Synchronous Sequential Logic Part I

Mantiksal Tasarım – BBM231

section instructor: **Ufuk Çelikcan**

Sequential Logic

- Digital circuits we have learned, so far, have been combinational
 - >> no memory,
 - >> outputs are entirely defined by the "current" inputs
- However, many digital systems encountered in everyday life are sequential (i.e. they have memory)
 - the memory elements remember past inputs
 - outputs of sequential circuits are not only dependent on the current input but also the state of the memory elements.

Sequential Circuits Model

current state is a function of past inputs + initial state

Classification

There are 2 types of sequential circuits

1. Synchronous

- Signals affect the memory elements at discrete instants of time.
- Discrete instants of time requires synchronization.
- Synchronization is usually achieved through the use of a common <u>clock</u>.
- A "clock generator" is a device that generates a <u>periodic</u> train of pulses.

Classification

1. Synchronous

- The state of the memory elements are updated with the arrival of each pulse
- This type of logical circuit is also known as <u>clocked</u> <u>sequential</u> circuits.

2. Asynchronous

- No clock
- Behavior of an asynchronous sequential circuit depends upon the input signals at any instant of time and the order in which the inputs change.
- Memory elements in asynchronous circuits are regarded as time-delay elements

Clocked Sequential Circuits

 Memory elements are flip-flops which are logic devices, each of which is capable of storing one bit of information.

Clocked Sequential Circuits

- The outputs of a clocked sequential circuit can come from
 - the combinational circuit,
 - the outputs of the flip-flops
 - or both.
- The state of the flip-flops can change only during a clock pulse transition
 - i.e. low-to-high and high-to-low
 - clock edge
- When the clock maintains its value, the flip-flop output does not change
- The transition from one state to the next occurs at the clock edge.

Machine

```
Machine (
        Inputs {X},
        States {D},
        Outputs {Z},
        Output Function {F : X×D→Z},
        Next State Function {G : X×D→D}
```

Representation with State Diagram

	$\boldsymbol{x_1}$	\boldsymbol{x}_2	• • •	x_i	• • •	x_l
d_1						
d_2						
:						
d_i				d_j,z		
d_{r-1}						
d_r						

Assign a Node to Each State

- Machine is at state d_i , input x_k comes, the next state will be again d_i and the output is z_k
- Machine is at state d_i , input x_p comes, the next state will be d_j and the output is z_p

Assign a Node to Each State

- Machine is at state d_m , input x_t comes, the next state will be again d_m and the output is z_t
- Machine is at state d_m , input x_u comes, the next state will be d_n and the output is z_u

Notation

- Let I_k be an **input sequence** with length equal to k, i.e. $I_k = x_1x_2...x_k$
- f(Ik,di) = z1z2...zk is an output sequence
- g(Ik,di) = di1di2...dik is a state sequence
- di <u>lk</u> dik : Follower of di after the input sequence lk

Example - Fill out the rest

	0	1
A	E, 0	D, 1
В	F, 0	D, 0
C	E, 0	B, 1
D	F, 0	B, 0
Е	C , 0	F, 1
F	B, 0	C, 0

Example

	0	1
A	E, 0	D, 1
В	F, 0	D, 0
C	E, 0	B, 1
D	F, 0	B, 0
Е	C, 0	F, 1
F	B, 0	C, 0

 Let I₅=10110, find g(I₅,C) and f(I₅,C)

l 5			
g(I ₅ ,C)			
f(I ₅ ,C)			

• I₅ follower of C:?

