Discrete Mathematics and Its Applications

Lecture 6: Discrete Probability: Relations and Their Properties

MING GAO

DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn

Dec. 13, 2018

Outline

- Relation
 - Representing Relations
- Properties of Relations
- n-ary Relations and Their Applications
- Relation Operators
 - Operations on Binary Relations
 - Operations on n-ary Relations
 - Structured Query Language: SQL
- Take-aways

Binary relation

Definition

Let A and B be sets. A binary relation R from A to B is a subset of $A \times B$, written $R : A \leftrightarrow B$, is a subset of $A \times B$.

- The notation aRb means $(a, b) \in R$;
- If aRb, we may say "a is related to b (by relation R)", or "a relates to b (under relation R)".

Binary relation

Definition

Let A and B be sets. A binary relation R from A to B is a subset of $A \times B$, written $R : A \leftrightarrow B$, is a subset of $A \times B$.

- The notation aRb means $(a, b) \in R$;
- If aRb, we may say "a is related to b (by relation R)", or "a relates to b (under relation R)".

Example

 $<: N \leftrightarrow N :\equiv \{(n,m)|n < m\}. \ a < b \text{ means } (a,b) \in <.$

A binary relation R corresponds to a predicate function $P_R: A \times B \rightarrow \{T, F\}$ defined over the two sets A and B.

Can we have visualized expressions of relations?

Examples of binary relations

• Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Then $R = \{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B. For instance, we have 0Ra, 0Rb, etc..

Examples of binary relations

- Let A = {0,1,2} and B = {a,b}. Then
 R = {(0,a), (0,b), (1,a), (2,b)} is a relation from A to B. For instance, we have 0Ra, 0Rb, etc..
 Can we have visualized expressions of relations?
- Let A be the set of all cities, and let B be the set of the 50 states in the USA. Define the relation R by specifying that (a, b) belongs to R if city a is in state b. For instance, (Boulder, Colorado), (Bangor, Maine), (AnnArbor, Michigan), (Middletown, NewJersey), (Middletown, NewYork), (Cupertino, California), and (RedBank, NewJersey) are in R.

Examples of binary relations

- Let A = {0,1,2} and B = {a,b}. Then
 R = {(0,a), (0,b), (1,a), (2,b)} is a relation from A to B. For instance, we have 0Ra, 0Rb, etc..
 Can we have visualized expressions of relations?
- Let A be the set of all cities, and let B be the set of the 50 states in the USA. Define the relation R by specifying that (a, b) belongs to R if city a is in state b. For instance, (Boulder, Colorado), (Bangor, Maine), (AnnArbor, Michigan), (Middletown, NewJersey), (Middletown, NewYork), (Cupertino, California), and (RedBank, NewJersey) are in R.
- "eats" := $\{(a, b) | \text{ organism } a \text{ eats food } b\}$.

Recall that a function $f: A \to B$ (as defined in Section 2.3) assigns exactly one element of B to each element of A.

Recall that a function $f:A\to B$ (as defined in Section 2.3) assigns exactly one element of B to each element of A.

 The graph of function f has the property that every element of A is the first element of exactly one ordered pair of the graph.

Recall that a function $f:A\to B$ (as defined in Section 2.3) assigns exactly one element of B to each element of A.

- The graph of function f has the property that every element of A is the first element of exactly one ordered pair of the graph.
- The graph of f is the set of ordered pairs (a, b) such that b = f(a).

Recall that a function $f:A\to B$ (as defined in Section 2.3) assigns exactly one element of B to each element of A.

- The graph of function f has the property that every element of A is the first element of exactly one ordered pair of the graph.
- The graph of f is the set of ordered pairs (a, b) such that b = f(a).
- Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph. This can be done by assigning to an element a of A the unique element $b \in B$ such that $(a, b) \in R$.

Recall that a function $f: A \to B$ (as defined in Section 2.3) assigns exactly one element of B to each element of A.

