Last name	_
First name	

LARSON—MATH 601—HOMEWORK WORKSHEET h11 Linear algebras & Polynomials

1. For $f, g \in \mathbb{F}^{\infty}$ with $f = (f_0, f_1, f_2, ...)$, and $g = (g_0, g_1, g_2, ...)$ we define a "vector multiplication" $fg \in \mathbb{F}^{\infty}$ where the value of the function fg for $n \in \mathbb{N}$ is (fg)(n) or,

$$(fg)_n = \sum_{i=0}^n f_i g_{n-i},$$

which we identify with the n^{th} component of an infinite tuple.

- (a) Use the above definition to show that the "1" in \mathbb{F}^{∞} is 1 = (1, 0, 0, 0, ...), that is, for every $f \in \mathbb{F}^{\infty}$, 1f = f.
- (b) For every $c \in \mathbb{F}$ let the "c function" in \mathbb{F}^{∞} be $c = (c, 0, 0, 0, \ldots)$. Use the above definition to show that $cf = (cf_0, cf_1, cf_2, \ldots)$.
- (c) Let $x = x^1 = (0, 1, 0, 0, ...)$ and $x^2 = (0, 0, 1, 0, 0, ...)$. Use the above definition to show that $x^2 = x^1 x^1$.
- (d) For $i \in \mathbb{N}$ let x^i be the all-zero-infinite tuple with a single 1 in the i^{th} coordinate. (Note that it follows that $x^0 = 1 \in \mathbb{F}^{\infty}$.) Use the above definition to show that $x^i x^1 = x^{i+1}$.
- (e) Use the above definition to show that $x^i x^j = x^{i+j}$.
- 2. Let \mathbb{F} be a field.
 - (a) Define $\mathbb{F}[x]$.
 - (b) Explain why $\mathbb{F}[x]$ is a vector space.
 - (c) Explain why $\mathbb{F}[x]$ is a linear algebra.
- 3. Explain the difference between polynomials and polynomial functions.
- 4. Give an example that illustrates how two different polynomials can correspond to the same function.
- 5. Let p = (x-2)(x-3)(x-1) be a polynomial over \mathbb{R} . Find p(A) where:

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$