Randomized lock-free methods for minimizing partially separable convex functions

Peter Richtárik

School of Mathematics The University of Edinburgh

Joint work with Martin Takáč (Edinburgh)

Edinburgh \diamond January 30, 2013

Lock-Free (Asynchronous) Updates

Between the time when x is read by any given processor and an update is computed and applied to x by it, other processors apply their updates.

$$x_6 \leftarrow x_5 + update(x_3)$$

Other processors

Viewpoint of a single processor

Generic Parallel Lock-Free Algorithm

In general:

$$x_{j+1} = x_j + update(x_{r(j)})$$

- ightharpoonup r(j) = index of iterate current at reading time
- ightharpoonup j = index of iterate current at writing time

Assumption:

$$|j-r(j)\leq \frac{\tau}{r}|$$

$$\tau + 1 \approx \#$$
 processors

The Problem and Its Structure

minimize
$$_{x \in \mathbb{R}^{|V|}} [f(x) \equiv \sum_{e \in E} f_e(x)]$$
 (OPT)

- ▶ Set of vertices/coordinates: V ($x = (x_v, v \in V)$, dim x = |V|)
- ▶ Set of edges: $E \subset 2^V$
- \triangleright Set of blocks: B (a collection of sets forming a partition of V)
- ▶ Assumption: f_e depends on x_v , $v \in e$, only

Example (convex $f : \mathbb{R}^5 \to \mathbb{R}$):

$$f(x) = \underbrace{7(x_1 + x_3)^2}_{f_{e_1}(x)} + \underbrace{5(x_2 - x_3 + x_4)^2}_{f_{e_2}(x)} + \underbrace{(x_4 - x_5)^2}_{f_{e_3}(x)}$$

$$V = \{1, 2, 3, 4, 5\}, \quad |V| = 5, \quad e_1 = \{1, 3\}, \quad e_2 = \{2, 3, 4\}, \quad e_3 = \{4, 5\}$$

Applications

- structured stochastic optimization (via Sample Average Approximation)
- learning
- sparse least-squares
- sparse SVMs, matrix completion, graph cuts (see Niu-Recht-Ré-Wright (2011))
- truss topology design
- optimal statistical designs

PART 1:

LOCK-FREE HYBRID SGD/RCD METHODS

based on:

P. R. and M. Takáč, Lock-free randomized first order methods, manuscript, 2013.

Problem-Specific Constants

function	definition	average	maximum
Edge-Vertex Degree			
(# vertices incident with an edge)	$ \omega_e = e = \{v \in V : v \in e\} $	$\bar{\omega}$	ω'
(relevant if $ B = V $)			
Edge-Block Degree		_	
(# blocks incident with an edge)	$\sigma_e = \{b \in B : b \cap e \neq \emptyset\} $	σ	σ'
(relevant if $ B > 1$)			
Vertex-Edge Degree		_	
(# edges incident with a vertex)	$\delta_{v} = \{e \in E \ : \ v \in e\} $	$\bar{\delta}$	δ'
(not needed!)			
Edge-Edge Degree		_	
(# edges incident with an edge)	$\rho_e = \{e' \in E : e' \cap e \neq \emptyset\} $	ρ	ho'
(relevant if $ E > 1$)		·	

Remarks:

- ▶ Our results depend on: $\bar{\sigma}$ (avg Edge-Block degree) and $\bar{\rho}$ (avg Edge-Edge degree)
- First and second row are identical if |B| = |V| (blocks correspond to vertices/coordinates)

Example

$$A = \begin{bmatrix} A_1^T \\ A_2^T \\ A_3^T \\ A_4^T \end{bmatrix} = \begin{pmatrix} 5 & 0 & -3 \\ 1.5 & 2.1 & 0 \\ 0 & 0 & 6 \\ .4 & 0 & 0 \end{pmatrix} \in \mathbf{R}^{4 \times 3}$$

$$f(x) = \frac{1}{2} ||Ax||_2^2 = \frac{1}{2} \sum_{i=1}^{4} (A_i^T x)^2, \quad |E| = 4, \quad |V| = 3$$