Example

	0	1
A	E, 0	D, 1
В	F, 0	D, 0
C	E, 0	B, 1
D	F, 0	B, 0
Е	C, 0	F, 1
F	B, 0	C, 0

 Let I₅=10110, find g(I₅,C) and f(I₅,C)

l 5		1	0	1	1	0
g(I ₅ ,C)	C	В	F	С	В	F
f(I ₅ ,C)		1	0	0	1	0

• Is follower of C is F

D Flip-Flop

Positive edge-triggered D Flip-Flop

Characteristic equation

$$Q(t+1) = D$$

Timing Diagram of D Flip-Flop

Other Flip-Flops

- D flip-flop is the most common
 - since it requires the fewest number of gates to construct.
- Two other widely used flip-flops
 - JK flip-flops
 - T flip-flops
- JK flip-flops
 - Three FF operations
 - 1. Set
 - 2. Reset
 - 3. Complement

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Characteristic Table

Characteristic Equation of JK flip-flop?

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

J	K	Q(t)	Q(t+1)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

K,Q(t) 00	01	11	10
0	0	1	0	0
1	1	1	0	1

$$Q(t+1) = ?$$

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$Q(t+1) = ?$$

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Characteristic Table

Characteristic equation
 Q(t+1) = JQ'(t) + K'Q(t)

T (Toggle) Flip-Flop

Complementing flip-flop

T	Q(†+1)	next state
0	Q(†)	no change
1	Q'(†)	Complement

Characteristic Table

Characteristic equation

$$Q(t+1) = ?$$

T (Toggle) Flip-Flop

Complementing flip-flop

T	Q(†+1)	next state
0	Q(†)	no change
1	Q'(†)	Complement

Characteristic Table

Characteristic equation

$$Q(t+1) = Q(t) \oplus T$$

Characteristic Equations

The logical properties of a flip-flop can be expressed algebraically using characteristic equations:

D flip-flop

$$Q(t+1) = D$$

JK flip-flop

$$Q(t+1) = JQ'(t) + K'Q(t)$$

T flip-flop

$$Q(t+1) = Q(t) \oplus T$$

What if we have Q(t+1) and Q(t), and looking for J and K values?

Q(t)Q(t+1)	00	01	11	10
J,K	0,X	1,X	X,0	X,1

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases}$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

What if we have Q(t+1) and Q(t), and looking for D value?

Q(t)Q(t+1)	00	01	11	10
D	0	1	1	0

D = Q(t+1)

What if we have Q(t+1) and Q(t), and looking for T value?

Q(t)Q(t+1)	00	01	11	10
Т	0	1	0	1

 $T = Q(t) \oplus Q(t+1)$

Asynchronous Inputs of Flip-Flops

- They are used to force the flip-flop to a particular state independent of clock
 - "Preset" (direct set) set FF state to 1
 - "Clear" (direct reset) set FF state to 0
- They are especially useful at startup.
 - In digital circuits when the power is turned on, the state of flip-flops are unknown.
 - Asynchronous inputs are used to bring all flip-flops to a known "starting" state prior to clock operation.

Asynchronous Inputs

Analysis of Clocked Sequential Circuits

Goal:

- to determine the behavior of clocked sequential circuits
- "Behavior" is determined from
 - Inputs
 - Outputs
 - State of the flip-flops
- We have to obtain
 - Boolean expressions for output and next state
 - output & state equations
 - (state) table
 - (state) diagram

Analyze the circuit

Run it and check the timing diagram

State Equations

- Also known as "transition equations"
 - specify the next state as a function of the present state and inputs

Output and State Equations

- A(t+1) =
- B(t+1) =
- y =

input of a flip-flop determines the value of the next state (i.e., the state reached after the clock transition)

Output and State Equations

- $A(t+1) = (A(t) \oplus B(t)) \times$
- B(t+1) = (B(t))' x
- y = A(t)B(t) x

Flip Flop Input Equations

- Flip-Flop input (excitation) equations
- Same as the state equations in D flip-flops

Example: State (Transition) Table

$$A(t+1) = (AB' + A'B) x$$

$$B(t+1) = B'x$$

$$y = ABx$$

Preser	nt state	input	Next state		output
A(t)	B(t)	X	A(t+1)	B(t+1)	У
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A sequential circuit with \mathbf{m} FFs and \mathbf{n} inputs needs $\mathbf{2}^{\mathbf{m+n}}$ rows in the transition table

