CS3110 Formal Language and Automata

Tingting Chen
Computer Science
Cal Poly Pomona

Example PDA

• PDA M, L(M)={aⁿbⁿ: n≥0}

Input

$$a, \lambda \rightarrow a \qquad b, a \rightarrow \lambda$$

$$q_0 \qquad \lambda, \lambda \rightarrow \lambda \qquad q_1 \qquad b, a \rightarrow \lambda \qquad \lambda, \$ \rightarrow \$ \qquad q_3$$

Input

Input

Input

Input

Input

Input

PDA – Accepting a string

- A string is accepted if there is a computation such that
 - All the input is consumed
 - And the last state is an accepting state

 At the end of computation, we do not care about the stack contents. The stack can be empty at the last state.

PDA – Rejecting a string

- A string is rejected if there is no computation such that
 - All the input is consumed
 - And the last state is an accepting state

 At the end of computation, we do not care about the stack contents.

Input a a b Stack

Input

PDA -- Example

Guess the middle of string

$$L(M)=\{vv^R: v \in \{a,b\}^*\}$$

How the PDA executes, with input string abbb?

Exercise: L(M)=?

$$a, \lambda \rightarrow a$$

$$b, a \rightarrow \lambda$$

$$q_0$$

 $L(M)=\{w \in \{a,b\}^*: \text{ every prefix } v, n_a(v) \ge n_b(v)\}$

Push Strings

Example

Exercise: L(M)=?

Pushdown Automaton: Formal Definition

A nondeterministic pushdown automaton (NPDA) is a 7-tuple

Q is a finite set of states

 Σ is the input alphabet (a finite set)

 Γ is the stack alphabet (a finite set)

 $\delta : Q \times (\Sigma \cup {\lambda}) \times \Gamma \rightarrow \text{(finite subsets of } Q \times \Gamma^*)$

is the transition function

 $q_0 \in Q$ is the start state

 $z \in \Gamma$ is the initial stack symbol

 $F \subseteq Q$ is the set of accepting states