Parte 1 de 3 - Preguntas de 1 puntos 3.0 / 3.0 Puntos

Preguntas 1 de 8

1.0 Puntos

The Shannon theorem defines the capacity of a communicatin channel as the maximization of mutual information, I(X;Y), under the constrain the output power E[Y*Y] is limited.

- Verdadero
- Falso

1.0 Puntos

The mutual information, I(X;Y), between two alphabets, input X and output Y, related through communications in a discrete channel, is a part of the output alphabet entropy, H(Y), which is common to a part of the input alphabet entropy, H(X).

- Verdadero
- Falso

1.0 Puntos

The OSNR is specified for a noise bandwidth of:

- A. The signal symbol rate (Rs).
- B. The channel bandwidth (B)
- C. None of the other is correct.
- D. The signal spectral content at 3-dB bandwidth (W)

Parte 2 de 3 - Preguntas de 2 puntos 5.33 / 6.0 Puntos

2.0 Puntos

What option is preferred to achieve a capacity of 3 bits/symbol with the lowest SNR?

- A. Use a single quadrature 4-ASK/2-PSK constellation
- B. use a two quadrature 16-QAM constellation leaving one bit/symbol as an overhead.

- C. Use a two quadrature 8-PSK constellation.
- D. use a two quadrature QPSK constellation.

2.0 Puntos

 \mathbb{R} SNRb = 9.5 dB, QPSK has a BER of approximately 1e-5. Check all that apply:

- A. No modulation with 3 bits/symbol outperforms OOK.
- B. OOK has a BER of approximately 1e-3.
- C. OOK has 1/2 the capacity of QPSK.
- BPSK has 2x the capacity of OOK.

2.0 Puntos

With respect to modulation constellations, check all that apply:

V

A. It's key to compare modulations in terms of SNR per bit to understand the trade-off between complexity and capacity.

B. For a target maximum capacity, one can use a larger modulation coded, at lower SNR, than a modulation with exactly the target capacity at larger SNR.

~

C. Modulations using two quadratures approach the Shanon limit faster than those using just one quadrature.

✓

D. The capacity for all the modulations seen in the chapter converge to log2(M) at large SNR.

Parte 3 de 3 - Preguntas de 0.5 puntos 1.0 / 1.0 Puntos

0.5 Puntos

10 Information Theory part 12: Information Entropy (Claude Shannon's formula)

Entropy is a measure of information or uncertainty (how many yes/no questions to guess)

- Verdadero
- Falso

reguntas 8 de 8	0.5

0.5 Puntos

07 Information Theory part 9: What is a bit? (check all that apply)

✓

- A. The price of a message is related to how long does it takes to transmit
- B. Sources can be quantified and compared by the number of different messages they contain.
- C. The amount of information is given by entropy $H = n \log 2$ s where n is number of symbols to be sent, and s is the number of different messages available in the message space

