

TECOM Project No. <u>8-ES-685-CPB-003</u>

DPG Document No. <u>DPG-FR-98-001</u>

CUSTOMER REPORT

DIPOLE PRIDE 26: PHASE II OF DEFENSE SPECIAL WEAPONS AGENCY TRANSPORT AND DISPERSION MODEL VALIDATION

CHRISTOPHER A. BILTOFT

Meteorology & Obscurants Division West Desert Test Center

U.S. Army Dugway Proving Ground Dugway, Utah 84022-5000

JANUARY 1998

19980424 153

Distribution unlimited.

Prepared for: Defense Special Weapons Agency 6801 Telegraph Road Alexandria, VA 22310

U.S. Army Test and Evaluation Command Aberdeen Proving Ground, MD 21005-5055

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

Disclaimer Statement

The views, opinions, and findings in this report are those of the author and should not be construed as an official Department of the Army position unless so designated by other official documentation.

Trade Name Statement

The use of trade names in this report does not constitute an official endorsement of the use of such commercial hardware or software. This report may not be cited for purposes of advertisement.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, public reporting burden for this collection of information is estimated to average 1 hours per respection, including the formation is estimated to average 1 hours per respection. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Collection of Information, Including suggestions for reducing this burden estimate or any other aspect of the

1. AGENCY USE ONLY (Leave blai	2202-4302, and to the Office of Management a	3. REPORT TYPE AND D	ATES COVERED Final Report
. AGENCT USE CHET TEEAVE BIAN			
	21 January 1998		96 - 21 Jan 98
4. TITLE AND SUBTITLE			FUNDING NUMBERS
DIPOLE PRIDE 26:	PHASE II OF DEFENSE S	PECIAL WEAPONS	
AGENCY TRANSPORT	AND DISPERSION MODEL V	ALIDATION	8-ES-685-CPB-003/K4
A AUTHORIO			
6. AUTHOR(S) Christon	ner A. Biltoft		
Cili 13copi	ici 7t. Divisore		
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)	8.	PERFORMING ORGANIZATION
	n ni ni ni		REPORT NUMBER
Meteorology & Obse	curants Division		DPG-FR-98-001
West Desert Test (Lenter Droving Ground	,	Did in 30 out
U.S. Army Dugway I Dugway, UT 84022	-5000		· ·
Dugway, 01 04022	-3000		
9. SPONSORING/MONITORING AC	GENCY NAME(S) AND ADDRESS(ES	3)	. SPONSORING/MONITORING
			AGENCY REPORT NUMBER
Defense Special We	eapons Agency		
6801 Telegraph Ro	id		
Alexandria, VA 22	2310		
11. SUPPLEMENTARY NOTES			
TI. SOFFEEMENTANT NOTES			
12a. DISTRIBUTION/AVAILABILIT	Y STATEMENT	12	b. DISTRIBUTION CODE
Distribution Unlim	ited		
Distribution on the	red		
13. ABSTRACT (Maximum 200 w	ords)		
The Dipole Pride 26	test program conducted	1 04-21 November at	t the Nevada Test Site
Mucca Flat constitute	d Phase II of the Defer	ise Special Weaporis	s Agericy (DSWA)
Transport and Dispers	ion Model Validation Pr	rogram. Dipote Pr	ide 26 was conducted to
acquire a putt disper	le wind field and dispe	orcion models in 1	istances for validation
Dradiction and Assess	ment Canability (HPAC)	model suite The	test program consisted
of 23 sulfur hexafluor	ride puff releases into	the atmosphere w	ith crosswind sampling
lines at distances of	5 to 25 km downrange,	providing informa	tion on puff crosswind
and alongwind dimension	ons, and peak concentra	ation. Of the 23 m	putt releases, 1/
provided useful puff	dimension information a	at one or more sam	nlina lines. Inis - I
report summarizes Dip	ole Pride 26 puff and m	nicrometeorologica	1 data. The entire data
set is available on c	ompact disk.		ŕ
		•	
14. SUBJECT TERMS		11:	5. NUMBER OF PAGES
atmospheric dispers	ion, dispersion model	validation,	
atmospheric tracer,	puff dispersion, sult	ur nexattuoride, 📊	6. PRICE CODE
SCIPUFF, DSWA, trac	er gas experiments		
47 CECUDITY OF ACCIENCATIONS	18 SECURITY CLASSIFICATION 119). SECURITY CLASSIFICATION	ON 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
UNCLASSIFIED	UNCLASSIFIED	JNCLASSIFIED	UL
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89)

FOREWORD

Dipole Pride 26 test program participants included support elements from the Department of Energy (DOE), the National Oceanographic and Atmospheric Administration Air Resources Laboratory (NOAA ARL), the Department of the Army (DA), and several contractors. Test program oversight and logistical support were provided by the DOE Nevada Operations Office. The NOAA ARL Special Operations and Research Division (ARL/SORD) provided meteorological support, while the NOAA ARL Field Research Division (ARL/FRD) performed the tracer gas measurements using sulfur hexafluoride detectors. The U.S. Army Dugway Proving Ground West Desert Test Center (DPG/WDTC) designed and managed the test program, operated the puff dissemination system, and provided micrometeorological measurements. Test program contractors included Logicon RDA, The Aerospace Corporation, and Bechtel Nevada. Logicon contributed technical expertise to various aspects of test design, The Aerospace Corporation operated remote sensing equipment to track the puffs, and Bechtel Nevada provided onsite logistical support.

Blank Page

ACKNOWLEDGMENTS

The Phase II Dipole Pride 26 (DP26) Defense Special Weapons Agency (DSWA) model validation program included support elements from the Department of Energy (DOE) Nevada Test Site staff managed by MAJ Paul Loomis. Test program participants included the National Oceanographic and Atmospheric Administra-tion Air Resources Laboratory (NOAA ARL), the Department of the Army (DA), DSWA, and several contractors. Dr. Darryl Randerson, Director of the NOAA ARL Special Operations and Research Division (SORD) provided operating space at the Yucca Flat Weather Station and laboratory space for the gas laboratory in Mercury, Nevada. Mr. Ray Dennis, Senior SORD Meteorological technician, and his crew provided invaluable day-to-day meteorological support. Drs. David George and Thomas Watson of the NOAA ARL Field Research Division (FRD) managed the field crews and gas laboratory personnel that collected the sulfur hexafluoride sampler data. LTC A.J. Kuehn represented DSWA at the test site, with Drs. Gary Ganong and William Espander from Logicon RDA providing valuable technical assistance. Puff imagery and FTIR spectronomy were provided by The Aerospace Corporation under the direction of Dr. Kenneth Herr. Charles Birdsong, Christopher Woldruff, and David Petrie of the DPG West Desert Test Center (WDTC) Test Operations Division operated the dissemination system, provided puff source dimensions, and collected micrometeorological data. Drs. Tom Watson, Steve Hanna, and Darryl Randerson provided external review of this report. Mrs. Susan Gross of the WDTC Meteorology & Obscurants Division provided word processing support.

Blank Page

EXECUTIVE SUMMARY

Phase II of the Defense Special Weapons Agency (DSWA) Transport and Dispersion Model Validation Program (Dipole Pride 26) was conducted at Yucca Flat on the Nevada Test Site in November 1996. The Phase II test objective was to acquire a data base for the validation of integrated mesoscale wind field and dispersion models, in particular the Hazard Prediction and Assessment Capability (HPAC) model suite. This objective was achieved by releasing tracer gas (sulfur hexafluoride) puffs, with downwind tracer sampling at distances ranging to 20 km along with extensive measurements to document meteorological conditions. DSWA sponsored the Phase II model validation test series as part of its counterproliferation model development and validation effort.

A total of 23 puff releases were completed during the trials series, including 5 into nocturnal drainage flows. Significant terrain effects observed during puff travel through Yucca Flat included pooling at Yucca Lake during drainage flows, and upslope (katabatic) flows as the mountains on either side of Yucca Flat received solar heating. Crosswind puff dispersion was sampled at three sampling lines located along roads 2 to 20 km downrange of the source. Alongwind puff growth was also measured along the middle sampling line, but interpretation of these measurements is complicated by disseminator system leaks.

This report presents lateral (σ_v) and alongwind (σ_t) puff dispersion summaries obtained from tracer concentration measurements, plus detailed explanations of puff dissemination and sigma calculation procedures. Remote imagery was used to obtain information on vertical dispersion and the puff centroid position. Results from the fixed sampling lines, which include whole air sampler data and continuous analyzer data, are available on a compact disk along with the supporting meteorological and micrometeorological data. Report documentation includes the puff dissemination conditions, downwind dispersion, atmospheric stability, site roughness, and micrometeorological summaries needed for dispersion model validation.

Blank Page

TABLE OF CONTENTS

	PAGE
FOREWORD	i
ACKNOWLEDGMENTS	ii
EXECUTIVE SUMMARY	v
LIST OF FIGURES	viii
LIST OF TABLES	viii
SECTION 1. INTRODUCTION	1
SECTION 2. TEST DESCRIPTION	3
SECTION 3. TRIAL DATA SUMMARIES	11
SECTION 4. CONCLUSIONS AND RECOMMENDATIONS	27
SECTION 5. APPENDICES	A-1
A. Micrometeorological Measurements	A-1
B. Transforms and Histogram Plots	B-1
C. Sulfur Hexafluoride Mass Calculation Procedure	C-1
D. References	D-1
E. Distribution List	E-1

LIST OF FIGURES

<u>FIGU</u>	<u>URE</u>	<u>PAGE</u>
1	Dipole Pride 26 test site at Yucca Flat, with the locations of puff release sites (S2, S3, N2, and N3), three concentration sampling lines, MEDA stations (M1, M2, M3, M6, M9, M10, and M28), and primary instrumentation positions (BJY, UCC, and YFW indicated	4
2	Sulfur hexafluoride concentrations in pptv arrayed by bag number and whole air sampler location along sampling line 2 during Trial DSWA12 following puff releases at 0900 and 1030 PST on 15 November 1996	17
3	Test DSWA07, Line 2, Bag 3 (30-45 minutes after puff release) histogram and Gaussian curves obtained using three fit methods used GAUSq.XFM	21
	LIST OF TABLES	
TAB	<u>LE</u>	PAGE
1	Dipole Pride 26 Test Site and MEDA Station Locations	3
2	Dipole Pride 26 Dissemination Times, Masses, and Comments	12
3	Continuous Analyzer Van Locations by Sampler Station Number	13
4	Dipole Pride 26 Lateral Dispersion Summary	18
5	Dipole Pride 26 Alongwind Dispersion Summary	23
6	Dipole Pride 26 Atmospheric Stability Summary	28

SECTION 1. INTRODUCTION

Responding to a shortfall in downwind hazard effects modeling identified during Operation Desert Storm, the Defense Special Weapons Agency (DSWA) has developed and is evaluating the performance of the Hazard Prediction and Assessment Capability (HPAC) model suite. HPAC includes a diagnostic wind field model coupled with an atmospheric transport and dispersion model to provide decision makers with a tool for predicting windborne hazards that arise as a consequence of toxic materials released into the atmosphere. The HPAC development effort began with the recognition that the ensemble mean predictions available from the current generation of atmospheric dispersion models used for chemical and biological (CB) hazard assessments are of limited operational utility. Ensemble mean predictions provide an estimate of the concentrations or dosages that would be obtained by averaging the results for a large number of replications of the same release, but include no information about the distribution of single event concentrations or dosages. Current hazard assessment models also cannot estimate the probability of exceeding critical hazard thresholds. These deficiencies complicate the interpretation of CB hazard model predictions and limit their usefulness in operational military situations.

Given the limited operational usefulness of ensemble mean predictions, DSWA identified the need for a probabilistic atmospheric dispersion model. In addition to providing a prediction of ensemble mean concentrations or dosages, a probabilistic dispersion model uses higher order statistical terms to define the probability that dosages or peak concentrations at points of interest exceed some critical value specified by the user. This probabilistic output requires that the model be able to predict the concentration or dosage cumulative distribution function (CDF), which in turn requires that the model be able to predict both the concentration (or dosage) means and variances. The Second Order Closure Integrated Puff (SCIPUFF®) model (Titan Corporation, 1996), which predicts the required means and variances through a second-order closure solution of the advection-diffusion equation, is the HPAC dispersion model component.

SCIPUFF uses a generalized Gaussian tensor to describe puff concentrations. The model's derivation begins by integrating the conservation equations to obtain differential equations for the concentration moments that explicitly include wind-shear effects. Second-order closure is used to relate these higher-order terms to turbulence parameters such as velocity cross-correlations and turbulence length scales. In contrast to current generation Gaussian puff models, SCIPUFF's second-order closure methodology yields theoretically consistent predictions of dosage and concentration variances in addition to their ensemble means. These means and variances are applied in a clipped-normal probability distribution to predict concentration and dosage CDFs.

In the fall of 1995, DSWA contacted the Dugway Proving Ground (DPG) West Desert Test Center (WDTC) Meteorology & Obscurants Division (WD-M) for assistance in the development and implementation of a transport and dispersion model validation program. WD-M convened a meeting of atmospheric transport and dispersion modeling experts in February 1996 to recommend a model validation program. Attendees included representatives from the Joint Services, the National Oceanic and Atmospheric Administration (NOAA), and the trinational (U.S., UK, and Canada) Technical Panel 9 of The Technical Cooperation Program (TTCP) Subgroup E on CB Defense. Recognizing the limitations of the data from CB weapons tests and previous field dispersion experiments, the attendees agreed that new data sets and model validation procedures were needed to validate SCIPUFF's probabilistic output. Consequently, the attendees suggested conceptual designs for a series of field tests to create high resolution puff data sets accompanied by detailed meteorological documentation.

The DSWA Model Validation Program has had two phases to date. Phase I, conducted 9-26 September 1996 at DPG, consisted of observations of short-range (200 to 1200 m) puff releases for CDF evaluations. Phase II considered transport and diffusion to mesoscale distances (10 to 20 km). The Phase II subtest, known as Dipole Pride 26 (DP26), consisted of a series of puff releases conducted at the Nevada Test Site on 4-21 November 1996. This report documents the Phase II (DP26) test program and its results. Detailed sampler data and supporting meteorological and micrometeorological measurements are also available on magnetic and/or optical media.

SECTION 2. TEST DESCRIPTION

2.1 TEST SITE

Yucca Flat (37° N, 116° W) is a north-south oriented basin 30 km in length and 12 km in width surrounded on all sides by higher terrain. Yucca Lake, at a height of 1195 m above mean sea level (MSL), is a seasonally dry lake bed at the south end of the basin that forms the lowest part of the Yucca Flat. The basin is surrounded by mountains extending to 1800 m MSL or higher on the west through north and to 1500 m MSL or higher on the east. The basin slopes upward toward the north at an average angle of 0.3°. Wind flow through Yucca Flat is strongly influenced by the surrounding terrain. Passes to the northeast and south form the main ventilation channels through Yucca Flat. Early morning drainage flows from the north cause pools of cold air to accumulate over Yucca Lake. Solar heating of higher terrain at the north end of Yucca Flat generally draws a southerly flow through the basin during daylight hours.

The principal test-related facilities within Yucca Flat included the Yucca Flat Weather Station (designated UCC for meteorological reports) on the western edge of Yucca Lake; the Buster-Jangle Yankee intersection (designated BJY), a position near the intersection of Rainer Mesa Road and Mercury Highway; and a network of meteorological data (MEDA) stations within and around Yucca Flat. These locations are shown on Figure 1, and their latitude and longitude positions are given in Table 1. The ARL/SORD meteorological building at UCC served as both the test program command post and a release point for radiosonde and pilot balloon (pibal) flights. A pibal station and wind profiling radar were also stationed at BJY. Tower-mounted sonic anemometer/thermometers (sonics) were operated near BJY and at a site, designated YFW in this report, that is 100 m east of UCC.

Table 1. Dipole Pride 26 Test Site and MEDA Station Locations.

Position	Latitude (°N)	Longitude (°W)
Area 1 (MEDA 1, elevation 1265 m)	37.0275	116.0917
Area 2 (MEDA 2, elevation 1341 m)	37.1392	116.1058
Area 3 (MEDA 3, elevation 1207 m)	37.0042	116.0317
Area 9 (MEDA 9, elevation 1290 m)	37.1358	116.0400
BJY (MEDA 17, elevation 1244 m)	37.0625	116.0525
DAF (MEDA 28, elevation 1107 m)	36.8925	116.0375
YFW (MEDA 6, elevation 1195 m)	36.9583	116.0467
MON (MEDA 10, elevation 1570 m)	36.9400	116.0792
CSE (Cane Springs Road East)	36.8512	115.9985
N2 (North Dissemination Site 2)	37.1586	116.0967
N3 (North Dissemination Site 3)	37.1500	116.0625
S2 (South Dissemination Site 2)	36.9570	116.0498
S3 (South Dissemination Site 3)	36.9512	116.0100
Sampler Site 101 (West End North Line)	37.1383	116.1230
Sampler Site 130 (East End North Line)	37.1227	116.0410
Sampler Site 201 (West End Middle Line)	37.0557	116.0920
Sampler Site 230 (East End Middle Line)	37.0493	116.0090
Sampler Site 301 (West End South Line)	36.9906	116.0930
Sampler site 330 (East End South Line)	36.9954	116.0160

Figure 1. Dipole Pride 26 test site at Yucca Flat, with the locations of puff release sites (S2, S3, N2, and N3), three concentration sampling lines, MEDA Stations (M1, M2, M3, M6, M9, M10, and M28), and primary instrumentation positions (BJY, UCC, and YFW) indicated.

2.2 FIELD TEST DESIGN

The Dipole Pride 26 (DP26) field test was designed to use fixed sampling lines and a mobile dissemination system to document puff dispersion utilizing the predominant north-south flow through Yucca Flat. Six dissemination positions, three on the north side and three on the south side of Yucca Flat, were selected for the truck-mounted disseminator to accommodate wind direction variations. Only sites S2, S3, N2, and N3 were actually used for dissemination.

The dissemination system was built by Consumers Pipe in Las Vegas, NV. It consisted of gas cylinders, the tracer gas sulfur hexafluoride (SF_6), a compressor, actuators, fill hoses, and plumbing mounted on the bed of a government-furnished 5-ton truck. Gas was released through two cylinders with fast-acting solenoid-actuated butterfly valves. Each release was completed within 2 seconds of valve opening. The cylinders were designed to be operated either singly or together. Each cylinder had a volume of 0.15 m³ and held approximately 10 kg of SF_6 when filled to the design pressure of 150 lbs per square inch (105,465 kg/m²). Table 2 gives the calculated quantities of SF_6 released for each trial, and Appendix B describes the methodology used to calculate release quantities.

The released SF_6 puffs were sampled using six TGA-4000 <u>Tracer Gas Analyzers</u> and ninety whole air samplers dispersed along three sampling lines. Technicians operated the TGA-4000s, which were installed within half-ton cargo vans. These technicians also serviced whole air samplers mounted on posts 1.5 m above ground level (AGL) along sampling line roads. The fast-response TGA-4000s provided real time information on the arrival and departure of each puff and measured the high-frequency (4-Hz) variations of the gas concentration field within the passing puffs. The whole air samplers provided only coarse (15-min) time resolution, but the time-averaged gas concentration measurements from the 30 whole air samplers stationed along east-west roads crossing Yucca Flat provided the spatial resolution required for puff lateral dimension calculations. Additional whole air samplers were positioned away from the planned puff trajectory as background SF_6 references, and dual samplers were mounted at some sampling stations for quality control.

