ताम की मिश्रधातुएँ

मिश्रयातु	संघटन	उपयोग
घंटा-घातु	Cu-80% तथा	घॅटियाँ तथा घड़ियाल के
(Bell Metal)	Sn-20%	निर्माण में।
गन मेटल	Cu-88%, Sn-10%	तोप, साँचे एवं बंदूक सहित
(Gun Metal)	तथा Zn-2%	अन्य आग्नेयास्त्र बनाने में
जर्मन सिल्वर	Cu-50%, Zn-35%	वर्तन बनाने में।
(German Silver)		
पीतल (Brass)	Cu-70%	बर्तन तथा कारतूस के
, ,	Zn-30%	निर्माण में
काँसा (Bronze)	Cu-88%	बर्तन, मृर्तियों एवं सिक्का
	Sn-12%	बनाने में।

Important facts

- ताँबा को संक्रमण तत्त्व और उत्कृष्ट धातु कहते हैं।
- आदि मानव ने सबसे पहले ताँबा-धातु का उपयोग किया था।
- फफोदार ताँवा को अशुद्ध ताँवा कहा जाता है।
- टिन की अधिक मात्रा मिले काँसा को श्वेत काँसा (White Bronze) कहा जाता है।
- रोल्ड-गोल्ड ताँबे की एक मिश्रघातु है, जिसका उपयोग सस्ते आमूषणों में होता है।

कैल्शियम (₂₀Ca⁴⁰)—

- इसका निष्कर्षण द्रवित कैल्सियम क्लोराइड एवं कैल्शियम फ्लोराइड मिश्रण के वैद्युत् अपघटन द्वारा किया जाता है।
 - प्रकृति में यह मुक्त अवस्था में नहीं पाया जाता है।
 - इसका संकेत Ca, परमाणु संख्या 20, वर्ग IIA, आवर्त IV है।
 - -चाँदी के समान चमकदार कैल्शियम धातु तत्त्व है।
 - तत्व के रूप में दूध में इसका प्रतिरात सर्वाधिक होता है।
 - इसका प्रयोग उच्च निर्वात प्राप्त करने में किया जाता है।
- एल्कोहल में सूक्ष्म मात्रा में उपस्थित जल को हटाने में।
- पेट्रोल से सूक्ष्म मात्रा में स्थिर सल्फर को पृथक् करने में।

कैल्सियम के यौगिक (Compounds of Calcium)—

- कैल्सियम हाइड्रॉक्साइड (Ca(OH)2] 1.
- कैत्सियम क्लोराइड (CaCl₂) 2. 3.
- कैल्सियम ऑक्साइड (CaO) कैल्सियम कार्बाइड (CaC₂) 4.
- जिप्सम [CaSO₄.2H₂O] 5.
- ٠6. प्लास्टर ऑफ पेरिस [(ČaSO₄)₂.H₂O)]
- कैल्सियम कार्बोनेट (CaCO3) 7.
- 8. कैल्सियम फॉस्फेट [Ca2(PO4)2] इत्यादि। सुद्ध अल्कोहल की प्राप्ति में जलशोपक के रूप में इसका प्रयोग किया जाता है।
- घातुओं से ऑक्सीजन, नाइट्रोजन, गंधक इत्यादि अशुद्धियों को दूर करने के साथ ही बेरिलियम, थोरियम एवं क्रोमियम ऑक्साइडों के अपचयन में कैल्सियम का उपयोग किया जाता है।
- इसी प्रकार ढिलत घातु से वायु के शोषण पेट्रोलियम से गंधक को दूर करने तथा कैल्सियम यौगिकों के निर्माण आदि के अलावा अनेक औषधिक, औद्योगिक एवं वाणिन्यिक के लिए कैल्सियम का प्रयोग किया जाता है।

Important facts

- कैल्सियम दूध (Milk) में सर्वाधिक मात्रा में पाया जाता है।
- कैल्सियम ऑक्साइड को क्यिक लाइम (Quick lime) तथा कैल्सियम हाइड्रॉक्साइड को खुझा चूना भी कहा जाता है।

- कैल्सियम साइनामाइड को नाइट्रोलिन तथा कैल्सियम हाइड्राइड को हाइद्वोलिथ कहते हैं।
- कैल्मियम के यौगिक 3.5% की मात्रा में पृथ्वी की परत में उपस्थित है।
- हिंदहर्यों, अंडों के छिलके एवं शंख में भी कैल्सियम के अवयव **उपस्थित** हैं।

एलुमिनियम (AI)-

- भूपपंटी में एलुमिनियम धातु काफी प्रयुर मात्रा में पाया जाता है।
- सबसे पहले 1827 ई० में एलुमिनियम क्लोग्रइड से सोडियम की अभिक्रिया कराकर एलुमिनियम का निष्कर्षण किया गया।
- चाँदी के समान चमकीलो एलुमिनियम एक यातु तत्व है।
- एलुमिनियम का निष्कर्षण बॉक्साइट अयस्क से विद्युत अपघटन विधि द्वारा प्राप्त किया जाता है।
- बॉक्साइट में अनेक अशुद्धियाँ होती है जिसे वायर प्रक्रम द्वारा अलग किया जाता है जिसके बाद एलुमिना प्राप्त होता है।
- स्टेनलेस स्टील-इसका उपयोग रसोई बर्तन बनाने में किया जाता है क्योंकि यह धातु जंग प्रतिरोधक होता है। इस धातु में 18% तक क्रोमियम और निकेल होता है।
- कुछ ऐसे धातु हैं जो अमलगम नहीं बनाते हैं, जैसे—लोहा, प्लैटनम, निकेल, टंगस्टन तथा कोवाल्ट।
- पारा का मिश्रधातु अमलगम कहलाता है।
- इस्पात को उच्च ताप पर गर्म करके धीरे-धीरे ठंडा करके उसकी कठोरता को कम करने की क्रिया एनीलिंग कहलाती है।

सोडियम (sodium)—

- संकेत-Na, परमाणु संख्या-11, परमाणु भार-22.99 इलेक्ट्रॉनिक विन्यास –1s² 2s² 2p⁶3s¹
- आवर्त-सारणी में स्थान (Position in Periodic Table)-वर्ग-IA, आवर्त्त-तृतीय, ब्लॉक-s-ब्लॉक।
- सोडियम का निष्कर्षण डाउन्स विधि से किया जाता है।
- यह विद्युत्-अपघटन विधि है, जिसमें NaCl, KCl तथा KF के मिश्रण को संगलित करके सोडियम प्राप्त किया जाता है।
- सोडियम प्राचीन काल से ही ज्ञात तत्त्व है।
- प्रकृति में यह स्वतंत्र अवस्था में नहीं पाया जाता है, बल्कि इसके यौगिक ही उपलब्ध है।
- इसका कारण इसकी अतिक्रियाशीलता है।
- संयुक्त अवस्था में यह चिली-शोरा, बोरेक्स, समुद्र एवं झीलों के जल और सेंधा नमक में पाया जाता है।
- इसके अलावा यह पादपों तथा जानवरों के शरीर में भी मिलता है।
- इस धात्विक तत्त्व की खोज हम्फ्री डेवी ने 1807 ई॰ में की।
- इसके गलनांक, क्वथनांक तथा आपेक्षिक भनत्व क्रमशः 97.5°C, 882°C तथा 0.97 होते हैं।
- यह आघातवर्ध्य तथा विद्युत् की सुचालक धातु है।
- सामान्य ताप पर इसके ताप खींचे जा सकते हैं। सोडियम जल से क्रिया करके हाइड्रोजन गैस मुक्त करता है।
- इसकी अतिक्रियाशीलता के कारण इसे मिट्टी के तेल या अक्रिय हाइड्रोकार्बन में डुबोकर रखा जाता है।
- यह पारे के साथ अमलगम बनाता है।
- यह अमोनिया में विलेय है।
 - सोडियम का उपयोग (Na-Hg) का सरल अमलगम बनाने में, अपचायक के रूप में, कृत्रिम रबर के बहुलीकरण में, उत्प्रेरक के रूप में, सोडियम परऑक्साइड (Na₂O₂), सोडामाइड (2NaNH₂), सोडियम सायनाइड (NaCN) जैसे बहुत-से यौगिकों के बनाने में सोडियम लौ, शोतलकों तथा न्यूक्लियर रिएक्टरों में होता है।

विशिष्ट तथ्य

सोडियम हाइड्रॉक्साइड (NaOH) को कॉस्टिक सोडा (Caustic Soda) या दाहक सोडा कहते हैं।

- सोडियम कार्बोनेट Na₂CO₃ को धोवन या वारिंग सोडा भी कहते हैं।
- सोडियम बाइकार्बोनेट NalनेCO3 को ग्लोबर साल्ट (Glober's Salt) कहा जाता है।
- सोडियम क्लोराइड (NaCl) को साधारण नमक (Table Salt) तथा सोडियम नाइट्रेट को चिली साल्टपीटर कहा जाता है।
- भोडियम थायोसल्फेट Na₂S₂O₃ को हाइपो (Hypo) भी कहा जाता है।
- सोडियम टेट्राबोरेट डेकाहाइड्रेट ($Na_2B_4O_7.10H_2O$) सुहागा या बोरेक्स (Borex) कहलाता है।
- सोडियम हेक्सामेटाफॉस्फेट [Na₃(PO₃)₃] को कैल्गेन (Calgen) कहा जाता है।

कहा जाता है। सोडियम के यौगिक (Compounds of Sodium)—

- सोडियम कार्बोनेट (Na₂CO₃.10H₂O)
- 2. सोडियम हाइड्रॉक्साइड (NaOH)
- सोडियम बाइकार्बोनेट (NaHCO₃)
- 4. ग्लोबर साल्ट (Na₂SO₄.10H₂O)
- सोडियम नाइट्रेट (Sodium Nitrate)
- 6. सोहियम परऑक्साइड (Na2O2)
- सोडियम क्लोराइड NaCl)
- सोडियम थायोसल्फेट (Na₂S₂O₃.5H₂O)
- 9. बोरेक्स (Na₂B₄O₇.10H₂O) इत्यादि।

चाँदी (Silver)—

- संकेत-Ag, परमाणु-संख्या-47, परमाणु भार-107.87
- इले क्ट्रॉनिक विन्यास 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰5s¹ आवर्त्त-सारणी में स्थान (Position in Periodic Table)-वर्ग-IB, आवर्त्त-पाँचवाँ, ब्लॉक-d-ब्लॉक
 - इसका निष्कर्षण अर्जेण्टाइट अयस्क से किया जाता है।
- इसमें मैंक आर्थर सायनाइड विधि का प्रयोग किया जाता है।
- यह प्रकृति में मुक्त अवस्था में पाई जाती है।
 - मुक्तावस्था में चाँदी मैक्सिको, कनाडा तथा दक्षिणी अमेरिका के कुछ भागों सहित भारत में कोलार तथा हट्टी (मैसूर) एवं राजस्थान के सीसे/जस्ते की जवार खानों में भी पाई जाती है।
- चाँदी एक चमकदार नीलापन लिये श्वेत धातु है, जो बहुत अधिक
- आधातवर्ध्य एवं तन्य होती है। इसके इन्हीं गुणों के कारण इसका उपयोग आभूषण के निर्माण में होता है।
 - इसके आपेक्षिक घनत्व, गलनांक और क्वथनांक क्रमशः 10.47, 960.7°C तथा 1954.9°C होते हैं।
- यह कष्मा और विद्युत् का सुचालक है।
- द्रवित अवस्था में अपने आयतन के 20-25 गुनी ऑक्सीजन का अवशोषण तथा पुन: ठंढी एवं ठोस अवस्था में इन ऑक्सीजनों को छोड़ने की क्षमता इसके (चाँदी) पास है।
 - चाँदी का यह गुण चाँदी का उद्गवनन (Spitting of Silver)
 - कहलाता है।
- चाँदी को खुली वायु में छोड़ देने पर इसके ऊपर Ag₂S की एक पतली परत बन जाती है, जिसके कारण यह काला अथवा धूमिल हो
 - यह क्षार, हाइड्रोक्लोरिक अम्ल या तनु सल्फ्यूरिक अम्ल से कोई अभिक्रिया नहीं करती है, लेकिन सान्द्र सल्फ्यूरिक अम्ल से अभिक्रिया
 - करके SO₂ गैस बनाती है। चौंदी का उपयोग आभूषणों तथा सिक्का बनाने में, विद्युत्लेपन एवं दर्पण की कलई करने में तथा धातुसंकर (मिश्रधातु) बनाने में किया
- जाता है।

