PROBABILITY

T SIVA PARVATHI - FWC22089

- 13.4.5 ¹ Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
 - (a) number greater than 4
 - (b) six appears on at least one die

Solution: Given that a die tossed two times,

Variable	Values	Description
n	2	Number of tosses of a die
p_1	$\frac{1}{3}$	Probability of getting number >4
q_1	$1 - p_1$	Probability of not getting number >4
p_2	$\frac{1}{6}$	probability of getting six on a die
q_2	$1 - p_2$	probability of not getting six on a die
X_1	{1,2,3,4,5,6}	sample space of 1st toss of a die
X_2	{1,2,3,4,5,6}	sample space of 2nd toss of a die

Table 2: Variable Description

(a) number greater than 4

$$X = X_1 + X_2 \tag{13.4.1.1}$$

$$p_X(k) = {}^{n}C_k p_1{}^{k} q_1{}^{n-k}, 0 \le k \le 2, n = 2$$
(13.4.1.2)

Probability distribution of getting number greater than 4 is,

$$p_X(k) = \begin{cases} \frac{4}{9}, & k = 0\\ \frac{4}{9}, & k = 1\\ \frac{1}{9}, & k = 2 \end{cases}$$
 (13.4.1.3)

(b) six appears on at least one die

$$p_X(k) = {}^{n}C_k p_2 {}^{k} q_2 {}^{n-k}, 0 \le k \le 2, n = 2$$
(13.4.2.4)

Probability distribution of getting six on atleast one die is,

$$p_X(k) = \begin{cases} \frac{25}{36}, & k = 0\\ \frac{10}{36}, & k = 1\\ \frac{1}{36}, & k = 2 \end{cases}$$
 (13.4.2.5)

¹Read question numbers as (CHAPTER NUMBER).(EXERCISE NUMBER).(QUESTION NUMBER)