CPM calculation: A project consists of: Duration Activity Predections Draw NIW Diagram D, E Determine the farliest Start (ES) Earliest Finish (EF), Latest Start (LS), Later Firsh (LF) for each activity iii) Identify critical path of total project duration Ans;-N/w diagram: NIW diagram . Earliest Start = maximum EF of predecesors Noden: Esta Earliest Finish = Earliest start + Duro

Mode A: Es(A)=0 - Pt's zero b(Z A's EF(A) = ES(A) + time duran = 0+3=3 Hode B = ES(B) = EF(A) EF(B) = ES(B)+ durati -3+4 Node C: ES(C) = EF(A) -> EF(A) because A is prodecessor of C EF(c) = ES(c) + time durate =3+2Node D: Node Dis having B&C ou predecessors $ES(D) = max \{EF(B) \text{ or } EF(C)\}$ = max{7 or 5} = 7 EF(D) = ES(D) + duration=745 =12 Node E: EFES(E) = EF(C) > Cisque (esso) OFE ES(E) = 5 EF(E) = ES(E) + durato Node F: Fis having DJE as predecessors so, Es(F) = max { EF(D) or EF(E)} $= max \{120x8\}$ EF(F) = 12+6 -18

					DATE //	
	Forward	Paus Table	e (Earliest	Start & Ec	arliest Film	5X)=
	Activity	Durgtys	Predeceim	ES	EF	1.
	A	3	_	0	3	
	В	4	Α	3	7	
	C	2	A	3	5	
	D	5	B,C	7	12	
	E	3	C	5	8	
	F	.6	DIE "	12	18	
*			st Start (Bau inimu Ls o			
adrite						
Latest Start: LF-Duration						
In Backward Pass we will start with last						
	Node i.e					
			e final adi	rty.		
	50,	LF(E) =				A
	150	= 1	(8			7
	LS	= LF(F = 18-6				
		=12		161	2 2	
Node :- Eis having & as successor.						
N	ode D:	- Dis hai	ving & as s	11(00100)		
	50, LF	(E) = LS(F)	- CE308		
-10						
LS(E)=12-dural?						
		= 12-3				
No	de 10'.		ng Fas sy	CLESCOX		-
	LF	=(D)=LS(1)	F)			
		=12	10			
	LS	(D)= LF(D) - duram		-	
= 12-5						
=7						

Node 'c': C's having DJE as successor : LF(C)= min } LS(E) or LS(D) } = min { 9 or 7] 二子 LS(c)= 7-2 Node B':- Bis having Das & successor : LF(B) = LS(D) =7 LS(8) = LF(B) = durat =7-4 Node 'A):- A is having B&C as predecessors LF(A) = min { Ls(B) or LS(C) } =min { 3 0x 5} -3LS(A)= 3-3 = 0. Backward Paus Table BALL Dyration Predecessor Activity (Days) #3 t=0 12 B^{1} 12 12

(ii) Critical Path: Identification: The NIW
Critical Path: Longest path in the NIW Path 1: 3+4+5+6=18 days Path 2; A>C >D>F 3+2+5+6 = 16 days Path 3:-A>C>E>F 3+2+3+6=12days. SO, A->B->D->F is the critical path with possible duration of 18 days. confical path shown in Bold ling Total Project Durat? 18 days (Determined by critical parn: A->84 # Float calculation CPM: float or stack is the amount of time by which activity gets delayed with afterny project time dyration.

Gast Chart:
EATE //

FAGE NO

EATE // Activity Total slack/float Activities A, B, D&F have o slad which means they are critical. Activities C JE have float (slack) of 2\$

Adays, which means they can be delayed

by up to 2 days or 4 days without affecting

the total project duration