University of Houston

CLASSICAL AND QUANTUM INFORMATION THEORY

Math 6397

Li Gao

Khalid Hourani

Contents

1	Overview	1
2	Probability Theory	2
3	Entropy	8

1 Overview

Information theory studies the processing, quantification, storage, and communication of information.

- 1948 Claude Shannon defines *Shannon Entropy* in "The Mathematical Theory of Communication." Answers questions:
 - 1. What is information?
 - 2. How do we quantify information?
 - 3. How do we transmit information?
- 2001 Shannon Award is created, with Shannon the first recipient.
- 1900 Max Plank describes Black-body Radiation
- 1920s Heisenberg, Bohr, and Schrödinger, Matrix Mechanics
- 1930s Hilbert, Dirac, Von Neumann describe the Hilbert Space, Mathematical foundation of Quantum Mechanics, and Von Neumann Entropy
- Interaction: Quantum Information
- 1950s 1970s Mathematical Quantities of Information
- 1970s
 - Information Transmission by Coherent Laser
 - Alexander Holevo Holevo Bound
 - * 1998 Holevo et al show bound is tight (receive 2017 Shannon Award)
- 1980s Richard Feynman: Computing with Quantum Mechanical Model
- 1990s Peter Schor: Quantum Algorithm for Prime Factorization
 - In general, the only known algorithm for determining the prime factors of a number is naïve factorization. For example, given $n=4801\times35317=169556917$, to retrieve the factors 4801 and 35317 requires substantially more time than to simply construct the number via multiplication.
- let's finish the rest of the trivia chapter later

2 Probability Theory

A discrete probability space (Ω, \mathbb{P}) is given by

• a finite or countably infinite set Ω

$$- \text{ e.g. } \{a, b, c, d\}, \mathbb{N} = \{0, 1, 2, \dots\}$$

• a probability mass function $\mathbb{P}: \Omega \to [0,1]$, such that

(1) For all $\omega \in \Omega$, $\mathbb{P}(\omega) \geq 0$

$$(2) \sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$$

For $\omega \in \Omega$, $\mathbb{P}(\omega)$ is the probability that ω "occurs"

Definition 2.1 ▶ Event

Given a probability space (Ω, \mathbb{P}) , an event E is a subset $E \subseteq \Omega$, with corresponding probability

$$\mathbb{P}(E) = \sum_{\omega \in E} \mathbb{P}(\omega)$$

The function $\mathbb{P}: \Omega \to [0,1]$ induces a probability distribution,

$$\mathbb{P}: 2^{\Omega} \to [0,1]$$

also denoted by \mathbb{P} , with properties:

(1) if $A \cap B = \emptyset$, then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

(2) $\mathbb{P}(\Omega) = 1$

As an abuse of notation, we write $\mathbb{P}(\omega)$ and $\mathbb{P}(\{\omega\})$ interchangeably.

Example 2.1 ▶ Rolling a fair die

TBD

Definition 2.2 ▶ Conditional Probability

Let $A, B \subseteq \Omega$. The *conditional probability* of A given B, denoted by $\mathbb{P}(A \mid B)$, is defined

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Example 2.2 ▶ Fair Die Revisited

TBD

Theorem 2.1 ▶ Bayes' Rule

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \mid B) \, \mathbb{P}(B)}{\mathbb{P}(A)}$$

Proof. By definition,

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

$$\mathbb{P}(A\mid B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$$

hence

$$\mathbb{P}(A \cap B) = \mathbb{P}(B \mid A) \, \mathbb{P}(A)$$
$$= \mathbb{P}(A \mid B) \, \mathbb{P}(B)$$

from which the result follows.

Example 2.3 ▶ Flipping a fair coin twice

TBD

Definition 2.3 ► Random Variable

A $Random\ Variable\ X$ is a function

$$X:\Omega\to\mathcal{X}$$

from probability space (Ω, \mathbb{P}) to a target space \mathcal{X} . We say X is discrete if \mathcal{X} is discrete and call

$$\mathcal{X} = \{x_1, x_2, \dots\}$$

the alphabet of X.

