Multiple Linear Regression

Introduction

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{k}X_{ki} + \varepsilon_{i}$$

partial regression coefficients

Assumptions

- Regression model is linear in regression parameters (b-values)
- residuals follow a normal distribution
 - the expected value (mean) of the residuals is zero
- In time series data, residuals are assumed to uncorrelated.
- The variance of the residuals is constant for all values of Xi.
- There is no high correlation between independent variables in the model.

Predicting the SOLD PRICE (Auction Price) of Players

Example Dataset: Predicting the SOLD PRICE (Auction Price) of IPL Players

- Context: The Indian Premier League (IPL) is a professional cricket league started in 2008, where franchises bid for players in an annual auction.
- **Auction Process:** Players are acquired through an **English auction system** where international and popular Indian players are bid upon.
- Objective: Predict the SOLD PRICE (Auction Price) of a player based on various performance metrics.
- Data: Performance records of 130 players from IPL seasons 2008–2011.
- Features:
 - Batting metrics (e.g., batting average, strike rate)
 - Bowling metrics (e.g., wickets taken, economy rate)
 - Fielding records and other performance indicators from T20, ODI, and Test cricket

How This Relates to Multiple Linear Regression

- **Dependent Variable (Target):** SOLD PRICE (Auction Price)
- Independent Variables (Features): Player performance statistics across different cricket formats
- Goal: Build a predictive model to estimate a player's value in future IPL auctions based on historical performance.

TABLE 4.3 M	letadata of IPL dataset
Data Code	Description
AGE	Age of the player at the time of auction classified into three categories. Category 1 (L25) means the player is less than 25 years old, category 2 means that the age is between 25 and 35 years (B25—35) and category 3 means that the age is more than 35 (A35).
RUNS-S	Number of runs scored by a player.
RUNS-C	Number of runs conceded by a player.
HS	Highest score by a batsman in IPL.
AVE-B	Average runs scored by a batsman in IPL.
AVE-BL	Bowling average (number of runs conceded/number of wickets taken) in IPL.
SR-B	Batting strike rate (ratio of the number of runs scored to the number of balls faced) in IPL.
SR-BL	Bowling strike rate (ratio of the number of balls bowled to the number of wickets taken) in IPL.
SIXERS	Number of six runs scored by a player in IPL.
WKTS	Number of wickets taken by a player in IPL.

Data Code	Description
ECON	Economy rate of a bowler (number of runs conceded by the bowler per over) in IPL.
CAPTAINCY EXP	Captained either a T20 team or a national team.
ODI-SR-B	Batting strike rate in One-Day Internationals.
ODI-SR-BL	Bowling strike rate in One-Day Internationals.
ODI-RUNS-S	Runs scored in One-Day Internationals.
ODI-WKTS	Wickets taken in One-Day Internationals.
T-RUNS-S	Runs scored in Test matches.
T-WKTS	Wickets taken in Test matches.
PLAYER-SKILL	Player's primary skill (batsman, bowler, or allrounder).
COUNTRY	Country of origin of the player (AUS: Australia; IND: India; PAK: Pakistan; SA: South Africa; SL: Sri Lanka; NZ: New Zealand; WI: West Indies; OTH: Other countries).
YEAR-A	Year of Auction in IPL.
IPL TEAM	Team(s) for which the player had played in the IPL (CSK: Chennai Super Kings; DC: Deccan Chargers; DD: Delhi Daredevils; KXI: Kings XI Punjab; KKR: Kolkata Knight Riders; MI: Mumbai Indians; PWI: Pune Warriors India; RR: Rajasthan Royals; RCB: Royal Challengers Bangalore). A + sign is used to indicate that the player has played for more than one team. For example, CSK+ would mean that the player has played for CSK as well as for one or more other teams.

