Probability and Statistical Inference

Tianqi Zhang Emory University

Apr 17th 2025

Theorem 0.0.1 Chebyshev's Inequality

For $f: \mathbb{R}^d \to \mathbb{R}, f \geq 0, \alpha \in \mathbb{R}$, we have $m(\{f \geq \alpha\}) < \frac{1}{\alpha} \int f$.

Proof. By monotonicity of integral,

$$\int f \ge \int_{\{f \ge \alpha\}} f$$

Also observe that

$$\int_{\{f \geq \alpha\}} f \geq \alpha \cdot m(\{f \geq \alpha\}) \quad \text{Since } f \geq \alpha \text{ a.e. on the set}$$

Associating the two inequalities:

$$\frac{1}{\alpha} \int f \ge m(\{f \ge \alpha\})$$

Remark 0.1 Change the measure to any probability measure and the integration sign to an expectation, we have the typical Chebyshev's inequality in any statistics 101 class.

Two immediate lemmas follow:

Lemma 0.0.2:

For $f: \mathbb{R}^d \to [0, \infty]$, if $\int f < \infty$, then $f < \infty$ a.e.

Proof. Fix any $n \in \mathbb{N}$, by Chebyshev's inequality,

$$m\{f \ge n\} < \frac{1}{n} \underbrace{\int_{<\infty} f}_{<\infty}$$

And the sequence of sets: $\{f \geq n\}_{n \in \mathbb{N}}$ are nested and $\{f \geq n\} \setminus \{f > \infty\}$. Therefore by continuity of measure:

$$\lim_{n \to \infty} m(\{f \ge n\}) \le \lim_{n \to \infty} \frac{1}{n} \int f$$
$$m(\{f > \infty\}) \le 0$$

Therefore, f goes to infinity on a set of measure 0, which is equivalent as f is finite almost everywhere.

Lemma 0.0.3:

For $f: \mathbb{R}^d \to [0, \infty]$, if $\int f = 0$, then f = 0 a.e.

Proof. Similarly, fixing $n \in \mathbb{N}$, we have by Chebyshev's inequality:

$$m(\{f \ge 1/n\}) < n \int f = 0$$

Observe that the sequence of sets $\{f \ge 1/n\}_{n \in \mathbb{N}}$ is an increasing sequence of sets such that $\{f \ge 1/n\} \nearrow \{f > 0\}$. Therefore by continuity of measure:

$$\lim_{n \to \infty} m(\{f \ge 1/n\}) \le n \int f$$
$$m(\{f > 0\}) \le 0$$

Therefore, the set on which f is strictly larger than 0 has measure 0. This is equivalent as f = 0 almost everywhere.