Notice that X induces a distribution on \mathcal{X} . For any $x \in \mathcal{X}$

$$\mathbb{P}_X(x) = \mathbb{P}(\{\omega \mid X(\omega) = x\})$$

In many cases, $(X.\mathbb{P}_x)$ captures all information needed from random variable X. We write $X \sim \mathbb{P}_x$ to indicate that X has distribution \mathbb{P}_x on \mathcal{X} .

Example 2.4 ▶ 52 Card Deck

TBD

Definition 2.4 ▶ Joint Distribution

Let $X: \Omega \to \mathcal{X}, Y: \Omega \to \mathcal{Y}$ be two random variables. The *joint distribution* on $\mathcal{X} \times \mathcal{Y}$ is given by

$$\mathbb{P}_{XY}(X = x, Y = y) = \mathbb{P}(\{X(\omega) = x, Y(\omega) = y\})$$

For subsets $E_1 \subseteq \mathcal{X}$, $E_1 \subseteq \mathcal{Y}$

$$\mathbb{P}_{XY}(X \in E_1, Y \in E_2) = \mathbb{P}(\{X(\omega) \in E_1, Y(\omega) \in E_2\})$$

Notice that \mathbb{P}_{XY} is a distribution on the product space $(\mathcal{X} \times \mathcal{Y}, \mathbb{P}_{XY})$.

Example 2.5 ▶ Fair Die Joint Distribution

TBD

Example 2.6 ▶ Flipping a fair coin twice joint distribution

TBD

Definition 2.5 \triangleright Independent Random Variables

Two random variables X and Y are independent if, for any x, y

$$\mathbb{P}_{XY}(X=x,Y=y) = \mathbb{P}_{X}(X=x)\,\mathbb{P}_{Y}(Y=y)$$

Equivalently, if for any subsets E_1 and E_2

$$\mathbb{P}_{XY}(X \in E_1, Y \in E_2) = \mathbb{P}_X(X \in E_1) \, \mathbb{P}_Y(Y \in E_2)$$

Definition 2.6 ▶ Product Probability

Given two probability spaces $(\Omega_1, \mathbb{P}_1), (\Omega_2, \mathbb{P}_2)$

$$\mathbb{P}_1 \times \mathbb{P}_2(E_1 \times E_2) = \mathbb{P}_1(E_1) \mathbb{P}_2(E_2)$$

is the product probability on $\Omega_1 \times \Omega_2$.

Thus, we have the property that X and Y are independent random variables if and only if $\mathbb{P}_{XY} = \mathbb{P}_X \times \mathbb{P}_Y$.

Example 2.7 ▶ Rank and Suit of a card

TBD

Definition 2.7 ▶ Real Random Variable

A Real Random Variable is a function

$$X:\Omega\to\mathbb{R}$$

For example, the height of a randomly sampled person, the value of a die, and the rank of a playing card (where Ace is 1, Jack is 11, Queen is 12, and King is 13) are all real random variables. On the other hand, the suit of a playing card is *not* a real random variable.

In the discrete case, if $X:\Omega\to\mathcal{X}$ is a random variable, then

$$\mathbb{P}_X: X \to [0,1]$$

is a real random variable.

Definition 2.8 ▶ Conditional Distribution

Given two random variables X and Y, the conditional distribution is the real random variable given by

$$\mathbb{P}_{X|Y}: \mathcal{X} \times \mathcal{Y} \to [0,1]$$

where

$$\mathbb{P}_{X|Y}(x \mid y) = \mathbb{P}(X = x \mid Y = y)$$

Given two real random variables X and Y, we can define

- X + Y
- X · Y
- f(X) (where $f: \mathbb{R} \to \mathbb{R}$)

as new random variables.

Definition 2.9 ▶ Expectation and Variance

The $expected\ value\ (or\ expectation\ or\ mean)$ of a real random variable X is defined as the real number

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \, \mathbb{P}_X(X = x) = \sum_{\omega \in \Omega} X(\omega) \, \mathbb{P}(X = \omega)$$

The *variance* is defined as

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Example $2.8 \triangleright$ Expected Value and Variance of a Fair Die

