

WCV@R applied to Portfolio Optimization Risk Management

Rachid El Amrani Giorgia Rosalia Buccelli

Politecnico di Torino Department of Mathematics

March 16, 2023

WCVaR Minimization

Discrete Distribution

Box Uncertainty

Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

Outline

- 1 Narrative
- 2 WCVaR Minimization
 - Mixture Distribution
 - Discrete Distribution
 - Box Uncertainty
 - Ellipsoidal Uncertainty
- 3 Robust Portfolio Management Using WCVaR
- 4 Results and Discussion
- 5 Conclusion

WCVaR Minimization

Mixture Distribution
Discrete Distribution
Box Uncertainty
Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

Narrative

Using this cumulative probability, we can define

$$VaR_{\beta}(\mathbf{x}) \triangleq min\{\alpha \in R : \psi(\mathbf{x}, \alpha) \geq \beta\}$$

The deficiencies of Value-at-Risk?

A natural coherent alternative to Value at Risk

$$CVaR_{\beta}(\mathbf{x}) \triangleq \mathbb{E}(f(\mathbf{x}, \mathbf{y})|f(\mathbf{x}, \mathbf{y}) > VaR_{\beta}(\mathbf{x})), \tag{1}$$

$$\triangleq \frac{1}{1-\beta} \int_{f(\mathbf{x},\mathbf{y}) \geq VaR_{\beta}(\mathbf{x})} f(\mathbf{x},\mathbf{y}) p(\mathbf{y}) \, d\mathbf{y} \tag{2}$$

What's wrong with the above formulas? Somewhat tricky in practice!

WCVaR Minimization

Mixture Distribution
Discrete Distribution
Box Uncertainty
Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

Consider the following function:

$$F_{\beta}(\mathbf{x}, \alpha) \triangleq \alpha + \frac{1}{1 - \beta} \int_{\mathbf{y} \in R^m} [f(\mathbf{x}, \mathbf{y}) - \alpha]^+ p(\mathbf{y}) d\mathbf{y}$$

we have:

Properties

- 1 $F_{\beta}(x,\alpha)$ is a convex and continuously differentiable function in α .
- 2 $VaR_{\beta}(x)$ is a minimizer of $F_{\beta}(x, \alpha)$.
- The minimum value of $F_{\beta}(x, \alpha)$ is $CVaR_{\beta}(x)$.

In particular, the optimal $CVaR_{\beta}(x)$ can be found by solving the following optimization problem:

$$\min_{(x,\alpha)} F_{\beta}(x,\alpha)$$

WCVaR Minimization

Discrete Distribution
Box Uncertainty
Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

WCVaR Minimization

Definition 1. The worst-case CVaR (WCVaR) for a fixed $x \in X$ with respect to P is defined as

$$WCVaR_{\beta}(x) = \sup_{p(\cdot) \in P} CVaR_{\beta}(x)$$

Questions

- 1 Does the worst-case CVaR remain a coherent risk measure?
- 2 What can the ambiguity set P be made of?

WCVaR Mixture Distribution

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

Mixture Distribution

We assume that the distribution of y is only known to belong to a set of distributions that consists of all the mixtures of some predetermined likelihood distributions, i.e.,

$$p(\cdot) \in P_M \triangleq \left\{ \sum_{i=1}^{l} \lambda_i p^i(\cdot) : \sum_{i=1}^{l} \lambda_i = 1, \lambda_i \geq 0, i = 1, ..., l \right\}$$

 $p^{i}(\cdot)$: the *i*th likelihood distribution

Define

$$F^i_{\beta}(\mathbf{x}, \alpha) \triangleq \alpha + \frac{1}{1 - \beta} \int_{\mathbf{y} \in R^m} [f(\mathbf{x}, \mathbf{y}) - \alpha]^+ p^i(\mathbf{y}) \, d\mathbf{y}, \qquad i = 1, ..., I$$

WCVaR Minimization

Mixture Distribution
Discrete Distribution
Box Uncertainty
Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

THEOREM 1.

For each \mathbf{x} , $WCVaR_{\beta}(\mathbf{x})$ w.r.t. P_{M} is given by

$$\mathit{WCVaR}_{\beta}(\mathbf{x}) = \min_{\substack{lpha \in \mathcal{B} \ i \in L}} \max_{i \in L} F^i_{\beta}(\mathbf{x}, lpha), \qquad L \triangleq \{1, 2, ..., l\}$$

Denote

$$F_{\beta}^{L}(\mathbf{x}, \alpha) \triangleq \max_{i \in L} F_{\beta}^{i}(\mathbf{x}, \alpha)$$

COROLLARY 1.

