

# **PowerFactory 2021**

**Technical Reference** 

**Sprecher SPRECON-E-P DSR** 

#### Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88

info@digsilent.de

Please visit our homepage at: https://www.digsilent.de

# Copyright © 2021 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

November 15, 2019 PowerFactory 2021 Revision 924

# **Contents**

| 1 | Mod | lel info              | rmation                              | 1  |  |  |  |
|---|-----|-----------------------|--------------------------------------|----|--|--|--|
| 2 | Gen | General description 1 |                                      |    |  |  |  |
| 3 | Sup | ported                | features                             | 2  |  |  |  |
|   | 3.1 | Meası                 | urement and acquisition              | 2  |  |  |  |
|   |     | 3.1.1                 | Available elements and input signals | 2  |  |  |  |
|   |     | 3.1.2                 | Functionality                        | 3  |  |  |  |
|   |     | 3.1.3                 | Data input                           | 3  |  |  |  |
|   | 3.2 | In rusl               | n restraint                          | 4  |  |  |  |
|   |     | 3.2.1                 | Available elements and input signals | 4  |  |  |  |
|   |     | 3.2.2                 | Functionality                        | 4  |  |  |  |
|   |     | 3.2.3                 | Data input                           | 4  |  |  |  |
|   | 3.3 | Reclos                | sing                                 | 6  |  |  |  |
|   |     | 3.3.1                 | Available elements                   | 6  |  |  |  |
|   |     | 3.3.2                 | Functionality                        | 6  |  |  |  |
|   |     | 3.3.3                 | Data input                           | 6  |  |  |  |
|   | 3.4 | IL sub                | relay                                | 7  |  |  |  |
|   |     | 3.4.1                 | Available Units                      | 7  |  |  |  |
|   |     | 3.4.2                 | Functionality                        | 7  |  |  |  |
|   |     | 3.4.3                 | Data input                           | 8  |  |  |  |
|   | 3.5 | IE sub                | orelay                               | 9  |  |  |  |
|   |     | 3.5.1                 | Available Units                      | 9  |  |  |  |
|   |     | 3.5.2                 | Functionality                        | 9  |  |  |  |
|   |     | 3.5.3                 | Data input                           | 10 |  |  |  |
|   | 3.6 | Ineg s                | ubrelay                              | 12 |  |  |  |
|   |     | 3.6.1                 | Available Units                      | 12 |  |  |  |
|   |     | 3.6.2                 | Functionality                        | 12 |  |  |  |
|   |     | 3.6.3                 | Data input                           | 13 |  |  |  |
|   | 3.7 | Overlo                | pad subrelay                         | 14 |  |  |  |

# Contents

| 5 | Refe | rences  | <b>:</b>                                    | 27 |
|---|------|---------|---------------------------------------------|----|
| 4 | Feat | ures n  | ot supported                                | 26 |
|   |      | 3.12.3  | Data input                                  | 25 |
|   |      | 3.12.2  | Functionality                               | 25 |
|   |      | 3.12.1  | Available elements and relay output signals | 25 |
|   | 3.12 | Output  | logic                                       | 25 |
|   |      | 3.11.3  | Data input                                  | 23 |
|   |      | 3.11.2  | Functionality                               | 23 |
|   |      | 3.11.1  | Available Units and input signals           | 23 |
|   | 3.11 | Freque  | ency subrelay                               | 23 |
|   |      | 3.10.3  | Data input                                  | 20 |
|   |      | 3.10.2  | Functionality                               | 19 |
|   |      | 3.10.1  | Available Units and input signals           | 19 |
|   | 3.10 | Voltage | e subrelay                                  | 19 |
|   |      | 3.9.3   | Data input                                  | 17 |
|   |      | 3.9.2   | Functionality                               | 17 |
|   |      | 3.9.1   | Available Units and input signals           | 17 |
|   | 3.9  |         | ubrelay                                     | 17 |
|   |      | 3.8.3   | Data input                                  | 16 |
|   |      | 3.8.2   | Functionality                               | 16 |
|   | 0.0  | 3.8.1   | Available Units and input signals           | 16 |
|   | 3.8  | CBF s   | ubrelay                                     | 16 |
|   |      | 3.7.3   | Data input                                  | 15 |
|   |      | 3.7.2   | Functionality                               | 14 |
|   |      | 3.7.1   | Available Units                             | 14 |

# 1 Model information

Manufacturer Sprecher

Model SPRECON-E-P DSR

**Variants** This PowerFactory relay model simulates a reduced set of the features present in the Sprecher SPRECON-E-P DS relay.

# 2 General description

The Sprecher SPRECON-E-P DSR devices are one-box solutions for protection and control, which allow protection of primary equipment by simultaneously accomplishing control and monitoring functions in electric power systems.

The protection functions available in the devices provide selective short-circuit protection, ground fault protection, and overload protection in medium- and high-voltage systems.

The PowerFactory Sprecher SPRECON-E-P DSR relay model simulates a subset of the protective features available in the relay and consists of a main relay model and the following sub relays:

- IL
- IE
- Ineg
- Overload
- CBF
- SCD
- Voltage
- Frequency

The main relay contains the measurement and acquisition elements, the output element which operated the power breaker(s), the inrush restraint features, the reclosing element and the sub relays.

The model implementation has been based on the information available in the relay technical brochure and manual [1] [2] .

# 3 Supported features

# 3.1 Measurement and acquisition

It represents the interface between the power system and the relay protective elements.

The phase currents flowing in the power system are converted by a block which simulates a 3 phase CT and by a block which models a single phase CT detecting the earth current; the voltages are converted by a block which simulates a 3 phase VT and by a block which simulates an open delta VT. The secondary currents and voltages are then measured in the relay model by height elements which simulate the digital sampling of the relay.

## 3.1.1 Available elements and input signals

The *Measurement and acquisition* feature consists of the following elements:

- One 3 phase current transformer ("Ct-3P" block).
- One neutral current transformer ("Ct-E/N" block).
- One 3 phase voltage transformer ("Vt-3P" block).
- One open delta voltage transformer ("Open Delta Vt" block).
- One 3 phase measurement element ("Measure Ph" block).
- One sequence measurement element ("Measure Sequence" block).
- Two 3 phase current harmonic measurement element ("Measure Ph 1st harmonic", and "Measure Ph 2nd harmonic" block).
- One single phase neutral measurement element ("Neutral measurement" block).
- One single phase harmonic neutral measurement element ("Neutral measurement 1st harmonic" block).
- One 3 phase phase-phase measurement element ("Measure Delta" block).
- One 3 phase phase-phase harmonic measurement element ("Measure Delta 1st harmonic" block).
- One frequency measurement element ("Measure Frequency" block).

The following relay input signals can be used:

- ExtBlock\_L1A;B;C (one for each phase) blocking the "IL>" element ("IL" subrelay).
- ExtBlock L2A;B;C (one for each phase) blocking the "IL>>" element ("IL" subrelay).
- ExtBlock L3A;B;C (one for each phase) blocking the "IL>>>" element ("IL" subrelay).
- ExtBlock L4A;B;C (one for each phase) blocking the "IL>>>>" element ("IL" subrelay).
- ExtBlock E1A;B;C blocking the "IE>" element ("IE" subrelay).
- ExtBlock\_E2 blocking the "IE>>" element ("IE" subrelay).

