Variables aléatoires à densité

Feuille d'exercices

$\mid \mathbf{1} \mid$ Pour $c \in \mathbb{R}$, on considère la fonction f définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{c}{(1+x)^2} & \text{si } 0 \leqslant x \leqslant 1\\ 0 & \text{sinon} \end{cases}.$$

- 1. Donner une condition nécessaire et suffisante sur c pour que f soit une densité de probabilité. On suppose cette condition satisfaite dans la suite de l'exercice et on considère une variable aléatoire X de densité f. Tracer l'allure de la courbe représentative de f.
- 2. Déterminer la fonction de répartition de X et tracer l'allure de sa courbe représentative.
- **3.** Montrer que X admet une espérance et une variance et les calculer.

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x < 0 \\ xe^{-x^2/2} & \text{si } x \geqslant 0 \end{cases}.$$

- 1. Vérifier que f est une densité de probabilité et tracer l'allure de son graphe.
- 2. Calculer la fonction de répartition de X et tracer l'allure de sa courbe représentative.
- 3. Montrer que X admet une espérance et une variance que l'on calculera.
- **4.** Montrer que $Y = X^2$ suit une loi exponentielle dont on précisera le paramètre.

3 Montrer que la fonction

$$f: x \in \mathbb{R} \longmapsto \begin{cases} x^2 & \text{si } 0 \leqslant x < 1\\ x - 1 & \text{si } 1 \leqslant x < 2\\ (x - 2)^5 & \text{si } 2 \leqslant x < 3\\ 0 & \text{sinon} \end{cases}$$

est une densité de probabilité. Déterminer la fonction de répartition d'une variable aléatoire X de densité f.

4 Loi béta de première espèce

 \star Dans tout l'exercice, n et m désignent des entiers naturels non nuls. On pose :

$$\beta(n,m) = \int_0^1 u^{n-1} (1-u)^{m-1} du.$$

1. a. Prouver que $\beta(n, m) = \beta(m, n)$ et que, pour $m \ge 2$:

$$\beta(n,m)=\frac{m-1}{n}\beta(n+1,m-1).$$

b. En déduire une expression de $\beta(n, m)$.

2. On considère la fonction

$$f_{n,m}: x \in \mathbb{R} \longmapsto \begin{cases} rac{1}{eta(n,m)} x^{n-1} (1-x)^{m-1} & ext{si } 0 < x < 1 \\ 0 & ext{sinon} \end{cases}$$

- **a.** Montrer que $f_{n,m}$ est une densité de probabilité.
- **b.** Soit X une variable aléatoire admettant $f_{n,m}$ comme densité. Après en avoir justifié l'existence, calculer $\mathbb{E}(X)$ et $\mathbb{V}(X)$.
- **5 1. a.** Montrer que

$$F: x \in \mathbb{R} \longmapsto \frac{1}{1 + \mathbf{e}^{-x}}$$

est la fonction de répartition d'une variable aléatoire X à densité, dont on déterminera une densité.

- **b.** Étudier l'existence de l'espérance et de la variance de X.
- **c.** Calculer l'espérance de X.
- 2. On considère la variable aléatoire $Y = \frac{e^X + 1}{e^X 1}$.
 - a. En déterminer une densité.
 - **b.** Admet-elle une espérance? Si oui, la calculer.
- **6** Soit X une variable aléatoire de loi uniforme sur [-2, 1].
 - 1. Après en avoir justifié l'existence, calculer l'espérance et la variance de la variable aléatoire $Z = X^2$.
 - 2. Déterminer une densité de Z et retrouver la valeur de $\mathbb{E}(Z)$ à partir de cette densité.
- 7 Soit X une variable aléatoire uniforme sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. Déterminer la loi et, si elles existent, l'espérance et la variance de Y = tan X.
- Soient U_1, \ldots, U_n des variables aléatoires mutuellement indépendantes de même loi uniforme sur [0, 1]. On note $X = \max_{1 \le i \le n} U_i$ et $Y = \min_{1 \le i \le n} U_i$.
 - 1. Déterminer une densité de X, son espérance et sa variance.
 - **2.** Mêmes questions avec Y.
- $\boxed{\mathbf{9}}$ Soient X et Y deux variables aléatoires indépendantes. Déterminer une densité de S=X+Y dans les deux cas suivants. dans les deux cas suivants.

