Scilab Textbook Companion for Non Conventional Energy Resources by B. H. Khan¹

Created by
Aviral Yadav
B.tech
Mechanical Engineering
ABES Engineering College
College Teacher
None
Cross-Checked by
Bhavani Jalkrish

June 7, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Non Conventional Energy Resources

Author: B. H. Khan

Publisher: McGraw-Hill

Edition: 2

Year: 2014

ISBN: 9780070142763

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	Fundamental of Energy Science and Technology	5	
2	Energy Conservation	8	
4	Solar Energy Basics	9	
6	Solar Photovoltaic Systems	16	
7	Wind Energy	19	
8	Biomass Energy	23	
9	Geothermal Energy	27	
10	Ocean Energy	33	
11	Small Hydro Resources	35	
12	Emerging Technologies	37	
13	Miscellaneous Non conventional Technologies	39	
11	Financial and Economic Evaluation	40	

List of Scilab Codes

Exa 1.1	heat rejected	5
Exa 1.2	least power required	6
Exa 1.3	Heat abstracted	6
Exa 1.4	work done	6
Exa 2.1	overall efficiency	8
Exa 4.1	radiation angle	9
Exa 4.2	daylight hours	10
Exa 4.3	monthly average	10
Exa 4.4	beam radiation	11
Exa 4.5	hourly diffuse	12
Exa 4.6	total radiation	13
Exa 4.7	Monthly average	14
Exa 6.1	fermi level	16
Exa 6.2	optimum wavelength	16
Exa 6.3	number of modules	17
Exa 6.4	time required	17
Exa 7.1	Maximum axial thrust	19
Exa 7.2	maximum output	20
Exa 7.3	optimum energy	21
Exa 8.1	total volume of digester	23
Exa 8.2	size of biogas plant	23
Exa 8.3	gas holder capacity	25
Exa 8.4	total thermal power	25
Exa 9.1.i	Heat content	27
Exa 9.1.ii	average temp after 25 years	27
Exa 9.1.iii	Initial Heat extraction	28
Exa 9.2.i	heat content	29
Eva 92 ii	Time constant	30

Exa 9.2.iii	power per square km
Exa 10.1	annual average energy generation
Exa 10.2	phase velocity
Exa 11.1	power available
Exa 11.2	required flow rate
Exa 12.1	required heat removal rate
Exa 13.1	Maximum Power output
Exa 14.1	Future value of investment
Exa 14.2	number of years
Exa 14.3	initial value
Exa 14.4	Future amount
Exa 14.5	amount deposited each year
Exa 14.6	Amount spent on replacement
Exa 14.7	final amount after 10 years
Exa 14.8	unit cost of electricity production
Exa 14.9	present worth
Exa 14.10	present worth of saving 45
Exa 14.11	simple payback period 45
Exa 14.12	payback period for projects
Exa 14.13	Net loss
Exa 14.14	NPV of Projects
Exa 14.15	The IRR
Exa 14.16	
Exa 14.17	Capital Recovery cost
Exa 14.18	AE for machines
Exa 14.19	NPV of dryer
Exa 14.20	The Book value

Fundamental of Energy Science and Technology

Scilab code Exa 1.1 heat rejected

```
1 // Given data:
2 clc
3 T1=500+273.0 //source temp in kelvin
4 T2=100+273.0 //sink temperature in kelvin
5 W=1 // output power in kW
6
7 nth=1-(T2/T1) // thermal efficiency
8
9 Q1=1/nth // heat supplied in kW
10
11 Q2=Q1-W // heat rejected in kW
12
13 printf("The heat rejected is %0.2 f kW",Q2)
14
15 // the answer in book is wrong due to incorrect value of T1
```

Scilab code Exa 1.2 least power required

```
// Given data:
clc
T1=40+273.0 // ambient temp in kelvin
T2=-10+273.0 // freezer temp in kelvin
Q2=2 // heat loss rate for freezer in kJ/s

Q1=T1*(Q2/T2) // heat transfer rate in kJ/s

W=Q1-Q2 // work in kW

printf("The least power required is %0.2 f kW", W)
```

Scilab code Exa 1.3 Heat abstracted

```
1 // Given data:
2 clc
3 Q1=3e4 // heat required in kJ/h
4 W=2e3 // work required in kJ/h
5 6 Q2=Q1-W // heat abstracted from outside in kJ/h
7 8 COP=Q1/(Q1-Q2) // COP of heat pump
9 printf("Heat abstracted from outside air is %0.2f kJ /h \n ",Q2)
11 printf("COP of heat pump is %d ",COP)
```

Scilab code Exa 1.4 work done

```
1 // Given data:
2 clc
```

Energy Conservation

Scilab code Exa 2.1 overall efficiency

```
1 clc
3 // Given data:
5 Hcoal=20.0 // heating value of coal in MJ
6 W=200.0e3 // weight of coal in \ensuremath{\mathrm{kg}}
7 E=1.2e6 // Electrical energy generated in MJ
8 delH=1.6e6 // Heat energy generated in MJ
9 ne=0.30 // electrical efficiency
10 nb=0.8 // thermal efficiency
11
12 QA=Hcoal*W // total thermal energy input to plant in
13 nco=(E+delH)/QA // efficiency of cogeneration plant
14 e=E/(E+delH) // electrical fraction
15
16 nc=1/((e/ne)+(1-e)/nb) // overall efficiency
17
18 printf("The overall efficiency is %0.2 f %%", nc*100)
```