- ExtBlock E3 blocking the "IE>>>" element ("IE" subrelay).
- ExtBlock\_E4 blocking the "IE>>>>" element ("IE" subrelay).
- ExtBlock neg blocking the "Ineg" subrelay elements.
- ExtBlock\_overload blocking the thermal image element ("Overload" subrelay).
- ExtBlock\_CBF blocking the circuit breaker failure logic ("CBF" subrelay).
- extblock A; extblock B; extblock C UM blocking the "U>" element ("Voltage" subrelay).
- extblock\_A;extblock\_B;extblock\_C\_UMM blocking the "U>>" element ("Voltage" subrelay).
- extblock\_A;extblock\_B;extblock\_C\_Um blocking the "U<" element ("Voltage" subrelay).
- extblock\_A;extblock\_B;extblock\_C\_Umm blocking the "U<< " element ("Voltage" subrelay).
- extblock\_UNEM blocking the "UNE>" element ("Voltage" subrelay).
- extblock\_UNEMM blocking the "UNE>>"element ("Voltage" subrelay).
- ExtBlock\_f1 blocking the "F1><" element ("Frequency" subrelay).
- ExtBlock\_f2 blocking the "F2><" element ("Frequency" subrelay).
- ExtBlock f3 blocking the "F3><" element ("Frequency" subrelay).
- ExtBlock\_f4 blocking the "F4><" element ("Frequency" subrelay).

#### 3.1.2 Functionality

The "Ct-3P" and the "Ct-E/N" block represent ideal CTs. Using the CT default configuration the current at the primary side are converted to the secondary side using the CT ratio. The CT saturation and/or its magnetizing characteristic are not considered. Please set the "Detailed Model" check box in the "Detailed Data" tab page of the CT dialog and insert the data regarding the CT burden, the CT secondary resistance and the CT excitation parameter if more accurate simulation results are required.

The input current values are sampled by the "Measure Ph", the "Measure Sequence", the "Measure Ph 1st harmonic", the "Measure Ph 2nd harmonic", the "Neutral measurement", and the "Neutral measurement 1st harmonic" block at 20 samples/cycle. The values are processed by a DFT filter, operating over a cycle, which then calculates the voltage and current RMS values used by the protective elements.

#### 3.1.3 Data input

The CT secondary rated current (1 or 5 A) value must be set in the "Measure Ph", in the "Measure Sequence", in the "Measure Ph 1st harmonic", in the "Measure Ph 2nd harmonic", in the "Neutral measurement", and in the "Neutral measurement 1st harmonic" block. The VT secondary rated voltage must be set in the same measurement elements and in the "Measure Frequency", in the "Measure Delta", and in the "Measure Delta 1st harmonic" block; it is not required in the "Measure Ph 2nd harmonic" block.

If no core CT is available please select the 3 phases CT also in the "Ct-E/N" slot: the earth current will be calculated assuming that an Holmgreen's connection of the phases is used.

#### 3.2 In rush restraint

The *In rush restraint* feature is part of the main relay and is connected to the IL, IE, and Ineg subrelay.

## 3.2.1 Available elements and input signals

The *In rush restraint* feature consists of the following elements:

- One harmonic percentage calculation element ("Inrush calc" block).
- One minimum phase current detection element (">0.2In" block).
- One maximum phase current element ("Inrushrest. up to IL" block).
- One harmonic percentage threshold ("I2f/1f> (IL)" block).
- One restraint logic element ("Inrush Restraint" block).

#### 3.2.2 Functionality

The *In rush restraint* feature allows to inhibit the phase, zero sequence and negative sequence element trip when an inrush condition has been detected. The ability to inhibit the trip can be enabled/disabled independently for each protective element.

The inrush detection is made calculating the ratio between the phase current  $2^{nd}$  and  $1^{st}$  harmonic

The phase cross blocking can be enabled or disabled. A maximum value for the phase current ("6808 Inrushrest. up to IL") up to which the 2nd harmonic is weighted is also available.

For the phase overcurrent elements, when then cross blocking is disabled, the harmonics of all started phase currents must exceed the setting 6801 I2f/I1f> (IL) to result in blocking of the enabled phase current starts. When the cross blocking is enabled, exceeding the setting 6801 I2f/I1f> (IL) in one of the started phases is sufficient to block the starting and the tripping, independently of the harmonic content of the other phases.

For the zero sequence and negative sequence elements, the phase currents of phases >0.2 In are weighted for their harmonic content. Blockage of the zero or of the negative sequence current start comes if in one phase harmonics content is higher than the setting 6801 I2f/I1f> (IL).

# 3.2.3 Data input

| Address | Relay Setting        | Model block          | Model setting                     | Note                           |
|---------|----------------------|----------------------|-----------------------------------|--------------------------------|
| 6800    | Inrush Restraint     | Inrush Restraint     | Out of Service                    | In the "Basic data" tab page   |
| 6830    | Inrushrest. IL       | Inrush Restraint     | ILCrossblock                      | In the "DIP Settings" tab page |
| 6801    | I2f/1f> (IL)         | I2f/1f> (IL)         | Pickup Current (Ipset)            |                                |
| 6808    | Inrushrest. up to IL | Inrushrest. up to IL | Pickup Current (Ipset)            |                                |
| 6831    | Inrushrest. IL>      | Inrush Restraint     | InrushrestILM (InrushrestILM)     | In the "DIP Settings" tab page |
| 6832    | Inrushrest. IL>>     | Inrush Restraint     | InrushrestILMM (InrushrestILMM)   | In the "DIP Settings" tab page |
| 6833    | Inrushrest. IL>>>    | Inrush Restraint     | InrushrestILMMM (InrushrestILMMM) | In the "DIP Settings" tab page |

# 3 Supported features

| Address | Relay Setting         | Model block      | Model setting                            | Note                           |
|---------|-----------------------|------------------|------------------------------------------|--------------------------------|
| 6834    | Inrushrest.<br>IL>>>> | Inrush Restraint | InrushrestILMMMM (InrushrestILM-MMM)     | In the "DIP Settings" tab page |
| 6835    | Inrushrest. IE>       | Inrush Restraint | InrushrestIEM (InrushrestIEM)            | In the "DIP Settings" tab page |
| 6835    | Inrushrest. IE>>      | Inrush Restraint | InrushrestIEMM (InrushrestIEMM)          | In the "DIP Settings" tab page |
| 6835    | Inrushrest. IE>>>     | Inrush Restraint | InrushrestIEMMM (In-<br>rushrestIEMMM)   | In the "DIP Settings" tab page |
| 6835    | Inrushrest.<br>IE>>>> | Inrush Restraint | InrushrestIEMMMM (In-<br>rushrestIEMMMM) | In the "DIP Settings" tab page |
| 6840    | Inrushrest. Ineg>     | Inrush Restraint | InrushrestInegM (InrushrestInegM)        | In the "DIP Settings" tab page |
| 6840    | Inrushrest.<br>Ineg>> | Inrush Restraint | InrushrestInegMM (In-<br>rushrestInegMM) | In the "DIP Settings" tab page |

# 3.3 Reclosing

The purpose of the *Reclosing* feature is model, during the RMS and the EMT simulation, up to 5 shot 3-pole auto reclosures of the circuit breaker. It simulates a simplified version of the reclosing feature available in the Sprecher SPRECON-E-P DSR relay.

