

Vetores: produto misto

Quer ver esse material pelo Dex? Clique aqui.

Resumo

Produto Misto

Chama-se produto misto dos vetores $\vec{u} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$, $\vec{v} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$ e $\vec{w} = x_3 \vec{i} + y_3 \vec{j} + z_3 \vec{k}$, tomados nesta ordem, ao número real $\vec{u} \cdot (\vec{v} \times \vec{w})$. O produto misto de \vec{u} , \vec{v} e \vec{w} também é indicado por $(\vec{u}, \vec{v}, \vec{w})$.

Podemos calculá-lo por:

$$\vec{u}.(\vec{v}\times\vec{w}) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

Exemplo:

Calcular o produto misto dos vetores $\vec{u} = 2\vec{i} + 3\vec{j} + 5\vec{k}$ e $\vec{v} = -\vec{i} + 3\vec{j} + 3\vec{k}$ e $\vec{u} = 4\vec{i} - 3\vec{j} + 2\vec{k}$

Solução:

$$(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} 2 & 3 & 5 \\ -1 & 3 & 3 \\ 4 & -3 & 2 \end{vmatrix} = 27$$

Propriedades

Assim como no produto vetorial, as propriedades do produto misto decorrem, em sua maioria, das propriedades dos determinantes.

 \rightarrow O produto misto $(\vec{u}, \vec{v}, \vec{w})$ muda de sinal ao trocarmos a posição de dois vetores.

Em relação ao exemplo anterior, em que $(\vec{u}, \vec{v}, \vec{w}) = 27$, teríamos $(\vec{v}, \vec{u}, \vec{w}) = -27$, por exemplo. Cuidado! Se houver apenas uma permutação, há troca de sinal. Se houver duas permutações, altera o sinal duas vezes, ou seja, volta ao sinal inicial.

$$\rightarrow (\vec{u} + \vec{x}, \vec{v}, \vec{w}) = (\vec{u}, \vec{v}, \vec{w}) + (\vec{x}, \vec{v}, \vec{w})$$

$$\rightarrow \left(\vec{u}, \ \vec{v} + \vec{x} \ , \ \vec{w}\right) = \left(\vec{u}, \ \vec{v} \ , \ \vec{w}\right) + \left(\vec{u}, \vec{x}, \ \vec{w}\right)$$

$$\rightarrow \left(\vec{u}, \ \vec{v}, \ \vec{w} + \vec{x}\right) = \left(\vec{u}, \ \vec{v}, \ \vec{w}\right) + \left(\vec{u}, \ \vec{v}, \ \vec{x}\right)$$

$$\rightarrow (\alpha \vec{u}, \vec{v}, \vec{w}) = (\vec{u}, \vec{\alpha} \vec{v}, \vec{w}) = (\vec{u}, \vec{v}, \vec{\alpha} \vec{w}) = \alpha (\vec{u}, \vec{v}, \vec{w})$$

- $\rightarrow (\vec{u}, \vec{v}, \vec{w}) = 0$ se, e somente se, os três vetores forem coplanares.
- \rightarrow Geometricamente, o produto misto $\vec{u}.(\vec{v}\times\vec{w})$ é igual, em módulo, ao volume do paralelepípedo de arestas determinadas pelos vetores não coplanares \vec{u} , \vec{v} e \vec{w} . Já o volume do tetraedro determinado por esses mesmos vetores tem volume igual a $\frac{\vec{u}.(\vec{v}\times\vec{w})}{6}$

Exercícios

- **1.** Qual é o produto misto entre os vetores $\vec{u} = (2, -1, 1)$, $\vec{v} = (1, 0, -1)$ e $\vec{w} = (2, -1, 4)$?
 - **a)** 0
 - **b)** 1
 - **c)** -1
 - **d)** 3
 - **e)** -3
- **2.** Sabendo que $(\vec{u}, \vec{v}, \vec{w}) = 5$, quanto vale $(\vec{w}, \vec{u}, \vec{v})$?
 - **a**) 0
 - **b)** 1
 - **c)** -1
 - **d)** 5
 - **e)** -5
- **3.** Sabendo que $(\vec{u}, \vec{w}, \vec{x}) = 2$ e $(\vec{v}, \vec{w}, \vec{x}) = 5$, qual é o valor de $(2\vec{u} + 4\vec{v}, \vec{w}, \vec{x})$?
 - **a)** 7
 - **b)** 9
 - **c)** 22
 - **d)** 24
 - **e)** 42
- **4.** Verifique se os pontos A(1, 2, 4), B(-1, 0, -2), C(0, 2, 2) e D(-2, 1, -3) estão no mesmo plano.
- **5.** Um paralelepípedo formado pelos vetores $\vec{u} = (a, a, a)$, $\vec{v} = (2a, 2a, 3a)$ e $\vec{w} = (2a, a, a)$, com $a \in \mathbb{R}$, tem volume igual a 8. Determine o valor de a.
 - **a**) 1
 - **b)** 2
 - c) $\frac{3}{2}$
 - **d)** 3
 - **e)** $\frac{5}{2}$

