Definition

Let $X_1, \dots X_n$ have joint pdf/pmf $f(\mathbf{x} : \theta)$, $\theta \in \Theta$. Let $L(\mathbf{X})$ and $U(\mathbf{X})$ be two statistics such that $L(\mathbf{X}) \leq U(\mathbf{X})$ with probability 1.

- 1. The random interval $I(\mathbf{X}) = [L(\mathbf{X}), U(\mathbf{X})]$ is called an interval estimator for θ .
- 2. $I(\mathbf{X}) = (-\infty, U(\mathbf{X})]$ is said to be a one-sided upper interval estimator for θ .
- 3. $I(\mathbf{X}) = [L(\mathbf{X}), \infty)$ is said to be a one-sided lower interval estimator for θ .
- 4. The **coverage probability** of an interval estimator $I(\mathbf{X})$ is defined as $P_{\theta}[\theta \in I(\mathbf{X})]$.
- 5. The **confidence coefficient** of I(X) is defined as $\inf_{\theta \in \Theta} P_{\theta}[\theta \in I(X)]$.

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Uniform}(0, \theta)$. Consider the following three interval estimators of θ .

$$I_1(\mathbf{X}) = [aX_{(n)}, bX_{(n)}], \ 1 \le a < b$$

 $I_2(\mathbf{X}) = [X_{(n)} + c, \infty)$
 $I_3(\mathbf{X}) = [X_{(n)} + a, X_{(n)} + b]$

Finding Interval Estimator - Inverting test

$$ightharpoonup$$
 Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\theta, 1)$

$$H_0: \theta = \theta_0 \quad \textit{vs} \quad H_1: \theta
eq \theta_0$$

The LRT of size α is

$$\phi(\mathbf{x}) = \begin{cases} 1, & |\sqrt{n}(\bar{x} - \theta_0)| \ge z_{\alpha/2}, \\ 0, & \text{elsewhere.} \end{cases}$$

$$\implies P_{\theta_0}\{\bar{X}-z_{\alpha/2}/\sqrt{n}\leq \theta_0\leq \bar{X}+z_{\alpha/2}/\sqrt{n}\}=1-\alpha$$

Finding Interval Estimator - Inverting test

Theorem

Let X_1, \dots, X_n have joint pdf/pmf $f(\mathbf{x}:\theta)$, $\theta \in \Theta$. For each $\theta_0 \in \Theta$, let $A(\theta_0)$ denote the acceptance region of a size α simple test for testing

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta \neq \theta_0$

Define a set $C(\mathbf{x}) = \{\theta_0 \in \Theta : \mathbf{x} \in A(\theta_0)\}$. Then $C(\mathbf{X})$ is a **confidence set** with confidence coefficient $1 - \alpha$.

⊲ Note:

- 1. C(X) is not necessarily an interval.
- 2. One may need to consider one-sided test for one-sided confidence interval.

Finding Interval Estimator - Inverting test

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. μ and σ^2 are unknown. Find a $1-\alpha$ two-sided CI and one-sided lower CI for μ .

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} f(x|\theta) = \theta^2 x e^{-\theta x}, x > 0, \theta > 0$. Find an approximate (and exact) $1 - \alpha$ confidence set of θ .

Finding Interval Estimator - Using Pivotal Quantity

Definition

Let X_1, \dots, X_n have joint pdf/pmf $f(\mathbf{x}:\theta)$, $\theta \in \Theta$. A random variable $Y = Q(\mathbf{X}:\theta)$ is called a *pivotal quantity (PQ)* if the distribution of $Y = Q(\mathbf{X}:\theta)$ does not depend on θ .

- \triangleright Example: $X_1, \dots, X_n \stackrel{iid}{\sim} f(x : \theta)$. Consider the following families of distributions and statistics.
- 1. $f(x:\theta) = f_0(x-\theta)$
- 2. $f(x : \theta) = \frac{1}{\theta} f_0(x)$
- 3. $f(x:\theta) = \frac{1}{\theta_2} f_0[(x-\theta_1)/\theta_2]$

$$\bar{X}_n - \theta, \quad \bar{X}_n/\theta, \quad (\bar{X}_n - \theta_1)/\theta_2$$

Finding Interval Estimator - Using Pivotal Quantity

 \triangleright Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \exp(\lambda)$.

$$T = \sum X_i \sim \mathsf{Gamma}(n, \lambda)$$

($Gamma(n, \lambda)$ is a scale family) Find a $(1 - \alpha)\%$ confidence interval of λ .

ightharpoonup Example 9.2.15: $X_1, \dots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$. Find a $(1-\alpha)\%$ confidence interval of λ . (Hint: Use Gamma-Poisson relationship $P(U \le u) = P(V \ge \alpha), U \sim Gamma(\alpha, \beta), V \sim Poisson(u/\beta)$.)

