# **MAJOR PROJECT**

# A PROJECT ON WINE QUALITY ANALYSIS Under Guidance of Abin Varghese

Submitted By:Pritiranjan Biswal

# **INTRODUCTION:** -

The aim of this project is to predict the quality of wine on a scale of 0–10 given a set of features as inputs. Input variables are fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulphur dioxide, total sulphur dioxide, density, pH, sulphates, and alcohol. And the output variable is quality .We are dealing only with red wine. We have quality being one of these values: [3, 4, 5, 6, 7, 8]. The higher the value the better the quality. In this project we will treat each class of the wine separately and their aim is to be able and find decision boundaries that work well for new unseen data.

# **Dataset Description:**

The dataset contains a total of 12 variables, which were recorded for 1,599 observations. This data will allow us to create different regression models to determine how different independent variables help predict our dependent variable, quality.

Input variables are

- 1) Fixed acidity
- 2) Volatile acidity
- 3) Citric acid
- 4) Residual sugar
- 5) Chlorides
- 6) Free sulfur dioxide
- 7) Total sulfur dioxide
- 8) Density
- 9) pH
- 10) Sulphates
- 11) Alcohol

Output variable

12) Quality

# **Preparing Wine Data**

Correctly prepared data is the cornerstone of an effective machine learning model and accurate predictions.

- 1. **Standardizing feature variables**. The process of transforming the data to get a mean of 0 and a standard deviation of 1 in the data distribution. This helps even out the range of the wine data.
- 2. **Splitting data**. The process of splitting wine data into training and testing sets. This is essential to performing cross-validation of the ML models to identify the most effective approach to quality prediction.
- 3. **Building an ML model**. When the wine quality data is all set, one can start building, training, and testing a machine learning model by using different classification approaches.

# **Feature Importance**

Having all the necessary data on hand is not enough. It's also critical to understand exactly how each of the features relates to wine quality and what role it plays in the ML modeling process.

# Finding the Best Method for Wine Quality Prediction

Based on the current research, the most effective ML methods for wine quality analysis are Logistic Regression, Support Vector Machine (SVM), K-nearest Neighbors, and Random Forest. Although there are different opinions among ML researchers, we tried to collect all the results and provide the simple average for the accuracy of the ML models in predicting wine quality:

- Logistic regression-87.815
- Support Vector Machine-89.375
- K-nearest Neighbors-89
- Random Forest-90.93

From above study we finally concluded that Random Forest Classifier model is best model to predict the wine quality with 90.93% of accuracy score.

#importing all necessary libraries and Dataset 1.Pandas is a useful library in data handling. 2.Numpy library used for working with arrays. 3.Seaborn/Matplotlib are used for data visualisation purpose. 4.Sklearn – This module contains multiple libraries having pre-implemented functions to perform tasks from data preprocessing to model development and evaluation.

