Probabilidade Estatística

Princípios de Redução de Dados e Elementos da Teoria da Decisão Estatística

Luis Antonio Fantozzi Alvarez

Universidade de São Paulo

O Problema de Inferência Estatística

Ambiente

- Nosso ponto de partida é um espaço mensurável (Ω, Σ) .
 - Ω é o espaço amostral.
 - Σ é o espaço de eventos aos quais podemos atribuir probabilidades (σ -álgebra).
- Pesquisador observa uma amostra, dada pela variável aleatória $\pmb{X} := \operatorname{Id}_{\Omega}$, cuja lei é dada por uma probabilidade P sobre (Ω, Σ) desconhecida.
- O pesquisador postula uma família de leis de probabilidade $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ candidatas a terem gerado a amostra.
 - Θ é o espaço de parâmetros que indexa a família.
 - À família \mathcal{P} damos o nome de modelo.
- Dizemos que um modelo está bem-especificado se $\exists heta_0 \in \Theta, \ P = P_{ heta_0}.$
- Notação: \mathbb{E}_{θ} denota a expectativa de uma variável aleatória com domínio em (Ω, Σ) com respeito a P_{θ} .

Amostragem aleatória

- Em diversos contextos, o experimento definido por (Ω, Σ, P) tem a seguinte interpretação: pesquisador possui acesso a uma amostra de n unidades sorteadas ao acaso de uma população de interesse, para os quais ele observa um vetor de k características X_i , $i=1,\ldots,n$.
- Se população é grande, o conceito adequado para modelar o experimento é o de amostragem aleatória.
 - Amostragem aleatória: espaço é $(\prod_{i=1}^n (\mathbb{R}^k), \otimes_{i=1}^n \mathcal{B}(\mathbb{R}^k), \otimes_{i=1}^n \mathcal{G}).$
 - G é a lei de probabilidade sobre $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ que reflete a distribuição conjunta das características de interesse na população.
 - Observações $\mathbf{X} = (X_1, \dots, X_n)$ são tais que cada X_i tem a mesma distribuição que G, e as observações X_i são independentes entre si (o valor amostrado na i-ésima posição não exibe associação com o valor amostrado em outra posição $j \neq i$)
 - Quando o experimento é definido por amostragem aleatória, modelo se resume a uma família de distribuições para as características de interesse na população.
 - Em outras palavras, modelo é da forma $\mathcal{P} = \{ \bigotimes_{i=1}^n G : G \in \mathcal{G} \}$, onde \mathcal{G} é uma família de distribuições em $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$

EXEMPLO

- Exemplo: pesquisador observa uma variável escalar, e supõe que tenha sido amostrada de uma distribuição normal com média desconhecida e variância unitária.
 - Quem é \mathcal{P} ?
 - E se a variância é desconhecida?
 - E se pesquisador possui *n* observações independentes?

Modelos

- Um modelo \mathcal{P} é dito de dimensão finita quando o espaço de parâmetros pode ser identificado com um subconjunto de \mathbb{R}^s , $s \in \mathbb{N}$.
 - Amostragem aleatória de uma população normal com média e variância desconhecidas define um modelo cujo espaço de parâmetros é da forma $\mathbb{R} \times \mathbb{R}_+$.
- Um modelo ${\mathcal P}$ é dito de dimensão infinita quando ele não tem dimensão finita.
 - Amostragem aleatória de uma população cuja distribuição admite uma densidade com respeito à medida de Lebesgue simétrica em relação à média define um modelo de dimensão infinita.

DEFINIÇÃO DE ESTATÍSTICA

- Uma estatística é uma transformação mensurável da amostra, i.e. uma função $T:\Omega\mapsto \mathcal{T}$ em que $T^{-1}(B)\in \Sigma$, para todo $B\in \mathcal{S}$, onde \mathcal{S} é uma σ -álgebra sobre o espaço \mathcal{T} .
 - Nesse caso T(X) define uma variável aleatória com valores em T.