Preguntas 1 de 6	1.25	1.25 Punto		
The equivalent lo	ow pass signal x _b (t) is real			
○ Verdadero				
Falso				
Preguntas 2 de 6	1.25	1.25 Punto:		
500				
Two of these stat	tements correspond to a 16-ASK/P	SK constellation		
	2=8 possible amplitude values in qu			
✓ B. For SNR _b =	10 (dB) and SNR=5 (dB) the capaci	ties per symbol are 6 and 2 bits/symbol re	ectively	
C. If the ampl	litude corresponding to the outer r	ng is 1 then the amplitude of the smallest	nner ring is 0.125.	
	ity can be approximated by C=log2			
Preguntas 3 de 6	1.25	1.25 Punto		
Time seems of the con-				
		ets, input X and output Y, related through ().	ommunications in a discrete o	nannei, is a part of the output a
common to a par	t of the input alphabet entropy, H()			
common to a parVerdadero	t of the input alphabet entropy, H()			
	t of the input alphabet entropy, H()			
Verdadero	t of the input alphabet entropy, H()			
Verdadero	t of the input alphabet entropy, H()			
Verdadero	t of the input alphabet entropy, H()			
VerdaderoFalso	t of the input alphabet entropy, H()	1.25 Punto		
Verdadero				
Verdadero Falso Preguntas 4 de 6	1.25	1.25 Punto	wthermal noice as: C = logs[1.	F/(k, T)] where T is the temper
Verdadero Falso Preguntas 4 de 6	1.25		by thermal noise as: C= log ₂ [1	+E/(k _b T)] where T is the temper
Falso Preguntas 4 de 6 Is it correct to wi	1.25	1.25 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Falso Preguntas 4 de 6 Is it correct to will constant? Verdadero	1.25	1.25 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Falso Preguntas 4 de 6 Is it correct to wi	1.25	1.25 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Falso Preguntas 4 de 6 Is it correct to will constant? Verdadero	1.25	1.25 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Falso Preguntas 4 de 6 Is it correct to will constant? Verdadero	1.25	1.25 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Falso Preguntas 4 de 6 Is it correct to will constant? Verdadero Falso	1.25	1.25 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Falso Preguntas 4 de 6 Is it correct to will constant? Verdadero Falso	1.25	1.25 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Falso Preguntas 4 de 6 Is it correct to will constant? Verdadero Falso	1.25	1.25 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Preguntas 4 de 6 Is it correct to wire constant? Verdadero Falso 2 de 2 - Preguntas de 1	1.25 rite the Shannon formula for the ca	1.25 Punto	by thermal noise as: C= log ₂ [1·	+E/(k _b T)] where T is the temper
● Verdadero ○ Falso Preguntas 4 de 6 Is it correct to wir constant? ● Verdadero ○ Falso Preguntas 5 de 6 Preguntas 5 de 6	1.25 rite the Shannon formula for the ca	pacity of a channel (in bits/second) limited	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Falso Preguntas 4 de 6 Is it correct to wisconstant? Verdadero Falso Preguntas 5 de 6 At SNRb = 9.5 dE	1.25 de 2 puntos 0.0 / 4.0 Puntos 0.0 0.0	pacity of a channel (in bits/second) limited	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
Verdadero Falso Preguntas 4 de 6 Is it correct to wire constant? Verdadero Falso Preguntas 5 de 6 At SNRb = 9.5 dE A. OOK has 1	1.25 rite the Shannon formula for the call de 2 puntos 0.0 / 4.0 Puntos 0.0 3, QPSK has a BER of approximately 1/2 the capacity of QPSK.	pacity of a channel (in bits/second) limited	by thermal noise as: C= log ₂ [1·	+E/(k _b T)] where T is the temper
● Verdadero ● Falso Preguntas 4 de 6 Is it correct to wire constant? ● Verdadero ● Falso Preguntas 5 de 6 At SNRb = 9.5 de 6 At SNRb = 9.5 de 6 ■ A. OOK has a constant a	1.25 rite the Shannon formula for the car de 2 puntos 0.0 / 4.0 Puntos 0.0 3, QPSK has a BER of approximately 1/2 the capacity of QPSK. a BER of approximately 1e-3.	pacity of a channel (in bits/second) limited	by thermal noise as: C= log ₂ [1·	+E/(k _b T)] where T is the temper
● Verdadero ○ Falso Preguntas 4 de 6 Is it correct to wir constant? ○ Verdadero ○ Falso Preguntas 5 de 6 At SNRb = 9.5 dE ○ A. OOK has 1 ○ B. OOK has 1 ○ C. BPSK has 2	1.25 rite the Shannon formula for the calle 2 puntos 0.0 / 4.0 Puntos 0.0 3, QPSK has a BER of approximately 1/2 the capacity of QPSK. a BER of approximately 1e-3. 2x the capacity of OOK.	pacity of a channel (in bits/second) limited 2.0 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper
● Verdadero ○ Falso Preguntas 4 de 6 Is it correct to wir constant? ○ Verdadero ○ Falso Preguntas 5 de 6 At SNRb = 9.5 dE ○ A. OOK has 1 ○ B. OOK has 1 ○ C. BPSK has 2	1.25 rite the Shannon formula for the car de 2 puntos 0.0 / 4.0 Puntos 0.0 3, QPSK has a BER of approximately 1/2 the capacity of QPSK. a BER of approximately 1e-3.	pacity of a channel (in bits/second) limited 2.0 Punto	by thermal noise as: C= log ₂ [1·	+E/(k _b T)] where T is the temper
● Verdadero ○ Falso Preguntas 4 de 6 Is it correct to wir constant? ○ Verdadero ○ Falso Preguntas 5 de 6 At SNRb = 9.5 dE ○ A. OOK has 1 ○ B. OOK has 1 ○ C. BPSK has 2	1.25 rite the Shannon formula for the calle 2 puntos 0.0 / 4.0 Puntos 0.0 3, QPSK has a BER of approximately 1/2 the capacity of QPSK. a BER of approximately 1e-3. 2x the capacity of OOK.	pacity of a channel (in bits/second) limited 2.0 Punto	by thermal noise as: C= log ₂ [1·	+E/(k _b T)] where T is the temper
● Verdadero ○ Falso Preguntas 4 de 6 Is it correct to wir constant? ○ Verdadero ○ Falso Preguntas 5 de 6 At SNRb = 9.5 dE ○ A. OOK has 1 ○ B. OOK has 1 ○ C. BPSK has 2	1.25 rite the Shannon formula for the calle 2 puntos 0.0 / 4.0 Puntos 0.0 3, QPSK has a BER of approximately 1/2 the capacity of QPSK. a BER of approximately 1e-3. 2x the capacity of OOK.	pacity of a channel (in bits/second) limited 2.0 Punto	by thermal noise as: C= log ₂ [1-	+E/(k _b T)] where T is the temper