#### 3.3.1 Available elements

The Reclosing feature is modeled by the "Reclosing" block.

# 3.3.2 Functionality

The "Reclosing" block models durings a simulation the following features:

- · An user settable number of AR.
- Separated dead time for the first AR attempt and for the first reclosing attempt after an earth fault.
- User configurable reclosing/no reclosing logic for each overcurrent element.
- User configurable duration of the circuit breaker close command.
- User configurable reclosing sequence reclaim time.

#### 3.3.3 Data input

| Address | Relay Setting         | Model block | Model setting                                  | Note                         |
|---------|-----------------------|-------------|------------------------------------------------|------------------------------|
| 9900    | Auto-Reclosing AR     | Reclosing   | Out of Service                                 | In the "Basic data" tab page |
| 9930    | Number of AR Shots    | Reclosing   | Operations to lockout(oplockout)               |                              |
| 9950    | AR Shots Earthfault   | Reclosing   | Operations to lockout(oplockout)               |                              |
| 9931    | IL> AR Start          | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9932    | IL>> AR Start         | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9933    | IL>>> AR Start        | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9934    | IL>>>> AR Start       | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9935    | IE> AR Start          | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9936    | IE>> AR Start         | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9937    | IE>>> AR Start        | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9938    | IE>>>> AR Start       | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9945    | First Dead Time(tD)   | Reclosing   | Reclosing interval 1 (recltime1)               | In the "Basic data" tab page |
| 9955    | 1stDeadTimeEarthfault | Reclosing   | Reclosing int 1 1Ph-Grnd Faults (recltime11ph) | In the "Basic data" tab page |
| 9912    | Dead Time delayed R.  | Reclosing   | Reclosing interval 1 (recltime1)               | In the "Basic data" tab page |
|         |                       |             | Reclosing interval 2 (recltime2)               |                              |
|         |                       |             | Reclosing interval 3 (recltime3)               |                              |
|         |                       |             | Reclosing interval 4 (recltime4)               |                              |
|         |                       |             | Reclosing interval 5 (recltime5)               |                              |
| 9917    | tcl Duration CBCLOSE  | Reclosing   | Closing command duration (closingcomtime)      | In the "Basic data" tab page |
| 9916    | tr Reclaim Time AR    | Reclosing   | Reset Time (resettime)                         | In the "Basic data" tab page |

# 3.4 IL subrelay

The *IL* subrelay contains the phase overcurrent protective logic.

#### 3.4.1 Available Units

- One inverse time phase overcurrent element ("IL>" block).
- Three time defined phase overcurrent element ("IL>>", "IL>>>", and "IL>>>" block).
- Twelve logic elements ("IL> ILx Phase Start", "IL>> ILx Phase Start", "IL>>> ILx Phase Start", "IL>>>> ILx Phase Start", "Corr.IL>>> by I0meas IL> value", "Corr.IL>>> by I0meas IL ggreater value", "Corr.IL>>>> by I0meas IL>>>> value", "Blockage IL>>>, "Blockage IL>>>, "Blockage IL>>>," and "Blockage IL>>>>" block).
- Four block combining the signals ("Or1", "Or2", "Or3", and "Or4" block).

# 3.4.2 Functionality

The phase starting logic of each phase overcurrent element can be set as

- · independent of Imax
- only if ILx >2/3Imax

The phase current monitored by each phase overcurrent element can be

- The RMS value of the sampled values
- The 1st harmonic RMS value

Please notice that the  $1^{st}$  harmonic RMS value is calculated only running an EMT simulation. For any other kind of calculation the *the RMS value of the sampled values* and the  $1^{st}$  harmonic RMS value are identical.

The relay model can be configured to remove the zero sequence current from the phase currents. Each phase overcurrent element can be configured to ignore an external block input signal. An additional in rush block signal is also available for each overcurrent element.

The inverse time elements support the definite time characteristic and the following inverse time trip characteristics:

- Inverse
- · Very Inverse
- · Extremely Inverse
- · Longtime inverse

The inverse time element trip characteristic equations comply with the IEC standard equations.

# 3.4.3 Data input

| Address | Relay Setting            | Model block                              | Model setting                                    | Note                                                                                      |
|---------|--------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------|
| 207     | SYSTEMSTAR               | Starting                                 | System Grounding (isysstar)                      | "Basic data" tab page                                                                     |
| 1100    | IL> Start                | IL>                                      | Out of Service (outserv)                         |                                                                                           |
| 1101    | IL> Definite Time        | IL>                                      | Current Setting (Ipset)                          |                                                                                           |
| 1102    | IL> Inverse Time         | IL>                                      | Current Setting (Ipset)                          |                                                                                           |
| 1111    | tIL> Time                | IL>                                      | Time Dial (Tpset)                                |                                                                                           |
| 1112    | tL> Time Factor          | IL>                                      | Time Dial (Tpset)                                |                                                                                           |
| 1113    | tIL> max Time De-<br>lay | IL>                                      | Max. Time (udeftmax)                             |                                                                                           |
| 1132    | IL> Timer Module         | IL>                                      | Characteristic (pcharac)                         |                                                                                           |
| 1134    | ILx> Phase Start         | IL> ILx Phase<br>Start                   | Greater2_3_Imax<br>(Greater2_3_Imax)             | In the "DIP Settings" tab page                                                            |
| 1140    | Value or IL>             | Corr.IL> by I0meas IL> value             | ILM_1stharmonic<br>(ILM_1stharmonic)             | In the "DIP Settings" tab page, set<br>"on" to enable the 1st harmonic cur-<br>rent       |
| 1141    | Corr.IL> by I0meas       | Corr.IL> by I0meas IL> value             | Corr_ILM_by_I0meas<br>(Corr_ILM_by_I0meas)       | In the "DIP Settings" tab page,<br>,when "on" Star point current is be<br>removed from IL |
| 1198    | Blockage IL>             | Blockage IL>                             | blockage_ILM (blockage_ILM)                      | In the "DIP Settings" tab page                                                            |
| 1200    | IL>> Start               | IL>>                                     | Out of Service (outserv)                         |                                                                                           |
| 1201    | IL>>                     | IL>>                                     | Pickup Current (Ipset)                           |                                                                                           |
| 1211    | tIL>> Time               | IL>>                                     | Time Setting (Tset)                              |                                                                                           |
| 1234    | ILx>> Phase Start        | IL>> ILx<br>Phase Start                  | Greater2_3_lmax<br>(Greater2_3_lmax)             | In the "DIP Settings" tab page                                                            |
| 1240    | Value or IL>>            | Corr.IL>> by<br>I0meas IL>><br>value     | ILMM_1stharmonic<br>(ILMM_1stharmonic)           | In the "DIP Settings" tab page, set<br>"on" to enable the 1st harmonic cur-<br>rent       |
| 1241    | Corr.IL>> by<br>I0meas   | Corr.IL>> by<br>I0meas IL>><br>value     | Corr_ILMM_by_I0meas<br>(Corr_ILMM_by_I0meas)     | In the "DIP Settings" tab page,<br>,when "on" Star point current is be<br>removed from IL |
| 1298    | Blockage IL>>            | Blockage IL>>                            | blockage_ILMM (blockage_ILMM)                    | In the "DIP Settings" tab page                                                            |
| 1300    | IL>>> Start              | IL>>>                                    | Out of Service (outserv)                         |                                                                                           |
| 1301    | IL>>>                    | IL>>>                                    | Pickup Current (Ipset)                           |                                                                                           |
| 1334    | ILx>>> Phase<br>Start    | IL>>> ILx<br>Phase Start                 | Greater2_3_Imax<br>(Greater2_3_Imax)             | In the "DIP Settings" tab page                                                            |
| 1340    | Value or IL>>>           | Corr.IL>>> by<br>I0meas IL>>><br>value   | ILMMM_1stharmonic<br>(ILMMM_1stharmonic)         | In the "DIP Settings" tab page, set<br>"on" to enable the 1st harmonic cur-<br>rent       |
| 1341    | Corr.IL>>> by<br>I0meas  | Corr.IL>>> by<br>I0meas IL>>><br>value   | Corr_ILMMM_by_I0meas<br>(Corr_ILMMM_by_I0meas)   | In the "DIP Settings" tab page,<br>,when "on" Star point current is be<br>removed from IL |
| 1398    | Blockage IL>>>           | Blockage<br>IL>>>                        | blockage_ILMMM (block-<br>age_ILMMM)             | In the "DIP Settings" tab page                                                            |
| 1400    | IL>>>> Start             | IL>>>>                                   | Out of Service (outserv)                         |                                                                                           |
| 1401    | IL>>>>                   | IL>>>>                                   | Pickup Current (Ipset)                           |                                                                                           |
| 1434    | ILx>>>> Phase<br>Start   | IL>>>> ILx<br>Phase Start                | Greater2_3_Imax<br>(Greater2_3_Imax)             | In the "DIP Settings" tab page                                                            |
| 1440    | Value or IL>>>>          | Corr.IL>>>><br>by I0meas<br>IL>>>> value | ILMMMM_1stharmonic (ILM-MMM_1stharmonic)         | In the "DIP Settings" tab page, set<br>"on" to enable the 1st harmonic cur-<br>rent       |
| 1441    | Corr.IL>>>> by<br>I0meas | Corr.IL>>>><br>by I0meas<br>IL>>>> value | Corr_ILMMMM_by_I0meas<br>(Corr_ILMMMM_by_I0meas) | In the "DIP Settings" tab page,<br>,when "on" Star point current is be<br>removed from IL |
| 1498    | Blockage IL>>>>          | Blockage<br>IL>>>>                       | blockage_ILMMMM (blockage_ILMMMM)                | In the "DIP Settings" tab page                                                            |

