Skanda Koppula

550 Memorial Drive Cambridge, MA 02139 skoppula@mit.edu skoppula.github.io 1.412.259.3123

Massachusetts Institute of Technology

Masters of Engineering, BSc, Computer Systems, MEng GPA: 5.0/5.0 Sept. 2013 - Expected February 2018

Relevant courses: Hardware Architecture for Deep Learning, Computer and Network Security, Compilers, Operating Systems, Computer Architecture, Bayesian Inference, Machine Learning

Projects

MIT Formula SAE Racecar Electronics Team

October 2015 - Present

- Designed PCBs and wrote firmware for open-source automotive battery management system.
 Orchestrates battery dis/charging state, balancing, safety checks, charging algorithms.
 https://github.com/MITEVT/ltc-battery-controller
- Demonstrated a CNN-based controller for a driverless Formula racecar. Wrote simulator, real-time controller, and tested RL-based approaches. https://arxiv.org/abs/1708.02215

Power-Based Side-Channel Attack on ATMega328

Nov. 2015

Demonstrated extraction of an AES key from an Arduino's flash memory from chip's power traces.
 Implemented the Correlation Power Analysis attack.

Work Experience

Google Search, Research Intern

June 2017 - September 2017

- Developed new method to visualize memory of recurrent neural networks, improving interpretability of end-to-end speech recognition networks.
- Resulted in paper accepted 2018 IEEE Conference on Acoustics and Signal Processing.

Yahoo Login Abuse, Software Engineering Intern

June 2016 - Aug. 2016

 Prototyped neural network to classify account registration and login events on Yahoo services as spam. Demonstrated a 6% improvement in classifier's equal error rate from prior system. Deployed a multi-threaded data feed service to pull data from Facebook ThreatExchange to update classifier.

Square Security, Software Engineering Intern

June 2015 - Aug. 2015

- Developed service to collect memory core crashdumps from Square card readers, symbolifying the binary contents to a human-readable source error trace.

Research

MIT Energy Efficient Circuits Group

Sept. 2015 - Present

- Developed memory-efficient convolutional network for speaker identification. 10x size reduction and >100x decrease in energy consumption. Built custom hardware design on FPGA to evaluate ternarized speaker verification network.
- Paper accepted 2018 IEEE Conference on Acoustics and Signal Processing.

Skills

Embedded Systems/Electronics: C, x86 Assembly, Altium, Vivado HLS, and Bluespec Verilog. Misc: Python, C++, Java, Scala, shell scripting, TensorFlow/pytorch Web Systems: JAX-RS/Jetty, Rails/RSpec, Flask, Django

Awards

Cisco Snort Security Scholarship Recipient	2017
2nd Place North American FSAE Lincoln Electric Racing Competition (Team)	2017
Analog Devices Research and Innovation Scholar Award	2016