Solar Energy Basics

Scilab code Exa 4.1 radiation angle

```
1 // given data
2 clc
3 \text{ n=319} // 15 \text{th November}
4 Gama=30 // angle in degree
5 Beta=45 // angle in degree
6 phi=18.9 // latitude in degree
7 solartime=13.5-4*(81.733-72.816)/60 +14.74/60 // in
8 delta=23.45*(sin(360.0*(284.0+n)/365.0)) // in
      degree
9 B=(360.0*(n-81)/364)
10 E=(9.87*sin(2*B)-7.53*cos(B)-15*sin(B))
11 w=(solartime-12)*15 // hour angle
12 theta=-\%i*acos(((cos(phi)*cos(Beta)+sin(phi)*sin(
     Beta)*cos(Gama))*cos(delta)*cos(w) + cos(delta)*
     \sin(w)*\sin(Beta)*\sin(Gama) + \sin(delta)*(\sin(phi)
     *cos(Beta)-cos(phi)*sin(Beta)*cos(Gama)))*180/%pi
13
14 printf ("the angle is %.2f degrees", theta)
```

```
16
17 // The answer in the textbook is slightly different due to approximations
```

Scilab code Exa 4.2 daylight hours

```
1 // given data
2 clc
3 \text{ n1=1} // 1 \text{st january}
4 n2=182 // july 1
6 phi=34.083 // latitude in degree
8 delta1=23.45*sin((\%pi/180)*(360.0*(284.0+n1)/365.0))
       // in degree
  delta2=23.45*sin(((\%pi/180)*360.0*(284.0+n2)/365.0))
      // in degree
10
11 td1=(2.0/15)*(acos((tan(phi)/tan(delta1)))*180/%pi)
     // daylight hours for january 1
12 td2=(2.0/15)*(acos((tan(phi)/tan(delta2)))*180/%pi)
     // daylight hours for july 1
13
14 printf ("daylight hours for january 1 are %.2f hours
     ",td1)
15 printf (" \n daylight hours for july 1 are \%.2 f
     hours",td2)
16
17 // the answers are slightly different in textbook
     due to approximation while here ansers are
      precise
```

Scilab code Exa 4.3 monthly average

```
1 // given data
2 clc
4 a=0.25 // constant for delhi from table 4.1
5 b=0.57 // constant for delhi from table 4.1
6 pi=27.166 // latitute in degrees
7 n=17 // day
8 nbar=7 // sunshine hours
10 dlta=23.45*(sind((360.0*(284.0+n)/365.0))) // in
      degree
11
12 wt=acosd((-tand(pi)*(tand(dlta)))) // hour angle at
      sunrise
13 Nbar = (2*(wt)/15.0)// day length
15 Ho = 3600*(24.0/\%pi)*1.367*(1+0.033*cosd((360.0*n/365))
      ))*(cosd(pi)*cosd(dlta)*sind(wt)+1.3728*sind(dlta)
      )*sind(pi)) // in kj/m<sup>2</sup> per day
16
17 Hg=Ho*(a+b*(nbar/Nbar)) // in kj/m<sup>2</sup> per day
18 printf ("The monthly average is %.2 f in kj/m<sup>2</sup> per
      day", Hg)
19
20 // the answer in the book is slightly different due
     to approximations
```

Scilab code Exa 4.4 beam radiation

```
5 KT=Hg/Ho // unitless
6 Hd=Hg*(1.354-1.570*KT) // in kj/m^2 per day
7 Hb= Hg-Hd // in kj/m^2 per day
8
9 printf("Monthly average of daily diffused is %.2f in kj/m^2 per day", Hd)
10 printf("\n beam radiation is %.2f in kj/m^2 per day", Hb)
11
12 // the solution inthe textbook is slighlty different as the values from previous examples are used which too are incorrect
```

Scilab code Exa 4.5 hourly diffuse

```
1 // given data
2 clc
3 // most of the data is used is from previous example
4 phi=27.166 // in degree
5 n=17 // day
6 \text{ ws} = 78.66 // \text{degrees}
7 dlta=-20.96 // in degrees
8 Ho=22926.408 // kj/m^2 per day
9 Hg=14450.418 // kj/m^2 per day
10 Hd=5266.2473 // kj/m^2 per day
12 \text{ w} = (11.5 - 12) * 15 // \text{ in degrees}
13
14 \text{ Io} = 3600 * 1.367 * (1+0.033 * cosd (360 * 17/365.0)) * (cosd ((
      phi))*cosd((dlta))*cosd((w)))+sind((dlta))*sind((
      phi))
15
16 \quad a=0.409+0.5016*sind(ws-60)
17 b=0.6609-0.4767*sind(ws-60)
```

```
18
19 Ig=Hg*(a+b*cosd(w))*Io/Ho // in kJ/m^2-h
20
21 printf("The monthly average of hourly global
      radiation is \%.2 \text{ f kJ/m}^2-\text{h}, Ig)
22
23 adash=0.4922+(0.27/(Hd/Hg))
24 \text{ bdash} = 2*(1-adash)*(sind(ws)-1.7328*cosd(78.66))
      /(1.7328-0.5*sind(2*78.66))
25
26
   Id=5259.6*(1.2321-0.3983*cosd((w)))*Io/Ho // kJ/m^2-
28
29
30
31 printf("\n The hourly diffuse radiations are \%.2 f kJ
      /\text{m}^2-\text{h}, Id)
32
33 // the solution in the textbook is wrong as the
      value of b and bdash are wrong
```

Scilab code Exa 4.6 total radiation

```
1 // given data
2 clc
3 phi=28.58 // in degree
4 n=135 // may 15
5 dlta=23.45*sind((360*(284+n)/365.0))
6
7 w=(13.5-12)*15 // in degrees
8 A=3981.6 // in W/m^2 from table 4.2
9 B=0.177// from table 4.2
10 C=0.130 // from table 4.2
11
```