DP26 sampling lines were established along the following roads: Road 2-04 between Orange Road and Mercury Highway (Line 1, sampler positions 101 through 130); Pahute Mesa Road between Orange Road and Orange Blossom Road (Line 2, sampler positions 201 through 230); Mine Mountain Road between Tippipah Highway and Orange Blossom Road (Line 3, sampler positions 301 through 330). The TGA-4000s were stationed at 1500-m intervals along Sampling Line 2 (Pahute Mesa Road) to maximize the possibility of intercepting portions of the cloud crossing this line. Mean whole air sampler spacing along Lines 1, 2, and 3 were 259, 256, and 237 m, respectively. Sampler spacing, line length, and number was chosen as a compromise between four constraints: (1) containing the entire puff width within a sampling line; (2) intercepting the puff with at least six samplers; (3) remaining within the confines of existing roads; and (4) not exceeding technician servicing capabilities. This compromise optimized sampling along Line 2. which was roughly 10 km from the north and south dissemination positions. Pre-trial modeling suggested a sampler spacing of 250-300 m as the best compromise between the first and second constraints. The third and fourth constraints limited sampler line length and the number of positions within a sampling line.

Puff infrared (IR) imagery was obtained by WDTC personnel at the time of release, and the dispersing puff was tracked downrange using an array of mobile imagers operated by The Aerospace Corporation. The principal purposes of this imagery were to document initial puff dimensions and to resolve in time and three-dimensional space the puff centroid positions as these centroids crossed the sampling lines. Operators of the Aerospace

imagers selected their positions prior to puff release based on release location and wind conditions.

The Dipole Pride 26 test series was designed to complement puff dispersion measurements with extensive meteorological documentation. This documentation included surface-based and upper air measurements and weather analysis and forecasting support from the ARL/SORD facility in Las Vegas, NV. Surface measurements included wind, temperature, humidity, and pressure data obtained over 15-min averaging periods from an array of MEDA stations located in and around Yucca Flat. These measurements were supplemented with temperature and momentum flux and turbulence information obtained using sonic anemometer/thermometers mounted on towers at BJY and YFW. Pibal and radiosonde flights provided wind and thermodynamic profiles through the lower troposphere. ARL/SORD reactivated its radiosonde site UUC at the Yucca Flat Weather Station during DP26 to launch radiosonde flights every 3 hours while trials were in process. Pibals were also launched every hour from BJY and UUC (except during radiosonde flights), and occasionally from Cane Springs Road. A 924-MHz wind profiling radar positioned near BJY provided intermittent wind profiles during testing. MEDA station, pibal, radiosonde, and profiler data are available on floppy disks or CD ROM. The sonic anemometer/thermometer measurements require extensive processing to produce useful statistical results. These statistical results are presented in this report, while the basic data are available from DPG by special request.

2.3 TEST INSTRUMENTATION

2.3.1 TGA-4000 Continuous SF₆ Analyzer

The TGA-4000 is designed to provide real-time fast response (better than 1 Hz) SF_6 concentration measurements. It consists of a catalytic reactor, a dryer, and an electron capture detector (ECD) to measure halogenated compounds such as SF_6 . Because the detector responds to oxygen, the TGA-4000 uses the catalytic reactor to convert molecular oxygen to water and a dryer subsequently removes the water from the airstream. Any SF_6 above a picogram threshold remaining in the airstream after these operations produces a voltage proportional to its concentration as the airstream passes through the ECD. The TGA-4000, its associated plumbing, and a data acquisition and display system fit into a ½-ton cargo van, which can be driven into sampling position. The van also serves as a power source for the TGA-4000. Scientech, Inc. of Pullman, WA, who built the TGA-4000, report a bench-top noise level of 5 part per trillion by volume (pptv) and a response time of 0.86 s (Benner and Lamb, 1985). A 4-Hz data acquisition rate was used with the TGA-4000 instruments during DP26. Further details on the TGA-4000 can be found in Watson et al. (1998) or Bowers et al. (1994).

2.3.2 Whole Air Samplers

Whole air samplers, also known as sequential bag samplers (Bowers et al, 1994), consist of a cartridge containing a programmable microprocessor and twelve 1-l TedlarTM bags, with each bag connected to a small air pump. A "D" cell battery provides power for the whole air sampler unit. The cartridge is mounted within a waxed cardboard box that fits onto a mounting bracket. During DP26 each sampler was mounted on a post at a height of 1.5 m above ground level (AGL). The sampler can be programmed to sequentially fill each of the bags over time periods ranging from 10 min to several hours, thereby providing a concentration measurement integrated over the selected sampling period. A 15-min sampling period was used during DP26 as the best compromise between the desire for maximum time resolution and the need to sample during the 3-hour duration of a typical test. The bag 1 fill sequence was programmed to begin at puff dissemination time on the two sampling lines closest to the disseminator, and was delayed for 30 min on the furthest

sampling line. Once the fill sequence on bag 12 was completed, the cartridges containing sealed bags were dismounted and taken to a field gas laboratory set up in Mercury, NV for separation by species. Chemical species separation was performed using a gas chromatograph and an electron capture detector. Further details on whole air sampler operation during DP26 are given by Watson et al (1998).

2.3.3 Sonic Anemometer/Thermometers

A sonic anemometer/thermometer (sonic) consists of a transducer array containing paired sets of ultrasonic transmitters and receivers, a system clock, and circuitry designed to measure intervals of time from the transmission to the reception of sound pulses traveling between transducer pairs. The sonics used during Dipole Pride 26 were the Applied Technologies, Inc. 3-axis ATI Model RSWS-201/3A, which provides three dimensional (u, v, and w) wind components and speed of sound. These sonics were mounted at 10 and 14 m AGL on towers near the Buster-Jangle Yankee (BJY) intersection and at a tower designated YFW located 100 m east of the Yucca Flat Weather Station (UCC). Sonic locations were confined to these sites by the need for a suitable mounting tower and 110 VAC power. The 3-axis sonics resolve all components of the three-dimensional wind vector. The speed of sound measurements were converted to sonic temperature, which is essentially equivalent to the virtual temperature. With a data rate of 10 Hz and an acoustic pathlength between transducers of 15 cm, the sonics provide sufficient temporal and spatial resolution to measure mean wind plus the fluctuating components needed to define turbulence intensities and the fluxes of heat and momentum. Procedures described in the American Society for Testing of Materials (ASTM) standard practice for obtaining wind and temperature measurements from sonics (ASTM 1997A) were used to obtain wind component and speed of sound measurements to within ±3 cm/s.

2.3.4 MEDA Stations

ARL/SORD operates a continuously monitoring network of remote meteorological stations (MEDA stations) across the Nevada Test Site. Each station in the MEDA network reports a measurement of temperature, pressure, humidity, wind speed, and wind direction every 15 min. There is a time tag at the end of each MEDA data block. For example, data collected during the period 0230 - 0245 Pacific Standard Time (PST) are reported at 0245 PST. With the exception of wind sensors mounted at 10 m, MEDA station instruments are mounted at 2 m AGL. MEDA station data are transmitted via radio to a centralized data collection point. The reported temperature, pressure, and humidity are the last available readings during each 15-min reporting interval. Wind speed and direction are obtained over a 5-min averaging period immediately prior to the reporting time, with maximum and minimum speeds taken from 1-s readings during the entire 15-min period. The MEDA station data displays in the Yucca Flat Weather Station served as the primary source of wind information for DP26 test conduct.

2.3.5 Radiosonde

A radiosonde system consists of a balloon-borne instrument package that rises through the atmosphere, providing profiles of wind, temperature, humidity, and height at 10-s intervals throughout the flight. Data packets from this instrument are transmitted via radio link to a base station where they are logged and subjected to quality control. Each profile is reduced to measurements at standard pressure levels (the mandatory levels) and significant inflection points (significant levels). The radiosonde system used at NTS is the automatic radio-theodolite (ART), which tracks the balloons with a ground-based radio theodolite. The ART tracks the ascending balloon, providing elevation and azimuth angle readings which, after time-synchronization with pressure readings, are converted to profiles of wind speed and direction. The ART system used during DP26 was located at the Yucca

Flat Weather Station (UCC). It provided wind and thermodynamic profiles every 3 hours during the test program. The ART measurement uncertainties are ± 0.6 °C for temperature, $\pm 10\%$ for relative humidity, and ± 1 m/s for winds (RCC-MG, 1992).

2.3.6 Pibal

The pilot balloon (pibal) is an optically-tracked free balloon used to obtain profiles of wind speed and direction. Hundred gram (100-g) pibals provided boundary layer wind profiles during this test program. When filled to its design lift weight, a 100-g pibal has an ascent rate that is large in comparison with typical atmospheric vertical motions. Standard tables are used to relate a pibal's flight time to its height AGL. Optical tracking with a theodolite provides azimuth and elevation readings taken at 30-s intervals. These readings, combined with tabulated height versus time data, provide sufficient information to calculate layer-averaged wind speeds and directions. Pibal wind profiles are typically accurate to within ± 2 m/s (RCC-MG, 1992). The Digital Pibal (DIGIPI) Systems used at NTS feature shaft encoders to digitally record theodolite angles every 30 s. The angular data are stored in a microcomputer linked to a communications device that transmits these data to the central computer during a polling sequence. DIGIPI units were stationed at BJY and UCC, and occasionally at Cane Springs Road (CSE) in Frenchman Flat, providing hourly wind profiles during the test program.

2.3.7 Infrared Imaging Radiometers

Infrared imaging radiometers (imagers) are passive optical devices sensitive to IR energy in the 8- to 12-mm portion of the IR spectrum. Because SF_6 has a distinct absorption band in this portion of the spectrum, the passage of a SF_6 puff across the imager's field of view registers as a temperature change when compared with the background image. IR imagers were used to determine initial puff dimensions (source size) and to track the puffs as they traversed the sampling lines. Source size characterization was done using an Inframetrics Model 600L Imaging Radiometer, which has a typical thermal sensitivity of 0.05 °C, a scan rate of 50 Hz, and a 7-bit (128 levels) image resolution. Three Sterling-cooled Agema Thermovision 900 digital IR imagers, each equipped with a narrowband filter centered around the main SF_6 absorption band, were used to monitor SF_6 puff travel across the sampling lines. These imagers are characterized by a 15-Hz scan rate (non-interlaced) and a thermal sensitivity of 0.08 °C. The spectral resolution and field of view varied with the filters and lenses used. These images captured information on puff concentration column density and centroid height.

2.3.8 Fourier Transform Infrared Spectrometer

The Fourier transform infrared spectrometer (FTIR) is a remote imaging device designed to measure the scene spectrum within the 8- to 12-mm band. Because all materials that absorb IR energy have unique absorption band signatures, an FTIR is able to resolve the contents of a dispersing cloud if a sufficient signature is present. These instruments are most useful when the background within their fields of view is constant and the target tracer cloud is easily distinguishable from the background thermal signature. Consequently, the FTIRs were oriented toward the (relatively cold) clear sky to detect the arrival and passage across the field of view of the (relatively warm) SF₆ puffs. Sulfur hexafluoride is an ideal tracer because it exhibits a sharp peak at an inverse wavelength of 950 cm⁻¹. When processed through a "special ratio" algorithm (Polak et al., 1995) designed to remove background and noise, the SF₆ transmission or absorption peak emerges and can be used for quantitative estimation of puff column density.

The FTIR supporting DP26 was an Intillitec M21 chemical agent detector. This instrument features a spectral resolution of 1.5 cm $^{-1}$, a 5.25-Hz scan rate, a 25-milliradian field of view, and a sensitivity of 1.5 x 10^{-8} W cm $^{-2}$ sr $^{-1}$ /cm $^{-1}$. Spectrometers were mounted in the Aerospace Corporation Ram Van which was positioned to intercept the passing SF₆ puff centroid, and in the Aerospace Tonka Van, which followed the puff and made traverses through it as it dispersed downrange. Reports from these two vans provided real-time information on puff location and dispersion, and follow-on analysis of these data could provide valuable puff position information.

2.3.9 Dissemination System

The SF $_6$ gas release system consisted of two vertically-mounted cylinders, solenoid-operated actuators, and a control panel with remote enable and function buttons. The cylinders had a volumetric capacity of 0.15 m³ and vented through a top-mounted 25-cm (10-in) butterfly valve. Trial preparation began with the filling of one or both cylinders with SF $_6$ gas to a pressure of approximately 150 psig. A cylinder pressure of 150 psig was high enough to quickly expel the contained gas, but low enough to prevent the SF $_6$ from liquifying, thereby producing a puff while minimizing unwanted momentum and dense gas effects on initial puff dimensions. Remote control buttons were used to enable and operate the valves either together or separately. Each cylinder was instrumented with a surface-mounted thermometer and internal cylinder gage pressure transducer to provide the measurements required for calculation of the released mass. The release system was mounted on the bed of a 5-ton flatbed truck. This truck was driven to one of the designated release locations prior to the beginning of each trial fill procedure. The release mass calculation procedure is described in Section 3.1.3, with further details provided in Appendix E. Table 2 in Section 3 lists the mass of SF $_6$ calculated for each release.

Blank Page

SECTION 3. TRIAL DATA SUMMARIES

3.1 DISSEMINATION SUMMARIES

3.1.1 Trial Name And Time Convention

Dipole Pride 26 trials are named DSWAXX, where XX is a sequential numbering of trials (01 through 17). All SF_6 gas concentration data are identified by trial name. Several of the trials included two sets of disseminations, the second release being staggered 90 min behind the first. Consequently, trial names are supplemented with a release time convention of JJJhhmm. The release time convention for DP26 consists of the three-digit Julian date (JJJ) followed by the hour and minute of the dissemination in Pacific Standard Time (PST). Dissemination dates, times, and locations are presented in Table 2.

Two time conventions are used with DP26 meteorological data. The MEDA station data collected during the test program and archived on CD are presented in PST, with the time stamp taken from the end of the averaging period. The radiosonde and pibal launch times are also presented in PST. In contrast, the 15-min averaged sonic anemometer data documented in this report and on CD take their time stamp from the beginning of the averaging period and are presented in Universal Coordinated Time (UTC), which is 8 hours ahead of PST. For example, MEDA station data for the period 1500-1515 PST are labeled 1515, while sonic data from the same period are labeled 2300 UTC.

3.1.2 Dissemination Procedures

Trial preparation began with a decision to disseminate from one of the north (N2, N3) or south (S2, S3) positions. The truck-mounted disseminator system was then driven to that position. The SF $_6$ dissemination cylinder fill procedure began upon receipt of range safety clearance from the DOE Nevada Operations Office representative. The cylinder(s) to be used on a trial were filled to a nominal gage pressure of 150 psi. Cylinder pressures and temperatures were reported when the fill procedure was completed. Small SF $_6$ leaks caused by temperature-induced flexing of the packing material between the cylinders and valve flanges often occurred during the fill procedure. Leaks were minimized by tightening the bolts securing the valve and actuator components to the cylinder, but elevated SF $_6$ background concentrations due to disseminator leaks are apparent in the sampler data for some trials. Table 2 includes comments concerning trials where leaks were most noticeable.

3.1.3 Dissemination Mass Calculations

Given a known cylinder volume, the cylinder temperature, and internal pressure, it is possible to calculate the mass of material released. Dr. William Espander performed a series of mass calculations based on the Law of Corresponding States, a Virial equation, and a Martin-Hou equation (Mears et al, 1969). While the results from these three methods were similar, Dr. Espander recommends the Martin-Hou method because it is based on actual SF_6 experimental data. Table 2 includes disseminated mass calculated using the Martin-Hou method. Details of Dr. Espander's DP26 calculation procedures are presented in Appendix C.

Table 2. Dipole Pride 26 Dissemination Times, Masses, And Comments.

Release Number Mass

Mass	Released (Kg)	Comments	8.0 Bulk of puff missed samplers	11.5 SF ₆ leak in actuator arm; puff missed grid	12.3 Puff near ground; 2 segments; pooling at Yucca Lake	11.5 Puff near ground; pooling at Yucca lake 11.5 Pooling at Yucca Lake	11.5 Puff lifting off surface	11.6 Puff stalled on Pahute Mesa Rd, pooling	19.3 1.5 s between releases 10.0 Cylinder failed to function at 1445; OK at 1447	10.4 Continuous analyzers detecting possible freon source leak from somewhere on NTS	11.3 Winds light & variable	10.6 Puff above sampler lines 10.8 Puff in contact with surface	11.5 Possible leak; tightened gasket	21.6 0.5 s between releases, puff lofting	21.1 0.7 s between releases	10.8 Disseminator leaks	20.2	20.3 Puff passing east of samplers 20.3 Puff passing west of samplers	20.4 Puff lofting
Number	or Cylinders		2	1	-		1	-	21-	-	-			2	7	***	2	77	Ø
	Dissemination	Location	\$2	e N	N3	ဗဗ ZZ	N ₂	N2	လလ လင်္က	S 2	N2	2Z 200	22 22	N2	S2	S2	S 2	S3	လိုင်
	Disser	Time (PST)	1441	0845	0400	0400 0538	0440	0400	1300	1400	0060	1430 1551	0900	1430	1300	1130	1300	1200	1200
	Date		4 Nov	6 Nov	8 Nov	9 Nov 9 Nov	11 Nov	12 Nov	12 Nov 12 Nov	13 Nov	14 Nov	14 Nov Vov Vov	15 Nov Nov	15 Nov	16 Nov	18 Nov	18 Nov	19 Nov 50 Nov	20 Nov
release	date/time (JJJhhmm)		3091441	3110800	3130400	3140400 3140538	3160440	3170400	3171300	3181400	3190900	3191430 3191551	3200900 3201030	3201430	3211300	3231130	3231300	3241200 3241330	3251200
			1																

3.1.4 Release Dimensions

An IR imager positioned 100 m east or west (crosswind) of the disseminator provided puff alongwind and vertical dimension information. Release duration (usually 1-2 s) is the time between the opening of the first valve to the evacuation of the last cylinder. The release durations were subjectively determined from visual inspection of the puff release imagery. Useable puff images were not obtained for each release, and those that were available are subject to uncertainties in interpretation. Consequently, this report provides no trial-by-trial source dimension information. However, there was enough useful data to define general source dimension characteristics. Momentum of the exiting gas typically carried the puff centroid to a height of 6 \pm 2 m, creating SF $_6$ puff with a vertical dimension of 4 \pm 0.5 m. The initial alongwind puff diameter averaged 7.5 \pm 2m. Because the two cylinders were separated by less than 2 m, the number of cylinders used during a release had a negligible effect on source dimensions.

3.2 TRIAL CONCENTRATION SUMMARIES

3.2.1 Detector Placement And Sampling

A. Whole Air Samplers. Thirty whole air samplers were mounted on posts 1.5 m AGL at nominal 300-m intervals along each sampling line. The operators of the six van-mounted continuous analyzers also performed the whole air sampler programming, two being responsible for each sampling line. Upon notification of a trial start time by the test director, operators downloaded to each whole air sampler a start time and a 15-min sampling interval. The two sampling lines closest to the release point were programmed to begin sampling at the projected release time (actual release times were occasionally delayed), while the furthest line of samplers was programmed with a 30-min delay. Once the sampling began, the program stepped through a procedure that sequentially filled Bags 1 through 12. Sampling for each trial was complete upon the sealing of Bag 12 on the sampling line furthest from the source. The sealed bags were taken to the gas laboratory for analysis at the end of each trial.