TBD

Theorem 2.2 ▶ Linearity of Expectation

Let X and Y be real random variables and $a, b \in \mathbb{R}$. Then

$$\mathbb{E}[aX + bY] = a\,\mathbb{E}[X] + b\,\mathbb{E}[Y]$$

Proof. By definition,

$$\begin{split} \mathbb{E}[aX + bY] &= \sum_{\omega \in \Omega} (aX(\omega) + bY(\omega)) \, \mathbb{P}(\omega) \\ &= \sum_{\omega \in \Omega} aX(\omega) \, \mathbb{P}(\omega) + \sum_{\omega \in \Omega} bY(\omega) \, \mathbb{P}(\omega) \\ &= a \sum_{\omega \in \Omega} X(\omega) \, \mathbb{P}(\omega) + b \sum_{\omega \in \Omega} Y(\omega) \, \mathbb{P}(\omega) \\ &= a \, \mathbb{E}[X] + b \, \mathbb{E}[Y] \end{split}$$

Corollary 2.3

$$\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Proof. By definition,

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^{2}]$$

$$= \mathbb{E}[X^{2} - 2X \mathbb{E}[X] + \mathbb{E}[X]^{2}]$$

$$= \mathbb{E}[X^{2}] - \mathbb{E}[2X \mathbb{E}[X]] + \mathbb{E}[\mathbb{E}[X]^{2}]$$

$$= \mathbb{E}[X^{2}] - 2\mathbb{E}[X]^{2} + \mathbb{E}[X]^{2}$$

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$

If X and Y are independent, we have the following

Theorem 2.4

Let X and Y be independent real random variables. Then

- (1) $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$
- (2) $\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y]$

Proof. First, Item (1):

$$\begin{split} \mathbb{E}[XY] &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} xy \, \mathbb{P}_{XY}(X = x, Y = y) \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} xy \, \mathbb{P}_{X}(X = x) \, \mathbb{P}_{Y}(Y = y) \text{ since } X \text{ and } Y \text{ are independent} \\ &= \sum_{x \in \mathcal{X}} x \, \mathbb{P}_{X}(X = x) \sum_{y \in \mathcal{Y}} y \, \mathbb{P}_{Y}(Y = y) \\ &= \mathbb{E}[X] \, \mathbb{E}[Y] \end{split}$$

Now,

$$Var[X + Y] = \mathbb{E}[(X + Y)^{2}] - \mathbb{E}[X + Y]^{2}$$

$$= \mathbb{E}[X^{2} + 2XY + Y^{2}] - (\mathbb{E}[X] + expectationY)^{2}$$

$$= \mathbb{E}[X^{2}] + 2\mathbb{E}[XY] + \mathbb{E}[Y^{2}] - \mathbb{E}[X]^{2} - 2\mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[Y]^{2}$$

$$= Var[X] + Var[Y] + 2\mathbb{E}[XY] - 2\mathbb{E}[X]\mathbb{E}[Y]$$

$$= Var[X] + Var[Y] \text{ by Item (1)}$$

Definition 2.10

A sequence of random variables $X_1, X_2, ..., X_n$ is independent and identically distributed from \mathbb{P}_X (i.i.d $\sim \mathbb{P}_X$) if

- (1) for all $i, X_i \sim \mathbb{P}_x$
- (2) $X_1, X_2, ..., X_n$ are mutually independent, i.e., for any $\{i_1, i_2, ..., i_k\} \subseteq \{1, 2, ..., n\}$

$$\mathbb{P}(X_{i_1}X_{i_2}\dots X_{i_k}) = \mathbb{P}(X_{i_1})\,\mathbb{P}(X_{i_2})\dots\mathbb{P}(X_{i_k})$$

Theorem 2.5 ▶ The Weak Law of Large Numbers (WLLN)

Let X_n be an infinite i.i.d. sequence drawn from \mathbb{P}_X . Write

$$\hat{X}_n = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

and suppose Var[X] and $\mathbb{E}[X]$ are both finite. Then, for any $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\hat{X}_n - \mathbb{E}[X]\right| < \varepsilon\right) = 1$$

We first show the following two lemmas.

Lemma 2.6 ▶ Markov's Inequality

Let X be any non-negative random variable and a > 0. Then

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

Proof. Define the indicator random variable

$$1_{X \ge a} = \begin{cases} 1 & \text{if } X \ge a \\ 0 & \text{if } X < a \end{cases}$$

and notice that $\mathbb{E}[1_{X\geq a}] = \mathbb{P}(X\geq a)$. Clearly, $X\geq a1_{X\geq a}$, hence

$$\mathbb{E}[X] \ge a \, \mathbb{E}[1_{X > a}] = a \, \mathbb{P}(X \ge a)$$

from which the result follows.