Scilab code Exa 4.7 Monthly average

```
1  // given data
2  clc
3  phi=28.58  // in degree
4  B=30  // in degree
5  n=318  // november 14
6  Hg=16282.8  // in kJ/m^2-day from Table C1 appendix C
7  Hd=4107.6  // in kJ/m^2-day from Table C2 appendix C
8
9  dlta=23.45*(sind((360.0*(284.0+n)/365.0)))  // in degrees
10
11  ws=acosd(tand(phi)*(atan(dlta)))  // hour angle at sunrise
12
13  Rb=(ws*sind(dlta)*sind(phi-B)+cosd((dlta))*sind(ws)* cosd(phi-B))/(ws*sind(dlta)*sind(phi)+cosd((dlta))
```

```
)*sind(ws)*cosd((phi)))

14

15 Rd=(1+cosd((B)))/2

16

17 Rr=0.2*(1-cosd((B)))/2

18

19 Ht=((1-(Hd/Hg))*1.56+(Hd/Hg)*Rd + Rr)*Hg

20 printf("Monthly average total radiation is %.2 f kJ/m ^2-h", Ht)
```

Solar Photovoltaic Systems

Scilab code Exa 6.1 fermi level

```
1 clc
2 // Given data
3
4 T=27 +273 // temperature converted in kelvin\n",
5 NV=1e22 // effective density of states in valence band in cm^(-3)\n",
6 NA=1e19 // acceptor density in cm^(-3)\n",
7 k=8.629*10**(-5) // boltzmann constant in eV/K\n",
8 EFV=k*T*log(NV/NA) // closeness of fermi level i.e Ef-Ev\n",
9 printf("Closeness of fermi level with valence bond is %.4 f eV", EFV)
```

Scilab code Exa 6.2 optimum wavelength

```
1 // Given data : 2 clc 3 clear
```

Scilab code Exa 6.3 number of modules

```
clc
clear
// Given data:

Pout=1*735 // motor power output in W
Peffi=0.85 // motor efficiency
cellarea=9*4*125*125e-6 // area in m^2
Rad=1000 //incident radiation in kW/m^2
celleffi=0.12 // cell efficiency

// soln.
Pin=Pout/Peffi // power req by motor in W
N=Pin/(Rad*cellarea*celleffi) // number of modules

printf("%.f number of modules are required",N)
```

Scilab code Exa 6.4 time required

```
1 clc
2 clear
3 // given:
4 noMPPTpower=10*8 // power without MPPT in W from fig
6.25
```

Wind Energy

Scilab code Exa 7.1 Maximum axial thrust

```
1 // given data
2 clear
3 clc
4 rho=1.226 // air density in kG/m^3
5 \text{ alpha} = 0.14
6 H=10.0 // height at which wind speed is given in m
7 uH=12.0 // speed in m/s
8 z=100.0 // tower height in m
9 D=80.0 // diameter in m
10 effigen=0.85 // efficiency og generator
11
12 A = \%pi*(D**2)/4 // area in m^3
13 u0=uH*(z/H)**alpha // velocity at 100 m in m/s
14 u1=0.8*u0 // exit velocity in m/s
15 Po=(A*rho*u0**3)/2 // Total Power in Wind
16 // Part 1
17 printf("Total Power in Wind is \%0.2 \, \mathrm{f} \, \mathrm{MW} \, \mathrm{n}", Po
      /1000000)
18
19 // Part 2
20 a=(u0-u1)/u0 // interference factor
```

```
21 Cp=4*a*(1-a)**2 // Power Coefficient
22 PT=Cp*Po/1000000 // power to turbine in MW
24 printf ("The power extracted by turbine is \%0.2 \,\mathrm{f} MW \
      n",PT)
25
26 // Part 3
27 Pelec=effigen*PT // electrical power generated in MW
28
29 printf ("The Electrical power generated is %0.2 f MW \
      n", Pelec)
30
31 // Part 4
32 FA=4*a*(1-a)*(A*rho*u0**2)/2 // axial thrust in N
33
34 printf ("The axial thrust is \%0.2 \, \text{f N } \text{n}", FA)
35
36 // Part 5
37
38 Fmax = (A*rho*u0**2)/2 // maximum thrust in N
39 printf("Maximum axial thrust is \%0.2 \, \text{f N } \setminus \text{n}",Fmax)
```

Scilab code Exa 7.2 maximum output

```
1 // given data
2 clear
3 clc
4
5 u0=20.0 // wind speed in m/s
6 T=273+27.0 // temp in kelvin
7 P=1.01325e5 // pressure in Pa
8 R=287.0 // gas constant
9 r=80/2.0 // radius of rotor in m
10 w=2*%pi*40/60.0 // rotor speed in rad/s
11 A=%pi*r**2 // area of rotor in m^2
```

```
12
13 // soln:
14 rho=P/(R*T) // density in Kg/m^3
15 a=1/3.0 // condition for maximum output
16 Cpmax=4*a*(1-a)**2 // Power Coefficient
17 Lambda=r*w/u0 //tip speed ratio
18
19 Po=(A*rho*u0**3)/2000000 // Total Power in Wind in W
20
21 Tm=Po*r/u0 // Torque in N
22
23 Ctmax=Cpmax/Lambda // torque coefficient
24
25 Tshmax=Tm*Ctmax // torque at shaft
26
27 printf ("The torque at shaft for maximum output is \%0
      .2 f N", Tshmax)
```

Scilab code Exa 7.3 optimum energy

```
1 // Given Data
2 // given data
3 clear();
4 clc();
5 u0=15.0 // wind speed in m/s
6 R=80/2.0 // radius of rotor in m
7 n=3 // number of blades
8
9 Lambda=4*%pi/n // condition of tip ratio for maximum output
10
11 w=Lambda*u0/R // using Eq 7.21 rotor speed in rad/s
12
13 N=w*60/(2*%pi) // rotor speed in RPM
```

15 printf("For optimum energy the rotor speed should
 be %.1 f rpm", N)

