Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002864

International filing date: 23 February 2005 (23.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-050895

Filing date: 26 February 2004 (26.02.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

25.02.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 2月26日

出 願 番 号 Application Number:

特願2004-050895

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

JP2004-050895

出 願 人
Applicant(s):

株式会社島精機製作所

特 in Community Japan

特許庁長官 Commissioner, Japan Patent Office 2005年 4月 7日

1/E

特許願 【書類名】 SS0313 【整理番号】 殿 特許庁長官 【あて先】 G06F 17/50 【国際特許分類】 【発明者】 和歌山県和歌山市坂田85番地 株式会社島精機製作所内 【住所又は居所】 寺井 公一 【氏名】 【特許出願人】 【識別番号】 000151221 株式会社島精機製作所 【氏名又は名称】 【代理人】 100086830 【識別番号】 【弁理士】 塩入 明 【氏名又は名称】 【選任した代理人】 【識別番号】 100096046 【弁理士】 塩入 みか 【氏名又は名称】 【手数料の表示】 012047 【予納台帳番号】 【納付金額】 21,000円 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】

> 図面 1 要約書 1

> > 9306208 9306209

【物件名】

【物件名】

【包括委任状番号】

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

表面が複数のポリゴンからなり、かつ軸を備えた人体モデルを用い、

仮想的なニットガーメントの内部を前記人体モデルの軸が通るように、前記仮想的なニットガーメントを人体モデルに対して仮に位置決めし、

仮に位置決めした仮想的なニットガーメントを、前記軸へ向けて収縮/膨張させること により、仮想的なニットガーメントを人体モデルに着装させ、

ここで前記仮想的なニットガーメントの各ポイントを、前記人体モデルのポリゴンに対応させるために、

前記各ポイントから人体モデルの軸へ向けた垂線を求めて、該垂線と交差するポリゴンを前記各ポイントに対応させ、

以降のポイントに対する対応するポリゴンの探索では、近接した探索済みのポイント に対応するポリゴンから探索を開始する、

人体モデルへのニットガーメントの着装シミュレーション方法。

【請求項2】

前記着装前に、前記仮想的なニットガーメントを少なくとも目数とステッチのサイズとから予測される自然なサイズよりも立体的に膨張させ、

次いで前記着装時に、人体モデルの外側にあるステッチは収縮、内側にあるステッチは 膨張させるようにしたことを特徴とする、請求項1の人体モデルへのニットガーメントの 着装シミュレーション方法。

【請求項3】

人体モデルの軸と、該人体モデルの表面に設けた複数のポリゴンの位置と向きとを、3D的に記憶するための記憶手段と、

仮想的なニットガーメントを、その内部を前記軸が通るように、3D空間内で仮配置するための配置手段と、

前記仮想的なニットガーメントをそのステッチ毎に前記軸へ向けて収縮/膨張させ、かつ各ステッチから対応する軸へ向けた垂線を求めて、該垂線と交差するポリゴンをそのステッチに対応させ、以降のステッチに対する対応するポリゴンの探索では、近接した探索済みのステッチに対応するポリゴンから探索を開始するようにして、該収縮/膨張方向と交差するポリゴンにパーツの各ポイントを対応させて、仮想的なニットガーメントを前記人体モデルに着装させるための着装手段とを設けた、着装シミュレーション装置。

【請求項4】

前記仮想的なニットガーメントを、前記着装前に少なくとも目数とステッチのサイズとから予測される自然なサイズよりも立体的に膨張させるための立体変形手段を設け、

前記着装手段では、前記着装時に人体モデルの外側にあるステッチは収縮、内側にあるステッチは膨張させるようにしたことを特徴とする、請求項3の着装シミュレーション装置。

【請求項5】

人体モデルの軸と、該人体モデルの表面に設けた複数のポリゴンの位置と向きとを、3D的に記憶するための記憶命令と、

仮想的なニットガーメントを、その内部を前記軸が通るように、3D空間内で仮配置するための配置命令と、

前記仮想的なニットガーメントをそのステッチ毎に前記軸へ向けて収縮/膨張させ、かつ各ステッチから対応する軸へ向けた垂線を求めて、該垂線と交差するポリゴンをそのステッチに対応させ、以降のステッチに対する対応するポリゴンの探索では、近接した探索済みのステッチに対応するポリゴンから探索を開始するようにして、該収縮/膨張方向と交差するポリゴンにパーツの各ポイントを対応させて、仮想的なニットガーメントを前記人体モデルに着装させるための着装命令とを設けた、着装シミュレーションプログラム。

【請求項6】

前記仮想的なニットガーメントを、前記着装前に少なくとも目数とステッチのサイズとか

ら予測される自然なサイズよりも立体的に膨張させるための立体変形命令を設け、 前記着装命令では、前記着装時に人体モデルの外側にあるステッチは収縮、内側にある ステッチは膨張させるようにしたことを特徴とする、請求項5の着装シミュレーションプログラム。

【書類名】明細書

【発明の名称】ニットガーメントの着装シミュレーション方法とその装置、並びにそのプログラム

【技術分野】

[0001]

この発明は、無縫製の筒状ニットガーメントなどのニットガーメントを、人体モデルに 仮想的に着装させることに関する。

【背景技術】

[0002]

