Building Information Modeling Applications

Faculty: Chuck Eastman

Time: TBD

Faculty: Chuck Eastman 0r TBD

Location: TBD

Overview:

Building Information Modeling (BIM) is the bringing together of both new technologies -- for representing buildings and exchanging data –and new processes that apply to all phases of the building lifecycle. It applies directly and directly affects architectural design, contracting and construction, fabrication and facility operation and management. It is revolutionizing practices in each of these areas, and as a result, provides new opportunities for innovation, both in research and new practices in the field. It is also affecting building procurement and contracting, such as IPD, leading to additional efficiencies and benefits.

This course is meant to be an intellectual immersion into the technologies and practices involved in BIM, and new issues it introduces. It will survey the technologies and their application in practice today, and also projected technologies that are expected to emerge in the near future. It considers BIM from multiple perspectives: designer, engineer, contractor, fabricator, owner and the issues associated with these roles. Because BIM is transformational, many aspects of its use have not been sorted out nor its full implications known. We will explore these in some detail, to project what may be some of the impacts of its wide adoption.

This course invites participation from third and fourth year Undergraduate Students in all areas related to architecture and building construction. The course consists of a series of lectures on the technologies of BIM, the merging new processes, and the expected future developments that BIM allows. Different applications of BIM will also receive attention. A number of case studies will be reviewed and one written.

The course will involve quizzes and one paper dealing with different aspects of BIM. One is a case study of a BIM project, stressing new uses.. Bi-weekly reading assignments and homework is also involved.

Text: **Building Information Modeling Handbook,** by Eastman, Teicholz, Sacks and Liston.,2nd Edition, Wiley, 2011. Must acquire

Learning Outcomes

Learn the new conceptual framework for BIM, including:

Parametric modelingInteroperability

New capabilities regardind model enchangement and checking

Review 5-7 new workflows facilitated by BIM

- Undertake case study to gain experience in BIM application

Grade Determination:

Technology and work flow project 40%
Case study 40%
Quizzes 20%

Building Information Modeling

- The course involves the following work:

- reading, as assigned

occasional one page reports, answering questions from book

two papers:

- a case study of major BIM project

- the development of a new workflow facilitated by BIM

- Most readings (not all) will be from BIM Handbook, Eastman, Teicholz, Sacks, Liston (BIMH)

CLASS OUTLINE Assignments, Reading (not final)

Jan. 10	1. Overview of course; grading criteria,	Syllabus
	Reading. Background of students and of	Reading: BIMH: Chapter One;
	Eastman. What is BIM, what are some	Case Study: Sutter Medical Center
	related terms?	
Jan.12	2. Why is BIM having such a large impact on	
	AEC fields? Where did BIM come from? How	
	is happening changing the industry? What	
	aspects of the construction industry are	
	impacted?	
Jan.17	3. What are improvements – in design, in	Reading: BIMH: Chapter Two
	construction, in project delivery? How are	Case study:One Island East - Hongkong
	we to assess BIM?	One page report assignment
Jan.19	4. What is parametric object modeling? What	
	do BIM tools do that is different? from	
	CAD? How are BIM tools different from	
	parametric modeling tools in manufacturing?	
	Typed and typeless objects; modeling	
	geometry vs. objects	
Jan.24	5. How is intelligence built into a parametric	One page report due
	modeler? Some examples of embedded	One page report assignment given out
	intelligence in design and fabrication.	
Jan. 26	6. What is interoperability? Why is BIM	Reading: BIMH: Chapter Three
	interoperability different from DXF? Why is it	Project Assignment One distributed-
	hard? Examples of interoperability and its	workflows –due midterm
	limitations. How to prepare and organize a	
	case study	
Jan. 31	7. What is IFC? How is it organized? What	One page report assignment given out

Arch 4xxx – CE BIM Applications

	are its strangths and weaknesses? Why is	One nage venew due
	are its strengths and weaknesses? Why is object exchange difficult?	One page report due
Feb.2	8. What is the National BIM Standard? What	
1 00.2	is its rationale? and practices? Examples.	
	How is it addressing the interoperability	
	problem?	
Feb7	9. Where is interoperability going? Model	One page report due
	View Concepts. BIM Environments and BIM	Reading: BIMH: Chapter Five
	and cloud servers. Synchronization	Case Study: Helsinki Music Centre
Feb.9	9. BIM for architects: how does it affect	
	designers? What are its potential impacts in	
	concept design? What are its impacts on	
	design cognition and design exploration?	
Feb.14	10. Some impacts of BIM for the evolution of	One page report due
	design practice. Examples of BIM for	One page report assignment given
	performance-based design. Why is it hard?	
Feb.16	11. Integration of energy analysis for early	
	concept design; example for use in first	
	project paper	
Feb.21	12. Other means to embed intelligence in	Reading: Rule-based system paper
	systems: BIM Rule checking systems; Use of	McGraw-Hill Survey on BIM, 2009
	BIM in building code checking; rule-based	One page report due
	systems	One page report assignment given
Feb.23	No class	Reading: McGraw-Hill Survey on BIM, 2009
Mar.1	13. BIM for contractors ; applications,	Reading: BIMH Chapter Six
	benefits, ROI; major benefits; changes of	Wisconsin BIM Guidelines
	practice	One page report assignment given
Mar.3	14. BIM contractor applications: clash	
	detection, cost estimating, 4D modeling	
Mar8	15. Lean construction: what is it; what are its	Reading: Lean Principles
	priorities and procedures? What are its	
	benefits? How is lean related to BIM?	
Mar.10	16. BIM for Engineers : analytical models	Project Assignment One due
	and their management; deriving analytical	Presentations in class of Workflows
	models; model synchronization; workflows	
Mar.15	17. Workflow assessment presentations	
Mar.17	18. Workflows for engineers; different roles at	
	difference points in process; level of detail	Case Study: Crusell Bridge
	Spring Break	
Mar.27		
Mar 29	19 BIM for owners: What is the owner's	Reading: BIMH Chapter Four
	role in BIM? What uses of BIM should an	
	owner or organization consider? Examples	
ļ	from universities, hospitals, other owners	
Apr. 3	20. BIM in facility management; BIM and	
	rehabilitation: as built model capture; laser	
	scanning; logistical issues;	
Apr. 5	21 Workflow analysis; how is collaboration	
	done? How will it be done in the future?	Doodings DIMII Charter Elab
Apr.10	25. Future developments in architectural	Reading: BIMH Chapter Eight
	design and construction: commoditization,	
	performance-based design; future	
A 10	developments in design collaboration,	
Apr. 12	22. Future development in construction	
	practices; Lean construction: what is it; what	

Arch 4xxx – CE BIM Applications

	are its priorities and procedures? What are its	
	benefits? How is lean related to BIM?	
Apr. 17	23.	
Apr. 19	24.	
Apr. 24	25. Case study presentations	
Apr. 26	26. Class review – the future	Final Project Assignment due

Arch 4xxx – CE BIM Applications