Example: State (Transition) Table

$$A(t+1) = (AB' + A'B) x$$

$$B(t+1) = B'x$$

$$y = ABx$$

Presen	Present state		Next state		output
A(t)	B(t)	X	A(t+1)	B(t+1)	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

A sequential circuit with \mathbf{m} FFs and \mathbf{n} inputs needs $\mathbf{2}^{\mathbf{m+n}}$ rows in the transition table

Example: State Diagram

State diagram provides the same information as state table

Example: State Diagram

Present state		input	Next state		output
Α	В	X	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

What is this circuit doing?

State diagram provides the same information as state table

Analysis with JK Flip-Flops

- For a D flip-flop, the state equation is the same as the flip-flop input equation
 - \triangleright Q(t+1) = D
- For JK flip-flops, situation is different
 - Goal is to find state equations
 - Method
 - 1. Determine flip-flop input equations
 - 2. List the binary values of each input equation
 - Use the corresponding flip-flop characteristic table to determine the next state values in the state table

Flip-flop input equations

$$J_A =$$
 and $K_A =$
 $J_B =$ and $J_B =$

- $J_A = Bx$ and $K_A = x' + B$
- $J_B = x$ and $K_B = 1$

preser	nt State	input	next	state		FF in	puts	
A(t)	B(t)	x	A(t+1)	B(t+1)	J _A	K_A	J_B	K _B
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
46	1	1						

• $J_A = Bx$ and $K_A = x' + B$

• $J_B = x$ and $K_B = 1$

Characteristic equations

-A(t+1) = ?

■ B(t+1) = ?

■ y = ?

presen	t State	input	next	state		FF in	puts	
A(t)	B(t)	х	A(t+1)	B(t+1)	J _A	K_A	J_B	K _B
0	0	0	0	0	0	1	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	0	0	1	0	1
0	1	1	1	0	1	1	1	1
1	0	0	0	0	0	1	0	1
1	0	1	1	1	0	0	1	1
1	1	0	0	0	0	1	0	1
47 1	1	1	0	0	1	1	1	1

- Characteristic equations
 - $A(t+1) = J_A A' + K'_A A$
 - $B(t+1) = J_B B' + K'_B B$
 - y = ABx
- Input equations
 - $J_A = Bx$ and $K_A = x' + B$
 - $J_R = x$ and $K_R = 1$
- State equations
 - A(t+1) =

=

 \blacksquare B(t+1) =

- Characteristic equations
 - $A(t+1) = J_{\Delta}A' + K'_{\Delta}A$
 - $B(t+1) = J_B B' + K'_B B$
 - y = ABx
- Input equations
 - $J_A = Bx$ and $K_A = x' + B$
 - $J_B = x$ and $K_B = 1$
- State equations
 - A(t+1) = A'Bx + (x'+B)'A= $A'Bx + AB'x = (A \oplus B) x$
 - B(t+1) = B'x

State Diagram

Present state		input	Next state		output
Α	В	X	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

What is the circuit doing?

State Diagram

Presei state	Present state		Next state		output
Α	В	Х	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

What is the circuit doing?

Analysis with T Flip-Flops

Method is the same

 $T_A =$

Example

 $T_B =$

Example: Analysis with T Flip-Flops

- Characteristic equation
 - $A(t+1) = T_{\Delta} \oplus A$
 - $B(t+1) = T_B \oplus B$
- Input equations
 - $T_{\Delta} = Bx$
 - $T_{R} = X$
- Output equations
 - $y_1 = A$
 - $y_0 = B$
- State equations
 - A(t+1) =
 - B(t+1) =

State Table & Diagram

- $A(t+1) = xB \oplus A$
- $B(t+1) = x \oplus B$
- $y_1 = A$; $y_0 = B$

Pres sto	sent ate	input	Ne sto	ext ate	ou [.]	tput	
Α	В	×	Α	В	y ₁	y 0	
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

