Monitoraggio della guida di motocicli per mezzo di un sistema di visione multicamera con tecniche di fusione delle informazioni e loro rappresentazione virtuale per mezzo di un motore grafico 3D

Dipartimento di Informatica Corso di Laurea in INFORMATICA

Relatore: Prof. Davide Bacciu

Co-Relatori: Ing. Marco Righi Dott. Giuseppe Riccardo Leone

Presentata da: Anthony Baiamonte

Il progetto Al-RIDE

Progetto AI-RIDE (Artifical Intelligence driven Riding Distribuited Eye) , open call del più ampio progetto Europeo VEDLIOT (H2020 ICT-56).

Obiettivo. Realizzazione di un sistema di verifica standard, misurabile e imparziale dell'esame di guida per motocicli, che vada oltre il sistema corrente di promosso/bocciato fornendo indicazioni sui tipici errori d'esame e procedure di guida non sicure. Il sistema non vuole sostituirsi all'esaminatore umano ma essere di supporto allo stesso.

Il tirocinio si è svolto all'ISTI-CNR (Istituto di Scienza e Tecnologie dell'Informazione) per la durata di circa 3 mesi e mezzo.

Struttura della prova d'esame

- Pista Low speed Balance (LSB), pensata per dimostrare le abilità in spazi stretti a basse velocità.
- Il circuito va percorso in un tempo minimo di 15 secondi senza incorrere nei seguenti errori:
 - toccare uno o più coni
 - mettere un piede a terra
 - sbagliare lo slalom
 - uscire dal percorso
 - guidare in modo irregolare

Pista LSB presso l'autoscuola Gerardo di Pontedera.

Telecamera L2, ripresa principale.

Telecamera L1, ripresa ausiliaria.

Architettura generale del sistema

La parte colorata rappresenta il lavoro svolto in questo tirocinio: i rettangoli viola indicano le funzionalità sviluppate e quelli rossi le eventuali penalità riscontrate

Omografia

Nella prima immagine, la traiettoria della moto è rappresentata in **coordinate immagine**. Nella seconda invece sono **coordinate nel mondo reale** con l'origine del piano posta in alto a sinistra.

- Trasformazione applicata per ottenere una vista topdown della pista.
- La matrice di Omografia viene calcolata usando delle corrispondenze di punti tra 6 coppie. Non c'è un limite fissato. Più è meglio.
- Metodi per la trasformazione forniti dalla libreria OpenCV, sia per proiettare l'immagine che per la traiettoria.

Fusione delle informazioni

- Pixel per inch (ppi): quantità di pixel per una data area dell'immagine.
- Minore ppi implica minore precisione nella misura.
- Maggiore ppi implica maggiore precisione nella misura.
- Come viene calcolata l'informazione migliore?
 - Sufficiente utilizzare la telecamera che ha un ppi maggiore per quella posizione.

Filtro di Kalman

- E' un modello matematico in grado di prevedere la posizione futura della moto basandosi sul percorso già fatto, mitigando eventuali errori dovuti a dati rumorosi, falsi positivi o negativi.
- Il modello è strutturato in due fasi: predizione e aggiornamento.
- Implementazione fornita dalla libreria OpenCV.

Traccia rossa, risultato dell'applicazione del filtro

Spline e armonizzazione dei dati

- Le spline sono funzioni definite a tratti, utilizzate in applicazioni che richiedono l'interpolazione o l'approssimazione dei dati.
- **Spline approssimanti.** Cercano di modellare una curva che si avvicini ai dati senza necessariamente passare per gli stessi. Preziosa proprietà quando i dati contengono rumori o incertezze.
- Tale curva è utilizzata per la rappresentazione virtuale della prova in Unreal Engine.

I metodi usati per la generazione della spline sono forniti dalla libreria ALGLIB.

Rappresentazione virtuale per mezzo di UE5

Segnalazione degli errori

• La prima verifica da fare sulla traiettoria, è quella di controllare la presenza di eventuali errori commessi dal guidatore; quelli che il sistema è in grado di riconoscere sono:

- Cono toccato;
- Tempo impiegato
- Moto ferma
- Fuori pista
- Slalom sbagliato;

Analisi della traccia

Uscita dalla pista

Errore in fase di Slalom

Punteggio del percorso (Sperimentale)

• L'obiettivo dell'esame di guida è quello di **verificare** che l'esaminato possegga le capacità necessarie per mettersi alla guida di un veicolo senza rappresentare un pericolo per gli altri.

Abbiamo provato a **codificare l'idoneità alla guida dell'esaminato** definendo un **sistema di punteggi**, e fornendo all'esaminatore un **sistema di confronto dei percorsi** che va al di là del semplice esito promosso/bocciato.