Família dominada

- No que segue, supomso que existe uma medida μ σ -finita tal que todo elemento $P_{\theta} \in \mathcal{P}$ admite densidade p_{θ} com respeito a μ (nesse caso, dizemos que a família \mathcal{P} é dominada).
 - Para famílias de distribuições "discretas" sobre o espaço $(\Omega, 2^{\Omega})$, com Ω é enumerável, μ é a medida de contagem e p_{θ} são as f.m.p. definidas por $p_{\theta}(x) = P_{\theta}(\{x\})$ para todo $x \in \Omega$.
 - Para famílias de distribuições "contínuas" sobre $(\mathbb{R}^s, \mathcal{B}(\mathbb{R}^s))$, μ é a medida de Lebesgue sobre $\mathcal{B}(\mathbb{R}^s)$ e p_{θ} são as f.d.p.

CONDIÇÃO TÉCNICA

- No que segue, vamos supor também que, para qualquer estatística, as distribuições condicionais de $\boldsymbol{X}|T(\boldsymbol{X})$ sob cada P_{θ} admitem uma probabilidade condicional regular $(A,t)\mapsto P_{\theta}[\boldsymbol{X}\in A|T(\boldsymbol{X})=t]$.
 - Para cada $A \in \Sigma$, $\omega \mapsto P_{\theta}[\mathbf{X} \in A | T(\mathbf{X}) = T(\omega)]$ é uma versão da probabilidade condicional $P_{\theta}[A | \sigma(T(\mathbf{X}))]$; e para cada $\omega \in \Omega$, $A \mapsto P_{\theta}[A | T(\mathbf{X}) = T(\omega)]$ é uma medida de probabilidade sobre Σ .
 - Essa condição limita a complexidade de (Ω, Σ) .
 - Na maior parte dos casos práticos é satisfeita.
 - Condições suficientes em Durrett (2019) (fora do escopo do curso).
- Exemplo: no caso discreto, podemos tomar $P_{\theta}[\mathbf{X} \in A | T(\mathbf{X}) = t] = \sum_{a \in A} P_{\theta}[\{a\} | T(\mathbf{X}) = t]$, onde

$$P_{\theta}[\{a\}|T(\boldsymbol{X}) = t] = \begin{cases} \frac{P_{\theta}(\{a\})}{P_{\theta}[\{T(\boldsymbol{X}) = t\}]}, & \text{se}T(a) = t \text{ e } P_{\theta}[\{T(\boldsymbol{X}) = t\}] > 0\\ 0, & \text{se}T(a) \neq t \text{ e } P_{\theta}[\{T(\boldsymbol{X}) = t\}] > 0\\ P_{\theta}(\{a\}), & \text{se}\ P_{\theta}[\{T(\boldsymbol{X}) = t\}] = 0 \end{cases}$$

Suficiência Estatística

ESTATÍSTICA SUFICIENTE

- Uma estatística é tão somente uma transformação (mensurável) da amostra, isto é, uma função $T(\boldsymbol{X})$ tal que $T^{-1}(A) \in \Sigma$ para todo A na σ -álgebra do contradomínio.

Definição

Uma estatística T é dita suficiente para θ se a distribuição condicional de $\boldsymbol{X}|T(\boldsymbol{X})$ não depende de θ , isto é, se existe H tal que:

$$P_{\theta}[\mathbf{X} \in A | T(\mathbf{X})] = H(A | T(\mathbf{X})), \quad \forall \theta \in \Theta, A \in \Sigma.$$

- Uma vez que conhecemos $T(\boldsymbol{X})$, não há mais informação adicional sobre θ na amostra.

-

EXEMPLO

Suponha que a amostra consista de duas Bernoullis independentes e identicamente distribuídas, com parâmetro $\theta \in (0,1)$ desconhecido. Neste caso, a f.m.p. é:

$$P_{\theta}[X_1 = x, X_2 = y] = \theta^{x} (1 - \theta)^{1 - x} \theta^{y} (1 - \theta)^{1 - y}, \quad \forall x, y \in \{0, 1\},$$

de onde segue que, para todo $t \in \{0, 1/2, 1\}$.

$$P_{\theta}[X_1 = x, X_2 = y | X_1 + X_2 = 2t] = \frac{P_{\theta}[X_1 = x, X_2 = y, X_1 + X_2 = 2t]}{P_{\theta}[X_1 + X_2 = 2t]} = \frac{\theta^{x+y}(1-\theta)^{2-x-y}\mathbf{1}\{x+y=2t\}}{\binom{2}{2t}\theta^{2t}(1-\theta)^{1-2t}} = \frac{1}{\binom{2}{2t}}\mathbf{1}\{x+y=2t\},$$

de onde concluímos que $(X_1 + X_2)/2$ é suficiente.