# 3.5 IE subrelay

The IE subrelay contains the earth overcurrent protective logic.

#### 3.5.1 Available Units

- One inverse time earth overcurrent element ("IE>" block).
- Three time defined Earth overcurrent element ("IE>>", "IL>>>", and "IE>>>>" block).
- Eight logic elements ( "Value for IE>", "Value for IE>>", "Value for IE>>>", "Value for IE>>>", "Value for IE>>>", "Blockage IE>>>", and "Blockage IE>>>" block).
- Four block combining the signals ("Or1", "Or2", "Or3", and "Or4" block).

## 3.5.2 Functionality

The earth current monitored by the overcurrent elements can be

- The current measured by the neutral CT.
- The current calculated adding together the phase currents.

The RMS value of the earth current can be:

- · The RMS value of the sampled values
- The 1<sup>st</sup> harmonic RMS value

Please notice that the  $1^{st}$  harmonic RMS value is calculated only running an EMT simulation. For any other kind of calculation the *the RMS value of the sampled values* and the  $1^{st}$  harmonic RMS value are identical.

The IE> stage pickup value can be increased in dependence of the amount of the sum of those phase currents that have exceeded the pickup value IL>.

If all three phase currents are greater than IL>, the following applies:

$$IE'>=IE>+ks(IL1+IL2+IL3-3IL>)$$

If only two phase currents are greater than IL>, biasing is reduced:

$$IE' >= IE > +ks(ILX + ILY - 2IL >)$$

If only one phase current pickup is exceeded, the following remains:

$$IE' >= IE > +ks(ILX - IL >)$$

# with

IE'>: biasedpickupvalue of the earth fault current stage

IE>: setpickupvalue of the DT earth current stage IE>"2101 IE> Definite Time"

ks: setting of biasing factor "2107 Biasing Factor"

IL1, IL2, IL3, ILX, ILY: r.m.s. value of phase currents, x, y = [1, 2, 3]

IL >: Setting of phase current starting "1101 IL > Definite Time"

Each earth overcurrent element can be configured to start only if the "IL>" phase overcurrent element has started.

To model the *Earth Current Differential Protection (unbiased)*, the relay model can be configured to add together the phase current and the current measured by the neutral CT.

Each earth overcurrent element can be configured to ignore an external block input signal.

An additional in rush block signal is also available for each overcurrent element.

The inverse time elements support the definite time characteristic and the following inverse time trip characteristics:

- Inverse
- · Very Inverse
- · Extremely Inverse
- · Longtime inverse

The inverse time element trip characteristic equations comply with the IEC standard equations.

# 3.5.3 Data input

| Address | Relay Setting          | Model block                 | Model setting                          | Note                           |
|---------|------------------------|-----------------------------|----------------------------------------|--------------------------------|
| 2100    | IE> Start              | IE>                         | Out of Service (outserv)               |                                |
| 2101    | IE> Definite Time      | IE>                         | Current Setting (Ipset)                |                                |
| 2102    | IE> Inverse Time       | IE>                         | Current Setting (Ipset)                |                                |
| 2103    | IE> Definit.Time sens  | IE>                         | Current Setting (Ipset)                |                                |
| 2105    | IE> Definit.Time sens  | IE>                         | Current Setting (Ipset)                |                                |
| 2106    | IE> Inv. Time sens.    | IE>                         | Current Setting (Ipset)                |                                |
| 2107    | Biasing Factor         | Earth Current<br>Biasing    | Ks (Ks)                                | In the "Logic" tab page        |
| 2108    | IE> Inv. Time sens.    | IE>                         | Current Setting (Ipset)                |                                |
| 2111    | tIE> Time              | IE>                         | Time Dial (Tpset)                      |                                |
| 2112    | tE> Time Factor        | IE>                         | Time Dial (Tpset)                      |                                |
| 2113    | tIE> max Time<br>Delay | IE>                         | Time Dial (Tpset)                      |                                |
| 2132    | IE> Timer Module       | IE>                         | Characteristic (pcharac)               |                                |
| 2133    | Value for IE>          | Value for IE>               | I0meas (I0meas)                        |                                |
| 2137    | IE> Start              | Blockage IE> -<br>IE> Start | ILStart (ILStart)                      | In the "DIP Settings" tab page |
| 2140    | Value for IE>          | Value for IE>               | Use1stharmonic (Use1stharmonic)        |                                |
| 2141    | Corr.IE> by IEmeas     | Value for IE>               | Corr_IEMbyIEmeas(<br>Corr_IEMbyIEmeas) |                                |
| 2198    | Blockage IE>           | Blockage IE> -<br>IE> Start | Extblock (extblock)                    | In the "DIP Settings" tab page |
| 2200    | IE>> Start             | IE>>                        | Out of Service (outserv)               |                                |
| 2201    | IE>>                   | IE>>                        | Pickup Current (Ipset)                 |                                |
| 2203    | IE>> sensitive         | IE>>                        | Pickup Current (Ipset)                 |                                |
| 2205    | IE>> sensitive         | IE>>                        | Pickup Current (Ipset)                 |                                |
| 2211    | tIE>> Time             | IE>>                        | Time Setting (Tset)                    |                                |

# 3.6 Ineg subrelay

The *Ineg* subrelay contains the negative sequence protective logic.

