Лабораторная работа 3.3.4 Эффект Холла

Содержание

1	Общие сведения	1				
	1.1 Цель работы	1				
	1.2 Оборудование	1				
2	Ход работы					
	2.1 Градуировка электромагнита	2				
	2.2 Измерение ЭДС Холла	3				
3	Вывод	5				

1 Общие сведения

1.1 Цель работы

Измерение постоянной Холла и удельной проводимости полупроводника.

1.2 Оборудование

Электромагнит с источником питания, батарейка, амперметр, реостат, цифровой вольтметр, милливеберметр, образцы легированного германия.

Рис. 1: Экспериментальная установка.

2 Ход работы

2.1 Градуировка электромагнита

Таблица 1: Зависимость индукции магнитного поля в зазоре электромагнита В от силы тока I_m .

ϕ , мВб	6.5	6.3	5.8	4.8	3.7	1.9
I_m , A	1.58	1.41	1.15	0.88	0.66	0.32
В, мТл	866.67	840.00	773.33	640.00	493.33	253.33

Зависимость индукции магнитного поля в зазоре электромагнита В от силы тока I_m

2.2 Измерение ЭДС Холла

Таблица 2: Рассчет величины ЭДС Холла.

I=0.3 м A						
I_m, A	0.31	0.60	0.88	1.03	1.22	1.57
В, мТл	247.77	448.39	642.09	745.86	877.30	1119.42
ε_x , MB	-0.04	-0.07	-0.10	-0.12	-0.13	-0.14
I = 0.4 мА						
I_m , A	0.30	0.60	0.81	1.06	1.27	1.57
В, мТл	240.85	448.39	593.66	766.61	911.89	1119.42
ε_x , MB	-0.05	-0.09	-0.12	-0.15	-0.17	-0.18
I=0.5 м A						
I_m, A	0.33	0.60	0.74	0.93	1.31	1.57
В, мТл	261.60	448.39	545.24	676.68	939.56	1119.42
ε_x , MB	-0.06	-0.12	-0.14	-0.17	-0.21	-0.23
I=0.6 м A						
I_m , A	0.22	0.40	0.61	0.95	1.36	1.56
В, мТл	185.51	310.03	455.30	690.51	974.15	1112.51
ε_x , MB	-0.05	-0.09	-0.14	-0.21	-0.26	-0.28
I = 0.7 мА						
I_m, A	0.27	0.61	0.90	1.20	1.37	1.57
В, мТл	220.09	455.30	655.92	863.46	981.07	1119.42
ε_x , MB	-0.07	-0.16	-0.23	-0.28	-0.30	-0.32
I = 0.8 мA						
I_m , A	0.30	0.60	0.72	1.05	1.25	1.57
В, мТл	240.85	448.39	531.40	759.69	898.05	1119.42
ε_x , MB	-0.09	-0.19	-0.22	-0.30	-0.33	-0.37
I = 0.9 MA						
I_m, A	0.33	0.60	0.81	1.07	1.37	1.56
В, мТл	261.60	448.39	593.66	773.53	981.07	1112.51
ε_x , мВ	-0.18	-0.27	-0.34	-0.41	-0.46	-0.48
I = 1 м A						
I_m , A	0.33	0.60	0.76	1.06	1.32	1.57
В, мТл	261.60	448.39	559.07	766.61	946.48	1119.42
ε_x , мВ	-0.19	-0.30	-0.36	-0.45	-0.50	-0.53

Зависимость величины ЭДС Холла ε_x от индукции поля в зазоре электромагнита.

$$\varepsilon_x = -R_x \frac{IB}{a} \Rightarrow k = -R_x \frac{I}{a} \Rightarrow R_x = -a \frac{k}{I}$$

Значит, $R_x = 0.83 \,\, \mathrm{cm}^3/\mathrm{K}$ л

$$\sigma = \frac{IL_{35}}{U_{35}al}$$

Значит, удельная проводимость $\sigma = 701.11 \mathrm{Om/m}$.

3 Вывод

Измерена постоянная Холла $R_x=0.83$ см/Кл и удельная проводимость $\sigma=701.11$ Ом/м проводника.