非特許文献1は、ニットガーメントの形状を3次元的にシミュレーションする方法を開示している。ニットガーメントの各ステッチを質点と見なし、各ステッチがバネで接続されているものとして、ステッチの運動方程式を解き、ガーメントの姿を3次元的にシミュレーションする。しかしながら人体モデルにガーメントをどのように着装させるかは、開示されていない。

特許文献1は、水着などの伸縮性のある衣類のシミュレーションについて、人体にフィットするように衣類を膨張させて着せ付けることを提案している。

特許文献 2 は、衣類を複数の布に分割し、各布を人体に衝突させるようにして、衣類の 着装状態をシミュレーションすることを提案している。

[0003]

ところでニットガーメントの着装状態をシミュレーションするには、数十万程度のステッチを配置する必要がある。またシミュレーションに必要な計算量を少なくし、しかもシミュレーションは根拠のある具体的なモデルに基づく必要がある。

【非特許文献 1】The Art of Knitted Fabrics, Realistic & Physically Based Mod elling of Knitted Patterns, EUROGRAPHICS'98, Vol.17, (1998), Number3

【特許文献1】特開平9-273017

【特許文献2】特開平8-44785

【発明の開示】

【発明が解決しようとする課題】

$[0\ 0\ 0\ 4]$

この発明の基本的課題は、比較的少ない計算量で、多数のステッチからなる仮想的なニットガーメントを人体モデルに着装させることや、

仮想的なニットガーメントのポイントに対応する人体モデルのポリゴンを、総当たり無 しで効率的に探索できるようにすることにある。

この発明での副次的課題は、人がニットガーメントを着る過程を、シミュレーションに で模すことにある。

【課題を解決するための手段】

[0005]

この発明の人体モデルへのニットガーメントの着装シミュレーション方法では、

表面が複数のポリゴンからなり、かつ軸を備えた人体モデルを用い、

仮想的なニットガーメントの内部を前記人体モデルの軸が通るように、前記仮想的なニットガーメントを人体モデルに対して仮に位置決めし、

仮に位置決めした仮想的なニットガーメントを、前記軸へ向けて収縮/膨張させることにより、仮想的なニットガーメントを人体モデルに着装させ、

ここで前記仮想的なニットガーメントの各ポイントを、前記人体モデルのポリゴンに対応 させるために、

前記各ポイントから人体モデルの軸へ向けた垂線を求めて、該垂線と交差するポリゴン を前記各ポイントに対応させ、

以降のポイントに対する対応するポリゴンの探索では、近接した探索済みのポイントに 対応するポリゴンから探索を開始する。

[0006]

この発明の着装シミュレーション装置では、

人体モデルの軸と、該人体モデルの表面に設けた複数のポリゴンの位置と向きとを、3 D的に記憶するための記憶手段と、

仮想的なニットガーメントを、その内部を前記軸が通るように、3D空間内で仮配置するための配置手段と、

前記仮想的なニットガーメントをそのステッチ毎に前記軸へ向けて収縮/膨張させ、かつ各ステッチから対応する軸へ向けた垂線を求めて、該垂線と交差するポリゴンをそのステッチに対応させ、以降のステッチに対する対応するポリゴンの探索では、近接した探索済みのステッチに対応するポリゴンから探索を開始するようにして、該収縮/膨張方向と交差するポリゴンにパーツの各ポイントを対応させて、仮想的なニットガーメントを前記人体モデルに着装させるための着装手段とを設ける。

[0007]

この発明の着装シミュレーションプログラムでは、

人体モデルの軸と、該人体モデルの表面に設けた複数のポリゴンの位置と向きとを、3 D的に記憶するための記憶命令と、

仮想的なニットガーメントを、その内部を前記軸が通るように、3D空間内で仮配置するための配置命令と、

前記仮想的なニットガーメントをそのステッチ毎に前記軸へ向けて収縮/膨張させ、かつ各ステッチから対応する軸へ向けた垂線を求めて、該垂線と交差するポリゴンをそのステッチに対応させ、以降のステッチに対する対応するポリゴンの探索では、近接した探索済みのステッチに対応するポリゴンから探索を開始するようにして、該収縮/膨張方向と交差するポリゴンにパーツの各ポイントを対応させて、仮想的なニットガーメントを前記人体モデルに着装させるための着装命令とを設ける。

[0008]

好ましくは、この発明の着装シミュレーション方法や着装シミュレーション装置、着装シミュレーションプログラムでは、前記着装前に、前記仮想的なニットガーメントを少なくとも目数とステッチのサイズとから予測される自然なサイズよりも立体的に膨張させ、次いで前記着装時に、人体モデルの外側にあるステッチは収縮、内側にあるステッチは膨張させる。

[0009]

この明細書ではニットガーメントのみを対象とするので、ニットを省略して単にガーメントと呼ぶことがあり、また仮想的なガーメントのみを対象とするので、仮想的を省略して単に、ガーメントを着装させる、ガーメントを膨張させるなどと呼ぶことがある。

【発明の効果】

[0010]

