Linear Models 3: Tree Graphs Lab

Dr. Luisa Barbanti and Dr. Matteo Tanadini

Applied Machine Learning and Predictive Modelling 1, FS25 (HSLU) $\,$

Contents

1	Load package	2
2	Getting data	2

1 Load package

```
## Load packages
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
import seaborn as sns
```

2 Getting data

```
# Getting data
# Load the data
d_trees = pd.read_csv("../../Datasets/TreesChamagne2017_Lab_modified.csv",
                     sep = ';', decimal = ',')
\# rename variables because "." causes problems in R
d_trees.rename(columns = {'growth.rate': 'growth_rate'}, inplace = True)
d_trees.rename(columns = {'diversity.site': 'diversity_site'}, inplace = True)
d_trees.rename(columns = {'density.site': 'density_site'}, inplace = True)
# Inspect the data
print(d_trees.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 557 entries, 0 to 556
Data columns (total 12 columns):
#
    Column
                       Non-Null Count Dtype
    -----
                        _____
0
    growth_rate
                      557 non-null
                                       float64
                        557 non-null object
1
    species
    site
                        557 non-null
                                     int64
3
    Density.tree.Class 557 non-null object
                     557 non-null float64
    age
5
                      557 non-null float64
    size
                     557 non-null float64
6
    density_site
7
                      557 non-null float64
    density.tree
    diversity.tree
                      557 non-null float64
    diversity_site 557 non-null float64 sp.richness 557 non-null int64
10 sp.richness
                                       int64
11 SiteID
                        557 non-null
dtypes: float64(7), int64(3), object(2)
memory usage: 52.3+ KB
None
print(d_trees.head())
```

growth_rate species site ... diversity_site sp.richness SiteID

```
0
      0.701705
                 Beech
                                          1.279284
                                                              1
                                                                       1
1
      1.138995
                 Beech
                                          1.279284
                                                              1
                                                                       1
                            1
2
      1.394101
                 Beech
                                                              2
                                                                      12
                                         2.272922
                           12
3
      0.999519 Spruce
                           12
                                          2.272922
                                                              2
                                                                      12
                                                                      12
4
      1.354924 Spruce
                           12
                                          2.272922
                               . . .
```

[5 rows x 12 columns]

```
plt.clf()
# ----graphDiversitySite----
sns.scatterplot(x = 'diversity_site', y = 'growth_rate', data = d_trees)
```



```
plt.clf()
# ----graphDiversitySiteWithRegrLine----
sns.lmplot(x = 'diversity_site', y = 'growth_rate', data = d_trees, ci = 95)
```



```
plt.clf()
# ----graphDensity----
sns.lmplot(x = 'density_site', y = 'growth_rate', data = d_trees, lowess = True)
```



```
plt.clf()
# ----graphAge----
sns.lmplot(x = 'age', y = 'growth_rate', data = d_trees, lowess = True)
```



```
# ----GraphSpecies---
sns.boxplot(x = 'species', y = 'growth_rate', data = d_trees)
```



```
plt.clf()
# ----graphDiversityGrouped----
sns.lmplot(x = 'diversity_site', y = 'growth_rate', hue = 'species',
    data = d_trees, lowess = True, scatter_kws = {'alpha': 0.7}
)
```



```
species = Beech species = Spruce species = Larch species = Oak

1.75

1.50

1.25

0.75

0.50

0.25

diversity site diversity site diversity site diversity site diversity site
```

```
plt.clf()
# ----lmO----
lm_trees_0 = smf.ols(
    'growth_rate ~ species + age + density_site + diversity_site + species:age + species:density_site +
    data = d_trees
).fit()
print(lm_trees_0.summary())
```

OLS Regression Results

_____ Dep. Variable: growth_rate R-squared: 0.237 Model: Adj. R-squared: 0.216 OLS F-statistic: Method: Least Squares 11.22 Date: Prob (F-statistic): Tue, 25 Feb 2025 5.33e-24 Time: 10:05:34 Log-Likelihood: -6.1818 No. Observations: 557 AIC: 44.36 Df Residuals: 541 BIC: 113.5

