■ Natural Language Processing (NLP) with Machine Learning – Master Notes

What is NLP?

Definition

Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI) and Machine Learning (ML) that enables computers to understand, interpret, analyze, and generate human language. It bridges human communication and computer understanding.

Goals of NLP

- Convert unstructured text structured numeric data
- ✓ Enable ML models for classification, prediction, clustering
- Capture context, semantics, and syntax

Applications

Application	Example
Text Classification	Spam detection, sentiment analysis
Machine Translation	English French
Summarization	Auto-summarize articles
Chatbots & Assistants	Siri, Alexa, Google Assistant
Question Answering	Search engines, customer support

2 Key Terms

Term	Definition	Example
Corpus	Collection of text	100 movie reviews
1 Document	Single piece of text	Sentence, paragraph, or article
☐ Vocabulary	All unique words in corpus	"I love pizza" + "I love pasta" {I, love, pizza, pasta}

3 Text Preprocessing

Definition

Preprocessing = Cleaning and standardizing text for ML models.

Steps

- 1 Lowercasing: "I Love NLP" "i love nlp"
- Tokenization: "i love nlp" ["i", "love", "nlp"]
- 3 Stopword Removal: Remove common words ["love", "nlp"]
- 4 Stemming & Lemmatization:
- ♦ Stemming: "running" "run"
- ♦ Lemmatization: "better" "good"
- 5 Vectorization: Convert text numeric vectors (see below)
- Feature Extraction / Vectorization Techniques
- 1 One-Hot Encoding (OHE)
- Definition

Converts text or categorical data into a binary vector. Each unique word gets 1 in its index and 0 elsewhere.

Example

Vocabulary = {I, love, NLP}

"love NLP" [0, 1, 1]

✓ Pros: Simple, easy

X Cons: Sparse, no semantics

Bag of Words (BoW)

Definition

Represents text as a vector of word counts. Each position = frequency of a word in the document.

Example

Vocabulary = {I, love, NLP, fun}

"I love NLP NLP" [1, 1, 2, 0]

✓ Pros: Simple, fast

Cons: Ignores word order, context, semantics

TF-IDF (Term Frequency \u2013 Inverse Document Frequency)

Definition

Weighs words by importance: frequent in document but rare in corpus.

 $TF{-}IDF(t,d) = TF(t,d) imes \log\{DF(t)\}$

TF(t,d): Term frequency in document

DF(t): Number of documents containing term

N: Total documents

✔ Pros: Highlights key words

X Cons: Sparse for large vocab

Word Embeddings

Definition

Dense vector representations capturing semantic meaning. Words with similar meanings are close in vector space.

Examples: Word2Vec, GloVe, FastText, BERT embeddings

Example

"king" \u2013 "man" + "woman" \u2245 "queen"

✓ Pros: Captures meaning, context

X Cons: Requires large corpus

5 N-grams

Definition

Contiguous sequence of n words \u2192 partial context.

Unigram: "I", "love", "NLP"

Bigram: "I love", "love NLP"

Trigram: "I love NLP"

✓ Pros: Adds semantic meaning

X Cons: High dimensionality, OOV problem

5 Python Examples

Bag of Words

```
from sklearn.feature_extraction.text import CountVectorizer
docs = ["I love NLP", "NLP is fun"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(docs).toarray()
print(vectorizer.get_feature_names_out())
print(X)
```



```
from sklearn.feature_extraction.text import TfidfVectorizer
docs = ["I love NLP", "NLP is fun"]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(docs).toarray()
print(vectorizer.get_feature_names_out())
print(X)
```

Word2Vec

```
from gensim.models import Word2Vec
sentences = [["I", "love", "NLP"], ["NLP", "is", "fun"]]
model = Word2Vec(sentences, vector_size=5, window=2, min_count=1)
print(model.wv['NLP'])
```

Text Classification with ML

- ✓ Algorithms: Na\u00efve Bayes, Logistic Regression, SVM, Random Forest
- ✓ Metrics: Accuracy, Precision, Recall, F1-score \u25c0 Example (TF-IDF + Na\u00efve Bayes):

```
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

docs = ["I love NLP", "NLP is fun", "I hate spam"]
labels = [1, 1, 0]

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(docs)

model = MultinomialNB()
model.fit(X, labels)
print(model.predict(vectorizer.transform(["I love spam"])))
```

Topic Modeling (Unsupervised)

✓ Algorithms: LDA, NMF

Example:

```
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer

docs = ["I love NLP", "NLP is fun", "I hate spam"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(docs)

lda = LatentDirichletAllocation(n_components=2, random_state=0)
lda.fit(X)
print(lda.components_)
```

8 Sequence Models (RNN, LSTM)

RNN: Maintains hidden state

✓ LSTM: Handles long-term dependencies

✓ Use Cases: Next-word prediction, sentiment analysis, chatbots

Quick Comparison Table

Technique	Туре	✓ Pros	X Cons	Use Cases
One- Hot Encoding	Feature Extraction	Simple	Sparse, no semantics	Small datasets
■ BoW	Feature Extraction	Simple, fast	lgnores context, sparse	Text classificati
Ⅲ TF-IDF	Feature Extraction	Highlights important words	Sparse for large vocab	Document retrieval

Word Embeddings	Feature Extraction	Captures semantic meaning & context	Requires large corpus	Similarity, chatbots
Q N− grams	Feature Extraction	Adds some context	High dimension, OOV	Text classificati
□ LDA	Unsupervised	Finds hidden topics	Needs preprocessing	Topic modeling
ML Classifiers	Supervised	Predicts labels	Needs labeled data	Spam detection, sentiment
RNN/LSTM	Sequence Modeling	Handles sequential dependencies	Computationally expensive	Text generation chatbots

Now the notes are enhanced with symbols, icons, and clear formatting for better readability and memory retention.