Dimension

[6] Dimension

The size of a basis

Key fact for this unit: all bases for a vector space have the same size.

We use this as the "basis" for answering many pending questions.

Morphing Lemma

Morphing Lemma: Suppose S is a set of vectors, and B is a linearly independent set of vectors in Span S. Then $|S| \ge |B|$.

Before we prove it—what good is this lemma?

Theorem: Any basis for \mathcal{V} is a smallest generating set for \mathcal{V} .

Proof: Let S be a smallest generating set for V. Let B be a basis for V. Then B is a linearly independent set of vectors in Span S. By the Morphing Lemma, B is no bigger than S, so B is also a smallest generating set.

Theorem: All bases for a vector space \mathcal{V} have the same size.

Proof: They are all smallest generating sets.

Proof of the Morphing Lemma

Morphing Lemma: Suppose S is a set of vectors, and B is a linearly independent set of vectors in Span S. Then $|S| \ge |B|$.

Proof outline: modify S step by step, introducing vectors of B one by one, without increasing the size.

How? Using the Exchange Lemma....

Review of Exchange Lemma

Exchange Lemma: Suppose S is a set of vectors and A is a subset of S. Suppose \mathbf{z} is a vector in Span S such that $A \cup \{\mathbf{z}\}$ is linearly independent.

Then there is a vector $\mathbf{w} \in S - A$ such that

$$\mathsf{Span}\ S = \mathsf{Span}\ (S \cup \{\mathbf{z}\} - \{\mathbf{w}\})$$

Proof of the Morphing Lemma

Let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$. Define $S_0 = S$.

Prove by induction on $k \le n$ that there is a generating set S_k of Span S that contains $\mathbf{b}_1, \dots, \mathbf{b}_k$ and has size |S|.

Base case: k = 0 is trivial.

To go from S_{k-1} to S_k : use the Exchange Lemma.

lacksquare $A_k = \{oldsymbol{b}_1, \ldots, oldsymbol{b}_{k-1}\}$ and $oldsymbol{z} = oldsymbol{b}_k$

Exchange Lemma \Rightarrow there is a vector **w** in S_{k-1} such that

$$\mathsf{Span}\; (S_{k-1} \cup \{\mathbf{b}_k\} - \{\mathbf{w}\}) = \mathsf{Span}\; S_{k-1}$$

Set $S_k = S_{k-1} \cup \{\mathbf{b}_k\} - \{\mathbf{w}\}.$

QED

This induction proof is an algorithm.

Dimension

Definition: Define *dimension* of a vector space $\mathcal{V} = \text{size}$ of a basis for \mathcal{V} . Written dim \mathcal{V} .

Definition: Define rank of a set S of vectors = dimension of Span S. Written rank S.

Example: The vectors [1,0,0], [0,2,0], [2,4,0] are linearly dependent.

Therefore their rank is less than three.

First two of these vectors form a basis for the span of all three, so the rank is two.

First two of these vectors form a basis for the span of all three, so the rank is two

Example: The vector space Span $\{[0,0,0]\}$ is spanned by an empty set of vectors. Therefore the rank of $\{[0,0,0]\}$ is zero.

Row rank, column rank

Definition: For a matrix M, the *row rank* of M is the rank of its rows, and the *column rank* of M is the rank of its columns. Equivalently, row rank of M = dimension of Row M, and column rank of M = dimension of Col M.

Example: Consider the matrix

$$M = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 4 & 0 \end{array} \right]$$

whose rows are the vectors we saw before: [1,0,0], [0,2,0], [2,4,0]

The set of these vectors has rank two, so the row rank of M is two.

The columns of M are [1,0,2], [0,2,4], and [0,0,0].

Since the third vector is the zero vector, it is not needed for spanning the column space.

Since each of the first two vectors has a nonzero where the other has a zero, these two are linearly independent, so the column rank is two.

Row rank, column rank

Definition: For a matrix M, the *row rank* of M is the rank of its rows, and the *column rank* of M is the rank of its columns. Equivalently, row rank of M = dimension of Row M, and column rank of M = dimension of Col M.

Example: Consider the matrix

$$M = \left[\begin{array}{rrrr} 1 & 0 & 0 & 5 \\ 0 & 2 & 0 & 7 \\ 0 & 0 & 3 & 9 \end{array} \right]$$

Each of the rows has a nonzero where the others have zeroes, so the three rows are linearly independent. Thus the row rank of M is three.

The columns of M are [1,0,0], [0,2,0], [0,0,3], and [5,7,9].

The first three columns are linearly independent, and the fourth can be written as a linear combination of the first three, so the column rank is three.

Row rank, column rank

Definition: For a matrix M, the *row rank* of M is the rank of its rows, and the *column rank* of M is the rank of its columns. Equivalently, row rank of M = dimension of Row M, and column rank of M = dimension of Col M.