Finding Interval Estimator - Using Pivotal Quantity

Theorem (See the theorem 2.1.10 for reference)

Suppose $T = T(\mathbf{X})$ is a statistic calculated from X_1, \dots, X_n . Assume T has a continuous distribution with cdf

$$F(t:\theta)=P_{\theta}(T\leq t).$$

Then

$$Q(T:\theta) = F(T:\theta)$$

is a PQ.

 \lhd Note: In order for $Q(T:\theta) = F(T:\theta)$ to result in a confidence interval, we want $F(T:\theta)$ to be monotone in θ . A cdf $F(T:\theta)$ that is increasing or decreasing in θ for all t is said to be stochastically increasing or decreasing.

Finding Interval Estimator - Using Pivotal Quantity

ho Example: $X_1, \dots, X_n \stackrel{\textit{iid}}{\sim} N(\mu, \sigma^2)$, σ^2 is known. Let $T(\mathbf{X}) = \bar{X}$. Then

$$Q(T:\mu) = F(T:\mu) = \Phi\left(\frac{T-\mu}{\sigma/\sqrt{n}}\right).$$

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} f(x:\mu) = e^{-(x-\mu)}, \quad x \ge \mu$. Let $T(\mathbf{X}) = X_{(1)} = \min_{1 \le i \le n} X_i$. Derive $(1-\alpha)100\%$ confidence interval using the cdf of T.

Finding Interval Estimator - Bayesian Interval

Definition

 $[L(\mathbf{x}), U(\mathbf{x})]$ is called a $(1 - \alpha)100\%$ credible set (or Bayesian interval) if

$$\begin{split} 1 - \alpha &= P[L(\mathbf{x}) < \theta < U(\mathbf{x}) | \mathbf{X} = \mathbf{x}] \\ &= \begin{cases} \sum_{\theta} \pi(\theta | \mathbf{x}) & \text{discrete} \\ \int_{\theta} \pi(\theta | \mathbf{x}) d\theta & \text{continuous} \end{cases} \end{split}$$

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\theta, \sigma^2)$. $\theta \sim N(\mu, \tau^2)$. Find a $(1 - \alpha)$ credible set.

Optimal theory for CI

CI: Length of CI vs Coverage probability

Definition

f(x) is a unimodal pdf if f(x) is nondecreasing for $x \le x^*$ and nonincreasing for $x \ge x^*$ in which case x^* is the mode of the distribution.

Theorem (Theorem 9.3.2. Shortest CI for unimodal pdf.)

Let f(x) be a unimodal pdf. If the interval [a, b] satisfies

i.
$$\int_a^b f(x)dx = 1 - \alpha$$

ii.
$$f(a) = f(b) > 0$$

iii.
$$a \le x^* \le b$$
, when x^* is a mode of $f(x)$

Then no other interval estimator satisfying (i) is shorter than [a, b].

Optimal theory for CI

 \triangleright Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. σ^2 is known.

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. σ^2 is unknown.

Optimal theory for CI

Definition (Probability of false coverage)

For
$$\theta' \neq \theta$$
, $P_{\theta}[L(\mathbf{X}) \leq \theta' \leq U(\mathbf{X})]$

For
$$\theta' < \theta$$
, $P_{\theta}[L(\mathbf{X}) \leq \theta']$

For
$$\theta' > \theta$$
, $P_{\theta}[\theta' \leq U(\mathbf{X})]$

Definition

A $1-\alpha$ confidence interval with minimum probability of false coverage is called a *Uniformly Most Accurate (UMA)* $1-\alpha$ confidence interval.

Optimal theory for CI

Theorem (UMA CI based on UMP test)

Let X_1, \dots, X_n have a joint pdf/pmf $f(\mathbf{x}:\theta)$. Suppose that a UMP test of size α for testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$ exists and given as

$$\phi(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} \notin A^*(\theta_0), \\ 0, & \mathbf{x} \in A^*(\theta_0). \end{cases}$$

Let $C^*(\mathbf{X})$ be the confidence interval obtained by inverting the UMP acceptance region. Then, for any other $1-\alpha$ confidence region(set, interval),

$$P_{\theta}[\theta' \in C^*(\mathbf{X})] \leq P_{\theta}[\theta' \in C^*(\mathbf{X})],$$

for all $\theta' < \theta$. That is, inverting UMP test yields a UMA confidence region(set, interval).

Note: UMP unbiased test can be inverted to obtain UMA unbiased confidence region(set, interval).

Optimal theory for CI

Note: UMP unbiased test can be inverted to obtain UMA unbiased confidence region(set, interval).

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. σ^2 is known.