INF01 118

UFRGS

Técnicas Digitais para Computação

Síntese de FSM com FF D

Aula 24

1. Introdução

• processo de projeto

especificação (p.ex. FSM)

tabela de estados

equações de entrada (para FF's) e de saída

síntese a partir das equações (problema de lógica combin.)

• número de flip-flops

```
com codificação: n FF's - 2<sup>n</sup> estados
```

sem codificação: n FF's n estados

• escolha do tipo dos FF's influencia determinação das equações de entrada

2. Projeto com flip-flops tipo D

processo de projeto

- 1. Obter tabela de estados
- 2. Derivar equações de entrada a partir do "próximo estado" na tabela
- 3. Derivar equações de saída a partir da "saída" na tabela
- 4. Simplificar equações de entrada e saída
- 5. Desenhar circuito lógico com FF's D e portas lógicas de acordo com as equações.

Tabela de Estados

Estado	Atual	Entrada	Próx. Estado		Saída	
A	В	X	A	В	Y	MINTERMO
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	0	0	2
0	1	1	0	1	0	3
1	0	0	1	0	0	4
1	0	1	1	1	1	5
1	1	0	1	1	0	6
1	1	1	0	0	0	7

equações de entrada para FF's tipo D

$$A(t+1) = D_A (A,B,X) = \Sigma m (2,4,5,6)$$

$$B(t+1) = D_B(A,B,X) = \Sigma m (1,3,5,6)$$

equação de saída

$$Y(A,B,X) = \Sigma m (1,5)$$

simplificação das equações

"desenhar" circuito lógico

Reconhecer:

- entrada
- saída
- **FF**'s
- realimentações
- lógica combinac.

3. Projeto com estados não utilizados


```
5 estados ⇒ 3 FF's
estados não utilizados:

000
110
111
saídas do circuito = saída dos FF's
```


Tabela de estados

Estado	Atual	Entrada	Próx. Estado			
A B	C	X	A	В	C	MINTERMO
0 0	1	0	0	0	1	2
0 0	1	1	0	1	0	3
0 1	0	0	0	1	1	4
0 1	0	1	1	0	0	5
0 1	1	0	0	0	1	6
0 1	1	1	1	0	0	7
1 0	0	0	1	0	1	8
1 0	0	1	1	0	0	9
1 0	1	0	0	0	1	10
1 0	1	1	1	0	0	11

equações de entrada

$$A(t+1) = D_A = \Sigma m (5,7,8,9,11)$$

$$B(t+1) = D_B = \Sigma m (3,4)$$

$$C(t+1) = D_C = \Sigma m (2,4,6,8,10)$$

simplificação

Mintermos don't care: 0,1,12,13,14,15

4. Escolha dos flip-flops

- T As váriáveis de estado vão de $0 \longrightarrow 1$ e de volta $1 \longrightarrow 0$ (ex. contadores)
- D Quando a informação de entrada deve ser armazenada por um tempo
- SR Quando sinais diferentes podem dar SET ou RESET nos flip-flops
- JK Quando queremos combinar as vantagens de um FF T com SR
- SR e JK

 Tendem a reduzir o custo das equações de entrada, mas demandam até o dobro de conexões do que os FF's D e T

Como os FF's D e T requerem um número menor de conexões, são preferidos para implementações VLSI