图算法篇:最小生成树I

北京航空航天大学 计算机学院

最小生成树问题

Minimum Spanning Tree Problem

输入

• 连通无向图 $G = \langle V, E, W \rangle$, 其中 $w(u, v) \in W$ 表示边 (u, v)的权重

输出

• 图G的最小生成树 $T = \langle V_T, E_T \rangle$

优化目标

$$min \sum_{e \in E_T} w(e)$$

$$s.t.$$
 $V_T = V, E_T \subseteq E$ 约束条件

问题背景

通用框架

Prim算法

算法实例

算法分析

通用框架

- 生成树是一个无向图中的连通、无环的生成子图
 - 新建一个空边集 A , 边集 A 可逐步扩展为最小生成树
 - 每次向边集 A 中新增加一条边
 - 。 需保证边集 A 仍是一个无环图
 - 。 需保证边集 A 仍是最小生成树的子集

问题:如何保证边集 A 仍是最小生成树的子集?

- 安全边(Safe Edge)
 - A 是某棵最小生成树 T 边的子集 , $A \subseteq T$
 - $A \cup \{(u,v)\}$ 仍是 T 边的一个子集,则称 (u,v) 是 A 的安全边

- 安全边(Safe Edge)
 - A 是某棵最小生成树 T 边的子集 $A \subseteq T$
 - $A \cup \{(u,v)\}$ 仍是 T 边的一个子集,则称 (u,v) 是 A 的安全边

若每次向边集 A 中新增安全边,可保证边集 A 是最小生成树的子集

- 安全边(Safe Edge)
 - A 是某棵最小生成树 T 边的子集 $A \subseteq T$
 - $A \cup \{(u,v)\}$ 仍是 T 边的一个子集,则称 (u,v) 是 A 的安全边

• Generic-MST(G)

- 安全边(Safe Edge)
 - A 是某棵最小生成树 T 边的子集 A ⊆ T
 - $A \cup \{(u,v)\}$ 仍是 T 边的一个子集 , 则称 (u,v) 是 A 的安全边

Generic-MST(G)

问题:如何有效辨识安全边?

- 割(Cut)
 - 图 $G = \langle V, E \rangle$ 是一个连通无向图,割(S, V S)将图 G的顶点集 V划分为两部分
- 横跨(Cross)
 - 给定割(S,V-S)和边(u,v), $u \in S$, $v \in V-S$, 称边(u,v) 横跨割(S,V-S)
- 轻边(Light Edge)
 - 横跨割的所有边中,权重最小的称为横跨这个割的一条轻边
- 不妨害(Respect)
 - 如果一个边集A中没有边横跨某割,则称该割不妨害边集A

最小生成树边 非最小生成树边 **S**中顶点

V - S中顶点

安全边辨识定理

- 给定图 $G = \langle V, E \rangle$ 是一个带权的连通无向图,令A为边集E的一个子集,且A包含在图G的某棵最小生成树中
 - 若割(S, V S)是图G中不妨害边集A的任意割,且(u, v)是横跨该割的轻边
 - 则对于边集A,边(u,v)是其安全边

通用框架

- 生成树是一个连通、无环的生成子图
 - 新建一个空边集A,边集A可逐步扩展为最小生成树
 - 每次向边集A中新增加一条边
 - 。 需保证边集A仍是一个无环图
 - 。 需保证边集A仍是最小生成树的子集

添加一条轻边

问题:如何有效地实现此贪心策略?

Prim算法

Kruskal算法

通用框架	Prim算法	Kruskal算法
判断是否成环	保持树的结构	维护一个森林 (使用并查集)
高效寻找轻边	使用优先队列	只需进行一次排序

通用框架

- 生成树是一个连通、无环的生成子图
 - 新建一个空边集A,边集A可逐步扩展为最小生成树
 - 每次向边集A中新增加一条边
 - 。 需保证边集A仍是一个无环图
 - 。 需保证边集A仍是最小生成树的子集

添加一条轻边

问题:如何有效地实现此贪心策略?

Prim算法

Kruskal算法

问题背景

通用框架

Prim算法

算法实例

算法分析

- 算法思想
 - 步骤1:选择任意一个顶点,作为生成树的起始顶点

• 算法思想

● 步骤1:选择任意一个顶点,作为生成树的起始顶点

● 步骤2:保持边集A始终为一棵树

• 算法思想

● 步骤1:选择任意一个顶点,作为生成树的起始顶点

• 步骤2:保持边集A始终为一棵树,选择割 $(V_A,V-V_A)$

树中顶点

• 算法思想

● 步骤1:选择任意一个顶点,作为生成树的起始顶点

• 步骤2:保持边集A始终为一棵树,选择割 $(V_A,V-V_A)$

• 步骤3:选择横跨割 $(V_A, V - V_A)$ 的轻边

• 算法思想

● 步骤1:选择任意一个顶点,作为生成树的起始顶点

• 步骤2:保持边集A始终为一棵树,选择割 $(V_A,V-V_A)$

• 步骤3:选择横跨割 $(V_A,V-V_A)$ 的轻边,添加到边集A中

• 算法思想

● 步骤1:选择任意一个顶点,作为生成树的起始顶点

• 步骤2:保持边集A始终为一棵树,选择割 $(V_A,V-V_A)$

• 步骤3:选择横跨割 $(V_A,V-V_A)$ 的轻边,添加到边集A中

● 步骤4:重复步骤2和步骤3,直至覆盖所有顶点

边集A

 V_A 中顶点

• 算法思想

步骤1:选择任意一个顶点,作为生成树的起始顶点

步骤2:保持边集A始终为一棵树,选择割 $(V_A,V-V_A)$

步骤3:选择横跨割 $(V_A, V - V_A)$ 的轻边,添加到边集A中

步骤4:重复步骤2和步骤3,直至覆盖所有顶点

• 算法思想

● 步骤1:选择任意一个顶点,作为生成树的起始顶点

• 步骤2:保持边集A始终为一棵树,选择割 $(V_A,V-V_A)$

• 步骤3:选择横跨割 $(V_A,V-V_A)$ 的轻边,添加到边集A中

● 步骤4:重复步骤2和步骤3,直至覆盖所有顶点

• 算法思想

● 步骤1:选择任意一个顶点,作为生成树的起始顶点

• 步骤2:保持边集A始终为一棵树,选择割 $(V_A,V-V_A)$

• 步骤3:选择横跨割 $(V_A,V-V_A)$ 的轻边,添加到边集A中

● 步骤4:重复步骤2和步骤3,直至覆盖所有顶点

- 辅助数组
 - color表示顶点状态
 - 。 黑色顶点u已覆盖 , $u ∈ V_A$
 - 。 白色顶点u未覆盖 $, u ∈ V V_A$

- 辅助数组
 - color表示顶点状态
 - 。 黑色顶点u已覆盖 $u \in V_A$
 - 。 白色顶点u未覆盖 $, u ∈ V V_A$
 - dist记录横跨 $(V_A, V V_A)$ 边的权重
 - 。 顶点集 V_A 到顶点u的最短距离, $dist[u] = min\{w(x,u)\}, \forall x \in V_A$

- 辅助数组
 - color表示顶点状态
 - 。 黑色顶点u已覆盖 , $u ∈ V_A$
 - 白色顶点u未覆盖 $, u \in V V_A$
 - dist记录横跨 $(V_A, V V_A)$ 边的权重
 - 。 顶点集 V_A 到顶点u的最短距离, $dist[u] = min\{w(x,u)\}, \forall x \in V_A$
 - o 轻边: $min{dist[u]}$, $\forall u \in V V_A$

