KNIMEを使った 材料探索 基本操作(2)

早稲田大学 応用化学科講師(任期付) 畠山 歓

https://github.com/KanHatakeyama/

satokan@toki.早稲田.jp

今回扱う内容

訓練、検証データセットの作成

結果の定量評価

正規化

各種モデルの利用

訓練・検証データセットの作 成

- ・何故分けるのか?
 - Googleや書籍などで調べて下さい
 - ・ 試験 検証 データ 分割 理由

前回の画面

ノードをつなぎ替える

Partitioningを設置

データの80%を訓練 20%を検証用に ランダム抽出する、という指示

Partitioning を設定

訓練データを学習

検証用Predictorを準備

3. 実行

結果確認

結果の定量評価

R2, MAE, MSE, ... 意味は他所で調べて下さい

Numeric Scoreerを配置

Numeric scorerを コピペし、 検証データ 結果も見る

全体図

名前を付けると 見通しが良くなります

Numeric Scorer

正規化

いわゆる標準得点 (z-score)を計算します 操作の理由は他所で調べて下さい

Normalizerの設置

ノードのつ なぎ替え

Normalizer 設定

Row ID	ID ID	S SMILES	D Melting .
Row0	1	[Cu]=S	0.518
Row1	2	c 1cc 2ccc 3cc	-0.299
Row2	3	O1[Fe]2O[F	2.736
Row3	4	0=01NO(=0	-0.026
Row4	5	P#[Y]	-0.12
Row5	6	C1=CC=C(C	0.07 正規化
Row6	7	GIG(GI)G(= 0	-0.34 されました
Row7	8	FC(F)F	-0.88
Row8	9	O=[N+]([O-]	-0.318
Row9	10	CCC[C@@H <mark>]</mark>	-0.365
Row10	11	c 1ccc 2c(c 1)	-0.613
Row11	12	0=0(0)[0@.	0.059
Row12	13	F[Co](F)F	1.43
Row13	14	[Os+].[I-]	0.8
Row14	15	01000(001	-0.54
Row15	16	O=C2c3c(O[-0.013
Roin 16	17	BrOLEMEJE	l=n 9n7

Normalizer 右クリック → Normalized table

全て実行

各種モデルの利用

実はKNIMEの対応モデルは標準では あまり多くありません

利用可能な回帰モデル

Gradient boostingを 追加してみ た例

Gradient boosting (7) Advanced options

Fingerprint以外の方法

今後の TODO 欠損データの処理

多彩なモデルの利用