 चाँदी के वर्क (पतली पन्नी) का प्रयोग औषधि-निर्मण में तथा चाँदी के लवण का प्रयोग फोटोग्राफ तथा फिल्म-निर्माण में किया जाता है।
 चाँदी के प्रमुख यौगिक (Important Compounds of Silver)—
 - 1. सिल्वर ऑक्साइड (Ag₂O)
 - 2. सिल्वर परऑक्साइड (Ág₂O₂)

- लुनर कास्टिक (AgNO₃)
- 4. सिल्यर हेलाइड (AgBr, AgI)
- 5. सिल्गर सल्फाइड (Ag₂S)
- 6. सिल्यर क्लोग्रइड (AgCl)
- सिल्वर सल्फंट (AgoSO₄) इत्यादि।
 सिल्वर क्लोगइड को होने सिल्वर (Horn Silver) कहा जाता है।
- कृत्रिम चर्मा कराने में सिल्बर आयोडाइड (Agl₂) का प्रयोग किया
- मतदाताओं की अंगुली पर निशान लगाने वाली स्याडी बनाने में सिल्वर नाइट्रेट (Silver Nitrate) का प्रयोग किया जाता है।

सोना (Gold)—

- संकेत-Au, परमाणु-संख्या-79, परमाणु-भार-197
 इलेक्ट्रॉनिक विन्याम 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰4f¹⁴5s²5p⁶5d¹⁰6s¹
- आवर्त-सारणी में स्थान (Position in Periodic Table)—
 वर्ग-IB, आवर्त-छठा, स्लॉक-d-स्लॉक
- सोना का निष्कर्षण मुख्यतः केल्वेराइट और सिल्वेनाइट अयस्क से होता है।
- सोना मुक्त और संयुक्त दोनों ही अवस्थाओं में प्राप्त होता है।
- प्रकृति में यह प्राय: क्वार्टज़ों (Quartz) के रूप में पाया जाता है।
- क्वार्टर्ज् में स्वर्ण एवं रजत के मिश्रण अथवा इनकी मिश्रधातु उपस्थित रहती है।
- स्वर्णमय चट्यनों से होकर बहने वाली निदयों के स्वर्णमयों जलोढ़ रेत के अलावा यह कॉपर सल्फाइड, बिस्मय ओराइट (AuBi) तया केल्वेराइट (AuTe) आदि खनिज अयस्कों में पाया जाता है।
- विश्व में मुख्य रूप से दक्षिणी अफ्रीका (50%), अमेरिका, कनाडा, रूस एवं ऑस्ट्रेलिया के खदानों में सोना पाया जाता है।
- संसार के स्वर्ण-उत्पादन का लगभग 2% का उत्पादन भारत में किया जाता है।
 - मैसूर की कोलार खानों में (99.97%) तथा अल्प-मात्रा में यह जबलपुर एवं सिक्किम में भी पाया जाता है।
- सोना एक कोमल, आघातवर्घ्य, तन्य, चमकदार एवं पीले रंग की घात है।
- यह विद्युत् और ऊष्पा का सुचालक होता है।
- सापेक्षतः स्वर्ण की कप्माचालकता रजत की आधी होती है।
- यह एक भारी धातु है, जिसके गलनांक 1063°C, क्वथनांक क्व 2600°C तथा विशिष्ट घनत्व 19.3 होते हैं।
- सोना वायु तथा शार से कोई अभिक्रिया नहीं करता है अर्थात् वायु
 तथा ऑक्सीजन के साथ उच्च ताप पर भी इसके तेज (चमक) में कोई मलीनता नहीं आती है।
- यह एकमात्र ऐसी उत्कृष्ट धातु है, जो सामान्यतया अम्ल द्वारा अप्रमावित रहती है, किन्तु अम्लराज (Aqua Regia) में मुलकर यह क्लोगे-ओरिक अम्ल (H₃AuCl₄) बनाता है।
- सोना का उपयोग मुद्रा तथा आभूषण बनाने में, स्वर्ण-विद्युत्लेपन तथा स्वर्ण-पत्र चढाने में किया जाता है।
- कोलॉयडी स्वर्ण काँच एवं चीनी उद्योग में प्रयुक्त होता है।
- स्वर्ण की पतली पिन्नयों के प्रयोग छपाई तथा औषधियों में किए जाते हैं।
- स्वर्ण को कठोर बनाने के लिए कॉपर मिलाया जाता है।
- ानारोल्ड-गोल्ड सोना का कृत्रिम रूप है।
- इसमें 90% Cu और 10% Al होते हैं।
- यह देखने में सोना-जैसा प्रतीत होता है।
- इसका उपयोग आभूषण बनाने में होता है।

सोने की शुद्धता (Purity of Gold)—

- सोने की शुद्धता की माप कैरेट (Carate) में की जाती है।
- शुद्ध सोना 24 कैरेट का होता है।
- 22 कैरेट के सोना में 22 भाग सोना तथा 2 भाग कॉपर मिला होता है।

- इसी प्रकार 20 कैरेट में 20 भाग सोना तथा 4 भाग कॉपर भिला होता है।
- सर्प-विषयोधी सुई (Antidote for Snake Poisoning) बनाने में ऑरिक क्लोराइड का प्रयोग किया जाता है।

पारा (Mercury)-

संकेत-Hg, परमाणु संख्या-80, परमाणु-भार-200.59 इलेक्ट्रॉनिक विन्यास -

 $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4l^{14}5s^24p^65d^{10}6s^2$

आवर्त-सारणी में स्थान (Position in Periodic Table)-वर्ग-IIB, आवर्त-छठा, ब्लॉक-d-ब्लॉक।

पारा का निष्कर्षण सिनेबार (HqS) अयस्क से किया जाता है।

- प्रकृति में पारा मुक्त अवस्था में चट्टानों में छोटी-छोटी गोलियों के रूप में पाया जाता है।
- यह मुख्यतया अमेरिका, चीन, स्पेन, रूस, इटली, आदि देशों में पाया
- पारा चमकदार चाँदी के समान सफेद एक धातु है, जो साधारण ताप पर द्रव-अवस्था में रहता है।
 - यह सबसे भारी द्रव है, जिसका आपेक्षिक घनत्व 13.6 है।
 - पारा -39°C पर जमता है तथा 359°C पर उबलता है।

यह विद्युत् तथा कष्मा का सुचालक है।

साधारण ताप पर शुष्क एवं आई दोनों ही स्थितियों में लगभग अक्रियाशील यह धातु (पारा) 300°C पर गर्म होकर और घीरे-घीरे ऑक्सीकृत होकर मरक्यूरिक ऑक्साइड बनाता है।

अस्थायी होने के कारण मरक्यूरिक ऑक्साइड पुन: पारा में टूट जाता है।

- घातुओं से अभिक्रिया करके यह मिश्रधात के रूप में अमलगम का निर्माण करता है।
- पारा पर जल और क्षार का कोई प्रभाव नहीं पड़ता है।

यह तनु तथा सान्द्र HNO3 से अभिक्रिया करता है। यह अम्लराज से घुलकर मरक्यूरिक क्लोराइड बनाता है।

यह गंधक से अभिक्रिया कर मरक्यूरिक सल्फाइड (HgS) तथा क्लोरीन से अभिक्रिया कर मरक्यूरिक क्लोराइड (HgCl2) बनाता है।

पारा का उपयोग बैरोमीटर, धर्मामीटर एवं अन्य यंत्रों और उपकरणों के निर्माण में किया जाता है।

धातुओं के अमलगम बनाने में तथा कास्टिक सोडा के निर्माण में इसका उपयोग किया जाता है।

इन सभी के अतिरिक्त पारे का उपयोग सोना और चाँदी के निष्कर्षण, जल में विलेय गैसों के एकीकरण तथा लैंपों के निर्माणय में किया जाता है।

सोडियम एवं ऐलुमिनियम के अमलगम का प्रयोग जल की उपस्थिति में ऑक्सीकारक के रूप में किया जाता है, जबकि कॉपर, जस्ता, रजत, स्वर्ण और कैडमियम के अमलगम का प्रयोग दंतसाजी में किया जाता है।

इसी प्रकार टिन के अमलगम का प्रयोग दर्पण बनाने में किया 🥶 जाता है।

पोर्टेशियम (Potassium)-

संकेत-К, परमाणु-संख्या-19, परमाणु-भार-39.10

इलेक्ट्रॉनिक विन्यास-1s²2s²2p⁶3s²3p⁶4s¹

आवर्त-सारणी में स्थान (Position in Periodic Table)— वर्ग-IA, आवर्त-चतुर्थ, ब्लॉक-s-ब्लॉक।

पोटैशियम का निष्कर्षण पोटैशियम हाइड्रॉक्साइड (KOH) के विद्युत्-विच्छेदन (Electrolysis) द्वारा होता है।

सोडियम के समान अति सिक्रिय होने के कारण यह स्वतंत्र अवस्था में नहीं पाया जाता है।

संयुक्त अवस्था में ही प्रकृति में उपलब्ध है।

पोर्टेशियम सोडियम के समान चाँदी-जैसा श्वेत चमकदार मुलायम

इसके आपेक्षिक घनत्व-0.86, गलनांक-62.04°C तथा क्वथनांक 762°C है।

- उच्च ताप पर यह हरे रंग का वाण्य देता है।
- शुद्ध और शुष्क वायु से प्रभावहीन अथवा निष्क्रिय यह धात सामान्य वाय से दुष्प्रभावित होकर अपनी चमक खो देती है।
- सोडियम के समान गुण रहते हुए भी यह सोडियम से ज्यादा
- सोडियम के साथ यह पारे के सदृश द्रवित मिश्रधातु बनाता है, जिसका उपयोग उच्च तापमापी धर्मामीटर में किया जाता है।
 - इसके अलाया इसका प्रकाश-सेलों में व्यवहार किया जाता है।

पोटेशियम के यौगिक (Compounds of Potassium)—

- पोटैशियम सल्फेट (K2SO4) पोटैशियम नाइट्राइट (KNO2) 2.
- पोटैशियम नाइट्रेट [(नाइटर शोरा)KNO2] 3.
- पोटैशियम हेलाइड (KCI, KBr) पोटैशियम क्लोरेट (KCIO₃) 4.
- 5.
- पोटैशियम आक्साइड (K2Ŏ) 6.
- पोटैशियम हाइड्राक्साइड (KOH) 7.
- पोटैशियम डाइऑक्साइड (KO₂) आदि। 8.
- औषधि, बारूद एवं उर्वरक के निर्माण में, प्रशीतन में तथा प्रयोगशाला में इसका उपयोग होता है।

पोटैशियम सायनाइड (KCN)

- पोटैशियम सायनाइड (KCN) प्राणघातक और सबसे तीक्ष्ण हर है, जिसके प्रयोग से अल्प समय में ही मृत्यु हो जाती है।
 - यह श्वेत चूर्ण-जैसा होता हे, जो जल में विलेय है।
- इसका गलनांक 634.5°C होता है।
- इसका उपयोग सोना और चाँदी के निष्कर्षण तथा विद्युत लेपन में किया जाता है।