Teorema da fatoração de Neyman-Fisher

TEOREMA

 $T(\mathbf{X})$ é suficiente para θ se, e somente se, existem funções h_{θ} , $\theta \in \Theta$, e c tais que, para todo $\theta \in \Theta$:

$$p_{\theta}(\mathbf{x}) = h_{\theta}(T(\mathbf{x}))c(\mathbf{x}), \quad \mu\text{-q.t.p.}$$

- Critério conveniente para encontrar uma estatística suficiente.
 - No caso discreto, " μ -q.t.p." pode ser lido como para todo x.
 - No caso contínuo, condição pode ser violada num conjunto de medida de Lebesgue zero (por exemplo, conjuntos enumeráveis de pontos).
- Veremos demonstração no caso discreto.
 - Demonstração no caso geral é mais complexo, pois requer resultados adicionais sobre famílias dominadas.

Teorema da fatoração (caso discreto)

No que segue, considere uma família $\mathcal P$ sobre o espaçp $(\Omega,2^\Omega)$, onde Ω é enumerável.

DEMONSTRAÇÃO.

 \implies Suponha que $T(\mathbf{X})$ é suficiente. Fixe $x \in \Omega$. Observe que:

$$p_{\theta}(x) = P_{\theta}[\{x\}] = P_{\theta}[\{x\} \cap \{T(\mathbf{X}) = T(x)\}] = \mathbb{E}_{\theta}[P_{\theta}[\{x\} | T(\mathbf{X})] \mathbf{1}_{\{T(\mathbf{X}) = T(x)\}}] = \sum_{\omega \in \Omega} P_{\theta}[\{x\} | T(\mathbf{X}) = T(\omega)] \mathbf{1}_{\{T(\mathbf{X}) = T(x)\}}(\omega) p_{\theta}(\{\omega\}) = \underbrace{P_{\theta}[\{x\} | T(\mathbf{X}) = T(x)]}_{c(x)} \underbrace{\sum_{\omega \in \Omega: T(\omega) = T(x)} p_{\theta}(\{\omega\})}_{=P_{\theta}[\{T(\mathbf{X}) = T(x)\}] = h_{\theta}(T(x))}$$

$$\Leftarrow$$
 Suponha que p_{θ} é fatorável. Considere $\tilde{P}[A|T(\textbf{X})=t]=\frac{\sum_{s\in A}c(s)1\{T(s)=t\}}{\sum_{\omega\in\Omega:T(\omega)=t}c(\omega)}$ se $\sum_{\omega\in\Omega:T(\omega)=t}c(\omega)>0$ e $S(A)$ do contrário, onde S é uma probabilidade arbitrária sobre Ω . Fácil verificar que \tilde{P} define uma probabilidade condicional regular para todo θ .

EXEMPLO

Suponha que o pesquisador observe uma amostra iid X_1, X_2, \ldots, X_n de uma distribuição exponencial com parâmetro $\lambda > 0$ desconhecido. Neste caso, observe que:

$$p_{\lambda}(x_1, x_2, \dots x_n) = \prod_{i=1}^n (\lambda e^{-\lambda x} \mathbf{1}\{x > 0\}) =$$

$$= \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right) \mathbf{1}\{\min_i x_i > 0\} = h_{\lambda}\left(\sum_{i=1}^n x_i\right) c(\mathbf{x}),$$

de onde concluímos que $(X_1 + X_2 + \dots X_n)/n$ é estatística suficiente.

