Компьютерная графика и визуализация в реальном времени

Обзор алгоритмов визуализации теней

Алексей Романов

Значимость теней

- Позволяют оценить взаимное расположение объектов сцены
- На порядок увеличивают степень реалистичности изображения

Сложности визуализации теней

- ▶ Динамические источники света, casters
- ▶ Динамические затеняемы объекты, receivers
- Большой размер затеняемой области
- Эффект мягких теней

Основные типы визуализации теней

Stencil shadows/Shadow volumes

Shadow maps

Stencil shadows

- Frank Crow, 1977, Shadow Algorithms for Computer Graphics
- Эпоха Stencil shadows закончилась в 2005, последние представители -Doom 3/Quake 4
- Stencil buffer / Буфер шаблона
 - 8bit unsigned char δyφep
 - StencilFunc (func, ref, mask)
 - StencilOp (sfail, zfail, zpass)

Буфер шаблона

- ▶ Stencil-test выполняется прямо перед Z-test и может повлиять на отображение пикселя
- StencilFunc (func, ref, mask)
 stencil_pass = func(ref&mask, val&mask)
- StencilOp (sfail, zfail, zpass)
 keep, zero, replace, incr, decr, invert, incr_wrap, decr_wrap

Текущее значения буфера шаблона для рассматриваемого фрагментта

func	r, m
never	0
always	1
less	r < m
lequal	$r \le m$
equal	r = m
gequal	$r \ge m$
greater	r > m
notequal	$r \neq m$

if ((!SFunc)
sfail	
else	if (!ZFunc)
zfail	
else	
2	zpass

Stencil для отражений

Stencil shadows, Z-Pass

Подсчет количества пересечений (счет из камеры)

- +1 для передних граней
- -1 для задних
- 0 не в тени, !0 в тени
- StencilFunc(always,~,~)
- Front: StencilOp(keep, keep, incr)
- Back: StencilOp(keep, keep, decr)

Вопрос: как GPU понимает, какая грань является передней, а какая задней?

Недостатки?

- Не работает внутри теневого объема
- Не работает при пересечении ближней грани

Stencil shadows, Z-Fail, Carmack's Reverse

- Подсчет количества пересечений (из бесконечности)
- Недостатки?
 - Дальняя грань пирамиды видимости

Решается замыканием теневых объемов

Расположение внутри теневого объема

Решается добавлением перекрывающего полигона

Shadowed, Nested in Shadow Volumes (Zfail)

Построение теневых объемов

Критерий силуэтного ребра?

Построение граней теневого объема на этапе обработки вершин/геометрии

Теневой силуэт

Общие проблемы теневых объемов

- Большая нагрузка на вершинный процессор (избыточна, если объект вдалеке)
- Большой overdraw (степень перекрытия) ⇒ нагрузка на растеризатор
- ▶ Неприменимость для геометрии с тестом прозрачности (alpha test)

Сложности получения мягких теней

Теневые карты / Shadow maps

 Lance Williams, 1978,
 Casting curved shadows on curved surfaces

Стандарт де-факто в современных 3D играх

Lance Williams также является автором алгоритма MIP фильтрации

Теневые карты, базовая идея

- Отображение глубины сцены из источника света
- Сравнение глубины растеризуемого фрагмента с глубиной из теневой карты

Особенности теневых карт

- Проблемы самозатенения
- Низкая детализация (shadow undersampling)
- Дрожание теней (shadow aliasing)
 - При перемещении объектов и источников света
 - При перемещении камеры

Самозатенение

- Вызвана дискретизацией сцены при отрисовке в теневую карту
- Решается добавлением специального смещения для теневой геометрии (не универсальное решение)

Каскадные тени

- Приближение идеальной параметризации разбиением пирамиды видимости
 - ► CSM cascade shadow maps
 - ▶ PSSM parallel split shadow maps
- Для каждого каскада строится отдельное преобразование

Модификация преобразования проекции при растеризации теней

- ▶ PSM Perspective Shadow Maps
- ▶ LiSPSM Light Space Perspective Shadow Maps

Анализ построения теневой карты

$$b dy = dz \frac{\cos\alpha}{\cos\beta}$$

$$dp = dy/z$$

- $\rightarrow \frac{dp}{ds} > 1$ undersampling
- $\frac{dp}{ds}$ < 1 oversampling
- $\mathbf{b} \; rac{dp}{ds} = 1 \Rightarrow s = lnz$ идеальная растеризация теневой карты

Приближение перспективных теневых карт к идеальной параметризации

$$z' = z - z_n + n$$

$$f = n + z_f - z_n$$

$$n_{opt} = z_n + \sqrt{z_f z_n}$$

Основные метода визуализации теней

Stencil shadows/Shadow volumes

- Основаны на использовании буфера шаблона (stencil buffer)
- Наприменным точность жестких теней
- Низкая производительность
- Не применимы для всех моделей

Shadow maps

- Основан на использование теста буфера глубины
- + Относительно высокая производительность
- + Мягкие тени
- Требует дополнительной видеопамяти большого размера.
- Тени высокой точности ⇒ огромные нагрузки на GPU

Вопросы?