Minimizing $WCVaR_{\beta}(\mathbf{x})$ over X can be achieved by minimizing $F_{\beta}^{L}(\mathbf{x}, \alpha)$ over $X \times R$, i.e.,

$$\min_{\mathbf{x} \in X} WCVaR_{\beta}(\mathbf{x}) = \min_{(\mathbf{x}, \alpha) \in X \times \mathbf{R}} F_{\beta}^{L}(\mathbf{x}, \alpha)$$

WCVaR

Mixture Distribution

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

$$F^i_{\beta}(\mathbf{x}, \alpha) \triangleq \alpha + \frac{1}{1 - \beta} \int_{\mathbf{y} \in R^m} [f(\mathbf{x}, \mathbf{y}) - \alpha]^+ \rho^i(\mathbf{y}) \, d\mathbf{y}, \qquad i = 1, ..., I$$

The WCVaR minimization is equivalent to

$$\min_{(\alpha,\alpha,\theta)\in X\times R\times R}\theta$$

$$(\mathbf{x},\alpha,\theta)\in X\times R\times R$$

subject to
$$\alpha + \frac{1}{1-\beta} \int_{\mathbf{y} \in R^m} [f(\mathbf{x}, \mathbf{y}) - \alpha]^+ p^i(\mathbf{y}) d\mathbf{y} \le \theta, \quad i = 1, ..., I$$

WCVaR Minimization

Mixture Distribution

Box Uncertainty

Ellipsoidal Uncertaint

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

Monte Carlo simulation to approximate $F_{\beta}(\mathbf{x}, \alpha)$

$$\min_{(\mathbf{x},\alpha,\theta)\in X\times R\times R} \theta$$

subject to
$$\alpha + \frac{1}{S^i(1-\beta)} \sum_{k=1}^{S^i} [f(\mathbf{x}, \mathbf{y}^i_{[k]}) - \alpha]^+ \le \theta, \quad i = 1, ..., I$$

- **y**_[k]: kth sample w.r.t. the *i*th likelihood distribution $p^i(\cdot)$.
- \blacksquare S^i : number of corresponding samples.

Generally,

$$\alpha + \frac{1}{1 - \beta} \sum_{k=1}^{S^i} \pi_k^i [f(\mathbf{x}, \mathbf{y}_{[k]}^i) - \alpha]^+ \le \theta, \qquad i = 1, ..., I$$

 \blacksquare π_k^i : probability according to the kth sample w.r.t. $p^i(\cdot)$.

WCVaR Minimization

Mixture Distribution

Discrete Distribution

Ellipsoidal Uncertaint

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

By denoting $\pi^i=(\pi^i_1,...,\pi^i_{S^i})^T$ and introducing an auxiliary vector $\mathbf{u}=(\mathbf{u}^1;\mathbf{u}^2;...;\mathbf{u}^l)\in R^m$, where $m=\sum_{i=1}^l S^i$, we have:

min
$$\theta$$

s.t. $\mathbf{x} \in \mathcal{X}$,

$$\alpha + \frac{1}{1 - \beta} (\mathbf{\pi}^i)^T \mathbf{u}^i \leq \theta, \quad i = 1, ..., l,$$

$$u_k^i \geqslant f(\mathbf{x}, \mathbf{y}_{[k]}^i) - \alpha, \quad k = 1, ..., S^i, i = 1, ..., l,$$

$$u_k^i \geqslant 0, \quad k = 1, ..., S^i, i = 1, ..., l.$$

WCVaR Minimization

Mixture Distribution

Box Uncertainty

Robust Portfolio

Using WCVaR
Results and

Discussion

Conclusion

Discrete Distribution

Again:
$$F_{\beta}(\mathbf{x}, \alpha) \triangleq \alpha + \frac{1}{1-\beta} \int_{\mathbf{y} \in R^m} [f(\mathbf{x}, \mathbf{y}) - \alpha]^+ p(\mathbf{y}) d\mathbf{y}$$

Let:

 $\left\{ \mathbf{y}_{[1]}, ..., \mathbf{y}_{[S]} \right\}$ be the sample space of random vector \mathbf{y}

■ $\pi = (\pi_1, ..., \pi_S)^T$ the vector of the corresponding probabilities. By denoting P_{π} as P, we can define:

$$WCVaR_{\beta}(\mathbf{x}) \triangleq \sup_{\pi \in P_{\pi}} CVaR_{\beta}(\mathbf{x}, \pi),$$
$$\triangleq \sup_{\pi \in P_{\pi}} \min_{\alpha \in R} G_{\beta}(\mathbf{x}, \alpha, \pi)$$

$$G_{\beta}(\mathbf{x}, \alpha, \pi) \triangleq \alpha + \frac{1}{1 - \beta} \sum_{k=1}^{s} \pi_{k} [f(\mathbf{x}, \mathbf{y}_{[k]}) - \alpha]^{+}$$