- The graph of function f has the property that every element of A is the first element of exactly one ordered pair of the graph.
- The graph of f is the set of ordered pairs (a, b) such that b = f(a).
- Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph. This can be done by assigning to an element a of A the unique element $b \in B$ such that $(a, b) \in R$.
- Relations are a generalization of graphs of functions; they can be used to express a much wider class of relationships between sets. (Recall that the graph of the function f from A to B is the set of ordered pairs (a, f(a)) for $a \in A$.)

Relations on a set

Definition

A relation on a set A is a relation from A to A. That is, a relation on a set A is a subset of $A \times A$.

- Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b)|a \text{ divides } b\}$?
- Consider these relations on the set of integers:

$$R_1 = \{(a, b)|a \le b\},\$$

$$R_2 = \{(a, b)|a > b\},\$$

$$R_3 = \{(a, b)|a = \pm b\},\$$

$$R_4 = \{(a, b)|a + b \le 3\}.$$

Which of these relations contain each of the pairs (1,1), (1,2), (2,1), (1,-1), and (2,2)?

Relation representation I

Matrix representing

Suppose that R is a relation from $A = \{a_1, a_2, \dots, a_m\}$ to $B = \{b_1, b_2, \dots, b_n\}$. (Here the elements of A and B have been listed in a particular, but arbitrary, order.) The relation R can be represented by $M_R = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1, & \text{if } (a_i, b_j) \in R; \\ 0, & \text{otherwise.} \end{cases}$$

Relation representation I

Matrix representing

Suppose that R is a relation from $A=\{a_1,a_2,\cdots,a_m\}$ to $B=\{b_1,b_2,\cdots,b_n\}$. (Here the elements of A and B have been listed in a particular, but arbitrary, order.) The relation R can be represented by $M_R=[m_{ij}]$, where

$$m_{ij} = \begin{cases} 1, & \text{if } (a_i, b_j) \in R; \\ 0, & \text{otherwise.} \end{cases}$$

• Let $A = \{0, 1, 2\}$, $B = \{a, b\}$, and $R = \{(0, a), (0, b), (1, a), (2, b)\}$. Then

$$M_R = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}\right)$$

Relation representation II

Digraph definition

A directed graph, or digraph, consists of (V, E), where V and E denote the sets of vertices (nodes) and edges (or arcs). In the edge (a, b), a and b are called the initial vertex and the terminal vertex.

Relation representation II

Digraph definition

A directed graph, or digraph, consists of (V, E), where V and E denote the sets of vertices (nodes) and edges (or arcs). In the edge (a, b), a and b are called the initial vertex and the terminal vertex.

• Edge (a, a) is represented using an arc from the vertex a back to itself, called a **loop**.

Relation representation II

Digraph definition

A directed graph, or digraph, consists of (V, E), where V and E denote the sets of vertices (nodes) and edges (or arcs). In the edge (a, b), a and b are called the initial vertex and the terminal vertex.

- Edge (a, a) is represented using an arc from the vertex a back to itself, called a **loop**.
- The relation R on a set A is represented by the directed graph that has the elements of A as its vertices and the ordered pairs (a, b), where $(a, b) \in R$, as edges.

The directed graph with vertices a, b, c, and d, and edges (a, b), (a, d), (b, b), (b, d), (c, a), (c, b), and (d, b) is displayed in the figure.

Question: How many relations are there on a set with *n* elements?

Question: How many relations are there on a set with *n* elements? **Solution:**

A relation on a set A is a subset of $A \times A$. Because $A \times A$ has n^2 elements when A has n elements.

Question: How many relations are there on a set with n elements? **Solution:**

A relation on a set A is a subset of $A \times A$. Because $A \times A$ has n^2 elements when A has n elements.

A set with m elements has 2^m subsets, there are 2^{n^2} subsets of $A \times A$.

Question: How many relations are there on a set with n elements? **Solution:**

A relation on a set A is a subset of $A \times A$. Because $A \times A$ has n^2 elements when A has n elements.

