Lecture 3: Initiality of IPL

Lecturer: Max S. New Scribe: Ayan Chowdhury

September 3, 2025

Definition 1 (BiHeyting Algebra). A poset with finite meets, finite joins, and Heyting implication.

Definition 2 (BiHeyting Pre-Algebra). A preorder with specified finite meets, finite joins, and Heyting implication. A specified meet/join/implication is a binary function satisfying the universal property of meet/join/implication. There could be other elements satisfying the universal property chosen to be outputs of our specified functions. However, our functions are unique up to order equivalence.

Theorem 1 (The Soundness Theorem). Fix a signature Σ . Given an interpretation i of Σ in a biHeyting pre-algebra P, if $\Gamma \vdash A$ in $IPL(\Sigma)$ then $[[\Gamma]] \leq [[A]]$ in P, where $[[\cdot]]$ is defined by

$$[[X]] = i(x),$$
 $[[A \land B]] = [[A]] \land [[B]],$ $[[A \lor B]] = [[A]] \lor [[B]],$ \cdots

Proof. This is done by induction on deduction rules.

Theorem 2 (The Completeness Theorem). Fix a signature Σ . We have that $\Gamma \vdash A$ is provable in $IPL(\Sigma)$ if $[[\Gamma]] \leq [[A]]$ in all biHeyting pre-algebras.

Proof. Let us assume $[[\Gamma]] \leq [[A]]$ in all biHeyting pre-algebras. We have that the propositions of IPL form a biHeyting pre-algebra. It follows that $[[\Gamma]] \vdash A$. If $\Gamma = B_1, \dots, B_n$, then we have that $[[B_1]], \dots, [[B_n]] \vdash A$, which is equivalent to $B_1, \dots, B_n \vdash A$, so we have $\Gamma \vdash A$.

Definition 3 (Monotone function). Let P and Q be pre-orders. A monotone function $f: P \to Q$ satisfies if $x \leq y$ then $f(x) \leq f(y)$.

Our denotation function $[[\cdot]]: \mathrm{IPL}(\Sigma) \to P$, where P is a biHeyting pre-algebra, is an example of a monotone function.

Definition 4 (Isomorphism). Let P and Q be pre-orders. An isomorphism $f: P \to Q$ is a monotone function with a monotone inverse.

Section 0 2

Functions fail to be isomorphisms if they are not bijective or if the inverse fails to preserve ordering.

Let us consider one particularly interesting non-example of an isomorphism. Let P denote the pre-order of all finite sets ordered by cardinality. Let $\mathbb N$ denote the natural numbers with its usual ordering. There exists a natural monotone function from P to $\mathbb N$ given by taking the cardinality of the set. There also exists a natural monotone function from $\mathbb N$ to P sending n to $\{a \in \mathbb N \mid a < n\}$. However, these fail to form an isomorphism as many sets in P get sent to the same set in $\mathbb N$. This motivates the definition of an equivalence of preorders.

Definition 5 (Equivalence of pre-orders). An equivalence between P and Q is a monotone function $f: P \to Q$ and a monotone function $f^{-1}: Q \to P$ such that $f^{-1}(f(p))$ is order equivalent to p and $f(f^{-1}(q))$ is order equivalent to q.

We will denote the equivalence relation of order equivalence with $\geq \leq$.

Note that for any pre-order we have that P is equivalent to $P/ \ge \le$ (though we need the Axiom of Choice).

Definition 6 (biHeyting homomorphism). Let P and Q be biHeyting pre-algebras.

A strict biHeyting homomorphism is a monotone function from P to Q which preserves finite specified meets, finite specified joins, and specified Heyting implication.

A weak biHeyting homomorphism is a monotone function from P to Q which up to isomorphism preserves finite meets, finite joins, and Heyting implication.

