Versuchstag 5

Valentin Olpp, Marco Zech - Gruppe 8

27. Mai 2014

Regler

P-Regler

- Metallblock wurde mittels Peltierelement erwärmt
- Widerstand des PTC-Thermistors wurde gemessen und in Temeratur umgerechnet

Aufgabe war es, mittels Power-Supply den Strom am Peltierelement so zu regeln, dass die Temperatur des Blocks konstant bleibt

- falls Temperatur zu niedrig ⇒ mit Strom nachheizen
- falls Temperatur zu hoch ⇒ Strom abdrehen (Kühlung hier nicht möglich)
- falls Sollwert bald erreicht wird ⇒ Strom langsam herunterdrehen
- Versuch abzuschätzen wie viel Zeit zwischen Regelung und Änderung der Temperatur verstreicht
- Es ist schwierig bei einer anfänglichen großen Differenz zwischen Ist- und Sollwert den Sollwert schnell zu erreichen ohne zu übersteuern

Übertragungsgleichung:

$$u(t) = K_p \cdot e(t) \tag{1}$$

Hierbei sind:

- e(t): Regelabweichung des Systems (Differenz von Sollwert und Istwert der zu regelnden Größe, bei und die Temperatur)
- u(t): Stellgröße, die an die Regelstrecke weitergegeben wird, um der Regelabweichung entgegenzuwirken
- K_p: Regler-Parameter, mit dem der Abweichung entgegengewirkt wird

Eigenschaften des P-Reglers

- Regelung ist relativ schnell
- Stellgröße kann schnell hohe Werte annehmen und damit an Begrenzungen des Systems stoßen
- Sollwert nur durch P-Regelung nicht erreichbar, entweder Näherung von unten oder ungedämpfte Schwingung um die Stellgröße
- ⇒ P-Regler alleine werden nur selten in der Praxis verwendet

Experiment wird nun mit automatisierter P-Regelung bei verschiedenen K_p -Parametern am Computer durchgeführt:

Regelung bei $K_p = 1$

Regelung bei $K_p = 0, 1$

Regelung bei $K_p = 5$

- Bei $K_p = 5$ wird keine konstante Temperatur erreicht, der Istwert osziliert ungedämpft um den Sollwert
- Bei $K_p = 1$ und 0, 1 erreicht das System nicht den Sollwert, der Regler scheint zu schwach zu sein
- Vergleich der Regler bei $K_p = 1$ und 0.1 zeigt, dass die Regelgeschwindigkeit proportional zum Regelfaktor ist

$$u(t) = K_t \cdot \int_0^t e(\tau) dx \tag{2}$$

Hierbei sind:

- e(t), u(t) wie oben
- K_t: Regler-Parameter, mit dem der Abweichung entgegengewirkt wird

- Regelung ist relativ schnell
- Benötigt linearen Leistungsausgang
- I-Regler kann ohne P- und D-Glied auskommen. Braucht jedoch lange bis er sich auf stabilen Wert eingepegelt hat

- \bullet Abkühlung des Blockes auf ca. 50 $^{\circ}$ C
- Dann I-Regelung der Temperatur mit $t_i = 100s$

- Gleiche Messung wie eben
- Es wurde allerdings "anti-windup-Funktion" verwendet

Zur änti-windup-Funktion"

- Regelgröße berechnet sich bei uns durch R = P + I + D
- falls P+I+D>2 bzw. P+I+D<0, wird P+I+D=2 bzw. = 0 gesetzt
- verhindert zu starken Ausschlag des Reglers und damit zu starke Oszilation der Ist-Wert-Kurve

Wähle Maxima der Oszilationen und fitte mit Gerade

 \Rightarrow Man erhält für die erste Messung: $t_0pprox 10280s$

Und für die zweite: $t_0 \approx 174212s$

Fazit

I-Regelung ist in den meisten Fällen alleine nicht für den praktischen Gebrauch geeignet

 $|T_{ist} - T_{soll}| \le 0.1K$ wurde ab $t \approx 190s$ erreicht

Da Parameter noch nicht optimal gewählt \Rightarrow Justiere K_p

Hier wird nach ca.82s $|T_{ist} - T_{soll}| \le 0.25K$ erreicht

Justierung des I-Reglers führte auf $t_i = 100s$

Nach ca. 94s wird $|T_{ist} - T_{soll}| \le 0.035K$ erreicht

• Messung nun mit D-Regelung bei $t_d = 1s$

- D-Anteil proportional zur Steigungsänderung
- D-Regler hat daher auch keinen Bezug zur Sollgröße
- keine wirkliche Regelung, sondern nur Korrektur

Eigenschaften des D-Reglers werden bei Wechsel der Regelung deutlich:

$$y(t) = k_p \cdot e(t) + \frac{de(t)}{dt}t_d$$

Aufgabenstellung: Untersuchen des P- und D-Anteils

Einstellung

$T_{\mathrm{Start}} \sim 35^{\circ},\, T_{\mathrm{soll}} = 40^{\circ}, k_p = 1.6, t_d 1s$

PD-Regler

PD-Regler

 $k_p = 4.2, T_d = 1s$

Einführung in PID-Regelung Manuelle Regelung P-Regler I-Regler PI-Regler D-Regler **PD-Regler** PID-Regler

$$y(t) = k_p \cdot e(t) + t_i \cdot \int_0^t e(z) dz + \frac{de(t)}{dt} \cdot t_d$$

- Regler wird als P-Regler betrieben
- Vergrößerung des Verstärkungsfaktors k_p bis sich eine ungedämpfte Schwingung einstellt
- Dieser k_p Wert wird als $k_{p;krit}$ bezeichnet
- Die Periodendauer der ungedämpften Schwingung ist t_{krit}

Einsetzen in $k_p = 0.6 \cdot k_{p:krit}$, $t_i = 0.5 \cdot t_{krit}$, $t_d = 0.125 \cdot t_{krit}$ $\Rightarrow k_p = 0.6 \cdot 4.2 = 2.52$ $t_i = 0.5 \cdot 5.8s = 2.9s$ $t_d = 0.125 \cdot 5.8s = 0.725s$

Aufgabenstellung

Messung der Einschwingzeit von 60° auf 55°

Einschwingverhalten $60^{\circ} \rightarrow 40^{\circ} \rightarrow 60^{\circ}$

- Ohne "anti-wind-up"
 - $60^{\circ} \rightarrow 40^{\circ}$: Einschwingzeit 143.436 s
 - $40^{\circ} \rightarrow 60^{\circ}$: Einschwingzeit 98.3 s
- Mit "anti-wind-up"
 - $60^{\circ} \rightarrow 40^{\circ}$: Einschwingzeit 60.1 s
 - $40^{\circ} \rightarrow 60^{\circ}$: Einschwingzeit 41.1 s

Optimierung