दुर्लभ घातुएँ (Rare Earth Metals)—

- आवर्त-सारणी के अंतर्गत बेरियम और हैफनियम के बीच के वे 5 तत्त्व, जिनके परमाणु भार भिन्न-भिन्न होते हैं, को पहले दुर्लम मदा-तत्त्व कहा गया।
 - मेंडलीफ के अनुसार इनका स्थान निर्धारित करना कठिन था।
- बाद में इन्हें लैंथेनम सादृश्य गुणों के कारण लैंथेनाइड्स कहा गया और इन्हें अलग से स्थानापन किया गया।
- दुर्लभ धातुएँ प्रकृति में सामान्यतया निर्बल सान्द्रण में पाई जाती है तथापि ये कई खनिजों के मिश्रण के रूप में उच्च सान्द्रण पर भी
- अपने सामान्य गुणों के कारण दुर्लभ मुदाओं का प्रयोग काँच, सेग्रिक प्रकाश-व्यवस्था एवं धात्विक अधिकर्मकों में किया जाता
- मृदा-धातु (लैथेनम) का प्रयोग अशुद्ध तेलों (पेट्रोलियम) के भंजन में उत्प्रेरक के रूप में किया जाता है।
- इसी प्रकार वाई०ए०जी० का प्रयोग ज्वेलरी उद्योग में नकली हीरों के लिए किया जाता है।. ,
- वर्तमान में दुर्लभ मुदा-धातुएँ भूगर्भशास्त्रियों, खगौलवेत्ताओं, ब्रह्माण्डवेताओं के आकर्षण बिंदु बन गई है।

कुछ प्रमुख यौगिकों के गुण और उपयोग (Properties and Uses of Some Important Compounds)

- ज़िक सल्फेट ्या श्वेत कसीस (White Vitriol)—इसे सफेर थोथा भी कहते हैं। इसका रासायनिक सूत्र ZnSO4.7H2O होता है। इसका उपयोग लिथोपोन के निर्माण में तथा कैलिकों छँपाई एवं रंगाई में होता है।
- फेरस सल्फेट (Ferrous Sulphate)—फेरस सल्फेट (FeSO4. 7H2O) को हरा कसीस या ग्रीन भिट्रिऑल (Green Vitriol) भी

कहते हैं। यह हल्के रंग का उत्फुल्ल रवा होता है। इसका उपयोग स्याही बनाने में, मोहर लवण (Mohr's Salt) बनाने में एवं रंग-उद्योग में होता है।...

खोरेक्स (Borex)-सोडियम टेटाबोरेट डेकाहाइइट (Na2B4O2. 10H2O) को सुहागा या बोरेक्स कहते हैं। यह श्वेत क्रिस्टलीय ठोस है, जो जल में विलेय है। काँच, सायुन एवं मोगवती के उद्योग में, जल को मृदा करने में, चमड़ा उद्योग में तथा कागज एवं सेरामिक की वस्तुओं पर ग्लेज करने में इसका उपयोग होता है।

फिटकरी (Alum)—इसका रासायनिक सूत्र K₂SO₄Al₂(SO₄)₃. 24H₂O होता है। इसमें 24 रवा-जल होते हैं। इसका उपयोग कठोर जल को मृदु बनाने में तथा औषधि-निर्माण में होता है।

सफेदा (White Lead)—यह धारीय लेड कार्बोनेट है। इसका 5. आण्विक सूत्र [2PbCO₃.Pb(OH₂)] होता है। इसका उपयोग महत्त्वपूर्ण श्वेत पेंट बनाने में किया जाता है।

प्लास्टर ऑफ पेरिस (Plaster of Paris)— अर्द्धजलयोजित (Semihydrate) कैल्सियम सल्फेट को सामान्यत: 'प्लास्टर ऑफ पेरिस' कहते हैं। यह जिप्सम (CaSO4.2H2O) को 120°C तक गर्म करके बनाया जाता है।

> $2 (CaSO_4.2H_2O) \xrightarrow{\Delta} (CaSO_4)_2.H_2O + 3 H_2O)$ मृतियाँ, खिलौने, ढलाई के साँचे, ब्लैकबोर्ड, चॉक, अग्निरोधी पदार्थ बनाने में तथा हड्डी टूट जाने पर प्लास्टर ऑफ पेरिस लगाने में इसका उपयोग होता है।

जिप्सम (Zypsum)—डाइहाइड्रेट केलिसंयम सल्फेट 7. (CaSO4.2H2O) को जिप्सम कहते हैं। यह प्रकृति में अधिक मात्रा में पाया जाता है। इसे एलाबास्टर अथवा सीलेनाइट भी कहा जाता है। जल में विलेयता 40°C तापमान तक बढ़ाने पर बढ़ती है, इसके बाद और ताप बढ़ाने पर घटती है। यह प्लास्टर ऑफ पेरिस के निर्माण में काम आता है।

ब्लीचिंग पाउडर (Bleaching Powder)—ब्लीचिंग पाउडर का 8. रासायनिक सूत्र CaOCl2 है। इसे विरंजक चूर्ण भी कहते हैं। बुझे हुए चूने पर क्लोरीन गैस प्रवाहित करने पर यह प्राप्त होता हैं इसका उपयोग सूती वस्त्र और कागज की लुगदी आदि के रंग उड़ाने में, पीने के जल को शुद्ध करने में तथा कार्बनिक रसायन में उपचायक के रूप में होता है।

बेकिंग सोडा (Baking Soda)—सोडियम-हाइड्रोजन कार्बोनेट 9. (NaHCO3) का दूसरा नाम बेकिंग सोडा है। सोडियम कार्योनेट का उपयोग बेकिंग पाउडरों को बनाने में, केक, पावरोटी आदि के बनाने

सिन्दर (Red lead)—यह ट्राइप्लिम्बक टेट्रा ऑक्साइड (Pb3O4) 10. है। इसका रंग लाल होता है। इसका उपयोग काँच उद्योग, लाल पेँट एवं दियासलाई के निर्माण में होता है।

वाशिंग सोडा (Washing Soda) - या धोवन सोडा 11. (Na2CO2.10H2O)-

यह रैंह अथवा ट्रोनॉ के रूप में मिट्टियों में पाया जाता है। यह हवा में कठोर अनाई लवण के रवेत चूर्ण के रूप में है।

इसके इस गुण को उत्फुल्लन (Eflorescence) कहते हैं।

यह एक क्षारीय यौगिक है, जिसका उत्पादन मुख्यत: साल्वे विधि से तथा विद्युत्-अपघटन विधि से किया जाता है।

इसका उपयोग घरेलू कार्यों में सफाई के लिए, साबुन, काँच, कागज और दाहक सोडा के प्रतिकारक के रूप में प्रयुक्त होता है।

कास्टिक सोडा (Caustic Soda) या दाहक सोडा (NaOH)-सोडा लाइम विधि से विद्युत्-अपघटन द्वारा बनाया जाने वाला यह सोडा अति संक्षारक, श्वेत आर्द्रताग्राही टोस, SO2 एवं CO2 का अवशोषक तथा जल एवं ऐल्कोहॉल में विलेय, किनतु ईचर में अविलेय है। अम्लों को उदासीन करने के साथ-साथ यह लवण देता है।

अमोनिया लवणों से यह अमोनिया को मुक्त करता है।

प्रयोगशाला में अभिकर्मक के रूप में, साबुन, कागज एवं कृत्रिम रेशे के निर्माण में तथा बॉक्साइट के शुद्धिकरण में सोडियम तथा पेट्रोलियम पदार्थों के शुद्धिकरण एवं विरंजन में इसका उपयोग होता है।

धातु विज्ञान : महत्वपूर्ण तथ्य एक नजर में

- यह धातु जो कप्पा का सर्वाधिक चालक होती है चाँदी
- धातुओं में सर्वाधिक कम कथ्मा चालक है फीमा

धात्र्णं विद्युततः होती हैं — धनात्पक

भात्एं इलेक्ट्रॉन प्रदान करती हैं, अत: ये होती हैं — अच्छे अयकारक

अधातुएँ सामान्यतया होती हैं, अच्छे — ऑक्सोन्हारक धातुओं के ऑक्साइड होते हैं — भाग्यिक, Al, Zo तथा Pb पातु का ऑक्साइड उभयपूर्णी होता है। NO, N₂O, H₂O उदायीन होता है।

अधातुओं के ऑक्साइड होते हैं — प्राण्तिक वह धातु जिसकी क्रियाशीलता सर्वाधिक पायी जाती है —पोर्टशियम

> धात एवं अधात में अंतर (Distinction between Metals & Non-Metals)

धातुएं (Metals)	अयानुएं (Non-Metals)
• धात्विक चमक पायी जाती है	 कोई चमक नहीं। अपवाद-ग्रेफाइट आयोडीन आदि।
 कष्मा एवं विद्युत की सुचालक (अपवाद-सीसा)। 	• कप्पा तथा विद्युत की कुचालक।
अाघातवर्त्य (Malleable) एवं	 आधातवर्त्य या तन्य नहीं
तन्य (Ductile)।	(Elastic sulphur आघातवर्त्य होती हैं)।
• मनत्व उच्च होते हैं	• घनत्व निम्न होते हैं।
• ये इलेक्ट्रॉन प्रदान करते हैं,	• इनमें इलेक्ट्रॉन को ग्रहण करने
	अत: अच्छे अवकारक हैं की
	क्षमता होती है, अत: अच्छे
[Na → Na ⁺ e ⁻]I	ऑक्सीकारक होते हैं-
	$[Cl + e \rightarrow Cl-]l$
	अपवाद-H, C & P.
 ऑक्साइड भास्मिक (Basic) होते हैं। 	अॉक्साइड अम्लीय (Acidic) होते हैं।
• साधारणतः अम्लों के साथ	 अम्लों के साथ प्रतिक्रिया कर
प्रतिक्रिया कर लवण बनाती हैं	लवण तथा हाइड्रोजन नहीं
तथा H ₂ गैस निकलती है।	बनते हैं।
तथा H2 गैस निकलती है।	🧓 विद्युत ऋणात्मक होती हैं।
BIRTH THE THE	(अपवाद–हाइड्रोजन)

सबसे कम क्रियाशीलता होती है - सोने को प्लैट्निम

वह धात जो हाइड्रोजन का अवशोषण कर लेती है -पैलेडियम

सोडियम धातु को क्रियाशीलता से बचाने हेतु उसे सामान्यतया डुबा कर रखा जाता है -- किरासन तेल

आसानी से पिघल सकने वाली धातुओं को शुद्ध किया जा सकता है

हेमेटाइट (Fe₂O₃) से लोहा प्राप्त करने हेतु उपयोग किया जाता है -ऑक्सीकरण

स्टेनलेस स्टील पर जंग —नहीं लगता है

लोहे पर जंग लगने हेतु जिन दो चीजों की जरूरत होती है, वे हैं —नमो

एवं O2 जंग में पाया जाता है —फ्रेस हाइड्रानसाइड

वह धातु है, जो एक ऐसे विक्षालन प्रक्रम द्वारा प्राप्य है, जिसमें सोडियम सायनाइड का एक विलयन प्रयुक्त होता है —िसिल्बर

जर्मन सिल्वर तत्वों की मिश्रधातु है — Cu, Zn तथा Ni की भारत में बनी स्टील में से दो तत्व होते हैं — Mn व Cr

सोडियम, लीधियम की अपेक्षा जल से तीव्र क्रिया करता है —अधिक धन विद्यतीय होने के कारण