Example

$$A = \begin{bmatrix} A_1^T \\ A_2^T \\ A_3^T \\ A_4^T \end{bmatrix} = \begin{pmatrix} 5 & 0 & -3 \\ 1.5 & 2.1 & 0 \\ 0 & 0 & 6 \\ .4 & 0 & 0 \end{pmatrix} \in \mathbf{R}^{4 \times 3}$$

$$f(x) = \frac{1}{2} ||Ax||_2^2 = \frac{1}{2} \sum_{i=1}^4 (A_i^T x)^2, \quad |E| = 4, \quad |V| = 3$$

Computation of $\bar{\omega}$ and $\bar{\rho}$:

	v_1	<i>V</i> ₂	<i>V</i> ₃	ω_{e_i}	$ ho_{e_i}$
e_1	×		×	2	4
e_2	×	×		2	3
e_3			×	1	2
e_4	×			1	3
δ_{v_j}	3	1	2	$\bar{\omega} = \frac{2+2+1+1}{4} = 1.5,$	$\bar{\rho} = \frac{4+3+2+3}{4} = 3$

$$\omega_e = |e|, \quad \rho_e = |\{e' \in E : e' \cap e \neq \emptyset\}, \quad \delta_v = |\{e \in E : v \in e\}|$$

Algorithm

Iteration j + 1 looks as follows:

$$x_{j+1} = x_j - \gamma |E| \sigma_e \nabla_b f_e(x_{r(j)})$$

Viewpoint of the processor performing this iteration:

- ▶ Pick edge $e \in E$, uniformly at random
- ▶ Pick block *b* intersecting edge *e*, uniformly at random
- ▶ Read current x (enough to read x_v for $v \in e$)
- ▶ Compute $\nabla_b f_e(x)$
- ▶ Apply update: $x \leftarrow x \alpha \nabla_b f_e(x)$ with $\alpha = \gamma |E| \sigma_e$ and $\gamma > 0$
- Do not wait (no synchronization!) and start again!

Easy to show that

$$\mathbf{E}[|E|\sigma_e\nabla_b f_e(x)] = \nabla f(x)$$

Main Result

Setup:

- ightharpoonup c = c strong convexity parameter of f
- ▶ $L = \text{Lipschitz constant of } \nabla f$
- ▶ $\|\nabla f(x)\|_2 \le M$ for x visited by the method
- Starting point: $x_0 \in \mathbf{R}^{|V|}$
- $ightharpoonup \epsilon$ "small enough"
- ightharpoonup constant stepsize γ

Main Result

Setup:

- ightharpoonup c = c = c = c = c
- $L = \text{Lipschitz constant of } \nabla f$
- ▶ $\|\nabla f(x)\|_2 \le M$ for x visited by the method
- ▶ Starting point: $x_0 \in \mathbf{R}^{|V|}$
- ϵ "small enough"
- ightharpoonup constant stepsize γ

Result: Under the above assumptions, for

$$k \ge \left(\frac{\bar{\sigma}}{2} + \frac{\tau \bar{\rho}}{|E|}\right) \left(\frac{M^2}{c}\right) \frac{1}{\epsilon} \log \left(\frac{L \|x_0 - x_*\|_2^2}{\epsilon} - 1\right),$$

we have

$$\min_{0 \le i \le k} \mathbf{E}\{f(x_j) - f_*\} \le \epsilon.$$

Special Cases

special case	lock-free parallel version of	$\frac{\bar{\sigma}}{2} + \frac{\tau \bar{\rho}}{ E }$
E =1	Randomized Block Coordinate Descent	$\frac{ B }{2} + \frac{\tau}{ E }$
B =1	Incremental Gradient Descent (Hogwild! as implemented)	$\frac{1}{2} + \frac{\tau \bar{\rho}}{ E }$
B = V	RAINCODE: RAndomized INcremental COordinate DEscent (Hogwild! as analyzed)	$\frac{\bar{\omega}}{2} + \frac{\tau \bar{\rho}}{ E }$
E = B = 1	Gradient Descent	$\frac{1}{2} + \tau$

