RK3308 EQ Tool User Manual

发布版本: 2.02

日期: 2019.07

文件密级: 公开资料

免责声明

本文档按"现状"提供,福州瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2019 福州瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

福州瑞芯微电子股份有限公司

Fuzhou Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-591-83991906

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文主要针对RK3308的EQ工具(以下简称: EQTool)基本使用做简单描述,帮助开发工程师快速了解并使用

EQ/DRC 调参工具。

产品版本

芯片名称	内核版本
RK3308	

读者对象

本文档 (本指南) 主要适用于以下工程师:

1 技术支持工程师

2

3 软件开发工程师

修订记录

日期	版本	作者	修改说明
2019-07-13	V2.02	Cherry.Chen	初始版本

目录

RK3308 EQ Tool User Manual

前言

目录

概述

重要概念

Samplerate

ChannelNum

EQ

DRC

LMT

板端配置

PC工具介绍

调参工具使用步骤

子模块参数说明

功能索引模块参数

使能模块参数

调参模块参数

- 1. 公共参数
- 2. 10EQ参数
- 3. DRC参数
- 4. LMT参数

概述

EQ_DRC工具(Equalizer& Dynamic Range Control Tool)是语音均衡器和动态范围规划调参工具——以下简称EQTool。使用该工具可以在线调试各类音频参数,适用于RK3308。

重要概念

Samplerate

声音采样率,通俗的讲采样频率是指计算机每秒钟采集多少个信号样本。单位: Hz

ChannelNum

声道数,是指声音在播放时在不同空间位置回放的相互独立的音频信号,声道数就是声音播放时相应的 扬声器数量。

EQ

Equalizer 均衡器,它的作用就是调整各个频段的增益值。10EQ表示将声音信号分为十个频段,分别对各个频段进行Gain值调整;同理,8EQ表示将声音信号分为八个频段,分别对各个频段进行增益调整。

DRC

Dynamic Range Control,动态范围规划。用于音频输出的柔和压限。

LMT

limiter (限幅器), 在EQ/DRC使能的最后一级, 防止声音信号在数字端超过最大值。

板端配置

使用alsa ladspa插件集成eq/drc算法,RK3308可以创建多个实例的eq/drc算法,每个实例访问不同的eq参数配置文件,生成不同的音效,插件配置格式如下:

```
#plugin名字,可以任取
   pcm.ladspa {
 2
      type ladspa
                                          #plugin 类型
 3
       slave {
4
           pcm "plug:real_playback"
 5
       }
 6
       channels 2
 7
       path "/usr/lib"
8
       playback_plugins [{
9
           label eq_drc_stereo
               input {
10
11
                  controls [4]
                                    # 最多支持5个实例 1~5
12
               }
13
       }]
14 }
```

所以参数文件的板端路径为:/data/cfg/eq_bin, contorls = [n]表示当前eq/drc算法访问的参数文件为Para_<sampleRate>Hz_<channels>ch_<controls>.bin,例如:Para_48000Hz_2ch_4.bin。

当controls = 0的时候,进入debug模式,使用Para_<sampleRate>Hz_<channels>ch.bin (eg. Para_48000Hz_2ch.bin) ,可以使用pc工具进行音效调整。

PC工具介绍

下图为EQTool的图形界面。EQTool主要分为四个部分:

- 1. 功能索引,可以快速的索引不同的声道的EQ/DRC进行调参;
- 2. 使能模块及全局增益调整, ON表示对应功能使能打开, OFF表示关闭;
- 3. 调参模块,调参模块有四个子模块:10EQ调参模块、 DRC调参模块、8EQ调参模块以及LMT调参模块,可以根据对应的子模块进行调参。
- 4. 设置模块,选择不同的按钮对应不同的功能设置。

调参工具使用步骤

步骤1

烧写固件,确认板子adb可用;

步骤2

板端播放音源,如下图:

```
# aplay tmp/test_48k_2ch_16bit_500hz_5000hz.wav
playback v3 !!!
playback wav !!!
playback go count = 11520156
Playing WAVE 'tmp/test_48k_2ch_16bit_500hz_5000hz.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo
```

步骤3

在PC端打开EQTool.exe;

步骤4

读取当前使用EQ/DRC参数(该步骤可以不执行);

步骤5

选取对应模块进行参数调整。例:如图表示当前调整48000Hz,双声道声音信号的10EQ模块参数,在上图参数的基础上,调整中心频率为400Hz的频段增益为12db。

步骤6

点击Set可将当前参数设置到板端,并实时听到调音效果。例: Set表示参数设置到板端,EQ工具显示设置成功,同时,串口log打印"modified the param succedd!!!",表示新的参数设置成功,如下图;


```
# aplay tmp/test_48k_2ch_16bit_500hz_5000hz.wav
playback v3 !!!
playback wav !!!
playback wav !!!
playback go count = 11520156
Playing WAVE 'tmp/test_48k_2ch_16bit_500hz_5000hz.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo modified the param succedd!!!
```

子模块参数说明

功能索引模块参数

参数 名称	默认 值	描述	
L/R	NULL	左右声道索引 L:左声道(channel0) R:右声道(channel1)	
10EQ	NULL	10段EQ快速索引 上图中点击2按钮快速索引到channel0的10段EQ调参模块; 3按钮快速索引到channel1的10段EQ调参模块	
DRC	NULL	DRC快速索引 4按钮能够快速索引到channel0的DRC调参模块; 5按钮能够快速索引到channel1的DRC调参模块;	
8EQ	NULL	8段EQ快速索引 6按钮快速索引到channel0的8段EQ调参模块; 7按钮快速索引到channel1的8段EQ调参模块	