A set with m elements has 2^m subsets, there are 2^{n^2} subsets of $A \times A$. Thus, there are 2^{n^2} relations on a set with n elements.

Question: How many relations are there on a set with n elements? **Solution:**

A relation on a set A is a subset of $A \times A$. Because $A \times A$ has n^2 elements when A has n elements.

A set with *m* elements has 2^m subsets, there are 2^{n^2} subsets of $A \times A$.

Thus, there are 2^{n^2} relations on a set with n elements.

For example, there are $2^{3^2} = 2^9 = 512$ relations on the set $\{a, b, c\}$.

Reflexive

Definition

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

- The relation R on the set A is reflexive if $\forall a((a, a) \in R)$.
- It indicates that an element is always related to itself.

Reflexive

Definition

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

- The relation R on the set A is reflexive if $\forall a((a, a) \in R)$.
- It indicates that an element is always related to itself.

Example

Consider the following relations on $\{1, 2, 3, 4\}$:

$$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\},$$

$$R_2 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\},$$

$$R_3 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

Which of these relations are reflexive?

Property of reflexive

•

$$M_R = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

Property of reflexive

•

$$M_R = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right)$$

 A relation is reflexive if and only if there is a loop at every vertex of the directed graph.

Definition

A relation R on a set A is called **symmetric** if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called **antisymmetric**.

Definition

A relation R on a set A is called **symmetric** if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called **antisymmetric**.

The relation R on the set A is symmetric if

$$\forall a \forall b ((a,b) \in R \rightarrow (b,a) \in R);$$

i.e., a relation is symmetric if and only if aRb implies that bRa.

Definition

A relation R on a set A is called **symmetric** if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called **antisymmetric**.

The relation R on the set A is symmetric if

$$\forall a \forall b ((a,b) \in R \rightarrow (b,a) \in R);$$

i.e., a relation is symmetric if and only if aRb implies that bRa.

• Similarly, the relation R on the set A is antisymmetric if

$$\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b)).$$

i.e., a relation is antisymmetric if and only if there are no pairs of distinct elements a and b with aRb and bRa.

Definition

A relation R on a set A is called **symmetric** if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called **antisymmetric**.

The relation R on the set A is symmetric if

$$\forall a \forall b ((a,b) \in R \rightarrow (b,a) \in R);$$

i.e., a relation is symmetric if and only if aRb implies that bRa.

• Similarly, the relation R on the set A is antisymmetric if

$$\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b)).$$

i.e., a relation is antisymmetric if and only if there are no pairs of distinct elements a and b with aRb and bRa.

Property of symmetric and antisymmetric

Property of symmetric and antisymmetric

$$M_R = \left(egin{array}{cccc} 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 \end{array}
ight)$$

• A relation is symmetric if and only if: (1) for every edge between distinct vertices in its digraph there is an edge in the opposite direction; (2) the matrix is a symmetric one; (3) the graph is an undirected graph.

Property of symmetric and antisymmetric

$$M_R = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right)$$

- A relation is symmetric if and only if: (1) for every edge between distinct vertices in its digraph there is an edge in the opposite direction; (2) the matrix is a symmetric one; (3) the graph is an undirected graph.
- Similarly, a relation is antisymmetric if and only if: (1) there are never two edges in opposite directions between distinct vertices; (2) the matrix is a antisymmetric one.

Transitive

Definition

A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

Transitive

Definition

A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

• The relation R on the set A is transitive if

$$\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R);$$

Transitive

Definition

A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

• The relation R on the set A is transitive if

$$\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R);$$

Similarly, the relation R on the set A is antisymmetric if

$$\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b)).$$

i.e., a relation is antisymmetric if and only if there are no pairs of distinct elements a and b with aRb and bRa.

