joint, marginal and conditional distributions

Contingency table based on relative frequencies

example

Suppose we are interested in the relationship between an individual's hair (X) and eye (Y) color.

X

P(X, Y)	blonde	red	brown	black	\sum
blue	0.12	0.05	0.12	0.01	0.30
green	0.12	0.07	0.09	0	0.28
brown	0.16	0.07	0.16	0.03	0.42
\sum	0.40	0.19	0.37	0.04	1.00

Bernouli random variable

- $P(X = x \mid p) = \begin{cases} p, & \text{if } x = 1\\ 1 p, & \text{if } x = 0 \end{cases}$
- A random variable for modeling binary events
- Two possible outcomes:
 - Success value 1
 - Failure value 0
- Single parameter p, probability of a success
- multiple Bernoulli r.v. can be combined to model more complex random variables
- Shorthand notation: $X \sim \text{Bern}(p)$
- E(X) = p, V(X) = p(1 p)

$$\begin{array}{|c|c|c|}\hline X & P(X=x) \\ \hline 0 & 1-p \\ 1 & p \\ \hline \end{array}$$