 1. X et Y suivent des lois exponentielles de paramètres respectifs 1 et 2.

 - 2. X suit la loi uniforme sur [0, 1] et Y la loi exponentielle de paramètre 1.
- 10 | Soient X, Y et Z des variables aléatoires mutuellement indépendantes suivant respectivement des lois uniformes sur [0, 1], [0, 2] et [0, 3]. Déterminer une densité de S = X + Y + Z.

11 1. Déterminer une condition nécessaire et suffisante sur $x, y \in \mathbb{R}$ pour que la matrice

$$A = \begin{pmatrix} 0 & -1 \\ y & 2x \end{pmatrix}$$

soit diagonalisable dans $\mathbf{M}_2(\mathbb{R})$.

- 2. Soient X et Y deux variables aléatoires indépendantes suivant la loi uniforme sur [0, 1]. On note F_X et F_Y les fonctions de répartition associées.
 - **a.** Déterminer une densité de X².
 - **b.** Déterminer une densité de -Y.
 - c. En déduire que la variable aléatoire $X^2 Y$ admet pour densité la fonction h définie par:

$$\forall x \in \mathbb{R}, \quad h(x) = \begin{cases} \sqrt{x+1} & \text{si } -1 \leqslant x < 0 \\ 1 - \sqrt{x} & \text{si } 0 \leqslant x \leqslant 1 \\ 0 & \text{sinon} \end{cases}.$$

d. Déterminer la probabilité que la matrice aléatoire

$$M = \begin{pmatrix} 0 & -1 \\ Y & 2X \end{pmatrix}$$

soit diagonalisable dans $\mathbf{M}_2(\mathbb{R})$.

- 12 On considère deux variables aléatoires X et Y indépendantes de même loi exponentielle de paramètre 1.
 - **1.** Pour $t \in \mathbb{R}_+^*$, montrer que la variable aléatoire Y -tX admet pour densité la fonction

$$h: x \in \mathbb{R} \longmapsto egin{cases} rac{\mathbf{e}^{-x}}{t+1} & ext{si } x > 0 \\ rac{\mathbf{e}^{x/t}}{t+1} & ext{si } x \leqslant 0 \end{cases}.$$

- **2.** En déduire la fonction de répartition de la variable aléatoire Z = Y/X.
- 3. Déterminer la loi de la variable aléatoire $U = \frac{X}{X + Y}$.
- 13 Soient $r \in \mathbb{R}^*_+$, X et Y deux variables aléatoires indépendantes qui suivent la loi uniforme sur [0, r]. On pose $U = \ln(X/r)$ et $V = -\ln(Y/r)$.
 - 1. Déterminer la fonction de répartition puis une densité de U et V. Tracer l'allure des représentations graphiques de ces fonctions.
 - **2.** En déduire une densité et la fonction de répartition de U + V.
 - **3.** On pose Q = X/Y.
 - a. Montrer que Q est une variable à densité et donner une densité de Q.
 - **b.** La variable aléatoire Q admet-elle une espérance?

14 Loi de l'arcsinus (oral ESCP)

- 1. Soit Z une variable aléatoire réelle à valeurs dans 0, 1 possédant une densité g continue sur]0,1[. Montrer que Z admet une espérance. Que vaut cette espérance si l'on suppose de plus que g(1-x) = g(x) pour tout $x \in [0,1[$?
- **2.** Montrer que la fonction $x \mapsto \sin x$ réalise une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur [-1, 1]. Montrer que sa fonction réciproque φ est dérivable sur]-1,1[et calculer sa dérivée.
- 3. Montrer la convergence et calculer la valeur de l'intégrale

$$I = \int_0^1 \frac{\mathrm{d}x}{\sqrt{x(1-x)}}.$$

Indication. Mettre sous forme canonique l'expression sous la racine pour se ramener à la dérivée de φ .

4. Montrer que la fonction f définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{\pi \sqrt{x(1-x)}} & \text{si } 0 < x < 1 \\ 0 & \text{sinon} \end{cases}$$

est une densité de probabilité.

