Texas International collage BSc.CSIT (2nd sem)

80386 Microprocessor Architecture

Submitted by:

Sandeep Mainali Sumit kumar Chaudhary Barsit Kharel

Characteristics of 80386 microprocessor

- 80386 microprocessor is a 32 bit processor that holds the ability to carry out 32-bit operations in one cycle. It has a data and address bus of 32-bit each. Thus has the ability to address 4 GB (or 2^{32}) of physical memory.
- 80386 supports a variety of operating clock frequencies, which are 16 MHz, and 33MHz.
- It offers 3 stage pipeline: fetch, decode, and execute. As it supports simultaneous fetching, decoding, and execution inside the system.

Block Diagram of 80386 Microprocessor

Fig. 11.32 The detailed internal architecture of 80386 processor

Architecture of 80386

Electronics Desk

Basically, from above diagram of architecture of 80386 microprocessor, It has 6 functional units which are as follows:

- 1. Bus interface unit
- 2. Code fetch unit
- 3. Instruction decode unit
- 4. Execution unit
- 5. Segmentation unit
- 6. Paging unit

As 80386 possesses the ability of 3 stages fetching, decoding, and execution simultaneously along with memory management and bus accessing. Thus all unit operate parallelly. Thus pipelining leads to a reduction in overall processing time thereby increasing the performance of the overall system.

1. Bus interface unit

• BIU has a 32-bit bidirectional data bus and a 32-bit address bus.

• Generates signals to activate data and address buses for fetching instructions or data.

• Connects peripheral devices through the memory unit.

• Controls interfacing of external buses with microprocessors.

2. Code fetch unit

- Fetches instructions from memory using system buses.
- Stores fetched instructions in a 16-byte prefetch queue.
- Fetches instructions in advance to speed up operations.
- Instruction sequence in queue matches memory order.
- Releases control of buses when data transfer is needed.

3.instruction decode unit

• Instruction in the memory are stored in the form of bytes. So, this unit decodes the instructions stored in the prefetch queue.

• Basically, the decoder changes the machine language code into assembly language and transfer it to the processor for the further execution.

4. Execution unit

- Decoded instructions stored in a decoded instruction queue.
- Execution unit uses this queue to execute instructions.
- Execution unit controls instruction execution.
- Has a 32-bit ALU for 32-bit operations in one cycle.
- Includes 8 general-purpose and 8 special-purpose registers.
- Registers used for data handling and offset address calculation.

5. Segmentation unit

- Provides a protection mechanism for memory.
- Offers 4 levels of protection (PL0 to PL3).
- PL0 has the highest priority, PL3 the lowest.
- Main OS parts stored in PL0, user programs in PL3.
- First microprocessor to introduce this protection feature.

6. Paging unit

- Paging unit operates only in protected mode.
- It converts linear addresses into physical addresses.
- Programmers provide virtual addresses, not physical addresses.
- Segmentation unit controls the paging unit's actions.
- Segmentation unit converts logical addresses to linear addresses during instruction execution.
- Paging unit maps tasks into pages, each 4KB in size.
- This allows handling tasks as pages instead of segments.
- Supports multitasking.
- Only stores currently needed segment parts in memory.

Pin diagram of 80386 microprocessor

Brief information of pins of 80386 MP

- 1. **AD0-AD31 (Address/Data Bus)**: These are the time-multiplexed address and data lines. During the address phase, these lines carry the address, and during the data phase, they carry the data.
- 2. **A0-A31 (Address Bus)**: These pins provide the higher order address bits.
- 3. **BE0#-BE3# (Bus Enable)**: These pins are used to indicate the valid bytes of data on the data bus. They are active low.
- 4. **ADS#** (Address Status): This pin is asserted by the processor to indicate that a valid bus cycle is in progress. It is active low.
- 5. **READY**: This pin is used to indicate that the addressed memory or I/O device is ready for data transfer.
- 6. **NA# (Next Address)**: This pin is used to allow pipelining of bus cycles. It signals that the next address is ready.

- 7. **M/IO# (Memory/Input-Output)**: This pin indicates whether the current bus cycle is a memory operation or an I/O operation. It is active low for I/O operations.
- 8. **D/C# (Data/Control)**: This pin indicates whether the current bus cycle is data or control. It is active low for control operations.
- 9. **W/R# (Write/Read)**: This pin indicates whether the current bus cycle is a write or a read. It is active low for read operations.
- 10. **LOCK**#: This pin is used to lock the system bus during certain critical operations to ensure exclusive use.
- 11. **HOLD**: This pin is used by external devices to gain control of the bus.
- 12. **HLDA (Hold Acknowledge)**: This pin is used by the processor to acknowledge the hold request.
- 13. **INTA# (Interrupt Acknowledge)**: This pin is used to acknowledge interrupt requests.

- 14. **NMI (Non-Maskable Interrupt)**: This pin is used for non-maskable interrupts that cannot be disabled, which are high-priority interrupts that cannot be ignored by the processor.
- 15. **INTR (Interrupt Request)**: This pin is used for maskable interrupts, which can be enabled or disabled by the processor.
- 16. **RESET**: This pin is used to reset the processor.
- 17. **VCC**: These pins provide the power supply to the processor.
- 18. **GND**: These pins are the ground reference for the processor.
- 19. **CLK2**: This pin provides the clock signal for the processor.
- 20. **PEREQ (Processor Extension Request)**: This pin is used to indicate a request from a microprocessor.
- 21. **PEREQACK (Processor Extension Request Acknowledge)**: This pin is used by the processor to acknowledge a request from a microprocessor.
- 22. **BUSY#**: This pin is used by the microprocessor to indicate that it is busy.

23. **ERROR**#: This pin is used by the microprocessor to indicate an error.