#### 3.6.1 Available Units

- One inverse time negative sequence overcurrent element ("Ineg>" block).
- One time defined negative sequence overcurrent element ("Ineg>>" block).
- One configuration interface element ("Blockage Ineg" block).
- One logic elements ("const"block).
- One output logic element ("Output Logic" block).

#### 3.6.2 Functionality

The *Ineg* subrelay models a inverse time negative sequence overcurrent element and a definite time negative sequence overcurrent element. Each element can be blocked by an unique relay input signal and for each element the user can decide if the input block signal is active. In the "Blockage Ineg" block the *BlockageInegM* dip switch allows to ignore the input block signal for the "Ineg>" element and the *BlockageInegMM* dip switch inhibits the blocking for the "Ineg>>" element.

The inverse time element supports the definite time characteristic and the following inverse time trip characteristics:

- Inverse
- · Very Inverse
- · Extremely Inverse
- · Longtime inverse

The inverse time element trip characteristic equations comply with the IEC standard equations.

# 3.6.3 Data input

| Address | Relay Setting            | Model block   | Model setting                  |         | Note                           |
|---------|--------------------------|---------------|--------------------------------|---------|--------------------------------|
| 3100    | Ineg> Start              | Ineg>         | Out of Service (outserv)       |         |                                |
| 3198    | Blockage Ineg>           | Blockage Ineg | Blockage_InegM<br>age_InegM)   | (Block- | In the "DIP Settings" tab page |
| 3132    | Ineg> Timer Mod-<br>ule  | Ineg>         | Characteristic (pcharac)       |         |                                |
| 3101    | Ineg> Definite Time      | Ineg>         | Current Setting (Ipset)        |         |                                |
| 3102    | Ineg> Inverse<br>Time    | Ineg>         | Current Setting (Ipset)        |         |                                |
| 3111    | tIneg> Time              | Ineg>         | Time Dial (Tpset)              |         |                                |
| 3112    | tIneg> Time Fac-<br>tor  | Ineg>         | Time Dial (Tpset)              |         |                                |
| 3113    | tIneg> max Time<br>Delay | Ineg>         | Max. Time (udeftmax)           |         |                                |
| 3200    | Ineg>> Start             | Ineg>>        | Out of Service (outserv)       |         |                                |
| 3298    | Blockage Ineg>>          | Blockage Ineg | Blockage_InegMM<br>age_InegMM) | (Block- | In the "DIP Settings" tab page |
| 3201    | Ineg>>                   | Ineg>>        | Pickup Current (Ipset)         |         |                                |
| 3211    | tIneg>> Time             | Ineg>>        | Time Setting (Tset)            |         |                                |

# 3.7 Overload subrelay

The *Overload* subrelay contains the thermal image protective logic.

#### 3.7.1 Available Units

- One thermal image element with selectable cooling logic ("Overload protection" block).
- Two thermal warning threshold elements ("Therm. Warn.Level 1", and "Therm. Warn.Level 2" block).
- One maximum allowed current threshold element ("OLoadProt. up to Imax" block).
- Two configuration interface elements ("O.loadProt. Current", and "Blockage therm. TRIP" block).
- Three logic elements ("const", "Max I logic", and "Imult" block).
- One output logic element ("Output Logic" block).

# 3.7.2 Functionality

The *Overload* subrelay implements a thermal replica with "memory", i.e. taking the preload into account in accordance with IEC 60255-8 or EN 60255-8. The r.m.s. values of the highest phase current or of the measured earth fault current are used. It's possible to insert a current threshold which permits limitation up to which current the replica is to be filled. Three thermal image characteristics can be used:

- tau(I<Imin) tau Single characteristic with identical warm-up and cooling time constant
- tau(I<Imin) Cf\*tau Single characteristic with different cooling time constant, i.e. warming time constant multiplied by the cooling factor of the overload protection "4106 Cftherm standing" in dead state (I<Imin = motor at standstill).
- tau(l>1.18 kIn) 600s Two-part warm-up characteristic. Part 1 is effective with preset warm-up time constant up to I < 1.18 kIn.As of I>1.18 kIn, the warm-up time constant  $\tau$  =600 s is used, so that tripping is ensured with approx. 110 s at I=1.36 kIn.

The overload trip logic is inhibited by the *extblock* input signal. The signal can be ignored setting equal to *off* the *BlockagethermTRIP* dip switch in the "Blockage therm. TRIP" block.

# 3.7.3 Data input

| Address | Relay Setting         | Model block             | Model setting                               | Note                                                                                             |
|---------|-----------------------|-------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|
| 4100    | Overload Protection   | Overload protection     | Out of Service (outserv)                    |                                                                                                  |
| 4137    | O.loadProt. Current   | O.loadProt. Current     | MeasuredEarthCurrent (MeasuredEarthCurrent) | In the "DIP Settings" tab<br>page. Set the dip <i>on</i> to<br>use the measured earth<br>current |
| 4101    | k Pickup Factor       | Overload protection     | Current Setting (Ipset)                     |                                                                                                  |
| 4102    | tau therm.Timeconst.  | Overload protection     | Time Dial (Tpset)                           |                                                                                                  |
| 4111    | OLoadProt. up to Imax | OLoadProt. up to Imax   | Pickup Current (Ipset)                      |                                                                                                  |
| 4134    | Characteristic        | Overload protection     | Characteristic (pcharac)                    |                                                                                                  |
| 4106    | Cftherm standing      | Overload protection     | Reset Delay (ResetT)                        |                                                                                                  |
| 4131    | Therm. Warn.Level 1   | Therm. Warn.Level 1     | Out of Service (outserv)                    |                                                                                                  |
| 4108    | Therm. Warn.Level 1   | Therm. Warn.Level 1     | Pickup Current (Ipset)                      |                                                                                                  |
| 4132    | Therm. Warn.Level 2   | Therm. Warn.Level 2     | Out of Service (outserv)                    |                                                                                                  |
| 4109    | Therm. Warn.Level 2   | Therm. Warn.Level 2     | Pickup Current (Ipset)                      |                                                                                                  |
| 4196    | Blockage therm. TRIP  | Blockage therm.<br>TRIP | BlockageThermTRIP (BlockageThermTRIP)       | In the "DIP Settings" tab page.                                                                  |

# 3.8 CBF subrelay

The CBF subrelay implements a simplified version of the circuit breaker failure logic.

# 3.8.1 Available Units and input signals

The CBF subrelay contains the following elements:

- One minimum current definite time threshold element ("IminCBF" block).
- One timer ("tCBF intern" block).
- One configuration interface element ("Blockage CBF" block).
- One output logic element ("Output Logic" block).