Does column rank always equal row rank? ©

Geometry

We have asked:

Fundamental Question: How can we predict the dimensionality of the span of some vectors?

Compute the rank of the set of vectors.

Examples:

- Span $\{[1, 2, -2]\}$ is a line but Span $\{[0, 0, 0]\}$ is a point. First vector space has dimension one, second has dimension zero.
- \bullet Span $\{[1,2],[3,4]\}$ consists of all of \mathbb{R}^2 but Span $\{[1,3],[2,6]\}$ is a line
- The first has dimension two and the second has dimension one.
- Span $\{[1,0,0],[0,1,0],[0,0,1]\}$ is \mathbb{R}^3 but Span $\{[1,0,0],[0,1,0],[1,1,0]\}$ is a plane.

The first has dimension three and the second has dimension two.

Dimension and rank in graphs

Let T = set of dark edgesBasis for Span T:

Dimension and rank in graphs

Let T = set of dark edgesBasis for Span T:

Cardinality of a vector space over GF(2)

Cardinality of a vector space \mathcal{V} over GF(2) is $2^{\dim \mathcal{V}}$.

How to find dimension of solution set of a homogeneous linear system?

Write linear system as $A\mathbf{x} = \mathbf{0}$.

How to find dimension of the null space of A?

Answers will come later.

Subset-Basis Lemma

Lemma: Every finite set T of vectors contains a subset S that is a basis for Span T.

Proof: The Grow algorithm finds a basis for $\mathcal V$ if it terminates.

Initialize $S = \emptyset$.

Repeat while possible: select a vector \mathbf{v} in \mathcal{V} that is not in Span S, and put it in S.

Revised version:

, ,

Initialize $S = \emptyset$

Differs from original:

This algorithm stops when Span S contains every vector in T.
The original Grow algorithm stops only once Span S contains every vector in V.

Repeat while possible: select a vector \mathbf{v} in T that is not in Span S, and put it in S.

However, that's okay: when Span S contains all the vectors in T, Span S also contains all linear combinations of vectors in T, so at this point Span $S = \mathcal{V}$.

Termination of Grow algorithm

```
\begin{aligned} &\operatorname{def} \; \mathrm{Grow}(\mathcal{V}) \\ &B = \emptyset \\ &\operatorname{repeat} \; \operatorname{while} \; \operatorname{possible:} \\ & \quad \operatorname{find} \; \operatorname{a} \; \operatorname{vector} \; \mathbf{v} \; \operatorname{in} \; \mathcal{V} \; \operatorname{that} \; \operatorname{is} \; \operatorname{not} \; \operatorname{in} \; \operatorname{Span} \; \; B, \; \operatorname{and} \; \operatorname{put} \; \operatorname{it} \; \operatorname{in} \; B. \end{aligned}
```

Grow-Algorithm-Termination Lemma: If \mathcal{V} is a subspace of \mathbb{F}^D where D is finite then $\operatorname{Grow}(\mathcal{V})$ terminates.

Proof: By Grow-Algorithm Corollary, B is linearly independent throughout.

Apply the Morphing Lemma with $S = \{ \text{standard generators for } \mathbb{F}^D \} \Rightarrow |B| \leq |S| = |D|.$

Since B grows in each iteration, there are at most |D| iterations.

QED

Every subspace of \mathbb{F}^D contains a basis

Grow-Algorithm-Termination Lemma: If \mathcal{V} is a subspace of \mathbb{F}^D where D is finite then $\operatorname{Grow}(\mathcal{V})$ terminates.

Theorem: For finite D, every subspace of \mathbb{F}^D contains a basis.

Proof: Let V be a subspace of \mathbb{F}^D .

```
\begin{aligned} & \operatorname{def} \; \operatorname{Grow}(\mathcal{V}) \\ & B = \emptyset \\ & \operatorname{repeat} \; \operatorname{while} \; \operatorname{possible:} \\ & \quad \quad \operatorname{find} \; \operatorname{a} \; \operatorname{vector} \; \mathbf{v} \; \operatorname{in} \; \mathcal{V} \; \operatorname{that} \; \operatorname{is} \; \operatorname{not} \; \operatorname{in} \; \operatorname{Span} \; B, \; \operatorname{and} \; \operatorname{put} \; \operatorname{it} \; \operatorname{in} \; B. \end{aligned}
```

Grow-Algorithm-Termination Lemma ensures algorithm terminates.

Upon termination, every vector in $\mathcal V$ is in Span B, so B is a set of generators for $\mathcal V$. By Grow-Algorithm Corollary, B is linearly independent. Therefore B is a basis for $\mathcal V$.

QED