Aerospace Propulsion

Lecture 14
Airbreathing Propulsion VI

Airbreathing Propulsion: Part VI

Turbomachinery

- Compressor
- Turbine

Practical Considerations

Summary

- "Machines that exchange energy with a fluid through shaft rotation"
 - Compressors and Turbines
- Axial: Principal flow direction is parallel to turbomachine axis

 Radial: Principal flow direction is perpendicular to turbomachine axis

- Axial Turbomachinery
 - Primary form of turbomachinery in most aircraft applications
 - Relatively small entry area
 - Remains efficient even at high velocities
- Radial Turbomachinery
 - Not as common in aircraft engines, but does appear in slower aircraft
 - Often used in smaller turboprops
 - Flow turning requires larger entry area
 - Increased drag on engine

- Axial turbomachinery relies on a series of airfoil shaped "blades"
- Chord c: Longest linear distance of a blade
- Pitch s: Distance between consecutive blades
- Chord and pitch vary between stages

 Turbomachinery relies on a combination of stators and rotors

Rotors

- Moving blade that exchanges energy with fluid
- Stator
 - Stationary blade that turns flow
- A compressor/turbine "stage" is a single rotor/stator pair

- What happens to flow as it travels through turbomachinery?
 - Compressor
 - Density increasing
 - Flow area decreasing
 - Turbine
 - Density decreasing
 - Flow area increasing
- Conservation of mass
 - Essentially constant axial velocity through compressor/turbine

- Analyze turbomachinery by "unwrapping" it
 - Hub to tip ratio can be as small as 0.5 at lowest pressure stages but 0.9 or greater at high pressure stages
 - Neglect curvature effects
 - Neglect change in radius through a stage

- $U = \omega r \hat{e}_{\theta}$
- ω : rotational velocity
- r: distance from centerline (radius)

- Two reference frames used when analyzing turbomachinery
 - Absolute reference frame (stator frame)
 - Observer in a lab watching the machine run
 - Rotor spins
 - Stator does not move
 - Relative reference frame (rotor frame)
 - Observer attached to spinning rotor
 - Rotor does not move
 - Stator spins

Velocity triangles

• U: Velocity of the rotor (stator frame)

• C: Absolute velocity of flow (stator frame)

• W: Relative velocity of flow (rotor frame)

• C = U + W

 α : Angle of absolute velocity relative to axial direction

• At design point, this is same at entrance/exit angle of stage

 β : Angle of relative velocity relative to axial direction

At design point, this is same at entrance/exit angle of stage

Axial vel-lity Component

• Compressor is constant

Stator removes angular momentum from fluid

•
$$C_{zi} = C_i \cos \alpha_i$$

•
$$W_{zi} = W_i \cos \beta_i$$

• Velocity triangles
$$C_{zi} = C_i \cos \alpha_i$$
• Velocity triangles $C_{zi} = C_i \cos \alpha_i$
• $C_{zi} = C_i \cos \alpha_i$

$$\frac{C_1}{C_2} = \frac{C_0 \times K_2}{C_0 \times K_1}$$

* Axial Velocity:
$$C_{z1} = C_{z2} = C_{z3} = W_{z1} = W_{z2} = W_{z3}$$

Velocity triangles

- $C_{\theta i} = C_i \sin \alpha_i = C_{zi} \tan \alpha_i$
- $W_{\theta i} = W_i \sin \beta_i = W_{zi} \tan \beta_i$
- $C_{\theta i} = W_{\theta i} + U$

(B)=(z; tan X;

$$(o_1 = C_1 \sin \alpha_1 = C_{21} \tan \alpha_1 =) \frac{C_{01}}{C_{02}} = \frac{C_{21}}{C_{22}} \frac{\tan \alpha_1}{\tan \alpha_1}$$

$$(o_2 = C_1 \sin \alpha_1 = C_{21} \tan \alpha_1 =) \frac{C_{01}}{C_{02}} = \frac{C_{21}}{C_{22}} \frac{\tan \alpha_1}{\tan \alpha_1}$$

•
$$\frac{C_{\theta 1}}{C_{\theta 2}} = \frac{\tan \alpha_1}{\tan \alpha_2}$$
 and $\frac{W_{\theta 1}}{W_{\theta 2}} = \frac{\tan \beta_1}{\tan \beta_2}$

- Torque Both rptor and stator apply a torque to the flow (angular momentum)
 - $au_{in} = \dot{m}(r_2 C_{\theta 2} r_1 C_{\theta 1}) = \dot{m}r(C_{\theta 2} C_{\theta 1}) = \dot{m}rC_z(\tan \beta_2 \tan \beta_1)$
- Power

Torque and Power

- Only the rotor applies power to the flow
- $\dot{W}_{in} = \dot{m}_{in}\omega = \dot{m}r\omega(C_{\theta 2} C_{\theta 1}) = \dot{m}U(C_{\theta 2} C_{\theta 1})$

- Torque and Power
 - · Torque (7= fd = D Angular Momentum) Angular Momentum = MrV