#### In [104]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
```

#### In [105]:

```
#Loading the dataset to a pandas DataFarme
wine_data=pd.read_csv("E:\\Red_wine.csv")
wine_data
```

#### Out[105]:

|      | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | al |
|------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|----|
| 0    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      |    |
| 1    | 7.8              | 0.880               | 0.00           | 2.6               | 0.098     | 25.0                      | 67.0                       | 0.99680 | 3.20 | 0.68      |    |
| 2    | 7.8              | 0.760               | 0.04           | 2.3               | 0.092     | 15.0                      | 54.0                       | 0.99700 | 3.26 | 0.65      |    |
| 3    | 11.2             | 0.280               | 0.56           | 1.9               | 0.075     | 17.0                      | 60.0                       | 0.99800 | 3.16 | 0.58      |    |
| 4    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      |    |
|      |                  |                     |                |                   |           |                           |                            |         |      |           |    |
| 1594 | 6.2              | 0.600               | 0.08           | 2.0               | 0.090     | 32.0                      | 44.0                       | 0.99490 | 3.52 | 0.58      |    |
| 1595 | 5.9              | 0.550               | 0.10           | 2.2               | 0.062     | 39.0                      | 51.0                       | 0.99512 | 3.52 | 0.76      |    |
| 1596 | 6.3              | 0.510               | 0.13           | 2.3               | 0.076     | 29.0                      | 40.0                       | 0.99574 | 3.52 | 0.75      |    |
| 1597 | 5.9              | 0.645               | 0.12           | 2.0               | 0.075     | 32.0                      | 44.0                       | 0.99547 | 3.52 | 0.71      |    |
| 1598 | 6.0              | 0.310               | 0.47           | 3.6               | 0.067     | 18.0                      | 42.0                       | 0.99549 | 3.52 | 0.66      |    |

1599 rows × 12 columns

First 5 rows of the dataset

# In [106]:

wine\_data.head()

# Out[106]:

|   | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | alcoh |
|---|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|-------|
| 0 | 7.4              | 0.70                | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.9978  | 3.51 | 0.56      | 9     |
| 1 | 7.8              | 0.88                | 0.00           | 2.6               | 0.098     | 25.0                      | 67.0                       | 0.9968  | 3.20 | 0.68      | 9     |
| 2 | 7.8              | 0.76                | 0.04           | 2.3               | 0.092     | 15.0                      | 54.0                       | 0.9970  | 3.26 | 0.65      | 9     |
| 3 | 11.2             | 0.28                | 0.56           | 1.9               | 0.075     | 17.0                      | 60.0                       | 0.9980  | 3.16 | 0.58      | 9     |
| 4 | 7.4              | 0.70                | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.9978  | 3.51 | 0.56      | 9     |
| 4 |                  |                     |                |                   |           |                           |                            |         |      |           | •     |

Last 5 rows of the datset

### In [107]:

wine\_data.tail()

# Out[107]:

|      | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | al |
|------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|----|
| 1594 | 6.2              | 0.600               | 0.08           | 2.0               | 0.090     | 32.0                      | 44.0                       | 0.99490 | 3.52 | 0.58      |    |
| 1595 | 5.9              | 0.550               | 0.10           | 2.2               | 0.062     | 39.0                      | 51.0                       | 0.99512 | 3.52 | 0.76      |    |
| 1596 | 6.3              | 0.510               | 0.13           | 2.3               | 0.076     | 29.0                      | 40.0                       | 0.99574 | 3.52 | 0.75      |    |
| 1597 | 5.9              | 0.645               | 0.12           | 2.0               | 0.075     | 32.0                      | 44.0                       | 0.99547 | 3.52 | 0.71      |    |
| 1598 | 6.0              | 0.310               | 0.47           | 3.6               | 0.067     | 18.0                      | 42.0                       | 0.99549 | 3.52 | 0.66      |    |
| 4    |                  |                     |                |                   |           |                           |                            |         |      |           | •  |

Doing Some Exploratory Data Analysis

#### In [108]:

```
#count the numbers of data present in each column of the dataset
wine_data.count()
```

#### Out[108]:

| 1599 |
|------|
| 1599 |
| 1599 |
| 1599 |
| 1599 |
| 1599 |
| 1598 |
| 1599 |
| 1598 |
| 1599 |
| 1599 |
| 1598 |
|      |
|      |

Number of rows and columns in the dataset

#### In [109]:

```
wine_data.shape
```

#### Out[109]:

(1599, 12)

#### In [110]:

```
wine_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
```

| #  | Column               | Non-Null Count | Dtype   |
|----|----------------------|----------------|---------|
|    |                      |                |         |
| 0  | fixed acidity        | 1599 non-null  | float64 |
| 1  | volatile acidity     | 1599 non-null  | float64 |
| 2  | citric acid          | 1599 non-null  | float64 |
| 3  | residual sugar       | 1599 non-null  | float64 |
| 4  | chlorides            | 1599 non-null  | float64 |
| 5  | free sulfur dioxide  | 1599 non-null  | float64 |
| 6  | total sulfur dioxide | 1598 non-null  | float64 |
| 7  | density              | 1599 non-null  | float64 |
| 8  | рН                   | 1598 non-null  | float64 |
| 9  | sulphates            | 1599 non-null  | float64 |
| 10 | alcohol              | 1599 non-null  | float64 |
| 11 | quality              | 1598 non-null  | float64 |

dtypes: float64(12)
memory usage: 150.0 KB

#### In [111]:

```
wine_data.isnull().sum()
```

#### Out[111]:

fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide 1 density рΗ 1 sulphates 0 alcohol 0 quality 1 dtype: int64

#### In [112]:

```
wine_data.isnull().sum().sum()
```

#### Out[112]:

3

As there is 3 missing value present in the whole datset we have to drop that rows which contains missing values because in this dataset only few missing values are present.

#### In [113]:

