#### Taller Escornabot DIY



# ¿Escorna que ...?



lunes, 4 de noviembre de 2019

# Objetivo



#### Características

- Lo haces tú
- Hardware abierto y Software libre
- Asequible
- Bien documentado

# ¿Quién?

Equipo de desarrollo (Github

https://github.com/orgs/escornabot/people//

Grupo de google)



Comunidad (Grupo de google / Telegram)

### iii Escornafan!!!

#### Pablo Rubio

(https://pablorubma.cc/)



#### Versiones



lunes, 4 de noviembre de 2019

# Funcionamiento y programación

- Introduce Firmware y se maneja con botonera (modo clásico)
- Se puede programar con librería para arduino e incluso poner sensores extras



#### Motores



# Soporte portapilas



# Soporte botonera



# Soporte board



# Portapilas y bola



## Board



#### Drivers de motores



#### Conexionado drivers



#### Conexionado Botonera



#### Conexionado botonera

- Pin gnd: gnd de abajo (al lado D2)
- Pin 5V: 5V de arriba
- Pin Signal: A7 (arriba)
- Pin L1: A0
- Pin L2: A1
- Pin L3: A2
- Pin L4: A3

#### Botonera



# Zumbador y conjunto

Botonera





# Ruedas



# Conexionado Portapilas



#### Modos firmware 1.6.2

- Modo normal
  - Pulsación corta: giros 90°
  - Pulsación larga: giros 45°
- Modo 60° (tecla GO pulsación larga)
  - Pulsación corta: giros 60°
  - Pulsación larga: giros 120°
- Pausa: pulsación larga tecla atrás.

#### Cambios en firmware

- Abrimos Escornabot.ino, pestaña Configuration.h
  - #define STEPPERS\_STEPS\_PER\_SECOND 1000: numero de pasos por segundo, el tope anda sobre 2300
  - #define STEPPERS\_LINE\_STEPS 1738: da un avance de 10cm
  - #define STEPPERS\_TURN\_STEPS 1024: establece un giro de 90°, una vuelta completa 4096 passos sur la completa 4096

```
// stepper pin setup (digital outputs)
#define STEPPERS_MOTOR_RIGHT_IN1 5
#define STEPPERS_MOTOR_RIGHT_IN2 4
#define STEPPERS_MOTOR_RIGHT_IN3 3
#define STEPPERS_MOTOR_RIGHT_IN4 2
#define STEPPERS_MOTOR_LEFT_IN1 9
#define STEPPERS_MOTOR_LEFT_IN2 8
#define STEPPERS_MOTOR_LEFT_IN3 7
#define STEPPERS_MOTOR_LEFT_IN4 6

// step calibration
#define STEPPERS_STEPS_PER_SECOND 1000
#define STEPPERS_LINE_STEPS 1738
#define STEPPERS_TURN_STEPS 1024
#endif
```

# Motor paso a paso







#### Half-Step Switching Sequence

| Lead Wire<br>Color | > CW Direction (1-2 Phase) |    |   |   |   |   |   |   |
|--------------------|----------------------------|----|---|---|---|---|---|---|
|                    | 1                          | 2  | 3 | 4 | 5 | 6 | 7 | 8 |
| 4 Orange           | -                          | -  |   |   |   |   |   |   |
| 3 Yellow           |                            | -  |   |   |   |   |   |   |
| 2 Pink             |                            | 70 |   |   |   |   | 1 |   |
| 1 Blue             |                            |    |   |   |   | - | - | - |

64 pasos/vuelta x 64 reductora = 4096 pasos para una vuelta