この発明では、ニットガーメントが人体にフィットしようとすることを、パーツを人体 モデルの軸へ向けて収縮/膨張させることでシミュレーションする。このため比較的少な い計算量で、しかも具体的なモデルに基づいたシミュレーションができる。

[0011]

ニットガーメントは極めて多数のステッチからなり、人体モデルをポリゴンで表現すると、リアルな人体モデルには多数のポリゴンが必要である。ステッチには位置と向きが必要で、これはステッチをポリゴンに対応付けることで達成できる。なおステッチ毎にポリゴンとの対応関係を求める代わりに、数ステッチ毎などにこれらを代表するパーツのポイントを発生させて、ポリゴンと対応付けても良い。ここでステッチとポリゴンとの対応付けを高速で行う必要がある。例えば総当たりは非効率である。そこで同じコースの直前のステッチや1つ前のコースでウェール方向に重なるステッチなどの、探索済みのステッチやポイントに対して対応付けたポリゴンから探索を開始すると、ポリゴンの探索を効率化できる。

[0012]

好ましくはニットガーメントの仮の位置決め前に、ニットガーメントを自然なサイズよ

りも立体的に膨張させ、着装時に膨張したニットガーメントを人体モデルへ収縮させる。 ここで人体モデルの内側にあるステッチは、人体モデルの表面へ向けて膨張させる。これ はニットガーメントを拡げて人が着る過程で、ニットガーメントが人体の表面へ向かって 縮むのを模したモデルである。またステッチが人体の内側にあることはあり得ないので、 ガーメントが人体で拡げられるのを模して、人体モデルの内側にあるステッチを人体モデ ルの表面へ向けて膨張させる。

【発明を実施するための最良の形態】

[0013]

以下に本発明を実施するための最良の形態を示す。

【実施例】

[0014]

図1~図19に、実施例を示す。図1は実施例の着装シミュレーション装置2を示し、ニットデザイン装置や3D画像処理装置などにおいて標準的に装備されているものは省略する。4はガーメントデザイン部で、手入力部6やLANインターフェース16,ディスクドライブ18などからの入力により、ニットガーメントをデザインする。デザイン対象のニットガーメントは、例えば無縫製の筒状ガーメントとするが、縫製のあるガーメントでも良く、その場合、ガーメントデザイン部4で各パーツをどのように縫製するかの情報を含めてデザインする。表示部8は、種々の画像を表示すると共に、グラフィックユーザインターフェースとなり、ガーメントデザイン部4でのデザイン過程の画像や、人体モデルに着装後の画像を表示する。カラープリンタ10はこれらの画像をプリントする。

[0015]

3 D画像記憶部 1 2 には人体モデルの画像と、デザインしたニットガーメントの 3 D画像とを記憶する。人体モデルには例えばマネキンや、実際の人体をモデル化したものなどを用い、数万個程度のポリゴンの集合体として構成され、胴と両腕に対する少なくとも 3 つの軸を備えている。またポリゴンは $10 \sim 20$ 程度のグループに分類するのが好ましい。データ変換部 14 は、ガーメントデザイン部 4 で作成したガーメントのデザインデータを編成データに変換し、着装シミュレーションの対象データは、データ変換後の編成データでも、その前のデザインデータでも良い。 LANインターフェース 16 は、着装シミュレーション装置 2 を LANに接続し、ディスクドライブ 18 は適宜のディスクをドライブし、汎用メモリ 2 のは種々のデータを記憶する。

[0016]

事前変形部22では、デザインしたガーメントのデータを、自然な状態へと変形させる。ここで自然な状態とは例えばガーメントを平面上に静かに置いた状態や、肩の線でガーメントの重力を支えながら鉛直面内に静かに置いたような状態である。

[0017]

なおこの明細書において取り扱うのは、現実のガーメントではなくそのデザインデータである。そこでデザインデータを表す画像や、これからシミュレーションした仮想的なガーメントなどを、単にガーメントという。

[0018]

さらにこの明細書では、シミュレーション装置とシミュレーション方法並びにシミュレーションプログラムが一体になっている。そこでシミュレーション装置 2 に関する記載はシミュレーション方法やシミュレーションプログラムにも当てはまり、また逆にシミュレーション方法やシミュレーションプログラムに関する記載は、シミュレーション装置 2 にも当てはまる。

[0019]

例えば事前変形部22ではガーメントの襟の変形を行い、これについて図3の着装プログラム40や図4の事前変形で説明する。そしてこれらの説明は図1の事前変形部22にも当てはまり、図3や図4などに必要な機能が図1の事前変形部22にも備わっているものとする。この点は、着装シミュレーション装置2の他の部分についても同様である。

[0020]

立体変形部24は、例えば身頃と両袖の3つの筒から成るガーメントを、各々楕円柱状に膨らませる。これ以外に重力によるガーメントの上下方向の延びを考慮する場合、これに応じてガーメントを上下に引き延ばす。着装部26は、ガーメントを人体モデルに対して仮に位置決めし、胴及び両腕の例えば3つの軸に対して、ガーメントの身頃及び両袖の3つなどのパーツを、軸方向に例えば収縮/膨張させて、人体モデルにガーメントを仮に着装させる。

[0021]

