

经典的数学规划问题(上)

例1 自来水输送

运输问题

生产、生活物资从若干供应点运送到一些需求点, 怎样安排输送方案使运费最小,或利润最大; 各种类型的货物装箱,由于受体积、重量等限制, 如何搭配装载,使获利最高,或装箱数量最少。

自来水输送

吨

收入: 900元/千吨

支出: 引水管理费

其他费用:450元/千吨

元/千吨	甲	Z	丙	丁
\mathbf{A}	160	130	220	170
В	140	130	190	150
C	190	200	230	/

- 应如何分配水库供水量,公司才能获利最多?
- •若水库供水量都提高一倍,公司利润可增加到多少?

问题分析

总供水量: 160 < 总需求量: 120+180=300

收入: 900元/千吨 总收入900×160=144,000(元)

支出: 引水管理费

其他费用: 450元/千吨 其他支出450×160=72,000(元)

确定送水方案使利润最大 📛 使引水管理费最小

模型建立 确定3个水库向4个小区的供水量

决策变量 水库i 向j 区的日供水量为 x_{ij} $(x_{34}=0)$

_		,	
目 标 函		$= 160x_{11} + 130x_{12} + 220x_{13} + 170x_{14} + 150x_{24} + 190x_{31} + 200x_{32} + 230x_{33}$	$+ 140x_{21} + 130x_{22} +$
数	供 应	$x_{11} + x_{12} + x_{13} + x_{14} = 50$ $x_{21} + x_{22} + x_{23} + x_{24} = 60$	线 线 性
约 束	限 制	$x_{21} + x_{22} + x_{23} + x_{24} = 60$ $x_{31} + x_{32} + x_{33} = 50$	规 规 划
条 件	需 求	$30 \le x_{11} + x_{21} + x_{31} \le 80$ $70 \le x_{12} + x_{22} + x_{32} \le 140$	模 型 型
	限制	$10 \le x_{13} + x_{23} + x_{33} \le 30$ $10 \le x_{13} + x_{23} \le 50$	(LP)

模型求解

OBJECTIVE FUNCTION VALUE

24400 00

A(50) 50	10~10~10~10~10~10~10~10~10~10~10~10~10~1
(B(60)) 50	∠ Z(70; <mark>70)</mark>
	10 丙(10;20)
(C(50)	T (10;40)

1)	444 00.00

VARIABLE VALUE REDUCED COST

X11	0.000000	30.000000
X12	50.000000	0.000000
X13	0.000000	50.000000
X14	0.000000	20.000000
X21	0.000000	10.000000
X22	50.000000	0.000000
X23	0.000000	20.000000
X24	10.000000	0.000000
X31	40.000000	0.000000
X32	0.000000	10.000000
X33	10.000000	0.000000

引水管理费 24400(元)

利润=总收入-其它费用 - 引水管理费 =144000-72000-24400 =47600(元)

《美国数学建模竞赛》 整课程请长按下方二维码

问题讨论 每个水库最大供水量都提高一倍

总供水量(320) > 总需求量(300) 确定送水方案使利润最大

利润 = 收入(900) - 其它费用(450) - 引水管理费

利润(元/千吨)	甲	Z	丙	丁
A	290	320	230	280
В	310	320	260	300
$\overline{\mathbf{C}}$	260	250	220	/

限制

B, C 类似处理

需求约束可以不变

求解

总利润 88700 (元)

这类问题一般称为 "运输问题" (Transportation Problem)

OBJECTIVE FUNCTION VALUE

1) 88700.00

VARIABLE VALUE REDUCED COST

20.000000	0.000000	X11
0.000000	100.000000	X12
40.000000	0.000000	X13
20.000000	0.000000	X14
0.000000	30.000000	X21
0.000000	40.000000	X22
10.000000	0.000000	X23
0.000000	50.000000	X24
0.000000	50.000000	X31
20.000000	0.000000	X32
0.000000	30.000000	X33

三个货舱最大载重(吨),最大容积(米3)

《美国数学建模竞赛》

前仓:

中仓:

后仓:

10; **6800**

16; **8700**

8; 5300

飞机平衡

三个货舱中实际载重必须与其最大载重成比例

	重量(吨)	空间(米³/吨)	利润(元/吨)
货物1	18	480	3100
货物2	15	650	3800
货物3	23	580	3500
货物4	12	390	2850

如何装运,使 本次飞行获利 最大?

