Struttura a cella GSM

- Quattro tipi di celle: macro, micro, pico e umbrella
- Macro: le più grandi, sopraelevate rispetto agli edifici (raggio massimo: 35 km)
- Micro: cella più piccola, altezza fino al tetto di un edificio
- Pico: molto piccole, usate per aree molto dense anche indoor
- Umbrella: piccola estensione, usate per coprire i "buchi" tra le celle principali

Altre caratteristiche del GSM

- L'uso della SIM "Subscriber Identity Module"
- Varie taglie, da 4Kb fino a >512Kb
- Contiene varie informazioni, ma le due più importanti sono la IMSI e la Ki

IMSI e Ki

◆ IMSI:

International Mobile
Subscriber Identity, è l'identificativo della SIM

◆ Ki:

è la chiave di autenticazione
 (→ GSM supporta autenticazione crittografica achiave condivisa)

Collegamento crypto GSM

- Il cellulare manda l'IMSI della SIM all'operatore
- L'operatore genera un humero casuale e lo manda al cellulare
- Il cellulare firma il numero con la Ki e lo manda all'operatore
- L'operatore ha nel suo db l'IMSI e la Ki associata: *firma* anche lui il numero casuale con la Ki, e *controlla* che il numero sia lo stesso di quello inviatogli dal cellulare

CDMA

Passiamo ora al terzo standard 2G:

CDMA

- Mentre D-AMPS e GSM sono abbastanza simili (come core, FDM e TDM), il CDMA invece funziona in modo diverso:
- Non usa né FDM né TDM (!!!)

CDMA

Usa una tecnologia molto importante, che è usata anche da altri sistemi (ad esempio per reti *Internet Wireless*)

Come funziona il CDMA? Party Internazionale

Pensate ad un Party...

Tante persone che parlano... c'è il problema di capirsi.

Come funziona il Party?

- Tante persone in una stanza, tutti parlano
- FDM: ogni coppia parla su "toni" diversi

Il Party:

Con TDM: quando uno parla, tutti gli altri stanno zitti, e si fa a turni

CDMA?

Sta per
Code Division Multiple Access

CDMA: C sta per "Casino"!

Il Party CDMA:

CDMA: ognuno parla contemporaneamente (!!!!!!!!!!!!)

E quindi...?

Si usano lingue diverse ("international party")

Come funziona?

Tutto sta in come si modella il concetto di "lingua diversa"

Come funziona?

- Tutto sta in come si modella il concetto di "lingua diversa"
- Una lingua è composta da un certo numero di parole (oggetti)

Come funziona?

- Tutto sta in come si modella il concetto di "lingua diversa"
- Una lingua è composta da un certo numero di *parole* (oggetti)
- Quello che ci serve è un modo per stabilire se due parole stanno o meno nella stessa lingua

Lingue... spazio di parole...

Possiamo vedere una lingua come uno spazio... come facciamo ad avere spazi che siano interoperabili ma separabili?

Ma lo sappiamo già fare...: spazi dimensionali

Quindi, idea...

Se vedessimo una "lingua" come una coordinata, ed avessimo uno spazio multi-dimensionale?

Quindi, idea...

- Se vedessimo una "lingua" come una coordinata, ed avessimo uno spazio multi-dimensionale?
- Ogni parola in una certa lingua starebbe sull'asse corrispondente

La creazione degli assi

In teoria, per avere n assi, potremmo semplicemente usare

```
1, 0, 0, 0, ...
0, 1, 0, 0, ...
0, 0, 1, 0, ...
```

Ad esempio...

Con due assi (due canali informativi) potremmo avere:

Canale 1: 1, 0

Canale 2: 0, 1

Bene, ma quando nel party parlano tutti?

- Cosa succede quando più persone parlano?
- Che le "parole" si sommano
- ♦ → che i corrispondenti vettori nello spazio multidimensionale si sommano

Però...

Così facendo ognuno può dire una sola parola, ma per avere un alfabeto minimale ci servono due simboli (codice binario), gli equivalenti dello "0" e dell' "1".