I punteggi che descrivono un percorso si basano su diverse caratteristiche:

- Somiglianza della traiettoria dell'esaminato con quella dell'istruttore;
- Tempo di esecuzione del percorso;
- Gestione della velocità e accelerazione del motociclo.

$$punteggio = \frac{|val_istruttore|}{|val_istruttore| + (|val_istruttore - val_esaminato|)}$$

$$punteggio_finale = \frac{1}{n} \cdot \sum_{i=1}^{n} punteggio_i \cdot \alpha_i;$$

Esempio: prova positiva

	Esaminatore	Esaminato	Punteggio
Area percorso	202.368 m^2	$201.124m^2$	0.993894
Coefficiente correlazione x		0.941088	0.941088
Coefficiente correlazione y		1	1
Tempo	18.5602 s	22.48s	0.825621
Velocità massima	571.41 cm/s	743.506 cm/s	0.768539
Velocità minima	27.10 cm/s	9.79538 cm/s	0.610291
Velocità media	340.20 cm/s	281.2 cm/s	0.852187
Deviazione Standard velocità	100.36 cm/s	102.899 cm/s	0.975282
Punteggio finale			

Errore: esecuzione troppo veloce

	Esaminatore	Esaminato	Punteggio
Area percorso	202.368 m^2	$201.401m^2$	0.995244
Coefficiente correlazione x		0.995709	0.995709
Coefficiente correlazione y		0.996716	0.996716
Tempo	18.5602 s	12.82 s	0.763784
Velocità massima	571.41 cm/s	1158.15 cm/s	0.493384
Velocità minima	27.10 cm/s	65.79 cm/s	0.411908
Velocità media	340.20 cm/s	468.62 cm/s	0.725976
Deviazione Standard velocità	100.36 cm/s	219.88 cm/s	0.457851
Punteggio finale			

Errore: fuori pista

	Esaminatore	Esaminato	Punteggio
Area percorso	$202.368 \ m^2$	$208.725m^2$	0.969544
Coefficiente correlazione x		0.974724	0.974724
Coefficiente correlazione y		0.998567	0.998567
Tempo	18.5602 s	19.9003 s	0.932663
Velocità massima	571.41 cm/s	718.886 cm/s	0.79486
Velocità minima	27.10 cm/s	13.06 cm/s	0.658718
Velocità media	340.20 cm/s	331.367 cm/s	0.974668
Deviazione Standard velocità	100.36 cm/s	98.3218 cm/s	0.980135
Punteggio finale			

Errore: moto ferma

	Esaminatore	Esaminato	Punteggio
Area percorso	$202.368 \ m^2$	$202.594 \ m^2$	0.998882
Coefficiente correlazione x		0.988416	0.988416
Coefficiente correlazione y		0.984202	0.984202
Tempo	18.5602 s	22.3003 s	0.832286
Velocità massima	571.41 cm/s	1071.24 cm/s	0.533413
Velocità minima	27.10 cm/s	0.00228882 cm/s	0.500021
Velocità media	340.20 cm/s	230.788 cm/s	0.756642
Deviazione Standard velocità	100.36 cm/s	164.684 cm/s	0.609385
Punteggio finale			

Errore: slalom sbagliato

	Esaminatore	Esaminato	Punteggio
Area percorso	$202.368 \ m^2$	199.659 m^2	0.986792
Coefficiente correlazione x		0.984222	0.984222
Coefficiente correlazione y		0.993577	0.993577
Tempo	18.5602 s	16.9402 s	0.919722
Velocità massima	571.41 cm/s	2100.21 cm/s	0.272074
Velocità minima	27.10 cm/s	11.1735 cm/s	0.629838
Velocità media	340.20 cm/s	347.571 cm/s	0.978821
Deviazione Standard velocità	100.36 cm/s	176.159 cm/s	0.56969
Punteggio finale			

Rappresentazione virtuale per mezzo di UE5

Conclusioni

Si è realizzato un sistema in grado di ricostruire lo scenario dell'esame, calcolando parametri di velocità e tempo e segnalando eventuali errori.

Si è teorizzato e implementato un sistema di punteggio per giudicare l'abilità di guida dell'esaminato.

Si è costruito un Digital Twin dello scenario d'esame, mediante il motore grafico Unreal Engine5.

Dalle sperimentazione mostrate si evince come il sistema raggiunga tutti gli obiettivi fissati con un buon grado di soddisfazione.

Il sistema funzionante è stato mostrato in una demo il 14 giugno tenutasi presso il siti di test a Pontedera.

Rappresentazione virtuale per mezzo di UE5

Rappresentazione virtuale per mezzo di UE5

Errore: cono toccato