货机装运 模型假设

每种货物可以分割到任意小; 每种货物可以在一个或多个货舱中任意分布; 多种货物可以混装,并保证不留空隙;

模型建立

决策 x_{ij} --第i 种货物装入第j 个货舱的重量(吨) 变量 $i=1,2,3,4,\ j=1,2,3$ (分别代表前、中、后仓)

模型建立

x_{ii} --第i 种货物装入第j 个货舱的重量

目标 函数 (利润)

$$\begin{array}{ll} \mathit{Max} & Z = 3100(x_{11} + x_{12} + x_{13}) + 3800(x_{21} + x_{22} + x_{23}) \\ + 3500(x_{31} + x_{32} + x_{33}) + 2850(x_{41} + x_{42} + x_{43}) \end{array}$$

货舱 重量

约

束

条

$$x_{11} + x_{21} + x_{31} + x_{41} \le 10$$

$$x_{12} + x_{22} + x_{32} + x_{42} \le 16$$

$$x_{13} + x_{23} + x_{33} + x_{43} \le 8$$

10; 16; 8; 6800 8700 5300

货舱 容积

$$480x_{11} + 650x_{21} + 580x_{31} + 390x_{41} \le 6800$$

$$480x_{12} + 650x_{22} + 580x_{32} + 390x_{42} \le 8700$$

$$480x_{13} + 650x_{23} + 580x_{33} + 390x_{43} \le 5300$$

货机装运

模型建立

x_{ii} --第i 种货物装入第j 个货舱的重量

约束条件

平衡 要求

$$\frac{x_{11} + x_{21} + x_{31} + x_{41}}{10}$$

$$= \frac{x_{12} + x_{22} + x_{32} + x_{42}}{16}$$

$$= \frac{x_{13} + x_{23} + x_{33} + x_{43}}{8}$$

$$x_{11} + x_{12} + x_{13} \le 18$$

货物 供应

$$x_{21} + x_{22} + x_{23} \le 15$$

 $x_{31} + x_{32} + x_{33} \le 23$
 $x_{41} + x_{42} + x_{43} \le 12$

货机装运 模型求解

OBJECTIVE FUNCTION VALU	JE
-------------------------	----

1) 121515.8

VARIABLE VALUE REDUCED COST

	VALUE	REDUCED CO
X11	0.000000	400.000000
X12	0.000000	57.894737
X13	0.000000	400.000000
X21 1	10.000000	0.000000
X22	0.000000	239.473679
X23	5.000000	0.000000
X31	0.000000	0.000000

12,947369

3.000000

0.000000

3.052632

0.000000

X33

X41

X42

X43

0.000000

0.000000

650.000000

0.000000

650.000000

货物2: 前仓10,后仓5;

货物3:中仓13,后仓3;

货物4: 中仓3。

最大利润约121516元

货物~供应点货舱~需求点

平衡要求

运输问题的扩展

例3 汽车厂生产计划

汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量。

	小型	中型	大型	现有量
钢材(吨)	1.5	3	5	600
劳动时间(小时)	280	250	400	60000
利润(万元)	2	3	4	

- •制订月生产计划,使工厂的利润最大。
- ·如果生产某一类型汽车,则至少要生产80辆, 那么最优的 生产计划应作何改变?

汽车厂生产计划

模型建立

设每月生产小、中、大型 汽车的数量分别为 x_1, x_2, x_3

	小型	中型	大型	现有量
钢材	1.5	3	5	600
时间	280	250	400	60000
利润	2	3	4	

Max z =	$= 2x_1 + 3x_2 + 4x_3$	
s. t.	$1.5x_1 + 3x_2 + 5x_3 \le 600$	
	$280x_1 + 250x_2 + 400x_3 \le 60000$	
:	$x_1, x_2, x_3 \ge 0$	

线性规划模型

模型求解

OBJECTIVE FUNCTION VALUE

1) 632.2581

VARIABLE VALUE REDUCED COST

X1 64.516129 0.000000 X2 167.741928 0.000000

X3 0.000000 0.946237

ROW SLACK OR SURPLUS DUAL PRICES

- 2) 0.000000 0.731183
- 3) 0.000000 0.003226
- 1)舍去小数: 取 x_1 =64, x_2 =167, 算出目标函数值z=629, 与LP最优值632.2581相差不大。
- 2) 试探:如取 x_1 =65, x_2 =167; x_1 =64, x_2 =168等,计算函数值z,通过比较可能得到更优的解。
- 但必须检验它们是否满足约束条件。为什么?
- 3)模型中增加条件: x_1, x_2, x_3 均为整数, 重新求解。

结果为小数,怎么办?