- **5.** Soit X une variable aléatoire admettant cette densité.
 - a. Déterminer $\mathbb{E}(X)$ en utilisant la question 1.
 - b. Retrouver ce résultat en utilisant la définition de l'espérance et le changement de variable $x = \sin^2 \theta$.
- 15 On choisit au hasard sur le cercle trigonométrique deux points A et B, ce qui signifie que l'on choisit deux angles α et β de façon indépendante et uniforme dans $[-\pi, \pi]$, les points A et B étant représentés dans le plan complexe par $e^{i\alpha}$ et $e^{i\beta}$ respectivement. On se propose de calculer la probabilité que la longueur AB soit inférieure ou égale à 1 et, pour ce faire, on note X la variable aléatoire égale à la longueur AB.
 - **1.** Montrer que $\mathbb{P}(X \leq 1) = \mathbb{P}(\cos(\alpha \beta) \geq \frac{1}{2})$.
 - **2.** Trouver une densité de $\alpha \beta$ puis déterminer $\mathbb{P}(X \leq 1)$.
 - 3. Soit Y la variable aléatoire prenant l'unique valeur de $[-\pi, \pi]$ congrue à $\alpha \beta$ modulo 2π . Déterminer une densité de Y et commenter le résultat. Retrouver le résultat de la question 2..
 - **4.** Montrer que $X = 2 \sin \frac{|Y|}{2}$.
 - 5. Montrer que X admet une espérance et une variance et les calculer.
 6. Déterminer une densité de X (on pourra utiliser l'exercice 14).
- 16 On considère une variable aléatoire X à valeurs dans \mathbb{R}_+ . On suppose que X admet une
- \star densité f continue sur \mathbb{R}_+ . On définit la variable aléatoire Y = X (partie entière de X). 1. Peut-on affirmer que f est nulle sur \mathbb{R}_{-}^{*} ? On supposera que c'est le cas.
 - **2.** Déterminer la loi de Y en fonction de f.

3. On définit la suite $(S_n)_{n\in\mathbb{N}}$ des sommes partielles de la série $\sum n \mathbb{P}(Y=n)$ ainsi que la fonction

$$G: x \in \mathbb{R} \longmapsto \int_0^x t f(t) dt.$$

a. Justifier que :

$$\forall k \in \mathbb{N}, \quad k \int_{t}^{k+1} f(t) \, \mathrm{d}t \leqslant \int_{t}^{k+1} t f(t) \, \mathrm{d}t \leqslant (k+1) \int_{t}^{k+1} f(t) \, \mathrm{d}t$$

b. Montrer que :

$$\forall n \in \mathbb{N}, \quad S_n \leqslant G(n+1) \leqslant S_n + 1.$$

- **c.** En déduire que que X admet une espérance si, et seulement si, Y admet une espérance et que dans ces conditions, $\mathbb{E}(Y) \leq \mathbb{E}(X) \leq \mathbb{E}(Y) + 1$.
- **4.** On suppose dans cette question que X suit une loi exponentielle de paramètre $\lambda > 0$.
 - a. Préciser la loi de Y et calculer son espérance.
 - **b.** Montrer que Z = X Y est une variable à densité et en donner une densité. Montrer que Z admet une espérance que l'on calculera.
- **T**rois personnes A, B et C se présentent à l'ouverture d'un bureau de poste comportant deux guichets. A et B accèdent directement à un guichet, tandis que C attend que l'un des deux guichets se libère.

On note X, Y et Z les variables aléatoires égales au temps passé au guichet par les usagers A, B et C respectivement. On suppose que ces variables sont mutuellement indépendantes et suivent la même loi uniforme sur [0,1]. On pose U=|X-Y| et $V=\min(X,Y)$.

- **1.** a. Déterminer une densité de -Y puis une densité de X-Y.
 - **b.** En déduire une densité de U.
- 2. On note E l'événement « C est la dernière personne à sortir de la poste ». Justifier que $E = [U Z \le 0]$ puis en déduire la valeur de $\mathbb{P}(E)$.
- 3. Montrer que V suit la même loi que U.
- 4. On note T le temps passé par C à la poste.
 - a. Montrer que T est une variable aléatoire à densité et en déterminer une densité.
 - **b.** Calculer le temps moyen passé par C à la poste.
- Soit X une variable aléatoire à valeurs dans \mathbb{R}_+ . On suppose que X est à densité f continue \star sur \mathbb{R}_+ et nulle sur \mathbb{R}_-^* . On note F la fonction de répartition de X. On définit la fonction

$$\varphi: x \in \mathbb{R}_+ \longmapsto \int_0^x t f(t) \, \mathrm{d}t.$$

1. Montrer que :

$$orall x \in \mathbb{R}_+, \quad \int_0^x ig(1-\mathrm{F}(t)ig)\,\mathrm{d}t = xig(1-\mathrm{F}(x)ig) + arphi(x).$$