Example of transitive

Example

Consider the following relations on $\{1, 2, 3, 4\}$:

$$\begin{split} R_1 &= \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}, \\ R_2 &= \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}, \\ R_3 &= \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\} \end{split}$$

Which of these relations are transitive?

$$M_R = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

 $M_R = \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight)$

 A relation is transitive if and only if whenever there is an edge from a vertex x to a vertex y and an edge from a vertex y to a vertex z, there is an edge from x to z (completing a triangle where each side is a directed edge with the correct direction).

Definition

Let A_1, A_2, \dots, A_n be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \dots \times A_n$. The sets A_1, A_2, \dots, A_n are called the domains of the relation, and *n* is called its degree.

Definition

Let A_1, A_2, \dots, A_n be sets. An n-ary relation on these sets is a subset of $A_1 \times A_2 \times \dots \times A_n$. The sets A_1, A_2, \dots, A_n are called the domains of the relation, and n is called its degree.

• Let R be the relation on $N \times N \times N$ consisting of triples (a,b,c), where a,b, and c are integers with a < b < c. Then $(1,2,3) \in R$, but $(2,4,3) \notin R$. The degree of this relation is 3.

Definition

Let A_1, A_2, \dots, A_n be sets. An n-ary relation on these sets is a subset of $A_1 \times A_2 \times \dots \times A_n$. The sets A_1, A_2, \dots, A_n are called the domains of the relation, and n is called its degree.

- Let R be the relation on $N \times N \times N$ consisting of triples (a,b,c), where a,b, and c are integers with a < b < c. Then $(1,2,3) \in R$, but $(2,4,3) \notin R$. The degree of this relation is 3.
- Let R be the relation on $Z \times Z \times Z$ consisting of all triples of integers (a, b, c) in which a, b, and c form an arithmetic progression.

Definition

Let A_1, A_2, \dots, A_n be sets. An n-ary relation on these sets is a subset of $A_1 \times A_2 \times \dots \times A_n$. The sets A_1, A_2, \dots, A_n are called the domains of the relation, and n is called its degree.

- Let R be the relation on $N \times N \times N$ consisting of triples (a,b,c), where a,b, and c are integers with a < b < c. Then $(1,2,3) \in R$, but $(2,4,3) \notin R$. The degree of this relation is 3.
- Let R be the relation on $Z \times Z \times Z$ consisting of all triples of integers (a, b, c) in which a, b, and c form an arithmetic progression.
- Let R be the relation on $Z \times Z \times Z^+$ consisting of triples (a, b, m), where a, b, and m are integers with $m \ge 1$ and $a \equiv b \pmod{m}$.

Databases and relations

Database

TABLE 1 Students. Field					
Student_name		Major	GPA		
Ackermann	231455	Computer Science	3.88		
Adams	888323	Physics	3.45		
Chou Reco	rd 102147	Computer Science	3.49		
Goodfriend	453876	Mathematics	3.45		
Rao	678543	Mathematics	3.90		
Stevens	786576	Psychology	2.99		

Six records;

Databases and relations

Database

TABLE 1 Students. Field				
Student_name	ID_number	Major	GPA	
Ackermann Adams Chou Recc	231455 888323 rd 102147	Computer Science Physics Computer Science	3.88 3.45 3.49	
Goodfriend Rao	453876 678543	Mathematics Mathematics	3.45 3.90	
Stevens	786576	Psychology	2.99	

- Six records;
- Relations used to represent databases are also called tables.

Databases and relations

Database

TABLE 1 Students. Field				
Student_name	ID_number	Major	GPA	
Ackermann	231455	Computer Science	3.88	
Adams	888323	Physics	3.45	
Chou Reco	rd 102147	Computer Science	3.49	
Goodfriend	453876	Mathematics	3.45	
Rao	678543	Mathematics	3.90	
Stevens	786576	Psychology	2.99	

- Six records;
- Relations used to represent databases are also called tables.
- A domain of an n-ary relation is called a primary key when the value of the n-tuple from this domain determines the n-tuple.
 Which domains are primary keys for the n-ary relation displayed in the table?