Lemma 2.7 ▶ Chebyshev's Inequality

Let X be any random variable with finite variance. Then

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \varepsilon^2) \le \frac{\operatorname{Var}[X]}{\varepsilon}$$

for any $\varepsilon > 0$.

Proof. Set $Y = (X - \mathbb{E}[X])^2$ and notice that $\mathbb{E}[Y] = \text{Var}[X]$. Then,

$$\begin{split} \mathbb{P}(|X - \mathbb{E}[X]| \geq \varepsilon) &= \mathbb{P}\big(Y \geq \varepsilon^2\big) \\ &\leq \frac{\mathbb{E}[Y]}{\varepsilon^2} \text{ by Markov's Inequality} \\ &= \frac{\mathrm{Var}[X]}{\varepsilon^2} \end{split}$$

Now, we prove Theorem 2.5.

Proof. First, notice that

$$\mathbb{E}\left[\hat{X}_n\right] = \mathbb{E}\left[\frac{1}{n}(X_1 + X_2 + \dots + X_n)\right]$$

$$= \frac{1}{n} \cdot n \,\mathbb{E}[X] \text{ by Linearity of Expectation}$$

$$= \mathbb{E}[X]$$

and

$$\operatorname{Var}\left[\hat{X}_{n}\right] = \operatorname{Var}\left[\frac{1}{n}(X_{1} + X_{2} + \dots + X_{n})\right]$$

$$= \frac{1}{n^{2}}(\operatorname{Var}[X_{1}] + \operatorname{Var}[X_{2}] + \dots + \operatorname{Var}[X_{n}])$$

$$= \frac{1}{n^{2}} \cdot n \operatorname{Var}[X]$$

$$= \frac{1}{n} \operatorname{Var}[X]$$

then, by Chebyshev's Inequality,

$$\mathbb{P}\left(\left|\hat{X}_{n} - \mathbb{E}[X]\right| \ge \varepsilon\right) \le \frac{\operatorname{Var}\hat{X}_{n}}{\varepsilon^{2}}$$

$$= \frac{\operatorname{Var}[X]}{n\varepsilon^{2}} \to 0 \text{ as } n \to \infty$$

hence

$$\mathbb{P}\left(\left|\hat{X}_n - \mathbb{E}[X]\right| < \varepsilon\right) = 1 - \mathbb{P}\left(\left|\hat{X}_n - \mathbb{E}[X]\right| \ge \varepsilon\right) \to 1 \text{ as } n \to \infty$$

Example 2.9 ▶ Bernoulli Random Variable

TBD

Definition 2.11 ▶ Vector Valued Random Variable

Let

$$X = (X_1, X_2, \dots, X_n) : \Omega \to \mathbb{R}^n$$

finish this part — part in notes is a bit cryptic

3 Entropy

Definition 3.1 ▶ Entropy

Let \mathbb{P} be a probability distribution on a discrete space Ω . The Shannon Entropy (hereby simply Entropy) of \mathbb{P} is defined

$$H(\mathbb{P}) = \sum_{\omega \in \Omega} \mathbb{P}(\omega) \log \frac{1}{\mathbb{P}(\omega)}$$

If X is a discrete random variable, we define

$$\begin{split} H(X) &= H(\mathbb{P}_X) \\ &= \sum_{x \in X} \mathbb{P}_X(x) \log \frac{1}{\mathbb{P}_X(x)} \\ &= \mathbb{E} \left[\log \frac{1}{\mathbb{P}_X(X)} \right] \end{split}$$

noting that $\log \frac{1}{\mathbb{P}_X(X)}$ is a real random variable.

We can think of $\log \frac{1}{\mathbb{P}_X(x)}$ as the level of "surprise" that X = x occurs and H(X) as the uncertainty or randomness of \mathbb{P}_X .