- 辅助数组
 - color表示顶点状态
 - 。 黑色顶点u已覆盖 , $u ∈ V_A$
 - 。 白色顶点u未覆盖 $, u ∈ V V_A$
 - dist记录横跨 $(V_A, V V_A)$ 边的权重
 - 。 顶点集 V_A 到顶点u的最短距离, $dist[u] = min\{w(x,u)\}, \forall x \in V_A$
 - o 轻边: $min{dist[u]}$, $\forall u \in V V_A$
 - pred表示前驱顶点
 - 。 (pred[u], u) 为最小生成树的边

问题背景

通用框架

Prim算法

算法实例

算法分析

V	a	b	C	d	f	\boldsymbol{g}	h	i	Z
color	W	W	W	W	W	W	W	W	W
dist	∞	∞	∞	∞	∞	∞	∞	∞	∞
pred	N	N	N	N	N	N	N	N	N

V	a	b	C	d	f	\boldsymbol{g}	h	i	Z
color	В	W	W	W	W	W	W	W	W
dist	0	∞	∞	∞	∞	∞	∞	∞	∞
pred	N	N	N	N	N	N	N	N	N

V	a	b	C	d	f	\boldsymbol{g}	h	i	Z
color	В	W	W	W	W	W	W	W	W
dist	0	4	∞	∞	∞	∞	8	∞	∞
pred	N	a	N	N	N	N	a	N	N

V	a	b	С	d	f	\boldsymbol{g}	h	i	Z
color	В	W	W	W	W	W	W	W	W
dist	0	4	∞	∞	∞	∞	8	∞	∞
pred	N	a	N	N	N	N	a	N	N

V	a	b	C	d	f	g	h	i	Z
color	В	В	W	W	W	W	W	W	W
dist	0	4	∞	∞	∞	∞	8	∞	∞
pred	N	a	N	N	N	N	a	N	N

V	a	b	C	d	f	g	h	i	Z
color	В	В	W	W	W	W	W	W	W
dist	0	4	8	∞	∞	∞	1	∞	∞
pred	N	a	b	N	N	N	b	N	N

V	a	b	C	d	f	g	h	i	Z
color	В	В	W	W	W	W	W	W	W
dist	0	4	8	∞	∞	∞	1	∞	∞
pred	N	a	b	N	N	N	b	N	N

V	a	b	c	d	f	\boldsymbol{g}	h	i	Z
color	В	В	W	W	W	W	B	W	W
dist	0	4	8	∞	∞	∞	1	∞	∞
pred	N	a	b	N	N	N	b	N	N

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	W	W	W	W	В	W	W
dist	0	4	8	∞	∞	1	1	7	∞
pred	N	a	b	N	N	h	b	h	N

V	a	b	C	d	f	g	h	i	Z
color	В	В	W	W	W	W	В	W	W
dist	0	4	8	∞	∞	1	1	7	∞
pred	N	а	b	N	N	h	b	h	N

V	a	b	C	d	f	g	h	i	Z
color	В	В	W	W	W	В	В	W	W
dist	0	4	8	∞	∞	1	1	7	∞
pred	N	a	b	N	N	h	b	h	N

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	W	W	W	В	В	W	W
dist	0	4	8	∞	2	1	1	4	∞
pred	N	a	b	N	g	h	b	g	N

V	a	b	C	d	$\int f$	\boldsymbol{g}	h	i	Z
color	В	В	W	W	\mathbf{W}	В	В	W	W
dist	0	4	8	∞	2	1	1	4	∞
pred	N	а	b	N	$oldsymbol{g}$	h	b	\boldsymbol{g}	N

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	W	W	В	В	В	W	W
dist	0	4	8	∞	2	1	1	4	∞
pred	N	a	b	N	\boldsymbol{g}	h	b	\boldsymbol{g}	N

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	W	W	В	В	В	W	W
dist	0	4	4	14	2	1	1	4	10
pred	N	a	f	f	g	h	b	\boldsymbol{g}	f

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	W	W	В	В	В	\mathbf{W}	\mathbf{W}
dist	0	4	4	14	2	1	1	4	10
pred	N	a	f	f	g	h	b	$oldsymbol{g}$	f

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	W	W	В	В	В	В	W
dist	0	4	4	14	2	1	1	4	10
pred	N	a	f	f	g	h	b	\boldsymbol{g}	f

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	W	W	В	В	В	В	W
dist	0	4	2	14	2	1	1	4	10
pred	N	a	i	f	g	h	b	g	f

V	a	b	C	d	f	\boldsymbol{g}	h	i	Z
color	В	В	W	W	В	В	В	В	W
dist	0	4	2	14	2	1	1	4	10
pred	N	a	i	$\int f$	g	h	b	g	f

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	В	W	В	В	В	В	W
dist	0	4	2	14	2	1	1	4	10
pred	N	a	i	f	g	h	b	g	f

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	В	W	В	В	В	В	W
dist	0	4	2	7	2	1	1	4	10
pred	N	a	i	C	g	h	b	g	f

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	В	W	В	В	В	В	W
dist	0	4	2	7	2	1	1	4	10
pred	N	а	i	С	g	h	b	g	f

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	В	В	В	В	В	В	W
dist	0	4	2	7	2	1	1	4	10
pred	N	а	i	C	g	h	b	g	f

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	В	В	В	В	В	В	W
dist	0	4	2	7	2	1	1	4	9
pred	N	a	i	С	g	h	b	g	d

V	a	b	C	d	f	\boldsymbol{g}	h	i	Z
color	В	В	В	В	В	В	В	В	\mathbf{W}
dist	0	4	2	7	2	1	1	4	9
pred	N	a	i	С	g	h	b	g	d

V	a	b	C	d	f	$oldsymbol{g}$	h	i	Z
color	В	В	В	В	В	В	В	В	В
dist	0	4	2	7	2	1	1	4	9
pred	N	a	i	С	g	h	b	g	d

V	a	b	C	d	f	g	h	i	Z
color	В	В	В	В	В	В	В	В	В
dist	0	4	2	7	2	1	1	4	9
pred	N	a	i	C	\boldsymbol{g}	h	b	\boldsymbol{g}	d

$$W(T) = 0 + 4 + 2 + 7 + 2 + 1 + 1 + 4 + 9 = 30$$

问题背景

通用框架

Prim算法

算法实例

算法分析

优先队列

队列中每个元素有一个关键字,依据关键字大小离开队列

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列

优先队列

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列

除最底层,第h层有 2^{h-1} 个顶点

优先队列

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列

除最底层,第h层有 2^{h-1} 个顶点

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()
 - o Q.ExtractMin()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()
 - o Q.ExtractMin()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()
 - o Q.ExtractMin()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()
 - o Q.ExtractMin()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()
 - o Q.ExtractMin()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()
 - o Q.ExtractMin()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()
 - o Q.ExtractMin()
 - o Q.DecreaseKey()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()
 - o Q.ExtractMin()
 - o Q.DecreaseKey()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - o Q.Insert()
 - o Q.ExtractMin()
 - o Q.DecreaseKey()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - Q.Insert()
 - o Q.ExtractMin()
 - o Q.DecreaseKey()

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - 。 Q. Insert() 时间复杂度O(logn)
 - 。 Q. ExtractMin() 时间复杂度O(logn)
 - Q.DecreaseKey() 时间复杂度O(logn)