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined. Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4\}$.

The relations
$$R_1 = \{(1,1),(2,2),(3,3)\}$$
 and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ can be combined to obtain

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4\}$.

•
$$R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\};$$

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4\}$.

- $R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\};$
- $R_1 \cap R_2 = \{(1,1)\};$

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4\}$.

- $R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\};$
- $R_1 \cap R_2 = \{(1,1)\};$
- $R_1 R_2 = \{(2,2), (3,3)\};$

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4\}$.

- $R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\};$
- $R_1 \cap R_2 = \{(1,1)\};$
- $R_1 R_2 = \{(2,2), (3,3)\};$
- $R_2 R_1 = \{(1,2), (1,3), (1,4)\}.$

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4\}$.

The relations $R_1 = \{(1,1),(2,2),(3,3)\}$ and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ can be combined to obtain

- $R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\};$
- $R_1 \cap R_2 = \{(1,1)\};$
- $R_1 R_2 = \{(2,2), (3,3)\};$
- $R_2 R_1 = \{(1,2), (1,3), (1,4)\}.$
- $R_1 \oplus R_2 = R_1 \cup R_2 R_1 \cap R_2 = \{(1,2), (1,3), (1,4), (2,2), (3,3)\}.$

40.40.41.41.1.000

Composite

Definition

Let R be a relation from A to B and S a relation from B to C. The **composite** of R and S is the relation consisting of ordered pairs (a,c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by $S \circ R$.

Composite

Definition

Let R be a relation from A to B and S a relation from B to C. The **composite** of R and S is the relation consisting of ordered pairs (a,c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by $S \circ R$.

Example

Let R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. What is the composite of the relations R and S?

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}.$$

Composing the parent relation with itself

Power

Let R be a relation on the set A. The powers R^n , $n = 1, 2, 3, \cdots$, are defined recursively by $R^1 = R$ and $R^{n+1} = R^n \circ R$.

Composing the parent relation with itself

Power

Let R be a relation on the set A. The powers R^n , $n=1,2,3,\cdots$, are defined recursively by $R^1 = R$ and $R^{n+1} = R^n \circ R$.

Let $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Find the powers R^n , $n = 2, 3, 4, \cdots$

- $R^2 = \{(1,1), (2,1), (3,1), (4,2)\};$
- $R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1), (4,1)\};$
- $R^4 = R^3 \circ R = \{(1,1), (2,1), (3,1), (4,1)\};$
- $R^n = R^3$ when $n = 5, 6, \cdots$

Theorem

The relation R on a set A is transitive if and only if $R^n \subset R$ for $n = 1, 2, 3, \cdots$

Theorem

The relation R on a set A is transitive if and only if $R^n \subset R$ for $n = 1, 2, 3, \cdots$

Proof.

 \Rightarrow :

We suppose that $R^n \subset R$ for $n = 1, 2, 3, \cdots$. Note that if $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, $(a, c) \in R^2$.

Because $R^2 \subset R$, this means that $(a, c) \in R$. Hence, R is transitive.

←: (Mathematical induction)

Assume that $R^n \subset R$ for $n \ge 1$ (inductive hypothesis).

Theorem

The relation R on a set A is transitive if and only if $R^n \subset R$ for $n = 1, 2, 3, \cdots$

Proof.

 \Rightarrow :

We suppose that $R^n \subset R$ for $n = 1, 2, 3, \cdots$. Note that if $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, $(a, c) \in R^2$.

Because $R^2 \subset R$, this means that $(a, c) \in R$. Hence, R is transitive.

 \Leftarrow : (Mathematical induction)

Assume that $R^n \subset R$ for $n \geq 1$ (inductive hypothesis). Let $(a,b) \in R^{n+1}$. Because $R^{n+1} = R^n \circ R$, there is an element x with $x \in A$ such that $(a,x) \in R$ and $(x,b) \in R^n$.

