

Formación de Equipos Multiples (MTFP) con Sociometría

Modelo MINLP para Asignación Discreta

Ignacio Martínez

Introducción al Problema

- Asignar individuos a proyectos considerando:
 - Requerimientos mínimos de habilidades
 - Afinidades sociales entre individuos
 - Prioridades de proyectos
- Objetivo: maximizar la eficiencia social y técnica en la formación de equipos.
- Novedad: Modelo evolucionó a Programación No Lineal Entera Mixta (MINLP) para asignaciones de tiempo discretas.

Contexto y Simplificaciones

Contexto Real:

- Diversidad de habilidades y disponibilidad.
- Interacciones sociales (positivas, negativas, neutras) evolucionan.
- Proyectos independientes con requerimientos mínimos.

• Suposiciones del Modelo:

- Cada persona tiene una única habilidad principal.
- Asignación parcial a varios proyectos en fracciones discretas (e.g., 0%, 50%, 100%).
- Afinidad social entre individuos es estática.

• Simplificaciones:

- No se consideran múltiples habilidades por persona.
- Sin restricciones económicas ni dependencias entre proyectos.
- o La matriz de afinidad social se mantiene fija.

• Importancia de los Proyectos:

o Cada proyecto tiene un peso que refleja su prioridad o relevancia.

Definición Formal del Problema (MTFP - MINLP)

Conjuntos

- $\mathcal{H} = \{1, \dots, h\}$: Conjunto de individuos disponibles.
- $\mathcal{P} = \{1, \dots, p\}$: Conjunto de proyectos que requieren equipos.
- $\mathcal{K} = \{1, \dots, k\}$: Conjunto de habilidades disponibles.
- $Q_a \subseteq \mathcal{H}$: Subconjunto de individuos que poseen la habilidad $a \in \mathcal{K}$.
- \mathcal{D} : Conjunto de fracciones de tiempo discretas permitidas para la asignación (e.g., $\{0.0, 0.5, 1.0\}$).

Parámetros del Modelo

- Afinidad social (s_{ij}) :
 - \circ Valor que indica la relación entre individuos i y j:
 - 1: Colaboración positiva.
 - 0: Relación neutral o sin interacción.
 - -1: Conflicto o afinidad negativa.
- Requerimientos (r_{al}):
 - \circ Cantidad mínima de dedicación (en personas equivalentes a tiempo completo) con habilidad a requerida para el proyecto l. $r_{al} \in \mathbb{R}_{\geq 0}$.
- Peso de proyecto (w_l) :
 - \circ Valor que refleja la prioridad relativa de cada proyecto, $w_l \in [0,1]$ y $\sum_{l \in \mathcal{P}} w_l = 1.$

Variables de Decisión

- x_{il} : Fracción del tiempo del individuo i asignada al proyecto l.
- $y_{ild} \in \{0,1\}$: Variable binaria. Es 1 si al individuo i se le asigna la fracción de tiempo $d \in \mathcal{D}$ para el proyecto l, y 0 en caso contrario.

Función objetivo

Maximizar la eficiencia global ponderada $\it E$.

$$\max E = \sum_{l \in \mathcal{P}} w_l \cdot e_l$$

Donde la eficiencia del proyecto l, e_l , es:

$$e_l = rac{1}{2} \Biggl(1 + rac{\sum_{i \in \mathcal{H}} \sum_{j \in \mathcal{H}} s_{ij} x_{il} x_{jl}}{\left(\sum_{a \in \mathcal{K}} r_{al}
ight)^2} \Biggr)$$

Explicaciones de la Métrica e_l

- Normalización por $\left(\sum_{a\in\mathcal{K}}r_{al}\right)^2$:
 - Permite comparar la cohesión social entre proyectos de diferentes tamaños (total de requerimientos).
 - o Penaliza la dispersión de esfuerzos si el denominador es grande.