ESTATÍSTICA SUFICIENTE MINIMAL

- Observe que o conceito de estatística suficiente só nos informa sobre a capacidade de uma transformação em condensar a informação relevante na amostra sobre θ .
- Este conceito não versa sobre o "tamanho" desta estatística.
 - De fato, a própria amostra, $T(\mathbf{X}) = \mathbf{X}$, é sempre uma estatística suficiente.
- Note que, se T é estatística suficiente e $T=M\circ U$, então U é estatística suficiente (pois $\sigma(T)\subseteq\sigma(U)$).
 - Estatísticas mais "finas" que uma estatística suficiente são estatísticas suficientes.
- Na outra direção, podemos pensar na estatística suficiente mais "grossa" possível.

ESTATÍSTICA SUFICIENTE MINIMAL (CONT.)

Definição

Uma estatística T é dita suficiente minimal, se:

- 1. T é suficiente.
- 2. Para qualquer outra estatística S suficiente, existe M tal que $T = M \circ S$.

Lema

Considere uma estatística T tal que:

$$T(\mathbf{x}) = T(\mathbf{y}) \iff \mathbf{y} \in D(\mathbf{x}),$$

onde

$$D(\mathbf{x}) = \{ \mathbf{y} : p_{\theta}(\mathbf{y}) = p_{\theta}(\mathbf{x})h(x,y) \mid \forall \theta \in \Theta \text{ e algum } h(x,y) > 0 \}.$$

Então T é suficiente minimal.

EXEMPLO

Suponha que o espaço amostral é \mathbb{R}^n_+ . Considere uma amostra aleatória de $U[0,\theta]$, $\theta>0$. Neste caso:

$$p_{\theta}(x_1,\ldots,x_n) = \frac{1}{\theta^n} \mathbf{1}\{\max_i x_i < \theta\}.$$

Pelo critério de fatoração, $X_{(n)} := \max_i X_i$ é suficiente. Vamos mostrar que é minimal suficiente usando o lema anterior. Observe que $D(\mathbf{x}) = \{\mathbf{y} : y_{(n)} = x_{(n)}\}$. De fato, se $y_{(n)} \neq x_{(n)}$, ao considerar $\theta' = (x_{(n)} + y_{(n)})/2$, teremos que $0 = p_{\theta'}(\mathbf{x}) < p_{\theta'}(\mathbf{y})$ ou $0 = p_{\theta'}(\mathbf{y}) < p_{\theta'}(\mathbf{x})$. Segue do lema anterior que $X_{(n)}$ é minimal.

Ancilaridade

Definição

Uma estatística é dita ancilar para θ se sua distribuição não depende de θ , i.e., se existe F tal que:

$$P_{\theta}[T(X) \in A] = F[A], \quad \forall \theta \in \Theta, A \in \mathcal{S},$$

onde ${\mathcal S}$ é σ -álgebra acoplada ao contradomínio de ${\mathcal T}$.

Exemplo

No modelo linear Gaussiano homocedástico com regressores fixos:

$$\mathbf{y}_{n\times 1} \sim \mathcal{N}(\mathbf{Z}\beta, \sigma^2 \mathbb{I}_n),$$

onde posto(Z) = k, $\beta \in \mathbb{R}^k$ desconhecido e $\sigma^2 > 0$ conhecido; veremos em Econometria I que a estatística $S = \hat{e}'\hat{e}$, onde $\hat{e} = y - Z\hat{\beta}_{MQO}$, é ancilar.

SUFICIÊNCIA COMPLETA

- Gostaríamos de que uma estatística suficiente fosse independente de estatísticas ancilares, visto que essas não nos trazem informação de θ .
- Conceito apropriado para isto é o de estatística completa suficiente.

Definição

Uma estatística T é dita completa para θ se, para qualquer f mensurável com valores reais:

$$\mathbb{E}_{\theta}[f(T)] = 0, \forall \theta \in \Theta \implies \mathbb{P}_{\theta}[f(T) = 0] = 1, \forall \theta \in \Theta$$

TEOREMA (BASU)

Uma estatística completa suficiente para θ é independente de qualquer estatística ancilar de θ .

SUFICIÊNCIA COMPLETA VS. SUFICIÊNCIA MINIMAL

TEOREMA (BAHADUR)

Se U é estatística completa suficiente de dimensão finita, então é suficiente minimal.