Biomass Energy

Scilab code Exa 8.1 total volume of digester

Scilab code Exa 8.2 size of biogas plant

```
1 clc
2 // given data
3 Gaslight=10*0.227*4 // gas required for lighting in
     m^3/dav
4 Eleccomp=10*250*6*60*60/1000000.0 // electrical
      energy required by computers in MJ
5 effith=0.25 // thermal efficieny
6 efficonv=0.80 // conversion efficiency
7 Heat=23.0 // heating value of biogas in MJ/m<sup>3</sup>
8 rho=1090.0 // slurry density in kg/m<sup>3</sup>
9 Engineinput=Eleccomp/(effith*efficonv)
10
11 energypump=746*2*2*60*60/1000000.0 // mechanical
      energy required for pumping in MJ
12 themalinput=energypump/effith // required thermal
      input in MJ
13 totalinput=themalinput+Engineinput // total thermal
      input required by engine
14
15 Volreq=totalinput/Heat // volume required per day in
      m^3/day
16 Totalrq=Volreq+Gaslight // total gas required in m^3
       /day
17
18 n=Totalrq/(7*0.18*0.34) // solid mass is 18\% and n
      is number of cows required
19 n = round(n)
20 printf("The number of cows is %i",n)
21 feed=7*n // daily feed in kg
22 slurry=2*feed // in kg
23 volslurry=slurry/rho // volume of slurry added per
      day in m<sup>3</sup>
24 totalvol=50*volslurry/0.9 // total volume for 50
      days in m<sup>3</sup> when 90 % is occupied by slurry
25
26 printf("\n The size of biogas plant is \%.2 \,\mathrm{f} m<sup>3</sup>",
      totalvol)
```

Scilab code Exa 8.3 gas holder capacity

```
1 clc
2 // given data
3 Voldaily=1200 // daily production in m<sup>3</sup>/day
4 prodrate=Voldaily/24.0 // gas production rate per
5 consrate=Voldaily/6.0 //gas consumtion rate per hour
6 Vg1=(consrate-prodrate)*2 // gas holder size
     required for 2 hours in litres
7 Vg2=prodrate*9 // gas holder size for 9 hours
     without consumption in litres
8 if Vg1>Vg2
      Vgmax=Vg1
10 else
11
       Vgmax = Vg2
12 Vg=Vgmax*1.25 // required gas holder with 25 %
     safety margin in litres
13 printf("\n required gas holder size is %.2f litres",
14 Capacity=Vg/Voldaily // required gas holder capacity
15
16 printf("\n required gas holder capacity is %.2 f \%",
     Capacity *100)
```

Scilab code Exa 8.4 total thermal power

```
1 clc
2 // given data
3 drymattrprd=2 // dry matter produced in kg/day/cow
4 gasyield=0.22 // biogas yield in m^3 /kg
5 drymttr=18/100.0 // dry matter in cowdung
```

```
6 rho=1090 // slurry density in kg/m<sup>3</sup>
7 effibrnr=0.6 // burner efficiency
8 Heat=23.0 // heating value of biogas in MJ/m<sup>3</sup>
10 dungprd=drymattrprd*2/0.18 // dung produce in kg/day
       by 2 cows
11 slurry=2*dungprd // slurry produce in kg/day
12 volslurry=slurry/rho // volume of slurry in m^3
13 totalslurry=30*volslurry // for 30 days slurry in m
14 digestersize=totalslurry/0.85 // in m<sup>3</sup>
15 printf("the volume of digester is %.2f m^3",
      digestersize)
16
17 gasprd=drymattrprd*2*gasyield // gas produced in m
      ^3/day
18
19 Energytherm=gasprd*Heat*effibrnr // total thermal
      energy available in MJ/day
20
21
22 thermalpower=Energytherm*1000000/(24*60*60) // in
      watts
23
24 printf (" \n total thermal power is \%.2 \, \mathrm{f} \, \mathrm{W}",
      thermalpower)
```

Geothermal Energy

Scilab code Exa 9.1.i Heat content

Scilab code Exa 9.1.ii average temp after 25 years

```
1 clc
2 // given data
```

```
3 G=39.0 // temperature gradient in K/km.
4 h2=10.0 // depth in km
5 \text{ rhor} = 2700.0 // \text{ kg/m}^3
6 cr=820.0 // in J/kg-K
7 QbyA=0.5 //water flow rate in m^3/\sec-km^2
8 rhow=1000.0 // density of water in kg/m^3
9 cw=4200.0 // specific heat of water in J/kg-K
10 h1=120.0/G // T1-T0=120 K is given
11 h21=h2-h1 // in km
12 t=25 // time in years
13
14 thtao=G*h21/2.0 // in degree K
15 printf ("Useful initial temp is %.2f degree K",
     thtao)
16 \text{ tau=rhor*cr*h21*(1000**3)/(QbyA*rhow*cw)} // in
17 tau=tau/(2*60*60*24*365) // in years
18 thta=thtao*exp(-t/tau) // in degree Kelvin
19 printf (" \n Useful average temp after 25 years is \%
      .2 f degree K", thta)
```

Scilab code Exa 9.1.iii Initial Heat extraction

```
12 thetao=G*h21/2.0 // in degree K
13 tau=rhor*cr*h21*(1000**3)/(QbyA*rhow*cw) // in
      seconds
14 tau=tau/(2*60*60*24*365) // in years
15 theta=thetao*exp(-t/tau) // in degree Kelvin
16
17 Heatinitial=E0byA/(60*60*365*24*tau)/1000000 //
      intial heat extraction rate in MW /km<sup>2</sup>
18
19 Heat25=Heatinitial*exp(-t/tau) // heat extraction
      rate after 25 years in MW /km<sup>2</sup>
20
21 printf ("Initial Heat extraction rate is %.2 f MW/km
      <sup>2</sup>", Heatinitial)
22
23 printf(" \n Final Heat extraction rate is %.2 f MW/km
      ^2", Heat 25)
```