The following input signals are used

- *wtrip*: the trip input signals which is *on* when at least one protective element of the Sprecher SPRECON-E-P DSR relay model is tripped.
- labs A;labs B;labs C: the phase currents measured by the relay model.
- extblock: a relay input signal which can be used to inhibit the CBF logic.

#### 3.8.2 Functionality

The *CBF* sub relay activates an output signal and operates the associated breaker when both the following conditions are verified:

- The trip input signal remains *on* for a time greater than "tCBF intern" (usually equal to the breaker operating time+ a safety margin).
- At least one phase of a 3 phase currents system remains always greater than "IminCBF" after that the trip signal became *on*.

The operation logic is inhibited by the *extblock* input signal. The signal can be ignored setting equal to *off* the *Blockage\_CBF* dip switch in the "Blockage CBF" block.

# 3.8.3 Data input

| Address | Relay Setting        | Model block  | Model setting            | Note                           |
|---------|----------------------|--------------|--------------------------|--------------------------------|
| 9300    | CB Fail.Protect. CBF | IminCBF      | Out of Service (outserv) |                                |
| 9398    | Blockage CBF         | Blockage CBF | Blockage_ CBF            | In the "DIP Settings" tab page |
| 9308    | IminCBF              | IminCBF      | Pickup Current (Ipset)   |                                |
| 9311    | tCBF intern          | tCBF intern  | Time Setting (Tdelay)    |                                |

# 3.9 SCD subrelay

The *SCD* subrelay implements the phase and the ground directional logic.

# 3.9.1 Available Units and input signals

The SCD subrelay contains the following elements:

- One 3 phase directional element ("SCD" block).
- One single phase earth directional element ("ESCD").
- Two configuration interface element ("Blockage SCD", and "Value for ESCD" block).
- One output logic element ("Output Logic" block).
- One logic element ("Const" block).

#### 3.9.2 Functionality

The *SCD* subrelay phase directional element compares the angle between each phase current vector and the relevant opposite (at 90° in a symmetric system) phase-phase voltage vector. If the angle is smaller then 90° the forward direction is declared. A minimum phase voltage activation threshold can be configured by the user. A 2 seconds voltage buffer is automatically activated when the phase-phase voltage drops below 4 % of the rated voltage. The phase directional element can be set to consider or not an external input blocking signal (in the "Blockage SCD" block).

The earth directional element declares the forward direction if the angle between the zero sequence current and the zero sequence voltage rotated by the *Max Torque Angle* is smaller then 90°. A minimum earth voltage activation threshold can be configured by the user. The earth directional element can be set to consider or not an external input blocking signal.

# 3.9.3 Data input

| Address | Relay Setting        | Model block    | Model setting                          | Note                                                          |
|---------|----------------------|----------------|----------------------------------------|---------------------------------------------------------------|
| 1900    | Short Circ.Direction | SCD            | Out of Service (outserv)               |                                                               |
| 1998    | Blockage SCD         | Blockage SCD   | Blockage_SCD (Blockage_SCD)            |                                                               |
| 1905    | Charact.Angle SCD    | SCD            | Max. Torque Angle (mtau)               |                                                               |
| 1908    | Umem if ULL <        | SCD            | Polarizing Voltage (upolu)             | In the "Voltage Polarizing" tab page                          |
| 1911    | Validity Umem        | SCD            | Memory Time (tmem)                     | In the "Voltage Polarizing" tab page of the SCD.TypDir dialog |
| 2900    | Earth SC Direction   | ESCD           | Out of Service (outserv)               |                                                               |
| 2998    | Blockage ESCD        | Blockage SCD   | Blockage_ESCD (Blockage_ESCD)          |                                                               |
| 2905    | Charact.Angle ESCD   | ESCD           | Max. Torque Angle (mtau)               |                                                               |
| 2933    | Value for IE ESCD    | Value for ESCD | IE_ESCD_Measured<br>(IE_ESCD_Measured) | In the "DIP Settings" tab page                                |

# 3 Supported features

| Address | Relay Setting      | Model block    | Model setting                         | Note                                      |
|---------|--------------------|----------------|---------------------------------------|-------------------------------------------|
| 2935    | Value for UNE ESCD | Value for ESCD | UNE_ESCD_Measured (UNE_ESCD_Measured) | In the "DIP Settings" tab page            |
| 2902    | UNEmin ESCD        | ESCD           | Polarizing Voltage (upolu)            | In the "Voltage Polariz-<br>ing" tab page |

# 3.10 Voltage subrelay

The *Voltage* subrelay implements the phase and the zero sequence overvoltage and undervoltage protection logic.

# 3.10.1 Available Units and input signals

The *Voltage* subrelay contains the following elements:

- Two definite time phase overvoltage elements ("U>", and "U>>" block).
- Two definite time phase undervoltage elements ("U<", and "U<< " block).
- Two definite time zero sequence overvoltage elements ("UNE>", and "UNE>>" block).
- Six configuration interface element which allow to set the input quantities("Value for U> U> Mode", "Value for U>> U>> Mode", "Value for U<- U< Mode", "Value for U<<- U<< Mode", "Value for UNE> UNE> Mode", and "Value for UNE>> UNE>> Mode" block).
- Six configuration interface element enabling/disabling the blocking input("Blockage U>",
  "Blockage U>", "Blockage U<", "Blockage UNE>", and "Blockage UNE>>"
  block).
- Four configuration interface element which allow to set the trip mode("U> Trip Mode", "U>> Trip Mode", "U< Trip Mode", and "U<< Trip Mode" block).
- One output logic element ("Output Logic" block).
- One logic element ("Const" block).

#### 3.10.2 Functionality

The *Voltage* subrelay models two 3phase overvoltage elements, two 3phase undervoltage elements and two zero sequence overvoltage elements. Each phase voltage element can be set to use:

- · the phase-phase voltages
- · the phase-ground voltages.

The voltage monitored by each voltage element can be

- · The RMS value of the sampled values
- The 1st harmonic RMS value

Please notice that the  $1^{st}$  harmonic RMS value is calculated only running an EMT simulation. For any other kind of calculation the *the RMS value of the sampled values* and the  $1^{st}$  harmonic RMS value are identical.

Each voltage element can be configured to ignore an external block input signal.

Each phase voltage element can be set to trip when all phases exceeded the threshold or when at least one phase exceeded the threshold (*U*> *Mode* setting).

