

Reinforcement Learning

Course

Immediate vs Future Rewards V Unknown Models

Partial Observability Other Agents

reset! (env)

s', r, done = step! (env, a)

s', r + (6(4, a, w)

Break out Rooms

5, A

How would you solve this problem

Genetic Algorithm $\pi(3) = f(\Theta, 5)$ $\pi[5]$

gradually take fewer random actions

-> Understand R

trade off exploration/
explorit

-Thompson Sampling
T, R

Challenges

wr

1. Exploitation us Explore
2. Credit Assignment
3. Generalization
Learning Curve Episode starter starte
Starting St
average
return
Levin Q,TL
1) Based/wald Free
Experience Model Van Model III
Tabular Max. Likelihood Model-Based RL
N[a][s,s]
NE Zero 5
p = zero s p[a][s]
5 km 50
re random policy
1000
a← rand(A) wp. € , T(5) ow.
s', r = step! (env, a)
N[a][s,s']+=1
0 [3] +=r 7
Thate it a Neally, 5) - Head'
TR > ENDICISY
REJ[s] + P[F][s]
S. NEJ[s,s']
{ 74 solve (T,R)
5 ← 5'