```
#fetching those rows which having missing values
wine_data[wine_data['total sulfur dioxide'].isnull() | wine_data['pH'].isnull()| wine_data[
```

#### Out[113]:

|     | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | alc |
|-----|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|-----|
| 9   | 7.5              | 0.50                | 0.36           | 6.1               | 0.071     | 17.0                      | NaN                        | 0.9978  | 3.35 | 0.80      |     |
| 123 | 8.0              | 0.71                | 0.00           | 2.6               | 0.080     | 11.0                      | 34.0                       | 0.9976  | 3.44 | 0.53      |     |
| 184 | 6.7              | 0.62                | 0.21           | 1.9               | 0.079     | 8.0                       | 62.0                       | 0.9970  | NaN  | 0.58      |     |
| 4   |                  |                     |                |                   |           |                           |                            |         |      |           | •   |

#### In [114]:

```
wine_data.dropna(inplace=True)
```

#### In [115]:

```
wine_data.isnull().sum().sum()
```

#### Out[115]:

0

#### In [116]:

```
wine_data.hist(bins=20 , figsize=(10,10))
plt.show()
```



Data Analysis and Visualization

# In [117]:

wine\_data.describe()

#### Out[117]:

|       | fixed acidity | volatile<br>acidity | citric acid | residual<br>sugar | chlorides   | free sulfur<br>dioxide | total su<br>dio: |
|-------|---------------|---------------------|-------------|-------------------|-------------|------------------------|------------------|
| count | 1596.000000   | 1596.000000         | 1596.000000 | 1596.000000       | 1596.000000 | 1596.000000            | 1596.000         |
| mean  | 8.321366      | 0.527666            | 0.271128    | 2.536936          | 0.087487    | 15.882206              | 46.431           |
| std   | 1.742121      | 0.179154            | 0.194847    | 1.408341          | 0.047107    | 10.467380              | 32.893           |
| min   | 4.600000      | 0.120000            | 0.000000    | 0.900000          | 0.012000    | 1.000000               | 6.000            |
| 25%   | 7.100000      | 0.390000            | 0.090000    | 1.900000          | 0.070000    | 7.000000               | 22.000           |
| 50%   | 7.900000      | 0.520000            | 0.260000    | 2.200000          | 0.079000    | 14.000000              | 38.000           |
| 75%   | 9.200000      | 0.640000            | 0.420000    | 2.600000          | 0.090000    | 21.000000              | 62.000           |
| max   | 15.900000     | 1.580000            | 1.000000    | 15.500000         | 0.611000    | 72.000000              | 289.000          |
| 4     |               |                     |             |                   |             |                        | •                |

# In [118]:

sns.countplot(x='quality',data=wine\_data)

#### Out[118]:

<AxesSubplot:xlabel='quality', ylabel='count'>



#### In [119]:

```
#fixed acidity vs quality
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['fixed acidity'])
plt.xlabel('quality')
plt.ylabel('fixed acidity')
plt.show()
```



Fixed acidity is directly proportional to the quality of the wine

#### In [120]:

```
#volatile acidity vs quality
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['volatile acidity'])
plt.xlabel('quality')
plt.ylabel('volatile acidity')
plt.show()
```



here volatile acidity is inversely propertional to quality, means as the volatile acidity increases the quality of wine decreases.

# In [121]:

```
#citric acid vs quality
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['citric acid'])
plt.xlabel('quality')
plt.ylabel('citirc acid')
plt.show()
```



#### In [122]:

```
#residual sugar vs quality
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['residual sugar'])
plt.xlabel('quality')
plt.ylabel('residual sugar')
plt.show()
```



#### In [123]:

```
#chlorides vs quality
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['chlorides'])
plt.xlabel('quality')
plt.ylabel('chlorides')
plt.show()
```



in above plot we found that Less Chlorides present in Better quality of wine

#### In [124]:

```
#free sulfer diaoxide vs quality
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['free sulfur dioxide'])
plt.xlabel('quality')
plt.ylabel('free sulfur dioxide')
plt.show()
```



#### In [125]:

```
#total sulfur dioxide vs quality
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['total sulfur dioxide'])
plt.xlabel('quality')
plt.ylabel('total sulfur dioxide')
plt.show()
```



# In [126]:

```
#density vs quality
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['density'])
plt.xlabel('quality')
plt.ylabel('density')
plt.show()
```



#### In [127]:

```
#pH vs quality
plot=plt.figure(figsize=(6,6))
plt.bar(wine_data['quality'],wine_data['pH'])
plt.xlabel('quality')
plt.ylabel('pH')
plt.show()
```



#### In [128]:

```
#sulphate vs quality
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['sulphates'])
plt.xlabel('quality')
plt.ylabel('sulphates')
plt.show()
```



#### In [129]:

```
plot=plt.figure(figsize=(5,5))
plt.bar(wine_data['quality'],wine_data['alcohol'])
plt.xlabel('quality')
plt.ylabel('alcohol')
plt.show()
```



From above we found that as alcohol containing in wine is increases we got better quality of wine, means higher the quantity of alcohol having higher quality of wine.

#### Correlation

#### In [130]:

```
correlation=wine_data.corr()
```

#### In [131]:

```
#constructing a heatmap to undertsnad the correlation between the columns
plt.figure(figsize=(12, 12))
sns.heatmap(correlation, annot=True, square=True, fmt='0.1f', cbar=True, cmap='Blues')
plt.show()
```



```
In [132]:
wine_data['quality'].unique()
Out[132]:
array([5., 6., 7., 4., 8., 3.])
In [133]:
wine_data['quality'].value_counts()
Out[133]:
5.0
       679
6.0
       637
       199
7.0
        53
4.0
8.0
        18
3.0
        10
Name: quality, dtype: int64
In [134]:
wine_data['quality']=[1 if x>=7 else 0 for x in wine_data['quality']]
In [135]:
wine_data['quality'].unique()
Out[135]:
array([0, 1], dtype=int64)
In [136]:
wine_data['quality'].value_counts()
Out[136]:
     1379
      217
Name: quality, dtype: int64
from this we conclude that there are few observation good quality of wines and many observation are available
for wrost quality of wine .
In [138]:
#Separate the data and Label
x=wine_data.drop('quality',axis=1)
y=wine_data['quality']
```

```
In [139]:
```

Χ

#### Out[139]:

|      | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | al |
|------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|----|
| 0    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      |    |
| 1    | 7.8              | 0.880               | 0.00           | 2.6               | 0.098     | 25.0                      | 67.0                       | 0.99680 | 3.20 | 0.68      |    |
| 2    | 7.8              | 0.760               | 0.04           | 2.3               | 0.092     | 15.0                      | 54.0                       | 0.99700 | 3.26 | 0.65      |    |
| 3    | 11.2             | 0.280               | 0.56           | 1.9               | 0.075     | 17.0                      | 60.0                       | 0.99800 | 3.16 | 0.58      |    |
| 4    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      |    |
|      |                  |                     |                |                   |           |                           |                            |         |      |           |    |
| 1594 | 6.2              | 0.600               | 80.0           | 2.0               | 0.090     | 32.0                      | 44.0                       | 0.99490 | 3.52 | 0.58      |    |
| 1595 | 5.9              | 0.550               | 0.10           | 2.2               | 0.062     | 39.0                      | 51.0                       | 0.99512 | 3.52 | 0.76      |    |
| 1596 | 6.3              | 0.510               | 0.13           | 2.3               | 0.076     | 29.0                      | 40.0                       | 0.99574 | 3.52 | 0.75      |    |
| 1597 | 5.9              | 0.645               | 0.12           | 2.0               | 0.075     | 32.0                      | 44.0                       | 0.99547 | 3.52 | 0.71      |    |
| 1598 | 6.0              | 0.310               | 0.47           | 3.6               | 0.067     | 18.0                      | 42.0                       | 0.99549 | 3.52 | 0.66      |    |

1596 rows × 11 columns

**→** 

#### In [140]:

у

#### Out[140]:

```
0 0
1 0
2 0
3 0
4 0
...
1594 0
1595 0
1596 0
1597 0
1598 0
Name: quality, Length: 1596, dtype: int64
```

#### In [141]:

Train and Test split

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
```

```
In [142]:
x_train.shape
Out[142]:
(1276, 11)
In [143]:
x_test.shape
Out[143]:
(320, 11)
In [144]:
y_train.shape
Out[144]:
(1276,)
In [145]:
y_test.shape
Out[145]:
(320,)
Feature Scaling: it is require for to put our features into same scale.we use here standard scaler
In [146]:
from sklearn.preprocessing import StandardScaler
In [147]:
scaler=StandardScaler()
x_train=scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
```

```
In [148]:
```

```
x_train
```