रेफ़्रिजरेटर में प्रयोग किया जाता है —अमोनिया

चैलकोपाइराइट प्रमुख अयस्क होता है -तांबे का

मुद्रा धातुओं के गुण के समान होते हैं —संक्रमण तत्व के समान

राष्क अमोनिया प्रवाह में सोडियम धातु को गर्म करने पर प्राप्त होता है —सोडियम एमाइड लेड एवं आयरन में से मरकरी को किस धातु के पात्र में रखा जा सकता है __आयर्ग के फोटोग्राफी में काम आने वाली प्लेट तथा फिल्मों का आवश्यक अवयव कौन सा है <u>Ag</u>Br सिल्वर, तनु सोडियम साइनाइड विलयन में मुल कर बनाती है -सोडियम अर्जेन्टो साइनाइड फेन प्लवन प्रक्रम प्रयुक्त होता है —सल्फाइड अयस्क के अधिक एलुमिना का सीमेंट शीघ्र जमता है __हां 18 कैरेट सोने में सोने की प्रतिशतता होता है __75 प्रतिशत लीधियम धातु हल्की होती है या भारी —हल्की प्लास्टर ऑफ पेरिस संयुक्त होकर कड़ा हो जाता है . अमलगम मिश्र धातु में अवयव आवश्यक रूप से शामिल होता है जिंक का सल्फाइड अयस्क प्रक्रम द्वारा सांद्रीकृत किया जाता हैफेन प्लवन प्रक्रम द्वारा एलुमिना कुचालक होता है —विद्युत का जल सिलिकेट पर कांच कहलाता है - केवल Na सिलीकेट पर क्रायोलाइट है —सोडियम एल्युमिन्यिम फ्लुओराइड -जर्मेनियम धातु का महत्वपूर्ण अंग है —ट्राजिस्टर का शुष्क अग्निशामकों में भग होता है —र्तृत तथा बेकिंग सोडा जीवाण आण्विक नाइट्रोजन को परिणत कर देते हैं -अमोनिया में हेबर प्रक्रम एक प्रमुख विधि है --- नाइटोजन यौगिकीकरण की अम्ल, भस्म एवं लवण (Acid, Base and Salt) रसायन में यौगिक का एक महत्वपूर्ण वर्ग होता है जो निम्न है। अम्ल, क्षार तथा लवण। ये प्राय: आयनिक यौगिक होता है।

अम्ल (Acid)—
यह ऐसा यौगिक है जिसमें विस्थापनशील हाइड्रोजन-परमाण होता है।
परन्तु यह क्षार से अभिक्रिया कर लवण एवं जल बनाता है तथा
आरहेनियस के अनुसार अम्लीय घोल में हाइड्रोजन आयन (H1) देता है।
जैसे-हाइड्रोक्लोरिक अम्ल (HCI), सल्फ्यूरिक अम्ल (H2SO4)
आदि।

यह एक जोड़े इलेक्ट्रॉनों को ग्रहण करने की धर्मता रखता है। ये प्राय: स्वाद में खट्टे होते हैं।

इसका pH मान 7 से कम होता है।

अच्छे एवं प्रबल अम्ल विद्युत् के सुवालक होते हैं। अम्ल, घातु से क्रियां करके हाइड्रोजन गैस मुक्त करते हैं।

अम्ल, घातु स क्रियां करके हाइड्राजन गर्स नुक्त करते है। यह मस्म एवं क्षार से प्रतिक्रियां करके लुवण और जल बनाता है। यह नीले लिटमस पत्र तथा मिथाइल औरज को लाल कर देता है।

अम्ल सम्बन्धी आधुनिक विचारवाराएँ (Modern Concept of Acid)—
1. आरहेनियस का आयनिक सिद्धांत (Arrhenius's Ionic

Theory)— अम्ल वह पदार्थ है, जो जल में घुलकर हाइड्रोजन आयन (H+) देता है। उदाहरण—

 H_2SO_4 + जल \Longrightarrow $2H^+(aq)+SO_4^{--}(aq)$

 HNO_3 + जल \rightleftharpoons $H^+(aq)+NO_3^-(aq)$

 $CH_3COOH +$ जल \rightleftharpoons $H^+(aq)+CH_3COO^-(aq)$

 ब्रॉनरेड-लॉरी का सिद्धांत (Bronsted and Lowry's concept)— इनके अनुसार अम्ल यह पदार्थ है, जो किसी दूसरे पदार्थ को प्रोटीन प्रदान करने की क्षमता रखता है।

जैसे-HNO3, CH3COOH, H2SO4 आदि अम्ल है, जो प्रोटीन प्रदान करने की क्षमता रखता है।

 $CH_3COOH \longrightarrow H^+ + CH_3COO^-$

अम्ल, भस्म या क्षार से ऑभक्रिया करके लवण तथा जल देता है। यह नीले लिटमस पत्र तथा मियाइल ऑर्रज को लाल कर देता है।

यह घातु से क्रिया करके हाइड्रोजन गैस मुक्त करता है।

• सबसे अधिक प्रबलता याला अम्त HCl होता है तथा निम्न प्रबलता वाला अम्ल CH₃COOH

जब कपड़े में जंग का घटना लगता है तो उसे हटाने के लिए

ऑक्जेलिक अम्ल का प्रयोग किया जाता है।

• वैसे अम्ल जिसमें हाइड्रोजन एवं ऑक्सीजन दोनों उपस्थित ग्रहते हैं उसे ऑक्सी अम्ल (Oxy Acid) कहा जाता है। जैसे – नाइट्रिक अम्ल (HNO₂), H₂SO₄

अम्ल (HNO₃), H₂SO₄ जिस् अम्ल में केवल हाइड्रोजन उपस्थित रहता है उसे हाइड्रो अम्ल

कहते हैं। जैसे - HCI

 यौगिकों में H उभयनिष्ठ होने के कारण एसीटिक अम्ल, फॉर्मिक अम्ल, नाइट्रिक अम्ल, हाइड्रोक्लोरिक अम्ल, सल्फ्य्रिक अम्ल एवं कार्बोनिक अम्ल ये सभी अम्ल के श्रेणी में आते हैं।

लिबिस का इलेक्ट्रॉनिक सिद्धांत (Lewis's Electronic Theory)— इस सिद्धांत के अनुसार अम्ल वह पदार्थ (अणु, आयन या मूलक) है, जिसमें इलेक्ट्रॉन का एक निर्जन युग्म (Lone Pair) स्वीकार करने की प्रवृत्ति होती है।

उदाहरण-केल्सियम ऑक्साइड (CaO) और सल्फर ट्राइऑक्साइड (SO₂) के संयोग से केल्सियम सल्फेट (CaSO₄) का निर्माण होता है।

इसमें SO3 लिविस अम्ल है।

नोट : सामान्यत: सभी धनायन लिविस अम्ल होते है।

अम्लों का वर्गीक्रण (Classification of Acids)—

अम्ल दो प्रकार के होते हैं—

 ऑक्सी अम्ल (Oxy Acids)—जिन अम्लों में हाइड्रोजन एवं ऑक्सीजन दोनों उपिस्थित रहते हैं, उन्हें ऑक्सी अम्ल कहते हैं। जेसे-सल्प्यृरिक अम्ल (H₂SO₄), फॉस्फोरिक अम्ल (H₃PO₄) नाइट्रस अम्ल (HNO₂) आदि।

 हाइड्रो अम्ल (Hydro Acids)—जिन अम्लों में केवल हाइड्रोजन उपस्थित रहता है, हाइड्रो अम्ल कहलाता है। हाइड्रो अम्ल में ऑक्सीजन अनुपस्थित रहता है। जैसे-हाइड्रोक्लोरिक अम्ल (HCI), हाइड्रोझोमिक अम्ल (HBr), हाइड्रोआयोडिक अम्ल (HI), हाइड्रोसायनिक अम्ल (HCN) आदि।

नाइट्रिक अंग्ल का प्रयोग सोना एवं चाँदी के सुद्धिकरण में किया

जाता है

वैसे अम्ल जिसमें H अयन उत्पन्न करने की प्रवृत्ति अधिक होती है उसे प्रवृत्त अम्ल कहते हैं। जैसे-H2SO4 तथा HCI का खाना पचाने में प्रयोग होता है।

वनस्पतियों तथा जंतुओं से प्राप्त अम्लों को कार्बनिक अम्ल कहते हैं।

कार्बनिक अम्ल रंगहीन या उजला ठोस होता है।

शुद्ध खनिज अम्ल रंगहीन द्रव होता है। सभी संद्रं खनिज अम्ल संक्षारक होते हैं।

अल्प कार्बनिक अम्ल तथा सांद्र खनिज अम्ल तीखें गंधवाला होता है।

च्या साम आस्त ।	**
खाने योग्य कुछ अम्ल : इमली	→ टार्टेरिक अम्ल
	→ लैक्टिक अम्ल
दूध	→ एसीटिक अम्ल
सिरका एवं अचार	→ साइट्रिक अम्ल
नींबृ एवं नारंगी	
सेब े	→ मैलिक अम्ल
मोहावाटर एवं अन्य पेय पदार्थ	→ कार्बोनिक अम्

कुछ अम्लों के उपयोग :

नाइट्रिक अम्ल (HNO₃)

→ फोटोग्राफी, उर्वरक तथा विस्फोटक पदार्थ निर्माण में

2. फॉर्मिक अम्ल (HCOOH)

→ फलों के संरक्षण, रबर सकदन तथा चमहा उद्योग में।

बेंजोइक अम्ल (C₆H₅COOH)

→ दवा तथा खाद्य पदार्थों के संरक्षण में।

सल्फ्यूरिक अम्ल (H₂SO₄)

→ संचायक बैट्टी तथा पेटोलियम के शोधन में।

एसीटिक अम्ल (CH₃COOH)

→ सिरका निर्माण में

6. हाइड्रोक्लोरिक अम्ल (HCI)

→ प्रयोगशाला में अभिकर्मक के रूप में, अम्लराज बनाने में, रंग एवं औषधि निर्माण में आदि।

7. ऑक्जेलिक अम्ल (COOH₂-COOH)→ फोटोग्राफी में, कपड़ों की छपाई भें व रंगाई में, चमड़े के विरंजक के रूप में, कपडे पर स्याही के घब्बे को हटाने में आदि।

अम्लराज (Aqua Regia)—

अम्लग्ज के संबंध में ए० के० उह रीजी (A.K. Wuh Reejee) ने सर्वप्रयम जानकारी दी। यह 3 माग सान्द्र हाइड्रोक्लोरिक अम्ल तथा एक माग सान्द्र नाइट्रिक अम्ल का मिश्रण है।

> 3 HCI + HNO, (Conc.) (Conc.)

> > - अम्लराज

यह घातुई रसायन का एक प्रमुख अवयव है, क्योंकि सोना (Gold) तथा प्लैटिनम (Platinum) जैसी घातुएँ इसमें घुल जाती है।

अम्लराज (Aqua Ragia) एक लैटिन शब्द है, जिसका अर्थ होता है

रॉयल वाटर (Royal Water)।

इस मिश्रण का यह नाम इसलिए दिया गया, क्यों कि यह सोना को भी घुला सकता है।

कभी-कभी इसे रॉयल यातु (Royal Metal) भी कहा जाता है।

भस्म (Base)-

मस्म वह यौगिक है जो जलीय विलयन में हाइड्रॉक्साइड आयन देता है।

इसमें एक या एक से अधिक विस्थापनशील हाइड्रोऑक्सी (OH-) समूह रहता है।

यह अम्ल से प्रतिक्रिया कर लवण एवं जल का निर्माण करता है।

इसमें एक जोड़ा इलेक्ट्रॉन को त्यागने की प्रवृत्ति होती है।

वैसे मस्म जो जल में घुलनशील होता है, शार (Alkali) कहलाता है। यह लाल लिटमस को नीला तथा मिथाइल ऑरंज को पीला करता है।

मस्म का स्वाद तीखा एवं कड्वा होता है, यह साबुन जेसा मुलायम होता है।

होता है। प्रवल मस्म विद्युत का सुवालक होता है।

धार का pH मान 7 से अधिक होता है।

यह धातु का ऑक्साइड एवं हाइड्रोक्साइड दोनों होता है। Note: सभी क्षार मस्म होते हैं लेकिन सभी मस्म क्षार नहीं होते हैं क्योंकि सभी भस्म जल में पुलनशील नहीं होते है।

मस्म संबंधी आयुनिक विचारधाराएँ (Modern Concepts of Bases)—

आरहेनियस का आयनिक सिद्धांत (Arrhenius's Ionic (a) Theory)—इस सिद्धांत के अनुसार भस्म वे पदार्थ हैं, जो घोल में हाइड्रॉक्साइड आयन (OH) देता है। जैसे - $NaOH + जल \longrightarrow Na^+ (aq) + OH^-(aq)$

