2201. Пусть функция f(x) абсолютно интегрируема на сегменте [a, b], т. е. интеграл $\int_a^b |f(x)| dx$ существует. Является ли эта функция интегрируемой на [a, b]? Рассмотреть пример:

$$f(x) = \begin{cases} 1, & \text{если } x \text{ рационально;} \\ -1, & \text{если } x \text{ иррационально.} \end{cases}$$

2202. Пусть функция f(x) интегрируема на [a, b] и $A \le f(x) \le B$ при $a \le x \le b$, а функция $\phi(x)$ определена и непрерывна на сегменте [A, B]. Доказать, что функция $\phi(f(x))$ интегрируема на [a, b].

2203. Если функции f(x) и $\phi(x)$ интегрируемы, то обязательно ли функция $f(\phi(x))$ также интегрируема?

Рассмотреть пример:

$$f(x) = \begin{cases} 0, & \text{если } x = 0; \\ 1, & \text{если } x \neq 0, \end{cases}$$

и ф (x) — функция Римана (см. задачу 2195).

2204. Пусть функция f(x) интегрируема на сегменте [A, B]. Доказать, что f(x) обладает свойством интегральной непрерывности, т. е. $\lim_{h\to 0} \int_a^b |f(x+h)-f(x)| dx = 0$, гле [a, b] \subset [A, B].

2205. Пусть функция f(x) интегрируема на сегменте [a, b]. Доказать, что равенство $\int_a^b f^2(x) dx = 0$ имеет место тогда и только тогда, когда f(x) = 0 во всех точках непрерывности функции f(x), принадлежащих сегменту [a, b].

§ 2. Вычисление определенных интегралов с помощью неопределенных

1°. Формула Ньютона — Лейбница. Если функция $f_i(x)$ определена и непрерывна на сегменте [a, b] и F(x) — ее первообразная, т. е. $F'(x) = f_i(x)$, то

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{a}^{b}.$$

Определенный интеграл $\int_{a}^{b} f(x) dx$ при $f(x) \geqslant 0$ геометрически представляет собой площадь S криволинейной трапе-