

AMENDMENTS TO THE CLAIMS

1. (Previously presented) Organic electroluminescent device comprising cathode and anode and at least one emission layer, characterised in that the emission layer
 - comprises at least one matrix material A, which comprises at least one compound of the formula (A)

Formula (A)

wherein

X is on each occurrence P, As, Sb or Bi;

Ar is on each occurrence, identically or differently, ~~an aromatic or heteroaromatic ring system having 3 to 60 C atoms, is phenyl, biphenyl, naphthyl, anthryl, phenanthrenyl, pyranyl, fluorenyl, spirobifluorenyl, dihydrophenanthrenyl, tetrahydropyrenyl or a combination of 2 or 3 of these systems and which may be substituted by F or organic radicals having 1 to 40 C atoms;~~

- comprises at least one emission-capable emission material B which emits light on suitable excitation from the triplet state and comprises at least one element having an atomic number of greater than 20.

2. (Canceled)

3. (Canceled)

4. (Canceled)

5. (Canceled)

6. (Canceled)
7. (Canceled).
8. (Canceled)
9. (Canceled)
10. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the triplet energy of the matrix material A is between 2 and 4 eV.
11. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the triplet energy of the matrix material A is greater than the triplet energy of the triplet emitter B used.
12. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the matrix material A is amorphous.
13. (Original) Organic electroluminescent device according to Claim 12, characterised in that the matrix material A has a glass transition temperature T_g of greater than 90°C.
14. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the matrix materials A are uncharged compounds.
15. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the LUMO of the matrix material A is higher than the HOMO of the triplet emitter B and that the LUMO of the triplet emitter B is higher than the HOMO of the matrix material A.
16. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the HOMO of the compound having the less negative HOMO in the emission layer is in the region of ± 0.5 eV of the HOMO of the layer adjacent to the emission layer on the anode side.

17. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the LUMO of the compound having the more negative LUMO in the emission layer is in the region of ± 0.5 eV of the LUMO of the layer adjacent to the emission layer on the cathode side.
18. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the dipole moment of the molecular fragment around the element having an atomic number ≥ 15 is other than zero.
19. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the matrix materials A are discrete molecular or coordinative compounds which also form discrete structures in the solid state.
20. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the matrix material A used is a compound which can itself also emit light from the triplet state.
21. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the layers of matrix material A and triplet emitter B are applied to a substrate by vacuum vapour deposition, vapour deposition in a stream of carrier gas or from solution by spin coating or by means of printing processes.
22. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the triplet emitter B comprises at least one atom having an atomic number of greater than 38 and less than 84.
23. (Original) Organic electroluminescent device according to Claim 22, characterised in that the triplet emitter comprises at least one of the elements molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium.
24. (Previously presented) Organic electroluminescent device according to Claim 22, characterised in that a mixture of at least two triplet emitters B is used.

25. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the emission layer comprises 1 to 99% by weight of one or more matrix compounds A and 99 to 1% by weight of one or more emitters B, based on the total composition of the emission layer.
26. (Original) Organic electroluminescent device according to Claim 25, characterised in that the emission layer comprises 80 to 93% by weight of one or more matrix compounds A and 20 to 7% by weight of one or more emitters B, based on the total composition of the emission layer.
27. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that further layers are present in addition to the cathode, the anode and the emitter layer.
28. (Original) Organic electroluminescent device according to Claim 27, characterised in that at least one hole-injection layer, which may also be doped, and/or at least one hole-transport layer, which may also be doped, and/or at least one hole-blocking layer and/or at least one electron-transport layer, which may also be doped, and/or at least one electron-injection layer, which may also be doped, is present.
29. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the emission layer is directly adjacent to the electron-transport layer without the use of a hole-blocking layer or in that it is directly adjacent to the electron-injection layer or the cathode without the use of a hole-blocking layer and electron-transport layer.
30. (Previously presented) Organic electroluminescent device according to claim 1, characterised in that the emission layer is directly adjacent to the hole-injection layer without the use of a hole-transport layer or in that it is directly adjacent to the anode without the use of a hole-transport layer and a hole-injection layer.
31. (Currently Amended) Organic electroluminescent element according to ~~Claim 6~~ Claim 1, wherein

X is on each occurrence P or As; and

~~Y is on each occurrence S or Se;~~

Ar is on each occurrence, identically or differently, an aromatic or heteroaromatic ring system having 3 to 60 C atoms, which may be substituted by F or aromatic ring system having 6 to 40 C atoms.

32. (New) An organic electroluminescent device which consists essentially of a cathode, an anode and at least one emission layer, wherein the emission layer

- consists essentially of at least one matrix material A, which consists essentially of at least one compound of the formula (A)

Formula (A)

wherein

X is on each occurrence P, As, Sb or Bi;

Ar is on each occurrence, identically or differently, is phenyl, biphenyl, naphthyl, anthryl, phenanthrenyl, pyranyl, fluorenyl, spirobifluorenyl, dihydrophenanthrenyl, tetrahydropyrenyl or a combination of 2 or 3 of these systems and which may be substituted by F or organic radicals having 1 to 40 C atoms;

- consisting essentially of at least one emission-capable emission material B which emits light on suitable excitation from the triplet state and comprises at least one element having an atomic number of greater than 20.