整数规划(Integer Programming,简记IP)

$Max z = 2x_1 + 3x_2 + 4x_3$

s. t.
$$1.5x_1 + 3x_2 + 5x_3 \le 600$$

 $280x_1 + 250x_2 + 400x_3 \le 60000$

 x_1, x_2, x_3 为非负整数

IP 结果输出

OBJECTIVE FUNCTION VALUE 1) 632.0000 VARIABLE VALUE REDUCED COST X1 64.000000 -2.000000 X2 168.000000 -3.000000 X3 0.000000 -4.000000

IP可用LINDO直接求解

```
max 2x1+3x2+4x3
st
1.5x1+3x2+5x3<600
280x1+250x2+400x3<60000
end
gin 3
```

"gin 3"表示"前3个变量为整数",等价于: gin x1 gin x2 gin x3

IP 的最优解 $x_1=64$, $x_2=168$, $x_3=0$, 最优值z=632

汽车厂生产计划

•若生产某类汽车,则至少生产80辆,求生产计划。

Max
$$z = 2x_1 + 3x_2 + 4x_3$$

s. t. $1.5x_1 + 3x_2 + 5x_3 \le 600$
 $280x_1 + 250x_2 + 400x_3 \le 60000$
 $x_1, x_2, x_3 = 0$ 或 ≥80 □

方法1: 分解为8个LP子模型

其中3个子模型应去掉,然后逐一求解,比较目标函数值,再加上整数约束,得最优解:

$$x_1 = 0, x_2 = 0, x_3 \ge 80$$

 $x_1 = 0, x_2 \ge 80, x_3 = 0$
 $x_1 = 0, x_2 \ge 80, x_3 \ge 80$ \times
 $x_1 \ge 80, x_2 = 0, x_3 = 0$
 $x_1 \ge 80, x_2 \ge 80, x_3 = 0$
 $x_1 \ge 80, x_2 \ge 80, x_3 \ge 80$
 $x_1 \ge 80, x_2 \ge 80, x_3 \ge 80$ \times
 $x_1, x_2, x_3 = 0$ \times

 $x_1=80$, $x_2=150$, $x_3=0$, 最优值z=610

•若生产某类汽车,则至少生产80辆,求生产计划。

方法2: 引入0-1变量, 化为整数规划

$$x_1$$
=0 或 ≥80

$$|x_1 \le My_1, x_1 \ge 80y_1, y_1 \in \{0,1\}$$

$$x_2 \le My_2, \ x_2 \ge 80y_2, \ y_2 \in \{0,1\}$$

$$x_3 \le My_3, \ x_3 \ge 80y_3, \ y_3 \in \{0,1\}$$

M为大的正数, 可取1000

最优解同前

LINDO中对0-1

变量的限定:

int y1

int y2

int y3

OBJECTIVE FUNCTION VALUE

1) 610.0000

VARIABLE VALUE REDUCED COST

X1 80.000000 -2.000000

X2 150.000000 -3.000000

X3 0.000000 -4.000000

Y1 1.000000 0.000000

Y2 1.000000 0.000000

Y3 0.000000 0.000000

• 若生产某类汽车,则至少生产80辆,求生产计划。

方法3: 化为非线性规划

$$x_1=0$$
 或 ≥80
 $x_1(x_1-80) \ge 0$
 $x_2=0$ 或 ≥80
 $x_2(x_2-80) \ge 0$
 $x_3=0$ 或 ≥80
 $x_3(x_3-80) \ge 0$

非线性规划(Non- Linear Programming,简记NLP)

NLP虽然可用现成的数学软件求解(如LINGO, MATLAB),但是其结果常依赖于初值的选择。

实践表明,本例仅当初值非常接近上面方法算出 的最优解时,才能得到正确的结果。