(104031) אינפי 1מ' | תרגול 14 - יוליה

שם: איל שטיין

December 7, 2022

נושאי השיעור: פונקציות, גבול של פונקציות

 $g\circ f:A o C$ הערה 1. תזכורת - אם $g\circ f:A o B$ היg:B o Cו f:A o B הערה 1. תזכורת

נושא ראשון - הרכבה של פונקציות:

$$f\circ g,\ g\circ f$$
 רשמו .2 תרגיל
$$g\left(x\right)=x^{2}\ \text{,} f\left(x\right)=\sin\left(x\right)$$
 עבור

א) מהו תחום ההגדרה ומהי התמונה של כל הרכבה!

פתרון:

- ${\mathbb R}$ התמונה של f היא [-1,1] ותחום ההגדרה הוא
- $\mathbb R$ התמונה של g היא $[0,\infty]$ ותחום ההגדרה הוא

$$g \circ f(x) = g(f(x))$$
 נתחיל מ

$$g\circ f\left(x
ight)=g\left(\sin^{2}\left(x
ight)
ight)$$
 – כלומר,

$$g\circ f:\mathbb{R} o [0,1]$$
 - לכן,

$$f\circ g\left(x\right)=f\left(g\left(x\right)\right)=\sin\left(x^{2}\right)$$
 את נבחן העת כעת י

$$f\circ g:\mathbb{R} o [-1,1]$$
 לכך –

 $g=arc\cos{(x)}$ ים ו- $f=\sin{(x)}$ עבור $f\circ g$ ו-f מצאו פתרון:

- $g:[-1,1]
 ightarrow [0,\pi]$ מתקיים arcos מתכונות
 - $f \circ g(x) = \sin(arccos(x))$ נבחן את •
- $\sin(arccos(x))$ נחפש זהות כדי לפשט את הביטוי
 - $sin^{2}\left(x\right)+cos^{2}\left(x\right)=1$ נשתמש בזהות *

- $sin^{2}\left(x\right) =1-cos^{2}\left(x\right) :$ אך נעביר אגף ונקבל י
 - $sin\left(x\right)=\sqrt{1-cos^{2}\left(x\right)}$ נוציא שורש ונקבל ·
- $\sin\left(arccos\left(x\right)\right)\geq0$ מתקיים $arccos\left(x\right)\in\left[0,\pi\right]$ מכיוון ש
 - * נשתמש בזהות שהזכרנו ונקבל:

$$\sin\left(arccos\left(x\right)\right) = \pm\sqrt{1-cos^{2}\left(arccos\left(x\right)\right)}$$

- מתקיים שלא יכול הריות שהביטוי שלילי , $\sin\left(arccos\left(x\right)\right)\geq0$ מכיוון שאמרנו ש
 - : מתקיים, $\cos^2(\arccos(x)) = x^2$ מתקיים

$$\sin\left(\arccos\left(x\right)\right) = \sqrt{1 - x^2}$$

- $f\circ g\left(x
 ight) =\sqrt{1-x^{2}}$ ולכן •
- 1-היא גדולה להיות איז sin היא f- ומכיוון
 - $0\leq f\circ g\left(x
 ight) \leq1$, כלומר, *
- $f\circ g:[-1,1] o [0,1]$ הם ונאמר שתחום ההגדרה והתמונה י

תרגיל 4. מצאו $f\circ g$, כולל תחום הגדרה ותמונה

 $f:[0,1] o\mathbb{R}$ כאשר ullet

$$f\left(x\right) = \frac{1}{x+2} -$$

 $g: \mathbb{R}\setminus\{2\} o \mathbb{R}$ וכאשר •

$$g\left(x\right) = \frac{x+1}{x+2} -$$

פתרון:

- $f\circ g=f\left(g\left(x
 ight)
 ight)=rac{1}{g\left(x
 ight)+2}=rac{1}{rac{x+1}{x+2}+2}=rac{x-2}{3\left(x-1
 ight)}$ עבחן את •
- x=2 אם מכיוון שהטווח של $g\left(x
 ight)$ לא כולל את 2, הפונקציה לא פליוון שהטווח של פ
- $0 \le x \le 1$ מוגדרת רק עבור f(x) הפונקציה ([0,1], הפול הוא של סוגדרת הפונקציה ומכיוו
 - $0\leq g\left(x
 ight)\leq1$ וגם x
 eq2ש שלדרוש ב- $f\circ g$ לכן, יש לדרוש

$$0 \le g\left(x\right) = rac{x+1}{x+2} \le 1$$
 , כלומר, *

$$0 \le \frac{x+1}{x+2} \le 1 \setminus (x+2)$$

: מכיוון שלא ידוע אם (x+2) חיובי או שלילי מלילי אי שוויונים \star

- $0 \le x + 1 \le x + 2$.1
- .0-ט א מוביל בין $g\left(x\right)$ שיהיה בין 1 ל-0.
 - $0 \ge x + 1 \ge x + 2$.2
 - $x \leq -1$ א) מוביל לכך ש
- [0,1] ערכים בין $f\left(x
 ight)$ תעביר ל- $g\left(x
 ight)$ ואז $x\leq-1$ בהרכבה הוא בהרכבה של לכן ערכים בין

 $f\left(x
ight)=rac{e^{x}-e^{-x}}{2}$ כך ש $f:\left[0,\infty
ight)
ightarrow\left[0,\infty
ight)$ גדיר (גדיר הפיכה ל $f^{-1}\left(x
ight)$ הפיכה לפתרון:

- ."על". חד חד חד הפיכה אם הפיכה f הפיכה לפי לפי
- . נוכיח ש-f כדי להראות שf נוכיח לבי היא על: f מוכיח של חד חד חד ערכית ואז נמצא את התחום ההגדרה של
 - : ערכית חד חד תהיה המשפט היא לפי ולכן לפי מונוטונית עולה ממש ולכן לפי המשפט היא תהיה חד f
 - אנחנו יודעים e^x היא מונוטונית עולה ממש –
 - ממש עולה אונוטונית שור $-e^{-x}$ ואנחנו יודעים ש
 - ולכן גם אם נחבר אותן ונחלק ב-2 עדיין נקבל פונקציה מונוטונית עולה ממש:

$$\frac{e^x - e^{-x}}{2}$$

- . ערכית חד חד היא היא ממש, מונוטונית $f\left(x\right)$ מכיוון ש
 - f- נמצא את הביטוי לפונקציה החפוכה י
 - $.y \ge 0$ יהי -

$$y = \frac{e^x - e^{-x}}{2}$$
 נחפש –

$$2y = e^x - e^{-x} \setminus e^x$$

$$2 \cdot y \cdot e^x = e^{2x} - 1$$

 $t=e^x$ נסמן *

$$0 = t^2 - 2 \cdot y \cdot t - 1$$

י ולכן:

$$t_{1,2} = \frac{2y \pm \sqrt{4y^2 + 4}}{2} = y \pm \sqrt{y^2 + 1}$$

 $t_1 = y + \sqrt{y^2 + 1}$ את פיקח את , $e^x = t \geq 0$ ומכיוון ש

* כלומר קיבלנו:

$$e^x = y + \sqrt{y^2 + 1}$$

:נפעיל ונקבל *

$$x = \ln\left(y + \sqrt{y^2 + 1}\right)$$

- $\left(y+\sqrt{y^2+1}
 ight)\geq 1$ מכיוון שהגדרנו את את את להיות האיט אתקיים מכיוון את מכיוון את את מכי
- . בגלל התכונות של $y\in [0,\infty)$ ל מוגדר ל $\ln\left(y+\sqrt{y^2+1}\right)$ הביטוי ערכים והוא התכונות בגלל התכונות י
 - . וכן הפוך f שווה לטווח של f^{-1} וכן הפוך
 - . לכן f היא על \star
 - $f^{-1} = ln\left(x + \sqrt{x^2 + 1}\right)$ לכן קיימת •
 - $f^{-1}:[0,\infty) o [0,\infty)$ הוא שלה שלה ההגדרה –

