Clustering

Clustering

- Are there any groups in the data?
- How to group?
- How many groups?

Unsupervised Learning

- Clustering: most common form of unsupervised learning
 - Given a collection of unlabeled examples (objects), discover self-similar groups in the data

Unsupervised Learning

Text Clustering

Unsupervised Learning

Image Segmentation

Clustering Applications

- Find genes that are similar in their functions
- Group documents based on topics
- Categorize customers based on their buying habit
- Group images based on their contents

Clustering Issues

- What is a natural grouping among these objects?
 - Definition of "group"
- What makes objects "related"?
 - Definition of "similarity/distance"
- Representation for objects
 - Vector, normalization?
- How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid "trivial" clusters too large or small

What is a natural grouping?

- By color? By pattern? By weight?
- The definition of natural grouping is subjective
- This is why we call clustering <u>exploratory</u> data analysis

What is similarity?

- This is a philosophical question. We will take a more pragmatic approach.
 - ◆ Depends on representation and algorithm. For many representations/algorithms, it is easier to think in terms of a distance (rather than similarity) between vectors

Hard to define but
We know it when we see it

Properties of a distance measure?

D must be Symmetric

- $^{\blacktriangle}D(A,B) = D(B,A)$
- ◆ Otherwise, we can say A looks like B but B does not look like A

Positivity, and self-similarity

- $\triangle D(A,B) \ge 0$, and D(A,B) = 0 iff A = B
- Otherwise, there will different objects that we cannot tell apart

Must satisfy triangle inequality

- $^{\bullet}D(A,B) + D(B,C) \ge D(A,C)$
- ◆ Otherwise, one can say "A is like B, B is like C, but A is not like C at all"

10

Distance Measures: Minkowski Metric

Suppose two object x and y both have d features

$$^{\blacktriangle} x = (x_1, \dots, x_d), y = (y_1, \dots, y_d)$$

The Minkowski metric of order r is defined by

$$d(x,y) = \sqrt[r]{\sum_{i} |x_i - y_i|^r}$$

- Common Minkowski metrics:
 - Euclidean(r=2): $d(x,y) = \sqrt[2]{\sum_i (x_i y_i)^2}$, also called L_2 distance
 - ↑ Manhattan distance(r=1) : $d(x,y) = \sum_i |x_i y_i|$, also called L_1 distance
 - ↑ "Sup" distance(r = +∞): $d(x, y) = \max_{i} |x_i y_i|$, also called L_{∞} distance

A simple example

1: Euclidean distance: $\sqrt[2]{4^2 + 3^2} = 5$.

2: Manhattan distance: 4+3=7.

3: "sup" distance: $\max\{4,3\} = 4$.

Similarities

 Cosine similarity – commonly used to measure document similarity

$$cos(\mathbf{x}, \mathbf{x}') = \frac{\langle \mathbf{x} \cdot \mathbf{x}' \rangle}{|\mathbf{x}| \cdot |\mathbf{x}'|}$$

Kernels: RBF (Gaussian) Kernel

$$K(X,X') = \exp \frac{-|X - X'|^2}{2\sigma^2}$$

Clustering Algorithms

Hierarchical algorithms

- Bottom up (agglomerative)
- ◆ Top down (divisive)

Partition algorithms (Flat)

- K-means
- Mixture of Gaussians
- Spectral clustering

Hierarchical Clustering

Given a set of objects, build a tree-based taxonomy

 Hierarchies are a convenient way for organizing information, used frequently by web-portals

Hierarchical Agglomerative Clustering (HAC)

- Start with each object in a separate cluster
- Repeatedly join the closest pair of clusters
- until there is only one cluster

The history of merging forms a tree of hierarchy

• <u>Question</u>: how to measure the "closeness" of two clusters?

Closest Pair of Clusters?

The distance between two clusters is defined as the distance between:

- Single-link
 - ◆ The nearest pair of points
- Complete-link
 - ◆ The farthest pair of points
- Centroid
 - The center of gravity
- Average-link
 - Average of all cross-cluster pairs

Visualization of the hierarchy: Dendogram

- Can be used to identify the number of clusters in data
 - A horizontal cut will create a unique clustering
 - Moving the cut from root down creates more clusters
 - Large gaps between the merging nodes indicate a good cutting point

Computational Complexity

- All hierarchical clustering methods need to compute distance of all pairs of n individual instances which is $O(n^2)$
- There are n-1 iterations, at each iteration after the merge we must compute the distance between new cluster and all other clusters

$$\sum_{i=2}^{n-1} n - i = O(n^2)$$

• In order to maintain an overall $O(n^2)$ performance, distance update must be done in constant time – trivial for complete-link and single-link

Partition Clustering

- Given a data set of n points, we know that there are k clusters in the data, how to find these clusters?
- Roughly speaking there are $O(k^n)$ ways to partition the data, Which one is better?
- One intuition says that we want tight clusters, i.e., points should be in a tight ball
- This leads to the following objective function

$$\sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$
 --- squared distance between data point x and its cluster center

- Optimizing this objective is a combinatorial optimization problem
 - Exhaustive search for an optimal solution is not feasible

Combinatorial optimization: An iterative solution

- Initialization: Start with a random partition of the data
- *Iterative step*: the cluster assignments and cluster centers are updated to improve the objective
- Stopping criterion: if no improvement can be achieved.

Iterative greedy descent

convergence is guaranteed, but to local optimal

K-Means

Algorithm

Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

Iterate -

- 1. Assigning each of the N data points to its nearest cluster centers
- 2. Re-estimate the cluster center by assuming that the current assignment is correct

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Termination –

If none of the data points changed membership in the last iteration, exit. Otherwise, go to 1

K-Means Example (K=2)

Computational Complexity

- At each iteration:
 - ightharpoonup Reassigning clusters: O(kn) distance computations
 - rianlle Computing centroids: Each instance vector gets added once to some centroid: O(n)
- Assume these two steps are each done once for I iterations: O(Ikn).
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than O(n²) HAC
- Does it always converge?

Impact of Initial Seeds

Highly sensitive to the initial seeds

- Multiple random trials: choose the one with best sum of squared loss (important!)
- Heuristics for choosing better centers
 - choose initial centers to be far apart furthest first traversal (K-Means++ algorithm)
 - Initialize with results of other clustering method

More Comments

- K-Means is exhaustive:
 - Cluster every data point, no notion of outlier
 - Outliers cause problems
 - Become singular clusters
 - Bias the centroid estimation
- K-medoids methods is more robust to outliers
 - Cluster medoid: the point that has minimum sum squared distance to all data points in the cluster
 - More expensive to compute
 - For each point: sum squared distance with all other pts in cluster $O(|C|^2)$
- Need to specify k: difficult in practice
 - ^ Automatically deciding *k*? more on this later...

Soft Clustering

- Hard clustering:
 - Data point is deterministically assigned to one and only one cluster
 - But in reality clusters may overlap
- Soft-clustering:
 - Data points are assigned to clusters with certain probabilities
- Model-based clustering