ITP20003 Java Programming

Lab 5. Work with Class

Lab 5

- Two more examples
 - Polynomial Plotter
 - Figures
- Missions 8 & 9

- Team

Team I	김재윤	박혜빈
Team2	백주열	이한빈
Team3	Wongani	이혁재
Team4	김아론	김지민
Team5	김시온	전혜원
Team6	윤석규	이지행
Team7	박수현	심충일
Team8	이종원	양예진
Team9	황보효정	김예군
Team I 0	김소은	유채우

Polynomial Plotter: Overview

- Receive a polynomial formula in a single variable, f(x), and plot the graph of y = f(x) on a GUI window
 - a polynomial formula is continuous at every x value

- e.g.,
$$y = x^2 - 2x - 15$$

Polynomial Formula

 A polynomial formula in one variable is an expression consisting of numbers and the variable and their connections with arithmetic operators addition, subtraction, and multiplication

- e.g.,
$$2x + 1$$
, $(x + 2)(1 - x)$, $3x^2 + 2x - 1$

• An expression can be formally defined as a string derived from E with the following rules:

$$E \to T \mid x \mid (E + E) \mid (E * E) \mid (E - E)$$

$$T \rightarrow 0 \mid 1.0 \mid 2.0 \mid ... \mid -1.0 \mid -2.0 \mid -3.0 \dots$$

Prefix Notation of Expression

 Accept an expression of the target polynomial function in a prefix notation

- e.g.,
$$(+ (* x x) (+ (* 2 x) 1))$$
, $(* (- x 3) (+ x 2))$

- grammar

$$E \rightarrow T \mid \mathbf{x} \mid (+ E E) \mid (* EE) \mid (- EE)$$
 $T \rightarrow \mathbb{R}$

- c.f. prefix, infix, postfix notations

Example

```
$ java Polynomial "(* (- x 5) (+ x 3))"
 java Polynomial "(- (- (* x x) (* 2 x)) 15)"
$
                               봘 Polynomial
                                                    X
```

Figures

- Draw figures such as squares, triangles, circles and then command them to move and rotate
 - each figure has a shape, a position, a name, and it is plotted on a 400×400 plane
 - command
 - movx p d move figure p to right by d
 - movy p d move figure p to down by d
 - rotate p r rotate figure p d degree

Modeling

- Point
- Triangle
- Circle
- Square

Rotating Figures

M8. PolynomialYX

- Using Polynomial.java and Expression.java, construct PolynomialYX with the following changes
 - a given polynomial function is an implicit function which defines x in terms of y, i.e., x = f(y)
 - a given expression is specified in a postfix notation
 - an expression has a new operator power ^
 - e.g., \$ java PolynomialYX "((y 2 ^) 4 -)"

M9. Tangram (1/2)

- Extend Figures to a Tangram game
 - the program initially arranges all 7 pieces as given above
 - a user can move or rotate a piece by giving a command

Steps

- define a class to represent a tetragon
- define 7 pieces and arrange them in correct positions
- extend the commands to accept the actions for the 7 pieces
- find a sequence of commands to form the pieces as shown in the next slide

