algorithm, 439 n
lazy, 410 n	implementation, 477–479
mapping over, 112–113	pattern matching vs., 459, 461 n
red-black, 158 n	unify-match, 477
represented as pairs, 107-111	union-set, 152
reversing at all levels, 110 (ex.	binary-tree representation, 160 (ex.
2.27)	2.65)
tree->list, 158 (ex. 2.63)	ordered-list representation, 155 (ex
tree-map, 113 (ex. 2.31)	2.62)
tree accumulation, 10	unordered-list representation, 153
tree-recursive process, 37–41	(ex. 2.59)
order of growth, 43	unique (query language), 488 (ex.
trigonometric relations, 174	4.75)
true, 18 n	unique-pairs, 124 (ex. 2.40)
true, 18 n	unit square, 134
true?, 377	univariate polynomial, 203
truncation error, 5 n	universal machine, 386
truth maintenance, 416 n	explicit-control evaluator as, 566
try-again, 416	general-purpose computer as, 566
Turing, Alan M., 386 n, 387 n	University of California at Berkeley,
Turing machine, 386 n	3 n
Turner, David, 122 n, 340 n, 356 n	University of Edinburgh, 439 n
type(s)	University of Marseille, 439 n
cross-type operations, 194	UNIX, 565 n, 607 n
dispatching on, 179	unknown-expression-type, 561
hierarchy in symbolic algebra,	unknown-procedure-type, 561
210–211	unordered-list representation of sets
hierarchy of, 197–202	152–153

unspecified values	Wadler, Philip, 234 n
define, 8 n	Wadsworth, Christopher, 351 n
display, $86n$	Wagner, Eric G., 91 n
if without alternative, 284 n	Walker, Francis Amasa, 128 n
newline, 86 n	Wallis, John, 61 n
set!, 220 n	Wand, Mitchell, 361 n, 552 n
set-car!, 252 n	Waters, Richard C., 118 n
set-cdr!, 252 n	weight, 165
up-split, 132 (ex. 2.44)	weight-leaf, 165
update-insts!, 522	Weyl, Hermann, 79
upper-bound, 94 (ex. 2.7)	"what is" vs. "how to" description.
upward compatibility, 408 (ex. 4.31)	See declarative vs. imperative
user-initial-environment (MIT	knowledge
Scheme), 387 n	wheel (rule), 449, 467 (ex. 4.65)
user-print, 383	width, 95
modified for compiled code, $605 n$	width of an interval, 95 (ex. 2.9)
modified for complied code, 003 n	Wilde, Oscar (Perlis's paraphrase of)
V operation on semaphore, 311 n	7 n
val register, 548	Wiles, Andrew, 51 n
value	Winograd, Terry, 416 n
of a combination, 6	Winston, Patrick Henry, 416 n, 426 n
of an expression, 7 n (see also	wire, in digital circuit, 273
unspecified values)	Wisdom, Jack, 3 n
value-proc, 524	Wise, David S., 324 n
variable, 7. See also local variable	wishful thinking, 84, 146
bound, 28	withdraw, 220
free, 28	problems in concurrent system, 299
scope of, 28 (see also scope of a	without-interrupts, 313 n
variable)	world line of a particle, $317 n$, $355 n$
unbound, 237	Wright, E. M., 330 n
value of, 7, 237	Wright, Jesse B., 91 n
variable, 204	Wilght, Jesse B., 71 n
variable?, 148, 369	xcor-vect, 136 (ex. 2.46)
variable-length code, 161	Xerox Palo Alto Research Center,
vector (data structure), 534	3 n, 286 n
vector (mathematical)	- ·· , · ·
operations on, 120 (ex. 2.37), 136	Y operator, 393 n
(ex. 2.46)	ycor-vect, 136 (ex. 2.46)
in picture-language frame, 134	Yochelson, Jerome C., 541 n
represented as pair, 136 (ex. 2.46)	
represented as sequence, 120 (ex.	Zabih, Ramin, 416 n
2.37)	zero crossings of a signal, 344 (ex.
vector-ref (primitive procedure),	3.74), 345 (ex. 3.75), 346 (ex.
534	3.76)
vector-set! (primitive procedure),	zero test (generic), 193 (ex. 2.80)
534	for polynomials, 209 (ex. 2.87)
Venus, 142 n	Zetalisp, 3 n
verbs, 421	Zilles, Stephen N., 91 n
very high-level language, 22 n	Zippel, Richard E., 216 n