THEOREM 2. Suppose that P_{π} is a compact convex set. Then, for each \mathbf{x} , we have

$$WCVaR_{\beta}(\mathbf{x}) \triangleq \min_{\alpha \in R} \max_{\pi \in P_{\pi}} G_{\beta}(\mathbf{x}, \alpha, \pi)$$

WCVaR Minimization

Minimizatio

Discrete Distribution

Ellipsoidal Uncertain

Robust Portfolio

Management Using WCVaR

Results and Discussion

Conclusion

Thus, the minimization problem can be written as:

$$\min_{\mathbf{X}} WCVaR_{\beta}(\mathbf{X}) \triangleq \min_{(\alpha, \mathbf{X})} \max_{\pi} G_{\beta}(\mathbf{X}, \alpha, \pi)$$

or, equivalently

$$\min \ \theta$$

s.t.
$$\mathbf{x} \in \mathcal{X}$$
,

$$\max_{\boldsymbol{\pi} \in \mathcal{P}_{\boldsymbol{\pi}}} \alpha + \frac{1}{1 - \beta} \boldsymbol{\pi}^T \mathbf{u} \leqslant \theta,$$

$$u_k \geqslant f(\mathbf{x}, \mathbf{y}_{[k]}) - \alpha, \quad k = 1, \dots, S,$$

$$u_k \geqslant 0, \quad k = 1, \dots, S.$$

WCVaR Minimization

Minimization

Discrete Distribution

Box Uncertainty

Ellipsoidal Uncertain

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

1859

Box Uncertainty

Under

$$\boldsymbol{\pi} \in \mathcal{P}_{\boldsymbol{\pi}}^{B} \triangleq \{ \boldsymbol{\pi} : \boldsymbol{\pi} = \boldsymbol{\pi}^{0} + \boldsymbol{\eta}, \, \boldsymbol{e}^{T} \boldsymbol{\eta} = 0, \, \boldsymbol{\eta} \leqslant \boldsymbol{\eta} \leqslant \boldsymbol{\bar{\eta}} \},$$

The problem can be formulated as follows:

 $\min \theta$

s.t.
$$\mathbf{x} \in \mathcal{X}$$
,

t.
$$\mathbf{x} \in \mathcal{X}$$
,

$$\alpha + \frac{1}{1 - \beta} (\boldsymbol{\pi}^0)^T \mathbf{u} + \frac{1}{1 - \beta} (\bar{\boldsymbol{\eta}}^T \boldsymbol{\xi} + \underline{\boldsymbol{\eta}}^T \boldsymbol{\omega}) \leqslant \theta,$$

$$\mathbf{e}z + \mathbf{\xi} + \mathbf{\omega} = \mathbf{u}$$

$$\xi \geqslant 0, \omega \leqslant 0,$$

$$u_k \geqslant f(\mathbf{x}, \mathbf{y}_{[k]}) - \alpha, \quad k = 1, \dots, S,$$

$$u_k \geqslant 0, \quad k = 1, \dots, S.$$

WCVaR

Ellipsoidal Uncertainty Robust Portfolio

Management Using WCVaR

Results and Discussion

Conclusion

Ellipsoidal Uncertainty

Under

$$\boldsymbol{\pi} \in \mathcal{P}^E_{\boldsymbol{\pi}} \triangleq \big\{ \boldsymbol{\pi} \colon \, \boldsymbol{\pi} = \boldsymbol{\pi}^0 + A\boldsymbol{\eta}, \, \boldsymbol{e}^T A\boldsymbol{\eta} = 0, \,\, \boldsymbol{\pi}^0 + A\boldsymbol{\eta} \geqslant 0, \, \|\boldsymbol{\eta}\| \leqslant 1 \big\},$$

The problem can be formulated as follows:

$$\min \theta$$

s.t.
$$\mathbf{x} \in \mathcal{X}$$
,

$$\alpha + \frac{1}{1 - \beta} (\boldsymbol{\pi}^0)^T \mathbf{u} + \frac{1}{1 - \beta} [\zeta + (\boldsymbol{\pi}^0)^T \boldsymbol{\omega}] \leqslant \theta,$$

$$-\boldsymbol{\xi} - \boldsymbol{A}^T \boldsymbol{\omega} + \boldsymbol{A}^T \boldsymbol{e} \boldsymbol{z} = \boldsymbol{A}^T \boldsymbol{u},$$

$$\|\mathbf{\xi}\| \leqslant \zeta, \, \mathbf{\omega} \geqslant 0,$$

$$u_k \geqslant f(\mathbf{x}, \mathbf{y}_{[k]}) - \alpha, \quad k = 1, \dots, S,$$

$$u_k \geqslant 0, \quad k = 1, \dots, S.$$

WCVaR Mixture Distribution

Discrete Distribution Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and

Robust Portfolio Management Using WCVaR

- **x** = $(x_1, ..., x_n)^T \in \mathbb{R}^n$: amount of the investments in the *n* risky assets.
- $\mathbf{v} = (v_1, ..., v_n)^T \in \mathbb{R}^n$: uncertain returns of the *n* risky assets.
- Loss function: $f(\mathbf{x}, \mathbf{y}) = -\mathbf{x}^T \mathbf{y}$