着装によりガーメントには歪みが生じる。例えば袖と身頃の接続部で、身頃は胴の軸に向けて移動し、袖は腕の軸に向けて移動するので、近接したステッチ(編目)の間に大きな距離が生じる。そこで粗補正部28では、横方向(コース方向)並びに縦方向(ウェール方向)の2つの方向について、ステッチの配置を粗く補正する。例えば横方向の補正では、ステッチがコース方向に均等に配置されるように補正し、あるいは各ステッチがコース方向の両側のステッチの中点に配置されるように補正する。人体表面の凹凸や身頃と袖との接続などにより、ウェールの方向はもはや直線状ではないので、縦方向の粗補正では、鉛直からのウェール方向のずれについても補正を加える。例えば、各ステッチの位置を同じウェール上での前後のウェールの平均位置とする。縦横の粗補正では、ステッチがポリゴンに衝突しないように、移動範囲に拘束を加える。

[0022]

平滑化部30では粗補正後のガーメントについて、ステッチの配置を平滑化し、例えば各ステッチに対してその上下左右の例えば4方の隣接するステッチを考慮し、周囲の上下左右のステッチの平均位置などに各ステッチを移動させる。隣接するステッチの数は通常は4であるが、下側2ステッチの重ね目上に形成したステッチの場合は、上下左右に5ステッチあることになり、編地の端などでは上下左、上下右などの3ステッチとなることもある。平滑化は好ましくは繰り返して行い、ステッチの配置が安定して変化しなくなるまで繰り返す。ガーメントが人体モデルに密着するか、あるいはガーメントが人体モデルに対してゆとりのある大きな形をしているかなどを表現するため、例えば平滑化と同時に、ガーメントのサイズを補正する。レンダリング部32では平滑化後のガーメントに対して、各ステッチに対して糸のモデルを割り当て、また表目や裏目などのステッチの種類などに応じて、ポリゴンに垂直な方向にステッチを僅かにスライドさせ、シミュレーション画像の精度を増す。

[0023]

図2に着装シミュレーション方法の概要を示すと、ガーメントデザイン部4で無縫製ガーメントなどをデザインし、事前変形部でガーメントを変形させて、平面的で自然なガーメントの画像を得る。立体変形では、立体変形部24によりガーメントの各パーツを楕円柱状へ膨張させる。この時ガーメントは、その周方向(コース方向)に沿っての長さ(周長)が増すように膨張する。楕円の形などは人体モデルにフィットしやすいように適宜に定め、極端な場合、真円状でも良い。またガーメントのパーツは少なくとも身頃と両袖の3つであるが、これらの各パーツをさらに分割し、例えば裾のリブや襟,肩,ポケット,前立てなどを加えて、より多数のパーツとしても良い。

[0024]

着装処理では、立体変形により楕円柱状に膨らませたガーメントを人体モデルに仮に着装し、粗補正により着装時に生じたステッチ配置の歪みを除去し、平滑化処理によりさらにステッチ配置を平滑化する。その後レンダリングにより、画像に視覚的美しさを与えて、表示部8やプリンタ10に出力するのに適した画像とする。なお平滑化とレンダリングとは同時に行っても良い。

[0025]

図3に着装プログラム40の概要を示し、ガーメントデザインに必要なプログラムや通常の3D画像処理に必要なプログラムは省略して示す。42は事前変形部で、境界検出部43を用いて、ガーメントの各部の境界を検出し、これによってガーメントは、身頃、右袖、左袖、後襟、前襟、裾ゴムなどの各パーツに分割され、ガーメントの各ステッチには

[0026]

平滑化部45では、ガーメントのデザインデータを自然な形へと平滑化する。これによって各ステッチには自然なサイズが与えられ、また身頃に対して両袖を傾けるなどにより、各パーツの形を自然な形にする。襟変形部46では、前襟を倒し(寝かし)、これに伴って後襟が前襟側へ回り込むように襟を変形させる。襟変形の内容は図5,図6により説明する。

[0027]

立体変形部50では、ガーメントを楕円柱状に仮想的に膨張させる。着装部52では、軸記憶部53に人体モデルの各軸の位置を記憶させる。またポリゴンリスト54には、人体モデルの表面のポリゴンのリストを記憶させる。ポリゴンの数は例えば数万程度で、各ポリゴンは例えば三角形や四角形で、ポリゴンのデータはポリゴン番号並びに各頂点の3D座標、及び法線ベクトルなどである。ポリゴンは胴、右腕、左腕、ネックなどのように、人体モデルの各パーツに分類し、例えばセーターなどのシミュレーションでは、ポリゴンを10~20種類程度にグループ化しておくことが好ましい。さらにポリゴン間の隣接関係を明確に把握したい場合、頂点リスト55を設けて、ポリゴンの頂点に対して、この頂点を共有するポリゴン番号のリストなどを記憶しても良い。

[0028]