State Table & Diagram

- $A(t+1) = xB \oplus A$
- $B(t+1) = x \oplus B$
- $y_1 = A$; $y_0 = B$

	sent ate	input	Ne sto		out	tput
A	В	×	Α	В	y ₁	y o
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	0	1	0	1
0	1	1	1	0	0	1
1	0	0	1	0	1	0
1	0	1	1	1	1	0
1	1	0	1	1	1	1
1	1	1	0	0	1	1

State Table & Diagram

- $A(t+1) = xB \oplus A$
- $B(t+1) = x \oplus B$
- $y_1 = A$; $y_0 = B$

Present state		input	Next state		output	
Α	В	×	Α	В	y ₁	y ₀
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	0	1	0	1
0	1	1	1	0	0	1
1	0	0	1	0	1	0
1	0	1	1	1	1	0
1	1	0	1	1	1	1
1	1	1	0	0	1	1

Mealy and Moore Models

- There are two models for sequential circuits
 - Mealy
 - Moore
- They differ in the way the outputs are generated
 - Mealy:
 - output is a function of both present states and inputs
 - Moore
 - output is a function of present state only

Example: Mealy and Moore Machines

- External inputs x and y are asynchronous
- Thus, outputs may have momentary (incorrect) values
- Inputs must be synchronized with clocks
- Outputs must be sampled only during clock edges

Example: Moore Machines

- Outputs are already synchronized with clock.
- They change synchronously with the clock edge.

Х	Q(t)	Q(t+1)	D	Z
0	0			
0	1			
1	0			
1	1			

X	Q(t)	Q(t+1)	D	Z
0	0	0		0
0	1	0		1
1	0	1		0
1	1	1		1

X	Q(t)	Q(t+1)	D	Z
0	0	0	0	0
0	1	0	0	1
1	0	1	1	0
1	1	1	1	1

Design a sequential circuit that counts up (00, 01, 10, 11, 00,...) when x=1, and counts down (00,11,10,01,00,...) when x=0. Use JK FFs.

- Design a sequential circuit
 - that counts up (00, 01, 10, 11,00,...) when x=1,

and counts down(00,11,10,01,00,...) whenx=0. Use JK FFs.

- Design a sequential circuit
 - that counts up (00, 01, 10, 11,00,...) when x=1,
 - and counts down(00,11,10,01,00,...) whenx=0. Use JK FFs.

X	Α	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв

x	Α	В	A(t+1)	B(t+1)	JA	Ka	J _B	Кв
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

x	Α	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв
0	0	0	1	1				
0	0	1	0	0				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	0	1				
1	0	1	1	0				
1	1	0	1	1				
1	1	1	0	0				

x	A	В	A(t+1)	B(t+1)	JA	Ка	J _B	Кв
0	0	0	1	1				
0	0	1	0	0				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	0	1				
1	0	1	1	0				
1	1	0	1	1				
1	1	1	0	0				

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' \\ X \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

x	Α	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв
0	0	0	1	1	1			
0	0	1	0	0	0			
0	1	0	0	1	X			
0	1	1	1	0	X			
1	0	0	0	1	0			
1	0	1	1	0	1			
1	1	0	1	1	X			
1	1	1	0	0	Χ			

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' \\ X \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

X	Α	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв
0	0	0	1	1	1	X		
0	0	1	0	0	0	X		
0	1	0	0	1	X	1		
0	1	1	1	0	X	0		
1	0	0	0	1	0	X		
1	0	1	1	0	1	X		
1	1	0	1	1	X	0		
1	1	1	0	0	Χ	1		

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' \\ X \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

x	Α	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв
0	0	0	1	1	1	X	1	
0	0	1	0	0	0	X	Χ	
0	1	0	0	1	Χ	1	1	
0	1	1	1	0	Χ	0	Χ	
1	0	0	0	1	0	X	1	
1	0	1	1	0	1	X	Χ	
1	1	0	1	1	X	0	1	
1	1	1	0	0	X	1	X	