Analysis via a New Recurrence

Let
$$a_j = \frac{1}{2} \mathbf{E}[\|x_j - x_*\|^2]$$

Nemirovski-Juditsky-Lan-Shapiro:

$$a_{j+1} \leq (1 - 2c\gamma_j)a_j + \frac{1}{2}\gamma_j^2 M^2$$

Niu-Recht-Ré-Wright (Hogwild!):

$$a_{j+1} \leq (1 - c\gamma)a_j + \gamma^2(\sqrt{2}c\omega' M \tau(\delta')^{1/2})a_j^{1/2} + \frac{1}{2}\gamma^2 M^2 Q,$$
 where $Q = \omega' + 2\tau rac{
ho'}{|E|} + 4\omega' rac{
ho'}{|E|} au + 2 au^2(\omega')^2(\delta')^{1/2}$

R.-Takáč:

$$a_{j+1} \leq (1 - 2c\gamma)a_j - \gamma\epsilon + \gamma^2 \left(\frac{\bar{\sigma}}{2} + \frac{\tau\bar{\rho}}{|E|}\right)M^2$$

PSF: Parallelization Speedup Factor

$$\mathsf{PSF} \ = \frac{\Lambda \ \mathsf{of} \ \mathsf{serial} \ \mathsf{version}}{(\Lambda \ \mathsf{of} \ \mathsf{parallel} \ \mathsf{version})/\tau} = \frac{\bar{\sigma}/2}{(\bar{\sigma}/2 + \frac{\tau \bar{\rho}}{|E|})/\tau} = \boxed{\frac{1}{\frac{1}{\tau} + \frac{2\bar{\rho}}{\bar{\sigma}|E|}}}$$

PSF: Parallelization Speedup Factor

$$\mathsf{PSF} \ = \frac{\Lambda \ \mathsf{of \ serial \ version}}{\left(\Lambda \ \mathsf{of \ parallel \ version}\right)/\tau} = \frac{\bar{\sigma}/2}{\left(\bar{\sigma}/2 + \frac{\tau\bar{\rho}}{|E|}\right)/\tau} = \boxed{\frac{1}{\frac{1}{\tau} + \frac{2\bar{\rho}}{\bar{\sigma}|E|}}}$$

Three modes:

Brute force (many processors, i.e., τ very large):

$$\mathsf{PSF} \; \approx \frac{\bar{\sigma}|E|}{2\bar{\rho}}$$

▶ Favorable structure $(\frac{\bar{\rho}}{\bar{\sigma}|E|} \ll \frac{1}{\tau}$; fixed τ):

$$\mathsf{PSF} \, \approx \tau$$

▶ Special τ $(\tau = \frac{\bar{\sigma}|E|}{2\bar{\rho}})$:

$$\mathsf{PSF} = \frac{\bar{\sigma}|E|}{4\bar{\rho}} = \frac{\tau}{2}$$

PSF: Random Problems

Model: Each e is

- \triangleright a random subset of V,
- chosen uniformly from subsets of cardinality $|e| = \omega$

Result:

$$\mathbf{E}[\mathsf{PSF}] = \mathbf{E}\left[\frac{\overline{\sigma}|E|}{2\overline{\rho}}\right] = \begin{cases} \frac{|E|\omega}{2\left[1 + (|E|-1)\left(1 - \frac{\left(|V|-\omega}{|V|}\right)\right)\right]} & \omega \leq \frac{|V|}{2} \\ \frac{\omega}{2} & \omega > \frac{|V|}{2}. \end{cases}$$

PSF: Example with |V| = 100 and "large" |E|

worst
$$\omega \approx \sqrt{|V|}$$
,

$$\text{worst } \omega \approx \sqrt{|V|}, \qquad \mathbf{E}[\mathit{PSF}] \geq 0.7 \sqrt{|V|} \quad \text{for} \quad |V| \geq 24$$

Improvements vs Hogwild!