仮位置決め部56では、ガーメントを人体モデルに着装させる前に、ガーメント各部を人体モデルに対して仮に位置決めする。この時、ガーメントは立体変形部50で膨張させたままの姿である。衝突ポリゴン判定部57では、各ステッチに対してポリゴンを対応させる。ステッチが人体モデルの外側にある場合、各ステッチからそのステッチが属するパーツに対する軸に対して垂線の足を下ろし、この垂線が衝突するポリゴンを判定する。またステッチが人体モデルの内側にある場合、ステッチから軸に下ろした垂線を逆に延長し、衝突するポリゴンを判定する。ステッチの数はセーターなどでも10万以上の場合が多いので、ポリゴンをグループ化することにより、衝突し得るポリゴンの数を1/10~1/20程度に絞り、かつどのポリゴンに衝突するかの判定になるべく総当たりを用いないようにして、衝突ポリゴンの判定を効率化する。

[0029]

ステッチ移動部58では、各ステッチを衝突ポリゴン判定部57で求めたポリゴンへ向けて移動させ、各ステッチがポリゴンに衝突して元の方向などに僅かにリバウンドした位置や、ポリゴンの外側などにあって人体モデルに仮想的にガーメントを着せ付けた状態が得られるようにする。ガーメントにはコース当たりの目数や各ステッチのサイズなどから定まる自然な大きさが有り、周長を引き伸ばして膨張させたガーメントは、周長が自然なサイズになるまで収縮するはずである。そこで長さ当たりの目数などを監視しながらステッチを移動させ、ステッチがポリゴンに衝突すると収縮を停止し、ポリゴンに衝突しない場合でも、コース方向の長さ当たりなどの目数が所定の値に達すると、収縮を停止する。

[0030]

着装までの処理は、事前変形でガーメントを比較的自然な形状とし、立体変形でガーメントを膨らませて、着装により自然なサイズへと向けて収縮させて人体モデルに着せ付けるものである。これはニットガーメントを人が着る場合に、胴と腕などを通し、この間にニットガーメントがやや膨らんだ状態から、人体にフィットした状態へと収縮する過程をモデル化したものである。

[0031]

これらの処理によりステッチデータがどのように扱われるかを、ステッチデータ記憶部60により説明する。ステッチには例えばステッチ番号と該当するパーツ名などの属性が付与され、親や子並びに両隣などの近傍のステッチの番号がステッチデータに記憶されている。なお親は例えば自分のシンカーループを保持しているステッチ(1コース次のステ

[0032]

また各ステッチに対して表目/裏目、ラッキングの有無などのステッチの種類を記憶する。ステッチはポリゴンの表面付近まで移動することにより、3次元の座標(3 D位置)が付与され、ステッチのループを含む面はポリゴンの表面に平行で、ステッチに直角な方向はポリゴンの法線ベクトルで与えられる。またステッチはポリゴンと対応付けられているので、各ステッチが属するポリゴン番号を記憶し、例えば1つのポリゴンに対して平均で $1\sim1$ 0個程度のステッチが対応する。各ステッチ毎に、あるいはステッチの集団毎に、素材となる糸のデータを記憶し、糸データの詳細は糸モデルにより与えられる。

[0033]

粗補正部70には横補正部71と縦補正部72があり、横方向と縦方向に対してそれぞれ1回〜数回程度の粗補正を行う。平滑化部80には例えば4近傍補正部81を設けて、各ステッチに対し、その親子(上下)並びに左右の4つの近傍のステッチを用い、その位置を平滑化する。ステッチを軸に向けて移動させる際に、ガーメントの各コースの周長が自然な周長よりも長いままで移動を終了させ、その後にガーメントをさらに収縮させても良い。このような場合、収縮膨張部82を設けて、粗補正後に各ステッチのサイズが現実的なサイズとなるようにガーメントを収縮もしくは膨張させる。

[0034]

レンダリング部90では、平滑化を行った後のガーメントに対して、あるいは平滑化と同時にレンダリングを施す。まずポリゴン法線方向補正部91で、各ステッチの表目や裏目などのステッチの種類(目の種類)に応じて、ポリゴンの法線方向への位置を補正する。ポリゴンの法線方向の位置は、ポリゴンの表面を0とし、人体モデルの外側で+と定める。例えばリブ編地などの場合、表目は裏目に比べてポリゴンから高い位置にある。このようにしてガーメントの3D形状を編組織に応じて補正する。また糸モデル処理部92により、各ステッチに対して糸のモデルを付与し、例えば各糸が芯と毛羽の2つの部分から成るものとすると、各ステッチの3D画像が芯と毛羽とから構成され、かつ具体的な色調や太さを持つようにする。この後、適宜のシェーディングを施すと、立体感と陰影のあるガーメントのシミュレーションが行える。

[0035]

図4に事前変形のアルゴリズムを示すと、ガーメントの袖や身頃などの各パーツ間の境界を検出し、この検出結果に応じて袖を身頃に対して曲げるなどの自然な変形を施す。またパーツの境界を検出したので、各ステッチに対して部位を属性として付与できる。さらに図5、図6のようにして襟を変形する。図5の94は前襟、96は後襟で、前襟94の両端の点B、Cを前襟の襟下がりラインに垂直な方向へ向けて、襟の基点から回転させる。このようにして点B、Cを点B'、C'へと移動させる。また前襟94を倒すと、これに伴って後襟96も変形する。

[0036]

