Risk measures [Part I].

The Variance

For any random variable X we have the expected value of X is $\mu_X := \mathbb{E}[X]$ (if it exists).

We define the variance of X as

$$Vor[X] := \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mu_X^2$$
(if it exists)

Usage: X Co R... return of an investment

The Semi Variance

Define the semi-variance of
$$X$$
 as:
$$\sigma_{sv}^{2} := \mathbb{E}\left[\left(\min\left(0, X - \mu_{X}\right)\right)^{2}\right]$$

Value at Risk (VaR).

(p)... probab. of an adverse event you're willing to live

R. is a return random variable, i.e., we benefit if R is high and we have the adverse effect if R is low

Define VaRa (R) as the value Tox such that

a continuous random variable:

$$T_{\alpha}$$
 T_{α}
 $F_{R}(T_{\alpha}) = \alpha \iff T_{\alpha} = F_{R}^{-1}(\alpha)$
 $f_{R}(T_{\alpha}) = \alpha \iff T_{\alpha} = F_{R}^{-1}(\alpha)$

Consider an R such that its density for is always positive (e.g., Let R be normally dist'd). tor any a ER: $F_R(\alpha) = \int f_R(x) dx$

If $f_R(x) > 0$ for all x, then f_R is strictly increasing $\Rightarrow F_R$ is one to one $\Rightarrow F_R^{-1}$ exists.

* If we are interested in the upper tail probab. bounds, e.g., if the random variable X signifies a loss, we just look @ $VaR_{1-N}(X)$

the random voviable denoting the profits.

- 34) Let X be the random gain from operations of a company. You are given:
 - (i) X is normally distributed with mean 42 and variance 6400. \bigcirc **3**
 - (ii) p is the probability that X is negative.
 - (iii) K is the amount of capital such that the Value-at-Risk (VaR) at the 5th percentile for X + K is zero.

Calculate p and K.

(A)
$$p = 0.7; K = 157$$

(B)
$$p = 0.7; K = 131$$

(C)
$$p = 0.5; K = 115$$

(D)
$$p = 0.3; K = 115$$

(E)
$$p = 0.3; K = 90$$

$$P = P[X<0] = P[\frac{X-42}{80} < \frac{0-42}{80}]$$

$$p = P[Z < -0.525] = N(-0.525)$$

N(0,1)

in the std normal tables

$$p = 0.2981 \Rightarrow p \approx 0.3$$

(D) or (E)

$$VaR_{0.05}(X+K) = 0 = \pi_{0.05}$$
 $P[X+K \le 0] = 0.05$
 $X+K \sim Normal(mean = 42 + K, var = 6400)$
 $P[X \le -K] = 0.05$

in terms of $Z \sim N(0,1)$
 $P[42+80.Z \le -K] = 0.05$
 $1.64r$
 $1.64r$
 $1.64r$
 $1.64r$
 $1.64r$
 $1.64r$
 $1.64r$