Risposta

- Usiamo ad esempio il segno (verso) dell'asse che ci siamo scelti:
- Segno positivo, una parola, segno negativo l'altra
- Quindi ad esempio nel primo canale potremo usare
 - (1, 0) come prima parola, e
 - (-1, 0) come seconda

E come facciamo poi ad ascoltare solo in una lingua?

- Beh, selezioniamo solo la componente che ci interessa
- ♦ → la coordinata che ci interessa

Point (x,y,z)

y
Y- Axis

X-Axis

Z-Axis

Tutto bene quindi...

Senonchè, dalla teoria passiamo alla pratica: qualcuno deve trasmettere l'informazione (1, 0, 0)

Tutto bene quindi...

- Senonchè, dalla teoria passiamo alla pratica: qualcuno deve trasmettere l'informazione (1, 0, 0)
- Siccome la trasmissione avviene nello strato fisico, quello che possiamo fare è quindi inviare un'onda che sia rappresentativa di questa informazione
- Abbiamo Fourier e quindi nessun problema!

Tutto bene quindi...

- Senonchè, dalla teoria passiamo alla pratica: qualcuno deve trasmettere l'informazione (1, 0, 0)
- Siccome la trasmissione avviene nello strato fisico, quello che possiamo fare è quindi inviare un'onda che sia rappresentativa di questa informazione
- Abbiamo Fourier e quindi nessun problema!

0中ア84千 ロロ ダ45 えてロ 等37 火作6千分50えダ230 ロ79**ア**† 8ロリ23千828ロ升え2 等40カ火52 え5千843号0号937 4火ム 「

Però...

- Usare Fourier costa, nel senso che stiamo usando vari simboli matrix...
- Per essere efficienti dovremmo quindi usare una rappresentazione efficiente,
 - che usi cioè pochi simboli matrix

Forma delle onde...

La rappresentazione migliore è quella che associa un "1" ad un picco alto, ed uno "0" ad un picco basso

Quindi...

- ... in termini di onde energetiche, le nostre onde sono fatte con "1" (picco alto) e "-1" (picco basso)
- però allora gli assi che avevamo prima, tradotti in onde non vanno bene (!!)

MORALE

- L'idea è giusta, ma purtroppo non possiamo usare come assi quelli semplici fatti da 0 e 1:
- Siccome partiamo dal mondo fisico, dobbiamo usare assi fatti diversamente, fatti da 1 e -1

E quindi...

Dobbiamo ragionare più in generale, uno spazio dimensionale che abbia degli assi (perpendicolari fra loro) e che permetta di estrarre le componenti di ogni asse

E come facciamo poi ad ascoltare solo in una lingua?

Selezioniamo solo la componente che ci interessa...

• ... facendo la *proiezione* del vettore "multilingua" solo su un asse

facciamo il prodotto scalare del vettore per un'asse

Il prodotto scalare!

◆(ARGH!)

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

CDMA

- CDMA quindi funziona allo stesso modo:
- Si lavora su uno spazio multidimensionale
- Si stabiliscono degli assi adeguati
- E poi si usano le regole di composizione (somma) e proiezione (prodotto scalare) per fare encoding/decoding

La creazione degli assi per il CDMA

- Abbiamo visto dobbiamo creare assi (vettori perpendicolari
 - → prodotto scalare zero) che usino solo +1 e −1
- Si può fare? E come?

La creazione degli assi per il CDMA

Si usano le cosiddette matrici di Walsh, che sono essenzialmente derivate dalle *matrici di Hadamard*

La creazione degli assi in pratica

Come si costruiscono? Metodo classico:

$$H_1 = \begin{bmatrix} 1 \end{bmatrix}, \qquad H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix},$$

$$H_{2^k} = \begin{bmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & -H_{2^{k-1}} \end{bmatrix} = H_2 \otimes H_{2^{k-1}},$$

Più comprensibile...:

$$H_1 = \begin{bmatrix} 1 \end{bmatrix} \qquad H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