 $NH_4OH + जल \longrightarrow NH_4^+ (aq) + OH^-(aq)$

(b) ग्रानारेड-लांरी का मिन्द्रांत (Bronsted Lowry Theory)-इस सिद्धांत के अनुसार भस्म यह पदार्थ है, जो किसी दूसरे पदार्थ से प्रोटोन प्रहण करने की क्षमता रखता है। जैसे-

OH- + H+ + H2O

CH₃COO[−] + H⁺ Ch₃COOH

(c) लियिस का इलेक्ट्रॉनिक सिद्धांत (Lewis's Electronic Theory)-इस सिद्धांत के अनुसार मस्य वह पदार्थ है, जिसमें इलेक्ट्रॉनों के एक निर्जन जोड़ी (lone Pair) प्रदान करने की क्षमता होती है। जैसे- हाइडोनियम आयन का बनना।

H'+ :
$$\bigcirc$$
 H → H: \bigcirc H

usi H₂O findati yaan \$1

अम्ल से प्रतिक्रिया करके लवण तथा जल देता है।

क्षार लाल लिटमस को नीला तथा मिथाइल ऑर्रज को पीला कर देता है।

क्षार में तेल और गंधक को घुला लेने की क्षमता होती है।

क्षार कार्बनिक पदार्थों को नष्ट कर देते हैं।

सार फिनॉल्पथैलीन को गुलाबी कर देता है।

लवण के पोल में डाले जाने पर शार प्राय: धात के हाइडॉक्साइड को अवक्षेपित कर देते हैं।

भूस्य के निम्न उपयोग हैं :

कैल्शियम हाइड्रोक्साइड [Ca(OH)₂]-गारा एवं प्लास्टर बनाने में ब्लीचिंग पाउडर बनाने में, चमड़े के कपर बाल साफ करने में. मिट्टी की अम्लीयता दूर करने में।

2: पोटेशियम हाइड्रोक्साइड (KOH)-नहाने वाला साबुन बनाने में। 3. मैग्नीशियम हाइड्रोक्साइड अथवा मिल्क ऑफ मैग्नेशिया (Mg(OH)2]-अम्ल विषाक्तीकरण पेट कि अम्लीयता दूर करने में,

विषहर के रूप में, चीनी उद्योग, आदि में।

कॉस्टिक सोडा [Na(OH)]-सायुन बनाने में, कपड़ा एवं कागज निर्माण में घरों एवं कारखानों को साफ करने में।

भस्म मुख्यतः दो प्रकार के होते हैं -

जल में विलेय (Alkali)—वैसे भस्म जो जल में विलेय है, भस्म कहलाता है, जैसे - पोटेशियम हाइडोक्साइड (KOH)। यह लाल लिट्मस पत्र को नीला कर देता है, परन्तु इसका स्वाद कडवा होता है।

जल में अविलेय भस्म (Water Insoluble bases)-जल में अपलनशील क्षार-अम्ल के साथ अभिक्रिया करके लवण तथा जल बनाते हैं, लेकिन क्षार के अन्य गुणों को नहीं दर्शाते

हैं। जैसे –ZnO, Al₂O₃ आदि।

भस्मों व क्षारों के उपयोग (Uses of Bases and Alkali)

कैल्सियम हाइड्रॉक्साइड [Ca(OH)2]-घरों में चूना पोतने, गारा एवं प्लास्तर बनाने में, ब्लीचिंग पाऊडर (विरंजक चूर्ण) बनाने में, जल को मृदु बनाने में, अम्ल के जलन पर मरहम पदटी करने में, चमहा के ऊपर का बाल साफ करने में, House the मिट्टी की अम्लीयता दूर करने में आदि।

(ii) कास्टिक सोडा (NaOH)-साबुन बनाने में, पेट्रोलियम के शक्तिकरण में, कपड़ा एवं कागज बनाने में, दवा निर्माण में,

घरों एवं कारखानों को साफ करने में आदि।

(iii) पोटैशियम हाइड्रॉक्साइड (KOH)-प्रयोगशाला में प्रतिकर्मक के रूप में, मुलायम साबुन के निर्माण में, CO2 तथा SO2 जैसे गैसों के अवशोषक के रूप में आदि।

(iv) कैल्सियम ऑक्साइड (CaO)-मकान बनाने में गारे के रूप में, कास्टिक सोडा के निर्माण में, सोडियम कार्बोनेट के निर्माण में, ब्लीचिंग पाउडर के निर्माण में आदि।

- (v) मैग्नीशियम हाइक्वोऑक्साइड [Mg(OH)₂]—पेट की अम्लीयता को दूर करने में, अम्ल विषाक्तीकरण (Poisoning) के एण्टीडोट (Antidote) के रूप में, चीनी उद्योग में, मोलासिस से चीनी तैयार करने में आदि।
- (vi) भैग्नीशियम ऑयसाइड (MgO)—औषधि निर्माण में, स्बड़ पूरक के रूप में, बायलरों के प्रयोग में आदि।

लवण (Salt)-

- बे पदार्थ जो अम्ल तथा क्षारों से मिलकर बनते हैं, लवण कहलाते हैं।
- इसमें जल का भी निर्माण होता है।
 - जैसे- HCI+NaOH----- NaCI+H2O
- लवण के बहुत से प्रकार हैं—
- (i) सामान्य लवण (Normal Salts)—िकसी अप्लीय अणु से हाइड्रोजन परमाणुओं पूर्णत: स्थानान्तरण द्वारा निर्मित लवण को सामान्य लवण कहते हैं। दूसरे शब्दों में, वे लवण जो अप्लीय हाइड्रोजन परमाणु या हाइड्रोक्सिल आयन से मुक्त रहते हैं, सामान्य लवण कहलाते हैं। जैसे—Na₂SO₄, CaSO₄, Na₃PO₄, Na₂S, NaCl, KCl, FeCl₃ आर्दि में।
- (ii) अम्लीय लवण (Acidic Salts)—वैसे लवण जिसमें एक या एक से अधिक स्थानान्तरण योग्य हाइड्रोजन परमाणु बने रहते हैं, अम्लीय लवण कहलाते हैं। जैसे– NaHCO₃.NaHSO₄ आदि।
- (iii) भास्मिक लवण (Basic Salts)—िकसी अम्ल द्वारा भस्म के आशिक उदासीनीकरण के फलस्वरूप बने हुए लवण को भास्मिक लवण कहते हैं। जैसे Pb(OH)CI, Bi(OH)2NO3, CuCO3.Cu(OH)2, 2PbCO3.Pb(OH)2, Mg(OH)CI आदि।
- (iv) मिश्रित लवण (Mixed Salts)—वैसे लवण जिसमें एक से अधिक भास्मिक या अम्लीय मूलक उपस्थित हो, मिश्रित लवण कहलाते हैं। जैसे सोडियम पोटैशियम सल्फेट (NaKSO₄), विरंजक चूर्ण [Ca(OCI)CI] आदि।
- (v) द्विक या युग्म लवण (Double Salts)—दो सामान्य लवणों से निर्मित लवण को द्विक या युग्म लवण कहते हैं। इसमें रवा जल (Water of Crystallisation) भी रहता है। द्विक लवण जल मे भूलकर दो प्रकार के धातुई आयन निर्गत करते हैं। जैसे मोहर लवण [FeSO₄(NH₄)₂ SO₄.6H₂O], पोटाश एलम [K₂SO₄. Al₂(SO₄)₃.24H₂O) आदि।
- (vi) जटिल लंबण (Complex Salt)—वैसा लवण जिसमें एक जटिल मूलक उपस्थित रहता है और जो घोल में भी अपना पृथक् अस्तित्व बनाये रखता है, जटिल लवण कहलाता है। जैसे पोटैशियम फेरोसायनाइड–K4[Fe(CN)6], पोटैशियम मरक्यूरिक आयोडाइड–K2[Hgl4], डाइएमिनो सिल्वर क्लोराइड –[Ag(NH3)2] Cl आदि। निरंशक अथवा सूचक की अल्प मात्रा ही उदासीनोंकरण अभिक्रिया में प्रयुक्त होती है।

pH स्केल

- pH स्केल एक मापदंड स्केल है।
- pH स्केल का प्रयोग अम्लीयता या क्षारीयता के स्पष्टीकरण के लिए किया जाता है।
- जिस पदार्थ का pH मान 7 से कम होता है, अम्लीय होता है। pH मान 7 से अधिक होने पर क्षारीय कहलाता है।
- शुद्ध जल का pH मान 7 हो तो pH का रेंज 0 से 14 होता है।
- pH का मान प्रदर्शन सोरेन्सन ने 1909 ई॰ में pH स्केल बनाया।
- कुछ ऐसे पदार्थ जिसका pH मान निर्धारित किया गया है :

पदार्ध	pH मान	पदार्थ	pH मान
नींबू —	→ 2.2	्रशराब 🍌 🗕	- 2.8
क्षा १८ मूत्र	→ .6	समुद्री जल 🗕	8.4
ं सिरका —	→ 2.4	्रूघ –	- 6.4
लार —	→ 6.5	रक्त	7.4

- कुछ लवण के प्रमुख उपयोग है—
- कॉपर सल्फेट (CuSO₄ 5H₂O)—कीयणुनाराक तथा रंगाई एवं छपाई में।
- पोटाश एलम (फिटकरी) [K₂SO₄.Al₂(SO₄)₃.24H₂O)]
 —जल शिक्षकरण औपिय, रंगाई में ।
- सोडियम कार्योनेट [(Na₂CO₃).10H₂O]—अपमार्जक के निर्माण में काँच, कास्टिक सोडा यनाने में आदि।
- सोडियम याईकार्योंनेट (NaHCO₃)—वेकिंग पाउडर बनाने में, अग्निशामक यंत्र में।
- पोटैशियम नाइट्रेट (KNO₃)—उर्धरक के रूप में आतिशवाजी का सामान, गन पाउडर निर्माण में।
- सोडियम क्लोराइड (NaCl)—खाने के रूप में खाद्य पदार्थों के संरक्षण में, बेकिंग पाठडर बनाने में।

जल का द्वेत आचरण (Dual Character of Water)-

- जल अम्ल तथा भस्म या क्षारक दोनों जैसा-आचरण करता है। अपने से सबल भस्म के साथ यह अम्ल-जैसा आचरण करता है। जैसे = NH₂ + H₂O = NH₄+OH⁻
 - यहाँ जल अमोनिया को प्रोटॉन देता है, लेकिन अपने से सबल अम्ल के साथ यह भस्म-जैसा आचरण करता है। जैसे-

 $HSO_4^- + H_2O \longrightarrow H_3O^+ + SO_4^-$ यहाँ जल बाइसल्फेट आयन (HSO_4^-) से एक प्रोटॉन प्राप्त करता है।

Important Facts

- सल्फ्यूरिक अम्ल (H₂SO₄) को रसायनों का राजा (King of Chemicals) कहा जाता है।
- नींबू में साइदिक अप्ल तथा इमली में टारिंद्क अप्ल पाया जाता है।
- लाल चींटो में फॉर्मिक अम्ल तथा सिरका में एसीटिक अम्ल पाया जाता है।
- NaCl को टेबुल सॉल्ट कहते हैं।
- AgNO₃ (सिल्वर नाइट्रेट) को अमोनियाँकल घोल को टॉलेन्स रिजेन्ट (Tollens reagent) कहते हैं, जिससे चीनी (Sugar) की जाँच की जाती है।
- मिल्क ऑफ मैग्नेशिया (Milk of Magnesia) का उपयोग एन्टासिड
 (Antacid) के रूप में किया जाता है।
- Ca(OH)₂ का उपयोग घरों में चूना पोतने, व्लीचिंग पाउडर बनाने तथा खारा जल को मृदु बनाने में किया जाता है।
- NaOH का उपयोग साबुन बनाने में, पोटैशियम साफ करने में तथा कपड़ा बनाने में किया जाता है।
- वैसा भस्म, जो जल में विलेय हो, क्षार (Alkali) कहलाता है।
- Ag Br (सिल्वर ब्रोमाइड) का उपयोग फोटोग्राफी में किया
 जाता है।
- सोडियम क्लोग्रइड (NaCl) को टेब्ल सॉल्ट (Table Salt) कहते हैं।

