DEVOIR À LA MAISON Nº 4

Problème 1 —

- 1. On considère la fonction f définie sur $I = [0, \pi]$ par $f(x) = \frac{\sin x}{\sqrt{5 4\cos x}}$.
 - a. Montrer que f est bien définie sur I.
 - **b.** Étudier le signe de $f(x) \sin x$ pour $x \in I$.
 - c. Montrer que pour $x \in]0,\pi]$, $\sin x < x$. En déduire les solutions de l'équation f(x) = x sur I.
- 2. Étudier les variations de f sur I et tracer son graphe (on tracera notamment les tangentes en 0 et π).
- 3. On considère la fonction g définie sur I par $g(x) = \arccos\left(\frac{4-5\cos x}{5-4\cos x}\right)$.
 - **a.** Étudier les variations de ϕ : $\begin{cases} [-1,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & \frac{4-5t}{5-4t} \end{cases}$. Quelle est l'image de [-1,1] par ϕ ?
 - b. Justifier que g est bien définie sur I.
 - c. Donner les variations de g sans calculer la dérivée de g. Quelle est l'image de I par g?
- 4. Soit $x \in \left[0, \frac{\pi}{3}\right]$.
 - a. Montrer qu'il existe un unique $z \in \left[\frac{\pi}{3}, \pi\right]$ tel que f(z) = f(x).
 - **b.** Calculer $\cos(g(x))$ et $\sin(g(x))$.
 - c. Calculer f(g(x)) et en déduire que z = g(x).
- 5. a. Montrer que pour $\theta \in [0, \pi]$, $\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}$ et $\sin \frac{\theta}{2} = \sqrt{\frac{1 \cos \theta}{2}}$.
 - $\mathbf{b.} \ \, \mathrm{En} \, \operatorname{d\'eduire} \, \mathrm{que} \, \cos \left(\frac{x+z}{2} \right) = f(x) \, \operatorname{et} \, \cos \left(\frac{z-x}{2} \right) = 2 f(x).$
- 6. a. Prouver que f induit une bijection de $\left[0, \frac{\pi}{3}\right]$ sur un intervalle à préciser. On note h sa bijection réciproque.
 - ${\bf b.}$ Déterminer la fonction ${\bf h}$ à l'aide de la question précédente.