Theorem

The relation R on a set A is transitive if and only if $R^n \subset R$ for $n = 1, 2, 3, \cdots$

Proof.

 \Rightarrow :

We suppose that $R^n \subset R$ for $n = 1, 2, 3, \cdots$. Note that if $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, $(a, c) \in R^2$. Because $R^2 \subset R$, this means that $(a, c) \in R$. Hence, R is transitive.

 \Leftarrow : (Mathematical induction)

Assume that $R^n \subset R$ for $n \geq 1$ (inductive hypothesis). Let $(a,b) \in R^{n+1}$. Because $R^{n+1} = R^n \circ R$, there is an element x with $x \in A$ such that $(a,x) \in R$ and $(x,b) \in R^n$. Since $R^n \subset R$, implies that $(x,b) \in R$.

Theorem

The relation R on a set A is transitive if and only if $R^n \subset R$ for $n = 1, 2, 3, \cdots$

Proof.

 \Rightarrow :

We suppose that $R^n \subset R$ for $n = 1, 2, 3, \cdots$. Note that if $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, $(a, c) \in R^2$. Because $R^2 \subset R$, this means that $(a, c) \in R$. Hence, R is transitive. \Leftarrow : (Mathematical induction)

Assume that $R^n \subset R$ for $n \ge 1$ (inductive hypothesis). Let $(a,b) \in R^{n+1}$. Because $R^{n+1} = R^n \circ R$, there is an element x with $x \in A$ such that $(a,x) \in R$ and $(x,b) \in R^n$. Since $R^n \subset R$, implies that $(x,b) \in R$. Furthermore, because R is transitive, and $(a,x) \in R$ and $(x,b) \in R$, it follows that $(a,b) \in R$.

Theorem

The relation R on a set A is transitive if and only if $R^n \subset R$ for $n = 1, 2, 3, \cdots$

Proof.

 \Rightarrow :

We suppose that $R^n \subset R$ for $n = 1, 2, 3, \cdots$. Note that if $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, $(a, c) \in R^2$. Because $R^2 \subset R$, this means that $(a, c) \in R$. Hence, R is transitive. \Leftarrow : (Mathematical induction)

Assume that $R^n \subset R$ for $n \ge 1$ (inductive hypothesis). Let $(a,b) \in R^{n+1}$. Because $R^{n+1} = R^n \circ R$, there is an element x with $x \in A$ such that $(a,x) \in R$ and $(x,b) \in R^n$. Since $R^n \subset R$, implies that $(x,b) \in R$. Furthermore, because R is transitive, and $(a,x) \in R$ and $(x,b) \in R$, it follows that $(a,b) \in R$. This shows that $R^{n+1} \subset R$, completing the proof.

Question: Suppose that the relation R on a set is represented by the matrix

$$M_R = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

Is R reflexive, symmetric, and/or antisymmetric?

Question: Suppose that the relation R on a set is represented by the matrix

$$M_R = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

Is *R* reflexive, symmetric, and/or antisymmetric?

Solution:

Because all the diagonal elements of this matrix are equal to 1, R is reflexive.

Question: Suppose that the relation R on a set is represented by the matrix

$$M_R = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

Is *R* reflexive, symmetric, and/or antisymmetric?

Solution:

Because all the diagonal elements of this matrix are equal to 1, R is reflexive.

Moreover, because M_R is symmetric, it follows that R is symmetric.

Question: Suppose that the relation R on a set is represented by the matrix

$$M_R = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right)$$

Is R reflexive, symmetric, and/or antisymmetric?

Solution:

Because all the diagonal elements of this matrix are equal to 1, R is reflexive.

Moreover, because M_R is symmetric, it follows that R is symmetric. It is also easy to see that R is not antisymmetric.

Matrix operations

Suppose that R_1 and R_2 are relations on a set A represented by the matrices M_{R_1} and M_{R_2} , respectively.

Matrix operations

Suppose that R_1 and R_2 are relations on a set A represented by the matrices M_{R_1} and M_{R_2} , respectively.