B. Continuous Analyzers. Upon completion of sampling line programming, the TGA-4000 operators drove their vans to their sampling stations. On the first trial (DSWA01), each pair of vans was stationed on its respective sampling lines (Vans 3 and 4 on Line 1, Vans 1 and 6 on Line 2, and Vans 2 and 5 on Line 3). However, for the remainder of the trials, a decision was made to maximize coverage on the sampling line along Pahute Mesa Road by stationing the vans as indicated in Table 3. This arrangement provided real-time gas concentration readings at 1500-m intervals across Line 2 (see Figure 1).

Table 3. Continuous Analyzer Van Locations by Sampler Station Number.

Van 1	Van 2	Van 3	Van 4	Van 5	Van 6
230	224	212	218	206	201

3.2.2 Sampler Summaries

Concentration measurements obtained by the samplers are archived on a CD produced by ARLFRD. The CD contains three directories: (1) visualization images (Directory: IMAGES) that include Yucca Flat terrain overlaid with MEDA station winds and bargraph depictions of the time variations of SF₆ concentrations; (2) a directory of the time-resolved

TGA-4000 data; (3) a directory of the whole air sampler data in time-position arrays. The IMAGES directory presents an animated depiction of the puff concentration field moving in stages through the sampling lines. The other directories present SF_6 concentration data by position and bag number (whole air sampler data) or by van number and time (TGA-4000 data).

Whole air sampler results were analyzed to obtain normalized concentration maxima and cloud widths (σ_v) for each trial where most of the puff crossed the sampling lines. Normalization was accomplished by dividing the 15-min averaged concentration maxima by source strength as described below. The results are presented in Table 4. The 15-min time resolution available from the whole air samplers is insufficient to resolve alongwind cloud growth (σ_t) dimensions or centroid passage time. Continuous analyzer data and remote imagery were included in the Dipole Pride 26 test to provide better temporal resolution of puff centroid locations. However, because the continuous analyzers were stationed only along Line 2 and the puff imagery has not been analyzed, alongwind cloud dimensions are only available from Line 2. The available σ_t results are summarized in Table 5.

3.2.3 Sampler Quality Control

Watson et al. (1998) use limit of detection (LOD) and limit of quantitation (LOQ) to evaluate TGA-4000 system performance. LOD is the lowest concentration at which SF_6 can be detected, defined as three times the standard deviation of measurements at zero concentration, as determined by analysis of signal noise. The LOQ is defined as the minimum concentration measured with a relative error within \pm 30 percent at the 95 percent confidence level (Taylor, 1987). Watson et al. (1998) report LODs ranging from 15 to 42 pptv and LOQs ranging from 50 to 140 pptv for the six TGA-4000 units deployed during Dipole Pride 26.

Whole air sampler quality control included a well-defined series of procedural steps designed to minimize loss, contamination, and mislabeling of samples as well as the use of duplicate samples, blanks, and spikes to define accuracy and precision. Sampler quality control and performance are described in detail by Watson et al. (1998). A total of 19,688 samples were collected. Of these, 1,386 were rendered unusable, yielding a data recovery rate of 93 percent. In addition, the released puff apparently missed the sampling lines during Trials 1, 2, 8, and 10. Consequently, sampler data from these trials were not processed and are not included in the trials tabular data. This reduces the available sampler data to 77 percent.

LOD baseline, accuracy, precision, and threshold are figures of merit for whole air sampler measurements. Whole air sampler baseline and accuracy were determined using blanks and spikes. A blank is a sample collected using the standard sampling protocol, but with the bags within the sampler cartridge containing only ultra high purity air. A spike is a set of sampler cartridges containing a known concentration of SF_6 that is subject to the same processing as test data. Analysis of 455 blank samples yielded a mean of 4 pptv with a standard deviation of 7 pptv. This result produces an LOD baseline of 21 pptv. Spike analysis produced a mean spike-to-standard difference of 6 pptv with a standard deviation of 15 pptv. Watson et al. (1998) define system accuracy at \pm 15 pptv. Whole air sampler precision was determined by comparing the results from sets of duplicate samplers positioned on sampling Stations 115, 215, and 315. These duplicate samples were divided into three ranges for analysis: 0 to 100, 100 to 500, and greater than 500 pptv. Watson et al. (1998) estimate precision at the 95% confidence level as $\pm 42\%$ for the 0 to 100 range, $\pm 32\%$ for the 100 to 500 range, and $\pm 12\%$ for concentrations greater than 500 pptv. Threshold considerations include the effects of analytical uncertainties and

any atmospheric background accumulation of SF_6 . Accordingly, samples of measurements taken from bags exposed to ambient air not in the vicinity of the puffs were selected for statistical analysis. These samples produced a mean concentration of 4.5 pptv with a standard deviation of 1.73. There was also no noticeable increase in the SF_6 background levels from the beginning to the end of the trials program. The background threshold, the lowest likely non-zero reading to be obtained from whole air samplers operating in background air, is taken as three standard deviations beyond the sample mean, or 9.7 pptv. The range between threshold and LOD baseline concentration levels (~10 to 21 pptv) is a "grey area" in which measurement results are greater than those expected from the SF_6 background, but less than the baseline concentration expected at the edge of a well-defined SF_6 puff. Concentration measurements in this range are associated either with fugitive emissions from a leaking disseminator, or with the periphery of a very diffuse puff.

3.2.4 Puff Width Estimates

The whole air sampler data available for each trial consist of samples from 30 crosswind sampler positions along each of the three lines. Whole air samplers mounted at the sampling positions provided 12 (Bags 1 through 12) time-sequenced concentration measurements, generating a 30 x 12 array of concentration measurements at each sampling line. Figure 2 depicts this array for the middle sampling line of Trial DSWA12. The 15-min sampling intervals set for each bag provided insufficient temporal resolution to estimate centroid passage time or σ_t . However, the 300-m sampler line spacing usually provided a sufficient number of above-threshold concentration measurements along each sampling line (a minimum of six is desirable) to generate histograms of the lateral puff concentration distribution. Gaussian fits to these histograms were used to determine puff width sigmas (σ_v) . "Best estimates" of σ_y were obtained using the following procedure:

- 1. Define a coordinate system. The DP26 field test domain was bounded in latitude by the north and south puff release positions (N2, N3, S2, and S3), and in longitude by sampling positions that define the east and west ends of each sampling line. Watson et al. (1998) provide latitude and longitude measurements for each sampler station and puff release position. The position of a puff crossing a sampling line was determined by the location of its centroid relative to the sampler positions, where the centroid was defined as the center of mass of the concentration distribution. To determine the centroid location, a coordinate system was established along each line with a local origin at each line's easternmost sampling position (130 for Line 1, 230 for Line 2, 330 for Line 3). All other samplers along each line were assigned locations at nominal 300-m increments west of these origins. This arrangement defined a lateral distance in meters from the local origin for every sampler position along each line, and these distances were used with the sampler concentration measurements to create the distance-concentration histograms shown in Appendix B. The histogram centroid distances, determined using procedures described below, were then translated back to latitude/ longitude positions. This centroid position information was used with release position information to determine straight-line distances from the puff's source location to its position as it crossed each sampling line. These distances are listed under "Distance from Source" in Table 4.
- 2. Determine the puff histogram concentration maximum (C_m) . For each 30 X 12 whole air sampler concentration array, the near-surface puff concentration maximum C_m was identified as the sampler position and bag number near the array concentration centroid reporting the maximum concentration. Occasionally, two adjacent bags provided high concentrations (within 10 percent of each other). In this case, the true C_m likely passed between or over both array positions. In these cases, the σ_y computation procedure was performed using each set of bag concentration data. Table 4 lists the 15-min averaged puff C_m presented in pptv and as normalized (divided) by the quantity of SF_6

released (see Table 3) using a conversion procedure described by ASTM Standard Practice D1914-95 (ASTM, 1997B). The normalized C_m are given in units of $m^{-3} \times 10^{-15}$.

3. <u>Define a puff width histogram.</u> The bag number associated with the puff concentration maximum identifies a row of 30 measurements obtained along a particular sampling line taken during the same 15-min period as the measured concentration maximum. Concentration measurements and position information from the selected row were used to construct the puff width histogram. All sampler position measurements reporting above-baseline concentrations (in excess of 21 pptv) within this time period were used in the histogram. Figure 2 illustrates a whole air sampler concentration array obtained during Trial DSWA12, Line 2 with the concentrations used to define puff width during centroid passage highlighted in bold type. A total of 40 useful histograms, identified in Table 4 by trial name, release time, sampling line number, and bag number, were obtained from the Dipole Pride 26 data set. Appendix B contains additional puff width histogram information, including conversions from bag numbers to sampling times.

For some trials, above-baseline concentrations were measured at the extreme east and/or west sampler positions, indicating that the puff lateral dimensions likely extended beyond the sampler line. If the missing data were well within the tail of the distribution (greater than one standard deviation from the centroid), the missing part of the histogram was filled in using estimates of centroid shape and area to permit statistical analysis of the histogram. Histogram statistics affected by this procedure are enclosed by parentheses in Table 4.

4. Plot the histogram and fit a Gaussian curve. The crosswind spread of diffusing material is traditionally described in terms of a Gaussian σ_{ν} . Although material released into the atmosphere initially has strong concentration gradients at the boundaries, entrainment of clean air into the puff and diffusive mixing quickly destroys these gradients and often creates a crosswind concentration field that resembles a Gaussian distribution. How well a sampled concentration field, as represented by its concentration histogram, fits a Gaussian distribution was described using a goodness-of-fit parameter and the histogram's skewness and kurtosis.

The apparent shape of a puff's crosswind concentration distribution, as represented by its concentration histogram, is influenced by sampler spacing resolution, and the nature of the flow into which it is released. When a small puff passes over only a few crosswind samplers, it typically produces a leptokurtic (exaggerated peakedness) crosswind concentration histogram as a consequence of poor spatial resolution. This effect is evident in some of the concentration histograms obtained from puffs crossing the nearest sampling line. As the puff continues to expand while moving downwind, it progressively crosses more sampling stations on a crosswind line and the sampler spacing-induced leptokurtic effect diminishes. With progressively greater mixing, the histogram eventually assumes a platykurtic (exaggerated flatness) profile. Wind shear and divergence can also skew the concentration distribution and/or create secondary peaks, causing the concentration field to resemble a skewed and/or bimodal distribution. Therefore, the concentration-distance histograms are characterized in Table 4 using a "best-fit" σ_{γ} supplemented by the coefficients of skewness and kurtosis and a measure of the mean square departure from the idealized Gaussian distribution.

The histogram analysis procedure began with keying position and concentration data into the Jandel Scientific SigmaPlot® graphing program. A transform "GAUSq.XFM" was written to operate on these data. GAUSq.XFM calculates the histogram area (A), puff centroid (center of mass) position along the sampling line, "best-fit" $\sigma_{\!_{y}}$, and the mean square error of the Gaussian curve fit to the histogram data. The best-fit $\sigma_{\!_{y}}$ is the one that simultaneously matches histogram area (retaining mass continuity) and minimizes the least-squares error in the Gaussian fit to the histogram data.

Locatio	Bag 1	Bag 2	Bag 3	Bag 4	Bag 5	Bag 6	Bag 7	Bag 8	Bag 9	Bag 10	Bag 11	Bag 12
201	3	4	5	4	4	5	3	5	5	3	4	6
202	3	3	18	3	3	5	3	3	3	3	2	3
203	3	3	36	3	3	3	3	3	3	3	3	2
204	3	6	44	8	3	3	4	3	3	3	4	3
205	5	3	37	9	3	6	3	5	6	4	6	5
206	3	5	56	5	3	2	4	3	3	6	4	5
207	3	3	52	3	3	3	3	3	3	2	3	2
208	2	5	44	3	2	2	3	3	3	3	3	3
209	3	5	52	7	6	3	7	3	4	4	3	4
210	3	7	89	11	9	3	3	4	3	8	3	3
211	3	3	98	11	3	3	3	3	3	2	3	3
212	3	8	96	15	0	3	7	6	5	4	3	5
213	4	5	78	18	5	5	4	43	5	5	5	5
214	3	8	82	31	4	5	7	56	6	5	5	3
215	3	3	80	34	3	3	3	93	36	2	3	3
216	4	4	78	34	3	4	5	69	30	3	4	4
217	3	4	100	35	3	4	5	53	26	4	3	3
218	3	3	119	39	4	4	6	62	23	3	3	3
219	2	7	133	56	9	6	7	45	24	6	5	5
220	2	3	99	72	3	4	8	14	24	3	4	, e
221	3	7	114	75	5	7	3	28	23	5	3	8
222	3	6	119	62	5	5	6	22	29	4	4	6
223	2 .	2	121	54	3	3	3	12	18	3	2	3
224	2	3	107	53	3	2	3	3	20	3	2	3
225	3	6	84	39	5	7	3	7	20	9	7	6
226	4	4	61	29	5	4	5	5	12	5	4	. 4
227	2	2	38	4	6	4	3	5	14	3	7	5
228	2	2	39	3	3	3	3	2	3	3	3	2
229	2	4	6	3	5	3	3	2	3	2	3	3 6
230	3	3	13	4	3	7	3	3	6	3	3	U

Figure 2. Sulfur hexafluoride concentrations in pptv arrayed by bag number and whole air sampler location along Line 2 during Trial DSWA12 following puff releases at 0900 and 1030 PST on 15 November 1996. Puff concentration data included in puff width histograms (described in 3.2.4) are indicated in bold type. Bag 1 provides the time-mean concentration during the first 15-min time period after dissemination, followed successively by Bags 2 through 12.

ı			- 1																																									
	Crossing	Angle	(see feen)	83	83	71	69	01	0	99	2	32	χ 2 (, i	4,	9/	84	74	46	78	82	72	20	80	09	73	73	73	22	74	78	67	89	79	20	84	87	8	8	92	80	87	82	
	Normal	Departure	(8/)	6.7	(27.0)	41.7	19.1	22.4	33.1	(15.4)	37.9	(28.9)	21.7	(40.4)	(56.3)	77.9	34.6	111.7	(57.5)	32.1	(59.2)	(13.7)	18.9	თ. ზ	15.1	24.7	22.7	(20.1)	7.5	27.1	9.2	16.2	(18.1)	(14.0)	24.0	23.7	32.9	16.8	19.8	13.5	36.7	(25.3)	\sim	
	ent of	Kurtosis	(CINI)	0.745	(1.511)	2.082	2.498	2.608	2.281	(3.315)	2.170	(0.937)	4.305	(0.429)	(0.744)	1.532	3.058	7.774	(2.752)	1.932	(0.276)	(2.302)	2.152	12.765	1.288	2.365	1.849	(2.367)	2.324	0.933	98.607	4.510	(2.568)	(2.323)	4.768	2.231	0.530	3.316	2.332	4.700	3.783	(2.210)		
	Coefficient	Skewness	Q.	0.091	(0.169)	0.589	0.267	-0.601	0.405	(0.352)	0.165	(0.208)	0.675	(-0.016)	(0.187)	0.257	0.729	2.394	(0.853)	0.127	(-0.025)	(0.136)	-0.164	-0.028	-0.141	0.564	0.275	(0.356)	900.0	-0.263	-3.150	0.223	(-0.026)	(-0.268)	0.4856	0.220	-0.149	0.564	-0.250	0.622	0.808	(0.489)	(-0.148)	
	Best Fit	b^ {	Œ	139	(666)	1163	962	431	1323	(280)	209	(1661)	239	(666)	(994)	374	453	1379	(2335)	924	(422)	(1250)	831	159	597	1087	2028	(1604)	207	208	106	513	(220)	(1239)	267	1126	457	220	1508	434	218	(693)	(2917)	
	Aaximum	ration 3 v 10.15	e	6.577	0.795	0.046	0.043	6.762	0.633	0.794	3.779	0.075	3.455	1.044	0.327	4.792	1.569	0.400	0.104	0.172	1.262	0.00	0.341	13.770	2.441	0.468	0.062	090.0	2.421	0.044	2.002	0.074	0.022	0.020	0.647	0.099	0.410	0.305	0.027	0.233	0.927	0.193	0.045	
in PST).	Observed Maximum	Concentration	(bbto) (iii	14244	1725	97	06	13966	1304	1633	7823	158	7093	2148	672	6886	3240	819	385	634	4625	174	661	27582	4890	924	133	125	5173	93	8190	303	83	273	2502	199	824	1154	102	894	3555	753	170	
	Distance	from	(m)	1731	10726	17187	17273	1989	11456	12023	2564	17542	3945	11752	18505	2284	12806	18888	19858	10893	4991	18975	10743	2336	12334	18788	13013	18987	2917	13033	2438	13325	19222	20865	4426	10115	4215	4296	20385	10806	4197	10763	20359	
ersion Sum	Bag	Number		-	ო	ω	ග	-	ო	4	ω		က	9	10	7	7	10	4	က	7	4	4	7	10	7	က	က	7	ω		7	-	က	7	4	7	7	ω	œ	7	. ო	6	
26 Lateral Dispersion Summary (time	Line	Number		-	2	ო	က	-	7	2	-	က	-	7	ო	-	2	ო	_	7	က		7	· •	7	က	2	က	-	7	_	7	က	_	ო	7	ო	ო	_	7	m	7	-	
Dipole Pride 26	Release	date/time	(mmunccc)	3130400	3130400	3130400	3130400	3140400	3140400	3140400	3140538	3140538	3160440	3160440	3160440	3170400	3170400	3170400	3171300	3171300	3171300	3181400	3181400	3191551	3191551	3191551	3200900	3200900	3201030	3201030	3201430	3201430	3201430	3211300	3211300	3231130	3231130	3231300	3241330	3241330	3241330	3251200	3251330	
Table 4. Dip	Trial	Name	<i>خ</i>	DSWA03	SWA03	SWA03	SWA03	DSWA04	SWA04			DSWA04																								SWA15	SWA15	SWA15	16	16	SWA16	2 2	SWA17	
	1		- 1																																									

For each Gaussian curve of area A and dimension σ_{y} , there is a unique concentration maximum C_{o} defined by

$$\sigma_{y}C_{g} = A/(2p)^{0.5}$$
 (3-1)

Thus, the $\sigma_v C_q$ product defines a family of curves where either s_v or C_q can serve as an independent variable. If the histogram C_m is specified as C_g , Equation (3-1) defines a σ_v for the Gaussian profile that matches the histogram concentration maximum. However, this s_v may not provide the best least-squares fit to the entire histogram. As noted above, the best least-squares fit was obtained by iterative convergence. Because the SigmaPlot® transform programming does not provide a capability to converge on the best Gaussian fit to histogram data, the best-fit σ_v was obtained by running several consecutive solutions for GAUSq.XFM. GAUSq.XFM includes one σ_v solution with the histogram C_m input as C_q (Solution 1), a second solution which calculates a sy using the standard second-moment statistical methodology (see Kendall and Stuart, 1963), and a third "intermediate" solution based on a mean $C_{\scriptscriptstyle 0}$ derived from the concentration maxima for Solutions 1 and 2. The original $C_{\scriptscriptstyle m}$ -based solution usually produced a relatively small σ_{v} for the Gaussian curve fitted to the histogram maximum concentration, which may be the σ_v of greatest interest if predicting the maximum concentration is the primary modeling objective. The second (Kendall and Stewart) solution typically produced a larger σ_v (and smaller C_a) than the first solution, with the third solution producing σ_v and C_a intermediate between the first two. Figure 3 illustrates a sample histogram with the three fitted Gaussian curves. GAUSq.XFM calculated the mean square error of each fit to the histogram and normalized it by the total histogram concentration ΣC_i . Convergence was achieved by repetitively solving the transform using C_a estimates that produced progressively smaller mean square errors. Sufficient convergence was achieved when the difference in normalized error between any two successive GAUSq.XFM solutions produced error differences that were less than 10 percent of the minimum normalized error. For each puff, Table 4 gives the best-fit Gaussian σ_{v} and its error (listed as "normal departure, %"). An additional transform (Gausfit.XFM) provided histogram coefficients of skewness and kurtosis using the method described in Kendall and Stuart (1963). These statistics are also presented in Table 4. Appendix B contains printouts of the Gausfit and GAUSq transforms, plots of each histogram, and the best-fit Gaussian curve.

