Course Code:	Course Title	Credit
CSDO7011	Natural Language Processing	3

Pı	Prerequisite: Artificial Intelligence and Machine Learning, Basic knowledge of Python		
Course Objectives:			
1	To understand natural language processing and to learn how to apply basic algorithms in this field		
2	To get acquainted with the basic concepts and algorithmic description of the main language levels:		
	morphology, syntax, semantics, and pragmatics		
3	To design and implement various language models and POS tagging techniques		
4	To design and learn NLP applications such as Information Extraction, Question answering		
5	To design and implement applications based on natural language processing		
C	Course Outcomes:		
1	To have a broad understanding of the field of natural language processing		
2	To design language model for word level analysis for text processing		
3	To design various POS tagging techniques		
4	To design, implement and test algorithms for semantic analysis		
5	To develop basic understanding of Pragmatics and to formulate the discourse segmentation and		
	anaphora resolution		
6	To apply NLP techniques to design real world NLP applications		

Module		Content	Hrs
1		Introduction	4
	1.1	Origin & History of NLP, The need of NLP, Generic NLP System, Levels	
		of NLP, Knowledge in Language Processing, Ambiguity in Natural	
		Language, Challenges of NLP, Applications of NLP.	
2		Word Level Analysis	8
	2.1	Tokenization, Stemming, Segmentation, Lemmatization, Edit Distance,	
		Collocations, Finite Automata, Finite State Transducers (FST), Porter	

		Stemmer, Morphological Analysis, Derivational and Reflectional	
		Morphology, Regular expression with types.	
	2.2	N –Grams, Unigrams/Bigrams Language Models, Corpora, Computing the	
		Probability of Word Sequence, Training and Testing.	
3		Syntax analysis	8
	3.1	Part-Of-Speech Tagging (POS) - Open and Closed Words. Tag Set for	
		English (Penn Treebank), Rule Based POS Tagging, Transformation Based	
		Tagging, Stochastic POS Tagging and Issues -Multiple Tags & Words,	
		Unknown Words.	
	3.2	Introduction to CFG, Hidden Markov Model (HMM), Maximum Entropy,	
		And Conditional Random Field (CRF).	
4		Semantic Analysis	8
	4.1	Introduction, meaning representation; Lexical Semantics; Corpus study;	
		Study of Various language dictionaries like WordNet, Babelnet; Relations	
		among lexemes & their senses -Homonymy, Polysemy, Synonymy,	
		Hyponymy; Semantic Ambiguity	
	4.2	Word Sense Disambiguation (WSD); Knowledge based approach (Lesk's	
		Algorithm), Supervised (Naïve Bayes, Decision List), Introduction to	
		Semi-supervised method (Yarowsky), Unsupervised (Hyperlex)	
5		Pragmatic & Discourse Processing	6
	5.1	Discourse: Reference Resolution, Reference Phenomena, Syntactic &	
		Semantic constraint on coherence; Anaphora Resolution using Hobbs and	
		Cantering Algorithm	
6		Applications (preferably for Indian regional languages)	5
	6.1	Machine Translation, Information Retrieval, Question Answers System,	
		Categorization, Summarization, Sentiment Analysis, Named Entity	
		Recognition.	
	6.2	Linguistic Modeling – Neurolinguistics Models – Psycholinguistic Models –	
		Functional Models of Language – Research Linguistic Models- Common	
		Features of Modern Models of Language.	
		-	

Text	Textbooks:		
1	Daniel Jurafsky, James H. and Martin, Speech and Language Processing, Second Edition,		
	Prentice Hall, 2008.		
2	Christopher D.Manning and HinrichSchutze, Foundations of Statistical Natural Language		
	Processing, MIT Press, 1999.		
Refe	References:		
1	Siddiqui and Tiwary U.S., Natural Language Processing and Information Retrieval, Oxford		
	University Press, 2008.		
2	Daniel M Bikel and ImedZitouni — Multilingual natural language processing applications: from		
	theory to practice, IBM Press, 2013.		
3	Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second		
	Edition, Chapman and Hall/CRC Press, 2010.		

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise of total six questions.
- 2 All question carries equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4 Only Four question need to be solved
- In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus

Useful Links