Thus, the matrices representing the union, intersection, composite and power of these relations are

$$M_{R_1 \cup R_2} = M_{R_1} \vee M_{R_2},$$

 $M_{R_1 \cap R_2} = M_{R_1} \wedge M_{R_2},$
 $M_{R_1 \circ R_2} = M_{R_1} \odot M_{R_2},$
 $M_{R^n} = M_R^{[n]}.$

Examples

Suppose that the relations R_1 and R_2 on a set A are represented by the matrices

$$M_{R_1} = \left(egin{array}{ccc} 1 & 0 & 1 \ 1 & 1 & 0 \ 0 & 0 & 0 \end{array}
ight), M_{R_2} = \left(egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 1 \end{array}
ight).$$

Examples

Suppose that the relations R_1 and R_2 on a set A are represented by the matrices

$$M_{R_1} = \left(egin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}
ight), M_{R_2} = \left(egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{array}
ight).$$

Thus, the matrices representing the union and intersection of these relations are

$$M_{R_1 \cup R_2} = M_{R_1} \vee M_{R_2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix},$$

$$M_{R_1 \cap R_2} = M_{R_1} \wedge M_{R_2} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

Examples Cont'd

Suppose that the relations R_1 and R_2 on a set A are represented by the matrices

$$M_{R_1} = \left(egin{array}{ccc} 1 & 0 & 1 \ 1 & 1 & 0 \ 0 & 0 & 0 \end{array}
ight), M_{R_2} = \left(egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 1 \end{array}
ight).$$

Examples Cont'd

Suppose that the relations R_1 and R_2 on a set A are represented by the matrices

$$M_{R_1} = \left(egin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}
ight), M_{R_2} = \left(egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{array}
ight).$$

Thus, the matrices representing the composite and power of these relations are

$$M_{R_1 \circ R_2} = M_{R_1} \odot M_{R_2} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

$$M_{R_1^2} = M_{R_1}^{[2]} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Selection

Definition

Let R be an n-ary relation and C a condition that elements in R may satisfy. Then the **selection operator** s_C maps the n-ary relation R to the n-ary relation of all n-tuples from R that satisfy the condition C.

Selection

Definition

Let R be an n-ary relation and C a condition that elements in R may satisfy. Then the **selection operator** s_C maps the n-ary relation R to the n-ary relation of all n-tuples from R that satisfy the condition C.

Example

TABLE 1 Students.				
Student_name	ID_number	Major	GPA	
Ackermann	231455	Computer Science	3.88	
Adams	888323	Physics	3.45	
Chou Reco	rd 102147	Computer Science	3.49	
Goodfriend	453876	Mathematics	3.45	
Rao	678543	Mathematics	3.90	
Stevens	786576	Psychology	2.99	

- C₁: Major =
 "Computer Science";
- C_2 : GPA > 3.5;
- $C_3 : C_1 \wedge C_2$;

Projection

Definition

The projection $P_{i_1i_2,\cdots,i_m}$ where $i_1 < i_2 < \cdots < i_m$, maps the *n*-tuple (a_1,a_2,\cdots,a_n) to the *m*-tuple $(a_{i_1},a_{i_2},\cdots,a_{i_m})$, where $m \le n$.

Projection

Definition

The projection $P_{i_1i_2,\cdots,i_m}$ where $i_1 < i_2 < \cdots < i_m$, maps the *n*-tuple (a_1,a_2,\cdots,a_n) to the *m*-tuple $(a_{i_1},a_{i_2},\cdots,a_{i_m})$, where $m \le n$.