अधातुएँ (Non-Metals)

- आवर्त सारणी के दाहिने ओर 23 अधात्वीय तत्त्व में 12 गैस 10 ठोस तथा एक द्रव है।
- अधातु में कोई चमक नहीं होती।
- धातु की तरह इसमें स्वतंत्र इलेक्ट्रॉन नहीं होता है।
- अधातु प्राय: भंगुर होता है जिसके कारण इसके चादर नहीं बनाया जा सकता है। इस पर चोट मारने पर चूर-चूर होता है।
- अधातु प्राय: कष्मा एवं विद्युत का कुचालक होता है। अपवाद में एक ग्रेफाइट है जो विद्युत एवं उष्मा का सुचालक होता है।
- हाइड्रोजन को छोड़कर समी अधातुएँ विद्युत ऋणात्मक होती है।
 अत: वह इलेक्ट्रॉन को आसानी से ग्रहण कर लेती है तथा ऋणात्मक आयन बनाता है।

अधातुएँ ऑक्सीजन के साथ सह-संयोजक ऑक्साइड बनाता है।
 इनमें से कुछ ऑक्साइड जल से अभिक्रिया कर अम्ल बनाता है।

अघातु हाइड्रोजन से अभिक्रिया कर हाइड्राइड बनाती है।

 चूँकि अधातुएँ इलेक्ट्रॉन मुक्त नहीं करता है। इसलिए अप्ल के साथ संयोग कराने पर वे हाइड्रोजन को पुन: अप्लों में स्थापित नहीं करती है।

हाइद्दोजन (Hydrogen)—

ब्रह्माण्ड में सबसे अधिक मात्रा में पाया जाने वाला गैसीय तत्व है।

संकेत-H, परमाणु-संख्या-1, परमाणु-भार-1.008 इलेक्ट्रॉनिक विन्यास - 1s¹

आवर्त्त-सारणी में स्थान (Position in Periodic Table)-

आवर्त-सारणी में हाइड्रोजन की स्थिति विवादपूर्ण है। एक ओर इसे आवर्त-सारणी के उपवर्ग-IA में रखा गया है, तो दूसरी ओर कुछ मामले में हाइड्रोजन की समानता हैलोजन के साथ होने के कारण इसे इन तत्वों के साथ उपवर्ग-VIIA में भी रखा गया है।

ंउपवर्ग–IA or VIIA. ब्लॉक–s-ब्लॉक।

हाइड्रोजन से संबंधित कुछ तथ्य

हाइड्रोजन गैस की खोज 1766 ई॰ में हेनरी कैवेंडिश ने की थी। हाइड्रोजन एक ऐसा तत्व है, जिसके नामिक में न्यूटॉन नहीं

पाया जाता है।

इसके नामिक में सिर्फ एक प्रोटॉन (Proton) होता है। पृथ्वी पर पाए जाने वाले तत्त्वों में इसका 9वाँ स्थान है।

हाइड्रोजन को भविष्य का ईंधन कहते हैं।

सूर्य और तारों का लगभग आधा भाग हाइड्रोजन से ही बना है।

हाइड्रोजन आवर्त सारणी का सबसे हल्का तत्व है।

इसके नाभिक में एक प्रोटोन होता है जबकि न्यूट्रॉन नहीं पाया जाता है।

• हाइड्रोजन के प्राय: तीन समस्यानिक होता है- प्रोटियम (1H1),

ह्यूटेरियम (1H2 या D) तथा ट्टियम (1H3 या T)

हाइड्रोजन एक द्विपरमाण्विक गैस है।

 यदि हाइड्रोजन अणु के दोनों परमाणु के नाभिक समान दिशा में घूमते हैं तो ऐसे हाइड्रोजन के आथों हाइड्रोजन जबकि विपरीत दिशा में चक्रण करने वाले परमाणु के नाभिकों को पैरा हाइड्रोजन कहते हैं।

ड्यूटीरियम के ऑक्साइड (D₂O) को भारी जल कहा जाता है।
 भारी जल की खोज यूरे एवं वाशवर्न ने 1932 ई॰ में की थी।

 इ्यूटीरियम के ऑक्साइड (भारी जल) का अणुभार 20 तथा घनत्व साधारण जल से अधिक होता है इसी कारण इसे भारी जल कहा जाता है।

• इसे जल के लगातार विद्युत अपघटन के द्वारा प्राप्त किया जाता है।

जहाँ जल का हिमांक बिन्दु 0°C होता है। वही इसका 3.8°C होता है।
 इसका उपयोग प्राय: इयूटीरियम तथा इयूटीरियम के यौगिक बनाने में, ट्रेसर के रूप में, न्यूट्रॉन मंदक के रूप में, आयिनिक तथा अन आयिनिक हाइड्रोजन के पृथक करने में।

हाइड्रोजन की प्रकृति न तो अम्लीय होती, है न ही क्षारीय होती है।

- क्लोरीन तथा हाइड्रोजन के समान आयतन के मिश्रण को यदि सूर्य के प्रकाश में खुला छोड़ दिया जाए तो वह विस्फोटक हो जाती है जबकि सूर्य के प्रकाश के अभाव में यह सफोद क्लोराइड गैस उत्पन्न करती है।
- हाइड्रोजन गैस का उपयोग वनस्पति तेलों के हाइड्रोजनीकरण में, अमोनिया निर्मित करने में, वेल्डिंग कार्यों में तथा रॉकेट के ईंधनों के रूप में होता है।

भारी जल (Heavy Water)-

- मारी हाइड्रोजन (ड्यूटेरियम) के ऑक्साइड D₂O को भारी जल कहते हैं।
- भारी जल की खोज 1932 में यूरे और वाशंबर्न (H.C. Vory and E. W. Vasoburn) ने की थी। इन वैज्ञानिकों के अनुसार, साधारण

जल के लगभग 6000 भागों में 1 भाग भारी जल का होता है और जल का विद्युत्-अपपटन करने पर ड्यूटेरियम की तुलना में हल्का हाइड्रोजन 6 गुना अधिक शीघ्रता से मुक्त होता है।

इस प्रकार यूरे तथा याशयर्न ने शारीय जल का कई क्रमों में

विद्युत्-अपघटन करके शुद्ध भारी जल प्राप्त किया।

 भारी जल एक कीमती पदार्थ है। इसका मृत्य लगमग 10,000 रू० प्रति लिटर है।

इसके मुख्य उपयोग निम्नांकित है उपयोग (Uses)—इसका उपयोग न्यूट्रॉन मंदक के रूप में इयूटेरियम
या उनके यौगिक बनाने में, ट्रेसर के रूप में तथा आयनिक और
अन-आयनिक (Non-lonic) हाइहोजन में विभेद करने में होता है।

जल [(Water) H₂O]—

शुद्ध जल रंगहीन, गंधहीन, स्वादहीन एवं पारदर्शक द्रव होता है।

 शून्य डिग्री सेण्टीग्रेड पर यह सफोद बर्फ के रूप में परिवर्तित हो जाता है।

 शुद्ध जल विद्युत् का कुचालक है, लेकिन इसमें कुछ मात्रा में अम्ल मिला देने पर यह विद्युत् का सुचालक बन जाता है।

 इस अवस्था में इसमें विद्युत्-धारा प्रवाहित करने पर यह हाइड्रांजन और ऑक्सोजन में विघटित हो जाता है।

 सोडियम घातु को जल में डालने पर अत्यधिक मात्रा में कष्मा उत्पन्न होती है और हाइड्रोजन गैस निकलती है।

 जल एक यौगिक है। इसमें हाइड्रोजन और ऑक्सीजन का अनुपात भार के अनुपात में 1:8 एवं आयतन के अनुपात में 2:1 होता है।

जल के प्रकार (Types of Water)—

जल मुख्यतः दो प्रकार के होते हैं—

1. कठोर जल (Hard Water) तथा 2. मृदुजल (Soft Water)।

1. कठोर जल (Hard Water)—जो जल साबुन के साथ आसानी से झाग नहीं देता है, उसे कठोर जल कहते हैं।

2. मृदुजल (Soft Water)—जो जल साबुन के साथ आसानी से झाग देता है, उसे मृदुजल कहते हैं।

जल की कठारता उसमें कैल्सियम एवं मैग्नेशियम के बाइकाबोंनेट,
 क्लोग्रइड, सल्फेट, नाइट्रेट आदि लवणों के घुले होने के कारण होती है।

जल की कठोरता (Hardness of Water)-

 वह जल जिसमें लवणों के पूले रहने के कारण वह साबुन के साथ आसानी से झाग नहीं देता कठोर जल तथा जो आसानी से झाग देता है वह मृदु जल कहलाता है।

 जल की कठोरता मुख्यत: दो होते हैं—स्यायी कठोरता (Permanent Hardness), अस्थायी कठोरता (Temporary Hardness)।

 जल की कठोरता के कारण उसमें भूले हुए मैग्नीशियम तथा कैल्सियम के क्लोग्रइड, सल्फेट एवं बाईकार्बोनेट होता है।

स्थायी कठोरता—जल की कठोरता को उबालकर चेक किया जाता है।
 जल में स्थायी कठोरता का कारण उसमें कैल्सियम तथा मैग्नीशियम

के क्लोग्रइड सल्फेट के लवणों का घूलना होना है।

 यदि उबालने से जल की कठोरता दूर हो जाता है तो वह जल की अस्थायी कठोरता, यदि उबालने से जल की कठोरता दूर नहीं होता है तो वह स्थायी कठोरता कहलाता है।

 अस्थायी कठोरता—जल में कैल्शियम तथा मैग्नीशियम के बाईकाबोंनेट (HCO₃) के पूले होने पर उसकी कठोरता अस्थायी होती है।

अस्थायी कठोरतों को जल में बुझा चूना अथवा दूथिया चूना डालने
 से दूर हो जाता है।

 जब जल में सोडियम कार्बोनेट डालकर उबाला जाता है तो स्थायी एवं अस्थायी दो प्रकार की कठोरता दूर हो जाती है।

जल को खौलाकर तथा जल में कॉस्टिक सोडा (NaOH) मिलकर भी अस्थायी कठोरता को दूर किया जा सकता है।

जल ही स्थायी कठोरता को दूर करने के लिए कालर्गान विधि का
भी प्रयोग किया जाता है।

इस विधि में कठोर जल को कालगान पर सोडियम हेक्सा मैटाफास्फेट
 के कपर टपकाया जाता है।

- जबकि स्थायी कठोरता दूर करने की प्रमुख विधि परम्युटिट विधि कहलाता है।
- परम्यूटिट कृत्रिम जियोलाइट होता है, इसे सोडियम एल्युमिनियम आर्थोसिलिकैट भी कहते हैं।
- भारी जल तथा साधारण जल में अन्तर —

भौतिक गुण	साधारण जल	भारी जल
गलनांक	OC.	3.8°C
क्वथनांक	100℃	101.4℃
डाइ-इलेक्ट्रिक स्थिरांक	82.0	80.5
गलन की गुप्त ऊष्मा (Cal/g)	80	75.5
वायन की गुप्त कष्मा (Cal/g)	536	557
आपेक्षिक घनत्व	0.998	1.1059
उच्चतम घनत्व का ताप	4℃	11.6°C
अपवर्तनांक	1.3322	1.3281

यह आजीन महल (Ozonosphere) में धरातल से ओजोन (O3)—यह आजान महल (Ozonospn करीब 32 km से 60 km के मध्य पाया जाता है।

ओजोन मंडल में ओजोन गैस की एक परत पायी जाती है, जो सर्य से आने वाली परार्वेंगनी किरणों को अवशोधित कर लेती है।

ओजोन (O3) ऑक्सीजन का हो एक अपरूप है। हानिकारक किरणों से बचाने के कारण ओजोन परत को सुरक्षा