优先队列

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - 。 Q. Insert() 时间复杂度O(logn)
 - 。 Q. ExtractMin() 时间复杂度O(logn)
 - 。 Q. DecreaseKey() 时间复杂度O(logn)

使用优先队列,高效查找的安全边


```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
<u>//初始化</u>
for u \in V do
                                                          初始化辅助数组
    color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
end
dist[1] \leftarrow 0
Q.Insert(V, dist)
```

伪代码


```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
   color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
end
dist[1] \leftarrow 0
                                                         选择任意起点
Q.Insert(V,dist)
```

伪代码


```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
    color[u] \leftarrow WHITE
    dist[u] \leftarrow \infty
    pred[u] \leftarrow NULL
end
\begin{array}{c} dist[1] \leftarrow 0 \\ Q.Insert(V, dist) \end{array}
                                                                   初始化优先队列
```



```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
       end
   end
   color[v] \leftarrow BLACK
end
```

依次添加其他顶点


```
//执行最小生成树算法
while 优先队列Q非空 do_
   v \leftarrow Q.ExtractMin()
  for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
       end
   end
   color[v] \leftarrow BLACK
end
```

选择安全边


```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q ExtractMin()
   for u \in G.Adj[v] do
      if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
       end
   color[v] \leftarrow BLACK
end
```

更新距离数组,调整优先队列


```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.Adj[v] do
      if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
       end
   color[v] \leftarrow BLACK
end
```

标记顶点处理完成

复杂度分析


```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
   color[u] \leftarrow WHITE
                                   O(|V|)
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
end
dist[1] \leftarrow 0
Q.Insert(V, dist)
```

复杂度分析


```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
                                                              O(\log|V|)
   for u \in G.Adj[v] do
      if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
                                        - - -O(\log|V|)
       end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
                                                               O(\log|V|)
   for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
                                                              O(\deg(u)\log|V|)
          pred[u] \leftarrow v
                                        - - -O(\log|V|)
          Q.DecreaseKey((u, dist[u]))
       end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行最小生成树算法
                                                                                    O(|V|\log|V|)
while 优先队列Q非空 \mathrm{do}
                                                                 O(\log |V|)
    v \leftarrow Q.ExtractMin()
   for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
           dist[u] \leftarrow w(v, u)
                                                                 O(\deg(u)\log|V|)
           pred[u] \leftarrow v
                                          - - -O(\log |V|)
           Q.DecreaseKey((u, dist[u]))
       end
   end
   color[v] \leftarrow BLACK
end
```


复杂度分析


```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
       end
   end
   color[v] \leftarrow BLACK
                                          O(|E| \cdot \log |V|)
end
```


通用框架	Prim算法
判断是否成环	保持树的结构

通用框架	Prim算法
判断是否成环	保持树的结构
高效寻找轻边	使用优先队列

图算法篇:最小生成树之Kruskal算法

北京航空航天大学计算机学院

中国大学MOOC北航《算法设计与分析》

问题的回顾

算法与实例

正确性证明

不相交集合

复杂度分析

框架回顾:通用框架

- 生成树是一个连通、无环的生成子图
 - 新建一个空边集 A, 边集 A 可逐步扩展为最小生成树
 - 每次向边集 A 中新增加一条边

添加一条轻边

- 。 需保证边集 A 仍是一个无环图
- 。 需保证边集 A 仍是最小生成树的子集

问题:如何有效地实现此贪心策略?

Prim算法

Kruskal算法

框架回顾:通用框架

- 生成树是一个连通、无环的生成子图
 - 新建一个空边集 A , 边集 A 可逐步扩展为最小生成树
 - 每次向边集 A 中新增加一条边

添加一条轻边

- 。 需保证边集 A 仍是一个无环图
- 。 需保证边集 A 仍是最小生成树的子集

问题:如何有效地实现此贪心策略?

Prim算法

Kruskal算法

问题的回顾

算法与实例

正确性证明

不相交集合

复杂度分析

Kruskal算法

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 需保证边集 A 仍是最小生成树的子集

Kruskal算法

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- 每个顶点是一个生成子树
- 一共9个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- 每个顶点是一个生成子树
- 一共9个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h)}构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共8个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h)}构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共8个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h), {h,g}} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共7个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h), {h,g}} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共7个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h), {h,g}, (g,f)} 构成一棵生成子树 其他顶点每个是一个生成子树
- 一共6个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h), {h,g}, (g,f)} 构成一棵生成子树 其他顶点每个是一个生成子树
- 一共6个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h), {h,g}, (g,f)} 构成一棵生成子树, {(i,c)}构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共5个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h), {h,g}, (g,f)} 构成一棵生成子树, {(i,c)}构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共5个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h), {h,g}, (g,f), (i,c), (i,g)} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共4个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(b,h), {h,g}, (g,f), (i,c), (i,g)} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共4个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b)(b,h), {h,g}, (g,f), (i,c), (i,g)} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共3个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b)(b,h), {h,g}, (g,f), (i,c), (i,g)} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共3个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b)(b,h), {h,g}, (g,f), (i,c), (i,g)} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共3个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b)(b,h),{h,g},(g,f),(i,c),(i,g)} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共3个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b)(b,h), {h,g}, (g,f), (i,c), (i,g)} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共3个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b)(b,h), {h,g}, (g,f), (i,c), (i,g)} 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共3个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b),(b,h),{h,g},(g,f),(i,c),(i,g),(c,d)} 构成一棵生成子树,其他顶点每个是一个生成子树
- 一共2个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b),(c,d),(b,h),{h,g},(g,f),(i,c),(i,g)}
 (i,g)}
 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共2个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b),(c,d),(b,h),{h,g},(g,f),(i,c),(i,g)}
 (i,g)}
 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共2个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b),(c,d),(b,h),{h,g},(g,f),(i,c),(i,g)}
 (i,g)}
 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共2个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b),(c,d),(b,h),{h,g},(g,f),(i,c),(i,g)}
 (i,g)}
 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共2个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- {(a,b),(c,d),(b,h),{h,g},(g,f),(i,c),(i,g)}
 (i,g)}
 构成一棵生成子树, 其他顶点每个是一个生成子树
- 一共2个生成子树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- $\{(a,b),(c,d),(b,h),\{h,g\},(g,f),(i,c),(i,g),(d,z)\}$ 构成一棵生成子树,
- 一共1个生成子树,即生成树

- 算法思想:直接实现通用框架
 - 需保证边集 A 仍是一个无环图
 - 。选边时避免成环
 - 需保证边集 A 仍是最小生成树的子集
 - 。每次选择当前权重最小边

- $\{(a,b),(c,d),(b,h),\{h,g\},(g,f),(i,c),\}$ (i,g),(d,z)} 构成一棵生成子树,
- 一共1个生成子树,即生成树

最小生成树权重:30 10

• Generic-MST(G)

▶ 不成环的最小边,是一种贪心策略。

• Generic-MST(*G*)

• Generic-MST(G)

Generic-MST(G)

问题的回顾

算法与实例

正确性证明

不相交集合

复杂度分析

贪心策略原理回顾

- 安全边(Safe Edge)
 - A 是某棵最小生成树 T 边的子集 $A \subseteq T$
 - $A \cup \{(u,v)\}$ 仍是 T 边的一个子集,则称 (u,v)是A的安全边

贪心策略原理回顾

- 安全边(Safe Edge)
 - A 是某棵最小生成树 T 边的子集 , $A \subseteq T$
 - $A \cup \{(u,v)\}$ 仍是 T 边的一个子集 , 则称 (u,v)是A的安全边

若每次向边集 A 中新增权重最小的安全边,可保证边集A是最小生成树的子集

贪心策略原理回顾

- 安全边(Safe Edge)
 - A 是某棵最小生成树 T 边的子集 , $A \subseteq T$
 - $A \cup \{(u,v)\}$ 仍是 T 边的一个子集,则称 (u,v)是A的安全边

若每次向边集 A 中新增权重最小的安全边,可保证边集A是最小生成树的子集

问题:Kruskal算法选边策略能否保证每次都选择了安全边?