Developing Multiple Linear Regression Model Using Python

4.5.2.1 Loading the Dataset

Loading data from IPL IMB381IPL2013.csv the file and print the meta data.

```
ipl auction df = pd.read csv( 'IPL IMB381IPL2013.csv' )
ipl auction df.info()
<class 'pandas.core.frame.DataFrame'>
Rangelndex: 130 entries, 0 to 129
Data columns (total 26 columns):
Sl.NO.
                 130
                        non-null
                                  int64
PLAYER NAME
                 130 non-null
                                  object
AGE
                 130 non-null
                                  int64
COUNTRY
                 130
                        non-null
                                  object
TEAM
                 130
                        non-null
                                  object
```

Loading the dataset

PLAYING ROLE	130	non-null	object
T-RUNS	130	non-null	int64
T-WKTS	130	non-null	int64
ODI-RUNS-S	130	non-null	int64
ODI-SR-B	130	non-null	float64
ODI-WKTS	130	non-null	int64
ODI-SR-BL	130	non-null	float64
CAPTAINCY EXP	130	non-null	int64
RUNS-S	130	non-null	int64
HS	130	non-null	int64
AVE	130	non-null	float64
SR-B	130	non-null	float64
SIXERS	130	non-null	int64
RUNS-C	130	non-null	int64
WKTS	130	non-null	int64
AVE-BL	130	non-null	float64
ECON	130	non-null	float64
SR-BL	130	non-null	float64
AUCTION YEAR	130	non-null	int64
BASE PRICE	130	non-null	int64
SOLD PRICE	130	non-null	int64
dtypes: float64(7),	int64	(15), object	J (4)
memory usage: 26.5	5+ KB		

Displaying the First Five Records

ipl_auction_df.iloc[0:5, 0:10]

	SI. NO.	PLAYER NAME	AGE	COUNTRY	TEAM	PLAYING ROLE	T-RUNS	T-WKTS	ODI-RUNS-S	ODI-SR-B
0	1	Abdulla, YA	2	SA	KXIP	Allrounder	0	0	0	0.00
1	2	Abdur Razzak	2	BAN	RCB	Bowler	214	18	657	71.41
2	3	Agarkar, AB	2	IND	KKR	Bowler	571	58	1269	80.62
3	4	Ashwin, R	1	IND	CSK	Bowler	284	31	241	84.56
4	5	Badrinath, S	2	IND	CSK	Batsman	63	0	79	45.93

Identify Relevant Features:

- Focus on player statistics that directly impact auction price.
- Ignore columns that do not contribute to prediction, such as serial numbers or timestamps.

Exclude Non-Feature Columns:

• Remove columns like **SI. NO.**, **BASE PRICE**, and any other irrelevant metadata.

Create a Feature List (X_feature):

- Define a list of features that should be used for modeling.
- Include only meaningful player statistics like runs, wickets, strike rate, economy rate, etc.

Filter DataFrame Based on Selected Features:

- Extract only the relevant columns from the dataset.
- Ensure consistency by handling missing values and data types.

Identify Relevant Features:

```
X features = ipl auction df.columns
```

Encoding Categorical Features

```
ipl_auction_df['PLAYING ROLE'].unique()
array(['Allrounder', 'Bowler', 'Batsman', 'W. Keeper'], dtype=object)
pd.get_dummies(ipl_auction_df['PLAYING ROLE'])[0:5]
```

	Allrounder	Batsman	Bowler	W. Keeper
0	1.0	0.0	0.0	0.0
1	0.0	0.0	1.0	0.0

	Allrounder	Batsman	Bowler	W. Keeper
2	0.0	0.0	1.0	0.0
3	0.0	0.0	1.0	0.0
4	0.0	1.0	0.0	0.0

Encoding Categorical Variable

```
X_features = ipl_auction_encoded_df.columns
```

Splitting the Dataset into Train and Validation Sets

```
python
                                                                        ① Copy 岁 Edit
from sklearn.model_selection import train_test_split
# Define features (X) and target variable (Y)
X = ipl_auction_encoded_df # Player statistics (processed features)
Y = ipl auction df['SOLD PRICE'] # Target variable
# Split data into training (80%) and testing (20%) sets
train X, test X, train y, test y = train test split(X, Y, train size=0.8, random state
# Print dataset sizes
print("Training data shape:", train X.shape, train y.shape)
print("Testing data shape:", test_X.shape, test_y.shape)
```

Model

Building the Model on the Training Dataset

```
ipl_model_1 = sm.OLS(train_y, train_X).fit()
ipl_model_1.summary2()
```

TABLE 4.4 Model sum	ABLE 4.4 Model summary for <i>ipl_model_1</i>					
Model:	OLS	Adj. R-squared:	0.362			
Dependent Variable:	SOLD PRICE	AIC:	2965.2841			
Date:	2018-04-08 07:27	BIC:	3049.9046			
No. Observations:	104	Log-Likelihood:	-1450.6			
Df Model:	31	F-statistic:	2.883			
Df Residuals:	72	Prob (F-statistic):	0.000114			
R-squared:	0.554	Scale:	1.1034e+11			