कवच कहा जाता है।

ओजोन परत को नष्ट करने वाली गैस क्लोरो फ्लोरोकार्बन (CFC) है, जो एयर कंडीशनर, रेफ्रीजरेटर आदि से निकलती है।

ओजोन परत में क्षरण CFC में उपस्थित सक्रिय क्लोरिन कारण (CI) होती है।

ओजोन परत की मोटाई नापने में डाबसन इकाई का प्रयोग किया जाता है।

इस मंडल में ऊँचाई के साथ तापमान बढ़ता जाता है जहाँ कि प्रति एक किमी की कँचाई पर तापमान 5°C की वृद्धि होती है। ऑक्सीजन के प्राय: तीन समस्थानिक होती है-

8⁰¹⁶, 8⁰¹⁷ तथा 8⁰¹⁸

ब्लू आइस (Blue Ice) यह एक प्रकार का शुद्ध वर्फ है, जिसमें रोगाण नहीं होते हैं और यह लगमग 2000-3000 वर्ष पुरानी होती है, ब्लू आइस कहलाती है। यह मुख्यत: ग्रीनलैंड में पाई जाती है, जहाँ से इसका निर्यात अन्य विकसित देशों में किया जाता है।

इसका उपयोग हिस्की (Whisky) बनाने में किया जाता है।

पॉलीवाटर (Polywater)— पॉलीवाटर पृथ्वी पर एक खतरनाक वस्तु मानी जाती है, क्योंकि यह सामान्य जल को बाल की आकार की निलका में प्रवेश कराकर बनाया जाता है।

सिलिकॉन (Silicon)— सकत-Si, परमाणु-संख्या-14, परमाणु भार-28.086 इलेक्ट्रॉनिक विन्यास - 1522s22p63s23p2 संयोजी इलेक्ट्रॉन (Valence Electrons)—4

आवर्च-सारणी में स्थान (Position in Periodic Table)—वर्ग-

IVA, आवर्त-तृतीय।

यह प्रकृति में मुख्यत: रेत (Sand) और पत्थर के रूप में व्यापक रूप से पाया जाता है। यह मुक्त अवस्था में नहीं पाया जाता, बल्कि संयुक्त अवस्था में यौगिकों के रूप में ही पाया जाता है।

पृथ्वी के परत में इसकी प्रतिशत मात्रा 26% है। अप्रक [(Mica), [KH₂Al] (SiO₄)] एवं सिलिका (Silica), SiO₂]

यह प्राय: सिलिका (SiO₂) से प्राप्त किया जाता है सिलिका की कोक साथ एक विद्युत्-भट्टी में गर्म करने पर यह प्राप्त होता है।

सिलिकॉन सामान्य ताप पर ठोस, कडा और मंगुर (Brittle) होता है। इसका द्रवणांक (गलनांक) 141°C होता है तथा यह विद्युत् का सुचालक होता है।

सिलिकॉन के दो अपररूप है-1. मूरा खेदार चूर्ण (Brown Amorphous Powder) तथा 2. पुसर खंदार पिंड (Grev Crystalline Mass) 1

यह जल में अविलेय होता है, लेकिन लाल तप्त अवस्था में यह भाप

की विषटित कर हाइड्रोजन मुक्त करता है।

क्लोरीन से 450°C पर संयोग करके सिलिकॉन टेट्राक्लागइड (SiCla) बनाता है।

यह अम्ल तथा क्षार से भी अभिक्रिया करता है।

सिलिका वाटिका (Silica Garden)

अपने मेहमानों को खुश करने के लिए तथा स्वागत में इस वाटिका का प्रयोग घरों में किया जाता है।

यह वाटिका देखने में बहुत सुन्दर एवं आकर्षक लगती है।

एक लंबे सिलिंडर के आकार के बरतन में थोड़ा सोडियम सिलिकेट का सान्द्र विलयन लेकर उसके आधे भाग को जल से भर दिया जाता है।

अब उसमें कोवाल्ट नाइट्रेट, फेरस सल्फेट और कॉपर सल्फेट के

रवों को डाल दिया जाता है।

कुछ समय बाद बरतन में रवों की वृद्धि रंगीन लकीरोंप के रूप में नीचे से ऊपर की ओर बढ़ती नजर आती है।

नीलें रंग की लकीर की वृद्धि थोड़ी देर में हो होने लगती है।

अन्य रवों की वृद्धि में थोड़ा ज्यादा समय लगता है।

इन रवों की पूर्ण वृद्धि हो जाने के बाद बर्तन में रंगीन रवों की एक वाटिका दिखाई पड़ती है, जो काफी आश्चर्यजनक, सुन्दर एवं आकर्षक होती है।

सिलिकॉन का उपयोग अनेक मिश्रघातुओं; जैसे-सिलिकॉन ग्राँज (Silicon Bronze) एवं मैंगनीज-सिलिकॉन ब्रॉज के निर्माण में, सिलिकॉन (Silicon), जो एक बहुलक है, के निर्माण में अर्द्धचालक युक्ति (Semi-conductor Device) में सिलिकॉन कार्बाइड (SiC) के बनाने में, काँच और सीमेंट बनाने में एवं शुष्क कारक के रूप में होता है।

हैलोजन (Halogens)— हैलोजन का शाब्दिक अर्थ समुद्री लवण पैदा करने वाला होता है।

वर्ग VIIA के तत्वों को हैलोजन कहते हैं।

हैलोजन के अंतर्गत फ्लोरीन (9F), क्लोरीन (17Cl), ब्रोमीन (35Br)ए आयोडीन (531) तथा एस्टैटीन (8At) आते हैं।

क्लोरीन (17Cl))— (i) इसमें विरंजक का गुण पाया जाता है।

(ii) यह एक दमघोंटू गैस है।

(iii) इसका रंग पीला हरा होता है।

फ्लोरीन (oF)— (i) यह कार्बन से सीधे संयोग करने की क्षमता रखता है।

(ii) तत्वों में यह सबसे अधिक विद्युत्-ऋणात्मक होती है।

आयोडीन (531)— (i) यह बेंगनी रंग का ठोस होता है।

(ii) यह मानव शरीर में धाईराक्सीन यौगिक के रूप में पाया जाता है।

ब्रोमीन (35Br)-(1) एव एक मात्र अधातु जो तरल अवस्था में पाया जाता है।

(ii) इसका रंग लाल होता है।

इसके निम्न उपयोग हैं :

विरंजक चूर्ण के निर्माण में

फास्जीन, मस्टर्ड गैस, ल्यूसाईट जैसी विषैली गैसों के निर्माण में (ii)

(iii) जल की कीटाणुनाशी बनाने में

(iv) द्रथपेस्ट में

(v) हाइड्रोफ्लोरिक अम्ल (HF) के निर्माण में

(vi) कीटाणुनाशक में

(vii) औषधियों के उत्पादन में

(viii) टिंचर आयोडीन बनाने में

(ix) रंग उद्योग में

(x) औषधि निर्माण में

(xi) सिल्वर ब्रोमाइट के निर्माण में

क्लोरोफ्लोरोकार्बन के यौगिकों को फ्रियॉन कहते हैं।

- फ्रियॉन का प्रयोग प्रशीतक के रूप में तथा ऐरोसॉल में किया
- नन-स्टिक बर्तन का ऊपरी परत टेफ्लॉन का बना होता है।

सिल्वर ब्रोमाइड का प्रयोग फोटोग्राफी में किया जाता है।

ब्रोमीन का उपयोग एथिलीन ब्रोमाइड के संश्लेषण में होता है। इसे सीसाकृत पेट्रोल में मिलाया जाता है।

कार्बन (Carbon)—

कार्बन आवर्त सारणी के उपवर्ग IVA का सदस्य है।

इसकी परमाणु संख्या 6 है।

कार्बन का परमाणु भार सामान्यता 12 होता है।

कार्बन के मुख्यत: दो अपरूप होते हैं हीरा तथा ग्रेफाइट।

हीरा विद्युत् का कुचालक होता है।

हीय का गलनांक 3500°C से भी अधिक होता है।

ग्रेफाइट में प्रत्येक कार्बन परमाणु केवल तीन पड़ोसी कार्बन परमाणुओं से सह-संयोजक बंधों द्वारा बीधत रहता है तथा चौथा इलेक्ट्रॉन स्वतंत्र छूट जाती है।

प्रकृति में कार्बन युक्त और संयुक्त दोनों ही अवस्थाओं में प्रचुर मात्रा में पाया जाता है।

कार्बन को एक सार्वभौमिक तत्व माना जाता है।

कार्बन के कुल यौगिकों की संख्या 5 लाख से भी अधिक है, जबिक अन्य तत्वों के यौगिकों की कुल संख्या 50 हजार के आस-पास

कुछ प्रचलित हीरा-कुलिनान (3032 कैरेट), होप (445 कैरेट), कोहिन्र (186 कैरेट) तथा पिट (136.2 कैरेट)।

चट्यनों में छेद करने तथा अन्य पत्थरों पर पॉलिश करने के लिए भी हीरा को प्रयोग में लाया जाता है।

पेंसिल में प्रयक्त होने वाला काला सीसा ग्रेफाइट होता है।

ग्रेफाइट में मुक्त इलेक्ट्रॉन होता है, जो सम्पूर्ण खा-जालक में गमन करते हैं। इसके कारण ग्रेफाइट विद्युत का सुचालक होता है।

चारकोल कार्बन का अशुद्ध रूप होता है।

- रक्त चारकाल सूखं हुए रक्त का भंजक स्नावण करने पर प्राप्त होता है।
- कार्यन युक्त पदार्थ काजल को हवा की अपर्याप्त मात्रा में जलाकर प्राप्त धुएँ को कम्बलों पर एकत्र कर प्राप्त किया जाता है।

काजल भी कार्यन का सबसे शुद्ध अपरूप है।

काजल में लगभग 95% कार्बन होता है।

कोयले को वायु की अनुपस्थिति में गर्म करने पर इसके वाय्पशील अवयव निकल जाते हैं। जो अवशेष बचता है, उसे कोक कहा जाता है।

कोक में ४0 से 85% कार्बन पाया जाता है।

नाइद्रोजन (Nitrogen)—

- नाइट्रोजन को छोड़कर शेष सभी 🖙 शंस अग्रस्था में पाय
- ्रनन एवं बिस्मध को छोड्कर VA उपनर्ग के अन्य सन्स्य अपरूपता का गुण पटरिर्दन करता है।
- वर्ग VA के तत्व प्रतिरूपी तत्व अथवा सामान्य तत्व कहलाता है। नाइट्रोजन आयतन की दृष्टि में शयुमंडल में 78% पाया जाता है।
- वायुमंडल सहित पृथ्वी पर गाइट्र तन का बाहुल्य भारनुसार 0.01% है।
- संयुक्त ावस्था में ताउदाजन ी थादी मात्रा नाइदोजन के रूप में
- नाइट्रोजन यूरिया नापक जार्थनक योगिक का प्रमण्य अवपन है।

- जीवधारी नाइट्रोजन 🖈 😸 पीधों से प्रोटीन के रूप में प्राप्त करते हैं।
- प्रयोगशाला में अम्रतः य क्लोराइड और सोडियम नाइट्राइट के मिश्रित घोल को 700 'तक गर्म करके हैबर विधि द्वारा नाइद्रोजन गैस बनायी जाती है।

अमोनिया के उत्पादन ए नाइट्रोजन का प्रमुख योगदान है।

- नाइट्रोजन विद्युत् ४८-शें में तथा उच्च ताप मापने वाले तापमापी में भरने के काम में आता है।
- क्त्रिम गर्भाधान के लिए, बैल का वीर्य को द्रव नाइट्रोजन में रखा जाता है।
- द्रव नाइट्रोजन का उपयोग जैव पदार्थों के लिए प्रशितक के रूप में भोज्य पदार्थों को जगने एवं निम्न ताप पर शल्य-चिकित्सा के लिए

