Armazenamento

Problemas

- Os dispositivos de armazenamento avariam
 - É preciso minimizar a falha de discos ou a perda de informação
 - <u>É uma certeza</u> para qualquer dispositivo! Resta saber quando.

- O acesso mecânico à informação é lento (Discos)
 - Tempo = tempo de translação + tempo de rotação
 - Mais informação -> maior estrangulamento

Problemas

- Dispositivos sólidos (SSD) possuem número de escritas reduzidas
 - 2000—3000 escritas para tecnologia MLC

- Existem eventos que levam à perda total de dados
 - Incêndios, roubos, "picos de energia", inundações, erros do utilizador, ataques informáticos....

- Pode ser necessário distribuir dados de forma inteligente
 - Para maximizar desempenho
 - Para reduzir custos

Soluções

- Cópias de segurança (backups)
 - No local
 - Remotos
- Armazenamento Redundante
 - RAID
 - Outros: ZFS
- Discos mais caros, ambientes mais controlados
 - SLED (Single Large Expensive Disks)
 - Discos "Enterprise grade"
 - Controlo de Temperatura e humidade
- Infraestruturas dedicadas de armazenamento
 - Ponto único de aplicação de políticas

Backups

Cópias periódicas dos dados

- Imagem do estado do armazenamento naquele momento
- Cópias permitem repor ficheiros para versões anteriores
- Por vezes cifradas

Completos: Imagem completa da informação

- Recuperação rápida
- Necessário muito espaço

Diferenciais: Diferenças desde o último backup completo

- Recuperação mais lenta com redução de espaço
- Diferenciais diários vão aumentando progressivamente de tamanho

Incrementais: Diferenças desde o último backup

- Recuperação muito mais lenta
 - ► Reconstrução incremental desde o último backup completo
- Grande eficiência de espaço

Backups

- Não é armazenar informação num disco adicional
 - externo, remoto
- Considera políticas, mecanismos e processos para realizar, manter e recuperar <u>cópias</u> de informação
 - Que resista a várias situações
 - Apenas usado em situações de catástrofe
 - Que considere a realização da cópia, armazenamento e restauro
- Enquadramento legal obriga a cuidado especial
 - Podem existir dados pessoais
 - Necessitam de ter uma política de retenção
 - Backups têm de expirar

Backups: Tipo Diferencial

Differential

http://www.teammead.co.uk/

Backups: Tipo Incremental

Incremental

http://www.teammead.co.uk/

Backups: Tipo Incremental

		Totals			Existing Files		New Files	
Backup#	Туре	#Files	Size/MB	MB/sec	#Files	Size/MB	#Files	Size/MB
<u>657</u>	full	143905	7407.3	2.07	143870	7360.4	59	46.9
<u>658</u>	incr	47	47.6	0.03	33	40.0	29	7.6
<u>659</u>	incr	153	39.5	0.02	132	32.1	36	7.4
<u>660</u>	incr	118	52.2	0.03	78	12.1	70	40.1
<u>661</u>	incr	47	47.4	0.02	32	40.0	32	7.4
<u>662</u>	incr	47	47.5	0.02	33	40.0	29	7.5
<u>663</u>	incr	47	47.5	0.01	33	40.2	29	7.3
<u>664</u>	incr	232	53.3	0.03	211	46.0	36	7.4
<u>665</u>	incr	91	51.4	0.05	35	1.2	85	50.2
<u>666</u>	incr	89	45.7	0.05	71	38.0	37	7.6
<u>667</u>	incr	47	47.7	0.02	18	9.2	44	38.5
<u>668</u>	incr	47	47.8	0.02	21	34.0	41	13.8
<u>669</u>	full	143937	7407.8	3.05	143824	7396.8	185	11.2
<u>670</u>	incr	95	35.0	0.04	68	27.0	54	8.0

Backups: Compressão

- Compressão por algoritmos sem perdas
 - Ex: zip
- Cópias seletivas da informação
 - Apenas os ficheiros que foram alterados (inc, ou diff)
- Deduplicação
 - Armazenar apenas ficheiros/blocos únicos
 - Cópias totais com processo de redução posterior
 - De blocos usando formatos de imagens adequados
 - De ficheiros através de ligações (ex, hardlinks)