As a puff proceeds downrange, it becomes progressively more dilute and eventually blends into the background. Accurate determination of σ_{v} becomes difficult when puff concentrations diminish to magnitudes between threshold and baseline concentration levels. The point at which σ_{v} can no longer be determined using the present methodology is subjective, as the dilution process is gradual and "grey area" puff concentrations affect most puff dimension estimates to some degree. Because puff or plume borders are often defined at 10 percent of the maximum concentration, the puff σ_{v} estimates in this report are based on only those histograms that contained a maximum concentration in excess of 10 times the threshold (>97 pptv). Other puff histogram data were considered too dilute for accurate σ_{v} determination.

Trial DSWA07, Line 2, Bag 3

Figure 3. Test DSWA07, Line 2, Bag 3 (30-45 minutes after puff release) histogram and Gaussian curves obtained using three fit methods used in GAUSq.XFM.

- 5. Compute puff crosswind σ_v using 16-84 percentiles from the histogram CDF. The sampler position and concentration information used to calculate the best-fit s_v (Step 4 above) was also used to obtain independent histogram σ_v estimates based on the 16th and 84th percentiles of the concentration cumulative distribution function (CDF). Because 68 percent of the area under a normal curve falls with ±1 standard deviation of the mean, the distance between the locations of the 16th and 84th percentiles spans 2 sigmas. Dr. Steven Hanna (personal communication) considers this sigma estimation method, which requires interpolation to locate the 16th and 84th percentile positions within the histogram, to be more robust than the moment method. Sigma estimates obtained using the "Best-Fit" and "16-84" methods were nearly identical (within ±10%) for most cases, and differed markedly for only two cases (DSWA06, Line 3; DSWA14, Line 1) where the concentration distributions were strongly skewed and had a poor fit to the Gaussian distribution.
- 6. Calculate puff travel distances and crossing angles at each sampler line. The latitude and longitude of each puff centroid crossing position was calculated using the puff centroid line crossing position determined in Step 2 above. These, along with the latitude and longitude of the appropriate release position, were used to compute the distances in meters between each puff's origin and its positions as it crossed the sampling lines. The source-to-sampler line crossing distances are shown under the column labeled "distance from source" in Table 4. The distances were originally calculated using the assumption of a spherical earth. Recalculation with corrections for the oblate spheroid shape of the earth produced distances diminished by a factor of 0.2 percent. The distances presented in Table 4 and Table 5 include this correction.

The sampling line segments at the point of puff crossing were often not straight, nor were they normal to the wind direction. This suggests a need to consider the apparent increase in a puff's σ_{γ} as it crosses a sampling line at an angle of less than 90 degrees. The puff crossing angle was determined by the approach angle of the puff centroid to the line that it crossed. Puff crossing angle estimates were obtained by plotting puff centroid tracks from the puff origin to each successive sampling line crossing position. Crossing angle results presented in Table 4 only estimate the puff centroid crossing angle. Most of the crossing angles were found to be large (>45 degrees), indicating that crossing angle effects on the magnitude of σ_{γ} are small. The σ_{γ} information provided in Table 4 are not adjusted for crossing angle.

3.2.5 Puff Alongwind Dispersion Estimates

The 15-min whole air sampler time resolution was insufficient to determine puff arrival and passage times with the desired accuracy. However, the 4-Hz resolution of the TGA-4000 measurements provided detailed alongwind histogram data that permitted a precise determination of puff centroid times of arrival and transport speeds. The difference between the time of a puff's release and the arrival of its centroid at a sampling line defines puff travel time, and the straight-line distance traveled by the puff centroid from its source to a sampling line divided by puff travel time yielded a transport speed. Puff release time, centroid arrival time, and transport speed are included in Table 5. Puff statistical summary data are missing for Trial DSWA11 because the gas concentration dilution system had not been turned on, causing overranging at concentrations in excess of 6934 pptv.

Two continuous analyzers were initially stationed on each sampling line, but after Trial DSWA01 all six continuous analyzers were stationed at positions along Line 2 to maximize the probability of the puff centroid passing near at least one of these instruments. Thus, alongwind puff dimension estimates are available only for puffs crossing Line 2.

Table 5. Dipole Pride 26 Alongwind Dispersion Summary.

																	1
ransport	Speed	(m/s)	5.06	4.52	2.51	2.84	3.98	3.78	3.68	3.18	5.24	3.75	5.15	4.83	6.53	4.92	4.77
Centroid Transport	Arrival	(hhmmss)	043519	044331	055545	051209	134513	134806	153622	165522	094148	105827	133730	123720	135817	123639	141028
Normal	Departure	(%)	25.0	21.6	14.0	34.0	32.2	37.9	26.3	Σ	22.0	35.4	36.9	36.4	30.7	28.5	20.7
ent of	Kurtosis	(QN)	2.896	3.218	2.023	2.648	0.104	2.802	2.361	Σ	2.398	2.013	1.058	1.003	0.016	1.696	2.373
Coefficient of	Skewness	(ND)	0.656	989.0	0.010	0.615	-0.001	0.834	0.502	Σ	0.173	0.437	-0.195	-0.316	0.009	-0.383	0.428
Best Fit	Sigma t	(s)	215	134	918	696	104	177	103	Σ	214	101	175	190	66	74	165
Peak	Concentration	(m ⁻³ X10 ⁻¹⁵)	1.332	2.474	1.203	1.392	0.489	0.514	1.128	M	0.164	0.389	0.210	0.115	0.804	0.430	0.230
Pe	Concer	(pptv)	2891	2088	2475	2875	1803	1895	4157	¥	352	835	818	443	3084	1677	897
Distance	from	Source (m)	10726	11817	11437	12304	10813	10902	10902	12304	13151	13151	11589	10813	11090	10813	11589
Position	Number		206	224	201	212	224	230	230	212	218	218	201	224	206	224	201
Release	date/time	(JJJhhmm)	3130400	3140400	3160440	3170400	3171300	3171300	3171447	3191551	3200900	3201030	3211300	3241200	3241330	3251200	3251330
Trial	Name		DSWA03	DSWA04	DSWA05	DSWA06	DSWA07	DSWA07	DSWA07	DSWA11	DSWA12	DSWA12	DSWA14	DSWA16	DSWA16	DSWA17	DSWA17

*M = missing. Concentration measurements in excess of 6934 pptv are truncated.

The transforms described in Section 3.2.4 and a methodology similar to that used for puff width estimates were also applied to alongwind concentration histograms. The coordinate system used to define puff release and sampler positions was also used to define the distance from the source to centroid arrival at Line 2. The best-fit σ_t defined the puff alongwind dimension. Table 5 presents alongwind puff characteristics, including departure of the puff time histogram data from the best-fit Gaussian curve and histogram skewness and kurtosis.

3.3 MICROMETEOROLOGICAL SUMMARIES

3.3.1 Statistical Summaries

Sonic anemometer/thermometer wind and temperature component measurements at the BJY and YFW sites were reduced to 15-min averaged statistical summaries for the duration of each trial. This averaging produced micrometeorological statistics for periods that correspond to the MEDA data and whole air sampler averages. The statistical summaries presented in Appendix A of this report include the most relevant mean and second moment quantities: the mean wind speed and direction, horizontal wind angle standard deviation, alongwind and crosswind velocity variances, and fluxes of temperature and momentum. These 15-min averaged quantities were also used to define the trial-averaged stabilities in Table 6.

3.3.2 Roughness Length Estimates

The principal application of surface roughness length z_{\circ} is as a constant in the logarithmic wind profile equation. It is a parameterization of the degree of obstruction to free flow presented by a surface to air moving over a surface. Both the size and spacing of flow obstructions contribute to the magnitude of z_{\circ} . When flow is reasonably steady and fully turbulent, the wind speed at z is related to friction velocity u_{\bullet} and z/z_{\circ} by

$$u_z = (u_* / k) [\ln(z / z_o) + \psi_m], \qquad (3-1)$$

where k is the von Karman constant (0.4 ± 0.02) and y_m is a stability-dependent diabatic influence function. The diabatic influence function approaches zero as heat flux approaches zero. Thus, the logarithmic wind profile equation provides a means of solving for z_o in quasisteady near-neutral conditions when rearranged as follows:

$$z_0 = z \ e^{(-ku_z/u_*)} \ . \tag{3-2}$$

The 15-min micrometeorological summaries obtained from the sonics at BJY and YFW were examined for cases of steady, fully developed turbulent flow. Equation (3-2) was used in these cases to solve for $z_{\rm o}$. This procedure yielded a $z_{\rm o}$ of 0.032 m with a standard deviation of 0.012 m at BJY, and an average $z_{\rm o}$ of 0.045 m with a standard deviation of 0.026 m at YFW. Because YFW is on the edge of the Yucca Lake salt flat, southerly flow over the relatively open lake bed encounters less roughness than northerly flow over the more densely vegetated lake bed rim. Northerly flow over YFW produced a $z_{\rm o}$ of 0.061 m with a standard deviation of 0.029 m, while southerly flow at YFW yielded a $z_{\rm o}$ of 0.032 m and a standard deviation of 0.016 m.

3.3.3 Boundary Layer Stability

The stability of the atmospheric layer into which a puff is released can be used to parameterize the turbulence available to disperse the puff material. Stability can be parameterized in various ways ranging from a simple Pasquill-Gifford methodology (usually

based on wind speed, cloud cover, and sun angle) to the Obukhov length L, which is inversely proportional to the ratio of buoyancy and shear terms in the turbulent kinetic energy equation. Surface weather observations and MEDA station data are sufficient for the Pasquill-Gifford methodology, while the sonic data from BJY and YFW provide the fluxes of heat and momentum that can be used to calculate L. Table 6 lists the wind speed and cloud cover information required for the Pasquill-Gifford methodology along with friction velocities, temperature fluxes, and estimates of L derived from sonic data.

The trial-averaged friction velocity, temperature flux, and Obukhov length estimates presented in Table 6 were calculated using the 15-min averaged sonic statistical summaries provided in Appendix A. Although the 15-min average is somewhat arbitrary and truncates some of the low frequency motions acting on the puff, this averaging period is expected to capture most of the energy involved in the internal mixing of puff material. The scales of motion eliminated by this "high pass" filtering are more likely involved with gross puff movement or displacement.

A major advantage of using a sonic anemometer/thermometer is that the higher order statistics needed to characterize the state of the atmospheric boundary layer can be obtained directly from the measurements using eddy correlation techniques. However, it is often difficult to obtain statistically stable and representative momentum and temperature fluxes, particularly during light winds. Busch and Panofsky (1968) recognize this problem and consider direct momentum flux measurements to be unreliable when the friction velocity is less than 0.32 m/s. Fortunately, momentum flux is strongly correlated with the standard deviation of vertical velocity $\sigma_{\rm w}$. Biltoft (1997) finds that a $\sigma_{\rm w}/u_{\rm s}$ ratio of 1.3 can provide reasonable u. estimates under low wind conditions. This ratio was used to estimate u. in the low wind speed cases where reliable eddy correlation measurements of friction velocity were not available.

Temperature flux measurements during light winds are also problematic. A quiescent nocturnal boundary layer is characterized by small vertical motions that are poorly correlated with small temperature fluctuations punctuated by intermittent turbulence bursts. A majority of the vertical heat transfer occurs during these intermittent bursts. Although the long term net area temperature flux must be downward, individual turbulence bursts observed using measurements at a single site may produce results of either sign. Consequent-ly, there can be considerable uncertainty in the representativeness of tempera-ture flux measurements obtained from a single measurement location in a quiescent nocturnal boundary layer. These conditions were observed at YFW during the early morning releases. The resultant temperature flux and Obukhov length calculations are suspect, especially for Trials DSWAO3 and DSWAO6.

3.4 MEDA STATION AND UPPER AIR DATA

MEDA station data available during Dipole Pride 26 include 15-min measurements of wind speed, wind direction, temperature, and pressure. The most relevant MEDA stations (those located in or near Yucca Flat) are indicated on Figure 1 and in Table 1. Upper air summaries include hourly pibal flights interspersed with radiosonde flights taken every 3 hours. The pibal flights were launched from DIGIPID stations at BJY, UCC, and CSE and radiosonde flights were launched from the UCC site. MEDA station, pibal, and radiosonde flight data are available on disk and on CD.

3.5 PUFF IMAGERY

Aerospace Corporation used infrared imagers and FTIRs to document the position of each puff as it progressed downwind from the release point. In some cases, the puff was tracked well beyond the most distant sampling line. Of particular relevance to this data set is the position information obtained as the puff centroids crossed the sampling lines. This

information is needed to define transport wind speeds and to determine whether the centroid was in contact with the surface-based sampler arrays or passed over them. Unfortunately, puff imagery was not available before the completion of this report.

Blank Page

SECTION 4. CONCLUSIONS AND RECOMMENDATIONS

The Dipole Pride 26 test program produced a comprehensive set of long range puff dispersion data accompanied by extensive meteorological measurements. Some puffs were tracked to distances in excess of 20 km, providing an opportunity to validate both the transport and diffusion components of integrated wind field and dispersion model systems. This report presents puff σ_{v} and σ_{t} summaries obtained from tracer concentration measurements along with trial micrometeorological statistics. Data sets on CD ROM supplement the summaries presented in this report. With the exception of unanalyzed puff imagery, this report and the associated CD ROM constitute a fairly complete documentation of the Dipole Pride 26 test program. Analysis of the Aerospace Corporation puff imagery could provide valuable information on puff vertical dimensions and would provide independent estimates of puff arrival times and transport speeds.

The 15-min averaged micrometeorological statistics from BJY and YFW exhibit interesting features that deserve further study. The fluxes and variances sometimes change by more than an order of magnitude from one 15-min period to the next and vary greatly between sites, indicating the presence of terrain-induced non-stationarity and inhomogeneity representative of dispersion conditions in mountain-valley desert terrain. Detailed analysis of micrometeorological conditions and related puff behavior are beyond the scope of this report, but terrain-induced differential heating and cooling appeared to exert major influences on puff behavior. Differential heating of mountain slopes created local flows that sometimes drew puff material up the slopes rather than along the major axis of the valley. Also, cold air draining from the north often pools in the Yucca Lake basin during the early morning hours. These pools of confined cold air stagnate over Yucca Lake until post-sunrise surface heating destroys them. Puffs released into this early morning drainage often did not clear Yucca Lake until several hours after sunrise.

Table 6. Dipole Pride 26 Atmospheric Stability Summary.

				٠																		ı
Obukhov Length (m)	YFW	707	-10	6	6 0	က	6-	-23	88	-192	-127	6	-44	-25	-645	-22	-25	-35	-33	-308	-15	-31
Obukho (r	BJY	-98	19	26	634	12	32	-24	-41	-46	-30	80	-72	-71	-1709	-28	-21	-43	-25	-67	-22	-32
emperature Flux (m °K/s)	YFW	0022	.0007	0039	-,0080	0032	.0011	.0340	0031	.0020	9800.	0116	.0466	.0532	.0175	.0789	.1200	.0716	.1126	.0264	6080	.0386
Temperature (m °K/s)	ВЈҰ	.0113	0194	0342	0188	0008	0004	.0795	.0352	.0122	.0170	0159	.0634	.1292	.0078	1034	8860	.1025	.1180	.0526	.1387	.0591
/elocity s)	YFW	.2766	.0466	.0794	.0942	.0535	.0524	.2183	.1529	.1734	.1837	.1115	.3064	.2637	.5357	.2865	.3450	.3230	.3679	.4783	.2560	.2531
Friction Velocity (m/s)	BJY	.2467	.1747	.2331	.2538	.0516	.0563	.2942	.2671	.1955	.1915	.1199	.3974	.4997	.5658	.3430	.3042	3900	.3403	.3616	.3418	.2937
ud Height	(m)	2600	:	2600	7600	6100	7600	7600	7600	4300	9150	7600	6100	2130	1830	2009	1220	1220	7600	6100	7600	7600
Cloud Cover He	(tenths)	თ	0	က	-	10	10	10	10	IJ	ß	80	10	വ	80	-	ო	2	-	œ	-	2
d Speed s)	YFW	3.7	2.0	3.2	2.4	8.0	0.7	3.5	3.1	1.5	2.7	2.4	4.0	3.3	8.9	4.2	3.5	4.4	4.2	7.0	3.8	4.5
10 m Wind Speed (m/s)	BJY	2.7	3.8	4.9	5.1	2.4	5.6	4.1	4.4	3.0	3.1	3.2	5.1	7.1	7.7	4.7	2.4	5.0	4.9	5.3	5.0	4.9
Release date/time	(JJJhhmm)	3091441	3130400	3140400	3140538	3160440	3170400	3171300	3171447	3181400	3191430	3191551	3200900	3201030	3201430	3211300	3231130	3231300	3241200	3241330	3251200	3251330
Trial Name		DSWA01	DSWA03	DSWA04	DSWA04	DSWA05	DSWA06	DSWA07	DSWA07	DSWA09	DSWA11	DSWA11	DSWA12	DSWA12	DSWA13	DSWA14	DSWA15	DSWA15	DSWA16	DSWA16	DSWA17	DSWA17

SECTION 5. APPENDICES

APPENDIX A. MICROMETEOROLOGICAL SUMMARIES

The micrometeorological summaries include 15-min averages of sonic anemometer/ thermometer measurements made at BJY and YFW. The measurement height was 10 m AGL. The summaries include average wind speed and direction, horizontal wind angle standard deviation (σ_θ) , alongwind velocity variance $(\overline{u^*u^*})$, vertical velocity variance $(\overline{w^*w^*})$, vertical sonic temperature flux $(\overline{w^*T^*})$, and momentum flux $(\overline{u^*w^*})$.