- **6.** Qual deve ser o valor de m para que os vetores u = (2, m, 0), v = (1, -1, 2) e w = (-1, 3, -1) sejam coplanares?
 - **a)** 0
 - **b)** -1
 - **c)** 1
 - **d)** -10
 - **e)** 10
- 7. Determine o volume do paralelepípedo determinado pelos vetores u = (3, -1, 4), v = (2, 0, 1) e w = (-2, 1, 5).
 - **a)** 17
 - **b)** 18
 - **c)** 19
 - **d)** 20
 - **e)** 21
- **8.** Qual o volume do cubo determinado pelos vetores \vec{i} , \vec{j} e \vec{k} ?
 - **a)** $\frac{1}{2}$
 - **b**) 1
 - **c)** $\frac{3}{2}$
 - **d)** 2
- **9.** Sejam A(1, 2, -1), B(5, 0, 1), C(2, -1, 1) e D(6, 1, -3) vértices de um tetraedro. Qual é o volume deste tetraedro?
 - **a)** 6 u.v.
 - **b)** 12 u.v.
 - **c)** 24 u.v.
 - d) 36 u.v.
 - e) 72 u.v.
- **10.** Sejam os vetores $\vec{u} = (3, m, -2)$, $\vec{v} = (1, -1, 0)$ e $\vec{w} = (2, -1, 2)$. Calcule o valor de m para que o volume do paralelepípedo determinado por \vec{u} , \vec{v} e \vec{w} seja 16 u.v.
 - a) m = -12 ou m = 4
 - **b)** m = 12 ou m = 4
 - c) m = -12 ou m = -4
 - **d)** m = 12 ou m = -4

Gabarito

1. D

Usando a definição de produto misto, temos:

$$(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} 2 & -1 & 1 \\ 1 & 0 & -1 \\ 2 & -1 & 4 \end{vmatrix} = 3$$

2. D

Como fizemos duas permutações, então o valor do produto misto não se altera, ou seja $(\vec{w}, \vec{u}, \vec{v}) = 5$

3. D

Usando as propriedades de produto misto, temos:

$$(2\vec{u} + 4\vec{v}, \vec{w}, \vec{x}) = (2\vec{u}, \vec{w}, \vec{x}) + (4\vec{v}, \vec{w}, \vec{x}) = 2(\vec{u}, \vec{w}, \vec{x}) + 4(\vec{v}, \vec{w}, \vec{x}) = 2.2 + 4.5 = 24$$

4. Observe:

Os quatro pontos dados são coplanares se forem coplanares os vetores \overrightarrow{AB} , \overrightarrow{AC} e \overrightarrow{AD} e, para tanto, deve-se ter

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = 0$$

Como $\begin{vmatrix} -2 & -2 & -6 \end{vmatrix}$

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = \begin{vmatrix} -2 & -2 & -6 \\ -1 & 0 & -2 \\ -3 & -1 & -7 \end{vmatrix} = 0,$$

os pontos dados são coplanares.

O volume V do paralelepípedo, através do produto misto, será dado por:

$$V = \begin{vmatrix} a & a & a \\ 2a & 2a & 3a \\ 2a & a & a \end{vmatrix} = \begin{vmatrix} a^3 \end{vmatrix} = 8$$

Resolvendo a equação, temos:

$$|a^3| = 8 \Rightarrow a^3 = 8$$
 ou $a^3 = -8 \Rightarrow a = 2$ ou $a = -2$.

Portanto, a alternativa correta é a [B], a = 2.

6. D

Como sabemos, para que os três vetores sejam coplanares, então seu produto misto é zero. Ou seja

$$\begin{vmatrix} 2 & m & 0 \\ 1 & -1 & 2 \\ -1 & 3 & -1 \end{vmatrix} = 0$$

Resolvendo a equação, encontramos m = -10.

7. A

O volume do paralelepípedo, através do produto misto entre os 3 vetores, é dado por:

$$\begin{vmatrix} 3 & -1 & 4 \\ 2 & 0 & 1 \\ -2 & 1 & 5 \end{vmatrix} = 0 + 8 + 2 + 0 + 10 - 3 = 17$$

8. B

Basta calcularmos o produto misto entre os vetores \vec{i} , \vec{j} e \vec{k} :

$$\vec{i}.(\vec{j} \times \vec{k}) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1$$

9. A

O volume do tetraedro é dado por

$$V_t = \frac{1}{6} | (\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) |$$

Mas

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = \begin{vmatrix} 4 & -2 & 2 \\ 1 & -3 & 2 \\ 5 & -1 & -2 \end{vmatrix} = 36$$

Portanto, o volume do tetraedro é

$$V_t = \frac{1}{6} \cdot 36 = 6 \text{ u.v.}$$

10. A

Observe:

O volume do paralelepípedo é dado por

$$V = I(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})I$$

e, no caso presente, deve-se ter

$$|(\vec{u}, \vec{v}, \vec{w})| = 16$$

rendo
$$(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} 3 & m & -2 \\ 1 & -1 & 0 \\ 2 & -1 & 2 \end{vmatrix} = -2m - 8$$

vem

$$1-2m-81=16$$
,

que, pela definição de módulo, implica duas hipóteses:

$$-2m - 8 = 16$$

$$-2m - 8 = -16$$

e, portanto,

$$m = -12$$
 ou $m = 4$

$$m = 4$$