Backups: Compressão e Deduplicação

			Existing Files			New Files			
Backup#	Туре	Comp Level	Size/MB	Comp/MB	Comp	Size/MB	Comp/MB	Comp	
<u>657</u>	full	3	7360.4	6244.5	15.2%	46.9	9.4	80.0%	
<u>658</u>	incr	3	40.0	9.0	77.6%	7.6	1.7	76.9%	
<u>659</u>	incr	3	32.1	8.6	73.1%	7.4	1.7	77.3%	
<u>660</u>	incr	3	12.1	3.2	74.0%	40.1	9.0	77.6%	
<u>661</u>	incr	3	40.0	8.3	79.4%	7.4	1.7	76.7%	
<u>662</u>	incr	3	40.0	8.8	77.9%	7.5	1.7	76.8%	
<u>663</u>	incr	3	40.2	8.3	79.3%	7.3	1.7	77.2%	
<u>664</u>	incr	3	46.0	12.3	73.2%	7.4	1.7	77.1%	
<u>665</u>	incr	3	1.2	0.4	68.2%	50.2	10.5	79.2%	
<u>666</u>	incr	3	38.0	9.1	76.0%	7.6	1.9	74.8%	
<u>667</u>	incr	3	9.2	1.2	86.5%	38.5	8.4	78.2%	
<u>668</u>	incr	3	34.0	7.2	78.9%	13.8	3.4	75.4%	
<u>669</u>	full	3	7396.8	6251.1	15.5%	11.2	2.9	74.5%	
<u>670</u>	incr	3	27.0	6.5	76.0%	8.0	2.0	75.7%	

```
$ du -hs 669
6.2G 669
$ du -hs 657
6.2G 657
```

```
$ du -hs 669 657
6.2G 669
106M 657
6.3G total
```

du ignora hardlinks repetidos

Backups: Níveis

Aplicacional

- Extração dos dados da aplicação (ex mysqldump).
- Representa uma vista consistente para a aplicação
 - ► Pode ser necessário bloquear o estado da aplicação (ex. escritas na DB)
- Necessário repetir para todas as aplicações existentes

Ficheiros

- Cópia dos ficheiros individuais
- Permite copiar qualquer aplicação
- Estado guardado pode ser inconsistente
 - ► Ex. Ficheiros abertos com dados não escritos para o disco

Backups: Níveis

Sistema de Ficheiros

- Mecanismos próprios do sistema de ficheiros
- Criação de registos de alterações periódicos
 - Snapshots temporais
- Pode permitir recuperar ficheiros individuais ou não

Blocos

- Cópia dos blocos do suporte de armazenamento
- Agnóstico do sistema de ficheiros e sistema operativo
- Pode ser realizado pela infraestrutura de armazenamento
 - Transparente e sem impacto

Backups: Local da Cópia

No mesmo volume ou sistema

- Permitem aos utilizadores rapidamente recuperarem informação
- Protege contra alterações/remoções indevidas de ficheiros
- Não protege contra avarias do armazenamento
- Ex: OS X TimeMachine

Num sistema localizado na mesma infraestrutura

- Também de acesso rápido
- Protege contra falhas isoladas do armazenamento
- Não protege contra eventos com maior âmbito
 - ► Inundações
 - Incêndios
 - Roubos
- Ex: Maioria dos sistemas de armazenamento, Backuppc, Apple TimeCapsule

Backups: Local da Cópia

Remotos (Off-site)

- Realizados para um sistema a uma grande distância
 - Serviço disponível via rede dedicada ou Internet
 - ex, para Amazon S3, ou para servidores num DC alternativo ou alugado
 - Cifras são recomendadas (obrigatórias) no caso de serviços externos!
 - ► Transporte especializado para local seguro
 - ex, via um veículo seguro que transporte os suportes de armazenamento
- Permitem recuperar informação em caso de evento com grandes danos
 - Incêndio, roubo, inundação, terrorismo, terramoto...
- Recuperação de informação muito mais lenta
 - Necessário ir buscar fisicamente a informação, ou transferir a informação via a Internet