Scilab code Exa 9.2.i heat content

```
clc
// given data
w=0.6 // in km
h2=2.5 // in km
p=5/100.0 // porosity
rhor=3000.0 // density of sediment in kg/m^3
rc=750.0 // specific heat of sediment in J/kg-K
rhow=1000.0 // density of water in kg/m^3
cw=4200.0 // specific heat of water in J/kg-K
G=35.0 // temperature gradient in degree C/km
T1=45.0 // temp 1 in degree celsius
T0=12.0 // temp 2 in degree celsius
Q=0.75 // water extraction rate in m^3/sec-km^2
T2=T0+G*h2 // initial temp in degree celsius
```

Scilab code Exa 9.2.ii Time constant

```
1 clc
2 // given data
3 \text{ w=0.6} // \text{ in km}
4 h2=2.5 // in km
5 p=5/100.0 // porosity
6 rhor=3000.0 // density of sediment in kg/m^3
7 cr=750.0 // specific heat of sediment in J/kg-K
8 rhow=1000.0 // density of water in kg/m^3
9 cw=4200.0 // specific heat of water in J/kg-K
10 G=35.0 // temperature gradient in degree C/km
11 T1=45.0 // temp 1 in degree celsius
12 TO=12.0 // temp 2 in degree celsius
13 Q=0.75 // water extraction rate in m^3/\sec-km^2
14
15 tau = ((p*rhow*cw+(1-p)*rhor*cr)*w*1000**3/(Q*rhow*cw)
     /(60*60*24*365) // in years
16
17 printf ("Time constant is %.1f years", tau)
19 // the answer is different in textbook due to wrong
      calculations
```

Scilab code Exa 9.2.iii power per square km

```
1 clc
2 // given data
3 \text{ w=0.6} // \text{ in km}
4 h2=2.5 // in km
5 p=5/100.0 // porosity
6 rhor=3000.0 // density of sediment in kg/m<sup>3</sup>
7 cr=750.0 // specific heat of sediment in J/kg-K
8 rhow=1000.0 // density of water in kg/m^3
9 cw=4200.0 // specific heat of water in J/kg-K
10 G=35.0 // temperature gradient in degree C/km
11 T1=45.0 // temp 1 in degree celsius
12 T0=12.0 // temp 2 in degree celsius
13 Q=0.75 // water extraction rate in m^3/\sec-km^2
14 T2=T0+G*h2 // initial temp in degree celsius
15 t=25 // time in years
16 thetao=T2-T1 // in degree celsius
17
18 E0byA = (p*rhow*(1000**3)*cw+(1-p)*rhor*(1000**3)*cr)*
      w*thetao // in J/km^2
19
20 tau=((p*rhow*cw+(1-p)*rhor*cr)*w*1000**3/(Q*rhow*cw)
      ) // in seconds
21 Pperkm2=(E0byA)/(tau*1000000) // initial power per
      square km in MW/km<sup>2</sup>
22 printf("initial power per square km is %.2 f MW/km^2"
      , Pperkm2)
23 Power20=Pperkm2*exp(-25*60*60*24*365/tau) //
      per square km in MW/km<sup>2</sup> after 25 years
24 printf("\n power per square km in MW/km<sup>2</sup> after 25
      years is \%.2 \text{ f MW/km}^2", Power20)
25
26 // The answers are slightly different due to error
```

Ocean Energy

Scilab code Exa 10.1 annual average energy generation

```
1 clc
2 // given data
3 R=13.0 // in m
4 r=3.0 // in m
5 \text{ A=2.0} // \text{area in km}^2
6 ebbcycle=12.42 // in hours
7 effi=0.7 // efficiency of turbine
8 g=9.8 // gravitational acceleration in m/sec^2
9 rho=1025 // density of sea in kg/m^3
10 Powerpotential=0.225*A*(10**6)*((R**2)-(r**2))/10**6
       // power potential in MW
11
12 Powergenerated=effi*Powerpotential // in MW
13
14 printf ("The average power generated by plant is %.2
      f kWh", Powergenerated)
15
16 Energysingle=rho*A*(10**6)*g*((R**2)-(r**2))
      /(2.0*10**6) // Energy in single emptying in MJ
17
18 ebbyear = 364.0*24 ebbcycle
```

Scilab code Exa 10.2 phase velocity

```
1 clc
2 // given data
3 a=2.0/2 // in m
4 T=8.0 // in secs
5 rho=1025.0 // in kg/m^3
6 w=2*%pi/T // angular frequency in radian/sec
7 g=9.8 // gravitational acceleration in m/sec^2
9 Lamda=2*(%pi)*g/(w**2) // in m
10 printf("wavelength is \%.2 \, \mathrm{f} m", Lamda)
11 v=g/w // phase velocity in m/s
12 printf(" \n phase velocity is %.2f m/s",v)
13 P=rho*(g**2)*(a**2)*T/(8*\%pi*1000) // power in wave
      in kW/m
14 printf (" \n power in wave is \%.2 \text{ f kW/m}",P)
15 E=P*8.76 // average annual wave energy in mWh/m
16
17 printf ("\n average annual wave energy is %.1f mWh/m
     ",E)
```

Small Hydro Resources

Scilab code Exa 11.1 power available

```
1 clc
2 // given data
3 rho=996 // density in kg/m^3
4 effi=0.55 // oveall efficiency
5 Q=100/1000.0 // discharge in m^3/sec
6 h=30 // gross head in m
7 g=9.81 // gravitational acceleration in m/sec^2
8
9
10 Pnet=effi*rho*Q*g*h/1000 // net power in watts
11 printf("Power available is %.2 f kilowatts", Pnet)
```

Scilab code Exa 11.2 required flow rate

```
1 clc
2 // given data
3 pf=0.8 // power factor
4 Load=3 // load in kW
```

```
5 V=230 // voltage of kettle in V
6 P=500 // power of kettle in W
7 VA=pf*Load // VA load in kVA
8 C=4200 // specific heat of water in j/kg-K
9 T=45-20 // temperature difference in degree celsius
10
11 VAR=VA*1.6 // net required VAR rating thus 60% extra
      capacity
12
13 R=(V**2)/P // resistance by kettle in ohms
14
15 Po=7*(V**2)/R // power dissipation in W for 7
     elements
16
17 printf("7 elements are connected in parallel")
19 Q=Load*1000.0/(C*T) // flow rate in kg/sec
20
21 printf("\n The required flow rate is %.4f litre/sec"
     , Q)
```