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' \\ X \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

х	Α	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв
0	0	0	1	1	1	Χ	1	X
0	0	1	0	0	0	X	Χ	1
0	1	0	0	1	Χ	1	1	X
0	1	1	1	0	X	0	X	1
1	0	0	0	1	0	X	1	X
1	0	1	1	0	1	X	Χ	1
1	1	0	1	1	Χ	0	1	X
1	1	1	0	0	Χ	1	X	1

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' \\ X \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

							1	
X	A	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв
0	0	0	1	1	1	Χ	1	Χ
0	0	1	0	0	0	Χ	Χ	1
0	1	0	0	1	Χ	1	1	Χ
0	1	1	1	0	Χ	0	Χ	1
1	0	0	0	1	0	Χ	1	Χ
1	0	1	1	0	1	Χ	Χ	1
1	1	0	1	1	Χ	0	1	Χ
1	1	1	0	0	Χ	1	Х	1

$$J_A = ?$$

$$J_B = ?$$

$$K_A = ?$$

 $K_B = ?$

							1	
X	A	В	A(t+1)	B(t+1)	J _A	KA	J _B	Кв
0	0	0	1	1	1	Χ	1	X
0	0	1	0	0	0	Χ	Х	1
0	1	0	0	1	Χ	1	1	X
0	1	1	1	0	Χ	0	Χ	1
1	0	0	0	1	0	Χ	1	X
1	0	1	1	0	1	Χ	Х	1
1	1	0	1	1	Χ	0	1	X
1	1	1	0	0	Χ	1	Х	1

AB				
x	00	01	11	10
0	1	0	X	X
1	0	1	X	X

、 \	00	01	11	10
0	X	X	0	1
1	X	X	1	0

- $J_A = xB + x'B'$
- $K_A = xB + x'B'$
- J_B=1
- K_B=1
- Let's draw the circuit

STATE TRANSITIONS:

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	КА	JB	Кв	JC	КС
						1	1	1	0	0	0						
						0	1	1	1	0	0						
						0	0	1	1	1	0						
						0	0	0	1	1	1						
						0	0	1	1	1	0						
						0	1	1	1	0	0						

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases}$$

$$Q(t)=0$$

 $Q(t)=1$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

Mealy or Moore?

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0						
0	0	1	0	1	0	0	1	1	1	0	0						
0	1	0	0	1	1	0	0	1	1	1	0						
0	1	1	1	0	0	0	0	0	1	1	1						
1	0	0	1	0	1	0	0	1	1	1	0						
1	0	1	0	0	0	0	1	1	1	0	0						

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	КС
0	0	0	0	0	1	1	1	1	0	0	0	0		0		1	
0	0	1	0	1	0	0	1	1	1	0	0	0		1			
0	1	0	0	1	1	0	0	1	1	1	0	0				1	
0	1	1	1	0	0	0	0	0	1	1	1	1					
1	0	0	1	0	1	0	0	1	1	1	0			0		1	
1	0	1	0	0	0	0	1	1	1	0	0			0			

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	КС
0	0	0	0	0	1	1	1	1	0	0	0	0		0		1	
0	0	1	0	1	0	0	1	1	1	0	0	0		1		X	
0	1	0	0	1	1	0	0	1	1	1	0	0		X		1	
0	1	1	1	0	0	0	0	0	1	1	1	1		X		X	
1	0	0	1	0	1	0	0	1	1	1	0	X		0		1	
1	0	1	0	0	0	0	1	1	1	0	0	X		0		X	

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z 5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0	0		0		1	
0	0	1	0	1	0	0	1	1	1	0	0	0		1		X	1
0	1	0	0	1	1	0	0	1	1	1	0	0		X	0	1	
0	1	1	1	0	0	0	0	0	1	1	1	1		X	1	X	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0		1	
1	0	1	0	0	0	0	1	1	1	0	0	X	1	0		X	1