दलहनी पौधों की जड़ों में राइजोबियम नामक जीवाण पाए जाते हैं जो नाइद्रोजन स्थिरीकरण में भाग लेते हैं।

धार गंडलीय नाइट्रोजन से उसके उपयोगी यौगिकों के बनने की क्रिया को प्यरं रन का यौगिकीकरण कहलाता है।

'गेको का नाइट्रोजन में परिवर्तन विनाइट्रीकरण कहलाता है।

इट्रोजन के यौगिकों के निर्माण एवं विनाश का एक चक्र च्यु...। । है जिसे नाइट्रोजन चक्र कहते हैं।

नाइट्रोजन का एक स्थायी हाइड्राइड अमोनिया होता है।

सर्वप्रथम पास्टले ने अमोनिया को क्षारीय वायु कहा था।

अमोनिक को आकृति पिरामिडल होती है।

- अमोनिया का उपयोग-यूरिया निर्माण में, द्रवित अमोनिया का त्रपयो । रफ्रीजरेटरों में बर्फ जमाने के काम में होता है, अमोनियम लवणां क उत्पादन में तथा हाइड्रोजन के उत्पादन में किया जाता है।
- नौसादर का व्यापारिक नाम अमोनियम क्लोराइड (NH₄Cl) है।

सल्फर (Sulphur)—

- भल्कर के अणु में सल्कर के 8 परमाणु परस्पर जुड़कर बलय जैसे संरचना बनाते हैं।
- सल्कर के ऊर्ध्वपातन के फलस्वरूप प्राप्त होने वाले बारीक चूर्ण को गंधक का फूल कहा जाता है।

सल्फर शब्द की उत्पत्ति संस्कृत शब्द शुल्वारि से हुई है।

- शुल्वारि का अर्थ होता है ताँबे का शत्रु सल्फर को "S" से सूचित किया जाता है।
- गंधक सल्फर के परमाणु की बाह्यतम कक्षा में 6 इलेक्ट्रॉन रहता है।

साधारण सल्फर हल्का पीला, भंगुर एवं खेदार होता है।

- घातुओं के साथ सल्फर संयोग कर धातुओं के सल्फाइड का निर्माण करती है।
- लोहे के बुग्रदे और गंधक के चूर्ण के मिश्रण को गर्म करने पर काले रंग का फेरस सल्फाइड बनता है।
- उबलते हुए सल्फर को जल में डाल देने पर प्लास्टिक सल्फर प्राप्त
- प्राकृति रबड् में सल्फर मिश्रित करने की प्रक्रिया बल्कनीकरण कहलाती है।
- अत: रबड़ के वल्कनीकरण में सल्फर का प्रयोग किया जाता है।
- ज्वालामुखी से निकलने वाले गैसों में हाइड्रोजन सल्फाइड गैस उपस्थित रहता है।
- हाइड्रोजन सल्फाइड (H2S) एक रंगहीन गैस है जिसमें सड़े अंडों की तरह तीव्र गंघ होती हैं।
- हाइड्रोजन सल्फाइड एक विषैली गैस है।
- जबिक ज्वालामुखी से निकलने वाले गैसों मुख्यत: SO2 होता है।

सल्फर की उपस्थित पृथ्वी पर 0.05% होता है।

- सल्फर से प्राप्त अत्यधिक महत्वपूर्ण रसायन सल्फ्यूरिक अम्ल है।
- सांद्र सल्फ्युरिक अम्ल 98% शुद्ध होता है तथा इसकी नार्मलता 18M होता है।
- सल्फर का उपयोग-दिया सलाई, बारूद निर्माण में बालों को विशिष्ट आकार के सेट करने के लिए, फफ्रूँदी नाशी में तथा रंग उद्योग में किया जाता है।

फॉस्फोरस (Phosphorus)—

फास्फोरस को 'P' से सुनित किया जाता है।

 यह एक अभिक्रियाशील तत्व है। इसकी कारण फॉस्कोरस प्रकृति में मक्तावस्था में नहीं पाया जाता है।

फास्कोरस नाइट्रोजन का ही अनुरूप है।

- जानवरों की हड्डियों में लगभग 58% कैल्सियम फास्फेट रहता है।
- फास्फोरस के अनेक अपरूप है-येंगनी फास्फोरस, लाल फास्फोरस,
 श्वेत या पीला फास्फोरस, सिन्द्री फास्फोरस तथा काला फास्फोरस।
- श्वेत फास्फोरस को प्रकाश में छोड़ देने पर यह भीरे-भीरे पीला हो जाता है। इसी कारण इसे पीला फास्फोरस भी कहा जाता है।

पीला फास्फोरस में लहसून जैसी गंग होती है।

• यह एक विधैला पदार्थ है।

- पीला फास्फोरस को जल में रखा जाता है, क्योंकि हवा के सम्पर्क से स्वत: जल उठता है।
- श्वेत फास्फोरस अंधेरे में आद्र वायु के सम्पर्क में आकर हल्के पीले रंग का प्रकाश देता है।
- श्वेत फास्फोरस का हवा में दहन स्वत: दहन का उदाहरण है। इसे आतिशवाजी के समान बनाये जो हैं। इसे युद्धकाल में प्रयुक्त होने वाली अग्नि बम एवं धूम्र यम बनाये जाते हैं।

साधारण ताप पर श्वेत फास्फोरस P4 अणु के रूप में पाया जाता है।

फास्फोरस अपरूपता प्रदर्शित करता हैं।

- लाल फास्फोरस रवेत फास्फोरस की अपेक्षा कम क्रियाशील तथा अम्ल विलेय है।
- फास्फोरस प्राणी तथा वनस्पति पदार्थों का आवश्यक अवयव है।

यह हिंद्डयों में D.N.A. में पाया जाता है।

लाल फास्फोरस विषैला नहीं होता है।

लाल फास्फोरस का प्रयोग दिया-सलाई के निर्माण में किया जाता है।

निक फास्फाइड का उपयोग चृहा-विष के रूप में होता है।

सुपर फास्फेट का उपयोग उर्वरक के रूप में खेतों में फसलों की

पैदावार बढाने में किया जाता है।

फास्फोरस हाइड्राइड (PH3) को फॉस्फीन कहा जाता है।

निष्क्रिय गैस (Noble Gases)—

शृन्य वर्ग के तत्वों को निष्क्रिय गैस कहा जाता है।

जहाँ शून्य वर्ग में मात्र 6 तत्व हैं-आर्ग (Ar), निऑन (Ne), हीलियम (He), क्रिप्टॉन (Kr), जीनॉन (Xe) तथा रेडॉन (Rn)। यह सभी निष्क्रिय तत्व है।

 शून्य वर्ग के सभी तत्वों को उत्कृष्ट गैस या अक्रिया गैस भी कहा जाता है।

अक्रिय गैस की खोज रैमजे ने किया था।

- अक्रिय गैस दुर्लभ होने के कारण इसे दुर्लभ गैस भी कहा जाता है।
- अक्रिय गैसों में सबसे भारी रेडॉन (Rn) होता है अत: यह वायुमंडल में नहीं पाया जाता है।
- आर्गन का उपयोग आर्क चेल्डिंग तथा बिजली के बल्ब में भरने के काम में लाया जाता है।
- हीलियम गैस की खोज फ्रैंकलैंड तथा लोकेयर ने किया था।

हीलियम एक बहुत हल्की तथा अञ्चलनशील गैस है।

- यही कारण है इसका उपयोग गुन्त्रारों में भरने में जिससे मौसम संबंधी जानकारी का पता चले तथा कृत्रिम श्वसन में ऑक्सीजन के साथ किया जाता है।
 - द्रव हीलियम का उपयोग निम्न ताप पर प्रयोगों में निम्न तापीय अभिकर्मक के रूप में किया जाता है।
- वायुमंडल में सबसे अधिक मात्रा में पाया जाने वाला अक्रिय गैस आर्गन है।
- अक्रिय गैस में रेडियोसक्रिय तत्व रेडॉन है। इसका उपयोग रेडियोधेरेपी के रूप में कैंसर के इलाज में होता है।

 नियान लैग्य का प्रयोग हवाई अड्डों पर विमान चालकों को संकेत देने के लिए किया जाता है क्योंकि यह प्रकाश कोहरे में अधिक चमकता है।

सर्वाधिक यौगिक बनाने वाला अक्रिय गैस जेनॉन है।

वैसे तत्व जिनमें धातु और अधातु दोनों के गुण पाया जाता है।
 अधातु कहलाता है, जैसे–योरॉन विस्मथ, सिलिकॉन, जर्मेनियम,
 आर्सेनिक, एंटीमनी तथा टेल्युरियम आदि।

अधातुएं : महत्वपृणं तथ्य एक नजर में

अक्रिय गैसों की संयोजकता कितनी होती है — गृन्य

- पाइराइट्स को वायु की उपस्थित में गरम करके सल्कर का निस्तारण करना कहलाता है —भर्जन
- अक्रिय गैसें अन्य तत्वों से अभिक्रिया नहीं करती हैं —इनमें पूर्णत: यग्मित स्थायी कीश होने के कारण

• सभी अम्लों में समान रूप से हाइड्रोजन पाया जाता है —हां

एक परमाणुक प्रकार की गैसें हैं —अक्रिय गैसें

 आग बुझाने में काम आने वाली कीन सी गैस होती है —कार्यन डाइऑक्साइड

• गोताखोर सांस लेते हैं —ऑक्सीजन तथा नाइट्रांजन के

भारी जल का अणु भार होता है—20

क्लोरीन तत्व है —हैलोजन समृह का

• अक्रिय गैस के परमाणु की कक्षा पूर्ण होती है — याहा कक्षा

होसे आर्गन में परमाणुओं को एकत्र रखने का कार्य किस बंध द्वारा किया जाता है —वान्डरवाल यन्ध द्वारा

अक्रिय गैस के लिए Cp/Cv का मान होता है —1.66

- सबसे पहले यह प्रस्ताव रखा कि आवर्त सारणी में शून्य समूह सम्मिलित होना चाहिए —जुलियो टॉमसन ने
- अस्थायी कठोर जल में घुले होते हैं —मैग्नेशियम एवं कैल्सियन के बाइकार्योनेट

शून्य समृह में रेडॉन है —रेडियो-एक्टिव तत्व

भारी-जल की खोज की गयी थी —यूरे द्वारा

विरंजक चूर्ण में प्राप्त क्लोरीन का प्रतिशत होता है —12

 जल की स्थायी कठोरता मिलाने पर दूर की जा सकती है — सोडियन कार्बोनेट के मिलाने पर

हीरा, क्रिस्टलीय रूप है —कार्वन का

 आवर्त सारणी में हाइड्रोजन का स्थान अनिश्चित होता है — इसको इलेक्ट्रॉनीय अवस्था के कारण

अकार्बनिक यौगिक (Inorganic Compounds)

हाइड्रोजन की खोज की थी —कैवेंडिश

सर्वाधिक हल्की गैस है —हाइड्रोजन

भार के हिसाब से 9 भाग जल में हाइड्रोजन का भाग होता है —1
 भाग

सूर्य के कुल भार का भाग सिर्फ हाइड्रोजन का है —70%

 तारा का 70% भाग हाइड्रोजन, 28% हीलियम, 1.5% कार्बन तथा 0.5% नाइट्रोजन तथा निऑन होता है।

सूर्यभी एक तारा है।

सूर्य पृथ्वी का निकटतम तारा है।

हाइड्रोजन है — एक प्रयल अवकारक

• धातु, जिसको हाइड्रोजन का अवशोषक कहा जाता है —पैलेडियम्

 हाइड्रोजन से अमोनिया के निर्माण हेतु उपस्थित आवश्यक है — मॉलिन्डेनम धातु एवं आयरन ऑक्साइड की

 हाइड्रोजन वनस्पति तेल के साथ मिलकर वनस्पति घी बनाती है, इस हेतु आवश्यक है — उच्च दाब

 धातुओं को जोड़ने अथवा काटने हेतु उपयोग होता है—ऑक्सी-हाइड्रोजन फ्लेम का