Механические колебания

Механические колебания вид движения, при котором положение тела повторяется точно или почти точно за равные промежутки времени.

Характеристики колебаний.

Период – время одного полного колебания.

 $T = \frac{t}{N}$ (где N – количество колебаний, t – время наблюдения). T = [c]

Частота (собственная) – количество полных колебаний за единицу времени.

$$v = \frac{N}{t}; \qquad v = \left[\frac{1}{c}\right] = \left[c^{-1}\right] = \left[\Gamma u\right] \qquad T = \frac{1}{v}; \qquad v = \frac{1}{T};$$

Циклическая частота
$$\omega = 2\pi v = \frac{2\pi}{T}$$
 $\omega = \left[\frac{pa\partial}{c}\right]$

Смещение – отклонение тела от положения равновесия; x = [M]

Амплитуда – максимальное отклонение тела от положения равновесия, $x_m = [M]$

Виды колебаний.

Свободные	Вынужденные	
колебания, совершаемые в системе,	колебания, происходящие под действием	
выведенной из состояния равновесия и	внешней периодически изменяющейся силы	
затем предоставленной самой себе.		
(Колебания, происходящие только за счёт		
первоначального запаса энергии)		
затухающие (причина – сила трения)	не затухающие (причина – периодически	
	действующая внешняя сила)	
X t	t Ha Farmounueckue	
	Гармонические (sin,cos) Не гармонические	

Механические колебательные системы – маятники.

Маятник на нити	Маятник на пружине.	
T = $2\pi \sqrt{\frac{l}{g}}$ $v = \frac{1}{2\pi} \cdot \sqrt{\frac{g}{l}}; \omega = \sqrt{\frac{g}{l}}$	$T = 2\pi \sqrt{\frac{m}{k}}$ $v = \frac{1}{2\pi} \cdot \sqrt{\frac{k}{m}}; \omega = \sqrt{\frac{k}{m}}$	

Уравнения колебаний.

 $\mathbf{x} = \mathbf{X}_{\mathsf{M}} \mathbf{cos}(\boldsymbol{\omega} \mathbf{t} + \boldsymbol{\varphi}_{0})$ - уравнение координаты

 $\phi = \omega t + \phi_0$ - фаза колебаний $\Delta \phi = \omega (t_2 - t_1)$ - разность фаз.

v = x' и a = v' = x'' - физический смысл производной

 $\upsilon = -X_{\rm M}\omega\sin(\omega t + \varphi_0) = -\upsilon_{\rm M}\sin(\omega t + \varphi_0)$ уравнение скорости, где

 $v_{\rm M} = X_{\rm M} \omega$ $a_{\rm m} = X_{\rm M} \omega^2$

 $a=-X_{\rm M}\omega^2\cos(\omega t+\phi_0)=a_m\cos(\omega t+\phi_0)$ уравнение ускорения, где

Вывод: при колебания маятника его x, v, a имеют *одинаковые* период и частоту, а $E_{\text{пот}}$ и $E_{\text{кин}}$ колеблются с периодом T/2 и частотой 2 ν .

Энергия колебаний.

$$\mathbf{E}_{\text{пол}} = \hat{\mathbf{E}}_{\text{п макс}} = \mathbf{E}_{\kappa \text{ макс}} = \mathbf{E}$$

$$\mathbf{E}_{ ext{пол}} = \hat{\mathbf{E}}_{ ext{п макс}} = \mathbf{E}_{ ext{к макс}} = \mathbf{E}$$
 $mgh_m = rac{mv_m^2}{2} = mgh + rac{mv^2}{2}$ или $rac{kx_m^2}{2} = rac{mv_m^2}{2} = rac{kx^2}{2} + rac{mv^2}{2}$

$$\frac{kx_m^2}{2} = \frac{mv_m^2}{2} = \frac{kx^2}{2} + \frac{mv^2}{2}$$

Динамика колебаний.

 $\vec{T} + \mathbf{m}\vec{g} = \mathbf{m}\vec{a}$ - ранодействующяя – возращающая сила переменная величина \Rightarrow ускорение является величиной постоянно меняющейся по модулю и напрвлению

$$a = a(t) = x^{\prime\prime}$$

Резонансная кривая при различных значениях силы трения.

Резонанс – явление резкого возрастания амплитуды колебаний, при совпадении собственной частоты колебательной системы с частотой внешней силы.

Возрастание амплитуды при резонансе выражено тем отчетливее, чем меньше трение в системе. $\mathbf{F}_{\text{тр1}} \!\!< \mathbf{F}_{\text{тр2}}$

Механические волны.

Волна- это колебания, распространяющиеся в пространстве с течением времени.

Характеристики волн.

Длина волны – это расстояние, на которое распространяется волна за время равное периоду или расстояние между ближайшими точками, колеблющимися в одинаковой фазе.

 $\lambda = vT$ $\lambda = v/v$

Волна переносит энергию и импульс, но не переносит вещество.

Примером механической продольной волны может являться звук. Человеческое ухо воспринимает колебания в интервале от 16 до 20000 Гц. Скорость звука в воздухе при нормальном атмосферном давлении равна 332 м/с.

Волны обладают двоякой периодичностью:

- периодичностью во времени
- периодичностью в пространстве

Свойства механических волн:

- 1. Поглощение (не упругими средами)
- 2. Отражение (от упругих сред)
- 3. Дифракция (огибание препятствий)
- 4. Интерференция (сложение когерентных волн).