Dipole Pride 26 Micrometeorological Data Summary

ation: S2	BJY YFW u'w' (m²/s²)	08491568	0787	07281194	.04330686	07150623	01681296	03750324	00380283	.00740119	M 0600	.0012 M
Source Location: S2		.02870	.01840	.01290	·							
	Y YFW w'T' (mT/s)				0064	0051	0209	0208	0196	0066	Σ	Σ
Date/Time (PST): 04 November 1445-1730	BQ × æ	.0497	.0472	.0307	.0101	0078	0043	0164	0083	9000	0108	.0047
vember	Y YFW w'w' (m²/s²)	0.202 0.206	0.157	0.179	0.158	0.107	0.155	0.079	0.085	0.038	Σ	Σ
04 No	BJ≺ m, v,	0.202	0.206	0.129	0.103	0.100	0.065	0.063	0.032	0.026	0.029	0.017
ime (PST)	YFW .	1.041	1.107	1.150	0.746	0.390	0.866	0.413	0.477	0.168	Σ	Σ
Date/T	BJY YFW u'u' (m²/s²)	0.690	1.763	0.756	0.850	0.414	0.387	0.202	0.083	0.191	0.133	0.091
1445	YFW rð eg)	16.7	13.7	12.4	10.9	9.6	10.0	8.5	9.0	10.6	Σ	Σ
ne: 309	BJY Υ σθ (Deg)	17.9	29.3	16.5	13.8	10.6	12.3	14.5	16.1	12.5	21.9	21.5
Date/Tin	YFW D ig)	195	195	200	199	203	212	210	206	219	Σ	Σ
Release Julian Date/Time: 3091445	BJY Y HD (Deg)	183	193	227	237	226	231	239	268	291	270	344
Relea	YFW 'S 's)	4.1	4.1	4.7	4.2	3.8	4.0	3.3	3.1	2.3	*	Σ
VA01	BJY Y WS (m/s)	3.6	3.9	3.4	2.6	2.8	2.3	1.9	2.0	1.8	1.2	1.2
Trial: DSWA01	Start Time (UTC)	2245	2300	2315	2330	2345	0000	0015	0030	0045	0100	0115

* Missing

Dipole Pride 26 Micrometeorological Data Summary

Start BJY YFW	FW BJY YFW BJY YFW HD σθ			YFW of		BJY YFW u'u'	YFW	-	BJY YF w'w'	YFW	BJY s	Y YFW w'T'	/ BJY YFW	YFW
348 10.6 8.4 0.619 0.184	337 348 10.6 8.4 0.619 0.184	348 10.6 8.4 0.619 0.184	348 10.6 8.4 0.619 0.184	8.4 0.619 0.184	8.4 0.619 0.184	0.184	0.184	ľ	0.062	0.003	0212	.0002	02160042	.0042
4.3 2.4 335 348 5.3 4.5 0.307 0.049	335 348 5.3 4.5 0.307	348 5.3 4.5 0.307	5.3 4.5 0.307	4.5 0.307	0.307		0.049		0.039	0.001	0241	.0014	04240009	.0009
3.7 2.9 340 354 6.7 3.1 0.363 0.086	340 354 6.7 3.1 0.363	354 6.7 3.1 0.363	6.7 3.1 0.363	3.1 0.363	0.363		0.086		0.024	0.002	0113	.0028	0123 .0037	.0037
3.9 2.8 336 350 4.2 4.6 0.204 0.081	336 350 4.2 4.6 0.204	350 4.2 4.6 0.204	4.2 4.6 0.204	4.6 0.204	0.204		0.081		0.023	0.003	.0004	.0024	0008	.0012
3.5 2.6 336 350 6.1 5.4 0.333 0.070	336 350 6.1 5.4 0.333	350 6.1 5.4 0.333	6.1 5.4 0.333	5.4 0.333	0.333		0.070		0.028	0.003	0112	0083	0169	0015
4.1 3.1 331 349 6.4 6.0 0.462 0.063	331 349 6.4 6.0 0.462	349 6.4 6.0 0.462	6.4 6.0 0.462	6.0 0.462	0.462		0.063		0.077	0.002	0362	.0013	0683	.0015
4.9 1.8 325 350 4.9 14.1 0.284 0.902	325 350 4.9 14.1 0.284	350 4.9 14.1 0.284	4.9 14.1 0.284	14.1 0.284	0.284		0.902		0.083	0.013	0350	0029	0579	.0028
4.8 1.6 321 353 5.0 16.9 0.225 0.110	321 353 5.0 16.9 0.225	353 5.0 16.9 0.225	5.0 16.9 0.225	16.9 0.225	0.225		0.110		0.063	900.0	0290	6000	0407	.0020
4.5 0.4 321 357 5.2 36.0 0.322 0.121	321 357 5.2 36.0 0.322	357 5.2 36.0 0.322	5.2 36.0 0.322	36.0 0.322	0.322		0.121		0.151	0.002	0320	0006	0441	.0022
3.5 0.8 333 360 7.1 13.6 0.321 0.127	333 360 7.1 13.6 0.321	360 7.1 13.6 0.321	7.1 13.6 0.321	13.6 0.321	0.321		0.127		0.038	0.002	0193	.0012	0304	0017
3.0 1.3 349 321 12.9 16.3 0.560 0.100	349 321 12.9 16.3 0.560	321 12.9 16.3 0.560	12.9 16.3 0.560	16.3 0.560	0.560		0.100		0.024	0.003	0137	.0117	0230	.0025
2.5 3.0 338 339 5.4 8.8 0.059 0.242	338 339 5.4 8.8 0.059	339 5.4 8.8 0.059	5.4 8.8 0.059	8.8 0.059	0.059		0.242		0.007	0.004	0070	.0002	0041	.0039

Dipole Pride 26 Micrometeorological Data Summary

Trial: DSWA04	75	Releas	Release Julian Date/	Date/Tir	Time: 3140400	9400	Date/T	ime (PST):	09 Nov	ember 0	Date/Time (PST): 09 November 0400-0530		Source Location: N3	n: N3
	BJY Y WS (m/s)	YFW S	BJY H Q	YFW HD (Deg)	BJY YF αθ (Deg)	YFW 50 leg)	BJY YFW u'u' (m²/s²)	YFW J' (s²)	BJY YFW w'w' (m²/s²)	YFW w' (s²)	BJY w_m	BJY YFW w'T' (mT/s)	BJY YFW u'w' (m²/s²)	YFW ,' s²)
	4.9	3.2	320	339	4.6	7.4	0.324	0.324 0.035	0.087	0.087 0.001	0340	03400019	.0509 .0001	.0001
	5.5	3.3	321	351	6.4	3.6	0.481	0.481 0.033	0.087	0.087 0.002	0431	04310001	0649	.06490001
	4.1	3.5	313	326	7.0	11.6	0.395	0.395 0.060	0.093	0.011	0284	0153	0566	.0566 .0005
	4.4	3.0	314	319	6.0	7.0	0.227	0.114	0.086	0.012	0256	.0052	0537	0003
	5.0	3.1	321	329	4.8	10.1	0.301	0.153	0.092	0.026	0355	6200.	0594	.05940024
	5.4	3.0	321	339	5.0	10.7	0.371	0.371 0.101	0.106	0.012	0385	0191	0784	.07840032

Dipole Pride 26 Micrometeorological Data Summary

Start No. MS HD $\sigma\theta$ $\sigma\theta$ u^1u^1 u^1u^1 u^1u^1 u^1u^1 (UTC) (m/s) (Deg) (Deg) (m^2/s^2) (m^2/s^2) 1330 5.1 2.7 314 324 5.2 15.9 0.247 0.166 0.0 1345 4.9 2.9 310 317 4.3 11.5 0.209 0.107 0.0 1400 5.0 2.9 311 351 5.5 11.1 0.253 0.087 0.0 1416 5.4 3.7 322 359 5.0 3.2 0.386 0.078 0.7 150 5.7 2.7 322 359 5.4 6.6 0.398 0.053 0.0 150 5.8 2.2 323 353 5.4 6.6 0.398 0.053 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163	Trial: DSWA04	4	Release	Release Julian Date/	Jate/Tin	Time: 3140538	538	Date/Tin	ne (PST):	09 Nove	Date/Time (PST): 09 November 0530-0800	0080-(Sourc	Source Location: N3	: N3
5.1 2.7 314 324 5.2 15.9 0.247 0.166 4.9 2.9 310 317 4.3 11.5 0.209 0.107 5.0 2.9 311 351 5.5 11.1 0.253 0.007 5.4 3.7 322 359 5.0 3.2 0.338 0.078 5.4 2.7 323 353 5.4 6.6 0.398 0.053 5.4 2.1 327 355 5.1 12.8 0.396 0.163 4.7 1.1 331 352 7.1 13.4 0.653 0.051 4.8 1.5 341 004 5.1 11.2 0.402 0.181 4.2 2.6 348 007 7.5 12.2 0.586 0.149	Start Time (UTC)	ŠÈ	XFW (s)	IIA	YFW g)	BJY of (De	YFW) g)	-7 °C	YFW - s ²	BJY YF w'w' (m²/s²)	YFW w' '\s²)	BJY YF w'T' (mT/s)	YFW T' [/s)	BJY YFW u'w' (m²/s²)	rEW
4.9 2.9 310 317 4.3 11.5 0.209 0.107 5.0 2.9 311 351 5.5 11.1 0.253 0.087 5.4 3.7 322 359 5.0 3.2 0.338 0.078 5.7 2.7 322 002 5.2 5.8 0.416 0.202 5.8 2.2 323 353 5.4 6.6 0.398 0.053 5.4 2.1 327 355 5.1 12.8 0.396 0.163 4.7 1.1 331 352 7.1 13.4 0.653 0.051 4.8 1.5 341 004 5.1 11.2 0.402 0.181	1330	5.1	2.7	314	324	5.2	1	0.247	0.166	0.094	0.006	0305	0023	06140013	.0013
5.0 2.9 311 351 5.5 11.1 0.253 0.087 5.4 3.7 322 359 5.0 3.2 0.338 0.078 5.7 2.7 322 002 5.2 5.8 0.416 0.202 5.8 2.2 323 353 5.4 6.6 0.398 0.053 5.4 2.1 327 355 5.1 12.8 0.396 0.163 4.7 1.1 331 352 7.1 13.4 0.653 0.051 4.8 1.5 341 004 5.1 11.2 0.402 0.181 4.2 2.6 348 007 7.5 12.2 0.586 0.149	1345	4.9	2.9	310	317	4.3	11.5	0.209	0.107	0.069	0.017	0323	.0253	04630002	.0002
5.4 3.7 322 359 5.0 3.2 0.338 0.078 5.7 2.7 322 002 5.2 5.8 0.416 0.202 5.8 2.2 323 353 5.4 6.6 0.398 0.053 5.4 2.1 327 355 5.1 12.8 0.396 0.163 4.7 1.1 331 352 7.1 13.4 0.653 0.051 4.8 1.5 341 004 5.1 11.2 0.402 0.181 4.2 2.6 348 007 7.5 12.2 0.586 0.149	1400	5.0	2.9	311	351	5.5	11.1	0.253	0.087	0.071	0.013	0280	0332	0482	.000
5.7 2.7 322 002 5.2 5.8 0.416 0.202 5.8 2.2 323 353 5.4 6.6 0.398 0.053 5.4 2.1 327 355 5.1 12.8 0.396 0.163 4.7 1.1 331 352 7.1 13.4 0.653 0.051 4.8 1.5 341 004 5.1 11.2 0.402 0.181 4.2 2.6 348 007 7.5 12.2 0.586 0.149	1415	5.4	3.7	322	359	5.0	3.2			0.111	0.005	0335	0052	0805	.0012
5.8 2.2 323 353 5.4 6.6 0.398 0.053 5.4 2.1 327 355 5.1 12.8 0.396 0.163 4.7 1.1 331 352 7.1 13.4 0.653 0.051 4.8 1.5 341 004 5.1 11.2 0.402 0.181 4.2 2.6 348 007 7.5 12.2 0.586 0.149	1430	5.7	2.7	322	005	5.2	5.8	0.416	0.202	0.151	9000	0321	0115	0935	0097
5.4 2.1 327 355 5.1 12.8 0.396 0.163 4.7 1.1 331 352 7.1 13.4 0.653 0.051 4.8 1.5 341 004 5.1 11.2 0.402 0.181 4.2 2.6 348 007 7.5 12.2 0.586 0.149	1445	5.8	2.2	323	353	5.4	9.9	0.398	0.053	0.148	0.008	0236	6600	0953	0000
4.7 1.1 331 352 7.1 13.4 0.653 0.051 4.8 1.5 341 004 5.1 11.2 0.402 0.181 4.2 2.6 348 007 7.5 12.2 0.586 0.149	1500	5.4	2.1	327	355	5.1	12.8	0.396	0.163	0.132	0.019	0173	0162	0867	9600'-
4.8 1.5 341 004 5.1 11.2 0.402 0.181 4.2 2.6 348 007 7.5 12.2 0.586 0.149	1515	4.7	1.	331	352	7.1	13.4	0.653	0.051	0.088	0.010	0010	6000	06490036	0036
4.2 2.6 348 007 7.5 12.2 0.586 0.149	1530	4.8	1.5	341	900	5.1	11.2	0.402	0.181	0.102	0.017	.0056	0127	07540135	0135
	1545	4.2	2.6	348	200	7.5	12.2	0.586		0.123	0.049	.0045	0152	07640028	0028

Dipole Pride 26 Micrometeorological Data Summary

Trial: DSWA05	A05	Releas	e Julian	Release Julian Date/Time: 3160440	e: 3160	0440	Date/Tim	ie (PST):	11 Nove	Date/Time (PST): 11 November 0440-0740	0-0740	Source	Source Location: N2	: N 2
Start Time (UTC)	BJY Y WS (m/s)	YFW S (s)	BJY YI HD (Deg)	YFW ID eg)	BJY ΥΙ σθ (Deg)	ΥFW σθ leg)	BJY YFW u'u' (m²/s²)	rFW	BJY YF w'w' (m²/s²)	YFW w' /s²)	BJY w (m	BJY YFW w'T' (mT/s)	BJY YFW u'w' (m²/s²)	YFW
1240	2.8	9.0	335	048	6.2	17.7	0.083	0.008	0.002	0.001	.0030	0003	0034	.0003
1255	3.0	1.0	336	024	9.1	9.1	0.020	0.018	0.002	0.001	0031	1000	00080017	0017
1310	3.1	0.5	346	300	3.9	40.8	0.030	0.014	0.002	0.003	0004	.0022	.00060001	.0001
1325	3.0	. :	343	276	7.1	9.5	0.041	0.071	0.002	0.003	0000	0022	00010012	.0012
1340	2.9	1.4	346	314	7.6	22.3	0.204	0.138	0.002	0.005	0041	0051	.0007	0001
1355	2.5	6.	343	028	6.6	14.2	0.135 (0.101	0.005	0.004	.0037	-,0305	.0036	.0019
1410	3.0	9.0	350	288	3.3	38.5	0.056	0.054	0.001	0.002	9000	0041	00130024	.0024
1425	2.6	0.7	346	302	4.6	14.5	0.016	0.052	0.001	0.008	0020	0029	.0003	.0033
1440	2.1	0.8	346	037	4.2	32.0	0.036	690.0	0.002	0.003	0002	.0015	0019	8000
1455	1.7	0.5	00	800	10.2	25.8	0.112	0.068	0.005	600.0	0000	1600.	.00220010	.0010
1510	1.0	6.0	018	003	14.0	20.4	0.065	0.146	0.013	600.0	0043	0078	00560091	.0091
1525	4.1	0.7	014	190	7.9	28.1	0.067	0.133	0.017	0.010	0030	.0021	01160048	.0048

Dipole Pride 26 Micrometeorological Data Summary

		က	6	4	7	o	က	4	2	œ	Ņ	-	က္က	-	က
: N2	YFW N' /s²)	001	000	003	005	.00	00	.0004	001	000	000	000	.0003	0041	007
Source Location: N2	BJY YF u'w' (m²/s²)	00030013	.0005	00070034	00370057	.0001	00240013	0031	00250012	.00140008	00090002	00680001	0000	0099	02300075
Sour	Y YFW w'T' (mT/s)	0068	.0024	0029	9000	0007	0010	0005	0002	0009	.0012	0005	0000	.0027	.0224
Date/Time (PST): 12 November 0400-0730	BJY w (m)	0019	0019	0005	0011	9000	0015	.0025	0019	0005	0015	.0106	0030	0041	0016
mber (YFW ,' s²)	0.001	0.001	0.002	0.003	0.004	0.003	0.001	0.001	0.001	0.003	0.001	0.003	0.003	0.011
12 Nove	BJY YFW w'w' (m²/s²)	0.002 0.001	0.003	0.003	0.001	0.002	0.002	0.004	0.005	0.004	0.001	0.003	0.002	0.016	0.027
me (PST):	YFW 'u' ' ² /s²}	0.013	0.040 0.008	0.146 0.082	0.302	0.038	0.023	0.019	0.028	0.032	0.035	0.013	0.039	0.069	0.058
Date/T	ΒJY ΥΕ΄ u'u' (m²/s²)	0.047	0.040	0.146	0.137	0.063	0.063	0.120	0.050	0.025	0.038	0.161	0.029	0.203	0.122
0400	YFW 58 leg)	6.6	6.2	11.1	26.2	32.4	47.1	36.9	33.7	44.3	25.8	18.0	22.0	39.9	10.1
ie: 3170	ΒJY YI σθ (Deg)	9.0	4.4	3.6	2.6	1.8	11.7	7.1	9.9	6.8	6.5	4.5	7.3	4.4	7.2
Jate/Tim	YFW D ag)	328	335	324	045	960	062	315	690	040	331	303	330	910	090
Release Julian Date/Time: 3170400	BJY YI HD (Deg)	352	335	337	333	326	351	351	349	344	339	356	354	344	333
Releas	YFW S (s)	1.7	1.6	1.2	1.2	9.0	0.2	0.3	0.3	0.3	0.3	9.0	4.0	0.7	1.0
VA06	BJY Y WS (m/s)	2.7	3.1	3.6	3.1	2.7	1.9	2.3	2.0	1.8	1.9	3.0	3.0	2.9	2.0
Trial: DSWA06	Start Time (UTC)	1200	1215	1230	1245	1300	1315	1330	1345	1400	1415	1430	1445	1500	1515

Dipole Pride 26 Micrometeorological Data Summary

Trial: DSWA07		Julian Date/Time: 3171300	te/Time:	3171300		Date/Time (PST):	Date/Time (PST): 12 November 1300-1445	0-1445	Sourc	Source Location: S3	23
BJY YFW BJY YFW	ВЛУ	Σ	>	BJY YFW	YFW	BJY YFW	BJY YFW	BJY	YFW	BJY YFW	≥
WS HD (m/s)	HD (Deg)	₽ eg)		იმ (Deg)	(a)	u'u' (m²/s²)	w'w' (m²/s²)	w'T' (mT/s)	رs) (s)	u'w' (m²/s²)	
4.2 3.9 157 140	157			12.5 12.7	12.7	0.582 0.302	0.128 0.053	.0672 .0237	.0237	04940399	399
4.2 3.7 159 136	159			11.2	11.7	0.577 0.547	0.148 0.073	.0945	.0521	11070737	737
4.2 3.0 163 156	163			11.0	14.4	0.800 0.527	0.175 0.109	0060	.0671	11890681	681
4.2 3.2 153 155	153	·		13.8	12.5	0.494 0.758	0.177 0.138	.0962	.0569	09060492	492
4.0 3.4 164 143	164	-		10.4	11.2	0.414 0.583	0.158 0.094	.0922	0198	04080248	248
4.2 3.1 160 142	-	-		9.7	19.4	0.462 0.302	0.119 0.065	.0513	.0164	06530214	214
3.9 3.9 157 129	157			10.2	14.5	0.464 0.362	0.119 0.032	.0652	.0020	09140222	22

