

SMART INDUSTRY LABORATORY

Scheduling Algorithms (7)

- Production Scheduling Algorithm (1) -

Graduate School of Information, Production and Systems Shigeru FUJIMURA

Production Scheduling Problems

- ☐ There are several **jobs**.
- ☐ A *job* consists of *operations*.
- One job executes operations in series.
- One operation uses a resource in it's execution.

Flow Shop Scheduling Problems: FSSP

- ☐ **Jobs** have the same number of **operations**.
- □ Operation's resources are used in the same sequence for all jobs.

Job Shop Scheduling Problems: JSSP

- □ Numbers of *Operations* are not same for all *jobs*.
- Sequence of operation's resources is not same for all jobs.

Problem Definition of JSSP

Minimize Cmax

Subject to

```
Cmax >= Sj, nj + pj, nj 

Sj,i >= 0 

Sj,i + 1 >= Sj,i + pj,i 

Sj,i >= Sl,k + pl,k - M*(1-xj,i,l,k) 

Sl,k >= Sj,i + pj,i - M*xj,i,l,k 

j \neq l, j, l = 1, 2, ..., J, i = 1, 2, ..., nj, k = 1, 2, ..., nl

m_{l}i = m_{l}k
```

Fixed values

J: number of Jobs

 \mathbf{n}_j : number of operations of job j

 $\mathbf{p}_{j,i}$: processing time of operation i of job j

 $\mathbf{m}_{j,i}$: machine used by operation i of job j

Decision Variables

C_{max}: makespan

 $s_{j,i}$: starting time of operation i of job j

 $x_{j,i,l,k}$: 1 or 0

Scheduling Algorithms

There are 3 jobs using M1 and M2.

Derive production order of jobs such that the total processing time (makespan) becomes the shortest.

Scheduling Results

The best production order: $C \Rightarrow B \Rightarrow A$

Johnson Algorithm

Johnson Algorithm is an optimization method for FSSP with two operations.

Step0: All operations are set into *Operation Set*.

Step1: Pick an operation which processing time is the shortest in *Operation Set*. (If some operations have the same shortest time, it is not matter which operation is picked.)

Step2: In a case that the picked operation is the first (or second) operation in a job, it's job is added at the end of *Earlier Item Sequence* (or at the first of *Later Item Sequence*). pick out the second (or first) operation of the job from *Operation Set*.

Step3: If the list of remaining operations is empty, concatenate the earlier item sequence and the later item sequence. If it is not empty, go to Step1.

Earlier Item Sequence

Later Item Sequence

	Ope1 / M1	Ope2 / M2
Job A	6h	2h
Job B	4h	8h
Job C	2h	5h

Proof of Johnson Algorithm

Job	M1	M2		
Α	a1	a2		
В	b1	b2		

Total Lead Time for A→B

$$= a1+b1+b2 (b1>a2)$$

$$a1+a2+b2$$
 (b1<=a2)

$$= a1+b2+max\{b1,a2\}$$

b1<=a2

Proof of Johnson Algorithm

```
(Total Lead Time for A \rightarrow B)=a1+b2+max{a2,b1}
(Total Lead Time for B \rightarrow A)=b1+a2+max{b2,a1}
```

```
Assume that total Processing Time for A \rightarrow B is shorter. a1+b2+max\{a2, b1\} \leq b1+a2+max\{b2, a1\} max\{-b1,-a2\} \leq max\{-b2,-a1\} -min\{b1,a2\} \leq -min\{b2,a1\} min\{b1,a2\} \geq min\{b2,a1\}
```

⇔ Processing Time of a1 or b2 is shortest.

According to Johnson Algorithm, all pairs of direct neighboring jobs satisfy the above-mentioned condition

: Johnson Algorithm derives the minimum makespan solution.

Scheduling Methods for Production Scheduling Problems

- ☐ Method to derive a near optimum solution
 - Meta Heuristic Methods
 - Dispatching Rule Method
 a method which derives a good solution empirically.
- Method to derive an Optimum Solution
 - Jackson Algorithm
 - Branch and Bound Method

 a search method for excluding solution space which is no need to search

Jackson Algorithm

This is applied for JSSP which uses 2 machines for each job.

Step1: In the following manner, jobs are categorized.

A: jobs only using Machine A

B: jobs only using Machine B

AB: jobs using Machine A first and Machine B next

BA: jobs using Machine B first and Machine A next

Step2: Jobs AB and BA are ordered by Johnson Algorithm.

Step3: For each Machine, in the following manner, Jobs are ordered.

A: AB A BA

B: BA B AB

Jackson Algorithm

Typo	loh	Ope. Time						
Туре	Job	Mac A Mac B						
Α	1	2						
	2	5		_				
В	3	_	_	3				
AB	4	3	\rightarrow	4				
	5	1	\rightarrow	2				
	6	5	\rightarrow	1				
ВА	7	1	←	2				
	8	3	←	5				

Machine A Order: 5 4 6 1 2 8 7 Machine B Order: 8 7 3 5 4 6

	0	2	4	6	8	10	12	14	16	18	20	22	24	
Mac A	5		4		6			1		2		8	7	
Mac B			8	-	7		3	5		4		6		

SMART INDUSTRY LABORATORY

Thank you