Seleção do Equipamento

Gamas Diferentes: Enterprise vs Desktop

- Qualidade de construção e mecanismos de recuperação
 - Qualidade... alegadamente
- MTBF: Mean Time Between Failures
 - ► Enterprise HDD:: 1.2M hours, at 45°C, 24/7, 100% use rate(1)
 - Desktop HDD: 700K hours, at 25º, 8/5, 10-20% use rate (1)

Ajustado ao caso de Uso

- Write Intensive vs Read Intensive
- NAS vs Video vs Desktop vs Cold Storage vs Data Center
 - diferenças a nível do consumo, fiabilidade, desempenho

Ajustado ao nível de desempenho

- Tier 0: Desempenho muito alto e baixa capacidade (PCIe NVMe SSD)
- Tier 1: Desempenho, capacidade e disponibilidade altos (M2 SATA SSD)
- Tier 2: Desempenho baixo, alta capacidade (SATA HDD)

Ambientes e Equipamentos Controlados

Hard Drive Failure Rates by Manufacturer

https://www.backblaze.com/b2/hard-drive-test-data.html

Ambientes e Equipamentos Controlados

Ambientes e Equipamentos Controlados

RAID Redundant Array of Inexpensive Drives

Garantir a sobrevivência da informação

- Os dados só se perdem se falharem mais do que X discos do RAID
- O valor de X depende do tipo de RAID

Solução de baixo custo e eficiente

- Permite usar hardware barato, falível
- Acelerar o desempenho nas leituras e escritas em discos

Mas o RAID não substitui o backup!

- Não tolera falhas catastróficas em mais do que X discos dos N do RAID
- Não tolera erros dos utentes ou do sistema

• E o RAID pode aumentar a probabilidade de falha do sistema!

Se o objetivo for apenas acelerar o mesmo

RAID 0 (striping)

Objetivos

Acelerar o acesso à informação em disco

Aproximação

- Acesso a discos em paralelo
- Striping
 - A informação lógica de um volume é subdividida em fatias (stripes)
 - As fatias são intercaladas nos discos

Prós

Aceleração dos acessos aos discos até N vezes

Contras

- Aumento da probabilidade de perda de informação
 - Se PF for a probabilidade de falha de um disco, a probabilidade de perder informação com um RAID 0 com N discos é 1–(1-PF)N
- Aumento do número de dispositivos
 - Pelo menos para o dobro

RAID 1 (mirroring)

Objetivo

Tolerar falha de discos

Aproximação

- Duplicação da informação (mirroring)
 - Escrita sincronizada
 - Leitura com comparação ou de apenas um disco (mais rápido)

Vantagens

- Diminuição da probabilidade de perda de informação
 - ► Considerando a prob. de falha de um disco PFD , a prob. de perda de dados com N discos é (PFD)-N
 - Ignorando falhas não isoladas (ex, pico de energia, temperatura excessiva)

Desvantagens

- Desperdício da capacidade de armazenamento
 - ► Perdido pelo menos 50% da capacidade (2 discos, 66% em 3 discos, .. (N-1)/N)
- Aumento do número de dispositivos
 - Pelo menos para o dobro

RAID 0+1

Objetivos

- Benefícios do RAID 0 (desempenho)
- Benefícios do RAID 1 (resistência a falhas)

Aproximação

- Um nível RAID 0
 - ... de volumes em RAID 1
- Ou seja: mirroring de volumes striped

Contras

- Desperdício de capacidade de armazenamento
 - ► Pelo menos 50% da capacidade é perdida
- Aumento do número de dispositivos necessários

RAID 4

Objetivos

- Ter a proteção do RAID 1
- Ter um desempenho e um eficiência de espaço próximos do RAID 0

RAID 4 **A1 A2 A**3 Ap **B1 B2** В3 Вр C1 C2 C3 Ср D1 D2 D3 Dp Disk 0 Disk 1 Disk 2 Disk 3

Aproximação

- Armazenamento de dados em N-1 discos
- Armazenamento de paridade num disco
 - ► O desperdício de espaço é igual a à capacidade de cada disco
 - Os dados de quaisquer N-1 discos podem ser gerar um outro

