Módulo 0: Nociones matemáticas básicas

0.2. Cálculo

Rafael Zambrano

rafazamb@gmail.com

Introducción

PARTE II: CÁLCULO

- 2.1 Funciones
- 2.2 Derivadas
- 2.3 Optimización

1. Matemática Analítica 2.1. Funciones

Funciones

Una función es la relación que existe entre dos conjuntos de valores

$$f(x) = 3x$$

y = 3x

• Constantes f(x) = k

$$f(\alpha) = 2$$

Las rectas paralelas al eje y no son funciones

$$x = 3$$

• Lineal f(x) = ax + b

 $m{a}$ es la pendiente de la recta (inclinación), y $m{b}$ es el punto donde corta en x=0

• Cuadráticas $f(x) = ax^2 + bx + c$ $f(x) = 2x^2 + x - 1$

$$f(x) = -2x^2 + x - 1$$

• Logaritmo f(x) = log(x)

• Exponencial $f(x) = a^x$

$$f(x) = e^x$$

$$f(x) = 0.6^x$$

Función signo

$$f(x) = \begin{cases} -1 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ 1 & \text{si } x > 0 \end{cases}$$

Trigonométricas

Máximos y mínimos de una función

Funciones de varias variables

Su entrada consiste en varios números

Matemática Analítica 2.2. Derivadas

Derivadas

 La derivada de una función representa la pendiente de la recta tangente a la función en cada punto

Derivadas de funciones de una variable

Sea f(x) una función. Expresamos su derivada como f'(x) ó $\frac{df}{dx}$

Tabla de derivadas más comunes

$$\frac{d}{dx}$$

Regla de la cadena

(para funciones compuestas):

Si $\mathbf{y} = f(\mathbf{u})$ es una función derivable de \mathbf{u} y u = g(x) es una función derivable de x, entonces:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$f(x) = a$$

$$f(x) = a$$
$$f(x) = x$$

$$f(x) = x$$
$$f(x) = ax$$

$$f(x) = ax + b$$

 $f(x) = x^n$

 $f(x) = \sqrt{x}$

 $f(x) = e^x$

 $f(x) = \ln(x)$

 $f(x) = a^x (a > 0)$

 $f(x) = \log_b(x)$

 $f(x) = \operatorname{sen}(x)$

 $f(x) = \cos(x)$

 $f(x) = \tan(x)$

 $f(x) = \frac{1}{x^n} = (x^n)^{-1} = x^{-n}$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

f'(x) = 0

f'(x) = 1

f'(x) = a

f'(x) = a

$$f'(x) = e^x$$

 $f'(x) = nx^{n-1}$

$$f'(x) = \frac{1}{x}$$

$$f'(x) = \frac{1}{x}$$
$$f'(x) = a^x \ln(a)$$

$$= a^x \ln(a)$$

$$f'(x) = \frac{1}{x \ln(b)}$$

$$) = \frac{1}{x \ln(b)}$$

$$x) = \frac{1}{x \ln(b)}$$

$$f'(x) = -nx^{-n-1} = -nx^{-(n+1)} = \frac{-n}{x^{n+1}}$$

$$f'(x) = \cos(x)$$

$$f'(x) = \cos(x)$$

$$f'(x) = \cos(x)$$
$$f'(x) = -\sin(x)$$

$$0 = \cos(x)$$

 $0 = -\sin(x)$

$$-\mathrm{sen}(x)$$

 $f'(x) = \sec^2(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$

Regla de la cadena: ejemplos

•
$$y = (x^2 + 1)^3$$
 $\Rightarrow \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 3(x^2 + 1)^2 \cdot 2x$
 $u = (x^2 + 1)$
 $y = u^3$

•
$$y = \ln(x^4)$$
 $\Rightarrow \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{x^4} \cdot 4x^3$
 $u = (x^4)$
 $y = \ln u$

$$\bullet$$
 $f(x) = ax$

•
$$J(a) = (f(x) - y)^2$$
 $\Rightarrow \frac{dJ}{da} = \frac{dJ}{df} \cdot \frac{df}{da} = 2(f(x) - y) \cdot x$

Derivadas de funciones de varias variables

- El Gradiente es la generalización de derivada a funciones de más de una variable
- Sea f(x,y) una función de dos variables. Su gradiente es un vector compuesto por las derivadas parciales:

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

• Ejemplo: $f(x, y) = 3x^2 + y^3$

$$\frac{\partial f}{\partial x} = 6x$$

$$\frac{\partial f}{\partial y} = 3y^2 \Rightarrow \nabla f(x, y) = \begin{bmatrix} 6x \\ 3y^2 \end{bmatrix}$$

Interpretación del gradiente

Ejemplo

$$f(x,y) = x^{2} + y^{2}$$

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2y$$

$$\Rightarrow \nabla f(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

En cada punto del plano XY, el vector gradiente apunta en la dirección de máximo crecimiento de f(x,y)

Matemática Analítica 2.3. Optimización

Optimización

- Consiste en obtener el máximo o mínimo de una función sujeta a posibles restricciones
- Ejemplo: El Levante vende 1000 camisetas cada mes a un precio de 12 euros. Tras realizar una encuesta, se estima que por cada incremento de 1 euro en el precio, se venderían 10 camisetas menos. ¿A qué precio debe vender el Levante las camisetas para maximizar sus beneficios? ¿Cuál será el nuevo beneficio esperado?

$$Beneficio(B) = Precio(P) \times Cantidad(C)$$

$$B = (12+1x) \times (1000 - 10x) \quad \text{\times representa el número de incrementos de 16}$$

$$B = -10x^2 + 880x + 12000$$

$$B' = -20x + 880 = 0 \quad \Rightarrow x = 44$$

- \Rightarrow El precio que maximiza los beneficios será: $P = 12 + 1 \times 44 = 56$ euros
- \Rightarrow El beneficio esperado será: $B = 56 \times (1000 10 \times 44) = 31.360$ euros

Optimización: gradiente descendente

El algoritmo del gradiente descendente es muy utilizado en problemas de Inteligencia
 Artificial, cuando tenemos funciones multivariables

Conclusiones Cálculo

- 2.1 Funciones
- 2.2 Derivadas
- 2.3 Optimización

$$\nabla f(x, y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

 $f: \mathbb{R} \mapsto \mathbb{R}$ $f: \mathbb{R}^2 \mapsto \mathbb{R}$

¡Gracias!

Contacto: Rafael Zambrano

rafazamb@gmail.com