Theorem 3 (The Initiality Theorem). Fix a signature Σ . We have that $\mathrm{IPL}(\Sigma)$ is a biHeyting pre-algebra, with the natural interpretation. For any biHeyting pre-algebra P with interpretation i of Σ , there exists an essentially unique weak homomorphism that is also a unique strict homomorphism from $\mathrm{IPL}(\Sigma)$ to P that preserves the interpretation $[[X]]_i = i(X)$. This can be phrased as

there exists such a $[[\cdot]]_i$ which is an essentially weak homomorphism and a unique strict homomorphism which makes this diagram commute.

Proof. We can define $[[\cdot]]_i$ inductively, as it is defined on Σ_0 , and thus extends to a map on all of $IPL(\Sigma)$.

Similarly we can show that any such map f is a unique strict homomorphism. For any $X \in \Sigma_0$ we have that f(X) = i(X). By induction, as f preserves finite meets, finite joins, and Heyting implication, it follows that $f = [[\cdot]]_i$. A similar induction gives us that f is a an essentially weak homomorphism.

We say that $IPL(\Sigma)$ is initial among all biHeyting pre-algebras with a choice of interpretation over Σ .

Section 0

Theorem 4. Consider if we have another initial object, $F(\Sigma)$. That is $F(\Sigma)$ satisfies our initiality theorem. Then we have that $IPL(\Sigma)$ is uniquely equivalent to $F(\Sigma)$.

Proof. We have the existence of a unique up to order equivalence weak homomorphism from $IPL(\Sigma)$ to $F(\Sigma)$, denoted $[[\cdot]]_i$. We also have the existence unique up to order equivalence weak homomorphism from $IPL(\Sigma)$ to $F(\Sigma)$, denoted $((\cdot))_i$.

We can show that weak biHeyting pre-algebra homomorphism compose. We can also show that the identity is a weak biHeyting pre-algebra homomorphism. It would then follow that $(([[\cdot]]_i))_i$ and $[[((\cdot))_i]]_i$ are biHeyting pre-algebra homomorphisms from $IPL(\Sigma)$ to $IPL(\Sigma)$ and $F(\Sigma)$ and $F(\Sigma)$ respectively. As the identity is a biHeyting pre-algebra homomorphism, and thus the unique such up to order-equivalence, we have that these maps are order-equivalent to the identity. Therefore $IPL(\Sigma)$ and $F(\Sigma)$ are equivalent.

As our homomorphisms from the universal property are unique, it follows that such an equivalence is unique up to order equivalence. \Box

Note that the conditions that our homomorphisms compose and the identity is a homomorphism are exactly the conditions needed of a category.

Theorem 5. Booleans, denoted \mathbb{B} are weakly initial for biHeyting pre-algebras on \emptyset .

Proof. Let P be a biHeyting pre-algebra. We can construct a mapping $f_p : \mathbb{B} \to P$ where $f_p(0) = \bot_P$ and $f_p(1) = \top_P$. Let us show that such a mapping is a weak biHeyting homomorphism. We have that \bot and \top are preserved. For each operation, we can prove by cases on the values in \mathbb{B} and the rules of boolean algebra that operations are preserved up to order equivalence under f_p . Thus f_p is indeed a weak biHeyting homomorphism, so we have that \mathbb{B} is weakly initial.

Note that in general our homomorphism will not be strict if P is a true pre-order and there are multiple \top and \bot elements. For example the map to IPL sends $0 \land 0 = 0$ to \bot rather than $\bot \land \bot$.

Theorem 6. In IPL(\varnothing) whether $\Gamma \vdash A$ is provable is decidable.

Proof. By theorem 4 and 5 we have that $IPL(\emptyset)$ is equivalent to \mathbb{B} . Thus for any $\Gamma \vdash A$ in $IPL(\emptyset)$ we can map to \mathbb{B} , determine in finite time if $[[\Gamma]] \leq [[A]]$ using boolean rules. Mapping back with f_p then tells us that $f_p([[\Gamma]]) \vdash f_p([[A]])$ which by equivalence gives us $\Gamma \vdash A$.

This shows that while IPL does not in general admit the law of excluded middle or double negation elimination, $IPL(\emptyset)$ is equivalent to \mathbb{B} , giving us:

Corollary 1. The law of excluded middle and double negation elimination are admissable in $IPL(\emptyset)$.