B. use a two quadrature 16-QAM constellation leaving one bit/symbol as an overhead.

C. Use a two quadrature 8-PSK constellation.

D. use a two quadrature QPSK constellation.

Parte 1 de 1 -	10.0 Puntos
Preguntas 1 de 7 Select two modulation formats with memory	1.0 Puntos
✓ A. AMI	
☐ B. VSB	
☑ C.CSRZ	
□ D. C-RZ	
Preguntas 2 de 7	1.0 Puntos
For a given bit rate R, the AMI format is more robust against chromatic dispersion than the RZ be	
○ Verdadero	
● Falso	
Preguntas 3 de 7	1.0 Puntos
Taking into account the limitation due to spectral narrowing, which of the following modulation formats is more robust?	
O A. DB	
B. NRZ-DQPSK	
C. VSB-CSRZ	
O D. NRZ-OOK	
Description A do 7	1.0 Puntos
Preguntas 4 de 7 NRZ-OOK is more tolerant to Polarization mode dispersion that any DPSK modulation format	var presidentia.
Verdadero	
Falso	

Caracteres aceptados: números, separadores decimales (punto o coma), indicadores de signo (-), "E" o "e" (usado en notación científica, ej., 5.3E-9). Los números complejos deben representarse usando esta expresión (a + bi) donde "a" y "b" deben tener necesariamente un valor. Ejemplo: {1+1i} es válido mientras que {1+i} no lo es. Igualmente, {0+9i} es válido mientras que {9i} no lo es.

The maximum allowable chromatic dispersion for a 2 dB penalty, 33% R-AMI at 42 Gb/s bit rate and a spectral bandwidth of 2 nm is 98 psec.

Preguntas 6 de 7

Which of the following modulation formats require a oulse carver?

- A. DB
- B.50% RZ-DPSK
- D. VSB-NRZ-OOK

Preguntas 7 de 7

AMI requires data precoding plus an addition of the delayed precoded signal

- Verdadero
- Falso

2.0 Puntos

2.0 Puntos

1		▲ Hide Time Remainii	lg ▲
Part	t 1 of 3 - Preguntas de 1 puntos		
	Question 1 of 8	1 Points	
	The mutual information, I(X;Y), between two alp common to a part of the input alphabet entropy,		communications in a discrete channel, is a part of the output alphabet entropy, H
	True	27 Y 30.	
	False		
	Reset Selection		

Time Remaining: 00:29:27

▲ Hide Time Remaining ▲

Part 1 of 3 - Preguntas de 1 puntos

Question 2 of 8

1 Points

The Shannon theorem defines the capacity of a communicatin channel as the maximization of mutual information, I(X;Y), under the constrain the output power E[Y*Y] is limited.

○ True

False

Reset Selection

Next

Question 3 of 8	1 Points
Two of these statements correspond to a 16-A A. It has 16/2=8 possible amplitude values	
B. The capacity can be approximated by C	=log2(1+SNR) if C<9 bits/symbol.
C. For SNR _b =10 (dB) and SNR=5 (dB) the d	capacities per symbol are 6 and 2 bits/symbol respectively
	outer ring is 1 then the amplitude of the smallest inner ring is 0.3

Question 4 of 8

2 Points

Click to see additional instructions

In a WDM system where channels transmit at a symbol rate of 10 Gb/s using square root raised cosine pulses (ρ =0.3) and the guard band is 20% of the channel spectral support, the spectral efficiency for SNR=20 dB is 4.26 bits/sec/Hz

$$SE(bits / sec / Hz) = \frac{C}{B} = \frac{R_s}{B} \log_2 \left(1 + \frac{P}{N_o R_s} \right)$$

Next

Part 3 of 3 - Preguntas de 0.5 puntos

Question 7 of 8

0.5 Points

03 Information Theory part 3: What is coding theory? (check all that apply)

A. Message sources are in practice discrete

B. Noise usually forces to use some sort of line coding, so source messages are not send as they are, but transformed

C. Source compression does not allow to send messages faster

Next

2 Points

Choose two correct statements related to the model of an optical communication systems

A. If the transmitter is single quadrature the receiver cannot use direct detection

B. If the transmitter is single quadrature the receiver can use direct detection

C. If the transmitter is I-Q the receiver uses direct detection

D. If transmitter is I-Q the receiver uses coherent detection

Next

Question 8 of 8	0.5 Points
11 Information Theory part 13: Data Compres A. The video shows how to coding can lead	
B. Source compression represents sending	
C. Source compression represents sending	ame source information per second using less bits.

Next Save Submit for Grading

Question 6 of 8	2 Points

What option is preferred to achieve a capacity of 3 bits/symbol with the lowest SNR?

- A. Use a single quadrature 4-ASK/2-PSK constellation
- B. use a two quadrature 16-QAM constellation leaving one bit/symbol as an overhead.
- C. Use a two quadrature 8-PSK constellation.
- O. use a two quadrature QPSK constellation.

Reset Selection