Emerging Technologies

Scilab code Exa 12.1 required heat removal rate

```
1 clc
2 // given data
3 \text{ delG} = -39.59 // \text{ kJ/mol}
4 delH=-56.83 // change in enthalpy in kJ/mol
5 mdotmethanol=32.0 // in g/s
6 mdotoxygen=48.0 // in g/s
8 Wmax=166.3 // -delG in kJ
10 flowmethanol=mdotmethanol*100*3600/(Wmax*1000) // in
11 flowoxygen=mdotoxygen*100*3600/(Wmax*1000) // in kg/
12 printf ("The required flow rate of methanol is \%.2 f
     kg/h",flowmethanol)
13 printf ("\nThe required flow rate of oxygen is %.2 f
     kg/h",flowoxygen)
14 delQ=delH-delG // using eq 12.7
15
16 fuelrate=-delQ*19.24/mdotmethanol // in kcal/s
17
```

```
18 printf( "\nThe required heat removal rate is %.2 f
          kcal/s",fuelrate)
19
20 // The answer is wrong in textbook because of
    incorrect conversion from g/s to kg/h
```

Miscellaneous Non conventional Technologies

Scilab code Exa 13.1 Maximum Power output

```
1 clc
2 // given data
3 A=0.25 // area in m^2
4 d=0.5 // distance between electrodes in m
5 B=1.8 // flux density in Wb/m^2
6 u=1200.0 // average gas velocity in m/s
7 sigma=10.0 // mho/m
8
9 Vo=B*u*d // in Volts
10 Pmax=1*sigma*(u**2)*(B**2)*A*d/(4.0*10**6) // in MW
11
12 printf("Maximum Power output %.3 f MW", Pmax)
```

Financial and Economic Evaluation

Scilab code Exa 14.1 Future value of investment

```
1 clc
2 // given data
3 P=2000 // in rs
4 i=12 // interest rate in %
5 n=6 // time in years
6
7 F=P*(1+i/100.0)**n // Future value of investment
8
9 printf("The amount will be Rs %.0f",F)
```

Scilab code Exa 14.2 number of years

```
1 clc
2
3 // given data
4
```

```
5 P=10.0 // in lakh rs
6 i=12.25 // interest rate in %
7 F=20 // final amount in lakh rs
8
9 n=log(F/P)/log(1+i/100.0) // time in years
10
11 printf("The number of years is %.2 f years",n)
```

Scilab code Exa 14.3 initial value

```
1 clc
2 //given data
3 F=100000 // final amount in rs
4 i=6 // interest rate in %
5 n=10 // time in years
6
7 P=F*(1/(1+i/100.0)**n) // initial amount
8
9 printf("The initial value is Rs %.2f",P)
```

Scilab code Exa 14.4 Future amount

```
1 clc
2 //given data
3 A=500 // annual amount invested each year in rs
4 i=9 // interest rate in %
5 n=6 // time in years
6
7 F=A*(((1+i/100.0)**n)-1)/(i/100.0) // future amount in rs
8
9 printf("The Future amount will be Rs %.0f ",F)
```

Scilab code Exa 14.5 amount deposited each year

```
1 clc
2 //given data
3 F=12000 // Total amount in rs
4 i=9 // interest rate in %
5 n=4 // time in years
6
7 A=F*(i/100.0)/(((1+i/100.0)**n)-1) //
8
9 printf("The amount deposited each year should be Rs %i", A)
```

Scilab code Exa 14.6 Amount spent on replacement

```
1 clc
2 //given data
3 A=30000.0 // amount save each year in rs
4 i=10/100.0 // interest rate
5 n=8 // time in years
6
7 P=A*(((1+i)**n)-1)/(i*((1+i)**n)) // amount spent on replacement in rs
8 printf("Amount spent on replacement is Rs %i",P)
```

Scilab code Exa 14.7 final amount after 10 years

```
1 clc
2 //given data
```

```
3 i=12/100.0 // interest rate
4 n=10 // time in years
6 time=100.0 // days geyser is used in year
7 effi=0.9 // efficiency of geyser
8 w=100.0 // weight of water in kg
9 C=4.2 // heat capacity in kJ/kg-degree C
10 theta=60-15 // temperature difference in C
11 cost=4 // cost of electricity per kWh
12
13 Elec=(1/effi)*w*C*theta/3600.0 // electricity used
     in kWh/day
14
15
16
17 A=Elec*time*cost // annual saving in Rs
18
19 P=A*(((1+i)**n)-1)/(i*((1+i)**n)) // final amount in
       rs
20
21 printf("The final amount after 10 years is Rs %i",P)
22
23 // the answer is slightly different in textbook due
     to approximation while in scilab answers are
      precise
24 end
```

Scilab code Exa 14.8 unit cost of electricity production

```
1 clc
2 // given data
3
4 P=200000.0 //principal value in rs
5 i=10/100.0 // interest rate
6 n=25.0 // time in years
```

Scilab code Exa 14.9 present worth

```
1 clc
2 // given data
4 G=1 //gradient per period in lakh rs
5 i=12/100.0 // discount rate
6 n=5 // time in years
7 A1=10 // payment at end of 1st year in lakhs rs
8 loan=40 // load applied for in lakhs
9
10
11 AGin = (1/i) - 5*1/(-1+(1+i)**n) // gradient to uniform
      series conversion factor
12
13 Ag=A1+G*AGin // in lakhs Rs
14
15 Pg=Ag*(-1+(1+i)**n)/(i*(1+i)**n) // present worth in
      lakhs rs
```