#### Out[148]:

```
array([[-1.27525952, -1.17673516, -0.10937401, ..., 0.26790084, 1.78453028, 0.16600727],
[ 0.18116246, -1.11993923, 0.66111495, ..., 0.26790084, -1.03418363, -0.95377392],
[ 0.99675877, -1.34712296, 0.66111495, ..., 0.26790084, 1.43938164, -0.67382862],
...,
[ -0.63443385, 0.52714281, -1.08532668, ..., 0.26790084, -0.74655976, -0.67382862],
[ -0.86746137, 0.64073468, -1.23942447, ..., 0.26790084, -0.45893589, -0.02062293],
[ 1.28804316, -0.5519799, 0.4042853, ..., 0.26790084, 0.17383662, 0.07269217]])
```

#### In [149]:

```
x_test
```

#### Out[149]:

```
array([[ 6.27433587e-01, -6.27099805e-01, 5.09888328e-01, ..., 2.56940727e-01, -6.08266259e-01, 6.46477640e-02], [-1.06436885e+00, 2.64425855e-01, -1.38558351e+00, ..., 2.56940727e-01, -2.10895991e-01, 1.02461456e+00], [ 8.16908638e-02, -5.02302601e-02, 5.61117296e-01, ..., 2.56940727e-01, -8.73179772e-01, -9.91315712e-01], ..., [ 2.75583021e+00, 2.21242581e-03, 2.66150501e+00, ..., 2.56940727e-01, 7.82529679e-01, 2.46456476e+00], [ 5.72859315e-01, -7.31985177e-01, 7.14804202e-01, ..., 2.56940727e-01, 1.04744319e+00, 4.48634483e-01], [ -1.17351740e+00, 7.88852715e-01, -1.33435454e+00, ..., 2.56940727e-01, 5.40175208e-02, 8.32621201e-01]])
```

Building Machine Learning Model on Our Dataset

Logistic Regression: As it is a classification problem, here we have to find out wine quality is good or bad

#### In [150]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

```
In [151]:
model = LogisticRegression()
model.fit(x_train,y_train)
Out[151]:
LogisticRegression()
In [152]:
y_pred=model.predict(x_test)
In [153]:
accuracy_score(y_test,y_pred)
Out[153]:
0.878125
SVC:Support Vector Classifier
In [154]:
from sklearn import svm
In [155]:
svm = svm.SVC()
In [156]:
svm.fit(x_train,y_train)
Out[156]:
SVC()
In [157]:
y_pred2=svm.predict(x_test)
In [158]:
accuracy_score(y_test,y_pred2)
Out[158]:
0.89375
KNeighbors Classifier
In [159]:
from sklearn.neighbors import KNeighborsClassifier
```

```
In [160]:
knn=KNeighborsClassifier()
In [161]:
knn.fit(x_train,y_train)
Out[161]:
KNeighborsClassifier()
In [162]:
y_pred3=knn.predict(x_test)
In [163]:
accuracy_score(y_test,y_pred3)
Out[163]:
0.89375
Model Training: randomForestClassifier
In [175]:
from sklearn.ensemble import RandomForestClassifier
In [176]:
model=RandomForestClassifier()
model.fit(x_train,y_train)
Out[176]:
RandomForestClassifier()
In [177]:
y_pred4=model.predict(x_test)
In [178]:
accuracy_score(y_test,y_pred4)
Out[178]:
0.909375
In [ ]:
```

#### In [179]:

```
import pandas as pd
```

#### In [180]:

#### In [181]:

final\_data

#### Out[181]:

|   | Models | ACC     |
|---|--------|---------|
| 0 | LR     | 87.8125 |
| 1 | SVC    | 89.3750 |
| 2 | KNN    | 89.3750 |
| 3 | RF     | 90.9375 |

#### In [182]:

import seaborn as sns

#### In [183]:

```
sns.barplot(final_data['Models'],final_data['ACC'])
```

C:\Users\DELL\anaconda3\lib\site-packages\seaborn\\_decorators.py:36: FutureW arning: Pass the following variables as keyword args: x, y. From version 0.1 2, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretati on.

warnings.warn(

#### Out[183]:

<AxesSubplot:xlabel='Models', ylabel='ACC'>



From above study we finally concluded that RandomForest Classifier model is best model to predict the wine quality with 90.93% of accuracy\_score.