. (בה"כ מלמעלה) איי הי קטע $f:[a,b]\to \mathbb{R}$ תהי . [a,b]יהי קטע יהי הי תרגיל . תרגיל

 x_0 של סביבה בכל או החסומה לfע כך מ $x_0 \in [a,b]$ היימת קיימת הוכיחו:

. בורל. נפתור בעזרת היינה בורל. או עם היינה בורל BW או עם היינה בעזרת אפשר לפתור או אפשר לפתור או או או או שו

- . (קטע פתוח). $I_{arepsilon_x}$ חסומה של $f\left(x
 ight)$ פניח סביבה של קיימת סביבה א קיימת $x\in\left[a,b\right]$
 - [a,b] אינו פתוח של הינו $igcup_{x \leftarrow [a,b]} I_{arepsilon_x}$ לכן
- $\{I_{arepsilon_1},I_{arepsilon_2},\dots,I_{arepsilon_n}\}$ יפיים תת כיסוי קיים (החסום החסגור) וואסגור, לקטע לקטע –
- $x \in I_{arepsilon_k}$ כאשר כאשר אפיים הנחת השלילה בכל אחד מהקטעים האלה מתקיים שf א לפי הנחת השלילה בכל אחד מהקטעים האלה מתקיים ל
- $M \in max\left\{M_1, M_2, \ldots, M_N
 ight\}$ קיים ולכן היא קבוצה היא היא א היא וא היא ל $\left\{M_1, M_2, \ldots, M_N
 ight\}$
 - :מתקיים $x\in [a,b]$ לכל לכל יולכן .
 - $x \in I_k$ קיים k כך ש
 - $\left| f\left(x
 ight)
 ight| < M_{k} \leq M$ מתקיים $x \in \left[a,b
 ight]$ מלכל לכן קיבלנו
 - . כלומר קיבלנו שf חסומה \star
 - . בסתירה לנתון.
 - x_0 כך שf לא חסומה בכל סביבה של $x_0 \in [a,b]$ לכן, קיימת נקודה $x_0 \in [a,b]$

נושא שני - גבול של פוקנציה:

הגדרה 7. גבול של פונקציה באינסוף.

 $|f\left(x
ight)-L|<arepsilon$ מתקיים $x>x_0$ כך שלכל x>0 כך שלכל האיים אם לכל פונקציה $f\left(x
ight)=L$ אם אמר ש

הגדרה 8. גבול של פונקציה במינוס אינסוף.

 $|f\left(x
ight)-L|<arepsilon$ מתקיים $x< x_0$ כך שלכל $x_0\leq a$ קיים arepsilon>0 אם לכל ווm $_{x o-\infty}\,f\left(x
ight)=L$ נאמר ש

תרגיל 9. הוכיחו לפי הגדרה:

$$\lim_{x \to -\infty} \frac{2x+1}{x-1} = 2$$
 .1

$$\lim_{x\to-\infty} \frac{2x+1}{x-1} \neq 3$$
 .2

פתרון:

.1

$$(-\infty,0]$$
 מוגדרת בקרן $f\left(x
ight)=rac{2x+1}{x-1}$ •

: פורמט •

$$\varepsilon > 0$$
יהי –

$$:$$
עבור $x_0 \leq 0$, $x_0 = ?$ מתקיים –

$$|f\left(x
ight) - 2| < arepsilon$$
 מתקיים $x < x_0$ *

|f(x)-2| נבחן את הביטוי •

$$|f(x) - 2| = \left| \frac{2x+1}{x-1} - 2 \right|$$

$$= \left| \frac{2x+1-2x+2}{x-1} \right|$$

$$= \left| \frac{3}{x-1} \right|$$

$$= \frac{3}{|x-1|}$$

: מתקיים, $x \leq 0$ הוא רק כאשר $f\left(x\right)$ מתקיים –

$$|f(x) - 2| = \frac{3}{1 + (-x)}$$

$$\frac{3}{1+(-x)} < \frac{3}{-x}$$

- $-x<-rac{3}{arepsilon}$ מבדוק מתי אם ונקבל (אם ונקבל *
 - : נמלא את הפורמט ונקבל