2. Montrer que X admet une espérance si, et seulement si, l'intégrale ci-dessous converge avec dans ces conditions :

$$\mathbb{E}(X) = \int_0^{+\infty} (1 - F(t)) dt.$$

- **3.** Application. On considère des variables aléatoires X_1, \ldots, X_n mutuellement indépendantes de même loi exponentielle de paramètre $\lambda > 0$. On pose $M_n = \max(X_1, \ldots, X_n)$.
 - **a.** Déterminer la fonction de répartition de M_n et montrer que M_n est à densité.
 - **b.** Montrer que M_n admet une espérance et la calculer (on exprimera le résultat sous la forme d'une somme).
- Dans tout l'exercice, X est une variable aléatoire de densité f nulle sur \mathbb{R}_{+}^{*} et strictement positive en tout point de \mathbb{R}_{+}^{*} . On suppose également f continue sur \mathbb{R}_{+} et on note F la fonction de répartition de X.
 - 1. On suppose que X représente la durée de vie d'un composant électronique.
 - **a.** Pour $t, h \in \mathbb{R}_+^*$, exprimer à l'aide de F la probabilité p(t, h) que le composant tombe en panne avant l'instant t + h sachant qu'il fonctionnait encore à l'instant t.
 - **b.** Établir que :

$$p(t,h) \sim rac{f(t)}{1-\mathrm{F}(t)}h, \qquad h o 0.$$

On appelle taux de panne de X la fonction positive

$$\lambda_{\mathrm{X}}: t \in \mathbb{R}_{+}^{*} \longmapsto \frac{f(t)}{1 - \mathrm{F}(t)}.$$

- **2. a.** Pour $t \in \mathbb{R}_+^*$, calculer $\int_0^t \lambda_{\rm X}(u) \, \mathrm{d}u$ puis montrer que la seule connaissance de la fonction $\lambda_{\rm X}$ permet de déterminer la loi de X.
 - **b.** En déduire que λ_X est constant si, et seulement si, X suit une loi exponentielle.
- **3.** On suppose que X représente la durée de vie (en années) d'un appareil dont le taux de panne est donné par $\lambda_X(t) = t^3$ pour tout $t \in \mathbb{R}_+^*$.
 - a. Quelle est la probabilité que l'appareil survive plus d'un an?
 - **b.** Quelle est la probabilité que cet appareil, déjà âgé d'un an, survive au moins deux ans de plus ?
- On considère une entreprise de transports en commun et on s'intéresse aux passages des bus à une station donnée lors d'une journée.

Le service commence à l'instant $T_0 = 0$. Le premier bus de la journée passe à l'instant T_1 . On pose $U_1 = T_1 - T_0$ qui représente donc le temps entre l'ouverture du service et le passage du premier bus de la journée.

Pour tout $n \in \mathbb{N}^*$, T_n désigne l'instant où le n-ième bus arrive à la station et U_{n+1} le temps écoulé entre les passages du n-ième et du (n+1)-ième bus de la journée.

On suppose que les variables aléatoires U_n , $n \in \mathbb{N}^*$, sont mutuellement indépendantes et qu'elles suivent la même loi exponentielle de paramètre $\lambda > 0$.

1. Pour $n \in \mathbb{N}^*$, exprimer T_n en fonction des U_i , $i \in \mathbb{N}^*$, puis en déduire la loi de T_n .

On définit également, pour tous $s, t \in \mathbb{R}_+$ tels que $s \leq t$, le nombre $N_{s,t}$ de bus qui sont passés à la station dans l'intervalle de temps [s, t].

2. Pour $t \in \mathbb{R}_+$ et $n \in \mathbb{N}$, justifier que $[N_{0,t} \geqslant n] = [T_n \leqslant t]$. En déduire que la variable aléatoire $N_{0,t}$ suit la loi de Poisson de paramètre λt .

On admet que, pour tous $s, t \in \mathbb{R}_+$ tels que $s \leq t$, la variable aléatoire $N_{s,t}$ suit la même loi que $N_{0,t-s}$.

- 3. On suppose qu'un passager arrive à la station à un instant $t \in \mathbb{R}_+$ donné. On définit le temps d'attente W_t du passager jusqu'à l'arrivée du premier bus.
 - **a.** Justifier que pour tout $h \in \mathbb{R}_+$, $[W_t > h] = [N_{t,t+h} = 0]$.
 - **b.** En déduire la loi de W_t . Quel est le temps d'attente moyen du passager avant l'arrivée du premier bus ?

Programmation:

> Classe: 6, 8, 11, 16, 18

> TD: 1, 2, 9