Solution TD N° 2:

Exercice 1:

On pend $\theta = \omega t$

On la tension de la source : $V_e(t) = V_M \sin(\theta)$

1/ Analyse le fonctionnement

Le thyristor Th est amorcé à $\alpha = \omega t_1$

Lorsque le courant s'annule (i_{ch} =0), le thyristor se bloque à l'instant t_e qui correspond à l'angle d'extinction $\theta_e = \omega t_e$.

La conduction du thyristor est donc de α à θ_e

- Pour $\alpha < \theta < \theta_e$ Th est passant

$$V_{ch} = ve, V_{Th} = 0.$$

$$i_{ch}$$
 régie par l'équation : $Ri_{ch}(t) + L\frac{di_{ch}(t)}{dt} = V_{M}\sin(\theta)$

Equation différentielle de 1er ordre avec second membre sinusoïdale

La résolution de cette équation est la somme de solution homogène i_H et solution forcée i_F :

$$\boldsymbol{i}_{ch} = \boldsymbol{i}_H + \boldsymbol{i}_F$$

 i_H est la solution sans second membre :

$$i_H(t) = Ae^{-\frac{t}{\tau}}$$
 ou encore $i_H(\theta) = Ae^{-\frac{\theta}{\omega\tau}}$ avec $\tau = L/R$

 i_F est la solution avec second membre:

$$i_F = \frac{V_M}{Z} \sin(\omega t - \varphi)$$
 Avec : $z = \sqrt{R^2 + (L\omega)^2}$ et $\varphi = arctg\left(\frac{L\omega}{R}\right)$

On a donc:

$$i_{ch} = Ae^{-\frac{\theta}{\omega\tau}} + \frac{V_{\rm M}}{Z}\sin(\theta - \varphi)$$

On peut déterminer la constant A lorsque $\theta = \alpha$ où $i_{ch}(\alpha) = 0$

$$i_{ch}(\alpha) = Ae^{-\frac{\alpha}{\omega\tau}} + \frac{V_M}{Z}\sin(\alpha - \varphi) = 0 \Rightarrow A = -\frac{V_M}{Z}\sin(\alpha - \varphi)e^{\frac{\alpha}{\omega\tau}}$$

on trouve finalement:

$$i_{ch} = \frac{V_{M}}{Z} \left[-\sin(\alpha - \varphi)e^{-\frac{(\theta - \alpha)}{\omega \tau}} + \sin(\theta - \varphi) \right]$$

$$- \underline{Pour} \quad \theta_{e} < \underline{\theta} < (2\pi + \alpha) : Th \text{ est bloqu\'e}$$

$$V_{ch} = 0, \qquad V_{Th} = V_{e} \qquad i_{ch} = 0$$

2/ les allures:

3/ le thyristor cessera de conduire lorsque le courant s'annule

$$\mathbf{i}_{ch}(\theta_{e}) = 0 \Rightarrow \frac{V_{M}}{Z} \left[-\sin(\alpha - \varphi)e^{-\frac{(\theta e - \alpha)}{\omega \tau}} + \sin(\theta e - \varphi) \right] = 0$$

$$\Rightarrow -\sin(\alpha - \varphi)e^{-\frac{(\theta e - \alpha)}{\omega \tau}} + \sin(\theta e - \varphi) = 0$$

4/ Calcul de V_{chmoy} :

$$V_{chmoy} = \frac{1}{T} \int_0^T V_{ch} d\theta = \frac{1}{T} \int_{\alpha}^{\theta 1} V_M \sin(\theta) d\theta = \frac{1}{2\pi} \int_{\alpha}^{\theta 1} V_M \sin(\theta) d\theta$$

$$V_{chmoy} = \frac{V_M}{2\pi} (\cos(\alpha) - \cos(\theta_1))$$

<u>5/ les allures</u> (avec diode de roue libre)

Calcul de V_{chmoy} :

$$V_{chmoy} = \frac{1}{T} \int_0^T V_{ch} d\theta = \frac{1}{T} \int_{\alpha}^{\pi} V_M \sin(\theta) d\theta = \frac{1}{2\pi} \int_{\alpha}^{\pi} V_M \sin(\theta) d\theta$$

$$V_{chmoy} = \frac{V_M}{2\pi} (1 + \cos(\alpha))$$

Exercice 2

1/ analyse de fonctionnement

ightharpoonup Pour: $0 < \theta < \pi$ D1 passante.

$$V_{ch} = v_1$$
, $v_{d1} = 0$, $v_{d2} = v_2 - v_1 = 2 v_2$

$$i_{ch} = \frac{v_{ch}}{R} = \frac{v_1}{R}, \quad i_{dl} = i_{ch} \quad i_{d2} = 0$$

Pour: $\pi < \theta < 2\pi$ D1 et passante.

$$V_{ch} = v_2$$
, $v_{d1} = v_1 - v_2 = 2 v_1$, $v_{d2} = 0$,

$$i_{ch} = \frac{v_{ch}}{R} = \frac{v_2}{R}$$
 $i_{dl} = 0$, $i_{d2} = \frac{v_2}{R}$

2/ les allures

Les tensions:

Les courants :

3/ valeur mayenne :

$$V_{chmoy} = \frac{1}{T} \int_0^T V_{ch} d\theta = \frac{1}{\pi} \int_0^{\pi} V_{M} \sin(\theta) d\theta = \frac{2V_{m}}{\pi}$$

4/ La tension maximale à supporter par la diode D1 en inverse est:

 $V_{D1max} = -2V_m$

5/ analyse de fonctionnement dans le cas de P2 commandé (à thyristors)

Th1 et Th2 remplace respectivement D1 et D2

ightharpoonup Pour: $\alpha < \theta < \pi$ Th1 passant.

$$V_{ch} = v_1$$
, $v_{Th_1} = 0$, $v_{Th_2} = v_2 - v_1 = 2 v_2$

$$i_{ch}=rac{v_{ch}}{R}=rac{v_1}{R}, \qquad i_{Th1}=i_{ch} \; , \quad i_{Th2}=0$$

Le thyristor se bloque dès le courant s'annule, on a une charge Résistive, la tension et le courant sont en phase, le courant s'annule avec l'annulation de v_1 , donc à π .

Pour: $\pi < \theta < \pi + \alpha$ Th1 et Th2 bloqués.

$$V_{ch} = 0$$
, $v_{\text{Th1}} = v_1$, $v_{\text{Th2}} = v_2$

$$i_{ch} = 0$$
, $i_{Th1} = 0$, $i_{Th2} = 0$

ightharpoonup Pour: $\pi + \alpha < \theta < 2\pi$ Th2 passant.

$$V_{ch} = v_2$$
, $v_{Th1} = v_1 - v_2 = 2 v_1$, $v_{Th2} = 0$,

$$i_{ch} = \frac{V_{ch}}{R} = \frac{v_2}{R}, \quad i_{Th1} = 0, \quad i_{Th2} = i_{ch}$$

Th2 se bloque à 2π

Pour : $2\pi < \theta < 2\pi + \alpha$ Th1 et Th2 bloqués.

$$V_{ch} = 0$$
, $v_{Th1} = v_1$, $v_{Th2} = v_2$

$$i_{ch} = 0$$
, $i_{Th1} = 0$, $i_{Th2} = 0$

Les allures

Les tensions:

Les courants

