

FH_'W-S

Behavior of Embedded Systems

Part B: State-based and Interaction-based Behavior

3

Interface Automata

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

Read: Interface Automata by Luca de Alfaro and Thomas A. Henzinger

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

Interface Automata Communicate

(a) Interface automaton User

(b) Interface automaton Comp

[Alfaro & Henzinger 2001]

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

Product of Two Automatons

(c) $User \otimes Comp$. The illegal state of the product is depicted as a square.

[Alfaro & Henzinger 2001]

FH-W-S University of Applied Science Würzburg-Schweinfurt

Legal Environment

(b) $User \otimes Comp \otimes Channel$

[Alfaro & Henzinger 2001]

FH-W-S University of Applied Sciences Würzburg-Schweinfurt

Model a Traffic Light using Interface Automata

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

What are Advantages of Interface Automata?
What are Disadvantages?

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

Sequence Diagrams

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

-1

Interaction-based Behavior

Sequence Diagrams are commonly used to

- Model **Scenarios** (Requirements Engineering)
- Define the **Interaction-based Behavior** of Embedded Systems

Sequence Diagrams do NOT focus on states (almost have no states at all)

Describe Interactions (i.e. message or signal exchange) between systems or components

FH-W-S University of Applied Sciences Würzburg-Schweinfurt

Synchronous vs. Asynchronous Communication

Main assumptions of asynchronous data exchange: Sending and receiving of a message are different events.

Asynchronous Communication

Message b is sent before message c, but message c can be received before message b is received. Thus, there are several possible orders of events:

1.)
$$s(b) < r(b) < s(c) < r(c)$$

2.)
$$s(b) < s(c) < r(b) < r(c)$$

3.)
$$s(b) < s(c) < r(c) < r(b)$$

FH:W-S University of Applied Sciences Würzburg-Schweinfurt

15

Visual vs. Causal Order

Causal order means, <u>events</u> are <u>not ordered according to their visual</u> <u>arrangement</u>, <u>but according to their logical occurrence</u>.

Visual Order:

a < b < c < d

Causal Order:

(a < d) & (b < d) & (b < c)

Following possibilities arise:

- 1.) a < b < c < d
- 2.) b < a < c < d
- 3.) a < b < d < c
- 4.) b < a < d < c
- 5.) b < c < a < d

FH:W-S University of Applied Sciences Würzburg-Schweinfurt

Model the Interaction-based Behavior with Sequence Diagrams of:

- A Cobot
- A Transport Robot

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

2

Model the Interaction-based Behavior of a Traffic Light Controller with

- Interface Automata
- Sequence Diagrams (Take care for consistency)

FHIW-S University of Applied Sciences Würzburg-Schweinfurt