Recitation -2-

Structured Query Language SQL - DDL

SQL DatatypesDDL statements

Presented by: Rakan A. Alseghayer

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

1

Database Schema

- CREATE SCHEMA «database-name» AUTHORIZATION «user-identifier»;
- E.g. CREATE SCHEMA micro_db AUTHORIZATION panos;
- □ DROP SCHEMA <db-name> [RESTRICT | CASCADE];
 - Restrict: removes the schema if the db has no data
 - Cascade: removes everything, data and definitions
- E.g., DROP SCHEMA micro_db RESTRICT;

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

3

Basic SQL-DDL COMMANDS

For database schemas:

CREATE SCHEMA, DROP SCHEMA

For tables:

CREATE TABLE, DROP TABLE, ALTER TABLE

For views:

CREATE VIEW, DROP VIEW

For integrity constraintsCREATE IC, DROP IC

For domains:

CREATE DOMAIN, DROP DOMAIN [SQL99]

For Indexes [defunct in SQL2]

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

2

2

Schema and Catalog

- SQL2, SQL3 support multiple database schemas
- Catalog contains the definitions of database schemas
- INFORMATION SCHEMA
 - Schemas and Base relations (tables)
 (tbl_name, creator, #of_tuples, tuple_length, #of_attributes...)
 - Attributes of Relations (columns)
 (tbl_name, atrb_name, type, format, order, key_no, ...)
 - Authorization
 - Integrity
 - Indexes
- Naming of tables: Schema_name.Table_name
- Query: Describe table name; or using SELECT

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

4

3

Create Table

```
CREATE Table < Table-name > (
  <a href="#">Attribute-name> <a href="#">Attribute-Type>, ...</a>
   Constraint < Constraint-name > < Constraint-spec > ... );
```

□ E.g.,

```
CREATE TABLE Students (
```

```
sid CHAR (20),
name CHAR (20),
psid INTEGER,
age INTEGER,
gpa REAL,
timestamp
Constraint Student PK
```

CS1555/2055, Panos K. Chrysantins & Constantinos Costa - University of Pittsburgh

5

SQL Character Strings

- Concatenation operator: II
 - 'abc' II 'XYZ' results in 'abcXYZ'
- Foreign-language characters (ISO-defined chars):
 - NATIONAL CHAR(n)
 - NATIONAL VARCHAR(n)

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

SQL Datatypes

- Numeric
 - Fixed numbers, approximate numbers, formatted numbers
- Character Strings
 - fixed & varying length, CLOBS [SQL99], foreign language
- Bit Strings
 - fixed & varying length, BLOBS [SQL99]
- Temporal Data
 - date, time and timestamp, intervals
- NULL value valid for all types

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

6

8

SQL Temporal Data

- DATE data type
- □ TIME and TIMESTAMP data types
- □ INTERVAL data type.
 - INTERVAL data type represents periods of time

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

7

Date and Time

- □ DATE (10 positions) stores calendar values representing YEAR, MONTH, and DAY: YYYY-MM-DD
- □ TIME defines HOURS, MINUTES, and SECONDS in a twenty-four-hour notation: HH:MM:SS
- □ TIME(i) defines / additional decimal fractions of seconds: HH:MM:SS:ddd...d
- □ TIME WITH TIME ZONE includes the displacement [+13:00 to -12:59] from standard universal time zone: HH:MM:SS{+/-}hh:mm
 - hh are the two digits for the TIMEZONE_HOUR and mm the two digits for TIMEZONE MINUTE
- □ TIMESTAMP represents a complete date and time with 6 fractions of seconds and optional time zone.

