

Combinatoire - Calcul matriciel Le 19 janvier 2016

Vous pouvez vous contenter de reporter sur votre copie la référence $[q_j]$ de la question que vous traitez.

Les raisonnements combinatoires vagues ou approximatifs ne seront pas pris en compte.

Problème

Dans tout le problème, les matrices introduites sont considérées à coefficients dans R.

Partie 1

On pose:
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $N = A - I$.

On pourra utiliser le résultat général suivant sans preuve : pour tout entier naturel n et toute famille de scalaires ou de matrices $(u_k)_{0 \le k \le n}$:

$$\sum_{k=0}^{n} u_k = \sum_{0 \leqslant 2j \leqslant n} u_{2j} + \sum_{0 \leqslant 2j+1 \leqslant n} u_{2j+1}.$$

La première somme contient les termes de la famille d'indice pair et la seconde ceux d'indice impair. Ce résultat dit simplement si n est par exemple impair :

$$u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n = [u_0 + u_2 + \dots + \dots + u_{n-1}] + [u_1 + u_3 + \dots + u_{n-2} + u_n]$$

[q₁] **1. a)** Calculer $A^3 - 3A^2 + A$.

 $[q_2]$

 $[q_4]$

- **b)** En déduire que A est inversible et donner A^{-1} en fonction de I, A, et A^2 .
- **2.** Soit α un réel non nul et pour tout entier naturel n :

$$X_n(\alpha) = (1+\alpha)^n, \quad Y_n(\alpha) = (1-\alpha)^n \quad P_n(\alpha) = \sum_{0 \leqslant 2j \leqslant n} \binom{n}{2j} \alpha^{2j} \quad \text{ et } \quad I_n(\alpha) = \sum_{0 \leqslant 2j+1 \leqslant n} \binom{n}{2j+1} \alpha^{2j+1}.$$

- [q₃] **a)** Trouver une relation simple entre $X_n(\alpha)$, $P_n(\alpha)$ et $I_n(\alpha)$.
 - **b)** De même trouver une relation simple entre $Y_n(\alpha)$, $P_n(\alpha)$ et $I_n(\alpha)$.
- [q₅] **c)** En déduire les valeurs de $P_n(\alpha)$ et $I_n(\alpha)$ en fonction de $X_n(\alpha)$, $Y_n(\alpha)$.
- [q₆] **3. a)** Calculer N^2 , N^3 , puis donner une relation simple entre N et N^3 .
- [q_7] **b)** En déduire une relation toute aussi simple entre N^2 et N^4 .
- $[q_8]$ **c)** Exprimer alors :
 - * la matrice N^{2j+1} en fonction de j et de N pour tout entier non nul j.
 - * la matrice N^{2j} en fonction N^2 et de j pour tout entier j > 1.

(on ne demande pas de preuve, mais il est fortement conseillé de contrôler la validité de ses formules sur des petites valeurs de j!)

Combinatoire - Calcul matriciel Le 19 janvier 2016

 $[q_9]$

d) Les relations obtenues sont-elles valables pour j = 0? j = 1?

 $[q_{10}]$

4. Montrer à l'aide de la formule du binôme, que pour tout entier naturel n:

$$A^{n} = I + \frac{I_{n}(\sqrt{2})}{2\sqrt{2}}N + \left[P_{n}(\sqrt{2}) - 1\right]N^{2}.$$

Partie 2

On rappelle que la notation $p \in [[1, p]]$ désigne pour tout entier naturel p l'ensemble $\{1, 2, ..., p\}$. On considère un alphabet de trois lettres $\mathscr{A} = \{A, B, C\}$. Pour tout entier naturel n non nul, on note Ω_n l'ensemble des mots de n lettres écrits dans l'alphabet \mathscr{A} .

Les résultats de cette partie sont indépendants du reste du problème

1. Soit *n* un entier naturel non nul.

 $[q_{11}]$

a) Déterminer le cardinal de Ω_n .

 $[q_{12}]$

b) Déterminer le nombre de mots de Ω_n écrits avec au moins un A.

 $[q_{13}]$

c) Déterminer le nombre de mots de Ω_n écrits avec au plus deux lettres.

2. Soit $p \in [[1, n]]$.

- * On note E l'ensemble des mots de Ω_n comportant exactement p fois la lettre C.
- * Pour $k \in [[1, n]]$, on note E_k l'ensemble des mots de E dont le premier C arrive en position k.

 $[q_{14}]$

a) Calculer #E.

 $[q_{15}]$

b) Déterminer l'ensemble K des valeurs de k pour lesquelles $E_k \neq \emptyset$.

 $[q_{16}]$

c) Soit $k \in K$. Montrer que $\#E_k = \binom{n-k}{p-1} 2^{n-p}$.

 $[q_{17}]$

d) Montrer alors que :

$$\sum_{k=1}^{n-p+1} \binom{n-k}{p-1} = \binom{n}{p}.$$

Partie 3

Pour tout entier naturel *n* non nul, on note :

- * Δ_n l'ensemble des mots de Ω_n tels que les chaînes de caractères BC et CB ne figurent pas dans leur écriture. On pose $\delta_n = \#\Delta_n$.
- * A_n (resp. B_n , C_n) l'ensemble des mots de Δ_n se finissant par la lettre A (resp. B, C).
- * $a_n = \#A_n$ le cardinal de l'ensemble A_n (resp. $b_n = \#B_n$ le cardinal de l'ensemble B_n , $c_n = \#C_n$ le cardinal de l'ensemble C_n).
- * U_n la matrice unicolonne définie par : $U_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbf{R}).$

 $[q_{18}]$

1. a) Justifier que pour tout entier naturel non nul $n: \delta_n = a_n + b_n + c_n$.

Combinatoire - Calcul matriciel Le 19 janvier 2016

 $[q_{19}]$

b) Donner en extension les ensembles A_1, B_1, C_1 , et calculer U_1 .

2. Soit $n \ge 2$ un entier.

 $[q_{20}]$

a) En éliminant la dernière lettre d'un mot de A_n , montrer que : $a_n = \delta_{n-1}$.

 $[q_{21}]$

b) Quelle est l'avant-dernière lettre d'un mot de B_n ? Donner alors une relation entre b_n, b_{n-1}, a_{n-1} .

 $[q_{22}]$

c) De même, donner une relation entre c_n, c_{n-1} , et a_{n-1} .

 $[q_{23}]$

3. a) En déduire une matrice carrée $A \in \mathcal{M}_3(\mathbf{R})$ indépendante de n telle que :

$$\forall n \geq 2 \quad U_n = AU_{n-1}.$$

 $[q_{24}]$

b) Exprimer pour tout entier naturel n non nul U_n en fonction de A, n et U_1 .

 $[q_{25}]$

c) Montrer que δ_n vaut la somme de tous les coefficients de A^{n-1} .