For |B| = |V| (blocks = coordinates) our method reduces to Hogwild! (up to stepsize choice):

$$x_{j+1} = x_j - \gamma |E| \omega_e \nabla_v f_e(x_{r(j)})$$

Improvements vs Hogwild!

For |B| = |V| (blocks = coordinates) our method reduces to Hogwild! (up to stepsize choice):

$$x_{j+1} = x_j - \gamma |E| \omega_e \nabla_v f_e(x_{r(j)})$$

Niu-Recht-Ré-Wright (Hogwild!, 2011):

$$\Lambda = \left(4\omega' + 24\tau \frac{\rho'}{|E|} + \left[24\tau^2 \omega' (\delta')^{1/2}\right]\right) \frac{LM^2}{c^2}$$

R.-Takáč:

$$\Lambda = \left(\frac{\bar{\omega}}{2} + \frac{\tau \bar{\rho}}{|E|}\right) \frac{M^2}{c}$$

Improvements vs Hogwild!

For |B| = |V| (blocks = coordinates) our method reduces to Hogwild! (up to stepsize choice):

$$x_{j+1} = x_j - \gamma |E| \omega_e \nabla_v f_e(x_{r(j)})$$

Niu-Recht-Ré-Wright (Hogwild!, 2011):

$$\Lambda = \left(4\omega' + 24\tau \frac{\rho'}{|E|} + \boxed{24\tau^2 \omega' (\delta')^{1/2}}\right) \frac{LM^2}{c^2}$$

R.-Takáč:

$$\Lambda = \left(\frac{\bar{\omega}}{2} + \frac{\tau \bar{\rho}}{|E|}\right) \frac{M^2}{c}$$

Our results are better:

- ▶ Dependence on averages and not maxima! $(\omega' \to \bar{\omega}, \rho' \to \bar{\rho})$
- ▶ Better constants $(4 \rightarrow 1/2, 24 \rightarrow 1)$
- ▶ The **boxed large term** is **not present** (no dependence on τ^2 and δ')
- ▶ Removal of L/c term $(L/c^2 \rightarrow 1/c)$
- ► Introduction of blocks (⇒ cover also block coordinate descent, gradient descent, SGD), simpler analysis, ...

Experiment 1: RCV dataset

size = 1.2 GB, # features = |V| = 47,236, training: |E| = 677,399

Experiment 2

Artificial problem instance:

minimize
$$f(x) = \frac{1}{2} ||Ax||^2 = \sum_{i=1}^m \frac{1}{2} (A_i^T x)^2.$$

 $A \in \mathbf{R}^{m \times n}; \qquad m = |E| = 500,000; \qquad n = |V| = 50,000$

We measured elapsed time needed to perform 20m iterations (20 epochs)

$|e| = 10^5$ for all edges

$|e|=10^2$ with prob 0.5, $|e|=10^5$ with prob 0.5

$|e|=10^2$ with prob 0.96835, $|e|=10^5$ otherwise

Modification for Non-Uniform Memory Access (NUMA) Architectures *

Partition vertices (coordinates) into $\tau + 1$ blocks

$$V = b_1 \cup b_2 \cup \cdots \cup b_{\tau+1}$$

and assign block b_i to processor i, $i = 1, 2, ..., \tau + 1$.

Processor i will (asynchronously) do:

- ▶ Pick edge $e \in \{e' \in E : e' \cap b_i \neq \emptyset\}$, uniformly at random (edge intersecting with block owned by processor i)
- Update:

$$x_{j+1} = x_j - \alpha \nabla_{b_i} f_e(x_{r(j)})$$

Pros and cons:

- + good if local reads/writes are cheaper
- do not have an analysis
- * Idea proposed by Ben Recht.