Законы сохранения

Импульс тела (материальной точки) - физическая векторная величина, равная произведению массы тела на его скорость.

$$\vec{p} = \mathbf{m} \cdot \vec{v}$$

$$[p] = \kappa_{\Gamma} \cdot M/c$$

$$\stackrel{\rightarrow}{p}\uparrow\uparrow\stackrel{\rightarrow}{\upsilon}$$

Импульс силы – векторная физическая величина, равная произведению среднего значения силы на время ее действия $\overrightarrow{F} \cdot \Delta t$. $[F \cdot \Delta t] = H \cdot M$.

Второй закон Ньютона изменение импульса тела равно импульсу действующей на него

T.K.
$$\overrightarrow{F} \cdot \Delta t = \Delta \overrightarrow{p}$$

$$m\overrightarrow{v_2} - m\overrightarrow{v_1} = \overrightarrow{F} \cdot \Delta t$$

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения.

Удар

Абсолютно неупругим ударом называют такое ударное взаимодействие, при при котором тела соединяются друг с другом и движутся дальше как одно тело. системы тел.

Абсолютно упругим ударом называется столкновение, котором сохраняется энергия

Механическая энергия не сохраняется (она частично или полностью переходит во внутреннюю энергию тел)

Закон сохранения импульса.

Замкнутая (изолированная) система — система тел, взаимодействующих только между собой и не взаимодействующих с телами, не входящими в эту систему.

Закон сохранения импульса: векторная сумма импульсов тел, составляющих замкнутую систему, не изменяется.

$$m\vec{v_{01}} + m\vec{v_{02}} + m\vec{v_{03}} + \dots = m\vec{v_1} + m\vec{v_2} + m\vec{v_3} + \dots$$

Энергия – скалярная физическая величина, являющаяся мерой способности тела (или системы тел) совершить работу.

Кинетическая энергия -

___ Энергия ___

Потенциальная энергия –

энергия движущегося тела.

обусловлена взаимодействием различных тел или частей тела

 $\mathbf{E}_{\kappa} = \frac{mv^2}{2}$

Теорема о кинетической изменение

энергии кинетической энергии тела при переходе положения одного другое равно работе всех действующих сил, тело.

Потенциальная энергия тела поднятого над землей

E=mgh

т-масса тела **g**-ускорение свободного падения

Потенциальная энергия упругодеформированного тела

$$\mathbf{E}_{\mathbf{\Pi}} = \frac{kx^2}{2}$$

k - коэффициент жесткости пружины

х- величина деформации

Закон сохранения энергии в механических процессах — сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

$$E = E_{k1} + E_{p1} = E_{k2} + E_{p2} = const$$
 при $F_{TP} = 0$

Если $F_{rp} \neq 0$, механическая энергия переходит во внутреннюю (тепловую) энергию тела:

$$Q = E_2 - E_1$$
, где $Q = A_{TP}$

Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями. Такие силы называются консервативными (силы тяжести и силы упругости)

Работа силы.

Механической работой А, совершаемой постоянной силой, называется скалярная физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла а между векторами силы и перемещения.

$$A = F \cdot s \cdot \cos \alpha$$

$$[A] = Дж$$

$$1Дж = 1H \cdot 1м$$

Работа в зависимости от угла а:

No	α	формула	рисунок
1	$\alpha = 0^{\circ}$	$\cos \alpha = 1$ $A = F \cdot s (\upsilon \uparrow)$	\overrightarrow{F} \overrightarrow{S}
2	$0^{\circ} < \alpha < 90^{\circ}$	$\cos \alpha > 0$ A = F·s·cos $\alpha > 0$ ($v \uparrow$)	$\alpha \stackrel{\rightarrow}{F} \stackrel{\rightarrow}{s}$
3	α = 90 °	$\cos\alpha = 0$ $A = 0 \upsilon = 0$	\overrightarrow{F}
4	90 ° < α < 180°	$\cos \alpha < 0$ $A = F \cdot s \cdot \cos \alpha < 0 (v \downarrow)$	\overrightarrow{F}_{S}
5	α = 180 °	$\cos\alpha = -1$ $A = -F \cdot s < 0 \ (\upsilon\downarrow)$	F S

Графически работа определяется по площади фигуры под графиком $F_s(x)$: $\mathbf{A} = \mathbf{S}_{\phi \mathbf{H} \mathbf{\Gamma}}$

Работа силы равна изменению его кинетической или потенциальной энергии: $\mathbf{A} = \left| \Delta \mathbf{E}_{\kappa} \right| = \left| \Delta \mathbf{E}_{\mathbf{n}} \right|$

Работа силы тяжести не зависит от формы траектории и равна изменению потенциальной энергии тела, взятому с противоположным знаком.

$$A_{TSK} = mg(h_1 - h_2) = -(mgh_1 - mgh_2) = -(E_{p2} - E_{p1})$$

Работа силы тяжести по замкнутой траектории равна нулю.

Мощность — скалярная физическая величина, равная отношению совершенной работы к промежутку времени, за который она совершена.

$$N = \frac{A}{t}$$
 $N = \mathbf{F} \cdot \mathbf{v}$ $[N] = B_T$ $1 B_T = \frac{1 \angle \mathcal{B} c}{1c}$

Коэффициент полезного действия механизмов КПД – величина, равная отношению полезной работы к полной работ, выраженная в процентах. $\eta = \frac{A_{\text{полезная}}}{A_{\text{полная}}} 100\%$