FGI-1 – Formale Grundlagen der Informatik I

Logik, Automaten und Formale Sprachen Aufgabenblatt 12: Entscheidbarkeit

Präsenzaufgabe 12.1:

- 1. Erläutern Sie den Unterschied zwischen Entscheidbarkeit und Aufzählbarkeit!
- 2. Erläutern Sie den Unterschied zwischen Auf- und Abzählbarkeit!
- 3. Nennen Sie jeweils ein Beispiel für eine entscheidbare, nicht entscheidbare, aufzählbare und nicht aufzählbare Sprache. Ordnen Sie Ihre Sprachen auch unter dem jeweils anderen Begriff ein.

Präsenzaufgabe 12.2:

- 1. Die Familie der aufzählbaren Sprachen: $\mathcal{R}e$ ist in Bezug auf Vereinigung abgeschlossen. Alice hat folgende Konstruktionsskizze angegeben, um dies nachzuweisen. Bob meint: "Ich ahne, was Du meinst. Das klappt aber so nicht".
 - (a) Erläutern Sie die Konstruktionsskizze.
 - (b) Was könnte Bob meinen?

2. Ist Alices Konstruktion, die zeigen sollte, dass $\mathcal{R}e$ bzgl. Vereinigung abgeschlossen ist, korrekt für die Familie der entscheidbaren Sprachen $\mathcal{R}ec$?

Präsenzaufgabe 12.3: Wir definieren die Sprache

 $L := \{ \langle M, w, n \rangle \mid \text{ es gibt für die NTM } M \text{ mindestens } n \text{ Erfolgsrechnungen auf dem Wort } w \}.$

Zeigen Sie, dass die Sprache L nicht entscheidbar ist, indem sie ein unentscheidbares Problem auf L reduzieren.

Übungsaufgabe 12.4: Seien L_1, \ldots, L_k Sprachen über dem Alphabet Σ mit den folgenden Eigenschaften:

von 6

- Die Sprachen sind disjunkt: Für alle $i \neq j$ gilt $L_i \cap L_j = \emptyset$.
- $L_1 \cup \ldots \cup L_k = \Sigma^*$, d.h. jedes Wort ist in einer der Sprachen.
- Jede Sprache L_i , i = 1..k ist aufzählbar.

Zeige, dass jede Sprache L_i , i = 1..k entscheidbar ist.

Hinweis: Es muss nicht das Zustandsdiagramm einer L_i entscheidenden TM angegeben werden. Es reicht, die Arbeitsweise der entscheidenden TM zu beschreiben.

Übungsaufgabe 12.5: Wir definieren die Sprache

von 6

 $L_{\epsilon} := \{ \langle M \rangle \mid \text{ die TM } M \text{ halt auf dem leeren Wort } \epsilon \}$

- 1. Zeigen Sie, dass die Sprache L_{ϵ} nicht entscheidbar ist, indem sie ein unentscheidbares Problem auf L_{ϵ} reduzieren.
- 2. Erläutern Sie Ihre Konstruktion.

Bonusaufgabe 12.6: Sei $f: \Sigma^* \to \Lambda^*$ eine totale(!) Funktion, von der wir zunächst nicht annehmen, dass sie Turing-berechenbar ist.

von 6

Sei \$ ein Zeichen, dass weder in Σ noch in Λ vorkommt. Definiere $L_f := \{w\$u \mid w \in \Sigma^*, u = f(w)\}.$

- 1. Zeigen Sie: Wenn $f: \Sigma^* \to \Lambda^*$ eine Turing-berechenbare Funktion ist, dann kann man eine DTM A konstruieren, die L_f akzeptiert und die auf allen Eingaben terminiert.
 - Es reicht aus, wenn Sie die Arbeitsweise von A beschreiben.
 - Hinweis: Erläutern Sie zunächst, dass es eine DTM B_f geben muss, die f berechnet. Konstruieren Sie mit Hilfe von B_f die DTM A. Konstruieren Sie A als DTM mit zwei Spuren.
- 2. Sei A eine DTM, die L_f akzeptiert und auf allen Eingaben stets terminiert. Zeigen Sie, dass f Turing-berechenbar ist, indem Sie eine DTM B_f konstruieren, die $f: \Sigma^* \to \Lambda^*$ berechnet. Es reicht aus, wenn Sie die Arbeitsweise von B_f beschreiben.
 - Hinweis: Verwenden Sie drei Spuren und enumerieren Sie alle Teilworte $u \in \Lambda^*$ lexikalisch auf.

Version vom 24. Juni 2012

Bisher erreichbare Punktzahl: 72