Medical Transformer: Gated Axial-Attention for Medical Image Segmentation

摘要

过去十年研究发现,卷积体系结构缺乏对图像中的远程依赖关系的理解。基Transformer 的体系结构利用自我注意机制,编码长期依赖关系,并具有极富表现力的表示。作者提出了一种门控轴向注意模型,通过在自我注意模块中引入额外的控制机制来扩展现有的体系结构,减少了计算复杂度。为了对模型进行有效的医学图像训练,又提出了一种局部 - 全局训练策略 (LOGO),进一步提高了模型的性能。具体地说,即整个图像和 patches 进行操作,分别学习全局特征和局部特征。

关键词: transformer; Medical Image Segmentation; Gated Axial-Attention;

1 引言

目前用卷积神经网络来做图像分割虽然也能取得一些好效果,然而卷积神经网络无法对 长依赖进行建模。而transformer以能够建模长依赖著称,在大量数据集训练的条件下取得了 比卷积神经网络更好的准确率。

文章提出了用transformer来做医学图像分割。要解决的问题是,transformer在图像任务上相比卷积神经网络需要更大的数据集来训练,计算量巨大,而医学图像处理的一个难题就是数据不足,数据集不够大。

文章主要贡献是两点,一是提出了一种适用于较小数据集的门控位置敏感轴向注意机制, 一个是引入了有效提高 Transformer 性能,的局部-全局(LOGO)训练方法。

2 相关工作

2.1 CNN

随着深度卷积神经网络(ConvNets)在计算机视觉中的普及,ConvNets被迅速应用于医学图像分割。像U-Net、V-Net、3D U-Net、Res-UNet、Dense-UNet、YNet、U-Net++、KiU-Net和U-Net3+这样的网络被专门用于对各种医学成像模式执行图像和体积分割。这些方法在许多困难的数据集上取得了令人印象深刻的性能,证明了ConvNets在从医学扫描中学习区分器官或病变特征方面的有效性。

convnet是目前提出的大多数图像分割方法的基本构造块。但是,它们缺乏对映像中存在的长期依赖关系建模的能力。更准确地说,在ConvNets中,每个卷积核只关注整个图像中的局部像素子集,并迫使网络关注局部模式,而不是全局上下文。已经有一些工作专注于使用图像金字塔、空洞卷积和注意机制对convnet的远程依赖性进行建模。然而,可以注意到,对于建模长期依赖关系,仍然有改进的余地。

2.2 Transformer

在许多自然语言处理(NLP)应用程序中,Transformer已经证明能够对长程依赖项进行编码。这是由于自我注意机制发现了给定顺序输入之间的依赖性。随着Transformer在NLP应用中的普及,最近Transformer已被应用于计算机视觉应用。关于分割任务的Transformer,Axial Deeplab使用了轴向注意模块,该模块将2D自我注意分解为两个1D自我注意,并引入了位置敏感轴向注意分段设计。在Segmentation Transformer(SETR)中,使用变压器作为编码器,输入一系列图像块,并使用ConvNet作为解码器,从而形成强大的分割模型。

3 本文方法

3.1 本文方法概述

如图1所示,MedT两个分支机构:一个Global分支和一个Local分支。这两分支的输入是从初始卷积块提取的特征图。在MedT的全局分支中,我们有2个编码器块和2个解码器块。在本地分支中,我们有5个编码器块和5个解码器块。经残缺采样后输出分割掩码。

encoder部分如图2所示,在传统transformer的结构上将多头注意机制改成。两个轴向(横纵两个方向的)注意力机制,然后在此基础增加门控单元控制位置编码的影响,如图3所示。

图 1 采用LoGo策略进行训练的MedT主要架构图

图 2 门控轴向transformer层

图 3 门控轴向注意层的基本组成部分

3.2 Gated Axial-Attention

ViT提出的时候,transformer的每个token会对所有的每个token都计算注意力,所以是 (hw)²次计算,这样复杂度较高。Self-Attention公式:

$$y_{ij} = \sum_{h=1}^{H} \sum_{w=1}^{W} \operatorname{softmax} \left(q_{ij}^{T} k_{hw} \right) v_{hw}$$

为了解决这种情况,将传统的自注意力模块分为宽度上以及高度上的两个注意力模块, 称为 axial-attention,大大减小了计算复杂度。

还有,transformer其实是不具有位置表达能力的,为了添加位置表达能力,需要加一个 position embedding,就是用一个onehot的位置向量,经过一个全连接的embedding,产生位置编码,这个全连接是可训练的。

加上轴向注意力和多个位置编码的trick后现在变成这样(w方向的注意力,h方向和这个类似):

$$y_{ij} = \sum_{w=1}^{W} \operatorname{softmax} \left(q_{ij}^{T} \underline{k_{iw}} + q_{ij}^{T} \underline{r_{iw}}^{q} + k_{iw}^{T} \underline{r_{iw}}^{k} \right) \left(v_{iw} + \underline{r_{iw}^{v}} \right)$$

