Capítulo 3: CÁLCULO PROPOSICIONAL

SINTAXE E SEMÂNTICA

3.1 - Gramática do Cálculo Proposicional (Sintaxe)

i) As letras proposicionais são fórmulas bem formadas (ditas fórmulas simples ou atômicas).

ii) Se α e β são fórmulas bem formadas, então ($\alpha \land \beta$), ($\alpha \lor \beta$), ($\alpha \to \beta$), ($\alpha \leftrightarrow \beta$), (α

Interpretação

 A semântica do Cálculo Proposicional consiste na interpretação de suas fórmulas.

Ex1 α : $p \rightarrow (q \ V \ r)$

Ex1 α : $p \rightarrow (q \ V \ r)$ $p \quad q \quad r \quad q \ V \quad p \rightarrow (q \ V \ r)$ $V \quad F \quad F \quad F$

◆ Interpretação

.

Ex1
$$\alpha$$
: $p \rightarrow (q \ V \ r)$

Concluimos assim, que α é **falsa** segundo essa interpretação

Interpretação

Ex1
$$\alpha$$
: $p \rightarrow (q \lor r)$

Concluimos assim, que a é **falsa** segundo essa interpretação

Uma interpretação para a fórmula "α" consiste em atribuir
 valores lógicos V ou F às fórmulas atômicas componentes de α.

◆ Interpretação

.

Ex1
$$\alpha$$
: $p \rightarrow (q \ V \ r)$

Concluimos assim, que α é **verdadeira** segundo essa interpretação

Obs: α é um enunciado (fórmula), satisfatível e inválida.

	<u>p</u>	q	r	q V r	$p \rightarrow (q \ V \ r)$
Interpretação 1 →	V	F	F	F	F
Interpretação 2 →	F	V	F	V	V
Interpretação 3 →	F	F	V	V	V
Interpretação 4 →	F	V	V	V	V
Interpretação 5 →	V	F	V	V	V
Interpretação 6 →	V	V	F	V	V
Interpretação 7 →	V	V	V	V	V
Interpretação 8 →	F	F	F	F	V

Interpretação

		1	p V q			$p \leftrightarrow q$
l1 →	V	V	V	V	V	V
12 →	V	F	V	V	F	F
I3 → I4 →	F	V	V			F
I4 →	F	F	F			V

Semântica

Consequência lógica

Def.:

 β é **consequência lógica** de α 1, α 2, quando cada interpretação I que torna simultaneamente, α 1, α 2, verdadeira, torna β verdadeira.

Semântica

Consequência lógica

Def.:

 β é **consequência lógica** de α 1, α 2, quando cada interpretação l que torna α 1, α 2 verdadeira, torna β verdadeira.

$$\alpha$$
1, α 2 \models β

OBS: Diz-se também, que β segue-se logicamente de α_1 , α_2 .

Ex1. seja α_1 : $p \rightarrow q$; α_2 : $q \in \beta$: $\sim p$. Logo, podemos afirmar que

$$\alpha_1, \alpha_2 \models \beta$$
?

Ex1. seja α_1 : $p \rightarrow q$; α_2 : $q \in \beta$: $\sim p$. Logo, podemos afirmar que

$$\alpha_1, \alpha_2 \models \beta$$
?

		α1	α2 β	
F, pois há ao menos uma		${p} \rightarrow q$	d ~p	p
I1 interpretação, a saber, I1 que	> 11	V	VF	V
torna, α1 e α2, V , mas torna β, F	> 2	F	F F	V
l3 Logo, α1, α2 ⊭ β	> 13	V	VV	F
· 4	> 4	V	F V	F

Dai, $\alpha \models \beta$

Ex2. seja α : $p \land q e \beta$: $p \lor q$. Logo,

p	q	p∧q	p V q
р V V F	V	V	V > I1
V	F	F	V ➤ I2
F	V	F	V > 13
F	F	F	V > 14

Ex3. seja $\alpha_1: p \rightarrow q$; $\alpha_2: q \rightarrow r$; $\alpha_3: p \in \beta: r$.

Podemos afirmar que α_1 ; α_2 ; $\alpha_3 \models \beta$?

Outra forma...

٧

٧

V

Logo, conclui-se que α 1; α 2; α 3 \models β , pois toda interpretação, a saber I7, que torna α 1, α 2 e α 3 simultaneamente V, então torna β também V.

Podemos afirmar que o enuciado abaixo é verdadeiro?

 α 1; α 2; α 3 $\models \beta$ se e somente se (α 1 $\land \alpha$ 2 $\land \alpha$ 3) $\rightarrow \beta$ é uma fórmula válida.