$$\varepsilon > 0$$
יהי –

: עבור
$$x_0 \leq 0$$
 , $x_0 = -rac{3}{arepsilon}$ מתקיים

$$\left| f\left(x
ight) - 2
ight| < arepsilon$$
 מתקיים $x < x_0$ יעבור כל

- $|f\left(x
 ight)-3|\geq arepsilon$ עבורו קיים קיים שלילת הגדרת שבחרנו) איל: שלילת הגדרת קיים arepsilon>0 כך שלכל arepsilon>0 בגלל עבורו arepsilon>0 בגלל פורו arepsilon>0 בגלל פורו אינים איים בארנו) קיים arepsilon>0 כך שלכל פורו arepsilon>0 בגלל באלל פורו שבחרנו) קיים איים איים בארנו איים בארכו באר
 - $\left| rac{2x+1}{x-1} 3
 ight|$ נבחן את הביטוי •

$$\left| \frac{2x+1}{x-1} - 3 \right| = \left| \frac{2x+1-3x+3}{x-1} \right|$$
$$= \frac{|-x+4|}{|x-1|}$$

:אפשר המוחלט בונה וגם במכנה הערך את אפשר להוריד את אפשר אפשר ש-0 מכיוון שדרשנו אפשר אפשר אפשר אפשר אפשר אפשר א

$$\left| \frac{2x+1}{x-1} - 3 \right| = \frac{4-x}{x-1}$$

x < -1 נקבל: – ולכן כאשר

$$\frac{4-x}{x-1} > \frac{-x}{-x-x} = \frac{1}{2}$$

- $|f\left(x
 ight)-3|\geq rac{1}{2}$ עבורו מתקיים $x=min\left\{-2,x_0-1
 ight\}$ קיים קיים $\varepsilon=rac{1}{2}$ לכל
 - שללנו את הגדרת הגבול והראנו שהביטוי מתקיים.
 - . לכן, -3 הוא לא הגבול.

 $\lim_{x o \infty} rac{x}{e^x} = 0$ תרגיל 10. הוכיחו לפי ההגדרה ש

- .arepsilon>0 יהי •
- . $\left| \frac{x}{e^x} 0 \right| < \varepsilon$ נחפש $x > x_0$ כך שלכל x > 0 כך נחפש •
- $\frac{x}{e^x} < \varepsilon$: מכיוון שגם הערך המוחלט אפשר היים, אפשר e^x וגם ונקבל מכיוון שגם אפר חיוביים, אפשר היים
 - |x| > 0 ומכיוון ש-0 אז גם |x| > 0

* לכן ניתן לכתוב:

$$0 < \frac{x}{e^x} < \frac{[x]+1}{e^{[x]}}$$

- $a_n = rac{n+1}{e^n}$ להיות a_n להיות *
- י נשים לב שזו סדרה חיובית ולכן ניתן להשתמש במבחן המנה:

$$\frac{a_{n+1}}{a_n} = \frac{\frac{n+2}{e^{n+1}}}{\frac{n+1}{e^n}} = \frac{1}{e} \cdot \frac{n+1}{n+1}$$

$$\lim_{n\to\infty}\frac{1}{e}\cdot\frac{n+1}{n+1}=\frac{1}{e}$$

$$\frac{1}{e} < 1$$

- $\lim_{n \to \infty} a_n = 0$ ולכן לפי מבחן המנה. •
- $|a_n-0|<arepsilon$ מתקיים n>N כך שלכל *
- $\frac{n+1}{e^n} < \varepsilon$ ולקבל: אמ הסוגריים אפשר אפשר חיובית a_n יים י
 - $[x_0]>N$ איתקיים ש $x_0=[N]+1$ לכן נבחר -
 - : כעת, כאשר $x>x_0>0$ יתקיים

$$\left| \frac{x}{e^x} - 0 \right| = \frac{x}{e^x}$$

$$\frac{x}{e^x} < \frac{[x]+1}{e^{[x]}}$$

מתקיים a_n ומהגדרת הסדרה \cdot

$$\frac{[x]+1}{e^{[x]}} = a_{[x]} < \varepsilon$$

י ולכן אם נחבר את אי השוויונות נקבל:

$$\left| \frac{x}{e^x} - 0 \right| < \varepsilon$$

. $\left|\frac{x}{e^x}-0\right|<arepsilon$ מתקיים $x>x_0$ כך שלכל arepsilon>0 שלכל שלכל ביחד ונקבל נחבר הכל יחבר $\varepsilon>0$

