

Python w świecie aparatów słuchowych

Marta Potocka współautorzy: Michał Partyka, Bartłomiej Krztuk

PyStok – 19.12.2018

O mnie

- Samsung analiza logów telekomunikacyjnych C#
- IGT oprogramowanie hosta zbierającego dane z Lotto C, Python
- Sonova toolchain wspomagający tworzenie oprogramowania na aparaty słuchowe – Python, Matlab

1/2/2019 Footer 3

- Jak działa słuch?
- 2 Aparaty słuchowe i implanty ślimakowe
- 3 Co znajduje się wewnątrz aparatu
- 4 Co w tym wszystkim robi Python?

Jak działa słuch?

Mózg

Audiogram

Uszkodzenia słuchu - statystyki

- naturalny ubytek:
 - 0.5dB/rok (18 do 50 lat)
 - 1dB/rok (powyżej 50 lat)
- ~33% ludzi po 60 roku życia ma ubytek słuchu
- każde 10dB ubytku słuchu podnosi ryzyko Alzheimera o 20%
- średni ubytek słuchu podnosi ryzyko demencji o 50%

Jak działa aparat słuchowy – przepływ sygnału

Jak działa implant ślimakowy?

Implant ślimakowy

Jak działa implant ślimakowy?

- 1. Mikrofon
- Procesor sygnałowy,
 przetwarzanie,
 czyszczenie,
 wzmacnianie,
 beamforming
- 3. System transmisyjny
- 4. Elektrody w ślimaku

Cochlear Implant Technology

Cochlear Implants

This video contains a simulation of cochlear implants with a various number of channels on speech and music.

Audio from http://www.sens.com/helps/

Co znajduje się wewnątrz aparatu?

Hybrid – serce aparatu słuchowego

- DSP, Controller, Wireless Chip, Bluetooth, Power Management, Memory
- ultra niski pobór energii
- pamięć: ~7.5 Mb ~1MB
- procesory: 5.64 MHz
- 1.46mm x 5.51mm x 3.46mm

Przetwarzanie dźwięku

Oprogramowanie aparatu/implantu

- Kontrola urządzenia
 - Zarządzanie energią, zarządzanie ładowaniem
 - Obsługa komend użytkownika (zmiana programu, regulacja głośności)
 - Obsługa parowania z innymi urządzeniami (telefony, telewizory, komputery)
- Klasyfikator otoczenia dźwiękowego
- Przetwarzanie dźwięku, wzmacnianie konkretnych częstotliwości
- Komunikacja między aparatami, beam-forming (kierunkowy odbiór syngału)
- Współpraca z oprogramowaniem do dopasowania charakterystyki aparatu do wady słuchu

Co w tym wszystkim robi Python?

Analiza przepływu danych w DSP

Analiza przepływu danych w DSP

Parametry kompilacji

- Kilkaset komponentów logicznych w kodzie
- Kompilację każdego można sparametryzować na kilkanaście sposobów
- Różnice w ilości cykli procesora potrzebnych do wykonania kodu
- Optymalizacja → zmniejszenie liczby cykli → zmniejszenie częstotliwości pracy → zwiększenie czasu działania na baterii
- Osiągnięty zysk około 4%

Migracje

- Migracja Matlab → Python
 - Kod bardziej czytelny, łatwiej testowalny
- Przygotowanie do migracji Python2 → Python3

Migracja SVN do Git

- skrypt migrujący SVN do Gita (Jenkins)
 - SVN -> repo przejściowe -> git
 - Przepisywanie tagów, id rewizji

Migracja SVN do Git

- Abstrakcja kontroli wersji używana przy buildach, które obecnie odwołują się do obu repozytoriów
 - Wywoływanie odpowiedniej komendy przez subprocess

Jenkins pipeline conda environment

 Instalowanie odpowiedniej wersji Pythona + requirements na slavach które budują kod w ramach Cl

```
stage('Creating Envrionment') {
    steps {
        sh """#!/bin/bash
        conda env update --quiet --prune --file environment.yml --name python2_dsp-g30-migration
        source activate python2_dsp-g30-migration
        pip install -U -r requirements.txt
        """
}
```


py2exe

- Tworzenie windowsowych plików wykonywalnych
- Łatwa dystrybucja narzędzi
- Brak potrzeby instalowania Pythona i bibliotek u użytkownika końcowego

Dziękuję!

Pytania?

Kontakt: <u>marta.m.potocka@gmail.com</u> marta.potocka@sonova.com