Calculus I Newton's Method

Todor Milev

2019

Outline

Newton's Method

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Newton's Method 4/8

Newton's Method

Find the roots of these equations:

$$x^3 - 5x^2 - 6x = 0$$
$$x(x-6)(x+1) = 0$$

- Roots: x = 0, -1, or 6.
- No problem.

$$48x(1+x)^{60}-(1+x)^{60}+1=0$$

- Problem.
- Plug it into a computer algebra system. The non-zero root is about 0.0076.
- How does the computer find the root?
- Probably using Newton's Method.

Newton's Method 5/8

Goal: find a root r of f(x).

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})}$$

$$\vdots$$

$$x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

- Pick a number x₁.
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the x-intercept of this line x_2 .
- Repeat the process using x_2 .
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the x-intercept of this line x₃, and so on.

Equation:
$$y - f(x_n) = f'(x_n)(x - x_n)$$

 x -intercept: $0 - f(x_n) = f'(x_n)(x_{n+1} - x_n)$
 $f'(x_n)x_n - f(x_n) = f'(x_n)x_{n+1}$
 $x_{n+1} = \frac{f'(x_n)x_n - f(x_n)}{f'(x_n)}$
 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Newton's Method 6/8

- Newton's Method gives us a sequence x₁, x₂, x₃,... of approximations to a root r of a function f(x).
- If the *n*th approximation is x_n and $f'(x_n) \neq 0$, then the (n+1)st approximation is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- If the numbers x_n become closer and closer to r as n becomes large, we say that the sequence converges to r.
- The sequence does not always converge.

Newton's Method 7/8

Example (Newton's Method, Example 1, p. 313)

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^3 - 2x - 5.$$

$$f'(x) = 3x^2 - 2.$$

Newton's Method:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^3 - 2x_n - 5}{3x_n^2 - 2}$$

$$x_2 = x_1 - \frac{x_1^3 - 2x_1 - 5}{3x_1^2 - 2} \qquad x_3 = x_2 - \frac{x_2^3 - 2x_2 - 5}{3x_2^2 - 2}$$

$$= (2) - \frac{(2)^3 - 2(2) - 5}{3(2)^2 - 2} \qquad = (2.1) - \frac{(2.1)^3 - 2(2.1) - 5}{3(2.1)^2 - 2}$$

$$= 2.1. \qquad = 2.0946.$$

Todor Milev Newton's Method 2019

Newton's Method 8/8

Example (Newton's Method)

Starting with $x_1 = 5$, use two steps of Newton's Method to approximate $\sqrt{28}$.

$$f(x) = x^2 - 28.$$

 $f'(x) = 2x.$

Newton's Method:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - 28}{2x_n}$$

$$x_2 = x_1 - \frac{{x_1}^2 - 28}{2x_1}$$

$$= (5) - \frac{(5)^2 - 28}{2(5)}$$

$$= 5.3.$$

$$x_3 = x_2 - \frac{{x_2}^2 - 28}{2x_2}$$

$$= (5.3) - \frac{(5.3)^2 - 28}{2(5.3)}$$

$$= 5609/1060.$$

Todor Milev Newton's Method 2019