Dipole Pride 26 Micrometeorological Data Summary

Trial:	Trial: DSWA07	Release Julian Date	Julian	Date/Time: 3171447	31714		Date/Time	e (PST):	12 Nove	mber 14	Date/Time (PST): 12 November 1445-1600 Source Location: S3	Source	Location	: S3
Start Time (UTC)		BJY YFW WS (m/s)	₹ <u>8</u>	Y YFW HD (Deg)	BJY YFW σθ (Deg)	YFW 9 ig)	BJY u' (m²	BJY YFW u'u' (m²/s²)	BJY w	BJY YFW w'w' (m²/s²)	BJY w (m)	BJY YFW w'T' (mT/s)	BJY u'r	BJY YFW u'w' (m²/s²)
2245	4.3	3.1	153	135	9.8 8.0	8.0	0.473	0.473 0.253	0.102	0.102 0.047	.0454	04540054	0726	07260096
2300	4.5	3.1	153	135	7.4 8.6	8.6	0.339	0.339 0.282	0.109	0.109 0.032	.0251	02510008	0701	.07010217
2315	*	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ

Missing

Dipole Pride 26 Micrometeorological Data Summary

Start BJY YFW W/T U/W U/W U/W W/T U/W U/W<	Trial: DSWA09	WA09	Relea	Release Julian Date/Time: 3181400	Date/Tir	ne: 318	1400	Date/Ti	me (PST):	13 Nove	mber 1	Date/Time (PST): 13 November 1400-1700		Source Location: S2	: S2
3.9 2.5 155 137 10.9 10.0 0.556 0.256 0.105 0.044 .0286 0019 0500 3.6 2.3 155 139 11.0 14.8 0.552 0.382 0.087 0.066 .0161 .0026 0709 2.4 1.8 175 150 23.9 25.6 0.839 0.311 0.073 .0129 .0041 0739 2.8 1.7 176 140 14.6 33.1 0.738 0.704 0.071 0.073 .0029 .0046 0342 3.0 1.4 173 182 10.8 28.7 0.474 0.118 0.062 .0623 .0623 .0153 0.1215 0215 3.7 1.2 168 185 8.3 41.0 0.416 0.291 0.082 0.096 .0049 0420 0420 2.7 1.3 168 154 7.7 59.0 0.177 0.750	Start Time (UTC)	≥ E	YFW S S	Ξõ	YFW) g)		YFW 3 (g)	ΒJY u't (m²/	YFW J' (s²)	BJY w'\ (m²/	YFW "' s²)	BJY w	YFW 'T' T/s)	BJY u'v (m²,	YFW v' 's²)
3.6 2.3 152 139 11.0 14.8 0.552 0.382 0.087 0.066 .0161 .0026 .0709 2.4 1.8 175 150 23.9 25.6 0.839 0.311 0.073 0.073 0.079 0.079 0.046 0.046 0.071 0.079 0.095 0.046 0.0566 0.071 0.079 0.096 0.046 0.0566 0.071 0.079 0.079 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0569 0.0467 0.074 0.071 0.079 0.099 0.0420 0.0420 0.0420 0.0420 0.0420 0.0420 0.0420 0.0420 0.0420 0.0420 0.0420 0.0420 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.	2200	3.9	2.5	155	137	10.9	10.0	0.556	0.256	0.105	0.044	.0286	0019	0500	013
2.4 1.8 175 150 23.9 25.6 0.839 0.311 0.071 0.073 0.079 0.079 0.046 0.0342 2.8 1.7 176 140 14.6 33.1 0.738 0.704 0.071 0.079 0.095 0.046 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0569 0.046 0.0567 0.079 0.0569 0.0460 0.047 0.071 0.079 0.099 0.0420 0.0420 0.0420 0.0420 0.0420 0.0420 0.0420 0.0491 0.0159	2300	3.6	2.3	152	139	11.0	14.8	0.552		0.087	0.066	.0161		0709	047
2.8 1.7 176 146 13.1 0.738 0.704 0.071 0.079 .0095 .0046 0566 3.0 1.4 173 182 10.8 28.7 0.457 0.474 0.118 0.062 .0539 .0153 .0156 0420 3.7 1.2 168 185 8.3 41.0 0.416 0.291 0.082 0.086 .0097 .0090 0420 2.7 1.3 168 156 10.2 28.0 0.161 0.060 0.043 .0060 0.043 .0060 .0043 .0019 .0060 .0019 .0049 .0491 1.9 0.9 189 154 7.7 59.0 0.111 0.109 0.022 0.015 .0060 .0060 .0060 .0060 .0060 .0060 .0017 .0060 .0060 .0060 .0060 .0060 .0017 .0017 .0060 .0060 .0060 .0060 .0060 .0060	2230	2.4	1.8	175	150	23.9	25.6	0.839	0.311	0.071	0.073	.0129		0342	026
3.0 1.4 173 182 10.8 28.7 0.457 0.474 0.118 0.062 .0539 .0153 .0153 .0151 .1215 .1215 3.7 1.2 168 185 8.3 41.0 0.416 0.291 0.082 0.086 .0097 .0090 .0420 .0420 2.7 1.3 168 156 10.2 28.0 0.177 0.750 0.022 0.026 .0014 .0061 .00491 1.9 0.9 189 154 7.7 59.0 0.117 0.750 0.022 0.026 0014 0061 0159 2.8 0.5 186 233 6.1 70.4 0.111 0.109 0.022 0.015 0060 0060 0060 0017 0127 3.5 1.7 179 174 5.1 10.9 0.439 0.132 0.008 0.014 0030 0046 0041	2245	2.8	1.7	176	140	14.6	33.1	0.738		0.071	0.079	.0095		0566	066
3.7 1.2 168 185 8.3 41.0 0.416 0.291 0.082 0.086 .0097 .0090 2.7 1.3 168 156 10.2 28.0 0.343 0.161 0.060 0.043 .0019 .0019 1.9 0.9 189 154 7.7 59.0 0.177 0.750 0.022 0.026 0014 0061 2.8 0.5 185 233 6.1 70.4 0.111 0.109 0.022 0.015 0060 0060 0060 3.5 1.7 179 174 5.1 10.9 0.439 0.132 0.008 0.014 0030 0046	2300	3.0	1.4	173	182	10.8	28.7	0.457		0.118		.0539		1215	007
2.7 1.3 168 156 10.2 28.0 0.343 0.161 0.060 0.043 .0020 0491 1.9 0.9 189 154 7.7 59.0 0.177 0.750 0.022 0.026 0014 0061 0159 2.8 0.5 185 233 6.1 70.4 0.111 0.109 0.022 0.015 0060 0007 0127 3.5 1.7 179 174 5.1 10.9 0.439 0.132 0.008 0.014 0030 0046 0041	2315	3.7	1.2	168	185	8.3	41.0	0.416	0.291	0.082	0.086	7600.		0420	019
1.9 0.9 189 154 7.7 59.0 0.177 0.750 0.022 0.026 0014 0061 0159 2.8 0.5 185 233 6.1 70.4 0.111 0.109 0.022 0.015 0060 0007 0127 3.5 1.7 179 174 5.1 10.9 0.439 0.132 0.008 0.014 0030 0046 0041	2330	2.7	1.3	168	156	10.2	28.0	0.343		0.060	0.043	.0020		0491	.004
2.8 0.5 185 233 6.1 70.4 0.111 0.109 0.022 0.015 0060 0007 0127 3.5 1.7 179 174 5.1 10.9 0.439 0.132 0.008 0.014 0030 0046 0041	2345	1.9	6.0	189	154	7.7	59.0	0.177		0.022	0.026	0014		0159	.01
3.5 1.7 179 174 5.1 10.9 0.439 0.132 0.008 0.014003000460041	0000	2.8	0.5	185	233	6.1	70.4	0.111	0.109	0.022	0.015	0060		0127	.00
	0015	3.5	1.7	179	174	5.1	10.9	0.439		0.008	0.014	0030		0041	007

Dipole Pride 26 Micrometeorological Data Summary

Trial: DSWA11	VA11	Releas	se Julian	Release Julian Date/Time: 3191430	ne: 3191	1430	Date/Ti	ime (PST):	14 Nov	ember	Date/Time (PST): 14 November 1430-1545		Source Location: N2	: N2
Start Time (UTC)	BJY YEW WS WS (m/s)	YFW S (s)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	YFW HD (Deg)	BJY YFW σθ (Deg)	YFW 9 ig)	BJY YFW u'u' (m²/s²)	YFW u' 's²)	BJY YFW w'w' (m²/s²)	YFW w' (s²)	W, w	BJY YFW w'T' (mT/s)	BJY YFW u'w' (m²/s²)	YFW ,' s²)
2230	4.7	4.1	348	341	8.1	8.1 10.1	0.778	0.778 0.506	0.156	0.156 0.141	.0832	.0263	1253	12531017
2245	3.9	3.4	345	343	12.7	11.9	1.087	0.470	0.100	0.100 0.084	.0081	0022	06980468	0468
2300	2.8	2.7	350	343	8.0	6.1	0.307	0.286	0.041	0.044	0022	0105	0353	.03530362
2315	2.2	1.9	359	345	3.9	5.8	0.068	0.070	0.010	0.012	0020	.0046	0050	.00500055
2330	8.	 6.	000	303	4.5	18.1	0.079	0.021	0.003	0.004	0020	0003	0027	9000

Dipole Pride 26 Micrometeorological Data Summary

Start (UTC) MSS (MSS) HD (Deg) OH (Deg) HD (Deg) OH (MS/s^2) $IIII$ ($IIIII$) $IIIIIIIII$ ($IIIII$) $IIIIIIIIII$ ($IIIIII$) $IIIIIIIIIIIIII$ ($IIIIIIIIIIIIIIIIIIIII$	Trial: DSWA11	VA11:	Releas	Release Julian Date/Time: 3191551	Date/Tin	ie: 319	1551	Date/Ti	Date/Time (PST): 14 November 1545-1800	14 Nov	ember 1	1545-1800		Source Location: N2	n: N2
2.0 2.1 001 268 6.2 5.8 0.248 0.080 0.004 0.029 0011 0130 0062 3.0 2.2 350 264 4.7 5.9 0.194 0.104 0.011 0.040 0010 0171 0130 0100 3.8 2.3 354 254 7.7 5.3 0.198 0.035 0.011 0.047 0050 0050 0171 0039 0166 2.6 2.0 343 242 14.1 41.1 0.234 1.087 0.011 0.025 0050 0348 0050 3.6 1.5 327 012 5.0 51.7 0.979 1.087 0.025 0.028 0.038 0.038	Start Time (UTC)	BJY W (m)	YFW S (s)	Ξõ	YFW D ig)	BJY g	YFW 9 ig)	BJY u'u (m²/,	YFW 'ı' 's ²)	BJY w'\ (m²/	YFW N' (s ²)	BJY W.E.	YFW ',T' T/s)	BJY u'v (m²,	YFW v' s²)
3.0 2.2 350 264 4.7 5.9 0.194 0.104 0.011 0.040 0010 0219 0100 3.8 2.3 354 254 7.7 5.3 0.198 0.038 0.035 0.017 0050 0059 0050 2.6 2.0 343 242 14.1 41.1 0.234 1.090 0.011 0.025 0050 0348 0050 3.6 1.5 327 012 51.7 0.979 1.087 0.029 0.038 0278 0050 0380 0380 3.5 1.7 350 340 11.9 0.467 0.042 0.023 0.005 0380 014 0278 4.1 2.9 0.9 310 5.5 12.4 0.197 0.433 0.057 0.015 0380 014 0279 M* 3.7 M 325 M 6.3 M 0.093 M 0.	2345	2.0	2.1	100	268	6.2	5.8	0.248	0.080	0.004	0.029	0011	0130	0062	7600
3.8 2.3 354 254 7.7 5.3 0.198 0.036 0.015 0.017 0171 0039 0266 2.6 2.0 343 242 14.1 41.1 0.234 1.090 0.011 0.025 0050	0000	3.0	2.2	350	264	4.7	6.3	0.194	0.104	0.011		0010	0219	0100	0201
2.6 2.0 343 242 14.1 41.1 0.234 1.090 0.011 0.025 0050 0	0015	3.8	2.3	354	254	7.7	5.3	0.198		0.035		0171		0266	.0007
3.6 1.5 327 012 5.0 51.7 0.979 1.087 0.029 0.038 0278 .0027 0382 3.5 1.7 350 340 19.1 11.9 0.467 0.042 0.023 0.005 0235 0086 0202 4.1 2.9 009 310 5.5 12.4 0.197 0.433 0.057 0.015 0360 0114 0279 M* 3.7 M 325 M 9.2 M 0.104 M 0.011 M 0021 M M 3.3 M 299 M 6.3 M 0.093 M 0.016 M 0112 M 0112 M	0030	2.6	2.0	343	242	14.1	41.1	0.234	1.090	0.011	0.025	0050		0050	0021
3.5 1.7 350 340 19.1 11.9 0.467 0.042 0.003 0.005023500860202 4.1 2.9 009 310 5.5 12.4 0.197 0.433 0.057 0.015036001140279 M* 3.7 M 325 M 9.2 M 0.104 M 0.011 M0021 M0011 M M 3.3 M 299 M 6.3 M 0.093 M 0.016 M0112 M	0045	3.6	1.5	327	012	5.0	51.7	0.979	1.087	0.029	0.038	0278		0382	0124
4.1 2.9 009 310 5.5 12.4 0.197 0.433 0.057 0.015 0360 0114 0279 M* 3.7 M 325 M 0.104 M 0.011 M 0021 M M 3.3 M 299 M 6.3 M 0.093 M 0.016 M 0112 M	0100	3.5	1.7	350	340	19.1	11.9	0.467	0.042	0.023	0.005	0235		0202	.0014
M* 3.7 M 325 M 9.2 M 0.104 M 0.011 M0021 M M 3.3 M 299 M 6.3 M 0.093 M 0.016 M 0112 M	0115	4.1	2.9	600	310	5.5	12.4	0.197	0.433	0.057	0.015	0360	0114	0279	0025
M 3.3 M 299 M 6.3 M 0.093 M 0.016 M0112 M	0130	*	3.7	Σ	325	Σ	9.2	Σ	0.104	Σ	0.011	Σ	0021	Σ	0084
	0145	Σ	3.3	Σ	299	Σ	6.3	Σ	0.093	Σ	0.016	Σ	0112	Σ	.0012

* Missing

Dipole Pride 26 Micrometeorological Data Summary

on: N2	BJY YFW u'w' (m²/s²)	.06590313	.11890782	.12380947	.24521249	18751113	.20641230
Source Location: N2	BJY u [*] ,	0659	1189	1238	2452	1875	2064
Sour	Y YFW w'T' (mT/s)	.0329	.0746	.0608	.0397	.0362	.0353
Date/Time (PST): 15 November 0900-1030	BJY w'm)	.0764	.0627	.0414	.0440	.0425	.1131
ember (YFW N' 's²)	0.134 0.091	0.163 0.160	0.153	0.213 0.151	0.170	0.157
15 Nov	BJY YFW w'w' (m²/s²)	0.134	0.163	0.131	0.213	0.250	0.233
ime (PST):	YFW 'u' '2/s²)	0.564 0.197	0.925 1.215	0.583	1.701 0.492	0.540	0.672
Date/T	BJY YF u'u' (m²/s²)	0.564	0.925	0.738	1.701	0.928	1.101
006	YFW 30 9eg)	18.6 11.5	18.8	10.4	8.0	9.1	7.7
e: 3200	BJY YI of (Deg)	18.6	10.9	10.2	11.0	5.4	7.2
Date/Tim	YFW D ig)	330	338	353	350	348	358
Release Julian Date/Time: 3200900	BJY Y HD (Deg)	353	900	900	003	352	343
Releas	YFW S (s)	2.9	5.6	4.5	4.3	4.9	4.6
A12	BJY Y WS (m/s)	2.5	4.0	4.2	5.7	7.2	7.2
Trial: DSWA12	Start Time (UTC)	1700	1715	1730	1745	1800	1815

Dipole Pride 26 Micrometeorological Data Summary

: N2	YFW w' /s²)	.1355	.0347	.1308	.0533	.0483	0812	8600.	.0625
Source Location: N2	BJY YF u'w' (m²/s²)	17801355	17990347	17671308	34820533	34950483	2905 -	2121	26260625
Soul	YFW T' '/s)	.0632	1064	.0571	.0367	.0188	.0290	.0780	.0361
Date/Time (PST): 15 November 1030-1230	BJY YFW w'T' (mT/s)	.1408	.1275	.0882	.1919	1179	.1240	.1066	.1369
ember	YFW N' 's²)	0.244 0.186	0.237 0.194	0.209	0.114	0.095	0.142	0.167	0.132
15 Nov	BJY YFW w'w' (m²/s²)	0.244	0.237	0.271	0.376	0.417	0.368	0.259	0.319
me (PST):	YFW 'u' ² /s²)	1.208 1.334	1.547 0.844	3.129	0.624	1.266	0.771	0.939	1.956
Date/T	ΒJY ΥΕ u'u' (m²/s²)	1.208	1.547	1.141	2.046	1.447	1.546	1.333	1.270
030	YFW) g)	10.7 18.8	53.8	23.7	16.2	25.9	20.9	30.1	21.8
Release Julian Date/Time: 3201030	BJY YFW σθ (Deg)	10.7	11.0	8.6	11.6	8 6.	11.8	11.9	10.3
Jate/Tim	YFW) g)	004	200	013	010	920	315	307	302
e Julian I	BJY Y HD (Deg)	350	005	340	342	332	340	342	338
Releas	YFW S s)	3.8	1.9	4.5	3.1	3.0	3.4	3.0	3.6
/A12	BJY Y WS (m/s)	6.1	6.3	6.9	7.7	8.0	7.9	7.3	6.9
Trial: DSWA12	Start Time (UTC)	1830	1845	1900	1915	1930	1945	2000	2015

Dipole Pride 26 Micrometeorological Data Summary

Trial: DSWA13 Release Julian Date/	VA13	Releas	se Julian	Date/Tin	Time: 3201430	430	Date/Ti	me (PST):	15 Nove	mber 1	Date/Time (PST): 15 November 1430-1610	Sour	Source Location: N2	n: N2
Start	BJ≺	YFW	BJY	YFW	BJY YFW	YFW	BJY YFW	YFW	BJY YFW	YFW	BJY	YFW	BJY	YFW
Time	3	ပွ	Ī	0	B	9	ָח,n	'	, N	-> '	.L.M	<u>i</u>	, M, n	-> °
(UTC)	(m/s)	(s)	(Deg)	(ĝ	(Deg)	g)	(m^2/s^2)	s ²)	(m ² /s ²)	s ²)	E	(mT/s)	(m²/s²)	(\$5)
2230	5.6	5.3	329	324	13.3	13.3 14.6	1.091	1.091 2.477	0.227	0.227 0.202	.0112	0112 .0212	1756	17560852
2245	5.7	5.3	335	334	14.8	12.1	4.068	4.068 1.833	0.235	0.235 0.187	.0179	.0225	2141	.21411997
2300	0.6	5.5	344	325	7.9	13.6	2.612	2.612 1.166	0.447	0.447 0.212	.0290	.0389	4210	.42101636
2315	9.2	6.8	344	343	9.2	14.1	2.596	3.963	0.427	0.345	0056	.0071	3864	.38643430
2330	8.9	8.4	342	347	6.0	8.1	2.420	2.420 3.545	0.455	0.467	.001	.0212	4000	40004612
2345	7.2	8.0	329	344	10.0	6.7	1.418	2.127	0.335	0.405	0021	0027	2378	.23783219
0000	8.6	8.3	343	345	6.1	7.9	2.440	2.440 3.336	0.446	0.456	.0033	.0141	4062	.40624343
						•								