Scilab code Exa 14.10 present worth of saving

```
clc
// given data

g=0.2 // annual gas price increase rate
i=10/100.0 // discount rate
n=15 // time in years
A1=350*8 // payment at end of 1st year in lakhs rs

Pgg=(A1/(i-g))*(1-((1+g)/(1+i))**n) // present worth in Rs

printf("The present worth of saving is Rs %.0f",Pgg)
```

Scilab code Exa 14.11 simple payback period

```
1 clc
2 // given data
3 Co=10000 // initial investment in rs
4 B=900.0 // net annual savings per year
5
```

```
6 nsp=Co/B // simple payback period
7
8 printf( "The simple payback period is %0.2f",nsp)
9 if nsp<20
10    printf( "\n proposal may be accepted")
11 else
12    printf( "\n proposal may not be accepted")
13 end</pre>
```

Scilab code Exa 14.12 payback period for projects

```
1 clc
3 // given data
5
7 ProjectA = [-2400,600,600,600,600,600]
8 ProjectB=[-2400,800,800,800,800,800]
9 ProjectC=[-2400,500,700,900,1100,1300]
10
11 ProjAcu=zeros(6) // cumulative cash flow for
      project A
12 ProjAcu(1)=ProjectA(1)
13 \text{ for } i = 2:6
14
15
       ProjAcu(i) = ProjectA(i) + ProjAcu(i-1)
16
17 \text{ end}
18
19 ProjBcu=zeros(6) // cumulative cash flow for project
20 ProjBcu(1)=ProjectB(1)
21 for i =2:6
22
```

```
ProjBcu(i)=ProjectB(i)+ProjBcu(i-1)
23
24
25 end
26
27 ProjCcu=zeros(6) // cumulative cash flow for project
28 ProjCcu(1)=ProjectC(1)
29 \text{ for } i = 2:6
30
31
       ProjCcu(i)=ProjectC(i)+ProjCcu(i-1)
32 end
33
34
35 printf("\tProject A\t\tProject B\t\tProject C")
36 printf("\nyear\tcurrent\tcummulative current
      cummulative
                     current cummulative ")
37 \text{ for } i = 2:7
38
39
       printf ("\n %i\t%i\t%.i\t\t %.i\t%.i\t\".i\t\".i
          t\%.i",(i-2),ProjectA(i-1),ProjAcu(i-1),
          ProjectB(i-1), ProjBcu(i-1), ProjectC(i-1),
          ProjCcu(i-1))
40 \, \text{end}
41
42
43 for i =1:6
44
       if ProjAcu(i) == 0
45
            PA=i-1
46
47
       else
48
       end
49 end
50
51 for i =1:6
52
       if ProjBcu(i)==0
53
54
            PB=i-1
       else
55
```

```
56
        end
57 end
58
59 \text{ for } i = 1:6
60
61
        if (ProjCcu(i) < 0 & ProjCcu(i+1) > 0)
62
             PC=i-ProjCcu(i)/ProjectC(i+1)-1
63
        else
64
       end
65 end
66
67 printf (" \n The payback period for project 1 is \%.2
      f \n The payback period for project 2 is \%.2 f \n
      The payback period for project 3 is \%.2 \, \mathrm{f}, PA, PB,
      PC)
```

Scilab code Exa 14.13 Net loss

```
1 clc
2 // given data
3
4
6 ProjAcu
     = [-2400.0, -1864.0, -1386.0, -959.0, -578.0, -238.0]
     // in Rs
7 ProjBcu=[-2400,-1686,-1048,-479.0,30,484] // in Rs
8 ProjCcu=[-2400,-1954,-1396,-755,-56.0,683] // in Rs
9
10 ProjAdis=[-2400,536,478,427,381,340] // in Rs
11 ProjBdis = [-2400,714,638,569,509.0,454] // in Rs
12 ProjCdis=[-2400,446,558,641,699,738.0] // in Rs
13
14 PA=0
15 PB=0
```

```
16 PC=0
17
18 for i =1:5
         if ((ProjAcu(i)<0) & (ProjAcu(i+1)>0))
19
20
            PA = (i+1) - ProjAcu(i) / ProjAdis(i+1) - 1
21
        end
22
23 end
24
25 printf("\nFor project A")
26 \text{ if } (PA == 0)
        printf( "\nNet loss, Thus should be rejected")
27
28 else:
        printf ("\n^{\%} .2 f years is payback period",PA)
29
30 \text{ end}
31
32 \text{ for } i = 1:5
33
        if ((ProjBcu(i)<0) & (ProjBcu(i+1)>0))
34
            PB=(i)-ProjBcu(i)/ProjBdis(i+1)-1
35
36
        else
37
        end
38 end
39
40
41 printf( "\n project B" )
42
43 if (PB==0)
        printf( "\nNet loss, Thus should be rejected"
45 else:
        printf ("\n^{\infty}.2 f years is payback period", PB)
46
47 end
48 \text{ for i } = 1:5
49
        if ((ProjCcu(i)<0) & (ProjCcu(i+1)>0))
50
            PC=(i)-ProjCcu(i)/ProjCdis(i+1)-1
51
52
        else
53
            end
```

```
54 end
55
56 printf( "\n\nFor project C")
57
58 if (PC==0)
59 printf( "\nNet loss, Thus should be rejected")
60 else
61 printf( "\n%.2 f years is payback period", PC)
62 end
```

Scilab code Exa 14.14 NPV of Projects

```
1 clc
2 // given data
4 i=12.0/100 // interest rate
5 n=5.0 // years
7 ProjectA = [-2400,600,600,600,600,600]
8 ProjectB=[-2400,800,800,800,800,800]
9 ProjectC = [-2400,500,700,900,1100,1300]
10
11
12 NPVA=ProjectA(1)+ProjectA(2)*(((1+i)**n) - 1)/(i*(1+
      i)**n)
13
14 printf( "\nNPV of Project A is %.i ", NPVA)
15
16 NPVB=ProjectB(1)+ProjectB(2)*(((1+i)**n) - 1)/(i*(1+\frac{1}{2})
      i)**n)
17
18 printf( "\nNPV of Project B is %.0f ", NPVB)
19
20 ProjectNPVc=0
                   // cumulative cash flow for project A
21 \text{ for } i = 1:5
```