Model

	Coef.	Std.Err.	t	P > t	[0.025	0.975]
const	375827.1991	228849.9306	1.6422	0.1049	-80376.7996	832031.1978
T-RUNS	-53.7890	32.7172	-1.6441	0.1045	-119.0096	11.4316
T-WKTS	-132.5967	609.7525	-0.2175	0.8285	-1348.1162	1082.9228
ODI-RUNS-S	57.9600	31.5071	1.8396	0.0700	-4.8482	120.7681
ODI-SR-B	-524.1450	1576.6368	-0.3324	0.7405	-3667.1130	2618.8231
ODI-WKTS	815.3944	832.3883	0.9796	0.3306	-843.9413	2474.7301
ODI-SR-BL	-773.3092	1536.3334	-0.5033	0.6163	-3835.9338	2289.3154
RUNS-S	114.7205	173.3088	0.6619	0.5101	-230.7643	460.2054
HS	-5516.3354	2586.3277	-2.1329	0.0363	-10672.0855	-360.5853
AVE	21560.2760	7774.2419	2.7733	0.0071	6062.6080	37057.9439

(Continued)

5	Coef.	Std.Err.	t	P > t	[0.025	0.975]
SR-B	-1324.7218	1373.1303	-0.9647	0.3379	-4062.0071	1412.5635
SIXERS	4264.1001	4089.6000	1.0427	0.3006	-3888.3685	12416.5687
RUNS-C	69.8250	297.6697	0.2346	0.8152	-523.5687	663.2187
WKTS	3075.2422	7262.4452	0.4234	0.6732	-11402.1778	17552.6622
AVE-BL	5182.9335	10230.1581	0.5066	0.6140	-15210.5140	25576.3810
ECON	-6820.7781	13109.3693	-0.5203	0.6045	-32953.8282	19312.2721
SR-BL	-7658.8094	14041.8735	-0.5454	0.5871	-35650.7726	20333.1539
AGE_2	-230767.6463	114117.2005	-2.0222	0.0469	-458256.1279	-3279.1648
AGE_3	-216827.0808	152246.6232	-1.4242	0.1587	-520325.1772	86671.0155
COUNTRY_BAN	-122103.5196	438719.2796	-0.2783	0.7816	-996674.4194	752467.3801
COUNTRY_ENG	672410.7654	238386.2220	2.8207	0.0062	197196.5172	1147625.0135
COUNTRY_IND	155306.4011	126316.3449	1.2295	0.2229	-96500.6302	407113.4325
COUNTRY_NZ	194218.9120	173491.9293	1.1195	0.2667	-151630.9280	540068.7521
COUNTRY_PAK	75921.7670	193463.5545	0.3924	0.6959	-309740.7804	461584.3143
COUNTRY_SA	64283.3894	144587.6773	0.4446	0.6579	-223946.8775	352513.6563
COUNTRY_SL	17360.1530	176333.7497	0.0985	0.9218	-334154.7526	368875.0586
COUNTRY_WI	10607.7792	230686.7892	0.0460	0.9635	-449257.9303	470473.4887
COUNTRY_ZIM	-145494.4793	401505.2815	-0.3624	0.7181	-945880.6296	654891.6710
PLAYING ROLE_Batsman	75724.7643	150250.0240	0.5040	0.6158	-223793.1844	375242.7130
PLAYING ROLE_Bowler	15395.8752	126308.1272	0.1219	0.9033	-236394.7744	267186.5249
PLAYING ROLE_W. Keeper	-71358.6280	213585.7444	-0.3341	0.7393	-497134.0278	354416.7718
CAPTAINCY EXP_1	164113.3972	123430.6353	1.3296	0.1878	-81941.0772	410167.8716

Model

Key Findings from the Model

- Only HS, AGE_2, AVE, and COUNTRY_ENG are statistically significant (p-value < 0.05).
- Other features appear insignificant in predicting SOLD PRICE.

★ Why Does This Happen?

- Multi-collinearity: Some features are highly correlated, making their individual impact unclear.
- The model distributes effects among correlated variables, increasing **p-values** for some.

★ How to Check Multi-Collinearity?

- Variance Inflation Factor (VIF): Detects redundant features.
- Correlation Matrix: Identifies highly correlated features.

p-value

What is p-value?