襟の変形アルゴリズムは、前襟94を最初に倒した後に、倒し過ぎの場合には起こして自然な襟の形にするというものである。B点をB'点に、C点をC'点に移動させた後、前襟94の下側から上側への各コースについて、図5のように倒した状態でのコース長 α と、各コースの目数並びに糸径から予想されるコース長 β とを比較する。コース長 α がコース長 β 未満である場合、襟は倒れすぎており、例えば前のコースと鉛直方向に重なるように次のコースを起こして襟を立てる。コース長 α がコース長 β 以上の場合、襟は図5のように倒れているのが自然であるとして、そのコースについては補正を加えない。この処理を襟の全コースについて行うと、図5のように前襟94を倒し、それに伴って後襟96を回し込むことができる。この後、上下左右の4方に隣接するステッチの平均位置にこれらの間のステッチが来るように、ステッチの配置を平滑化する。

[0037]

図7~図12により、人体モデルでガーメントを仮に着装する過程を説明する。図8のように人体モデルには、胴b,右腕ra,左腕laなどの少なくとも3つの軸があり、軸

は直線であるが曲線でも良い。また3つの軸の交差部がネック100に相当し、その下部 の部分が肩102に相当する。図9の104は平面視での胴表面を表し、実際は多数のポ リゴンで表面が構成されている。立体変形により膨張した身頃106は楕円柱状で、胴表 面104を包み込むように配置され、仮位置決め部56により、身頃106は胴に対して ほぼ妥当な位置に仮に配置されている。身頃106の各ステッチは、胴の軸bへと向け収 縮し、ポリゴンに衝突するか、長さ当たりの目数が所定値に達すると収縮を停止する。胴 表面の凹凸のために仮に身頃のステッチの一部がポリゴンの内側にある場合、軸から遠ざ かる方向に移動してポリゴンの外側へと出て、長さ当たりの目数が所定値に達すると膨張 を停止する。

[0038]

図10の110は腕表面で、112は袖で、袖の中心軸114は右腕の軸raなどの腕 の軸よりも例えばやや下側にあり、ここから図10の矢印のように袖112を収縮させる と、収縮後の袖116では袖の上部が腕の上部にほぼフィットし、袖の下部と腕との間に 隙間が残る形となる。袖の中心軸114を腕の軸よりもやや下側に配置して収縮させるこ とにより、袖の上部が腕に接触し、袖の下部が垂れた自然な形となる。これ以外に、袖の 上下で鉛直方向での収縮速度を変え、袖の下側から上向きの収縮速度を小さくしても良い 。この場合は、軸114を軸raなどと同じ位置に配置すれば良い。図11の120はネ ック表面で、その例えば中心を胴の軸 b が貫通し、身頃の場合と同様に、襟 1 2 2 を図 1 1の矢印方向に収縮させる。

[0039]

仮に着装したガーメントを図12に示すと、130は膨張した未着装の筒状ガーメント である。ここから図7~図11のように着装させると、着装後の身頃132と着装後の袖 134,135が得られる。分裂線136,137の部分では、着装前の身頃のステッチ と袖のステッチが隣接している。しかしながら身頃のステッチは図12の横方向に収縮し 、袖のステッチは図12の斜め上方向に収縮するので、分裂線136,137の部分で、 隣接したステッチ間に大きな隙間が生じる。このように、ガーメントの各パーツをそれぞ れの軸へ向けて収縮/膨張させるので、パーツ間の境界部などで歪みが生じる。

図13に移り、各ステッチについて衝突するポリゴンの判定を示す。140はパーツに 対応する軸とし、141~144はポリゴンで、ポリゴン間の境界のエッジを黒丸で示す 。移動前のステッチ146は、軸140に下ろした垂線の方向に沿って移動し、この垂線 が通過するポリゴン142が衝突するポリゴンである。ステッチ146の移動には、コー スの自然な周長よりも小さくは収縮しないとの制限があり、この制限内でポリゴン142 に衝突した場合、例えば移動前のステッチの方向などへ向けて僅かにリバウンドし、ポリ ゴンに衝突したステッチ147の位置に移動する。数万個のポリゴンを10~20程度の グループに分割しても、1パーツ当たりのポリゴンの数は1000個以上のオーダーであ り、総当たりでどのポリゴンに衝突するかを検出するのは不効率である。そこで図7のア ルゴリズムでは、各パーツの最初のポリゴンについて、例えば総当たりにより、あるいは 適宜の探索ルールにより、衝突するポリゴンを判定する。以降のステッチについては、直 前のステッチあるいは1コース下または1コース上のステッチが衝突したポリゴンを、衝 突するポリゴンの候補として最初に検討する。そしてこれらの候補に衝突しない場合、他 のポリゴンにも探索範囲を広げる。このようにして衝突ポリゴンの判定を効率化する。

$[0\ 0\ 4\ 1\]$

図14にポリゴン判定の例を示すと、158a~dはポリゴンで、編成のコース方向は 図の右から左で、周回の筒状編成なのでコース方向は一定である。黒丸のステッチはどの ポリゴンに衝突するか判定済みで、白丸のステッチは未判定で、今回はステッチ159と 衝突するポリゴンを探索するものとする。最初に同じコースの直前のステッチ160aと 衝突するポリゴンを候補とし、このポリゴンと衝突するかを判定する。衝突しない場合、 1つ前のコースで同じウェールのステッチ160bが衝突するポリゴンを候補として、同 様にこのポリゴンと衝突するかを判定する。ステッチ160a,160bが衝突するポリ