Dipole Pride 26 Micrometeorological Data Summary

Trial: DSWA14	VA14	Relea	Release Julian Date/Time: 3211300	Date/Tim	ie: 3211	300	Date/Ti	me (PST):	16 Nove	mper	Date/Time (PST): 16 November 1300-1500		Source Location: \$2	n: S2
Start Time (UTC)	BJY Y WS (m/s)	YFW S (s)	BJY YF HD (Deg)	YFW 5 ig)	BJY YI σθ (Deg)	YFW σθ Jeg)	BJY YF u'u' (m²/s²)	YFW 'u' ² /s²)	BJY YFW w'w' (m²/s²)	YFW v' s²)	BJY w	BJY YFW w'T' (mT/s)	BJY YFW u'w' (m²/s²)	YFW ,' s²)
2100	3.3	3.7	160	139	23.1 12.0	12.0	0.889 0.696	969.0	0.202 0.123	0.123	.1471	.0942	07361069	1069
2115	4.5	4.3	163	132	14.9	15.5	1.510	1.510 0.519	0.159 0.105	0.105	7770.	.0672	1315	13150475
2130	4.4	3.5	165	154	11.5	14.8	1.061	0.563	0.185	0.205	.1137	.1444	0771	07711299
2145	4.5	4.5	156	133	17.5	12.3	1.455	0.986	0.216	0.152	.1175	.0775	1160	11600348
2200	4.9	4.5	149	155	13.5	20.8	0.844	1.644	0.197	0.229	.1216	.0597	12960921	0921
2215	4.7	3.9	155	161	14.7	14.2	0.718	2.040	0.195	0.187	.0951	.0939	11621111	1111
2230	5.3	4.6	155	157	10.5	14.1	1.164	1.048	0.182	0.172	.0861	.0579	1510	15100769
2245	5.7	4.5	163	154	8.1	14.6	1.073	0.865	0.180	0.124	.0682	.0365	1462	14620574

Dipole Pride 26 Micrometeorological Data Summary

Trial: DSWA15	/A15	Releas	se Julian	Date/Ti	Release Julian Date/Time: 3231130	1130	Date/Tir	ne (PST):	18 Nove	ember	Date/Time (PST): 18 November 1130-1300	Sour	Source Location: S2	n: S2
Start	BJY	Y FW	P. B. J	YEW	BJY	YFW	BJY YFW	YFW .	BJY YF	YFW	ВЈУ	BJY YFW w'T'	BJY YE	YFW w'
UTC)	(m/s)	(s)	. O	Deg)	(Deg)	g)	(m ² /s²)	\$ ₂)	(m ² /s ²)	(S ²)	Œ)	(mT/s)	(m ² /s ²)	S ²)
1930	2.2	2.7	170	179	23.9	23.9 27.3	0.869 1.464	1,464.	0.145	0.145 0.256	.0852	.1462	.0206	02060352
1945	2.8	2.5	174	130	23.0	17.5	0.967	1.471	0.152	0.152 0.109	.0562	6050.	0759	07590217
2000	2.8	3.9	194	160	17.2	22.5	0.450	0.927	0.170	0.170 0.210	.1155	.1231	0275	02750815
2015	2.0	3.3	147	140	19.4	22.1	0.276 1.993	1.993	0.107	0.144	.0596	.0663	9000	.00060299
2030	2.7	3.5	154	154	21.3	31.8	1.593	3.540	0.201	0.241	.1943	.1020	6000'-	.00001699
2045	1.6	5.1	191	159	56.0	21.0	0.853	1.311	0.163	0.247	.0821	.1235	.0052	00520948

Dipole Pride 26 Micrometeorological Data Summary

Trial: DSWA15	VA15	Relea	Release Julian Date/	Date/Tin	Time: 3231300	1300	Date/Tir	me (PST):	18 Nove	ember	Date/Time (PST): 18 November 1300-1500		Source Location: S2	n: S2
Start Time (UTC)	BJY Y WS (m/s)	YFW 'S 's)	BJY YF HD (Deg)	YFW C ig)	ΒJΥ Υ σθ (Deg)	YFW xθ leg)	BJY YFW u'u' (m²/s²)	YFW ' 's ²)	BJY YF w'w' (m²/s²)	YFW ''w' 1 ² /s ²)	BJY w_m	Υ ΥΕW w'T' (mT/s)	BJY YF u'w' (m²/s²)	YFW ''w' n ² /s ²)
2100	4.3	3.7	152	161	40.2 17.1	17.1	5.850 0.988	0.988	0.189	0.189 0.237	8680.	.1194	4003	-,4003 -,0874
2115	4.6	3.5	152	150	17.2	13.3	1.250 1.201	1.201	0.225 0.149	0.149	.1282	.0654	0458	04580787
2130	4.0	2.9	189	187	25.0	18.3	0.746	1.658	0.218 0.184	0.184	.0973	.1130	0818	.08181122
2145	4.9	4.1	207	190	14.6	15.5	1.828	1.162	0.269 0.177	0.177	.1127	.0854	1072	10720274
2200	5.2	4.4	205	174	12.2	17.7	1.227	0.923	0.223	0.187	.1084	.0629	0776	07760925
2215	5.9	5.2	205	176	14.5	11.7	1.828	0.978	0.251	0.214	.1009	.0622	2070	20701326
2230	6.0	6.4	207	186	10.9	13.1	1.587	1.366	0.265	0.258	.0865	.0370	1700	17001926
2245	4.9	5.2	215	173	14.8	18.5	1.028	1.527	0.219 0.162	0.162	0960	.0279	1265	12651112

Dipole Pride 26 Micrometeorological Data Summary

Source Location: S3	BJY YFW u'w' (m²/s²)	07620310	13800972	.11631871	.08332274	.10061336	.1806 - 1360
Source L	Μ-		.1152	.1208	.1420	.1118	.0571
Date/Time (PST): 19 November 1200-1330	BJY YF w'T' (mT/s)	.1714 .1289	.1353	.1514	.1139	.0646	.0713
ember	YFW 'w' 2/s²)	0.221 0.206	0.217 0.181	0.222	0.229	0.245	0.239
19 Nov	BJY YFV w'w' (m²/s²)	0.221	0.217	0.213	0.177	0.138	0.142
me (PST):	YFW 'u' ² /s²)	0.950 1.086	1.301 0.644	1.935	2.129	0.937	1,100
Date/Ti	BJY YF u'u' (m²/s²)	0.950	1.301	1.399	0.808	0.589	0.964
200	YFW 30 eg)	20.1	13.2	17.2	16.7	14.5	10.4
/Time: 3241200	BJY YI of (Deg)	10.8 20.1	15.2	10.8	8.5	10.4	7.9
)ate/Tim	YFW C ig)	165	147	155	152	165	160
Release Julian Date,	BJY YI HD (Deg)	162	145	144	132	137	140
Release	YFW s)	3.6	3.6	4.2	4.7	4.0	5.4
A16	BJY Y WS (m/s)	4.8	4.4	5.3	5.0	4.4	5.4
Trial: DSWA16	Start Time (UTC)	2000	2015	2030	2045	2100	2115

Dipole Pride 26 Micrometeorological Data Summary

: S2	YFW ^' /s²)	.2302	.2228	.1961	2360	2477	2291	0845	3836
Source Location: \$2	BJY YF u'w' (m²/s²)	13792302	20732228	25711961	1261	.1819	0951	- 8680	00063836
Sourc	YFW T' /s)	0920	.0691	.0379	.0424	.0148	0133	0109	0207
330-1530	BJY YF w'T' (mT/s)	.0562	.1373	.1126	4060.	.0250	.0020	9000	0031
ember 1	YFW 'w' ² /s²)	0.186 0.313	0.259 0.101	0.285	0.294	0.348	0.341	0.205	0.369
19 Nov	BJY YF w'w' (m²/s²)	0.186	0.259	0.284	0.276	0.212	0.155	0.073	0.032
Date/Time (PST): 19 November 1330-1530	YFW 'u' ² /s²)	0.920 2.055	1.296 1.676	1.405	2.082	1.969	1.658	1.836	3.334
Date/T	BJY YF u'u' (m²/s²)	0.920	1.296	1.606	1.289	1.217	0.800	0.838	0.211
330	YFW xθ ieg)	11.2	7.1	9.1	8.7	4.8	10.0	9.2	7.2
Time: 3241330	ΒJY Yf σθ (Deg)	5.9	9.2	9.5	8.5	7.3	7.5	18.6	16.8
Date/Tim	YFW S g)	157	142	147	159	167	163	166	165
Release Julian Date/	BJY YI DH (Beg)	142	145	149	154	149	151	152	075
Releas	YFW S S)	5.9	8.8	7.4	8.9	7.5	6.3	5.7	7.4
VA16	BJY Y WS (m/s)	6.7	5.9	6.3	7.1	6.4	5.1	2.9	1.7
Trial: DSWA16	Start Time (UTC)	2130	2145	2200	2215	2230	2245	2300	2315

Dipole Pride 26 Micrometeorological Data Summary

ation: S3	Y YFW u'w' (m²/s²)	.14100640	.12400830	11360292	.16740329	.05821129	.09680713
Source Location: S3	8		.088313	.1	.087716	90 6560.	.054509
	Y YFW w'T' (mT/s)	1728 .0815				_	-
Date/Time (PST): 20 November 1200-1330	BJY w	.1728	.1324	.1385	.1730	.1057	.1097
ember	YFW n' 's²)	0.238 0.154	0.203 0.166	0.131	0.175	0.159	0.104
20 Nov	BJY YFW w'w' (m²/s²)	0.238	0.203	0.266	0.241	0.170	0.173
ime (PST):	YFW 'u' ² /s²)	1.067 1.522	0.636	1.549	1.153	1.237	1.350
Date/T	BJY YF u'u' (m²/s²)	1.067	1.002	0.666	0.771	0.592	0.789
1200	YFW 9 ig)	13.0 13.3	12.0	20.3	50.9	19.4	15.2
Release Julian Date/Time: 3251200	BJY YFW σθ (Deg)	13.0	10.7	13.1	12.2	12.7	10.8
Date/Tin	YFW D ig)	146	150	141	157	151	138
e Julian	BJY YI HD (Deg)	165	154	157	155	144	136
Releas	YFW S s)	3.7	4.3	3.6	3.6	3.7	4.2
'A17	BJY Y WS (m/s)	4.7	5.3	5.3	5.2	4.7	4.7
Trial: DSWA17	Start Time (UTC)	2000	2015	2030	2045	2100	2115

Dipole Pride 26 Micrometeorological Data Summary

Trial: DSWA17	Re	Release Julian Date/Time: 3251330	Date/Ti	me: 3251	1330	Date/Ti	ime (PST):	20 Nover	nber 1	Date/Time (PST): 20 November 1330-1530		Source Location: \$2	n: S2
BJY.	/ YFW WS (m/s)	BJY (YFW HD Deg)	BJY YI σθ (Deg)	ΥFW sθ eg)	BJY YF u'u' (m²/s²)	YFW 'u' ² /s²)	BJY YF w'w' (m²/s²)	YFW 'w' ² /s ²)	BJY w 'm'	BJY YFW w'T' (mT/s)	BJY YFW u'w' (m²/s²)	YFW v' s²)
4	4.6 4.2	2 141	128	9.2	9.2 14.7	0.587 0.921	0.921	0.122 0.112	0.112	.0587	.0431	0440	04400766
IJ.	5.2 4.7	7 148	131	9.6	10.7	0.792	1.352	0.151 0.113	0.113	.0770	.0274	0850	.08500108
Ċ.	5.0 4.6	6 153	133	11.4	13.4	0.875	0.875 0.728	0.189	0.118	.0878	.0495	1265	-,1265 -,0538
4	7 4.4	4 157	140	11.0	13.8	0.722 0.841	0.841	0.150	0.124	.0561	.0554	0568	05680769
4	4.9 4.3	3 154	. 155	8.7	17.2	0.752	0.752	0.129	0.148	.0583	.0516	1194	11940961
Ŋ.	5.2 4.7	7 152	149	7.5	13.0	0.612	0.432	0.126	0.100	.0167	.0043	0859	0701

APPENDIX B. TRANSFORMS AND HISTOGRAM PLOTS

Appendix B contains a printout of the GAUSq.XFM and Gausfit.XFM transforms developed using the Jandel Scientific Sigma Plot® program. These transforms were used to produce concentration histograms and calculate relevant puff dimension statistics. The transform printouts are followed by plots of the lateral and alongwind puff concentration histograms. The lateral histogram plots include a best fit curve, and estimates of the best fit sigma and the sigma obtained using the 16-84 percentile method (see Section 3.2.4).

```
jsv5R
; GAUSq.XFM
; Calculates sigmas for histogram data and provides a
;"best fit" sigma from a range of three sigma estimates calculated
; for Gaussian fits to the histogram with histogram area conserved.
; Calculations are done on user-
;entered class mark (position) data entered in column 1 and
; concentration data in column 2.
;o = user-defined arbitrary origin
;x=class mark (center position) of each histogram column.
; d=distance from each x to o.
; N=sum of concentrations over histogram.
;y=concentration (f) for each histogram column.
;int=class interval: user-defined histogram width.
min= -2100 ;user-defined min class mark
max= 5700 ;user-defined max class mark
int = 300 ; user-defined class interval
o = 300; user-defined origin
y0 = 113 ; user-entered max concentration from histogram
pi=3.1415926
x_col=1
y col=2
x=col(x col); user-entered class mark in column 1
y=col(y col) ;user-entered concentration in column 2
N=total(y) ; sum of histogram concentrations
cell(3,1)="sum conc:"
cell(3,2) = N
cell(3,3)="hist area:"
A = N*int
           ; histogram area calculation.
cell(3,4) = A
col(4) = (x-o)/int; calculates distance d from user-selected origin,
col(5) = col(4)*col(4); calculates d squared.
col(6) = col(2)*col(4); product of d and concentration.
col(7) = col(2)*col(5); product of d**2 and concentration.
fd = total(col(6))
; histogram mean position, xbar calculation:
xbar = o + int*(fd/N)
cell(3,5) = "xbar:"
cell (3,6) = xbar ; histogram mean
; first (s1) histogram standard deviation calculation.
fd2 = total(col(7))
cell(3,7) = fd2
s1 = int*sqrt((fd2/N)-((fd/N)**2))
cell(3,8) = "s1, 1st est"
cell(3,9) = s1
; second (s2) histogram sd calculation.
cell(3,10) = "s2,2nd est"
s2=A/(sqrt(2*pi)*y0)
cell(3,11)=s2
; find y1, the peak concentration from the data set
; that produced s1 and calculate s3, another equivalent
; area sigma between s1 and s2
y1=A/(sqrt(2*pi)*s1)
ynew = (y0 + y1)/2
s3=A/(sqrt(2*pi)*ynew) ;s3 = intermediate sigma estimate
cell(3,12) = "s3"
cell(3,13) = s3
; Calculate tau's, ordinates, and fits for the 3 sigmas
```

```
col(8)=(x-xbar)/s1 ; tau calc for s1 col(9)=(x-xbar)/s2 ; tau calc for s2
col(10) = (x-xbar)/s3; tau calc for s3.
col(11) = exp(-(col(8)**2/2)); ordinate calc for s1
                                                                       ;ordinate calc for s2
col(12) = exp(-(col(9)**2/2))
col(13) = exp(-(col(10)**2/2)); ordinate calc for s3
col(14)=col(11)*int*sqrt((N*(N-1))/(2*pi))/s1; fit for s1
col(15) = col(12) * int * sqrt((N*(N-1))/(2*pi))/s2; fit for s2
col(16) = col(13) * int * sqrt((N*(N-1))/(2*pi))/s3; fit for s3
; calculate total least square differences:
col(17)=sqrt((col(14)-col(2))**2) ;difference fit 1 and histogram
col(18)=sqrt((col(15)-col(2))**2) ;difference fit 2 and histogram
col(19)=sqrt((col(16)-col(2))**2) ;difference fit 3 and historgram
ls1=total(col(17))
ls2=total(col(18))
ls3=total(col(19))
ls1p=(ls1/N)*100 \quad ; fit 1 least sq error as % of total conc. \\ ls2p=(ls2/N)*100 \quad ; fit 2 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls3p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls4p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls4p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls4p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls4p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls4p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls4p=(ls3/N)*100 \quad ; fit 3 least sq error as % of total conc. \\ ls4p=(ls3/N)*100 \quad ; fit 4 least sq error as % of total conc. \\ ls4p=(ls3/N)*100 \quad ; fit 4 least sq error as % of total conc. \\ ls4p=(ls3/N)*100 \quad ; fit 4 least sq error as % of total conc. \\ ls4p=(ls4/N)*100 \quad ; fit 4 least sq error as % of total conc. \\ ls4p=(ls4/N)*100 \quad ; fit 4 least sq error as % of total conc
cell(3,14)="ls1 %:"
cell(3,15)=ls1p ;display fit 1 ls error as % of A
cell(3,16)="ls2 %:"
cell(3,17) = ls2p
cell(3,18)="ls3%:"
cell(3,19) = 1s3p
; Find the best fit sigma:
sig=if(ls1p>ls2p,s2,s1) ;select the min of ls1p and ls2p
sx=\{ls1p, ls2p\}
lsmin=min(sx)
sig1=if(ls3p<lsmin,s3,sig)</pre>
                                                                          ;select the min of 1s3p and sig
cell(3,20)="SIGMA:"
cell(3,21)=sig1
;Computation of coefficients of skewness and kurtosis:
;col(20)=col(5)*col(6)
;fd3=total(col(20))
;col(21)=col(5)*col(7)
;fd4=total(col(21))
;m3=fd3-3*fd*fd2+2*fd**3 ;skewness
;m4=fd4-4*fd*fd3+6*((fd**2)*fd2-3*fd**4 ;kurtosis
;sk=m3/(sig1)**3
;cell(3,22)="Coeff. SK:"
; cell(3, 23) = sk
;K=m4/(sig1)**4
;cell(3,24)="Coeff. K:"
; cell(3, 25) = K
```

```
isv5R
 ; GAUSFIT.XFM
 ; Calculates moments and coefficients of skewness and kurtosis for histo
gram data.
 ; Calculations are done on user-
 ; entered class mark (position) data entered in column 1 and
; concentration data in column 2.
;o = user-defined arbitrary origin
;x=class mark (center position) of each histogram column.
;d=distance from each x to o.
; N=sum of concentrations over histogram.
;y=concentration (f) for each histogram column.
;int=class interval: user-defined histogram width.
min=13.9291 ;user-defined min class mark
max= 14.0187 ;user-defined max class mark
int = .00006945 ; user-defined class interval
o = 13.9 ; user-defined origin
y0 =3083.9; user-entered max concentration from histogram
pi=3.1415926
x col=1
y col=2
x=col(x col); user-entered class mark in column 1
y=col(y col) ;user-entered concentration in column 2
N=total(y) ; sum of histogram concentrations
cell(3,1)="sum conc:"
cell(3,2) = N
cell(3,3)="hist area:"
A = N*int; histogram area calculation.
cell(3,4) = A
col(4) = (x-o)/int; calculates distance d from user-selected origin,
col(5) = col(4)*col(4); calculates d squared.
col(6) = col(2)*col(4); product of d and concentration.
col(7) = col(2)*col(5); product of d**2 and concentration.
fd = total(col(6))
m1=fd/N
; histogram mean position, xbar calculation:
xbar = o + int*(fd/N)
cell(3,7) = "xbar:"
cell (3,8) = xbar ; histogram mean
; first (s1) histogram standard deviation calculation.
fd2 = total(col(7))
m2=fd2/N
; Computation of coefficients of skewness and kurtosis:
col(8) = col(5) * col(6)
fd3=total(col(8))
m3=fd3/N
col(9) = col(5) * col(7)
fd4=total(col(9))
m4=fd4/N
mm2 = m2 - m1
```