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	X	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	X	X	1
0	1	0	0	1	1	0	0	1	1	1	0	0	X	X	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	X	X	1	X	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	X	1	X
1	0	1	0	0	0	0	1	1	1	0	0	X	1	0	X	X	1

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases}$$

$$Q(t)=0$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

4																	
A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0	0	Х	0	Х	1	Х
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	X	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	X	X	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	Х	Х	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	Х	1	Х
1	0	1	0	0	0	0	1	1	1	0	0	Х	1	0	Х	Х	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\ _				•	. '		•	•		`			•	•	-		•

BC A 00 01 11 10 0 X X X X 1 0 1 X X

Ja=

K_A=

4																	
A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0	0	Х	0	Х	1	Х
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	X	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	X	X	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	Х	Х	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	Х	1	Х
1	0	1	0	0	0	0	1	1	1	0	0	Х	1	0	Х	Х	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\ _				•	. '		•	•		`			•	•	-		•

 $J_A = BC$

BC A 00 01 11 10 0 X X X X 1 0 1 X X

$$K_A = C$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	X	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	Х	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	X	X	0	1	Х
0	1	1	1	0	0	0	0	0	1	1	1	1	X	X	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	Х	1	X
1	0	1	0	0	0	0	1	1	1	0	0	Х	1	0	Х	Х	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\ _			•	•			•	•		`		_			-		,

BC				
A	00	01	11	10
0	0	1	X	X
1	0	0	X	X

$\backslash BC$				
A	00	01	11	10
0	X	X	1	0
1	X	X	X	X

K_B=

J_B=

87

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0	0	Х	0	Х	1	Х
0	0	1	0	1	0	0	1	1	1	0	0	0	Х	1	Х	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	Х	Х	0	1	Х
0	1	1	1	0	0	0	0	0	1	1	1	1	Х	Х	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	X	1	X
1	0	1	0	0	0	0	1	1	1	0	0	X	1	0	X	X	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\ _					•			,		`	\	_					

 $J_B=A'C$

BC
A 00 01 11 10
0 X X 1 0
1 X X X

$$K_B = C$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	X	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	X	X	1
0	1	0	0	1	1	0	0	1	1	1	0	0	X	X	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	X	X	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	Х	1	Х
1	0	1	0	0	0	0	1	1	1	0	0	X	1	0	Х	Х	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\			-	•						`	\				-		

BC A 00 01 11 10 O X 1 1 X 1 X 1 X X

Kc=

Jc=

89

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0	0	Х	0	Х	1	Х
0	0	1	0	1	0	0	1	1	1	0	0	0	Х	1	Х	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	Х	Х	0	1	Х
0	1	1	1	0	0	0	0	0	1	1	1	1	Х	Х	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	X	1	X
1	0	1	0	0	0	0	1	1	1	0	0	X	1	0	X	X	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\ _					•			,		`	\	_					

BC A 00 01 11 10 0 X 1 1 X 1 X 1 X

Kc=1

$$Jc=1$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	КС
0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	1
0	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	1	1
0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	0	1	1
0	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	1
1	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	1	1
1	1	0															
1	1	1															

$$J_A=BC$$

 $J_B=A'C$

Jc=1

$$K_A = C$$

$$K_B = C$$

$$Kc=1$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	КА	JB	Кв	JC	КС
0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	1
0	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	1	1
0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	0	1	1
0	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	1
1	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	1	1
1	1	0										0	0	0	0	1	1
1	1	1										1	1	0	1	1	1

$$J_A=BC$$

 $J_B=A'C$

Jc=1

$$K_A = C$$

$$K_B = C$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	KC
0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	1
0	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	1	1
0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	0	1	1
0	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	1
1	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	1	1
1	1	0	1	1	1							0	0	0	0	1	1
1	1	1	0	0	0							1	1	0	1	1	1

