HWI Graph Theway







## 1.5. (Solution)

Notice that there are no vertices of & degree 2 which are adjacent in the first graph which the Seeond graph not.

Since isomorphism preserves adjacent of vertices, the two graphs are not isomorphic

1.9. «Solution > 29 and 23 respectively.



There doesn't exist a simple graph with degree sequence (3,3,5,5,5,5)



|          | Suppose not, then there exists such a graph.      |
|----------|---------------------------------------------------|
|          | four vertices with degree 5 then exhthey          |
| _are     | e connected with all other of five vertices,      |
|          | ich implies that the other two vertices have      |
| /        | ee 4 at least, contradicting with 3.              |
| V /      | es. for example:                                  |
| 11/      | 5                                                 |
|          |                                                   |
|          | 5 3                                               |
|          | 4                                                 |
|          |                                                   |
|          |                                                   |
| 15. cpro | 20f, If not, then each vertex of G has different  |
| 14       | ree, which implies G with n vertices must have    |
| _a       | vertex with degree n. this contradicts witha.     |
| simp     | le graph. Thus G must contain two er more verzice |
|          |                                                   |
| J        | the same degree                                   |
|          |                                                   |
|          |                                                   |
|          |                                                   |
|          |                                                   |

第



| 1. 含显, | & Sulverien | 9 |
|--------|-------------|---|
|--------|-------------|---|

thos only graphs with even versions can be carbic graphs.

Case 1 4 verzices



Case 2: 6 vertices



Case 3: 8 vertices



1.34 (Solveion)

K2.2.2



K3.3.2



edges of K3.4.5 = (4+5)x3+4x5 = 27+20=47



| 1.44 sproof > For n vertices suppose the indea of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i-th vertex is Xi. Since its T is a tournament.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| the corresponding outday is n-1-xi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Apply hand-shaking lemma. $\sum_{i=1}^{n} x_i = \sum_{j=1}^{n} (n_{j-1}) - x_i = n_{j-1} - \sum_{i=1}^{n} x_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| thus $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} n(n-i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\Sigma indeg(v)^2 = \sum_{i=1}^{n} X_i^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\Sigma \text{ out degiv}^2 = \sum_{i=1}^{n} (n-i-X_i)^2 = \sum_{i=1}^{n} [(n-i)^2 - 2(n-i)X_i + X_i^2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| = > n(n-1) - 2(n-1) \( \int \tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\t |
| $=\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} (n \log_i u)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.496 < Solution >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (i) V(G): A central vertex v and countably infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| vertices {Ui} i EM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| E(G): The central vertex v is connected to each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ui, iem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (ii) V(G): All real numbers (R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| E(G): All unordered pairs of distinct real numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\{(x,y) \mid x,y \in IR, x \neq y\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| B R B R B R B R B R B R B R B R B R B R                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               |
| a DY GO Y G DY G                                                                                                                              |
| cubei cubez cube3 cube4                                                                                                                       |
| We next superminance these property to form a new areal G                                                                                     |
| We next supermimpose these graphs to form a new graph G                                                                                       |
| R 2 0B                                                                                                                                        |
| $\begin{pmatrix} 2 & 3 & 2 \end{pmatrix}$                                                                                                     |
| 3                                                                                                                                             |
| 9 8 4 8 Y                                                                                                                                     |
| are 1                                                                                                                                         |
| Since GY, BY only connected by one edge, this                                                                                                 |
| v                                                                                                                                             |
| problem has no solution,                                                                                                                      |
|                                                                                                                                               |
| 1.53 (proof)                                                                                                                                  |
| 1 5                                                                                                                                           |
| (i) Step 1. Both K3 and K1,3 have 3 edges. thus                                                                                               |
| their line graphs have 3 vertices                                                                                                             |
| Step 2. Each edge in K3 and K1.3 have 2 adjacent                                                                                              |
| vertices of                                                                                                                                   |
| Step 2. Each edge in K3 and K1.3 have 2 adjacent vertices of edges, thus their line graphs have 2 degrees.                                    |
| that is, their line graphs are both kz.                                                                                                       |
| (ii) Step 1. Tetrahedron has bedges then it's line                                                                                            |
|                                                                                                                                               |
|                                                                                                                                               |
| Graph has b vertices  Supply Tetrophodom has 4 edges adjacent, so the decident                                                                |
| Step 2 <u>Jetrahedron</u> has 4 edges adjacent, so the line graph \$\overline{\pi}\$ has degree 4  So the line graph is the petahedron around |



| ( Fil) Notice that For each edge in G. Sonner two                                                       |
|---------------------------------------------------------------------------------------------------------|
| vertices. Since G is regular of degree k. then                                                          |
| each versex have at edges in crident.                                                                   |
| That implies each edge in G have has 21k-1)                                                             |
| adjacent edges. so the line graph is regular of                                                         |
|                                                                                                         |
| degree 2k-2                                                                                             |
| (iv) An edge in LiG) is a 2-set ferez of edges in                                                       |
| G with which are adjacent to a common vertex                                                            |
| V. This verzex v is uniquely determined by                                                              |
| [ei, ei]. If a vertex whas degree d. there are                                                          |
| Cd 2-sets [ei, ei] s.t. ei. ez are adjacent to u                                                        |
| so the total number of edges in LiGI is                                                                 |
| so the total number of edges in LiGI is $\sum_{i=1}^{n} C_{di}^{2} = \sum_{i=1}^{n} \frac{dicdili}{2}.$ |
|                                                                                                         |
| (V) K5 has 10 edges, thus LIK5) has 10 vertices.                                                        |
| · · · · · · · · · · · · · · · · · · ·                                                                   |
| By (iii). each vertex of L(Ks) has degree 6, it's the                                                   |
| same as the complement of the Petersen graph,                                                           |
|                                                                                                         |
|                                                                                                         |