ゴンとは別のポリゴンと衝突する場合、例えば残るポリゴンを適宜の順番で総当たり的に 検討しても良く、あるいは1つ前のコースで、次のウェールのステッチ160cや2つ次 のウェールのステッチ160dと衝突するポリゴンなどを候補として探索を続けても良い 。衝突するポリゴンの判定では、近傍のステッチが衝突するポリゴンから候補として優先 するものとする。

[0042]

図15では、152は横方向に粗補正後の身頃で、154,155は横方向に補正後の 袖である。横方向の粗補正では、袖や身頃の各コース方向に沿ってステッチを再配置し、 例えば各コースでステッチを等間隔に配置する、あるいは各ステッチを左右両隣のステッ チとの間隔が等しくなるように再配置する、などのルールに従い、コース方向に移動させ る。この結果、図12の分裂線136,137の部分を例えば身頃のステッチが埋めるよ うに、ステッチがコース方向に移動し、袖と身頃との間に生じた隙間が埋められる。

[0043]

図15の袖と身頃との境界のウェールの配置はなお不自然である。またこれ以外に人体 モデルには様々な凹凸があるので、ウェール方向(縦方向)に沿って粗補正を行う。図1 6の162は縦方向に粗補正後の身頃で、164,165は縦方向に粗補正後の袖である 。各パーツの各ウェールについて、鉛直方向並びにこれに直角な水平面内の方向に付いて 、上下の2つのステッチの中間にステッチが近寄ろうとするなどのモデルを用い、縦方向 に粗補正を加える。この時、補正の過程でステッチがポリゴンに衝突すると、ステッチと 衝突しない位置に移動先を変更する、もしくはステッチは移動できない、などのルールを 加える。このルールは横方向の粗補正でも同様である。図16の168は、1ウェール分 の縦方向の粗補正を示し、これは袖との接続部付近の身頃の1ウェールを示している。こ のようにして縦方向にも粗補正を加える。横方向と縦方向の粗補正は実施例では各1回と するが、必要に応じて複数回繰り返し、着装により生じた歪みを除くようにする。

[0044]

図17に粗補正後のステッチの平滑化を示す。170は自分の目(ステッチ)で、17 1は親の目、172は子の目、173は右隣の目、174は左隣の目である。目170を 周囲の上下左右の4近傍の目171~174の平均位置へと移動させ、176は上下左右 の4近傍に対する平滑化後の位置である。このようにして各ステッチについて平滑化を繰 り返し、現実的な画像とする。

[0045]

図18, 図19に平滑化後のニットガーメントのシミュレーション画像を示す。実施例 では、重力計算や、糸に働く応力によるステッチの移動などの計算を行っていない。また 用いたモデルは、ガーメントを自然な状態に変形させ、膨張させ、人体モデルの軸へ向け て収縮させて着装させる、といった簡単なものである。以降の処理は、ステッチ間の間隔 が均等になるように、各ステッチを再配置することである。これらの処理には、人為的な 仮定はなく、ガーメントを着装するとどうなるのかを、単純なモデルで、人為的な仮定無 しでシミュレーションしている。

[0046]

実施例では以下の効果が得られる。

- (1) 比較的単純な計算手順と簡単なモデルに従い、ガーメントを人体モデルに着装させ ることができる。
- (2) 各ステッチにパーツ名(部位)を属性として付与することにより、どの軸に向けて 収縮するかを処理できる。
- (3) パーツ間の境界情報を用いて、袖を身頃に対して自然に曲げることができる。
- ステッチをポリゴンに対応付ける作業を、総当たりでなく効率的に行える。
- (5) ガーメントを膨張させた状態から収縮させることにより、人体モデルに自然なサイ ズで着装させることができる。
- 比較的単純な手順により、上下不均等に腕で支持された袖を表現できる。
- (7)胴, 両腕の3つの軸などへ向けてのステッチの移動により生じた歪みを、横方向や

縦方向の粗補正により除くことができる。

- (8) 粗補正後の平滑化で、ステッチを自然なモデルに従い再配置できる。
- (9) レンダリングを施し、ポリゴンの法線方向にステッチの種類などに応じて移動させ、糸モデルを用いて各ステッチを詳細に表現することにより、シミュレーション画像の質を向上できる。

[0047]

実施例ではセーターの着装を例としたが、パンツやスラックス、あるいはワンピースなどでも良い。例えばパンツやスラックスの場合、胴の軸と両足の3つの軸を用いればよい。またタートルネックなどのように折り返しのあるパーツは、例えば事前変形の段階で折り返しておくと良い。

【図面の簡単な説明】

[0048]

