Algoritmo de Criptografia Assimétrica RSA

Prof. Martín Vigil

UFSC

March 17, 2019

Números Inteiros

$$\quad \blacksquare \ \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

Divisão entre inteiros

- ▶ Sejam $a, b, m, r \in \mathbb{Z}$
- ▶ a/b = mb + r, onde $b \neq 0$ e $0 \leq r < b$

Divisibilidade

- ▶ Diz-se que **b divide a** ou que **b é um divisor de a** se a = mb, onde $a, b, m \in \mathbb{Z}$ e $b \neq 0$
- ▶ Exemplo: 2|4, ou seja, 2 é divisor de 4 pois 4 = 2 *2
- Exemplo: 2 ∤ 3, ou seja, 2 não é divisor de 3

Máximo divisor comum

- ▶ Para $a, b \in \mathbb{Z}$, o máximo divisor comum gcd(a, b) é o maior inteiro c que divide a e b
- Exemplo: gcd(8, 12) = 4
- Exemplos: gcd(6, 12) = 6
- Exemplos: gcd(5, 12) = 1

Número primo

- ▶ Para $p \in \mathbb{Z}_{>1}$, dizemos que p é primo se seus divisores são $\{1,p\}$
- Exemplos: p = 2, 3, 5, 7, 11, ...
- ▶ Seja p primo e $a \neq p$ um inteiro, então gcd(a, p) = 1

Números relativamente primos

• Os inteiros a e b são relativamente primos se gcd(a, b) = 1

Totiente de Euler: $\phi(n)$

- $\phi(n)$ é a quantidade de inteiros menores que n e relativamente primos a n
- Exemplo: $\phi(12) = |\{1, 5, 7, 11\}| = 4$
- lacktriangle Sejam p e q primos, então $\phi(pq)=(p-1)(q-1)$

Módulo: resto da divisão

- ▶ Sejam $a \in \mathbb{Z}$ e $n \in \mathbb{Z}_{>0}$
- ▶ Define-se a mod n como o resto da divisão a/b
- ► Exemplo: 11 mod 7 = 4

Esquema de cript. assimétrica: cifrador e decifrador

Ron Rivest, Adi Shamir e Len Adleman

Blocos com valores binários menores que **n** Tamanho do Bloco é k bits, onde $2^k < \mathbf{n} \le 2^{k+1}$

```
\begin{aligned} & \textbf{Texto} \\ & \textbf{Cifrado} \\ & & C = M^e \ mod \ n \\ & & M = C^d \ mod \ n = (M^e)^d \ mod \ n = M^{ed} \ mod \ n \\ & & \textbf{Texto} \\ & \textbf{Plano} \end{aligned}
```

$$KU = \{e,n\}$$

$$KR = \{d,n\}$$

Requisitos do Algoritmo

- É possível encontrar e, d, n tal que $M^{ed} = M \mod n$ para todo M < n
- É relativamente fácil calcular M^e e C^d para todos os valores de M < n
- É improvável determinar d dado e, n

Detalhes Matemáticos

```
Dados p e q primos,

n e m inteiros tal que n = pq, 0 < m < n

e um k arbitrário
```

$$m^{k\phi(n)+1} = m^{k(p-1)(q-1)+1} \equiv m \mod n$$
 (Eq. 7.8 - Corolário do Teor. Euler)

φ(n) é a função totiente de Euler
Número de Inteiros Positivos menor
do que n e relativamente primos a n

 $\bullet \varphi(pq) = (p-1)(q-1)$

```
M^{ed} = M \mod n

ed = k \phi(n) + 1

ed = 1 \mod \phi(n)

d = e^{-1} \mod \phi(n)
```

Relativamente primos a $\phi(n)$

Geração da Chave

Selecione **p**, **q p** e **q** primos

Calcular $\mathbf{n} = \mathbf{p} \times \mathbf{q}$

Calcular $\phi(n) = (p-1)(q-1)$

Selectionar e inteiro $gcd(\phi(n),e) = 1; 1 < e < \phi(n)$

Calcular **d** $\mathbf{d} = \mathbf{e}^{-1} \mod \phi(\mathbf{n})$

Chave Pública KU={e,n}
Chave Privada KR={d,n}

Algoritmo RSA

Cifrar

Texto Plano: M < n

Texto Cifrado: $C = M^e \pmod{n}$

Decifrar

Texto Plano:

Texto Cifrado: $M = C^d \pmod{n}$

Prof. Ricardo Felipe Custódio, D.Sc. INE-CTC-UFSC

Exemplo

- Selecionar dois números primos: p = 7 e q = 17
- Calcular $n = pq = 7 \times 17 = 119$
- Calcular $\phi(n) = (p-1)(q-1) = 96$
- Selecionar e tal que e é relativamente primo a φ(n) e menor que φ(n); e = 5
- Determinar d tal que de = $1 \mod 96$ e d < 96; d = 77, pois $77 \times 5 = 385 = 4 \times 96 + 1$
- $KU = \{5,119\}$ e $KR = \{77,119\}$

Continuação do Exemplo

Prof. Ricardo Felipe Custódio, D.Sc. INE-CTC-UFSC

Aspectos Computacionais E/D

 $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$

Seja
$$\mathbf{m} = \mathbf{b}_{k} \mathbf{b}_{k-1} ... \mathbf{b}_{0}$$

$$m = \sum_{b_i \neq 0} 2^i$$

$$a^m = a^{\sum_{b_i \neq 0}^{\sum_{i=0}^{2^i}}} = \prod_{b_i \neq 0} a^{2^i}$$

$$a^m \bmod n = \left[\prod_{b_i \neq 0} a^{2^i} \right] \bmod n = \prod_{b_i \neq 0} a^{2^i} \bmod n$$

```
d = a^b \mod n
```

```
d = 1

para i = k passo -1 até 0 faça

d = (d x d) \mod n

se b_i = 1 então

d = (d x a) \mod n

fim se

fim para
retorna d
```

[CORM 90]

Aspectos Computacionais Chaves

- Determinar dois primos **p** e **q**
 - n = pq 'e conhecido
 - r randômico ($\approx 2^{200} \rightarrow \text{tentativas} = \ln(2^{200})/2 = 70$
 - a < r randômico
 - Testa r para primalidade
 - Se r passa em vários testes, aceita-se r
- Selecionar e ou d e calcular o outro
 - Algoritmo Extendido de Euclides

Segurança do RSA

- Força Bruta
- Ataques Matemáticos
 - Fatorar Números Primos
 - Determinar $\phi(n)$ diretamente
 - Determinar d diretamente
- Ataques temporais

Fatoração

Número de dígitos Dec.	Aproximado de bits	Data N	IIPS - Ano	Algoritmo
100	332	04/1991	7	sieve quadrático
110	365	04/1992	75	sieve quadrático
120	398	06/1993	830	sieve quadrático
129	428	04/1994	5000	sieve quadrático
130	431	04/1996	500	No. de campo
				sieve generalizado

Pentium 200 MHz = 50 MIPS

MIPS ano para fatorar

Prof. Ricardo Felipe Custódio, D.Sc. INE-CTC-UFSC