Machine Failure Prediction – Model Training & Deployment

1. Project Overview

This project focuses on predicting machine failures based on sensor data using **XGBoost**. The model is trained on an industrial dataset containing attributes such as **air temperature**, **process temperature**, **rotational speed**, **torque**, **and tool wear**. The final deployment is done using **Streamlit**, allowing users to input machine parameters and receive failure predictions.

2. Dataset Details

The dataset contains various sensor readings from industrial machines. Key features include:

- Air Temperature (°C) Ambient temperature around the machine
- Process Temperature (°C) Internal machine temperature
- Rotational Speed (rpm) Speed at which the machine operates
- Torque (Nm) Rotational force applied
- Tool Wear (min) Duration of tool usage
- Failure Conditions (Binary Flags):
 - TWF: Tool wear failure
 - o **HDF**: Heat dissipation failure
 - o **PWF**: Power failure
 - OSF: Overstrain failure
 - o RNF: Random failure
- Type: Machine type (e.g., L, M, H)

The target variable is **Machine Failure** (0 = No Failure, 1 = Failure).

3. Data Preprocessing & Feature Engineering

To enhance model performance, we applied:

- 1. Handling Missing Values: Checked for missing data and imputed values if required.
- 2. **Feature Engineering**: Created new features:
 - o **Temperature Difference** = Process Temperature Air Temperature
 - Power Consumption = Torque × Rotational Speed
 - Tool Wear Interaction = Tool Wear × Rotational Speed

3. Encoding Categorical Variables:

 Used one-hot encoding for the "Type" feature to convert categorical values into numeric form.

4. Scaling:

Applied StandardScaler to normalize numerical features.

5. Handling Class Imbalance:

 Used SMOTE (Synthetic Minority Over-sampling Technique) to balance the dataset since failure cases were rare.

4. Model Training & Hyperparameter Tuning

Trained multiple models and selected **XGBoost** as the final model. Key steps included:

1. Splitting the Data:

Divided data into training (80%) and testing (20%) sets.

2. Hyperparameter Tuning:

Optimized max_depth, learning_rate, n_estimators, etc., using GridSearchCV.

3. Performance Evaluation:

Used Accuracy, Precision, Recall, and F1-score to evaluate model effectiveness.

Final Model Performance on Test Data:

• Accuracy: 92.5%

• Precision: **89.3**%

Recall: 90.1%

• F1-score: 89.7%

5. Model Deployment Using Streamlit

The trained XGBoost model was deployed as a **web application** using Streamlit. Users can input machine parameters and receive real-time failure predictions.

Steps in Streamlit Application:

1. User Inputs Machine Data:

 Users enter values for air temperature, process temperature, rotational speed, torque, and tool wear using sliders or text fields.

2. Feature Engineering & Preprocessing:

- The application calculates temperature difference, power consumption, and tool wear interaction.
- Categorical encoding is applied.
- o The model scales features before prediction.

3. Failure Prediction Output:

 The trained XGBoost model predicts whether a machine will fail (Failure or No Failure).

4. User-friendly Interface:

• The app provides a **visual representation** of the input values along with the prediction.

6. Sample Outputs from the Streamlit App

Example 1: No Failure Case

Input:

Feature	Input Value
Air Temperature [K]	302.40
Process Temperature [K]	311.00
Rotational Speed [rpm]	1338
Torque [Nm]	67.60
Tool Wear [min]	9
TWF (Tool Wear Failure)	0
HDF (Heat Dissiation Failure)	0
PWF (Power Failure)	0
OSF (Overstrain Failure)	0
RNF (Random Failure)	0
Туре	Type_L
Prediction	Machine Failure (1)
Probability	0.91

7. Conclusion & Future Enhancements

The **XGBoost-powered failure prediction system** effectively identifies potential machine failures based on sensor readings. It can be extended by:

- ✓ Integrating Real-time Sensor Data Instead of manual inputs, connect the model to IoT sensors.
- ✓ Adding Predictive Maintenance Insights Suggest maintenance schedules based on failure probability.
- **☑ Deploying on Cloud** Make the app accessible via **AWS, Azure, or Google Cloud** for wider usability.

8. Technologies Used

- Python (pandas, numpy, scikit-learn, XGBoost)
- Machine Learning (SMOTE, Hyperparameter Tuning)
- Streamlit (for deployment)
- Pickle (for saving and loading the model)