The **p-value** (probability value) is a statistical measure that helps determine whether an observed effect in data is **statistically significant** or just **due to random chance**.

Intuition Behind p-value

Imagine you are testing whether a player's **batting average (AVE)** has an impact on their **auction price (SOLD PRICE)** in a regression model.

- Null Hypothesis (H0H_0H0): The player's batting average has no effect on SOLD PRICE.
- Alternative Hypothesis (H1H_1H1): The player's batting average does influence SOLD PRICE.

The **p-value** tells us **how likely** we would get the observed effect **if the null hypothesis were true**.

p-value

Interpreting p-value

- **p-value < 0.05** (typically 5% significance level)
 - → **Reject the null hypothesis** → The feature is statistically significant.
 - → The feature (e.g., batting average) has an impact on SOLD PRICE.
- p-value > 0.05
 - → Fail to reject the null hypothesis → The feature is not statistically significant.
 - → The feature does **not** significantly influence SOLD PRICE.

Example in Regression

If you run a regression model to predict SOLD PRICE based on multiple features, you might get:

Feature	Coefficient	p-value
Batting Average (AVE)	12000	0.02 🔽
Strike Rate (SR)	5000	0.08 🗙
Age (AGE_2)	-3000	0.01 🔽

- Since AVE and AGE_2 have p-values < 0.05, they significantly influence SOLD PRICE.
- Strike Rate (SR) has a p-value > 0.05, meaning it may not significantly affect SOLD PRICE.

- ★ How Multi-Collinearity Affects the Model?
- Inflates Standard Error (Se(b)S_e(b)Se(b))
 - Makes coefficient estimates less reliable.
- Statistically Significant Features May Appear Insignificant
 - Large p-value due to high standard error.
 - Leads to underestimation of t-statistic.
- 3 Changes the Sign of Regression Coefficients
 - A negative coefficient may appear positive and vice versa.
- 4 Regression Coefficients Become Unstable
 - Adding or removing a variable/observation dramatically changes estimates.

Variance Inflation Factor (VIF)

★ What is VIF?

• Variance Inflation Factor (VIF) is used to detect multi-collinearity between independent variables.

★ How is VIF Calculated?

• Consider two independent variables X_1 and X_2 :

$$X_1 = a_0 + a_1 X_2$$

• If R_{12}^2 is the **R-squared value**, then:

$$VIF=rac{1}{1-R_{12}^2}$$

• VIF > 4 suggests strong multi-collinearity and requires further investigation.

```
vif_factors = get_vif_factors( X[X_features] )
vif_factors
```

	Column	VIF
1	T-WKTS	7.679284
2	ODI-RUNS-S	16.426209
3	ODI-SR-B	13.829376
4	ODI-WKTS	9.951800
5	ODI-SR-BL	4.426818
6	RUNS-S	16.135407
7	HS	22.781017
8	AVE	25.226566
9	SR-B	21.576204
10	SIXERS	9.547268
11	RUNS-C	38.229691
12	WKTS	33.366067
13	AVE-BL	100.198105
14	ECON	7.650140

15 SR-BL 103.72384 16 AGE_2 6.99622	
111.	6
	•
17 AGE_3 3.85500	3
18 COUNTRY_BAN 1.46901	7
19 COUNTRY_ENG 1.39152	4
20 COUNTRY_IND 4.56889	8
21 COUNTRY_NZ 1.49785	6
22 COUNTRY_PAK 1.79635	5
23 COUNTRY_SA 1.88655	5
24 COUNTRY_SL 1.98490.	2
25 COUNTRY_WI 1.53184	7
26 COUNTRY_ZIM 1.31216	8
27 PLAYING ROLE_Batsman 4.84313	6
28 PLAYING ROLE_Bowler 3.79586	4
29 PLAYING ROLE_W. Keeper 3.13204	4
30 CAPTAINCY EXP_1 4.24512	8

Checking Correlation of Columns with Large VIFs

```
columns_with_large_vif = vif_factors[vif_factors.vif > 4].column
```

```
plt.figure( figsize = (12,10) )
sn.heatmap( X[columns_with_large_vif].corr(), annot = True );
plt.title("Figure 4.5 - Heatmap depicting correlation between features");
```


- ★ Key Correlations Identified
- Strong Correlation Between Batting & Bowling Stats
 - T-RUNS and ODI-RUNS-S are highly correlated.
 - ODI-WKTS and T-WKTS are also highly correlated.
- 2 Batsman-Specific Correlations
 - RUNS-S, HS, AVE, SIXERS are strongly correlated.
- 3 Bowler-Specific Correlations
 - AVE-BL, ECON, and SR-BL show high correlation.
- Why Does This Matter?
 - Multi-collinearity can affect regression models.
 - Redundant features may reduce model interpretability.