Problemas

- Necessita de 3 ou mais discos.
- A atualização da paridade é complexa e demorada
 - Obriga a leituras antes das escritas
 - Ler bloco de dados antigo (e.g. C1)
 - Ler bloco de paridade antigo (Cp)
 - Comparar bloco de dados antigo com novo, alterar o bloco de paridade (Cp')
 - Escrever bloco de dados novo (C1')
 - Escrever bloco de paridade novo (Cp')
 - ► As escritas têm de ser seriadas por causa do acesso ao disco de paridade
- A recuperação é mais demorada do que com RAID 1

RAID 5

Objetivos

 Similar ao RAID 4 mas mais eficiente nas escritas

Aproximação

- Blocos de paridade espalhados por todos os discos
- O desperdício de espaço é igual ao do RAID 4
- A concorrência nas escritas é melhorada

Problemas

Mais complexo do que RAID 4

RAID 6

Objetivos

- Melhorar fiabilidade do RAID 5

Aproximação

- 2 Blocos de paridade espalhados por todos os discos
- O desperdício de espaço é maior do que o RAID 5
- A concorrência nas escritas é ligeiramente pior que o RAID 5

Problemas

Mais complexo do que RAID 5

Vantagens

Permite falha simultânea de 2 discos

NAS e SAN

Network Attached Storage

- Sistema disponível por rede
- Frequentemente com vários discos em RAID
- Custo: centenas a milhares de euros

Storage Area Network

- Conjunto de sistemas disponíveis por rede
- Pode implementar qualquer esquema de redundância
- Custo: centenas de milhares a milhões de euros

Vantagens

- Permitem centralizar políticas de armazenamento
- Fornecem interface normalizado independente do armazenamento real
- Utilizados para armazenamento e cópias

Confidencialidade do Armazenamento

Problema

O sistema de ficheiros tradicional possui proteções que são limitadas

Proteções Físicas

- Sistema de ficheiros é confinado a um dispositivo

Proteções Lógicas

- O controlo de acesso é aplicado pelo sistema operativo
- Faz-se uso de ACLs e outros mecanismos de confinamento

Problema

Existe um número de situações onde esta proteção é irrelevante

- No caso de acesso direto e físico aos dispositivos
 - Acessos aos dispositivos anfitriões (portáteis, smartphones)
 - Dispositivos de armazenamento discretos, por vezes externos
 - ► Tapes, CDs, DVDs, SSD, ...
- Acesso através dos mecanismos de controlo de acesso
 - Acesso não ético pelos administradores
 - Personificação de utentes

Problema

Prevalência de armazenamento distribuído

- Necessária confiança em vários administradores (por vezes anónimos)
- Autenticação é efetuada remotamente
 - Por vezes não é claro qual o nível de segurança
 - Existem integrações múltiplas e por vezes desconhecidas
 - Modelos de interação complexos
 - Diversos sujeitos
- Informação é transmitida na rede
 - Confidencialidade, Integridade, Privacidade

Soluções: Cifra de Informação

Cifra/Decifra do conteúdo dos ficheiros

- Permite a disponibilização segura sobre uma rede insegura
- Permite o armazenamento em meios inseguros
 - Geridos por externos, ou em meios de armazenamento partilhados

Problemas

- Acesso à informação
 - Utentes não podem perder as chaves
 - perda das chaves = perda dos dados
 - cópias da chave diminuem a segurança
 - Cifra ilegítima ou abusiva da informação
 - Dados do empregador
- Partilha de ficheiros
 - ► Implica libertação dos ficheiros ou das chaves
- Possível interferência com tarefas comuns de administração
 - análise de conteúdos, deduplicação, indexação...

Aproximações

Nível Aplicacional

Informação é transformada por aplicações autónomas

- Pouca ou nenhuma integração com outras aplicações
- Usualmente é claro o que é seguro ou não
 - Ficheiros específicos com extensões específicas

Apresenta janelas de vulnerabilidade

Dados são extraídos para serem acedidos por outras aplicações

Informação pode ser transformada por algoritmos/aplicações diferentes

- Adaptados ao sistema operativo ou à segurança pretendida
- Complica os processos de recuperação de informação

Difícil partilhar ficheiros internos ao pacote cifrado

Pode implicar extrair e tornar a cifrar

Exemplos:

- PGP, AxCrypt, TrueCrypt, etc.
- Também... RAR, ZIP, 7zip, LZMA, ...