 $f\left(x
ight)=\sin\left(x-\left[x
ight]
ight)$ תהי פונקציה 11. תהי פונקציה

 $\lim_{x\to\infty}f\left(x
ight)$ הוכיחו: לא קיים

:פתרון

x-[x] נבחן את הביטוי •

$$(x - [x]) = 0$$
 אז גם $x = 0$ – כאשר

- x-[0,1) אלט יהיה בקטע והוא ולכן וווא א אווה x-[x] לא מטה, הביטוי x-[x] לפי הגדרת עיגול כלפי מטה, הביטוי
 - $.sin\left(1
 ight)>\sin\left(x-[x]
 ight)\geq0$ נקבל עx-[x]לכן, לכל
 - $\lim_{x o\infty}f\left(x
 ight)=L$ נניח בשלילה שקיים ל כך ע L כך פ
 - $|f\left(x
 ight)-L|<arepsilon$ מתקיים $x>x_{0}$ כך שלכל x>0 קיים arepsilon>0 קיים פ
 - $L-arepsilon < f\left(x
 ight) < L+arepsilon$ מתקיים * *
 - $L-arepsilon < f\left(x_{1}
 ight) < L+arepsilon$ יתקיים $x_{1} > x_{0}$ לכן, עבור כל
 - $L-arepsilon < f\left(x_{2}
 ight) < L+arepsilon$ יתקיים $x_{2} > x_{0}$ בור כל

$$L - \varepsilon < f(x_2) < L + \varepsilon \setminus (-1)$$

$$-(L-\varepsilon) > -f(x_2) > -(L+\varepsilon)$$

$$-(L+\varepsilon) < -f(x_2) < -(L-\varepsilon)$$

* ולכן אם נחבר (+) את שני אי השוויונות נקבל:

$$-2\varepsilon < f\left(x_1\right) - f\left(x_2\right) < 2\varepsilon$$

ולפי תכונות הערך המוחלט מתקיים:

$$|f(x_1) - f(x_2)| < 2\varepsilon$$

- $|f\left(x_{1}
 ight)-f\left(x_{2}
 ight)|<2arepsilon$ מתקיים $x_{1},x_{2}>x_{0}$ כך שלכל x_{0} כלומר, לפי הגדרת הגבול, קיים x_{0} כך שלכל \star
 - : א מתקיים $|f\left(x_{1}\right)-f\left(x_{2}\right)|<2arepsilon$ עבורם הביטוי x_{2} , x_{1} ,arepsilon , וחפש
 - $x_2 = x_1 + \frac{\pi}{6}$ ונבחר $x_1 = [x_0] + 1$ *
 - $|f(x_1) f(x_2)| = |\sin(x_1 [x_1]) \sin(x_2 [x_2])|$ *

- $\sin\left(x_1-[x_1]
 ight)=0$ שלם מספר x_1 הוא הוא יומכיוון ש
- $\sin\left(x_2-[x_2]
 ight)=rac{\pi}{6}$ ומכיוון ש x_2 הוא לא מספר שלם, מתקיים י
 - $|f(x_1) f(x_2)| = \frac{1}{2}$: לכן:
 - $arepsilon_1 = rac{1}{8}$ מתי מתי קורה ליקבל ונקבל ונקבל $rac{1}{2} > 2arepsilon_1$ *
- $|f\left(x_1\right)-f\left(x_2\right)|>2\varepsilon_1$ בי מתקיים כי מתקיים עבורם הגדרת $x_2=x_1+\frac{\pi}{6}$ ו- $x_1=[x_0]+1$ -ו $\varepsilon_1=\frac{1}{8}$ מצאנו
 - * סתרנו את הנחת השלילה לפיה קיים לפונקציה גבול.
 - $x o \infty$ גבול כאשר לא קיים ל-f(x) גבול כאשר •