Feature Selection

★ Why Remove Features?

- Highly correlated features can lead to multi-collinearity, making model predictions unstable.
- Keeping redundant features inflates standard errors and affects statistical significance.

How to Decide Which Features to Keep?

- Domain Knowledge: Understand which features best represent player performance.
- Statistical Analysis: Use VIF (Variance Inflation Factor) and correlation heatmaps.
- Model Performance: Test different feature sets in multiple iterations.

📌 Feature Removal Strategy

- Identify highly correlated variables.
- Remove one from each correlated pair based on interpretability.
- Iterate and refine the feature set until multi-collinearity is minimized.

Final Features Selected After Iterations

- ✓ Retained Features: Key statistics with minimal collinearity.
- **X** Removed Features: Redundant or highly correlated variables.

```
'ODI-SR-B', 'ODI-RUNS-S', 'AGE 2', 'SR-BL']
X new features = list( set(X features) - set(columns to be removed))
```

'RUNS-C', 'SR-B', 'AVE-BL', 'ECON',

COUNTRY SA

ODI-WKTS

WKTS

PLAYING ROLE Batsman

1.416657

2.680207

2.742889

2.883101

columns to be removed = ['T-RUNS', 'T-WKTS', 'RUNS-S', 'HS', 'AVE',

get	_vif_:	factors(>	<pre>X[X_new_features</pre>])			
-		Column	VIF				
	0	AGE_3	1.779861		9	CAPTAINCY EXP_1	2.458745
	1	ODI-SR-BL	2.822148		10	PLAYING ROLE_W. Keeper	1.900941
	2	COUNTRY_IND	3.144668		11	PLAYING ROLE_Bowler	3.060168
	-	COUNTRY FNC	1 121060		12	CIVEDO	2 207400

	Column	VIF	_		
0	AGE_3	1.779861	9	CAPTAINCY EXP_1	2.458745
1	ODI-SR-BL	2.822148	10	PLAYING ROLE_W. Keeper	1.900941
2	COUNTRY_IND	3.144668	11	PLAYING ROLE_Bowler	3.060168
3	COUNTRY_ENG	1.131869	12	SIXERS	2.397409
4	COUNTRY N7	1 173418	13	COUNTRY RAN	1 09/1293

14

15

16

17

0	AGE_3	1.779861	9	CAPTAINCY EXP_1	2.458745
1	ODI-SR-BL	2.822148	10	PLAYING ROLE_W. Keeper	1.900941
2	COUNTRY_IND	3.144668	11	PLAYING ROLE_Bowler	3.060168
3	COUNTRY_ENG	1.131869	12	SIXERS	2.397409

0	AGE_3	1.779861	9	CAPTAINCY EXP_1	2.458745
1	ODI-SR-BL	2.822148	10	PLAYING ROLE_W. Keeper	1.900941
2	COUNTRY_IND	3.144668	11	PLAYING ROLE_Bowler	3.060168
3	COUNTRY_ENG	1.131869	12	SIXERS	2.397409

1.334773

1.194093

1.519752

1.205305

COUNTRY_PAK

COUNTRY WI

COUNTRY SL

COUNTRY ZIM

8

Building a New Model after Removing Multi-collinearity

```
train_X = train_X[X_new_features]
ipl_model_2 = sm.OLS(train_y, train_X).fit()
ipl_model_2.summary2()
```

TABLE 4.5 Model sumn	nary for <i>ipl_model_2</i>		
Model:	OLS	Adj. R-squared:	0.728
Dependent Variable:	SOLD PRICE	AIC:	2965.1080
Date:	2018-04-08 07:27	BIC:	3012.7070
No. Observations:	104	Log-Likelihood:	-1464.6
Df Model:	18	F-statistic:	16.49
Df Residuals:	86	Prob (F-statistic):	1.13e-20
R-squared:	0.775	Scale:	1.2071e+11