The robust portfolio selection problem using WCVaR as a risk measure can be represented as

$$\min_{\mathbf{x} \in X} WCVaR(\mathbf{x})$$

We suppose

$$X \triangleq \left\{ \mathbf{x} : \mathbf{e}^{\mathsf{T}} \mathbf{x} = w_0, \underline{\mathbf{x}} \leq \mathbf{x} \leq \overline{\mathbf{x}}, \min_{\rho(\cdot) \in P} E_{\rho}(\mathbf{x}^{\mathsf{T}} \mathbf{y}) \geq \mu \right\}$$

WCVaR Minimization Mixture Distribution

Discrete Distribution

Box Uncertainty

Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

1859

Results and Discussion

Market Data Simulation Analysis

	Mean (10 ⁻³)				Variance (10 ⁻³)			
Period	HSNF	HSNU	HSNP	HSNC	HSNF	HSNU	HSNP	HSNC
Period1	1.8455	1.2522	1.5859	1.1383	0.2106	0.1947	0.2417	0.2062
Period2	0.7264	0.1648	0.2902	0.2625	0.1926	0.1823	0.2740	0.2110
Period3	0.5104	0.6743	-0.1271	0.1872	0.5346	0.4352	0.8138	0.8010

WCVaR Minimization

Mixture Distribution

Discrete Distribution

Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

	P. 1 . (0)	M	Iean (10 ⁻	·3)	CVaR _{0.95}			
μ (10 ⁻³)	Robust (I) Nominal (II)	Period1	Period2	Period3	Period1	Period2	Period3	
0	I	1.3546	0.2618	0.6460	0.0299	0.0299	0.0425	
	II	1.4455	0.3478	0.6209	0.0293	0.0295	0.0427	
0.5	I	1.6063	0.5000	0.5765	0.0292	0.0299	0.0441	
	II	1.4455	0.3478	0.6209	0.0293	0.0295	0.0427	
0.55	I	1.6591	0.5500	0.5619	0.0294	0.0304	0.0448	
	II	1.4455	0.3478	0.6209	0.0293	0.0295	0.0427	
0.95	I	_	_	_	_	_	_	
	II	1.7064	0.5948	0.5488	0.0297	0.0308	0.0455	

WCVaR Minimization

Minimization

Mixture Distribution

Discrete Distribution

Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

Monte Carlo Simulation Analysis

	ρ								
0.00		001	0.0		0.0	005			
μ	Robust	Nominal	Robust	Nominal	Robust	Nominal			
0	0.040870	0.040874	0.044218	0.044257	0.047295	0.047370			
0.002	0.040870	0.040874	0.044218	0.044257	0.047445	_			
0.004	0.040870	0.040874	0.049347	_	_	_			
0.005	0.041453	_	0.096214	_	_	_			
0.007	0.069936	_	_	_	_	_			

18/22

WCVaR Minimization Mixture Distribution

Discrete Distribution

Box Uncertainty

Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

1859

Figure3 — Comparison of nominal optimal and robust optimal portfolios in the worst-case return-risk plane

WCVaR Minimization

Mixture Distribution Discrete Distribution Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Figure4 — Comparison of nominal optimal and robust optimal portfolios in the nominal return-risk plane

WCVaR

Mixture Distribution
Discrete Distribution

Ellipsoidal Uncertainty

Robust Portfolio Management Using WCVaR

Results and Discussion

Conclusion

Conclusion

Following the aforementioned comparison between the Robust and the Nominal portfolio optimization policies, our numerical experience indicates that using the WCCV@R as a measure of risk provides a robust performance and more flexibility in portfolio decision analysis.

NB — We could've handled the problem using this alternative approach:

max μ

$$s, t, x \in X$$

$$\alpha + \frac{1}{1-\beta} (\boldsymbol{\pi}^i)^T \boldsymbol{u}^i \le \theta, \quad i = 1, ..., l,$$

$$u_k^i \ge f(x, y_{[k]}^i) - \alpha, \quad k = 1, ..., S^i, i = 1, ..., l,$$

$$u_k^i \ge 0, \quad k = 1, \dots, S^i, i = 1, \dots, l.$$

$$e^T x = w_0$$

$$x \le x \le \overline{x}$$

$$\mathbf{x}^T \overline{\mathbf{y}}^i \ge \mu, \qquad i = 1, \dots, l$$

Thanks for your attention!