NUMA: Delay in reading from / writing to non-local memory downgrades performance

PART 2:

PARALLEL BLOCK COORDINATE DESCENT

based on:

P. R. and M. Takáč, Parallel coordinate descent methods for big data optimization, arXiv:1212:0873, 2012.

Overview

 A rich family of synchronous parallel block coordinate descent methods

Overview

- A rich family of synchronous parallel block coordinate descent methods
- ► Theory and algorithms work for convex composite functions with block-separable regularizer:

minimize:
$$F(x) \equiv \underbrace{\sum_{e \in E} f_e(x)}_{f} + \lambda \underbrace{\sum_{b \in B} \Psi_b(x)}_{\Psi}$$
.

- ▶ Decomposition $f = \sum_{e \in E} f_e$ does not need to be known!
- f: convex or strongly convex (complexity for both)

Overview

- A rich family of synchronous parallel block coordinate descent methods
- ► Theory and algorithms work for convex composite functions with block-separable regularizer:

minimize:
$$F(x) \equiv \underbrace{\sum_{e \in E} f_e(x) + \lambda}_{f} \underbrace{\sum_{b \in B} \Psi_b(x)}_{\Psi}$$
.

- ▶ Decomposition $f = \sum_{e \in E} f_e$ does not need to be known!
- f: convex or strongly convex (complexity for both)
- ► All parameters for running the method according to theory are easy to compute:
 - ▶ block Lipschitz constants $L_1, ..., L_{|B|}$
 - ω'

ACDC: Lock-Free Parallel Coordinate Descent C++ code

http://code.google.com/p/ac-dc/

Can solve a LASSO problem with

- $|V| = 10^9$
- ▶ $|E| = 2 \times 10^9$,
- ▶ $\omega' = 35$,
- on a machine with $\tau = 24$ processors,
- ▶ to $\epsilon = 10^{-14}$ accuracy,
- ▶ in 2 hours,
- ▶ starting with initial gap $\approx 10^{22}$.

Complexity Results

First complexity analysis of parallel coordinate descent:

$$\mathbf{P}(F(x_k) - F^* \le \epsilon) \ge 1 - p$$

Convex functions:

$$k \ge \left(\frac{2\beta}{\alpha}\right)^{\frac{\|x_0 - x_*\|_L^2}{\epsilon}} \log \frac{F(x_0) - F^*}{\epsilon p}$$

▶ Strongly convex functions (with parameters μ_f and μ_{Ψ}):

$$k \ge \frac{\beta + \mu_{\Psi}}{\alpha(\mu_f + \mu_{\Psi})} \log \frac{F(x_0) - F^*}{\epsilon p}$$

Leading constants matter!

Parallelization Speedup Factors

Closed-form formulas for parallelization speedup factors (PSFs):

- ▶ PSFs are functions of ω' , τ and |B|, and depend on sampling
- Example 1: fully parallel sampling (all blocks are updated, i.e., $\tau = |B|$):

$$PSF = \frac{|B|}{\omega'}.$$

Example 2: τ -nice sampling (all subsets of τ blocks are chosen with the same probability):

$$PSF = \frac{\tau}{1 + \frac{(\omega'-1)(\tau-1)}{|B|-1}}.$$

A Problem with Billion Variables

LASSO problem:

$$F(x) = \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

The instance:

- ► A has
 - ▶ $|E| = m = 2 \times 10^9$ rows
 - $|V| = n = 10^9$ columns (= # of variables)
 - exactly 20 nonzeros in each column
 - lacktriangle on average 10 and at most 35 nonzeros in each row ($\omega'=$ 35)
- optimal solution x^* has 10^5 nonzeros
- $\lambda = 1$

Solver: Asynchronous parallel coordinate descent method with independent nice sampling and $\tau=1,8,16$ cores