Feature Selection using p-values

r Understanding p-values

- A feature is statistically significant if p-value < 0.05 (or chosen significance level α\alphaα).
- Higher p-values indicate features do not significantly impact SOLD PRICE.
- Statistically Significant Features (p-value < 0.05)</p>
- ✓ COUNTRY_IND, COUNTRY_ENG
 → Player's nationality matters.
- ✓ SIXERS → Number of sixes hit in past IPL seasons.
- ✓ CAPTAINCY_EXP_1
 → Previous captaincy experience.
- * Key Insights from the Model
- ☐ Player's Origin Matters
 - Players from India and England significantly influence SOLD PRICE.
- 2 Performance in Previous IPLs & ODIs
 - Number of sixes hit and wickets taken in ODIs impact pricing.
- 3 Leadership Experience
 - Captaincy history plays a crucial role in auction pricing.

	Coef.	Std.Err.	t	P > t	[0.025	0.975]
COUNTRY_IND	282829.8091	96188.0292	2.9404	0.0042	91614.3356	474045.2827
COUNTRY_BAN	-108758.6040	369274.1916	-0.2945	0.7691	-842851.4010	625334.1930
AGE_3	-8950.6659	98041.9325	-0.0913	0.9275	-203851.5772	185950.2453
COUNTRY_PAK	122810.2480	159600.8063	0.7695	0.4437	-194465.6541	440086.1502
COUNTRY_WI	-22234.9315	213050.5847	-0.1044	0.9171	-445765.4766	401295.6135
ODI-WKTS	772.4088	470.6354	1.6412	0.1044	-163.1834	1708.0009
COUNTRY_SA	108735.9086	115092.9596	0.9448	0.3474	-120061.3227	337533.1399
COUNTRY_ENG	682934.7166	216150.8279	3.1595	0.0022	253241.0920	1112628.3411
CAPTAINCY EXP_1	208376.6957	98128.0284	2.1235	0.0366	13304.6315	403448.7600
WKTS	2431.8988	2105.3524	1.1551	0.2512	-1753.4033	6617.2008
SIXERS	7862.1259	2086.6101	3.7679	0.0003	3714.0824	12010.1694
PLAYING ROLE_W. Keeper	-55121.9240	169922.5271	-0.3244	0.7464	-392916.7280	282672.8801
COUNTRY_ZIM	-67977.6781	390859.9289	-0.1739	0.8623	-844981.5006	709026.1444
PLAYING ROLE_Bowler	-18315.4968	106035.9664	-0.1727	0.8633	-229108.0215	192477.0279
COUNTRY_SL	55912.3398	142277.1829	0.3930	0.6953	-226925.3388	338750.0184
COUNTRY_NZ	142968.8843	151841.7382	0.9416	0.3491	-158882.5009	444820.2695
PLAYING ROLE_Batsman	121382.0570	106685.0356	1.1378	0.2584	-90700.7746	333464.8886
ODI-SR-BL	909.0021	1267.4969	0.7172	0.4752	-1610.6983	3428.7026

- Key Inferences from the Latest Model (ipl_model_3)
- All Variables Are Statistically Significant
 - p-values < 0.05, meaning all selected features influence SOLD PRIC
- 2 Overall Model Significance
 - F-statistic p-value < 0.05, confirming the model is statistically valid.
- Model Performance (R-squared & Adjusted R-squared)
 - R-squared = 0.715 → Model explains 71.5% variance in SOI
 - Adjusted R-squared = 0.704 → Accounts for the number of r

Let us create a new list called significant_	_vars to store the column	names of significant v	ariables and build
new model (Table 4.6)			

significant_vars = ['COUNTRY_IND', 'COUNTRY_ENG', 'SIXERS',
'CAPTAINCY EXP 1']

train X = train X[significant vars]

ipl_model_3 = sm.OLS(train_y, train_X).fit()
ipl model 3.summary2()

	Coef.	Std.Err.	t	P > t	[0.025	0.975]
COUNTRY_IND	387890.2538	63007.1511	6.1563	0.0000	262885.8606	512894.6471
COUNTRY_ENG	731833.6386	214164.4988	3.4172	0.0009	306937.3727	1156729.9045
SIXERS	8637.8344	1675.1313	5.1565	0.0000	5314.4216	11961.2472
CAPTAINCY EXP_1	359725.2741	74930.3460	4.8008	0.0000	211065.6018	508384.9463

Normalizes SSE (Sum of Squared Errors) and SST (Total Sum of Squares).

Penalizes unnecessary features to ensure a better fit.