 Recíproca não é verdadeira: existem estatísticas minimais suficientes de dimensão finita que não são completas (veja Lehmann e Casella, 1998).

Famílias Exponenciais

FAMÍLIA EXPONENCIAL

Definição

Uma família de distribuições $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ sobre um espaço mensurável (Ω, Σ) é dita uma família exponencial se:

- 1. Existe uma medida μ tal que cada elemento $P_{\theta} \in \mathcal{P}$ admite densidade p_{θ} com respeito a μ .
- 2. Existem $\eta:\Theta\mapsto\mathbb{R}^s$, $T:\Omega\mapsto\mathbb{R}^s$, $B:\Theta\mapsto\mathbb{R}$ e $h:\Omega\mapsto\mathbb{R}_+$ tais que:

$$p_{\theta}(\mathbf{x}) = \exp(\eta(\theta)' T(\mathbf{x}) - B(\theta)) h(\mathbf{x})$$

- Diversas distribuições conhecidas pertecem a esta família: Gamma, Chi-Quadrado, Beta, Normal, Poisson, Negativo-Binomial.
- Propriedade útil: se $\mathcal{P}_1,\ldots,\mathcal{P}_n$ são famílias exponenciais, então $\mathcal{P}^n:=\{\otimes_{i=1}^n P_i: P_i\in\mathcal{P}_i\}$ é uma família exponencial.
 - Consequência: a distribuição amostral de uma amostra aleatória de uma família exponencial também constitui uma família exponencial.

EXEMPLO

Sejam $\mathbf{X}=(X_1,X_2,\ldots,X_n)'$ uma amostra aleatória de $N(\mu,\sigma^2)$, onde $\mu\in\mathbb{R}$ e $\sigma^2>0$ são desconhecidos. Neste caso, fazendo $\theta=(\mu,\sigma^2)'$, temos:

$$p_{\theta}(x_{1}, x_{2}, \dots, x_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(\frac{-(x_{i} - \mu)^{2}}{2\sigma^{2}}\right) = \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2} + \frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} x_{i} - \frac{\mu^{2}}{2\sigma^{2}} n\right) \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)^{n},$$
(1)

de onde segue que a família é exponencial com

$$T(\mathbf{x}) = \left(\sum_{i=1}^{n} x_i^2, \sum_{i=1}^{n} x_i\right)' \in \eta(\theta) = \left(-\frac{1}{2\sigma^2}, \frac{\mu}{\sigma^2}\right)'.$$

Identificabilidade de famílias de distribuições

Definição

Para uma família $\{P_{\theta}: \theta \in \Theta\}$, dizemos que o parâmetro é identificável se:

$$\theta = \theta' \iff P_{\theta} = P_{\theta'}$$

- Identificação é o requerimento básico para estimação pontual (mais à frente).
 - Requer a existência de um mapa 1-1 entre parâmetro e distribuição amostral.
- No exemplo anterior, θ é identificado, visto que $f_1(P_\theta) := \mathbb{E}_{\theta}[X_1] = \mu$ e $f_2(P_\theta) := \mathbb{E}[X_1^2] = \sigma^2 + \mu^2$.
- Por outro lado, se a família paramétrica fosse $\{\mathcal{N}(\theta \lor 0,1): \theta \in \mathbb{R}\}$, θ não é identificável.

Parametrização natural de família

EXPONENCIAL

Note que, da definição de família exponencial:

$$p_{\theta}(\mathbf{x}) = \exp(\eta(\theta)' T(\mathbf{x}) - B(\theta)) h(\mathbf{x}), \quad \theta \in \Theta,$$

segue uma reparametrização natural

$$p_{\eta}(\mathbf{x}) = \exp(\eta' T(\mathbf{x}) - B^*(\eta)) h(\mathbf{x}), \quad \eta \in \Xi,$$

onde $\Xi := \{ \eta(\theta) : \theta \in \Theta \} \subseteq \mathbb{R}^s$ é o espaço paramétrico natural; e $B^*(\eta) = B(\theta)$ para algum (qualquer) $\theta \in \Theta$ tal que $\eta(\theta) = \eta$

DEFINIÇÃO

Uma família exponencial $\{P_{\theta}: \theta \in \Theta\}$ é dita uma família de posto cheio se sua reparametrização natural é tal que η é identificável e Ξ contém uma bola aberta de \mathbb{R}^s .