• Interpretación de e_l (eficiencia del proyecto):

- \circ $e_lpprox 1$ (o 100%): Cohesión social positiva ideal (todas las interacciones s_{ij} son positivas y maximizadas).
- \circ $e_l > 0.5$ (o > 50%): Predominan afinidades positivas.
- \circ $e_l=0.5$ (o 50%): Cohesión neutra (afinidades se cancelan o son cero).
- $\circ \ e_l < 0.5$ (o < 50%): Predominan afinidades negativas, indicando conflictos.
- \circ $e_lpprox 0$ (o 0%): Conflicto social máximo (todas las interacciones s_{ij} son negativas y maximizadas).

Restricciones del Modelo

1. Capacidad individual:

$$\sum_{l \in \mathcal{P}} x_{il} \leq 1 \quad orall i \in \mathcal{H}$$

El tiempo total asignado de un individuo no excede su disponibilidad total

2. Requerimientos de habilidad por proyecto:

$$\sum_{i \in Q_a} x_{il} \geq r_{al} \quad orall a \in \mathcal{K}, orall l \in \mathcal{P}$$

Se cumple el mínimo de dedicación requerida por habilidad en cada proyecto

3. Asignación de fracción de tiempo única:

$$\sum_{d \in \mathcal{D}} y_{ild} = 1 \quad orall i \in \mathcal{H}, orall l \in \mathcal{P}$$

Para cada individuo y proyecto, se selecciona exactamente una fracción de tiempo d del conjunto $\mathcal D$

4. Definición de x_{il} a partir de y_{ild} :

$$x_{il} = \sum_{d \in \mathcal{D}} d \cdot y_{ild} \quad orall i \in \mathcal{H}, orall l \in \mathcal{P}$$

Vincula la variable de asignación fraccionaria x_{il} con la decisión binaria y_{ild}

Consideraciones

- Requerimientos (r_{al}): Pueden ser fraccionarios (e.g., se necesitan 1.5 personas con habilidad Backend).
- Asignaciones (x_{il}):
 - \circ El modelo ahora asigna x_{il} tomando valores de un conjunto discreto \mathcal{D} (e.g., $\{0,0.5,1.0\}$) mediante las variables binarias y_{ild} .
 - \circ La suma de estas asignaciones discretas $\sum_{i \in Q_a} x_{il}$ debe cumplir con el requerimiento $r_{al}.$
 - Interpretación: Carga o tiempo asignado en fracciones de dedicación predefinidas y realistas.
- Impacto: La introducción de y_{ild} y \mathcal{D} transforma el problema en un Modelo de Programación No Lineal Entera Mixta (MINLP), lo que aumenta el realismo de las asignaciones pero también la complejidad.

$$e_l = rac{1}{2} \left(1 + rac{\sum_{i \in \mathcal{H}} \sum_{j \in \mathcal{H}} s_{ij} x_{il} x_{jl}}{\left(\sum_{a \in \mathcal{K}} r_{al}
ight)^2}
ight)$$

(Se puede multiplicar por 100% para visualización porcentual)

Valor ($e_l imes 100\%$)	Significado General
pprox 100%	Cohesión social positiva ideal
>50%	Predominio de afinidades positivas
=50%	Cohesión social neutra / Balanceada
< 50%	Predominio de afinidades negativas / Conflictos
pprox 0%	Conflicto social máximo

Implementación Técnica

- Modelado con **Pyomo** (Python).
- Optimización con **Bonmin** (solver para MINLP).
 - o Bonmin es adecuado para problemas de optimización no lineal entera mixta.
- Generadores de datos para instancias controladas y pruebas.
- El cambio a fracciones de tiempo discretas ($x_{il} \in \mathcal{D}$) es la razón principal para usar un solver MINLP.

Resultados Iniciales y Pruebas Fundamentales

Se han realizado pruebas iniciales para validar el comportamiento del modelo MINLP bajo diferentes condiciones controladas. Estas pruebas utilizaron un escenario base consistente (4 personas, 2 proyectos, requerimientos definidos) y se enfocaron en dos aspectos principales:

Se evaluó el modelo con el conjunto de fracciones de tiempo $\mathcal{D} = \{0.0, 1.0\}$.