Df Model: 15 Covariance Type: nonrobust

=======================================						=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.1452	0.139	8.216	0.000	0.871	1.419
species[T.Larch]	-0.6053	0.206	-2.942	0.003	-1.009	-0.201
species[T.Oak]	-0.5521	0.199	-2.770	0.006	-0.944	-0.161
species[T.Spruce]	0.0158	0.266	0.060	0.952	-0.506	0.538
age	0.0002	0.001	0.177	0.860	-0.002	0.003
species[T.Larch]:age	-0.0036	0.002	-2.233	0.026	-0.007	-0.000
species[T.Oak]:age	0.0034	0.002	2.131	0.034	0.000	0.006
species[T.Spruce]:age	-0.0033	0.002	-1.837	0.067	-0.007	0.000
density_site	-0.0009	0.002	-0.407	0.684	-0.005	0.004
<pre>species[T.Larch]:density_site</pre>	0.0119	0.004	3.275	0.001	0.005	0.019
<pre>species[T.Oak]:density_site</pre>	-0.0026	0.004	-0.682	0.495	-0.010	0.005
<pre>species[T.Spruce]:density_site</pre>	0.0053	0.004	1.305	0.192	-0.003	0.013
diversity_site	0.0513	0.031	1.652	0.099	-0.010	0.112
<pre>species[T.Larch]:diversity_site</pre>	0.0205	0.043	0.475	0.635	-0.064	0.105
species[T.Oak]:diversity_site	0.0812	0.043	1.896	0.059	-0.003	0.165
species[T.Spruce]:diversity_site	-0.0459	0.050	-0.922	0.357	-0.144	0.052

 Omnibus:
 37.526
 Durbin-Watson:
 1.784

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 44.291

 Skew:
 -0.621
 Prob(JB):
 2.41e-10

 Kurtosis:
 3.606
 Cond. No.
 2.87e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.87e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
anova = sm.stats.anova_lm(lm_trees_0)
print(anova)
```

```
df
                               sum_sq
                                      mean_sq
                                                       F
                                                               PR(>F)
                       3.0 7.142050 2.380683 38.625859 1.248546e-22
species
                       1.0 0.039165 0.039165 0.635437 4.257177e-01
age
                       3.0 0.606157 0.202052 3.278235 2.076423e-02
species:age
                                               4.579225 3.280851e-02
density_site
                       1.0 0.282238 0.282238
                       3.0 0.541740 0.180580 2.929856 3.315005e-02
species:density_site
diversity_site
                       1.0 1.296585 1.296585 21.036700 5.603738e-06
species:diversity_site
                       3.0 0.466217 0.155406
                                               2.521408 5.707840e-02
Residual
                      541.0 33.344233 0.061634
                                                     {\tt NaN}
                                                                  NaN
```

```
# ----drop1InteractionLmO----
lm_trees_1 = smf.ols(
    'growth_rate ~ species + age + density_site + diversity_site + species:age + species:density_site',
```

```
data = d_trees
).fit()
print(lm_trees_1.summary())
```

OLS Regression Results

Dep. Variable:	growth_rate	R-squared:	0.227				
Model:	OLS	Adj. R-squared:	0.210				
Method:	Least Squares	F-statistic:	13.28				
Date:	Tue, 25 Feb 2025	Prob (F-statistic):	3.66e-24				
Time:	10:05:34	Log-Likelihood:	-10.049				
No. Observations:	557	AIC:	46.10				
Df Residuals:	544	BIC:	102.3				
Df Model:	12						

DI Model: 12
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.0788	0.113	9.518	0.000	0.856	1.302
species[T.Larch]	-0.5427	0.153	-3.539	0.000	-0.844	-0.241
species[T.Oak]	-0.3333	0.159	-2.098	0.036	-0.645	-0.021
species[T.Spruce]	-0.2583	0.155	-1.662	0.097	-0.564	0.047
age	0.0004	0.001	0.346	0.730	-0.002	0.003
species[T.Larch]:age	-0.0038	0.002	-2.379	0.018	-0.007	-0.001
species[T.Oak]:age	0.0023	0.002	1.550	0.122	-0.001	0.005
species[T.Spruce]:age	-0.0033	0.002	-1.861	0.063	-0.007	0.000
density_site	-0.0010	0.002	-0.427	0.669	-0.006	0.004
<pre>species[T.Larch]:density_site</pre>	0.0120	0.004	3.353	0.001	0.005	0.019
<pre>species[T.Oak]:density_site</pre>	-0.0010	0.004	-0.267	0.789	-0.008	0.006
species[T.Spruce]:density_site	0.0087	0.004	2.380	0.018	0.002	0.016
diversity_site	0.0729	0.016	4.567	0.000	0.042	0.104

 Omnibus:
 37.580
 Durbin-Watson:
 1.745

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 44.393

 Skew:
 -0.621
 Prob(JB):
 2.29e-10

 Kurtosis:
 3.610
 Cond. No.
 1.99e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.99e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
anova_1 = sm.stats.anova_lm(lm_trees_1)
print(anova_1)
```

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
species	3.0	7.142050	2.380683	38.304480	1.804728e-22
age	1.0	0.039165	0.039165	0.630150	4.276464e-01
species:age	3.0	0.606157	0.202052	3.250959	2.153729e-02
density_site	1.0	0.282238	0.282238	4.541124	3.353759e-02
species:density site	3.0	0.541740	0.180580	2.905479	3.424331e-02

diversity_site 1.0 1.296585 1.296585 20.861668 6.111838e-06 Residual 544.0 33.810449 0.062152 NaN NaN