Лабораторная работа №7

Эффективность рекламы

Парфенова Е. Е.

19 марта 2024

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Парфенова Елизавета Евгеньвена
- студент
- Российский университет дружбы народов
- 1032216437@pfur.ru
- https://github.com/parfenovaee

Вводная часть

Актуальность

- Маркетинг и реклама в современном мире являются важной частью бизнеса, которую для успеха необходимо уметь прогнозировать
- Необходимость умения строить различные математичсекие модели и их визуальное представление

Цели и задачи

- Изучить модель рекламной кампании
- Построить графики для различных моделей в Julia и OpenModelica

Теоретическое введение

Модель Мальтуса

Мальтузианская модель роста, также называемая **моделью Мальтуса** — это экспоненциальный рост с постоянным темпом. Модель названа в честь английского демографа и экономиста Томаса Мальтуса.

Мальтузианские модели выглядят следующим образом:

$$P(t) = P_0 e^r t$$

Здесь:

- P_0 исходная численность чего-либо (населения, например)
- \bullet r темп прироста
- t время

Логистическая кривая

Логистическая функция или логистическая кривая представляет собой обычную S-образную кривую (сигмовидная кривая) с уравнением

$$f(x) = \frac{L}{1 + e^{-k(x - x_0)}}$$

Стандартную логистическую функцию, где L=1, k=1, $x_0=0$, иногда называют просто сигмовидной.

Рис. 1: Стандартная логистическая функция, где $L=1, k=1, x_0=0$

Задание

Задача. Вариант №8

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.64 + 0.00014n(t))(N - n(t))$$

1.
$$\frac{dn}{dt} = (0.64 + 0.00014n(t))(N - n(t))$$

2. $\frac{dn}{dt} = (0.000014 + 0.63n(t))(N - n(t))$

3.
$$\frac{dt}{dt} = (0.7t + 0.4\cos(t)n(t))(N - n(t))$$

При этом объем аудитории N=810, в начальный момент о товаре знает 11 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Выполнение работы

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знаюших.

Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре.

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид:

Рис. 2: График решения уравнения модели Мальтуса

В обратном случае, при $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кривой:

Рис. 3: График логистической кривой

Построение графиков. Julia

В результате работы кода были сгенерированы следующие изображения:

1. График рапространение рекламы для первой математической модели, когда $\alpha_1(t) >> \alpha_2(t).$

Рис. 4: График рапространение рекламы для первой математической модели, когда $lpha_1(t)>>lpha_2(t)$ на Julia $_{13/19}$

Построение графиков. Julia

2. График рапространение рекламы для второй математической модели, когда $\alpha_1(t) << \alpha_2(t).$

Рис. 5: График рапространение рекламы для второй математической модели, когда $\alpha_1(t) << \alpha_2(t)$ на Julia

Построение графиков. Julia

3. График рапространение рекламы для третей математической модели, где появляется функция от времени.

Рис. 6: График рапространение рекламы для третей математической модели при наличии cos(t) на Julia

Построение графиков. OpenModelica

В результате моделирования получились такие графики:

1. График рапространение рекламы для первой математической модели, когда $\alpha_1(t) >> \alpha_2(t).$

Рис. 7: График рапространение рекламы для первой математической модели, когда $lpha_1(t)>>lpha_2(t)$ на OpenModelica

Построение графиков. OpenModelica

2. График рапространение рекламы для второй математической модели, когда $\alpha_1(t) << \alpha_2(t).$

Рис. 8: График рапространение рекламы для второй математической модели, когда $\alpha_1(t) << \alpha_2(t)$ на OpenModelica

Построение графиков. OpenModelica

3. График рапространение рекламы для третей математической модели, где появляется функция от времени.

Рис. 9: График рапространение рекламы для третей математической модели при наличии cos(t) на OpenModelica

Вывод

Вывод

Мы изучили модель рекламной кампании в разных ее случаях и построили необходимые графики на Julia и OpenModelica. Также для второго случая определили максимальную скорость распросторанения рекламы и наглядно отобразили ее на графике при построении на Julia.