• Kruskal算法选边策略能否保证每次都选择了安全边?——能!

- Kruskal算法选边策略能否保证每次都选择了安全边?——能!
- 证明
 - 不妨设当前已选边集为 A , 下一条选择的边是 (i,g)

- Kruskal算法选边策略能否保证每次都选择了安全边?——能!
- 证明
 - 不妨设当前已选边集为 A , 下一条选择的边是 (i,g)
 - 已选边集 A 把图分成为若干棵子树,其中(V',E') 是包含顶点 i 的子树

- Kruskal算法选边策略能否保证每次都选择了安全边?——能!
- 证明
 - 不妨设当前已选边集为 A , 下一条选择的边是 (i,g)
 - 已选边集 A 把图分成为若干棵子树,其中 (V', E') 是包含顶点 i 的子树
 - 构造割 (V',V-V') , 割<mark>不妨害</mark>边集 A , 换言之 A 中的边不会横跨 (V',V-V')

- Kruskal算法选边策略能否保证每次都选择了安全边?——能!
- 证明
 - 不妨设当前已选边集为 A , 下一条选择的边是 (i,g)
 - 已选边集 A 把图分成为若干棵子树,其中 (V', E') 是包含顶点 i 的子树
 - 构造割 (V',V-V') , 割<mark>不妨害</mark>边集 A , 换言之 A 中的边不会横跨 (V',V-V')

- Kruskal算法选边策略能否保证每次都选择了安全边?——能!
- 证明
 - 不妨设当前已选边集为 A , 下一条选择的边是 (i,g)
 - 已选边集 A 把图分成为若干棵子树,其中 (V', E') 是包含顶点 i 的子树
 - 构造割 (V', V V') , 割<mark>不妨害</mark>边集 A , 换言之 A 中的边不会横跨 (V', V V')
 - 边集 A 不包含横跨边 (b,c), (c,d), (c,f), (i,g), (i,h)
 - (i,g)是横跨割(V',V-V')的最小权重边
 - (i,g)是关于割(V',V-V')轻边
 - 由于割(V', V − V')不妨害边集A
 - 轻边(i,g)为安全边

伪代码

MST-Kruskal(G)

```
输入: 图 G
输出: 最小生成树
把边按照权重升序排序
T \leftarrow \{\}
for (u,v) \in E do
   if u, v 不在同一子树 then
     T \leftarrow T \cup \{(u,v)\}
      合并u,v所在子树
   end
end
return T
```

按权重排序

伪代码

MST-Kruskal(G)

```
输入: 图 G
输出: 最小生成树
把边按照权重升序排序
for (u,v) \in E do
                                     按照权重从小到大考察边
   if u, v 不在同一子树 then
     T \leftarrow T \cup \{(u,v)\}
     合并u, v所在子树
   \mathbf{end}
end
return T
```


MST-Kruskal(G)

```
输入: 图 G
输出: 最小生成树
把边按照权重升序排序
T \leftarrow \{\}
for (u,v) \in E do
| if u, v 不在同一子树 then
                                           加入该边不成环
     T \leftarrow T \cup \{(u,v)\}
      合并u,v所在子树
   \mathbf{end}
end
return T
```


MST-Kruskal(G)

MST-Kruskal(G)

```
输入: 图 G
输出: 最小生成树
把边按照权重升序排序
T \leftarrow \{\}
for (u, \underline{v}) \in E do
   if u, v 不在同一子树 then
    T \leftarrow T \cup \{(u,v)\}
合并u,v所在子树
   end
end
return T
```

问题:如何高效判定和维护所选边的顶点是否在一棵子树?

问题的回顾

算法与实例

正确性证明

不相交集合

复杂度分析

MST-Kruskal(G)

```
输入: 图 G
输出: 最小生成树
把边按照权重升序排序
T \leftarrow \{\}
for (u, v) \in E do
  if u, v 不在同一子树 then
                                   需要高效查找顶点所属子树
    T \leftarrow T \cup \{(u,v)\}
合并u,v所在子树
                                   需要高效合并顶点所在子树
  end
end
return T
```

同时高效完成两类操作,需借助数据结构:不相交集合

• 把每棵生成子树看作一个顶点集合

- 把每棵生成子树看作一个顶点集合
 - 每个集合表示为一棵有向树,多个不相交集合构成不相交集合森林
 - 集合元素表示为树结点
 - 树边由子结点指向父结点,根结点有一条指向自身的边

• 初始化集合:创建根结点,并设置一条指向自身的边

不相交集合: 伪代码

• Create-Set(x)

```
输入: 顶点 x
输出: 并查集
x.parent \leftarrow x
return x 自身为树根
```


- 初始化集合:创建根结点,并设置一条指向自身的边
- 判定顶点是否在同一集合:回溯查找树根,检查树根是否相同

- 初始化集合:创建根结点,并设置一条指向自身的边
- 判定顶点是否在同一集合:回溯查找树根,检查树根是否相同

不相交集合:伪代码

Create-Set(x)

```
输入: 顶点 x
```

输出: 不相交集合树

 $x.parent \leftarrow x$

return x

• Find-Set(x)

```
输入: 顶点 x 输出: 所属连通分量 while x.parent \neq x do parent \neq x do parent end parent \neq x return x
```


• 初始化集合:创建根结点,并设置一条指向自身的边

• 判定顶点是否在同一集合:回溯查找树根,检查树根是否相同

• 合并集合:合并两棵树

• 初始化集合:创建根结点,并设置一条指向自身的边

• 判定顶点是否在同一集合:回溯查找树根,检查树根是否相同

• 合并集合:合并两棵树

简单实现:找到两树根,任意连接两棵树

• 初始化集合:创建根结点,并设置一条指向自身的边

• 判定顶点是否在同一集合:回溯查找树根,检查树根是否相同

• 合并集合:合并两棵树

简单实现:找到两树根,任意连接两棵树

• 初始化集合:创建根结点,并设置一条指向自身的边

• 判定顶点是否在同一集合:回溯查找树根,检查树根是否相同

• 合并集合:合并两棵树

简单实现:找到两树根,任意连接两棵树

潜在问题:树深度过大,降低查找效率

• 初始化集合:创建根结点,并设置一条指向自身的边

• 判定顶点是否在同一集合:回溯查找树根,检查树根是否相同

• 合并集合:合并两棵树

简单实现:找到两树根,任意连接两棵树

• 初始化集合:创建根结点,并设置一条指向自身的边

• 判定顶点是否在同一集合:回溯查找树根,检查树根是否相同

• 合并集合:合并两棵树

简单实现:找到两树根,任意连接两棵树

• 初始化集合:创建根结点,并设置一条指向自身的边

• 判定顶点是否在同一集合:回溯查找树根,检查树根是否相同

• 合并集合:合并两棵树

简单实现:找到两树根,任意连接两棵树

尽可能降低树高度 提高树根查找效率

高效实现:<mark>树高小的树</mark>连接到树高大的树上

不相交集合:伪代码


```
输入: 顶点 x,y
a \leftarrow \text{Find-Set}(\mathbf{x})
                                                       找到两树根
b \leftarrow \text{Find-Set(y)}
if a.height \leq b.height then
     if a.height = b.height then
         b.height \leftarrow b.height + 1
     end
     a.parent \leftarrow b
end
else
     b.parent \leftarrow a
 end
```