Example

TABLE 1 Students.				
Student_name ID_number		Major	GPA	
Ackermann	231455	Computer Science	3.88	
Adams	888323	Physics	3.45	
Chou Reco	rd 102147	Computer Science	3.49	
Goodfriend	453876	Mathematics	3.45	
Rao	678543	Mathematics	3.90	
Stevens	786576	Psychology	2.99	

TABLE 2 GPAs.			
Student_name	GPA		
Ackermann	3.88		
Adams	3.45		
Chou	3.49		
Goodfriend	3.45		
Rao	3.90		
Stevens	2.99		

Join

Definition

Let R be a relation of degree m and S be a relation of degree n. The join $J_p(R,S)$ is a relation of degree m+n-p that consists of all (m+n-p)-tuples $(a_1,\cdots,a_{m-p},c_1,\cdots,c_p,b_1,\cdots,b_{n-p})$, where the m-tuple $(a_1,\cdots,a_{m-p},c_1,\cdots,c_p)\in R$ and the n-tuple $(c_1,\cdots,c_p,b_1,\cdots,b_{n-p})\in S$.

Join

Definition

Let R be a relation of degree m and S be a relation of degree n. The join $J_p(R,S)$ is a relation of degree m+n-p that consists of all (m+n-p)-tuples $(a_1,\cdots,a_{m-p},c_1,\cdots,c_p,b_1,\cdots,b_{n-p})$, where the m-tuple $(a_1,\cdots,a_{m-p},c_1,\cdots,c_p)\in R$ and the n-tuple $(c_1,\cdots,c_p,b_1,\cdots,b_{n-p})\in S$.

TABLE 5 Teaching_assignments.				
Professor Department		Course_ number		
Cruz	Zoology	335		
Cruz	Zoology	412		
Farber	Psychology	501		
Farber	Psychology	617		
Grammer	Physics	544		
Grammer	Physics	551		
Rosen	Computer Science	518		
Rosen	Mathematics	575		

TABLE 6 Class_schedule.				
Department	Course_ number	Room	Time	
Computer Science	518	N521	2:00 р.м.	
Mathematics	575	N502	3:00 р.м.	
Mathematics	611	N521	4:00 р.м.	
Physics	544	B505	4:00 р.м.	
Psychology	501	A100	3:00 р.м.	
Psychology	617	A110	11:00 а.м.	
Zoology	335	A100	9:00 а.м.	
Zoology	412	A100	8:00 а.м.	

Join Cont'd

What relation results when the join operator J_2 is used to combine the relation displayed in above two tables?

TABLE 7 Teaching_schedule.					
Professor	Department	artment Course_number		Time	
Cruz	Zoology	335	A100	9:00 а.м.	
Cruz	Zoology	412	A100	8:00 а.м.	
Farber	Psychology	501	A100	3:00 р.м.	
Farber	Psychology	617	A110	11:00 а.м.	
Grammer	Physics	544	B505	4:00 р.м.	
Rosen	Computer Science	518	N521	2:00 р.м.	
Rosen	Mathematics	575	N502	3:00 р.м.	

Honolulu

Detroit

Denver

Detroit

08:30

08:47

09:10

09:44

Example

TADIE O EU LA

Acme

Nadir

Acme

Nadir

IABLE 8	Flights.		1 -	
Airline	Flight_number	Gate	Destination	Departure_time
Nadir	122	34	Detroit	08:10
Acme	221	22	Denver	08:17
Acme	122	33	Anchorage	08:22

34

13

22

34

323

199

222

322

Example

TABLE 8 Flights.					
Airline	Flight_number	Gate	Destination	Departure_time	
Nadir	122	34	Detroit	08:10	
Acme	221	22	Denver	08:17	
Acme	122	33	Anchorage	08:22	
Acme	323	34	Honolulu	08:30	
Nadir	199	13	Detroit	08:47	
Acme	222	22	Denver	09:10	
Nadir	322	34	Detroit	09:44	

SELECT Departure_time FROM Flights WHERE Destination='Detroit'

Take-aways

Conclusions

- Relation and Its Representation
- Properties of Relations
- n-ary Relations and Their Applications
- Relation Operators
 - Operations on Binary Relations
 - Operations on n-ary Relations
 - Structure Query Language