Note that, in Definition 3.1, log refers to \log_2 , and $\log_2(X)$ is the number of bits of X. Additionally, since a byte is 8 bits, $\log_{256}(X)$ is the number of bytes of X. Additionally, we define $0 \log \frac{1}{0} = 0$, which can be motivated by the fact that

$$\lim_{x \to 0^+} x \log \frac{1}{x} = 0$$

Example 3.1 ▶ Bernoulli Distribution

The Bernoulli Distribution is the discrete random variable

$$\mathbb{P}(X=1) = p$$
$$\mathbb{P}(X=0) = 1 - p$$

and has entropy

$$H(X) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$$

Definition 3.2 ▶ Binary Entropy

The binary entropy of p, h(p), is the entropy of the Bernoulli Distribution with parameter p, i.e.,

$$h(p) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$$

Notice that h(0) = h(1) = 0 and $h(\frac{1}{2}) = 1$. More generally, the graph of h(p) is given in Figure 1.

add some flourishes

Figure 1: Binary Entropy as a function of p. Notice that the entropy is maximized when p = 1/2 and 0 when p = 0 or p = 1. When p = 0 or p = 1, the Bernoulli Distribution is non-random, and thus there is no uncertainty.

Figure 2: Drawing of ant nest used to empirically verify ...

Example $3.2 \triangleright$ Geometric Distribution

The Geometric Distribution is the positive, integer-valued random variable that describes the number of Bernoulli trials performed until a success. That is,

$$\mathbb{P}(X=k) = p(1-p)^{k-1}$$

is the probability that it will require k trials until a success. The entropy of the Geometric Distribution is given by

$$\begin{split} H(X) &= \sum_{k=1}^{\infty} p(1-p)^k \log \frac{1}{p(1-p)^k} \\ &= \sum_{k=1}^{\infty} p(1-p)^k \left(\log \frac{1}{p} + k \log \frac{1}{1-p} \right) \\ &= p \log \frac{1}{p} \sum_{k=1}^{\infty} (1-p)^k + p \log \frac{1}{1-p} \sum_{k=1}^{\infty} k (1-p)^k \\ &= p \frac{1}{p} \log \frac{1}{p} + p \log \frac{1}{1-p} \frac{1-p}{p^2} \\ &= \frac{1}{p} \left(p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p} \right) \\ &= \frac{h(p)}{p} \to 0 \text{ as } p \to 0^+ \end{split}$$

Example 3.3 \triangleright Distribution with ∞ Entropy

TBD

An empirical justification for the use of log_2 .

Finish figure, caption, and description.

Definition 3.3 ► Convexity

Let $V \cong \mathbb{R}^n$ be a vector space. A subset $S \subseteq V$ is convex if, for any pair $\mathbf{x}, \mathbf{y} \in S$

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in S \text{ for all } \lambda \in [0, 1]$$

figure demonstrating convexity

Example 3.4

The following are convex

- (1) \mathbb{R}^n
- (2)
- (3)

Definition 3.4 ▶ Convex Function

A function $f: S \to \mathbb{R}$ is

- (i) convex if $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in S$ and $\lambda \in [0, 1]$
- (ii) strictly convex if $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) < \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in S$ and $\lambda \in [0, 1]$

Definition 3.5 ► Concave Function

A function $f: S \to \mathbb{R}$ is (strictly) concave if -f is (strictly) convex.

Example 3.5

Notice

- (1) The function $x \to x \log x$ is strictly convex
- (2) The function $x \to \log x$ is strictly concave
- (3) The function $X \to \mathbb{E}[X]$ is convex (but not strictly)

Theorem 3.1 ▶ Jensen's Inequality

Let X be a real vector valued random variable. Then, if f is any convex function,

$$f(\mathbb{E}[X]) \le \mathbb{E}[f(X)]$$

If f is strictly convex, then $f(\mathbb{E}[X]) = \mathbb{E}[f(X)]$ if and only if $X = \mathbb{E}[X]$, i.e., X is a constant random variable.

Proof. Since f is convex,

$$f(\mathbb{E}[X]) = f\left(\sum_{x \in X} x \, \mathbb{P}(X = x)\right)$$

$$\leq \sum_{x \in X} f(x) \, \mathbb{P}(X = x) \text{ since } f \text{ is convex and } \mathbb{P}(X = x) \in [0, 1]$$

$$= \mathbb{E}[f(X)]$$