Scilab code Exa 14.15 The IRR

```
1 clc
2 // given data
3 \text{ Co} = 20000.0 // \text{ cost in Rs}
4 B=3000.0 // annual benefit in rs
5 n=15.0 // time in years
6 i=15.0/100 // initial guess for rate
7 NPV=zeros(4)
9 NPV(1)=B*(((1+i)**n)-1)/(i*(1+i)**n)-Co
12 while NPV(x) < 0
13
       x = x + 1
14
       i = i - 0.01
      NPV(x) = B*(((1+i)**n)-1)/(i*(1+i)**n)-Co
15
16 end
17 \text{ for } z = 1:4
      printf ("\n %i\t\t \%.2 f\t
                                           \%.0\,\mathrm{f}\,\mathrm{f t} ",z
18
          0.15-((z-1)/100.0), NPV(z)
19
20 end
21 IRR=i+(i+0.01-i)/(NPV(x)+NPV(x-1)) // using equation
       14.28
```

Scilab code Exa 14.16 B minus C for projects

```
1 clc
2 // given data
4 i=12.0/100 // interest rate
5 ProjAdisB=[0,536.0,478,427,381,340] // discounted
      benefit for A
6 ProjAdisC=[2400.0,0,0,0,0,0] // discounted cost for
7 ProjBdisB=[0,714.0,638,569,509,454] // discounted
      benefit for B
8 ProjBdisC=[2400.0,0,0,0,0,0] // discounted cost for
9 ProjCdisB=[0,446.0,558,641,699,738] // discounted
      benefit for C
10 ProjCdisC=[2400.0,0,0,0,0,0] // discounted cost for
     \mathbf{C}
11
12 BCforA=sum(ProjAdisB)/sum(ProjAdisC) // B mius C
13 BCforB=sum(ProjBdisB)/sum(ProjBdisC) // B mius C
14 BCforC=sum(ProjCdisB)/sum(ProjCdisC) // B mius C
      ratio
15 printf("\nB - C for project A is \%.1 \, f", BCforA)
16 printf ("\nB - C for project B is \%.1 \, f", BCforB)
17 printf ("\nB - C for project C is \%.2 f", BCforC)
```

Scilab code Exa 14.17 Capital Recovery cost

```
1 clc
2 // given data
3 Co=12000.0 // cost in Rs
4 Ca=200.0 // annual maintainence in Rs
5 C12=3000.0 // replacement cost in 12th year
6 S=1000.0 // salvage value in rs
7 n=20.0 // time in years
8 i=11/100.0 // interest rate
9
10 Cnet=Co-S*(1/(1+i)**n)+Ca*((((1+i)**n)-1)/(i*(i+1)**n))+C12*(1/(1+i)**12)
11
12 CR=Cnet*(i*(1+i)**n)/(((1+i)**n)-1)
13
14 printf("The Capital Recovery cost is Rs %.0 f", CR)
```

Scilab code Exa 14.18 AE for machines

```
1 clc
2 // given data
3 i=10/100.0 // rate
4 Acost=90000 // cost of A in Rs
5 Bcost=75000 // cost of B in Rs
6 Acashfl=26000 // annual cash flow of A in Rs
7 Bcashfl=26000 // annual cash flow of B in Rs
8 nA=5 // useful life of A in years
9 nB=4 // useful life of B in years
10
11 NPVA=Acashfl*(((1+i)**nA) - 1)/(i*(1+i)**nA) - Acost // NPV for A
```

```
12 NPVB=Bcashfl*(((1+i)**nB) - 1)/(i*(1+i)**nB) - Bcost
      // NPV for B
13
14 printf ("\nThe NPV for A is Rs \%.0 \, f", NPVA)
15
16 printf( "\nThe NPV for B is Rs %.0f", NPVB)
17
18 AEA = i * NPVA / (1 - (1 + i) * * (-nA))
19
20
21 AEB=i*NPVB/(1-(1+i)**(-nB))
22
23 printf("\nThe AE for A is Rs \%.0 \,\mathrm{f}", AEA)
24
25 printf("\nThe AE for B is Rs %.0f", AEB)
26
27 printf ("\nThe machine B will have higher
      profitability")
```

Scilab code Exa 14.19 NPV of dryer

```
1 clc
2 // given data
3
4 Co=120000.0 // cost in Rs
5 N=5 // useful life
6 T=40/100.0 // tax rate
7 i=9/100.0 // interest rate
8 Earning=[33000.0,35000.0,37000.0,39000,41000.0]
9 Depreciate=Co/N // depreciation in Rs
10 pretax=zeros(5)
11 discshfl=zeros(5)
12 for x = 2:6
13    pretax=Earning(x-1)-Depreciate
14    tax=0.4*pretax
```

```
15     ernng=pretax-0.4*pretax
16     cashf=ernng+Depreciate
17     discshfl(x-1)=cashf/(1+i)**(x-1)
18     end
19     netdiscntincm=sum(discshfl) // net discount income
        in Rs
20     NPV=netdiscntincm-Co // NPV
21     printf( "NPV of dryer is Rs %.2 f", NPV)
22
23     // The answer in the book is wrong as the value of
        discounted cashflow is incorrect
```

Scilab code Exa 14.20 The Book value

```
1 clc
2 // given data
3
4 Co=300000 // cost in Rs
5 S=20000.0 // salvage value in Rs
6 N=15 // useful life
7
8 D=(Co-S)/N // Depreciation
9 BV=Co // Book Value
10 for i =1:N
11     BV=BV-D;
12     printf(" The Book value at the end of %i th year is Rs %.2 f\n",i,BV)
13 end
```