Теортест-1 (Вариант 63)

Тема – определенный интеграл

Задача 1

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-2, 10];
- 2. [-10, 20];
- 3. [-1, 20];
- 4. [0, 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна в точке a и f(b) = 1;
- 2. f > 0 на [a, b];
- 3. f((a+b)/2) = 1;
- 4. f непрерывна в точке a и f(a) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть $f \in R[a,b], \, a < b.$ Выберите все верные утверждения:

- 1. Если $f \ge 0$ на [a, b], то $\int_a^b f(x) dx \ge 0$;
- 2. Если $\int_a^b |f(x)| dx = 0$, то $f(x) \equiv 0$ на [a, b];
- 3. Если $f \geq 0$ на [a,b] и $\exists c \in [a,b] : f(c) > 0$, то $\int_a^b f(x) dx > 0$;
- 4. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;

Задача 4

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. если $A \subset B$, то площадь A меньше площади B;
- 2. площадь графика любой функции равна нулю;
- 3. площадь одной точки равна нулю;
- 4. площадь A всегда положительна;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. du = vdt;
- 2. du = vdt + C;
- 3. v = du + C;
- 4. u = dv + C:

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 2. если первообразная дробно-рациональной функции f(x) является дробнорациональной, то все корни знаменателя f(x) кратные;
- 3. первообразная дробно-рациональной функции выражается через элементарные функции;
- 4. первообразная дробно-рациональной функции является дробно-рациональной функцией;

Задача 7

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) < s_{\tau} + \varepsilon;$
- 2. $\forall \tau \; \exists \xi \colon s_{\tau} = \sigma_{\tau}(\xi);$
- 3. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} \varepsilon;$
- 4. $\forall \tau : s_{\tau} < S_{\tau};$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F имеет разрывы в точках разрыва функции f;
- 2. Если f непрерывна на [a,b], то F первообразная для f на [a,b];
- 3. $\int_{a}^{b} f(x)dx = F(b) F(a);$
- 4. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x^2)dx = 2 \int f(t)tdt;$
- 2. $\int f(x)dx = \int \frac{f(\ln t)}{t}dt$;
- 3. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$
- 4. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt$;

Задача 10

Выберите все верные утверждения:

- 1. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 2. Кусочно-гладкая кривая спрямляема;
- 3. Длины противоположных путей равны;
- 4. Длина любой кривой конечна;
- 5. Любая кривая имеет неотрицательную длину;