使能模块参数

参数名称	默认值	描述
10EQ Mode	OFF	10段EQ功能使能 ON开启,OFF关闭
DRC Mode	OFF	DRC功能使能 ON开启,OFF关闭
8EQ Mode	OFF	8段EQ功能使能 ON开启,OFF关闭
Gain1	0	左/右声道施加前增益,单位是dB

调参模块参数

1. 公共参数

Samplerate:采样率设置

ChannelNum: 声道数设置

2. 10EQ参数

参数名称	默 认 值	描述	
Link	不 选 择	左右声道关联,选中该选项,表示调整其中一个声道的10EQ参数,另外一个 声道参数相应调整	
GF(Hz)		0段EQ调整对应频段的中心频率,中心频率的调整受限于奈奎斯特采样定理,取值范围为0 < GF≤samplerate/2	
Gain	0	每段EQ对应的调整增益值,取值范围为-12dB≤Gain≤12dB	
Q	2.5	品质因子是无量纲的参数,是比较系统振幅衰减的时间常数和振荡周期后的结果。取值范围为Q≥0.5	

3. DRC参数

最高支持3分频DRC参数调整。

- 3分频 Division_Frequency > 0 且Division_FrequencyH > 0
 DRC Low Band指低频段参数调整,调整频段范围[0 Division_Frequency];
 DRC Mid Band指中频段参数调整,调整频段范围
 [Division_Frequency Division_FrequencyH];
 DRC High Band指高频参数调整[Division_Frequency F_{max}]
- **2分频** Division_Frequency = 0 或者Division_FrequencyH = 0 调整DRC Low Band和DRC High Band的参数。
- **不分频** Division_Frequency = 0 且Division_FrequencyH = 0 只调整DRC Low Band

参数名称	默认 值	描述
Link		左右声道关联,选中该选项,表示调整其中一个声道的DRC参数,另外一个声道参数相应调整
Division Frequency		低中频段的分界频率,单位Hz,调节范围:0 < Division Frequency < 采样率/2
Division FrequencyH		中高频段的分界频率,单位Hz,调节范围:0 < Division Frequency < Division FrequencyH< 采样率/2
DRC Low Band	NULL	设定的是低频子带的DRC参数
DRC Mid Band	NULL	设定的是中频子带的DRC参数,若二分频,该模块参数不生效
DRC High Band	NULL	设定的是高频子带的DRC参数 ,若不分频,该模块参数不生效
Static time		计算输入信号RMS值的统计时间,单位是ms,Static time>0;
Makeup gain		输出的整体音轨上施加固定值的补偿增益,单位是dB,0 <= Makeup gain <= 20dB;
Threshold_L		输入信号能量低于该阈值时,DRC开始抬升(提高输出增益),单位 是dB;
Ratio L		输入信号能量低于阈值Threshold_L时的抬升比例,例如Ratio_L=4:1 意味着,如果输入在阈值以下4dB时,输出在阈值以下1dB;注意 Ratio L的分子与分母都是正整数,且分子大于等于分母;
Release time		输入信号能量低于阈值Threshold _L时,增大增益到Ratio_L所决定的级别的变化速率,单位是ms,定义为增益增大10dB所用的时间, Release time>attack time >0;
Threshold_H		输入信号能量高于该阈值时,DRC开始压缩(降低输出增益),单位 是dB; -90.3087dB < Threshold L < Threshold H < 0dB
Ratio H		输入信号能量高于阈值Threshold_H时的压缩比例,例如Ratio_H=4:1 意味着,如果输入在阈值以上4dB时,输出在阈值以上1dB;注意 Ratio H的分子与分母都是正整数,且分子大于等于分母
Attack time		输入信号能量高于阈值Threshold_H时,降低增益到Ratio_H所决定的级别的变化速率,单位是ms,定义为增益降低10dB所用的时间,Attack time>0
Smooth time		于能量处于非压缩段的语音段,而其前一段语音处于压缩段(低于 Threshold L或高于Threshold H)的情况下,施加的增益恢复至 0dB(不再压缩)的变化速率,单位是ms,定义为增益改变10dB所 用的时间,Smooth time>0

4. LMT参数

Public Param 10EQ	DRC 8EQ Limiter		
Static time	6.0 ms	Link	channel0 ~
Threshold	-3.0 dB		
Smooth time	20.0 ms		
Attack time	0.5 ms		

参数名称	默认值	描述
Input gain	0	输入信号整体幅度提高,单位是dB,范围: -90 <= Input gain <= 90dB
Threshold	0	输入信号峰值能量高于该阈值时,Limiter开始限制输出幅度,单位是dB, 范围:-90dB <= Threshold <= 0dB
Smooth time	100	对于能量不高于Threshold的语音段,而其前一段语音高于Threshold的情况下,施加的增益恢复至0dB(不再限幅)的变化时间,单位是ms,50 < Smooth time < 200ms。
Attack time	5	输入信号能量高于阈值Threshold时,降低输入信号达到阈值以下的时间,单位是ms,2 < Attack time < 25ms。