不相交集合: 伪代码

不相交集合: 伪代码

Create-Set(x)

输入: 顶点 x

输出: 不相交集合树

 $x.parent \leftarrow x$

return x

时间复杂度:**0**(1)

• Find-Set(x)

输入: 顶点 x 输出: 所属连通分量 while $x.parent \neq x$ do $| x \leftarrow x.parent$ end return x o(h)


```
输入: 顶点 x, y
a \leftarrow \text{Find-Set}(\mathbf{x})
                                            O(h)
b \leftarrow \text{Find-Set}(y)
if a.height \leq b.height then
    if a.height = b.height then
        b.height \leftarrow b.height + 1
    end
    a.parent \leftarrow b
                                            O(1)
end
else
    b.parent \leftarrow a
end
                                                                      时间复杂度:O(h)
```


• Union-Set(x)

```
输入: 顶点 x, y
a \leftarrow \text{Find-Set}(\mathbf{x})
                                             O(h)
b \leftarrow \text{Find-Set}(y)
if a.height \leq b.height then
    if a.height = b.height then
        b.height \leftarrow b.height + 1
    end
    a.parent \leftarrow b
                                             O(1)
end
else
    b.parent \leftarrow a
end
                                                                      时间复杂度:O(h)
```

问题:树的高度h和顶点规模|V|有何关系?

● 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| \ge 2^h$

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| \geq 2^h$
- 归纳法证明
 - 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| ≥ 2^h$
- 归纳法证明
 - 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$
 - ullet 假设:任意不相交集合m,高度 h_m 和规模 V_m 满足 $V_m \geq 2^{h_m}$

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| \ge 2^h$
- 归纳法证明
 - 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$
 - 假设:任意不相交集合m,高度 h_m 和规模 V_m 满足 $V_m \geq 2^{h_m}$
 - 归纳:两不相交集合a,b拟做合并,设合并产生的新不相交集合为c

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| ≥ 2^h$
- 归纳法证明
 - 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$
 - 假设:任意不相交集合m,高度 h_m 和规模 V_m 满足 $V_m \geq 2^{h_m}$
 - 归纳:两不相交集合a,b拟做合并,设合并产生的新不相交集合为c
 - 。 若 $h_a \neq h_b$: $V_c = V_a + V_b \geq 2^{h_a} + 2^{h_b}$

依照假设

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| ≥ 2^h$
- 归纳法证明
 - 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$
 - 假设:任意不相交集合m , 高度 h_m 和规模 V_m 满足 $V_m \geq 2^{h_m}$
 - 归纳:两不相交集合a,b拟做合并,设合并产生的新不相交集合为c
 - 。 若 $h_a \neq h_b$: $V_c = V_a + V_b \geq 2^{h_a} + 2^{h_b} \geq 2^{\max\{h_a, h_b\}}$

两正数之和大于其中任何一个

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| ≥ 2^h$
- 归纳法证明
 - 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$
 - 假设:任意不相交集合m,高度 h_m 和规模 V_m 满足 $V_m \geq 2^{h_m}$
 - 归纳:两不相交集合a,b拟做合并,设合并产生的新不相交集合为c
 - 。 若 $h_a \neq h_b$: $V_c = V_a + V_b \geq 2^{h_a} + 2^{h_b} \geq 2^{\max\{h_a,h_b\}} = 2^{h_c}$

高度不同,新树高为原树中的较大者

 $h(c) = \max\{h(a), h(b)\}$

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| \ge 2^h$
- 归纳法证明
 - 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$
 - ullet 假设:任意不相交集合m,高度 h_m 和规模 V_m 满足 $V_m \geq 2^{h_m}$
 - 归纳:两不相交集合a,b拟做合并,设合并产生的新不相交集合为c
 - 。 若 $h_a \neq h_b$: $V_c = V_a + V_b \geq 2^{h_a} + 2^{h_b} \geq 2^{\max\{h_a,h_b\}} = 2^{h_c}$
 - 。 若 $h_a = h_b$: $V_c = V_a + V_b \ge 2^{h_a} + 2^{h_b} = 2^{h_a+1}$

$$h_a = h_b$$
 $2^{h_a} + 2^{h_b} = 2 \times 2^{h_a} = 2^{h_a+1}$

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| ≥ 2^h$
- 归纳法证明
 - 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$
 - 假设:任意不相交集合m,高度 h_m 和规模 V_m 满足 $V_m \geq 2^{h_m}$
 - 归纳:两不相交集合a,b拟做合并,设合并产生的新不相交集合为c
 - 。 若 $h_a \neq h_b$: $V_c = V_a + V_b \geq 2^{h_a} + 2^{h_b} \geq 2^{\max\{h_a,h_b\}} = 2^{h_c}$
 - 。 若 $h_a = h_b : V_c = V_a + V_b \ge 2^{h_a} + 2^{h_b} = 2^{h_a+1} = 2^{h_c}$

```
if a.height ≤ b.height then

| if a.height = b.height then
| b.height ← b.height + 1
| end
| a.parent ← b
| end
| else
| b.parent ← a
| end
| end
| a.parent ← a
| end
| else | b.parent ← a
| end
```


$$h(c) = h(a) + 1$$

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| ≥ 2^h$
- 归纳法证明

初始化产生的不相交集合满足 $|V| \geq 2^h$

- 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$
- 假设:任意不相交集合m,高度 h_m 和规模 V_m 满足 $V_m \geq 2^{h_m}$
- 归纳:两不相交集合a,b拟做合并,设合并产生的新不相交集合为c
 - 。 若 $h_a \neq h_b$: $V_c = V_a + V_b \geq 2^{h_a} + 2^{h_b} \geq 2^{\max\{h_a,h_b\}} = 2^{h_c}$
 - 。 若 $h_a = h_b$: $V_c = V_a + V_b \ge 2^{h_a} + 2^{h_b} = 2^{h_a+1} = 2^{h_c}$

合并产生的不相交集合满足 $|V| \ge 2^h$

• 综上,所有不相交集和都满足 $|V| \geq 2^h$,即 $h \leq \log |V|$

- 问题:树的高度h和顶点规模|V|有何关系 $\longrightarrow |V| ≥ 2^h$
- 归纳法证明

初始化产生的不相交集合满足 $|V| \geq 2^h$

- 只有一个顶点,规模|V|=1,高度h=0,显然 $1\geq 2^0$
- 假设:任意不相交集合m,高度 h_m 和规模 V_m 满足 $V_m \geq 2^{h_m}$
- 归纳:两不相交集合a,b拟做合并,设合并产生的新不相交集合为c
 - 。 若 $h_a \neq h_b$: $V_c = V_a + V_b \geq 2^{h_a} + 2^{h_b} \geq 2^{\max\{h_a,h_b\}} = 2^{h_c}$
 - 。 若 $h_a = h_b$: $V_c = V_a + V_b \ge 2^{h_a} + 2^{h_b} = 2^{h_a+1} = 2^{h_c}$

合并产生的不相交集合满足 $|V| \ge 2^h$

- 综上,所有不相交集和都满足 $|V| \geq 2^h$,即 $h \leq \log |V|$
- Create-Set(x) : O(1)
- Find-Set(x) : $O(h) = O(\log |V|)$
- Union-Set(x): $O(h) = O(\log |V|)$

MST-Kruskal(G)

```
输入: 图 G
输出: 最小生成树
把边按照权重升序排序
T \leftarrow \{\}
for (u, v) \in E_{\mathbf{do}}
    if u, v 不在同一子树 then  | T \leftarrow T \cup \{(u, v)\} | 合并u, v所在子树
    end
end
return T
```

问题:如何高效判定和维护顶点所在的子树?