Nível Aplicacional: TrueCrypt

Cria um ficheiro no FS que contém vários volumes

- Semelhante a uma imagem de um virtualizador
- Cifras fortes, em cascata (e.g. AES+Twofish)
- AES-CBC, depois AES-LRW, depois AES-XTS
- Chaves criadas com PBKDFS2, SHA-512 e 2000 rounds

Suporta Negação Plausível

- FSs internos não possuem cabeçalhos óbvios
- Um ficheiro pode ter um ou mais volumes
 - Não é óbvio determinar quantos volumes existem

Volume Encryption

Nível dos Sistemas de Ficheiros

Informação é transformada entre a memória e a escrita no volume

- Dispositivo físico -> Cache em Memória
 - Sem proteção no caso de servidores (servidor decifrou informação quando lhe acedeu)
 - Mecanismo é mais complexo de implementar em ambientes distribuídos
 - Coordenação com ACLs
 - Partilha das chaves pelo SO
- Cache -> memória das aplicações
 - Proteção no caso de servidores (é o cliente que decifra)
 - Pode ter lugar fora do ambiente de armazenamento (aplicação, cliente)

Exemplos:

- CFS (Cryptographic File System)
- EFS (Encrypted File System)
- NTFS (NT Filesystem)

Nível dos Volumes

Transforma informação a nível do controlador

- Transparente para aplicações e quase transparente para o SO
 - requer a existência de um controlador
- Granularidade do acesso ao nível de um volume inteiro

Políticas de cifra definidas ao nível da aplicação ou controlador

- Agnóstico do sistema de ficheiros
 - ► Proteção integral de dados, metadados, ACLs, ...
- Não permite diferenciação entre diferentes utilizadores
 - Uma das chaves desbloqueia volume

Não resolve questões com sistemas distribuídos mas sim de dispositivos móveis

- Distribuídos: Volume está acessível ou não, para o mundo
- Móveis: Protege contra roubo ou perda de equipamento

Exemplos:

- PGPdisk, LUKS, BitLocker, FileVault

BitLocker (Windows)

Cifra um volume inteiro

- Utiliza um pequeno volume para iniciar processo de decifra
- Chave de cifra composta (FVEK): K_{AES} e K_{Diffuser}

Armazenamento da Chave

- FVEK cifrada com Volume Master Key (VMK), cifrada com Key Protector Key
- Key Protector Key cifrada com senha ou segredo no TPM (recentemente retirado)

Processo de Cifra

- AES-CBC 128 ou 256, aplicado a cada sector, sem MAC e sem feedback
- IV = $E(K_{AES}, e(s))$, onde e mapeia o número do sector para um valor de 16bits
- Sector Key = $E(K_{AES}, e(s)) \mid E(K_{AES}, e'(s))$
 - ► e' = igual a e mas terminado em 128
- Elephant Diffuser: Difusor de bits controlado por K_{Diffuser} (entretanto removido)

Bitlocker (Windows)

Malleability attack no CBC

Cipher Block Chaining (CBC) mode decryption

Nível do dispositivo

Dispositivo aplica política de segurança internamente

- No boot, dispositivo tem de ser desbloqueado
 - Fornecendo as credenciais corretas
- Cifras implementadas em hardware/firmware

Vantagens

- Sem perda de performance (grátis)
- Pode não trivial a extração de informação ou chaves
- Possível de coordenar o processo com aplicações

Desvantagens

- Quando o dispositivo é desbloqueado, dados ficam acessíveis
- Segurança é limitada aos algoritmos presentes
- Possível presença de erros ou backdoors é difícil de detetar e corrigir

Nível do dispositivo

Dispositivos possuem 2 áreas

- Shadow Disk: Read Only, ~100MB; Possui software para desbloqueio; disponível
- Real Disk: Read Write, contém dados; protegido

Duas chaves

- KEK: Key Encryption Key (Authentication Key)
 - ► Fornecida pelo utente. Síntese armazenada no Shadow Disk
- MEK (ou DEK): Media (Data) Encryption Key
 - ► Cifrada com o KEK

Boot Process

- Bios vê o Shadow Disk e utiliza-o para iniciar o sistema
- Aplicação pede senha ao utilizador, decifra KEK e verifica o valor de Hash(KEK)
- Sucesso: decifra-se MEK para a memória e geometria é atualizada

