Data Management Systems Introduction to Design Theory

Matteo Devigili

May 31st, 2022

Agenda

- ► Functional Dependencies
- Data Anomalies
- ► Normal Forms:
 - 1. 1NF
 - 2. BCNF
 - 3. 3NF

Functional dependencies

"If two tuples of R agree on all of the attributes A_1, A_2, \ldots, A_n then they must also agree on all of another list of attributes B_1, B_2, \ldots, B_m . We write this FD formally as $A_1, A_2, \ldots, A_n \to B_1, B_2, \ldots, B_m$ and say that:

 $ightharpoonup A_1, A_2, ..., A_n$ functionally determine $B_1, B_2, ..., B_m$ "

Garcia-Molina, Ullman, Widom 2008

Name	Year	Weeks	Degree
NLP	2021/2022	7	Business Analytics
DMS	2021/2022	6	Business Analytics
DMS	2021/2022	6	Actuarial Science
DMS	2021/2022	6	Actuarial Management
D-Viz	2021/2022	6	Business Analytics
D-Viz	2021/2022	6	Actuarial Management
DMS	2020/2021	2	Business Analytics
D-Viz	2020/2021	4	Business Analytics
	<u>-</u>		

What is the **FD**?

Name	Year	Weeks	Degree
NLP	2021/2022	7	Business Analytics
DMS	2021/2022	6	Business Analytics
DMS	2021/2022	6	Actuarial Science
DMS	2021/2022	6	Actuarial Management
D-Viz	2021/2022	6	Business Analytics
D-Viz	2021/2022	6	Actuarial Management
DMS	2020/2021	2	Business Analytics
D-Viz	2020/2021	4	Business Analytics

 $\textit{name year} \rightarrow \textit{weeks}$

Name	Year	Weeks	Degree
NLP	2021/2022	7	Business Analytics
DMS	2021/2022	6	Business Analytics
DMS	2021/2022	6	Actuarial Science
DMS	2021/2022	6	Actuarial Management
D-Viz	2021/2022	6	Business Analytics
D-Viz	2021/2022	6	Actuarial Management
DMS	2020/2021	2	Business Analytics
D-Viz	2020/2021	4	Business Analytics
	· · · · · · · · · · · · · · · · · · ·		

What about: $name\ year \rightarrow degree$

Key

"We say a set of one or more attributes $\{A_1, A_2, \dots, A_n\}$ is a key for a relation R if:

- 1. Those attributes functionally determine all other attributes of the relation. That is, it is impossible for two distinct tuples of R to agree on all of A_1, A_2, \ldots, A_n .
- 2. No proper subset of $\{A_1, A_2, ..., A_n\}$ functionally determines all other attributes of R; i.e., a key must be **minimal**."

Garcia-Molina, Ullman, Widom 2008

Superkey

A Superkey satisfies the first condition:

1. Those attributes functionally determine all other attributes of the relation. That is, it is impossible for two distinct tuples of R to agree on all of A_1, A_2, \ldots, A_n ."

Garcia-Molina, Ullman, Widom 2008

Name	Year	Weeks	Degree	Count
NLP	2021/2022	7	Business Analytics	57
DMS	2021/2022	6	Business Analytics	45
DMS	2021/2022	6	Actuarial Science	15
DMS	2021/2022	6	Actuarial Management	9
D-Viz	2021/2022	6	Business Analytics	58
D-Viz	2021/2022	6	Actuarial Management	19
DMS	2020/2021	2	Business Analytics	10
D-Viz	2020/2021	4	Business Analytics	80

the key: $\{name, year, degree\}$ possible superkey: $\{name, year, weeks, degree\}$

Functional Dependencies

So what?

- Look for FDs;
- Use FDs to design better relation schemas;
- Pay attention to local FDs!

Data Anomalies

- Redundancy: unnecessary repetition of information;
- Update Anomalies: we may replace information of a tuple, but forget about others;
- ▶ Deletion Anomalies: after deleting, we may accidentally lose some other information.

Example Redundancy

Name	Year	Term	Weeks	Degree
NLP	2021/2022	Т3	7	Business Analytics
DMS	2021/2022	T3	6	Business Analytics
DMS	2021/2022	T3	6	Actuarial Science
DMS	2021/2022	T3	6	Actuarial Management
D-Viz	2021/2022	T1	6	Business Analytics
D-Viz	2021/2022	T1	6	Actuarial Management
DMS	2020/2021	T2	2	Business Analytics
D-Viz	2020/2021	T2	4	Business Analytics

Example Update Anomalies

Name	Year	Term	Weeks	Degree
NLP	2021/2022	Т3	7	Business Analytics
DMS	2021/2022	Т3	5	Business Analytics
DMS	2021/2022	Т3	6	Actuarial Science
DMS	2021/2022	Т3	6	Actuarial Management
D-Viz	2021/2022	T1	6	Business Analytics
D-Viz	2021/2022	T1	6	Actuarial Management
DMS	2020/2021	T2	2	Business Analytics
D-Viz	2020/2021	T2	4	Business Analytics

Example Deletion Anomalies

Name	Year	Term	Weeks	Degree
	20/21///20/22	7/3	7	Business/Amalytics
D/M/\$/	20/21///20/22	77/3/	ø	Blusiness /Analytics
DMS	2021/2022	T3	6	Actuarial Science
DMS	2021/2022	T3	6	Actuarial Management
D/-/V/i,z	20/21///20/22	7/1/	Ø	Bylsiniess/Aynalytics
D-Viz	2021/2022	T1	6	Actuarial Management
D/M/\$/	20/20///20/21	7//2/	2	Bylsiness/Aynalytics
D//V/iz	20/20///2021	7/2	4	Bylsyness/Aynalytics

Decomposition

A possible decomposition:

Name	Year	Term	Weeks
NLP	2021/2022	T3	7
DMS	2021/2022	T3	6
D-Viz	2021/2022	T1	6
DMS	2020/2021	T2	2
D-Viz	2020/2021	T2	4

Name	Year	Degree
NLP	2021/2022	Business Analytics
DMS	2021/2022	Business Analytics
DMS	2021/2022	Actuarial Science
DMS	2021/2022	Actuarial Management
D-Viz	2021/2022	Business Analytics
D-Viz	2021/2022	Actuarial Management
DMS	2020/2021	Business Analytics
D-Viz	2020/2021	Business Analytics

References

- ► Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom. Database Systems: The Complete Book, Pearson, 2008.
- Elmasri, Ramez, and Shamkant B. Navathe. Fundamentals of Database Systems, Global Edition, Pearson Education Limited, 2016.