MST-Kruskal(G)

```
输入: 图 G
输出: 最小生成树
把边按照权重升序排序
为每个顶点建立不相交集
                                             创建不相交集
for (u,v) \in E do
 if Find-Set(u) \neq Find-Set(v) then
                                                关系检查
     T \leftarrow T \cup \{(\overline{u}, \overline{v})\}
      Union-Set(u, v)
                                              合并不相交集
   end
end
return T
```


问题的回顾

算法与实例

正确性证明

不相交集合

复杂度分析

复杂度分析

MST-Kruskal(G)

```
输入: 图 G
输出: 最小生成树
把边按照权重升序排序
                                              O(|E|\log|E|)
为每个顶点建立不相交集
                                               O(|V|)
T \leftarrow \{\}
for (u, v) \in E do
   if Find-Set(u) \neq Find-Set(v) them
      T \leftarrow T \cup \{(u,v)\}
                                       O(\log|V|) - O(|E|\log|V|)
      Union-Set(u, v)
   end
end
return T
```

- 时间复杂度
 - $O(|E|\log|E| + |E|\log|V|)$

复杂度分析

MST-Kruskal(G)

```
输入: 图 G
输出: 最小生成树
把边按照权重升序排序
                                                O(|E|\log|E|)
为每个顶点建立不相交集
                                                O(|V|)
T \leftarrow \{\}
for (u, v) \in E do
   if Find-Set(u) \neq Find-Set(v) them
      T \leftarrow T \cup \{(u,v)\}
                                        O(\log|V|) - O(|E|\log|V|)
      Union-Set(u, v)
   \mathbf{end}
end
return T
```

• 时间复杂度

假设 $|E| = O(|V|^2)$

• $O(|E|\log|E| + |E|\log|V|) = O(|E|\log|V|^2 + |E|\log|V|) = O(|E|\log|V|)$

小结

Prim算法和Kruskal算法比较

	Prim算法	Kruskal算法			
核心思想	保持一棵树,不断扩展	子树森林,合并为一棵树			
数据结构	优先队列	不相交集合			
求解视角	微观视角,基于当前点选边	宏观视角,基于全局顺序选边			
算法策略	都是采用贪心策略的图算法				

图算法篇:单源最短路径问题之 Dijkstra算法

北京航空航天大学 计算机学院

算法思想

算法实例

算法分析

算法性质

• 从知春路到其他站点,如何安排路线?

使用广度优先搜索求最短路径

• 从知春路到其他站点,如何安排路线?

问题:如何计算带权图中源点到所有其他顶点的最短路径?

单源最短路径问题 (边权为正)

Single Source Shortest Paths Problem with Positive Weights

输入

- 带权图 $G = \langle V, E, W \rangle$, 其中 $w(u, v) \geq 0$ (图中所有边权为正), $(u, v) \in E$
- 源点编号s

单源最短路径问题 (边权为正)

Single Source Shortest Paths Problem with Positive Weights

输入

- 带权图 $G = \langle V, E, W \rangle$, 其中 $w(u, v) \geq 0$ (图中所有边权为正), $(u, v) \in E$
- 源点编号s

输出

• 源点 s 到所有其他顶点 t 的最短距离 $\delta(s,t)$ 和最短路径 < s, ..., t >

算法思想

算法实例

算法分析

算法性质

Edsger W. Dijkstra 1972, Netherlands ALGOL之父 提出单源最短路径Dijkstra算法

- 辅助数组
 - dist表示到源点的距离上界(估计距离)
 - 。 源点 s , dist[s] = 0 ; 其他顶点u , dist[u]初始化为∞

V	S	i	W	u	\boldsymbol{v}
dist	0	∞	∞	∞	∞

- 辅助数组
 - dist表示到源点的距离上界(估计距离)
 - 。 源点 s , dist[s] = 0 ; 其他顶点u , dist[u] 初始化为∞
 - $oldsymbol{dist}[u]$:源点 s 到顶点 u 的距离上界 , $\delta(s,u) \leq dist[u]$

• 辅助数组

- dist表示到源点的距离上界(估计距离)
 - 。 源点 s , dist[s] = 0 ; 其他顶点u , dist[u] 初始化为∞
 - $oldsymbol{dist}[u]$:源点 s 到顶点 u 的距离上界 , $\delta(s,u) \leq dist[u]$
- color表示顶点状态
 - \bullet 黑色:到顶点 u 最短路径已被确定

• 辅助数组

- dist表示到源点的距离上界(估计距离)
 - 。 源点 s , dist[s] = 0 ; 其他顶点u , dist[u] 初始化为∞
 - $oldsymbol{dist}[u]$:源点 s 到顶点 u 的距离上界 , $\delta(s,u) \leq dist[u]$
- color表示顶点状态
 - \bullet 黑色:到顶点 u 最短路径已被确定
 - 。 白色;到顶点 ॥ 最短路径尚未确定

S	0 2 2 3 3 × 1	$\rightarrow \bigcirc i$	F/13/CL					
	1	1	V	S	i	W	u	v
<i>(</i>			dist	0	∞	∞	∞	∞
W	5 1	(∞) u	δ	0	2	1	3	4
		真实最短	距离					

• 辅助数组

- dist表示到源点的距离上界(估计距离)
 - 。 源点 s , dist[s] = 0 ; 其他顶点u , dist[u] 初始化为∞
 - $oldsymbol{dist}[u]$:源点 s 到顶点 u 的距离上界 , $\delta(s,u) \leq dist[u]$
- color表示顶点状态
 - \bullet 黑色:到顶点 u 最短路径已被确定
 - \bullet 白色:到顶点 u 最短路径尚未确定
- pred 表示前驱顶点
 - pred[u], u)为最短路径上的边

- 核心思想
 - 步骤1:新建空的黑色顶点集 V_A

• 核心思想

• 步骤1:新建空的黑色顶点集 V_A

● 步骤2:选择一个白色顶点变为黑色(到该顶点最短路被确定)

• 核心思想

• 步骤1:新建空的黑色顶点集 V_A

● 步骤2:选择一个白色顶点变为黑色(到该顶点最短路被确定)

步骤3:重复步骤2

• 核心思想

• 步骤1:新建空的黑色顶点集 V_A

● 步骤2:选择一个白色顶点变为黑色(到该顶点最短路被确定)

• 步骤3:重复步骤2,直至所有顶点均为黑色

• 核心思想

• 步骤1:新建空的黑色顶点集 V_A

• 步骤2:选择一个白色顶点变为黑色(到该顶点最短路被确定)

• 步骤3:重复步骤2,直至所有顶点均为黑色

问题:选择哪个白色顶点变为黑色?

• 核心思想

• 步骤1:新建空的黑色顶点集 V_A

步骤2:选择一个白色顶点变为黑色(到该顶点最短路被确定)

• 步骤3:重复步骤2,直至所有顶点均为黑色

问题1:选择哪个白色顶点变为黑色?

问题2:如何更新各顶点的估计距离?

