

Aula 6 - Circuitos combinacionais e seqüenciais

Prof. Danilo Reis

Somadores

Também chamado: full-adder. O somador completo tem 3 bits de entrada an e bn, utilizados pelos dados, e cn, utilizado como bit de entrada do vai-um da coluna imediatamente à direita. O circuito produz dois bits de saída, a soma sn e o vai-um de saída cn+1.

an	b _n	C _n	Sn	C _{n+1}
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	41	1	0
0	1		0	1
4	0	1	0	1
11	1	31.1	1	_1

Somadores

Na forma SDP:

$$s_n = a'_n.b_n.c'_n + a_n.b'_n.c'_n + a'_n.b'_n.c_n + a_n.b_n.c_n$$

Simplificando:

$$o$$
 $s_n = (a'_n.b_n + a_n.b'_n). c'_n + (a'_n.b'_n + a_n.b_n). c_n$

$$= (\underbrace{a_n \oplus b_n}). \ c'_n + (\underbrace{a_n \oplus b_n})'. \ c_n$$

$$s_n = (a_n \oplus b_n \oplus c_n)$$

$$\begin{cases} x \oplus y = x'.y + x.y' \\ (x \oplus y)' = x.y + x'.y' \end{cases}$$

Somadores

- Da mesma forma para c_{n+1}
 - $c_{n+1} = a_n.b_n.c_n + a_n.b_n.c_n + a_n.b_n.c_n + a_n.b_n.c_n$
 - $= a_n.b_n.(c'_n + c_n) + (a'_n.b_n + a_n.b_n).c_n$
 - $= a_n.b_n + (a_n \oplus b_n). c_n$

Somadores

Subtratores

Módulo somador com números negativos expressos em complemento de 2. Complemento 2 = complemento 1 + 1

Subtratores

Representa-se o número negativo com 1 bit de sinal

- 0 Número positivo
- 1 Número negativo

Multiplicadores

A multiplicação binária é definida pelas seguintes regras:

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

A	В	(AxB)
0	0	0
0	1	0
1	0	0
1	1	1

Analizando as regras acima, podemos perceber que a operação de multiplicação é o mesmo que a operação AND.

Multiplicadores

$$\begin{cases}
p_0 = a_0 \times b_0 \\
p_1 = a_0 \times b_1 + a_1 \times b_0 \\
p_2 = a_1 \times b_1 + c_2 \\
p_3 = c_3
\end{cases}$$

Latches e Flip-Flops

Diagrama de tempo do latch RS

Latches

Clear e Preset

Clear (Reset)	Preset (Set)	Q	Q'
0	0	normal	normal
1	0	0	1
0	1	1	0
1	1	Não usado	Não usado

☑ Latch JK

Como eliminar o estado proibido dos Latches tipo RS?

Usar uma re-alimentação para garantir que R e S nunca são "1".

Est. Pres. Pró. Estado

J(T)	K(t)	Q(t)	Q(t+t)	4)
0	0	0	0	HOLD
0	0	1	1	
0	1	0	0	RESET
0	1	1	0	
1	0	0	1	SET
1	0	1	1	
1	1	0	1	TOGGLE
1	1	1	0	

Equação de próximo estado

Quando J e K são iguais a "1" a saída é invertida (Toggle)

Flip-Flop mestre-Escravo

Estágio Mestre Estágio Escravo

- Entrada disponível no latch enquanto o relógio Mestre está alto.
- ☑ Observe que o estágio Escravo está bloqueado (relógio está baixo).
- Saída disponível do latch Escravo quando o relógio for para nível lógico baixo.Relógio liberado para o estágio escravo. Observe que o estágio Mestre
 - está bloqueado (relógio está baixo).

Flip-Flops

Flip-Flops Tipo D

Características

- Flip-Flop tipo D construído a partir de um Flip-Flop tipo RS
- A saída recebe a entrada
- Equação de próximo estado:

Q Q⁺
0 0
0 1
1 1
1 0

S=D

Equação de próximo estado Q+ = D(t)

Flip-Flop D implementado a partir de Flip-Flop tipo RS

Shift Register

Registradores

Um registrador é um elemento lógico utilizado para armazenar uma palavra binária de n-bits.

Registrador de 4 bits

Registradores Deslocamento

Um registrador de deslocamento é projetado para mover bits para as células vizinhas, enquanto houver pulsos de clock.
Como todas as células são controladas pelo mesmo sinal de clock f, todas elas são

carregadas ao mesmo tempo

Conversor Série-Paralelo

Informação	descidas do clock	Q ₃	Q_2	Qı	Q_0
$I_0 = 0$	1º pulso	0	0	0	0
$I_1 = 1$	2º pulso	1	0	0	0
$I_2 = 0$	3° pulso	0	1	0	0
$I_3 = 1$	4º pulso	1	0	1	0

Obs: A cada descida do clock as informações são deslocadas para o próximo flip-flop

Conversor Paralelo-Série

- Podemos realizar o processo inverso, ou seja, entrar com uma palavra com n bits e "retirar" bit a bit com pulsos de clock.
- Para isto utilizamos as funções Preset e Clear dos flipflops JK mestre-escravo. O circuito utilizado está mostrado abaixo:

Contadores

São circuitos digitais que variam seus estados, sob comando de um clock, de acordo com uma sequência determinada. São utilizadas para:contagem,geração de palavras,divisão de frequência,medição de frequência e tempo,geração de formas de onda conversão de analógico para digital

Contadores

Contadores de Pulsos

Contadores base 10

Note que o contador de década pode ser generalizado para contar até qualquer valor de n. Basta que façamos o circuito de realimentação do clear ficar ativo para o novo limite de contagem.

Referências

- http://pt.wikipedia.org/wiki/George Boole
- http://www.cin.ufpe.br/~agsf/Sistemas Digitais.htm