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

9

PostgreSQL Functions on Dates

Function	Return Type	Description	Example	Result
age(timestamp, timestamp)	interval	Subtract arguments, producing a "symbolic" result that uses years and months	age(timestamp '2001-04-10', timestamp '1957-06-13')	43 years 9 mons 27 days
age(timestamp)	interval	Subtract from current_date (at midnight)	age(timestamp '1957-06-13')	43 years 8 mons 3 days
rlock_timestamp()	timestamp with time zone	Current date and time (changes during statement execution); see Section 9.9.4		
current_date	date	Current date; see Section 9.9.4		
current_time	time with time zone	Current time of day; see Section 9.9.4		
current_timestamp	timestamp with time zone	Current date and time (start of current transaction); see Section 9.9.4		
date_part(text, timestamp)	double precision	Get subfield (equivalent to extract); see Section 9.9.1	date_part('hour', timestamp '2001-02-16 20:38:40')	28
date_part(text, interval)	double precision	Get subfield (equivalent to extract); see Section 9.9.1	date_part('month', interval '2 years 3 months')	3
date_trunc(text, timestamp)	timestamp	Truncate to specified precision; see also Section 9.9.2	date_trunc('hour', timestamp '2001-02-16 20:38:40')	2881-82-16 28:88:88
extract(field from timestamp)	double precision	Get subfield; see Section 9.9.1	extract(hour from timestamp '2001-02-16 20:38:40')	28
extract(field from interval)	double precision	Get subfield; see Section 9.9.1	extract(month from interval '2 years 3 months')	3
isfinite(date)	boolean	Test for finite date (not +/-infinity)	isfinite(date '2001-02-16')	true
isfinite(timestamp)	boolean	Test for finite time stamp (not +/-infinity)	isfinite(timestamp '2001-02-16 21:28:30')	true
isfinite(interval)	boolean	Test for finite interval	isfinite(interval '4 hours')	true
justify_days(interval)	interval	Adjust interval so 30-day time periods are represented as months	justify_days(interval '35 days')	1 non 5 days
justify_hours(interval)	interval	Adjust interval so 24-hour time periods are represented as days	justify_hours(interval '27 hours')	1 day 03:00:00
justify_interval(interval)	interval	Adjust interval using justify_days and justify_hours, with additional sign adjustments	justify_interval(interval '1 mon -1 hour')	29 days 23:88:88
localtime	time	Current time of day; see Section 9.9.4		
localtimestamp	timestamp	Current date and time (start of current transaction); see Section 9.9.4		
iow()	timestamp with time zone	Current date and time (start of current transaction); see Section 9.9.4		
statement_timestamp()	timestamp with time zone	Current date and time (start of current statement); see Section 9.9.4		
timeofday()	text	Current date and time (like clock_timestamp, but as a text string); see Section 9.9.4		
transaction_timestamp()	timestamp with time zone	Current date and time (start of current transaction); see Section 9.9.4		

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

Functions on Dates

- All systems provide functions under different names
 - for constructing a date from strings or integers
 - for extracting out the month, day, or year from a date
 - for displaying dates in different ways
- Examples,
 - CAST(string AS DATE) [SQL2: CAST(<value> AS <type>)] e.g., CAST('2002-02-18' AS DATE)
 - MAKEDATE (int year, int month, int day) or DATE (int year, int month, int day) e.g., MAKEDATE(1999, 12, 31)
 - EXTRACT (MONTH/DAY/YEAR FROM <date>) [SOL3]
 - YEAR(<date>), MONTH(<date>), DAY(<date>)

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

10

Operations on Dates

- □ Datetime (+ or -) Interval = Datetime
- Datetime Datetime = Interval
- □ Interval (* or /) Number = Interval
- □ Interval (+ or -) Interval = Interval
- Examples (ANSI SQL):
 - (CURRENT_DATE + INTERVAL '1' MONTH)
 - (CURRENT_DATE INTERVAL '18' DAY)
 - (CURRENT_DATE BirthDate)

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa - University of Pittsburgh

11

Intervals

- □ An interval results when two dates are subtracted. E.g., AdmitDate – DischargeDate
- □ Two interval data types: **Year-Month** & **Day-Time**
- Format: INTERVAL start-field(p) [TO end-field(fs)]
 - p is the precision (default is 2 digits)
 - fs is the fractional second precision, which is only applicable to DAY/TIME (default is 6 digits)
- Year-Month intervals:

13

- INTERVAL YEAR, INTERVAL YEAR(p), INTERVAL MONTH, INTERVAL MONTH(p), INTERVAL YEAR TO MONTH, INTERVAL YEAR(p) TO MONTH
- E.g., INTERVAL YEAR (2) to MONTH could be [0-0, 99-11]

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh

14

PostqreSQL Intervals...

Operator	Example	Result
+	date '2001-09-28' + integer '7'	date '2001-10-05'
+	date '2001-09-28' + interval '1 hour'	timestamp '2001-09-28 01:00:00
+	date '2001-09-28' + time '03:00'	timestamp '2001-09-28 03:00:00
+	interval '1 day' + interval '1 hour'	interval '1 day 01:00:00'
+	timestamp '2001-09-28 01:00' + interval '23 hours'	timestamp '2001-09-29 00:00:00
+	time '01:00' + interval '3 hours'	time '04:00:00'
-	- interval '23 hours'	interval '-23:00:00'
-	date '2001-10-01' - date '2001-09-28'	integer '3' (days)
-	date '2001-10-01' - integer '7'	date '2001-09-24'
-	date '2001-09-28' - interval '1 hour'	timestamp '2001-09-27 23:00:00
-	time '05:00' - time '03:00'	interval '02:00:00'
-	time '05:00' - interval '2 hours'	time '03:00:00'
-	timestamp '2001-09-28 23:00' - interval '23 hours'	timestamp '2001-09-28 00:00:00
-	interval '1 day' - interval '1 hour'	interval '1 day -01:00:00'
-	timestamp '2001-09-29 03:00' - timestamp '2001-09-27 12:00'	interval '1 day 15:00:00'
	900 * interval '1 second'	interval '00:15:00'
*	21 * interval '1 day'	interval '21 days'
*	double precision '3.5' * interval '1 hour'	interval '03:30:00'
/	interval '1 hour' / double precision '1.5'	interval '00:40:00'

CS1555/2055, Panos K. Chrysanthis & Constantinos Costa – University of Pittsburgh