- No exemplo de amostra aleatória normal, $\Theta=(-\infty,0)\times\mathbb{R}$, logo a família tem posto cheio.
- $\{N(\mu, \mu^2) : \mu \in \mathbb{R}\}$ não tem posto cheio (família curvada).

SUFICIÊNCIA EM FAMÍLIAS EXPONENCIAIS

Corolário

Numa família exponencial, T(X) é uma estatística suficiente.

Corolário

Numa família exponencial de posto cheio, T(X) é uma estatística suficiente minimal.

TEOREMA

Numa família exponencial de posto cheio, $T(\mathbf{X})$ é uma estatística suficiente completa.

Elementos de decisão estatística

O PROBLEMA DE DECISÃO ESTATÍSTICA

- Considere um experimento estatístico (Ω, Σ, P) , e um modelo de leis de probabilidade candidatas para P, $\mathcal{P} = \{P : \theta \in \Theta\}$, com $P = P_{\theta_0}$ para algum $\theta_0 \in \Theta$.
- Suponha que o pesquisador esteja interessado em realizar inferência sobre um parâmetro escalar $\psi(\theta_0) \in \mathbb{R}$.
 - Após observar $\pmb{X}=\operatorname{Id}_{\Omega}$, pesquisador deve produzir estimativa para $\psi(\theta_0)$.
- A perda que o pesquisador incorre em afirmar um valor c a $\psi(\theta_0)$ quando $\theta_0 = \theta$ é dada por $L(\theta, c)$, com $L: \Theta \times \mathbb{R} \mapsto \mathbb{R}_+$.
 - Perda quadrática: $L(\theta, c) = (c \psi(\theta))^2$.
 - Perda absoluta: $L(\theta, c) = |c \psi(\theta)|$.
- Uma regra de decisão estatística ou estimador é uma transformação mensurável $\delta:\Omega\mapsto\mathbb{R}$.
 - Após observar o valor de $X(\omega)$ realizado, pesquisador reporta a estimativa dada por $\delta(X(\omega))$.
- A perda esperada ou risco da regra de decisão δ , quando $\theta_0=\theta$, é dada por:

$$R(\theta, \delta) = \mathbb{E}_{\theta}[L(\theta, \delta(\mathbf{X}))]$$

ESCOLHENDO UMA REGRA DE DECISÃO

- Dado que desconhecemos o valor verdadeiro de θ_0 , uma regra de comunicação ideal δ^* numa classe de regras candidatas Δ deveria ser tal que, para todo $\theta \in \Theta$:

$$\delta^* = \inf_{\delta \in \Delta} R(\theta, \delta),$$

- Infelizmente, se Δ é irrestrita, problema não possuirá, no geral, solução.
 - Por exemplo, sob perda quadrática, para todo $\theta \in \Theta$, a regra de decisão $\delta(\textbf{\textit{X}}) = \psi(\theta)$ atinge risco zero sob $\theta_0 = \theta$, o que implica que, a não ser em casos extremos em que $\theta \mapsto \psi(\theta)$ é constante ou $\textbf{\textit{X}}$ é perfeitamente informativo sobre $\psi(\theta)$, a regra ótima δ^* inexistirá.
- Dada a inexistência, no geral, de um δ^* que minimiza o risco uniformemente sobre Θ quando Δ é irrestrito, a literatura estatística propõe dois conjuntos soluções alternativas ao problema
 - 1. Restringir Δ .
 - 2. Minimizar o pior risco sobre Θ (estimação minimax) ou um risco médio sobre Θ , onde a média se dá com respeito a uma distribuição sobre Θ (estimadores de Bayes).

