ISSN: 2317 - 8302

Análise da Resistência do Pneu no Concreto Ecológico

JAILTON MANGUEIRA DA SILVA

UNINOVE – Universidade Nove de Julho jailtonmangueira@gmail.com

ELIACY CAVALCANTI LÉLIS

UNINOVE – Universidade Nove de Julho eliacylelis@gmail.com

DANIELE TORRALBO

UNINOVE – Universidade Nove de Julho danieletorralbo@hotmail.com

ANÁLISE DA RESISTÊNCIA DO PNEU NO CONCRETO ECOLÓGICO

Contextualização

Anualmente milhões de pneus inservíveis são descartados em todo o mundo, devido a falta de uma política séria referente a destinação deste produto. Muitos são ilegalmente acumulados em aterros clandestinos, em leitos de córregos e rios, causando doenças e poluindo o meio ambiente. A borracha vulcanizada em grãos é utilizada na mistura do concreto, pois este material sustentável é aplicado na produção do asfalto, tijolos e calçadas contribuindo assim, com a redução do impacto ambiental na sociedade moderna (MACEDO E TUBINHO, 2004).

A produção do concreto comum utiliza em grande escala a água, a areia e a brita, gerando assim, um imenso impacto nos recursos naturais. Os usos na engenharia civil são inúmeros, primordialmente na fundação e também na vedação.

Objetivo

O objetivo da pesquisa é analisar a resistência do pneu no concreto ecológico nos usos da construção civil.

Metodologia

A metodologia utilizada é a pesquisa bibliográfica, com análise comparativa de diferentes matrizes cimentícias, sendo duas convencionais e outras duas com adição de 15% de borracha.

Resultados

Os diferentes traços de concreto apresentados na tabela 1 e 2, foram analisados. Devemos ressaltar inicialmente as diferenças presentes nos traços:

- Os traços 1 (tabela 1) e os traços 3 (tabela 2) produzidos por Macedo e Tubinho (2004) usam dois tipos de areia além de aditivos.
- A borracha usada no traço 3 (tabela 2) passou previamente por tratamento para a retirada de impurezas, inicialmente uma lavagem com água e posteriormente com tetracloreto de carbono (CCl₄).
- Os traços 2 (tabela 1) e os traços 4 (tabela 2) utilizados por Romualdo et. al (2011) são matrizes simples sem nenhum tipo de aditivo.

Tabela1 - Traço de concreto convencional

- I -									
	Cimento	Areia	Areia	Brita	Água	Aditivo			
		Natural	Artificial						
Traço do	1	1,05	2,46	2,99	0,78	0,006			
Concreto									
1									
Traço do	4,5	11,63	-	8,92	3,10	-			
Concreto									
2									
Tabela2 - Traco de concreto com 15% de borracha									

abelaz - Haço de concreto com 13/0 de borracija

	Cimento	Areia	Areia	Borracha	Brita	Água	Aditivo
		Natural	Artificial				
Traço do	1	0,89	2,10	0,33	2,99	0,78	0,0125
Concreto							
3							
Traço do	4,5	9,88	-	1,74	8,92	3,15	-
Concreto							
4							

Fonte: Adaptado de Macedo e Tubino (2004) e Romualdo et. al (2011)

Analisando os gráficos (figuras 1 e 2), tem-se os seguintes resultados com as matrizes contendo borracha:

- Embora em porcentagem diferente, houve queda significativa na resistência a compressão axial nos traços de ambos os autores, como observa-se na figura 1. A perda da resistência está relacionada a aderência da borracha com o concreto, e também, a um outro fator, o aumento de ar incorporado no material gerando maior número de vazios na liga.

- A resistência à tração na flexão ocorreu a maior divergência, enquanto o traço 3 obteve um aumento de 45% em relação ao traço 1, o traço 4 registrou justamente o contrário, uma perda de 50% em relação ao traço 2 (figura 2). Os materiais e formas utilizadas podem gerar tais desacordos, pois a aderência entre todos os componentes e a devida produção dos corpos de prova tem fator direto com a resistência do concreto.

Figura 1 – Resistência à Compressão Axial

Figura 2 – Resistência à Tração na Flexão Relativa

Considerações Finais

Pode-se concluir que devido a grande queda na resistência a compressão esse concreto ecológico se torna inviável para uso em partes importantes das construções, no entanto, seria possível a utilização em blocos e principalmente nas calçadas, devido ambos necessitarem de uma menor resistência.

As diferenças nas quantidades e tipos de materiais utilizados, podem ter influência direta nos resultados encontrados em cada artigo científico. Sendo assim, são necessárias mais pesquisas sobre o assunto com intuito de avaliar sua verdadeira viabilidade.

veiei eiicia?

MACEDO, D.C.B. Comportamento de matrizes cimenticias com fibras de borracha provenientes do processo de recapagem de pneus. Congresso brasileiro de ciência e tecnologia de resíduos e desenvolvimento sustentável. Costão do Santinho – Florianópolis – Santa Catarina, 2004. ROMUALDO, A. C. A.; SANTOSA, D. E.; CASTROA, L.M.; MENEZESB, W. P.; PSQUALETTOC, A.; SANTOS, O. R. Pneus Inservíveis como Agregados na Composição de Concreto para Calçadas de Borracha. 3rd International Workshop Advances in Cleaner Production. Cleaner Production Initiatives and Challenges for a Sustainable World. São Paulo - Brasil, 2011.