- Variaciones en la matriz de afinidad social:
 - \circ Ideal: Todas las afinidades positivas ($s_{ij}=1$). Resultó en una eficiencia global del 100%.
 - \circ **Negativa**: Todas las afinidades negativas ($s_{ij}=-1$). Resultó en una eficiencia global del 0%.
 - \circ **Neutra:** Todas las afinidades neutras ($s_{ij}=0$). Resultó en una eficiencia global del 50%.
 - Alterna: Mezcla de afinidades positivas y negativas. Resultó en una eficiencia global del 50%.
- Estos resultados confirman que el modelo responde

Impacto de la Granularidad de las Fracciones de Tiempo (con Afinidad Ideal):

- Manteniendo una matriz de afinidad ideal ($s_{ij} = 1$ para todos).
 - \circ Se probaron diferentes conjuntos \mathcal{D} :
 - $\mathcal{D} = \{0.0, 0.5, 1.0\}$: Eficiencia global del 100%.
 - $\mathcal{D} = \{0.0, 0.25, 0.5, 0.75, 1.0\}$: Eficiencia global del 100%.
- Esto sugiere que, en condiciones sociales ideales, el modelo puede aprovechar eficazmente una mayor granularidad en las asignaciones de tiempo sin pérdida de eficiencia.

Caso de Prueba	Fracciones de Tiempo	Asignaciones Proyecto 1	Asignaciones Proyecto 2
Afinidad Ideal	$\{0.0, 1.0\}$	P0 (B): 100%, P3 (F): 100%	P1 (B): 100%, P2 (F): 100%
Afinidad Negativa	$\{0.0, 1.0\}$	P1 (B): 100%, P2 (F): 100%	P0 (B): 100%, P3 (F): 100%
Afinidad Neutra	$\{0.0, 1.0\}$	P1 (B): 100%, P3 (F): 100%	P0 (B): 100%, P2 (F): 100%

			DOCTORAL	00
Caso de Prueba	Fracciones de Tiempo	Asignaciones Proyecto 1	Asignaciones Proyecto 2	IERÍA
Afinidad Alterna	$\{0.0, 1.0\}$	P0 (B): 100%, P3 (F): 100%	P1 (B): 100%, P2 (F): 100%	
Ideal Fraccionario 1	$\{0.0, 0.5, 1.0\}$	P0(B):50%, P1(B):50% P2(F):50%, P3(F):50%	P0(B):50%, P1(B):50% P2(F):50%, P3(F):50%	
Ideal Fraccionario 2	$\{0.0, 0.25, 0.5, 0.75, 1.0\}$	P0(B):50%, P1(B):50% P2(F):50%, P3(F):50%	P0(B):50%, P1(B):50% P2(F):50%, P3(F):50%	

Conclusión

- El modelo ha evolucionado a un **MINLP** para permitir asignaciones de tiempo más realistas (fracciones discretas).
- La métrica de eficiencia e_l sigue buscando un balance entre cohesión social y cumplimiento de requerimientos.
- El uso del solver Bonmin es crucial para abordar la naturaleza MINLP.
- El modelo sigue siendo una herramienta útil para la planificación inicial de equipos.

Trabajo Futuro

- Múltiples Habilidades por Individuo:
 - \circ Permitir que cada persona $i \in \mathcal{H}$ pueda poseer un conjunto de habilidades $\mathcal{K}_i \subseteq \mathcal{K}$.
 - Modificar la restricción de requerimientos para considerar esto.
- Relajación del Modelo para Infactibilidad:
 - Investigar técnicas para obtener soluciones "cercanas" o identificar cuellos de botella cuando el modelo MINLP es infactible.
 - Por ejemplo, permitir violaciones suaves de ciertas restricciones con penalizaciones en la función objetivo.