RSNA 2022 Cervical Spine Fracture Detection

Problem Overview

Identify cervical fractures from scans

The goal of this competition is to identify fractures in CT scans of the cervical spine (neck) at both the level of a <u>single vertebrae</u> and the entire patient.

What is the "Cervical" region of our Vertebrae?

Atlant occipital Anterior arch of Cervical Posterior arch of C1 Harris ring Spine Mind Interior articular Process Bod_V Spinous Disc space process X-ray Spinous process Disc space ANATOMY Pedicle process a Disc space Pedicle Spinous process

Mandible

ROJO/O/A

But what do the CT Scans look like?

DICOM File Format

```
Dataset.file_meta ------
(0002, 0001) File Meta Information Version
                                                OB: b'\x00\x01'
(0002, 0002) Media Storage SOP Class UID
                                                UI: CT Image Storage
(0002, 0003) Media Storage SOP Instance UID
                                                UI: 1.2.826.0.1.3680043.10001.1.101
(0002, 0010) Transfer Syntax UID
                                                UI: Implicit VR Little Endian
(0002, 0012) Implementation Class UID
                                                UI: 1.2.40.0.13.1.1.1
(0002, 0013) Implementation Version Name
                                                 SH: 'PYDICOM 2.3.0'
(0008, 0018) SOP Instance UID
                                                UI: 1.2.826.0.1.3680043.10001.1.101
(0008, 0023) Content Date
                                                DA: '20220727'
(0008, 0033) Content Time
                                                 TM: '175846.512627'
(0010, 0010) Patient's Name
                                                 PN: '10001'
(0010, 0020) Patient ID
                                                LO: '10001'
(0018, 0050) Slice Thickness
                                                DS: '0.625'
(0020, 000d) Study Instance UID
                                                UI: 1.2.826.0.1.3680043.10001
(0020, 000e) Series Instance UID
                                                UI: 1.2.826.0.1.3680043.10001.1
(0020, 0013) Instance Number
                                                IS: '101'
(0020, 0032) Image Position (Patient)
                                                DS: [-52.308, -27.712, -55.218]
(0020, 0037) Image Orientation (Patient)
                                                DS: [1.000000, 0.000000, 0.000000, 0.00000
0, 1.000000, 0.000000]
(0028, 0002) Samples per Pixel
                                                US: 1
(0028, 0004) Photometric Interpretation
                                                CS: 'MONOCHROME2'
(0028, 0010) Rows
                                                US: 512
(0028, 0011) Columns
                                                US: 512
(0028, 0030) Pixel Spacing
                                                DS: [0.253906, 0.253906]
(0028, 0100) Bits Allocated
                                                US: 16
(0028, 0101) Bits Stored
                                                US: 16
(0028, 0102) High Bit
                                                US: 15
(0028, 0103) Pixel Representation
                                                US: 1
(0028, 1050) Window Center
                                                DS: '500.0'
(0028, 1051) Window Width
                                                DS: '2000.0'
(0028, 1052) Rescale Intercept
                                                DS: '-1024.0'
(0028, 1053) Rescale Slope
                                                DS: '1.0'
(7fe0, 0010) Pixel Data
                                                OW: Array of 524288 elements
```

HEADER

→ IMAGE

Baseline Solution

BASELINE = Only trying to predict whether a patient has a fracture (1) or not (0)

Transfer Learning

Treating each CT Scan as an IMAGE, but instead of 3 RGB Channels, the number of channels equals the number of slices/scans for that patient.

But here we run into a problem. The height of each scan varies from patient to patient, i.e. the number of slices for each patient varies.

We need a constant channel input for using CNN Architectures

Minimum number of scans for a patient = 300

Maximum number of scans for a patient = 1082

Sample **N** scans for each patient at equally spaced intervals. Thus making the input channel size CONSTANT

Now we can use any 2D-CNN architecture with in_channels = $\underline{\mathbf{N}}$

Using the mobilenetv3_large_100 architecture

Changing the input layers to take 69/300 channels.

Changing the output layer for binary classification.

Freezing the intermediate layers for training.

Setting the value of N as 69 and 300

Validation Accuracy (N=69) = 50%

Validation Accuracy (N=300) = 57 %

All values after 10 epochs

Further Improvements

01

Using 3D-CNN Architectures.

02

Using sequential models (prevent information loss).

03

Using segmentation data to isolate individual vertebrae for prediction.

Thank You

Amey Rambatla 190106011