- 1. $\alpha \wedge \alpha \equiv \alpha$
- 2. $\alpha \vee \alpha \equiv \alpha$
- 3. $\alpha \wedge \beta \equiv \beta \wedge \alpha$
- 4. $\alpha \vee \beta \equiv \beta \vee \alpha$
- 5. $(\alpha \land \beta) \land \delta \equiv \alpha \land (\beta \land \delta)$
- 6. $(\alpha \lor \beta) \lor \delta \equiv \alpha \lor (\beta \lor \delta)$
- 7. $\alpha \wedge (\beta \vee \delta) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \delta)$
- 8. $\alpha \vee (\beta \wedge \delta) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \delta)$

12. $\sim (\alpha \land \beta) \equiv \sim \alpha \lor \sim \beta$

- 9. $\alpha \rightarrow \beta \equiv \alpha \vee \beta$
- 10. $\sim \alpha \equiv \alpha$
- 11. $\alpha \leftrightarrow \beta \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$

- 16. $(\alpha \land \beta) \rightarrow \delta \equiv \alpha \rightarrow (\beta \rightarrow \delta)$
 - 17. $\alpha \rightarrow \beta \equiv {}^{\sim}\beta \rightarrow {}^{\sim}\alpha$
 - 18. $\alpha \rightarrow (\beta \land \delta) \equiv (\alpha \rightarrow \beta) \land (\alpha \rightarrow \delta)$

13. $\sim (\alpha \lor \beta) \equiv \sim \alpha \land \sim \beta$

14. $\sim (\alpha \rightarrow \beta) \equiv \alpha \land \sim \beta$

15. $\sim (\alpha \land \beta) \equiv \alpha \rightarrow \sim \beta$

- 19. $(\alpha \lor \beta) \rightarrow \delta \equiv (\alpha \rightarrow \delta) \land (\beta \rightarrow \delta)$
- 20. $\alpha \wedge \mathbf{V} \equiv \alpha$
- 21. $\alpha \wedge \mathbf{F} \equiv \mathbf{F}$

23,
$$\alpha \lor \mathbf{F} \equiv \alpha$$

24.
$$\alpha \wedge \neg \alpha \equiv \mathbf{V}$$

25.
$$\alpha \lor \sim \alpha \equiv \mathbf{F}$$

26.
$$(\alpha \land \beta) \lor \alpha \equiv \alpha$$

27.
$$(\alpha \lor \beta) \land \alpha \equiv \alpha$$

Exercício:

 Determine um enunciado equivalente ao enunciado ~p V (~q V r) onde ocorre apenas o conectivo lógico →.

Exercício:

 Determine um enunciado equivalente ao enunciado ~p V (~q V r) onde ocorre apenas o conectivo lógico →.

~p
$$\vee$$
 (~q \vee r)
Eq 9 \equiv
p \rightarrow (~q \vee r)
Eq 9 \equiv
p \rightarrow (q \rightarrow r)

α está na forma normal conjuntiva (FNC) quando α está na forma

$$\beta 1 \wedge \cdots \wedge \beta n$$

Onde, (n ≥ 1), e cada βi é uma

disjunção de literais, ou um literal, 1 ≤ i ≤ n.

Literais

nis disjunção de literiais

p V ~q

~p

p∨~q∨r

Não é literal

não são disjunções de literiais ~(p ∨ ~q ∨ r)

~~**r**

P ∨ ~~q ∨ r

Determine um enunciado na FNC equivalente ao enunciado

$$p \land (q \rightarrow \sim (r \land s))$$

Determine um enunciado na FNC equivalente ao enunciado

$$p \wedge (q \rightarrow (r \wedge s))$$

$$Equiv 9 \equiv$$

$$p \wedge (\neg q \vee (r \wedge s))$$

$$Equiv 13 \equiv$$

$$p \wedge (\neg q \vee (r \vee s))$$

$$\beta 1 \qquad \beta 2$$

Determine um enunciado na FNC, equivalente ao enunciado

$$p \lor (q \land (s \rightarrow r))$$

Determine um enunciado na FNC, equivalente ao enunciado

$$p \lor (q \land (s \rightarrow r))$$
Equiv 9 \equiv

$$p \lor (q \land (\sim s \lor r))$$
Equiv 8 \equiv
FNC \Rightarrow $(p \lor q) \land (p \lor (\sim s \lor r))$

$$\beta 1 \qquad \beta 2$$

EXERCÍCIOS

- Encontre um enunciado equivalente a p→(q→r) onde só ocorram os conectivos ~ e
- Verifique quais dos enunciados abaixo são equivalentes ao enunciado ~(p V ~q)→(q→r)
- a. $\sim (p \rightarrow q) \rightarrow (\sim q \lor r)$
- b. $(\sim p \land q) \rightarrow \sim (q \land \sim r)$
- c. $\sim (\sim q \vee r) \rightarrow (q \rightarrow p)$
- d. $q \rightarrow (p \ V \ r)$

EXERCÍCIOS

3. Encontre um enunciado **s** que implique logicamente o enunciado $\sim (\sim p \land p) \rightarrow (q \lor r)$