Universidade Federal de Pernambuco Centro de Informática Circuitos Digitais

2º Exercício Escolar – 1º Semestre 2001

1^{a}	Deduza a partir das tabelas de transição, as equações de próximo estado dos Flip-Flops:		
	a)	Flip-Flop tipo RS	(0,5)
	b)	Flip-Flop tipo JK	(0,5)
	c)	Flip-Flop tipo T	(0,5)
	d)	Flip-Flop tipo D	(0,5)

Obs: Mostre as tabelas de transição e deduza equações.

2^a Implementar um Flip-Flop tipo T a partir:

a) de um Flip-Flop tipo D. (1,0)

b) de um Flip-Flop tipo JK. (1,0)

Obs: Mostre as tabelas de conversão, deduza as equações necessárias e mostre o esquema resultante.

- 3^a Implementar um contador síncrono módulo 5, tipo *up* com as seguintes características:
 - a) possuir "ripple carry out". Ripple carry out (RCO) é um bit de saída que informa que o contador chegou no máximo de sua contagem. Nos demais valores o RCO deve ser zero (´O´).
 - b) Sinal de entrada *enable*(*EN*) que habilita ou não a contagem. O sinal *EN* deve ser ´1´para permitir a contagem e ´0´para bloquear a contagem.
 - c) Deduzir a máquina de estado do controle:
 - a. Mostrar diagrama de estados.
 - b. Mostrar a tabela de transição.
 - c. Deduzir as equações para os Flip-Flops.
 - d. Desenhar o esquema do circuito resultante.
 - **Obs:** Ao atingir o maior valor de contagem o contador volta a contar de zero.
 - Implementar o contador com **Flip-Flops tipo JK**.
- 4ª Implemente uma máquina seqüencial que execute a seguinte função: Z = |A-B|
 - b) Deduzir a máquina de estado do controle
 - a. Mostrar diagrama de estados.
 - b. Mostrar a tabela de transição.
 - c. Deduzir as equações para os Flip-Flops.
 - d) Desenhar o esquema na forma de diagrama de blocos, mostrando os barramentos de conexão, muxs, registradores, etc.
 - **Obs:** A e B são número positivos ou negativos(complementados a 2) de 4 bits.
 - Z é um registrador de saída.
 - Não é necessário implementar a lógica que compõe muxs e registradores.

Boa sorte.