Properties of equivalence relation on Σ^*

Definition (right congruence)

An equivalence relation \equiv_A defined on Σ^* is said to be **a right** congruence if $\forall x, y \in \Sigma^*$ and $\forall a \in \Sigma$, $x \equiv y \implies x \cdot a \equiv y \cdot a$.

Definition (Refinement)

An equivalence relation \equiv is said to **refine** a language L, if $x \equiv y$ then $(x \in L \iff y \in L).$

Definition (Finite index)

An equivalence relation is said to have **finite index** if the **number of** equivalence classes defined by \equiv is finite.

Lemma

For a DFA A, the equivalence relation \equiv_{A} defined as before is is a right congruence, refines L(A), has finite index.

Properties of \equiv_A

Lemma

For a DFA A, the equivalence relation \equiv_A defined as before is is a right congruence, refines L(A), has finite index.

Proof.

right congruence

$$\tilde{\delta}(q_0, x \cdot a) = \delta(\tilde{\delta}(q_0, x), a)
= \delta(\tilde{\delta}(q_0, y), a) :: x \equiv_A y
= \tilde{\delta}(q_0, y \cdot a)$$

finite index

For $q \in Q$.

$$[q] \coloneqq \{ w \in \Sigma^* \mid \tilde{\delta}(q_0, w) = q \}$$

equivalence classes $\leq |Q|$.

refinement

If
$$x \equiv_A y$$

then $\tilde{\delta}(q_0, x) = \tilde{\delta}(q_0, y)$
 $\therefore x$ y both accepted on

 $\therefore x, y$ both accepted or

both rejected.

Myhill-Nerode relation

Definition

An equivalence relation \equiv on Σ^* is said to be a **Myhill-Nerode relation** for a language L if

it is a right congruence refining *L* and has a finite index.

Lemma (Regular language → Myhill-Nerode relation)

For any regular language there is a Myhill-Nerode relation.

What about the converse?

Non-regular languages

Let
$$L_{a,b} = \{a^n b^n \mid n \ge 0\}.$$

Consider any relation \equiv on $\{a, b\}^*$.

Assume that it is a right congruence and refines L.

Now we will show that it does not have finite index.

For
$$n \neq m$$
, can $a^n \equiv a^m$? NO!

$$\therefore a^n b^n \in L \text{ but } a^m b^n \notin L.$$

Let
$$FACTORIAL = \{a^{n!} \mid n \ge 0\}.$$

Consider any relation \equiv on $\{a\}^*$.

Assume that it is a right congruence and refines L.

Now we will show that it does not have finite index.

Can
$$a^{n!} \equiv a^{n+1!}$$
? NO!

$$\therefore a^{n!} \cdot a^{n \cdot n!} \in L \text{ but } a^{n+1!} \cdot a^{n \cdot n!} \notin L.$$

Converse also holds

Lemma

Let $L \subseteq \Sigma^*$. If there is a Myhill-Nerode relation for L then L is regular.

Proof idea

Using the relation, construct a finite state automaton.

Let each equivalence class of the relation be a state of the automaton.

Define transitions naturally.

Converse: Myhill-Nerode relation ⇒ regulararity

Example

 $L = \{ words ending with b \}$

Converse also holds

Lemma

Let $L \subseteq \Sigma^*$. If there is a Myhill-Nerode relation for L then L is regular.

Proof.

Construction

Let \equiv be a Myhill-Nerode relation.

Let
$$[x] = \{y \mid y \equiv x\}.$$

Let $A_{\equiv} = (Q, \Sigma, \delta, q_0, F)$ be defined as follows:

$$Q = \{[x] \mid x \in \Sigma^*\},\$$

$$q_0 = [\epsilon], F = \{[x] \mid x \in L\},\$$

$$\delta([x],a) = [xa].$$

Correctness: DIY.

Decision problems on regular languages

Acceptance problem (for fixed Σ)

Given: DFA A, input string $w \in \Sigma^*$

Output: "yes" iff A accepts w.

Construct a graph from an automaton:

Let $Q = \{q_0, \dots, q_{m-1}\}$, q_0 be the start state, $F \subseteq Q$ be the set of final states.

Create a layered graph $G_{A,n}$, where |w| = n, as follows:

Make n+1 copies of Q: Q_0, Q_1, \ldots, Q_n , where $Q_i = \{q_{i,0}, \ldots, q_{i,m-1}\}$.

Add edge $(q_{i,u},q_{i+1,v})$ with label $a \in \Sigma$ if $\delta(q_u,a)=q_v$.

Lemma

There is a path from $q_{0,0}$ to $q_{n,u}$ labelled by a string w in $G_{A,|w|}$ if and only if $\tilde{\delta}(q_0,w)=q_u$ in A.

Decision problems on regular languages

Nonemptiness problem (for fixed Σ)

Given: DFA A

Output: "yes" iff $\exists w : A \text{ accepts } w$.

Lemma

If a DFA $A = (Q, \Sigma, \delta, q_0, F)$ accepts some string then it accepts a string of length $\leq |Q|$.

Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A

Output: DFA B s.t. L(A) = L(B) and B has the smallest

number of states possible for recognizing $\mathcal{L}(A)$

Definition

Let $A = (Q, \Sigma, \delta, q_0, F)$. We call states p, q indistinguishable if $\forall w \in \Sigma^*, \ \tilde{\delta}(p, w) \Leftrightarrow \tilde{\delta}(q, w)$.

Minimization algorithm.

Identify indistinguishable states.

Collapse them.

Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A

Output: DFA B s.t. L(A) = L(B) and B has the smallest

number of states possible for recognizing L(A)

Example

(Red color indicates final states.)

Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A

Output: DFA B s.t. L(A) = L(B) and B has the smallest

number of states possible for recognizing L(A)

Example

	l		2			
a	1	3	4	5	5	5
b	2	4	3	5	5	5

(Red color indicates final states.)