Restringindo Δ : estimadores não viciados

- Uma restrição bastante comum à classe de estimadores é de que eles não possuam viés.
- Formalmente, um estimador δ de um parâmetro $\psi(\theta)$ é não viciado numa família $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ de distribuições candidatas se:

$$\mathbb{E}_{\theta}[\delta(\mathbf{X})] = \psi(\theta), \quad \forall \theta \in \Theta.$$

- Um estimador δ de $\psi(\theta)$ é dito não viciado de variância uniformemente mínima (numa família \mathcal{P}) se:
 - 1. δ é não viciado.
 - 2. para qualquer outro estimador $\tilde{\delta}$ de $\psi(\theta)$ não viciado em \mathcal{P} :

$$\mathbb{V}_{\theta}[\delta(\mathbf{X})] \leq \mathbb{V}_{\theta}[\tilde{\delta}(\mathbf{X})], \quad \forall \theta \in \Theta$$

Caracterizando estimadores NVVUM

Um estimador δ é dito de variância finita em \mathcal{P} se $\mathbb{V}_{\theta}[\delta(\mathbf{X})] < \infty$ para todo $\theta \in \Theta$.

TEOREMA

Um estimador δ de variância finita e não viciado para $\psi(\theta)$ em $\mathcal P$ é não viciado de variância uniformemente mínima em $\mathcal P$ se, e somente se, para qualquer estimador U de variância finita e não viciado para zero em $\mathcal P$:

$$\mathbb{E}_{\theta}[\delta(\mathbf{X})U(\mathbf{X})] = 0, \quad \forall \theta \in \Theta.$$

COROLÁRIO

Se um estimador δ de $\psi(\theta)$ com variância finita é não viciado com variância uniformemente mínima em \mathcal{P} , então ele é único.

Funções perdas mais gerais

- Estimadores não viciados de variância uniformemente mínima minimizam o risco, sob perda quadrática, uniformemente na classe de estimadores não viciados.
- Será que é possível encontrar estimadores que minimizem o risco uniformemente, na mesma classe, para outras funções perdas?
 - Resposta dada pelo teorema abaixo.

TEOREMA

Seja δ um estimador não viciado de um parâmetro $\psi(\theta)$ numa família \mathcal{P} , e T uma estatística completa suficiente para \mathcal{P} . Então:

- 1. $\phi(\mathbf{X}) = \mathbb{E}[\delta | T(\mathbf{X})]$ define um estimador não viciado de $\psi(\theta)$, e o único estimador não viciado de $\psi(\theta)$ que é função de T.
- 2. ϕ minimiza o risco uniformemente na classe de estimadores não viciados de $\psi(\theta)$, para qualquer perda $L(\theta,z)$ convexa no segundo argumento.
- 3. Se ϕ possui risco finito para algum θ e a perda é estritamente convexa no segundo argumento, então ϕ é o único estimador que minimiza o risco uniformemente na classe de estimadores não viciados de $\psi(\theta)$.

LIMITE INFERIOR DE CRÁMER-RAO

- Resultados anteriores nos deram dois métodos para se tentar construir um ENVVUM.
 - Encontrar δ resolvendo o "sistema de equações": $\mathbb{E}_{\theta}[\delta(\mathbf{X})] = \psi(\theta)$, $\mathbb{E}_{\theta}[\delta(\mathbf{X})U(\mathbf{X})] = 0$ para todo θ e U não viciado para zero (de variância finita).
 - Encontrar um estimador não viciado, uma estatística completa suficiente e calcular a esperança condicional.
- Uma pergunta alternativa é: se temos um estimador não viciado, será que existe uma condição suficiente simples de ser verificada, que quando garantida implica que estimador é ENVVUM?
 - Resposta é afirmativa, e dada pelo limite inferior de Crámer-Rao.
 - Esse limite nos dá a menor variância que um estimador não viciado de um parâmetro em uma família de dimensão finita pode atingir.
 - Limite nem sempre é atingível por um estimador, mas, se for o caso, sabemos que ele é ENNVVUM.