• 问题1:选择哪个白色顶点变为黑色?采用贪心策略

- 问题1:选择哪个白色顶点变为黑色?采用贪心策略
 - 对每个白色顶点 $y \in V V_A$, 都有一个估计距离dist[y]

V	S	i	W	u	$oldsymbol{v}$
dist	0	2	1	∞	6
δ	0	2	1	3	4

- 问题1:选择哪个白色顶点变为黑色?采用贪心策略
 - 对每个白色顶点 $y \in V V_A$, 都有一个估计距离dist[y]
 - 选择估计距离最小的顶点 v , $dist[v] \leq dist[y]$, $v,y \in V V_A$

V	S	i	W	u	\boldsymbol{v}
dist	0	2	1	∞	6
δ	0	2	1	3	4

- 问题1:选择哪个白色顶点变为黑色?采用贪心策略
 - 对每个白色顶点 $y \in V V_A$, 都有一个估计距离dist[y]
 - 选择估计距离最小的顶点 v , $dist[v] \leq dist[y]$, $v,y \in V V_A$

$oldsymbol{V}$	S	i	W	u	\boldsymbol{v}
dist	0	2	1	∞	6
δ	0	2	1	3	4

• 问题2:如何更新每顶点的估计距离?

- 问题2:如何更新每顶点的估计距离?
 - 当前到顶点 v 的最短路径: $\langle s, w, v \rangle$, 距离为dist[v]

- 问题2:如何更新每顶点的估计距离?
 - 当前到顶点 v 的最短路径: < s, w, v >, 距离为dist[v]
 - 通过顶点 u 的新路径:< s, ..., u, v >,距离为dist[u] + w(u, v)

- 问题2:如何更新每顶点的估计距离?
 - 当前到顶点 v 的最短路径:< s, w, v >, 距离为dist[v]
 - 通过顶点 u 的新路径:< s, ..., u, v >,距离为dist[u] + w(u, v)
 - 如果新路径更短(dist[u] + w(u,v) < dist[v])
 - o 更新dist[v]: dist[v] = dist[u] + w(u, v)

- 问题2:如何更新每顶点的估计距离?
 - 当前到顶点 v 的最短路径:< s, w, v >,距离为dist[v]
 - 通过顶点 u 的新路径:< s, ..., u, v >,距离为dist[u] + w(u, v)
 - 如果新路径更短(dist[u] + w(u,v) < dist[v])
 - o 更新dist[v]: dist[v] = dist[u] + w(u, v)

松弛操作

 $V - V_A$ 中顶点

- 问题2:如何更新每顶点的估计距离?
 - 当前到顶点 v 的最短路径:< s, w, v >,距离为dist[v]
 - 通过顶点 u 的新路径:< s, ..., u, v >,距离为dist[u] + w(u, v)
 - 如果新路径更短(dist[u] + w(u,v) < dist[v])
 - o 更新dist[v]: dist[v] = dist[u] + w(u, v)沈操作 S u u 6 5 被选择顶点 W u 6 V_A 中顶点 松弛成功 松弛失败

 $V - V_A$ 中顶点

松弛操作的效果: $dist[v] \leq dist[u] + w(u,v)$

问题背景

算法思想

算法实例

算法分析

算法性质

$oldsymbol{V}$	S	t	x	y	Z
color	W	W	W	W	W
pred	N	N	N	N	N
dist	∞	∞	∞	∞	∞

 $V - V_A$ 中顶点

被选中顶点

V	S	t	x	y	Z
color	W	W	W	W	W
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

 $V - V_A$ 中顶点

$oldsymbol{V}$	S	t	x	y	Z
color	W	W	W	W	W
pred	N	S	N	S	N
dist	0	8	∞	5	∞

V	S	t	x	y	Z
color	В	W	\mathbf{W}	W	\mathbf{W}
pred	N	S	N	S	N
dist	0	8	∞	5	∞

$oldsymbol{V}$	S	t	\boldsymbol{x}	y	Z
color	В	W	W	W	W
pred	N	S	y	S	y
dist	0	8	14	5	7

 $V - V_A$ 中顶点

被选中顶点

S	t	x	y	\boldsymbol{z}
В	W	W	В	W
N	S	y	S	y
	8	14	5	7
	S B N 0	B W N S	B W W N S y	B W W B N S y S

$oldsymbol{V}$	S	t	x	y	Z
color	В	W	W	В	W
pred	N	S	Z	S	y
dist	0	8	13	5	7

 $V - V_A$ 中顶点

$oldsymbol{V}$	S	t	x	y	Z
color	В	W	W	В	В
pred	N	S	Z	S	y
dist	0	8	13	5	7

 $V - V_A$ 中顶点

V	S	t	\boldsymbol{x}	y	Z
color	В	\mathbf{W}	\mathbf{W}	В	В
pred	N	S	Z	S	y
dist	0	8	13	5	7

 $V - V_A$ 中顶点

$oldsymbol{V}$	S	t	x	y	Z
color	В	W	W	В	В
pred	N	S	t	S	y
dist	0	8	9	5	7

color B B	\mathbf{W}	B	D
	· ·	D	В
pred N s	t	S	y
dist 0 8	9	5	

color B B W B B pred N s t s y dist 0 8 9 5 7	\boldsymbol{V}	S	t	x	y	Z
	color	В	В	W	В	В
dist 0 8 9 5 7	pred	N	S	t	S	у
	dist		8	9	5	

V	S	t	x	y	Z
color	В	В	В	В	В
pred	N	S	t	S	y
dist	0	8	9	5	7

V	S	t	x	y	Z
color	В	В	В	В	В
pred	N	S	t	S	y
dist	0	8	9	5	7

问题背景

算法思想

算法实例

算法分析

算法性质

数据结构:优先队列

优先队列

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - 。 Q. Insert() 时间复杂度O(logn)
 - 。 Q. ExtractMin() 时间复杂度O(logn)
 - Q.DecreaseKey() 时间复杂度O(logn)


```
输入: 图G = \langle V, E, W \rangle, 源点s
 输出: 单源最短路径P
 新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
 新建空优先队列Q
 川初始化
 for u \in V do
                                                     初始化辅助数组
    color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
<u>end</u>
 dist[s] \leftarrow 0
 Q.Insert(V, dist)
```



```
输入: 图G = \langle V, E, W \rangle, 源点s
输出: 单源最短路径P
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
   color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
end
                                             初始化源点和优先队列
Q.Insert(V, dist)
```



```
/<u>/执行单源最短路径算法</u>
while 优先队列Q非空 do v \leftarrow Q.ExtractMin()
                                                  依次计算到各点最短路
    for u \in G.adj[v] do
       if dist[v] + w(v, u) < dist[u] then
           dist[u] \leftarrow dist[v] + w(v, u)
          pred[u] \leftarrow v
           Q.DecreaseKey((u, dist[u]))
        end
    end
    color[v] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
     \overline{v} \leftarrow \overline{Q}.\overline{E}x\overline{t}r\overline{a}ct\overline{M}\overline{i}n()
                                                     选择最小估计距离的白色顶点
    for u \in G.adj[v] do
          if dist[v] + w(v, u) < dist[u] then
              dist[u] \leftarrow dist[v] + w(v, u)
             pred[u] \leftarrow v
              Q.DecreaseKey((u, dist[u]))
          end
      end
      color[v] \leftarrow BLACK
 end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
                                           对从u 出发的边进行松弛
     if dist[v] + w(v, u) < dist[u] then
          dist[u] \leftarrow dist[v] + w(v, u)
         pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
      end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
  v \leftarrow Q.ExtractMin()
  for u \in G.adj[v] do
     dist[u] \leftarrow dist[v] + w(v, u)
      pred[u] \leftarrow v
       Q.DecreaseKey((u, dist[u]))
     end
  end
  color[v] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
       if dist[v] + w(v, u) < dist[u] then
         dist[u] \leftarrow dist[v] + w(v, u)
                                                       记录前驱顶点
         pred[u] \leftarrow \overline{v}
         \overline{Q}.\overline{DecreaseKey((u,dist[u]))}
       end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
  for u \in G.adj[v] do
     if dist[v] + w(v, u) < dist[u] then
        dist[u] \leftarrow dist[v] + w(v, u)
     更新优先队列中关键字
     \mathbf{end}
  end
   color[v] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
       if dist[v] + w(v, u) < dist[u] then
           dist[u] \leftarrow dist[v] + w(v, u)
          pred[u] \leftarrow v
           Q.DecreaseKey((u, dist[u]))
       end
   <u>e</u>nd
                                                    标记顶点计算完成
   color[v] \leftarrow BLACK
\operatorname{end}
```

