Graduate Cosmology Spring 2025 Homework 1

due by 11:59pm on Wednesday, February 5th 2025.

Problem 1: conformal coordinates and scalar fields [17 points]

- 1) In class we computed the Christoffel symbols of the FLRW metric in (t,x^i) coordinates, i.e. with $x^0=t$ such that the metric is $ds^2=-dt^2+a^2(t)\gamma_{ij}(\vec{x})dx^idx^j$. Compute the Christoffel symbols of the FLRW metric in conformal coordinates (η,x^i) , i.e. with $x^0=\eta$, such that $ds^2=a^2(\eta)[-d\eta^2+\gamma_{ij}(\vec{x})dx^idx^j]$. To keep your notation compact, use a prime to denote partial derivatives with respect to η , i.e. $f'\equiv\frac{\partial f}{\partial\eta}$. [0.5 point per coefficient; 3 points total]
- 2) Explicitly write the geodesic equation $P^{\mu}\nabla_{\mu}P^{\nu}=0$ for a massless particle and show that it implies that the energy observed by comoving observers $E_{\rm obs}=-U_{\rm obs}^{\mu}P^{\mu}$ scales as $E_{\rm obs}\propto 1/a(\eta)$. Make sure to explicitly write the 4-velocity $U_{\rm obs}^{\mu}$ of comoving observers in conformal coordinates. [2 points for comoving observer's 4-velocity, 2 points for proof that $E_{\rm obs}\propto 1/a$; 4 points total]

For the remainder of this Problem we specialize to spatially flat FLRW spacetime.

- 3) A free, massless scalar field ϕ satisfies the equation of motion $\nabla_{\mu}\nabla^{\mu}\phi \equiv g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = 0$. Write the equation of motion of such a scalar field in FLRW as a partial differential equation for $\phi(\eta, \vec{x})$ in terms of conformal time and cartesian comoving coordinates. Hint: the covariant derivative of a scalar field is equal to its partial derivative, but the covariant derivative of a vector field (such as $\nabla^{\mu}\phi \equiv g^{\mu\nu}\nabla_{\nu}\phi$) is not just its partial derivative... [4 points]
- 4) The stress-energy tensor of a free massless scalar field is $T_{\mu\nu} = \nabla_{\mu}\phi\nabla_{\nu}\phi \frac{1}{2}g_{\mu\nu}(\nabla_{\lambda}\phi\nabla^{\lambda}\phi)$. Recall that the energy density as measured by observers with 4-velocity U^{μ}_{obs} is $\rho_{\text{obs}} = U^{\mu}_{\text{obs}}U^{\nu}_{\text{obs}}T_{\mu\nu}$. In addition, the observed pressure is $P_{\text{obs}} = \frac{1}{3}(T^{\mu}_{\mu} + \rho_{\text{obs}})$, where $T^{\mu}_{\mu} \equiv g^{\mu\nu}T_{\mu\nu}$. Compute the energy density and pressure of a free massless scalar field as measured by comoving observers. Then show that, if the field is homogeneous (i.e. independent of spatial coordinates), $P_{\text{obs}} = \rho_{\text{obs}} \propto 1/a^6$. [1 point for ρ_{obs} , 2 points for P_{obs} , 1 point for homogeneous limit; 4 points total]
- 5) Show that the conservation of the stress-energy tensor of a free massless scalar field implies the equation of motion given in part 3). Hint: for scalar fields, covariant derivatives commute, $\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\nu}\nabla_{\mu}\phi$. [2 points].

Problem 2: Einstein tensor in FLRW [4 points]

The nonvanishing components of the Einstein tensor of the homogeneous and isotropic FLRW spacetime with (t, x^i) coordinates (and metric $ds^2 = -dt^2 + a^2(t)\gamma_{ij}(\vec{x})dx^idx^j$) are

$$\begin{split} G^0_{0} &= -3\left[\left(\frac{\dot{a}}{a}\right)^2 + \frac{k}{a^2R_0^2}\right], \\ G^i_{j} &= -\left[2\frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2 + \frac{k}{a^2R_0^2}\right]\delta^i_j, \end{split}$$

where $k=0,\pm 1$ depending on whether 3D spatial slices are flat, spherical or hyperbolic, and R_0 is the constant radius of curvature in the latter two cases. Show that the Einstein tensor satisfies the contracted Bianchi identity, $\nabla_{\mu}G^{\mu}_{\ \nu}=0$. Recall that for a mixed-index tensor, $\nabla_{\lambda}T^{\alpha}_{\ \beta}=\partial_{\lambda}T^{\alpha}_{\ \beta}+\Gamma^{\alpha}_{\lambda\sigma}T^{\sigma}_{\ \beta}-\Gamma^{\sigma}_{\lambda\beta}T^{\alpha}_{\ \sigma}$.

Problem 3: Einstein's biggest blunder [5 points]

Problem 2.8 of Baumann. 1 point for question 1, 2 points for question 2, 2 points for question 3.

Problem 4: The Big Rip [4 points]

Suppose the Universe is spatially flat and made entirely of an ideal fluid with equation of state $P = w\rho$, with constant w < -1. Show that the scale factor diverges at a finite time t_{rip} . Express $t_{\text{rip}} - t_0$ in terms of H_0 and w.