5,1 area and Distance

area under a curve

S is the region bounded to the left and right by x=a and x=b, and above and below by y=0 and y=f(x).

We will develop tools for finding the area of 5.

Several clelen: We rectangles of equal width to approximate the area

E.g. $f(x) = x^2$ on [0,2]7 Use your

The four rectangles are on the intervals $[0, \frac{1}{2}]$, $[\frac{1}{2}, 1]$, $[1, \frac{3}{2}]$, $[\frac{3}{2}, 2]$. Wiether are each $\frac{1}{2} = \frac{2-0}{11}$ interval

4 # rutangles

Heighte? We can choose either the left sides or right sides.

Lits try right side first

right-side =
$$\frac{1}{2}(f(\frac{1}{2})+f(1)+f(\frac{3}{2})+f(2))$$

approximation = $\frac{1}{2}(\frac{1}{4}+1+\frac{1}{4}+\frac{1}{4})$

$$= \frac{1}{2} \left(\frac{1}{4} + 1 + \frac{9}{4} + 4 \right)$$

$$= \frac{30}{8}$$

Now lets try left side

In-class examples

1)
$$f(x) = \frac{1}{x}$$
 on $[0,3]$

2)
$$g(x) = 4-x^2$$
 on $[-2,0]$
girl L_3

as the number of rectangles increases, the oppraximate area approaches the actual area

Distance

Premise: distance = velocity x times

works when relocity is constant

When relocity unit constant, we break up the time into smaller churks, and approximate over those churks as if relacity were constant.

time	0	5	10	15	20	25	30
velocity ft/s	15	20	18	19	12	G	0

$$R_6 = 5.20 + 3.18 + 5.19 + 5.12 + 5.6 + 5.0$$
$$= 5(75) = 375$$
$$L_6 = 5.15 + 5.20 + 5.18 + 5.19 + 5.12 + 5.6$$

In - Class Problem:

t	0	0.5	1	1.5	2	2,5	3
V	20	19	17	14 l	10	3	0

Find the upper and lower estimates for distance travelled