Performance Analysis and Online Resource Management of a VM System

GRS Project - Team 23

Priyanshu Kumar Rai, Aman Yadav, Ritesh Gupta and Vanshika Jain

Abstract

- Investigates deployment, performance analysis, and resource management of VMs.
- Uses QEMU/KVM and libvirt on a Linux host.
- Benchmarks include miniFE, miniQMC, HPCG, and others.
- Focus on dynamic resource allocation for optimization.

Problem Statement

The project focuses on centralized monitoring, performance analysis, and dynamic resource management in virtualized environments. By studying three Alpine Linux VMs on a Linux host, the system aims to:

- Monitor real-time metrics for CPU, memory, network, and disk I/O.
- Execute performance benchmarks to analyze resource utilization under varying workloads.
- Dynamically adjust CPU and memory allocation to optimize performance and resource efficiency.

Project Goals

Monitoring

- Centralized monitoring of CPU, memory, network, and disk I/O.
- Real-time metrics collection and visualization.

Benchmarking

- Execute benchmarks like HPCCG, XSBench, miniFE, and HPCG.
- Analyze performance under resource constraints.

Resource Management

- Dynamic memory ballooning and CPU core allocation.
- Optimize storage using pooling and sharing strategies.

Project Structure

Summary

Components

File Name	Purpose
alpine-base.qcow2	Base Image
alpine-1.qcow2, alpine-2.qcow2, alpine-3.qcow2	VM Images
alpine.xml	Base XML Template
alpine-vm-1.xml, alpine- vm-2.xml, alpine-vm-3.xml	VM Configurations
gen-xml.sh	XML Generation Script
report-memory.sh	Metrics Script (VM \rightarrow Host)

Components (ii)

plot_adv.py	Listener, Visualizer and Monitor
runall.sh	Runner Script (VM)
memory_hog.c	Workload Simulation (VM)
metrics_data/	Metrics Storage (Host)
miniQMC/	Quantum Monte Carlo Simulation
MiniFE/	Finite Element Solver
HPCG/	High-Performance Computing Graph

Resource Management

Dynamic RAM Adjustment

- Increase RAM by 100 MB if usage > 80%.
- Decrease RAM by 500 MB if usage < 20%.
- Uses libvirt APIs for live adjustments.

Dynamic CPU Core Adjustment

- Add CPU core if usage > 90%.
- Remove CPU core if usage < 30%.
- Adjusts cores dynamically (up to 2 cores).

Metrics Reporting

- Memory usage (total and used).
- CPU usage (% utilization).
- Disk I/O (read/write activity).
- Network usage (bytes received/transmitted).

We used:

- Real-time graphs for memory, CPU, disk I/O, and network usage.
- Threshold indicators for memory and CPU.
- Historical data stored in CSV files.

Memory Usage Over Time

Disk I/O Over Time

Network Usage Over Time

Automation

Project Outcomes

- Automated VM Deployment.
- Real-time Monitoring.
- Dynamic Resource Management.
- Performance Benchmarking.
- Visualization Dashboard.
- Optimized Resource Allocation.

Future Work

- Extend resource types: Support storage and network bandwidth optimization.
- Advanced Benchmarking: Integrate more comprehensive benchmarking tools.
- Machine Learning: Predict resource usage and optimize allocation.

Thank You