Gausfit.xfm

```
mm3=m3-3*m1*m2+2*(m1)**3 ;third moment

mm4=m4-4*m1*m3+6*((m1)**2)*m2-3*(m1)**4 ;4th moment
sk=mm3/(mm2)**1.5 ;coeff of skewness
cell(3,9)="Coeff SK:"
cell(3,10)=sk
K=mm4/(mm2)**2
cell(3,11)="Coeff K:"
cell(3,12)=K
cell(3,13)=fd
cell(3,13)=fd
cell(3,14)=fd2
cell(3,15)=fd3
cell(3,16)=fd4
cell(3,17)=mm2
cell(3,18)=mm3
cell(3,19)=mm4
```

<u>Trial DSWA03, Line 1,Bag 1</u> 8 November 1996, 0400-0415 PST

<u>Trial DSWA03, Line 2, Bag 3</u> 8 November 1996, 0430-0445 PST

Trial DSWA03, Line 3, Bag 8

8 November 1996, 0615-0630 PST

<u>Trial DSWA03, Line 3, Bag 9</u> 8 November 1996, 0630-0645 PST

<u>Trial DSWA04, Line 1, Bag 1</u> 9 November 1996, 0400-0415 PST

<u>Trial DSWA04, Line 2, Bag 3</u> 9 November 1996, 0430-0445 PST

Trial DSWA04, Line 2, Bag 4

9 November 1996, 0445-0500 PST

Trial DSWA04, Line 1, Bag 8

9 November 1996, 0545-0600 PST

Trial DSWA04, Line 3, Bag 11

9 November 1996, 0700-0715 PST Concentration, pptv **Best Fit Curve**

Trial DSWA05, Line 1, Bag 3

11 November 1996, 0500-0515 PST

Trial DSWA05, Line 2, Bag 6

11 November 1996, 0545-0600 PST

Trial DSWA05, Line 3, Bag 10

11 November 1996, 0715-0730 PST

Trial DSWA06, Line 1, Bag 2

12 November 1996, 0415-0430 PST

Trial DSWA06, Line 2, Bag 7

12 November 1996, 0530-0545 PST

Trial DSWA06, Line 3, Bag 10

12 November 1996, 0645-0700 PST

Trial DSWA07, Line 3, Bag 2

12 November 1996, 1315-1330 PST

<u>Trial DSWA07, Line 2, Bag 3</u> 12 November 1996, 1330 - 1345 PST

Trial DSWA07, Line 1, Bag 4

12 November 1996, 1415-1430 PST

Trial DSWA09, Line 2, Bag 4

13 November 1996, 1445 - 1500 PST

<u>Trial DSWA09, Line 1, Bag 4</u> 13 November 1996, 1515 - 1530 PST

<u>Trial DSWA11, Line 1, Bag 7</u> 14 November 1996, 1600 - 1615 PST

<u>Trial DSWA11, Line 2, Bag 10</u> 14 November 1996, 1645 - 1700 PST

<u>Trial DSWA11, Line 3, Bag 11</u> 14 November 1996, 1730 - 1745 PST

<u>Trial DSWA12, Line 2, Bag 3</u> 15 November 1996, 0930 - 0945 PST

<u>Trial DSWA12, Line 1, Bag 7</u> 15 November 1996, 1030 - 1045 PST

Trial DSWA12, Line 2, Bag 8

15 November 1996, 1045 - 1100 PST

<u>Trial DSWA12, Line 3, Bag 3</u> 15 November 1996, 1000 - 1015 PST

Trial DSWA13, Line 1, Bag 1

Trial DSWA13, Line 2, Bag 2

15 November 1996 1445 - 1500 PST

<u>Trial DSWA13, Line 3, Bag 1</u> 15 November 1996, 1500 - 1515 PST

<u>Trial DSWA14, Line 3, Bag 2</u> 16 November 1996, 1315 - 1330 PST

<u>Trial DSWA14, Line 1, Bag 3</u> 16 November 1996, 1400 - 1415 PST

Trial DSWA15, Line 3, Bag 2

<u>Trial DSWA15, Line 2, Bag 4</u>
18 November 1996, 1215 - 1230 PST

Trial DSWA15, Line 3, Bag 7 18 November 1996, 1300 - 1315 PST

Distance, meters

<u>Trial DSWA16, Line 2, Bag 7</u> 19 November 1996, 1330 - 1345 PST

Trial DSWA16, Line 2, Bag 8

19 November 1996, 1345 - 1400 PST

<u>Trial DSWA16, Line 1, Bag 8</u> 19 November 1996, 1415 - 1430 PST

<u>Trial DSWA17, Line 2, Bag 3</u> 20 November 1996, 1230 - 1245 PST

<u>Trial DSWA17, Line 1, Bag 9</u> 20 November 1996, 1430 - 1445 PST

Time, Decimal Hours

Time, Decimal Hours

Time, Decimal Hours

Blank Page

APPENDIX C. SULFUR HEXAFLUORIDE MASS CALCULATION PROCEDURE

The sulfur hexafluoride mass calculation procedure described in Appendix C was contributed by Dr. William Espander of Logicon RDA.

Logicon RDA SYSTEMS TECHNOLOGY OPERATION 2600 Yale Boulevard S.E. Post Office Box 9377 Albuquerque, NM 87119-9377

Tel: 505 842-8911 Fax: 505 242-2249

6 January 1997

To:

Dugway Proving Ground (Dr. C. Biltoft, WD-M)

West Desert Test Center Meteorology Division)

Dugway, UT 840222-5000

From:

William R. Espander

Subject:

Dipole Pride 26 Mass Calculation

1.0 Summary

A quick check of the ideal gas assumption used to calculate the mass released for the Dipole Pride 26 test series¹ was made using the law of corresponding states. This check indicated a difference in the calculated mass on the order of fifteen percent for a nominal operating point. A more in depth evaluation was conducted to verify the initial calculation. Three independent methods, the law of corresponding states, a Virial, and a Martin-Hou² equation of state were used that yielded similar results. Therefore, it is suggested that a form of an equation of state other than ideal gas be used. I recommend that the Martin-Hou equation of state be used as it is anchored to experimental data in the range of interest for the experiment. The results of the comparison are summarized in the Table, Figure 1, and Figure 2.

2.0 Discussion

The validity of ideal gas assumption used to calculate the mass released from the dissemination cylinder(s) during the Dipole Pride 26 test series was evaluated by calculation of the compressibility factor for a 'nominal' test point.

¹ Chris Biltoft, FAX to Gary Ganong / Bill Espander, 19 Dec. 96, "Dipole Pride 26 Preliminary Mass Calculations."

W. H. Mears, E. Rosenthal, and J. V. Sinka, "Physical Properties and Virial Coefficients of Sulfur Hexafluoride," J. Phys. Chem., vol 73,, pp 2254-2261, July, 1969.

The Law of Corresponding States holds well in many instances for molecules that are not polar or hydrogen bonded. The dipole moment for sulfur hexafluoride is zero³ indicating the molecule is not polar. The critical temperature and pressure for sulfur hexafluoride are 318.69 K and 3.77 MPa, respectively. The nominal temperature and pressure were assumed to be 300 K and 1 MPa. The compressibility factor is defined as

$$Z = Z^{(0)}(T_r, P_r) + \omega Z^{(1)}(T_r, P_r)$$
, where $Z^{(0)}$ is the spherical molecule term, $Z^{(1)}$ is a

deviation function, and ω is the Pitzer acentric factor. The value for the compressibility factor based on the tables and constants in reference 2 is 0.874, i.e., compressibility should be considered.

The van der Waals equation of state was used to calculate the expelled mass. The form of van der Waals equation used was $(p + n^2 a/V) (V - nb) = nRT^4$. The coefficients are a = 7.857 bar ℓ^2 / mole² and b = 0.08786 ℓ / mole.

A Virial equation of state may be defined in the form of $\frac{p \ v}{R \ T} = \sum_{i=0}^{n} \frac{B_i}{v^i}$. The first virial coefficient, B_0 , is unity and the second virial coefficient, B_1 , is defined as

 $B_1 = \sum_{i=1}^{n} a_i \left[T_0 / T - 1 \right]^{(i-1)}$, reference 4. The value for the coefficients are given as:

i	\mathbf{a}_{i}
1	-278.8
2	-646.8
3	-335.1
4	-71.75

³ Reid, Sherwood, and Prausnitz, <u>The Properties of Gases and Liquids</u>, 3rd ed., McGraw-Hill Book Co, 1977.

David R. Lide, <u>CRC Handbook of Chemistry and Physics</u>, 72nd edition, CRC Press, 1991 - 1992.

The Martin-Hou equation of state is a variation of a Virial equation of state,

$$P = \sum_{i=1}^{5} \frac{A_i + B_i T + C_i \exp(-KT/T_c)}{(V - b)^i}$$
, T is in K, V is in cc/g, P is in bars, K is

6.88302200, T_c is 318.80 K, and b is 0.32736730. The constants are given as:

i	A_{i}	\mathbf{B}_{i}	\mathbf{C}_{i}
1	0.0	0.56926365	0.0
2	$-4.99043505 \ 10^2$	0.54854082	-2.37588665 104
3	$4.12453944 \ 10^2$	-0.334003447	2.81955047 104
4	$-1.61292746 \ 10^2$	0.0	0.0
5	-0.48996987	0.109417750	$-3.08268133\ 10^3$

The mass for each trial was calculated using the four equations of state. The results of these computations are summarized in the table and displayed graphically in the figures.

Figure 1 shows the calculated mass for each case. A case is defined as a single condition for a dispersion cylinder. A trial consists of one or two cases, depending on the number of cylinders used. Note that the Virial equation of states give a fifteen to twenty percent increase in mass over the ideal gas law or van der Waals equation of state.

The Compressibility factor relates the equations of state back to the ideal gas law, figure 2. The Virial equations of state indicates a fifteen to twenty percent reduction in compressibility for the conditions of interest. Case 1 shows a much smaller effect because the pressure is a factor of ten below the critical point compared to the remainder of the cases that are a factor of three below the critical point.

3.0 Conclusions

A cursory evaluation of the validity of using the ideal gas law to calculate the sulfur hexafluoride mass in the dispersion cylinder indicated a fifteen to twenty percent difference between assumed equation of states. It is felt that this difference is due to the operating point being close to the critical point. This difference was verified using three different approaches, the Law of Corresponding States, a Virial equation of state, and a Martin-Hou equation of state. The values calculated using a van der Waals equation of state do not agree with the three above approaches. Since the Martin-Hou equation of state is based on experimental data in the region of interest for the Dipole Pride 26 experiment, it is suggested that this formulation be used to calculate the mass, moles, of gas released.

pelled
Expel
Mass
26
Pride
Jipole

				•		4				
Trial-Name	Temperature	Pressure		Calcular	Calculated-Mass			Tota	Total-Mass	
	X	[Psig]	Ideal	van der Waals	Virial	Martin-Hou	Ideal	van der Waals	Virial	Martin-Hou
3091441	288.8	0.09	3.774	3.774	3.993	3.987				
	288.8	0.09	3.774	3.774	3.993	3.987	7.549	7.549	7.986	7.974
3110800	281.6	149.8	9.665	9.664	11.627	11.512	9.665	9.664	11.627	11.512
3130400	272.0	150.0	10.019	10.019	12.456	12.334	10.019	10.019	12.456	12.334
3140400	281.0	149.6	9.672	9.672	11.653	11.538	9.672	9.672	11.653	11.538
3140538	281.6	149.6	9.652	9.651	11.607	11.493	9.652	9.651	11.607	11.493
3160440	282.0	150.4	689.6	689.6	11.655	11.539	689.6	689.6	11.655	11.539
3170400	281.3	150.0	889.6	6.687	11.669	11.554	889.6	289.6	11.669	11.554
3171300	303.2	147.0	8.808	808.8	10.042	9.964				
	316.0	147.0	8.451	8.451	9.441	9.379	17.260	17.259	19.484	19.343
3171447	301.6	146.8	8.843	8.843	10.109	10.029	8.843	8.843	10.109	10.029
3181400	298.2	149.8	9.127	9.126	10.540	10.448	9.127	9.126	10.540	10.448
3190900	284.3	150.0	9.586	9.585	11.446	11.334	9.586	9.585	11.446	11.334
3191430	296.6	150.1	9.194	9.194	10.657	10.563	9.194	9.194	10.657	10.563
3191551	291.0	148.7	9.284	9.283	10.876	10.777	9.284	9.283	10.876	10.777
3200900	283.7	151.5	9.702	9.701	11.633	11.516	9.702	9.701	11.633	11.516
3201030	284.9	150.2	9.578	9.578	11.422	11.310	9.578	9.578	11.422	11.310
3201430	292.6	147.7	9.171	9.170	10.690	10.595				
	287.1	148.8	9.416	9.416	11.139	11.034	18.587	18.586	21.828	21.629

Trial-Name 3211300 3231300	Temperature [K] 298.8 296.0 301.6	Pressure [Psig] 150.3 156.3 156.3	Dipole P Ideal 9.139 9.225 9.415	ride 26 Mas Calculat van der Waals 9.138 9.225 9.415	26 Mass Expellec Calculated-Mass r der Virial aals 10.547 225 10.709 415 10.883	Dipole Pride 26 Mass Expelled (concluded) Calculated-Mass Ideal van der Waals Virial Martin-Hou 9.139 9.138 10.547 10.456 9.225 9.225 10.709 10.614 9.415 9.415 10.883 10.783 9.006 10.314 10.229	Ideal 18.364 9.415	Total van der Waals 18.363	Total-Mass er Virial s 21.256 10.883	Martin-Hou 21.069 10.783
	307.1 301.0 307.1 305.4	149.7 150.0 150.1 149.1	8.856 9.054 8.880 8.870	8.856 9.053 8.879 8.869	10.058 10.400 10.089 10.096	9.980 10.313 10.010	17.862	17.861	20.371	20.208
	301.0 302.6 306.0	150.0 150.0 151.1	9.054 9.006 8.971	9.053 9.006 8.971	10.400 10.314 10.223	10.313 10.229 10.141	17.923	17.923	20.496	20.329
	304.3	150.0	8.956	8.955	10.224	10.141	17.825	17.825	20.267	20.107

Figure 1 Calculated mass of sulfur hexafluoride released for each Dipole Pride 26 case.

Figure 2 Calculated sulfur hexafluoride compressibility for each Dipole Pride 26 case.

Sincerely,

William R. Espander, PhD

cc: LTC A. J. Kuehn (DSWA/WELE)

G. Ganong (LRDA/ABQ) T. Mazzola (LRDA/TGV)

APPENDIX D. REFERENCES

- ASTM, 1997A: Annual Book of ASTM Standards, Vol. 11.03 Atmospheric Analysis, D5527-94: Practices for measuring surface wind and temperature by acoustic means. American society for Testing and Materials, West Conshohocken, PA.
- ASTM, 1997B: Annual Book of ASTM Standards, Vol. 11.03 Atmospheric Analysis, D1914-91: Standard practice for conversion units and factors relating to atmos pheric analysis. American Society for Testing and Materials, West Conshohocken, PA.
- Benner, R. L. and B. Lamb, 1985: A fast-response continuous analyzer for halogenated atmospheric tracers. <u>Journal of Atmospheric and Oceanic Tech.</u>, <u>2</u>, 582-589.
- Biltoft, C. A., 1997: Surface effects on evaporation, recirculation, and dispersion in light winds. Report No. DPG/JCP-97/016. U.S. Army Dugway Proving Ground, UT 84022-5000 (September 1997).
- Bowers, J. F., G. E. Start, R. G. Carter, T. B. Watson, K. L. Clawson, and T. L. Crawford, 1994. Experimental design and results for the Long-Range Overwater Diffusion (LROD) experiment. Report No. DPG/JCP-94/012, U.S. Army Dugway Proving Ground, Dugway, UT.
- Busch, N. E. and H. A Panofsky, 1968: Recent spectra of atmospheric turbulence. <u>Quart.</u> <u>J. Roy. Meteor. Soc.</u>, <u>94</u>, 132-148.
- Kendall, M. G. and A. Stuart, 1963: <u>The Advanced Theory of Statistics</u>, Vol. 1 Distribution Theory. Hafner, New York, NY.
- Mears, W. H., E. Rosenthal, and J.V. Sinka, 1979: Physical properties and virial coefficients of sulfur hexafluoride. <u>J. Phys. Chem.</u>, <u>73</u>, 2254-2261.
- Polak, M. L., J. L. Hall, and K. C. Herr, 1995: Passive Fourier-transform infrared spectros copy of chemical plumes: an algorithm for quantitative interpretation and real-time background level. <u>Appl. Optics</u>, <u>34</u>, 5406-5412.
- Range Commanders Council Meteorology Group, 1992: Meteorological Measurements Guide, Document 381-92, Secretariat, Range Commanders Council, U.S. Army White Sands Missile Range, NM 88002.
- Taylor, J. K., 1987: Quality Assurance of Chemical Measurements. Lewis Publishers, Inc., Chelsea, Michigan.
- Titan Corporation, 1996: Second Order Closure Integrated Puff (SCIPUFF®) Dispersion Model, Titan Corporation, Princeton, NJ.
- Watson, T. B., R. E. Keislar, B. Reese, D. H. George, and C. A. Biltoft, 1998: The Defense Special Weapons Agency DIPOLE PRIDE 26 Field Experiment. National Oceanic and Atmospheric Administration Air Resources Laboratory Field Research Division (in preparation).

Blank Page

APPENDIX E. DISTRIBUTION LIST

Addressee	Test <u>Plans</u>	Reports
U.S. Army Test and Evaluation Command ATTN: AMSTE-T-AS (Mr. Spletzer) Aberdeen Proving Ground, MD		1
Administrator Defense Technical Information Center 8725 John J. Kingman Road, suite 0944 ATTN: OCC Fort Belvoir, VA 22060-6218		2
Defense Special Weapons Agency 6801 Telegraph Road ATTN: MAJ David Myers Alexandria, VA 22310	1	5
Commander U.S. Army Dugway Proving Ground ATTN: STEDP-WD-JCP-I (Technical Library) -WD-M (Christopher Biltoft) -WD-M-OE (Shayes Turley) Dugway, UT 84022-5000	9	2 20 8
Defence Evaluation and Research Agency CBD Porton Down ATTN: Dr. I. Roberts Salisbury Wiltshire SP4 OJQ England	1	2
Defense Research Establishment, Suffield ATTN: Dr. Joan Armour P.O. Box 4000 Medicine Hat, Alberta T1A8K6	1	2
Director CBIAC P.O. Box 196 ATTN: Collection Gun Powder Branch Aberdeen Proving Ground, MD 21010-0196	2	2

Blank Page