然而上述的trick需要大量数据集进行训练,小量的数据不足以训练QKV的三个position embedding,而医学数据集多数情况下就是少量的。在这种情况下,不准确的position embedding会给网络准确率带来负面影响,为此文章提出了门控单元用来控制这个影响的程度,修改上述公式如下:

$$y_{ij} = \sum_{w=1}^{W} \operatorname{softmax} \left(q_{ij}^{T} k_{iw} + G_{Q} q_{ij}^{T} r_{iw}^{q} + G_{K} k_{iw}^{T} r_{iw}^{k} \right) \left(G_{V1} v_{iw} + G_{V2} r_{iw}^{v} \right)$$

这里三个G都是可学习的参数,当数据集不足以使得网络预测准确的position embedding 时,网络的G会小一点,反之会大一点,因此起到一个所谓的"Gated"的作用。这是文章第一个贡献点。

3.3 Local-Global Training

transformer做图像分割可以用patch-wise的方式去做,也就是说把一张完整图片切割成多个patch,每个patch和这个patch对应的mask作为一个样本,用来训练transformer,这样又快,然而问题在于,一张图片的一个病灶可能比一个patch大,这样的话这个patch看起来就会很奇怪,因为被病灶充满了。

于是文章关于两个branch的做法是: global branch不做特殊处理,就是整张完整特征图,进行两次transformer block后送进decoder; 而local branch切分成4x4个patch,每个patch单独送 transformer block 前向传播,patch和patch之间没有任何联系,最后再把这4x4个patch的feature map拼回去。用深的网络来处理local信息,用浅的网络来处理global信息。这就是文章的第二个贡献点。

4 复现细节

4.1 与已有开源代码对比

在原有的开源代码基础上添加了对不同数据集像素大小输入的代码,探究了不同像素大小对实验结果的影响。512×512的数据集像素大小由于硬件资源有限,运行不了。同时需要注意,GLAS 腺体分割(显微)数据集是彩色图像需要经过二值处理得到灰度图。

4.2 实验环境搭建

4.2.1 依赖安装

pip install -r torch>=1.4.0 torchvision>=0.5.0 scikit-learn==0.23.2 scipy==1.5.3

4.2.2 数据集格式准备

Train Folder----

img----

0001.png

0002.png

.....

labelcol---

0001.png

0002.png

.....

4.2.3 训练/测试指令

python train.py --train_dataset "enter train directory" --val_dataset "enter validation directory" --direc 'path for results to be saved' --batch_size 4 --epoch 400 --save_freq 10 --modelname "gatedaxialunet" --learning_rate 0.001 --imgsize 128 --gray "no"

python test.py --loaddirec "./saved_model_path/model_name.pth" --val_dataset "test dataset directory" --direc 'path for results to be saved' --batch_size 1 --modelname "gatedaxialunet" --imgsize 128 --gray "no"

5 实验结果分析

5.1 数据集

原论文实验所用数据集如表1所示,其中Na代表未知。有此可见,医学图像数据集的数量的确较小,只有一百多甚至连一百也没有。由于Brain US 未公开,所以复现只复现了后两个公开数据集的结果,然后在MoNuSeg数据集是实验了不同像素大小的结果。

数据集名称	Brain US脑解剖分割(超声)	GLAS腺体分割(显微)	MoNuSeg多器官细胞 核分割(显微)
是否公开	未公开	公开	公开
数量 (train, test)	Na	(85,80)	(30, 14)
像素大小	Na	128×128	128×128 256×256

表 1 MedT所使用的数据集

5.2 实验结果

表 2 MedT实验结果

农 Z Medi 天型均木							
实验对比	GLAS腺体分割(显微)		MoNuSeg多器官细胞核分割(显微)				
是否公开	F1	IoU	F1	IoU			
原论文	81.02	69.61	66.04 (128) 74.55 (256)	51.24 (128) 60.80 (256)			
我的	82.30	67.25	66.66 (128) 75.78 (256)	50.18 (128) 60.82 (256)			

实验结果如表2所示。其中在GLAS腺体分割数据集上,F1(分类准确度标准)比原论文高了1.28,IoU(分割准确度)比原论文低了2.36;在128像素大小的MoNuSeg多器官细胞核分割数据集上,F1(分类准确度标准)比原论文高了0.52,IoU(分割准确度)比原论文低了1.06;在256像素大小的MoNuSeg多器官细胞核分割数据集上,F1(分类准确度标准)比原论文高了1.23,IoU(分割准确度)比原论文高了0.02;可能与硬件资源变动有关,复现结果还在合理的范围内。

实验分割效果如图4所示,虽然存在小细节错误,但直观感觉分割效果还是不错的。

	原始图像	预测分割	真实标签
GlaS		S	2
MoNuSeg			

图 4 MeT预测分割与真正标签比较

6 总结与展望

Gated Axial-Attention是一个比较通用的特征提取模块,不光医学图像分割任务可以用,其他分割、目标检测等任务都可以用。以后可以加在自己的项目中,看是否会有提高效果。局部-全局(LOGO)训练策略也是一个比较通用的策略,以后可以尝试用下。经过这次复现,感觉自己还要看和复现更多的论文,积累框架和方法等。

参考文献

[1] Valanarasu, Jeya Maria Jose et al. "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention (2021).