ANÁLISIS PARA FLIP FLOP JK

A.A. A. B.B.B. J.K. J.K. 000 001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{lll} J_0 & J_0 = K_0 = 1 \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X \\ \downarrow X & \downarrow X & \downarrow X $
Para f ₂ /K ₂ , con que hoya un 0 entre las 3 nos dará el resultado d ₂ =K ₂ = A ₂ A ₁ A ₀ Lo mismo para 1./K ₁ , pero sin A ₃ , es decir J ₁ /K ₁ = A ₁ A ₀	Los J sc preden ignolor con K Allo An J2/K2 J./K1 000 0 0 000 0 0 010 0 0 100 0 0 110 0
$J_{i} = K = \begin{cases} 1 & \text{para } i = 0 \\ \frac{1}{x=0} & \text{A}_{x} & \text{para } i \end{cases}$	$\int_{0}^{\infty} \overline{E} para i=0$ $\lim_{x\to 0} \overline{E} \prod_{x\to 0}^{\infty} A_{xx} para i>0$

ANÁLISIS PARA FLIP FLOP D

CONTADOR DE 3 BITS

```
1 library ieee;
2 use ieee.std logic 1164.all;
4 entity C3 is port(
      EN, CLK, CLR : in std logic;
      S : inout std logic vector (2 downto 0)
7);
8 end entity;
10 architecture Contador3 of C3 is
11 begin
       process (CLR, CLK)
13
       variable X : std logic;
14
       begin
15
           if (CLR = '1') then
               S <= "000";
16
17
           elsif (rising_edge(CLK)) then
               X := '1';
18
19
               for j in 0 to 2 loop
20
                    if (j-1 >= 0) then
21
                        for k in 0 to j-1 loop
22
                            X := X \text{ and } S(k);
23
                        end loop:
24
                    end if:
25
                    X := X \text{ and } EN;
26
27
                    S(j) \ll S(j) \times X;
28
               end loop:
29
           end if:
       end process;
31 end architecture;
```

CONTADOR DE 7 BITS

```
14 architecture Contador of C7 is
15 begin
16
       process (CLK, CLR)
17
       variable x : std logic := '1';
18
       begin
           if (CLR = '1') then
19
20
                s <= "00000000";
21
           elsif (rising edge(CLK)) then
                if (EN = {}^{\dagger}O^{\dagger}) then --retiene
22
23
                    S <= S;
24
                else
25
                    if (L = '1') then --carga
                        S(6 \text{ downto } 0) <= D;
26
27
                    else --conteo
28
                         if (UD = '1') then --ascendente
29
                             S <= S + 1;
30
                         else --descendente
31
                             S <= S - 1;
32
                         end if:
33
                    end if:
                end if;
34
35
           end if:
36
37
           C <= S(7);
38
       end process;
39 end architecture;
```

SIMULACIONES EN GALAXY

CONTADOR DE 3 BITS

Name	Value	Stimulator	Ops 200 400 600 800 101
r- dk	0	Clock	
P- clr	0	<= 0	
Pt en	1	<= 1	
+	U		XX1 X2 X3 X4 X5 X6 X7 X0 X1 X2

CONTADOR DE 7 BITS

SIMULACIÓN EN PROTEUS

CONTADOR DE 3 BITS

C22V10

```
|24| * not used
     clk =| 1|
      en =| 2|
                                                    |23| = s(1)
     clr =| 3|
                                                    |22|* not used
                                                    |21| * not used
not used *| 4|
not used *| 5|
                                                    |20| * not used
not used *| 6|
                                                    |19| * not used
                                                    |18|* not used
not used *| 7|
                                                    |17| * not used
not used *| 8|
                                                    |16|* not used
not used *| 9|
not used *|10|
                                                    |15| = s(0)
not used *|11|
                                                    |14| = s(2)
not used *|12|
                                                    |13|* not used
```


CONTADOR DE 7 BITS

clk = 1	24 * not used
d(6) = 2	23 = s(2)
d(5) = 3	22 = s(4)
d(4) = 4	21 = s(6)
d(3) = 5	20 = s(O)
d(2) = 6	19 * not used
ud = 7	18 = c
1 = 8	17 = s(1)
en = 9	16 = s(7)
d(1) = 10	15 = s(5)
d(0) = 11	14 = s(3)
not used * 12	13 = clr

Cargar 87 (En binario: 1010111)

Contar hasta 95 (En binario: 1011111)

Retención en 3 ciclos (el enable está apagado)

Contar hasta el 78 (En binario: 1001110)

Cargar 1 (En binario 0000001)

Mostrar la salida en C (Dos flancos hacia arriba)

Cargar el número más grande (1111111)

Mostrar acarreo

CUESTIONARIO

- 1. ¿Cuántos dispositivos PLD 22V10 son necesarios para el desarrollo de esta práctica?
- 1 para cada circuito
- 2. ¿Cuántos dispositivos de la serie 74xx (TTL) ó 40xx (CMOS) hubieras necesitado para el desarrollo de esta práctica?

Considerablemente muchos más, tan solo para el segundo circuito serían 16.

3. ¿Cuántos pines de entrada/salida del PLD 22V10 se usan en el diseño?

Para el segundo, se usaron 21 pines en total.

4. ¿Cuántos términos producto ocupan las ecuaciones para cada señal de salida y que porcentaje se usa en total del PLD 22V10?

65 para el segundo.

5. ¿Por qué se tienen que usar variables para implementar la ecuación genérica del contador con señal de control enable?

Hace mucho más fácil el código, y mucho más fácil la abstracción.

6. ¿Qué nivel de diseño se implementó al usar los operadores + y - en el contador?

Alto.

7. ¿Cuáles son las señales que funcionan de manera síncrona y cuáles de manera asíncrona?

Enable, L, UD, D son síncronas, CLR, CLK son asíncronas.

8. ¿Qué puedes concluir de esta práctica?

Los contadores deben de ser la base de los generadores de números pseudoaleatorios en las computadoras. Cada vez que entiendo más Diseño Digital, entiendo qué hacen por dentro las computadoras cuando programamos.