Problem 3

How to run code

- My submissions are live-scripts of matlab
- They are in zip format, don't unzip them
- Open matlab go to the folder of that zip and open the *.mlx files from matlab
- They would appear as jupyter notebook with markdown, codeblock and outputs.
- Press ctrl + enter to run each code block

Problem 3.1

Part 1

- We have $N = 10^4$ random walkers.
- Further suppose within each timeframe Δt , walkers take either a $\Delta z=10^{-3}$ step right with probability p (say 0.5 for simplicity), OR a Δz step left with probability q := 1 p (= 0.5)
- If in an event a walker took 'x' steps right and 'n-x' steps left then random walker's final location is at z = $\Delta z(2x-n)$
- Where variable x can be obtained using binornd() in matlab for various random walkers $N_i \in N$, because x is the result of repeated Bernoulli trial (Number of success(here taking right step) in n trials with success probability p) and hence has a binomial distribution.
- Now we can find final location and plot the histogram

Part 2

- A 2D matrix is made to contain location of each random walker after each step 1,2,3....n
- ullet This was done by running a loop and then adding to the previous row, 10^3 Bernoulli random variables for left and right steps, to obtain the next row.

Part 3

[code]

Problem 3.2

Part 1

Empirically-computed mean \hat{M} = 3.9120e-04 Empirically-computed variance \hat{V} = 9.9757e-04

Part 2

$$egin{aligned} ext{True mean} &= rac{\sum_{N_i=1}^N z_i}{N} \ &= rac{\sum_{N_i=1}^N \Delta z (2x_i-n)}{N} \ &= \Delta z (2rac{\sum_{N_i=1}^N x_i}{N} - n) \end{aligned}$$

Now since x is a binomial distribution with success probability p and number of trials n its mean is simply np.

Now since x is a binomial distribution with success probability p and number of trials n its variance is simply np(1-p).

Thus := True Variance =
$$4(\Delta z)^2 \cdot np(1-p)$$
 = 1.0000e-03

Part 3

error_mean = |True mean - Empirical mean| = 3.9120e-04 error_variance = |True variance - Empirical variance| = 2.4314e-06