- 【図1】実施例の着装シミュレーション装置のブロック図
- 【図2】 実施例の着装シミュレーション方法の概要を示すフローチャート
- 【図3】実施例の着装シミュレーションプログラムのブロック図
- 【図4】実施例での事前変形アルゴリズムを示すフローチャート
- 【図5】実施例での襟の変形を模式的に示す図
- 【図6】実施例での襟の変形アルゴリズムを示すフローチャート
- 【図7】実施例での着装アルゴリズムを示すフローチャート
- 【図8】実施例で用いた人体モデルの、胴と両腕の軸を模式的に示す図
- 【図9】実施例での胴への身頃の周方向収縮による着装を平面視で模式的に示す図
- 【図10】実施例での腕への袖の周方向収縮による着装を鉛直視で模式的に示す図
- 【図11】実施例でのネックへの襟の周方向収縮による着装を平面視で模式的に示す

义

- 【図12】実施例での着装後のニットガーメントを鉛直視で模式的に示す図
- 【図13】実施例でのポリゴンへ向けてのステッチの移動を模式的に示す図
- 【図14】実施例での衝突するポリゴンの判定を模式的に示す図
- 【図15】実施例での横方向粗補正後のガーメントを模式的に示す図
- 【図16】実施例での縦方向粗補正後のガーメントを模式的に示す図
- 【図17】実施例での平滑化を模式的に示す図
- 【図18】実施例での平滑化後のガーメントを正面視で示す図
- 【図19】実施例での平滑化後のガーメントを側面視で示す図

【符号の説明】

[0049]

2	着装シミュレーション装置
4	ガーメントデザイン部
6	手入力部
8	表示部
1 0	カラープリンタ
1 2	3 D画像記憶部
1 4	データ変換部
1 6	LANインターフェース
1 8	ディスクドライブ
2 0	汎用メモリ
2 2	事前変形部
2 4	立体変形部
2 6	着装部
2 8	粗補正部
3 0	平滑化部

```
3 2
           レンダリング部
4 0
           着装プログラム
4 2
           事前変形部
4 3
           境界検出部
4 4
           部位属性付与部
4 5
           平滑化部
4 6
           襟変形部
5 0
           立体変形部
5 2
           着装部
5 3
           軸記憶部
5 4
           ポリゴンリスト
5 5
           頂点リスト
5 6
           仮位置決め部
5 7
           衝突ポリゴン判定部
5 8
           ステッチ移動部
6 0
           ステッチデータ記憶部
6 2
           ステッチデータ
7 0
           粗補正部
7 1
           横補正部
7 2
           縦補正部
8 0
           平滑化部
8 1
           4 近傍補正部
8 2
           収縮膨張部
9 0
           レンダリング部
9 1
           ポリゴン法線方向補正部
9 2
           糸モデル処理部
1 0 0
           ネック
1 0 2
           肩
104
           胴表面
106
           身頃
1 1 0
           腕表面
1 1 2
1 1 4
           袖の中心軸
1 1 6
           収縮後の袖
1 2 0
           ネックの表面
1 2 2
           襟
1 3 0
           膨張した筒状ガーメント
1 3 2
           着装後の身頃
134, 135
           着装後の袖
136, 137
           分裂線
1 4 0
           軸
1 4 1 ~ 1 4 4
           ポリゴン
1 4 6
           移動前のステッチ
1 4 7
           ポリゴンに衝突したステッチ
1 5 2
          横方向に粗補正後の身頃
154, 155
          横方向に粗補正後の袖
1 5 6
          線
          ポリゴン
158a\sim c
159
          判定対象のステッチ
160a
          同じコースでの直前のステッチ
```

```
ページ: 11/E
```

```
160b
          1コース前の同じウェールのステッチ
          1コース前の次のウェールのステッチ
160c
          1コース前の2つ次のウェールのステッチ
160 d
161
          未判定のステッチ
162
          縦方向に粗補正後の身頃
164, 165
          縦方向に粗補正後の袖
1 6 8
          1ウェール分の縦方向の粗補正
1 7 0
          自分の目
1 7 1
          親の目
1 7 2
          子の目
1 7 3
          右隣の目
1 7 4
          左隣の目
1 7 6
          4 近傍平滑化後の位置
B, C, D
          襟上の位置
B', C'
          移動後の位置
b
         胴の軸
r a
         右腕の軸
1 a
         左腕の軸
```

【書類名】図面【図1】

【図2】

【図4】

【図5】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【書類名】要約書

【要約】

【構成】 デザインした仮想的な無縫製ニットガーメントの、身頃と袖を楕円柱状に膨張させ、人体モデルに対して仮に位置決めする。人体モデルの胴、両腕の各軸に向けて、膨張させた無縫製ガーメントの各部を移動させて仮に着装する。着装したガーメントでのステッチの配置を横方向と縦方向とに平滑化して、ステッチの位置を粗補正する。次いでガーメント各部のステッチの位置を繰り返し平滑化して、着装後のガーメントを得る。

【効果】 少ない計算量で信頼性のあるモデルに基づき、ニットガーメントを人が着装した状態をシミュレーションできる。

【選択図】 図19

ページ: 1/E

認定・付加情報

特許出願の番号

特願2004-050895

受付番号

5 0 4 0 0 3 1 0 2 1 2

書類名

特許願

担当官

第七担当上席

0096

作成日

平成16年 2月27日

<認定情報・付加情報>

【提出日】

平成16年 2月26日

特願2004-050895

出願人履歴情報

識別番号

[000151221]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月17日

] 新規登録

和歌山県和歌山市坂田85番地

株式会社島精機製作所