# 3.10.3 Data input

| Address | Relay Setting      | Model block                 | Model setting                                        | Note                                                                                                                                             |
|---------|--------------------|-----------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 14100   | U> Stage           | U>                          | Out of Service (outserv)                             |                                                                                                                                                  |
| 14198   | Blockage U>        | Blockage U>                 | blockage_UM (blockage_UM)                            | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element                                            |
| 14140   | Value for U>       | Value for U> - U> Mode      | Use_1stharmonic<br>(Use_1stharmonic)                 | In the "DIP Settings" tab page, when the dip is $on$ only the voltage $1^{st}$ harmonic is used                                                  |
| 14131   | U> Mode            | Value for U> - U> Mode      | Use_Phase_Phase_Voltage<br>(Use_Phase_Phase_Voltage) | In the "DIP Settings" tab<br>page, when the dip is on<br>the phase-Phase volt-<br>age is used otherwise<br>the phase-ground volt-<br>age is used |
| 14132   | U> Mode            | U> Trip Mode                | Use_Min_Phase<br>(Use_Min_Phase)                     | In the "DIP Settings" tab<br>page, when the dip is<br>on all phases must be<br>greater than the thresh-<br>old                                   |
| 14101   | U>                 | U>                          | Input Setting (Ipset)                                |                                                                                                                                                  |
| 14111   | tU> Time           | U>                          | Time Dial (Tpset)                                    |                                                                                                                                                  |
| 14112   | tR U> Reset Delay  | U>                          | Reset Delay (ResetT)                                 |                                                                                                                                                  |
| 14200   | U>> Stage          | U>>                         | Out of Service (outserv)                             |                                                                                                                                                  |
| 14298   | Blockage U>>       | Blockage U>>                | blockage_UMM (blockage_UMM)                          | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element                                            |
| 14240   | Value for U>>      | Value for U>> - U>><br>Mode | Use_1stharmonic<br>(Use_1stharmonic)                 | In the "DIP Settings" tab page, when the dip is $on$ only the voltage $1^{st}$ harmonic is used                                                  |
| 14231   | U>> Mode           | Value for U>> - U>><br>Mode | Use_Phase_Phase_Voltage<br>(Use_Phase_Phase_Voltage) | In the "DIP Settings" tab<br>page, when the dip is on<br>the phase-Phase volt-<br>age is used otherwise<br>the phase-ground volt-<br>age is used |
| 14232   | U>> Mode           | U>> Trip Mode               | Use_Min_Phase<br>(Use_Min_Phase)                     | In the "DIP Settings" tab<br>page, when the dip is<br>on all phases must be<br>greater than the thresh-<br>old                                   |
| 14201   | U>>                | U>>                         | Input Setting (Ipset)                                |                                                                                                                                                  |
| 14211   | tU>> Time          | U>>                         | Time Dial (Tpset)                                    |                                                                                                                                                  |
| 14212   | tR U>> Reset Delay | U>>                         | Reset Delay (ResetT)                                 |                                                                                                                                                  |
| 15100   | U< Stage           | U<                          | Out of Service (outserv)                             |                                                                                                                                                  |
| 15198   | Blockage U<        | Blockage U<                 | blockage_Um (blockage_Um)                            | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element                                            |
| 15140   | Value for U<       | Value for U< - U< Mode      | Use_1stharmonic<br>(Use_1stharmonic)                 | In the "DIP Settings" tab page, when the dip is on only the voltage $1^{st}$ harmonic is used                                                    |

| Address | Relay Setting       | Model block                   | Model setting                                        | Note                                                                                                                                             |
|---------|---------------------|-------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 15131   | U< Mode             | Value for U< - U< Mode        | Use_Phase_Phase_Voltage<br>(Use_Phase_Phase_Voltage) | In the "DIP Settings" tab page, when the dip is on the phase-Phase voltage is used otherwise the phase-ground voltage is used                    |
| 15132   | U< Mode             | U< Trip Mode                  | Use_Max_Phase<br>(Use_Max_Phase)                     | In the "DIP Settings" tab<br>page, when the dip is<br>on all phases must be<br>smaller than the thresh-<br>old                                   |
| 15101   | U<                  | U<                            | Input Setting (Ipset)                                |                                                                                                                                                  |
| 15111   | tU< Time            | U<                            | Time Dial (Tpset)                                    |                                                                                                                                                  |
| 15112   | tR U< Reset Delay   | U<                            | Reset Delay (ResetT)                                 |                                                                                                                                                  |
| 15200   | U<< Stage           | U<<                           | Out of Service (outserv)                             |                                                                                                                                                  |
| 15298   | Blockage U<<        | Blockage U<<                  | blockage_Umm (blockage_Umm)                          | In the "DIP Settings" tab<br>page, when the dip is<br>on the element can be<br>blocked by the external<br>element                                |
| 15240   | Value for U<<       | Value for U<< - U<<br>Mode    | Use_1stharmonic<br>(Use_1stharmonic)                 | In the "DIP Settings" tab page, when the dip is $on$ only the voltage $1^{st}$ harmonic is used                                                  |
| 15231   | U<< Mode            | Value for U<< - U<<<br>Mode   | Use_Phase_Phase_Voltage<br>(Use_Phase_Phase_Voltage) | In the "DIP Settings" tab<br>page, when the dip is on<br>the phase-Phase volt-<br>age is used otherwise<br>the phase-ground volt-<br>age is used |
| 15232   | U<< Mode            | U<< Trip Mode                 | Use_Max_Phase<br>(Use_Max_Phase)                     | In the "DIP Settings" tab<br>page, when the dip is<br>on all phases must be<br>smaller than the thresh-<br>old                                   |
| 15201   | U<<                 | U<<                           | Input Setting (Ipset)                                |                                                                                                                                                  |
| 15211   | tU<< Time           | U<<                           | Time Dial (Tpset)                                    |                                                                                                                                                  |
| 15212   | tR U<< Reset Delay  | U<<                           | Reset Delay (ResetT)                                 |                                                                                                                                                  |
| 14300   | UNE> Stage          | UNE>                          | Out of Service (outserv)                             |                                                                                                                                                  |
| 14398   | Blockage UNE>       | Blockage UNE>                 | blockage_UNEM (block-<br>age_UNEM)                   | In the "DIP Settings" tab<br>page, when the dip is<br>on the element can be<br>blocked by the external<br>element                                |
| 14340   | Value for UNE>      | Value for UNE> - UNE><br>Mode | Use_1stharmonic<br>(Use_1stharmonic)                 | In the "DIP Settings" tab page, when the dip is $on$ only the voltage $1^{st}$ harmonic is used                                                  |
| 14335   | UNE> Mode           | Value for UNE> - UNE><br>Mode | Use_Measured (Use_Measured)                          | In the "DIP Settings" tab<br>page, when the dip is on<br>the neutral voltage mea-<br>sured by the open delta<br>Vt voltage is used               |
| 14301   | UNE>                | UNE>                          | Input Setting (Ipset)                                |                                                                                                                                                  |
| 14311   | tUNE> Time          | UNE>                          | Time Dial (Tpset)                                    |                                                                                                                                                  |
| 14312   | tR UNE> Reset Delay | UNE>                          | Reset Delay (ResetT)                                 |                                                                                                                                                  |
| 14400   | UNE>> Stage         | UNE>>                         | Out of Service (outserv)                             |                                                                                                                                                  |
| 14498   | Blockage UNE>>      | Blockage UNE>>                | blockage_UNEMM (block-<br>age_UNEMM)                 | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element                                            |

# 3 Supported features

| Address | Relay Setting             | Model block                     | Model setting                        | Note                                                                                                                               |
|---------|---------------------------|---------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 14440   | Value for UNE>>           | Value for UNE>> -<br>UNE>> Mode | Use_1stharmonic<br>(Use_1stharmonic) | In the "DIP Settings" tab page, when the dip is $on$ only the voltage $1^{st}$ harmonic is used                                    |
| 14435   | UNE>> Mode                | Value for UNE>> -<br>UNE>> Mode | Use_Measured (Use_Measured)          | In the "DIP Settings" tab<br>page, when the dip is on<br>the neutral voltage mea-<br>sured by the open delta<br>Vt voltage is used |
| 14401   | UNE>>                     | UNE>>                           | Input Setting (Ipset)                |                                                                                                                                    |
| 14411   | tUNE>> Time               | UNE>>                           | Time Dial (Tpset)                    |                                                                                                                                    |
| 14412   | tR UNE>> Reset De-<br>lay | UNE>>                           | Reset Delay (ResetT)                 |                                                                                                                                    |

# 3.11 Frequency subrelay

The Frequency subrelay implements the overfrequency and the underfrequency protection logic.