$$J_A=BC$$

$$J_B=A'C$$

$$Jc=1$$

$$A(t+1)=BCA'+C'A$$

$$B(t+1)=A'CB'+C'B$$

$$C(\dagger+1)=C'$$

$$K_A = C$$

$$K_B = C$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	KA	JB	Кв	JC	КС
0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	1
0	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	1	1
0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	0	1	1
0	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	1
1	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	1	1
1	1	0	1	1	1							0	0	0	0	1	1
1	1	1	0	0	0							1	1	0	1	1	1

now let's redo the design with D FFs

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	DA	DB	DC
0	0	0	0	0	1	1	1	1	0	0	0			
0	0	1	0	1	0	0	1	1	1	0	0			
0	1	0	0	1	1	0	0	1	1	1	0			
0	1	1	1	0	0	0	0	0	1	1	1			
1	0	0	1	0	1	0	0	1	1	1	0			
1	0	1	0	0	0	0	1	1	1	0	0			
1	1	0	1	1	1									
1	1	1	0	0	0									

$$A(t+1)=BCA'+C'A =$$
 $B(t+1)=A'CB'+C'B =$
 $C(t+1)=C' =$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	DA	DB	DC
0	0	0	0	0	1	1	1	1	0	0	0			
0	0	1	0	1	0	0	1	1	1	0	0			
0	1	0	0	1	1	0	0	1	1	1	0			
0	1	1	1	0	0	0	0	0	1	1	1			
1	0	0	1	0	1	0	0	1	1	1	0			
1	0	1	0	0	0	0	1	1	1	0	0			
1	1	0	1	1	1									
1	1	1	0	0	0									

$$A(t+1)=BCA'+C'A = DA$$

$$B(t+1)=A'CB'+C'B = DB$$

$$C(t+1)=C' = DC$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	DA	DB	DC
0	0	0	0	0	1	1	1	1	0	0	0			1
0	0	1	0	1	0	0	1	1	1	0	0		1	
0	1	0	0	1	1	0	0	1	1	1	0		1	1
0	1	1	1	0	0	0	0	0	1	1	1	1		
1	0	0	1	0	1	0	0	1	1	1	0	1		1
1	0	1	0	0	0	0	1	1	1	0	0			
1	1	0	1	1	1							1	1	1
1	1	1	0	0	0									

$$A(t+1)=BCA'+C'A = DA$$

 $B(t+1)=A'CB'+C'B = DB$
 $C(t+1)=C' = DC$

 Design a logic circuit with JK flip-flops that detects the sequence 1011 and outputs 1 in that case, 0 otherwise.

consider the sequence: **00100101011011001**

consider the sequence: **00100101011011001**

x(t)	A(t)	B(t)	A (t+1)	B (t+1)	Z	JA	K _A	J _B	K _B

x(t)	A(t)	B(t)	A (t+1)	B (t+1)	Z	JA	KA	J _B	K _B
0	0	0	0	0	0				
0	0	1	1	0	0				
0	1	0	0	0	0				
0	1	1	1	0	0				
1	0	0	0	1	0				
1	0	1	0	1	0				
1	1	0	1	1	0				
1	1	1	0	1	1				

x(t)	A(t)	B(t)	A (t+1)	B (t+1)	Z	JA	K _A	J _B	K _B
0	0	0	0	0	0	0	X	0	X
0	0	1	1	0	0	1	X	X	1
0	1	0	0	0	0	X	1	0	X
0	1	1	1	0	0	X	0	X	1
1	0	0	0	1	0	0	X	1	X
1	0	1	0	1	0	0	X	X	0
1	1	0	1	1	0	X	0	1	X
1	1	1	0	1	1	X	1	X	0

AB				
x\	00	01	11	10
0	X	X	0	1
1	X	X	1	0

 $J_{B}=x$

 $K_A = xB + x'B'$