Limite inferior de Crámer-Rao: derivação

- Seja $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ uma família (dominada) de dimensão finita, com $\Theta \subseteq \mathbb{R}^s$.
- Suponha que, para todo $\theta \in \operatorname{int}(\Theta)$ e $x \in \Omega$, $\tau \mapsto p_{\tau}(x)$ é continuamente diferenciável em $\tau = \theta$.
- Considere um estimador δ não viciado de um parâmetro escalar $\psi(\theta)$.
- Tome um ponto $\theta \in \text{int}(\Theta)$.
- Considere uma direção ${m e} \in \mathbb{R}^s$, ${m e}
 eq {m 0}$.
- Defina a variável aleatória $S_{\theta, m{e}}(x) = rac{
 abla_{ au} p_{\theta_0}(x) \cdot m{e}}{p_{\theta}(x)}.$
- Observe que, como $\int p_{\tau}(x)\mu(dx)=1$ para todo τ , se pudermos diferenciar em τ por dentro da integral, segue que $\mathbb{E}_{\theta}[S_{\theta, \mathbf{e}}(x)]=0$ e que $\mathrm{cov}_{\theta}(\delta, S_{\theta, \mathbf{e}})=\int \delta(x)(\nabla_{\tau}p_{\theta}(x)\cdot\mathbf{e})\mu(dx)$.
- Ademais, como $\int \delta(x)p_{\tau}(x)\mu(dx) = \psi(\tau)$ para todo τ , se pudermos diferenciar por debaixo da integral, segue que $\text{cov}_{\theta}(\delta, S_{\theta, \mathbf{e}}) = \nabla_{\tau}\psi(\theta) \cdot \mathbf{e}$

DERIVAÇÃO (CONT)

 Combinando os fatos anteriores com a desigualdade de Cauchy-Schwarz, temos:

$$\frac{(\partial_{\tau}\psi(\theta)\cdot\boldsymbol{e})^{2}}{\mathbb{V}_{\theta}[S_{\theta,\boldsymbol{e}}]}\leq\mathbb{V}_{\theta}[\delta]$$

onde $\mathbb{V}_{\theta}[S_{\theta, \mathbf{e}}] = \mathbf{e}' \mathbb{V}_{\theta} \left[\partial_{\tau} \log p_{\theta} \right] \mathbf{e}$, e $\mathbb{V}_{\theta} \left[\partial_{\tau} \log p_{\theta} \right]$ é a matriz de covariância do vetor aleatório $\partial_{\tau} \log p_{\theta} = \frac{\partial_{\tau} p_{\theta}}{p_{\theta}}$.

- Não é difícil mostrar que, se $\mathbb{V}_{\theta}\left[\partial_{\tau}\log p_{\theta}\right]$ tem posto cheio, então, maximizando com respeito a \mathbf{e} , chegamos a:

$$\mathbb{V}_{\theta}[\delta] \geq (\partial_{\tau}\psi(\theta))'I(\theta)^{-1}(\partial_{\tau}\psi(\theta)),$$

onde $I(\theta) \coloneqq \mathbb{V}_{\theta} \left[\partial_{\tau} \log p_{\theta} \right]$ é conhecida como informação de Fisher.

- Invertibilidade de $I(\theta)$ está relacionada com identificabilidade da família $\{P_{\theta}\}.$
- Sob condições adicionais de diferenciabilidade, fácil ver que $I(\theta) = -\mathbb{E}_{\theta}[\frac{\partial^2}{\partial \tau \partial \tau'} \log p_{\theta}].$

Referências

Referências

- Casella, George e Roger L Berger (2001). Statistical inference. Duxbury.
 - Durrett, Rick (2019). *Probability: Theory and Examples*. 5^a ed. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press. DOI: 10.1017/9781108591034.
- Lehmann, E e George Casella (1998). Theory of point estimation. Springer Science & Business Media.
- Lehmann, E e J Romano (2005). Testing Statistical Hypotheses.

 Springer Texts in Statistics. Springer New York. ISBN: 9780387276052.

 URL: https://books.google.com.br/books?id=K6t5qn-SEp8C.
- Schervish, Mark J. (1995). *Theory of Statistics*. Springer New York. DOI: 10.1007/978-1-4612-4250-5. URL: https://doi.org/10.1007/978-1-4612-4250-5.