时间复杂度分析


```
输入: \mathbb{S}G = \langle V, E, W \rangle, 源点s
输出: 单源最短路径P
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
   color[u] \leftarrow WHITE
  dist[u] \leftarrow \inftypred[u] \leftarrow NULL
end
dist[s] \leftarrow 0
Q.Insert(V, dist)
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
                                                                   O(\log |V|)
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
      if dist[v] + w(v, u) < dist[u] then
          dist[u] \leftarrow dist[v] + w(v, u)
         pred[u] \leftarrow v
         Q.DecreaseKey((u, dist[u])) - - O(log[V])
      end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
                                                                        O(\log |V|)
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
       if dist[v] + w(v, u) < dist[u] then
           dist[u] \leftarrow dist[v] + w(v, u)
          pred[u] \leftarrow v
Q.DecreaseKey((u, dist[u])) - - O(log|V|)
          pred[u] \leftarrow v
       end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行的酒是短处经管注
while 优先队列Q非空 do
                                                                     O(\log |V|)
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
      if dist[v] + w(v, u) < dist[u] then
          dist[u] \leftarrow dist[v] + w(v, u)
         pred[u] \leftarrow v
                                                              -O(\deg(u) \cdot |\log|V|)
          Q.DecreaseKey((u, dist[u]))
       end
   end
   color[v] \leftarrow BLACK
end
```


$$\sum_{u \in V} \deg(u) = 2|E|$$


```
//执行单源最短路径算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
      if dist[v] + w(v, u) < dist[u] then
          dist[u] \leftarrow dist[v] + w(v, u)
         pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
      end
   end
   color[v] \leftarrow BLACK
                                        时间复杂度O(|E| \cdot \log |V|)
end
```


问题背景

算法思想

算法实例

算法分析

算法性质

• 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$

• 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$

• 证明:

• 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u] \neq \delta(s,u)$

• 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$

• 证明:

• 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u] \neq \delta(s,u)$

• 由于dist[u]作为 $\delta(s,u)$ 的上界,故 $dist[u] > \delta(s,u)$

- 定理:Dijkstra算法中,顶点 u 被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明:
 - 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u] \neq \delta(s,u)$
 - 由于dist[u]作为 $\delta(s,u)$ 的上界,故 $dist[u] > \delta(s,u)$
 - 应存在一条长度为 $\delta(s,u)$ 的从s到u的最短路径,不妨设其为< s,...,x,y,...,u>,其中边(x,y)横跨 $< V_A,V-V_A>$, $x\in V_A,y\in V-V_A$

- 定理:Dijkstra算法中,顶点 u 被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明:
 - 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u] \neq \delta(s,u)$
 - 由于dist[u]作为 $\delta(s,u)$ 的上界,故 $dist[u] > \delta(s,u)$
 - 应存在一条长度为 $\delta(s,u)$ 的从s到u的最短路径,不妨设其为< s,...,x,y,...,u>,其中边(x,y)横跨 $< V_A,V-V_A>$, $x\in V_A,y\in V-V_A$
 - 算法令 V_A 中的顶点满足: $dist[x] = \delta(s,x), x \in V_A$

- 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明:
 - 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u] \neq \delta(s,u)$
 - 由于dist[u]作为 $\delta(s,u)$ 的上界,故 $dist[u] > \delta(s,u)$
 - 应存在一条长度为 $\delta(s,u)$ 的从s到u的最短路径,不妨设其为< s, ..., x, y, ..., u > ,其中边(x,y)横跨 $< V_A, V V_A > , x \in V_A, y \in V V_A$
 - 算法令 V_A 中的顶点满足: $dist[x] = \delta(s,x), x \in V_A$

问题:dist[y]和 $\delta(s,y)$ 具有何种关系?

- 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - $\langle s, ..., x, y \rangle$ 是最短路径 $\langle s, ..., x, y, ..., u \rangle$ 的子路径

- 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - $\langle s, ..., x, y \rangle$ 是最短路径 $\langle s, ..., x, y, ..., u \rangle$ 的子路径,故:
 - $\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y)$ (公式1)

- 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - $\langle s, ..., x, y \rangle$ 是最短路径 $\langle s, ..., x, y, ..., u \rangle$ 的子路径,故:
 - $\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y)$ (公式1)
 - 算法对顶点x出发的所有边(包括边(x,y))已进行松弛操作,故:
 - o $dist[y] \leq dist[x] + w(x,y)$ (公式2)

- 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - $\langle s, ..., x, y \rangle$ 是最短路径 $\langle s, ..., x, y, ..., u \rangle$ 的子路径,故:
 - $\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y)$ (公式1)
 - 算法对顶点x出发的所有边(包括边(x,y))已进行松弛操作,故:
 - o $dist[y] \leq dist[x] + w(x,y)$ (公式2)
 - 合并上述公式1和公式2,可得 $dist[y] = \delta(s,y)$

- 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - $\langle s, ..., x, y \rangle$ 是最短路径 $\langle s, ..., x, y, ..., u \rangle$ 的子路径,故:
 - $\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y)$ (公式1)
 - 算法对顶点x出发的所有边(包括边(x,y))已进行松弛操作,故:
 - o $dist[y] \leq dist[x] + w(x,y)$ (公式2)
 - 合并上述公式1和公式2,可得 $dist[y] = \delta(s,y)$
 - 最短路径<s,...,x,y,...,u>中,y出现在u之前,故:
 - o $dist[u] > \delta(s, u) \ge \delta(s, y) = dist[y]$

- 定理:Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - $\langle s, ..., x, y \rangle$ 是最短路径 $\langle s, ..., x, y, ..., u \rangle$ 的子路径,故:
 - $\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y)$ (公式1)
 - 算法对顶点x出发的所有边(包括边(x,y))已进行松弛操作,故:
 - o $dist[y] \leq dist[x] + w(x,y)$ (公式2)
 - 合并上述公式1和公式2,可得 $dist[y] = \delta(s,y)$
 - 最短路径<s,...,x,y,...,u>中,y出现在u之前,故:
 - o $dist[u] > \delta(s, u) \ge \delta(s, y) = dist[y]$
 - dist[u] > dist[y], u ≠ y, u不应是下一个被添加顶点
 故产生矛盾

	广度优先搜索	Dijkstra算法
适用范围	无权图	带权图 (所有边权为正)
数据结构	队列	优先队列
运行时间	O(V + E)	$O(E \cdot \log V)$