# 3.11.1 Available Units and input signals

The *Frequency* subrelay contains the following elements:

- Four over/under frequency elements ("f1><", "f2><", "f3><", and "f4><" block).
- One undervoltage element ("ULLmin for fx><" block).
- Four configuration interface element which allow to enable/disable the blocking input("Blockage f1><", "Blockage f2><", "Blockage f3><", and "Blockage f4><" block).
- One output logic element ("Output Logic" block).
- · One logic element ("Const" block).

# 3.11.2 Functionality

The *Frequency* subrelay models contains 4 over/under frequency define time delay elements. Each frontage element can be configured to ignore an external block input signal. The frequency elements are blocked when any phase-phase voltage is smaller than a user configurable threshold (16008 ULLmin for fx><). Each frequency element can be set to

# 3.11.3 Data input

| Address | Relay Setting | Model block   | Model setting                 | Note                                                                                                              |
|---------|---------------|---------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 16100   | f1>< Start    | f1><          | Out of Service (outserv)      |                                                                                                                   |
| 16198   | Blockage f1>< | Blockage f1>< | blockage_f1Mm (blockage_f1Mm) | In the "DIP Settings" tab<br>page, when the dip is<br>on the element can be<br>blocked by the external<br>element |
| 16130   | TRIP at tf1>< | Output Logic  | tf1Mm_Trip (tf1Mm_Trip)       | In the "DIP Settings" tab<br>page, when the dip is on<br>the "f1><" element trip<br>triggers the relay trip       |
| 16101   | f1><          | f1><          | Frequency (Fset)              |                                                                                                                   |
| 16111   | tf1>< Time    | f1><          | Time Delay (Tdel)             |                                                                                                                   |
| 16200   | f2>< Start    | f2><          | Out of Service (outserv)      |                                                                                                                   |
| 16298   | Blockage f2>< | Blockage f2>< | blockage_f2Mm (blockage_f2Mm) | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element             |
| 16230   | TRIP at tf2>< | Output Logic  | tf2Mm_Trip (tf2Mm_Trip)       | In the "DIP Settings" tab page, when the dip is on the "f2><" element trip triggers the relay trip                |

# 3 Supported features

| Address | Relay Setting        | Model block       | Model setting                    | Note                                                                                                               |
|---------|----------------------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 16201   | f2><                 | f2><              | Frequency (Fset)                 |                                                                                                                    |
| 16211   | tf2>< Time           | f2><              | Time Delay (Tdel)                |                                                                                                                    |
| 16300   | f3>< Start           | f3><              | Out of Service (outserv)         |                                                                                                                    |
| 16398   | Blockage f3><        | Blockage f3><     | blockage_f3Mm (blockage_f3Mm)    | In the "DIP Settings" tab<br>page, when the dip is<br>on the element can be<br>blocked by the external<br>element  |
| 16330   | TRIP at tf3><        | Output Logic      | tf3Mm_Trip (tf3Mm_Trip)          | In the "DIP Settings" tab<br>page, when the dip is on<br>the "f3><" element trip<br>triggers the relay trip        |
| 16301   | f3><                 | f3><              | Frequency (Fset)                 |                                                                                                                    |
| 16311   | tf3>< Time           | f3><              | Time Delay (Tdel)                |                                                                                                                    |
| 16400   | f4>< Start           | f4><              | Out of Service (outserv)         |                                                                                                                    |
| 16498   | Blockage f4><        | Blockage f4><     | blockage_f4Mm (blockage_f4Mm)    | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element              |
| 16430   | TRIP at tf4><        | Output Logic      | tf4Mm_Trip (tf4Mm_Trip)          | In the "DIP Settings" tab<br>page, when the dip is <i>on</i><br>the "f4><" element trip<br>triggers the relay trip |
| 16401   | f4><                 | f4><              | Frequency (Fset)                 |                                                                                                                    |
| 16411   | tf4>< Time           | f4><              | Time Delay (Tdel)                |                                                                                                                    |
| 16001   | No. of periods for f | Measure Frequency | Frequency Measurement Time (Tfe) | In the main relay                                                                                                  |
| 16008   | ULLmin for fx><      | ULLmin for fx><   | Voltage (Uset)                   |                                                                                                                    |

# 3.12 Output logic

It represents the output stage of the relay; it's the interface between the relay and the power breaker.

# 3.12.1 Available elements and relay output signals

The trip logic is implemented by the "Trip Logic" block. The "Closing Logic" block controlled by the reclosing feature ("Reclosing" block) has the purpose of generating a closing command for the power breaker when a reclosing attempt is triggered.

The relay trip output signal is "yout", the relay closing command output signal is "yout1", "yAlarm' is additional relay output signal which can be set without triggering the circuit breaker.

#### 3.12.2 Functionality

The "Trip Logic" block collects the trip signals coming from the overcurrent protective elements and, when any protective element trips, operates the power breaker and the "yout" relay output contact.

The trip logic is user configurable and can be set in the "Logic" tab page.

The additional output signal "yAlarm", as default logic, is triggered by the starting of any frequency element.

The "Closing Logic" block is controlled by the closing signal coming from the "Reclosing" block and, when a reclosing attempt is initiated, triggers the closing command for the power breaker and operates the "yout1" relay output contact.

#### 3.12.3 Data input

To disable the relay model ability to open the power circuit breaker simply disable the "Trip Logic" block.

To disable the relay model ability to close the power circuit breaker simply disable the "Closing Logic" block.

# 4 Features not supported

The following features are not supported:

- Earth-Fault Detection.
- · Wattmetric Earth-Fault Direction Decision.
- Wattmetric Direction Decision.
- · Underload Protection.
- Current annunciations (2x IL> an, 1x IE> an).
- · Power Protection.
- Reactive Power Undervoltage Protection.
- Synchrocheck and Synchrocheck AR.
- Emergency Overcurrent-Time Protection.
- · Fault Location (FL).
- Switch-On Protection (SOP/SOTF).
- · Trip Circuit Supervision.
- Capture of external earth-fault directions.
- Permissive Overreach Protection (POP).
- · Reverse Interlock Function and H2 Logic.
- Teleprotection (TP).
- · CB TRIP by external signal.
- Phase-sequence reversal / direction.
- User configurable Reset Ratio.

# 5 References

- [1] Sprecher Automation Deutschland GmbH, Moellendorffstr. 47 10367 Berlin Germany. SPRECON-E-P-DS6 SERIES ONE-BOX SOLUTIONS WITH COMBINED OVERCURRENT-TIME PROTECTION AND CONTROL, 2007.
- [2] Sprecher Automation Deutschland GmbH, Moellendorffstr. 47 10367 Berlin Germany. SPRECON-E-P DS6 PROTECTION AND CONTROL DEVICES OVERCURRENT-TIME PROTECTION User manual for the protection part Structure version 7604 94.2.903.21en from software version 2.06a 2012-10-10 Issue F, 2012.