 - Both rotor and stator apply a torque to the flow (angular momentum)
 - $\tau_{in} = \dot{m}(r_2C_{\theta 2} r_1C_{\theta 1}) = \dot{m}r(C_{\theta 2} C_{\theta 1}) = \dot{m}rC_z(\tan\beta_2 \tan\beta_1)$

Tin=Mr (= (tankz-tanki)

TinimirCz(tapz-tapi)

- Power $(\dot{w} = FV = Tw)$
 - Only the rotor applies power to the flow
 - $\dot{W}_{in} = \tau_{in}\omega = \dot{m}r\omega(C_{\theta 2} C_{\theta 1}) = \dot{m}U(C_{\theta 2} C_{\theta 1})$

Cai= Wai + U Czitanki = Wzitanßi + U

Cztaxz=Wztantz+U

tan Xz = tapz+ U

Stagnation Pressure

Applying first law and combining with our power equation

$$\dot{W}_{12} = \dot{m}(h_{t2} - h_{t1})$$

$$() (3) \cdot \frac{p_{t3}}{p_{t1}} = \left[1 + \eta_{cs} \frac{U}{c_p T_{t1}} (C_{\theta 2} - C_{\theta 1}) \right]^{\frac{\gamma}{\gamma - 1}}$$

$$4 \frac{1+3}{1+1} = 1 + \frac{0}{4^{1}r_{1}} \left(\left(*^{2} - (*) \right) \right)$$

$$\frac{T+35}{T+1} = 1 + Mcs \left(\frac{T+3}{T+1} - 1 \right)$$

- Stagnation Temperature
 - Previously derived stagnation temperature

change across an arbitrary compressor
$$\cdot \frac{T_{t3}}{T_{t1}} = 1 + \frac{1}{\eta_{cs}} \left(\frac{p_{t3}}{p_{t1}} \frac{\gamma - 1}{\gamma} - 1 \right)$$
 and the style of the style

- Each compressor stage
 - Increases stagnation pressure
 - Increases stagnation temperature
 - Does not change velocity (approximately)
 - Requires work input

Turbine

- Turbine extracts energy from flow
 - Stator adds angular momentum to fluid
 - Rotor removes angular momentum and power from fluid

• Axial velocity:
$$C_{z1} = C_{z2} = C_{z3} = W_{z1} = W_{z2} = W_{z3}$$

- $C_{zi} = C_i \cos \alpha_i$
- $W_{zi} = W_i \cos \beta_i$
- Tangential velocity
 - $C_{\theta i} = C_i \sin \alpha_i = C_{zi} \tan \alpha_i$
 - $W_{\theta i} = W_i \sin \beta_i = W_{zi} \tan \beta_i$
 - $C_{\theta i} = W_{\theta i} + U$

State first Stator accelerates flu (int) So notw can extract the every

Turbine

- Torque and Power
 - Torque

•
$$\tau_{out} = \dot{m}r(C_{\theta 2} - C_{\theta 3})$$

Power

•
$$\dot{W}_{out} = \tau_{out}\omega = \dot{m}U(C_{\theta 2} - C_{\theta 3})$$

- Stagnation Pressure
 - First law + power

•
$$\frac{p_{t3}}{p_{t1}} = \left[1 - \frac{1}{\eta_{ts}} \frac{U}{c_p T_{t1}} (C_{\theta 2} - C_{\theta 3})\right]^{\frac{\gamma}{\gamma - 1}}$$

$$h_{+,-}h_{+3} = (h_{+}h_{+}h_{+}h_{+})$$

$$mcp(T_{+,-}T_{+3} = mU(C_{07} - C_{03}))$$

$$T_{+3} = T_{+,-} - \frac{U}{cp}((a_{2} - C_{03}))$$

$$M_{+5} = \frac{h_{+,-}h_{+3}}{h_{+,-}h_{+3}}$$

Practical Considerations

- Boundary layer separation
 - Detachment of a boundary layer from surface leading to a wake
 - Highly non-isentropic and inefficient
 - Leads to "stall"
 - Promoted by large turning angles
 - Promoted by increasing pressure and inhibited by decreasing pressure
 - Compressor: Pressure increases each stage
 - Turbine: Pressure decreases each stage

Practical Considerations

- Compressor stall
 - Can only handle small pressure jump and turning angle each stage
 - Many compressor stages
- Turbine stall
 - Can handle large pressure jumps and turning angles each stage
 - Few turbine stages
- Turbine blade cooling
 - To be discussed after combustors

Summary

- In the stator reference frame:
 - Stator and rotor turn flow (apply a torque)
 - Only rotor exchanges power
 - Stagnation temperature and pressure constant across (lossless) stator
 - Stagnation temperature and pressure change across rotor
- Compressor vs. Turbine
 - Stagnation pressure/temperature increase in compressor stage
 - Stagnation pressure/temperature decrease in turbine stage
 - Compressor order is rotor-stator
 - Turbine order is stator-rotor