Coordinate Updates / n

Iterations / n

Wall Time

Billion Variables — 1 Core

_k/n	$F(x_k) - F^*$	$\ x_k\ _0$	time [hours]
0	$< 10^{23}$	0	0.00
3	$< 10^{21}$	451,016,082	3.20
4	$< 10^{20}$	583,761,145	4.28
6	$< 10^{19}$	537,858,203	6.64
7	$< 10^{17}$	439,384,488	7.87
8	$< 10^{16}$	329,550,078	9.15
9	$< 10^{15}$	229,280,404	10.43
13	$< 10^{13}$	30,256,388	15.35
14	$< 10^{12}$	16,496,768	16.65
15	$< 10^{11}$	8,781,813	17.94
16	$< 10^{10}$	4,580,981	19.23
17	< 10 ⁹	2,353,277	20.49
19	< 108	627,157	23.06
21	$< 10^{6}$	215,478	25.42
23	$< 10^{5}$	123,788	27.92
26	$< 10^{3}$	102,181	31.71
29	$< 10^{1}$	100,202	35.31
31	$< 10^{0}$	100,032	37.90
32	$< 10^{-1}$	100,010	39.17
33	$< 10^{-2}$	100,002	40.39
34	$< 10^{-13}$	100,000	41.47

Billion Variables — 1, 8 and 16 Cores

	$F(x_k) - F^*$			Elapsed Time		
$(k \cdot \tau)/n$	1 core	8 cores	16 cores	1 core	8 cores	16 cores
0	6.27e+22	6.27e+22	6.27e+22	0.00	0.00	0.00
1	2.24e+22	2.24e+22	2.24e+22	0.89	0.11	0.06
2	2.25e+22	3.64e+19	2.24e+22	1.97	0.27	0.14
3	1.15e+20	1.94e+19	1.37e+20	3.20	0.43	0.21
4	5.25e+19	1.42e+18	8.19e+19	4.28	0.58	0.29
5	1.59e+19	1.05e+17	3.37e+19	5.37	0.73	0.37
6	1.97e+18	1.17e+16	1.33e+19	6.64	0.89	0.45
7	2.40e+16	3.18e+15	8.39e+17	7.87	1.04	0.53
:	:	:	:	:	:	:
26	3.49e+02	4.11e+01	3.68e+03	31.71	3.99	2.02
27	1.92e+02	5.70e+00	7.77e+02	33.00	4.14	2.10
28	1.07e+02	2.14e+00	6.69e+02	34.23	4.30	2.17
29	6.18e+00	2.35e-01	3.64e+01	35.31	4.45	2.25
30	4.31e+00	4.03e-02	2.74e+00	36.60	4.60	2.33
31	6.17e-01	3.50e-02	6.20e-01	37.90	4.75	2.41
32	1.83e-02	2.41e-03	2.34e-01	39.17	4.91	2.48
33	3.80e-03	1.63e-03	1.57e-02	40.39	5.06	2.56
34	7.28e-14	7.46e-14	1.20e-02	41.47	5.21	2.64
35	_	-	1.23e-03	-	-	2.72
36	_	-	3.99e-04	-	_	2.80
37	_	-	7.46e-14	-	-	2.87
ı,	1	Į.	'	4 □ →	← □ → ← E	★

References

- P. R. and M. Takáč, Lock-free randomized first order methods, 2013.
- P. R. and M. Takáč, Parallel coordinate descent methods for big data optimization, arXiv:1212:0873, 2012.
- P. R. and M. Takáč, Iteration complexity of block coordinate descent methods for minimizing a composite function, Mathematical Programming, Series A, 2013.
- P. R. and M. Takáč, Efficient serial and parallel coordinate descent methods for huge-scale truss topology design, Operations Research Proceedings, 2012.
- F. Niu, B. Recht, C. Ré, and S. Wright, Hogwild!: A lock-free approach to parallelizing stochastic gradient descent, NIPS 2011.
- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM J. Opt., (4):1574–1609, 2009.
- M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent, NIPS 2010.
- Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Opt. 22(2):341–362, 2012.